

777 机组训练手册

本手册 EAR 资料的出口控制归类号 (ECCN)为: 9E991。

本技术的出口由美国出口管理法令 (EAR) (15 CFR 730-774)控制。如用于开发、生产或提供给国外用户,可能需要出口许可证。本资料主管人负责遵守所有的出口法律。

BOEING PROPRIETARY

Copyright © 1999-2010 波音公司。所有权利保留。

如果相关页包含版权方面的内容,波音保留对本手册每一页的版权。波音同样保留 对本手册编辑和/或收集工作的版权。

本手册包含波音和/或其他一个或多个第三方所有的专利信息。对本手册及相关内容的处理须遵守与波音所签合约。更多信息请联系波音公司,P.O. Box 3707, Seattle Washington 98124。

批准人:	(首次签字)	
	G. G. Botch	
	777 总飞行师	

下页续

文件号 FCT 777 (TM) October 31, 2001

Revision Number:9 修订日期: July 29, 2011

接上页

批准人:	(首次签字)
	D. T. Champlin
	总飞行师 - 飞行训练 -飞机
批准人:	(首次签字)
	R. R. Roberts
	总飞行师 - 飞行标准
批准人:	(首次签字)
	L. M. Orlady
	总飞行师 - 飞行技术与安全
批准人:	(首次签字)
	G. R. Meiser
	777 总飞行师
批准人:	(首次签字)
	J. M. Eitel
	FAA 运行监察主任

序言 第 0 章 目录 TOC 节

标题页

序言	0
机型识别	0.1
介绍	0.2
缩写词	0.3
修订记录	0.4
有效页面清单	0.5
综合信息	1
地面操作	2
起飞和起始爬升	3
爬升、巡航、下降和等待	4
进近和复飞	5
着陆	6
机动飞行	7
非正常操作	8
附录	A
运行信息	A.1
索引	索引

空白

序言 机型识别 第 0 章 第 1 节

概述

本机组训练手册包含下表所列机型

机型
777-200
777-200LR
777-300
777-300ER

机型号用于区分适用于一种或几种机型、但不是全部飞机的信息。如果 该信息适用于所有的机型,则不标明单独的机型号。

如果信息适用于连贯的机型系列,则在前后两个机型系列号之间用破折号(-)连接。例如,信息适用于 777-200 和 777-200LR 和 777-300 系列,但不适用于 777-300ER 系列,则用 777-200 - 777-300 表示。

如果信息适用的机型系列不连贯,则在机型系列号之间用逗号(,)连接。例如,信息仅适用于777-200和777-300ER系列,则用777-200,777-300ER表示。

目前还没有必要单独列出 777-200ER 或 777 货机。所有适合 777-200 的信息也适用于 777-200ER。所有适合 777-200LR 的信息也适用于 777 货机,有注释的除外。今后如果需要 777-200ER 或者 777 货机机型号,将做相应增加。

空白

序言 第 0 章 介绍 第 2 节

概述

机组训练手册提供了有关机动飞行与操作技巧方面的资料和建议。手册 分为八章:综合信息;地面操作;起飞和起始爬升; 爬升、巡航、下降 和等待;进近和复飞;着陆;机动飞行和非正常操作。

综合信息涵盖了与特定机动或飞行阶段无关的程序和技巧。地面操作涵盖了飞机飞行前准备、发动机起动和滑行操作以及恶劣天气条件下滑行的信息。第三章至第六章按飞行阶段命名,包括各个飞行阶段有关飞机操作的资料。机动飞行一章介绍相关爬升、巡航和下降的机动飞行,即:失速改出和紧急下降。非正常程序一章介绍飞行各阶段可能出现的非正常情况。每章都有前言介绍本章的细节。

本手册还包括两个附录。附录 A-第1节,提供运行信息,营运人按需使用。此处提供有关营运人特别信息的 FCTM 补充内容。附录 A-第2节,提供各个单位运行人员而不是单个飞行员的补充信息。这些信息供营运人参考,看是否适合其运行。将本手册发给飞行员之前营运人可以删掉此附录。

- **注**: 一旦发生冲突,FCOM、QRH、ECL、MMEL/MEL 或 DDG 中公布的程序和限制优先于本 FCTM 提供的信息、技巧和建议。
- **注**:本手册中所有数据仅在训练时使用:这些数据不能用于性能计算或 其它工程项目。
- 注: 各航空公司负责确定本手册在其运行中的适用性。

有关本手册内容或使用的任何问题请直接联系:

Boeing Commercial Airplanes

Commercial Aviation Services

Attn:总飞行师 - 飞行技术与安全

P. O. Box 3707, M/C 20-95

Seattle, Washington 98124-2207 USA

局方机构

本手册中的法规信息除另有说明,都是基于 FAA 规章和要求。对于非 FAA 营运人,其它局方机构可能有不同的规章和要求。有关规章和要求 的示例包括,但不限于,FAR 起飞跑道要求,飞机进近类别,以及低能见进近标准等等。

飞机构型

机组训练手册(FCTM)主要向机组使用手册(FCOM)的程序提供信息支持,并提供帮助飞行员安全有效地完成这些程序的飞行技巧。与 FCOM相比,机组训练手册较为综合。除非机型构型的差异对所讨论的程序或技巧有影响,否则机组训练手册不考虑飞机构型的差异。例如:机组训练手册介绍:襟翼收上且空速接近机动速度时,确认爬升推力调定。这句话不是告诉机组如何调定爬升推力,只是强调机组必须确认爬升推力已调定。要清楚不同机型要求机组调定爬升推力的措施也不同。有关如何调定爬升推力的资料需参阅相关 FCOM。

如果程序或技巧仅适用于飞机的某一特定构型,标注了(如安装)。飞 机构型差异见 FCOM。 序言 缩写词

第 0 章 第 3 节

概述

下列缩写词将贯穿于整个手册中。一些缩写词也可能以小写字体出现。 很少使用的缩写词在各使用章节有说明。

	A
	Alternating Current
ACT	Active
ADF	Automatic Direction Finder
ADI	Attitude Director Indicator
ADIRU	Air Data Inertial Reference Unit
AFDS	Autopilot Flight Director System
AFE	Above Field Elevation
AFM	Airplane Flight Manual (FAA approved)
AFM - DPI	Airplane Flight Manual - Digital Performance Information
AGL	Above Ground Level
AH	Alert Height
ALT ACQ	Altitude Acquire
ALT HOLD	Altitude Hold
AMM	Aircraft Maintenance Manual
ANP	Actual Navigation Performance
AOA	Angle of Attack

A/P	Autopilot	
APU	Auxiliary Power Unit	
AR	Authorization Required	
ASA	Autoland Status Annunciator	
ASI	Airspeed Indicator	
ASR	Airport Surveillance Radar	
A/T	Autothrottle	
ATC	Air Traffic Control	
ATM	Assumed Temperature Method	
	В	
BARO	Barometric	
B/CRS B/C	Back Course	
C		
С	Captain Celsius Center	
CAA	Civil Aviation Authority	
CDFA	Continuous Descent Final Approach	
CDU	Control Display Unit	
CFIT	Controlled Flight Into Terrain	

CFP	Computer Flight Plan		
CG	Center of Gravity		
CLB	Climb		
CMD	Command		
CON	Continuous		
CRM	Crew Resource Management		
CRT	Cathode Ray Tube		
CRZ	Cruise		
CWS	Control Wheel Steering		
	D		
DA	Decision Altitude		
DA(H)	Decision Altitude (Height)		
D/D	Direct Descent		
DDG	Dispatch Deviations Guide		
DES	Descent		
DIR	Direct		
DME	Distance Measuring Equipment		
E			
EADI	Electronic Attitude Director Indicator		
EASA	European Aviation Safety Agency		
ECL	Electronic Checklist		
ECON	Economy		
EEC	Electronic Engine Control		
EFB	Electronic Flight Bag		
EFIS	Electronic Flight Instrument System		

EGT	Exhaust Gas Temperature
EHSI	Electronic Horizontal Situation Indicator
EICAS	Engine Indication and Crew Alerting System
ENG OUT	Engine Out
EOT	Engine Out Taxi
EPR	Engine Pressure Ratio
ETOPS	Extended Operations
EXT	Extend
	F
F	Fahrenheit
FAC	Final Approach Course
FCOM	Flight Crew Operations Manual
F/D	Flight Director
FAA	Federal Aviation Administration
FAF	Final Approach Fix
FAR	Federal Aviation Regulation
FCC	Flight Control Computer
FLCH	Flight Level Change
FMA	Flight Mode Annunciations
FMC	Flight Management Computer
FMS	Flight Management System
F/O	First Officer
FOD	Foreign Object Damage 或
	Foreign Object Debris
FPA	Flight Path Angle

0.3.3

FPM	Feet Per Minute
FPV	Flight Path Vector
ft	Foot or Feet
	G
GA	Go-Around
GBAS	Ground-Based Augmentation System
GLS	GBAS Landing System
GNSS	Global Navigation Satellite System
GP	Glide Path
GPS	Global Positioning System
GPWS	Ground Proximity Warning System
G/S	Glide Slope
GS	Ground Speed
	Н
HAA	Height Above Airport
НАТ	Height Above Touchdown
HDG SEL	Heading Select
HSI	Horizontal Situation Indicator
HUD	Head Up Display
I	
IAF	Initial Approach Fix
IAN	Integrated Approach Navigation
IAS	Indicated Airspeed
ICAO	International Civil Aviation Organization
IFR	Instrument Flight Rules

IGS	Instrument Guidance System
ILS	Instrument Landing System
IM	Inner Marker
IMC	Instrument Meteorological Conditions
IP	Instructor Pilot
IRS	Inertial Reference System
IRU	Inertial Reference Unit
ISA	International Standard Atmosphere
ISFD	Integrated Standby Flight Display
	J
JAA	Joint Aviation Authority
	K
K	Knots
KCAS	Knots Calibrated Airspeed
KGS	Kilograms
KIAS	Knots Indicated Airspeed
	L
LBS	Pounds
LDA	Localizer-type Directional Aid
LNAV	Lateral Navigation
LOC	Localizer
LRC	Long Range Cruise
LVL CHG	Level Change
М	
M	Mach

m	Meters	
MAP	Missed Approach Point	
MASI	Mach/Airspeed Indicator	
MAX	Maximum	
MCP	Mode Control Panel	
MCT	Maximum Continuous Thrust	
MDA(H)	Minimum Descent Altitude (Height)	
MEA	Minimum Enroute Altitude	
MEL	Minimum Equipment List	
MFD	Multifunction Display	
MM	Middle Marker	
MMO	Maximum Mach Operating Speed	
MOCA	Minimum Obstruction Clearance Altitude	
MOD	Modify	
MORA	Minimum Off Route Altitude	
MSL	Mean Sea Level	
N		
NAV	Navigation	
NAV RAD	Navigation Radio	
ND	Navigation Display	
NM	Nautical Mile(s)	
NNC	Non-Normal Checklist	
NNM	Non-Normal Maneuver	
NPS	Navigation Performance Scales	
N1	Low Pressure Rotor Speed	
N2	High Pressure Rotor Speed	

N2	High Pressure Rotor Speed	
	0	
OAT	Outside Air Temperature	
OM	Outer Marker	
OPT	Onboard Performance Tool	
	P	
PAPI	Precision Approach Path Indicator	
PAR	Precision Approach Radar	
PF:	Pilot Flying	
PFD	Primary Flight Display	
PI	Performance Inflight	
PIP	Product Improvement Package	
PLI	Pitch Limit Indicator	
PMC	Power Management Control	
PM	Pilot Monitoring	
PWS	Predictive Windshear System	
	Q	
	Quick Reference Handbook	
R		
RA	Radio Altitude Resolution Advisory	
RAIM	Receiver Autonomous Integrity Monitoring	
RAT	Ram Air Turbine	
RDMI	Radio Distance Magnetic Indicator	

RMI	Radio Magnetic Indicator
RNAV	Area Navigation
RNP	Required Navigation Performance
RSEP	Rudder System Enhancement Program
RTO	Rejected Takeoff
RVR	Runway Visual Range
RVSM	Reduced Vertical Separation Minimum
	S
SAAAR	Special Aircraft and Aircrew Authorization Required
SAT	Static Air Temperature
SDF	Simplified Directional Facility
SFP	Short Field Performance
SPD	Speed
STAR	Standard Terminal Arrival Route
	T
T	实际
TA	Traffic Advisory or Tailored Arrival
TAC	Thrust Asymmetry Compensation
TACAN	Tactical Air Navigation
TAS	True Airspeed
TAT	Total Air Temperature
TCAS	Traffic Alert and Collision Avoidance System
TE	Trailing Edge
TFC	Traffic
ТО	Takeoff

	<u> </u>
T/D	Top of Descent
TO/GA	Takeoff/Go-Around
TPR	Turbofan Power Ratio
TR	Traffic Resolution
TRK	Track
	U
U.S.	United States
	V
VASI	Visual Approach Slope Indicator
VDP	Visual Descent Point
VEF	Speed at Engine Failure
VFR	Visual Flight Rules
VHF	Very High Frequency
VLOF	Lift Off Speed
VMC	Visual Meteorological Conditions
VMCA	Minimum Control Speed Air
VMCG	Minimum Control Speed Ground
VMO	Maximum Operating Speed
VNAV	Vertical Navigation
VOR	VHF Omnidirectional Range
VR	Rotation Speed
VREF	Reference Speed
V/S	Vertical Speed
VSD	Vertical Situation Display
VSI	Vertical Speed Indicator
VTK	Vertical Track

V1	Takeoff Decision Speed	
V2	Takeoff Safety Speed	
W		
WGS-84	World Geodetic system of 1984	
WPT	Waypoint	
X		
XTK	Cross Track	

序言 修订记录 第 0 章 第 4 节

修订发送函

送: 所有 777 机组训练手册持有人, 波音文件号 FCT 777 (TM)。

标题: 机组训练手册修订

这次修订反映了标题修改日期以前 45 天波音公司可用的最新资料。下列 修改要点阐述了此次修订的变更内容。以下资料概述里说明了怎样使用 修改线来识别新的或修改过的信息。

修订记录

No.	修改日期	存档日 期
初版	October 31, 2001	
2	October 31, 2003	
4	October 31, 2005	
6	October 31, 2007	
8	June 30, 2010	

No.	修改日期	存档日 期
1	October 31, 2002	
3	October 31, 2004	
5	October 31, 2006	
7	October 31, 2008	
9	July 29, 2011	

概述

波音公司发布机组训练手册修订,提供关于机动飞行和飞行技巧的新的 或修改的推荐内容,或支持 FCOM 程序改动的资料。正式修改也可能汇 编了先前发布的飞行技术通告中的适用信息。

正式修改包括新的修订记录,修订要点和有效页清单。用新的修订记录和有效页清单核实机组训练手册的内容。

如果该页有技术性修订,在文字或插图修改的地方用修订线标注。编辑性的修改(如纠正拼写错误)可能有修订线,但无相应的修改要点。

波音根据每个用户所签的合同中确定的数量提供修改后的 FCTM。

本手册额外的份数可以通过波音数据和服务管理(DSM)系统获取。本 手册也提供 FRAME© 格式,便于航空公司修订。如果需要有关 FRAME©格式的信息,请联系波音。

存档说明

本次修订是 FCTM 完整的再版,并在有效页清单(0.5)上说明。取出所 有旧页,用新页替换。所有隔页保留。本次修改不提供隔页。

修订要点

本节(0.4)取代你手册中现有的0.4节。

本手册根据数据库资料印刷,所有文字和图表都标注了构型信息。有时 候,由于数据库标记重新编排,或者由于增加新的数据库内容部分项目 标注了构型信息,所以有些页面标注了修改线但是内容看起来没有变化。 另外由于文件流程的轻微变动,部分页面只是重新印刷,不标注修改线。

第0章 一序言

第2节 -介绍

飞机构型

0.2.2 - 在整本手册中, 当说明速度时, 例如襟翼 5 机动速度, 或者当 说明能力时,例如全或者最小机动能力,"maneuvering"改成 "maneuver"。这样可以与第 1 章的"Maneuver Speeds and Margins "节 术语一致。

第3节 —缩写词

0.3.5 -删除了缩写"SAAAR",这是根据 AC 90-101A 题为"Approval Guidance for RNP Procedures with AR"的文件。FAA 目前采用 ICAO 术语"AR",不再使用术语"SAAAR"。

第1章 —综合信息

机组资源管理(CRM)

1.3 -明确监控也是保持情景意识的一个重要部分。

0.4.3

显示面板管理

1.3 -增加新的一节,解释波音不给机组推荐应该监控哪些显示,除 非某个程序特别规定。机组或者运营人应该确定设置显示的最好方 式,以获得所需的信息。

最小机动速度

1.6 – 将"基于"改成"通过......计算",这样更准确地解释了襟翼机动速度是如何确定的。

抖杆机动裕度

1.7-修改"影响机动裕度的条件"标题,加入"到抖杆"更明确。

参考速度的调定

1.14 -增加小全重时 VREF 保持恒定的原因。

喊话

1.15 –增加对"推荐喊话"的说明,解释"推荐喊话"和"程序喊话"之间的差异。

推荐的喊话

- 1.16 将术语"标准喊话"改成"推荐的喊话", 更准确地反映喊话性质。
- 1.17-18 -增加在 1,000 英尺 AFE 的推荐喊话。在这个高度飞机应该满足 IMC 稳定进近标准,部份飞机在这个高度有自动喊话。

飞行轨迹矢量

1.22 - 删除空速不可靠时使用 FPV 的内容。

低温高度修正

1.22 - 修改 ISA 定义。

冰晶结冰

1.23 –增加新的一节"冰晶结冰"。在这个主题的波音飞行技术通告基础上,本章节帮助机组更好地理解冰晶结冰。

FMC 航路核实技巧

1.26 –增加信息,解释为什么机组可能看见导航图和 FMC 上的磁航 向和航迹存在细小差异。

RNP 基本概念

- 1.30 —删除了缩写"SAAAR",这是根据 AC 90-101A 题为"Approval Guidance for RNP Procedures with AR"的文件。FAA 目前采用 ICAO 术语"AR",不再使用术语"SAAAR"。
- 1.32 修改句子,删除"VIP"内容,加以明确。VIP 是专门用于 FMC 导航数据库用来确定下滑轨迹切入点的简写。

第2章 -地面操作

滑行速度和刹车

2.5 –增加注释,强调长时间滑行如果持续或者非常轻地点刹车来控制速度,可能损坏飞机。

急转弯到狭窄滑行道

2.9-增加新的一节,提供机组转急弯到狭窄滑行道的技巧。

第3章 -起飞和起始爬升

起飞剖面

3.2 — 一台发动机失效后增加在 VNAV 页面"选择并执行 ENG OUT", 确保可以使用 VNAV 返航落地。

开始起飞滑跑

- 3.5 修改有关 80 节前设置 N1 或 EPR 的讨论,指示刚过 80 节时可以稍微"增加"推力而不是"调整"推力。因为 80 节之后没有理由减小推力到目标 N1 或 EPR。其它非技术方面的改动是为了更明确。
- 3.5 -增加了目标 EPR 的内容。
- 3.5 删除有关使用前轮转弯手轮正常起飞的讨论。正确使用前轮转 弯手轮在本节前面的滑跑起飞和静止起飞中有介绍。有关推荐的最 大滑行速度的信息见第2章的滑行速度和刹车节。

抬头和离地 - 双发

- 3.7 修改段落与起飞顺序一致。
- 3.8-增加小全重起飞方面的考虑。

起飞侧风指标

3.13 - 修改起飞侧风指标表的标题以统一。TO Aft 极限适用于所有重 量。

减推力和减功率起飞推力

3.15 -删除文字"存在或者",意思更明确。FCOM 的 SP.16 节风切变 避让补充程序规定如果确认存在风切变,应推迟起飞。

减推力起飞推力(ATM)

3.16-修改有效性, 表明注释仅对 777-200LR 系列适用。如序言所述, 此信息同样适用于777货机。

联邦航空条例(FAR)起飞跑道长度

319-修改段落, 明确 AFM 加速停止距离是如何确定的, 并强调正 常操作时建议使用反推和自动刹车。

俯仰方式

3.28 - 增加注释, 在不使用 VNAV 起飞的情况下, 如何在加速高度 之前设置爬升推力。

襟翼收上 - 一台发动机不工作

3.35 -增加在"或高于"襟翼收上机动速度,因为不可能始终刚好在襟 翼收上机动速度采取措施。

第4章 - 爬升、巡航、下降和等待

最大高度

- 4.6-修改最大批准高度的定义,包括 FAA 标准下确定高度的两种常 见方法。注意一些局方可能有其它的标准。
- 4.6-修改或机动裕度限制高度的定义,更准确地定义最小可用裕度, 并简化文字。删除特定的 CAA/JAA 要求:这些超出本手册的目的。

最佳高度

4.7-8- 修改最佳高度,明确是在静空条件计算的。

推荐高度

4.8 -增加新章节,解释 FMC 中显示推荐高度的好处。

FMC 不提供等待速度

- 4.25 调整等待速度表的位置。
- 4.25 "足够的抖振裕度"改成"至少 0.3 g 裕度到起始抖振"。"足够的抖振裕度"说法没有定义,以至少 0.3 g 裕度到起始抖更准确说明了实际条件。
- 4.25 "足够的抖振裕度"改成"至少 0.3 g 裕度到起始抖振"。"足够的抖振裕度"说法没有定义,所以 0.3 g 裕度到起始抖更准确说明了实际条件。
- 4.25 "足够的抖振裕度"改成"0.3 g 裕度到起始抖振"。"足够的抖振裕度"说法没有定义, 所以 0.3 g 裕度到起始抖更准确说明了实际条件。

第5章 - 进近和复飞

稳定讲近要求

5.5 –修改对何时应该开始复飞的说明。之前的注释中包括了 IMC 和 VMC 高度。

襟翼放下

5.7-修改对襟翼放出计划的说明,明确其随飞机重量变化。

进近

5.14 - "风修正"改成"风增量",让文字一致。

AFDS 故障

5.21 -增加"警戒级"以明确提到的警报类型。

非正常操作

5.25 – 如果需要复飞,777-200LR 和777-300ER 需要保持的额外空速从15 节改为20 节。

非 ILS 仪表进近

5.26 –增加对 RNAV 目视进近的介绍,因为这是比较独特的非-ILS 进近。

0.4.7

仪表进近-RNAV (RNP) /AR

- 5.47 –删除了缩写"SAAAR", 这是根据 AC 90-101A 题为"Approval Guidance for RNP Procedures with AR"的文件。FAA 目前采用 ICAO 术语"AR", 不再使用术语"SAAAR"。
- 5.48 修改注释,释解了根据 AC 90-101A,什么时候能够以及什么时候不能够完成"直飞"或者"切入航道至"的修改。
- 5.50 距离轨迹的垂直偏差限制改为75英尺。
- 5.50-解释为什么至少一个飞行员的地图显示要求放在 10 NM 范围。

第6章 - 着陆

拉平和接地

- 6.8 修改拉平高度从大约 20 英尺改为大约 20-30 英尺。运营人输入和试飞数据表明之前发布的大约 20 英尺低于大多数飞行员所使用的数值。此变化不表示推荐修改当前使用的拉平高度,仅反映大部分飞行员的实际操作情况。
- 68-明确信息。
- 6.9 –从俯仰和横滚限制条件一节调整过来的内容。这些内容更适合本节。
- 6.9 重新编排章节或者重新表述,内容更明晰。

空速控制

6.9 – 修改段落,明确没有必要等到拉平开始后才抵消稳定的顶风增量。取决于多少空速需要消耗,接近拉平时或者在拉平开始以后都可以开始减速。其目的是接地前消耗稳定的顶风增量。

着陆拉平剖面

- 6.10 -增加注释,强调小全重时对进近和着陆影响。
- 6.10 -增加小全重进近方面的考虑。
- 6.10-删除多余的段落。

俯仰和横滚限制条件

6.20-将延长拉平有关内容移到本章的"正常接地姿态"节。

- 6.20 -说明数据是基于硬式机翼,使用时必须考虑到相关因素。
- 6.20 –有关把飞机飞到理想的接地点的讨论和注释放到本章前面的"着陆拉平剖面"节。
- 6.20 –修改条件介绍,说明数据是当支柱静态压缩的时候进行测量的。

着陆滑跑

6.26 –指出接地后带住机头会导致机头下沉率更大,并会减小刹车效应。

轮刹

- 6.33 –删除告诉机组不要点脚蹬的内容。相关内容在 NNC 中已经说明,其理由在后面一段介绍。
- 6.33 –解释了为什么波音建议防滞系统不工作时着陆过程中不要点 刹车。

第7章 -机动

自动驾驶的进入和改平

7.7-8 –增加了快速下降过程中如果速度短暂超过 VMO/MMO 的机组指南。删除了有关改平的重复信息,并将最后三段揉成一段,更明晰。

接近失速或失速

7.9 – 修改本节内容,与新修改的接近失速或失速改出机动匹配。参考最近的飞行技术通告"接近失速或失速改出机动"。

接近失速或失速改出

- 7.9 –修改本节,强调无论是接近失速改出还是完全失速改出都是通过减小迎角到失速角以下,以成功有效地改出。之前的完全失速改出一节合并到"接近失速或失速"新章节。
- 7.11 -增加新章节"高高度改出",解释在较高高度接近失速改出和进近阶段接近失速改出的差别。

地形避让 - RNAV (RNP) AR 操作

7.13 - 修改标题更好定义低 RNP 的操作。

第8章 -非正常操作

高发动机振动

8.7 - 修改标题更准确反映章节内容。

8.9-更正语法错误。

空速不可靠

8.15-删除介绍机身姿态随全重和高度稍微变化的句子。爬升姿态随 全重和高度的变化可能不止是"稍微", 详见 ORH 的 PI 章节空速不可 靠飞行表。

燃油渗漏

8.18 -修改介绍燃油渗漏 NNC 的目的和目标的信息概述。修改对修 订的燃油渗漏 NNC 的描述,将发动机燃油渗漏和油箱渗漏都包括进 来。

着陆危险因素

8.26-增加了参阅本手册"稳定进近建议"内容,给读者就该主题提供 更多信息。

A 章 - 附录

喊话

A.2.1 -增加建议,运营人应该根据其机队构型以及特定的运行需求 开发自己的"推荐喊话"。

在非 WGS-84 基准数据的空域使用 GPS

A.2.2 - 修改有关鼓励运营人删除所有公布的非-WGS-84 程序而不是 将其改为 WGS-84 标准的建议。对于目前不是 WGS-84 兼容的公布 程序, 航空公司需要开发 Airline Tailored 专门数据, 并且负责每28 天进行检查,确保公布的进近没有变化。

仪表进近-RNAV (RNP) /AR

A.2.7 –删除了缩写"SAAAR",这是根据 AC 90-101A 题为"Approval Guidance for RNP Procedures with AR"的文件。FAA 目前采用 ICAO 术语"AR",不再使用术语"SAAAR"。

序言 有效页面清单

第 0 章 第 5 节

0.5.1

Page	Date	
FCTM		
* Title Page	July 29, 2011	
* Approvals	July 29, 2011	
* 0.TOC.TOC.1-2	July 29, 2011	
* 0.1.1-2	July 29, 2011	
* 0.2.1-2	July 29, 2011	
* 0.3.1-6	July 29, 2011	
Revision Record (tab)		
* 0.4.1-10	July 29, 2011	
有效页面清单		
* 0.5.1-2	July 29, 2011	
General Information (tab)		
* 1.TOC.1-4	July 29, 2011	
* 1.1-42	July 29, 2011	
Ground Operations (tab)		
* 2.TOC.1-2	July 29, 2011	
* 2.1-18	July 29, 2011	
Takeoff, Initial Climb (tab)		
* 3.TOC.1-2	July 29, 2011	
* 3.1-36	July 29, 2011	
爬升、巡航、	下降和等待	
* 4.TOC.1-2	July 29, 2011	
* 4.1-26	July 29, 2011	
Approach, Misse	d Approach (tab)	
* 5.TOC.1-4	July 29, 2011	
* 5.1-66	July 29, 2011	

Page	Date	
Landing (tab)		
* 6.TOC.1-2	July 29, 2011	
* 6.1-44	July 29, 2011	
Maneuvers (tab)		
* 7.TOC.1-2	July 29, 2011	
* 7.1-20	July 29, 2011	
Non-Normal Operations (tab)		
* 8.TOC.1-4	July 29, 2011	
* 8.1-34	July 29, 2011	
Appendices (tab)		
* A.1.1-2	July 29, 2011	
* A.2.1-10	July 29, 2011	
Index	(tab)	
* Index.1-10	July 29, 2011	

June 30, 2010

^{*=}修订,增加,或删除

空白

*=修订,增加,或删除

综合信息	第1章
目录	TOC 节
序言	1.1
运行原则	1.1
需要维护检查的事件	1.1
训练目的	1.2
资格要求(飞行检查)	1.2
考评	1.2
机组资源管理(CRM)	1.2
耳机和驾驶舱扬声器的使用	1.3
显示面板管理	1.3
简图显示	1.3
机动速度和裕度	1.4
襟翼机动速度	1.4
最小机动速度	1.5
抖杆机动裕度	1.7
指令速度	1.11
起飞	1.11
爬升、巡航和下降	1.11
进近	1.11
着陆	1.11
非正常情况	1.12
参考速度	1.13
参考速度的调定	1.13
推力管理	1.14
调定推力	1.14
最大推力	
*** *** * * * * * * * * * * * * * * *	

喊话	1.15
推荐的喊话	1.16
标准术语	1.19
电子飞行包 (EFB)	1.20
机场移动地图	1.20
航站区域图	1.21
飞机性能	1.21
视频监视	1.21
电子记录本及其它文件	1.21
飞行轨迹矢量	1.21
低温高度修正	1.22
结冰条件下飞行	1.23
冰晶结冰	1.23
训练飞行	1.23
推荐的方向舵配平技巧	1.24
配平技巧产生的阻力因素	1.24
方向舵主要配平技巧	1.24
备用方向舵配平技巧	1.25
飞行管理计算机/CDU	1.26
FMC 航路核实技巧	1.26
FMC 性能预测 —非正常形态	1.27
RNAV 操作	1.27
RNP 和 ANP 定义	1.28
RNP 基本概念	1.29
在非 WGS-84 基准数据的空域使用 GPS	1.33
气象雷达和地形显示政策	1.33

AFDS 指南	1.33
自动油门的使用	
人工飞行	1.34
自动飞行	1.34
使用 VNAV 调定 MCP 高度技巧	1.35
AFDS 方式控制面板(MCP)故障	1.37
飞行员失能	1.38
确认飞行员失能后的机组措施	1.39
穿越颠簸气流	1.39
电子飞行操纵系统	1.39
操纵特征	1.41

空白

综合信息 第1章

序言

本章介绍波音在训练中使用的操作政策。介绍机组配合、襟翼/速度计划、推力管理、穿越颠簸气流和机组资源管理的推荐程序。这些为标准化操作提供了基础。超出机组控制的情况可能会使随后的机动飞行不准确。这些机动操作不能替代良好的判断和逻辑。

运行原则

制定的正常程序供受过训练的飞行机组人员使用。程序按指定的面板巡视顺序排列。每个机组成员都指定了驾驶舱工作区,根据正常和辅助程序采取措施。非正常程序和机组成员责任区之外的工作在机长的指令下开始实施。

非正常检查单用来处理或解决在地面或空中的非正常情况。

补充程序按需执行,而不是每个飞行阶段都做。QRH中不包括补充程序。 飞行前要检查状态信息以评估飞机放行能力。发动机起动后没有必要再 检查状态页面,因为任何对继续安全飞行有不利影响且需要机组注意的 信息都会作为 EICAS 警报信息出现。发动机关车后要检查状态信息,以 确定在下次飞行前是否需要进行维护。

需要维护检查的事件

附录 A.2.1

地面操作或飞行中,可能出现需要航后维护检查的事件。许多营运人都 制定了相关程序或政策,帮助机组判断哪些事件需要记录。

如果营运人没有相关程序或政策,使用以下指南帮助判断哪些事件需要 维护检查:

- 重着陆
- 严重颠簸
- 超速 -襟翼/缝翼, MMO/VMO, 起落架, 起落架轮胎
- 大能量停机 (参阅 AMM)

- 雷击
- 强沙尘天气
- 机尾触地
- 超重着陆
- 机组感觉可能需要维护检查的任何事件。例如:可能造成结构损坏的 TCAS 事件中过份的上仰、或地形避让机动。

注:最好的措施是,有怀疑就报告。

训练目的

飞行训练大纲为学员的机型资格和/或 FAA 等级飞行技术检查(或同等级的检查)做准备。重点强调飞行安全、旅客舒适和运行效率。

资格要求 (飞行检查)

圆满完成改装训练后,在飞行教员的推荐下,每个飞行员必须展示他已 具备了 FAA 或其它适用的管理规章要求的操纵飞机和实施程序的能力。 在规定的飞行机动整个过程中必须展示指挥能力和良好的判断力,充分 保证飞行安全。确定学员的判断力时,检查员应考虑学员执行程序,根 据情况分析所采取措施,以及认真、慎重选择措施等方面表现出的能力。

考评

模拟机训练结束后可进行考评。考评的内容根据所用摸拟机的不同和局方的要求而异。

如果未按 FAA 规定要求或其它适当的管理规章完成训练,则可能需要在 飞机上进行考评。

机组资源管理(CRM)

机组资源管理是运用团队管理的概念以及有效使用所有可用资源来安全 飞行。除空勤人员外,机组资源管理还包括通常与空勤人员一起工作, 参与飞行相关决定的所有其它团队。这些团队包括但不仅限于签派员、 乘务员、维护人员和空管人员。

有助于建立良好驾驶舱 CRM 习惯的技巧贯穿在整个手册中介绍。例如,重点强调了情景意识和交流。情景意识,或准确发现驾驶舱内和机外所发生的一切的能力,需要持续的监控、询问、交叉检查、沟通以及敏锐的观察。

所有机组人员应识别任何不安全或超出正常范围的情况并相互交流,这一点非常重要。经验证明,保证安全飞行并解决这类问题最有效的方法,是在确定最安全有效措施的过程中将所有机组人员的技术和经验结合起来。

耳机和驾驶舱扬声器的使用

从起飞至爬升顶点,以及从开始下降到进近及着陆过程中须使用耳机或吊杆话筒/耳机。巡航期间可使用驾驶舱扬声器。扬声器音量应尽量保持在最小,以免干扰驾驶舱内机组间的正常交流,但要确保能够接收到相应的通讯。

显示面板管理

除非是某个程序特别规定,波音一般不推荐在地面或空中飞行过程中机组应该监控哪些显示。在任何飞行阶段,都鼓励机组选择他们认为能够最有效地获得所需信息的显示。

简图显示

简图显示可以帮助机组快速了解飞机系统状态。但是,机组不应该仅依赖该显示来判断飞机状态。简图显示仅仅在需要时用来获得所需信息,用后即关掉。因为该显示简洁明晰,机组能够很快从中获得必要信息。 注: 在完成机组程序过程中不要求参考简图显示或维护信息。

如果机组在执行程序时结合使用简图显示,必须确保不会分散注意力。 这在执行非正常检查单时尤其要注意。在某些情况下,系统故障可能导 致简图信息消失。因此,有关非正常情况的判断应根据 EICAS 信息以及 其它的驾驶舱影响和指示。一旦非正常程序要求记忆项目,应该在选择 简图显示之前完成。执行必要的程序优先于使用简图显示。

机动速度和裕度

本节解释襟翼机动速度和最小机动速度之间的区别。同时还介绍了在收/ 放襟翼的情况下,随空速变化的抖杆机动裕度或坡度能力。

襟翼机动速度

下表包含了各种襟翼调定下的襟翼机动速度。襟翼机动速度是在起飞或着陆过程中推荐的操作速度。这些速度保证了在机场标高数千英尺高度范围内具有全机动能力或抖杆前至少40度的坡度(25度坡度和15度裕度)。虽然襟翼可以在20,000英尺以内的高度放出,但对于固定速度,随着高度的增加抖杆机动裕度减小。

襟翼位置	所有重量
襟翼收上	VREF 30 + 80
襟翼 1	VREF 30 + 60
襟翼 5	VREF 30 + 40
襟翼 15	VREF 30 + 20
襟翼 20	VREF 30 + 20
襟翼 25	VREF 25
襟翼 30	VREF 30

最小机动速度

在空速指示上,下部琥珀色速度带的顶端指示最小机动速度。下部琥珀色速度带的用法稍微区别于襟翼放下对襟翼收上的操作,但是,两种情况下都提醒机组,当空速在琥珀色速度带范围内时,机动能力小于全机动。

注: 正常情况下,目标速度始终等于或大于最小机动速度(琥珀色速度带顶部)。在非正常情况下,目标速度可能低于最小机动速度。

襟翼放下琥珀色速度带

对于所有襟翼放下操作(任何襟翼未完全收上时),最小机动速度是能够提供全机动能力、1.3G或40度坡度(25度坡度和15度裕度)到抖杆的最小速度。琥珀色速度带顶部不随载荷而变化。

当空速减小到低于琥珀色速度带顶部时,机动能力减小。载荷为 1G 的飞行时,在琥珀色速度带中间的速度提供了足够的机动能力或 30 度坡度(15 度坡度和 15 度裕度)。琥珀色速度带底部(红色和黑色速度带顶部)对应当前 G 载荷开始抖杆的速度。如果在机动过程中 G 载荷增加,开始抖杆速度也会增加。

注: 在实际失速之前抖杆会启动。有足够的裕度在不失速的情况下从抖 杆中恢复。

下图代表空速相对琥珀色速度带的显示。

不要将最小机动速度(显示为琥珀色速度带的顶端)与襟翼机动速度混淆。襟翼机动速度是基于飞机重量,而最小机动速度是通过飞机迎角和 当前空速计算的。这两个速度提供了独立的方法以保证当前空速至少提 供在航站区机动飞行的全机动能力。

注:在正常情况下,当前襟翼卡位的襟翼机动速度应始终等于或大于最小机动速度。在一些非正常情况下,当前襟翼位置的襟翼机动速度可能小于最小机动速度。

襟翼收上琥珀色速度带

当高度在大约 10,000 英尺以内,襟翼收上琥珀色速度带的功能与上面描述的襟翼放下琥珀色速度带一样,并且琥珀色速度带顶端代表全机动能力。由于 10,000 到 20,000 英尺之间马赫效应增加,琥珀色速度带顶部的机动能力随高度增加而减小,但是仍然能提供至少足够的机动能力。大约 20,000 英尺以上,琥珀色速度带顶部显示的速度提供到低速抖振 1.3g 的机动能力(或者机务预调的其它批准的机动能力)。

抖杆机动裕度

下图介绍了随空速变化而变化的飞机机动裕度或者到抖杆的坡度能力。 包括了襟翼放下和襟翼收上情况。

当参照以下机动裕度图时,注意:

- 水平恒速飞行中, 坡度角和载荷因素(G)之间有直接关系。例如: 1.1G 对应 25 度坡度, 1.3G 对应 40 度; 2.0G 对应 60 度
- 图示的机动裕度假设恒速水平飞行
- 抖杆器在实际失速速度之前启动
- 收/放襟翼速度是指根据襟翼收放计划、襟翼移到下一个襟翼位置的速度。
- · 襟翼收放计划提供了接近最小阻力的速度,在爬升中接近最大爬升角速度。平飞时,它提供相对恒定的俯仰姿态,并且在不同的襟翼调定几乎不需要改变推力。
- 粗线表示襟翼形态在计划的襟翼收/放速度改变
- 粗线上的黑点表示:
 - 当前襟翼调定的机动速度
 - 下一个襟翼调定的襟翼收/放速度
- 机动裕度根据基本的抖杆计划而定,不考虑使用防冰的修正。

代表收放襟翼计划的粗线之间的范围以及一个给定的坡度角表示水平恒速飞行时、在这个给定的坡度角的抖杆机动裕度。以低于指定的坡度角来进行收放襟翼计划时,在达到该坡度前可能会发生抖杆。

影响抖杆机动裕度的条件

对于固定重量和高度,到抖杆机动裕度随空速增加而增加。其它可能会 也可能不会影响机动裕度的因素:

- 全重: 一般来说全重增加时机动裕度减小。基本速度(V2 或 VREF) 随着重量增加。相对于重量的增加,速度的增幅较小
- 高度: 对于固定空速, 机动裕度通常随高度增加而减小
- 温度: 温度改变对机动裕度的影响可以忽略

- 起落架: 当起落架放下时, 机动裕度可能会发生很小的改变。减小量 可能等于或小于2节
- 减速板: 当减速板放出时, 在任何襟翼设置机动裕度都会减小
- 收襟翼过程中发动机失效: 由于失去推力并且减小升力, 机动裕度会 稍有减小。减小量可能等于或小于4节
- 防冰: 使用发动机或机翼防冰会减小襟翼收上和襟翼放出时的机动裕 度。飞机着陆前该影响持续。

777-200LR, 777-300ER

注: 在大马赫数时(大全重及高高度)襟翼收上时的 TAI 影响为零 或者可以忽略不计。

抖杆机动裕度 —襟翼收上

起飞襟翼 速度带"显示" 收襟翼速度 选择襟翼 Vref 30 + 205 "20" 或"15" "5" 20 或 15 Vref 30 + 40 1 "1" Vref 30 + 60UP "5" 5 Vref 30 + 401 "1" Vref 30 + 60UP

抖杆机动裕度 —放襟翼

当前襟翼位置	速度带"显示"	放襟翼速度	选择襟翼	所选襟翼指令速度
UP	"UP"	Vref 30 + 80	1	"1"
1	"1"	Vref 30 + 60	5	"5"
5	"5"	Vref 30 + 40	20	"20"
20	"20"	Vref 30 + 20	25 或 30	(Vref 25 或 Vref 30) + 风增量

指令速度

飞行员可以通过 MCP 或者 FMC 来设置指令速度,并在空速指示上通过空速游标显示。

起飞

飞行员调定加速,或垂直导航(VNAV)、高度层改变(FLCH)、或者高度保持接通之前,指令速度保持设置在 V2。当使用 FLCH 或当高度保持接通时,增加指令速度到所需空速,开始收襟翼加速。

爬升、巡航和下降

VNAV 工作过程中,由 FMC 调定指令速度,或用 MCP 人工调定。

讲近

用 MCP 人工将指令速度调到所选襟翼位置的机动速度。

着陆

使用自动油门时,将指令速度调到 VREF+5 节。自动油门接通时,有足够的风和阵风保护,因为自动油门的设计是在空速掉到指令速度以下时会快速调整推力,当空速超过指令速度时,会缓慢减小推力。在颠簸天气,平均推力将比需要的推力大以保持指令速度。结果是平均速度超过指令速度。

如果在阵风或大风条件下计划自动油门接通人工落地,考虑将指令速度 放到 VREF + 10 节。这可以防止在拉平过程中突然掉空速。

如果自动油门断开,或者计划在着陆前断开,进近速度修正的推荐方法是:在基准速度上,加上 1/2 报告的稳定的顶风分量,再加上高于稳定风的全阵风增量。最小指令速度设置为 VREF+5 节。1/2 的报告稳定顶风分量估算方法为:正顶风为 50%,45 度侧风为 35%,正侧风为零,它们之间的风可用插入法来计算。

进行风修正时,最大进近速度不应超过 VREF+20 节。下表提供了 360 度跑道航向时风增量的示例。

报告的风	风增量	进近速度
360度 16节	8	VREF+8 节
静风	0	VREF+5 节
360/20 阵风 30	10 + 10	VREF+20 节
060/24	6	VREF+6 节
090/15	0	VREF+5 节
090/15 阵风 25	0 + 10	VREF+10 节

注: 顺风不使用风增量。指令速度调定在 VREF+5 节(自动油门接通或 脱开)。

非正常情况

1.12

某些情况下,非正常检查单指示机组使用包括了速度增量的 VREF 速度,例如 VREF 30 + 20。如果非正常检查单对 VREF 进行了修正,修正后的值就成为着陆 VREF。这个 VREF 不包括风增量。例如:非正常检查单规定"使用襟翼 20 和 VREF 30 + 20 着陆",机组应选择襟翼 20 作为着陆襟翼,并在 FMC 或 QRH 中查 VREF 30 速度,并对该速度加 20 节。使用自动油门时,将指令速度调到 VREF+5 节。自动油门接通时提供足够的风和阵风保护,不需进一步的风增量。

当自动油门脱开或计划在着陆前前脱开时,适当的风增量必须加到 VREF 中才达到指令速度,即用来进近的速度。例如:如检查单指示"使用 VREF 30+20 节",应将指令速度调到 VREF (VREF 30+20)+风增量 (最小 5 节,最大 20 节)。

参考速度

下图显示起飞和进近时在空速指示上的基准速度位置。

参考速度的调定

起飞

向 FMC 输入了无油重量、V1、V2 和 VR 后,空速游标自动显示 V1、VR、V2 和下一个正常收襟翼位置的最小收襟翼速度。用 MCP 将指令速度设为 V2。V2 是最小起飞安全速度,能为所有起飞襟翼提供至少 30 度的坡度能力(15 度+15 度裕度)。

777-300

注: 在襟翼 15 起飞过程中,在小全重时可能看不到"15" (襟翼机动速度符号)。这是因为 V2 速度非常接近"15"符号,并且在襟翼手柄离开15 卡位之前,显示"V2"符号优先于 "15"符号。

进近 —着陆

向 FMC 输入着陆襟翼/速度后显示 VREF。当前襟翼位置和下一襟翼位置的机动速度自动在空速指示上显示。

VREF 通常随着飞机全重的减小而减小。然而,对于 777-200ER、777 货机和 777-200LR, VREF 在小全重时达到极限或最低值。此最低值基于方向控制能力限制。重量减小不会改变 VREF,它将保持恒定。

推力管理

调定推力

FCTM 和 FCOM 手册不同地方均使用了术语"调定推力"或"核实推力调定"。N1 或 EPR (如安装)指示确定适当的推力调定。但是,当调定推力或者核实适当的推力调定时,机组的注意力不应仅限于调定到准确的指示,而忽略交叉检查其它发动机指示与 N1 或 EPR (如安装)指示一致以及保持情景意识。

最大推力

FCTM 和 FCOM 手册的不同地方均使用了术语"最大推力"。要获得最大推力:

- 发动机 EEC 在正常方式工作的飞机,推力手柄前推到底。
- 发动机 EEC 在备用方式工作的飞机,只需将推力手柄前推到全额定起飞或复飞极限。只有在即将发生触地危险时才考虑将推力手柄前推到底。
- 注: 这个最大推力的定义适用于所有情况,但在做固定减功率起飞时除外。固定的减功率值被视为起飞极限。有关固定减功率起飞时推力极限的进一步解释见第3章的减推力起飞节。

喊话

附录 A.2.1

两名机组成员应清楚飞机的高度、位置和状况。

在飞行的关键阶段,特别是滑行、起飞、进近和着陆期间避免不必要的 谈话。不必要的交谈会降低机组工作效率及警觉性,因此在 10,000 英尺 MSL/FL100 之下建议不要进行。在高高度机场,按需向上调整此高度。 提供推荐的喊话是为了良好的机组资源管理。运营人可以修改这些喊话。 推荐的喊话与 FCOM 程序章节中的程序喊话有区别。程序喊话是必须 的。部分程序喊话也在本节的推荐喊话中列出。

监控飞机的飞行员(PM)应根据仪表指示或观察在适当的情况进行喊话。操纵飞机的飞行员(PF)应在仪表上核实情况/位置并做出回应。如果 PM 未做所需的喊话, PF 应做出喊话。

PM 要报告指令空速或飞行轨迹的明显偏差。任一飞行员都应报告飞行 仪表的任何不正常指示(故障旗、偏离指针丢失等)。

机组资源管理的一个基本原则是每个机组成员必须能够协助另一成员,或作为另一成员的后备。正确执行推荐的喊话是良好驾驶舱管理的重要因素。这些喊话为机组成员提供有关飞机系统以及另一机组参与方面的所需信息。在相应的时间没有喊话说明飞机系统或指示可能出现故障,或表示另一飞行员可能失能。

进近期间 PF 应回应所有 GPWS 的语音喊话,500 英尺 AFE 以下的高度 喊话除外。在最低下降高度时的推荐喊话"继续"或"复飞",不应视为高度报告,每次都应该执行。如果机组没有听到自动电子语音喊话,PM 应报出喊话。

注:如果没有自动喊话,PM可以在无线电高度 100 英尺、50 英尺和 30 英尺(其它高度按需)报告,协助建立接地点的目视高度。

推荐的喊话

	状况/位置	喊话 (PM,有注释的除外)
	接近过渡高度	"TRANSITION ALTITUDE, SET STANDARD"
爬升和 下降	接近过渡高度层	"TRANSITION LEVEL, ALTIMETERS RESET" (in. 或 mb)
	高于/低于指定高度/高度层 1000 英 尺(IFR)	"1000 英尺改平"
下降	10,000 英尺 MSL/FL 100(按需减速)(IFR 和 VFR)	"10,000 / FL100"

推荐的减话 -ILS 或 GLS 进近

状况/位置	喊话
	(PM,有注释的除外)
航道指针首次向内侧移动	"航道杆移动"
下滑道指针首次移动	"下滑道移动"
五边向台定位点	"OUTER MARKER/FIX,FEET"
1,000 英尺 AFE	"1,000 英尺"
500 英尺 AFE(如适用,检查自动着陆状态信号牌)	"500 FEET" (F/D 进近)自动着陆状态"LAND2"或"LAND3"或" NO AUTOLAND"
DA (H) 以上 100 英尺 (失效性能下降的飞机)	"接近最低下降高度"
看到单个的顺序频闪灯	"频闪灯"
在 AH (失效后保持操作的飞机) - 检查自动落地状态信号牌	"警报高度"
在 DA(H)看见单个的进近排灯	"MINIMUMS - APPROACH LIGHTS / RED BARS" (如安装)
在 DA(H) - 建立了合适的目视参考,即 PM 报告目视提示	PF: "继续"
在 DA(H) - 未建立合适的目视参考,即 PM 未报告任何目视提示或仅报告频闪灯	PF: "复飞"
在最低下降高度喊话 - 如果 PF 无回应	"I HAVE CONTROL"(说明 意图)
低于 DA(H) - 建立了合适的目视参考	"跑道入口/跑道接地区"
低于 DA (H) - 建立了合适的目视参考	PF: "落地"
低于 DA(H) - 未建立合适的目视参考,即 PM 未报告任何目视提示	PF: "复飞"

推荐的喊话 - 非 ILS 或非 GLS 进近

状况/位置	喊话	
	(PM,有注释的除外)	
VOR 或 LOC 航道偏离指示首次向内侧移动	"航道/航向道移动"	
五边向台定位点	"VOR/NDB/定位点"	
1,000 英尺 AFE	"1,000 英尺"	
500 英尺 AFE	"500 英尺"	
DA (H) 或 MDA (H) 以上 100 英尺	"接近最低下降高度"	
看到单个的顺序频闪灯	"频闪灯"	
在 DA(H)或 MDA(H)看到单个的进近排灯	"MINIMUMS - APPROACH LIGHTS / RED BARS" (如安装)	
在 DA(H)或 MDA(H) - 建立了合适的 目视参考,即,PM 报告看到目视提示	PF: "继续"	
在 DA(H)或 MDA(H) - 未建立合适的目视参考,即,PM 未报告任何目视提示或仅报告频闪灯	PF: "复飞"	
在最低下降高度喊话 - 如果 PF 无回应	"I HAVE CONTROL"(说明 意图)	
低于 DA(H)或 MDA(H) - 建立了合适的目视参考	"跑道入口/跑道接地区"	
低于 DA(H)或 MDA(H) - 建立了合适的目视参考	PF: "落地"	
低于 DA(H)或 MDA(H) - 未建立合适的目视参考,即,PM未报告任何目视参考	PF: "复飞"	

标准术语

以下为部分标准词组和短语:

推力:

- "调定起飞推力"
- "调定复飞推力"
- "调定最大连续推力"
- "调定爬升推力"
- "调定巡航推力"

襟翼设置:

- "襟翼收上"
- "襟翼 1"
- "襟翼 5"
- "襟翼 15"
- "襟翼 20"
- "襟翼 25"
- "襟翼 30"

空速:

- "80 节"
- "V1"
- "抬头"
- "调定 节"
- "调定 VREF 加(修正量)"
- "调定襟翼 速度"

电子飞行包(EFB)

此节提供电子飞行包(EFB)的使用指南。EFB 可以包括以下全部或部分选项。

注: 使用任何 EFB 设备过程中,机组的注意力应避免集中在显示上而分散对机组主要职责的精力。

机场移动地图

机场的地图显示可以在计划滑行路线时以及滑行过程中增强机组的位置意识。该系统不能代替正常的滑行方法,包括直接观察滑行道、跑道、机场信号及标志、以及其它机场活动。滑行前,应当查阅 NOTAMS 和机场图(使用 EFB 航站图或纸张图),获取最新的机场状况,这包括关闭的滑行道、跑道、建筑物等等,因为在机场地图上没有标出这些临时情况。

机组必须目视观察驾驶舱外部,将其作为主要的滑行引导参考。使用上方为航向(Heading-Up)或上方为北(North-Up)的机场地图,通过下列措施提高机组的位置意识:

- 核实滑行许可并协助确定滑行计划(两名飞行员)
- 监视滑行进程及方向(两名飞行员)
- 根据现在位置、前方的转弯和停止的要求来提醒并更新飞行员的滑行 (未滑行的飞行员)。

空中,可以使用上方为北(固定)的固定机场地图帮助制定脱离跑道计划,并预定到停机门或停机坪的滑行路线。

遣派放行时,若有一个机场地图显示不工作,该侧的机组成员可以保留可用的纸版机场图。在这种情况下滑行时,一名飞行员继续使用机场地图显示掌握飞机位置,而另外一名飞行员按照纸版地图监控滑行进程。放行之后,如果一个机场地图显示失效,而又没有备份的纸版地图可用时,机组应考虑让没有滑行的飞行员向滑行的飞行员提供渐进的滑行引导和位置更新,或向地面管制请求渐进的滑行指令。任何情况下,滑行的飞行员都应主要根据对机外的目视观察来滑行飞机。若两侧的机场地图显示均不工作,使用正常的滑行程序。

注: 使用上方为航向的地图时必须有 GPS 位置。

航站区域图

航站区域电子图可以用来代替纸版航图。EFB可能会提供航路图。如果 飞机放行时有一个或两个显示不工作,机组应执行 MEL 中关于使用备 用图表的规定。

飞机性能

完成所有相关的输入后,飞机性能包便提供类似于 AFM-DPI 数据或航空公司机场分析的特定的跑道性能信息。进近准备阶段,该系统可以提供着陆距离的咨询信息。

视频监视

机组可自行使用视频监视显示,监控要求进入驾驶舱的个人或用于公司规定的其它目的,如观察客舱或货舱。

电子记录本及其它文件

电子记录本及其它的电子文件应按照营运人规定和程序使用。

飞行轨迹矢量

飞行轨迹矢量(FPV)显示相对于地平线的飞行轨迹角(FPA),以及相对于姿态显示上俯仰刻度中心的偏流角。这些指示使用惯性和气压高度输入。主高度显示不可靠的情况下,FPV显示的垂直飞行轨迹角也被视为不可靠。飞行员有以下几种方法来使用 FPV:

- 当不使用 F/D 或 F/D 不可用时,做为建立和保持平飞的基准。机动飞行时,调整俯仰使 FPV 对准地平线。这样会出现零垂直速度。
- 建立爬升、下降时,或在最后进近目视阶段,可交叉检查垂直飞行轨 游角。
 - 注:如果选择 AFDS FPA 方式,FPV 自动显示,帮助建立和监控所 选择的 FPA。
 - 注: 五边进近时,FPV 不指示飞机相对于跑道的下滑道。必须使用 ILS 下滑道、VASI/PAPI 或其它的方式做为正确的下滑道指示。

- 爬升或下降过程中,可以根据显示的 FPA 将雷达天线倾斜角调至适当的角度。雷达天线的倾角像 FPV 一样是以地平线为基准的。例如: 爬升时,如果将雷达天线倾斜角相对地平线的角度调到跟 FPV 一样,会使雷达波束集中在现飞的飞行轨迹上。
- 如果地图显示不可用,可做为飞机水平偏流的辅助指示。FPV 移动至 俯仰刻度的左侧或右侧,指示地迹相对于当前航向的位置。该显示不 能确定偏流量。例如: FPV 向左移位表示风分量来自右侧,飞机相应 地向左侧偏流。
- 飞目视起落航线时作为交叉基准。在三边航段上,机组应该把 FPV 放到水平线上,以保持平飞
- 在五边提供轨迹指示,能够快速指示下击暴流。此外,FPV 相对飞机 符号的位置也可以提供风向的指示。

注: 在参照 PLI (俯仰姿态基准显示) 时,不应使用 FPV。

低温高度修正

附录 A.2.1

如果外界气温(OAT)不同于国际标准大气(ISA)温度,非标准的大气密度会导致气压高度表误差。与标准的温度相差越大,高度表的误差就越大。当温度比 ISA 高时,真实高度比指示高度要高。当温度比 ISA 低时,真实高度比指示高度低。极低的温度会导致很大的高度表误差,并很可能减小越障高度。在高度表高度源之上,这些误差随飞机高度的增加而增加。

当高度表误差较明显时,特别是在机场附近存在高高度地形和/或障碍物同时温度很低时(-30 摄氏度/-22 华氏度或更低),考虑执行 FCOM 提供的低温高度修正补充程序。另外,在需要考虑越障的地方,还应考虑修正航路最低高度和/或高度层。在某些情况下,温度在 0至-30 摄氏度之间应该考虑修正。

机组应该注意到:一旦遇到很低的温度,当公布的最低高度远远高于机场高度时,高度表误差可能会超过1000英尺;如果不进行高度修正会导致潜在的不安全越障高度。

结冰条件下飞行

波音飞机符合有关结冰条件下飞行的所有适航规定。要求营运人遵守结冰条件下飞行的全部操作程序。

虽然喷气运输机在结冰条件下飞行的取证的过程中有许多保守的做法, 但这些做法不是想证明在严重结冰状况下可无限制地操作飞机。最安全 的措施是避免长时间地在中度至严重结冰状况下飞行。

冰晶结冰

在高高度的冰晶一般不会视为喷气式运输机的威胁,因为不会导致机身结冰。然而,存在的一种情况是当固体冰粒融化时可能冷却发动机内表面,从而出现积冰。当结冰脱落时,可能导致发动机推力损失或损坏。症状包括喘振、熄火或者高振动。

典型的情况是,当飞机高于对流天气区域飞行,在该飞行高度很少或没有气象雷达回波被观察到,在高高度或云中出现发动机推力损失。其它情况是,观察到飞行高度的雷达回波且飞行员避开这些区域。尽管飞行员避开了反映的天气,但发动机推力损失已经出现。由于难以识别,避开冰晶也是一个挑战。

波音已经为更好地了解冰晶结冰展开了研究。有关这一主题的相关信息,详见波音飞行技术通告 —冰晶结冰。该通告提供了在冰晶结冰区域飞行真实事件的相关信息,包括所经历的发动机推力损失和损坏。通告还提供识别冰晶结冰条件的方法以及怀疑冰晶结冰时的建议措施。目前正在考虑有关冰晶结冰的补充程序。

训练飞行

结冰条件下多次进近和/或连续起飞着陆可能会导致积冰远超过正常航班。由于未加温表面的积冰脱落会进入发动机,可能对发动机叶片造成损坏。

推荐的方向舵配平技巧

本节介绍两种适当配平方向舵的技巧。假设飞机正确调整并在正常巡航之中。主配平技巧只使用方向舵配平使驾驶盘处于水平状态,这种方法是可接受的,也是配平飞机最有效的方法。它接近于最小阻力的情况。正常情况和许多非正常情况都可以使用此技巧。对于像 TAC 不工作同时发动机失效的一些非正常情况,这种技巧是最好的方法,它可以提供接近最小的阻力。

出现由于横滚不平衡而造成的横滚时,备用配平技巧可以提供更精确的 配平。此外,如果主配平技巧造成了不可接受的坡度或过大的方向舵配 平,这种技巧概括了需采取的步骤。备用配平技巧参考坡度指针,使用 方向舵和副翼配平来消除横滚。

注: 出现较大的配平需求说明可能需要维护措施,应在飞行记录本上记录。

配平技巧产生的阻力因素

如果驾驶盘偏转至扰流板升起的位置,会明显增大空气阻力。另外,任何导致扰流板提前升起的调整偏差会造成每个配平单位阻力明显增大。 这些情况会增加燃油消耗。如果无扰流板偏转,较小的不配平状况对燃油流量的影响小于 1%。

注: 明显的燃油不平衡、飞机损坏或飞行操纵系统故障可能需要副翼配平。

方向舵主要配平技巧

推荐在使用方向舵主配平技巧过程中(仅使用方向舵配平)自动驾驶仪 保持接通。完成这一技巧后,如果自动驾驶仪断开,飞机应保持恒定航 向。

下列步骤是方向舵主配平技巧:

- 调定对称推力
- 如需要, 平衡燃油

- 核实自动驾驶接通在 HDG SEL 或 HDG HOLD 位,且稳定至少 30 秒 钟。
- 向驾驶盘低的一侧配平方向舵直至驾驶盘指示水平。应当使用驾驶盘 上端的指示确认驾驶盘水平。驾驶盘水平时飞机正确配平(指数为 零)。随着速度、全重、或高度的改变,配平需求也可能改变。配平 正确的情况下,可能会略有一些前侧滑(坡度指针指示略有坡度), 侧滑仪略有一点偏转,这是可以接受的。

备用方向舵配平技巧

如果主配平技巧产生不可接受的坡度、过量的方向舵配平、或如果需要更精确的双轴配平,使用备用方向舵配平技巧。

下列步骤是备用方向舵配平技巧:

- 调定对称推力
- 如需要, 平衡燃油
- 核实方向舵配平为零
- 核实自动驾驶接通在 HDG SEL 或 HDG HOLD 位,且稳定至少 30 秒 钟。
- 向驾驶盘较低的一侧配平方向舵直到坡度指示水平(坡度指针无坡度 角指示)。逐步增加方向舵配平,每次配平输入之后让坡度稳定。大 的配平输入不易协同。坡度指示上的坡度指示零时,飞机正确配平。 如果正确调整飞机,驾驶盘应接近水平。驾驶盘实际位置表示自动驾 驶接收的实际的副翼(横滚)配平的位置。

完成备用方向舵配平技巧之后,若断开自动驾驶仪飞机可能会出现横滚趋势。用坡度指针作参考,保持机翼水平。使用副翼配平电门,配平掉所有的驾驶盘上的力。如果配平正确,飞机会保持恒定的航向,并且驾驶盘/杆上的副翼配平读数与自动驾驶仪接通时见到的一致。副翼配平需要额外的时间,所以应在最后进近之前完成。

飞行管理计算机/CDU

飞行管理系统向机组提供导航和性能信息,这大大地降低了机组的工作负荷。按要求操作系统,包括正确的飞行前准备和飞行中及时修改才能完全减轻工作量。空中做任何修改后,必须经常监控 FMC 指引。如果在工作量较大、或空中交通活动密集区域更改飞行计划,机组应毫不犹豫返回到 LNAV/VNAV 以外的其它方式。

飞行前准备过程中,所有飞行计划或与 FMC CDU 有关的性能,必须由一个飞行员输入,由另一飞行员进行核实。空中由 PM 完成 FMC CDU的更改,并在得到 PF 证实后才能执行。

FMC 航路核实技巧

FMC 输入航路后,机组应核实输入的航路是否正确。有几种技巧可以进行核实。机组应比较:

- 将申请的飞行计划与在航路页面上输入的航路和航路点比较
- 将计算机飞行计划总距离和预计剩余燃油与进程页面上的 FMC 计算的至目的地距离和在目的地的剩余燃油比较。

长航线和跨洋航线,机组应用航段页面上的每个航段与计算机飞行计划 进行交叉检查,确定航路点、磁航迹或真航迹以及航路点间的距离一致。 如果上述提到的情况出现不一致,修正航段页面使其与申请的飞行计划 航段相符。在计划方式交叉检查地图显示也可协助核实飞行计划。

如果飞行员根据导航数据库评估航图的程序,应主要考虑以下内容: 航路点顺序,速度和高度限制,以及没有意外的不连续。注意导航图上的磁航向或航迹和 FMC 中的航向和航迹之间可能存在差异。主要原因是 FMC 有一个磁差的查询表,但航图制作时会使用当地的磁差。较小的差异也可能是由于设备制造商使用不同的磁差。这些差异是可以接受的。

FMC 性能预测 —非正常形态

FMC 性能预测是基于飞机处于正常形态。这些预测包括:

- 爬升及下降轨迹预测,包括爬升顶点及下降顶点
- ECON、LRC、等待及单发速度
- 高度能力
- 梯级爬升点
- 在航路点、目的地或备降场的剩余燃油
- 在航路点、目的地或备降场的预计到达时间
- 可用等待时间。

如果在非正常形态下飞行,例如起落架放下、襟翼放出、扰流板升起、起落架舱门打开等,这些性能预测不准确。FMC 的爬升及下降轨迹预测不可用。

不要使用 FMC 燃油预测。巡航燃油预测是基于光洁的形态。在其它形态下,燃油消耗可能会明显高于预测。

注:对于非正常形态,进近可以使用 VNAV PTH 操作。

如果在 VNAV 巡航页面输入当前速度或马赫数,可以得到精确的预计到 达时间。机组可以根据当前燃油流量指示计算在航路点或目的地的预计 剩余燃油,但要经常更新。有关起落架放下高度能力以及起落架放下巡 航性能的相关性能信息可以查阅 ORH 的 PI 章节。

只要保持 FMC 等待速度,可用等待时间在光洁和襟翼 1 形态都是准确的。

RNAV 操作

此部分提供了与 RNAV 相关的术语定义,并介绍了一些基本概念,包括 径向线到定位点(RF) 航段、航站(SID 和 STAR)、航路上和进近操作 的飞行阶段导航。

RNAV 或区域导航是一种导航方法,让飞机在基准的 NAVAIDS 覆盖范围内、或在独立系统能力限制范围内、或这些能力综合范围内飞任一需要的飞行轨迹。

所有波音飞机的 FMC 能够执行 RNAV 操作。至于导航精度,这些 FMC 的差别仅在于演示的 RNP 能力,以及使用 GPS 更新的能力。

航路上的操作可分为跨洋和境内。跨洋 RNAV 要求在相关的 MNPS 指南中有详细的介绍,例如太平洋或北大西洋手册。特殊航路或区域的操作根据航路间隔要求提供 RNP。对于所有能够进行 GPS 更新的 FMC,或者不能进行 GPS 更新但是在之前 6 小时内接收到最后一次无线电更新的 FMC,RNP10 航路适用。

总之,跨洋操作需要双部导航系统(双部 FMC,或者单部 FMC 加上备用导航能力)。

RNP 和 ANP 定义

RNP(要求导航性能)是为航路、航站或进近程序特定的导航性能。它为在规定空域内操作提供导航性能精度,飞机至少95%时间内都在这个空域内。以海里显示。所有RNP程序都有相关RNP值,这个值在程序图中公布。

跨洋 RNP 一般是 4.0 或更高。境内航路 RNAV 操作取决于无线电更新 (DME-DME) 源是否支持境内 RNP。只要 DME-DME 或 GPS 更新生效,波音 FMC 完全支持下列境内 RNP 操作。

- 美国及加拿大 —RNP2.0 或更高, RNAV-1 和 RNAV-2
- 欧洲 B-RNAV (RNP5.0)
- 亚洲 —按航路或区域规定(如: RNP4或 RNP10 航路)
- 非洲 —按航路或区域规定

1.28

DME-DME 或 GPS 更新生效时, 航站 RNP 操作(SID、STAR 及过渡)与所有的 FMC 兼容, 规定如下:

- 美国及加拿大 —RNP1.0 SID 及 STARS
- 欧洲 P-RNAV (RNP1.0)。

只要 DME-DME 或 GPS 更新从进近一开始生效,并且进近 RNP 等于或大于 AFM 中的最小演示 RNP, RNAV 进近与所有 FMC 兼容。如 GPS 更新不生效,在某些 RNAV 进近上公布的限制可能禁止其使用。进近 RNP 可以低到 0.10 NM。

对于进近,如果 DME-DME 更新生效但没有 GPS 更新,所有波音 FMC 都有 RNP0.5 的能力。关于 RNAV 进近的技巧,详见本手册进近章节。ANP(实际导航性能)是 FMC 计算的以海里为单位的飞机位置可靠性。它

是一种情景信息,为机组提供了飞机实际位置所在区域半径的系统预测。该系统使用最佳可用的传感器以减少位置误差。机组或自动飞行系统必须使用 LNAV 保持 RNAV 轨迹。在 95%的情况下,飞机在显示 ANP 的范围内。

RNP 基本概念

附录 A.2.2

RNP 是带有机载导航性能监控和警报的 RNAV 操作。RNP 是为保证 RNAV 系统导航能力而开发的,可以使用多个传感器进行位置更新。RNP 值范围内的导航性能保证了空中交通和地形间隔。RNAV (RNP) 程序必须按公布的导航数据库飞行。不允许飞行员定义航路或进行水平或垂直航路修改。

RNAV (RNP) AR (要求授权)程序指需要特殊的飞机和机组授权的 RNP 进近。相关内容详见第 5 章, 仪表进近-RNAV (RNP)AR

FMC 把下列之一作为显示的 RNP:

- 默认的 RNP —如果导航数据库中没有 RNP,也没有人工输入一个值, FMC 设定并显示 FMC 默认值
- 根据与程序有关的值显示导航数据库 RNP 值(如可用)。这些值可能专门针对某一航段或航站程序
- 人工输入的 RNP 改变或删除前一直保留。

如果某一航路或程序所显示的 RNP 不准确,可能需要人工输入 RNP。如果设置的 RNP 小于该程序、空域或航路所规定的值,可能产生干扰性的机组警报。如果设置的 RNP 大于某一程序或航段规定的值,不正确的 RNP 可能产生机组警报(如果超过规定的 RNP)。 RNP 在公布的将飞程序上规定。

尽管当今的空域设计已经建立了一定的水平极限(RNP),但是还没有公布垂直要求的导航性能极限。部分 FMC 提供了垂直要求的导航性能,并可用于某些下降剖面,例如持续下降进近(CDA),优化剖面下降 (OPD)或者专用进场(TA)。

如 FCOM 的介绍, FMC 计算、监控并显示 ANP。机组应该注意到, ANP 只与 FMC 位置精度有关。

飞机安装了导航性能刻度(NPS)

如果飞机安装了导航性能刻度(NPS),机组可以动态监控 ANP、RNP、和当前飞行轨迹偏差之间的关系。水平和垂直偏差刻度基于中心线指示、刻度极限、以及偏差指针等类似理念,给机组提供了有关当前位置相对目标位置、以及总的允许误差等清晰指示。NPS 的全刻度水平和垂直偏差等于 FMC RNP 值。如果偏差接近极限,需要修正回轨迹。具体的 NPS 系统指示和介绍参阅 FCOM。

除进近以外的 RNP 操作过程中,任何时候只要偏离超过极限或者出现琥珀色的偏离警报,机组可能需要选择另一种自动驾驶横滚或俯仰方式、或人工将飞机飞回航道。如果无法完成,机组必须返回其它的导航方式,例如传统的地标或者雷达导航。

RNP 进近过程中,任何时候只要偏离超过极限或出现琥珀色偏离警报,机组可以换成非 RNP 程序。如无法完成,机组应该执行复飞,除非已经建立了适合的目视基准。一旦复飞,机组可以考虑申请备降许可。

飞机没有安装导航性能刻度(NPS)

如果飞机没有 NPS,进近过程中机组必须参考 FMC 进程页面上的 XTK 和 VTK 信息。

如果出现偏差,并且不是立即修回航道,那么 PM 应该参考 FMC 进程页面并且通知 PF 是否到达了允许的最大偏差。RNP 操作期间正常 XTK 应该不超过 1.0 x RNP。

注: 过大的侧向航迹误差不会产生机组警报。

除进近以外的 RNP 操作过程中,任何时候只要偏离超过极限,机组可能需要选择另一种自动驾驶横滚或俯仰方式、或人工将飞机飞回航道。如果无法完成,机组必须返回其它的导航方式,例如传统的地标或者雷达导航。

RNP 进近过程中,任何时候只要偏离超过极限,机组可以换成非 RNP 程序。如无法完成,机组应该执行复飞,除非已经建立了适合的目视基准。一旦复飞,机组可以考虑申请备降许可。

ANP 警报

如 ANP 超过 RNP,显示 EICAS 警报。如果是在进近以外的 RNP 操作过程中出现这种情况,机组应该核实位置、确认更新生效,并考虑申请备降许可。这就意味着可能改变为非 RNP 程序或航路,或变成 RNP 高于显示的 ANP 值的程序或航路。

如果在 RNP 进近操作过程中出现警报,机组可以换成非 RNP 程序。如 无法完成,机组应该执行复飞,除非已经建立了适合的目视基准。一旦 复飞,机组可以考虑申请备降许可。

RNP 过程中自动飞行的使用

通常,一个航段或程序航段是以它需要的宽度定义的。对于 RNP 操作, 航路宽度通常至少等于从 LNAV 航道的任意一边起的 2.0 x RNP。规定 的宽度由最小越障或交通管制要求确定。如果在 LNAV 过程中同时自动 驾驶仪接通,超出最大偏离值的可能性很小。对于每种机型,AFM 提供 了最小演示 RNP 值。这些最小值根据 LNAV、飞行指引和自动驾驶仪的 使用、以及 GPS 是否是生效的位置更新源而定。

RNP 操作要求与 RNP 值一致的适当的航迹保持。在某些 RNP 较低的操作过程中,可能要求使用 LNAV 以及飞行指引和自动驾驶。使用自动驾驶仪和 LNAV 通常可以提供要求的轨迹保持精度。在使用 VNAV 的 RNAV 进近过程中,任何航段都要求使用 VNAV PTH 以及编码的下滑轨迹角。这些程序显示仅 LNAV/VNAV 进近最低下降高度,不允许使用仅 LNAV方式。单独使用飞行指引不能提供足够的引导来精确保持轨迹。注:如果自动驾驶仪不可用,机组应使用飞行指引以及在导航显示上出现的其它线索(位置趋势矢量、飞机符号、以及数字式侧向航迹偏差),并且至少一个地图设置在 10NM 范围。

到定位点径向线(RF) 航段

RF 航段类似于 DME 弧线,是由恒定的径向线航道连接的航路点。这些是在航站程序上显示、在两个或两个以上航路点之间的弧线航迹。关于使用 RF 航段的部分考虑:

- 在部分直线航段或部分半径较小的 RF 航段上可能显示了最大速度。
 因为 AFDS 保持 RF 航段的能力取决于地速和最大可用坡度角,所以机组一定要遵守该限制。在大顺风条件下,地速可能导致达到最大坡度角。在这种情况下,如果超过最大 RF 速度,可能发生过量的偏航。
- 不要用直飞到 RF 航段来开始一个程序。当飞机机动加入 RF 航段时可能会产生过大的偏离。正常情况下,在 RF 航段之前会有一个到定位点航迹航段,帮助保持 RF 航段。
- 如果在一个 RF 航段的第二个航路点切入航道或直飞到航路修改会删除一个 RF 航段

• 如果在 RF 航段上执行复飞,须立即重新选择 LNAV(或者核实装有 TO/GA 到 LNAV 功能的飞机上 LNAV 已经再次接通),避免过大的 航道偏移。GA 横滚方式是航迹保持方式,如果保持接通,与低 RNP 操作不兼容。LNAV 重新接通之前,PF 必须用地图显示作参考,持 续保持 LNAV 航道。

如果 FMC 临时失效,当 FMC 恢复正常时,RF 航段会显示为未生效航路的一部分。一旦航路生效并且按压了 EXEC 键,如果条件允许,LNAV可能正常截获 RF 航段。

在非 WGS-84 基准数据的空域使用 GPS

附录 A.2.2

在非 WGS-84 空域,用于测定导航数据库位置信息的本地区数据(以位置为基础)可能与使用 WGS-84 数据的测定有相当大的位置误差。对飞行员来说,这意味着跑道、机场、航路点、助航设备等的位置可能不如地图显示上描述的那样精确,并且可能与 GPS 位置不一致。

一个世界范围的勘测确定了在 SIDS、STARS 和航路导航过程中接收 GPS 位置更新时,使用 FMC 满足在非 WGS-84 空域的要求导航精度。此导航位置精度对进近来说可能不够精确,因此 AFM 要求,"除非使用其它适当的程序",否则机组在非 WGS-84 空域进近时要抑制 GPS 位置更新。

气象雷达和地形显示政策

只要在将飞的飞行轨迹附近可能存在恶劣天气和地形/障碍物,一名飞行员应监控气象雷达显示,另一名飞行员应监控地形显示。在夜航或者 IMC 条件下飞行,在附近有地形/障碍物的机场进近、离场,以及任何时候在无雷达空域飞行时,建议使用地形显示。

注:不时地使用地形显示,对提高机组的地形/环境的感知意识会有帮助。

AFDS 指南

机组成员必须相互配合,以便于安全、有效地操纵飞机。

只有当飞机在配平状态,F/D 指令(如果 F/D 在 ON 位)能基本满足、 并且能够控制飞机的飞行轨迹时,才能尝试接通自动驾驶仪。在适航认 证和设计上,自动驾驶不能够修正严重失去配平的状况,或者将飞机从 不正常的飞行条件和/或不正常姿态下改出。

自动油门的使用

在所有的飞行阶段推荐使用自动油门。人工飞行时也推荐使用自动油门。 然而,可以用人工控制推力来保持飞行员对油门操纵的熟练度。

人工飞行

PM 应按 PF 的要求选择 AFDS 方式。ATC 指令的航向和高度改变以及与襟翼位置改变相关的速度选择可以不需要专门的指示。但是,应报告这些选择,如: "航向 170 调定"。PF 必须清楚正在执行这些改变。要求两个飞行员意识到所有的选择,同时让一名飞行员专心于飞行轨迹的控制,这样可增强整体飞行安全性。

确保飞行指引仪的所选方式与所需的机动适应。如果不按飞行指引飞行, 必须关掉飞行指引仪。

自动飞行

自动飞行系统能增强操作能力,提高飞行安全度,减小工作负荷。自动进近和着陆,III 类运行以及高效燃油的飞行剖面都是由自动飞行系统所提供的增强操作能力的范例。最大和最小速度保护是提高安全度的众多功能之一,同时 LNAV、VNAV 及 VNAV 仪表进近是部分减小工作量的功能。自动化有不同的等级。飞行员可选择能最大程度增加安全性并减小工作负荷的自动化等级,达到上述目标。

注:在使用自动驾驶仪时,PF选择AFDS方式。PM可选择新的高度,但须保证PF意识到任何改变。两个飞行员必须监控AFDS方式信号牌和当前的FMC飞行计划。

在决大多数情况下,自动飞行系统都可以产生良好的效果。偏离预期的性能一般都是由于机组对其操作缺乏全面的了解而造成的。自动系统没有按照预期工作时,飞行员应降低自动化等级,直到正确地控制了飞行轨迹并达到飞机的性能。例如,允许进近时,如果飞行员没有选择退出等待功能,飞机不是开始进近而是转向等待航线的背台方向。在这一点上,飞行员可以选择航向选择,并在使用其它自动功能的同时继续进近。另一个例子,在爬升或下降过程中,VNAV接通,如果飞机出现意外改平,可以选择FLCH继续爬升或下降,直到可以修改FMC。

飞行员尽早的干预可保证飞机的性能并防止飞行轨迹降级。为确保保持 正确的飞机控制,可能需要降低自动化级别,直到人工飞行。只有确保 飞行得到控制之后,飞行员才能尝试恢复更高的自动化级别。例如,如 果在爬升或下降过程中需要临时改平,使用 AFDS 可能无法尽快完成。 PF 应脱开自动驾驶仪,在所需的高度人工改平飞机。改平后,在 MCP 设置所需高度,选择适当的俯仰方式,然后重新接通自动驾驶仪。

推荐的俯仰和横滚方式

如果 LEGS 页面和地图显示反映了正确的顺序和高度,推荐使用 LNAV 和 VNAV。如果不用 LNAV,可以使用适当的横滚方式。当不用 VNAV 时,建议使用以下方式:

对于较小的高度变化,FLCH 的逻辑能够使爬升和下降较为平缓。为了旅客舒适没有必要使用 V/S 方式。

在进场过程中,如果受到非计划的速度或者高度限制,继续使用 VNAV 方式可能会导致工作量增加。如果出现这种情况,按需使用 FLCH 或者 V/S 方式。

使用 VNAV 调定 MCP 高度技巧

当使用 VNAV 做公布的仪表离场、进场、以及进近时,下列建议可以在满足最小高度的同时避免不必要的改平。

如果带高度限制的航路点不是间隔很近,推荐正常 MCP 高度调定技巧。

如果航路点的高度限制间隔很近,机组的工作量受到严重影响并且要担心不必要的改平,运营人可以批准使用备用 MCP 高度调定技巧。

注: 当使用备用 MCP 高度调定技巧时,选择 VNAV PTH 或 VNAV SPD 以外的俯仰方式将会导致违反高度限制的危险。

使用 VNAV 调定 MCP 高度正常技巧

当带高度限制的航路点间隔不是很近时,下列 MCP 高度调定技巧通常用于公布的仪表离场、进场和进近。

- 在爬升时,应当在 MCP 调定最大或硬性高度限制。最小穿越高度不需要在 MCP 调定。如果不能满足最小高度限制,FMC 会警告机组
- 下降过程中,调定 MCP 高度到下一个限制或指令高度,以先达到的 为准。
- 当保证满足限制,并且得到下一个限制的许可时,在即将达到限制之前重调 MCP 到下一个限制。

在下面的例子中,飞机被指令从巡航高度"下降通过"STAR,公布的高度限制在或高于 FL 190 以及在 13,200 英尺。在下降过程中,当机组确认飞机在相应的航路点将在或高于 FL 190 时,将 MCP 调置到 13,200 英尺。

使用 VNAV 调定 MCP 高度备用技巧

附录 A.2.3

1.36

在公布的仪表离场、进场和进近过程中,如果高度限制间隔很近导致机组的工作量增加并且担心不必要的改平,当营运人批准可以使用下列MCP高度调定技巧:

- 对于离场,调定间隔很近的高度限制中最高一个
- 对于进场,开始调定到间隔很近的高度限制中最低一个或 FAF 高度, 以较高的为准

注:如果运营人批准,该技巧也可用于专用进场(TA),而不管高度限制的间隔有多近。

在下面的例子中,飞机被指令从巡航高度"下降通过"STAR,公布的高度限制在或高于 FL 190,紧接着是三个其它的下降限制,最低的是 13,200 英尺。在这种情况下,如果机组确认飞机在相应的航路点将在或高于 FL 190,尽管 13,200 英尺之前还有 2 个高度限制,还是将 MCP 调到 13,200 英尺。

注:如果使用备用技巧,应将 FMC 生成的轨迹与每个高度限制进行核对,确保轨迹满足所有的限制。

AFDS 方式控制面板(MCP)故障

在空中曾经出现过各种 AFDS 俯仰或横滚方式(例如 LNAV、VNAV 或 HDG SEL)不能选择,或者不能正常工作的事件。通常,此类故障没有 失效信号显示。此类故障可能是由于 MCP 硬件(电门)故障导致的。

如果发现 AFDS 异常,飞行员选择的单个 AFDS 方式不能正常对应 MCP 电门的选择,可以断开自动驾驶仪并关断两部自动驾驶仪电门,尝试恢 复这类故障。这样会清除所有接通的 AFDS 方式。当重新接通一部自动 驾驶仪,或者接通一部飞行指引电门时,应接通 AFDS 默认的俯仰和横滚方式。这样,需要的 AFDS 俯仰和横滚方式可能又可以选择了。

如果该措施不能纠正故障,可以选择备用的俯仰或横滚方式来保持所需 的飞行轨迹。下表介绍了几种情况:

失效或故障的自动驾驶仪 方式	推荐的自动驾驶仪备用方式或机组技巧
HDG SEL 或 HDG HOLD	设置所需航向,脱开 AFDS 并人工横滚,在所需的航向上保持机翼水平,然后重新接通 AFDS。AFDS 将保持建立的航向。
LNAV	使用 HDG SEL 或 TRK SEL 将飞机保持在洋红色的FMC 航道上。
VNAV SPD 或 VNAV PTH (爬升或下降)	使用 FLCH、 V/S 或 FPA.最后进近时应选择 V/S 或 FPA 下降。
VNAV PTH (巡航)	使用高度保持。如果不能直接选择高度保持,使用 FLCH 自动过渡到高度保持。
LOC	使用 LNAV。参照航向道原始数据监控并进近。
G/S	ILS 进近时使用 V/S、FPA 或 VNAV PTH 下降。参照下滑道原始数据监控并进近。

飞行员失能

与其它常规训练的非正常情况相比,飞行员失能的事件发生得更为频繁。 这种情况在各年龄段的飞行员和各飞行阶段中都曾发生过。失能的形式 有很多,从猝死到轻微或部分丧失脑力或体力功能。轻微失能最为危险, 发生也最频繁。失能的后果包括丧失功能、到昏迷甚至死亡。

及早发现飞行员失能的关键是在驾驶舱操作过程中经常使用机组资源管理理念。正确的机组配合包括使用口头交流进行检查和交叉检查。坚持标准的操作程序和标准剖面有助于发现问题。当一名机组成员不回答有关严重偏离标准程序或标准飞行剖面的任何口头交流时,应怀疑其发生某种程度的严重或轻微失能。任何机组成员未对第二次要求做出回答或不作检查单回应,都应查明原因。

如果感觉不适,应让另一名飞行员知道并让该飞行员来操纵飞机。飞行中,机组成员应警惕另一机组成员失能。

确认飞行员失能后的机组措施

如果一名飞行员证实另一名飞行员失能,他应接替其操纵飞机,并检查 关键的控制和电门位置。

- 确认飞机得到控制后,接通自动驾驶以减轻工作量。
- 宣布进入紧急状态。
- 利用客舱服务员(如可用)。可能的话,尽量限制失能的飞行员,将 其座椅移到全后位。可以使用肩带锁来限制失能的飞行员。
- 重新安排驾驶舱飞行员职责,准备着陆。
- 考虑得到飞机上其他飞行员或机组成员的帮助。

穿越颠簸气流

在任何情况下都应该尽量避免严重颠簸。然而,如果遇到严重的颠簸气流,可以使用 FCOM 补充程序中的穿越颠簸气流的程序。穿越颠簸气流的速度提供了在严重颠簸气流中高/低速度的裕度。

在人工飞行中,保持机翼水平,并柔和控制飞机的姿态。把姿态指示器作为主仪表。在剧烈的上升和下降气流中,可能会发生大的高度改变。不要进行突然或大的操纵输入。在建立了穿越速度的配平设置后,不要改变俯仰配平。允许高度和空速有所改变,并保持姿态。然而,不要让空速下降并保持在穿越颠簸气流空速以下,因为失速/抖振裕度已经减小了。以小于正常的坡度进行机动飞行。调定穿越颠簸速度的推力并避免大的推力变化。在已知的颠簸区域,应该尽量长时间地推迟放襟翼,因为在襟翼收上的情况下,飞机能够更好地承受阵风负荷。

正常情况下,当遇到中度颠簸时,不需要改变巡航高度或空速。如果在 巡航推力极限下飞行,可能很难保持巡航速度。如果发生这种情况,可 以选择一个更大的推力限制(如果有)或者下降到一个较低的高度。

电子飞行操纵系统

电子飞行操纵系统对飞机在三个轴上的操纵生成操纵面指令。系统还修饰操纵面指令,提供卓越的操纵质量并让旅客更加舒适。

与传统飞机的主要差异在俯仰轴上。驾驶杆输入会指令俯仰机动而不是 指令操纵面移动,因此其它任何试图改变俯仰姿态或飞行轨迹都会被飞 行操纵系统抵消。由此,系统使飞机对推力改变、形态改变、颠簸以及 转弯的俯仰反应最小化。

推力的变化不再需要通过驾驶杆输入来抵消。这样在加速和减速过程中是飞行员工作量最小。然而,对于爬升,当施加推力时,必须增加俯仰姿态才能开始爬升。对于下降,当推力减小到慢车,必须减小俯仰姿态才能开始下降。

减速板或襟翼的变化不再需要通过驾驶杆输入来抵消。飞行操纵系统自 动抵消升力的变化。当飞行操纵系统改变俯仰姿态以保持飞行轨迹相对 稳定时,可以察觉到小量的俯仰变化。

对于 30 度坡度以内的转弯,飞行员不必通过增加驾驶杆反压来保持平 飞。对于大于 30 度坡度的转弯,需要额外的驾驶杆反压。

对于横滚或偏转不对称情况,例如失去调整或者操纵面失效不在指令位置,飞行员必须按需进行操纵杆输入或者配平。系统不自动抵消不对称。 飞行员仍然需要对速度改变进行配平。当失去配平时驾驶杆力增加,这 样提供传统的速度误差的线索。

操纵特征

条件:	传统飞机	777
以下原因导致的俯仰反应: • 推力改变 • 颠簸 • 形态改变	飞行员通过驾驶杆 和/或配平抵消	飞行操纵系统通过升降舵 和安定面抵消。
• 转弯(30度坡度以内) 空速变化	飞行员通过想劢红和	1配巫坻沿(油度钨宁州)
工坯文化	飞行员通过驾驶杆和配平抵消(速度稳定性)	
在地面推力不对称	飞行员用脚蹬抵消	TAC 用方向舵部分抵消,并移动脚蹬提醒飞行员。需要飞行员脚蹬输入。
在空中推力不对称	飞行员通过驾驶盘 和/或脚蹬抵消长时 间方向舵人工配平	TAC 用方向舵抵消, 并移动 脚蹬提醒飞行员。
推力不对称且一台发动机在 反推	飞行员用脚蹬抵消	
侧风起飞	飞行员通过脚蹬和驾驶盘抵消	
空中横滚或偏转不对称。 (例如,失去调整)	飞行员用驾驶盘抵消横滚。长时间方向舵人工配 平	

空白

地面操作	第 2 章
目录	TOC †

序言	2.1
飞行前	2.1
静压孔堵塞	2.1
起飞简令	2.1
推出或拖出	2.2
滑行	2.2
滑行概述	2.2
驾驶舱视野	2.4
推力使用	2.5
用反推推飞机	2.5
滑行速度和刹车	2.5
防滞不工作	2.6
手轮/方向舵脚蹬操纵	2.6
转弯半径和起落架轨迹	2.7
滑行转弯的目视提示与技巧	2.8
急转弯到狭窄滑行道	2.9
180 度转弯	2.10
在小于 147.6 英尺/45 米的道面上 180 度转弯(枢轴)	2.15
滑行 —恶劣天气	2.17
单发滑行	2.18

空白

地面操作 第2章

序言

本章介绍了地面操作期间,包括推出、发动机起动和滑行时推荐的操作 方法和技巧。同时还强调了恶劣天气下的滑行操作。本章推荐的操作方 法和技巧改进了机组的配合,增强了安全性并为标准化提供了基础。

飞行前

静压孔堵塞

起飞后空速和高度表指示不稳定或不准确应该是由于飞机在地面时结冰堵塞静压孔引起的。降水或者除雪后的水流可能在静压孔上或附近结冰。结冰堆积会干扰经过静压孔的气流,导致空速和高度表读数误差,有时静压孔看起来很干净也可能发生这种情况。因为空速管加温时静压孔和周围的表面没有被加温,所以飞行前检查要非常仔细,清除静压孔周围的所有污染物。

如果飞机遭遇了冰点降水,机组在外部安全检查时应该尤其注意静压孔。静压孔上的透明结冰可能很难察觉。如有疑虑,请求维护人员的帮助。

起飞简今

起飞简令应该尽快完成,否则将影响起飞的最后准备。

起飞简令介绍离场飞行轨迹,强调预计的航迹和高度限制。其前提是使用正常操作程序。因此不必对正常或标准的起飞程序作简令。当起飞和/或离场的任何因素与常规使用的情况不同时,可要求额外的简令项目。这些因素包括:

- 恶劣的天气
- 不利的跑道条件
- 特殊的减噪要求
- 使用最低设备清单放行

- 特殊单发离场程序(如适用)
- 其它必需复习或确定机组职责的情况。

推出或拖出

附录 A.2.3

推出和拖出可能对地面人员产生严重危害。在推出或拖出过程中,曾出现很多起人员被飞机机轮辗压的事故。驾驶舱和地面人员之间的良好沟通对安全操作至关重要。

推出或拖出包括3个阶段:

- 定位并连接拖车和拖把
- 移动飞机
- 断开拖把

带耳机的工作人员经常在前轮附近走动,是在大多数伤亡事故中的受害者。执行前轮附近无人员的程序可以减少这类事故的发生。

注: 通常飞机推出或拖出时,飞机上所有的液压系统已经增压,前轮转 弯锁定销已锁上。

飞机移动前,机长应确认所有相应的检查单都已经完成。所有旅客已就座,舱门都已关闭,以及所有的供应设备已离开飞机。拖车和拖把连接后,向地面管制申请推出或拖出指令。可以在推出或拖出飞机期间完成发动机起动,或延迟到飞机推出或拖出结束后。地面人员应该佩戴耳机进行观察,并将任何可能危及安全的因素向机组通报。

注:信号员指示飞机可以滑行之前,飞机不能从登机门或推出位置开始 滑行。

滑行

滑行概述

在滑行过程中每个机组成员的机场图因该伸手可及。以下原则有助于安全有效的滑行:

滑行前

- 两名飞行员核实 FMC 中输入正确的飞机位置
- 简令机场滑行图和相关图表的适用项目。

- 确保两个机组成员都清楚预计的滑行路线。
- 记录下收到的滑行许可。

滑行期间

- 按机场平面图渐讲滑行。
- 在低能见情况下, 报出所有相关信号以核实位置。
- 在不熟悉的机场,可以考虑要求引导车的帮助,或请求逐步的滑行指示。
- 使用标准无线电用语。
- 复读全部指令。如果任一机组成员怀疑收到的指令,核实滑行路线或 者要求明确指令。如果对指令有怀疑,停住飞机。
- 对避开地面/障碍物没有把握时,停住飞机并核实指令,要求机翼监视员协助
- 在滑行的关键阶段避免分心; 提前计划好完成检查单和公司通讯。
- 在低能见条件下操作时要考虑将飞机停住以后再做检查单
- 不要让 ATC 或其他人催促你。
- 确定跑道上无障碍(两个方向)并且在进入跑道前要收到许可
- 当发动机高于慢车推力时,要始终注意到设备、建筑物以及后面的飞机。
- 考虑使用滑行灯指示飞机的移动
- 在夜间使用所有适当的飞机灯光
- 当进入任何使用中的跑道时,要确保 FCOM 中规定的飞机外部灯光 全部打开。

着陆前

• 计划/简令预期的滑行道出口以及到达停机位的路线。

着陆后

- 确保滑行指令已清楚理解,特别是穿越距离很近的平行跑道时
- 不重要的无线电通话或驾驶舱通讯推迟到退出所有跑道以后。

驾驶舱视野

飞机附近的大片区域内是看不到地面人员、障碍物或地面引导线的,尤其从驾驶舱内斜视时。在停机区域和在滑行期间必须特别小心。当停机时,飞行员应很大程度上依靠与地面人员的联络来确保安全和协调操作。飞行员的座椅应调整到最佳的视线位置。调整方向舵脚蹬,保证在方向舵全偏转的情况下能提供最大刹车。

在滑行期间,飞行员的脚跟应该放在地板上,只有当要求使用刹车以减 慢滑行速度时,或当在靠近停机坪的停机位附近操作时,才可踏在方向 舵脚蹬上。

地面操作摄像系统的使用 (GMCS)

777-300

GMCS 如可用,可用来观察飞机下面的区域。GMCS 设计目的是帮助机组在滑行时,在转弯前或转弯过程中确定前起落架和主起落架的位置,该系统仅限于此目的使用。

需要判断何时开始转弯以及核实飞机相对于滑行路线的位置时,直接目视观察驾驶舱外面仍然是主要的方法。也可以偶尔使用地面操作滑行显示,判断前轮和主起落架距离滑行道边缘的位置,以及主起落架何时转过转弯内径。

注:不要过度专注于录像显示或者被分散精力而忽略了飞机的操纵。保证至少有一名飞行员在观察飞机外面。

由于摄像机安装在机尾,看到以下现象属于正常:

- 在发动机后面形成的尾流
- 发动机滑油排出
- 襟副翼快速的较大位移。

使用 GMCS 无需机组程或措施,除了在滑行过程中作为参考。EICAS 警报仍然是给机组指示非正常程序主要方式。起飞、进近和着陆过程中禁止使用 GMCS。

推力使用

在地面操作期间,推力的使用需要声音的判断和技巧。即使使用相对低的推力,高函道比发动机的喷气气流仍具有破坏性并且会造成人员伤害。飞机对推力杆移动的反应缓慢,特别是在大全重的情况下。驾驶舱内发动机噪音低并不表示推力输出小。大多数情况下慢车推力已足够滑行。起始滑行时,要使用稍大一些的推力设置。在进一步增大推力前应让飞机有一段反应时间。

在滑行时推力过大可能会引起外来物溅到机身的后下方、安定面或升降 舵,特别是当发动机处于条件不好的道面上时。仅在养护良好的道面和 跑道上进行暖车和滑行。

用反推推飞机

禁止使用反推倒飞机。

滑行速度和刹车

开始滑行时,松开刹车,柔和地将推力增加到使飞机向前滑动所需的最小推力,然后按需减小推力,保持正常滑行速度。通常只有在滑行速度 足以使飞机在慢车推力的情况下能完成转弯时才开始转弯。

由于飞机的驾驶舱高于地面,因此飞机的移动在飞行员看来好像比实际的速度要慢些。结果会造成滑行速度比所需速度要快的趋势。特别是在着陆后脱离跑道时更是如此。可以使用飞行仪表上显示的地速来确定实际的滑行速度。适当的滑行速度取决于转弯半径以及道面的条件。

在滑出时应密切监控滑行速度,特别是当使用的跑道距停机门较远时。 正常滑行速度大约为 20 节,根据情况可做相应的调整。在距离较长的直 线滑行路线上,加速到 30 节是可以接受的,但如果速度大于 20 节,当 使用前轮转弯手轮时要小心,避免过度操纵前轮。接近转弯时,应将速 度降低到与条件相符的适当速度。在干的道面上,如果转弯角大于快速 脱离跑道所需的典型角度,使用大约 10 节的速度。

注: 高速滑行加上大重量以及长的滑行距离可能引起轮胎侧壁过热。

注:如果滑行距离长并且持续点刹车,可能导致机轮易熔塞熔化以及轮胎放气。

正常情况下,应避免差动刹车和转弯时使用刹车。在滑道面上,刹车效 应会降低。

避免与其它飞机距离过近。喷气气流是导致外来物损坏飞机的主要原因。 在滑道面上滑行时,可能需要瞬时使用慢车反推来保持飞机的操纵。不 推荐使用高于反推慢车的反推,因为这样做有可能导致外来物损坏及发 动机喘振。飞机的操纵可以考虑用拖出,而避免长时间使用反推。

注:如果在 V 速度已经输入后选择反推, V 速度会从空速显示上消失, 全额定 TO 推力变成起飞推力极限。

碳刹车寿命

刹车的磨损主要取决于使用刹车的次数。例如,一次坚实的刹车比几次 轻微刹车磨损要小一些。在长时间内多次轻微使用刹车来避免飞机加速 (点刹车)以保持恒定的滑行速度,比适当使用刹车磨损更大。

在滑行过程中,正确使用刹车应该是稳定地踩刹车让飞机减速。速度减 小后松开刹车。飞机加速后,重复上述刹车步骤。

防滞不工作

防滞不工作时,使用中等到重刹车可能会发生轮胎损坏或爆胎。在这种 情况下,建议调整滑行速度使用轻度刹车。

手轮/方向舵脚蹬操纵

机长和副驾驶的位置各装有一个手轮。手轮控制前轮,用于低速滑行时 飞机全方位转弯。为防止前轮突然回到中立位,转弯的整个过程中必须 在手轮上一直保持一个压力。方向舵脚蹬操纵只能使前轮进行有限范围 的转弯。使用方向舵脚蹬操纵来进行直线滑行和大半径转弯。

如果在转弯过程中前轮出现"摩擦"现象,应减少转弯角度和/或滑行速度。不要在转弯过程中停下飞机,因为重新开始滑行需要很大的推力。

大重量急转弯时可能需要差动推力。按需使用以保持转弯过程中所需的 速度。转弯完成后,应将前轮回到中立使飞机能够直线滑行。这可使飞 机在停机前释放主和前起落架上的压力。

主起落架后轴转弯

主起落架后轴转弯提供较小的转弯半径,降低小幅转弯的推力需求,并减轻轮胎磨擦。在大重量,机轮和轮胎承受压力可能过大时,主起落架后轴转弯操作特别重要。如果主起落架后轴转弯失效,在这些条件下滑行可能导致轮胎过度摩擦以及轮胎滑动。

转弯半径和起落架轨迹

在整个转弯机动过程中,机组应注意其相对于前起落架和主起落架的位置。本章的图表说明了飞行员座椅位置相对于前轮和主起落架的距离。如下图所示,当飞机转弯时,主起落架轨迹在前起落架内侧。转弯半径越小,主起落架轨迹距前起落架的距离越远,更需要将前起落架转出滑行路径(过度转向)。

滑行转弯的目视提示与技巧

以下目视提示以飞行员座椅调整到合适的视线位置为前提。以下滑行技巧也以典型的滑行道面宽度为前提。由于转弯角度、滑行道宽度、内圆角大小、滑行道面情况等多种不同,飞行员的判断必须明确转弯的起始点以及每个转弯需要的前轮手轮使用量。除非转弯小于 30 度左右,否则在进入转弯前速度必须等或于小于 10 节。对于所有的转弯都要记住一点,主起落架位于前轮后边。这样便造成转弯过程中主起落架保持在前轮内侧。飞行员的位置距前轮与主起落架的距离如下:

机型	飞行员座椅位置 飞行员座椅位置	
	(前起落架前方)	(主起落架前方)
	英尺 (米)	英尺 (米)
777 - 200	12 (3.7)	97 (29.6)
777-200LR	12 (3.7)	97 (29.6)
777 - 300	12 (3.7)	114 (34.8)
777-300ER	12 (3.7)	114 (34.8)

小于90度的转弯

转弯过程中,操作前轮尽量偏离转弯中心线,使主轮靠近中线。

大于或等于90度的转弯

切入滑行道中心线(或预想的退出点)接近2号风挡后缘时开始转弯。 开始时大约需要手轮的全程转动。飞机转弯时调节手轮输入,使前轮保 持在滑行道中心线外侧,接近转弯的外半径。当转弯快完成,主轮离开 内侧半径时,随着飞机对准滑行道中心线或预计的滑行路线,逐渐松开 在手轮上的输入。

急转弯到狭窄滑行道

如果从跑道或者比较宽的滑行到转急弯到非常窄的滑行道,可以考虑在 开始转弯之前将飞机放到跑道或滑行道的外侧。这样在转弯过程中内侧 起落架有更多空间停留在滑行道面上,并且可以确保在进入狭窄滑行道 时能够更加对准中心线。

注:要注意到飞机偏出一侧的机翼越障,发动机越障,以及 FOD 吸入的可能性。

180 度转弯

如果可用滑行道面较窄,安全操作需要与外部观察员协作。参照专门的 机场操作指南(如可提供)。在某些情况下(例如:大全重,飞行员对 跑道和/或滑行道面边缘位置及相关安全裕度无把握,邻近建筑物、车辆, 可能外来物损坏(FOD)等等),拖飞机到所需位置可能是最安全的选 择。

如果需要做最小半径 180 度转弯,考虑在转弯过程中请地面人员监控机 轮轨迹并提供相关信息。应提醒地面人员喷流的危险,注意自己所站的 位置。同时要保证避开障碍物。因为需要的推力大于慢车,飞行员必须 注意在转弯过程中喷流掠过的建筑或其它物体。

注:密切注意前起落架轨迹,因为在滑行过程它会先于主轮滑出道面。 以较平缓角度接近滑行道面边缘,直到主轮外侧接近边缘。对于主轮外侧,同一边的1号风挡外下角是很好的目视基准点。飞行员1号风挡的的内下角也是相对一侧主轮的理想的目视基准。

注: 湿的跑道标记比较滑, 转弯时可能导致前起落架打滑。

通过以下几个专门的滑行技巧可以减小转弯半径。飞机滑行时让主轮接近跑道边缘,这样可以提供更多的道面进行转弯。推力在慢车时停稳飞机。手轮保持在最大转弯角,松开刹车,然后在外侧发动机上增加推力。只使用转弯外侧的发动机,转弯过程中保持 5-10 节以减小转弯半径。在内侧主起落架上轻点刹可以帮助减小转弯半径。不推荐在转弯过程中停机,除非要求减小转弯半径。当飞机通过 90 度转弯时,将主起落架转到跑道中心线附近,然后按需逐步减小手轮输入,将飞机对准新的滑行方向。

这种技巧可以使转弯速度较慢,并可使用较少的跑道。如果轮刹在转弯时未被锁上,则不会在起落架上和轮胎上增加不适当的压力。如果前起落架侧滑,较好的方法是暂时使用内侧轮刹并保持飞机在转弯时按需使用不对称的推力。如果在比宽度最低要求大得多的跑道上计划转弯,可以在速度 5-10 节不停止而直接进入转弯,并按需使用内侧机轮的点刹和推力。风、坡度、跑道或滑行道道面条件,以及重心都可能影响转弯半径。

下图显示了在不同的跑道转弯形态下,180 度最小半径转弯推荐的飞机 地面轨迹。这些地面轨迹在提供最佳机动能力的同时,还在转弯完成后 提供起飞最大可用跑道长度。

圆形转弯区的操作技巧

锤形转弯区的操作技巧

锤形转弯区的操作技巧

在小于 147.6 英尺/45 米的道面上 180 度转弯(枢轴)

如果非正常或紧急情况要求在 147.6 英尺 (45 米) 宽的跑道或滑行道上转弯,最好用拖车操作。如果没有拖车并且必须转弯,只要下列条件满足,建议做枢轴转弯:

- 对于不太坚固的道面这种转弯可能结构负载较大, 所以不能经常使用
- 要求道面坚固无石屑
- 飞机不超过最大着陆重量。

推荐的枢轴转弯技巧

如可行,选择转弯方向和位置,减少在转弯过程中发动机吸入外物、喷气尾流伤害以及道面损伤的可能性。

主起落架外侧轮胎对齐滑行道或跑道的外缘。发动机保持在慢车推力停稳飞机。如可能,在转弯之前通过地面人员或地面操作摄像机帮助飞机对齐滑行道边缘。如果有地面人员指挥,必须在枢轴转弯之前撤离到安全地区。

把手轮转到最大角度,并保持最大转弯角,直到前轮离开道面对侧。对转弯内侧的主起落架施加全刹车压力。刹住的起落架支柱必须固定不动,直到主起落架通过道面的对侧。在转弯外侧的发动机上施加足够的推力,绕固定的起落架作枢轴转弯。转弯内侧的发动机应保持慢车推力。

其它应考虑的内容包括:

• 如果使用上述方法, 道面宽度应不小于:

777-200, 777-200LR

• 126.0 英尺 (38.4 米)

777-300

• 143.1 英尺 (43.6 米)

777-300ER

• 143.2 英尺 (43.7 米)

777-300, 777-300ER

注:如果飞机在开始没有对准道面边缘 1 英尺 (1/3 米)范围以内,或者在转弯过程中内侧主起落架刹车没有锁定,在 147.6(45 米)宽的道面上不能完成转弯。

- 较大的轮胎位移和橡胶痕迹属于正常。
- 枢轴转弯完成后建议检查主起落架轮胎、前起落架轮胎以及道面情况
- 外侧发动机的推力可能损坏跑道路肩,特别是没有铺砌的道面。
- 前轮可能产生磨擦噪音,并且在驾驶舱感觉到振动
- 如果在不坚固的道面上做枢轴转弯会损坏道面。此外,如果道面不能增加跑道表面与轮胎之间的力,可能会超出起落架和轮胎的设计载荷,并且可能损坏轮胎和起落架。
- 松动的石屑可能切损轮胎,造成轮胎隐患。

滑行 —恶劣天气

在恶劣天气下滑行要求更注意道面状况。

当在滑或污染道面上,特别是大侧风时,减速滑行。使用发动机差动推力可以帮助飞机在转弯过程中保持动量。当转弯接近完成时,把两台发动机推力放慢车,降低前轮打滑的可能性。避免使用大的手轮操纵量来纠正机轮打滑。在滑或污染的道面上,差动刹车可能比前轮转弯操纵更有效。如果速度大,在开始转弯前减小速度。

注:滑道面刹车能力小于干燥道面。因此当道面潮湿,或被冰、积水、 雪浆、雪或其它任何物体污染而引起刹车能力降低时,这样的道面 认为是"滑"道面。

如果出现结冰,根据 FCOM 要求使用防冰。长时间地面操作时发动机应 定期暖车,将结冰减到最小。发动机暖车按 FCOM 规定执行。

发动机排气可能会使停机坪和跑道起飞区域结冰,或吹起积雪或雪浆并在飞机表面结冰。若低温下滑行通过雪浆或积水,或冰点温度下有降水,要收上襟翼滑行。大雪中如放下襟翼或长时间滑行,起飞前可能需要除冰。

低能见度

在低能见度情况下滑行,飞行员需要了解机场地面灯光、标志和信号。 清楚所用停止线排灯的功能和程序、ILS 临界区标志、等待点以及低能 见度滑行路线,对于安全操作非常关键。许多机场对低能见度下的操作 有特殊程序。例如,FAA 规定如果起飞和着陆最低标准低于 RVR 1200 英尺(350 米),机场必须有低能见度滑行计划。

着陆后收襟翼

寒冷天气辅助程序定义了在积冰、积雪或雪浆污染襟翼区情况下着陆后 多远可以收襟翼。如果发现襟翼区被污染,在维护人员清除污染前不准 收襟翼。污染的清除是在 AMM 中介绍的维护功能。

单发滑行

附录 A.2.3

2.18

单发滑行 (EOT)有可能节约燃油并减少碳排放。

EOT 操作期间,机组注意力必须集中在滑行飞机上。尽量不要分散精力。 波音没有公布 EOT 操作的专门程序。各个营运人根据局方的要求制定适 合其运行的的 EOT 政策、程序、以及机组熟悉材料。

起飞和起始爬升	第3章
目录	TOC 节
序言	3.1
起飞	3.1
起飞剖面	3.2
起飞 - 总则	3.3
起飞襟翼调定	3.3
推力管理	3.3
开始起飞滑跑	3.3
抬头和离地 - 双发	3.7
抬头速度和俯仰率对离地的影响	3.10
重心(CG)效应	3.1
侧风起飞	3.12
起飞侧风指标	3.12
方向控制	3.14
抬头和起飞	3.14
阵风和大侧风条件下起飞	3.14
减推力和减功率起飞推力	3.15
减推力起飞推力(ATM)	3.16
减功率起飞推力(固定减功率)	3.16
结合 ATM 和固定减功率两种方法	3.17
推力控制	3.17
改进爬升性能起飞	3.18
低能见度起飞	
不利跑道条件	3.18
联邦航空条例(FAR)起飞跑道长度	3.19
FAR 起飞	3.20

中断起飞决断	3.21
中断起飞操作	3.22
接近 V1 时走/停决策	3.22
中断起飞执行操作裕度	3.23
起始爬升 一 双发	3.27
最小燃油操作 - 起飞	3.27
起飞后立即转弯 - 双发	3.27
横滚方式	3.28
俯仰方式	3.28
自动驾驶接通	3.29
收襟翼计划	3.29
减噪音起飞	3.30
起飞 - 发动机失效	3.31
概述	3.31
发动机失效的识别	3.31
抬头和离地 - 一台发动机不工作	3.31
起始爬升 一台发动机不工作	3.34
起飞后立即转弯 - 一台发动机不工作	3.34
自动驾驶仪接通 - 一台发动机不工作	3.35
收襟翼 - 一台发动机不工作	3.35
襟翼收上 - 一台发动机不工作	3.35
减噪音 - 一台发动机不工作	3.36
减推力(ATM)起飞过程中发动机失效	3.36
减功率推力(固定减功率)起飞过程中发动机失效	3.36
ATM 结合固定减功率起飞过程中发动机失效	3.36

起飞和起始爬升

第3章

序言

本章介绍起飞和起始爬升的推荐方法和技巧。同时介绍了起飞/起始爬升过程中发动机失效的情况。图例的文字部分强调相关重要信息。

飞行剖面图代表完成飞行机动时推荐的基本形态,并为标准化和机组配合提供了基准。

起飞

正常起飞程序满足典型的减噪要求。一些机场可能会有特殊的程序要求对起飞剖面进行修改。

起飞剖面

起飞 - 总则

作为起动前程序的一部分,重温起飞参考页面确认输入正确,并且飞行 前准备完成。确认在 MCP 上已调好 V2。地图显示、地图范围以及航段 页面顺序都应与离场程序一致。

查看 LEGS 页面上的所有爬升限制。确定爬升页面中包括了与离场程序一致的适当高度和空速限制。

注:起飞时下部中央 MFD 通常显示空白,以减少不必要信息的显示。PF 的 CDU 上通常显示起飞参考页面。起飞过程中一旦 V 速度从空速显示上意外消失,显示起飞参考页面可以方便机组快速查到 V 速度。如果在起飞前程序中更新了起飞简令,起飞时 PF 可以显示爬升页面。但是,为减少低头动作,起飞后马上进行的爬升限制修正一般都是在方式控制面板上完成。工作量允许时,修改爬升页面。起飞和离场时 PM 通常显示 LEG 页面,如需要可以及时修改航路。

起飞襟翼调定

条件允许时,起飞应考虑使用较大的襟翼调定以提供较短的起飞距离。 对于所有的起飞襟翼设置,最小机尾离地高度保持恒定。制定的抬头速 度计划可以保持恒定的机尾离地高度。

推力管理

电子发动机控制(EEC)简化了推力管理程序。具备 EEC 功能并不意味着飞行员不需要监控发动机参数以及核实是否获得适当推力。

在未辅砌道面、薄的柏油道面上,使用喷气发动机高推力调定辅助飞机 临时的移动可能导致松石块、柏油块和其它外来物损坏发动机。确认仅 在维护良好的铺砌道面和跑道上暖车和起飞。

开始起飞滑跑

推荐所有起飞都使用自动油门和飞行指引。但是,飞机离地前不要跟 F/D 指令。

推荐用滑跑起飞程序调定起飞推力。它加快了起飞并减小了外来物损坏的危险,以及因顺风或侧风而引起发动机喘振/失速的可能性。试飞和分析证明,与原地起飞相比,滑跑起飞程序造成的起飞滑跑距离变化可以忽略不计。

滑跑起飞有两种方式完成:

- 在进入跑道之前或正在进入跑道时接到起飞指令,保持正常滑行速度。当飞机对准跑道中心线时,确认前轮转弯手轮松开,前推推力手柄到大约 1.05EPR(PW 或 RR)或 55%N1(GE)。让发动机瞬间稳定,然后迅速把推力手柄加到起飞推力(自动油门 TO/GA)。增加推力之前不必停机。
- 如果在跑道上等待,确认前轮转弯手轮松开,松开刹车,然后按上述 方法施加起飞推力。
- **注**:除非在结冰情况下需要原地暖车,否则推力高于慢车时一般不要使用刹车。

如执行静止起飞程序,保持刹车直到发动机稳定,确认前轮转弯手轮松 开,然后松刹车并迅速前推推力手柄至起飞推力(自动油门 TO/GA)。

注:如果在施加起飞推力之前没有松开前轮转弯手轮,由于后轴操纵没有在锁定位置,所以可能出现形态警告。

让发动机稳定可以提供均衡的发动机增速至起飞推力,同时减少方向控制的问题。如果有侧风或跑道道面湿滑,这一点特别重要。精确的起始推力调定没有设置对称推力重要。如果人工调定推力,平稳地将推力手柄推向起飞推力。

- 注: 顺风条件下,5 节正空速之前在某些发动机上可能会出现轻微的 EPR (如安装)波动。
- **注**: 前推推力手柄至起飞推力前让发动机稳定超过两秒钟,可能对起飞 距离有不利的影响。

80 节之前确认目标 N1 或 EPR 调定。80 节之后马上监控推力增加达到目标 N1。起飞推力调定之后,如果两台发动机之间出现 N1 或 EPR 微小偏差不要中止起飞,除非还有其它更严重的事件。(参阅 QRH 机动飞行章节,中断起飞标准。)由于推力设置、跑道条件等方面的差异,不能具体规定发动机之间的 N1 或 EPR 差异容限。

若调定好推力后一台发动机超限并且决定继续起飞,不要为控制超限而试图收回该推力手柄。推力调定后收回推力手柄会使起飞性能失效。当 PF 判断高度(最低 400 英尺 AGL)和空速可以接受时,应收回推力手柄直到超限回到极限范围,并完成适当的非正常检查单。

在驾驶杆上保持轻微顶杆。用方向舵脚蹬操纵和方向舵将飞机保持在跑道中心线。速度在 40 到 60 节之间时方向舵开始生效。当大于滑行速度时,用方向舵脚蹬操纵可获得最大前轮转弯效应。

不论是哪位飞行员起飞, V1 前机长应一只手保持在推力手柄上, 以便对中断起飞的情况快速反应。V1 之后, 机长的手应离开推力手柄。

起飞滑跑过程中,PM 应监控发动机仪表以及空速指示并报告任何异常情况。PM 应报告通过 80 节,PF 应核实他的空速指示一致。

保护罩或外来物堵塞皮托管系统可能导致无空速指示,或仪表之间的空速指示互不相同。机组在 80 节的喊话确认空速指示工作正常是很重要的。如果对任一个主空速提示的精度有怀疑,参照备用空速指示。另一个速度信息源是地速指示。尽早发现故障对作出合理的走/停决策非常重要。参看第 8 章空速不可靠一节关于这个主题的详细介绍。

PM 应核实起飞推力已调定,油门保持方式(HOLD)已接通。一旦显示 HOLD,自动油门不能改变推力手柄位置,但推力手柄可以人工设置。 VNAV 接通或者选择其它推力方式之前,油门保持(HOLD)方式一直接通。

注: 等于或大于 20 节顶风起飞时,自动油门进行最后的推力调整前油门可能就已在 HOLD (保持)方式。

若发生系统故障,HOLD方式可保持推力手柄不会移动。如果没有HOLD显示,表示该保护功能可能没有生效。如不显示HOLD信号牌,除非随即出现的系统故障导致推力手柄不必要的移动,否则机组不需采取措施。与其它自动油门系统故障一样,此时应脱开自动油门,人工调定所需的推力。

抬头和离地 - 双发

起飞速度根据最小操纵速度、失速速度、以及机尾离地裕度建立。短机身飞机通常受失速裕度限制,而长机身飞机通常受机尾离地裕度限制。因为机场分析或者 FMC 提供的起飞速度都能够提供足够的机尾离地高度,如果在 VR 开始柔和持续的抬头,机尾离地裕度就能够得到保证。大于 80 节时,松开顶杆力使驾驶杆回中。为了到达最佳的起飞和起始爬升性能,在 VR 开始柔和连续地抬头至 15 度的俯仰姿态。抬头过程中不推荐使用安定面配平。离地后,使用姿态指示作为主要的俯仰基准。用

注: 在抬头过程中不要使用飞行指引仪的俯仰指令。

使用恒定的抬头技巧,即飞行员基本相等的操纵力以及类似的目视提示, 最后的抬头率会根据飞机机身长度稍有差异。

飞行指引结合指示空速以及其它飞行仪表来保持正确的垂直飞行轨迹。

注:不要通过调整起飞速度或操纵力来补偿增加的机身长度。

使用上述技巧,在长机身飞机上得到的抬头率可能比最小抬头率相差2到2.5度/秒。大约4秒达到离地姿态

典型抬头,双发

下列图表显示了双发工作时典型的抬头。

高度表指示正上升率后收起落架。

根据本章介绍的技巧收襟翼。

注:小全重起飞时,一旦一台发动机失效,小于全额定推力起飞可以帮 助飞机的方向控制。抬头应该用正常抬头率完成,但是过渡到起始 爬升过程中的俯仰姿态可能比正常的大。

典型的起飞机尾离地高度

以下图表演示了起飞过程中,襟翼位置对离地俯仰姿态和最小机尾离地高度的影响。另外,最后一栏提供了机轮在跑道上,起落架支柱伸出,机尾触地时的俯仰姿态。对于机尾触地程序的讨论参见第8章和机尾触地非正常检查单。

机型	襟翼	离地姿态 (度)	最小机尾离地高 度英寸(CM)	机尾触地俯仰姿 态 (度)
777-200	5, 15, 20	8.5	37 (94)	12.1
777-200LR	5, 15, 20	8.5	37 (94)	12.1
777-300	5, 15, 20	7.0	36 (91)	8.9
777-300ER	5, 15, 20	8.5	30 (76)	10.0

注: 777-300ER 数据在半折式起落架 (SLG) 工作时有效。SLG 不工作时, 使用 777-300 数据。

抬头速度和俯仰率对离地的影响

起飞和起始爬升性能取决于以正确的空速抬头,以及以正确抬头率达到目标姿态。提前或过快抬头可能导致机尾触地。过迟、过慢抬头或抬头不够则会增加起飞时地面滑跑距离。任何不适当的抬头都将降低起始爬升的飞行轨迹。

不适当的抬头率可能影响离地后的指令空速。如果延迟到 V2+15 以后抬头,飞行指引可能指令最大到 V2+25 的抬头速度。过早抬头不会影响指令的起始爬升速度,但是两种情况都会降低整个起飞性能。

下图演示了与正常抬头相比,起飞过程中如果抬头过慢或抬头率不够如何增加到 35 英尺高度的距离。

抬头过慢或抬头率不够(典型的)

重心(CG)效应

以小重量、后重心起飞时,使用全推力、施加推力过猛并突然松开刹车等综合因素会导致机头上仰并降低前轮转弯效应。CG 在或接近后重心极限时,保持顶杆直到80节以增加前轮转弯效应。大于80节时,松开顶杆力使驾驶杆回中。小重量、后重心时,推荐尽量使用减推力和滑跑起飞技巧。速度在40到60节之间时方向舵开始生效。

起飞备用前重心限制的操作

起飞性能基于 AFM 规定的前 CG 限制。但是,如果 AFM 提供了备用(更靠后)前重心限制,可以提高起飞性能。使用这些数据可以提供更大的性能限制的起飞重量,高于基本的 AFM 性能数据。

通常,对于跑道长度、爬升或障碍物限制的起飞,可以利用备用前重心来增加性能限制的起飞重量。备用前重心的另外一个潜在的好处是:增加减推力从而提高发动机可靠性,减少发动机维护成本。但是,只有当营运人的 AFM 中有批准的数据,并且局方批准飞机使用备用前重心限制时,这种提高的性能才可用。

对于给定的迎角,因为水平安定面所需的上仰配平量减小,所以更靠后的重心可以增加可用升力。这样可以减小 VR 和 V2,反过来又减小了起飞所需的跑道长度。所需跑道长度的减少又可以增加跑道长度限制的重量。在大多数情况下,这种上仰配平量的减少还会导致阻力减少,从而提高飞机的爬升能力。

注: FMC 计算的起飞速度和 QRH 起飞速度对使用备用的前重心的操作 无效。起飞速度必须通过备用前重心性能数据计算,通常由签派或 者飞行部提供。

侧风起飞

下列侧风指标是通过试飞数据、工程分析以及模拟机评估取得的。

注: 若在松刹车前调定了起飞推力,在大侧风或顺风分量的情况下可会 发生发动机受力或发动机喘振。因此,如果侧风超过 20 节,或顺风 超过 5 节,强烈建议使用滑跑起飞程序。

起飞侧风指标

附录 A.2.4

不要把侧风指标看作极限值。提供侧风指标是为了协助用户确立他们自己的侧风程序。

假定一台发动机失效时 RTO,且实施了正确操作技巧,全重越大重心越 靠前,起飞侧风指标也增加。在滑跑道上,起飞侧风指标随跑道道面条 件及飞机配载的变化而变化。在使用下表时:

- 对于全重和 CG 的中间值允许使用插入法。
- 在全重小的情况下,如果起飞后重心的极限是 39%之前,并且飞机的 重心在 35%MAC 之后,在"起飞后极限"和" 035%MAC"栏用内插法查 侧风指标。

起飞重量 1,000	跑道条件	重心 (% MAC)			
磅/公斤		30%或以下	35%	39%	TO Aft 限制
		30%或以下	35%	39%	44%
550 磅/250 公斤 及以上	干	40 K	40 K	40 K	29 K
	湿	40 K	40 K	34 K	25 K
	雪浆/积水	35 K	31 K	27 K	21 K
	雪未融化**	35 K	29 K	24 K	18 K
	冰未融化**	15 K	15 K	15 K	10 K
470 磅/215 公斤	干	40 K	40 K	33 K	24 K
	湿	40 K	34 K	29 K	21 K
	雪浆/积水	31 K	27 K	23 K	18 K
	雪未融化**	30 K	25 K	21 K	16 K
	冰未融化**	15 K	15 K	15 K	10 K
390 磅/180 公斤 及以下	干	40 K	33 K	28 K	22 K
	湿	35 K	29 K	24 K	20 K
	雪浆/积水	28 K	24 K	20 K	17 K
	雪未融化**	27 K	22 K	19 K	16 K
	冰未融化**	15 K	15 K	15 K	10 K

^{*}风是在33英尺(10米)的塔台高度测出的,适用于148英尺(45米)或更宽的跑道。

^{**}当在未处理的冰或雪上起飞时,只有在冰或雪未融化时才能尝试起飞。

方向控制

起飞期间,起始对正跑道并柔和施加对称推力可获得好的侧风控制能力。在起飞滑跑的起始阶段(低于约80节)稍稍顶杆可提高前轮转弯的效应。在施加推力的过程中,任何偏离中心线的情况应立即通过柔和而有效的操纵输入制止。柔和的方向舵操纵输入结合小的驾驶盘输入能完成正常起飞,不会操纵过量。大的驾驶盘输入会伸出扰流板增加阻力,接近V1(MCG)时,对方向控制会有不利影响。

注: 在湿滑跑道上起飞, PM 应特别注意确认发动机推力指示对称。

抬头和起飞

开始起飞滑跑,保持驾驶盘大致中立。在整个起飞滑跑过程中,逐步向上风压盘,到刚好能够保持机翼接近水平为止。

注: 抬头和离地过程中过多压盘会增加扰流板升起。随着扰流板升起增加,阻力增加升力减少,会导致机尾离地高度减少、起飞滑跑增加、且飞机加速更慢。

离地时,飞机处于侧滑交叉控制状态。离地后缓慢使驾驶盘和方向舵脚 蹬回中,可使飞机缓慢平稳地从侧滑中改出。

阵风和大侧风条件下起飞

对于阵风或大侧风条件起飞,推荐使用高于所需最小推力的推力设置。 如果盛行风在或接近跑道 90 度,抬头或离地过程中风偏转形成阵风顺风 分量的可能性会增加。在这种情况下,考虑使用接近或在最大起飞推力 的推力设置。使用较高的起飞推力设置可以减小所需跑道长度,并且将 飞机在抬头、离地及起始爬升过程中处于阵风状况下的时间减至最少。

为了在大侧风条件下增加机尾离地高度,如果起飞性能允许,考虑使用较大的 VR。可以采用以下方法:

- 使用改进爬升起飞性能
- 将 VR 增加到性能限制的全重抬头速度,不超过实际全重 VR + 20 节。调置实际全重的 V 速度。在修正的(更大的)抬头速度抬头。增加的抬头速度会增加失速裕度,并满足起飞性能要求。

避免在阵风期间抬头。如果 VR 附近遇到阵风,指示为空速迟钝或空速急增,瞬间延迟抬机头。这一稍微延迟抬机头可使飞机在阵风起飞时获得额外的速度,并且增加的空速能提高机尾离地裕度。不要过早抬头或使用比正常抬头率大的速率来试图离地和减小阵风的影响,因为这样会降低机尾离地裕度。按需限制驾驶盘的输入,保持机翼水平。过量使用驾驶盘会增加造成扰流板伸起,导致减小机尾离地高度。所有这些要素提供了最大的能量,使飞机在阵风中增速同时保持了飞机在离地时的机尾离地裕度。在此点有交叉操纵的情况下,飞机带有侧滑。离地后缓慢使驾驶盘和方向舵脚蹬回中,可使飞机缓慢平稳地从侧滑中改出。

减推力和减功率起飞推力

正常情况下只要性能允许,小于最大额定起飞推力起飞。较小的起飞推力能够降低 EGT,提高发动机可靠性,并延长发动机寿命。

减推力起飞的方法包括:减推力起飞(假设温度方法或 ATM),减功率起飞(固定减功率),或结合这两种方法。无论是哪种方法,起飞速度基于选择的功率(全功率或固定减功率),并且应该使用选择的假设温度。可以从起飞分析(跑道/机场分析)或其它批准的渠道获取起飞速度。使用上述任一方法小于全功率起飞推力的起飞满足所有局方规定的起飞性能要求。

注:如果怀疑风切变,除非为了满足放行性能要求必须使用固定减功率或 **ATM**,否则不建议小于全额定起飞推力起飞。

减推力起飞推力(ATM)

减推力起飞推力(ATM)是指小于全额定起飞推力的起飞推力级别。通过选择高于实际外界温度的假设温度获得减推力起飞推力。

如果使用 ATM,起飞推力调定不视为起飞操作极限,因为最小操纵速度 (VMCG 和 VMCA)是基于全额定起飞推力。在起飞的任何时候,推力手柄可以前推到全额定起飞推力。

注: 只要是使用批准的湿跑道起飞性能数据,减推力起飞 (ATM)可用于湿跑道起飞。但是,被积水、雪浆、雪、冰等污染了的跑道上不允许使用减推力起飞 (ATM)。

777-200LR

注: 当飞机的操纵性受最小起飞重量要求限制时,减推力起飞 (ATM) 可能得到更小的起飞重量。

减功率起飞推力(固定减功率)

减功率起飞推力 (固定减功率)指小于全额定起飞推力的额定起飞推力。要使用减功率起飞推力,需要具体固定减功率级别的起飞性能数据。通过在 FMC 选择 TO 1 或 TO 2 可以得到减功率起飞推力。

因为最小操纵速度(VMCG 和 VMCA)、安定面配平调定以及最小起飞重量都基于减功率起飞推力,所以在使用减功率起飞推力时,起飞推力调定被视为起飞操作极限。

除非在起飞时遇到需要两台发动机增加额外推力的情况,例如风切变等, 否则推力手柄不应超过固定的减功率极限。起飞过程中如果一台发动机 失效,任何推力增加超过固定减功率极限可能导致失去方向控制。

注: 在湿跑道或者积水、雪浆、雪、冰等污染跑道上起飞可以使用减功率起飞推力(固定减功率)。

当性能受 VMCG 限制时(例如在积水、雪浆、雪、冰等污染跑道上),减功率起飞推力(固定减功率)可获得更大的起飞重量。这是因为减功率起飞推力允许较小的 VMCG。

当起飞重量受最小起飞重量要求限制时,减功率起飞推力 (固定减功率) 可能得到更小的起飞重量。

3.17

结合 ATM 和固定减功率两种方法

注: 必须遵守减推力起飞(ATM)和减功率起飞的所有极限和限制。

结合减推力起飞 (ATM)和减功率起飞(固定减功率)的方法是: 先选择固定的减功率,然后选择一个高于实际外界温度的假设温度。虽然起飞推力调定不视为 ATM 减推力的起飞操作极限,但是由于起飞速度仅在固定减功率推力等级考虑 VMCG 和 VMCA,选择的固定减功率仍被视为起飞操作极限。因为机组没有固定减功率极限的指示,除非在起飞时遇到需要两台发动机增加额外推力的情况,例如风切变等,否则不应前推推力手柄。起飞过程中如果一台发动机失效,任何推力增加超过固定减功率极限可能导致失去方向控制。

推力控制

减推力(ATM)起飞时,如果推力在 HOLD 方式又需要更多推力(到最大推力),可以人工前推推力手柄。如果在起飞过程中出现了需要额外推力的情况,如遇风切变,机组应毫不犹豫地人工前推推力手柄到最大推力。

如果执行减功率(固定减功率)起飞或者结合 ATM 和固定减功率起飞,起飞速度仅在固定减功率推力等级考虑 VMCG 和 VMCA。除非在起飞时遇到需要两台发动机增加额外推力的情况,例如风切变等,否则推力手柄不应超过固定的减功率极限。起飞过程中如果一台发动机失效,任何推力增加超过固定减功率极限可能导致失去方向控制。

如果是高减功率等级结合高假设温度,或者选择的爬升推力功率高于自 动选择的爬升推力功率,有可能爬升推力高于起飞推力。在这种情况下, 一旦到达减推力高度,可以前推推力手柄。

当飞机在地面且显示 HOLD 方式时需要更多推力(到最大推力),必须 人工前推推力手柄。

飞机离地后,按压 TO/GA 电门将推力手柄前推到最大可用推力,THR REF 信号牌显示。

改讲爬升性能起飞

没有跑道长度限制时,通过增加滑跑距离来增速至更大的起飞和爬升速度,就可以使爬升限制重量增加。这样爬升梯度得到改善,从而提高了爬升限制重量和障碍物限制重量。增加了 V1、VR 和 V2,必须从签派或机场分析上查阅。

低能见度起飞

附录 A.2.4

低能见度起飞,低于着陆最低标准,可能需要有起飞备降场。当选择起飞备降场时,应考虑非预期的事件,如发动机失效或可能影响起飞备降场最低着陆标准的其它不正常情况。批准发动机不工作 II/III 类运行的营运人,可批准更低的备降标准。

对于经专门训练的机组及有合适的跑道灯光的机场,(FAA)可能批准能见度最低 RVR500 英尺/150 米的起飞。如果起飞指引系统和中心线灯光满足 FAA 或 ICAOIII 类运行标准,可批准能见度最低 RVR300 英尺/75 米的起飞。局方对低能见度起飞可能特别规定起飞侧风极限。

所有 RVR 值必须等于或大于起飞要求的起飞最低标准。如果接地段或落地滑跑段 RVR 系统不工作,中间段的 RVR 可替代不工作的系统。当接地区 RVR 不工作时,局方可批准飞行员目测 RVR。

不利跑道条件

附录 A.2.4

由于雪水、积水或深的积雪减小了轮胎与跑道间的摩擦力并加大滑跑阻力,所以它们都降低了飞机起飞性能。

大多数用户都根据松雪、雪浆、湿雪或积水深度以及不能起飞的最大深度,按 AFM 跑道长度限制和/或越障限制的起飞重量减载。

雪浆或积水可能会损坏飞机。跑道上雪浆、积水、或湿雪的推荐最大厚度为 0.5 英寸(13 毫米)。干雪的最大厚度为 4 英寸(102 毫米)。

在中断起飞过程中,滑跑道(湿、实雪、冰)也会增加停机距离。根据 具体情况应调节起飞性能及关键的起飞数据。检查机场分析或 FCOMPI 章节的有关不利跑道条件下起飞性能变化。

注: 若在不利跑道条件下存在关系安全操作的不确定因素,在这个因素 消除后再起飞。

在湿跑道或湿滑条件下,PM 必须特别注意确保发动机推力对称增加。 任何偏出跑道中心线的趋势都必须立刻修正,如需要,轻微使用差动推力。

在起飞滑跑的起始阶段(低于大约80节)应顶杆,以增加前轮操纵效应。在结冰的跑道上起飞时,必须预计方向舵脚蹬操纵滞后和前轮打滑的情况。使用方向舵脚蹬操纵和方向舵使飞机保持在跑道中心线上。速度在40至60节方向舵生效。无论在起飞滑跑开始阶段还是在方向舵开始生效后,一旦飞机偏离跑道中心线且无法控制,立即中断起飞。

联邦航空条例(FAR)起飞跑道长度

FAR 起飞跑道的长度是以下三种距离中最长的一个:

- 双发增速, V1 前 1 秒一台发动机失效后继续起飞, 并以 V2 速度达到跑道上空 35 英尺这一点所需的距离。(加速起飞距离)
- 双发增速, V1 前 1 秒遭遇某种情况后意识到该状况,开始停机机动 并在规定的跑道范围内停下来所需的距离(加速停止距离)。
- 双发起飞到跑道上空 35 英尺这一点所需距离的 1.15 倍。

AFM 加速停止距离包括开始停机时的滑跑距离,并以验证试飞演示中测出的停止能力为基准。该距离包括使用减速板和最大刹车,不包括使用反推。从操作上,推荐使用反推和自动刹车,但是,无论是人工刹车还是使用 RTO 自动刹车设置时都可获得最大刹车。

通过计算出一个使加速起飞和加速停止距离相等的 V1 速度,来定义给定重量所要求的最小跑道长度。这就是所谓的"平衡的跑道长度",相应 V1 叫"平衡 V1"。FMC 根据平衡的 V1 提供起飞速度。如果使用假设温度减推力或固定减功率起飞中任一种,在 FMC 起飞速度可用的情况下,FMC 将提供适用于较低推力设定的平衡 V1。

起飞全重不能超过爬升限制重量、跑道长度限制重量、障碍物限制重量、 轮速限制或刹车能量限制。如果重量受爬升、越障、或刹车的限制,使 用与 FMC 所提供的正常平衡起飞速度不同的起飞速度来增加限制重量。 不同的(不平衡)起飞速度可通过使用下列方法来确定:

- 使用改讲爬升以提高爬升或越障限制重量:
- 使用最大 V1 原则以增加越障限制重量
- 使用最小 V1 原则以增加刹车能量限制重量
- 使用净空道或安全道以增加跑道或越障限制重量

如果起飞重量不是基于正常平衡 V1,那么 FMC 起飞速度不适用,并且公司应给飞行员提供获得相应起飞速度的方法。

FAR 起飞

3.20

中断起飞决断

一次中断起飞所须消耗的总能量与飞机速度的平方成正比。在低速时(到大约80节)能量值较低。因此只要不适合继续起飞滑跑或飞行的事件出现,就应中断起飞。如主警戒、不正常振动、轮胎失效等。

注: 关于低于和高于 80 节中断起飞的决策,参阅 QRH 非正常机动部分的中断起飞指南。

平衡跑道长度起飞过程中,当速度接近 V1 时将飞机停下来几乎需要飞机的最大停机能力。因此,必须在达到 V1 速度之前决定是否中断起飞。从历史上看,接近 V1 时中断起飞通常会导致飞机冲出跑道。常见的原因包括 V1 后才中断起飞,以及没有使用最大的停机能力(程序/技术上的错误)。不适当的中断起飞操作的后果参见本章 RTO 操作裕度一节。中断起飞过程中所使用的最大刹车力度比大多数飞行员在正常飞行中体验到的大得多。

除非机长判断不能飞行,否则不推荐 V1 以后中断起飞。即使 V1 后仍有 多余的跑道,也无法保证刹车有能力使飞机在跑道头之前停下来。

在某些情况下,飞行员可能会忽略 FMC 提醒其起飞速度已被删掉的警报信息,或者会忘记设置空速游标。如果在起飞过程中机组发现没有显示 V 速度并且没有其它故障指示,可以继续起飞。没有 V 速度显示但是没有其它故障指示不符合公布的中断起飞标准(参见 QRH 中断起飞NNM)。如果缺乏 V 速度显示,在起飞滑跑过程中,PM 应在适当的时间向 PF 报告 V1 和 VR。在 MCP 和主空速指示上应显示 V2。如果两名飞行员都不能记住正确的抬头速度,在显示的 V2 速度前 5-10 节抬头。

中断起飞操作

中断起飞(RTO)操作是在起飞滑跑阶段开始实施,以使飞机迅速在跑道上停止下来。在整个起飞滑跑过程中,PM 应密切监控主要仪表并立即报告异常情况,如"发动机火警","发动机失效"或其它严重影响安全飞行的不利情况。中断起飞决断是机长的责任,并且必须在 V1 速度前作出决定。如果机长是 PM,他应实施 RTO 并同时宣布不正常情况。

注: 若作了中断起飞的决定,机组应该完成 QRH 机动章节中的中断起飞非正常机动。

若在HOLD显示前中断起飞,当推力手柄移到慢车位时应断开自动油门。如果自动油门没有断开,推力手柄松开后会前移至选定的起飞推力位置。在显示了HOLD之后,推力手柄收回时保持在慢车。为了程序上的一致,所有的中断起飞都应断开自动油门。

如果在 TAC (推力对称补偿) 启动速度以上出现一台发动机失效, TAC 按需提供方向舵输入,帮助保持方向控制。TAC 方向舵输入只在前推力工作时提供,一直到速度减小到 TAC 启动速度以下。如果 TAC 失效, PF 必须进行方向舵输入。

如由于失火中断起飞,在大风情况下,停机时要考虑到停机位置,让火势在下风侧。中断起飞后,准备下一次起飞前,遵守刹车冷却要求。

接近 V1 时走/停决策

1992 年民航业制订起飞安全训练辅助程序时,发现现存的 V1 定义使人感到迷惑,因为这个定义未说明 V1 是机组必须开始中断起飞措施的最大速度。美国国家运输安全委员会(NTSB)在他们 1990 年关于中断起飞事故的研究中也注意到,过晚的中断起飞是造成冲出跑道事故的主要原因。因此 FAA 在联邦航空条例第一部分中更改 V1 定义如下:

- V1 表示在起飞时飞行员必须采取第一措施(例如,使用刹车、减推力、放出减速板)、确保在加速停止距离内停住飞机的最大速度
- V1 也意味着起飞过程中的最小速度,一台发动机失效后,飞行员能在该速度继续起飞,并且在起飞距离内达到高于起飞道面以上所需高度。

飞行员都知道 V1 是做出走/停决策的基础。在受跑道限制的情况下,若在 V1 开始中断程序,则飞机可以在到达跑道头前停住。参看 RTO 操作裕度图中 V1 后开始中断起飞和/或使用不正确程序的后果。

当 AFM 计算起飞性能时,是假设在 V1 前 1 秒一台发动机失效或出现某种事件。在跑道限制的条件下,则意味着若决定继续起飞,飞机将在跑道头达到 35 英尺的高度。

在合理的限制范围内,即使发动机失效早于假设的 V1 前 1 秒,决定继续起飞将意味着飞机在跑道头将低于 35 英尺,但仍可继续飞行。例如在 V1 前 2 秒发动机失效,此时决定继续起飞,那么飞机将在跑道头达到 15 至 20 英尺的高度。

虽然历来的训练都将发动机失效作为中断起飞的主要原因,但是统计显示发动机失去推力大约占此类事故的 1/4,由于起落架或轮胎问题造成的事故和事件几乎与发动机故障引起的一样多。其它引起中断起飞的原因为飞机形态、指示或灯光、机组协调问题、鸟击或 ATC 问题。

需要注意的是,过去 RTO 事故中的大多数都不是由于一台发动机失效 RTO 导致的。双发全起飞推力可用。在正常起飞推力,飞机在跑道头可以很容易达到 150 英尺的高度,并且若需返场飞行员有足够的跑道长度停住飞机。

在 V1 前很早就需做出走/停决策。尽早发现问题、良好的机组协调、以及快速反应都是成功起飞或停机的关键。

中断起飞执行操作裕度

机长及时的决定并使用正确的程序是在或接近 V1 情况下成功中断起飞的关键。

下列图表中的数据摘自起飞安全训练辅助手册,作为参考。每个图例显示了飞机不同形态的大致效果,以及飞机停机性能的程序差异。这些计算通常基于估算的数据,并且只用于训练目的。除非另外注释,数据一般是以典型的大全重飞机为前提,并基于验证的过渡时间。

3.24

每个条件都与基线条件相比较。预计的跑道头速度和预计的冲出跑道距 离在每张图例的右侧指示。估算距离时,假设冲出的区域可以产生与相 应跑道道面同样的刹车力。如果小于基线的 FAA 加速停止距离,则此距 离表示为负数。

起始爬升 - 双发

离地后,使用姿态指示作为主要的俯仰基准。用飞行指引结合指示空速 以及其它飞行仪表来保持正确的垂直飞行轨迹。无论是否使用飞行指引, 必须交叉检查俯仰、空速、以及空速趋势。

离地后,飞行指引仪指令俯仰保持 V2+15 至 25 节的空速,直到另一种俯仰方式接通。

V2+15 是起飞襟翼条件下的最佳爬升速度。它能在起飞后最短距离内获得最大高度。加速会减小高度的获得。起始爬升过程中如果空速超过 V2+15,停止加速,但是不要尝试减速回到 V2+15。V2+15 到 V2+25节之间的任何速度产生的起飞剖面大致相同。交叉检查指示空速以保持适当的起始爬升速度。

高度表指示正上升率后收起落架。升空后不要使用刹车。在收起落架过程中会出现自动轮刹。起落架和襟翼收上后,PM 应核实起落架和襟翼 指示正常。

最小燃油操作 - 起飞

推荐的最小起飞燃油量指航程油量加上备份油量。在很短的航线上,由于燃油量较少,起飞后前燃油泵低压灯可能亮。

若任何一个主油箱油泵指示压力低,不要关断燃油泵电门。避免飞机突 然加速,减小飞机抬头姿态,保持安全爬升梯度所需的最小仰角。

起飞后立即转弯 - 双发

越障、减噪或离港程序都有可能要求起飞后立即转弯。在适当的高度(正常情况下至少400英尺AGL)开始转弯,并在带起飞襟翼的情况下保持V2+15至V2+25的速度。

注: 在起飞襟翼且 V2+15 节的速度时,最大坡度角为 30 度。

在完成转弯后,在或高于增速高度时,在爬升的同时增速并收襟翼。

注: 必须考虑到在离场航线上出现一台发动机失效的可能性。在确保越障方面,专门的单发程序(如可用)优于减小起飞重量。

横滚方式

起飞和爬升稳定后,飞机通过 400 英尺 AGL 后选择 LNAV(如果起飞前未预位)。如果预位 LNAV 起飞,在 50 英尺 AGL 以上、生效航段 2.5NM 之内 LNAV 接通。若离港程序或航路不是从跑道头开始的,为截获 LNAV 应在 400 英尺 AGL 使用 HDG SEL 切入所需航迹。当离港程序不是当前飞行计划的一部分时,使用 HDG SEL 或 HED HOLD 方式。若需要起飞后立即转弯,起飞前就可选择好所需航向。

使用 FIX 页面功能和/或 EFIS 控制面板上的 VOR/ADF 电门可将离场过程中需使用的助航设备和相应径向线或航迹显示在导航显示上。使用 EFIS 控制面板上的 STA 和 WPT 电门可在导航显示上提供额外的信息。

俯仰方式

VNAV 通常起飞预位,在 400 英尺 AGL 接通。用 VNAV 起飞、收襟翼、以及爬升是较好的起飞 AFDS 管理方式。这样可以提供与计划的离场程序一致的 VNAV 剖面和加速计划。

推荐的起飞俯仰方式是在地面输入适当的加速高度之后,预位 VNAV。 当起飞预位时,VNAV 在 400 英尺 AGL 接通,提供有关加速、收襟翼 以及爬升的 AFDS 管理。VNAV 剖面和加速计划和大多数计划的离场一 致。

VNAV 接通条件下,自动指令增速。按计划收襟翼。到达在起飞参考页面所选的点之后,核实 EICAS 上的推力基准从 TO 变成 CLB。若推力基准没有自动改变,人工选择爬升推力。

若不使用 VNAV,在增速高选择 FLCH,并将指令空速调定到襟翼收上机动速度。在 EICAS 上检查推力基准由 TO 变成 CLB。如果推力基准不自动改变,用 MCP 上的 CLB/CON 电门设置爬升推力。

注:如果在加速高度之前要求爬升推力,使用 MCP 上的 CLB/CON 电门人工设置爬升推力。

3.29

自动驾驶接通

FAA 批准起飞后在或高于 200 英尺 AGL 允许接通自动驾驶。其它的法规或航空公司的运行指令也许会指定一个更高的最低高度。自动驾驶接通前,飞机应在配平状态,并满足飞行指引。这样可以避免在自动驾驶接通过程中出现不必要的飞行轨迹改变。

收襟翼计划

收襟翼的最低高度为400英尺。

每个机场可能对加速高度和收襟翼高度都有具体规定。决定因素通常包括安全、越障高度、飞机性能或减噪要求等。一些营运人根据机场要求,各类运行均采用标准爬升剖面,在一台发动机失效的情况下以最大高度改平飞越附近障碍物。

在训练飞行中,通常用 1,000 英尺 AFE 作为增速高度,开始减推力和收 襟翼。在航线飞行中由于减噪考虑,减推力一般在大约 1,500 英尺 AFE 实施,增速一般在 1,500-3,000 英尺 AFE 之间进行,或按各个机场的减 噪程序规定。

收襟翼过程中,应该在达到当前襟翼位置的机动速度时开始选择下一个襟翼位置。因此,当选择了新的襟翼位置时,空速小于该襟翼位置的机动速度。由于这个原因,当选择下一个襟翼位置时,空速应该增加。在收襟翼过程中,襟翼收上速度提供至少足够的机动能力或 30 度坡度 (15 度坡度和 15 度裕度) 到抖杆。当飞机加速到所选襟翼位置的推荐机动速度时,提供全机动能力或至少 40 度坡度 (25 度坡度和 15 度裕度)。

随着空速上升,当空速达到当前襟翼位置的机动速度时应开始收襟翼。 在空速显示上的数字式襟翼机动速度游标指示当前襟翼位置的机动速 度。

起飞收襟翼速度计划

起飞 襟翼	速度带"显示"	选择 襟翼
20 或 15	"20" 或 "15"	5
	"5"	1
	"1"	UP
5	"5"	1
	"1"	UP

对于襟翼收上机动,保持至少:

• "UP"

减噪音起飞

正常起飞程序满足典型的减噪要求。应在 FMC 的起飞参考页面输入减推力和加速高。保持襟翼收上机动速度直到符合减噪剖面,直到通过障碍物或高于任何最低穿越高度。在爬升页面输入 FMC 速度限制通常可做到这一点。也可通过使用速度干预或 FLCH 完成。

注: 应遵守当地机场的特殊程序。

3.31

起飞 - 发动机失效

概述

正常起飞剖面与发动机失效起飞剖面几乎一样。起飞滑跑期间及升空后,一台发动机失效的操纵性非常出色。空中最小操纵速度低于 VR 和 VREF。

发动机失效的识别

在 V1 或 V1 后一台发动机失效, TAC 自动输入方向舵, 补偿不对称推力导致的大部分偏转。PF 仍需加入小量的方向舵, 这样可以帮助判断发动机失效。如果 ATC 失效, 可能会很快出现偏转。

飞机航向是方向舵脚蹬正确输入的最好指示器。为了抵消由于发动机失效所引起的推力不对称,用方向舵停止飞机的偏转。飞行时驾驶盘水平 压盘或副翼过量配平可能导致减速板伸起。

抬头和离地 - 一台发动机不工作

在 V1 后离地之前如果一台发动机失效,TAC 自动输入方向舵,补偿不对称推力导致的大部分偏转。PF 仍需加入小量的方向舵,以保持方向控制。如果 TAC 失效,根据推力的衰减按比例柔和施加方向舵,保持方向控制。

正常双发起飞时,在 VR 开始柔和持续地抬头至 15 度俯仰。如果一台发动机失效,也在 VR 开始柔和持续地抬头;但目标俯仰姿态比正常双发俯仰姿态低 2 到 3 度。一台发动机失效的抬头率比正常起飞也要稍慢一些(慢 1/2 度每秒)。离地后调节俯仰姿态,保持所需速度。

如果离地后一台发动机失效,TAC自动输入方向舵,完全补偿不对称推力造成的偏转。如果TAC不工作,用方向舵和副翼控制航向,并保持机翼水平。正确的蹬舵量使驾驶盘接近中立。

典型的抬头 - 一台发动机不工作

下图描绘的离地姿态应在 5 秒左右达到。按需调节俯仰姿态,保持 V2 至 V2+15 节的理想空速。

高度表指示正上升率后收起落架。 根据本章介绍的技巧收襟翼。

典型起飞的机尾离地高度 - 一台发动机不工作

下图介绍了一台发动机不工作时襟翼位置对离地俯仰姿态的影响,以及起飞过程中的最小机尾离地高度。另外,最后一栏提供了机轮在跑道上,起落架支柱伸出,机尾触地时的俯仰姿态。机尾触地时的俯仰姿态与双发起飞一样。关于机尾触地的介绍参见第8章和FCOM。

对于所有的起飞襟翼设置,最小机尾离地高度保持恒定。制定的抬头速度计划可以保持恒定的机尾离地高度。

机型	襟翼	离地姿态 (度)	最小机尾离地高 度英寸(CM)	机尾触地俯仰姿态 (度)
777-200	5, 15, 20	9.5	26 (66)	12.1
777-200LR	5, 15, 20	9.5	35 (89)	12.1
777-300	5, 15, 20	8.0	24 (61)	8.9
777-300ER	5, 15, 20	9.0	16 (41)	10.0

注: 777-300ER 数据在半折式起落架 (SLG) 工作时有效。SLG 不工作时, 使用 777-300 数据。

起始爬升 一台发动机不工作

应调整起始爬升姿态,保持最小 V2 的速度和正上升率。离地后飞行指引提供适合的俯仰指引。交叉检查指示空速、垂直速度和其它飞行仪表。飞行指引指令最小 V2 或当前速度,最大不超过 V2+15。

若不使用飞行指引,姿态和指示空速成为主要的俯仰基准。

高度表指示正上升率后收起落架。调整初始爬升姿态,保持最小 V2。若速度在 V2 和 V2+15 之间一台发动机失效,以失效时的空速继续爬升。若在 V2+15 以上发动机失效,增大俯仰将速度降到 V2+15,达到增速高度前保持 V2 + 15。

离地后飞行指引的横滚方式指令地迹,直到LNAV接通或选择了其它横滚方式。若地迹偏离了预计的飞行轨迹,使用HDG SEL/TRK SEL/LNAV来获得所需的航迹。

发动机火警指示、发动机故障、接近或超过发动机极限等情况应尽快处理。一旦飞机得到控制,起落架收上并达到安全高度后(典型的为 400 英尺 AGL 或以上),尽快完成检查单记忆项目。在襟翼收上且条件允许的情况下完成检查单参考项目。

如果在起始爬升过程中一台发动机失效,襟翼收上后且条件允许时完成相应的检查单。

起飞后立即转弯 - 一台发动机不工作

越障或离场程序可能要求专门的单发离场程序。如果需要立即转弯,在合适的高度(通常为至少 400 英尺 AGL) 开始转弯。机动飞行中保持起飞襟翼和 V2 到 V2 + 15 节的速度。

注: V2+10 节之前 AFDS 限制坡度角不超过 15 度,以保持至少足够的 机动裕度。如果 LNAV 接通,或者当 HDG SEL 或 TRK SEL 接通 同时坡度限制在 AUTO 位, V2+20 节之前坡度限制增加到 25 度。 完成转弯后,在或高于增速高度时,增速并收襟翼。

自动驾驶仪接通 - 一台发动机不工作

在高于 200 英尺 AGL 的安全高度,并且有适当的方向舵脚蹬输入时,可以接通自动驾驶仪。如果 TAC 不工作,必须人工配平方向舵。

收襟翼 - 一台发动机不工作

一台发动机不工作收襟翼的最低高度是 400 英尺 AGL。波音训练时,使用 1,000 英尺 AFE 作为开始加速收襟翼的标准高度。

V1 后一台发动机失效的起飞加速高度是基于起飞后 5 分钟之内(可选用 10 分钟)加速到推荐的机翼收上速度,同时收襟翼并选择最大连续推力 极限。一台发动机失效起飞后,综合大全重、起飞襟翼的调定和机场标高等因素可能需要在 400 英尺开始收襟翼。

在典型的训练重量下,飞机有足够的性能在开始收襟翼之前爬升到 1000 英尺。所以在训练时,V1 后发动机失效用 1000 英尺做为加速高度。

在发动机失效收襟翼高度,如果 VNAV 接通,将指令接近平飞的爬升阶段进行加速。按起飞收襟翼速度计划收襟翼。 当襟翼收上并且空速在或高于襟翼收上机动速度时,VNAV 自动将基准推力极限设置到最大连续推力(CON)。

在单发加速高度,如果 VNAV 没有接通,让俯仰方式保持 TO/GA,并在 MCP 上选择襟翼收上机动速度。收襟翼时,单发的加速和爬升能力随飞机的推力重量比变化。飞行指引指令一个接近平飞的收襟翼阶段。按起飞收襟翼速度计划加速并收襟翼。

如果在加速高度没有使用飞行指引,在加速的同时减小俯仰姿态,尽量保持平飞。按起飞收襟翼速度计划收襟翼。

当飞机加速且襟翼收起时,TAC 自动调整方向舵,保持驾驶盘中立。若TAC 不工作,人工调节方向舵脚蹬位置以保持驾驶盘中立,并配平以减轻方向舵脚蹬压力。

襟翼收上 - 一台发动机不工作

襟翼收上后,在或高于襟翼收上机动速度,如果 VNAV 没有接通,选择 FLCH,核实最大连续推力(CON)调定,并继续爬升到越障高度。

3.36

当襟翼收上并且推力调定后,开始完成相应的发动机失效非正常检查单以及起飞后检查单。襟翼收上后,如果 VNAV 接通,FMC 指令以襟翼收上机动速度爬升,自动油门将自动过渡到最大连续推力。如果没有出现上述情况,越障之前选择 FLCH 以及襟翼收上机动速度。选择 FLCH 后最大连续推力自动调定。

减噪音 - 一台发动机不工作

起飞后一台发动机失效,不再要求减噪程序。

减推力(ATM)起飞过程中发动机失效

因为减推力起飞(ATM)仍然需要满足所有局方规定的起飞性能要求,一旦一台发动机失效,没有必须增加推力超出工作发动机的减推力等级。然而,ATM 起飞过程中若需要更多的推力,在跑道上时通过人工前推推力手柄,如果升空则按压 TO/GA 电门,可以使工作发动机的推力增加到全功率起飞推力。这是因为在全功率起飞推力时起飞速度考虑了 VMCG和 VMCA。

将工作的发动机的推力增加到全功率起飞起飞推力,可以提供额外的性 能裕度。这个额外的性能裕度对于减推力起飞是不要求的,由机组决定 是否使用。

减功率推力(固定减功率)起飞过程中发动机失效

固定减功率起飞过程中一台发动机失效后,推力增加超过了固定减功率极限可能会导致失去方向控制,除非机长判断马上有撞地危险,否则不应执行。这是因为使用固定减功率推力值时起飞速度考虑了 VMCG 和 VMCA。

ATM 结合固定减功率起飞过程中发动机失效

结合减推力(ATM)和固定减功率起飞过程中一台发动机失效后,任何推力增加超出固定减功率极限可能导致失去方向控制。这是因为使用固定减功率推力值时起飞速度考虑了 VMCG 和 VMCA。由于机组没有固定减推力极限指示,除非机长认为即将触地,否则不要增加推力。

爬升、巡航、下降和等待	第4章
目录	TOC 节
序言	4.1
爬升	4.1
减推力爬升	4.1
爬升限制	4.1
低高度改平	4.2
过渡到爬升	4.3
确定爬升速度	4.3
爬升过程中发动机结冰	4.3
经济爬升	
经济爬升计划 - FMC 数据不可用	4.4
最大爬升率爬升	4.4
最大爬升角爬升	4.4
一台发动机不工作爬升	4.4
巡航	4.6
最大高度	4.6
最佳高度	4.7
推荐高度	4.8
确定巡航速度	4.9
梯级爬升	4.9
燃油温度低	4.10
经济巡航性能	4.12
发动机不工作巡航/飘降	4.13
高高度大速度飞行	4.14
ETOPS	4.15
极地飞行	
下降	
确定下降速度	4.19

下降轨迹	4.19
下降限制	4.19
速度干预	4.20
偏离轨迹下降	4.20
下降计划	4.20
下降率	4.21
减速板	4.22
襟翼和起落架	4.22
速度限制	4.23
下降期间发动机结冰	4.23
等待	4.23
等待速度	4.24
等待程序	4.24
FMC 不提供等待速度	4 25

爬升、巡航、下降和等待

笙4章

序言

本章介绍爬升、巡航、下降和等待的推荐操作方法和技巧。同时介绍了爬升或巡航过程中发动机失效,以及发动机不工作的巡航/飘降。本章推荐的操作方法和技巧讨论可以提高机组协作,加强安全,并为准标化提供了基础。

爬升

减推力爬升

以小于爬升全额定推力使用发动机可以延长发动机的寿命。

FMC 在 THRUST LIMIT 页面上提供两种减推力爬升。

- CLB 1 为爬升推力恒定 10%减功率。
- CLB 2 为爬升推力恒定 20%减功率。

根据固定的减功率或假设温度方法选定的起飞减推力量,FMC 也可以自动选择减推力爬升。

随着飞机逐渐爬升直到全爬升推力恢复,爬升推力减量逐渐消除。如果爬升率低于500英尺/分钟左右,应选择下一个更大的爬升率。

起飞前,完成起飞选择后,飞行员可以在 THRUST LIMIT 页面选择另外的爬升推力限制,超控自动选择的爬升推力限制。自动选择的爬升推力 被超控后,之前所选择的起飞减推力不受影响。

注: 使用减推力爬升会增加总航程燃油,各营运人应进行评估。

爬升限制

当选择某一程序或通过 CDU 人工输入时,可以在航路上自动输入爬升限制。当飞机在 MCP 高度改平时,FMC 将该高度视为爬升限制。

通常,将所有的最大或者硬高度限制调到 MCP 高度窗。确定满足该高度限制,或得到进一步指令后,可以调下一个高度。这一程序可提供高度警报,并保证满足高度指令限制。

使用 VNAV 时,如果高度限制间隔很近导致机组的工作量大大增加并且要担心不必要的改平,运营人可以批准使用备用 MCP 高度调定技巧。该内容的更多信息参见第 1 章,使用 VNAV 时 MCP 高度调定技巧。

注:对于使用 VNAV 的备用 MCP 高度调定技巧,选择 VNAV SPD 以外的其它俯仰方式会导致违反高度限制。

对于 VNAV SPD 以外的爬升俯仰方式,MCP 高度必须调到下一个高度 限制,或者按离场公布。

当无 ATC 限制时,在拥挤的空域或机组工作量很大时,推荐使用 FLCH 或 VNAV 以及 MCP 高度干预。高度干预是指在 MCP 高度窗上选择下一个所需高度,并按压 MCP 高度选择器,删除高度限制,让飞机爬升到 MCP 高度。

低高度改平

有时候起飞后需要低高度爬升限制。这一高度限制应在 MCP 高度窗里调定。当飞机接近这一高度时,方式信号牌变为 ALT 或 VNAV ALT,飞机改平。自动油门 SPD 方式接通,并且调节到目标速度。如果还在 TO/GA 俯仰方式时高度截获,确认 SPD 自动油门方式接通,并在改平时设置所需的指令速度。

大起飞推力 - 小全重

高起飞推力、小全重起飞时,如果完成低高度改平,机组应考虑如下因素:

- 由于接近改平高度且飞机的爬升率大,在刚离地之后可能发生高度截获。
- 为保证旅客舒适, AFDS 的操纵法则限制 F/D 和自动驾驶仪的俯仰指令
- 在改平高度以下可能没有足够的高度来完成正常的截获剖面,除非机组采取措施,否则可能飞过该高度。

为了防止超过目标高度和目标空速,机组应考虑采取一项或多项下列措施:

- 只要可能, 在小全重使用减推力起飞
- 比正常情况提前将起飞推力减至爬升推力

- 如果可能飞过高度, 断开 AFDS 完成人工改平.
- 按需人工控制推力来管理速度, 防止襟翼超速。

过渡到爬升

在飞过障碍物或高于最低飞越高度之前,保持襟翼收上机动速度。如果 没有高度或速度限制,加速到预定的爬升速度计划。越早加速到计划的 爬升速度,飞行所用时间越短,油耗越经济。

确定爬升速度

FMC 自动计算航路爬升速度,并显示在爬升和进程页面上。如果 VNAV 接通,该速度也显示为指令速度。低于速度过渡高度,FMC 的目标速度 为导航数据库中贮存的离港机场过渡速度限制(在 FAA 空域,低于 10,000 英尺 MSL 为 250 节),或襟翼收上机动速度,取较高值。FMC 使用航段页面上与航路点相关的速度限制,以及爬升页面上与高度有关的速度限制。

FMC 提供经济(ECON)操作和单发(ENG OUT)操作的最佳爬升速度方式。这些最佳速度可在爬升之前或期间改变。同时提供最大爬升角爬升(MAX ANGLE)的基准速度。

ECON 爬升速度是为获得飞机最低运行成本而优化的一个恒定速度/恒定马赫计划。设置恒定马赫数,使其等于在 FMC 输入的巡航高度的经济巡航马赫数。

在非常低的巡航高度上,经济爬升速度增加到正常值以上,以匹配所输入巡航高度的经济巡航速度。对于经济爬升,速度随全重(爬升顶点预测重量)、爬升顶点预测风、爬升顶点预测温度与 ISA 的偏差值以及成本指数变化。

爬升过程中发动机结冰

可能在没有预期的情况下出现发动机结冰,并可能在风挡或飞机其它部位无结冰迹象时发生。积冰一旦形成,将以惊人的速度累积起来。虽然一片云层也许不会引起结冰,但与之相似的另一片云层可能就会导致结冰。

注:无论何时只要存在预计存在结冰条件,发动机防冰系统应放在 AUTO 或 ON 位。不遵守推荐的发动机防冰程序可能导致发动机失速、超温或发动机损坏。

经济爬升

FMC 正常的经济爬升速度计划最大限度地降低了航程成本。它随着全重的不同而变化,并受成本指数的影响。FMC 产生固定的速度计划,它随成本指数和重量的不同而变化。

任何全重的经济爬升速度一般都超过 250 节。在 10,000 英尺以下 (FAA 空域), FMC 爬升速度限制到 250 节或更低的航路点速度限制(如输入)。如果允许在 10,000 英尺以下使用更大速度, 使用 ECON 速度可进一步节约成本。

经济爬升计划 - FMC 数据不可用

- 250 节/VREF30+80(取较高一个) 10,000 英尺以下
- 310 节/.84 马赫 10,000 英尺以上

最大爬升率爬升

最大爬升率爬升提供大爬升率,并在最短时间内到达巡航高度。使用下列速度可接近最大爬升率:

• 襟翼收上机动速度+60 节, 直到获得 0.82 马赫

注: FMC 不提供最大爬升率的爬升速度。

最大爬升角爬升

FMC 提供最大爬升角速度。最大爬升角速度通常用于越障、最低穿越高度或在最短距离内达到指定的高度。它随全重的变化而变化,并提供与襟翼收上机动速度大致相等的爬升梯度。

一台发动机不工作爬升

推荐的一台发动机不工作爬升速度接近最大爬升梯度速度,并随全重和高度而变化。在高高度和大全重,用固定的马赫数作为单发爬升速度的上限。在爬升过程中选择 ENG OUT CLIMB 页面后,FMC 默认使用单发爬升速度。在襟翼收上并且飞过所有障碍物之后选择 ENG OUT CLIMB 页面。

只要不是在起飞推力时失去一台推力,在工作的发动机上设置最大连续 推力,并调整俯仰保持空速。

在飞机光洁形态,选择 CDU 爬升页面上的单发提示。单发方式提供 VNAV 爬升指令,以单发爬升速度爬升到巡航高度或单发最大高度,以 较低者为准。如果飞机当前高度高于单发最大高度,提供飘降信息。一旦达到改平高度,指令速度变成 EO SPD。可以选择发动机失效 LRC 或者公司速度(CO SPD)。推力调定保留在最大连续推力,直到空速上升到指令值。

注:如计算的爬升速度不可用,使用襟翼收上机动速度及最大连续推力。

巡航

本节从旅客最舒适和最经济角度提供巡航阶段的基本指南。

最大高度

附录 A.2.5

最大高度是飞机可飞行的最大高度。由三个基本特性决定,该特性是每个机型所特有。FMC 预计的最大高度是下列高度中最低一个:

- 最大批准高度 -在认证过程中考虑了结构限制(机身上的限制),快速下降能力,或者认证机构规定的其它因素后所确定的高度
- 推力限制高度 有足够可用推力提供特定最小爬升率的高度。(参阅QRH空中性能章节中远程巡航最大飞行高度。)根据发动机的推力额定值,推力限制高度可能高于或低于机动限制的高度能力。

777-200LR, 777-300ER

抖振或机动限制高度 - 起始抖振之前存在特定机动裕度的高度。该高度提供航空公司选择的抖振前的g裕度。可用的最小裕度是抖振前0.3g(40度坡度)。一些机构可能规定不同的最小机动裕度。

777-200, 777-300

抖振或机动限制高度 - 起始抖振之前存在特定机动裕度的高度。该高度提供航空公司选择的抖振前的g裕度。可用的最小裕度是0.2g
 (33 度坡度)到抖振。一些机构可能规定不同的最小机动裕度。

虽然上述每种限制由 FMC 进行检查,但是可用推力可能会限制完成除相对较小机动以外的其它机动能力。琥珀色区极限不指示可用推力限制的机动能力。

空速指示上的最小机动速度指示不保证有能力以该速度保持平飞。将飞机减速至琥珀色区可能导致飞机无法保持速度和/或高度,因为速度下降,飞机阻力可能超过可用推力,这在转弯时尤其如此。机组如果要在或接近最大飞行高度操作,应该熟悉飞机在这些情况下的性能特征。

注: 从 FMC 得到最精确的高度限制,以确保飞机重量、巡航重心和温度输入正确。

对于 LNAV 操作,FMC 提供实时的坡度角限制功能。该功能可以保护指令的坡度角不超过当前可用的推力限制。该坡度角限制保护只在 LNAV 过程中可用。

对于 LNAV 以外的其它操作,当在或接近最大高度飞行时,速度需大于下部琥珀色速度带至少 10 节,并使用不大于 10 度的坡度角。如果速度下降低于下部琥珀色速度带,立即采取下列一项或多项措施加速:

- 减小坡度角
- 增加推力到最大连续
- 下降

在或接近最大高度的紊流可能瞬间增加飞机迎角,并启动抖杆。如果速度接近下部琥珀色速度带,任何机动动作会增加负载因素,并进一步减小起始抖振和抖杆的裕度。

在 FMC 最大高度以上,FMC 燃油预测不可用,并且不在 CDU 上显示。 FMC 最大高度以上 VNAV 不可用。在或高于最大高度,燃油消耗会增加。不推荐在此高度以上飞行。

最佳高度

最佳高度指的是飞机在 ECON 方式工作时最低成本的静空巡航高度,以及飞机在 LRC 或飞行员所选的速度方式工作时最低油耗的巡航高度。最佳高度不考虑相对标准日温差以及所在高度巡航风的影响。

因为最佳高度的目标在使用成本指数时是最低成本,在其它方式时是最小油耗,所以即使巡航马赫相同高度也可能不同,这要取决于巡航马赫是基于成本指数,还是作为选择速度人工输入。但是,在任何一种情况下,在飞行过程中随着重量的减少最佳高度持续下降。

对于短程飞行,可能达不到上述规定的最佳高度,这是因为完成爬升到 最佳高度之前就到达下降顶点(TOD)。

选择的巡航高度通常应尽量接近最佳高度。最佳高度是在给定航程距离、成本指数和全重,不考虑巡航风的情况下提供最低航程成本的高度。它提供约 1.5 载荷因数(至抖振开始约 48 度坡度)或更好的振动裕度。随着偏离最佳巡航高度的增加,静空性能的经济性降低。

高于最佳高度,预计会丢失一些推力限制的机动裕度。在最佳高度 2000 英尺以上平飞,抖振开始之前通常允许大约 45 度的坡度。飞机高出最佳高度越高,推力裕度越小。在接受一个高于最佳高度的高度前,要确定在估计的温度和颠簸条件下,随着飞行进程,飞机能继续接受这种高度。装有较高推力发动机的飞机上,高度选择最可能受起始抖动机动裕度限制。在请求/接受起始巡航高度及随后的梯级爬升时,应检查航路上预计的温度和颠簸情况。

推荐高度

推荐高度即考虑了沿航路高空的预报风以及温度因素的巡航高度。当高空风发生大的变化(风速或风向),或存在大的温度偏差,在推荐高度飞行可能相对于最佳高度,会产生额外的油耗和/或燃油节余。推荐高度是机组在 FMC 上可获得的最优化的巡航高度信息。

推荐巡航飞行高度即显示在巡航页面上的气压高度,它满足以下标准:

- 适合于飞行方向的 IFR 巡航高度。它与标准的 IFR 巡航规则或机组选 择的其它步骤标准、以及当前扇区的磁地迹一致。
- 当飞成本指数时,提供最经济的操作,不飞成本指数时,提供最节油的操作,从当前飞机状况开始,基于飞机前方 250 500 nm 范围的预测性能。梯级爬升到一个新高度对耗油的影响也影响到成本或油耗计算。
- 包括当前及预报的高空风和温度的影响。

为了提供可用的、精确的推荐高度,FMC 需要在高于或低于巡航高度的 各个高度的准确预报风。可在航路点和下降的各个高度人工输入风,或 者通过上传。

确定巡航速度

FMC 自动计算巡航速度,并在 CRZ 和 PROGRESS 页面上显示。VNAV 接通时同时由指令空速显示。默认的巡航速度方式是经济(ECON)巡航。飞行员可以在 CRZ 页面的目标速度行选择远程巡航(LRC)、单发方式、或改写固定马赫数或 CAS 值。

ECON 巡航是一个可变的速度计划,与全重、巡航高度、成本指数、顶风分量或顺风分量成正比。它对于输入的成本指数可提供最低运行成本。成本指数输入零产生最大航程巡航。

注: 成本指数输入大于等于 5000 时,通常会出现推力限制或最大速度限制。

顶风增加 ECON CRZ 速度。顺风减少 ECON CRZ 速度,但是不会低于静风最大航程巡航速度。

LRC 是一个可变的速度计划,它提供小于最大可用燃油里程的 1%的燃油里程。FMC 不对 LRC 进行风修正。

要求到达时间(RTA)速度是为了满足 FMC LEG 页面上的规定了 RTA 航路点的时间要求。

梯级爬升

不受短程距离限制的飞行计划一般在最佳高度附近巡航。在飞行中,由于最佳高度随燃油消耗而增加,有必要定期爬升到一个更高的巡航高度,以达到飞行计划的油耗。该技巧(参阅梯级爬升巡航)一般是根据可用的巡航高度层在 FMC 输入适当的梯级爬升值。在多数飞行中,到达 T/D前可能需要一个或多个梯级爬升。

在特殊的航路上如果难以进行高度改变,请求一个最佳高度之上的起始 巡航高度可能很有好处。这样尽可能减少在低高度/大油消情况下长时间 飞行的可能性。请求的/可接受的起始巡航高度应与推力限制的或机动裕 度限制的高度作比较。记住,巡航推力限制的高度取决于巡航高度层温 度。如果大全重条件下,巡航高度层温度增加超过表中的值,最大巡航 推力将无法保持所需巡航速度。

梯度高度可计划为航路点,或者是 FMC 计算的最佳梯度点。最佳梯度 点由航路长度、飞行条件、速度方式、当前飞机高度、STEP TO 高度(或 邻 STEP TO 高度)以及全重等因素确定。FMC 计算的梯度点提供航班 的最低航程成本,包括爬升燃油的容限。尽可能在接近梯级爬升点的地 方开始巡航爬升到一新高度。

注: FMC 的梯级爬升默认值可能对 RVSM 或米制空域不适合。按需人工输入适当的梯级爬升值。

航路爬升燃油

根据飞机全重、初始高度、大气温度及爬升速度的不同,4,000 英尺的航路爬升需 300 至 1,000 磅(225 至 450 公斤)额外燃油。对于大全重和较低的初始高度燃油增量最大。额外油耗可由下降过程中的燃油节余来补偿。假如所用的风信息可靠,如果 FMC 或飞行计划推荐更高的高度,爬升到该高度将更有利。

燃油温度低

燃油温度随大气全温变化。例如,在高巡航高度上延程飞行会降低燃油 温度。在某些情况下,燃油温度可能接近最低燃油温度极限。

燃油冰点不应与由于冰冻的水颗粒导致的燃油结冰形态混淆。燃油冰点是一个温度,在这个温度下燃油出现蜡状晶体。Jet A 燃油规格将冰点限制到最大零下 40 摄氏度,而 Jet A-1 的最大值为零下 47 摄氏度。在前苏联,燃油为 TS-1 或 RT,它们的最大冰点达到-50 摄氏度,在一些地区可能更低。实际的燃油冰点根据燃油加工地点的不同而不同。

除非航空公司在签派站对装载的燃油实际冰点进行了测量,否则必须使用规定的最大燃油冰点。在大多数机场,实际测量的燃油冰点可能比规定最大冰点要低。如可知,可以使用实际冰点温度。飞行员必须记住一点,某些机场在地面上贮存燃油,在温度极低的情况下,燃油在装载之前就可能已经接近最低允许值了。

对于混合燃油,用机上燃油最保守的冰点作为混合燃油冰点。执行此程 序直到连续3次加注更低冰点的燃油。这时再使用更低的冰点。如果燃 油冰点对下一个航段很重要,加油前机翼油箱中的燃油要传输到中央翼 油箱。被加载燃油的冰点可用于下个航段。

燃油温度应保持在 FCOM 中规定的 AFM 极限值以内。

除非燃油温度已降到接近最低极限值,否则不必担心一直保持最小燃油 温度。燃油冷却率大约为每小时3摄氏度,在极端寒冷的天气条件下, 最大每小时可达12摄氏度。

可用以下三种方式来增加全温,三种方法可单独使用,也可一起使用:

- 爬升或下降到较暖空气团
- 改航到较暖空气团
- 增加马赫数

注: 大多数情况下,采取下降可以到达较暖空气团,但也有报告指出较高飞行高度层也有暖空气团。如果预报温度比正常情况低,应认真研究气温预报。

燃油温度稳定需 15 到 60 分钟。大多数情况下,需要下降至低于最佳高度 3,000 至 5,000 英尺的高度。在更严重的情况下,也许需要下降到 25,000 至 30,000 英尺的高度。马赫数每增加 0.01,大气全温增加 0.5 摄氏度至 0.7 摄氏度。

附录 A.2.5

波音开发了燃油温度预测程序(FTPP),以帮助营运人确定燃油冰点温度。设计该程序主要是在飞行计划时使用,并准备与营运人的飞行计划系统结合。该程序已经通过试飞和飞行数据的校正。机组可以通过该程序判断是否需注意燃油温度,确定可用的选项,并可能避免在空中采取措施来阻止燃油温度下降。

经济巡航性能

从离场到目的地机场的飞行计划油耗是根据一定假设条件算的。包括起飞全重、巡航高度、航路、温度、航路风以及巡航速度。

整个航程中应对比实际油耗和飞行计划油耗。

下列因素会使计划的油耗增加:

- 高干计划的温度
- 低于计划的巡航高度
- 巡航高度高于最佳高度 2000 英尺以上
- 计划远程巡航时,速度大于计划的速度,或明显小于远程巡航速度
- 较强顶风分量
- 燃油不平衡
- 飞机配平不当
- 过量的推力手柄调节

巡航燃油损耗可以用以下方法估算。做飞行计划时,参考相应的飞机飞行计划和性能手册:

- ISA + 10 摄氏度:增加航程燃油 1%
- 高于最佳高度 2000 英尺: 航程燃油增加 1%-2%
- 低于最佳高度 4000 英尺: 航程燃油增加 4%-5%
- 低于最佳高度 8000 英尺: 航程燃油增加 12%-14%
- 巡航速度高于计划速度 M.01: 航程燃油增加 1%至 2%

在最佳高度 2000 英尺以内巡航,远程巡航速度可能接近 M.84。在所有巡航高度,远程巡航也提供最佳抖振裕度。

注:如果发现实际耗油与飞行计划耗油不符,并且上述情况都不能解释, 应考虑为燃油渗漏。完成相应的非正常检查单。

发动机不工作巡航/飘降

非正常检查单性能或发动机突然失效可能需要执行单发飘降。

FMC 提供发动机不工作巡航信息。

如果在巡航高度一台发动机失效,可能需要下降。在 FMC ACT CRZ 页面选择 ENG OUT。这将显示根据单发 MCT 计算的 MOD CRZ,并保持在 EO SPD 行显示的空速。

在 MCP 高度窗设置单发巡航高度,并执行 EO D/D 页面。推力基准变成 CON,自动油门保持 MCT。飞机用 VNAV SPD 俯仰方式做 VNAV 下降。 VNAV SPD 方式可能指令飞机接近改平,控制飘降目标速度以上的空速增加。如果飞机接近平飞时超过的空速仍不能降下来,FMC 过渡到 VNAV PTH 方式。在 VNAV PTH 方式,FMC 指令下降率为 300 fpm 的飞行轨迹。这时自动油门 SPD 方式控制空速。

高度截获时显示 ENG OUT CRZ 页面。保持 MCT 和飘降高度直到建立 EO SPD 速度。

注:如果飞机在或低于最大单发高度时一台发动机失效,选择并执行 EO CRZ 页面,保持单发巡航速度。

如果要求在最大高度巡航,设置 MCT 并建立爬升,缓慢减速到 EO CLB 速度。改平后选择 EO CRZ 使油耗最经济。

可以在 MOD CRZ 或 EO D/D 页面选择备用目标飘降速度。LRC 速度会产生较低飘降高度但更好的燃油性能。根据 AMI(航空公司可变信息库)可选择公司速度(CO SPD),它提供更高的飘降速度以及更短的到目的地机场时间。

在 MOD CRZ 或 EO D/D 页面可以输入单发巡航高度。如果输入了单发巡航高度,同时飞机超过计算的最大高度以上 150 英尺,FMC 指令飘降计划,下降到输入的单发巡航高度。如果飞机已经下降到计算的最大高度 150 英尺范围内或更低的高度之后输入一个循环高度,FMC 指令大约 1,250 fpm 的巡航下降,下降到一个更低的单发巡航高度。

除非是飞行员进行修改,改平巡航方式与飘降过程中使用的一样。飘降的 FMC 燃油和 ETA 计算、以及剩余航程将与选择的速度方式一致。为了获得最好的燃油性能,在最小阻力速度(E/O)飘降之后选择单发 LRC方式。

如果单发时没有使用 VNAV,在工作的发动机上设置 MCT 并保持高度,直到飞机下降到显示的适当单发速度。使用 FMC 提供的单发速度,同时下降到单发巡航高度。保持 MCT 直到飞机加速到 LRC,然后保持 LRC速度。如果 FMC 不工作,使用 QRH 中的穿越颠簸飘降速度以及单发远程巡航表。

高高度大速度飞行

在高高度/大马赫范围中飞行,飞机显示出极好的稳定性。以大马赫巡航时,通常不会遇到马赫抖振。飞机没有马赫俯冲的趋势。

随着速度接近 MMO,阻力迅速增加。大重量条件下,飞机可能没有足够的推力加速到在正常巡航高度平飞时的 MMO。

大速度高高度情况下的飞行操纵灵敏度

对于现代飞机的营运人,有必要理解在大速度高高度情况下飞行操纵的 灵敏度。曾经出现在高高度、大速度飞行时由于过度操纵飞机导致旅客 受伤的报告,这可能是在自动驾驶仪接通超控驾驶杆时,也可能是用脱 开电门脱开自动驾驶仪之后。

飞行员应该理解,与起飞着陆等低速操纵相比,飞机在巡航高度对驾驶杆移动的俯仰反应(载荷因素)通常会更加灵敏。类似地,对于固定姿态变化,爬升率的变化与真空速成正比。例如,同样的姿态变化在 KIAS 290 节海平面能够产生 500 fpm 爬升率,如果在 KIAS 290 节 35,000 英尺则能产生大约 900 fpm 的爬升率。这是因为 KIAS 290 等于海平面大约 290 节的 TAS,在 35,000 英尺为 490 节左右。这种特征对于小的姿态改变也适用,例如保持高度使用的姿态调整。

其它因素,例如全重和 CG 也会影响飞行操纵灵敏度和稳定性,但是只要 CG 在允许范围内,操纵质量能够保证。但是,为了在高高度大速度的情况下避免过度操纵飞行操纵,脱开自动驾驶仪后操纵输入应该柔和小量。

ETOPS

延程飞行(ETOPS)(双发飞机)是指从航路上某一点开始,以单发巡航速度到达某一合适机场需一小时以上距离(静风)的飞行。

ETOPS 要求及许可

附录 A 2 5

最低设备清单(MEL)和偏差放行指南(DDS)包括适用于 ETOPS 的 签派放行标准。有关 ETOPS 的更多信息参阅营运人程序和政策。

飞行和性能

附录 A.2.6

执行 ETOPS 飞行的机组必须熟悉飞行计划中列出的 ETOPS 备降场。这些机场必须符合 ETOPS 最低天气标准,这个最低标准高于传统备降场最低放行标准,而且备降场位置应在系统失效需要改航的情况下可以保证改航着陆。

计划 ETOPS 飞行时要了解运行区域、关键的燃油贮备、高度能力、巡航性能表以及结冰损耗。飞行计划和性能手册(FPPM)提供了计算临界贮备燃油的指南,这对机组满足 ETOPS 飞行剖面要求十分重要。性能手册(FPPM)还提供了一台发动机不工作时高度能力以及在 ETOPS 计划速度下的巡航和改航燃油信息。该信息不包括在 FCOM/QRH 中。必须对风、非标准大气条件、发动机或机身导致的性能下降、以及飞越预报的结冰区(如适用)等情况进行燃油储备修正。

注: 临界的燃油计算是 ETOPS 签派的一部分,正常情况下不用机组计算。 正常情况下机组从计算机飞行计划(CFP)获得 ETOPS 临界燃油信息。

程序

ETOPS 单发程序与标准非正常程序有所不同。一台发动机失效后,机组执行修改的"飘降"程序,这个程序按 ETOPS 航路要求而定。典型的程序是使用大一些的下降和巡航速度,以及发动机失效后较低的巡航高度。这样可以使飞机在营运人规定的时间限制内尽快到达备降场。这些巡航速度和高度由营运人确定,局方审批,通常与 FMC 提供的单发速度不同。但如果有必要,机长可以根据实际情况自己决定修改速度。

极地飞行

附录 A.2.6

关于极地 FMC 使用的规定和极地边界的介绍,参阅 FCOM 第二册中 FMC 极地导航章节。

应注意在极度寒冷气流中飞行的航前计划,也要考虑寒冷天气的燃油温度。参照以下关于燃油温度低的推荐程序和机组措施。

由于可提供的备降机场相对于其它地区受限制,要特别注意改航计划,包括机场条件和可用燃油。机组应准备好在需要时使用 QFE 和米制高度。指定的巡航高度层有可能出现变化,这是因为标准巡航高度随 FIR变化。有些机场标准即使是 QFE,根据请求可以提供 QNH。有可能提供米制风速(米/秒)。简单的估算为: 1 米/秒 = 2 节。英尺与米的转换表在计划梯级爬升、转换最低标准时十分有用。

使用 ADF 和/或 VOR 原始数据时要小心。ADF 方位(真或磁)由机组选择的航向基准确定。VOR 径向线根据 VOR 台方位显示。

要根据适用的航路图进行通讯。大于北纬82度时,SATCOM不可用。 机组必须在到达SATCOM覆盖边缘前调好HF频率和HFSELCAL。公司常规通讯程序应包括备降或其它紧急情况下能立刻启动的协助程序。

注: 如果要在地面使用 SATCOM, ADIRU 必须校准。

在极地区域导航时,磁航向应被认为不可靠或根本不可用。典型的是磁差变化极大,在同一点不稳定,飞机位置移动时快速变化。确定计算机飞行计划显示真航迹和真航向。尽管没有飞机系统使用网格航向,装有网格航向指示器的飞机可以使用网格航向作为参考。对于一些高纬度机场来说,网格航向在仪表进近程序中显示。注意无论飞机高度如何,

GPWS 地形数据库中没有地图的区域显示为洋红色点。

极地操作的主要横滚方式为 LNAV,可将航向基准电门放在 NORM 位再使用。需要人工选择真北航向基准使 HDG SEL/HOLD 和 TRK

SEL/HOLD 工作。可用 TRKSEL 或 HDG SEL 方式来偏离计划航路。

如果使用北极(NPOLE)或南极(S90EXXXXX 或 S90WXXXXX)航路点,在通过极地航路点时航向和航迹会快速转换。如果接近任一极点时在 HDG/TRK SEL 或 HDG/TRK HOLD 方式,有必要频繁更新航向/航迹选择器以反映快速变化和/或颠倒的航向/航迹,否则 AFDS 会指令不需要的转弯。因为这个原因,横滚方式最好用 LNAV。

失去两部 GPS 组件或失去 GPS 更新会使 ANP 增大并可能显示 NAV UNABLE RNP 信息,但通常不会妨碍极地飞行。

ADIRU 是一个故障容限组件。必须要一定数量的独立失效出现后所有的导航功能才会丧失,所以 ADIRU 整个失效的情况及其罕见。一旦出现 ADIRU 失效的情况,非正常检查单给机组提供不工作的项目以及必要的机组措施。当至少有一部 GPS 工作时,导航显示工作,并精确显示 FMC 航路和飞机航迹及位置信息。LNAV 不工作。必须在 FMC 中输入航向基准,以重新获得罗盘刻度。由于在极地时较大并且快速的磁向变化,所以在极地时最好输入真航迹和航向基准。这样可以提供更加直观导航显示,并且在 HDG SEL 方式下跟踪计划的航路。可以从计算机飞行计划或导航显示上获得真航迹。离开极地区域时可以用磁罗盘信息(如可用)来更新航向基准。如果 ADIRU 完全失效,计划原始数据仪表进近。

下降

确定下降速度

默认的 FMC 下降速度计划是从巡航高度到机场速度过渡高度的经济 (ECON)下降。在机场速度过渡高度,空速减小为导航数据库中机场速度 限制速度减 10 节。调整速度计划以满足在 LEGS 页面显示的航路点速度 /高度限制,以及在 DES 页面显示的速度/高度限制。如果需要,可以在 DES 页面目标速度行调整马赫、马赫/IAS或 IAS 值来修改经济速度计划。如果 FMC 信息不可用,使用本章下降率表格中的目标速度。

下降轨迹

FMC 轨迹下降是最经济的下降方法。在 LEGS 页面上,至少有一个低于 巡航高度、与航路点相关的高度限制会产生下降轨迹。该轨迹将从最低 的高度限制反过来向上建立,并假定慢车推力,或低于在 DESCENT FORECAST 页面输入的防冰高度的进近慢车。

下降轨迹将以下降速度计划、任何输入的速度/高度限制或预报将使用防冰为基础。该轨迹反映在 DESCENT FORECAST 页面输入的下降风值。

下降限制

当选择了一个进场程序或通过 CDU 人工输入时,下降限制会自动输入 至航路。

通常,在 MCP 高度窗内设置所有的强制性高度限制,以及"在或高于"高度限制。确定满足该高度限制,或得到进一步指令后,可以调下一个高度。这一程序可提供高度警报,并保证满足高度指令限制。

使用 VNAV 时,如果高度限制间隔很近导致机组的工作量大大增加并且要担心不必要的改平,运营人可以批准使用备用 MCP 高度调定技巧。该内容的更多信息参见第1章,使用 VNAV 时 MCP 高度调定技巧。

注:对于使用 VNAV 时的备用 MCP 高度调定技巧,选择 VNAV PTH 或 VNAV SPD 以外的其它俯仰方式将可能违反高度限制。

对于 VNAV PTH 或 VNAV SPD 以外的俯仰方式下降, MCP 高度必须调 定在下一个高度限制,或按照 FCOM 中的仪表进近规定调定。

平缓垂直轨迹航段会使自动油门提供部分推力来保持目标速度。比慢车下降陡的垂直轨迹航段可能要求使用减速板来控制速度。以大约 500 英尺/分的下降率完成巡航高度(如 10,000MSL)以下的减速要求。当需要在下降顶点减速时,则要在平飞过程中进行。

速度干预

可使用 VNAV 速度干预来满足 ATC 速度改变要求。VNAV SPD 俯仰方式将通过改变飞机的俯仰,同时保持慢车推力来应对速度干预。VNAV PTH 俯仰方式可能需要使用减速板或增加推力来保持所需空速。

偏离轨迹下降

LEGS 页面应该反映计划的进场程序。如果进行雷达引导的同时需要参考公布的进场程序,或者在进场时 ATC 突然要求航向引导,偏离轨迹下降圈是很好的计划工具,可以确定下降所需的阻力和推力。

外圈指以下降终点为基准,使用光洁形态、从飞机位置到下降终点航路 点限制的直飞轨迹。内圈以下降终点为基准,使用减速板。在 OFFPATH DES 页面可以输入一个单独的航路点作为下降圈的基准。

两个圈都假设正常的下降速度计划,包括在过渡高度减速,但不包括航路点的速度和高度限制。

下降计划

当飞机下降至航站区域时,飞行机组的工作量加大。必须尽量减少注意力的分散,管理性和非重要的工作应在下降前完成,或着陆后再做。下降过程中重要的工作进行得越早,关键的进近和着陆阶段的可用时间就越充裕。

运行中的各种因素和/或航站区域的要求可能不允许执行最佳下降计划。 除了ATC、天气、结冰和其它飞机活动需要调整下降计划,航站区域要 求可编入基本的飞行计划。

以合适的速度、正确的形态到达所需的高度需要有一个正确的下降计划。 在静风的条件下以经济速度下降大约为每3海里/1,000英尺。下降率是 由推力、阻力、空速计划和全重来决定的。

下降率

下降率表提供了飞机在 20,000 英尺以下,慢车推力、减速板放出或收起情况下的典型下降率。

	下降率 (典型的)	
目标速度	光洁状态	带减速板
0.84M/310 节	2200 fpm	5300 fpm
250 节	1400 fpm	3300 fpm
VREF 30 + 80	1000 fpm	2300 fpm

一般情况下,以慢车推力和光洁形态(无减速板)下降。在到达下降的 计划距离或计划时间之前保持巡航高度,然后在下降过程中保持选择的 空速计划。偏离这一计划可能导致到达目的地时过高,需要盘旋下降, 或到达时高度过低相对距离过远,需要额外的时间和燃油才可到达目的 地。

如果到达过高或速度过快,可使用减速板修正下降剖面。下降程序通常在飞机进场下降到巡航高度以下时开始,并且应该在10,000 英尺 MSL时完成。进近程序通常从过渡高度层开始。

计划在进行直线进近时离跑道大约 12 英里,或做正切进近时离跑道约 8 英里处,以襟翼收上机动速度下降到起落航线高度。在 10,000 英尺 AGL、 距机场 30 英里 、速度 250 节仔细交叉检查。

减少空速可能很困难,可能需要一个平飞阶段。为了计划起见,在未使用减速板的平飞条件下,从310减到250节大约需要60秒和6海里的距离。在平均全重条件下,减速到襟翼收上机动速度还需要额外的50秒和4海里。使用减速板辅助减速可节省50%的时间和距离。

保持所需的下降剖面并利用地图方式明确飞机位置,确保更有效的操作。 机组必须知道目的地的天气和飞机活动情况,并考虑到改航的可能性。 应复习机场进近图并讨论进近和着陆方案,以及滑行至停机位的路线。 尽早完成进近简令,最好在到达下降顶点前完成。这样机组可以全神贯 注操纵飞机。

减速板

空中使用减速板时 PF 应将手放在减速板手柄上。这样可以防止不需要时忘记收减速板。

使用减速板不会明显影响飞机的横滚反应。下降过程中使用减速板时要留有足够的高度或速度裕度,以便柔和改平。增加推力前收回减速板。

为了避免抖振, 襟翼大于 5 时应避免使用减速板。如果襟翼放出情况下需要放减速板, 进近过程中应避免大的下降率。到达 1000 英尺 AGL 之前要收回减速板。

通常不要用襟翼来增加下降率。以光洁型态正常下降到起落航线或仪表进近高度。

在自动驾驶接通的情况下下降,速度接近 VMO/MMO 时放减速板,如果快速收减速板,速度会瞬间增加超出 VMO/MMO。为了避免发生这种情况,柔和缓慢地收减速板,让自动驾驶仪有充足的时间调整俯仰姿态,将空速保持在极限之内。

如果在速度接近 VMO/MMO、高度截获过程中收减速板,可能会出现瞬间超速现象。这是因为推力在或接近慢车时,自动驾驶仪通过保持固定的轨迹柔和地截获选定的高度。为避免这种情况,有必要在高度截获前减小选择的速度和/或下降率,或减小所选速度并推迟收减速板,直到推力增加保持改平空速。

襟翼和起落架

以光洁型态正常下降到起落航线或仪表进近高度。若需增大下降率,放减速板。在减速板放出的情况下,如果由于防冰所需推力的要求导致小于正常的下降率,或 ATC 要求大于正常的下降率时,可以用放起落架的方法来增大下降率。

当航站区域和其它情况要求将空速减至襟翼收上机动速度以下时,放襟翼。通常在背台进近定位点之前,或目视进近时刚好加三边前,选择襟翼 5。

注: 200 节以上时避免使用起落架增加阻力。这样可减少旅客的不适并 延长轮舱门的寿命。

速度限制

低于特定的高度/高度层以及在机场附近的速度限制非常普遍。在大重量,最小机动速度可能超过这些限制。考虑放下襟翼以获得较小的机动速度,或向 ATC 申请获得较大的空速。

ATC 可能要求飞其它速度。飞行员应遵守速度调整要求,并将速度保持在正负 10 节之内。

下降期间发动机结冰

使用防冰以及所需推力增加会延长下降距离。因此需要做适当的下降计划,以在正确的高度、速度和形态到达起始进近定位点。需在 DESCENT FORECASTS 页面输入预计的防冰使用高度,以帮助 FMC 计算更精确的下降剖面。

可能在没有预期的情况下出现发动机结冰,并可能在风挡或飞机其它部位无结冰迹象时发生。积冰一旦形成,将以惊人的速度累积起来。虽然一片云不会造成结冰,但与之相似的另一片云则可能导致结冰。

注:无论何时只要存在预计存在结冰条件,发动机防冰系统应放在 AUTO 或 ON 位。不遵守推荐的发动机防冰程序可能导致发动机失速、超温或发动机损坏。

等待

在到达定位点前 3 分钟开始减速至等待空速,使飞机达到或低于最大等 待空速时开始穿越定位点。

如果 FMC 等待速度大于 ICAO 或 FAA 的最大等待速度,可以用襟翼 1 等待,使用襟翼 1 机动速度。襟翼 1 要比襟翼收上多消耗燃油约 7%。 FMC 等待速度根据油耗和速度能力提供最佳等待速度,但在任何情况下都不会低于襟翼收上机动速度。

如果颠簸中等待,保持光洁形态态。如果在结冰条件下等待,也推荐光 洁形态。但是,为了满足速度限制,结冰条件下可以使用襟翼1。

如果等待航线未输入 FMC,按照高度要求,应飞起始背台航段 1 分钟或 1 1/2 分钟。按需调整随后的背台航段计时,以获得正确的向台航段计时。在大风或高速等待情况下,飞机有可能飞出规定的等待航线保护空域。但地图显示上所标的等待航线不会超出限制。

等待速度

如果由于颠簸有必要增加空速,或者不能完成等待程序的任何部分,或 是无法按下表所列速度飞行时应通知 ATC。

ICAO 等待空速(最大)

高 度	速 度
通过 14,000 英尺	230 节
14,000 英尺以上 - 20,000 英尺 (MSL)	240 节
20,000 英尺以上 - 34,000 英尺 (MSL)	265 节
34,000 英尺以上(MSL)	0.83 马赫

FAA 等待空速(最大)

高 度	速 度
通过 6,000 英尺 MSL	200 节
6,001 至 14,000 英尺 MSL	230 节
	(Washington D.C.及 New York FIR 为 210 节)
14,001 英尺 MSL 及以上	265 节

等待程序

4.24

当在导航数据库中选择等待程序并且 FMC 在航段页显示 PROC HOLD 时,如果 PROC HOLD 是生效航段,下列情况是正确的:

- · 自动退出等待航线,不必选择 EXIT HOLD
- 如果机组希望保持等待,必须输入新的等待航线。

FMC 不提供等待速度

如果 FMC 不提供等待速度,参见 FCOM 第一册的 PI 章节。如果时间不允许马上参考 FCOM,下列的速度计划可临时使用。简化的等待速度计划可能与 FMC 或 QRH 等待速度不匹配,因为 FMC 和 QRH 等待速度是基于多种情况,不能概括为简单计划。但是,此计划提供了合理的最低燃油消耗速度近似值,以及合适的起始抖振裕度。

查出 QRH 中准确速度之前,可用下列方法推算出推荐等待速度近似值:

- 襟翼收上机动速度接近最低燃油消耗速度,并可以在低高度上使用777-200,777-300
 - 高于 FL250, 使用 VREF 30 + 100 节可提供起始抖振前至少 0.3 g 的 裕度(全机动能力)。

777-200LR, 777-300ER

• 高于 10,000 英尺, 使用 VREF 30 + 120 节可提供至少 0.3 g 的裕度到 起始抖振(全机动能力)。

空白

进近村	41复飞	第5章
目录		TOC 节
序言		5.1
仪表	进近	5.1
	[简令	
进近	送别	5.2
盘旋	进近越障	5.3
进近	许可	5.3
程序	转弯	5.3
稳定	、 进近要求	5.4
强制	性复飞	5.5
着陆	·最低标准	5. 6
无线	电高度表	5.6
进近和	ɪ着陆襟翼形态	5.0
着陆	· · · · ·	5. 6
襟翼	! 放下	5.7
机动]裕度	5.7
复飞点	Ţ	5.7
确定	三复飞点	5.8
仪表	着陆系统	5.8
使用	VNAV 的仪表进近	5.8
航向]道	5.9
其它	Z非 ILS 进近	5.9
精密	`进近雷达	5.9
机场	」监视雷达	5.9
ILS 进:	近	5.10
失效	7.后保持操作	5.10
失效	性能下降	5.10

ILS 进近 - 失效后保持操作	5.11
决断高度/高 - DA(H)	5.12
警戒高 - AH	5.12
程序转弯和起始进近	5.12
进近	5.12
决断高度/高 - DA(H)	5.16
原始数据 - (无飞行指引仪)	5.16
AFDS 自动着陆的能力	5.18
低能见度进近	5.19
AFDS 故障	5.21
ILS 进近-着陆几何图	5.22
非正常操作	5.23
非 ILS 仪表进近	5.26
非 ILS 仪表进近一总则	5.26
程序转弯和起始进近	5.34
建立垂直轨迹	5.34
使用 VNAV 仪表进近	5.37
使用 V/S 或 FPA 仪表进近	5.43
仪表进近- RNAV (RNP) /AR	5.47
目视下降点	5.50
复飞 - 非 ILS	5.51
盘旋进近	5.52
盘旋进近一总则	5.53
越障	5.53
盘旋进近 —一台发动机不工作	5.54
复飞 —盘旋	5.55
目视起落航线	5.57
目视进近 —总则	5.58
推力	5 58

三边和四边	5.58
五边进近	5.59
五边进近时一台发动机失效	5.59
连续起飞着陆	5.60
连续起飞着陆 - 总则	5.61
进近	5.61
着陆	5.61
全停起飞的着陆	5.61
复飞 一 所有进近	5.63
复飞 - 双发工作	5.64
接地后复飞	5.66
复飞 - 一台发动机失效	5.66
复飞过程中发动机失效	5 66

空白

进近和复飞 第5章

序言

本章介绍波音推荐的ILS(仪表着陆系统)、非ILS、盘旋进近、目视进近、和复飞机动方法和技巧。飞行剖面图代表在完成正常和非正常飞行机动飞行过程中,波音推荐的基本形态,并为标准化和机组协作提供了基础。

机动飞行在正常情况下应按图示完成。但是,由于训练机场的空中交通冲突,ATC飞机间隔要求和雷达引导等,可能需要对飞行剖面进行修正。超出飞行机组控制的情况可能使机组无法完全准确地按照图示程序飞行。然而机动飞行剖面不能替代良好的判断及正确的逻辑。

讲近

仪表进近

所有安全的仪表进近都有某些共同的基本要素。它包括好的下降计划、 仔细复习进近程序、精确的飞行和很好的机组配合。完整详细的进近计 划是保证安全、沉着、专业进近的关键。

确保 LEGS 页面上的航路点顺序、高度及速度限制,以及地图显示符合 航管指令。适当使用 MCP 航向、高度和速度选择器可以处理临时的航管指令修改或限制。只有时间允许的情况下才能在 LEGS 页面上更新航路点顺序。

到达航站区域前完成进近的准备工作。调好决断高度/决断高 DA(H)或最低下降高度/高 MDA(H)。一有机会就交叉检查无线电和气压高度表。即使 ATC 正在提供雷达引导至起始或最后进近定位点,也不要完全放弃航路导航程序。检查 ADF/VOR 选择器调定在正确位置。如进近要求,核实 ILS、VOR 和 ADF 已调谐并识别。

注: 核实在 PFD/ND 上用正确的字母识别符取代了调谐的导航台频率,或者用音频识别导航台,能够满足调谐并识别导航台的要求。

检查音频板上已选择信标台。只有当航道和下滑道的警告旗不出现,航 向道和下滑道指针可见,并且已接收到 ILS 识别信号时,航道和下滑道 信号才可靠。核实公布的进近向台航道已调定或显示。

即使驾驶舱指示看来正常,不要使用不工作的无线电导航助航设备。不工作的无线电导航助航设备可能有错误的发送,但飞机接收器探测不到,并且不能给驾驶舱机组提供警告。

进近简令

在开始仪表进近之前, PF 应向 PM 说明他实施进近的意图。两位飞行员都应复习进近程序。复习所有进近的资料,包括各种最低标准和复飞程序,并考虑备用措施。

作为参考,进近简令至少应包括以下内容:

- 适用的目的地和备降场的天气和 NOTAMS
- 进近类型和所用图表的有效性
- 要使用的导航和通讯频率
- 机场的最低安全扇区高度
- 包括航道和航向的进近程序
- 包括所有最低高度、穿越高度和最低进近高度的垂直剖面图
- 速度限制
- 复飞点(MAP)和复飞程序的确定
- 其它相关的机组措施,如无线电调谐、航道信息调定、或其它特殊要求
- 滑行至停机位的路线
- 任何有关非正常程序的相应信息
- 对 AFDS 的管理。

进近类别

附录 A.2.6

飞机的进近类别适用于直线进近。飞机的进近类别是按 AFM 中列出的最大认证着陆重量区分的。按照 FAA 标准,用于确定进近类别的速度是着陆参考速度 (VREF)。ICAO 和其它局方机构可能使用不同的标准。

类别	IAS	
С	大于或等于 121 节小于 141 节	
D	大于或等于 141 节小于 166 节	

根据 FAA 标准:

5.2

777-200, 777-200LR

• 777-200 系列的飞机划分为"C"类飞机。

777-300, 777-300ER

• 777-300 系列飞机和 777 货机划分为"D"类飞机。

盘旋讲近越障

盘旋进近时,最大飞机速度由进近图提供,而不是飞机进近类别提供。 在 FAA 和 ICAO 标准下的盘旋进近最低高度都是根据在规定空域内进 近机动的越障能力确定的。该空域由最大 IAS 确定。速度越大该空域越 大,根据机场周围地形特征可能产生更高的进近最低高度。同样,较小 的空速可能产生较小的进近最低高度。有关越障的更多信息见本章后面 的盘旋进近节。

讲近许可

当得到进近许可并在公布的进近航段上时,飞行员有权下降到该航段的最低高度。如果得到进近许可,但是不在公布的进近航段上,在穿越起始进近定位点或建立公布的进近航段之前保持指定的高度。如果在最后进近定位点的等待航线上,只要得到进近许可,飞行员有权下降到程序转弯高度。

如果使用 VNAV 轨迹,必须输入所有高度和速度限制,可以人工输入,或者选择公布的进场程序,也可以结合这两种方法。只要正确输入, VNAV 轨迹剖面满足所有的高度和空速限制。因为 VNAV 轨迹设计用于

当从等待航线做仪表进近时,保持与等待相同的航线,在与五边航道平 行的背台航迹上放襟翼 5。在程序转弯航向上转至向台。这类进近也叫

优化下降剖面, 所以穿越高度可能高于该航段的最低高度。

程序转弯

跑马场航迹进近。

在大多数进近中,程序转弯必须在规定的限制内完成,例如程序转弯定位点或信标台 10 海里范围以内。FMC 设计的程序转弯、或代替程序转弯的等待航线满足空域限制。公布的程序转弯高度通常为最低高度。

在 IAF 的地速确定程序转弯的大小。

根据空速、风的影响,以及程序转弯定位点的位置来调整背台时间。如果以较大的地速通过程序转弯定位点,就可能超过程序转弯保护的空域。 用地图监控程序转弯,确保飞机保持在保护的空域范围内。

稳定进近要求

通常的稳定进近概念是指在着陆形态保持稳定的速度、下降率和垂直/ 水平飞行轨迹。

与计划的飞行轨迹、空速或下降率有任何重大偏差,均应报告。决定执行复飞并不表示飞行不好。

注:不要试图从不稳定的进近着陆。

稳定进近的推荐要素

下列建议与飞行安全基金会制定的标准一致。

在仪表气象条件(IMC)下,所有的进近应该在 1,000 英尺 AFE 以上稳定,在目视气象条件(VMC)下,应该在 500 英尺 AFE 以上稳定。当满足以下所有标准时即视为稳定进近:

- 飞机处于正确的飞行轨迹
- 保持正确的飞行轨迹仅要求稍微改变航向/俯仰
- 飞机应该在进近速度。如果空速趋势是接近进近速度,偏差+10到-5 节可以接受
- 飞机处于正确的着陆形态
- 下沉率不大于 1,000fpm; 如果进近要求下沉率大于 1,000 fpm, 应执行特殊简令
- 推力调定适合飞机形态
- 所有简令和检查单已执行。

如果特定类型的进近也满足以下条件,即是稳定进近:

- ILS 进近应在下滑道和航向道 1 个点之内飞,或者在扩展的航向道刻度范围内飞
- 盘旋进近期间,当飞机到达 300 英尺 AFE 以上时,应在五边改平机 翼。

要求偏离上述稳定进近要素的特殊进近程序或非正常情况需要作特殊简令。

注: 在仪表气象条件 (IMC) 下低于 1,000 英尺 AFE, 或目视气象条件 (VMC) 下低于 500 英尺 AFE 时,如进近变得不稳定要立即复飞。

在进近剩余阶段均应保持这些条件,才能被视为稳定进近。如果接近拉 平时还不能建立并保持上述标准,开始复飞。

对于所有的目视进近,在 100 英尺 HAT 应定位飞机,使驾驶舱在跑道边延长线水平范围内,并跟踪保持在此范围内。

当飞机穿过跑道入口时,飞机应该:

- 稳定在进近速度+10 节范围内, 直到拉平时飞机停止下降率
- 用正常机动在飞行轨迹上稳定
- 定位准备在接地区作正常着陆(前 3000 英尺或跑道前 1/3,以两者中较小的为准)。

如不能保持上述标准, 开始复飞。

机动飞行(包括跑道变更及盘旋)

在 500 英尺以下机动飞行时, 要注意以下事项:

- 改变下降率来截获下滑道
- 从跑道中心线的水平位移
- 顺风/侧风风量
- 可用跑道长度。

强制性复飞

在所有仪表进近中,如果没有建立并保持适当的目视基准,出现下列情况应立即执行复飞:

- 导航无线电或飞行仪表故障,影响安全进近的能力
- 导航仪表显示明显不一致
- ILS 五边进近时, 航向道或下滑道指示器显示完全偏移
- 在基于 RNP 的进近时,警报信息提示 APN 超过了 RNP
- 安装 NPS 的飞机在 RNP 进近过程中,任何时候只要 NPS 偏离超过极 限或出现琥珀色偏离警报,且机组无法改变成非 RNP 程序
- 未安装 NPS 的飞机在 RNP 进近过程中,任何时候 XTK 超过 1.0 X RNP,且机组无法改变成非 RNP 程序
- 雷达引导进近时,失去无线电通讯。

着陆最低标准

大多数局方都对着陆最低天气标准有能见度要求。不要求云高。进近时如果不能看见跑道环境,对飞机能下降多少高度是有限制的。使用下滑道进近或使用 VNAV 轨迹做某些进近时,下降限制基于决断高度/决断高 DA(H),如进近不使用垂直引导,或没有批准使用 DA(H),则以最低下降高度/高 MDA(H)为准。大多数局方不要求警报高度(AH)以下特定的目视基准。

进近图使用缩写 DA(H)或 MDA(H)。DA(H)适用于 I 类、II 类以及某些失效性能下降的 III 类进近。决断高度 "DA"或最低下降高度"MDA"以平均海平面为基准,括号内的高 "(H)"则是以接地区域标高(TDZE)或跑道入口处标高为基准。例如:DA(H)1440(200')指 DA 为 1440 英尺,高出接地区 200 英尺。

当已报告了着陆跑道的视程(RVR)时,通常用 RVR 来替代报告的气象能见度。

无线电高度表

在规定了 DA(H)的 II 类或 III 类进近中,通常用无线电高度表 (RA) 来确定决断高(DH),或在 III 类进近中确定警报高度(AH)。不规则 地形机场的程序可以使用指点标替代 DH 来确定复飞点。无线电高度表 也可以用来在航站区域飞越已知地形时交叉检查主高度表。除非特别批准,无线电高度表不能在仪表进近中用于确定 MDA(H)。如果进近没有批准使用无线电高度表(RA NOT AUTHORIZED),也不要使用。但是,若无线电高度表用作安全备份,必须在进近简令中加以说明。

讲近和着陆襟翼形态

进近机动过程中, 当需要提前减速时, 可以在起落架收上的情况下使用 襟翼 15 或 20。

着陆襟翼调定

正常着陆时,使用襟翼 25 或 30。条件允许时,使用襟翼 30 使着陆速度最小,着陆距离最短。襟翼 25 可以提供更好的减噪效果并较少机翼磨损/载荷。

注:选择着陆襟翼位置时必须考虑跑道长度和道面状况。

襟翼放下

在放襟翼过程中,应该在接近、减速低于当前襟翼位置的机动速度之前 选择下一位置的襟翼。放襟翼速度计划取决于飞机重量,并在所有重量 下提供全机动能力或至少40度坡度(25度坡度和15度裕度)到抖杆。

放襟翼计划

当前襟翼位置	速度带"显示"	选择襟翼	所选襟翼指令速度
UP	"UP"	1	"1"
1	"1"	5	"5"
5	"5"	20	"20"
20	"20"	25 或 30	(Vref 25 或 Vref 30)+
			风增量

机动裕度

飞飞行剖面时,速度应等于或稍大于当前襟翼形态下推荐的机动速度。 这些速度接近最大燃油经济速度,并提供全机动能力(25 度坡度,15 度 裕度)。

对于所有正常着陆程序,只要速度等于或大于当前襟翼设置的机动速度,都存在全机动裕度。在复飞及复飞推力,襟翼 20、速度 VREF30+5 提供至少足够的机动裕度。

非正常飞行剖面的推荐空速用于恢复接近正常的机动裕度和/或空气动力操纵反应。

形态的改变基于保持全机动和/或最大性能,但在各自的程序中特殊规定的除外。有必要在 VREF 速度上加风增量。关于风增量的说明,参见第1章指令空速一节。

复飞点

复飞点是指,如果在该点没有建立安全着陆的合适的目视基准或飞机不 在安全着陆的位置,必须开始复飞的点。

确定复飞点

对于诸如 ILS 或 GLS 这样的进近,将 DA(H)与下滑道结合使用以确定复飞点 MAP。对于非 ILS 进近或无下滑道的进近,鉴于 FMC 定位的精确性,有 2 种方法可以替代计时法来确定复飞点。

- 在到达 DA(H)或 MDA(H)时,结合 VNAV 轨迹
- 如果不使用 VNAV 轨迹,可使用地图显示来决定飞机何时到达 VDP 或 MAP。进近航段以及到达复飞航路点的距离和时间都在地图上显示。

进近过程中的计时

由于 FMC 适合于仪表进近导航,计时已经不是确定复飞点的主要手段。 多种失效在一起导致计时成为确定复飞点的唯一方法的可能性很小。然 而,一些局方仍要求进近时使用计时。计时表(如附上)提供从五边进近 定位点到复飞点的距离。

只要没有显示 RNP 无效警告, 仪表讲近不需计时。

仪表着陆系统

根据高度表判断是否到达复飞点(MAP)。决断高度(DA)可参考气压高度表,决断高(DH)参考无线电高度表。

使用 VNAV 的仪表进近

在得到局方特别批准时,可以按照下列最低标准执行进近:

- 公布的 VNAV DA(H)
- 做为决断高度公布的 MDA(H)。

当上述任何一个最低标准未经特别批准,也未批准下降低于 MDA(H)时,机组可以使用公布的 MDA(H) + 50 英尺作为开始复飞或决定继续进近着陆的高度。在恒定角非 ILS 进近过程中,如果未计划在 MDA(H)改平,该技巧可以满足 MDA(H)。

航向道

对于大多数航向道进近,公布的 MAP 是跑道入口。但是,如果航向道进近是飞 VNAV PTH,使用本章 VNAV 仪表进近一节中介绍的复飞标准。

其它非 ILS 进近

所有其它非 ILS 进近的 MAP 也标注在进近图上。如果这个程序有最后进近定位点,MAP 可能在跑道入口以外,或正在跑道入口上,或在跑道无线电设备的上方。对于没有五边进近定位点的机场设备(VOR 或NDB),设备本身就是 MAP,并且大多数情况下在跑道入口以外。如果飞机先于 MAP 到达了 MDA(H),不要假设飞机会始终保持可以正常着陆的位置。MAP 在跑道入口或以外时,若要做一个正常的五边进近,飞机在到达 MAP 之前必须先到达 MDA(H)。

精密进近雷达

精密进近雷达(PAR)进近时的 MAP 是下滑道与 DA(H)交叉的地理位置点。飞行员根据高度表的使用或雷达管制员的观测(以先到的为准)来确定是否到达 MAP。

机场监视雷达

在机场监视雷达(ASR)进近期间,当飞机到达MAP或距跑道一海里时(以较大的为准),要求雷达管制员中断进近引导。当管制员指示复飞时,执行复飞。

ILS 讲近

ILS 进近飞行航线假设所有的进近准备,如重温进近程序、最低标准和 无线电的调定等已完成。它强调机组的措施和航空电子系统的信息。也 包括天气标准较低情况下操作的一些特殊考虑。可以修改航线以适应空 中交通和 ATC 要求。

失效后保持操作

失效后保持操作是指通过警戒高后、任一单个系统组件失效的情况下, AFDS 能够完成 ILS 进近、自动着陆、以及滑跑。

失效性能下降

5.10

失效性能下降是指在一旦失效的情况下,AFDS 不会造成飞机严重偏离 飞行轨迹或姿态。采用 DA (H) 作为进近最低下降高度。

ILS 进近 一 失效后保持操作

决断高度/高 - DA(H)

决断高度/高是在 ILS、GLS、PAR 或一些使用 VHAV 轨迹或 IAN 的进 近中指定高度/高,在此高度如果继续进近所需的目视基准仍没有建立, 必须实施复飞。Altitude(高度)值是以气压高度表测量的,并且是 I 类 进近(例如 ILS、GLS、或带有 VNAV 的 RNAV)最低下降高度的决定 因素。"Height(高)"值是加括号的,是指高于接地区(HAT)的无线电高 度 RA, 咨询性高度。无线电高度 (RA) 并不反映高于地形的实际高度。 对于大多数 II 类和 III 类失效性能下降进近, 决断高是起控制作用的最低 下降高度, 指定的高度值是咨询性的。决断高通常是基于高于五边或接 地区地形的一个指定无线电高度。

警戒高 - AH

警戒高通常被用于失效后保持操作的 III 类运行中。警戒高是一个高于跑 道的高度,高于此高度时如果发生特定失效,III 类进近必须中止并开始 复飞。关于特定失效的讨论,请参阅本章 AFDS 失效部分。无线电高度 表可根据航空公司的规定设置,或者设置在警戒高度以协助监控自动着 陆状态。大多数局方并不要求低于警戒高度的目视基准。

程序转弯和起始讲近

以襟翼 5 机动速度通过程序转弯定位点。如果通过 CDU 选择了到航向 道和下滑道截获点的完整进场程序,可以用 LNAV 和 VNAV 完成起始 进近阶段。

讲诉

进近过程中避免出现两名飞行员都"埋头"的情况。在某些情况下,如飞 机活动密集、或进场程序只用作参考时,不要修改 FMS 飞行计划。在地 图上显示 OFF PATH DESCENT 圈可以提供垂直飞行轨迹引导,帮助计 划进近。

如果不需要显示进场程序,执行"DIRECT TO"(直飞)或"INTERCEPT COURSE TO"(切入航道)至 FAF、OM 或相应的定位点以简化导航显 示。这将提供:

- 显示至 FAF, OM 或相应定位点的剩余距离
- 显示距五边进近航道的交叉航迹误差
- 在复飞程序中的 LNAV 能力

进近程序可用 HDG SEL、TRK SEL或 LNAV 作横向跟踪,并使用 VNAV、FLCH, V/S 或 FPA 作高度改变。当准备用 FMS 飞行计划做为进场程序时, VNAV 是最好的下降方式。当 VNAV 不可用时,高度改变最好用FLCH 下降方式。

当机动切入航向道时,减速并放襟翼 5。航向道截获之前尽量保持襟翼 5 及襟翼 5 机动速度。

使用速度干预或自动油门 SPD 方式时,及时的速度选择将减少进近过程中推力手柄的移动。这可减低客舱噪音水平并提高燃油效率。襟翼放出时,在额外的形态阻力刚生效时,选择下一个较低速度。

延迟速度选择将导致推力增加,而过快选择较低速度则会导致推力先减小,然后增加。

进近过程中,调整地图显示及距离范围,提供各种比例的区域平面图。 当切入航向并且准许进近时,选择 APP 方式并观察 LOC 及 G/S 方式信 号预位。

满足以下条件之前不要选择 APP 方式:

- ILS 调谐并识别
- 飞机在向台切入航向上
- 航向道和下滑道指针出现在姿态显示上正确的位置
- 接收到进近许可指令。

一些飞机可能在航向道截获之前截获下滑道。下滑道可从上方也可从下方截获。如果到航向道的切入角大于80度,下滑道不能截获。航向道最大切入角是120度。为避免不需要的下滑道截获,可先选择LOC方式,然后选择APP方式。

当使用 LNAV 截获五边进近航道时,确保原始数据指示航向道截获,避免未截获 LOC 就开始在下滑道上下降。若需要,用 HDG SEL/TRK SEL或 HDG HOLD/TRK HOLD 来建立到五边进近航道的切入航向。

五边进近

飞行员应监控进近、拉平、着陆和滑跑的质量,包括减速板的放出和自 动刹车的使用。

当航向道截获时,航向游标自动旋转到向台航道。正常的航向道切入角 很少发生过量的现象。在截获机动过程中,可能会指令坡度角达到 30 度。切入角大时,可能会出现飞过的情况。

使用地图显示保持对到五边定位点待飞距离的了解。当下滑道指针开始 移动(下滑道移动)时,放起落架,选择襟翼 20,并减速到襟翼 20 速 度。

下滑道截获时,观察 FMA 显示正确方式。此时如人工着陆,选择着陆 襟翼和 VREF+5 节或 VREF+风增量,并执行着陆检查单。如使用自动油 门接地,五边进近速度不要求额外的风增量。PM 在最后进近阶段应继 续推荐的喊话,而且 PF 应回应喊话。

建立下滑道时,在 MCP 高度窗内调定复飞高度。在超过襟翼 20 的速度下放着陆襟翼可能导致襟翼卸载,以及较大的推力改变。

通过五边进近定位点(FAF 或 OM)时按需检查正确的穿越高度,并开始计时。

曾发生这样的事件,由于 ILS 地面发射机错误地保留在测试方式上,结果导致飞机截获错误的下滑道信号,并且继续保持在下滑道指示上。在截获下滑道前,交叉检查五边进近穿越定位点的高度及 VNAV 轨迹信息,可以发现错误的下滑道信号。下滑道截获后,五边进近也应指示正常的俯仰姿态和下降率。另外,如果怀疑下滑道异常,可能存在不正常的高度范围与距离对应关系。用高度交叉检查到跑道的距离,或用导航显示上的航路点交叉检查飞机位置,可以帮助判断。对于 3 度下滑道,高度和距离的关系应该是距跑道 1 海里对应大约 300 英尺 HAT 高度。如果怀疑截获错误的下滑道,若不能保持目视条件,执行复飞。

无线电高度 1500 英尺以下, 拉平和滑跑方式预位。自动着陆状态信号应显示 LAND 3 或 LAND 2。因为最低天气标准与系统状态直接相关, 两名飞行员必须遵守自动着陆状态信号。

如果在高于 AH 时一个自动着落信号牌改变或者发生系统故障而要求较高的最低天气标准(转换到 LAND2 或 NO AUTOLAND),除非建立了合适的跑道环境目视基准,否则不要继续进近到这些更高的最低标准以下。

具有失效后继续保持操作能力的自动驾驶仪在一部自动驾驶仪元件单个失效后可以安全地继续进近到 AH 以下。自动驾驶仪可以对任何可能发生的系统失效进行防护,并使飞机安全着陆。AFDS 按其设计可提供至少 200 英尺 HAT(高于接地点高度)的警报高度,但营运人也可以改为一个更低的值。低于警报高度时,飞行员不要进行干预,除非明显需要飞行员措施。

侧风情况下自动着陆时,跑道对准机动采用直线侧滑技术以减小飞机在接地点的偏流角。根据侧风强度,在或低于500英尺无线电高度时开始对准跑道。采取的侧滑量限制在5度以内。当存在强烈侧风时,飞机不会完全对正跑道,但可以带一个很小的偏流角着陆。在所有情况下,接地时上风向机翼位置较低。

自动驾驶和自动刹车应一直保持接通,直到确定能安全停机,并且有足够的能见度供飞行员通过目视基准操纵飞机。

从上面切入下滑道

以下技巧可用于 ILS 进近,但是在用 VNAV 进近时不推荐使用。

通常 ILS 剖面指飞机从下面以平飞姿态切入下滑道。但是有时在 G/S 上方时允许机组做 ILS 进近。在这种情况下应该会尝试在 FAF 之前截获 G/S。可以使用地图显示保持对到五边进近定位点待飞距离的了解。同时 建议使用自动驾驶。

注: 从上边切入 G/S 之前, 机组必须确保下降低于批准的高度或者 FAF 高度之前航向道截获。

以下技巧可以帮助机组安全切入 G/S, 并在 1,000 英尺 AFE 之前建立稳 定进近标准:

- 在 MCP 上选择 APP 并核实 G/S 预位
- 建立最后着陆形态, 并调定 MCP 高度不低于 1000 英尺 AFE
- 选择 V/S 方式并调定-1000 到-1500 fpm 以截获 G/S,并在 1000 英尺 AFE 之前稳定好进近。使用绿色高度范围弧也许对建立正确的下降率 有帮助。

监控下降率和空速,避免超出襟翼标牌速度或启动襟翼卸载。G/S 截获时观察飞行方式信号牌的正确方式,并监控 G/S 偏差。G/S 截获后,继续正常程序。遵守本手册第 4 章有关减速板使用的建议。

注:如果没有截获 G/S 或者 1000 英尺 AFE 之前进近没有稳定,开始复飞。由于 G/S 的截获标准,应该在 1000 英尺 AFE 之前截获 G/S 并建立稳定进近标准,即使是 VMC 条件也该如此。有关稳定进近标准的更多信息见本章前面部分的"稳定进近建议"。

推迟放襟翼进近(减噪)

只要不是在稳定进近较困难的不利天气条件下进近,为节省燃油或满足 ATC 速度要求可以推迟放最后襟翼。

起落架放下,以襟翼 20 和襟翼 20 速度切入下滑道。在下滑道上下降的推力需求量可能接近慢车。接近 1,000 英尺 AFE 时,选择着陆襟翼,让速度减小到五边进近速度,然后调整推力保持该速度。执行着陆检查单。注:对于噪音特别敏感区域,使用上述技巧,但是等到 1,500 英尺 AFE 时再放起落架。

决断高度/高 - DA(H)

当接近 DA(H)时,PM应扩大仪表巡视范围,包括寻找外面的能见地标。除非飞机已经处于可以正常进近到着陆跑道并且有足够目视参考的位置,否则不要继续进近至 DA(H)以下。在飞机到达 DA(H)或在之后的任何时间,如果上述任一要求不能满足,立即执行复飞程序。当已建立好跑道目视后,保持下滑道直至拉平。不要下降到目视下滑轨迹以下。

原始数据 - (无飞行指引仪)

通常在训练时使用原始数据进近,以提高仪表巡视能力。如果在正常飞行中要求做原始数据进近,参阅 DDG 或航空公司相应规则,确定着陆最低标准是否增加。

在姿态显示上显示 ILS 偏离。通过在 EFIS 控制面板上选择 APP 方式,也可以在 ND 上显示 ILS 偏离。在进近过程中,姿态指示器上的航道偏离刻度将保持正常范围,不会在大约 5/8 点时变成扩展的刻度(在 F/D 和/或自动驾驶仪接通并且航向道截获时会出现这种情况)。对照姿态显示上的原始数据继续交叉检查地图显示。选择 VOR/ADF 电门,在 ND 上显示适当的指针。

在初始截获航道过程中,导航显示上来自 VOR/ADF 指针的磁航道/方位信息可以用来补充姿态显示航向道偏离指示。航向道指针一开始移动,就转向向台航道的航向。

截获航道后,导航显示上的航迹线和读数可帮助使用适当的偏航修正并保持所需航道。按需调整坡度,保持航向道指针定中,以及航迹线和航道线重合。这种方法能自动修正风引起的偏航,几乎不必参考需要的实际航向。

向台保持航向道时,一般不需作大坡度飞行。使用 5 度到 10 度的坡度。 当下滑道指针开始移动(下滑道移动)时,放下起落架,放襟翼 20 并减速至襟翼 20 的速度。截获下滑道时,放着陆襟翼并建立五边进近速度。 建立下滑道后,在高度窗内预调复飞高度。在五边进近时,保持 VREF+5 节或顶风分量的适当修正。过 FAF 时检查高度。如果需要,开始计时。 为尽早稳定在五边进近速度,在下滑道截获进近阶段有必要精确地控制 速度。下降率因下滑道角和地速而变化。根据 ILS 航道和下滑道指示进 行及时柔和的修正。以接近飞行轨迹偏差的比率和变化量进行修正。

AFDS 自动着陆的能力

关于 AFDS 极限和验证的自动着陆能力参见相应的飞机飞行手册。

注: 使用襟翼 20 或 30 进行自动着陆。

注:除非五边航道轨迹正好对准跑道中心线,否则不要试图进行自动着陆。如果航向信标台波束偏离中心线,AFDS ROLLOUT 方式可导致飞机偏离跑道。

ILS 性能

大多数 ILS 装置会受到来自地面车辆或空中飞机信号的干扰。为排除这种干扰,航向道和下滑道天线附近都设有 ILS 临界区。在美国,只要报告的天气标准低于 800 英尺云高和/或能见度小于 2 海里,禁止任何车辆和飞机在这些区域内工作。

除非 ILS 用于 II 类或 III 类进近,否则 ILS 设备的飞行检查不用包括跑道入口以内或沿跑道的 ILS 波束性能。因此,ILS 波束质量可能会变化,所以应密切监控使用这些设备的 I 类进近自动着陆。

飞行机组必须记住,当天气标准在云高 800 英尺和/或能见度 2 法定里以上时,ILS 临界区通常不受保护。结果,由于车辆和飞机的干扰会使 ILS 波束弯折。当自动驾驶试图跟踪弯折的波束时,有可能在低高度、着陆或着陆滑跑期间发生飞行操纵装置突然性的意外移动。对于临界区域不受保护的 ILS 进近,在自动进近和着陆的全过程中,应警惕这种可能性,并监控飞行操纵(驾驶盘、方向舵脚蹬和推力手柄)。准备好脱开自动驾驶并人工着陆或复飞。

自动飞行指引系统 (AFDS) 包括一个监视器以探测较严重的 ILS 信号干预。如果监视器探测到航向道或者下滑道信号干扰,自动驾驶仪会忽略错误的 ILS 信号,并根据惯性系统数据保持接通在一个姿态稳定方式。大多数 ILS 信号干扰只持续很短的一段时间,存在干扰时除了 ILS 原始数据不稳定移动外,没有其它给机组的信号提示。除非观察到不稳定或不恰当的自动驾驶活动,否则不需要机组立即采取措施。

如果条件允许,会在 PFD 上显示。如果自动驾驶接通,显示警告机组自动驾驶正以降级的方式工作并且飞机可能不再跟踪航向道或下滑道。当不再探测到这种情况时,显示消失,自动驾驶将恢复使用 ILS 引导。

污染跑道上自动着陆

在污染跑道上不能保证 AFDS ROLLOUT(自动飞行指引系统滑跑)方式性能。该 ROLLOUT 方式综合运用空气动力的方向舵控制、前轮转弯操作、主起落架跟踪来保持跑道中心线,同时使用航向道信号做为指引。在污染的跑道上,前轮转弯操纵和主起落架跟踪效应、及由此产生的飞机方向控制能力都会降低。使用最严格的自动着陆侧风极限,或在低能见度进近时,使用局方批准的最大侧风量来确定最大侧风。也应考虑到本手册第六章中公布的着陆侧风指标或者营运人的政策。

如果在污染跑道上完成自动着陆,一旦 ROLLOUT 方式的方向控制不充分,飞行员必须准备好断开自动驾驶仪并人工接替。

低能见度进近

对于进近灯光系统的知识以及对所需目视参考规则的了解对于安全并成功进近非常重要。接地区的 RVR 值通常对 I 类、II 类和 III 类进近非常重要。对于 I 类 II 类进近,中段和滑跑段的 RVR 值通常是咨询性的。对于 III 类行,中段和滑跑段的 RVR 值可能比较关键。在一些国家,能见度被用于替代 RVR。用能见度值代替 RVR 需要得到局方的批准。

在 I 类进近中,目视基准的要求规定了进近灯光或者其它目视标志要清晰可见并持续到 DA(H)以下。I 类和 II 类进近中,下降到接地区标高 100 英尺以下时,可能要求(根据相关局方标准)红色的进近终止灯或红色的直排灯(ALSF或 CALVERT 灯光系统,或 ICAO 同等的灯光系统,如安装)清晰可见。如果实际的接地区 RVR 等于或大于该类进近所必需的 RVR 值,跑道环境(入口、入口灯及标志,接地区、接地区的灯光和标志)应该清晰能见,这样才能获得一个成功的进近。当看到红色的跑道终端灯或红色的直排灯,如果跑道环境不能清楚可见,立即复飞。

使用失效性能下降的自动着陆系统的 III 类运行中,典型的是接近跑道入口时使用 50 英尺 DH。在此例中,规则要求跑道环境清晰能见。如果不是,立即复飞。

使用失效后保持操作自动着陆系统的 III 类运行中,在 AH 以下通常不需要具体的目视参考。

由于飞行员只有仅仅几秒钟去判断继续进近所需灯光,建议在进近简令时重温可用的进近和跑道灯光系统。对于所有低能见度进近,建议在做进近简令时重温机场图、预计的跑道出口、跑道剩余照明及预期的滑行路线。

局方可能要求在干跑道着陆距离的基础上再增加额外的 15%。局方也可能要求风速极限小于 FCOM 规定的自动着陆最大风速。

AFDS 系统构型

附录 A.2.6

本节列出的系统要求并不包括每种运行所需的所有系统和设备。有关 II 类和 III 类运行所需的特殊系统和设备参阅相关 AFM 或运行规范。

有关II类和III类运行要求的详细内容可参见FAA咨询通告或其它局方类似文件。

II 类运行

一台或两台发动机时,使用自动驾驶或仅用飞行指引可进行II类进近。

III 类运行

5.20

III 类运行是基于用自动着陆系统进近到接地点。正常的操作不需要飞行员干预。然而一旦怀疑飞机的性能不足,或自动着陆不能在接地区安全完成时,需要飞行员进行干预。在进近至着陆滑跑的整个过程中,监控飞行操纵,如需要随时准备人工接替。

飞机已经演示了两台发动机工作、或一台发动机工作襟翼 20 或 30 着陆时满足 III 类标准。

5.21

AFDS 故障

附录 A.2.7

导致非正常操作的故障可分成两类:

- AH 以上发生的
- 在或低于警报高度发生的。

在这两种类别中,相当多的非正常情况或情境都可能出现。驾驶舱的设计便于利用机组警报系统和自动落地状态信号牌,对所有非正常情况或 故障作出迅速分析和决断。

如果机组了解进近对飞机的设备要求,对于任何 AFDS 故障指示可采用以下方法:

高于警报高

- 一旦从机组警报系统、仪表故障旗或发动机显示上识别出故障,立即检查自动着陆状态信号牌。
 - 如果自动着陆状态信号牌没有变化,并且该设备不是进近所必要的、 或可以关断(如飞行指引仪),继续进近
 - 如果自动着陆状态信号牌已经变化,或该设备是进近必须的,调整到 适当的更高的最低下降高度,或复飞。然而,如果已建立了合适的目 视参考,考虑着陆。

在或低于警报高

对于 EICAS 警戒级警报,除非同时出现主警戒,否则继续进近直到自动着陆和滑跑。除非明显需要飞行员措施,否则飞行员不应干预。

在失效后保持操作的验证中有一个详尽的故障分析。低于 200 英尺 AGL 时,对于任何可能的失效条件都能实现安全着陆和滑跑。

机组警报(信息,灯光或音响)可能发生在进近的任何时间。在警报高以下,有多部自动驾驶保护以防止任何可能的系统失效,并使飞机安全着陆。低于 AH 时,除非明显需要飞行员措施,否则飞行员不应干预。如果故障影响到自动刹车,人工刹车。滑跑后,完成相关系统故障程序,恢复人工操纵飞机。

在低于警报高度时,如果自动驾驶仪被无意间断开,如果建立了适当的 目视参考,可以完成着陆。

如果脱开自动驾驶仪复飞,按压 TO/GA 电门。如果没有按压 TO/GA 电门,飞行指引仪保持在进近方式。

ILS 进近-着陆几何图

下图使用以下条件:

- 数据基于典型的着陆重量
- 飞机机身姿态基于襟翼 30, VREF 30+5, 超过此速度每 5 节应减 1 度
- 当主起落架在跑道入口之上时飞行员测量目视高度。
- 飞机 ILS 天线在 50 英尺穿过跑道入口。

	襟翼 30 主起落架在跑道入口上方				购送》口五主於	
777 机型	下滑轨迹 (度)	飞机机身姿态 (度)	飞行员目测 高度 (英尺)	主起落架高(英尺)	跑道入口至主轮 接地点 - 无拉 平(英尺)	
	2.5	2.4	58	30	681	
- 200	3.0	1.9	58	30	567	
	2.5	1.3	58	32	738	
- 200LR	3.0	0.9	57	32	611	
	2.5	1.9	58	29	669	
- 300	3.0	1.4	57	29	557	
	2.5	2.2	58	29	674	
- 300ER	3.0	1.7	58	29	561	

5.23

非正常操作

本节介绍发动机不工作时进近的飞行员相关技巧。这些技巧可以最大限 度降低机组工作量,改进机组的配合,加强飞行安全。但理解本节的前 提是要复习与发动机失效飞行相关的非正常检查单。

一台发动机不工作

June 30, 2010

AFDS 管理及相关程序与正常 ILS 进近相同。可以使用飞行指引仪(人工)或自动驾驶仪和/或自动油门。一台发动机不工作的 ILS 进近最低天气标准在相应的 AFM(飞机飞行手册)和/或各航空公司的运行规范中有规定。

关于一台发动机不工作的进近中如何控制偏转的讨论参见本章后面的一台发动机不工作,方向舵配平 - 所有仪表进近章节。

参见 QRH 的 PI 章节判断是否允许襟翼 30 着陆。以襟翼 5 和襟翼 5 速度 切入航向道。下滑道移动时,放起落架,放襟翼到 20,如果襟翼 20 着陆,调定五边速度并减速。如果襟翼 30 着陆,下滑道截获时,选择着陆襟翼,调定最后进近速度并减速。

一旦系统性能不令人满意,随时准备人工接替。

在对正跑道过程中加入了额外的发动机熄火逻辑,确保在接地点下风向机翼不会过低。如果侧风来自与失效发动机同一侧,可通过侧滑来使飞机带偏流角。这样保证"机翼水平"进近。对于来自失效发动机相反方向的中度或强烈侧风,由于失效发动机的高进近形态保证其上风向机翼在接地点较低的特性,不会产生侧滑。

一台发动机失效,方向舵配平 - 所有仪表进近

在多部自动驾驶仪进近过程中,显示 LAND 3 或 LAND 2 之前 TAC 自动施加方向舵输入控制偏转。TAC 不工作时,飞行员必须使用方向舵脚蹬压力控制偏航,随后用方向舵配平保持配平状态,直到显示 LAND2 或 LAND3。当显示 LAND2 或 LAND3之后,无论 TAC 状态如何,方向舵输入由自动驾驶仪控制。自动驾驶仪在 LOC 或 ROLLOUT 方式时,方向控制(偏航)不受方向舵配平影响。

TAC 不工作时,飞行员必须使用方向舵脚蹬压力控制偏航,随后用方向 舵配平保持配平状态,直到显示 LAND2 或 LAND3。减推力过程中可以 将方向舵配平调到零,以便于方向控制。这应该在 500 英尺 AFE 以前完 成,让 PM 有充足时间履行其它职责并作相应的高度喊话。

在着陆前人工将方向舵配平回中,这样当飞机接地工作的发动机推力收 至慢车的时候,可以解除大部分的方向舵脚蹬压力。方向舵配平不会影响满舵效能和方向舵脚蹬转弯能力。

如果 TAC 不工作,由于机组工作量以及复飞的可能性,最好不要将方向 舵配平回中。但是,如果接地时如果方向舵仍然在进近配平状态,准备 好用较大的方向舵脚蹬力在滑跑时保持中线。

五边进近时一台发动机失效

如果在五边, 襟翼在着陆位置时一台发动机失效, 如需要, 有足够的推力在着陆襟翼保持进近剖面。

在某些情况下用襟翼 25 或 30 着陆可能比较合适,特别是如果失效发生在短五边,或者着陆跑道的停机距离在临界值时。

如果必须满足 III 类最低标准, 五边一台发动机失效后继续进近的能力也可能是考虑因素。如果用襟翼 20 或 30 继续进近, 增加推力以保持适当的速度, 或者确定自动油门的操作令人满意。

如需复飞,执行一台发动机不工作复飞程序,收到襟翼 20。襟翼 20 可以提供足够的性能。然后到安全高度平飞或平缓爬升时,再进一步收襟翼。

777-200, 777-300

通常最好用襟翼 25 或 30 继续进近。如果重量接近着陆爬升能力极限,最好用襟翼 20 继续进近。这可以提供较好的推力裕度、较小的推力不对称、以及改进的复飞能力。如果决定减小襟翼设置,应该在选择襟翼的同时增加推力。指令速度应该增加到之前设置的襟翼 25 或 30 的五边进近速度加 15 节。这样调定了一个至少与襟翼 20 + 5 节 VREF 相等的指令速度。

777-200LR, 777-300ER

通常最好用襟翼 25 或 30 继续进近。如果重量接近着陆爬升能力极限,最好用襟翼 20 继续进近。这可以提供较好的推力裕度、较小的推力不对称、以及改进的复飞能力。如果决定减小襟翼设置,应该在选择襟翼的同时增加推力。指令速度应该增加到之前设置的襟翼 25 或 30 的五边进近速度加 20 节。这样调定了一个至少与襟翼 20 + 5 节 VREF 相等的指令速度。

777-200, 777-300

如果在襟翼 20 时需要复飞,保持这个额外的 15 节,选择襟翼 5,并继续做正常的发动机失效复飞。应该迅速决定是以正常着陆襟翼进近、还是收襟翼到 20、还是执行复飞。

777-200LR, 777-300ER

如果在襟翼 20 时需要复飞,保持这个额外的 20 节,选择襟翼 5,并继续做正常的发动机失效复飞。应该迅速决定是以正常着陆襟翼进近、还是收襟翼到 20、还是执行复飞。

非 ILS 仪表进近

非 ILS 进近定义如下:

- RNAV 进近 依赖飞机区域导航设备作为导航引导的一种仪表进近程序。波音飞机的 FMS 是 FAA 批准的 RNAV 设备,它提供以 FMS 位置为基准的水平和垂直引导。FMS 使用多个传感器(如安装)进行位置更新,以包括 GPS、DME-DME、VOR-DME、LOC-GPS 及 IRS。
- RNAV 目视进近 -依靠飞机导航设备将飞机对准目视五边的目视进 近。进近在 FMC 中选择,到达目视段之前飞行方式与 RNAV 进近相 同。
- GPS 进近 使用单独 GPS 的接收机作为导航引导主要方式的飞机所做的进近。但是,如果使用小于/等于 0.3 的 RNP, FAA 已批准使用 FMS 作为导航引导主要方法的波音飞机做 GPS 进近。

注: 如果未提供自动输入, 需将 0.3RNP 人工输入 FMC。

- VOR 进近
- NDB 进近
- LOC、LOC-BC、LDA、SDF、IGS、TACNA 或类似进近。

通常用 VNAV、V/S 或 FPA 俯仰方式作非 ILS 进近。在相应的 FCOM 程序中提供了推荐的横滚方式。

非 ILS 仪表进近一总则

在过去的几十年间,发生了很多例与非 ILS 进近和着陆有关的 CFIT (可 控飞行撞地) 和不稳定进近事件和事故。这其中很多都可以通过使用持续下降最后进近(CDFA)方法来避免。传统的非 ILS 进近的方法包括,在 五边设置一个垂直速度,在梯度下降高度(如适用)及 MDA (H) 改平,随后过渡到目视五边航段,最后着陆。这些传统方法包括在低高度改变 飞行轨迹,与 ILS 进近方法不同。进而,与典型 ILS 进近相比,这些传统方法更要求机组具备更高的技术水平、判断能力及训练。

下节介绍非 ILS 的 CDFA 方法。这些方法提供一个恒定角进近,它可以减少机组失误和 CFIT 事故。只要建立了跑道环境的目视参考,这些方法还可以让机组更易于获得一个稳定进近。

如图示,使用 VNAV、 V/S 或 FPA 的典型仪表进近假设所有进近准备,如进近程序的温习、最低标准的调定和无线电调谐等均已完成。图示的程序强调机组措施和航空电子系统信息。可以修改航线以适应空中交通和 ATC 要求。

下面的讨论假设飞一个直线仪表进近。只要根据盘旋进近程序设置了MCP高度,在使用VNAV、V/S或FPA方式的仪表进近之后可以进行盘旋进近。

进近类型

对于在 FMC LEGS 页面定义了适当的垂直轨迹的非 ILS 进近,最好用 VNAV 方法。在使用 VNAV 章节介绍了获得适当轨迹的几种方法,包括 公布的下滑道,及必要时飞行员建立的轨迹。V/S 或 FPA 可做为完成非 ILS 进近的备用方法。

进近过程中使用自动驾驶

自动飞行是非 ILS 进近的最好飞行方法。自动飞行可降低飞行员工作量并便于监控程序及飞行轨迹。非 ILS 进近过程中,使用自动驾驶可以更准确地保持航道和垂直轨迹,减少无意间偏航低于航道的可能性,因此在五边进近建立合适的目视基准之前,推荐使用自动驾驶。

在 IMC(仪表气象条件)下人工执行非 ILS 进近,不但增加机组的工作量,并且不能利用自动系统所提供的显著提高的效率和防护功能。但是,为保持机组操作的熟练度,飞行员可在 VMC 条件下,选择使用飞行指引仪,无自动驾驶仪。

注:通常情况下,VNAV PTH 方式包括无轨迹偏移警报。由于这个原因, 在建立合适的目视基准之前自动驾驶应始持接通。

原始数据监控需求

在以航向道为基础的进近过程中,必须在整个进近过程中监控 LOCLOC-BC、LDA、SDF 和 IGS,以及适当的原始数据。

在不基于航向道的进近中,如果使用 FMC 跟踪航道或轨迹 (VOR、

TACAN、NDB、RNAV、GPS等),建议监视原始数据(如可行)。虽然在进近过程中不要求连续监视原始数据,在五边进近前应检查地面导航台是否工作正确。

在单部 FMC,或单部 DME,或单部 GPS 操作期间,如果在 FMC 进近时单部工作的 FMC、DME 或 GPS 失效,必须有一个非 FMC 的导航方式用于复飞,例如 VOR/NDB 原始数据和/或雷达,并且必须有一非 FMC 进近方式可用。如果正在使用 GPS 更新,则不必考虑剩下一部 DME 失效的问题。

开始进近前要检查原始数据,保证正确导航,可通过下列步骤来完成:

- 按压 EFIS 控制面板上的 POS 电门,并将地图上的导航台符号与显示的原始数据作比较。例如: VOR 径向线和原始 MDE 数据应覆盖在地图上显示的 VOR/DME 台,而 GPS 位置符号与飞机符号的尖部应几乎重合(FMC 位置)
- 在地图上显示 VOR 和/或 ADF 指针,用其去核实你相对于地图显示的位置。

典型的导航显示

下图为选择了 POS 显示的典型的导航显示。

地图显示与原始数据

最大程度地使用地图方式。地图显示提供了进近平面视图,包括五边进 近和复飞航路。在此图有助于机组了解进近的进程和位置情况。

在向台航道没有对准跑道中心线的情况下,地图特别有用,它可以使飞行员清楚地判断对准跑道所需的机动类型。地图能将在进近轨迹上和机场区域内的气象雷达回波、地形或活动信息综合起来。

VOR 或航向道的调谐以及五边进近航道的选择,较好的方法是程序调谐。在 PFD 或 ND 上观察显示频率、识别码及航道进行确认。通过了进近程序的第一个航路点之后,VOR 自动调谐准备 VOR 进近。自动程序调谐自动调谐复飞 VOR(如需不同的频率),可以减轻机组在航站区域的工作负担,同时,如果需要对进近和/或跑道最后改变,还可以减少机组低头的时间。如果需要,可以在导航无线电页面预先选择适当的频率和航道,以在适当的时候显示。对于航向道或者反航道进近,始终使用前航道。

注:适当时,将地图上的飞机位置与ILS、VOR、DME 以及 ADF 系统比较,检查可能出现的地图位移误差。建议用 EFIS 控制面板上可选择的 POS 功能进行比较。地图上应显示 VOR 和 ADF 指针。

RNAV 进近

只要正在使用的 RNP 等于或小于进近所规定的 RNP, 并且与 AFM 演示的 RNP 能力一致,可以飞 RNAV 进近。

有关 RNP 的进近要求

在获得相应的运行许可的情况下,依照以下条件可以执行需要 RNP 警报的进近:

- AFM 指示飞机已演示了所选 RNP
- 至少一部 GPS 或一部 DME 工作
- 必须满足运行规范或所选航站区域程序规定的任何附加的 GPS 或 DME 要求
- 当用下列 RNP 或更小的值操作时:

进近类型	RNP
NDB, NDB/DME	.6 NM
VOR、VOR/DME	.5 NM
RNAV	.5 NM
RNAV (GPS)/(GNSS)	.3 NM

• 进近时,不显示 UNABLE RNP 警报

使用 LNAV

为了用 LNAV 执行进近和复飞,在 LEGS 页面上必须显示一系列规定进近航路(和复飞)的航段/航路点。有两种输入航路点的方法:

- 数据库选择
 - RNAV 和 GPS 进近要求用这种方法。通过 FMC 进场页面选择的进近程序提供了选择正确航路点的最简便方法。数据库中的程序符合非 ILS 进近的越障标准。
 - 在 FAF 和 MAP (最后进近定位点和复飞点)之间,不能增加或删除航路点。如果要飞的进近不在数据库内,可选择平面图相同的其它进近。例如,如平面图(航路)与 NDB 进近相同,可选择 ILS 程序。在这种情况下,必须检查航路点高度或按需修改。当用这种 "覆盖"方法进近时,在整个进近过程中,应监控原始数据保证越障。

注:如果所需跑道的 NDB 进近在数据库内,不应使用覆盖进近。

- 如果要从一个数据库程序中增加或删除一个航路点,那么 FMC "在进近"逻辑(详见 FCOM)部分或全部失效,并且对程序的 VNAV 越障整体性可能有不利影响。如需要额外的航路点基准,使用 FIX 页面,不要在 LEGS 页面修改航路点.
- 人工航路点输入
 - 由于越障高度可能不够,RNAV 或 GPS 进近时不要人工输入航路 点,也不要在 FAF 之后,在 VNAV 方式时用此方法。
 - 当 FMC 进场页面上没有程序时,可通过人工输入一系列航路点来确定进近航路。通过使用数据库中航路点或助航设备名称,到这些定位点的方位/距离,径向线交叉点或纬/经度资料,可以很方便地定义航路点。

•程序转弯和 DME 距离弧线不能人工输入(除非它们可以由一系列 航路点定义)。切入向台航道时,偏离规定航路可能要求使用 "DIRECT TO"(直飞)或"INTERCEPT COURSE TO"(切入航道至)。 在进近期间需要一直监控原始数据。

注:程序转弯和 DME 弧可能需要使用 HDG SEL/TRK SEL。

如果在地图上显示的定位点或径向线数据不是生效航路的一部份,不能用 LNAV来保持。可在 FIX(定位点)页面输入一个助航设备/航路点以及适当的径向线,在地图上产生一条"航道"来提高情境意识。人工调谐适当 VOR 并选择所需航道,也可产生类似的显示。这些方法仅在地图显示上提供参考信息。在 LEGS 页面上不反映这些显示,也不能用 LNAV进行跟踪。只有没有机会使用从导航数据库选择的进近时才使用这些方法,并且只有当显示进近的正常方法不可用时才考虑。飞行员应知道显示的航道是 FMC 计算的航道,而不是原始数据资料。

注:用 HDG SEL 或 TRK SEL 飞进近地迹

注:对于人工输入的航路点,自动程序调谐不可用。

如果导航数据库中的进近不可用,从 FMC 进场页面选择着陆跑道。在 地图上会出现跑道显示及相关中心线延长线,帮助保持位置意识。

在低高度时飞行员一定不能让自己过度的"埋头"而忙于用 FMC 输入地图显示。使用原始数据 VOR、ILS 和 ADF 显示,避免在工作量大的飞行阶段飞行员注意力分散。10,000 英尺以下避免输入地图。

使用 VNAV

使用 FCOM 程序中推荐的任一横滚方式均可完成 VNAV 进近。

适合使用 VNAV 的垂直轨迹接近 3 度,并在大约 50 英尺通过跑道入口。要获得这种 VNAV 轨迹,推荐充分利用导航数据库。对于规定了 RNP或使用 DA(H)的进近,FAF 前面的来自导航数据库的航路点不可修改,除非在适当时对航路点高度限制增加一个低温修正。关于建立适合的五边进近轨迹,导航数据库中有两类进近:

- LEGS 页面的五边进近航段上显示下滑道(GP)角的进近。五边进近 航段与 VNAV 完全一致,并遵守五边进近梯度下降高度(最低高度 限制)。
- 没有公布 GP 角、且跑道的进近末端由跑道航路点(RWxx)确定、或存在复飞定位点(MXxx 或命名的航路点)的进近。通常这些航路点显示大约 50 英尺的跑道入口穿越高度限制,并且可"如"VNAV一样使用。如果 RWxx 航路点高度限制与大约 50 英尺跑道入口高度限制不一致,此航路点可修改为大约 50 英尺穿越跑道入口高度。
 - 注: 跑道入口穿越高度通常需要输入四位数。例如: 80 英尺应输为 0080。
 - 用这种方法修正的进近可以使用 VNAV; 但是, 进近过程中需要 持续监控原始数据(VOR、NDB、DME等), 并需要满足各个 最低高度限制。如果五边是用这种方法人工建立的, 不推荐使用 DA(H)。
 - 标注了适当跑道入口的穿越高度的 ILS 进近可以覆盖其它进近,如 LOC 或 NDB 等。

只有当进近具备以下特征之一时才使用 VNAV

- LEGS 页面上显示五边航段的公布 GP 角
- 与跑道进近终点一致的 RWxx 航路点
- 跑道的进近终点之前的复飞航路点(例如 MXxx)。

这些特征允许建立正常的下滑道。LEGS 页面上复飞点在跑道入口以外的 VOR 进近,以及仅有盘旋的进近的不具备上述特征。

自动驾驶仪接通时,EICAS 警报信息 AUTOPILOT 和 VNAV 方式失效指示可以警告飞行轨迹的潜在问题。

在合适的时候,进行低温高度修正,即查阅批准的图表,对航路点高度限制进行修正。FMC 从导航数据库获得在 LEGS 页面显示的 GP 角。GP 角基于标准大气,FMC 用它计算基于气压基准飞行的 VNAV 轨迹。当 OAT 低于标准时,真高度低于指示高度。因此,如果没有进行低温高度修正,生效的 GP 角小于在 LEGS 上显示的值。如果执行低温高度修正,VNAV PTH 操作和程序转弯功能正常;但是,飞机会按照与进近相关的下滑道角(如可用)、或者航路点高度限制确定的几何轨迹,两者中较高的飞行。

五边进近时,VNAV 应与速度干预一起使用,以减轻工作负荷。通常不需要给五边近航路点增加速度限制,因为会增加工作量,不利于安全。这也降低了作最后一刻进近改变的能力。然而,如果默认值不合适时,如需要速度限制可能改变。

为防止在 VNAV 下降时在五边前出现不必要的改平,当确定满足高度限制时,在高度截获之前将 MCP 高度选择钮重调至下一较低限制。

VNAV 进近中使用高度干预

仅当 AFDS 在进近轨迹之上进入 VNAV ALT 方式且必须继续下降时,进近期间高度干预才合适。若通过了进近的一个航路点,且机组未能将 MCP 高度重置到一个较低高度,可能进入 VNAV ALT 方式。假如出现这种情况,按需将 MCP 高度调定到下一个较低的高度限制或 DA(H)或 MDA(H),并选择高度干预。选择 VNAV 高度干预后,在重新计算轨迹时地图显示上的 VNAV 轨迹偏离指示暂时消失,但接着重新出现。

如果在进近逻辑生效时选择高度干预,特别是在飞机排序过了第一个进 近航路点后,指令平飞直至达到 VNAV 轨迹,然后飞机截获 VNAV 轨 迹。

注: 当 PROC HOLD 生效时, VNAV 高度干预工作正常, 使下一个航路 点高度限制删除, 然后开始下降。

当使用 VNAV PTH 或 VNAV SPD 时,选择高度干预将:

- 如果 MCP 高度超过下一个高度限制,删除下一个爬升或下降航路点 高度
- BP05 之前,如果 MCP 高度超过下一个高度限制,删除进近高度限制。 当使用 VNAV ALT 时,选择高度干预:
 - 如果高度限制在飞机当前高度的 150 英尺范围内,可能删除后面航路 上的高度限制
 - 不影响其它高度限制。

注: FMC BP05 及以后版,使用 MCP 高度干预功能不能删除进近航路点高度限制。

非 ILS 进近 ——台发动机不工作

一台发动机不工作时,五边进近定位点之前和之后的机动与双发非 ILS 进近完全一样。

程序转弯和起始讲近

以襟翼 5 和襟翼 5 机动速度通过程序转弯定位点。如果通过 CDU 选择了一个完整的进场程序,可以用 LNAV 和 VNAV 轨迹或其它适当方式完成起始进近阶段。

建立垂直轨迹

本节内容介绍建立典型的五边进近垂直剖面(轨迹)的标准,因为他们与 VNAV 仪表进近相关。该信息对于想要用 V/S 或 FPA 飞垂直轨迹的飞行员也很有用。

如果导航数据库中编制了下滑道(GP)角,FMC 朝 FAF 方向向上和向后建立下降轨迹,从复飞航路点(MAP)位置及其相关的高度限制开始。FMC 使用编码的 GP 角计算这个轨迹,也称为垂直角。MAP 通常在 LEGS 页面显示为 RWxx 或 MXxx 航路点。在某些情况下,一个命名的航路点被用做 MAP。在导航数据库中已经编码的 GP 角可以用于几乎所有直线进近程序中。

该 GP 角通常由负责制定进近程序的局方来确定,为五边进近轨迹提供了以恒定飞行轨迹角执行的持续下降,并遵守中间梯度下降定位点的最低高度。典型的 GP 角接近 3.00 度,从 2.75 度到 3.77 度不等。

沿着该编码的下滑道角朝 FAF 向上和向后的垂直轨迹投影,在垂直剖面中下一个较高的限制性高度终止。这个限制性高度是下列高度中最具限制性的:

- MAP 之前的强制性航路点上的"位于"高度
- 在 MAP 之前的下一个"位于或高于"强制性航路点上的穿越高度。
- 速度过渡或速度限制高度中较低的一个
- 巡航高度

以下例子展示了典型的 VNAV 五边进近轨迹,它们在导航数据库中存在 GP 角。第一个例子演示了一个 RWxx 复飞点。下面的第二个例子演示 VNAV 五边进近轨迹,在跑道之前有一个复飞点。注意在第二种情况下,轨迹的投影在大约 50 英尺高度穿越跑道入口。 VNAV 指引平飞,但是,是在飞机通过复飞点的时候。两个例子都是指在 FAF 处"位于"强制高度。

注: 五边进近航道定位点(FACF)的典型情况是位于 FAF 之前 7 海里 左右的五边进近航道上。下列程序中涉及的 FAF 参照航图的 FAF, 并且是表示五边进近下降开始的点。

对于在 FAF 有"位于"限制高度的非 ILS 进近程序,可能在 FAF 和五边下滑道(也称为"飞离")之间产生一个短的水平航段。对于 ILS 程序,在 FAF 的高度限制被计算成下滑道的穿越高度。

对于 FAF 和 FACF 都有"在或高于"高度限制的程序,机组应考虑把 FACF 高度限制改为"在"限制(硬性限制)。这样在 FAF 之前可以产生较平缓的轨迹,允许正常减速以放襟翼和起落架。例如:在上图中,如果 FACF 和 FAF 都包含"xxx/4000A"航路点限制,机组应该将 FACF 的 "4000A" 改成"4000",以修改轨迹使减速更正常。

机组还会看到其它几种不同的建立进近轨迹的方法:

- FAF 有"位于或高于"航路点高度限制的进近。其 GP 角通常在 FACF 限制高度或者巡航高度两者中较低的高度终止。按此类型轨迹飞行 时,飞机通过 FAF 上方。
- 如果 GP 角不只 1 个,诸如 ILS 进近,飞机用生效航段的 GP 角来确定 VNAV 进近轨迹。当具有 2 个 GP 角时,这些轨迹类型在 LEGS 页面显示,一个接近 FAF,第二个接近跑道(复飞点)。
- 注: 在温度高于 ISA 标准时,编码的 GP 角比在正常温度下陡,并且在温度低于 ISA 标准时,编码的 GP 角比在正常温度下平缓。
- 注:带有梯度下降定位点的 ILS 进近,和无下滑道飞行一样,可能有个不符合公布的最低高度的垂直角。这意味着在最小梯度下降高度之下使用 VNAV PTH 可能导致小的偏差,因此不推荐使用 VNAV PTH。公布的仅有航向道(LOC)进近与 VNAV PTH 相符。

5.37

使用 VNAV 仪表进近

使用 VNAV 的进近准备

从 FMC 的进场页面选择进近程序。调谐并识别相应的助航设备。不要 人工输入进近或给程序增加航路点。如需额外的航路点基准,使用 FIX 页。当雷达引导到五边时,选择直接切入航道至 FAF,这样可以开始正 确的 LNAV 航路点排序。核实/输入适当的 RNP,并用气压最低高度选 择钮调定 DA(H)或 MDA(H)。如果需要用 MDA(H)作为最低进 近高度,气压最低值选择钮应调在 MDA+50 英尺,确保一旦复飞,复飞 期间不会下降低于 MDA(H)。

注:进近 RNP 值根据以下三种来源之一确定:机组人工输入、FMC 默 认、或导航数据库。人工输入超控其它两种。如果导航数据库包括 五边航段的 RNP 值,该航段生效时或之前 30 海里以内(如果前面 的航段没有相关 RNP 值) RNP 显示。当通过进近航路点(包括进 近过渡点),或者当低于目的地机场上方 2000 英尺时,显示 FMC 默认的进近 RNP(没有人工输入或者导航数据库值)。

用 VNAV 讨渡到仪表讲近

有几种技巧可以确保柔和下降过渡到使用 VNAV PTH 的非 ILS 五边进 近。

注: FAF 通常是在 LEG 页面和地图显示上刚好在五边航段之前的航路 点。下列讨论假设在下降至 FAF 的时候, 在 MCP 设置了 FAF 高度 限制。

如果以FLCH、V/S 或下降至 FAF 高度,或者在 FAF 高度处于 ALT 方 式, 在 FAF 前大约 2NM 在 MCP 上设置 DA (H) »òMDA (H), 同时 接通 VNAV 和速度干预。飞机将以 VNAV PTH 方式在五边下降。

如果五边前以 VNAV PTH 下降,并且情况允许继续下降通过五边,保持 VNAV PTH,同时完成进近着陆形态。飞机将自动减速到 FAF 速度限制。 在 FAF (五边航段之前的航路点) 前大约 2NM 将 MCP 重设到 DA (H) /MDA(H),以防止改平,并选择速度干预。

如果以 VNAV SPD 下降,飞机在或低于轨迹,当接近 FAF 时,AFDS 将自动改变为 VNAV PTH。当襟翼放到 1 或更大位置,并且飞机低于轨迹时,VNAV PTH 接通,飞机改平并保持平飞直到切入进近轨迹。如果高于轨迹飞机将继续下降,并从上方截获进近轨迹。如果需要立即下降到 FAF 高度限制,并且飞机在 VNAV PTH 方式改平,选择 FLCH,下降到 FAF 高度,在 MCP 上设置 DA(H)/MDA(H)方式,然后重新选择 VNAV 和速度干预。在 FAF 前大约 2NM,MCP 重设到 DA(H)或 MDA(H)。如果在 FAF 之外 VNAV ALT 接通,迅速在 MCP 设置 DA(H)/MDA(H)并选择高度干预,继续下降到五边轨迹上。如果偏离轨迹过高并且不能建立稳定进近,执行复飞。

五边之前,MCP 高度应调到适当的高度限制(通常是下一个航路点的),确保在进近下降时满足进近最低高度。为了防止改平,下一个航路点高度限制一旦满足,立即将 MCP 重调到再下一个航路点高度限制。但是,如果不能确定是否满足高度限制,考虑改平或减小下降率,保证安全轨迹。

使用 VNAV 五边进近

接近切入航向,选择襟翼 5 并确保 LNAV 或其它合适的横滚方式预位或接通。接近 FAF(约 2NM)时选择起落架放下和襟翼 20,并调节速度。在 MCP 高度窗调定 DA(H)或 MDA(H),选择 VNAV 并确保显示 VNAV PTH 和适当的横滚方式。用 VNAV 速度干预来控制速度。

当使用 LNAV 切入五边航道时,平缓的切入角或者导致飞过的切入角会推迟截获五边航道。如果飞机不再五边航道上,不要通过 FAF 并且不要开始下降。

注:对于垂直角(LEGS页面显示为"GP"角)在进近中开始较早(FAF之前)的进近程序,一旦在垂直角上建立,MCP可以设置到DA(H))或MDA(H)。

开始沿五边轨迹下降时,选择着陆襟翼,减速到五边进近速度,并执行着陆检查单。如果航图上的FAF距跑道过近不能稳定进近,考虑比FCOM程序提前建立五边俯仰方式,并设置进近和着陆型态。

MCP 高度调至 DA(H)或 MDA(H),且飞机稳定在五边进近轨迹时,地图高度范围弧有助于确定目视下降点(VDP)。一旦飞机到达复飞高度以下至少 300 英尺,并以 VNAV PTH 方式在五边上稳定,将 MCP 高度调至复飞高度。地图显示上的轨迹偏差指示可以帮助监控垂直剖面。自动驾驶在 VNAV PTH 方式下飞行,在 DA(H)或 MDA(H)之前到达或接近目视下降点。

VNAV 进近时,建立五边下降且低于复飞高度 300 英尺以上时调定复飞高度。一些进近的复飞高度低于穿越 FAF 高度。机组必须等飞机低于复飞高度至少 300 英尺时才能在 MCP 上调定复飞高度,这样可以避免在五边下降过程中飞机改平。

使用 VNAV 进近中 MCP 高度设置

对于使用 VNAV PTH 的进近,存在一个公布的 GP 角,MCP 可以根据 正常程序中的着陆程序一使用 VNAV 仪表进近来设置。在 FAF 高度之前设置 MCP 到 DA(H)/MDA(H),并且在最后进近中重置到复飞高度。 对于在 IAF 和 FAF 间有间隔很近航路点的仪表进近,营运人可以允许机组通过适当的培训,开始设置 FAF 高度,然后当接近 FAF 高度时,MCP 可以根据正常程序设置。

对于在 IAF 和 FAF 间有一个公布的 GP 角的进近,当切入公布的 GP 时 MCP 可以设置到 DA (H)。

决断高度(DA(H))或最低下降高度(MDA(H))

在得到局方特别批准时,可以按照下列最低标准执行进近:

- 公布的 VNAV DA(H)
- 做为决断高度公布的 MDA(H)。

当上述任何最低标准未经特别批准时,使用仪表进近程序规定的 MDA (H)。

5.41

下图介绍了使用 LNAV/VNAV 或仅 LNAV 进近时,包含 DA(H)和 MDA(H)最低高度的进近程序。

	直线进近路	VNAV	LNAV			盘旋着陆		
-	DA(H) 74	U' (727') ALS out	MDA(H) 1000' (987') ALS out		Max			
Α			RVR 40 or 3/4	RVR 60 or 11/4	-Kts 90	MDA(H)		
В	2	2 1/2	RVR 50 or 1	1 1/2	120			
	- 41		2 1/2	3	140	1140' (1027') -3		
Щ	2 1/4				165	1160' (1147') -3		
<u> </u>	2 1/4				165	1160'(1147')-3		

注: 部分非 ILS 进近规定了 VNAV DA(H)。规章可能要求在 VNAV PTH 方式使用自动驾驶仪,便于使用 DA(H)。

到达 DA(H)或 MDA(H)时,准备好脱开自动驾驶并着陆或立即执行复飞。

注:如使用 MDA(H),若程序或局方要求,可能有必要在 MDA(H)以上 50 英尺开始复飞,以避免复飞过程中下降低于 MDA(H)。

接近 DA(H)或 MDA(H)时,PM 应扩大仪表巡视范围,包括观察外界目视地标。除非飞机已经处于可以正常进近到着陆跑道、并且能保持适当目视参考的位置,否则不要继续进近到 DA(H)或 MDA(H)以下。飞机到达 DA(H)或 MDA(H)时或之后,如果没有达到以上任一要求,立即执行复飞程序。

当建立了合适的目视基准时,保持下降轨迹直到拉平。不要下降到目视下滑轨迹以下。一旦飞机在 DA(H)或 MDA(H)以下,仍可使用 VNAV PTH 引导作为参考,进近引导的主要方式是目视。

注:一旦飞机通过复飞点, VNAV 轨迹指引就转换为平飞。

模拟的 VNAV 仪表进近

为了保持熟悉程序,机组可以按下列方法在飞ILS 进近时用 VNAV 程序来练习仪表进近:

- 确定 ILS 调定并识别,并且在整个进近过程中监控 ILS 原始数据。
- 用 VOR/LOC 或 LNAV 作为横滚方式来保持航向道。
- 用 VNAV 作为俯仰方式保持 GP 角。进近图上的 GP 角通常与 ILS 下 滑道角一致
- 到达 FCOM 极限章节规定的最低高度时断开自动驾驶仪。

注: 在 VMC 目视气象条件下, 限制使用上述技巧。

在外界温度条件高于 ISA 准时,飞机可以保持略微高于 ILS 下滑道,在外界温度条件低于 ISA 标准时,飞机可以保持略微低于 ILS 下滑道。如果航向道或者下滑道偏离变得不可接受,中断使用本技巧,人工保持航向道和下滑道。

5.43

使用 V/S 或 FPA 仪表进近

使用 V/S 或 FPA 的进近准备

从 FMC 的进场页面选择进近程序。调谐并识别相应的助航设备。如需额外的航路点基准,使用 FIX 页。当雷达引导到五边时,选择直接切入航道至 FAF,这样可以开始正确的 LNAV 航路点排序。核实/输入适当的 RNP,并用气压最低值选择钮调定 MDA (H)。如果需要用 MDA (H)作为最低进近高度,气压最低值选择钮应调在 MDA+50 英尺,确保一旦复飞,复飞期间不会下降低于 MDA (H)。

用 V/S 或 FPA 五边进近

接近切入航向,选择襟翼 5 并确保 LNAV 或其它合适的横滚方式预位或接通。接近 FAF(约 2NM)时选择起落架放下和襟翼 20,并调节速度。在 MCP 高度窗设置第一个中间高度限制,或如不存在高度限制,则设置 MDA(H)。如果高度限制不是在整 100 英尺增量,将 MCP 高度调到高度限制以下最接近的 100 英尺增量。只要用最低高度选择器设置了最低高度,MDA(H)可以设置在 10 英尺以内。

开始下降到 MDA(H)时,选择着陆襟翼,减速到五边进近速度并执行着陆检查单。如果航图上的 FAF 距跑道过近不能稳定进近,考虑比 FCOM程序提前建立五边俯仰方式,并设置进近和着陆型态。

在 FAF 或在 FAF 之后,选择 V/S 或 FPA 方式,并以适当的垂直速度或飞行轨迹角、在距跑道一定的距离(VDP)下降到 MDA(H),建立正常的着陆剖面。如果使用 V/S 方式,开始选择一个合适的 V/S 时应考虑在公布的进近图上推荐的垂直速度(如可用)。五边进近时,这些推荐的垂直速度会根据飞机的地速不同而变化。如果没有推荐的垂直速度,设置为大约-700 至-800 英尺/分。

如果用 FPA 方式,开始选择适当的 FPA 时应该考虑进近航图上公布的 五边下降角或下滑道角(如可用)。如果进近图上没有可用的下降角或 下滑道角,开始设置 -3.0 度。FPA 方式允许飞行员选择可以自动补偿顶 风或顺风分量的飞行轨迹(如-3.0 度)。并且可以减轻工作量。

当飞机在五边稳定下降时,可用下列技巧之一对最后的垂直速度或 FPA 进行微小的增量改变,以一个恒定角度下降到最低高度。在最低下降高度不应该有平飞航段。

几种技巧可以获得在或接近 VDP 时到达 MDA(H)的恒定角轨迹:

- 最精确的技巧是监控地图显示上的 VNAV 轨迹偏离指示,并调整下降率或 FPA,将飞机保持在适当的轨迹上。这种技巧要求在航段页面确定合适的轨迹,复飞点显示为 GPx.xx,或者航段页面有一个 RWxx、MXxx 或一个命名的航路点,该航路点有对应大约 50 英尺的跑道入口穿越高度的高度限制。使用这种方法时,机组一定要遵守五边进近航段上的每一个最低高度限制(梯度下降定位点)。
- 选择一个下降率或 FPA,将高度范围弧置于或接近于梯度下降定位点或目视下降点(VDP)。此技巧需在 MCP 调定梯度下降定位点或 MDA(H),并在颠簸情况下可能不容易使用。关于确定 VDP 的详细内容见目视下降点一节。
- 使用每海里 300 英尺的下降率进行 3 度下滑轨迹下降,根据对应于距跑道头的海里距离确定所需的 HAA。然后 PM 根据到跑道距离的变化报出推荐高度(例如: 900 英尺 3 海里,600 英尺 2 海里,等)。与名义轨迹有明显偏离时,以小的增量调节下降率或 FPA。

随时准备在 VDP 点从 MDA(H)着陆或复飞。注意,在很多情况下做仪表进近时,从公布的复飞点不能完成正常着陆。

MDA(H)以上大约300英尺时,选择复飞高度。离开 MDA(H)时,脱开自动驾驶仪。先关断两部 F/D,然后再接通 PM的 F/D。这样可以消除 PF 一侧不想要的指令,并在俯仰或横滚方式改变一旦复飞的情况下 PM继续有 F/D 指引。完成着陆。

V/S 进近时,进近过程中在高于 MDA(H)300 英尺时,调定复飞高度,使用高度范围弧进行引导,并防止高度截获或进近过程不稳定。不同于使用 VNAV 进近,不会出现 VNAV ALT。因为不会出现低于航路警报,建议尽可能长时间地保持 MDA(H),防止无意中下降低于 MDA(H)高度。

最低下降高度/高(MDA(H))

接近 MDA(H)时,PM应扩大仪表巡视范围,包括观察外界能见地标。除非飞机已经处于可以正常进近到着陆跑道、并且能保持足够目视参考的位置,否则不要继续进近到 MDA(H)以下。一旦到达 MDA(H)或在之后,如果没有达满足以上任一要求,立即执行复飞程序。

当建立了合适的目视基准时,保持下降轨迹直到拉平。不要下降到目视 下滑轨迹以下。

仪表进近-RNAV (RNP) /AR

仪表进近-RNAV (RNP) /AR -概述

附录 A.2.7

本节只适用于批准执行 RNAV (RNP) AR 仪表进近的营运人。

使用 RNAV (RNP) AR 进近准备

从 FMC 的进场页面选择进近程序。如果 IAF 有"在或高于"高度限制,可以改成使用同样高度的"在"高度限制。只要没有超过公布的最大速度,可以修改速度。如 FCOM 辅助程序中低温高度修正部分所介绍,在 IAF或之后不应该执行其它的水平或垂直修正。

开始进近之前,机组必须简令进近并完成必要的准备。这些包括但不限于以下内容,可以在进近简令卡上列出:

- 开始进近前必须工作的设备
- 在导航数据库中选择进近程序,通常没有修改
- 注:条件允许时,一旦ATC允许机组直飞到一个定位点,除非该定位点 直接在RF 航段前面,可以作"直飞"或者"切入航道"修改。
 - 对于没有 NPS 的飞机,在五边航段一名飞行员应该让地图显示在 10 NM 或更小的范围内,以监控航迹保持
 - 对于有 NPS 的飞机,机组可以按需设置地图显示范围
 - 至少一边要选择显示 TERR
 - 按需在 CDU 上显示 RNP 进程页面。对于有 NPS 的飞机,由机组决 定 CDU 页面的选择
 - 按需抑制导航无线电更新。VOR/DME 更新必须始终断开。DME-DME 更新必须按需抑制。
- 注: 无法 FMC BP14、DME-DME 抑制之前。不批准复飞 RNP 小于 0.6 nm 的程序。这些程序标注有"复飞要求的 RNP 小于 1.0"。
- 注:如果飞机安装 FMC BP14 及更晚版本,使用 RAD NAV INHIBIT 抑制所有的无线电更新。GPS 更新生效后,LOC 更新也被抑制。

机组必须选择或核实进近 RNP。如果进近程序公布了多个 RNP,签派提供的 RNP 可用性预测可以确定机组可以使用的最低值。机组应注意,如果没有 RNP 可用性是否会影响选择任何公布的 RNP 值。由于已知的卫星中断、地形标记或其它因素,RNP 可用性限制有时可能影响较小RNP(小于 0.15 海里)的可用性,但很少影响 0.15 海里以上 RNP 的使用。机组应选择在当前气象条件下最高的可用 RNP。在天气条件允许时,如果 FMC 的默认进近 RNP 是 0.3 海里,并且是该程序的公布 RNP,使用该值,这样 FMC 可以自动选择进近 RNP,并且在需要复飞时变成复飞RNP。机组输入 RNP 可以防止在删除该 RNP 前出现 RNP 自动改变。对于有 NPS 的飞机,垂直 RNP 机组可以输入 125 英尺。如果进近图上没有公布垂直 RNP 值,因为垂直 ANP 始终是至少 50 英尺,使用 125 英尺将导致在 75 英尺或稍小的偏差出现 NPS 琥珀色偏差超限警报。开始进近前确认没有 UNABLE RNP 警报。如果高度表设置快速变化,机组应在刚开始进近前获得更新。

在 IAF 之前选择 LNAV。如果雷达引导,进近时或者建立五边航道切入 航向时预位 LNAV。LEGS 页面上显示的带 GP 角的所有航段必须接通 VNAV PTH,且必须在接近 FAF 时或之前选择。

使用 RNAV (RNP) AR 的最后进近

开始沿五边轨迹下降时,选择着陆襟翼,减速到最后进近速度,并执行着陆检查单。必须遵守进近图标上公布的速度限制,这样保证在大风天气时有足够的坡度角裕度,以满足较小的到定位点径向线(RF)航段。在飞小半径 RF 航段时,坡度角很少超过 15 度,除非由于大顺风或飞机大速度使地速非常高。

FMC 和警报系统监控位置精度和完整性(也称为实际导航性能),因此机组没有必要监控 GPS 信号的接收或者 ANP。在进近过程中,如果由于失去两部 GPS 接收机或者卫星位置数据导致 GPS 信号缺失,ANP 增加并且出现 UNABLE RNP 警报。ANP 是 FMC 根据 RAIM、更新方法以及其它因素计算的,它的值一直波动。只要 ANP 不超过 RNP,没有实际或可靠的方法帮机组解释 ANP 波动。如果 ANP 一直增加超过 RNP,出现 UNABLE RNP 警报。

一旦建立五边, RNAV (RNP)进近与其它用 LNAV 和 VNAV 做非 ILS 进近一样。

RNAV (RNP) AR 操作的最大水平和垂直偏差

基于 RNP 的进近通常有一个水平容度标准,即等于程序公布 RNP 值的 2 倍。为了给轨迹保持误差提供足够的安全裕度,机组应该将航道保持在 1.0 x RNP 范围内。例如,RNP 0.15 进近的水平容度极限是 0.30 nm,其水平偏差极限是 0.15 nm。垂直方向,轨迹的偏差极限是 75 英尺,这只适用于从 FAF 到复飞点(除非进近有其它注释)。在 FAF 之前,轨迹以下的垂直限制由进近图上公布的下一个(生效)航路点的最低下降高度确定。如果出现高于轨迹的偏差,机组须用稳定进近的标准判断是否需要复飞。

如果飞机没有 NPS,进近过程中机组必须参考 FMC 进程页面上的 XTK 和 VTK 信息。建议 PF 和 PM 都用地图显示对轨迹保持进行监控。在最后进近阶段,至少一个飞行员必须在地图显示 10 NM 范围。一旦过渡偏离洋红色线,这个范围可以监控位置趋势矢量以及航迹线。如果出现偏差,并且不是立即修回航道,那么 PM 应该参考 FMC 进程页面并且通知 PF 是否到达了允许的最大偏差。不建议一直保持 FMC 偏差指示。

对于有 NPS 飞机,机组可以参考 NPS 偏差指示。NPS 的全刻度水平和垂直偏差等于 FMC RNP 值。如果偏差接近极限,需要立即修正回轨迹。如果偏差超过极限或者出现琥珀色偏差警报,除非机组有适当的目视基准继续至着陆,否则要求复飞。一旦因偏差过大复飞,机组必须继续修正回到并保持要求的航道。

目视下降点

对于非 ILS 进近, VDP 定义为五边进近上的一个位置,当建立了合适的目视参照时,可以从该位置开始从 MDA(H)到跑道接地点的正常下降。如果飞机到达了 VDP,因不需或少量飞行轨迹调整便可继续正常接地,所以更容易得到稳定的目视航段。

5.51

在一些非 ILS 进近图中,以 V 字符号代表 VDP(目视下降点)。在"V"符号下面标注了到跑道的距离。如果未提供 VDP,机组通过判断 MDA(H)高于机场的高度(HAA),以及使用距离跑道每 1 海里下降 300 英尺的方法来确定开始目视下降的点。

下面的图例中,550 英尺 MSL 的 MDA,100 英尺接地区域标高,产生450 英尺的 HAA。以每海里 300 英尺下降时,在距跑道 1^{-1} /₂海里处开始目视下降。

大多数 VDP 在距跑道 1 海里和 2 海里之间。下表提供更多的示例。

HAA (英尺)	300	400	450	500	600	700
VDP 距离,海里	1.0	1.3	1.5	1.7	2.0	2.3

注:如果飞 VNAV 轨迹进近,并且飞机保持在公布的轨迹上,当飞机到 达 DA(H)或 MDA(H)时,会自动满足 VDP。由于这个原因, VNAV 轨迹进近不需要确定开始目视下降的点。

使用 V/S 或 FPA 仪表进近时,如果飞行员通过改变垂直速度或飞行轨迹 角调整高度范围弧线,接近跑道前方 VDP 距离,飞机将保持接近或位于 典型非 ILS 进近适当轨迹上。

复飞 - 非 ILS

参见本章复飞 —所有进近。

盘旋进近

盘旋进近一总则

盘旋进近飞行时起落架放下,选择襟翼 20 和襟翼 20 的机动速度。使用与预计的盘旋速度有关的最低天气标准。也可选择襟翼 25 或 30 进近。可以按照任何仪表进近程序飞盘旋进近。仪表进近过程中,用 VNAV、V/S 或 FPA 方式下降到盘旋 MDA。由于以下原因,不推荐用 APP 方式下降至盘旋 MDA:

- AFDS 不在 MCP 高度改平
- 退出 APP 方式要求起始复飞或脱开自动驾驶并关断飞行指引。

用 ALT HOLD 或 VNAV ALT 方式保持 MDA(H)。用 HDG SEL/HDG HOLD 或 TRK SEL/TRK HOLD 执行盘旋进近的机动部分。

在 MDA (H) 保持 ALT HOLD 或 VNAV ALT 方式时,并在开始盘旋机 动之前,调定复飞高度。

在三转弯之前或开始转向四边时,选择着陆襟翼(如果之前没有选择),并开始减速到进近速度加风增量。为避免飞过五边进近航道,调整四转弯开始对准跑道入口的内侧边缘。及时减速也可以减小到跑道的转弯半径。执行着陆检查单。切入着陆跑道的目视剖面之前,不要下降到 MDA (H) 以下。

离开 MDA(H)时,脱开自动驾驶仪。切入目视剖面后,断开两部 F/D,再接通 PM 的 F/D。这样可以消除 PF 一侧不想要的指令,并在俯仰或横滚方式改变一旦复飞的情况下 PM 继续有 F/D 指引。完成着陆。

注:如果任一 F/D 电门在关断位时选择复飞,当首次选择或接通俯仰或 横滚方式时,相应一侧飞行指引的俯仰或横滚指令杆消失。

越障

下图介绍在盘旋进近期间的越障区域。以下图表提供了盘旋进近期间最大 IAS 确定的距离。

FAA					
最大 IAS 盘旋区域自跑道入口半径					
140 节	1.7 NM				
165 节	2.3 NM				

ICAO					
最大 IAS 盘旋区域自跑道入口半径					
180 节	4.2 NM				
205 节	5.28 NM				

注: 调整飞机航向并计时,这样在整个盘旋进近期间的任何时间内,飞机的地迹都不会超出距跑道的越障距离。

盘旋进近 ——台发动机不工作

5.54

如果预计执行盘旋进近,盘旋时保持起落架放下、襟翼 20 以及至少 VREF20 + 风增量。切入目视剖面之前不要下降到 MDA(H)以下。

如果做襟翼 30 着陆,从五边进近定位点开始保持起落架放下、襟翼 20 以及襟翼 20 机动速度,直到开始转向四边。在三转弯之前或开始转向四边时,选择襟翼 30,速度减小到 VREF30+风增量,并切入着陆剖面。切入目视剖面之前不要下降到 MDA(H)以下。

在某些飞行条件下,例如高温、气压高度高、飞机重量大等,如果起落架放下襟翼 20,可能需要极限推力来保持平飞。如果遇到这些情况,在进近的盘旋部分下降到 MDA(H)之后,考虑收起落架。可以用 GPWS 起落架超控电门防止于扰性警告。

复飞 一盘旋

在盘旋过程中的任何时候需要复飞时,朝最近方向爬升转向着陆跑道。 这将产生一个大于 180 度的转弯切入复飞航道。继续转弯,直到建立切 入航向,切入所飞仪表进近程序的复飞航道。保持复飞襟翼设置,直到 完成接近机动。

在规定的复飞航道上可能需要建立不同的航线。这要根据开始复飞时飞 机的位置来定。下图演示了可能需要的机动飞行。该程序保证飞机保持 在盘旋和复飞的越障区域之内。

如果必须从 MDA (H) 以下完成复飞,应考虑选择可以保证安全越障的 飞行轨迹,直到达到规定复飞轨迹上的合适高度。 参见本章复飞 —所有进近。

目视起落航线

目视进近 —总则

推荐的着陆进近轨迹约为 2 1/2 度到 3 度。一旦建立了五边进近,飞机的形态保持固定,只需要对下滑道、进近速度和配平作少量的调整。这样在所有条件下,产生相同的进近剖面。

推力

发动机推力和升降舵是控制姿态和下降率的主要方式。缓慢少量地增加推力。突然较大的推力改变会使飞机操纵更加困难,并预示不稳定的进近。除非执行复飞,否则没有必要做大的改变。在三边和四边放起落架或襟翼时不要求有大的推力改变。在五边上稳定速度时可能需要增加推力。

三边和四边

在跑道标高 1500 英尺以上,以襟翼 5 和襟翼 5 机动速度加入三边。保持约 2 海里正切平行着陆跑道的航迹。

三转弯或开始转向四边之前,放下起落架,选择襟翼 20, 预位减速板,如果以襟翼 20 着陆,减速到襟翼 20 的机动速度或进近速度加风增量。如果进近航线必须延长,放下起落架和选择襟翼 20 推迟到接近正常的目视进近剖面时。三转弯时,按需调整推力,同时以 600-700fpm 的下降率下降。

转向五边之前放着陆襟翼。减速到合适的五边进近速度并将飞机配平。 执行着陆检查单。建立着陆形态后,以最后进近速度(VREF+风增量) 完成到五边的机动飞行。

五边进近

飞机改出四转弯到跑道中心延长线上,并保持合适的进近速度。对正常进近剖面来说,离跑道每一海里大约 300 英尺 AFE。建议使用自动油门。如果人工控制推力,尽量用小的推力变化来保持速度,避免大的配平改变。飞机处于配平状态并且在进近速度时,俯仰姿态应该接近正常进近机身姿态。速度大于进近速度时,机身姿态要小些。速度低于进近速度时,俯仰姿态要大些。较小速度会减少接地时后机身的离地高度。将飞机稳定在所选的进近速度上,在所需的下滑道上以 700-900 英尺/分的下降率恒速下降,并保持配平。高于接地点 500 英尺时,稳定在剖面上。注:应避免大于 1000fpm 的下降率。

在单发并且 TAC 失效的情况下,方向舵配平可以在着陆前回中。这样当接地时工作发动机的推力收到慢车,方向舵脚蹬的大部分压力可以解除。方向舵配平不会影响满舵效能和方向舵脚蹬转弯能力。如果接地时,方向舵仍在进近配平位,准备好用大的蹬舵量来保持在跑道中心线上滑行。

五边进近时一台发动机失效

如果目视五边进近时一台发动机失效,使用本章 ILS 进近部分介绍的程序。

连续起飞着陆

连续起飞着陆 - 总则

连续起飞着陆的主要目的就是练习进近和着陆。它不是用来训练着陆滑 跑和起飞程序。

进近

如图示完成起落航线和进近程序。为了让刹车冷却,在整个机动过程起落架可以保持放下,但是如果在复飞过程中真的出现了发动机失效,要做好收起落架的准备。不要预位减速板。自动刹车选择 OFF 位。

着陆

学员应完成正常的五边进近和着陆。接地后,教员选择襟翼 20,调定安定面配平,确认减速板在下卡位并在适当时让学员把推力手柄推到接近垂直位(以便在加复飞推力之前使发动机稳定)。当发动机稳定后,教员指示学员调定推力。

注:接地后,推荐使用襟翼 20,减小在起飞过程中机尾触地的可能性。 警告:开始使用反推后,必须进行全停着陆。

在 VREF 时,教员喊"抬头",学员应柔和抬机头至大约 15 度仰角,并以 VREF+15 至 25 节的速度爬升。如果襟翼没有收到 20 且推力手柄前推到接近垂直位置时,起飞形态警告喇叭会瞬时响。

全停起飞的着陆

全停起飞着陆科目包括着陆滑跑、刹车以及在训练剖面中的起飞程序练习。

注: 在高原机场或特别热的天气里,不建议做全停起飞着陆。

完成一个正常的全停着陆后,如果还有足够的可用跑道(跑道可用长度必须符合 FAR(联邦航空条例)),可以直接起飞。

停机后,开始起飞前,完成下列程序:

- 调定起飞襟翼
- 配平起飞安定面
- 减速板手柄放在下卡位
- 自动刹车放 RTO 位

- 检查方向舵配平
- 根据使用的襟翼位置调定空速游标

开始正常起飞。

如没有时间冷却刹车不要反复做全停着陆。刹车热量能够积累,并能可超过刹车能量限制。有可能造成爆胎。

注: 放下起落架做起落航线有助于刹车冷却。

复飞 一 所有进近

复飞 一 双发工作

无论是仪表进近还是目视进近,通常以相同的方式进行复飞。用 FCOM 介绍的复飞程序作复飞。本节内容补充说明这些程序。

如果自动驾驶进近之后需要复飞,继续保持自动驾驶接通。按压任一 TO/GA 电门,指令襟翼 20,确认复飞推力满足规定爬升率,监视自动驾 驶的性能。高度表指示正上升率后收起落架。

在典型的着陆重量,正常复飞所需的实际推力通常要比最大复飞推力小得多。这就为风切变或其它需要最大推力的情况提供了推力裕度。如果在建立了规定爬升率的推力之后需要全推力,第二次按压 TO/GA。

如果在人工仪表进近或目视进近后需要复飞,按压任一 TO/GA 电门,指令襟翼 20,确保/调定复飞推力,并柔和抬头至 15 度俯仰姿态。然后跟飞行指引,高度表指示正上升率之后收起落架。

从 50 英尺开始自动复飞时,将会掉高度约 30 英尺。如开始复飞后出现接地现象,继续复飞。飞机抬头至复飞姿态时,观察自动油门将推力加至复飞推力,否则人工施加复飞推力。

注:飞机接地后不能起始自动复飞。

TO/GA 俯仰方式开始指令一个复飞姿态,然后随爬升率的增加过渡到速度。这个速度通常在指令速度和指令速度+25 节之间。TO/GA 横滚方式保持当前地迹。高于 400 英尺 AGL 时,对于装备了 TO/GA 到 LNAV 功能的飞机,核实 LNAV 接通或选择适当的横滚方式。

正常起飞过程中的收襟翼最低高度通常不适用于复飞程序。但是,一定要考虑到复飞飞行轨迹上的障碍物。训练过程中,在1,000 英尺 AGL 开始加速收襟翼,就像在起飞程序中一样。

注: 400 英尺 AGL 以前不能接通俯仰和横滚方式。

July 29, 2011

复飞过程中如需机动,开始转弯前,在收起落架过程中执行复飞程序。 完成初始机动飞行并且达到安全高度和适当速度之后,再进一步的收襟 翼。

在到达安全高度及加速高度之前不要增加指令速度。重新把指令速度调 节到所需襟翼设置的机动速度,加速到收襟翼速度。按正常的襟翼/速度 计划收襟翼。襟翼收到需要的位置并且空速接近机动速度时,选择 FLCH 或 VNAV 并确保 CLB 推力已调定。核实飞机在选定高度改平,并保持 正确的速度。

复飞期间如果使用 VNAV, FMC 复飞剖面应包括合适的等待速度和高 度。可用速度干预来按需要进一步修改空速。如果显示 VNAV ALT,则 可能发生过早的改平,并且需要选择 FLCH 来完成爬升到复飞高度。

低高度改平 - 小全重

以小全重复飞后,如果需要在低高度改平,机组需要考虑以下因素:

- 如果使用全复飞推力,由于改平高度近并且飞机爬升率大,有可能一 开始复飞就出现高度截获
- 为保证旅客舒适, AFDS 的操纵法则限制 F/D 和自动驾驶仪的俯仰指 今
- 在改平高度以下可能没有足够的高度来完成正常的截获剖面,除非机 组采取措施,否则可能飞过该高度。

为了防止超过目标高度和目标空速, 机组应考虑采取一项或多项下列措 施:

- 使用自动油门
- 按压 TO/GA 电门一次, 指令满足 2,000 fpm 爬升率的推力
- 如果使用全复飞推力,提前减小到爬升推力
- 如果可能飞过高度, 断开 AFDS 完成人工改平.
- 如果自动油门不能用,准备按需人工控制推力,防止襟翼超速。

接地后复飞

如果接地前开始复飞但又出现了接地,继续正常的复飞程序。在整个机动飞行中,F/D 复飞方式将继续提供复飞指引。

如果在接地后选择反推之前复飞,当前推推力手柄时,自动减速板会收回并且自动刹车解除预位。不再提供 F/D 复飞方式,直到离地后选择了复飞方式。

接地后一旦起始了反推,必须全停着陆。如果一台发动机停留在反推位置,不可能安全飞行。

复飞 一 一台发动机失效

一台发动机不工作的复飞方式与正常复飞一样,只是襟翼 20 进近时用襟翼 5 复飞,襟翼 25 或 30 进近时用襟翼 20 复飞。TO/GA 接通后,AFDS 指令一个通常在指令速度到指令速度+15 节之间的速度。TAC 自动设置方向舵,飞行员只需要很小的输入来补偿推力差异。襟翼收到所需襟翼设置之后,选择最大连续推力。

注:如果 TAC 失效时人工复飞,飞行员必须用方向舵和配平控制偏航。即使有满舵配平,可能也需要一些方向舵脚蹬压力。

对于多部自动驾驶仪复飞,一开始由自动驾驶仪控制偏转。当选择其它 横滚方式、俯仰方式,或者在 400 英尺 AGL 以上出现高度截获时,自动 驾驶返回单部自动驾驶仪操作,并且由 TAC 保持方向舵控制。

注:如果 TAC 失效,当自动驾驶返回到单部自动驾驶仪操作时,准备好立即实施方向舵输入。

复飞过程中发动机失效

如果在复飞过程中一台发动机失效,很重要的一点是恢复失去的空速,防止在速度小于推荐的空速时出现大的推力不对称情况。跟飞行指引,恢复并保持推荐的空速。使用与襟翼 20 起飞时一台发动机失效一样的程序。

注: 在襟翼 20 时, VREF 30 +风增量产生的空速可能无法提供全机动裕度(琥珀色速度带顶部)。

着陆	第6章
目录	TOC 节
序言	6.1
目视进近坡度指示器(VASI/T-VASI)	6.1
三排 VASI/T - VASI	6.2
VASI 着陆几何图	6.3
精密进近轨迹指示器(PAPI)	6.5
PAPI 着陆几何图	6.5
着陆几何图	6.5
目视瞄准点	6.5
着陆跑道标志(典型的)	6.7
跑道入口高	6.8
拉平和接地	6.8
空速控制	6.9
着陆拉平剖面	6.9
正常接地姿态	6.11
俯仰和横滚限制条件	6.20
着陆跳跃的改出	6.24
中止着陆	6.25
着陆滑跑	6.26
减速板	
着陆滑跑过程中的方向控制和刹车	
影响着陆距离的因素	6.27
轮刹	6.31
反推的使用	6.35
侧风着陆	6.39
着陆侧风指标	6.39
侧风着陆技巧	6.40

超重着陆	6.4
超重自动着陆政策	6.4

着陆 第6章

序言

本章介绍关于着陆、中止着陆和着陆滑跑的操作方法和技巧。这些技巧 用于帮助飞行员有效地利用进近灯光,在侧风中控制飞机着陆,以及着 陆后保持方向控制。另外,对于影响飞机着陆距离和几何构形的因素也 进行了分析。

目视进近坡度指示器(VASI/T-VASI)

VASI 是一套灯光系统,在进近过程中提供目视下降指引。所有 VASI 系统通常都是进近轨迹在跑道入口 1000 或 1800 英尺以外的目视投影。按 VASI 的下滑道飞到接地点和在 VASI 设施附近的跑道上选择一个目视瞄准点飞行一样。

当使用两排杆的 VASI 时,目视基准轨迹与起落架轨迹的差异会导致较低的进近和临界的跑道入口高度。因此,两排杆的 VASI 系统不应该用来确定正确的进近剖面。它可以提醒机组已经低于剖面。

一些机场有三排杆的 VASI,它能提供两个目视下滑轨迹。附加的一排灯光杆居于标准的两排杆的前排。当飞机处于下滑轨迹上时,飞行员将看到两排白色和一排红色灯光。相对跑道入口高度来说,可安全使用三排杆的 VASI,但可能会导致在跑道更远的地方着陆。

对于 T-VASI 来说,进近时增加一个白色下飞指示灯能提供额外的机轮 离地间隔。

三排 VASI/T - VASI

6.3

VASI 着陆几何图

两排杆 VASI 通常提供一个 3 度的目视下滑轨迹。三排杆 VASI 提供两个目视下滑轨迹。下层下滑轨迹由近处和中间的灯光杆提供,通常在 3 度,而上层下滑轨迹由中间和远处的灯光杆提供,通常高 1/4 度(3.25 度)。这个较高的下滑轨迹仅用于驾驶舱高(前、后轮距较长)的飞机,提供足够的入口穿越高度。

注:不推荐使用两排杆 VASI 系统。两排杆 VASI 提供的目视点会导致 主起落架在或接近跑道入口的顶端接地。

两排杆/三排杆 VASI 着陆几何图

下图使用以下条件:

- 数据基于典型的着陆重量
- 飞机机身姿态基于襟翼 30, VREF30+5, 并且在此速度之上每 5 节应 减小 1 度
- 当主起落架在跑道入口之上时飞行员测量目视高度。

两排杆 VASI 着陆几何图

	襟翼 30		主起落架在跑道入口上方		- 购送 > 口云主於
777 机 型	目视下滑路 径(度)	飞机机身姿态 (度)	飞行员目测 高度 (英尺)	主起落架高(英尺)	跑道入口至主轮 接地点 - 无拉 平 (英尺)
-200	3.0	1.9	47	20	373
-200LR	3.0	0.9	48	22	416
-300	3.0	1.4	46	19	363
-300ER	3.0	1.7	47	19	363

三排杆(上部下滑轨迹) VASI 着陆几何图

	襟翼 30		主起落架在跑道入口上方		
777 机 型	目视下滑路 径(度)	飞机机身姿态 (度)	飞行员目测 高度 (英尺)	主起落架高(英尺)	接地点 - 无拉平 (英尺)
-200	3.25	1.7	97	69	1221
-200LR	3.25	0.6	97	72	1262
-300	3.25	1.2	96	69	1211
-300ER	3.25	1.5	97	69	1211

精密进近轨迹指示器(PAPI)

PAPI 灯光通常安装在跑道左侧。与 VASI 相似,但仅装有一排灯组。 当飞机在正常的 3 度下滑轨迹上,飞行员可看到左侧两个白灯和右侧两个红灯。相对跑道入口处高度来说可安全使用 PAPI,但有可能导致在跑道更远的地方着陆。PAPI 灯通常安装在距跑道头 1000-1500 英尺的地方。

PAPI 着陆几何图

着陆几何图

目视瞄准点

目视进近中,可使用很多技巧和方法来确保主轮在要求的跑道接地点接地。最常见的方法之一是瞄准跑道上理想的主轮接地点,然后调整飞机的五边进近下滑轨迹,直到所选的点相对于飞机稳定下来(进近时,飞行员看这点并不上下移动。)

对于第一代喷气式运输机(例如 B-707, DC-8),因为起落架轨迹和目视轨迹之间的差别不大,这种方法可以接受。拉平距离弥补了轨迹之间的微小差异。起落架接地点非常接近目视瞄准点。但是对于目前的大型飞机,由于轮距加长驾驶舱高度增加,导致起落架轨迹和目视轨迹之间的差异增大。因此,主起落架不能在希望的目视瞄准点接地。

在平缓进近中,随下滑轨迹角的减小,目视瞄准点相对主轮接地点之间 的差距增加。在特定的目视进近中,飞行员必须考虑起落架轨迹和目测 轨迹间的差异。

着陆跑道标志 (典型的)

下列跑道标志用于精密进近跑道。

跑道入口高

跑道入口高度随下滑轨迹角和起落架接地目标点的变化而变化。主起落架的跑道入口高度和飞行员的目视高度已在前面排杆/三排杆 VASI 着陆几何图中说明。注意力要特别集中在五边进近的建立上,保证安全的跑道入口高度,并且起落架在跑道内至少 1000 英尺接地。如果不能进行自动喊话,应用无线电高度表帮助飞行员判断离地高度、跑道入口高和起始拉平高。

拉平和接地

这里讨论的拉平和接地技巧适用于各类着陆,包括一台发动机失效着陆、侧风着陆和滑跑道上着陆。除非发生未预料的突发事件,如风切变或防撞情况,否则不要在着陆期间对操纵舵面进行突然、猛烈的操纵。以调节好的速度、配平状态,在下滑道上开始稳定进近。

注:如果计划自动驾驶接通的进近之后人工落地,应尽早计划到人工飞行的过渡,让飞行员有时间在开始拉平之前建立对飞机的控制。PF应考虑在跑道入口前 1-2 海里、或者机场标高以上大约 300-600 英尺脱开自动驾驶并断开自动油门(如需)。

在机头通过跑道入口,跑道入口从视线中消失时,将目视点转移到跑道最远端。转移目视点有助于在拉平时控制俯仰姿态。保持恒定的空速和下降率有助于确定拉平点。当主轮距跑道大约 20 到 30 英尺时,开始拉平,增加俯仰姿态 2 度-3 度。这将减小飞机的下降率。

如果自动油门接通,在 25 英尺时推力手柄开始减小到慢车。如果自动油门没有接通,开始拉平后,柔和地将推力手柄收回到慢车位,稍微调整俯仰姿态,保持所需的下降率至跑道。保持足够的带杆力以保证俯仰姿态稳定。下图显示正常的接地姿态,空速接近 VREF 加任何阵风修正。最好在主轮接地的同时将推力手柄收到慢车。

拉平时避免驾驶杆过快的移动。如果拉平过猛,接地前推力过大,由于 地面效应飞机有平飘的趋势。不要让飞机平飘或者试图带住飞机。以所 需的空速,在准确的接地点将飞机飞到跑道上。

注: 拉平时不要配平。拉平时配平会增加机尾触地的可能性。

延长拉平会增加机身俯仰姿态 2 到 3 度。如果延长拉平加上错误判断距离跑道的高度,可能导致后机尾触地。不要为了得到完美的柔和接地而延长拉平。安全着陆的标准不是柔和接地。

实际着陆时,通常可稍增加一点俯仰姿态,但要避免抬头过度。落地后不要增加俯仰姿态、配平或者带住前轮不落跑道。这可能导致机尾触地。

空速控制

如接通,自动油门收回推力,在接地时达到慢车。拉平过程中,5节的增量被消耗。

如果自动油门断开,或计划在落地前断开,保持 VREF + 风增量直到接近拉平。稳定的顶风增量在接地之前消失,但阵风修正一直保持到接地。计划接地速度为 VREF + 阵风修正。只要空速控制和推力管理适当,应在不小于 VREF -5 节时接地。

着陆拉平剖面

下图使用以下条件:

- 3 度进近下滑道
- 拉平距离距跑道头大约 1,000-2,000 英尺
- 典型的着陆拉平时间范围在 4-8 秒, 并且随进近速度而变化
- 飞机机身姿态基于典型的着陆重量, 襟翼 30, VREF 30+5 (进近)和 VREF 30+0 (接地), 并每高于此速度每 5 节应减小 1 度。

6.10

注: 小全重进近时可导致俯仰姿态比正常情况低。特别是 VREF 因单发的操纵性而受限制时尤为明显。因此,拉平以及从进近姿态过渡到着陆姿态需要较平时更大的俯仰变化,且飞机有平飘的趋势。

正常接地姿态

下列图表演示了在接地时空速对飞机姿态的影响。表示在襟翼 25 和襟翼 30 时在正常接地速度(VREF 到 VREF - 5 节) 时的飞机姿态。该图还显示了当接地速度小于正常接地速度(图中为 VREF -10 节)时,后机身距离跑道高度将大大减小。

条件

- 前 CG 极限
- 接地时-150 fpm 下沉率
- 海平面标准日

接地机身姿态 -公斤 777-200

接地机身姿态 -公斤

777-200LR

接地机身姿态 -公斤 777-300

接地机身姿态 -公斤 777-300ER

接地机身姿态 -磅 777-200

接地机身姿态 -磅

777-200LR

接地机身姿态 -磅 777-300

接地机身姿态 -磅

777-300ER

俯仰和横滚限制条件

接地角 - 正常着陆图说明了飞机结构接触跑道时机身的横滚/俯仰角。

注: 该图是基于硬式机翼,但是,由于机身的结构性弯曲,动力机动可能减小包线。因此,图中所示的包线范围内的机身横滚/俯仰角可能导致飞机结构接触跑道。

条件

- 围绕主起落架中心线俯仰
- 支柱静态压缩

6.20

- 对所有操纵面位置有效
- 相对主起落架外侧轮胎横滚
- 对所有襟翼卡位有效

接地角 - 正常着陆 777-200

接地角 - 正常着陆

接地角 - 正常着陆777-300

接地角 - 正常着陆 777-300ER

着陆跳跃的改出

如果飞机跳起,保持或重新建立正常着陆姿态,并按需增加推力来控制下降率。对于很小的跳跃或侧滑不需要加推力。当发生了又高又重的跳跃时,起始复飞。使用复飞推力和正常的复飞程序。未建立正上升率前不要收起落架,因为复飞过程中可能发生第二次接地。

如果在开始接地时保持了高于慢车的推力,即使减速板已预位,也可能 无法自动放出减速板。这可能导致弹跳着陆。

如果在刚开始接地时减速板开始放出,即使推力没有增加,一旦飞机因弹跳再次离地减速板会收起。飞机回到跑道上后必须人工放减速板。

中止着陆

部分航空公司和局方会对中止着陆机动进行培训和考评。虽然 FCOM/QRH 中没有中断着陆的程序或机动,如果在接地之前开始,可以 通过实施复飞程序来完成该机动。详见第五章接地后复飞。

着陆滑跑

避免接地时推力高于慢车,因为这会造成机头上仰趋势并增加着陆滑跑距离。

主轮接地后,开始着陆滑跑程序。如果减速板没有自动放出,立即将减速板手柄放到 UP 位。迅速将前轮柔和飞到跑道上。不要求前推操纵杆超过中立位。不要试图带住前轮使之不接触跑道。接地后带住机头作空气动力减速不是有效的刹车技巧,并可能导致在施加刹车时前起落架下沉率过大,并减小刹车效应。

为了避免飞机结构可能损坏,前轮接地前不要推驾驶杆做大角度机头下 俯.

为避免机尾触地的危险,接地后不要增加俯仰姿态。但在着陆中使用过量机头向下的升降舵可导致前机身实质性的损坏。不要使用全向下的升降舵。使用适当的自动刹车设置或根据跑道条件及跑道可用长度的需要,稳定地增加脚蹬压力,人工柔和地使用轮刹车。按需使用恒定的或增加的刹车压力保持减速率,直到完全停稳或达到所需的滑行速度。

减速板

接地后,前轮接地时,减速板能全部升起并且没有不利的俯仰影响。减速板破坏了机翼的升力,将飞机重量放在主起落架上,提供最佳刹车效应。

除非减速板在接地后才升起,否则刹车效应在开始时最多会减小60%,因为轮子上的重量很轻,使用刹车会产生迅速的防滞调整。

通常情况下,减速板预位以便自动放出。接地后,两个飞行员应监控减速板的放出。在不能自动放出的情况,应立即人工放出减速板。

在着陆阶段,飞行员应了解减速板手柄的位置,防止超过限度。在着陆阶段 PM 应报出手柄的位置。这样可增进机组对着陆时扰流板位置的了解,并建立良好的行为习惯,防止没有观察到扰流板系统故障或未预位的情况发生。

6.27

着陆滑跑过程中的方向控制和刹车

如果前轮没有及时地接地,刹车和前轮转弯能力大大减弱,且无阻力效应。到大约 60 节时方向舵控制生效。滑跑期间,方向舵脚蹬转弯足以保持方向控制。达到滑行速度之前,不要使用前轮转弯手轮。在侧风中,向迎风方向压盘保持机翼水平将有助于方向的控制。接地后立即执行着陆滑跑程序。稍有迟缓就会明显增加停机距离。

停机距离会因为风的条件,以及与推荐的进近速度偏差而变化。

影响着陆距离的因素

正常和非正常形态着陆距离的咨询信息可以在 QRH 的 PI 章节查到。用最大效果停机的实际停机距离大约是所需干跑道长度的 60%。影响停机距离的因素包括:过跑道入口的高度和速度、下滑道角、着陆拉平、前轮接地、反推、减速板的使用,轮刹和跑道道面状况等。

- **注:** 反推和减速板阻力在高速着陆的阶段最有效。尽可能不要延迟放减速板和使用反推。
- **注**:减速板全部放出,与最大反推和最大人工防滞刹车一起使用,可提供最短的停机距离。

接地前必须避免在跑道上平飘,因为这样会用掉很大一部分可用跑道。 飞机应尽可能靠近正常接地点接地。在跑道上的减速率要比空中大三倍 左右。

跑道入口的飞机高度也对总的着陆距离有明显的影响。例如,飞机在 3 度下滑轨迹上,不在 50 英尺的高度而在 100 英尺的高度上飞越跑道入口,就会增加总的着陆距离大约 950 英尺。这是由于飞机在实际接地前已用的跑道长度增加了。

下滑轨迹角也影响总着陆距离。即使飞越跑道头的高度合适,由于进近轨迹变平缓,总着陆距离也会增加。

非正常着陆距离

因为进近速度增加,并且由于非正常着陆条件导致减速装置(扰流板、刹车、反推)能力可能降低,实际的着陆距离会增加。QRH空中性能章的非正常形态着陆距离表提供了各种非正常着陆形态和跑道条件下的 VREF及着陆距离。

滑跑道着陆性能

附录 A.2.8

若在覆盖有冰、雪、湿雪或积水的滑跑道上着陆,必须考虑报告的刹车效应。报告的好、中和差的刹车效应的相关咨询信息可在 QRH 的空中性能章节查到。报告为好的性能水平代表湿跑道。报告为差的性能水平代表湿冰覆盖的跑道。QRH 同时提供了各种自动刹车设置和非正常形态的停机距离。当报告的刹车效应差时,飞行员应格外小心,确保有足够的可用跑道长度。

飞行员应记住,滑跑道/污染跑道的性能数据是假设整个道面状况相同。 这就意味着污染跑道上的湿雪/积水深度相同,或者滑跑道的刹车系数固 定。这些数据不能包括所有可能的滑跑道/污染跑道的混合情况,且未考 虑大多数跑道头附近诸如橡胶沉积、厚层涂漆面等因素。

讲到跑道经常涉及到的一个词汇是摩擦系数。通常用地面摩擦测量车辆来测量这种摩擦系数。为了使这些地面摩擦测量车辆测出的摩擦读数与飞机性能互相关联,航空业已做了许多工作。地面摩擦车辆的使用带来了以下几点顾虑:

- 测量出的摩擦系数取决于所用地面摩擦测量车辆的类型。没有一种世界通用方法可以使不同摩擦测量车辆测出的摩擦量彼此之间或与飞机的刹车能力互相一致。
- 到现在为止,所有把地面摩擦车辆性能比作飞机性能的测试,都是在相对较低的速度下进行的(100节或更低)。而飞机减速特性的关键部分典型地是在较高速度(120至150节)。

- 当跑道上有积水、湿雪或雪的情况下进行测量时,地面摩擦车辆常常提供不可靠的读数。测量时地面摩擦测量车辆不会水上滑行(滑水),而飞机可能滑水。在这种情况下,地面摩擦车辆会提供跑道摩擦能力乐观的读数。另一种可能是,地面摩擦车辆可能滑水,而飞机不会滑水,这样会提供跑道摩擦能力过差的读数。因此,在滑水的情况下,地面摩擦车辆测出的摩擦读数可能并不代表飞机的能力。
- 地面摩擦车辆在特定的时间和地点测量跑道的摩擦力。随着大气条件的改变,如温度变化、降水等等,实际的跑道摩擦系数可能变化。同样随着飞机起落的增加,跑道条件也会变化。

地面摩擦测量车辆测出的摩擦系数的确为飞行员考虑着陆跑道情况时提供了额外的评估信息。计划着陆时,机组应结合 PIREPS(飞行员报告)和跑道的自然情况(雪、雪浆、冰等)来评估这些数据。当报告的刹车效应"差",或跑道上有雪浆/积水时,评估所有这些可用信息时应尤其小心。

6.30

影响着陆距离的因素 (典型的)

轮刹

轮胎的刹车力与轮胎作用于跑道的力,以及轮胎和跑道间的摩擦系数成 正比。刹车循环过程中接触面一般变化很小。垂直方向上的力来自于飞 机重量和其它所有向下的空气动力,如减速板等。

磨擦系数取决于轮胎状况以及道面情况,如混凝土、沥青、干、湿或结冰道面等。

自动刹车

当使用高于正常的进近速度、湿滑跑道着陆、或者侧风条件着陆时,只 要跑道受限制,建议使用自动刹车系统。

自动刹车系统的正常操作仅需选择一个减速设置。

供选择的设值包括:

- MAX AUTO:需要最短停机距离时使用。减速率小于人工最大刹车的 减速率
- 3 或 4: 在湿或滑的跑道上,或当着陆滑跑距离受到限制时使用
- 1 或 2: 这些设置提供适合所有常规操作的中等减速率。

对不同道面条件的经验以及相关飞机的操作特征帮助初始判断需要选择的减速水平。主起落架接地后,迅速使用最大反推会使自动刹车系统把 刹车压力减到最小。由于自动刹车系统能感应减速并相应地调节刹车压力,适当使用反推会在着陆滑跑的大部分过程中减小刹车量。

强调接地后尽快建立所需反推是非常重要的。这会使刹车温度以及轮胎和刹车的磨损降到最低,并减小在非常滑的跑道上的停止距离。

与最大反推相比,如果使用最小反推会使刹车能量要求加倍,并导致刹车温度比正常值高很多。

接地后,机组应注意自动刹车脱开信号牌。一旦自动刹车脱开,PM应通知 PF。如果自动刹车接通但是对停机距离没有把握,PF应立即实施足够的人工刹车,确保在剩余跑道上减速到安全的滑行速度。

ORH 中 PI 章提供了可用自动刹车选择的停机能力。

过渡到人工刹车

从自动刹车过渡到人工刹车的速度取决于飞机减速率、跑道条件和停机 要求。一般只有到达滑行速度后才会收回减速板,但是当确定停机距离 在剩余可用跑道范围之内时可能会提早收回减速板。过渡到人工刹车时, 按需使用反推直到达到滑行速度。当接近跑道头时,橡胶沉积会影响停 机能力,使用减速板和反推尤其重要。

从自动刹车系统过渡到人工刹车时,PF 应提醒 PM。脱离自动刹车的技巧可能影响旅客舒适度以及停机距离。这些技巧包括:

- 收起减速板手柄。当确定停机距离在剩余跑道范围内时,该方法可以 柔和过渡到人工刹车,在反推收起前后都有效,并且较少依赖于人工 刹车技巧。
- 像正常停机一样,柔和踩刹车脚蹬,直到自动刹车系统解除预位。自 动刹车系统解除预位后,柔和松开脚蹬。在反推开始前解除自动刹车 预位可以柔和过渡到人工刹车
- 人工将自动刹车选择器放关位(通常由 PF 指挥 PM 执行)。

人工刹车

6.32

使用以下人工刹车技巧可以在所有跑道条件下提供最佳的刹车能力: 飞行员的座椅和方向舵脚蹬必须调整到可通过最大方向舵偏移来施加最 大刹车。

主轮接地后,按所需刹车量迅速柔和地在刹车踏板上施加稳定的压力。 对于短或滑的跑道,使用全刹车脚蹬压力。

- 不要试图用其它特殊技巧来调节、点刹车或改善刹车
- 飞机速度减到安全滑行速度之前,不要松开刹车脚蹬压力
- 在任何跑道条件下,防滞系统可以使飞机停机距离比防滞关或使用刹车踏板调整时所用的跑道更短。

6.33

防滞系统根据感应即将发生的滞胎情况,使飞行员使用的刹车压力适应 跑道道面条件,并对各个轮胎的刹车压力进行调整,从而获得最大刹车 效应。在滑跑道上使用刹车时,在防滞系统为达到最佳刹车效应而建立 合适的刹车压力之前会出现多次滞胎。

如果飞行员调整刹车踏板,防滞系统被迫重新调整刹车压力,建立最佳 刹车效应。在这段重新调整的时间内,刹车效应会有所损失。

防滞完全失效是指在特别滑的道面上以较大的速度操作,可用刹车摩擦 系数比较小。点刹车将降低刹车效应。稳定地增加刹车压力使防滞系统 最好地发挥作用。

尽管需要立即刹车,人工刹车技巧通常会在主轮接地和踩刹车踏板之间有四到五秒的延迟,即使是实际情况需要更迅速地起动刹车也是如此。这一延迟刹车可能会多使用 800 到 1000 英尺跑道。侧风条件下的方向控制及低能见度可能会使延迟时间更长。反推系统故障引起注意力分散也会延迟人工刹车的使用。

防滞不工作时的刹车

当防滞系统失效时,可采用以下技巧:

- 使用刹车前确保前轮在地面且减速板放出
- 开始刹车时用非常轻的脚蹬压力,并随着地速的减小逐渐增加压力
- 施加稳定的压力。

当防滞系统不工作时,相关非正常检查单通知机组不要点刹车。这是因 为每次刹车松开时,要求的停机距离就会增加。并且,每次施加刹车时, 滑滞的可能性也会增加。

小重量着陆时, 防滞关断刹车需要格外小心。

碳刹车寿命

刹车的磨损主要取决于使用刹车的次数。例如,一次坚实的刹车比几次 轻微刹车磨损要小一些。在长时间内多次轻微使用刹车来避免飞机加速 (点刹车)以保持恒定的滑行速度,比适当使用刹车磨损更大。

滑行过程中,刹车的正确使用方法为,刹车让飞机减速,在获得低速后 松刹车让飞机加速,再重复上述步骤。

着陆过程中,一次坚实、高能量、长时间的踩刹车所造成的磨损跟轻微、 低能量、短暂的刹车应用所产生的磨损量是一样的。钢质刹车的磨损随 停机过程中能量输入的变化而变化,而碳刹车与其不同。

在正常着陆条件下,自动刹车2或3可以优化刹车磨损、旅客舒适以及停机性能。因为自动刹车设置根据减速率来使用刹车,自动刹车设置1会使自动刹车调整的可能性很大,特别是在使用反推时。自动刹车2或3会产生持续的刹车应用,这样可以延长碳刹车的寿命。

刹车冷却

对于一系列的滑回或全停起飞着陆,如果没有额外的空中刹车冷却,会导致刹车温度超温。因为每次着陆后刹车能量会累积。

在进近中,提前几分钟放轮通常为着陆提供充足的冷却时间。总的空中冷却时间在 ORH 空中性能章节可以查到。

机组可以通过刹车温度监视系统来进一步评估刹车能量的吸收。该系统 在刹车能量吸收后大约 15 分钟指示稳定的值。所以,不能提供轮胎或液 压油火警、机轮磨损问题或机轮破裂的及时可靠指示。对于正常的刹车 操作,刹车温度监孔读数在每次刹车之间可能有差别。

注: 应使用 QRH 提供的刹车能量数据识别可能存在的过热情况。 严格遵守推荐的着陆滑跑程序,以保证刹车温度最少程度地积累。

最小刹车热量

6.34

由于着陆重量过大或其它因素导致刹车温度过高应考虑实施以下措施: 正常着陆,重量达到最大着陆重量时,不需要使用特殊着陆技巧。

注: 超重着陆的情况下不推荐使用自动着陆。

为了减少刹车温度积聚,使用以下着陆技巧:

- 完成超重着陆检查单(按需)
- 选择最长的可用跑道但是要避免下风着陆。

- 使用最大的可用的着陆襟翼调定值
- 根据所报告的跑道道面情况调定自动刹车,这样可以最大程度的使用可用跑道长度。根据公司的政策使用停机距离安全裕度。虽然自动刹车开始会增加刹车温度,但在反推放出后刹车的作用会减到最小
- 使用自动油门以避免不得不使用超过 Vref + 5 节的风增量
- 接地前消耗所有的顶风增量以避免超速着陆。
- 使用正常的起落架接地瞄准点
- 不要让飞机平飘。
- 接地后马上放出扰流板
- 主起落架接地后马上选择最大反推推力。不要等前轮接地。这样做的目的是让反推作为停机的主要力量。使用最大反推可以进一步减少刹车温度
- 一旦确定飞机能在剩余跑道上停止,关断自动刹车并使用反推继续使 飞机减速。
- 如果对在剩余跑道停住飞机没有把握,继续使用自动或人工刹车并按 需使用最大刹车。
- 考虑提前放起落架,以按需提供最大刹车冷却。

反推的使用

着陆阶段必须保持对前推力手柄和反推手柄位置的意识。不正确的座椅位置以及长袖衣服都可能无意中使前推力手柄前移,妨碍反推手柄的移动。

手应该放到舒适的位置,并且易于接近自动油门断开电门,能够保证可以全行程控制所有推力手柄,包括前推力及反推。

注: 高速时反推最有效。

接地后,推力手柄在慢车时,迅速向上提起反推手柄并向后拉至联锁位,然后按需使用反推。PM 应监控发动机工作极限,并报出任何接近或超出使用极限、反推失效、或其它不正常现象。

空速接近 60 节之前,按需保持反推,直到最大反推。在这一点开始减小 反推力,使反推手柄向下收的速率与飞机的减速率匹配。到达滑行速度 时反推应在慢车位,等发动机减到慢车后再将反推手柄全部压下。在 60 节和滑行速度之间将反推减小到慢车,防止重新吸入发动机尾气,并减 小 FOD 的风险。这还可以帮助飞行员一旦一部反推失效时保持方向控 制。

注:如果在反推工作过程中一台发动机喘振,立即在两台发动机上选择 反推慢车。

PM 在 60 节报告,协助 PF 计划反推的使用。如果取消反推时无意中选择了前推力,PM 也应报告。

6.37

反推的使用

反推和侧风 (双发)

这张图表示了在带侧风条件的滑跑道上,着陆滑跑过程中的方向控制问题。当飞机在侧风中开始滑跑时,反推侧力分量加上了侧风分量使飞机偏到跑道的下风向。另外,大的刹车力会减小轮胎转弯的能力。

为了使飞机重新回到中心线,松开刹车并将反推收到反推慢车。松开刹车会增加轮胎转弯能力,并帮助保持或重新获得方向控制。设置反推慢车会减小反推侧力分量,而不需要通过全部反推作动循环。按需使用方向舵脚蹬转弯和差动刹车,防止修正过量超出跑道中心线。当重新获得方向控制并且飞机正在朝跑道中心线修正时,使用最大刹车和对称的反推来停住飞机。

注: 使用这个技巧会增加需要的着陆距离。

反推 - EEC 在备用方式

使用正常的反推技巧。

反推 —一台发动机不工作

一台发动机不工作时可以使用不对称反推。在工作的发动机上使用正常 的反推程序和技巧。减速过程中若发现方向控制有问题,应把反推手柄 放回慢车卡位。

注:在使用反推的过程中 TAC 不工作。

侧风着陆

下表所示的侧风指标来源于试飞数据、工程分析和飞行模拟机评估。这些侧风指标是基于稳定风(无阵风)条件,并包括双发工作和一台发动机失效的情况。已测试过阵风效应,它将增加飞行员的工作量,而对推荐的指标并无明显影响。

着陆侧风指标

附录 A.2.8

不要把侧风指标看作极限值。提供侧风指标是为了协助用户确立他们自己的侧风程序。

在滑跑道上,侧风指标随道面情况而变化。这些指标假设存在不利的飞 机配载,并假设飞行员采用了正确的操作技巧。

跑道条件	侧风分量 节 *
干	45 ***
湿	40 ***
积水/雪浆	20
雪未融化**	35 ***
冰未融化**	17

注: 只要使用不对称反推,在湿或被污染的跑道上侧风指标就需减小 5 节。

- *风是在33英尺(10米)的塔台高度测出的,适用于148英尺(45米)或更宽的跑道。
- **只有当未出现融化现象时才能在没有处理的冰或雪上着陆。

***侧风分量超过 31 节(777-200 系列和 777 货机)或 35 节(777-300 系统飞机)的情况下不推荐仅用侧滑(无偏流角)着陆。在保持足够的操纵裕度的基础上,该建议保证足够的离地高度。

侧风着陆技巧

侧风着陆有三种不同的方法。即消除偏流角技巧(拉平时消除偏流角)、 带偏流角接地、以及侧滑技巧。只要侧风进近时保持偏流角,驾驶舱偏 向中心线的上风边,保证主轮在跑道中心线上接地。

拉平过程中消除偏流角

这种技巧的目的是在整个进近、拉平和接地过程中保持机翼水平。在五 边进近时,机翼水平同时建立偏流角,保持所需航道。在刚要接地前飞 机拉平时,使用下风方向舵消除偏流角,并使飞机对正跑道中心线。

使用方向舵后,上风机翼会前掠造成横滚。保持机翼水平的同时迎风施 加副翼操纵。这种接地带交叉操纵,并且两个主轮同时接地。在整个接 地过程中都需要使用上风副翼来保持机翼水平。

带偏流角接地

在着陆侧风指标速度范围内,飞机可以仅带偏流角着陆(无侧滑)。(参见本章着陆侧风指标表)。

在干跑道上,在接地瞬间消除偏流角对准跑道时,飞机偏向跑道上风边。需要立即使用上风向副翼,保证机翼水平,同时需通过方向舵来保持跑道中心线。接地时偏流角越大,水平偏离接地点越多。因此,在干跑道大侧风着陆时,不推荐仅带偏流角接地。

在非常滑的跑道上,仅带偏流角着陆可以减轻接地时偏向下风向的情况,因为所有的主起落架同时接地,这样可以快速启用扰流板和自动刹车,同时因为不需在接地前消除偏流角,还可减轻飞行员工作量。但是,在接地后必须正确使用方向舵和上风副翼,以保持方向控制。

侧滑(带坡度)

侧滑侧风修正技巧是将飞机对准跑道中心线延长线,使主轮在跑道中心线上接地。

从进近的起始阶段到着陆使用偏流角法修正偏移。拉平前,让飞机中心 线对准或平行于跑道中心线。使用下风方向舵使纵轴对准所要飞的轨迹, 调整副翼来压机翼以防止偏移。使用反风向的方向舵并压机翼以建立稳 定侧滑,保持所要飞的航道。

接地时,让上风机轮稍先于下风机轮接地。应避免过大的横滚操纵,以 防坡度过大而造成发动机吊舱或外侧襟翼擦跑道。(见本章的离地高度 角 - 正常着陆图)

正确的协调机动可以使方向舵和副翼控制位置在进近的最后阶段、接地和着陆滑跑开始的过程中几乎固定不变。然而,由于颠簸常伴随着侧风,要想在进近五边到接地的整个过程中,保持这种操纵盘与方向舵的协调一致比较困难。

如果机组决定用侧滑法接地,在有强侧风的情况下要结合一个偏流角。 (参见本章着陆侧风指标表)。主轮接地时,上风机翼适当放低并带偏 流角。当上风起落架先接地时,适当地增加下风方向舵,使飞机对正跑 道中心线。接地时,适当地增加上风副翼操作,保持机翼水平。

超重着陆

完成超重着陆非正常检查单。

使用正常的着陆程序和技巧可以安全地完成超重着陆。不会因超重着陆而有不利的操纵特性。有所有重量条件下,襟翼 20,25 或30 的着陆距离通常小于起飞距离。但是,应根据QRH中PI节的着陆距离表核实湿跑道或滑跑道的长度要求。在所有正常或非正常着陆条件下都不会超过刹车能量限制。

超重着陆非正常检查单包括检查着陆重量及着陆爬升限制重量。如果着陆重量大于着陆爬升限制重量或者一台发动机不工作,提供襟翼 20 着陆的指南。如果着陆重量小于着陆爬升限制重量但高于最大着陆重量,且两台发动机工作,必须进行其它的进近速度检查。要求该着陆进近速度检查是为了确保在襟翼 30 着陆进近速度 (VREF 30 加风和阵风增量)和襟翼 30 标牌速度之间有至少 10 节的裕度。如果存在 10 节的裕度,那么推荐襟翼 30 着陆。但是,如果没有 10 节的裕度,那么着陆襟翼推荐襟翼 25,进近速度推荐 VREF 25 加风和阵风增量。实际着陆进近速度极限参照超重着陆 NNC。

如对停机距离有所疑虑,尽量减小着陆重量。根据机长决定,可考虑放油或在低空用大阻力形态(放起落架)等待来达到最大油耗以减轻重量。放襟翼期间和五边进近时遵守襟翼标牌速度。在等待和进近航线中,用正常机动速度机动飞行。放襟翼时,到下一个襟翼位置之前,空速可以减小到低于正常机动速度 20 节。这些较小的速度产生较大的襟翼标牌速度裕度,虽然仍然可以提供正常的坡度角机动能力,但在所有情况下不提供 15 度的裕度。

使用最长的可用跑道,并考虑风和坡度的影响。尽可能地避免在顺风、下坡度跑道或小于正常刹车条件的跑道上着陆。五边速度不要过大。当一台发动机失效或其它非正常情况下,这一点尤其重要。当重量大于最大着陆重量时,五边进近最大的风增量可能会受到襟翼标牌速度和卸载系统的限制。

以正常的飞行剖面进行飞行。确保不产生大于正常的下降率。不要为柔和落地带住飞机。把飞机飞到正常的接地点接地。如果即将出现长着陆,执行复飞。接地后,立即使用最大反推,利用所有可用跑道停住飞机,尽量降低刹车温度。不要试图提早脱离跑道。

自动刹车停止距离指南见 QRH 空中性能章节。考虑到当时的进近速度、 道面状况和跑道长度,如果有足够可用的停止长度,使用推荐的自动刹 车设置。

超重自动着陆政策

不推荐超重自动着陆。波音飞机的自动驾驶未获得超过最大着陆重量自动着陆的认证。高于正常速度和重量时,这些系统的性能不一定令人满意,而且未经过全面的测试。可尝试自动进近,但飞行员必须在拉平高度前断开自动驾驶,完成人工着陆。

在紧急情况下,如果飞行员确定超重自动着陆是最安全的措施,飞行员 必须严密控视进近和着陆,并考虑下列因素:

- 接地点可能会在正常接地区域外,增加了着陆距离。
- 以高于正常的下降率下降接地可能导致超出结构极限。
- 如果自动着陆性能不理想,准备复飞或人工着陆;自动复飞可在接地前一刹那执行,即使飞机在复飞开始后触地,自动复飞仍可继续进行。

空白

机动飞行 目录	第 7 章 TOC 节
序言	
加速到 VMO 和从 VMO 减速	7.1
超速保护	7.2
熟悉发动机失效	7.2
方向舵和水平操纵(TAC 失效)	7.3
方向舵和水平操纵(TAC 工作)	7.4
推力及空速	7.4
高高度机动飞行,"G 抖动"	7.5
快速下降	7.6
自动驾驶的进入和改平	7.7
人工进入和改平	7.8
起落架放出下降	7.8
改平后	7.8
接近失速或失速	7.9
接近失速或失速改出	7.9
失速保护演示	7.11
坡度角保护	7.12
地形避让	7.13
地形避让 - RNAV (RNP) AR 操作	7.13
交通告警和飞机防撞系统(TCAS)	7.13
使用 TA/RA、仅 TA、和仅应答机方式	7.13
活动咨询	7.14
决断咨询	7.14
失控后的改出	7.15
概述	7.16

	7.19
风切变	7.19
概述	7.19
风切变中的飞机性能	7.20
避让、预防和改出	7.20

机动飞行 第 7 章

序言

本章介绍在训练和实际操作中机动飞行时推荐的操作方法和技巧。飞行剖面图代表完成机动飞行过程中波音推荐的基本形态,并为标准化和机组配合提供基础。

对于一些事件的机动操作,如接近失速改出、避开地形、活动避让、失控状态改出、风切变等,可能导致偏离 ATC 指令。除非另有指令,否则机组应在机动后立即回到相应的 ATC 指令。

加速到 VMO 和从 VMO 减速

加速到 VMO 和从 VMO 减速展示了飞机的性能,以及在整个中等高度速度范围内飞机对速度、推力和形态变化的反应。此机动飞行应在全动模拟机上实施,并仅用于演示目的。通常在 10,000 - 15,000 英尺的高度进行此机动,并根据速度限制模拟减速到 250 节。

VMO 是结构极限,以及最大的操作指示空速。从海平面到 VMO 与 MMO 恰好相同的高度之间, VMO 是一个恒定的空速。 MMO 是这一高度以上的结构限制速度。 在较低高度平飞时,有足够大的推力超过 VMO。 平飞中未能减到巡航推力可能导致过大的空速。

在当前巡航速度下,自动油门接通,自动驾驶脱开,开始此机动飞行。 将指令空速调定到 VMO。当空速增加时,应观察:

- 飞机需要机头向下的配平,以保持平飞和配平状态
- 飞机在加速过程中的操纵特性
- 在 VMO 时, 会出现自动油门保护。

在速度恰好低于 VMO 并且稳定时,以高速度转弯,同时保持高度不变。 然后断开自动油门,增加推力,将速度增加到 VMO 以上。

当出现超速警告时,推力手柄收到慢车,指令空速调到 250 节,然后减速到指令速度。由于飞机是空气动力光洁的,任何剩余推力将导致减速时间延长。当空速降低时,会观察到飞机需要机头向上的配平,以保持飞机配平及平飞状态。在减速阶段,记录下从超速警告停止到速度达到 250 节之间飞机所飞的距离。

一旦飞机速度稳定在 250 节,将指令速度调到襟翼收上机动速度,然后减速到指令速度,再次记录下减速过程中飞机所飞距离。观察飞机在减速过程中的操纵特性。

可使用减速板重复进行该项机动,比较减速时间和距离。

超速保护

超速机动的目的是让飞行员熟悉当速度在或超过 VMO 时飞机的操纵特征。而不是说飞行员应该飞一下超过 VMO 的空速。

下降时,选择 V/S 方式并增加下降率到 5000 英尺/分钟。脱开自动驾驶并随空速的增加配平。速度超过 VMO/MMO 时飞机不能配平。当空速增加到 VMO 以上时,必须保持顶杆使速度保持在 VMO 以上。松开杆力让飞机俯仰增加,空速减小到 VMO。

注:该机动仅在模拟机上做演示。

熟悉发动机失效

下表格内所列练习,用于提高飞行员处理一台发动机失效情况的熟练程度,以及熟悉方向舵控制的用量。

	条件一	条件二
空速	襟翼收上机动速度	V2
起落架	收上	放下
襟翼	收上	20
推力	按需	MCT (最大连续推力)

配平中 —将一个推力手柄收到慢车位

操纵 — 使飞机保持航向和机翼水平

方向舵 —使驾驶盘中立

空速 —用推力保持(条件一)用俯仰保持(条件二)

配平 —按需减小操纵力

起飞滑跑期间和离地后单发的操纵性是非常出色的。空中最小操纵速度低于 VR 和 VREF。

方向舵和水平操纵(TAC 失效)

熟练练习是用来提高飞行员处理一台发动机失效情况的能力。也有助于飞行员洞悉方向舵控制的用量。

仪表条件下飞行时,巡视仪表的注意力应以姿态显示仪为中心。通常横滚是反映不对称情况的第一显示。使用横滚控制(副翼)来保持机翼水平,或保持所需的坡度。柔和地用方向舵来停止偏转,速率与推力变化匹配。当方向舵舵量正确时,几乎不再需要移动驾驶盘。按需精确修正用舵量并配平方向舵,使驾驶盘大致保持水平。

在配平方向舵使驾驶盘水平时,保持飞机航向。通过坡度指示器可以发现,坡度略偏向工作发动机的方向。侧/滑指示器也稍偏向工作发动机的一侧。

如果飞机用了过多的驾驶盘偏移量来配平飞机,那么就不能获得全部的水平操纵,且一侧机翼上的扰流板可能会升起而增加阻力。

以恒定的空速转弯并保持一个不变的舵量。在转弯过程中,不要试图协调方向舵和水平操纵。由于偏转,蹬舵会产生横滚,并且会导致飞行员向反方向压盘来抵消方向舵的来回摆动。

下列图给出了正确使用舵和不正确使用舵的范例。

如果自动驾驶仪接通的情况下一台发动机失效,人工用舵使驾驶盘大致中立并增加推力。配平方向舵,减小方向舵脚蹬压力。

方向舵和水平操纵(TAC 工作)

TAC 工作时也可以进行发动机失效熟悉训练,还可以演示其功能。TAC 工作时,一台发动机失效不会像以前的飞机一样影响偏转,因为 TAC 方向舵输入大大地减轻了对飞行员进行方向舵输入的要求。

为了提供发动机失效的指示,TAC一开始不完全补偿偏转。在几秒钟内,TAC提供足够的方向舵输入使驾驶盘回中。

推力及空速

如果推力没有限制,按需增加额外推力以控制空速。在低高度,先可以 用发动机失效时两台发动机的全部燃油流量来建立推力调定。如果性能 受到限制(高高度),调定最大连续推力同时调整飞机姿态以保持空速。

注: 在一台发动机失效的情况下,可以有效地使用自动油门,因为左边和右边自动油门系统可以独立使用,并且 TAC 提供自动的偏转补偿。

高高度机动飞行, "G 抖动"

因机动导致的飞机抖动通常称作"g"抖动。在颠簸情况下飞行时,速度小于 MMO 也可能出现高高度的"g"抖动。训练中,有意产生抖动以示范飞机在抖振飞行时对操纵输入的反应。

注: 在所有重量和高度条件下, 抖杆接近起始抖振。如果飞机机动超过 抖振则可能出现抖杆。

建立 0.81 至 0.84 马赫的空速。柔和地增加坡度角直到明显感到抖动,形成"g"抖动。增加坡度角的同时增加下降率,保持空速。坡度不要超出 30 度。如果 30 度坡度时未出现抖动,增加带杆力直到出现抖动。感觉到抖动后,松开带杆力,柔和地改出坡度,使飞机直线平飞。应注意,在整个过程中操纵都是完全有效的。

快速下降

附录 A.2.8

本节强调了快速下降的基本技巧和程序。一些飞越山区地形的航路需要营运人仔细计划,包括携带另外的氧气、特别的程序、较高的起始改平高度,以及一旦释压时的紧急航路。这些需要求通常地在批准的公司航路手册、或者其它规定航路释压程序的文件中介绍。

设计这项机动飞行的目的是在最短时间内使飞机柔和下降到安全高度, 并尽可能减小旅客的不舒适感。

如果由于座舱快速释压而实施下降,机组应在最初出现指示时戴上氧气面罩并建立机组通讯。核实座舱压力是否无法控制,如果是则开始下降。如果存在或怀疑存在结构的损坏,限制空速到当前速度或更小。避免大的机动负荷。

审慎并有条不紊地执行机动。不要分散注意力,要控制好飞机。如果进入结冰条件,使用防冰并按需调整推力。

注: 快速下降时起落架通常收起。

PM 检查最低安全高度,通知 ATC,并获得高度表调定(QNH)值。两个飞行员应核实已完成所有的记忆项目,并且报告未完成的项目。PM 报告高于改平高度 2000 英尺和 1000 英尺。

在最低安全高度或 10,000 英尺改平,以较高的为准。最低安全高度就是最低航路高度(MEA)、最低偏离航路高度(MORA)或其它任何基于越障、助航设备接收或其它适合标准的高度。

当遇到或预计遇到严重颠簸气流时,减小到穿越颠簸气流速度。

自动驾驶的进入和改平

高度层改变 (FLCH)

由于具备空速和高度保护并可以减小机组工作量,所以快速下降时推荐使用自动驾驶 FLCH 方式。不推荐使用 V/S 或 FPA 方式。

如需要,使用 HDG/TRK SEL 起始转弯。首先在高度窗调定一个较低高度。选择 FLCH,收光推力手柄,并柔和地放出减速板。如果对转弯半径有要求,飞行员应该人工选择所需的坡度角,在安全模式下完成机动。自动油门应保持接通。推力手柄收到慢车的同时,飞机会柔和地下俯。按需调整速度,并确保高度窗内调定了正确的改平高度。下降过程中,当速度接近 310KIAS 时,IAS/MCAH 速度窗内速度由 MACH 变为 IAS。按需人工重调到 VMO。

当自动驾驶仪接通,空速接近 VMO/MMO 下降时,可能出现短暂的空速上升超过 VMO/MMO。当风况和温度变化时尤其常见。对于该机动,这些短暂的上升是可以接受的,自动驾驶仪应该调整俯仰把空速修正到 VMO/MMO 以下。除非自动驾驶仪的操作明显不可接受,否则不要脱开自动驾驶仪。只要空速超过 VMO/MMO,都应当在飞机日志中记录。

注: 对于超过 VMO/MMO 相关建议更完整的信息详见本手册第 8 章"超速"。

当接近目标高度,确认高度设置在 MCP 高度选择窗内,并且在改平开始前将指令速度设置到 LRC 或者大约 300 节。这可以帮助平稳过渡到平飞高度。如果在速度接近 VMO/MMO、高度截获过程中收减速板,可能会出现瞬间超速现象。为了避免发生这种情况,柔和缓慢地收减速板,让自动驾驶仪有充足的时间调整俯仰姿态,将空速保持在极限之内。

人工进入和改平

可以在航向上进入,或者通过转弯脱离航路或控制的航迹。但是,由于 放出减速板开始会减小机动裕度,因此监控空速和坡度角以确保转弯期 间保持最小机动速度。

为了人工做这个机动飞行,断开自动油门并将推力手柄收回到慢车。柔和地放出减速板,脱开自动驾驶并且柔和地放机头到起始下降姿态(大约 10 度机头下俯姿态)。

到达目标速度前约 10 节,缓慢增加俯仰姿态以保持目标速度。整个过程中使飞机处于配平状态。如果无意中超过了 MMO/VMO,柔和改变俯仰以减小速度。

接近改平高度时,柔和地调整俯仰姿态以减小下降率。当接近预定的改平高度时,减速板手柄应收回到下卡位。到达平飞高度后,增加推力以保持远程巡航或300节。

起落架放出下降

正常情况下快速下降要求收上起落架。然而,当对结构的完整性持有怀疑并且必须限制速度时,放出起落架会提供一个更满意的下降率。

如果在下降过程中使用了起落架, 遵守起落架标牌速度。

改平后

重新检查增压系统,评估飞行状况。如果座舱高度仍在 10,000 英尺以上,不要摘掉机组氧气面罩。

注:根据气象条件、氧气、剩余燃油、机组和乘客的身体状况,及可用 机场确定新的措施。获得新的 ATC 许可。

接近失谏或失谏

接近失速是一种可以控制的机动飞行;而失速是不可控制的、但是可以 改出的情况。但是,无论是接近失速还是完全失速,改出机动都是一样 的。

多数接近失速事件发生时,都有足够高度来改出。事件发展成为事故大都因为在出现失速警告时机组不能成功改出,情况进一步发展成为完全失速,然后飞机在失速条件下撞地。由于这个原因,强调的重点以前是以最小的高度损失改出,目前已转移为减小迎角到机翼失速角度以下,以成功有效地改出。

飞行员应该能够快速识别失速警告,无论是起始抖振还是人工指示(抖杆)。在失速的初始阶段,由于局部气流的分离导致抖动(起始抖振),提供了接近失速的自然警告。在巡航马赫速度,一开始起始抖振之后马上会出现抖杆。一旦判断是失速警告,无论是起始抖振还是抖杆,立即开始从接近失速中改出。

在任何姿态(机头上仰、机头下俯、大或小坡度角)或任何速度(转弯、加速失速)飞机都有可能出现失速。而且失速并不总是直观明显的。

- 失速警告
- 抖动,可能很严重

飞机失速时有以下一个或几个特性:

- 俯仰效能不足
- 横滚操纵不足
- 不能阻止下降率

接近失速或失速改出

要开始改出,必须将迎角减小到机翼失速角以下。柔和施加机头向下升降舵减小迎角,直到机翼解除失速(抖振或抖杆停止)。如果驾驶杆不能提供所需的反应,可能需要机头向下的安定面配平。

注: 对于大推力的发动机,低空速加上高推力调定可能会导致升降舵权限不足。这是因为翼下安装发动机的飞机相对增加的推力都有机头向上的俯仰力矩。

顶杆(可能需要顶到底)并使用部分机头向下的安定面配平应该可以提供足够的升降舵操纵,产生机头向下的俯仰率。至于使用多少量的安定面配平则很难知道,但要注意不要配平过量。驾驶员不应该带着安定面配平飞,在感觉到飞机上的 g 力减小或所需的升降舵力减小时,停止机头向下的配平。使用过多的配平可能导致失去操纵或大的结构载荷。

继续改出,按需以最短的方向横滚至机翼水平。如果在机翼解除失速之前尝试横滚至机翼水平,副翼和扰流板可能无效。保持连续的机头向下升降舵压力使机翼卸载,可以保持机翼迎角较低,让正常的横滚操纵更有效。失速解除之后,如需要,可以使用正常的横滚控制(最多到副翼和扰流板完全偏转)以最短的方向横滚至机翼水平。一般不需要使用方向舵。

通常,AFDS 和飞行操纵保护可降低无意超过机翼失速角度的可能性。 但是,即使正确地操作了自动驾驶和自动油门,飞机也可能遇到瞬间接 近失速的状态。AFDS 就是据此设计,让飞机能从这种状态恢复到正常。 自动驾驶和自动油门反应不能接受时,接近失速或失速改出机动需要机 组将其断开。以下指示是不可接受情况的示例:

- 接近失速时,飞行员判断 AFDS 反应不正确或反应不够迅速。
- 飞机进入完全失速。
- 飞机进入失控状态。

7.10

接近失速或者失速的改出机动要求机组按需前推推力手柄。在某些条件下,譬如在起飞或复飞过程中已经施加了大的推力调定,则可能需要减小推力以防止迎角持续增加。这是因为翼下安装发动机的飞机相对增加的推力都有机头向上的俯仰力矩。

注: 抖振和/或抖杆停止后的机头低姿态改出要小心。如果上拉过量,可能导致"二次"失速或者持续抖杆。

在某些极端的情况下,如果项杆加上部分机头向下的安定面配平以及推力减小还是无法停止机头向上情况下俯仰率的增加,将飞机横滚到某个开始机头向下的坡度角可能会有效。如果正常的横滚控制无效,可能需要在所需的横滚方向小心地输入方向舵。可能需要 45 度左右,最大 60 度的坡度角。用舵过多、过快或保持时间过长会使飞机失去水平和方向控制。

改出过程中不要改变起落架或者襟翼形态,除非在离地过程中出现失速警告且起飞时襟翼不慎收起。在这种情况下,按照接近失速或者失速改出机动放襟翼1。在其它情况下改出时放襟翼或者收襟翼都会导致高度损失增加。

高高度改出

在高高度,通常指高于 20,000 英尺,逐步限制飞机推力。如果出现接近失速指示,需要机头向下升降舵和安定面配平来开始下降。这是因为当飞机推力受限时,需要用高度来换取速度。因此,在高高度改出会比在低高度改出高度损失更大。

失速保护演示

失速保护演示的目的是使飞行员熟悉在自动驾驶仪接通或脱开时,接近 失速情况下的失速警告和正确的改出技巧。

在平飞过程中,襟翼收上,以襟翼收上机动速度开始失速保护演示。在 IAS/MACH 窗内选择低于速度带上最小速度指示的速度。脱开自动驾驶 仪和自动油门,推力手柄收到慢车。当速度下降到琥珀色区时,PFD 上 出现 PLI。当速度下降接近琥珀色区的一半时,出现 AIRSPEED LOW 警戒信息。自动油门恢复,自动接通 SPD 方式,飞机回到最小机动速度。

失速保护演示的第二步,在CDU上选择VREF30。脱开自动驾驶仪,关 断自动油门预位电门,在IAS/MACH窗内设置低于速度带上最小速度指 示的速度。保持航向和高度,并收推力手柄到慢车。当飞机减速时,继 续配平并按计划选择襟翼 20。当襟翼放出时,在 PFD 上显示 PLI。接近 最小机动速度之前,飞机可以配平。低于这个速度时,机头向上的配平 受到抑制。当空速减小到琥珀色区后,仅用驾驶杆输入来保持平飞。在 最小速度时抖杆启动。如果空速下降稍微低于最小速度, 需要增加驾驶 杆力来保持平飞。根据接近失速或失速改出机动,从接近失速中改出。 用副翼和扰流板保持水平操纵。不推荐要使用方向舵, 因为可能导致偏 转和不必要的横滚。改出后,在收襟翼时加速到收襟翼机动速度。 要演示自动驾驶仪失速保护, 先确定俯仰方式在 ALT, 自动油门预位电 门关断,并目推力手柄收到慢车。当速度接近最小速度,并目出现 AUTOPILOT 警戒信息时,在所选的俯仰方式上会显示一条琥珀色的横 线,并且飞行指引俯仰指令杆消失。在最小速度时抖杆启动。抖杆启动 后, 随之很快地自动驾驶仪开始从所选择的高度下降。自动驾驶仪保持 下降,速度稍高于最小速度。选择高一点的速度接通自动油门或人工前 推推力手柄以改出。选择新的俯仰模式,或者脱开自动驾驶仪,人工把 飞机飞回开始的高度。

坡度角保护

转弯机动飞行的目的是使飞行员熟悉 35 度以上坡度时飞机的操纵特性。训练时,这类机动可以使用达到 45 度的坡度。这并不等于说在任何正常或非正常情况下,会要求飞行员使用大于 25-30 度的坡度角。

自动驾驶仪关断时,开始超出 35 度坡度的转弯。注意在接近 35 度坡度时,保护系统给驾驶盘提供相反的力,且 PFD 坡度指示变成琥珀色。飞行员可以超控这种保护力,最大的驾驶盘偏转始终会指令最大的操纵面偏移。松开横滚输入后,保护系统使飞机回到小于或等于 30 度,坡度指示变成白色。

注: 当坡度角大于30度时,飞行员必须增加驾驶杆反压,以保持平飞。

地形避让

当探测到飞机与下方地形存在不安全距离或接近率时,会引发近地警告系统(GPWS)的 PULL UP 警告。当探测到飞机与前方地形存在不安全距离时,前视地形警报(如安装)就会提供音响警告。立即执行 QRH 非正常机动章节中地形避让机动。

在确定飞机避开地形之前,不要试图接通自动驾驶和/或自动油门。

地形避让 - RNAV (RNP) AR 操作

附录 A.2.8

在 RNAV (RNP) AR 操作过程中,如果离场或进近时接近地形,可能出现瞬时的地形警戒级警报。如果这些警报持续时间短并且已经停止,机组应确认飞机在要求的轨迹上,并考虑用 LNAV 或 VNAV 继续程序。根据开始的位置不同,执行地形避让机动存在的触地危险可能比继续保持轨迹还要高。

地形警告级别的警报始终要求立即采取措施。地形避让机动过程中,关于飞机坡度和轨迹的最恰当的机组措施取决于在哪个位置开始机动。如有必要,营运人应确定在程序的每一个航段的适当措施,帮助机组随时可以正确反应。

交通告警和飞机防撞系统(TCAS)

TCAS 的设计是为了加强机组对附近飞机活动情况的了解,并及时提供目视咨询和适当的垂直飞行轨迹机动信息,避免可能发生的相撞。它只是作为目视防撞的备用系统,飞行员应遵循优先飞行规则和 ATC 间隔。

使用 TA/RA、仅 TA、和仅应答机方式

TCAS 应在起飞前开始工作,并持续到着陆后。任何时候只要可行,让系统在 TA/RA 方式工作,使系统最大限度地发挥作用。按照航空公司政策,用仅活动咨询(TA)或 TCAS 关(仅应答机)方式工作,防止干扰性的咨询信息或显示杂波。

机组和 ATC 仍然有防撞的责任。机组不应该一心只注意 TCAS 咨询信息和显示而忽视了基本的飞机操纵,正常的目视观察和其它机组职责。

活动咨询

当附近的活动满足系统最小间隔标准时将出现活动咨询(TA),并且在 TCAS 活动显示上用音频和视频指示。TA 的目的是警告飞行员 RA 的可能性。如果收到 TA,立即完成 QRH 中的空中交通避让机动。

仅以 TA 为基准的机动飞行可能导致间隔减小,所以不推荐这种做法。 下列情况下适合使用 TA ONLY 方式:

- 起飞过程中,朝着已知的附近飞机(通过目视观察)飞行时,该飞机 可能在起始爬升过程中造成不必要的 RA:
- 在间隔很近的平行跑道进近
- 已知非常靠近其它飞机飞行
- 营运人认为很可能会出现的不必要或不想要 RA 的情况
- 单发操作。

决断咨询

当 TCAS 确定冲突飞机的间隔可能不够时, TCAS 将发出决断咨询(RA) 声响警告和俯仰指令。如果在姿态指示器上飞机符号的任何部分在红区范围内,需要采取机动措施。机组应该利用建立的程序执行 RA 指令,除非这样做会危害飞机的安全运行。如果接收到 RA,立即完成 QRH 的活动避让机动措施。

在交通繁忙的位置(例如航路点)会频繁出现决断咨询。在 RVSM 空域 尤其如此。除非 ATC 特别要求,不要为了避免 RA 而修改爬升或下降剖 面。

RA 机动飞行仅需要小量的俯仰姿态变化,应立即柔和完成。如果执行方法正确,RA 机动飞行会柔和平缓,并不需要大的或突然的操纵动作。切记,在这种机动飞行过程中,旅客和乘务员可能不都是在座位上坐着。飞行指引仪不受 TCAS 引导的影响。因此,当执行 RA 指令时,只有当飞行指引仪指令能够产生满足 RA 指令的垂直速度时,方可跟指引。

有报告称某些飞行机组对 RA"调整垂直速度调节""Adjust Vertical Speed Adjust" (AVSA)的反应不准确,他们去增加而不是减小垂直速度。机组应该清楚 AVSA 始终要求减小垂直速度。遵循 QRH 程序并遵守 RA 指令的垂直速度。

在 RA 机动过程中,机组往往试图目视发现目标飞机。但是,对冲突飞机的目视判断可能是误导性的,特别是在夜间飞行时。因为目视观察到的飞机可能并非导致 RA 的飞机。

由于 TCAS 在与地形因素冲突时可能会发出 RA,例如接近上升的地形或障碍物限制的爬升过程中,飞行员应保持对周围状况的意识。继续按照计划的水平轨迹飞行,除非目视观察到冲突飞机,需要采取其它措施。风切变、GPWS 和失速警告优先于 TCAS 咨询信息。任何时候,都必须重视抖杆。执行 RA 可能导致短时的超出高度和/或标牌极限。但是,即使使用包线极限,在大部分情况下有足够的性能保证飞机安全地机动飞行。脱离冲突之后,柔和迅速地回到正确的高度和速度上。不推荐与 RA 指令相反的机动飞行,因为 TCAS 可能在与其它飞机协调有关的机动。

失控后的改出

关于飞机失控性质的详细资料、空气动力学原理、推荐的训练方法以及 其它有关信息,请参阅《飞机失控改出训练辅导》。

通常无意间超出下列任何条件被认为飞机失控:

- 俯仰姿态大于 25 度上仰
- 俯仰姿态大于 10 度下俯
- 坡度角大于 45 度
- 在上述参数范围内,但飞行速度与飞行条件不符。

概述

航线飞行中, 驾驶员很少遇到飞机失控的情况, 一旦遇到, 如知道如何 运用空气动力学原理将有助于他们控制飞机。将飞机从失控中改出有几 种技巧。大多数情况下,如果一种技巧有效,则不推荐驾驶员再使用其 它的技巧。现讨论其中几种处理技巧:

- 失速改出
- 机头上仰, 机翼水平
- 机头下俯, 机翼水平
- 坡度角大
- 上仰姿态较大, 坡度大
- 下俯姿态较大, 坡度大

注: 从失控状态改出时,可能需要大于正常的操纵力来控制飞机姿态。 准备用稳定持续的力来操纵驾驶杆和驾驶盘、完成改出。

失速改出

在所有的飞机失控情况中,首先要从失速中改出,然后再采取其它的改 出措施。在任何姿态都有可能出现失速,可通过连续抖杆并伴随出现下 列一种或几种情况来判断:

- 抖振,有时可能很严重
- 俯仰效能和/或横滚操纵不足
- 不能阻止下降率

如果飞机失速,必须先进行失速改出,具体方法为保持机头向下的升降 舵直到失速改出完成,并目抖杆停止。在某些条件下,可能要减少一些 推力,防止迎角继续增加。一旦完成失速改出,可采取失控改出措施, 并按需重新使用推力。

机头上仰姿态较大,机翼水平

在飞机上仰姿态无意间超过 25 度并且还在增加的情况下,空速急剧下降。随着空速减小,驾驶员操纵飞机的机动飞行能力也随之下降。对于低速飞行,如果安定面配平调定是机头向上,则会部分减少升降舵机头向下的效能。如果这种情况进一步复杂化,空速减小时,驾驶员可能凭直觉增加大的推力。这会造成额外的机头上仰。全推力调定且空速非常小的条件下,升降舵与安定面相反工作将会限制操纵,从而减小俯仰姿态。

在这种情况下,飞行员应当用高度换取速度,并且操纵飞机使其飞行轨迹回到地平线。施加最大的机头向下升降舵,并使用部分机头向下安定面配平,完成该机动。这些措施提供足够的升降舵操纵力,从而产生机头向下的俯仰率。至于使用多少量的安定面配平则很难知道,但要注意不要配平过量。驾驶员不应该带着安定面配平飞,在感觉到飞机上的 g 力减小或所需的升降舵力减小时,停止机头向下的配平。在飞行员必须实施进一步改出措施之前,可用安定面配平来修正飞机失去配平的状况并解决一些非关键性的问题。由于大的机头向下俯仰率会产生小于 1 g 的情况,在该点控制俯仰率应该修改操纵输入保持在 0 g 到 1 g 之间。如果高度允许,试飞证明获得机头向下俯仰率的一个有效方法是减少部分推力。

如果正常的俯仰操纵输入不能阻止俯仰率上升,横滚操纵飞机使其达到 机头开始向下的坡度角应该有用。可能需要 45 度左右,最大 60 度的坡 度角。保持连续的机头向下升降舵压力使机翼卸载,可以保持机翼迎角 尽可能低,让正常的横滚操纵尽可能有效。当空速与抖杆开始时的速度 一样低时,可以使用正常横滚操纵,直到副翼和扰流板全偏转。横滚机 动将俯仰率转变成转弯机动,从而降低俯仰姿态。最后,如果正常的俯 仰、然后是横滚操纵均无效,则需在所需的横滚方向小心地使用方向舵, 开始改出的横滚机动。

仅需使用小量的方向舵。用舵过多、过快或保持时间过长会使飞机失去水平和方向控制。由于飞机于低能状态,所以飞行员用舵时要注意。

降低俯仰姿态会增加空速,因而改进了升降舵及副翼的操纵效能。俯仰 姿态和空速回到所需的范围后,飞行员可以用正常的水平操纵减小坡度 角,使飞机恢复正常飞行。

机头下俯姿态较大,机翼水平

飞机下俯姿态无意间超过 10 度且继续减小时,空速会急剧上升。飞行员可能会减小推力并放减速板。减推力会造成额外的机头下俯。放减速板会造成机头上仰、阻力增加以及相同迎角升力下降的情况。当空速远远大于 VMO/MMO 时,由于升降舵上有极大的空气动力负荷,升降舵指令机头上仰率的能力可能下降。

同样,有必要操纵飞机使其飞行轨迹回到地平线。飞机处于中度俯仰姿态时,如果需要,用机头向上的升降舵、减推力并放减速板,可使俯仰姿态改变到所需的范围。在俯仰姿态极低,空速大(远远高于

VMO/MMO)的情况下,建立机头向上的俯仰率可能需要机头向上的升降舵和机头向上的配平。

大坡度角

大坡度角是指超出正常飞行所需的坡度角。尽管对飞机失控的坡度角定义为无意中超过 45 度,但在实际飞行中可能会遇到超出 90 度的坡度角。任何时候只要飞机不在"0 坡度角"飞行,机翼产生的升力不能完全抵消重力,所以需要大于 1g 的载荷来保持平飞。坡度角大于 67 度时,平飞不能保持在飞行手册规定的载荷极限范围内。在坡度角大且空速增加的情况下,机动的主要任务是朝最短的方向横滚使机翼改平,用飞机的升力直接对抗重力。坡度大于 60 度时使用机头向上的升降舵会使俯仰姿态出现不可估计的变化,并可能超出正常的结构负荷极限以及机翼迎角失速极限。飞机的升力矢量越接近垂直(机翼水平),改出飞机所用的 g 越有效。

柔和地施加水平操纵直到最大,可以提供足够的横滚控制力,建立非常 有利的改出横滚率。如果使用完全横滚操纵不理想,有必要在所需横滚 的方向使用一些方向舵。

仅需使用小量的方向舵。用舵过多、过快或保持时间过长会失去水平或 方向控制,或者出现结构故障。

机头上仰较大,坡度角大

机头上仰、坡度大的飞机失控需要慎重的飞行操纵输入。大坡度有利于减小过大的俯仰姿态。飞行员在考虑能量管理的同时,必须使用机头向下的升降舵并调整坡度,以达到所需的俯仰减少率。一旦俯仰姿态减到所需的水平,只需减小坡度,确保达到足够的空速,并使飞机回到平飞。

机头下俯, 坡度大

机头下俯、坡度大的飞机失控改出要求飞行员立即采取措施,因为高度在急剧交换速度。即使飞机有充足高度,暂时没有触地危险,空速也可迅速增加超出飞机的设计极限。可能有必要同时使用横滚并调整推力。也可能有必要使用机头向下的升降舵来限制升力,因为在坡度超过90度时,会向着地面方向起作用。这样还减小机翼迎角提高横滚能力。如需建立柔和的横滚改出率回到最近的地平线,使用全副翼和扰流板输入。接近机翼水平之前最重要的是不要增加g力,或使用机头向上的升降舵或安定面。驾驶员还应按需放出减速板。

失控改出技巧

改出技巧可以分两类情况,即机头上仰姿态较大和机头下俯姿态较大, 并在每种情况判断大坡度的趋势。这些技巧还包括了其它的机组措施, 如飞机失控的辨别、减少自动操作、完成改出等等。推荐的这些技巧为 飞机改出提供了逻辑顺序。

如果判断飞机失控,立即按照 QRH 非正常机动章节完成失控改出机动。

风切变

概述

不正确或无效的垂直飞行轨迹控制是众多飞机撞地的主要原因之一。尤 其是低空遭遇风切变,因为风切变要迫使机组使用飞机的最大性能。接 近地面时遭遇风切变是最危险的,因为对遭遇风切变作出反应和改出的 时间太短或高度太低。

风切变中的飞机性能

掌握风切变如何影响飞机性能的知识,对在遭遇风切变时成功运用正确的垂直飞行轨迹控制技巧是很重要的。

在 500 英尺以下风的大部分分量是水平的。水平的风切变可以提高或降低垂直飞行轨迹性能。提高性能的风切变首先表现为驾驶舱里空速显示增加。此种类型的风切变可能是减小空速和降低垂直飞行轨迹性能风切变的前兆。

如果顺风增加或顶风减小的速度大于飞机增速的速度,空速减小。当空速减小时,飞机通常倾向于下俯,以保持或重新获得配平速度。俯仰变化量的大小随着遭遇的空速变化而变化。如果飞行员试图通过降低机头重获失去的空速,空速和俯仰姿态同时减小会产生大的下降率。如果飞行员不加以制止,可能很快发展为临界的飞行轨迹控制情况。可能最多只有5秒钟时间来识别,并对降低的垂直飞行轨迹作出反应。

在临界的低高度情况下,如果可能,以空速换取高度。即使空速可能减小,俯仰姿态的增大也将增加升力并提高飞行轨迹角。正确的俯仰操作,结合最大可用推力将利用飞机的全部性能。

机组必须了解空速、高度、爬升率、俯仰姿态和驾驶杆力的正常值。当空速低于配平速度时,可能需要不同寻常的驾驶杆力来保持或增加俯仰姿态。如果空速发生重大变化且需要不同寻常的操纵力时,机组应当警惕可能遭遇风切变准备好采取措施。

避让、预防和改出

7.20

机组措施分为三个方面:避开、预防和改出。关于避让、预防的更多信息,参阅 FCOM 第 1 册风切变补充程序。关于改出的特定的机组措施参阅 QRH 非正常机动飞行一节。

非正常操作	第8章
目录	TOC 节
序言	8.1
非正常情况指南	8.1
排故	8.2
进近和着陆	8.3
在最近的合适机场着陆	8.3
水上迫降	8.2
发遇险信号	8.2
通知机组成员和旅客	8.4
消耗燃油	8.5
客舱准备	8.5
水上迫降最后阶段	
开始撤离	8.5
发动机,APU	8.5
起飞后发动机失效与发动机失火的比较	8.5
发动机尾喷管起火	8.6
发动机推力控制失效	8.6
双发失效/失速	8.7
高发动机振动	8.7
空中发动机关车推荐的技巧	8.8
鸟击	8.8
撤离	8.10
撤离方法	8.10
撤离过程中释放灭火瓶	8.11
飞行操纵	8.1 1
前缘或后缘装置失效	8.11
用次级或备用系统放襟翼	8.12
飞行操纵卡阳	8 13

安定面失效	8.15
安定面	8.15
飞行仪表,显示	8.15
空速不可靠	8.15
燃油	8.16
燃油平衡	8.16
燃油渗漏	8.17
燃油油量低	8.18
放油	8.19
液压系统	8.19
液压系统不工作 —着陆	8.19
起落架	8.20
起飞过程中或起飞后轮胎失效	8.20
一个轮胎爆胎的情况下着陆	8.20
起落架不一致	8.21
超速	8.23
机尾触地	8.24
起飞危险因素	8.25
着陆危险因素	8.26
警告系统	8.28
轮舱火警	8.28
风挡	8.28
风挡损坏	8.28
侧窗打开(一个或多个)的飞行	8.29
非正常检查单范围之外的情况	8.29
基本空气动力学和系统知识	8.29
飞行轨迹控制	8 31

有记忆项目检查单	8.31
通讯	8.32
受损评定和飞机操纵评估	8.32
着陆机场	8.33

空白

非正常操作 第8章

序言

本章介绍完成所选非正常检查单(NNC)的有关飞行技巧,并提供超出NNC 范围的处理指南。机组应该完成 QRH 中所的非正常检查单。这些检查单确保最佳的安全性,直到完成相应措施并安全着陆。本章讨论的技巧旨在减小工作量,提高机组配合,确保飞行安全并提供标准化的基础。全面复习 QRH 的 CI.2 节(检查单介绍及非正常检查单)对于理解此章非常重要。

非正常情况指南

出现非正常情况时,下列方法适用:

- 非正常情况识别:发现非正常情况的机组成员要清楚准确地报告故障情况。
- 控制好飞机: 在 PM 完成非正常检查单的过程中, PF 必须控制好飞机。建议充分使用自动飞行系统减轻机组工作量。
- 分析状况: 只有正确地判断故障的系统之后才能完成非正常检查单。 检查所有 EICAS 信息,帮助判断故障系统。
- **注**: 只要出现缺氧或怀疑空气被污染,即使没有出现相应的警告,驾驶 员也应戴上氧气面罩并建立机组通讯。

- 采取适当的措施:尽管许多空中非正常情况都要求立即采取修正措施,但是PF发出指令的快慢和PM执行指令的速度可使问题变得更复杂。指令必须清楚简洁,发出下一个指令之前,留出一定时间确认每个指令。在证实和执行指令期间,PF必须控制好飞机。其它机组成员必须保证自己向PF所做的报告清楚简洁,对非正常情况的性质即没有夸张也没有折扣。这样便排除了理解上的混淆,确保快速、有效地处理好非正常情况。
- 评估是否需要着陆:如果非正常检查单要求机组计划在最近合适的机场着陆,或符合QRH中CI.2节(检查单介绍,非正常检查单)列举的情况,则要改航到可以进行安全着陆的最近机场。如果非正常检查单或检查单介绍没有要求在最近的合适机场着陆,驾驶员必须确定如果继续飞向目的地是否会危及飞行安全。

排故

排故可定义为:

- 为了改进或者纠正非正常情况, 采取公布的 NNC 以外的措施
- 在没有 EICAS 警报信息的情况下开始做信号显示的检查单,以改进 或纠正觉察到的非正常情况
- 开始做诊断措施。

排故的例子有:

- 在非正常检查单中没有指示时,循环系统控制或跳开关,试图复位一个系统
- 用维护方面的信息进行诊断或采取措施
- 使用仅用于维护的电门或控制。

超出检查单措施范围的排故一般很少有用,并可能导致进一步失去系统功能或失效。在有些案例中,还导致了事故和事故征候。只有当完成公布的检查单明显导致不可接受的状况时,机组才考虑检查单以外的额外措施。当飞机的操纵性有问题不太可能安全着陆时,可能需要对起落架、襟翼或减速板放出时的飞机操纵性进行评估。一旦出现飞行操纵卡阻,不要尝试用 NNC 以外的措施进行排故,除非飞机在当前状况下无法安全着陆。始终尽量遵守 NNC 的措施。

注: 不推荐飞行机组在飞行中进入电子舱。

由机组专注于排故而导致的注意力分散,是造成几起燃油耗尽和 CFIT (可控飞行撞地)事故的关键因素。波音建议尽量完成公布的非正常检查单,特别是非正常检查单已经对飞行操纵故障采取措施的时候。对于超出非正常检查单范围以外情况的指南在本章的后部分介绍。

进近和着陆

当出现非正常情况时,急于进近会使事情更加复杂。除非是情况要求立即着陆,否则在五边前完成所有的纠正措施。

对于一些非正常的情况,由于进近速度可能增大,着陆距离可能增加, 因此需要考虑不同的拉平剖面或着陆拉巧。

如果需要完成需要时间较长的非正常检查单步骤,例如使用备用襟翼或 起落架放出系统,计划延长直线进近。只要非正常检查单中没有禁止使 用,预位自动刹车和减速板。

注:因为在接地时自动刹车能及时地施加对称的刹车,比最大人工刹车 可能更有效,所以推荐使用自动刹车。但是,QRH中PI章节咨询 信息所提供的非正常形态下着陆距离数据是基于使用最大人工刹 车。当使用正确时,最大人工刹车可以提供最短的停止距离。

飞正常下滑轨迹,并准备在正常接地区着陆。着陆后,利用可用的减速 方法让飞机在跑道上停。机长必须根据情况决定是否需要紧急撤离,或 者飞机是否能安全滑离跑道。

在最近的合适机场着陆

附录 A.2.9

"计划在最近的合适机场着陆"是 QRH 的一句用语。本章解释了该句话的原理并阐述了如何实施。

在非正常情况下,对运行和飞行安全同时负有权限和责任的责任机长,必须决定是继续按计划飞行还是改航到其它机场。在紧急情况下,这种权力包括可以偏离规则以满足紧急情况的需要。在任何情况下,责任机长都应采取安全有效的措施。

在 QRH 中注明了需在"最近的合适机场着陆"的情况,可以协助机组作出决定。在检查单介绍或具体的非正常检查单中都介绍了这些情况。

关于一台发动机失效的规定比较具体。大多数局方规定,双发飞机的责任机长,在一台发动机失效或关车的情况下,应该在能够保证安全着陆的最近合适机场着陆。

合适的机场是由局方根据指导材料为营运人决定的,但总的来说,必须有充足的设备来满足最低天气标准和跑道条件。如果需要改航到最近的合适机场着陆(双发飞机的一台发动机失效),指导材料也同样指定飞行员应该"从时间方面考虑"选择最近的合适机场。在选择最近机场时,责任机长还应考虑最近机场的设备、气象条件,以及哪个距飞机当前位置最近。根据非正常情况的性质和相关因素的考虑,责任机长也可能决定最安全的措施是改航到较远的一个机场,而不是去最近的机场。例如如果机长判断继续飞到另外一个附近机场所需的时间等于或小于盘旋下降到离飞机当前位置最近的机场,就没有必要申请盘旋下降到最近机场。对于持续冒烟或不能确定火情已彻底熄灭的情况,最安全的措施通常是请求尽可能提早下降、着陆并撤离。这可能要求在符合机型类别的最近机场着陆,而不是通常在航路段出现事故时所用的最近合适机场。

水上迫降

发遇险信号

使用当前的空地频率发射 Mayday 信号、现在位置、航道、速度、高度、 形势、意向、预计接地的时间、位置以及机型。将应答机编码调到 7700, 如有可能,确定到最近的船只或陆地的航道。

通知机组成员和旅客

警告机组和乘客做好水上迫降的准备。明确救生筏位置(如安装),将飞机内所有松动设备固定好。穿上救生衣,系好肩带和安全带。离开飞机之前不要给救生衣充气。

8.5

消耗燃油

如果紧急情况允许,在迫降前耗掉机上燃油。这样可以提供较大浮力和 较小的进近速度。但不能把燃油耗到极限量,因为用发动机推力作水上 迫降可以改善接触水面的操纵性。

注: 水上迫降之前也可以考虑放油。

客舱准备

用内话与客舱人员协商,或让客舱人员亲自向驾驶舱报告,保证客舱的水上迫降准备工作已经完成。

水上迫降最后阶段

发射最后位置。选择襟翼30或适合当时情况的着陆襟翼。

通知乘务组即将水上迫降。在五边时广播即将进行水上迫降,通知机组成员及乘客做好防撞姿势。保持 VREF 空速。保持 200-300 英尺/分的下降率。如有可能,计划迎风接水并与海浪平行。为了完成拉平和接水,柔和抬头到 10 至 12 度的接水姿态。用推力保持空速和下降率。

开始撤离

飞机停稳后,到达指定的水上迫降站位并放出滑梯/救生筏。尽快撤离,确保所有的旅客离开飞机。

注:小心不要扯裂或刺破滑梯/救生筏。避免飘进飞机部件的内部或底部。 离开燃油弥漫的水域。

发动机,APU

起飞后发动机失效与发动机失火的比较

发动机失效的非正常检查单通常在襟翼收上后,并且条件允许的情况下 完成。

一旦发动机失火, 当飞机得到控制, 起落架已经收上, 安全高度已获得 (最低 400 英尺 AGL) 后,完成 NNC 的记忆项目。由于考虑到推力不 对称,波音推荐在 PM 证实 PF 已识别出正确的发动机之后,由 PF 收回 受影响发动机的油门。襟翼收上后,并且条件允许时,在不影响其它正 常工作的基础上,完成参考项目。

发动机尾喷管起火

典型的发动机尾喷管起火是由于发动机控制故障,导致汇集的燃油点火 引起。喷火可能损坏发动机,并导致非计划的旅客撤离。

如果报告尾喷管起火,机组应立即完成 NNC。在处理时机组还应该考虑 以下几点:

- 冷转发动机是灭火的主要方法
- 为防止不适当的旅客撤离,应在第一时间通知乘务员
- 保持与地面人员和塔台的联系非常重要, 可以帮助判断尾管喷火的状 态以及是否需要消防援助
- 发动机失火检查单不适用,因为发动机灭火剂对尾喷管里的火不起作 用。

发动机推力控制失效

无论发动机控制属于液压机械控制、或带有电子监控的液压机械控制(例 如 PMC) 还是全权数字式发动机控制(FADEC), 所有涡扇发动机都 易发生此类故障。对于控制失效,每个发动机的反应各不相同。故障在 空中和地面都有可能发生。飞行员所面临的主要挑战是能否识别出这种 情况并判断哪一台发动机出了故障。发动机极限或喘振或失速 NNC 中 编入了该故障。在飞行的任何阶段都可能出现这种情况。

发动机或燃油控制系统部件失效,或推力手柄位置反馈消失造成发动机 推力控制失效。由于许多发动机是在某个固定的 RPM 或推力手柄位置 出现失效,所以控制失效不会立即有明显的反应。这个固定的 RPM 或 推力手柄位置可能很接近指令的推力值, 因此机组在试图使用推力手柄 改变推力之前很难发现这种故障。发动机其它反应包括:随高度或空/ 地逻辑的变化,会出现空中停车、低 RPM 运转以及推力保持在最后一 个有效推力手柄设值(在推力手柄反馈故障时)。在任何情况下,受影 响发动机对推力手柄的移动没有反应,或者反应异常。

由于识别起来比较困难,如果怀疑发动机控制失效,机组应继续起飞或保持飞行,直到非正常检查单完成。这有利于方向控制,并防止无意中关错发动机。在有些情况下,例如地面低速运行时,可能需要立即关车以保持方向控制。

双发失效/失速

无论高度或速度如何,双发失效需要立即采取措施。完成记忆项目并建立适当的空速,以便立即进行风转起动。如果尽早重新起动(或在判断出一台发动机失效后立即进行),充分利用发动机高转速,风转起动成功的可能性较大。在 30,000 英尺以下使用较高的空速和高度可以提高重新起动成功的可能性。如果在较高的高度推力失效,可能需要下降到较低的高度,以提高风转起动的能力。

空中起动包线规定了验证时所演示的风转起动区域。应注意的是该包线 所指定的并不是风转起动可能成功的唯一区域。DUAL ENGINE

FAIL/STALL 非正常检查单保证机组可以充分利用在发动机失效时的高转速,而不管高度或空速如何。

空中起动悬挂或者失速通常表现为 RPM 停滞和/或 EGT 上升。起动过程中,发动机可能缓慢加速到慢车,只要 RPM 在上升,并且 EGT 没有接近或快速接近极限就不需采取措施。

注: 当电源恢复时,不要把建立的 APU 发电机电源与在慢车 RPM 建立 的发动机发电机电源相混淆,不要过早地前推推力手柄。

高发动机振动

某些发动机失效,如风扇叶片飞脱可能造成机体强烈振动。虽然机体振动对于机组而言看起来很严重,但它绝对不会损坏飞机结构或关键系统。然而应通过尽快减小空速和下降来减小振动。随着高度和空速的改变,

飞机会经历不同强度的振动。总的来讲,振动强度随空速的减小而减弱; 但在给定的高度,随着空速的改变,振动可瞬间增大或减小。

如振动仍不可接受,下降到较低高度(地形许可时)获得较低的空速,通常可以降低振动强度。进近期间随着空速的进一步下降,振动可能变得难以察觉。

振动环境对人体行为的冲击取决于多种因素,包括相对于身体的振动方位。在振动环境工作的人可通过向前俯或向后仰,站立或身体位置的其它变化得到缓解。

一旦机体振动减到可接受的强度,机组必须评估情况,并根据天气、剩余燃油和可用机场来决定下一步措施。

空中发动机关车推荐的技巧

附录 A.2.9

任何时候如果需要在空中一台发动机关车,机组之间的配合非常关键。曾经出现由于机组关错发动机,而使飞机故障酿成飞机事故的惨训。

当飞行轨迹完全控制,机组应该仔细、有序地确认受影响的发动机,保证没有关断工作的发动机。即使有火警指示也不要急于完成关车检查单。以下是该技巧的一个示例:

如果需要一台发动机关车, PF与PM口头核实受影响的发动机, 然后关断或者指示PM关断受影响的A/T。PF向PM口头证实受影响的发动机, 然后将要关车发动机的推力手柄缓慢收回。

按以下步骤相互配合关燃油控制电门:

- PM 将手放在要关车的燃油控制电门上, 并口头确认
- PF 口头确认 PM 是选择的正确的燃油控制活门
- PM 将燃油控制电门提到关断位。

如果 NNC 要求启用发动机灭火手柄, 按以下步骤协调:

- PM 将手放在要关车发动机的灭火手柄上, 并口头确认
- PF 口头确认 PM 是选择的是正确的发动机火警电门
- PM 提起发动机火警电门。

鸟击

经验证明, 鸟击在航空业中非常普遍。多数鸟击发生在非常低的高度, 500 英尺 AGL 以下。本节主要介绍影响发动机的鸟击。

8.9

最近对发动机鸟击事件的研究表明,大约 50%的鸟击会损坏发动机。随着鸟的体积以及发动机推力调定的增加,发动机损坏的风险也会成比例增加。如果发动机鸟击损坏了发动机,最常见的指示是风扇叶片损坏导致的严重振动以及 EGT 上升。

注: 出现任何鸟击后, 维护人员应检测发动机。

预防性策略

机场应负责对鸟的控制,并提供足够的野生生物控制措施。如果报告或观察到在跑道附近出现大的鸟或者鸟群,机组应考虑:

- 推迟起飞或着陆(燃油允许的情况下)。通知塔台,执行下一步之前等待机场措施
- 在没有鸟活动的其它跑道起飞或着陆(如有)。

为了防止或降低鸟击的后果, 机组应该:

- 如果在已知或怀疑有鸟活动的机场运行,起飞和进近简令时应讨论鸟击
- 如果报告五边上有鸟要特别警惕
- 如果预计五边上有鸟,应计划额外的着陆距离,以考虑到如果出现鸟 击没有反推的可能性。

注:没有证据表明用气象雷达来恐吓鸟有效。

起飞时鸟击的机组措施

如果在起飞时出现鸟击,用 QRH 中断起飞机动中的标准来决定继续起飞还是中断起飞。

如果在 80 节以上 V1 之前出现鸟击,并且没有立即的发动机失效(例如 失效、火警、失去推力或者喘振/失速)迹象,建议继续飞行,然后在需 要时返航。

进近或着陆时鸟击的机组措施

如果确定要落地,建议继续进近着陆。如果遭遇更多的鸟,通过鸟群并落地。尽量保持最低的推力调定。

如果怀疑发动机吸入,落地后限制反推使用,反推量以在跑道上停住飞机为原则。反推可能增加发动机的损坏,特别是当发动机振动或指示EGT高时。

撤离

如果计划撤离并且时间允许,彻底的简令及机组和旅客准备可以增加成 功撤离的机会。机组准备应包括复习相关的检查单,以及其它需要完成 的措施。还应商量如何使用自动刹车。如果是因为起火撤离,并且是大 风天气,考虑如何停放飞机让火势处于下风侧。

通知乘务组在受影响的出口可能出现的不利条件。每种情况下的可用出口也可能不同。机组成员应决定在当前情况下哪些出口可用。

对于非计划撤离,开始下达撤离指令前机长需仔细分析情况。镇静有序 地快速采取措施可以提高成功撤离的机会。

撤离方法

当需要撤离旅客和机组时,机组必须选择是用紧急滑梯做紧急撤离,还 是采用其它更平稳的方法,例如登机梯、廊桥等等。应利用所有可用的 信息源来确定最安全的措施:包括乘务组、其它飞机以及航管的报告。 机长在仔细考虑所有的因素后再确定最佳的撤离方式。这些因素包括, 但不限于:

- 情况的紧急程度,包括如果延误会导致人员伤亡的可能性
- 对飞机的威胁类型,包括结构损坏、火警、报告机上有炸弹等等
- 火警通过溢油或其它易燃物质快速蔓延的可能性
- 飞机损坏程度
- 如果用滑梯撤离, 旅客在紧急撤离过程中受伤的可能性

如果有疑虑, 机组应考虑用滑梯紧急撤离。

如需要旅客下飞机,但情况并非很紧急,且机长决定无需撤离检查单, 在旅客下飞机前应完成正常关车程序。

8.11

撤离过程中释放灭火瓶

撤离非正常检查单规定如果一台发动机或 APU 火警灯亮,应释放发动机或 APU 灭火瓶。然而,撤离时可能存在超出非正常检查单的范围的潜在火情,并且不会启动发动机或 APU 火警。机组决定是否向发动机和/或 APU 释放一个或多个灭火瓶时,应考虑以下几个方面:

- 如果发动机火警灯未亮,但在发动机内部或附近有火情指示,或报告 失火,向受影响的发动机释放两个可用的灭火瓶。
- 如果 APU 火警灯未亮,但在 APU 内部或附近有火情指示,或报告失火,释放 APU 灭火瓶。
- 释放的海伦(碳卤)灭火剂专门用于灭火,对于发动机吊舱内的防火 作用非常小。并且碳卤会很快挥发。
- 撤离时如果没有火情指示,发动机或 APU 内部或附近也没有报告失火,例如货舱火警,安全或炸弹威胁等,就没有必要释放发动机或APU 灭火瓶。

飞行操纵

前缘或后缘装置失效

前缘或后缘装置失效会在收或放过程中出现。本节讨论的是着陆时无襟 翼及部分襟翼,或前缘/后缘装置不对称等故障情况。

注:如果前缘增升装置或后缘襟翼不在襟翼 20 或 30 的适当位置,其自动着陆没有通过验证。

无襟翼及缝翼着陆

前缘和后缘装置都不能放出的可能性是极小的。因为系统的这种可靠性 及设计,没有必要增加此类传统的非正常着陆程序。因此,飞机验证时 不要求无襟翼着陆的检查单,AFM或者 QRH 中也没有相关的内容。

缝翼驱动失效(前缘)--着陆

前缘缝翼的主液压传动失效会导致缝翼自动返回到次级模式(电动传动)。显示 EICAS 信息"SLATS PRIMARY FAIL"。如果缝翼对电动传动模式没有反应或存在不对称情况,会显示 EICAS 信息"SLATS DRIVE"。SLATS DRIVE 非正常检查单中加入了一侧机翼无前缘缝翼的这种最严重的故障。

襟翼指示器上的襟翼 1 位置指示前缘装置。如果襟翼放到 1 而前缘装置 没有放出,襟翼显示会扩展。襟翼指示器显示无后缘襟翼移动。如果缝 翼没有完全放出,襟翼最多放到襟翼 20。

QRH 规定的 VREF 可以保证在进近时机翼水平,同时驾驶盘接近水平。在接地点的飞机俯仰姿态小于正常。不要让飞机"平飘"。在理想的接地点将飞机飞到跑道上。接地后立即完成着陆滑跑程序。

襟翼驱动失效 (后缘) - 着陆

后缘襟翼的主液压传动失效会导致襟翼自动返回到次级模式(电动传动)。EICAS 显示信息"FLAPS PRIMARY FAIL"。如果襟翼对电动传动模式没有反应,或者存在不对称情况,显示 EICAS 信息 "FLAPS DRIVE"。完成 FLAPS DRIVE 非正常检查单。内侧和外侧后缘襟翼作为一个组移动。在次级操作模式没有襟翼卸载功能。

在 FLAPS DRIVE 非正常检查单中列出的 VREF 可以保证在进近整个初始阶段的正常机动。在五边,保持 VREF 加风增量。如果速度可以减小到 VREF,则不提供 40 度坡度能力。

五边的俯仰态比正常形态大几度。

在拉平过程中不要让空速低于 VREF, 否则机尾可能触地。不要让飞机在跑道上"平飘"。在理想的接地点将飞机飞到跑道上。接地后立即完成着陆滑跑程序。

用次级或备用系统放襟翼

如果用次级或备用系统放襟翼,设置指令速度的推荐方法与正常放襟翼 时使用的方法不同。因为用次级或备用系统放襟翼的速度很慢,因此建 议机组推迟设置新的指令速度的时间,直到襟翼到达选择的位置。这种 方法可以防止机组在执行其它项目无暇顾及空速时,而无意识进入低速 状态。

8.13

飞行操纵卡阻

虽然商用飞机极少出现飞行操纵系统卡阻,但偶尔也会发生。飞行操纵 卡阻通常是由渗漏到钢索或部件上的水积聚成冰,灰尘积累,部件故障 (如钢索断裂或零件破损),润滑不当或外来物等原因造成。

飞行操纵卡阻不易发现,特别是飞机处于正确的配平状况下。飞机俯仰轴的卡阻比其它轴的卡阻更难发现。如果升降舵出现卡阻,它可能被配平所掩盖。飞行卡阻的一些现象为:

- 自动驾驶不明原因地断开
- 自动驾驶不能接通
- 自动驾驶改平过程中高度没飞到或飞过了
- 改变速度或形态过程中需要大于正常的操纵力。

如果存在飞行操纵卡阻,两名飞行员应用力消除卡阻或接通超控装置。 在这种情况下用太大的力消除卡阻或启动超控功能不用担心会损坏飞行 操纵机械装置。使用最大的力会使某些飞行操纵面和卡阻的操纵面一起 移动。如果消除了卡阻,两名飞行员的飞行操纵应可用。

注: 驾驶盘和驾驶杆有超控功能。

如果卡阻没有消除,只要启动超控功能便可以使飞机操纵面移动,而不 受卡阻操纵的影响。用力操纵非卡阻的飞行操纵便可启动超控功能。施 加了充足的力后,卡阻的操纵被超控,非卡阻的操纵正常工作。为了识 别出非卡阻的飞行操纵,需对每一个飞行操纵单独施力。通过非卡阻操 纵产生最大的飞机操纵。

注:剩余飞行应由非卡阻一侧的飞行员操纵飞机。

非卡阻的操纵需要正常的力加上额外的超控力来移动飞行操纵面。例如,如果移动操纵面通常需要 10 磅(4 公斤)的力,需要 50 磅(23 公斤)的力启动超控,那么在超控时总共就需要 60 磅(27 公斤)的力来移动操纵面。飞行操纵有卡阻时反应要慢于正常情况。但是对飞机的操纵和着陆可以有充足的反应。

个别飞行操纵面对飞行员或自动驾驶仪的输入没有正确反应,会导致显示 FLIGHT CONTROLS 或 SPOILERS EICAS 信息。由于飞行操纵面是电动控制的,个别的飞行操纵面卡阻不会导致驾驶盘、驾驶杆或脚蹬的活动受限制,只有在扰流板 4 和 11 卡阻时会稍有影响。

配平输入

如果存在飞行操纵卡阻,从其它的操纵面进行人工输入,抵销压力并保 持飞行操纵中立。下表提供可用来抵销飞行操纵卡阻的配平输入。

操纵卡阻	人工配平输入
升降舵	安定面(如需要,选择直接方式获得 更多的安定面权限)
副翼	方向舵
方向舵	副翼

注: 如果 ATC 不工作,不对称的发动机推力可以帮助横滚和方向控制。

进近和着陆

尽量选择最小侧风的跑道。及早完成进近准备。着陆前重新检查飞行操 纵面的使用情况,确定故障是否仍然存在。改变推力、减速板或形态不 要过猛。做小的坡度角改变。五边进近时,接地前不要将推力减到慢车。 使用不对称刹车和不对称反推有助于飞机在跑道上的方向控制。

注:一旦升降舵卡阻,需要远远大于正常的操纵力,并且拉平飞机时操纵反应也比正常慢。

复飞程序

如果知道或怀疑升降舵卡阻,尽量避免复飞。升降舵卡阻情况下复飞时, 柔和地加油门,同时用安定面及所有可用的升降舵保持俯仰操纵。如果 需要复飞,复飞程序与正常的复飞相同。

安定面失效

EICAS 信息 STABILIZER 指示了安定面失效的情况。与传统的飞行操纵系统不同,在正常飞行操纵模式下仍然具备正常的俯仰配平,只是升降舵权限受到限制。QRH 规定了在随后的飞行过程中能保证足够升降舵操纵的最大飞行速度、修正的进近速度、以及着陆形态。着陆时使用正常的操作技巧。

安定面

牢牢握住驾驶杆,保持所需的俯仰姿态。如果非指令的配平运动继续,向相反的方向移动驾驶杆会中断安定面配平指令。

飞行仪表,显示

空速不可靠

皮托/静压系统阻塞或冻结或雷达罩严重损坏或飞脱都会造成空速指示不可靠。当皮托探头的冲压空气进口阻塞后,探头压力在排水口释放,空速缓慢掉到零。如冲压空气进口与探头排水口都阻塞,陷于系统内部的压力便呈现无规律的反应。扩张时压力增大,压缩时减小或保持恒定。不论哪种情况空速指示都不正常。这也就意味着爬升时指示空速增加,下降时减小,或巡航时指示空速无法预测。

由于正常俯仰操纵法则使用指示空速,空速不可靠可能对飞机的正常速度稳定性产生明显的影响。如果指示空速下降到 50 节以下,飞行操纵系统转换到次级模式,次级模式不依赖空速。

自动油门系统也使用指示空速,所以应该断开。

如果机组意识到此故障,即使没有有效的空速信息帮助也能安全地飞行, 并且难度很小。只有熟悉姿态、推力调定和空速之间的内部关系才能及 早识别出错误的空速指示。发现问题过晚会导致飞机失去控制。

飞行机组应熟悉每一种机动飞行大概的俯仰姿态。例如,爬升性能是以保持特定的空速或马赫数为基础的。任何为了保持所需空速而产生的机身姿态的显著变化都提醒飞行组注意潜在的问题。

当识别出空速异常时,立即让飞机回到飞行状态的目标姿态和推力调定。如果必须在无可靠空速指示状态下继续飞行,根据实际飞机全重和高度,在 QRH 的 PI 章节中查空速不可靠/穿越颠簸气流飞行表,获得正确的姿态、推力调定和 V/S。

FMC 和仪表显示器可以提供地速信息。这些指示可以用来进行交叉检查。许多空中交通管制雷达也能测量地速。

对于装有迎角(AOA)指示器的飞机,将模拟式指针保持在大约 3 点钟位。这接近飞机当前形态的安全机动速度和进近速度。

下降

通过飞机身姿态并根据 QRH 检查下降率,能够以慢车推力下降至 10,000 英尺。在高于所选改平高度 2,000 英尺时,减小下降率至 1,000FPM。到 达预选高度时,建立与飞机形态对应的姿态和推力。如果可能,在改变飞机形态和高度前使飞机稳定。

进近

如可行,执行 ILS 进近。在五边及早建立着陆形态。切入下滑道或下降 开始时,按 QRH 调定推力和姿态,用推力控制下降率。

着陆

控制五边进近,在离跑道头大约 1,000-1,500 英尺处接地。将飞机飞到跑道上,不要带住飞机或"平飘"接地。

如可以,使用自动刹车。如果使用了人工刹车,保持足够的刹车脚蹬压力,直到保证安全停止。接地后,立即快速完成着陆滑跑程序。

燃油

燃油平衡

波音飞机上的燃油平衡极限主要为了机身和起落架的结构寿命,而不是操纵性。频繁地在超出燃油平衡极限的条件下飞行会减少机身或起落架的结构寿命。超出正常的燃油平衡极限对水平操纵不会有大的影响。

8.17

燃油平衡警报的主要目的是通知机组不平衡超出当前状态,并且可能导致配平阻力增加,以及油耗上升。当出现燃油平衡警告时,应完成 FUEL IMBALANCE (燃油不平衡) 非正常检查单。

在机组中有一个共同的错误概念,那就是空中一台发动机停车后应当立即打开燃油交输活门,以防止燃油不平衡。这实际上与波音推荐的程序恰好背道而驰,并且会严重加重燃油不平衡。此情况在一台发动机失效同时漏油的情况下尤为严重。不按照检查单,而武断地打开交输活门并启动燃油平衡程序,可能导致将可用燃油抽出机外。

这种错误概念在模拟机训练中会更进一步加强。因为模拟机所有油泵输出压力设计为相等,这样交输活门打开后表面上会保持燃油平衡。然而,飞机上的燃油泵在输出压力上有一个允许的变化。如果燃油泵的输出压差大,并且交输活门打开,燃油便从油泵输出压力最高的油箱注入到工作的发动机。这可能导致燃油意外地从油量最少的油箱流出。

平衡燃油考虑因素

当执行燃油平衡程序时,应考虑以下几点:

- 使用 FUEL IMBALANCE 非正常检查单并强调机组配合,减少机组 失误的可能性
- 没有接近不平衡极限时做常规的燃油平衡会增加机组失误的可能性, 并且不会明显改进油耗。
- 在飞行的关键阶段,应等工作量允许时再做燃油平衡。这样可以减少机组失误,使机组注意力集中在飞行轨迹的控制上。
- 如果不平衡的原因很明显(例如发动机失效、或推力不对称等),在 进近过程中出现的燃油不平衡不必重视。

燃油渗漏

任何时候,只要遇到意外的油量指示,FMC 或 EICAS 燃油信息、燃油不平衡等情况,都应考虑可能是漏油所致。保留燃油记录,并将实际油耗与与飞行计划油耗比较,可以帮助飞行员判断是否漏油。

严重的漏油虽然极少出现,但却很难发现。燃油渗漏 NNC 包括在前翼梁和发动机之间(发动机燃油渗漏)出现渗漏或从油箱内渗漏到外面(油箱渗漏)的步骤。777-200 non-ER 飞机的 NNC 包括渗漏到中央机翼干舱区域的步骤。因为油管都分布在支架中,所以发动机燃油渗漏是最常见的燃油渗漏类型。多数其它油管,例如交输供油总管,都分布在油箱内。因为油箱构成的机翼结构牢固,一般很少出现从油箱直接到外面的严重渗漏。

驾驶舱没有专门的漏油信号。必须通过观察燃油记录不一致,目视核实或通过其它渗漏导致的信号来探测漏油。油量或燃油平衡有任何意外的改变,机组都应考虑有可能是漏油所致。如果怀疑漏油,一定要按非正常检查单处理。

非正常检查单指导机组通过步骤判断漏油是否来自支架或者发动机区域如果核实是发动机漏燃油,NNC 指令机组关断受影响的发动机。关车有两个原因.第一个是为了关断翼梁活门,停止渗漏。这样防止燃油损失可能导致燃油量低的状态。第二个原因是当发动机周围有漏燃油的情况时,会增加潜在的火警危险。着陆期间使用反推时,会进一步增加火警的危险。使用反推会改变发动机周围的空气流量,从而导致将泄漏的燃油更广地扩散到周围。

燃油油量低

当 EICAS 信息显示 FUEL QTY LOW 时,表明存在燃油油量低的情况。 进近和着陆

油量低时,下降和进近过程中尽可量保持光洁形态以节省燃油。然而,较早改变形态能够柔和、缓慢减速到五边进近速度,防止燃油冲到油箱的前部。

与其它机型一样,FUEL QTY LOW 非正常检查单特别要求襟翼 20 的进近与着陆,而不是正常着陆形态。通过试飞和分析证明,在襟翼 30 的进近速度时,一旦在着陆形态两台发动机失效(可能性很小),升降舵能力不足以保证机组在落地时成功拉平。

在跑道条件允许情况下,避免过量刹车和高位反推,防所有燃油泵露出以及在着陆滑跑中发动机可能熄火。

8.19

复飞

如果必须复飞,根据安全爬升梯度的要求,缓慢柔和地增加推力,保持最小的机头上仰机身姿态。避免飞机增速过快。如果任一机翼油箱燃油泵低压灯亮,不要关掉燃油泵电门。

放油

如果情况表明着陆重量过大,并且有足够的时间执行放油,应考虑防放油。执行放油之前考虑以下条件:

- 确保计划着陆机场满足最低天气标准
- 在 4,000 英尺 AGL 以上放油,确保燃油完全挥发
- 每降 1,000 英尺燃油顺风飘移可能超过 1 海里
- 避免在等待航线下面有飞机时放油

液压系统

June 30, 2010

正确的进近计划非常重要。应该考虑不工作系统对以下因素的影响:侧风能力、自动飞行、安定面配平、操纵反应、操纵感觉、反推、停止距离和复飞形态,以及到达备降场所需的性能。

液压系统不工作 —着陆

如果用备用系统放起落架,起落架不能收起。可以用次级传动系统收放 襟翼。但是襟翼收放速度明显减小。

多个液压系统失效时,用襟翼 20 和 QRH 规定的 VREF 着陆,以提高拉平效能、操纵反应、以及复飞能力。拉平过程中飞机可能会平飘。不要让飞机平飘。在推荐的接地点把飞机飞到跑道上。

如果前轮转弯不工作并且存在侧风,应考虑在刹车效应报告好或更佳的 跑道上着陆。速度低于 60 节左右时,方向舵效应减小,刹车效应就成为 方向控制的主要方式。如果操纵性还令人满意,用差动推力和刹车把飞 机滑出跑道。如果前轮转弯失效不推荐继续滑行,因为飞机操纵困难, 并且热量会在刹车聚集。

起落架

起飞过程中或起飞后轮胎失效

如果机组怀疑在起飞过程中轮胎失效,应通知起飞机场的相关 ATS 机构,防止轮胎碎片散落在跑道上。除非出现其它受损的指示(非正常发动机指示、发动机振动、液压系统失效或泄漏等等),否则机组应考虑继续飞到目的地机场。

继续飞到目的地可以让重量正常减轻,并且机组可以在工作量较小的情况下计划协调进场和着陆。

选择着陆机场时应考虑但不限于以下因素:

- 足够的跑道长度和可接受的道面条件,考虑到可能失去的刹车效应因素
- 足够的道面宽度,考虑到可能出现方向控制困难的因素
- 可能导致接地地速高以及滑行条件恶劣的高度和温度因素
- 选择跑道时考虑落地后"滑入"距离的因素
- 在继续滑行前,能否提供地面维护人员在落地后检查机轮、轮胎以及 刹车
- 如果飞机需要修理是否有援助设施

一个轮胎爆胎的情况下着陆

波音飞机在设计上可以保证: 当前轮起落架一个轮胎爆胎或主起落架一个轮胎爆胎,飞机起落架及剩余的轮胎有足够的强度安全着陆。如果飞行员在着陆前知道飞机轮胎爆胎,采用正常的进近和拉平技巧,避免超重着陆,并保持在跑道中心线上。按需使用差动刹车以帮助方向控制。单个轮胎失效时,不必要拖飞机,除非感觉不寻常的振动感或发生其它失效。

如果一个前起落架轮胎出现爆胎,缓慢柔和地将前轮接地,同时施加少量刹车。如果跑道长度允许,可使用慢车反推。可以使用较低的自动刹车。一旦前轮接地,增加或减少带驾驶杆的力会影响机体振动水平。保持前轮接触跑道。

主起落架轮胎爆胎造成完全失去刹车效应,当施加少量或无刹车车时, 飞机会偏转向爆胎一侧,如果施加较强的刹车,飞机会向爆胎相对一侧 偏转。建议使用最大反推。不要使用自动刹车。

如果无法确定是前起落架还是主起落架轮胎爆胎,缓慢柔和地将前轮接 地,并不要使用自动刹车。可能需要使用差动刹车来控制飞机。按需使 用慢车或较大的反推停住飞机。

注: 延长的滑行距离或快速滑行速度会导致剩余轮胎上的温度明显上升。 **起落架不一致**

使用所有可用的起落架着陆。起落架吸收初始的冲击,并延缓了机身部分的接地。不推荐用循环收放的方法来试图放出剩下的起落架。起落架收上或部分起落架着陆比在试图解决起落架问题时耗尽燃油更可取。

着陆跑道

考虑在有足够的跑道长度和消防能力的最适合的机场着陆。没有必要在跑道上覆盖泡沫。试验证明泡沫带来的益处不大,且还需 30 分钟才能给消防车装满泡沫。

进近前

如果时间和条件允许,通过消耗燃油或放油来尽可能地减少落地重量以获得最小的接地速度。

在机长的指令下,按需通知机组成员及旅客当前的情况。联系所有地面应急设施。例如,消防车通常与飞机使用同一 VHF 频率,并能在着陆过程中告诉机组飞机的状况。通知客舱乘务组执行紧急着陆程序,并向旅客指示撤离程序。

非正常检查单指示机组按需抑制近地警告系统,防止当接近地面且起落架在收上位时发出于扰性警告。

在任何起落架形态着陆,尽早建立进近速度并保持正常的下降率。

着陆技巧

尽可能地把飞机保持在跑道上,减少飞机损坏并有助于旅客撤离。接地后失去升降舵效应前,柔和推机头使之接地。使用所有的气动能力保持飞机在跑道上的方向控制。在绝大多数形态下,接地速度时,方向舵有足够的效能提供方向控制。速度低于60节,如可用,使用前轮/方向舵脚蹬转弯,按需使用差动刹车。

使用减速板

在部分起落架或起落架收上着陆过程中,只有对停机距离没有把握时才放减速板。在所有起落架、机头或发动机吊舱(如果一个起落架不能放出)接触跑道之前放减速板可能降低飞机的操纵性。

当任一起落架收指示上或部分放出着陆时,尽量以最低的速度,但是在 失去飞行操纵效应之前,柔和将有不安全指示的部位飞到跑道上。低速 平稳的接地有助于减少飞机损伤,并更容易把飞机保持在跑道上。由于 在机身部分接地前飞机更容易操纵,机头和飞机两侧完全接地后再放减 速板。如果在所有部位接地前放减速板,飞机将以较高的速度很快完成 接地。

在任何起落架不一致事件中,一些机组或某些用户会选择避免使用减速板。然而,大多数的起落架不一致事件是显示器的故障,而不是起落架实际在收上位的情况。如果机组选择着陆时不使用减速板,应该知道在整个接地和滑跑期间如果所有起落架保持伸出,停机距离可能很快成为问题。

使用反推

在部分起落架或起落架收上着陆过程中,一台发动机接地可能遭到严重 损坏,甚至导致反推装置不工作。在任何起落架不能放出时选择反推会 产生额外的不对称情况,导致方向控制更加困难。只有对停机距离没有 把握时才使用反推。

如果需要使用反推,记住在机身部分接地前飞机更容易操纵。如果在所有起落架、机头或发动机吊舱(在一个起落架不能放出情况下)接地之前反推放出,飞机将以较高速度很快完成接地。

停机后

按需完成撤离。

起落架不一致的综合情况

两个主起落架放出,前起落架收上

在跑道中心着陆。接地后失去升降舵效应前,柔和推机头使之接地。

只有前起落架放出

在跑道中心着陆。接地前使用正常的进近和拉平姿态,并保持带杆力。 发动机会先于前起落架接地。

一个主起落架放出,一个前起落架放出

在放出的主起落架对应的一侧跑道上着陆。接地后,尽量保持机翼水平。使用方向舵和前轮转弯进行方向控制。当所有起落架或发动机吊舱(起落架未放出一侧)接地后,在无支撑机翼的对侧机轮上按需施加刹车,让飞机保持直线滑跑。

只有一个主起落架放出

在放出的主起落架对应的一侧跑道上着陆。接地后,尽量保持机翼水平。 用方向舵进行方向控制。当所有起落架、机头或发动机吊舱(如果起落架未放出)接地后,在无支撑机翼的对侧机轮上按需施加刹车,让飞机保持直线滑跑。

所有起落架收上或部分放出

在跑道中心着陆。发动机首先接地。在地面滑动的起始阶段,有足够的 方向舵操纵保持飞机的方向控制。方向舵控制可用时,尽量保持在跑道 中心线上。

超速

VMO/MMO 是验证的飞机最大操作速度,不应有意超出。然而,机组偶尔会因疏忽超速。飞机进行过 VMO/MMO 以上的试飞,证明柔和的操纵输入可以让飞机安全地回到正常飞行包线。

高高度巡航时,风速或风向改变可能导致超速事件。飞机接近 VMO/MMO时,虽然自动油门逻辑能提供更有效的速度控制,然而某些 情况会超出了自动油门系统的能力,导致飞机短时间超速。

如果在高高度巡航时改出超速,避免收油门到慢车,否则会导致发动机回到巡航推力时加速缓慢,并且可能导致对速度的过度控制或是掉高度。如果自动油门的修正不令人满意,缓慢放出部分减速板,直到空速获得明显的减少。当空速低于 VMO/MMO 时,以减速板放出时的速率收起减速板。推力手柄应该缓慢前移以获得巡航速度;如果没有,快速前推。下降过程中,在或者接近 VMO/MMO 时,大多数的超速是发生在自动驾驶仪开始从上面截获 VNAV 轨迹时,或是在改平过程中需要用减速板来保持轨迹时。在这些情况下,如果减速板是在改平时收回,飞机会瞬时超速。下降过程中,在 VMO/MMO 附近使用加速板,在 VNAV 轨迹或高度截获完成后再收回减速板。在风切变条件下机组常规性的上升或下降,可以考虑爬升或下降速度减少 5 到 10 节,从而减少超速发生。这对油耗和总的航程时间的影响很小。

当出现无意识的超速时,除非自动驾驶仪明显不能纠正超速,否则机组应保持自动驾驶接通。但是,如果需要人工输入,脱开自动驾驶仪。应注意的是,为了避免或减轻无意识超速而断开自动驾驶,可能导致俯仰突然改变。

在爬升或下降过程中,如果 VNAV 或 FLCH 俯仰方式不能有效修正超速,暂时改变到 V/S 方式可能会对速度控制有帮助。在 V/S 方式,可以稍微调整选择的垂直速度,增加俯仰姿态帮助修正超速。速度一旦低于 VMO/MMO ,可以重新选择 VNAV 或 FLCH 方式。

注:任何时候如果超过 VMO/MMO,在飞行记录本上记录最大空速。

机尾触地

起飞或着陆过程中,机身后下方或尾橇(如安装)触击到跑道称为机尾触地。造成机尾触地一个重要而普遍的因素是飞行组缺乏所飞机型的经验。了解构成机尾触地的因素可降低机尾触地的可能性。

注: 任何时候如果怀疑机身触地或知道已经触地,完成相应的非正常检 查单。

8.25

起飞危险因素

下列任一个起飞危险因素都可能造成机尾触地:

错误的安定面配平

这种情况通常是由于使用了错误的起飞数据,如错误重量、或不正确的重心(GC)造成的。有时候,信息是准确的,但机组在飞行管理系统(FMS)中错误输入,或在安定面配平上错误设置。机组通过仔细检查舱单数据的合理性,可防止这类失误并纠正错误。将舱单数据与飞机上过去的实际操作比较,有助于得出近似合理的数据。

在不适当的速度抬头

这种情况可能导致机尾触地,而且通常是由于一些异常情况导致过早抬头,或是对于重量和/或襟翼调定在过低的空速抬头所致。

抬头过程中配平

如果在抬头过程中配平安定面可能导致机尾触地。配平正在进行时,PF 很可能失去对升降舵的感觉,从而导致抬头率过大。

讨大的抬头率

当飞行组操纵一种新的机型,特别是那些从无液压操纵改装到有液压助力飞机的飞行员,他们最大的弱点就是使用过大的抬头率。恰当抬头率所需的操纵输入量各机型有所不同。改装到一种新机型后,飞行机组可能没有意识到新机型对俯仰输入的反应与原来机型不一样。

不正确使用飞行指引仪

只有飞机升空后,飞行指引仪才能提供精确的俯仰指引。飞机以适当的 抬头率抬头,在俯仰姿态约 15 度时,达到 35 英尺高度。但是,起飞时 过猛抬头跟踪俯仰杆是不适当的,而且可能导致机尾触地。

着陆危险因素

着陆时机尾触地往往导致比起飞时同样事件更严重的损坏,耗资更加昂贵,修理时间更长。在最严重的情况下,起落架接地前机尾先触击跑道,至使吸收了大量能量,而该能量并不在设计范围内。其结果常常损坏后舱壁。

下列着陆危险因素中的任一个都可造成机尾触地。

不稳定进近

不稳定进近是机尾触地最主要的单一因素。当飞机下降通过 1,000 英尺 AFE 时,机组应设法稳定所有进近的变量 - 在中心线上、保持进近轨迹,进近速度以及五边着陆形态等等。但情况并不总是这样。在正常情况下,如果飞机下降通过 1000 英尺 AFE(IMC)或 500 英尺 AFE(VMC),这些进近变量还未稳定,应考虑复飞。有关稳定进近的更详的信息见本手册第 5 章"稳定进近建议"节。

飞行记录器数据表明,机组必须在 500 英尺以上建立稳定状况,否则很少会有稳定的进近。当飞机进入拉平阶段,空速总是过大或过小。其结果往往是在拉平过程中使用大的推力和俯仰修正,常常导致在接地时猛然的俯仰改变,从而造成随后的机尾触地。接地后地面扰流板放出时,如果俯仰快速增加,扰流板会增加额外的机头上仰力,从而减小了俯仰效能,增加了机尾触地的可能。相反,如果飞机速度小,在拉平过程中俯仰姿态增大并不会有效地减小下沉率,在一些情况下可能相反会增加。主起落架坚实接地往往要比机头快速上仰的柔和接地好。在这种情况下,瞬间增加推力有助于防止机尾触地。另外,不稳定的进近可能导致长着陆或冲出跑道。

拉平过程中飞机持续平飘

着陆时机尾触地的第二个普遍原因是延长的平飘,当空速消失时会导致快速掉高度(重着陆)。这种情况往往是由于希望达到非常平缓/柔和的着陆而突然发生的。着陆柔和/平缓与否不是关键,甚至也不要求,特别是在跑道湿的情况下。

拉平过程中配平

拉平过程中配平安定面可能造成机尾触地。在配平工作期间,操纵飞机 的飞行员可能很容易失去对升降舵的感觉。这样,即使当不需要机头上 仰时,过多的配平也会使机头上仰。上仰能造成平飘,随之而来的是重 着陆或上仰过大和以三点姿态着陆。飞行机组应在进近中配平飞机,但 不要在拉平中进行。

侧风的错误操作

当飞机处于侧滑姿态以补偿风效应时,这种交叉操纵机动减小了升力,增加了阻力,而且可能增大下降率。如果飞机这时下降进入颠簸层,尤其是风正转向机尾,该阶段会发生机尾触地。

当过大的地形接近率、风向偏移、以及潜在的机尾风等因素综合到一起时,会造成风速突然减小,通常在100英尺之下才会遇到这种情况。此情况下再遇到颠簸,使机组很难确定拉平时机。如果需要,PF最好使用额外推力并配合相应的俯仰变化,使飞机保持稳定的下降率直到开始拉平为止。飞行机组应当非常清楚开始复飞的标准,并在必要时计划使用这一由来已久的规避机动。

复飞期间过大的抬头

在进近中开始复飞过晚,如在拉平期间或接地之后,这些都是机尾触地的常见原因。当开始使用复飞方式,飞行指引立即指令复飞俯仰姿态。如果飞行员突然抬机头去套俯仰指令杆,在飞机反应并开始爬升之前,可能发生机尾触地。复飞过程中,既需要俯仰姿态又需要推力增加。如果俯仰姿态增大而推力增加不够,可能引起速度衰减进而导致机尾触地。开始复飞较晚之后,飞机仍在跑道上空,飞行组想避免起落架触地的强烈愿望可能是导致机尾触地的另外一种因素。总之,这种担心是不必要的,因为在较晚复飞过程中起落架短暂触地是可接受的。这种情况在自动着陆和复飞取证的过程中已经进行了演示。

警告系统

如果出现意外的起落架形态或 GPWS 警报, 机组必须确认形态与当前飞行阶段匹配。评估当前状况、采取纠正措施并解决问题可能需要时间。同时必须保证飞行轨迹的控制以及仪表的监控。

注: 如果在进近阶段出现警告,可能需要复飞,然后是等待或其它机动。

轮舱火警

轮舱火警警告发生后立即执行轮舱火警非正常检查单,这对于及时放轮 非常重要。在执行这个检查单过程中需遵守起落架速度限制。

注:为了避免不必要减速到新的目标速度之下,自动油门应当保持接通。如果空速大于 270kt/.82Mach,放起落架之前必须减小空速。以下任一技巧可使自动油门回到 SPD 方式,并提供一个比使用 VNAV 速度干预或 FLCH 更快捷的减速方法。

- 选择高度保持并设置大约 250 节
- 将 MCP 高度调到所需的改平高度,并使用速度干预减小空速。

注:另外,推力手柄可以减小到慢车和/或可以使用减速板来加快减速。如果俯仰方式是 VNAV 并且机组希望保持该方式,选择速度干预打开 MCP 指令速度窗,然后设置大约 250 节。如果俯仰方式是 FLCH 并且 机组希望保持该方式,直接设置大约 250 节。这些技巧产生的减速没有 返回到 SPD 方式快,但可以让机组保持在所用的俯仰方式。

风挡

8.28

风挡损坏

如果两块前风挡玻璃都分层或前视线不清,如可能完成 ILS 自动着陆。

8.29

侧窗打开(一个或多个)的飞行

起飞滑跑过程中,如果气流将未锁住的驾驶舱风挡无意中吹开,这种情况不应该做高速 RTO。尽管开窗所产生的噪音会影响机组通讯,继续起飞是比较安全的,离地后并且飞行轨迹得到控制后再将风挡关好。一旦风挡关闭和锁定且增压正常,可继续飞行。如果风挡损坏且不能关闭,回到起飞机场。

如需要,飞机释压后,在空中可打开风挡。由于速度越大噪音越大,所以建议飞机减速。所用襟翼调定的机动速度是一个好的目标速度。因为噪音大导致通讯困难,即使在低速情况下也如此,所以应在开窗前说明意图,并通知 ATC。这时在驾驶舱会有轻微颠簸。飞机在设计上,在打开风挡的上方有一相对静流区。小心远离气流,从打开的风挡观察前方,目视保持能见飞行。

非正常检查单范围之外的情况

很少能遇到波音非正常检查单范围外的空中事件。这些事件通常是由于发生了异常事件如空中相撞、炸弹爆炸或其它大的故障引起的。在这些情况下,可能要完成多个 NNC,并按需选择符合情况的多个不同 NNC 的部分程序,或者只有凭借自己的判断及经验去处理,很少或没有明确的指南。由于这些情况很少发生,制定明确的机组非正常检查单涵盖所有的事件既不实际也不可能。

下列指南有助于机组在遇到这类空中事件时确定正确的措施。虽然这些指南仅代表可被称之为"传统智慧"的一方面,但实际情况将确定行动措施,如机组理解了这些措施将会保证最安全的飞行。

基本空气动力学和系统知识

对空气动力学基本原理、飞机操纵特性以及对飞机系统的全面理解是处理这类问题的关键因素。

所有的飞行员都知道并懂得空气动力学原理。以下所列的内容虽不完整 全面,但简要地归纳了一些基本的空气动力学原理,以及与这些情况有 关的飞机系统知识。

- 如副翼操纵受到影响,方向舵输入可以帮助抵消不需要的横滚趋势。
 反之如果方向舵操纵受到影响,副翼也如此工作。
- 如副翼和方向舵操纵均受到影响,使用不对称发动机推力可以帮助横滚和方向控制。
- 如升降舵操纵受到影响,可以使用安定面配平、坡度角和推力来控制俯仰姿态。为使这些操作行之有效,发动机推力和空速必须与安定面配平输入协调。如果推力增加,而且没有再次配平安定面来进行可靠的修正,飞机将继续上仰。如果飞机的俯仰姿态出现紊乱,那么机组应该了解飞机俯仰轴摆动的自然趋势。在波音飞机上这些摆动通常被自身抑制,但为确保正确操作,可能需要使用推力和/或安定面配平来加强抑制并恢复到稳定状态。在任何非正常的飞行操纵方式,当推力增加时,飞机上仰,推力下降时飞机下俯。当试图使用发动机推力抑制俯仰摆动时要非常小心,首先要正确地选择使用推力的时机,并使分散的俯仰振动不再扩大。
- 所有波音飞机都设计了飞行操纵切断功能。如果存在飞行操纵卡阻情况,两个飞行员都可以用力清除卡阻或者启动切断功能。不用担心使用过大的力会对机械装置造成损坏。在某些事件中,部分操纵轴卡阻时,消除卡阻可使用其中一个驾驶杆进行飞行操纵。剩余飞行中,在受影响的操纵轴上,可能需要启动切断功能。
- 失速裕度随坡度角和增加的载荷因素而减小。因此,如果对机动能力 有怀疑,最好将坡度角限制到不超过15度。增大正常襟翼/速度机动 计划,并保持在襟翼标牌极限范围内,将会提供额外的失速裕度,而 此裕度需要更大的坡度角。
- 所有波音飞机都能够在任何襟翼位置着陆(包括襟翼收上)。采用适当的机动和五边进近速度,确保着陆后有足够的跑道停住飞机。

8.31

飞行轨迹控制

当遇到上述事件时,机组应首先考虑保持或重新获得对飞机的完全控制,并建立可接受的飞行轨迹。这样可能需要使用一些特殊的技巧,如使用全行程副翼或方向舵、不对称推力、减小工作发动机的推力等等,以重获水平控制。还可能需要以高度换取速度,或反之。总之,其目的就是要采取一切必要的措施来控制飞机,并保持安全的飞行轨迹。即使在飞机不能持续飞行而且即将触地的最坏情况下,采用"有控制的撞击"也要比无控制的撞击地形要好得多。

如果飞机性能在临界状态,应首先考虑放油。在某些情况下,这对水平 操纵能力可能还会有积极影响。

如怀疑襟翼工作异常,就不应改变前缘和后缘襟翼位置,除非飞机性能需要立即采取该措施。如改变了襟翼位置,那么就应考虑不对称襟翼对飞机操纵的可能影响。如不存在襟翼受损情况,可根据相应的 NNC 按需操作机翼襟翼。任何时候襟翼过渡过程中,只要横滚力矩增加(表示自动停止襟翼不对称状况的功能失效),将襟翼手柄恢复到先前的位置。如果在空中发生非正常情况对飞机的操纵特性产生不利的影响,在飞机着陆滑跑时会对飞机的操纵继续产生不利影响。为了保持对方向的控制,可能需要积极采取差动刹车和/或使用不对称反推,及其它的操纵输入。

有记忆项目检查单

飞行轨迹得到控制之后,完成相关 NNC 的记忆项目。在这一点上重点 是应该抑制问题的继续发生。飞机飞行轨迹和形态正确建立后,开始做 参考步骤。

开始五边进近前,完成所有适用的非正常程序。当完成不同的多个非正常检查单时,使用常识并小心谨慎。将要采取的措施应符合受损评定和操纵评估。

通讯

尽快建立驾驶舱通讯。这可能需要使用驾驶舱内话系统,在噪音大的极端情况下为了达到有效的通讯,可能需要使用手势和身体语言。

向 ATC 说明紧急情况,确保优先降落并在着陆时提供紧急服务。拟定一套初步行动计划并通知 ATC。如可能,请求单独的无线电频率,以集中精力和减少调频率次数。如不能与 ATC 建立无线电通讯,选应答机编码7700 并按需采取下一步措施。

虽然与乘务组以及公司地面电台的联系很重要,但应在时间允许的条件 下实施。如需要立即着陆,尽快通知乘务组。

受损评定和飞机操纵评估

除非出现飞机即将解体或失去控制的情形,机组应在着陆前评定损失和/或情况的影响。缓慢地改变空速和形态,直到完成受损和飞机操纵评估并且确定可以安全使用较小的空速。另外,限制坡度角到 15 度,并且避免大量或粗猛地改变发动机推力和空速,否则对飞机操纵性可能有不利影响。一旦飞行轨迹出现异常,尽量在能够提供改出安全裕度的高度上进行受损评定和操纵评估。机组需使用良好的判断来考虑当前条件和状况,以确定适当的高度进行评估。

从驾驶舱仪表指示开始,评估出受损情况。还应考虑到受损累积的潜在效应。充分了解飞机各系统的操作情况能极大地帮助这项工作。

如怀疑结构损坏,设法从驾驶舱或客舱直接目视观察,以评定损坏的程度。当机组从驾驶舱只能看到飞机的一小部分时,利用目视观察到的信息获得对飞机形态和状态最大的了解,这对确定随后的措施至关重要。

机组应考虑与公司联系,一方面通知他们飞机的情况,另一方面作为一种潜在的可用信息源。除了当前的和预报的气象条件和机场状况外,还可获得来自专家方面的技术资料和建议。可以利用来自公司以及波音的这些专家资源。

8.33

如操纵性有问题,考虑对飞机的操纵特性进行检查。此项检查的目的是确定最低安全速度和着陆的相应形态。如襟翼已经损坏,在完成这项检查前,要考虑到如果改变襟翼位置,一旦出现不对称情况对飞机操纵可能影响。缓慢有序地减速并放襟翼,完成该检查。只有当可用推力允许时才放轮。

作为起点,按相应 NNC 要求使用襟翼/速度计划。在或达到相应襟翼速度前,如果出现抖杆或起始抖振,或为保持机翼水平,需要快速增大驾驶盘偏转和方向舵满舵偏转,增加速度到安全范围并把该速度作为已建立形态的最小进近速度。

在评估了受损和操纵特性之后,机组应制定系列的计划以圆满完成飞行。如果飞机的操纵非常困难,最后一个办法是断开飞行操纵计算机。除非断开使情况恶化,否以一旦断开,须在随后的飞行阶段继续保持断开。如担心飞机性能,使用备用放襟翼或起落架系统可能需要在实际进近时检查飞机操纵特征。由备用系统完成的形态改变是不可逆的。五边进近时机组一定要特别小心,尤其是飞机的最低安全速度和正确的飞机形态。如果用不对称对力进行横滚控制,或俯仰权限受到限制,计划保留推力一直到接地。

着陆机场

当选择着陆机场时,应考虑以下各项内容:

- 气象条件(VMC 优先)
- 航路时间

June 30, 2010

- 可用跑道长度(风许可的情况下优先选用最长跑道)
- 可用的紧急设备
- 机组的熟习程序
- 特殊情况要求的其它因素

空白

 附录
 章节 A

 运行信息
 第 1 节

序言

本附录的内容由使用该777机组训练手册的营运机构提供。

A.1.1

空白

附录 章节 A 第 2 节

序言

本附录的建议由使用该 777 机组训练手册的营运人的运行人员提供。推 荐内容基于波音经验,供各营运人参考。各个营运人确定这些建议对其 运行的适用行。部分建议可能需要与相关局方协调。

运行原则

需要维护检查的事件

FCTM 1.1

多数营运人制定了程序或政策,保证机组记录下需要航后维护检查的地面或空中事件。飞机维护手册(AMM)的第五章将这些事件称为"条件性检测"。第五章未列出的但也需要维护检查的其它事件也必须报告。

喊话

FCTM 1.15

提供推荐的喊话是为了良好的机组资源管理。鼓励运营人根据机队构型 开发自己的推荐喊话。只要能更好地满足其运行需要,运营人可以修改、 补充、或者删除本手册提供的推荐喊话。但是,所列出的程序喊话还是 应该根据 FCOM 程序章节的指示完成。

低温高度修正

FCTM 1.22

建议营运人就系统内的每一个低温机场或者航路与地方和航路沿线的ATC协调。协调的内容包括:

- 确认在预计的最低温度条件下,最低指定高度或者高度层能够提供足够的地形越障。
- 公布的程序使用了低温高度修正程序,包括在现用的图表。
- 确定专门适用于低温条件,并且能够按照公布程序飞行(无高度修正) 的程序或者航路(如有)。

RNAV 操作

RNP 基本概念

FCTM 1.29

营运人应该选择满足其航路结构或航站区域程序要求的 RNP 的 FMC 默 认值。

在非 WGS-84 基准数据的空域使用 GPS

FCTM 1.33

营运人应参照合适的来源来确定运行空域的当前状态。对营运人有关建议如下:

- 只要接到运行许可并采取了措施确保其精确度,在 GPS 更新生效时可以飞 RNAV 进近。营运人有几项选择,包括测定公布的进近程序以确定是否存在重大差别或位置误差,开发符合 WGS-84 或对等空域的特殊 RNAV 程序,或抑制 GPS 更新。
- 对基于地面导航台的进近,如 ILS、VOR、LOC、NDB等,只要在整个进近和复飞过程中使用适当的原始数据作为主导航基准,就不需要抑制 GPS 更新。可以使用 LNAV 和 VNAV。如以往一样,当飞机位置、原始数据航道、DME 和/或方位信息之间存在严重不一致时,停止使用 LNAV 和 VNAV。如果进近时不用 FMC 作为导航的主方式,此方法可作为"其它适当的程序"来使用,取代抑制 GPS 更新。

鼓励运营人调查其导航数据库,并删除所有公布的非-WGS-84 程序。

AFDS 指南

A.2.2

使用 VNAV 调定 MCP 高度技巧

备用 MCP 高度调定技巧

FCTM 1 36

对于高度限制间隔很近的情况,如果营运人希望使用备用 MCP 高度设置技巧,必须保证机组已经意识到保持在 VNAV PTH 中的危险性,并考虑到机组失误的潜在可能。营运人应当评估离场、进场和进近,以决定哪种 MCP 技巧最合适,并进行适合的指导与培训,保证机组完全理解以下内容:

- 这一备用技巧适用于哪个航站区程序
- 当在离场或进场时,选择俯仰方式而不是 VNAV PTH 或 VNAV SPD 将会有违反程序高度限制的危险。
- 如果像第5章介绍的那样选择了高度干预,删除航路点的可能性。
- 注:对于专用进场(TA),运营人可能希望使用备用 MCP 高度调定技巧, 而不管高度限制的间隔有多近。

推出或拖出

FCTM 2.2

建议制定适合特殊运行的专门推出或拖出程序和政策。开发这些程序时以飞行和维修部门为主。

对机组成员和地面维修人员的正确训练,以及驾驶舱和地面人员之间的良好交流对于安全的操作很重要。

单发滑行

FCTM 2 18

如果正确运用营运人政策、程序以及机组材料,EOT操作可以安全实施, 并且对机组和局方来说都是可以接受的。

营运人政策、程序以及机组材料应包括但不限于以下内容:

- 机场平面图
- 滑行道组成
- 滑行道坡度
- 外来物损坏 (FOD)
- 飞机系统裕度

- 发动机暖车和冷车时间
- 燃油平衡
- 机组工作量和埋头时间
- 当前天气,包括温度和风
- 当前滑行道面条件

各营运人应该为 EOT 操作制定标准操作程序(SOP)。这些 SOP 应该给机组提供清楚、简洁的 EOT 操作指南。

有关 EOT 操作的更多信息可见波音飞行技术通告"单发滑行"。该通告在 MyBoeingFleet 网站上提供。

侧风起飞

起飞侧风指标

FCTM 3.12

不要把侧风指标看作极限值。提供侧风指标是为了协助用户确立他们自己的侧风程序。

低能见度起飞

FCTM 3.18

低能见度起飞,低于着陆最低标准,可能需要有起飞备降场。当选择起飞备降场时,应考虑非预期的事件,如发动机失效或可能影响起飞备降场最低着陆标准的其它不正常情况。批准发动机不工作 II/III 类运行的营运人,可批准更低的备降标准。

对于经专门训练的机组及有合适的跑道灯光的机场,(FAA)可能批准能见度最低 RVR500 英尺/150 米的起飞。如果起飞指引系统和中心线灯光满足 FAA 或 ICAOIII 类运行标准,可批准能见度最低 RVR300 英尺/75 米的起飞。局方对低能见度起飞可能特别规定起飞侧风极限。

所有 RVR 值必须等于或大于起飞要求的起飞最低标准。如果接地段或落地滑跑段 RVR 系统不工作,中间段的 RVR 可替代不工作的系统。当接地区 RVR 不工作时,局方可批准飞行员目测 RVR。

不利跑道条件

FCTM 3.18

A.2.4

大多数用户都根据松雪、雪浆、湿雪或积水深度以及不能起飞的最大深度,按 AFM 跑道长度限制和/或越障限制的起飞重量减载。

巡航

最大高度

FCTM 4.6

速度带上的最小机动速度指示或空速显示不保证有能力在该速度保持平飞。将飞机减速至琥珀色区可能导致飞机无法保持速度和/或高度,因为速度下降,飞机阻力可能超过可用推力,这在转弯时尤其如此。营运人可以改变 FMC 参数(通过维护措施)来减少这种情况,以满足个别需求。机组如果要在或接近最大飞行高度操作,应该熟悉飞机在这些情况下的性能特征。

最佳高度

FCTM 4.7

燃油温度低

FCTM 4.10

波音开发了燃油温度预测程序(FTPP),以帮助营运人确定燃油冰点温度。设计该程序主要是在飞行计划时使用,并准备与营运人的飞行计划系统结合。该程序已经通过试飞和飞行数据的校正。机组可以通过该程序判断是否需注意燃油温度,确定可用的选项,并可能避免在空中采取措施来阻止燃油温度下降。

ETOPS

ETOPS 要求及许可

FCTM 4.15

执行 ETOPS 的营运人必须满足 FAA 规章、FAA 咨询通告、或其它局方的管理规定。航空公司必须有一架 ETOPS 构型的飞机,有批准的飞行和维护项目来支持 ETOPS。

航空公司要确保 ETOPS 飞机满足适当的构型、维护和程序(CMP)文件要求。航空公司维护部门必须建立监控和报告发动机、机身及 ETOPS 重大部件可靠性的程序。MEL 和 DDG 增加了内容,强调改进的裕度等级以及 ETOPS 构型飞机所需的额外设备。

注: 有关 ETOPS 更多信息参见 MyBoeingFleet 网站。

飞行和性能

FCTM 4.15

临界的燃油计算是 ETOPS 签派的一部分,正常情况下不用机组计算。正常情况下机组从计算机飞行计划(CFP)获得 ETOPS 临界燃油信息。

极地飞行

FCTM 4 16

航空公司应开发远程机场备降计划,其中包括对飞机、旅客和机组的支持。飞机设备和文件应包括、但不限于:

- 防寒服,使最少2个机组成员可以在极度寒冷的条件下在备降场走出 飞机
- 在寒冷天气条件下安全离机的综合指示,包括水箱排水等工作。
- 备降机场数据包括机场图、附近地形情况和照片资料(如有)、以及 紧急设备等。

讲䜣

讲近类别

FCTM 5.2

根据相关局方的规定, 营运人可以使用不同的进近类别。

ILS 进近

低能见度进近

AFDS 系统构型

FCTM 5.20

AFM 提供了 II 类和 III 类进近所需的飞机设备。营运人负责审核其 AFM 确定所需设备,并将这些要求同其它数据一起交给局方,以获得 II 类或 III 类运行的批准。批准了 II 类或 III 类运行的营运人,如果其飞机也获得了这些运行的认证,需将这些信息提供给飞行员。

有关II类和III类运行要求的详细内容可参见FAA咨询通告或其它局方类似文件。飞机制造商演示的满足适航行能标准不代表批准在较低的天气标准下执行此运行。

AFDS 故障

FCTM 5.21

营运人负责审核其 AFM 和 FAA 咨询通告、或其它局方类似文件,制定在 II 类或 III 类进近过程中一旦任何要求的飞机设备失效或者 AFDS 降级,机组的反应程序。但是,AFM 中的要求不一定涵盖该类运行所要求的全部系统和设备。适当的规章应对其它系统(例如自动刹车)的运行要求作出规定。

飞行员反应程序以及其它数据应该交给相关局方获得批准。营运人需要 将这些信息提供给飞行员。

有关II类和III类运行要求的详细内容可参见FAA咨询通告或其它局方类似文件。飞机制造商演示的满足适航行能标准不代表批准在较低的天气标准下执行此运行。

仪表进近 - RNAV (RNP) AR 仪表进近 - RNAV (RNP) AR - 概述

FCTM 5.48

营运人需要获得执行 RNAV (RNP) AR 仪表进近程序的批准。营运人负责确定其所需设备,并将这些要求同其它数据一起交给相关局方,以获得 RNAV (RNP) AR 运行的批准。

批准执行此类运行并且飞机也获得相关认证的营运人,最好制定自己客户化的 RNAV (RNP) AR 进近简令卡,给机组提供相关信息。

注:有关AR操作和训练要求的更多信息可见FAA咨询通告或类似文件。

着陆滑跑

影响着陆距离的因素

滑跑道着陆性能

FCTM 6 28

滑跑道/污染跑道的性能数据是假设整个道面状况相同。这就意味着污染 跑道上的湿雪/积水深度相同,或者滑跑道的刹车系数固定。这些数据不 能包括所有可能的滑跑道/污染跑道的混合情况,且未考虑大多数跑道头 附近诸如橡胶沉积、厚层涂漆面等因素。对于这些情况,由营运人根据 机组的训练情况和操作经验,确定操作政策。

侧风着陆

着陆侧风指标

FCTM 6.39

不要把侧风指标看作极限值。提供侧风指标是为了协助用户确立他们自己的侧风程序。

快速下降

FCTM 7.6

一些飞越山区地形的航路需要营运人仔细计划,包括携带另外的氧气、 特别的程序、较高的起始改平高度,以及一旦释压时的紧急航路。这些 需要求通常地在批准的公司航路手册、或者其它规定航路释压程序的文 件中介绍。

地形避让

地形避让 - RNAV (RNP) AR 操作

FCTM 7.13

A.2.8

地形警告级别的警报始终要求立即采取措施。地形避让机动过程中,关于飞机坡度和轨迹的最恰当的机组措施取决于在哪个位置开始机动。如有必要,营运人应确定在程序的每一个航段的适当措施,帮助机组随时可以正确反应。

对于干扰性的近地警报,营运人应该向机场当局、波音、或相关航空电子设备供应商报告,以便采取适当的纠正措施。

非正常情况指南

在最近的合适机场着陆

FCTM 8.3

合适的机场是由局方根据指导材料为营运人决定的,但总的来说,必须 有充足的设备来满足最低天气标准和跑道条件。

发动机, APU

空中发动机关车推荐的技巧

FCTM 8.8

对于空中发动机关车,营运人可以开发自己的机组配合技巧。这些技巧要保证本手册中介绍的目的能够满足。"空中发动机关车推荐技巧"章节介绍了可以使用的一些例子。

空白

21.21	24.21.1.
A	
加速到 VMO 和从 VMO 减速	7.1
不利的跑道条件 -起飞	
不利的跑道条件 -起飞	
AFDS 自动着陆的能力	5.18
AFDS 故障	5.21
AFDS 指南	1.33
AFDS 指南	A.2.2
空速不可靠	8.15
警戒高 - AH	5.12
防滯不工作 -着陆	6.33
防滯失效滑行	2.6
进近简令	5.2
进近类别	5.2
进近类别	A.2.6
进近许可	5.3
自动飞行 - AFDS	
自动驾驶接通 —起飞后	3.29
自动油门的使用	1.34
B	
鸟击	
着陆跳跃的改出	6.24
C 喊话	1 14
II 类运行	
III 类运行	
II 类运行	
III 类运行	
起飞重心 (CG) 效应	
盘旋进近 ——台发动机不工作	
盘旋进近	
爬升限制	4. I

改进的爬升性能起飞	3.18
低温高度修正	1.22
低温高度修正	A.2.1
指令速度 -非正常情况	1.12
指令速度	1.11
机组资源管理(CRM)	1.2
侧风指标 -起飞	3.12
侧风着陆	6.39
侧风着陆	A.2.8
侧风起飞	3.12
侧风起飞	A.2.4
经济巡航性能	4.12
D	
受损评定和飞机操纵评估	8.32
决断高度/高 - DA(H)	5.12
决断高度/高 - DA(H)	
减功率起飞推力(固定减功率)	3.16
下降限制	4.19
下降轨迹	4.19
下降计划	4.20
下降率	4.21
确定下降速度	4.19
显示面板管理	1.3
水上迫降	8.4
双发失效	8.7
E	
经济爬升计划 - FMC 数据不可用	
经济爬升	4.4
电子飞行包(EFB)	1.20
电子飞行操纵系统	
ATM 结合固定减功率过程中发动机失效	
减功率起飞推力(固定减功率)过程中发动机失效	3.36
减推力(ATM)起飞过程中发动机失效	3.36
发动机失效的识别 -起飞	3.31

起飞后发动机失效与发动机失火的比较	8.5
爬升过程中发动机结冰	
下降期间发动机结冰	
一台发动机不工作爬升	
一台发动机失效,方向舵配平 - 所有仪表进近	5.23
熟悉发动机失效	
单发滑行	2.18
发动机振动	8.7
ETOPS	4.15
ETOPS	A.2.5
撤离	8.10
F	
发动机尾喷管起火	
进近和着陆襟翼形态	
襟翼驱动失效(后缘)-着陆	
放襟翼计划	
用次级或备用系统放襟翼	
襟翼机动速度	
收襟翼 - 一台发动机不工作	
收襟翼计划	3.29
襟翼和起落架	4.22
无襟翼及缝翼着陆	8.11
拉平和接地	
飞行管理计算机/CDU	1.26
飞行轨迹矢量	1.21
FMC 航路核实技巧	1.26
燃油平衡	8.16
航路爬升燃油	4.10
放油	8.19
燃油渗漏	8.17
燃油温度	4.10
燃油温度	A.2.5
G	
起落架不一致	8 21

接地后复飞	5.66
复飞 - 双发工作	5.64
复飞和失去进近 一 所有仪表进近	5.63
复飞 - 发动机失效	5.66
复飞 - 一台发动机失效	
接近 V1 时走/停决策	
在非 WGS-84 基准数据的空域使用 GPS	1.33
在非 WGS-84 基准数据的空域使用 GPS	A.2.2
Н	
耳机和驾驶舱扬声器的使用	1.3
高高度大速度飞行	4.14
高高度机动飞行, "G 抖动"	7.5
等待空速 (FAA)	4.24
等待空速 (ICAO)	4.24
等待	4.23
液压系统不工作 —着陆	8.19
I	
冰晶结冰	1.23
结冰- 结冰条件操作	
结冰- 结冰条件训练飞行	1.23
ILS -一台发动机不工作	5.23
ILS 进近-着陆几何图	5.22
ILS 进近	5.10
ILS 进近	A.2.6
ILS 性能	5.18
起飞后立即转弯 - 双发	3.27
起飞后立即转弯 - 一台发动机不工作	3.34
起始爬升 - 双发	3.27
起始爬升 一台发动机不工作	3.34
仪表进近- RNAV (RNP) /AR	5.47
使用 VNAV 仪表进近	5.37
使用 V/S 或 FPA 仪表进近	5.43
仪表进近	5.1
J	

飞行操纵卡阻或受阻	8.13
安定面卡阻	8.15
L	
在最近的合适机场着陆	
在最近的合适机场着陆	A.2.9
影响着陆距离的因素	6.27
非正常着陆距离	6.28
着陆拉平剖面	6.9
着陆最低标准	5.6
一个轮胎爆胎的情况下着陆	8.20
着陆滑跑	6.26
着陆滑跑	
抬头速度和俯仰率对离地的影响	
LNAV –非 ILS 进近	5.30
发动机推力控制失效	8.6
低高度改平 -爬升过程中	4.2
空中燃油低操作	8.18
低能见度起飞	3.18
低能见度起飞	A.2.4
M	
需要维护检查的事件	
需要维护检查的事件	
机动裕度 -着陆和复飞	
抖杆机动裕度	
机动速度和裕度	
人工飞行	
最大高度 –巡航	
最大高度 –巡航	
最大爬升角爬升	
最大爬升率爬升	
最小燃油操作 - 起飞	
最小机动速度	1.5
复飞 - 非 ILS	5.51
复飞点	5.7

复飞(强制条件)	5.5
N	
减噪音 - 一台发动机不工作	3.36
减噪音起飞	3.30
非 ILS 仪表进近 -建立垂直轨迹	5.34
非 ILS 仪表进近	5.26
非正常操作	5.23
非正常情况指南	8.1
非正常情况指南	A.2.9
0	
运行原则	1.1
运行原则	A.2.1
最佳高度 –巡航	4.7
最佳高度 –巡航	A.2.5
超速保护	7.2
超速	8.23
超重着陆	6.41
P	
飞行员失能	
俯仰和横滚限制条件	
俯仰方式 -起飞	3.28
极地飞行	4.16
极地飞行	
精密进近轨迹指示器(PAPI)	6.5
等待程序	
程序转弯和起始进近 -ILS	
程序转弯和起始进近 - 非 ILS	
程序转弯	5.3
推出或拖出	2.2
推出或拖出	A.2.3
推出或拖出	A.2.3
Q	
资格要求(飞行检查)	1.2
R	

无线电高度表	5.6
快速下降	7.6
快速下降	A.2.8
原始数据 - (无飞行指引) - ILS	5.16
原始数据监控要求 -非 ILS	5.27
原始数据监控要求 -非 ILS	5.29
空中发动机关车推荐的技巧	8.8
减推力和减功率起飞推力	3.15
减推力起飞推力(ATM)	3.16
减推力爬升	4.1
参考速度	
中止着陆	
中断起飞决断	
中断起飞操作	
决断咨询	
反推操作 - 着陆滑跑	
反推(地面操作)	
RNAV 操作	
RNAV 操作	
滑跑方式 -起飞	
抬头和离地 - 双发	
抬头和离地 - 一台发动机不工作	
中断起飞执行操作裕度	
方向舵配平技巧 –推荐的	
着陆跑道标志(典型的)	6.7
S	
非正常检查单范围之外的情况	
缝翼驱动失效(前缘)着陆	
速度干预	
速度限制	
减速板	
稳定进近要求	
失速改出	7.9
全停起飞的着陆	5.61

简图显示	1.3
T	
机尾触地	8.24
起飞 - 不利的跑道条件	3.18
起飞-结合 ATM 和固定减功率两种方法	
起飞 - 侧风	
起飞 - 发动机失效	3.31
起飞 - 减推力和减功率起飞推力	3.15
起飞 -机尾离地高度	3.33
起飞 -机尾离地高度	
起飞简令	2.1
起飞侧风指标	3.12
起飞侧风指标	A.2.4
起飞跑道长度(FAR)	3.19
起飞襟翼调定	3.3
起飞剖面	3.2
起飞	
滑行 —恶劣天气	
滑行 -单发	
滑行 -最小半径	
滑行速度和刹车	
地形避让	
地形避让	
跑道入口高	
推力管理 -起飞	
推力使用 -滑行	
手轮/方向舵脚蹬操纵	
起飞过程中或起飞后轮胎失效	
连续起飞着陆	
接地机身姿态	
活动咨询	
交通告警和飞机防撞系统(TCAS)	
训练目的	1.2
过渡到爬升	4.3

排故	8.2
穿越颠簸气流	1.39
U	
非计划安定面配平	8.15
失控后的改出	7.15
V	
目视瞄准点	6.5
目视进近坡度指示器(VASI/T-VASI)	6.1
目视下降点	5.50
目视起落航线	5.57
VNV-非 ILS 进近	5.31
\mathbf{W}	
气象雷达和地形显示政策	1.33
轮舱火警	8.28
风挡损坏	8.28
风挡打开	8.29
风切变	7.19

空白