Lógica para Computação Resolução

Thiago Alves Rocha

thiagoalvesifce@gmail.com

Tópicos

Introdução

Resolução

Tópicos

Introdução

2 Resolução

Introdução

- Resolução é uma regra de inferência que requer que as fórmulas estejam na forma normal conjuntiva
- Diferente dos outros sistemas dedutivos, consta de apenas uma regra

Introdução

- Resolução é uma regra aplicada em cláusulas
- Cláusulas tem o formato $I_1 \vee ... \vee I_n$
- Podemos usar a representação de conjunto $\{l_1,...,l_n\}$

Tópicos

Introdução

2 Resolução

Resolução

- A regra engloba duas cláusulas que possuem literais complementares
- Em uma das cláusulas o literal deve ser positivo e na outra deve ser negativo
- Na regra abaixo, a_i e b_j são os literais complementares
- A conclusão da regra da resolução é chamada de resolvente

$$\frac{a_1 \vee \ldots \vee a_{i-1} \vee a_i \vee a_{i+1} \vee \ldots \vee a_n, \quad b_1 \vee \ldots \vee b_{j-1} \vee b_j \vee b_{j+1} \vee \ldots \vee b_m}{a_1 \vee \ldots \vee a_{i-1} \vee a_{i+1} \vee \ldots \vee a_n \vee b_1 \vee \ldots \vee b_{j-1} \vee b_{j+1} \vee \ldots \vee b_m}$$

Intuição da Resolução

- Para entender por qual motivo podemos usar essa regra vamos usar um exemplo
- Seja $\neg p \lor \neg q$ e $p \lor r$ duas cláusulas
- ullet Usando equivalência lógica temos p
 ightarrow
 eg q e p ee r
- Obtemos $\neg q \lor r$

Resolução

- Em representação de conjuntos temos duas cláusulas $C_1 = \{a_1, ..., a_n\}$ e $C_2 = \{b_1, ..., b_m\}$ com a_i e b_j os literais complementares
- O resolvente $res(C_1, C_2) = (\{a_1, ..., a_n\} \{a_i\}) \cup (\{b_1, ..., b_m\} \{b_j\})$

Exemplo

$$C_1 = \{p, \neg q, r\} \in C_2 = \{\neg p, r\}$$

 $res(C_1, C_2) = \{\neg q, r\}$

Exemplo

$$C_1 = \{p, \neg q\} \text{ e } C_2 = \{\neg p, q\}$$

 $res(C_1, C_2) = \{\neg q, q\}$

$$C_1 = \{p\} \ e \ C_2 = \{\neg p\}$$

 $res(C_1, C_2) = \{\}$

Dedução por Resolução

Definição

Seja C uma fórmula e C' uma fórmula na forma normal conjuntiva equivalente a $\neg C$.

Dizemos que uma fórmula C pode ser deduzida por resolução de um conjunto de cláusulas Γ se a partir de $\Gamma \cup \{C'\}$, por aplicações da regra de resolução, podemos obter a cláusula vazia $\{\}$. Usamos a notação $\Gamma \vdash_{res} C$.

Intuição da Prova por Resolução

- Seja $\{q\}$ e $\{\neg q\}$ duas cláusulas
- Ou seja, temos a fórmula $q \wedge \neg q$
- Por conta disso, quando aplicamos resolução em $\{q\}$ e $\{\neg q\}$ obtemos $\{\}$ que representa \bot

Tópicos

Introdução

2 Resolução

• Vamos provar que $\vdash_{\mathit{res}} p \lor \neg p$

- Vamos provar que $\vdash_{res} p \lor \neg p$
- $\Gamma = \emptyset$ e $\neg (p \lor \neg p) \equiv \neg p \land p$ que está na forma normal conjuntiva

- Vamos provar que $\vdash_{res} p \lor \neg p$
- $\Gamma = e \neg (p \lor \neg p) \equiv \neg p \land p$ que está na forma normal conjuntiva
- Temos que partir de $\Gamma \cup \{\{\neg p\}, \{p\}\}$
 - 1. $\{p\}$
 - 2. $\{\neg p\}$
 - 3. {} 1, 2

• Vamos mostrar que $p \lor s \lor r, \neg s \lor r \vdash_{res} p \lor r$

- Vamos mostrar que $p \lor s \lor r, \neg s \lor r \vdash_{res} p \lor r$
- Aplicar resolução em $\{\{p,s,r\},\{\neg s,r\},\{\neg p\},\{\neg r\}\}$

- Vamos provar que $p \lor s \lor r, \neg s \lor r \vdash_{res} p \lor r$
- Aplicar resolução em $\{\{p,s,r\},\{\neg s,r\},\{\neg p\},\{\neg r\}\}$
 - 1. $\{p, s, r\}$
 - 2. $\{\neg s, r\}$
 - 3. $\{\neg p\}$
 - 4. $\{ \neg r \}$
 - 5. $\{s, r\}$ 1, 3
 - 6. {*r*} 2,5
 - 7. {} 4,6

• Outra forma de mostrar que $p \lor s \lor r, \neg s \lor r \vdash_{res} p \lor r$

- 1. $\{p, s, r\}$
- 2. $\{\neg s, r\}$
- 3. $\{\neg p\}$
- 4. $\{ \neg r \}$
- 5. $\{s, r\}$ 1, 3
- 6. {*s*} 5,4
- 7. {*r*} 2,6
 - 3. {} 4,7

• Mostrar que $\neg p \lor q \lor r, p \lor r \vdash_{res} \neg p \land r$

- Mostrar que $\neg p \lor q \lor r, p \lor r \vdash_{res} \neg p \land r$

- Mostrar que $\neg p \lor q \lor r, p \lor r \vdash_{res} \neg p \land r$
- Aplicar resolução em $\{\{\neg p, q, r\}, \{p, r\}, \{p, \neg r\}\}$
 - 1. $\{\neg p, q, r\}$
 - 2. $\{p, r\}$
 - 3. $\{p, \neg r\}$
 - 4. $\{q, r\}$ 1,2
 - 5. $\{q, r, \neg r\}$ 1,3
 - 6. $\{p, \neg p, q\}$ 1,3
 - 7. $\{p\}$ 2,3
 - 8. $\{p, q, r\}$ 2,5
 - 9. $\{p, q, \neg r\}$ 3,5
 - 10. $\{p,q\}$ 6,7

- Mostrar que $\neg p \lor q \lor r, p \lor r \vdash_{res} \neg p \land r$
- Aplicar resolução em $\{\{\neg p, q, r\}, \{p, r\}, \{p, \neg r\}\}$
 - 1. $\{\neg p, q, r\}$
 - 2. $\{p, r\}$
 - 3. $\{p, \neg r\}$
 - 4. $\{q, r\}$ 1,2
 - 5. $\{q, r, \neg r\}$ 1,3
 - 6. $\{p, \neg p, q\}$ 1,3
 - 7. $\{p\}$ 2,3
 - 8. $\{p, q, r\}$ 2,5
 - 9. $\{p, q, \neg r\}$ 3,5
 - 10. $\{p, q\}$ 6,7
- Temos que $\neg p \lor q \lor r, p \lor r \not\vdash_{res} \neg p \land r$

Lema

Seja S um conjunto de cláusulas e $C = \{l_1, ..., l_k\}$ em que existem literais complementares $l_i \in C$ e $l_j \in C$. Então $S \equiv S - \{C\}$.

- Cláusulas da forma $C = \{l_1, ..., l_k\}$ com literais complementares $l_i \in C$ e $l_j \in C$ podem ser desconsideradas.
- Chamamos de cláusulas triviais.

Lema

Sejam as cláusulas $C_1 = \{a_1, ..., a_n\}$ e $C_2 = \{b_1, ..., b_m\}$ com literais complementares a_i e b_j e com literais complementares a_k e b_l . Então $res(C_1, C_2)$ é uma cláusula trivial.

 Não precisamos aplicar resolução em cláusulas com dois pares de literais complementares

- Mostrar que $\neg p \lor q \lor r, p \lor r \vdash_{res} \neg p \land r$
- Aplicar resolução em $\{\{\neg p, q, r\}, \{p, r\}, \{p, \neg r\}\}$
 - 1. $\{\neg p, q, r\}$
 - 2. $\{p, r\}$
 - 3. $\{p, \neg r\}$
 - 4. $\{q, r\}$ 1,2
 - 5. {*p*} 2,3
 - 6. $\{p,q\}$ 3,4
- Temos que $\neg p \lor q \lor r, p \lor r \not\vdash_{res} \neg p \land r$

Corretude e Completude

Teorema da Corretude e Completude da Resolução

Seja Γ um conjunto de fórmulas e φ uma fórmula. $\Gamma \vdash_{\mathit{res}} \varphi$ se e somente se $\Gamma \models \varphi$.

Algoritmo

```
1: function RESOLUTION(\Gamma, \varphi)
         clauses \leftarrow CNF(\Gamma \cup \{\neg \varphi\})
        novas \leftarrow \{\}
        while True do
             for C_1 \in clauses do
                 for C_2 \in clauses do
 6:
                      resolventes \leftarrow Res(C_1, C_2)
                      if \{\} \in resolventes then
 8:
                          return True
 9:
                      novas \leftarrow novas \cup resolventes
10:
11:
             if novas \subseteq clauses then
                 return False
12:
             clauses \leftarrow clauses \cup novas
13:
```

Algoritmo

```
1: function Resolution(\Gamma, \varphi)
         clauses \leftarrow CNF(\Gamma \cup \{\neg \varphi\})
        novas \leftarrow \{\}
        while True do
             for C_1 \in clauses do
                 for C_2 \in clauses do
 6:
                      resolventes \leftarrow Res(C_1, C_2)
                      if \{\} \in resolventes then
                          return True
 9:
                      novas \leftarrow novas \cup resolventes
10.
11:
             if novas \subseteq clauses then
                 return False
12:
13:
             clauses \leftarrow clauses \cup novas
```

- $CNF(\{\psi_1,...,\psi_n\})$ converte todos os ψ_i na forma normal conjuntiva e retorna o conjunto de cláusulas na notação de conjuntos.
- $Res(C_1, C_2)$ retorna $\{res(C_1, C_2)\}$ ou $\{\}$ quando não tem resolvente

Algoritmo

- O algoritmo anterior pode retornar as cláusulas obtidas caso não obtenha a cláusula vazia.
- A partir das cláusulas obtidas, podemos descobrir uma valoração em que as premissas são verdadeiras mas a conclusão é falsa.

```
1: function Valuation(clauses)
         val \leftarrow \{\}
         atoms \leftarrow atom(clauses)
         for atom \in atoms do
 4:
             if \{\neg atom\} \in clauses then
                  val \leftarrow val \cup \{\neg atom\}
                  lit \leftarrow \neg atom
             else
                  val \leftarrow val \cup \{atom\}
                  lit \leftarrow atom
10.
             for clause \in clauses do
11:
                  if lit \in clause then
12:
                      clauses \leftarrow clauses - \{clause\}
13:
14:
             for clause \in clauses do
                  if \neg lit \in clause then
15:
                      clause \leftarrow clause - \{\neg lit\}
16.
17:
         return val
```

- Vamos verificar se $p \to q, q \to r \vdash_{res} p \to r$

- Vamos verificar se $p o q, q o r \vdash_{\textit{res}} p o r$
- \bullet Aplicar resolução em $\{\{\neg p,q\},\{\neg q,r\},\{p\},\{\neg r\}\}$
 - 1. $\{\neg p, q\}$
 - 2. $\{\neg q, r\}$
 - 3. {*p*}
 - 4. $\{ \neg r \}$
 - 5. $\{q\}$ 1, 3
 - 6. $\{\neg q\}$ 2,4
 - 7. {*r*} 2,5
 - 8. {} 5,6

- Verificar se $\neg p \lor q, p \lor r, p \lor \neg q \vdash_{res} q \land r$
- Aplicar resolução em $\{\{\neg p,q\},\{p,r\},\{p,\neg q\},\{\neg q,\neg r\}\}$

- Verificar se $\neg p \lor q, p \lor r, p \lor \neg q \vdash_{res} q \land r$
- Aplicar resolução em $\{\{\neg p,q\},\{p,r\},\{p,\neg q\},\{\neg q,\neg r\}\}$
 - 1. $\{\neg p, q\}$
 - 2. $\{p, r\}$
 - 3. $\{p, \neg q\}$
 - 4. $\{\neg q, \neg r\}$
 - 5. $\{q,r\}$ 1, 2
 - 6. $\{\neg p, \neg r\}$ 1, 4
- $\neg p \lor q, p \lor r, p \lor \neg q \not\vdash_{res} q \land r$

Considerações

- Por causa da simplicidade, tem sido um dos métodos mais utilizados nas implementações
- Fundamenta o funcionamento da linguagem de programação em lógica Prolog
- A escolha das cláusulas pode mudar a estrutura da resolução