

Exercise Session 3 MDMC Spring 2024

Simon Dürr, Sophia Johnson, Nikolaos Lempesis, Andrea Levy, Vladislav Slama

March 26, 2024

Exercise Check-In

How did you feel during the process of completing, turning in, interviewing, and receiving the comments for Ex 1?

Remember: Exercises contribute to 1/2 of final grade! We count the best 5 out of the 6 reports for your exercise grade.

Notebooks Reminder

- Always access the notebooks via the rocket button on the top right of the code files and choose JupyterHub to launch noto.epfl.ch
- Make sure to access noto this way each time you begin the exercise to ensure you have the latest version!

March 26, 2024

3 / 9

Launch on JupyterHub

Exercise Structure

Understand importance sampling

Learn importance of detailed balance

Apply the Metropolis Monte Carlo algorithm to calculate properties of a model gas

Chapter in script

Chapter 3 - Monte Carlo Simulations

Resources

Understanding Molecular Simulation, Frenkel & Smit, 2nd Edition - Chapter 3 & Chapter 5 (extra)

Computer Simulation of Liquids, Allen & Tildesley, 2nd Edition - Chapter 4

Exercise 3 - Intro & Tips

Today we'll be writing and executing Monte Carlo code.

Tips!

- The theoretical part is about basic Monte Carlo simulations.
 Be sure to know what we mean by:
 - random sampling vs importance sampling
 - configurational space
 - transition or Markov matrix
 - detailed balance
 - Metropolis algorithm
- In the practical part we will run MC code for two systems:
 - A photon gas in which the energy states are quantized meaning we can calculate the ensemble average of state occupancy analytically
 - A gas in which we test different ensembles (NVT vs NPT) and use the Lennard-Jones potential to describe pairwise interactions

Exercise 3 - Intro & Tips

- Photon Gas
 - You'll need to write a loop of code to define the estimatedOccupancy function (read the hints and ask questions)
 - NB: randint(0,1) function will generate either 0 or 1. However, in our loop we need either 1 or -1
 - Recall that beta is the inverse of the product of the Boltzmann constant and simulation temperature. Varying beta is a way of varying simulation T

Exercise 3 - Intro & Tips

- LJ Potential
 - Lots of helper functions to import and functions to define
 - While there is quite a bit of code to execute, the goal is to see how we incorporate the system ensemble and its interactions when generating sample configurations for MC moves

Exercise 3 & 4 - Additional Notes

- LJ Potential
 - Lots of helper functions to import and functions to define
 - While there is quite a bit of code to execute, the goal is to see how we incorporate the system ensemble and its interactions when generating sample configurations for MC moves

Exercises 3 & 4 - Additional Notes

Due to the Easter Break, report 3 won't be due until Tuesday April 16th when we hold the session for Exercise 4

26.3. Tue	exercise	Ex 3 - LJ gas Monte Carlo
02.4. Tue		Easter Break
09.4. Tue	course	Chapter 4 (MD Simulations 1)
16.4. Tue	exercise	Ex 4 - Molecular Dynamics