Optimization

Lusine Poghosyan

AUA

March 25, 2019

Problems with inequality constraints

minimize
$$f(x)$$

subject to $h_i(x) = 0, \quad i = 1, \dots m,$
 $g_j(x) \le 0, \quad j = 1, \dots p$

where $h_i : \mathbb{R}^n \to \mathbb{R}$ for $i = 1, ..., m, m \le n$ and $g_j : \mathbb{R}^n \to \mathbb{R}$ for j = 1, ..., p are given functions.

Definition

Assume x^* is a feasible point. An inequality constraint $g_j(x) \le 0$ is said to be active at x^* if $g_j(x^*) = 0$. It is inactive at x^* if $g_j(x^*) < 0$.

Definition

Let x^* be a feasible point, i.e. $h_i(x^*) = 0$, i = 1, ... m and $g_j(x^*) \le 0$, j = 1, ... p and let $J(x^*)$ be the index set of active inequality constraints

$$J(x^*) = \{j : g_j(x^*) = 0\}.$$

We will say that x^* is a regular point if the vectors

$$\nabla h_i(x^*), i = 1, \dots m, \nabla g_j(x^*), j \in J(x^*)$$

are linearly independent.

Consider the following constraints on \mathbb{R}^2

$$h(x_1, x_2) = x_1 - 2 = 0$$
 and $g(x_1, x_2) = (x_2 + 1)^3 \le 0$.

Find the set of feasible points. Are the feasible points regular?

Let's introduce the Lagrangian function $\mathcal{L}: \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$, given by

$$\mathcal{L}(x,\lambda,\mu) = f(x) + \sum_{i=1}^{m} \lambda_i h_i(x) + \sum_{j=1}^{p} \mu_j g_j(x).$$

Theorem (Karush-Kuhn-Tucker (KKT) Theorem)

Let x^* be a local minimizer of $f: \mathbb{R}^n \to \mathbb{R}$ subject to h(x) = 0, $h: \mathbb{R}^n \to \mathbb{R}^m$, $m \le n$, $g(x) \le 0$, $g: \mathbb{R}^n \to \mathbb{R}^p$. Assume $f, h_i, i = 1, \dots m$ and $g_j, j = 1, \dots p$ are continuously differentiable functions and x^* is a regular point. Then, there exists $\lambda^* \in \mathbb{R}^m$ and $\mu^* \in \mathbb{R}^p$ such that

- $\mu_j^* \ge 0$, for j = 1, ... p,
- $\frac{\partial \mathcal{L}}{\partial x_i}(x^*, \lambda^*, \mu^*) = 0$, for $i = 1, \dots n$,
- $\mu_{j}^{*}g_{j}(x^{*}) = 0$, for $j = 1, \dots p$.

Theorem (Karush-Kuhn-Tucker (KKT) Theorem)

Let x^* be a local maximizer of $f: \mathbb{R}^n \to \mathbb{R}$ subject to h(x) = 0, $h: \mathbb{R}^n \to \mathbb{R}^m$, $m \le n$, $g(x) \le 0$, $g: \mathbb{R}^n \to \mathbb{R}^p$. Assume $f, h_i, i = 1, \dots m$ and $g_j, j = 1, \dots p$ are continuously differentiable functions and x^* is a regular point. Then, there exists $\lambda^* \in \mathbb{R}^m$ and $\mu^* \in \mathbb{R}^p$ such that

- $\mu_j^* \leq 0$, for $j = 1, \dots p$,
- $\frac{\partial \mathcal{L}}{\partial x_i}(x^*, \lambda^*, \mu^*) = 0$, for $i = 1, \dots n$,
- $\mu_i^* g_j(x^*) = 0$, for $j = 1, \dots p$.

Consider the following optimization problem:

minimize
$$x_1^2 + x_2^2$$

subject to $x_1 + x_2 \ge 5$,
 $x_1^3 \ge 1$,
 $x_2^2 \ge 4$.

- a. Solve the problem geometrically.
- **b.** Is it possible that the point $x^* = [2, 3]^T$ is a local minimizer of the formulated problem?

Theorem (Second Order Necessary Condition SONC)

Let x^* be a local minimizer of $f: \mathbb{R}^n \to \mathbb{R}$ subject to h(x) = 0, $h: \mathbb{R}^n \to \mathbb{R}^m$, $m \le n$, $g(x) \le 0$, $g: \mathbb{R}^n \to \mathbb{R}^p$. Assume $f, h_i, i = 1, \ldots m$ and $g_i, j = 1, \ldots p$ are twice continuously differentiable functions and x^* is a regular point. Then, there exist $\lambda^* \in \mathbb{R}^m$ and $\mu^* \in \mathbb{R}^p$ such that

- $\mu_i^* \geq 0$, for $j = 1, \dots p$,
- $\frac{\partial \mathcal{L}}{\partial x_i}(x^*, \lambda^*, \mu^*) = 0$, for $i = 1, \dots n$,
- $\mu_{j}^{*}g_{j}(x^{*}) = 0$, for $j = 1, \dots p$,
- $\nabla^2 \mathcal{L}(x^*, \lambda^*, \mu^*)$ is positive semidefinite on $TS(x^*)$

$$TS(x^*) = \left\{ y \in \mathbb{R}^n : y^T \nabla h_i(x^*) = 0, i = \overline{1, m}, y^T \nabla g_j(x^*) = 0, j \in J(x^*) \right\},$$

i.e. for all $y \in TS(x^*)$, $y^T \nabla^2 \mathcal{L}(x^*, \lambda^*, \mu^*) y \geq 0$.

Use SONC to find all possible local minimizers of the following optimization problem:

minimize
$$x_1^2 + x_2^2$$

subject to $x_1 + x_2 \ge 5$,
 $x_1 \ge 0$,
 $x_2 \ge 0$.

$$J(x^*, \mu^*) = \{j : g_j(x^*) = 0, \mu_j^* > 0\}$$

$$TS(x^*, \mu^*) = \{ y \in \mathbb{R}^n : y^T \nabla h_i(x^*) = 0, i = \overline{1, m}, y^T \nabla g_j(x^*) = 0, j \in J(x^*, \mu_j^*) \}$$

Theorem (Second Order Sufficient Condition SOSC)

Suppose f, h_i , $i = \overline{1, m}$, $g_j(x)$, $j = \overline{1, p}$ are twice continuously differentiable functions on \mathbb{R}^n and there exist a point $x^* \in \mathbb{R}^n$ satisfying $h_i(x^*) = 0$, $i = \overline{1, m}$, $g_j(x^*) \le 0$, $j = \overline{1, p}$, $\lambda^* \in \mathbb{R}^m$ and $\mu^* \in \mathbb{R}^p$ such that:

- $\mu_j^* \ge 0$ for $j = 1, \dots p$,
- $\frac{\partial \mathcal{L}}{\partial x_i}(x^*, \lambda^*, \mu^*) = 0$ for $i = 1, \dots n$,
- $\mu_i^* g_j(x^*) = 0$ for $j = 1, \dots p$,
- $\nabla^2 \mathcal{L}(x^*, \lambda^*, \mu^*)$ is positive definite on $TS(x^*, \mu^*)$, i.e. for all $y \in TS(x^*, \mu^*)$, $y \neq 0$, $y^T \nabla^2 \mathcal{L}(x^*, \lambda^*, \mu^*)y > 0$.

then x^* is a strict local minimizer of f subject to $h_i(x) = 0$, i = 1, ..., m and $g_i(x) \le 0$, $j = \overline{1, p}$.

Consider the following optimization problem:

maximize
$$-(x_1 - 1)^2 - x_2 - e^{x_3^2}$$

subject to $x_2 - x_1 = 1$,
 $x_1 + x_2 \le 2$,
 $x_3 \ge 0$.