Основы математической логики.

Практика. 1 курс.

Решения.

Глеб Минаев @ 102 (20.Б02-мкн)

1 марта 2021 г.

Содержание		Задача 8	2
		Задача 9	2
Задача 1		Задача 10	3
Задача 2		Задача 11	
Задача 3		Задача 12	
Задача 4		Задача 13	
Задача 5			
Задача 6		Задача 14	
Задача 7	2	Задача 15	3

Задача 1.

$$\begin{pmatrix} 3 & x \\ 2 & y \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 3+2x \\ 2+2y \end{pmatrix} = \begin{pmatrix} \lambda \\ 2\lambda \end{pmatrix} \qquad \begin{pmatrix} 3 & x \\ 2 & y \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 6+x \\ 4+y \end{pmatrix} = \begin{pmatrix} 2\mu \\ \mu \end{pmatrix}$$

Следовательно

$$\begin{cases} 2(3+2x) = 2+2y \\ 6+x = 2(4+y) \end{cases} \begin{cases} 4+4x-2y = 0 \\ -2+x-2y = 0 \end{cases} \begin{cases} 6+3x = 0 \\ -2+x-2y = 0 \end{cases} \begin{cases} x = -2 \\ y = -1+\frac{1}{2}x \end{cases} \begin{cases} x = -2 \\ y = -2 \end{cases}$$

В следовательно $\lambda = 3 + 2x = -1$, $\mu = 4 + y = 2$.

Задача 2. Заметим, что

$$\begin{pmatrix} 1 & 2 & 0 & 0 \\ -1 & -1 & 0 & 0 \\ 1 & 1 & 1 & -2 \\ 2 & 1 & 2 & -3 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} = \lambda \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} \implies \begin{pmatrix} 1 & 2 \\ -1 & -1 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \lambda \begin{pmatrix} a \\ b \end{pmatrix}$$

Несложно видеть, что собственные числа последней матрицы — $\pm i$, а собственные вектора — $\left(\frac{2}{\pm i-1}\right)$ соответственно.

Если первые две координаты не равны обе нулю, то можно считать, что рассматриваемое собственное число $\lambda = \pm i$, а a = 2, $b = \lambda - 1$. WLOG $\lambda = i$; второй вариант получается

сопряжением. Тогда получим, что

$$\begin{cases} 2+i-1+c-2d=ic \\ 4+i-1+2c-3d=id \end{cases}$$

$$\begin{cases} (1-i)c-2d=-1-i \\ 2c-(3+i)d=-3-i \end{cases}$$

$$\begin{cases} \left(\frac{(3+i)(1-i)}{2}-2\right)d=\frac{(3+i)(1-i)}{2}-1-i \\ 2c-(3+i)d=-3-i \end{cases}$$

$$\begin{cases} -id=1-2i \\ 2c-(3+i)d=-3-i \end{cases}$$

$$\begin{cases} d=2+i \\ 2c=-3-i+(3+i)d \end{cases}$$

$$\begin{cases} d=2+i \\ c=1+2i \end{cases}$$

Т.е. два собственных значения — $\pm i$, а вектора — $(4; -2 \pm 2i; 1 \pm 2i; 2 \pm i)$. Если же первые две координаты нулевые, то мы имеем, что

$$\begin{pmatrix} 1 & -2 \\ 2 & -3 \end{pmatrix} \begin{pmatrix} c \\ d \end{pmatrix} = \lambda \begin{pmatrix} c \\ d \end{pmatrix}$$

Несложно видеть, что собственное значение -1, а собственный вектор -(0;0;1;1).

Задача 3. ТОДО

Задача 4. TODO

Задача 5. ТОДО

Задача 6. TODO

Задача 7. ТОДО

Задача 8. ТОДО

Задача 9. TODO

Задача 10. ТОДО			
Задача 11. ТОДО			
Задача 12. ТОДО			
Задача 13. ТОДО			
Задача 14. ТОДО			
Задача 15. ТОДО			