On Enabling Technologies for the Internet of Important Things

Marten Lohstroh, Hokeun Kim, John Eidson, Chadlia Jerad, Beth Osyk, and Ed Lee

Presented by: Gabe Parmer

Mission Statement

- The Internet has a number of useful things:
 - global namespaces
 - reliable delivery
 - security through asymmetric encrypton
 - certificate-based authentication
 - aggregation and mass processing of data

Mission Statement II

- But lets consider
 - Timeliness
 - Quality of service (QoS)
 - Physical safety
 - Security & privacy

Challenges

- Software longevity (cloud service/app/device)
- Security
 - Non-safety critical devices?
 YES (Mirai) → IoDDoSes
 - Safety critical?YES → hack = ouch
- Networking potential vs. challenges
 - Autonomy & error handling (no human ITL)

Focus: IIoT

- Internet of Important Things
 - Safety critical cyber-physical systems
 - Sense and interact with the world
 ...and talk to the Internet
- Driving Question:

Can CPSes and IIoT achieve a **balance** where the benefits of the network out-weight the risks?

Can the risks be understood?

Focus: IIoT

Internet of Important Things

Brainstorm: Come up with at least three examples of systems that would be considered the IoIT.

Do you think this is a large segment of IoT?

Important segment?

Driving Question:

Can CPSes and IIoT achieve a **balance** where the benefits of the network out-weight the risks?

Can the risks be understood?

Edge Computing

"a computing device that can act as an internet gateway or a router"

- Mobile vs. immobile edge computer
- Physical proximity to devices it serves
 - Leverage locality low latency, variables = {wifi}
 - Leverage locality keep data local (priv. & sec)
 - Leverage locality offload computation
 - Leverage locality offload storage/memory
 - Leverage locality discovery based on proximity

Versus Cloud

- Cloud excels at
 - Aggregation
 - Batch processing
 - Massive resources

Versus Cloud

- Cloud excels at
 - Aggregation
 - Batch processing
 - Massive resources

How can we leverage the **physical locality** of the edge *and* the **scale** of the cloud?

[Sec] Security: traditional view

Confidentiality

- Only appropriate principles can access information
- Mitigation: Controlling the flow of information

Integrity

- Data and computation cannot be interfered with
- Mitigation: Isolation and "many walls"

Availability

- Requests can be processed within a reasonable span
- Mitigation: Distribution, scale, and rate-limiting

[Sec] Attacks

- Disruption of timing (DoT) attacks
- Limited battery power
- Physical disruption
 - Hammer, sensor, *microscope*
- Actuator manipulation
- Wireless jamming, snooping

[Sec] Attacks

Disruption of timing (DoT) attacks

```
• Limitad hattagy aguar
```

How do these fit into classical CIA security models?

• Wireless – jamming, snooping

[Sec] IIoT: Naming & Identification

https://composite.seas.gwu.edu 128.164.144.169 ✓ Server √ Business X IoT device X IoT dev

Billions of devs, humans → device & dev → dev

[Sec] IIoT: Naming & Identification

https://composite.seas.gwu.edu 128.164.144.169 Solutions? Options?

In Trevice

Billions of devs, humans → device & dev → dev

[Sec] Authentication

Solving: Am I talking to X?

- X = business/org
- SSL/TLS (used in https://...)

CA/RA/VA =
Certificate/Registration/Validation Authority
Image: Thanks Wikipedia!

[Sec] Authentication

<u>Calvina</u>

IoIT: Billions of devices.

Will this scale to billions of devices?

Brainstorm:

Any solutions?

CA/RA/VA =
Certificate/Registration/Validation Authority
Image: Thanks Wikipedia!

[Sec] Availability

- DDoS attacks on necessary internet connections? (Hospitals, heating controllers)
- Local VAs distribute load to physical locations
 - How do you know the VA you're talking to is actually the VA? Needs authentication (circular)

Timing and Coordination

- Wide area network is best-effort (due to router contention, routing, datacenter proc)
- Accurately computing the current time is hard
 - Uses network and NTP local times skew
- Important for coordination
- Synchronize local clocks using services accuracy = f (network jitter)

Timing and Coordination

- Wide area network is best-effort
 (due to router contention, routing, datacenter
 properties to router contention to router contention, router con
- Important for coordination
- Synchronize local clocks using services accuracy = f (network jitter)

[Time] Robust Time Coordination

- GNSS (GPS sat broadcasts) easily jammed
- eLoran WAN wireless standard, stronger signals, lower frequency → jamming challenge
- Redundancy: NTP + PTP + ...
- But network is always a challenge
 - Attack to increase jitter of time sync messages?

[Time] Network Management

Predictability – controlled latency

- TDMA Time Division, Multiple Access
 - Each frequency divided into windows
 - Devices allocated periodic windows
- Examples: time-triggered ethernet, GSM
- What are the downsides?

[Time] Network Management

Predictability – controlled latency

Brainstorm:

- 1) If you assumed no malicious intents, do you think you can have a predictable wireless, edge system?
- 2) If you assumed a malicious environment?
- 3) What is a reasonable assumption here?
- What are the downsides?

Programming the IIoT

Goal: Data → Knowledge → Decisions

Analytics sense → streaming(time)

Analytics

Filtered data stream

Data stream @ t

Decisions/Model

Reactions @ t'

Programming the IIoT

- Transient devices
- Admission control
- Temporal isolation between devices
- Scale to many devices/many tenants
- Real-time computation

Event vs. Thread-based Programming

- Event (callback-based) programming do_IO(io_done(io) { /* process I/O */ });
- Thread-based programming
 io = do_IO(); // block, switch to another thread
 /* process I/O */
- Brainstorm:
 - Trade-offs between both of these?
 - Applicability for IoIT?

[Prog] Evts vs. Threads

Events

- Serial, non-preemptive execution
- Computation state in events, not stacks
- "stack ripping" logic not linear

Threads

- Preemptive = low latency for prioritized comp.
- Preemptive = race conditions ;-(
- Stacks might waste more memory

[Prog] Time and Simultaneity

- Can simultaneous operations (separate devices, threads, or "observers") see actions in the same order?
- Order events uniformly, process them in order
 - E.g. for a periodic task model?
 - What will it take to achieve deterministic concurrency on a single devices?
 - Across distributed devices?

Conclusions

- Areas that need love:
 - Authentication/authorization services
 - Time synchronization and coordination
 - Programming models that increase determinism
- Edge computation to recover locality, but increase complexity