Module Little			Number		Code(s) and % of each subject		% of	ASC Category(les)	
Data Structures and Algorithms		CSE5	CSE5010 I320		(6		
Level (3 to 8)	Credits	ECTS Credit	Mod: (1=20					Module Type	
5	15	7.5	0.75		0%			Tai	ught
Teaching Period (Ter	m/Semest	er)		Pre	-requisites	5			
Semester: 3				CSE4006					
Module Leader School(s)							Campus		
Sathananthy Velautham School of Tec			hnologies				ICBT		
Assessment Method	ds	I.							
Assessment Code Duration/Len		gth of \		Neighting of T		Thresho	hreshold Approximate Date		
and Method		Assessment Method		d A	Assessment				Submission
EVAM1 (Closed Book)		3 Hours (3000 words		;] ,	100.0/	10.0/			End Compoter

Modulo IACS Subject

Rationale for Assessment and Opportunity for Feedback - This field is optional.

equivalent)

Examination – MCQs and Structured questions include problem solving for high complexity computational issues relevant algorithms and analysis of different data structures.

100 %

1

End Semester

Aim(s)

Modulo Titlo

To provide skills and knowledge in problem solving with algorithms in various data structures to become familiar with linear and non-linear data types by focus on the performance of the implementations (time and space complexity) and to recognize problem properties where the diverse data structures are appropriate.

Learning Outcomes

EXAM1- (Closed Book)

On successful completion of this module, students should be able to:

- Explain the fundamentals of variety of data structures
- Explain the fundamentals of various common algorithms
- Evaluate algorithms and data structures in terms of time and space complexity
- Apply algorithms and data structures to solve programming problems

Learning and Teaching Delivery Methods

Method	Rationale	Type of Contact (scheduled/ guided independent study/placement)	Total hours
Lecture	Key method of delivering the indicative content of the module.	SCHEDULED	30

Workshops / Labs	To allow exploration of all aspects of module content (knowledge, understanding, skills & other attributes) in data structures using various algorithms and evaluate the performance of them on the basis of time and space.	SCHEDULED	30
Independent Study	To improve knowledge and skills and to prepare for examination. Students are provided with real world computational problems for further reading around topic areas.	NON - CONTACT	90
Total			150

Indicative Content

Introduction: Data Structures and Algorithms

Analysis of Algorithms: Complexity -Big o Notation, Greedy algorithms, Divide and Conquer algorithm, Dynamic

programming

Sorting algorithms: Bubble sort, selection sort, insertion sort

Searching Algorithms: Binary Search, Linear Search

Arrays and Linked List: Arrays, Simple Linked List, Doubly Linked List

Stacks and Queue: ADT, Stack, Queue, Double Ended Queue Recursion: Fibonacci, Tower of Hanoi, Tail Recursion, Merge sort

Binary Tree: Terminology, Binary Search Tree

Advanced Searching Algorithms: Quick sort, Shell Sort, radix sort

Heap: Priority queues, Heap Sort

Hash Tables: Hashing, Open Addressing, Separate chaining, Hash Functions, Hashing Efficiency

Graph: Depth first and breadth first search, Weighted Graphs.

Required Reading

Goodrich M, Tamassia R, 2010. Data Structures and Algorithms in Java. 5th edition. London: Wiley

Recommended Reading

Melhorn K, Sanders P, 2008. Algorithms and Data Structures: The Basic Toolbox. London: Springer ISBN-N0: 3540779779

Access to Specialist Requirements

None