1

Physical Layer Implementation for Digital Video Broadcast

Theresh Babu Benguluri, Sandeep Kumar Khyalia, Raktim Goswami, Abhishek Bairagi, Siddharth Maurya, Pappu Manasa and G V V Sharma*

Contents				11 LDPC: Decoding		6	
					11.1	Useful Calculations for pro-	
1	Introduction					ceeding LDPC Decoding	6
					11.2	Message Passing Algorithm	
2	Modulation and Demodulation		1			using min-sum Approximation	7
	2.1	16-APSK	2		11.3	Simulation Results	8
	2.2	32-APSK	2	12	I DPC	Decoding for Higher Order	
					ping Sch		8
3	Carrier	Synchronization	3	Map	12.1	General Expression for Cal-	U
	3.1	Time Offset: Gardner TED .	3		12.1	culation of Log Likelihood	
	3.2	Frequency Offset: LR Tech-				Ratio(LLR)	8
		nique	3		12.2	Approximated LLR's for	
	3.3	Phase Offset: Feed Forward				QPSK Mapping Scheme	8
		Maximum Likelihood (FF-			12.3	Approximated LLR's for 8-	
		ML)technique	3			PSK Mapping Scheme	8
	3.4	Automatic Gain Controller		4.0	.		
		(AGC): Data-Aided Vector-		13		and Discussion	9
		Tracker (DA-VT)	3		13.1	Time Offset	9
	_				13.2 13.3	Frequency	10 10
4 Frame Synchronization: Global Sum-			3		13.3	Plots	10
	nation of SOF/PLSC Detectors				13.4	Frame	11
	4.1	Global Threshold Calculation	4		13.3	Traine	11
5	BCH: Generator Polynomial			Refe	rences		11
3	BCII. (senerator Polynomiai	4				
6	BCH: Encoding					end to end implementation of the phys Digital Video Broadcasting - Satellit	
Ü	DCII. I	ancouning .	4			ion (DVB-S2) standard is provided in	
7	Berlekamp's Decoding Algorithm			paper.	This wo	rk builds upon various receiver des	sign
		r a see a ge				able in the literature for carrier and fra and channel coding. Numerical results	
8	BCH Decoding: The Chien's Search					on the actual parameters given in	
Algorithm					>	on the determ purameters great in	
		_	5	standa	ard.		
	ithm			standa	ard.		
9	ithm	Introduction	5	standa	ard.	1. Introduction	
	ithm LDPC:	Introduction Encoding		standa			

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in.

The baseband signal representation for PSK in [1] can be expressed as

 $Y_k = X_k + V_k, \quad k = 1, ..., N$ (2.1)

The respective mapping and demapping expressions B. 32-APSK for upto 8-PSK are available in Table I

Constellation	N	Mapping	Demapping
BPSK	2		
QPSK	4	$X_k \in \left\{e^{j\frac{2\pi n}{N}}\right\}$	$\frac{2\pi}{N}i < \angle Y_k < \frac{2\pi(i+1)}{N}$
8-PSK	8	,	1,

TABLE I: PSK for N = 2, 4, 8. n = 0, 1, ..., N - 1.

A. 16-APSK

Fig. 1 shows the constellation mapping for 16-APSK symbols, that are generated by

$$X_k \in \{X\} = \begin{cases} r_1 e^{j\left(\phi_1 + \frac{2\pi}{4}n\right)} & n = 0, \dots, 3\\ r_2 e^{j\left(\phi_2 + \frac{2\pi}{12}n\right)} & n = 0, 1, \dots, 11 \end{cases}$$
 (2.22)

where $\frac{r_2}{r_1} = 2.6$, $\phi_1 = 45^{\circ}$, $\phi_2 = 15^{\circ}$. Demapping can be done as,

$$|Y_k| < \frac{r_1 + r_2}{2}, \quad \frac{2\pi}{4}i < \angle Y_k < \frac{2\pi}{4}(i+1)$$
 (2.3)

$$i = 0, \dots, 3$$
 (2.4)

$$|Y_k| > \frac{r_1 + r_2}{2}, \quad \frac{2\pi}{12}i < \angle Y_k < \frac{2\pi}{12}(i+1)$$
 (2.5)

$$i = 4, \dots, 15$$
 (2.6)

Fig. 2 shows the constellation mapping for 32-APSK symbols generated by

$$X_k \in \{X\} = \begin{cases} r_1 e^{j\left(\phi_1 + \frac{2\pi}{4}n\right)} & n = 0, \dots, 3\\ r_2 e^{j\left(\phi_2 + \frac{2\pi}{16}n\right)} & n = 0, 1, \dots, 11\\ r_3 e^{j\left(\phi_3 + \frac{2\pi}{16}n\right)} & n = 0, 1, \dots, 16 \end{cases}$$
 (2.7)

where $\frac{r_2}{r_1} = 2.54$, $\frac{r_3}{r_2} = 4.33$, and $\phi_1 = 45^{\circ}$, $\phi_2 = 15^{\circ}$, $\phi_3 = 0^{\circ}$. Demapping can be done as,

$$|Y_k| < \frac{r_1 + r_2}{2}, \quad \frac{2\pi}{4}i < \angle Y_k < \frac{2\pi}{4}(i+1)$$

$$(2.8)$$

$$i = 0, \dots, 3$$

$$(2.9)$$

$$X_{k} \in \{X\} = \begin{cases} r_{1}e^{j(\phi_{1} + \frac{2\pi}{4}n)} & n = 0, \dots, 3 \\ r_{2}e^{j(\phi_{2} + \frac{2\pi}{12}n)} & n = 0, 1, \dots, 11 \end{cases}$$

$$(2.2)$$

$$\sum_{k=1}^{n} r_{1} = 2.6, \ \phi_{1} = 45^{\circ}, \ \phi_{2} = 15^{\circ}. \ \text{Demapping can}$$

$$\sum_{k=1}^{n} r_{1} + r_{2} = 2\pi, \quad \forall k = 2\pi \text{ (i.)}$$

$$\sum_{k=1}^{n} r_{1} + r_{2} = 2\pi, \quad \forall k = 2\pi \text{ (i.)}$$

$$(2.2)$$

$$\sum_{k=1}^{n} r_{1} + r_{2} = 2\pi, \quad \forall k = 2\pi \text{ (i.)}$$

$$(2.2)$$

$$\sum_{k=1}^{n} r_{1} + r_{2} = 2\pi, \quad \forall k = 2\pi \text{ (i.)}$$

$$(2.2)$$

$$\sum_{k=1}^{n} r_{1} + r_{2} = 2\pi, \quad \forall k = 2\pi \text{ (i.)}$$

$$(2.2)$$

$$\sum_{k=1}^{n} r_{1} + r_{2} = 2\pi, \quad \forall k = 2\pi \text{ (i.)}$$

$$(2.2)$$

$$\sum_{k=1}^{n} r_{1} + r_{2} = 2\pi, \quad \forall k = 2\pi \text{ (i.)}$$

$$(2.2)$$

$$|Y_k| > \frac{r_2 + r_3}{2}, \quad \frac{2\pi}{12}i < \angle Y_k < \frac{2\pi}{12}(i+1)$$
(2.12)

$$i = 16, \dots, 31$$
(2.13)

Fig. 1: Constellation diagram of 16APSK

Fig. 2: Constellation diagram of 32APSK

3. Carrier Synchronization

A. Time Offset: Gardner TED

Let the *m*th sample in the *r*th received symbol time slot be

$$Y_k(m) = X_k + V_k(m), \quad k = 1, ..., N, m = 1, ..., M.$$
(3.1)

where X_k is the transmitted symbol in the kth time slot and $V_k(m) \sim \mathcal{N}(0, \sigma^2)$. The decision variable for the kth symbol is [6]

$$U_{k} = \frac{1}{N} \sum_{i=1}^{N} Y_{k-i} \left(\frac{M}{2}\right) \left[Y_{k-i+1}(M) - Y_{k-i}(M)\right]$$
 (3.2)

B. Frequency Offset: LR Technique

Let the frequency offset be Δf [7] . Then

$$Y_k = X_k e^{j2\pi\Delta f k M} + V_k, \quad k = 1, ..., N$$
 (3.3)

From (3.3),

$$Y_k X_k^* = |X_k|^2 e^{j2\pi\Delta f k M} + X_k^* V_k \tag{3.4}$$

$$\implies r_k = e^{j2\pi\Delta f kM} + \bar{V}_k \tag{3.5}$$

where

$$r_k = Y_k X_k^*, \bar{V}_k = X_k^* V_k, |X_k|^2 = 1$$
 (3.6)

The autocorrelation can be calculated as

$$R(k) \stackrel{\Delta}{=} \frac{1}{N-k} \sum_{i=k+1}^{N} r_i r_{i-k}^*, 1 \le k \le N-1$$
 (3.7)

Where N is the length of the received signal. For large centre frequency, the following yields a good approximation for frequency offset upto 40 MHz.

$$\Delta \hat{f} \approx \frac{1}{2\pi M} \frac{\sum_{k=1}^{P} \operatorname{Im}(R(k))}{\sum_{k=1}^{P} k \operatorname{Re}(R(k))}, \quad P\Delta f M << 1 \quad (3.8)$$

where P is the number of pilot symbols.

C. Phase Offset: Feed Forward Maximum Likelihood (FF-ML)technique

Let the phase offset be $\Delta \phi$ [8] . Then for the kth pilot,

$$Y_k = X_k e^{j\Delta\phi_k} + V_k, \quad k = 1, ..., P$$
 (3.9)

From (3.9),

$$Y_k X_k^* = |X_k|^2 e^{j\Delta\phi_k} + X_k^* V_k \tag{3.10}$$

$$\implies r_k = e^{j\Delta\phi_k} + \bar{V}_k \tag{3.11}$$

where

$$r_k = Y_k X_k^*, \bar{V}_k = X_k^* V_k, |X_k|^2 = 1$$
 (3.12)

From (3.11), the estimate for the kth pilot is obtained as

$$\Delta \hat{\phi}_k = \arg\left(r_k\right) \tag{3.13}$$

The phase estimate is then obtained using $\Delta \hat{\phi}_k$ in the following update equation as

$$\Delta \theta_k = \Delta \theta_{k-1} + \alpha SAW \left[\Delta \hat{\phi}_k - \Delta \theta_{k-1} \right]$$
 (3.14)

Where SAW is sawtooth non-linearity

$$SAW[\phi] = \left[\phi\right]_{-\pi}^{\pi} \tag{3.15}$$

and $\alpha \leq 1$. The estimate is then obtained as $\Delta \theta_P$.

D. Automatic Gain Controller (AGC): Data-Aided Vector-Tracker (DA-VT)

Let the random AGC offset α , then the received symbol equation with amplitude offset as,

$$Y_k = \alpha X_k + V_k \quad k = 1, \dots, P$$
 (3.16)

where $\alpha = \alpha_I + j\alpha_Q$ is the gain parameter. According to [9], the $\hat{\alpha}_k$ estimate for the kth pilot is

$$\alpha_{k+1} = \alpha_k - \gamma \left[\alpha_k Y_k^p - X_k^p \right] \left[X_k^p \right]^*, \tag{3.17}$$

where γ is the AGC step size.

4. Frame Synchronization : Global Summation of SOF/PLSC Detectors

Let the frequency offset be Δf and phase offset be $\Delta \phi$. Then,

$$Y_k = X_k e^{j(2\pi\Delta f kM + \phi_k)} + V_k, \quad k = 1, ..., N$$
 (4.1)

assuming that no pilot symbols are trasmitted. Let the phase information be θ_k , and defined as

$$\theta(k) = \frac{Y_k}{|Y_k|} \tag{4.2}$$

At the receiver, the header information is available in the form of

$$g_i(l) = x_s(l)x_s(l-i), l = 0, \dots, SOF - 1$$
 (4.3)

$$h_i(l) = x_p(l)x_p(l-i), l = 0, \dots, PLSC - 1$$
 (4.4)

where x_s are the mapped SOF symbols, x_p are the scrambled PLSC symbols, both modulated using

 $\pi/2$ BPSK for i = 1, 2, 4, 8, 16, 32. A special kind of correlation is performed to obtain

$$m_i(k) = \sum_{l=0}^{PLSC-1} e^{j(\theta(k-l) - \theta(k-l-i))} h_i(l),$$
 (4.5)

$$n_i(k) = \sum_{l=0}^{SOF-1} e^{j(\theta(k-l) - \theta(k-l-i))} g_i(l),$$
 (4.6)

$$k = 1, \dots, N \tag{4.7}$$

Compute

$$p_{i}(k) = \begin{cases} \max \left(|n_{i}(k - PLSC) + m_{i}(k)|, \\ |n_{i}(k - PLSC) - m_{i}(k)| \right) & k > PLSC \\ \max |m_{i}(k)| & k < 64 \end{cases}$$
(4.8)

GLOBAL variable $G_{R,T}(k)$ [10] defined as,

$$G_{R,T}(k) = \sum_{i>1} p_i(k), \quad i = 1, 2, 4, 8, 16, 32$$
 (4.9)

At the receiver, let us consider we have sent two types of transmission. One is PLHEADER+DATA (Y_{k1}) and another is only DATA (Y_{k2}) and the GLOBAL variables for (Y_{k1}) and (Y_{k2}) from (4.9) are $G1_{R,T}(k)$, $G2_{R,T}(k)$ respectively.

A. Global Threshold Calculation

The Global Threshold variable is defined as

$$T = \max(\max(G1_{R,T}(k)), \max(G2_{R,T}(k)))$$
 (4.10)

The probability of false detection of plheader when only DATA frame (Y_{k2}) has been sent is defined as

$$P_{FA} = \frac{\sum \frac{sign(|Y_{k2} - T|) + 1}{2}}{N} \tag{4.11}$$

The probability of missed detection of plheader when PLHEADER+DATA (Y_{k1}) has been sent is defined as

$$P_{MD} = \frac{\sum \frac{sign(T - |Y_{k1}|) + 1}{2}}{N + PLSC + SOF}$$
(4.12)

5. BCH: Generator Polynomial

For a BCH code, the minimal polynomials are given by

$$g_1(x) = 1 + x + x^3 + x^5 + x^{14}$$
 (5.1)

$$g_2(x) = 1 + x^6 + x^8 + x^{11} + x^{14}$$
 (5.2)

$$g_3(x) = 1 + x + x^2 + x^6 + x^9 + x^{10} + x^{14}$$
 (5.3)

$$g_4(x) = 1 + x^4 + x^7 + x^8 + x^10 + x^{12} + x^{14}$$
 (5.4)

$$g_5(x) = 1 + x^2 + x^4 + x^6 + x^8 + x^9 + x^{11} + x^{13} + x^{14}$$
(5.5)

$$g_6(x) = 1 + x^3 + x^7 + x^8 + x^9 + x^{13} + x^{14}$$
 (5.6)

$$g_7(x) = 1 + x^2 + x^5 + x^6 + x^7 + x^{10} + x^{11}$$

$$+ x^{13} + x^{14} ag{5.7}$$

$$g_8(x) = 1 + x^5 + x^8 + x^9 + x^{10} + x^{11} + x^{14}$$
 (5.8)

$$g_9(x) = 1 + x + x^2 + x^3 + x^9 + x^{10} + x^{14}$$
 (5.9)

$$g_{10}(x) = 1 + x^3 + x^6 + x^9 + x^{11} + x^{12} + x^{14}$$
 (5.10)

$$g_{11}(x) = 1 + x^4 + x^{11} + x^{12} + x^{14}$$
 (5.11)

$$g_{12}(x) = 1 + x + x^2 + x^3 + x^5 + x^6 + x^7 + x^8 + x^{10} + x^{13} + x^{14}$$
(5.12)

The generator polynomial is obtained as

$$g(x) = \prod_{i=1}^{m} g_i(x)$$
 (5.13)

6. BCH: Encoding

Let \vec{m} be a $k \times 1$ message vector and

$$m(x) = m_{k-1}x^{k-1} + m_{k-2}x^{k-2} + \dots + m_1x + m_0$$
 (6.1)

be the corresponding Message polynomial. Let

$$m(x)x^{n-k} = q(x)g(x) + d(x)$$
 (6.2)

and

$$c(x) = m(x)x^{n-k} + d(x)$$
 (6.3)

7. Berlekamp's Decoding Algorithm

Let $\vec{\alpha}_i$, $2 \le i \le 2m + 1$ be the *i*th row of \vec{A} and $\alpha_i(x)$ be the corresponding polynomial. Let \vec{r} be the received codeword (noisy). r(x) is then defined to be the received polynomial.the corresponding syndromes.

$$S_i(x) = r(\alpha_i(x)) \tag{7.1}$$

Intialization : k = 0, $\Lambda^{(0)}(x) = 1$, $T^{(0)} = 1$ Let $\Delta^{(2k)}$ be the coefficient of x^{2k+1} in $\Lambda^{(2k)}[1+S(x)]$ Compute

$$\Delta^{(2k+2)}(x) = \Lambda^{(2k)}(x) + \Delta^{(2k)}[x.T^{(2k)}(x)]$$
 (7.2)

Compute

(5.1)
$$T^{(2k+2)}(x) = \begin{cases} x^2 T^{(2k)}(x) & \text{if } \Delta^{(2k)} = 0 \text{ or } \deg\left[\Lambda^{(2k)}(x)\right] > k \\ \frac{x\Lambda^{(2k)}(x)}{\Delta^{(2k)}} & \text{if } \Delta^{(2k)} \neq 0 \text{ or } \deg\left[\Lambda^{(2k)}(x)\right] \le k \end{cases}$$
(5.2)

check nodes

Set k = k + 1.If k < t then go to step3. Return the Error Locator polynomial $\Lambda(x) = \Lambda^{(2k)}(x)$

8. BCH Decoding: The Chien's Search Algorithm

- 8.1 Take α^j as test root $0 \le j \le n-1$.
- 8.2 if Λ_i test every root and if its equals to zero. Then that is root.
- 8.3 Flip the bit values at root positions.
- 8.4 Let the Received polynomial be r(x) i.e which contains both transmitted codeword polynomial c(x) and the error polynomial e(x)

$$e(x) = e_0 + e_1 x^1 + \dots + e_{n-1} x^{n-1}$$
 (8.1)

Where e_i represents the value of the error at the location. For binary BCH codes e_i is either 0 or 1.

$$L(0) \longrightarrow v0$$

$$L(1) \longrightarrow v1$$

$$L(2) \longrightarrow v2$$

$$L(3) \longrightarrow v3$$

$$L(4) \longrightarrow v4$$

$$L(5) \longrightarrow v5$$

$$L(6) \longrightarrow v6$$

variable nodes

$$r(x) = c(x) + e(x) = r_{n-1}x^{n-1} + r_{n-2}x^{n-2} + \dots + r_1x + r_0$$
 Fig. 3: Tanner Graph Representation for (7,4) Ham-
(8.2) ming parity check matrix

Definie, Syndrome

$$S_i = r(\alpha^i) = c(\alpha^i) + e(\alpha^i) = e(\alpha^i)$$
 (8.3)

Where α^i is a root of the codeword. Suppose that ν errors occurred, and $0 \le \nu \le t$. Let the error occurs at i_1, i_2, \dots, i_{ν} . The Decoding Process, for a t-error correcting code will follows the basic steps,

9. LDPC: Introduction

Let the Channel model be,

$$Y_k = X_k + V_k, \quad k = 0, \dots, 6$$
 (9.1)

where X_k is the transmitted symbol in the kth time slot using the BPSK modulation and $V_k \sim \mathcal{N}(0, \sigma^2)$.

10. LDPC: Encoding

LDPC codes are popular linear block codes with closest Shannon limit channel capacity [2]. As an example, lets take (7,4) Hamming parity check matrix.

$$H = \begin{bmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$
 (10.1)

Encoding can be carried out by using

$$H \times c^T = 0 \tag{10.2}$$

$$\begin{bmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} m_0 \\ m_1 \\ m_2 \\ m_3 \\ p_0 \\ p_1 \\ p_2 \end{bmatrix} = 0$$
 (10.3)

solving we get

$$p_0 = m_0 \oplus m_1 \oplus m_2 \tag{10.4}$$

$$p_1 = m_0 \oplus m_2 \oplus m_3 \tag{10.5}$$

$$p_2 = m_0 \oplus m_1 \oplus m_3 \tag{10.6}$$

This is called Systematic Encoding.i.e Encoder will ensures information bits followed by parity bits.

(11.11)

11. LDPC: Decoding

A. Useful Calculations for proceeding LDPC Decoding

 Calculation of Input Channel Log Likelihood Ratio LLR

$$L(x_j) = \log\left(\frac{Pr(x_j = 1|y)}{Pr(x_j = -1|y)}\right) \quad X = 1 - 2c$$

$$= \log\left(\frac{f(y|x_j = 1)Pr(x_j = 1)}{f(y|x_j = -1)Pr(x_j = -1)}\right)$$
(11.2)

$$= \log \left(\frac{\frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-(y_j - 1)^2}{2\sigma^2}}}{\frac{1}{\sqrt{2\sigma^2}} e^{\frac{-(y_j + 1)^2}{2\sigma^2}}} \right)$$
(11.3)

$$=\log\left(e^{\frac{2y_j}{\sigma^2}}\right) \tag{11.4}$$

$$L(x_j) = \frac{2y_j}{\sigma^2} \tag{11.5}$$

2) Check Node Operation:

Lets assume that we have initilized all LLR values to variable nodes and we sent to check nodes. V_j represents all the variable nodes which are connected to j^{th} check node. Using the min-sum approximation [3], the message from j^{th} check node to i^{th} variable node given by, since parity node equation for the first

Fig. 4: Check node operation

check node is $p_0 = m_0 + m_1 + m_2 + m_4$. we need to calculate

$$L_{ext0,0} = \log \left(\frac{Pr(x_0 = 0|y_1, y_2, y_4)}{Pr(x_0 = 1|y_1, y_2, y_4)} \right)$$
(11.6)

Defining,

$$L_{1} = \log \left(\frac{Pr(x_{1} = 0|y_{1})}{Pr(x_{1} = 1|y_{1})} \right) = \log \left(\frac{p_{1}}{1 - p_{1}} \right)$$

$$(11.7)$$

$$L_{2} = \log \left(\frac{Pr(x_{2} = 0|y_{2})}{Pr(x_{2} = 1|y_{2})} \right) = \log \left(\frac{p_{2}}{1 - p_{2}} \right)$$

$$(11.8)$$

$$L_{4} = \log \left(\frac{Pr(x_{4} = 0|y_{4})}{Pr(x_{4} = 1|y_{4})} \right) = \log \left(\frac{p_{4}}{1 - p_{4}} \right)$$

$$(11.9)$$

$$(11.10)$$

Using Table. II we can find the

c_0	c_1	c_2	c_4
0	0	0	0
1	0	0	1
1	0	1	0
0	0	1	1
1	1	0	0
0	1	0	1
0	1	1	0
1	1	1	1

TABLE II: Probability of a varibale node from other check nodes

 $p_0 = Pr(c_0 = 0 | c_1, c_2, c_4)$

$$p_0 = p_1 p_2 p_4 + p_1 (1 - p_2)(1 - p_4)$$

$$+ (1 - p_1) p_2 (1 - p_4) + (1 - p_1)(1 - p_2) p_4$$

$$1 - p_0 = p_1 p_2 (1 - p_4) + p_1 (1 - p_2) p_4$$

$$+ (1 - p_1) p_2 p_4 + (1 - p_1)(1 - p_2)(1 - p_4)$$

by rearranging above equations,

$$p_0 - (1 - p_0) = p_1 - (1 - p_1) + p_2 - (1 - p_2) + p_4 - (1 - p_4)$$
(11.12)

Where p_i is the probability, getting message from check to variable node by taking all variable node informations.

$$\frac{1 - \frac{1 - p_0}{p_0}}{1 + \frac{1 - p_0}{p_0}} = \frac{1 - \frac{1 - p_1}{p_1}}{1 + \frac{1 - p_1}{p_1}} \times \frac{1 - \frac{1 - p_2}{p_2}}{1 + \frac{1 - p_2}{p_2}} \times \frac{1 - \frac{1 - p_4}{p_4}}{1 + \frac{1 - p_4}{p_4}}$$

$$\frac{1 - e^{-L_{ext0,0}}}{1 + e^{-L_{ext0,0}}} = \frac{1 - e^{-L_1}}{1 + e^{-L_1}} \times \frac{1 - e^{-L_2}}{1 + e^{-L_2}} \times \frac{1 - e^{-L_4}}{1 + e^{-L_4}}$$

$$- \tanh\left(\frac{L_{ext0,0}}{2}\right) = \left(-\tanh\left(\frac{L_1}{2}\right)\right) \left(-\tanh\left(\frac{L_2}{2}\right)\right)$$

$$\left(-\tanh\left(\frac{L_4}{2}\right)\right)$$
 (11.15)

$$L_{ext0,0} = \left(\prod_{k \in V_i \setminus i} \alpha_{k,0}\right) f\left(\sum_{k \in V_i \setminus i} f\left(\beta_{k,0}\right)\right) \quad (11.16)$$

Where,

$$\alpha_{k,i} = sign(L_{k,i}) \tag{11.17}$$

$$\beta_{k,j} = \left| L_{k,j} \right| \tag{11.18}$$

$$f(x) = -\log\left(\tanh\frac{x}{2}\right) \tag{11.19}$$

Using the Fig 5 and using its 45° symmetricity,

Fig. 5: Plot of function f(x)

we can approximate the above equation as, given by minimum sum approximation [3]

$$f\left(\sum_{k \in V_j \setminus i} f\left(\beta_{k,0}\right)\right) \approx f\left(f\left(\min_{k \in V_j \setminus i} (\beta_{k,0})\right)\right) \quad (11.20)$$
$$= \min_{k \in V_j \setminus i} (\beta_{k,0}) \quad (11.21)$$

Combining (11.21) in (11.16),

$$L(r_{j=0,i=0}) = \left(\prod_{k \in V_j \setminus i} \alpha_{k,0}\right) \left(\min_{k \in V_j \setminus i} (\beta_{k,0})\right) \quad (11.22)$$

3) Variable Node Operation:

Let C_i denotes all the check nodes connected to i^{th} variable node. The message from i^{th} variable node to j^{th} check node given by,

$$L(q_{i=0,j=0}) = \log\left(\frac{Pr(x_j = 1|y_0, y_1, y_2)}{Pr(x_j = -1|y_0, y_1, y_2)}\right) \quad X = 1 - 2c$$

(11.23)

Fig. 6: Variable node operation

$$= \log \left(\frac{f(y_0, y_1, y_2 | x_j = 1) Pr(x_j = 1)}{f(y_0, y_1, y_2 | x_j = -1) Pr(x_j = -1)} \right)$$

$$= \log \left(\frac{\left(\frac{1}{\sqrt{2\pi\sigma^2}} \right)^3 e^{\frac{-(y_0 - 1)^2}{2\sigma^2}} e^{\frac{-(y_1 - 1)^2}{2\sigma^2}} e^{\frac{-(y_2 - 1)^2}{2\sigma^2}} \right)}{\left(\frac{1}{\sqrt{2\pi\sigma^2}} \right)^3 e^{\frac{-(y_0 + 1)^2}{2\sigma^2}} e^{\frac{-(y_1 + 1)^2}{2\sigma^2}} e^{\frac{-(y_2 + 1)^2}{2\sigma^2}} \right)}$$

$$= \log \left(e^{\frac{2(y_0 + y_1 + y_2)}{\sigma^2}} \right)$$

$$= L(x_i) + \sum_{k \in C_i \setminus j} L(r_{ki})$$

$$= L(x_i) + \sum_{k \in C_i \setminus j} L(r_{ki})$$

$$= L(x_i) + \sum_{k \in C_i \setminus j} L(r_{ki})$$

$$= L(x_i) + \sum_{k \in C_i \setminus j} L(r_{ki})$$

$$= L(x_i) + \sum_{k \in C_i \setminus j} L(r_{ki})$$

B. Message Passing Algorithm using min-sum Approximation

Transmitted frames = N, Total number of bits = $N \times 7$ and Total number of information bits = $N \times 4$. For Each Frame,

- 1) Initialize $L(q_{ij})$ using (11.5) for all i, j for which $h_{ij} = 1$ with channel LLR's.
- 2) Update $\{L(r_{ji})\}$ using (11.22)
- 3) Update $\{L(q_{ji})\}$ using (11.27).
- 4) Update $\{L(V_i)\}$ using,

$$L(V_i) = L(x_i) + \sum_{k \in C_i} L(r_{ki})$$
 $i = 0, ..., 6.$ (11.28)

5) Proceed to step 2.

After maximum specified iterations,

Decoding can be done using,

$$\hat{c}_i = \begin{cases} 1 & L(V_i) < 0 \\ 0 & else \end{cases}$$
 (11.29)

C. Simulation Results

For frames N=10000. Fig 7 Shows the Com-

Fig. 7: SNR vs BER curves using LDPC channel coding and no channel coding

parison of Probability error with channel coding and without channel coding. Since the parity check matrix taken was not much sparse, we are not getting near shannon limit performance. (Good sparse matrix i.e number of entries in $H << m \times n$)

12. LDPC Decoding for Higher Order Mapping Schemes

In the case of higher order mapping schemes, calculation of Log Likelihood Ratio's are crutial. A generalized and approximated Log Likelihood Ratio given by [4]

A. General Expression for Calculation of Log Likelihood Ratio(LLR)

$$LLR(b_j) = \log\left(\frac{Pr(b_j = 0|y)}{Pr(b_j = 1|y)}\right)$$
(12.1)

$$LLR(b_{j}) = \log \left(\frac{\sum_{i \in \{K_{b_{j}=0}\}} \frac{1}{2\sigma^{2}} e^{\frac{-|y-x_{j}|^{2}}{2\sigma^{2}}}}{\sum_{i \in \{K_{b_{j}=1}\}} \frac{1}{2\sigma^{2}} e^{\frac{-|y-x_{j}|^{2}}{2\sigma^{2}}}} \right)$$
(12.2)

Where the alphabet $\{K_{b_j=b}\}$ is the set of all symbols representing the j^{th} bit equals to b=0 or b=1.

$$\log\left(e^a + e^b\right) \approx \max\left(a, b\right) \tag{12.3}$$

Shows the Jacobian-Logarithmic approximation using [5]. By Using the Above equation, The LLR expression can be written as,

$$LLR(b_{j}) \approx \max_{i \in \{K_{b_{j}=0}\}} \left(e^{\frac{-|y-x_{i}|^{2}}{2\sigma^{2}}} \right) - \max_{i \in \{K_{b_{j}=1}\}} \left(e^{\frac{-|y-x_{i}|^{2}}{2\sigma^{2}}} \right)$$
(12.4)

B. Approximated LLR's for QPSK Mapping Scheme

For the QPSK mapping scheme showed in Fig. 8 is grey code constellation and b_1 , b_0 are the MSB and LSB of the mapped symbols.

$$LLR(b_1) \approx \max(L_0, L_1) - \max(L_3, L_2)$$
 (12.5)

$$LLR(b_0) \approx \max(L_0, L_2) - \max(L_1, L_3)$$
 (12.6)

Where,

$$L_i = e^{-\frac{|y-x_i|^2}{2\sigma^2}}$$
 $i = 0, 1, 2, 3$ (12.7)

Fig. 8: Constellation Diagram of QPSK

C. Approximated LLR's for 8-PSK Mapping Scheme

For the 8-PSK mapping scheme showed in Fig. 9 is grey code constellation and b_2 , b_0 are the MSB

and LSB of the mapped symbols.

$$LLR(b_2) \approx \max(L_0, L_1, L_3, L_2) - \max(L_6, L_7, L_5, L_4)$$
(12.8)

$$LLR(b_1) \approx \max(L_0, L_1, L_5, L_4) - \max(L_3, L_2, L_6, L_7)$$
(12.9)

$$LLR(b_0) \approx \max(L_0, L_2, L_6, L_4) - \max(L_1, L_3, L_7, L_5)$$
(12.10)

Where,

$$L_i = e^{-\frac{|y-x_i|^2}{2\sigma^2}}$$
 $i = 0, 1, ..., 7$ (12.11)

Fig. 9: Constellation Diagram of 8-PSK

13. RESULTS AND DISCUSSION and Fig. 10 shows the Simulation diagram. and

Fig. 10: SNR vs BER for 32-APSK

Fig. 11 Shows the Simulation diagram.

Fig. 11: SNR vs BER for 16-APSK

A. Time Offset

Fig. 13 Shows the Simulation diagram. Fig. 14 Shows the Simulation diagram.

Fig. 12: SNR vs BER for 8-PSK

Fig. 13: SNR vs BER for 8-PSK

Fig. 15 is generated by the following code

https://github.com/gadepall/EE5837/raw/master/synctech/codes/time_sync_offsets.py

Fig. 14: SNR vs BER for QPSK

Fig. 15: SNR vs BER for varying τ .

and shows the variation of the BER with respect to the SNR with different timing offsets τ for N = 6.

B. Frequency

The number of pilot symbols is P = 18. The codes for generating the plots are available at

Fig. 16 shows the variation of the error in the offset estimate with respect to the offset Δf when the SNR = 10 dB. Similarly Fig. 17 shows the variation of the error with respect to the SNR for $\Delta f = 5$ MHz.

C. Plots

Fig. 18 is generated using

https://github.com/gadepall/EE5837/raw/master/synctech/codes/Error_vs_lp.py

Fig. 16: Error variation with respect to frequency offset.

Fig. 17: Error variation with respect to the SNR. $\Delta f = 5$ MHz, Center frequency $f_c = 25$ GHz

and shows the variation of the phase error in the offset estimate with respect to the pilot symbols when the SNR = 10 dB and α = 0.5.

Similarly Fig. 19 generated by

https://github.com/gadepall/EE5837/blob/master/synctech/codes/Error_vs_snr.py

shows the variation of the error with respect to the SNR for pilot symbols P = 18 and $\alpha = 1$.

D. Plots

The following code plots the real and imaginary parts of the gain parameter α with respect to the number of pilot symbols P. in Fig. 20. $\gamma = 10^{-3}$, SNR = 10dB.

Fig. 18: Phase error variation with respect to pilot symbols

https://github.com/gadepall/EE5837/raw/master/ synctech/codes/ Digital AGC with fixed SNR.py

E. Frame

Fig.21 shows the ROC curve $(P_{FA}vsP_{MD})$ at the receiver for frame synchronization at $\frac{E_b}{N_0} = -2$ dB.

REFERENCES

- "Digital Video Broadcasting (DVB) Second generation framing structure, channel coding and modulation systems for Broadcasting, Interactive Services, News Gathering and other broadband satellite applications," ETSI EN 302 307 v1.1.1, June 2005.
- [2] R.Gallager, "Low-density parity check codes," *IRE Trans.Information Theory*, pp. 21–28, Jan. 1962.

Fig. 19: $\Delta f = 5$ MHz

Fig. 20: Convergence of Digital AGC with resepct to P.

Fig. 21: Frame Synchronization Receiver Operating Characteristcs (ROC)

- [3] N. Wiberg, "Codes and Decoding on General Graphs," *Phd Dissertation, Linkoping University, Sweden*, 1996.
- [4] V. B. Olivatto, R. R. Lopes, and E. R. de Lima, "Simplified LLR calculation for DVB-S2 LDPC decoder," in 2015 IEEE International Conference on Communication, Networks and Satellite (COMNESTAT), Dec 2015, pp. 26–31. [Online]. Available: https://doi.org/10.1109/COMNETSAT.2015.7434300
- [5] M. Martina, G. Masera, S. Papaharalabos, P. T. Mathiopoulos, and F. Gioulekas, "On Practical Implementation and Generalizations of max* Operator for Turbo and LDPC Decoders," *IEEE Transactions on Instrumentation and Measurement*, vol. 61, no. 4, pp. 888–895, April 2012. [Online]. Available: https://doi.org/10.1109/TIM.2011.2173045
- [6] F. Gardner, "A BPSK/QPSK Timing-Error Detector for Sampled Receivers," *IEEE Transactions on Communications*, vol. 34, no. 5, pp. 423–429, May 1986. [Online]. Available: https://doi.org/10.1109/TCOM.1986.1096561
- [7] M. Luise and R. Reggiannini, "Carrier frequency recovery in all-digital modems for burst-mode transmissions," *IEEE Transactions on Communications*, vol. 43, no. 2/3/4, pp. 1169–1178, Feb 1995. [Online]. Available: https://doi.org/10.1109/26.380149
- [8] E. Casini, R. D. Gaudenzi, and A. Ginesi, "DVB-S2 modem algorithms design and performance over

- typical satellite channels," *International Journal of Satellite Communications and Networking*, vol. 22, no. 3, pp. 281–318, 2004. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/sat.791
- [9] R. De Gaudenzi and M. Luise, "Analysis and design of an all-digital demodulator for trellis coded 16-QAM transmission over a nonlinear satellite channel," *IEEE Transactions on Communications*, vol. 43, no. 2/3/4, pp. 659–668, Feb 1995. [Online]. Available: https://doi.org/10.1109/26.380085
- [10] H. Miyashiro, E. Boutillon, C. Roland, J. Vilca, and D. DÃaz, "Improved Multiplierless Architecture for Header Detection in DVB-S2 Standard," in 2016 IEEE International Workshop on Signal Processing Systems (SiPS), Oct 2016, pp. 248–253. [Online]. Available: https://doi.org/10.1109/SiPS.2016.51