Isaac Kim CS 487 Professor Baldimtsi Mar 1, 2023

Homework 3

1.1) Consider an adversary A that initially queries a message $m_{\alpha} = \langle m_{\alpha_1}, ..., m_{\alpha_t} \rangle$ to the Challenger, and gets a ciphertext $c_{\alpha} = \langle c_{\alpha_0}, c_{\alpha_1}, ..., m_{\alpha_t} \rangle$ in return, where $c_{\alpha_0} = IV$. By Kerckhoff's Principle, A knows that S sets $IV_i = IV_{i-1} + 1$. Let IV_{i-1} be the IV for m_{α} . Then, since m_{α} was just queried, A can pick messages m_0, m_1 such that for the first block of m_0 :

$$m_{0_1} \oplus IV_i = m_{\alpha_1} \oplus IV_{i-1}$$

$$m_{0_1} \oplus IV_i = c_{\alpha_1}$$

$$m_{0_1} = c_{\alpha_1} \oplus IV_i$$

Then, pick m_1 such that the first block of m_1 , or $m_{1_1} \neq m_{0_1}$. The following blocks of m_0, m_1 can be arbitrary. Then, when A sends m_0, m_1 to the Challenger and gets back $c* = \langle c*_0, c*_1, ..., c*_t \rangle$ where $c*_0 = IV_i$, A only needs to compare the second blocks of c* and c_{α} . If $c*_1 = c_{\alpha_1}$, then A outputs b' = 0, and otherwise, outputs b' = 1. Then, $\Pr[A \text{ wins}] = 1 = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + p(n)$ where p(n) is a non-negligible value. Hence, this scheme is not CPA secure.

1.2) Let A be an adversary that queries messages $m_0 = 0^n$, $m_1 = 1^n$ to the Challenger. The Challenger will then flip a bit $b \in \{0, 1\}$, encrypt $c* = \text{Enc}(k, m_b)$ for some key k, and return $c* = \langle c*_0, c*_1, ...c*_t \rangle$ to A.

Note that OFB Decryption is as follows: For some ciphertext $c = \langle c_0, c_1, ... c_t \rangle$, $c_0 = IV$, $m_1 = F_k(c_0) \oplus c_1,...$ in general, $m_n = F_k(F_k(c_{n-1})) \oplus c_n$.

Then, A can query s to the decryption oracle, where $s = \langle c*_0, c\bar{*}_1, ... c*_t \rangle$, $c\bar{*}_1 = c*_1$ with its first bit flipped. Since $s \neq c*$, this is allowed, and A will get back a message $m_s = 10^n$ or 01^n . If the $m_s = 10^n$, then A outputs b' = 0, and otherwise, $m_s = 01^n$ and A outputs b' = 1. Then, $\Pr[A \text{ wins}] = 1 = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + p(n)$ where p(n) is a non-negligible value. Hence, this scheme is not CCA secure.

- **2.1)** Let A be an adversary that queries message $m_{\beta} = m_1 ||...|| m_l$, $|m_{\beta}| = ln$, to the MAC oracle $\operatorname{Mac}_k(\cdot)$, and gets back $t_{\beta} \leftarrow \operatorname{Mac}_k(m_{\beta})$. By Kerckhoff's Principle, A knows that $t_{\beta} = F_k(m_1) \oplus ... \oplus F_k(m_l)$. Then, A can output (m_{α}, t_{β}) , where $m_{\alpha} = F_k(m_l) \oplus ... \oplus F_k(m_1)$. Then, $\operatorname{Vrfy}(m_{\alpha}, t_{\beta}) = 1$ since t_{β} is a valid tag for m_{α} , but m_{α} was never previously authenticated. Hence, our MAC scheme is not secure.
- **2.2)** Let $m_{\alpha} = m_3 ||m_1, m_{\beta} = m_1||m_2, |m_{\alpha}| = |m_{\beta}| = 2n$ and $|m_1| = |m_2| = |m_3| = n$. Let A be an adversary that queries messages m_{α}, m_{β} to the MAC oracle $\text{Mac}_k(\cdot)$, and

gets back $t_{\alpha} \leftarrow \operatorname{Mac}_{k}(m_{\alpha})$ and $t_{\beta} \leftarrow \operatorname{Mac}_{k}(m_{\beta})$. By Kerckhoff's Principle, A knows that $t_{\alpha} = F_{k}(m_{3})||F_{k}(F_{k}(m_{1}))$ and $t_{\beta} = F_{k}(m_{1})||F_{k}(F_{k}(m_{2}))$. Then, A can output (m_{γ}, t_{β}) , where $m_{\gamma} = m_{1}||m_{1}$ and $t_{\gamma} = F_{k}(m_{1})||F_{k}(F_{k}(m_{1}))$. Then, $\operatorname{Vrfy}(m_{\gamma}, t_{\gamma}) = 1$ since t_{γ} is a valid tag for m_{γ} , but m_{γ} was never previously authenticated. Hence, our MAC scheme is not secure.