Wstęp do kwantowej teorii transportu elektronowego

Sylwia Gołąb, Paweł Rzońca

28 października 2015

Spis treści

1	Początki teorii elektronowej (subiektywnie)						
2 3	Teor	Teoria elektronowa Lorenza					
	Mak	roskopowa elektrodynamika ośrodków materialnych	4				
	3.1	Wyprowadzenie makroskopowych praw Maxwella z mikroskopowych odpowiedników	4				
	3.2	Podsumowanie	5				
	3.3	3.3 Zasada zachowania ładunku					
		3.3.1 Ogólne wyprowadzenie	6				
		3.3.2 Wyprowadzenie praw zachowania ładunku z praw Maxwella	6				
		3.3.3 Równania materiałowe	7				
		3.3.4 Równania Maxwella a prąd stały	7				
4	Meto	ody opisu klasycznej dynamiki cząstek	8				
	4.1 Mechanika Newtonowska						
	4.2	Mechanika Hamiltonowska	8				

1 Początki teorii elektronowej (subiektywnie)

Elektrodynami	ka	Teoria kinetyczna		Teoria kwantowa	
		1803 r. J. Dalton:	atomy		
1822 r. H. Davy:	$\sigma \sim S/L$				
1826 r. G. Ohm:	$I \sim V$	1827 r. R. Brown:	ruchy		
1845 r. G. Kirchhoff:	$j \sim E_f$				
1861 r. J. Maxwell:	równania	1860 r. J. Maxwell:	rozkład v		
		1865 r. J. Loschmidt:	rozmiar at.		
		1867 r. J. Maxwell:	równanie		
		ciągłości o strukturze r. kinet.			
		1872 r. L. Boltzmann:	równanie		
1881 r. Helmholtz:	-1-1-4				
Johnstone Stoney:	elektron				
1897 r. J. J. Thompson		1900 r. D. Hilbert		1900 r. M. Planck	
		1905 r. Einstein i	teoria r.		
		Smoluchowski:	Browna		
1908 r. R. Millikan:	wart. e				
1910 r. E. Rutherford:	budowa at.				
		1913 r. Bohr:	model at.		
1916 r. Tolman-Steward:	bezwł. el.				
				1924 r. L. de Broglie	
				1926 r. E. Schrödinger	
				1927 r. Fermi i Dirac:	stat. kw.

Elektronowa teoria meterii

1845 r. G. Fechner - Model prądu elektronowego

1846 r. W. Weber - Elektrodynamika cząstek

$$F = \frac{q_1 q_2}{r^2} \left\{ 1 + \frac{r}{c^2} \ddot{r}(t) - \frac{1}{2c^2} \left[\dot{r}(t) \right]^2 \right\}$$

1881 r. Helmholtz

1897 r. H. A. Lorentz - teoria elektronowa

1898 r. E. Riecke -

1900 r. Drude - model przewodnictwa

1927 r. Sommerfeld A. - statystyki kwantowe do opisu elektronów

1928r. Block

Teorie na przestrzeni czasu:

1900 ÷ 1927 Klasyczna teoria transportu elektronowego

 $1927 \div 1928$ Półklasyczna teoria transportu elektronowego

1928 ÷ 1933 Współczesna teoria transportu elektronowego

2 Teoria elektronowa Lorenza

Założenia:

- 1. Ośrodki materiale mają strukturę dyskretną, tzn. zbudowane są z cząstek naładowanych, które w sumie daja układ neutralny.
- 2. Wszystkie zjawiska w ośrodku materialnym są spowodowane ruchem cząstek naładowanych pod wpływem pól zewnętrznych, przy czym:
 - (a) w dielektrykach cząstki naładowane są związane i mogą wykonywać drgania wokół położeń równowagi lub ulegać nieznacznym wychyeniom pod wpływem przyłożonego E,
 - (b) w przewodnikach prócz cząstek związanych występują także czastki naładowane swobodne, których ruch powoduje powstanie prądu elektrycznego,
 - (c) w ośrodkach magnetycznych istnieja czastki naładowane posiadające wewnetrzny moment magnetyczny lub niezerowy moment pędu.
- 3. Mikroskopowe pola elektromagnetyczne wytwarzane przez czastki naładowane tworzące rozpatrywany ośrodek są rozwiązaniami równań Maxwella w próżni:

$$\begin{cases}
\nabla \circ \vec{e}(\vec{r},t) = \rho(\vec{r},t) \\
\nabla \times \vec{b}(\vec{r},t) - \partial_t \vec{e}(\vec{r},t) = \vec{j}(\vec{r},t) \\
\nabla \times \vec{e}(\vec{r},t) + \partial_t \vec{b}(\vec{r},t) = \vec{0} \\
\nabla \circ \vec{b}(\vec{r},t) = 0.
\end{cases} \tag{1}$$

 $\vec{e}(\vec{r},t),\ \vec{b}(\vec{r},t)$ - mikroskopowe pola elektryczne i magnetyczne $\rho(\vec{r},t) = \sum_{i} q_{i} \delta(\vec{r} - \vec{r_{i}}(t))$ $\vec{j}(\vec{r},t) = \sum_{i} \vec{v_{i}}(t) \delta(\vec{r} - \vec{r_{i}}(t))$

4. Gestość siły działająca na $\vec{\rho}(\vec{r},t)$ ma postać

$$\begin{split} \vec{f}(\vec{r},t) &= \vec{\rho}(\vec{r},t) [\vec{e}(\vec{r},t) + \vec{v}(t) \times \vec{b}(\vec{r},t)] \\ \vec{F}(t) &= \int d^3r' f(\vec{r}',t) = \end{split}$$

przy założeniu jednorodności \vec{b} i \vec{e}

$$= \int d^3r' \{ \rho(\vec{r},t) [\vec{e} + \vec{v}(t) \times \vec{b}] \} = \int d^3r' \{ q \delta(\vec{r} - \vec{r}\ ') [\vec{e} + \vec{v}(t) \times \vec{b}] \} = q [\vec{e} + \vec{v}(t) \times \vec{b}] \int d^3r' \delta(\vec{r} - \vec{r}\ ').$$

Ostatecznie

$$\vec{F} = q(\vec{e} + \vec{v} \times \vec{b}) \tag{2}$$

$$\ddot{mr}(t) = q[\vec{e} + \vec{v}(t) \times \vec{b}]. \tag{3}$$

Zmiany przestrzenne $\vec{e}(\vec{r},t)$ i $\vec{b}(\vec{r},t)$ są znaczące na odcinkach rzędu 10^{-10} m = 1 \mathring{A} = 0,1nm.

Zmiany czasowe są rzędu $10^{-13} \div 10^{-17}$ s.

Klasyczny promień elektronu $r_e=\frac{1}{4\pi\epsilon_0}\frac{e^2}{mc^2}\approx 2,82\cdot 10^{-6}$ nm, rozmiar protonu $r_p\approx 0,88\cdot 10^{-6}$ nm natomiast promień atomu $r_p \approx 0, 1$ nm.

3 Makroskopowa elektrodynamika ośrodków materialnych

Hipotezia: Makroskopowe pola \vec{E} i \vec{B} są wartościami średnimi pól mikroskopowych \vec{e} i \vec{b} .

$$\vec{E}(\vec{r},t) = \langle \vec{e}(\vec{r},t) \rangle \tag{4}$$

$$\vec{B}(\vec{r},t) = \left\langle \vec{b}(\vec{r},t) \right\rangle,\tag{5}$$

gdzie średnia jest przestrzenna, czyli

$$\left\langle \vec{f}(\vec{r},t) \right\rangle \equiv \int d^3r' w(\vec{r}') \vec{f}(\vec{r}-\vec{r}',t).$$

 $w(\vec{r}')$ - funkcja wagowa spełniająca warunki:

- 1. jest funkcją rzeczywistą dodatnio określoną,
- 2. jest znormalizowana

$$\int_{\Omega} d^3 r' w(\vec{r}') = 1,$$

3. jest wolnozmienna, tj.

$$\begin{split} w(\vec{r}\ ' + \vec{a}) &= \sum_{n} \frac{1}{n!} \left[\vec{a} \nabla \right]^{n} w(\vec{r})_{\big|_{\vec{r} = \vec{r}'}} \\ w(\vec{r}\ ' + \vec{a}) &= w(\vec{r}\ ') \pm [\vec{a} \nabla] w(\vec{r}\ ') + \frac{1}{2} [\vec{a} \nabla]^{2} w(\vec{r}\ '), \end{split}$$

4. rozciągłość duża w porównaniu z wielkością cząstek.

RYSUNEK

3.1 Wyprowadzenie makroskopowych praw Maxwella z mikroskopowych odpowiedników

Zgodnie z równaniami mikroskopowymi 1:

$$\nabla \cdot \vec{E}(\vec{r}, t) = \langle \rho(\vec{r}, t) \rangle \tag{6}$$

$$\nabla \times \vec{B}(\vec{r},t) - \partial_t \vec{E}(\vec{r},t) = \left\langle \vec{j}(\vec{r},t) \right\rangle \tag{7}$$

$$\nabla \times \vec{E}(\vec{r},t) + \partial_t \vec{B}(\vec{r},t) = \vec{0}$$
 (8)

$$\nabla \cdot \vec{B}(\vec{r}, t) = 0 \tag{9}$$

RYSUNEK

Najpierw obliczymy średnią z gęstości ładunków. Gęstość ładunku można rozbić na gęstość ładunków swobodnych oraz gęstość ładunków związanych

$$\rho(\vec{r},t) = \rho_{free}(\vec{r},t) + \rho_{bound}(\vec{r},t)$$

gdzie:

$$\rho_{free}(\vec{r},t) = q_e \sum_{i} \delta(\vec{r} - \vec{r}_i(t))$$

$$\rho_{bound}(\vec{r},t) = \sum_{n} \underbrace{\rho_n(\vec{r},t)}_{n-tego\ jonu} = \sum_{n} \sum_{j} q_{jn} \delta(\vec{r} - \vec{r}_j(t)) = \sum_{n} \sum_{j} g_{jn} \delta(\vec{r} - \vec{r}_n(t) - \vec{r}_{jn}(t)).$$

$$\langle \rho(\vec{r},t) \rangle = \langle \rho_{free}(\vec{r},t) \rangle + \langle \rho_{bound}(\vec{r},t) \rangle =$$

$$\langle P \rangle = \langle P \rangle = \langle P \rangle = \langle P \rangle$$

$$= \int d^3r'w(\vec{r}\;')\rho_{free}(\vec{r}-\vec{r}_j\;'(t)) + \int d^3r'w(\vec{r}\;')\rho_{bound}(\vec{r}-\vec{r}_j\;'(t)) = \\ = \int d^3r'w(\vec{r}\;')q_e\sum_i\delta(\vec{r}-\vec{r}_i(t)-\vec{r}\;') + \int d^3r'w(\vec{r}\;')\sum_n\sum_jq_{jn}\delta(\vec{r}-\vec{r}_j\;'(t)-\vec{r}\;') = \\ = q_e\sum_iw(\vec{r}-\vec{r}_i(t)+\sum_n\sum_jq_{in}w(\vec{r}-\vec{r}_n(t)-\vec{r}_{jn}(t)=(*). \text{ Z własności } w \text{ wiemy, } \text{że:}$$

$$w(\vec{r} - \vec{r}_n(t) - \vec{r}_{jn}(t)) \simeq w(\vec{r} - \vec{r}_n(t)) - [\vec{r}_{jn} \cdot \nabla] w(\vec{r} - \vec{r}_n(t)).$$

$$(*) = q_e \sum_i w(\vec{r} - \vec{r_i}(t)) + \sum_n \sum_j q_{in} [w(\vec{r} - \vec{r_n}(t)) - [\vec{r_{jn}} \cdot \nabla] w(\vec{r} - \vec{r_n}(t))]$$
 Całkowity ładunek jonu: $q_n = \sum_j q_{jn}$.

Moment dipolowy $\vec{d}_n(t) = \sum_i d_{jn}(t) = \sum_i q_{jn} \vec{r}_{jn}(t)$.

$$\langle \rho(\vec{r},t) \rangle = q_e \sum_i w(\vec{r} - \vec{r}_i(t)) + \sum_n q_n w(\vec{r} - \vec{r}_n(t)) - \nabla \cdot \sum_n w(\vec{r} - \vec{r}_n(t)) \vec{d}_n$$

$$\langle \rho(\vec{r},t) \rangle = \underbrace{\left\langle q_e \sum_i \delta(\vec{r} - \vec{r_i}(t)) \right\rangle + \left\langle \sum_n q_n \delta(\vec{r} - \vec{r_n}(t)) \right\rangle}_{\text{makroskopowa gestość ładunku}} - \nabla \cdot \underbrace{\left\langle \sum_n \delta(\vec{r} - \vec{r_n}(t)) \vec{d_n}(t) \right\rangle}_{\text{makroskopowa polaryzacj}}$$

$$\langle \rho(\vec{r},t) \rangle = \rho(\vec{r},t) - \nabla \cdot \vec{P}(\vec{r},t).$$

Wracajac do równania 6

$$\nabla \cdot \vec{E}(\vec{r},t) = \langle \rho(\vec{r},t) \rangle = \rho(\vec{r},t) - \nabla \vec{P}(\vec{r},t)$$
$$\nabla \cdot (\vec{E}(\vec{r},t) + \nabla \vec{P}(\vec{r},t)) = \rho(\vec{r},t)$$
$$\vec{E}(\vec{r},t) + \nabla \vec{P}(\vec{r},t) \equiv \vec{D}(\vec{r},t)$$

gdzie $\vec{D}(\vec{r},t)$ - wektor indukcji elektrycznej

$$D_{i}(\vec{r},t) = \sum_{k/1}^{3} \int d^{3}r \int_{-\infty}^{t} dt' \epsilon_{kj}(\vec{r},\vec{r}',t,t') E_{j}(\vec{r}',t')$$
$$D_{i} = \sum_{k/1}^{3} \epsilon_{kj} E_{j}.$$

3.2 Podsumowanie

Równania Maxwella w postaci makroskopowej (w ośrodkach materialnych) mają postać:

$$\nabla \cdot \vec{D}(\vec{r}, t) = \wp(\vec{r}, t) \tag{10}$$

$$\nabla \times \vec{H}(\vec{r},t) - \partial_t \vec{D}(\vec{r},t) = \vec{J}(\vec{r},t)$$
(11)

$$\nabla \times \vec{E}(\vec{r},t) + \partial_t \vec{B}(\vec{r},t) = \vec{0}$$
 (12)

$$\nabla \cdot \vec{B}(\vec{r}, t) = 0 \tag{13}$$

gdzie \wp oznacza makroskopową gęstość ładunku, zdefiniowaną poprzednio jako: $\wp=< q_e \sum_i \delta(\vec{r}-\vec{r_i}(t))>$ $+ < \sum_{n} q_n \delta(\vec{r} - \vec{r}_n(t))$

wn.1. Makroskopowe pola $\vec{E}(\vec{r},t)$, $\vec{B}(\vec{r},t)$ są wartościami średnimi pól mikroskopowych \vec{e},\vec{b} . Są to pola pierwotne, natomiast pola \vec{D}, \vec{H} są polami wtórnymi wynikającymi z ustalonej procedury średniowania.

3.3 Zasada zachowania ładunku

3.3.1 Ogólne wyprowadzenie

Lokalnie (czyli w ośrodku) jest spełniona zasada zachowania ładunku, tzn. zmiana gęstości ładunku w ograniczonym obszarze Ω jest spowodowana przepływem prądu przez powierzchnię zamkniętą $\partial\Omega$ otaczającą ten obszar.

(RYSUNEK WSTAW)

$$\frac{dQ}{dt} = -\int d\vec{S} \cdot \vec{J}(\vec{r}, t) \tag{14}$$

gdzie:

• Q- całkowity ładunek, wyrażający się wzorem:

$$Q(t) = \int d^3r \rho(\vec{r}, t) \tag{15}$$

- \bullet $d\vec{S}$ wektor powierzchni, którego długość jest równa polu powierzchni,
- natomiast wyrażenie po prawej stronie to natężenie prądu będące równe strumieniowi przepływającemu przez daną powierzchnię:

$$I(t) = \int d\vec{S} \cdot \vec{J}(\vec{r}, t) \tag{16}$$

uw. Minus w równaniu (14) oznacza, że ładunek może tylko wypływać spod powierzchni. uw2. Wyrażenie pod całką to strumień prądu płynący przez rozważany obszar.

Wstawmy równanie (15) do równania (14):

$$\partial_t \int_{\partial \Omega} d^3r \rho(\vec{r}, t) = -\int_{\partial \Omega} d\vec{S} \cdot \vec{J}(\vec{r}, t) \stackrel{\text{tw.Gaussa}}{=} -\int_{\Omega} d^3r \nabla \cdot \vec{J}(\vec{r}, t)$$
(17)

$$\int d^3r \{\partial_t \rho(\vec{r}, t) + \nabla \cdot \vec{J}(\vec{r}, t)\} = 0$$
(18)

Stad:

$$\partial_t \rho(\vec{r}, t) + \nabla \cdot \vec{J}(\vec{r}, t) = 0 \tag{19}$$

Wzór (19) to prawo zachowania ładunku - ładunek nie może zniknąć, może tylko przepłynąć przez powierzchnię.

3.3.2 Wyprowadzenie praw zachowania ładunku z praw Maxwella

Zadziałajmy obustronnie ∂_t na 1. równanie Maxwella (10) oraz $\nabla \cdot$ na 2. równanie Maxwella (11):

$$(1) \Rightarrow \partial_t \nabla \cdot \vec{D}(\vec{r}, t) = \delta_t \rho(\vec{r}, t) \Rightarrow \nabla \cdot [\partial_t \vec{D}(\vec{r}, t) = \partial_t \rho(\vec{r}, t)$$
(20)

(2)
$$\Rightarrow \underbrace{\nabla \cdot [\nabla \times \vec{H}(\vec{r}, t)]}_{=0 \text{ (bo jest to div z rot)}} -\nabla \cdot \partial_t \vec{D}(\vec{r}, t) = \nabla \cdot \vec{J}(\vec{r}, t)$$
 (21)

Łącząc oba te równania dostajemy:

$$-\partial_t \rho(\vec{r}, t) = \nabla \cdot \vec{J}(\vec{r}, t) \tag{22}$$

Równanie (22) to zasada zachowania ładunku.

3.3.3 Równania materiałowe

Z jednej strony równania Maxwella są niezmiennicze względem zmiany ośrodka, z drugiej strony ich rozwiązania- pola $\vec{E}(\vec{r},t)$, $\vec{B}(\vec{r},t)$ - są różne w różnych ośrodkach. Dlatego potrzebujemy dodatkowych równań, które będą określać ośrodek- dlatego postulujemy równania materiałowe:

$$D_{i}(\vec{r},t) = \sum_{j/1}^{3} \int d^{3}r' \int_{-\infty}^{t} dt' \epsilon_{ij}(\vec{r},\vec{r}',t,t') E_{j}$$
(23)

$$H_i(\vec{r},t) = \sum_{j/1}^3 \int d^3r' \int_{-\infty}^t dt' \mu_{ij}^{-1}(\vec{r},\vec{r}',t,t') B_j$$
 (24)

$$J_i(\vec{r},t) = \sum_{j/1}^3 \int d^3r' \int_{-\infty}^t dt' \sigma_{ij}(\vec{r},\vec{r}',t,t') E_j - \text{mikroskopowe prawo Ohma}$$
 (25)

wn.1. Mamy zatem zestaw równań: Równania Maxwella+równania materiałowe

wn.2. W równaniach materiałowych jądrem całkowym są:

- (23): $\epsilon_{ij}(\vec{r}, \vec{r}', t, t')$ to element tensora przenikalności elektrycznej ośrodka
- (24): $\mu_{ij}^{-1}(\vec{r}, \vec{r}', t, t')$ to element tensora odwrotności przenikalności magnetycznej
- (25): $\sigma_{ij}(\vec{r},\vec{r}',t,t')$ to element tensora przewodnictwa elektrycznego.
- **uw.1.** Równania materiałowe mają swoje uzasadnienie w termodynamice stanów nierównowagowych, natomiast do elektrodynamiki zostały dodane *ad hoc.* uw.2.
- **uw.2.** Ostatnie (25) równanie to mikroskopowe (lokalne) prawo Ohma, które można również zapisać w popularniejszej wersji:

$$\vec{J}(\vec{r},t) = \sigma(\vec{r},t)E(\vec{r},t) \tag{26}$$

3.3.4 Równania Maxwella a prąd stały

Zał. Załóżmy, że **prąd jest stały**, tzn. płynie w sposób ciągły i nie gromadzi się (jest stały w czasie).

Wówczas:

- Równanie Maxwella (11) \Rightarrow powstaje stałe pole \vec{H}
- Równanie Maxwella (12) $\Rightarrow \nabla \times \vec{E}(\vec{r}) + \underbrace{\partial_t \vec{B}(\vec{r})}_{=0} = 0$

Stąd:

$$\nabla \times \vec{E}(\vec{r}) = 0 \tag{27}$$

Ponieważ wiemy, że dywergencja z rotacji daje 0, to \vec{E} musi dać się przedstawić jako:

$$\vec{E} = -\nabla V(\vec{r}) \tag{28}$$

gdzie $V(\vec{r})$ to potencjał.

wn. Jeśli prąd jest stały, to pole elektryczne ma potencjał.

• Prawo zachowania ładunku (19) $\Rightarrow \underbrace{\partial_t \rho(\vec{r},t)}_{=0} + \nabla \cdot \vec{J}(\vec{r},t) = 0$

$$\nabla \cdot \vec{J}(\vec{r}) = 0 \tag{29}$$

• Mikroskopowe prawo Ohma $\Rightarrow \nabla[\sigma(\vec{r})\vec{E}(\vec{r})] = 0$ Łącząc to równanie z równaniem (28), dostajemy:

4 Metody opisu klasycznej dynamiki cząstek

W rozważaniach opuszczamy mechanikę Lagrangowską.

4.1 Mechanika Newtonowska

Siła Lorenza

$$\vec{F}_l(\vec{r}, t) = q[\vec{E}(\vec{r}, t) + \vec{v}(t) \times \vec{B}(\vec{r}, t)]$$
(30)

Jeżeli postać siły jest określona, to równanie ruchu możemy zapisać w postaci

$$m\frac{d^2\vec{r}(t)}{dt^2} = \vec{F}_L(\vec{r}, t) \tag{31}$$

Zauważmy, że w mechanice Newtonowskiej nie ma ograniczenia na postać siły \vec{F}_L .

Przykład - równanie Langevine'a

$$m\frac{d^2}{dt^2}\vec{r}(t) = \vec{F}_R - \gamma \vec{v}(t) + \vec{\Gamma}(t),$$

gdzie \vec{F}_R to siła regularna (np. od zewnętrznego pola elektrycznego, γ to współczynnik tarcia, a $\Gamma(t)$ to siła stochastyczna.

4.2 Mechanika Hamiltonowska