CS480/680: Introduction to Machine Learning

Homework 3

Due: 11:59 pm, March 9, 2021, submit on Crowdmark (yet to be set up, stay tuned).

Include your name and student number!

Submit your writeup in pdf and all source code in a zip file (with proper documentation). Write a script for each programming exercise so that the TAs can easily run and verify your results. Make sure your code runs!

[Text in square brackets are hints that can be ignored.]

Exercise 1: Kernels (5 pts)

For the following questions you might find it useful to recall the definition of a matrix being positive semidefinite (PSD). A matrix $M \in \mathbb{R}^{d \times d}$ is PSD if and only if $x^T M x \geq 0$ for all vectors $x \in \mathbb{R}^d$. Also, Taylor series are a thing.

1. (2 pt) For $x, y \in \mathbb{R}$, consider the kernel function $k(x, y) = \exp\left(-\alpha (x - y)^2\right)$. What is the corresponding feature map $\phi(\cdot)$ such that $\phi(x)^T \phi(y) = k(x, y)$? If you were using this kernel for an SVM model, would you prefer to solve the primal or dual representation? Why?

Ans:

2. (1 pt) Consider the function $\frac{1}{1-xy}$, where $x, y \in (-1,1)$. Is this function a valid kernel? If so, write out the corresponding feature map $\phi(\cdot)$, if not, explain why.

Ans

3. (1 pt) Consider the function $\log(1+xy)$, where $0 < x, y \in \mathbb{R}$. Is this function a valid kernel? If so, write out the corresponding feature map $\phi(\cdot)$, if not, explain why.

Ans:

4. (1 pt) Consider the function $\cos(x+y)$, where $x,y \in \mathbb{R}$. Is this function a valid kernel? If so, write out the corresponding feature map $\phi(\cdot)$, if not, explain why.

Ans:

Exercise 2: Decision Trees (5 pts)

Consider the dataset given below. X_1 and X_2 are the features and Y is the class label:

X_1	X_2	Y
0.5	2.5	_
0.5	5.5	+
1.5	4.5	_
2.5	1.5	+
2.5	4.5	_
4.5	1.5	_
4.5	4.5	+

Recall that in decision trees, we pick an attribute X_j and partition the dataset into two subsets according to a threshold t: $D_l = \{i : X_{i,j} < t\}$ and $D_r = \{i : X_{i,j} \ge t\}$. On each subset D_s , we count the frequency of positives p_+^s and the frequency of negatives p_-^s , for $s \in \{l, r\}$. Then, we evaluate our split using the Gini index

$$GI(t,j) = \sum_{s \in \{l,r\}} \sum_{y \in \{+,-\}} p_y^s (1 - p_y^s). \tag{1}$$

(Empty sum is treated as 0.)

1. (1 pt) Consider attribute X_1 , what is the best t?

Ans:

2. (1 pt) Consider attribute X_2 , what is the best t?

Ans

- 3. (1 pt) With the best t for X_1 and X_2 , which attribute will you choose, X_1 or X_2 ? Explain your answer.
- 4. (1 pt) Draw a Decision Tree (need not be the best one) that has 100% accuracy on the given dataset.

 Ans:
- 5. (1 pt) Will your decision tree correctly classify the following test point: $X_1 = 0.5, X_2 = 7.5, Y = +$. Explain your answer.

Ans:

Exercise 3: Adaboost (5 pts)

Recall the update rules of Adaboost:

$$p_i^t = \frac{w_i^t}{\sum_{j=1}^n w_j^t}, \quad i = 1, \dots, n$$
 (2)

$$\epsilon_t = \epsilon_t(h_t) = \sum_{i=1}^n p_i^t \cdot [h_t(\mathbf{x}_i) \neq y_i]$$
(3)

$$\beta_t = \frac{1}{2} \log \frac{1 - \epsilon_t}{\epsilon_t} \tag{4}$$

$$w_i^{t+1} = w_i^t \exp(-y_i \beta_t h_t(\mathbf{x}_i)), \quad i = 1, \dots, n.$$
(5)

Here we use i and t to index the training examples and iterations, respectively. [A] = 1 if the event A holds and 0 otherwise. Unlike in class, here $y_i \in \{\pm 1\}$ and we also assume $h_t(\mathbf{x}_i) \in \{\pm 1\}$. In this exercise we offer additional insights about Adaboost.

1. (1 pt) Prove by induction that the updates defined above indeed are equivalent to what we learned in class:

$$\tilde{\beta}_t = \frac{\epsilon_t}{1 - \epsilon_t} \tag{6}$$

$$\tilde{w}_i^{t+1} = \tilde{w}_i^t \tilde{\beta}_t^{1-|\tilde{h}_t(\mathbf{x}_i) - \tilde{y}_i|},\tag{7}$$

where in class we used $\tilde{y}_i = \frac{y_i+1}{2}$, $\tilde{h}(\mathbf{x}_i) = \frac{h(\mathbf{x}_i)+1}{2} \in \{0,1\}$.

[Hint: Show that p_i^t remains the same under the two seemingly different updates.]

Ans

2. (1 pt) Recall in the logistic regression lecture we made the linear assumption on the log odds ratio:

$$\log \frac{p(y=1|\mathbf{X}=\mathbf{x})}{p(y=-1|\mathbf{X}=\mathbf{x})} \approx \mathbf{w}^{\top} \mathbf{x} + b.$$
(8)

Adaboost in effect tries to approximate the log odds ratio using additive functions:

$$\log \frac{p(y=1|\mathbf{X}=\mathbf{x})}{p(y=-1|\mathbf{X}=\mathbf{x})} \approx \sum_{t=1}^{T} \beta_t h_t(\mathbf{x}), \tag{9}$$

where each $h_t(\mathbf{x})$ is a weak classifier. Indeed, fixing $\mathbf{X} = \mathbf{x}$, prove that the minimizer of the following exponential loss

$$\min_{H \in \mathbb{R}} \quad \mathbb{E}[\exp(-yH)|\mathbf{X} = \mathbf{x}] \tag{10}$$

is (proportional to) the log odds ratio. Here the expectation is wrt the conditional distribution $p(y|\mathbf{X} = \mathbf{x})$.

[Any function can be approximated arbitrarily well by additive functions but clearly not by linear functions, thus the power of Adaboost.]

Ans:

3. (1 pt) Suppose h_t is a weak classifier whose error $\epsilon_t > 1/2$, i.e. worse than random guessing! In this case it makes sense to flip h_t to $\bar{h}_t(\mathbf{x}) = -h_t(\mathbf{x})$. Compute the error $\epsilon_t(\bar{h}_t)$ and the resulting $\bar{\beta}_t$. Do we get the same update for w in (5)? Explain.

Ans:

4. (1 pt) Adaboost is a greedy algorithm where we find the weak classifiers sequentially. At iteration t, the classifiers h_s , s < t are already found along with their coefficients β_s . Suppose h_t is given by some oracle, to find the optimal coefficient β_t , we solve an empirical approximation of the exponential loss (10):

$$\min_{\beta \in \mathbb{R}} \quad \frac{1}{n} \sum_{i=1}^{n} \exp(-y_i [H_{t-1}(\mathbf{x}_i) + \beta h_t(\mathbf{x}_i)]), \tag{11}$$

where needless to say, $H_{t-1}(\mathbf{x}) := \sum_{s=1}^{t-1} \beta_s h_s(\mathbf{x})$. While it is possible to solve (11) directly, we gain more insights by defining a distribution over the training examples $(\mathbf{x}_i, y_i), i = 1, \dots, n$:

$$p_i^t = \frac{\exp(-y_i H_{t-1}(\mathbf{x}_i))}{\sum_{i=1}^n \exp(-y_i H_{t-1}(\mathbf{x}_i))},$$
(12)

so that we can rewrite (11) equivalently as:

$$\min_{\beta \in \mathbb{R}} \quad \hat{\mathbb{E}}_t \exp[-y\beta h_t(\mathbf{x})], \quad (\mathbf{x}, y) \sim \mathbf{p}^t.$$
 (13)

(Here the hat notation is to remind you that this is an empirical expectation specified by \mathbf{p}^t over our training data.) Let ϵ_t be defined as in (3). Prove that the optimal β in (13) is given in (4).

[Hint: We remind again that both y and $h_t(\mathbf{x})$ are $\{\pm 1\}$ -valued. Split training examples according to $h_t(\mathbf{x}_i) = y_i$ or not.]

Ans:

5. (1 pt) What is the training error

$$\epsilon_{t+1}(h_t) = \sum_{i=1}^n p_i^{t+1} \cdot \llbracket h_t(\mathbf{x}_i) \neq y_i \rrbracket$$

$$\tag{14}$$

of the weak classifier h_t on the next round t+1? Justify your answer. You may assume $0 < \epsilon_t < 1$ so that all quantities are well-defined.

[Hint: This exercise should be simple, given what you have done in Ex 2.4. Split training examples according to $h_t(\mathbf{x}_i) = y_i$ or not.]

Ans:

Exercise 4: Backpropagation (5 pts)

Suppose we have a multilayer perceptron:

Recall that the sigmoid function is $f(x) = \frac{1}{1+e^{-x}}$. Here

$$z_{1} = Ux + c, \quad U = \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad c = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \quad z_{2} = Vh_{1} + d, \quad V = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad d = \begin{pmatrix} 1 \\ 0 \end{pmatrix},$$
$$\hat{y} = \langle h_{2}, w \rangle + b, \quad w = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \quad b = 0.5$$

Also suppose that the dataset

$$D = \{(x_1, y_1), (x_2, y_2)\} = \left\{ \left(\begin{pmatrix} 1 \\ 0 \end{pmatrix}, 0 \right), \left(\begin{pmatrix} 0 \\ 1 \end{pmatrix}, 1 \right) \right\},\,$$

and loss L is the mean squared error.

1. (1 pt) Calculate L.

Ans:

2. (3 pt) Calculate partial derivatives of L with respect to the weights of the multilayer perceptron.

Ans

3. (1 pt) As in gradient descent, update the weights using step size equal to 1.

Ans: