## In [2]:

```
import numpy as np
import pandas as pd
from pandas import *
import matplotlib.pyplot as plt
```

## In [4]:

```
data = pd.read_csv('Downloads/creditcard.csv')
data.head()
```

# Out[4]:

| V7        | V8        | V9        | <br>V21       | V22       | V23       | V24       | V25       |       |
|-----------|-----------|-----------|---------------|-----------|-----------|-----------|-----------|-------|
| 0.239599  | 0.098698  | 0.363787  | <br>-0.018307 | 0.277838  | -0.110474 | 0.066928  | 0.128539  | -0.18 |
| -0.078803 | 0.085102  | -0.255425 | <br>-0.225775 | -0.638672 | 0.101288  | -0.339846 | 0.167170  | 0.12  |
| 0.791461  | 0.247676  | -1.514654 | <br>0.247998  | 0.771679  | 0.909412  | -0.689281 | -0.327642 | -0.13 |
| 0.237609  | 0.377436  | -1.387024 | <br>-0.108300 | 0.005274  | -0.190321 | -1.175575 | 0.647376  | -0.22 |
| 0.592941  | -0.270533 | 0.817739  | <br>-0.009431 | 0.798278  | -0.137458 | 0.141267  | -0.206010 | 0.50  |



## In [5]:

```
count_classes = pd.value_counts(data['Class'], sort = False)

count_classes.plot (kind='bar')
plt.title ("Operaciones fraudulentas sobre no fraudulentas")
plt.xlabel ("Fraudulentas")
plt.ylabel ("Frecuencia")
```

## Out[5]:

Text(0, 0.5, 'Frecuencia')



#### In [6]:

```
data['logAmount'] = np.log(data['Amount']+1)
data['logAmount'].sort_values().plot.hist()
```

## Out[6]:

<matplotlib.axes.\_subplots.AxesSubplot at 0x20b6ea1b1c0>



## In [7]:

```
from sklearn.preprocessing import StandardScaler
data['normAmount'] = StandardScaler().fit_transform(data['Amount'].values.reshape (-1,1))
data = data.drop (['Time', 'Amount','logAmount'], axis = 1);
```

### In [8]:

```
X = data.iloc[:, data.columns != 'Class']
y = data.iloc[:, data.columns == 'Class']
len(y[y.Class ==1]);
```

## In [9]:

```
number_records_fraud = len (data[data.Class==1])
fraud_indices = np.array (data[data.Class==1].index)
normal_indices = np.array (data[data.Class==0].index)
```

# In [10]:

```
random_normal_indices = np.random.choice (normal_indices, number_records_fraud, replace
= False )
under_sample_indices = np.concatenate ([fraud_indices, random_normal_indices])
```

#### In [11]:

```
under_sample_data = data.iloc[under_sample_indices,:]

X_undersample = under_sample_data.iloc [:, under_sample_data.columns != 'Class'];
y_undersample = under_sample_data.iloc [:, under_sample_data.columns == 'Class'];
```

#### In [12]:

```
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split (X,y, test_size = 0.3, random_state = 0)
X_train_under, X_test_under, y_train_under, y_test_under = train_test_split (X_undersam ple,y_undersample, test_size = 0.3, random_state = 0)
```

# In [13]:

```
from sklearn.metrics import recall_score
from sklearn.neural_network import MLPClassifier
MLPC = MLPClassifier(hidden_layer_sizes=(200,), max_iter=10000)
MLPC.fit(X_train_under, y_train_under)
y_pred = MLPC.predict(X_test)
recall_acc = recall_score (y_test,y_pred)
recall_acc
```

C:\Users\kurno\anaconda3\lib\site-packages\sklearn\utils\validation.py:73: DataConversionWarning: A column-vector y was passed when a 1d array was ex pected. Please change the shape of y to (n\_samples, ), for example using r avel().

return f(\*\*kwargs)

### Out[13]:

0.9591836734693877

## In [ ]: