Markov Decision Process

I-Chen Wu

- Sutton, R.S. and Barto, A.G., Reinforcement Learning: An Introduction, MIT Press, Cambridge, MA, 1998. (Bible for RL)
 - http://webdocs.cs.ualberta.ca/~sutton/book/ebook/the-book.html
 - Chapters 3-4
- David Silver, Online Course for Deep Reinforcement Learning.
 - http://www.cs.ucl.ac.uk/staff/D.Silver/web/Teaching.html
 - Chapters 2-3

Outline

- Introduction
- Markov Property
- Markov Process
- Markov Reward Process (MRP)
- Markov Decision Process (MDP)
- Partially Observable Markov Decision Process (POMDP)

The purpose of this chapter:

Introduce all kinds of Markov processes

Introduction

- Markov decision processes formally describe an environment for reinforcement learning
 - where the environment is fully observable.
 - i.e. The current state completely characterizes the process
 - E.g., 2048.
- Almost all RL problems can be formalized as MDPs, e.g.
 - Optimal control primarily deals with continuous MDPs
 - Partially observable problems can be converted into MDPs
 - Bandits are MDPs with one state

Markov Property

Markov Property:

- "The future is independent of the past given the present"
- Definition: A state S_t is Markov if and only if $\mathbb{P}[S_{t+1} | S_t] = \mathbb{P}[S_{t+1} | S_1, ..., S_t]$

Comments:

- The state captures all relevant information from the history
- Once the state is known, the history may be thrown away
- i.e. The state is a sufficient statistic of the future
- But, what if the history does matter?
 - Simply let S_t carry all information of history, $H_t = (S_1, ..., S_{t-1})$.
 - E.g., the castling rule for chess.
 - Then, it satisfies Markov Property.

Markov Process

- A Markov process is a memoryless random process,
 - i.e. a sequence of random states S_1 , S_2 , ... with the Markov property.

Definition:

- A Markov Process (or Markov Chain) is a tuple $\langle S, P \rangle$
 - S is a (finite) set of states
 - \mathcal{P} is a state transition probability matrix (part of the environment), $\mathcal{P}_{ss'} = \mathbb{P}[S_{t+1} = s' | S_t = s]$

State Transition Matrix

• For a Markov state *s* and successor state *s'*, the state transition probability is defined by

$$\mathcal{P}_{ss'} = \mathbb{P}[S_{t+1} = s' | S_t = s]$$

• State transition matrix \mathcal{P} : (assume n states)

$$\mathcal{P} = egin{bmatrix} \mathcal{P}_{11} & \dots & \mathcal{P}_{1n} \\ \dots & & \dots \\ \mathcal{P}_{n1} & \dots & \mathcal{P}_{nn} \end{bmatrix}$$

- Each row of matrix sums to 1.

Markov Reward Process (MRP)

A Markov reward process is a Markov chain with values.

Definition:

- A Markov Reward Process is a tuple $\langle S, P, R, \gamma \rangle$
 - S is a finite set of states
 - \mathcal{P} is a state transition probability matrix (part of the environment), $\mathcal{P}_{ss'}^a = \mathbb{P}[S_{t+1} = s' | S_t = s, A_t = a]$
 - \mathcal{R} is a reward function, $\mathcal{R}_s^a = \mathbb{E}[R_{t+1}|S_t = s, A_t = a]$
 - γ is a discount factor $\gamma \in [0, 1]$.

Example: Student MRP

Return

Definition

• The return G_t is the total discounted reward from time-step t.

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

Notes:

- The discount $\gamma \in [0, 1]$ is the present value of future rewards
- The value of receiving reward R is diminishing
 - $-\gamma^k R$, after k+1 time-steps.
- This values immediate reward above delayed reward.
- Discount:
 - γ close to 0 leads to "myopic" evaluation
 - $-\gamma$ close to 1 leads to "far-sighted" evaluation

Value Function

- The value function v(s) gives the long-term value of s
- Definition
 - The state value function v(s) of an MRP is the expected return starting from state s
 - $-v(s) = \mathbb{E}[G_t \mid S_t = s]$

Bellman Equation for MRPs

- The value function can be decomposed into two parts:
 - immediate reward R_{t+1}
 - discounted value of successor state $\gamma v(S_{t+1})$

•
$$v(s) = \mathbb{E}[G_t \mid S_t = s]$$

= $\mathbb{E}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \cdots \mid S_t = s]$
= $\mathbb{E}[R_{t+1} + \gamma (R_{t+2} + \gamma R_{t+3} + \cdots) \mid S_t = s]$
= $\mathbb{E}[R_{t+1} + \gamma G_{t+1} \mid S_t = s]$
= $\mathbb{E}[R_{t+1} + \gamma v(S_{t+1}) \mid S_t = s]$

• For a transition (s, r, s'), we have

$$v(s) = \mathcal{R}_s + \gamma \sum_{s' \in S} \mathcal{P}_{ss'} v(s')$$

Bellman Equation in Matrix Form

 The Bellman equation can be expressed concisely using matrices,

$$v = \mathcal{R} + \gamma \mathcal{P} v$$

- where v is a column vector with one entry per state.

$$\begin{bmatrix} v(1) \\ \dots \\ v(n) \end{bmatrix} = \begin{bmatrix} R_1 \\ \dots \\ R_n \end{bmatrix} + \gamma \begin{bmatrix} \mathcal{P}_{11} & \dots & \mathcal{P}_{1n} \\ \dots & \dots \\ \mathcal{P}_{n1} & \dots & \mathcal{P}_{nn} \end{bmatrix} \begin{bmatrix} v(1) \\ \dots \\ v(n) \end{bmatrix}$$

Solving the Bellman Equation

- The Bellman equation is a linear equation
- It can be solved directly:

$$v = \mathcal{R} + \gamma \mathcal{P} v$$
$$v = (1 - \gamma \mathcal{P})^{-1} \mathcal{R}$$

- Computational complexity is $O(n^3)$ for n states
- Direct solution only possible for small MRPs
- There are many iterative methods for large MRPs, e.g.
 - Dynamic programming
 - Monte-Carlo evaluation
 - Temporal-Difference learning

Markov Decision Processes (MDP)

A Markov Decision Process is a tuple

$$\langle \mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma \rangle$$

- S is a finite set of states
- $-\mathcal{A}$ is a finite set of actions
- \mathcal{P} is a state transition probability matrix (part of the environment), $\mathcal{P}_{ss'}^a = \mathbb{P}[S_{t+1} = s' | S_t = s, A_t = a]$
- \mathcal{R} is a reward function, $\mathcal{R}_s^a = \mathbb{E}[R_{t+1}|S_t = s, A_t = a]$
- γ is a discount factor $\gamma \in [0, 1]$.

Example: Recycling Robot

Figure 3.3: Transition graph for the recycling robot example.

Example: Recycling Robot

• Transition and Rewards:

s	s'	a	p(s' s,a)	r(s, a, s')
high	high	search	α	$r_{\mathtt{search}}$
high	low	search	$1-\alpha$	$r_{\mathtt{search}}$
low	high	search	$1-\beta$	-3
low	low	search	β	$r_{\mathtt{search}}$
high	high	wait	1	$r_{\mathtt{wait}}$
high	low	wait	0	$r_{\mathtt{wait}}$
low	high	wait	0	$r_{\mathtt{wait}}$
low	low	wait	1	$r_{\mathtt{wait}}$
low	high	recharge	1	0
low	low	recharge	0	0.

Policies

- A policy is the agent's behavior
 - It is a map from state to action
 - A policy fully defines the behaviour of an agent
 - MDP policies depend on the current state (not the history)
 - i.e. Policies are stationary (time-independent),

$$A_t \sim \pi(\cdot | S_t), \forall t > 0$$

- Policy types:
 - Deterministic policy: $a = \pi(s_i)$
 - Stochastic policy: $\pi(a|s) = \mathbb{P}[A_t = a | S_t = s]$
 - ▶ Sometimes, written in $\pi(s, a)$.
- Examples:
 - In 2048: Up/down/left/right
 - In robotics: angle/force/...

Policy and MRP

- Given an MDP $\langle S, A, P, R, \gamma \rangle$ and a policy π
- The state sequence $S_1, S_2, ...$ is a Markov process $\langle S, \mathcal{P}^{\pi} \rangle$
- The state and reward sequence S_1 , R_2 , S_2 , R_3 , ... becomes a Markov reward process (MRP) $\langle S, \mathcal{P}^{\pi}, \mathcal{R}^{\pi}, \gamma \rangle$
 - $-\mathcal{P}^{\pi}$ is a state transition probability matrix (part of the environment),

$$\mathcal{P}^{\pi}_{ss'} = \sum_{a \in \mathcal{A}} \pi(a|s) \mathcal{P}^{a}_{ss'}$$

 $-\mathcal{R}^{\pi}$ is a reward function,

$$\mathcal{R}_{s}^{\pi} = \sum_{a \in \mathcal{A}} \pi(a|s) \mathcal{R}_{s}^{a}$$

• So, the property of MRP can be applied.

Value Function

- A value function is a prediction of future reward
 - Used to evaluate the goodness/badness of states
 - ▶ therefore to select between actions.
 - Return $G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \cdots$
- Types of value functions under policy π :
 - State value function: the expected return from s.

$$v_{\pi}(s) = \mathbb{E}_{\pi}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots \mid S_t = s]$$

= $\mathbb{E}_{\pi}[G_t \mid S_t = s]$

- Q-Value function: the expected return from s taking action a.

$$q_{\pi}(s, a) = \mathbb{E}_{\pi}[G_t \mid S_t = s, A_t = a]$$

- Examples:
 - In 2048, the expected score from a board S_t .

Bellman Expectation Equation for π

State value function:

$$v_{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \left(\mathcal{R}_{s}^{a} + \gamma \sum_{s' \in S} \mathcal{P}_{ss'}^{a} v_{\pi}(s') \right)$$

Bellman Expectation Equation for π

Q value

$$q_{\pi}(s,a) = \mathcal{R}_s^a + \gamma \sum_{s' \in S} \mathcal{P}_{ss'}^a \sum_{a' \in \mathcal{A}} \pi(a'|s') q_{\pi}(s',a')$$

Bellman Expectation Equation in Matrix

- The Bellman expectation equation can be expressed concisely using the induced MRP.
- So, it can be solved directly:

$$v_{\pi} = \mathcal{R}^{\pi} + \gamma \mathcal{P}^{\pi} v_{\pi}$$
$$v_{\pi} = (1 - \gamma \mathcal{P}^{\pi})^{-1} \mathcal{R}^{\pi}$$

Optimal Value Function

• The optimal state-value function $v_*(s)$ is the maximum value function over all policies

$$v_*(s) = \max_{\pi} v_{\pi}(s)$$

• The optimal action-value function $q_*(s, a)$ is the maximum action-value function over all policies

$$q_*(s,a) = \max_{\pi} q_{\pi}(s,a)$$

- Notes:
 - The optimal value function specifies the best possible performance in the MDP.
 - An MDP is "solved" when we know the optimal value fn.

Optimal Policy

• Define a partial ordering over policies $\pi \ge \pi'$, $v_*(s) = \max v_{\pi}(s)$ if $v_{\pi}(s) \ge v_{\pi'}(s)$, $\forall s$

• Theorem:

- There exists an optimal policy π_* that is better than or equal to all other policies, $\pi_* \geq \pi$, $\forall \pi$.
- All optimal policies achieve the optimal value function,
- All optimal policies achieve the optimal action-value function,

Finding an Optimal Policy

- An optimal policy can be found by maximizing over $q_*(s, a)$,
 - $-\pi(a|s) = 1$, if $a = argmax_a q_*(s, a)$
 - $-\pi(a|s)=0$, otherwise.
- There is always a deterministic optimal policy for any MDP
- If we know $q_*(s, a)$, we immediately have the optimal policy
- What about state value function $v_*(s)$?
 - Similar, but we need to know model, $\mathcal{P}_{ss'}^a$. \rightarrow not model free.

Bellman Optimality Equation for V*

$$v_*(s) = \max_{a} \left(\mathcal{R}_s^a + \gamma \sum_{s' \in S} \mathcal{P}_{ss'}^a \ v_*(s') \right)$$

Bellman Optimality Equation for Q*

$$q_{\pi}(s, a) = \mathcal{R}_s^a + \gamma \sum_{s' \in S} \mathcal{P}_{ss'}^a \max_{a' \in \mathcal{A}} q_{\pi}(s, a')$$

Solving the Bellman Optimality Equation

- Bellman Optimality Equation is non-linear
- No closed form solution (in general)
- Many iterative solution methods
 - Value Iteration
 - Policy Iteration
 - Q-learning
 - Sarsa
- Extensions to MDPs
 - Infinite and continuous MDPs
 - Partially observable MDPs
 - Undiscounted, average reward MDPs

Partially Observable Markov Decision Processes (POMDP)

- A POMDP is a tuple $\langle S, A, O, P, R, Z, \gamma \rangle$
 - \mathcal{S} is a finite set of states
 - $-\mathcal{A}$ is a finite set of actions
 - O is a finite set of observations
 - \mathcal{P} is a state transition probability matrix, $\mathcal{P}_{ss'}^a = \mathbb{P}[S_{t+1} = s' | S_t = s, A_t = a]$
 - \mathcal{R} is a reward function, $\mathcal{R}_s^a = \mathbb{E}[R_{t+1}|S_t = s, A_t = a]$
 - Z is an observation function, $Z_{s'o}^a = \mathbb{P}[O_{t+1} = o | S_{t+1} = s', A_t = a]$
 - γ is a discount factor $\gamma \in [0, 1]$.
- Examples:
 - Like Mahjong (麻將) in games, hidden scene in robotics.
- POMDP vs. MDP
 - A MDP can be trivially mapped onto a POMDP
 - A POMDP can be mapped onto an MDP:

Example: Mahjong

Partially observable:

I-Chen Wu

Value Iteration

$$v_{n+1}(s) = \max_{a \in A} \left(\mathcal{R}_s^a + \gamma \sum_{s' \in S} \mathcal{P}_{ss'}^a \ v_n(s') \right)$$

or:

$$V^{(n+1)}(s) = \max_{a \in \mathcal{A}} \left(\mathbb{E}_{s'|s,a} \left[r + \gamma V^{(n)}(s') \right] \right)$$

Operator View

- Value iteration update is viewed as:
 - A function $\mathcal{T}: \mathcal{S} \to \mathcal{S}$.
 - Called backup operator.

$$[\mathcal{T}V](s) = \max_{a \in \mathcal{A}} (\mathbb{E}_{s'|s,a}[r + \gamma V(s')])$$

Algorithm Value Iteration

Initialize V (0) arbitrarily.

for n = 0, 1, 2, ... until termination condition do $V^{(n+1)} = TV^{(n)}$

end

Contraction Mapping View

• Backup operator \mathcal{T} is a contraction with modulus γ under ∞ -norm

$$||\mathcal{T}V - \mathcal{T}W||_{\infty} \leq \gamma ||V - W||_{\infty}$$

- By contraction-mapping principle, it has a fixed point V^*
 - by iterating

$$V, \mathcal{T}V, \mathcal{T}^2V, \dots \rightarrow V^*$$

Policy Evaluation

• Problem: how to evaluate fixed policy π :

$$V^{\pi}(s) = \mathbb{E}_{\pi}[G_t | S_t = s] = \mathbb{E}_{\pi}[R_{t+1} + \gamma V^{\pi}(S_{t+1}) | S_t = s]$$

Backwards recursion involves a backup operation

$$V^{(k+1)} = \mathcal{T}^{\pi}V^{(k)}$$

- \mathcal{T}^{π} is defined as:

$$[\mathcal{T}^{\pi}V](s) = \mathbb{E}_{s'|s,a=\pi(s)}[r + \gamma V(s')]$$

• \mathcal{T}^{π} is also a contraction with modulus γ , sequence $V.\mathcal{T}^{\pi}V.(\mathcal{T}^{\pi})^{2}V.(\mathcal{T}^{\pi})^{3}V.... \rightarrow V^{\pi}$

• $V = T^{\pi}V$ is a linear equation that we can solve directly.

Policy Iteration: Overview

- Alternate between
 - Evaluate policy $\pi \Rightarrow V^{\pi}$
 - Set new policy to be greedy policy for V^{π}

$$\pi(s) = \operatorname*{argmax}_{a} \mathbb{E}_{s'|s,a} [R_{t+1} + \gamma V^{\pi}(s')]$$

- Guaranteed to converge to optimal policy and value function in a finite number of iterations, when $\gamma < 1$
- Value function converges faster than in value iteration

```
Algorithm Policy Iteration
```

```
Initialize \pi^{(0)} arbitrarily.
```

for n = 1, 2, ... until termination condition do

end

Modified Policy Iteration

• Update π to be the greedy policy, then value function with k backups (k-step lookahead)

```
Algorithm Modified Policy Iteration
Initialize V^{(0)} arbitrarily.

for n = 1, 2, \ldots until termination condition do
\pi^{(n+1)} = \mathcal{G}V^{(n)}
V^{(n+1)} = \left(\mathcal{T}^{\pi^{n+1}}\right)^k V^{(n)}, \text{ for integer } k \geq 1.
end
```

- k = 1: value iteration
- $k = \infty$: policy iteration

Policy Iteration in Different View

- Policy evaluation \rightarrow Estimate v_{π}
 - Iterative policy evaluation
- Policy improvement \rightarrow Generate $\pi' \geq \pi$
 - Greedy policy improvement

Policy Improvement

- Definition of policy improvement
 - Let π and π' be any pair of deterministic policies
 - ▶ For all $s \in S$, " $\pi(s)$ performs better than $\pi'(s)$ "
 - \rightarrow or $\pi > \pi'$.
- Given a policy π
 - Evaluate the policy π

$$v_{\pi}(s) = \mathbb{E}[R_{t+1} + \gamma R_{t+2} + \dots | S_t = s]$$

- Improve the policy by acting greedily with respect to v_{π} $\pi' = \operatorname{greedy}(v_{\pi})$

- Notes:
 - In Small Gridworld improved policy was optimal, $\pi' = \pi^*$
 - In general, need more iterations of improvement / evaluation
 - But this process of policy iteration always converges to π^*

Proof of Policy Improvement

- Consider a deterministic policy, $a = \pi(s)$
- We can improve the policy by acting greedily

$$\pi'(s) = \underset{a \in A}{\operatorname{argmax}} q_{\pi}(s, a)$$

• This improves the value from any state s over one step, $q_{\pi}(s, \pi'(s)) = \max_{s \in A} q_{\pi}(s, a) \ge q_{\pi}(s, \pi(s)) = v_{\pi}(s)$

• It therefore improves the value function, $v_{\pi'}(s) \ge v_{\pi}(s)$.

$$\begin{aligned} v_{\pi}(s) &\leq q_{\pi}(s, \pi'(s)) = \mathbb{E}_{\pi'}[R_{t+1} + \gamma \, v_{\pi}(S_{t+1}) \, | S_t = s] \\ &\leq \mathbb{E}_{\pi'}[R_{t+1} + \gamma q_{\pi}(S_{t+1}, \pi'(S_{t+1})) \, | \, S_t = s] \\ &\leq \mathbb{E}_{\pi'}[R_{t+1} + \gamma R_{t+2} + \gamma^2 q_{\pi}(S_{t+2}, \pi'(S_{t+2})) \, | \, S_t = s] \\ &\leq \mathbb{E}_{\pi'}[R_{t+1} + \gamma R_{t+2} + \cdots \, | \, S_t = s] \\ &= v_{\pi'}(s) \end{aligned}$$

Convergence of Policy Improvement

• If improvements stop,

$$q_{\pi}(s, \pi'(s)) = \max_{a \in A} q_{\pi}(s, a) \ge q_{\pi}(s, \pi(s)) = v_{\pi}(s)$$

Then the Bellman optimality equation has been satisfied

$$v_{\pi}(s) = \max_{a \in A} q_{\pi}(s, a)$$

- This implies $v_{\pi}(s) = v_{*}(s)$ for all $s \in S$
- The above proves that π will converge to an optimal policy.

