STA6171: Statistical Computing for DS 1 EM Algorithm

Ick Hoon Jin

Yonsei University, Department of Statistics and Data Science

2020.10.07

- 1 Introduction
- 2 EM Algorithm
- 3 EM Variants

Introduction

- Develop for handling missing outcomes.
- Use. a lot in optimization
 - The expectation-maximization (EM) algorithm is an iterative optimization strategy motivated by a notion of missingness and by consideration of the conditional distribution of what is missing given what is observed.
 - Popularity of the EM algorithm
 - Simple to implement
 - Reliable to find the global optimum.

Introduction

- Frequentist Setting
 - Observed data from X along with missing data from Z.
 - Complete data Y = (X, Z). We want to maximize $L(\theta | x)$
 - Given observed data x, maximize a likelihood $L(\theta|x)$. Difficult to work with this likelihood $\frac{\text{Difficult}}{\text{Outbelly between method}}$
 - A easier way is working withithe density $Y|\theta$ and $Z|x,\theta$.

 Use EM algorithms with the density $Y|\theta$ and $Z|x,\theta$.
- Bayesian Setting: Interest Often focuses on estimating the mode of a posterior distribution $f(\theta|x)$.
- Missing data may not truly be missing: they may be only a conceptual ploy that simplifies the problem. In this case, Z is often referred to as latent.

 Sometimes we want to maximize LCD(x)

Missing Data and Marginalization - Frequentist

- In the presence of missing data, only a function of the complete-data y is observed. $f(y \mid \theta) = f(x, z \mid \theta) = f_{x}(x \mid \theta) f_{z \mid x}(z \mid x, \theta)$
- $l_y(\theta) = l_x(\theta) + l_g f_{z(x)}(z(x, \theta))$ Assume that the missing data are random, so that

• Useful when maximizing $I_X(\theta)$ can be difficult but maximizing the complete log-likelihood I is simple.

Missing Data and Marginalization - Bayesian

Complete data likelihood
$$L(\theta | y) = L(\theta | x, z)$$

 $L(\theta | x) : marginalization of L(\theta | y)$

- View the likelihood $L(\theta|x)$ as a marginalization of the complete-data likelihood $L(\theta|y) = L(\theta|x,z)$.
- Consider there to be missing parameter ψ , whose inclusion simplifies Bayesian calculations even though ψ is of no interest itself. Since Z and ψ are both missing random quantities, it matters little whether we use notation that suggests the missing variables to be unobserved data or parameters.

EM Algorithm

- EM algorithm iteratively seeks to maximize $L(\theta|x)$ with respect to θ .
- Let $\theta^{(t)}$ denote the estimated maximizer at iteration t, for $t=0,1,\cdots$.
- Define $Q(\theta|\theta^{(t)})$ to be the expectation of the joint log-likelihood for the complete data, conditional on the observed data X = x.

$$Q\left(\theta|\theta^{(t)}\right) = E\left\{\log L(\theta|Y)\Big|x,\theta^{(t)}\right\}.$$

 $Q(\theta \mid \theta^{(t)}) = E\{ \text{logL}(\theta \mid Y) \mid x, \theta^{(t)} \}$ • Then, $Q(\theta \mid \theta^{(t)})$ is maximized w.r.t θ , that is $\theta^{(t+1)}$ is found such that

$$Q\left(heta^{(t+1)}| heta^{(t)}
ight) \geq Q\left(heta| heta^{(t)}
ight)$$

for all $\theta \in \Theta$.

$$f(y_1\theta) = \prod_{i=1}^{2} \theta e^{-\theta y_i} = \theta^2 e^{-\theta \sum_{i=1}^{2} y_i}$$

- Suppose $Y_1, Y_2 \sim exp(\theta)$ and $y_1 = 5$ is observed but the value y_2 is Y= ((T), Y2) = INTSCINA $ly(\theta) = 2log\theta - \theta y_1 - \theta y_2$
- The complete-data log likelihood function is

$$\log L(\theta|y) = 2\log \theta - \theta y_1 - \theta y_2.$$

$$E(Y_2|Y_1, \theta^{(t)}) = E(Y_2|\theta^{(t)})$$

$$E(Y_2|y_1, \theta^{(t)}) = E(Y_2|\theta^{(t)})$$

$$E(Y_2|y_1, \theta^{(t)}) = E(Y_2|\theta^{(t)}) = \frac{1}{\theta^{(t)}},$$

Because

the conditional expectation of $\log L(\theta|Y)$ yields

$$Q(\theta | \theta^{(t)}) = E[ly(\theta) | y_1, \theta^{(t)}] = E[2log\theta - \theta y_1 - \theta y_2 | y_1, \theta^{(t)}]$$

$$Q(\theta | \theta^{(t)}) = 2\log\theta - 5\theta - \theta/\theta^{(t)}.$$

= $2\log\theta - 5\theta - \theta \in [y_1, y_1, \theta^{(b)}] = 2\log\theta - 5\theta - \theta/\theta^{(b)}$ • The maximizer of $Q(\theta|\theta^{(t)})$ with respect to θ is easily to found to be the $\frac{\partial}{\partial z} = \frac{\partial^{(cp)} + (1)}{\partial z^{(cp)} + (1)} = \frac{\partial^{(cp)} + (1)}{\partial z^{(cp)} + (1)} = \frac{\partial^{(cp)} + (1)}{\partial z^{(cp)} + (1)}$ root of $2/\theta - 5 - 1/\theta^{(t)} = 0$.