ON THE LARGE-SCALE SUBLINEAR GEOMETRY OF HEINTZE SPACES

Gabriel Pallier - Paris-Sud University, Orsay

March 19th, 2019

Analysis and Geometry Seminar, Bristol

Outline

Heintze spaces

Large-scale geometry and the boundary

Invariants

HEINTZE SPACES

Heintze space: Definition

Definition

Let Y be a connected Riemannian manifold of **negative sectional curvature**. If the isometry group Isom(Y) acts transitively on Y, then Y is called a Heintze space.

Heintze space: Definition

Definition

Let Y be a connected Riemannian manifold of **negative sectional curvature**. If the isometry group $\mathsf{Isom}(Y)$ acts transitively on Y, then Y is called a Heintze space.

Example: Y is $\mathbf{R} \times \mathbf{R}^2$ with coordinates (t, x, y) and the Riemannian metric $ds^2 = dt^2 + e^{-2t}(dx^2 + dy^2)$.

Y is the hyperbolic 3-space (constant curvature -1) and (x, y, t) are horospherical coordinates.

$$ds^2 = dt^2 + e^{-t}(dx^2 + dy^2).$$

Let us check that Isom(Y) is transitive.

$$ds^2 = dt^2 + e^{-t}(dx^2 + dy^2).$$

Let us check that Isom(Y) is transitive.

$$ds^2 = dt^2 + e^{-t}(dx^2 + dy^2).$$

Let us check that Isom(Y) is transitive.

$$ds^2 = dt^2 + e^{-t}(dx^2 + dy^2).$$

Let us check that Isom(Y) is transitive.

$$ds^2 = dt^2 + e^{-t}(dx^2 + dy^2).$$

Let us check that Isom(Y) is transitive.

$$ds^2 = dt^2 + e^{-t}(dx^2 + dy^2).$$

Let us check that Isom(Y) is transitive.

$$ds^2 = dt^2 + e^{-t}(dx^2 + dy^2).$$

Let us check that Isom(Y) is transitive.

- 1. For all $(u, v) \in \mathbb{R}^2$, $(t, x, y) \mapsto (t, x + u, y + v)$ is an isometry.
- 2. For all $s \in \mathbf{R}$, $(t, x, y) \mapsto (t + s, e^s x, e^s y)$ is an isometry.

$$ds^2 = dt^2 + e^{-t}(dx^2 + dy^2).$$

Let us check that Isom(Y) is transitive.

- 1. For all $(u, v) \in \mathbb{R}^2$, $(t, x, y) \mapsto (t, x + u, y + v)$ is an isometry.
- 2. For all $s \in \mathbf{R}$, $(t, x, y) \mapsto (t + s, e^s x, e^s y)$ is an isometry.

$$ds^2 = dt^2 + e^{-t}(dx^2 + dy^2).$$

Let us check that Isom(Y) is transitive.

- 1. For all $(u, v) \in \mathbb{R}^2$, $(t, x, y) \mapsto (t, x + u, y + v)$ is an isometry.
- 2. For all $s \in \mathbf{R}$, $(t, x, y) \mapsto (t + s, e^s x, e^s y)$ is an isometry.

 $G = \mathbf{R} \ltimes \mathbf{R}^2$ acts **simply transitively** by isometries on Y.

Other Heintze spaces

To form *G*, we used $\mathbf{R} \curvearrowright \mathbf{R}^2$ by $\mathbf{s}.(\mathbf{x},\mathbf{y}) = \delta^{\mathbf{s}}(\mathbf{x},\mathbf{y}) = (e^{\mathbf{s}}\mathbf{x},e^{\mathbf{s}}\mathbf{y})$. More general:

Other Heintze spaces

To form *G*, we used $\mathbf{R} \curvearrowright \mathbf{R}^2$ by $s.(x,y) = \delta^s(x,y) = (e^sx,e^sy)$. More general:

1. Diagonal action: Let $\mu \geqslant 1$ be a parameter

$$\delta^{\rm s}({\rm x},{\rm y})=({\rm e}^{\rm s}{\rm x},{\rm e}^{\mu{\rm s}}{\rm y})=\exp\left[{\rm s}\begin{pmatrix}1&0\\0&\mu\end{pmatrix}\right]\begin{pmatrix}{\rm x}\\{\rm y}\end{pmatrix}$$

a left inv. metric is $ds^2 = dt^2 + e^{-2t}(dx^2 + e^{2(1-\mu)t}dy^2)$.

2. **Unipotent** action:

$$\delta^{s}(x,y) = (e^{s}x + se^{s}y, e^{s}y) = \exp\left[s\begin{pmatrix}1 & 1\\ 0 & 1\end{pmatrix}\right]\begin{pmatrix}x\\ y\end{pmatrix}$$

a left inv. metric is $ds^2 = dt^2 + e^{-2t}(dx^2 + (1+t^2)dy^2 - 2tdxdy)$.

Fact (Consequence of Heintze's theorem)

The corresponding groups G, G_{μ} , G' with all their left invariant metrics are **all** the 3-dim Heintze spaces.

All the isometries described fix a special boudary point of Y that we denote ω . Horospheres centered at ω are Euclidean planes (if dim Y = 3).

All the isometries described fix a special boudary point of Y that we denote ω . Horospheres centered at ω are Euclidean planes (if dim Y = 3). The boundary minus ω is denoted $\partial_{\infty}^* Y$. Geodesic lines ending at ω have form $\{(t, x, y)\}_{t \in \mathbb{R}}$.

All the isometries described fix a special boudary point of Y that we denote ω . Horospheres centered at ω are Euclidean planes (if dim Y = 3). The boundary minus ω is denoted $\partial_{\infty}^* Y$. Geodesic lines ending at ω have form $\{(t, x, y)\}_{t \in \mathbb{R}}$. One can identify $\partial_{\infty}^* Y$ and \mathbb{R}^2 .

A quasidistance on the boundary minus ω

$$\begin{array}{l} \rho((-\infty,x,y),(-\infty,x',y')) := \\ \exp\left(-\frac{1}{2}\lim_{t \to -\infty} d_{Y}((-t,x_{0},y_{0}),(-t,(x_{1},y_{1})) + 2t\right) \end{array}$$

5

All the isometries described fix a special boudary point of Y that we denote ω . Horospheres centered at ω are Euclidean planes (if $\dim Y = 3$). The boundary minus ω is denoted $\partial_{\infty}^* Y$. Geodesic lines ending at ω have form $\{(t, x, y)\}_{t \in \mathbb{R}}$. One can identify $\partial_{\infty}^* Y$ and \mathbb{R}^2 .

A quasidistance on the boundary minus ω

$$\begin{array}{l} \rho((-\infty,x,y),(-\infty,x',y')) := \\ \exp\left(-\frac{1}{2}\lim_{t \to -\infty} d_{Y}((-t,x_{0},y_{0}),(-t,(x_{1},y_{1})) + 2t\right) \end{array}$$

5

Why such a quasidistance on the boundary?

Isometries of Y extend to ∂_{∞}^* , by homeomorphisms.

Why such a quasidistance on the boundary?

Isometries of Y extend to ∂_{∞}^* , by homeomorphisms. But there is no invariant distance inducing the topology.

Why such a quasidistance on the boundary?

Isometries of Y extend to ∂_{∞}^* , by homeomorphisms. But there is no invariant distance inducing the topology. Nevertheless,

$$\forall \xi_0, \xi_1 \in \partial_{\infty}^* Y, \rho(\delta^s \xi_0, \delta^s \xi_1) = e^s \rho(\xi_0, \xi_1).$$

Equipped with ρ , ∂_{∞}^* is a self-similar space. Identified with \mathbf{R}^2 , self-similarities are the δ^s .

$$\begin{array}{c|c} \textbf{Group} & G & G' & G_{\mu} \left(\mu > 1\right) \\ \textbf{self-similarities} & \left\{ \begin{pmatrix} e^{s} & 0 \\ 0 & e^{s} \end{pmatrix} \right\} & \left\{ \begin{pmatrix} e^{s} & se^{s} \\ 0 & e^{s} \end{pmatrix} \right\} & \left\{ \begin{pmatrix} e^{s} & 0 \\ 0 & e^{\mu s} \end{pmatrix} \right\} \\ \end{array}$$

$$\begin{array}{c|c} \textbf{Group} & G & G' & G_{\mu} \ \left(e^s & 0 \\ 0 & e^s \end{array}\right) \end{array} \end{array} \right\} \left\{ \begin{array}{c|c} G' & G_{\mu} \ \left(\mu > 1\right) \\ \left\{\left(e^s & se^s \\ 0 & e^s \end{array}\right) \right\} & \left\{\left(e^s & 0 \\ 0 & e^{\mu s} \right) \right\} \end{array} \right. \\ \sim e^{\mu s} = e^s e^{(\mu-1)s} \\ \sim e^s$$

$$\begin{array}{c|c} \textbf{Group} & G & G' & G_{\mu} \ \left(e^s & 0 \\ 0 & e^s \end{array}\right) \end{array} \end{array} \right\} \left\{ \begin{array}{c|c} G' & G_{\mu} \ \left(\mu > 1\right) \\ \left\{\left(e^s & se^s \\ 0 & e^s \end{array}\right) \right\} & \left\{\left(e^s & 0 \\ 0 & e^{\mu s} \right) \right\} \end{array} \right. \\ \sim e^{\mu s} = e^s e^{(\mu-1)s} \\ \sim e^s$$

LARGE-SCALE GEOMETRY AND THE BOUNDARY

Quasiisometry and Sublinearly biLipschitz Equivalence

Y, Y' are pointed metric spaces, $\lambda \geqslant 1$.

$$f: Y \to Y'$$
 is a quasiisometry (QI) if $\exists c \geqslant 0$ s.t. $\forall y_1, y_2 \in Y, \forall y' \in Y',$
$$\begin{cases} \lambda^{-1}d(y_1, y_2) - c \leqslant d(f(y_1), f(y_2)) \leqslant \lambda d(y_1, y_2) + c \\ d(y', f(Y)) \leqslant c. \end{cases}$$

Quasiisometry and Sublinearly biLipschitz Equivalence

Y, Y' are pointed metric spaces, $\lambda \geqslant 1$.

$$f: Y \to Y'$$
 is a quasiisometry (QI) if $\exists c \geqslant 0$ s.t. $\forall y_1, y_2 \in Y$, $\forall y' \in Y'$,
$$\begin{cases} \lambda^{-1} d(y_1, y_2) - c \leqslant d(f(y_1), f(y_2)) \leqslant \lambda d(y_1, y_2) + c \\ d(y', f(Y)) \leqslant c. \end{cases}$$

 $f: Y \to Y'$ is a **sublinearly biLipschitz equivalence** (SBE) if there exists a sublinear $\nu: \mathbb{R}_{\geqslant 0} \to \mathbb{R}_{\geqslant 1}$ s.t. $\forall y_1, y_2 \in Y$ and $\forall y' \in Y'$,

$$\begin{cases} \lambda^{-1}d(y_1, y_2) - \nu(|y_1| + |y_2|) & \leq d(f(y_1), f(y_2)) \\ & \leq \lambda d(y_1, y_2) + \nu(|y_1| + |y_2|) \\ d(y', f(Y)) \leq \nu(|y'|), \end{cases}$$

where $|\cdot|$ denotes the distance to base-point.

Large-scale geometries of Heintze spaces

For a pair of Heintze spaces Y, Y':

Large-scale geometries of Heintze spaces

For a pair of Heintze spaces Y, Y':

```
Y,\,Y' isometric
```

₩ (1)

Isom(Y), Isom(Y') isomorphic (up to taking cocompact subgroups and quotients by compact subgroups)

⇒ (2)

Y, Y' quasiisometric

∜ (3)

 $Y,\,Y'$ sublinearly biLipschitz equivalent

Large-scale geometries of Heintze spaces

For a pair of Heintze spaces Y, Y':

Y, Y' isometric

₩(1)

Isom(Y), Isom(Y') isomorphic (up to taking cocompact subgroups and quotients by compact subgroups)

∜ (2)

Y, Y' quasiisometric

∜ (3)

Y, Y' sublinearly biLipschitz equivalent

Question

Can (2), or even (2) and (3) be reversed? If not, how? Positive partial answers can be obtained through the search of QI or SBE **invariants**.

Quasiisometries and the boundary

Let $t\geqslant 1$. A pair of subsets (a,a^+) of a quasimetric space is a t-ring if there is a ball B such that $B\subseteq a\subseteq a^+\subseteq tB$. radius(B) is an **inner radius** and $\tau=\log t$ is called an **asphericity** for (a,a^+) . If $a=a^+$, **round set**.

A homeomorphism f is called quasisymmetric if f and its inverse **preserve** bounded asphericity.

Quasiisometries and the boundary

Let $t\geqslant 1$. A pair of subsets (a,a^+) of a quasimetric space is a t-ring if there is a ball B such that $B\subseteq a\subseteq a^+\subseteq tB$. radius(B) is an **inner radius** and $\tau=\log t$ is called an **asphericity** for (a,a^+) . If $a=a^+$, round set.

A homeomorphism f is called quasisymmetric if f and its inverse **preserve** bounded asphericity.

Theorem (known under some form since the 70s)

Let Y and Y' be Heintze spaces. Assume that there exists a quasiisometry $f: Y \to Y'$. Then $\partial_{\infty} f$ extends to a homeomorphism $\partial_{\infty} f: \partial_{\infty} Y \to \partial_{\infty} Y'$. Further one can assume that f preserves maps the distinguished points one to another, and $\partial_{\infty} f: \partial_{\infty}^* Y \to \partial_{\infty}^* Y'$ is quasisymmetric.

Let $s_n \to -\infty$. A family of rings (a_n, a_n^+) on $(\partial_\infty^*, \rho)$ with inner radii e^{s_n} and asphericities τ_n is said to have **sublinear asphericity** if $\tau_n \ll |s_n|$.

Let $s_n \to -\infty$. A family of rings (a_n, a_n^+) on $(\partial_\infty^*, \rho)$ with inner radii e^{s_n} and asphericities τ_n is said to have **sublinear asphericity** if $\tau_n \ll |s_n|$.

A homeomorphism is sublinearly quasisymmetric if it is **biHölder continuous** and **preserves sublinear asphericity** for families of rings.

Let $s_n \to -\infty$. A family of rings (a_n, a_n^+) on $(\partial_\infty^*, \rho)$ with inner radii e^{s_n} and asphericities τ_n is said to have **sublinear asphericity** if $\tau_n \ll |s_n|$.

A homeomorphism is sublinearly quasisymmetric if it is **biHölder continuous** and **preserves sublinear asphericity** for families of rings.

Theorem

 (Cornulier 2016) SBEs induce biHölder homeomorphisms between the boundaries [of Heintze spaces, and more generally Gromov-hyperbolic spaces].

Let $s_n \to -\infty$. A family of rings (a_n, a_n^+) on $(\partial_\infty^*, \rho)$ with inner radii e^{s_n} and asphericities τ_n is said to have **sublinear asphericity** if $\tau_n \ll |s_n|$.

A homeomorphism is sublinearly quasisymmetric if it is **biHölder continuous** and **preserves sublinear asphericity** for families of rings.

Theorem

- (Cornulier 2016) SBEs induce biHölder homeomorphisms between the boundaries [of Heintze spaces, and more generally Gromov-hyperbolic spaces].
- 2. (P. 2018) SBEs induce sublinearly quasisymmetric homeomorphisms between the boundaries.

Figure: Round sets and their images in Euclidean ${\bf R}^2$.

Let Y and Y' be the Heintze spaces associated to G and G'

Let Y and Y' be the Heintze spaces associated to G and G'

Observation (Cornulier 2008, 2011)

Y and Y' are SBE (via the identity map in horospherical coordinates).

Let Y and Y' be the Heintze spaces associated to G and G'

Observation (Cornulier 2008, 2011)

Y and Y' are SBE (via the identity map in horospherical coordinates).

On the boundary: the identity map through identification with \mathbf{R}^2 is a sublinearly quasisymmetric homeomorphism. Precisely $v = O(\log)$.

Let Y and Y' be the Heintze spaces associated to G and G'

Observation (Cornulier 2008, 2011)

Y and Y' are SBE (via the identity map in horospherical coordinates).

On the boundary: the identity map through identification with \mathbf{R}^2 is a sublinearly quasisymmetric homeomorphism. Precisely $v = O(\log)$. Negative answer to the second part of the Question (even restricted to 3-dim Heintze groups).

Ingredients

The Lebesgue measure λ on [0,1],

Ingredients

The Lebesgue measure λ on [0,1],

A decreasing $(\epsilon_n)_{n\geqslant 0}$ in (0,1) going to 0 but not in ℓ^1 ,

Ingredients

The Lebesgue measure λ on [0, 1],

A decreasing $(\epsilon_n)_{n\geqslant 0}$ in (0,1) going to 0 but not in ℓ^1 ,

An infinite rooted binary tree,

 \aleph_0 independent random variables uniformly distributed in $\{\leftarrow,\rightarrow\}$.

Ingredients

The Lebesgue measure λ on [0, 1],

A decreasing $(\epsilon_n)_{n\geqslant 0}$ in (0,1) going to 0 but not in ℓ^1 ,

An infinite rooted binary tree,

 \aleph_0 independent random variables uniformly distributed in $\{\leftarrow,\rightarrow\}$.

Ingredients

The Lebesgue measure λ on [0, 1],

A decreasing $(\epsilon_n)_{n\geqslant 0}$ in (0,1) going to 0 but not in ℓ^1 ,

An infinite rooted binary tree,

 \aleph_0 independent random variables uniformly distributed in $\{\leftarrow,\rightarrow\}$.

Ingredients

The Lebesgue measure λ on [0, 1],

A decreasing $(\epsilon_n)_{n\geqslant 0}$ in (0,1) going to 0 but not in ℓ^1 ,

An infinite rooted binary tree,

 \aleph_0 independent random variables uniformly distributed in $\{\leftarrow,\rightarrow\}$.

Ingredients

The Lebesgue measure λ on [0, 1],

A decreasing $(\epsilon_n)_{n\geqslant 0}$ in (0,1) going to 0 but not in ℓ^1 ,

An infinite rooted binary tree,

 \aleph_0 independent random variables uniformly distributed in $\{\leftarrow,\rightarrow\}$.

Ingredients

The Lebesgue measure λ on [0, 1],

A decreasing $(\epsilon_n)_{n\geqslant 0}$ in (0,1) going to 0 but not in ℓ^1 ,

An infinite rooted binary tree,

 \aleph_0 independent random variables uniformly distributed in $\{\leftarrow,\rightarrow\}$.

$$M = \lim_{n} \lambda_n$$

2nd step: Take the primitive $\phi:[0,1]\to[0,1]$ in the distributional sense.

 ϕ is not absolutely continuous. The derivative is λ -a.e. 0. The modulus of continuity deviates sublinearly from that of a Lipschitz function: $\log |\phi(x) - \phi(y)| \leq \log |x - y| + \nu(\log |x - y|)$, sublinear ν .

2nd step: Take the primitive $\phi:[0,1]\to[0,1]$ in the distributional sense.

 ϕ is not absolutely continuous. The derivative is λ -a.e. 0. The modulus of continuity deviates sublinearly from that of a Lipschitz function: $\log |\phi(x) - \phi(y)| \le \log |x - y| + \nu(\log |x - y|)$, sublinear ν .

3nd step: To get a sublinearly quasisymmetric homeomorphism of the square (torus), consider a product map $\Phi=\phi_1\times\phi_2$, where ϕ_1 and ϕ_2 are as previously. It is not ACL.

2nd step: Take the primitive $\phi:[0,1]\to[0,1]$ in the distributional sense.

 ϕ is not absolutely continuous. The derivative is λ -a.e. 0. The modulus of continuity deviates sublinearly from that of a Lipschitz function: $\log |\phi(x) - \phi(y)| \leq \log |x - y| + \nu(\log |x - y|)$, sublinear ν .

3nd step: To get a sublinearly quasisymmetric homeomorphism of the square (torus), consider a product map $\Phi = \phi_1 \times \phi_2$, where ϕ_1 and ϕ_2 are as previously. It is not ACL.

Proposition

 ϕ and Φ are sublinearly quasisymmetric. The asphericity distorsions at scale s for ϕ and Φ are bounded by $(\sum_{n<\log_2 s} \epsilon_n)$ (in fact they are a.e. much lower).

INVARIANTS

Conformal dimensions

The **topological dimension**, the **conformal dimension** are invariant under quasisymmetric homeomorphisms.

Conformal dimensions

The **topological dimension**, the **conformal dimension** are invariant under quasisymmetric homeomorphisms.

$$\mathsf{Cdim}(\mathsf{Z}) = \mathsf{inf}\left\{p > 0 : \mathsf{mod}_p^{\{\tau_j\}}(\mathsf{nonconstant}\;\mathsf{curves}\;\mathsf{in}\;\mathsf{Z}) = 0\right\}.$$

 $\{\tau_j\}$ are asphericity parameters for packing measures; $\mathsf{mod}_p^{\{\tau_j\}}$ are the combinatorial moduli. Can be sublinearized and **sometimes computed** using the diffusivity lemma from conf. dim theory.

Conformal dimensions

The **topological dimension**, the **conformal dimension** are invariant under quasisymmetric homeomorphisms.

$$\mathsf{Cdim}(\mathsf{Z}) = \inf \left\{ p > 0 : \mathsf{mod}_p^{\{\tau_j\}} \big(\mathsf{nonconstant} \; \mathsf{curves} \; \mathsf{in} \; \mathsf{Z} \big) = 0 \right\}.$$

 $\{\tau_j\}$ are asphericity parameters for packing measures; $\mathsf{mod}_p^{\{\tau_j\}}$ are the combinatorial moduli. Can be sublinearized and **sometimes computed** using the diffusivity lemma from conf. dim theory.

Self-similar space	Sublinear conformal dimension
${f R}^2$ with scalar or unipotent δ	2
${ t R}^2$ with $\delta={ t diag}(1,\mu)$	$1 + \mu$
General (nilpotent)	trace of the generator of dilations δ

Large-scale classifications of 3-dim Heintze spaces

Csq of Xie 2011 and of Carrasco Piaggio 2014

The 3-dimensionsal Heintze spaces Y and Y' are quasiisometric if and only if Isom(Y) and Isom(Y') are isomorphic.

Large-scale classifications of 3-dim Heintze spaces

Csq of Xie 2011 and of Carrasco Piaggio 2014

The 3-dimensionsal Heintze spaces Y and Y' are quasiisometric if and only if Isom(Y) and Isom(Y') are isomorphic.

Conformal dimension does not suffice. Two methods: Q-capacity, or ℓ^ϕ cohomology.

Large-scale classifications of 3-dim Heintze spaces

Csq of Xie 2011 and of Carrasco Piaggio 2014

The 3-dimensionsal Heintze spaces Y and Y' are quasiisometric if and only if Isom(Y) and Isom(Y') are isomorphic.

Conformal dimension does not suffice. Two methods: Q-capacity, or ℓ^{ϕ} cohomology.

With the sublinear conformal dimension

The 3-dimensional Heintze spaces Y and Y' are SBE if and only if

- 1. Either Isom(Y) and Isom(Y') are isomorphic.
- 2. Or Y and Y' are isometric to left-invariant Riemannian metrics on G and G'.

Rk1. Conformal changes of metrics preserve the Dirichlet **energy** of functions.

Rk1. Conformal changes of metrics preserve the Dirichlet **energy** of functions.

Rk2. Lower bound on moduli \leftrightarrow lower bound on energies.

Rk1. Conformal changes of metrics preserve the Dirichlet **energy** of functions.

Rk2. Lower bound on moduli \leftrightarrow lower bound on energies.

Rk1. Conformal changes of metrics preserve the Dirichlet **energy** of functions.

Rk2. Lower bound on moduli \leftrightarrow lower bound on energies.

One can define functions of locally bounded p-energy \mathcal{W}^p_{loc} ; if φ is a sublin-q.s. homeo then $\mathcal{W}^p_{loc}(\Omega) \overset{\sim}{\to} \mathcal{W}^p_{loc}(\varphi^{-1}\Omega)$ for Ω an open in the target. $\mathcal{W}^p_{loc}(\Omega)$ is a Fréchet algebra whose **spectrum** is a quotient of Ω , the largest space of leaves that it separates.

Rk1. Conformal changes of metrics preserve the Dirichlet **energy** of functions.

Rk2. Lower bound on moduli \leftrightarrow lower bound on energies.

One can define functions of locally bounded p-energy \mathcal{W}^p_{loc} ; if φ is a sublin-q.s. homeo then $\mathcal{W}^p_{loc}(\Omega) \overset{\sim}{\to} \mathcal{W}^p_{loc}(\varphi^{-1}\Omega)$ for Ω an open in the target. $\mathcal{W}^p_{loc}(\Omega)$ is a Fréchet algebra whose **spectrum** is a quotient of Ω , the largest space of leaves that it separates.

Work in progress

 $\mathbf{R}\ltimes_{\delta_1}\mathbf{R}^n$ and $\mathbf{R}\ltimes_{\delta_2}\mathbf{R}^n$ with invariant metrics are SBE if and only if $\chi_{\delta_1}=\chi_{\delta_2}$.

Theorem (Heintze 1974)

Every Heintze space is the left-invariant Riemannian metric of a $\mathbf{R} \ltimes_{\delta} \mathbf{N}$ where \mathbf{N} is a connected nilpotent Lie group and δ is a derivation of its Lie algebra with positive eigenvalues.

Theorem (Heintze 1974)

Every Heintze space is the left-invariant Riemannian metric of a $\mathbf{R} \ltimes_{\delta} \mathbf{N}$ where \mathbf{N} is a connected nilpotent Lie group and δ is a derivation of its Lie algebra with positive eigenvalues.

Examples (different from already seen) include:

Theorem (Heintze 1974)

Every Heintze space is the left-invariant Riemannian metric of a $\mathbf{R} \ltimes_{\delta} \mathbf{N}$ where \mathbf{N} is a connected nilpotent Lie group and δ is a derivation of its Lie algebra with positive eigenvalues.

Examples (different from already seen) include:

1. Carnot type: N is a Carnot gradable group and δ is a grading derivation.

Theorem (Heintze 1974)

Every Heintze space is the left-invariant Riemannian metric of a $\mathbf{R} \ltimes_{\delta} \mathbf{N}$ where \mathbf{N} is a connected nilpotent Lie group and δ is a derivation of its Lie algebra with positive eigenvalues.

Examples (different from already seen) include:

- 1. Carnot type: N is a Carnot gradable group and δ is a grading derivation.
- 2. Rank one symmetric space of non-compact type: N is a (general) Heisenberg group and δ is a grading derivation.

Theorem (Heintze 1974)

Every Heintze space is the left-invariant Riemannian metric of a $\mathbf{R} \ltimes_{\delta} \mathbf{N}$ where \mathbf{N} is a connected nilpotent Lie group and δ is a derivation of its Lie algebra with positive eigenvalues.

Examples (different from already seen) include:

- 1. Carnot type: N is a Carnot gradable group and δ is a grading derivation.
- 2. Rank one symmetric space of non-compact type: N is a (general) Heisenberg group and δ is a grading derivation.

Conjecture (Hamenstädt 1980s) — known for Carnot type (Pansu 1989)

If two Heintze spaces are quasiisometric then the underlying groups under purely real form are isomorphic.

Theorem (Cornulier 2008)

Let N be a nilpotent Lie group. Let δ_1 , δ_2 be Heintze derivations with semisimple parts σ_1 , σ_2 . If $G_1 = \mathbf{R} \ltimes_{\sigma_1} N$ and $G_2 = \mathbf{R} \ltimes_{\sigma_2} N$ are isomorphic then $G_1 = \mathbf{R} \ltimes_{\delta_1} N$ and $G_2 = \mathbf{R} \ltimes_{\delta_2} N$ with left-invariant metrics are SBE.

Theorem (Cornulier 2008)

Let N be a nilpotent Lie group. Let δ_1 , δ_2 be Heintze derivations with semisimple parts σ_1 , σ_2 . If $G_1 = \mathbf{R} \ltimes_{\sigma_1} N$ and $G_2 = \mathbf{R} \ltimes_{\sigma_2} N$ are isomorphic then $G_1 = \mathbf{R} \ltimes_{\delta_1} N$ and $G_2 = \mathbf{R} \ltimes_{\delta_2} N$ with left-invariant metrics are SBE.

Replacement of the former question: do the converse hold?

Theorem (Cornulier 2008)

Let N be a nilpotent Lie group. Let δ_1 , δ_2 be Heintze derivations with semisimple parts σ_1 , σ_2 . If $G_1 = \mathbf{R} \ltimes_{\sigma_1} N$ and $G_2 = \mathbf{R} \ltimes_{\sigma_2} N$ are isomorphic then $G_1 = \mathbf{R} \ltimes_{\delta_1} N$ and $G_2 = \mathbf{R} \ltimes_{\delta_1} N$ with left-invariant metrics are SBE.

Replacement of the former question: do the converse hold? Very partial answers:

1. Yes in the 3-dimensional case.

Theorem (Cornulier 2008)

Let N be a nilpotent Lie group. Let δ_1 , δ_2 be Heintze derivations with semisimple parts σ_1 , σ_2 . If $G_1 = \mathbf{R} \ltimes_{\sigma_1} N$ and $G_2 = \mathbf{R} \ltimes_{\sigma_2} N$ are isomorphic then $G_1 = \mathbf{R} \ltimes_{\delta_1} N$ and $G_2 = \mathbf{R} \ltimes_{\delta_2} N$ with left-invariant metrics are SBE.

Replacement of the former question: do the converse hold? Very partial answers:

- 1. Yes in the 3-dimensional case.
- 2. Ongoing work to a positive answer for abelian N.

Overview

Overview

Thank you for your attention!