Linking

15-213/18-213/15-513: Introduction to Computer Systems 14th Lecture, July 7, 2021

Today

- Linking
 - Motivation
 - What it does
 - How it works
 - Dynamic linking
- Case study: Library interpositioning

Example C Program

```
int sum(int *a, int n);
int array[2] = {1, 2};
int main(int argc, char** argv)
{
   int val = sum(array, 2);
   return val;
}

main.c
```

```
int sum(int *a, int n)
{
   int i, s = 0;

   for (i = 0; i < n; i++) {
       s += a[i];
   }
   return s;
}</pre>
```

Linking

- Programs are translated and linked using a compiler driver:
 - linux> gcc -Og -o prog main.c sum.c
 - linux> ./prog

Why Linkers?

- Reason 1: Modularity
 - Program can be written as a collection of smaller source files, rather than one monolithic mass.
 - Can build libraries of common functions (more on this later)
 - e.g., Math library, standard C library

Why Linkers? (cont)

Reason 2: Efficiency

- Time: Separate compilation
 - Change one source file, compile, and then relink.
 - No need to recompile other source files.
 - Can compile multiple files concurrently.
- Space: Libraries
 - Common functions can be aggregated into a single file...
 - Option 1: Static Linking
 - Executable files and running memory images contain only the library code they actually use
 - Option 2: Dynamic linking
 - Executable files contain no library code
 - During execution, single copy of library code can be shared across all executing processes

What Do Linkers Do?

Step 1: Symbol resolution

Programs define and reference symbols (global variables and functions):

```
void swap() {...} /* define symbol swap */
swap(); /* reference symbol swap */
int *xp = &x; /* define symbol xp, reference x */
```

- Symbol definitions are stored in object file (by assembler) in symbol table.
 - Symbol table is an array of entries
 - Each entry includes name, size, and location of symbol.
- During symbol resolution step, the linker associates each symbol reference with exactly one symbol definition.

Symbols in Example C Program

Definitions

```
int sum(int *a, int n),
int array[2] = {1, 2};
int main(int argc, char** argv)
{
   int val = sum(array, 2);
   return val;
}
```

```
int sum(int *a, int n)
{
   int i, s = 0;

   for (i = 0; i < n; i++) {
       s += a[i];
   }
   return s;
}</pre>
```

Reference

What Do Linkers Do? (cont'd)

Step 2: Relocation

- Merges separate code and data sections into single sections
- Relocates symbols from their relative locations in the .o files to their final absolute memory locations in the executable.
- Updates all references to these symbols to reflect their new positions.

Let's look at these two steps in more detail....

Three Kinds of Object Files (Modules)

Relocatable object file (. o file)

- Contains code and data in a form that can be combined with other relocatable object files to form executable object file.
 - Each . o file is produced from exactly one source (.c) file

Executable object file (a.out file)

 Contains code and data in a form that can be copied directly into memory and then executed.

Shared object file (.so file)

- Special type of relocatable object file that can be loaded into memory and linked dynamically, at either load time or run-time.
- Called Dynamic Link Libraries (DLLs) by Windows

Executable and Linkable Format (ELF)

- Standard binary format for object files
- One unified format for
 - Relocatable object files (.o),
 - Executable object files (a.out)
 - Shared object files (.so)
- Generic name: ELF binaries

ELF Object File Format

Elf header

 Word size, byte ordering, file type (.o, exec, .so), machine type, etc.

Segment header table

 Page size, virtual address memory segments (sections), segment sizes.

. text section

Code

.rodata section

Read only data: jump tables, string constants, ...

.data section

Initialized global variables

.bss section

- Uninitialized global variables
- "Block Started by Symbol"
- "Better Save Space"
- Has section header but occupies no space

ELF header
Segment header table (required for executables)
. text section
.rodata section
. data section
. bss section
.symtab section
.rel.txt section
.rel.data section
. debug section
Section header table

ELF Object File Format (cont.)

. symtab section

- Symbol table
- Procedure and static variable names
- Section names and locations

.rel.text section

- Relocation info for .text section
- Addresses of instructions that will need to be modified in the executable
- Instructions for modifying

.rel.data section

- Relocation info for .data section
- Addresses of pointer data that will need to be modified in the merged executable

debug section

■ Info for symbolic debugging (gcc -g)

Section header table

Offsets and sizes of each section

ELF header
Segment header table (required for executables)
. text section
.rodata section
. data section
.bss section
.symtab section
.rel.txt section
.rel.data section
. debug section
Section header table

Linker Symbols

Global symbols

- Symbols defined by module m that can be referenced by other modules.
- e.g., non-static C functions and non-static global variables.

External symbols

 Global symbols that are referenced by module m but defined by some other module.

Local symbols

- Symbols that are defined and referenced exclusively by module m.
- e.g, C functions and global variables defined with the **static** attribute.
- Local linker symbols are not local program variables

Step 1: Symbol Resolution

Symbol Identification

Which of the following names will be in the symbol table of symbols.o?

symbols.c:

```
int incr = 1;
static int foo(int a) {
  int b = a + incr;
  return b;
int main (int argc,
         char* argv[]) {
 printf("%d\n", foo(5));
  return 0;
```

Names:

- incr
- foo
- argc
- argv
- main
- printf
- "%d\n"

Can find this with readelf: linux> readelf -s symbols.o

Local Symbols

■ Local non-static C variables vs. local static C variables

- Local non-static C variables: stored on the stack
- Local static C variables: stored in either .bss or .data

```
static int x = 15;
int f() {
    static int x = 17;
    return x++;
int q() {
    static int x = 19;
    return x += 14;
int h() {
    return x += 27;
        static-local.c
```

Compiler allocates space in .data for each definition of x

Creates local symbols in the symbol table with unique names, e.g., x, x . 1721 and x . 1724.

How Linker Resolves Duplicate Symbol Definitions

- Program symbols are either strong or weak
 - Strong: procedures and initialized globals
 - Weak: uninitialized globals
 - Or ones declared with specifier extern

Linker's Symbol Rules

- Rule 1: Multiple strong symbols are not allowed
 - Each item can be defined only once
 - Otherwise: Linker error
- Rule 2: Given a strong symbol and multiple weak symbols, choose the strong symbol
 - References to the weak symbol resolve to the strong symbol
- Rule 3: If there are multiple weak symbols, pick an arbitrary one
 - Can override this with gcc -fno-common
- Puzzles on the next slide

Linker Puzzles

```
int x;
p1() {}
```

Link time error: two strong symbols (p1)

```
int x;
p1() {}
```

References to **x** will refer to the same uninitialized int. Is this what you really want?

```
int x;
int y;
p1() {}
```

Writes to **x** in **p2** might overwrite **y**! Evil!

```
int x=7;
int y=5;
p1() {}
```

Writes to **x** in **p2** might overwrite **y**! Nasty!

References to **x** will refer to the same initialized variable.

Important: Linker does not do type checking.

Type Mismatch Example

- Compiles without any errors or warnings
- What gets printed?

```
-bash-4.2$ ./mismatch
4614253070214989087
```

Global Variables

Avoid if you can

Otherwise

- Use static if you can
- Initialize if you define a global variable
- Use extern if you reference an external global variable
 - Treated as weak symbol
 - But also causes linker error if not defined in some file

Use of extern in .h Files (#1)

c1.c

```
#include "global.h"
int f() {
  return g+1;
}
```

global.h

```
extern int g;
int f();
```

c2.c

```
#include <stdio.h>
#include "global.h"

int g = 0;

int main(int argc, char argv[]) {
   int t = f();
   printf("Calling f yields %d\n", t);
   return 0;
}
```

Linking Example

```
int sum(int *a, int n);
int array[2] = {1, 2};
int main(int argc,char **argv)
{
    int val = sum(array, 2);
    return val;
}

int sum(int *a, int n)
{
    int i, s = 0;

    for (i = 0; i < n; i++) {
        s += a[i];
    }
    return s;
}

sum.c</pre>
```

Step 2: Relocation

Relocatable Object Files

Executable Object File

Relocation Entries

```
int array[2] = {1, 2};
int main(int argc, char**
argv)
{
   int val = sum(array, 2);
   return val;
}
```

```
0000000000000000 <main>:
  0: 48 83 ec 08
                                    $0x8,%rsp
                              sub
  4: be 02 00 00 00
                                    $0x2,%esi
                             mov
                                    $0x0, %edi  # %edi = &array
  9: bf 00 00 00 00
                             mov
                      a: R X86 64 32 array
                                                  # Relocation entry
       e8 00 00 00 00
                              callq 13 < main + 0x13 > \# sum()
  e:
                      f: R X86 64 PC32 sum-0x4 # Relocation entry
 13: 48 83 c4 08
                              add
                                    $0x8,%rsp
 17:
    c3
                              retq
                                                              main.o
```

Relocated .text section

```
00000000004004d0 <main>:
 4004d0:
                48 83 ec 08
                                         $0x8,%rsp
                                  sub
 4004d4:
                be 02 00 00 00
                                         $0x2,%esi
                                  mov
                                         $0x601018, %edi # %edi = &array
 4004d9:
               bf 18 10 60 00
                                  mov
 4004de:
                e8 05 00 00 00
                                         4004e8 <sum>
                                                          # sum()
                                  callq
 4004e3:
               48 83 c4 08
                                         $0x8,%rsp
                                  add
 4004e7:
                c3
                                  reta
00000000004004e8 <sum>:
 4004e8:
                b8 00 00 00 00
                                                $0x0, %eax
                                        mov
               ba 00 00 00 00
                                                $0x0,%edx
 4004ed:
                                        mov
                                                4004fd < sum + 0x15 >
 4004f2:
                eb 09
                                        jmp
 4004f4:
               48 63 ca
                                        movslq %edx,%rcx
                03 04 8f
 4004f7:
                                        add
                                               (%rdi,%rcx,4),%eax
 4004fa:
               83 c2 01
                                        add
                                               $0x1, %edx
 4004fd:
                39 £2
                                               %esi,%edx
                                        cmp
 4004ff:
                7c f3
                                               4004f4 < sum + 0xc >
                                        il
 400501:
                f3 c3
                                        repz retq
```

callq instruction uses PC-relative addressing for sum():

0x4004e8 = 0x4004e3 + 0x5

Loading Executable Object Files

Executable Object File

	- "1
ELF header	°
Program header table (required for executables)	
.init section	
.text section	
.rodata section	
.data section	
.bss section	
.symtab	
.debug	
.line	
.strtab	
Section header table (required for relocatables)	

Memory invisible to **Kernel virtual memory** user code User stack (created at runtime) %rsp (stack pointer) Memory-mapped region for shared libraries brk **Run-time heap** (created by malloc) Loaded Read/write data segment from (.data, .bss) the **Read-only code segment** executable (.init,.text,.rodata) file Unused

0x400000

Quiz Time!

Check out:

https://canvas.cmu.edu/courses/23122/quizzes/61550

Libraries: Packaging a Set of Functions

- How to package functions commonly used by programmers?
 - Math, I/O, memory management, string manipulation, etc.
- Awkward, given the linker framework so far:
 - Option 1: Put all functions into a single source file
 - Programmers link big object file into their programs
 - Space and time inefficient
 - Option 2: Put each function in a separate source file
 - Programmers explicitly link appropriate binaries into their programs
 - More efficient, but burdensome on the programmer

Old-Fashioned Solution: Static Libraries

- Static libraries (.a archive files)
 - Concatenate related relocatable object files into a single file with an index (called an archive).
 - Enhance linker so that it tries to resolve unresolved external references by looking for the symbols in one or more archives.
 - If an archive member file resolves reference, link it into the executable.

Creating Static Libraries

- Archiver allows incremental updates
- Recompile function that changes and replace .o file in archive.

Commonly Used Libraries

libc.a (the C standard library)

- 4.6 MB archive of 1496 object files.
- I/O, memory allocation, signal handling, string handling, data and time, random numbers, integer math

libm. a (the C math library)

- 2 MB archive of 444 object files.
- floating point math (sin, cos, tan, log, exp, sqrt, ...)

```
% ar -t /usr/lib/libc.a | sort
...
fork.o
...
fprintf.o
fpu_control.o
fputc.o
freopen.o
fscanf.o
fseek.o
fstab.o
...
```

```
% ar -t /usr/lib/libm.a | sort
...
e_acos.o
e_acosf.o
e_acosh.o
e_acoshf.o
e_acoshl.o
e_acosl.o
e_asin.o
e_asinf.o
e_asinf.o
e_asinf.o
```

Linking with Static Libraries

```
#include <stdio.h>
#include "vector.h"
int x[2] = \{1, 2\};
int y[2] = \{3, 4\};
int z[2];
int main(int argc, char**
argv)
{
    addvec(x, y, z, 2);
    printf("z = [%d %d] \n",
           z[0], z[1]);
    return 0;
                    main2.c
```

libvector.a

for (i = 0; i < n; i++)

}

z[i] = x[i] * y[i];

multvec.c

Linking with Static Libraries

"c" for "compile-time"

Using Static Libraries

■ Linker's algorithm for resolving external references:

- Scan .o files and .a files in the command line order.
- During the scan, keep a list of the current unresolved references.
- As each new .o or .a file, obj, is encountered, try to resolve each unresolved reference in the list against the symbols defined in obj.
- If any entries in the unresolved list at end of scan, then error.

Problem:

- Command line order matters!
- Moral: put libraries at the end of the command line.

```
unix> gcc -static -o prog2c -L. -lvector main2.o
main2.o: In function `main':
main2.c:(.text+0x19): undefined reference to `addvec'
collect2: error: ld returned 1 exit status
```

Modern Solution: Shared Libraries

Static libraries have the following disadvantages:

- Duplication in the stored executables (every function needs libc)
- Duplication in the running executables
- Minor bug fixes of system libraries require each application to explicitly relink
 - Rebuild everything with glibc?
 - https://security.googleblog.com/2016/02/cve-2015-7547-glibcgetaddrinfo-stack.html

Modern solution: shared libraries

- Object files that contain code and data that are loaded and linked into an application dynamically, at either load-time or run-time
- Also called: dynamic link libraries, DLLs, .so files

Shared Libraries (cont.)

- Dynamic linking can occur when executable is first loaded and run (load-time linking)
 - Common case for Linux, handled automatically by the dynamic linker (ld-linux.so)
 - Standard C library (libc.so) usually dynamically linked
- Dynamic linking can also occur after program has begun (run-time linking)
 - In Linux, this is done by calls to the dlopen () interface
 - Distributing software
 - High-performance web servers
 - Runtime library interpositioning
- Shared library routines can be shared by multiple processes
 - More on this when we learn about virtual memory

What dynamic libraries are required?

- .interp section
 - Specifies the dynamic linker to use (i.e., ld-linux.so)
- .dynamic section
 - Specifies the names, etc of the dynamic libraries to use
 - Follow an example of prog

```
(NEEDED) Shared library: [libm.so.6]
```

- Where are the libraries found?
 - Use "ldd" to find out:

```
unix> ldd prog
  linux-vdso.so.1 => (0x00007ffcf2998000)
  libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007f99ad927000)
  /lib64/ld-linux-x86-64.so.2 (0x00007f99adcef000)
```

Dynamic Library Example

Dynamic Linking at Load-time

Dynamic Linking at Run-time

```
#include <stdio.h>
#include <stdlib.h>
#include <dlfcn.h>
int x[2] = \{1, 2\};
int y[2] = \{3, 4\};
int z[2];
int main(int argc, char** argv)
{
   void *handle;
   void (*addvec)(int *, int *, int *, int);
    char *error;
    /* Dynamically load the shared library that contains addvec() */
    handle = dlopen("./libvector.so", RTLD LAZY);
    if (!handle) {
        fprintf(stderr, "%s\n", dlerror());
       exit(1);
                                                                 d11.c
```

Dynamic Linking at Run-time (cont'd)

```
/* Get a pointer to the addvec() function we just loaded */
addvec = dlsym(handle, "addvec");
if ((error = dlerror()) != NULL) {
    fprintf(stderr, "%s\n", error);
    exit(1);
/* Now we can call addvec() just like any other function */
addvec(x, y, z, 2);
printf("z = [%d %d] \n", z[0], z[1]);
/* Unload the shared library */
if (dlclose(handle) < 0) {</pre>
    fprintf(stderr, "%s\n", dlerror());
    exit(1);
return 0;
                                                        dll.c
```

Dynamic Linking at Run-time

Linking Summary

- Linking is a technique that allows programs to be constructed from multiple object files
- Linking can happen at different times in a program's lifetime:
 - Compile time (when a program is compiled)
 - Load time (when a program is loaded into memory)
 - Run time (while a program is executing)
- Understanding linking can help you avoid nasty errors and make you a better programmer

Carnegie Mellon University

Plagiarism

According to a recent New York Times article, at Brown University, more than half of the violations of the academic code involved cheating in computer science classes. Similarly, at Stanford, 20% of one computer science class were flagged for cheating.

The 'fair use' doctrine states that brief excerpts of copyright material may, under certain circumstances, be quoted verbatim for purposes such as criticism, news reporting, teaching, and research, without the need for permission from or payment to the copyright holder.

The issue of 'fair use' versus copyright infringements (or plagiarism) extends from the classroom to the courtroom, as in Oracle's lawsuit against Google over Google's use of copyrighted Java APIs owned by Oracle, which enabled Java applications to run on Android.

What is the difference between plagiarism and fair use? Is it fair to equate plagiarism with copyright infringement?

Today

- Linking
- Case study: Library interpositioning

Case Study: Library Interpositioning

- Documented in Section 7.13 of book
- Library interpositioning: powerful linking technique that allows programmers to intercept calls to arbitrary functions
- Interpositioning can occur at:
 - Compile time: When the source code is compiled
 - Link time: When the relocatable object files are statically linked to form an executable object file
 - Load/run time: When an executable object file is loaded into memory, dynamically linked, and then executed.

Some Interpositioning Applications

Security

- Confinement (sandboxing)
- Behind the scenes encryption

Debugging

- In 2014, two Facebook engineers debugged a treacherous 1-year old bug in their iPhone app using interpositioning
- Code in the SPDY networking stack was writing to the wrong location
- Solved by intercepting calls to Posix write functions (write, writev, pwrite)

Source: Facebook engineering blog post at:

https://code.facebook.com/posts/313033472212144/debugging-file-corruption-on-ios/

Some Interpositioning Applications

Monitoring and Profiling

- Count number of calls to functions
- Characterize call sites and arguments to functions
- Malloc tracing
 - Detecting memory leaks
 - Generating address traces

Error Checking

- C Programming Lab used customized versions of malloc/free to do careful error checking
- Other labs (malloc, shell, proxy) also use interpositioning to enhance checking capabilities

Example program

```
#include <stdio.h>
#include <malloc.h>
#include <stdlib.h>
int main(int argc,
         char *arqv[])
  int i;
  for (i = 1; i < argc; i++) {
    void *p =
          malloc(atoi(argv[i]));
    free(p);
  return(0);
                             int.c
```

- Goal: trace the addresses and sizes of the allocated and freed blocks, without breaking the program, and without modifying the source code.
- Three solutions: interpose on the library malloc and free functions at compile time, link time, and load/run time.

Compile-time Interpositioning

```
#ifdef COMPILETIME
#include <stdio.h>
#include <malloc.h>
/* malloc wrapper function */
void *mymalloc(size t size)
    void *ptr = malloc(size);
    printf("malloc(%d)=%p\n", (int)size, ptr);
    return ptr;
/* free wrapper function */
void myfree(void *ptr)
    free (ptr) ;
    printf("free(%p)\n", ptr);
#endif
                                                     mymalloc.c
```

Compile-time Interpositioning

```
#define malloc(size) mymalloc(size)
#define free(ptr) myfree(ptr)
void *mymalloc(size t size);
void myfree(void *ptr);
                                                            malloc.h
linux> make into
qcc -Wall -DCOMPILETIME -c mymalloc.c
gcc -Wall -I. -o intc int.c mymalloc.o
linux> make runc
./intc 10 100 1000
                               Search for <malloc.h> leads to
malloc(10) = 0 \times 1 ba 70 \sqrt{0}
                               /usr/include/malloc.h
free (0x1ba7010)
malloc(100) = 0x1ba7030
free (0x1ba7030)
malloc(1000) = 0x1ba70a0
                             Search for <malloc.h> leads to
free (0x1ba70a0)
linux>
```

Link-time Interpositioning

```
#ifdef LINKTIME
#include <stdio.h>
void * real malloc(size t size);
void real free(void *ptr);
/* malloc wrapper function */
void * wrap malloc(size t size)
   void *ptr = real malloc(size); /* Call libc malloc */
   printf("malloc(%d) = %p\n", (int)size, ptr);
    return ptr;
/* free wrapper function */
void wrap free(void *ptr)
    real free (ptr); /* Call libc free */
   printf("free(%p)\n", ptr);
tendif
```

Link-time Interpositioning

```
linux> make intl
gcc -Wall -DLINKTIME -c mymalloc.c
gcc -Wall -c int.c
gcc -Wall -Wl, --wrap, malloc -Wl, --wrap, free -o intl \
   int.o mymalloc.o
linux> make runl
./intl 10 100 1000
malloc(10) = 0x91a010
free(0x91a010)
. . . .
```

- The "-W1" flag passes argument to linker, replacing each comma with a space.
- The "--wrap, malloc" arg instructs linker to resolve references in a special way:
 - Refs to malloc should be resolved as __wrap_malloc
 - Refs to real malloc should be resolved as malloc

Load/Run-time Interpositioning

```
#ifdef RUNTIME
                                           Interpositioning
#define GNU SOURCE
#include <stdio.h>
#include <stdlib.h>
                            Observe that DON'T have
#include <dlfcn.h>
                            #include <malloc.h>
/* malloc wrapper function */
void *malloc(size t size)
   void *(*mallocp)(size t size);
    char *error:
   mallocp = dlsym(RTLD NEXT, "malloc"); /* Get addr of libc malloc */
    if ((error = dlerror()) != NULL) {
        fputs(error, stderr);
       exit(1);
    char *ptr = mallocp(size); /* Call libc malloc */
   printf("malloc(%d) = %p\n", (int)size, ptr);
    return ptr;
                                                            mymalloc.c
```

Load/Run-time Interpositioning

```
/* free wrapper function */
void free(void *ptr)
   void (*freep) (void *) = NULL;
    char *error;
    if (!ptr)
        return;
    freep = dlsym(RTLD NEXT, "free"); /* Get address of libc free */
    if ((error = dlerror()) != NULL) {
        fputs(error, stderr);
        exit(1);
    freep(ptr); /* Call libc free */
   printf("free(%p)\n", ptr);
#endif
```

mymalloc.c

Load/Run-time Interpositioning

```
linux> make intr
gcc -Wall -DRUNTIME -shared -fpic -o mymalloc.so mymalloc.c -ldl
gcc -Wall -o intr int.c
linux> make runr
(LD_PRELOAD="./mymalloc.so" ./intr 10 100 1000)
malloc(10) = 0x91a010
free(0x91a010)
. . .
linux>
Search for <malloc.h> leads to
/usr/include/malloc.h
```

- The LD_PRELOAD environment variable tells the dynamic linker to resolve unresolved refs (e.g., to malloc) by looking in mymalloc.so first.
- Type into (some) shells as:

```
env LD PRELOAD=./mymalloc.so ./intr 10 100 1000)
```

Interpositioning Recap

Compile Time

- Apparent calls to malloc/free get macro-expanded into calls to mymalloc/myfree
- Simple approach. Must have access to source & recompile

Link Time

- Use linker trick to have special name resolutions
 - malloc → __wrap_malloc
 - real_malloc → malloc

Load/Run Time

- Implement custom version of malloc/free that use dynamic linking to load library malloc/free under different names
- Can use with ANY dynamically linked binary

```
env LD_PRELOAD=./mymalloc.so gcc -c int.c)
```

Linking Recap

- Usually: Just happens, no big deal
- Sometimes: Strange errors
 - Bad symbol resolution
 - Ordering dependence of linked .o, .a, and .so files
- For power users:
 - Interpositioning to trace programs with & without source