

Lecture 12

Thermal Design

Heat Spreading & Thermal Vias

Reminders and Announcements

- Homework #2 solutions posted to Canvas
- Homework #3 due Thursday, March 6th, by 11:59pm
- Office Hours: Wednesday 3:30pm-5:00pm
- Please put the course number in the subject line in emails to the instructor and TA (this helps us filter our inboxes so we don't miss your messages)
- Uploaded "ANSYS Q3D Reduce Matrix Feature" to Canvas Course Gallery, which shows how to simulate different nets in series and parallel configurations

Midterm: Thursday, March 20th, 5:00pm-6:15pm

- If you are located in Blacksburg, then you should take the exam in-person in TORG 1050, even if you are enrolled in the virtual section of the course
- If you are enrolled in the virtual campus, please email me by March 5th indicating if you will take the exam virtually or in-person in Arlington or Blacksburg
- Will cover the topics in lectures 1-6 (packaging overview and electrical design) and 9-13 (transmission lines and thermal design)
- The lecture on March 18th will be a review session → come ready with questions or topics you would like to cover
- You will <u>not</u> be asked to do any simulations for the midterm
- The problems will be a mix of conceptual short response and calculation problems
- Things to bring to the exam: writing utensils & non-programmable calculator
- An equation/reference sheet and extra paper will be provided by the proctor
- The reference sheet will be uploaded to Canvas next week; you do <u>not</u> need to print out the reference sheet

Package Thermal Resistance

- θ_{ia} can be separated into two parts:
 - Junction-to-case, θ_{jc}
 - Case-to-ambient, θ_{ca}

$$\theta_{ja} = \theta_{jc} + \theta_{ca}$$

- Junction-to-case, θ_{jc}
 - Depends on the internal construction of the package
 - Depends on length, cross-sectional area, and k
- Case-to-ambient, θ_{ca}
 - Depends on the mounting and cooling techniques
 - Depends on wetted surface area and h

Heat Spreading Approximation

• The effective area A_{eff} for the heat flow through this layer can be approximated by averaging the heat source area A_{die} and the base area A_{spread} :

$$A_{eff} = (A_{spread} + A_{die}) / 2$$

$$= [(2L + w)(2L + w) + (w \times w)] / 2$$

Lateral Heat Spreading

➤ Choose base plate width & thickness such that the base plate width≈ heat spreading width at the base

Example: Heat Spreading

Find the thermal resistance of a copper base plate with dimensions of 15 \times 15 \times 4 mm³. The dimensions of the heat-generating component (die) on top of the base plate are 5 \times 5 \times 1 mm³. Assume a heat spreading angle of 45°.

- $w_{die} = 5 \text{ mm}$
- $A_{die} = 5 \text{ mm x } 5 \text{ mm} = 25 \text{ mm}^2$
- $L_{BP} = 4 \text{ mm}$
- $w_{BP} = 15 \text{ mm}$

Check that $w_{spread} \leq w_{BP}$:

• $w_{spread} = (2L + w_{die}) = 2(4mm) + 5mm = 11 mm < 15 mm$

Example: Heat Spreading

Find the thermal resistance of a copper base plate with dimensions of 15 \times 15 \times 4 mm³. The dimensions of the heat-generating component (die) on top of the base plate are 5 \times 5 \times 1 mm³. Assume a heat spreading angle of 45°.

- $w_{die} = 5 \text{ mm}$
- $A_{die} = 5 \text{ mm x } 5 \text{ mm} = 25 \text{ mm}^2$
- $L = L_{BP} = 4 \text{ mm}$
- $A_{spread} = (2L_{BP} + w_{die})(2L_{BP} + w_{die})$ = (2(4mm) + 5mm)(2(4mm) + 5mm)= 169 mm^2

Example: Heat Spreading

Find the thermal resistance of a copper base plate with dimensions of 15 \times 15 \times 4 mm³. The dimensions of the heat-generating component (die) on top of the base plate are 5 \times 5 \times 1 mm³. Assume a heat spreading angle of 45°.

•
$$A_{eff} = (A_{spread} + A_{die}) / 2$$

= $(169 \text{ mm}^2 + 25 \text{ mm}^2) / 2$
= $97 \text{ mm}^2 = 0.000097 \text{ m}^2$

• $R_{th,BP} = L_{BP} / (k_{BP} A_{eff})$ = 0.004 m / [(390 W/(mK))(9.7e-5 m²)]

= 0.106 K/W

Example: Smaller Base Plate Area

- Silicon die: 5 x 5 x 1 mm
- Copper baseplate: 5 x 5 x 4 mm
- Find the thermal resistance of the base plate.
- $A_{spread} = A_{BP} = A_{die}$
- $\bullet R_{th,BP} = L_{BP} / (k_{BP} A_{BP})$
 - $= 0.004 \text{ m} / [(390 \text{ W/(mK)})(2.5e-5 \text{ m}^2)]$
 - = 0.410 K/W
- $ightharpoonup R_{th,BP}$ increases by $\mathbf{4x}$ because there is no room for heat spreading (A_{BP}) is smaller

Example: Thicker Base Plate Area

- Silicon die: 5 x 5 x 1 mm
- Copper baseplate: 15 x 15 x 6 mm

Check that $w_{spread} \leq w_{BP}$:

- $w_{spread} = (2L + w_{die}) = 2(6mm) + 5mm = 17 mm > 15 mm!$
- The bottom of the base plate is not helping with the heat spreading

Base Plate/Heat Spreader

$$R_{th,conv} = \frac{1}{hA_s}$$

For the same h,

$$R_{th,convA_1} > R_{th,convA_2}$$

*note: if h is high, then Z heat flow > X, Y heat flow, so heat spreading is low and the baseplate becomes less effective.

Impact of Base Plate/Heat Spreader

Thermal Conductivities

Part	DBC module		Baseplate modules	
Die [W/mK]	Silicon [148]		Silicon [148]	
Solder [W/mK]	SnAg [62]		SnAg [62]	
DBC [W/mK]	Al ₂ O ₃ [25]	AIN [155]	Al ₂ O ₃ [25]	AIN [155]
Solder [W/mK]			SnA	g [62]
Baseplate [W/mK]	<u></u>	<u> </u>	Cu [401]	AISiC [180]

Coefficients of Thermal Expansion (CTE)

Part	DBC module		Baseplate modules	
Die [10 ⁻⁶ /K]	Silicon [2.8]		Silicon [2.8]	
Solder [10 ⁻⁶ /K]	SnAg [22.1]		SnAg [22.1]	
DBC [10 ⁻⁶ /K]	Al ₂ O ₃ [8.2]	AIN [4.5]	Al ₂ O ₃ [8.2]	AIN [4.5]
Solder [10 ⁻⁶ /K]			Sn	Ag [22.1]
Baseplate [10 ⁻⁶ /K]			Cu [16.5]	AISiC [8.4]

https://www.power-mag.com/pdf/feature_pdf/1319729749_Vincotech_Layout_1.pdf

Heat Spreading in MCM = Thermal Coupling: Common Substrate

Heat Spreading in MCM = Thermal Coupling: Common Base Plate

Simplified Heat Flow Path

 Thermal coupling at substrate level due to multiple dies

 Thermal coupling at base plate level due to multiple substrates

Impact of Thermal Coupling

- Large dies may have greater ΔT across the area, and therefore worse thermal spreading than smaller dies
- Several smaller dies with the same overall area have a lower R_{th}
- If the spacing between chips is small, the chips heat up one another (thermal coupling)
- Greater spacing between chips further lowers R_{th}

Heat Spreading Summary

- Heat spreading occurs when:
 - Heat flow in X, Y > heat flow in Z
 - k and/or h of downward layer is low (high R_{th} , low q)

- 45° heat spreading angle is a good approximation for high-k materials
 - Use to find effective heat transfer area through the spreading layer
- Close spacing of chips can increase T_j due to thermal coupling

Biot Number (Bi)

- Compares convective heat transfer to conductive heat transfer
- Dimensionless quantity
- Bi = hL/k
 - h is the convective or interfacial heat transfer coefficient (W/m²K)
 - L is a characteristic length (m) (e.g., heat spreader thickness)
 - k is the thermal conductivity of the solid (W/mK)
- For $Bi \ll 1$
 - Strong heat spreading, high convective R_{th}
- For $Bi \gg 1$
 - Weak heat spreading and high temperature gradient inside the solid due to high conductive R_{th}

Impact of Heat Spreader Area and Thickness

*heat spreader thickness is fixed

Heat Spreader Temp. vs. Thickness**

**heat spreader width = length and are fixed

Thermal Vias & Metal Planes

Thermal Vias

Material	Thermal Conductivity (W/mK)
Silicon	145
Mold Compound	0.7
Lead Frame	277
Die Attach Epoxy	2.4
Copper	388
FR4 PCB	0.35
SnAgCu Solder	57.3
63Sn37Pb Colder	50

Thermal Vias

	Junction-to-Case Resistance	Case-to-Ambient Resistance	
Т	θ_{JCtop}	Case Node (Top) θ_{CA}	T _A
Junction	θ _{JB} (θ _{JCbottom})	Board Node θ _{BA}	Ambient
	Junction-to-Board Resistance	Т _ь Board-to-Ambient Resistance	

Material	Thermal Conductivity (W/mK)
Silicon	145
Mold Compound	0.7
Lead Frame	277
Die Attach Epoxy	2.4
Copper	388
FR4 PCB	0.35
SnAgCu Solder	57.3
63Sn37Pb Colder	50

Thermal Vias

- Vias can reduce the vertical R_{th}
- The equivalent vertical (Z-direction) thermal conductivity is:

$$k_{zz} = k_m a_m + k_i (1 - a_m)$$

where

- $k_m = k$ of metal
- a_m = fraction of the *cross-sectional* area occupied by the metal vias
- $k_i = k$ of the insulator

Example: Thermal Vias

PCB has a through-hole via density of 25 per cm² of board area. The via hole diameter is 0.43 mm, and its inner surface is plated with 15- μ m-thick copper. Calculate the equivalent thermal conductivity value k_{zz} for this PCB. Use $k_{Cu} = 390$ W/(m·K) and $k_i = 0.2$ W/(m·K).

25

Example: Thermal Vias

Equivalent thermal conductivity in Z direction:

$$k_{zz} = k_m a_m + k_i (1 - a_m)$$

- Need a_m (fraction of the cross-sectional area occupied by the via metal)
- To find a_m , need the effective conducting area for each via
 - Via hole diameter = 0.43 mm
 - Via copper plating = 0.015 mm
 - Effective via conducting area = Total via area non-conductive via area

$$A_{cond} = \pi \left(\frac{0.43 \text{mm}}{2}\right)^2 - \pi (0.43 \text{mm}/2 - 0.015 \text{mm})^2 = 0.01956 \text{mm}^2$$

$$-a_m = 25 \frac{\text{vias}}{\text{cm}^2} \times 0.0001956 \text{cm}^2 = 0.004889$$

•
$$k_{zz} = 390 \frac{W}{m \cdot K} (0.004889) + 0.2 \frac{W}{m \cdot K} (1 - 0.004889) = 2.11 \frac{W}{m \cdot K}$$

Metal Planes

• Metal planes can reduce the lateral R_{th} by increasing the effective thermal conductivity in the XY plane:

$$k_{xy} = k_m t_m + k_i (1 - t_m)$$

where

- $k_m = k$ of metal
- t_m = fraction of the *thickness* occupied by the metal planes
- $k_i = k$ of the insulator

Tummala, 1st Ed.

Example: Metal Planes

A PCB has two power layers and two ground layers, each with a 50-µm-thick copper plane. The power and ground layers are separated by 200-µm-thick dielectric (insulator) layers. Calculate the equivalent thermal conductivity value k_{xy} for this PCB. Use $k_{Cu} = 390$ W/(m·K) and $k_i = 0.2$ W/(m·K).

Example: Metal Planes

Equivalent thermal conductivity in XY direction:

$$k_{xy} = k_m t_m + k_i (1 - t_m)$$

- Need t_m (fraction of the thickness area occupied by the metal planes)
 - Total metal thickness = 50 μm/layer x 4 layers = 200 μm
 - Total insulator thickness = 200 μm/layer x 5 layers = 1000 μm

$$t_m = \frac{200 \mu \text{m}}{1000 \mu \text{m} + 200 \mu \text{m}} = 0.167$$

•
$$k_{xy} = 390 \frac{W}{m \cdot K} (0.167) + 0.2 \frac{W}{m \cdot K} (1 - 0.167) = 65.17 \frac{W}{m \cdot K}$$

 Note: if there are unfilled vias cutting through the plane, the XY thermal conductivity will be reduced Tummala, 1st Ed.

Example: Metal Planes

• If L = w for the PCB, the equivalent thermal resistance in XY direction:

$$R_{th,xy} = \frac{L}{k_{xy}A} = \frac{1}{\left(65.17 \frac{W}{\text{m} \cdot \text{K}}\right)(0.0012\text{m})} = 12.8 \text{ K/W}$$

- Alternatively, could find the thermal resistance of the copper layer in XY and the insulator layer in XY and then use the parallel rule:
- $R_{th,xy,Cu} = \frac{L}{k_{Cu}A} = \frac{1}{\left(390\frac{W}{m\cdot K}\right)(0.00005m)} = 51.2\frac{K}{W} \text{ per layer } \Rightarrow \div 4 = 12.8\frac{K}{W}$
- $R_{th,xy,i} = \frac{L}{k_{xy}A} = \frac{1}{\left(0.2 \frac{W}{m \cdot K}\right)(0.0002m)} = 25000 \frac{K}{W} \text{ per layer } \Rightarrow \div 5 = 5000 \frac{K}{W}$
- $R_{th,xy,Cu} \parallel R_{th,xy,i} = \left(\frac{1}{12.8\text{K/W}} + \frac{1}{5000\text{K/W}}\right)^{-1} = 12.8 \text{ K/W}$

Metal Planes

- Metal planes spread heat laterally, which reduces local temperature rises
- FEA simulation of 7.5 mm² chip dissipating 1 W on different PCBs
 - Adding a plane of 1 oz copper reduces the maximum ΔT by 86 %
 - 1 oz \rightarrow 2 oz reduces ΔT_{max} by 35 %
 - 2 oz \rightarrow 4 oz reduces ΔT_{max} by 35 %

4 oz Copper: $\Delta T_{max} = 9$ °C

Convection

- Transfer of heat between the surface of a body and a fluid in motion
- Newton's Law of Cooling:

$$q = hA_s(T_s - T_f)$$

- *q* = heat (W)
- $h = \text{convective heat transfer coefficient (W/(m^2K))}$
- A_s = wetted surface area (m²)
- T_s = surface temperature (°C)
- T_f = bulk temperature of fluid (°C)
- Rearranging the above equation:

$$\frac{1}{hA_s} = \frac{\left(T_s - T_f\right)}{q} \rightarrow R_{th,conv} = \frac{1}{hA_s}$$

Conduction & Convection Thermal Resistances

$$q = \frac{kA_c(T_h - T_c)}{L} \qquad R_{th,cond} = \frac{L}{kA_c}$$

q = heat(W)

k = thermal conductivity (W/(m-K))

 $A_c = \text{cross-sectional area (m}^2\text{)}$

L = length q needs to travel (m)

 $T_h = \text{hot temperature (°C)}$

 $T_c = \text{cold temperature (°C)}$

$$q = hA_s(T_s - T_f)$$
 $R_{th,conv} = \frac{1}{hA_s}$

 $h = \text{heat transfer coefficient (W/(m}^2\text{K)})$

 A_s = wetted surface area (m²)

 $T_s = \text{surface temperature (°C)}$

 T_f = bulk temperature of fluid (°C)

Convection Heat Transfer Coefficient h

$$q = hA_s(T_s - T_f)$$

- h depends on the properties of the fluid, the velocity of the fluid, and the surface geometry
- h can be determined empirically or analytically

Cooling Method	h (W/(m²K))
Free (natural) convection	5 – 25
Forced convection, air	25 – 250
Forced convection, water	100 — 10,000
Boiling water	1,000 - 50,000
Condensing steam	5,000 - 100,000

Heat Transfer Coefficients

ECE 4254/5224: Electronics Packaging

Types of Convection

- Free (or natural)
 - Occurs due to buoyancy effects: hotter fluid adjacent to a hot surface rises, leading to the transfer of heat from the hot surface

Forced

- Occurs when heat is transported from a hot surface by a fluid stream moved by an external stimulant (e.g., fan, pump)
- Mixed (combination of free and forced)
 - Occurs when the forced fluid velocity is low such that heat transfer due to free and forced convection are of similar magnitudes