Machine Learning

Supervised Learning. Features. Loss Functions. Cross-validation

Aleksandr Petiushko

ML Research

October 9th, 2023

• Supervised Learning Setting

®AP< □ > < ⑤ > < ≅ > < ≅ > < ≅ > < ≅ > < ⊙ < ⊘ < ⊘ < October 9th, 2023 2 / 17

- Supervised Learning SettingObjects' features

- Supervised Learning Setting
 - Objects' featuresModel outputs

- Supervised Learning Setting
 - Objects' features
 - Model outputs Loss functions

- ${\bf 0}$ Supervised Learning Setting
 - Objects' features
 - Model outputs
- 4 Loss functions5 Cross-validation

- Supervised Learning Setting
 - Objects' features
 - Model outputs
 - Loss functions
- Cross-validation
- Hyperparameters tuning

(© AP (□ > (□ > (□ > (≡ > (≡ > (≡ > (□) (

Definitions

- $\bullet \ X \text{set of objects}$ $\bullet \ Y \text{set of (correct) answers/labels}$
- $y: X \to Y -$ the <u>unknown</u> dependency

(※AP

←□ト←□ト←=ト←=ト = つのへ

October 9th, 2023 3 / 17

Definitions

- $\bullet \ X {\rm set \ of \ objects}$ $\bullet \ Y {\rm set \ of \ (correct) \ answers/labels}$
- $y: X \to Y$ the <u>unknown</u> dependency

Machine learning paradigms

- Supervised (now)
- Sufficient amount of training material, i.e. pairs (x_i, y_i)

October 9th, 2023 3 / 17

Definitions

- X set of objects
- ullet Y set of (correct) answers/labels
- $y: X \to Y$ the <u>unknown</u> dependency

Machine learning paradigms

- Supervised (now)
- Sufficient amount of training material, i.e. pairs (x_i, y_i)
- Semi-supervised
- Few labeled data (x_i, y_i) and many unlabeled examples x_j

October 9th, 2023 3 / 17

Definitions

- X set of objects
- ullet Y set of (correct) answers/labels
- $y: X \to Y$ the <u>unknown</u> dependency

Machine learning paradigms

- Supervised (now)
- Sufficient amount of training material, i.e. pairs (x_i, y_i)
- \bullet Semi-supervised
- Few labeled data (x_i, y_i) and many unlabeled examples x_j
 - Unsupervised (in future lectures?)
- No labeled pairs, only x_i examples

October 9th, 2023 3 / 17

Definitions

- X set of objects
- Y set of (correct) answers/labels
- $y: X \to Y$ the <u>unknown</u> dependency

Machine learning paradigms

- Supervised (now)
- Sufficient amount of training material, i.e. pairs (x_i, y_i)
 - Semi-supervised
- Few labeled data (x_i, y_i) and many unlabeled examples x_j
- Unsupervised (in future lectures?)
- No labeled pairs, only x_i examples
- Reinforced
- Action generation based on interaction with the environment

October 9th, 2023

• Given:

 $- \{(x_1,y_1),...,(x_n,y_n)\} \subset X \times Y - \text{training set}$

 $- \{(x_1,y_1),...,(x_n,y_n)\} \subset X \times Y - \text{training set}$ • Find

— A decision function $a:X\to Y$ that approximates the target dependency y.

 $- \{(x_1,y_1),...,(x_n,y_n)\} \subset X \times Y - \text{training set}$ • Find

— A decision function $a: X \to Y$ that approximates the target dependency y.

• Need to clarify:

 $- \{(x_1,y_1),...,(x_n,y_n)\} \subset X \times Y - \text{training set}$ • Find

— A decision function $a:X\to Y$ that approximates the target dependency y. • Need to clarify:

— How objects are defined

 $- \{(x_1,y_1),...,(x_n,y_n)\} \subset X \times Y - \text{training set}$ • Find

— A decision function $a:X\to Y$ that approximates the target dependency y. • Need to clarify:

How objects are definedHow answers are given

- $\{(x_1,y_1),...,(x_n,y_n)\} \subset X \times Y \text{training set}$ Find
- A decision function $a:X\to Y$ that approximates the target dependency y.
 - Need to clarify:

- How objects are defined
 How answers are given
 What does it mean that one dependency approximates another

Definition

Object = set of features

Definition

 $Object = set\ of\ features$

Feature types

- Categorical feature
 - Binary attribute
- A special case of categorical, when category = "does this property exist or not"

● AP ←□ト ←雪ト ←毫ト 章 シ つへぐ October 9th, 2023 5 / 17

Definition

 $Object = set\ of\ features$

Feature types

- Categorical feature
- Binary attribute
- A special case of categorical, when category = "does this property exist or not"
 - Ordinal attribute
- Full (or partial) order within categories

● AP ←□ト ←雪ト ←毫ト 章 シ つへぐ October 9th, 2023 5 / 17

Definition

 $Object = set\ of\ features$

Feature types

- Categorical feature
- Binary attribute
- A special case of categorical, when category = "does this property exist or not"
 - Ordinal attribute
- Full (or partial) order within categories
- Quantitative attribute

(* AP ⟨ □ ⟩ ⟨ □ ⟩ ⟨ ∃ ⟩ ⟨ ∃ ⟩ ⟩ ∃ ⊝ Q ⊘ October 9th, 2023 5 / 17

Classification tasks

 \bullet Binary classification $Y=\{-1,1\}$ or $Y=\{0,1\}$

Classification tasks

- \bullet Binary classification $Y=\{-1,1\}$ or $Y=\{0,1\}$
 - \bullet Multiclass classification $Y = \{0,1,...,M-1\}$

 $\begin{pmatrix} \P A \\ & A \\ &$

Classification tasks

- \bullet Binary classification $Y = \{-1,1\}$ or $Y = \{0,1\}$
 - \bullet Multiclass classification $Y = \{0,1,...,M-1\}$
- \bullet Multivalued binary classification $Y = \{0,1\}^M$

Classification tasks

- \bullet Binary classification $Y = \{-1,1\}$ or $Y = \{0,1\}$
 - \bullet Multiclass classification $Y = \{0,1,...,M-1\}$
- \bullet Multivalued binary classification $Y = \{0,1\}^M$

Regression Tasks

 $Y = \mathbb{R} \text{ or } Y = \mathbb{R}^n$

(*AP (*AP) (*AP

Loss Function

Definition

Loss function L(a,x) — error value of algorithm a on object x

Loss Function

Definition

Loss function L(a,x) — error value of algorithm a on object x

Loss functions for classification problems

 $L(a,x) = [a(x) \neq y]$ — error indicator function (either 0 or 1)

Loss Function

Definition

Loss function L(a,x) — error value of algorithm a on object x

Loss functions for classification problems

 $L(a,x) = [a(x) \neq y] - \mathrm{error}$ indicator function (either 0 or 1)

Loss functions for regression problems

 $L(a,x) = (a(x) - y)^2$ — squared error

● AP ←□ト ←雪ト ←毫ト 章 シ つへぐ October 9th, 2023 7 / 17

Comparison of machine learning models

To do this, we use a set which is independent of **training** set, which is called **test** set How do you know that one model is better than another?

Comparison of machine learning models

To do this, we use a set which is independent of training set, which is called test set How do you know that one model is better than another?

Why even bother with this?

• There are many machine learning algorithms and it is important to understand which one is more applicable to a particular task

Comparison of machine learning models

To do this, we use a set which is independent of training set, which is called test set How do you know that one model is better than another?

Why even bother with this?

- There are many machine learning algorithms and it is important to understand which one is more applicable to a particular task
- Even within the same model, there can be many (hyper)parameters to choose from

How to choose the best model

Train models with different parameters and choose the best one on the test Naive approach

How to choose the best model

Naive approach

Train models with different parameters and choose the best one on the test

Disadvantages of the naive approach

• Since the test usually consists of a random subset of the original sample, the result on the test is also some approximation of a random variable

How to choose the best model

Naive approach

Train models with different parameters and choose the best one on the test

Disadvantages of the naive approach

- Since the test usually consists of a random subset of the original sample, the result on the test is also some approximation of a random variable
- training will occur on the test, and surprises are possible on another independent test • If all models are tested on a test dataset and thus choose the best one, then implicit

How to choose the best model

Naive approach

Train models with different parameters and choose the best one on the test

Disadvantages of the naive approach

- Since the test usually consists of a random subset of the original sample, the result on the test is also some approximation of a random variable
- training will occur on the test, and surprises are possible on another independent test • If all models are tested on a test dataset and thus choose the best one, then implicit

So... what to do?

In order not to implicitly learn from test data — you need to use **cross-validation**

General idea

The main idea of cross-validation is to split the training set into two non-overlapping sets (possibly multiple times):

$$X^{learn} = X^{train} \sqcup X^{val}$$

On one of them, training takes place, and on the other, the model is validated.

General idea

The main idea of cross-validation is to split the training set into two non-overlapping sets (possibly multiple times):

$$X^{learn} = X^{train} \sqcup X^{val}$$

On one of them, training takes place, and on the other, the model is validated.

Why validate?

"hyperparameters" (i.e. parameters that are not learned, but set initially): dimension, Usually, any machine learning algorithm contains a whole set of so-called various weighting factors, etc.

And in order to select these parameters "fairly", without using any test data at all, a validation procedure is carried out.

Special cases

© Control by individual objects (leave-one-out, or LOO validation) — a special case of k-fold validation, if k is equal to the cardinality of the training set

Special cases

- \odot Control by individual objects (leave-one-out, or LOO validation) a special case of k-fold validation, if k is equal to the cardinality of the training set
- $oldsymbol{@}$ Multiple k-fold validation repeat k-fold validation several times with different splits.

We come up with a model and hyperparameter space ²Image source: https://scikit-learn.org/ A. Periushko

- We come up with a model and hyperparameter space
- We select a test set from the initial data, and divide the remaining set into training and validation

²Image source: https://scikit-learn.org/ A. Petiushko

- We come up with a model and hyperparameter space
- We select a test set from the initial data, and divide the remaining set into training and validation
- 3 Train the model

®AP ■		October 9th, 2023 14 / 17
	-learn.org/	Intro
-6	² Image source: https://scikit	A. Petiushko

- We come up with a model and hyperparameter space
- We select a test set from the initial data, and divide the remaining set into training and validation
- **3** Train the model
- We carry out the cross-validation procedure across the space of hyperparameters and find their optimal values

® AP		October 9th, 2023 14 / 17
	-learn.org/	Intro
- 6	'Image source: https://scikit	A. Petiushko

- We come up with a model and hyperparameter space
- We select a test set from the initial data, and divide the remaining set into training and validation
- **3** Train the model
- We carry out the cross-validation procedure across the space of hyperparameters and find their optimal values
- We train on the full training set with selected hyperparameters

®AP	200	14 / 17
		October 9th, 2023
	:-learn.org/	Intro
-6	'Image source: https://scikit	A. Petiushko

- We come up with a model and hyperparameter space
- We select a test set from the initial data, and divide the remaining set into training and validation
- **3** Train the model
- hyperparameters and find their optimal We carry out the cross-validation procedure across the space of values
- **6** We train on the full training set with selected hyperparameters

• Let's check it on the test!

 ⟨□⟩⟩
 ⟨□⟩⟩
 ⟨□⟩⟩
 ⟨□⟩⟩
 ⟨□⟩
 ⟨□⟩
 ⟨□⟩
 ⟨□⟩
 ⟨□⟩
 ⟨□⟩
 ⟨□⟩
 ⟨□⟩
 ⟨□⟩
 ⟨□⟩
 ⟨□⟩
 ⟨□⟩
 ⟨□⟩
 ⟨□⟩
 ⟨□⟩
 ⟨□⟩
 ⟨□⟩
 ⟨□⟩
 ⟨□⟩
 ⟨□⟩
 ⟨□⟩
 ⟨□⟩
 ⟨□⟩
 ⟨□⟩
 ⟨□⟩
 ⟨□⟩
 ⟨□⟩
 ⟨□⟩
 ⟨□⟩
 ⟨□⟩
 ⟨□⟩
 ⟨□⟩
 ⟨□⟩
 ⟨□⟩
 ⟨□⟩
 ⟨□⟩
 ⟨□⟩
 ⟨□⟩
 ⟨□⟩
 ⟨□⟩
 ⟨□⟩
 ⟨□⟩
 ⟨□⟩
 ⟨□⟩
 ⟨□⟩
 ⟨□⟩
 ⟨□⟩
 ⟨□⟩
 ⟨□⟩
 ⟨□⟩
 ⟨□⟩
 ⟨□⟩
 ⟨□⟩
 ⟨□⟩
 ⟨□⟩
 ⟨□⟩
 ⟨□⟩
 ⟨□⟩
 ⟨□⟩
 ⟨□⟩
 ⟨□⟩
 ⟨□⟩
 ⟨□⟩
 ⟨□⟩
 ⟨□⟩
 ⟨□⟩
 ⟨□⟩
 ⟨□⟩
 ⟨□⟩
 ⟨□⟩
 ⟨□⟩
 ⟨□⟩
 ⟨□⟩
 ⟨□⟩
 ⟨□⟩
 ⟨□⟩
 ⟨□⟩
 ⟨□⟩
 ⟨□⟩
 ⟨□⟩
 ⟨□⟩
 ⟨□⟩
 ⟨□⟩
 ⟨□⟩
 ⟨□⟩
 ⟨□⟩
 ⟨□⟩
 ⟨□⟩
 ⟨□⟩
 ⟨□⟩
 ⟨□⟩
 ⟨□⟩
 ⟨□ ²Image source: https://scikit-learn.org/ A. Petiushko

AP

• We come up with a model and hyperparameter space

General scheme²:

② We select a test set from the initial data, and divide the remaining set into training and validation

Test data

Training data

Cross-validation

Dataset

Parameters

- © Train the model
- hyperparameters and find their optimal We carry out the cross-validation procedure across the space of values
- **6** We train on the full training set with selected hyperparameters

Final evaluation

Retrained model

Best parameters

²Image source: https://scikit-learn.org/

AP • Let's check it on the test!

• So far, we can split the examples set into training and testing subsets

- So far, we can split the examples set into training and testing subsets
- \bullet We also know how to subdivide the training subset for the validation procedure and even measure the quality during this procedure

- So far, we can split the examples set into training and testing subsets
- \bullet We also know how to subdivide the training subset for the validation procedure and even measure the quality during this procedure
- But the main goal is to select the optimal set of hyperparameters!

- So far, we can split the examples set into training and testing subsets
- ullet We also know how to subdivide the training subset for the validation procedure and even measure the quality during this procedure
- But the main goal is to select the optimal set of hyperparameters!
- Usually two approaches are used:
- ▶ Grid Search: to traverse a predefined range of hyperparameters

- So far, we can split the examples set into training and testing subsets
- ullet We also know how to subdivide the training subset for the validation procedure and even measure the quality during this procedure
- But the main goal is to select the optimal set of hyperparameters!
- Usually two approaches are used:
- ▶ Grid Search: to traverse a predefined range of hyperparameters
- $\,{\color{blue}\,{}^{\blacktriangleright}}$ Randomized Search: to generate hyperparameters randomly (according to their given distributions)

- So far, we can split the examples set into training and testing subsets
- We also know how to subdivide the training subset for the validation procedure and even measure the quality during this procedure
- But the main goal is to select the optimal set of hyperparameters!
- Usually two approaches are used:
- $\,\blacktriangleright\,$ Grid Search: to traverse a predefined range of hyperparameters
- \blacktriangleright Randomized Search: to generate hyperparameters randomly (according to their given distributions)
- ▶ Usually there is not much difference and if you do not need to check **specific** values of hyperparameters in advance, then it is better to limit yourself to a random search

 ${\bf 0}$ While doing Supervised Learning, need to define the input and output of the model, and what is the optimization criteria for training

- looplum While doing Supervised Learning, need to define the input and output of the model, and what is the optimization criteria for training
 - It is necessary to divide the available data into training, validation and test sets from the very beginning

- lacktriangle While doing Supervised Learning, need to define the input and output of the model, and what is the optimization criteria for training
- 2 It is necessary to divide the available data into training, validation and test sets from the very beginning
- test the generalization ability of the ML model (generalization means performance on ³ Cross-validation can be of the very different types, but the main goal is the same: to an independent data set)

- While doing Supervised Learning, need to define the input and output of the model, and what is the optimization criteria for training
- 2 It is necessary to divide the available data into training, validation and test sets from the very beginning
- test the generalization ability of the ML model (generalization means performance on ³ Cross-validation can be of the very different types, but the main goal is the same: to an independent data set)
- $\ensuremath{\mathfrak{o}}$ Hyperparameters tuning is needed for almost every ML model

Thank you!

(®AP) (AB) (AB