

CH641 数据手册

V1.5

概述

CH641 系列是基于青稞 RISC-V2A 内核设计的 PD 无线充电专用微控制器。该系列具有宽压、单线调试、低功耗、外围精简等特点。CH641 内置 PD PHY、BC 接口、差分输入电流采样和交流小信号放大解码器,支持 USB PD 及 Type C 快充功能、BC1. 2 及 DCP 等多种高压充电协议,提供了 DMA 控制器、10 位模数转换 ADC、多组定时器、USART 串口、I2C 等丰富的外设资源,提供过压保护和过温保护。

产品特性

● 内核 Core

- 青稞 32 位 RISC-V 内核, RV32EC 指令集
- 快速可编程中断控制器+硬件中断堆栈
- 支持2级中断嵌套
- 支持系统主频 48MHz

● 存储器

- 2KB 易失数据存储区 SRAM
- 16KB 程序存储区 CodeFlash
- 1920B 系统引导程序存储区 BootLoader
- 64B 系统非易失配置信息存储区
- 64B 用户自定义信息存储区

● 电源管理和低功耗

- 系统供电 V_™ 额定电压: 5V~12V
- 内部产生 V_{DD} 电压用于 I/O 和模拟: 4.8V
- 低功耗模式: 睡眠、待机

● 系统时钟、复位

- 内置出厂调校的 24MHz 的 RC 振荡器
- 内置低频 RC 振荡器
- 上电复位、可编程电压监测器

● 7路通用 DMA 控制器

- 7个通道,支持环形缓冲区管理
- 支持 TIM1/ADC/USART/I2C

● 1 组 10 位模数转换 ADC

- 模拟输入范围: GND~3.3V
- 15 路外部信号通道+1 路内部信号通道
- 支持外部延迟触发

● 多组定时器

- 1 个 16 位高级定时器,提供死区控制和紧急 刹车,提供用于电机控制的 PWM 互补输出
- 1 个 16 位的精简通用定时器
- 1 个看门狗定时器(窗口型)
- 系统时基定时器: 32 位计数器
- 一组多引脚映射的 USART 串口
- 1 个 I2C 从机接口
- USB PD 和 Type C 控制器及 PHY
- 支持 DRP、Sink 和 Source 应用
- 3 个 CC 引脚, 部分 CC 引脚内置 Rd

● 1组BC接口

- 支持 BC1. 2 及多种 HV DCP 充电协议
- 内置 6 位 DAC, 支持多种电压输出及上下拉
- 差分输入电流采样 ISP/ISN
- 交流小信号放大解码器 QII
- GPIO 端口
- 2组 GPIO 端口, 25个 I/O 口
- 外部中断
- 4 个高压驱动引脚, 5 个低压强驱动引脚
- 0VP 过压保护和 0TP 过温保护
- 安全特性: 64 位芯片唯一 ID
- 调试模式:串行单线调试接口
- 封装形式: QFN

型号	闪存	SRAM	通 用 I/0	高级 定时 器	通用 定时 器	串口	120	系统 时钟 源	ADC 通道 数	高压 驱动 I/0	BC 接口 DAC	USB PD Type-C	电流 采样 ISP	信号 解码 QII	封装 形式
CH641F	16K	2K	25	1	1	1	1	2	15+1	4	√	3 个 CC	差分	√	QFN28
CH641D	16K	2K	17	1	1	1	1	2	10+1	4	√	3 ↑ CC	差分	√	QFN20
CH641X	16K	2K	17	1	1	1	1	2	12+1	2	√	3 个 CC	差分	√	QFN20
CH641P	16K	2K	13	1	1	1	_	2	10+1	2	√	3 个 CC	差分	√	QFN16

注: CH641X 和 CH641P 针对无线充电应用只提供 2 个高压 I/O, 但驱动能力更强。

第1章 规格信息

1.1 系统架构

微控制器基于 RISC-V 指令集的青稞 V2A 设计,其架构中将内核、仲裁单元、DMA 模块、SRAM 存储等部分通过多组总线实现交互。设计中集成通用 DMA 控制器以减轻 CPU 负担、提高访问效率,同时兼有数据保护机制,时钟自动切换保护等措施增加了系统稳定性。下图是 CH641 内部总体架构框图。

图 1-1 MCU 系统框图

1.2 存储器映射表

图 1-2 存储器地址映射

2

1.3 时钟树

系统中引入 2 组时钟源:内部高频 RC 振荡器(HSI)和内部低频 RC 振荡器(LSI)。其中,低频时钟源为自动唤醒单元提供了时钟基准,高频时钟源直接或者间接通过 2 倍频后输出为系统总线时钟(SYSCLK),系统时钟再由各预分频器提供了 HB 域外设控制时钟及采样或接口输出时钟。

图 1-3 时钟树框图

1.4 功能概述

1.4.1 青稞 RISC-V2A 处理器

RISC-V2A 支持 RISC-V 指令集 EC 子集。处理器内部以模块化管理,包含快速可编程中断控制器 (PFIC)、扩展指令支持等单元。总线与外部单元模块相连,实现外部功能模块和内核的交互。

青稞处理器以其极简指令集、多种工作模式、模块化定制扩展等特点可以灵活应用不同场景 MCU设计,例如小面积低功耗嵌入式场景。

- 支持机器模式
- 快速可编程中断控制器 (PFIC)
- 2级硬件中断堆栈
- 串行单线调试接口
- 自定义扩展指令

1.4.2 片上存储器

内置 2K 字节 SRAM 区,用于存放数据,掉电后数据丢失。

内置 16K 字节程序闪存存储区(Code FLASH),即用户区,用于用户的应用程序和常量数据存储。 内置 1920 字节系统存储区(System FLASH),即 B00T 区,用于系统引导程序存储(厂家固化自举加载程序),在设置用户配置字 START_MODE 位为 0 关闭 B00T 后,也可用于用户的应用程序和常量数据存储(需使用 Id 分段链接文件)。

内置 64 字节系统非易失配置信息存储区,用于厂商配置字存储,出厂前固化,用户不可修改。 内置 64 字节用户自定义信息存储区,用于用户选择字存储。

支持 Boot 和用户代码互相跳转。

1.4.3 供电方案

 $V_{HV} = 4.0 \sim 12.6 V$: 为内部调压器和 4 个 HV 高压 I/O 引脚供电, 9V 以上应用建议 V_{HV} 上累计电容量不小于 10 u F。

 V_{00} : 内部调压器在 V_{00} 引脚输出额定 4.8V,为大部分 I/0 引脚和模拟模块供电,通常需外接 1uF或 2.2uF 容量的高频退耦电容。

V33: 内部调压器产生 3.3V, 在芯片内部为 ADC 提供参考电压。

V™高于 5V 时, V™输出电压稳定在约 4.8V; V™低于 5V 时, V™输出电压随之降低。

当使用 ADC 时, V_™和 V_™应该都不低于 3.6V, 否则 ADC 性能会随 V_™降低而逐渐变差。

1.4.4 供电监控器

CH641 内部集成了上电复位 (POR) / 掉电复位 (PDR) 电路,该电路始终处于工作状态,保证系统在供电超过 4V 时工作;当 V_{IV} 低于设定的阈值 (V_{POR/POR}) 时,置器件于复位状态,而不必使用外部复位电路。

另外系统设有一个可编程的电压监测器(PVD),需要通过软件开启,用于比较 V_{HV} 供电与设定的阈值 V_{PVD} 的电压大小。打开 PVD 相应边沿中断,可在 V_{HV} 下降到 PVD 阈值或上升到 PVD 阈值时,产生中断通知。关于 $V_{POR/PDR}$ 和 V_{PVD} 的值参考第 3 章。

CH641 还内置了 OVP 过压保护和 OTP 过温保护等异常保护模块,在 V™电压过高时、或者芯片温度过高时将强行复位 MCU。

1.4.5 系统电压调节器 LDO

复位后,调节器自动开启,根据应用方式有两种操作模式

- 开启模式:正常的运行操作,提供稳定的内核电源
- 低功耗模式: CPU 停止, 系统自动进入待机模式

1.4.6 低功耗模式

系统支持两种低功耗模式,可以针对低功耗、短启动时间和多种唤醒事件等条件下选择达到最佳的平衡。

● 睡眠模式(SLEEP)

在睡眠模式下,只有 CPU 时钟停止,但所有外设时钟供电正常,外设处于工作状态。此模式是最 浅低功耗模式,但可以达到最快唤醒。

退出条件:任意中断或唤醒事件。

● 待机模式(STANDBY)

置位 PDDS、SLEEPDEEP 位,执行 WF I/WFE 指令进入。此模式下,高频时钟(HS I/PLL)域被关闭,SRAM 和寄存器内容保持,I/O 引脚状态保持,可以达到最低的电能消耗。该模式唤醒后系统可以继续运行,此时 HS I 作为默认系统时钟源。

退出条件:任意外部中断/事件(EXTI信号)、RST上的外部复位信号、USB PD唤醒信号、PVD的输出、AWU自动唤醒,其中EXTI信号包括25个外部I/0口之一。

1.4.7 快速可编程中断控制器 (PFIC)

青稞内核 MCU 内置快速可编程中断控制器 (PFIC),最多支持 255 个中断向量,以最小的中断延迟提供了灵活的中断管理功能。CH641 管理了 4 个内核私有中断和 25 个外设中断管理,其他中断源保留。PFIC 的寄存器均可以在机器特权模式下访问。

- 2个可单独屏蔽中断
- 支持硬件中断堆栈(HPE),无需指令开销
- 提供 2 路免表中断 (VTF)
- 向量表支持地址或指令模式
- 支持2级中断嵌套
- 支持中断尾部链接功能

1.4.8 外部中断/事件控制器(EXTI)

外部中断/事件控制器总共包含 16 个边沿检测器,用于产生中断/事件请求。每个中断线都可以独立地配置其触发事件(上升沿或下降沿或双边沿),并能够单独地被屏蔽;挂起寄存器维持所有中断请求状态。EXTI 可以检测到脉冲宽度小于内部 HB 的时钟周期。25 个通用 I/0 口都可选择连接到同一个个外部中断源。

1.4.9 通用 DMA 控制器

系统内置了 1 组通用 DMA 控制器,管理 7 个通道,灵活处理存储器到存储器、外设到存储器和存储器到外设间的高速数据传输,支持环形缓冲区方式。每个通道都有专门的硬件 DMA 请求逻辑,支持一个或多个外设对存储器的访问请求,可配置访问优先权、传输长度、传输的源地址和目标地址等。

DMA 用于主要的外设包括:高级定时器 TIM1、ADC、USART、I2C。

注: DMA 和 CPU 经过仲裁器仲裁之后对系统 SRAM 进行访问。

1.4.10 时钟和启动

系统时钟源 HSI 默认开启,在没有配置时钟或者复位后,内部 24MHz 时钟的 3 分频作为默认的 CPU 时钟,随后可以另外选择 PLL 时钟。对于关闭时钟的低功耗模式,唤醒后系统也将使用内部的 RC 振荡器。如果使能了时钟中断,软件可以接收到相应的中断。

1.4.11 ADC (模拟/数字转换器)

CH641 内置 1 个 10 位的模拟/数字转换器(ADC),支持多达 15 个外部通道和 1 个内部通道采样,可编程的通道采样时间,可以实现单次、连续、扫描或间断转换。提供模拟看门狗功能允许非常精准

地监控一路或多路选中的通道,用于监测通道信号电压。支持外部事件触发转换,触发源包括片上定时器的内部信号和外部引脚。支持使用 DMA 操作。支持外部触发延迟功能,使能该功能后,当外部触发沿产生时,控制器根据配置的延迟时间将触发信号进行延迟,延迟时间到即刻触发 ADC 转换。

1.4.12 定时器及看门狗

系统中的定时器包括 1 个高级定时器、1 个通用定时器、1 个看门狗定时器以及系统时基定时器。

● 高级控制定时器

高级控制定时器是一个 16 位的自动装载递加/递减计数器, 具有 16 位可编程的预分频器。除了完整的通用定时器功能外, 可以被看成是分配到 6 个通道的三相 PWM 发生器, 具有带死区插入的互补 PWM 输出功能, 允许在指定数目的计数器周期之后更新定时器进行重复计数周期, 刹车功能等。高级控制定时器的很多功能都与通用定时器相同, 内部结构也相同, 因此高级控制定时器可以通过定时器链接功能与其他 TIM 定时器协同操作,提供同步或事件链接功能。

● 通用定时器

通用定时器是一个 16 位的自动装载递加计数器,具有一个可编程的 16 位预分频器以及 2 个独立的通道及其对应的互补输出通道,每个独立通道都支持输入捕获、输出比较、PWM 生成和单脉冲模式输出,同时还带有简单的死区控制,不支持 DMA。

● 窗口看门狗

窗口看门狗是一个 7 位的递减计数器,并可以设置成自由运行。可以被用于在发生问题时复位整个系统。其由主时钟驱动,具有早期预警中断功能;在调试模式下,计数器可以被冻结。

● 系统时基定时器(SysTick)

青稞微处理器内核自带一个 32 位递增的计数器,用于产生 SYSTICK 异常(异常号: 15),可专用于实时操作系统,为系统提供"心跳"节律,也可当成一个标准的 32 位计数器。具有自动重加载功能及可编程的时钟源。

1.4.13 通用异步收发器(USART)

CH641 提供了 1 组通用异步收发器(USART)。支持全双工异步通信以及半双工单线通信,也支持LIN(局部互连网),兼容 IrDA SIR ENDEC 传输编解码规范和调制解调器(CTS/RTS 硬件流控)操作,还允许多处理器通信。其采用分数波特率发生器系统,并支持 DMA 操作连续通讯。

1.4.14 I2C 总线

1 个 I2C 总线接口,工作于从机模式,完成所有 I2C 总线特定的时序、协议、仲裁等,支持标准和快速两种通讯速度,不支持主机模式。

I2C 接口提供 7 位或 10 位寻址, 并且在 7 位从模式时支持双从地址寻址。内置了硬件 CRC 发生器 /校验器。

1.4.15 USB PD 及 Type C 控制器

内置 1 个 USB Power Delivery 控制器和 3 个 PD 收发器 PHY。提供 3 个 CC 引脚,其中 PBO/CC1R和 PB9/CC3R 引脚内置 type-C 规范定义的可控 Rd 下拉电阻,PB1/CC2 引脚默认不提供 Rd,可支持定制。

支持 USB type-C 主从检测,自动 BMC 编解码和 CRC, 硬件边沿控制, 支持 USB PD2.0 和 PD3.0 电力传输控制, 支持快充, 支持 UFP/PD 受电端 Sink 和 DFP/PD 供电端 Source 应用、DRP 应用以及动态切换。

1.4.16 BC 接口

CH641 提供了 1 组 BC 接口,引脚为 PAO/UDP 和 PA1/UDM,均内置 6 位 DAC 及输出缓冲器,支持多种电压输出、输入比较,支持多级上拉和下拉电阻,支持 BC1.2 及 DCP 等多种高压充电协议。

1.4.17 差分输入电流采样(ISP)

CH641 支持差分输入的电流采样,外加毫欧级采样电阻,可实现低侧电流的采样与差分放大。差分输入的正端支持两个引脚选择,默认 ISP 引脚为差分输入正端,可选择 PA6 引脚作为差分输入正端,PB7/ISN 引脚为差分输入的负端。差分放大的结果通过 ADC_IN8 通道送入 ADC 采样。支持单端输入模式,无需 ISN,省下 PB7 可用于 ADC 或者 GPI0。

1.4.18 交流小信号放大解码器(QII)

内置多级放大倍数和滤波器,支持数字滤波,主要用于 FSK/ASK 解码,可实现传输过程中的高质量与低误码率。信号输入支持两个引脚选择,默认为 PB8/QII 引脚,可选择 PA7 引脚作为输入。解码的结果通过 ADC_IN9 通道送入 ADC 采样。

1.4.19 通用输入输出接口(GPIO)

系统提供了 2 组 GP10 端口, 共 25 个 GP10 引脚。大多数 GP10 引脚可以由软件配置成推挽输出、输入(带或不带上拉,部分带下拉)或复用的外设功能端口。

多数 GP10 引脚都与数字或模拟的复用外设共用,提供锁定机制冻结 10 配置,以避免意外的写入 1/0 寄存器。

PB8 作为 GP10 时,只支持输入或开漏输出,不支持推挽输出。

PB2H、PB3H、PB4H、PB5H 为 V₩供电的高压 I/O 引脚, 其余为 Vω供电的低压 I/O 引脚。

PA2、PA3、PA4、PA5、PA9 均具有较强的电流驱动能力,约为其它普通 I/O 引脚的两倍。

PB3H 和 PB4H 内置不可关闭的上拉电阻; PB2H 和 PB5H 未内置上拉电阻; ISP 和 PB8/QII 未内置上拉电阻; PA0 和 PA1 内置默认关闭、可以调节的上拉电阻,由 EXTEN_CTLR1 中的两组 PUE 和 DAC 进行调节和控制,并可提供上拉电流;提供 3 个 CC 引脚,其中 PB0/CC1/CC1R 和 PB1/CC2/CC2R 及 PB9/CC3/CC3R 引脚内置 type-C 规范定义的上拉电流,由对应引脚的 R8_PORT_CC 中的 CC_PU 控制;除此之外的 GP10 引脚均内置默认关闭、可以开启的上拉电阻。

PA4 和 PA5 内置默认开启、可以关闭的下拉电阻; PA0 和 PA1 内置默认开启、可以调节、可以关闭的下拉电阻,由 EXTEN_CTLR1 中的两组 PDE 和 DAC 进行调节和控制,并可提供下拉电流; CC1/CC2/CC3 如果有后缀 R 则表示内置 type-C 规范定义的可控 Rd 下拉电阻,默认开启; PB0/CC1R 和 PB9/CC3R 引脚内置可控 Rd 下拉电阻,作为 GP10 推挽输出时建议关闭下拉,PB1/CC2 引脚默认不提供 Rd,可支持定制,由对应引脚的 R8 PORT CC 中的 CC PD 控制;除此之外的 GP10 引脚均未内置下拉电阻。

高压 I/0 引脚由 V_m提供电源,通过改变 V_m供电将改变高压 I/0 引脚输出电平高值来适配外部接口电平。低压 I/0 引脚由 V_m提供电源,通过改变 V_m供电将改变 I/0 引脚输出电平高值来适配外部接口电平。具体引脚请参考第二章引脚描述。

1.4.20 串行单线调试接口(1-wire SDI Serial Debug Interface)

内核自带一个串行单线调试的接口 PBO/SWIO 引脚(Single Wire Input Output)。系统上电或复位后默认调试接口引脚功能开启,程序运行后可以选择关闭。

第2章 引脚信息

2.1 引脚排列

注: 引脚图中复用功能均为缩写。

示例: A:ADC_(A10:ADC_IN10)

T:TIME_(T1C3:TIM1_CH3, T1C1N:TIM1_CH1N, T1ETR:TIM1_ETR, T1BK:TIM1_BKIN)

TX (USART_TX)

RX (USART_RX)

CTS (USART_CTS)

 $\mathsf{RTS}\,(\mathsf{USART_RTS})$

SDA (12C_SDA)

SCL (12C_SCL)

ADCE (ADC_ETR)

2.2 引脚描述

表 2-1 引脚定义

注意,下表中的引脚功能描述针对的是所有功能,不涉及具体型号芯片。不同型号之间外设资源有差 异,查看前请先根据芯片型号资源表确认是否有此功能。

	引脚:	排列							
QFN16	QFN20 (CH641X)	QFN20 (CH641D)	QFN28	引脚名称	引脚 类型	I/0 特性 ⑴ ⑶	主功能(复位后)	默认复用功能	重映射功能 ^⑵
0	0	0	0	GND	Р	_	GND	-	-
2	2	1	1	V _{HV}	Р	-	V _{HV}	-	-
_	_	2	2	PB2H	1/0	HV	PB2H	TIM1_CH1	-
3	3	3	3	PB3H	1/0	HV/PU	PB3H	TIM1_CH2	-
4	4	4	4	PB4H	1/0	HV/PU	PB4H	TIM1_CH3	TIM1_CH1N_1/TIM2_CH2N_2/ TIM1_CH2N_3
_	-	5	5	PB5H	1/0	HV	PB5H	-	TIM1_CH2N_1/ TIM2_CH1N_2/TIM2_CH1N_3
-	-	-	6	PA9	1/0	LV	PA9	TIM2_CH2	T1M2_CH2_2
_	5	6	7	PA3	1/0	LV	PA3	TIM1_CH2N	I2C_SDA_1/USART_RX_4
-		_	8	PA10	1/0/A	-	PA10	ADC_IN3	-
_	6	-	9	PA11	1/0/A	-	PA11	ADC_IN4/USART_TX	12C_SCL_2
_	7	-	10	PA12	1/0/A	-	PA12	ADC_IN5/USART_RX	I2C_SDA_2
_	-	_	11	PA13	1/0/A	_	PA13	ADC_IN6/I2C_SCL/ USART_CTS	
5	8	7	12	PA4	1/0	LV/PD	PA4	ADC_ETR/TIM1_CH3N	TIM2_CH2_1/TIM2_CH2_3
_	9	8	13	PA5	1/0	LV/PD	PA5	TIM2_CH1	-
6	10	9	14	PA6	1/0/A	_	PA6	ADC_INO/RST	ISP_1
7	11	10	15	PA7	1/0/A	-	PA7	ADC_IN1/TIM2_CH1N	TIM2_CH1N_1/QII_1
-	- 1	_	16	PA8	1/0/A	-	PA8	ADC_IN2/TIM2_CH2N	TIM2_CH2N_1
8	12	11	17	PB8	1/0/A	-	PB8	ADC_IN9/QII	-
9	13	12	18	PB7	1/0/A	_	PB7	ADC_IN7/ISN/MCO	-
10	14	13	19	ISP (5)	Α	-	ISP	ADC_IN8	-
-	- 1	_	20	PA14	1/0	_	PA14	USART_RTS/12C_SDA	-
-	-	-	21	PA15	1/0	-	PA15	TIM1_BKIN	ADC_ETR_1
12	15	15	22	PB0 (4)	1/0/A	Rd	PB0	ADC_IN10/SWI0/CC1R	USART_RX_1
11	16	14	23	PA0	1/0/A	-	PA0	ADC_IN12/UDP	USART_TX_2/USART_RX_3
13	17	16	24	PA1	1/0/A	_	PA1	ADC_IN13/UDM	USART_TX_3/USART_RX_2
14	18	17	25	PB1 (4)	1/0/A	-	PB1	ADC_IN11/CC2	USART_TX_1
15	19	18	26	PB9 (4)	1/0/A	Rd	PB9	ADC_IN14/CC3R/ TIM1_ETR	-
16	20	19	27	V_{DD}	Р	-	V _{DD}	-	-

1	1	20	28	PA2	1/0	LV	PA2	TIM1_CH1N	TIM1_CH3_1/I2C_SCL_1/ USART_TX_4
---	---	----	----	-----	-----	----	-----	-----------	-------------------------------------

注1: 表格缩写解释:

I = TTL/CMOS 电平斯密特输入,支持V∞电压范围的输入;

0 = CMOS 电平三态输出,支持V∞电压范围的输出;

P = 电源;

LV = 低压强驱动引脚, 支持V₀,电压范围的输入和输出;

 $HV = 高压驱动引脚, 支持<math>V_{HV}$ 电压范围的输入和输出;

 $PU = 内置不可关闭的上拉电阻、上拉到<math>V_W$ 电压、可用于驱动P-MOSFET的栅极:

PD = 内置可以关闭的下拉电阻, 默认为开启下拉, 可用于驱动N-MOSFET的栅极;

Rd = 内置type-C规范定义的可控Rd下拉电阻,可用于PD受电端;

A = 模拟信号输入或输出,支持Vin电压范围。

注 2: 重映射功能下划线后的数值表示 AFIO 寄存器中相对应位的配置值。例如: TIM2_CH1N_3 表示 AFIO 寄存器相应位配置为 11b。

注 3: PB3H 和 PB4H 内置不可关闭的上拉电阻; PB2H 和 PB5H 未内置上拉电阻; ISP 和 PB8/QII 未内置上拉电阻; PA0 和 PA1 内置默认关闭、可以调节的上拉电阻; PB0/CC1/CC1R 和 PB1/CC2/CC2R 及 PB9/CC3/CC3R 内置 type-C 规范定义的上拉电流; 除此之外的 GP10 引脚均内置默认关闭、可以开启的上拉电阻。PA4 和 PA5 内置默认开启、可以关闭的下拉电阻;PA0 和 PA1 内置默认开启、可以调节、可以关闭的下拉电阻,并可提供下拉电流; PB0/CC1R 和 PB9/CC3R 引脚内置 type-C 规范定义的 Rd 下拉电阻,默认开启,PB1/CC2 引脚默认不提供 Rd,可支持定制;除此之外的 GP10 引脚均未内置下拉电阻。更多详细信息请参考 CH641RM 手册的 GP10 及其复用功能章节。

注 4: 当 PBO、PB1 和 PB9 作为 ADC 输入通道或 GPIO 推挽输出时, 电压范围约为 OV~(V∞-1.7V)。

注 5: ISP 引脚将经过运放 OPA 放大后的结果送入 ADC IN8。

2.3 引脚复用功能

注意,下表中的引脚功能描述针对的是所有功能,不涉及具体型号芯片。不同型号之间外设资源有差异,查看前请先根据芯片型号资源表确认是否有此功能。 表 2-2 引脚复用和重映射功能

复用 引脚	ADC	TIM1	TIM2	USART	SYS	120	SWIO	ANA	USB PD
PA0	ADC_IN12			USART_TX_2/USART_RX_3				UDP	
PA1	ADC_IN13			USART_RX_2/USART_TX_3				UDM	
PA2		TIM1_CH1N/TIM1_CH3_1		USART_TX_4		I2C_SCL_1			
PA3		TIM1_CH2N		USART_RX_4		I2C_SDA_1			
PA4	ADC_ETR	TIM1_CH3N	TIM2_CH2_1/TIM2_CH2_3						
PA5			TIM2_CH1						
PA6	ADC_INO				RST			ISP_1	
PA7	ADC_IN1		TIM2_CH1N/TIM2_CH1N_1					Q11_1	
PA8	ADC_IN2		TIM2_CH2N/TIM2_CH2N_1						
PA9			TIM2_CH2/TIM2_CH2_2						
PA10	ADC_IN3								
PA11	ADC_IN4			USART_TX		12C_SCL_2			
PA12	ADC_IN5			USART_RX		12C_SDA_2			
PA13	ADC_IN6			USART_CTS		12C_SCL			
PA14				USART_RTS		12C_SDA			
PA15	ADC_ETR_1	TIM1_BKIN							
PB0	ADC_IN10			USART_RX_1			SWIO		CC1R
PB1	ADC_IN11			USART_TX_1					CC2
PB2H		TIM1_CH1							
PB3H		TIM1_CH2							
PB4H		TIM1_CH3/TIM1_CH1N_1	TIM2_CH2N_2/TIM2_CH2N_3						
PB5H		TIM1_CH2N_1	TIM2_CH1N_2/TIM2_CH1N_3						
ISP	ADC_IN8							ISP	
PB7	ADC_IN7				MCO			ISN	
PB8	ADC_IN9							QII	
PB9	ADC_IN14	TIM1_ETR							CC3R

第3章 电气特性

3.1 测试条件

除非特殊说明和标注, 所有电压都以 GND 为基准。

所有最小值和最大值将在最坏的环境温度、供电电压和时钟频率条件下得到保证。典型数值是基于常温 25℃和 V_W = 9V 的环境下用于设计指导。

对于通过综合评估、设计模拟或工艺特性得到的数据,不会在生产线进行测试。在综合评估的基础上,最小和最大值是通过样本测试后统计得到。除非特殊说明为实测值,否则特性参数以综合评估或设计保证。

供电方案:

图 3-1 常规供电典型电路

注:图中 Voo默认接 1uF 电容使用内部调压器,可选与 Vnv 外供同一 5V 电源。

3.2 绝对最大值

临界或者超过绝对最大值将可能导致芯片工作不正常甚至损坏。

表 3-1 绝对最大值参数表

符号	1	描述	最小值	最大值	单位
_	工作叶的环境组成	额定 5V 或 9V, V _{HV} < 10V	-40	85	°C
T _A	工作时的环境温度 	额定 12V, V _{HV} >= 10V	-20	70	
TJ	结温度范围		-40	105	Ĵ
Ts	存储时的环境温度		-40	125	Ĵ
V _{HV} -GND	外部主供电电压(V _™)		-0. 3	14	V
VIN	HV 高压引脚(PB2H、PB3H、	PB4H、PB5H)上的输入电压	-0. 3	V _{HV} +0. 3	٧
VIN	其他引脚上的输入电压		-0. 3	V _{DD} +0. 3	V
V _{ESD (HBM)}	ESD 静电放电电压(人体模型	型,非接触式)	2	K	٧
I _{VHV}	经过 V∞ 电源线的总电流(供	应电流)		200	
I _{GND}	经过 GND 地线的总电流(流	出电流)		200	
	HV 驱动和 LV 强驱动 I/0 引服		+/-70	mA	
10	其它普通 I/O 引脚上的 sink	灌电流或 source 源电流		+/-30	

	RST 引脚注入电流	+/-4	
I INJ (PIN)	其它引脚的注入电流	+/-4	
Σ I INJ(PIN)	所有 I0 和控制引脚的总注入电流	+/-20	

3.3 电气参数

3.3.1 工作条件

表 3-2 通用工作条件

符号	参数	条件	最小值	最大值	单位
F _{HCLK}	内部 HB 时钟频率			48	MHz
$V_{\scriptscriptstyle HV}$	工作电源电压		4. 0	12. 6	V
$V_{ extsf{DD}}$	内部工作电压		V _{HV} -0. 2	5. 5	V

表 3-3 上电和掉电条件

符号	参数	条件	最小值	最大值	单位
	V∞上升速率		1	∞	us/V
t _{VDD}	V∞下降速率		2	∞	us/ v
_	V₩上升速率		0. 1	∞	us/V
t _{vhv}	V₩下降速率		2	∞	us/V

3.3.2 内置复位和电源模块特性

表 3-4 复位及电压监测 (PDR 选择高阈值档位)

符号	参数	条件	最小值	典型值	最大值	单位
$V_{ exttt{DD}}$	内部调压器输出,I/0 电压	V _™ > 5V,负载< 20mA	4. 7	4. 8	4. 9	V
I _{DD}	Vℷℷ对外负载能力	V _{HV} > 5V			15	mA
V ₃₃	内部调压器输出,ADC参考	V _{HV} > 3.8V, V _{DD} > 3.6V	3. 24	3. 3	3. 36	V
	3	PLS[2:0] = 000(上升沿)		3. 16		٧
		PLS[2:0] = 000(下降沿)		2. 94		٧
		PLS[2:0] = 001(上升沿)		3. 38		٧
		PLS[2:0] = 001(下降沿)		3. 12		٧
		PLS[2:0] = 010(上升沿)		3. 61		٧
		PLS[2:0] = 010(下降沿)		3. 32		٧
	可绝积中区长河界的中	PLS[2:0] = 011(上升沿)		3. 85		٧
$V_{PVD}^{(1)}$	可编程电压检测器的电	PLS[2:0] = 011(下降沿)		3. 51		٧
	平选择 	PLS[2:0] = 100(上升沿)		4. 06		V
		PLS[2:0] = 100(下降沿)		3. 7		٧
		PLS[2:0] = 101(上升沿)		4. 28		٧
		PLS[2:0] = 101(下降沿)		3. 92		٧
		PLS[2:0] = 110(上升沿)		4. 45		٧
		PLS[2:0] = 110(下降沿)		4. 09		٧
		PLS[2:0] = 111(上升沿)		4. 63		٧

		PLS[2:0] = 111(下降沿)		4. 28		٧
V _{PVDhyst}	PVD 迟滞		0. 18	0. 25	0. 36	٧
V	上电/掉电复位阈值	上升沿	2. 85	3. 00	3. 15	٧
$V_{ t POR/ t PDR}$	V₩欠压复位阈值	下降沿	2. 82	2. 98	3. 12	٧
V _{PDRhyst}	PDR 迟滞			15	25	mV
V _{OVP}	0VP 过压复位的 V₂√阈值		13. 6	14. 3	15	٧
т	0TP 过温保护的温度点	升温过程	110	130	150	$^{\circ}\!\mathbb{C}$
$T_{\mathtt{OTP}}$	解除过温保护的温度点	降温过程	65	85	110	$^{\circ}\mathbb{C}$
	上电复位延时		1	1. 5 (2)	4	mS
t _{RST}	其他复位延时			300		uS

注: 1. 常温测试值。

2. 用户配置位 RST MODE 可以增加上电复位延时。

3.3.3 内置的参考电压

表 3-5 内置参考电压

符号	参数	条件	最小值	典型值	最大值	单位
V _{REFINT}	内置参考电压	$T_A = -40^{\circ}C \sim 85^{\circ}C$	1. 18	1. 2	1. 22	٧
$T_{S_vrefint}$	当读出内部参考电压 时,ADC 的采样时间		3		500	1/f _{ADC}

3.3.4 供申申流特性

电流消耗是多种参数和因素的综合指标,这些参数和因素包括工作电压、环境温度、I/0 引脚的负载、软件配置、工作频率、I/0 脚的翻转速率、程序在存储器中的位置以及执行的代码等。电流消耗测量方法如下图:

图 3-2 电流消耗测量

微控制器处于下列条件:

常温 V_{HV} = 9V(V_{DD} = 4.8V)情况下,测试时:支持上拉输入的 I/O 口配置成上拉输入模式,其他配置为模拟输入模式。HSI = 24M(已校准);当 F_{HOLK} > 24M 时,系统时钟来源为 PLL。使能或关闭所有外设时钟的功耗。

表 3-6 运行模式下典型的电流消耗,数据处理代码从内部闪存中运行

ĺ	符号参数		々仏		典型	_{민值}	兴 / 六
	付写	一 	条件		使能所有外设	关闭所有外设	単位
ĺ			运行于高速内部	$F_{HCLK} = 48MHz$	6. 7	4. 6	
١		运行模式下的	RC 振荡器(HSI),	F _{HCLK} = 24MHz	5. 1	4. 1	_ ,
ĺ	I _{HV}	供应电流	使用 HB 预分频以	F _{HCLK} = 8MHz	3. 0	2. 7	mA i
ĺ			减低频率	F _{HCLK} = 4MHz	2. 2	2. 0	

注: 以上为实测参数。

表 3-7 睡眠模式下典型的电流消耗,数据处理代码从内部闪存中运行

· 符号 参数		条件		典型	单位	
付写	多数	余什		使能所有外设	关闭所有外设	1 年1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	SLEEP 睡眠模式	运行于高速内部	$F_{HCLK} = 48MHz$	3. 7	1. 6	
.	下的供应电流	RC 振荡器(HSI),	$F_{HCLK} = 24MHz$	2. 1	1. 1	
I _{HV}	(此时外设供电	使用 HB 预分频以	F _{HCLK} = 8MHz	1. 0	0. 7	mA
	和时钟保持)	减低频率	F _{HCLK} = 4MHz	0.8	0. 6	

注:以上为实测参数。

表 3-8 待机模式下典型的电流消耗

符号	参数	条件	典型值	单位
1	I _{NV} STANDBY 待机模式下的供应电流	LSI 打开	64	uA
I HV	TANDDI 特別採以下的保险电流	LSI 关闭	62	uA

注:以上为实测参数。

3.3.5 内部时钟源特性

表 3-9 内部高速(HSI)RC振荡器特性

符号	参数	条件	最小值	典型值	最大值	单位
F _{HS1}	频率(校准后)			24		MHz
DuCy _{HS1}	占空比		45	50	55	%
ACC _{HS1}	HSI 振荡器的精度(校准后)	$TA = 0^{\circ}C \sim 70^{\circ}C$	−1 . 5		1.8	%
ACCHSI	「NSI 旅汤品的情及(牧准力)	$TA = -40^{\circ}C \sim 85^{\circ}C$	-2. 3		2. 3	%
t _{su(HSI)}	HSI 振荡器启动稳定时间			10		us
DD (HSI)	HSI 振荡器功耗		120	180	270	uA

表 3-10 内部低速(LSI)RC 振荡器特性

符号	参数	条件	最小值	典型值	最大值	单位
F _{LS1}	频率		100	400	700	KHz
DuTy _{LS1}	占空比		45	50	55	%
t _{SU(LSI)}	LSI 振荡器启动稳定时间			80		us
I DD (LSI)	LSI 振荡器功耗			2		uA

3.3.6 从低功耗模式唤醒的时间

表 3-11 低功耗模式唤醒的时间(1)

符号	参数	条件	典型值	单位
twusleep	从睡眠模式唤醒	使用 HSI RC 时钟唤醒	22	us
twustdby	从待机模式唤醒	LDO 稳定时间 + HSI RC 时钟唤醒	250	us

注: 以上为实测参数。

3.3.7 存储器特性

表 3-12 闪存存储器特性

符号	参数	条件	最小值	典型值	最大值	单位
t _{ERASE_64}	页(64 字节)编程时间	$T_A = -20^{\circ}C \sim 85^{\circ}C$	2. 4		3. 2	ms
t _{ERASE}	页(64 字节)擦除时间	$T_A = -20^{\circ}C \sim 85^{\circ}C$	2. 4		3. 2	ms
t _{prog}	16 位的编程时间	$T_A = -20^{\circ}C \sim 85^{\circ}C$	2. 4		3. 2	ms
t _{ME}	整片擦除时间	$T_A = -20^{\circ}C \sim 85^{\circ}C$	2. 4		3. 2	ms
V_{prog}	编程电压		3. 0		5. 3	V

表 3-13 闪存存储器寿命和数据保存期限

符号	号	参数	条件	最小值	典型值	最大值	单位
N _{EN}	ID	擦写次数	$T_A = 25^{\circ}C$	10K	80K ⁽¹⁾		次
t _{RE}	īΤ	数据保存期限		10			年

注: 1. 实测操作擦写次数, 非担保。

3.3.8 普通 1/0 引脚特性

表 3-14 普通 I/0 引脚和 LV 强驱动 I/0 引脚静态特性

符号	参数	条件	最小值	典型值	最大值	单位
$V_{ extsf{DD}}$	供电电压		V _{HV} =0. 2	4. 8	5. 5	٧
VIH	 I/0 引脚输入高电平电压	V _{DD} = 3.3V	1.8		$V_{ extsf{DD}}$	V
VIH	1/0 引脚削八同电十电压	$V_{DD} = 4.8V$	2. 3		$V_{ extsf{DD}}$	V
V _{IL}	│ │	$V_{DD} = 3.3V$	0		0.8	V
V IL	170 加州八阪电干电压	$V_{DD} = 4.8V$	0		1.1	
V_{hys}	 施密特触发器迟滞电压	$V_{DD} = 3.3V$		220		mV
V hys	地名特腊及奇匹尔电压	$V_{DD} = 4.8V$		380		IIIV
l _{Ikg}	1/0 引脚输入漏电流			0	+/-3	uA
R_{PU}	上拉等效电阻		30	45	60	kΩ
R_{PD}	下拉等效电阻		30	45	60	kΩ
C ₁₀	1/0 引脚电容			5		pF

表 3-15 普通 1/0 引脚输出驱动电流特性

符号	参数	条件	最小值	典型值	最大值	单位
Isink	引脚输出低电平的灌电流	V∞ = 4.8V,引脚电压=0.4V	12	18	25	mA
I sourc	引脚输出高电平的源电流	V _{DD} = 4.8V,引脚电压=V _{DD} -0.4V	11	16	22	mA

表 3-16 普通 I/0 引脚输出电压特性

符号	参数	条件	最小值	最大值	单位
V_{0L}	输出低电平,单个引脚吸收 8mA 电流	3V ≤ V _{DD} ≤5V		0. 5	٧
V_{OH}	输出高电平,单个引脚输出 8mA 电流	3V ≤ V _{DD} ≤5V	V _{DD} -0. 5		٧

注: 1. 当 PBO、PB1 和 PB9 输出高电平时, 电压达不到 V∞满幅, 约为 V∞-1. 7V。

2. 以上条件中如果多个 10 引脚同时驱动,电流总和不能超过表 3. 2 节给出的绝对最大额定值。另外多个 10 引脚同时驱动时,电源/地线引脚上的电流较大,会产生压降使内部 1/0 的电压达不到表中电源电压,从而导致驱动电流小于标称值。

表 3-17 普通 1/0 引脚输入输出交流特性

符号	参数	条件	最小值	最大值	单位
_	│ ┃ I /0 引脚输出最高频率	CL = 50pF,		30	MHz
F _{max(10)o}	1/0 刀が扣山取同が守	3V ≤ V _{DD} ≤5V		30	
$t_{f(10)\text{out}}$	输出高至低电平的下降时间	CL = 50pF,		12	ns
t _{r(I0)out}	输出低至高电平的上升时间	3V ≤ V _{DD} ≤5V		12	ns
t _{EXTIpw}	EXTI 控制器检测到外部信号的脉冲宽度		12		ns

3.3.9 LV 强驱动 I/O 引脚特性

表 3-18 LV 强驱动 I/O 引脚静态特性,参考表 3-14

表 3-19 LV 强驱动 I/O 引脚输出驱动电流特性

符号	参数	条件	最小值	典型值	最大值	单位
ILSINK	引脚输出低电平的灌电流	V₀₀ = 4.8V,引脚电压=0.5V	50	65	85	mA
	引脚输出低电平的短路电流	V _{DD} = 4.8V, 引脚电压=V _{DD}		120		mA
	引脚输出高电平的源电流	V _{DD} = 4.8V,	30	45	65	mΛ
LSOURCE	分解制山南电子的源电流	引脚电压=Vɒb-0.5V	30	45	65	mA
	引脚输出高电平的短路电流	V∞ = 4.8V, 引脚电压=0		115		mA

表 3-20 LV 强驱动 I/O 引脚输出电压特性

符号	参数	条件	最小值	最大值	单位
V_{LOL}	输出低电平,单个引脚吸收 30mA 电流	4V ≤ V _{DD} ≤5V		0. 5	٧
V _{LOH}	输出高电平,单个引脚输出 25mA 电流	4V ≤ V _{DD} ≤5V	V _{DD} -0. 5		V

注:以上条件中如果多个 10 引脚同时驱动,电流总和不能超过表 3. 2 节给出的绝对最大额定值。另外 8个 10 引脚同时驱动时,电源/地线引脚上的电流较大,会产生压降使内部 1/0 的电压达不到表中电源电压,从而导致驱动电流小于标称值。

表 3-21 LV 强驱动 I/0 引脚输入输出交流特性

符号	参数	条件	最小值	最大值	单位
F _{Lmax(10)o}	I/O 引脚输出最高频率	CL = 1000pF,		1	MHz
t _{Lf(I0)out}	输出高至低电平的下降时间	3V ≤ V _{DD} ≤5V CL = 1000pF,		90	ns
t _{Lr (I0) out}	输出低至高电平的上升时间	3V ≤ V _{DD} ≤5V		90	ns
t _{LEXTIPW}	EXTI 控制器检测到外部信号的脉冲宽度		12		ns

3.3.10 HV 驱动 I/O 引脚特性

表 3-22 HV 驱动 I/O 引脚静态特性

符号	参数	条件	最小值	典型值	最大值	单位
V _{HV}	HV 供电电压		4. 0	9. 0	12. 6	٧
V _{HIH}	1/0 引脚输入高电平电压	V _{DD} = 4.8V	2. 6		V _{HV}	V
V_{HIL}	1/0 引脚输入低电平电压	$V_{DD} = 4.8V$	0		1. 2	V
V_{Hhys}	施密特触发器迟滞电压	$V_{DD} = 4.8V$		550		mV
Hikg	1/0 引脚输入漏电流			0	+/-10	uA
R _{HPU}	上拉等效电阻		80	120	170	kΩ

Ï	Сніо	1/0 引脚电容		10	рF
L	-1110				

表 3-23-1 CH641F/D 芯片 HV 驱动 I/O 引脚输出驱动电流特性

符号	参数	条件	最小值	典型值	最大值	单位
	引脚输出低电平的灌电流	V _{HV} = 5V, 引脚电压= 0.5V	25	35	50	mA
I _{HSINK}	引脚输出低电平的短路电流	V _{HV} = 5V, 引脚电压= V _{HV}		110	150	mA
	引脚输出低电平的灌电流	V _{HV} = 12V,引脚电压= 0.5V	25	35	50	mA
	引脚输出低电平的短路电流	V _{HV} = 12V,引脚电压= V _{HV}		130	180	mA
	引脚输出高电平的源电流	V _{HV} = 5V,引脚电压= V _{HV} -0.5V	15	21	30	mA
1.	引脚输出高电平的短路电流	V _{HV} = 5V, 引脚电压= 0		80	110	mA
HSOURCE	引脚输出高电平的源电流	V _{HV} = 12V, 引脚电压= V _{HV} -0.5V	22	31	44	mA
	引脚输出高电平的短路电流	Vⅳ = 12V,引脚电压= 0		180	250	mA

表 3-23-2 CH641X/P 芯片 HV 驱动 I/O 引脚输出驱动电流特性

符号	参数	条件	最小值	典型值	最大值	单位
	引脚输出低电平的灌电流	V _{HV} = 5V, 引脚电压= 0.5V	29	70	95	mA
HSINK	引脚输出低电平的短路电流	V _{HV} = 5V, 引脚电压= V _{HV}		220	290	mΑ
	引脚输出低电平的灌电流	V _{HV} = 12V,引脚电压= 0.5V	29	70	95	mA
	引脚输出低电平的短路电流	V _{HV} = 12V, 引脚电压= V _{HV}		256	340	mΑ
	引脚输出高电平的源电流	V _{HV} = 5V,引脚电压= V _{HV} -0.5V	17	42	57	mΑ
1.	引脚输出高电平的短路电流	V _{HV} = 5V, 引脚电压= 0		156	210	mA
HSOURCE -	引脚输出高电平的源电流	V _{HV} = 12V, 引脚电压= V _{HV} -0.5V	25	62	84	mA
	引脚输出高电平的短路电流	Vⅳ = 12V,引脚电压= 0		340	460	mA

表 3-24 HV 驱动 I/0 引脚输出电压特性

符号	参数	条件	最小值	最大值	单位
V_{HOL}	输出低电平,单个引脚吸收 25mA 电流	5V≤ V _{HV} ≤12V		0. 5	٧
V _{HOH}	输出高电平,单个引脚输出 15mA 电流	5V ≪ V _{HV} ≪12V	V _{HV} -0. 5		٧

注:以上条件中如果多个 10 引脚同时驱动,电流总和不能超过表 3. 2 节给出的绝对最大额定值。另外 8个 10 引脚同时驱动时,电源/地线引脚上的电流较大,会产生压降使内部 1/0 的电压达不到表中电源电压,从而导致驱动电流小于标称值。

表 3-25 HV 驱动 I/0 引脚输入输出交流特性

符号	参数	条件	最小值	最大值	单位
F _{Hmax} (10) _o	I/0 引脚输出最高频率	CL = 1000pF, 5V ≤ V _{HV} ≤12V		0. 5	MHz
C_{HIOmax}	1/0 引脚最大负载电容			2000	pF
	CH641F/D 输出高至低电平的下降时间			150	ns
t _{Hf(I0)out}	CH641X/P 输出高至低电平的下降时间	CL = 1000pF,		90	ns
	CH641F/D 输出低至高电平的上升时间	5V≤ V _{HV} ≤12V		150	ns
t Hr (10) out	CH641X/P 输出低至高电平的上升时间			90	ns
t _{HEXTIPW}	EXTI 控制器检测到外部信号的脉冲宽度		12		ns

3.3.11 BC 接口 UDP/UDM 特性

表 3-26 BC 接口 I/O 引脚特性

符号	参数	条件	最小值	典型值	最大值	单位
R_{PU}	BC 引脚上拉等效电阻	DAC = 100000	20	31	45	kΩ
R_{PD}	BC 引脚下拉等效电阻	DAC = 100000	20	31	45	kΩ
l _{PU2}	BC 引脚弱上拉电流	PCS = 10, BC 输出电压为 0.6V	7	10	14	uA
I _{PD1}	BC 引脚弱下拉电流	PCS = 01, BC 输出电压为 0.6V	1	2	3	uA
I _{PD3}	BC 引脚下拉电流	PCS = 11, BC 输出电压为 0.6V	55	80	110	uA
ET	DAC 总偏差	$V_{DD} = 4.8V$		0. 2	0.8	LSB
$V_{ extsf{DACmax}}$	DAC 最高输出电压	V₀ = 4.8V, 无阻性负载	4. 7	4. 725		٧
$V_{ extsf{DACmin}}$	DAC 最低输出电压	V₀ = 4.8V, 无阻性负载		0	0. 02	٧
R _{DAC}	DAC 输出阻抗	V₀ = 4.8V, 关闭 DAC 缓冲器	12	15. 5	20	kΩ
I DDDAC	DAC 缓冲器供电电流			135		uA
$V_{DACBmax}$	带缓冲器 DAC 最高输出电压	V _{DD} = 4.8V, 负载 10kΩ	4. 62	4. 72		٧
VDACBmin	带缓冲器 DAC 最低输出电压	V _{DD} = 4.8V, 负载 10kΩ		0. 005	0. 02	٧
tBuf	DAC 缓冲器作为比较器用的输	命出延时		400	800	ns

3.3.12 USB PD 接口 CC1/CC2/CC3 特性

表 3-27-1 PD 接口 I/0 引脚特性

符号	参数	条件	最小值	典型值	最大值	单位
tRise	上升时间	幅度 10%到 90%之间的时间,无负载	300	430	600	ns
tFall	下降时间	幅度 10%到 90%之间的时间,无负载	300	430	600	ns
vSwing	输出电压摆幅(峰-峰值)		1. 00	1. 12	1. 20	٧
zDriver	输出阻抗	V₀₀ = 4.8V, PD 接口输出 1.12V	26		90	Ω

表 3-27-2 Type-C 接口 I/O 引脚特性(HVT=O 时电压值参考普通 I/O 引脚)

符号	参数	条件	最小值	典型值	最大值	单 位
V _{CCIH}	CC 引脚输入高电平电压	$V_{DD} = 3.3V, HVT = 1$	2. 1		$V_{ exttt{DD}}$	٧
V CCIH		$V_{DD} = 4.8V, HVT = 1$	3. 1		$V_{ exttt{DD}}$	\ \ \
,,	00 引脚烧》低中亚中压	$V_{DD} = 3.3V, HVT = 1$	0		1. 2	\ _V
V CCIL	Vcill CC 引脚输入低电平电压	$V_{DD} = 4.8V, HVT = 1$	0		2. 0	'
V _{CChys}	施密特触发器迟滞电压	$V_{DD} = 3.3V, HVT = 1$	60		450	mV
		$V_{DD} = 4.8V, HVT = 1$	70		480	
		CC_PU = 11		80±15%		uA
I _{PUCC}	CC 引脚上拉电流	CC_PU = 10		180±15%		uA
		CC_PU = 01		330±15%		uA
	ᇲᆌᄜᅲᄥᄊᇬᆍᄔᅲᇚᄱ	CC_PD = 1,	4.00	F 1	4 10	1.0
R_{Rd}	CC 引脚内置的 Rd 下拉电阻 (适用于 CC1R/CC2R/CC3R)	V∞≥2.8V 或外部上拉 330uA	4. 08	5. 1	6. 12	kΩ
	(垣州丁 661K/662K/663K)	CC_PD = 0	250	600		kΩ
VAINCE	CC 引脚 ADC 转换电压范围		GND		V _{DD} -1. 7	٧

3.3.13 RST 引脚特性

电路参考设计及要求:

图 3-3 外部复位引脚典型电路

注:图中的电容是可选的,可以用于滤除按键抖动。

表 3-28 外部复位引脚特性

符号	参数	条件	最小值	典型值	最大值	单位
V _{IL (RST)}	RST 输入低电平电压	$V_{DD} = 4.8V$	0		1. 1	٧
$V_{IH(RST)}$	RST 输入高电平电压	$V_{DD} = 4.8V$	2. 3		V_{DD}	٧
$V_{hys(RST)}$	RST 施密特触发器迟滞电压		150			mV
R_{PU}	上拉等效电阻		30	45	60	kΩ
$V_{F(RST)}$	RST 输入可被滤波脉宽				60	ns
V _{NF (RST)}	RST 输入无法滤波脉宽		230			ns

3.3.14 TIM 定时器特性

表 3-29 TIMx 特性

符号	参数	条件	最小值	最大值	单位
_	定时器基准时钟		1		t _{TIM×CLK}
t _{res(TIM)}		f _{TIMxCLK} = 48MHz	20. 8		ns
F _{EXT} CH1 至 CH3 的	CH1 至 CH3 的定时器外部时钟频率		0	f _{TIMxCLK} /2	MHz
	CRT 至 CRS 的定的品外部的 押频率	f _{TIMxCLK} = 48MHz	0	24	MHz
R _{esTIM}	定时器分辨率			16	位
_	当选择了内部时钟时,16 位计数器时钟周期		1	65536	t _{TIM×CLK}
TCOUNTER		f _{TIMxCLK} = 48MHz	0. 0208	1363	us
1	最大可能的计数			65535	t _{TIM×CLK}
t _{MAX_} count		f _{TIMxCLK} = 48MHz		1363	us

3.3.15 I2C接口特性

图 3-4 120 总线时序图

表 3-30 120 接口特性

<i>γ</i> γ □	↔ ₩-	标准 I2C		快速 I2C		兴 / 六
符号	· 参数 · · · · · · · · · · · · · · · · · · ·	最小值	最大值	最小值	最大值	単位
t _{w(SCKL)}	SCL 时钟低电平时间	4. 7		1. 2		us
t _{w(SCKH)}	SCL 时钟高电平时间	4. 0		0.6		us
t _{SU(SDA)}	SDA 数据建立时间	250		100		ns
t _{h (SDA)}	SDA 数据保持时间	0		0	900	ns
$t_{r(SDA)}/t_{r(SCL)}$	SDA 和 SCL 上升时间		1000	20		ns
$t_{f(SDA)}/t_{f(SCL)}$	SDA 和 SCL 下降时间		300			ns
t _{h (STA)}	开始条件保持时间	4. 0		0.6		us
t _{su(sta)}	重复的开始条件建立时间	4. 7		0.6		us
t _{SU(STO)}	停止条件建立时间	4. 0		0.6		us
tw(STO:STA)	停止条件至开始条件的时间(总线空闲)	4. 7		1. 2		us
Сь	每条总线的容性负载		400		400	pF

3.3.16 模拟/数字转换器 ADC 特性

表 3-31 10 位 ADC 特性

符号	参数	条件	最小值	典型值	最大值	单位
$V_{ extsf{DD}}$	供电电压		V _{HV} -0. 2	4. 8	5. 5	٧
I DDADC	供电电流			310		uA
f _{ADC}	ADC 时钟频率		2	6	12	MHz
V _{AIN}	转换电压范围		GND		V ₃₃	V
\mathbf{C}_{ADC}	内部采样和保持电容			3		рF
	采样速率	$f_{ADC} = 2MHz$	33		285	KHz
f _s		$f_{ADC} = 6MHz$	100		430	
Is		$f_{ADC} = 12MHz$	200		857	
			1/60		1/14	f _{ADC}
ts		$f_{ADC} = 2MHz$	24. 5		1. 50	
	采样时间	$f_{ADC} = 6MHz$	8. 17		0. 50	us
		$f_{ADC} = 12MHz$	4. 08		0. 25	

			49		3	1/f _{ADC}
t _{STAB}	上电时间			7		us
t _{conv}	总的转换时间 (包括采样时间)	$f_{ADC} = 2MHz$	7		30	us
		f _{ADC} = 6MHz	2. 33		10	us
		$f_{ADC} = 12MHz$	1. 17		5	us
			14		60	1/f _{ADC}

注: 以上均为设计参数保证。

表 3-32 ADC 误差

符号	参数	条件	最小值	典型值	最大值	单位
ET	数据总偏差	$f_{ADC} = 12MHz$		2	6	
E0	失调误差	f _{ADC} = 12MHz		1	4	
EG	增益误差	$f_{ADC} = 12MHz$		1	3	LSB
ED	微分非线性误差	f _{ADC} = 12MHz		0. 5	2. 5	
EL	积分非线性误差	f _{ADC} = 12MHz		0. 6	4	

注: 以上表格中的数据是实测值。

图 3-5 ADC 典型连接图

 C_p 表示 PCB 与焊盘上的寄生电容(大约 5pF),可能与焊盘和 PCB 布局质量有关。较大的 C_p 数值将降低转换精度,解决办法是降低 f_{ADC} 值。

图 3-6 模拟电源及退耦电路参考

3.3.17 差分输入电流采样 ISP/ISN 特性

表 3-33 ISP/ISN 差分输入电流采样特性

符号	参数	条件	最小值	典型值	最大值	单位
V_{DD}	供电电压		V _{HV} -0. 2	4. 8	5. 5	٧
I DDISP	供电电流			130		uA

$V_{ exttt{BIASO}}$	┤ISP 引脚的直流偏置电压 - (建议外加偏置)	ISP 不串电阻	0. 27	0. 9	1. 55	٧
V _{BIAS200}		ISP 外部串接 200 Ω	0. 36	1. 05	1. 76	V
V _{BIAS500}		ISP 外部串接 500 Ω	0. 45	1. 3	2. 2	٧
A _{DC}	直流放大增益(倍数)	单端 ISP 输入	70	75	79	M /M
		差分 ISP/ISN 输入	70	75	79	V/V
K _{V/A}	输出电压与采样电流的比值	10mΩ采样差分输入	0. 70	0. 75	0. 79	V/A

注:实测值。

3.3.18 交流小信号放大解码器 QII 特性

表 3-34 QII 交流小信号放大解码器特性

符号	参数	条件	最小值	典型值	最大值	单位
$V_{ extsf{DD}}$	供电电压		V _{HV} -0. 2	4. 8	5. 5	٧
IDDQII	供电电流			220		uA
_	交流放大的较高增益档	QII_AV = 1, 2KHz		23		V/V
A _{AC}	交流放大的较低增益档	$QII_AV = 0, 2KHz$		15		
V	比较器迟滞电压默认值	QII_HYP = 0	150	200	250	mV
V_{hys}	比较器迟滞电压选项 2	QII_HYP = 1	60		450	mV
R _{BIAS}	1.5V 偏置电阻			185		kΩ

注:实测值。

第4章 封装及订货信息

芯片封装

订货型号	封装形式	塑体尺寸	引脚节距	封装说明	出货料盘
CH641F	QFN28	4*4mm	0. 4mm	四边无引线 28 脚	托盘、编带
CH641D	QFN20	3*3mm	0. 4mm	四边无引线 20 脚	编带
CH641X	QFN20	3*3mm	0. 4mm	四边无引线 20 脚	编带
CH641P	QFN16	3*3mm	0. 5mm	四边无引线 16 脚	编带

说明: 1. QFP/QFN 一般默认为托盘。

2. 托盘尺寸: 托盘大小一般为统一尺寸, 322. 6*135. 9*7. 62, 不同封装类型限位孔尺寸有区别, 塑管不同封装厂有区别, 具体与厂家确认。

说明:尺寸标注的单位是 mm (毫米),引脚中心间距总是标称值,没有误差,除此之外的尺寸误差不大于 ± 0.2mm 或者 ± 10% 两者中的较大值。

图 4-3 QFN16 封装

