STAT 2011 Tutorial 2

Qian(Jessie) Jin March, 2023

Counting Permutation

• Multiplication Rule:

Theorem 2.1.1 (Multiplication rule). If operation A_i , i = 1, ..., k, can be performed in n_i different ways, respectively, then the ordered sequence

(operation A_1 , operation A_2 , ..., operation A_k)

can be performed in

$$n_1 n_2 \dots n_k = \prod_{i=1}^k n_i \ ways.$$

• Permutation:

Theorem 2.1.2. The number of permutations of length k that can be formed from a set of n distinct elements, repetitions not allowed, is denoted by the symbol ${}_{n}P_{k}$, where

$$_{n}P_{k} = n(n-1)(n-2)\dots(n-k+1) = \frac{n!}{(n-k)!}$$

• Stirlings formula:

Corollary 2.1.3. The number of ways to permute an entire set of n distinct objects is ${}_{n}P_{n}=n!$.

Note, n! can be approximated by **Stirlings formula** for large n:

$$n! \approx \sqrt{2\pi} n^{\frac{2n+1}{2}} e^{-n}.$$

Arranging n objects with r classes:

Theorem 2.1.4. The number of ways to arrange n objects, n_1 being of one kind, n_2 of a second kind, etc to n_r of an rth kind, is

$$\frac{n!}{n_1! \, n_2! \, \dots \, n_r!}, \quad \textit{where } n = \sum_{i=1}^r n_i$$

Counting Combination

Combination is when order doesn't matter

Theorem 2.2.1. The number of ways to form combinations of size k from a set of n distinct objects, repetitions not allowed, is denoted by the symbols $\binom{n}{k}$ or ${}_{n}C_{k}$, where

$$\binom{n}{k} = {}_{n}C_{k} = \frac{n!}{k!(n-k)!}$$

· Properties:

Theorem 2.2.2. For $n \geq k \geq 1$,

$$\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1}$$

Theorem 2.2.3. Let $n \ge k \ge 0$,

$$\sum_{k=0}^{n} \binom{n}{k} = 2^n$$