

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA

MAT02023 - INFERÊNCIA A - 2019/1

Plano Aula 5

Markus Stein 26 March 2019

Inferência Estatística

• Estimação (pontual × intervalar) versus Teste de hipóteses.

Estimação pontual

Definição: Estimador pontual (Casella e Berger, 7.1.1);

- * Método dos momentos:
- * Método da máxima verossimilhança;
- * Método de Bayes.

Método dos momentos (Casella e Berger, seção 7.2.1)

• Definição;

Exemplo 1: encontre os estimadores pelo método dos momentos dos parâmetros assumindo que uma amostras aleatórias das seguintes distribuições foi observada:

- a. X_1, X_2, \ldots, X_n onde $X_1 \sim Binomial(k, \pi)$.
- b. X_1, X_2, \ldots, X_n onde $X_1 \sim Poisson(\lambda)$.
- c. (Aproximação de Satterthwaite) X_1, X_2, \ldots, X_n onde $X_1 \sim \chi_{r_i}^2$. Se $a_1, \ldots a_n$ são constantes conhecidas, qual a distribuição de $\sum_{i=1}^n a_i X_i$?

Método da Máxima Verossimilhança (Casella e Berger, seção 7.2.2)

- Definição de função de verossimilhança;
- Definição do estimador de máxima verossimilhança (EMV);

Exemplo 2: Seja X_1, X_2, \dots, X_n uma amostra aleatória tal que $X_1 \sim Bernoulli(\pi)$, encontre o estimador de máxima verossimilhança para π .

Tarefa 1: Reler slides e referências;

Tarefa 2: Seja X_1, X_2, \dots, X_n amostra aleatória tal que:

- $X_1 \sim Poisson(\lambda)$, encontre o estimador de máxima verossimilhança para λ ;
- $X_1 \sim Uniforme(0, \theta)$, encontre o estimador de máxima verossimilhança para θ ;
- $X_1 \sim Normal(\mu, \sigma^2)$, encontre o estimador de máxima verossimilhança para $\theta = (\mu, \sigma^2)$.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA

MAT02023 - INFERÊNCIA A - 2019/1

Exemplo Função de Verossimilhança da dist. Bernoulli

```
n <- 20

amostra <- rbinom(20, 1, 0.75) # verdadeiro p = 0.75

p <- seq(0,1,0.01)

Pamostra <- dbinom(sum(amostra), n, p)

plot(p, Pamostra, type = "l")
```


Exemplo Função de Verossimilhança da dist. Normal

```
n <- 20
amostra <- rnorm(n, 150, 15)
mu <- seq(140,160,0.1)
Pamostra <- dnorm(sum(amostra), n*mu, 15)
plot(mu, Pamostra, type = "l")</pre>
```

