1

Electricity

Electric Current

- Electric current is expressed as the amount of charge flowing through a particular area in unit time.
- Quantitatively, **electric current** is defined as the rate of flow of electric charge.

Current,
$$I = \frac{\text{Charge flowing (Q)}}{\text{Time taken (t)}}$$

- The S.I. unit of current is **ampere (A)**, where 1 ampere = 1 coulomb/second.
- 1 mA = 10^{-3} A, 1 μ A = 10^{-6} A
- The conventional direction of electric current is the one in which positive charges move orderly.

Electric Potential Different

• Electric potential difference (pd) between two points in an electric circuit, carrying some current, is the amount of work done to move a unit charge from one point to another.

• The S.I. unit of pd is **volt (V)**, where 1 volt = 1 joule/coulomb.

Electric Circuit

- A continuous conducting path between the terminals of a source of electricity is called an **electric circuit**.
- A drawing showing the way various electric devices are connected in a circuit is called a circuit diagram.
- Some commonly used circuit elements are given below:

Sr. No.	Element	Symbol
1	An electric cell	
2	A battery	+ - + -
3	Plug key or switch (open)	_()_
4	Plug key or switch (closed)	—(•)—
5	A wire joint	

6	Wires crossing without joining	
7	Bulb	Or
8	Resistor	 \\\\\
9	Variable resistor or Rheostat	-w/w-
10	Ammeter	+A-
11	Voltmeter	-+ \[\sigma\]

Ohm's law

• According to Ohm's law, the current (I) flowing through a conductor is directly proportional to the potential difference (V) across its ends, provided its physical conditions remain the same.

 $\mathbf{V} \propto \mathbf{I}$

V/ I = Constant

V/I=R

V = IR

where R is a constant of proportionality called **resistance** of the conductor.

- Resistance is the property of a conductor to resist the flow of charges through it.
- The S.I. unit of resistance is **ohm** (Ω).

From
$$R = \frac{V}{I}$$
, 1 ohm = 1 volt/ampere

Resistivity

The resistance of a conductor is directly proportional to its length (I) and inversely proportional to its area of cross section (A).

 $R \propto I/A$

 $R = \rho I/A$

where ρ is a constant of proportionality called **specific resistance** or **resistivity** of the material of the conductor.

The S.I. unit of resistivity is ohm metre (Ωm).

Combination of Resistances

Resistances in Series

- The current flowing through each resistance is the same.
- The potential difference across the ends of the series combination is distributed across the resistances.
- The equivalent resistance (R_s) of a series combination containing resistances R_1 , R_2 , R_3 ... is $R_s = R_1 + R_2 + R_3 + ...$
- The equivalent resistance is greater than the greatest resistance in the combination.

Resistances in Parallel

- The potential difference across each resistance is the same and is equal to the potential difference across the combination.
- The main current divides itself, and a different current flows through each resistance.
- The equivalent resistance (R_p) of a parallel combination containing resistances R₁, R₂, R_{3...} is given by $\frac{1}{R_0} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots$
- The equivalent resistance is lesser than the least of all the resistances in the combination

Heating Effect of Electric Current

- The effect of electric current due to which heat is produced in a conductor, when current passes through it, is called the heating effect of electric current.
- The total work (W) done by the current in an electric circuit is called electric energy and is given as
 W = VIt = I²Rt

$$W = V^2 t/R$$

This energy is exhibited as heat. Thus, we have $H = VIt = I^2Rt$.

This is called **Joule's Law of Heating**, which states that the heat produced in a resistor is directly proportional to the

- Square of the current in the resistor
- Resistance of the resistor
- Time for which the current flows through the resistance

Practical Applications of the Heating Effects of Electric Current

- Electrical appliances like laundry iron, toaster, oven, kettle and heater are some devices based on Joule's Law of Heating.
- The concept of electric heating is also used to produce light, as in an electric bulb.
- Another application of Joule's Law of Heating is the fuse used in electric circuits.

Electric Power

- Electric power is the rate at which electrical energy is produced or consumed in an electric circuit
 P = VI = I²R
 P = V²/R
- The S.I. unit of power is watt (W).
- One watt of power is consumed when 1 A of current flows at a potential difference of 1 V.
 The commercial unit of electric energy is kilowatt hour (kWh), commonly known as a unit.
 1 kWh = 3.6 MJ