Brac University

Semester: Summer 2023 Course Code: CSE250 Circuits And Electronics

Section: 23 Faculty: PRM

Assessment: Quiz-3 Full Marks: 20

- No washroom breaks. Phones must be turned off. Using/carrying any notes during the exam is not allowed.
- ✓ At the end of the exam, the answer script must be returned to the invigilator.
- ✓ All questions are compulsory. Marks allotted for each question are mentioned beside each question.
- ✓ Symbols have their usual meanings

[CO1] [10 marks] ■ Question 1 of 2

Determine the value of V_{th} , I_N and R_{th} of the following circuit considering R_o as the load. Then **draw** either the Thevenin or Norton equivalent circuit.

ving equations (1) and (1) we get, $I_{\perp} = 0.22 \text{mA}, I_{3} = 0.75 \text{mA}$ Applying KVL to wesh 4, -70 I3 +5+ Voc =0 or, Voc = 1013 -5 = 2.5V = Vth For Pth => 34K2 \$20K2 \$10K2 (+) 1V ·- Kth = 1011 [2.5+2011 (8+4)] =5K52 512 $I_{N} = \frac{v_{bh}}{R_{id}} = 0.5 mA$

■ Question 2 of 2 [CO2] [10 marks]

10V

Req =
$$20+30 = 505$$

 $\vec{I} = \frac{V_{th}}{P_{eq}} = \frac{10}{50} = 0.2 \text{ A}$
Pont = $I^{\circ}R_{load} = 0.2 \times 30 = 1.2 \text{ W}$
Pin = $V_{th} \vec{I} = 10 \times 0.2 = 2 \text{ W}$
Efficiency, $\Omega = \frac{P_{out}}{P_{in}} \times 100\%$
= $\frac{1.2}{2} \times 100\%$

ID:

Name:

Brac University

Semester: Summer 2023 Course Code: CSE250 Circuits And Electronics

Section: 23 Faculty: PRM

Assessment: Quiz-3Full Marks: 20

- ✓ No washroom breaks. Phones must be turned off. Using/carrying any notes during the exam is not allowed.
- ✓ At the end of the exam, the answer script must be returned to the invigilator.
- ✓ All questions are compulsory. Marks allotted for each question are mentioned beside each question.
- ✓ Symbols have their usual meanings.

[CO2] [10 marks] \blacksquare Question 1 of 2

Find P_{out} , P_{in} and the efficiency of the following Thevenin equivalent circuit.

Req =
$$25+55 = 805$$

 $I = \frac{V_{th}}{Pea} = \frac{20}{80} = 0.25$
 $= \frac{V_{th}}{Pout} = \frac{20}{80} = 0.25$ $\times 55 = 3.4375$
 $= \frac{V_{th}}{V_{th}} = \frac{V_$

=68.75%

\blacksquare Question 2 of 2 [CO1] [10 marks]

Determine the value of V_{th} , I_N and R_{th} of the following circuit considering R_o as the load. Then draw either the Thevenin or Norton equivalent circuit.

$$\alpha$$
, $32I_2 - 20I_3 = \frac{2}{10}$

Applying KUL on wesh-3,

$$-10 + 20(I_3 - I_2) + 2.5I_3 + 10I_3 = 0$$

or,
$$-20I_2 + 32.5I_3 = 10$$
Solving equations (i) and (ii) we get,
$$I_2 = 0.41 \text{ mA}, I_3 = 0.56 \text{ mA}$$

splying KVL to loop 4, -1013+10+Voc = 0 or, Voc = 1073-10 = -4.4V = Vth For Run => \$4652 \$20652 \$70652 \$70 -- Pyn = 1011 [2.5 + 2011 (8+4)] = 565 IN = 1/2 = -0.88 m A

