Fundamentals of Statistics III

Moving Beyond Mean and SD

What will we learn

- Quantiles and Box-Whisker Plot
- Histogram
- Measure of Skewness

Dissect Data with Quantiles

• Quartiles divide the distribution into 4 equal parts.

Q1: Lower Quartile(25% observations are below Q1)

Q3: Upper Quartile (25% observations are above Q3)

Q2 is same as median

Deciles divide the distribution into 10 equal parts.

5th Decile is same as median

Percentiles divide the distribution into 100 equal parts.

50th percentile is same as median

75th percentile is same as Q3

Quantiles in R

Import basic_salary2 data and store in object salary

> quantile(salary\$ba,na.rm=T)

0% 25% 50% 75% 100% 10940 13785 16230 19305 29080

> quantile(salary\$ba,prob=c(0.1,0.5,0.8),na.rm=T)

10% 50% 80% 13084 16230 20280

Box-Whisker Plot

- Box and Whisker plot summarizes data graphically using 5 measures: Minimum,Q1,Q2,Q3 and Maximum.
- The body of the box goes from the first quartile (Q1) to the third quartile (Q3).
- The whiskers go from Q1 to smallest non outlier and Q3 to highest non outlier data points.
- The distribution is considered symmetric if median is at the center of the box and whiskers have same length

Defining Outliers

- An outlier is an observation that lies an abnormal distance from other values in a random sample from a population.
- What will be considered abnormal? Before abnormal observations can be singled out, it is necessary to characterize normal observations.
- Non-Outlier observation is

$$>= Q1 - 1.5*IQR$$
 and $<= Q3 + 1.5*IQR$

where IQR: Inter-quartile Range =Q3-Q1

Box-Whisker Plot in R

> boxplot(salary\$ba)

Box-Whisker Plot by Grade

> boxplot(ba~Grade,data=salary)

The distribution of "ba" in G

Adding Colours

> boxplot(ba~Grade,data=salary,col=(c("blue","red")))

Display Observation Number on Outliers

boxplot() provides outlier values which can be accessed as follows:

>box <- boxplot(ba~Grade,data=salary)</pre>

>box\$out

[1] 29080

However, it is better to print observation numbers rather than values.

Boxplot() from package **car** solves this problem.

Display Observation Number on Outliers

- > install.packages("car")
- > library(car)
- > Boxplot(ba~Grade,data=salary)

Histogram

- Histogram is useful in visualizing a distribution.
- To construct a histogram, the first step is to "bin" the range of values—that is, divide the entire range of values into a series of intervals—and then count how many values fall into each interval(frequency)

The number of bins k can be assigned directly or can be calculated from a suggested bin width h as: (max Y – min Y)/h where Y is a variable of interest.

Histogram in R

> hist(salary\$ba)

Adding Colour in Histogram

> hist(salary\$ba,col="blue")

Try this code hist(salary\$ba,col="blue",breaks=c(10000,15000,20000,250 00,30000))

What is Skewness?

- Skewness is a measure of 'lack of symmetry' of the data.
- positive skew: The right tail is longer; the mass of the distribution is concentrated on the left
- negative skew: The left tail is longer; the mass of the distribution is concentrated on the right.
- If the distribution is symmetric, then the mean is equal to the median, and the distribution has zero skewness.

• The Normal distribution is symmetric distribution.

Visualizing Skewness

How to Calculate Skewness?

- The Pearson measure of skewness is defined as (mean – mode) / standard deviation
- Another form of the Pearson measure of skewness is
 3 (mean median) / standard deviation
- The Bowley coefficient of skewness is

$$\frac{(Q_3-Q_2)-(Q_2-Q_1)}{Q_3-Q_1}=\frac{Q_1-2Q_2+Q_3}{Q_3-Q_1}$$

Skewness Based on Third Moment

The most widely used measure of skewness is based on the third moment.

$$\frac{n}{(n-1)(n-2)} \sum \left(\frac{x_j - \bar{x}}{s}\right)^3$$

 Any threshold or rule of thumb is arbitrary, but here is one: If the skewness is greater than 1.0 (or less than -1.0), the skewness is substantial and the distribution is far from symmetrical. Value 'zero' indicates symmetric distribution.

Normal Distribution

- Commonly used distribution for continuous variables.
- Also known as the Gaussian distribution.
- Normal curve is a symmetric bell-shaped curve.
- Many statistical methods assume that population is normally distributed.

Using R to Measure Skewness

- > install.packages("e1071")
- > library(e1071)
- # Use basic_salary2 data
- > skewness(salary\$ba,na.rm=T,type=2)

[1] 0.9033507

Note that type=2 uses moment based formula as discussed. Most softwares use the same formula.

Skewness by Grade

> library(e1071)

- > f<-function(x) skewness(x,na.rm=T,type=2)</pre>
- > aggregate(ba~Grade,data=salary,FUN=f)

Grade ba

- 1 GR1 0.85500651
- 2 GR2 0.08682743

