Decision Trees Classifier

Decision Tree Classifier

Heart Dataset (statlog version)

13 features

270 samples

Decision Tree Classifier

Heart Dataset (statlog version)

13 features

Decision Tree Split Criteria

Regression Tree

MSE (RSS)

$$H(X_m) = \frac{1}{N_m} \sum_{i \in N_m} (y_i - \bar{y}_m)^2$$

MAE

$$H(X_m) = \frac{1}{N_m} \sum_{i \in N_m} |y_i - \bar{y}_m|$$

Classification Tree

Gini

$$H(X_m) = \sum_k \underline{p_{mk}(1 - p_{mk})}$$

Entropy uncertainty

$$H(X_m) = -\sum_{k} p_{mk} \log(p_{mk}),$$

Information Gain = E(parent)-E(children)

Decision Tree Split Criteria

Gini

$$H(X_m) = \sum_k p_{mk} (1 - p_{mk})$$

Entropy

$$H(X_m) = -\sum_k p_{mk} \log(p_{mk})$$

Split criterion- Gini index

$$H(X_m) = \sum_k p_{mk} (1 - p_{mk})$$

What is the Gini of this box?

D

Gini:
$$H(X_m) = \sum_{k} p_{mk} (1 - p_{mk})$$

$$\frac{0.5}{\frac{1}{2} \cdot \left(\frac{1}{2}\right) + \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{2}$$

$$P_{c} = \frac{1}{6}$$
 $P_{t} = \frac{5}{6}$
 $P_{t} = \frac{5}{6}$
 $P_{t} = \frac{5}{18}$

Split criterion- Entropy

$$\log_{\mathbf{Z}}$$
 \log_{10} \log_{10} $H(X_m) = -\sum_k p_{mk} \log(p_{mk})$

Split criterion-Information gain

Information Gain = Reduction in Entropy

$$-\left(\frac{1}{2}\log_2\frac{1}{2} + \frac{1}{2}\log_2\frac{1}{2}\right) = 1$$

- Z Pilig P;

$$-\left(\frac{1}{6}\log_2\frac{1}{6} + \frac{5}{6}\log_2\frac{5}{6}\right) = 0.65$$

Information Gain = (1) 0.4*0 - 0.6*0.65 = 0.61

0

Which split gives the maximum information gain?

Decision Tree Split Criteria

Regression Tree

MSE (RSS)

$$H(X_m) = \frac{1}{N_m} \sum_{i \in N_m} (y_i - \bar{y}_m)^2$$

MAE

$$H(X_m) = \frac{1}{N_m} \sum_{i \in N_m} |y_i - \bar{y}_m|$$

Classification Tree

Gini

$$H(X_m) = \sum_{k} p_{mk} (1 - p_{mk})$$

Entropy

$$H(X_m) = -\sum_k p_{mk} \log(p_{mk})$$

Information Gain = E(parent)-E(children)