```
AM-GM inequality
```

$$\frac{a+b}{2}$$

$$\frac{a+b}{2}$$
 $=$ $\frac{a+b}{2}$ $=$ $\frac{a+b}{2}$

$$a = c^2$$
 $b = d^2$

Jo prove that
$$\frac{c^2 t d^2}{2} > cd$$

$$c^2 + d^2 > 2cd$$

$$C^2+d^2-2cd > 0$$

looks like the formula for
$$(c-d)^2$$

$$(c-d)^2 > 0$$

$$\Rightarrow$$
 $c^2 + d^2 - 2cd > 0$

$$\Rightarrow$$
 $c^2 + d^2 \neq 2 cd$

$$=) \frac{c^2 t d^2}{a} \approx c d$$

$$\Rightarrow \overline{a+b} > \sqrt{ah}$$

Problem is given in words (=) if , then ___

Senterrie

[m is odd and n is even, and m+n is even.

(A) Contrapositive

$$(P \Rightarrow Q) = (\neg Q) \Rightarrow (\neg P)$$

$$| \neg Q, \text{ thun } \neg P$$

$$(P \Rightarrow Q) \text{ by contrapon } + \rightarrow 20$$

$$| \neg P \Rightarrow \neg Q$$

($P \Rightarrow A$)

(PNGD) then show things wrong

Parity.

2, y hove the same parity only if $1 = y \mod 2$ $1-y = 0 \mod 2$ $2 \mid x-y \mid e. \quad x-y \text{ is even}$.

> 14 y are even and odd together

NOT having the same parity

() one of a 4 y is even and the other is odd.

x = 2k+1, keZ y = 2l+1, leZ (Contradiction

L) JZ is irrational

L) infinitely many primes

3 is irrational

(Tp is irrational, where p is prine).

(1) infinitely many primes,
Assume falsity of statement, and show things go wrong.

Assume there are finitely nany primes $P = \{ \{ \{ \{ \{ \{ \} \} \}, \{ \{ \} \} \} \} \} \} \text{ is the set of all primes} \}$

N = P1P2--- Pn + 1 //

N is a number, ANY number has a prime dimsor

b is a prime divisor of N i.e. p | N and p is prime

bo pEP, then ppp...pn//

 $P \mid N$, $P_1 = 0 \mod P$ $N \equiv 0 \mod P$

13 às irrational

ASSUME NOT 1, e. bt
$$53 \in \mathbb{Q}$$

$$53 = \frac{a}{b} \quad \text{i.e. gcd}(a,b) = 1$$

$$53b = a$$

$$(a^2 - 3b^2) \quad \text{which means} \quad (3|a^2) = 3|a|$$

\$ 5= { ze R | 121<13, then let's show S is closed under multiplication. -> x,y ES, to show xy ES A= { x \in \mathbb{Z} \ x \tau = 3 }

They have to satisfy the property E={2k/keZy, they can be written as Jo show | 24/4] (2684468; 12/4, 14/4) HW |2y| = |21. |y| < (-1=1) So zy & S x T= { ne IR | 12/2} Is T closed under multiplication? y=1.5 y=1.5 00 so rigeT (COUNTER EXAMPLES) $3071 \times y = (1.5)^2 = 2.25 > 2$ 80 ry & T.

* True or not!
$$V_{a \in R}$$
, $H_{a \in R}$, $H_{a \in R}$ unique

For every $a \in R$, you can find a function $f: R \to R$

At $f(a) = 0$

What's f ?

$$\{f(a) = 0\}$$

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$

$$\times \longmapsto 0 = 0$$

$$\longmapsto \times^{0} - 1$$

For every
$$a \in \mathbb{R}$$
, there exists $f: \mathbb{R} \rightarrow \mathbb{R}$

If $f(x) = (2-a)$ if $f(b) \neq 0$ when $b \neq a$

$$f(x) = a - a = 0$$

$$f(a) = a - a = 0$$

$$f(b) = b - a \neq 0 \quad b \neq a$$

* set
$$w \mid 4$$
 distinct integer $S = \{a_1, a_2, a_3, a_4\}$ (not equal to each other)

Thun there are 2 numbers whose difference is divisible by 3.

TRUE!
$$(3k)$$
, $(3k+1)$, $(3k+2)$
 $a_1 - 3k$
 $a_2 - 3l+1$
 $a_3 - 3m+2$
 $(3k+1)$
 $(3k+2)$
 $(3k+2)$
 $(3k+1)$
 $(3k+2)$
 $(3k+1)$
 $(3k+2)$
 $(3k+1)$
 $(3k+2)$
 $(3k+1)$
 $(3k+1)$
 $(3k+2)$
 $(3k+1)$
 $(3k+1)$

$$a_1 = \frac{0 \text{ mod } 3}{2 \text{ mod } 3}$$

$$a_1 = 1 \text{ mod } 3$$

$$a_1 = 1 \text{ mod } 3$$

$$a_2 - a_1 = 1 - 1 \text{ mod } 3$$

$$= 0 \text{ mod } 3$$

$$a_1 = 0 \mod 3$$

$$\left(a_2 = 1 \mod 3\right)$$

$$\left(a_3 = 2 \mod 3\right)$$

$$a_{1}-a_{q}$$

$$0 \text{ mod } 3$$

$$a_{4}-a_{2}$$

$$a_{4}-a_{3}$$

$$a_{4}-a_{3}$$