IPESUP 2022/2023

Kholle 15 filière MP* Planche 1

- 1. Énoncer et démontrer l'inégalité de Cauchy-Schwarz sur les variables aléatoires réelles de variance finie.
- 2. Soit *X* une variable aléatoire de variance finie.
 - (a) Montrer que $\inf_{x\in\mathbb{R}}E[(X-x)^2]$ est atteint en un unique point que l'on déterminera.
 - (b) Soit λ un réel. On dit que λ est une médiane lorsque $P(X \ge \lambda) \ge 1/2$ et $P(X \le \lambda) \le 1/2$. Montrer que X admet une médiane.
 - (c) Déterminer les médianes d'une variable de Bernoulli de paramètre p dans [0,1].
- 3. Soit $(X_n)_{n\geqslant 1}$) une suite de variables aléatoires indépendantes identiquement distribuées de loi de Bernoulli de paramètre p. Pour tout entier naturel non nul k, on définit la variable aléatoire $Y_k = \mathbbm{1}_{X_k \neq X_{k+1}}$, et pour tout entier naturel non nul n, $S_n = \sum_{k=1}^n Y_k$.
 - (a) Calculer l'espérance et la variance de S_n pour tout entier naturel non nul n.
 - (b) Montrer que

$$E\left[\left(\frac{\mathsf{S}_n}{n}-2p(1-p)\right)^2\right]\xrightarrow[n\to+\infty]{}0$$

Kholle 15 filière MP* Planche 2

- 1. Énoncer et démontrer la loi faible des grands nombres.
- 2. Soit X et Y deux variables aléatoires réelles indépendantes et de même loi.
 - (a) Montrer que $P(|X Y| \le 2) \le 5P(|X Y| \le 1)$
 - (b) On note C la plus petite constante telle que tout couple (X,Y) de variables indépendantes de même loi vérifie

$$P(|X - Y| \le 2) \le CP(|X - Y| \le 1)$$

Montrer que $3 \le C \le 5$.

3. On considère une suite $(X_n)_{n\geqslant 1}$ de variables aléatoires indépedantes telles que

$$\forall n \in \mathbb{N}^*, P(X_n = \sqrt{n}) = P(X_n = -\sqrt{n}) = \frac{1}{2}$$

Pour tout entier naturel non nul n, on pose $S_n = \sum_{i=1}^n X_i$.

(a) Montrer que

$$\forall \varepsilon > 0, P\left(\left|\frac{S_n}{n^{3/2}}\right| \ge \varepsilon\right) \xrightarrow[n \to +\infty]{} 0$$

(b) Montrer que, presque sûrement,

$$\frac{S_{n^2}}{n^3} \xrightarrow[n \to +\infty]{} 0$$

Kholle 15 filière MP* Planche 3

- 1. Définir la fonction génératrice d'une variable aléatoire à valeur dans N. Que dire de l'espérance d'une telle variable aléatoire si sa fonction génératrice est dérivable en 1?
- 2. (a) Soit $(A_n)_{n\geqslant 1}$ une suite d'événements indépendants. On suppose que la série de terme général $P(A_n)$ diverge. On note A l'événement « une infinité de A_n se réalise ». Montrer que P(A)=1.
 - (b) On effectue une infinité de lancers d'une pièce de monnaie équilibrée. Quelle est la probabilité de l'événement « on obtient une infinité de fois deux "face" consécutifs »?
- 3. Soit $(X_n)_{n\geqslant 1}$ une suite variables aléatoires indépendantes suivant des lois de Poisson de paramètres respectifs λ_n . On pose $Y_n = \prod_{i=1}^n X_i$.
 - (a) Montrer que $\forall n \in \mathbb{N}^*$. Montrer que $P(X_n \neq 1) \geqslant 1 1/e$. En déduire que $P(X_n \neq 1)$ pour une infinité de n) = 1.
 - (b) On pose $p = \prod_{n=1}^{+\infty} (1 e^{-\lambda_n})$. Montrer que, presque sûrement, Y_n tend vers 0 avec probabilité 1 p et $+\infty$ avec probabilité p.
 - (c) Déterminer cette probabilité lorsque $\lambda_n = o(\ln(n))$.

Kholle 15 filière MP* Planche 4

- 1. Déterminer la variance d'une variable aléatoire géométrique, puis d'une variable aléatoire de Poisson.
- 2. Soit $(X_n)_{n\in\mathbb{N}}$ une suite de variables aléatoires indépédantes de même loi à valeur dans \mathbb{N} , puis T une variable aléatoire à valeurs dans \mathbb{N}^* indépendante des précédentes. On définit pour tout entier naturel $n\in\mathbb{N}^*$, la variable

$$S_n = \sum_{j=1}^n X_j$$
, puis $\forall \omega \in \Omega, S(\omega) = S_{T(\omega)}(\omega)$

- (a) Avec les notations G des fonctions génératrices, montrer que $G_S = G_T \circ G_{X_1}$.
- (b) On suppose que X_1 et T admettent des espérances finies m et t. Montrer qu'alors E[S] = mt.
- 3. On dit qu'une variable aléatoire X suit la loi \mathcal{R} lorsque $X(\Omega) = \{-1,1\}$, P(X=-1) = P(X=1) = 1/2. Soit n un entier naturel non nul. On considère une famille $(m_{i,j})_{1 \le i \le n, 1 \le j \le n}$ de n^2 variables aléatoires réelles mutuellement indépendantes suivant toutes la loi \mathcal{R} , puis M_n la matrice carrée aléatoire formée de ces n^2 coefficients.
 - (a) Calculer l'espérance et la variance de la variable aléatoire $\tau_n = \operatorname{tr}(M_n)$.
 - (b) Calculer l'espérance et la variance de la variable aléatoire $\delta_n = \det(M_n)$.

