Homework 3, Fall 2022

I have neither given nor received unauthorized assistance on this assignment.

Homework 3 has questions 1 through 4 with a total of 20 points. Edit this file and append you answers using LaT_EX. Be sure to fill in your name. Upload the converted pdf of your work to Canvas. This assignment is due *Saturday 10 September at 11:59* PM.

Link to your Overleaf work: XXX

5 1. Show that $(\forall x \in (-1,1)) (\exists r \in \mathbf{R}_{>0}) ((x-r,x+r) \subset (-1,1))$.

Solution:

5 2. Define $S = \{(-k, k) | k \in \mathbb{Z}_{>0}\}$. Show that $\bigcup_{q \in S} q = \mathbb{R}$.

Solution:

 $\boxed{5}$ 3. On \mathbb{Z}^2 define the binary operators + and × by

$$(a,b) + (c,d) = (a+c,b+d),$$

 $(a,b) \times (c,d) = (ac+2bd,ad+bc).$

These operators are commutative and associative. Additionally, the additive identity is (0,0), the multiplicative identity is (1,0), every member of \mathbf{Z}^2 has an additive identity, and multiplication distributes over addition. Given these facts, show that $(\mathbf{Z}^2, +, \times)$ is a field. The only thing left to show is that every member \mathbf{Z}^2 except for the additive identity has a multiplicative inverse. To prove this, you might like to use the fact that $\sqrt{2}$ is not rational.

Solution:

5 4. Show that the complex field is not ordered. Hint: Suppose it is. Let P be its positive set. Since $i \neq 0$, either $i \in P$ or $-i \in P$. Show that both $i \in P$ or $-i \in P$ are contradictions.

Solution: