

AD-A026 403

RIA-80-U227

WVT-TR-76015

TECHNICAL
LIBRARY

AD

USADACS Technical Library

5 0712 01010891 7

PROJECTILE LUBRICATION BY MELTING ROTATING BANDS

April 1976

BENET WEAPONS LABORATORY
WATERVLIET ARSENAL
WATERVLIET, N.Y. 12189

TECHNICAL REPORT

AMCMS No. 664617.12.288.0

DA Project No. 1X664617D340

Pron No. 72-6-53509-01-72-M7

19970930 089

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

DTIC QUALITY INSPECTED 1

DISCLAIMER

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

The use of trade name(s) and/or manufacturer(s) in this report does not constitute an official indorsement or approval.

DISPOSITION

Destroy this report when it is no longer needed. Do not return it to the originator.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM															
1. REPORT NUMBER WVT-TR-76015	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER															
4. TITLE (and Subtitle) Projectile Lubrication by Melting Rotating Bands		5. TYPE OF REPORT & PERIOD COVERED															
		6. PERFORMING ORG. REPORT NUMBER															
7. AUTHOR(s) R.S. Montgomery		8. CONTRACT OR GRANT NUMBER(s)															
9. PERFORMING ORGANIZATION NAME AND ADDRESS Benet Weapons Laboratory Watervliet Arsenal, Watervliet, N.Y. 12189 SARWV-RT		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS AMCMS No. 664617.12.288.0 Da Proj. No. 1X664617D340 Pron No. 72-6-53509-01-72-M7															
11. CONTROLLING OFFICE NAME AND ADDRESS US Army Armament Command Rock Island, Illinois 61201		12. REPORT DATE April 1976															
		13. NUMBER OF PAGES 15															
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)		15. SECURITY CLASS. (of this report) UNCLASSIFIED															
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE															
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited.																	
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)																	
18. SUPPLEMENTARY NOTES																	
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) <table style="width: 100%; border-collapse: collapse;"> <tr> <td style="width: 33%;">Ammunition</td> <td style="width: 33%;">Gun Barrels</td> <td style="width: 33%;">Aluminum</td> </tr> <tr> <td>Projectiles</td> <td>Lubrication</td> <td>Copper</td> </tr> <tr> <td>Rotating Band</td> <td>Friction</td> <td>Gilding Metal</td> </tr> <tr> <td>Melting</td> <td>Reduction</td> <td>Iron</td> </tr> <tr> <td>Pressure</td> <td>Liquid Metals</td> <td>Plastic</td> </tr> </table>			Ammunition	Gun Barrels	Aluminum	Projectiles	Lubrication	Copper	Rotating Band	Friction	Gilding Metal	Melting	Reduction	Iron	Pressure	Liquid Metals	Plastic
Ammunition	Gun Barrels	Aluminum															
Projectiles	Lubrication	Copper															
Rotating Band	Friction	Gilding Metal															
Melting	Reduction	Iron															
Pressure	Liquid Metals	Plastic															
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) <p>Sliding experiments carried out in the laboratory with a pin-on-disk machine produced appreciably higher coefficients of friction than the actual values measured for projectiles sliding down cannon bores. Although the pin surface melted, the coefficient of friction was at least an order of magnitude higher than expected for liquid film lubrication. The sliders in the laboratory experiments were, of course, much smaller than actual rotating bands and the bearing pressure was limited by distortion of the sliding pin. A recently (SEE REVERSE SIDE)</p>																	

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. Published theoretical study of lubrication by a melting slider can account for the disparity on this basis.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

AD

WVT-TR-76015

PROJECTILE LUBRICATION BY MELTING ROTATING BANDS

R.S. Montgomery

April 1976

BENET WEAPONS LABORATORY
WATERVLIET ARSENAL
WATERVLIET, N.Y. 12189

TECHNICAL REPORT

AMCMS No. 664617.12.288.0

DA Project No. 1X664617D340

Pron No. 72-6-53509-01-72-M7

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

TABLE OF CONTENTS

	<u>Page</u>
DISCUSSION	1
REFERENCES	5
APPENDIX	
APPENDIX 1 - Estimation of Effective Width of Rotating Bands, x_2 .	8
APPENDIX 2 - Calculation of Volumetric Latent Heat, L	10
APPENDIX 3 - Calculation of Maximum Non-Dimensional Load Support, W^* , For Laboratory Experiments With Gilding Metal	12

TABLE

TABLE 1 - 155mm M185 Howitzer Firing Data (From Ref. 2)	6
---	---

FIGURES

FIGURE 1 - 155mm M185 Howitzer Friction Data as a Function of Non-dimensional Speed.	4
FIGURE 2 - Rotating Band Configurations of the Projectiles.	9

Projectile Lubrication by Melting Rotating Bands

The lowest coefficients of friction for all the metals investigated in the fast-sliding wear study made by the Franklin Institute in the period 1947-1956 (1) were in the range of 0.15 to 0.20. This was despite the fact that the abrupt drop in both the frictions and the wear rates at the same point leaves little doubt that the sliding was lubricated by a molten surface film at the higher sliding velocities and bearing pressures. An appreciably lower coefficient of friction would be expected for hydrodynamic lubrication and the coefficients of friction for actual projectiles sliding down cannon bores are known to be considerably below this value. For example, the values for projectiles fired in the 155mm M185 howitzer were as low as 0.015 after only ten to twenty inches of travel. (2)

It was suspected that this disparity resulted because the laboratory experiments were made using a small slider and relatively low bearing pressures as well as other differences. The laboratory slider was a pin just 0.080 in. in diameter while a rotating band is usually an inch to an inch and a half wide and the laboratory bearing pressures did not exceed 20,000 psi while the average band pressure during engraving is on the order of 50,000 psi. It certainly was not an effect of sliding velocity because the laboratory experiments were made at velocities as high as 1800 fps while the 155mm projectiles in ref. 2 had not reached 400 fps when the coefficient of friction was as low as 0.015. While these factors were suspected to be the causes

of the disparity, the reasons were not clear until the recent publication by Wilson of a theoretical study on lubrication by a melting solid (3). From his analysis, the coefficient of friction is proportional to the square root of the non-dimensional sliding speed, S. This speed is defined as:

$$S \equiv \mu U / x_2 L \quad (1)$$

where: μ = liquid viscosity

U = sliding velocity

x_2 = length of slider

L = volumetric latent heat

Therefore, the coefficient of friction is inversely proportional to the square root of the length of the slider for any particular sliding velocity. This could account for a portion of the disparity in the coefficients of friction.

In Wilson's study it was also shown that, in the case of a melting slider, the system is not self-sustaining until very high values of non-dimensional bearing pressure. Specifically, the system does not develop its own lubricant supply for complete liquid film lubrication until the non-dimensional bearing pressure, W^* , is greater than about 0.2. W^* is defined as:

$$W^* \equiv w / L x_2 \quad (2)$$

where: w = load per unit width

Below this value, the leading edge of the slider would not be lubricated by the liquid metal and, consequently, the coefficient of friction would be much greater. The value of W^* for the gilding metal bands on the 155mm M107 projectile would be about 0.20 during

engraving for an engraving pressure of 50,000 psi and assuming the latent heats of zinc and copper in the alloy are additive. (See Appendix) It would be 0.19 for the copper bands on the 155mm M483 projectile during engraving for the same pressure. Therefore, in this case, lubrication by surface melting of the rotating bands would be self-sustaining or close to it. On the other hand, the maximum W^* for copper or gilding metal in the laboratory experiments was only about 0.07. The high coefficients of friction measured in the laboratory pin-on-disk experiments could easily be accounted for by the small slider size and low bearing pressures.

After a short distance of sliding, the coefficient of friction becomes low but not as low as predicted by Wilson. This is apparent from Fig. 1 where the 155mm howitzer friction data from ref. 2 is plotted as a function of non-dimensional speed on Wilson's graph. This may be a result of the complex geometries and bearing pressure patterns of the rotating bands. The bearing pressure at the entering ramp at the leading edge is considerably less and the cannelures, in the grooves of the rifling at least, break the sliding surface into shorter segments. Furthermore, the experimentally measured engraving pressure is an average pressure; the actual bearing pressure is significantly greater at the lands and less in the grooves of the rifling.

It is interesting to note that, from this analysis, the material of the rotating bands has an appreciable effect on the bearing pressure required for the lubrication to be self-sustaining through the volumetric latent heat. While the required bearing pressure is

• M107 PROJECTILE
◦ M483 PROJECTILE

Fig. 1 155mm M185 Howitzer Friction Data as a Function of Non-dimensional Speed. The data is from Ref. (2) and the lines of constant non-dimensional bearing pressure, W^* , from Ref. (3).

about 50,000, 53,000, and 56,000 psi for gilding metal, copper, and iron bands respectively, it would only be about 30,000 psi for aluminum bands. The required bearing pressure would even be less for the plastic band materials. This would have a significant effect on the friction of the bands during the initial engraving process.

References

- (1) Montgomery, R.S., Friction and Wear at High Sliding Speeds, Watervliet Arsenal Technical Report 75028; WEAR 36, 275-298 (1976)
- (2) Bubb, Gary, Determination of In-bore Resistance Forces, Second International Symposium on Ballistics and Warhead Mechanisms, Daytona, Florida, 8-11 March 1976; Montgomery, R.S., Surface Melting of Rotating Bands, Watervliet Arsenal Technical Report 75060; WEAR To be published
- (3) Wilson, W.R.D., Lubrication by a Melting Solid, Am. Soc. Mech. Engr., Paper No. 75-Lub-26 (1975)

TABLE I

155MM M185 HOWITZER FIRING DATA (FROM REF. 2)

Rd. No.	316	318	319	320	330	331	313	314	315	324
Proj.	M107	M107	M107	M107	M107	M107	M483A1	M483A1	M483A1	M483A1
1.0 in. Travel	U Sx10 ⁹ f	700 1.5 0.42	310 0.68 0.138	510 1.1 0.073	368 0.81 0.126	264 0.58 0.082	298 0.66 0.099	- -	- -	-
2.0 in. Travel	U Sx10 ⁹ f	- - -	- - -	- - -	- - -	- - -	912 1.2 0.043	968 1.3 0.032	996 1.3 0.021	
5.0 in. Travel	U Sx10 ⁹ f	2100 4.6 0.027	2080 4.6 0.010	2280 5.0 0.036	2300 5.1 0.034	1800 4.0 0.021	1900 4.2 0.026	2080 2.8 0.022	2140 2.8 0.020	1900 2.5 0.025
10.0 in. Travel	U Sx10 ⁹ f	3200 17.0 0.023	3200 7.0 0.005	3380 7.4 0.027	3340 7.3 0.026	2820 6.2 0.018	2900 6.4 0.021	3100 4.1 0.018	3180 4.2 0.015	2840 3.8 0.019
20.0 in. Travel	U Sx10 ⁹ f	4100 9.0 0.020	4460 9.8 0.008	4600 10 0.021	4600 10 0.015	4040 8.9 0.017	4100 9.0 0.014	4240 5.6 0.012	4320 5.7 0.012	3940 5.2 0.019

	337	338	339	340	341	342	345	346	347	360
M483A1										
-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-
1096	1008	1120	968	936	932	980	1040	1120	600	8.0
1.5	1.3	1.5	1.3	1.2	1.2	1.3	1.4	1.5	8.0	0.055
0.032	0.029	0.027	0.027	0.026	0.042	0.035	0.037	0.035	0.035	0.018
2260	2160	2280	2460	2400	2400	2420	2500	2560	1680	2.2
3.0	2.9	3.0	3.3	3.2	3.2	3.2	3.3	3.4	2.2	0.016
0.022	0.020	0.019	0.016	0.013	0.010	0.015	0.011	0.016	0.016	0.018
3240	3200	3300	3600	3660	-	3860	3920	3860	2700	1
4.3	4.3	4.4	4.8	4.9	-	5.1	5.2	5.1	3.6	0.016
0.022	0.020	0.019	0.016	0.015	-	0.015	0.009	0.016	0.018	0.018
4460	-	-	-	-	-	5580	5440	3800	5.9	5.9
5.9	-	-	-	-	-	7.4	7.2	5.1	0.011	0.011
0.018	-	-	-	-	-	0.016	0.016	0.018	0.018	0.018

Appendix 1

Estimation of Effective Width of Rotating Bands, x_2 .

M107 Projectile

Contact with rifling grooves

Assume 50% of cannelure in contact -

Contact begins about 0.26 in. behind leading edge.

Contact length = $1.00 - 0.26 - 0.05 = 0.69$ in.

Contact with rifling lands

Assume all of cannelure in contact -

Contact length = 1.00

Av. length of contact

$$\frac{1.00 (0.15) + 0.69 (0.249)}{0.15 + 0.249} = 0.81 \text{ in.}$$

M483 Projectile

Contact with rifling grooves

Assume 70% of first cannelure in contact and 90% of second cannelure in contact.

Contact begins about 0.26 in. behind leading edge.

$$\begin{aligned} \text{Contact length} &= 1.49 - 0.07 - 0.01 - 0.26 \\ &= 1.15 \text{ in.} \end{aligned}$$

Contact with rifling lands

Assume all of cannelure in contact.

Contact length = 1.49 in.

Av. length of contact

$$\frac{1.49 (0.15) + 1.15 (0.249)}{0.15 + 0.249} = 1.28 \text{ in.}$$

M483

M107

Fig. 2 Rotating Band Configurations of the Projectiles.

Appendix 2

Calculation of Volumetric Latent Heat, L

Heats of Fusion (gcal/g) from Kubaschewski and Alcock,
Metallurgical Thermochemie (1967)

$$Al = 92.7 \pm 1.1$$

$$Cu = 48.8 \pm 1.6$$

$$\text{gilding metal (90 Cu-10Zn)} = 46.6$$

(assuming additive)

$$Fe = 59.1 \pm 3.6$$

$$Ni = 69.9 \pm 1.4$$

$$Zn = 26.6 \pm 0.5$$

Densities (g/cm³)

$$Al = 2.71$$

$$Cu = 8.91$$

$$\text{gilding metal} = 8.80$$

$$Fe = 7.86$$

$$Ni = 8.86$$

$$Zn = 7.14$$

$$L = (\text{Heat of Fusion, gcal/g})(\text{Density, g/cm}^3)(3087, \text{ ft-lbs/Kcal})(12, \frac{\text{in}}{\text{ft}})$$

$$(1000, \text{ gcal/Kcal})(0.06102, \frac{\text{in}^3}{\text{cm}^3})$$

Volumetric Latent Heat (in-lbs/in³)

$$Al = 152,000$$

$$Cu = 264,000$$

$$\text{Gilding Metal} = 249,000$$

Fe = 282,000

Ni = 376,000

Zn = 115,000

Calculation of Non-Dimensional Speed, S, For Gilding Metal Bands of

M107 Projectile

Assume viscosity, μ , is the same as liquid copper at its melting point. (3.1 centipoises)

$$S = \frac{\mu U}{x_2 L} = \frac{(0.031 \text{ dyne-sec/cm}^2)(2.248 \times 10^{-6} \text{ lb/dyne})(U \text{ in/sec})}{(0.1550 \text{ in}^2/\text{cm}^2)(0.81 \text{ in})(249,000 \text{ in-lbs/in}^3)}$$
$$= 2.2 \times 10^{-12} U(\text{in/sec})$$

Calculation of Non-Dimensional Speed, S, For Copper Bands of M483

Projectile

$$S = \frac{(0.031)(2.248 \times 10^{-6})(U \text{ in/sec})}{(0.1550)(1.28)(264,000)}$$
$$= 1.33 \times 10^{-12} U (\text{in/sec})$$

Appendix 3

Calculation of Maximum Non-Dimensional Load Support, W^* , For Laboratory Experiments With Gilding Metal

The slider had a circular contact area of 0.080 in diameter.

x_2 was estimated as 0.071 in.

$$W^* = \frac{\text{max. load}}{(\text{slider Diameter}) Lx_2} = \frac{98.5}{(0.080)(249,000)(0.071)} \\ = 0.07$$

Calculation of W^* for Gilding Metal During Engraving of M107 Projectile

$$W^* = \frac{W}{Lx_2} = \frac{\text{bearing pressure}}{L} \\ = \frac{50,000}{249,000} = 0.20$$

Calculation of W^* for Copper During Engraving of M483 Projectile

$$W^* = \frac{50,000}{264,000} = 0.19$$

Calculation of Bearing Pressure Required for Self-Sustaining Liquid Film Lubrication

$$\frac{W}{x_2} = W^* L$$

$$P = 0.2 L$$

$$Al = 30,000 \text{ psi}$$

$$Cu = 53,000 \text{ psi}$$

$$\text{gilding metal} = 50,000 \text{ psi}$$

$$Fe = 56,000 \text{ psi}$$

$$Ni = 75,000 \text{ psi}$$

$$Zn = 23,000 \text{ psi}$$

WATERVLIET ARSENAL INTERNAL DISTRIBUTION LIST

May 1976

	<u>No. of Copies</u>
COMMANDER	1
DIRECTOR, BENET WEAPONS LABORATORY	1
DIRECTOR, DEVELOPMENT ENGINEERING DIRECTORATE	1
ATTN: RD-AT	1
RD-MR	1
RD-PE	1
RD-RM	1
RD-SE	1
RD-SP	1
DIRECTOR, ENGINEERING SUPPORT DIRECTORATE	1
DIRECTOR, RESEARCH DIRECTORATE	2
ATTN: RR-AM	1
RR-C	1
RR-ME	1
RR-PS	1
TECHNICAL LIBRARY	5
TECHNICAL PUBLICATIONS & EDITING BRANCH	2
DIRECTOR, OPERATIONS DIRECTORATE	1
DIRECTOR, PROCUREMENT DIRECTORATE	1
DIRECTOR, PRODUCT ASSURANCE DIRECTORATE	1
PATENT ADVISORS	1

EXTERNAL DISTRIBUTION LIST

May 1976

1 copy to each

CDR
US ARMY MAT & DEV READ. COMD
ATTN: DRCRD
DRCRD-TC
DRCRD-W
5001 EISENHOWER AVE
ALEXANDRIA, VA 22304

OFC OF THE DIR. OF DEFENSE R&E
ATTN: ASST DIRECTOR MATERIALS
THE PENTAGON
WASHINGTON, D.C. 20315

CDR
US ARMY TANK-AUTMV COMD
ATTN: AMDTA-UL
AMSTA-RKM MAT LAB
WARREN, MICHIGAN 48090

CDR
PICATINNY ARSENAL
ATTN: SARPA-TS-S
SARPA-VP3 (PLASTICS
TECH EVAL CEN)
DOVER, NJ 07801

CDR
FRANKFORD ARSENAL
ATTN: SARFA
PHILADELPHIA, PA 19137

DIRECTOR
US ARMY BALLISTIC RSCH LABS
ATTN: AMXBR-LB
ABERDEEN PROVING GROUND
MARYLAND 21005

CDR
US ARMY RSCH OFC (DURHAM)
BOX CM, DUKE STATION
ATTN: RDRD-IPL
DURHAM, NC 27706

CDR
WEST POINT MIL ACADEMY
ATTN: CHMN, MECH ENGR DEPT
WEST POINT, NY 10996

CDR
US ARMY ARMT COMD
ATTN: AMSAR-PPW-IR
AMSAR-RD
AMSAR-RDG
ROCK ISLAND, IL 61201

CDR
US ARMY ARMT COMD
FLD SVC DIV
ARMCOM ARMT SYS OFC
ATTN: AMSAR-ASF
ROCK ISLAND, IL 61201

CDR
US ARMY ELCT COMD
FT MONMOUTH, NJ 07703

CDR
REDSTONE ARSENAL
ATTN: AMSMI-RRS
AMSMI-RSM
ALABAMA 35809

CDR
ROCK ISLAND ARSENAL
ATTN: SARII-RDD
ROCK ISLAND, IL 61202

CDR
US ARMY FGN SCIENCE & TECH CEN
ATTN: AMXST-SD
220 7TH STREET N.E.
CHARLOTTESVILLE, VA 22901

DIRECTOR
US ARMY PDN EQ. AGENCY
ATTN: AMXPE-MT
ROCK ISLAND, IL 61201

CDR
HQ, US ARMY AVN SCH
ATTN: OFC OF THE LIBRARIAN
FT RUCKER, ALABAMA 36362

EXTERNAL DISTRIBUTION LIST (Cont)

1 copy to each

CDR
US NAVAL WPNS LAB
CHIEF, MAT SCIENCE DIV
ATTN: MR. D. MALYEVAC
DAHLGREN, VA 22448

DIRECTOR
NAVAL RSCH LAB
ATTN: DIR. MECH DIV
WASHINGTON, D.C. 20375

DIRECTOR
NAVAL RSCH LAB
CODE 26-27 (DOCU LIB.)
WASHINGTON, D.C. 20375

NASA SCIENTIFIC & TECH INFO FAC
PO BOX 8757, ATTN: ACQ BR
BALTIMORE/WASHINGTON INTL AIRPORT
MARYLAND 21240

DEFENSE METALS INFO CEN
BATTELLE INSTITUTE
505 KING AVE
COLUMBUS, OHIO 43201

MANUEL E. PRADO / G. STISSER
LAWRENCE LIVERMORE LAB
PO BOX 808
LIVERMORE, CA 94550

DR. ROBERT QUATTRONE
CHIEF, MAT BR
US ARMY R&S GROUP, EUR
BOX 65, FPO N.Y. 09510

2 copies to each

CDR
US ARMY MOB EQUIP RSCH & DEV COMD
ATTN: TECH DOCU CEN
FT BELVOIR, VA 22060

CDR
US ARMY MAT RSCH AGCY
ATTN: AMXMR - TECH INFO CEN
WATERTOWN, MASS 02172

CDR
WRIGHT-PATTERSON AFB
ATTN: AFML/MXA
OHIO 45433

CDR
REDSTONE ARSENAL
ATTN: DOCU & TECH INFO BR
ALABAMA 35809

12 copies

CDR
DEFENSE DOCU CEN
ATTN: DDC-TCA
CAMERON STATION
ALEXANDRIA, VA 22314

NOTE: PLEASE NOTIFY CDR, WATERVLIET ARSENAL, ATTN: SARWV-RT-TP,
WATERVLIET, N.Y. 12189, IF ANY CHANGE IS REQUIRED TO THE ABOVE.