JUSTIFIQUEU TOTES LES RESPOSTES.

1. $(6 \times 0.8 \text{ punts})$

i) Quants grafs diferents hi ha amb conjunt de vèrtexs [5] i 8 arestes? Quants n'hi ha de no isomorfs? Un graf amb conjunt de vèrtexs [5] té $\binom{5}{2} = 10$ possibles arestes. Com que ens diuen que els grafs han de ser diferents, qualsevol subconjunt de 8 d'aquestes arestes ens dóna un graf. Per tant, hi ha $\binom{10}{8} = 45$ grafs possibles.

En la segona part ens demanen quants grafs no isomorfs hi ha amb 5 vèrtexs i 8 arestes. Per trobar aquest nombre usem el graf complementari. Si un graf té 5 vèrtexs i 8 arestes, el seu complementari tindrà 5 vèrtexs i 2 arestes, i per tant tenim dues possibilitats: el graf format per un trajecte T_3 i dos vèrtexs aïllats, o bé el graf format per dues arestes disjuntes i un vèrtex aïllat. Els seus complementaris són els dos grafs no isomorfs amb 5 vèrtexs i 8 arestes.

ii) Trobeu la vèrtex-connectivitat i l'aresta-connectivitat del graf roda W_n , $n \ge 4$.

Tant la vèrtex-connectivitat com l'aresta-connectivitat són 3. El cas W_4 és un graf complet i sabem que la vèrtex connectivitat de K_n és n-1. Si $n \geq 5$, clarament aconseguim desconnectar si eliminem el vèrtex central i dos dels vèrtexs del cicle de la roda que no siguin adjacents. Hem de veure també que treient dos vèrtexs no es pot desconnectar. Si no treiem el vèrtex central, el resultat sempre serà connex, i si treiem el vèrtex central ens queda un cicle, que té vèrtex-connectivitat igual a 2 i que per tant no es pot desconnectar treient només un vèrtex.

Per veure que l'aresta-connectivitat és igual a 3 es pot fer un raonament semblant o bé usar les designaltats $\kappa \leq \lambda \leq \delta$, per tant, $3 \leq \lambda \leq 3$.

- iii) D'un arbre d'ordre 7 en sabem que té almenys un vèrtex de grau 2 i almenys un vèrtex de grau 3. Doneu totes les possibles seqüències de graus d'aquest arbre.
 - Si apliquem el lema de les encaixades a aquest arbre obtenim 3+2+a+b+c+d+e=12, on a,b,c,d,e són els graus que no coneixem. Com que és un arbre, tots els graus són almenys 1. Per tant les úniques opcions són (3,3,2,1,1,1,1) i (3,2,2,2,1,1,1).
- iv) D'un arbre T en sabem que el conjunt de vèrtexs és [10], que g(1) = g(2) = 3, g(3) = 4, g(4) = 2 i que la resta de vèrtexs són fulles. Quantes possibles seqüències de Prüfer pot tenir T?
 - Com que el número de vegades que apareix un vèrtex a la seqüència de Prüfer és el seu grau menys un, tenim que la seqüència del nostre arbre T conté dos 1's, dos 2's, tres 3's i un 4. Per tant, la seqüència és qualsevol permutació del 1,1,2,2,3,3,3,4. Per tant, una (2,2,3,1)-paraula en l'alfabet $\{1,2,3,4\}$. El nombre d'aquestes paraules ve donat pel nombre multinomial $\binom{8}{3,2,2,1}$.
- v) Definiu la matriu d'adjacència M d'un graf G. Si ara considerem M^2 , quin és el valor de l'entrada (i,j)?
 - Si G és un graf amb conjunt de vèrtexs $\{v_1, \ldots, v_n\}$, la seva matriu d'adjacència M és una matriu $n \times n$ i binària tal que a la posició (i, j) hi ha un 1 si i només si v_i i v_j són adjacents.
 - Si considerem M^2 , per la definició de multiplicació de matrius, tenim que a la posició (i, j) hi ha el valor de multiplicar escalarment la fila i de M per la columna j de M. Com que M és simètrica,

això és el mateix que fer el producte escalar de les files i i j. Si i = j, això dóna el grau de v_i . Si $i \neq j$, com que cada fila només té zeros i uns, el resultat del producte escalar serà el número de columnes on tant a la fila i com a la fila j hi ha un 1; és a dir, el número de vèrtexs que són adjacents simultàniament a v_i i a v_j . Si volem ho podem resumir dient que a la posició (i,j) de M^2 hi ha el número de $v_i - v_j$ -recorreguts de longitud 2.

- vi) Escolliu una de les dues questions seguents.
 - (A) Demostreu que en un graf connex la distància satisfà la designaltat triangular $d(u,v) \leq d(u,w) + d(w,v)$ per tot $u,v,w \in V$.

Recordem que d(x,y) és la longitud mínima d'un xy-camí. Sigui $uu_1u_2\cdots u_tw$ un uw-camí de longitud d(u,w) i sigui $ww_1w_2\cdots w_sv$ un wv-camí de longitud d(w,v). Considerem la concatenació

$$uu_1u_2\cdots u_tww_1w_2\cdots w_sv;$$

es tracta d'un uv-recorregut de longitud d(u, w) + d(w, v). Sabem que tot xy-recorregut conté un xy-camí, així que aquest uv-recorregut conté un uv-camí. Aquest uv-camí tindrà longitud com a molt d(u, w) + d(w, v), per tant aquest valor és una cota superior per a la longitud mínima d'un uv-camí, és a dir, la distància de u a v és com a molt d(u, w) + d(w, v).

(B) Demostreu la designaltat $D(G) \leq 2r(G)$, on D(G) és el diàmetre i r(G) és el radi d'un graf connex G.

Fet a classe, veure els apunts de teoria.

2. (0.5+1+1+0.7 punts)

Sigui G un graf d'ordre n amb conjunt de vèrtexs $\{v_1, \ldots, v_n\}$ i considereu el graf H amb conjunt de vèrtexs $V(H) = \{v_1, \ldots, v_n, u_1, \ldots, u_n\}$ i amb exactament les següents adjacències: u_i i u_j són adjacents per tot $i \neq j$; u_i i v_i són adjacents per tot $i \in [n]$; v_i i v_j són adjacents només si ho eren a G. Responeu les següents preguntes sobre H en termes dels paràmetres i propietats de G.

- i) Doneu l'ordre, la mida i la seqüència de graus de H.
 - Siguin n, m, g(v) l'ordre, la mida i els graus de G. Clarament H té 2n vèrtexs. El nombre d'arestes és $m + n + \binom{n}{2}$; el primer terme són les arestes que uneixen vèrtexs v_i , el segon les arestes que uneixen v_i amb u_i , i el tercer les arestes que uneixen els vèrtexs u_i entre ells formant un complet. El grau de v_i en H és $g(v_i) + 1$, mentre que el grau de u_i és n.
- ii) Doneu una condició necessària i suficient per a que H sigui eulerià.
 - Un graf és eulerià si i només si és connex i tots els seus graus són parells. H és sempre connex ja que el subgraf induït per $\{u_1, \ldots, u_n\}$ és un complet i tots els altres vèrtexs són adjacents a algun vèrtex del complet. Per tant n'hi ha prou assegurant la condició dels graus parells, que pel que hem fet a l'apartat anterior es tradueix en que n sigui parell i tots els graus de G siguin senars.
- iii) Demostreu que si G té un camí hamiltonià, aleshores H és hamiltonià. Doneu un exemple en què H sigui hamiltonià i G no tingui un camí hamiltonià.

Prenem un camí hamiltonià de G, per exemple suposem que és v_1, v_2, \ldots, v_n . Per aconseguir un cicle hamiltonià a H fem el següent recorregut: $v_1, v_2, \ldots, v_n, u_n, u_{n-1}, \ldots, u_1, v_1$; això és possible ja que tenim totes les adjacències entre els vèrtexs u_i .

El graf G de la figura no és connex (i per tant no té cap camí hamiltonià), però el graf H associat té un cicle hamiltonià (les arestes discontínues).

iv) Quants arbres generadors té H que no contenen cap aresta de la forma $v_i v_j$?

Com que un arbre generador ha de contenir tots els vèrtexs del graf i ens diuen que no pot haver-hi cap aresta v_iv_j , no hi ha més remei que usar totes les arestes de la forma u_iv_i , que seran fulles de l'arbre generador. Com que l'arbre generador ha de ser connex, hem d'afegir un arbre generador dels vèrtexs u_i . Per tant els arbres generadors de H que busquem consisteixen en un arbre generador del subgraf induït per u_1, \ldots, u_n més les arestes u_iv_i . Com que els vèrtexs u_1, \ldots, u_n indueixen un complet, el nombre d'arbres generadors de H amb la condició que demanen és el nombre d'arbres generadors de K_n , que pel teorema de Cayley és n^{n-2} .

3. $(2 \times 1 \text{ punts})$

i) Demostreu que el complementari d'un graf no connex té diàmetre com a molt 2, i digueu en quin cas té diàmetre exactament igual a 1.

Veiem que per a que el diàmetre sigui igual a 1 hem d'estar sempre en el cas a), és a dir, que tots els vèrtexs siguin dos a dos no adjacents en G. Això vol dir que G és un graf nul.

ii) Calculeu (justificadament, com sempre) el diàmetre del complementari del graf trajecte T_n , per tot $n \ge 2$.

El complementari de T_2 és N_2 , que és no connex i per tant té diàmetre infinit. El complementari de T_3 tampoc no és connex. El complementari de T_4 és T_4 , per tant té diàmetre 3.

Ara veurem que si $n \geq 5$, el complementari de T_n té diàmetre igual a 2. Siguin x i y els vèrtexs de T_n que tenen grau 1 i siguin u,v dos vèrtexs qualssevol de T_n . Hem de veure que la distància en T_n^c de u a v és com a molt dos. Com al primer apartat, si u i v no són adjacents en T_n , estan a distància 1 en el complementari. Ara suposem que u i v són adjacents en T_n . Com que T_n té almenys 5 vèrtexs, podem afirmar que respecte un dels extrems x o y, el vèrtexs u,v estan a distància dos o més. És a dir, que en el complementari tant u com v són adjacents a un dels dos extrems, per exemple a x. Aleshores per anar de u a v en el complementari podem fer u, x, v, i això demostra que T_n^c té diàmetre dos.