Math 550

Homework 11

Dr. Fuller Solutions

1. Let $\vec{x} = g(u, v)$. We know that $(Dg(u, v)(e_1), Dg(u, v)(e_2))$ is a positively oriented basis of the tangent space $g(U)_{\vec{x}}$. Thus the unit outward normal to g(U) at \vec{x} is $N_{\vec{x}} = \frac{Dg(u, v)(e_1) \times Dg(u, v)(e_2)}{\|Dg(u, v)(e_1) \times Dg(u, v)(e_2)\|}$. Then for all $(u, v) \in U$

$$g^*dA(u,v)(e_1,e_2) = dA(\vec{x})(Dg(u,v)(e_1),Dg(u,v)(e_2))$$

$$= \det \begin{pmatrix} | & | & | \\ N_{\vec{x}} & Dg(u,v)(e_1) & Dg(u,v)(e_2) \\ | & | & | & | \end{pmatrix}$$

$$= \det \begin{pmatrix} | & | & | & | \\ Dg(u,v)(e_1) \times Dg(u,v)(e_2) & | & | & | \\ |Dg(u,v)(e_1) \times Dg(u,v)(e_2)|| & | & | & | \\ | & | & | & | & | \end{pmatrix}$$

$$= ||Dg(u,v)(e_1) \times Dg(u,v)(e_2)||$$

$$= ||Dg(u,v)(e_1) \times Dg(u,v)(e_2)|| du \wedge dv(e_1,e_2).$$

This shows that $g^*dA = \|Dg(u,v)(e_1) \times Dg(u,v)(e_2)\| du \wedge dv$, and the integral formula follows.

- 2. For every $\vec{x} \in S^{2k}$, define $X(\vec{x}) = P(f(\vec{x}))$, where $P: \mathbf{R}^{2k+1}_{\vec{x}} \to S^{2k}_{\vec{x}}$ is the projection of $\mathbf{R}^{2k+1}_{\vec{x}}$ onto the subspace $S^{2k}_{\vec{x}}$. (In more detail, if we write $f(\vec{x}) = \vec{w} + \lambda N_{\vec{x}}$, for unique $\vec{w} \in S^{2k}_{\vec{x}}$ and $\lambda \in \mathbf{R}$, then $P(f(\vec{x})) = \vec{w}$.) X defines a vector field on S^{2k} . By Theorem 28, $0 = X(\vec{x}) = P(f(\vec{x}))$ for some \vec{x} , and at that point we have $f(\vec{x}) = \pm N_{\vec{x}} = \pm \vec{x}$.
- 3. Suppose $f(\vec{x}) \neq 0$ for all $\vec{x} \in D^n$. Then we can define $\frac{f}{\|f\|}: D^n \to S^{n-1}$, and also consider its restriction $\frac{f}{\|f\|}: S^{n-1} \to S^{n-1}$. Since $\|f(\vec{x}) \vec{x}\| < 1$ for all $\vec{x} \in S^{n-1}$, we can define a homotopy

$$H(x,t) = \frac{t\vec{x} + (1-t)\frac{f}{\|f\|}(\vec{x})}{\|t\vec{x} + (1-t)\frac{f}{\|f\|}(\vec{x})\|}$$

between $\frac{f}{\|f\|}: S^{n-1} \to S^{n-1}$ and the identity $S^{n-1} \to S^{n-1}$.

Then if v is the volume form on S^{n-1} , we have

$$\int_{S^{n-1}} \mathbf{v} = \int_{S^{n-1}} (f/\|f\|)^* \mathbf{v} = \int_{D^n} d(f/\|f\|)^* \mathbf{v} = \int_{D^n} (f/\|f\|)^* d\mathbf{v} = 0.$$

This contradicts that $\int_{S^{n-1}} v > 0$.

4. Let $x_0 \in M$. Since M is contractible, there exists a homotopy $H: M \times [0,1] \to M$ with H(x,0) = x and $H(x,1) = x_0$, for all $x \in M$.

To verify M is path connected, let $x_1, x_2 \in M$. Define $\gamma_1 : [0,1] \to M$ by $\gamma_1(t) = H(x_1,t)$; this is a path from x_1 to x_0 . Similarly, $\overline{\gamma_2}(t) = H(x_2, 1-t)$ gives a path from x_0 to x_2 . We may concatenate the two paths to get a path from x_1 to x_2 .

Let $\gamma: S^1 \to M$ be any closed curve. Then $G: S^1 \times [0,1] \to M$ given by $G(s,t) = H(\gamma(s),t)$ gives a homotopy between γ and the constant curve at x_0 .

- 5. It was shown in class that S^k is simply connected for $k \ge 2$. But each such S^k is a compact oriented manifold without boundary, and therefore not contractible by Homework 10, addendum problem 2.
- 6. (a) Since ω_1 and ω_2 are cohomologous, we have $\omega_1 = \omega_2 + d\eta$. So

$$\int_{M} \omega_{1} = \int_{M} \omega_{2} + \int_{M} d\eta = \int_{M} \omega_{2} + \int_{\partial M = \emptyset} \eta = \int_{M} \omega_{2}.$$

- (b) Part (a) shows that $\int_M : H^k(M) \to \mathbf{R}$ given by $\int_M ([\omega]) = \int_M \omega$ is well-defined. The linearity of \int_M follows immediately from the linearity of the integral.
- (c) If $M = \partial W$, then by Stokes' Theorem we have $\int_M ([\omega]) = \int_M \omega = \int_W d\omega = 0$.
- 7. (a) Since $H^n(S^n)$ has dimension 1 and is generated by the class [v] of the volume form, we can write $\omega = rv + d\eta$, for some $r \in \mathbf{R}$ and some (n-1)-form η . Then

$$\int_{S^n} \omega = r \int_{S^n} v + \int_{S^n} d\eta = r \int_{S^n} v + \int_{D^{n+1}} d^2 \eta = r \int_{S^n} v.$$

This implies $\int_{S^n} \omega = 0$ if and only if r = 0 if and only if $\omega = d\eta$.

(b) Part (a) shows that $\ker \int_{S^n} = \{[0]\}$, so \int_{S^n} is one-to-one. Then since $H^n(S^n)$ and **R** are both 1 dimensional, \int_{S^n} is an isomorphism.