Introduction to Statistical Modeling

STAT2507D

Chapter 7 - 2

Sampling Distributions

FALL 2014: STAT 2507D Carleton University

- > Sampling distributions for statistics can be
 - >Approximated with simulation techniques
 - Derived using mathematical theorems
- ➤ The central Limit Theorem is one such theorem
- Example: We will observe the sampling distribution of average value (x) of numbers observed on the top face of a die when tossed n times (n = $1, 2, 3, 4, \cdots$).

16/10/2014 9:31 AM

Toss a fair die n=1 time; the distribution of x the number on the upper face is flat or uniform

16/10/2014 9:31 AM

$$\mu = \sum xp(x)$$

$$= 1\left(\frac{1}{6}\right) + 2\left(\frac{1}{6}\right) + \dots + 6\left(\frac{1}{6}\right) = 3.5$$

$$\sigma = \sqrt{\sum (x - \mu)^2 p(x)}$$

$$= \sqrt{(1 - 3.5)^2 \left(\frac{1}{6}\right) + \dots + (6 - 3.5)^2 \left(\frac{1}{6}\right)} = 1.71$$

Toss a fair die n = 2 times. Total of numbers observed on the top faces of two dices

	First Die					
Second Die	1	2	3	4	5	6
1	2	3	4	5	6	7
2	3	4	5	6	7	8
3	4	5	6	7	8	9
4	5	6	7	8	9	10
5	6	7	8	9	10	11
6	7	8	9	10	11	12

16/10/2014 9:31 AM

➤ Average of numbers observed on the top faces of two dice

Second Die	First Die					
	1	2	3	4	5	6
1	1	1.5	2	2.5	3	3.5
2	1.5	2	2.5	3	3.5	4
3	2	2.5	3	3.5	4	4.5
4	2.5	3	3.5	4	4.5	5
5	3	3.5	4	4.5	5	5.5
6	3.5	4	4.5	5	5.5	6

16/10/2014 9:31 AM FALL 2014: STAT 2507D

X (Average on two dice)	P(X)
1.0	1/36
1.5	2/36
2.0	3/36
2.5	4/36
3.0	5/36
3.5	6/36
4.0	5/36
4.5	4/36
5.0	3/36
5.5	2/36
6.0	1/36

The distribution of x the average number on the two upper faces is mound-shaped

Mean:
$$\mu = 3.5$$

StdDev: $\frac{\sigma}{\sqrt{2}} = \frac{1.71}{\sqrt{2}} = 1.21$

➤ Distribution of average of numbers observed on the face of the dice when n=2.

16/10/2014 9:31 AM FALL 2014: STAT 2507D

Toss a fair die n = 3, 4 times; the distribution of x the average number on the two upper faces is **approximately normal**

Mean:
$$\mu = 3.5$$

 $StdDev: \frac{\sigma}{\sqrt{3}} = \frac{1.71}{\sqrt{3}} = 0.987$

➤ Distribution of average of numbers observed on the face of the dice when n=3.

16/10/2014 9:31 AM FALL 2014: STAT 2507D

➤ Distribution of average of numbers observed on the face of the dice when n=4

16/10/2014 9:31 AM FALL 2014: STAT 2507D

Summary of mean and standard deviation for n=1,2,3,4,5 in a die tossing experiment.

n	Mean	Standard deviation
1	3.5	$\frac{1.71}{\sqrt{1}} = 1.71$
2	3.5	$\frac{1.71}{\sqrt{2}} = 1.21$
3	3.5	$\frac{1.71}{\sqrt{3}} = 0.99$
4	3.5	$\frac{1.71}{\sqrt{4}} = 0.86$
5	3.5	$\frac{1.71}{\sqrt{5}} = 0.77$

REMARKS

 \blacktriangleright Regardless of its shape, the sampling distribution of \bar{x} always has a mean identical to the mean of sampled population and standard deviation equal to the population standard deviation σ divided by \sqrt{n} .

$$E(\bar{X}) = \mu; Var(\bar{X}) = \sigma/\sqrt{n}$$

➤ Consequently, the spread of the distribution of sample mean is considerably less than the spread of the sampled population.

> If a random samples of n observations are drawn from a non-normal population with finite μ and standard deviation σ , then, when n is large, the sampling distribution of the sample mean \bar{x} is approximately normally distributed, with mean µ and standard deviation $\frac{\sigma}{\sqrt{n}}$. The approximation becomes more accurate as n becomes large.

16/10/2014 9:31 AM

Example Central limit theorem can restated to apply to the sum of the sample measurements $\sum_{i=1}^{n} x_i$, which as n becomes large, also has an approximately normal distribution with mean nµ and standard deviation $\sqrt{n}\sigma$.

16/10/2014 9:31 AM

- ➤ How large sample size is needed
 - \blacktriangleright If the sampled population is normal, then the sampling distribution of \bar{x} will also be normal regardless of the sample size
 - When the sample population is approximately symmetric, the sampling distribution of \bar{x} becomes approximately normal for relatively small values of n.

16/10/2014 9:31 AM

- ➤ How large sample size is needed
 - When sampled population is skewed, the sample size n must be larger, with n at least 30 before the sampling distribution of \bar{x} becomes approximately normal.

16/10/2014 9:31 AM

Points to consider when choosing estimator of μ

- \triangleright If the population mean μ is unknown, several statistics can be used as an estimator
 - ➤ Sample mean
 - ➤ Sample median

16/10/2014 9:31 AM

Points to consider when choosing estimator of μ

- \triangleright Criteria for choosing the estimator for μ
 - \triangleright Is it easy or hard to calculate \bar{x} ?
 - ➤ Does it produce estimates that are consistently too high or too low?
 - ➤ Is it more or less variable than other possible estimators?
- In many situations, sample mean has desirable properties as an estimator.

16/10/2014 9:31 AM

THE SAMPLING DISTRIBUTION OF THE SAMPLE MEAN

- \blacktriangleright A random sample of size n is selected from a population with mean μ and standard deviation σ
- The sampling distribution of the sample mean \bar{x} will have mean μ and standard deviation σ/\sqrt{n}

16/10/2014 9:31 AM

THE SAMPLING DISTRIBUTION OF THE SAMPLE MEAN

- The standard deviation of \bar{x} is sometimes called the STANDARD ERROR of the mean (SE or $SE(\bar{x})$)
- Probabilities are calculated using the standard normal random variable

$$Z = \frac{Estimator - Mean}{Standard\ Error}$$

16/10/2014 9:31 AM

FINDING PROBABILITIES FOR SAMPLE MEAN

- \succ If the sampling distribution of \bar{x} is normal or approximately normal
 - \triangleright Find μ and calculate $SE(\bar{x}) = \sigma/\sqrt{n}$
 - \triangleright Write down the event of interest in terms of \bar{x} , and locate the appropriate area on the normal curve
 - \triangleright Convert the necessary values of \bar{x} to z-values using

$$z = \frac{\bar{x} - \mu}{\sigma / \sqrt{n}}$$

Use the normal table to calculate the probability

- 7.2) A random sample of size n =40 is selected from a population with mean μ =100 and standard deviation σ = 20
- a) What will be the approximate shape of the sampling distribution of \bar{x} ?
- b) What will be the mean and standard deviation of the sampling distribution of \bar{x} ?
- c) Find the probability that the sample mean is between 105 and 110?
- d) What is the probability that sample mean exceeds 140?

7.3)Suppose that university faculty with the rank of assistant professor earn an average of \$74,000 per year with a standard deviation of \$6000. In an attempt to verify this salary level, a random sample of 60 assistant professors was selected from a personnel database for all universities in Canada.

16/10/2014 9:31 AM

- a) Describe the sampling distribution of the sample mean
- b) Within what limits would you expect the sample average to lie, with probability 0.95?
- c) Calculate the probability that the sample mean \bar{x} is greater than \$78000
- d) If your random sample actually produced a sample mean of \$78000, would you consider this unusual? What conclusion might you draw?

16/10/2014 9:31 AM

7.4) The maximum load (with a generous safety factor) for the elevator in an office building is 900 kg. The relative frequency distribution of the weights of all men and women using the elevator is mound-shaped with mean μ =65 kg and σ =16kg. What is the largest number of people you can allow on the elevator if you want their total weight to exceed the maximum weight with a small probability (say, near 0.01)?

THE SAMPLING DIST'N OF THE SAMPLE PROPORTION

- The central limit theorem can be used to conclude that the binomial random variable x is approximately normal when n is large, with mean np and standard deviation $\sqrt{np(1-p)}$
- \triangleright Requirement: np > 5 and nq > 5

16/10/2014 9:31 AM

THE SAMPLING DIST'N OF THE SAMPLE PROPORTION

- The sample proportion, $\hat{p} = x/n$ is simply a rescaling of the binomial random variable x, dividing it by n
- From central limit theorem, the sampling distribution of \hat{p} will also be approximately normal, with rescaled mean and standard deviation

16/10/2014 9:31 AM

THE SAMPLING DIST'N OF THE SAMPLE PROPORTION

- ➤ A random sample of size n is selected from a binomial population with parameter p
- The sampling distribution of the sample \hat{p} proportion will have mean p and standard deviation $\sqrt{pq/n}$
- If n is large, and p is not too close to zero or one, the sampling distribution of \hat{p} will be approximately normal

FINDING PROBABILITIES FOR SAMPLE PROPORTION

- Find the necessary values of n and p
- Check whether the normal approximation to the binomial distribution is appropriate (np > 5 and nq > 5)
- > Write down the event of interest in terms of \widehat{p} , and locate the appropriate area on the normal curve

16/10/2014 9:31 AM

FINDING PROBABILITIES FOR SAMPLE PROPORTION

 \succ Convert the necessary values of \hat{p} to z-values using

$$z = \frac{\widehat{p} - p}{\sqrt{\frac{pq}{n}}}$$

➤ Use normal table to calculate the probability

7.5) Random sample of size n = 75 were selected from binomial population with p=0.4. Use normal distribution to approximate the following probabilities

a.
$$P(\hat{p} \le 0.43)$$

b.
$$P(0.35 \le \hat{p} \le 0.43)$$

16/10/2014 9:31 AM

➤ 7.6) A soda bottler claims that only 5% of the soda cans are under filled. A quality control technician randomly samples 200 cans of soda. What is the probability that more than 10% of the cans are under filled?

16/10/2014 9:31 AM

- ➤ Sampling Plans and Experimental Design
 - **≻**Survey
 - ➤ Survey Errors
 - ➤ Questionnaire design
 - ➤ Survey delivery
 - ➤ Simple random sampling

16/10/2014 9:31 AM

- ➤ Sampling Plans and Experimental Design
 - Other sampling plans
 - >Stratified sampling
 - ➤ Cluster sampling
 - ➤ Systematic 1-in-k sampling
 - ➤ Non-random sampling: Convenience sampling, Judgement sampling, Quota sampling

16/10/2014 9:31 AM

- ➤ Statistics and Sampling Distributions
 - Sampling distributions describe the possible values of a statistic and how often they occur in repeated sampling
 - Sampling distributions can be derived mathematically, approximated empirically, or found using statistical theorems

16/10/2014 9:31 AM

- ➤ Statistics and Sampling Distributions
 - The Central Limit Theorem states that sums and averages of measurements from a non-normal population with finite mean and standard deviation have approximately normal distributions for large samples of size n.

16/10/2014 9:31 AM

- ➤ Sampling Distribution of the sample mean
 - When samples of size n are drawn from a normal population with mean μ and variance σ^2 , the sample mean has a normal distribution with mean μ and variance σ/\sqrt{n}

16/10/2014 9:31 AM

- ➤ Sampling Distribution of the sample mean
 - When samples of size n are drawn from a nonnormal population with mean μ and variance σ^2 , the Central Limit Theorem ensures that the sample mean \bar{x} will have an approximately normal distribution with mean μ and variance σ^2/n when n is large ($n \ge 30$)
 - ightharpoonup Probabilities involving the sample mean can be calculated by standardizing the value of \bar{x} using

$$z = \frac{\bar{x} - \mu}{\sigma / \sqrt{n}}$$

16/10/2014 9:31 AM

- ➤ Sampling Distribution of the sample proportion
 - When samples of size n are drawn from a binomial population with parameter p, the sample proportion will have an approximately normal distribution with mean p and variance pq/n as long as np > 5 and nq > 5
 - ightharpoonup Probabilities involving the sample proportion can be calculated by standardizing the value \hat{p} using

16/10/2014 9:31 AM

- ➤ Sampling Distribution of the sample proportion
 - ightharpoonup Probabilities involving the sample proportion can be calculated by standardizing the value \hat{p} using

$$z = \frac{\hat{p} - p}{\sqrt{\frac{pq}{n}}}$$

16/10/2014 9:31 AM