The Kalman Filter

System equation	$\boldsymbol{x}_k = F_{k-1}\boldsymbol{x}_{k-1} + \boldsymbol{\epsilon}_{k-1}$
Observation equation	$\boldsymbol{e}_{k} \sim N(0, \Sigma_{\epsilon, k})$ $\boldsymbol{e}_{k} = A_{k}\boldsymbol{x}_{k} + \boldsymbol{e}_{k}$ $\boldsymbol{e}_{k} \sim N(0, \Sigma_{\epsilon, k})$
Initial conditions Other conditions	$E\{\boldsymbol{x}_0\} = \hat{\boldsymbol{x}}_0$ $E\{(\boldsymbol{x}_0 - \hat{\boldsymbol{x}}_{0 0})(\boldsymbol{x}_0 - \hat{\boldsymbol{x}}_{0 0})^T\} = P_{0 0}$ $E\{\boldsymbol{\epsilon}_k \boldsymbol{e}_j^T\} = 0, \text{for all } k, j$
Prediction of	$\hat{x}_{k k-1} = F_{k-1}\hat{x}_{k-1 k-1}$
state vector	
Prediction of co-	$P_{k k-1} = F_{k-1}P_{k-1 k-1}F_{k-1}^{T} + \Sigma_{\epsilon,k}$
variance matrix	
Kalman gain	$K_k = P_{k k-1}A_k^{\mathrm{T}}(A_k P_{k k-1}A_k^{\mathrm{T}} + \Sigma_{e,k})^{-1}$
matrix	
Updating of	$\hat{x}_{k k} = \hat{x}_{k k-1} + K_k(b_k - A_k \hat{x}_{k k-1})$
state vector	
Covariance ma-	$P_{k k} = (I - K_k A_k) P_{k k-1}$
trix for updating	