

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
09/894,125	06/29/2001	Shunpei Yamazaki	740756-2330	7248
31780	7590	11/07/2005	EXAMINER	
ERIC ROBINSON PMB 955 21010 SOUTHBANK ST. POTOMAC FALLS, VA 20165				KEBEDE, BROOK
			ART UNIT	PAPER NUMBER
			2823	

DATE MAILED: 11/07/2005

Please find below and/or attached an Office communication concerning this application or proceeding.

)

Office Action Summary	Application No.	Applicant(s)
	09/894,125	YAMAZAKI ET AL.
	Examiner	Art Unit
	Brook Kebede	2823

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --
Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS, WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

Status

- 1) Responsive to communication(s) filed on 06 September 2005.
- 2a) This action is FINAL. 2b) This action is non-final.
- 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under *Ex parte Quayle*, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

- 4) Claim(s) 1-17, 19-30 and 47-58 is/are pending in the application.
- 4a) Of the above claim(s) _____ is/are withdrawn from consideration.
- 5) Claim(s) _____ is/are allowed.
- 6) Claim(s) 1-17, 19-30 and 47-58 is/are rejected.
- 7) Claim(s) _____ is/are objected to.
- 8) Claim(s) _____ are subject to restriction and/or election requirement.

Application Papers

- 9) The specification is objected to by the Examiner.
- 10) The drawing(s) filed on _____ is/are: a) accepted or b) objected to by the Examiner.
 Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).
 Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).
- 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

- 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
- a) All b) Some * c) None of:
 1. Certified copies of the priority documents have been received.
 2. Certified copies of the priority documents have been received in Application No. _____.
 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

- 1) Notice of References Cited (PTO-892)
 2) Notice of Draftsperson's Patent Drawing Review (PTO-948)
 3) Information Disclosure Statement(s) (PTO-1449 or PTO/SB/08)
 Paper No(s)/Mail Date 9/6/05.
- 4) Interview Summary (PTO-413)
 Paper No(s)/Mail Date. _____.
 5) Notice of Informal Patent Application (PTO-152)
 6) Other: _____.

DETAILED ACTION

Claim Rejections - 35 USC § 103

1. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negated by the manner in which the invention was made.

This application currently names joint inventors. In considering patentability of the claims under 35 U.S.C. 103(a), the examiner presumes that the subject matter of the various claims was commonly owned at the time any inventions covered therein were made absent any evidence to the contrary. Applicant is advised of the obligation under 37 CFR 1.56 to point out the inventor and invention dates of each claim that was not commonly owned at the time a later invention was made in order for the examiner to consider the applicability of 35 U.S.C. 103(c) and potential 35 U.S.C. 102(e), (f) or (g) prior art under 35 U.S.C. 103(a).

2. **Claims 19, 20, 23-30, 47, 48 and 51-58 are rejected under 35 U.S.C. 103(a) as being unpatentable over Morosawa (JP/07038113) in view of Hara et al. (US/5,648,276).**

Re claim 19, 25, 27 and 29, Morosawa discloses a method of manufacturing a semiconductor device comprising the steps of: forming a semiconductor film comprising silicon over a substrate; irradiating said semiconductor film with laser light in an atmosphere containing oxygen for crystallizing said semiconductor film; removing an oxide film formed on a surface of the semiconductor film by etching with buffered HF (i.e., 1% HF) after the first irradiation of the laser light and before the second laser light irradiation; and leveling the surface of the semiconductor film by heating in an atmosphere containing in inert gas or oxygen or the

combination of after removing the oxide film, in an atmosphere containing predetermined concentration of oxygen or an oxygen compound (see the English translation that was submitted by Applicants on April 18, 2005).

However, Morosawa does not specifically disclose recrystallizing the semiconductor film in order to level the semiconductor film after native oxide removal process.

Hara et al. disclose process for fabricating of the thin film semiconductor device (i.e., TFT device) and depositing of the semiconductor layer (2) (i.e., a amorphous silicon layer) and crystallizing of the semiconductor layer (2) and cleaning the semiconductor layer and recrystallizing the semiconductor layer (see Col. 1, line 65 – Col. 2, line 49) in order to level the surface of the semiconductor layer having good uniformity and high reliability (see Hara et al. Figs. 5A-22 and Col. 1, line 65 – Col. 16, line 67).

Both Morosawa and Hara et al. teachings are directed to fabricating of TFTs the process includes depositing of semiconductor thin film and annealing the semiconductor thin film the crystallize the thin film. Therefore, the teachings of Morosawa and Hara et al. are analogous.

Therefore, it would have been obvious to one having ordinary skill in the art at the time of applicant(s) claimed invention was made to provide Morosawa reference with recrystallizing the semiconductor film in order to level the semiconductor film after native oxide removal process as taught by Hara et al. in order to form a fine semiconductor layer having good uniformity and high reliability.

However, both Morosawa and Hara et al. silent about the concentration of oxygen or oxygen compound being 10 ppm or less during the leveling step. Although the concentration is not specifically disclosed by Morosawa and Kudo et al., such oxygen concentration rage can be

Art Unit: 2823

set within the level ordinary skill in the art by routine optimization to passivate the damaged surface of the semiconductor layer during removal of natural (native) oxide.

One of ordinary skill in would have motivated to set the oxygen concentration at 10 ppm or less by routine optimization in order to passivate the damaged surface of the semiconductor layer during removal of natural (native) oxide.

Therefore, it would have been to one having ordinary skill in the art at the time of the invention is made to set the oxygen concentration at 10 ppm or less by routine optimization in order to passivate the damaged surface of the semiconductor layer during removal of natural (native) oxide, since it has been held where the general conditions of a claim are disclosed in the prior art, it is not inventive to discover the optimum or workable ranges by routine experimentation." See *In re Aller*, 220 F.2d 454, 456, 105 USPQ 233, 235 (CCPA 1955); *In re Hoeschele*, 406 F.2d 1403, 160 USPQ 809 (CCPA 1969); *Merck & Co. Inc. v. Biocraft Laboratories Inc.*, 874 F.2d 804, 10 USPQ2d 1843 (Fed. Cir.), cert. denied, 493 U.S. 975 (1989); *In re Kulling*, 897 F.2d 1147, 14 USPQ2d 1056 (Fed. Cir. 1990); and *In re Geisler*, 116 F.3d 1465, 43 USPQ2d 1362 (Fed. Cir. 1997). Furthermore, the specification contains no disclosure of either the critical nature of the claimed concentration range or any unexpected results arising therefrom. Where patentability is said to be based upon particular chosen dimensions or upon another variable recited in a claim, the Applicant must show that the chosen dimensions are critical. See *In re Woodruff*, 919, f.2d 1575, 1578, 16 USPQ2d, 1936 (Fed. Cir. 1990).

Re claims 20, 26, 28, and 30, Morosawa discloses a method of manufacturing a semiconductor device comprising the steps of: forming a semiconductor film comprising silicon over a substrate; irradiating the semiconductor film with laser light in an atmosphere containing

oxygen for crystallizing said semiconductor film; treating a surface of the semiconductor film with a buffered hydrofluoric acid (i.e., 1% HF) after the first irradiation of the laser light before the second irradiation of light; and leveling the surface of the semiconductor film by heating after the treatment with the hydrofluoric acid in an atmosphere, in an atmosphere containing predetermined concentration of oxygen or an oxygen compound (see the English translation that was submitted by Applicants on April 18, 2005).

However, Morosawa does not specifically disclose recrystallizing the semiconductor film in order to level the semiconductor film after native oxide removal process.

Hara et al. disclose process for fabricating of the thin film semiconductor device (i.e., TFT device) and depositing of the semiconductor layer (2) (i.e., a amorphous silicon layer) and crystallizing of the semiconductor layer (2) and cleaning the semiconductor layer and recrystallizing the semiconductor layer (see Col. 1, line 65 – Col. 2, line 49) in order to level the surface of the semiconductor layer having good uniformity and high reliability (see Hara et al. Figs. 5A-22 and Col. 1, line 65 – Col. 16, line 67).

Both Morosawa and Hara et al. teachings are directed to fabricating of TFTs the process includes depositing of semiconductor thin film and annealing the semiconductor thin film the crystallize the thin film. Therefore, the teachings of Morosawa and Hara et al. are analogous.

Therefore, it would have been obvious to one having ordinary skill in the art at the time of applicant(s) claimed invention was made to provide Morosawa reference with recrystallizing the semiconductor film in order to level the semiconductor film after native oxide removal process as taught by Hara et al. in order to form a fine semiconductor layer having good uniformity and high reliability.

However, both Morosawa and Hara et al. silent about the concentration of oxygen of oxygen compound being 10 ppm or less during the leveling step. Although the concentration is not specifically disclosed by Morosawa and Kudo et al., such oxygen concentration rage can be set within the level ordinary skill in the art by routine optimization to passivate the damaged surface of the semiconductor layer during removal of natural (native) oxide.

One of ordinary skill in would have motivated to set the oxygen concentration at 10 ppm or less by routine optimization in order to passivate the damaged surface of the semiconductor layer during removal of natural (native) oxide.

Therefore, it would have been to one having ordinary skill in the art at the time of the invention is made to set the oxygen concentration at 10 ppm or less by routine optimization in order to passivate the damaged surface of the semiconductor layer during removal of natural (native) oxide, since it has been held where the general conditions of a claim are disclosed in the prior art, it is not inventive to discover the optimum or workable ranges by routine experimentation." See *In re Aller*, 220 F.2d 454, 456, 105 USPQ 233, 235 (CCPA 1955); *In re Hoeschele*, 406 F.2d 1403, 160 USPQ 809 (CCPA 1969); *Merck & Co. Inc. v. Biocraft Laboratories Inc.*, 874 F.2d 804, 10 USPQ2d 1843 (Fed. Cir.), cert. denied, 493 U.S. 975 (1989); *In re Kulling*, 897 F.2d 1147, 14 USPQ2d 1056 (Fed. Cir. 1990); and *In re Geisler*, 116 F.3d 1465, 43 USPQ2d 1362 (Fed. Cir. 1997). Furthermore, the specification contains no disclosure of either the critical nature of the claimed concentration range or any unexpected results arising therefrom. Where patentability is said to be based upon particular chosen dimensions or upon another variable recited in a claim, the Applicant must show that the chosen dimensions are critical. See *In re Woodruff*, 919, f.2d 1575, 1578, 16 USPQ2d, 1936 (Fed. Cir. 1990).

Re claim 23, as applied to claim 19 above, Morosawa and Hara et al. in combination disclose all the claimed limitations including leveling (i.e., annealing) the semiconductor film at temperature between 500 and 600 °C (i.e., outside the claimed temperature range of 900 and 1200 °C) (see the English translation that was submitted by Applicants on April 18, 2005).

One of ordinary skill in the art would have been motivated to optimize the claimed annealing temperature range by using routine experimentation in order to achieve the desired device performance.

Therefore, it would have been to one having ordinary skill in the art at the time of the invention is made to optimize the claimed annealing temperature range, since it has been held where the general conditions of a claim are disclosed in the prior art, it is not inventive to discover the optimum or workable ranges by routine experimentation.” See *In re Aller*, 220 F.2d 454, 456, 105 USPQ 233, 235 (CCPA 1955); *In re Hoeschele*, 406 F.2d 1403, 160 USPQ 809 (CCPA 1969); *Merck & Co. Inc. v. Biocraft Laboratories Inc.*, 874 F.2d 804, 10 USPQ2d 1843 (Fed. Cir.), cert. denied, 493 U.S. 975 (1989); *In re Kulling*, 897 F.2d 1147, 14 USPQ2d 1056 (Fed. Cir. 1990); and *In re Geisler*, 116 F.3d 1465, 43 USPQ2d 1362 (Fed. Cir. 1997). Furthermore, the specification contains no disclosure of either the critical nature of the claimed temperature range or any unexpected results arising therefrom. Where patentability is said to be based upon particular chosen dimensions or upon another variable recited in a claim, the Applicant must show that the chosen dimensions are critical. See *In re Woodruff*, 919, f.2d 1575, 1578, 16 USPQ2d, 1936 (Fed. Cir. 1990).

Re claim 24, as applied to claim 20 above, Morosawa and Hara et al. in combination disclose all the claimed limitations including leveling (i.e., annealing) the semiconductor film at

temperature between 500 and 600 °C (i.e., outside the claimed temperature range of 900 and 1200 °C) (see the English translation that was submitted by Applicants on April 18, 2005).

One of ordinary skill in the art would have been motivated to optimize the claimed annealing temperature range by using routine experimentation in order to achieve the desired device performance.

Therefore, it would have been to one having ordinary skill in the art at the time of the invention is made to optimize the claimed annealing temperature range, since it has been held where the general conditions of a claim are disclosed in the prior art, it is not inventive to discover the optimum or workable ranges by routine experimentation.” See *In re Aller*, 220 F.2d 454, 456, 105 USPQ 233, 235 (CCPA 1955); *In re Hoeschele*, 406 F.2d 1403, 160 USPQ 809 (CCPA 1969); *Merck & Co. Inc. v. Biocraft Laboratories Inc.*, 874 F.2d 804, 10 USPQ2d 1843 (Fed. Cir.), cert. denied, 493 U.S. 975 (1989); *In re Kulling*, 897 F.2d 1147, 14 USPQ2d 1056 (Fed. Cir. 1990); and *In re Geisler*, 116 F.3d 1465, 43 USPQ2d 1362 (Fed. Cir. 1997).

Furthermore, the specification contains no disclosure of either the critical nature of the claimed temperature range or any unexpected results arising therefrom. Where patentability is said to be based upon particular chosen dimensions or upon another variable recited in a claim, the Applicant must show that the chosen dimensions are critical. See *In re Woodruff*, 919, f.2d 1575, 1578, 16 USPQ2d, 1936 (Fed. Cir. 1990).

Re claims 47, 53, 55, and 57, Morosawa discloses a method of manufacturing a semiconductor device comprising the steps of: forming a semiconductor film comprising silicon (2 3) over a substrate (see Drawing 1, Examples and Abstract); irradiating the semiconductor film with laser light in an atmosphere containing oxygen for crystallizing said semiconductor

film (see Examples Paragraph 0009); removing a natural oxidation film (8) formed on a surface of the semiconductor film by etching (i.e., dipping in 1% HF solution) after the first irradiation of the laser light and before the second radiation anneal treatment; and leveling the surface of the semiconductor film by heating in the atmosphere containing inert gas in reducing atmosphere (i.e., in treating the film with NH₃ and N₂ plasma ; see page 6/10 and lines 5-17 of the English translation that was submitted by Applicants on April 18, 2005) after removing the natural oxidation film (see the English translation that was submitted by Applicants on April 18, 2005).

However, Morosawa does not specifically disclose recrystallizing the semiconductor film in order to level the semiconductor film after native oxide removal process.

Hara et al. disclose process for fabricating of the thin film semiconductor device (i.e., TFT device) and depositing of the semiconductor layer (2) (i.e., a amorphous silicon layer) and crystallizing of the semiconductor layer (2) and cleaning the semiconductor layer and recrystallizing the semiconductor layer (see Col. 1, line 65 – Col. 2, line 49) in order to level the surface of the semiconductor layer having good uniformity and high reliability (see Hara et al. Figs. 5A-22 and Col. 1, line 65 – Col. 16, line 67).

Both Morosawa and Hara et al. teachings are directed to fabricating of TFTs the process includes depositing of semiconductor thin film and annealing the semiconductor thin film the crystallize the thin film. Therefore, the teachings of Morosawa and Hara et al. are analogous.

Therefore, it would have been obvious to one having ordinary skill in the art at the time of applicant(s) claimed invention was made to provide Morosawa reference with recrystallizing the semiconductor film in order to level the semiconductor film after native oxide removal

process as taught by Hara et al. in order to form a fine semiconductor layer having good uniformity and high reliability.

Re claims 48, 54, 56, and 58, Morosawa discloses a method of manufacturing a semiconductor device comprising the steps of: forming a semiconductor film comprising silicon over a substrate; irradiating the semiconductor film with laser light in an atmosphere containing oxygen for crystallizing the semiconductor film; treating a surface of the semiconductor film with a hydrofluoric acid to remove a natural oxidation film formed on the surface of the semiconductor film after the irradiation of the laser light; and leveling the surface of the semiconductor film by heating in inert gate (i.e., nitrogen gas) or in reducing atmosphere (i.e., in hydrogen) after the treatment with the hydrofluoric acid i.e., dipping in 1% HF solution) before the second radiation anneal treatment (see the English translation that was submitted by Applicants on April 18, 2005).

However, Morosawa does not specifically disclose recrystallizing the semiconductor film in order to level the semiconductor film after native oxide removal process.

Hara et al. disclose process for fabricating of the thin film semiconductor device (i.e., TFT device) and depositing of the semiconductor layer (2) (i.e., a amorphous silicon layer) and crystallizing of the semiconductor layer (2) and cleaning the semiconductor layer and recrystallizing the semiconductor layer (see Col. 1, line 65 – Col. 2, line 49) in order to level the surface of the semiconductor layer having good uniformity and high reliability (see Hara et al. Figs. 5A-22 and Col. 1, line 65 – Col. 16, line 67).

Both Morosawa and Hara et al. teachings are directed to fabricating of TFTs the process includes depositing of semiconductor thin film and annealing the semiconductor thin film the crystallize the thin film. Therefore, the teachings of Morosawa and Hara et al. are analogous.

Therefore, it would have been obvious to one having ordinary skill in the art at the time of applicant(s) claimed invention was made to provide Morosawa reference with recrystallizing the semiconductor film in order to level the semiconductor film after native oxide removal process as taught by Hara et al. in order to form a fine semiconductor layer having good uniformity and high reliability.

Re claim 51, as applied to claim 47 above, Morosawa and Hara et al. in combination disclose all the claimed limitations including leveling (i.e., annealing) the semiconductor film at temperature between 500 and 600 °C (i.e., outside the claimed temperature range of 900 and 1200 °C) (see the English translation Examples in Paragraph 0010).

One of ordinary skill in the art would have been motivated to optimize the claimed annealing temperature range by using routine experimentation in order to achieve the desired device performance.

Therefore, it would have been to one having ordinary skill in the art at the time of the invention is made to optimize the claimed annealing temperature range, since it has been held where the general conditions of a claim are disclosed in the prior art, it is not inventive to discover the optimum or workable ranges by routine experimentation." See *In re Aller*, 220 F.2d 454, 456, 105 USPQ 233, 235 (CCPA 1955); *In re Hoeschele*, 406 F.2d 1403, 160 USPQ 809 (CCPA 1969); *Merck & Co. Inc. v. Biocraft Laboratories Inc.*, 874 F.2d 804, 10 USPQ2d 1843 (Fed. Cir.), cert. denied, 493 U.S. 975 (1989); *In re Kulling*, 897 F.2d 1147, 14 USPQ2d 1056

(Fed. Cir. 1990); and *In re Geisler*, 116 F.3d 1465, 43 USPQ2d 1362 (Fed. Cir. 1997).

Furthermore, the specification contains no disclosure of either the critical nature of the claimed temperature range or any unexpected results arising therefrom. Where patentability is said to be based upon particular chosen dimensions or upon another variable recited in a claim, the Applicant must show that the chosen dimensions are critical. See *In re Woodruff*, 919, f.2d 1575, 1578, 16 USPQ2d, 1936 (Fed. Cir. 1990).

Re claim 52, as applied to claim 47 above, Morosawa and Hara et al. in combination disclose all the claimed limitations including leveling (i.e., annealing) the semiconductor film at temperature between 500 and 600 °C (i.e., outside the claimed temperature range of 900 and 1200 °C) (see the English translation that was submitted by Applicants on April 18, 2005).

With respect to the temperature range, one of ordinary skill in the art would have been motivated to optimize the claimed annealing temperature range by using routine experimentation in order to achieve the desired device performance.

Therefore, it would have been to one having ordinary skill in the art at the time of the invention is made to optimize the claimed annealing temperature range, since it has been held where the general conditions of a claim are disclosed in the prior art, it is not inventive to discover the optimum or workable ranges by routine experimentation.” See *In re Aller*, 220 F.2d 454, 456, 105 USPQ 233, 235 (CCPA 1955); *In re Hoeschele*, 406 F.2d 1403, 160 USPQ 809 (CCPA 1969); *Merck & Co. Inc. v. Biocraft Laboratories Inc.*, 874 F.2d 804, 10 USPQ2d 1843 (Fed. Cir.), cert. denied, 493 U.S. 975 (1989); *In re Kulling*, 897 F.2d 1147, 14 USPQ2d 1056 (Fed. Cir. 1990); and *In re Geisler*, 116 F.3d 1465, 43 USPQ2d 1362 (Fed. Cir. 1997).

Furthermore, the specification contains no disclosure of either the critical nature of the claimed

temperature range or any unexpected results arising therefrom. Where patentability is said to be based upon particular chosen dimensions or upon another variable recited in a claim, the Applicant must show that the chosen dimensions are critical. See *In re Woodruff*, 919, f.2d 1575, 1578, 16 USPQ2d, 1936 (Fed. Cir. 1990).

3. Claims 21, 22, 49 and 50 are rejected under 35 U.S.C. 103(a) as being unpatentable over Morosawa (JP/07038113) and Hara et al. (US/5,648,276), and further in view of Yamazaki et al. (US/5,608,232).

Re claim 21, as applied to claim 19 in Paragraph 2 above, Morosawa Hara et al. in combination disclose all the claimed limitations including annealing of the substrate during the leveling step.

However, Morosawa and Hara et al. do not specifically disclose furnace annealing.

Yamazaki et al. disclose furnace annealing of the substrate in nitrogen atmosphere in order to crystallize the semiconductor layer (see Yamazaki et al. Col. 24, lines 10-30).

Morosawa, Hara et al. and Yamazaki et al. teachings are directed to fabricating of TFTs the process includes depositing of semiconductor thin film and annealing the semiconductor thin film the crystallize the thin film. Therefore, the teachings of Morosawa, Hara et al. and Yamazaki et al. are analogous.

Therefore, it would have been obvious to one having ordinary skill in the art at the time of applicant(s) claimed invention was made to provide Morosawa and Hara et al. reference with furnace annealing during leveling process of the semiconductor layer as taught by Yamazaki et al. in order to crystallize the semiconductor layer.

Re claim 22, as applied to claim 20 in Paragraph 2 above, Morosawa and Hara et al. disclose all the claimed limitations including annealing of the substrate during the leveling step.

However, Morosawa and Hara et al. do not specifically disclose furnace annealing.

Yamazaki et al. disclose furnace annealing of the substrate in nitrogen atmosphere in order to crystallize the semiconductor layer (see Yamazaki et al. Col. 24, lines 10-30).

Both Morosawa, Hara et al. and Yamazaki et al. teachings are directed to fabricating of TFTs the process includes depositing of semiconductor thin film and annealing the semiconductor thin film the crystallize the thin film. Therefore, the teachings of Morosawa, Hara et al. and Yamazaki et al. are analogous.

Therefore, it would have been obvious to one having ordinary skill in the art at the time of applicant(s) claimed invention was made to provide Morosawa and Hara et al. reference with furnace annealing during leveling process of the semiconductor layer as taught by Yamazaki et al. in order to crystallize the semiconductor layer.

Re claim 49, as applied to claim 47 in Paragraph 2 above, Morosawa and Hara et al. in combination disclose all the claimed limitations including annealing of the substrate during the leveling step.

However, Morosawa and Hara et al. do not specifically disclose furnace annealing.

Yamazaki et al. disclose furnace annealing of the substrate in nitrogen atmosphere in order to crystallize the semiconductor layer (see Yamazaki et al. Col. 24, lines 10-30).

Morosawa, Hara et al. and Yamazaki et al. teachings are directed to fabricating of TFTs the process includes depositing of semiconductor thin film and annealing the semiconductor thin

film the crystallize the thin film. Therefore, the teachings of Morosawa, Hara et al. and Yamazaki et al. are analogous.

Therefore, it would have been obvious to one having ordinary skill in the art at the time of applicant(s) claimed invention was made to provide Morosawa and Hara et al. reference with furnace annealing during leveling process of the semiconductor layer as taught by Yamazaki et al. in order to crystallize the semiconductor layer.

Re claim 50, as applied to claim 48 in Paragraph 2 above, Morosawa and Hara et al. in combination disclose all the claimed limitations including annealing of the substrate during the leveling step.

However, Morosawa and Hara et al. do not specifically disclose furnace annealing. Yamazaki et al. disclose furnace annealing of the substrate in nitrogen atmosphere in order to crystallize the semiconductor layer (see Yamazaki et al. Col. 24, lines 10-30).

Morosawa, Hara et al. and Yamazaki et al. teachings are directed to fabricating of TFTs the process includes depositing of semiconductor thin film and annealing the semiconductor thin film the crystallize the thin film. Therefore, the teachings of Morosawa, Hara et al. and Yamazaki et al. are analogous.

Therefore, it would have been obvious to one having ordinary skill in the art at the time of applicant(s) claimed invention was made to provide Morosawa and Hara et al. reference with furnace annealing during leveling process of the semiconductor layer as taught by Yamazaki et al. in order to crystallize the semiconductor layer.

4. Claims 1-12 and 14-17 are rejected under 35 U.S.C. 103(a) as being unpatentable over Morosawa (JP/07038113) in view of Kudo et al. (JP/09186336), and further in view of .

Re claim 1, Morosawa discloses a method of manufacturing a semiconductor device comprising the steps of: forming a semiconductor film comprising silicon (2 or 3) (see Drawing 1 and Examples and Abstract) over a substrate (1); irradiating the semiconductor film with laser light for crystallizing the semiconductor film (see Examples Paragraph 0009); removing a natural oxidation film (8) (see Drawing 7 and 8; Examples, Paragraph 0010) formed on a surface of the semiconductor film by etching after the irradiation of the laser light (i.e., by dipping in HF); and leveling the surface of the semiconductor film by heating after removing the natural oxidation film (see the English translation that was submitted by Applicants on April 18, 2005).

Although Morosawa discloses irradiating said semiconductor film (i.e., an amorphous silicon film) with a leaser light for crystallizing the semiconductor film, Morosawa is silent about irradiating the semiconductor film with leaser light in air.

Kudo et al. disclose method of manufacturing thin film transistor the method includes depositing an amorphous silicon film (25) (i.e., a semiconductor layer) and irradiating the amorphous silicon film (25) with an excimer laser in atmosphere containing an air in order to dehydrogenate the amorphous silicon film and change into polysilicon thin film (see Abstract and Drawing 2).

Both Morosawa and Kudo et al. teachings directed to irradiating amorphous thin film layer using laser light to crystallize the thin film after the thin film deposited for fabrication of TFTs. Therefore, the teachings of Morosawa and Kudo et al. are analogous.

Therefore, it would have been obvious to one having ordinary skill in the art at the time of applicant(s) claimed invention was made to provide Morosawa reference with irradiating on

the semiconductor film (i.e., amorphous silicon film) in air as taught by Kudo et al. in order to dehydrogenate the amorphous silicon film and convert it to polysilicon thin film.

However, both Morosawa and Kudo et al. do not specifically disclose recrystallizing the semiconductor film in order to level the semiconductor film after native oxide removal process.

Hara et al. disclose process for fabricating of the thin film semiconductor device (i.e., TFT device) and depositing of the semiconductor layer (2) (i.e., a amorphous silicon layer) and crystallizing of the semiconductor layer (2) and cleaning the semiconductor layer and recrystallizing the semiconductor layer (see Col. 1, line 65 – Col. 2, line 49) in order to level the surface of the semiconductor layer having good uniformity and high reliability (see Hara et al. Figs. 5A-22 and Col. 1, line 65 – Col. 16, line 67).

Morosawa, Kudo et al. and Hara et al. teachings are directed to fabricating of TFTs the process includes depositing of semiconductor thin film and annealing the semiconductor thin film the crystallize the thin film. Therefore, the teachings of Morosawa, Kudo et al. and Hara et al. are analogous.

Therefore, it would have been obvious to one having ordinary skill in the art at the time of applicant(s) claimed invention was made to provide Morosawa and Kudo et al. reference with recrystallizing the semiconductor film in order to level the semiconductor film after native oxide removal process as taught by Hara et al. in order to form a fine semiconductor layer having good uniformity and high reliability.

Re claims 2, 16, and 17, Morosawa discloses a method of manufacturing a semiconductor device comprising the steps of: forming a semiconductor film comprising silicon over a substrate; irradiating said semiconductor film with laser light for crystallizing the semiconductor film; removing an oxide film formed on a surface of the semiconductor film by etching (i.e., treating) the surface with buffered HF (i.e., 1% HF) after the irradiation of the laser light; and leveling the surface of the semiconductor film by heating in a reducing atmosphere containing hydrogen after removing the oxide film (see the English translation Example in Paragraph 0007 through Paragraph 00016).

Although Morosawa discloses irradiating said semiconductor film (i.e., an amorphous silicon film) with a leaser light for crystallizing the semiconductor film, Morosawa is silent about irradiating the semiconductor film with leaser light in air.

Kudo et al. disclose method of manufacturing thin film transistor the method includes depositing an amorphous silicon film (25) (i.e., a semiconductor layer) and irradiating the amorphous silicon film (25) with an excimer laser in atmosphere containing an air in order to dehydrogenate the amorphous silicon film and change into polysilicon thin film (see Abstract and Drawing 2).

Both Morosawa and Kudo et al. teachings directed to irradiating amorphous thin film layer using laser light to crystallize the thin film after the thin film deposited for fabrication of TFTs. Therefore, the teachings of Morosawa and Kudo et al. are analogous.

Therefore, it would have been obvious to one having ordinary skill in the art at the time of applicant(s) claimed invention was made to provide Morosawa reference with irradiating on

the semiconductor film (i.e., amorphous silicon film) in air as taught by Kudo et al. in order to dehydrogenate the amorphous silicon film and convert it to polysilicon thin film.

However, both Morosawa and Kudo et al. do not specifically disclose recrystallizing the semiconductor film in order to level the semiconductor film after native oxide removal process.

Hara et al. disclose process for fabricating of the thin film semiconductor device (i.e., TFT device) and depositing of the semiconductor layer (2) (i.e., a amorphous silicon layer) and crystallizing of the semiconductor layer (2) and cleaning the semiconductor layer and recrystallizing the semiconductor layer (see Col. 1, line 65 – Col. 2, line 49) in order to level the surface of the semiconductor layer having good uniformity and high reliability (see Hara et al. Figs. 5A-22 and Col. 1, line 65 – Col. 16, line 67).

Morosawa, Kudo et al. and Hara et al. teachings are directed to fabricating of TFTs the process includes depositing of semiconductor thin film and annealing the semiconductor thin film the crystallize the thin film. Therefore, the teachings of Morosawa, Kudo et al. and Hara et al. are analogous.

Therefore, it would have been obvious to one having ordinary skill in the art at the time of applicant(s) claimed invention was made to provide Morosawa and Kudo et al. reference with recrystallizing the semiconductor film in order to level the semiconductor film after native oxide removal process as taught by Hara et al. in order to form a fine semiconductor layer having good uniformity and high reliability.

Re claims 3 and 15, Morosawa discloses a method of manufacturing a semiconductor device comprising the steps of: forming a semiconductor film comprising silicon over a substrate; irradiating the semiconductor film with laser light for crystallizing said semiconductor

film; removing an oxide film formed on a surface of the semiconductor film by etching after the irradiation of the laser light; and leveling the surface of the semiconductor film by heating in an inert gas (i.e., nitrogen) after removing said oxide film (see the English translation that was submitted by Applicants on April 18, 2005).

Although Morosawa discloses irradiating said semiconductor film (i.e., an amorphous silicon film) with a leaser light for crystallizing the semiconductor film, Morosawa is silent about irradiating the semiconductor film with leaser light in air.

Kudo et al. disclose method of manufacturing thin film transistor the method includes depositing an amorphous silicon film (25) (i.e., a semiconductor layer) and irradiating the amorphous silicon film (25) with an excimer laser in atmosphere containing an air in order to dehydrogenate the amorphous silicon film and change into polysilicon thin film (see Abstract and Drawing 2).

Both Morosawa and Kudo et al. teachings directed to irradiating amorphous thin film layer using laser light to crystallize the thin film after the thin film deposited for fabrication of TFTs. Therefore, the teachings of Morosawa and Kudo et al. are analogous.

Therefore, it would have been obvious to one having ordinary skill in the art at the time of applicant(s) claimed invention was made to provide Morosawa reference with irradiating on the semiconductor film (i.e., amorphous silicon film) in air as taught by Kudo et al. in order to dehydrogenate the amorphous silicon film and convert it to polysilicon thin film.

However, both Morosawa and Kudo et al. do not specifically disclose recrystallizing the semiconductor film in order to level the semiconductor film after native oxide removal process.

Hara et al. disclose process for fabricating of the thin film semiconductor device (i.e., TFT device) and depositing of the semiconductor layer (2) (i.e., a amorphous silicon layer) and crystallizing of the semiconductor layer (2) and cleaning the semiconductor layer and recrystallizing the semiconductor layer (see Col. 1, line 65 – Col. 2, line 49) in order to level the surface of the semiconductor layer having good uniformity and high reliability (see Hara et al. Figs. 5A-22 and Col. 1, line 65 – Col. 16, line 67).

Morosawa, Kudo et al. and Hara et al. teachings are directed to fabricating of TFTs the process includes depositing of semiconductor thin film and annealing the semiconductor thin film the crystallize the thin film. Therefore, the teachings of Morosawa, Kudo et al. and Hara et al. are analogous.

Therefore, it would have been obvious to one having ordinary skill in the art at the time of applicant(s) claimed invention was made to provide Morosawa and Kudo et al. reference with recrystallizing the semiconductor film in order to level the semiconductor film after native oxide removal process as taught by Hara et al. in order to form a fine semiconductor layer having good uniformity and high reliability.

Re claim 4, Morosawa discloses a method of manufacturing a semiconductor device comprising the steps of: forming a semiconductor film comprising silicon over a substrate; irradiating said semiconductor film with laser light for crystallizing said semiconductor film; removing an oxide film formed on a surface of the semiconductor film by etching after the irradiation of the laser light; and leveling the surface of the semiconductor film by heating in an atmosphere after removing the oxide film, in an atmosphere containing predetermined

concentration of oxygen or an oxygen compound (see the English translation that was submitted by Applicants on April 18, 2005).

Although Morosawa discloses irradiating said semiconductor film (i.e., an amorphous silicon film) with a leaser light for crystallizing the semiconductor film, Morosawa is silent about irradiating the semiconductor film with leaser light in air and the concentration of oxygen or oxygen compound being 10 ppm or less.

Kudo et al. disclose method of manufacturing thin film transistor the method includes depositing an amorphous silicon film (25) (i.e., a semiconductor layer) and irradiating the amorphous silicon film (25) with an excimer laser in atmosphere containing an air in order to dehydrogenate the amorphous silicon film and change into polysilicon thin film (see Abstract and Drawing 2).

Both Morosawa and Kudo et al. teachings directed to irradiating amorphous thin film layer using laser light to crystallize the thin film after the thin film deposited for fabrication of TFTs. Therefore, the teachings of Morosawa and Kudo et al. are analogous.

Therefore, it would have been obvious to one having ordinary skill in the art at the time of applicant(s) claimed invention was made to provide Morosawa reference with irradiating on the semiconductor film (i.e., amorphous silicon film) in air as taught by Kudo et al. in order to dehydrogenate the amorphous silicon film and convert it to polysilicon thin film.

However, both Morosawa and Kudo et al. do not specifically disclose recrystallizing the semiconductor film in order to level the semiconductor film after native oxide removal process.

Hara et al. disclose process for fabricating of the thin film semiconductor device (i.e., TFT device) and depositing of the semiconductor layer (2) (i.e., a amorphous silicon layer) and

crystallizing of the semiconductor layer (2) and cleaning the semiconductor layer and recrystallizing the semiconductor layer (see Col. 1, line 65 – Col. 2, line 49) in order to level the surface of the semiconductor layer having good uniformity and high reliability (see Hara et al. Figs. 5A-22 and Col. 1, line 65 – Col. 16, line 67).

Morosawa, Kudo et al. and Hara et al. teachings are directed to fabricating of TFTs the process includes depositing of semiconductor thin film and annealing the semiconductor thin film the crystallize the thin film. Therefore, the teachings of Morosawa, Kudo et al. and Hara et al. are analogous.

Therefore, it would have been obvious to one having ordinary skill in the art at the time of applicant(s) claimed invention was made to provide Morosawa and Kudo et al. reference with recrystallizing the semiconductor film in order to level the semiconductor film after native oxide removal process as taught by Hara et al. in order to form a fine semiconductor layer having good uniformity and high reliability.

However, the combination of Morosawa, Kudo et al. and Hara et al. is silent about the concentration of oxygen or oxygen compound being 10 ppm or less during the leveling step. Although the concentration is not specifically disclosed by Morosawa and Kudo et al., such oxygen concentration range can be set within the level ordinary skill in the art by routine optimization to passivate the damaged surface of the semiconductor layer during removal of natural (native) oxide.

One of ordinary skill in would have motivated to set the oxygen concentration at 10 ppm or less by routine optimization in order to passivate the damaged surface of the semiconductor layer during removal of natural (native) oxide.

Therefore, it would have been to one having ordinary skill in the art at the time of the invention is made to set the oxygen concentration at 10 ppm or less by routine optimization in order to passivate the damaged surface of the semiconductor layer during removal of natural (native) oxide, since it has been held where the general conditions of a claim are disclosed in the prior art, it is not inventive to discover the optimum or workable ranges by routine experimentation." See *In re Aller*, 220 F.2d 454, 456, 105 USPQ 233, 235 (CCPA 1955); *In re Hoeschele*, 406 F.2d 1403, 160 USPQ 809 (CCPA 1969); *Merck & Co. Inc. v. Biocraft Laboratories Inc.*, 874 F.2d 804, 10 USPQ2d 1843 (Fed. Cir.), cert. denied, 493 U.S. 975 (1989); *In re Kulling*, 897 F.2d 1147, 14 USPQ2d 1056 (Fed. Cir. 1990); and *In re Geisler*, 116 F.3d 1465, 43 USPQ2d 1362 (Fed. Cir. 1997). Furthermore, the specification contains no disclosure of either the critical nature of the claimed concentration range or any unexpected results arising therefrom. Where patentability is said to be based upon particular chosen dimensions or upon another variable recited in a claim, the Applicant must show that the chosen dimensions are critical. See *In re Woodruff*, 919, f.2d 1575, 1578, 16 USPQ2d, 1936 (Fed. Cir. 1990).

Re claim 5, Morosawa discloses a method of manufacturing a semiconductor device comprising the steps of: forming a semiconductor film comprising silicon over a substrate; irradiating said semiconductor film with laser light in air for crystallizing said semiconductor film; removing an oxide film formed on a surface of the semiconductor film by etching after the irradiation of the laser light; and leveling the surface of the semiconductor film by heating in a reducing atmosphere after removing said oxide film, a concentration of oxygen or an oxygen compound contained in said reducing atmosphere, in an atmosphere containing predetermined

concentration of oxygen or an oxygen compound (see the English translation that was submitted by Applicants on April 18, 2005).

Although Morosawa discloses irradiating said semiconductor film (i.e., an amorphous silicon film) with a leaser light for crystallizing the semiconductor film, Morosawa is silent about irradiating the semiconductor film with leaser light in air and the concentration of oxygen or oxygen compound being 10 ppm or less.

Kudo et al. disclose method of manufacturing thin film transistor the method includes depositing an amorphous silicon film (25) (i.e., a semiconductor layer) and irradiating the amorphous silicon film (25) with an excimer laser in atmosphere containing an air in order to dehydrogenate the amorphous silicon film and change into polysilicon thin film (see Abstract and Drawing 2).

Both Morosawa and Kudo et al. teachings directed to irradiating amorphous thin film layer using laser light to crystallize the thin film after the thin film deposited for fabrication of TFTs. Therefore, the teachings of Morosawa and Kudo et al. are analogous.

Therefore, it would have been obvious to one having ordinary skill in the art at the time of applicant(s) claimed invention was made to provide Morosawa reference with irradiating on the semiconductor film (i.e., amorphous silicon film) in air as taught by Kudo et al. in order to dehydrogenate the amorphous silicon film and convert it to polysilicon thin film.

However, both Morosawa and Kudo et al. do not specifically disclose recrystallizing the semiconductor film in order to level the semiconductor film after native oxide removal process.

Hara et al. disclose process for fabricating of the thin film semiconductor device (i.e., TFT device) and depositing of the semiconductor layer (2) (i.e., a amorphous silicon layer) and

crystallizing of the semiconductor layer (2) and cleaning the semiconductor layer and recrystallizing the semiconductor layer (see Col. 1, line 65 – Col. 2, line 49) in order to level the surface of the semiconductor layer having good uniformity and high reliability (see Hara et al. Figs. 5A-22 and Col. 1, line 65 – Col. 16, line 67).

Morosawa, Kudo et al. and Hara et al. teachings are directed to fabricating of TFTs the process includes depositing of semiconductor thin film and annealing the semiconductor thin film the crystallize the thin film. Therefore, the teachings of Morosawa, Kudo et al. and Hara et al. are analogous.

Therefore, it would have been obvious to one having ordinary skill in the art at the time of applicant(s) claimed invention was made to provide Morosawa and Kudo et al. reference with recrystallizing the semiconductor film in order to level the semiconductor film after native oxide removal process as taught by Hara et al. in order to form a fine semiconductor layer having good uniformity and high reliability.

However, the combination of Morosawa, Kudo et al. and Hara et al. is silent about the concentration of oxygen or oxygen compound being 10 ppm or less during the leveling step. Although the concentration is not specifically disclosed by Morosawa and Kudo et al., such oxygen concentration range can be set within the level ordinary skill in the art by routine optimization to passivate the damaged surface of the semiconductor layer during removal of natural (native) oxide.

One of ordinary skill in would have motivated to set the oxygen concentration at 10 ppm or less by routine optimization in order to passivate the damaged surface of the semiconductor layer during removal of natural (native) oxide.

Therefore, it would have been to one having ordinary skill in the art at the time of the invention is made to set the oxygen concentration at 10 ppm or less by routine optimization in order to passivate the damaged surface of the semiconductor layer during removal of natural (native) oxide, since it has been held where the general conditions of a claim are disclosed in the prior art, it is not inventive to discover the optimum or workable ranges by routine experimentation." See *In re Aller*, 220 F.2d 454, 456, 105 USPQ 233, 235 (CCPA 1955); *In re Hoeschele*, 406 F.2d 1403, 160 USPQ 809 (CCPA 1969); *Merck & Co. Inc. v. Biocraft Laboratories Inc.*, 874 F.2d 804, 10 USPQ2d 1843 (Fed. Cir.), cert. denied, 493 U.S. 975 (1989); *In re Kulling*, 897 F.2d 1147, 14 USPQ2d 1056 (Fed. Cir. 1990); and *In re Geisler*, 116 F.3d 1465, 43 USPQ2d 1362 (Fed. Cir. 1997). Furthermore, the specification contains no disclosure of either the critical nature of the claimed concentration range or any unexpected results arising therefrom. Where patentability is said to be based upon particular chosen dimensions or upon another variable recited in a claim, the Applicant must show that the chosen dimensions are critical. See *In re Woodruff*, 919, f.2d 1575, 1578, 16 USPQ2d, 1936 (Fed. Cir. 1990).

Re claim 6, Morosawa discloses a method of manufacturing a semiconductor device comprising the steps of: forming a semiconductor film comprising silicon over a substrate; irradiating said semiconductor film with laser light for crystallizing said semiconductor film; removing an oxide film formed on a surface of the semiconductor film by etching after the irradiation of the laser light; and leveling the surface of the semiconductor film by heating in an inert gas after removing said oxide film, in an atmosphere containing predetermined concentration of oxygen or an oxygen compound (see the English translation that was submitted by Applicants on April 18, 2005).

Although Morosawa discloses irradiating said semiconductor film (i.e., an amorphous silicon film) with a laser light for crystallizing the semiconductor film, Morosawa is silent about irradiating the semiconductor film with laser light in air and the concentration of oxygen or oxygen compound being 10 ppm or less.

Kudo et al. disclose method of manufacturing thin film transistor the method includes depositing an amorphous silicon film (25) (i.e., a semiconductor layer) and irradiating the amorphous silicon film (25) with an excimer laser in atmosphere containing air in order to dehydrogenate the amorphous silicon film and change into polysilicon thin film (see Abstract and Drawing 2).

Both Morosawa and Kudo et al. teachings directed to irradiating amorphous thin film layer using laser light to crystallize the thin film after the thin film deposited for fabrication of TFTs. Therefore, the teachings of Morosawa and Kudo et al. are analogous.

Therefore, it would have been obvious to one having ordinary skill in the art at the time of applicant(s) claimed invention was made to provide Morosawa reference with irradiating on the semiconductor film (i.e., amorphous silicon film) in air as taught by Kudo et al. in order to dehydrogenate the amorphous silicon film and convert it to polysilicon thin film.

However, both Morosawa and Kudo et al. do not specifically disclose recrystallizing the semiconductor film in order to level the semiconductor film after native oxide removal process.

Hara et al. disclose process for fabricating of the thin film semiconductor device (i.e., TFT device) and depositing of the semiconductor layer (2) (i.e., a amorphous silicon layer) and crystallizing of the semiconductor layer (2) and cleaning the semiconductor layer and recrystallizing the semiconductor layer (see Col. 1, line 65 – Col. 2, line 49) in order to level the

surface of the semiconductor layer having good uniformity and high reliability (see Hara et al. Figs. 5A-22 and Col. 1, line 65 – Col. 16, line 67).

Morosawa, Kudo et al. and Hara et al. teachings are directed to fabricating of TFTs the process includes depositing of semiconductor thin film and annealing the semiconductor thin film the crystallize the thin film. Therefore, the teachings of Morosawa, Kudo et al. and Hara et al. are analogous.

Therefore, it would have been obvious to one having ordinary skill in the art at the time of applicant(s) claimed invention was made to provide Morosawa and Kudo et al. reference with recrystallizing the semiconductor film in order to level the semiconductor film after native oxide removal process as taught by Hara et al. in order to form a fine semiconductor layer having good uniformity and high reliability.

However, the combination of Morosawa, Kudo et al. and Hara et al. is silent about the concentration of oxygen or oxygen compound being 10 ppm or less during the leveling step. Although the concentration is not specifically disclosed by Morosawa and Kudo et al., such oxygen concentration range can be set within the level ordinary skill in the art by routine optimization to passivate the damaged surface of the semiconductor layer during removal of natural (native) oxide.

One of ordinary skill in would have motivated to set the oxygen concentration at 10 ppm or less by routine optimization in order to passivate the damaged surface of the semiconductor layer during removal of natural (native) oxide.

Therefore, it would have been to one having ordinary skill in the art at the time of the invention is made to set the oxygen concentration at 10 ppm or less by routine optimization in

order to passivate the damaged surface of the semiconductor layer during removal of natural (native) oxide, since it has been held where the general conditions of a claim are disclosed in the prior art, it is not inventive to discover the optimum or workable ranges by routine experimentation." See *In re Aller*, 220 F.2d 454, 456, 105 USPQ 233, 235 (CCPA 1955); *In re Hoeschele*, 406 F.2d 1403, 160 USPQ 809 (CCPA 1969); *Merck & Co. Inc. v. Biocraft Laboratories Inc.*, 874 F.2d 804, 10 USPQ2d 1843 (Fed. Cir.), cert. denied, 493 U.S. 975 (1989); *In re Kulling*, 897 F.2d 1147, 14 USPQ2d 1056 (Fed. Cir. 1990); and *In re Geisler*, 116 F.3d 1465, 43 USPQ2d 1362 (Fed. Cir. 1997). Furthermore, the specification contains no disclosure of either the critical nature of the claimed concentration range or any unexpected results arising therefrom. Where patentability is said to be based upon particular chosen dimensions or upon another variable recited in a claim, the Applicant must show that the chosen dimensions are critical. See *In re Woodruff*, 919, f.2d 1575, 1578, 16 USPQ2d, 1936 (Fed. Cir. 1990).

Re claim 7, Morosawa discloses a method of manufacturing a semiconductor device comprising the steps of: forming a semiconductor film comprising silicon over a substrate; irradiating said semiconductor film with laser light for crystallizing the semiconductor film; treating a surface of the semiconductor film with a hydrofluoric acid to remove a natural oxidation film formed on the surface of the semiconductor film after the irradiation of the laser light; and leveling the surface of the semiconductor film by heating after the treatment with the hydrofluoric acid (see the English translation Example in Paragraph 0007 through Paragraph 0016).

Although Morosawa discloses irradiating said semiconductor film (i.e., an amorphous silicon film) with a leaser light for crystallizing the semiconductor film, Morosawa is silent about irradiating the semiconductor film with leaser light in air.

Kudo et al. disclose method of manufacturing thin film transistor the method includes depositing an amorphous silicon film (25) (i.e., a semiconductor layer) and irradiating the amorphous silicon film (25) with an excimer laser in atmosphere containing an air in order to dehydrogenate the amorphous silicon film and change into polysilicon thin film (see Abstract and Drawing 2).

Both Morosawa and Kudo et al. teachings directed to irradiating amorphous thin film layer using laser light to crystallize the thin film after the thin film deposited for fabrication of TFTs. Therefore, the teachings of Morosawa and Kudo et al. are analogous.

Therefore, it would have been obvious to one having ordinary skill in the art at the time of applicant(s) claimed invention was made to provide Morosawa reference with irradiating on the semiconductor film (i.e., amorphous silicon film) in air as taught by Kudo et al. in order to dehydrogenate the amorphous silicon film and convert it to polysilicon thin film.

However, both Morosawa and Kudo et al. do not specifically disclose recrystallizing the semiconductor film in order to level the semiconductor film after native oxide removal process.

Hara et al. disclose process for fabricating of the thin film semiconductor device (i.e., TFT device) and depositing of the semiconductor layer (2) (i.e., a amorphous silicon layer) and crystallizing of the semiconductor layer (2) and cleaning the semiconductor layer and recrystallizing the semiconductor layer (see Col. 1, line 65 – Col. 2, line 49) in order to level the

surface of the semiconductor layer having good uniformity and high reliability (see Hara et al. Figs. 5A-22 and Col. 1, line 65 – Col. 16, line 67).

Morosawa, Kudo et al. and Hara et al. teachings are directed to fabricating of TFTs the process includes depositing of semiconductor thin film and annealing the semiconductor thin film the crystallize the thin film. Therefore, the teachings of Morosawa, Kudo et al. and Hara et al. are analogous.

Therefore, it would have been obvious to one having ordinary skill in the art at the time of applicant(s) claimed invention was made to provide Morosawa and Kudo et al. reference with recrystallizing the semiconductor film in order to level the semiconductor film after native oxide removal process as taught by Hara et al. in order to form a fine semiconductor layer having good uniformity and high reliability.

Re claim 8, Morosawa discloses a method of manufacturing a semiconductor device comprising the steps of: forming a semiconductor film comprising silicon over a substrate; irradiating the semiconductor film with laser light for crystallizing the semiconductor film; treating a surface of the semiconductor film with a hydrofluoric acid after the irradiation of the laser light; and leveling the surface of the semiconductor film by heating after the treatment with the hydrofluoric acid in a reducing atmosphere (see the English translation Example in Paragraph 0007 through Paragraph 00016).

Although Morosawa discloses irradiating said semiconductor film (i.e., an amorphous silicon film) with a leaser light for crystallizing the semiconductor film, Morosawa is silent about irradiating the semiconductor film with leaser light in air.

Kudo et al. disclose method of manufacturing thin film transistor the method includes depositing an amorphous silicon film (25) (i.e., a semiconductor layer) and irradiating the amorphous silicon film (25) with an excimer laser in atmosphere containing an air in order to dehydrogenate the amorphous silicon film and change into polysilicon thin film (see Abstract and Drawing 2).

Both Morosawa and Kudo et al. teachings directed to irradiating amorphous thin film layer using laser light to crystallize the thin film after the thin film deposited for fabrication of TFTs. Therefore, the teachings of Morosawa and Kudo et al. are analogous.

Therefore, it would have been obvious to one having ordinary skill in the art at the time of applicant(s) claimed invention was made to provide Morosawa reference with irradiating on the semiconductor film (i.e., amorphous silicon film) in air as taught by Kudo et al. in order to dehydrogenate the amorphous silicon film and convert it to polysilicon thin film.

However, both Morosawa and Kudo et al. do not specifically disclose recrystallizing the semiconductor film in order to level the semiconductor film after native oxide removal process.

Hara et al. disclose process for fabricating of the thin film semiconductor device (i.e., TFT device) and depositing of the semiconductor layer (2) (i.e., a amorphous silicon layer) and crystallizing of the semiconductor layer (2) and cleaning the semiconductor layer and recrystallizing the semiconductor layer (see Col. 1, line 65 – Col. 2, line 49) in order to level the surface of the semiconductor layer having good uniformity and high reliability (see Hara et al. Figs. 5A-22 and Col. 1, line 65 – Col. 16, line 67).

Morosawa, Kudo et al. and Hara et al. teachings are directed to fabricating of TFTs the process includes depositing of semiconductor thin film and annealing the semiconductor thin

film the crystallize the thin film. Therefore, the teachings of Morosawa, Kudo et al. and Hara et al. are analogous.

Therefore, it would have been obvious to one having ordinary skill in the art at the time of applicant(s) claimed invention was made to provide Morosawa and Kudo et al. reference with recrystallizing the semiconductor film in order to level the semiconductor film after native oxide removal process as taught by Hara et al. in order to form a fine semiconductor layer having good uniformity and high reliability.

Re claim 9, Morosawa discloses a method of manufacturing a semiconductor device comprising the steps of: forming a semiconductor film comprising silicon over a substrate; irradiating the semiconductor film with laser light for crystallizing said semiconductor film; treating a surface of the semiconductor film with a hydrofluoric acid after the irradiation of the laser light; and leveling the surface of the semiconductor film by heating after the treatment with the hydrofluoric acid in an inert gas (see the English translation Example in Paragraph 0007 through Paragraph 0016).

Although Morosawa discloses irradiating said semiconductor film (i.e., an amorphous silicon film) with a leaser light for crystallizing the semiconductor film, Morosawa is silent about irradiating the semiconductor film with leaser light in air.

Kudo et al. disclose method of manufacturing thin film transistor the method includes depositing an amorphous silicon film (25) (i.e., a semiconductor layer) and irradiating the amorphous silicon film (25) with an excimer laser in atmosphere containing an air in order to dehydrogenate the amorphous silicon film and change into polysilicon thin film (see Abstract and Drawing 2).

Both Morosawa and Kudo et al. teachings directed to irradiating amorphous thin film layer using laser light to crystallize the thin film after the thin film deposited for fabrication of TFTs. Therefore, the teachings of Morosawa and Kudo et al. are analogous.

Therefore, it would have been obvious to one having ordinary skill in the art at the time of applicant(s) claimed invention was made to provide Morosawa reference with irradiating on the semiconductor film (i.e., amorphous silicon film) in air as taught by Kudo et al. in order to dehydrogenate the amorphous silicon film and convert it to polysilicon thin film.

However, both Morosawa and Kudo et al. do not specifically disclose recrystallizing the semiconductor film in order to level the semiconductor film after native oxide removal process.

Hara et al. disclose process for fabricating of the thin film semiconductor device (i.e., TFT device) and depositing of the semiconductor layer (2) (i.e., a amorphous silicon layer) and crystallizing of the semiconductor layer (2) and cleaning the semiconductor layer and recrystallizing the semiconductor layer (see Col. 1, line 65 – Col. 2, line 49) in order to level the surface of the semiconductor layer having good uniformity and high reliability (see Hara et al. Figs. 5A-22 and Col. 1, line 65 – Col. 16, line 67).

Morosawa, Kudo et al. and Hara et al. teachings are directed to fabricating of TFTs the process includes depositing of semiconductor thin film and annealing the semiconductor thin film the crystallize the thin film. Therefore, the teachings of Morosawa, Kudo et al. and Hara et al. are analogous.

Therefore, it would have been obvious to one having ordinary skill in the art at the time of applicant(s) claimed invention was made to provide Morosawa and Kudo et al. reference with recrystallizing the semiconductor film in order to level the semiconductor film after native oxide

removal process as taught by Hara et al. in order to form a fine semiconductor layer having good uniformity and high reliability.

Re claim 10, Morosawa discloses a method of manufacturing a semiconductor device comprising the steps of: forming a semiconductor film comprising silicon over a substrate; irradiating said semiconductor film with laser light for crystallizing said semiconductor film; treating a surface of the semiconductor film with a hydrofluoric acid after the irradiation of the laser light; and leveling the surface of the semiconductor film by heating after the treatment with said hydrofluoric acid in an atmosphere, in an atmosphere containing predetermined concentration of oxygen or an oxygen compound (see the English translation Example in Paragraph 0007 through Paragraph 00011).

Although Morosawa discloses irradiating said semiconductor film (i.e., an amorphous silicon film) with a leaser light for crystallizing the semiconductor film, Morosawa is silent about irradiating the semiconductor film with leaser light in air and the concentration of oxygen or oxygen compound being 10 ppm or less.

Kudo et al. disclose method of manufacturing thin film transistor the method includes depositing an amorphous silicon film (25) (i.e., a semiconductor layer) and irradiating the amorphous silicon film (25) with an excimer laser in atmosphere containing an air in order to dehydrogenate the amorphous silicon film and change into polysilicon thin film (see Abstract and Drawing 2).

Both Morosawa and Kudo et al. teachings directed to irradiating amorphous thin film layer using laser light to crystallize the thin film after the thin film deposited for fabrication of TFTs. Therefore, the teachings of Morosawa and Kudo et al. are analogous.

Therefore, it would have been obvious to one having ordinary skill in the art at the time of applicant(s) claimed invention was made to provide Morosawa reference with irradiating on the semiconductor film (i.e., amorphous silicon film) in air as taught by Kudo et al. in order to dehydrogenate the amorphous silicon film and convert it to polysilicon thin film.

However, both Morosawa and Kudo et al. do not specifically disclose recrystallizing the semiconductor film in order to level the semiconductor film after native oxide removal process.

Hara et al. disclose process for fabricating of the thin film semiconductor device (i.e., TFT device) and depositing of the semiconductor layer (2) (i.e., a amorphous silicon layer) and crystallizing of the semiconductor layer (2) and cleaning the semiconductor layer and recrystallizing the semiconductor layer (see Col. 1, line 65 – Col. 2, line 49) in order to level the surface of the semiconductor layer having good uniformity and high reliability (see Hara et al. Figs. 5A-22 and Col. 1, line 65 – Col. 16, line 67).

Morosawa, Kudo et al. and Hara et al. teachings are directed to fabricating of TFTs the process includes depositing of semiconductor thin film and annealing the semiconductor thin film the crystallize the thin film. Therefore, the teachings of Morosawa, Kudo et al. and Hara et al. are analogous.

Therefore, it would have been obvious to one having ordinary skill in the art at the time of applicant(s) claimed invention was made to provide Morosawa and Kudo et al. reference with recrystallizing the semiconductor film in order to level the semiconductor film after native oxide removal process as taught by Hara et al. in order to form a fine semiconductor layer having good uniformity and high reliability.

However, the combination of Morosawa, Kudo et al. and Hara et al. is silent about the concentration of oxygen of oxygen compound being 10 ppm or less during the leveling step. Although the concentration is not specifically disclosed by Morosawa and Kudo et al., such oxygen concentration range can be set within the level ordinary skill in the art by routine optimization to passivate the damaged surface of the semiconductor layer during removal of natural (native) oxide.

One of ordinary skill in would have motivated to set the oxygen concentration at 10 ppm or less by routine optimization in order to passivate the damaged surface of the semiconductor layer during removal of natural (native) oxide.

Therefore, it would have been to one having ordinary skill in the art at the time of the invention is made to set the oxygen concentration at 10 ppm or less by routine optimization in order to passivate the damaged surface of the semiconductor layer during removal of natural (native) oxide, since it has been held where the general conditions of a claim are disclosed in the prior art, it is not inventive to discover the optimum or workable ranges by routine experimentation." See *In re Aller*, 220 F.2d 454, 456, 105 USPQ 233, 235 (CCPA 1955); *In re Hoeschele*, 406 F.2d 1403, 160 USPQ 809 (CCPA 1969); *Merck & Co. Inc. v. Biocraft Laboratories Inc.*, 874 F.2d 804, 10 USPQ2d 1843 (Fed. Cir.), cert. denied, 493 U.S. 975 (1989); *In re Kulling*, 897 F.2d 1147, 14 USPQ2d 1056 (Fed. Cir. 1990); and *In re Geisler*, 116 F.3d 1465, 43 USPQ2d 1362 (Fed. Cir. 1997). Furthermore, the specification contains no disclosure of either the critical nature of the claimed concentration range or any unexpected results arising therefrom. Where patentability is said to be based upon particular chosen dimensions or upon

another variable recited in a claim, the Applicant must show that the chosen dimensions are critical. See *In re Woodruff*, 919, f.2d 1575, 1578, 16 USPQ2d, 1936 (Fed. Cir. 1990).

Re claim 11, Morosawa discloses a method of manufacturing a semiconductor device comprising the steps of: forming a semiconductor film comprising silicon over a substrate; irradiating said semiconductor film with laser light for crystallizing said semiconductor film; treating a surface of the semiconductor film with a hydrofluoric acid after the irradiation of the laser light; and leveling the surface of the semiconductor film by heating after the treatment with said hydrofluoric acid in a reducing atmosphere, in an atmosphere containing predetermined concentration of oxygen or an oxygen compound (see the English translation Example in Paragraph 0007 through Paragraph 00011).

Although Morosawa discloses irradiating said semiconductor film (i.e., an amorphous silicon film) with a leaser light for crystallizing the semiconductor film, Morosawa is silent about irradiating the semiconductor film with leaser light in air and the concentration of oxygen or oxygen compound being 10 ppm or less.

Kudo et al. disclose method of manufacturing thin film transistor the method includes depositing an amorphous silicon film (25) (i.e., a semiconductor layer) and irradiating the amorphous silicon film (25) with an excimer laser in atmosphere containing an air in order to dehydrogenate the amorphous silicon film and change into polysilicon thin film (see Abstract and Drawing 2).

Both Morosawa and Kudo et al. teachings directed to irradiating amorphous thin film layer using laser light to crystallize the thin film after the thin film deposited for fabrication of TFTs. Therefore, the teachings of Morosawa and Kudo et al. are analogous.

Therefore, it would have been obvious to one having ordinary skill in the art at the time of applicant(s) claimed invention was made to provide Morosawa reference with irradiating on the semiconductor film (i.e., amorphous silicon film) in air as taught by Kudo et al. in order to dehydrogenate the amorphous silicon film and convert it to polysilicon thin film.

However, both Morosawa and Kudo et al. do not specifically disclose recrystallizing the semiconductor film in order to level the semiconductor film after native oxide removal process.

Hara et al. disclose process for fabricating of the thin film semiconductor device (i.e., TFT device) and depositing of the semiconductor layer (2) (i.e., a amorphous silicon layer) and crystallizing of the semiconductor layer (2) and cleaning the semiconductor layer and recrystallizing the semiconductor layer (see Col. 1, line 65 – Col. 2, line 49) in order to level the surface of the semiconductor layer having good uniformity and high reliability (see Hara et al. Figs. 5A-22 and Col. 1, line 65 – Col. 16, line 67).

Morosawa, Kudo et al. and Hara et al. teachings are directed to fabricating of TFTs the process includes depositing of semiconductor thin film and annealing the semiconductor thin film the crystallize the thin film. Therefore, the teachings of Morosawa, Kudo et al. and Hara et al. are analogous.

Therefore, it would have been obvious to one having ordinary skill in the art at the time of applicant(s) claimed invention was made to provide Morosawa and Kudo et al. reference with recrystallizing the semiconductor film in order to level the semiconductor film after native oxide removal process as taught by Hara et al. in order to form a fine semiconductor layer having good uniformity and high reliability.

However, the combination of Morosawa, Kudo et al. and Hara et al. is silent about the concentration of oxygen or oxygen compound being 10 ppm or less during the leveling step. Although the concentration is not specifically disclosed by Morosawa and Kudo et al., such oxygen concentration range can be set within the level ordinary skill in the art by routine optimization to passivate the damaged surface of the semiconductor layer during removal of natural (native) oxide.

One of ordinary skill in would have motivated to set the oxygen concentration at 10 ppm or less by routine optimization in order to passivate the damaged surface of the semiconductor layer during removal of natural (native) oxide.

Therefore, it would have been to one having ordinary skill in the art at the time of the invention is made to set the oxygen concentration at 10 ppm or less by routine optimization in order to passivate the damaged surface of the semiconductor layer during removal of natural (native) oxide, since it has been held where the general conditions of a claim are disclosed in the prior art, it is not inventive to discover the optimum or workable ranges by routine experimentation." See *In re Aller*, 220 F.2d 454, 456, 105 USPQ 233, 235 (CCPA 1955); *In re Hoeschele*, 406 F.2d 1403, 160 USPQ 809 (CCPA 1969); *Merck & Co. Inc. v. Biocraft Laboratories Inc.*, 874 F.2d 804, 10 USPQ2d 1843 (Fed. Cir.), cert. denied, 493 U.S. 975 (1989); *In re Kulling*, 897 F.2d 1147, 14 USPQ2d 1056 (Fed. Cir. 1990); and *In re Geisler*, 116 F.3d 1465, 43 USPQ2d 1362 (Fed. Cir. 1997). Furthermore, the specification contains no disclosure of either the critical nature of the claimed concentration range or any unexpected results arising therefrom. Where patentability is said to be based upon particular chosen dimensions or upon

another variable recited in a claim, the Applicant must show that the chosen dimensions are critical. See *In re Woodruff*, 919, f.2d 1575, 1578, 16 USPQ2d, 1936 (Fed. Cir. 1990).

Re claim 12, Morosawa discloses a method of manufacturing a semiconductor device comprising the steps of: forming a semiconductor film comprising silicon over a substrate; irradiating the semiconductor film with laser light for crystallizing said semiconductor film; treating a surface of the semiconductor film with a hydrofluoric acid after the irradiation of the laser light; and leveling the surface of the semiconductor film by heating after the treatment with the hydrofluoric acid in an inert gas, in an atmosphere containing predetermined concentration of oxygen or an oxygen compound (see the English translation Example in Paragraph 0007 through Paragraph 0011).

Although Morosawa discloses irradiating said semiconductor film (i.e., an amorphous silicon film) with a leaser light for crystallizing the semiconductor film, Morosawa is silent about irradiating the semiconductor film with leaser light in air and the concentration of oxygen or oxygen compound being 10 ppm or less.

Kudo et al. disclose method of manufacturing thin film transistor the method includes depositing an amorphous silicon film (25) (i.e., a semiconductor layer) and irradiating the amorphous silicon film (25) with an excimer laser in atmosphere containing an air in order to dehydrogenate the amorphous silicon film and change into polysilicon thin film (see Abstract and Drawing 2).

Both Morosawa and Kudo et al. teachings directed to irradiating amorphous thin film layer using laser light to crystallize the thin film after the thin film deposited for fabrication of TFTs. Therefore, the teachings of Morosawa and Kudo et al. are analogous.

Therefore, it would have been obvious to one having ordinary skill in the art at the time of applicant(s) claimed invention was made to provide Morosawa reference with irradiating on the semiconductor film (i.e., amorphous silicon film) in air as taught by Kudo et al. in order to dehydrogenate the amorphous silicon film and convert it to polysilicon thin film.

However, both Morosawa and Kudo et al. do not specifically disclose recrystallizing the semiconductor film in order to level the semiconductor film after native oxide removal process.

Hara et al. disclose process for fabricating of the thin film semiconductor device (i.e., TFT device) and depositing of the semiconductor layer (2) (i.e., a amorphous silicon layer) and crystallizing of the semiconductor layer (2) and cleaning the semiconductor layer and recrystallizing the semiconductor layer (see Col. 1, line 65 – Col. 2, line 49) in order to level the surface of the semiconductor layer having good uniformity and high reliability (see Hara et al. Figs. 5A-22 and Col. 1, line 65 – Col. 16, line 67).

Morosawa, Kudo et al. and Hara et al. teachings are directed to fabricating of TFTs the process includes depositing of semiconductor thin film and annealing the semiconductor thin film the crystallize the thin film. Therefore, the teachings of Morosawa, Kudo et al. and Hara et al. are analogous.

Therefore, it would have been obvious to one having ordinary skill in the art at the time of applicant(s) claimed invention was made to provide Morosawa and Kudo et al. reference with recrystallizing the semiconductor film in order to level the semiconductor film after native oxide removal process as taught by Hara et al. in order to form a fine semiconductor layer having good uniformity and high reliability.

However, the combination of Morosawa, Kudo et al. and Hara et al. is silent about the concentration of oxygen or oxygen compound being 10 ppm or less during the leveling step. Although the concentration is not specifically disclosed by Morosawa and Kudo et al., such oxygen concentration range can be set within the level ordinary skill in the art by routine optimization to passivate the damaged surface of the semiconductor layer during removal of natural (native) oxide.

One of ordinary skill in would have motivated to set the oxygen concentration at 10 ppm or less by routine optimization in order to passivate the damaged surface of the semiconductor layer during removal of natural (native) oxide.

Therefore, it would have been to one having ordinary skill in the art at the time of the invention is made to set the oxygen concentration at 10 ppm or less by routine optimization in order to passivate the damaged surface of the semiconductor layer during removal of natural (native) oxide, since it has been held where the general conditions of a claim are disclosed in the prior art, it is not inventive to discover the optimum or workable ranges by routine experimentation." See *In re Aller*, 220 F.2d 454, 456, 105 USPQ 233, 235 (CCPA 1955); *In re Hoeschele*, 406 F.2d 1403, 160 USPQ 809 (CCPA 1969); *Merck & Co. Inc. v. Biocraft Laboratories Inc.*, 874 F.2d 804, 10 USPQ2d 1843 (Fed. Cir.), cert. denied, 493 U.S. 975 (1989); *In re Kulling*, 897 F.2d 1147, 14 USPQ2d 1056 (Fed. Cir. 1990); and *In re Geisler*, 116 F.3d 1465, 43 USPQ2d 1362 (Fed. Cir. 1997). Furthermore, the specification contains no disclosure of either the critical nature of the claimed concentration range or any unexpected results arising therefrom. Where patentability is said to be based upon particular chosen dimensions or upon

Art Unit: 2823

another variable recited in a claim, the Applicant must show that the chosen dimensions are critical. See *In re Woodruff*, 919, f.2d 1575, 1578, 16 USPQ2d, 1936 (Fed. Cir. 1990).

Re claim 14, as applied to claims 1-12 above, both Morosawa , Kudo et al. and Hara et al. in combination discloses all the claimed limitations including leveling (i.e., annealing) the semiconductor film at temperature between 500 and 600 °C (i.e., outside the claimed temperature range of 900 and 1200 °C) (see the English translation Examples in Paragraph 0010).

One of ordinary skill in the art would have been motivated to optimize the claimed annealing temperature range by using routine experimentation in order to achieve the desired device performance.

Therefore, it would have been to one having ordinary skill in the art at the time of the invention is made to optimize the claimed annealing temperature range, since it has been held where the general conditions of a claim are disclosed in the prior art, it is not inventive to discover the optimum or workable ranges by routine experimentation.” See *In re Aller*, 220 F.2d 454, 456, 105 USPQ 233, 235 (CCPA 1955); *In re Hoeschele*, 406 F.2d 1403, 160 USPQ 809 (CCPA 1969); *Merck & Co. Inc. v. Biocraft Laboratories Inc.*, 874 F.2d 804, 10 USPQ2d 1843 (Fed. Cir.), cert. denied, 493 U.S. 975 (1989); *In re Kulling*, 897 F.2d 1147, 14 USPQ2d 1056 (Fed. Cir. 1990); and *In re Geisler*, 116 F.3d 1465, 43 USPQ2d 1362 (Fed. Cir. 1997).

Furthermore, the specification contains no disclosure of either the critical nature of the claimed temperature range or any unexpected results arising therefrom. Where patentability is said to be based upon particular chosen dimensions or upon another variable recited in a claim, the Applicant must show that the chosen dimensions are critical. See *In re Woodruff*, 919, f.2d 1575, 1578, 16 USPQ2d, 1936 (Fed. Cir. 1990).

5. Claim 13 is rejected under 35 U.S.C. 103(a) as being unpatentable over the combination of Morosawa (JP/07038113), Kudo et al. (JP/09186336) and Hara et al. (US/5,648,276), as applied in claims 1-12 and 15-17 above, and further in view of Yamazaki et al. (US/5,608,232).

Re claim 13, as applied to claims 1-12 in Paragraph 7 above, Morosawa, Kudo et al. and Hara et al. in combination disclose all the claimed limitations including annealing of the substrate during the leveling step.

However, the combination of Morosawa, Kudo et al. and Hara et al. do not specifically disclose furnace annealing.

Yamazaki et al. disclose furnace annealing of the substrate in nitrogen atmosphere in order to crystallize the semiconductor layer (see Yamazaki et al. Col. 24, lines 10-30).

Morosawa, Kudo et al., Hara et al. and Yamazaki et al. teachings are directed to fabricating of TFTs the process includes depositing of semiconductor thin film and annealing the semiconductor thin film the crystallize the thin film. Therefore, the teachings of Morosawa, Kudo et al., Hara et al. and Yamazaki et al. are analogous.

Therefore, it would have been obvious to one having ordinary skill in the art at the time of applicant(s) claimed invention was made to provide Morosawa, Kudo et al. and Hara et al. reference with furnace annealing during leveling process of the semiconductor layer as taught by Yamazaki et al. in order to crystallize the semiconductor layer.

Response to Arguments

6. Applicants' arguments with respect to claims 1-17, 19-30 and 47-58 have been considered but are moot in view of the new ground(s) of rejection that is necessitated by the amendment filed on September 6, 2005.

Conclusion

7. Applicants' amendment necessitated the new ground(s) of rejection presented in this Office action. Accordingly, **THIS ACTION IS MADE FINAL**. See MPEP § 706.07(a). Applicant is reminded of the extension of time policy as set forth in 37 CFR 1.136(a).

A shortened statutory period for reply to this final action is set to expire THREE MONTHS from the mailing date of this action. In the event a first reply is filed within TWO MONTHS of the mailing date of this final action and the advisory action is not mailed until after the end of the THREE-MONTH shortened statutory period, then the shortened statutory period will expire on the date the advisory action is mailed, and any extension fee pursuant to 37 CFR 1.136(a) will be calculated from the mailing date of the advisory action. In no event, however, will the statutory period for reply expire later than SIX MONTHS from the date of this final action.

Correspondence

8. Any inquiry concerning this communication or earlier communications from the examiner should be directed to Brook Kebede whose telephone number is (571) 272-1862. The examiner can normally be reached on 8-5 Monday to Friday.

Art Unit: 2823

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Matthew S. Smith can be reached on (571) 272-1907. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see <http://pair-direct.uspto.gov>. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free).

Brook Kebede
Primary Examiner
Art Unit 2823

BK

November 3, 2005