summary: which features to keep for model building

also see "variable table"

```
In [223...
           ## data: creditML
           df = pd.read csv('creditML.csv')
           df.head()
In [224...
Out[224...
               credit default AGE MARRIAGE EDUCATION_graduate school PAY_2 BILL_AMT5 PAY_AMT6
                                                                                2
          0
               20000
                                24
                                             1
                                                                        0
                                                                                            0
                                                                                                       0
                           1
             120000
                                             2
                                                                        0
                                                                                2
                           1
                                26
                                                                                         3455
                                                                                                    2000
               90000
                           0
                                34
                                             2
                                                                        0
                                                                                0
                                                                                        14948
                                                                                                    5000
                                                                        0
               50000
                                37
                                             1
                                                                                0
                                                                                        28959
                                                                                                    1000
                           0
                                57
                                                                        0
                                                                                0
               50000
                           0
                                             1
                                                                                        19146
                                                                                                     679
```

import libraries

```
# import libraries
In [1]:
         import pandas as pd
         import numpy as np
         from pandas import Series, DataFrame
         import seaborn as sns
         import matplotlib as mpl
         import matplotlib.pyplot as plt
         %matplotlib inline
         # Set default matplot figure size
In [ ]:
         ### NameError: name 'pylab' is not defined: pylab.rcParams['figure.figsize'] = (7.0, 7.
         plt.rcParams['figure.figsize'] = (7.0, 7.0)
         # Set text size
         mpl.rcParams['font.size'] = 12
In [2]:
         df = pd.read_csv('creditEDA.csv')
         ## default was
In [ ]:
                                                    ## default is
         not default
                                                           23364
                         23364
                                                     0
         default
                         6636
                                                     1
                                                            6636
         ## SEX was
                                                     ## SEX is
         female
                   18112
                                                     0
                                                           18112
         male
                   11888
                                                           11888
```

```
C2T2 EDA - DongMei Li
             ## EDUCATION --4 dummies
                                                                              ## education
             university
                                                                               3
                                      14030
                                                                                      14030
             graduate school
                                      10585
                                                                               0
                                                                                      10585
            high school
                                        4917
                                                                               1
                                                                                       4917
            other
                                         468
                                                                               2
                                                                                         468
            df.columns
In [3]:
Out[3]: Index(['credit', 'SEX', 'MARRIAGE', 'AGE', 'PAY_0', 'PAY_2', 'PAY_3', 'PAY_4', 'PAY_5', 'PAY_6', 'BILL_AMT1', 'BILL_AMT2', 'BILL_AMT3', 'BILL_AMT4',
                     'BILL_AMT5', 'BILL_AMT6', 'PAY_AMT1', 'PAY_AMT2', 'PAY_AMT3', 'PAY_AMT4', 'PAY_AMT5', 'PAY_AMT6', 'default', 'education',
                     'EDUCATION_graduate school', 'EDUCATION_high school', 'EDUCATION_other',
                     'EDUCATION university'],
```

In [4]:

df.head()

dtype='object')

Out[4]:

		credit	SEX	MARRIAGE	AGE	PAY_0	PAY_2	PAY_3	PAY_4	PAY_5	PAY_6	•••	PAY_AMT3	PAY_AN
-	0	20000	0	1	24	2	2	-1	-1	-2	-2		0	
	1	120000	0	2	26	-1	2	0	0	0	2		1000	1
	2	90000	0	2	34	0	0	0	0	0	0		1000	1
	3	50000	0	1	37	0	0	0	0	0	0		1200	1
	4	50000	1	1	57	-1	0	-1	0	0	0		10000	9

5 rows × 28 columns

4

In [5]: df.dtypes

```
Out[5]: credit
                                        int64
         SEX
                                        int64
         MARRIAGE
                                        int64
         AGE
                                        int64
         PAY 0
                                        int64
         PAY_2
                                        int64
         PAY_3
                                        int64
         PAY 4
                                        int64
         PAY 5
                                        int64
         PAY 6
                                        int64
         BILL AMT1
                                        int64
         BILL AMT2
                                        int64
         BILL AMT3
                                        int64
         BILL_AMT4
                                        int64
         BILL_AMT5
                                        int64
         BILL AMT6
                                        int64
         PAY AMT1
                                        int64
         PAY AMT2
                                        int64
         PAY AMT3
                                        int64
         PAY AMT4
                                        int64
         PAY AMT5
                                        int64
         PAY_AMT6
                                        int64
         default
                                        int64
         education
                                        int64
```

EDUCATION_graduate school

EDUCATION_high school

int64

int64

EDUCATION other int64 EDUCATION university int64

dtype: object

df.info() In [6]:

> <class 'pandas.core.frame.DataFrame'> RangeIndex: 30000 entries, 0 to 29999

Data columns (total 28 columns): # Column Non-Null Count Dtype -----_____ 0 credit 30000 non-null int64 1 SEX 30000 non-null int64 2 MARRIAGE 30000 non-null int64 3 30000 non-null int64 AGE 4 30000 non-null int64 PAY 0 5 PAY 2 30000 non-null int64 6 PAY 3 30000 non-null int64 7 PAY 4 30000 non-null int64 8 PAY 5 30000 non-null int64 9 PAY 6 30000 non-null int64 10 BILL AMT1 30000 non-null int64 30000 non-null 11 BILL AMT2 int64 30000 non-null 12 BILL AMT3 int64 BILL AMT4 30000 non-null 13 int64 BILL AMT5 30000 non-null 14 int64 BILL AMT6 30000 non-null 15 int64 PAY AMT1 16 30000 non-null int64 PAY AMT2 30000 non-null int64 17 18 PAY AMT3 30000 non-null int64 30000 non-null int64 19 PAY AMT4 20 PAY AMT5 30000 non-null int64 21 PAY AMT6 30000 non-null int64

26 EDUCATION_other 27 EDUCATION university dtypes: int64(28)

EDUCATION_graduate school

EDUCATION_high school

memory usage: 6.4 MB df.describe()

22 default

education

23

25

Out[7]:

In [7]:

	credit	SEX	MARRIAGE	AGE	PAY_0	PAY_2	PA
count	30000.000000	30000.000000	30000.000000	30000.000000	30000.000000	30000.000000	30000.000
mean	167484.322667	0.396267	1.551867	35.485500	-0.016700	-0.133767	-0.166
std	129747.661567	0.489129	0.521970	9.217904	1.123802	1.197186	1.196
min	10000.000000	0.000000	0.000000	21.000000	-2.000000	-2.000000	-2.000
25%	50000.000000	0.000000	1.000000	28.000000	-1.000000	-1.000000	-1.000
50%	140000.000000	0.000000	2.000000	34.000000	0.000000	0.000000	0.000
75%	240000.000000	1.000000	2.000000	41.000000	0.000000	0.000000	0.000
max	1000000.000000	1.000000	3.000000	79.000000	8.000000	8.000000	8.000

30000 non-null

30000 non-null

30000 non-null

30000 non-null

30000 non-null

30000 non-null

int64

int64

int64

int64

int64

int64

8 rows × 28 columns

EDA

histogram-- equal numbers of bin

```
In [8]: plt.hist(df['credit'])
    plt.show()
```



```
In [9]: plt.hist(df['credit'], bins=5)

plt.title('credit - histogram')
plt.xlabel('credit')
plt.ylabel('frequency')

plt.show()
```



```
In [77]: df = df['credit'].dropna()
# Drop missing values for the records in which credit is missing
```

```
In [78]: df_dist = sns.distplot(df)
    df_dist.set_title("Distribution of credit")
```

C:\Users\Dongmei\anaconda3\lib\site-packages\seaborn\distributions.py:2551: FutureWarnin
g: `distplot` is a deprecated function and will be removed in a future version. Please a
dapt your code to use either `displot` (a figure-level function with similar flexibilit
y) or `histplot` (an axes-level function for histograms).
 warnings.warn(msg, FutureWarning)

Out[78]: Text(0.5, 1.0, 'Distribution of credit')


```
In [10]: plt.hist(df['PAY_0'])
    plt.show()

##-1: Paid in full;
## 0: The use of revolving credit;
## 1 = payment delay for one month;
## 2 = payment delay for two months;
## . . .
## 8 = payment delay for eight months;
## 9 = payment delay for nine months and above.
```



```
In [12]: plt.hist(df['BILL_AMT1'])
   plt.show()
```



```
In [11]: plt.hist(df['BILL_AMT1'], bins=5)
    plt.show()
```



```
In [13]: plt.hist(df['PAY_AMT1'])
   plt.show()
```



```
In [ ]: plt.hist(df['PAY_AMT1'], bins=5)
    plt.show()
```

```
plt.hist(df['AGE'])
In [14]:
           plt.show()
           8000
           7000
           6000
           5000
           4000
           3000
           2000
           1000
              0
                         30
                                                  60
                                                           70
                 20
                                 40
                                          50
                                                                   80
           plt.hist(df['AGE'], bins=5)
In [15]:
           plt.show()
           14000
           12000
           10000
            8000
            6000
            4000
            2000
               0
                          30
                                  40
                                           50
                                                   60
                                                            70
                                                                    80
                  20
           plt.hist(df['default'])
In [16]:
           plt.show()
           20000
           15000
           10000
            5000
                            0.2
                                      0.4
                                                0.6
                                                         0.8
                  0.0
                                                                   1.0
           plt.hist(df['SEX'])
In [17]:
           plt.show()
```


In [18]: plt.hist(df['education']) ### 0 graduate school 1 high school 2 other 3 univeristy
plt.show()

line plot

tcredit by features: sex,EDUCATION, default, AGE, marriage, PAY_0, BILL_AMT1, PAY_AMT1

```
In [20]: plt.plot(df['credit'])
    plt.show()
```

```
1.0 - 0.8 - 0.6 - 0.4 - 0.2 - 0.0 - 5000 10000 15000 20000 25000 30000
```

```
In [21]: sns.lineplot(data=df, x="default", y="credit")
```

Out[21]: <AxesSubplot:xlabel='default', ylabel='credit'>


```
In [22]: ##
sns.factorplot(x='default', y='credit', data=df)
```

C:\Users\Dongmei\anaconda3\lib\site-packages\seaborn\categorical.py:3704: UserWarning: T
he `factorplot` function has been renamed to `catplot`. The original name will be remove
d in a future release. Please update your code. Note that the default `kind` in `factorp
lot` (`'point'`) has changed `'strip'` in `catplot`.
 warnings.warn(msg)

Out[22]: <seaborn.axisgrid.FacetGrid at 0x123071ff550>

In [23]: sns.catplot(x='default', y='credit', kind='point', data=df)

Out[23]: <seaborn.axisgrid.FacetGrid at 0x123071655b0>

In [104... sns.catplot(x='SEX', y='credit', kind='point', data=df)

Out[104... <seaborn.axisgrid.FacetGrid at 0x12307545c40>

In [105... sns.catplot(x='education', y='credit', kind='point', data=df)

Out[105... <seaborn.axisgrid.FacetGrid at 0x123078aba30>

In [106... sns.catplot(x='PAY_0', y='credit', kind='point', data=df)

Out[106... <seaborn.axisgrid.FacetGrid at 0x1230c63cdf0>


```
In [107... sns.catplot(x='MARRIAGE', y='credit', kind='point', data=df)
## 1 = married; 2 = single; 3 = divorce; 0=others).
```

Out[107... <seaborn.axisgrid.FacetGrid at 0x1230c113be0>


```
In [24]: sns.lineplot(data=df, x="PAY_0", y="credit", hue="SEX")
```

Out[24]: <AxesSubplot:xlabel='PAY_0', ylabel='credit'>

In [25]: sns.lineplot(data=df, x="PAY_0", y="credit", hue="education")

Out[25]: <AxesSubplot:xlabel='PAY_0', ylabel='credit'>

In [26]: sns.lineplot(data=df, x="PAY_0", y="credit", hue="MARRIAGE")

Out[26]: <AxesSubplot:xlabel='PAY_0', ylabel='credit'>

In [27]: sns.lineplot(data=df, x="PAY_0", y="credit", hue="education", style="education")

```
Out[27]: <AxesSubplot:xlabel='PAY_0', ylabel='credit'>
```

```
400000 - - - - 1 - - 2 - - 3 - 3 - 3 - 2 - - 3 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - - 2 - 2
```

```
In [28]: sns.lineplot(
    data=df, x="PAY_0", y="credit",
    size="education", hue="SEX",
    sizes=(.25, 2.5)
)
```

Out[28]: <AxesSubplot:xlabel='PAY_0', ylabel='credit'>


```
In []: x, y = np.random.normal(size=(2, 5000)).cumsum(axis=1)
sns.lineplot(x=x, y=y, sort=False, lw=1)

In [29]: sns.relplot(
    data=df, x="PAY_0", y="credit",
    col="default", hue="SEX", style="SEX",
    kind="line"
)
```

Out[29]: <seaborn.axisgrid.FacetGrid at 0x12306f2d9a0>

In []: #### the above : https://seaborn.pydata.org/generated/seaborn.lineplot.html

EDA with Categorical Variables

```
import pandas as pd
import numpy as np

import matplotlib.pyplot as plt
from matplotlib.patches import Patch
from matplotlib.lines import Line2D
import seaborn as sns
```

Numeric vs. Categorical EDA

Multiple Histograms---- by default. also by sex, educaiton, marriage?

```
in [34]: fig, ax = plt.subplots()

ax.hist(df[df["default"]==1]["credit"], bins=3, alpha=0.5, color="blue", label="default" ax.hist(df[df["default"]==0]["credit"], bins=3, alpha=0.5, color="green", label="not de" ax.set_xlabel("credit") ax.set_ylabel("Count of customers")

fig.suptitle("credit vs. default/not default")

ax.legend();
```

credit vs. default/not default


```
In [35]: fig, ax = plt.subplots()
    ax.hist(df[df["default"]==1]["credit"], alpha=0.5, color="blue", label="default")
    ax.hist(df[df["default"]==0]["credit"], alpha=0.5, color="green", label="not default")
    ax.set_xlabel("credit")
    ax.set_ylabel("Count of customers")
    fig.suptitle("credit vs. default/not default")
    ax.legend();
```

credit vs. default/not default


```
In [36]: fig, ax = plt.subplots()

ax.hist(df[df["education"]==0]["credit"], alpha=0.5, color="blue", label="graduate scho ax.hist(df[df["education"]==1]["credit"], alpha=0.5, color="green", label="high school" ax.hist(df[df["education"]==2]["credit"], alpha=0.5, color="red", label="other")
    ax.hist(df[df["education"]==3]["credit"], alpha=0.5, color="black", label="university")

ax.set_xlabel("credit")
    ax.set_ylabel("Count of customers")

fig.suptitle("credit vs. education")

ax.legend();
```

credit vs. education


```
In [57]: fig, ax = plt.subplots()
    ax.hist(df[df["SEX"]==1]["credit"], alpha=0.5, color="blue", label="male")
    ax.hist(df[df["SEX"]==0]["credit"], alpha=0.5, color="green", label="female")
    ax.set_xlabel("credit")
    ax.set_ylabel("Count of customers")
```

```
fig.suptitle("credit vs. gender")
ax.legend();
```

credit vs. gender


```
In [58]: fig, ax = plt.subplots()

ax.hist(df[df["MARRIAGE"]==0]["credit"], alpha=0.5, color="blue", label="others")
ax.hist(df[df["MARRIAGE"]==1]["credit"], alpha=0.5, color="green", label="married")
ax.hist(df[df["MARRIAGE"]==2]["credit"], alpha=0.5, color="red", label="single")
ax.hist(df[df["MARRIAGE"]==3]["credit"], alpha=0.5, color="black", label="divorce")

ax.set_xlabel("credit")
ax.set_ylabel("Count of customers")

fig.suptitle("credit vs. marriage status")

ax.legend();
```

credit vs. marriage status

Multiple Density Estimate Plots

```
In [37]: fig, ax = plt.subplots()
```

```
sns.kdeplot(df[df["default"]==1]["credit"], shade=True, color="blue", label="default",
sns.kdeplot(df[df["default"]==0]["credit"], shade=True, color="green", label="not defau
ax.set_xlabel("credit")
ax.set_ylabel("Density")
fig.suptitle("credit vs. default");
## where is my Label?
```



```
df.columns
In [38]:
Out[38]: Index(['credit', 'SEX', 'MARRIAGE', 'AGE', 'PAY_0', 'PAY_2', 'PAY_3', 'PAY_4', 'PAY_5', 'PAY_6', 'BILL_AMT1', 'BILL_AMT2', 'BILL_AMT3', 'BILL_AMT4',
                     'BILL_AMT5', 'BILL_AMT6', 'PAY_AMT1', 'PAY_AMT2', 'PAY_AMT3', 'PAY_AMT4', 'PAY_AMT5', 'PAY_AMT6', 'default', 'education',
                     'EDUCATION_graduate school', 'EDUCATION_high school', 'EDUCATION_other',
                     'EDUCATION_university'],
                    dtype='object')
             df['education'].value_counts() ## 3 univeristy 0 graduate school 1 high school
In [39]:
                  14030
            3
Out[39]:
                  10585
            1
                    4917
            2
                     468
            Name: education, dtype: int64
             ax = df['education'].value_counts().plot(kind='bar', figsize=(10,7))
In [40]:
```


In [41]: fg = sns.catplot(x='education', data=df, kind='count', aspect=1.5)
fg.set_xlabels('EDUCATION')

Out[41]: <seaborn.axisgrid.FacetGrid at 0x12306f76310>


```
In [42]: ax = sns.countplot(x="education", data=df)
    ## https://seaborn.pydata.org/generated/seaborn.countplot.html
```



```
In [43]: df['SEX'].value_counts()
Out[43]: 0    18112
1    11888
Name: SEX, dtype: int64

In []: fg = sns.catplot(x='SEX', data=df, kind='count', aspect=1.5)
fg.set_xlabels('SEX')

In [45]: fg = sns.catplot(x='SEX', data=df, kind='count')
fg.set_xlabels('SEX')
```

Out[45]: <seaborn.axisgrid.FacetGrid at 0x1230a8adee0>


```
plt.close(2) # catplot creates an extra figure we don't need

ax.set_xlabel("EDUCATION")

color_patches = [
    Patch(facecolor="blue", label="male"),
    Patch(facecolor="green", label="female")
]
ax.legend(handles=color_patches)

fig.suptitle("education vs. gender");
```

C:\Users\Dongmei\anaconda3\lib\site-packages\seaborn\categorical.py:3762: UserWarning: c atplot is a figure-level function and does not accept target axes. You may wish to try c ountplot

warnings.warn(msg, UserWarning)

education vs. gender

education vs. gender

In [49]: ax = sns.countplot(x="education", hue="SEX", data=df)
https://seaborn.pydata.org/generated/seaborn.countplot.html


```
In [ ]: sns.catplot(x= 'education', data=df, kind='count', hue='SEX', aspect=2)
In [50]: sns.catplot(x= 'education', data=df, kind='count', hue='SEX')
```

Out[50]: <seaborn.axisgrid.FacetGrid at 0x1230bfbb6a0>

In [67]: sns.catplot(x="education", hue="SEX", data=df, kind="count", ax=ax)

C:\Users\Dongmei\anaconda3\lib\site-packages\seaborn\categorical.py:3762: UserWarning: c atplot is a figure-level function and does not accept target axes. You may wish to try c ountplot

warnings.warn(msg, UserWarning)

Out[67]: <seaborn.axisgrid.FacetGrid at 0x12307254310>


```
In [ ]: ax = sns.countplot(y="EDUCATION", hue="SEX", data=df)
In [51]: ax = sns.countplot(x="default", hue="education", data=df) ### 3 high school
```


In [52]: ax = sns.countplot(x="default", hue="MARRIAGE", data=df)

In [53]: ax = sns.countplot(x="default", hue="SEX", data=df)

In [60]: sns.catplot(x= 'education', y='credit', data=df, kind='bar', hue='SEX', aspect=2)

Out[60]: <seaborn.axisgrid.FacetGrid at 0x1230c596fa0>


```
In [61]: sns.catplot(x='education', y='credit', data=df, kind='bar', hue='SEX', col='default', a
```

Out[61]: <seaborn.axisgrid.FacetGrid at 0x1230c4d14c0>


```
In [62]: sns.catplot(x='default', y='credit', data=df, kind='bar', hue='SEX', aspect=2)
```

Out[62]: <seaborn.axisgrid.FacetGrid at 0x1230729f820>

In [63]: sns.catplot(x='MARRIAGE', y='credit', data=df, kind='bar', hue='SEX', aspect=2)

Out[63]: <seaborn.axisgrid.FacetGrid at 0x1230c504e80>


```
In [64]:
           sns.catplot(x='SEX', y='credit', data=df, kind='bar', col='default', aspect=2)
          <seaborn.axisgrid.FacetGrid at 0x12306e4c4c0>
Out[64]:
                                                                                    default = 1
           175000
           15000
           125000
          불 100000
            75000
            50000
           g = sns.catplot(x="education", hue="SEX", col="default",
In [69]:
                              data=df, kind="count",
                             height=4, aspect=.7);
                           default = 0
                                                        default = 1
             7000
             6000
             5000
             4000
                                                                            SEX
             3000
             2000
             1000
                0
                                         3
                     0
                            1
                                  2
                            education
                                                        education
            counts_df = df.groupby(["education", "default"])["SEX"].count().unstack()
In [70]:
            counts_df
Out[70]:
             default
                         0
                               1
           education
                  0
                       8549 2036
                   1
                       3680
                            1237
                  2
                        435
                              33
                  3 10700 3330
           default_percents_df = counts_df.T.div(counts_df.T.sum()).T
In [71]:
           default_percents_df
Out[71]:
                            0
                                     1
             default
           education
```

```
default 0 1
```

education

- **0** 0.807652 0.192348
- **1** 0.748424 0.251576
- **2** 0.929487 0.070513
- **3** 0.762651 0.237349

```
In [73]: fig, ax = plt.subplots()

default_percents_df.plot(kind="bar", stacked=True, color=["green", "blue"], ax=ax)

ax.set_xlabel("education")
ax.set_xticklabels([1, 2, 3, 4], rotation=0)
ax.set_ylabel("Proportion")

color_patches = [
    Patch(facecolor="blue", label="default"),
    Patch(facecolor="green", label="did not default")
]
ax.legend(handles=color_patches)

fig.suptitle("education vs. default");
```

education vs. default

In [74]: df.describe()

\cap		$\Gamma \supset A \Gamma$	
U	uч	[/4]	۰

	credit	SEX	MARRIAGE	AGE	PAY_0	PAY_2	PA
count	30000.000000	30000.000000	30000.000000	30000.000000	30000.000000	30000.000000	30000.000
mean	167484.322667	0.396267	1.551867	35.485500	-0.016700	-0.133767	-0.166
std	129747.661567	0.489129	0.521970	9.217904	1.123802	1.197186	1.196
min	10000.000000	0.000000	0.000000	21.000000	-2.000000	-2.000000	-2.000
25%	50000.000000	0.000000	1.000000	28.000000	-1.000000	-1.000000	-1.000

AGE

MARRIAGE

PAY_0

PAY_2

PΑ

credit

SEX

50%	140000.000000	0.000000	2.000000	34.000000	0.000000	0.000000	0.000
75%	240000.000000	1.000000	2.000000	41.000000	0.000000	0.000000	0.000
max	1000000.000000	1.000000	3.000000	79.000000	8.000000	8.000000	8.000
8 rows	× 28 columns						
4							>
df.cı	redit.describe()						
count mean std min 25% 50% 75% max Name:	3000.0000 167484.3226 129747.6615 10000.0000 50000.0000 140000.0000 240000.0000 1000000.0000 credit, dtype:	67 67 00 00 00 00 00					
print	t('Average and m	edian credit	are %0.f an	d %0.f, respe	ectively'%(d		n(), dit.med
Avera	ge and median cr	edit are 167	484 and 1400	00, respecti	vely		
df.he	ead()						
2 3 4	20000 120000 90000 50000 50000 credit, dtype:	int64					
df =	pd.read_csv('cr	editEDA.csv')				
df.co	olumns						
Index	(['credit', 'SEX 'PAY_5', 'PAY_ 'BILL_AMT5', ' 'PAY_AMT4', 'P 'EDUCATION_gra 'EDUCATION_uni dtype='object')	6', 'BILL_AM BILL_AMT6', AY_AMT5', 'P duate school	T1', 'BILL_A 'PAY_AMT1', AY_AMT6', 'd	MT2', 'BILL_/ 'PAY_AMT2', efault', 'ed	AMT3', 'BILL _. 'PAY_AMT3', ucation',	_AMT4',	
fig.roldes	<pre>= sns.FacetGrid(map(sns.kdeplot, st = df['credit' set(xlim=(0,olde set(title='Distr add_legend()</pre>	<pre>'credit', sl].max() st))</pre>	nade= True)	d by Gender')		
<seab< th=""><td>orn.axisgrid.Fac</td><td>etGrid at 0x</td><td>12307a1b6a0></td><td></td><td></td><td></td><td></td></seab<>	orn.axisgrid.Fac	etGrid at 0x	12307a1b6a0>				

```
Distribution of CREDIT Grouped by Gender

SEX

On One of the second seco
```

```
fig = sns.FacetGrid(df, hue='default', aspect=4)
fig.map(sns.kdeplot, 'credit', shade=True)
oldest = df['credit'].max()
fig.set(xlim=(0,oldest))
fig.set(title='Distribution of CREDIT Grouped by default')
fig.add_legend()
```

Out[90]: <seaborn.axisgrid.FacetGrid at 0x1230c21e970>


```
In [91]: fig = sns.FacetGrid(df, hue='education', aspect=4)
    fig.map(sns.kdeplot, 'credit', shade=True)
    oldest = df['credit'].max()
    fig.set(xlim=(0,oldest))
    fig.set(title='Distribution of CREDIT Grouped by education')
    fig.add_legend()
```

Out[91]: <seaborn.axisgrid.FacetGrid at 0x12307146b50>


```
In [94]: fig = sns.FacetGrid(df, hue='MARRIAGE', aspect=4)
    fig.map(sns.kdeplot, 'credit', shade=True)
    oldest = df['credit'].max()
    fig.set(xlim=(0,oldest))
    fig.set(title='Distribution of CREDIT Grouped by marriage')
    fig.add_legend()
```

Out[94]: <seaborn.axisgrid.FacetGrid at 0x1230c4f01f0>


```
fig = sns.FacetGrid(df, hue='PAY_0', aspect=4)
fig.map(sns.kdeplot, 'credit', shade=True)
oldest = df['credit'].max()
fig.set(xlim=(0,oldest))
fig.set(title='Distribution of CREDIT Grouped by marriage')
fig.add_legend()
```

Out[100... <seaborn.axisgrid.FacetGrid at 0x123075ea8b0>


```
In [95]: sns.lmplot('AGE', 'credit', data=df)
```

C:\Users\Dongmei\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: P ass the following variables as keyword args: x, y. From version 0.12, the only valid pos itional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

Out[95]: <seaborn.axisgrid.FacetGrid at 0x1230c4ff5b0>

In [96]: sns.lmplot(x='AGE', y='credit', data=df) ## address the warning

Out[96]: <seaborn.axisgrid.FacetGrid at 0x1230c27d310>

In [97]: sns.lmplot('AGE', 'credit', data=df, hue='default')

C:\Users\Dongmei\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: P ass the following variables as keyword args: x, y. From version 0.12, the only valid pos itional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

Out[97]: <seaborn.axisgrid.FacetGrid at 0x12307ab9160>


```
In [98]: sns.lmplot(x='AGE', y='credit', data=df, hue='default')
```

Out[98]: <seaborn.axisgrid.FacetGrid at 0x123078cad30>

In [101... sns.lmplot(x='BILL_AMT1', y='credit', data=df, hue='default')

Out[101... <seaborn.axisgrid.FacetGrid at 0x1230788c760>


```
In [102... sns.lmplot(x='PAY_AMT1', y='credit', data=df, hue='default')
```

Out[102... <seaborn.axisgrid.FacetGrid at 0x12307894160>


```
In []:

In [109... ## Numeric vs. Numeric vs. Categorical EDA

fig, ax = plt.subplots(figsize=(10, 5))

ax.scatter(df[df["default"]==1]["credit"], df[df["default"]==1]["PAY_AMT1"], c="blue",
    ax.scatter(df[df["default"]==0]["credit"], df[df["default"]==0]["PAY_AMT1"], c="green",

ax.set_xlabel("credit")
    ax.set_ylabel("pay amount")

color_patches = [
    Line2D([0], [0], marker='o', color='w', label='default', markerfacecolor='b', marketolor='g, label='did not default', markerfacecolor='g, label='did not default', label='did not default', label='did not default', label='did not default',
```

default by credit and PAY_AMT1


```
In [110... ## Numeric vs. Numeric vs. Categorical EDA

fig, ax = plt.subplots(figsize=(10, 5))

ax.scatter(df[df["default"]==1]["credit"], df[df["default"]==1]["BILL_AMT1"], c="blue",
    ax.scatter(df[df["default"]==0]["credit"], df[df["default"]==0]["BILL_AMT1"], c="green"

ax.set_xlabel("credit")
    ax.set_ylabel("bill amount")

color_patches = [
        Line2D([0], [0], marker='o', color='w', label='default', markerfacecolor='b', marke
        Line2D([0], [0], marker='o', color='w', label='did not default', markerfacecolor='g
]
    ax.legend(handles=color_patches)

fig.suptitle("default by credit and Bill_AMT1");
```

default by credit and Bill_AMT1


```
In [114... x = df['BILL_AMT1']
y = df['credit']
```

```
In [115... plt.scatter(x,y)
    plt.show()

    plt.scatter(x,y, marker='o')
    plt.title('scatter plot')
    plt.xlabel('bill amount1')
    plt.ylabel('credit')
    plt.show()
```



```
In [116... x = df['BILL_AMT4']
y = df['credit']

In [117... plt.scatter(x,y, marker='o')
plt.title('scatter plot')
plt.xlabel('BILL_AMT4')
plt.ylabel('credit')
plt.show()
```

```
x = df['PAY\_AMT6']
In [119...
              y = df['credit']
               plt.scatter(x,y, marker='o')
In [120...
              plt.title('scatter plot')
              plt.xlabel('PAY_AMT6')
              plt.ylabel('credit')
               plt.show()
                                                scatter plot
                1.0
                 0.8
                0.6
                 0.4
                 0.2
                 0.0
                                100000
                                            200000
                                                       300000
                                                                  400000
                                                                              500000
                                                  PAY AMT6
               df.columns
In [121...
Out[121... Index(['credit', 'SEX', 'MARRIAGE', 'AGE', 'PAY_0', 'PAY_2', 'PAY_3', 'PAY_4', 'PAY_5', 'PAY_6', 'BILL_AMT1', 'BILL_AMT2', 'BILL_AMT3', 'BILL_AMT4',
                       'BILL_AMT5', 'BILL_AMT6', 'PAY_AMT1', 'PAY_AMT2', 'PAY_AMT3', 'PAY_AMT4', 'PAY_AMT5', 'PAY_AMT6', 'default', 'education',
```

```
In [ ]: ## Covariance
### Covariance is often used to gauge the linear degree of change between two variables
### This will be very important when studying the impact various features might have on
```

'EDUCATION graduate school', 'EDUCATION high school', 'EDUCATION other',

'EDUCATION university'],

dtype='object')

```
In [122... covMat = df.cov()
    print(covMat)
```

```
SEX
                                                           MARRIAGE
                                  credit
credit
                            1.683446e+10 -1571.050630 -7323.669658
SEX
                           -1.571051e+03
                                              0.239247
                                                           0.008014
MARRIAGE
                           -7.323670e+03
                                              0.008014
                                                           0.272452
AGE
                            1.730767e+05
                                              0.409726
                                                          -1.992764
PAY 0
                           -3.954593e+04
                                              0.031685
                                                           0.011683
PAY 2
                           -4.603765e+04
                                              0.041442
                                                           0.015122
PAY 3
                           -4.443225e+04
                                              0.038694
                                                           0.020421
PAY 4
                           -4.057181e+04
                                              0.034411
                                                           0.020213
PAY 5
                           -3.667056e+04
                                              0.030521
                                                           0.021074
PAY 6
                           -3.509308e+04
                                              0.024754
                                                           0.020616
BILL_AMT1
                            2.727020e+09
                                          1211.694332
                                                        -902.154685
BILL_AMT2
                            2.570130e+09
                                          1085.595467
                                                        -802.517866
BILL AMT3
                            2.548533e+09
                                           833.207432
                                                        -901.679085
BILL AMT4
                            2.453926e+09
                                            688.489572
                                                        -783.881599
BILL AMT5
                            2.331481e+09
                                            505.694333
                                                        -805.840875
BILL AMT6
                                            487.430160
                            2.243837e+09
                                                        -659.223347
PAY AMT1
                            4.195711e+08
                                              1.964266
                                                         -51.691615
PAY_AMT2
                            5.333504e+08
                                             15.675500
                                                          -97.327974
PAY_AMT3
                            4.801180e+08
                                             74.034812
                                                         -32.546082
PAY AMT4
                            4.131202e+08
                                             17.080110
                                                        -103.518204
PAY AMT5
                            4.305657e+08
                                             12.458809
                                                          -9.607709
PAY AMT6
                            5.065153e+08
                                             24.051885
                                                         -61.623271
                                             0.008113
                                                          -0.005273
default
                           -8.267552e+03
education
                           -3.493060e+04
                                             -0.018208
                                                          -0.062974
EDUCATION_graduate school 1.604448e+04
                                              0.005317
                                                           0.035451
EDUCATION_high school
                           -6.709315e+03
                                              0.001385
                                                          -0.021418
EDUCATION other
                            2.157851e+02
                                             -0.000515
                                                          -0.000542
EDUCATION university
                           -9.550953e+03
                                             -0.006188
                                                          -0.013490
                                                   PAY 0
                                                                  PAY_2
                                      AGE
credit
                            173076.722569 -39545.930009 -46037.648360
SEX
                                 0.409726
                                                0.031685
                                                              0.041442
MARRIAGE
                                -1.992764
                                                0.011683
                                                              0.015122
AGE
                                84.969755
                                               -0.408639
                                                              -0.553408
PAY 0
                                                               0.904330
                                -0.408639
                                                1.262930
PAY 2
                                -0.553408
                                                0.904330
                                                               1.433254
PAY 3
                                -0.585263
                                                0.772384
                                                               1.098371
PAY 4
                                -0.535851
                                                0.707972
                                                               0.926680
PAY 5
                                -0.562245
                                                0.648743
                                                               0.844886
PAY 6
                                -0.517022
                                                0.613292
                                                               0.792320
BILL_AMT1
                             38172.933546
                                           15480.304170
                                                          20706.614217
BILL_AMT2
                             35613.657962
                                           15185.916919
                                                          20045.829482
BILL AMT3
                             34334.251320
                                           14011.556537
                                                          18609.510991
BILL AMT4
                             30453.108180
                                           12950.248389
                                                          17116.298983
BILL AMT5
                             27654.067800
                                           12341.668685
                                                          16110.952468
BILL AMT6
                             26137.648547
                                           11844.759724
                                                          15642.875812
PAY AMT1
                              3992.041735
                                            -1475.495089
                                                          -1600.240756
PAY AMT2
                              4626.861549
                                            -1815.138407
                                                          -1627.192336
PAY AMT3
                              4746.824393
                                           -1396.168258
                                                          -1178.331282
PAY AMT4
                              3087.324192
                                           -1126.847945
                                                           -878.843879
PAY AMT5
                              3218.052172
                                            -999.107730
                                                           -678.468530
PAY AMT6
                              3191.903901
                                            -1172.193614
                                                           -776.835035
default
                                 0.053143
                                                0.151499
                                                               0.130960
education
                                -0.261453
                                                0.184394
                                                               0.238080
EDUCATION graduate school
                                -0.442349
                                               -0.076644
                                                              -0.096806
EDUCATION high school
                                 0.789120
                                                0.024505
                                                               0.028625
EDUCATION_other
                                 0.010260
                                               -0.003473
                                                              -0.004913
                                                0.055612
                                                               0.073094
EDUCATION university
                                -0.357031
                                   PAY 3
                                                  PAY 4
                                                                 PAY 5
credit
                           -44432.253315 -40571.811859 -36670.562325
```

```
0.034411
SEX
                               0.038694
                                                            0.030521
MARRIAGE
                               0.020421
                                             0.020213
                                                            0.021074
AGE
                              -0.585263
                                             -0.535851
                                                           -0.562245
PAY 0
                                             0.707972
                                                            0.648743
                               0.772384
PAY 2
                               1.098371
                                             0.926680
                                                            0.844886
PAY_3
                               1.432492
                                             1.087761
                                                            0.931455
PAY 4
                               1.087761
                                             1.366885
                                                            1.086161
PAY 5
                               0.931455
                                             1.086161
                                                            1.284114
                                                            1.064545
PAY 6
                               0.870815
                                             0.963263
BILL AMT1
                           18373.210469
                                                        17246.377531
                                         17460.198259
BILL AMT2
                           20214.071495
                                         18790.627741
                                                        18301.285286
BILL AMT3
                           18882.491544
                                         19862.999426
                                                        19122.663330
BILL_AMT4
                           17494.100555
                                         18496.423186
                                                        19822.925512
BILL_AMT5
                           16382.947539
                                         17265.551898
                                                       18586.590324
BILL AMT6
                           15847.089648
                                         16651.586314
                                                       17715.690075
PAY AMT1
                              25.668468
                                           -181.295613
                                                         -114.281714
PAY AMT2
                                                          -83.324487
                           -1841.952825
                                           -52.358166
PAY AMT3
                           -1123.428782
                                          -1425.205189
                                                          180.812142
PAY AMT4
                            -863.762183
                                          -796.035739
                                                        -1034.961970
PAY AMT5
                            -655.796002
                                           -599.991629
                                                         -577.161017
PAY AMT6
                            -763.026041
                                           -552.137338
                                                         -463.892613
default
                               0.116867
                                             0.105115
                                                            0.096020
education
                               0.224645
                                             0.209388
                                                            0.187787
EDUCATION graduate school
                              -0.091629
                                            -0.085144
                                                           -0.075112
EDUCATION high school
                                                            0.020798
                               0.027674
                                             0.025268
EDUCATION other
                              -0.005107
                                             -0.004491
                                                           -0.004047
EDUCATION university
                               0.069062
                                             0.064367
                                                            0.058361
                                  PAY 6
                                                   PAY AMT3
                                                                 PAY AMT4
                          -35093.083441
credit
                                              4.801180e+08 4.131202e+08
                                         ... 7.403481e+01 1.708011e+01
SEX
                               0.024754
MARRIAGE
                               0.020616
                                         ... -3.254608e+01 -1.035182e+02
                                         ... 4.746824e+03 3.087324e+03
AGE
                              -0.517022
PAY 0
                               0.613292
                                          ... -1.396168e+03 -1.126848e+03
PAY 2
                                          ... -1.178331e+03 -8.788439e+02
                               0.792320
PAY_3
                               0.870815
                                         ... -1.123429e+03 -8.637622e+02
PAY 4
                               0.963263
                                         ... -1.425205e+03 -7.960357e+02
PAY 5
                               1.064545
                                         ... 1.808121e+02 -1.034962e+03
                                         ... 1.181210e+02 3.426237e+02
PAY 6
                               1.322472
                                         ... 2.034048e+08 1.826164e+08
BILL AMT1
                           17560.424872
BILL AMT2
                                              1.888731e+08 1.643518e+08
                           18573.527165
BILL AMT3
                           19234.422476
                                              1.587478e+08 1.558003e+08
                                         . . .
BILL_AMT4
                                         ... 3.398374e+08 1.312133e+08
                           19705.551629
BILL AMT5
                                         ... 2.700805e+08 2.791830e+08
                           20338.120325
BILL AMT6
                           19524.880348 ... 2.451233e+08 2.334670e+08
PAY AMT1
                             -28.500666 ... 7.354626e+07 5.178189e+07
                                         ... 9.929841e+07 6.501168e+07
PAY AMT2
                            -138.399452
PAY AMT3
                                         ... 3.100051e+08
                                                            5.966970e+07
                             118.121022
PAY AMT4
                             342.623730
                                         . . .
                                              5.966970e+07
                                                             2.454286e+08
PAY AMT5
                            -815.832688
                                                             3.634098e+07
                                         . . .
                                              4.282921e+07
                            -517.216277
PAY AMT6
                                         ... 5.093879e+07 4.395747e+07
default
                               0.089194
                                         ... -4.110763e+02 -3.695159e+02
education
                               0.176146
                                         ... -1.048066e+03 -7.646876e+02
EDUCATION graduate school
                              -0.068759
                                         ... 4.710144e+02 3.452550e+02
EDUCATION_high school
                               0.017612
                                         ... -2.067872e+02 -1.366018e+02
                                              4.859679e+01 2.126372e+00
EDUCATION other
                              -0.005092
EDUCATION university
                               0.056240
                                         ... -3.128240e+02 -2.107795e+02
                               PAY_AMT5
                                             PAY_AMT6
                                                            default
credit
                           4.305657e+08 5.065153e+08 -8267.551759
SEX
                           1.245881e+01 2.405188e+01
                                                           0.008113
MARRIAGE
                          -9.607709e+00 -6.162327e+01
                                                          -0.005273
AGE
                           3.218052e+03 3.191904e+03
                                                           0.053143
PAY 0
                          -9.991077e+02 -1.172194e+03
                                                           0.151499
PAY 2
                          -6.784685e+02 -7.768350e+02
                                                           0.130960
```

```
PAY 3
                          -6.557960e+02 -7.630260e+02
                                                           0.116867
PAY 4
                          -5.999916e+02 -5.521373e+02
                                                           0.105115
PAY 5
                           -5.771610e+02 -4.638926e+02
                                                           0.096020
PAY 6
                           -8.158327e+02 -5.172163e+02
                                                           0.089194
                           1.879091e+08 2.347681e+08
BILL AMT1
                                                        -600.394108
BILL AMT2
                                                       -419.289137
                           1.717652e+08 2.204845e+08
BILL AMT3
                           1.904126e+08 2.247817e+08
                                                       -405.153680
BILL AMT4
                           1.576892e+08 2.031590e+08
                                                       -271.199885
BILL AMT5
                           1.315051e+08 1.774537e+08
                                                       -170.597447
BILL AMT6
                           2.799982e+08 1.222761e+08
                                                        -132.796294
PAY AMT1
                           3.756893e+07 5.469033e+07
                                                        -501.374552
PAY AMT2
                           6.368414e+07 6.456816e+07
                                                        -560.210740
PAY_AMT3
                           4.282921e+07 5.093879e+07
                                                        -411.076284
PAY AMT4
                           3.634098e+07 4.395747e+07
                                                       -369.515887
PAY AMT5
                           2.334266e+08 4.207110e+07
                                                       -349.562530
PAY AMT6
                           4.207110e+07 3.160383e+08
                                                       -392.426415
default
                          -3.495625e+02 -3.924264e+02
                                                           0.172276
education
                          -6.550900e+02 -8.573975e+02
                                                           0.022934
EDUCATION_graduate school 3.447913e+02 4.259025e+02
                                                          -0.010180
EDUCATION_high school -1.966421e+02 -2.277882e+02
                                                           0.004979
EDUCATION_university
                           1.400045e+01 3.526644e+01
                                                          -0.002351
                          -1.621496e+02 -2.333807e+02
                                                           0.007552
                              education EDUCATION_graduate school
                          -34930.604407
                                                       16044.482969
credit
SEX
                              -0.018208
                                                           0.005317
MARRIAGE
                              -0.062974
                                                           0.035451
AGE
                              -0.261453
                                                          -0.442349
PAY 0
                                                          -0.076644
                               0.184394
PAY 2
                               0.238080
                                                          -0.096806
PAY 3
                               0.224645
                                                          -0.091629
PAY 4
                               0.209388
                                                          -0.085144
PAY 5
                               0.187787
                                                          -0.075112
PAY 6
                               0.176146
                                                          -0.068759
BILL_AMT1
                            3406.142693
                                                        -846.084922
BILL_AMT2
                                                        -691.567207
                            3002.625797
BILL_AMT3
                                                        -434.516602
                            2225.753773
BILL AMT4
                            1673.950355
                                                        -117.103564
BILL AMT5
                            1256.256590
                                                          27.342070
BILL AMT6
                                                         -71.869023
                            1556.428952
PAY AMT1
                            -930.556016
                                                         394.252555
PAY AMT2
                           -1216.387136
                                                         488.852307
PAY AMT3
                           -1048.065641
                                                         471.014411
PAY AMT4
                            -764.687597
                                                         345.254954
PAY AMT5
                            -655.090046
                                                         344.791256
PAY AMT6
                            -857.397465
                                                         425.902474
default
                               0.022934
                                                          -0.010180
education
                               1.881439
                                                          -0.563882
EDUCATION graduate school
                              -0.563882
                                                           0.228350
EDUCATION high school
                              -0.098032
                                                          -0.057831
EDUCATION other
                               0.006270
                                                          -0.005504
EDUCATION university
                               0.655644
                                                          -0.165014
                           EDUCATION high school EDUCATION other
credit
                                     -6709.314796
                                                        215.785093
SEX
                                         0.001385
                                                         -0.000515
MARRIAGE
                                        -0.021418
                                                         -0.000542
AGE
                                         0.789120
                                                          0.010260
PAY_0
                                         0.024505
                                                         -0.003473
PAY 2
                                         0.028625
                                                         -0.004913
PAY 3
                                         0.027674
                                                         -0.005107
PAY 4
                                         0.025268
                                                         -0.004491
PAY 5
                                         0.020798
                                                         -0.004047
PAY 6
                                         0.017612
                                                         -0.005092
BILL AMT1
                                      -599.858730
                                                        331.829532
```

BILL_AMT2	-599.693276	271.462376
BILL_AMT3	-585.509355	248.814746
BILL_AMT4	-744.846531	167.053398
BILL_AMT5	-713.633173	88.983544
BILL_AMT6	-683.020797	25.219712
PAY_AMT1	-130.662666	9.123682
PAY_AMT2	-142.222305	34.274825
PAY_AMT3	-206.787191	48.596788
PAY_AMT4	-136.601819	2.126372
PAY_AMT5	-196.642088	14.000453
PAY_AMT6	-227.788197	35.266436
default	0.004979	-0.002351
education	-0.098032	0.006270
EDUCATION_graduate school	-0.057831	-0.005504
EDUCATION_high school	0.137041	-0.002557
EDUCATION_other	-0.002557	0.015357
EDUCATION_university	-0.076653	-0.007296

	EDUCATION_university
credit	-9550.953266
SEX	-0.006188
MARRIAGE	-0.013490
AGE	-0.357031
PAY_0	0.055612
PAY_2	0.073094
PAY_3	0.069062
PAY_4	0.064367
PAY_5	0.058361
PAY_6	0.056240
BILL_AMT1	1114.114120
BILL_AMT2	1019.798107
BILL_AMT3	771.211212
BILL_AMT4	694.896696
BILL_AMT5	597.307558
BILL_AMT6	729.670109
PAY_AMT1	-272.713571
PAY_AMT2	-380.904827
PAY_AMT3	-312.824009
PAY_AMT4	-210.779507
PAY_AMT5	-162.149622
PAY_AMT6	-233.380713
default	0.007552
education	0.655644
EDUCATION_graduate school	-0.165014
EDUCATION_high school	-0.076653
EDUCATION_other	-0.007296
EDUCATION_university	0.248963

[28 rows x 28 columns]

In [123... df.cov()

Out[123...

•••		credit	SEX	MARRIAGE	AGE	PAY_0	
	credit	1.683446e+10	-1571.050630	-7323.669658	173076.722569	-39545.930009	-46037.
	SEX	-1.571051e+03	0.239247	0.008014	0.409726	0.031685	0.
	MARRIAGE	-7.323670e+03	0.008014	0.272452	-1.992764	0.011683	0.
	AGE	1.730767e+05	0.409726	-1.992764	84.969755	-0.408639	-0.
	PAY_0	-3.954593e+04	0.031685	0.011683	-0.408639	1.262930	0.

	credit	SEX	MARRIAGE	AGE	PAY_0	
PAY_2	-4.603765e+04	0.041442	0.015122	-0.553408	0.904330	1.
PAY_3	-4.443225e+04	0.038694	0.020421	-0.585263	0.772384	1.
PAY_4	-4.057181e+04	0.034411	0.020213	-0.535851	0.707972	0.
PAY_5	-3.667056e+04	0.030521	0.021074	-0.562245	0.648743	0.
PAY_6	-3.509308e+04	0.024754	0.020616	-0.517022	0.613292	0.
BILL_AMT1	2.727020e+09	1211.694332	-902.154685	38172.933546	15480.304170	20706.
BILL_AMT2	2.570130e+09	1085.595467	-802.517866	35613.657962	15185.916919	20045.
BILL_AMT3	2.548533e+09	833.207432	-901.679085	34334.251320	14011.556537	18609.
BILL_AMT4	2.453926e+09	688.489572	-783.881599	30453.108180	12950.248389	17116.
BILL_AMT5	2.331481e+09	505.694333	-805.840875	27654.067800	12341.668685	16110.
BILL_AMT6	2.243837e+09	487.430160	-659.223347	26137.648547	11844.759724	15642.
PAY_AMT1	4.195711e+08	1.964266	-51.691615	3992.041735	-1475.495089	-1600.
PAY_AMT2	5.333504e+08	15.675500	-97.327974	4626.861549	-1815.138407	-1627.
PAY_AMT3	4.801180e+08	74.034812	-32.546082	4746.824393	-1396.168258	-1178.
PAY_AMT4	4.131202e+08	17.080110	-103.518204	3087.324192	-1126.847945	-878.
PAY_AMT5	4.305657e+08	12.458809	-9.607709	3218.052172	-999.107730	-678.
PAY_AMT6	5.065153e+08	24.051885	-61.623271	3191.903901	-1172.193614	-776.
default	-8.267552e+03	0.008113	-0.005273	0.053143	0.151499	0.
education	-3.493060e+04	-0.018208	-0.062974	-0.261453	0.184394	0.
EDUCATION_graduate school	1.604448e+04	0.005317	0.035451	-0.442349	-0.076644	-0.
EDUCATION_high school	-6.709315e+03	0.001385	-0.021418	0.789120	0.024505	0.
EDUCATION_other	2.157851e+02	-0.000515	-0.000542	0.010260	-0.003473	-0.
EDUCATION_university	-9.550953e+03	-0.006188	-0.013490	-0.357031	0.055612	0.

28 rows × 28 columns

```
In []: ## corrrelation
In []: corrMat = df.corr()
    print(corrMat)
    ### from course site
In [126... df.corr()
```

Out[126...

	credit	SEX	MARRIAGE	AGE	PAY_0	PAY_2	PAY_3	I
credit	1.000000	-0.024755	-0.108139	0.144713	-0.271214	-0.296382	-0.286123	-0.20
SEX	-0.024755	1.000000	0.031389	0.090874	0.057643	0.070771	0.066096	0.00
MARRIAGE	-0.108139	0.031389	1.000000	-0.414170	0.019917	0.024199	0.032688	0.03
AGE	0.144713	0.090874	-0.414170	1.000000	-0.039447	-0.050148	-0.053048	-0.04
PAY_0	-0.271214	0.057643	0.019917	-0.039447	1.000000	0.672164	0.574245	0.5
PAY_2	-0.296382	0.070771	0.024199	-0.050148	0.672164	1.000000	0.766552	0.60
PAY_3	-0.286123	0.066096	0.032688	-0.053048	0.574245	0.766552	1.000000	0.7
PAY_4	-0.267460	0.060173	0.033122	-0.049722	0.538841	0.662067	0.777359	1.00
PAY_5	-0.249411	0.055064	0.035629	-0.053826	0.509426	0.622780	0.686775	0.8
PAY_6	-0.235195	0.044008	0.034345	-0.048773	0.474553	0.575501	0.632684	0.7
BILL_AMT1	0.285430	0.033642	-0.023472	0.056239	0.187068	0.234887	0.208473	0.20
BILL_AMT2	0.278314	0.031183	-0.021602	0.054283	0.189859	0.235257	0.237295	0.27
BILL_AMT3	0.283236	0.024563	-0.024909	0.053710	0.179785	0.224146	0.227494	0.24
BILL_AMT4	0.293988	0.021880	-0.023344	0.051353	0.179125	0.222237	0.227202	0.24
BILL_AMT5	0.295562	0.017005	-0.025393	0.049345	0.180635	0.221348	0.225145	0.24
BILL_AMT6	0.290389	0.016733	-0.021207	0.047613	0.176980	0.219403	0.222327	0.23
PAY_AMT1	0.195236	0.000242	-0.005979	0.026147	-0.079269	-0.080701	0.001295	-0.00
PAY_AMT2	0.178408	0.001391	-0.008093	0.021785	-0.070101	-0.058990	-0.066793	-0.00
PAY_AMT3	0.210167	0.008597	-0.003541	0.029247	-0.070561	-0.055901	-0.053311	-0.00
PAY_AMT4	0.203242	0.002229	-0.012659	0.021379	-0.064005	-0.046858	-0.046067	-0.04
PAY_AMT5	0.217202	0.001667	-0.001205	0.022850	-0.058190	-0.037093	-0.035863	-0.03
PAY_AMT6	0.219595	0.002766	-0.006641	0.019478	-0.058673	-0.036500	-0.035861	-0.0
default	-0.153520	0.039961	-0.024339	0.013890	0.324794	0.263551	0.235253	0.2
education	-0.196273	-0.027139	-0.087956	-0.020678	0.119623	0.144983	0.136838	0.13
EDUCATION_graduate school	0.258777	0.022750	0.142129	-0.100423	-0.142720	-0.169215	-0.160209	-0.1!
EDUCATION_high school	-0.139686	0.007650	-0.110845	0.231252	0.058902	0.064590	0.062461	0.0!
EDUCATION_other	0.013420	-0.008498	-0.008386	0.008982	-0.024937	-0.033118	-0.034435	-0.03
EDUCATION_university	-0.147530	-0.025353	-0.051797	-0.077626	0.099177	0.122364	0.115644	0.1
28 rows × 28 columns								

28 rows × 28 columns

In []:

based on correlatin coefficients

select some columns/features for pairplots and regression after regression, maybe make another round of selection

target: credit

features: default, AGE, MARRIAGE, EDUCATION_graduate school

features: PAY_2, BILL_AMT5, PAY_AMT6

df_S selected

	avadit	dofoult	ACE MAD	DIAGE EF	DIICATIONI aus	dusto school	DAV 2	BILL_AMT5	DAY AMITE
					DUCATION_gra				
0	20000	1	24	1		0	2	0	0
1	120000	1	26	2		0	2	3455	2000
2	90000	0	34	2		0	0	14948	5000
3	50000	0	37	1		0	0	28959	1000
4	50000	0	57	1		0	0	19146	679
d [.]	f_S.cor	r()							
			credi	t defau	ılt AGE	MARRIAGE	EDUCA	TION_graduate schoo	$P\Delta Y J$
		credi	t 1.000000) -0.15352	20 0.144713	-0.108139		0.25877	7 -0.296382
		defaul	t -0.153520	1.00000	0.013890	-0.024339		-0.051328	8 0.263551
		AGI	E 0.144713	0.01389	90 1.000000	-0.414170		-0.100423	3 -0.050148
		MARRIAGI	E -0.108139	0.02433	39 -0.414170	1.000000		0.142129	9 0.024199
ED	OITADU	N_graduate schoo	0/58//	7 -0.05132	28 -0.100423	0.142129		1.000000	0 -0.169215
		PAY_2	2 -0.296382	0.26355	51 -0.050148	0.024199		-0.16921	5 1.000000
		BILL_AMT	0.295562	2 -0.00676	0.049345	-0.025393		0.00094	1 0.221348
		PAY_AMT6	5 0.219595	5 -0.05318	83 0.019478	-0.006641		0.05013	5 -0.036500

import seaborn as sns; sns.set_theme()

```
df_S = np.random.rand(10, 12)
ax = sns.heatmap(df_S)
```

pairplots

```
### Pairplots in Python
 In [ ]:
          ### https://qithub.com/WillKoehrsen/Data-Analysis/blob/master/pairplots/Pair%20Plots.ip
          # Pandas and numpy for data manipulation
          import pandas as pd
          import numpy as n
          # matplotlib for plotting
          import matplotlib.pyplot as plt
          import matplotlib
          # Seaborn for pairplots
          import seaborn as sns
 In [ ]:
          sns.pairplot(df_S);
 In [ ]:
          sns.pairplot(df_S, hue = 'default');
          sns.pairplot(df_S, kind='reg');
In [129...
```


regression

https://gist.github.com/rafiag

```
In [134... ### 1.
    # Import Libraries
    ## Basic Libs

import pandas as pd
import numpy as np
import warnings

## Building Model
from sklearn import linear_model
from scipy import stats
import statsmodels
import statsmodels.api as sm
```

```
import statsmodels.formula.api as smf
           import statsmodels.stats.api as sms
           from statsmodels.compat import lzip
           ## Data Visualization
           import seaborn as sns
           import matplotlib.pyplot as plt
           from mpl toolkits.mplot3d import Axes3D
           warnings.filterwarnings('ignore')
           ## plt.rcParams['figure.figsize'] = (7, 7)
           ## plt.style.use('gaplot')
In [141...
           df.columns
Out[141... Index(['credit', 'SEX', 'MARRIAGE', 'AGE', 'PAY_0', 'PAY_2', 'PAY_3', 'PAY_4', 'PAY_5', 'PAY_6', 'BILL_AMT1', 'BILL_AMT2', 'BILL_AMT3', 'BILL_AMT4',
                  'BILL_AMT5', 'BILL_AMT6', 'PAY_AMT1', 'PAY_AMT2', 'PAY_AMT3', 'PAY_AMT4', 'PAY_AMT5', 'PAY_AMT6', 'default', 'education',
                  'EDUCATION graduate school', 'EDUCATION high school', 'EDUCATION other',
                  'EDUCATION university'],
                dtvpe='object')
           df S = df[['credit', 'default', 'AGE', 'MARRIAGE', 'EDUCATION graduate school', 'PAY 2'.
In [142...
           df S.columns
In [143...
dtype='object')
           # Visualize the data using scatter plot and histogram
 In [ ]:
           sns.set palette('colorblind')
           sns.pairplot(data=df S, height=3)
           df S.head()
In [146...
              credit default AGE MARRIAGE EDUCATION_graduate school PAY_2 BILL_AMT5 PAY_AMT6
Out[146...
          0
              20000
                                                                     0
                                                                            2
                          1
                              24
                                           1
                                                                                       0
                                                                                                  0
             120000
                                                                            2
                          1
                              26
                                           2
                                                                     0
                                                                                    3455
                                                                                               2000
          2
              90000
                          0
                              34
                                           2
                                                                     0
                                                                            0
                                                                                   14948
                                                                                               5000
              50000
                                                                     0
                                                                            0
                                                                                   28959
                                                                                               1000
          3
                          0
                              37
              50000
                          0
                              57
                                                                     0
                                                                            0
                                                                                   19146
                                                                                                679
          4
                                           1
           # Set independent and dependent variables
In [147...
           X = df S[['default', 'AGE', 'MARRIAGE', 'EDUCATION graduate school', 'PAY 2', 'BILL AMT
           y = df S['credit']
           # Initialize model from sklearn and fit it into our data
           regr = linear_model.LinearRegression()
           model = regr.fit(X, y)
           print('Intercept:', model.intercept_)
           print('Coefficients:', model.coef_)
```

Intercept: 94769.42275890156

Coefficients: [-1.72921329e+04 1.38762803e+03 -2.06113069e+04 5.93366413e+04

-3.32335318e+04 7.11394467e-01 1.00209978e+00]

y head = 94769 - default17292 + age1387 - marriage20611 + graduateschool59336 -pay_233233 + billant50.7 + payamt6*1.0

```
### Model Validation
In [158...
        X = df_S[['default', 'AGE', 'MARRIAGE', 'EDUCATION_graduate school', 'PAY_2', 'BILL_AMT
        X = sm.add constant(X) # adding a constant
        olsmod = sm.OLS(df S['credit'], X).fit()
        print(olsmod.summary())
                               OLS Regression Results
        ______
        Dep. Variable:
                                  credit
                                          R-squared:
        Model:
                                    OLS
                                         Adj. R-squared:
                                                                      0.308
        Method:
                            Least Squares
                                         F-statistic:
                                                                      1906.
        Date:
                         Fri, 28 May 2021
                                         Prob (F-statistic):
                                                                      0.00
        Time:
                                01:46:12
                                         Log-Likelihood:
                                                                -3.9025e+05
        No. Observations:
                                   30000
                                         AIC:
                                                                  7.805e+05
        Df Residuals:
                                   29992
                                          BIC:
                                                                  7.806e+05
        Df Model:
        Covariance Type:
                               nonrobust
        coef
                                          std err
                                                              P>|t|
                                                                        [0.025
        0.9751
        const
                               9.477e+04
                                         4038.899
                                                    23.464
                                                              0.000
                                                                      8.69e + 04
                                                                                1.0
        3e+05
        default
                              -1.729e+04
                                         1562.626
                                                   -11.066
                                                              0.000
                                                                     -2.04e+04
                                                                               -1.4
        2e+04
        AGE
                               1387.6280
                                          74.613
                                                    18.598
                                                              0.000
                                                                      1241.384
                                                                                153
        3.872
        MARRIAGE
                              -2.061e+04
                                         1320.929
                                                   -15.604
                                                              0.000
                                                                     -2.32e+04
                                                                                -1.
        8e+04
        EDUCATION graduate school 5.934e+04
                                         1342.881
                                                    44.186
                                                              0.000
                                                                      5.67e+04
        2e+04
        PAY 2
                              -3.323e+04
                                          565.902
                                                   -58.727
                                                              0.000
                                                                     -3.43e+04
                                                                               -3.2
        1e+04
        BILL AMT5
                                 0.7114
                                           0.011
                                                    66.289
                                                              0.000
                                                                        0.690
        0.732
        PAY AMT6
                                 1.0021
                                           0.036
                                                    28.074
                                                              0.000
                                                                        0.932
        1.072
        ______
        Omnibus:
                                4706.972 Durbin-Watson:
                                                                      1.947
        Prob(Omnibus):
                                   0.000
                                         Jarque-Bera (JB):
                                                                   7734.171
        Skew:
                                   1.063
                                          Prob(JB):
                                                                       0.00
                                   4.291
                                          Cond. No.
```

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 4.9e+05. This might indicate that there are strong multicollinearity or other numerical problems.

In [159... print('R2 score:', olsmod.rsquared)

R2 score: 0.3078377586089446

```
print('F-statistic:', olsmod.fvalue)
In [160...
          print('Probability of observing value at least as high as F-statistic:', olsmod.f pvalu
         F-statistic: 1905.5544875152689
         Probability of observing value at least as high as F-statistic: 0.0
          ## Because our f pvalue is lower than 0.05 we can conclude that our model performs bett
In [161...
In [162...
          print(olsmod.pvalues)
         const
                                       1.160412e-120
         default
                                        2.080158e-28
         AGE
                                        9.066584e-77
         MARRIAGE
                                        1.128408e-54
         EDUCATION_graduate school
                                        0.000000e+00
         PAY 2
                                        0.000000e+00
         BILL AMT5
                                        0.000000e+00
         PAY AMT6
                                       3.350195e-171
         dtype: float64
          ## if independent variables have p-value less than 0.05
          ## it will show that there is sufficient evidence that they affects our credit
```

regression Assumption Testing

```
In [163... df_S['credit_pred'] = olsmod.predict(X)
df_S['residual'] = olsmod.resid
df_S.head()

### Residual is the difference between the observed value and predicted value from our
##### With statsmodel we can easily get the residual value of our model by simply acces
### .resid attribute of the model and then we can keep it in a new column called 'resid
```

Out[163		credit	default	AGE	MARRIAGE	EDUCATION_graduate school	PAY_2	BILL_AMT5	PAY_AMT6	credit_p
	0	20000	1	24	1	0	2	0	0	23701.992
	1	120000	1	26	2	0	2	3455	2000	10328.008
	2	90000	0	34	2	0	0	14948	5000	116370.5854
	3	50000	0	37	1	0	0	28959	1000	147103.725
	4	50000	0	57	1	0	0	19146	679	167553.6979

```
plt.ylabel('Predicted Credit', fontsize=14)
plt.xlabel('Actual Credit', fontsize=14)
plt.title('Linearity Assumption', fontsize=16)
plt.show()
```


In []: ## The scatter plots show residual point sort of evenly spread around the diagonal line ## so we can assume that there is linear relationship between our independent and depen

```
In [166... ## Normality test
    from statsmodels.stats.diagnostic import normal_ad

# Performing the test on the residuals
p_value = normal_ad(df_S['residual'])[1]
print('p-value from the test Anderson-Darling test below 0.05 generally means non-norma

# Plotting the residuals distribution
plt.subplots(figsize=(8, 4))
plt.title('Distribution of Residuals', fontsize=18)
sns.distplot(df_S['residual'])
plt.show()

# Reporting the normality of the residuals
if p_value < 0.05:
    print('Residuals are not normally distributed')
else:
    print('Residuals are normally distributed')</pre>
```

p-value from the test Anderson-Darling test below 0.05 generally means non-normal: 0.0

Residuals are not normally distributed

```
## Multicollinearity test
In [167...
          corr = df_S[['default', 'AGE', 'MARRIAGE', 'EDUCATION_graduate school', 'PAY_2', 'BILL_
          print('Pearson correlation coefficient matrix of each variables:\n', corr)
          # Generate a mask for the diagonal cell
          mask = np.zeros like(corr, dtype=np.bool)
          np.fill diagonal(mask, val=True)
          # Initialize matplotlib figure
          fig, ax = plt.subplots(figsize=(4, 3))
          # Generate a custom diverging colormap
          cmap = sns.diverging palette(220, 10, as cmap=True, sep=100)
          cmap.set_bad('grey')
          # Draw the heatmap with the mask and correct aspect ratio
          sns.heatmap(corr, mask=mask, cmap=cmap, vmin=-1, vmax=1, center=0, linewidths=.5)
          fig.suptitle('Pearson correlation coefficient matrix', fontsize=14)
          ax.tick_params(axis='both', which='major', labelsize=10)
         Pearson correlation coefficient matrix of each variables:
                                       default
                                                    AGE MARRIAGE
         default
                                     1.000000 0.013890 -0.024339
         AGE
```

```
0.013890 1.000000 -0.414170
                        -0.024339 -0.414170 1.000000
MARRIAGE
EDUCATION_graduate school -0.051328 -0.100423 0.142129
PAY_2
                         0.263551 -0.050148   0.024199
BILL AMT5
                        -0.006760 0.049345 -0.025393
PAY AMT6
                        -0.053183 0.019478 -0.006641
                         EDUCATION_graduate school
                                                      PAY_2 BILL_AMT5 \
default
                                        AGE
                                        -0.100423 -0.050148
                                                             0.049345
MARRIAGE
                                         0.142129 0.024199
                                                            -0.025393
EDUCATION_graduate school
                                         1.000000 -0.169215
                                                            0.000941
PAY 2
                                        -0.169215 1.000000
                                                             0.221348
BILL AMT5
                                         0.000941 0.221348
                                                            1.000000
PAY_AMT6
                                         0.050135 -0.036500
                                                             0.164184
```

```
default -0.053183
AGE 0.019478
MARRIAGE -0.006641
EDUCATION_graduate school 0.050135
PAY_2 -0.036500
BILL_AMT5 0.164184
PAY AMT6 1.000000
```


In []: ## almost 0 correlation coefficient, means independent variable are not affecting one o
and that there is no multicollinearity in our data.

```
In [168... ## Autocorrelation

from statsmodels.stats.stattools import durbin_watson

durbinWatson = durbin_watson(df_S['residual'])

print('Durbin-Watson:', durbinWatson)
   if durbinWatson < 1.5:
        print('Signs of positive autocorrelation', '\n')
        print('Assumption not satisfied')

elif durbinWatson > 2.5:
        print('Signs of negative autocorrelation', '\n')
        print('Assumption not satisfied')

else:
        print('Little to no autocorrelation', '\n')
        print('Assumption satisfied')
```

Durbin-Watson: 1.9466529704375113 Little to no autocorrelation

Assumption satisfied

In []: ## Our model got a Durbin-Watson score of about 1.94 which is between 1.5 and 2.5, ## so we can assume that there is no autocorrelation in our residual.

In []: ## This assumes homoscedasticity, which is the same variance within our error terms.
Heteroscedasticity, the violation of homoscedasticity, occurs when we don't have an
To detect homoscedasticity, we can plot our residual and see if the variance appears

```
##Homoscedasticity test

# Plotting the residuals
plt.subplots(figsize=(8, 4))
plt.scatter(x=df_S.index, y=df_S.residual, alpha=0.8)
plt.plot(np.repeat(0, len(df_S.index)+2), color='darkorange', linestyle='--')

plt.ylabel('Residual', fontsize=14)
plt.xlabel('month', fontsize=14)
plt.title('Homescedasticity Assumption', fontsize=16)
plt.show()
```


In []: ## assume that it satisfied the homoscedasticity assumption.

after regression: r squared 0.3 -- not bad

line 158-159

In [170	d-	f_S.hea	d()							
Out[170		credit	default	AGE	MARRIAGE	EDUCATION_graduate school	PAY_2	BILL_AMT5	PAY_AMT6	credit_p
	0	20000	1	24	1	0	2	0	0	23701.992
	1	120000	1	26	2	0	2	3455	2000	10328.008
	2	90000	0	34	2	0	0	14948	5000	116370.585
	3	50000	0	37	1	0	0	28959	1000	147103.7257
	4	50000	0	57	1	0	0	19146	679	167553.6979
	4									+
In [175	d-	f_S.hea	d()							
Out[175		credit	default	AGE	MARRIAGE	EDUCATION_graduate school	PAY_2	BILL_AMT5	PAY_AMT6	credit_p

	credit	default	AGE	MARRIAGE	EDUCATION_graduate school	PAY_2	BILL_AMT5	PAY_AMT6	credit_p
0	20000	1	24	1	0	2	0	0	23701.992
1	120000	1	26	2	0	2	3455	2000	10328.008
2	90000	0	34	2	0	0	14948	5000	116370.585
3	50000	0	37	1	0	0	28959	1000	147103.725
4	50000	0	57	1	0	0	19146	679	167553.6979
•									•

add variables to see the change of R squared

. d	f.head()											
	credit	SEX	MARRIAGE	AGE	PAY_0	PAY_2	PAY_3	PAY_4	PAY_5	PAY_6	•••	PAY_AMT3	PAY_AN
0	20000	0	1	24	2	2	-1	-1	-2	-2		0	
1	120000	0	2	26	-1	2	0	0	0	2		1000	1
2	90000	0	2	34	0	0	0	0	0	0		1000	1
3	50000	0	1	37	0	0	0	0	0	0		1200	1
4	50000	1	1	57	-1	0	-1	0	0	0		10000	9

add SEX

```
df_S = df[['credit', 'SEX','default', 'AGE', 'MARRIAGE', 'EDUCATION_graduate school',
In [184...
           df_S.head()
In [185...
Out[185...
                                                      EDUCATION_graduate
                                                                           PAY_2 BILL_AMT5 PAY_AMT6
              credit SEX default AGE MARRIAGE
                                                                   school
          0
              20000
                       0
                                1
                                    24
                                                1
                                                                               2
                                                                                          0
                                                                                                     0
                                                                        0
            120000
                       0
                                1
                                    26
                                                2
                                                                                       3455
                                                                                                  2000
                                                                                                  5000
          2
              90000
                       0
                               0
                                    34
                                                                                      14948
                                                                                                   1000
          3
              50000
                       0
                                    37
                                                                                      28959
              50000
                       1
                                    57
                                                 1
                                                                                      19146
                                                                                                    679
```

```
In [186... X = df_S[['SEX','default', 'AGE', 'MARRIAGE', 'EDUCATION_graduate school', 'PAY_2', 'BI
X = sm.add_constant(X) # adding a constant
```

```
olsmod = sm.OLS(df_S['credit'], X).fit()
print(olsmod.summary())
```

OLS Regression Results

=======================================	OLS Regres					
Dep. Variable: Model: Method:	credit OLS east Squares 28 May 2021 02:31:04 30000 29991 8 nonrobust	R-squared Adj. R-sc F-statist Prob (F-s Log-Likel AIC: BIC:	uared: ic: tatistic): ihood:	-3.9 7 7	0.308 0.308 1670. 0.00 9024e+05 .805e+05	
===== 0.975]	coef	std err	t	P> t		=====
 const 3e+05	9.487e+04	4038.063	23.494	0.000	8.7e+04	1.0
SEX	-4939.2710	1287.980	-3.835	0.000	-7463.767	-241
4.775 default 1e+04	-1.717e+04	1562.619	-10.985	0.000	-2.02e+04	-1.4
AGE 9.264	1422.0011	75.132	18.927	0.000	1274.739	156
MARRIAGE 7e+04	-2.025e+04	1324.042	-15.292	0.000	-2.28e+04	-1.7
EDUCATION_graduate school 2e+04	5.953e+04	1343.548	44.310	0.000	5.69e+04	6.2
PAY_2 2e+04	-3.308e+04	567.242	-58.312	0.000	-3.42e+04	-3.
BILL_AMT5	0.7112	0.011	66.284	0.000	0.690	
0.732 PAY_AMT6 1.073	1.0026	0.036	28.094	0.000	0.933	
Omnibus:	4728.419	Durbin-Wa	tson:		1.946	
Prob(Omnibus):	0.000		ra (JB):	-	7787.897	
Skew:	1.066	, ,			0.00	
Kurtosis:	4.298	Cond. No.		4	4.90e+05	

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specifi
- [2] The condition number is large, 4.9e+05. This might indicate that there are strong multicollinearity or other numerical problems.

```
In [187... | print('R2 score:', olsmod.rsquared)
```

R2 score: 0.3081770020939534

model 1: without SEX: R2: 0.3078377586089446

model 2: + SEX: R2: 0.3081770020939534

not much change

```
C2T2 EDA - DongMei Li
          df.head()
In [188...
Out[188...
              credit SEX MARRIAGE AGE PAY_0 PAY_2 PAY_3 PAY_4 PAY_5 PAY_6 ... PAY_AMT3 PAY_AN
          0
              20000
                      0
                                  1
                                      24
                                              2
                                                     2
                                                           -1
                                                                  -1
                                                                         -2
                                                                               -2 ...
                                                                                              0
            120000
                                                     2
                                                                  0
                                                                         0
                                                                                2 ...
                                                                                           1000
          1
                      0
                                  2
                                      26
                                             -1
                                                           0
                                                                                                      1
              90000
                                  2
                                              0
                                                     0
                                                                  0
                                                                         0
                                                                                0
          2
                       0
                                      34
                                                           0
                                                                                           1000
                                                                                                      1
                                                                  0
                                                                         0
          3
              50000
                       0
                                  1
                                      37
                                              0
                                                     0
                                                           0
                                                                                0
                                                                                           1200
                                                                                                      1
                                                                  0
                                                     0
                                                                         0
                                                                                0
                                                                                          10000
                                                                                                      9
              50000
                                  1
                                      57
                                             -1
                                                           -1
                       1
         5 rows × 28 columns
         add two education dummies
          df_S = df[['credit', 'SEX','default', 'AGE', 'MARRIAGE', 'EDUCATION_graduate school', '
In [189...
                       'PAY_2', 'BILL_AMT5', 'PAY_AMT6']]
          df S.head()
In [190...
Out[190...
                                                  EDUCATION_graduate
                                                                                           EDUCATION_hi
              credit SEX default AGE MARRIAGE
                                                                      EDUCATION university
                                                               school
                                                                                                    sch
          0
              20000
                      0
                              1
                                   24
                                               1
                                                                   0
                                                                                        1
            120000
                                               2
                                                                   0
                      0
                                   26
                                               2
          2
              90000
                              0
                                                                   0
                       0
                                   34
                                   37
                                               1
          3
              50000
                       0
                              0
                                                                   0
                                                                                         1
              50000
                                   57
                                               1
                                                                   0
                                                                                        1
                       1
In [208...
          # Set independent and dependent variables
          X = df[['SEX', 'default', 'AGE', 'MARRIAGE', 'EDUCATION graduate school', 'EDUCATION uni
                       'PAY_2', 'BILL_AMT5', 'PAY AMT6']]
          y = df['credit']
          # Initialize model from sklearn and fit it into our data
          regr = linear model.LinearRegression()
          model = regr.fit(X, y)
          print('Intercept:', model.intercept )
          print('Coefficients:', model.coef_)
          Intercept: 100620.31169254212
          Coefficients: [-5.07633975e+03 -1.69636848e+04 1.64434563e+03 -1.99148083e+04
            4.61235888e+04 -7.56340268e+03 -3.34748934e+04 -3.27799398e+04
            7.03603198e-01 9.94020314e-01]
          X = df_S[['SEX','default', 'AGE', 'MARRIAGE', 'EDUCATION_graduate school', 'EDUCATION_u
In [209...
                       'PAY_2', 'BILL_AMT5', 'PAY_AMT6']]
```

X = sm.add constant(X) # adding a constant

```
olsmod = sm.OLS(df S['credit'], X).fit()
print(olsmod.summary())
```

```
OLS Regression Results
______
Dep. Variable:
                             R-squared:
                       credit
                                                       0.313
Model:
                             Adj. R-squared:
                         OLS
                                                       0.313
Method:
                  Least Squares F-statistic:
                                                       1366.
Date:
               Fri, 28 May 2021
                             Prob (F-statistic):
                                                        0.00
Time:
                      23:25:16
                              Log-Likelihood:
                                                  -3.9014e+05
No. Observations:
                        30000
                              AIC:
                                                    7.803e+05
Df Residuals:
                        29989
                              BIC:
                                                    7.804e+05
Df Model:
                          10
Covariance Type:
                     nonrobust
______
                        coef std err
                                                P>|t|
                                           t
                                                         [0.025
0.975]
.....
                    1.006e+05
                             6386.692
                                       15.755
                                                0.000
                                                       8.81e+04
const
                                                                1.1
3e+05
SEX
                   -5076.3398
                             1283.602
                                       -3.955
                                                0.000
                                                      -7592.255
                                                                -256
0.424
                             1558.319
default
                   -1.696e+04
                                      -10.886
                                                0.000
                                                        -2e+04
                                                                -1.3
9e+04
AGE
                    1644.3456
                              76.494
                                       21.496
                                                0.000
                                                       1494.413
                                                                179
4.278
MARRIAGE
                   -1.991e+04
                             1319.758
                                      -15.090
                                                0.000
                                                      -2.25e+04
                                                                -1.7
3e+04
EDUCATION graduate school 4.612e+04
                             5088.038
                                       9.065
                                                0.000
                                                       3.62e+04
                                                                5.6
EDUCATION university
                   -7563.4027
                             5066.132
                                       -1.493
                                                0.135
                                                      -1.75e+04
                                                                236
EDUCATION high school
                   -3.347e+04
                             5226.536
                                       -6.405
                                                0.000
                                                      -4.37e+04
                                                                -2.3
2e+04
PAY 2
                   -3.278e+04
                              566.011
                                      -57.914
                                                0.000
                                                      -3.39e+04
                                                                -3.1
7e+04
                      0.7036
                               0.011
                                       65.721
                                                0.000
                                                         0.683
BILL AMT5
0.725
PAY AMT6
                                       27.944
                                                0.000
                                                         0.924
                      0.9940
                               0.036
1.064
______
                     4730.222 Durbin-Watson:
Omnibus:
                                                       1.951
Prob(Omnibus):
                        0.000
                             Jarque-Bera (JB):
                                                     7819.340
Skew:
                        1.064
                              Prob(JB):
                                                        0.00
Kurtosis:
                        4.315
                              Cond. No.
                                                     1.20e+06
______
```

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specifi
- [2] The condition number is large, 1.2e+06. This might indicate that there are strong multicollinearity or other numerical problems.

In [210... | print('R2 score:', olsmod.rsquared) ## previous two models --R2-- 0.31

R2 score: 0.31296328625812797

model 1: without SEX: R2: 0.3078377586089446

model 2: + SEX: R2: 0.3081770020939534

model 3: + SEX, 'EDUCATION_university', 'EDUCATION_high school': R2: 0.31296328625812797

which features to keep for model building -- data for C2T3

use model 1. I think it a parsimonious model

	d-	i = pu•	read_d	csv('cre	ditEDA.	csv')								
n [214	d-	f.head()											
ut[214		credit	SEX	MARRIAG	SE AGE	PAY_0	PAY_2	PAY_3	PAY_4	PAY_5	PAY_6	1	PAY_AMT3	PAY_A
	0	20000	0		1 24	2	2	-1	-1	-2	-2		0	
	1	120000	0		2 26	-1	2	0	0	0	2		1000	1
	2	90000	0		2 34	0	0	0	0	0	0		1000	1
	3	50000	0		1 37	0	0	0	0	0	0		1200	1
	4	50000	1		1 57	-1	0	-1	0	0	0		10000	9
	5 rc	ows × 28	3 colur	nns										
	4													•
[217	d [.]	f_S = d	f[['cr	redit',	'defaul	t', 'AG	iΕ', 'Μ	ARRIAGE	E', 'EDU	JCATION	_gradu	ate s	school',	'PAY_2'
[218	d [.]	f_S.hea	d()											
ut[218		credit	defau	lt AGE	MARRIA	GE EDI	JCATION	l_gradua	te schoo	I PAY_2	BILL	_AMT5	PAY_AM	Т6
	0	20000		1 24		1			() 2	2	()	0
	1	120000		1 26		2			() 2	<u> </u>	3455	5 20	00
	2	90000		0 34		2			() ()	14948	3 50	00
	3	50000		0 37		1			(28959	9 10	00
	A			0 57		1			() ()	19146	5 6	79
	4	50000		0 57		1			(13140		
[219			csv('d	creditML	.csv',		: False)		,		13140		
	d-	f_S.to_				index =	: False)				13140		
1 [219 1 [220 1 [221	d-	f_S.to_	read_c	creditML		index =	: False)				13140		
[220	d-	f_S.to_d f = pd.d f.head(read_d	creditML	ditML.c	index =								
[220	d-	f_S.to_d f = pd.d f.head(read_d	creditML	ditML.c	index =				I PAY_2	2 BILL		5 PAY_AM	

	credit	default	AGE	MARRIAGE	EDUCATION_graduate school	PAY_2	BILL_AMT5	PAY_AMT6
2	90000	0	34	2	0	0	14948	5000
3	50000	0	37	1	0	0	28959	1000
4	50000	0	57	1	0	0	19146	679

```
In []:
## guides
### 1. course site

### 2. the Titanic EDA example: https://github.com/TarekDib03/titanic-EDA/blob/master/T

### 3. Multi-Linear Regression Using Python
### https://medium.com/swlh/multi-linear-regression-using-python-44bd0d10082d
### https://gist.github.com/rafiag

#### 4. Tutorial: Exploratory Data Analysis (EDA) with Categorical Variables |
#### https://github.com/hoffm386/eda-with-categorical-variables
### https://medium.com/analytics-vidhya/tutorial-exploratory-data-analysis-eda-with-ca
### 5. Pairplots in Python
#### https://github.com/WillKoehrsen/Data-Analysis/blob/master/pairplots/Pair%20Plots.i
### 6. https://seaborn.pydata.org/generated/seaborn.lineplot.html
```