

SEQUENCE LISTING

<110> Waldman, Scott A.
 Park, Jason
 Schulz, Stephanie

<120> Compositions And Methods For Identifying And Targeting Cancer Cells Of Alimentary Canal Origin

<130> TJU2389

<150> 60/192,229
 <151> 2000-03-27

<160> 2

<170> PatentIn version 3.0

<210> 1
 <211> 1745
 <212> DNA
 <213> Homo sapiens

<400> 1	60
gcgcgcctgg cagcctcaa cgtcggtccc caggcagcat ggtgaggct gctccggac	60
cctcgccacc atgtacgtga gctacctcct ggacaaggac gtgagcatgt accctagctc	120
cgtgcgccac tctggcggcc tcaacctggc gccgcagaac ttcgtcagcc ccccgagta	180
cccgagactac ggcgggttacc acgtggcggc cgcagctgca ggcagaact tggacagcgc	240
gcagtcggcg gggccatcct ggccggcagc gtatggcgcc ccactccggg aggactggaa	300
tggctacgcg cccggaggcg cggccgcgc caacgcgtg gtcacgcgc tcaacggtg	360
ctccccggcc gcagccatgg gctacagcag cccgcagac taccatccgc accaccaccc	420
gcatcaccac cgcaccacc cggccgcgc gccttcctgc gcttctggc tgctgcaa	480
gctcaacccc ggccttcctg ggcggccgc caccgtgcc ggcgagcagc tgtctccgg	540
cggccagcgg cggAACCTGT gcgagtggat gcgaaagccg ggcgagcagt ccctcgccag	600
ccaaagtgaaa accaggacga aagacaaata tcgagtggtg tacacggacc accagcgct	660
ggagctggag aaggagttt actacagtcg ctacatcacc atccggagga aagccgagct	720
agccgcacg ctggggctct ctgagaggca ggttaaaatc tggttcaga accgcagagc	780
aaaggagagg aaaatcaaca agaagaagtt gcagcagcaa cagcagcagc agccaccaca	840
gcccgcctccg cggccaccac agcctccca gcctcagcca ggtcctctga gaagtgtccc	900
agagcccttg agtccggtgt ctccctgca agcctcagtg tctggctctg tccctgggt	960
tctggggcca actgggggg tgctaaaccc caccgtcacc cagtgaccca cgggggtctg	1020
cagcggcaga gcaattccag gctgagccat gaggagcgtg gactctgcta gactcctcag	1080
gagagacccc tccctccca cccacagccaa tagacctaca gacctggctc tcagaggaaa	1140
aatgggagcc aggagtaaga caagtggat ttggggcctc aagaaatata ctctccaga	1200
tttttacttt ttccatctgg cttttctgc cactgaggag acagaaagcc tccgctggc	1260

2389.ST25

ttcattccgg actggcagaa gcattgcctg gactgaccac accaaccagc ttcatctatc 1320
 cgactcttct cttcctagat ctgcaggctg cacctctggc tagagccgag gggagagagg 1380
 gactcaaggg aaaggcaagc ttgaggccaa gatggctgct gcctgctcat ggcctcgga 1440
 ggtccagctg ggcctcctgc ctccggcag caaggttac actgcggaac gcaaaggcag 1500
 ctaagataga aagctggact gaccaaagac tgcagaaccc ccaggtggcc ctgcgtctt 1560
 tttctcttcc ctttcccaga ccaggaaagg cttggctggt gtatgcacag ggtgtggat 1620
 gaggggggtgg ttattggact ccaggcctga ccagggggcc cgaacaggac ttgttagaga 1680
 gcctgtcacc agagcttctc tgggctgaat gtatgtcagt gctataaatg ccagagccaa 1740
 cctgg 1745

<210> 2
 <211> 311
 <212> PRT
 <213> Homo sapiens

<400> 2

Met	Tyr	Val	Ser	Tyr	Leu	Leu	Asp	Lys	Asp	Val	Ser	Met	Tyr	Pro	Ser	
1															15	
Ser	Val	Arg	His	Ser	Gly	Gly	Leu	Asn	Leu	Ala	Pro	Gln	Asn	Phe	Val	
															30	
Ser	Pro	Pro	Gln	Tyr	Pro	Asp	Tyr	Gly	Gly	Tyr	His	Val	Ala	Ala	Ala	
															45	
Ala	Ala	Ala	Gln	Asn	Leu	Asp	Ser	Ala	Gln	Ser	Pro	Gly	Pro	Ser	Trp	
															60	
Pro	Ala	Ala	Tyr	Gly	Ala	Pro	Leu	Arg	Glu	Asp	Trp	Asn	Gly	Tyr	Ala	
65															80	
Pro	Gly	Gly	Ala	Ala	Ala	Ala	Asn	Ala	Val	Ala	His	Ala	Leu	Asn	Gly	
															95	
Gly	Ser	Pro	Ala	Ala	Ala	Ala	Met	Gly	Tyr	Ser	Ser	Pro	Ala	Asp	Tyr	His
															110	
Pro	His	His	His	Pro	His	His	Pro	His	His	Pro	Ala	Ala	Ala	Pro		
															125	
Ser	Cys	Ala	Ser	Gly	Leu	Leu	Gln	Thr	Leu	Asn	Pro	Gly	Pro	Pro	Gly	
															140	
Pro	Ala	Ala	Thr	Ala	Ala	Ala	Glu	Gln	Leu	Ser	Pro	Gly	Gly	Gln	Arg	
145															160	
Arg	Asn	Leu	Cys	Glu	Trp	Met	Arg	Lys	Pro	Ala	Gln	Gln	Ser	Leu	Gly	
															175	
Ser	Gln	Val	Lys	Thr	Arg	Thr	Lys	Asp	Lys	Tyr	Arg	Val	Val	Tyr	Thr	
															190	
Asp	His	Gln	Arg	Leu	Glu	Leu	Glu	Lys	Glu	Phe	His	Tyr	Ser	Arg	Tyr	
															205	
195																

2389.ST25

Ile Thr Ile Arg Arg Lys Ala Glu Leu Ala Ala Thr Leu Gly Leu Ser
210 215 220

Glu Arg Gln Val Lys Ile Trp Phe Gln Asn Arg Arg Ala Lys Glu Arg
225 230 235 240

Lys Ile Asn Lys Lys Leu Gln Gln Gln Gln Gln Gln Pro Pro
245 250 255

Gln Pro Pro Pro Pro Pro Gln Pro Pro Gln Pro Gln Pro Gly Pro
260 265 270

Leu Arg Ser Val Pro Glu Pro Leu Ser Pro Val Ser Ser Leu Gln Ala
275 280 285

Ser Val Ser Gly Ser Val Pro Gly Val Leu Gly Pro Thr Gly Gly Val
290 295 300

Leu Asn Pro Thr Val Thr Gln
305 310