Estatística Básica

Prof. Fernando de Souza Bastos fernando.bastos@ufv.br

Instituto de Ciências Exatas e Tecnológicas Universidade Federal de Viçosa Campus UFV - Florestal

Sumário

Associação entre Variáveis Quantitativas

Associação entre Variáveis Qualitativas e Quantitativas

Tabela: Anos de Serviço (X) versus N^{Q} de Clientes (Y)

Agente	Χ	Y	
Α	2	48	
В	4	56	
C	5	64	
D	6	60	
Е	6	65 63 67 70	
F	6		
G	7		
Н	8		
1	8	71	
J	10	72	

Tabela: Renda bruta mensal (X) e porcentagem da renda gasta em saúde (Y).

Família	Χ	Y	
A	12	7.2	
В	16	7.4	
C	18	7.0	
D	20	6.5	
Ε	28	6.6	
F	30	6.7	
G	40	6.0	
Н	48	5.6	
1	50	6.0	
J	54	5.5	

Figura: Morettin and Bussab (2009)

Tabela: Cálculo do coeficiente de correlação.

Agente	Anos	Clientes	$x-\bar{x}$	$y-\bar{y}$	$\frac{x - \bar{x}}{dp(x)} = z_x$	$\frac{y-\bar{y}}{dp(y)}=z_y$	$Z_X.Z_y$
A	2	48	-3.7	-8.5	-1.54	-1.05	1.617
В	3	50	-2.7	-6.5	-1.12	-0.8	0.896
C	4	56	-1.7	-0.5	-0.71	-0.06	0.043
D	5	52	-0.7	-4.5	-0.29	-0.55	0.160
Ε	4	43	-1.7	-13.5	-0.71	-1.66	1.179
F	6	60	0.3	3.5	0.12	0.43	0.052
G	7	62	1.3	5.5	0.54	0.68	0.367
Н	8	58	2.3	1.5	0.95	0.18	0.171
1	8	64	2.3	7.5	0.95	0.92	0.874
J	10	72	4.3	15.5	1.78	1.91	3.400
Total	57	565	0	0			8.759

$$Cor = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{x_i - \bar{x}}{dp(X)} \right) \left(\frac{y_i - \bar{y}}{dp(Y)} \right) = \frac{8.759}{10} = 0.8759$$

Não é difícil provar que o coeficiente de correlação satisfaz:

$$-1 \leq cor(X, Y) \leq 1$$

Não é difícil provar que o coeficiente de correlação satisfaz:

$$-1 \leq cor(X, Y) \leq 1$$

DEF: Dados n pares de valores $(x_1, y_1), \dots, (x_n, y_n)$, chamaremos de covariância entre as duas variáveis X e Y a igualdade:

$$cov(X, Y) = \sum_{i=1}^{n} \frac{(x_i - \overline{x})(y_i - \overline{y})}{n}$$

Não é difícil provar que o coeficiente de correlação satisfaz:

$$-1 \leq cor(X, Y) \leq 1$$

DEF: Dados n pares de valores $(x_1, y_1), \dots, (x_n, y_n)$, chamaremos de covariância entre as duas variáveis X e Y a igualdade:

$$cov(X, Y) = \sum_{i=1}^{n} \frac{(x_i - \bar{x})(y_i - \bar{y})}{n}$$

Com a definição acima, o coeficiente de correlação pode ser escrito como:

$$cor(X, Y) = \frac{cov(X, Y)}{dp(X)dp(Y)}$$

A covariância mede a relação linear entre duas variáveis. A covariância é semelhante à correlação entre duas variáveis, no entanto, elas diferem nas seguintes maneiras:

 Os coeficientes de correlação são padronizados. Assim, um relacionamento linear perfeito resulta em um coeficiente de correlação 1. A correlação mede tanto a força como a direção da relação linear entre duas variáveis. A covariância mede a relação linear entre duas variáveis. A covariância é semelhante à correlação entre duas variáveis, no entanto, elas diferem nas seguintes maneiras:

- Os coeficientes de correlação são padronizados. Assim, um relacionamento linear perfeito resulta em um coeficiente de correlação 1. A correlação mede tanto a força como a direção da relação linear entre duas variáveis.
- Os valores de covariância não são padronizados. Como os dados não são padronizadas, é difícil determinar a força da relação entre as variáveis.

Associação entre Variáveis Qualitativas e Quantitativas

Figura: Box plots de salário segundo grau de instrução. Morettin and Bussab (2009)

Figura: Box plots de salário segundo região de procedência. Morettin and Bussab (2009)

Referências

P. Morettin and W. Bussab. *Estatística básica*. Editora Saraiva, São Paulo, 6 edition, 2009.