

Presentación del equipo

Daniela Álvarez
Búsqueda de
información

Tomás Jaramillo Desarrollo y diseño del trabajo

Andrea Serna Revisión de la literatura

Mauricio Toro
Preparación
de los datos

Planteamiento del problema

Calles de Medellín, Origen y Destino

El camino más corto restringido

Primer algoritmo

Calles de Medellín, Origen y Destino

El camino más corto sin superar un riesgo medio ponderado de acoso *r*

Segundo algoritmo

Calles de Medellín, Origen y Destino

Ruta con el menor riesgo promedio ponderado de acoso sin superar una distancia d

Explicación del algoritmo

Dijkstra

Determina el camino más corto, dado un vértice origen, hacia el resto de los vértices en un grafo que tiene pesos en cada arista.

Complejidad del algoritmo

	Complejidad temporal	Complejidad de la memoria
Dijkstra	O(n²)	O(E + V log V)

Complejidad en tiempo: Representa el tiempo que puede tardar el algoritmo en dar el resultado.

Complejidad de la memoria del algoritmo: Es la cantidad de espacio en memoria que utiliza el algoritmo en su ejecución.

V representa los vertices y E representa las aristas.

