This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

	**************************************	**************************************									
							•				
			; ;								
				1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		*					
				# 				<i>.</i> **			
				10							
				r_ •	* v * v * w. i						
						• * *					
							•				
	***								# 1		
				en en general de la companya de la La companya de la co		ing and Security					f 20
. 5.1							e e e e e e e e e e e e e e e e e e e				
					orionia Arionig≹						
	* *		4 ·								
						1					
	of State									• . • •	
						1 + 2 - 2 - 4 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2					
					*						9.4
		e e e e e e e e e e e e e e e e e e e	,								
	95. \$1	a a				$\tau_{i} = \frac{e^{i \epsilon_{i}}}{\epsilon_{i}}$	1				
-											
							* .				
				e .							
19										÷ .	
								्री स् ।			
in the second se		* .									
				2 1 to		er f					
							er en A				
* -						r grandf m gra					
							· e	•			-
	* * * * * * * * * * * * * * * * * * *							e de la compa	1.4		•
			en e	•							
Į.											
				# #	Fig. 1						
				the second second	₹ 55				. 4		
			the second secon		144. uz	real of the second					
					N _{AA} .						. :
											·
						v g					
*. *.	under der State				<i>(</i>)	*		1			
						· •					
		ranger (n. 1842) Romannia			. *	q.s	\$		•		
- 1	Professional Control		19 C	*		1.21		1			

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶:
C07K 14/47, 14/82, 14/15, C12Q 1/68, G01N 33/574, A61K 38/17, 39/00

(11) International Publication Number:

WO 98/45328

(43) International Publication Date:

15 October 1998 (15.10.98)

(21) International Application Number:

PCT/US98/06939

(22) International Filing Date:

9 April 1998 (09.04.98)

(30) Priority Data:

08/838,762 9 April 1997 (09.04.97) US 08/991,789 11 December 1997 (11.12.97) US

(71) Applicant: CORIXA CORPORATION [US/US]; Suite 200, 1124 Columbia Street, Seattle, WA 98104 (US).

(72) Inventors: FRUDAKIS, Tony, N.; P.O. Box 99232, Seattle, WA 99232-0232 (US). SMITH, John, M.; 208 - 116th Place Southeast, Everett, WA 98208 (US). REED, Steven, G.; 2843 - 122nd Place N.E., Bellevue, WA 98005 (US).

(74) Agents: MAKI, David, J. et al.; Seed and Berry LLP, 6300 Columbia Center, 701 Fifth Avenue, Seattle, WA 98104-7092 (US). (81) Designated States: AL, AM, AT, AU, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: COMPOSITIONS AND METHODS FOR THE TREATMENT AND DIAGNOSIS OF BREAST CANCER

(57) Abstract

Compositions and methods for the detection and therapy of breast cancer are disclosed. The compounds provided include nucleotide sequences that are preferentially expressed in breast tumor tissue, as well as polypeptides encoded by such nucleotide sequences. Vaccines and pharmaceutical compositions comprising such compounds are also provided and may be used, for example, for the prevention and treatment of breast cancer. The polypeptides may also be used for the production of antibodies, which are useful for diagnosing and monitoring the progression of breast cancer patient.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia ·
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
ΑT	Austria	FR	France	LU	Luxembourg	SN	
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Senegal Senegal
ΑZ	Azerbaijan	GB	United Kingdom	MC	Моласо	TD	Swaziland
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Chad
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Togo
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Tajikistan
BF	Burkina Faso	GR	Greece	1784%	Republic of Macedonia	TR	Turkmenistan
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Turkey
BJ	Benin	IE	Ireland	MN	Mongolia		Trinidad and Tobago
BR	Brazil	IL	Israel	MR	Mauritania	UA	Ukraine
BY	Belarus	IS	Iceland	MW	Malawi	UG	Uganda
CA	Canada	ľT	Italy	MX	Mexico	US	United States of America
CF	Central African Republic	JP	Japan	NE NE		UZ	Uzbekistan
CG	Congo	KE	Kenya		Niger	VN	Viet Nam
СН	Switzerland	KG	Kyrgyzstan	NL NO	Netherlands	YU	Yugoslavia
CI	Côte d'Ivoire	KP		NO	Norway	zw	Zimbabwe
CM	Cameroon	KI	Democratic People's Republic of Korea	NZ	New Zealand		
CN	China	KR	•	PL	Poland		
CU	Cuba	KZ	Republic of Korea Kazakstan	PT	Portugal		
CZ	Czech Republic			RO	Romania		
DE	Germany	rc	Saint Lucia	RU	Russian Federation		
DK	Denmark	LI	Liechtenstein	SD	Sudan		
EE	Estonia	LK	Sri Lanka	SE	Sweden		
D.C.	ESTORIA	LR	Liberia	SG	Singapore		
	•	-					

WO 98/45328 PCT/US98/06939

COMPOSITIONS AND METHODS FOR THE TREATMENT AND DIAGNOSIS OF BREAST CANCER

TECHNICAL FIELD

5

10

The present invention relates generally to the detection and therapy of breast cancer. The invention is more specifically related to nucleotide sequences that are preferentially expressed in breast tumor tissue and to polypeptides encoded by such nucleotide sequences. The nucleotide sequences and polypeptides may be used in vaccines and pharmaceutical compositions for the prevention and treatment of breast cancer. The polypeptides may also be used for the production of compounds, such as antibodies, useful for diagnosing and monitoring the progression of breast cancer in a patient.

BACKGROUND OF THE INVENTION

Breast cancer is a significant health problem for women in the United States and throughout the world. Although advances have been made in detection and treatment of the disease, breast cancer remains the second leading cause of cancer-related deaths in women, affecting more than 180,000 women in the United States each year. For women in North America, the life-time odds of getting breast cancer are now one in eight.

treatment of breast cancer is currently available. Management of the disease currently relies on a combination of early diagnosis (through routine breast screening procedures) and aggressive treatment, which may include one or more of a variety of treatments such as surgery, radiotherapy, chemotherapy and hormone therapy. The course of treatment for a particular breast cancer is often selected based on a variety of prognostic parameters, including an analysis of specific tumor markers. See, e.g., Porter-Jordan and Lippman, Breast Cancer 8:73-100 (1994). However, the use of established markers often leads to a result that is difficult to interpret, and the high mortality observed in

15

20

breast cancer patients indicates that improvements are needed in the treatment, diagnosis and prevention of the disease.

Accordingly, there is a need in the art for improved methods for therapy and diagnosis of breast cancer. The present invention fulfills these needs and further provides other related advantages.

SUMMARY OF THE INVENTION

Briefly stated, the subject invention provides compositions and methods for the diagnosis and therapy of breast cancer. In one aspect, isolated DNA molecules are provided, comprising (a) a nucleotide sequence preferentially expressed in breast cancer tissue, relative to normal tissue; (b) a variant of such a sequence that contains one or more nucleotide substitutions, deletions, insertions and/or modifications at no more than 20% (preferably no more than 5%) of the nucleotide positions, such that the antigenic and/or immunogenic properties of the polypeptide encoded by the nucleotide sequence are retained; or (c) a nucleotide sequence encoding an epitope of a polypeptide encoded by at least one of the above sequences. In one embodiment, the isolated DNA molecule comprises a human endogenous retroviral sequence recited in SEQ ID NO:1. In other embodiments, the isolated DNA molecule comprises a nucleotide sequence recited in any one of SEQ ID NO: 3-26, 28-77, 142, 143, 146-152, 154-166, 168-176, 178-192, 194-198, 200-204, 206, 207, 209-214, 216, 218, 219, 221-240, 243-245, 247, 250, 251, 253, 255, 257-266, 268, 269, 271-273, 275, 276, 278, 280, 281, 284, 288 and 291-297.

In related embodiments, the isolated DNA molecule encodes an epitope of a polypeptide, wherein the polypeptide is encoded by a nucleotide sequence that: (a) hybridizes to a sequence recited in any one of SEQ ID NO: 1, 3-26, 28-77, 142, 143, 146-152, 154-166, 168-176, 178-192, 194-198, 200-204, 206, 207, 209-214, 216, 218, 219, 221-240, 243-245, 247, 250, 251, 253, 255, 257-266, 268, 269, 271-273, 275, 276, 278, 280, 281, 284, 288 and 291-297 under stringent conditions; and (b) is at least 80% identical to a sequence recited in any one of SEQ ID NO: 1, 3-26, 28-77, 142, 143, 146-152, 154-166, 168-176, 178-192, 194-198, 200-204, 206, 207, 209-214, 216, 218, 219,

10

15

221-240, 243-245, 247, 250, 251, 253, 255, 257-266, 268, 269, 271-273, 275, 276, 278, 280, 281, 284, 288 and 291-297; and wherein RNA corresponding to said nucleotide sequence is expressed at a greater level in human breast tumor tissue than in normal breast tissue.

In another embodiment, the present invention provides an isolated DNA molecule encoding an epitope of a polypeptide, the polypeptide being encoded by: (a) a nucleotide sequence transcribed from the sequence of SEQ ID NO: 141; or (b) a variant of said nucleotide sequence that contains one or more nucleotide substitutions, deletions, insertions and/or modifications at no more than 20% of the nucleotide positions, such that the antigenic and/or immunogenic properties of the polypeptide encoded by the nucleotide sequence are retained. Isolated DNA and RNA molecules comprising a nucleotide sequence complementary to a DNA molecule as described above are also provided.

In related aspects, the present invention provides recombinant expression vectors comprising a DNA molecule as described above and host cells transformed or transfected with such expression vectors.

In further aspects, polypeptides, comprising an amino acid sequence encoded by a DNA molecule as described above, and monoclonal antibodies that bind to such polypeptides are provided.

In yet another aspect, methods are provided for determining the presence of breast cancer in a patient. In one embodiment, the method comprises detecting, within a biological sample, a polypeptide as described above. In another embodiment, the method comprises detecting, within a biological sample, an RNA molecule encoding a polypeptide as described above. In yet another embodiment, the method comprises (a) intradermally injecting a patient with a polypeptide as described above; and (b) detecting an immune response on the patient's skin and therefrom detecting the presence of breast cancer in the patient. In further embodiments, the present invention provides methods for determining the presence of breast cancer in a patient as described above wherein the polypeptide is encoded by a nucleotide sequence selected from the group consisting of SEQ ID NO: 78-86, 144, 145, 153, 167, 177, 193, 199, 205, 208,

215, 217, 220, 241, 242, 246, 248, 249, 252, 256, 267, 270, 274, 277, 279, 282, 283, 285-287, 289, 290 and sequences that hybridize thereto under stringent conditions.

In a related aspect, diagnostic kits useful in the determination of breast cancer are provided. The diagnostic kits generally comprise either one or more monoclonal antibodies as described above, or one or more monoclonal antibodies that bind to a polypeptide encoded by a nucleotide sequence selected from the group consisting of sequences provided in SEQ ID NO: 78-86, 144, 145, 153, 167, 177, 193, 199, 205, 208, 215, 217, 220, 241, 242 and 246, 248, 249, 252, 256, 267, 270, 274, 277, 279, 282, 283, 285-287, 289, 290 and a detection reagent.

Within a related aspect, the diagnostic kit comprises a first polymerase chain reaction primer and a second polymerase chain reaction primer, at least one of the primers being specific for an RNA molecule described herein. In one embodiment, at least one of the primers comprises at least about 10 contiguous nucleotides of an RNA molecule as described above, or an RNA molecule encoding a polypeptide encoded by a nucleotide sequence selected from the group consisting of SEQ ID NO: 78-86, 144, 145, 153, 167, 177, 193, 199, 205, 208, 215, 217, 220, 241, 242 246, 248, 249, 252, 256, 267, 270, 274, 277, 279, 282, 283, 285-287, 289 and 290.

Within another related aspect, the diagnostic kit comprises at least one oligonucleotide probe, the probe being specific for a DNA molecule described herein. In one embodiment, the probe comprises at least about 15 contiguous nucleotides of a DNA molecule as described above, or a DNA molecule selected from the group consisting of SEQ ID NO: 78-86, 144, 145, 153, 167, 177, 193, 199, 205, 208, 215, 217, 220, 241, 242 246, 248, 249, 252, 256, 267, 270, 274, 277, 279, 282, 283, 285-287, 289 and 290.

In another related aspect, the present invention provides methods for monitoring the progression of breast cancer in a patient. In one embodiment, the method comprises: (a) detecting an amount, in a biological sample, of a polypeptide as described above at a first point in time; (b) repeating step (a) at a subsequent point in time; and (c) comparing the amounts of polypeptide detected in steps (a) and (b), and therefrom monitoring the progression of breast cancer in the patient. In another

15

20

25

embodiment, the method comprises (a) detecting an amount, within a biological sample, of an RNA molecule encoding a polypeptide as described above at a first point in time; (b) repeating step (a) at a subsequent point in time; and (c) comparing the amounts of RNA molecules detected in steps (a) and (b), and therefrom monitoring the progression of breast cancer in the patient. In yet other embodiments, the present invention provides methods for monitoring the progression of breast cancer in a patient as described above wherein the polypeptide is encoded by a nucleotide sequence selected form the group consisting of SEQ ID NO: 78-86, 144, 145, 153, 167, 177, 193, 199, 205, 208, 215, 217, 220, 241, 242, 246, 248, 249, 252, 256, 267, 270, 274, 277, 279, 282, 283, 285-287, 289, 290 and sequences that hybridize thereto under stringent conditions.

In still other aspects, pharmaceutical compositions, which comprise a polypeptide as described above in combination with a physiologically acceptable carrier, and vaccines, which comprise a polypeptide as described above in combination with an immune response enhancer or adjuvant, are provided. In yet other aspects, the present invention provides pharmaceutical compositions and vaccines comprising a polypeptide encoded by a nucleotide sequence selected from the group consisting of SEQ ID NO: 78-86, 144, 145, 153, 167, 177, 193, 199, 205, 208, 215, 217, 220, 241, 242 and 246, 248, 249, 252, 256, 267, 270, 274, 277, 279, 282, 283, 285-287, 289, 290 and sequences that hybridize thereto under stringent conditions.

In related aspects, the present invention provides methods for inhibiting the development of breast cancer in a patient, comprising administering to a patient a pharmaceutical composition or vaccine as described above.

These and other aspects of the present invention will become apparent upon reference to the following detailed description and attached drawings. All references disclosed herein are hereby incorporated by reference in their entirety as if each was incorporated individually.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 shows the differential display PCR products, separated by gel electrophoresis, obtained from cDNA prepared from normal breast tissue (lanes 1 and 2)

and from cDNA prepared from breast tumor tissue from the same patient (lanes 3 and 4). The arrow indicates the band corresponding to B18Ag1.

Figure 2 is a northern blot comparing the level of B18Ag1 mRNA in breast tumor tissue (lane 1) with the level in normal breast tissue.

Figure 3 shows the level of B18Ag1 mRNA in breast tumor tissue compared to that in various normal and non-breast tumor tissues as determined by RNase protection assays.

Figure 4 is a genomic clone map showing the location of additional retroviral sequences obtained from ends of XbaI restriction digests (provided in SEQ ID NO:3 - SEQ ID NO:10) relative to B18Ag1.

Figures 5A and 5B show the sequencing strategy, genomic organization and predicted open reading frame for the retroviral element containing B18Ag1.

Figure 6 shows the nucleotide sequence of the representative breast tumor-specific cDNA B18Ag1.

Figure 7 shows the nucleotide sequence of the representative breast tumor-specific cDNA B17Ag1.

Figure 8 shows the nucleotide sequence of the representative breast tumor-specific cDNA B17Ag2.

Figure 9 shows the nucleotide sequence of the representative breast 20 tumor-specific cDNA B13Ag2a.

Figure 10 shows the nucleotide sequence of the representative breast tumor-specific cDNA B13Ag1b.

Figure 11 shows the nucleotide sequence of the representative breast tumor-specific cDNA B13Ag1a.

Figure 12 shows the nucleotide sequence of the representative breast tumor-specific cDNA B11Ag1.

Figure 13 shows the nucleotide sequence of the representative breast tumor-specific cDNA B3CA3c.

Figure 14 shows the nucleotide sequence of the representative breast 30 tumor-specific cDNA B9CG1.

20

Figure 15 shows the nucleotide sequence of the representative breast tumor-specific cDNA B9CG3.

Figure 16 shows the nucleotide sequence of the representative breast tumor-specific cDNA B2CA2.

Figure 17 shows the nucleotide sequence of the representative breast tumor-specific cDNA B3CA1.

Figure 18 shows the nucleotide sequence of the representative breast tumor-specific cDNA B3CA2.

Figure 19 shows the nucleotide sequence of the representative breast 10 tumor-specific cDNA B3CA3.

Figure 20 shows the nucleotide sequence of the representative breast tumor-specific cDNA B4CA1.

Figure 21A depicts RT-PCR analysis of breast tumor genes in breast tumor tissues (lanes 1-8) and normal breast tissues (lanes 9-13) and H₂O (lane 14).

Figure 21B depicts RT-PCR analysis of breast tumor genes in prostate tumors (lane 1, 2), colon tumors (lane 3), lung tumor (lane 4), normal prostate (lane 5), normal colon (lane 6), normal kidney (lane 7), normal liver (lane 8), normal lung (lane 9), normal ovary (lanes 10, 18), normal pancreases (lanes 11, 12), normal skeletal muscle (lane 13), normal skin (lane 14), normal stomach (lane 15), normal testes (lane 16), normal small intestine (lane 17), HBL-100 (lane 19), MCF-12A (lane 20), breast tumors (lanes 21-23), H₂O (lane 24), and colon tumor (lane 25).

DETAILED DESCRIPTION OF THE INVENTION

As noted above, the present invention is generally directed to compositions and methods for the diagnosis, monitoring and therapy of breast cancer.

The compositions described herein include polypeptides, nucleic acid sequences and antibodies. Polypeptides of the present invention generally comprise at least a portion of a protein that is expressed at a greater level in human breast tumor tissue than in normal breast tissue (i.e., the level of RNA encoding the polypeptide is at least 2-fold higher in tumor tissue). Such polypeptides are referred to herein as breast tumor-

specific polypeptides, and cDNA molecules encoding such polypeptides are referred to as breast tumor-specific cDNAs. Nucleic acid sequences of the subject invention generally comprise a DNA or RNA sequence that encodes all or a portion of a polypeptide as described above, or that is complementary to such a sequence. Antibodies are generally immune system proteins, or fragments thereof, that are capable of binding to a portion of a polypeptide as described above. Antibodies can be produced by cell culture techniques, including the generation of monoclonal antibodies as described herein, or via transfection of antibody genes into suitable bacterial or mammalian cell hosts, in order to allow for the production of recombinant antibodies.

Polypeptides within the scope of this invention include, but are not 10 limited to, polypeptides (and epitopes thereof) encoded by a human endogenous retroviral sequence, such as the sequence designated B18Ag1 (Figure 5 and SEQ ID NO:1). Also within the scope of the present invention are polypeptides encoded by other sequences within the retroviral genome containing B18Ag1 (SEQ ID NO: 141). Such sequences include, but are not limited to, the sequences recited in SEQ ID NO:3 -15 SEQ ID NO:10. B18Ag1 has homology to the gag p30 gene of the endogenous human retroviral element S71, as described in Werner et al., Virology 174:225-238 (1990) and also shows homology to about thirty other retroviral gag genes. As discussed in more detail below, the present invention also includes a number of additional breast tumorspecific polypeptides, such as those encoded by the nucleotide sequences recited in 20 SEQ ID NO: 11-26, 28-77, 142, 143, 146-152, 154-166, 168-176, 178-192, 194-198, 200-204, 206, 207, 209-214, 216, 218, 219, 221-240, 243-245, 247, 250, 251, 253, 255, 257-266, 268, 269, 271-273, 275, 276, 278, 280, 281, 284, 288 and 291-297. As used herein, the term "polypeptide" encompasses amino acid chains of any length, including full length proteins containing the sequences recited herein. A polypeptide comprising 25 an epitope of a protein containing a sequence as described herein may consist entirely of the epitope, or may contain additional sequences. The additional sequences may be derived from the native protein or may be heterologous, and such sequences may (but, need not) possess immunogenic or antigenic properties.

10

15

20

25

An "epitope," as used herein is a portion of a polypeptide that is recognized (i.e., specifically bound) by a B-cell and/or T-cell surface antigen receptor. Epitopes may generally be identified using well known techniques, such as those summarized in Paul, Fundamental Immunology, 3rd ed., 243-247 (Raven Press, 1993) and references cited therein. Such techniques include screening polypeptides derived from the native polypeptide for the ability to react with antigen-specific antisera and/or T-cell lines or clones. An epitope of a polypeptide is a portion that reacts with such antisera and/or T-cells at a level that is similar to the reactivity of the full length polypeptide (e.g., in an ELISA and/or T-cell reactivity assay). Such screens may generally be performed using methods well known to those of ordinary skill in the art, such as those described in Harlow and Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, 1988. B-cell and T-cell epitopes may also be predicted via computer analysis. Polypeptides comprising an epitope of a polypeptide that is preferentially expressed in a tumor tissue (with or without additional amino acid sequence) are within the scope of the present invention.

The compositions and methods of the present invention also encompass variants of the above polypeptides and nucleic acid sequences encoding such polypeptides. A polypeptide "variant," as used herein, is a polypeptide that differs from the native polypeptide in substitutions and/or modifications, such that the antigenic and/or immunogenic properties of the polypeptide are retained. Such variants may generally be identified by modifying one of the above polypeptide sequences and evaluating the reactivity of the modified polypeptide with antisera and/or T-cells as described above. Nucleic acid variants may contain one or more substitutions, deletions, insertions and/or modifications such that the antigenic and/or immunogenic properties of the encoded polypeptide are retained. One preferred variant of the polypeptides described herein is a variant that contains nucleotide substitutions, deletions, insertions and/or modifications at no more than 20% of the nucleotide positions.

Preferably, a variant contains conservative substitutions. A 30 "conservative substitution" is one in which an amino acid is substituted for another

10

15

20

25

amino acid that has similar properties, such that one skilled in the art of peptide chemistry would expect the secondary structure and hydropathic nature of the polypeptide to be substantially unchanged. In general, the following groups of amino acids represent conservative changes: (1) ala, pro, gly, glu, asp, gln, asn, ser, thr; (2) cys, ser, tyr, thr; (3) val, ile, leu, met, ala, phe; (4) lys, arg, his; and (5) phe, tyr, trp, his.

Variants may also (or alternatively) be modified by, for example, the deletion or addition of amino acids that have minimal influence on the immunogenic or antigenic properties, secondary structure and hydropathic nature of the polypeptide. For example, a polypeptide may be conjugated to a signal (or leader) sequence at the N-terminal end of the protein which co-translationally or post-translationally directs transfer of the protein. The polypeptide may also be conjugated to a linker or other sequence for ease of synthesis, purification or identification of the polypeptide (e.g., poly-His), or to enhance binding of the polypeptide to a solid support. For example, a polypeptide may be conjugated to an immunoglobulin Fc region.

In general, nucleotide sequences encoding all or a portion of the polypeptides described herein may be prepared using any of several techniques. For example, cDNA molecules encoding such polypeptides may be cloned on the basis of the breast tumor-specific expression of the corresponding mRNAs, using differential display PCR. This technique compares the amplified products from RNA template prepared from normal and breast tumor tissue. cDNA may be prepared by reverse transcription of RNA using a (dT)₁₂AG primer. Following amplification of the cDNA using a random primer, a band corresponding to an amplified product specific to the tumor RNA may be cut out from a silver stained gel and subcloned into a suitable vector (e.g., the T-vector, Novagen, Madison, WI). Nucleotide sequences encoding all or a portion of the breast tumor-specific polypeptides disclosed herein may be amplified from cDNA prepared as described above using the random primers shown in SEQ ID NO.:87-125.

Alternatively, a gene encoding a polypeptide as described herein (or a portion thereof) may be amplified from human genomic DNA, or from breast tumor

15

20

25

30

cDNA, via polymerase chain reaction. For this approach, B18Ag1 sequence-specific primers may be designed based on the sequence provided in SEQ ID NO:1, and may be purchased or synthesized. One suitable primer pair for amplification from breast tumor cDNA is (5'ATG GCT ATT TTC GGG GGC TGA CA) (SEQ ID NO.:126) and (5'CCG GTA TCT CCT CGT GGG TAT T) (SEQ ID NO.:127). An amplified portion of B18Ag1 may then be used to isolate the full length gene from a human genomic DNA library or from a breast tumor cDNA library, using well known techniques, such as those described in Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratories, Cold Spring Harbor, NY (1989). Other sequences within the retroviral genome of which B18Ag1 is a part may be similarly prepared by screening human genomic libraries using B18Ag1-specific sequences as probes. Nucleotides translated into protein from the retroviral genome shown in SEQ ID NO: 141 may then be determined by cloning the corresponding cDNAs, predicting the open reading frames and cloning the appropriate cDNAs into a vector containing a viral promoter, such as T7. The resulting constructs can be employed in a translation reaction, using techniques known to those of skill in the art, to identify nucleotide sequences which result in expressed protein. Similarly, primers specific for the remaining breast tumor-specific polypeptides described herein may be designed based on the nucleotide sequences provided in SEQ ID NO:11 - SEQ ID NO:86 and SEQ ID NO:142 - SEQ ID NO:297.

Recombinant polypeptides encoded by the DNA sequences described above may be readily prepared from the DNA sequences. For example, supernatants from suitable host/vector systems which secrete recombinant protein or polypeptide into culture media may be first concentrated using a commercially available filter. Following concentration, the concentrate may be applied to a suitable purification matrix such as an affinity matrix or an ion exchange resin. Finally, one or more reverse phase HPLC steps can be employed to further purify a recombinant polypeptide.

In general, any of a variety of expression vectors known to those of ordinary skill in the art may be employed to express recombinant polypeptides of this invention. Expression may be achieved in any appropriate host cell that has been

10

15

transformed or transfected with an expression vector containing a DNA molecule that encodes a recombinant polypeptide. Suitable host cells include prokaryotes, yeast and higher eukaryotic cells. Preferably, the host cells employed are *E. coli*, yeast or a mammalian cell line such as COS or CHO.

Such techniques may also be used to prepare polypeptides comprising epitopes or variants of the native polypeptides. For example, variants of a native polypeptide may generally be prepared using standard mutagenesis techniques, such as oligonucleotide-directed site-specific mutagenesis, and sections of the DNA sequence may be removed to permit preparation of truncated polypeptides. Portions and other variants having fewer than about 100 amino acids, and generally fewer than about 50 amino acids, may also be generated by synthetic means, using techniques well known to those of ordinary skill in the art. For example, such polypeptides may be synthesized using any of the commercially available solid-phase techniques, such as the Merrifield solid-phase synthesis method, where amino acids are sequentially added to a growing amino acid chain. See Merrifield, J. Am. Chem. Soc. 85:2149-2146 (1963). Equipment for automated synthesis of polypeptides is commercially available from suppliers such as Perkin Elmer/Applied BioSystems Division,, Foster City, CA, and may be operated according to the manufacturer's instructions.

In specific embodiments, polypeptides of the present invention encompass amino acid sequences encoded by a DNA molecule having a sequence recited in any one of SEQ ID NO:1, 3-26, 28-77, 142, 143, 146-152, 154-166, 168-176, 178-192, 194-198, 200-204, 206, 207, 209-214, 216, 218, 219, 221-240, 243-245, 247, 250, 251, 253, 255, 257-266, 268, 269, 271-273, 275, 276, 278, 280, 281, 284, 288 and 291-297, variants of such polypeptides that are encoded by DNA molecules containing one or more nucleotide substitutions, deletions, insertions and/or modifications at no more than 20% of the nucleotide positions, and epitopes of the above polypeptides. Polypeptides within the scope of the present invention also include polypeptides (and epitopes thereof) encoded by DNA sequences that hybridize to a DNA molecule having a sequence recited in any one of SEQ ID NO:1, 3-26, 28-77, 142, 143, 146-152, 154-30 166, 168-176, 178-192, 194-198, 200-204, 206, 207, 209-214, 216, 218, 219, 221-240,

15

20

243-245, 247, 250, 251, 253, 255, 257-266, 268, 269, 271-273, 275, 276, 278, 280, 281, 284, 288 and 291-297 under stringent conditions, wherein the DNA sequences are at least 80% identical in overall sequence to a recited sequence and wherein RNA corresponding to the nucleotide sequence is expressed at a greater level in human breast tumor tissue than in normal breast tissue. As used herein, "stringent conditions" refers to prewashing in a solution of 6X SSC, 0.2% SDS; hybridizing at 65°C, 6X SSC, 0.2% SDS overnight; followed by two washes of 30 minutes each in 1X SSC, 0.1% SDS at 65°C and two washes of 30 minutes each in 0.2 X SSC, 0.1% SDS at 65°C. DNA molecules according to the present invention include molecules that encode any of the above polypeptides.

In another aspect of the present invention, antibodies are provided. Such antibodies may be prepared by any of a variety of techniques known to those of ordinary skill in the art. See, e.g., Harlow and Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, 1988. In one such technique, an immunogen comprising the polypeptide is initially injected into any of a wide variety of mammals (e.g., mice, rats, rabbits, sheep or goats). In this step, the polypeptides of this invention may serve as the immunogen without modification. Alternatively, particularly for relatively short polypeptides, a superior immune response may be elicited if the polypeptide is joined to a carrier protein, such as bovine serum albumin or keyhole limpet hemocyanin. The immunogen is injected into the animal host, preferably according to a predetermined schedule incorporating one or more booster immunizations, and the animals are bled periodically. Polyclonal antibodies specific for the polypeptide may then be purified from such antisera by, for example, affinity chromatography using the polypeptide coupled to a suitable solid support.

Monoclonal antibodies specific for the antigenic polypeptide of interest may be prepared, for example, using the technique of Kohler and Milstein, Eur. J. Immunol. 6:511-519 (1976), and improvements thereto. Briefly, these methods involve the preparation of immortal cell lines capable of producing antibodies having the desired specificity (i.e., reactivity with the polypeptide of interest). Such cell lines may be produced, for example, from spleen cells obtained from an animal immunized as

15

20

described above. The spleen cells are then immortalized by, for example, fusion with a myeloma cell fusion partner, preferably one that is syngeneic with the immunized animal. A variety of fusion techniques may be employed. For example, the spleen cells and myeloma cells may be combined with a nonionic detergent for a few minutes and then plated at low density on a selective medium that supports the growth of hybrid cells, but not myeloma cells. A preferred selection technique uses HAT (hypoxanthine, aminopterin, thymidine) selection. After a sufficient time, usually about 1 to 2 weeks, colonies of hybrids are observed. Single colonies are selected and their culture supernatants tested for binding activity against the polypeptide. Hybridomas having high reactivity and specificity are preferred.

Monoclonal antibodies may be isolated from the supernatants of growing hybridoma colonies. In addition, various techniques may be employed to enhance the yield, such as injection of the hybridoma cell line into the peritoneal cavity of a suitable vertebrate host, such as a mouse. Monoclonal antibodies may then be harvested from the ascites fluid or the blood. Contaminants may be removed from the antibodies by conventional techniques, such as chromatography, gel filtration, precipitation, and extraction. The polypeptides of this invention may be used in the purification process in, for example, an affinity chromatography step.

Antibodies may be used, for example, in methods for detecting breast cancer in a patient. Such methods involve using an antibody to detect the presence or absence of a breast tumor-specific polypeptide as described herein in a suitable biological sample. As used herein, suitable biological samples include tumor or normal tissue biopsy, mastectomy, blood, lymph node, serum or urine samples, or other tissue, homogenate, or extract thereof obtained from a patient.

There are a variety of assay formats known to those of ordinary skill in the art for using an antibody to detect polypeptide markers in a sample. See, e.g., Harlow and Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, 1988. For example, the assay may be performed in a Western blot format, wherein a protein preparation from the biological sample is submitted to gel electrophoresis, transferred to a suitable membrane and allowed to react with the antibody. The

15

presence of the antibody on the membrane may then be detected using a suitable detection reagent, as described below.

In another embodiment, the assay involves the use of antibody immobilized on a solid support to bind to the polypeptide and remove it from the remainder of the sample. The bound polypeptide may then be detected using a second antibody or reagent that contains a reporter group. Alternatively, a competitive assay may be utilized, in which a polypeptide is labeled with a reporter group and allowed to bind to the immobilized antibody after incubation of the antibody with the sample. The extent to which components of the sample inhibit the binding of the labeled polypeptide to the antibody is indicative of the reactivity of the sample with the immobilized antibody, and as a result, indicative of the concentration of polypeptide in the sample.

The solid support may be any material known to those of ordinary skill in the art to which the antibody may be attached. For example, the solid support may be a test well in a microtiter plate or a nitrocellulose filter or other suitable membrane. Alternatively, the support may be a bead or disc, such as glass, fiberglass, latex or a plastic material such as polystyrene or polyvinylchloride. The support may also be a magnetic particle or a fiber optic sensor, such as those disclosed, for example, in U.S. Patent No. 5,359,681.

techniques known to those in the art, which are amply described in the patent and scientific literature. In the context of the present invention, the term "immobilization" refers to both noncovalent association, such as adsorption, and covalent attachment (which may be a direct linkage between the antigen and functional groups on the support or may be a linkage by way of a cross-linking agent). Immobilization by adsorption to a well in a microtiter plate or to a membrane is preferred. In such cases, adsorption may be achieved by contacting the antibody, in a suitable buffer, with the solid support for a suitable amount of time. The contact time varies with temperature, but is typically between about 1 hour and 1 day. In general, contacting a well of a plastic microtiter plate (such as polystyrene or polyvinylchloride) with an amount of

15

20

25

30

antibody ranging from about 10 ng to about 1 μ g, and preferably about 100-200 ng, is sufficient to immobilize an adequate amount of polypeptide.

Covalent attachment of antibody to a solid support may also generally be achieved by first reacting the support with a bifunctional reagent that will react with both the support and a functional group, such as a hydroxyl or amino group, on the antibody. For example, the antibody may be covalently attached to supports having an appropriate polymer coating using benzoquinone or by condensation of an aldehyde group on the support with an amine and an active hydrogen on the binding partner (see, e.g., Pierce Immunotechnology Catalog and Handbook (1991) at A12-A13).

In certain embodiments, the assay for detection of polypeptide in a sample is a two-antibody sandwich assay. This assay may be performed by first contacting an antibody that has been immobilized on a solid support, commonly the well of a microtiter plate, with the biological sample, such that the polypeptide within the sample are allowed to bind to the immobilized antibody. Unbound sample is then removed from the immobilized polypeptide-antibody complexes and a second antibody (containing a reporter group) capable of binding to a different site on the polypeptide is added. The amount of second antibody that remains bound to the solid support is then determined using a method appropriate for the specific reporter group.

More specifically, once the antibody is immobilized on the support as described above, the remaining protein binding sites on the support are typically blocked. Any suitable blocking agent known to those of ordinary skill in the art, such as bovine serum albumin or Tween 20TM (Sigma Chemical Co., St. Louis, MO). The immobilized antibody is then incubated with the sample, and polypeptide is allowed to bind to the antibody. The sample may be diluted with a suitable diluent, such as phosphate-buffered saline (PBS) prior to incubation. In general, an appropriate contact time (*i.e.*, incubation time) is that period of time that is sufficient to detect the presence of polypeptide within a sample obtained from an individual with breast cancer. Preferably, the contact time is sufficient to achieve a level of binding that is at least, 95% of that achieved at equilibrium between bound and unbound polypeptide. Those of ordinary skill in the art will recognize that the time necessary to achieve equilibrium

10

15

20

may be readily determined by assaying the level of binding that occurs over a period of time. At room temperature, an incubation time of about 30 minutes is generally sufficient.

Unbound sample may then be removed by washing the solid support with an appropriate buffer, such as PBS containing 0.1% Tween 20TM. The second antibody, which contains a reporter group, may then be added to the solid support. Preferred reporter groups include enzymes (such as horseradish peroxidase), substrates, cofactors, inhibitors, dyes, radionuclides, luminescent groups, fluorescent groups and biotin. The conjugation of antibody to reporter group may be achieved using standard methods known to those of ordinary skill in the art.

The second antibody is then incubated with the immobilized antibody-polypeptide complex for an amount of time sufficient to detect the bound polypeptide. An appropriate amount of time may generally be determined by assaying the level of binding that occurs over a period of time. Unbound second antibody is then removed and bound second antibody is detected using the reporter group. The method employed for detecting the reporter group depends upon the nature of the reporter group. For radioactive groups, scintillation counting or autoradiographic methods are generally appropriate. Spectroscopic methods may be used to detect dyes, luminescent groups and fluorescent groups. Biotin may be detected using avidin, coupled to a different reporter group (commonly a radioactive or fluorescent group or an enzyme). Enzyme reporter groups may generally be detected by the addition of substrate (generally for a specific period of time), followed by spectroscopic or other analysis of the reaction products.

detected from the reporter group that remains bound to the solid support is generally compared to a signal that corresponds to a predetermined cut-off value established from non-tumor tissue. In one preferred embodiment, the cut-off value is the average mean signal obtained when the immobilized antibody is incubated with samples from patients, without breast cancer. In general, a sample generating a signal that is three standard deviations above the predetermined cut-off value may be considered positive for breast

20

25

30

cancer. In an alternate preferred embodiment, the cut-off value is determined using a Receiver Operator Curve, according to the method of Sackett et al., Clinical Epidemiology: A Basic Science for Clinical Medicine, p. 106-7 (Little Brown and Co., 1985). Briefly, in this embodiment, the cut-off value may be determined from a plot of pairs of true positive rates (i.e., sensitivity) and false positive rates (100%-specificity) that correspond to each possible cut-off value for the diagnostic test result. The cut-off value on the plot that is the closest to the upper left-hand corner (i.e., the value that encloses the largest area) is the most accurate cut-off value, and a sample generating a signal that is higher than the cut-off value determined by this method may be considered positive. Alternatively, the cut-off value may be shifted to the left along the plot, to minimize the false positive rate, or to the right, to minimize the false negative rate. In general, a sample generating a signal that is higher than the cut-off value determined by this method is considered positive for breast cancer.

In a related embodiment, the assay is performed in a flow-through or strip test format, wherein the antibody is immobilized on a membrane, such as nitrocellulose. In the flow-through test, the polypeptide within the sample bind to the immobilized antibody as the sample passes through the membrane. A second, labeled antibody then binds to the antibody-polypeptide complex as a solution containing the second antibody flows through the membrane. The detection of bound second antibody may then be performed as described above. In the strip test format, one end of the membrane to which antibody is bound is immersed in a solution containing the sample. The sample migrates along the membrane through a region containing second antibody and to the area of immobilized antibody. Concentration of second antibody at the area of immobilized antibody indicates the presence of breast cancer. Typically, the concentration of second antibody at that site generates a pattern, such as a line, that can be read visually. The absence of such a pattern indicates a negative result. In general, the amount of antibody immobilized on the membrane is selected to generate a visually discernible pattern when the biological sample contains a level of polypeptide that, would be sufficient to generate a positive signal in the two-antibody sandwich assay, in the format discussed above. Preferably, the amount of antibody immobilized on the

10

15

20

25

membrane ranges from about 25 ng to about 1 μ g, and more preferably from about 50 ng to about 1 μ g. Such tests can typically be performed with a very small amount of biological sample.

The presence or absence of breast cancer in a patient may also be determined by evaluating the level of mRNA encoding a breast tumor-specific polypeptide as described herein within the biological sample (e.g., a biopsy, mastectomy and/or blood sample from a patient) relative to a predetermined cut-off value. Such an evaluation may be achieved using any of a variety of methods known to those of ordinary skill in the art such as, for example, in situ hybridization and amplification by polymerase chain reaction.

For example, polymerase chain reaction may be used to amplify sequences from cDNA prepared from RNA that is isolated from one of the above biological samples. Sequence-specific primers for use in such amplification may be designed based on the sequences provided in any one of SEQ ID NO: 1, 11-86 and 142-297, and may be purchased or synthesized. In the case of B18Ag1, as noted herein, one suitable primer pair is B18Ag1-2 (5'ATG GCT ATT TTC GGG GGC TGA CA) (SEQ ID NO.:126) and B18Ag1-3 (5'CCG GTA TCT CCT CGT GGG TAT T) (SEQ ID NO.:127). The PCR reaction products may then be separated by gel electrophoresis and visualized according to methods well known to those of ordinary skill in the art. Amplification is typically performed on samples obtained from matched pairs of tissue (tumor and non-tumor tissue from the same individual) or from unmatched pairs of tissue (tumor and non-tumor tissue from different individuals). The amplification reaction is preferably performed on several dilutions of cDNA spanning two orders of magnitude. A two-fold or greater increase in expression in several dilutions of the tumor sample as compared to the same dilution of the non-tumor sample is considered positive.

As used herein, the term "primer/probe specific for a DNA/RNA molecule" means an oligonucleotide sequence that has at least about 80% identity preferably at least about 90% and more preferably at least about 95%, identity to the DNA/RNA molecule in question. Primers and/or probes which may be usefully

20

25

employed in the inventive diagnostic methods preferably have at least about 10-40 nucleotides. In a preferred embodiment, the polymerase chain reaction primers comprise at least about 10 contiguous nucleotides of a DNA/RNA molecule encoding one of the polypeptides disclosed herein. Preferably, oligonucleotide probes for use in the inventive diagnostic methods comprise at least about 15 contiguous oligonucleotides of a DNA/RNA molecule encoding one of the polypeptides disclosed herein. Techniques for both PCR based assays and *in situ* hybridization assays are well known in the art.

Conventional RT-PCR protocols using agarose and ethidium bromide staining while important in defining gene specificity do not lend themselves to diagnostic kit development because of the time and effort required in making them quantitative (i.e., construction of saturation and/or titration curves), and their sample throughput. This problem is overcome by the development of procedures such as real time RT-PCR which allows for assays to be performed in single tubes, and in turn can be modified for use in 96 well plate formats. Instrumentation to perform such methodologies are available from Perkin Elmer/Applied Biosystems Division. Alternatively, other high throughput assays using labeled probes (e.g., digoxygenin) in combination with labeled (e.g., enzyme fluorescent, radioactive) antibodies to such probes can also be used in the development of 96 well plate assays.

In yet another method for determining the presence or absence of breast cancer in a patient, one or more of the breast tumor-specific polypeptides described may be used in a skin test. As used herein, a "skin test" is any assay performed directly on a patient in which a delayed-type hypersensitivity (DTH) reaction (such as swelling, reddening or dermatitis) is measured following intradermal injection of one or more polypeptides as described above. Such injection may be achieved using any suitable device sufficient to contact the polypeptide or polypeptides with dermal cells of the patient, such as a tuberculin syringe or 1 mL syringe. Preferably, the reaction is measured at least 48 hours after injection, more preferably 48-72 hours.

The DTH reaction is a cell-mediated immune response, which is greater in patients that have been exposed previously to a test antigen (i.e., an immunogenic

15

20

25

portion of a polypeptide employed, or a variant thereof). The response may measured visually, using a ruler. In general, a response that is greater than about 0.5 cm in diameter, preferably greater than about 5.0 cm in diameter, is a positive response, indicative of breast cancer.

The breast tumor-specific polypeptides described herein are preferably formulated, for use in a skin test, as pharmaceutical compositions containing at least one polypeptide and a physiologically acceptable carrier, such as water, saline, alcohol, or a buffer. Such compositions typically contain one or more of the above polypeptides in an amount ranging from about 1 µg to 100 µg, preferably from about 10 µg to 50 µg in a volume of 0.1 mL. Preferably, the carrier employed in such pharmaceutical compositions is a saline solution with appropriate preservatives, such as phenol and/or Tween 80TM.

In other aspects of the present invention, the progression and/or response to treatment of a breast cancer may be monitored by performing any of the above assays over a period of time, and evaluating the change in the level of the response (i.e., the amount of polypeptide or mRNA detected or, in the case of a skin test, the extent of the immune response detected). For example, the assays may be performed every month to every other month for a period of 1 to 2 years. In general, breast cancer is progressing in those patients in whom the level of the response increases over time. In contrast, breast cancer is not progressing when the signal detected either remains constant or decreases with time.

In further aspects of the present invention, the compounds described herein may be used for the immunotherapy of breast cancer. In these aspects, the compounds (which may be polypeptides, antibodies or nucleic acid molecules) are preferably incorporated into pharmaceutical compositions or vaccines. Pharmaceutical compositions comprise one or more such compounds and a physiologically acceptable carrier. Vaccines may comprise one or more polypeptides and an immune response enhancer, such as an adjuvant or a liposome (into which the compound is incorporated) Pharmaceutical compositions and vaccines may additionally contain a delivery system, such as biodegradable microspheres which are disclosed, for example, in U.S. Patent

15

20

25

Nos. 4,897,268 and 5,075,109. Pharmaceutical compositions and vaccines within the scope of the present invention may also contain other compounds, including one or more separate polypeptides.

Alternatively, a vaccine may contain DNA encoding one or more of the polypeptides as described above, such that the polypeptide is generated in situ. In such vaccines, the DNA may be present within any of a variety of delivery systems known to those of ordinary skill in the art, including nucleic acid expression systems, bacteria and viral expression systems. Appropriate nucleic acid expression systems contain the necessary DNA sequences for expression in the patient (such as a suitable promoter and terminating signal). Bacterial delivery systems involve the administration of a bacterium (such as Bacillus-Calmette-Guerrin) that expresses an immunogenic portion of the polypeptide on its cell surface. In a preferred embodiment, the DNA may be introduced using a viral expression system (e.g., vaccinia or other pox virus, retrovirus, or adenovirus), which may involve the use of a non-pathogenic (defective), replication competent virus. Techniques for incorporating DNA into such expression systems are well known to those of ordinary skill in the art. The DNA may also be "naked," as described, for example, in Ulmer et al., Science 259:1745-1749 (1993), and reviewed by Cohen, Science 259:1691-1692 (1993). The uptake of naked DNA may be increased by coating the DNA onto biodegradable beads, which are efficiently transported into the cells.

While any suitable carrier known to those of ordinary skill in the art may be employed in the pharmaceutical compositions of this invention, the type of carrier will vary depending on the mode of administration. For parenteral administration, such as subcutaneous injection, the carrier preferably comprises water, saline, alcohol, a fat, a wax or a buffer. For oral administration, any of the above carriers or a solid carrier, such as mannitol, lactose, starch, magnesium stearate, sodium saccharine, talcum, cellulose, glucose, sucrose, and magnesium carbonate, may be employed. Biodegradable microspheres (e.g., polylactate polyglycolate) may also be employed as, carriers for the pharmaceutical compositions of this invention.

- 15

20

Any of a variety of adjuvants may be employed in the vaccines of this invention to nonspecifically enhance the immune response. Most adjuvants contain a substance designed to protect the antigen from rapid catabolism, such as aluminum hydroxide or mineral oil, and a stimulator of immune responses, such as lipid A, Bortadella pertussis or Mycobacterium tuberculosis derived proteins. Suitable adjuvants are commercially available as, for example, Freund's Incomplete Adjuvant and Complete Adjuvant (Difco Laboratories, Detroit, MI), Merck Adjuvant 65 (Merck and Company, Inc., Rahway, NJ), alum, biodegradable microspheres, monophosphoryl lipid A and quil A. Cytokines, such as GM-CSF or interleukin-2, -7, or -12, may also be used as adjuvants.

The above pharmaceutical compositions and vaccines may be used, for example, for the therapy of breast cancer in a patient. As used herein, a "patient" refers to any warm-blooded animal, preferably a human. A patient may or may not be afflicted with breast cancer. Accordingly, the above pharmaceutical compositions and vaccines may be used to prevent the development of breast cancer or to treat a patient afflicted with breast cancer. To prevent the development of breast cancer, a pharmaceutical composition or vaccine comprising one or more polypeptides as described herein may be administered to a patient. Alternatively, naked DNA or plasmid or viral vector encoding the polypeptide may be administered. For treating a patient with breast cancer, the pharmaceutical composition or vaccine may comprise one or more polypeptides, antibodies or nucleotide sequences complementary to DNA encoding a polypeptide as described herein (e.g., antisense RNA or antisense deoxyribonucleotide oligonucleotides).

Routes and frequency of administration, as well as dosage, will vary from individual to individual. In general, the pharmaceutical compositions and vaccines may be administered by injection (e.g., intracutaneous, intramuscular, intravenous or subcutaneous), intranasally (e.g., by aspiration) or orally. Between 1 and 10 doses may be administered for a 52-week period. Preferably, 6 doses are administered, at intervals of 1 month, and booster vaccinations may be given periodically thereafter. Alternate protocols may be appropriate for individual patients.

A suitable dose is an amount of a compound that, when administered as described above, is capable of promoting an anti-tumor immune response. Such response can be monitored by measuring the anti-tumor antibodies in a patient or by vaccine-dependent generation of cytolytic effector cells capable of killing the patient's tumor cells *in vitro*.

5 Such vaccines should also be capable of causing an immune response that leads to an improved clinical outcome (e.g., more frequent remissions, complete or partial or longer disease-free survival) in vaccinated patients as compared to non-vaccinated patients. In general, for pharmaceutical compositions and vaccines comprising one or more polypeptides, the amount of each polypeptide present in a dose ranges from about 100 μg to 5 mg. Suitable dose sizes will vary with the size of the patient, but will typically range from about 0.1 mL to about 5 mL.

The following Examples are offered by way of illustration and not by way of limitation.

10

15

20

EXAMPLES

EXAMPLE 1

PREPARATION OF BREAST TUMOR-SPECIFIC CDNAs USING DIFFERENTIAL DISPLAY RT-PCR

This Example illustrates the preparation of cDNA molecules encoding breast tumor-specific polypeptides using a differential display screen.

A. Preparation of B18Ag1 cDNA and Characterization of mRNA Expression

Tissue samples were prepared from breast tumor and normal tissue of a patient with breast cancer that was confirmed by pathology after removal from the patient. Normal RNA and tumor RNA was extracted from the samples and mRNA was isolated and converted into cDNA using a (dT)₁₂AG (SEQ ID NO.:130) anchored 3' primer. Differential display PCR was then executed using a randomly chosen primer (CTTCAACCTC) (SEQ ID NO.:103). Amplification conditions were standard buffer containing 1.5 mM MgCl₂, 20 pmol of primer, 500 pmol dNTP, and 1 unit of *Taq* DNA polymerase (Perkin-Elmer, Branchburg, NJ). Forty cycles of amplification were performed using 94°C denaturation for 30 seconds, 42°C annealing for 1 minute, and 72°C extension for 30 seconds. An RNA fingerprint containing 76 amplified products was obtained. Although the RNA fingerprint of breast tumor tissue was over 98% identical to that of the normal breast tissue, a band was repeatedly observed to be specific to the RNA fingerprint pattern of the tumor. This band was cut out of a silver stained gel, subcloned into the T-vector (Novagen, Madison, WI) and sequenced.

The sequence of the cDNA, referred to as B18Ag1, is provided in SEQ ID NO:1. A database search of GENBANK and EMBL revealed that the B18Ag1 fragment initially cloned is 77% identical to the endogenous human retroviral element S71, which is a truncated retroviral element homologous to the Simian Sarcoma Virus, (SSV). S71 contains an incomplete gag gene, a portion of the pol gene and an LTR-like structure at the 3' terminus (see Werner et al., Virology 174:225-238 (1990)). B18Ag1

10

15

20

is also 64% identical to SSV in the region corresponding to the P30 (gag) locus. B18Ag1 contains three separate and incomplete reading frames covering a region which shares considerable homology to a wide variety of gag proteins of retroviruses which infect mammals. In addition, the homology to S71 is not just within the gag gene, but spans several kb of sequence including an LTR.

B18Ag1-specific PCR primers were synthesized using computer analysis guidelines. RT-PCR amplification (94°C, 30 seconds; 60°C \rightarrow 42°C, 30 seconds; 72°C, 30 seconds for 40 cycles) confirmed that B18Ag1 represents an actual mRNA sequence present at relatively high levels in the patient's breast tumor tissue. The primers used in amplification were B18Ag1-1 (CTG CCT GAG CCA CAA ATG) (SEQ ID NO.:128) and B18Ag1-4 (CCG GAG GAG GAA GCT AGA GGA ATA) (SEQ ID NO.:129) at a 3.5 mM magnesium concentration and a pH of 8.5, and B18Ag1-2 (ATG GCT ATT TTC GGG GCC TGA CA) (SEQ ID NO.:126) and B18Ag1-3 (CCG GTA TCT CCT CGT GGG TAT T) (SEQ ID NO.:127) at 2 mM magnesium at pH 9.5. The same experiments showed exceedingly low to nonexistent levels of expression in this patient's normal breast tissue (see Figure 1). RT-PCR experiments were then used to show that B18Ag1 mRNA is present in nine other breast tumor samples (from Brazilian and American patients) but absent in, or at exceedingly low levels in, the normal breast tissue corresponding to each cancer patient. RT-PCR analysis has also shown that the B18Ag1 transcript is not present in various normal tissues (including lymph node, myocardium and liver) and present at relatively low levels in PBMC and lung tissue. The presence of B18Ag1 mRNA in breast tumor samples, and its absence from normal breast tissue, has been confirmed by Northern blot analysis, as shown in Figure 2.

The differential expression of B18Ag1 in breast tumor tissue was also confirmed by RNase protection assays. Figure 3 shows the level of B18Ag1 mRNA in various tissue types as determined in four different RNase protection assays. Lanes 1-12 represent various normal breast tissue samples, lanes 13-25 represent various breast tumor samples; lanes 26-27 represent normal prostate samples; lanes 28-29 represent, prostate tumor samples; lanes 30-32 represent colon tumor samples; lane 33 represents normal aorta; lane 34 represents normal small intestine; lane 35 represents normal skin,

15

20

25

30

lane 36 represents normal lymph node; lane 37 represents normal ovary; lane 38 represents normal liver; lane 39 represents normal skeletal muscle; lane 40 represents a first normal stomach sample, lane 41 represents a second normal stomach sample; lane 42 represents a normal lung; lane 43 represents normal kidney; and lane 44 represents normal pancreas. Interexperimental comparison was facilitated by including a positive control RNA of known β -actin message abundance in each assay and normalizing the results of the different assays with respect to this positive control.

RT-PCR and Southern Blot analysis has shown the B18Ag1 locus to be present in human genomic DNA as a single copy endogenous retroviral element. A genomic clone of approximately 12-18 kb was isolated using the initial B18Ag1 sequence as a probe. Four additional subclones were also isolated by XbaI digestion. Additional retroviral sequences obtained from the ends of the XbaI digests of these clones (located as shown in Figure 4) are shown as SEQ ID NO:3 - SEQ ID NO:10, where SEQ ID NO:3 shows the location of the sequence labeled 10 in Figure 4, SEQ ID NO:4 shows the location of the sequence labeled 11-29, SEQ ID NO:5 shows the location of the sequence labeled 6, SEQ ID NO:7 shows the location of the sequence labeled 12, SEQ ID NO:8 shows the location of the sequence labeled 13, SEQ ID NO:9 shows the location of the sequence labeled 11-22.

Subsequent studies demonstrated that the 12-18 kb genomic clone contains a retroviral element of about 7.75 kb, as shown in Figures 5A and 5B. The sequence of this retroviral element is shown in SEQ ID NO: 141. The numbered line at the top of Figure 5A represents the sense strand sequence of the retroviral genomic clone. The box below this line shows the position of selected restriction sites. The arrows depict the different overlapping clones used to sequence the retroviral element. The direction of the arrow shows whether the single-pass subclone sequence corresponded to the sense or anti-sense strand. Figure 5B is a schematic diagram of the retroviral element containing B18Ag1 depicting the organization of viral genes within the element. The open boxes correspond to predicted reading frames, starting with a

methionine, found throughout the element. Each of the six likely reading frames is shown, as indicated to the left of the boxes, with frames 1-3 corresponding to those found on the sense strand.

Using the cDNA of SEQ ID NO:1 as a probe, a longer cDNA was obtained (SEQ ID NO:227) which contains minor nucleotide differences (less than 1%) compared to the genomic sequence shown in SEQ ID NO:141.

B. <u>Preparation of cDNA Molecules Encoding Other Breast Tumor-Specific Polypeptides</u>

Normal RNA and tumor RNA was prepared and mRNA was isolated and converted into cDNA using a (dT)₁₂AG anchored 3' primer, as described above. Differential display PCR was then executed using the randomly chosen primers SEQ ID NO.: 87-125. Amplification conditions were as noted above, and bands observed to be specific to the RNA fingerprint pattern of the tumor were cut out of a silver stained gel, subcloned into either the T-vector (Novagen, Madison, WI) or the pCRII vector (Invitrogen, San Diego, CA) and sequenced. The sequences are provided in SEQ ID NO:11 - SEQ ID NO:86. Of the 79 sequences isolated, 67 were found to be novel (SEQ ID NO:11-26 and 28-77) (see also Figures 6-20).

An extended DNA sequence (SEQ ID NO: 290) for the antigen B15Ag1 (originally identified partial sequence provided in SEQ ID NO: 27) was obtained in further studies. Comparison of the sequence of SEQ ID NO: 290 with those in the gene bank as described above, revealed homology to the known human β -A activin gene.

Subsequent studies identified an additional 146 sequences (SEQ ID NOS:142-289), of which 115 appeared to be novel (SEQ ID NOS:142, 143, 146-152, 154-166, 168-176, 178-192, 194-198, 200-204, 206, 207, 209-214, 216, 218, 219, 221-240, 243-245, 247, 250, 251, 253, 255, 257-266, 268, 269, 271-273, 275, 276, 278, 280, 281, 284, 288 and 291). To the best of the inventors' knowledge none of the previously identified sequences have heretofore been shown to be expressed at a greater level in human breast tumor tissue than in normal breast tissue.

In further studies, six different splice forms of the antigen B11Ag1 were isolated, with each of the various splice forms containing slightly different versions of

20

the B11Ag1 coding frame. Splice junction sequences define individual exons which, in various patterns and arrangements, make up the various splice forms. Primers were designed to examine the expression pattern of each of the exons using RT-PCR as described below. Each exon was found to show the same expression pattern as the original B11Ag1 clone, with expression being breast tumor, prostate and testis-specific. The determined cDNA sequences for the isolated protein coding exons are provided in SEQ ID NO: 292-297, respectively.

EXAMPLE 2

10

15

20

Preparation of B18AG1 DNA from Human Genomic DNA

This Example illustrates the preparation of B18Ag1 DNA by amplification from human genomic DNA.

B18Ag1 DNA may be prepared from 250 ng human genomic DNA using 20 pmol of B18Ag1 specific primers, 500 pmol dNTPS and 1 unit of *Taq* DNA polymerase (Perkin Elmer, Branchburg, NJ) using the following amplification parameters: 94°C for 30 seconds denaturing, 30 seconds 60°C to 42°C touchdown annealing in 2°C increments every two cycles and 72°C extension for 30 seconds. The last increment (a 42°C annealing temperature) should cycle 25 times. Primers were selected using computer analysis. Primers synthesized were B18Ag1-1, B18Ag1-2, B18Ag1-3, and B18Ag1-4. Primer pairs that may be used are 1+3, 1+4, 2+3, and 2+4.

Following gel electrophoresis, the band corresponding to B18Ag1 DNA may be excised and cloned into a suitable vector.

25

EXAMPLE 3

PREPARATION OF B18AG1 DNA FROM BREAST TUMOR CDNA

This Example illustrates the preparation of B18Ag1 DNA by, amplification from human breast tumor cDNA.

First strand cDNA is synthesized from RNA prepared from human breast tumor tissue in a reaction mixture containing 500 ng poly A+ RNA, 200 pmol of the primer (T)₁₂AG (i.e., TTT TTT TTT TTT AG) (SEQ ID NO: 130), 1X first strand reverse transcriptase buffer, 6.7 mM DTT, 500 mmol dNTPs, and 1 unit AMV or MMLV reverse transcriptase (from any supplier, such as Gibco-BRL (Grand Island, NY)) in a final volume of 30 μl. After first strand synthesis, the cDNA is diluted approximately 25 fold and 1 μl is used for amplification as described in Example 2. While some primer pairs can result in a heterogeneous population of transcripts, the primers B18Ag1-2 (5'ATG GCT ATT TTC GGG GGC TGA CA) (SEQ ID NO: 126) and B18Ag1-3 (5'CCG GTA TCT CCT CGT GGG TAT T) (SEQ ID NO: 127) yield a single 151 bp amplification product.

EXAMPLE 4

IDENTIFICATION OF B-CELL AND T-CELL EPITOPES OF B18AG1

15

20

10

This Example illustrates the identification of B18Ag1 epitopes.

The B18Ag1 sequence can be screened using a variety of computer algorithms. To determine B-cell epitopes, the sequence can be screened for hydrophobicity and hydrophilicity values using the method of Hopp, *Prog. Clin. Biol. Res. 172B*:367-77 (1985) or, alternatively, Cease et al., *J. Exp. Med. 164*:1779-84 (1986) or Spouge et al., *J. Immunol. 138*:204-12 (1987). Additional Class II MHC (antibody or B-cell) epitopes can be predicted using programs such as AMPHI (e.g., Margalit et al., *J. Immunol. 138*:2213 (1987)) or the methods of Rothbard and Taylor (e.g., EMBO J. 7:93 (1988)).

Once peptides (15-20 amino acids long) are identified using these techniques, individual peptides can be synthesized using automated peptide synthesis equipment (available from manufacturers such as Perkin Elmer/Applied Biosystems Division, Foster City, CA) and techniques such as Merrifield synthesis. Following, synthesis, the peptides can used to screen sera harvested from either normal or breast cancer patients to determine whether patients with breast cancer possess antibodies

15

20

30

reactive with the peptides. Presence of such antibodies in breast cancer patient would confirm the immunogenicity of the specific B-cell epitope in question. The peptides can also be tested for their ability to generate a serologic or humoral immune in animals (mice, rats, rabbits, chimps etc.) following immunization *in vivo*. Generation of a peptide-specific antiserum following such immunization further confirms the immunogenicity of the specific B-cell epitope in question.

To identify T-cell epitopes, the B18Ag1 sequence can be screened using different computer algorithms which are useful in identifying 8-10 amino acid motifs within the B18Ag1 sequence which are capable of binding to HLA Class I MHC molecules. (see, e.g., Rammensee et al., Immunogenetics 41:178-228 (1995)). Following synthesis such peptides can be tested for their ability to bind to class I MHC using standard binding assays (e.g., Sette et al., J. Immunol. 153:5586-92 (1994)) and more importantly can be tested for their ability to generate antigen reactive cytotoxic Tcells following in vitro stimulation of patient or normal peripheral mononuclear cells using, for example, the methods of Bakker et al., Cancer Res. 55:5330-34 (1995); Visseren et al., J. Immunol. 154:3991-98 (1995); Kawakami et al., J. Immunol. 154:3961-68 (1995); and Kast et al., J. Immunol. 152:3904-12 (1994). Successful in vitro generation of T-cells capable of killing autologous (bearing the same Class I MHC molecules) tumor cells following in vitro peptide stimulation further confirms the immunogenicity of the B18Ag1 antigen. Furthermore, such peptides may be used to generate murine peptide and B18Ag1 reactive cytotoxic T-cells following in vivo immunization in mice rendered transgenic for expression of a particular human MHC Class I haplotype (Vitiello et al., J. Exp. Med. 173:1007-15 (1991).

A representative list of predicted B18Ag1 B-cell and T-cell epitopes, 25 broken down according to predicted HLA Class I MHC binding antigen, is shown below:

Predicted Th Motifs (B-cell epitopes) (SEQ ID NOS.: 131-133)

SSGGRTFDDFHRYLLVGI

QGAAQKPINLSKXIEVVQGHDE

SPGVFLEHLQEAYRIYTPFDLSA

Predicted HLA A2.1 Motifs (T-cell epitopes) (SEQ ID NOS.: 134-140)

YLLVGIQGA

5 GAAQKPINL

NLSKXIEVV

EVVQGHDES

HLQEAYRIY

NLAFVAQAA

10 FVAQAAPDS

EXAMPLE 5

CHARACTERIZATION OF BREAST TUMOR GENES DISCOVERED BY DIFFERENTIAL DISPLAY PCR

15

20

The specificity and sensitivity of the breast tumor genes discovered by differential display PCR were determined using RT-PCR. This procedure enabled the rapid evaluation of breast tumor gene mRNA expression semiquantitatively without using large amounts of RNA. Using gene specific primers, mRNA expression levels in a variety of tissues were examined, including 8 breast tumors, 5 normal breasts, 2 prostate tumors, 2 colon tumors, 1 lung tumor, and 14 other normal adult human tissues, including normal prostate, colon, kidney, liver, lung, ovary, pancreas, skeletal muscle, skin, stomach and testes.

To ensure the semiquantitative nature of the RT-PCR, β-actin was used as internal control for each of the tissues examined. Serial dilutions of the first strand cDNAs were prepared and RT-PCR assays performed using β-actin specific primers. A dilution was then selected that enabled the linear range amplification of β-actin template, and which was sensitive enough to reflect the difference in the initial copy, number. Using this condition, the β-actin levels were determined for each reverse transcription reaction from each tissue. DNA contamination was minimized by DNase

treatment and by assuring a negative result when using first strand cDNA that was prepared without adding reverse transcriptase.

Using gene specific primers, the mRNA expression levels were determined in a variety of tissues. To date, 38 genes have been successfully examined by RT-PCR, five of which exhibit good specificity and sensitivity for breast tumors (B15AG-1, B31GA1b, B38GA2a, B11A1a and B18AG1a). Figures 21A and 21B depict the results for three of these genes: B15AG-1 (SEQ ID NO:27), B31GA1b (SEQ ID NO:148) and B38GA2a (SEQ ID NO. 157). Table I summarizes the expression level of all the genes tested in normal breast tissue and breast tumors, and also in other tissues.

TABLE I

Percentage of Breast Cancer Antigens that are Expressed in Various Tissues

15	Breast Tissues	Over-expressed in Breast Tumors	84%
	Diedst Tissues	Equally Expressed in Normals and Tumor	16%
20		Over-expressed in Breast Tumors but not in any Normal Tissues	9%
25	Other Tissues	Over-expressed in Breast Tumors but Expressed in Some Normal Tissues	30%
23		Over-expressed in Breast Tumors but Equally Expressed in All Other Tissues	61%

From the foregoing, it will be appreciated that, although specific embodiments of the invention have been described herein for the purpose of illustration, various modifications may be made without deviating from the spirit and scope of the invention.

SEQUENCE LISTING

(1) GENERAL INFORMATION:

- (ii) TITLE OF INVENTION: COMPOSITIONS AND METHODS FOR THE TREATMENT AND DIAGNOSIS OF BREAST CANCER
- (iii) NUMBER OF SEQUENCES: 297
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: SEED and BERRY LLP
 - (B) STREET: 6300 Columbia Center, 701 Fifth Avenue
 - (C) CITY: Seattle
 - (D) STATE: Washington
 - (E) COUNTRY: USA
 - (F) ZIP: 98104-7092
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE: 04-APR-1997
 - (C) CLASSIFICATION:
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Maki, David J.
 - (B) REGISTRATION NUMBER: 31,392
 - (C) REFERENCE/DOCKET NUMBER: 210121.419C2
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: (206) 622-4900
 - (B) TELEFAX: (206) 682-6031
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 363 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1..363

(xi)	SEQUENCE	DESCRIPTION:	SEO	ID	NO:1:
------	----------	--------------	-----	----	-------

TTA Leu 1	GAG Glu	ACC Thr	CAA Gln	TTG Leu 5	GGA Gly	CCT Pro	AAT Asn	TGG Trp	GAC Asp 10	CCA Pro	AAT Asn	TTC Phe	TCA Ser	AGT Ser 15	GGA Gly	4:
GGG Gly	AGA Arg	ACT Thr	TTT Phe 20	GAC Asp	GAT Asp	TTC Phe	CAC	CGG Arg 25	TAT Tyr	CTC Leu	CTC Leu	GTG Val	GGT Gly 30	ATT Ile	CAG Gln	96
GGA Gly	GCT Ala	GCC Ala 35	CAG Gln	AAA Lys	CCT Pro	ATA Ile	AAC Asn 40	TTG Leu	TCT Ser	AAG Lys	GCG Ala	ATT Ile 45	GAA Glu	GTC Val	GTC Val	144
CAG Gln	GGG Gly 50	CAT His	GAT Asp	GAG Glu	TCA Ser	CCA Pro 55	GGA Gly	GTG Val	TTT Phe	TTA Leu	GAG Glu 60	CAC His	CTC Leu	CAG Gln	GAG Glu	192
GCT Ala 65	TAT Tyr	CGG Arg	ATT Ile	TAC Tyr	ACC Thr 70	CCT Pro	TTT Phe	GAC Asp	CTG Leu	GCA Ala 75	GCC Ala	CCC Pro	GAA Glu	AAT Asn	AGC Ser 80	240
CAT His	GCT Ala	CTT Leu	AAT Asn	TTG Leu 85	GCA Ala	TTT Phe	GTG Val	GCT Ala	CAG Gln 90	GCA Ala	GCC Ala	CCA Pro	GAT Asp	AGT Ser 95	AAA Lys	288
AGG Arg	AAA Lys	CTC Leu	CAA Gln 100	AAA Lys	CTA Leu	GAG Glu	GGA Gly	TTT Phe 105	TGC Cys	TGG Trp	AAT Asn	GAA Glu	TAC Tyr 110	CAG Gln	TCA Ser	336
				AGC Ser									·			363

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 121 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

(2) INFORMATION FOR SEQ ID NO:3:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1101 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

TCTTAGAATC	TTCATACCCC	GAACTCTTGG	GAAAACTTTA	ATCAGTCACC	TACAGTCTAC	60
CACCCATTTA	GGAGGAGCAA	AGCTACCTCA	GCTCCTCCGG	AGCCGTTTTA	AGATCCCCCA	120
TCTTCAAAGC	CTAACAGATC	AAGCAGCTCT	CCGGTGCACA	ACCTGCGCCC	AGGTAAATGC	180
CAAAAAAGGT	CCTAAACCCA	GCCCAGGCCA	CCGTCTCCAA	GAAAACTCAC	CAGGAGAAAA	240
GTGGGAAATT	GACTTTACAG	AAGTAAAACC	ACACCGGGCT	GGGTACAAAT	ACCTTCTAGT	300
ACTGGTAGAC	ACCTTCTCTG	GATGGACTGA	AGCATTTGCT	ACCAAAAACG	AAACTGTCAA	360
TATGGTAGTT	AAGTTTTTAC	TCAATGAAAT	CATCCCTCGA	CGTGGGCTGC	CTGTTGCCAT	420
AGGGTCTGAT	AATGGAACGG	CCTTCGCCTT	GTCTATAGTT	TAATCAGTCA	GTAAGGCGTT	480
AAACATTCAA	TGGAAGCTCC	ATTGTGCCTA	TCGACCCAGA	GCTCTGGGCA	AGTAGAACGC	540
ATGAACTGCA	CCCTAAAAAA	ACACTCTTAC	AAAATTAATC	TTAAAAACCG	GTGTTAATTG	600
TGTTAGTCTC	CTTCCCTTAG	CCCTACTTAG	AGTTAAGGTG	CACCCCTTAC	TGGGCTGGGT	660
TCTTTACCTT	TTGAAATCAT	NTTTNGGAAG	GGGCTGCCTA	TCTTTNCTTA	ACTAAAAAAN	720
GCCCATTTGG	CAAAAATTTC	NCAACTAATT	TNTACGTNCC	TACGTCTCCC	CAACAGGTAN	780
AAAAATCTNC	TGCCCTTTTC	AAGGAACCAT	CCCATCCATT	CCTNAACAAA	AGGCCTGCCN	840
TTCTTCCCCC	AGTTAACTNT	TTTTTNTTAA	AATTCCCAAA	AAANGAACCN	CCTGCTGGAA	900
AAACNCCCCC	CTCCAANCCC	CGGCCNAAGN	GGAAGGTTCC	CTTGAATCCC	NCCCCCNCNA	960
ANGGCCCGGA	ACCNTTAAAN	TNGTTCCNGG	GGGTNNGGCC	TAAAAGNCCN	ATTTGGTAAA	1020
CCTANAAATT	TTTTCTTTTN	TAAAAACCAC	NNTTTNNTTT	TTCTTAAACA	AAACCCTNTT	1080
TNTAGNANCN	TATTTCCCNC	C				1101

(2) INFORMATION FOR SEQ ID NO:4:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1087 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

TCTAGAGCTG	CGCCTGGATC	CCGCCACAGT	GAGGAGACCT	GAAGACCAGA	GAAAACACAG	60
					TTTTATTTTG	
						120
					AAAATGACCC	180
					TTAAATTACT	240
GCCAGGTTTC	AGCTGCAGAT	ATCCCTGGAA	GGAATATTCC	AGATTCCCTG	AGTAGTTTCC	300

AGGTTAAAAT	CCTATAGGCT	TCTTCTGTTT	TGAGGAAGAG	TTCCTGTCAG	AGAAAAACAT	360
GATTTTGGAT	TTTTAACTTT	AATGCTTGTG	AAACGCTATA	AAAAAAATTT	TCTACCCCTA	420
GCTTTAAAGT	ACTGTTAGTG	AGAAATTAAA	ATTCCTTCAG	GAGGATTAAA	CTGCCATTTC	480
AGTTACCCTA	ATTCCAAATG	TTTTGGTGGT	TAGAATCTTC	TTTAATGTTC	TTGAAGAAGT	540
GTTTTATATT	TTCCCATCNA	GATAAATTCT	CTCNCNCCTT	NNTTTTNTNT	CTNNTTTTTT	600
AAAACGGANT	CTTGCTCCGT	TGTCCANGCT	GGGAATTTTN	TTTTGGCCAA	TCTCCGCTNC	660
CTTGCAANAA	TNCTGCNTCC	CAAAATTACC	NCCTTTTTCC	CACCTCCACC	CCNNGGAATT	720
ACCTGGAATT	ANAGGCCCCC	NCCCCCCCC	CGGCTAATTT	GTTTTTGTTT	TTAGTAAAA	780
ACGGGTTTCC	TGTTTTAGTT	AGGATGGCCC	ANNTCTGACC	CCNTNATCNT	CCCCTCNGC	840
			CCCNGNNGTT	TTTCCTCCAT	TNAAATTTTC	900
TNTGGANTCT	TGAATNNCGG	GTTTTCCCTT	TTAAACCNAT		NNNCCCCCAN	960
TTTTNCCTCC	CCCNTNTNTA	ANGGGGGTTT			ANGTCCCCAA	1020
TTTTTTTTTCCC	CCCCCCCCCC		· - · · · ·		ANGICCCCAA	1020
TTTTTCTCCC	CCCCCCTCTT	TTTTCTTTNC	CCCAAAANTC	CTATCTTTTC	CTNNAAATAT	1080
CNANTNT						1087

(2) INFORMATION FOR SEQ ID NO:5:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1010 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

TCTAGACCAA	GAAATGGGAG	GATTTTAGAG	TGACTGATGA	TTTCTCTATC	ATCTGCAGTT	- 60
AGTAAACATT	CTCCACAGTT	TATGCAAAAA	GTAACAAAAC	CACTGCAGAT	GACAAACACT	120
AGGTAACACA	CATACTATCT	CCCAAATACC	TACCCACAAG	CTCAACAATT	TTAAACTGTT	180
AGGATCACTG	GCTCTAATCA	CCATGACATG	AGGTCACCAC	CAAACCATCA	AGCGCTAAAC	240
AGACAGAATG	TTTCCACTCC	TGATCCACTG	TGTGGGAAGA	AGCACCGAAC	TTACCCACTG	300
GGGGGCCTGC	NTCANAANAA	AAGCCCATGC	CCCCGGGTNT	NCCTTTNAAC	CGGAACGAAT	360
NAACCCACCA	TCCCCACANC	TCCTCTGTTC	NTGGGCCCTG	CATCTTGTGG	CCTCNTNTNC	420
TTTNGGGGAN	ACNTGGGGAA	GGTACCCCAT	TTCNTTGACC	CCNCNANAAA	ACCCCNGTGG	480
CCCTTTGCCC	TGATTCNCNT	GGGCCTTTTC	TCTTTTCCCT	TTTGGGTTGT	TTAAATTCCC	540
AATGTCCCCN	GAACCCTCTC	CNTNCTGCCC	AAAACCTACC	TAAATTNCTC	NCTANGNNTT	600
TTCTTGGTGT		AGGTNACCTT				660
NTATNNTGGN		NNNATCNNCC			GGTTTTTCCT	720
NCTGGGGGAA	ACCCTTTAAA	TTTCCCCCTT	GGCCGGCCCC	CCTTTTTTCC	CCCCTTTNGA	780
AGGCAGGNGG	TTCTTCCCGA	ACTTCCAATT	NCAACAGCCN	TGCCCATTGN	TGAAACCCTT	840
TTCCTAAAAT	TAAAAAATAN	CCGGTTNNGG	NNGGCCTCTT	TCCCCTCCNG	GNGGGNNGNG	900
AAANTCCTTA	CCCCNAAAAA	GGTTGCTTAG	CCCCCNGTCC	CCACTCCCC	NGGAAAAATN	960
AACCTTTTCN	AAAAAAGGAA		CCACTCCTTN	GTTCTCTTCC	NOGRAMMAIN	1010
				CITCICITCC		1010

(2) INFORMATION FOR SEQ ID NO:6:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 950 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

TCTAGAGCT	C GCGGCCGCGA	GCTCTAATAC	GACTCACTAT	AGGGCGTCCA	CTCGATCTCA	
GCTCACTGC	ATCTCTGCCC	CCGGGGTCAT	GCGATTCTCC	COACOM		60
CTGGGATTAC	AGGCGTGCAA	CACCACACCC			TTCCAAGTAG	120
GTTTTCCCTT	GTTGGCCANN				TAGAGATGGG	180
NGANCTONNA			ACCCCTGACC		CCCCCNCCCN	240
TNNTCCTTNC	- Greereddy		NNNCCTCCCN	NCNCNNNNNN		300
	- CINTALIATATATATATA	07171 T CT4T4 T C C	NNCTTCTCNC	CNNNTNTTNT		
CNNNCCNCNT		TCNCNTNCNN	TNTCCNNCNN	NNTCNNCNNN	CTITI CTITI C CTATA	360
CCNNTACNTC	TO TATALY CTATATA T	CCNTCTNTNN	CCTCNNCNNT		CNNNNCNTNN	420
NTNNNNNNCT	CCNNNNNTCT	CNTCNCNNCN		Magnetication	TNTCTCCTCN	480
CTNNTTTNNN	CNNCNNNTCC	NTNCCNTTCN			NCCTCNCNNC	540
CCNCCNNTTC			NNTCCNNTNN		NNCNTTNTTC	600
TCNNTTCNCC		NNNTNTCNNN		NTTTNCTCCT	NNNTCCCNNC	660
TNTCNCNTTC		CCCCINI	CTCTCNCCCN	NNTNNNTNTN	NNNCNTCCNC	720
	TO TOTAL TIME TATE	TNCTNTCNNC	NNCNNTNCNC	Con to	CTNNNTCNCN	
	CCNTCCNTTN	CTNTCTCCTN		Cm		780
CCNNTNTNTN	TNNCNCCNNT	NCTNNNCNNC		MCMC===	CNTTCNCCNC	840
NNCCCNTNCC	CC-1		T11 CT		NNNTNNCCTC	900
	,	IACCI	TWCIMCICCN	TCTTCCTTCC		950

(2) INFORMATION FOR SEQ ID NO:7:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1086 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

	TCTAGAGCTC	YOU DO COCO	GCTCAATTAA	CCCTCACTAA	AGGGAGTCGA	CTCGATCAGA	
	CTGTTACTGT	' GTCTATGTAG	AAAGAAGTAG		TTCCATTTTG		60
	AGAAAAATTC	TTCTGCCTTG					120
	CACAGAGACA				-c twoccccc	ACCCTGTGCT	180
	AAAAGTGCTT					GCTTTGTTAA	240
		O. W. ICLITIMATA		AAGTCATCAC	CATTCTCTAA		•
		AATACACTGC	GGAAGGCCGC	AGGGACCTCT			300
	GTCCAAGATT	TO TOCCOMIG	TGATAGCCTG			COCHAIL	360
	GACTGTCCCC	CAGCCCGACA					420
	GTCTGTGCTG	AGGAAGATTA				CCCGAAAAGG	480
	CTCTGTCTCC	OLLIONIIA		AAGGCTCTTT	GCATTGAAGT	AAGAAGAAGG	540
	TCTACTTACT			AATGTCTTGG	TGTTAAACCC	GAATGTATGT	600
	3	ONCHMINGGA	GAAAACATCC	TTAGGGCTGG	AGGTGAGACA		
		TTAATGCACG	AGATGTTTGT				660
	$ ext{TTAACTTTT}$	ATGANACAAA		NCTTTTCCTG	- COMBOCCA		720
1	CCTATTGGCC		CTCCCCAAAN	~~~~	CGAACCTCTC	CCCCTATTAN	780
					TGTTCNTAAA	TNCGAGGGAA	840
	7 7 677		GTCCCCTTTC	CAACCCCGTC	CCTGGGCCNN	TTTCCTCCCC	900
			TTCCCNCCCC	CTTCCCNGAN		GTNTGANGGN	
	GCCCCTCAA	ATTATAACCT	TTCCNAAACA	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	33000		960
(TGAGGTCCCC				GNTTCCGGTG	1020
1	NTCCCC		TO THE CACCEC	AATTTGGAAN	CCNGTTTTTT	TTATTGCCCN	1080
							1086

(2) INFORMATION FOR SEQ ID NO:8:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1177 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

				GCTGAAAAA	GCCACTGATA	60
AAGCATCCTG	GAGTATCAGA	GTTTACTGTT	AGATCAGCCT	CATTTGACTT	CCCCTCCCAC	120
ATGGTGTTTA	AATCCAGCTA	CACTACTTCC	TGACTCAAAC	TCCACTATTC	CTGTTCATGA	180
CTGTCAGGAA	CTGTTGGAAA	CTACTGAAAC	TGGCCGACCT	GATCTTCAAA	ATGTGCCCCT	240
AGGAAAGGTG	GATGCCACCG	TGTTCACAGA	CAGTACCNCC	TTCCTCGAGA	AGGGACTACG	300
AGGGGCCGGT	GCANCTGTTA	CCAAGGAGAC	TNATGTGTTG	TGGGCTCAGG		360
AAACACCTCA	NCNCNNAAGG	CTGAATTGAT	CGCCCTCACT	CAGGCTCTCG	GATGGGGTAA	420
GGGATATTAA	CGTTAACACT	GACAGCAGGT	ACGCCTTTGC	TACTGTGCAT	GTACGTGGAG	480
CCATCTACCA	GGAGCGTGGG	CTACTCACTC	GGCAGGTGGC	TGTNATCCAC	TGTAAANGGA	540
CATCAAAAGG	AAAACNNGGC	TGTTGCCCGT	GGTAACCANA	AANCTGATCN	NCAGCTCNAA	600
GATGCTGTGT	TGACTTTCAC	TCNCNCCTCT	TAAACTTGCT	GCCCACANTC	TCCTTTCCCA	660
ACCAGATCTG	CCTGACAATC	CCCATACTCA	AAAAAAAAAN	AANACTGGCC	CCGAACCCNA	720
ACCAATAAAA	ACGGGGANGG	TNGGTNGANC	NNCCTGACCC	AAAAATAATG	GATCCCCCGG	780
GCTGCAGGAA	TTCAATTCAN	CCTTATCNAT	ACCCCCAACN	NGGNGGGGG	GGCCNGTNCC	840
CATTNCCCCT	NTATTNATTC	TTTNNCCCCC	CCCCCGGCNT	CCTTTTTNAA	CTCGTGAAAG	900
GGAAAACCTG	NCTTACCAAN	TTATCNCCTG	GACCNTCCCC	TTCCNCGGTN	GNTTANAAAA	960
AAAAGCCCNC	ANTCCCNTCC	NAAATTTGCA		AGGAATTTAA	CCTTTATTTT	1020
TTNNTCCTTT	ANTTTGTNNN	CCCCCTTTTA			TTAANAAAA	1080
AAANAGAANG	TTTATTTTTC	CTTNGAACCA	TCCCAATANA		NGGGGAACGG	1140
GGNGGNAGGC	CNCTCACCCC	CTTTNTGTNG	GNGGGNC			1177
						11//

(2) INFORMATION FOR SEQ ID NO:9:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1146 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

NCCNNTTNNT	GATGTTGTCT	TTTTGGCCTC	TCTTTGGATA	CTTTCCCTCT	CTTCAGAGGT	60
GAAAAGGGTC	AAAAGGAGCT	GTTGACAGTC	ATCCCAGGTG	GGCCAATGTG	TCCAGAGTAC	120
AGACTCCATC	AGTGAGGTCA	AAGCCTGGGG	CTTTTCAGAG	AAGGGAGGAT	TATGGGTTTT	180
CCAATTATAC	AAGTCAGAAG	TAGAAAGAAG	GGACATAAAC	CAGGAAGGGG	GTGGAGCACT	240
CATCACCCAG	AGGGACTTGT	GCCTCTCTCA	GTGGTAGTAG	AGGGGCTACT	TCCTCCCACC	300
ACGGTTGCAA	CCAAGAGGCA	ATGGGTGATG	AGCCTACAGG	GGACATANCC	GAGGAGACAT	360
GGGATGACCC	TAAGGGAGTA	GGCTGGTTTT	AAGGCGGTGG	GACTGGGTGA	GGGAAACTCT	420
CCTCTTCTTC	AGAGAGAAGC	AGTACAGGGC	GAGCTGAACC	GGCTGAAGGT	CGAGGCGAAA	480
ACACGGTCTG	GCTCAGGAAG	ACCTTGGAAG	TAAAATTATG	AATGGTGCAT	GAATGGAGCC	540
ATGGAAGGGG	TGCTCCTGAC	CAAACTCAGC	CATTGATCAA	TGTTAGGGAA	ACTGATCAGG	600
GAAGCCGGGA	ATTTCATTAA	CAACCCGCCA	CACAGCTTGA	ACATTGTGAG	GTTCAGTGAC	660
CCTTCAAGGG	GCCACTCCAC	TCCAACTTTG	GCCATTCTAC	TTTGCNAAAT	TTCCAAAACT	720
TCCTTTTTTA	AGGCCGAATC	CNTANTCCCT	NAAAAACNAA	AAAAAATCTG	CNCCTATTCT	780
GGAAAAGGCC	CANCCCTTAC	CAGGCTGGAA	GAAATTTTNC	CTTTTTTTT	TTTTTGAAGG	840
CNTTTNTTAA	ATTGAACCTN	AATTCNCCCC	CCCAAAAAA	AACCCNCCNG	GGGGGCGGAT	900
TTCCAAAAAC	NAATTCCCTT	ACCAAAAAAC	AAAAACCCNC	CCTTNTTCCC	TTCCNCCCTN	960
TTCTTTTAAT	TAGGGAGAGA	TNAAGCCCCC	CAATTTCCNG	GNCTNGATNN	GTTTCCCCCC	1020
CCCCCATTTT	CCNAAACTTT	TTCCCANCNA	GGAANCCNCC	CTTTTTTTNG	GTCNGATTNA	1080
NCAACCTTCC	AAACCATTTT	TCCNNAAAAA	NTTTGNTNGG	NGGGAAAAAN	ACCTNNTTTT	1140

ATAGAN	1146
(2) INFORMATION FOR SEQ ID NO:10:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 545 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:	
CTTCATTGGG TACGGGCCC CTCGAGGTCG ACGGTATCGA TAAGCTTGAT ATCGAATTCC TGCAGCCCGG GGGATCCACT AGTTCTAGAG TCAGGAAGAA CCACCAACCT TCCTGATTTT TATTGGCTCT GAGTTCTGAG GCCAGTTTTC TTCTTCTGTT GAGTATGCGG GATTGTCAGG CAGATCTGGC TGTGGAAAGG AGACTGTGGG CAGCAAGTTT AGAGGCGTGA CTGAAAGTCA CACTGCATCT TGAGCTGCTG AATCAGCTTT CTGGTTACCA CGGGCAACAG CCGTGTTTTC CTTTTGATGT CCTTTACAGT GGATTACAGC CACCTGCTGA GGTGAGTAGC CCACGCTCCT GGTAGATGGC TCCACGTACA TGCACAGTAG CAAAGGCGTA CCTGCTGTCA GTGTTAACGT TAATATCCTT ACCCCATCGG AGAGCCTGAG TGAGGGCGAT CAATTCAGCC CTTTTGTGCT GAGGTGTTTG CTGGTTAAGC CCTGAACCCA CAACACATCT GTCTCCATGG TAACAGCTGC ACCGG	60 120 180 240 300 360 420 480 540 545
(2) INFORMATION FOR SEQ ID NO:11:	242
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 196 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:	
TCTCCTAGGC TGGGCACAGT GGCTCATACC TGTAATCCTG ACCGTTTCAG AGGCTCAGGT GGGGGGATCG CTTGAGCCCA AGATTTCAAG ACTAGTCTGG GTAACATAGT GAGACCCTAT CTCTACGAAA AAATAAAAAA ATGAGCCTGG TGTAGTGGCA CACACCAGCT GAGGAGGAG AATCGAGCCT AGGAGA	60 120 180 196
(2) INFORMATION FOR SEQ ID NO:12:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 388 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:	
TCTCCTAGGC TTGGGGGCTC TGACTAGAAA TTCAAGGAAC CTGGGATTCA AGTCCAACTG TGACACCAAC TTACACTGTG GNCTCCAATA AACTGCTTCT TTCCTATTCC CTCTCTATTA AATAAAATAA GGAAAACGAT GTCTGTGTAT AGCCAAGTCA GNTATCCTAA AAGGAGATAC TAAGTGACAT TAAATATCAG AATGTAAAAC CTGGGAACCA GGTTCCCAGC CTGGGATTAA	60 120 180 240

ACTGACAGCA	AGAAGACTGA	ACAGTACTAC	TGTGAAAAGC	CCGAAGNGGC	AATATGTTCA	300
CTCTACCGTT	GAAGGATGGC	TGGGAGAATG	AATGCTCTGT	CCCCCAGTCC	CAAGCTCACT	360
TACTATACCT	CCTTTATAGC	CTAGGAGA				388

(2) INFORMATION FOR SEQ ID NO:13:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 337 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

TAGTAGTTGC CTATAATCAT					60
TACCCTGAAA AATATGAGGG	AAATATATGA	AACAGGGAGG	CAATGTTCAG	ATAATTGATC	120
ACAAGATATG ATTTCTACAT	CAGATGCTCT	TTCCTTTCCT	GTTTATTTCC	TTTTTATTTC	180
GGTTGTGGGG TCGAATGTAA	TAGCTTTGTT	TCAAGAGAGA	GTTTTGGCAG	TTTCTGTAGC	240
TTCTGACACT GCTCATGTCT	CCAGGCATCT	ATTTGCACTT	TAGGAGGTGT	CGTGGGAGAC	300
TGAGAGGTCT ATTTTTCCA	TATTTGGGCA	ACTACTA			337

(2) INFORMATION FOR SEQ ID NO:14:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 571 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

TAGTAGTTGC	CATACAGTGC	CTTTCCATTT	ATTTAACCCC	CACCTGAACG	GCATAAACTG	60
AGTGTTCAGC	TGGTGTTTTT	TACTGTAAAC	AATAAGGAGA	CTTTGCTCTT	CATTTAAACC	120
AAAATCATAT	TTCATATTTT	ACGCTCGAGG	GTTTTTACCG	GTTCCTTTTT	ACACTCCTTA	180
				TCCTGGCAGC		240
				TCACAGTTGC		300
				AACTGGACCG		. 360
				GCACCTCCTT		420
				ANAGTCACAG		480
CTTTTGGNNA	CTGAGCTAAA	AAGGGCTGNT	TTTCGGGTGG	GGGCAGATGA	AGGCTCACAG	540
GAGGCCTTTC	TCTTAGAGGG	GGGAACTNCT	A			571

(2) INFORMATION FOR SEQ ID NO:15:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 548 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

TATATATTTA	ATAACTTAAA	TATATTTTGA	TCACCCACTG	GGGTGATAAG	ACAATAGATA	60
TAAAAGTATT	TCCAAAAAGC	ATAAAACCAA	AGTATCATAC	CAAACCAAAT	TCATACTGCT	120
TCCCCCACCC	GCACTGAAAC	TTCACCTTCT	AACTGTCTAC	CTAACCAAAT	TCTACCCTTC	180
AAGTCTTTGG	TGCGTGCTCA	CTACTCTTTT	TTTTTTTTT	TTTNTTTTGG	AGATGGAGTC	240
TGGCTGTGCA	GCCCAGGGGT	GGAGTACAAT	GGCACAACCT	CAGCTCACTG	NAACCTCCGC	300
CTCCCAGGTT	CATGAGATTC	TCCTGNTTCA	GCCTTCCCAG	TAGCTGGGAC	TACAGGTGTG	360
CATCACCATG	CCTGGNTAAT	CTTTTTTNGT	TTTNGGGTAG	AGATGGGGGT	TTTACATGTT	420
GGCCAGGNTG	GTNTCGAACT	CCTGACCTCA	AGTGATCCAC	CCACCTCAGG	CTCCCAAAGT	480
GCTAGGATTA	CAGACATGAG	CCACTGNGCC	CAGNCCTGGT	GCATGCTCAC	TTCTCTAGGC	540
AACTACTA						548

(2) INFORMATION FOR SEQ ID NO:16:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 638 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

${\tt TTCCGTTATG}$	CACATGCAGA	ATATTCTATC	GGTACTTCAG	CTATTACTCA	TTTTGATGGC	60
GCAATCCGAG	CCTATCCTCA	AGATGAGTAT	TTAGAAAGAA	TTGATTTAGC	GATAGACCAA	120
	•	CACGAAATTG		ATGGATTTAT	GACAGTTGAT	180
		TGATTATTTT				240
		AGAAATAGAA				300
CCAACTGATA	TTGAAGAGCC	TATAGTAGAA	AATGAATTAG	CTGCATTTAT	TAGCCTTACA	360
					CCTGATGGGC	420
		CTGGGTGCGG				480
TGGATATNAC	AAAATATAAC	TCGATTGCAT	TTGGATGATG	GAATACTAAA	TCTGGCAAAA	540
GTAACTTTGG	AGCTACTAGT	AACCTCTCTT	TTTGAGATGC	AAAATTTTCT	TTTAGGGTTT	600
CTTATTCTCT	ACTTTACGGA	TATTGGAGCA	TAACGGGA			638

(2) INFORMATION FOR SEQ ID NO:17:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 286 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

ACTGATGGAT	GTCGCCGGAG	GCGAGGGGCC	TTATCTGATG	CTCGGCTGCC	TGTTCGTGAT	60
GTGCGCGGCG	ATTGGGCTGT	TTATCTCAAA	CACCGCCACG	GCGGTGCTGA	TGGCGCCTAT	
					TGGTGGTGGC	180
					CCCTGGTGCT	240
TGGCCCTGGC	AAGTACTCAT	TTAGCGATTT	TGTCAAAATA	GGCGTG		286
						200

(2) INFORMATION FOR SEQ ID NO:18:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 262 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:	
TCGGTCATAG CAGCCCCTTC TTCTCAATTT CATCTGTCAC TACCCTGGTG TAGTATCTCA TAGCCTTACA TTTTTATAGC CTCCTCCTG GTCTGTCTT TGATTTTCCT GCCTGTAATC CATATCACAC ATAACTGCAA GTAAACATTT CTAAAGTGTG GTTATGCTCA TGTCACTCCT GTGNCAAGAA ATAGTTTCCA TTACCGTCTT AATAAAATTC GGATTTGTTC TTTNCTATTN TCACTCTTCA CCTATGACCG AA	60 120 180 240 262
(2) INFORMATION FOR SEQ ID NO:19: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 261 base pairs (B) TYPE: nucleic acid	
(C) STRANDEDNESS: single (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:	
TCGGTCATAG CAAAGCCAGT GGTTTGAGCT CTCTACTGTG TAAACTCCTA AACCAAGGCC ATTTATGATA AATGGTGGCA GGATTTTAT TATAAACATG TACCCATGCA AATTTCCTAT AACTCTGAGA TATATTCTTC TACATTTAAA CAATAAAAAT AATCTATTTT TAAAAGCCTA ATTTGCGTAG TTAGGTAAGA GTGTTTAATG AGAGGGTATA AGGTATAAAT CACCAGTCAA CGTTTCTCTG CCTATGACCG A	60 120 180 240 261
(2) INFORMATION FOR SEQ ID NO:20:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 294 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:	

TACAACGAGG	CGACGTCGGT	AAAATCGGAC	ATGAAGCCAC	CGCTGGTCTT	TTCGTCCGAG	60
CGATAGGCGC	CGGCCAGCCA	GCGGAACGGT	TGCCCGGATG	GCGAAGCGAG	CCGGAGTTCT	120
TCGGACTGAG	TATGAATCTT	GTTGTGAAAA	TACTCGCCGC	CTTCGTTCGA	CGACGTCGCG	180
TCGAAATCTT	CGANCTCCTT	ACGATCGAAG	TCTTCGTGGG	CGACGATCGC	GGTCAGTTCC	240
GCCCCACCGA	AATCATGGTT	GAGCCGGATG	CTGNCCCCGA	AGNCCTCGTT	TGTN	294

- (2) INFORMATION FOR SEQ ID NO:21:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 208 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi)	SEQUENCE	DESCRIPTION:	SEQ	ID	NO:21:	

	TTGGTAAAGG	GCATGGACGC	AGACGCCTGA	CGTTTGGCTG	AAAATCTTTC	ATTGATTCGT	• 6	0.0
-	ATCAATGAAT	AGGAAAATTC	CCAAAGAGGG	AATGTCCTGT	TGCTCGCCAG	TTTTTNTGTT	12	
(GTTCTCATGG	ANAAGGCAAN	GAGCTCTTCA	GACTATTGGN	ATTNTCGTTC	GGTCTTCTGC	18	_
		NCTTGCNANG					20	_

(2) INFORMATION FOR SEQ ID NO:22:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 287 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

NCCNTTGAGC TGAGTGATTG	AGATNTGTAA	TGGTTGTAAG	GGTGATTCAG	GCGGATTAGG	60
GTGGCGGGTC ACCCGGCAGT	GGGTCTCCCG	ACAGGCCAGC	AGGATTTGGG	GCAGGTACGG	120
NGTGCGCATC GCTCGACTAT	ATGCTATGGC	AGGCGAGCCG	TGGAAGGNGG	ATCAGGTCAC	180
GGCGCTGGAG CTTTCCACGG	TCCATGNATT	GNGATGGCTG	TTCTAGGCGG	CTGTTGCCAA	240
GCGTGATGGT ACGCTGGCTG	GAGCATTGAT	TTCTGGTGCC	AAGGTGG	GIGIIGCCIII	287

(2) INFORMATION FOR SEQ ID NO:23:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 204 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:

GGGCCAAGCT GTCGCCGGGG ATGGTGGAGA ACTGAAGCGG GACCTCCTCG AGGTCCTCCG 120	TTGGGTAAAG	GGAGCAAGGA	GAAGGCATGG	AGAGGCTCAN	GCTGGTCCTG	GCCTACGACT	60
	GGGCCAAGCT	GTCGCCGGGG	ATGGTGGAGA	ACTGAAGCGG	GACCTCCTCG	AGGTCCTCCG	120
NCGTTACTTC NCCGTCCAGG AGGAGGGTCT TTCCGTGGTC TNGGAGGAGC GGGGGGAGAA 180							
GATNCTCCTC ATGGTCNACA TCCC 204						COCCOCACA	

(2) INFORMATION FOR SEQ ID NO:24:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 264 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:

TOCATTOCTO	ACCAGGGGG	3 C3 C5CCC				
100A11GG1C	AGGAGCGGGT	AGAGTGGCAC	CATTGAGGGG	ATATTCAAAA	ATATTATTTT	60
CTCCTAAATC	A TRA CITITIO CITICO	A COMMONICANIA				• • •
OTCCIMATG	ATAGITGCIG.	AGIIIIICII.	TGACCCATGA	GTTATATTGG	AGTTTATTTT	120
ጥጥ እ ለጥጥጥረላ	A A MOGOA MOG	3 C 3 C C C C C C C C C C C C C C C C C				
TIMMCTITCC	AAICGCAIGG	ACATGITAGA	CTTATTTTCT	GTTAATGATT	אריים ייים אריים אריים א	7 0 0

TTAAATTGGA TTTGAGAAAT TGGTTNTTAT TATATCAATT TTTGGTATTT GTTGAGTTTG ACATTATAGC TTAGTATGTG ACCA	240 264
(2) INFORMATION FOR SEQ ID NO:25:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 376 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	·
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:	
TTACAACGAG GGGAAACTCC GTCTCTACAA AAATTAAAAA ATTAGCCAGG TGTGGTGGTG TGCACCCGCA ATCCCAGCTA CTTGGGAGGT TGAGACACAA GANTCACCTA NATGTGGGAG GTCAAGGTTG CATGAGTCAT GATTGTGCCA CTGCACTCCA GCCTGGGTGA CAGACCGAGA CCCTGCCTCA ANAGANAANG AATAGGAAGT TCAGAAATCN TGGNTGTGGN GCCCAGCAAT CTGCATCTAT NCAACCCCTG CAGGCAANGC TGATGCAGCC TANGTTCAAG AGCTGCTGTT TCTGGAGGCA GCAGTTNGGG CTTCCATCCA GTATCACGGC CACACTCGCA CNAGCCATCT GTCCTCCGTN TGTNAC (2) INFORMATION FOR SEO ID NO:26:	60 120 180 240 300 360 376
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 372 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:	
TTACAACGAG GGGAAACTCC GTCTCTACAA AAATTAAAAA ATTAGCCAGG TGTGGTGGTG TGCACCTGTA ATCCCAGCTA CTTGGGCGGC TGAGACACAA GAACCACCTA AATGTGGGAG GGTCAAGGTT GCATGAGTCA TGATCGCGCC ACTGCACTCC AGCCTGGGTG ACAGACTGAG ACCCTGCCTC AAAAGAAAAA GAATAGGAAG TTCAGAAACC CTGGGTGTGG NGCCCAGCAA TCTGCATTTA AACAATCCCT GCAGGCAATG CTGATGCAGC CTAAGTTCAA GAGCTGCTGT TCTGGAGGCA GNAGTAAGGG CTTCCATCCA GCATCACGGN CAACACTGCA AAAGCACCTG TCCTCGTTGG TA	60 120 180 240 300 360 372
(2) INFORMATION FOR SEQ ID NO:27:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 477 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:	
TTCTGTCCAC ATCTACAAGT TTTATTTATT TTGTGGGTTT TCAGGGTGAC TAAGTTTTTC CCTACATTGA AAAGAGAAGT TGCTAAAAGG TGCACAGGAA ATCATTTTT TAAGTGAATA TGATAATATG GGTCCGTGCT TAATACAACT GAGACATATT TGTTCTCTGT TTTTTTAGAG	60 120 180

TCACCTCTTA	AAGTCCAATC	CCACAATGGT	GAAAAAAAA	TAGAAAGTAT	TTGTTCTACC	240
TTTAAGGAGA	CTGCAGGGAT	TCTCCTTGAA	AACGGAGTAT	GGAATCAATC	TTAAATAAAT	300
					AAATTCACCT	360
GACTTTTTT	GGGAAAAAAT	AGTCGAAAAT	GTCAATTTGG	TCCATAAAAT	ACATGTTACT	420
ATTAAAAGAT	ATTTAAAGAC	AAATTCTTTC	AGAGCTCTAA	GATTGGTGTG	GACAGAA	477

(2) INFORMATION FOR SEQ ID NO:28:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 438 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:

TOTALON ACCES CEMONICES					
TCTNCAACCT CTTGANTGTC	AAAAACCTTN	TAGGCTATCT	CTAAAAGCTG	ACTGGTATTC	60
ATTCCAGCAA AATCCCTCTA	GTTTTTCCAC	ሲ ሲሲርር ሲሲሲሲሲ	CTA TOTOGGG	ama aamaa aa	
63.6333.0000	OTITIOGAG	TITCCITITA	CIAICIGGG	CTGCCTGAGC	120
CACAAATGCC AAATTAAGAG	CATGGCTATT	TTCGGGGGCT	GACAGGTCAA	AAGGGGTGTA	180
AATCCCATAA CCCTCCTCCA	aamaamama .			.1010000117	100
AATCCGATAA GCCTCCTGGA	GGTGCTCTAA	AAACACTCCT	GGTGACTCAT	CATGCCCCTG	240
GACGACTTCA ATCGNCTTAG	አሮአአርመመው አመ	N C C TTTT C TO C	0010cmcc-		
SHOULDITCH MICONCIING	ACAAGIIIAI	AGGIIICIGG	GCAGCTCCCT	GAATACCCAC	300
GAGGAGATAC CGGTGGAAAT	CGTCAAAAGT	TCTCCCTCCA	CTTCACAAAM	mmccamaaa.	
	00101111101	TCTCCCTCCA	CIIGAGAAAI	TIGGGTCCCA	360
ATTAGGTCCC AATTGGGTCT	CTAATCACTA	TTCCTCTAGC	TTCCTCCTCC	CONCENTRACO	420
WHICH HOMON C. CHINAS			1100100100	GGNCIATIGG	420
TTGATGTGAG GTTGAAGA					438
					420

(2) INFORMATION FOR SEQ ID NO:29:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 620 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:

AAGAGGGTAC CAGCCCCAAG	CCTTGACAAC	TTCCATAGGG	TGTCAAGCCT	GTGGGTGCAC	60
AGAAGTCAAA AATTGAGTTT	TGGGATCCTC	AGCCTAGATT	TCAGAGGATA	TAAAGAAACA	120
CCTAACACCT AGATATTCAG	ACAAAAGTTT	ACTACAGGGA	TGAAGCTTTC	ACGGAAAACC	. 180
TCTACTAGGA AAGTACAGAA	GAGAAATGTG	GGTTTGGAGC	CCCCAAACAG	AATCCCCTCT	240
AGAACACTGC CTAATGAAAC	TGTGAGAAGA	TGGCCACTGT	CATCCAGACA	CCAGAATGAT	300
AGACCCACCA AAAACTTATG	CCATATTGCC	TATAAAACCT	ACAGACACTC	AATGCCAGCC	360
CCATGAAAAA AAAACTGAGA	AGAAGACTGT	NCCCTACAAT	GCCACCGGAG	CAGAACTGCC	420
CCAGGCCATG GAAGCACAGC	TCTTATATCA	ATGTGACCTG	GATGTTGAGA	CATGGAATCC	480
NANGAAATCN TTTTAANACT					540
ATCCNGGCCT GTGACCTCTT	TGCTTTGGCC	ATTCCCCCTT	TTTGGAATGG	CTNTTTTTT	600
CCCATGCCTG TNCCCTCTTA					620

(2) INFORMATION FOR SEQ ID NO:30:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 100 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:

TTACAACGAG	GGGGTCAATG	TCATAAATGT	CACAATAAAA	CAATCTCTTC	TTTTTTTTT	60
TTTTTTTTT	TTTTTTTTT	TTTTTTTTT	TTTTTTTTT			100

(2) INFORMATION FOR SEQ ID NO:31:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 762 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:

TAGTCTATGC GCCGGACAGA	GCAGAATTAA	ATTGGAAGTT	GCCCTCCGGA	CTTTCTACCC	60
ACACTCTTCC TGAAAAGAGA	AAGAAAAGAG	GCAGGAAAGA	GGTTAGGATT	TCATTTTCAA	120
GAGTCAGCTA ATTAGGAGAG	CAGAGTTTAG	ACAGCAGTAG	GCACCCCATG	ATACAAACCA	180
TGGACAAAGT CCCTGTTTAG	TAACTGCCAG	ACATGATCCT	GCTCAGGTTT	TGAAATCTCT	240
CTGCCCATAA AAGATGGAGA	GCAGGAGTGC	CATCCACATC	AACACGTGTC	CAAGAAAGAG	300
TCTCAGGGAG ACAAGGGTAT	CAAAAAACAA	GATTCTTAAT	GGGAAGGAAA	TCAAACCAAA	360
AAATTAGATT TTTCTCTACA	TATATATAAT	ATACAGATAT	TTAACACATT	ATTCCAGAGG	420
TGGCTCCAGT CCTTGGGGCT	TGAGAGATGG	TGAAAACTTT	TGTTCCACAT	TAACTTCTGC	480
TCTCAAATTC TGAAGTATAT	CAGAATGGGA	CAGGCAATGT	TTTGCTCCAC	ACTGGGGCAC	540
AGACCCAAAT GGTTCTGTGC	CCGAAGAAGA	GAAGCCCGAA	AGACATGAAG	GATGCTTAAG	600
GGGGGTTGGG AAAGCCAAAT	TGGTANTATC	TTTTCCTCCT	GCCTGTGTTC	CNGAAGTCTC	660
CNCTGAAGGA ATTCTTAAAA	CCCTTTGTGA	GGAAATGCCC	CCTTACCATG	ACAANTGGTC	720
CCATTGCTTT TAGGGNGATG	GAAACACCAA	GGGTTTTGAT	CC		762

- (2) INFORMATION FOR SEQ ID NO:32:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 276 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:

TAGTCTATGC GTGTATTAAC CTCCCC	TCCC TCAGTAACAA CCAAAGAGGC AGGAGCTGTT	60
ATTACCAACC CCATTTTACA GATGCAT	TCAA TAATGACAGA GAAGTGAAGT GACTTGCGCA	120
CACAACCAGT AAATTGGCAG AGTCAGA	ATTT GAATCCATGG AGTCTGGTCT GCACTTTCAA	180
TCACCGAATA CCCTTTCTAA GAAACG	TGTG CTGAATGAGT GCATGGATAA ATCAGTGTCT	240
ACTCAACATC TTTGCCTAGA TATCCC	GCAT AGACTA	276

(2) INFORMATION FOR SEQ ID NO:33:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 477 base pairs
 - (B) TYPE: nucleic acid

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:

TAGTAGTTGC	CAAATATTTG	AAAATTTACC	CAGAAGTGAT	TGAAAACTTT	TTGGAAACAA	60
AAACAAATAA	AGCCAAAAGG	TAAAATAAAA	ATATCTTTGC	ACTCTCGTTA	ТТАССТАТСС	120
ATAACTTTTT	CACCGTAAGC	TCTCCTGCTT	GTTAGTGTAG	TGTGGTTATA	ው ተመተመረ ላይ ነው። ተመመረ ነው የተመመረ ነው	180
TAGTTATTAT	TTTTTATTCA	CTTTTCCACT	AGAAAGTCAT	TATTGATTTA	GCACACATGT	240
TGATCTCATT	TCATTTTTTC	TTTTTATAGG	CAAAATTTGA	TGCTATGCAA	САААААТАСТ	300
CAAGCCCATT	ATCTTTTTTC	CCCCCGAAAT	CTGAAAATTG	CAGGGGACAG	AGGGAAGTTA	360
TCCCATTAAA	AAATTGTAAA	TATGTTCAGT	TTATGTTTAA	AAATGCACAA	AACATAAGAA	420
AATTGTGTTT	ACTTGAGCTG	CTGATTGTAA	GCAGTTTTAT	CTCAGGGGCA	ACTACTA	477

(2) INFORMATION FOR SEQ ID NO:34:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 631 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:

TAGTAGTTGC	CAATTCAGAT	GATCAGAAAT	GCTGCTTTCC	TCAGCATTGT	CTTGTTAAAC	60
CGCATGCCAT	TTGGAACTTT	GGCAGTGAGA	AGCCAAAAGG	AAGAGGTGAA	ТСАСАТАТАТ	120
ATATATATAT	ATTCAATGAA	AGTAAAATGT	ΑΤΑΤΙΚΟΤΙΟΣΤ	ATACTTTCTA	CCCATATAL	
TCACTTAACC	mmma maaaa m	Tagaana		AIACITICIA	GITATCAGAA	180
IGAGITAAGC	TTTATGCCAT	TGGGCTGCTG	CATATTTTAA	TCAGAAGATA	AAAGAAAATC	240
TGGGCATTTT	TAGAATGTGA	TACATCTTTT	יייי א א א מיייר מיייר א א א א מיייר מיייר	TTAAATTA	######################################	
MCMCma a ca a			TITAAAACIG	TIAAATATTA	TTTCGATATT	300
TGTCTAAGAA	CCGGAATGTT	CTTAAAATTT	ACTAAAACAG	TATTGTTTGA	GGAAGAGAAA	360
ACTGTACTGT	ጥጥርርርርአጥጥአጥ	TACACTICCTA	GA A GEOGRAPHIC	TCAAGTCACC	CC. L. C. I.C. L. L.	
	TIOCCALIAI	IACAGICGIA	CAAGTGCATG	TCAAGTCACC	CACTCTCTCA	420
GGCATCAGTA	TCCACCTCAT	AGCTTTACAC	ATTTTGACGG	GGAATATTGC.	አርርአሞርርሞርአ	400
CCCCTCACAT	GMGGGG 3 3 3 GG			GOARIATIGC.	AGCAICCICA	480
GGCCIGACAI	CIGGGAAAGG	CTCAGATCCA	CCTACTGCTC	CTTGCTCGTT	GATTTGTTTT	540
AAAATATTGT	GCCTGGTGTC	እርጥጥጥጥ አር ር	CACACCCCTC	CCTAAAAGCC		
30330000	0001001010	ACTITION	CACAGCCCIG	CCTAAAAGCC	AGCAGAGAAC	600
AGAACCCGCA	CCATTCTATA	GGCAACTACT	A	•		631
			- <u>-</u>			O 2 T

(2) INFORMATION FOR SEQ ID NO:35:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 578 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:

TAGTAGTTGC	CATCCCATAT	TACAGAAGGC	TCTGTATACA	ተርያ ርታታል ተታታ	GGAAGTGATC	60
TGTTTTCTCT	CCAAACCCAT	ТТАТССТААТ	TTCACCACTC	TOTICITATI	CTTGGTTTCC	• •
ACTGATACCA	TCAAACCTAC	TIMICOLAMI	TICACCAGIC	1 TGGATCAAT	CTTGGTTTCC	120
ACCEPTANCEA	IGAAACCIAC	TIGGAGCAGA	CATTGCACAG	TTTTCTGTGG	TAAAAACTAA	180
AGGTTTATTT	GCTAAGCTGT	CATCTTATGC	TTAGTATTTT	TTTTTTACAG	TGGGGAATTG	240
CTGAGATTAC	ATTTTGTTAT	TCATTAGATA	CTTTGGGATA	ACTTGACACT	Chahahaha	300
TTTCGCTTTT	AATTGCTATC	ATCATGCTTT	TCANACANCA	y Cy Cy may can	CCTCAAGTAT	• • • •
			IGAAACAAGA	ACACATTAGT	CCTCAAGTAT	360

TACATAAGCT	TGCTTGTTAC	GCCTGGTGGT	TTAAAGGACT	ATCTTTGGCC	TCAGGTTCAC	420
AAGAATGGGC	AAAGTGTTTC	CTTATGTTCT	GTAGTTCTCA	ΔΥΔΔΔΔΔΑΤΤ	GCCAGGGGCC	
GGGTACTGTG	GCTCGCACTG	TAATCCCAGC	A CTTTCCCA A	COMONOCOMO	GCGGATCATG	480
TTACCCCACC	TCTTCCAAAA	CACCECCAGC	ACTITIGGGAA	GCTGAGGCTG	GCGGATCATG	540
TIAGGGCAGG	IGIICGAAAC	CAGCCTGGGC	AACTACTA			578

(2) INFORMATION FOR SEQ ID NO:36:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 583 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:

TAGTAGTTGC	CTGTAATCCC	AGCAACTCAG	GAGGCTGGGG	CAGGAGAATC	AGTTGAACCT	60
GGGAGGCAGA	AGTTGTAATT	AGCAAAGATC	GCACCATTGC	ACTTCAGCCT	GGGCAACAAG	120
AGTGAGATTC	CATCTCAAAA	ACAAAAAAA	GAAAAAGAAA	AGAAAAGGAA	AAAACGTATA	180
AACCCAGCCA	AAACAAAATG	ATCATTCTTT	TAATAAGCAA	GACTAATTTA	ATGTGTTTAT	240
TTAATCAAAG	CAGTTGAATC	TTCTGAGTTA	TTGGTGAAAA	TACCCATGTA	GTTAATTTAG	300
GGTTCTTACT	TGGGTGAACG	TTTGATGTTC	ACAGGTTATA	AAATGGTTAA	CAAGGAAAAT	360
GATGCATAAA	GAATCTTATA	AACTACTAAA	AATAAATAAA	ATATAAATGG	ATAGGTGCTA	420
TGGATGGAGT	TTTTGTGTAA	TTTAAAATCT	TGAAGTCATT	TTGGATGCTC	ATTGGTTGTC	` 480
TGGTAATTTC	CATTAGGAAA	AGGTTATGAT	ATGGGGAAAC	TGTTTCTGGA	AATTGCGGAA	540
TGTTTCTCAT	CTGTAAAATG	CTAGTATCTC	AGGGCAACTA	CTA		583

(2) INFORMATION FOR SEQ ID NO:37:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 716 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:

GATCTACTAG	TCATNTGGAT	TCTATCCATG	GCAGCTAAGC	CTTTCTGAAT	GGATTCTACT	60
GCTTTCTTGT	TCTTTAATCC	AGACCCTTAT	ATATGTTTAT	GTTCACAGGC	AGGGGAATGT	120
TTAGTGAAAA	CAATTCTAAA	Դ արդար Հարարար	TCCATTTCA	TGCTAATTTC	AGGGCAAIGI	
CACCACCCOM	CCTCCCAACAA	m,, cc, c,	TOCKTITICA	IGCIAAIIIC	CGTCACACTC	180
CAGCAGGCII	CCTGGGAGAA	TAAGGAGAAA	TACAGCTAAA	GACATTGTCC	CTGCTTACTT	240
ACAGCCTAAT	GGTATGCAAA	ACCACTTCAA	TAAAGTAACA	GGAAAAGTAC	TAACCAGGTA	300
GAATGGACCA	AAACTGATAT	AGAAAAATCA	GAGGAAGAGA	GGAACAAATA	TTTACTGAGT	360
CCTAGAATGT	ACAAGGCTTT	TTAATTACAT	ATTTTATGTA	AGGCCTGCAA	AAAACAGGTG	420
AGTAATCAAC	ATTTGTCCCA	TTTTACATAT	AAGGAAACTG	AAGCTTAAAT	TGAATAATTT	480
AATGCATAGA	ጥጥጥ ልጥ ለርጥጥ	A C A C C A TI C TI TI	CACCMCCCMA	TGTTATACTT	TORRINATII	
MC > > = = = = = = = = = = = = = = = = =	TITATAGIT	AGACCAIGII	CAGGICCCTA	TGTTATACTT	ACTAGCTGTA	540
TGAATATGAG	AAAATAATTT	TGTTATTTTC	TTGGCATCAG	TATTTTCATC	TGCAAAATAA	600
AGCTAAAGTT	ATTTAGCAAA	CAGTCAGCAT	AGTGCCTGAT	ACATAGTAGG	TCCTCCNAAC	660
ΔΤ C Δ ΤΤ Δ ĊΝΟ	שיא אנייי א שייאניים	TO THE STATE OF THE	355555555	ACATAGIAGG	IGCICCAAAC	660
····	THUTHINGG	IAIIANAAAA	ATCCAATATA	GGCNTGGATA	AAACCG	716

(2) INFORMATION FOR SEQ ID NO:38:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 688 base pairs

- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:

TTCTCTCCC	2				•	
TICIGICCAC	ATATCATCCC	ACTTTAATTG	TTAATCAGCA	7 7 7 COOM	TGAAAAATCA	
TCCATTTTAA	CCAGGATCAC	ACCAGGAAAG	TONSTONOCA	AAACTTTCAA	ТGАААААТСА ССТТАААААА	60
ΑΔΑΔΑΔΑΔΑ	ACCA AACAAA	TECHGGAAAC	TGAAGGTGTA	TTTTTTTTA	CCTTAAAAAA	120
						180
AACAGAGAAA	CTTGATGAAN	y Culticus cum	TAGIICITAA	GTCTGTTAAA	AAAATTTACA TCTTGGCATT TTTTGTCTAA	240
						300
						360
TGTAGGGACC	ጥጥሮል ሮአ አ ሮሞሞ	CAMCCACTAT	GATAAGATGA	TGGAACATCC TGCATCACAT TTGAAGAGGA	ATGCATTACA	420
						480
TTTAGAAGAC	CATGTGTGAA	TGGTTTCACC	COMORCANIG	CAGAAGTGGC TTGCCACCAA	ACTGTTGAAA	540
CGAGAAATTT	Commercer	TOGITICAGG	CCTGGGATGT	TTGCCACCAA	GAAGTGCCTC	600
			GGTGGCTTGA			
ACGAAGAAAA	TGAAATTCTG	CCCTTTCC		IACGGI	GGGTGACCCA	660
			•			688

(2) INFORMATION FOR SEQ ID NO:39:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 585 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:

TGACAAATGC TTTGGCCGGG	ATATNCCTCT CGTGGTGGGC	ATAATCCACA	ACTGATTAAA	GTGCATANTT AAGCTATTAC	AATTAAAAAG	60 120 180
GGCACGCGGA TCTCTACTAA TACTCCGGAG	TCACGAGGTC AAATACGAAA GCTGAGGCAG TCACTGCCCT TACTNATANT	GGGAGTTCAA AAATTACCCC GAGAATGGCG CCAGCCTGGG	GCCTGTAATC GACCATCCTG GGCGTGGTGG TGAACCCAGG GGACAGGAAC	CCAGCACTTT GCTAACACGG CGGGCGCCTG ACACGGAGCT AAGANTCCCG	GGGAGGCCGA TGAAAGTCCA TAGTCCCAGC TGCAGTGTGC TCCTCANAAA	180 240 300 360 420 480 540

(2) INFORMATION FOR SEQ ID NO:40:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 475 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:40:

TCTGTCCACA	CCAATCTTAG	AACCTCTCAA	77677		CTTTTAATAG	
TAACATGTAT	TTTT TTT TTT	AMOUTUTGAA	AAGAATTTGT	CTTTAAATAT	CTTTTAATAC	-
or Lie	TITATGGACC	AAATTGACAT	TTTCGACTGT	THEFT	CTTTTAATAG AAAGTCAGGT	60
				TITICCAAA	AAAGTCAGGT	120

GAATTTCAGC	ACACTGAGTT	GGGAATTTCT	TATCCCAGAA	GACCAACCAA	TTTCATATTT	180
ATTTAAGATT	GATTCCATAC	TCCGTTTTCA	AGGAGAATCC	CTGCAGTCTC	CTTAAAGGTA	240
GAACAAATAC	TTCCTATTTT	TTTTTCACCA	TTGTGGGATT	GGACTTTAAG	AGGTGACTCT	300
AAAAAAACAG	AGAACAAATA	TGTCTCAGTT	GTATTAAGCA	CGGACCCATA	TTATCATATT	360
CACTTAAAAA	AATGATTTCC	TGTGCACCTT	TTGGCAACTT	CTCTTTTCAA	TGTAGGGAAA	420
AACTTAGTCA	CCCTGAAAAC	CCACAAAATA	AATAAAACTT	GTAGATGTGG	ACAGA	475

(2) INFORMATION FOR SEQ ID NO:41:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 423 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:41:

TAAGAGGGTA CATCGGGTAA GAA	CGTAGGC ACATCTAGAG	CTTAGAGAAG	TCTGGGGTAG	60
GAAAAAATC TAAGTATTTA TAA	GGGTATA GGTAACATTT	AAAAGTAGGG	CTAGCTGACA	120
TTATTTAGAA AGAACACATA CGO				180
AATATTTAGT GATCACTTCC ATT				240
AAGATTTTTG GCCATGATTA GTT				300
TTGTTTTAAG ATCCTTGTTA GTG	CTTTAAT AAAGTCATGT	TATATCAAAC	GCTCTAAAAC	360
ATTGTAGCAT GTTAAATGTC ACA	ATATACT TACCATTTGT	TGTATATGGC	TGTACCCTCT	420
CTA		/		423

(2) INFORMATION FOR SEQ ID NO:42:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 527 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:42:

				TTAAAAATTT		60
AAAAAGCTTA	TAGAATAAGA	ATATGAAGAA	AGAAAATATT	TTTGTACATT	TGCACAATGA	120
GTTTATGTTT	TAAGCTAAGT	GTTATTACAA	AAGAGCCAAA	AAGGTTTTAA	AAATTAAAAC	180
				AAGAAAGAAA		240
				TCTGGCAGTG		300
				ACTTCCAGTC		360
				TACAGTATTT		420
				GGTTACTATN	GCCCNACAGG	480
TAATTCCAGT	AACACGGCCT	GTATACGTCT	GGTANCCCTA	GNGAAGA		527

(2) INFORMATION FOR SEQ ID NO:43:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 331 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:43:

CTCTAGTTGG AAAATTAGAG AAATCATGTT TTTAATTTTG TGTTATTTCACAA GTTTCTCTTC 12 TCAAACACTT GTAAACATTA AGCTTCTGTT CAATCCCCTG GGAAGAGGAT TCATTCTGAT 24 TTCCTACTAC TATTATATAA TAAATAATAA C	CTCTAGTTGC FCAAACACTT ATTTACGGTT	CTT GTAAACATTA GTT CAAAAGAAGT	AAAAAAGAAG AAATCATGTT AGCTTCTGTT TGTAATATTG	AAAAAAGAAC TTTAATTTTG CAATCCCCTG	TTTTCCACAA TGTTATTTCA	GTTTCTCTTC GATCACAAAT	60 120 180 240 300
---	--	----------------------------------	--	--	--------------------------	--------------------------	--------------------------------

(2) INFORMATION FOR SEQ ID NO:44:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 592 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:44:

CAGAGTGACC ATATAAGCAG CGGAAGGAAT TTCTGCTTTT	CTTGAGGAGA AAATCTGGAG ATAGAGTTGG GATGTTGCAG	TGTGCTACAC AAGAGTCATA ATCAGGCTGG CTCAGGGAGT	AAGTCCCAGC TAGAAAAGAA GGAATGGATA ACTTATTGAT	AGACCCCTAG CTGCTTGAGT TTAAGGGTGT TTGAACCCAC	CCCAACACCC AGGTGAGGTT TTTCTAATTT GAGATAATGG TAAGTAGAGA CTAATAGTTT	60 120 180 240 300
	ONDO TO THE E	AAGAGTTATA		CTC 2 2 2 2 2 2 2 2		
CGGAAGGAAT	ATAGAGTTGG	ATCAGGCTGG	ACTITION TO THE	TIMAGGGTGT	GAGATAATGG	240
TTCTGCTTTT	GATGTTGCAG	CTCACCCACT	ACTIATIGAT	TTGAACCCAC	TAAGTAGAGA	300
ATTTGCTTGC	TTACCTOCAG	CICAGGGAGT	TAAAAAAGGT	TTTAATGGTT	CTAATAGTTT	360
	TINGCIGNAM	IAIGGATAAA	ACATCCCCCA	OMOMOS des		
	CICAGIIIAA	TGTAGAGGAA	CCCATCCAAA	3.000		420
CTGGRAKTGG	ATTGGTCACT	TTGPGACCTA	CCChmagas	AGTITAGGGA	GANTTGGATG	480
CTGGRAKTGG CACCCTTGAC	CAACCCTTTC	TIONOMCEIA	CCCWTCCCAG	CTGGGAGGGT	CCAGAAGATA	540
CACCCTTGAC	CAACGCTTTG	CGAAATGGAT	TTGTGATGGC	GGCAACTACT	AA	592

(2) INFORMATION FOR SEQ ID NO:45:

- (i) SEQUENCE CHAPACTERISTICS:
 - (A) LENGTH: 567 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:45:

(2) INFORMATION FOR SEQ ID NO:46:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 908 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:46:

				•		
GAGCGAAAGA	CCGAGGGCAG	NGNNTANGNG	CGANGAAGCG	GAGAGGCCA	AAAAGCAACC	60
GCTTTCCCCG	GGGGGTGCCG	ATTCATTAAG	GCAGGTGGAG	GACAGGTTTC	CCGATGGAAG	120
GCGGCAGGGG	CGCAAGCAAT	TAATGTGAGT	AGGCCATTCA	TTAGCACCCG	GGCTTAACAT	180
TTAAGCTTCG	GGTTGGTATG	TGGTGGGAAT	TGTGAGCGGA	TAACAATTTC	ACACAGGAAA	240
CAGCTATGAC	CATGATTACG	CCAAGCTATT	TAGGTGACAT	TATAGAATAA	CTCAAGTTAT	300
GCATCAAGCT	TGGTACCGAG	TTCGGATCCA	CTAGTAACGG	CCGCCAGTGT	GTGGAATTCG	360
GCTTAGTAGT	TGCCGACCAT	GGAGTGCTAC	CTAGGCTAGA	ATACCTGAGY	TCCTCCCTAG	420
CCTCACTCAC	ATTAAATTGT	ATCTTTTCTA	CATTAGATGT	CCTCAGCGCC	TTATTTCTGC	480
TGGACWATCG	ATAAATTAAT	CCTGATAGGA	TGATAGCAGC	AGATTAATTA	CTGAGAGTAT	540
GTTAATGTGT	CATCCCTCCT	ATATAACGTA	TTTGCATTTT	AATGGAGCAA	TTCTGGAGAT	600
AATCCCTGAA	GGCAAAGGAA	TGAATCTTGA	GGGTGAGAAA	GCCAGAATCA	GTGTCCAGCT	660
GCAGTTGTGG	GAGAAGGTGA	TATTATGTAT	GTCTCAGAAG	TGACACCATA	TGGGCAACTA	720
CTAAGCCCGA	ATTCCAGCAC	ACTGGCGGGC	GTTACTAATG	GATCCGAGCT	CGGTACCAAG	780
CTTGATGCAT	AGCTTGAGTA	TCTATAGTGT	CACTAAATAG	CCTGGCGTTA	TCATGGTCAT	840
AGCTGTTTCC	TGTGTGAAAT	TGTTATCCGC	TCCCAATTCC	CCCCACCATA	CGAGCCGGAA	900
CATAAAGT						908

(2) INFORMATION FOR SEQ ID NO:47:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 480 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:47:

		AATTTCCCCT				60
GGTTTTTAAG	GTTGTTTTCT	GTCAAATAAC	TCTAACTTTA	AGCCAAACAG	TATATGGAAG	120
CACAGATAKA	ATATTACACA	GATAAAAGAG	GAGTTGATCT	AAAGTARAGA	TAGTTGGGGG	180
CTTTAATTTC	TGGAACCTAG	GTCTCCCCAT	CTTCTTCTGT	GCTGAGGAAC	TTCTTGGAAG	240
CGGGGATTCT	AAAGTTCTTT	GGAAGACAGT	TTGAAAACCA	CCATGTTGTT	CTCAGTACCT	300
		AACATTTTGA				360
		TTTTAGCTGA				420
		SCACATGCTC				480

(2) INFORMATION FOR SEQ ID NO:48:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 591 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:48:

AAGAGGGTAC	CGAGTGGAAT	TTCCGCTTCA	CTAGTCTGGT	GTGGCTAGTC	GGTTTCGTGG	60
TGGCCAACAT	TACGAACTTC	CAACTCAACC	CTTTCTTTCT A	CEMON	GAGTACCGGC	60
CACCAMCOMO		CHACICAACC	GITCITGGAC	GTTCAAGCGG	GAGTACCGGC	120
GAGGATGGTG	GCGTGAATTC	TGGCCTTTCT	TTGCCGTGGG	ATCGGTAGCC	GCCATCATCG	180
GTATGTTTAT	CAAGATCTTC	TTTACTAACC	CCACCTCTCC		CCCGAGCCGT	
COMMEN A CON	2222222	TIMETANCE	CGACCICICC	GATTTACCTG	CCCGAGCCGT	240
GGITIAACGA	GGGGAGGGGG	ATCCAGTCAC	GCGAGTACTG	GTCCCAGATC	TTCGCCATCG	300
TCGTGACAAT	GCCTATCAAC	TTCGTCGTCA	A TO A COMPOSIO	63.66	ACGGTGAAGC	300
A CTCCCCA A A A	CCMCCCCCC	TICOTCOTCA	ATAAGTIGIG	GACCTTCCGA	ACGGTGAAGC	360
ACICCGAAAA	CGTCCGGTGG	CTGCTGTGCG	GTGACTCCCA	AAATCTTGAT	AACAACAAGG	420
TAACCGAATC	GCGCTAAGGA	ACCCCGGCAT	CTCCCCTTACT	CTGCATATGC	TOTOTOTOTO	
A C C C C A A TIMO	Grace co		CICGGGIACI	CIGCATATGC	GTACCCCTTA	480
AGCCGAATIC	CAGCACACTG	GCGGCCGTTA	CTAATTGGAT	CCGAACTCCG	TAACCAAGCC	540
TGATGCGTAA	CTTGAGTTAT	тстатастст	CCCTTAAAATTA	ACCTGGCGTT	CAAGCC	540
		202111AGIGI	CCCIAAAAIA	ACCIGGCGTT	A	591

(2) INFORMATION FOR SEQ ID NO:49:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 454 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:49:

AAGAGGGTAC	CTGCCTTGAA	A THURA A A HIGH	CERROCE			
CMCMGGGGGG	CICCIIGAA	ATTIMAMIGI	CTAAGGAAAR	TGGGAGATGA	TTAAGAGTTG	60
GIGIGGCYTA	GTCACACCAA	AATGTATTTA	TTACATCCTG	CTCCTTTCTA	GTTGACAGGA	100
AAGAAAGCTG	CTGTGGGGAA	ACCACCA MA	3353655	CICCILICIA	GIIGACAGGA	120
63.55.55	CIGIGGGAA	AGGAGGGATA	AATACTGAAG	GGATTTACTA	AACAAATGTC	180
CATCACAGAG	TTTTCCTTTT	TTTTTTTTTG	AGACAGAGTC	TTCCTCTCTC	ACCCAGGCTG	
GAATGAAGWG	CTATCATCTC	A COURCE A RESC	1101101101101	riderergre	ACCCAGGCTG	240
	GIAIGAICIC	AGTTGAATGC	AACCTCTACC	TCCTAGGTTC	AAGCGATTCT	300
CATGCCTCAG	CCTCCTGAGC	AGCTGGGACT	ATAGGCGCAT	CCTACCAMCO	CAGGCTAATT	
היהיהיה עיה עהריה	TA TITA CA CA C	2222222	MINGGEGERI	GCIACCATGC	CAGGCTAATT	360
TITALATILL	IATTAGAGAC	GGGGTGTTGC	CATGTTGGCC	AGGCAGGTCT	CGAACTCCTG	420
GGCCTCAGAT	GATCTGCCCC	ACCGTACCCT	ריתיי א			420
		cctraccc1	CIIM			454

(2) INFORMATION FOR SEQ ID NO:50:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 463 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:50:

AAGAGGGTAC	CAAAAAAAAG	AAAAAGGAAA	AAAAGAAAA	CAACTTGTAT	AAGGCTTTCT	60
GCTGCATACA	GCTTTTTTTT	TTTAAATAAA	TGGTGCCAAC	λλησητητητή Δλησουσητήτη	GCATTCACAC	
CAATTGCTGG	שיי ע ע באיניינייני	CTACTOTO	22000000	AAAIGIIIII	GCATTCACAC	120
Amacacacan	TITIOAAAIC	GIACICITCA	AAGGTATTTG	TGCAGATCAA	TCCAATAGTG	180
ATGCCCCGTA	GGTTTTGTGG	ACTGCCCACG	TTGTCTACCT	TCTCATGTAG	GAGCCATTGA	240
GAGACTGTTT	GGACATGCCT	GTGTTCATGT	AGCCGTGATG	TOCOCOCOCO	GTGTACATCA	
TGTTACCGTG	CCCTCCCCC	WCC1 PROGRAM	ACCCGIGATG	TCCGGGGGCC	GTGTACATCA	300
00335555	99919991	IGCATTGGCT	GCTGGGCATA	TGGCTGGGTG	CCCATCATGC	360
CCATCTGCAT	CTGCATAGGG	TATTGGGGCG	TTTGATCCAT	ATAGCCATGA	TTGCTGTGGT	420
AGCCACTGTT	CATCATTGGC	TGGGACATGC	TOTAL	mma	1100101001	420
-		TOOCHCAIGC	IGITACCCIC	TTA		463

(2) INFORMATION FOR SEQ ID NO:51:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 399 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:51:

CTTCAACCTC	CCAAAGTGCT	GGGATTACAG	GACTGAGCCA	CCACGCTCAG	CCTAAGCCTC	
TTTTTCACTA	CCCTCTAAGC	GATCTACCAC	A CEC A EC A CO	CCACOCICAG	CAGTGCAATT	60
ጥር እጥጥ አ ረ እ እ ጠ	770001100	CATCIACCAC	AGIGAIGAGG	GGCTAAAGAG	CAGTGCAATT	120
IGATTACAAT	AATGGAACTT	AGATTTATTA	ATTAACAATT	TTTCCTTAGC	ATGTTGGTTC	180
CATAATTATT	AAGAGTATGG	ACTTACTTAG	AAATGAGCTT	ער א מייניינייני א א כי	AATTTCATCT	
TTGACCTTCT	СТАТТАСТСТ	CACCACTATIC	7.07.007.00.11	TCATTTTAAG	AATTTCATCT	240
COMMONOCON	CIMITAGICI	GAGCAGIAIG	ACACTATACG	TATTTTATTT	AACTAACCTA	300
CCTTGAGCTA	TTACTTTTTA	AAAGGCTATA	TACATGAATG	TGTATTGTCA	ACTGTAAAGC	360
CCCACAGTAT	TTAATTATAT	CATGATGTCT	TTCACCTTC		erorande	
		0.110.110101	TIGAGGIIG			399

(2) INFORMATION FOR SEQ ID NO:52:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 392 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:52:

CTTCAACCTC	AATCAACCTT	GGTAATTGAT	AAAATCATCA	CTTAACTTTC	ma a ma a ma	
GCAATAATTA	TOTONONNA	7 7 7 ACTOCATO	MUMICATCA	CITAACTTIC	TGATATAATG	60
TERRITATIA	ICIGAGAAAA	AAAAGTGGTG	AAAGATTAAA	CTTGCATTTC	TCTCAGAATC	120
TTGAAGGATA	TTTGAATAAT	TCAAAAGCGG	AATCAGTAGT	ATCAGCCGAA	GAAACTCACT	180
TAGCTAGAAC	GTTGGACCCA	TGGATCTAAG	TCCCTGCCCT	TCCACTAACC	2.00002000	
ע ע ההטרטיטיטיטיטיטיט	A COMOGRA CA	20000000000	1000100001	ICCACTAACC	AGCTGATTGG	240
TITIGIGIAA	ACCTCCTACA	CGCTTGGGCT	TGGTCGCCTC	ATTTGTCAAA	GTAAAGGCTG	300
AAATAGGAAG	ATAATGAACC	GTGTCTTTTT	GGTCTCTTTT	CCATCCATTA	CECEC A SESSE	
ACAAAGAGGC	CTCTATTCCC	CTGGTGAGGT		CCATCCATTA	CICIGATTT	360
	CIGIALICCC	CIGGIGAGGT	TG			392

(2) INFORMATION FOR SEQ ID NO:53:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 179 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:53:

TTCGGGTGAT	GCCTCCTCAG	GCTACAGTGA	ACACTCCATT	7070777000	GCCAGCGAGA	
תתתרא כא מיזי ר	CTCTTAAACCT	CT11.010101	MONCIGGAII	ACAGAAAGGT	GCCAGCGAGA	60
TITCAGATIC	CIGIAAACCT	CTAAAGAAAA	GGAGTCGCGC	CTCAACTGAT	GTAGAAATGA	120
CTAGTTCAGC	ATACNGAGAC	ACMTCTGACT	CCCATTCTAC	7.007.0007.00	GACCTGCAN	120
		CICIONCI	CCGATICIAG	AGGACTGAGT	GACCTGCAN	179

(2) INFORMATION FOR SEQ ID NO:54:

 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 112 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:54:	•
TTCGGGTGAT GCCTCCTCAG GCTACATCAT NATAGAAGCA AAGTAGAANA ATCNNGTTTG TGCATTTTCC CACANACAAA ATTCAAATGA NTGGAAGAAA TTGGGANAGT AT	6:
(2) INFORMATION FOR SEQ ID NO:55:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 225 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:55:	
TGAGCTTCCG CTTCTGACAA CTCAATAGAT AATCAAAGGA CAACTTTAAC AGGGATTCAC AAAGGAGTAT ATCCAAATGC CAATAAACAT ATAAAAAGGA ATTCAGCTTC ATCATCATCA GAAGWATGCA AATTAAAACC ATAATGAGAA ACCACTATGT CCCACTAGAA TAGATAAAAT CTTAAAAAGAC TGGTAAAACC AAGTGTTGGT AAGGCAAGAG GAGCA (2) INFORMATION FOR SEQ ID NO:56:	60 120 180 225
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 175 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:56:	
CTCCTCTTG CCTTACCAAC ACATTCTCAA AAACCTGTTA GAGTCCTAAG CATTCTCCTG TAGTATTGG GATTTTACCC CTGTCCTATA AAGATGTTAT GTACCAAAAA TGAAGTGGAG GCCATACCC TGAGGGAGGG GAGGGATCTC TAGTGTTGTC AGAAGCGGAA GCTCA	60 120 175
2) INFORMATION FOR SEQ ID NO:57:	2,3
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 223 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:57:	

AGCCATTTAC CACCCATGGA TGAATGGATT TTGTAATTCT AGCTGTTGTA TTTTGTGAAT

TTGTTAATTT TGTTGTTTTT CTGTGAAACA CATACATTGG ATATGGGAGG TAAAGGAGTG TCCCAGTTGC TCCTGGTCAC TCCCTTTATA GCCATTACTG TCTTGTTTCT TGTAACTCAG GTTAGGTTTT GGTCTCTTT GCTCCACTGC AAAAAAAAAA	120 180 223
(2) INFORMATION FOR SEQ ID NO:58:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 211 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:58:	
GTTCGAAGGT GAACGTGTAG GTAGCGGATC TCACAACTGG GGAACTGTCA AAGACGAATT AACTGACTTG GATCAATCAA ATGTGACTGA GGAAACACCT GAAGGTGAAG AACATCATCC AGTGGCAGAC ACTGAAAATA AGGAGAATGA AGTTGAAGAG GTAAAAGAGG AGGGTCCAAA AGAGATGACT TTGGATGGGT GGTAAATGGC T	60 120 180 211
(2) INFORMATION FOR SEQ ID NO:59:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 208 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:59:	
GCTCCTCTTG CCTTACCAAC TTTGCACCCA TCATCAACCA TGTGGCCAGG TTTGCAGCCC AGGCTGCACA TCAGGGGGACT GCCTCGCAAT ACTTCATGCT GTTGCTGCTG ACTGATGGTG CTGTGACGGA TGTGGAAGCC ACACGTGAGG CTGTGGTGCG TGCCTCGAAC CTGCCCATGT CAGTGATCAT TATGGGTGGT AAATGGCT	60 120 180 208
(2) INFORMATION FOR SEQ ID NO:60:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 171 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:60:	
AGCCATTTAC CACCCATACT AAATTCTAGT TCAAACTCCA ACTTCTTCCA TAAAACATCT AACCACTGAC ACCAGTTGGC AATAGCTTCT TCCTTCTTTA ACCTCTTAGA GTATTTATGG TCAATGCCAC ACATTTCTGC AACTGAATAA AGTTGGTAAG GCAAGAGGAG C	60 120 171
(2) INFORMATION FOR SEQ ID NO:61:	

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 134 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:61:	
CGGGTGATGC CTCCTCAGGC TTTGGTGTGT CCACTCNACT CACTGGCCTC TTCTCCAGCA ACTGGTGAAN ATGTCCTCAN GAAAANCNCC ACACGCNGCT CAGGGTGGGG TGGGAANCAT CANAATCATC NGGC	6 12 1 3
(2) INFORMATION FOR SEQ ID NO:62:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 145 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:62:	
AGAGGGTACA TATGCAACAG TATATAAAGG AAGAAGTGCA CTGAGAGGAA CTTCATCAAG GCCATTTAAT CAATAAGTGA TAGAGTCAAG GCTCAACCCA GGTGTGACGG ATTCCAGGTC CCAAGCTCCT TACTGGTACC CTCTT	60 120 145
(2) INFORMATION FOR SEQ ID NO:63:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 297 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:63:	
GCACTGAGA GGAATTCAAA GGGTTTATGC CAAAGAACAA ACCAGTCCTC TGCAGCCTAA CTCATTTGTT TTTGGGCTGC GAAGCCATGT AGAGGGCGAT CAGGCAGTAG ATGGTCCCTC CCACAGTCAG CGCCATGGTG GTCCGGTAAA GCATTTGGTC AGGCAGGCCT CGTTTCAGGT AGACGGGCAC ACATCAGCTT TCTGGAAAAA CTTTTGTAGC TCTGGAGCTT TGTTTTTCCC AGCATAATCA TACACTGTGG AATCGGAGGT CAGTTTAGTT GGTAAGGCAA GAGGAGC	60 120 180 240 297
(2) INFORMATION FOR SEQ ID NO:64:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 300 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:64:	

GCACTGAGAG GAACTTCCAA TACTATGTTG AATAGGAGTG GTGAGAGAGG GCATCCTTGT

CTTGTGCCGG TTTTCAAAGG GAATGCTTCC AGCTTTTGCC CATTCAGTAT AATATTAAAG AATGTTTTAC CATTTTCTGT CTTGCCTGTT TTTCTGTGTT TTTGTTGGTC TCTTCATTCT CCATTTTTAG GCCTTTACAT GTTAGGAATA TATTTCTTTT AATGATACTT CACCTTTGGT ATCTTTTGTG AGACTCTACT CATAGTGTGA TAAGCACTGG GTTGGTAAGG CAAGAGGAGC	120 180 240 300
(2) INFORMATION FOR SEQ ID NO:65:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 203 base pairs(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:65:	
GCTCCTCTTG CCTTACCAAC TCACCCAGTA TGTCAGCAAT TTTATCRGCT TTACCTACGA	60
AACAGCCTGT ATCCAAACAC TTAACACACT CACCTGAAAA GTTCAGGCAA CAATCGCCTT	120
CTCATGGGTC TCTCTGCTCC AGTTCTGAAC CTTTCTCTTT TCCTAGAACA TGCATTTARG TCGATAGAAG TTCCTCTCAG TGC	180
· · · · · · · · · · · · · · · · · · ·	203
(2) INFORMATION FOR SEQ ID NO:66:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 344 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:66:	
TACGGGGACC CCTCCATTCA CAAAGGGACA CTCCATTCATCATCATCATCATCATCATCATCATCATCAT	
TACGGGGACC CCTGCATTGA GAAAGCGAGA CTCACTCTGA AGCTGAAATG CTGTTGCCCT TGCAGTGCTG GTAGCAGGAG TTCTGTGCTT TGTGGGCTAA GGCTCCTGGA TGACCCCTGA	60
CATGGAGAG GCAGAGTTGT GTGCCCCTTC TCATGGCCTC GTCAAGGCAT CATGGACTGC	120
CACACAAAA ATGCCGTTTT TATTAACGAC ATGAAATTGA AGGAGAGAAC ACAATTCACT	180
GATGTGGCTC GTAACCATGG ATATGGTCAC ATACAGAGGT GTGATTATGT AAAGGTTAAT	240 300
TCCACCCACC TCATGTGGAA ACTAGCCTCA ATGCAGGGGT CCCA	344
(2) INFORMATION FOR SEQ ID NO:67:	311
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 157 base pairs (B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(xi) SPONENCE DESCRIPTION, GRO TO TO TO	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:67:	
GCACTGAGAG GAACTTCGTA GGGAGGTTGA ACTGGCTGCT GAGGAGGGGG AACAACAGGG	60
TAACCAGACT GATAGCCATT GGATGGATAA TATGGTGGTT GAGGAGGGAC ACTACTTATA	120
GCAGAGGGTT GTGTATAGCC TGAGGAGGCA TCACCCG	157

(2) INFORMATION FOR SEQ ID NO:68:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 137 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:68:	
GCACTGAGAG GAACTTCTAG AAAGTGAAAG TCTAGACATA AAATAAAATA	60 120 137
(2) INFORMATION FOR SEQ ID NO:69:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 137 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:69:	
CGGGTGATGC CTCCTCAGGC TGTATTTTGA AGACTATCGA CTGGACTTCT TATCAACTGA AGAATCCGTT AAAAATACCA GTTGTATTAT TTCTACCTGT CAAAATCCAT TTCAAATGTT GAAGTTCCTC TCAGTGC	60 120 137
(2) INFORMATION FOR SEQ ID NO:70:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 220 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:70:	
AGCATGTTGA GCCCAGACAC GCAATCTGAA TGAGTGTGCA CCTCAAGTAA ATGTCTACAC GCTGCCTGGT CTGACATGGC ACACCATCNC GTGGAGGGCA CASCTCTGCT CNGCCTACWA CCAAGGTMYA SGGACMASGG TGGGAYTYCA YCACWCATCT	60 120 180 220
(2) INFORMATION FOR SEQ ID NO:71:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 353 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single	

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:71:

CCTTACCCTC	mcma maca am	~~~				
CGITAGGGIC	TCTATCCACT	GCTAAACCAT	ACACCTGGGT	AAACAGGGAC	CATTTAACAT	
TCCCANCTAA	ATATCCCA AC	TCACMMONGA	~~~~	CIIGOOAC	CATTIAACAT	60
- COC. LICITA	ATAIGCCAAG	IGACTICACA	TGTTTATCTT	AAAGATGTCC	AAAACGCAAC	120
TGATTTTCTC	CCCTAAACCT	GTGATGGTGG	CATICATIONALA	CCEC CEC	CTACAGCAAG	120
mm3 3 cm =		GIGHIGGIGG	GAIGAIIAAN	CCTGAGTGGT	CTACAGCAAG	180
TTAAGTGCAA	GGTGCTAAAT	GAANGTGACC	TGAGATACAG	CATCTACAAC	GCAGTACCTC	
TCAACNCACC	CCNACEMERG		- GIIGIIIICAG	CATCIACAAG	GCAGTACCTC	240
I CAACIVCAGG	GCAACTTTGC	TTCTCANAGG	GCATTTAGCA	GTGTCTGAAG	TAATTTCTGT	200
ATTACAACTC	Accecece	CCCTCAATA	~======================================	-101010140	TARTITUIGI	300
	ACGGGGGGG	GGGTGAATAT	CTANTGGANA	GNAGACCCTA	ACG	353

(2) INFORMATION FOR SEQ ID NO:72:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 343 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:72:

GCACTGAGAG	GAACTTCCAA	TACYATKATC	AGAGTGAACA	PCCAPCCVAC	AGAACAGGAG	
AAAATGTTYG	СУУТСТСТСС	ATCTCA CAAA	AGGGTANGA	NGCARCCIAC	AGAACAGGAG	60
77777770	ZMATCICICC	AICIGACAAA	AGGCTAATAT	CCAGAWTCTA	AWAGGAACTT	120
AAACAAATTT.	ATGAGAAAAG	AACARACAAC	CTCAWCAAAA	AGTGGGTGAA	GGAWATGCTS	180
AAARGAAGAC	ATYTATTCAG	CCAGTAAACA	ΥΑΤGΑΔΑΔΑ	ACCCTCATCA	TCACTGAWCA	
TTAGAGAAAT	GCAAATCAAA	ACCACAATCA	Cymacarman	AUGCICAISA	AGAAYGGTGA	240
ת כא ביייים אים אים	CECTALICITY.	ACCACAAIGA	GATACCATCT	YAYRCCAGTT	AGAAYGGTGA	300
TCATTAAAAR	STCAGGAAAC	AACAGATGCT	GGACAAGGTG	TCA		343

(2) INFORMATION FOR SEQ ID NO:73:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 321 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:73:

GCACTGAGAG	GAACTTCAGA	GAGAGAGAGA	CACEECCAC			•
36336555	C.E.C.I.CAGA	GAGAGAGAGA	GAGTTCCACC	CTGTACTTGG	GGAGAGAAAC	60
AGAAGGTGAG	AAAGTCTTTG	GTTCTGAAGC	AGCTTCTAAG	እጥርጥጥጥጥር እጥ	TTGCTTCATT	
TCAAACTTCC	CATCOMOGOA	11000000		AICITICAL	TIGCTICATT	120
z chandiicc	CAIGCIGCCA	AAGTGCCATC	CTTTGGGGTA	CTGTTTTCTG	AGCTCCAGTG	180
ATAACTCATT	TATACAAGGG	AGATACCCAG	11111111111111111111111111111111111111	7007778000	AAAAAGGTGG	
CTTC A CTTC A			AVMAMANG I G	AGCAAATCTT	AAAAAGGTGG	240
CIIGAGIICA	GCCTTAAATA	CCATCTTGAA	ATGACACAGA	GAAAGAANGA	TGTTGGGTGG	200
GAGTGGATAG	AGACCCTAAC	C		HOME DESIGNATION	1011000100	300
	ACACCCIAAC	G				321

(2) INFORMATION FOR SEQ ID NO:74:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 321 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:74:

TCAAAGTTCC ATAACTCATT CTTGAGTTCA	CATGCTGCCA TATACAAGGG	AAGTGCCATC AGATACCCAG CCATCTTGAA	AGCTTCTAAG CTTTGGGGTA	ATCTTTTCAT CTGTTTTCTG	GGAGAGAAAC TTGCTTCATT AGCTCCAGTG AAAAAGGTGG TGTTGGGTGG	60 120 180 240 300 321
(0)	_					

(2) INFORMATION FOR SEQ ID NO:75:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 317 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:75:

31 <i>7</i>	AGTCAGATAA TTGTTTTGAG	CCTTAGCTTC GATTAGAAAA AATTAAACAA	CTCATATGCA	AGGTGTTTAC AAATGAGAAT	CAGCTACACA GAAAAGTACT	TGAAGTCTGG ACCTTAAGCA CATCGCTGAA TATTCATTTT CCAGAAATGG	60 120 180 240 300
-------------	--------------------------	--	------------	--------------------------	--------------------------	--	--------------------------------

- (2) INFORMATION FOR SEQ ID NO:76:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 244 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7 ϵ :

TTGCCATGGT	GGTTTGCTGC	ACCCATCAGT	CATGCGCAGG	TTTGTTGCAT	TTATTTTAT AGGTATACAC TTCTCCTAAT GTTCCTCTCA	60 120 180 240 244
------------	------------	------------	------------	------------	---	--------------------------------

- (2) INFORMATION FOR SEQ ID NO:77:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 254 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:77:

CGTTAGGGTC TCTATCCACT GAAATCTGAA GCACAGGAGG AAGAGAAGCA GTYCTAGTGA

120

GATGGCAAGT TCWTTTACCA CACTCTTTAA CATTTYGTTT AGTTTTAACC TTTATTTATG GATAATAAAG GTTAATATTA ATAATGATTT ATTTTAAGGC ATTCCCRAAT TTGCATAATT CTCCTTTTGG AGATACCCTT TTATCTCCAG TGCAAGTCTG GATCAAAGTG ATASAMAGAA GTTCCTCTCA GTGC	12 18 24 25
(2) INFORMATION FOR SEQ ID NO:78:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 355 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:78:	
TTCGATACAG GCAAACATGA ACTGCAGGAG GGTGGTGACG ATCATGATGT TGCCGATGGT CCGGATGGNC ACGAAGACGC ACTGGANCAC GTGCTTACGT CCTTTTGCTC TGTTGATGGC CCTGAGGGGA CGCAGGACCC TTATGACCCT CAGAATCTTC ACAACGGGAG ATGGCACTGG ATTGANTCCC ANTGACACCA GAGACACCCC AACCACCAGN ATATCANTAT ATTGATGTAG TTCCTGTAGA NGGCCCCCTT GTGGAGGAAA GCTCCATNAG TTGGTCATCT TCAACAGGAT CTCAACAGTT TCCGATGGCT GTGATGGCCA TAGTCATANT TAACCNTGTN TCGAA	60 120 180 240 300 355
(2) INFORMATION FOR SEQ ID NO:79:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 406 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:79:	
TAAGAGGGTA CCAGCAGAAA GGTTAGTATC ATCAGATAGC ATCTTATACG AGTAATATGC CTGCTATTTG AAGTGTAATT GAGAAGGAAA ATTTTAGCGT GCTCACTGAC CTGCCTGTAG CCCCAGTGAC AGCTAGGATG TGCATTCTCC AGCCATCAAG AGACTGAGTC AAGTTGTTCC TTAAGTCAGA ACAGCAGACT CAGCTCTGAC ATTCTGATTC GAATGACACT GTTCAGGAAT CGGAATCCTG TCGATTAGAC TGGACAGCTT GTGGCAAGTG AATTTGCCTG TAACAAGCCA GATTTTTAAA AATTTATATT GTAAATAATG TGTGTGTG	60 120 180 240 300 360 406
(2) INFORMATION FOR SEQ ID NO:80:	400
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 327 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:80:	

TTTTTTTTT TTTACTCGGC TCAGTCTAAT CCTTTTTGTA GTCACTCATA GGCCAGACTT

AGGGCTAGGA TGATGATTAA TAAGAGGGAT GACATAACTA TTAGTGGCAG GTTAGTTGTT

•	
TGTAGGGCTC ATGGTAGGGG TAAAAGGAGG GCAATTTCTA GATCAAATAA TAAGAAGGTA	180
TORROBALLI LA HALLACIA A A COCOLOGO CONTRA LA	
THE PROCESS OF THE CONTRACT OF THE PROCESS OF THE P	300
ATAATTATTA GTAGTAAGCC TAGGAGA	327
TGTAGGGCTC ATGGTAGGGG TAMAAGGAGG GCAATTTCTA GATCAAATAA TAAGAAGGTA ATAACTACTA AGAAGAATTT TATGGAGAAA GGGACGGGG CGGGGGATAT AGGGTCGAAG CCGCACTCCT AAGGGGTGGA TITTTCTATAT TAGCCGTTGA GTTGTGGTAG TCAAAATGTA ATAATTATTA GTAGTAAGCC TAGGAGA (2) INFORMATION FOR SEQ ID NO:81: (1) SEQUENCE CHARACTERISTICS:	52,
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 318 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEO ID NO.81.	
\cdot	
ATTGCATTCA TAATTTATTA TOO MOONTO TO TOTAL TO ATTTGCT TO TOTAL TAATTTATTA TOO TO TOTAL TOTAL TO TOTAL TOTAL TO TOTAL TOTAL TO TOTAL TO TOTA	60
TOTAL TARTER TOTAL TRACES OF THE CONTROL OF THE CON	
CAATAAATAT TAACACAGTC TACATTTATT TOOTGAATAT	180
AGCACATTAA GTAACAAAGG CAAGTGAGAA GAATCAAAAG CAGTACTGAA	240
ATGATTGCGC ATAGACTA	
	318
(2) INFORMATION FOR SEQ ID NO:82:	
(i) SEOHENCE CHARACTERISTICS	
(A) LENGTH: 338 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:82:	
TCTTCAACCT CTACTCCCAC TAATAGCTTT TTGATGACTT CTACGAACGAACGA	
ACM ACTION OF CHARLES AND ACTION OF CHARLES	
TACACTOL TACTOR ACTOR ACTOR ACTOR ACTOR ACTOR ACTOR	120
TIACCACAA CACAA CACAAA CACAAAA CACAAA CACAAAA CACAAAAA CACAAAAA CACAAAAAA	180
ACACGAGAAA ACACCCTCAT GTTCATACAC CTATGCGGGA TOTAL	240 300
ATCCCTCAAC CCCGACATCA TTACCGGGTT TTCCTCTT	338
(2) INFORMATION FOR SEQ ID NO:83:	330
(i) SEQUENCE CHARACTERISTICS.	
(A) LENGTH: 111 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(xi) SECUENCE DECORPORA	
AGCCATTTAC CACCCATCCA CAAAAAAAAA AAAAAAAAA	60
ATAGACTTTG AACAAAAGG AACATTTGCT GGCCTGAGGA GGCATCACCC G	60 111

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 224 base pairs
- (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:84:

TCGGGTGATG	CCTCCTCAGG	CCAAGAAGAT	AAAGCTTCAG	ACCCCTAACA	CATTTCCAAA	60
AAGGAAGAAA	GGAGAAAAA	GGGCATCATC	CCCGTTCCGA	ACCOUNTAGE	AGGAGGAAAT	- •
TGAGGTGGAT	TCACGAGTTG	CGGACAACTC	CTTTCATCCC	ADGOLAGGG	CAGCCGGAGA	120
CTGGGGAGAG	CCACCCAATC	ACCEMENTO A	CTITGATGCC	AAGCGAGGTG	CAGCCGGAGA	180
CIGGGGAGAG	CGAGCCAAIC	AGGTTTTGAA	GTTCCTCTCA	GTGC		224

(2) INFORMATION FOR SEQ ID NO:85:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 348 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:85:

GCACTGAGAG	GAACTTCGTT	GGAAACGGGT	TTTTTTCATG	TAAGGCTAGA	CAGAAGAATT	60
CTCAGTAACT	тсстатата	CTCTCTATTC	A A CTC A CA CA	CEMCALCOL	CCTTTACACA	
CACCACACOOM	CERRORE	GIGIGIATIC	AACICACASA	GTTGAACGAT	CCTTTACACA	120
GAGCAGACTT	GTAACACTCT	TWTTGTGGAA	TTTGCAAGTG	GAGATTTCAG	SCGCTTTGAA	180
GTSAAAGGTA	GAAAAGGAAA	TATCTTCCTA	TAAAAACTAG	ACAGAATGAT	TCTCAGAAAC	240
TCCTTTGTGA	TGTGTGCGTT	CAACTCACAG	AGTTTAACCT	TTCWTTTCAT	AGAAGCAGTT	300
AGGAAACACT	ריינייייינייי א	AGTCTGCAAG	TCC3 T3 C3 C3	2227112		
	CIGILIGIAA	AGICIGCAAG	IGGATAGAGA	CCCTAACG		348

(2) INFORMATION FOR SEQ ID NO:86:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 293 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:86:

GCACTGAGAG	GAACTTCYTT	GTGWTGTKTG	YATTCAACTC	ACAGAGTTGA	ASSWTSMTTT	60
ACABAGWKCA	GGCTTKCAAA	CACTCTTTTT	GTMGAATYTG	CAAGWGGAKA	TTTSRRCCRC	120
TTTGWGGYCW	WYSKTMGAAW	MGGRWATATC	ΤΤΟΜΥΑΤΜΡΑ	AMCTAGACAG	AAKSATTCTC	180
AKAAWSTYYY	YTGTGAWGWS	TGCRTTCAAC	TCACAGAGKT	KAACMWTVCT	KYTSATRGAG	
CAGTTWKGAA	ACTCTMTTTC	ТТТССАТТСТ	GCAAGTGGAT	VCVCVCCOMX	NIISAIRGAG	240
			OCUMOTOGNI	ACACACCTA	ACG	293

(2) INFORMATION FOR SEQ ID NO:87:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: singl (D) TOPOLOGY: linear	.e			
(xi) SEQUENCE DESCRIPTION: SE	Q ID NO:87:			
CTCCTAGGCT				. 10
(2) INFORMATION FOR SEQ ID NO:88:				10
(i) SEQUENCE CHARACTERISTICS (A) LENGTH: 10 base pair (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	rs	÷.		
(xi) SEQUENCE DESCRIPTION: SEQ	Q ID NO:88:			
AGTAGTTGCC				10
(2) INFORMATION FOR SEQ ID NO:89:		٠,		
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 11 base pair (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	:s			
(xi) SEQUENCE DESCRIPTION: SEQ	ID NO:89:			
TTCCGTTATG C				11
(2) INFORMATION FOR SEQ ID NO:90:	•			
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	s			
(xi) SEQUENCE DESCRIPTION: SEQ	ID NO:90:			
TGGTAAAGGG				10
(2) INFORMATION FOR SEQ ID NO:91:		·		
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 			•	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:91:	
TCGGTCATAG	10
(2) INFORMATION FOR SEQ ID NO:92:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	·
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:92:	
TACAACGAGG	10
(2) INFORMATION FOR SEQ ID NO:93:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:93:	
TGGATTGGTC	10
(2) INFORMATION FOR SEQ ID NO:94:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:94:	
CTTTCTACCC	10
(2) INFORMATION FOR SEQ ID NO:95:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:95:	

TTTTGGCTCC	· · · · · · · · · · · · · · · · · · ·	10
(2) INFORMATION FOR SEQ ID NO:96:		
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 		
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:96:		
GGAACCAATC		10
(2) INFORMATION FOR SEQ ID NO:97:		
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 		-
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:97:		
TCGATACAGG		10
(2) INFORMATION FOR SEQ ID NO:98:		
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 		
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:98:		
GGTACTAAGG		10
(2) INFORMATION FOR SEQ ID NO:99:		
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 		
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:99:		
GTCTATGCG		10

(2)	INFORMATION FOR SEQ ID NO:100:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:100:	
CTAI	rccatgg (10
(2)	INFORMATION FOR SEQ ID NO:101:	
	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:101:	
TCTO	STCCACA	10
(2)	INFORMATION FOR SEQ ID NO:102:	
	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:102:	
AAGA	AGGGTAC	10
(2)	INFORMATION FOR SEQ ID NO:103:	
	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:103:	
CTTC	PAACCTC	10
(2)	INFORMATION FOR SEQ ID NO:104:	
	(i) SEQUENCE CHARACTERISTICS:	

	(A) LENGTH: 20 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:104:	
GC:	CCTCTTG CCTTACCAAC	20
. (2)	INFORMATION FOR ONE TO VO	20
(2)	INFORMATION FOR SEQ ID NO:105:	
	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:105:	
GTA	AAGTCGAG CAGTGTGATG	20
(2)	INFORMATION FOR SEQ ID NO:106:	
,,		
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 20 base pairs(B) TYPE: nucleic acid	•
	<pre>(C) STRANDEDNESS: single (D) TOPOLOGY: linear</pre>	
	(b) Topologi: Tillear	•
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:106:	·
GTA	AGTCGAG CAGTCTGATG	20
(2)	INFORMATION FOR SEQ ID NO:107:	
	(1)	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 20 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
	(b) lopologi: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:107:	·
GAC'	TTAGTGG AAAGAATGTA	20
(2)	INFORMATION FOR SEQ ID NO:108:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 20 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	

(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:108:	
GTAATTCCGC CAACCGTAGT	20
(2) INFORMATION FOR SEQ ID NO:109:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:109:	
ATGGTTGATC GATAGTGGAA	20
(2) INFORMATION FOR SEQ ID NO:110:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:110:	
ACGGGGACCC CTGCATTGAG	20
(2) INFORMATION FOR SEQ ID NO:111:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:111:	
TATTCTAGAC CATTCGCTAC	20
(2) INFORMATION FOR SEQ ID NO:112:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid	

(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:112:	
ACATAACCAC TTTAGCGTTC	20
(2) INFORMATION FOR SEQ ID NO:113:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:113:	
CGGGTGATGC CTCCTCAGGC	20
(2) INFORMATION FOR SEQ ID NO:114:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:114:	
AGCATGTTGA GCCCAGACAC	20
(2) INFORMATION FOR SEQ ID NO:115:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:115:	
GACACCTTGT CCAGCATCTG	20
(2) INFORMATION FOR SEQ ID NO:116:	20
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:116:	
TACGCTGCAA CACTGTGGAG	20

(2) INFORMATION FOR SEQ ID NO:117:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:117:	
CGTTAGGGTC TCTATCCACT	20
(2) INFORMATION FOR SEQ ID NO:118:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:118:	
AGACTGACTC ATGTCCCCTA	20
(2) INFORMATION FOR SEQ ID NO:119:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:119:	
TCATCGCTCG GTGACTCAAG	20
(2) INFORMATION FOR SEQ ID NO:120:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:120:	
CAAGATTCCA TAGGCTGACC	20
(2) INFORMATION FOR SEQ ID NO:121:	

 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:121:	
ACGTACTGGT CTTGAAGGTC	2
(2) INFORMATION FOR SEQ ID NO:122:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:122:	
GACGCTTGGC CACTTGACAC	20
(2) INFORMATION FOR SEQ ID NO:123:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:123:	
GTATCGACGT AGTGGTCTCC	20
(2) INFORMATION FOR SEQ ID NO:124:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:124:	
TAGTGACATT ACGACGCTGG	20
(2) INFORMATION FOR SEQ ID NO:125:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 20 base pairs(B) TYPE: nucleic acid	

(C) STRANDEDNESS: single

	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:125:	
CGG	GTGATGC CTCCTCAGGC	20
(2)	INFORMATION FOR SEQ ID NO:126:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:126:	
ATG	GCTATTT TCGGGGGCTG ACA	23
(2)	INFORMATION FOR SEQ ID NO:127:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:127:	
CCG	GTATCTC CTCGTGGGTA TT	22
(2.)	INFORMATION FOR SEQ ID NO:128:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:128:	
CTG	CCTGAGC CACAAATG	18.
(2)	INFORMATION FOR SEQ ID NO:129:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:129:

CCGGAGGAGG AAGCTAGAGG AATA

24

- (2) INFORMATION FOR SEQ ID NO:130:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 14 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:130:

TTTTTTTTTT TTAG

14

- (2) INFORMATION FOR SEQ ID NO:131:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:131:

Ser Ser Gly Gly Arg Thr Phe Asp Asp Phe His Arg Tyr Leu Leu Val 1 5 10 15

- (2) INFORMATION FOR SEQ ID NO:132:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 22 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:132:

Gln Gly Ala Ala Gln Lys Pro Ile Asn Leu Ser Lys Xaa Ile Glu Val 1 5 10 15 Val Gln Gly His Asp Glu

- (2) INFORMATION FOR SEQ ID NO:133:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 23 amino acids
 - (B) TYPE: amino acid

77

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:133:

Ser Pro Gly Val Phe Leu Glu His Leu Gln Glu Ala Tyr Arg Ile Tyr 1 5 10 15

Thr Pro Phe Asp Leu Ser Ala 20

- (2) INFORMATION FOR SEQ ID NO:134:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 9 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:134:

Tyr Leu Leu Val Gly Ile Gln Gly Ala 1 5

- (2) INFORMATION FOR SEQ ID NO:135:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 9 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:135:

Gly Ala Ala Gln Lys Pro Ile Asn Leu 1 5

- (2) INFORMATION FOR SEQ ID NO:136:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 9 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:136:

Asn Leu Ser Lys Xaa Ile Glu Val Val 1

(2) INFORMATION FOR SEQ ID NO:137:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 9 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:137:

Glu Val Val Gln Gly His Asp Glu Ser 1 5

- (2) INFORMATION FOR SEQ ID NO:138:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 9 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:138:

His Leu Gln Glu Ala Tyr Arg Ile Tyr

- (2) INFORMATION FOR SEQ ID NO:139:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 9 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:139:

Asn Leu Ala Phe Val Ala Gln Ala Ala 1 5

- (2) INFORMATION FOR SEQ ID NO:140:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 9 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:140:

Phe Val Ala Gln Ala Ala Pro Asp Ser 1 5

(2) INFORMATION FOR SEQ ID NO:141:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 9388 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:141:

		TTAACCCTCA				60
		GTAGACATAA				120
		TGTTAATCTG				180
		AAGGTTCAAT				240
		TTAAAAGTCA				300
		CCGCAGGGAC				360
		CCTGAGATAT				420
		AGCCCGACAT				480
		GAGGAAGGCC				540
		GCAATAGAAT				600
		ACATCCTTAG				660
		ATGTTTGTAT				720
TAAACTTATT	TATGACACAG	AGACCTTTGT	TCACGTTTTC	CTGCTGACCC	TCTCCCCACT	780
		CATCCCCCTC				840
TACTGAGGGA	ACTCAGAGAC	CAGTGTCCCT	GTAGGTCCTC	CGTGTGCTGA	GCGCCGGTCC	900
CTTGGGCTCA	CTTTTCTTTC	TCTATACTTT	GTCTCTGTGT	CTCTTTCTTT	TCTCAGTCTC	960
		TACCCACAGG				1020
TTACTAGCCT	GTTCGCTGAC	AACAAGACTG	GTGGTGCAGA	AGGTTGGGTC	TTGGTGTTCA	1080
CCGGGTGGCA	GGCATGGGCC	AGGTGGGAGG	GTCTCCAGCG	CCTGGTGCAA	ATCTCCAAGA	1140
AAGTGCAGGA	AACAGCACCA	AGGGTGATTG	TAAATTTTGA	TTTGGCGCGG	CAGGTAGCCA	1200
TTCCAGCGCA	AAAATGCGCA	GGAAAGCTTT	TGCTGTGCTT	GTAGGCAGGT	AGGCCCCAAG	1260
CACTTCTTAT	TGGCTAATGT	GGAGGGAACC	TGCACATCCA	TTGGCTGAAA	TCTCCGTCTA	1320
TTTGAGGCTG	ACTGAGCGCG	TTCCTTTCTT	CTGTGTTGCC	TGGAAACGGA	CTGTCTGCCT	1380
AGTAACATCT	GATCACGTTT	CCCATTGGCC	GCCGTTTCCG	GAAGCCCGCC	CTCCCATTTC	1440
CGGAAGCCTG	GCGCAAGGTT	GGTCTGCAGG	TGGCCTCCAG	GTGCAAAGTG	GGAAGTGTGA	1500
GTCCTCAGTC	TTGGGCTATT	CGGCCACGTG	CCTGCCGGAC	ATGGGACGCT	GGAGGGTCAG	1560
CAGCGTGGAG	TCCTGGCCTT	TTGCGTCCAC	GGGTGGGAAA	TTGGCCATTG	CCACGGCGGG	1620
		CCCGGCCGTT				1680
CGCACTGGCG	CTGATGTAGT	TTCCTGACCT	CTGACCCGTA	TTGTCTCCAG	ATTAAAGGTA	1740
AAAACGGGGC	TTTTTCAGCC	CACTCGGGTA	AAACGCCTTT	TGATTTCTAG	GCAGGTGTTT	1800
		GTGACCCGCA				1860
		AGCACCCCAA				1920
		CTGATAAGGA				1980
TAATTAAACC	AATTTTTAGT	TTTGGTGTTT	GTCCTAATAG	CAACAACTTC	TCAGGCTTTA	2040
					TTTGGAATTG	2100
		TGGTTTTGAT				2160
		CTCTCCCTTT				2220
		AGAGCGCCAG				2280
		ACTTGTGCAA				2340
		CAAGCTATAT				2400
		CTATCACCTT				2460
		ATTTATCCTT				2520
		CCCTCCCCTT				2580
		AATTTTGAGC				2640
		CAAAGTGTGG				2700
					COINCONCAI	2/00

TTGGAGGCC	C CAGCGAGAA	A CGTCACCGG	G AGAAACGTC	A CCGGGCGAG	A GCCGGGCCCG	2760
CIGIGIGCT	C CCCCGGAAG	G ACAGCCAGC'	T TGTAGGGGG	AGTGCCACC	תממממממם ז	2820
TTTCCAGGT	C CCCAAAGGG'	T GACCGTCTT	C CGGAGGACAC	G CGGATCGACT	T ACCATGCTCC	2880
TGCCCACCA	A AATTCCACC	T CTGAGTCCT	C AACTGCTGAC	CCCGGGGTC	GGTAGGTCAG	2940
ATTTGACTT	r ggttctgc:	A GAGGGAAGC	G ACCCTGATGA	A GGGTGTCCCT	CTTTTCACTC	3000
TGCCCATTT	TCTAGGATG	C TAGAGGGTA	AGCCCTGGT	TTCTGTTAGZ	CCCCTCTCTC	3060
TCTCTGTCTC	GGAGGGAAG	I GGCCCTGAC	A GGGGCCATCC	CTTGAGTCAG	TCCACATCCC	3120
AGGATGCTG	GGGACTGAG	r cctggtttc:	GGCAGACTGC	TCTCTCTCTC	ሲርጥርጥጥጥጥጥር	3180
TATCTCTAAT	CTTTCCTTG:	T TCAGGTTTCT	TGGAGAATCI	CTGGGAAAGZ	מממממממ מ	3240
ACTGTTATA	A ACTCTGTGTG	3 AATGGTGAAT	GAATGGGGGA	GGACAAGGG	TTCCCCTTTCT	3300
CCTCCAGTT	GTAGCTCCA(C GGCGAAAGCT	T ACGGAGTTCA	AGTGGGCCCT	CACCTCCCCT	3360
TUCGTGGCGA	A CCTCATAAGO	G CTTAAGGCAG	CATCCGGCAT	AGCTCGATCC	GAGCCGGGGG	3420
TTTATACCGC	CCTGTCAATO	G CTAAGAGGAC	CCCAAGTCCC	CTAAGGGGGA	GCGGCCAGCC	
GGGCATCTGA	A CTGATCCCAI	CACGGGACCC	CCTCCCCTTG	TTTGTCTAAA	ממממהמממ מ	3480
GAAGAAACTO	TCATAACTGT	TTACATGCCC	TAGGGTCAAC	։ ԴՇ ՊԴ ԻՐԵՐԻ Պ	ATGTTTATTG	3540
TTCTGTTCGG	G TGTCTATTGT	CTTGTTTAGT	GGTTGTCAAG	GTTTTGCATC	TCAGGACGTC	3600
GATATTGCCC	AAGACGTCTC	GGTAAGAACT	TCTGCAAGGT	CCTTAGTGCT	GATTTTTTGT	3660
CACAGGAGGT	TAAATTTCTC	ATCAATCATT	TAGGCTGGCC	CCIACACTCC	TGTCTTTTCT	3720
GCCAGAAGCA	AGTCAGGTGT	TGTTACGGGA	ATGAGTGTAA	ACACACICC	CCCTCATTCT	3780
GATTTCTGGC	ACCATGATGO	TTGTATTTAG	ATTGTCATAC	CCCACATCCA	GCCTGATTGG	3840
ACCTCCTCTA	AACTAAACTG	GTGGTGGGTT	CAAAACAGCC	ACCCTCCACA	GGIIGAIIGG	3900
CACCTCTTTG	GTCATTCTGT	AACTTTTCCT	GTGCCCTTAA	ATAGCACACA	CTCCTTGCT	3960
ACCTACCCTC	GTACTGCTTT	ACTTCGTTTA	GATTCTTACT	CTGTTCCTCT	GIGIAGGGAA	4020
TCCCATCTTA	AAAACGATCC	AAGTGGTCCT	TTTCCTCCTC	COTGCCCCCC	DOGGCIACTO	4080
TCTCGTTTTC	CAGTGCGACA	GCAAGTTCAG	CGTCTCCAGG	ACTTCCCTCT	ACCCCACACA	4140
CTTGAACCCT	TAAAAGAAAA	AGCTGGGTTT	GAGCTATTTG	CCTTTCACTC	DECCACACAC	4200
AAAAGGTATT	TAGGGTACAG	ATCTAGAAGA	AGAGAGAGAA	CACCTACATC	AIGGAGACAC	4260
AGGAGATCTC	GGGCTGGCCT	CTAGTCCTCC	TCCCTCAATC	TTANACCTAC	AGECAEGG	4320
CAAGTGGTAT	TTAGCTGTTG	TGGTTTTTCT	GCTCTTTCTG	GTCATGTTCA	AGIGAIGIGG	4380
TCGATACTCC	AGCCCCCCAG	GGAGTGAGTT	TCTCTGTCTG	TGCTGCCTTT	CAMARGRAMG	4440
TTCAAATCTT	ATTAAATTGC	CTTCAAAAA	ΔΑΔΑΔΑΔΑ	GGGAAACACT	GATATCTATG	4500
CTTGTAAGGG	TTGGAGCCCT	CTCCAGTATA	TGCTGCAGAA	TTTTTTCTCTC	COTTTO	4560
AGGATTATGG	AGTCCGCCTT	AAAAAAGGCA	AGCTCTGGAC	ACTCTCCAAA	CTACAAMCCC	4620
CAAAGTTTGG	AGTTGAGTGG	CCCCTTGAAG	GGTCACTGAA	CCTCACAAA	CTTCA ACCTC	4680
TGTGGCGGGT	TGTTACTGAA	ACTCCCGGCC	TCCCTGATCA	GTTTCCCTAC	ATTCAMGCIG	4740
GGCTGAGTTT	GGTCAGGAGC	ACCCCTTCCA	TGGCTCCACT	CATCCACCAC	MONTH ATTORICANT	4800
ACCTCCAAGG	TCCTCCTGAG	CCAGACCGTG	TTTTCGCCTC	CATGCACCAT	TCATAATTTT	4860
CGCCCTGTAC	TGCCTCTCTC	TGAAGAAGAG	GAGAGTCTCC	CTCACCCACT	CGGTTCAGCT	4920
TAAAACCAGC	CTACTCCCTT	AGGGTCATCC	CATGTCTCCT	CCCCTATION	CCCACCGCCT	4980
TCATCACCCA	TTGCCTCTTG	GTTGCAACCG	TGGTGGGAGG	AACTACCCC	CCCTGTAGGC	5040
CTGAGAGAGG	CACAAGTCCC	TCTGGGTGAT	GAGTGCTCCA	CCCCCTTCCT	COMMENTACIO	5100
CCTTCTTTCT	ACTTCTGACT	TGTATAATTG	GAAAACCCAT	AATCCTCCT	GGTTTATGTC	5160
GCCCCAGGCT	TTGACCTCAC	TGATGGAGTC	TGTACTCTCC	AAICCICCCT	TCTCTGAAAA	5220
TGACTGTCAA	CAGCTCCTTT	TGACCCTTTT	CACCTCTGAA	CACACATIGGC	CCACCTGGGA	5280
AGAGGCCAAA	AAGTACAACC	TCACATCAAC	CAATAGGCCC	CACCACCAAA	GTATCCAAAG	5340
AGTGATTAGA	GACCCAATTG	GGACCTAATT	GGGACCGAAA	UMUGAGGAAG	CTAGAGGAAT	5400
CTTTTGACGA	TTTCCACCGG	TATCTCCTCG	TOCOTATECA	CCCLCCAAGT	GGAGGGAGAA	5460
TAAACTTGTC	TAAGGCGACT	GAAGTCGTCC	AGGGGCATCA	GGGAGCTGCT	CAGAAACCTA	. 5520
TAGAGCACCT	CCAGGAGGCT	TATCGGATTT	ACACCCCTTTM	TGAGTCACCA	GGAGTGTTTT	5580
ATAGCCATGC	TCTTAATTTC	GCATTTGTGG	CTCACCCCTTT	CCCACAGA	GCCCCGAAA	5640
TCCAAAAACT	AGAGGGATTT	TGCTGGAATG	AATACCACTC	ACCOMMUNE S	AAAAGGAAAC	5700
AAGGTTTTTG	ACAGTCAAGA	GGTTGAAAAA	TACCAGIC	AGCTTTTAGA	GATAGCCTAA	5760
AGCCACTGAT	AAAGCATCCT	GGAGTATCAG	AGTTTACTO	CAGCTCAGGC	AGCTGAAAA	5820
TCCCCTCCCA	CATGGTGTTT	AAATCCAGCT	ACTITACTGT	TAGATCAGCC	TCATTTGACT	5880
CCTGTTCATG	ACTGTCAGGA	ACTGTTGGAA	ACMCIACTIC	CTGACTCAAA	CTCCACTATT	5940
		A	ACIMCIGAAA	CIGGCCGACC	TGATCTTCAA	6000

AATGTGCCCC	TAGGAAAGGT	GGATGCCACC	GTGTTCACAG	ACAGTAGCAG	CTTCCTCGAG	6060
AAGGGACTAC	GAAAGGCCGG	TGCAGCTGTT	ACCATGGAGA	CAGATGTGTT	GTGGGCTCAG	6120
GCTTTACCAG	CAAACACCTC	AGCACAAAAG	GCTGAATTGA	TCGCCCTCAC	TCAGGCTCTC	6180
${\tt CGATGGGGTA}$	AGGATATTAA	CGTTAACACT	GACAGCAGGT	ACGCCTTTGC	TACTGTGCAT	6240
${\tt GTACGTGGAG}$	CCATCTACCA	GGAGCGTGGG	CTACTCACCT	CAGCAGGTGG	CTGTAATCCA	6300
				GGTAACCAGA		6360
				AACTTGCTGC		6420
				ACAGAAGAAG		6480
				TTCTTCCTGA		6540
				TACAGTCTAC		6600
GGAGGAGCAA	AGCTACCTCA	GCTCCTCCGG	AGCCGTTTTA	AGATCCCCCA	TCTTCAAAGC	6660
CTAACAGATC	AAGCAGCTCT	CCGGTGCACA	ACCTGCGCCC	AGGTAAATGC	CAAAAAAGGT	6720
				CAGGAGAAAA		6780
GACTTTACAG	AAGTAAAACC	ACACCGGGCT	GGGTACAAAT	ACCTTCTAGT	ACTGGTAGAC	6840
ACCTTCTCTG	GATGGACTGA	AGCATTTGCT	ACCAAAAACG	AAACTGTCAA	TATGGTAGTT	6900
AAGTTTTTAC	TCAATGAAAT	CATCCCTCGA	CGTGGGCTGC	CTGTTGCCAT	AGGGTCTGAT	6960
AATGGACCGG	CCTTCGCCTT	GTCTATAGTT	TAGTCAGTCA	GTAAGGCGTT	AAACATTCAA	7020
TGGAAGCTCC	ATTGTGCCTA	TCGACCCCAG	AGCTCTGGGC	AAGTAGAACG	CATGAACTGC	7080
ACCCTAAAAA	ACACTCTTAC	AAAATTAATC	TTAGAAACCG	GTGTAAATTG	TGTAAGTCTC	7140
CTTCCTTTAG	CCCTACTTAG	AGTAAGGTGC	ACCCCTTACT	GGGCTGGGTT	CTTACCTTTT	7200
GAAATCATGT	ATGGGAGGGC	GCTGCCTATC	TTGCCTAAGC	TAAGAGATGC	CCAATTGGCA	7260
AAAATATCAC	AAACTAATTT	ATTACAGTAC	CTACAGTCTC	CCCAACAGGT	ACAAGATATC	7320
ATCCTGCCAC	TTGTTCGAGG	AACCCATCCC	AATCCAATTC	CTGAACAGAC	AGGGCCCTGC	7380
CATTCATTCC	CGCCAGGTGA	CCTGTTGTTT	GTTAAAAAGT	TCCAGAGAGA	AGGACTCCCT	7440
CCTGCTTGGA	AGAGACCTCA	CACCGTCATC	ACGATGCCAA	CGGCTCTGAA	GGTGGATGGC	7500
ATTCCTGCGT	GGATTCATCA	CTCCCGCATC	AAAAAGGCCA	ACGGAGCCCA	ACTAGAAACA	7560
TGGGTCCCCA	GGGCTGGGTC	AGGCCCCTTA	AAACTGCACC	TAAGTTGGGT	GAAGCCATTA	7620
GATTAATTCT	TTTTCTTAAT	TTTGTAAAAC	AATGCATAGC	TTCTGTCAAA	CTTATGTATC	7680
TTAAGACTCA	ATATAACCCC	CTTGTTATAA	CTGAGGAATC	AATGATTTGA	TTCCCCAAAA	7740
ACACAAGTGG	GGAATGTAGT	GTCCAACCTG	GTTTTTACTA	ACCCTGTTTT	TAGACTCTCC	7800
CTTTCCTTTA	ATCACTCAGC	CTTGTTTCCA	CCTGAATTGA	CTCTCCCTTA	GCTAAGAGCG	7860
CCAGATGGAC	TCCATCTTGG	CTCTTTCACT	GGCAGCCGCT	TCCTCAAGGA	CTTAACTTGT	7920
GCAAGCTGAC	TCCCAGCACA	TCCAAGAATG	CAATTAACTG	ATAAGATACT	GTGGCAAGCT	7980
ATATCCGCAG	TTCCCAGGAA	TTCGTCCAAT	TGATTACACC	CAAAAGCCCC	GCGTCTATCA	8040
CCTTGTAATA	ATCTTAAAGC	CCCTGCACCT	GGAACTATTA	ACGTTCCTGT	AACCATTTAT	8100
CCTTTTAACT	TTTTTGCCTA	CTTTATTTCT	GTAAAATTGT	TTTAACTAGA	CCCCCCTCT	8160
CCTTTCTAAA	CCAAAGTATA	AAAGCAAATC	TAGCCCCTTC	TTCAGGCCGA	GAGAATTTCG	8220
AGCGTTAGCC	GTCTCTTGGC	CACCAGCTAA	ATAAACGGAT	TCTTCATGTG	TCTCAAAGTG	8280
				ATTTTCCCCA		8340
				AGTTAAGGAG		8400
				ATTTATTTAT		8460
				TGCGATCTTG		8520
				CTCGAGAGTA		8580
				GTAAAGATGG		8640
				CTGCCCGCCT		8700
				ATTTATATGT		8760
CATTCCTCTA	ACCAAAATGT	AGTGTTTCCT	TCCATCTTGA	ATATAGGCTG	TAGACCCCGT	8820
				TATGTCATCT		8880
				TCCAAATAAC		8940
				TGGCTGTTAC		9000
				ATCATTTTAT		9060
				GGTAGCCCAC		9120
				GGTCTGGGAC		9180
				AGAGGGGGTG		9240
GAGTGCCTAT	ATGTAGTGTT	TCCATATGGC	CTTGACTTCC	TTACAGCCTG	GCAGCCTCAG	9300

GGTAGTCAGA ATTCTTAGGA GGCACAGGGC TCCAGGGCAG ATGCTGAGGG GTCTTTTATG AGGTAGCACA GCAAATCCAC CCAGGATC	9360
AGGIAGCACA GCAAATCCAC CCAGGATC	9388
(2) INFORMATION FOR SEQ ID NO:142:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 419 base pairs	
(B) TYPE: nucleic acid	*
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:142:	
TGTAAGTCGA GCAGTGTGAT GGAAGGAATG GTCTTTGGAG AGAGCATATC CATCTCCTCC	60
TCACTGCCTC CTAATGTCAT GAGGTACACT GAGCAGAATT AAACAGGGTA GTCTTAACCA	120
CACTATTTT AGCTACCTTG TCAAGCTAAT GGTTAAAGAA CACTTTTGGT TTACACTTGT TGGGTCATAG AAGTTGCTTT CCGCCATCAC GCAATAAGTT TGTGTGTAAT CAGAAGGAGT TACCTTATGG TTTCACTGTC ATTCCCTTATAGA TACACTGTC ATTCCCTTATAGA TACACTAGA	180
TACCTTATGG TTTCAGTGTC ATTCTTTAGT TAACTTGGGA GCTGTGTAAT TTAGGCTTTG	240
TOTAL TITLE CACTICIGIT CICCACTTAT GAACTCATTC TOTAL TOTAL TOTAL	300
TGCGCATGTG CTTCCGGCAG TTAACATAAG CAAATACCCA ACATCACACT GCTCGACTT	360
	419
(2) INFORMATION FOR SEQ ID NO:143:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 402 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(11)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:143:	
TGTAAGTCGA GCAGTGTGAT GTCCACTGCA GTGTGTTGCT GGGAACAGTT AATGAGCAAA	
TOTAL A TOUCHAUTAC ATTGACCGGG ATTTGTTGAA COTTGTTGAA COTTGTTGAA	60 120
TOTAL ACTAGICIAL GCACATGGCT CTGGTCAACT ACCCGGTCTC	180
TAITE CO CONTROLL IN TAITE TO TO TAIN A TAITE TO THE TAIN A TAITE TO THE TAIL TAITE TO THE TAIL TAITE TO THE TAIL TAIL TAIL TAIL TAIL TAIL TAIL TAIL	240
OUTTOTIAA IGCIIIGIIC TAGACTTTCC CTTTTCCCCTT TTCCCCTT	300
TCTTTGCATA GATTGTAAAT TCAAATGCCC TCAGGGTGCA GGCAGTTCAT GTAAGGGAGG GAGGCTAGCC AGTGAGATCT GCATCACACT GCTCGACTTA CA	360
AGIGAGAICI GCAICACACT GCTCGACTTA CA	402
(2) INFORMATION FOR SEQ ID NO:144:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 224 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(X1) SEQUENCE DESCRIPTION	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:144:	
TCGGGTGATG CCTCCTCAGG CCAAGAAGAT AAAGCTTCAG ACCCCTAACA CATTTCCAAA	60
	60 120
TGAGGTGGAT TCACGAGTTG CGGACAACTC CTTTGATGCC AAGCGAGGTG CAGCCGGAGA	180

CTGGGGAGAG CGAGCCAATC AGGTTTTGAA GTTCCTCTCA GTGC	224
(2) INFORMATION FOR SEQ ID NO:145:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 111 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:145:	
AGCCATTTAC CACCCATCCA CAAAAAAAAA AAAAAAAAG AAAAATATCA AGGAATAAAA ATAGACTTTG AACAAAAAGG AACATTTGCT GGCCTGAGGA GGCATCACCC G	60 111
(2) INFORMATION FOR SEQ ID NO:146:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 585 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:146:	
TAGCATGTTG AGCCCAGACA CTTGTAGAGA GAGGAGGACA GTTAGAAGAA GAAGAAAAGT	60
TTTTAAATGC TGAAAGTTAC TATAAGAAAG CTTTGGCTTT GGATGAGACT TTTAAAGATG	120
CAGAGGATGC TTTGCAGAAA CTTCATAAAT ATATGCAGGT GATTCCTTAT TTCCTCCTAG	180
AAATTTAGTG ATATTTGAAA TAATGCCCAA ACTTAATTTT CTCCTGAGGA AAACTATTCT	240
ACATTACTTA AGTAAGGCAT TATGAAAAGT TTCTTTTTAG GTATAGTTTT TCCTAATTGG	300
GTTTGACATT GCTTCATAGT GCCTCTGTTT TTGTCCATAA TCGAAAGTAA AGATAGCTGT	360
GAGAAAACTA TTACCTAAAT TTGGTATGTT GTTTTGAGAA ATGTCCTTAT AGGGAGCTCA	420
CCTGGTGGTT TTTAAATTAT TGTTGCTACT ATAATTGAGC TAATTATAAA AACCTTTTTG	480
AGACATATTT TAAATTGTCT TTTCCTGTAA TACTGATGAT GATGTTTTCT CATGCATTTT	540
CTTCTGAATT GGGACCATTG CTGCTGTGTC TGGGCTCACA TGCTA	585
(2) INFORMATION FOR SEQ ID NO:147:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 579 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:147:	
TAGCATGTTG AGCCCAGACA CTGGGCAGCG GGGGTGGCCA CGGCAGCTCC TGCCGAGCCC	60
AAGCGTGTTT GTCTGTGAAG GACCCTGACG TCACCTGCCA GGCTAGGGAG GGGTCAATGT	120
GGAGTGAATG TTCACCGACT TTCGCAGGAG TGTGCAGAAG CCAGGTGCAA CTTGGTTTGC	180
TTGTGTTCAT CACCCCTCAA GATATGCACA CTGCTTTCCA AATAAAGCAT CAACTGTCAT	240
CTCCAGATGG GGAAGACTTT TTCTCCAACC AGCAGGCAGG TCCCCATCCA CTCAGACACC	300
AGCACGTCCA CCTTCTCGGG CAGCACCACG TCCTCCACCT TCTGCTGGTA CACGGTGATG	360

ATGTCAGCAA AGCCGTTCTG CANGACCAGC TGCCCCGTGT GCTGTGCCAT CTCACTGGCC	
	420
TOTOTOTAGA NGACITTATO COM MORES	480
CTGTGGTATT AATTGTTCGT GTCTGGGCTC AACATGCTA	540
(2) INFORMATION FOR SEQ ID NO:148:	579
TON BLO ID NO:148:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 249 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:148:	
TGACACCTTG TCCAGCATCT GCAAGCCAGG AAGAGAGTCC TCACCAAGAT CCCCACCCCG	60
THE TOTAL CALCULAGE OF CALCULAGE OF THE	120
	180
CCCATAAGAG TTACATACTC ATTAATCTCC GTCTCTATCC CCAGGTCTCA GATGCTGGAC AAGGTGTCA	240
	249
(2) INFORMATION FOR SEQ ID NO:149:	
(i) SECURITY CONTRACTOR	
(i) SEQUENCE CHARACTERISTICS:	t
(A) LENGTH: 255 base pairs (B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(2) Iolobodi. Iillear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:149:	
TGACACCTTG TCCAGCATCT GCTATTTTGT GACTTTTTAA TAATAGCCAT TCTGACTGGT	
	60
TO THE TOTAL TO ALL ALL ALL ALL ALL ALL ALL ALL ALL AL	120
THE TARE TAREST AND A PROPERTY OF THE PROPERTY	180
CTGGACAAGG TGTCA	240
(2) TITODUS	255
(2) INFORMATION FOR SEQ ID NO:150:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 318 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ni) anama	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:150:	
TTACGCTGCA ACACTGTGGA GGCCAAGCTG GGATCACTTC TTCATTCTAA CTGGAGAGGA	
	60
TO THE TOUCH AND GLACICAL ALL ALL AND ALL ALL ALL ALL ALL ALL ALL ALL ALL AL	120
	180
TTCTTGGTCT TCCTGCACTT CCCTGTTCTG TTAGAGACT CCCATCTTTG AAGCACGGCC TTCTTGGTCT TCCTGCACTT CCCTGTTCTC TTAGAGACCT GGTTATAGAC AAGGCTTCTC	240
	300

CACAGTGTTG CAGCGTAA	318
(2) INFORMATION FOR SEQ ID NO:151:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 323 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:151:	
TNACGCNGCN ACNNTGTAGA GANGGNAAGG CNTTCCCCAC ATTNCCCCTT CATNANAGAA TTATTCNACC AAGNNTGACC NATGCCNTTT ATGACTTACA TGCNNACTNC NTAATCTGTN TCNNGCCTTA AAAGCNNNTC CACTACATGC NTCANCACTG TNTGTGTNAC NTCATNAACT GTCNGNAATA GGGGCNCATA ACTACAGAAA TGCANTTCAT ACTGCTTCCA NTGCCATCNG CGTGTGGCCT TNCCTACTCT TCTTNTATTC CAAGTAGCAT CTCTGGANTG CTTCCCCACT CTCCACATTG TTGCAGCNAT AAT	60 120 180 240 300 323
(2) INFORMATION FOR SEQ ID NO:152:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 311 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:152:	
TCAAGATTCC ATAGGCTGAC CAGTCCAAGG AGAGTTGAAA TCATGAAGGA GAGTCTATCT GGAGAGAGCT GTAGTTTGA GGGTTGCAAA GACTTAGGAT GGAGTTGGTG GGTGTGTA GTCTCTAAGG TTGATTTTGT TCATAAATTT CATGCCCTGA ATGCCTTGCT TGCCTCACCC TGGTCCAAGC CTTAGTGAAC ACCTAAAAGT CTCTGTCTTC TTGCTCTCCA AACTTCTCCT GAGGATTCC TCAGATTGTC TACATTCAGA TCGAAGCCAG TTGGCAAACA AGATGCAGTC CAGAGGGTCA G	60 120 180 240 300 311
(2) INFORMATION FOR SEQ ID NO:153:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 332 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:153:	
CAAGATTCCA TAGGCTGACC AGGAGGCTAT TCAAGATCTC TGGCAGTTGA GGAAGTCTC TTAAGAAAAT AGTTTAAACA ATTTGTTAAA ATTTTTCTGT CTTACTTCAT TTCTGTAGCA GTTGATATCT GGCTGCCTT TTTATAATGC AGAGTGGGAA CTTTCCCTAC CATGTTTGAT AAATGTTGTC CAGGCTCCAT TGCCAATAAT GTGTTGTCCA AAATGCCTGT TTAGTTTTTA AAGACGGAAC TCCACCCTTT GCTTGGTCTT AAGTATGTAT GGAATGTTAT GATAGGACAT AGTAGTAGCG GTGGTCAGCC TATGGAATCT TG	60 120 180 240 300 332

(2) INFORMATION FOR SEQ ID NO:154:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 345 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:154:

TCAAGATTCC ATAGGCTGAC	CTGGACAGAG	ATCTCCTGGG	TCTGGCCCAG	GACAGCAGGC	60
TCAAGCTCAG TGGAGAAGGT					120
ACATTGCATC TCCTCAGAGA	GGGAGGAGAT	GTANGTCTGG	GCTTCCACAG	GGACCTGGTA	180
TTTTAGGATC AGGGTACCGC	TGGCCTGAGG	CTTGGATCAT	TCANAGCCTG	GGGGTGGAAT	240
GGCTGGCAGC CTGTGGCCCC A	ATTGAAATAG	GCTCTGGGGC	ACTCCCTCTG	TTCCTANTTG	300
AACTTGGGTA AGGAACAGGA	ATGTGGTCAN	CCTATGGAAT	CTTGA		345

(2) INFORMATION FOR SEQ ID NO:155:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 295 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:155:

GACGCTTGGC	CACTTGACAC	ATTAAACAGT	TTTGCATAAT	CACTANCATG	TATTTCTAGT	60
					AAGCATAATC	
						120
					ATCTTTCACA	180
					AATGTATTCC	240
AATATCCTTT	ANGGCCAATA	TATTTNATGT	CCCTTAATTA	AGAGCTACTG	TCCGT	295

(2) INFORMATION FOR SEQ ID NO:156:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 406 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:156:

GACGCTTGGC	CACTTGACAC	TGCAGTGGGA	AAACCAGCAT	GAGCCGCTGC	CCCCAAGGAA	60
CCTCGAAGCC	CAGGCAGAGG	ACCAGCCATC	CCAGCCTGCA	GGTAAAGTGT	GTCACCTGTC	120
AGGTGGGCTT	GGGGTGAGTG	GGTGGGGGAA	GTGTGTGTGC	AAAGGGGGTG	TNAATGTNTA	180
TGCGTGTGAG	CATGAGTGAT	GGCTAGTGTG	ACTGCATGTC	AGGGAGTGTG	AACAAGCGTG	240
CGGGGGTGTG	TGTGCAAGTG	CGTATGCATA	TGAGAATATG	TGTCTGTGGA	TGAGTGCATT	300
				ANTGACTGCG	CAGGATGTGT	360
GAGTGTGCAT	GGAACACTCA	NTGTGTGTGT	CAAGTGGCCN	ANCGTC		406

(2)	INFORMATION	FOR	SEQ	ID	NO:	:15	7 :
-----	-------------	-----	-----	----	-----	-----	-----

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 208 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:157:

TGACGCTTGG	CCACTTGACA	CACTAAAGGG	TGTTACTCAT	CACTTTCTTC	TCTCCTCGGT	60
GGCATGTGAG	TGCATCTATT	CACTTGGCAC	TCATTTGTTT	GGCAGTGACT	GTAANCCANA	120
TCTGATGCAT	ACACCAGCTT	${\tt GTAAATTGAA}$	TAAATGTCTC	TAATACTATG	TGCTCACAAT	180
ANGGTANGGG	TGAGGAGAAG	GGGAGAGA				208

- (2) INFORMATION FOR SEQ ID NO:158:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 547 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:158:

CTTCAACCTC	CTTCAACCTC	CTTCAACCTC	CTGGATTCAA	ACAATCATCC	CACCTCAGAC	60
TCCTTAGTAG	CTGAGACTAC	AGACTCACGC	CACTACATCT	GGCTAAATTT	TTGTAGAGAT	120
AGGGTTTCAT	CATGTTGCCC	TGGCTGGTCT	CAAACTCCTG	ACCTCAAGCA	ATGTGCCCAC	180
CTCAGCCTCC	CAAAGTGCTG	GGATTACAGG	CATAAGCCAC	CATGCCCAGT	CCATNTTTAA	240
TCTTTCCTAC	CACATTCTTA	CCACACTTTC	TTTTATGTTT	AGATACATAA	ATGCTTACCA	300
TTATGATACA	ATTGCCCACA	GTATTAAGAC	AGTAACATGC	TGCACAGGTT	TGTAGCCTAG	360
GAACAGTAGG	CAATACCACA	TAGCTTAGGT	GTGTGGTAGA	CTATACCATC	TAGGTTTGTG	420
			ACAAAACCAT			480
ATGTATCCTT	GTCAGTAAGC	TATGATGTAC	AGGGAACACT	GCCCAAGGAC	ACAGATATTG	540
TACCTGT						547

- (2) INFORMATION FOR SEQ ID NO:159:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 203 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:159:

GCTCCTCTTG	CCTTACCAAC	TCACCCAGTA	TGTCAGCAAT	TTTATCRGCT	TTACCTACGA	60
AACAGCCTGT	ATCCAAACAC	TTAACACACT	CACCTGAAAA	GTTCAGGCAA	CAATCGCCTT	120
CTCATGGGTC	TCTCTGCTCC	AGTTCTGAAC	CTTTCTCTTT	TCCTAGAACA	TGCATTTARG	180
TCGATAGAAG	TTCCTCTCAG	TGC				203

(2) INFORMATION FOR SEQ ID NO:160:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 402 base pairs

(A) LENGTH: 294 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:160:	
TGTAAGTCGA GCAGTGTGAT GGGTGGAACA GGGTTGTAAG CAGTAATTGC AAACTGTATT TAAACAATAA TAATAATATT TAGCATTTAT AGAGCACTTT ATATCTTCAA AGTACTTGCA AACATTAYCT AATTAAATAC CCTCTCTGAT TATAATCTGG ATACAAATGC ACTTAAAACTC AGGACAGGGT CATGAGARAA GTATGCATTT GAAAGTTGGT GCTAGCTATG CTTTAAAAAC CTATACAATG ATGGGRAAGT TAGAGTTCAG ATTCTGTTGG ACTGTTTTTG TGCATTTCAG TTCAGCCTGA TGGCAGAATT AGATCATATC TGCACTCGAT GACTYTGCTT GATAACTTAT CACTGAAATC TGAGTGTTGA TCATCACACT GCTCGACTTA CA (2) INFORMATION FOR SEQ ID NO:161: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 193 base pairs	6 12 18 24 30 36 402
(B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:161:	
AGCATGTTGA GCCCAGACAC TGACCAGGAG AAAAACCAAC CAATAGAAAC ACGCCCAGAC ACTGACCAGG AGAAAAACCA ACCAATAAAA ACAGGCCCGG ACATAAGACA AATAATAAAA TTAGCGGACA AGGACATGAA AACAGCTATT GTAAGAGCG ATATAGTGGT GTGTGTCTGG GCTCAACATG CTA	60 120 180 193
(2) INFORMATION FOR SEQ ID NO:162:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 147 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:162:	
TGTTGAGCCC AGACACTGAC CAGGAGAAAA ACCAACCAAT AAAAACAGGC CCGGACATAA GACAAATAAT AAAATTAGCG GACAAGGACA TGAAAACAGC TATTGTAAGA GCGGATATAG TGGTGTGTGT CTGGGCTCAA CATGCTA	60 120 147
(2) INFORMATION FOR SEQ ID NO:163:	
(i) SEQUENCE CHARACTERISTICS:	

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:163:

TAGCATGTTG	AGCCCAGACA	CAAATCTTTC	CTTAAGCAAT	AAATCATTTC	TGCATATGTT	60
${\tt TTTAAAACCA}$	CAGCTAAGCC	ATGATTATTC	AAAAGGACTA	TTGTATTGGG	TATTTTGATT	120
TGGGTTCTTA	TCTCCCTCAC	ATTATCTTCA	TTTCTATCAT	TGACCTCTTA	TCCCAGAGAC	180
TCTCAAACTT	TTATGTTATA	CAAATCACAT	TCTGTCTCAA	AAAATATCTC	ACCCACTTCT	240
CTTCTGTTTC	TGCGTGTGTA	TGTGTGTGTG	TGTGTGTCTG	GGCTCAACAT	GCTA	294

(2) INFORMATION FOR SEQ ID NO:164:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 412 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:164:

CGGGATTGGC	TTTGAGCTGC	AGATGCTGCC	TGTGACCGCA	CCCGGCGTGG	AACAGAAAGC	60
CACCTGGCTG	CAAGTGCGCC	AGAGCCGCCC	TGACTACGTG	CTGCTGTGGG	GCTGGGGCGT	120
GATGAACTCC	ACCGCCCTGA	AGGAAGCCCA	GGCCACCGGA	TACCCCCGCG	ACAAGATGTA	180
CGGCGTGTGG	TGGGCCGGTG	CGGAGCCCGA	TGTGCGTGAC	GTGGGCGAAG	GCGCCAAGGG	240
CTACAACGCG	CTGGCTCTGA	ACGGCTACGG	CACGCAGTCC	AAGGTGATCC	ANGACATCCT	300
GAAACACGTG	CACGACAAGG	GCCAGGGCAC	GGGGCCCAAA	GACGAAGTGG	GCTCGGTGCT	360
GTACACCCGC	GGCGTGATCA	TCCAGATGCT	GGACAAGGTG	TCAATCACTA	AT	412

(2) INFORMATION FOR SEQ ID NO:165:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 361 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:165:

TTGACACCTT	GTCCAGCATC	TGCATCTGAT	GAGAGCCTCA	GATGGCTACC	ACTAATGGCA	60
GAAGGCAAAG	GAGAACAGGC	ATTGTATGGC	AAGAAAGGAA	GAAAGAGAGA	GGGGAGAAAG	120
GTGCTAGGTT	CTTTTCAACA	ACCAGTTCTT	GATGGAACTG	AGAGTAAGAG	CTCAAGGCCA	180
GGTGTGGTGA	CTCCAACCAG	TAATCCCAAC	ATTTTAGGAG	GCTGAGGCAG	GCAGATGTCT	240
TGACCCCATG	AGTTTGTGAC	CAGCCTGAAC	AACATCATGA	GACTCCATCT	CTACAATAAT	300
TACAAAAATT	AATCAGGCAT	TGTGGTATGC	CCTGTAGTCC	CAGATGCTGG	ACAAGGTGTC	360
A						361

(2) INFORMATION FOR SEQ ID NO:166:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 427 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:166:

TWGACTGACT	CATGTCCCCT	ACACCCAACT	ATCTTCTCCA	GGTGGCCAGG	CATGATAGAA	60
TCTGATCCTG	ACTTAGGGGA	ATATTTTCTT	TTTACTTCCC	ATCTTGATTC	CCTGCCGGTG	120
AGTTTCCTGG	TTCAGGGTAA	GAAAGGAGCT	CAGGCCAAAG	TAATGAACAA	ATCCATCCTC	180
ACAGACGTAC	AGAATAAGAG	AACWTGGACW	TAGCCAGCAG	AACMCAAKTG	AAAMCAGAAC	240
MCTTAMCTAG	GATRACAAMC	MCRRARATAR	KTGCYCMCMC	WTATAATAGA	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	300
GTATCTAATT	AAATATTTAT	CCACYGTCAG	GGCATTAGTG	GTTTTGATAA	ATACCARACII	360
GCTAGGATTC	CTGAGGTTAG	AATGGAARAA	CAATTGCAMC	GAGGGTAGGG	CACATCACTC	
AKTCTAA			C. I. I. I COPPA	ODODATOOOA	GACAIGAGIC	420
				•		427

(2) INFORMATION FOR SEQ ID NO:167:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 500 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:167:

AACGTCGCAT	GCTCCCGGCC	GCCATGGCCG	CGGGATAGAC	TGACTCATGT	CCCCTAAGAT	60
AGAGGAGACA	CCTGCTAGGT	GTAAGGAGAA	GATGGTTAGG	TCTACGGAGG	CTCCAGGGTG	120
GGAGTAGTTC	CCTGCTAAGG	GAGGGTAGAC	TGTTCAACCT	GTTCCTGCTC	CGGCCTCCAC	180
TATAGCAGAT	GCGAGCAGGA	GTAGGAGAGA	GGGAGGTAAG	AGTCAGAAGC	TTATCTTCTT	. 240
TATGCGGGGA	AACGCCRTAT	CGGGGGCAGC	CRAGTTATTA	GGGGACANTR	TACUVADOC	
AGNTAGCATC	CAAAGCGNGG	GAGTTNTCCC	ATATCCTTCC	ACCTGCAGGC	GGGGGGATTA	300
GTGATTAGCA	TGTGAGCCCC	ACACACCCAM	AIRIGGIIGG	ACCTAAACTC	GGCCGCATTA	360
CTCATTACTT	AACATCAATT	AGRICALGICAL	AGCAACAAGG	ACCTAAACTC	AGATCCTGTG	420
TTACCTO	AACAIGAAII	ATTGTATTA	TTTAACAACT	TTGAGTTATG	AGGCATATTA	480
TTAGGTCCAT	ATTACCTGGA					500

(2) INFORMATION FOR SEQ ID NO:168:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 358 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:168:

~~~~~						
TTCATCGCTC	GGTGACTCAA	GCCTGTAATC	CCAGAACTTT	GGGAGGCCGA	GGGGAGCAGA	60
TCACCTGAGG	TTGGGAGTTT	GAGACCAGCC	TGGCCAACAT	GGTGACAACC	CGTCTCTGCT	120
AAAAATACAA	AAATTAGCCA	AGCATGGTGG	CATGCACTTG	TAATCCCAGC	TACTCGGGAG	180
GCTGAGGCAG	CACAATCACT	TONCOCCACO	200020200	TARICCCAGC	CAGAGGTTGA	180
CAMCAMOOR	GROAMICACI	TGAGGCCAGG	AGGCAGAGGT	TGCAGTGAGG	CAGAGGTTGA	240
GATCATGCCA	CTGCACTCCA	GCCTGGGCAA	CAGAGTAAGA	CTCCATCTCA	AAAAAAAAA	300
AAAAAAAGAA	TGATCAGAGC	CACAAATACA	GAAAACCTTG	AGTCACCGAG	CGATGAAA	358

#### (2) INFORMATION FOR SEQ ID NO:169:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1265 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:169:

TTCTGTCCAC	ACCAATCTTA	GAGCTCTGAA	AGAATTTGTC	TTTAAATATC	TTTTAATAGT	60
AACATGTATT	TTATGGACCA	AATTGACATT	TTCGACTATT	TTTTCCCAAA	AAAAGTCAGG	12,0
TGAATTTCAG	CACACTGAGT	TGGGAATTTC	TTATCCCAGA	AGWCGGCACG	AGCAATTTCA	180
TATTTATTTA	AGATTGATTC	CATACTCCGT	TTTCAAGGAG	AATCCCTGCA	GTCTCCTTAA	240
AGGTAGAACA	AATACTTTCT	$\mathbf{ATTTTTTTTT}$	CACCATTGTG	GGATTGGACT	TTAAGAGGTG	300
ACTCTAAAAA	AACAGAGAAC	AAATATGTCT	CAGTTGTATT	AAGCACGGAC	CCATATTATC	360
ATATTCACTT	AAAAAAATGA	TTTCCTGTGC	ACCTTTTGGC	AACTTCTCTT	TTCAATGTAG	420
GGAAAAACTT	AGTCACCCTG	AAAACCCACA	AAATAAATAA	AACTTGTAGA	TGTGGGCAGA	480
ARGTTTGGGG	GTGGACATTG	TATGTGTTTA	AATTAAACCC	TGTATCACTG	AGAAGCTGTT	540
GTATGGGTCA	GAGAAAATGA	ATGCTTAGAA	GCTGTTCACA	TCTTCAAGAG	CAGAAGCAAA	600
CCACATGTCT	CAGCTATATT	ATTATTTATT	TTTTATGCAT	AAAGTGAATC	ATTTCTTCTG	660
TATTAATTTC	CAAAGGGTTT	TACCCTCTAT	TTAAATGCTT	TGAAAAACAG	TGCATTGACA	720
ATGGGTTGAT	ATTTTTCTTT	AAAAGAAAAA	TATAATTATG	AAAGCCAAGA	TAATCTGAAG	780
CCTGTTTTAT	TTTAAAACTT	TTTATGTTCT	GTGGTTGATG	TTGTTTGTTT	GTTTGTTTCT	840
ATTTTGTTGG	TTTTTTACTT	TGTTTTTTGT	TTTGTTTTGT	TTTGGTTTDG	CATACTACAT	900
GCAGTTTCTT	TAACCAATGT	CTGTTTGGCT	AATGTAATTA	AAGTTGTTAA	TTTATATGAG	960
TGCATTTCAA	CTATGTCAAT	GGTTTCTTAA	TATTTATTGT	GTAGAAGTAC	TGGTAATTTT	1020
TTTATTTACA	ATATGTTTAA	AGAGATAACA	GTTTGATATG	TTTTCATGTG	TTTATAGCAG	1080
AAGTTATTTA	TTTCTATGGC	ATTCCAGCGG	ATATTTTGGT	GTTTGCGAGG	CATGCAGTCA	1140
ATATTTTGTA	CAGTTAGTGG	ACAGTATTCA	GCAACGCCTG	ATAGCTTCTT	TGGCCTTATG	1200
AAAATAAATT	AGACCTGTTT	GGGATGTAAA	AAAAAAAAA	AAAAAAAA	AAAAAAAA	1260
AAAAA		•		•		1265

#### (2) INFORMATION FOR SEQ ID NO:170:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 383 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:170:

TGTAAGTCGA	GCAGTGTGAT	GACGATATTC	TTCTTATTAA	TGTGGTAATT	GAACAAATGA	60
TCTGTGATAC	TGATCCTGAG	CTAGGAGGCG	CTGTTCAGTT	AATGGGACTT	CTTCGTACTC	120
TAATTGATCC	AGAGAACATG	CTGGCTACAA	CTAATAAAAC	CGAAAAAAGT	GAATTTCTAA	180
ATTTTTTCTA	CAACCATTGT	ATGCATGTTC	TCACAGCACC	ACTTTTGACC	AATACTTCAG	240
AAGACAAATG	TGAAAAGGAT	AATATAGTTG	GATCAAACAA	AAACAACACA	ATTTGTCCCG	300
ATAATTATCA	AACAGCACAG	CTACTTGCCT	TAATTTTAGA	GTTACTCACA	TTTTGTGTGG	360
AACATCACAC	TGCTCGACTT	ACA				383

#### (2) INFORMATION FOR SEQ ID NO:171:

(j	( )	SEQUENCE	CHARACTERISTICS:
١.	-,	PECCENCE	CUMMACIENTALICS:

- (A) LENGTH: 383 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:171:

TGGGCACCTT CAATATCGCA	AGTTAAAAAT	AATGTTGAGT	TTATTATACT	TTTGACCTGT	60
TTAGCTCAAC AGGGTGAAGG	CATGTAAAGA	ATGTGGACTT	CTGAGGAATT	TTCTTTTAAA	120
AAGAACATAA TGAAGTAACA	TTTTAATTAC	TCAAGGACTA	CTTTTGGTTG	AAGTTTATAA	180
TCTAGATACC TCTACTTTTT	GTTTTTGCTG	TTCGACAGTT	CACAAAGACC	TTCAGCAATT	240
TACAGGGTAA AATCGTTGAA					300
TACTATAGGG AAAGAGGCTG	AGCTTAGAAT	CTTTTGGTTG	TTCATGTGTT	CTGTGCTCTT	360
ATCATCACAC TGCTCGACTT	ACA				383

## (2) INFORMATION FOR SEQ ID NO:172:

## (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 699 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:172:

TCGGGTGATG CCTCCTCAGG	CTTGTCGTTA	GTGTACACAG	AGCTGCTCAT	GAAGCGACAG	60
CGGCTGCCCC TGGCACTTCA	GAACCTCTTC	CTCTACACTT	TTGGTGCGCT	TCTGAATCTA	120
			AAAGTTTCTC		180
GCACTCGTGG TGCTGAGCCA					240
GGCAGCAGCA TCACACGCCT					300
TCAGCAGTCC TGCTACGGCT					360
GGCCTGGCCA TGCGCCTGTA					420
CCGGACCCTG TAGATTGGGC					480
CATCAGCGGC CCTGTAACAA					540
TTATTCTCTG GAGGTTGGTG					600
GTTAAGGAAA TGCTTACCAT			NTTCCAGACT	AAAGAATTAA	660
GGTAACATCA ATACCTAGGC	CTGAGGAGGC	ATCACCCGA			699

## (2) INFORMATION FOR SEQ ID NO:173:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 701 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:173:

TCGGGTGATG CCTCCTCAGG	CCAGATCAAA	CTTGGGGTTG	AAAACTGTGC	AAAGAAATCA	60
ATGTCGGAGA AAGAATTTTG	CAAAAGAAAA	ATGCCTAATC	AGTACTAATT	TAATAGGTCA	120

CATTAGCAGT	GGAAGAAGAA	ATGTTGATAT	TTTATGTCAG	CTATTTTATA	ATCACCAGAG	180
				AAGAACAATT		240
GAAAGAACTT	TTCAATTTAT	AGCATCTTAA	TTGCTCAGGA	TTTTAAATTT	TGATAAAGAA	300
AGCTCCACTT	TTGGCAGGAG	TAGGGGGCAG	GGAGAGAGGA	GGCTCCATCC	ACAAGGACAG	360
AGACACCAGG	GCCAGTAGGG	TAGCTGGTGG	CTGGATCAGT	CACAACGGAC	TGACTTATGC	420
CATGAGAAGA	AACAACCTCC	AAATCTCAGT	TGCTTAATAC	AACACAAGCT	CATTTCTTGC	480
TCACGTTACA	TGTCCTATGT	AGATCAACAG	CAGGTGACTC	AGGGACCCAG	GCTCCATCTC	540
CATATGAGCT	TCCATAGTCA	CCAGGACACG	GGCTCTGAAA	GTGTCCTCCA	TGCAGGGACA	600
CATGCCTCTT	CCTTTCATTG	GGCAGAGCAA	GTCACTTATG	GCCAGAAGTC	ACACTGCAGG	660
GCAGTGCCAT	CCTGCTGTAT	GCCTGAGGAG	GCATCACCCG	A		701

#### (2) INFORMATION FOR SEQ ID NO:174:

### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 700 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:174:

TCGGGTGATG	CCTCCTCANG	CCCCTAAATC	AGAGTCCAGG	GTCAGAGCCA	CAGGAGACAG	60
GGAAAGACAT	AGATTTTAAC	CGGCCCCCTT	CAGGAGATTC	TGAGGCTCAG	TTCACTTTGT	120
TGCAGTTTGA	ACAGAGGCAG	CAAGGCTAGT	GGTTAGGGGC	ACGGTCTCTA	AAGCTGCACT	180
GCCTGGATCT	GCCTCCCAGC	TCTGCCAGGA	ACCAGCTGCG	TGGCCTTGAG	CTGCTGACAC	240
GCAGAAAGCC	CCCTGTGGAC	CCAGTCTCCT	CGTCTGTAAG	ATGAGGACAG	GACTCTAGGA	300
ACCCTTTCCC	TTGGTTTGGC	CTCACTTTCA	CAGGCTCCCA	TCTTGAACTC	TATCTACTCT	360
TTTCCTGAAA	CCTTGTAAAA	GAAAAAAGTG	CTAGCCTGGG	CAACATGGCA	AAACCCTGTC	420
TCTACAAAAA	ATACAAAAAT	TAGTTGGGTG	TGGTGGCATG	TGCCTGTAGT	CCCAGCCACT	480
TGGGAGGTGC	TGAGGTGGGA	GGATCACTTG	AGCCCGGGAG	GTGGAGGTTG	CAGTGAGCCA	540
AGATCATGCC	ACTGCACTCC	AGCCTGAGTA	ATAGAGTAAG	ACTCTGTCTC	AAAAACAACA	600
ACAACAACAG	TGAGTGTGCC	TCTGTTTCCG	GGTTGGATGG	GGCACCACAT	TTATGCATCT	660
CTCAGATTTG	GACGCTGCAG	CCTGAGGAGG	CATCACCCGA		•	700

## (2) INFORMATION FOR SEQ ID NO:175:

### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 484 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:175:

TATAGGGCGA	ATTGGGCCCG	AGTTGCATGN	TCCCGGCCGC	CATGGCCGCG	GGATTCGGGT	60
GATGCCTCCT	CAGGCTTGTC	TGCCACAAGC	TACTTCTCTG	AGCTCAGAAA	GTGCCCCTTG	120
ATGAGGGAAA	ATGTCCTACT	GCACTGCGAA	TTTCTCAGTT	CCATTTTACC	TCCCAGTCCT	180
CCTTCTAAAC	CAGTTAATAA	ATTCATTCCA	CAAGTATTTA	CTGATTACCT	GCTTGTGCCA	240
GGGACTATTC	TCAGGCTGAA	GAAGGTGGGA	GGGGAGGGCG	GAACCTGAGG	AGCCACCTGA	300
GCCAGCTTTA	TATTTCAACC	ATGGCTGGCC	CATCTGAGAG	CATCTCCCCA	CTCTCGCCAA	360
CCTATCGGGG	CATAGCCCAG	GGATGCCCCC	AGGCGGCCCA	GGTTAGATGC	GTCCCTTTGG	420
CTTGTCAGTG	ATGACATACA	CCTTAGCTGC	TTAGCTGGTG	CTGGCCTGAG	GAGGCATCAC	480
CCGA						484

# (2) INFORMATION FOR SEQ ID NO:176:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 432 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:176:

TCCCCCTTCTTCT						
TCGGGTGATG	CCTCCTCAGG	GCTCAAGGGA	TGAGAAGTGA	CTTCTTTTTTT	GAGGGACCGT	
TCATGCCACC	CAGGATGA A 3	ATCCATACCC	ACCC TOTOM	CITCILLCIG	GAGGGACCGT	60
GACAAATCCC	70007000	AIGGAIAGGG	ACCCACTTGG	AGGACTTGCT	GAGGGACCGT GATATGTTTG	120
	ADDIAGCGGA	ATTGGTACTC	CTCCACCACT	Mamora act		
CCACCATGGG	ACGTCATCGT	TCAAATCAAC	TOTOTONAMOO	CONTRACT	AGATTTTCAC CACATCATGC	180
CTCCCACACA GCCAGCTCTA	ATCCCACTUT	CCACACACAC	TCTTCAATGG	CCATGGGGGA	CACATCATGC	240
CCCACCTCC	ALCOCAGIII	GGAGAGATGG	GAGGCAAGTT	TATGAAAAGC	CAGGGGGGTDA	300
	CCAIAACCAG	AGTUAGGAC	中で中で カロののっち	00		300
ATATGCCACC	TCGGTTTTCT	AAGAAACCAC	ACCEPTA	GCIGCAAGGA	CAGTCGAAGG	360
ATATGCCACC GGCATCACCC	07	MOMMAGGAC	AGCTTAATGC	AGATGAGATT	AGCCTGAGGA	420
OGCATCACCC	GA					•
						432

# (2) INFORMATION FOR SEQ ID NO:177:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 788 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:177:

TGGCAATGCC CCCAACTGAC TACTGTTCCT TGCTCCAGTC TGAAGCTCTT TCGTCGTGGC CACTGCTCAG ATTGGATTGC TCGCCGTTCT	AGTGGAACCA AAGCCCTTGC GTTGGCCGAG AACGTTACAA CCTGGGGACA AACGTTGCTG GTGATTATCC CACACGGCTC GGTAAAAAAGC	CGCTGCTTGA GCCTGCTCT TGGAGACTGG CGGAAGTAAA ATGTGGGCTT GTGACAGCAA TGAACCATCC ACATTGCATG	GTTCAAGGGA GGCTCTGGAC CCAGGATGTC TGTTCTCAAA ATCTGTCGAA CAATGTCAAG AAATGACCCA AGGCCAAATA CAAGTTTGCT CCCTAAATTC	TGGAAAGTCA TGCATCCTAC TACAAAATTG CCCGGTATGG ATGCACCATG AATGTGTCTG CCAATGGAAG AGTGCCGGCT GAGCTGAAGG TTGAAGTCTG	GTGGTATTGG TGGTCACCTT AAGCTTTGAG TCAAGGATGT CAGCTGGCTT ATGCCCCTGT	60 120 180 240 300 360 420 480 540 600 660
TCGCCGTTCT CATTGTTGAT	GGTAAAAAGC	TGGAAGATGG GCAAGCCCAT	CAAGTTTGCT	GAGCTGAAGG TTGAAGTCTG AGCTTCTCAG	AAAAGATTGA	600

# (2) INFORMATION FOR SEQ ID NO:178:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 786 base pairs
  - (B) TYPE: nucleic acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:178:

TAGCATGTTG	AGCCCAGACA	CCTGTGTTTC	TGGGAGCTCT	GGCAGTGGCG	GATTCATAGG	60
CACTTGGGCT	GCACTTTGAA	TGACACACTT	GGCTTTATTA	GATTCACTAG	AAAATTTTT	120
ATTGTTGTTC	GTTTCTTTTC	ATTAAAGGTT	TAATCAGACA	GATCAGACAG	CATAATTTTG	180
TATTTAATGA	CAGAAACGTT	GGTACATTTC	TTCATGAATG	AGCTTGCATT	CTGAAGCAAG	240
AGCCTACAAA	AGGCACTTGT	TATAAATGAA	AGTTCTGGCT	CTAGAGGCCA	GTACTCTGGA	300
GTTTCAGAGC	AGCCAGTGAT	TGTTCCAGTC	AGTGATGCCT	AGTTATATAG	AGGAGGAGTA	360
CACTGTGCAC	TCTTCTAGGT	GTAAGGGTAT	GCAACTTTGG	ATCTTAAAAT	TCTGTACACA	420
TACACACTTT	ATATATATGT	ATGTATGTAT	GAAAACATGA	AATTAGTTTG	TCAAATATGT	480
GTGTGTTTAG	TATTTTAGCT	TAGTGCAACT	ATTTCCACAT	TATTTATTAA	ATTGATCTAA	540
GACACTTTCT	TGTTGACACC	TTGAATATTA	ATGTTCAAGG	GTGCAATGTG	TATTCCTTTA	600
GATTGTTAAA	GCTTAATTAC	TATGATTTGT	AGTAAATTAA	CTTTTAAAAT	GTATTTGAGC	660
CCTTCTGTAG	TGTCGTAGGG	CTCTTACAGG	GTGGGAAAGA	TTTTAATTTT	CCAGTTGCTA	720
ATTGAACAGT	ATGGCCTCAT	TATATATTT	GATTTATAGG	AGTTTGTGTC	TGGGCTCAAC	780
ATGCTA						786

## (2) INFORMATION FOR SEQ ID NO:179:

#### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 796 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:179:

TAGCATGTTG	AGCCCAGACA	CTGGTTACAA	GACCAGACCT	GCTTCCTCCA	TATGTAAACA	60
GCTTTTAAAA	AGCCAGTGAA	CCTTTTTAAT	ACTTTGGCAA	CCTTCTTTCA	CAGGCAAAGA	120
ACACCCCCAT	CCGCCCCTTG	TTTGGAGTGC	AGAGTTTGGC	TTTGGTTCTT	TGCCTTGCCT	180
GGAGTATACT	TCTAATTCCT	GTTGTCCTGC	ACAAGCTGAA	TACCGAGCTA	CCCACCGCCA	240
CCCAGGCCAG	GTTTCCACTC	ATTTATTACT	TTATGTTTCT	GTTCCATTGC	TGGTCCACAG	300
AAATAAGTTT	TCCTTTGGAG	GAATGTGATT	ATACCCCTTT	AATTTCCTCC	TTTTGCTTTT	360
TTTTAATATC	ATTGGTATGT	GTTTGGCCCA	GAGGAAACTG	AAATTCACCA	TCATCTTGAC	420
TGGCAATCCC	ATTACCATGC	TTTTTTTAAA	AAACGTAATT	TTTCTTGCCT	TACATTGGCA	480
GAGTAGCCCT	TCCTGGCTAC	TGGCTTAATG	TAGTCACTCA	GTTTCTAGGT	GGCATTAGGC	540
ATGAGACCTG	AAGCACAGAC	TGTCTTACCA	CAAAAGGTGA	CAAGATCTCA	AACCTTAGCC	600
AAAGGGCTAT	GTCAGGTTTC	AATGCTATCT	GCTTCTGTTC	CTGCTCACTG	TTCTGGATTT	660
TGTCCTTCTT	CATCCCTAGC	ACCAGAATTT	CCCAGTCTCC	CTCCCTACCT	TCCCTTGTTT	720
TAATTCTAAT	CTATCAGCAA	AATAACTTTT	CAAATGTTTT	AACCGGTATC	TCCATGTGTC	780
TGGGCTCAAC	ATGCTA					796

## (2) INFORMATION FOR SEQ ID NO:180:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 488 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:180:

GGATGTGCTG	CAAGGCGATT	AAGTTGGGTA	ACGCCAGGGT	TTTCCCAGTC	ACGACGTTGT	60
AAAACGACGG	CCAGTGAATT	GTAATACGAC	TCACTATAGG	GCGAATTGGG	CCCGACGTCG	120
CATGCTCCCG	GCCGCCATGG	CCGCGGGATA	GCATGTTGAG	CCCAGACACC	TGCAGGTCAT	180
TTGGAGAGAT	TTTTCACGTT	ACCAGCTTGA	TGGTCTTTTT	CAGGAGGAGA	GACACTGAGC	240
ACTCCCAAGG	TGAGGTTGAA	GATTTCCTCT	AGATAGCCGG	ATAAGAAGAC	TAGGAGGGAT	300
GCCTAGAAAA	TGATTAGCAT	GCAAATTTCT	ACCTGCCATT	TCAGAACTGT	GTGTCAGCCC	360
ACATTCAGCT	GCTTCTTGTG	AACTGAAAAG	AGAGAGGTAT	TGAGACTTTT	CTGATGGCCG	420
					TCTGGGCTCA	480
ACATGCTA						488

## (2) INFORMATION FOR SEQ ID NO:181:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 317 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:181:

TAGCATGTTG	AGCCCAGACA	CGGCGACGGT	ACCTGATGAG	TGGGGTGATG	GCACCTGTGA	60
					TGGCTCCGCG	120
					AAGTTTGTGC	180
TGCAGGTTTA	TCGGGACTAT	TACCTCACGG	GTGATCAAAA	CTTCCTGAAG	GACATGTGGC	240
		GCACATGCAG	TGGCCAGTGT	GCCAGGGGTA	TGGTTCGTGT	300
CTGGGCTCAA	CATGCTA					317

## (2) INFORMATION FOR SEQ ID NO:182:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 507 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:182:

TAGCATGTTG	AGCCCAGACA	CTGGCTGTTA	GCCAAATCCT	CTCTCAGCTG	CTCCCTGTGG	60
TTTGGTGACT	CAGGATTACA	GAGGCATCCT	GTTTCAGGGA	ACAAAAAGAT	TTTAGCTGCC	120
AGCAGAGAGC	ACCACATACA	TTAGAATGGT	AAGGACTGCC	ACCTCCTTCA	AGAACAGGAG	180
					TGCTCTCTCA	240
AATCCTGTCT	TAGTCTTAGG	AAAGGAAGTA	AAGTTTCAAG	GACGGTTCCG	AACTGCTTTT	300
TGTGTCTGGG	CTCAACATGC	TATCCCGCGG	CCATGGCGGC	CGGGAGCATG	CGACGTCGGG	360
CCCAATTCGC	CCTATAGTGA	GTCGTATTAC	AATTCACTGG	CCGTCGTTTT	ACAACGTCGT	420
GACTGGGAAA	ACCCTGGCGT	TACCCAACTT	AATCGCCTTG	CAGCACATCC	CCCTTTCCCA	480
GCTGGCGTAA	TANCGAAAAG	GCCCGCA				507

# (2) INFORMATION FOR SEQ ID NO:183:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 227 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single

(D) TOPOLOGY: line	ea	r
--------------------	----	---

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:183:

GATTTACGCT	GCAACACTGT	GGAGGTAGCC	CTGGAGCAAG	GCAGGCATGG	ATGCTTCTGC	60
AATCCCCAAA	TGGAGCCTGG	TATTTCAGCC	AGGAATCTGA	GCAGAGCCCC	CTCTAATTGT	120
AGCAATGATA	AGTTATTCTC	TTTGTTCTTC	AACCTTCCAA	TAGCCTTGAG	CTTCCAGGGG	180
AGTGTCGTTA	ATCATTACAG	CCTGGTCTCC	ACAGTGTTGC	AGCGTAA		227

#### (2) INFORMATION FOR SEQ ID NO:184:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 225 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:184:

TTACGCTGCA	ACACTGTGGA	GCAGATTAAC	ATCAGACTTT	TCTATCAACA	TGACTGGGGT	60
TACTAAAAAG	ACAACAAATC	AATGGCTTCA	AAAGTCTAAG	GAATAATTTC	GATACTTCAA	120
CTTTATAAAA	CCTGACAAAA	CTATCAATCA	AGCATAAAGA	CAGATGAAGA	ACATTTCCAG	180
ATTTTGGCCA	ATCAGATATT	TTACCTCCAC	AGTGTTGCAG	CGTAA		225

#### (2) INFORMATION FOR SEQ ID NO:185:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 597 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:185:

GGCCCGACGT	CGCATGCTCC	CGGCCGCCAT	GGCCGCGGGA	TTCGTTAGGG	TCTCTATCCA	60
CTGGGACCCA	TAGGCTAGTC	AGAGTATTTA	GAGTTGAGTT	CCTTTCTGCT	TCCCAGAATT	120
TGAAAGAAAA	GGAGTGAGGT	GATAGAGCTG	AGAGATCAGA	TTTGCCTCTG	AAGCCTGTTC	180
AAGATGTATG	TGCTCAGACC	CCACCACTGG	GGCCTGTGGG	TGAGGTCCTG	GGCATCTATT	240
TGAATGAATT	GCTGAAGGGG	AGCACTATGC	CAAGGAAGGG	GAACCCATCC	TGGCACTGGC	300
			TTCTTTGCTG			360
TGTGAGGGGC	AGGTAAGAAG	AAGTGCCCRG	TGTTGTGCGA	GTTTTAGAAC	ATCTACCAGT	420
AAGTGGGGAA	GTTTCACAAA	GCAGCAGCTT	TGTTTTGTGT	ATTTTCACCT	TCAGTTAGAA	480
GAGGAAGGCT	GTGAGATGAA	TGTTAGTTGA	GTGGAAAAGA	CGGGTAAGCT	TAGTGGATAG	540
AGACCCTAAC	GAATCACTAG	TGCGGCCGCC	TTGCAGGTCG	ACCATATGGG	AGAGCTC	597

## (2) INFORMATION FOR SEQ ID NO:186:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 597 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:186:

GGCCCGAAGT	TGCATGTTCC	CGGCCGCCAT	GGCCGCGGGA	TTCGTTAGGG	TCTCTATCCA	60
CTACCTAAAA	AATCCCAAAC	ATATAACTGA	ACTCCTCACA	CCCAATTGGA	CCAATCCATC	120
ACCCCAGAGG	CCTACAGATC	CTCCTTTGAT	ACATAAGAAA	ATTTCCCCAA	ACTACCTAAC	180
TATATCATTT	TGCAAGATTT	GTTTTACCAA	ATTTTGATGG	CCTTTCTGAG	CTTGTCAGTG	240
TGAACCACTA	TTACGAACGA	TCGGATATTA	ACTGCCCCTC	ACCGTCCAGG	TGTAGCTGGC	300
AACATCAAGT	GCAGTAAATA	TTCATTAAGT	TTTCACCTAC	TAAGGTGCTT	AAACACCCTA	360
GGGTGCCATG	TCGGTAGCAG	ATCTTTTGAT	TTGTTTTTAT	TTCCCATAAG	GGTCCTGTTC	420
AAGGTCAATC	ATACATGTAG	TGTGAGCAGC	TAGTCACTAT	CGCATGACTT	GGAGGGTGAT	480
AATAGAGGCC	TCCTTTGCTG	TTAAAGAACT	CTTGTCCCAG	CCTGTCAAAG	TGGATAGAGA	540
CCCTAACGAA	TCACTAGTGC	GGCCGCCTGC	AGGTCGACCA	TATGGGAGAG	CTCCCAA	597

# (2) INFORMATION FOR SEQ ID NO:187:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 324 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:187:

TCGTTAGGGT	CTCTATCCAC	TTGCAGGTAA	AATCCAATCC	TGTGTATATC	TTATAGTCTT	60
CCATATGTAG	TGGTTCAAGA	GACTGCAGTT	CCAGAAAGAC	TAGCCGAGCC	CATCCATGTC	120
TTCCACTTAA	CCCTGCTTTG	GGTTACACAT	CTTAACTTTT	CTGTTCAAGT	TTCTCTGTGT	180
AGTTTATAGC	ATGAGTATTG	GGAWAATGCC	CTGAAACCTG	ACATGAGATC	TGGGAAACAC	240
AAACTTACTC	AATAAGAATT	TCTCCCATAT	TTTTATGATG	GAAAAATTTC	ACATGCACAG	300
AGGAGTGGAT	AGAGACCCTA	ACGA			TICTITOCACAG	324
						. 324

- (2) INFORMATION FOR SEQ ID NO:188:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 178 base pairs
    - (B) TYPE: nucleic acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:188:

GCGCGGGGAT TCGG	GGTGAT ACCTCCTCAT	GCCAAAATAC	AACGTNTAAT	TTCACAACTT	60
GCCTTCCAAT TTAC	GCATTT TCAATTTGC	CTCCCCATTT	GTTGAGTCAC	AACAAACACC	120
ATTGCCCAGA AACA	ATGTATT ACCTAACATO	CACATACTCT	TAAAACTACT	CATCCCTT	178

- (2) INFORMATION FOR SEQ ID NO:189:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 367 base pairs
    - (B) TYPE: nucleic acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:189:

TGACACCTTG	TCCAGCATCT	GACACAGTCT	TGGCTCTTGG	AAAATATTGG	ATAAATGAAA	60
ATGAATTTCT	TTAGCAAGTG	GTATAAGCTG	AGAATATACG	TATCACATAT	CCTCATTCTA	120
AGACACATTC	AGTGTCCCTG	AAATTAGAAT	AGGACTTACA	ATAAGTGTGT	TCACTTTCTC	180
AATAGCTGTT	ATTCAATTGA	TGGTAGGCCT	TAAAAGTCAA	AGAAATGAGA	GGGCATGTGA	240
AAAAAAGCTC	AACATCACTG	ATCATTAGAA	AACTTCCATT	CAAACCCCCA	ATGAGATACC	300
ATCTCATACC	AGTCAGAATG	GCTATTATTA	AAAAGTCAAA	AAATAACAGA	TGCTGGACAA	360
GGTGTCA						367

## (2) INFORMATION FOR SEQ ID NO:190:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 369 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:190:

GACACCTTGT	CCAGCATCTG	ACAACGCTAA	CAGCCTGAGG	AGATCTTTAT	TTATTTATTT	60
AGTTTTTACT	CTGGCTAGGC	AGATGGTGGC	TAAAACATTC	ATTTACCCAT	TTATTCATTT	120
AATTGTTCCT	GCAAGGCCTA	TGGATAGAGT	ATTGTCCAGC	ACTGCTCTGG	AAGCTAGGAG	180
CATGGGGATG	AACAAGATAG	GCTACATCCT	GTTCCCACAG	AACTTCCACT	TTAGTCTGGG	240
AAACAGATGA	TATATACAAA	TATATAAATG	AATTCAGGTA	GTTTTAAGTA	CGAAAAGAAT	300
AAGAAAGCAG	AGTCATGATT	TANAATGCTG	GAAACAGGGG	CTATTGCTTG	AGATATTGAA	360
GGTGCCCAA	•					369

## (2) INFORMATION FOR SEQ ID NO:191:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 369 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:191:

TGACACCTTG	TCCAGCATCT	GCACAGGGAA	AACAAACTAT	TATCAGAGTG	A A C A C C C A A C	60
						80
CTACAGAATG	GGAGAAAATT	TTTGCAATCT	ATCCATCTGA	CAAAGGGCTA	ATATCCAGAA	120
TCTACAAAGA	ACTTATACAA	ATTTACAAGA	AACAAACAAA	CAAACAACTC	CTCAAAAAGT	180
GGGTGAAGGA	TGTGAACAGA	CACTTCTCAA	AAGAAGACAT	TTATGGGGCC	AACAAACATA	240
TGAAAAAAAG	CTCATCATCA	CTGGTCACTA	GATAAATGCA	AATCAAAACC	ACAATGAGAT	300
ACCATCTCAT	TCCAGTTAGA	ATGGCAATCA	TTAAAAAGTC	AGGAAACAAC	AGATGCTGGA	360
CAAGGTGTC						369

## (2) INFORMATION FOR SEQ ID NO:192:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 449 base pairs
  - (B) TYPE: nucleic acid

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:192:

TGACGCTTGG	CCACTTCACA	CITIMO N INCOMP				
	CCACTIGACA	CTTCATCTTT.	GCACAGAAAA	ACTTCTTTAC	AGATTTAATT	
CAAGACTGGT	CTAGTGACAG	TCCTCCACAC	A THE THE CALL		AGATTTAATT TACGTGGAAT	60
mmma a a a a a a a		TCCTCCAGAC	ATTITICAT	TTGTTCCATA	TACGTGGAAT	120
TTTAAAATCA	TGTTTCATCA	GTTTGAAATG	$\Delta$ TTTCCCCCTC	CM3 3 mcs 3 cs	TACGTGGAAT CAATTGGATC	120
CACTCTTCTA	CER AR CRACE	~~~	ATTIGGGC1G	CTAATCAACA	CAATTGGATC	180
ONCIOILCIA	CIAAACAACA	GGAAAATGTG	$T\Delta TCTCCCAC$	COMORGON		
ATTGATTTT	CTTTCCCCTTT	Th COCh cmmm		CCIGIGGAGA	AACACTAAAC CAAGTTCTCT	240
	CITIGCCITI	TACGGACTTT	GTTCCAGCTA	CATGTAATAC	CAACTTCTCT	200
TTAAGAGGAG	AAGATGTTGA	שייייים א שייייים	mmmama aas a		CAAGIICICI	300
momma		TCTTCATTIG	TTTCTACCAG	ACTGCCACCC	TAGTAAATAT	360
TCTTTATTTA	TGCTGGTAAA	AAATTGCCAT	CCAAATTAACA	MC a mm ca		300
CCTCCTCACT	OMON NAMES		CCAAAIAAGA	IGATICATGA	TACTGGTATT	420
CCTGCTGAGT	GTCAAGTGGC	CAAGCGTCA				
						449

# (2) INFORMATION FOR SEQ ID NO:193:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 372 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:193:

AGCTGCAATA CTCAGAGGTG TGGAAGAATA	AATAACTGGT CCTTTGGCTG ACTCCACAAT TTAATTCCAG	ACATTCTAGA AATTGCAGTA AGAGAAGAGG AGTCTGAGGA	AAGAGACAAC ATCATTTCAG TGAGATATAA	CAGGATTGCT GCCAATTCAA TGTGTTTTCT	CAATTGTACA AGGCCATAAA TCCAGTTTGG TGCAACTTCT CATTAAAGCA TGTGTCAAGT	60 120 180 240 300 360
						372

# (2) INFORMATION FOR SEQ ID NO:194:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 309 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:194:

CAGAAACATT ACATATACAA	CAGTTCTGAN AAACAAACTC	ACCTTCAATA CACTCGAATG TGCANTCTCA	TCACACTAGA GCAGGATAAC	GACAAACGCC TTTTTGTGTT	AGCCCTTTAT ACAAGATCTG GTAATCCTTC CTGTAAAATA GTCAAGTGGC	60 120 180 240 300 309
--------------------------	-----------------------	----------------------------------------	--------------------------	--------------------------	--------------------------------------------------------	---------------------------------------

- (2) INFORMATION FOR SEQ ID NO:195:
  - (i) SEQUENCE CHARACTERISTICS:

<ul><li>(A) LENGTH: 312 base pairs</li><li>(B) TYPE: nucleic acid</li><li>(C) STRANDEDNESS: single</li><li>(D) TOPOLOGY: linear</li></ul>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:195:	
TGACGCTTGG CCACTTGACA CCCAATCTCG CACTTCATCC TCCCAGCACC TGATGAAGTA GGACTGCAAC TATCCCCACT TCCCAGATGA GGGGACCAAN GTACACATTA GGACCCGGAT GGGAGCACAG ATTTGTCCGA TCCCAGACTC CAAGCACTCA GCGTCACTCC AGGACAGCGG CTTTCAGATA AGGTCACAAA CATGAATGGC TCCGACAACC GGAGTCAGTC CGTGCTGAGT TAAGGCAATG GTGACACGGA TGCACGTGTN ACCTGTAATG GTTCATCGTA AGTGTCAAGT GGCCAAGCGT CA	60 120 180 240 300 312
(2) INFORMATION FOR SEQ ID NO:196:	
<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 288 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:196:	
TGTATCGACG TAGTGGTCTC CTCAGCCATG CAGAACTGTG ACTCAATTAA ACCTCTTTCC TTTATGAATT ACCCAATCTC GGGTAGTGTC TTTATAGTAG TGTGAGAATG GACTAATACA AGTACATTTT ACTTAGTAAT AATAATAAAC AAATATATTA CATTTTTGTG TATTTACTAC ACCATATTTT TTATTGTTAT TGTAGTGTAC ACCTTCTACT TATTAAAAGA AATAGGCCCG AGGCGGCAG ATCACGAGGT CAGGAGATGG AGACCACTAC GTCGATAC  (2) INFORMATION FOR SEQ ID NO:197:	60 120 180 240 288
<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 289 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:197:	
TTGGGCACCT TCAATATCAT GACAGGTGAT GTGATAACCA AGAAGGCTAC TAAGTGATTA ATGGGTGGGT AATGTATACA GAGTAGGTAC ACTGGACAGA GGGGTAATTC ATAGCCAAGG CAGGAGAAGC AGAATGGCAA AACATTTCAT CACACTACTC AGGATAGCAT GCAGTTTAAA ACCTATAAGT AGTTTATTT TGGAATTTTC CACTTAATAT TTTCAGACTG CAGGTAACTA AACTGTGGAA CACAAGAACA TAGATAAGGG GAGACCACTA CGTCGATAC	60 120 180 240 289

- (2) INFORMATION FOR SEQ ID NO:198:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 288 base pairs
    - (B) TYPE: nucleic acid
    - (C) STRANDEDNESS: single

# (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:198:

GTATCGACGT AGTGGTCTCC CAAGCAGTGG GAAGAAAACG AGATACCCCA AAGAAAGGCG CTTGAGTAAA GATTCCAAGT AAAATTCAGG CTGTCAAAGA GATTTGCTAT GAGGTTGCTC CGGCAGGAGA TTGAAGCCCT GGCCATTGTC AAGATGAAGG AAGAAAGACC CCAATGAGCG GGACTCCTGG AGACCACTAC	GGGTCACAAT CTCAGATCTT TCAATGACTT CAGGCACAGT	60 120 180 240 288
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	---------------------------------------------	--------------------------------

# (2) INFORMATION FOR SEQ ID NO:199:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1027 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:199:

GCTTTTTGGG	AAAAACNCAA	MTCCCCCAAA	000000	_		
AANCCCAGGG	TTTCCCCATT				ATAAAGGGGG	60
				GCCAGGGGAT	TGTAANAGGA	120
	GGGGGAATGG	GCCCNGAAGT	TGCAAGGTTC	CNGCCCGCCA		
	ATTACGACGS	TGGTAATAAA	GTGGGSCCAA			180
TTTSGACCAG	TGAACCCATT	GWACAGGACC				240
GATAAAAGRT	TAGAAGTYTT		- 0.11 11 0011			300
AATTTCACCC		TOTOCACOTI	IOI IO CITI CA	TTAAATGGAG		360
GTCATACGAG			CCTTGAAGGC	ATTCAATTAA	GTGACCAATC	420
			ATGATGATAT		ACCTTCACAG	480
	TATCCTCTTG		ATACCACAAG	TACCCTTTTG	ACCATGTCGA	
CTAGCAAATT	TGTCTCCAAT	CTGTGTWATC	CCTAACAGAG	CGTACCCTTA	·	540
TTTATATCCT	TCCTGATTGA				TTTTACAAAA	600
TCTGAGAAA	GTGCTACACT	CTCTCTTCTTCCAT	AACCIGATCC	ACAATGCCCG	TCTCGCTWGT	660
ብ ተመተመተመተመ ለ መደመ መመመ መመመ መመመ መመመ መመመ መመመ መመመ መመመ መመመ	GTGCTACAGT AGGCAAGGTG	CICICITGGT			CCAATTCATC	720
		AACTGTTTTG	CCTATAATAA	CMTCATCTCC	TGATACMCGA	780
		CATCATCATC	CAGCGTTCKT	WATGTYMCTA	AATCCCTATT	·
GCGGCCGCCT	- CLARC	ATATNGGAAA				840
TTTTCCATAT	GTCCCNTAAA				NTACCTTGAA	900
ATTGTTTCCG			TTANCCTGGC	CNTAACCTNT	TCCGGTTTAA	960
CCTATCC		CCNCCTINNA	ACCGGAAACC	TTAATTTTNA	ACCNGGGGTT	1020
						1027
						1021

# (2) INFORMATION FOR SEQ ID NO:200:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 207 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:200:

AGTGACATTA	CGACGCTGGC	$C\Delta TCTTC \lambda \lambda T$	CCMACCCCA	<b>~</b> · · ·		
CACTTOOTTO		CHICITGAAI	CCIAGGGCAT	GAAGTTGCCC	CAAAGTTCAG	60
IN	AGCCIGATCC	CTCTGGTTTA	<b>ጥሮሽሮሽሽሽሽልሮሽሽ</b>	TACCAMOCO		
GGACACTTAA	77777777777	3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	- CHCHLIOHA	IAGGAIGGGA	TAAAGAAAGT	120
	ATAAGCTATA	AATTATATGG	TCCTTGTCTA	GCAGGAGACA	TAAAGAAAGT ACTGCACAGG	180

103

TATACTACCA GCGTCGTAAT GTCACTA	207
(2) INFORMATION FOR SEQ ID NO:201:	
<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 209 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:201:	
TGGGCACCTT CAATATCTAT TAAAAGCACA AATACTGAAG AACACCACAA GACTATCAAT GAGGTTACAT CTGGAGTCCT CGATATATCA GGAAAAAATG AAGTGAACAT TCACAGAGTT TTACTTCTTT GGGAACTCAA ATGCTAGAAA AGAAAAGGGT GCCCTCTTTC TCTGGCTTCC TGGTCCTATC CAGCGTCGTA ATGTCACTA	60 120 180 209
(2) INFORMATION FOR SEQ ID NO:202:	
<ul><li>(i) SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 349 base pairs</li><li>(B) TYPE: nucleic acid</li><li>(C) STRANDEDNESS: single</li><li>(D) TOPOLOGY: linear</li></ul>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:202:	
NTACGCTGCA ACACTGTGGA GCCACTGGTT TTTATTCCCG GCAGGTTATC CAGCAAACAG TCACTGAACA CACCGAAGAC CGTGGTATGG TAACCGTTCA CAGTAATCGT TCCAGTCGTC TGCGGGACCC CGACGAGCGT CACTGGGTAC AGACCAGATT CAGCCGGAAG AGAAAGCGCC GCAGGGAGAG ACTCGAACTC CACTCCGCTG GTGAGCAGCC CCATGTTTTC AACTCGAAGT TCAAACGGCA TTGGGTTATA TACCATCAGC TGAACTTCAC ACACATCTCC TTGAACCCAC TGGAAATCTA TTTTCTTGTT CCGCTCTTCT CCACAGTGTT GCAGCGTAA	60 120 180 240 300 349
(2) INFORMATION FOR SEQ ID NO:203:	
<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 241 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:203:	
TGCTCCTCTT GCCTTACCAA CCCAAAGCCC ACTGTGAAAT ATGAAGTGAA TGACAAAATT CAGTTTTCAA CGCAATATAG TATAGTTTAT CTGATTCTTT TGATCTCCAG GACACTTTAA ACAACTGCTA CCACCACCAC CAACCTAGGG ATTTAGGATT CTCCACAGAC CAGAAATTAT TTCTCCTTTG AGTTTCAGGC TCCTCTGGGA CTCCTGTTCA TCAATGGGTG GTAAATGGCT A	60 120 180 240 241
(2) INFORMATION FOR SEQ ID NO:204:	

(i)	SEOUENCE	CHARACTERISTICS:
· - /		CIMICACIDATALICA

- (A) LENGTH: 248 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:204:

TAGCCATTTA	CCACCCATCT	GCAAACCSWG	ACMWWCARGR	CYWGWACKYA	GGCGATTTGA	60
AGTACTGGTA	ATGCTCTGAT	CATGTTAGTT	ACATAAGTGT	GGTCAGTTTA	CAAAAATTCA	120
					TAATGTTTCA	180
ATTAAGTTTT	TTTAAAAAAA	AGAGATGATT	TCCAAATAAG	AAAGCCGTGT	TGGTAAGGCA	240
AGAGGAGC				12310000101	IGGIAAGGCA	
						248

# (2) INFORMATION FOR SEQ ID NO:205:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 505 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:205:

				TTAAGGAACA		60
CTACCTTTGC	ACGGTTAGGG	TACCGCGGCC	GTTAAACATG	TGTCACTGGG	CAGGCGGTGC	120
CTCTAATACT	GGTGATGCTA	GAGGTGATGT	TTTTGGTAAA	CAGGCGGGGT	AAGATTTGCC	180
				CCTGTGTTGG		240
				TGTTAATTGT		300
				ATGTTACTTA		360
				AGGAGTTCAG		420
GGGATTTTTT	AGGTAGTGGG	TGTTGANCTT	GAACGCTTTC	TTAATTGGTG	GCTGCTTTTA	480
RGCCTACTAT						505

- (2) INFORMATION FOR SEQ ID NO:206:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 179 base pairs
    - (B) TYPE: nucleic acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:206:

TAGACTGACT	CATGTCCCCT	ACCAAAGCCC	ATGTAAGGAG	CTGAGTTCTT	AAAGACTGAA	60
GACAGACTAT	TCTCTGGAGA	TAAAATAAAA	GGAAATTGTA	CTTTAAAAAA	AAAAAAATC	120
GGCCGGGCAT	GGTAGCACAC	ACCTGTAATC	CCAGCTACTA	GGGGACATGA	GTCAGTCTA	179

- (2) INFORMATION FOR SEQ ID NO:207:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 176 base pairs

<ul><li>(B) TYPE: nucleic acid</li><li>(C) STRANDEDNESS: single</li><li>(D) TOPOLOGY: linear</li></ul>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:207:	
AGACTGACTC ATGTCCCCTA CCCCACCTTC TGCTGTGCTG	60
AGACTGGTAC TGGTCAGTGG CCTGGGGGTT GGGGACCTCT ATTATATGGG ATACAAATTT AGGAGTTGGA ATTGACACGA TTTAGTGACT GATGGGATAT GGGTGGTAAA TGGCTA	120 176
(2) INFORMATION FOR SEQ ID NO:208:	
<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 196 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:208:	
AGACTGACTC ATGTCCCCTA TTTAACAGGG TCTCTAGTGC TGTGAAAAAA AAAAATGCTG AACATTGCAT ATAACTTATA TTGTAAGAAA TACTGTACAA TGACTTTATT GCATCTGGGT AGCTGTAAGG CATGAAGGAT GCCAAGAAGT TTAAGGAATA TGGGTGGTAA ATGGCTAGGG GACATGAGTC AGTCTA	60 120 180 196
(2) INFORMATION FOR SEQ ID NO:209:	
<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 345 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:209:	
GACGCTTGGC CACTTGACAC CTTTTATTT TTAAGGATTC TTAAGTCATT TANGTNACTT TGTAAGTTTT TCCTGTGCCC CCATAAGAAT GATAGCTTTA AAAATTATGC TGGGGTAGCA AAGAAGATAC TTCTAGCTTT AGAATGTGTA GGTATAGCCA GGATTCTTGT GAGGAGGGGT GATTTAGAGC AAATTTCTTA TTCTCCTTGC CTCATCTGTA ACATGGGGAT AATAATAGAA CTGGCTTGAC AAGGTTGGAA TTAGTATTAC ATGGTAAAAT CATGTAAAAT GTTTAGAATG GTGCCAAGTA TCTAGGAAGT ACTTGGGCAT GGGTGGTAAA TGGCT	60 120 180 240 300 345
(2) INFORMATION FOR SEQ ID NO:210:	
<ul><li>(i) SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 178 base pairs</li><li>(B) TYPE: nucleic acid</li></ul>	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:210:

(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

GACGCTTGGC CACTTGACAC TAGAGTAGGG TTTGGCCAAC TTTTTCTATA AAGGACCAGA	60
GAGTAAATAT TTCAGGCTTT GTGGGTTGTG CAGTCTCTCT TGCAACTACT CAGCTCTGCC	120
ATTGTAGCAT AGAAATCAGC CATAGACAGG ACAGAAATGA ATGGGTGGTA AATGGCTA	178
(2) INFORMATION FOR SEQ ID NO:211:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 454 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:211:	
TGGGCACCTT CAATATCTAT CCAGCGCATC TAAATTCGCT TTTTTCTTGA TTAAAAATTT	60
CACCACTTGC TGTTTTTGCT CATGTATACC AAGTAGCAGT GGTGTGAGGC CATGCTTGTT	120
TTTTGATTCG ATATCAGCAC CGTATAAGAG CAGTGCTTTG GCCATTAATT TATCTTCATT	180
GTAGACAGCA TAGTGTAGAG TGGTATCTCC ATACTCATCT GGAATATTTG GATCAGTGCC	240
ATGTTCCAGC AACATTAACG CACATTCATC TTCCTGGCAT TGTACGGCCT TTGTCAGAGC	300
TGTCCTCTTT TTGTTGTCAA GGACATTAAG TTGACATCGT CTGTCCAGCA CGAGTTTTAC	360
TACTTCTGAA TTCCCATTGG CAGAGGCCAG ATGTAGAGCA GTCCTCTTTT GCTTGTCCCT	420
CTTGTTCACA TCAGTGTCCC TGAGCATAAC GGAA	454
	•
(2) INFORMATION FOR SEQ ID NO:212:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 337 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:212:	
(SEE) DESCRIPTION. DEG 15 NO.212.	
TCCGTTATGC CACCCAGAAA ACCTACTGGA GTTACTTATT AACATCAAGG CTGGAACCTA	60
TTTGCCTCAG TCCTATCTGA TTCATGAGCA CATGGTTATT ACTGATCGCA TTGAAAACAT	120
TGATCACCTG GGTTTCTTTA TTTATCGACT GTGTCATGAC AAGGAAACTT ACAAACTGCA	180
ACGCAGAGAA ACTATTAAAG GTATTCAGAA ACGTGAAGCC AGCAATTGTT TCGCAATTCG	240
GCATTTTGAA AACAAATTTG CCGTGGAAAC TTTAATTTGT TCTTGAACAG TCAAGAAAAA	300
CATTATTGAG GAAAATTAAT ATCACAGCAT AACGGAA	337
(2) INFORMATION FOR SEQ ID NO:213:	
<del>-</del>	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 715 base pairs	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:213:

(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear

TCGGGTGATG CCTCCTCAGG CATCTTCCAT CCATCTCTTC AAGATTAGCT GTCCCAAATG

TTTTTCCTTC	TCTTCTTTAC	TGATAAATTT	GGACTCCTTC	TTGACACTGA	TGACAGCTTT	120
AGTATCCTTC	TTGTCACCTT	GCAGACTTTA	AACATAAAAA	TACTCATTGG	TTTTAAAAGG	180
AAAAAAGTAT	ACATTAGCAC	TATTAAGCTT	GGCCTTGAAA	CATTTTCTAT	CTTTTATTAA	240
ATGTCGGTTA	GCTGAACAGA	ATTCATTTTA	CAATGCAGAG	TGAGAAAAGA	AGGGAGCTAT	300
ATGCATTTGA	GAATGCAAGC	ATTGTCAAAT	AAACATTTTA	AATGCTTTCT	TAAAGTGAGC	360
ACATACAGAA	ATACATTAAG	ATATTAGAAA	GTGTTTTTGC	TTGTGTACTA	CTAATTAGGG	420
AAGCACCTTG	TATAGTTCCT	CTTCTAAAAT	TGAAGTAGAT	TTTAAAAACC	CATGTAATTT	480
AATTGAGCTC	TCAGTTCAGA	TTTTAGGAGA	ATTTTAACAG	GGATTTGGTT	TTGTCTAAAT	540
TTTGTCAATT	TNTTTAGTTA	ATCTGTATAA	TTTTATAAAT	GTCAAACTGT	ATTTAGTCCG	600
TTTTCATGCT	GCTATGAAAG	AAATACCCAN	GACAGGGTTA	TTTATAAANG	GAAAGANGTT	660
AATTTGACTC	CCAGTTCACA	GGCCTGAGGA	NGNATCNCCC	GAAATCCTTA	TTGCG	715

#### (2) INFORMATION FOR SEQ ID NO:214:

#### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 345 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:214:

GGTAANGNGC	ATACNTCGGT	GCTCCGGCCG	CCGGAGTCGG	GGGATTCGGG	TGATGCCTCC	60
TCAGGCCCAC	TTGGGCCTGC	TTTTCCCAAA	TGGCAGCTCC	TCTGGACATG	CCATTCCTTC	120
TCCCACCTGC	CTGATTCTTC	ATATGTTGGG	TGTCCCTGTT	TTTCTGGTGC	TATTTCCTGA	180
CTGCTGTTCA	GCTGCCACTG	TCCTGCAAAG	CCTGCCTTTT	TAAATGCCTC	ACCATTCCTT	240
CATTTGTTTC	TTAAATATGG	GAAGTGAAAG	TGCCACCTGA	GGCCGGGCAC	AGTGGCTCAC	300
GCCTGTAATC	CCAGCACTTT	GGGAGCCTGA	GGAGGCATCA	CCCGA		345

### (2) INFORMATION FOR SEQ ID NO:215:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 429 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:215:

GGTGATGCCT	CCTCAGGCGA	AGCTCAGGGA	GGACAGAAAC	CTCCCGTGGA	GCAGAAGGGC	60
AAAAGCTCGC	TTGATCTTGA	TTTTCAGTAC	GAATACAGAC	CGTGAAAGCG	GGGCCTCACG	120
ATCCTTCTGA	CCTTTTGGGT	TTTAAGCAGG	AGGTGTCAGA	AAAGTTACCA	CAGGGATAAC	180
TGGCTTGTGG	CGGCCAAGCG	TTCATAGCGA	CGTCGCTTTT	TGATCCTTCG	ATGTCGGCTC	240
TTCCTATCAT	TGTGAAGCAG	AATTCACCAA	GCGTTGGATT	GTTCACCCAC	TAATAGGGAA	300
CGTGAGCTGG	GTTTAGACCG	TCGTGAGACA	GGTTAGTTTT	ACCCTACTGA	TGATGTGTKG	360
TTGCCATGGT	AATCCTGCTC	AGTACGAGAG	GAACCGCAGG	TTCASACATT	TGGTGTATGT	420
GCTTGCCTT						429

#### (2) INFORMATION FOR SEQ ID NO:216:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 593 base pairs
  - (B) TYPE: nucleic acid

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:216:

TGACACCTAT	GTCCNGCATC	TGTTCACAGT	TTCCACAAAT	AGCCAGCCTT	TGGCCACCTC	60
TCTGTCCTGA	GGTATACAAG	TATATCAGGA	GGTGTATACC	TTCTCTTCTC	TTCCCCACCA	120
				TGGGCTCAGA		180
				CTCTGGATAA		240
				CTTAGTCTAA		300
				AGGTAGAAAG		360
				AGGGCAAATC		420
				GCTATCATGG		480
				GGACAGGGCC		540.
GANAACATTG	CCTATANCCC	TTGTCTTGCA	CCCAGATGCT	GGACAAGGTG	TCA	593

#### (2) INFORMATION FOR SEQ ID NO:217:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 335 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:217:

TGACACCTTG	TCCAGCATCT	GACGTGAAGA	TGAGCAGCTC	AGAGGAGGTG	TCCTGGATTT	60
CCTGGTTCTG	TGGGCTCCGT	GGCAATGAAT	TCTTCTGTGA	AGTGGATGAA	GACTACATCC	120
AGGACAAATT	TAATCTTACT	GGACTCAATG	AGCAGGTCCC	TCACTATCGA	CAAGCTCTAG	180
ACATGATCTT	GGACCTGGAG	CCTGATGAAG	AACTGGAAGA	CAACCCCAAC	CAGAGTGACC	240
TGATTGAGCA	GGCAGCCGAG	ATGCTTTATG	GATTGATCCA	CGCCCGCTAC	ATCCTTACCA	300
ACCGTGGCAT	CGCCCAGATG	CTGGACAAGG	TGTCA			335

- (2) INFORMATION FOR SEQ ID NO:218:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 248 base pairs
    - (B) TYPE: nucleic acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:218:

TACGTACTGG	TCTTGAAGGT	CTTAGGTAGA	GAAAAAATGT	GAATATTTAA	TCAAAGACTA	60
TGTATGAAAT	GGGACTGTAA	GTACAGAGGG	AAGGGTGGCC	CTTATCGCCA	GAAGTTGGTA	. 120
GATGCGTCCC	CGTCATGAAA	TGTTGTGTCA	CTGCCCGACA	TTTGCCGAAT	TACTGAAATT	180
CCGTAGAATT	AGTGCAAATT	CTAACGTTGT	TCATCTAAGA	TTATGGTTCC	ATGTTTCTAG	240
TACTTTTA						248

- (2) INFORMATION FOR SEQ ID NO:219:
  - (i) SEQUENCE CHARACTERISTICS:

(A)	LENGTH:	530	base	pairs
(B)	TYPE: nu	clei	c ac	id
(C)	STRANDEL	NESS	: si	agle

(D) TOPOLOGY: linear

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:219:

TGACGCTTGG	CCACTTGACA	CAAGTAGGGG	ATAAGGACAA	AGACCCATNA	GGTGGCCTGT	60
CAGCCTTTTG	TTACTGTTGC	TTCCCTGTCA	CCACGGCCCC	CTCTGTAGGG	GTGTGCTGTG	120
CTCTGTGGAC	ATTGGTGCAT	TTTCACACAT	ACCATTCTCT	TTCTGCTTCA	CAGCAGTCCT	180
GAGGCGGGAG	CACACAGGAC	TACCTTGTCA	GATGANGATA	ATGATGTCTG	GCCAACTCAC	240
CCCCCAACCT	TCTCACTAGT	TATANGAAGA	GCCANGCCTA	NAACCTTCTA	TCCTGNCCCC	300
TTGCCCTATG	ACCTCATCCC	TGTTCCATGC	CCTATTCTGA	TTTCTGGTGA	ACTTTGGAGC	360
AGCCTGGTTT	NTCCTCCTCA	CTCCAGCCTC	TCTCCATACC	ATGGTANGGG	GGTGCTGTTC	420
CACNCAAANG	GTCAGGTGTG	TCTGGGGAAT	CCTNANANCT	GCCNGGAGTT	TCCNANGCAT	480
TCTTAAAAAC	CTTCTTGCCT	AATCANATNG	TGTCCAGTGG	CCAACCNTCN		530

#### (2) INFORMATION FOR SEQ ID NO:220:

#### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 531 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:220:

TGACGCTTGG	CCACTTGACA	CTAAATAGCA	TCTTCTAAAG	GCCTGATTCA	GAGTTGTGGA	60
AAATTCTCCC	AGTGTCAGGG	ATTGTCAGGA	ACAGGGCTGC	TCCTGTGCTC	ACTTTACCTG	120
CTGTGTTTCT	GCTGGAAAAG	GAGGGAAGAG	GAATGGCTGA	TTTTTACCTA	ATGTCTCCCA	180
GTTTTTCATA	TTCTTCTTGG	ATCCTCTTCT	CTGACAACTG	TTCCCTTTTG	GTCTTCTTCT	240
TCTTGCTCAG	AGAGCAGGTC	TCTTTAAAAC	TGAGAAGGGA	GAATGAGCAA	ATGATTAAAG	300
AAAACACACT	TCTGAGGCCC	AGAGATCAAA	TATTAGGTAA	ATACTAAACC	GCTTGCCTGC	360
TGTGGTCACT	TTTCTCCTCT	TTCACATGCT	CTATCCCTCT	ATCCCCCACC	TATTCATATG	420
GCTTTTATCT	GCCAAGTTAT	CCGGCCTCTC	ATCAACCTTC	TCCCCTAGCC	TACTGGGGGA	480
TATCCATCTG	GGTCTGTCTC	TGGTGTATTG	GTGTCAAGTG	GCCAAGCGTC	A	531

### (2) INFORMATION FOR SEQ ID NO:221:

#### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 530 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:221:

ATTGACGCTT	GGCCACTTGA	CACCCGCCTG	CCTGCAATAC	TGGGGCAAGG	GCCTTCACTG	60
CTTTCCTGCC	ACCAGCTGCC	ACTGCACACA	GAGATCAGAA	ATGCTACCAA	CCAAGACTGT	120
TGGTCCTCAG	CCTCTCTGAG	GAGAAAGAGC	AGAAGCCTGG	AAGTCAGAAG	AGAAGCTAGA	180
TCGGCTACGG	CCTTGGCAGC	CAGCTTCCCC	ACCTGTGGCA	ATAAAGTCGT	GCATGGCTTA	240
ACAATGGGGG	CACCTCCTGA	GAAACACATT	GTTAGGCAAT	TCGGCGTGTG	TTCATCAGAG	300

CATATTTACA	CAAACCTCGA	TAGTGCAGCC	TACTATCCAC	TATECARA	ACGCTGCAAA	
CCTGAACAGC	ATCCCA CTCT	1653155	IACIAICCAC	TATTGCTCCT	ACGCTGCAAA	360
	AIGGGACIGT	ACTGAATACT	GGAAGCAGCT	GGTGATGGTA	ACGCTGCAAA CTTATTTGTG	420
TATCTAAACA	CAGAGAAGGT	ACAGTAAGAA	TATCCTATCA	<b>T</b>	GGGACCGCCA	420
<b>ででですかずみずぐて</b>	A CINCIPATION		INIGGIATCA	TAAACTTACA	GGGACCGCCA	480
TCCIMIMIGC	AGTCTGTTGT	GACCAAAATG	TGTCAAGTGG	CCAAGCGTCA		
			<del></del>	CCC I CM		530

# (2) INFORMATION FOR SEQ ID NO:222:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 578 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:222:

TGTATCGACG	TAGTGGTCTC	CGGGCTACTA	GGCCGTTCTC	TO CHOCATA CT	ACCTGGTTCA	
CTGAAAGGCG	САТСТСССТС	CCCCCCCTTCCC	2000011010	IGCIGGIAGI	ACCTGGTTCA	60
AAGGCACTTC	TAMES COURS		CCTGAAGCAG	GGGGAGGACT	TCGCCCAGCC	120
TE TOCCAUTIO	TWIGHGILLILL	AGCTGCGGCA	CTTCGAGACC	TOTOROGODA	00m0cm	180
01100011000	CGATTAAGGA	AGCCAGGGTA	AGGATTCCTT	CCTCCCCCA	3 03 003 000	
CAAACCACCA	CCCCCCCTAT	TCTGGCAGCC	CATATACATA	AGAACGAAAC	ACACCACGAA	240
ΑΑΤΑΑΑΓΝΙΑΑ	מ מ מ מ מ מ מ מ מ מ	3333333	CATATACATC	AGAACGAAAC	AAAAATAACA	300
CTTTTTTCTTT	AACCAAAAA	AAAAGAGAAG	GGGAAATGTA	TATGTCTGTC	CATCCTGTTG	360
CITIAGCCIG	ICAGCTCCTA	NAGGGCAGGG	ACCGTGTCTT	CCGAATCCTC	TOTO CARGO	
CGACTGCGGG	AAGTATCGGA	GGAGGAAGCA	GAGTCACCAC	AAGTTGAACG	TGTGCAGCGC	420
CGGCTCTTGG	GGGCTGGTGT	TCTA CTTCCA	CACTCAGCAG	AAGTTGAACG	GTGGGCCCGG	480
CTTTCCTCTCTT	TCC2 CTCC2	IGIACITCGA	GACCGCTTTC	GCTTTTTGTC	TTAGATTTAC	540
GTTTGCTCTT	TGGAGTGGGA	NACCACTACN	TCNATACA			578
						5/8

# (2) INFORMATION FOR SEQ ID NO:223:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 578 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:223:

	TGTATCGACG	TAGTCCTCTC	OMORPOGE				
	3 77 77 77	TAGEGGICIC	CICIIGCAAA	GGACTGGCTG	GTGAATGGTT	TCCCTGAATT	60
	ATGGACTTAC	CCTAAACATA	TCTTATCATC	ATTACCACTT	CCAAAAmmm	AGAATGTGTT	
	GTCACTGTTT	CATTTCATTC	CMJ CJ J CCE		GCAAAATATT	AGAATGTGTT	120
	CECENT	CATTIGATIC	CTAGAAGGTT	AGTCTTAGAT	ATGTTACTTT	AACCTGTATG	180
	CIGTAGTGCT	TTGAATGCAT	TTTTTGTTTG	CATTTTTCTT	TGCCCAACCT	CEC LEET	
	GCTGCTTAGG	TCTGGACTCT	CCTCCAMAAA	25777777	IGCCCAACCT	GTCAATTATA	240
	mm*	TETGGACIGI	CCIGGATAAA	GCTGTTAAAA	TATTCACCAG	TCCAGCCATC	300
	TIACAAGCIA	ATTAAGTCAA	CTAAATGCTT	CCTTGTTTTG	CCAGACTTCT	TATION AND	
	CTCAATTTCT	GGGTTCATTT	TGGGTCGGGT	77700000	CCAGACIIGI	TATGTCAATC	360
	TOTALOR	SCOTTCATT	1999196661	AAATCTTAGG	GTGTGACTTT	CTTAGCATCC	420
	TOIRACAICC	ATTCCCAAGC	AAGCACAACT	TCACATAATA	CTTTCCAAAA	CDD 63	
	GAAGCCTTTC	CTTCACCCAG	CCCACCAACE	MC3 mmmm con-	CITICCAGAA	GITCATIGCT	480
	7 C 7 7 C 7 C 7 T 7 T 7	SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS	CGGAGCAACI	TGATTTTCTA	CAACTTCCCT	CATCAGAGCC	540
•	ACAMOAGTAT	GGGATATGGA	GACCACTACG	TCGATACA			
							578

# (2) INFORMATION FOR SEQ ID NO:224:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 345 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

TGTATCGACG	TANTGGTCTC	CCAAGGTGCT	GGGATTGCAG	GCATGAGCCA	CCACTCCCAG	60
GTGGATCTTT	TTCTTTATAC	TTACTTCATT	AGGTTTCTGT	TATTCAAGAA	GTGTAGTGGT	120
AAAAGTCTTT	TCAATCTACA	TGGTTAAATA	ATGATAGCCT	GGGAAATAAA	TAGAAATTTT	180
TTCTTTCATC	TTTAGGTTGA	ATAAAGAAAC	AGAAAAAATA	GAACATACTG	AAAATAATCT	240
AAGTTCCAAC	CATAGAAGAA	CTGCAGAAGA	AATGAAGAAA	GTGATGATGA	TTTAGATTTT	300
GATATTGATT	TAGAAGACAC	AGGAGGAGAC	CACTACGTCG	ATACA		345

#### (2) INFORMATION FOR SEQ ID NO:225:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 347 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:225:

TGTATCGACG	TAGTGGTCTC	CAAACTGAGG	TATGTGTGCC	ACTAGCACAC	AAAGCCTTCC	60
AACAGGGACG	CAGGCACAGG	CAGTTTAAAG	GGAATCTGTT	TCTAAATTAA	TTTCCACCTT	120
CTCTAAGTAT	TCTTTCCTAA	AACTGATCAA	GGTGTGAAGC	CTGTGCTCTT	TCCCAACTCC	180
CCTTTGACAA	CAGCCTTCAA	CTAACACAAG	AAAAGGCATG	TCTGACACTC	TTCCTGAGTC	240
TGACTCTGAT	ACGTTGTTCT	GATGTCTAAA	GAGCTCCAGA	ACACCAAAGG	GACAATTCAG	300
AATGCTGGTG	TATAACAGAC	TCCAATGGAG	ACCACTACGT	CGATACA	•	347

#### (2) INFORMATION FOR SEQ ID NO:226:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 281 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:226:

AGGNGNGGGA	NTGTATCGAC	GTAGTGGTCT	CCCAACAGTC	TGTCATTCAG	TCTGCAGGTG	60
TCAGTGTTTT	GGACAATGAG	GCACCATTGT	CACTTATTGA	CTCCTCAGCT	CTAAATGCTG	120
AAATTAAATC	TTGTCATGAC	AAGTCTGGAA	TTCCTGATGA	GGTTTTACAA	AGTATTTTGG	180
ATCAATACTC	CAACAAATCA	GAAAGCCAGA	AAGAGGATCC	TTTCAATATT	GCAGAACCAC	240
GAGTGGATTT	ACACACCTCA	GGAGACCACT	ACGTCGATAC	A		281

#### (2) INFORMATION FOR SEQ ID NO:227:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 3646 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:227:

GGGAAACACT	TCCTCCCAGC	CTTGTAAGGG	TTGGAGCCCT	CTCCAGTATA	TGCTGCAGAA	60-
TTTTTCTCTC	GGTTTCTCAG	AGGATTATGG	AGTCCGCCTT	AAAAAAGGCA	AGCTCTGGAC	120
ACTCTGCAAA	GTAGAATGGC	CAAAGTTTGG	AGTTGAGTGG	CCCCTTGAAG	GGTCACTGAA	180

CCTCACAAT	GTTCAAGCT	G TGTGGCGGG1	r tgttactgaz	A ACTCCCGGC	C TCCCTGATCA	240
GTTTCCCTAC	ATTGATCAA	r ggctgagtt	r GGTCAGGAGO	ACCCCTTCCC	G TGGCTCCACT	300
CATGCACCAT	TCATAATTT	r ACCTCCAAGO	TCCTCCTGAC	CCAGACCGT	TTTTCGCCTC	360
GACCCTCAGO	C CGGTTCGGC:	CGCCCTGTAC	C TGĆCTCTCTC	TGAAGAAGAC	GAGAGTCTCC	420
CTCACCCAGT	CCCACCGCC	TAAAACCAGC	C CTACTCCCTT	C AGGGTCATCO	CATGTCTCCT	480
CGGCTATGTC	CCCTGTAGG	TCATCACCCA	A TTGCCTCTTG	GTTGCAACCG	TGGTGGGAGG	540
AAGTAGCCCC	TCTACTACCA	A CTGAGAGAGG	CACAAGTCCC	TCTGGGTGAT	GAGTGCTCCA	600
CCCCCTTCCT	GGTTTATGTC	CCTTCTTTCT	ACTTCTGACT	TGTATAATTO	GAAAACCCAT	660
AATCCTCCCT	TCTCTGAAAA	GCCCCAGGCT	TTGACCTCAC	TGATGGAGTC	TGTACTCTGG	720
ACACATTGGC	CCACCTGGGA	TGACTGTCAA	CAGCTCCTTT	TGACCCTTT	CACCTCTGAA	780
GAGAGGGAAA	GTATCCAAAC	AGAGGCCAAA	AAGTACAACC	TCACATCAAC	CAATAGGCCG	840
GAGGAGGAAG	CTAGAGGAAT	AGTGATTAGA	GACCCAATTG	GGACCTAATT	GGGACCCAAA	900
TTTCTCAAGT	' GGAGGGAGAA	CTTTTGACGA	TTTCCACCGG	TATCTCCTCG	TGGGTATTCA	960
GGGAGCTGCT	' CAGAAACCTA	TAAACTTGTC	TAAGGCGACT	GAAGTCGTCC	AGGGGCATGA	1020
TGAGTCACCA	GGAGTGTTT	' TAGAGCACCT	CCAGGAGGCT	TATCAGATTT	ACACCCCTTT	1080
TGACCTGGCA	GCCCCGAAA	ATAGCCATGC	TCTTAATTTG	GCATTTGTGG	CTCAGGCAGC	1140
CCCAGATAGT	' AAAAGGAAAC	TCCAAAAACT	' AGAGGGATTT	TGCTGGAATG	AATACCAGTC	1200
AGCTTTTAGA	GATAGCCTAA	AAGGTTTTTG	ACAGTCAAGA	GGTTGAAAAA	CAAAAACAAG	1260
CAGCTCAGGC	AGCTGAAAAA	AGCCACTGAT	AAAGCATCCT	GGAGTATCAG	AGTTTACTGT	1320
TAGATCAGCC	TCATTTGACT	TCCCCTCCCA	CATGGTGTTT	AAATCCAGCT	ACACTACTTC	1380
CTGACTCAAA	CTCCACTATT	CCTGTTCATG	ACTGTCAGGA	ACTGTTGGAA	ACTACTGAAA	1440
CTGGCCGACC	TGATCTTCAA	AATGTGCCCC	TAGGAAAGGT	GGATGCCACC	ATGTTCACAG	1500
ACAGTAGCAG	CTTCCTCGAG	AAGGGACTAC	GAAAGGCCGG	TGCAGCTGTT	ACCATGGAGA	1560
CAGATGTGTT	GTGGGCTCAG	GCTTTACCAG	CAAACACCTC	AGCACAAAAG	GCTGAATTGA	1620
TCGCCCTCAC	TCAGGCTCTC	CGATGGGGTA	AGGATATTAA	CGTTAACACT	GACAGCAGGT	1680
ACGCCTTTGC	TACTGTGCAT	GTACGTGGAG	CCATCTACCA	GGAGCGTGGG	CTACTCACCT	1740
CAGCAGGTGG	CTGTAATCCA	CTGTAAAGGA	CATCAAAAGG	AAAACACGGC	TGTTGCCCGT	1800
GGTAACCAGA	AAGCTGATTC	AGCAGCTCAA	GATGCAGTGT	GACTTTCAGT	CACGCCTCTA	1860
AACTTGCTGC	CCACAGTCTC	CTTTCCACAG	CCAGATCTGC	CTGACAATCC	CGCATACTCA	1920
ACAGAAGAAG	AAAACTGGCC	TCAGAACTCA	GAGCCAATAA	AAATCAGGAA	GGTTGGTGGA	1980
TTCTTCCTGA	CTCTAGAATC	TTCATACCCC	GAACTCTTGG	GAAAACTTTA	ATCAGTCACC	2040
TACAGTCTAC	CACCCATTTA	GGAGGAGCAA	AGCTACCTCA	GCTCCTCCGG	AGCCGTTTTA	2100
AGATCCCCCA	TCTTCAAAGC	CTAACAGATC	AAGCAGCTCT	CCGGTGCACA	ACCTGCGCCC	2160
AGGTAAATGC	CAAAAAAGGT	CCTAAACCCA	GCCCAGGCCA	CCGTCTCCAA	GAAAACTCAC	2220
CAGGAGAAA	GTGGGAAATT	GACTTTACAG	AAGTAAAACC	ACACCGGGCT	GGGTACAAAT	2280
ACCTTCTAGT	ACTGGTAGAC	ACCTTCTCTG	GATGGACTGA	AGCATTTGCT	ACCAAAAACG	2340
AAACTGTCAA	TATGGTAGTT	AAGTTTTTAC	TCAATGAAAT	CATCCCTCGA	CATGGGCTGC	2400
CTGTTTGCCA	TAGGGTCTGA	TAATGGACCG	GCCTTCGCCT	TGTCTATAGT	TTAGTCAGTC	2460
AGTAAGGCGT	TAAACATTCA	ATGGAAGCTC	CATTGTGCCT	ATCGACCCCA	GAGCTCTGGG	2520
CAAGTAGAAC	GCATGAACTG	CACCCTAAAA	AACACTCTTA	CAAAATTAAT	CTTAGAAACC	2580
GGTGTAAATT	GTGTAAGTCT	CCTTCCTTTA	GCCCTACTTA	GAGTAAGGTG	CACCCCTTAC	2640
TGGGCTGGGT	TCTTACCTTT	TGAAATCATG	TATGGGAGGG	TGCTGCCTAT	CTTGCCTAAG	2700
CTAAGAGATG	CCCAATTGGC	AAAAATATCA	CAAACTAATT	TATTACAGTA	CCTACAGTCT	2760
CCCCAACAGG	TACAAGATAT	CATCCTGCCA	CTTGTTCGAG	GAACCCATCC	CAATCCAATT	2820
CCTGAACAGA	CAGGGCCCTG	CCATTCATTC	CCGCCAGGTG	ACCTGTTGTT	TGTTAAAAAG	2880
TTCCAGAGAG	AAGGACTCCC	TCCTGCTTGG	AAGAGACCTC	ACACCGTCAT	CACGATGCCA	2940
ACGGCTCTGA	AGGTGGATGG	CATTCCTGCG	TGGATTCATC	ACTCCCGCAT	CAAAAAGGCC	3000
AACAGAGCCC	AACTAGAAAC	ATGGGTCCCC	AGGGCTGGGT	CAGGCCCCTT	AAAACTGCAC	3060
CTAAGTTGGG	TGAAGCCATT	AGATTAATTC	TTTTTCTTAA	TTTTGTAAAA	CAATGCATAG	3120
CTTCTGTCAA	ACTTATGTAT	CTTAAGACTC	AATATAACCC	CCTTGTTATA	ACTGAGGAAT	3180
CAATGATTTG	ATTCCCCCAA	AAACACAAGT	GGGGAATGTA	GTGTCCAACC	ТССТТТТТАС	3240
TAACCCTGTT	TTTAGACTCT	CCCTTTCCTT	TAATCACTCA	GCTTGTTTCC	ACCTGAATTG	3300
ACTCTCCCTT	AGCTAAGAGC	GCCAGATGGA	CTCCATCTTG	GCTCTTTCAC	TGGCAGCCGC	3360
TTCCTCAAGG	ACTTAACTTG	TGCAAGCTGA	CTCCCAGCAC	ATCCAAGAAT	GCAATTAACT	3420
GATAAGATAC	TGTGGCAAGC	TATATCCGCA	GTTCCCAGGA	ATTCGTCCAA	TTGATCACAG	3420
		- <del></del>			T TOW LWCWG	3400

CCCCTCTACC CTTCAGCAAC CACCACCCTG ATCAGTCAGC AGCCATCAGC ACCGAGGCAA GGCCCTCCAC CAGCAAAAAG ATTCTGACTC ACTGAAGACT TGGATGATCA TTAGTATTT TAGCAGTAAA GTTTTTTTT CTTTTTCTTT CTTTTTTCT CGTGCC	3540 3600 3646
(2) INFORMATION FOR SEQ ID NO:228:	
<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 419 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul>	
(ii) MOLECULE TYPE: cDNA	
<pre>(vi) ORIGINAL SOURCE:     (A) ORGANISM: Homo sapiens</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:228:	
TAAGAGGGTA CAAGATCTAA GCACAGCCGT CAATGCAGAA CACAGAACGT AGCCTGGTAA GTGTGTTAAG AGTGGGAATT TTTGGAGTAC AGAGTAAGGC ACCTAACCCT AGCTGGGGTT TGGTGACGGT CCCAGATGGC TTACAGAAGA AAGTGTCCTG AGATGAGTTT TTAAGAATGA ATAAGGATAG ACACAAGTGA GGACTGACTT GGCAGTGGTG AATGGTGGGT GGCAAAAAAC TTCGCATGTA TGGAAACTGC ACGTACAGGA ATGAAGAATG AGACTGTGTG GTGTTAATG AGCTGCAAAT ACTAATTTA TCCTGAAAGT TTTGAAGAGT TAACTAAAAA GTATTTTTA GTAAGGAAAT AACCCTACAT TTCAGGGTTA TTGTTTTTTTTTA ANATATTGAA GGTGCCCAA	60 120 180 240 300 360 419
(2) INFORMATION FOR SEQ ID NO:229:	
<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 148 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul>	
(ii) MOLECULE TYPE: cDNA	
<pre>(vi) ORIGINAL SOURCE:     (A) ORGANISM: Homo sapiens</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:229:	
AAGAGGGTAC CTGTATGTAG CCATGGTGGC AATGAGAGAC TGATTACTAC CTGCTGGAGA TTGTTTAAGT GAGTTAATAT ATTAAGGATA AAGGGAGCCA GGTTTTTTGA CTGTTGGAGA AGGAAATTAC AGATATTGAA GGTCCCAA	60 120 148
(2) INFORMATION FOR SEQ ID NO:230:	
(i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 257 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single	

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi)	ORIG	INAL	SOURCE	Ξ:	
	(A)	ORGA	NISM:	Homo	Sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:230:

TAAGAGGGTA CMA	AAAAAA AAAATAGAAC	GAATGAGTAA	GACCTACTAT	TTGATAGTAC	60
AACAGGGTGA CTA	TAGTCAA TGATAACTTA	ATTATACATT	TAACATAGAG	TGTAATTGGA	120
TTGTTTGTAA CTC	GAAGGAT AAATGCTTGA	GAGGATGGAT	ACCCCATTCT	CCATGATGTA	180
CTTATTTCAC ATT	ACATGCC TGTATCAAAG	CATCTCATAT	ACCCTATAAA	TATCTACACC	240
TACTATGTAC CCT			·	INIGIACACC	257

- (2) INFORMATION FOR SEQ ID NO:231:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 260 base pairs
    - (B) TYPE: nucleic acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: cDNA
  - (vi) ORIGINAL SOURCE:
    - (A) ORGANISM: Homo sapiens
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:231:

TAAGAGGGT	CGGGTATTTG	CTGATGGGAT	TTTTTTTTCT	TTCTTTTTCT	TTGGAAAACA	60
AAATGAAAG	CAGAACAAAA	TTATTGAACA	AAAGACAGGG	ΔΟΤΔΑΔΤΟΤΟ	CACAAATCAA	120
GTCCCCTCAC	CTGACTGCCA	TTTCATTCTA	TCTGACCTTC	CACTOMACCO	MAGGAAATGAA	
GGGGGTGGA	GGGATTAATC	TCATACACCO	AMAMMMAAAA	CAGTCTAGGT	TAGGAGAATA	180
A A CTCC A TOC	TACCCTCTTA	IGAIACAGGI	ATATTTAAAG	CAACTCTGCA	TGTGTGCCAG	240
AAGICCAIGC	TACCCTCTTA					260

- (2) INFORMATION FOR SEQ ID NO:232:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 596 base pairs
    - (B) TYPE: nucleic acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: cDNA
  - (vi) ORIGINAL SOURCE:
    - (A) ORGANISM: Homo sapiens
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:232:

TGCTCCTCTT	GCCTTACCAA	CCACAAATTA	GAACCATAAT	GAGATGTCAC	CTCATACCTG	60
GTGGGATTAA	CATTATTTAA	AAAATCAGAA	GTATTGACAA	GGATGTGAAG	AAATTAGAAC	120
ATCTGTGCAC	TGTTGGTGGG	AATGTAAAAA	AGGTGTGGCC	ACTATGGGTA	ACAGCATGAA	180
GGTTCCTCAA	TTTTAAAAAA	TTTTAATCTA	CTCTATGATC	GATCTTGAGG	TTGTTTATGC	240
AAAAGAACTG	AAATCAGGAT	TTTGAGGAAA	TATTCACATT	CCCACATCCA	TTTCTGCTTT	300
ATTCATAATA	CTCAAGAGAT	GGAAACAACC	TAAATGTCCA	TCCCGGGATG	AATGGATAAA	360
CACAGTGTGG	TATATGCATA	CAATGGAATA	TTATTTAGTC	TTTAAAAAGA	AAAATTCTAT	420

CATATACTAC AACTTANATN AACCTTGAGG ACACAATGCT NAGTGAAATA AGCCACGGAA GGACGAATAC TGCATTATTC CCTTATATGA AGTATCTAAA GTGGTCAAAC TCTTANAGCA NAAAGTAAAA ATGGGTGGTT GCCANACAGT TGGTTAGGCN AGAAGANAAN CCTANT	. 480 540 596
(2) INFORMATION FOR SEQ ID NO:233:	
(5) CHOMPNON CURPLE CONTRACTOR	
(i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 96 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: CDNA	
(vi) ORIGINAL SOURCE:	
(A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:233:	
TCTTCTGAAG ACCTTTCGCG ACTCTTAAGC TCGTGGTTGG TAAGGCAAGA GGAGCGTTGG	60
TAAGGCAAGA GGAGCGTTGG TAAGGCAAGA GGAGCA	96
(2) INFORMATION FOR SEQ ID NO:234:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 313 base pairs	
(B) TYPE: nucleic acid	
<pre>(C) STRANDEDNESS: single (D) TOPOLOGY: linear</pre>	
(b) Torobodi. Timeat	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE:	
(A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:234:	
IGTAAGTCGA GCAGTGTGAT GATAAAACTT GAATGGATCA ATAGTTGCTT CTTATGGATG	60
AGCAAAGAAA GTAGTTTCTT GTGATGGAAT CTGCTCCTGG CAAAAATGCT GTGAACGTTG	120
TTGAAAAGAC AACAAAGAGT TTAGAGTAGT ACATAAATTT AGAATAGTAC ATAAACTTAG	180
AATAGTACAT AAACTTAGTA CATAAATAAT GCACGAAGCA GGGGCAGGGC TTGAGAGAAT IGACTTCAAT TTGGAAAGAG TATCTACTGT AGGTTAGATG CTCTCAAACA GCATCACACT	240
GCTCGACTTA CAA	300 313
(2) INFORMATION FOR SEQ ID NO:235:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 550 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	

(vi) ORIGINAL SOURCE:

## (A) ORGANISM: Homo sapiens

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:235:

AACGAGGACA	GATCCTTAAA	AAGAATGTTG	AGTGAAAAA	GTAGAAAATA	AGATAATCTC	60
CAAAGTCCAG	TAGCATTATT	TAAACATTTT	TAAAAAATAC	ACTGATAAAA	ATTTTGTACA	120
TTTCCCAAAA	ATACATATGG	AAGCACAGCA	GCATGAATGC	CTATGGGRTT	GAGGATAGGG	180
GTTGGGAGTA	GGGATGGGGA	TAAAGGGGGA	AAATAAAACC	AGAGAGGAGT	בייתי איני איני איני איני	240
TCATGAACCA	AGGAGTATAA	TTATTTCAAC	TATTTGTACC	WGAAGTCCAG	AAAGAGTGGA	300
GGCAGAAGGG	GGAGAAGAGG	GCGAAGAAAC	GTTTTTGGGA	GAGGGGTCCC	ASAAGAGAGA	360
TTTTCGCGAT	GTGGCGCTAC	ATACGTTTTT	CCAGGATGCC	TTAAGCTCTG	C A C C C Tr A Tr Tr Tr	420
TTCTCATCAC	TAATATTAGA	TTAAACCCTT	TGAAGACAGC	GTCTGTGGTT	יירייריים בייייר	480
AGCTTTCCCT	CCGTGTCTTG	CACACAGTAG	CTGTTTTACA	AGGGTTGAAC	TGACTGAAGT	540
GAGATTATTC						550

## (2) INFORMATION FOR SEQ ID NO:236:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 325 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:236:

TAGACTGACT	CATGTCCCCT	ACCAGAGTAG	CTAGAATTAA	TAGCACAAGC	CTCTACACCC	60
AGGAACTCAC	TATTGAATAC	ለጥ እ አ ጥርር እ እ	WWW wwas a a		TTGGAAGGAA	60
Ammomor or	INTICAMIAC	ATAMATGGAA	TTTATTCAGC	CTTAAAAAAGT	TTGGAAGGAA	120
ATTCTGACAT	ATGCTAAAAC	ATGGATGAAC	CTTGAAGACT	TTATGATAAG	TAAAAGAAGC	180
CAGTCATAAA	AGGAAAATA	<b>ጥጥርር አጥር አጥጥ</b>	CCA CTTTA TTA TT	Ch Comp comp	GAGTAGTCAA	
TTTTCTTT	3.63.63.63.6	TICCATGATI	CCACTIATAT	GAGGTACCTA	GAGTAGTCAA	240
TITCATAGAA	ACACAAAATA	GAATGGTGTT	TGCCAGGGCT	TTTGAGGAAA	AGGGAATGAC	300
AAGTTAGGGG	ACATGAGTCA	CTCTA			110001110110	
	Cilox Ch	01017	•			325

## (2) INFORMATION FOR SEQ ID NO:237:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 373 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:237:

TAGACTGACT	CATGTCCCCT	ATCTACTCAA	CATTTCCACT	ጥር እ አርጥርጥር እ	TAGGCATCTC	
AGACTTATCT	TCTCCCA A A C	63336555	CHITTCCACT	TGAAGICIGA	IAGGCATCTC	60
AGACTIATCT	IGICCCAAAG	CAAACTCTTT	ATTTCTTTTC	ATCCTAGTCT	TTATTTCTTG	120
TGCTGTCTTA	CCCATCTCAA	AAGAGTGCCA	777007007	1000000	ACAGAAATCT	120
		FINGAGIGCCA	AAATCCACCA	AGTTGCTGAA	ACAGAAATCT	180

AAGAAATATC	CTTGATTCTT	CTTTTTCCCA	TCTACTTCAC	TTCTAATTCA	TTAGTAAATA	240
ATCTGTTTCA	GAAAACCAAA	CACCTCATGT	TCTCACTCAT	AAGGGGGAGT	TGAACAATGA	
GAACACACAG	ACACAGGGAG	GGGAACATCA	CACACCACGG	CCCGTCAGGG	AGTANGGGAC	300
ATGAGTCAGT			0.10110071000	CCCGTCAGGG	AGTANGGGAC	360
	C 1 1 1					373

- (2) INFORMATION FOR SEQ ID NO:238:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 492 base pairs
    - (B) TYPE: nucleic acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: cDNA
  - (vi) ORIGINAL SOURCE:
    - (A) ORGANISM: Homo sapiens
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:238:

TACACTOR OF	G1 = G = G = G = G					
TAGACTGACT	CATGTCCCCT	ATAATGCTCC	CAGGCATCAG	AAAGCATCTC	AAACTGGAGC	60
TGACACCATG	GCAGAGGTTT	CAGGTAAGTC	ACAAAAGGGG	TCCTAAAGAA	тттсссстса	120
ATATCAGAGT	GATTAGAAGA	AGTGGACAGA	CCTACCCAAC	TTAAACATAT	CCCLCTCA	
		1101 COACAGA	GCIACCCAAG	TIMAACATAT	GCGAGATAAA	180
AAAAATATGG	CACTTGTGAA	CACACACTAC	AGGAGGAAAA	TAAGGAACAT	AATAGCATAT	240
TGTGCTATTA	TGATGATGAA	GAACCTCTCT	ANAAGAAAAC	ATAACCAAAG	77777777	220
**		C. I. CCICICI	AVAAGAAAAC	ATAACCAAAG	AAACAAAGAA	300
AATTCCTGCN	AATGTTTAAT	GCTATAGAAG	AAATTAACAA	AAACATATAT	TCAATGAATT	360
CAGAAAAGTT	ACCA CCTCA AT	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7				
Chommagii	AGCAGGICAN	AAGAAAACAA	ATCAAAGACC	AGAATAATCC	CATTTTAGAT	420
TGTCGAGTAA	ACTANAACAG	AAACAATACC	አርጥርር አአአጥጥ	GAATTCCTAC		
	e r.an nacho	MACAMIACC	ACIGGAAAII	GAATTCCTAC	GTANGGGACA	480
TGANTCANTC	TA					400
						492

- (2) INFORMATION FOR SEQ ID NO:239:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 482 base pairs
    - (B) TYPE: nucleic acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: cDNA
  - (vi) ORIGINAL SOURCE:
    - (A) ORGANISM: Homo sapiens
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:239:

TGGAAAGTAT	TTAATGATGG	GCAACTTGCT	GTTTACTTCC	TACATATCCC	ATCATCTTCT	60
GTATTTTTT	AAATAACTTT	TTTTTGGATT	TTTAAAGTAA	CCTTATTCTG	AGAGGTAACA	120
TGGATTACAT	ACTTCTAAGC	CATTAGGAGA	CTCTATGTTA	AACCAAAAGG	AAATGTTACT	180
AGATCTTCAT	TTGATCAATA	GGATGTGATA	ATCATCATCT	TTCTGCTCTA	ATGGAAAAGT	240
ACTANAAACA	TGGAACCATA	ATCTTAGATG	AACAACGTTA	GAATTTGCAC	TAATTCTACG	300
GAATTTCAGT	AATTCGGCAA	ATGTCGGGCA	GTGACACAAC	ATTTCATGAC	GGGGACGCAT	360
CTACCAACTT	CTGGCGATAA	GGGCCACCCT	TCCCTCTGTA	CTTACAGTCC	CATTTCATAC	420
ACAGTCTTTG	ATTAAAATATT	CACATTTTTT	CTCTACCTAA	AGACCTTCAA	GACCAGTACG	480
TA					•	482

## (2) INFORMATION FOR SEQ ID NO:240:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 519 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:240:

TGTATCGACG TAGTGGTC	TC CCCATGTGAT	AGTCTGAAAT	ATAGCCTCAT	GGGATGAGAG	<b>CO</b>
GCTGTGCCCC AGCCCGAC	AC CCGTAAAGGG	TCTGTGCTGA	GGTGGATTAC	TARAGAGAG	60
AAGCCTTGCA GTTGAGAT	AG AGGAAGGGCA	CTGTCTCCTC	COTCCCCCC	TAAAAGAGGA	120
GTCTCGGTAT AAAACCCG	AT TGTACATTTG	TTCAATTCTC	CCIGCCCTG	GGAACTGAAT	180
TATGGCGGGA GGCGAGAC	AT CTTCCCACCA	ATTCAMITCIG	AGATAGGAGA	AAAACCACCC	240
TGTTTGGGCG GACGGAAA	CA TARAMOMOR	ATGCTGCCTT	GTTATGCTTT	ACTCCACAGA	300
TGTTTGGGCG GAGGGAAA	CA TAAATCTGGC	CTACGTGCAC	ATCCAGGCAT	AGTACCTCCC	360
TTTGAACTTA ATTATGAC	AC AGATTCCTTT	GCTCACATGT	TTTTTTGCTG	ACCTTCTCCT	420
TATTATCACC CTGCTCTC	CT ACCGCATTCC	TTGTGCTGAG	ATAATGAAAA	TAATATCAAT	480
AAAAACTTGA NGGAACTC	GG AGACCACTAC	GTCGATACA		7.77	519

### (2) INFORMATION FOR SEQ ID NO:241:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 771 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:241:

TGTATCGACG	TACTCCTCTC	CACTOCOCO	mmc1			
3 CTCTTCOACG	INGIGGICIC	CACTCCCGCC	TTGACGGGGC	TGCTATCTGC	CTTCCAGGCC	60
ACTGTCACGG	CTCCCGGGTA	GAAGTCACTT	ATGAGACACA	CCAGTGTGGC	CTTCTTCCCT	120
TGAAGCTCCT	CAGAGGAGGG	TGGGAACAGA	CTCACCCACC	GGGCAGCCTT	CIIGIIGGCI	120
AGGACCCTCA	COMMOGRACIO	TOOCHACAGA	GIGACCGAGG	GGGCAGCCTT	GGGCTGACCT	180
AGGACGGICA	GCTTGGTCCC	TCCGCCAAAC	ACGAGAGTGC	TGCTGCTTGT	ATATGAGCTG	240
CAGTAATAAT	CAGCCTCGTC	CTCAGCCTGG	AGCCCAGAGA	TGGTCAGGGA	CCCCCCCCC	
CCANACTTCC	ACCCACACAA	CCCAMMACAA	1.00ccnonon	1001CAGGGA	GGCCGTGTTG	300
700700	AGCCAGAGAA	GCGATTAGAA	ACCCCTGAGG	GCCGATTACC	GACCTCATAA	360
ATCATGAATT	TGGGGGCTTT	GCCTGGGTGC	TGTTGGTACC	ANGAGACATT	ስ ጥጥ ስ ጥ ስ ስ <b>ር</b> ርር እ	
CCAACGTCAC	TGCTGGTTCC	ANTGCAGGCA	A A TOOMBO	TCNAACTGTC	ATTATAACCA	420
A CTA COMOCA	7001001100	ANTOCAGGGA	AAA TGGTTGA	TCNAACTGTC	CAAGAAAACC	480
ACTACGTCCA	TACCAATCCA	CTAATTGCCN	GCCGCCTGCA	GGTTCAACCA	TATTGGGGAA	540
NAACTCCCCN	CCGCCGTTTG	GGATTGNCAT	NIA A COTTO	AATTTTTTCC	TITT TOOGAA	
CCCCCTAAAA	The second	CONTROLL	NAACCITIGA	AATTTTTCC	TATTANTTGT	600
	TAAACCNTTG	GGCNTTAATC	CATTGGGTCC	ATANCTTNTT	TNCCCGGTTT	660
TTAAAANTTG	TTTATCCCGC	CNCCCNATTT	CCCCCCAAC	TTTCCAAAAC	CCCAAACCT	
ΤΝΑΑΑΤΤΤΝΤ	ጥእነን እ እ ወርርመር	CCCCCCCCCCC		TITCCAAAAC	CCGAAACCNT	720
	TIMMAMCCCIG	GGGGGTTCCC	NAATTAANN	TTNAANCTNC	С	771

(2) INFORMATION FOR SEQ ID NO:242:

(1) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 167 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
<pre>(vi) ORIGINAL SOURCE:     (A) ORGANISM: Homo sapiens</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:242:	
TGGGCACCTT CAATATCGGG CTCATCGATA ACATCACGCT GCTGATGCTG CTGTTGCTGG TCCTCTCTAG GAACCTCTGG ATTTTCAAAT TCTTTGAGGA ATTCATCCAA ATTATCTGCC TCTCCTCCTT TCCTCCTTTT TCTAAGGTCT TCTGGTACAA GCGGTCA	60 120 167
(2) INFORMATION FOR SEQ ID NO:243:	•
<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 338 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul>	
(ii) MOLECULE TYPE: cDNA	
<pre>(vi) ORIGINAL SOURCE:    (A) ORGANISM: Homo sapiens</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:243:	
TTGGGCACCT TCAATATCTA CTGATCTAAA TAGTGTGGTT TGAGGCCTCT TGTTCCTGGC TAAAAAATCCT TGGCAAGAGT CAATCTCCAC TTTACAATAG AGGTAAAAAT CTTACAATGG ATATTCTTGA CAAAGCTAGC ATAGAGACAG CAATTTTACA CAAGGTATTT TTCACCTGTT TAATAACAGT GGTTTTCCTA CACCCATAGG GTGCCACCAA GGGAGGAGTG CACAGTTGCA GAAACAAATT AAGATACTGA AGACAACACT ACTTACCATT TCCCGTATAG CTAACCACCA GTTCAACTGT ACATGTATGT TCTTATGGGC AATCAAGA	60 120 180 240 300 338
(2) INFORMATION FOR SEQ ID NO:244:	
<ul> <li>(i) SEQUENCE CHARACTERISTICS: <ul> <li>(A) LENGTH: 346 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul> </li> <li>(ii) MOLECULE TYPE: cDNA</li> <li>(vi) ORIGINAL SOURCE:</li> </ul>	
(VI) ORIGINAL SOURCE:  (A) ORGANISM: Homo sapiens	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:244:

TTTTTGGCTC	CCATACAGCA	CACTCTCATG	GGAAATGTCT	GTTCTAACCT	CAACCCATAA	6
TGCAAAAATC	ATCAATATAC	TTGAAGATCC	CCGTGTANGG	TACAATCEAT	TTAATATTAT	
CACTGATACA	ΔΤΤΟΔΤΟΟΛΑ	TACCACTION	ACECTOTAGE	TACAAIGIAI	TTAATATTAT CACTGTTTTT	120
CTTCTATAAA	ALIGATOCAA	TACCAGIIII	AGTCTGGCAT	TGAATCAAAT	CACTGTTTTT	180
GIIGIAIAAA	AAGAGAAATA	TTTAGCTTAT	ATTTAAGTAC	CATATTGTAA	GAAAAAAGAT	240
GCTTATCTTT	ACATGCTAAA	ATCATGATCT	GTACATTGGT	GCAGTGAATA	TTACTGTAAA	300
AGGGAAGAAG	GAATGAAGAC	GAGCTAAGGA	TATTGAAGGT	GCCCNN	111010111111	
				CCCAA		346

### (2) INFORMATION FOR SEQ ID NO:245:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 521 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:245:

አሮሮአ አጥሮሮሮአ	C3 CCC3 C3 C5					
ACCAAICCCA	CACGGATACT	GAGGGACAAG	TATATCATCC	CATTTCATCC	CTACAGCAGC	60
AACTTCATGA	GGCAGGAGTT	ATTAGTCCCA	TTTTACAGAA	GAGGAAACTG	A C A COMPA CCC	
<b>Δ</b> GΔTCΔΔGTA	A TTTTCCCCCA C	amagaa a		GROGHANCIG	AGACTIAGGG	120
MONICARGIA	ATTIGCCCAG	GICGCACAAT	TAGTGATAGA	GCCAGGGCTT	GAAGCGACGT	180
CTGTCTTAAG	CCAATGACCC	CTGCAGATTA	TTAGAGCAAC	TGTTCTCCAC	A A C A C C C C C A A	240
GCCTCTTCCT	ANIA A CICIMICIA CI	GMGG3.G3.	TITIONOCAAC	IGIICICCAC	AACAGTGTAA	240
GCCTCTTGCT	ANAAGCTCAG	GTCCACAAGG	GCAGAGATTT	TTGTCTGTTT	TGCTCATTGC	300
TCCTTCCCCA	TTGCTTAGAG	CAGGGTCTGC	CACGAANCAG	GTTCTCAATG	CIEI CEEI EE	
<b>አአአጥሮጥአጥአጥ</b>	7707007770		CHCGHANCAG	GITCICAATG	CATAGTTATT	360
AAAIGIAIAI	AAGAGCAAAC	ATATGTTACA	GAGAACTTTC	TGTATGCTTG	TCACTTACAT	420
GAATCACCTG	TGANATGGGT	ATGCTTGTTC	CCCANTCTTC	CAGATNAAGA		
CCCCAAAMCA		11100110110	CCCANIGIIG	CAGATNAAGA	TATTGAANGT	480
GCCCAAATCA	CTANTTGCGG	GCGCCTGCAN	GTCCANCATA	T		521
						J Z 1

### (2) INFORMATION FOR SEQ ID NO:246:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 482 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:246:

TGGAACCAAT	CCAAATACCC	ATCAATGATA	GACTGGATAA	AGAAAATTTG	GCACATGTTC	60
ACCATGAAAT	ACTATGCAGC	CATAAAAAAG	GATGAGTTCA	TATCCTTTCC	ACCCARGING	
ATGAAGCTGG	AGACCATCAT	TOTOROGONA	CHICACTICA	IMICCITIGO	AGGGACATGG	120
A TOTALOGICA	MONCCAICAI	1C I CAGCAAA	CTAACAAGGG	AACAGAAAAC	CAAACACTGC	180
ATGITCICAC	TCTTAAGTGG	GAGCTGAACA	ATGAGAACAC	ATGGACACAG	GGAGGGGAAC	240
ATCACACAGT	GGGGCCTGCT	GGTGGGTAGG	GGTCTAGGGG	AGGGATAGCA	TTAGGAGAAA	300
TACCTAATGT	AGATGACGGG	TTGATGGGTG	CAGCAAACCA	CCATGACACG	TCTATACCTA	360
TGTAACAAAC	CTGCATGTTC	TGCACATGTA	CCCCAGAACT	TANAGEGER	IGIAIACCIA	
TAAGAAAAA	GTTAAGTATG	TCATACATAC	202222	TAAAGIGITA	ATAAAAAAAT	420
	GIIAAGIAIG	ICATAGATAC	ATAAAATATIT	GTANATATTG	AAGGTGCCCA	480

AA	482
(2) INFORMATION FOR SEQ ID NO:247:	
<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 474 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul>	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:247:	
TTCGATACAG GCACAGAGTA AGCAGAAAAA TGGCTGTGGT TTAACCAAGT GAGTACAGTT AAGTGAGAG GGGGCAGAG AGACAAGGGC ATATGCAGGG GGTGATTATA ACAGGTGGTT GTGCTGGGAA GTGAGGGTAC TCGGGGATGA GGAACAGTGA AAAAGTGGCA AAAAGTGGTA AGATCAGTGA ATTGTACTTC TCCAGAATTT GATTTCTGGN GGAGTCAAAT AACTATCCAG TTTGGGGTAT CATANGGCAA CAGTTGAGGT ATAGGAGGTA GAAGTCNCAG TGGGATAATT GAGGTTATGA ANGGTTTGGT ACTGACTGAT ACTGACAANG TCTGGGTTAT GACCATGGGA ATGAATGACT GTANAAGCGT ANAGGATGAA ACTATTCCAC GANAAAGGGG TCCNAAAACT AAAAANNNAA GNNNNNGGGG AATATTATTT ATGTGGATAT TGAANGTGCC CAAA  (2) INFORMATION FOR SEQ ID NO:248:	60 120 180 240 300 360 420 474
<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 355 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:248:	
TTCGATACAG GCAAACATGA ACTGCAGGAG GGTGGTGACG ATCATGATGT TGCCGATGGT CCGGATGGNC ACGAAGACGC ACTGGANCAC GTGCTTACGT CCTTTTGCTC TGTTGATGGC CCTGAGGGGA CGCAGGACCC TTATGACCCT CAGAATCTTC ACAACGGGAG ATGGCACTGG ATTGANTCCC ANTGACACCA GAGACACCCC AACCACCAGN ATATCANTAT ATTGATGTAG TTCCTGTAGA NGGCCCCCTT GTGGAGGAAA GCTCCATNAG TTGGTCATCT TCAACAGGAT CTCAACAGGTT TCCGATGGCT GTGATGGCA TAGTCATANT TAACCNTGTN TCGAA	60 120 180 240 300 355
(2) INFORMATION FOR SEQ ID NO:249:	
<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 434 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:249:	
TTGGATTGGT CCTCCAGGAG AACAAGGGGA AAAAGGTGAC CGAGGGCTCC CTGGAACTCA AGGATCTCCA GGAGCAAAAG GGGATGGGGG AATTCCTGGT CCTTGGTC CCTTAGGTCC	60 120

ACCTGGTCCT CCAGGCTTAC CAGGTCCTCA AGGCCCAAAG GGTAACAAAG GCTCTACTGG ACCCGCTGGC CAGAAAGGTG ACAGTGGTCT TCCAGGGCCT CCTGGGCCTC CAGGTCCACC	180 240
TGGTGAAGTC ATTCAGCCTT TACCAATCTT GTCCTCCAAA AAAACGAGAA GACATACTGA	300
AGGCATGCAA GCAGATGCAG ATGATAATAT TCTTGATTAC TCCCATCCAA MCGAAGCAA	360
ATTTGGTTCC CTCAATTCCC TGAAACAAGA CATCGAGCAT ATGAAATTTC CAATGGGTAC TCAGACCAAT CCAA	420
TCAGACCAAT CCAA	434
(2) INFORMATION FOR SEQ ID NO:250:	
<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 430 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul>	
(b) Topologi: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:250:	
TGGATTGGTC ACATGGCAGA GACAGGATTC CAAGGCAGTG AGAGGAGGAT ACAATGCTTC	60
TCACTAGITA TTATTTA TTTTATTTTT GAGATGAAGT CTCCCTTTCT CTCCCTTTCT	60 120
GGAGAGCGGI GGTGCGATCT TGGCTCTCTG CAACCCCCGC CTCAACCAAT TGTGGTGTGT	180
TAGCCICGCG GGTAGATGGA ATTACAGGCG CCCACCGCCA TGCCCA ACTA ACT	240
GICTICAGIA GAGACAGGGT TTCGCCATGT TGGGCAGGCT GGTCTTCAAC TGGTCA	300
NAGIGATOTE COUTCOTOGG COTCACAAAG TGCTGGAATT ACACGGATGG COTTGGAG	360
CCAGTCAACT TCTCACTAGT TATGGCCTTA TCATTTTCAC CACATTCTAT TCCCCCAAAA	420
AAAAAAAAN	430
(2)	430
(2) INFORMATION FOR SEQ ID NO:251:	
(i) SEQUENCE CHARACTER TOTAL	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 329 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(B) TOPOLOGI: IIMear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:251:	
TGGTACTCCA CCATYATGGG GTCAACCGCC ATCCTCGCCC TCCTCCTGGC TGTTCTCCAA	
GGAGICIGIG CCGAGGTGCA GCTGRTGCAG TCTGGAGCAG AGCTCAAAAA GTGGGGGGA	60
TCTCTGAAGA TCTCCTGTAA GGGTTCTGGA TACACCTTTA AGATCTACTG GATCGCCTGG	120
THE CONTROL TO COURSE A COUNTY OF THE COURSE	180
JAIACCAGAI ACAGCCCGTC CTTCCAAGGC CAGGTCACCA TCTCAGTCCA TAACTCCATC	240
AGCACCGCCT ATCTGCAGTG GAGTACCAA	300
	329
(2) INFORMATION FOR SEQ ID NO:252:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 536 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:252:

TGGTACTCCA CTCAGCCCAA CCTTAATTAA GAATTAAGAG GGAACCTATT ACTATTCTCC CAGGCTCCTC TGCTCTAACC AGGCTTCTGG GACAGTATTA GAAAAGGATG TCTCAACAAG

120

TATGTAGATC CTGTACTGGC CTAAGAAGTT AAACTGAGAA TAGCATAAAT CAGACCAAAC TTAATGGTCG TTGAGACTTG TGTCCTGGAG CAGCTGGGAT AGGAAAACTT TTGGGCAGCA AGAGGAAAAAAAAAA	180 240 300 360 420 480 536
(2) INFORMATION FOR SEQ ID NO:253:	•
<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 507 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul>	·
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:253:	
NTGTTGCGAT CCCAGTAACT CGGGAAGCTG AGGCGGAGG ATCACCTGAG CTCAGGAGGT TGAGGCCGCA GTGAGCCGGG ACCACGCCAC TACACTCCAG CCTGGGGCAT AGAGTGAGAC CCTCCAAGAC AGAAAAGAAA	60 120 180 240 300 360 420 480
(2) INFORMATION FOR SEQ ID NO:254:	
<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 222 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:254:	
TTGGATTGGT CACTGTGAGG AAGCCAAATC GGATCCGAGA GTCTTTTTCT AAAGGCCAGT ACTGGCCACA CTTTCTCCTG CCGCCTTCCT CAAAGCTGAA GACACACAGA GCAAGGCGCT TCTGTTTTAC TCCCCAATGG TAACTCCAAA CCATAGATGG TTAGCTNCCC TGCTCATCTT TCCACATCCC TGCTATTCAG TATAGTCCGT GGACCAATCC AA	60 120 180 222
(2) INFORMATION FOR SEQ ID NO:255:	
<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 463 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul>	•
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:255:	

TGTTGCGATC CATAAATGCT GAAATGGAAA TAAACAACAT GATGAGGGAG GATTAAGTTG

GGGAGGGAGC ACATTAAGGT GGCCATGAAG TTTGTTGGAA GAAGTGACTT TTGAACAAGG

CCTTGGTGTT AAGAGCTGAT GAGAGTGTCC CAGACAGAGG GGCCACTGGT ACAATAGACG	100
AGAIGGGAGA GGGCTIGGAA GGTGTGCGAA ATAGGAAGGA GTTTGTTCTC CTATGAGTG	180
AGIGAACACA GAGGCGAGAG GCCCTGGTGG GTGCAGCTGG AGAGTTATGC AGAGTAAGA	240 300
TAGGCCCIGT GGGGGACTGT AGACTGTCAG CAATAATCCA CAGTTTGGAT TTTATTGTATA	
GAGIGATGGG AAGCCGTGGA AAGGGGGTTA AGCAAGGAGT GAAATTATCA CATTURA CACT	360 420
GATAAAATA AATTGGTCTG GCTACTGGGG AAAAAAAAA AAA	463
(2) INFORMATION FOR SEQ ID NO:256:	403
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 262 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:256:	
TTGGATTGGT CAACCTCCTC AACTCTA	
TTGGATTGGT CAACCTGCTC AACTCTACYT TTCCTCCTTC TTCCTAAAAA ATTAATGAAT	60
CCAATACATT AATGCCAAAA CCCTTGGGTT TTATCAATAT TTCTGTTAAA AAGTATTATC	120
CAGAACTGGA CATAATACTA CATAATAATA CATAACAACC CCTTCATCTG GATGCAAACA	180
TCTATTAATA TAGCTTAAGA TCACTTTCAC TTTACAGAAG CAACATCCTG TTGATGTTAT TTTGATGTTT GGACCAATCC AA	240
STATE OF THE STATE	262
(2) INFORMATION FOR SEQ ID NO:257:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 461 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:257:	
GNGGNNNNNN NNNCAATTCG ACTCNGTTCC CNTGGTANCC GGTCGACATG GCCGCGGGAT	
TACCGCTTGT NNCTGGGGGT GTATGGGGGA CTATGACCGC TTGTAGCTGG GGGTGTATGG	60
GGGACTATGA CCGCTTGTAG MTGGKGGTGT ATGGGGGGACT ATGACCGCTT GTCGGGTGGT	120
CGGATAAACC GACGCAAGGG ACGTGATCGA AGCTGCGTTC CCCCTCTTTC CCAMGGGTAC	180
GGATCATGGA CAGCAATATC CGCATTCGYC TGAAGGCGTT CGACCATCGC GTGCTCGATC	240
AGGCGACCGG CGACATCGCC GACACCGCAC GCCGTACCGG CGCGCTCATG GGGGGTGGC	300
TOCCGCTTCC CACGCGCATC GAGAAGTTCA CGGTCAACCG TGGCCCGCAC CTCGACAAGA	360
AGTCGCGCGA GCAGTTCGAG GTGCGTACCT ACAAGCGGTC A	420 461
(2) INFORMATION FOR SEQ ID NO:258:	401
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 332 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:258:	
TGACCGCTTG TAGCTGGGGG TGTATGGGGG ACTACGACCG CTTGTAGCTG GGGGTGTATG	60
OCCUPATION ACCOUNTGIA GUIGGGGGTG TATGGGGGGAC TATGACCCCT TOTAL CONC.C.	
GGTGTATGGG GGACTAGGAC CGCTTGTAGC TGGGGGTGTA TGGGGGGACTA TGACCGCTTG	180

TAGCTGGGGG TGTATGGGGG ACTACGACCG CTTGTAGCTG GGGGTGTATG GGGGACTATG ACCGCTTGTA NCTGGGGGTG TATGGGGGAC TATGACCGCT TGTGCTGCCT GGGGGATGGG AGGAGAGTTG TGGTTGGGGA AAAAAAAAAA	240 300
· · · · · · · · · · · · · · · · · · ·	332
(2) INFORMATION FOR SEQ ID NO:259:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 291 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:259:	
TACCGCTTGT GACCGCTTGT GACCGCTTGT GACCGCTTGT	
GACCGCTTGT GACCGCTTGT GACCGCTTGT GACCGCTTGT GACCGCTTGT GACCGCTTGT GACCGCTTGT GACCGCTTGT GACCGCTTGT	60
GACCGCTTGT	120
GGGTGTCTGG GGGNCTATGA NNGANTGTNA CNGGGGGGTGT CTGGGGGGACT ATGANNGACT	180
GTGCNNCCTG GGGGATCNGA GGAGANTNGN GGNTAGNGAT GGTTNGGGAN A	240 291
	271
(2) INFORMATION FOR SEQ ID NO:260:	_
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 238 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:260:	
TAAGAGGGTA CTGGTTAAAA TACAGGAAAT CTGGGGTAAT GAGGCAGAGA ACCAGGATAC	60
TTTGAGGTCA GGGATGAAAA CTAGAATTTT TTTCTTTTTT TTTGCCTGAG AAACTTGCTG	60 120
CTCTGAAGAG GCCCATGTAT TAATTGCTTT GATCTTCCTT TTCTTACAGC CCTTTCAAGG	180
GCAGAGCCCT CCTTATCCTG AAGGAATCTT ATCCTTAGCT ATAGTATGTA CCCTCTTA	238
(2) INFORMATION FOR SEC ID NO.261.	
(2) INFORMATION FOR SEQ ID NO:261:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 746 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:261:	
(X1) BEQUENCE DESCRIPTION: SEQ ID NO:261:	
TTGGGCACCT TCAATATCAA TAGCTAACAT TTATTGAGTG TTTATCGTAT CATAAAACAC	60
GTTCTAAGC CTTTAAACGT ACTAATTCAT TTAATGCTCA TAATCACTTT AGAAGGTGGG	120
FACTAGTATT AGTCTCATTT ACAGATGCAA CATGCAGGCA CAGAGAGGTT AATTAACTTG	180
CCCAAGGTAA CACAGCTAAG AAATAGAAAA AATATTGAAT CTGGAAAGTT GGGCTTCTGG	240
FTAACCCACA GAGTCTTCAA TGAGCCTGGG GCCTCACTCA GTTTGCTTTT ACAAAGCGAA	300
GAGTAACAT CACTTAATTC AGTGAGTAGG CCAAATGGAG GTCAGCTACG AGTTTCTGCT	360
STTCTTGCAG TGGACTGACA GATGTTTACA ACGTCTGGCC ATCAGTWAAT GGACTGATTA	420
CCATTGGGAW GTGGGTGGGC TGAATGTTGG CCAGTGAAGT TTATTCAWGC CATATTTTTA	480
GTTTAGGAT GACTTTTGGC TGGTCCTAGG GCAAGCTCTG TCTGSCACGG AACACAGAAT	540
VACACAGGGA CCCCCTCAAT TTCTGGTGTG GCTAGAACCA TGAACCACTG GTTGGGGGAA	600

CAAGCGGTCA	AAACCTAAGT	GCGGCCGGCT	GGCAGGGTCC	ACCCATATCC	GGAAAACTCC	
CNACGCGTTT	GGAATGCCTN	AGCTNGAATT	ATTCTAANAC	TTCTCCNCVD	AAAATTAGCC	660
TGGGCGTTAA	TCANGGGTCN	NAACCC	MILLCIAMING	TIGICCHCMT	AAAATTAGCC	720
	10.440001014	WAAGCC				746

- (2) INFORMATION FOR SEQ ID NO:262:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 588 base pairs
    - (B) TYPE: nucleic acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:262:

TGACCGCTTG	TCATCTCACA	TGGGGTCCTG	CACGCTTTTG	CCTTTGTAGG	AAACCTGACA	60
TTTGTCTGTT	TCTTCTTTCT	CTTTTCCTTC	CCATATCCTC	$CTA\Delta TTTACC$	TTTGACTTGT	
TTGCTGAGGA	GGCAGGAGCT	A C A C A C T C C C T	CECTCOEC	CIMHIIIACG	TITGACTIGI	120
ECT 1	GGCAGGAGCI	AGAGACIGCI	GIGAGCICAT	AGGGGTGGGA	AGTTTATCCT	180
TCAAGTCCCG	CCCACTCATC	ACTGCTTCTC	ACCTTCCCCT	GACCAGGCTT	ACAAGTGGGT	240
TCTTGCCTGC	TTTCCCTTTG	GACCCAACAA	CCCCTGTAA	TGAGTGTGCA	TGACTCTCAC	
AGCTGTGGAC	TCAGGGTCCT	TGGGTAGAGG	TOCOL BORN	AATATCTCAT	TOACICIGAC	300
	10110001001	IGGCIACAGC	IGCCATGTAA	AATATCTCAT	CCAGTTCTCG	360
CAAATTGTTA	AAATAACCAC	ATTTCTTAGA	TTCCAGTACC	CAAATCATGT	CTTTACGAAC	420
TGCTCCTCAC	ACCCAGAAGT	GGCACAATAA	TTCTTCCCC	ATTATTACTT	CITIACOAAC	420
CTCTNITTANG	CURRICURA	COCACAATAA	TICTIGGGGA	ATTATTACTT	TTTTTTTTCT	480
CICIMIINNC	GNNNGNNNNG	GNNNGNCCAG	GAATTACCAC	NTTGGAAGAC	CTGGCCNGAA	540
TTTATTATAN	AGGGGAGCCG	ATTNTTTTTC	CTAACACAAA	CCCCCCCC	ordection.	
			CIACACAAA	GCGGGTCA		588

- (2) INFORMATION FOR SEQ ID NO:263:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 730 base pairs
    - (B) TYPE: nucleic acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:263:

TTTTTTTTT	TTTGGCCTGA	GCAACTGAAA	יייים מ מבויד מידיד	ጥሮር እጥ አጥ አርጠ	CAAAAGAGTA	
AGACTGCAAA	ΔΔGΔΥΥΛΛΛΥ	Cary y y y camac	- TIMIOAMAII	ICCATATACT	CAAAAGAGTA	60
ת מישים או איים מישים או א	AAAMAAAA	GIAAAAGIIG	TCTTGTATAC	AGTAATGTTT	AAGATACCTA	120
		TTAGGGCATT		AGTTGAAAAT	TCAGGAGTGA	180
GGTTGGGCTG	GCTGGGTATA	TACTGAAAAC	TGTCAGTACA	CAGATGACAT	СТАВАВССВС	240
AAATCTGGTT	TTATTTTAGC	AGTGATATGT	GTCACTCCCA	CAAAAGCCTT	CCCNAMMCCC	
CTCAGCATAC	ACAACAAGTC	ACCTCCCCAC	ACCCCTTOTA C	ACATAAACAA	CCCAATTGGC	300
TTACTTCACC	ACCALANCE	ACCICCCAC	AGCCCTCTAC	ACATAAACAA	ATTCCTTAGT	360
TERRETTERS	AGGAAATGCG	CCCTTTTCCT	TCCGCTCTAG	GTGACCGCAA	GGCCCAGTTC	420
TCGTCACCAA	GATGTTAAGG	GAAGTCTGCC	AAAGAGGCAT	CTGAAAGGAA	ΣΤΣΣΩΩΩΩΣΣΣ	480
TGGGAGTGAC	CACAAAGGAA	AGCCAAGGAN	AAACTTTCCA	GACCGTTTCT	7.07.17.00000000	
CATTTCACAA	CAAAACTCNC	CAACAAACC	TOTAL TOUR	GACCGITICI	AGANCCCTGG	540
CCANNACAC	TTOTAL	GAACAAACCI	TGTCTCATCA	ATCATTTAAG	CCCTTCGTTT	600
GGANNAGACT	TTCTGAACTG	GGCGCTGAAC	ATAANCCTCA	TTGAATGTCT	TCACAGTCTC	660
CCAGCTGAAG	GCACACCTTG	GGCCAGAAGG	GGAATCTTCC	AGGTCCTCAA	MACAGGGGTC	
GCCCTTTGNC					MACAGGGCTC	720
_						730

- (2) INFORMATION FOR SEQ ID NO:264:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 715 base pairs
    - (B) TYPE: nucleic acid
    - (C) STRANDEDNESS: single

#### (D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:264:

TTTTTTTTT	TTTGGCCAGT	ATGATAGTCT	CTACCACTAT	ATTGAAGCTC	TTAGGTCATT	60
TACACTTAAT	GTGGTTATAG	ATGCTGTTGA	GCTTACTTCT	ACCACCTTGC	TATTTCTCCC	120
GTCTCTTTTT	TGTTCCTTTT	CTCTTCTTTT	CCTCCCTTAT	TTTATAATTG	AATTTTTTAG	180
GATTCTATTT	TATATAGATT	TATCAGCTAT	AACACTTTGT	ATTCTTTTGT	TTTGTGGTTC	240
TTCTGTCATT	TCAATGTGCA	TCTTAAACTC	ATCACAATCT	ATTTTCAAAT	AATATCATAT	300
AACCTTACAT	ATAATGTAAG	AATCTACCAC	CATATATTTC	CATTTCTCCC	TTCCATCCTA	360
TGTNTGTCAT	ATTTTTTCCT	TTATATATGT	TTTAAAGACA	TAATAGTATA	TGGGAGGTTT	420
TTGCTTAAAA	TGTGATCAAT	ATTCCTTCAA	NGAAACGTAA	AAATTCAAAA	TAAATNTCTG	480
TTTATTCTCA	AATNNACCTA	ATATTTCCTA	CCATNTCTNA	TACNTTTCAA	GAATCTGAAG	540
GCATTGGTTT	TTTCCGGCTT	AAGAACCTCC	TCTAAAGCAC	TCTAAGCAGA	ATTAAGTCTT	600
CTGGGAGAGG	AATTCTCCCA	AGCTTGGGCC	TTNANNTGTA	CTCCNTNANG	GTTAAANTTT	660
GGCCGGGAAA	TAGAAATTCC	AAGTTAACAG	GNTANTTTTT	NTTTTTTTTN	TCNCC	715

#### (2) INFORMATION FOR SEQ ID NO:265:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 152 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:265:

TTTTTTTTT	TTTCCCAACA	CAAAGCACCA	TTATCTTTCC	TCACAATTTT	CAACATAGTT	60
TGATTCCCAT	GAAGAGGTTA	TGATTTCTAA	AGAAAACATG	GCTACTATAC	TATCAATCAG	120
GGTTAAATCT	TTTTTTTTTG	AGACGGAGTT	TA	_		152

- (2) INFORMATION FOR SEQ ID NO:266:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 193 base pairs
    - (B) TYPE: nucleic acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:266:

TAAACTCCGT	CCCCTTCTTA	ATCAATATGG	AGGCTACCCA	CTCCACATTA	CCTTCTTTTC	60
AAGGGACTGT	TTCCGTAACT	GTTGTGGGTA	TTCACGACCA	GGCTTCTAAA	CCTCTTAAAA	120
CTCCCCAATT	CTGGTGCCAA	CTTGGACAAC	ATGCTTTTTT		TTTTTTTTT	
GAGACGGAGT				*********		180
						193

- (2) INFORMATION FOR SEQ ID NO:267:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 460 base pairs
    - (B) TYPE: nucleic acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:267:

TCTTCCCAMC COMMANCAM ASSESSED	
TGTTGCGATC CCTTAAGCAT GGGTGCTATT AAAAAAATGG TGGAGAAGAA AATACCTGGA	60
ATTTACGTCT TATCTTTAGA GATTGGGAAG ACCCTGATGG AGGACGTGGA GAACAGCTTC	120
TTCTTGAATG TCAATTCCCA AGTAACAACA GTGTGTCAGG CACTTGCTAA GGATCCTAAA	180
TTGCAGCAAG GCTACAATGC TATGGGATTC TCCCAGGGAG GCCAATTTCT GAGGGCAGTG	240
GCTCAGAGAT GCCCTTCACC TCCCATGATC AATCTGATCT CGGTTGGGGG ACAACATCAA	300
GGTGTTTTTG GACTCCCTCG ATGCCCAGGA GAGAGCTCTC ACATCTGTGA CTTCATCCGA	360
AAAACACTGA ATGCTGGGGC GTACTCCAAA GTTGTTCAGG AACGCCTCGT GCAAGCCGAA	420
TACTGGCATG ACCCATAAAA GGAGGATGTG GATCGCAACA	460
(2) INFORMATION FOR SEQ ID NO:268:	
(a) and the following the NO:268:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 533 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:268:	
TGTTGCGATC CGTTGATAGA ATAGCGACGT GGTAATGAGT GCATGGCACG CCTCCGACTT	60
ACCTICGCCC GTGGGGACCC CGAGTACGTC TACGGCGTCG TCACTTAGAG TACCCTCTCC	120
ACGCCCGGGC GCGTTCGATT TACCGGAAGC GCGAGCTGCA GTGGGCTTGC GCCCCGGGC	180
AAATTCTTTG GGGGGTTTAA GGCCGCGGGG AATTTGAGGT ATCTCTATCA GTATGTAGGC	240
AAGTTGGAAC AGTCGCCATT CCCGAAATCG CTTTCTTTGA ATCCGCACCG CCTCCACCAT	300
GCCTCATTC ATCAACCTGA AGGCACGCAT AAGTGACGGT TGTGTCTTCA GCAGCTCCAC	360
CCATAACTA GCGCGCTCGA CCTCGTCTTC GTACGCGCCA GGTCCGTGCG TGCGAATTCC	420
LAACTCCGGT GAGTTGCGCA TTTCAAGTTN CGAAACTGTT CGCCTCCACN ATTTGGCATG	480
TTCACGCATG ACACGGAATA AACTCGTCCA GTACCGGGAA TGGGATCGCA ACA	533
(2) INFORMATION FOR SEQ ID NO:269:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 50 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(b) TOPOLOGI: Timear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:269:	
101. SEQ 15 NO:269:	
TTTTTTTTT TTCGCCTGAA TTAGCTACAG ATCCTCCTCA CAAGCGGTCA	50
	50
2) INFORMATION FOR SEQ ID NO:270:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 519 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(wh) anomala and a	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:270:	
GTTGCGATC CAAATAACCC ACCAGGTTCT TO TO	
GTTGCGATC CAAATAACCC ACCAGCTTCT TGCACACTTC GCAGAAGCCA CCGTCCTTTG	60
CTGAGTCAC GTGAACGGTC AGTGCAAGCA GCCGCGTGCC AGAGCAGAGG TGCAGCATGC	120

TGCACACCAG CTCAGGGCTG ACCTCCTCCA GCAGGATGGA CAGGATGGAG CTGCCGTACG

TGTCCACCAC CTCCTGGCAC TCTTCCGACA GGGACTTCGG CAGCTTCGAG CACATTTTGT	2.4
CAAAAGCGTC GAGTATTTCT TTCTCAGTCT TGTTGTTGTC AATCAGCTTG GTCACCTCCT	24
TCACCAGGAA TTCACACACC TCACAGTAAA CATCAGACTT TGCTGGGACC TCGTGCTTCT	30
TAATGGGCTC CACCAGTTCC AGGGCAGGGA TGACATTCTT GGAGGCCACT TTGGCGGGGA	36
CCAGAGTCTG CATGGGCATC TCTTTCACCT CATCACAGAA CCCAACCAGC GCACAGATCT	42 48
CCTTGGGTTG CATGTGCATC ATCATCTGGG ATCGCAACA	51
(2) INFORMATION FOR SEQ ID NO:271:	21
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 457 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(b) TOPOLOGY: Timear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:271:	
TTTTTTTTT TTCGGGCGGC GACCGGACGT GCACTCCTCC AGTAGCGGCT GCACGTCGTG	60
CCAATGGCCC GCTATGAGGA GGTGAGCGTG TCCGGCTTCG AGGAGTTCCA CCGGCCCTG	120
GAACAGCACA ATGGCAAGAC CATTTTCGCC TACTTTACGG GTTCTAAGGA CGCCGGGGG	180
AAAAGCTGGT GCCCCGACTG CGTGCAGGCT GAACCAGTCG TACGAGAGGG GCTGAAGCAC	240
ATTAGTGAAG GATGTGTT CATCTACTGC CAAGTAGGAG AAGAGCCTTA TTGGAAAGAT	300
CCAAATAATG ACTTCAGAAA AAACTTGAAA GTAACAGCAG TGCCTACACT ACTTAAGTAT	360
GGAACACCTC AAAAACTGGT AGAATCTGAG TGTCTTCAGG CCAACCTGGT GGAAATGTTG	420
TTCTCTGAAG ATTAAGATTT TAGGATGGCA ATCAAGA	457
(2) INFORMATION FOR SEQ ID NO:272:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 102 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:272:	
TTTTTTTTTT TTGGGCAACA ACCTGAATAC CTTTTCAAGG CTCTGGCTTG GGCTCAAGCC	60
CGCAGGGGAA ATGCAACTGG CCAGGTCACA GGGCAATCAA GA	102
(2) INFORMATION FOR SEQ ID NO:273:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 455 base pairs	
(B) TYPE: nucleic acid (C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(2) Toronogr. Timear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:273:	
TTTTTTTTT TTGGCAATCA ACAGGTTTAA GTCTTCGGCC GAAGTTAATC TCGTGTTTTT	60
GCAATCAAC AGGTTTAAGT CTTCGGCCGA AGTTAATCTC GTGTTTTTGG CAATCAACAG	120
FTTAAGTCT TCGGCCGAAG TTAATCTCGT GTTTTTGGCA ATCAACAGGT TTAAGTCTTC	180
GCCGAAGTT AATCTCGTGT TTTTGGCAAT CAACAGGTTT AAGTCTTCGG CCGAAGTTAA	240
CTCGTGTTT TTGGCAATCA ACAGGTTTAA GTCTTCGGCC GAAGTTAATC TCGTGTTTTT	300
GCAATCAAG AGGTTTAAGT CTTCGGCCGA AGTTAATCTC GTGTTTTTGG CAATCAACAG	360

GTTTAAGTCT GGCCGAAGTT	TCGGCCGAAN AATCTCGTGT	TTAATCTCGT TTTTGGCAAT	GTTTTTGGCA CAANA	ATCAACAGGT	TTAANTCTTC	420 455
--------------------------	--------------------------	--------------------------	---------------------	------------	------------	------------

- (2) INFORMATION FOR SEQ ID NO:274:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 461 base pairs
    - (B) TYPE: nucleic acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:274:

TTTTTTTTT TGGCAAACCA TCCCTGGGAT ACAGAACCAA AATTCAACAG	GCAAGGCTGG AGACAAAAAC	TTCAACATAA	GAAAATCAAT	CCATGATCAA AAATGTAATC	GTGGGCTTCA CATCACATAA	60 120 180 240
AATTCAACAG (CAAAATAATA AACTGGAAGCA TATTCAACATA C	TCCCTTTGA	AAACTGGCAC	CACAGCCAAT	ATCATACTGA		300 360 420
		- FOI OCCAG	GGCAATCAAG	A		467

- (2) INFORMATION FOR SEQ ID NO:275:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 729 base pairs
    - (B) TYPE: nucleic acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:275:

TTTTTTTTT	TTGGCCAACA	CCA A CIDCONN				
	- TOOCCAMCM	CCAAGTCTTC	CACGTGGGAG	GTTTTATTAT	GTTTTACAAC	60
		GCIGITACAG	CAAACATTTC	AGATAGACGA	A TO CO CO CO CO	
	CCCACCTTCA	CAGCCTCTTC	CACACGTCTC	CONTRACTOR	AICGGCCAAG	120
CTTGCAAATT	CANGGATGTT		ATTTNNAGTN		TTGTCCTTCA	180
NCANTAAGCA	GAANTACCAT	CACCONTOLIC	ATTINNAGTN	GCNGGAACCC	CATCAGTGAA	240
CCCTTTCTXT	CARNIACGAI	GACTTTGANA	NACANCTGAT	~~ ~ ~ .		<del>-</del>
	CGIGITANGA	TCTCNNGTCC	את מתיים ליטידול			300
AOAOOT	ACTOCOCOCON	CGTTGGATCC	CCCCTTGACT	CGGCCCCCTG NTCCCATTCT	CNGGTCCACC	360
ACCNGNCTTG	NGNGNCANTN	CMMCCTCMCA	COMMON	MICCCATTCT	NGTCCCCCAN	420
NCCGCCNCCC	MA A TOTO COLA CI	CONTENTA	CCMTGTTTCC	CTGNNGTNAA	AATNNGTTTT	480
		CCNAATCACA	(2CTO A A STOCKED		NAAGTGTTTA	540
	GTTTCCTCNT	NTANTTGCAG	CCTACCCTCC	(1) T (2) T (2) T (3)		
TCGCGCCCTG	GNCNCGCCTN	GTTCCTCTTT	NNGGNNACAA	C.C.	TNCGNGTTGG	600
NNNCTNTTCC	TNNNACTAGC	TMCCCTMTCC	MAJAMMOOMMA	CCTNGNTCNN	NGGCNCNTCN	660
TNTGTNNCC		TMGCCTMTCC	NCNCCGNGGN	NCANNGCACA	TTNCNCNNAC	720
_						729

- (2) INFORMATION FOR SEQ ID NO:276:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 339 base pairs
    - (B) TYPE: nucleic acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:276:

TGACCTGACA	TGTAGTAGAT	ACTTAATAAA	TATTTGTGGA	ATGAATGGAT	GAAGTGGAGT	60
TACAGAGAAA	AATAGAAAAG	TACAAATTGT	TGTCAGTGTT	TTGAAGGAAA	ATTATGATCT	120
TTCCCAAAGT	TCTGACTTCA	TTCTAAGACA	GGGTTAGTAT	CTCCATACAT	AATTTTACTT	180
GCTTTTGAAA	ATCAAATGAG	ATAATCTATT	TAGATTGATA	ATTTATTTAG	ACTGGCTATA	240
AACTATTAAG	TGCTAGCAAA	TATACATTTT	AATCTCATTT	TCCACCTCTT	GTGATATAGC	300
TATGTAGGTG	TTGACTTTAA	TGGATGTCAG	GTCNATCCC		GIGHIAIAGC	
		TOCATOTCAG	GICAMICCC			339

### (2) INFORMATION FOR SEQ ID NO:277:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 664 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:277:

TGACCTGACA	TCCATAACAA	AATCTTTCTC	CATTATATTC	TTCTAGGGGA	ATTTCTTGAA	60
AAGCATCCAA	AGGAAACAAA	TGATGGTAAG	ACCGTGCCAA	GTGGGGAGCA	GACACCAAAG	120
TAAGACCACA	GATTTTACAT	TCAACAGGTA	GCTCACAGTA	CTTTGCCCGA	CACTGTGGGC	180
AGAAATAGCC	TCCTAATGTA	AGCCCTGGCT	CAGTATTGCC	ATCCAAATGC	GCCATGCTGA	240
AAGAGGGTTT	TGCATCCTGG	TCAGATNAAG	AAGCAATGGT	GTGCTGAGGA	AATCCCATAC	300
GAATAAGTGA	GCATTCAGAA	CTTGAGCTAG	CAGGAGGAGG		TGTGTGAGCA	360
		TCTAAAATAA				420
		TCTGCAGACA				480
CCTTTAGGGT	CTTGATTAAA	TCATAAATAT	TAGATGGATC	GCAAGTTGTA	AGGNTGCTAA	540
		ACTTGTATGT				600
		TAAAGAAGAT				660
TGCC					CCMARI	664
						007

### (2) INFORMATION FOR SEQ ID NO:278:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 452 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:278:

TGACCTGACA	TTGAGGAAGA	GCACACACCT	CTGAAATTCC	TTAGGTTCAG	AAGGGCATTT	60
GACACAGAGT	GGGCCTCTGA	TAATTCATGA	AATGCATTCT	GAAGTCATCC	AGAATGGAGG	120
CTGCAATCTG	CTGTGCTTTG	GGGGTTGCCT	CACTGTGCTC	CTGGATATCA	CACAAAAGCT	180
GCAATCCTTC	TTCTTCAACT	AACATTTTGC	AGTATTTGCT	GGGATTTTTA	CTGCAGACAT	240
GATACATAGC	CCATAGTGCC	CAGAGCTGAA	CCTCTGGTTG	AGAGAAGTTG	CCAAGGAGG	300
GGAAAAATGT	CTTGAAAGAT	CTATAGGTCA	CCAATGCTGT	CATCTTACAA	CTTGAACTTG	. 360
GCCAATTCTG	TATGGTTGCA	TGCAGATCTT	GGAGAAGAGT	ACGCCTCTGG	AAGTCACGGG	420
		GATGTCAGGT			ANOT CACGGG	452
						432

### (2) INFORMATION FOR SEQ ID NO:279:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 274 base pairs
  - (B) TYPE: nucleic acid

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:279:

$\mathbf{T}\mathbf{T}\mathbf{T}\mathbf{T}\mathbf{T}\mathbf{T}\mathbf{T}\mathbf{T}\mathbf{T}\mathbf{T}$	TTCGGCAAGG		MCMCC2222	<b>~</b>		
	TICCCCAAGG	CAMATTIACT	TCTGCAAAAG	GGTGCTGCTT	GCACTTTTGG	60
CCACTGCGAG	AGCACACCAA	ACAAAGTAGG	GA A GG G G G G G G G G G G G G G G G G	mma magama a		• •
CCCMCCM		c.zmothoc	GAAGGGTTT	TTATCCCTAA	CGCGGTTATT	120
CCCTGGTTCT	GTGTCGTGTC	CCCATTGGCT	GGAGTCAGAC	TGCACAATCT	A CA CMCA CCC	
AACTCCCTAC	mcmmma a a a m	TG3 3		TOCACARICI	ACACIGACCC	180
AACTGGCTAC	IGITIAAAAT	TGAATATGAA	TAATTAGGTA	GGAAGGGGGA	CCCTCTTTCT	240
TACGGTACAA	CACCTCTTTC	CCCATCTCA	OMO?		0001011101	240
	5C51G111G	GGCAIGICAG	GICA			274

- (2) INFORMATION FOR SEQ ID NO:280:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 272 base pairs
    - (B) TYPE: nucleic acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:280:

TACCTGACAT	GGAGAAATAA	CTTGTAGTAT	TTTGCGTGCA	ΑΤΙΚΙΑ ΑΤΙΛΙΤΙ	ATATGAGGGT	
GAAAATGAAT	GAACTAGCAA	TCCCTCTATC	A A CAMOA A MA	AIGGAAIACI	ATATGAGGGT	60
CTTCA AMOOR	PARCENTAGE	IGCGIGIAIC	AACATGAATA	AATCCCCAAA	ACATAATAAT	120
GIIGAAIGGA	AAAGGTGAGT	TTCAGAAGGA	TATATATGCC	CTCTAAATCC	ATTTATGTAA	180
ACCTTTAAAA	AACTACATTA	TTTATGGTCA	TAAGTCCATC	ር እር አ አ አ አ ጥ አ ጥ	TTAAAAACCT	
ACATGGGATT	CATAACTACT	GATGTCAGGT	an and a control	CAGAAAAIAI	TTAAAAACCT	240
	ONIMACIACI	GAIGICAGGT	CA			272

- (2) INFORMATION FOR SEQ ID NO:281:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 431 base pairs
    - (B) TYPE: nucleic acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:281:

- (2) INFORMATION FOR SEQ ID NO:282:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 98 base pairs
    - (B) TYPE: nucleic acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:282:

ATTCGATTCG ATGCTTGAGC CCAGGAGTTC AAGACTGCAG TGAGCCACTG CACTTCAGGC TGGACAACAG AGCGAGTCCC TGTGCCAAAA AAAAAAAA	60 98
(2) INFORMATION FOR SEQ ID NO:283:	
<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 764 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:283:	
TTTTTTTTTT TTCGCAAGCA CGTGCACTTT ATTGAATGAC ACTGTAGACA GGTGTGTGGG	60
TATAAACTGC TGTATCTAGG GGCAGGACCA AGGGGGCAGG GGCAACAGCC CCAGCGTGCA	60 120
GGGCCASCAT TGCACAGTGG ASTGCAAAGG TTGCAGGCTA TGGGCGGCTA CTAVTAACCC	180
CGTTTTTCCT GTATTATCTG TAACATAATA TGGTAGACTG TCACAGAGCC GAATWCCART	240
HACASGATGA ATCCAAWGGT CAYGAGGATG CCCASAATCA GGGCCCASAT STTCAGGCAC	300
TTGGCGGTGG GGGCATASGC CTGKGCCCCG GTCACGTCSC CAACCWTCTY CCTGTCCCTA	360
CMCTTGAWTC CNCNCCTTNN NNTNCCNTNA TNTGCCCGCC CNCCTCCTNG NGTCAACCNG	420
NATCTGCACT ANCTCCCTCN CCCCTTNTGG ANTCTCNTCC TTCAANTAAN NTTATCCTTN ACNCCCCCCT CNCCTTTCCC CTNCCNCCCN TNATCCCNGN NCCNCTATCA NTCNTNCCCT	480
CNCTNTNCTN CNNATCGTTC CNCCTNNTAA CTACNCTTTN NACNANNCCT CACTNATNCC	540
NGNNANTTCT TTCCTTCCCT CCCNACGCNN TGCGTGCGCC CGTCTNGCCT NNNCTNCGNA	600
CCCNNACTTT ATTTACCTTT NCACCCTAGC NCTCTACTTN ACCCANCCNC TCCTACCTCC	660 720
NGGNCCACCC NNCCCTNATC NCTNNCTCTN TCNNCTCNTT CCCC	764
(2) INFORMATION FOR SEQ ID NO:284:  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 157 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:284:	
CAAGTGTAGG CACAGTGATG AAAGCCTGGA GCAAACACAA TCTGTGGGTA ATTAACGTTT ATTTCTCCCC TTCCAGGAAC GTCTTGCATG GATGATCAAA GATCAGCTCC TGGTCAACAT AAATAAGCTA GTTTAAGATA CGTTCCCCTA CACTTGA	60 120 157
(2) INFORMATION FOR SEQ ID NO:285:	
(i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 150 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:285:	
ATTCGATTGT ACTCAGACAA CAATATGCTA AGTGGAAGAA GTCAGTCACA AAAGACCACA TACTGTATGA CTTCATTTAC ATTAAGTGTC CAGAATAGGC AAATCCGTAG AGACAGAAAG TAGATGAGCA GCTGCCTAGG TCTGAGTACA	60 120 150

(2) INFORMATION FOR SEQ ID NO:286:	
(i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 219 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:286:	
GCAACCTTGG TTAGGATCAA TCCAATATTC ACCATCTGGG AAGTCAGGAT GGCTGAGTTG 1 CAGGTCTTTA CAAGTTCGGG CTGGATTGGT CTGACTAGA	60 120 180 219
(2) INFORMATION FOR SEQ ID NO:287:	
<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 196 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:287:	
ATCCATACTC AGAAGGAACC AACCCTGCTG ACACCTTAAT TTCAGCTTCT GGCCTCTAGA  ACTGTGAGAG AGTACATTTC TCTTGGTTTA AGCCAAGAGA ATCTGTCTTT TGGTACTTTA  IATCATAGCC TCAAGA	60 20 80 96
(2) INFORMATION FOR SEQ ID NO:288:	
<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 199 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:288:	
TIGITGAAA TTCATTGAGT AAAACATTTA TGATCCCTTA ATATATGCCA ATTACCATGC 12 AGGTACTGA AGATTCAAGT GACCGAGATG CTAGCCCTTG GGTTCAAGTG ATCCCTCTCC 18 AGAGTGCAC TGGACTGAA	
2) INFORMATION FOR SEQ ID NO:289:	
<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 182 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul>	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:289:

ATTCGATTCT	TGAGGCTACA	AACCTGTACA	GTATGTTACT	CTACTGAATA	CTGTAGGCAA	60
TAGTAATACA	GAAGCAAGTA	TCTGTATATG	TAAACATTAA	AAAGGTACAG	TGAAACTTCA	120
GTATTATAAT	CTTAGGGACC	ACCATTATAT	ATGTGGTCCA	TCATTGGCCA	AAAAAAAAA	
AA			orooreca	TCATTGGCCA	AAAAAAAA	180
		•				182

### (2) INFORMATION FOR SEQ ID NO:290:

#### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1646 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:290:

	GAAATGTAAT	TCCATATTTT	ATTTGAAACT	TATTCCATAT	TTTAATTGGA	60
TATTGAGTGA		AAACACCCAC	AAACTTTAAT	TTTGTTAAAT	TTATATGGCT	120
	AGTATAAGTT	GCTACCATTT	TTTGATAACA	TTGAAAGATA	GTATTTTACC	180
ATCTTTAATC	ATCTTGGAAA	ATACAAGTCC	TGTGAACAAC	CACTCTTTCA	CCTAGCAGCA	240
TGAGGCCAAA	AGTAAAGGCT	TTAAATTATA	ACATATGGGA	TTCTTAGTAG	TATGTTTTT	300
TCTTGAAACT	CAGTGGCTCT	ATCTAACCTT	ACTATCTCCT	CACTCTTTCT	CTAAGACTAA	360
ACTCTAGGCT	CTTAAAAAATC	TGCCCACACC	AATCTTAGAA	GCTCTGAAAA	GAATTTGTCT	420
TTAAATATCT	TTTAATAGTA	ACATGTATTT	TATGGACCAA	ATTGACATTT	TCGACTATTT	480
TTTCCAAAAA	AGTCAGGTGA	ATTTCAGCAC	ACTGAGTTGG	GAATTTCTTA	TCCCAGAAGA	540
CCAACCAATT	TCATATTTAT	TTAAGATTGA	TTCCATACTC	CGTTTTCAAG	GAGAATCCCT	600
GCAGTCTCCT	TAAAGGTAGA	ACAAATACTT	TCTATTTTTT	TTTCACCATT	GTGGGATTGG	660
ACTTTAAGAG	GTGACTCTAA	AAAAACAGAG	AACAAATATG	TCTCAGTTGT	ATTAAGCACG	720
GACCCATATT	ATCATATTCA	CTTAAAAAAA	TGATTTCCTG	TGCACCTTTT	GGCAACTTCT	780
CTTTTCAATG	TAGGGAAAAA	CTTAGTCACC	CTGAAAACCC	ACAAAATAAA	TAAAACTTGT	840
AGATGTGGGC	AGAAGGTTTG	GGGGTGGACA	TTGTATGTGT	TTAAATTA'AA	CCCTGTATCA	900
	GTTGTATGGG	TCAGAGAAAA	TGAATGCTTA	GAAGCTGTTC	ACATCTTCAA	960
	AAACCACATG	TCTCAGCTAT	ATTATTATTT	ATTTTTTATG	CATAAAGTGA	1020
ATCATTTCTT	CTGTATTAAT	TTCCAAAGGG	TTTTACCCTC	TATTTAAATG	CTTTGAAAAA	1080
	ACAATGGGTT	GATATTTTTC	TTTAAAAGAA	AAATATAATT	ATGAAAGCCA	1140
	AAGCCTGTTT	TATTTTAAAA	CTTTTTATGT	TCTGTGGTTG	ATGTTGTTTG	1200
TTTGTTTGTT	TCTATTTTGT	TGGTTTTTTA	CTTTGTTTTT	TGTTTTGTTT	TGTTTTGTTT	1260
	ATGCAGTTCT	TTAACCAATG	TCTGTTTGGC	TAATGTAATT	AAAGTTGTTA	1320
	GTGCATTTCA	ACTATGTCAA	TGGTTTCTTA	ATATTTATTG	TGTAGAAGTA	1380
CTGGTAATTT	TTTTATTTAC	AATATGTTTA	AAGAGATAAC	AGTTTGATAT	GTTTTCATGT	1440
	GAAGTTATTT	ATTTCTATGG	CATTCCAGCG	GATATTTTGG	TGTTTGCGAG	1500
			GACAGTATTC	AGCAACGCCT	GATAGCTTCT	1560
	GTTAAATAAA		TGGGATGTAT	TTTTTATTTT	TAAAAAAAA	1620
AAAAAAAAA	AAAAAAAAA	AAAAA				1646

## (2) INFORMATION FOR SEQ ID NO:291:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1851 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:291:

TCATCACCAT	TGCCAGCAGC	GGCACCGTTA	GTCAGGTTTT	CTGGGAATCC	CACATGAGTA	60
CTTCCGTGTT	r cttcattcti	CTTCAATAGO			CTGGCTGTTT	120
TCACTTCCTT	TAAGCCTTTG	TGACTCTTCC			TTGTTCTGGA	180
TTGCTGTTT		TTTTAACATC	: TGTTTTTCTT	TGTAGTCAGA	AAGTAACTGG	240
CAAATTACAT	GATGATGACT	' AGAAACAGCA	TACTCTCTGG	CCGTCTTTCC	AGATCTTGAG	300
AAGATACATO	: AACATTTTGC	TCAAGTAGAG		ACTTGCTGAT		360
	GAGAGCAGTT			ATTTAAATTC		420
TGATTAAAAA	TTTCACCACT	TGCTGTTTTT			AGTGGTGTGA	480
GGCCATGCTI			CACCGTATAA	GAGCAGTGCT	TTGGCCATTA	540
ATTTATCTTC	ATTGTAGACA	GCATAGTGTA	GAGTGGTATT	TCCATACTCA	TCTGGAATAT	600
TTGGATCAGT	GCCATGTTCC	AGCAACATTA	ACGCACATTC	ATCTTCCTGG	CATTGTACGG	660
CCTTTGTCAG	AGCTGTCCTC	TTTTTGTTGT	CAAGGACATT			720
GCACGAGTTT	TACTACTTCT	GAATTCCCAT			GCAGTCCTCT	780
TTTGCTTGTC		ACATCCGTGT	CCCTGAGCAT	GACGATGAGA	ТССТТТСТСС	840
GGACTTTACC	CCACCAGGCA	GCTCTGTGGA	GCTTGTCCAG	ATCTTCTCCA	TGGACGTGGT	900
ACCTGGGATC	CATGAAGGCG	CTGTCATCGT	AGTCTCCCCA	AGCGACCACG	TTGCTCTTGC	960
CGCTCCCCTG	CAGCAGGGGA	AGCAGTGGCA	GCACCACTTG	CACCTCTTGC	TCCCAAGCGT	1020
CTTCACAGAG	GAGTCGTTGT	GGTCTCCAGA	AGTGCCCACG	TTGCTCTTGC	CGCTCCCCCT	1080
GTCCATCCAG	GGAGGAAGAA	ATGCAGGAAA	TGAAAGATGC	ATGCACGATG		1140
CAGCCATCAA	ACTTCTGGAC	AGCAGGTCAC	TTCCAGCAAG	GTGGAGAAAG	CTGTCCACCC	1200
ACAGAGGATG	AGATCCAGAA	ACCACAATAT	CCATTCACAA	ACAAACACTT	TTCAGCCAGA	1260
CACAGGTACT	GAAATCATGT	CATCTGCGGC	AACATGGTGG	AACCTACCCA	ATCACACATC	1320
AAGAGATGAA	GACACTGCAG	TATATCTGCA	CAACGTAATA	CTCTTCATCC	АТААСААААТ	1380
AATATAATTT	TCCTCTGGAG	CCATATGGAT	GAACTATGAA	GGAAGAACTC	CCCGAAGAAG	1440
CCAGTCGCAG	AGAAGCCACA	CTGAAGCTCT	GTCCTCAGCC	ATCAGCGCCA	CGGACAGGAR	1500
TGTGTTTCTT	CCCCAGTGAT	GCAGCCTCAA	GTTATCCCGA	AGCTGCCGCA	GCACACGGTG	1560
	AACACCCCAG	CTCTTCCGGT	CTAACACAGG	CAAGTCAATA	AATGTGATAA	1620
TCACATAAAC	AGAATTAAAA	GCAAAGTCAC	ATAAGCATCT	CAACAGACAC	AGAAAAGGCA	1680
TTTGACAAAA	TCCAGCATCC	TTGTATTTAT			ATGCTTCTAA	1740
	TTTAGTATTA		GGGCTTGTCA	TAGGTGGTTT	TTATTACTTT	1800
AAGGTATGTC	CCTTCTATGC	CTGTTTTGCT	GAGGGTTTTA	ATTCTCGTGC	C	1851
					~	1001

## (2) INFORMATION FOR SEQ ID NO:292:

### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1851 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:292:

TCATCACCAT	TGCCAGCAGC	CCCACCCTTA	CTC A C CTTTTT			
	TOCCHGCAGC	GGCACCGTTA	GTCAGGTTTT.	CTGGGAATCC	CACATGAGTA	60
CTTCCGTGTT	CTTCATTCTT	CTTCAATAGC	CATAAATCTT	CTAGCTCTGG	CTGGCTGTTT	120
TCACTTCCTT	TAAGCCTTTG	TGACTCTTCC	TCTGATGTCA	COTTANACTO	TTCTTCTC	
ᡥᡎᡎᡎᡎ	CACAACACAM	MITTER A CAMO		CCITIAAGIC	TIGITCIGGA	180
1100101111	CAGAAGAGAT	TTTTAACATC	TGTTTTTCTT	TGTAGTCAGA	AAGTAACTGG	240
CAAATTACAT	GATGATGACT	AGAAACAGCA	TACTCTCTGG	CCGTCTTTCC	AGATCTTGAG	300
AAGATACATC	AACATTTTCC	TCAAGTAGAG	CCCTCACTAT	) COMPOSED > T		,
63.663.3.653		I CAMO I AGAG	GGCIGACIAI	ACTIGCIGAT	CCACAACATA	360
CAGCAAGTAT	GAGAGCAGTT	CTTCCATATC	TATCCAGCGC	ATTTAAATTC	GCTTTTTTCT	420
TGATTAAAAA	TTTCACCACT	${\tt TGCTGTTTTT}$	GCTCATGTAT	ACCAAGTAGC	ACTCCTCTCA	480
GGCCATGCTT	CTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	TCCATATCAC	G1 GGGT1 T1		AUTUUTUA	400
3	GIIIIIIGAI	TCGATATCAG	CACCGTATAA	GAGCAGTGCT	TTGGCCATTA	540
		GCATAGTGTA		TCCATACTCA	ТСТССАДТАТ	600
TTGGATCAGT	GCCATGTTCC	AGCAACATTA	A CCCA CA TIMO	* CCCCCCC	1	
CCTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT		HOCHMENTIA	ACGCACATIC	ATCTTCCTGG	CATTGTACGG	660
CCTTTGTCAG	AGCTGTCCTC	TTTTTGTTGT	CAAGGACATT	AAGTTGACAT	CGTCTGTCCA	720
GCACGAGTTT	TACTACTTCT	GAATTCCCAT	TEGCAGAGGC	CACAMOMACA	COLOROGRAM	
			2000MOGC	CAGAIGIAGA	GCAGTCCTCT	780

TTTGCTTGTC	CCTCTTGTTC	ACATCCGTGT	CCCTGAGCAT	GACGATGAGA	TCCTTTCTGG	840
GGACTTTACC	CCACCAGGCA	GCTCTGTGGA	GCTTGTCCAG	ATCTTCTCCA	TGGACGTGGT	900
ACCTGGGATC	CATGAAGGCG	CTGTCATCGT	AGTCTCCCCA	AGCGACCACG	TTGCTCTTGC	960
CGCTCCCCTG	CAGCAGGGGA	AGCAGTGGCA			TCCCAAGCGT	1020
CTTCACAGAG	GAGTCGTTGT	GGTCTCCAGA	AGTGCCCACG	TTGCTCTTGC	CGCTCCCCCT	1080
GTCCATCCAG	GGAGGAAGAA	ATGCAGGAAA	TGAAAGATGC		GTATACTCCT	1140
CAGCCATCAA					CTGTCCACCC	1200
ACAGAGGATG		ACCACAATAT			TTCAGCCAGA	1260
CACAGGTACT	GAAATCATGT	CATCTGCGGC				1320
AAGAGATGAA	GACACTGCAG	TATATCTGCA			ATAACAAAAT	1320
AATATAATTT	TCCTCTGGAG				CCCGAAGAAG	1440
CCAGTCGCAG	AGAAGCCACA				CGGACAGGAR	
TGTGTTTCTT	CCCCAGTGAT	GCAGCCTCAA			GCACACGGTG	1500
GCTCCTGAGA	AACACCCCAG		CTAACACAGG	CAAGTCAATA		1560
TCACATAAAC	AGAATTAAAA		ATAAGCATCT			1620
TTTGACAAAA	TCCAGCATCC	TTGTATTTAT	TGTTGCAGTT	CAACAGACAC		1680
CTTTTCCCCA	TTTAGTATTA	TGTTGGCTGT		CTCAGAGGAA		1740
AAGGTATGTC	CCTTCTATGC	<del></del>	GGGCTTGTCA	TAGGTGGTTT	TTATTACTTT	1800
cimidic	CCITCIAIGC	CIGITIIGCI	GAGGGTTTTA	ATTCTCGTGC	C .	1851

### (2) INFORMATION FOR SEQ ID NO:293:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 668 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:293:

CTTGAGCTTC	CAAATAYGGA	AGACTGGCCC	TTACACASGT	CAATGTTAAA	ATGAATGCAT	60
TTCAGTATTT	TGAAGATAAA	ATTRGTAGAT	CTATACCTTG	TTTTTTGATT	CGATATCAGC	120
ACCRTATAAG	AGCAGTGCTT	TGGCCATTAA	TTTATCTTTC	ATTRTAGACA	GCRTAGTGYA	180
		TCTGGAATAT				240
A CCCA CA TTC	N TOTAL CARGO	armamraa.		GCCAIGIICC	AGCAACATTA	240
ACGCACATIC	AICIICCIGG	CATTGTACGG	CCTGTCAGTA	TTAGACCCAA	AAACAAATTA	300
CATATCTTAG	GAATTCAAAA	TAACATTCCA	CAGCTTTCAC	CAACTAGTTA	TATTTAAAGG	360
AGAAAACTCA	TTTTTATGCC	ATGTATTGAA	ATCAAACCCA	ССТСАТССТС	ATATAGTTGG	420
CTACTCCATA	CCTTTATCAC	A COMOMOOMO			AIAIAGIIGG	420
CIACIGCAIA	CCTTTATCAG	AGCTGTCCTC	TTTTTGTTGT	CAAGGACATT	AAGTTGACAT	480
CGTCTGTCCA	GCAGGAGTTT	TACTACTTCT	GAATTCCCAT	TGGCAGAGGC	CAGATGTAGA	540
GCAGTCCTAT	GAGAGTGAGA	AGACTTTTTA	GGAAATTGTA	CTCC3 CT3 CC	m) () (() ()	
CCAARGAGG		MOMETITIA	GGAAATIGIA	GIGCACTAGC	TACAGCCATA	600
	ATGTAACTGC	AAACACTGAA	TAGCCTGCTA	TTACTCTGCC	TTCAAAAAA	660
AAAAAAA						668

### (2) INFORMATION FOR SEQ ID NO:294:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1512 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:294:

GGGTCGCCCA	GGGGGSGCGT	GGGCTTTCCT	CGGGTGGGTG	TGGGTTTTCC	CTGGGTGGGG	60
TGGGCTGGGC	TRGAATCCCC	TGCTGGGGTT	GGCAGGTTTT	GGCTGGGATT	GACTTTTYTC	120
TTCAAACAGA	TTGGAAACCC	GGAGTTACCT	GCTAGTTGGT	GAAACTGGTT	GGTAGACGCG	180
					00111011000	700

ATCTGTTGGC	TACTACTGGC	TTCTCCTGGC	TGTTAAAAGC	AGATGGTGGT	TCACCTTCAM	240
TCCATGCCGG	CTGCTTCTTC	TGTGAAGAAG		TCAGGAGCAA		240
TGGTGCTGCC	GTTGCTTCCC	CTGCTGCAGG		AGAGCAACGT		300
GGAGACCACG	ACGACTCTGC	, .		AGATGGGCAA		360
CACTGCTTCC	CCTGCTGCAG	GGGGAGTGGC	o z or to or to ch			420
GACGAYTCTG	CTATGAAGAC				TGGAGACCAC	480
CCCTGCTGCA				AGTGGTGCTG		540
GCCTTCATGG	4444					600
GCCTGGTGGG	THOUGHT		GGAGAAGATC			660
AACAAGAAGG		CAGAAAGGAT	CTCATCGTCA		CACTGACGTG	720
		GAGGACTGCT	CTACATCTGG		TGGGAATTCA	780
	AACTCSTGCT	GGACAGACGA	TGTCAACTTA	ATGTCCTTGA	CAACAAAAAG	840
AGGACAGCTC	- 4111111000		CAGGAAGATG	AATGTGCGTT	AATGTTGCTG	900
	CTGATCCAAA		GAGTATGGAA	ATACCACTCT	RCACTAYGCT	960
RTCTAYAATG	· · · · · · · · · · · · · · · · · · ·		GCACTGCTCT	TATAYGGTGC	TGATATCGAA	1020
	AGGTATAGAT	CTACTAATTT	TATCTTCAAA	ATACTGAAAT	GCATTCATTT	1080
TAACATTGAC	GTGTGTAAGG	GCCAGTCTTC	CGTATTTGGA		TAACTTGAAT	1140
GAAAATATTT	TGAAATGACC	TAATTATCTM	AGACTTTATT	TTAAATATTG	TTATTTTCAA	1200
AGAAGCATTA	GAGGGTACAG	TTTTTTTTT	TTAAATGCAC	TTCTGGTAAA	TACTTTTGTT	
GAAAACACTG	AATTTGTAAA	AGGTAATACT	TACTATTTT	CAATTTTTCC	<del>-</del>	1260
TTTTTTCCCC	TAATGAATGT		AATTTGCCCT	GAAATAGGTT	CTCCTAGGAT	1320
ACTCCAAGAA			AATAGAGATC		TTACATGAAA	1380
TAAAAAACAG	TAATAGATAC	_			GGCAAGTTCC	1440
TGATCTCGTG	CC	Chicarante	GCCTGTCAGT	GGCAAGGTTT	AAGATATTTC	1500
						1512

# (2) INFORMATION FOR SEQ ID NO:295:

## (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1853 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:295:

GGGTCGCCCA	GGGGGSGCGT	GGGCTTTCCT	CGGGTGGGTG	TGGGTTTTCC	СТСССТСССС	60
TGGGCTGGGC	TRGAATCCCC	TGCTGGGGTT	GGCAGGTTTT			120
TTCAAACAGA	TTGGAAACCC	GGAGTTACCT	GCTAGTTGGT			180
ATCTGTTGGC	TACTACTGGC	TTCTCCTGGC	TGTTAAAAGC	AGATGGTGGT	TGAGGTTGAT	240
TCCATGCCGG	CTGCTTCTTC	TGTGAAGAAG		TCAGGAGCAA		300
TGGTGCTGCC			GAGAGCGGCA	AGAGCAACGT	GGGCACTTCT	360
GGAGACCACG	ACGACTCTGC	TATGAAGACA	CTCAGGAGCA	AGATGGGCAA	GTGGTGCCGC	420
CACTGCTTCC	CCTGCTGCAG				TGGAGACCAC	480
GACGAYTCTG		ACTCAGGAAC		AGTGGTGCTG	CCACTGCTTC	540
CCCTGCTGCA	GGGGGAGCRG	CAAGAGCAAG	GTGGGCGCTT			540 600
GCCTTCATGG	AKCCCAGGTA	CCACGTCCRT	GGAGAAGATC	<b>-</b>	CCACAGAGCT	660
GCCTGGTGGG	GTAAAGTCCC	CAGAAAGGAT		TGCTCAGGGA		720
AACAAGARGG	ACAAGCAAAA	GAGGACTGCT	CTACATCTGG			720
GAAGTAGTAA	AACTCSTGCT	GGACAGACGA		ATGTCCTTGA	CAACAAAAAG	
AGGACAGCTC	TGAYAAAGGC	CGTACAATGC		AATGTGCGTT	AATGTTGCTG	840
GAACATGGCA	CTGATCCAAA	TATTCCAGAT		ATACCACTCT	RCACTAYGCT	900
RTCTAYAATG	AAGATAAATT	AATGGCCAAA	GCACTGCTCT	TATAYGGTGC	TGATATCGAA	960
TCAAAAAACA	AGCATGGCCT	CACACCACTG	YTACTTGGTR	TACATGAGCA		1020
GTSGTGAAAT	TTTTAATYAA	GAAAAAAGCG	AATTTAAAAT	G GT GT		1080
RACTGCTCTC	ATACTTGCTG			ATAGTCAGCC	GATATGGAAG	1140
GCAAAATRTT	GATGTATCTT				YTCTACTTGA	1200
•		<b>-</b>		ALDMONDAC	TGCTGTTTCT	1260

AGTCATCATC	ATGTAATTTG	CCAGTTACTT	TCTGACTACA	AAGAAAAACA	GATGTTAAAA	1320
ATCTCTTCTG	AAAACAGCAA	TCCAGAACAA	GACTTAAAGC	TGACATCAGA	GGAAGAGTCA	1380
CAAAGGCTTA	AAGGAAGTGA	AAACAGCCAG	CCAGAGGCAT	GGAAACTTTT	AAATTTAAAC	1440
TTTTGGTTTA	ATGTTTTTTT	TTTTTGCCTT	AATAATATTA	GATAGTCCCA	AATGAAATWA	1500
CCTATGAGAC	TAGGCTTTGA	GAATCAATAG	ATTCTTTTTT	TAAGAATCTT	TTGGCTAGGA	1560
GCGGTGTCTC	ACGCCTGTAA	TTCCAGCACC	TTGAGAGGCT	GAGGTGGGCA	GATCACGAGA	1620
TCAGGAGATC	GAGACCATCC	TGGCTAACAC	GGTGAAACCC	CATCTCTACT	AAAAATACAA	1680
AAACTTAGCT	GGGTGTGGTG	GCGGGTGCCT	GTAGTCCCAG	CTACTCAGGA	RGCTGAGGCA	1740
GGAGAATGGC	ATGAACCCGG	GAGGTGGAGG	TTGCAGTGAG	CCGAGATCCG	CCACTACACT	1800
CCAGCCTGGG	TGACAGAGCA	AGACTCTGTC	TCAAAAAAAA	АААААААА	AAA	1853

### (2) INFORMATION FOR SEQ ID NO:296:

#### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2184 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:296:

GGCACGAGAA	TTAAAACCCT	CAGCAAAACA	GGCATAGAAG	GGACATACCT	TAAAGTAATA	60	
AAAACCACCT	ATGACAAGCC	CACAGCCAAC	ATAATACTAA	ATGGGGAAAA	GTTAGAAGCA	120	
TTTCCTCTGA	GAACTGCAAC	AATAAATACA	AGGATGCTGG	ATTTTGTCAA	ATGCCTTTTC	180	
TGTGTCTGTT	GAGATGCTTA	TGTGACTTTG	CTTTTAATTC	TGTTTATGTG		240	
TTATTGACTT	GCCTGTGTTA					300	
CTGCGGCAGC	TTCGGGATAA	CTTGAGGCTG	CATCACTGGG	GAAGAAACAC	AYTCCTGTCC	360	
	TGGCTGAGGA				GCTTCTTCGG	420	
		CATCCATATG	GCTCCAGAGG	AAAATTATAT	TATTTTGTTA	480	
	GTATTACGTT	GTGCAGATAT	ACTGCAGTGT	CTTCATCTCT	TGATGTGTGA	540	
TTGGGTAGGT	TCCACCATGT			CAGTACCTGT	GTCTGGCTGA	600	
AAAGTGTTTG		GATATTGTGG	TTTCTGGATC	TCATCCTCTG	TGGGTGGACA	660	
	CCTTGCTGGA		TGTCCAGAAG	TTTGATGGCT	GAGGAGTATA	720	
		ATTTCCTGCA	TTTCTTCCTC	CCTGGATGGA	CAGGGGGAGC	780	
	ACGTGGGCAC	TTCTGGAGAC	CACAACGACT	CCTCTGTGAA	GACGCTTGGG	840	
	GCAAGTGGTG			GCAGGGGAGC		900	
ACGTGGTCGC		TACGATGACA		GGATCCCAGG		960	
ATGGAGAAGA		CTCCACAGAG	CTGCCTGGTG	GGGTAAAGTC	CCCAGAAAGG	1020	
	CATGCTCAGG		TGAACAAGAG	GGACAAGCAA	AAGAGGACTG	1080	
	GGCCTCTGCC		CAGAAGTAGT	AAAACTCGTG	CTGGACAGAC	1140	
GATGTCAACT	TAATGTCCTT	GACAACAAAA	AGAGGACAGC	TCTGACAAAG	GCCGTACAAT	1200	
	TGAATGTGCG		TGGAACATGG	CACTGATCCA	AATATTCCAG	1260	
ATGAGTATGG	AAATACCACT	CTACACTATG	CTGTCTACAA	TGAAGATAAA	TTAATGGCCA	1320	
AAGCACTGCT				CAAGCATGGC		1380	
TGCTACTTGG		CAAAAACAGC	AAGTGGTGAA	ATTTTTAATC	AAGAAAAAAG	1440	
CGAATTTAAA	TGCGCTGGAT	AGATATGGAA	GAACTGCTCT	CATACTTGCT	GTATGTTGTG	1500	
	TATAGTCAGC			TGATGTATCT	TCTCAAGATC	1560	
	GCCAGAGAGT			CATGTAATTT	GCCAGTTACT	1620	
	AAAGAAAAAC			GAAAACAGCA	ATCCAGAACA	1680	
AGACTTAAAG	CTGACATCAG			AAAGGAAGTG	AAAACAGCCA	1740	
GCCAGAGGCA			CTTTTGGTTT		TTTTTTGCCT	1800	
TAATAATATT				CTAGGCTTTG		1860	
				CACGCCTGTA	ATTCCAGCAC	1920	
CTTGAGAGGC			ATCAGGAGAT		CTGGCTAACA	1980	
CGGTGAAACC	CCATCTCTAC	TAAAAATACA	AAAACTTAGC	TGGGTGTGGT	GGCGGGTGCC	2040	

TGTAGTCCCA	GCTACTCAGG	ARGCTGAGGC	AGGAGAATGG	CATCAAGGG	GGAGGTGGAG	
CTTCC A CTCA	000000000		HOGAGAATGG	CATGAACCCG	GGAGGTGGAG	2100
GIIGCAGIGA	GCCGAGATCC	GCCACTACAC	TCCAGCCTGG	GTGACAGAGC	AAGACTCTGT	2160
CTCAAAAAAA	AAAAAAAAA	ΔΔΔΔ				2100
		TO COL				2184

# (2) INFORMATION FOR SEQ ID NO:297:

## (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1855 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:297:

TGCACGCATC	GGCCAGTGTC	TGTGCCACGT	ACACTGACGC	CCCCTGAGAT	GTGCACGCCG	60
CACGCGCACG	TTGCACGCGC	C GGCAGCGGCT	TGGCTGGCTT		GCACGCGCAC	120
		AGACTGGCCT	GTAACGGCTI	GCAGGCGCAC	GCCGCACGCG	180
CGTAACGGCT		GTAACGGCTI			CGTTAACGGC	240
	TGTAGCCGCT		TTGCATTYTT		GGCGTTGKTY	300
	ACGCTTCCTC	CTTGGATKGA	CGTTTCCTCC			360
TCGCGTTCCT		TGACCTTTTY	TCTGCTGGGT	TTGGCATTCC	· <del>-</del>	420
GCTGGGTGTT		GGGKTKGCCC	TTCCTGGGGT	GGGCGTGGGK	CGCCCCCAGG	480
GGGCGTGGGC	~				-	540
ATCCCCCTGC		AGGGATTGAC		AAACAGATTG		600
GTAACNTGCT	AGTTGGTGAA	ACTGGTTGGT	AGACGCGATC	TGCTGGTACT		660
		GTGGCTGAGG	TTGATTCAAT	GCCGGCTGCT		720
AGAAGCCATT		AGCAAGATGG	GCAAGTGGTG			780
CAGGGGGAGC		ACGTGGGCAC	TTCTGGAGAC	CACAACGACT	CCTCTGTGAA	840
GACGCTTGGG	AGCAAGAGGT	GCAAGTGGTG	CTGCCCACTG	CTTCCCCTGC	TGCAGGGGAG	900
CGGCAAGAGC	AACGTGGKCG	CTTGGGGAGA	CTACGATGAC	AGCGCCTTCA	TGGAKCCCAG	960
GTACCACGTC	CRTGGAGAAG	ATCTGGACAA	GCTCCACAGA	GCTGCCTGGT	GGGGTAAAGT	1020
CCCCAGAAAG	GATCTCATCG		GGACACTGAY			1020
	GCTCTACATC	TGGCCTCTGC		TCAGAAGTAG	TAAAACTCGT	1140
	CGATGTCAAC		TGACAACAAA		CTCTGACAAA	1200
		ATGAATGTGC	GTTAATGTTG		GCACTGATCC	1260
		GAAATACCAC	TCTACACTAT	GCTGTCTACA		1320
	AAAGCACTGC		TGCTGATATC		ACAAGGTATA	1320
	TTTTATCTTC	AAAATACTGA	AATGCATTCA		GACGTGTGTA	1440
AGGGCCAGTC	TTCCGTATTT	GGAAGCTCAA	GCATAACTTG	AATGAAAATA	TTTTGAAATG	1500
ACCTAATTAT	CTAAGACTTT	ATTTTAAATA	TTGTTATTTT			1560
CAGTTTTTT	TTTTTAAATG	CACTTCTGGT	AAATACTTTT	GTTGAAAACA		1620
	ACTTACTATT	TTTCAATTTT	TCCCTCCTAG	GATTTTTTC	CCCTAATGAA	1680
			GTTTTACATG			1740
	GTGAATAGAG	ATCCTGCTCC	TTTGGCAAGT	TCCTAAAAA		1800
TACGAGGTGA	TGCGCCTGTC	AGTGGCAAGG		TTCTGATCTC		1855
					01000	T000

#### CLAIMS

- 1. An isolated DNA molecule, comprising:
- (a) a nucleotide sequence selected from the group consisting of SEQ ID NO:1, 3-26, 28-77, 142, 143, 146-152, 154-166, 168-176, 178-192, 194-198, 200-204, 206, 207, 209-214, 216, 218, 219, 221-240, 243-245, 247, 250, 251, 253, 255, 257-266, 268, 269, 271-273, 275, 276, 278, 280, 281, 284, 288 and 291-297;
- (b) a variant of said nucleotide sequence that contains one or more nucleotide substitutions, deletions, insertions and/or modifications at no more than 20% of the nucleotide positions, such that the antigenic and/or immunogenic properties of the polypeptide encoded by the nucleotide sequence are retained; or
- (c) a nucleotide sequence encoding an epitope of a polypeptide encoded by at least one sequence selected from the group consisting of SEQ ID NO:1, 3-26, 28-77, 142, 143, 146-152, 154-166, 168-176, 178-192, 194-198, 200-204, 206, 207, 209-214, 216, 218, 219, 221-240, 243-245, 247, 250, 251, 253, 255, 257-266, 268, 269, 271-273, 275, 276, 278, 280, 281, 284, 288 and 291-297.
- 2. An isolated DNA molecule encoding an epitope of a polypeptide, wherein said polypeptide is encoded by a nucleotide sequence that:
- (a) hybridizes to a sequence selected from the group consisting of SEQ ID NO:1, 3-26, 28-77, 142, 143, 146-152, 154-166, 168-176, 178-192, 194-198, 200-204, 206, 207, 209-214, 216, 218, 219, 221-240, 243-245, 247, 250, 251, 253, 255, 257-266, 268, 269, 271-273, 275, 276, 278, 280, 281, 284, 288 and 291-297 under stringent conditions; and
- (b) is at least 80% identical to a sequence selected from the group consisting of SEQ ID NO:1, 3-26, 28-77, 142, 143, 146-152, 154-166, 168-176, 178-192, 194-198, 200-204, 206, 207, 209-214, 216, 218, 219, 221-240, 243-245, 247, 250, 251, 253, 255, 257-266, 268, 269, 271-273, 275, 276, 278, 280, 281, 284, 288 and 291-297.

- 3. An isolated DNA molecule encoding an epitope of a polypeptide, wherein said polypeptide is encoded by:
- (a) a nucleotide sequence transcribed from the sequence of SEQ ID NO: 141; or
- (b) a variant of said nucleotide sequence that contains one or more nucleotide substitutions, deletions, insertions and/or modifications at no more than 20% of the nucleotide positions, such that the antigenic and/or immunogenic properties of the polypeptide encoded by the nucleotide sequence are retained.
- 4. An isolated DNA or RNA molecule comprising a nucleotide sequence complementary to a DNA molecule according to any one of claims 1-3.
- 5. A recombinant expression vector comprising a DNA molecule according to any one of claims 1-3.
- 6. A host cell transformed or transfected with an expression vector according to claim 5.
- 7. A polypeptide comprising an amino acid sequence encoded by a DNA molecule according to any one of claims 1-3.
- 8. A polypeptide according to claim 7 wherein said polypeptide comprises an epitope of an amino acid sequence encoded by at least one nucleotide sequence selected from the group consisting of SEQ ID NO:1, 3-26, 28-77, 142, 143, 146-152, 154-166, 168-176, 178-192, 194-198, 200-204, 206, 207, 209-214, 216, 218, 219, 221-240, 243-245, 247, 250, 251, 253, 255, 257-266, 268, 269, 271-273, 275, 276, 278, 280, 281, 284, 288 and 291-297.
- 9. A monoclonal antibody that binds to a polypeptide according to claim 7.

- 10. A method for determining the presence of breast cancer in a patient comprising detecting, within a biological sample, at least one polypeptide according to claim 7, and therefrom determining the presence of breast cancer in the patient.
- 11. A method for determining the presence of breast cancer in a patient comprising detecting within a biological sample, at least one polypeptide encoded by a nucleotide sequence selected from the group consisting of SEQ ID NO: 78-86, 144, 145, 153, 167, 177, 193, 199, 205, 208, 215, 217, 220, 241, 242, 246, 248, 249, 252, 256, 267, 270, 274, 277, 279, 282, 283, 285-287, 289, 290 and sequences that hybridize thereto under stringent conditions.
- 12. The method of claims 10 or 11 wherein the biological sample is a portion of a breast tumor.
- 13. The method of claim 10 wherein the step of detecting comprises contacting the biological sample with a monoclonal antibody according to claim 9.
- 14. The method of claim 11 wherein the step of detecting comprises contacting the biological sample with a monoclonal antibody that binds to a polypeptide encoded by a nucleotide sequence selected from the group consisting of SEQ ID NO: 78-86, 144, 145, 153, 167, 177, 193, 199, 205, 208, 215, 217, 220, 241, 242, 246, 248, 249, 252, 256, 267, 270, 274, 277, 279, 282, 283, 285-287, 289, 290 and sequences that hybridize thereto under stringent conditions.
- 15. A method for determining the presence of breast cancer in a patient comprising detecting, within a biological sample, an RNA molecule encoding at least one polypeptide according to claim 7, and therefrom determining the presence of breast cancer in the patient.

- 16. A method for determining the presence of breast cancer in a patient comprising detecting, within a biological sample, at least one RNA molecule encoding a polypeptide encoded by a nucleotide sequence selected from the group consisting of SEQ ID NO: 78-86, 144, 145, 153, 167, 177, 193, 199, 205, 208, 215, 217, 220, 241, 242, 246, 248, 249, 252, 256, 267, 270, 274, 277, 279, 282, 283, 285-287, 289, 290 and sequences that hybridize thereto under stringent conditions; and therefrom determining the presence of breast cancer in the patient.
- 17. The method of claims 15 or 16 wherein the biological sample is a portion of a breast tumor.
  - 18. The method of claim 15 wherein the step of detecting comprises:
- (a) preparing cDNA from RNA molecules within the biological sample; and
- (b) specifically amplifying cDNA molecules that are capable of encoding at least a portion of a polypeptide according to claim 7, and therefrom determining the presence of breast cancer in the patient.
  - 19. The method of claim 16 wherein the step of detecting comprises:
- (a) preparing cDNA from RNA molecules within the biological sample; and
- (b) specifically amplifying cDNA molecules that are capable of encoding at least a portion of a polypeptide encoded by a nucleotide sequence selected from the group consisting of SEQ ID NO: 78-86, 144, 145, 153, 167, 177, 193, 199, 205, 208, 215, 217, 220, 241, 242, 246, 248, 249, 252, 256, 267, 270, 274, 277, 279, 282, 283, 285-287, 289, 290 and sequences that hybridize thereto under stringent conditions; and therefrom determining the presence of breast cancer in the patient.

- 20. A method for monitoring the progression of breast cancer in a patient, comprising:
- (a) detecting an amount, in a biological sample, of at least one polypeptide according to claim 7 at a first point in time;
  - (b) repeating step (a) at a subsequent point in time; and
- (c) comparing the amounts of polypeptide detected in steps (a) and (b), and therefrom monitoring the progression of breast cancer in the patient.
- 21. A method for monitoring the progression of breast cancer in a patient, comprising:
- (a) detecting in a biological sample an amount of at least one polypeptide at a first point in time, the polypeptide being encoded by a nucleotide sequence selected from the group consisting of SEQ ID NO: 78-86, 144, 145, 153, 167, 177, 193, 199, 205, 208, 215, 217, 220, 241, 242, 246, 248, 249, 252, 256, 267, 270, 274, 277, 279, 282, 283, 285-287, 289, 290 and sequences that hybridize thereto under stringent conditions;
  - (b) repeating step (a) at a subsequent point in time; and
- (c) comparing the amounts of polypeptide detected in steps (a) and (b), and therefrom monitoring the progression of breast cancer in the patient.
- 22. The method of claims 20 or 21 wherein the biological sample is a portion of a breast tumor.
- 23. The method of claim 20 wherein the step of detecting comprises contacting a portion of the biological sample with a monoclonal antibody according to claim 9.
- 24. The method of claim 21 wherein the step of detecting comprises contacting the biological sample with a monoclonal antibody that binds to a polypeptide encoded by a nucleotide sequence selected from the group consisting of SEQ ID NO: 78-86, 144, 145, 153, 167, 177, 193, 199, 205, 208, 215, 217, 220, 241, 242, 246, 248, 249, 252,

256, 267, 270, 274, 277, 279, 282, 283, 285-287, 289, 290 and sequences that hybridize thereto under stringent conditions.

- 25. The method of claim 20 wherein said polypeptide comprises an epitope of an amino acid sequence encoded by at least one nucleotide sequence selected from the group consisting of SEQ ID NO:1, 3-26, 28-77, 142, 143, 146-152, 154-166, 168-176, 178-192, 194-198, 200-204, 206, 207, 209-214, 216, 218, 219, 221-240, 243-245, 247, 250, 251, 253, 255, 257-266, 268, 269, 271-273, 275, 276, 278, 280, 281, 284, 288 and 291-297.
- A method for monitoring the progression of breast cancer in a patient, comprising:
- (a) detecting an amount, within a biological sample, of at least one RNA molecule encoding a polypeptide according to claim 7 at a first point in time;
  - (b) repeating step (a) at a subsequent point in time; and
- (c) comparing the amounts of RNA molecules detected in steps (a) and (b), and therefrom monitoring the progression of breast cancer in the patient.
  - 27. The method of claim 26 wherein the step of detecting comprises:
- (a) preparing cDNA from RNA molecules within the biological sample; and
- (b) specifically amplifying cDNA molecules that are capable of encoding at least a portion of a polypeptide according to claim 7.
- 28. A method for monitoring the progression of breast cancer in a patient, comprising:
- (a) detecting an amount, within a biological sample, of at least one RNA molecule at a first point in time, the RNA molecule encoding a polypeptide encoded by a nucleotide sequence selected from the group consisting of SEQ ID NO: 78-86, 144, 145, 153, 167, 177, 193, 199, 205, 208, 215, 217, 220, 241, 242, 246, 248, 249, 252, 256, 267, 270,

- 274, 277, 279, 282, 283, 285-287, 289, 290 and sequences that hybridize thereto under stringent conditions;
  - (b) repeating step (a) at a subsequent point in time; and
- (c) comparing the amounts of RNA molecules detected in steps (a) and (b), and therefrom monitoring the progression of breast cancer in the patient.
- 29. A pharmaceutical composition, comprising a polypeptide according to claim 7 and a physiologically acceptable carrier.
- A pharmaceutical composition for inhibiting the development of breast cancer, comprising a polypeptide and a physiologically acceptable carrier, the polypeptide being encoded by a nucleotide sequence selected from the group consisting of SEQ ID NO: 78-86, 144, 145, 153, 167, 177, 193, 199, 205, 208, 215, 217, 220, 241, 242, 246, 248, 249, 252, 256, 267, 270, 274, 277, 279, 282, 283, 285-287, 289, 290 and sequences that hybridize thereto under stringent conditions.
- 31. A vaccine, comprising a polypeptide according to claim 7 and an immune response enhancer.
- 32. A vaccine, comprising a DNA molecule according to any one of claims 1-3.
- 33. A vaccine, comprising a recombinant expression vector comprising a DNA molecule according to any one of claims 1-3.
- 34. A vaccine for inhibiting the development of breast cancer, comprising a polypeptide and an immune response enhancer, the polypeptide being encoded by a nucleotide sequence selected from the group consisting of SEQ ID NO: 78-86, 144, 145, 153, 167, 177, 193, 199, 205, 208, 215, 217, 220, 241, 242, 246, 248, 249, 252, 256, 267, 270,

- 274, 277, 279, 282, 283, 285-287, 289, 290 and sequences that hybridize thereto under stringent conditions.
- 35. A pharmaceutical composition according to either of claims 29 or 30, for use in the manufacture of a medicament for inhibiting the development of breast cancer in a patient, comprising administering to a patient.
- 36. A vaccine according to any one of claims 31-34, for use in the manufacture of a medicament for inhibiting the development of breast cancer in a patient.
  - 37. A diagnostic kit comprising:
  - (a) one or more monoclonal antibodies according to claim 9; and
  - (b) a detection reagent.
  - 38. A diagnostic kit comprising:
- (a) one or more monoclonal antibodies that bind to a polypeptide encoded by a nucleotide sequence selected from the group consisting of sequences provided in SEQ ID 78-86, 144, 145, 153, 167, 177, 193, 199, 205, 208, 215, 217, 220, 241, 242 and 246, 248, 249, 252, 256, 267, 270, 274, 277, 279, 282, 283, 285-287, 289, 290; and
  - (b) a detection reagent.
- 39. The kit of any one of claims 37 or 38 wherein the monoclonal antibody(s) are immobilized on a solid support.
- 40. A diagnostic kit comprising two polymerase chain reaction primers, at least one of the primers being specific for an RNA molecule according to claim 4.
- 41. The kit of claim 40, wherein at least one of the polymerase chain reaction primers comprises at least about 10 contiguous nucleotides of an RNA molecule according to claim 4.

- 42. A diagnostic kit comprising two polymerase chain reaction primers, at least one of the primers being specific for an RNA molecule encoding a polypeptide encoded by a nucleotide sequence selected from the group consisting of SEQ ID NOS:78-86, 144, 145, 153, 167, 177, 193, 199, 205, 208, 215, 217, 220, 241, 242 246, 248, 249, 252, 256, 267, 270, 274, 277, 279, 282, 283, 285-287, 289 and 290.
- 43. The kit of claim 42, wherein at least one of the polymerase chain reaction primers comprises at least about 10 contiguous nucleotides of an RNA molecule encoding a polypeptide encoded by a nucleotide sequence selected from the group consisting of SEQ ID NOS:78-86, 144, 145, 153, 167, 177, 193, 199, 205, 208, 215, 217, 220, 241, 242 246, 248, 249, 252, 256, 267, 270, 274, 277, 279, 282, 283, 285-287, 289 and 290.
- 44. A diagnostic kit comprising at least one oligonucleotide probe, the oligonucleotide probe containing at least about 15 contiguous nucleotides of a DNA molecule according to claim 4.
- 45. A diagnostic kit comprising at least one oligonucleotide probe, the oligonucleotide probe comprising at least about 15 contiguous nucleotides of a DNA sequence selected from the group consisting of SEQ ID NOS:78-86, 144, 145, 153, 167, 177, 193, 199, 205, 208, 215, 217, 220, 241, 242 246, 248, 249, 252, 256, 267, 270, 274, 277, 279, 282, 283, 285-287, 289 and 290.
- 46. A diagnostic kit comprising at least one oligonucleotide probe specific for a DNA molecule according to claim 4.
- 47. The kit of claim 46, wherein the oligonucleotide probe comprises at least about 15 contiguous nucleotides of a DNA molecule according to claim 4.
- 48. A diagnostic kit comprising at least one oligonucleotide probe specific for a DNA sequence selected from the group consisting of SEQ ID NOS:78-86, 144, 145,

153, 167, 177, 193, 199, 205, 208, 215, 217, 220, 241, 242 246, 248, 249, 252, 256, 267, 270, 274, 277, 279, 282, 283, 285-287, 289 and 290.

49. The kit of claim 48, wherein the oligonucleotide probe comprises at least about 15 contiguous nucleotides of a DNA sequence selected from the group consisting of SEQ ID NOS:78-86, 144, 145, 153, 167, 177, 193, 199, 205, 208, 215, 217, 220, 241, 242 246, 248, 249, 252, 256, 267, 270, 274, 277, 279, 282, 283, 285-287, 289 and 290.

WO 98/45328 PCT/US98/06939



Fig. 1

NORMAL BREAST TISSUF MRN



Fig. 3.

SUBSTITUTE SHEET (RULE 26)



Fig. 4

SUBSTITUTE SHEET (RULE 26)



SUBSTITUTE SHEET (RULE 26)

# NUCLEOTIDE SEQUENCE OF THE REPRESENTATIVE BREAST-TUMOR SPECIFIC cDNA B18Ag1

Leu 1	GAG Glu	ACC Thr	CAA Gln	TTG Leu 5	GGA Gly	CCT Pro	AAT Asn	TGG Trp	GAC Asp 10	CCA Pro	AAT Asn	TTC Phe	TCA Ser	AGT Ser 15	GGA Gly	48
GGG Gly	AGA Arg	ACT Thr	TTT Phe 20	GAC Asp	GAT Asp	TTC Phe	CAC His	CGG Arg 25	TAT Tyr	CTC Leu	CTC Leu	GTG Val	GGT Gly 30	ATT Ile	CAG Gln	96
GGA Gly	GCT Ala	GCC Ala 35	CAG Gln	AAA Lys	CCT Pro	ATA Ile	AAC Asn 40	TTG Leu	TCT Ser	AAG Lys	GCG Ala	ATT Ile 45	GAA Glu	GTC Va l	GTC Val	144
CAG Gln	GGG Gly 50	CAT His	GAT Asp	GAG Glu	TCA Ser	CCA Pro 55	GGA Gly	GTG Val	TTT Phe	TTA Leu	GAG Glu 60	CAC His	CTC Leu	CAG Gln	GAG Glu	192
GCT Ala 65	TAT Tyr	CGG Arg	ATT Ile	TAC Tyr	ACC Thr 70	CCT Pro	TTT Phe	GAC Asp	CTG Leu	GCA Ala 75	GCC Ala	CCC Pro	GAA Glu	AAT Asn	AGC Ser 80	240
CAT His	GCT Ala	CTT Leu	AAT Asn	TTG Leu 85	GCA Ala	TTT Phe	GTG Val	GCT Ala	CAG Gln 90	GCA Ala	GCC Ala	CCA Pro	GAT Asp	AGT Ser 95	AAA Lys	288
AGG Arg	AAA Lys	CTC Leu	CAA Gln 100	AAA Lys	CTA Leu	GAG Glu	GGA Gly	TTT Phe 105	TGC Cys	TGG Trp	AAT Asn	GAA Glu	TAC Tyr 110	CAG Gln	TCA Ser	336
GCT Ala	TTT Phe	AGA Arg 115	GAT Asp	AGC Ser	CTA Leu	AAA Lys	GGT Gly 120	TTT Phe		. *						363

## NUCLEOTIDE SEQUENE OF THE REPRESENTATIVE BREAST-TUMOR SPECIFIC cDNA B17Ag1

GC	TGGGCACAGT	GGCTCATACC	TGTAATCCTG	ACCGTTTCAG	AGGCTCAGGT	60
CG	CTTGAGCCCA	AGATTTCAAG	ACTAGTCTGG	GTAACATAGT	GAGACCCTAT	120
AA	AAATAAAAA	ATGAGCCTGG	TGTAGTGGCA	CACACCAGCT	GAGGAGGGAG	180
СТ	AGGAGA					196

# NUCLEOTIDE SEQUENCE OF THE REPRESENTATIVE BREAST-TUMOR SPECIFIC cDNA B17Ag2

GC	TTGGGGGCTC	TGACTAGAAA	TTCAAGGAAC	CTGGGATTCA	AGTCCAACTG	60
AC	TTACACTGTG	GNCTCCAATA	AACTGCTTCT	TTCCTATTCC	CTCTCTATTA	120
AA	GGAAAACGAT	GTCTGTGTAT	AGCCAAGTCA	GNTATCCTAA	AAGGAGATAC	180
AT	TAAATATCAG	AATGTAAAAC	CTGGGAACCA	GGTTCCCAGC	CTGGGATTAA	240
CA	AGAAGACTGA	ACAGTACTAC	TGTGAAAAGC	CCGAAGNGGC	AATATGTTCA	300
TT	GAAGGATGGC	TGGGAGAATG	AATGCTCTGT	CCCCCAGTCC	CAAGCTCACT	360
	CCTTTATAGC					300

# NUCLEOTIDE SEQUENCE OF THE REPRESENTATIVE BREAST-TUMOR SPECIFIC cDNA B13Ag2a

GC	CTATAATCAT	GTTTCTCATT	ATTTTCACAT	TTTATTAACC	AATTTCTGTT	60
AA	AATATGAGGG	AAATATATGA	AACAGGGAGG	CAATGTTCAG	ATAATTGATC	120
TG	ATTTCTACAT	CAGATGCTCT	TTCCTTTCCT	GTTTATTTCC	TTTTTATTTC	180
GG	TCGAATGTAA	TAGCTTTGTT	TCAAGAGAGA	GTTTTGGCAG	TTTCTGTAGC	240
СТ	GCTCATGTCT	CCAGGCATCT	ATTTGCACTT	TAGGAGGTGT	CGTGGGAGAC	300
СТ	ATTTTTTCCA	TATTTGGGCA	ACTACTA			337

# NUCLEOTIDE SEQUENCE OF THE REPRESENTATIVE BREAST-TUMOR SPECIFIC cDNA B13Ag1b

GC	CATACAGTGC	CTTTCCATTT	ATTTAACCCC	CACCTGAACG	GCATAAACTG	6
GC	TGGTGTTTTT	TACTGTAAAC	AATAAGGAGA	CTTTGCTCTT	CATTTAAACC	120
ΑТ	TTCATATTT	ACGCTCGAGG	GTTTTTACCG	GTTCCTTTTT	ACACTCCTTA	180
TT	TAAGTCGTTT	GGAACAAGAT	ATTTTTTCTT	TCCTGGCAGC	TTTTAACATT	240
TT	TGTGTCTGGG	GGACTGCTGG	TCACTGTTTC	TCACAGTTGC	AAATCAAGGC	300
CC	AAGAAAAAA	AATTTTTTG	TTTTATTTGA	AACTGGACCG	GATAAACGGT	360
CG	GCTGCTGTAT	ATAGTTTTAA	ATGGTTTATT	GCACCTCCTT	AAGTTGCACT	420
GG	GGGGNTTTTG	NATAGAAAGT.	NTTTANTCAC	ANAGTCACAG	GGACTTTTNT	480
NA	CTGAGCTAAA	AAGGGCTGNT	TTTCGGGTGG	GGGCAGATGA .	AGGCTCACAG	540
TC	TCTTAGAGGG	GGGAACTNCT	А			571

#### NUCLEOTIDE SEQUENCE OF THE REPRESENTATIVE BREAST-TUMOR SPECIFIC cDNA B13Ag1a

TA	ATAACTTAAA	TATATTTTGA	TCACCCACTG	GGGTGATAAG	ACAATAGATA	60
TT	TCCAAAAAGC	ATAAAACCAA	AGTATCATAC	CAAACCAAAT	TCATACTGCT	120
CC	GCACTGAAAC	TTCACCTTCT	AACTGTCTAC	CTAACCAAAT	TCTACCCTTC	180
GG	TGCGTGCTCA	CTACTCTTTT	TTTTTTTTT	TTTNTTTTGG	AGATGGAGTC	240
CA	GCCCAGGGGT	GGAGTACAAT	GGCACAACCT	CAGCTCACTG	NAACCTCCGC	300
TT	CATGAGATTC	TCCTGNTTCA	GCCTTCCCAG	TAGCTGGGAC	TACAGGTGTG	360
TG	CCTGGNTAAT	CTTTTTTNGT	TTTNGGGTAG	AGATGGGGGT	TTTACATGTT	420
TG	GTNTCGAACT	CCTGACCTCA	AGTGATCCAC	CCACCTCAGG	CTCCCAAAGT	480
TΑ	CAGACATGAG	CCACTGNGCC	CAGNCCTGGT	GCATGCTCAC	TTCTCTAGGC	540
						548

# NUCLEOTIDE SEQUENCE OF THE REPRESENTATIVE BREAST-TUMOR SPECIFIC cDNA B11Ag1

TG	CACATGCAGA	ATATTCTATC	GGTACTTCAG	CTATTACTCA	TTTTGATGGC	60
AG	CCTATCCTCA	AGATGAGTAT	TTAGAAAGAA	TTGATTTAGC	GATAGACCAA	120
GC	ACTCTGACTA	CACGAAATTG	TTCAGATGTG	ATGGATTTAT	GACAGTTGAT	180
GΑ	GATTATTAAG	TGATTATTTT	AAAGGGAATC	CATTAATTCC	AGAATAÍCTT	240
TC	AAGATGATAT	AGAAATAGAA	CAGAAAGAGA	CTACAAATGA	AGATGTATCA	300
TA	TTGAAGAGCC	TATAGTAGAA	AATGAATTAG	CTGCATTTAT	TAGCCTTACA	360
TT	TTCCTGATGA	ATCTTATATT	CAGCCATCGA	CATAGCATTA	CCTGATGGGC	420
GΑ	ATAATAGAAA	CTGGGTGCGG	GGCTATTGAT	GAATTCATCC	NCAGTAAATT	480
4C	AAAATATAAC	TCGATTGCAT	TTGGATGATG	GAATACTAAA	TCTGGCAAAA	540
5G	AGCTACTAGT	AACCTCTCTT	TTTGAGATGC	AAAATTTTCT	TTTAGGGTTT	600
CT	ACTTTACGGA	TATTGGAGCA	TAACGGGA			638

## NUCLEOTIDE SEQUENCE OF THE REPRESENTATIVE BREAST-TUMOR SPECIFIC cDNA B3CA3c

ACTGATGGAT	GTCGCCGGAG	GCGAGGGGCC	TTATCTGATG	CTCGGCTGCC	TGTTCGTGAT	60
GTGCGCGGCG	ATTGGGCTGT	TTATCTCAAA	CACCGCCACG	GCGGTGCTGA	TGGCGCCTAT	120
TGCCTTAGCG	GCGGCGAAGT	CAATGGGCGT	CTCACCCTAT	CCTTTTGCCA	TGGTGGTGGC	180
GATGGCGGCT	TCGGCGGCGT	TTATGACCCC	GGTCTCCTCG	CCGGTTAACA	CCCTGGTGCT	240
TGGCCCTGGC	AAGTACTCAT	TTAGCGATTT	TGTCAAAATA	GGCGTG		286

# NUCLEOTIDE SEQUENCE OF THE REPRESENTATIVE BREAST-TUMOR SPECIFIC cDNA B9CG1

AG'	CAGCCCCTTC	TTCTCAATTT	CATCTGTCAC	TACCCTGGTG	TAGTATCTCA	60
CA	TTTTTATAGC	СТССТСССТБ	GTCTGTCTTT	TGATTTTCCT	GCCTGTAATC	120
AC	ATAACTGCAA	GTAAACATTT	CTAAAGTGTG	GTTATGCTCA	TGTCACTCCT	180
AA	ATAGTTTCCA	TTACCGTCTT	AATAAAATTC	GGATTTGTTC	TTTNCTATTN	240
CA	CCTATGACCG	AA				262

## NUCLEOTIDE SEQUENCE OF THE REPRESENTATIVE BREAST-TUMOR SPECIFIC cDNA B9CG3

AG	CAAAGCCAGT	GGTTTGAGCT	CTCTACTGTG	TAAACTCCTA	AACCAAGGCC	60
TA	AATGGTGGCA	GGATTTTTAT	TATAAACATG	TACCCATGCA	AATTTCCTAT	120
GA	TATATTCTTC	TACATTTAAA	CAATAAAAAT	AATCTATTTT	TAAAAGCCTA	180
AG	TTAGGTAAGA	GTGTTTAATG	AGAGGGTATA	AGGTATAAAT	CACCAGTCAA	240
TG	CCTATGACCG	A				261

# NUCLEOTIDE SEQUENCE OF THE REPRESENTATIVE BREAST-TUMOR SPECIFIC cDNA B2CA2

GG	GCATGGACGC	AGACGCCTGA	CGTTTGGCTG	AAAATCTTTC	ATTGATTCGT	6
ΑT	AGGAAAATTC	CCAAAGAGGG	AATGTCCTGT	TGCTCGCCAG	TTTTTNTGTT	120
GG	ANAAGGCAAN	GAGCTCTTCA	GACTATTGGN	ATTNTCGTTC	GGTCTTCTGC	180
CG	NCTTGCNANG	ATCTTCAT			·	208

## NUCLEOTIDE SEQUENCE OF THE REPRESENTATIVE BREAST-TUMOR SPECIFIC cDNA B3CA1

GG	GCATGGACGC	AGACGCCTGA	CGTTTGGCTG	AAAATCTTTC	ATTGATTCGT	60
ΑT	AGGAAAATTC	CCAAAGAGGG	AATGTCCTGT	TGCTCGCCAG	TTTTTNTGTT	120
GG	ANAAGGCAAN	GAGCTCTTCA	GACTATTGGN	ATTNTCGTTC	GGTCTŢCTGC	180
CG	NCTTGCNANG	ATCTTCAT				208

# NUCLEOTIDE SEQUENCE OF THE REPRESENTATIVE BREAST-TUMOR SPECIFIC cDNA B3CA2

GG	GCATGGACGC	AGACGCCTGA	CGTTTGGCTG	AAAATCTTTC	ATTGATTCGT	61
ΑT	AGGAAAATTC	CCAAAGAGGG	AATGTCCTGT	TGCTCGCCAG	TTTTTNTGTT	120
GG	ANAAGGCAAN	GAGCTCTTCA	GACTATTGGN	ATTNTCGTTC	GGTCTTCTGC	180
CG	NCTTGCNANG	ATCTTCAT		-		208

## NUCLEOTIDE SEQUENCE OF THE REPRESENTATIVE BREAST-TUMOR SPECIFIC cDNA B3CA3

٩G	GGAGCAAGGA	GAAGGCATGG	AGAGGCTCAN	GCTGGTCCTG	GCCTACGACT	60
СТ	GTCGCCGGGG	ATGGTGGAGA	ACTGAAGCGG	GACCTCCTCG	AGGTCCTCCG	120
TC	NCCGTCCAGG	AGGAGGGTCT	TTCCGTGGTC	TNGGAGGAGC	GGGGGGAGAA	180
TC	ATGGTCNACA	TCCC				204

# NUCLEOTIDE SEQUENCE OF THE REPRESENTATIVE BREAST-TUMOR SPECIFIC cDNA B4CA1

TC	AGGAGCGGGT	AGAGTGGCAC	CATTGAGGGG	ATATTCAAAA	ATATTATTT	60
TG	ATAGTTGCTG	AGTTTTCTT	TGACCCATGA	GTTATATTGG	AGTTTATTTT	120
CC	AATCGCATGG	ACATGTTAGA	CTTATTTTCT	GTTAATGATT	NCTATTTTTA	180
GA	TTTGAGAAAT	TGGTTNTTAT	TATATCAATT	TTTGGTATTT	GTTGAGTTTG	240
GC	TTAGTATGTG	ACCA				264



SUBSTITUTE SHEET (RULE 26)



12 : 27

#### **PCT**

#### WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau



#### INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: C07K 14/47, 14/82, 14/15, C12Q 1/68, G01N 33/574, A61K 38/17, 39/00

(11) International Publication Number: **A3** 

WO 98/45328

(43) International Publication Date:

15 October 1998 (15.10.98)

(21) International Application Number:

PCT/US98/06939

(22) International Filing Date:

9 April 1998 (09.04.98)

(30) Priority Data:

08/838,762 08/991,789 9 April 1997 (09.04.97)

US 11 December 1997 (11.12.97)

(71) Applicant: CORIXA CORPORATION [US/US]; Suite 200. 1124 Columbia Street, Seattle, WA 98104 (US).

(72) Inventors: FRUDAKIS, Tony, N.; P.O. Box 99232, Seattle, WA 99232-0232 (US). SMITH, John, M.; 208 - 116th Place Southeast, Everett, WA 98208 (US). REED, Steven, G.; 2843 - 122nd Place N.E., Bellevue, WA 98005 (US).

(74) Agents: MAKI, David, J. et al.; Seed and Berry LLP, 6300 Columbia Center, 701 Fifth Avenue, Seattle, WA 98104-7092 (US).

(81) Designated States: AL, AM, AT, AU, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(88) Date of publication of the international search report:

22 April 1999 (22.04.99)

(54) Title: COMPOSITIONS AND METHODS FOR THE TREATMENT AND DIAGNOSIS OF BREAST CANCER

(57) Abstract

Compositions and methods for the detection and therapy of breast cancer are disclosed. The compounds provided include nucleotide sequences that are preferentially expressed in breast tumor tissue, as well as polypeptides encoded by such nucleotide sequences. Vaccines and pharmaceutical compositions comprising such compounds are also provided and may be used, for example, for the prevention and treatment of breast cancer. The polypeptides may also be used for the production of antibodies, which are useful for diagnosing and monitoring the progression of breast cancer patient.

### FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

PCT/UJ 98/06939

A. CLASSIFICATION OF SUBJECT MATTER IPC 6 C07K14/47 C07K14/82 C07K14/15 C12Q1/68 G01N33/574 A61K38/17 A61K39/00 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 6 C07K Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Category ° Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. Y "S71 IS A WERNER T ET AL: 1,2, PHYLOGENETICALLY DISTINCT HUMAN ENDOGENOUS 4-10,12, RETROVIRAL ELEMENT WITH STRUCTURAL AND 13,15, SEQUENCE HOMOLOGY TO SIMIAN SARCOMA VIRUS 17,18, (SSV)" 20,22, VIROLOGY, 23, vol. 174, no. 1, January 1990, 25-27, pages 225-238, XP000670325 29, 31-33, 35-37, 39-41, 44,46,47 see the whole document -/--Further documents are listed in the continuation of box C. Х Patent family members are listed in annex. Special categories of cited documents: T later document published after the international filing date or priority date and not in conflict with the application but "A" document defining the general state of the art which is not cited to understand the principle or theory underlying the considered to be of particular relevance invention "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to filing date *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the citation or other special reason (as specified) *O* document referring to an oral disclosure, use, exhibition or document is combined with one or more other such docu ments, such combination being obvious to a person skilled in the art. document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 31 August 1998 26 January 1999 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Hagenmaier, S Fax: (+31-70) 340-3016

1

Internation No PCT/co 98/06939

ategory °	Citation of document with indication when the state of th	
	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
	WO 95 32311 A (CALYPTE INC) 30 November 1995	1,2, 4-10,12, 13,15,
		17,18, 20,22, 23, 25-27, 29,
		31-33, 35-37, 39-41,
	see the whole document	44,46,47
A	LEIB-MOESCH C ET AL: "EVOLUTION AND BIOLOGICAL SIGNIFICANCE OF HUMAN RETROELEMENTS" VIRUS GENES,	
	vol. 11, no. 2/03, 1996, pages 133-145, XP000673508	
A	WO 97 06256 A (INST NAT SANTE RECH MED; CENTRE NAT RECH SCIENT (FR); UNIV PASTEUR) 20 February 1997 see the whole document	
A	WATSON M A ET AL: "ISOLATION OF DIFFERENTIALLY EXPRESSED SEQUENCE TAGS FROM HUMAN BREAST CANCER" CANCER RESEARCH, vol. 54, no. 17, 1 September 1994, pages 4598-4602, XP000576043 see the whole document	
<b>A</b>	BYRNE J A ET AL: "A SCREENING METHOD TO IDENTIFY GENE COMMONLY OVEREXPRESSED IN CARCINOMAS AND THE IDENTIFICATION OF A NOVEL COMPLEMENTARY DNA SEQUENCE" CANCER RESEARCH, vol. 55, no. 13, 1 July 1995, pages 2896-2903, XP002025781 see the whole document	
A	WO 95 19369 A (UNIV VANDERBILT) 20 July 1995 see the whole document	
A	WO 91 02062 A (TRITON BIOSCIENCES INC) 21 February 1991 see the whole document	
	-/	
		<b>!</b>

PCT/US 98/06939

		PC1/03 96/06939	
C.(Continua Category °	ation) DOCUMENTS CONSIDERED TO BE RELEVANT  Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.	
Category	Citation of document, with indication, where appropriate, or are restain pursuages		
A	ZEHAN CHEN ET AL: "DIFFERENTIAL EXPRESSION OF HUMAN TISSUE FACTOR IN NORMAL MAMMARY EPITHELIAL CELLS AND IN CARCINOMAS" MOLECULAR MEDICINE, vol. 1, no. 2, January 1995, pages 153-160, XP000607858 see the whole document		
Α	WO 96 38463 A (UNIV WASHINGTON ;WATSON MARK A (US); FLEMING TIMOTHY P (US)) 5 December 1996 see the whole document		•
P,X	WO 97 25431 A (CORIXA CORP) 17 July 1997	1,2, 4-10,12, 13,15, 17,18, 20,22, 23, 25-27, 29, 31-33, 35-37, 39-41, 44,46,47	
ĺ	see the whole document		
P,X	WO 97 25426 A (CORIXA CORP) 17 July 1997	1,2, 4-10,12, 13,15, 17,18, 20,22, 23, 25-27, 29, 31-33, 35-37, 39-41, 44,46,47	
	see the whole document	44,40,47	
	·		

1

inte anal application No.

PCT/US 98/06939

B XI Observati ns where cer	tain claims were found unsearchable (Continuation of item 1 of first shect)
rine international Search Report has r	not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
<del></del> 1	totalis.
1. Claims Nos.:	t matter not required to 1
	t matter not required to be searched by this Authority, namely:
2. Claims Nos.:	
because they relate to parts o	f the International Application that do not comply with the prescribed requirements to such
inglui (	in the international Application that do not comply with the prescribed requirements to such international Search can be carried out, specifically:
3. Claims Nos.:	
because they are dependent c	laims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
· ·	
B x II Observations where unity	of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority fo	ound multiple inventions in this international application, as follows:
	The second as follows.
see FURTHER INFORMATI	ON sheet
	an sheet
As all required additional search	n fees were timely paid by the applicant, this International Search Report covers all
comunity claims.	and the state of t
As all searchable de	
As all searchable claims could b	pe searched without effort justifying an additional fee, this Authority did not invite payment
the state of the s	Authority did not invite payment
. As only some of the require	
covers only those claims for white	ditional search fees were timely paid by the applicant, this International Search Report ch fees were paid, specifically claims Nos.:
	Nos.:
	`` ·
X No required addition	
restricted to the invention first me	es were timely paid by the applicant. Consequently, this International Search Report is entioned in the claims, it is covered by claims Nos.:
i	
see FURHTER INFORMA	TION sheet, subject 1.
	1
	r
mark on Protest	The additional search fees were processed in the search fees were processe
mark on Protest	The additional search fees were accompanied by the applicant's protest.
mark on Protest	The additional search fees were accompanied by the applicant's protest.  No protest accompanied the payment of additional search fees.

#### FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

1. Claims: 1,2,4-10,12,13,15,17,18,20,22,23,25-27,29,31-33, 35-37,39-41,44,46,47 (all partially)

Invention 1: Isolated DNA molecule comprising a nucleotide sequence with Seq.ID 1, the corresponding polypeptide, an isolated DNA or RNA molecule comprising a nucleotide sequence complementary to seq. ID 1, a recombinant expression vector comprising that molecule, a host cell transfected with that vector, a monoclonal antibody binding to the polypeptide encoded by Seq. ID 1, as well as pharmaceutical compositions, vaccines, diagnostic methods used in the diagnosis and therapy of breast cancer.

2. Claims: 1,2,4-10,12,13,15,17,18,20,22,23,25-27,29,31-33, 35-37,39-41,44,46,47 (all partially)

Invention 2-75:
Isolated DNA molecule comprising a nucleotide sequence with Seq.ID 3, the corresponding polypeptide, an isolated DNA or RNA molecule comprising a nucleotide sequence complementary to Seq. ID 3, a recombinant expression vector comprising that molecule, a host cell transfected with that vector, a monoclonal antibody binding to the polypeptide encoded by Seq. ID 3, as well as pharmaceutical compositions, vaccines, diagnostic methods used in the diagnosis and therapy of breast cancer.

- ...ibidem for each of sequences 4-26, 28-77
- 3. Claims: 3 (completely), 4-10,12,13,15,17,18,20,22,23,25-27, 29,31-33,35-37,39-41,44,46,47 (all partially)

Invention 76:
Isolated DNA molecule comprising a nucleotide sequence with Seq.ID 141, the corresponding polypeptide, an isolated DNA or RNA molecule comprising a nucleotide sequence complementary to Seq. ID 141, a recombinant expression vector comprising that molecule, a host cell transfected with that vector, a monoclonal antibody binding to the polypeptide encoded by Seq. ID 141, as well as pharmaceutical compositions, vaccines, diagnostic methods used in the diagnosis and therapy of breast cancer.

4. Claims: 1,2,4-10,12,13,15,17,18,20,22,23,25-27,29,31-33, 35-37,39-41,44,46,47 (all partially)

Invention 77-200:
Isolated DNA molecule comprising a nucleotide sequence with Seq.ID 142, the corresponding polypeptide, an isolated DNA or RNA molecule comprising a nucleotide sequence complementary to Seq. ID 142, a recombinant expression vector comprising that molecule, a host cell transfected with that vector, a monoclonal antibody binding to the polypeptide encoded by Seq. ID 142, as well as pharmaceutical compositions, vaccines, diagnostic methods used in the diagnosis and therapy of breast cancer.

...ibidem for each of sequences 143,146-152,154-166,168-176,178-192,194-198,200-204,206,207,2 09-214,216,218,219,221-240,243-245,247,250,251,253,255,257-26 6,268,269,271-273,275,276,278,280,281,284,288 and 291-297

5. Claims: 11,12,14,16,17,19,21,22,24,30,34,35,36,38,39,42,43, 45,48,49 (all partially)

Invention 201-241:
Isolated DNA molecule comprising a nucleotide sequence with Seq.ID 78, the corresponding polypeptide, an isolated DNA or RNA molecule comprising a nucleotide sequence complementary to Seq. ID 78, a recombinant expression vector comprising that molecule, a host cell transfected with that vector, a monoclonal antibody binding to the polypeptide encoded by Seq. ID 78, as well as pharmaceutical compositions, vaccines, diagnostic methods used in the diagnosis and therapy of breast cancer.

...ibidem for each of sequences 78-86,144,145,153,167,177,193,199,205,208,215,217,220,241,242,246,248,249,252,256,267,270,274,277,279,282,283,285-287,289,290

int ation on patent family members

Internatic Application No
PCT/US 98/06939

		101/05	30/00333
Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO 9532311 A	30-11-1995	AU 2690995 A CA 2191099 A EP 0763137 A	18-12-1995 30-11-1995 19-03-1997
WO 9706256 A	20-02-1997	CA 2228999 A EP 0854923 A	20-02-1997 29-07-1998
WO 9519369 A	20-07-1995	US 5677125 A AU 1831795 A CA 2210396 A EP 0804453 A	14-10-1997 01-08-1995 20-07-1995 05-11-1997
WO 9102062	A 21-02-1991	AU 645760 B AU 6413590 A CA 2042064 A EP 0444181 A JP 4503012 T	27-01-1994 11-03-1991 05-02-1991 04-09-1991 04-06-1992
WO 9638463	A 05-12-1996	US 5668267 A AU 698823 B AU 5961696 A CA 2222747 A CZ 9703783 A EP 0833834 A NO 975508 A PL 323632 A	16-09-1997 05-11-1998 18-12-1996 05-12-1996 17-06-1998 08-04-1998 18-03-1998 14-04-1998
WO 9725431	A 17-07-1997	AU 1575697 A	01-08-1997
WO 9725426	A 17-07-1997	AU 1697497 A CA 2242340 A EP 0874902 A NO 983183 A	01-08-1997 17-07-1997 04-11-1998 10-09-1998

ţ Same of the second