Generative AI: An Overview

Understanding Recurrent Neural Networks (RNNs)

- RNNs are a type of neural network.
 They are designed to process
 sequential data.
- These architectures were widely used for NLP tasks, speech processing, and time series.
- Challenge-?

The Rise of Transformers: Self-Attention

- In 2017, researchers at Google published a paper that proposed a novel neural network architecture for sequence modeling known as Transformer.
- Outperformed recurrent neural networks (RNNs) on machine translation tasks, both in terms of translation quality and training cost.

A Timeline of Large Language Models

2022: ChatGPT

Generative Pre-trained Transformer 2.

2024: Meta's Llama 3, Claude 3, and Q2, and Mistral's Mixtral 8x7B

Larger and more powerful model.

2025: DeepSeek-R1

Multimodality: Text, Image, Video

Diving into ChatGPT

Generative

Next word prediction

Pre-trained

LLM is pre-trained on massive amount of text

Transformer

Encoder-decoder architecture

Why did ChatGPT couldn't replace Google Search?

How was ChatGPT trained?

Large Language Models

What do LLMs essentially do?

LLMs as Machine Learning Task?

LLMs as Deep Learning Task?

Training Data for LLMs

We can create vast amounts of sequences for training a language model

We do the same with much longer sequences. For example:

A language model is a probability distribution over sequences of words. [...] Given any sequence of words, the model predicts the next ...

Or also with code:

def square(number):
"""Calculates the square of a number."""
return number ** 2

And as a result - the model becomes incredibly good at predicting the next word in any sequence.

Massive amounts of traning data can be created relatively easily.

Next word Generation

Phases of LLM Training

Pre-training

- Massive amount of text data from internet - books, research papers, websites
- Model learns to predict the next word

Instruction fine tuning

- Curating Q n A dataset to train the model to answer questions or instructions
- Model learns to become a helpful assistant

Reinforcement Learning from Human Feedback (RLHF)

- Align the output closer to human like responses
- Responses are updated considering human feedback and preference.

Limitation of LLMs

- 1. Hallucination
- 2. Mathematical Problem solving
- 3. Context window
- 4. Cost

How to make LLMs respond better?

Zero-Shot

• Give some instructions to solve a task.

Few-Shot

• Give some examples of how to solve a task.

Chain-of-Thought(CoT)

• For complex tasks- prompt an LLM to "think step by step"

Latest LLMs & Frameworks

LLMs	Frameworks
Mistral	Together AI- <u>https://www.together.ai/</u>
Mixtral	Groq- https://groq.com/
Llama	Replicate- https://replicate.com/
Gemini	LiteLLM - https://www.litellm.ai/
DeepSeek	Hugging Face- https://huggingface.co/

Generative Al Project Lifecycle

