Exámen Final SOL114

Instrucciones: Responde a las preguntas proporcionadas, asegurándote de justificar tus respuestas con cálculos y razonamientos claros.

I. En el Antiguo Testamento, el libro del Génesis comienza así: "Y creó Dios al hombre a su imagen, a imagen de Dios lo creó; varón y hembra los creó" (Génesis 1:27).

Figure 1: La creación

En esta pregunta, reemplazaremos la idea de creación divina por una versión probabilística: variables aleatorias.

Preguntas:

I.i. Sea X una variable aleatoria que describe el sexo de una persona, donde la probabilidad de ser "varón" (X = 1) es p, y la probabilidad de ser "hembra" (X = 0)

- es 1-p. Identifica qué distribución sigue la variable aleatoria Y y escribe su función de masa de probabilidad (PMF).
- ${\bf I.ii.}$ Si la probabilidad de ser "varón" y "hembra" es la misma, ¿cuál es el valor de p?
- **I.iii.** Si Adán (X_1) y Eva (X_2) son dos realizaciones independientes de X, expresa y calcula la probabilidad de generar dos personas secuencialmente y obtener un "varón" y una "hembra" (en ese orden).

•

II. Asimismo, el creador probabilístico estableció que la variable aleatoria Y describe la altura (en cms) de un "varón" y de una "hembra" de la siguiente manera:

- $Y \mid X = 1 \sim \text{Normal}(\mu_v = 170, \sigma_v = 20)$
- $Y \mid X = 0 \sim \text{Normal}(\mu_h = 160, \sigma_h = 10)$
- II.i. ¿Son sexo y altura dos variables independientes? Fundamenta tu respuesta.
- II.ii. Calcula la probabilidad de que un hombre tenga una altura superior a 180 cms.
- II.iii. ¿Que altura debe tener una mujer para ubicarse en el percentil 90 (10% más alto)?

.

III. Teomémas Asintóticos

Preguntas:

III .i. Identifica los siguientes teorémas y explica en palabras haciendo referencia a los términos usados en las ecuaciones respectivas.

 $\begin{array}{ll} \bullet & \text{ a) } \ \bar{X} \overset{d}{\to} \operatorname{Normal} \left(\mu, \frac{\sigma}{\sqrt{n}} \right) \\ \\ \bullet & \text{ b) } \ \lim_{n \to \infty} \mathbb{P} \left(\left| \bar{X} - \mu \right| \ge \epsilon \right) = 0 \end{array}$

III .ii. Explica los conceptos de "distribución muestral" (sampling distribution) de un estimador y su "error estándar".

IV. Luego de leer el libro del Genesis un teólogo desea conocer la proporción de hombres y mujeres en una comunidad bíblica. Para ello, selecciona aleatoriamente 150 personas mencionadas en los relatos bíblicos y encuentra que 90 son hombres y 60 son mujeres.

El análisis se realiza utilizando una fórmula que calcula la proporción como el cociente entre el número de hombres observados y el tamaño de la muestra. Aplicando esta fórmula a los datos recolectados se obtiene un valor numérico de 0.6.

Pregunta:: Con base en la situación descrita, identifica

- El estimando:
- El estimador:
- El estimado:

V. El arqueólogo Dr. Ezekiel Ben-David, en sus estudios sobre registros históricos de Galilea en el año 34 d.C., recopiló datos sobre la altura y el sexo de individuos, posiblemente descendientes de los fundadores bíblicos Adán y Eva.

Sexo	Altura (cm)
Varón	150
Hembra	140
Hembra	147
Hembra	162
Varón	199
Varón	169
Varón	168
Hembra	168
Hembra	152
Hembra	171
Hembra	159
Varón	167
Hembra	166
Varón	161
Hembra	166
Hembra	157
Varón	159
Hembra	154
Hembra	164
Varón	148

Preguntas::

- ${f V}$.i. Estima la proporción de hombres y construye un intervalo de confianza al 95% para dicha proporción. Interpreta el resultado tanto desde una perspectiva estadística como sustantiva. Justifica tus decisiones metodológicas.
- **V.ii.** Realiza un test de hipótesis para evaluar si la altura promedio de los hombres era mayor que la de las mujeres. Plantea la hipótesis nula y alternativa, determina el test estadístico apropiado y calcula su valor p. Interpreta el resultado tanto desde una perspectiva estadística como sustantiva. Justifica tus decisiones metodológicas.

VI. En sus investigaciones, el arqueólogo Dr. Ezekiel Ben-David descubrió los resultados de un plebiscito popular llevado a cabo en comunidades rurales y urbanas de Galilea (año 34 d.C.), respecto a la adopción de un nuevo código moral con dos opciones: "Tradición" y "Cambio".

La siguiente tabla de contingencia resume los resultados obtenidos:

	Rural	Urbano
"Tradición"	50	60
"Cambio"	50	140

Preguntas:

VI.i. Realiza un test de χ^2 para evaluar si existe una asociación entre el tipo de comunidad (rural o urbana) y la preferencia por el nuevo código moral. Detalla los pasos involucrados en el cálculo del estadístico χ^2 y proporciona una interpretación sustantiva del resultado.

VI.ii. Calcula las proporciones muestrales que estiman las siguientes probabilidades:

- $P(\text{"Cambio"} \mid \text{Rural}) = \hat{p}_{\text{R}}$
- $P(\text{"Cambio"} \mid \text{Urbano}) = \hat{p}_{\text{II}}$

VI.iii. Realiza un test de diferencia en proporciones para evaluar la hipótesis:

- $H_0: P(\text{"Cambio"} \mid \text{Rural}) = P(\text{"Cambio"} \mid \text{Urbano})$
- $H_a: P(\text{"Cambio"} \mid \text{Rural}) > P(\text{"Cambio"} \mid \text{Urbano})$

Proporciona el cálculo del test estadístico el valor p, y una interpretación sustantiva del resultado. Justifica tus decisiones metodológicas.

VI. Galileo Galilei y la Ley de la Caída Libre

Galileo Galilei descubrió que la distancia recorrida por un objeto en caída libre desde el reposo está dada por la ecuación:

$$d = 4.9t^2$$

Donde: -(d) es la distancia recorrida (en metros). -(t) es el tiempo transcurrido (en segundos).

Un físico decidió poner a prueba esta ley realizando un experimento con un tamaño muestral de (n=20). Midió el tiempo y la distancia recorrida por un objeto en caída libre en condiciones reales, por lo que los datos presentan un pequeño ruido aleatorio. Los resultados se resumen en la siguiente tabla:

Variable	Media	Desviación estándar (SD)	Covarianza (t, d)
Tiempo (t)	$2.75 \mathrm{\ s}$	1.40 s	52.83
Distancia (d)	46.18 m	38.62 m	-

El siguiente gráfico muestra la relación entre el tiempo y la distancia reportada en el experimento:

Relación entre Tiempo y Distancia

Preguntas:

 $\mathbf{VI.i.}$ ¿Qué tipo de relación observas entre el tiempo (t) y la distancia (d) según los datos?

VI.ii. Calcula el coeficiente de correlación de Pearson entre el tiempo (t) y la distancia (d). Comenta sobre el signo y la magnitud de la correlación obtenida.

VI.iii. ¿Crees que es una medida adecuada para describir esta relación?