```
= (-9-1)(12+8)-205)-520-20)+300+52)
   =(-9-\lambda)(\lambda^2+8\lambda-205)-220+32\lambda
   M = -\lambda^3 - 8\lambda^2 + 205\lambda - 9\lambda^2 - 72\lambda + 1845 - 220432\lambda M
   M = -\lambda^3 - 17\lambda^2 + 165\lambda + 1625
  => m2 [remove now 2, column 1);
   M_2 = 8 - 1 - 2
          10 5-1 -10
           -13 -14 -13-1
   M_2 = 8 \times 15 - \lambda - 101 - (-1) \times 110 - 101 + (-2) \times 110 5 - \lambda 11 - 14 - 13 - \lambda 1
  Expansion:
         1-13-13-11-13-141
      = 8[(5-\lambda)(-13-\lambda)-140]+[10(-13-\lambda)+130]-2[10(-14)
       -(5-N)(-B)7
      =8[x2+81-205]+[-130-10]+130]-2[-140+65-131]
       = 8/2+64/1-1640-10/1-2C-75-13/5]
      =812+541-1640+150+261
  M_2 = 8\lambda^2 + 80\lambda - 1490
=> m4 (remove row 4, colum 1
 My =1
        9-1 -2 -4
        10 5-1 -10
    m_{\psi} = 8 \times [-2 - 4] - (-1) \times [-9 - \lambda - 4] + (-2) \times [-9 - \lambda - 2]
Expansion!
=8[62)(-10)-(-4)(5-\lambda)]+[(-9-\lambda)(-10)-(-4)(10)]
```

$-2[(-9-\lambda)(5-\lambda)-(-2)(10)]$ $=8[20+20-4\lambda]+[40+10\lambda+40]-2[(-9-\lambda)(5-\lambda)+20]$ $=8[40-4\lambda]+[130+10\lambda]-2[-45+9\lambda-5\lambda+\lambda^2+20]$ $=320-32\lambda+130+10\lambda-2[\lambda^2+4\lambda-25]$ $=450-22\lambda-2\lambda^2-8\lambda+50$	
$m_4 = 2\lambda^2 - 30\lambda + 500$ =) find λ	
λ=-15.24 λ=-3.76 λ=-3.76 λ=-3.0	
λ=-15.24 (lorgest in absolute value)	
Eigen vector V for $\lambda = -2$ $(A-\lambda I)V = 0$ Substituting $\lambda = -2$ (A-(-2)I)V = 0 (A+2I)V = 0	=> Row reduction R -> R 6 $(1 \ ^{4}/3 \ ^{-1}/6 \ ^{-1}/3)$ $-2 \ -7 \ -2 \ -9$ $0 \ 10 \ 7 \ -10$ $-1 \ -13 \ -14 \ -11$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	8tep 2: 1 4/3 - 1/6 - 1/3 0 - 13/3 - 7/3 - 14/3 0 10 7 - 10 0 - 35/3 - 85/6 - 35/3

Final eigenveror
$$V$$
 $V = [2, -1, 0, 1]^T$
 $\Rightarrow (A + 21)V = 0$

=> Eigenvalue importance

1) $\lambda = -2$
2) $\lambda_2 = -2$
3) $\lambda_3 = -\varphi$
4) $\lambda_4 = -5$

=> Absolute values!
 $|\lambda_1| = 2$
 $|\lambda_3| = 2$
 $|\lambda_3| = \varphi$
1 $|\lambda_4| = 5$

Sum of absolute values = 13

=> Importance pelentages!
 λ importance = $(\frac{02}{13}) \times 100^{\circ}/0$
 $= 15.38^{\circ}/0$ Capproximated)

* Eigenvalue $\lambda = -2$
* Eigen vector $V = [2, -1, 0, 1]^T$

* Imporance: 15.38%

Eigen Vector.

$$2_{\lambda} = 5 \cdot 604$$
 $A - 2_{\lambda}I = \begin{pmatrix} 4 \cdot 604 & 8 & -1 & -2 & -44 & -14$

