COST TEATIMEData Analysis

Dr. Steven R. Talbot

Preclinical Data Science
Institute for Laboratory Animal Science
Hannover Medical School

- tradition
- a priori*
- authority
- science

* deductive reasoning

- Variable indicator "performance"
- Search for "best" parameters is futile
- Context is required

Weighted Average (Blending) Stacked Generalization (Stacking) Multinomial Naive Bayes Locally Estimated Scatterplot Smoothing (LOESS) Natural Language Processing (NLP) Linear Discriminant Analysis (LDA)
Least Absolute Shrinkage and Selection Operator (LASSO) Principal Component Regression (PCR) Optimization algorithms
Desp Bellef Network (BN)
Bayesian Network (BN)
Back-Propagation Expectation Maximisation (EM)
k-Nearest Neighbor (kNN) k-Medians Naive Bayes Convolutional Neural Network (CNN) Principal Component Analysis (PCA)
Recurrent Neural Networks (RNNs)
Stepwise Regression Linear Regression Computational Intelligence
Support Vector Machines (SVM) Flexible Discriminant Aralysis (FDA)
Random Forest K-Means
Random Forest Logistic Regression
Logally Weighted Learning (LWL)
Feature selection algorithms Perceptron Bayesian Belief Network (BBN) Computer Vision (CV) Multilayer Perceptrons (MLP) Algorithm accuracy evaluation Gaussian Naive Bayes Graphical Models Partial Least Squares Regression (PLSR) Multidimensional Scaling (MDS) Quadratic Discriminant Analysis (QDA) Bootstrapped Aggregation (Bagging)
Classification and Regression Tre
Deep Boltzmann Machine (DBM) Gradient Boosting Machines (GBM)

Gradient Boosted Regression Trees (GBRT)

Data Science Methods

Data Management

Applications

Challenges

- Do the Home Cages work?
- Do they provide 'relevant' data?
- Where do we get the data from?
- How do we get the data?
- How do we harmonize the data?
- How do we harmonize time stamps?
- How do we analyse the data?

• ...

Possible ideas

Behaviour / Welfare Assessment

Real-time / near real-time / retrospective analyses

Display in an application (mobile phone, Dashboard etc.)

- Measurements/data are required
- Sampling, controls, errors must be considered
- Validation (instruments, procedures, results, ...)
 - internal / external
 - o precision, accuracy, etc.

- Univariate / multivariate / multidimensional
- Cross-sectional / time-ordered data
 - cross-sectional: measured at ONE time period
 - time-ordered: measured over time (time series)

Options

Inferential statistics

- Tests: t-test, ANOVA, etc.
- Generalized & mixed models
- **.** . . .
- (Bayesian statistics)
 probabalistic!

Machine / Deep Learning

- Classification / Regression
- SVMs, L(Q)DA, LogReg, (...)
- Neural Networks
- ...

Clustering

- correlation matters
- classification (severity gradings)
- specific thresholds

Häger et al., PLOS ONE (2018)

Machine Learning

- ,severity vectors' matter
- multidimensionality
- predictions possible

Wassermann et al., Front Neurosci (2020)

Single Vector Data

(univariate data)

https://github.com/mytalbot/COST_Data_Analysis_2024

Open Field Protocol

Gould, T.D., Dao, D.T., Kovacsics, C.E. (2009). The Open Field Test. In: Gould, T. (eds) Mood and Anxiety Related Phenotypes in Mice. Neuromethods, vol 42. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-303-9 1.

- strains (B6, A/J)
- groups (control, Amphetamine)
- time

How do we analyse this?

Multidimensional Data

Severity Assessment

Heart rate (bpm)

Heart rate variability (ms)

Temperature (°C)

Activity (counts)

Animal status?

Sensor/Data Fusion

Data Fusion RELSA (Surgery Model) Day: -1 Day: -1 1.00 bwc 0.75 burON Mean RELSA 05.0 hr 0.25 hrv act 0.00 9 11 13 15 17 19 21 23 25 27 0.0 **RELSA** bwc **Relative Severity** hr **Comparisons & Mapping** hrv act Talbot et al., Front Vet Sci. (2022)

bwc body weight change (%)burON burrowing over night (g)hr heart rate (bpm)

hrv heart rate variability (ms)

act activity (counts)

Relative Severity
Assessment Score

Sensor/Data Fusion

Time complicates things...

Machine Learning

The concept of "learning"

Generalizability

Support Vector Machine

Support Vector Machine

Artificial Home Cage Data

Multidimensional Time Series Data for Control and Disease Groups

RELSA Results

Classes for SVM classification

- RELSA < 0.3 -> 'none'
- RELSA >= 0.3 & <= 0.8 -> 'medium'
- RELSA > 0.8 -> 'high
- Classification performance?
- Which measurements worked 'best'?
- Biomarker potential?

Combination	Accuracy
act	0.52
hr	0.88
temp	0.54
act, hr	0.89
act, temp	0.54
hr, temp	0.90
act, hr, temp	0.91

0.00

0.25

False Positive Rate (1 - Specificity)

Contrasted by Class

Which one is the best?

variables	AUC
act	0.672
temperature	0.687
act, temp	0.689
hr	0.930
act, hr	0.934
hr, temp	0.941
act, hr, temp	0.949

I_{time}= 1 hour

Best ROC Curve for Variables: activity, heart_rate, temperature

• high • medium • none

I_{time}= 6 hours

Best ROC Curve for Variables: heart_rate

- high - medium - none

Neuronal Networks

Hidden

What can we do with them?

Semantic segmentation

Classification & localization

Object detection

Instance segmentation

- Classification / regression
- Feature detection
- Anomaly detection
- Autoencoder
- ...

Neuronal Networks

Automated Mouse Grimace Scale

- Marcin Kopaczka, Lisa Ernst, Justus Schock, Arne Schneuing, Alexander Guth, René H. Tolba, Dorit Merhof Introducing CNN-Based Mouse Grim Scale Analysis for Fully Automated Image-Based Assessment of Distress in Laboratory Mice (Short Paper) In: Eurographics Workshop on Visual Computing for Biology and Medicine (VCBM).
- Lisa Ernst, Marcin Kopaczka, Mareike Schulz, Steven R. Talbot, Leonie Zieglowski, Marco Meyer, Stefan Bruch, Dorit Merhof and René H. Tolba- Improvement of the Mouse Grimace Scale set-up for Implementing of a Semi-automated Mouse Grimace Scale MGS Scoring (Part 1), Laboratory animals.
- Lisa Ernst, Marcin Kopaczka, Mareike Schulz, Steven R. Talbot, Birgitta Struve, Christine Häger, André Bleich, Mattea Durst, Paulin Jirkof, Margarete Arras, Roelof Maarten van Dijk, Nina Miljanovic, Heidrun Potschka, Dorit Merhof and René H. Tolba Semi-automated generation of pictures for the Mouse Grimace Scale: A multi-laboratory analysis (Part 2), Laboratory animals.

Acknowledgements

Institute for Laboratory
Animal Science

André Bleich (MHH) Christine Häger Miriam Heider Philipp Samuel Ohland Sara Lutscher

René Tolba (RWTH, Aachen)

Lisa Ernst Leonie Tix Mareike Schulz Anna Maria Kümmecke Stefan Bruch Andrea Wollgarten

Henriette (MHH)

Lars Lewejohann (bfR, Berlin) Pia Kahnau

Andreas v. Knethen (UHF, Frankfurt)

Boris Brill (KGU, Frankfurt)
Tilo Knape (ITMP, Frankfurt)
Martine Hofmann (ITMP, Frankfurt)

Paulin Jirkof (UZ, Zurich)

FOR2591

Thank you!

talbot.steven@mh-hannover.de

