Московский государственный технический университет им. Н.Э. Баумана

Факультет «Информатика и системы управления»

Кафедра «Автоматизированные системы обработки информации и управления»

«Методы машинного обучения»

Отчет по Лабораторной работе №1

Разведочный анализ данных. Исследование и визуализация данных.

Выполнил:

студент группы ИУ5-22М

Серов Сергей

Проверил: доцент, к.т.н.

Гапанюк Ю. Е.

Текстовое описание набора данных

Используется набор данных, использующий данные химического анализа для установления происхождения вина: https://archive.ics.uci.edu/ml/datasets/Wine)

(https://archive.ics.uci.edu/ml/datasets/Wine)

Эти данные являются результатами химического анализа вин, выращенных в одном регионе Италии, но полученных из трех различных сортов. В результате анализа было определено 13 компонентов, содержащихся в каждом из трех видов вин.

Датасет содержит следующие колонки:

- Алкоголь
- Яблочная кислота
- Зола
- Щелочность золы
- Магний
- Всего фенолов
- Флаваноиды
- Нефлаваноидные фенолы
- Проантоцианы
- Интенсивность цвета
- Оттенок
- OD280 / OD315 (разбавленность вина) Пролин

_

Импорт библиотек

```
In [2]:
```

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
sns.set(style="ticks")
```

Загрузка данных

```
In [6]:
    from sklearn.datasets import *

In [7]:
In [8]:
type(wine)
```

```
wine = load_wine()
```

```
Out[8]:
sklearn.utils.Bunch In
[9]:
# Датасет возвращается в виде словаря со следующими ключами
for x in wine:
    print(x)
data target
target_names
DESCR
feature_names In
[10]:
wine['target_names']
Out[10]:
array(['class_0', 'class_1', 'class_2'], dtype='<U7') In</pre>
[11]:
wine['feature_names']
Out[11]:
['alcohol',
 'malic_acid',
 'ash',
 'alcalinity_of_ash',
 'magnesium',
 'total_phenols',
 'flavanoids',
 'nonflavanoid_phenols',
 'proanthocyanins',
 'color_intensity',
 'hue',
 'od280/od315_of_diluted_wines',
'proline'] In [12]:
# Размерность данных
wine['data'].shape
Out[12]: (178,
13) In [13]:
# Размерность целевого признака
wine['target'].shape Out[13]:
```

```
(178,)
```

```
In [14]:
```

	alcohol malic	_acid	ash	alcalinit	y_of_as	sh magnesium total_phenols flavanoids nonf
0	14.23 1.71	2.43	15.6	127.0	2.80	3.06
1	13.20 1.78	2.14	11.2	100.0	2.65	2.76
2	13.16 2.36	2.67	18.6	101.0	2.80	3.24
3	14.37 1.95	2.50	16.8	113.0	3.85	3.49
4	13.24 2.59 2	.87 21.0	118.0 2.8	30 2.69 		
173	13.71 5.65	2.45	20.5	95.0	1.68	0.61
174	13.40 3.91	2.48	23.0	102.0	1.80	0.75
175	13.27 4.28	2.26	20.0	120.0	1.59	0.69
176	13.17 2.59	2.37	20.0	120.0	1.65	0.68
177	14.13 4.10	2.74	24.5	96.0	2.05	0.76
178	rows × 14 c	columns	3			
4						>

Основные характеристики датасета

In [15]:

Первые 5 строк ∂атасета data.head()
Out[15]:

	alcohol malic_acid			ash alcalinity_of_ash magnesium total_phenols flavanoids nonflav				
0	14.23	1.71	2.43	15.6	127.0	2.80	3.06	
1	13.20	1.78	2.14	11.2	100.0	2.65	2.76	
2	13.16	2.36	2.67	18.6	101.0	2.80	3.24	
3	14.37	1.95	2.50	16.8	113.0	3.85	3.49	
4	13.24	2.59	2.87	21.0	118.0	2.80	2.69	

```
In [17]:

# Pasmep damacema - 178 cmpoκ, 14 cmon6qo6
data.shape

Out[17]:
(178, 14) In

[18]:

total_count = data.shape[0]
print('Bcero cτρoκ: {}'.format(total_count))

Bcero cτρoκ: 178 In

[19]:

# Cnucok κολουοκ
data.columns
```

```
Out[19]:
Index(['alcohol', 'malic_acid', 'ash', 'alcalinity_of_ash', 'magnesium',
       'total_phenols', 'flavanoids', 'nonflavanoid_phenols',
       'proanthocyanins', 'color_intensity', 'hue',
'od280/od315_of_diluted_wines', 'proline', 'target'],
                                                    dtype='object') In
[20]:
# Список колонок с типами данных
data.dtypes
Out[20]:
alcohol
                               float64
                               float64 ash
malic acid
float64 alcalinity_of_ash
float64 magnesium
float64 total_phenols
float64 flavanoids
float64 nonflavanoid phenols
float64 proanthocyanins
float64 color_intensity
float64 hue
float64 od280/od315_of_diluted_wines
float64 proline
float64 target
float64 dtype: object
In [21]:
# Проверим наличие пустых значений#
Цикл по колонкам датасета for col in
data.columns:
    # Количество пустых значений - все значения заполнены
 {}'.format(col, temp_null_count))
alcohol - 0 malic acid -
0 ash - 0 alcalinity_of_ash
- 0 magnesium - 0
total phenols - 0 flavanoids
- 0 nonflavanoid phenols - 0
proanthocyanins - 0
color_intensity - 0 hue
- 0 od280/od315_of_diluted_wines
- 0 proline - 0 target - 0 In
[22]:
# Основные статистические характеристки набора данных data.describe()
Out[22]:
         alcohol malic_acid
                                 ash alcalinity_of_ash magnesium total_phenols
                                                                       flav
```

mean	13.000618	2.336348	2.366517	19.494944	99.741573	2.295112	2.
std	0.811827	1.117146	0.274344	3.339564	14.282484	0.625851	0.
min	11.030000	0.740000	1.360000	10.600000	70.000000	0.980000	0.
25%	12.362500	1.602500	2.210000	17.200000	88.000000	1.742500	1.2
50%	13.050000	1.865000	2.360000	19.500000	98.000000	2.355000	2.
75%	13.677500	3.082500	2.557500	21.500000	107.000000	2.800000	2.
max	14.830000	5.800000	3.230000	30.000000	162.000000	3.880000	5.
4							•

In [24]:

Определим уникальные значения для целевого признака data['target'].unique()

Out[24]: array([0.,
1., 2.])

Визуальное исследование датасета

fig, ax = plt.subplots(figsize=(10,10)) sns.scatterplot(ax=ax, x='ash',
y='alcalinity_of_ash', data=data, hue='target')
Out[25]:

<matplotlib.axes._subplots.AxesSubplot at 0x267a798e6a0>

 $sns.jointplot(x='ash', y='alcalinity_of_ash', data=data, kind="hex") \ \ Out[26]:$

<seaborn.axisgrid.JointGrid at 0x26792189a90>

sns.pairplot(data)

Out[27]:

<seaborn.axisgrid.PairGrid at 0x267a9b5f5f8>

In [26]:

sns.boxplot(x=data['ash'])

Out[28]:

<matplotlib.axes._subplots.AxesSubplot at 0x267b1402f60>

In [29]:

```
fig , ax = plt . subplots ( 2, 1 ,
figsize = ( 10 , 10 ) ) sns . violinplot ( ax = ax [
0 ] , x = data [ 'ash'])
sns . distplot ( data [ 'ash'] , ax = ax [ 1 ])
```

Out[29]:

<matplotlib.axes._subplots.AxesSubplot at 0x267b146de80>

Проверка корреляции признаков

In [30]:

data.corr()

Out[30]:

	alcohol malic_acid		ash alcalinity_of_ash magnesium		
alcohol	1.000000	0.094397	0.211545	-0.310235	0.270798
malic_acid	0.094397	1.000000	0.164045	0.288500	-0.054575
ash	0.211545	0.164045	1.000000	0.443367	0.286587
alcalinity_of_ash	-0.310235	0.288500	0.443367	1.000000	-0.083333
magnesium	0.270798	-0.054575	0.286587	-0.083333	1.000000
total_phenols	0.289101	-0.335167	0.128980	-0.321113	0.214401
flavanoids	0.236815	-0.411007	0.115077	-0.351370	0.195784
nonflavanoid_phenols	-0.155929	0.292977	0.186230	0.361922	-0.256294
proanthocyanins	0.136698	-0.220746	0.009652	-0.197327	0.236441
color_intensity	0.546364	0.248985	0.258887	0.018732	0.199950
hue	-0.071747	-0.561296	-0.074667	-0.273955	0.055398
d280/od315_of_diluted_wines	0.072343	-0.368710	0.003911	-0.276769	0.066004
proline	0.643720	-0.192011	0.223626	-0.440597	0.393351
target	-0.328222	0.437776	-0.049643	0.517859	-0.209179
					•
n [34]:					
ns.heatmap(data.corr())					

Out[34]:

<matplotlib.axes._subplots.AxesSubplot at 0x267b434bc50>

