Some results about group

Chenzhipeng

September 29, 2015

I found some results really interesting about group which listed at the book $Basic\ Algebra\ by\ NATHAN\ JACOBSON$

1 Invertiblity in a monoid

Let M donates a monoid, any of the following conditions

1.
$$ab = ca = 1$$

2.
$$aba = a, ab^2a = 1$$

can conclude that a is invertible with b as inverse. prove:

1. if ab = ca = 1 then,

$$b = 1 \cdot b = cab = c \cdot 1 = c$$

thus

$$ab = ba = 1$$

end the prove.

2. if $aba = a, ab^2a = 1$ then,

$$1 = ab^2a = abab^2a = ab$$

$$1 = ab^2a = abba = ba$$

end the prove.

2 Semigroup with some properities

Let G be a semigroup having following properites

- (a) G contains right unit 1_r , thus $\forall a \in G, a1_r = a$
- (b) $\forall a \in G$ have a right inverse to 1_r $(ab = 1_r)$.

then G is a group.

prove: $\forall a \in G$ we have $b \in G$ such thar

$$ab = 1_r$$

then there exists $c \in G$ that

$$bc = 1_r$$

hence we have

$$a = a1_r = abc = 1_rc = 1_r1_rc = 1_ra$$

so we have $\forall a \in G$

$$a1_r = 1_r a = a$$

thus 1_r is the unit in G and G is a monoid. Using conclusion in previous chapter, we know that a is invertible for all $a \in G$. So G is a group.

3 Semigroup with solvable system

G is a monoid, if the equation ax = b and ya = b is solvable for any $a, b \in G$ then G is a group.

prove:

we random choose $b \in G$ and we have x_0 such that

$$bx_0 = b$$

 $\forall a \in G \text{ we have}$

$$a = yb = ybx_0 = ax_0$$

$$a = x_0 b = x_0 x_0 b = x_0 a$$

hence we have G have a unit $1 = x_0$.

 $\forall a \in G \text{ there exists } x, y \text{ such that}$

$$ax = ya = 1$$

we know a is invertible from first chapter. End our prove.

4 Finite semigroup with cancellation law

Let G donate a finite semigroup, is G satisfies

$$ax = ay \Rightarrow x = y$$

and

$$xa = ya \Rightarrow x = y$$

G is a group.

prove: $\forall a \in G$ we consider a map $L_a : G \to G$

$$L_a(g) = ag$$
 for all $g \in G$

since $ax = ay \Rightarrow x = y$ we know that L_a is injective, |G| is finite, we have L_a is bijective.

Similarly, we can define a bijective map R_a .

Thus G is a Semigroup with solvable system which refer to be a group by previous chapter.