

	K	С	S
	kartezjański,prostokątny	Cylindryczny, walcowy	Sferyczny, kulisty
punkt	P(x, y, z)	$P(\rho, \phi, z)$	$P(r, \theta, \phi)$
	$x, y, z \in (-\infty, +\infty)$	$\rho \in \langle 0, +\infty \rangle; \varphi \in \langle 0, 2\Pi \rangle$ $z \in (-\infty, +\infty)$	$r \in \langle 0, +\infty \rangle; \theta \in \langle 0, \Pi \rangle \varphi \in \langle 0, 2\Pi \rangle$
Transforma	(x, y, z)	$\rho = (x^2 + y^2)^{1/2}$	$r=(x^2+y^2+z^2)^{1/2}$
cja		$\varphi = \operatorname{arctg}(y/x)$	$\theta = \arccos(z/(x^2+y^2+z^2)^{1/2})$
p-tu		z=z	$\varphi = \operatorname{arctg}(y/x)$
			2 2 10
	$x=\rho\cos\phi$	(ρ, ϕ, z)	$r = (\rho^2 + z^2)^{1/2}$
	$y=\rho \sin \phi$		$\theta = tg^{-1}(\rho/z)$
	z=z		φ=φ
	x=r sin θ cos φ	ρ=rsinθ	(r, θ, ϕ)
	$y = r \sin \theta \sin \phi$	φ=φ	
	$z = r \cos \theta$	z=rcosθ	
wersory	$\overline{i},\overline{j},\overline{k}$	$ar{1}_{ ho}$, $ar{1}_{arphi}$, $ar{1}_{z}$	$ar{1}_r,ar{1}_\Theta,ar{1}_{arphi}$

	$\frac{\bar{1}_x, \bar{1}_y, \bar{1}_z}{\bar{a}_x, \bar{a}_y, \bar{a}_z}$		
wektor	$\overline{\mathbf{A}} = \mathbf{A}_{x} \ \overline{1}_{x} + \mathbf{A}_{y} \overline{1}_{y} + \mathbf{A}_{z} \ \overline{1}_{z}$ $\overline{\mathbf{A}} = (\mathbf{A}_{x} , \mathbf{A}_{y}, \mathbf{A}_{z})$	$\overline{\mathbf{A}} = \mathbf{A}_{\rho} \ \overline{1}_{\rho} + \mathbf{A}_{\varphi} \overline{1}_{\varphi} + \mathbf{A}_{z} \ \overline{1}_{z}$ $\overline{\mathbf{A}} = (\mathbf{A}_{\rho} \ , \mathbf{A}_{\varphi}, \mathbf{A}_{z})$	$\overline{\mathbf{A}} = \mathbf{A}_{r} \ \overline{1}_{r} + \mathbf{A}_{\theta} \overline{1}_{\theta} + \mathbf{A}_{\varphi} \ \overline{1}_{\varphi}$ $\overline{\mathbf{A}} = (\mathbf{A}_{r} \ , \mathbf{A}_{\Theta}, \mathbf{A}_{\varphi})$
Transforma cja współrzęd wektora	(A_x, A_y, A_z)	$\begin{bmatrix} A_{\rho} \\ A_{\varphi} \\ A_{z} \end{bmatrix} = \begin{bmatrix} \cos \varphi & \sin \varphi & 0 \\ -\sin \varphi & \cos \varphi & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} A_{x} \\ A_{y} \\ A_{z} \end{bmatrix}$	$\begin{bmatrix} A_r \\ A_{\Theta} \\ A_{\varphi} \end{bmatrix} = \begin{bmatrix} \sin\Theta\cos\varphi & \sin\Theta\sin\varphi & \cos\Theta \\ \cos\Theta\cos\varphi & \cos\Theta\sin\varphi & -\sin\Theta \\ -\sin\varphi & \cos\varphi & 0 \end{bmatrix} \begin{bmatrix} A_x \\ A_y \\ A_z \end{bmatrix}$
	$\begin{bmatrix} A_x \\ A_y \\ A_z \end{bmatrix} = \begin{bmatrix} \cos \varphi & -\sin \varphi & 0 \\ \sin \varphi & \cos \varphi & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} A_\rho \\ A_\varphi \\ A_z \end{bmatrix}$	$(A_{\rho}, A_{\varphi}, A_{z})$	$\begin{bmatrix} A_r \\ A_{\Theta} \\ A_{\varphi} \end{bmatrix} = \begin{bmatrix} \sin \Theta & 0 & \cos \Theta \\ \cos \Theta & 0 & -\sin \Theta \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} A_{\rho} \\ A_{\varphi} \\ A_{z} \end{bmatrix}$
	$\begin{bmatrix} A_x \\ A_y \\ A_z \end{bmatrix} = \begin{bmatrix} \sin\Theta\cos\varphi & \cos\Theta\cos\varphi & -\sin\varphi \\ \sin\Theta\sin\varphi & \cos\Theta\sin\varphi & \cos\varphi \\ \cos\Theta & -\sin\Theta & 0 \end{bmatrix} \begin{bmatrix} A_r \\ A_\Theta \\ A_{\varphi} \end{bmatrix}$	$\begin{bmatrix} A_{\rho} \\ A_{\varphi} \\ A_{z} \end{bmatrix} = \begin{bmatrix} \sin \Theta & \cos \Theta & 0 \\ 0 & 0 & 1 \\ \cos \Theta & -\sin \Theta & 0 \end{bmatrix} \begin{bmatrix} A_{r} \\ A_{\Theta} \\ A_{\varphi} \end{bmatrix}$	$(A_r, A_\Theta, A_\varphi)$