

Universidade de Aveiro - Departamento de Matemática

Matemática Discreta 2016/2017 - UC 47166 (1º Ano/2º Sem)

Exame Final - 26/06/2017

Duração: 2h 30m

- 1. Seja A o conjunto das 18 equipas da Liga Portuguesa de Futebol Profissional, para a qual é sempre possível estabelecer uma tabela pontual classificativa, a qual pode variar entre 0 e 102 pontos.
 - (a) Considere $\mathcal{R} \subseteq A \times A$ a relação binária definida por:

$$\mathcal{R} = \{(x, y) \in A \times A : x \text{ tem mais pontos que } y\}.$$

Verifique se a relação \mathcal{R} é reflexiva, simétrica, antissimétrica e transitiva.

- (b) Dê um exemplo de uma relação de equivalência definida em A. Justifique.
- 2. Uma câmara de vídeo regista a passagem de veículos num túnel e um programa de processamento de imagem extrai diversos parâmetros de cada objeto filmado enviando-os a um sistema de classificação baseado em conhecimento. O universo do discurso são objetos de vídeo, obv1, obv2, obv3, ...

A partir de fórmulas da lógica de primeira ordem com predicados adequados obtiveram-se as seguintes cláusulas (representativas do sistema de classificação):

 $C_1: \neg Comprimento(x, Medio) \lor \neg Largura(x, Medio) \lor Automovel(x);$

 C_2 : $\neg Comprimento(x, Pequeno) \lor \neg Largura(x, MuitoPequeno) \lor Motociclo(x) \lor Bicicleta(x)$;

 $C_3: \neg Bicicleta(x);$

 C_4 : Comprimento(obv1, Grande);

 $C_5: Largura(obv1, Medio);$

 C_6 : Comprimento(obv2, Pequeno);

 C_7 : Largura(obv2, MuitoPequeno).

- (a) Obtenha, justificando, fórmulas bem formadas da lógica de primeira ordem, F_1 , F_2 , F_3 , a partir das quais se podem obter as cláusulas C_1 , C_2 e C_3 .
- (b) Aplique o princípio da resolução para mostrar que o objeto obv2 é um Motociclo, ou seja, que se pode concluir Motociclo(obv2).
- 3. Numa sala estão 20 computadores e cada um deles pode ou não estar ligado em rede aos outros computadores. Mostre que existem pelo menos dois computadores nessa sala que estão ligados ao mesmo número de computadores.
- 4. Considere o grafo simples não orientado, G = (V, E, W), com $V = \{v_1, v_2, v_3, v_4, v_5, v_6\}$ e cuja matriz de custos é

$$W = \begin{bmatrix} 0 & 2 & \infty & 5 & \infty & \infty \\ 2 & 0 & 3 & 1 & 4 & \infty \\ \infty & 3 & 0 & 1 & \infty & 3 \\ 5 & 1 & 1 & 0 & 2 & \infty \\ \infty & 4 & \infty & 2 & 0 & 1 \\ \infty & \infty & 3 & \infty & 1 & 0 \end{bmatrix}.$$

- (a) Determine o caminho de menor custo entre os vértices v_1 e v_6 , aplicando o algoritmo de Dijkstra.
- (b) Considere a árvore abrangente de G, $T = (V, E_T)$, onde $E_T = \{v_1v_2, v_1v_4, v_2v_3, v_2v_5, v_3v_6\}$. Determine o código de Prüfer de T.

- 5. Um sistema computacional considera um código composto por n dígitos decimais válido se este contém um número par de zeros. Por exemplo, os códigos 123456 e 78900 são válidos, mas 2450200 e 0667745998 são códigos inválidos. Seja a_n o número de códigos válidos com n dígitos, para $n \in \mathbb{N}$.
 - (a) Mostre que a_n satisfaz a equação de recorrência $a_n = 8a_{n-1} + 10^{n-1}$ e determine o valor de a_1 . Justifique devidamente.
 - (b) Mostre que a função racional

$$f(x) = \frac{-80x^2 + 9x}{(1 - 8x)(1 - 10x)}$$

é a função geradora associada à sucessão $(a_n)_{n\in\mathbb{N}}$.

(c) Determine uma fórmula fechada para a_n , com $n \in \mathbb{N}$.

O - 1 -	cões:
COLA	COES:

1.(a)	1.(b)	2.(a)	2 .(b)	3.	4.(a)	4.(b)	5. (a)	5. (b)	5. (c)
2.0	1.5	2.0	2.0	2.0	3.0	1.5	2.0	2.0	2.0