

Universidade Federal de Pelotas

Instituto de Física e Matemática

Departamento de Informática Bacharelado em Ciência da Computação

Arquitetura e Organização de Computadores II Aula 18

4. Memória virtual: manipulação de faltas de página e de faltas na TLB. Uma estrutura comum para hierarquias de memória.

Prof. José Luís Güntzel

guntzel@ufpel.edu.br

www.ufpel.edu.br/~guntzel/AOC2/AOC2.html

Manipulação de Faltas de Página e de Faltas na TLB

- Uma falta no acesso à TLB ocorre quando nenhuma de suas entradas é igual ao endereço virtual gerado pelo processador
- Uma falta no acesso à TLB pode ter um dos seguintes desdobramentos:

A página requisitada está presente na memória

Basta criar uma nova entrada para ela na TLB

A página requisitada não está presente na memória

É necessário transferir o controle para o S.O., que vai tratar a falta de página

Como saber qual das duas situações ocorreu?

Manipulação de Faltas de Página e de Faltas na TLB Como saber qual das duas situações ocorreu?

Manipulação de Faltas de Página e de Faltas na TLB Tratamento de falta na TLB pode ser por software ou por hardware:

 Seu tratamento requer uma pequena seqüência de operações para copiar a entrada da tabela de páginas da memória principal para a TLB

O Tratamento de faltas de página requer uso do mecanismo de exceção:

- Para interromper o processo ativo
- Transfere o controle para o S.O.
- Falta de página geralmente é reconhecida durante o ciclo de relógio usado para acessar a memória
- PC é salvo em um registrador especial chamado **EPC** (a fim de poder retornar a execução a partir da próxima instrução)

Observações Finais - 1

A gerência da memória virtual é um grande desafio devido o alto custo das faltas de página

Várias técnicas são usadas para resolver este problema:

- 1. As páginas devem ser grandes o suficiente para tirar proveito da localidade espacial (reduzindo a taxa de faltas)
- 2. O mapeamento de um endereço virtual em um endereço físico usando a tabela de páginas é feito de maneira totalmente associativa
- 3. O S.O. usa técnicas especiais (e.g., LRU e bit de referência) para determinar qual das páginas deve ser substituída

Observações Finais - 2

As escritas no disco também são muito caras. A memória virtual:

- Usa o esquema write-back
- Controla se uma página não foi modificada (para evitar a escrita de páginas que não foram modificadas)

Mecanismo de memória virtual

- Realiza a tradução do endereço virtual para o espaço de endereçamento físico (usado no acesso à memória principal)
- Permite o compartilhamento protegido da memória principal entre diversos processos
- Simplifica da alocação da memória

A TLB funciona como uma cache para as traduções da tabela de páginas

Uma Estrutura Comum para Hierarquias de Memória

Características	Valores típicos para caches	Valores típicos para memórias paginadas	Valores típicos para TLB
Tamanho total em blocos	1.000-100.000	2.000-250.000	32-4.000
Tamanho total em KB	8-8000	8.000-8.000.000	0,25-32
Tamanho do bloco em bytes	16-256	4.000-64.000	4-32
Penalidade por falta (ciclos de relógio)	10-100	1.000.000-10.000.000	10-100
Taxa de faltas	0,1%-10%	0,00001%-0,0001%	0,01%-2%

Onde se Pode Colocar um Bloco?

A colocação de um bloco no nível superior da hierarquia pode usar um dos seguintes esquemas:

- Mapeamento direto
- Mapeamento associativo por conjunto (caso genérico)
- Mapeamento totalmente associativo

Esquema	Número de conjuntos	Blocos por conjunto
Mapeamento direto	Número de blocos na cache	1
Associativo por conjunto	Número de blocos na cache associatividade	Associatividade (tipicamente de 2 a 8)
Totalmente associativo	1	Número de blocos na cache

Como Encontrar um Bloco?

Depende do esquema adotado para colocação dos blocos

Associatividade	Método de localização	Número de comparações necessárias
Mapeamento direto	Índice	1
Associativo por conjunto	Indexar o conjunto, pesquisar entre os elementos	Grau de associatividade
Totalmente associativo	Pesquisar todas a entradas da cache	Tamanho da cache
	Tabela separada para busca	0

Como Encontrar um Bloco?

Nos sistemas de memória virtual, a tabela de páginas é usada para indexar a memória principal

Fatores que motivam o mapeamento totalmente associativo nas tabelas de páginas:

- 1. Alto custo das faltas de página
- 2. Permite que o software utilize algoritmos bastante sofisticados para substituição de página
- 3. Pode ser facilmente indexado, sem necessidade de hardware extra
- 4. Quanto maior o tamanho da página, menor o overhead relativo representado pelo tamanho da tabela de páginas

Como Encontrar um Bloco?

Caches e TLBs normalmente usam esquema associativo por conjunto:

 Acesso combina indexação e busca em um conjunto pequeno de elementos

Porém, alguns sistemas mais recentes têm usado caches com mapeamento direto devido ao pequeno tempo de acesso e simplicidade

Qual dos Blocos Deve ser Substituído?

Totalmente associativa: todos os blocos são candidatos à substituição Conjunto associativa: escolher um dos blocos pertencentes a um conjunto

Mapeamento direto: não há escolha!

Estratégias para a substituição de blocos:

- Aleatória: os blocos candidatos à substituição são escolhidos ao acaso, possivelmente contando com algum auxílio de hardware
- Bloco usado há mais tempo (LRU): o bloco substituído é aquele usado há mais tempo

O Que Acontece em uma Escrita?

Write-through: a informação é escrita tanto na cache quanto no bloco da memória no nível inferior da hierarquia (mem principal, no caso da cache

Write-Back/copy-back: a informação é escrita somente no bloco da cache. O bloco modificado é escrito no nível inferior da hierarquia somente no momento de sua subtituição

O Que Acontece em uma Escrita?

Vantagens do Write-back

- As palavras podem ser escritas individualmente pelo processador na velocidade da cache (ao invés de sê-lo na velocidade da memória principal)
- □ Escritas múltiplas dentro de um bloco podem ser feitas com uma única operação de escrita no componente da hierarquia inferior
- Quando os blocos são escritos de volta, o sistema pode fazer uso de uma banda passante extremamente alta para efetivar a transferência (já que todo o bloco é escrito)

O Que Acontece em uma Escrita?

Vantagens do Write-through

- As faltas são mais simples e mais baratas de tratar (nunca há necessidade de escrever todo o bloco no componente de memória da hierarquia inferior)
- □ É mais simples de implementar que a write-back (que exige um buffer de escrita)

O Que Acontece em uma Escrita?

Nos sistemas de Memória Virtual

- □ Na prática, somente write-back é usado (devido a longa latência nas escritas no componente de memória da hierarquia inferior HD)
- O desempenho dos processadores vem melhorando a uma taxa bem maior do que a melhora no acesso à memória principal baseada em DRAMs
- Cada vez mais caches estão usando (ou virão a usar) a estratégia
 write-back