Use of machine learning techniques to discriminate single particle clusters from various background physical and instrumental contributions.

Sacha Rejai, Stanislas Lambert

February 27th, 2024

Summary

Introduction

- Context
- Program architecture

Data simulation

- Simulation parameters for the MIP
- Analog to Digital Converter (ADC)
- Signal and Background samples

Classification methods

- Simple classification methods
- TMVA RNN methods

Results

- ROC curves
- TMVA RNN Classifier outputs + cuts

Introduction

Problem context

• Can RNN be used for particle detection?

 Comparison of RNN performance with a conventional algorithm for their ability to separate signal from background noise.

• To compare, we need to simulate data

Code architecture

• json file to set certain values

 data simulation used to create data file, processed by simple algorithm and RNN

 draw and results to write and print results

Data simulation

 In the data simulation file, we have a ClusterSimulator class, which simulates Minimum Ionizing Particles (MIPs).

 json file retrieves values for detector thickness and width, noise, digitization and signal cutting.

class ClusterSimulator:

```
def __init__(self, config_file):
    self.config file = config file
    self.load config(config file)
    #Lists that compares who has the highest factor between MIP and 2MIP
    self.P=[]
    self.L=[]
def load config(self, config file):
    with open(config file) as f:
        config = json.load(f)
    self.b = config["b"]
                                  # digitalization
                                  # signal cutting
    self.r = config["r"]
    self.t = config["t"]
                                  # thickness
    self.w = config["w"]
                                  # width
    self.noise = config["noise"] # noise
```

Angular distribution

 the angle of incidence of the particle is randomly generated so that it is not too grazing, and not perfectly perpendicular either degrees

Theta distribution (in degrees)

What does the particle's passage look like?

random selection of initial position

 Initially, the charge deposited on a track is linearly dependent on the distance covered on this track.

 Then, we add a cross-talk effect on neighboring tracks, then the noise and a threshold

Analog to Digital Converter

- A crucial aspect of our simulation is the conversion of analog signals, generated by the passage of particles through the detector, into digital data via an Analog-to-Digital Converter (ADC).
- The number of bits is defined in the json file (8 bits here). We have calibrated our ADC to reflect the performance of real devices, taking noise and resolution into account.
- this ADC is used to return clusters with MIP and 2MIP functions

Clusters obtained

 We have a function that simulates a particle at MIP

 We also have a function that simulates 2 MIPs

Some clusters are more complicated

example for 2 MIP

example for 1 MIP

Simple classification methods:

- integral method \longrightarrow sum_Lebesgue(y_{max} : $max(y_{max} + 1, y_{max} 1)$)
- width method \longrightarrow abs $(x_i xf)$
- position method \rightarrow abs $(x_{y_{max1}} x_{y_{max2}})$
- charge method
 →sum_Riemann(x_i : x_f)
- ratio method
 —>charge/width

Hypothesis test for width

Hypothesis test for charge

Recurrent Neural Network (RNN)

- Use the output of a node as an entry
- How to use it:
 Generate samples of signals
 and background.
 Take a % of samples to
 training and use the rest for
 the test
 - Training is optimize with the gradient descent algorithm.
- Hyperparameters:

 epoch: number of training
 batch: subset of the training

TMVA methods

Framework in ROOT to be used for classification and regression problems with various multivariate analysis (MVA) methods available.

The input parameter is the resolution (x-axis), the output is set to 1 and the nodes in the hidden layer are 8.

- Vanilla RNN
- Long short-term memory (LSTM) :
 - \longrightarrow Same principle as a RNN but avoids the vanishing gradient problem.
- Gated Recurrent Unit (GRU) :
 - --- Variant of the LSTM method

For the following results, we generated 1000 signal samples and 1000 background samples.

80% were used for training and the rest for testing.

Results

ROC curve (b=256,r=10)

ROC curve (epoch & batch)

ROC curve (b=256,r=100)

Quickly reminder

Results

ullet Kolmogorov-Smirnov test higher than $0.01 \longrightarrow$ no overtraining !

Some references

- https://indico.fnal.gov/event/17409/contributions/ 42949/attachments/26558/32939/Conley_2018June20_ SNBMeeting.pdf
- https:
 //root.cern.ch/download/doc/tmva/TMVAUsersGuide.pdf

18 / 22

Example of particle trajectory

example of trajectory

example of another trajectory

hypothesis test integral

hypothesis test position

hypothesis test ratio

