Healthcare Partners Inc

Check Amount Predictive Model

The Problem Statement

How can the forecasting team at Healthcare Partners predict Administrative Fees forecast (Check Amount) for the next Fiscal Year, with 80% accuracy for its market types: Food, Services, Surgical and Pharmaceuticals, so that the senior leadership can prepare the company budget to present in 3 months.

The raw data file - CSV

A data dump from multiple systems.

Initial Data exploration

```
]: M df.shape
ut[3]: (720487, 26)
```

Data Wrangling

Dealing with Missing Values, Redundant Market Types

	count	%
submission_id	710039	98.549870
submission_date_received	710039	98.549870
submission_reported_AdminFees	710039	98.549870
submission_reported_SalesVolume	710039	98.549870
PREVIOUS_CONTRACT_DATE	317865	44.118076
allocation_dt_start	239285	33.211564
allocation_dt_end	239285	33.211564
Check_Amount	233076	32.349786
paid_datekey	233076	32.349786
Fiscal_Year_Received	233076	32.349786
CHK_DT_DEPOSIT	233076	32.349786
CHK_OWNER	233076	32.349786
Check_Admin_Amount	233076	32.349786
ADMIN_PERCENT	1873	0.259963
Contract_freq	1315	0.182515
CATEGORY_DESC	0	0.000000
CONT_NUM	0	0.000000
Cont_title	0	0.000000
Accrual_Amount	0	0.000000
Market_type	0	0.000000
ESTIMATE	0	0.000000
Fiscal_Year_Due	0	0.000000
due_year	0	0.000000
due_month	0	0.000000
Fiscal_earned_year	0	0.000000
ALLOCATION	0	0.000000

```
#Verify the mapping
df[['Market type','Market category']].value counts()
Market type
                           Market_category
                           Services
Nursing
                                                      154994
Rx - Pharmaceuticals
                           Pharmaceuticals
                                                       92786
Surgical PPI
                           Services
                                                       78934
Facilities
                           Facilities and Material
                                                       66286
FS - Food
                           Food
                                                       63450
Surgical
                                                       57398
                           Services
Imaging
                           Services
                                                       46407
Purchased Services
                           Services
                                                       41182
Laboratory
                           Facilities and Material
                                                       38321
                           Services
CV PPI
                                                       27394
IT/ Telecom
                           Facilities and Material
                                                       18806
FS - Non-Foods
                                                        9149
                           Food
Rx - Wholesaler
                           Pharmaceuticals
                                                        9075
Distribution
                           Services
                                                        7350
FS - Nutritionals
                           Food
                                                        6378
PI - PIMS
                           Services
                                                         928
MM - Materials Management Services
                                                         876
PS - Alternate Site
                           Facilities and Material
                                                         311
FS - Chemicals
                           Food
                                                         293
ARC - Admin Opportunities Services
                                                         169
dtype: int64
```

Data Wrangling ...

The Tidy data set

```
tidyset.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 469981 entries, 0 to 469980
Data columns (total 10 columns):
    Column
                       Non-Null Count
                                       Dtype
    Market type
                       469981 non-null object
    Contract freq
                       469952 non-null
                                       object
    Fiscal earned year 469981 non-null int64
    due month
                       469981 non-null int64
    due year
                     469981 non-null int64
    Check Amount 469981 non-null float64
    CATEGORY DESC 469981 non-null object
    Market category 469981 non-null object
    percent vals
                       469937 non-null object
    average
                       469937 non-null float64
dtypes: float64(2), int64(3), object(5)
memory usage: 35.9+ MB
```

```
tidyset.shape
(469981, 10)
```

```
tidyset['Market_category'].value_counts()

Services 275683
Facilities and Material 75345
Pharmaceuticals 60834
Food 58119
Name: Market_category, dtype: int64
```

Exploratory Data Analysis - EDA

The process to identify distribution of data, interesting patterns and relationships

df.describe()								
	Fiscal_earned_year	due_month	due_year	Check_Amount	average			
count	469981.000000	469981.000000	469981.000000	4.699810e+05 4	9937.000000			
mean	2017.432907	6.527130	2017.080503	3.756390e+05	2.669564			
std	3.348826	3.385413	3.339391	8.396662e+05	0.829403			
min	2003.000000	1.000000	2003.000000	1.000000e-02	0.000000			
25%	2015.000000	4.000000	2014.000000	4.333560e+03	2.166667			
50%	2018.000000	7.000000	2017.000000	4.283750e+04	3.000000			
75%	2020.000000	10.000000	2020.000000	2.854871e+05	3.000000			
max	2023.000000	12.000000	2023.000000	1.040222e+07	50.125000			

EDA – Explore check amount over the months

	count	mean	std	min	25%	50%	75%	max
due_month								
1	40770.0	368087.547236	8.475536e+05	0.01	4440.180	38393.150	269093.400	10402223.49
2	20262.0	538780.313036	1.001674e+06	0.01	10132.600	100251.765	558136.060	10402223.49
3	50697.0	339123.331443	7.912393e+05	0.01	3411.230	32170.510	221934.790	10402223.49
4	44889.0	354586.877413	7.793226e+05	0.01	4167.720	37241.010	252359.750	10402223.49
5	43601.0	405626.971865	8.401811e+05	0.01	4526.440	48736.460	330080.840	10402223.49
6	31995.0	351205.058508	8.367194e+05	0.01	4204.030	42492.100	266368.220	10402223.49
7	40279.0	339548.794049	7.798081e+05	0.01	3860.475	34755.750	249318.175	10402223.49
8	44939.0	387962.722329	8.061968e+05	0.01	4628.280	49827.650	320025.380	10402223.49
9	33560.0	359304.664603	8.701706e+05	0.01	3958.965	40570.850	260535.150	10402223.49
10	40886.0	355829.950017	8.274714e+05	0.01	3861.620	36150.110	259233.310	10402223.49
11	44890.0	420196.619363	9.157700e+05	0.01	4795.200	48971.200	320025.380	10402223.49
12	33213.0	361504.696024	8.490653e+05	0.01	4522.910	44503.200	261524.390	10402223.49

EDA – Explore check amount over different Market Categories

	count	mean	std	min	25%	50%	75%	max
Market_category								
Facilities and Material	75345.0	161928.971556	383905.206032	0.01	2744.10	20734.46	120187.64	4055237.17
Food	58119.0	334425.961958	928337.729229	0.01	3691.25	25266.35	101703.17	10402223.49
Pharmaceuticals	60834.0	188127.402373	452287.878056	0.01	1974.46	14226.44	113995.83	10402223.49
Services	275683.0	484112.543506	949987.127179	0.01	7031.06	82961.98	478868.47	10402223.49

Market Category Facilities and Material

Pharmaceuticals

Food

Services

EDA – Explore Due Month and Market Categories

EDA – Data Distribution

Observations / Findings

- The most influential feature (predictor) is the Market Category. However, based on the feature important analysis, year and contract frequency which is how often the check payments are received seem highly influential.
- Of the various market categories, Services is the biggest contributor.
- The contracts that are set up to pay annually has the highest contribution,
 when compared to contracts that are setup to pay monthly and quarterly.

Modeling

- Applied 3 different models
 - Linear Regression
 - Random Forest
 - Gradient Boost Regressor
- Comparisons were made after Hyperparameter Tuning

Model Comparison

Standard Models comparison

Hyperparameter - Models comparison

Linear Regression

Mean Squared Error (MSE): 3.23E+16
Root Mean Squared Error (RMSE): 1.80E+08
Mean Absolute Error (MAE): 1.15E+08
R-squared: 0.45

Random Forest

Mean Squared Error (MSE): 4.36E+15
Root Mean Squared Error (RMSE): 6.60E+07
Mean Absolute Error (MAE): 2.86E+07
R-squared: 0.93

Gradient Boosting Regressor

Mean Squared Error (MSE): 5.54E+15
Root Mean Squared Error (RMSE): 7.44E+07
Mean Absolute Error (MAE): 4.10E+07
R-squared: 0.90

Random Forest

Mean Squared Error (MSE): 5.31E+15
Root Mean Squared Error (RMSE): 7.29E+07
Mean Absolute Error (MAE): 3.17E+07
R-squared: 0.91

Gradient Boost

Mean Squared Error (MSE): 4.12E+15
Root Mean Squared Error (RMSE): 6.42E+07
Mean Absolute Error (MAE): 2.64E+07
R-squared: 0.93

Model Performance – before Hyperparameter Tuning

1.2

1e9

Model Performance – After Hyperparameter Tuning

Future Work

- The model performance in my opinion is moderate. I believe the performance can be improved and is proposed as future work.
- For the lack of experience and understanding I realized feature engineering was not successfully implemented when training the models.
- As future work I suggest feature engineering specifically scaling and imputation to better handle the huge variances that are shown as outliers.
- Additionally apply binning on the check amount to see Better and more feature engineering techniques – imputation, scaling, binning and bucketing