Section 12.2

Exercise (18). Prove that the function $f: \mathbb{N} \to \mathbb{Z}$ defined as $f(n) = \frac{(-1)^n (2n-1)+1}{4}$ is bijective.

Proof. Write your answer here.

Section 12.3

Exercise (1). Prove that if six integers are chosen at random, then at least two of them will have the same remainder when divided by 5.

Proof. Write your answer here.

Exercise (4). Consider a square whose side-length is one unit. Select any five points from inside this square. Prove that at least two of these points are within $\frac{\sqrt{2}}{2}$ units of each other.

Remark: It may help your argument to include suitable drawings.

Proof. Write your answer here. \Box

Section 12.4

Exercise (2). Suppose $A = \{1, 2, 3, 4\}, B = \{0, 1, 2\}, C = \{1, 2, 3\}$. Let $f : A \to B$ be $f = \{(1, 0), (2, 1), (3, 2), (4, 0)\}$, and $g : B \to C$ be $g = \{(0, 1), (1, 1), (2, 3)\}$. Find $g \circ f$.

Solution. Write your answer here. \Box

Exercise (4). Suppose $A = \{a, b, c\}$. Let $f : A \to A$ be the function $f = \{(a, c), (b, c), (c, c)\}$, and let $g : A \to A$ be the function $g = \{(a, a), (b, b), (c, a)\}$. Find $g \circ f$ and $f \circ g$.

Solution. Write your answer here. \Box

Exercise (6). Consider the functions $f, g : \mathbb{R} \to \mathbb{R}$ defined as $f(x) = \frac{1}{x^2+1}$ and g(x) = 3x+2. Find the formulas for $g \circ f$ and $f \circ g$.

Solution. Write your answer here.

Exercise (7). Consider the functions $f, g: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ defined as f(m, n) = (3m - 4n, 2m + n) and g(m, n) = 5m + n, m). Find the formulas for $g \circ f$ and $f \circ g$.

Solution. Write your answer here.

REFLECTION

Exercise (Reflection Problem).

Answers.

How long did it take you to complete each problem?:

What was easy?:

What was challenging? What made it challenging?:

What did you learn from comparing your answers to those in the book?:

.