《组合数学》期末整理

目录

1	基本	:计数	3
	1.1	The twelvefold way	3
	1.2	三个规则	3
	1.3	分析 the twelvefold way	3
2	生成	函数	4
	2.1	生成函数	4
	2.2	组合	4
	2.3	斐波那契数(求解递归的典型例子)	4
	2.4	生成函数的代数操作	4
	2.5	展开生成函数	5
	2.6	卡特兰数(Catalan Number)	5
	2.7	快排分析	5
3	筛法		5
	3.1	容斥原理	5
		3.1.1 满射	5
		3.1.2 错排 (Derangement)	5
		3.1.3 受限位置排列	5
		3.1.4 夫妻问题(Problème des ménages)	6
		3.1.5 二分完美匹配	6
		3.1.6 欧拉函数 (The Euler totient function)	6
4	波利	亚计数理论 (Pólya's theory of counting)	6
	4.1	群	6
		4.1.1 定义	6
		4.1.2 排列群 (Permutation groups)	6
		4.1.3 群作用 (Group action)	7
	4.2	Burnside's Lemma	7
		4.2.1 轨道 (Orbits)	7
		4.2.2 不变集 (Invariant sets) 和稳定子群 (stabilizers)	7
		4.2.3 轨道的计数 (Counting orbits)	7
	4.3	波利亚计数理论(Pólya's Theory of Counting)	7
		4.3.1 循环指数 (The cycle index)	7
		4.3.2 Pattern Inventory	7
		4.3.3 波利亚计数公式(Pólya's enumeration formula)	7

5	凯利	公式 (Cayley's Formula)	8
	5.1	证法 1: 双重计数	8
	5.2	证法 2: Prüfer 编码	8
	5.3	证法 3: 基尔霍夫矩阵-树定理(Kirchhoff's matrix tree theorem)	8
6	存在	性问题	9
	6.1	存在性	9
		6.1.1 Shannon 的电路下界	9
	6.2	双重计数	9
		6.2.1 欧拉引理	9
		6.2.2 Sperner 引理	9
	6.3	鸽巢原理	9
		6.3.1 不可避免的因数 (Inevitable divisors)	9
		6.3.2 单调子序列(Monotonic subsequences)	9
		6.3.3 狄利克雷近似(Dirichlet's approximation)	10
7	भार च्टे	F.M-	10
7	概率		10 10
	7.1		
		·	10
		, , , , , , , , , , , , , , , , , , ,	10
		, , , , , , , , , , , , , , , , , , ,	10
			1011
	7.2		
	1.2		11
			11 11
		7.2.2 对用 Kamsey Number fly lower bound	11
8	极值	图论	11
	8.1	禁止的团(Forbidden Cliques)	11
		8.1.1 Mantel 定理	11
		8.1.2 Turán 定理	12
		8.1.3 Turán 定理(独立集)	12
	8.2	禁止的环(Forbidden Cycles)	12
	8.3	Erds-Stone 定理	13
9	极值	连集合论	13
	9.1	Sunflowers	13
	9.2	Erds-Ko-Rado 定理	13
	9.3	Sperner 系统	14
	9.4		14
			14
			14
			14
		9.4.4 Down-shifts	14

1 基本计数 3

10	Ramsey 理论	15
	10.1 Ramsey 定理	15
	10.1.1 图的 Ramsey 定理	15
	10.1.2 Ramsey 数	15
	10.1.3 超图的 Ramsey 定理	15
	10.2 Ramsey 定理的应用	15
	10.2.1 Happy Ending 问题	15
	10.2.2 Yao 的隐含数据结构下界	16
11	匹配论	16
	11.1 相异代表系 (Systems of Distinct Representatives , SDR)	16
	11.1.1 Hall 婚姻定理	16

1 基本计数

1.1 The twelvefold way

 $f: N \to M, |N| = n, |M| = m.$

elements of N	elements of M	any f	1 - 1	on-to
distinct	distinct	m^n	$(m)_n$	$m! \begin{Bmatrix} n \\ m \end{Bmatrix}$
identical	distinct	$\binom{m}{n}$	$\binom{m}{n}$	$\binom{n-1}{m-1}$
distinct	identical	$\sum_{k=1}^{m} \begin{Bmatrix} n \\ k \end{Bmatrix}$	$\begin{cases} 1 & \text{if} n \le m \\ 0 & \text{if} n > m \end{cases}$	$\binom{n}{m}$
identical	identical	$\sum_{k=1}^{m} p_k(n)$	$\begin{cases} 1 & \text{if} n \le m \\ 0 & \text{if} n > m \end{cases}$	$p_m(n)$

1.2 三个规则

• 加法规则: 对于两个有限且不相交的集合 S, T, 有 $|S \cup T| = |S| + |T|$.

• 乘法规则: 对于两个有限集合 S,T,有 $|S \times T| = |S| \cdot |T|$.

• 双射规则: 对于两个有限集合 S,T, $\exists \phi: S \xrightarrow[\text{on-to}]{1-1} T \Rightarrow |S| = |T|$.

1.3 分析 the twelvefold way

- m^n , $(m)_n$, $\binom{m}{n}$ $\not\equiv$ trivial $\not\equiv$ 0.
- 整数的 compositions (多个整数相加) 的取法: 隔板法. 可以得到 $\binom{n-1}{m-1}$. 若可取 0, 得到 $\binom{m}{n} = \binom{m+n-1}{m-1} = \binom{m+n-1}{n}$ (Multi-set) .
- 集合的 k-partitions $(n\text{-set } 划分为 \ k$ 个子集): $\binom{n}{k}$. 考虑 k 的可能取值,对 any f 得到 $B_n = \sum_{k=1}^m \binom{n}{k}$ (Bell number) . 有递推式 $\binom{n}{k} = k \binom{n-1}{k} + \binom{n-1}{k-1}$ (考虑 $\{n\}$ 是否是一个单独划分块的两种情况) . 当盒子 distinct 时,相当于有序的 m-划分,得到 $m! \binom{n}{m}$.

• 数的 k-partitions (一个数 n 划分为无序的 k 个数之和). 不失一般性, 有模型

$$\begin{cases} x_1 + x_2 + \dots + x_k = n \\ x_1 \ge x_2 \ge \dots \ge x_k \ge 1 \end{cases}$$

考虑 x_k 的两种情况,有递推式 $p_k(n) = p_{k-1}(n-1) + p_k(n-k)$. k-partition $\to k$ -composition 是满射,partition of $n \to \text{partition}$ of $n + \frac{k(k-1)}{2}$ 是单射,由此给出两个界,逼出 $p_k(n) \sim \frac{n^{k-1}}{k!(k-1)!}, n \to \infty$. 根据 Ferrers diagram 的转置可以得出:k-partitions of n 的种数等价于最大 part 为 k 的 partitions of n 的种数. 由此 $p_k(n) = \sum_{j=1}^k p_j(n-k)$.

2 生成函数

2.1 生成函数

OGF: $G(x) = \sum_{n\geq 0} a_n x^n$. x 一般作为不表示任何值的**形式变量**,我们要计数的是 a_i . 生成函数只是另一种用于表示 (a_0, a_1, \dots) 的方法,它牛逼之处在于多样的代数操作.

2.2 组合

用 + 代表"或", 用 * 代表"且", 则 n-set 子集的选择可以表示为

$$\underbrace{(x_0 + x_1)(x_0 + x_1) \cdots (x_0 + x_1)}_{n \uparrow \overline{\pi} \overline{x}} = (x_0 + x_1)^n$$

 $(1+x)^n$ 展开式中 $a_k x^k$ 表示 n-set 的 k-subset 的数目为 a_k . 这里 $1=x^0$ 表示不选, x^1 表示选. 更一般的,对于 n 堆东西,第 k 堆有 a_k 个相同的东西,我们想取 t 个,先表示 $(1+x+\cdots+x^{a_1})\dots(1+x+\cdots+x^{a_k})$, x^t 的系数即为所求.

2.3 斐波那契数(求解递归的典型例子)

$$F_n = \begin{cases} F_{n-1} + F_{n-2} & \text{if} & n \ge 2, \\ 1 & \text{if} & n = 1, \\ 0 & \text{if} & n = 0 \end{cases}$$

求解 F_n 的几个步骤:

- 1. 表示生成函数: $G(x) = \sum_{n \geq 0} F_n x^n$,用递推式展开,并通过在两边同乘 x, x^2 等得到 $G(x) = \frac{x}{1-x-x^2}$.
- 2. 为了把 G(x) 表示为直接得到 F_n 的形式,设 $\frac{x}{1-x-x^2} = \frac{x}{(1-\phi x)(1-\hat{\phi} x)} = \frac{\alpha}{1-\phi x} + \frac{\beta}{1-\hat{\phi} x}$. 其中 $\phi = \frac{1+\sqrt{5}}{2}$, $\hat{\phi} = \frac{1-\sqrt{5}}{2}$. 解出 α, β .
- 3. 利用**重要的 geometric expansion:** $\frac{1}{1-z} = \sum_{n \geq 0} z^n$ 对 G(x) 变形,便可得到 $F_n = \frac{1}{\sqrt{5}} (\phi^n \hat{\phi}^n)$.

2.4 生成函数的代数操作

给定
$$G(x) = \sum_{n>0} g_n x^n$$
 和 $F(x) = \sum_{n>0} f_n x^n$.

shift	$x^k G(x) = \sum_{n \ge k} g_{n-k} x^n$
addition	$F(x) + G(x) = \sum_{n \ge 0}^{\infty} (f_n + g_n)x^k$
convolution	$F(x)G(x) = \sum_{n\geq 0} \sum_{k=0}^{n} f_k g_{n-k} x^n$
differentiation	$G'(x) = \sum_{n \ge 0} (n+1)g_{n+1}x^n$

3 筛法

5

2.5 展开生成函数

• 泰勒展开: $G(x) = \sum_{n>0} \frac{G^{(n)}(0)}{n!} x^n$.

• 几何序列: $\frac{1}{1-x} = \sum_{n>0} x^n$.

• 广义二项式定理: $(1+x)^{\alpha} = \sum_{n>0} {\alpha \choose n} x^n$.

2.6 卡特兰数 (Catalan Number)

递推关系: $C_0 = 1$, $C_n = \sum_{k=0}^{n-1} C_k C_{n-1-k}$.

求解方法: 对生成函数作平方再乘 x,得到 $G(x) = 1 + xG(x)^2$. 得到 G(x) 后用广义二项式定理展开,最后得到 $C_n = \frac{1}{n+1} \binom{2n}{n}$.

2.7 快排分析

递推关系: 设 T_n 表示快排 n 个数的平均比较次数,有 $T_0 = T_1 = 0$, $T_n = \frac{1}{n} \sum_{k=1}^n (n-1+T_{k-1}+T_{n-k})$.

求解方法: 对 $\sum_{n>0} nT_n x^n$ 用递推式展开,得到

$$\sum_{n\geq 0} nT_n x^n = \sum_{n\geq 0} n(n-1)x^n + 2\sum_{n\geq 0} \left(\sum_{k=0}^{n-1} T_k\right) x^n$$

这三个项分别采用乘 x 由导数逆推、乘 x^2 由导数和几何序列逆推、乘 x 由卷积逆推. 得到式子 $xG'(x) = \frac{2x^2}{(1-x)^3} + \frac{2x}{1-x}G(x)$ 后,**求解一阶线性微分方程**得到 G(x),后面 trivial. 最终 $T_n = 2(n+1)H(n) - 2n$.

3 筛法

3.1 容斥原理

设 A_1, A_2, \ldots, A_n 是集合 U 的一系列子集,那么 U 的不在任何一个 A_i 中的元素个数为 $\sum_{I \subset \{1,2,\ldots,n\}} (-1)^{|I|} |A_I|$.

3.1.1 满射

定理: 从 n-set 到 m-set 的满射数量为 $\sum_{k=1}^{m} (-1)^{m-k} {m \choose k} k^n$.

证明思路: 设坏事件 A_I 表示 $I \subseteq [m]$ 没有 [n] 中对应的原像. 我们希望这样的坏事件一个也不发生,于是 $\sum_{I\subseteq [m]} (-1)^{|I|} |A_I| = \sum_{I\subseteq [m]} (-1)^{|I|} (m-|I|)^n = \sum_{j=0}^m (-1)^j \binom{m}{j} (m-j)^n$. 结合前面所学,可推知 $\begin{Bmatrix} n \\ m \end{Bmatrix} = \frac{1}{m!} \sum_{k=1}^m (-1)^{m-k} \binom{m}{k} k^n$.

3.1.2 错排 (Derangement)

错排问题:不存在不动点的排列种数.

定理: $\{1,2,\ldots,n\}$ 的错排数为 $n! \sum_{k=0}^{n} \frac{(-1)^k}{k!} \approx \frac{n!}{e}$.

证明思路: |U|=n!. 设 A_I 表示 $I\subseteq\{1,2,\ldots,n\}$ 都是不动点. $|A_I|=(n-|I|)!$. 根据容斥原理展开式子, 逆向使用泰勒展开 $\frac{1}{e}=\sum_{k=0}^n\frac{(-1)^k}{k!}\pm o(\frac{1}{n!})$.

3.1.3 受限位置排列

问题: 避免一些禁止位置的排列种数.

定理: $N_0 = \sum_{k=0}^n (-1)^k r_k (n-k)!$. 其中 B 表示 $[n] \times [n]$ 棋盘中标记的禁止位. r_k 表示在 B 中不冲突放置 k 个棋子的放法种数. N_0 表示不冲突放置 n 个棋子且没有棋子在 B 中的放法种数.

3.1.4 夫妻问题 (Problème des ménages)

问题: n 对夫妻坐一圈, 男女交差坐, 不可和自己的夫/妻相邻.

解法: 先坐定妻子,然后丈夫的坐法满足 $\pi(i) \neq i$ 且 $\pi(i) \neq i+1$ (mod n). r_k 即为在大小为 2n 的环中取非连续的 k 个的取法种数. 依据下面的引理, $r_k = \frac{2n}{2n-k} \binom{2n-k}{k}$.

引理: 从一条线上的 m 个对象中选择 k 个不连续对象的选法有 $\binom{m-k+1}{k}$ 种. (先按定 m-k 个不取的,再对 m-k+1 个空隙插入 k 个) 将线改成环,则为 $\frac{m}{m-k}\binom{m-k}{k}$ 种. (双重计数: f(m,k) 为所求,g(m,k) 为在 f(m,k) 基础上将 k 个对象涂红,剩下 m-k 个之一涂蓝的种数,则 $g(m,k)=(m-k)f(m,k)=m\binom{m-k}{k}$)

3.1.5 二分完美匹配

问题: 设二分图 G([n],[n],E), $(i,\pi(i))\in E$, $A_{i,j}=\begin{cases} 1 & (i,j)\in E\\ 0 & (i,j)\notin E \end{cases}$. 求 G 中完美匹配的数目,也即 $\sum_{\pi\in S_n}\prod_{i\in[n]}A_{i,\pi(i)}$.

解法: 暴力求解需要 O(n!). 根据 Ryser's formula, $\sum_{\pi \in S_n} \prod_{i \in [n]} A_{i,\pi(i)} = \sum_{I \subset [n]} (-1)^{n-|I|} \prod_{i \in [n]} \sum_{j \in I} A_{i,j}$.

3.1.6 欧拉函数 (The Euler totient function)

定理: 设 $\phi(n)$ 表示 $\{1,2,\ldots,n\}$ 中与 n 互质的数的个数. 假设 n 可被 r 个不同的素数 p_1,\ldots,p_r 整除,则

$$\phi(n) = n \prod_{i=1}^{r} \left(1 - \frac{1}{p_i}\right)$$

证明思路: 坏事件 A_i 为 $U=\{1,2,\ldots,n\}$ 中可被 p_i 整除的数的集合,对应的有 A_I . $|A_i|=\frac{n}{p_i}$ 且 $|A_I|=\frac{n}{\prod_{i\in I}p_i}$. 由此 $\phi(n)=\sum_{I\subseteq\{1,2,\ldots,n\}}(-1)^{|I|}|A_I|$. 展开即可.

4 波利亚计数理论 (Pólya's theory of counting)

4.1 群

4.1.1 定义

群 (G,\cdot) 由集合 G 和二元操作符 · 组合,满足如下公理:

- 封闭性 (closure): $\forall g, h \in G, g \cdot h \in G$.
- 结合律 (associativity): $\forall f, g, h \in G, f \cdot (g \cdot h) = (f \cdot g) \cdot h$.
- 单位元 (identity): 存在一个元素 $e \in G$, 使得对任意 $g \in G$ 都有 eg = g.
- **逆元** (inverse): 对任意 $g \in G$, 都存在 $h \in G$ 使得 $g \cdot h = e$, 记为 $h = g^{-1}$.

4.1.2 排列群 (Permutation groups)

- **对称群** (Symmetric group S_n): 所有排列 $[n] \xrightarrow[\text{on-to}]{1-1} [n]$ 的集合,满足对任意 $\pi, \sigma \in S_n$ 有 $(\pi \cdot \sigma)(i) = \pi(\sigma(i))$. 它的子群被称为 permutation groups.
- 循环群 (Cyclic group C_n): $\sigma(i) = (i+1) \mod n$. $C_n = \{\sigma^t \mid t \geq 0\}$, 它可以由 n 条边的正则多边形的 旋转对称形成, $|C_n| = n$.
- 二面体群 (Dihedral group D_n): $\rho(i) = n i 1$. 它可以由 n 条边的正则多边形的旋转和反射形成, $|D_n| = 2n$.

4.1.3 群作用 (Group action)

定义: 在集合 X 上的一个群 G 的群作用是一个二元操作符: $\circ: G \times X \to X$. 满足对任意 $g,h \in G,x \in X$ 有 $(g \cdot h) \circ X = g \circ (h \circ X)$,并且 $e \circ x = x$.

4.2 Burnside's Lemma

4.2.1 轨道 (Orbits)

- **定义**: 设 G 是作用在集合 X 上的一个排列群,对任意 $x \in X$, x 的轨道为 $Gx = \{\pi \circ x \mid \pi \in G\}$.
- **性质**: $x \in Gy$ 定义了 x, y 之间的等价关系 (易证), 轨道划分了集合 X.
- **例子:** 4 个珠子的项链涂 2 种颜色, 按 C_4 可以将 X 划分为 6 组等价类.

4.2.2 不变集 (Invariant sets) 和稳定子群 (stabilizers)

- π 的不变集: $X_{\pi} = \{x \in X \mid \pi \circ x = x\}.$
- x 的稳定子群: $G_x = \{ \pi \in G \mid \pi \circ x = x \}.$
- 引理: 设 G 是作用在 X 上的一个排列群, 对任意 $x \in X$ 有 $|G_x||Gx| = |G|$.

4.2.3 轨道的计数 (Counting orbits)

Burnside's Lemma: 设 G 是作用在 X 上的一个排列群,则轨道数目为 $|X/G| = \frac{1}{|G|} \sum_{\pi \in G} |X_{\pi}|$. 证明思路: 矩阵 $A = G \times X$, $A(\pi, x) = 1$ 当 $\pi \circ x = x$ 否则为 0. 由此根据双重计数得到 $\sum_{\pi \in G} |X_{\pi}| = \sum_{x \in X} |G_x|$. 由上面引理化简,并记 X 被轨道划分为 $X_1, X_2, \ldots, X_{|X/G|}$. 有 $\sum_{x \in X} \frac{1}{|Gx|} = \sum_{i=1}^{|X/G|} \sum_{x \in X_i} \frac{1}{|X_i|}$. 继而化简得证.

4.3 波利亚计数理论 (Pólya's Theory of Counting)

4.3.1 循环指数 (The cycle index)

对于一个 [n] 的排列 $\pi \in G$, 若它是 k 个 cycles 的乘积, 设第 i 个环的长度为 ℓ_i . 设单项式 $M_{\pi}(x_1, x_2, \ldots, x_n) = \prod_{i=1}^k x_{\ell_i}$. 那么它的 cycle index 为

$$P_G(x_1, x_2, \dots, x_n) = \frac{1}{|G|} \sum_{\pi \in G} M_{\pi}(x_1, x_2, \dots, x_n)$$

根据 Burnside's Lemma, n 对象的 m 涂色的等价类数目为 $P_G(\underbrace{m,m,\ldots,m}_{r})$.

4.3.2 Pattern Inventory

对任意非负整数元组 $\mathbf{v} = (n_1, n_2, \dots, n_m)$,其中 $n_1 + n_2 + \dots + n_m = n$, $a_{\mathbf{v}}$ 表示这 n 个对象的 m 染色且第 i 种颜色出现 n_i 次的等价类数目. Pattern Inventory 是 $a_{\mathbf{v}}$ 的生成函数,定义为

$$F_G(y_1, y_2, \dots, y_m) = \sum_{\mathbf{v}} a_{\mathbf{v}} y_1^{n_1} y_2^{n_2} \cdots y_m^{n_m}$$

4.3.3 波利亚计数公式 (Pólya's enumeration formula)

$$F_G(y_1, y_2, \dots, y_m) = P_G\left(\sum_{i=1}^m y_i, \sum_{i=1}^m y_i^2, \dots, \sum_{i=1}^m y_i^n\right)$$

凯利公式 (Cayley's Formula)

Cayley's formula for trees: n 个不同顶点构成 n^{n-2} 棵不同的树.

5.1 证法 1: 双重计数

目标: 求可以向一个 n 顶点的 empty graph 中加入有向边形成有根树的不同有向边序列. **计数方法:**

- 从无根树出发, 先选一个顶点作为根, 然后 n-1 条边的方向可以确定, 全排列即可. 有 $T_n n(n-1)! = T_n n!$.
- 从 empty graph 出发, 起初有 n 棵有根树, 第 k 步有 n-k 棵有根树, 可以在任何顶点 (n 种) 和其它树 的根 (n-k-1) 种)之间建立有向边. 有 $\prod_{k=0}^{n-2} n(n-k-1) = n^{n-2}n!$.

5.2证法 2: Prüfer 编码

- 1. **编码:** 输入一棵顶点标记为 1,2,...,n 的树 T, 令 $T_1 = T$, 对于 i 从 1 到 n-1, 设 u_i 为 T_i 拥有最小标 记的叶结点, v_i 为它的邻居. T_{i+1} 是从 T_i 中删去 u_i 和它所连的边. 最后得到 $(v_1, v_2, \ldots, v_{n-2})$.
- 2. **引理 1:** 对任意 $1 \le i \le n-1$, T_i 的顶点为 $u_i, u_{i+1}, \ldots, u_{n-1}, v_{n-1}$, 每条边为 $\{u_i, v_i\}$, 其中 $i \le j \le n-1$.
- 3. 引理 **2**: $v_{n-1} = n$.
- 4. 引理 3: 对任意 $1 \le i \le n-1$, u_i 是 $\{1,2,\ldots,n\}$ 中不在 $\{u_1,u_2,\ldots,u_{i-1}\} \cup \{v_i,v_{i+1},\ldots,v_{n-1}\}$ 中的最 小元素.
- 5. **解码:** 输入一个元组 $(v_1, v_2, \ldots, v_{n-2}) \in \{1, 2, \ldots, n\}^{n-2}$. 今 T 为空图且 $v_{n-1} = n$. 对于 i 从 1 到 n-1, 设 u_i 是 $\{1,2,\ldots,n\}$ 中不在 $\{u_1,u_2,\ldots,u_{i-1}\}\cup\{v_i,v_{i+1},\ldots,v_{n-1}\}$ 中的最小元素,向 T 中添加边 $\{u_i,v_i\}$. 最后得到 T.
- 6. 证明双射: Encode 过程证明了单射, Decode 过程证明了满射. 只要证明 T 无环即可.

5.3 证法 3:基尔霍夫矩阵-树定理(Kirchhoff's matrix tree theorem)

$$B(i,e) = \begin{cases} 1 & e = \{i,j\} \\ -1 & e = \{i,j\} \\ 1 & e = \{i,j\} \\ 1 & i = \{i,j\} \end{cases}$$
 其它

- 2. **Kirchhoff's matrix tree theorem:** 对于任意 n 个顶点的连通图 G, 它的生成树个数为 $\det(L_{i,i})$, 其中 $i \in [n]$, $L_{i,i}$ 是从 L 中删去第 i 行第 i 列得到的 $(n-1) \times (n-1)$ 矩阵.
- 3. 证明暂略. 在 $G = K_n$ 中运用该定理即有 $L_{i,i}(x,y) = \begin{cases} n-1 & i=j, \\ -1 & i \neq j \end{cases}$. 于是 $\det(L_{i,i}) = n^{n-2}$.

6 存在性问题 9

6 存在性问题

6.1 存在性

6.1.1 Shannon 的电路下界

定义: 一个布尔电路(boolean circuit)是一个有向无环图,入度为 0 的结点是输入结点 x_1, x_2, \ldots, x_n . 出度为 0 的唯一结点是输出结点. 其它结点是门(gate),有三种,分别为 AND(入度为 2),OR(入度为 2)和 NOT(入度为 1)门. 电路复杂度即为门的数目.

定理: 存在一个布尔函数 $f:\{0,1\}^n \to \{0,1\}$ 使得电路复杂度大于 $\frac{2^n}{3n}$.

证明思路: 共有 2^{2^n} 个这样的布尔函数. 由 De Morgan's laws, 将 NOT 门放在输入端,每个门有两种类型 (AND 或 OR) 且有两个输入,输入可能是 $0, 1, x_i, \neg x_i$ 或其它门的输出. 故有 t 个门的电路总数最多为 $2^t(t+2n+1)^{2t}$. 取 $t=2^n/3n$ 可以得到 $2^t(t+2n+1)^{2t} < 2^{2^n}$.

6.2 双重计数

6.2.1 欧拉引理

引理: $\sum_{v \in V} d(v) = 2|E|$.

证明思路:数有向边个数:从边数;从顶点数.

6.2.2 Sperner 引理

定义: 一个 triangulation (三角形划分) 是指将三角形 abc 划分为多个小三角形 (cells,格子),两个不同的 cells 要么不相连,要么共享一条边,要么共享一个顶点.一个 proper coloring 恰当着色是指将 abc 的 triangulation 中每个顶点着红、绿、蓝中的一个颜色,并满足:

- 三个顶点 a,b,c 有三种不同颜色;
- 三条边 ab, bc, ac 中每条边的顶点有两种颜色.

Sperner 引理: 对任意恰当着色的三角形划分,都存在接收了所有三种颜色的格子. (For any properly colored triangulation, there exists a cell receiving all three colors.)

证明思路: 构造对偶图(每个格子对应一个顶点;三角形的外界对应一个单独顶点;两个共享一条红-蓝边的格子对应一条边),在对偶图中,若一个格子接收所有三种颜色,它的度数为 1;若只接收了红、蓝,它的度数为 2;其它情况下,度数为 0.外界顶点度数为奇数(由定义),加之握手引理得证.

6.3 鸽巢原理

广义鸽巢原理:若一个包含超过 mn 个对象的集合被划分为 n 组,那么有某些组会接收超过 m 个对象.

6.3.1 不可避免的因数 (Inevitable divisors)

定理: 对于任意子集 $S \subseteq \{1,2,\ldots,2n\}$ 且 |S|>n,都存在两个数 $a,b\in S$ 使得 a 整除 b $(a\mid b)$. **证明思路:** 笼子——对任意奇数 $m\in\{1,2,\ldots,2n\},\ C_m=\{2^k m\mid k\geq 0,2^k m\leq 2n\}.$

6.3.2 单调子序列 (Monotonic subsequences)

定理: 一个包含超过 mn 个不同实数的序列要么包含一个长度为 m+1 的递增子序列,要么包含一个长度为 n+1 的递减子序列.

7 概率法

10

证明思路: 设 $(a_1, a_2, ..., a_N)$, N > mn. 对每个 a_i 给定一个 (x_i, y_i) 对,其中 x_i 表示在 a_i 结束的最长递增子序列的长度, y_i 表示从 a_i 开始的最长递减子序列的长度. 可以证明只要 $i \neq j$ 就有 $(x_i, y_i) \neq (x_j, y_j)$. 因为 N > mn,必有 (x_i, y_i) 在 $\{1, 2, ..., m\} \times \{1, 2, ..., n\}$ 之外.

6.3.3 狄利克雷近似 (Dirichlet's approximation)

定理: 设 x 为无理数,对于任意的自然数 n,都存在一个有理数 $\frac{p}{q}$ 使得 $1 \le q \le n$ 并且 $|x - \frac{p}{q}| < \frac{1}{nq}$. **证明思路:** 设小数部分 $\{x\} = x - \lfloor x \rfloor \in [0,1)$.

- 鸽子—— $\{kx\}, k = 1, 2, ..., n + 1.$
- 笼子— $(0,\frac{1}{n}),(\frac{1}{n},\frac{2}{n}),\ldots,(\frac{n-1}{n},1).$

7 概率法

7.1 概率法

基本原理:从一个域中随机选取的一个对象若以正的概率满足一个性质,那么在该域中必然存在一个满足该性质的对象;若至少有一个随机变量不小于其期望值,那么至少存在一个随机变量不大于其期望值.

7.1.1 Ramsey number

定义: $R(k,\ell)$ 是满足对 K_n 染红色或蓝色,要么存在一个红色 K_k ,要么存在一个蓝色 K_ℓ 的最小的 n 值. **定理:** 若 $\binom{n}{k} \cdot 2^{1-\binom{k}{2}} < 1$,则可以用两种颜色对 K_n 进行染色使得不存在同色的 K_k 子图.

证明思路: 对 K_n 的每条边随机取颜色,则对给定的 k 个顶点集 S 其 K_k 同色概率为 $\Pr[\epsilon_S] = 2^{1-\binom{k}{2}}$. 根据 union bound, $\Pr[\exists S, \epsilon_S] \leq \binom{n}{k} \Pr[\epsilon_S] = \binom{n}{k} \cdot 2^{1-\binom{k}{2}}$.

7.1.2 竞赛图 (Tournament)

定义: 由 n 个选手组成的顶点集 V 的竞赛图中,对任意不同的两个顶点 $u,v\in V$, $(u,v)\in E$ 和 $(v,u)\in E$ 有且仅有一个满足. 一个竞赛图有 k – paradoxical 若对任意的 k 个选手,都存在一个选手将这 k 个选手都打败.

定理: 若 $\binom{n}{k}(1-2^{-k})^{n-k} < 1$,则存在一个 n 个顶点上的 k – paradoxical 竞赛图.

证明思路: 给定 $S \in \binom{n}{k}$,计算 "不存在 $V \setminus S$ 中的顶点打败所有 S 中的顶点"的概率,为 $(1-2^{-k})^{n-k}$. 考虑 S 的所有可能选取,根据 union bound,T 不满足 k – paradoxical 的概率小于 $\binom{n}{k}(1-2^{-k})^{n-k} < 1$.

7.1.3 哈密顿路径 (Hamiltonian paths)

定理: 存在一个 n 选手的竞赛图,它包含至少 $n!2^{-(n-1)}$ 条哈密顿路径.

证明思路: 随机选取一个 [n] 上的竞赛图 T, 对 [n] 的任意排列 π , 设 X_{π} 表示指示随机变量

$$X_{\pi} = \begin{cases} 1 & \forall i \in [n-1], (\pi_i, \pi_{i+1}) \in T, \\ 0 & \text{#$\dot{\mathbf{Z}}$} \end{cases}$$

则 $E[X_{\pi}] = 2^{-(n-1)}$. 令 $X = \sum_{\pi:[n]$ 的排列 X_{π} . 由 $E[X] = n!2^{-(n-1)}$.

7.1.4 独立集 (Independent sets)

定理: 设 G(V, E) 是一个包含 n 个顶点 m 条边的图,它有一个至少包含 $\frac{n^2}{4m}$ 个顶点的独立集.

证明思路: 以 p 的概率独立地把每个顶点选到集合 S 中. E[X] = E[|S|] = np. S 诱导的 G 的子图边数 $E[Y] = mp^2$. 想要把 S 删去一些顶点/边变成独立集 S^* ,对于每条边删去其中的一个端点,共删去的顶点个数 不大于边数,故 $E[|S^*|] \geq E[X-Y] = np - mp^2 \geq \frac{n^2}{4m}$.

8 极值图论 11

7.1.5 大周长图着色 (Coloring large-girth graphs)

定义: 图 G 的**周长** (girth) g(G) 是指 G 的最小环的长度. 图 G 的**色数** (chromatic number) $\chi(G)$ 是指 存在对 G 的顶点涂色并满足任意相邻顶点异色的最小颜色数. 图 G 的独立数 (independence number) $\alpha(G)$ 是指 G 的最大独立集的大小.

定理: 对任意 k, ℓ 存在一个满足 $g(G) > \ell$ 且 $\chi(G) > k$ 的图 G.

证明思路: 先有引理 $\chi(G) \geq \frac{n}{\alpha(G)}$ (由鸽巢原理易证). 固定 $\theta < \frac{1}{\ell}, G$ 为随机图 G(n,p) 其中 $p = n^{\theta-1}$.

证明过程中有一步 "For any $3 \le i \le n$, the number of length-i simple cycle is $\frac{n(n-1)\cdots(n-i+1)}{2i}$ ",不理解.

7.2 Lovász Local Lemma

7.2.1 Lovász Local Lemma

背景: 对于"坏"事件集合 A_1, A_2, \ldots, A_n . 假设对任意 $1 \le i \le n$ 有 $\Pr[A_i] \le p$, 我们想要说明存在坏事件一个都不发生的情况. 当这些事件两两独立时,易证,否则依赖应当是有限的 (limited). 事件 A_1, \ldots, A_n 的**依赖图** (dependency graph) $D(V, E), V = \{1, 2, \ldots, n\}$ 满足对任意 $1 \le i \le n$, 事件 A_i 与所有事件 $\{A_j \mid (i, j) \notin E\}$ 互相独立.

Lovász Local Lemma (对称情况): 设 A_1, A_2, \ldots, A_n 是一个事件集合,假设下列条件成立

- 1. 对任意 $1 \le i \le n$ 有 $\Pr[A_i] \le p$.
- 2. 事件 A_1, A_2, \ldots, A_n 的依赖图的最大度数是 d, 并且 $ep(d+1) \leq 1$.

那么有

$$\Pr\left[\bigwedge_{i=1}^{n} \overline{A_i}\right] > 0$$

Lovász Local Lemma (广义情况): 设 D=(V,E) 是事件 A_1,A_2,\ldots,A_n 的依赖图. 假设存在实数 x_1,x_2,\ldots,x_n 使得 $0< x_i<1$ 并且对于 $1\leq i\leq n$ 有 $\Pr[A_i]\leq x_i\prod_{(i,j)\in E}(1-x_j)$. 那么有

$$\Pr\left[\bigwedge_{i=1}^{n} \overline{A_i}\right] \ge \prod_{i=1}^{n} (1 - x_i)$$

7.2.2 对角 Ramsey Number 的 lower bound

定理: 对于某些常数 C > 0,有 $R(k,k) \ge Ck2^{k/2}$.

证明思路: 随机涂色,设 A_S 表示 S(|S|=k) 形成了同色 K_k 的事件,有 $\Pr[A_S]=2^{1-\binom{k}{2}}=p$. A_S 和 A_T 不相互独立当且仅当 $|S\cap T|\geq 2$. 对 S 来说,满足 $|S\cap T|\geq 2$ 的 T 的数量最多为 $\binom{k}{2}\binom{n}{k-2}$,故最大度数 $d\leq \binom{k}{2}\binom{n}{k-2}$. 取 $n=Ck2^{k/2}$ 可证 $ep(d+1)\leq 1$. 由 LLL 可知存在同色 K_k ,故 $R(k,k)>n=Ck2^{k/2}$.

8 极值图论

8.1 禁止的团 (Forbidden Cliques)

8.1.1 Mantel 定理

定理: 若 G(V, E) 是由 n 个顶点组成的无三角形的图,那么 $|E| \leq \frac{n^2}{4}$.

8 极值图论

• **证法 1 (鸽巢原理)**: 反证. 数归. 假设 $|V| \le n-1$ 时成立. 不失一般性假设 $|E| = \frac{n^2}{4} + 1$,任意选取 $uv \in E$,考察由 $V \setminus \{u,v\}$ 诱导的 G 子图 H (有 n-2 个顶点),若 H 有 $> \frac{(n-2)^2}{4}$ 条边,直接证得;否则 至少有 $(\frac{n^2}{4} + 1) - \frac{(n-2)^2}{4} - 1 = n-1$ 条边在 H 和 $\{u,v\}$ 之间,由鸽巢原理知存在一个 H 中的顶点同时与 u,v 相邻,有三角形.

12

- 证法 2 (Cauchy-Schwarz 不等式): 因为无三角形所以对任意 $uv \in E$ 有 $d_u + d_v \leq n$,故而 $\sum_{uv \in E} (d_u + d_v) \leq n|E|$. 又 $\sum_{uv \in E} (d_u + d_v) = \sum_{v \in V} d_v^2$. 由 Cauchy-Schwarz 不等式, $n|E| \geq \sum_{v \in V} d_v^2 \geq \frac{(\sum_{v \in V}^{d_v})^2}{n} = \frac{4|E|^2}{n}$.
- **证法 3 (算术与几何平均数不等式):** 设 A 是最大独立集, $\alpha = |A|$. 因为 G 无三角形,它每个顶点的邻居本身就是独立集,故对任意 $v \in V$,有 $d(v) \le \alpha$. $B = V \setminus A$, $\beta = |B|$. E 中每条边至少有一个端点在 B 内,故 $|E| \le \sum_{v \in B} d_v$. 由基本不等式, $|E| \le \sum_{v \in B} d_v \le \alpha \beta \le \left(\frac{\alpha + \beta}{2}\right)^2 = \frac{n^2}{4}$.

8.1.2 Turán 定理

定理: 设 G(V,E) 是由 n 个顶点组成的无 r – clique 的图 $(r \ge 2)$,则 $|E| \le \frac{r-2}{2(r-1)}n^2$. Turán 图 (Turán graph): 完全 r-1 部图 $K_{n_1,n_2,\dots,n_{r-1}}$,其中 $n_i \in \{\lfloor \frac{n}{r-1} \rfloor, \lceil \frac{n}{r-1} \rceil \}$. 记为 T(n,r-1).

- **证法 1 (归纳法)**: 对 n 归纳,假设 n < r 时成立,当 n = r 时,假设 G 有满足无 r 团的最大边数,则 它有 r-1 团 A. 设 $B = V \setminus A$. |A| = r-1, $|E(A)| = \binom{r-1}{2}$, |B| = n-r+1. 由假设知 B 无 r 团,故 $|E(B)| \le \frac{r-2}{2(r-1)}(n-r+1)^2$. B 中每个顶点最多与 A 中 r-2 个顶点相邻。故 $|E(A,B)| \le (r-2)|B|$. 由 |E| = |E(A)| + |E(B)| + |E(A,B)| 可证.
- 证法 2 (权重转移): 给每个顶点 $v \in V$ 分配一个权重 $w_v \geq 0$ 满足 $\sum_{v \in V} w_v = 1$. 想最大化 $S = \sum_{uv \in E} w_u w_v$. 设 $W_u = \sum_{v:v \sim u} w_v$, 对于 $u \not\sim v$ 设 $W_u > W_v$, 证得 $(w_u + \epsilon)W_u + (w_v \epsilon)W_v \geq w_u W_u + w_v W_v$. (S 不減,继而知把所有权重给最大团可最大化 S). 有 $S = \sum_{uv \in E} w_u w_v \leq {r-1 \choose 2} \frac{1}{(r-1)^2}$. 取 $w_i = \frac{1}{n}$ 可证.
- **证法 3 (概率法):** 设 w(G) 表示最大团的顶点个数. 先证 $w(G) \ge \sum_{v \in V} \frac{1}{n-d_v}$. (随机排列顶点,从前往后逐个加入 S 中并要求当前顶点与 S 所有顶点相邻,构造团 S,用指示变量计算 E[|S|]). 再用 Cauchy-Schwarz 不等式, $n^2 \le \sum_{v \in V} (n-d_v) \sum_{v \in V} \frac{1}{n-d_v} \le w(G) \sum_{v \in V} (n-d_v) \le (r-1)(n^2-2|E|)$.
- **证法 4 (顶点复制)**: 设 G(V, E) 是由 n 个顶点构成的无 r clique 的最大边数的图. **Claim:** G 中不存在这样的三点 u, v, w 其中 $uv \in E, uw \notin E, vw \notin E$. 反证:若 d(w) < d(u) 或 d(w) < d(v),不失一般性假设 d(w) < d(u),复制 u,删去 w,仍然无 r clique. 此时 $|E'| = |E| + d_u d_w > |E|$,矛盾.若 $d_w \geq d(u), d(v)$,复制 w 两次,删去 u, v,仍然无 r clique,此时 $|E'| = |E| + 2d_w (d_u + d_v + 1) > |E|$,矛盾.该 Claim 证明了 $uv \notin E$ 的传递性,由此 $uv \notin E$ 定义了一个等价关系,结合 G 要求最大边数,G 只能是 Turán 图.

8.1.3 Turán 定理 (独立集)

定理: 若 G(V,E) 满足 |V|=n, |E|=m,则 G 有一个大小至少为 $\frac{n^2}{2m+n}$ 的独立集.

8.2 禁止的环 (Forbidden Cycles)

Mantel 定理的另一个视角: 无三角形说明 $g(G) \ge 4$.

定理: 设 G(V, E) 是包含 n 个顶点的图, 若 $g(G) \ge 5$, 则 $|E| \le \frac{1}{2} n \sqrt{n-1}$.

证明思路: 设 v_1, v_2, \ldots, v_d 是顶点 u 的邻居,d = d(u). 设 S_i 表示除 u 之外的 v_i 的邻居集合. 对任意 v_i, v_j 有 $v_i v_j \notin E$ (无三角形) 故 $S_i \cap \{u, v_1, v_2, \ldots, v_d\} = \emptyset$. 除 u 之外没有顶点能和 v_1, v_2, \ldots, v_d 中超过一个的相邻 (无四边形) 故 $S_i \cap S_j = \emptyset$. 于是由 $\{u, v_1, v_2, \ldots, v_d\} \cup S_1 \cup S_2 \cup \cdots \cup S_d \subseteq V$ 可证 $\sum_{v:v \sim u} d(v) \leq n-1$ (集合元素个数相加不大于 n). 再用 Cauchy-Schwarz 不等式, $n(n-1) \geq \sum_{u \in V} \sum_{v:v \sim u} d(v) = \sum_{v \in V} d_v^2 \geq \frac{\left(\sum_{v \in V} d_v\right)^2}{n} = \frac{4|E|^2}{n}$.

9 极值集合论 13

8.3 Erds-Stone 定理

定义: ex(n,H) 表示不包含 H 子图,且含有 n 个顶点的图的最大边数. $K_s^r = K_{\underline{s},\underline{s},\ldots,\underline{s}} = T(sr,r)$.

Turán 定理的另一种表述: $ex(n, K_r) \leq \frac{r-2}{2(r-1)}n^2$.

极值图论基本定理: 对任意整数 $r\geq 2$ 和 $s\geq 1$,和任意正数 ϵ ,若 n 足够大,则所有拥有 n 个顶点和至少 $\left(\frac{r-2}{2(r-1)}+\epsilon\right)n^2$ 条边的图都包含 K_s^r 作为子图,也即 $\mathrm{ex}(n,K_s^r)=\left(\frac{r-2}{2(r-1)}+o(1)\right)n^2$.

推论: 对任意的非空图 H,有 $\lim_{n\to\infty}\frac{\mathrm{ex}(n,H)}{\binom{n}{2}}=\frac{\chi(H)-2}{\chi(H)-1}$.

推论的证明思路: 设 $r=\chi(H)$. T(n,r-1) 可被 r-1 种颜色染色,故 $H \not\subseteq T(n,r-1)$. 因此 $|T(n,r-1)| \le \exp(n,H)$. 同时有 $|T(n,r-1)| \ge {r-1 \choose 2} \lfloor \frac{n}{r-1} \rfloor^2 = \left(\frac{r-2}{2(r-1)} - o(1)\right) n^2$. 此外,对足够大的 s 有 $H \subset K_s^r$,则 $\exp(n,H) \le \exp(n,K_s^r) = \left(\frac{r-2}{2(r-1)} + o(1)\right) n^2$. 综上,有

$$\frac{r-2}{r-1} - o(1) \le \frac{|T(n,r-1)|}{\binom{n}{2}} \le \frac{\operatorname{ex}(n,H)}{\binom{n}{2}} \le \frac{\operatorname{ex}(n,K_s^r)}{\binom{n}{2}} = \frac{r-2}{r-1} + o(1)$$

9 极值集合论

9.1 Sunflowers

定义: 一个集族 $\mathcal{F} \subseteq 2^X$ 是大小为 r,核心(core)为 $C \subseteq X$ 的 sunflower,若满足对任意 $S, T \in \mathcal{F}, S \neq T$ 有 $S \cap T = C$.

Sunflower 引理: 设 $\mathcal{F} \subseteq {X \choose k}$. 若 $|\mathcal{F}| > k!(r-1)^k$, 那么 \mathcal{F} 包含一个大小为 r 的 sunflower.

证明思路: 归纳法. k=1 时 \mathcal{F} 中所有集合不相交,取 r 个集合即可. 当 $k\geq 2$,取所有成员 disjoint 的最大集族 $\mathcal{G}\subseteq\mathcal{F}$. 若 $|\mathcal{G}|\geq r$,证毕;否则设 $Y=\bigcup_{S\in\mathcal{G}}S$. 有 $|Y|=k|\mathcal{G}|\leq k(r-1)$. **Claim:** Y 和 \mathcal{F} 中所有成员存在交集(易证). 根据鸽巢原理,存在元素 $y\in Y$ 被包含在至少 $\frac{|\mathcal{F}|}{|Y|}>\frac{k!(r-1)^k}{k(r-1)}=(k-1)!(r-1)^{k-1}$ 个 \mathcal{F} 的成员中. 将 y 从这些成员中删去,得到的 $\mathcal{H}=\{S\backslash\{y\}\mid S\in\mathcal{F}\land y\in S\}$ 满足 $\mathcal{H}\subseteq\binom{X}{k-1}$ 且 $|\mathcal{H}|>(k-1)!(r-1)^{k-1}$. 故 \mathcal{H} 包含大小为 r 的 sunflower. 把 y 加回这些成员,仍是大小为 r 的 sunflower.

9.2 Erds-Ko-Rado 定理

定义: 一个集族 $\mathcal{F} \subseteq 2^X$ 是相交 (intersecting) 的,若对任意 $S, T \in \mathcal{F}$ 有 $S \cap T \neq \emptyset$. Erds-Ko-Rado 定理: 设 $\mathcal{F} \subseteq {X \choose k}$,其中 |X| = n 且 $n \geq 2k$. 若 \mathcal{F} 是 intersecting 的,那么 $|\mathcal{F}| \leq {n-1 \choose k-1}$.

- Katona 的证明(双重计数): 定义 X 的环排列(cyclic permutation) π 表示把 X 赋给一个环,共有 (n-1)! 种环排列。 $\mathcal{G}_{\pi} = \{\{\pi_{(i+j) \mod n} \mid j \in [k]\} \mid i \in [n]\}$.先证引理:设 $\mathcal{F} \subseteq {X \choose k}$ 其中 |X| = n 且 $n \geq 2k$.若 \mathcal{F} 是 intersecting 的,那么对任意 X 的环排列 π 都有 $|\mathcal{G}_{\pi} \cap \mathcal{F}| \leq k$.(易证)计数目 标: $\mathcal{R} = \{(S,\pi) \mid \pi \not\in X$ 的一个环排列,并且 $S \in \mathcal{F} \cap \mathcal{G}_{\pi}\}$.法 1:由上述引理加之有 (n-1)! 种排列,得 $|\mathcal{R}| \leq k(n-1)!$.法 2:因为 S 是连续的,故 $|\mathcal{R}| = \sum_{S \in \mathcal{F}} k! (n-k)! = |\mathcal{F}| k! (n-k)!$.
- Erds 的 shifting 技术:
 - 定义: 不失一般性设 X = [n]. 定义转移操作符(shift operator): 设 $\mathcal{F} \subseteq 2^{[n]}$ 且 $0 \le i < j \le n-1$. 对于每个 $T \in \mathcal{F}$,定义 $T_{ij} = (T \setminus \{j\}) \cup \{i\}$. $S_{ij}(T) = \begin{cases} T_{ij} & \exists j \in T, i \notin T, T_{ij} \notin \mathcal{F}, \\ T & \exists j \in T, i \notin T, T_{ij} \notin \mathcal{F}, \end{cases}$. \mathcal{F} 的转换 $S_{ij}(\mathcal{F}) = \{S_{ij}(T) \mid T \in \mathcal{F}\}$.
 - **命题:** 1. $|S_{ij}(T)| = |T|$ 且 $|S_{ij}(\mathcal{F})| = |\mathcal{F}|$. 2. 若 \mathcal{F} 是 intersecting 的,那么 $S_{ij}(\mathcal{F})$ 也是 intersecting 的. (易证)

9 极值集合论

- 证明思路: k = 1 时显然; n = 2k 时对任意 $S \in \binom{X}{k}$, S 和 $X \setminus S$ 至多有一个在 \mathcal{F} 中,故 $|\mathcal{F}| \leq \frac{1}{2} \binom{n}{k} = \binom{n-1}{k-1}$. 考察 n > 2k 情况,I.H. 小于 n 都成立. 将 \mathcal{F} 拆分为不相交的两部分 $\mathcal{F}_0 = \{S \in \mathcal{F} \mid n \notin S\}$ 和 $\mathcal{F}_1 = \{S \in \mathcal{F} \mid n \in S\}$. 显然 \mathcal{F}_0 可用 I.H. 对于 \mathcal{F}_1 , 设 $\mathcal{F}_1' = \{S \setminus \{n\} \mid S \in \mathcal{F}_1\}$. 显然 $\mathcal{F}_1' \subseteq \binom{[n-1]}{k-1}$. 它也 intersecting (由 shifting 证). 进而 $|\mathcal{F}| = |\mathcal{F}_0| + |\mathcal{F}_1| = |\mathcal{F}_0| + |\mathcal{F}_1'| \leq \binom{n-2}{k-1} + \binom{n-2}{k-2} = \binom{n-1}{k-1}$.

14

9.3 Sperner 系统

定义: 一个集族 $\mathcal{F} \subseteq 2^X$ 是一个**反链 (antichain, 或被称为 Sperner 系统)** 若对任意不同的 $S,T \in \mathcal{F}$ 有 $S \not\subseteq T$.

定理: 设 $\mathcal{F} \subseteq 2^X$ 其中 |X| = n. 若 \mathcal{F} 是一个反链,则 $|\mathcal{F}| \le \binom{n}{\lfloor n/2 \rfloor}$.

- Sperner 的原始证明 (shadows):
- Lubell 的证明(计数): 设 π 是 X 的一个排列,定义 $S \subseteq X$ prefixes π 表示 S 是 X 在排列 π 下前 |S| 个元素的集合. 给定 $S \subseteq X$,则被 S prefixes 的排列 π 共有 |S|!(n-|S|)! 个. 因为 F 是反链,故一个排列只能被一个 S prefixes. 由此被某个 $S \in F$ prefixes 的排列个数为 $\sum_{S \in F} |S|!(n-|S|)! \le n!$. 得到 $\sum_{S \in F} \frac{1}{\binom{n}{|S|}} \le 1$ (LYM 不等式). 又 $\binom{n}{|S|} \le \binom{n}{\lfloor n/2 \rfloor}$,所以 $1 \ge \sum_{S \in F} |S|!(n-|S|)!/n! \ge \frac{|F|}{\binom{n}{\lfloor n/2 \rfloor}}$.
- LYM 不等式的 Alon 的证明(概率法): 设 π 是 X 的随机排列,定义一个随机最大链 $\mathcal{C}_{\pi} = \{ \{ \pi_i \mid 1 \leq i \leq k \} \mid 0 \leq k \leq n \}$. 对任意 $S \in \mathcal{F}$,定义指示随机变量 X_S 表示是否有 $S \in \mathcal{C}_{\pi}$. 于是 $E[X_S] = \frac{1}{\binom{n}{|S|}}$. 设 $X = \sum_{S \in \mathcal{F}} X_S$. 由期望线性性质, $E[X] = \sum_{S \in \mathcal{F}} \frac{1}{\binom{n}{|S|}}$. 因为 $|X| = |\mathcal{F} \cap \mathcal{C}_{\pi}| \leq 1$ (反链),故得证.

9.4 Sauer 引理和 VC 维 (VC-dimension)

9.4.1 Shattering 和 VC 维

定义: 设 $\mathcal{F} \subseteq 2^X$ 是一个集族, $R \subseteq X$. \mathcal{F} 在 R 上的 trace $\mathcal{F}|_R$ 是指 $\mathcal{F}|_R = \{S \cap R \mid S \in \mathcal{F}\}$. \mathcal{F} shatters R 是指 $\mathcal{F}|_R = 2^R$. (对任意 $T \subseteq R$ 都存在一个 $S \in \mathcal{F}$ 使得 $T = S \cap R$) 集族 $\mathcal{F} \subseteq 2^X$ 的 **VC** 维 VC $-\dim(\mathcal{F})$ 是被 \mathcal{F} shatters 的最大 $R \subseteq X$ 的大小.

9.4.2 Sauer 引理

Sauer 引理: 设 $\mathcal{F} \subseteq 2^X$ 其中 |X| = n. 若 $|\mathcal{F}| > \sum_{1 \le i \le k} \binom{n}{i}$,那么存在一个 $R \in \binom{X}{k}$ 使得 \mathcal{F} shatters R.

9.4.3 遗传族 (Hereditary family)

定义: 一个集族 $\mathcal{F} \subseteq 2^X$ 是 hereditary 的,若 $S \subseteq T \in \mathcal{F}$ 可以推出 $S \in \mathcal{F}$.

命题: 设 \mathcal{F} 是一个 hereditary family, 那么如果 $R \in \mathcal{F}$ 则有 \mathcal{F} shatters R. (由此很容易证明 Sauer 引理的 hereditary 版本)

9.4.4 Down-shifts

思路: 把一个任意的集族转化为一个 hereditary 的集族.

定义: 假设 $\mathcal{F} \subseteq 2^{[n]}$ 且 $i \in [n]$. Down-shift 操作符 S_i 定义如下: 对任意 $T \in \mathcal{F}$,设 $S_i(T) = \begin{cases} T \setminus \{i\} & \exists i \in T \perp T \setminus \{i\} \notin \mathcal{F}, \\ T & \exists i \in T \perp T \setminus \{i\} \notin \mathcal{F}, \end{cases}$ 其它

定理: 若 $\mathcal{F} \subset 2^X$ 是 down-shifted, 那么 \mathcal{F} 是 hereditary 的.

命题: 1. $|S_i(\mathcal{F})| = |\mathcal{F}|$. 2. $|S_i(\mathcal{F})|_R | \leq |\mathcal{F}|_R |$ (若 $S_i(\mathcal{F})$ shatters R, 那么 \mathcal{F} 也能 shatters R)

10 RAMSEY 理论 15

10 Ramsey 理论

10.1 Ramsey 定理

10.1.1 图的 Ramsey 定理

Ramsey 定理 (图、双色): 设 k,ℓ 是正整数,那么存在一个整数 $R(k,\ell)$ 满足: 若 $n \geq R(k,\ell)$,则对于 K_n 的任意边染色(红或蓝),总存在一个红色的 K_k 或一个蓝色的 K_ℓ .

证明思路: 对 $k+\ell$ 归纳. $R(k,1)=R(1,\ell)=1$. 欲证 $R(k,\ell)\leq R(k,\ell-1)+R(k-1,\ell)$. 设 $n=R(k,\ell-1)+R(k-1,\ell)$, 给定任意 $v\in V$, 按照与 v 相连的边的颜色为蓝/红把 $V\setminus\{v\}$ 划分为 S 和 T. 有 $|S|+|T|+1=n=R(k,\ell-1)+R(k-1,\ell)$. 于是要么 $|S|\geq R(k,\ell-1)$ 要么 $|T|\geq R(k-1,\ell)$, 假设前者,那 么根据 I.H.,若 S 有红 K_k 就证毕,若 S 有蓝 $K_{\ell-1}$ 就加上 v 即有蓝 K_ℓ .

Ramsey 定理 (图、多色): 设 $r, k_1, k_2, ..., k_r$ 是正整数,那么存在一个整数 $R(r; k_1, k_2, ..., k_r)$ 满足: 对任意包含 $n \ge R(r; k_1, k_2, ..., k_r)$ 顶点的完全图的 r-染色,总存在一个某颜色 $i \in \{1, 2, ..., r\}$ 的同色的 k_i 团.

证明思路:混合染色技巧(the "mixing color" trick): $R(r; k_1, k_2, \ldots, k_r) \leq R(r-1; k_1, k_2, \ldots, k_{r-2}, R(2; k_{r-1}, k_{r-2})).$

10.1.2 Ramsey 数

定义: Ramsey 数 (Ramsey number) 是满足 Ramsey 定理的最小的数 $R(k,\ell)$.

上界: $R(k,\ell) \le {k+\ell-2 \choose k-1}$. (由递归式证)

下界: $R(k,k) \ge Ck2^{k/2}$ 对某个 C > 0. (由 LLL 证)

渐进: $\Omega(k2^{k/2}) \le R(k,k) \le {2k-2 \choose k-1} = O(\frac{4^k}{\sqrt{k}}).$

10.1.3 超图的 Ramsey 定理

Ramsey 定理 (超图、多色): 设 $r, t, k_1, k_2, ..., k_r$ 是正整数,那么存在一个整数 $R_t(r; k_1, k_2, ..., k_r)$ 满足: 对任意包含 $n \geq R_t(r; k_1, k_2, ..., k_r)$ 顶点的图 $\binom{[n]}{t}$ 的 r-染色,总存在一个 $i \in \{1, 2, ..., r\}$ 和一个子集 $X \subseteq [n], |X| \geq k_i$ 使得所有的 $\binom{X}{t}$ 的成员都是第 i 种颜色.

证明思路:混合染色技巧(the "mixing color" trick): $R_t(r; k_1, k_2, \ldots, k_r) \leq R_t(r-1; k_1, k_2, \ldots, k_{r-2}, R_t(2; k_{r-1}, k_r))$.

10.2 Ramsey 定理的应用

10.2.1 Happy Ending 问题

happing ending 问题: 平面上不存在三点共线的任意 5 个点,含有一个能组成凸四边形的四个顶点的子集.

定义: 平面中的一个点集位于 general position 是指不存在三点共线.

定理 (Erds-Szekeres): 对任意正整数 $m \ge 3$, 存在一个数 N(m) 使得平面上任意的至少含有 N(m) 个点的位于 general position 的点集,都包含能构成一个凸 m 边形的顶点的 m 个点.

证明思路: 设 $N(m) = R_3(m,m)$. 对 $n \ge N(m)$,设 X 是平面上 n 个不共线点的任意集合. 定义这些点的大小为 3 的子集的 2 染色: $f: {X \choose 3} \to \{0,1\}$. 对任意 $\{a,b,c\} \in {X \choose 3}$,设 $\triangle_{abc} \subset X$ 是被三角形 abc 覆盖的点集. $f(\{a,b,c\}) = |\triangle_{abc}| \mod 2$. 因为 $n = |X| \ge R_3(m,m)$ 所以存在一个 $Y \subseteq X$ 使得 |Y| = m 且所有的 ${Y \choose 3}$ 的成员都同色(由 f 定). **Claim:** Y 中的 m 个顶点是凸 m 边形的顶点. 否则存在 $\{a,b,c,d\} \in Y$ 使得 $d \in \triangle_{abc}$ 且 $\triangle_{abc} = \triangle_{abd} \cup \triangle_{acd} \cup \triangle_{bcd} \cup \{d\}$. (所有集合都 disjoint) 四者的奇偶性不可能相同,故 f 结果(涂色)也不相同,矛盾.

11 匹配论 16

10.2.2 Yao 的隐含数据结构下界

引理: 设 $n \ge 2$ 是 2 的幂, $N \ge 2n$. 假设全集是 [N],数据集的大小是 n. 若一个数据结构是一个有序表,那么在最坏情况下,任何的搜索算法需要至少 $\log n$ 次对数据结构的访问.

11 匹配论

11.1 相异代表系 (Systems of Distinct Representatives, SDR)

SDR: 一个集合序列 S_1, S_2, \ldots, S_m 的一个 SDR 是一个由不同元素 x_1, x_2, \ldots, x_m 组成的序列,其中对任 意 $i = 1, 2, \ldots, m$ 有 $x_i \in S_i$.

11.1.1 Hall 婚姻定理

Hall 定理: 集合 S_1, S_2, \ldots, S_m 有一个 SDR 当且仅当对任意 $I \subseteq \{1, 2, \ldots, m\}$ 有 $|\bigcup_{i \in I} S_i| \ge |I|$.

证明思路: 只需证明 Hall 条件可以推出 SDR 的存在. 对 m 归纳. m=1 显然. I.H. 小于 m 成立. 引入概念 critical family: 集族 $\{S_i \mid i \in I\}, |I| < m$ 若满足 $|\bigcup_{i \in I} S_i| = |I|$,则被称为一个 critical family.

- 无 critical family. 取任意一个 $x \in S_m$ 作为它的代表,在其它 S_i $(1 \le i \le m-1)$ 中删去 x,于是对任意 $I \subseteq \{1,2,\ldots,m-1\}$ 有 $|\bigcup_{i \in I} S_i'| \ge |\bigcup_{i \in I} S_i|-1 \ge |I|$. 由 I.H. 知存在 x_1,x_2,\ldots,x_{m-1} 分别是 S_1,S_2,\ldots,S_{m-1} 的代表,它们必然不是 x,加上 x 是 S_m 的代表,得证.
- 有 critical family. 设这样的 critical family 为 S_{m-k+1}, \ldots, S_m (k < m),它们显然满足 Hall 条件,由 I.H. 可知 x_{m-k+1}, \ldots, x_m 分别是它们的代表. 将这 k 个元素从其它的 S_i $(1 \le i \le m-k)$ 中删去得到 S_i' . 根据 Hall 条件,对任意 $I \subseteq \{1, 2, \ldots, m-k\}$,记 $S = \bigcup_{i \in I} S_i \cup \bigcup_{i=m-k+1} S_i$,有 $|S| \ge |I| + k$. 所以 $|\bigcup_{i \in I} S_i'| \ge |S| |\bigcup_{i=m-k+1} S_i| \ge |I|$. 这样就找到了 S_1, \ldots, S_{m-k} 的代表,结合前面的得证.

Hall 定理的图论形式: 二部图 G(U,V,E) 有 U 的匹配当且仅当对任意 $S \subseteq U$ 有 $|N(S)| \ge |S|$.

附录:可能需要的数学基础

泰勒展开

- $\frac{1}{1-x} = 1 + x + x^2 + \dots = \sum_{n>0} x^n$.
- $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots = \sum_{n>0} \frac{x^n}{n!}$.
- $\ln(1+x) = x \frac{x^2}{2} + \frac{x^3}{3} \frac{x^4}{4} + \dots = \sum_{n \ge 1} (-1)^{n+1} \frac{x^n}{n}$.
- $(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!}x^2 + \dots = \sum_{n\geq 0} {n \choose n} x^n$.

积分公式

- $\int x^{\mu} dx (\mu \neq -1) = \frac{1}{\mu+1} x^{\mu+1} + C.$
- $\int \frac{1}{a+bx} dx = \frac{1}{b} \ln|a+bx| + C.$
- $\int a^x dx = \frac{a^x}{\ln a} + C$.
- $\int \log_a x dx = \frac{1}{\ln a} (x \ln x x) + C.$