

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	«Информатика и системы управления»
КАФЕДРА	«Программное обеспечение ЭВМ и информационные технологии»

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №2 по курсу «Анализ алгоритмов»

«Трудоемкость алгоритмов умножения матриц»

Студент	дент Маслова Марина Дмитриевна			
Группа	ИУ7-53Б			
Оценка (баллы)				
Преподаватель	Волкова Лилия Леонидовна			

Содержание

В	веден	ие	3
1	Ана	литическая часть	4
	1.1	Стандартный алгоритм умножения матриц	۷
	1.2	Алгоритм умножения матриц Винограда	۷
	1.3	Вывод	4
2	Кон	структорская часть	(
	2.1	Разработка алгоритмов	(
	2.2	Структура разрабатываемого ПО	6
	2.3	Классы эквивалентности при тестировании	6
	2.4	Вывод	6
3	Tex	нологическая часть	-
	3.1	Требования к программному обеспечению	,
	3.2	Средства реализации	7
	3.3	Листинги кода	7
	3.4	Описание тестирования	8
	3.5	Вывод	Ģ
4	Исс	ледовательская часть	1(
	4.1	Технические характеристики	1(
	4.2	Примеры работы программы	10
	4.3	Результаты тестирования	10
	4.4	Постановка эксперимента по замеру времени	11
	4.5	Результаты эксперимента	11
	4.6	Вывод	11
За	ключ	нение	12
Cı	писок	с литературы	13

Введение

Умножение матриц является основным инструментом линейной алгебры и имеет многочисленные применения в математике, физике, программировании [1]. При этом сложность стандартного алгоритма умножения матриц $N \times N$ составляет $O(N^3)$ [2], что послужило причиной разработки новых алгоритмов меньшей сложности. Одним из них является алгоритм Винограда с асимптотической сложностью $O(N^{2.3755})$ [1].

Целью данной работы является изучение алгоритмов умножения матриц: стандартного и Винограда, — а также получение навыков расчета сложности алгоритмов и их оптимизации.

Для достижения поставленной цели необходимо выполнить следующие задачи:

- изучить алгоритмы умножения матриц: стандартный и алгоритм Винограда;
- разработать каждый из алгоритмов;
- дать теоретическую оценку трудоемкости стандартного алгоритма и алгоритма Винограда;
- оптимизировать алгоритм Винограда и дать теоретическую оценку его трудоемкости;
- реализовать каждый из трех алгоритмов;
- провести тестирование реализованных алгоритмов;
- провести сравнительный анализ алгоритмов по процессорному времени работы реализации.

1 Аналитическая часть

В данном разделе представлено теоретическое описание стандартного алгоритма умножения матриц и алгоритма Винограда.

1.1 Стандартный алгоритм умножения матриц

Стандартный алгоритм умножения матриц является реализацией математического определения произведения матриц, которое формулируется следующим образом:

пусть даны матрица $A=(a_{ij})_{m\times n}$, имеющая m строк и n столбцов, и матрица $B=(b_{ij})_{n\times k}$, имеющая n строк и k столбцов, тогда матрица $C=(c_{ij})_{m\times p}$, имеющая m строк и p столбцов, где:

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{in}b_{nj} = \sum_{k=1}^{n} a_{ik}b_{kj};$$

$$i = 1, 2, \dots m; \ j = 1, 2, \dots, p;$$

$$(1.1)$$

— называется **произведением** матриц A и B [3].

1.2 Алгоритм умножения матриц Винограда

Из формулы 1.1 видно, что каждый элемент итоговой матрицы представляет собой скалярное произведение соответсвующих строки и столбца исходных матриц, которое, в свою очередь, допускает предварительную обработку, т. е. часть вычислений можно выполнить заранее.

Пусть даны два вектора $V=(v_1,v_2,v_3,v_4)$ и $W=(w_1,w_2,w_3,w_4)$. Их скалярное произведение представлено формулой 1.2:

$$V \cdot W = v_1 w_1 + v_2 w_2 + v_3 w_3 + v_4 w_4 \tag{1.2}$$

Равенство 1.2 можно представить в виде:

$$V \cdot W = (v_1 + w_2)(v_2 + w_1) + (v_3 + w_4)(v_4 + w_3) - v_1v_2 - v_3v_4 - w_1w_2 - w_3w_4$$
 (1.3)

Хотя в выражении 1.3 больше операций, чем в выражении 1.2: девять

сложений против трех, и шесть умножений против четырех, — последнее выражение допускает предварительную обработку, а именно операции вида $v_iv_{i+1}+v_{i+2}v_{i+3}$ и $w_iw_{i+1}+w_{i+2}w_{i+3}$ для $i\in \overline{0,4..n}$ могут быть вычислены заранее. Это позволить нам для каждого элемента выполнять только операции для двух первых слагаемых в выражении 1.3, то есть два умножения и пять сложений, а также две операции сложения для учета уже вычисленных значений [4] .

1.3 Вывод

2 Конструкторская часть

2.1 Разработка алгоритмов

2.2 Структура разрабатываемого ПО

Для реализации разрабатываемого программного обеспечения будет использоваться метод структурного программирования. Каждый из алгоритмов будет представлен отдельной функцией, при наличии части инициализации матрицы, она также будет вынесена в отдельную функцию. Также будут реализованы функции для ввода-вывода и функция, вызывающая все подпрограммы для связности и полноценности программы.

2.3 Классы эквивалентности при тестировании

Для тестирования программного обеспечения во множестве тестов буд	(y)
выделены следующие классы эквивалентности:	
_	
_	

2.4 Вывод

3 Технологическая часть

В данном разделе описаны требования к программному обеспечению, средства реализации, приведены листинги кода и данные, на которых будет проводиться тестирование.

3.1 Требования к программному обеспечению

Программа должна предоставлять следующие возможности:

- выбор режима работы: для единичного эксперимента и для массовых эксперименов;
- в режиме единичного эксперимента ввод двух строк на русском или английском языках и вывод полученных разными реализациями расстояний;
- в режиме массовых экспериментов измерение времени при различных длинах строк и построение графиков по полученным данным.

3.2 Средства реализации

Для реализации данной лабораторной работы выбран интерпретируемый язык программирования высокого уровня Python[5], так как он позволяет реализовывать сложные задачи за кратчайшие сроки за счет простоты синтаксиса и наличия большого количества подключаемых библиотек.

В качестве среды разработки выбран текстовый редактор Vim[6] с установленными плагинами автодополнения и поиска ошибок в процессе написания, так как он реализует быстрое перемещение по тексту программы и простое взаимодействие с командной строкой.

Замеры времени проводились при помощи функции process_time_ns из библиотеки time[7].

3.3 Листинги кода

В данном подразделе представлены листинги кода ранее описанных алгоритмов:

(листинг ??);

```
 (листинг ??-??); (листинг ??, ??); (листинг ??).
```

3.4 Описание тестирования

В таблице ?? приведены функциональные тесты для алгоритмов

3.5 Вывод

4 Исследовательская часть

4.1 Технические характеристики

Технические характеристики устройства, на котором выполнялось тестирование:

- Операционная система: Manjaro [8] Linux x86 64.
- Память: 8 GiB.
- Процессор: Intel[®] Core[™] i5-8265U[9].

Тестирование проводилось на ноутбуке, включенном в сеть электропитания. Во время тестирования ноутбук был нагружен только встроенными приложениями окружения, окружением, а также непосредственно системой тестирования.

4.2 Примеры работы программы

В данном подразделе представлены примеры работы программы. На рисунке ?? приведен пример работы программы при вводе строк в русской раскладке и равными расстояниями Левенштейна и Дамерау-Левенштейна. На рисунке ?? приведен пример работы программы при вводе строк в английской раскладке и разными полученными значениями расстояний.

4.3 Результаты тестирования

В таблице ?? приведены результаты работы программы на тестах, описанных в таблице ??. В результате сравнения ожидаемого и полученного результата делаем вывод, что все тесты были пройдены.

- 4.4 Постановка эксперимента по замеру времени
- 4.5 Результаты эксперимента
- **4.6** Вывод

Заключение

В хо	де вып	оления л	іаборатс	рной р	аботы:
_					
_					
_					

Список литературы

- [1] Анисимов Н. С. Строганов Ю. В. Реализация алгоритма умножения матриц по Винограду на языке Haskell // Новые информационные технологии в автоматизированных системах. 2018. № 21. С. 390—395. Режим доступа: https://cyberleninka.ru/article/n/realizatsiya-algoritma-umnozheniya-matrits-po-vinogradu-na-yazyke-haskell (дата обращения: 30.10.2021).
- [2] Späth Till. Searching for fast matrix multiplication algorithms. Ph.D. thesis. 2019. 10.
- [3] Шихобалов Л. С. Матрицы и определители : учеб. пособие. СПб.: СПбГУ, 2015. с. 55.
- [4] Макконелл Дж. Основы современных алгоритмов. 2-е доп. изд. М.: Техносфера, 2004. с. 368.
- [5] Welcome to Python [Электронный ресурс]. Режим доступа: https://www.python.org (дата обращения: 12.10.2021).
- [6] welcome home : vim online [Электронный ресурс]. Режим доступа: https://www.vim.org/ (дата обращения: 12.10.2021).
- [7] time Time access and conversions [Электронный ресурс]. Режим доступа: https://docs.python.org/3/library/time.html#time.process_time_ns (дата обращения: 04.10.2021).
- [8] Manjaro enjoy the simplicity [Электронный ресурс]. Режим доступа: https://manjaro.org/ (дата обращения: 17.10.2021).
- [9] Процессор Intel® Core™ i5-8265U [Электронный ресурс]. Режим доступа: https://ark.intel.com/content/www/ru/ru/ark/products/ 149088/intel-core-i5-8265u-processor-6m-cache-up-to-3-90-ghz.html (дата обращения: 17.10.2021).