Optimization for Deep Learning

Lecture 7-2: SGD Stability

Kun Yuan

Peking University

Main contents in this lecture

- GD stability
- SGD stability
- Sharpness-aware minimization

SGD performs better than **GD**

 SGD is proposed to reduce the computational burden of GD, but it is often observed to outperform GD in accuracy when training neural network

Experiment	Mini-batching	Epochs	Steps	Modifications	Val. Accuracy %
Baseline SGD ✓	✓	300	117,000	-	$95.70(\pm0.11)$
Baseline FB	Х	300	300	-	$75.42(\pm0.13)$
FB train longer	X	3000	3000	-	$87.36(\pm 1.23)$
FB clipped	X	3000	3000	clip	$93.85(\pm 0.10)$
FB regularized	X	3000	3000	clip+reg	$95.36(\pm0.07)$
FB strong reg.	X	3000	3000	clip+reg+bs32	$95.67(\pm0.08)$
FB in practice	X	3000	3000	clip+reg+bs32+shuffle	$95.91(\pm0.14)$

Table 2: Summary of validation accuracies in percent on the CIFAR-10 validation dataset for each of the experiments with data augmentations considered in Section 3. All validation accuracies are averaged over 5 runs.

Figure 4: Taken (Geiping et al., 2021)

Flat minima hypothesis

• In neural network, flat solutions generalize better (Keskar et al., 2016)

• It is conjectured that SGD converges to flatter solutions than GD

An intuition behind flat minima hypothesis

Figure: Substantial difference exists between training function and test function around sharp minima (Keskar et al., 2016).

The escape phenomenon

Figure: Fast escape phenomenon in SGD (Wu et al., 2018).

- GD solution is unstable for SGD
- It is conjectured that SGD escapes from GD's sharp minima and converges to a flatter solution

GD stability

• Let $H = \nabla^2 f(x^*)$ where x^* is a local minima. Assume x_k is close to x^* :

$$x_{k+1} - x^* = x_k - x^* - \gamma \nabla f(x_k)$$

$$= x_k - x^* - \gamma \left(\nabla f(x_k) - \nabla f(x^*) \right)$$

$$= (I - \gamma H)(x_k - x^*)$$

$$= (I - \gamma H)^{k+1}(x_0 - x^*)$$

• x^* is stable for GD if

$$\lambda_{\max}(I - \gamma H) \le 1 \iff \lambda_{\max}(H) \le \frac{2}{\gamma}$$

• Otherwise GD escapes from x^* at rate $(1 - \gamma \lambda_{\max}(H))^k$; exponentially fast

GD stability

• This result implies that, given learning rate γ , the curvature at x^* must be flat with eigenvalues less than or equal to $2/\gamma$.

Figure: GD converges to flat solution and escapes from sharp solution (by Dr. Lei Wu in Peking University).

SGD stability

Theorem 1 (Wu et al. (2018))

The global minimum x^\star is linearly stable for SGD with learning rate γ and batch size B if the following condition is satisfied

$$\lambda_{\max}\left(\underbrace{(I-\gamma H)^2}_{\textit{GD condition}} + \underbrace{\frac{\gamma^2(N-B)}{B(N-1)}\Sigma}_{\textit{gradient noise}}\right) \leq 1$$

where $\Sigma \succeq 0$ is the covariance matrix of gradient noise at x^* .

It implies that SGD converges to an even flatter solution than GD given the same learning rate γ .

Consider the scalar scenario and let $B=1,\ H=h,\ \Sigma=s.$ SGD will converge to x^\star with $h\leq \frac{2(1-s)}{\gamma}$, which is flatter than GD with $h\leq \frac{2}{\gamma}.$

Why does SGD escape from sharp minima? The noise!

• To show the intuition, we consider a simplified quadratic problem

$$f(x) = \frac{1}{2}x^T H x.$$

SGD can be regarded as GD with noise:

$$x_{k+1} = x_k - \gamma(\nabla f(x_k) + s_k) = (I - \gamma H)x_k - \gamma s_k$$

where s_k is gradient noise with $\mathbb{E}[s_k] = 0$ and $\mathbb{E}[s_k s_k^T] = \Sigma$.

• SGD evolves as follows (Wu et al., 2022)

$$\mathbb{E}[f(x_{k+1})] = \mathbb{E}[r(x_k)f(x_k)] + \frac{\gamma^2}{2}\mathrm{Tr}(H\Sigma)$$

where $r(x)=1-2\gamma \frac{x^TH^2x}{x^THx}+\gamma^2\frac{x^TH^3x}{x^THx}$. (The proof is leaved as exercise)

Why does SGD escape from sharp minima? The noise!

$$\mathbb{E}[f(x_{k+1})] = \mathbb{E}[r(x_k)f(x_k)] + \frac{\gamma^2}{2}\mathrm{Tr}(H\Sigma)$$

- r(x) < 1 when γ is sufficiently small; drives f(x) to decrease
- ullet The noise term $\mathrm{Tr}(H\Sigma)$ drives x_k away from the local minima
- Noise covariance Σ aligns well with H in neural network (Wu et al., 2022; Zhu et al., 2019); the sharper the curvature is, the stronger the noise is
- ullet $\operatorname{Tr}(H\Sigma)$ is a strong force to drive SGD away from sharp minima

Why does SGD escape from sharp minima?

Figure: An illustration of non-convex landscape¹.

¹https://medium.com/analytics-vidhya/ journey-of-gradient-descent-from-local-to-global-c851eba3d367

• To converge to a flatter solution, we consider a new problem

$$\min_{x \in \mathbb{R}^d} \quad f_{\mathrm{SAM}}(x) \quad \text{where} \quad f_{\mathrm{SAM}}(x) = \max_{\|\epsilon\| \leq \rho} f(x+\epsilon)$$

which is called sharpness-aware minimization (SAM) (Foret et al., 2020).

- The above problem is to seek a solution whose neighborhood is flat
- \bullet Different from adversarial learning since the perturbation is added to x not ξ

ullet To efficiently solve the above problem, we linearize $f(x+\epsilon)$ to get

$$\max_{\|\epsilon\| \le \rho} \quad f(x) + \epsilon^{\top} \nabla f(x),$$

which leads to

$$\epsilon = \frac{\rho \operatorname{sign}(\nabla f(x)) |\nabla f(x)|}{\|\nabla f(x)\|} \in \mathbb{R}^d,$$

where $sign(\cdot)$ and $|\cdot|$ are element-wise operation.

• Since ϵ is related with x, we denote it as $\epsilon(x)$

ullet Substitute $\epsilon(x)$ into $f_{\mathrm{SAM}}(x)$, we have

$$\min_{x \in \mathbb{R}^d} \quad f_{\text{SAM}}(x) \approx f(x + \epsilon(x))$$

• The gradient of $f_{SAM}(x_k)$ is derived as

$$\nabla f_{\text{SAM}}(x) = \nabla f(x)|_{x = x_k + \epsilon(x_k)} + \left[\frac{\partial \epsilon}{\partial x} \cdot \nabla f(x) \right] \Big|_{x = x_k + \epsilon(x_k)}$$

where $\partial \epsilon / \partial x \in \mathbb{R}^{d \times d}$ is Jacobian matrix

 Since the second term is expensive to compute, it is ignored in SAM algorithm (Foret et al., 2020)

• SAM algorithm can be written as follows

$$\epsilon_k = \frac{\rho \operatorname{sign}(\nabla f(x_k)) |\nabla f(x_k)|}{\|\nabla f(x_k)\|}$$
$$x_{k+1} = x_k - \gamma \nabla f(x_k + \epsilon_k)$$

• In stochastic optimization, SAM iterates as follows

$$\epsilon_k = \frac{\rho \operatorname{sign}(\nabla F(x_k; \xi_k)) |\nabla F(x_k; \xi_k)|}{\|\nabla F(x_k; \xi_k)\|}$$
$$x_{k+1} = x_k - \gamma \nabla F(x_k + \epsilon_k; \xi_k)$$

• SAM is more expensive than SGD since it requires two gradient evaluations

		CIFAR-10		CIFAR-100	
Model	Augmentation	SAM	SGD	SAM	SGD
WRN-28-10 (200 epochs)	Basic	2.7 _{±0.1}	$3.5_{\pm 0.1}$	16.5 _{±0.2}	$18.8_{\pm 0.2}$
WRN-28-10 (200 epochs)	Cutout	2.3 _{±0.1}	$2.6_{\pm0.1}$	14.9 $_{\pm0.2}$	$16.9_{\pm 0.1}$
WRN-28-10 (200 epochs)	AA	$2.1_{\pm < 0.1}$	$2.3_{\pm0.1}$	13.6 \pm 0.2	$15.8_{\pm0.2}$
WRN-28-10 (1800 epochs)	Basic	2.4 _{±0.1}	$3.5_{\pm 0.1}$	16.3 _{±0.2}	$19.1_{\pm 0.1}$
WRN-28-10 (1800 epochs)	Cutout	2.1 _{±0.1}	$2.7_{\pm 0.1}$	14.0 \pm 0.1	$17.4_{\pm 0.1}$
WRN-28-10 (1800 epochs)	AA	1.6 $_{\pm0.1}$	$2.2_{\pm < 0.1}$	12.8 $_{\pm0.2}$	$16.1_{\pm 0.2}$
Shake-Shake (26 2x96d)	Basic	2.3 _{±<0.1}	$2.7_{\pm 0.1}$	15.1 _{±0.1}	$17.0_{\pm 0.1}$
Shake-Shake (26 2x96d)	Cutout	$2.0_{\pm < 0.1}$	$2.3_{\pm 0.1}$	14.2 _{±0.2}	$15.7_{\pm 0.2}$
Shake-Shake (26 2x96d)	AA	1.6 $_{\pm < 0.1}$	$1.9_{\pm 0.1}$	12.8 $_{\pm0.1}$	$14.1_{\pm 0.2}$
PyramidNet	Basic	2.7 _{±0.1}	$4.0_{\pm 0.1}$	14.6 _{±0.4}	$19.7_{\pm 0.3}$
PyramidNet	Cutout	$1.9_{\pm 0.1}$	$2.5_{\pm 0.1}$	12.6 _{±0.2}	$16.4_{\pm 0.1}$
PyramidNet	AA	1.6 _{±0.1}	$1.9_{\pm 0.1}$	11.6 $_{\pm0.1}$	$14.6_{\pm 0.1}$
PyramidNet+ShakeDrop	Basic	2.1 _{±0.1}	$2.5_{\pm 0.1}$	13.3 _{±0.2}	$14.5_{\pm 0.1}$
PyramidNet+ShakeDrop	Cutout	1.6 \pm <0.1	$1.9_{\pm 0.1}$	11.3 $_{\pm0.1}$	$11.8_{\pm 0.2}$
PyramidNet+ShakeDrop	AA	1.4 _{±<0.1}	$1.6_{\pm < 0.1}$	10.3 $_{\pm0.1}$	$10.6_{\pm 0.1}$

Table 1: Results for SAM on state-of-the-art models on CIFAR- $\{10, 100\}$ (WRN = WideResNet; AA = AutoAugment; SGD is the standard non-SAM procedure used to train these models).

Model	Epoch	SAM		Standard Training (No SAM)	
Model		Top-1	Top-5	Top-1	Top-5
ResNet-50	100	22.5 _{±0.1}	$6.28_{\pm 0.08}$	$22.9_{\pm 0.1}$	$6.62_{\pm0.11}$
	200	21.4 $_{\pm0.1}$	$5.82_{\pm 0.03}$	$22.3_{\pm 0.1}$	$6.37_{\pm 0.04}$
	400	20.9 $_{\pm0.1}$	$5.51_{\pm 0.03}$	$22.3_{\pm 0.1}$	$6.40_{\pm 0.06}$
ResNet-101	100	20.2 $_{\pm 0.1}$	$5.12_{\pm 0.03}$	$21.2_{\pm 0.1}$	$5.66_{\pm 0.05}$
	200	19.4 $_{\pm0.1}$	$4.76_{\pm 0.03}$	$20.9_{\pm 0.1}$	$5.66_{\pm 0.04}$
	400	$19.0_{\pm < 0.01}$	$4.65_{\pm 0.05}$	$22.3_{\pm 0.1}$	$6.41_{\pm 0.06}$
ResNet-152	100	19.2 _{±<0.01}	$4.69_{\pm 0.04}$	$20.4_{\pm < 0.0}$	$5.39_{\pm 0.06}$
	200	18.5 $_{\pm0.1}$	$4.37_{\pm 0.03}$	$20.3_{\pm 0.2}$	$5.39_{\pm 0.07}$
	400	18.4 $_{\pm < 0.01}$	$4.35_{\pm 0.04}$	$20.9_{\pm < 0.0}$	$5.84_{\pm 0.07}$

Table 2: Test error rates for ResNets trained on ImageNet, with and without SAM.

References I

- N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T. P. Tang, "On large-batch training for deep learning: Generalization gap and sharp minima," in *International Conference on Learning Representations*, 2016.
- L. Wu, C. Ma et al., "How sgd selects the global minima in over-parameterized learning: A dynamical stability perspective," Advances in Neural Information Processing Systems, vol. 31, 2018.
- L. Wu, M. Wang, and W. Su, "The alignment property of sgd noise and how it helps select flat minima: A stability analysis," *Advances in Neural Information Processing Systems*, vol. 35, pp. 4680–4693, 2022.
- Z. Zhu, J. Wu, B. Yu, L. Wu, and J. Ma, "The anisotropic noise in stochastic gradient descent: Its behavior of escaping from sharp minima and regularization effects," in *International Conference on Machine Learning*. PMLR, 2019, pp. 7654–7663.
- P. Foret, A. Kleiner, H. Mobahi, and B. Neyshabur, "Sharpness-aware minimization for efficiently improving generalization," in *International Conference on Learning Representations*, 2020.