Real Time Communication powered by Al for Specially Abled

Mentor: Dr. Gokulakrishnan

Industry Mentor: Divya

A Project Report Submitted in Partial fulfillment of the Requirements for the

Degree of Bachelor of Engineering (Semester VII) in Electronics and Communication Engineering

PROJECT REPORT SUBMITTED BY:

TEAM ID:PNT2022TMID49634

RENUHA NIVETHA.A.K(950019106034) SAFIYA.S(950019106035) KARTHIKA.M(950019106020) HARY VARSINE.A(950019106011)

S.NO.TABLE OF CONTENT

- 1 INTRODUCTION
 - 1.1 Project Overview
 - 1.2 Purpose
- **2 LITERATURE SURVEY**
 - 2.1 Existing problem

- 2.2 Reference
- 2.3 Problem Statement Definition

3 IDEATION & PROPOSED SOLUTION

- 3.1 Empathy Map Canvas
- 3.2 Ideation & Brainstorming
- 3.3 Proposed Solution
- 3.4 Problem Solution Fit

4 REQUIREMENT ANALYSIS

- 4.1 Functional requirements
- 4.2 Non-Functional requirements

5 PROJECT DESIGN

- 5.1 Data Flow Diagrams
- 5.2 Solution & Technical Architecture
- 5.3 User Stories

6 PROJECT PLANNING & SCHEDULING

- 6.1 Sprint Planning & Estimation
- 6.2 Sprint Delivery Schedule
- 6.3 Reports from JIRA

7 CODING & SOLUTIONING (Explain the features addedin the project along with code)

- 7.1 Feature 1
- 7.2 Feature 2
- 7.3 Database Scheme (if applicable)

8 TESTING

- 8.1 Test Cases
- 8.2 User Acceptance Testing

9 RESULT

9.1 Performance Metrics

10 ADVANTAGES & DISADVANTAGES

- 11 CONCLUSION
- 12 FUTURE SCOPE
- **13 APPENDIX**

Source Code GitHub & Project Demo Link

1.Introduction

1.1.Project Overview

People get to know one another by sharing their ideas, thoughts, and experiences with those around them. There are numerous ways to accomplish this, the best of which is the gift of "Speech." Everyone can very convincingly transfer their thoughts and understand each other through speech. It will be unjust if we overlook those who are denied this priceless gift: the deaf and dumb. In such cases, the human hand has remained the preferred method of communication.

1.2.Purpose

The project's purpose is to create a system that translates sign language into a human understandable language so that ordinary people may understand it.

2.Literature Survey

2.1.Existing Problem

S.NO	TITLE	YEAR	AUTHOR	OBJECTIVE	TECHNIQUES	RESULT	PROBLEM
1.	"Indian Sign Language recognition"	2012	Divya Deora ,Nikesh bajaj	This represents a framework for a human –laptop interface able to spot gestures from the ISL	CNN PCA Viola-Jones face detection algorithm	Alphabets and numbers were identified successfully	It was not practical as sign language is a flow or sequence of alphabets or phrases

2.	"On the challenge of classifying 52 hand movements from surface electromyography"	2012	Ilja Kuzborskij , Arjan Gijsberts, Barbara Caputo	The stage of dexterity of myoelectric hand prostheses relies on volume at the characteristics illustration and next category of floor electromyographic signals .	Cross recurrence plots (CRPs) cross recurrence quantification analysis (CRQA)	This provides a contrast of diverse characteristic s extraction and category strategies on a huge –scale floor electromyogr aphy database .	Inability to accurately distinguish the synchroniz ation from methodol ogical effects related to a rectificatio n artifact and variation in the signaltonoise ratio.
3.	"Real time Hand gesture recognition using the Myo armband and muscle activity detection"	2017	Macro E.benalcazar ,Cristhian Motoche , Jonathan A.zea , Andres G Jarmillo ,carlo	To present hand gesture reputation in actual time	This version takes the floor electromyograp hy (EMG) measure at the muscle groups of the forearm through myo armband.	The result is obtained.	The proposed version can discover ways to approach any gesture of the hand through an education process.

2.2.References

- Anuja V.Nair, Bindu.V, "A Review on Indian Sign Language Recognition", International journal of computer applications.
- Archana S. Ghotkar, Rucha Khatal, Sanjana Khupase, Surbhi Asati & Mithila Hadap, "Hand Gesture Recognition for Indian Sign Language", IEEE International Conference on Computer Communication and Informatics
- Hu Peng, "Application Research on Face Detection Technology based on OpenCV in Mobile Augmented Reality", International Journal of Signal Processing, Image Processing and Pattern Recognition,
- J. Rekha, J. Bhattacharya, and S. Majumder, "Shape, Texture and Local Movement Hand Gesture Features for Indian Sign Language Recognition", IEEE 3rd International Conference on Trendz in Information Sciences & Computing

2.3. Problem Statement Definition

- Communication between deaf-mute and normal people has always been a challenging task and it is very difficult for mute people to convey their message to normal people .
- Human hand has remained a popular choice to convey information in situations where other forms like speech cannot be used .
- Voice conversion system with hand gesture recognition and translation will be very useful to have a proper conversation between a normal person and impaired person in any language .

3.Ideation and Proposed Solution

3.1. Empathy Map Canvas

Empathy Map Canvas

Gain insight and understanding on solving customer problems.

1

Build empathy and keep your focus on the user by putting yourself in their shoes.

3.2.Ideation and Brainstorming

Brainstorm

Write down any ideas that come to mind that address your problem statement.

10 minutes

A.K.Renuha Nivetha

user friendly	short sentences	precise and clear
security and user privacy	great UI and familiar layout	Personalization
Free to use	Automatic Sort of results	Periodic updates

S.Safiya

Section of the section		
error curable	less interrupt of words	facilitate communication
Actualization	analytics	regular updates
Ad free	Easy to learn	Good Image Resolution

M.Karthika

frictionless navigation feature	lvestigative , adaptablity	encourages user engagement
offline work	responsive	fast loading time
Show number of results in advance	Make distinctive	Accurate Updates

A.HaryVarsine

Problem solving, verstality	consistent color scheme	consistent updates
incereases listening ability	push notifications	understanding users insights
Open to Suggestion	Expeditious	Detailed one

3.3.Proposed Solution

S.No.	Parameter	Description
1.	Problem Statement (Problem to be solved)	Communication between specially abled people and normal person has always been a challenging task and it is very difficult for specially abled people to convey their message to normal People.
2.	Idea / Solution description	 An app is build by using ML and CNN to create a model that is trained on different hand gestures. By giving text input and with the help Gesture sign language equivalent and HamNoSys conversion we can use 3D avatar to read and play the converted file . For sign conversion , Pre-Processing , Feature extraction and LDA algorithm is used for conversion.
3.	Novelty / Uniqueness	 Accuracy and simple UI • planning to inbuild a library which helps the user to learn about sign language
4.	Social Impact / Customer Satisfaction	 This is two way communication app which reduces the communication gap with the key characteristics of flexibility, automation. It will be Quick adaptation to User's needs and compatible with mobile platform.
5.	Business Model (Revenue Model)	This app provides Basic Features for free and will be easily accessible and the price will be allocated once we bring updates or new features and will collaborate with many organizations and social platforms to outspread the application.
6.	Scalability of the Solution	By implementing this app, it enhances the communication for specially abled community and the output will be optimal for every user.

4.REQUIREMENT ANALYSIS

4.1. Functional Requirements

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)
FR-1	User Registration	Registration through Form Registration through Gmail
FR-2	User confirmation	Confirmation via Email Confirmation via OTP
FR-3	Chat box	Available for 24*7 can able to report the problem directly
FR-4	Image Analyzing	Image analyzing through otsu algorithm
FR-5	Inbuilt libraries	Teaching about sign language.

4.2.Non-Functional Requirements

FR No.	Non-Functional	Description
	Requirement	

NFR-1	Usability	Creating an online platform that acts as a source for both the normal user and disabled people.
NFR-2	Security	The admin will handle the information given by the user and only authenticated users are able to change the data.
NFR-3	Reliability	An intimation given to the user if the wrong data was provided by the user.
NFR-4	Performance	This application will help the user in a better and latest manner.
NFR-5	Availability	User wants to communicate an information to the person to whom they want to communicate
NFR-6	Scalability	More users will use the application at the same time.

5.Project Design

5.1.Data Flow Diagrams

5.2. Solution and Technical Architecture

5.3.User Stories

User Type	Functional Requirement (Epic)	User Story Number	User Story / Task	Acceptance criteria	Priority	Release
User With Speech Disorder/ Any user	Web cam Permission	USN-1	As a User ,I am Able to View My Hand Signs on the Screen After Allowing the Webcam permission	I can access my camera and app functionality	High	Sprint-1
	Making Correct Hand Signs	USN-2	As a User, After Making Correct Hand Signs I am able to see the Matching alphabet with my hand sign	Correct Hand Signs Are Needed to match with	High	Sprint-1

6.Project Planning and Scheduling

6.1.Sprint Planning & Estimation

Sprint	Functional Requirement (Epic)	User story Number	User Story / Task	Story Points	Priori ty	Team Members
--------	-------------------------------------	-------------------------	-------------------	-----------------	--------------	-----------------

•	Download data set	USN-1	The data is downloaded from the Kaggle website and then the data set is classified into training and testing images.	10	High	A.K.Renuha Nivetha
•	Image preprocessing	USN-1	In Image processing technique the first step is usually importing the	10	High	A.K.Renuha Nivetha S.Safiya M.Karthika A.HaryVarsine

libraries that will be
needed in the
program.
Import Keras
library from that
library and import
the
ImageDataGener
ator Library to
your Python
script.
The next step is
defining the
arguments for the
ImageDataGenerat
or . Here the
arguments which
we are given inside
the image data
generator class
are, rescale,
shear_range,
rotation range of
image, and zoom
range that we can
consider for
images.
The next step is
applying
the
ImageDataGenerato
r arguments to the
uataset.
r arguments to the train and test dataset.

Sprint-2	Training image	USN-2	In this training phase the ImageDataGenerator argu -ments is applied to the training images and the model is tested with several images and the model is saved.	20	High	A.K.Renuha Nivetha M.Karthika S.Safiya A.Haryvarsine
Sprint-3	Testing image	USN-3	In this testing phase the Image processing techniques is applied to the testing images and executed for prediction.	20	High	A.K.Renuha Nivetha S.Safiya M.Karthika A.HaryVarsine
Sprint-4	Evaluation metrics and accuracy	USN-4	In this phase the result, prediction, accuracy, and performance of the project are tested.	20	High	A.K.Renuha Nivetha M.Karthika S.Safiya A.Haryvarsin e

MILESTONE & ACTIVITY LIST:

Activity Number	Activity Name	Detailed Activity Description	Task Assigned	Status
1.1	Access Resources	Access the resources(courses)in the project dashboard.	All Members	COMPLETED
1.2	Rocket chat registration	Join the mentoring channel via platform & rocket-chat mobile app.	All Members	COMPLETED
1.3	Access workspace	Access the guided project workspace.	All Members	COMPLETED
1.4	IBM Cloud registration	Register on IBM Academic Initiative & Apply Feature code for IBM Cloud Credits.	All Members	COMPLETED

1.5	Project Repository Creation	Create GitHub account & Collaborate with Project Repository in project workspace.	All Members	COMPLETE D
1.6	Environment Setup	Set-up the Laptop / Computers Based on the prerequisites for each technology track.	All Members	COMPLETE D
2.1	Literature survey	Literature survey on the selected project & Information Gathering.	All Members	COMPLETE D
2.2	Technology Training	Attend the technology trainings as Per the training Calendar.	All Members	COMPLETE D
2.3	Empathy Map	Prepare Empathy Map Canvas to capture the user Pains & Gains, Prepare list of problem statements	All Members	COMPLETE D
2.4	Technology Training	Attend the technology trainings as Per the training Calendar.	All Members	COMPLETE D
2.5	Brainstorming	List the ideas (at least 4 per each team member) by organizing the brainstorm session and prioritize the ideas	All Members	COMPLETE D

2.6	Technology Training	Attend the technology trainings as Per the training Calendar.	All Members	COMPLETE D
3.1	Proposed Solution Document	Prepare the proposed solution document, which includes the novelty, feasibility of idea, business model, social impact, scalability of solution, etc.	All Members	COMPLETE D
3.2	Technology Training	Attend the technology trainings as per the training Calendar.	All Members	COMPLETE D

3.3	Problem - Solution fit & Solution Architecture	Prepare problem - solution fit document & Solution Architecture.	All Members	COMPLETE D
3.4	Technology Training	Attend the technology trainings as per the training Calendar.	All Members	COMPLETE D
4.1	Customer Journey Map	Prepare the customer journey maps to understand the user interactions & experiences with the application (entry to exit).	All Members	COMPLETE D
4.2	Technology Training	Attend the technology trainings as per the training Calendar.	All Members	COMPLETE D
4.3	Functional Requirements& Data Flow Diagrams	Prepare The Functional Requirement Document & DataFlow Diagrams.	All Members	COMPLETE D
4.4	Technology Architecture	Prepare Technology Architecture of the solution.	All Members	COMPLETE D
4.5	Technology Training	Attend the technology trainings as per the training Calendar.	All Members	COMPLETE D
5.1	Milestone & Activity List	Prepare Milestone & Activity List.	All Members	COMPLETE D
5. <u>2</u> 6		Prepare Sprint Delivery Plan. Collect datasets from different open sources likekaggle.com, data.gov, UCI machine learning repository, etc.	All Members All Members	COMPLETE C@MPLETED

All Members	7.1	Image Preprocessing	Importing the Image	All Members	COMPLETED
-------------	-----	---------------------	---------------------	----------------	-----------

		DataGenerator Library		
7.2	Image Preprocessing	Define the parameters/arguments for ImageDataGenerator class.	All Members	COMPLETED
7.3	Image Preprocessing	Applying ImageDataGenerator functionality to trainset and test set.	All Members	COMPLETED

8.1	Model Building	Importing the model building libraries.	All Members	COMPLETED	
8.2	Model Building	Initializing the model.	All Members	COMPLETED	
8.3	Model Building	Adding CNN Layers.	All Members	COMPLETED	
8.4	Model Building	Adding Dense Layers	All Members	COMPLETED	
8.5	Model Building	Configuring the learning process	All Members	COMPLETED	
8.6	Model Building	Training the Model	All Members	COMPLETED	
8.7	Model Building	Save the model	All Members	COMPLETED	
8.8	Model Building	Predictions	All Members	COMPLETED	
9.1	Test the model	OpenCV for video processing.	All Members	COMPLETED	
9.2	Application Building	Creating an account in Twilio service.	All Members	COMPLETED	
9.3	Train CNN Model on IBM	Register for IBM Cloud	All Members	COMPLETED	
9.3 1	Train CNN Model on IBM	Train Image Classification Model	All Members	COMPLETED	

6.2 Sprint Delivery Schedule

Sprint	Total	Duration	Sprint	Sprint End	Story Points	Sprint
	Story		Start Date	Date	Completed	Release Date
	Points			(Planned)	(as on	(Actual)
					Planned End	
					Date)	
Sprint-1	20	6 Days	24 Oct	29 Oct 2022	20	29 Oct 2022
			2022			
Sprint-2	20	6 Days	31 Oct	05 Nov 2022	20	05 Nov 2022
			2022			
Sprint-3	20	6 Days	07 Nov	12 Nov 2022	20	12 Nov 2022
			2022			
	20	6 Days	14 Nov	19 Nov 2022	20	19 Nov 2022
Sprint-4			2022			

6.3 Reports from JIRA

	Т	NOV	DEC
Sprints	RTCS RTC	S RTCS RTCS	
> RTCSPBAFSA-1 Registration			
> TRTCSPBAFSA-2 User Confirmation			
RTCSPBAFSA-3 User Login			
> TRICSPBAFSA-4 User Login 2			
> TRTCSPBAFSA-5 Login			
RTCSPBAFSA-6 User Analyse			
RTCSPBAFSA-7 Dashboard			

7.Coding and Solutioning(Explain the features added in the project along with the code)

7.1.Feature 1

1.IMAGE DATA GENERATOR

Keras ImageDataGenerator is used for getting the input of the original data and further, it makes the transformation of this data on a random basis and gives the output containing only the data that is newly transformed. It does not add the data.from keras.preprocessing.image import ImageDataGenerator

2.PARAMETRES

2.1.Rescale:

The ImageDataGenerator class can be used to rescale pixel values from the range of 0-255 to the range 0-1 preferred for neural network models. Scaling data to the range of 0-1 is traditionally referred to as normalization.

2.2.Shear Range:

Shear range means that the image will be distorted along an axis, mostly to create or rectify the perception angles. It's usually used to augment images so that computers can see how humans see things from different angles.

2.3. Rotation range:

ImageDataGenerator class allows you to randomly rotate images through any degree between 0 and 360 by providing an integer value in the rotation_range argument. When the image is rotated, some pixels will move outside the image and leave an empty area that needs to be filled in.

2.4.Zoom Range:

The zoom augmentation method is used to zoom the image. This method randomly zooms the image either by zooming in or it adds some pixels around the image to enlarge the image. This method uses the zoom_range argument of the ImageDataGenerator class. We can specify the percentage value of the zooms either in a float range in the form of an array.

2.5.Horizontal Flip:

Horizontal flip basically flips both rows and columns horizontally. So for this, we have to pass the horizontal_flip=True argument in the ImageDataGenerator constructor.

3.CONVOLUTION NEURAL NETWORK:

A CNN is a kind of network architecture for deep learning algorithms and is specifically used for image recognition and tasks that involve the processing of pixel data. There are other types of neural networks in deep learning, but for identifying and recognizing objects, CNNs are the network architecture of choice. The layers used in the CNN algorithm are Convolutional ,maxpooling, and flatten layers.

3.1.Convolutional Layer:

A convolutional layer is the main building block of a CNN. It contains a set of filters (or kernels), parameters of which are to be learned throughout the training. The size of the filters is usually smaller than the actual image. Each filter convolves with the image

Convolution layer is used for image processing to blur and sharpen images, but also to perform other operations.from keras.layers import Convolution2D

3.2. Maxpooling Layer:

Max pooling is a pooling operation that selects the maximum element from the region of the feature map covered by the filter.from keras.layers import MaxPooling2D

3.4.Flatten Layer:

Flattening is used to convert all the resultant 2-Dimensional arrays from pooled feature maps into a single long continuous linear vector. The flattened matrix is

fed as input to the fully connected layer to classify the image.from keras.layers import Flatten

4.DENSE LAYER:

Dense Layer is used to classify images based on output from convolutional layers.

7.2.Feature 2

Importing Keras libraries import

keras.preprocessing.image import ImageDataGenerator

Importing ImageDataGenerator from Keras

```
train_datagen=ImageDataGenerator(rescale=1./255,shear_range=0.2,rotation_range=180,zoom_r ange=0.2,horizontal_flip=True)
test_datagen=ImageDataGenerator(rescale=1./255,shear_range=0.2,rotation_range=180,zoom_ra nge=0.2,horizontal_flip=True)
```

Applying ImageDataGenerator functionality to train dataset

```
x_train= train_datagen.flow_from_directory('dataset/training_set', target_size=(64,64), batch_size=300,class_mode='categorical', color_mode = "grayscale")
```

```
x_test= test_datagen.flow_from_directory('dataset/test_set', target_size=(64,64), batch_size=300,class_mode='categorical', color_mode = "grayscale")
```

Importing Model Building Libraries

#to define the linear Initialization import sequential from keras.models import

Sequential

#to add layers import

Dense from

keras.layers import

Dense

#to create Convolutional kernel import convolution2D from keras.layers import

Convolution2D

```
#import Maxpooling layer
from keras.layers import
MaxPooling2D #import flatten
layer from keras.layers
import Flatten
```

Initializing the model model = Sequential() Adding CNN Layers

```
model.add(Convolution2D(32,(3,3),input_shape=(64,64,3),activ ation='relu')) #add maxpooling layers
model.add(MaxPooling2D(pool_si ze=(2,2))) #add faltten layer
model.add(Flatten())
```

Add Dense layers

```
model.add(Dense(units=512, activation='relu'))
model.add(Dense(units=9,
activation='softmax'))
```

compiling the model

```
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
```

Fit and Save the model

```
model.fit_generator(x_train, steps_per_epoch=24, epochs=10,
validation_data=x_test, validation_steps=40)
#steps_per_epoch = no. of train images//batch size model.save('aslpng1.h5')
```

Test the model

```
#import the packages and
load the saved model
Fromkeras.modelsimport
load_model import numpy
as np import cv2
model=load model('aslpng1.h5)
```

Pre-Process and Prediction

```
from skimage.transform import resize
  def detect(frame):
        img = resize(frame,(64,64,1)) img
        = np.expand_dims(img,axis=0)
        if(np.max(img)>1):
            img = img/255.0
        prediction = model.predict(img)
        print(prediction)
        prediction = model.predict_classes(img)
        print(prediction)

frame = cv2.imread(r"C:\Users\Renu Alwar\Project\dataset\test_set\l\1.png")
        data = detect(frame)
```

Flask Application

Load the required packages

import numpy as np import cv2 import os from keras.models import load_model from flask import Flask, render_template, Response from tensorflow.keras.models import Sequential import tensorflow as tf from gtts import gTTS global graph global writer from skimage.transform import resize

Initialize the graph, load the model

```
# graph=tf.get_default_graph() graph=
tf.compat.v1.get_default_graph() writer
= None model =
load_model('aslpng1.h5')
vals = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I']
vs = cv2.VideoCapture(0)
pred = " "

app = Flask(__name__)
print("[INFO] accessing video stream...")Configure the home page
@app.route('/') def index(): return
render_template('index.html')
```

Predictions

```
def detect(frame):
    img = resize(frame,(64,64,1))
    img = np.expand_dims(img,axis=0)
    if(np.max(img)>1):
        img = img/255.0
    with graph.as_default(): prediction =
            model.predict_classes(img)
    print(prediction)
    pred=vals[prediction[0]]
    print(pred)
    return pred
```

Calling video feed from HTML page

```
@app.route('/video feed')
def video_feed():
    return Response(gen(), mimetype='multipart/x-mixed-
    replace; boundary=frame')
```

```
if __name__ == '__main__':
app.run(host='0.0.0.0', debug=True,use_reloader=False)
```

Building the HTML page

```
<!DOCTYPE html>
  <html lang="en">
   <head>
   <meta charset="utf-8">
   <meta name="viewport" content="width=device-width, initial-scale=1.0, shrink-to-</pre>
fit=no">
    <title>SmartBridge_WebApp_VideoTemplate</title>
     k rel="stylesheet" href=
"https://cdn.jsdelivr.net/npm/bootstrap@5.1.3/dist/css/bootstrap.min.css">
     < link rel="stylesheet"
href="https://use.fontawesome.com/releases/v5.12.0/css/all.css">
     k rel="stylesheet" href="static/css/Banner-Heading-Image.css">
      k rel="stylesheet" href="static/css/Navbar-Centered-Brand.css">
      k rel="stylesheet" href="static/css/styles.css">
       </head>
<body style="background: rgb(39,43,48);">
     <nav class="navbar navbar-light navbar-expand-md py-3" style="background:</pre>
                                      #212529;">
  <div class="container">
     <div></div><a class="navbar-brand d-flex align-items-center" href="#"><span
    class="bs-icon-sm bs-icon-rounded bs-icon-primary d-flex justify-content-center
    align-items-center me-2 bs-icon"><i>
   class="fas fa-flask"></i></span><span style="color: rgb(255,255,255);">Real-Time
                                    Communication
            System Powered By Al  For Specially Abled</span></a>
   <div></div>
   </div>
   </nav>
   <section>
 <div class="d-flex flex-column justify-content-center align-items-center"> <div</pre>
        class="d-flex flex-column justify-content-center align-items-center"
        id="div-video-feed"
     style="width: 640px;height: 480px;margin: 10px;min-height: 480px;min-width:
         640px;border-radius: 10px;border: 4px dashed rgb(255,255,255);">
          <img src="{{ url_for('video_feed') }}" style="width: 100%;height:</pre>
                             100%;color:rgb(255,255,255); text-
  align: center;font-size: 20px;" alt="Camera Access Not
  Provided!"> </div>
 </div>
   <div class="d-flex flex-column justify-content-center align-items-center"</pre>
   style="margin-bottom: 10px;"><button
```

```
class="btn btn-info" type="button" data-bs-target="#modal-1" data-bs-
toggle="modal">Quick Reference
          -<strong> ASL Alphabets</strong></button></div>
  </section>
  <section>
     <div class="container">
       <div class="accordion text-white" role="tablist" id="accordion-1">
          <div class="accordion-item" style="background: rgb(33,37,41);">
            <!-- <h2 class="accordion-header" role="tab"><button
class="accordion-button" data-bs-toggle="collapse"
                 data-bs-target="#accordion-1 .item-1" aria-expanded="true" aria-
                 controls="accordion-1 .item-1"
                 style="background: rgb(39,43,48);color: rgb(255,255,255);">About
The Project</button></h2> -->
            <div class="accordion-collapse collapse show item-1" role="tabpanel"</pre>
data-bs-parent="#accordion-1">
               <!-- <div class="accordion-body">
                 Artificial Intelligence has made it possible to
handle our daily activities
                    in new and simpler ways. With the ability to automate tasks that
normally require human
                    intelligence, such as speech and voice recognition, visual
perception, predictive text
                    functionality, decision-making, and a variety of other tasks, Al
can assist people with
                    disabilities by significantly improving their ability to get around
and participate in
                    daily activities.<br><br>Currently, Sign Recognition is available
<strong>only for
                      alphabets A-I</strong> and not for J-Z, since J-Z alphabets
also require Gesture
                    Recognition for them to be able to be predicted correctly to a
certain degree of
                    accuracy.
               </div> -->
            </div>
          </div>
```

div class="accordion-item" style="background: rgb(33,37,41);">

```
<h2 class="accordion-header" role="tab"><button class="accordion-button"
collapsed"
                 data-bs-toggle="collapse" data-bs-target="#accordion-1 .item-2"
aria-expanded="false"
                 aria-controls="accordion-1 .item-2"
                style="background: rgb(39,43,48);color: rgb(231,241,255);">Developed
By</button></h2>
            <div class="accordion-collapse collapse item-2" role="tabpanel"</pre>
data-bs-parent="#accordion-1">
              <div class="accordion-body">
                 <br><1.<strong>A.K.Renuha Nivetha</strong><br><2.</pre>
                   <strong>M.Karthika</strong><br>3. <strong>S.Safiya</strong><br>
                   <strong>A.Haryvarsine</strong>
                 </div>
            </div>
         </div>
       </div>
     </div>
</section>
  <div class="modal fade" role="dialog" tabindex="-1" id="modal-1">
     <div class="modal-dialog" role="document">
       <div class="modal-content">
         <div class="modal-header">
            <h4 class="modal-title">American Sign Language - Alphabets</h4><button
type="button"
              class="btn-close" data-bs-dismiss="modal" aria-label="Close"></button>
  </div>
  <div class="modal-body"><img src="{{ url_for('static', filename='img/ASL_Alphabets.png') }}"</pre>
                                    width="100%"></div>
         <div class="modal-footer"><button class="btn btn-secondary" type="button" data-bs-
              dismiss="modal">Close</button></div>
       </div>
     </div>
  </div>
```

```
<script
src="https://cdn.jsdelivr.net/npm/bootstrap@5.1.3/dist/js/bootstrap.bundle.min.js"></script>
</body>
  </html>
```

Train CNN Model on IBM

```
!pip install watson-machine-learning-client --upgrade
from ibm_watson_machine_learning import APIClient
wml_credentials = {
    "url": "https://us-south.ml.cloud.ibm.com",
    "apikey": "bo7jwrTNlcq_BpNESKVEVjLn9Ccs7xi6YhUGiapVImDt"
}
client = APIClient(wml_credentials)
```

Save to Deployment Space

```
def guid_from_space_name(client, space_name):
    space = client.spaces.get_details()
    return (next(item for item in space['resources'] if item['entity']["name"] ==
    space_name)['metadata']['id'])
]:
    space_uid = guid_from_space_name(client, 'SignLanguageDetection')
    print("Space UID : ", space_uid) client.set.default_space(space_uid)
    client.software_specifications.list()
    software_spec_uid = client.software_specifications.get_uid_by_name("tensorflow_rt22.1-py3.9")
    software_spec_uid

model_details = client.repository.store_model(model='IBM_TrainedModel.tgz', meta_props={
        client.repository.ModelMetaNames.NAME: "CNN",
        client.repository.ModelMetaNames.SOFTWARE_SPEC_UID:
        software_spec_uid, client.repository.ModelMetaNames.TYPE: "tensorflow_2.7"})
    model_id = client.repository.get_model_uid(model_details) model_id
```

Successfully Downloaded Trained Model

client.repository.download('829d4f20-bfcd-4681-826f-12d6eff4c26f','TrainModel.tgz')

8.Testing

8.1.Test Cases

Test case ID	Feature	Cornpone		Pre-	Steps TO Execute	Test Data	Expected Result	Actual	Statu	Commnets	TC for	BUG	Executed By
	Type	nt	Scenario	Requisite				Result			Automation(Y/N)	ID	
TC 001	Functional	Web Cam	user is		1 Click on the App icon 2.Wait untill the app loads 3.Check whether web cam is used for n detection		Web cam turns on when the app opens	Working as expected	Pass				
TC_002	Functional	Detection	Hana		1 Make Handsigns That are in Dataset 2.Wait untill the Hand sign is matched with data set 3.Success if we get the desired al habet		Hand Sign gets detected		Pass	The Background must be blank so that the Hand signs are dear			

	Test Scenarios
1	Verify user is able to access camera
2 Verify Whether Handsigns are detected or not	

8.2. User Acceptance Testing

Purpose of Document

The purpose of this document is to briefly explain the test coverage and open issues of the [ProductName] project at the time of the release to User Acceptance Testing (UAT).

Defect Analysis

This report shows the number of resolved or closed bugs at each severity level, and how they were resolved

Resolution	Severity 1	Severity 2	Severity 3	Severity 4	Subtotal
By Design	2	0	0	0	3
Duplicate	0	0	0	0	0
External	0	1	0	0	1
Fixed	3	1	0	0	4
Not Reproduced	0	0	0	0	0
Skipped	0	0	0	0	0
Won't Fix	0	0	0	0	0
Totals	6	1	0	0	0

Test Case Analysis

This report shows the number of test cases that have passed, failed, and untested

Section	Total Cases	Not Tested	Fail	Pass
Client Application	2	0	0	2
Print Engine	5	0	0	5
Security	0	0	0	0

Version Control	2	0	0	2
Final Report Output	1	0	0	0

9.Result

9.1.Performance Metrics

S.No.	Parameter	Values
1.	Model Summary	Sign language is a useful tool for facilitating communication between deaf and hearing people. Because it allows for two-way communication, the system aims to bridge the communication gap between deaf people and the rest of society. The proposed methodology translates language into English alphabets that are understandable to humans.
2	Accuracy	Training Accuracy -0.9976 Validation Accuracy -0.7

10.Advantages

- 1.It is possible to create a mobile application to bridge the Communication gap between deaf and dumb persons and the general public.
- 2.As different sign language standards exist, their dataset can be added, and the user can choose which sign language to read.

Disadvantages

- 1. The current model only works from alphabets A to I.
- 2. In absence of gesture recognition, alphabets from J cannot be identified as theyrequire some kind of gesture input from the user.
- 3. As the quantity/quality of images in the dataset is low, the accuracy is not great, butthat can easily be improved by change in dataset.

11.Conclusion

Sign language is a useful tool for facilitating communication between deaf and hearing people. Because it allows for two-way communication, the system aims to bridge the communication gap between deaf people and the rest of society. The proposed methodology translates language into English alphabets that are understandable to humans.

This system sends hand gestures to the model, who recognises them and displays the equivalent Alphabet on the screen. Deaf-mute people can use their hands to perform sign language, which will then be converted into alphabets, thanks to this project.

12.Future Scope

Having a technology that can translate hand sign language to its corresponding alphabet is a game changer in the field of communication and Ai for the specially abled people such as deaf and dumb.

With the introduction of gesture recognition, the web app can easily be expanded to recognize letters beyond 'I', digits and other symbols plus gesture recognition can also allow controlling of software/hardware interfaces.

13.Appendix

Source Code

https://drive.google.com/drive/folders/1PY8s54Py052Jaf9sCMXXHs8zoVL R0Qq0?usp=share_link

Github link https://github.com/IBM-EPBL/IBM-Project-10252-

1659152713

Project Demo link

https://drive.google.com/file/d/1uS7ILuxXQ6PvaxyZx2ZT9ByfXIGNPIge/view?usp=share link