|               |          | <u> </u>               |                                              | N°: DI CA                          |                             | = -         | N 06-       |
|---------------|----------|------------------------|----------------------------------------------|------------------------------------|-----------------------------|-------------|-------------|
|               |          |                        | LATÓRIO TÉCNICO                              | RL-3A                              | 26.09-1500-9                | 1           |             |
| PETROBRAS     |          | CLIENTE:               |                                              | S/ATP-TUPI                         |                             | FOLHA:      | 1 de 46     |
|               |          | PROGRAMA:              | COMPLEMENTAR DO (                            |                                    |                             |             | -           |
|               |          | ÁREA:                  |                                              | RACEMA NORTE                       |                             |             | -           |
|               | _        | TÍTULO:                | DUTO DE INJEÇÃO DE G<br>01 DO FPSO CIDADE DE | AS DO POÇO LL-4<br>ITAGUAÍ (LADO I | 14 AO MSIAG-<br>MANIFOLD) - | SUB/I       | ES/EDD/EDF  |
|               |          |                        | ANÁLISE DE ESFORÇOS                          | EM EQUIP. SUB. (                   | MCV)                        |             | -           |
| RINA SERVIÇOS |          |                        | SÁVEL TÉCNICO:<br>ERREIRA VASCONCELOS        | <b>CREA:</b> 141146933-0           |                             |             |             |
| TÉCNICO       |          | <b>CONTRA</b> 5900.012 | TO:<br>20971.22.2                            | RUBRICA:                           | JR-P                        |             | 1           |
|               |          |                        | ÍNDICE DE                                    | REVISÕES                           |                             |             |             |
| REV.          |          |                        | DESCRIÇÃO E/O                                | OU FOLHAS ATIN                     | NGIDAS                      |             |             |
| 0             | FMISS    | ÃO ORIO                |                                              |                                    |                             |             |             |
| U             | LIVIIOO  | AO OITIC               | DII VAL                                      |                                    |                             |             |             |
|               |          |                        |                                              |                                    |                             |             |             |
|               |          |                        |                                              |                                    |                             |             |             |
|               |          |                        |                                              |                                    |                             |             |             |
|               |          |                        |                                              |                                    |                             |             |             |
|               |          |                        |                                              |                                    |                             |             |             |
|               |          |                        |                                              |                                    |                             |             |             |
|               |          |                        |                                              |                                    |                             |             |             |
|               |          |                        |                                              |                                    |                             |             |             |
|               |          |                        |                                              |                                    |                             |             |             |
|               |          |                        |                                              |                                    |                             |             |             |
|               |          |                        |                                              |                                    |                             |             |             |
|               |          |                        |                                              |                                    |                             |             |             |
|               |          |                        |                                              |                                    |                             |             |             |
|               |          |                        |                                              |                                    |                             |             |             |
|               |          |                        |                                              |                                    |                             |             |             |
|               |          |                        |                                              |                                    |                             |             |             |
|               |          |                        |                                              |                                    |                             |             |             |
|               |          |                        |                                              |                                    |                             |             |             |
|               |          |                        |                                              |                                    |                             |             |             |
|               |          |                        |                                              |                                    |                             |             |             |
|               |          |                        |                                              |                                    |                             |             |             |
|               |          |                        |                                              |                                    |                             |             |             |
|               |          |                        |                                              |                                    |                             |             |             |
|               |          |                        |                                              |                                    |                             |             |             |
|               |          |                        |                                              |                                    |                             |             |             |
|               |          |                        |                                              |                                    |                             |             |             |
|               |          |                        |                                              |                                    |                             |             |             |
|               |          |                        |                                              |                                    |                             |             |             |
|               |          |                        |                                              |                                    |                             |             |             |
|               |          |                        |                                              |                                    |                             |             |             |
|               |          |                        |                                              |                                    |                             |             |             |
|               |          |                        |                                              |                                    |                             |             |             |
|               |          |                        |                                              |                                    |                             |             |             |
|               |          |                        |                                              |                                    |                             |             |             |
|               |          |                        |                                              |                                    |                             |             |             |
|               | <u> </u> | REV. 0                 | REV. A REV.                                  | B REV. C                           | REV. D                      | ,           | REV. E      |
| DATA          |          | 06/03/2024             | INLV. A REV.                                 | NEV. C                             | NEV. L                      |             | INEV. L     |
| EXECUÇÃO      |          | DXEL                   |                                              |                                    |                             |             |             |
| VERIFICAÇ     |          | DREH                   |                                              |                                    |                             |             |             |
| APROVAÇÂ      |          | F6EI                   |                                              |                                    |                             |             |             |
|               |          | R-00337, AS INF        | ORMAÇÕES DESTE DOCUMENTO SÃO PRO             | PRIEDADE DA PETROBRAS,             | SENDO PROIBIDA A U          | TILIZAÇÃO I | FORA DA SUA |
|               |          |                        | DELA NORMA DETROPRAS NI 201 DEVIM            |                                    |                             |             |             |

# RELATÓRIO TÉCNICO CLIENTE: U TÍTULO: DUTO DE INJEÇÃO DE

RL-3A26.09-1500-94G-R1N-005

<sup>FOLHA:</sup> 2 de 46

REV.:

0

DUTO DE INJEÇÃO DE GÁS DO POÇO LL-44 AO MSIAG-01 DO FPSO CIDADE DE ITAGUAÍ (LADO MANIFOLD) – ANÁLISE DE ESFORÇOS EM EQUIP. SUB. (MCV)

**UN-BS/ATP-TUPI** 

SUB/ES/EDD/EDF

### **SUMÁRIO**

**PETROBRAS** 

| 1. |                              | OBJETIVO                                | 3        |
|----|------------------------------|-----------------------------------------|----------|
| 2. |                              | DOCUMENTOS DE REFERÊNCIA                | 4        |
| 3. |                              | NOMENCLATURAS                           | 5        |
| 4. |                              | PREMISSAS DE CÁLCULO                    | 6        |
|    | 4.1.<br>4.2.<br>4.3.<br>4.4. | Carregamentos e Condições de Lançamento | 10<br>11 |
| 5. |                              | RESULTADOS                              | 13       |
| 6. |                              | CONCLUSÃO                               | 18       |
| 7. |                              | RECOMENDAÇÕES                           | 19       |
| 8  |                              | ANEXOS                                  | 20       |



| F        | RELATÓRIO TÉCNICO | RL-3A26.09-1500-94G-F                            | R1N-005  | REV.: <b>0</b> |
|----------|-------------------|--------------------------------------------------|----------|----------------|
| CLIENTE: | UN-BS/            | ATP-TUPI                                         | FOLHA: 3 | de 46          |
| TÍTULO:  |                   | DO POÇO LL-44 AO MSIAG-01                        | SUB/ES/E | DD/EDF         |
|          |                   | GUAÍ (LADO MANIFOLD) –<br>S EM EQUIP. SUB. (MCV) | -        |                |

### 1. OBJETIVO

O presente relatório (RL) tem como objetivo informar os esforços solicitantes atuantes no flange do MCV (Módulo de Conexão Vertical) durante a interligação da linha de injeção de gás de 6" do poço 8-LL-44-RJ ao manifold MSIAG-01 do FPSO Cidade de Itaguaí do campo de Iracema Norte.

Esta análise corresponde à CVD de 1ª extremidade no lado manifold.

Os esforços solicitantes foram obtidos através de análises no 'software' ORCAFLEX, e serão utilizados para verificação da adequabilidade do projeto estrutural e de balanceamento do MCV.

A seguir são apresentados os contatos do responsável por este RL na Petrobras:

| Nome           | Endereço eletrônico              | Lotação            |
|----------------|----------------------------------|--------------------|
| Tiago Moreira  | tiago.moreira@petrobras.com.br   | SUB/SSUB/ISBM/SIDS |
| Anderson Gomes | anderson.soares@petrobras.com.br | SUB/ES/EDD/EDF     |

### **RELATÓRIO TÉCNICO** RL-3A26.09-1500-94G-R1N-005 CLIENTE: **UN-BS/ATP-TUPI** TÍTULO: DUTO DE INJEÇÃO DE GÁS DO POÇO LL-44 AO MSIAG-01 DO FPSO CIDADE DE ITAGUAÍ (LADO MANIFOLD) -**PETROBRAS**

4 de 46 SUB/ES/EDD/EDF

REV.:

0

ANÁLISE DE ESFORÇOS EM EQUIP. SUB. (MCV)

#### **DOCUMENTOS DE REFERÊNCIA** 2.

ET-3000.00-1500-941-PMU-006 Rev. C - Metodologia e Diretrizes para Análise de Ref./1/ Carga em MCV;

XPE0044850 - SOLICITAÇÃO DE SERVIÇO: 5.11 - Análise padrão de MCV -Ref./2/ (SUB/ES/EDD/EDF); padrão

Ref./3/ DE-3A26.09-1500-942-R1N-004 Rev.0 – Arranjo Submarino de Interligação da Linha de IG do Poço 8-LL-44-RJS ao MSIAG-01 do FPSO Cidade de Itaguaí;



### **RELATÓRIO TÉCNICO**

RL-3A26.09-1500-94G-R1N-005

CLIENTE: UN-BS/ATP-TUPI

FOLHA:

5 de 46

REV.:

0

DUTO DE INJEÇÃO DE GÁS DO POÇO LL-44 AO MSIAG-01
DO FPSO CIDADE DE ITAGUAÍ (LADO MANIFOLD) –
ANÁLISE DE ESFORÇOS EM EQUIP. SUB. (MCV)

SUB/ES/EDD/EDF

### 3. NOMENCLATURAS

BAP: Base Adaptadora de Produção

CVD: Conexão Vertical Direta

EQSB: Equipamentos Submarinos

ISBM: Interligação Submarina

MCV: Módulo de Conexão Vertical

## er Petrobras

### 4. PREMISSAS DE CÁLCULO

### 4.1. Carregamentos e Condições de Lançamento

Este RL informa os carregamentos (forças e momentos) impostos pelo flexível no flange do MCV, durante seu lançamento, em seis momentos diferentes. Na referência 1, estão discriminadas as análises que são realizadas para avaliação de cargas em MCV.

### 4.1.1. CVD de 2<sup>a</sup> - Topo (Caso 1)

Esta análise visa obter o máximo carregamento axial no flange do MCV no momento do overboarding do mesmo durante o CVD de 2ª extremidade. Analogamente, esta análise também simula o recolhimento do MCV assim que o equipamento chega à embarcação após desconexão de 1ª extremidade.



Figura 4.1 – CVD de 2ª extremidade

Para o dimensionamento do MCV para o caso de CVD de 2ª extremidade logo após o overboarding do equipamento, as cargas no topo serão definidas pela ELT (Estimated Laying Tension):

$$ELT = A + (LDA + 10) \cdot FC \cdot FAD \cdot W$$



Onde:

A – Peso estimado dos acessórios;

LDA – Lâmina D'água;

FC - Fator de catenária;

FAD – Fator de amplificação dinâmica;

w – Peso Linear do duto flexível, alagado e imerso.

Na análise foi considerado o ângulo de topo de catenária durante o lançamento de 3º.

### 4.1.2. CVD de 1<sup>a</sup> – Equilíbrio (Caso 2)

Esse caso representa a situação de conexão vertical de primeira extremidade em que o MCV está bem próximo do hub no instante de ser assentado. É criada uma configuração em que o ângulo de inclinação do MCV seja igual à zero. O duto é considerado cheio de água.

O MCV é considerado verticalizado desde que possua um desalinhamento máximo de  $\pm$  0,5°, situação que possibilita o assentamento.



Figura 4.2 – MCV verticalizado (CVD 1ª extremidade)

| _         | R        | ELATÓRIO TÉCNICO                              | RL-3A26.09-1500-94G-F     | R1N-005  | REV.: <b>0</b> |
|-----------|----------|-----------------------------------------------|---------------------------|----------|----------------|
| 138       | CLIENTE: | UN-BS/                                        | ATP-TUPI                  | FOLHA: 8 | 3 de 46        |
|           | TÍTULO:  |                                               | OO POÇO LL-44 AO MSIAG-01 | SUB/ES/  | EDD/EDF        |
| PETROBRAS |          | DO FPSO CIDADE DE ITAC<br>ANÁLISE DE ESFORÇOS |                           |          | -              |

### 4.1.3. CVD de 1<sup>a</sup> – MCV no Hub com Linha Suspensa (Caso 3i)

Este caso representa a situação de CVD de primeira extremidade em que o MCV está assentado no hub e a linha suspensa pelo PLSV.

O duto é considerado cheio de água.

O propósito deste caso é determinar o momento máximo na interface do MCV e a linha no sentido de suspender o flange do MCV. O momento máximo é determinado aplicando-se um deslocamento vertical de 1,8 m na extremidade da linha, a partir da condição do caso "CVD 1ª – Equilíbrio (Caso 2)" (item 4.1.2).

A fim de que os resultados obtidos considerem a dinâmica do duto durante o deslocamento vertical aplicado, foi feita uma análise transiente em que a amplitude do movimento vertical na extremidade da linha é aplicada em um tempo igual a  $\frac{1}{4}$  do período do movimento imposto (T = 8,6s), neste caso 2,15s.



Figura 4.3 – Aplicação do deslocamento vertical com MCV engastado (CVD 1ª extremidade)

### 4.1.4. CVD de 1<sup>a</sup> - MCV no Hub (Caso 3ii)

O objetivo desta análise é determinar os esforços na interface do MCV com o flowline <u>no instante</u> <u>que a linha toca o solo marinho</u> após a conexão do MCV no hub da BAP. Estes esforços deverão ser considerados para dimensionamento do equipamento.

Para este caso o duto é considerado cheio de água.





ANÁLISE DE ESFORÇOS EM EQUIP. SUB. (MCV)

Figura 4.4 – MCV engastado no momento do toque da linha no solo (CVD 1ª extremidade)

### 4.1.5. CVD de 1<sup>a</sup> – Teste Offshore (Caso 4)

Esta análise simula a condição de operação durante teste hidrostático com o MCV travado e a linha assentada no fundo do mar.

Para este caso o duto é considerado cheio de água.

### 4.1.6. CVD de 1<sup>a</sup> – Operação (Caso 5)

Esta análise simula a condição de operação com o MCV travado e a linha assentada no fundo do mar.

Para este caso o duto é considerado cheio de água.



Figura 4.5 – Condição de Teste Offshore e Operação (CVD 1ª extremidade)

### 4.2. Dados de Referência

Na Tabela 4.1 são apresentadas as informações gerais utilizadas nas análises.

Tabela 4.1 – Informações gerais utilizadas nas análises

| Item                | Referência                             |
|---------------------|----------------------------------------|
| Estrutura           | WSI 152.2553-RD-4042-6 / Rev.01 / BHGE |
| Bend Restrictor     | CB-BR1522553-00-01 / Rev.01 / BHGE     |
| Conector            | CB-EF1522540-00-05 / Rev.04 / BHGE     |
| MCV                 | 5,043 t / P7000048060 / TechnipFMC     |
| Adaptador           | Não Aplicável                          |
| Lâmina d'água (LDA) | 2240 m                                 |

A altura do flange do MCV ao solo marinho foi considerada igual a 3,810 m, conforme dados contidos no Anexo 4.

Foi considerado o MBR da vértebra igual a 4,140 m.

A estrutura WSI 152.2553-RD-4042-6 / Rev.01, fabricada pela BHGE, teve o valor de rigidez flexional modificado para compensar os efeitos da temperatura e pressão na condição de instalação e teste hidrostático. Foram consideradas as curvas "Momento Fletor x Curvatura" para aquisição da rigidez flexional de acordo com cada curvatura do duto. Tais curvas são informadas no Anexo 5.

É importante ressaltar que as análises foram realizadas considerando o anular do duto alagado.

Foram consideradas as seguintes curvas:

# - Casos CVD 1ª - Equilíbrio (caso 2); MCV no Hub com Linha Suspensa (Caso 3i), e MCV no Hub (caso 3ii):

Rigidez Flexional (EI) na temperatura da máxima LDA de projeto, e pressão interna e externa ao duto equivalente a máxima pressão da LDA de projeto.

### - Caso CVD 1<sup>a</sup> - Teste (caso 4):

Rigidez Flexional (EI) na temperatura da máxima LDA de projeto, 110% da pressão de projeto interna ao duto e pressão externa equivalente a máxima pressão da LDA de projeto.

| _         | F        | RELATÓRIO TÉCNICO                             | RL-3A26.09-1500-94G-F     | R1N-005  | REV.: <b>0</b> |
|-----------|----------|-----------------------------------------------|---------------------------|----------|----------------|
| <u> </u>  | CLIENTE: | UN-BS/                                        | ATP-TUPI                  | FOLHA: 1 | 1 de 46        |
|           | TÍTULO:  |                                               | OO POÇO LL-44 AO MSIAG-01 | SUB/ES/E | EDD/EDF        |
| PETROBRAS |          | DO FPSO CIDADE DE ITAC<br>ANÁLISE DE ESFORÇOS |                           | -        | •              |

### - Caso CVD 1ª - Operação (caso 5):

Rigidez Flexional (EI) na temperatura da máxima LDA de projeto, pressão interna igual a pressão de projeto acrescida da pressão devido a coluna de fluido e pressão externa equivalente a máxima pressão da LDA de projeto.

#### 4.3. Casos de Carregamento

Os casos de carregamento do item 4.1 do RL estão resumidos na Tabela 4.2.

Tabela 4.2 – Casos de carregamento para as análises

| Caso de carregamento                                         |        | Objetivo                                                      | Observações                                                                                                                                                                |  |
|--------------------------------------------------------------|--------|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| CVD 1 <sup>a</sup> – Topo (Caso 1)                           |        | Determinar máxima tração<br>no flange                         | - A: 8,649 t;<br>- FC: 1,06;<br>- FAD: 1,3;<br>- w: 1,1644 kN/m;<br>- LDA: 2240 m.                                                                                         |  |
| CVD 1ª – Equilíbrio (Ca                                      | aso 2) | Determinar esforços para<br>balanceamento do MCV              | - Análise estática somente;<br>- Altura do flange do MCV ao solo = 3,290 m.                                                                                                |  |
| CVD 1 <sup>a</sup> – MCV no Hub com linha suspense (Caso 3i) |        | Determinar os esforços no<br>sentido de suspender o<br>flange | - Deslocamento vertical de 1,8 m;<br>- Altura do flange do MCV ao solo = 3,290 m.                                                                                          |  |
| CVD 1 <sup>a</sup> – MCV no                                  | (a)    | Determinar os esforços no                                     | - Altura do flange do MCV ao solo = 4,330 m.                                                                                                                               |  |
| Hub (Caso 3ii)                                               | (b)    | sentido de abaixar o flange                                   | - Altura do flange do MCV ao solo = 3,290 m.                                                                                                                               |  |
| CVD 1 <sup>a</sup> – Teste                                   | (a)    | Determinar cargas de teste                                    | <ul> <li>- Altura do flange do MCV ao solo = 4,330 m;</li> <li>- Pressão interna = Pressão de teste da linha = 110% da pressão de projeto da linha (68,25 MPa).</li> </ul> |  |
| Offshore (Caso 4)                                            | (b)    | hidrostático no flange                                        | <ul> <li>- Altura do flange do MCV ao solo = 3,290 m;</li> <li>- Pressão interna = Pressão de teste da linha = 110% da pressão de projeto da linha (68,25 MPa).</li> </ul> |  |
| CVD 1ª – Operação                                            | (a)    | Determinar cargas de                                          | - Altura do flange do MCV ao solo = 4,330 m;<br>- Pressão interna = Pressão de projeto da linha<br>(62,05 MPa).                                                            |  |
| (Caso 5)                                                     | (b)    | operação no flange                                            | - Altura do flange do MCV ao solo = 3,290 m;<br>- Pressão interna = Pressão de projeto da linha<br>(62,05 MPa).                                                            |  |

| _         | RELA     | ATÓRIO TÉCNICO      | RL-3A26.09-1500-94G-                             | R1N-005   | REV.: <b>0</b> |
|-----------|----------|---------------------|--------------------------------------------------|-----------|----------------|
| 138       | CLIENTE: | UN-BS/              | ATP-TUPI                                         | FOLHA: 12 | 2 de 46        |
|           |          |                     | OO POÇO LL-44 AO MSIAG-01                        | SUB/ES/I  | EDD/EDF        |
| PETROBRAS |          | ANÁLISE DE ESFORÇOS | GUAÍ (LADO MANIFOLD) –<br>S EM EQUIP. SUB. (MCV) |           | -              |

### 4.4. Sistema de Referência

Na Figura 4.6 é apresentado o sistema de referência considerado na impressão dos valores dos esforços solicitantes obtidos das análises.



Figura 4.6 – Sistema de referência para os esforços solicitantes (Fx – Tração; Fz – Cortante, e My – Momento Fletor)

### 5. RESULTADOS

A condição sem flutuadores não permitiu a verticalização do MCV respeitando a integridade da linha e dos acessórios. A condição proposta para verticalização do MCV, respeitando a integridade da linha, dos acessórios e as premissas do projeto, foi o uso de um sistema de flutuadores acoplado à vértebra e à linha. A Figura 5.1 ilustra a configuração proposta.



Figura 5.1 – Ilustração do sistema de flutuador proposto

Os dados da configuração proposta são:

- Utilização de 09 flutuadores:
  - O primeiro afastado 3,00 m do flange com 1,00 tonelada;
  - O segundo afastado 3,00 m do flange com 0,50 toneladas;
  - O terceiro afastado 3,00 m do flange com 0,20 toneladas;
  - O quarto afastado 3,00 m do flange com 0,10 toneladas;
  - O quinto afastado 6,00 m do flange com 1,00 tonelada;
  - O sexto afastado 6,00 m do flange com 0,20 toneladas;
  - O sétimo afastado 6,00 m do flange com 0,10 toneladas;
  - O oitavo afastado 9,00 m do flange com 0,50 toneladas;
  - O nono afastado 9,00 m do flange com 0,20 toneladas.
- O perfil de altura do solo ao longo do azimute da linha permitiu a verticalização do MCV sem a necessidade de dragagem, porém fez-se necessário para viabilizar os resultados para os casos de teste hidrostático e de operação.

EV.: 0

CLIENTE:

PETROBRAS

UN-BS/ATP-TUPI

SUB/ES/EDD/EDF

TÍTULO: DUTO DE INJEÇÃO DE GÁS DO POÇO LL-44 AO MSIAG-01 DO FPSO CIDADE DE ITAGUAÍ (LADO MANIFOLD) – ANÁLISE DE ESFORÇOS EM EQUIP. SUB. (MCV)



Figura 5.2 – Ilustração da dragagem

- Sobre a ilustração da dragagem deve ser considerado o seguinte:
  - A dragagem deve ser realizada de modo que a linha passe centralizada longitudinalmente pela vala;
  - A profundidade informada refere-se à profundidade máxima da vala.
  - O azimute da vala se refere ao azimute do manifold (Ref./3/), sendo necessário, portanto, que seja verificado em campo o azimute da linha.

# E]R

| F        | RELATÓRIO TÉCNICO | RL-3A26.09-1500-94G-F                            | R1N-005   | REV.: <b>0</b> |
|----------|-------------------|--------------------------------------------------|-----------|----------------|
| CLIENTE: | UN-BS/            | ATP-TUPI                                         | FOLHA: 15 | 5 de 46        |
| TÍTULO:  |                   | DO POÇO LL-44 AO MSIAG-01                        | SUB/ES/E  | DD/EDF         |
|          |                   | GUAÍ (LADO MANIFOLD) –<br>S EM EQUIP. SUB. (MCV) | _         |                |

Na Tabela 5.1 são apresentados os resultados das análises da configuração proposta.

Tabela 5.1 – Resultados das análises – Configuração proposta

| Caso de carregamen                                                             | to  | Esforço                                                                           |                                                                                                                                       | Valor                                                                                       |
|--------------------------------------------------------------------------------|-----|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| CVD 2 <sup>a</sup> – Topo<br>(Caso 1)                                          | _   |                                                                                   | Tração (Fx)                                                                                                                           | 3695 kN                                                                                     |
| CVD 1 <sup>a</sup> – Equilíbrio<br>(Caso 2 - Flutuador)                        |     | Tração (Fx) Força Cortante (Fz) Momento Fletor (My) MBR (Vértebra) MBR (Flexível) |                                                                                                                                       | 7,44 kN<br>-11,13 kN<br>13,72 kN.m<br>4,83 m<br>5,02 m                                      |
| CVD 1 <sup>a</sup> – MCV no Hub com linha<br>suspensa<br>(Caso 3i - Flutuador) |     | Momento Fletor Máximo Momento Fletor Mínimo                                       | Tração (Fx) Força Cortante (Fz) Momento Fletor (My) Tração (Fx) Força Cortante (Fz) Momento Fletor (My) MBR (Vértebra) MBR (Flexível) | 3,38 kN<br>-8,37 kN<br>32,16 kN.m<br>10,42 kN<br>-12,63 kN<br>6,27 kN.m<br>4,14 m<br>4,14 m |
| CVD 1 <sup>a</sup> – MCV no Hub<br>(Caso 3ii – Flutuador)                      | (a) | Tração (Fx) Força Cortante (Fz) Momento Fletor (My) Tração (Fx)                   |                                                                                                                                       | 7,85 kN<br>-12,18 kN<br>3,72 kN.m<br>7,53 kN                                                |
| (Cuse 31 Timumuo1)                                                             | (b) |                                                                                   | orça Cortante (Fz) omento Fletor (My)                                                                                                 | -11,93 kN<br>6,83 kN.m                                                                      |
| CVD 1 <sup>a</sup> – MCV no Hub                                                | (a) | Tração (Fx)<br>Força Cortante (Fz)<br>Momento Fletor (My)                         |                                                                                                                                       | 49,79 kN<br>-30,82 kN<br>-51,43 kN.m                                                        |
| (Caso 3ii – Após retirada<br>do Flutuador)                                     | (b) | Tração (Fx)<br>Força Cortante (Fz)<br>Momento Fletor (My)                         |                                                                                                                                       | 38,32 kN<br>-28,46 kN<br>-42,60 kN.m                                                        |
| CVD 1 <sup>a</sup> – Teste Offshore                                            | (a) |                                                                                   | Tração (Fx)<br>Força Cortante (Fz)<br>Comento Fletor (My)                                                                             | -0,26 kN<br>-12,63 kN<br>24,68 kN.m                                                         |
| (Caso 4 – Flutuador)                                                           | (b) |                                                                                   | Tração (Fx)<br>Força Cortante (Fz)<br>Comento Fletor (My)                                                                             | -1,19 kN<br>-13,16 kN<br>25,72 kN.m                                                         |
| CVD 1 <sup>a</sup> – Teste Offshore                                            | (a) | F                                                                                 | Tração (Fx)  orça Cortante (Fz)  omento Fletor (My)                                                                                   | 35,27 kN<br>-35,50 kN<br>-63,10 kN.m                                                        |
| (Caso 4 – Após retirada do<br>Flutuador)                                       | (b) |                                                                                   | Tração (Fx)<br>Força Cortante (Fz)<br>Omento Fletor (My)                                                                              | 25,07 kN<br>-31,24 kN<br>-35,60 kN.m                                                        |
| CVD 1 <sup>a</sup> – Operação                                                  | (a) |                                                                                   | Tração (Fx)<br>Força Cortante (Fz)<br>Omento Fletor (My)                                                                              | 36,05 kN<br>-35,27 kN<br>-63,37 kN.m                                                        |
| (Caso 5 – Após retirada do<br>Flutuador)                                       | (b) | F                                                                                 | Tração (Fx)<br>Força Cortante (Fz)<br>Comento Fletor (My)                                                                             | 26,02 kN<br>-31,03 kN<br>-36,38 kN.m                                                        |

Como pode ser observado na Tabela 5.1, houve travamento da vértebra para os casos de carregamento 3i e 3ii. Na Figura 5.3 apresenta-se o gráfico da curvatura ao longo do comprimento da mesma, podendo-se observar que ocorreu travamento parcial.

Admitindo-se o travamento da vértebra, a fim de verificar sua integridade, na Figura 5.4 apresenta-se o momento fletor e na Figura 5.5 apresenta-se a força cortante atuante na mesma durante o(s) caso(s) de carregamento 3i e 3ii. O momento fletor máximo atuante na vértebra foi de 9,95 kNm, enquanto a força cortante máxima foi de 23,24 kN. O valor do momento fletor e força cortante foram inferiores aos valores máximos admissíveis do acessório (70,00 kNm e 34,00 kN), conforme Anexo 3.



Figura 5.3 – Curvatura ao longo da vértebra durante o(s) caso(s) de carregamento 3i e 3ii



Figura 5.4 – Momento fletor atuante na vértebra durante o(s) caso(s) de carregamento 3i e 3ii





Figura 5.5 – Força cortante atuante na vértebra durante o(s) caso(s) de carregamento 3i e 3ii

# RELATÓRIO TÉCNICO RL-3A26.09-1500-94G-R1N-005 0 CLIENTE: UN-BS/ATP-TUPI FOLHA: 18 de 46 TÍTULO: DUTO DE INJEÇÃO DE GÁS DO POÇO LL-44 AO MSIAG-01 SUB/ES/EDD/EDF DO FPSO CIDADE DE ITAGUAÍ (LADO MANIFOLD) – ANÁLISE DE ESFORÇOS EM EQUIP. SUB. (MCV)

### 6. CONCLUSÃO

A configuração final a ser adotada na CVD será definida pela instaladora de acordo com as propriedades específicas do PLSV escolhido para a instalação.

O parecer final da adequabilidade do MCV para os esforços combinados deve ser emitido pelo SUB/SSUB/IESUB/STIES após verificação junto ao fabricante.

É importante ressaltar que foi utilizado um movimento de heave up de 1,8 m.

Houve travamento da vértebra durante o(s) caso(s) de carregamento 3i e 3ii. porém, o momento fletor máximo e a força cortante máxima atuantes (9,95 kNm e 23,24 kN) na vértebra foram inferiores aos máximos admissíveis do acessório (70 kNm e 34 kN), conforme Anexo 3.

É importante ressaltar que foi necessária dragagem para enquadrar os resultados no ábaco para os casos de teste hidrostático e de operação. Os dados da mesma foram informados no corpo deste relatório.

É importante ressaltar que a soltura dos flutuadores foi considerada de forma gradual com intervalos de 30 segundos entre cada conjunto de flutuadores, sendo o primeiro conjunto a ser solto a 9,0 metros do flange do MCV e o último conjunto a ser solto a 3,0 metros do flange do MCV.

Informamos que todos os esforços foram aprovados no ábaco do MCV TAG P7000048060, como pode ser observado no Anexo 7.



### **RELATÓRIO TÉCNICO**

RL-3A26.09-1500-94G-R1N-005

.

19 de 46

0

REV.:

TÍTULO: DUTO DE INJEÇÃO DE GÁS DO POÇO LL-44 AO MSIAG-01 DO FPSO CIDADE DE ITAGUAÍ (LADO MANIFOLD) – ANÁLISE DE ESFORÇOS EM EQUIP. SUB. (MCV)

**UN-BS/ATP-TUPI** 

\_

SUB/ES/EDD/EDF

### 7. RECOMENDAÇÕES

CLIENTE:

É recomendável que as análises do fornecedor do equipamento sigam o seguinte roteiro para aprovação do MCV:

- ✓ Análise Analítica
- ✓ Análise Numérica Elástica
- ✓ Análise Numérica Elastoplástica
- ✓ Análise Numérica Elastoplástica considerando o As Built.

O fornecedor deve informar os fatores de segurança atingidos nas análises.



### **RELATÓRIO TÉCNICO**

RL-3A26.09-1500-94G-R1N-005

\_

SUB/ES/EDD/EDF

20 de 46

REV.:

0

TÍTULO: DUTO DE INJEÇÃO DE GÁS DO POÇO LL-44 AO MSIAG-01 DO FPSO CIDADE DE ITAGUAÍ (LADO MANIFOLD) – ANÁLISE DE ESFORÇOS EM EQUIP. SUB. (MCV)

**UN-BS/ATP-TUPI** 

### 8. ANEXOS

- Anexo 1 FOLHA DE DADOS DA ESTRUTURA DO FLEXÍVEL
- Anexo 2 DESENHO DO CONECTOR
- Anexo 3 DESENHO DA VÉRTEBRA
- Anexo 4 DADOS DO MCV

CLIENTE:

- Anexo 5 DADOS DE RIGIDEZ FLEXIONAL
- Anexo 6 UNIFILAR DA LINHA
- Anexo 7 ÁBACO DE CARREGAMENTOS ADMISSÍVEIS

|           | RELATÓRIO TÉCNICO                | RL-3A26.09-1500-94G-F                            | R1N-005 REV.: 0 |
|-----------|----------------------------------|--------------------------------------------------|-----------------|
| BR        | CLIENTE: UN-BS/                  | /ATP-TUPI                                        | FOLHA: 21 de 46 |
| 271       | TÍTULO: DUTO DE INJEÇÃO DE GÁS I | DO POÇO LL-44 AO MSIAG-01                        |                 |
| PETROBRAS | DO FPSO CIDADE DE ITA            | GUAÍ (LADO MANIFOLD) –<br>S EM EQUIP. SUB. (MCV) | -               |
|           | ANALISE DE LSI ONÇO              | S LIVI EQUIF. SUB. (IVICV)                       |                 |
|           |                                  |                                                  |                 |
|           |                                  |                                                  |                 |
|           |                                  |                                                  |                 |
|           |                                  |                                                  |                 |
|           |                                  |                                                  |                 |
|           |                                  |                                                  |                 |
|           |                                  |                                                  |                 |
|           |                                  |                                                  |                 |
|           |                                  |                                                  |                 |
|           |                                  |                                                  |                 |
|           |                                  |                                                  |                 |
|           |                                  |                                                  |                 |
|           |                                  |                                                  |                 |
|           |                                  |                                                  |                 |
|           |                                  |                                                  |                 |
|           |                                  |                                                  |                 |
|           |                                  |                                                  |                 |
|           |                                  |                                                  |                 |
|           |                                  |                                                  |                 |
|           |                                  |                                                  |                 |
|           |                                  |                                                  |                 |
|           | ANITA                            | <b>(</b> 0.4                                     |                 |
|           | ANEX                             | <b>(U</b> 1                                      |                 |
|           |                                  |                                                  |                 |
|           |                                  |                                                  |                 |
|           |                                  |                                                  |                 |
|           |                                  |                                                  |                 |
|           |                                  |                                                  |                 |
|           |                                  |                                                  |                 |
|           |                                  |                                                  |                 |
|           |                                  |                                                  |                 |
|           |                                  |                                                  |                 |
|           |                                  |                                                  |                 |
|           |                                  |                                                  |                 |
|           |                                  |                                                  |                 |
|           |                                  |                                                  |                 |
|           |                                  |                                                  |                 |
|           |                                  |                                                  |                 |
|           |                                  |                                                  |                 |
|           |                                  |                                                  |                 |
|           |                                  |                                                  |                 |
|           |                                  |                                                  |                 |
|           |                                  |                                                  |                 |
|           |                                  |                                                  |                 |
|           |                                  |                                                  |                 |

Prepared by: Gustavo Dionisio

APPROVED BY/APPROVED ON:

### **Baker Hughes Proprietary**

### STATIC 152.4 mm 62.053 MPa 2500 m 6 Inch Gas Injection Flowline Structure Number: WSI 152,2553-RD-4042-6 R1 S.I. Units Pipe Data Sheet, 152.2553-RD-4042-6 R1

Approved by: Igor Pereira

Checked by: Victor Carnauba

| Inside Diameter      | 152.4 mm                        | Service                   | Static        | Ма    | x. Fluid Temp. | 90 °C            |
|----------------------|---------------------------------|---------------------------|---------------|-------|----------------|------------------|
| Design Pressure      | 62.053 MPa                      | Conveyed Fluid            | Gas           |       | Water Depth    | 2500 m           |
| Lavor                | Material                        |                           | I.D.          | Thick | O.D.           | Weight           |
| Layer                | Materiai                        |                           | ט.ו.<br>[mm]  | [mm]  | [mm]           | Weight<br>[kg/m] |
| Flexbody             | Duplex 2205                     |                           | 152.40        | 8.40  | 169.20         | 18.855           |
| Flexbarrier          | PA 12 Natural                   |                           | 169.20        | 10.00 | 189.20         | 5.742            |
| Flexlok              | Steel 100ksi YS 125ksi UT       | -c                        | 189.20        | 11.99 | 213.18         | 52.109           |
| Flextape             | Tape PA 11 P20 30mil            | 3                         | 213.18        | 1.52  | 216.22         | 1.076            |
| Flextensile 1        | 0.7% C Steel 135ksi MYS         | 150 LITS                  | 216.22        | 7.00  | 230.22         | 33.244           |
| Flextape             | Polypropylene                   | 130 013                   | 230.22        | 0.30  | 230.22         | 0.199            |
| Flextape             | High Strength Glass Filam       | ont                       | 230.22        | 2.03  | 234.87         | 1.932            |
| Flextape             | Polypropylene                   | CIII                      | 234.87        | 0.30  | 235.47         | 0.203            |
| Flextensile 2        | 0.7% C Steel 135ksi MYS         | 150 LITS                  | 235.47        | 7.00  | 249.47         | 36.063           |
| Flextape             | Polypropylene                   | 130 010                   | 249.47        | 0.30  | 250.06         | 0.215            |
| Flextape             | High Strength Glass Filam       | ent                       | 250.06        | 2.03  | 254.12         | 2.092            |
| Flextape             | Polypropylene                   | CIII                      | 254.12        | 0.30  | 254.71         | 0.219            |
| Flextape             | Tape Polyester Fabric           |                           | 254.71        | 0.30  | 255.53         | 0.219            |
| Flexshield           | PE100 Grade GP100BK             |                           | 255.53        | 7.00  | 269.53         | 5.642            |
| Flexinsul            | PT7000 Insulation (Reinfo       | roing Laver)              | 269.53        | 3.50  | 276.53         | 2.048            |
| Flextape             | Tape Polyester Fabric           | lollig Layer)             | 276.53        | 0.41  | 277.34         | 0.236            |
| Abrasion             | PE100 Grade GP100BK             |                           | 277.34        | 7.00  | 291.34         | 6.111            |
| Abiasion             | 1 E 100 Glade GI 100BK          |                           | 211.04        | 7.00  | 201.04         | 0.111            |
| Layer                | Raw Material                    | Dimensions                | Mfg Pitch     | Wires | Angle          | Filled           |
| Flexbody             | 55.0mm x 1.6mm                  | 2.165in x 0.063in         |               |       | 87.9           | 85.48%           |
| Flexlok (Profile H)  | 27.3mm x 12.0mm                 | 1.076in x 0.472in         |               |       | 88.2           | 91.96%           |
| Flextensile 1        | 12.0mm x 7.0mm                  | 0.472in x 0.276in         | 1079.8mm      | 46    | 33.0           | 96.90%           |
| Flextensile 2        | 12.0mm x 7.0mm                  | 0.472in x 0.276in         | 1267.7mm      | 51    | 31.0           | 96.52%           |
| Flexinsul            | 50.8mm x 3.5mm                  | 2.000in x 0.138in         |               |       |                | 90.60%           |
|                      |                                 |                           |               |       |                |                  |
| Outside Diameter     | _                               | 291.34 mm                 | Volume (at    | •     |                | 66.381 l/m       |
| Storage Radius, SE   |                                 | 1.89 m                    | Volume (at    | •     |                | 20.095 l/m       |
| Operating Radius,    | ` • '                           | 4.60 m                    | Wt, Empty     |       |                | 166.20 kg/m      |
|                      | OBR (Flooded Bore) <sup>2</sup> | 2.40 m                    | S/W filled in |       |                | 186.81 kg/m      |
| Pipe bending stiffn  | ess at 23 °C, El                | 40.412 kNm²               | Air filled in |       |                | 98.14 kg/m       |
| Spooling Tension     | 4. 04                           | 11292 N                   | S/W filled in |       |                | 118.74 kg/m      |
| Therm. Cond./Leng    | • •                             | 5.26 w/m°C                | Burst Press   |       |                | 120.75 MPa       |
| Effective Thermal (  | •                               | 0.54 w/m°C                | Burst/Desig   | •     |                | 1.95             |
| OHTC, Uo {based o    | •                               | 10.99 w/m <sup>2</sup> °C | Collapse P    | •     | •              | 30.32 MPa        |
| SWDR with bore er    | • •                             | 3.30 N/m mm               | Collapse D    |       | •              | 3015 m           |
| SWDR with bore fil   |                                 | 4.00 N/m mm               | Collapse/D    | • •   | riexiok)       | 1.21             |
| Pipe torsional stiff | ness (GJ) at 23 °C:             |                           | Failure Ten   | sion  |                | 5913.1 kN        |
| Limp direction       |                                 | 1685 kNm²                 |               |       |                |                  |
| Stiff direction      |                                 | 3559 kNm²                 |               |       |                |                  |
| Axial Stiffness      |                                 | 563380 kN                 |               |       |                |                  |

### Notes

<sup>1</sup>OBR (MBR) increased to comply with internal carcass design criteria (0.85) for bent collapse failure mode.

<sup>2</sup>OBR (MBR) for pipe flooded condition in order to comply with Petrobras tensile armour design criteria (0.67) for tensile buckling failure mode.

Pipe Data Sheet revised to adjust correct Spooling Tension value. No structural/layer change.

Wenterchartos | Dat | 18+n t-00-2002 | 322 08c qué de BLE de BOATO | 14.4 GONES | 2021 | 13:21

APPROVED BY/APPROVED ON:

### **Baker Hughes Proprietary**

### STATIC 6 in 9000 psi 8202.1 ft 6 Inch Gas Injection Flowline Structure Number: WSI 152.2553-RD-4042-6 R1 U. S. Units Pipe Data Sheet, 152.2553-RD-4042-6 R1

Prepared by: Gustavo Dionisio Checked by: Victor Carnauba Approved by: Igor Pereira

| Inside Diameter<br>Design Pressure                                                                                                                     | 6 in<br>9000 psi                        | Service<br>Conveyed Fluid                                                                    | Static<br>Gas                                        | Max                                                  | . Fluid Temp.<br>Water Depth | 194 °F<br>8202.1 ft                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------|-------------------------------------------------|
|                                                                                                                                                        |                                         |                                                                                              |                                                      |                                                      | •                            |                                                 |
| Layer                                                                                                                                                  | Material                                |                                                                                              | I.D.                                                 | Thick                                                | O.D.                         | Weight                                          |
|                                                                                                                                                        |                                         |                                                                                              | [in]                                                 | [in]                                                 | [in]                         | [lbm/ft]                                        |
| Flexbody                                                                                                                                               | Duplex 2205                             |                                                                                              | 6.000                                                | 0.331                                                | 6.661                        | 12.670                                          |
| Flexbarrier                                                                                                                                            | PA 12 Natural                           |                                                                                              | 6.661                                                | 0.394                                                | 7.449                        | 3.859                                           |
| Flexlok                                                                                                                                                | Steel 100ksi YS 125ksi UT               | S                                                                                            | 7.449                                                | 0.472                                                | 8.393                        | 35.015                                          |
| Flextape                                                                                                                                               | Tape PA 11 P20 30mil                    |                                                                                              | 8.393                                                | 0.060                                                | 8.513                        | 0.723                                           |
| Flextensile 1                                                                                                                                          | 0.7% C Steel 135ksi MYS                 | 150 UTS                                                                                      | 8.513                                                | 0.276                                                | 9.064                        | 22.339                                          |
| Flextape                                                                                                                                               | Polypropylene                           |                                                                                              | 9.064                                                | 0.012                                                | 9.087                        | 0.134                                           |
| Flextape                                                                                                                                               | High Strength Glass Filam               | ent                                                                                          | 9.087                                                | 0.080                                                | 9.247                        | 1.298                                           |
| Flextape                                                                                                                                               | Polypropylene                           |                                                                                              | 9.247                                                | 0.012                                                | 9.270                        | 0.136                                           |
| Flextensile 2                                                                                                                                          | 0.7% C Steel 135ksi MYS                 | 150 UTS                                                                                      | 9.270                                                | 0.276                                                | 9.821                        | 24.233                                          |
| Flextape                                                                                                                                               | Polypropylene                           |                                                                                              | 9.821                                                | 0.012                                                | 9.845                        | 0.145                                           |
| Flextape                                                                                                                                               | High Strength Glass Filam               | ent                                                                                          | 9.845                                                | 0.080                                                | 10.005                       | 1.406                                           |
| Flextape                                                                                                                                               | Polypropylene                           |                                                                                              | 10.005                                               | 0.012                                                | 10.028                       | 0.147                                           |
| Flextape                                                                                                                                               | Tape Polyester Fabric                   |                                                                                              | 10.028                                               | 0.016                                                | 10.060                       | 0.146                                           |
| Flexshield                                                                                                                                             | PE100 Grade GP100BK                     |                                                                                              | 10.060                                               | 0.276                                                | 10.611                       | 3.791                                           |
| Flexinsul                                                                                                                                              | PT7000 Insulation (Reinfo               | rcing Layer)                                                                                 | 10.611                                               | 0.138                                                | 10.887                       | 1.376                                           |
| Flextape                                                                                                                                               | Tape Polyester Fabric                   |                                                                                              | 10.887                                               | 0.016                                                | 10.919                       | 0.159                                           |
| Abrasion                                                                                                                                               | PE100 Grade GP100BK                     |                                                                                              | 10.919                                               | 0.276                                                | 11.470                       | 4.106                                           |
| Layer                                                                                                                                                  | Raw Material                            | Dimensions                                                                                   | Mfg Pitch                                            | Wires                                                | Angle                        | Filled                                          |
| Flexbody                                                                                                                                               | 55.0mm x 1.6mm                          | 2.165in x 0.063in                                                                            |                                                      |                                                      | 87.9                         | 85.48%                                          |
| Flexlok (Profile H)                                                                                                                                    | 27.3mm x 12.0mm                         | 1.076in x 0.472in                                                                            |                                                      |                                                      | 88.2                         | 91.96%                                          |
| Flextensile 1                                                                                                                                          | 12.0mm x 7.0mm                          | 0.472in x 0.276in                                                                            | 42.51in                                              | 46                                                   | 33.0                         | 96.90%                                          |
| Flextensile 2                                                                                                                                          | 12.0mm x 7.0mm                          | 0.472in x 0.276in                                                                            | 49.91in                                              | 51                                                   | 31.0                         | 96.52%                                          |
| Flexinsul                                                                                                                                              | 50.8mm x 3.5mm                          | 2.000in x 0.138in                                                                            |                                                      |                                                      |                              | 90.60%                                          |
| Outside Diameter                                                                                                                                       |                                         | 11.470 in                                                                                    | Volume (at                                           | : OD)                                                |                              | 0.715 ft <sup>3</sup> /f                        |
| Storage Radius, SE                                                                                                                                     | BR                                      | 6.21 ft                                                                                      | Volume (at                                           | ID)                                                  |                              | 0.216 ft <sup>3</sup> /f                        |
| Operating Radius,                                                                                                                                      | OBR (Dry Bore)1                         | 15.09 ft                                                                                     | Wt, Empty                                            | in Air                                               |                              | 111.68 lb/f                                     |
| Operating Radius,                                                                                                                                      | OBR (Flooded Bore) <sup>2</sup>         | 7.87 ft                                                                                      | S/W filled i                                         |                                                      |                              | 125.53 lb/f                                     |
|                                                                                                                                                        |                                         | 97791 lbf ft <sup>2</sup>                                                                    | Air filled in                                        | S/W                                                  |                              | 65.95 lb/f                                      |
| Pipe bending stiffn                                                                                                                                    | •                                       | 2538 lbf                                                                                     | S/W filled i                                         |                                                      |                              | 79.79 lb/f                                      |
| Pipe bending stiffn<br>Spooling Tension                                                                                                                |                                         |                                                                                              | Burst Pressure                                       |                                                      |                              | 17514 ps                                        |
| Spooling Tension                                                                                                                                       | th. C/L                                 |                                                                                              | Burst Pres                                           |                                                      |                              |                                                 |
| Spooling Tension Therm. Cond./Leng                                                                                                                     |                                         | 3.04 BTU/hrft°F                                                                              |                                                      |                                                      |                              | 1.95                                            |
| Spooling Tension<br>Therm. Cond./Leng<br>Effective Thermal C                                                                                           | Cond, ke                                | 3.04 BTU/hrft°F<br>0.31 BTU/hrft°F                                                           | Burst/Desi                                           | gn                                                   | t Flexiok)                   |                                                 |
| Spooling Tension<br>Therm. Cond./Leng<br>Effective Thermal C<br>OHTC, Uo {based c                                                                      | Cond, ke<br>on ID}                      | 3.04 BTU/hrft°F<br>0.31 BTU/hrft°F<br>1.94 BTU/hrft²°F                                       | Burst/Desi<br>Collapse P                             | gn<br>ressure (We                                    | •                            | 4398 ps                                         |
| Spooling Tension<br>Therm. Cond./Leng<br>Effective Thermal C<br>OHTC, Uo {based of<br>SWDR with bore er                                                | Cond, ke<br>on ID}<br>npty              | 3.04 BTU/hrft°F<br>0.31 BTU/hrft°F<br>1.94 BTU/hrft²°F<br>5.749 lbf/ft in                    | Burst/Desi<br>Collapse P<br>Collapse D               | gn<br>Pressure (We<br>Pepth (Wet Fl                  | exlok)                       | 4398 ps<br>9893 f                               |
| Spooling Tension Therm. Cond./Leng Effective Thermal ( OHTC, Uo {based of SWDR with bore er SWDR with bore fil                                         | Cond, ke<br>on ID}<br>npty<br>led by SW | 3.04 BTU/hrft°F<br>0.31 BTU/hrft°F<br>1.94 BTU/hrft²°F                                       | Burst/Desi<br>Collapse P<br>Collapse D<br>Collapse/D | gn<br>Pressure (We<br>Pepth (Wet Fl<br>Pesign (Wet F | exlok)                       | 4398 ps<br>9893 f<br>1.2                        |
| Spooling Tension<br>Therm. Cond./Leng<br>Effective Thermal C<br>OHTC, Uo {based of<br>SWDR with bore er<br>SWDR with bore fill<br>Pipe torsional stiff | Cond, ke<br>on ID}<br>npty<br>led by SW | 3.04 BTU/hrft°F<br>0.31 BTU/hrft°F<br>1.94 BTU/hrft²°F<br>5.749 lbf/ft in<br>6.957 lbf/ft in | Burst/Desi<br>Collapse P<br>Collapse D               | gn<br>Pressure (We<br>Pepth (Wet Fl<br>Pesign (Wet F | exlok)                       | 4398 ps<br>9893 f<br>1.21                       |
| Spooling Tension Therm. Cond./Leng Effective Thermal ( OHTC, Uo {based of SWDR with bore er SWDR with bore fil                                         | Cond, ke<br>on ID}<br>npty<br>led by SW | 3.04 BTU/hrft°F<br>0.31 BTU/hrft°F<br>1.94 BTU/hrft²°F<br>5.749 lbf/ft in                    | Burst/Desi<br>Collapse P<br>Collapse D<br>Collapse/D | gn<br>Pressure (We<br>Pepth (Wet Fl<br>Pesign (Wet F | exlok)                       | 1.95<br>4398 ps<br>9893 f<br>1.21<br>1329318 lb |

### Notes

<sup>1</sup>OBR (MBR) increased to comply with internal carcass design criteria (0.85) for bent collapse failure mode.

<sup>2</sup>OBR (MBR) for pipe flooded condition in order to comply with Petrobras tensile armour design criteria (0.67) for tensile buckling failure mode.

Pipe Data Sheet revised to adjust correct Spooling Tension value. No structural/layer change.

APPROVED BY/APPROVED ON:

### **Baker Hughes Proprietary**

STATIC 152.4 mm 62.053 MPa 2500 m 6 Inch Gas Injection Flowline Structure Number: WSI 152.2553-RD-4042-6 R1 Customer Pipe Data Sheet: 152.2553-RD-4042-6 R1

Prepared by: Gustavo Dionisio Checked by: Victor Carnauba Approved by: Igor Pereira

| Inside Diameter   | 152.40 mm | 6.00 in Conveyed Fluid       | Gas  |
|-------------------|-----------|------------------------------|------|
| Outside Diameter  | 291.34 mm | 11.470 in Burst/Design Ratio | 1.95 |
| Water Depth       | 2500 m    | 8202.1 ft Collapse/Design    | 1.21 |
| Fluid Temperature | 90 °C     | 194 °F based on Wet Flexlok  |      |

| Design Pressure                                   | 62.05 MPa                 | 9000 psi                      |
|---------------------------------------------------|---------------------------|-------------------------------|
| Factory Test Pressure (1.3 * Design Pressure)     | 80.67 MPa                 | 11700 psi                     |
| Burst Pressure                                    | 120.75 MPa                | 17514 psi                     |
| Collapse Pressure (Wet Flexlok)                   | 30.32 MPa                 | 4398 psi                      |
| Collapse Depth (Wet Flexlok)                      | 3015 m                    | 9893 ft                       |
| Failure Tension                                   | 5913 kN                   | 1329318 lbf                   |
| Storage Bend Radius                               | 1.89 m                    | 6.21 ft                       |
| Operating Radius, OBR (Dry Bore)1                 | 4.60 m                    | 15.09 ft                      |
| Operating Radius, OBR (Flooded Bore) <sup>2</sup> | 2.40 m                    | 7.87 ft                       |
| Pipe bending stiffness at 23 °C                   | 40.412 kNm²               | 97791 lbf ft²                 |
| Volume (at OD)                                    | 66.381 l/m                | 0.715 ft <sup>3</sup> /ft     |
| Volume (at ID)                                    | 20.095 l/m                | 0.216 ft <sup>3</sup> /ft     |
| Weight Empty in Air                               | 166.20 kg/m               | 111.68 lb/ft                  |
| S/W filled in Air                                 | 186.81 kg/m               | 125.53 lb/ft                  |
| Air filled in S/W                                 | 98.14 kg/m                | 65.95 lb/ft                   |
| S/W filled in S/W                                 | 118.74 kg/m               | 79.79 lb/ft                   |
| Therm. Cond./Length, C/L                          | 5.26 w/m°C                | 3.04 BTU/hrft°F               |
| OHTC, Uo {based on ID}                            | 10.99 w/m <sup>2</sup> °C | 1.94 BTU/hrft <sup>2</sup> °F |
| Pipe torsional stiffness (GJ) at 23 °C:           |                           |                               |
| Limp direction                                    | 1685 kNm²                 | 4077 Kip ft <sup>2</sup>      |
| Stiff direction                                   | 3559 kNm²                 | 8612 Kip ft <sup>2</sup>      |
| Axial Stiffness                                   | 563380 kN                 | 126653 Kip                    |
|                                                   |                           |                               |

### **Notes**

Pipe Data Sheet revised to adjust correct Spooling Tension value. No structural/layer change.

<sup>&</sup>lt;sup>1</sup>OBR (MBR) increased to comply with internal carcass design criteria (0.85) for bent collapse failure mode.

<sup>&</sup>lt;sup>2</sup>OBR (MBR) for pipe flooded condition in order to comply with Petrobras tensile armour design criteria (0.67) for tens buckling failure mode.

| -         |                                               |                                                  |         | DEV.           |
|-----------|-----------------------------------------------|--------------------------------------------------|---------|----------------|
|           | RELATÓRIO TÉCNICO                             | RL-3A26.09-1500-94G-F                            | R1N-005 | REV.: <b>0</b> |
| BR        |                                               | ATP-TUPI                                         |         | 5 de 46        |
|           | TÍTULO: DUTO DE INJEÇÃO DE GÁS I              | SUB/ES/E                                         | EDD/EDF |                |
| PETROBRAS | DO FPSO CIDADE DE ITAC<br>ANÁLISE DE ESFORCOS | GUAI (LADO MANIFOLD) -<br>S EM EQUIP. SUB. (MCV) | -       | -              |
| PETROBRAS | DO FPSO CIDADE DE ITAL<br>ANÁLISE DE ESFORÇOS | GUAÍ (LADO MANIFOLD) —<br>S EM EQUIP. SUB. (MCV) |         |                |
|           |                                               |                                                  |         |                |
|           |                                               |                                                  |         |                |
|           |                                               |                                                  |         |                |
|           |                                               |                                                  |         |                |
|           |                                               |                                                  |         |                |
|           |                                               |                                                  |         |                |
|           |                                               |                                                  |         |                |

1. EXTERNAL ENDFITTING MATERIAL: ALLOY STEEL FORGING, MTL-5245, COATED WITH MTL-6015, 350 microns, WHITE COLOR, IN ACCORDANCE TO NORSOK M-501, SYSTEM 7B & 7C AS PER QAC-1132.

2. ENDFITTING FASTENER MATERIAL: MTL-6040, ELECTRODEPOSITED CADMIUM WITH CHROMATE (ASSEMBLED WITH LOCTITE 577). TORQUE VALUE:

| PLACEMENT              | FASTENER    | TORQUE VALUE                                                     |  |  |  |  |  |
|------------------------|-------------|------------------------------------------------------------------|--|--|--|--|--|
| PLACEMENT              | FASIENER    | ROCOL EASY RUN                                                   |  |  |  |  |  |
| BODY TO JACKET         | 3/4"-16 UNF | 224 +5/-0 ft-lbs [304 +7/-0 N.m] 216 +5/-0 ft-lbs [293 +7/-0 N.m |  |  |  |  |  |
| OUTER COLLAR TO JACKET | 3/4"-16 UNF | 224 +5/-0 ft-lbs [304 +7/-0 N.m] 216 +5/-0 ft-lbs [293 +7/-0 N.m |  |  |  |  |  |

3. FLANGE BOLTS FOR HYDRATIGHT HL TENSIONER:

 $\emptyset$ 1 1/2"-8 UN x 15 1/2", STUD BOLTS (MTL-6040), ELECTRODEPOSITED CADMIUM WITH CHROMATE (12 PER FLANGE). ø1 1/2"-8 UN, HEX NUTS (MTL-6040), ELECTRODEPOSITED CADMIUM WITH CHROMATE (24 PER FLANGE). TORQUE (TO BE CONSIDERED DRY): 2722 Nm (2007 ft/lbs); PRELOAD: 467 kN (104951 lbs) BOLTS NOT SHOWN FOR CLARITY.

- 4. MASS: 2600 kg (APPROX.).
- 5. NOMINAL DIMENSIONS GIVEN; DIMENSIONS APPLY PRIOR TO COATING.
- 6. MANUFACTURING ASSY DRW: B-EF1522540-00-05
- $\overline{\langle 7 \rangle}$  stencil with red color and low stress stamp marking identification in APPROXIMATE LOCATION SHOWN IN ACCORDANCE WITH WS-MFG-4236. ASSEMBLY DRAWING: B-EF1522540-00-05 BODY DRAWING: B-EF1522540-01-05 JACKET DRAWING: B-EF1522540-08-05 OUTER COLLAR DRAWING: B-EF1522540-09-01 INTERMEDIATE OUTER COLLAR DRAWING: B-EF1522540-24-04
- $\langle$  8  $\rangle$  SEAL AND INTERNAL SURFACES: 625 INCONEL, 3.00 MINIMUM THICKNESS PER MTL-5143.
- (9) HARDNESS TESTING PERFORMED ON INCONEL 625 OVERLAY REGION OF FLANGE FACE AT 3 EQUI-DISTANT WITHIN 6.0mm BANDED REGION OUTSIDE OF BX156 SEALING REGION. REFER TO DOCUMENTATION INCLUDED IN FLEXIBLE PIPE MANUFACTURING DATA DOSSIER FOR ACTUAL RESULTS WHERE THE MINIMUM HARDNESS SHALL BE 220 HBN.
- (10) IDENTIFICATION PLATE DRAWING: B-OAXXXXXXX-00-03
- (11) MAXIMUM ALLOWABLE LOAD TO SUPPORT THE ENDFITTING: 355ff CONSIDERING THE INTERNAL DIAMETER OF THE PLSV INSERT WITHIN THE RANGE OF: 574mm - 570mm.

|     | REVISIONS                                                                     |          |          |  |  |  |  |
|-----|-------------------------------------------------------------------------------|----------|----------|--|--|--|--|
| REV | DESCRIPTION                                                                   | APPROVED | DATE     |  |  |  |  |
| 1   | ORIGINAL ISSUE                                                                | DHr      | 08/06/21 |  |  |  |  |
| 2   | UPDATED IDENTIFY NUMBER IN NOTE & ADDED GROOVE IN JACKET, SEE ECR WS00058430. | LMo      | 14/09/21 |  |  |  |  |
| 3   | UPDATED NOTES 13 AND 14 AND STRUCTURE, SEE ECR WS00061523.                    | LMo      | 02/12/21 |  |  |  |  |
| 4   | UPDATED NOTES 14 AND 15, SEE ECR WS00064594                                   | RPo      | 15/02/22 |  |  |  |  |

- $\langle 12 \rangle$  N2 TEST PORT: 3/8"-18NPT TORQUE (TO BE CONSIDERED DRY): 40 +5/-0 ft-lbs [54 +7/-0 N.m].
- (13) VENT PORTS: 1"-12UNF, VENT VALVE MODEL: DRUKON UZC-G604IV2. TORQUE WITH TEFGEL (COF.0.1): 44 + 2.5/-0 ft-lbs  $\begin{bmatrix} 60 + 5/-0 & N.m \end{bmatrix}$
- 4 (14) VISUAL INSPECTION AREA.
- $\sqrt{4}$   $\langle 15 \rangle$  ultrasound inspection area.

|                                                                                                                                                     |               | [                                 | .02 .01 ITEM NO. IDENTIFYING NUMBER NOMENCLATURE             |                             |                | MATERIAL/MATERIAL SPECIFICATION | COMMENTS                          |              |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------------------------|--------------------------------------------------------------|-----------------------------|----------------|---------------------------------|-----------------------------------|--------------|--|
|                                                                                                                                                     |               |                                   | QONTITI                                                      |                             |                | PARTS LIST                      |                                   |              |  |
|                                                                                                                                                     |               |                                   | UNLESS OTHERWISE SPECIFIED:<br>DIMENSIONS ARE IN MILLIMETERS | APPROVAL I                  | NFORMATION     | REV                             | ENDIFITTING CON                   | NFIGURATION  |  |
| Baker Hughes 🔰                                                                                                                                      |               | WSI 152.2553-RD-4042-6            | TOLERANCES METRIC (mm)                                       | DRAWN BY:                   | DATE: 25/05/21 | JCo                             |                                   | ORF FLOWLINE |  |
| Danel Hagnes                                                                                                                                        | NEXT ASSEMBLY | WSI 152.2540-RD-4042-6<br>USED ON | X. ±1<br>0.X ±0.3                                            | CHECKED BY: A.BREVES        | DATE: 28/05/21 | ABs                             | FLANGE 7 1/16", AF                |              |  |
| COPYRIGHT © 2019 BAKER HUGHES COMPANY LLC. ALL RIGHTS RESERVED. THE INFORMATION CONTAINED IN THIS DOCUMENT IS CONFIDENTIAL AND PROPRIETARY PROPERTY | APPLI         | CATION                            | 0.XX ±0.10  ANGULAR ±0* 30'  SURFACE ROUGHNESS 3.2/          | ENGINEERED BY: A.FIGUEIREDO | DATE: 07/06/21 | СВо                             | , , ,                             | RING BX156   |  |
| OF BAKER HUGHES AND ITS AFFILIATES. IT IS TO BE USED ONLY FOR THE BENEFIT OF BAKER HUGHES AND MAY NOT BE DISTRIBUTED. TRANSMITTED. REPRODUCED.      | •             | -1209                             | BREAK SHARP EDGES                                            | ENGINEERING APPVL: D.HAFNER | DATE: 08/06/21 | RPo                             | SIZE DRAWING NUMBER  A3 CB-FF1522 | 2540-00-05 4 |  |
| ALTERED OR USED FOR ANY PURPOSE WITHOUT THE EXPRESS WRITTEN CONSENT OF BAKER HUGHES.                                                                |               | SCALE - IF  <br>IBT ASK           | DO NOT SCALE DRAWING                                         | TEAMCENTER I.D.:            | WS_023547      |                                 | SCALE NONE TEMPLATE REF:          | SHEET 1 OF 2 |  |

6



|           | RELATÓRIO TÉCNICO                             | RL-3A26.09-1500-94G-F                            | R1N-005  | REV.: 0 |
|-----------|-----------------------------------------------|--------------------------------------------------|----------|---------|
| BR        | CLIENTE: UN-BS/                               | /ATP-TUPI                                        | FOLHA: 2 | 8 de 46 |
|           | TÍTULO: DUTO DE INJEÇÃO DE GÁS I              | DO POÇO LL-44 AO MSIAG-01                        | SUB/ES/  | EDD/EDF |
| PETROBRAS | DO FPSO CIDADE DE ITAC<br>ANÁLISE DE ESFORCOS | GUAÍ (LADO MANIFOLD) –<br>S EM EQUIP. SUB. (MCV) |          | _       |
|           |                                               | •                                                |          |         |
|           |                                               |                                                  |          |         |
|           |                                               |                                                  |          |         |
|           |                                               |                                                  |          |         |
|           |                                               |                                                  |          |         |
|           |                                               |                                                  |          |         |
|           |                                               |                                                  |          |         |
|           |                                               |                                                  |          |         |
|           |                                               |                                                  |          |         |
|           |                                               |                                                  |          |         |
|           |                                               |                                                  |          |         |
|           |                                               |                                                  |          |         |
|           |                                               |                                                  |          |         |
|           |                                               |                                                  |          |         |
|           |                                               |                                                  |          |         |
|           |                                               |                                                  |          |         |
|           |                                               |                                                  |          |         |
|           |                                               |                                                  |          |         |
|           |                                               |                                                  |          |         |
|           |                                               |                                                  |          |         |
|           |                                               |                                                  |          |         |
|           | ANEN                                          | /O 2                                             |          |         |
|           | ANEX                                          | (U 3                                             |          |         |
|           |                                               |                                                  |          |         |
|           |                                               |                                                  |          |         |
|           |                                               |                                                  |          |         |
|           |                                               |                                                  |          |         |
|           |                                               |                                                  |          |         |
|           |                                               |                                                  |          |         |
|           |                                               |                                                  |          |         |
|           |                                               |                                                  |          |         |
|           |                                               |                                                  |          |         |
|           |                                               |                                                  |          |         |
|           |                                               |                                                  |          |         |
|           |                                               |                                                  |          |         |
|           |                                               |                                                  |          |         |
|           |                                               |                                                  |          |         |
|           |                                               |                                                  |          |         |
|           |                                               |                                                  |          |         |
|           |                                               |                                                  |          |         |
|           |                                               |                                                  |          |         |
|           |                                               |                                                  |          |         |
|           |                                               |                                                  |          |         |
|           |                                               |                                                  |          |         |





|           |                                              |                                                  | 1       | DE) /          |
|-----------|----------------------------------------------|--------------------------------------------------|---------|----------------|
|           | RELATÓRIO TÉCNICO                            | RL-3A26.09-1500-94G-F                            | R1N-005 | REV.: <b>0</b> |
| BR        |                                              | ATP-TUPI                                         |         | de 46          |
|           | TÍTULO: DUTO DE INJEÇÃO DE GÁS I             | SUB/ES/E                                         | DD/EDF  |                |
| PETROBRAS | DO FPSO CIDADE DE ITA<br>ANÁLISE DE ESFORCOS | GUAI (LADO MANIFOLD) –<br>S EM EQUIP. SUB. (MCV) | _       |                |
| PETROBRAS | ANEX                                         | GUAÍ (LADO MANIFOLD) – S EM EQUIP. SUB. (MCV)    |         |                |
|           |                                              |                                                  |         |                |
|           |                                              |                                                  |         |                |

|             |          |                      | FOLH                 | A DE DAI             |                                | Nº                   | FD-3            | A00.00-1514 | -276-PEK-00 | )1     |
|-------------|----------|----------------------|----------------------|----------------------|--------------------------------|----------------------|-----------------|-------------|-------------|--------|
| B           | R        | CLIENTE:<br>PROGRAMA |                      |                      | SUB/OPSU                       | IB/ISBM/SIDS         |                 |             | FOLHA       | 1 de 6 |
| PETRO       | OBRAS    | ÁREA:                | <b>\:</b>            |                      | U                              | D-BS                 |                 |             | NP.         | -1     |
| DP&T-SUE    | B/ES/EEC | TÍTULO:              |                      | Interliga            | igação dos manifolds MSIAG FMC |                      |                 | ;           | SUB/ES/EECE |        |
|             |          |                      |                      |                      |                                |                      |                 |             |             |        |
|             |          |                      |                      | ĺÌ                   | NDICE DE F                     | REVISÕES             |                 |             |             |        |
| REV.        |          |                      |                      | DESC                 | RIÇÃO E/O                      | U FOLHAS             | ATINGIDA        | S           |             |        |
| 0           | ORIG     | INAL                 |                      |                      |                                |                      |                 |             |             |        |
| А           | ATUA     | LIZAÇÃO DI           | E DADOS              |                      |                                |                      |                 |             |             |        |
| В           | ADAP     | TAÇÃO À N            | OVA MÁSCARA          | A E ACREÇÃO          | DE DADOS                       |                      |                 |             |             |        |
| С           | RETIF    | FICAÇÃO DE           | DADOS                |                      |                                |                      |                 |             |             |        |
| D           | ADAP     | TAÇÃO À N            | OVA MÁSCARA          |                      |                                |                      |                 |             |             |        |
|             |          |                      |                      |                      |                                |                      |                 |             |             |        |
|             |          |                      |                      |                      |                                |                      |                 |             |             |        |
|             |          |                      |                      |                      |                                |                      |                 |             |             |        |
|             |          |                      |                      |                      |                                |                      |                 |             |             |        |
|             |          |                      |                      |                      |                                |                      |                 |             |             |        |
|             |          |                      |                      |                      |                                |                      |                 |             |             |        |
|             |          |                      |                      |                      |                                |                      |                 |             |             |        |
|             |          |                      |                      |                      |                                |                      |                 |             |             |        |
|             |          |                      |                      |                      |                                |                      |                 |             |             |        |
|             |          |                      |                      |                      |                                |                      |                 |             |             |        |
|             |          |                      |                      |                      |                                |                      |                 |             |             |        |
|             |          |                      |                      |                      |                                |                      |                 |             |             |        |
|             |          |                      |                      |                      |                                |                      |                 |             |             |        |
|             |          |                      |                      |                      |                                |                      |                 |             |             |        |
|             |          |                      |                      |                      |                                |                      |                 |             |             |        |
|             |          |                      |                      |                      |                                |                      |                 |             |             |        |
|             |          |                      |                      |                      |                                |                      |                 |             |             |        |
|             |          |                      |                      |                      |                                |                      |                 |             |             |        |
|             |          |                      |                      |                      |                                |                      |                 |             |             |        |
|             |          |                      |                      |                      |                                |                      |                 |             |             |        |
|             |          |                      |                      |                      |                                |                      |                 |             |             |        |
|             |          |                      |                      |                      |                                |                      |                 |             |             |        |
|             |          |                      |                      |                      |                                |                      |                 |             |             |        |
|             |          |                      |                      |                      |                                |                      |                 |             |             |        |
| DATA        |          | REV. 0<br>09/03/2016 | REV. A<br>18/05/2016 | REV. B<br>09/01/2017 | REV. C<br>30/03/2017           | REV. D<br>16/08/2019 | REV. E          | REV. F      | REV. G      | REV. H |
| PROJETO     |          | SUB/ENGES            | ESSUB/ENGES          | SUB/ES/EECE          | SUB/ES/EECE                    | SUB/ES/EECE          |                 |             |             |        |
| EXECUÇÃO    | Fe       | elipe Stamile        | Felipe Stamile       | Felipe Stamile       | Felipe Stamile                 | Felipe Stamile       |                 |             |             |        |
| VERIFICAÇÃO |          | elipe Stamile        | Felipe Stamile       | Felipe Stamile       | Felipe Stamile                 | Felipe Stamile       |                 |             | 1           |        |
| APROVAÇÃO   |          | elipe Stamile        | Felipe Stamile       | Felipe Stamile       | Felipe Stamile                 | Felipe Stamile       | LIA EINIALIDADE |             |             |        |

FORMULÁRIO PERTENCENTE A PETROBRAS N-0381 REV. L.



### **FOLHA DE DADOS**

FD-3A00.00-1514-276-PEK-001

REV.

D

Interligação dos manifolds MSIAG FMC

NP-1

|  | SUB/ES/EECE |
|--|-------------|
|  |             |

|                          | DETA                                  | LHES DA OPERAÇÃO             |            |
|--------------------------|---------------------------------------|------------------------------|------------|
| OPERAÇÃO OPSUB           | Interligação                          | dos manifolds MSIAG FMC      |            |
| OPERAÇÃO EQSB            | Inte                                  | erligação dos MCVs           |            |
| POÇO OU EQUIPAMENTO      | MSIAGs FMC                            | NAVIO PREVISTO (PLSV)        | -          |
| LOCAÇÃO                  | MSIAGs FMC                            | DATA DE INÍCIO DAS OPERAÇÕES | -          |
| LÂMINA D'ÁGUA -          |                                       | TAG PRINCIPAL                | -          |
| FUNÇÕES DAS LINHAS       | Injeção de Água, Injeção de Gás e UEH | FORNECEDOR DOS EQUIPAMENTOS  | TechnipFMC |
| PLATAFORMA (UEP) / ATIVO | -                                     | FABRICANTE EPCI? (Sim/Não)   | Não        |
|                          | CONTATOS ( nome / chave )             | DATAS                        |            |
| COORDENADOR IPSUB        |                                       | DATA DE SOLICITAÇÃO          | 15/08/2019 |
| ENGENHARIA BÁSICA ISBM   | GEMDI                                 | DATA DE RESPOSTA             | 16/08/2019 |
| COMPRADOR                | SUB/ES/EECE/EES                       | HÁ PENDÊNCIAS? (Sim/Não)     | Não        |

### DADOS PARA ANÁLISE DE CARGAS DOS MCVs - FASE DE INSTALAÇÃO



TÍTULO:

| COTA (mm)                                                                                          | DESCRIÇÃO                                                                 | INFORMAÇÃO |        |      |   |      |      |  |  |
|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|------------|--------|------|---|------|------|--|--|
| COTA (IIIIII)                                                                                      |                                                                           | MCVEIA     | MCVEIG | EHDM |   | MCVI | UTM  |  |  |
| α                                                                                                  | Ângulo do gooseneck                                                       | 60°        | 60°    | 45°  |   | 60°  | 45°  |  |  |
| A*                                                                                                 | A* Distância vertical do flange do MCV ao solo marinho 4602 4498 3005 381 |            | 3810   | 3005 |   |      |      |  |  |
| B         Distância vertical do olhal ao flange         1005         1005         1311         502 |                                                                           | 1311       |        |      |   |      |      |  |  |
| С                                                                                                  | Distância horizontal do olhal ao flange                                   | 1786       | 1786   | 1324 |   | 907  | 1324 |  |  |
| D                                                                                                  | Distância vertical do flange ao centro de gravidade                       | 815        | 823    | -352 |   | 681  | -319 |  |  |
| Е                                                                                                  | Distância horizontal do flange ao centro de gravidade                     | 1879       | 1893   | 1388 |   | 864  | 1380 |  |  |
| F                                                                                                  | Distância vertical do flange à base do MCV                                | 2655       | 2656   | 1537 |   | 2037 | 1537 |  |  |
| G                                                                                                  | Distância horizontal do flange ao centro do hub do MCV                    | 2163       | 2163   | 1700 |   | 839  | 1700 |  |  |
| Н                                                                                                  | Posição do centro de gravidade em relação ao Eixo Y                       | 16         | 17     | 5    |   | 0    | 0    |  |  |
| Peso Submerso                                                                                      | Peso do MCV submerso [kgf]                                                | 11123      | 11035  | 2003 | · | 5043 | 1769 |  |  |
| Estaiamento                                                                                        | Típico (T), Atípico (A) ou Não Definido (ND)                              | Т          | Т      | Т    | · | Т    | Т    |  |  |

### Observações:

- \* Na tabela acima, as distâncias verticais dos flanges ao solo são calculadas com base nas dimensões dos equipamentos, obtidos nos manuais de seus fabricantes, e em medições reais feitas pelas embarcações instaladoras das alturas do Alojador de Alta ou dos hubs da BAP em relação ao solo. Por se tratarem de valores empíricos, estes estão sujeitos a erros de leitura. Assim, deve ser considerada uma margem de erro de 500mm para mais ou para menos nos valores indicados nos campos A.
- \* Assumir que a capacidade de carga dos olhais dos MCVs é sempre igual ou superior a aquela das manilhas ou das ferramentas de instalação que serão utilizadas.
- \* Em casos de divergência de valores entre fontes de informações distintas, deve-se considerar aqueles consolidados na Folha de Dados como sendo os corretos.

|      |              |                             |                          |                                       | ADOS PARA ELABORAÇÃO DO MEMOR                                                    | RIAL DESCRITIVO                                              |                                           |               |
|------|--------------|-----------------------------|--------------------------|---------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------|---------------|
|      |              |                             |                          | ções solicitadas pela ISBM            |                                                                                  | Informações ret                                              | ornadas à ISBM pela I                     | ECE           |
| Item | Sub-<br>item | Equipamentos                | Sub-<br>Equipamentos     | Informações necessárias               | Descrição                                                                        | Informação solicitada                                        | Disponibilidade em Aplicativo Corporativo | Quitação EECE |
| * US | tags into    | ormados são aqueles planeja | ados no momer            | ito do preenchimento da pianiina      | e estão sujeitos a mudança antes da ir                                           | nstalação                                                    | MA-3000.00-1514-276-                      |               |
| 1    | 1.01         | Manifold (Estrutura)        | N.A                      | NP                                    | NP do Manifold                                                                   | P7000048053                                                  | FBG-002                                   | SIM           |
| 1    | 1.02         | Manifold (Estrutura)        | N.A                      | Desenho                               | Número do desenho do Manifold                                                    | DU700163669                                                  | N.A                                       | SIM           |
| 1    | 1.03         | Manifold (Estrutura)        | N.A                      | Diagrama hidráulico                   | NP ou número do desenho do diagrama<br>hidráulico do Manifold                    | DA700142633                                                  | Sindotec                                  | SIM           |
| 1    | 1.04         | Manifold (Estrutura)        | N.A                      | Dimensões                             | Dimensões principais do Manifold                                                 | 15463mm x 10140mm x 3825mm                                   | Sindotec                                  | SIM           |
| 1    | 1.05         | Manifold (Estrutura)        | N.A                      | Especificação dos Flanges             | Especificação dos flanges do Manifold<br>(em caso de Manifold DA)                | N.A                                                          | N.A                                       | SIM           |
| 1    | 1.06         | Manifold (Estrutura)        | N.A                      | Interface elétrica                    | Especificação da interface elétrica entre o cabo elétrico e o equipamento        | P7000048062                                                  | Sindotec                                  | SIM           |
| 1    | 1.07         | Manifold (Estrutura)        | Capa de Proteção<br>Hubs | NP                                    | NP da Capa de Proteção dos Hubs                                                  | P7000048075 (MCVE)<br>P7000048074 (MCVI)                     | Sindotec                                  | SIM           |
| 1    | 1.08         | Manifold (Estrutura)        | Capa de Proteção<br>Hubs | Desenho                               | Número do desenho da Capa de Proteção dos<br>Hubs                                | DU700157874 (MCVE)<br>DU700153208 (MCVI)                     | Sindotec                                  | SIM           |
| 1    | 1.09         | Manifold (Estrutura)        | Capa de Proteção<br>Hubs | Peso (kgf)                            | Dimensões principais das Capas de Teste dos<br>Hubs da BAP                       | 129 Kgf (MCVE)<br>64 Kgf (MCVI)                              | Sindotec                                  | SIM           |
| 1    | 1.10         | Manifold (Estrutura)        | Capa de Proteção<br>Hubs | Dimensões                             | Pesos das Capas de Teste dos Hubs da BAP no<br>ar                                | 638mm x 503mm x 652mm (MCVE)<br>468mm x 333mm x 639mm (MCVI) | Sindotec                                  | SIM           |
| 2    | 2.01         | MCVE de Injeção de Água     | N.A                      | NP                                    | NP do MCVE de interligação da linha de IA à<br>Plataforma                        | P7000048061                                                  | Sindotec                                  | SIM           |
| 2    | 2.02         | MCVE de Injeção de Água     | N.A                      | Desenho                               | Número do desenho do MCVE IA                                                     | DU700149583                                                  | Sindotec                                  | SIM           |
| 2    | 2.03         | MCVE de Injeção de Água     | N.A                      | Peso (kgf)                            | Peso do MCVE IA no ar                                                            | 12786 Kgf                                                    | Sindotec                                  | SIM           |
| 2    | 2.04         | MCVE de Injeção de Água     | N.A                      | Modelo da Manilha                     | Modelo da manilha do MCVE IA ou NP da ferramenta e o modelo de sua manilha       | Crosby G-2160 - 500 Tf                                       | Sindotec                                  | SIM           |
| 2    | 2.05         | MCVE de Injeção de Água     | N.A                      | Tolerância de assentamento vertical   | Tolerância vertical de assentamento do MCVE IA                                   | 6°                                                           | Sindotec                                  | SIM           |
| 2    | 2.06         | MCVE de Injeção de Água     | N.A                      | Tolerância de assentamento horizontal | Tolerância horizontal de assentamento do MCVE IA                                 | 30°                                                          | Sindotec                                  | SIM           |
| 2    | 2.07         | MCVE de Injeção de Água     | N.A                      | Válvula de bloqueio                   | Informação se o MCVE IA é dotado de válvula<br>de bloqueio                       | Possui                                                       | Sindotec                                  | SIM           |
| 2    | 2.08         | MCVE de Injeção de Água     | N.A                      | Especificação do Flange               | Especificação do flange em contato com a linha e o modelo do anel de vedação     | 9" - API 17SV - 10K Psi -<br>Anel BX-157                     | Sindotec                                  | SIM           |
| 2    | 2.09         | MCVE de Injeção de Água     | N.A                      | Diagrama hidráulico                   | NP ou número do desenho do diagrama<br>hidráulico do MCVE IA                     | DA700162616                                                  | Sindotec                                  | SIM           |
| 2    | 2.10         | MCVE de Injeção de Água     | N.A                      | Carga máxima no Braço do MCV          | Indicação do carregamento máximo que o gooseneck do MCVE IA pode suportar        | 500 Tf                                                       | Sindotec                                  | SIM           |
| 2    | 2.11         | MCVE de Injeção de Água     | N.A                      | Swivel do Flange                      | Informação se o flange do MCVE IA (interface com a linha flexível) possui swivel | Possui                                                       | Sindotec                                  | SIM           |
| 2    | 2.12         | MCVE de Injeção de Água     | N.A                      | Ângulo do Goose Neck                  | Informação da angulação que o goose- neck do  MCVE IA faz com a vertical         | 60°                                                          | Sindotec                                  | SIM           |
| 2    | 2.13         | MCVE de Injeção de Água     | N.A                      | Revestimento do Flange                | Informação do material de revestimento do flange do MCVE IA                      | Inconel 625                                                  | Sindotec                                  | SIM           |
| 2    | 2.14         | MCVE de Injeção de Água     | SKID TRANSP              | NP                                    | NP do Skid de Transporte do MCVE IA                                              | P7000048094                                                  | Sindotec                                  | SIM           |
| 2    | 2.15         | MCVE de Injeção de Água     | SKID TRANSP              | Desenho                               | Número do desenho do Skid de Transporte do MCVE IA                               | DU700164747                                                  | Sindotec                                  | SIM           |
| 2    | 2.16         | MCVE de Injeção de Água     | SKID TRANSP              | Peso (kgf)                            | Peso no ar do Skid de Transporte do MCVE IA                                      | 2593 Kgf                                                     | Sindotec                                  | SIM           |
| 2    | 2.17         | MCVE de Injeção de Água     | SKID TRANSP              | SWL dos olhais de içamento            | SWL dos olhais de içamento do Skid de Transporte do MCVE IA                      | 3,875 Tf                                                     | Sindotec                                  | SIM           |
| 2    | 2.18         | MCVE de Injeção de Água     | SKID TRANSP              | Dimensões                             | Dimensões principais do Skid de Transporte do MCVE IA                            | 3759mm x 2515mm x 3573mm                                     | Sindotec                                  | SIM           |

|      |              |                             |                      |                                                                | NDOS PARA ELABORAÇÃO DO MEMORIA                                                     |                                             |                                              |               |
|------|--------------|-----------------------------|----------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------|----------------------------------------------|---------------|
|      |              |                             | Informa              | ções solicitadas pela ISBM                                     |                                                                                     | Informações ret                             | tornadas à ISBM pela E                       | ECE           |
| Item | Sub-<br>item | Equipamentos                | Sub-<br>Equipamentos | Informações necessárias                                        | Descrição                                                                           | Informação solicitada                       | Disponibilidade em<br>Aplicativo Corporativo | Quitação EECE |
| * Os | tags info    | ormados são aqueles planeja | ados no momer        | nto do preenchimento da planilha                               | e estão sujeitos a mudança antes da inst                                            | alação                                      |                                              |               |
| 2    | 2.19         | MCVE de Injeção de Água     | BASE DE TESTE        | NP                                                             | NP da Base de Teste do MCVE IA                                                      | P7000048079                                 | Sindotec                                     | SIM           |
| 2    | 2.20         | MCVE de Injeção de Água     | BASE DE TESTE        | Desenho                                                        | Número do desenho da Base de Teste do MCVE<br>IA                                    | DU700158077                                 | Sindotec                                     | SIM           |
| 2    | 2.21         | MCVE de Injeção de Água     | BASE DE TESTE        | Peso (kgf)                                                     | Peso no ar da Base de Teste do MCVE IA                                              | 1976 Kgf                                    | Sindotec                                     | SIM           |
| 2    | 2.22         | MCVE de Injeção de Água     | BASE DE TESTE        | SWL dos olhais de içamento                                     | SWL dos olhais de içamento da Base de Teste<br>do MCVE IA                           | 500 Kgf                                     | Sindotec                                     | SIM           |
| 2    | 2.23         | MCVE de Injeção de Água     | BASE DE TESTE        | Dimensões                                                      | Dimensões principais da Base de Teste do MCVE<br>IA                                 | 3277mm x 2654mm x 2227mm                    | Sindotec                                     | SIM           |
| 2    | 2.24         | MCVE de Injeção de Água     | N.A                  | Altura máxima do conjunto MCV assentado sobre a base de testes | Informação da altura máxima do conjunto<br>MCVE IA/Base de Teste                    | 4266mm                                      | Sindotec                                     | SIM           |
| 3    | 3.01         | MCVE de Injeção de Gás      | N.A                  | NP                                                             | NP do MCVE de interligação da linha de IA à<br>Plataforma                           | P7000051394                                 | Sindotec                                     | SIM           |
| 3    | 3.02         | MCVE de Injeção de Gás      | N.A                  | Desenho                                                        | Número do desenho do MCVE IG                                                        | DU700164510                                 | Sindotec                                     | SIM           |
| 3    | 3.03         | MCVE de Injeção de Gás      | N.A                  | Peso (kgf)                                                     | Peso do MCVE IG no ar                                                               | 12684 Kgf                                   | Sindotec                                     | SIM           |
| 3    | 3.04         | MCVE de Injeção de Gás      | N.A                  | Modelo da Manilha                                              | Modelo da manilha do MCVE IG ou NP da ferramenta e o modelo de sua manilha          | Crosby G-2160 - 500 Tf                      | Sindotec                                     | SIM           |
| 3    | 3.05         | MCVE de Injeção de Gás      | N.A                  | Tolerância de assentamento vertical                            | Tolerância vertical de assentamento do MCVE  IG                                     | 6°                                          | Sindotec                                     | SIM           |
| 3    | 3.06         | MCVE de Injeção de Gás      | N.A                  | Tolerância de assentamento horizontal                          | Tolerância horizontal de assentamento do  MCVE IG                                   | 30°                                         | Sindotec                                     | SIM           |
| 3    | 3.07         | MCVE de Injeção de Gás      | N.A                  | Válvula de bloqueio                                            | Informação se o MCVE IG é dotado de válvula de bloqueio                             | Possui                                      | Sindotec                                     | SIM           |
| 3    | 3.08         | MCVE de Injeção de Gás      | N.A                  | Especificação do Flange                                        | Especificação do flange em contato com a linha e o modelo do anel de vedação        | 7 1/16" API 17SV - 10K Psi -<br>Anel BX-156 | Sindotec                                     | SIM           |
| 3    | 3.09         | MCVE de Injeção de Gás      | N.A                  | Diagrama hidráulico                                            | NP ou número do desenho do diagrama<br>hidráulico do MCVE IG                        | DA700162616                                 | Sindotec                                     | SIM           |
| 3    | 3.10         | MCVE de Injeção de Gás      | N.A                  | Carga máxima no Braço do MCV                                   | Indicação do carregamento máximo que o gooseneck do MCVE IG pode suportar           | 500 Tf                                      | Sindotec                                     | SIM           |
| 3    | 3.11         | MCVE de Injeção de Gás      | N.A                  | Swivel do Flange                                               | Informação se o flange do MCVE IG<br>(interface com a linha flexível) possui swivel | Possui                                      | Sindotec                                     | SIM           |
| 3    | 3.12         | MCVE de Injeção de Gás      | N.A                  | Ângulo do Goose Neck                                           | Informação da angulação que o goose- neck do<br>MCVE IG faz com a vertical          | 60°                                         | Sindotec                                     | SIM           |
| 3    | 3.13         | MCVE de Injeção de Gás      | N.A                  | Revestimento do Flange                                         | Informação do material de revestimento do flange do MCVE IG                         | Inconel 625                                 | Sindotec                                     | SIM           |
| 3    | 3.14         | MCVE de Injeção de Gás      | SKID TRANSP          | NP                                                             | NP do Skid de Transporte do MCVE IG                                                 | P7000048094                                 | Sindotec                                     | SIM           |
| 3    | 3.15         | MCVE de Injeção de Gás      | SKID TRANSP          | Desenho                                                        | Número do desenho do Skid de Transporte do MCVE IG                                  | DU700164747                                 | Sindotec                                     | SIM           |
| 3    | 3.16         | MCVE de Injeção de Gás      | SKID TRANSP          | Peso (kgf)                                                     | Peso no ar do Skid de Transporte do MCVE IG                                         | 2593 Kgf                                    | Sindotec                                     | SIM           |
| 3    | 3.17         | MCVE de Injeção de Gás      | SKID TRANSP          | SWL dos olhais de içamento                                     | SWL dos olhais de içamento do Skid de Transporte do MCVE IG                         | 3,875 Tf                                    | Sindotec                                     | SIM           |
| 3    | 3.18         | MCVE de Injeção de Gás      | SKID TRANSP          | Dimensões                                                      | Dimensões principais do Skid de Transporte do MCVE IG                               | 3759mm x 2515mm x 3573mm                    | Sindotec                                     | SIM           |
| 3    | 3.19         | MCVE de Injeção de Gás      | BASE DE TESTE        | NP                                                             | NP da Base de Teste do MCVE IG                                                      | P7000048079                                 | Sindotec                                     | SIM           |
| 3    | 3.20         | MCVE de Injeção de Gás      | BASE DE TESTE        | Desenho                                                        | Número do desenho da Base de Teste do MCVE<br>IG                                    | DU700158077                                 | Sindotec                                     | SIM           |
| 3    | 3.21         | MCVE de Injeção de Gás      | BASE DE TESTE        | Peso (kgf)                                                     | Peso no ar da Base de Teste do MCVE IG                                              | 1976 Kgf                                    | Sindotec                                     | SIM           |
| 3    | 3.22         | MCVE de Injeção de Gás      | BASE DE TESTE        | SWL dos olhais de içamento                                     | SWL dos olhais de içamento da Base de Teste do MCVE IG                              | 500 Kgf                                     | Sindotec                                     | SIM           |
| 3    | 3.23         | MCVE de Injeção de Gás      | BASE DE TESTE        | Dimensões                                                      | Dimensões principais da Base de Teste do MCVE<br>IG                                 | 3277mm x 2654mm x 2227mm                    | Sindotec                                     | SIM           |

|      |              |                             |                                | D                                                                 | ADOS PARA ELABORAÇÃO DO MEMORIA                                                          | AL DESCRITIVO                                                     |                                              |               |
|------|--------------|-----------------------------|--------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------|---------------|
|      |              |                             | Informa                        | ções solicitadas pela ISBM                                        |                                                                                          | Informações ret                                                   | tornadas à ISBM pela E                       | ECE           |
| Item | Sub-<br>item | Equipamentos                | Sub-<br>Equipamentos           | Informações necessárias                                           | Descrição                                                                                | Informação solicitada                                             | Disponibilidade em<br>Aplicativo Corporativo | Quitação EECE |
| * Us | tags inf     | ormados são aqueles planeja | ados no momen                  |                                                                   | e estão sujeitos a mudança antes da inst                                                 | ralação                                                           |                                              |               |
| 3    | 3.24         | MCVE de Injeção de Gás      | N.A                            | Altura máxima do conjunto MCV<br>assentado sobre a base de testes | Informação da altura máxima do conjunto<br>MCVE IG/Base de Teste                         | 4266mm                                                            | Sindotec                                     | SIM           |
| 4    | 4.01         | MTU DE Plataforma (EHDM)    | N.A                            | NP                                                                | NP do MTU (EHDM) de interligação da linha de<br>UEH à Plataforma                         | P7000048062                                                       | Sindotec                                     | SIM           |
| 4    | 4.02         | MTU DE Plataforma (EHDM)    | N.A                            | Desenho                                                           | Número do desenho do EHDM                                                                | DU700152194                                                       | Sindotec                                     | SIM           |
| 4    | 4.03         | MTU DE Plataforma (EHDM)    | N.A                            | Peso (kgf)                                                        | Peso do EHDM no ar                                                                       | 2302 Kgf                                                          | Sindotec                                     | SIM           |
| 4    | 4.04         | MTU DE Plataforma (EHDM)    | N.A                            | Válvula de bloqueio                                               | Informação se o EHDM é dotado de válvula de bloqueio                                     | Possui                                                            | Sindotec                                     | SIM           |
| 4    | 4.05         | MTU DE Plataforma (EHDM)    | N.A                            | Modelo da Manilha                                                 | Modelo da manilha do EHDM ou NP da<br>ferramenta e o modelo de sua manilha               | Crosby G-2140 - 175 Tf                                            | Sindotec                                     | SIM           |
| 4    | 4.06         | MTU DE Plataforma (EHDM)    | N.A                            | Especificação do Flange                                           | Especificação do flange em contato com o flange da linha, se este é rotativo ou fixo e o | Rotativo - 9" API 6B - 2K Psi                                     | Sindotec                                     | SIM           |
| 4    | 4.07         | MTU DE Plataforma (EHDM)    | N.A                            | Diagrama hidráulico                                               | NP ou número do desenho do diagrama<br>hidráulico do EHDM                                | DA700148299                                                       | Sindotec                                     | SIM           |
| 4    | 4.08         | MTU DE Plataforma (EHDM)    | N.A                            | Carga máxima no Braço do MCV                                      | Indicação do carregamento máximo que o gooseneck do EHDM pode suportar                   | 156 Tf                                                            | Sindotec                                     | SIM           |
| 4    | 4.09         | MTU DE Plataforma (EHDM)    | N.A                            | Swivel do Flange                                                  | Informação se o flange do EHDM (interface com a linha flexível) possui swivel            | Possui                                                            | Sindotec                                     | SIM           |
| 4    | 4.10         | MTU DE Plataforma (EHDM)    | N.A                            | Ângulo do Goose Neck                                              | Informação da angulação que o goose- neck do<br>EHDM faz com a vertical                  | 45°                                                               | Sindotec                                     | SIM           |
| 4    | 4.11         | MTU DE Plataforma (EHDM)    | N.A                            | Conectores Hidráulicos                                            | Informação dos modelos dos conectores<br>hidráulicos na placa hidráulica do EHDM         | Linhas hidráulicas: 3/8" x JIC-8<br>Injeção química: 5/8" x JIC-8 | Sindotec                                     | SIM           |
| 4    | 4.12         | MTU DE Plataforma (EHDM)    | N.A                            | Conectores Elétricos                                              | Informação do modelo dos conectores elétricos na placa hidráulica do EHDM                | JIC 8                                                             | Sindotec                                     | SIM           |
| 4    | 4.13         | MTU DE Plataforma (EHDM)    | SKID TRANSP /<br>BASE DE TESTE | NP                                                                | NP do Skid de Transporte do EHDM                                                         | P7000053720                                                       | Sindotec                                     | SIM           |
| 4    | 4.14         | MTU DE Plataforma (EHDM)    | SKID TRANSP /<br>BASE DE TESTE | Desenho                                                           | Número do desenho do Skid de Transporte do EHDM                                          | DU700164179                                                       | Sindotec                                     | SIM           |
| 4    | 4.15         | MTU DE Plataforma (EHDM)    | SKID TRANSP /<br>BASE DE TESTE | Peso (kgf)                                                        | Peso no ar do Skid de Transporte do EHDM                                                 | 1740 Kgf                                                          | Sindotec                                     | SIM           |
| 4    | 4.16         | MTU DE Plataforma (EHDM)    | SKID TRANSP /<br>BASE DE TESTE | SWL dos olhais de içamento                                        | SWL dos olhais de içamento do Skid de<br>Transporte do EHDM                              | 1,025 Tf                                                          | Sindotec                                     | SIM           |
| 4    | 4.17         | MTU DE Plataforma (EHDM)    | SKID TRANSP /<br>BASE DE TESTE | Dimensões                                                         | NP do Skid de Transporte do EHDM                                                         | 3454mm x 2197mm x 3483mm                                          | Sindotec                                     | SIM           |
| 5    | 5.01         | MTU de Poço                 | N.A                            | NP                                                                | NP do MTU de interligação da linha de UEH aos poços                                      | P7000048063                                                       | Sindotec                                     | SIM           |
| 5    | 5.02         | MTU de Poço                 | N.A                            | Desenho                                                           | NP e o número do desenho do MTU                                                          | DU700152195                                                       | Sindotec                                     | SIM           |
| 5    | 5.03         | MTU de Poço                 | N.A                            | Peso (kgf)                                                        | Peso do MTU no ar                                                                        | 2033 Kgf                                                          | Sindotec                                     | SIM           |
| 5    | 5.04         | MTU de Poço                 | N.A                            | Modelo da Manilha                                                 | Modelo da manilha do MTU ou NP da ferramenta e o modelo de sua manilha                   | Crosby G-2140 - 175 Tf                                            | Sindotec                                     | SIM           |
| 5    | 5.05         | MTU de Poço                 | N.A                            | Especificação do Flange                                           | Especificação do flange em contato com o flange da linha, se este é rotativo ou fixo e o | Rotativo - 9" API 6B - 2K Psi                                     | Sindotec                                     | SIM           |
| 5    | 5.06         | MTU de Poço                 | N.A                            | Diagrama hidráulico                                               | NP ou número do desenho do diagrama<br>hidráulico do MTU                                 | DA700154529                                                       | Sindotec                                     | SIM           |
| 5    | 5.07         | MTU de Poço                 | N.A                            | Carga máxima no Braço do MCV                                      | Indicação do carregamento máximo que o gooseneck do MTU pode suportar                    | 156 Tf                                                            | Sindotec                                     | SIM           |
| 5    | 5.08         | MTU de Poço                 | N.A                            | Ângulo do Goose Neck                                              | Informação da angulação que o goose- neck do<br>MTU faz com a vertical                   | 45°                                                               | Sindotec                                     | SIM           |
| 5    | 5.09         | MTU de Poço                 | N.A                            | Conectores Hidráulicos                                            | Informação dos modelos dos conectores<br>hidráulicos na placa hidráulica do MTU          | Linhas hidráulicas: 3/8" x JIC-8<br>Injeção química: 5/8" x JIC-8 | Sindotec                                     | SIM           |
| 5    | 5.10         | MTU de Poço                 | N.A                            | Conectores Elétricos                                              | Informação do modelo dos conectores elétricos<br>na placa hidráulica do MTU              | JIC 8                                                             | Sindotec                                     | SIM           |

|      |              |                              |                                | DA                                                             | DOS PARA ELABORAÇÃO DO MEMO                                                      | DRIAL DESCRITIVO                                       |                                              |               |
|------|--------------|------------------------------|--------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------|---------------|
|      |              |                              | Informa                        | ções solicitadas pela ISBM                                     |                                                                                  | Informações ret                                        | ornadas à ISBM pela I                        | EECE          |
| Item | Sub-<br>item | Equipamentos                 | Sub-<br>Equipamentos           | Informações necessárias                                        | Descrição                                                                        | Informação solicitada                                  | Disponibilidade em<br>Aplicativo Corporativo | Quitação EECE |
| * Os | tags inf     | ormados são aqueles planeja  |                                | to do preenchimento da planilha                                | e estão sujeitos a mudança antes da                                              | instalação                                             |                                              |               |
| 5    | 5.11         | MTU de Poço                  | SKID TRANSP /<br>BASE DE TESTE | NP                                                             | NP do Skid de Transporte do MTU                                                  | P7000048095                                            | Sindotec                                     | SIM           |
| 5    | 5.12         | MTU de Poço                  | SKID TRANSP /<br>BASE DE TESTE | Desenho                                                        | Número do desenho do Skid de Transporte do MTU                                   | DU700164263                                            | Sindotec                                     | SIM           |
| 5    | 5.13         | MTU de Poço                  | SKID TRANSP /<br>BASE DE TESTE | Peso (kgf)                                                     | Peso no ar do Skid de Transporte do MTU                                          | 1658 Kgf                                               | Sindotec                                     | SIM           |
| 5    | 5.14         | MTU de Poço                  | SKID TRANSP /<br>BASE DE TESTE | SWL dos olhais de içamento                                     | SWL dos olhais de içamento do Skid de<br>Transporte do MTU                       | 1,025 Tf                                               | Sindotec                                     | SIM           |
| 5    | 5.15         | MTU de Poço                  | SKID TRANSP /<br>BASE DE TESTE | Dimensões                                                      | NP do Skid de Transporte do MTU                                                  | 3416mm x 1943mm x 3483mm                               | Sindotec                                     | SIM           |
| 6    | 6.01         | MCVI de Água e Gás (5 1/8")  | N.A                            | NP                                                             | NP do MCV de interligação das linhas de IA e IG<br>ao Poço                       | P7000048060                                            | Sindotec                                     | SIM           |
| 6    | 6.02         | MCVI de Água e Gás (5 1/8'') | N.A                            | Desenho                                                        | Número do desenho do MCVI                                                        | DU700154300                                            | Sindotec                                     | SIM           |
| 6    | 6.03         | MCVI de Água e Gás (5 1/8'') | N.A                            | Peso (kgf)                                                     | Peso do MCVI no ar                                                               | 5797 Kgf                                               | Sindotec                                     | SIM           |
| 6    | 6.04         | MCVI de Água e Gás (5 1/8'') | N.A                            | Modelo da Manilha                                              | Modelo da manilha do MCVI ou NP da ferramenta e o modelo de sua manilha          | Crosby G-2160 - 500 Tf                                 | Sindotec                                     | SIM           |
| 6    | 6.05         | MCVI de Água e Gás (5 1/8")  | N.A                            | Tolerância de assentamento vertical                            | Tolerância vertical de assentamento do MCVI                                      | 6°                                                     | Sindotec                                     | SIM           |
| 6    | 6.06         | MCVI de Água e Gás (5 1/8")  | N.A                            | Tolerância de assentamento horizontal                          | Tolerância horizontal de assentamento do MCVI                                    | 30°                                                    | Sindotec                                     | SIM           |
| 6    | 6.07         | MCVI de Água e Gás (5 1/8")  | N.A                            | Válvula de bloqueio                                            | Informação se o MCVI é dotado de válvula de<br>bloqueio                          | Não Possui                                             | Sindotec                                     | SIM           |
| 6    | 6.08         | MCVI de Água e Gás (5 1/8'') | N.A                            | Especificação do Flange                                        | Especificação do flange em contato com a linha e o modelo do anel de vedação     | 7 1/16" API 17SV - 10K Psi -<br>Anel BX-156 - Rotativo | Sindotec                                     | SIM           |
| 6    | 6.09         | MCVI de Água e Gás (5 1/8")  | N.A                            | Diagrama hidráulico                                            | NP ou número do desenho do diagrama<br>hidráulico do MCVI                        | DA700149865                                            | Sindotec                                     | SIM           |
| 6    | 6.10         | MCVI de Água e Gás (5 1/8'') | N.A                            | Carga máxima no Braço do MCV                                   | Indicação do carregamento máximo que o<br>gooseneck do MCVI pode suportar        | 470 Tf                                                 | Sindotec                                     | SIM           |
| 6    | 6.11         | MCVI de Água e Gás (5 1/8'') | N.A                            | Swivel do Flange                                               | Informação se o flange do MCVI<br>(interface com a linha flexível) possui swivel | Possui                                                 | Sindotec                                     | SIM           |
| 6    | 6.12         | MCVI de Água e Gás (5 1/8")  | N.A                            | Ângulo do Goose Neck                                           | Informação da angulação que o goose- neck do<br>MCVI faz com a vertical          | 60°                                                    | Sindotec                                     | SIM           |
| 6    | 6.13         | MCVI de Água e Gás (5 1/8")  | N.A                            | Revestimento do Flange                                         | Informação do material de revestimento do flange do MCVI                         | Inconel 625                                            | Sindotec                                     | SIM           |
| 6    | 6.14         | MCVI de Água e Gás (5 1/8")  | SKID TRANSP                    | NP                                                             | NP do Skid de Transporte do MCVI                                                 | P7000048093                                            | Sindotec                                     | SIM           |
| 6    | 6.15         | MCVI de Água e Gás (5 1/8")  | SKID TRANSP                    | Desenho                                                        | Número do desenho do Skid de Transporte do<br>MCVI                               | DU700164348                                            | Sindotec                                     | SIM           |
| 6    | 6.16         | MCVI de Água e Gás (5 1/8")  | SKID TRANSP                    | Peso (kgf)                                                     | Peso no ar do Skid de Transporte do MCVI                                         | 1452 Kgf                                               | Sindotec                                     | SIM           |
| 6    | 6.17         | MCVI de Água e Gás (5 1/8")  | SKID TRANSP                    | SWL dos olhais de içamento                                     | SWL dos olhais de içamento do Skid de Transporte do MCVI                         | 2,0 Tf                                                 | Sindotec                                     | SIM           |
| 6    | 6.18         | MCVI de Água e Gás (5 1/8'') | SKID TRANSP                    | Dimensões                                                      | Dimensões principais do Skid de Transporte do MCVI                               | 2553mm x 1867mm x 2879mm                               | Sindotec                                     | SIM           |
| 6    | 6.19         | MCVI de Água e Gás (5 1/8")  | BASE DE TESTE                  | NP                                                             | NP da Base de Teste do MCVI                                                      | P7000048078                                            | Sindotec                                     | SIM           |
| 6    | 6.20         | MCVI de Água e Gás (5 1/8'') | BASE DE TESTE                  | Desenho                                                        | Número do desenho da Base de Teste do MCVI                                       | DU700158080                                            | Sindotec                                     | SIM           |
| 6    | 6.21         | MCVI de Água e Gás (5 1/8'') | BASE DE TESTE                  | Peso (kgf)                                                     | Peso no ar da Base de Teste do MCVI                                              | 1110 Kgf                                               | Sindotec                                     | SIM           |
| 6    | 6.22         | MCVI de Água e Gás (5 1/8")  | BASE DE TESTE                  | SWL dos olhais de içamento                                     | SWL dos olhais de içamento da Base de Teste<br>do MCVI                           | 275 Kgf                                                | Sindotec                                     | SIM           |
| 6    | 6.23         | MCVI de Água e Gás (5 1/8'') | BASE DE TESTE                  |                                                                | Dimensões principais da Base de Teste do MCVI                                    | 2159mm x 2159mm x 2227mm                               | Sindotec                                     | SIM           |
| 6    | 6.24         | MCVI de Água e Gás (5 1/8'') | N.A                            | Altura máxima do conjunto MCV assentado sobre a base de testes | Informação da altura máxima do conjunto<br>MCVI/Base de Teste                    | 3059mm                                                 | Sindotec                                     | SIM           |

|           | RELATÓRIO TÉCNICO                             | RL-3A26.09-1500-94G-F | R1N-005 REV.: 0 |
|-----------|-----------------------------------------------|-----------------------|-----------------|
| BR        | CLIENTE: UN-BS                                | /ATP-TUPI             | FOLHA: 38 de 46 |
|           | TÍTULO: DUTO DE INJEÇÃO DE GÁS I              | SUB/ES/EDD/EDF        |                 |
| PETROBRAS | DO FPSO CIDADE DE ITAC<br>ANÁLISE DE ESFORÇOS | _                     |                 |
|           |                                               | ,                     |                 |
|           |                                               |                       |                 |
|           |                                               |                       |                 |
| l         |                                               |                       |                 |
| l         |                                               |                       |                 |
|           |                                               |                       |                 |
|           |                                               |                       |                 |
|           |                                               |                       |                 |
|           |                                               |                       |                 |
| l         |                                               |                       |                 |
| l         |                                               |                       |                 |
|           |                                               |                       |                 |
|           |                                               |                       |                 |
|           |                                               |                       |                 |
|           |                                               |                       |                 |
|           |                                               |                       |                 |
|           |                                               |                       |                 |
|           |                                               |                       |                 |
|           |                                               |                       |                 |
|           |                                               |                       |                 |
|           |                                               |                       |                 |
|           |                                               |                       |                 |
|           | ANEN                                          | (O F                  |                 |
|           | ANEX                                          | (U 5                  |                 |
|           |                                               |                       |                 |
|           |                                               |                       |                 |
|           |                                               |                       |                 |
|           |                                               |                       |                 |
|           |                                               |                       |                 |
|           |                                               |                       |                 |
|           |                                               |                       |                 |
|           |                                               |                       |                 |
|           |                                               |                       |                 |
|           |                                               |                       |                 |
|           |                                               |                       |                 |
|           |                                               |                       |                 |
|           |                                               |                       |                 |
|           |                                               |                       |                 |
|           |                                               |                       |                 |
|           |                                               |                       |                 |
|           |                                               |                       |                 |
|           |                                               |                       |                 |
|           |                                               |                       |                 |
|           |                                               |                       |                 |
|           |                                               |                       |                 |
|           |                                               |                       |                 |



### WSI 152.2553-RD-4042-6 - Stiffness Table

|                  | Flowline - \ | WSI 152.2553-RD-40      | 42-6 R0                           |                                      |
|------------------|--------------|-------------------------|-----------------------------------|--------------------------------------|
| Load Case Number | WD<br>[m]    | Axial Stiffness<br>[kN] | Torsional<br>Stiffness<br>[kNm^2] | Equivalent Bend<br>Stiffness [kNm^2] |
| GI / GM Cases    | 0-500        | 508765                  | 5300                              | 68                                   |
| GJ Cases         | 0-500        | 508765                  | 5300                              | 68                                   |
| GK Cases         | 0-500        | 511880                  | 5510                              | 267                                  |
| GL Cases         | 0-500        | 508765                  | 5300                              | 68                                   |
| GI / GM Cases    | 500-1000     | 507986                  | 5481                              | 306                                  |
| GJ Cases         | 500-1000     | 509152                  | 5480                              | 291                                  |
| GK Cases         | 500-1000     | 509591                  | 5503                              | 509                                  |
| GL Cases         | 500-1000     | 480025                  | 5294                              | 74                                   |
| GI / GM Cases    | 1000-1500    | 507188                  | 5473                              | 542                                  |
| GJ Cases         | 1000-1500    | 509436                  | 5471                              | 514                                  |
| GK Cases         | 1000-1500    | 507195                  | 5496                              | 745                                  |
| GL Cases         | 1000-1500    | 457160                  | 5306                              | 84                                   |
| GI / GM Cases    | 1500-2000    | 506734                  | 5465                              | 770                                  |
| GJ Cases         | 1500-2000    | 509774                  | 5462                              | 727                                  |
| GK Cases         | 1500-2000    | 506988                  | 5488                              | 970                                  |
| GL Cases         | 1500-2000    | 437756                  | 5317                              | 94                                   |
| GI / GM Cases    | 2000-2500    | 506930                  | 5457                              | 991                                  |
| GJ Cases         | 2000-2500    | 509916                  | 5453                              | 935                                  |
| GK Cases         | 2000-2500    | 507131                  | 5480                              | 1190                                 |
| GL Cases         | 2000-2500    | 420565                  | 5329                              | 104                                  |



|                    | Bending Moment [Nm] |                    |                    |                    |                 |                  |                  |                  |  |  |
|--------------------|---------------------|--------------------|--------------------|--------------------|-----------------|------------------|------------------|------------------|--|--|
| Curvature<br>[1/m] |                     | Dry A              | nnulus             |                    |                 | Flooded          | Annulus          |                  |  |  |
|                    | Case 1              | Case 2             | Case 3             | Case 4             | Case 5          | Case 6           | Case 7           | Case 8           |  |  |
| 0.0000             | 0                   | 0                  | 0                  | 0                  | 0               | 0                | 0                | 0                |  |  |
| 0.0030<br>0.0060   | 11265<br>24978      | 11265<br>24978     | 11265<br>24978     | 11265<br>24978     | 4872<br>5233    | 1322<br>1531     | 9583<br>16080    | 9865<br>16570    |  |  |
| 0.0090             | 41141               | 41141              | 41141              | 41141              | 5493            | 1775             | 19159            | 20630            |  |  |
| 0.0140             | 59752               | 59752              | 59752              | 59752              | 5779            | 2055             | 20068            | 21751            |  |  |
| 0.0190             | 80812               | 80812              | 80812              | 80812              | 6098            | 2372             | 20622            | 22384            |  |  |
| 0.0240             | 95366               | 99078              | 103148             | 103334             | 6453            | 2726             | 21087            | 22886            |  |  |
| 0.0300             | 101254              | 106474             | 117678             | 118536             | 6844            | 3116             | 21538            | 23353            |  |  |
| 0.0360             | 104610              | 110516             | 124559             | 125841             | 7271            | 3543             | 22001            | 23828            |  |  |
| 0.0440             | 106795              | 113081             | 128587             | 130055             | 7736            | 4007             | 22486            | 24320            |  |  |
| 0.0510             | 108380              | 114905             | 131279             | 132860             | 8237            | 4508             | 22998            | 24837            |  |  |
| 0.0590<br>0.0680   | 109640<br>110709    | 116314<br>117493   | 133252<br>134803   | 134899<br>136501   | 8775<br>9350    | 5046<br>5621     | 23544<br>24125   | 25385<br>25968   |  |  |
| 0.0680             | 110709              | 117493             | 136102             | 137830             | 9961            | 6232             | 24123            | 26586            |  |  |
| 0.0870             | 112568              | 119478             | 137254             | 139007             | 10609           | 6880             | 25395            | 27239            |  |  |
| 0.0980             | 113447              | 120393             | 138306             | 140077             | 11295           | 7565             | 26084            | 27929            |  |  |
| 0.1090             | 114314              | 121292             | 139300             | 141084             | 12017           | 8287             | 26809            | 28655            |  |  |
| 0.1210             | 115182              | 122185             | 140273             | 142066             | 12775           | 9046             | 27571            | 29417            |  |  |
| 0.1330             | 116061              | 123085             | 141237             | 143037             | 13571           | 9841             | 28368            | 30215            |  |  |
| 0.1450<br>0.1590   | 116956<br>117874    | 123997<br>124926   | 142205<br>143182   | 144011<br>144993   | 14403<br>15272  | 10674<br>11543   | 29203<br>30074   | 31050<br>31921   |  |  |
| 0.1730             | 117874              | 125879             | 143182             | 145988             | 16178           | 12449            | 30981            | 32829            |  |  |
| 0.1870             | 119798              | 126861             | 145179             | 147000             | 17121           | 13391            | 31926            | 33774            |  |  |
| 0.2020             | 120807              | 127874             | 146208             | 148032             | 18101           | 14371            | 32906            | 34755            |  |  |
| 0.2170             | 121849              | 128920             | 147265             | 149090             | 19117           | 15388            | 33924            | 35772            |  |  |
| 0.2120             | 99319               | 106391             | 124736             | 126561             | 9291            | 12743            | 14233            | 15370            |  |  |
| 0.2060             | 71892               | 78963              | 97309              | 99134              | 8651            | 12326            | 1758             | 2624             |  |  |
| 0.1980<br>0.1900   | 39567<br>2344       | 46638<br>9416      | 64984<br>27761     | 66809<br>29586     | 8130<br>7559    | 11838<br>11277   | -4409<br>-6213   | -5504<br>-7732   |  |  |
| 0.1800             | -39776              | -32705             | -14360             | -12534             | 6921            | 10644            | -7321            | -8995            |  |  |
| 0.1690             | -68908              | -69339             | -59132             | -57656             | 6212            | 9936             | -8251            | -10000           |  |  |
| 0.1580             | -80702              | -84062             | -88251             | -88154             | 5430            | 9155             | -9152            | -10934           |  |  |
| 0.1440             | -87379              | -92114             | -101865            | -102597            | 4574            | 8301             | -10078           | -11883           |  |  |
| 0.1300             | -91748              | -97244             | -109911            | -111023            | 3646            | 7373             | -11048           | -12868           |  |  |
| 0.1150<br>0.0990   | -94913<br>-97433    | -100896<br>-103709 | -115299<br>-119240 | -116633<br>-120712 | 2643<br>1567    | 6371<br>5295     | -12072<br>-13164 | -13902<br>-14997 |  |  |
| 0.0810             | -97433              | -106067            | -113240            | -123915            | 418             | 4146             | -14327           | -14337           |  |  |
| 0.0620             | -101484             | -108135            | -124939            | -126571            | -805            | 2924             | -15561           | -17399           |  |  |
| 0.0430             | -103288             | -110036            | -127244            | -128924            | -2102           | 1627             | -16866           | -18706           |  |  |
| 0.0220             | -105044             | -111866            | -129346            | -131064            | -3472           | 257              | -18244           | -20085           |  |  |
| 0.0000             | -106779             | -113663            | -131335            | -133078            | -4916           | -1187            | -19694           | -21537           |  |  |
| -0.0240<br>-0.0480 | -108515<br>-110273  | -115450<br>-117250 | -133280<br>-135208 | -135041<br>-136983 | -6433<br>-8024  | -2704<br>-4295   | -21217<br>-22813 | -23061<br>-24658 |  |  |
| -0.0730            | -112063             | -119075            | -137144            | -138932            | -9689           | -5959            | -24482           | -26327           |  |  |
| -0.1000            | -113900             | -120933            | -139098            | -140897            | -11427          | -7698            | -26224           | -28070           |  |  |
| -0.1280            | -115792             | -122837            | -141079            | -142887            | -13239          | -9510            | -28039           | -29886           |  |  |
| -0.1560            | -117746             | -124801            | -143093            | -144909            | -15125          | -11395           | -29927           | -31775           |  |  |
| -0.1860            | -119765             | -126828            | -145151            | -146973            | -17084          | -13355           | -31889           | -33737           |  |  |
| -0.2170<br>-0.2120 | -121849<br>-99319   | -128920<br>-106391 | -147265<br>-124736 | -149090<br>-126561 | -19117<br>-9291 | -15388<br>-12743 | -33924<br>-14233 | -35772<br>-15370 |  |  |
| -0.2120            | -99319<br>-71892    | -78963             | -97309             | -99134             | -9291<br>-8651  | -12743           | -14233           | -15370           |  |  |
| -0.1980            | -39567              | -46638             | -64984             | -66809             | -8130           | -11838           | 4409             | 5504             |  |  |
| -0.1900            | -2344               | -9416              | -27761             | -29586             | -7559           | -11277           | 6213             | 7732             |  |  |
| -0.1800            | 39776               | 32705              | 14360              | 12534              | -6921           | -10644           | 7321             | 8995             |  |  |
| -0.1690            | 68908               | 69339              | 59132              | 57656              | -6212           | -9936            | 8251             | 10000            |  |  |
| -0.1580<br>-0.1440 | 80702<br>87379      | 84062<br>92114     | 88251<br>101865    | 88154<br>102597    | -5430<br>-4574  | -9155<br>-8301   | 9152<br>10078    | 10934<br>11883   |  |  |
| -0.1440            | 91748               | 97244              | 101865             | 111023             | -4574           | -7373            | 11048            | 12868            |  |  |
| -0.1150            | 94913               | 100896             | 115299             | 116633             | -2643           | -6371            | 12072            | 13902            |  |  |
| -0.0990            | 97433               | 103709             | 119240             | 120712             | -1567           | -5295            | 13164            | 14997            |  |  |
| -0.0810            | 99570               | 106067             | 122343             | 123915             | -418            | -4146            | 14327            | 16163            |  |  |
| -0.0620            | 101484              | 108135             | 124939             | 126571             | 805             | -2924            | 15561            | 17399            |  |  |
| -0.0430            | 103288              | 110036             | 127244             | 128924             | 2102            | -1627            | 16866            | 18706            |  |  |
| -0.0220<br>0.0000  | 105044<br>106779    | 111866<br>113663   | 129346<br>131335   | 131064<br>133078   | 3472<br>4916    | -257<br>1187     | 18244<br>19694   | 20085<br>21537   |  |  |
| 0.0000             | 108779              | 115450             | 131335             | 135078             | 6433            | 2704             | 21217            | 23061            |  |  |
| 0.0480             | 110273              | 117250             | 135208             | 136983             | 8024            | 4295             | 22813            | 24658            |  |  |
| 0.0730             | 112063              | 119075             | 137144             | 138932             | 9689            | 5959             | 24482            | 26327            |  |  |
| 0.1000             | 113900              | 120933             | 139098             | 140897             | 11427           | 7698             | 26224            | 28070            |  |  |
| 0.1280             | 115792              | 122837             | 141079             | 142887             | 13239           | 9510             | 28039            | 29886            |  |  |
| 0.1560             | 117746              | 124801             | 143093             | 144909             | 15125           | 11395            | 29927            | 31775            |  |  |
| 0.1860<br>0.2170   | 119765<br>121849    | 126828<br>128920   | 145151<br>147265   | 146973<br>149090   | 17084<br>19117  | 13355<br>15388   | 31889<br>33924   | 33737<br>35772   |  |  |
| 0.21/0             | 1410+7              | 120020             | 141203             | 147030             | 1/11/           | 13300            | 33324            | 33112            |  |  |



### WSI 152.2553-RD-4042-6 - Curvature x Bending Moment



| -         |                                  |                                                  |          | DEV            |
|-----------|----------------------------------|--------------------------------------------------|----------|----------------|
|           | RELATÓRIO TÉCNICO                | RL-3A26.09-1500-94G-F                            | R1N-005  | REV.: <b>0</b> |
| BR        |                                  | ATP-TUPI                                         |          | 2 de 46        |
|           | TÍTULO: DUTO DE INJEÇÃO DE GÁS I | DO POÇO LL-44 AO MSIAG-01                        | SUB/ES/E | DD/EDF         |
| PETROBRAS | DO FPSO CIDADE DE ITA(           | GUAÍ (LADO MANIFOLD) –<br>S EM EQUIP. SUB. (MCV) | -        |                |
|           | //LIGE DE LOI GINÇO              | 2 Liii Laaii 1 3021 (iii 17)                     |          |                |
| l         |                                  |                                                  |          |                |
| l         |                                  |                                                  |          |                |
|           |                                  |                                                  |          |                |
|           |                                  |                                                  |          |                |
|           |                                  |                                                  |          |                |
|           |                                  |                                                  |          |                |
|           |                                  |                                                  |          |                |
|           |                                  |                                                  |          |                |
|           |                                  |                                                  |          |                |
|           |                                  |                                                  |          |                |
| ı         |                                  |                                                  |          |                |
| l         |                                  |                                                  |          |                |
|           |                                  |                                                  |          |                |
|           |                                  |                                                  |          |                |
|           |                                  |                                                  |          |                |
|           |                                  |                                                  |          |                |
|           |                                  |                                                  |          |                |
|           |                                  |                                                  |          |                |
|           |                                  |                                                  |          |                |
|           |                                  |                                                  |          |                |
|           |                                  |                                                  |          |                |
|           | ANEX                             | <b>(O</b> 6                                      |          |                |
|           |                                  |                                                  |          |                |
|           |                                  |                                                  |          |                |
|           |                                  |                                                  |          |                |
|           |                                  |                                                  |          |                |
|           |                                  |                                                  |          |                |
|           |                                  |                                                  |          |                |
|           |                                  |                                                  |          |                |
|           |                                  |                                                  |          |                |
|           |                                  |                                                  |          |                |
|           |                                  |                                                  |          |                |
|           |                                  |                                                  |          |                |
|           |                                  |                                                  |          |                |
|           |                                  |                                                  |          |                |
|           |                                  |                                                  |          |                |
|           |                                  |                                                  |          |                |
|           |                                  |                                                  |          |                |
|           |                                  |                                                  |          |                |
|           |                                  |                                                  |          |                |
|           |                                  |                                                  |          |                |
|           |                                  |                                                  |          |                |
|           |                                  |                                                  |          |                |

REFERENCED DRAWING: I-RM-3A00.00-1519-291-PZ9-005 R0

Baker Hughes

CBS Nº .: 4600641834 PCS Nº .: 4511254834

|     | REVISIONS                    |          |           |  |  |  |  |  |  |  |  |
|-----|------------------------------|----------|-----------|--|--|--|--|--|--|--|--|
| REV | DESCRIPTION                  | APPROVED | DATE      |  |  |  |  |  |  |  |  |
| 6   | According to ECR WS00077208. | RMs      | 9/16/2022 |  |  |  |  |  |  |  |  |
| 7   | DRAFT                        |          |           |  |  |  |  |  |  |  |  |

**BMS-11 FIELD DEVELOPMENT** 

N/A

COMPOSITION DRAWING - Gas Injection - -/IG-14 - SMP03

TOP CONFIGURATION:

1/2

REV.:

DRAWING NUMBER:

C2891.2 UN-03

|    |      |      | (2) - IN ACCO | ORDANCE WITH MTL-60 | )40.     |                                                  |                       |                                  |           | √7 (4) - Items from pipe C2891 A-08. √7 (5) - Pipe C2891 A-08 at C2891.2 UN-29.                                                                                                                                                                      |               |         |
|----|------|------|---------------|---------------------|----------|--------------------------------------------------|-----------------------|----------------------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------|
| N  | NOTI | ES:  |               | ,                   | -        | NGE), BICHROME                                   | OVER CADMIUM          | 1. 1 1/2" - 8 UN NUTS (24 PER FL | ANGE), E  |                                                                                                                                                                                                                                                      |               |         |
| LI | EGE  | END: | N/A : ME      | ANS NOT APPLI       | CABLE.   | TBD: ME                                          | ANS TO BE             | DEFINED.                         | ITEMS     | TO BE ASSEMBLED OFFSHORE. ITEMS TO BE PARTIAL ASSEMBLED OFFSHORE. ITEMS TO BE DELIVERED WITH                                                                                                                                                         | H OFFSHORE ON | NES.    |
|    |      | ITEM | PCS ITEM      | CBS ITEM            | NEW QTY. | SPARE QTY.                                       | SUPPLIED<br>BY CLIENT | DOCUMENT Nº                      | REV<br>Nº | DESCRIPTION                                                                                                                                                                                                                                          | NOTES         | CHEC    |
|    |      | 1    | 10            | 370                 | 2300 m   | -                                                | 1000 m                | WSI 152.2553-RD-4042-6           | -         | 6" ID Gas Injection Flexible Flowline                                                                                                                                                                                                                | (5)           |         |
|    |      | 2    | 20            | 390                 | 6        | -                                                |                       | CB-EF1522540-00-05               | -         | End Fitting 6" ID Gas Injection Flowline 7 1/16" API 6BX Flange, 10000 psi, BX 156 With N2 Seal Port - Single Barrier - Full Protection                                                                                                              |               |         |
|    | 1    | 3    | 30            | 440                 | 1        | -                                                | -                     | CB-BR1522553-00-01               | -         | Bend Restrictor, 6" ID Gas Injection Flowline 72 Degrees (Splited)                                                                                                                                                                                   |               |         |
|    |      | 4    | 40            | 550                 | 3        | -                                                | -                     | CB-TH152XXXX-00-01               | -         | Handling Test Head, 7 1/16" API 6BX Flange, 10000 psi, BX 156 (SWL= 55 tf)                                                                                                                                                                           |               | 1       |
|    | 7    | 5    | 50            | 540                 | 3        | <del>  -  </del>                                 | -                     | CB-TH152XXXX-00-02               | -         | Installation Test Head, 7 1/16" API 6BX Flange, 10000 psi, BX 156 (SWL= 500 tf)                                                                                                                                                                      |               |         |
|    | 7    | 6    | 60            | 490                 | 4        | -                                                |                       | N/A                              | -         | Seal Ring BX 156 Inconel 625 (For Installation)                                                                                                                                                                                                      | 1             | +       |
|    | +    | 7    | 120           | 480                 | 6        | <del>                                     </del> | -                     | N/A                              | _         | Seal Ring BX 156 AISI 316L (For transports and tests)                                                                                                                                                                                                | (1)(2)        | +       |
|    |      | 8    | 70            | 520                 | 3        |                                                  | -                     | N/A                              |           | Set of Studs and Bolts, 7 1/16" API 6BX Flange, 10000 psi, BX 156, For Tensioner Hydratight HL (For Installation)                                                                                                                                    | (1) (2)       | +       |
|    | 1    | 9    | 90<br>80      | 500<br>510          | 6        |                                                  |                       | N/A<br>N/A                       | -         | Set of Studs and Bolts, 7 1/16" API 6BX Rotative Flange, 10000 psi, BX 156, For Tensioner Hydratight HL (For Installation)  Set of Studs and Bolts, 7 1/16" API 6BX Flange, 10000 psi, BX 156, For Tensioner Hydratight HL (For transport and tests) | (1) (2)       | +       |
|    | -    | 11   | 140           | 470                 | 162 kg   |                                                  | -                     | CB-TDC2891XX-00-01               | -         | Anode Collar for Service Life 27 Kg (3 per EndFitting, Drawing Number CB-TDXXXXXXX-00-01.14AD) + Neoprene Blanket                                                                                                                                    | (4) (0)       | +       |
|    | -    | 12   | 150           | 470                 | 216 kg   | -                                                | -                     | CB-TDC2891XX-00-01               | -         | Anode Collar for Service Life 27 Kg (4 per EndFitting, Drawing Number CB-TDXXXXXXX-00-01.14AC) + Neoprene Blanket                                                                                                                                    |               | +       |
|    | +    | 13   | 160           | 470                 | 162 kg   | -                                                | -                     | CB-TDC2891XX-00-01               | -         | Anode Collar for Service Life 27 Kg (6 per EndFitting, Drawing Number CB-TDXXXXXXX-00-01.14AA) + Neoprene Blanket                                                                                                                                    |               | $\perp$ |
|    |      | 14   | 100           | 380                 | 3        | -                                                | -                     | ENG-R-3121                       | -         | Repair Kit to WSI 152.2553-RD-4042-6                                                                                                                                                                                                                 | (3)           |         |
|    |      | 15   | 170           | 410                 | 1        | -                                                | -                     | CB-AC1522553-00-01               | -         | Anchor Collar, 6" ID Gas Injection Flexible Flowline (SWL= 80tf)                                                                                                                                                                                     | (4)           |         |
|    |      | 16   | 110           | 430                 | 1        | - /                                              | -                     | PT-PRT-379021                    | -         | Abrasion Protection (3 meters)                                                                                                                                                                                                                       | (4)           |         |

THE DESIGN WAS ORIGINATED BY AND IS THE EXCLUSIVE PROPERTY OF WELLSTREAM. IT IS DISCLOSED IN CONFIDENCE WITH THE UNDERSTANDING THAT NO REPRODUCING OR OTHER USE OF THE INFORMATION IS AUTHORIZED WITHOUT SPECIFIC IN WRITING BY WELLSTREAM.

16/12/2021

20/12/2021

21/12/2021

DATE:

DATE:

TITLE:

CLIENT:

**Petrobras** 

ENGINEERED BY:

CHECKED BY:

APPROVED BY:

**Tobias Campos** 

Filipe Alvarenga

João Lima



WELL



|                  | ENGINEERED BY: | DATE:      | REV:                                                    | TITLE:                        |           | BMS-11 FIELD DEVELOPMENT           |               | SHEET.: |
|------------------|----------------|------------|---------------------------------------------------------|-------------------------------|-----------|------------------------------------|---------------|---------|
|                  | Tobias Campos  | 16/12/2021 |                                                         | DIVID-111 ILLE DE VELOT MICHT |           |                                    |               |         |
|                  | CHECKED BY:    | DATE:      | DATE: COMPOSITION DRAWING - Gas Injection/IG-14 - SMP03 |                               |           |                                    |               | 2/      |
| Filipe Alvarenga |                | 20/12/2021 |                                                         | CLIENT:                       |           | TOP CONFIGURATION: DRAWING NUMBER: |               | REV.:   |
| Darkov Hrvalooo  | APPROVED BY:   | DATE:      |                                                         |                               |           |                                    |               |         |
| Baker Hughes     | João Lima      | 21/12/2021 |                                                         | F                             | Petrobras | N/A                                | C2891.2 UN-03 |         |

|           | RELATÓRIO TÉCNICO                             | RL-3A26.09-1500-94G-F                            | R1N-005 REV.: 0            |
|-----------|-----------------------------------------------|--------------------------------------------------|----------------------------|
| BR        |                                               | ATP-TUPI                                         | <sup>FOLHA:</sup> 45 de 46 |
|           | TÍTULO: DUTO DE INJEÇÃO DE GÁS I              | SUB/ES/EDD/EDF                                   |                            |
| PETROBRAS | DO FPSO CIDADE DE ITAC<br>ANÁLISE DE ESFORCOS | GUAÍ (LADO MANIFOLD) –<br>S EM EQUIP. SUB. (MCV) | -                          |
|           |                                               |                                                  |                            |
|           |                                               |                                                  |                            |
|           |                                               |                                                  |                            |
|           |                                               |                                                  |                            |
|           |                                               |                                                  |                            |
|           |                                               |                                                  |                            |
|           | ANEX                                          | <b>(O</b> 7                                      |                            |
|           |                                               |                                                  |                            |
|           |                                               |                                                  |                            |
|           |                                               |                                                  |                            |
|           |                                               |                                                  |                            |
|           |                                               |                                                  |                            |
|           |                                               |                                                  |                            |
|           |                                               |                                                  |                            |







| Poço                 | LL-44                         | Parecer Final       |
|----------------------|-------------------------------|---------------------|
| Tipo de MCV          | Injeção                       |                     |
| RL/TQF de referência | RL-3A26.09-1500-94G-R1N-005=0 |                     |
| Data                 | 06/03/2024                    | aprovado            |
| TAG                  | P7000048060                   |                     |
| Execução             | DXEL                          |                     |
| Verificação          | DREH                          | Revisão da Planilha |
| Aprovação            | F6EI                          | 0                   |

|        |                                                                                                  |            | Aprovação                 | F6EI        |                 | 0        |
|--------|--------------------------------------------------------------------------------------------------|------------|---------------------------|-------------|-----------------|----------|
|        | Análise Estru                                                                                    | ıtural - N | MCV P7000048060 (Manifold | d Pré-Sal)  |                 |          |
| Índice | Caso de Carregamento                                                                             | Esforço    | Valor (input )            |             | Resultado Final |          |
| 1      | CVD 2ª - Topo (Caso 1)                                                                           |            | Tração                    | 3.695,17 kN |                 | aprovado |
|        | CVD 1 <sup>a</sup> - MCV no <i>hub</i> com linha suspensa<br>(Caso 3i - Flutuador/peso morto)    | (a)        | Tração (Fx)               | 3,38        | kN              | aprovado |
|        |                                                                                                  |            | Cortante (Fz)             | -8,37       | kN              |          |
| 2      |                                                                                                  |            | Momento fletor (My)       | 32,16       | kN.m            |          |
| 2      |                                                                                                  | (b)        | Tração (Fx)               | 10,42       | kN              | aprovado |
|        |                                                                                                  |            | Cortante (Fz)             | -12,63      | kN              |          |
|        |                                                                                                  |            | Momento fletor (My)       | 6,27        | kN.m            |          |
|        | CVD 1ª - MCV no <i>hub</i><br>(Caso 3ii - Flutuador/peso morto)                                  | (a)        | Tração (Fx)               | 7,85        | kN              | aprovado |
|        |                                                                                                  |            | Cortante (Fz)             | -12,18      | kN              |          |
| 3      |                                                                                                  |            | Momento fletor (My)       | 3,72        | kN.m            |          |
| 3      |                                                                                                  | (b)        | Tração (Fx)               | 7,53        | kN              | aprovado |
|        |                                                                                                  |            | Cortante (Fz)             | -11,93      | kN              |          |
|        |                                                                                                  |            | Momento fletor (My)       | 6,83        | kN.m            |          |
|        | CVD 1ª - MCV no <i>hub</i><br>(Caso 3ii - Após retirada do flutuador/peso morto)                 | (a)        | Tração (Fx)               | 49,79       | kN              | aprovado |
|        |                                                                                                  |            | Cortante (Fz)             | -30,82      | kN              |          |
| 4      |                                                                                                  |            | Momento fletor (My)       | -51,43      | kN.m            |          |
| 4      |                                                                                                  | (b)        | Tração (Fx)               | 38,32       | kN              | aprovado |
|        |                                                                                                  |            | Cortante (Fz)             | -28,46      | kN              |          |
|        |                                                                                                  |            | Momento fletor (My)       | -42,60      | kN.m            |          |
|        | CVD 1ª - Teste <i>offshore</i> (@ 11000 psi)<br>(Caso 4 - Flutuador)                             | (a)        | Tração (Fx)               | -0,26       | kN              | aprovado |
|        |                                                                                                  |            | Cortante (Fz)             | -12,63      | kN              |          |
| -      |                                                                                                  |            | Momento fletor (My)       | 24,68       | kN.m            |          |
| 5      |                                                                                                  | (b)        | Tração (Fx)               | -1,19       | kN              | aprovado |
|        |                                                                                                  |            | Cortante (Fz)             | -13,16      | kN              |          |
|        |                                                                                                  |            | Momento fletor (My)       | 25,72       | kN.m            |          |
|        | CVD 1ª - Teste <i>offshore</i> (@ 11000 psi)<br>(Caso 4 - Após retirada do flutuador/peso morto) | (a)        | Tração (Fx)               | 35,27       | kN              | aprovado |
|        |                                                                                                  |            | Cortante (Fz)             | -35,50      | kN              |          |
| 6      |                                                                                                  |            | Momento fletor (My)       | -63,10      | kN.m            |          |
| 6      |                                                                                                  | (b)        | Tração (Fx)               | 25,07       | kN              | aprovado |
|        |                                                                                                  |            | Cortante (Fz)             | -31,24      | kN              |          |
|        |                                                                                                  |            | Momento fletor (My)       | -35,60      | kN.m            |          |
|        | CVD 1ª - Operação (@ 10000 psi)<br>(Caso 5 - Após retirada do flutuador/peso morto)              | (a)        | Tração (Fx)               | 36,05       | kN              | aprovado |
|        |                                                                                                  |            | Cortante (Fz)             | -35,27      | kN              |          |
| 7      |                                                                                                  |            | Momento fletor (My)       | -63,37      | kN.m            |          |
| /      |                                                                                                  | (b)        | Tração (Fx)               | 26,02       | kN              |          |
|        |                                                                                                  |            | Cortante (Fz)             | -31,03      | kN              | aprovado |
|        |                                                                                                  |            | Momento fletor (My)       | -36,38      | kN.m            |          |