Assignment Project Exam Help

https://powcoder.com

JMR Ch 18

(Note Chis 13 - 17) Assumed Knowledge, Out 18 good reference)

Where Do Random Numbers Come From?

Assignment Project Exam Help radio-active decay etc)

- bttps://pow.computer
 - Hard to model
- Computer generated seutlo-random numbers Deterministic (you if get the same answer from the same
 - starting point), but looks close to random.

Congruential Generators

Assignment Project Exam Help $X_{n+1} = (AX_n + B)(\mod m)$

https://powcoder.com

- Will only repeat after m steps if m and B are relatively prime and A 1 is divisible by prime factors of m.
- and A-1 is divisible by prime factors of m.

 To the uniform estudo nat m power cocker
- Need to be cautious; can detect a deterministic relationship.
- But determinism can also be helpful (see later).

Example

```
JMR recommends
```

X[1]

nment Project Exam Help

```
1013904223
```

https://powcoder.com

But Take Care

The RANDU generator was shipped with Unix systems in the

SS125nment Project Exam Help R = 0

 $m = 2^{(31)}$

Plottings on in swarp toget of the result of

- Power of 2 used for m because convenient for binary and noted (velocity) because convenient for binary and n
- RANDU chosen also for convenience problems detected because simulation results did not match theory.
- Period is $2^{32} = 4,294,967,296$ before repeating numbers; usually enough.

ln R

Assignment Project Exam Help

- Observable correlation between X_k and X_{k+r} (eg as in RANDU) and relatively short periods.
- https://powerder.com
- New methods based on manipulating bits of binary representation for X_k .
- RASectle Myche (whydrodeve ped 1997) which etrations these lines
 - Period is $2^{19937} 1$ (not storable in R).
 - Plots of 623-dimensional runs (if you can think of this) still look uniform.

Seeds and Repeatability

- Pseudo-random number generators are deterministic: if you start them in the same place, you get the same answer. ments Projecting by atmro-lelp
- But, you can specify this with an integer giving where in the generator's cycle you want to start:
- https://powcoder.com
 - [1] 0.6223777 0.6754986 0.8022900 0.2603083 0.7597607 > set.seed(36) Aundido WeChatepow.coder, 597607
 - > runif(5)

convenient.

- [1] 0.01990291 0.95542781 0.43666244 0.08922046 0.360519 Instead of storing everything in a simulation, this lets you
- re-run it *exactly*. Often simulation time mitigates against this, but it can be

R and Seeds

■ Besides set.seed, R also stores .Random.seed.

Assignment Project Exam Help random number generator.

- Usually remains constant (across R sessions and computers), tut saving it can ensure compatibility over platforms
- > RNG.seed = .Random.seed
- > runif(5)
- [1] 0,80298995 0, 26030893 0.75976074 0.01990291 0.95542781 > .Rancolled Wile enat powcoder
- > runif(5)
- [1] 0.80228995 0.26030829 0.75976074 0.01990291 0.95542781

Also doesn't require you to make up an integer. Works for any simulation (as long as you do exactly the same commands).

From Uniform to Discrete Random Variables

From here on assume we can generate U(0,1) random variables – how do we get to others?

Assignment-Project (Exam Help

so take X = I(U < p).

• The graph by $I(V \neq p)$.

Add WeChat powcoder

We can generate X by taking $U \sim U(0,1)$ and

$$X : F(X - 1) < U < F(X)$$

Then

$$P(F(X-1) < U \le F(X)) = F(X) - F(X-1) = P(X)$$

Example

Simulating from a Poisson:

Assignment Project Exam Help while(ppois(X,3) < U){ X = X+1 }

See code simulation/to check that this produces the right distribution://powcoder.com

Often F(X) is not easy to calculate, but p(X) is; note we can

update F(X) within the while loop: U = dist Q We Chat powcoder

X = 0

FX = dpois(0,3)while $(FX < U) \{ X = X+1; FX = FX + dpois(X,3) \}$

dpois much cheaper than ppois to calculate.

Some Special Cases

There are often constructive definitions of r.v.'s that can be employed.

Assignment variety jean of Edward Help Sernoulli's: $X \sim Bin(n, p) \Rightarrow X = \sum_{i=1}^{n} Z_i$ where $Z_i \sim B(1, p)$

https://powcoder.com

X = sum(runif(n) < p)

■ Geometric or negative binomials – see exercises from Lecture 2.

- Wiford twitter That powcoder

```
> ceil( N*runif(n) )
```

[1] 75 51 13 27 92 20 45 20 8 61

■ We can now generate bootstrap samples:

```
I = ceil( nrow(faithful)*runif(nrow(faithful)) )
faithboot = faithful[I,]
```

Generating Permutations

A Stotises improper and and it to the new set. A Stotises improper to the proper to the new set.

2 Remove that item from the set to be selected.

You could also do this by swapping elements.

Continuous Random Variables

Assignment Project Exam Help random variables

We know that if X has cumulative distribution function F, then F(X) in the Woctoo Carthesin distribution as $F^{-1}(U)$

Add WeChat powcoder

Only problem is that $F^{-1}(x)$ easy to obtain only in special cases.

Important Special Cases

Uniform U(a,b) Density: $I(x \in [a \ b])/(b-a)$

Assignment Project Exam Help

Exponential $exp(\lambda)$ Density $\lambda e^{-\lambda x}$

Uniform

Inverse CDF

Exponential(1)

Rejection Method

When F^{-1} is not easy to calculate explicitly – could try numerically.

Assignment per of active Xam Help

- Generate $Y \sim U(a,b)$ and $Z \sim U(0,k)$.
- Set X = Y if Z < f(Y), otherwise try again.

https://powcoder.com

Add WeChat powcod
$$f(x) = \int_{y}^{y+\delta} f(x) dx$$

= $\int_{y}^{y+\delta} f(x) dx$

Because Y, Z uniform on the square.

In Code

We'll use a Beta(1, 1.3) distribution. This has maximum value 1.3.

Assignment Project Exam Help

```
Accept = FALSE
while(!Accept){
     tps://powcoder.co
 if(Z < dbeta(Y,1,1.3))
                          = runif(1000)
X[i] = Y
                        Z = runif(1000, 0, 1.3)
                        Accept = Z < dbeta(Y,1,1.3)
                        X = Y[Accept]
                                ←□ → ←□ → ←□ →
```

Generalized Rejection Method

For densities on the whole real line, we can't use a uniform distribution.

Assignmental Projecter Enxam Help

https://powcoder.com Add WeChat powcoder

Call kh(x) the envelope for f(x).

- **1** Generate $Y \sim h(\cdot)$
- Generate $Z \sim U(0, kh(Y))$
- 3 Accept Y if Z < f(Y)

Justification

General rejection method is justified because the (Y, Z) pairs are uniformly distributed over the region below kh(x).

Assignment Project Exam Help

$$P((Y,Z) \in (y, y + dy) \times (z, z + dz))$$

$$h = P(Z \in (z, z + dz)|Y \in (y, y + dy))P(Y \in (y, y + dy))$$

$$= kh(y)h(y)dy$$

This means the points we accept are uniformly distributed on the region under f(x) and therefore the x-coordinates have density f(x).

Example

Assignment of the laplace distribution $h(x) = \frac{1}{2}e^{-|x|}$ To generate from Laplace, use $V \sim B(0.5)$ and $U \sim U(0,1)$,

 \blacksquare To find k, ratio of densities is

$$Add \ \underbrace{\overset{}{\underset{\sqrt{2\pi}}{\frac{1}{2}}}e^{-|x|}}_{=\frac{1}{2}e^{-|x|}} = \underbrace{\underset{\sqrt{\pi}}{\underbrace{hat}}e^{|x}}_{=\frac{1}{2}e^{-|x|}} \underbrace{\underset{-}{\underbrace{powed}}e^{-|x|}}_{=\frac{1}{2}e^{-|x|}} \underbrace{\underbrace{powed}}_{=\frac{1}{2}e^{-|x|}}$$

Note: JMR does 1/2 normal, and then uses 2(V - 0.5) to symmetrize.

Example Continued

We'll fix the size of Y and Z and just see how many X we get after rejection:

```
Assignment Project Exam Help

U = runif(1000)
```

https://powcoder.com

Uniforms

```
Z = runif(100)*exp(-abs(Y))*sqrt(2*exp(1)/pi)
```

Which ddack the Chat powcoder
Accept = Z < dnorm(Y)

```
1
```

```
# Now we get our sample
X = Y[Accept]
```

Efficiency

- In last example above, we accept about 75% of tries.
- Assignment acceptance probability = less computational work. In the purpose of the probability is a second work of the probability of the probability is a second work of the probability of the probabili
 - Alternatively, number tries before accepting is Geometric(1/k)
 hith expected value k
 DOWCOder.com
 - Two things we can affect

Add Wechat powcoder

- Choice of k.
- See optimizing Gamma in book (and on the board).

Normal Random Variable Methods

Note if $X \sim N(0,1)$, then $\sigma X + \mu \sim N(\mu,\sigma^2)$, easy once we can generate N(0,1).

Assignment in the positive E_{xam} Help

• We can also throw away V and just decide to make Ynegative 1/2 time based on Z.

https://powcoder.com

2 If $Z < \phi(Y)/2$ return -Y, if $\phi(Y)/2 < Z < \phi(Y)$ return Y, otherwise repeat.

2 Catalinit We can have powcoder $\left(\sum_{i=1}^{12}U_i\right)-6\approx \textit{N}(0,1).$

$$\left(\sum_{i=1}^{12} U_i\right) - 6 \approx N(0,1)$$

12 is a bit small; could add more terms + rescale, but this is computationally expensive. 4 D > 4 A > 4 B > 4 B > B

Constructive Methods

Assignment Project Exam Help

Exponential $-(\log U)/\lambda$ if $U \sim U(0,1)$.

$$\begin{array}{ll} h^{B(p)} & I(U < p) \text{ if } U \sim U(0,1). \\ h^{D(p)} & \text{coder com}(0.5). \end{array}$$

$$B(n,p)$$
 $\sum_{i=1}^{n} Z_i$ if $Z_1,\ldots,Z_n \sim B(p)$.

$$A_{d_2}^{\chi_2^2} (\overline{L}_{d_1}^{d_1} \overline{W}_{d_2}^{\chi_2^2}) \stackrel{\text{if } X_{d_1}}{=} \sum_{d_1}^{X_{d_1}} p_{Q_1}^{N(0,1)} w_d c_{Q_2} der$$

Many many other relationships; some derived, some constructed.

Box-Muller for Gaussians

Assignment Project Exam Help

- Now in polar co-ordinates (R,Θ) , we have $R \sim exp(0.5)$,
- and $\sqrt{-2 \log U_1} \sin(2\pi U_2)$ are Gaussian!

- This yields the following Chat powcoder
 - $X = \sqrt{-2 \log U_1} \cos(2\pi U_2), Y = \sqrt{-2 \log U_1} \sin(2\pi U_2)$

To obtain independent normal $X, Y \sim N(0, 1)$.

More Efficient Box-Muller

Trigonometric functions are expensive.
SSIGNMENT PROJECT FXAM Help $(S, \Psi), S^2 = A^2 + B^2 \sim U(0, 1)$ (again not obvious).

- So that $(\sqrt{-2 \log S^2}, \Psi)$ has the same distribution as (R, Θ) . ASOWCOCET.COM

Improved algorithm is

- 3 Set $W = \sqrt{(-2 \log S^2)/S^2}$
- $\mathbf{A} X = UW, Y = VW.$

Summary

Assignment Project Exam Help

- But deterministic random variables allow you to repeat
- https://powcoder.com
 - 1 transforms
 - rejection methods
- Addrew Chat powcoder

 Next: Monte Carlo integration.