Regression

Assoc. Prof. Peerapon Vateekul, Ph.D.

Peerapon.v@chula.ac.th

Linear Regression

Build a supervised learning model using Excel

Type of Predictors Type of Response	Categorical	Continuous	Continuous and Categorical
Continuous	Analysis of Variance (ANOVA)	Ordinary Least Squares (OLS) Regression	Analysis of Covariance (ANCOVA)
Categorical	Contingency Table Analysis or Logistic Regression	Logistic Regression	Logistic Regression

Linear Regression: Model

- Main Idea: to obtain a line that best fits the data where its overall prediction error from all data points are as small as possible.
- Simple Linear Regression (1 feature):

Multiple Linear Regression (n features):

- 4 key assumptions of linear regression:
 - Linear relationship
 - Multivariate normality
 - No or little multicollinearity (no auto-correlation)
 - Homoscedasticity

+

Simple Linear Regression

+

Problem: l input (predictor) & l output

■ Systolic Blood Pressure (y) & Cholesterol (x)

idno	chol(x)	sysbp (y)
1	437	194
2	264	121
3	249	131
4	297	159
5	243	123
6	272	161
7	161	115
รวม	1923	1004

$$\hat{y} = \beta_0 + \beta_1 x$$

$$\widehat{bp} = \beta_0 + \beta_1 chol$$

Simple Linear Regression Model

$$\hat{y} = \beta_0 + \beta_1 x$$

$$\widehat{bp} = \beta_0 + \beta_1 chol$$

Ordinary Least Squares (OLS) Regression

How to estimate parameters

$$\hat{y} = \beta_0 + \beta_1 x$$

$$\beta_0 = \bar{y} - \beta_1 \, \bar{x}$$

$$\beta_1 = \frac{s_{xy}}{s_{xx}} = \frac{\left(\sum x_i y_i - \frac{\sum x_i \sum y_i}{n}\right)}{\left(\sum x_i^2 - \frac{(\sum x_i)^2}{n}\right)}$$

$$[Y] = [X][\beta]$$
$$[\beta] = [X]^{-1}[Y]$$

Example

■ Cholesterol (x)

idno	chol(x)	sysbp (y)	x ²	жу	У²
1	437	194	190969	84778	37636
2	264	121	69696	31944	14641
3	249	131	62001	32619	17161
4	297	159	88209	47223	25281
5	243	123	49049	29889	15129
6	272	161	73984	43792	25921
7	161	115	25921	18515	13225
รวม	1923	1004	569829	288760	148994

$$\hat{y} = \beta_0 + \beta_1 x$$

$$\beta_0 = \bar{y} - \beta_1 \,\bar{x}$$

$$\beta_1 = \frac{S_{xy}}{S_{xx}} = \frac{\left(\sum x_i y_i - \frac{\sum x_i \sum y_i}{n}\right)}{\left(\sum x_i^2 - \frac{(\sum x_i)^2}{n}\right)}$$

9

$$\bar{x} = \frac{1923}{7} = 247.7143, \bar{y} = \frac{1004}{7} = 143.4286$$

$$\beta_1 = \frac{s_{xy}}{s_{xx}} = \frac{\left(288760 - \frac{1923 \times 1004}{7}\right)}{\left(569829 - \frac{(1923)^2}{7}\right)} = 0.3116$$

$$\beta_0 = 143.4286 - (0.3116)(247.7143) = 57.8355$$

$$\hat{y} = 57.8355 + 0.3116x$$

 $\widehat{bp} = 57.8355 + 0.3116 \times chol$

How to read an equation

Example: Prediction

■ Systolic Blood Pressure (y)

$$\widehat{bp} = 57.8355 + 0.3116 \times chol$$

■ Cholesterol (x)

predict	sysbp (y)	chol(x)	idno
196.189	194	437	1
141.417	121	264	2
136.668	131	249	3
151.865	159	297	4
134.769	123	243	5
143.950	161	272	6
108.808	115	161	7
100.000	1004	1923	รวม

The Baseline Model (Null Hypothesis)

Explained versus Unexplained Variability

Coefficient of Determination

$$R^2 = \frac{SSM}{SST} = 1 - \frac{SSE}{SST}$$

"Proportion of variance accounted for by the model"

Coefficient of Determination (cont.)

$$R^2 = \frac{SSM}{SST} = 1 - \frac{SSE}{SST}$$

id	chol (x)	bp (y)	predict	error	squred error (SE)	guess	(y - y_bar)	squred total (ST)
1	437	194	196.1897	(2.1897)	4.7948	143.4286	50.5714	2,557.4694
2	264	121	141.4179	(20.4179)	416.8906	143.4286	(22.4286)	503.0408
3	249	131	136.6689	(5.6689)	32.1364	143.4286	(12.4286)	154.4694
4	297	159	151.8657	7.1343	50.8982	143.4286	15.5714	242.4694
5	243	123	134.7693	(11.7693)	138.5164	143.4286	(20.4286)	417.3265
6	272	161	143.9507	17.0493	290.6786	143.4286	17.5714	308.7551
7	161	115	108.8081	6.1919	38.3396	143.4286	(28.4286)	808.1837
average	274.7143	143.4286		SSE	972.2548		SST	4,991.7143
				MSE	138.8935			
				RMSE	11.7853			
	R^2	1 - (SSE/SST)	0.8052					

Coefficient of Determination (cont.)

■ Train: R², RMSE

■ Test: R², RMSE (honest estimate)

Training Data

Testing Data

id	chol (x)	bp (y)	predict	error	squred error (SE)	guess	(y - y_bar)	squred total (ST)
1	437	194	196.1897	(2.1897)	4.7948	143.4286	50.5714	2,557.4694
2	264	121	141.4179	(20.4179)	416.8906	143.4286	(22.4286)	503.0408
3	249	131	136.6689	(5.6689)	32.1364	143.4286	(12.4286)	154.4694
4	297	159	151.8657	7.1343	50.8982	143.4286	15.5714	242.4694
5	243	123	134.7693	(11.7693)	138.5164	143.4286	(20.4286)	417.3265
6	272	161	143.9507	17.0493	290.6786	143.4286	17.5714	308.7551
7	161	115	108.8081	6.1919	38.3396	143.4286	(28.4286)	808.1837
average	274.7143	143.4286		SSE	972.2548		SST	4,991.7143
				MSE	138.8935			
				RMSE	11.7853			
	R^2	1 - (SSE/SST)	0.8052					

Model Hypothesis Test F Statistic and Critical Values at α =0.05

- Null Hypothesis:
 - The simple linear regression model does not fit the data better than the baseline model.
 - β₁=0
- Alternative Hypothesis:
 - The simple linear regression model does fit the data better than the baseline model.
 - $\quad \blacksquare \quad \beta_1 \neq 0$

F(Model df, Error df)=MS_M / MS_E

Assumptions of Simple Linear Regression

squred error (SE)	error	predict	bp (y)	chol (x)	id
4.7948	(2.1897	196.1897	194	437	1
416.8906	(20.4179	141.4179	121	264	2
32.1364	(5.6689	136.6689	131	249	3
50.8982	7.1343	151.8657	159	297	4
138.5164	(11.7693	134.7693	123	243	5
290.6786	17.0493	143.9507	161	272	6
38.3396	6.1919	108.8081	115	161	7

The mean of the Ys is accurately modeled by a linear function of the X.

- The random error term, ε, is assumed to have a normal distribution with a mean of zero.
- The random error term, ε , is assumed to have a constant variance, σ^2 .
 - Not skew

■ The errors are independent.

+

Multiple Linear Regression

Multiple Linear Regression with Two Variables

■ Consider the two-variable model

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \varepsilon$$

■ where

Y is the dependent variable.

 X_1 and X_2 are the independent or predictor variables.

 ϵ is the error term.

 β_0 , β_1 , and β_2 are unknown parameters.

Picturing the Model: No Relationship

Picturing the Model: A Relationship

The Multiple Linear Regression Model

■ In general, you model the dependent variable, Y, as a linear function of k independent variables, X_1 through X_k :

$$Y = \beta_0 + \beta_1 X_1 + ... + \beta_k X_k + \varepsilon$$

$$Y=\beta_0+\beta_1X_1+\beta_2X_2+\epsilon$$

Linear Model with
only Linear Effects

Y=
$$\beta_0$$
+ β_1 X₁+ β_2 X₁²+ β_3 X₂+ β_4 X₂²+ ϵ
Linear Model with
Nonlinear Effects

The Multiple Linear Regression Model (cont.) Matrix Multiplication Approach

ınpı	ıts	target
Age	Income	Spending
25	25,000	400
35	50,000	500
32	35,000	550

$$Y=\beta_0(1)+\beta_1X_1+\beta_2X_2+\varepsilon$$

Model Hypothesis Test (F-Test)

■ Null Hypothesis:

- The regression model does not fit the data better than the baseline model.

■ Alternative Hypothesis:

- The regression model does fit the data better than the baseline model.
- Not all β_i s equal zero.

F(Model df, Error df)=MS_M / MS_E

Assumptions for Linear Regression

- The mean of the Ys is accurately modeled by a linear function of the X_i.
 - $(y, x_i) = linear relationship (correlation)$
- The random error term, ε , is assumed to have a normal distribution with a mean of zero.
- The random error term, ε , is assumed to have a constant variance, σ^2 .
 - Not skew

■ The errors are independent.

Multiple Linear Regression versus Simple Linear Regression

■ Main Advantage

■ Multiple linear regression enables you to investigate the relationship among Y and several independent variables simultaneously.

■ Main Disadvantages

- Increased complexity makes it more difficult to do the following:
 - ascertain which model is "best"
 - interpret the models

Common Applications of Multiple Regression

- Multiple linear regression is a powerful tool for the following tasks:
 - Prediction to develop a model to predict future values of a response variable (Y) based on its relationships with other predictor variables (Xs)
 - Analytical or Explanatory Analysis to develop an understanding of the relationships between the response variable and predictor variables

Prediction

- The terms in the model, the values of their coefficients, and their statistical significance are of secondary importance.
- The focus is on producing a model that is the best at predicting future values of Y as a function of the Xs. The predicted value of Y is given by this formula:

$$\underline{\hat{Y}} = \hat{\beta}_0 + \hat{\beta}_1 X_1 + \ldots + \hat{\beta}_k X_k$$

Analytical or Explanatory Analysis

- The focus is on understanding the relationship between the dependent variable and the independent variables.
- Consequently, the statistical significance of the coefficients is important as well as the magnitudes and signs of the coefficients.

$$\hat{Y} = \underline{\hat{\beta}_0} + \underline{\hat{\beta}_1} X_1 + \ldots + \underline{\hat{\beta}_k} X_k$$

$R^2 = \frac{SSM}{SST} = 1 - \frac{SSE}{SST}$ Adjusted R Square

$$R_{ADJ}^{2} = 1 - \frac{(n-i)(1-R^{2})}{n-p}$$

- \blacksquare *i*=1 if there is an intercept and 0 otherwise
- \blacksquare *n*=the number of observations used to fit the model
- p=the number of parameters in the model

$$R_{ADJ}^{2} = 1 - \frac{(100 - 1)(1 - 0.7)}{(100 - 1)} = 0.70; R^{2} = 0.7, n = 100, p = 1$$

$$R_{ADJ}^{2} = 1 - \frac{(100 - 1)(1 - 0.7)}{(100 - 3)} = 0.69; R^{2} = 0.7, n = 100, p = 3$$

$$R_{ADJ}^{2} = 1 - \frac{(100 - 1)(1 - 0.7)}{(100 - 10)} = 0.67; R^{2} = 0.7, n = 100, p = 10$$

sklearn.linear model.LinearRegression

class sklearn.linear_model.LinearRegression(fit_intercept=True, normalize=False, copy_X=True, n_jobs=None)

[source]

Ordinary least squares Linear Regression.

LinearRegression fits a linear model with coefficients w = (w1, ..., wp) to minimize the residual sum of squares between the observed targets in the dataset, and the targets predicted by the linear approximation.

Parameters:

fit_intercept : bool, optional, default True

Whether to calculate the intercept for this model. If set to False, no intercept will be used in calculations (i.e. data is expected to be centered).

normalize : bool, optional, default False

This parameter is ignored when fit_intercept is set to False. If True, the regressors X will be normalized before regression by subtracting the mean and dividing by the I2-norm. If you wish to standardize, please use

Methods

se.

<pre>fit(self, X, y[, sample_weight])</pre>	Fit linear model.	
<pre>get_params(self[, deep])</pre>	Get parameters for this estimator.	
predict(self, X)	Predict using the linear model.	fficient
<pre>score(self, X, y[, sample_weight])</pre>	Return the coefficient of determination R^2 of the prediction.	ocessors
<pre>set_params(self, **params)</pre>	Set the parameters of this estimator.	

+

Feature Selection

+

Feature Selection

- Forward
- Backward
- Stepwise

Sequential Selection: Forward

Sequential Selection: Forward

Sequential Selection: Forward

Sequential Selection: Forward

Sequential Selection: Forward

Sequential Feature Selector Overview Example 1 - A simple Sequential Forward Selection example Example 2 - Toggling between SFS, SBS, SFFS, and SBFS

Sequential Feature Selector

Implementation of sequential feature algorithms (SFAs) -- greedy search algorithms -- that have been developed as a suboptimal solution to the computationally often not feasible exhaustive search.

from mlxtend.feature selection import SequentialFeatureSelector

- Sequential feature selection algorithms are a family of greedy search algorithms that are used to reduce an initial d-dimensional feature space to a k-dimensional feature subspace where k < d.
- In a nutshell, SFAs remove or add one feature at the time based on the classifier performance (such as, accuracy) until a feature subset of the desired size k is reached.
- Sequential Forward Selection (SFS)
- Sequential Backward Selection (SBS)
- Sequential Forward Floating Selection (SFFS)
- Sequential Backward Floating Selection (SBFS)

scoring : str, callable, or None (default: None)

If None (default), uses 'accuracy' for sklearn classifiers and 'r2' for sklearn regressors. If str, uses a sklearn scoring metric string identifier, for example {accuracy, f1, precision, recall, roc_auc} for classifiers, ('mean absolute error', 'mean squared error'/'neg mean squared error', 'median absolute error', 'r2') for regressors. If a callable object or function is provided, it has to be conform with sklearn's signature scorer(estimator, X, y); see http://scikit-

learn.org/stable/modules/generated/sklearn.metrics.make_scorer.html for more information.

cv : int (default: 5)

Integer or iterable yielding train, test splits. If cv is an integer and estimator is a classifier (or y consists of integer class labels) stratified k-fold. Otherwise regular k-fold cross-validation is performed. No crossvalidation if cv is None, False, or 0.

Sequential Feature Selector (cont.)

- The *floating* variants, SFFS and SBFS, can be considered as extensions to the simpler SFS and SBS algorithms.
- The dimensionality of the subset during the search can be thought to be "floating" up and down. (somewhat similar to stepwise)
 - Sequential Forward Floating Selection (SFFS)
 - Sequential Backward Floating Selection (SBFS)

```
+
```



```
1 # Which features?
2 feat_cols = list(sfsl.k_feature_idx_)
3 print(feat_cols)
[6, 10, 15, 16, 17]
```

· scoring : str, callable, or None (default: None)

If None (default), uses 'accuracy' for sklearn classifiers and 'r2' for sklearn regressors. If str, uses a sklearn scoring metric string identifier, for example {accuracy, f1, precision, recall, roc_auc} for classifiers, {'mean_absolute_error', 'mean_squared_error', 'reg_mean_squared_error', 'median_absolute_error', 'r2'} for regressors. If a callable object or function is provided, it has to be conform with sklearn's signature scorer(estimator, X, y); see http://scikit-

 $learn.org/stable/modules/generated/sklearn.metrics.make_scorer.html~for~more~information.$

cv:int (default: 5)
 Integer or iterable yielding train, test splits. If cv is an integer and estimator is a classifier (or y consists of integer class labels) stratified k-fold. Otherwise regular k-fold cross-validation is performed. No cross-validation if cv is None, False, or 0.

Performance
$$= \frac{1}{5} \sum_{i=1}^{5} Performance_{i}$$

Next sklearn.feature_selection.RFE Other versions

Please cite us if you use the software.

sklearn.feature_selection.Seq

uentialFeatureSelector SequentialFeatureSelector Examples using

sklearn.feature selection.Seque

sklearn.feature_selection.SequentialFeatureSelector

class sklearn.feature selection.SequentialFeatureSelector(estimator, *, n_features_to_select='warn', tol=None, direction='forward', scoring=None, cv=5, n_jobs=None) source

Transformer that performs Sequential Feature Selection.

This Sequential Feature Selector adds (forward selection) or removes (backward selection) features to form a feature subset in a greedy fashion. At each stage, this estimator chooses the best feature to add or remove based on the cross-validation score of an estimator. In the case of unsupervised learning, this Sequential Feature Selector looks only at the features (X), not the desired outputs (y).

Read more in the User Guide.

New in version 0.24.

Parameters:

estimator: estimator instance

An unfitted estimator.

n_features_to_select: "auto", int or float, default='warn' If "auto", the behaviour depends on the tol parameter:

New in version 1.1.

tol: float, default=None If the score is not incremented by at least toll between two consecutive feature additions or removals, stop

A single str (see The scoring parameter; defining model evaluation rules) or a callable (see Defining your

adding or removing, tol is enabled only when n features to select is "auto".

direction: {'forward', 'backward'}, default='forward' Whether to perform forward selection or backward selection.

scoring: str or callable, default=None

scoring strategy from metric functions) to evaluate the predictions on the test set.

NOTE that when using a custom scorer, it should return a single value.

If None, the estimator's score method is used.

cv: int, cross-validation generator or an iterable, default=None

Determines the cross-validation splitting strategy. Possible inputs for cv are:

(150.3)

https://scikitlearn.org/stable/modules/generated/sklearn.feature_selec tion.SequentialFeatureSelector.html#sklearn.feature_sele ction.SequentialFeatureSelector. Examples

```
>>> from sklearn.feature selection import SequentialFeatureSelector
>>> from sklearn.neighbors import KNeighborsClassifier
>>> from sklearn.datasets import load iris
>>> X, v = load iris(return X v=True)
>>> knn = KNeighborsClassifier(n neighbors=3)
>>> sfs = SequentialFeatureSelector(knn, n features to select=3)
>>> sfs.fit(X, v)
SequentialFeatureSelector(estimator=KNeighborsClassifier(n neighbors=3),
                          n_features_to_select=3)
>>> sfs.get support()
array([ True, False, True, True])
>>> sfs.transform(X).shape
```

Logistic / Regression

Type of Predictors Type of Response	Categorical	Continuous	Continuous and Categorical
Continuous	Analysis of Variance (ANOVA)	Ordinary Least Squares (OLS) Regression	Analysis of Covariance (ANCOVA)
Categorical	Contingency Table Analysis or Logistic Regression	Logistic Regression	Logistic Regression

Logistic Regression

Classification Task

Logistic Regression Logit link function: Non-linear to Linear

+

Logistic Regression Prediction Formula

$$\log\left(\frac{\hat{p}}{1-\hat{p}}\right) = \hat{w_0} + \hat{w_1} x_1 + \hat{w_2} x_2 \quad logit scores$$

The logit link function transforms probabilities (between 0 and 1) to logit scores (between $-\infty$ and $+\infty$).

. . .

Logit Link Function

$$\log\left(\frac{\hat{\rho}}{1-\hat{\rho}}\right) = \hat{w_0} + \hat{w_1} x_1 + \hat{w_2} x_2 = \operatorname{logit}(\hat{\rho})$$

$$\hat{\rho} = \frac{1}{1+\rho - \operatorname{logit}(\hat{\rho})}$$

To obtain prediction estimates, the logit equation is solved for $\hat{\rho}$.

. .

Training Phase: Regressions Maximum Log-Likelihood Estimation (MLE)

logit(
$$\hat{p}$$
) = $\hat{\mathbf{w}}_0$ + $\hat{\mathbf{w}}_1$ x_1 + $\hat{\mathbf{w}}_2$ x_2

$$\hat{p} = \frac{1}{1 + e^{-\log it(\hat{p})}}$$

Find parameter estimates by *maximizing*

$$\sum_{\substack{\text{primary}\\ \text{outcome}\\ \text{training cases}}} \log(\hat{p}_i) + \sum_{\substack{\text{secondary}\\ \text{outcome}\\ \text{training cases}}} \log(1 - \hat{p}_i)$$

log-likelihood function

For each set of parameters (w0, w1, w2), we can calculate log-likelihood (LL) of the whole training data. So, pick the set of parameters with a <u>maximum LL (MLE)</u>.

. .

64

Testing Phase: Regressions

logit(
$$\hat{p}$$
) =-0.81+ 0.92 x_1 + 1.11 x_2

$$\hat{p} = \frac{1}{1 + e^{-\log it(\hat{p})}}$$

Using the maximum likelihood estimates, the prediction formula assigns a logit score to each x_1 and x_2 .

Quiz

- What is the logistic regression prediction for the indicated point?
- a. 0.243
- b. 0.56
- c. yellow
- d. It depends.

logit(
$$\hat{p}$$
) =-0.81+ 0.92 x_1 + 1.11 x_2

$$\hat{p} = \frac{1}{1 + e^{-\log it(\hat{p})}}$$

Training Phase: Regressions (Recap) Maximum Log-Likelihood Estimation (MLE)

logit(
$$\hat{p}$$
) = \hat{w}_0 + \hat{w}_1 x_1 + \hat{w}_2 x_2

$$\hat{p} = \frac{1}{1 + e^{-\log it(\hat{p})}}$$

Find parameter estimates by *maximizing*

$$\sum_{\substack{primary\\outcome\\training cases}} \log(\hat{p}_i) + \sum_{\substack{secondary\\outcome\\training cases}} \log(1 - \hat{p}_i)$$

log-likelihood function

For each set of parameters (w0, w1, w2), we can calculate log-likelihood (LL) of the whole training data. So, pick the set of parameters with a <u>maximum LL (MLE)</u>.

. .

$$P(Y = y) = p^{y}(1-p)^{1-y}, y = 0,1$$

$$Likelihood = \prod_{i=1}^{n} p^{y_i} (1-p)^{1-y}$$

$$P(Y = 0) = p^{0}(1 - p)^{1 - 0} = (1 - p)$$

 $P(Y = 1) = p^{1}(1 - p)^{0} = p$

Predicted

 Outcome
 Probability

$$y_i$$
 p_i
 $(1-p_i)$

 1
 .899
 .101

 1
 .540
 .460

 0
 .317
 .683

 1
 .516
 .439

 1
 .698
 .302

 0
 .457
 .543

 0
 .234
 .766

 1
 .899
 .101

 1
 .451
 .439

 1
 .764
 .236

 0
 .457
 .543

 0
 .561
 .439

 1
 .698
 .302

.457

.899

.543

.101

 $Log - Likelihood (LL) = \sum y_i \ln(p_i) + (1 - y_i) \ln(1 - p_i)$

 $logit(\hat{p}) = -0.81 + 0.92 x_1 + 1.11 x_2$

logit(
$$\hat{p}$$
) = \hat{w}_0 + \hat{w}_1 x_1 + \hat{w}_2 x_2
logit(\hat{p}) =-0.81+ 0.92 x_1 + 1.11 x_2

- Maximum Log-Likelihood Estimation (MLE) refers to maximize LL
- Or minimize -2LL (loss)
- Gradient descent optimization
 - Stochastic Average Gradient solver

Assumptions for Linear Regression (recap)

- The mean of the Ys is accurately modeled by a linear function of the X_i.
 - $(y, x_i) = linear relationship (correlation)$
- The random error term, ε , is assumed to have a normal distribution with a mean of zero.
- The random error term, ε , is assumed to have a constant variance, σ^2 .
 - Not skew

■ The errors are independent.

Assumptions for Logistic Regression

- The mean of the logit is accurately modeled by a linear function of the X_i.
 - \blacksquare (logit, x_i) = linear relationship
- The random error term, ε, is assumed to have a normal distribution with a mean of zero.
- The random error term, ε , is assumed to have a constant variance, σ^2 .
 - Not skew
- The errors are independent.

+

Beyond the prediction

- Manage missing values
- Interpret the model
- Handle outliers
- Use nonnumeric inputs

+

Missing Values and Regression Modeling

Problem 1: Training data cases with missing values on inputs used by a regression model are ignored.

Missing Values and Regression Modeling

Consequence: Missing values can significantly reduce your amount of training data for regression modeling!

Missing Values and the Prediction Formula

$$logit(\hat{p}) = -0.81 + 0.92 \cdot x_1 + 1.11 \cdot x_2$$

Predict: (x1, x2) = (0.3, ?)

Problem 2: Prediction formulas cannot score cases with missing values.

Missing Values and the Prediction Formula

$$logit(\hat{p}) = -0.81 + 0.92 \cdot 0.3 + 1.11 \cdot ?$$

Predict: (x1, x2) = (0.3, ?)

Problem 2: Prediction formulas cannot score cases with missing values.

Interpret the model: Positive effect (income)

Recap how to interpret "regression"

$$logit(p) = 500 + 0.2 \times Income - 0.8 \times Age$$
 $ln(odds) = 500 + 0.2 \times Income - 0.8 \times Age$

$$ln(odds(Income = 1)) = 0.2 \times 1 = 0.2$$
 $odds(Income = 1) = e^{0.2} = 1.22$

$$ln(odds(Income = 0)) = 0.2 \times 0 = 0$$
 $odds(Income = 0) = e^{0} = 1$

$$Odss\ Ratio(Income) = \frac{odds(Income = 1)}{odds(Income = 0)} = \frac{1.22}{1} = 1.22\ (+22\%) = \exp(w_1)$$

- OR(Income) = 1.22 (22% increase)
- When income increases by 1THB, it has higher chance (odds) to purchase for 22%

Interpret the model: Negative effect (age)

Recap how to interpret "regression"

$$logit(p) = 500 + 0.2 \times Income - 0.8 \times Age$$

$$ln(odds) = 500 + 0.2 \times Income - 0.8 \times Age$$

$$\ln(odds(Age = 1)) = -0.8 \times 1 = -0.8$$
$$odds(Age = 1) = e^{-0.8} = 0.45$$

$$ln(odds(Age = 0)) = -0.8 \times 0 = 0$$

 $odds(Age = 0) = e^{0} = 1$

Odss Ratio(Age) =
$$\frac{odds(Age = 1)}{odds(Age = 0)} = \frac{0.45}{1} = 0.45 (-55\%) = \exp(w_1)$$

- OR(Age) = 0.45 (55% decrease)
- When age increases by 1 year, it has lower chance (odds) to purchase for 55%.

Prev

Next

scikit-learn 0.22.1 Other versions

Please cite us if you use the software.

sklearn.linear model.LogisticR egression Examples using

sklearn.linear model.LogisticRe

sklearn.linear_model.LogisticRegression

class sklearn.linear model. LogisticRegression(penalty='l2', dual=False, tol=0.0001, C=1.0, fit intercept=True, intercept_scaling=1. class_weight=None, random_state=None, solver='lbfgs', max_iter=100, multi_class='auto', verbose=0, warm_start=False, n_jobs=None, I1_ratio=None) ¶

Logistic Regression (aka logit, MaxEnt) classifier.

In the multiclass case, the training algorithm uses the one-vs-rest (OvR) scheme if the 'multi_class' option is set to 'ovr', and uses the cross-entropy loss if the 'multi_class' option is set to 'multinomial'. (Currently the 'multinomial' option is supported only by the 'lbfgs', 'sag', 'saga' and 'newton-cg' solvers.)

array([0, 0])

0.97...

Examples

[source]

This class implements regularized logistic regression using regularization is applied by default. It can handle both of 64-bit floats for optimal performance; any other input form

The 'newton-cg', 'sag', and 'lbfgs' solvers support only L2 solver supports both L1 and L2 regularization, with a dual supported by the 'saga' solver.

Read more in the User Guide.

Parameters: penalty: {'l1', 'l2', 'elasticnet', 'none'}, uch

> Used to specify the norm used in the penalization. The 'newton-cg', 'sag' and 'lbfgs' solvers support only 12 penalties, 'elasticnet' is only supported by the 'saga' solver, If 'none' (not supported by the liblinear solver), no regularization is applied.

>>> clf.score(X, y)

>>> clf.predict(X[:2, :])

>>> clf.predict proba(X[:2, :])

>>> from sklearn.datasets import load iris

array([[9.8...e-01, 1.8...e-02, 1.4...e-08], [9.7...e-01, 2.8...e-02, ...e-08]])

>>> X, y = load_iris(return_X_y=True)

>>> from sklearn.linear model import LogisticRegression

>>> clf = LogisticRegression(random_state=0).fit(X, y)

New in version 0.19: 11 penalty with SAGA solver (allowing 'multinomial' + L1)

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html

Evaluation

Pseudo R² TP, TN, FP, FN Precision, Recall, F1

R² (recap)

$$R^2 = \frac{SSM}{SST} = 1 - \frac{SSE}{SST}$$

id	chol (x)	bp (y)	predict	error	squred error (SE)	guess	(y - y_bar)	squred total (ST)
1	437	194	196.1897	(2.1897)	4.7948	143.4286	50.5714	2,557.4694
2	264	121	141.4179	(20.4179)	416.8906	143.4286	(22.4286)	503.0408
3	249	131	136.6689	(5.6689)	32.1364	143.4286	(12.4286)	154.4694
4	297	159	151.8657	7.1343	50.8982	143.4286	15.5714	242.4694
5	243	123	134.7693	(11.7693)	138.5164	143.4286	(20.4286)	417.3265
6	272	161	143.9507	17.0493	290.6786	143.4286	17.5714	308.7551
7	161	115	108.8081	6.1919	38.3396	143.4286	(28.4286)	808.1837
average	274.7143	143.4286		SSE	972.2548		SST	4,991.7143
				MSF	138.8935			
				RMSE	11.7853			
	R^2	1 - (SSE/SST)	0.8052					

Pseudo R²

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y}_{i})^{2}}$$

Outcome	Predicted Probability	
Y	Ŷ	$1-\hat{Y}$
1	.899	.101
1	.540	.460
0	.317	.683
1	.516	.439
1	.698	.302
0	.457	.543
0	.234	.766
1	.899	.101
1	.451	.439
1	.764	.236
0	.457	.543
0	.561	.439
1	.698	.302
1	.457	.543
0	.899	.101
$\bar{y} = 0.6$		

 $^{^{4}}$ -2 * log-likelihood = 17.48.

Confusion Matrix

	Predicted:	Predicted:	
n=165	NO	YES	
Actual:			
NO	TN = 50	FP = 10	60
Actual:			
YES	FN = 5	TP = 100	105
	55	110	

- True Positive (TP)
- True Negative (TN)
- False Positive (FP)
- False Negative (FN)

- Accuracy = (TP + TN) / total
- Misclassification = (FP + FN) / total

Precision, Recall, F1

	Predicted:	Predicted:	
n=165	NO	YES	
Actual:			
NO	TN = 50	FP = 10	60
Actual:			
YES	FN = 5	TP = 100	105
	55	110	

- Precision = correctly predict = TP / (TP + FP)
- Recall = coverage = TP / (TP + FN)
- F1 = (2*pre*rec) / (pre + rec)

Precision, Recall, F1: Average

n=165	Predicted: NO	Predicted: YES	
Actual: NO	TN = 50	FP = 10	60
Actual: YES	FN = 5	TP = 100	105
	55	110	

- Precision = correctly predict = TP / (TP + FP)
- Recall = coverage = TP / (TP + FN)
- F1 = (2*pre*rec) / (pre + rec)

- What is a positive class?
 - 1) Direct target marketing? Yes
 - 2) Intelligent diagnosis to predict "Corona" or "Flu" – both are important.

- If there is no positive (all classes are important)
 - Macro Average
 - Weighted Average (Micro Average) by the amount of data in that class

scikit-learn 0.22.1

Other versions

Please cite us if you use the software.

sklearn.metrics.confusion matr

Examples using sklearn.metrics.confusion matri

sklearn.metrics.confusion_matrix

[source]

sklearn.metrics.confusion_matrix(y_true, y_pred, labels=None, sample_weight=None, normalize=None)

Compute confusion matrix to evaluate the accuracy of a classification.

By definition a confusion matrix C is such that $C_{i,j}$ is equal to the number of observations known to be in group i and predicted to be in group i.

Thus in binary classification, the count of true negatives is $C_{0.0}$, false negatives is $C_{1.0}$, true positives is $C_{1.1}$ and false positives is $C_{0.1}$

Read more in the User Guide.

Parameters: y_true : array-like of shape (n_samples,) Ground truth (correct) target values.

f shape (n_samples,)

>>> from sklearn.metrics import confusion_matrix >>> y_true = [2, 0, 2, 2, 0, 1]

>>> y_pred = [0, 0, 2, 2, 0, 2]

[0, 0, 1],

[1, 0, 2]])

>>> confusion_matrix(y_true, y_pred) array([[2, 0, 0],

shape (n_classes), default=None

s returned by a classifier.

x the matrix. This may be used to reorder or select a subset of labels. If None is given, those

v-like of shape (n_samples,), default=None

once in y_true or y_pred are used in sorted order.

normalize : {'true', 'pred', 'all'}, default=None

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.confusion matrix over the true (rows), predicted (columns) conditions or all the population. If None, confusion matrix will not be normalized.

Prev

Next

scikit-learn 0.22.1

Other versions

Please cite us if you use the software.

sklearn.metrics.classification_r eport

Examples using

sklearn.metrics.classification

sklearn.metrics.classification_report

sklearn.metrics.classification_report(y_true, y_pred, labels=None, target_names=None, sample_weight=None, digits=2, output_dict=False, zero_division='warn') [source]

Examples

weighted avo

<BLANKLINE>

Build a text report showing the main classification metrics

Read more in the User Guide.

Parameters: v true : 1d array

y_true : 1d array-like, or label in Ground truth (correct) target va

y_pred : 1d array-like, or label in

Estimated targets as returned b

labels : array, shape = [n_labels Optional list of label indices to in

target_names : list of strings

Optional display names matchin

sample_weight : array-like of sh Sample weights.

digits: int

Number of digits for formatting

```
>>> from sklearn.metrics import classification_report
>>> y_true = [0, 1, 2, 2, 2]
>>> y_pred = [0, 0, 2, 2, 1]
>>> target_names = ['class 0', 'class 1', 'class 2']
>>> print(classification_report(y_true, y_pred, target_names=target_names))
                           recall f1-score
              precision
                                              support
<BLANKLINE>
                   0.50
                                       0.67
     class 0
                             1.00
     class 1
                   0.00
                             0.00
                                       0.00
     class 2
                   1.00
                             0.67
                                       0.80
<BLANKLINE>
    accuracy
                                       0.50
                   0.50
                             0.56
                                       0.49
   macro avq
```

0.61

>>> y_pred = [1, 1, 0] >>> y_true = [1, 1, 1] >>> print(classification_report(y_true, y_pred, labels=[1, 2, 3])) precision recall f1-score support <BLANKLINE> 0.67 0.80 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0

0.60

<BLANKLINE>
 micro avg 1.00 0.67 0.80 3
 macro avg 0.33 0.22 0.27 3
weighted avg 1.00 0.67 0.80 3
<BLANKLINE>

0.70

the returned values will not be rounged.

+

Non-numeric variables (Model M2)

Terminology: Kinds of data (recap)

Ordinal: Recode

GradeNum
4.00
3.50
3.00
2.50
2.00
1.50
1.00
0.00

Size	SizeNum
XL	5
L	4
M	3
S	2
XS	1

Categorical

■ Dummy coding = (n-1) dummy codes

Branch 💂	BranchNum □	D_BKK ₪ B	_Patum D_	Non 🖫	D_BKK □ B_P	atum 💂
BKK	1	1	0	0	1	0
Patumtani	2	0	1	0	0	1
Nontaburi	3	0	0	1,	0	0 reference

Search the docs ...

Input/output

General functions

Series

DataFrame

Pandas arrays

Panel

Index objects

Date offsets

Window

GroupBy

Resampling

Style

pandas.get_dummies

pandas. qet_dummies(data, prefix=None, prefix_sep='_', dummy_na=False, columns=None, sparse=False, drop_first=False,

dtype=None) → 'DataFrame'

[source]

Convert categorical variable into dummy/indicator variables.

Parameters: data: array-like, Series, or DataFrame

Data of which to get dummy indicators.

prefix : str, list of str, or dict of str, default None

String to append DataFrame column names. Pass a list with length equal to the number of columns when calling get dummies on a DataFrame. Alternatively, prefix can be a dictionary mapping column names to prefixes.

prefix_sep : str, default '.'

If appending prefix, separator/delimiter to use. Or pass a list or dictionary as with prefix.

dummy na : bool, default False

Add a column to indicate NaNs, if False NaNs are ignored.

>>> pd.get_dummies(pd.Series(list('abcaa')), drop_first=True)

ke, default None

es in the DataFrame to be encoded. If columns is None then all the columns with object or category converted.

efault False

lummy-encoded columns should be backed by a SparseArray (True) or a regular NumPy array (False).