Conjuntos y combinatoria

Taller de Álgebra I

Verano 2020

Conjuntos

Supongamos que queremos representar un conjunto de números enteros.

¿Es buena idea usar una lista [Integer]?

- ▶ Podríamos representar ese conjunto con la lista [1,3,4,7].
 - ► También con [4,1,3,7], [3,7,4,1], [7,3,1,4], ...
 - ▶ Todas estas listas son **distintas**, pero representan al **mismo** conjunto.
 - ▶ El orden de los elementos es relevante para las listas, pero no para conjuntos.
 - ► ¿Y la lista [1,3,4,7,7,7,1,4,7]? ¿Sirve para representar a nuestro conjunto?
 - Las listas pueden tener elementos repetidos, pero eso no tiene sentido con conjuntos.

Vamos a usar [Integer] para representar conjuntos, pero dejando claro que hablamos de conjuntos (sin orden ni repetidos). Para eso podemos hacer un renombre de tipos.

Definición de tipo usando type

Definamos un renombre de tipos para conjuntos:

- Otra forma de escribir lo mismo, pero más descriptivo.
- type es la palabra reservada del lenguaje, Set es el nombre que le pusimos nosotros.
- Si bien internamente es una lista, la idea es tratar a Set a como si fuera conjunto (es un contrato entre programadores).
- Si nuestra función recibe un conjunto, vamos a suponer que no contiene elementos repetidos. (Haskell no hace nada para verificarlo.)
- Si nuestra función devuelve un conjunto, debemos asegurar que no contiene elementos repetidos. (Haskell tampoco hace nada automático.)
- Además, no hace falta preocuparse por el orden de los elementos. (Haskell no lo sabe.)

Vamos a trabajar con conjuntos de tipos que respeten la igualdad (==). Por ejemplo:

- Set Integer
- Set Float
- ► Set Bool

- Set (Integer,Integer)
- Set [Integer]
- Set [(Float,Bool)]

Conjunto

Ejercicios entre todos: Implementar las funciones

- vacio :: Set a que represente el conjunto vacío
- pertenece :: Eq a => a -> Set a -> Bool que dado un elemento y un conjunto retorna verdadero si el elemento pertenece al conjunto
- agregar :: Eq a => a -> Set a -> Set a que dado un elemento y un conjunto agrega el elemento al conjunto

Ejercicios: Implemetar las funciones

- union :: Eq a => Set a -> Set a -> Set a que retorna la unión de los dos conjuntos
- interseccion :: Eq a => Set a -> Set a que retorna la intersección de los dos conjuntos
- incluido :: Eq a => Set a -> Set a -> Bool que determina si el primer conjunto está incluido en el segundo
- iguales :: Eq a => Set a -> Set a -> Bool que determina si dos conjuntos son iguales

```
Ejemplo> iguales [1,2,3,4,5] [2,3,1,4,5] True
```

Permutaciones

¿De cuántas maneras puedo ordenar los elementos de A (con |A|=n)? De n! maneras.

Pensemos cómo construír estas maneras recursivamente:

- Un conjunto con 1 elemento tiene un ordenamiento posible.
- ightharpoonup Dados todos los ordenamientos para un conjunto con (n-1) elementos. ¿Cómo obtengo los de el conjunto que tiene uno más?
- Para cada uno de esos ordenamientos tengo que insertar el nuevo elemento en cada una de las posiciones posibles.

Permutaciones

Implementar las siguientes funciones

▶ insertarEnPos :: Integer → Integer → [Integer] → [Integer] que dados un número n, una posición i y una lista l, devuelva una lista en donde se insertó n en la posición i de l y los elementos siguientes corridos en una posición.

```
Ejemplo> insertarEnPos 6 2 [1, 2, 3, 4, 5] [1, 6, 2, 3, 4, 5]
```

▶ insertarEnTodaPos :: Integer → [Integer] → Set [Integer] que dados un número n y una lista l, devuelve un conjunto de lista en donde se insertó n en cada posible posición de l.

```
Ejemplo> insertarEnTodaPos 6 [1, 2, 3, 4]
[[6, 1, 2, 3, 4],[1, 6, 2, 3, 4],[1, 2, 6, 3, 4],[1, 2, 3, 6, 4],[1, 2,
3, 4, 6]]
```

- ▶ insertarEnTodaListaEnTodaPos :: Integer -> Set [Integer] -> Set [Integer] que dados un número n y un conjunto de listas, devuelve el conjunto de listas que tiene todas las listas obtenidas de insertar n en todas las listas del conjunto en todas las posiciones posibles.
- permutaciones :: Integer -> Set [Integer] que genere todas las posibles permutaciones de los números del 1 al n.

```
Ejemplo> permutaciones 3
[[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]]
```

Producto Cartesiano

Supongamos que tenemos dos conjuntos A, B (con |A|=n,|B|=m). Queremos obtener el conjunto

$$A \times B = \{(a, b) \mid a \in A, b \in B\}$$

En primer lugar, ¿cuántos elementos tiene $A \times B$?

Por cada uno de los n elementos de A, hay un par con cada uno de los m elementos de B, por lo tanto,

$$|A \times B| = n \cdot m$$

¿Pero qué pasa si queremos listar todos estos pares? ¿Qué función deberíamos definir?

Producto Cartesiano

Producto cartesiano

▶ Implementar una función productoCartesiano :: Set Integer → Set Integer → Set (Integer, Integer) que dados dos conjuntos genere todos los pares posibles (como pares de dos elementos) tomando el primer elemento del primer conjunto y el segundo elemento del segundo conjunto.

```
Ejemplo> productoCartesiano [1, 2, 3] [3, 4] [(1, 3), (2, 3), (3, 3), (1, 4), (2, 4), (3, 4)]
```

- ¿Cómo podemos encarar este ejercicio?
- Notar que tenemos dos parámetros sobre los que tenemos que hacer recursión para obtener todos los pares.
- Podría servir alguna idea como la de la suma doble...

Variaciones con repetición

Ahora consideremos el siguiente problema: ¿De cuántas maneras puedo tomar k elementos de A, considerando el orden y con reposición (es decir, pudiendo sacar varias veces el mismo elemento)?

Pues, para cada una de las k veces podría tomar cualquiera de los n elementos, por lo tanto tenemos

n

posibilidades.

Pero una vez más, nos gustaría poder listarlas.

Variaciones con repetición

Variaciones con repetición

Implementar una función variaciones :: Set Integer -> Integer -> Set [Integer] que dado un conjunto c y una longitud / genere todas las posibles listas de longitud / a partir de elementos de c.

```
Ejemplo> variaciones [4, 7] 3
[[4, 4, 4], [4, 4, 7], [4, 7, 4], [4, 7, 7], [7, 4, 4], [7, 4, 7], [7, 7, 4], [7, 7, 7]]
```

- ¿Cómo podemos pensar este ejercicio recursivamente?
- Notemos que en este caso, hay una relación entre variaciones conj n y variaciones conj (n-1).
- ▶ Puede sernos útil pensar una función que dado un conjunto C y un conjunto de listas L, genere todas las listas producto de agregar cada elemento de C a cada elemento de L. (Que, de por sí, jes una recursión doble!)