Faster-RCNN & SSD

RCNN

R-CNN: Regions with CNN features

CNN applied over each ROI detected from Selective search

SPP-Net

- Enables shared computation and makes RCNN faster
- Same features may belong to multiple selective search ROI
- Features with different size will generate different size of vector, SPP helps in making the size fixed to feed that into FC layer
- SPP divides each ROI in fixed no of bins and Max pool is performed over that
- As no of bins are fixed, so FC layer will get fixed size input vector
- Multiple pooling at different scales earlier only one max pooling was used
- Drawback was network was only training the FC part not the SPP part

SPP Layer

Three-Level Spatial Pyramid Pooling (SPP) in SPPNet with Pyramid {4×4, 2×2, 1×1}.

SPP Layer pros

Top-5 Error Rates for SPP and Multi-Size Training

4-level SPPNet is used here with the pyramid $\{6 \times 6, 3 \times 3, 2 \times 2, 1 \times 1\}$.

Fast-RCNN

CNN on full image =>selective Search on full image =>ROI from CNN feature
 Map =>ROI pooling layer to reduce size =>input to FC layer=>softmax
 /regressor

Fast RCNN Features

- Uses concept from SPP and added SPP layer
- Made network end to end trainable
- Added Regression and Classification training both in the network
- These changes helped in fast training and achieving better accuracy

- Combination of RPN and Fast-RCNN
- Input entire image 3*3 slides to generate feature map and input to FC
- Multiple regions are predicted by FC layer at max k(anchor boxes)
- Output of regression layer (4k) and classification layer (2k)
- These detected Anchor boxes and feature map is input to Fast-RCNN model
- RPN uses pretrained model of imagenet classification
- Generated anchor boxes are used to train Fast-RCNN

- Faster-RCNN uses 9 (k, anchok boxes 3: different scale, 3: different ratio)
- Major feature was selective search was replaced with RPN

Faster RCNN Overview

Performance

R-CNN Test-Time Speed

Performance

R-FCN

- Region based fully convolutional network
- In Faster-RCNN , FC layer does not share common features among ROI due to which it takes time
- In RFCN FC layer is removed ,positive Score maps are used before ROI pooling
- Average voting after ROI pooling , and No learnable parameter which makes it faster

_

R-FCN: Position Sensitive Score map and ROI pooling

- C classes , 1 background , (C+1) total classes
- Before **Positive sensitive score map**, lots of convolutional operations are applied on the feature map
- For each class k*k convolution operations are applied
- k*k feature map denotes (TL, TC ... BL, BR) points of object
- So total, k*k*(C+1) operations are applied to generate positive sensitive
 score map, this is for classification
- To perform bounding box regression, another filter 4*k*k is used and position based pooling is applied to generate bounding box

R-FCN: PSSM

- 5*5 feature map divided into 3*3 regions
- These 9 regions are called PSSM, because these ,maps scores subregion of object

5 x 5 feature maps

RFCN: PSSM, for each feature map

RFCN: PSSM and Average ROI pooling

- Each class will have its own 3*3 maps, so total 3*3*(C+1) feature maps

R-FCN: Positive Sensitive Score map and ROI

pooling

- Feature detected=>PSSM => Average Pooling => Softmax
- FC layer removed

RFCN: Example

image and RoI

image and RoI

position-sensitive score maps

Visualization of R-FCN ($k \times k = 3 \times 3$) for the *person* category.

position-sensitive score maps

Visualization when an RoI does not correctly overlap the object.

RFCN: Bounding Box

- To perform bounding box regression, another filter 4*k*k is used and position based pooling is applied to generate bounding box

RFCN: Performance

method	RoI output size $(k \times k)$	mAP on VOC 07 (%)
naïve Faster R-CNN	1×1 7×7	61.7 68.9
class-specific RPN	-	67.6
R-FCN (w/o position-sensitivity)	1 × 1	fail
R-FCN	3×3 7×7	75.5 76.6

- mAP increases with increase in size of k and at 7*7 size R-FCN is better than Faster-RCNN

RFCN: Performance

Faster-RCNN vs R-FCN pcode

```
feature_maps = process(image)
ROIs = region_proposal(feature_maps)
for ROI in ROIs
    patch = roi_pooling(feature_maps, ROI)
    class_scores, box = detector(patch)
    class_probabilities = softmax(class_scores)
```

- RPN used and then feature extracted using feature map are given to ROI Pooling
- Followed by FC and classifier/regressor

```
feature_maps = process(image)
ROIs = region_proposal(feature_maps)
score_maps = compute_score_map(feature_maps)
for ROI in ROIs
    V = region_roi_pool(score_maps, ROI)
    class_scores, box = average(V)
    class_probabilities = softmax(class_scores)
```

- Score map is calculated for each feature map and provides as input to ROI pooling layer
- FC layer removed and makes it faster

Faster-RCNN / RFCN

R-FCN Network

Why SSD

- Single Shot because it takes one single pass throughout the image to detect multiple objects in image along with their boundaries
- While in case of RCNN ,Faster-RCNN Selective search or RPN network was used, which make them double pass
- Selective search and RPN are reasons because of which Region based networks are slow

_

SSD : Single Shot Multibox detector

Single Shot: Localization and Classification both happens at the same time

Multibox: Multiple anchor boxes are used to predict the bounding box of the object

Detector: final output of network is a detected object along with its boundary and confidence

SSD Architecture

- VGG16 was used as base network to extract features and discarded fully connected layers
- Auxiliary conv layers are used in place of FC layers, to extract features at multiple scale

SSD: Bounding Box count

- At Conv4_3 layer: 38*38*4 = 5776 and similarly for others
- At Conv10_2 layer : 3*3*2 = 18
- At last layer conv 11 = 1*1*4 =4
- So total, SSD predicts 8732 bounding boxes

Anchor Box / Prior / default box

- Fixed size bounding boxes that closely matches the GT box
- Selected in such a way that IOU > 0.5
- Prior gives a good starting point for training instead of doing heavy operations like Selective search / RPN
- Prior applied over each cell and selected having IOU > 0.5
- Original arch contains 11 prior per feature map(8*8,6*6,4*4,3*3,2*2) and 1 for 1*1 feature map

_

SSD: Prios/Anchor Box

- Prior > 0.5 good for training

SSD Multibox LOSS

- Confidence Loss: To measure how much confident network is for presence of object
- Location Loss: To measure how far network predicted the box from GT

Multibox_Loss = Confidence Loss + alpha*(location Loss)

Alpha: Helps in balancing the location loss

$$L(x, c, l, g) = \frac{1}{N} (L_{conf}(x, c) + \alpha L_{loc}(x, l, g))$$

SSD: Fixed Priors count

- Assuming we have **b** priors
- Feature map size is m*n
- C, number of classes to compute
- Feature map size f = m*n
- So total no of calculation: f*b*(4+c) per feature map

SSD: Detection Node

Key Features :

- Hard Negative Mining: sort negative examples on the basis of confidence loss and consider top ones only such that ratio remains 3:1
- Data Augmentation: Scales / Flipped / Contrast etc.

Dilated Conv: At layer C6 and C7 dilated conv is used as feature map size is

very large

- NMS

No FC Layer

One pass only

SSD Comparison chart

System	VOC2007 test mAP	FPS (Titan X)	Number of Boxes	Input resolution
Faster R-CNN (VGG16)	73.2	7	~6000	~1000 x 600
YOLO (customized)	63.4	45	98	448 x 448
SSD300* (VGG16)	77.2	46	8732	300 x 300
SSD512* (VGG16)	79.8	19	24564	512 x 512

SSD Cons

- Higher resolution Feature maps are responsible for small objects
- Conv4_3 has size 38*38 which is very small, due to which it does not perform good on small objects

Object Detection Network Benchmark

Comparison

From YOLOv2

From SSD