то положительные корни f(x) не превосходят числа c. Действительно, из формулы Тейлора

$$f(x) = f(c) + (x-c)f'(c) + \frac{(x-c)^2}{2!}f''(c) + \dots + \frac{(x-c)^m}{m!}f^{(m)}(c)$$

получаем, что f(x) > 0 при $x \ge c$.

Численные методы решения нелинейных уравнений являются, как правило, итерационными методами, которые предполагают задание достаточно близких к искомому решению начальных данных.

Прежде чем переходить к изложению конкретных итерационных методов, отметим два простых приема отделения действительных корней уравнения (1). Предположим, что f(x) определена и

непрерывна на [a, b].

Первый прием состоит в том, что вычисляется таблица значений функции f(x) в заданных точках $x_k \in [a, b], k = 0, 1, \ldots, n$. Если обнаружится, что при некотором k числа $f(x_k)$, $f(x_{k+1})$ имеют разные знаки, то это будет означать, что на интервале (x_k, x_{k+1}) уравнение (1) имеет по крайней мере один действительный корень (точнее, имеет нечетное число корней на (x_k, x_{k+1})). Затем можно разбить интервал (x_k, x_{k+1}) на более мелкие интервалы и с помощью аналогичной процедуры уточнить расположение корня.

Более регулярным способом отделения действительных корней является метод бисекции (деления пополам). Предположим, что на (a, b) расположен лишь один корень x_* уравнения (1). Тогда f(a) и f(b) имеют различные знаки. Пусть для определенности f(a) > 0, f(b) < 0. Положим $x_0 = 0.5(a+b)$ и вычислим $f(x_0)$. Если $f(x_0) < 0$, то искомый корень находится на интервале (a, x_0) , если же $f(x_0) > 0$, то $x_* \in (x_0, b)$. Далее, из двух интервалов (a, x_0) и (x_0, b) выбираем тот, на границах которого функция f(x) имеет различные знаки, находим точку x_1 — середину выбранного интервала, вычисляем $f(x_1)$ и повторяем указанный процесс. В результате получаем последовательность интервалов, содержащих искомый корень x_* , причем длина каждого последующего интервала вдвое меньше, чем предыдущего. Процесс заканчивается, когда длина вновь полученного интервала станет меньше заданного числа $\epsilon > 0$, и в качестве корня x_* приближенно принимается середина этого интервала.

Заметим, что если на (a, b) имеется несколько корней, то указанный процесс сойдется к одному из корней, но заранее неизвестно, к какому именно. Можно использовать прием выделения корней: если корень x=x кратности m найден, то рассматривается функция

$$g(x) = f(x)/(x-x_*)^m$$

и для нее повторяется процесс нахождения корня.

2./ Метод простой итерации. Он состоит в том, что уравнение (1) заменяется эквивалентным уравнением

$$x = s(x) \tag{3}$$

и итерации образуются по правилу

$$x_{n+1} = s(x_n), \quad n = 0, 1, \ldots,$$
 (4)