

Ministério da Educação **Universidade Tecnológica Federal do Paraná**Campus Curitiba

Dedução Natural (Parte 1)

Professor: Thiago do Nascimento Ferreira

E-mail: thiagoferreira@utfpr.edu.br

Sala: 6 DAINF

Atendimento: Terças e Sextas 15:50

• Em busca de uma forma de dedução mais próxima do que uma pessoa costuma fazer, foi criado o método de **Dedução Natural**.

• O método usa:

- Duas regras por conectivo (uma para introduzir o conectivo e outra para removê-lo);
- Introdução de hipóteses que devem ser oportunamente descartadas.

Introdução

• Em geral, as regras serão apresentadas com o formato abaixo.

$$\frac{A_1}{B}$$
 ... $\frac{A_n}{B}$ (nome)

- Acima da barra horizontal: premissas
- Abaixo da barra horizontal: conclusão
- Parênteses: nome da fórmula
 - "i" de Introdução do Conectivo
 - "e" de Eliminação do Conectivo

∧-Introdução

∧-Introdução

 Permite concluir A ∧ B dado que A e B já foram concluídas. A regra é escrita como:

$$\frac{A}{A \wedge B} (\wedge i)$$

• "∧ i" – Introdução da Conjunção

^-Eliminação

∧- Eliminação

• Temos duas regras para eliminar a conjunção:

$$\frac{A \wedge B}{A} (\wedge e1)$$

$$\frac{A \wedge B}{B} (\wedge e2)$$

 Uma regra diz que se temos uma prova de A ∧ B então podemos concluir A, a outra, nas mesmas condições, diz que podemos concluir B

• Provar que p Λ q, r \vdash q Λ r é correta

• Provar que p Λ q, r \vdash q Λ r é correta

1 $p \wedge q$ premissa2rpremissa3q $\wedge e21$ 4 $q \wedge r$ $\wedge i3,2$

• Provar que $(p \land q) \land r, s \land t \vdash q \land s \in correta$

• Provar que $(p \land q) \land r, s \land t \vdash q \land s \in correta$

1	(p ∧ q) ∧ r	premissa
2	s∧t	premissa
3	pΛq	∧e1 1
4	q	Λe2 3
5	S	∧e1 2
6	qΛs	∧i 4,5

---Introdução

 Sabemos que A 𠪪A. Logo, se temos A, podemos concluir ¬¬A

$$\frac{A}{\neg \neg A} (\neg \neg i)$$

¬¬-Eliminação

 De forma similar, podemos concluir A caso tenhamos ¬¬A

$$\frac{\neg \neg A}{A} (\neg \neg e)$$

• Provar que provar p, $\neg\neg(p \land r) \vdash \neg\neg p \land r \text{ \'e correta}$

• Provar que provar p, $\neg\neg(p \land r) \vdash \neg\neg p \land r \text{ \'e correta}$

1	р	premissa
2	¬¬(p ∧ r)	premissa
3	¬¬p	¬¬i 1
4	рΛг	¬¬e 2
5	r	∧e2 4
6	¬¬p ∧ r	∧i 3,5

→-Eliminação (modus ponens)

→-Eliminação (modus ponens)

 Dado que A → B e A já foram concluídas, podemos concluir B

$$\frac{A}{B} \xrightarrow{A \to B} (\to e/MP)$$

Provar que ¬p ∧ q,¬p ∧ q → r ∨ ¬p ⊢ r ∨ ¬p é
 correta

Provar que ¬p ∧ q,¬p ∧ q → r ∨ ¬p ⊢ r ∨ ¬p é
 correta

1
$$\neg p \land q$$
 premissa
2 $\neg p \land q \rightarrow r \lor \neg p$ premissa
3 $r \lor \neg p$ $\rightarrow e 1,2$

• Provar que p, p \rightarrow q, p \rightarrow (q \rightarrow r) \vdash r é correta

Vamos Fazer

• Provar que p, p \rightarrow q, p \rightarrow (q \rightarrow r) \vdash r é correta

1	р	premissa
2	$p \rightarrow q$	premissa
3	$p \rightarrow (q \rightarrow r)$	premissa
4	q	→ e 1,2
5	$q \rightarrow r$	→ e 1,3
6	r	→e 4,5

→-Eliminação (modus tollens)

→-Eliminação (modus tollens)

Suponha que tenhamos A → B e ¬B. Se A for verdade então, por modus ponens, concluímos B.
 Neste caso temos B e ¬B, o que é impossível.
 Então A só pode ser falso e ¬A verdadeiro. Com isso podemos concluir a seguinte regra

$$\frac{A \to B}{\neg A} \frac{\neg B}{} (MT)$$

Provar que provar p → (q → r), p, ¬r ⊢ ¬q é
 correta

Provar que provar p → (q → r), p, ¬r ⊢ ¬q é
 correta

1	$p \rightarrow (q \rightarrow r)$	premissa
2	р	premissa
3	¬r	premissa
4	$q \rightarrow r$	→ e 2,1
5	¬q	MT 4,3

• Provar que ¬p → q, ¬q ⊢ p é correta

• Provar que ¬p → q, ¬q ⊢ p é correta

→-Introdução

→-Introdução

• Incluir a implicação é uma tarefa um pouco mais complicada do que vimos, até agora, para os outros conectivos. A regra de introdução da implicação é mostrada a seguir.

$$\begin{array}{c}
[A]^{j} \\
\vdots \\
B \\
A \to B
\end{array} (\to i)^{j}$$

→-Introdução

- A primeira linha da regra, [A], é uma hipótese.
 - Uma suposição temporária de que uma fórmula A é verdadeira.
- A hipótese A e todas as regras derivadas dela até
 B podem ser usadas até o momento em que B é
 encontrada
- A partir do momento que concluímos A → B, nenhuma das fórmulas entre A e B, incluindo estas, pode ser usada mais

• Provar que provar p \rightarrow q $\vdash \neg q \rightarrow \neg p$ é correta

• Provar que provar p \rightarrow q $\vdash \neg q \rightarrow \neg p$ é correta

1.
$$p \rightarrow q$$

 $2. \quad \neg q$

3. $\neg p$

4.
$$\neg q \rightarrow \neg p$$

premissa

hipótese

MT 1,2

→i 2-3

• Provar que $\neg q \rightarrow \neg p \vdash p \rightarrow \neg \neg q$ é correta

Vamos Fazer

• Provar que $\neg q \rightarrow \neg p \vdash p \rightarrow \neg \neg q$ é correta

1.	$\neg q$	\rightarrow	\neg	n
Ι.	'4	,		μ

2.

3. $\neg \neg p$

4. $\neg \neg q$

5.
$$p \rightarrow \neg \neg q$$

premissa

hipótese

 $\neg \neg i \ 2$

MT 1,3

 \rightarrow i 2-4

Caso o sequente Γ ⊢ A possua teoria vazia, então
 este é denotado ⊢ A e chamado de teorema.

• Provar $\vdash (q \rightarrow r) \rightarrow ((\neg q \rightarrow \neg p) \rightarrow (p \rightarrow r))$

Exemplo

• Provar $\vdash (q \rightarrow r) \rightarrow ((\neg q \rightarrow \neg p) \rightarrow (p \rightarrow r))$

10. $(q \to r) \to ((\neg q \to \neg p) \to (p \to r))$

hipótese
hipótese
hipótese $\neg \neg i \ 3$ $MT \ 2,4$ $\neg \neg e \ 6$ $\rightarrow e \ 1,6$ $\rightarrow i \ 3-7$

 \rightarrow i 2-8

 $\rightarrow i 1-9$

• Provar \vdash (q \rightarrow r) \rightarrow ((¬q \rightarrow ¬p) \rightarrow (p \rightarrow r)) pode ser reescrito, conforme o teorema da dedução

• Provar \vdash (q \rightarrow r) \rightarrow ((¬q \rightarrow ¬p) \rightarrow (p \rightarrow r)) pode ser reescrito, conforme o teorema da dedução

$$\begin{split} q \to r \vdash (\neg q \to \neg p) \to (p \to r) \\ q \to r, \neg q \to \neg p \vdash (p \to r) \\ q \to r, \neg q \to \neg p, p \vdash r \end{split}$$

Exemplo

• Provar \vdash (q \rightarrow r) \rightarrow ((¬q \rightarrow ¬p) \rightarrow (p \rightarrow r)) pode ser reescrito, conforme o teorema da dedução

$$\begin{split} q \to r \vdash (\neg q \to \neg p) \to (p \to r) \\ q \to r, \neg q \to \neg p \vdash (p \to r) \\ q \to r, \neg q \to \neg p, p \vdash r \end{split}$$

1.
$$q \rightarrow r$$

2.
$$\neg q \rightarrow \neg p$$

4.
$$\neg \neg p$$

5.
$$\neg \neg q$$

premissa

$$\neg \neg i \ 3$$

$$\neg \neg e 5$$

$$\rightarrow e 1,6$$

V-Introdução

V-Introdução

Dada uma premissa A, nós podemos concluir A V
 B para qualquer fórmula B.

$$\frac{A}{A \vee B}$$
 (Vi1)

$$\frac{B}{A \vee B}$$
 (\vee i2)

V-Eliminação

V-Eliminação

- A exclusão da disjunção é uma regra mais complicada
- Como usar uma fórmula A V B em uma prova?
- Sabemos que pelo menos umas das duas subfórmulas é verdadeira, A ou B. No entanto, não sabemos qual.
- A solução é fornecer duas provas separadas para um mesmo argumento

$$\begin{array}{ccc} [A] & [B] \\ \vdots & \vdots \\ A \vee B & C & C \\ \hline C & \end{array} (\vee e)$$

Provar o sequente p V q ⊢ q V p

Provar o sequente p V q ⊢ q V p

1.
$$p \lor q$$

2. p

3. $q \lor p$

 $\begin{array}{c|c}
4. & q \\
5. & q \lor p
\end{array}$

6. $q \lor p$

premissa

hipótese

∨i2 2

hipótese

∨i1 4

 $\vee e 1,2-3,4-5$

• Provar $q \rightarrow r \vdash (p \lor q) \rightarrow (p \lor r)$

Vamor fazer

• Provar $q \rightarrow r \vdash (p \lor q) \rightarrow (p \lor r)$

- 1. $q \rightarrow r$
- 2.

 $p \lor q$

 $p \lor r$

 $p \lor r$

3.

4.

- 5.
- 6.
- 7.
- 8.
- 9. $(p \lor q) \to (p \lor r)$

 $p \lor r$

premissa

hipótese

hipótese

∨i1 3

hipótese

 \rightarrow e 1,5

∨i2 6

 $\vee e \ 2,3-4,5-7$

 \rightarrow i 2-8

Para fazer em casa

1. Provar $(p \lor q) \lor r \vdash p \lor (q \lor r)$

Estes slides foram feitos baseados nos slides da disciplina "Lógica para Computação", ministrada pelos seguintes professores:

Prof. Celso Antônio Alves Kaestner kaestner@dainf.ct.utfpr.edu.br

Prof. Adolfo Neto adolfo@utfpr.edu.br