Работоспособные ресурсы в ВС выявляются с помощью средств контроля и диагностики.

Контроль системы позволяет установить факт работоспособности или неработоспособности проверяемых ресурсов.

Диагностика позволяет определить, какой из ресурсов системы неработоспособен.

Для контроля и диагностики можно выделить контрольнодиагностическое ядро. При этом необходимым условием будет работостособность ядра.

Проверка работоспособности ядра выполняется специальными средствами. Остальная часть ЭМ проверяется с помощью контрольно-диагностических тестов, выполняемых ядром.

- Эффективность средств контроля и диагностики тем выше, чем меньше объём ядра по отношению к проверяемой части.
- По отношению к ВС допустимо использование терминов «самоконтроль» и «самодиагностика».
- Для самоконтроля ВС могут быть применены как универсальные, так и проблемно-ориентированные контрольные тесты. Последние учитывают специфику сферы применения ВС, структуру решаемых задач.
- Проблемно-ориентированные тесты существенно проще универсальных.
- Состояние (не)работоспособности ресурсов устанавливается после сравнения результатов выполнения контрольного теста в нескольких подсистемах (ЭМ).

В какие моменты должен производиться (само)контроль ВС?

Выбор моментов (само)контроля находится в прямой зависимости от надёжности ВС (параметры $N, n, \lambda, \Lambda, m, \mu$).

Число работоспособных ЭМ может быть долгое время не меньше n, но среди отказавших могут быть машины, участвующие в решении сложной задачи. Поэтому контроль правильности работы <u>не должен проводиться через очень большие промежутки времени</u>.

Контроль правильности работы ЭМ ВС будет достаточно эффективным, если он будет проводиться через время Θ безотказной работы.

Уровни надёжности ЭМ и ЭВМ имеют один порядок:

$$\lambda^{-1} = 10^{-5} \dots 10^{-8} \text{ y.}$$

Если число ЭМ в подсистеме $n=10 \dots 10^6$, то

$$\Theta = 10^{-1} \dots 10^7 \text{ y.}$$

T.o. через время Θ в каждой машине BC должен запускаться контрольный тест.

Удовлетворительным для практики будет время $\Delta\Theta \leq 0.001\Theta$ реализации контрольных и диагностических тестов, или

$$\Delta\Theta \leq 10^{-4} \dots 10^{4} \text{ ч.}$$

Чем больше скорость тестов, тем выше не только интенсивность восстановления μ ЭМ, но и производительность ВС.

- В качестве ядра могут быть использованы любые работоспособные ЭМ.
- Заключение о (не)работоспособности отдельных ЭМ принимается коллективно всеми машинами на основе составления их индивидуальных заключений о работоспособности соседних с ними машин.
- Достоверность такого заключения достигается при условии $\varepsilon \leq [(N-1)/2]$, где ε максимальное число неработоспособных ЭМ в системе; [x] целая часть числа x.
- При современном уровне BT последнее неравенство удовлетворяется почти всегда.

Численное исследование надёжности ВС

Целью численного исследования надёжности ВС является выявление зависимости их показателей качества функционирования от параметров: N, N — n, λ , m, μ , i.

При численном анализе надёжности переходного режима функционирования ВС будем использовать функции R(t) , U(t) , S(t) надёжности, восстановимости и готовности ВС.

Методика вывода расчётных формул сложна. Ранее была изложена *схема для расчётов*.

Изучение начнём с простейших ВС, завершим его системами с массовым параллелизмом.

Надёжность вычислительных систем «Минск-222»

«Минск-222» конфигурировалась из ЭВМ 2 поколения «Минск-2» («Минск-22»). Результаты анализа функционирования ВС позволят

- установить потенциальные пределы снизу для показателей надёжности ВС
- ответить на вопрос: могут ли быть созданы высоконадёжные системы из низконадёжных ЭМ и какова цена достижения уровня надёжности ВС, который не ниже надёжности одной из ЭМ

Числовые значения показателей надёжности ЭВМ «Минск-2»: $\lambda=0.024\frac{1}{ ext{\tiny H.}}$, $\mu=0.7\frac{1}{ ext{\tiny H.}}$.

Если учитывались только отказы УУ, АЛУ и ОЗУ, то: $\lambda = 0.0084 \, \frac{1}{\text{\tiny H.}} \, , \mu = 0.91 \, \frac{1}{\text{\tiny H.}}.$

- Ценой невысокой избыточности $(N-n \le 3)$ и даже при m=1 можно было достичь в ВС «Минск-222» значений вероятности безотказной работы, превышавших значения функции надёжности «Минск-2»
- Даже при использовании низконадёжных ЭМ существует предел в наращивании количества восстанавливающих устройств, после которого надёжность ВС повышается практически несущественно.

Функция надёжности ВС «Минск-222»: N=i=16; n=15,16; m=1

Зависимость функции надёжности от начального состояния:

$$N=16$$
, $\lambda=0.024$ 1/ч, $\mu=0.7$ 1/ч

$$-n = 13, m = 1, i = 13 \dots 16,$$

$$-\cdots - n = 15, m = 1, i = 15, 16,$$

- Увеличение среднего времени λ^{-1} безотказной работы ЭМ и интенсивности μ восстановления отказавших машин приводит к заметному повышению надёжности ВС.
- Надёжность ВС резко падает во времени, если в момент начала функционирования количество отказавших ЭМ было близко к количеству машин, составляющих избыточность.

Функция восстановимости ВС «Минск-222»

Функция восстановимости «Минск-222»: N=10, n=9, $m=1, i=0, \lambda=0.024$ 1/ч

Зависимость функции восстановимости ВС «Минск-222» от начального состояния:

$$N = 10, n = 9, m = 1, i = 0...8,$$

 $\lambda = 0.024 \text{ 1/y}, \mu = 0.7 \text{ 1/y}$

Функция восстановимости ВС «Минск-222»

- Анализ кривых позволяет выявить наличие границы для наращивания числа ВУ $(m \to N)$, начиная с которой значения функции надёжности ВС увеличиваются незначительно.
- Анализ функции U(t) убеждает в том, что в распределённых BC легко обеспечить практически приемлемые значения показателей восстановимости.

Функция готовности ВС «Минск-222»

Функция готовности ВС «Минск-222»:

$$a-m=1,\, \mathit{G}-m=2,\, \mathit{g}-m=3,\, \mathit{z}-m=16$$
 $N=i=16;\, n=12\dots 16;\, \lambda=0.024\,1/\mathrm{4};\, \mu=0.71\,1/\mathrm{4}$

Функция восстановимости ВС «Минск-222»

• ВС могут иметь относительно высокий уровень готовности, даже если они сконфигурированы из низконадёжных ЭВМ. Кроме того, системы достаточно быстро входят в стационарный режим.

Таблица значений функции готовности

n	m					
	1	2	3	4	***	16
16	0,485	0,577	0,582	0,583	***	0,583
15	0,751	0,894	0,902	0,903	•••	0,903
14	0,887	0,975	0,985	0,985	•••	0,985
13	0,953	0,995	0,998	0,998	•••	0,998
12	0,982	0,999	1,000	1,000	***	1,000
11	0,993	1,000	1,000	1,000	***	1,000

Эмпирические неравенства для выбора m и (N-n)

Для распределённых BC на базе ЭВМ 2 поколения:

$$m \le]0.1N[, \qquad (N-n) \le]0.1N[, \qquad (1)$$

где]x[- такое ближайшее к x целое число, что $]x[\geq x.$ Это следует из того, что устанавливать числа m и (N-n) более]0.1N[экономически нецелесообразно, т.к. увеличение от]0.1N[до N и N-1 не приводило к существенному повышению надёжности ВС.

Функция оперативной надёжности ВС «Минск-222»

$$a-m = 1$$
, $\delta - m = 10$; $N = 10$; $n = 8 \dots 10$

Функция оперативной надёжности ВС «Минск-222» $N=16; n=6\dots 16; m=1$

- Число m ВУ влияет на $R^*(t)$ незначительно.
- Практически в распределённых ВС выбирать пределы сверху для числа m и величины избыточности (N-n) при существующих параметрах λ и μ можно по формулам (1).

Функция оперативной восстановимости ВС «Минск-222» N=10; n=8

Функция оперативной восстановимости ВС «Минск-222»

$$a-m = 1$$
; $b-m = 16$; $N = 16$; $n = 10 \dots 16$

Функция оперативной восстановимости ВС «Минск-222» $N=16;\, n=13;\, m=1\dots 16$

- $\widetilde{U}^*(t)$ несущественно отличается от $U^*(t)$. Поэтому в практических расчётах можно использовать формулу (9.44) для расчёта $\widetilde{U}^*(t)$, которая проще формулы (9.43) для расчёта $U^*(t)$.
- Восстановимость одной ЭМ выше, чем у систем при m=1, однако меньше восстановимости систем, у которых количество ВУ равно количеству ЭМ (m=N) и у которых имеется избыточность.
- Графики подтверждают справедливость формул (1).
- BC в стационарном режиме могут обладать высокой восстановимостью.

К мини-ВС относятся ВС С.mmp, МИНИМАКС, СУММА. **Мини-ВС** — это системы, конфигурируемые из средств мини-машинной техники.

ЭМ ВС МИНИМАКС формировались из мини-ЭВМ М-6000, а ЭМ ВС СУММА — из машин «Электроника-100И». Системы имели одни и те же показатели надёжности:

$$\lambda = 10^{-2} \dots 10^{-3} \text{ 1/y}; \mu = 0.1 \dots 1.0 \text{ 1/y}$$

Диапазоны значений для λ и μ установлены в результате анализа существовавших возможных вариантов компоновки ЭМ.

В микроЭВМ, в отличие от мини-ЭВМ, использовались интегральные схемы. Это привело к миниатюризации машин и удешевлению, но показатели производительности и надёжности остались в тех же диапазонах, что и для мини-ЭВМ.

К микроВС относится ВС МИКРОС.

Функции надёжности ВС МИКРОС-1: m=1

$$-N = i = 16, n = 15$$

$$-N = i = 32, n = 30$$

Функция надёжности ВС МИКРОС-1:

$$N=i=128; n=126;$$
 $m=1...128;$ $\lambda=0.001\,1/\mathrm{4}; \mu=1.0\,1/\mathrm{4}$

Функции надёжности ВС МИКРОС-1:

$$N=i=128;\ m=1;$$
 $n=123\dots 128, \lambda=0.001\ 1/4,$ $\mu=1.0\ 1/4$

Функция надёжности ВС МИКРОС-1:

$$N = i = 64, 128, 256, 512; m = 1;$$

---- $-(N - n) \le 0.01N,$

$$-(N-n) \leq 0.01N,$$

- Очевидно, что введение избыточности существенно повышает надёжность ВС. Анализ графиков не только подтверждает справедливость (1), но и усиливает их.
- При фиксированной относительной избыточности надёжность ВС повышается с увеличением общего числа ЭМ.

- Таким образом, и 16-машинные, и 32-машинные конфигурации ВС обладали достаточно высокой надёжностью (для 70-х годов 20 в.).
- Усложнение состава ЭМ снижало надёжность ВС в целом, но она оставалась достаточной для параллельного моделирования и решения задач, не доступных для отдельно взятой микроЭВМ.
- Система МИКРОС-1 не уступала по надёжности ВС С.mmp и Cm*. Вместе с этим ВС МИКРОС-1 обладала большей архитектурной гибкостью, способностью к наращиванию вычислительных ресурсов.

- $N \leq 10^7$. Как достичь уровня надёжности, характерного для отдельной ЭМ? ($\vartheta = \lambda^{-1}$)
- Надёжность микропроцессорных БИС: $\vartheta = 10^5 \dots 10^8$ ч.
- Параметры для ЭМ: $\lambda = 10^{-5} \dots 10^{-8} \, 1/\mathrm{ч}; \; \mu = 0.001 \dots 0.25 \, \mathrm{ч}.$
- При анализе будем оценивать Θ

Среднее время безотказной работы большемасштабных ВС $N=65536; m\geq 1; \lambda=10^{-5}\ 1/\mathrm{y}$ $1-\mu=4\ 1/\mathrm{y}; 2-\mu=10\ 1/\mathrm{y}; 3-\mu=100\ 1/\mathrm{y}; 4-\mu=1000\ 1/\mathrm{y};$

- Варьирование μ в промежутке от $4\,1/4$ до $1000\,1/4$ даже при m=1 приводит к существенному улучшению качества функционирования ВС с большим количеством ЭМ.
- При количествах избыточных ЭМ $(N-n) \ge 6$ (т.е. при избыточности 0.009%) достигается уровень надёжности ВС, который не ниже, чем для одной ЭМ.
- Имеется нижняя граница для количества ВУ, после которой увеличение m приводит к незначительному росту среднего времени безотказной работы.

Среднее время безотказной работы большемасштабных ВС

$$m=1; \ \lambda=10^{-5} \dots 10^{-9} \ 1/\mathrm{y}; \ \mu=4 \ 1/\mathrm{y}$$
 $a-N=1024; \ \delta-N=2048; \ s-N=4096;$ $1-\lambda=10^{-5} \ 1/\mathrm{y}; \ 2-\lambda=10^{-6} \ 1/\mathrm{y}; \ 3-\lambda=10^{-7} \ 1/\mathrm{y};$ $4-\lambda=10^{-8} \ 1/\mathrm{y}; \ 5-\lambda=10^{-9} \ 1/\mathrm{y}$

Среднее время безотказной работы большемасштабных ВС

$$m=1;\ \lambda=10^{-5}\dots 10^{-9}\ 1/\mathrm{y};\ \mu=4\ 1/\mathrm{y}$$
 $a-N=8192;\ \delta-N=65536;\ s-N=1048576;$ $1-\lambda=10^{-5}\ 1/\mathrm{y};\ 2-\lambda=10^{-6}\ 1/\mathrm{y};\ 3-\lambda=10^{-7}\ 1/\mathrm{y};$ $4-\lambda=10^{-8}\ 1/\mathrm{y};\ 5-\lambda=10^{-9}\ 1/\mathrm{y}$

Анализ результатов численного исследования показывает, что для большемасштабных ВС выбор следует осуществлять по формулам:

$$1 \le m \le \lceil \log N \rceil; \quad 1 \le (N - n) \le \lceil \log N \rceil \tag{2}$$

где N — количество ЭМ в системе; $[\log N]$ — число, округлённое до ближайшего к целого числа.

Формулы (2) гарантируют уровень надёжности большемасштабной ВС *не ниже надёжности одной ЭМ*. При этом с ростом *N* число ВУ и избыточных ЭМ относительно *N* асимптотически уменьшается.

Выводы по результатам численного анализа

- 1. При современном уровне микропроцессорной техники практически возможно построения высоконадёжных ВС с числом ЭМ $10 \dots 10^7$.
- 2. Для обеспечения надёжности большемасштабной ВС не менее уровня надёжности одной ЭМ требуется избыточность, не превышающая десятичного логарифма общего числа ЭМ.
- 3. Для выполнения восстановительных работ в распределённых ВС, как правило, достаточно иметь одной ВУ независимо от количества ЭМ. Среднее время восстановления системы с избыточностью имеет тот же порядок, что и среднее время восстановления одной ЭМ.