```
In []: #7. Data Analytics
    #Implement Simple Naïve Bayes classification algorithm using Python/R on iris.
#ComputeConfusionmatrixtofindTP,FP,TN,FN,Accuracy,Errorrate,Precision,
#Recall on the given dataset.

#dataset: iris.csv
#*2nd try
```

In [28]: import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns

df = pd.read_csv('iris.csv')
df.head()

Out[28]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa

In [29]: df = pd.read_csv('iris.csv')
df.head()

Out[29]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
_	1	5.1	3.5	1.4	0.2	Iris-setosa
	1 2	4.9	3.0	1.4	0.2	Iris-setosa
:	2 3	4.7	3.2	1.3	0.2	Iris-setosa
;	3 4	4.6	3.1	1.5	0.2	Iris-setosa
	4 5	5.0	3.6	1.4	0.2	Iris-setosa

```
In [30]: X = df.iloc[:, :4].values
Y = df['Species'].values
```

Train Dataset Size - X: (120, 4), Y: (120,) Test Dataset Size - X: (30, 4), Y: (30,)

```
In [32]: from sklearn.naive bayes import GaussianNB
         classifier = GaussianNB()
         classifier.fit(X train, Y train)
         predictions = classifier.predict(X_test)
         mapper = {'setosa': 0, 'versicolor': 1,
                    'virginica': 2}
         predictions_ = [mapper[i] for i in predictions]
         fig, axs = plt.subplots(2, 2, figsize = (12, 10),
                                 constrained_layout = True);
         _ = fig.suptitle('Regression Line Tracing')
         for i in range(4):
             x, y = i // 2, i % 2
             sns.regplot(x = X_test[:, i], y = predictions_,
                         ax=axs[x, y]
             axs[x, y].scatter(X_test[:, i][::-1], Y_test[::-1],
                               marker = '+', color="white")
             axs[x, y].set_xlabel(df.columns[i + 1][:-2])
         KeyError
                                                    Traceback (most recent call last)
         ~\AppData\Local\Temp\ipykernel_6260\2886916679.py in <module>
```

```
In [33]: #confusion_matrix
```

Confusion matrix :

	Positive Prediction	Negative Prediction
Positive Class	True Positive (TP) 11	False Negative (FN) 0
	False Positive (FP) 0	•

Classification report :

	precision	recall	f1-score	support
Iris-setosa	1.00	1.00	1.00	11
Iris-versicolor	1.00	1.00	1.00	1 3
Iris-virginica	1.00	1.00	1.00	6
accuracy			1.00	30
macro avg	1.00	1.00	1.00	30
weighted avg	1.00	1.00	1.00	30

```
In [ ]:
```