МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Р.Е.АЛЕКСЕЕВА

Институт радиоэлектроники и информационных технологий Кафедра вычислительные системы и технологии

> Лабораторная работа № 5 Численное дифференцирование функций Вариант №15

ОТЧЕТ

по лабораторной работе по дисциплине

Вычислительная математика

РУКОВОДИТЕЛЬ:	
	Суркова А.С.
СТУДЕНТ:	
	Сапожников В.О.
	19-ИВТ-3
Работа защищена «_	<u></u> »
С оценкой	

Содержание

1. Цель	4
_,,,,,,,,,,	
3. Теоретические сведения	
3.1. Интерполяционный многочлен Ньютона	
3.2. Формулы Лагранжа	
4. Расчётные данные	
5. Листинг разработанной программы	
6. Результаты работы программы	
7. Вывод	

1. Цель

Закрепление знаний и умений по численному дифференцированию функций с помощью интерполяционного многочлена Ньютона.

2. Постановка задачи

Вычислить первую и вторую производные функции в точках x, заданные таблицей.

	15
х	у
3.50	33.1154
3.55	34.8133
3.60	36.5982
3.65	38.4747
3.70	40.4473
3.75	42.5211
3.80	44.7012
3.85	46.9931
3.90	49.4024
3.95	51.9354
4.00	54.5982
4.05	57.3975
4.10	60.3403
4.15	63.4340
4.20	66.6863

3. Теоретические сведения

3.1. Интерполяционный многочлен Ньютона

Предположим, что функция f(x), заданная в виде таблицы с постоянным шагом $h = x_i - x_{i-1}$ может быть аппроксимированная интерполяционным многочленом Ньютона:

$$y \approx N(x_0 + th) = y_0 + t\Delta y_0 + \frac{t(t-1)}{2!} \Delta^2 y_0 + \dots + \frac{t(t-1)\dots(t-n+1)}{n!} \Delta^n y_0 \quad t = \frac{x - x_0}{h}$$

Дифференцируя этот многочлен по переменной х с учетом правила дифференцирования сложной функции:

$$\frac{dN}{dx} = \frac{dN}{dt}\frac{dt}{dx} = \frac{1}{h}\frac{dN}{dt},$$

можно получить формулы для вычисления производных любого порядка:

$$\begin{split} y' &\approx \frac{1}{h} \left(\Delta y_0 + \frac{2t-1}{2!} \, \Delta^2 y_0 + \frac{3t^2-6t+2}{3!} \, \Delta^3 y_0 + \right. \\ &\quad + \frac{4t^3-18t^2+22t-6}{4!} \, \Delta^4 y_0 + \\ &\quad + \frac{5t^4-40t^3+105t^2-100t+24}{5!} \, \Delta^5 y_0 + \dots \right), \\ y'' &\approx \frac{1}{h^2} \left(\Delta^2 y_0 + \frac{6t-6}{3!} \, \Delta^3 y_0 + \frac{12t^2-36t+22}{4!} \, \Delta^4 y_0 + \right. \\ &\quad + \frac{20t^3-120t^2+210t-100}{5!} \, \Delta^5 y_0 + \dots \right), \end{split}$$

3.2. Формулы Лагранжа

Предположим, что функция f(x), заданная в виде таблицы с постоянным шагом $h = x_i - x_{i-1}$ может быть аппроксимирована при помощи формул Лагранжа:

$$f(x) \approx L_n(x)$$

$$L_n(x) = \frac{1}{2h^2} [(x - x_1)(x - x_2)y_0 - 2(x - x_0)(x - x_2)y_1 + (x - x_0)(x - x_1)y_2]$$

$$R_l(x) = \frac{y'''}{3!} (x - x_0)(x - x_1)(x - x_2)$$

Дифференцируя этот многочлен по переменной х, можно получить формулы для вычисления производных любого порядка:

Формулы Лагранжа для первых производных на 4 узла

$$y_0' = \frac{1}{12h}(-25y_0 + 48y_1 - 36y_2 + 16y_3 - 3y_4) + \frac{h^4}{5}y_*^{\nu}$$

$$y_1' = \frac{1}{12h}(-3y_0 - 10y_1 + 18y_2 - 6y_3 + y_4) - \frac{h^4}{20}y_*^{\nu}$$

$$y_2' = \frac{1}{12h}(y_0 - 8y_1 + 8y_2 - y_4) + \frac{h^4}{30}y_*^{\nu}$$

$$y_3' = \frac{1}{12h}(-y_0 + 6y_1 - 18y_2 + 10y_3 + 3y_4) + \frac{h^4}{20}y_*^{\nu}$$

$$y_4' = \frac{1}{12h}(3y_0 - 16y_1 + 36y_2 - 48y_3 + 25y_4) + \frac{h^4}{5}y_*^{\nu}$$

Формулы Лагранжа для вторых производных на 3 узла

$$y_0'' = \frac{1}{h^2} (2y_0 - 5y_1 + 4y_2 - y_3) + O(h^2)$$

$$y_1'' = \frac{1}{h^2} (y_0 - 2y_1 + y_2) + O(h^2)$$

$$y_2'' = \frac{1}{h^2} (y_1 - 2y_2 + y_3) + O(h^2)$$

$$y_3'' = \frac{1}{h^2} (-y_0 + 4y_1 - 5y_2 + 2y_3) + O(h^2)$$

4. Расчетные данные Многочлен Ньютона

X	y'
3.50	33.1220
3.55	34.8088
3.60	36.5873
3.65	38.4485
3.70	40.3973
3.75	42.4528
3.80	44.7102
3.85	46.9839
3.90	49.3789
3.95	51.9353
4.00	54.6104
4.05	57.4449
4.10	60.4478
4.15	63.6259
4.20	66.9844
X	y''
3.50	32.6900
3.55	34.8267
3.60	36.6433
3.65	38.4200
3.70	40.4367
3.75	42.9733
3.80	44.1000
3.85	46.9933
3.90	49.4867
3.95	51.9880
4.00	54.5833
4.05	57.3867
	1

Формулы Лагранжа

60.3500

63.4333

66.5967

4.10

4.15

4.20

X	y'
3.50	33.1192
3.55	34.8125
3.60	36.5987
3.65	38.4762

3.70	40.4425
3.75	42.5178
3.80	44.7825
3.85	46.9933
3.90	49.4008
3.95	51.9425
4.00	54.5988
4.05	57.3968
4.10	60.3403
4.15	63.4338
4.20	6636848

X	$y^{\prime\prime}$
3.50	32.9600
3.55	34.8000
3.60	36.6400
3.65	38.4800
3.70	40.3200
3.75	42.5200
3.80	44.7200
3.85	46.9200
3.90	49.2400
3.95	51.9200
4.00	54.6000
4.05	57.2800
4.10	60.3600
4.15	63.4400
4.20	66.5200

5. Листинг разработанной программы

Main.java

```
import solution_strategy.*;
import java.util.Scanner;
 * Класс, содержащий точку входа в программу - метод main.
 * Язык: java
 * Реализация пятой лабораторной работы по диспилине: Вычислительная математика
 * Вариант №15
 * Текст задания:
 * Найти первую и вторую производную функции в точках х, заданных
   таблицей, используя интерполяционные многочлены Ньютона. Сравнить со
   значениями производных, вычисленными по формулам, основанным на
   интерполировании многочленом Лагранжа (вычисление производных через
   значения функций).
              Х
                      У
            3.50
                    33.1154
           3.55
                    34.8133
                    36.5982
           3.60
           3.65
                    38.4747
           3.70
                    40,4473
           3.75
                    42.5211
           3.80
                    44.7012
           3.85
                    46.9931
           3.90
                    49.4024
           3.95
                    51.9354
           4.00
                    54.5982
            4.05
                    57.3975
           4.10
                    60.3403
            4.15
                    63.4340
            4.20
                    66.6863
 * @release: -
                   03.05.21
 * @last_update: - 03.05.21
 * @author Vladislav Sapozhnikov 19-IVT-3
 */
public class Main
   //Константы для хранения последовательностей для
    //изменения цвета текста в консоли
```

```
public static final String RESET = "\u001B[0m";
    public static final String PURPLE = "\u001B[35m";
    public static final String RED = "\u001B[31m";
    /**
     * Точка входа в программу
    public static void main(String[] args)
    {
        System.out.println("\t\t\tЛабораторная работа №5 <<" + PURPLE + "Численное
дифференцирование функций" +
                " Ньютона и многочленом Лагранжа" + RESET + ">>");
        //Открытие потока ввода
        Scanner scanner = new Scanner(System.in);
        //Таблица значений Вариант №15
        double[][] coordinates = {{3.50, 33.1154},
                                  {3.55, 34.8133},
                                  {3.60, 36.5982},
                                  {3.65, 38.4747},
                                  {3.70, 40.4473},
                                  {3.75, 42.5211},
                                  {3.80, 44.7012},
                                  {3.85, 46.9931},
                                  {3.90, 49.4024},
                                  {3.95, 51.9354},
                                  {4.00, 54.5982},
                                  {4.05, 57.3975},
                                  {4.10, 60.3403},
                                  {4.15, 63.4340},
                                  {4.20, 66.6863}};
        //Создание ссылки на объект, реализующий интерфейс
        //SolutionStrategy
        SolutionStrategy strategy = null;
        //Переменная для хранения результата ввода
        String ch = "";
        double[][] firstDerivative;
        double[][] secondDerivative;
        //Выбор стратегии решения
        while (!ch.equals("q"))
        {
            System.out.println("Выберите способ нахождения производной:");
            System.out.println("\t1. При помощи многочлена Ньютона");
```

```
System.out.println();
            System.out.println("\tВведите q для выхода");
            System.out.print("Ввод: ");
            ch = scanner.nextLine();
            System.out.println();
            //Ввод с повторением
            switch (ch)
                case ("1") -> strategy = new NewtonSolution();
                case ("2") -> strategy = new LagrangianSolution();
                case ("3") -> strategy = new DifferenceForm();
                case ("q") ->
                        {
                            System.out.println(RED + "Завершение работы..." + RESET);
                            System.exit(0);
                        }
                default -> System.out.println(RED + "Неверный ввод!" + RESET);
            }
            assert strategy != null;
            firstDerivative = strategy.getFirstDerivative(coordinates);
            secondDerivative = strategy.getSecondDerivative(coordinates);
            System.out.println("Значения первой производной: ");
            for (double[] doubles : firstDerivative)
            {
                System.out.printf("%.2f", doubles[0]);
                System.out.print(" ");
                System.out.printf("%.4f", doubles[1]);
                System.out.println();
            }
            System.out.println();
            System.out.println();
            System.out.println("Значения второй производной: ");
            for (double[] doubles : secondDerivative)
            {
                System.out.printf("%.2f", doubles[0]);
                System.out.print("
                                   ");
                System.out.printf("%.4f", doubles[1]);
                System.out.println();
            }
       }
   }
}
                                             13
```

System.out.println("\t2. При помощи многочлена Лагранжа");

solution strategy/SolutionStrategy.java

```
package solution_strategy;
/**
 * Общий интерфейс всех стратегий решения.
 * @see DifferenceForm
 * @see LagrangianSolution
 * @see NewtonSolution
 * @author Vladislav Sapozhnikov 19-IVT-3
public interface SolutionStrategy
{
     * Метод для получения первой производной различными способами.
     * @param coordinates - двумерный массив значений [0][Xi] [1][Yi]
     * @return список значений производной в заданных точках.
     * */
    double[][] getFirstDerivative(double[][] coordinates);
    /**
     * Метод для получения второй производной различными способами.
     * @param coordinates - двумерный массив значений [0][Xi] [1][Yi]
     * @return список значений производной в заданных точках.
    double[][] getSecondDerivative(double[][] coordinates);
}
```

solution strategy/NewtonSolution.java

```
package solution_strategy;

import java.util.ArrayList;

import java.util.List;

/**

* Класс, в котором реализованы методы нахождения

* первых и вторых произовдных при помощи многочлена Ньютона

*

* @see SolutionStrategy

* */

public class NewtonSolution implements SolutionStrategy

{
    /**

    * Метод для нахождения конечных приращений
```

```
* @param coordinates - массив координат для которого необходимо найти
                        конечные приращения
* @return список списокв конечных приращений
private List<List<Double>> getFiniteDifferences(double[][] coordinates)
    //Создание списка списков для хранения значений конченых разностей
    List<List<Double>> finiteDifferences = new ArrayList<>();
    //Ссылка на временный список для хранения промежуточных значений
    //конечных разностей
    List<Double> tempList;
    //В промежуточный список заносятся конечные разности 1-ого порядка
    tempList = new ArrayList<>();
    for (int i = 0; i < coordinates.length - 1; i++)</pre>
    {
        //Вычисление конечных разностей
        tempList.add(coordinates[i + 1][1] - coordinates[i][1]);
    }
    //промежуточный список ханосится в список списков кончеых разностей
    finiteDifferences.add(tempList);
    //На каждом і-ом шаге вычисляем значения конченых разностей нового порядка
    //и заносим в промежуточный список.
    //Полученный промежуточный список заносим в список списков промежуточных разностей
    for (int i = 0; i < coordinates.length-2; i++)</pre>
        tempList = new ArrayList<>(); //инициализация промежуточного списка
        for (int j = 0; j < finiteDifferences.get(i).size() - 1; j++)</pre>
            //Вычисление конечных разностей
            tempList.add(finiteDifferences.get(i).get(j + 1) -
                                     finiteDifferences.get(i).get(j));
        }
        finiteDifferences.add(tempList);
    }
    return finiteDifferences;
}
 * Вспомогательный метод для получения факториала
 * @param n - число, от которого необходимо получить факториал
 * @return - факториал переданного числа
```

```
* */
private int getFact(int n)
{
    int res = 1;
    while (n > 1)
        res *= n;
        n--;
    return res;
}
/**
 * Метод для получения первых производных при помощи
 * многочлена Ньютона
 ^{st} @param coordinates - массив координат точек, в которых
                        необходимо найти производные
 * @return массив значений первых производных
 * */
@Override
public double[][] getFirstDerivative(double[][] coordinates)
    //Вычисление шага
    double h = coordinates[1][0] - coordinates[0][0];
    double[][] resArr = new double[15][2];
    //Нахождение производных для первых 6ти членов
    //выделяем координаты необходимых точек
    double[][] tempArr = new double[6][2];
    for (int i = 0; i < 6; i++)
    {
        tempArr[i][0] = coordinates[i][0];
        tempArr[i][1] = coordinates[i][1];
    }
    //Получаем список конечных приращений
    List<List<Double>> finiteDifference = getFiniteDifferences(tempArr);
    //Расчет производных по формуле
    for (int i = 0; i < 6; i++)
    {
        double t = (coordinates[i][0] - coordinates[0][0]) / h;
        resArr[i][0] = coordinates[i][0];
        resArr[i][1] = (finiteDifference.get(0).get(0)
                + ((2.0 * t - 1) * finiteDifference.get(1).get(0) / getFact(2))
```

```
+ ((3.0*t*t - 6.0*t + 2) * finiteDifference.get(2).get(0) / getFact(3)
            + ((4.0*t*t*t + 18.0*t*t + 22.0*t - 6.0) *
                               finiteDifference.get(3).get(0)) / getFact(4))
            + ((5.0*t*t*t*t - 40.0*t*t*t + 105.0*t*t -100.0*t +24.0) *
                           finiteDifference.get(4).get(0) / getFact(5))) / h;
}
//Нахождение производных для следующих 3 членов
//выделяем координаты необходимых точек
tempArr = new double[6][2];
for (int i = 6, j = 0; i < 12; i++, j++)
{
   tempArr[j][0] = coordinates[i][0];
   tempArr[j][1] = coordinates[i][1];
}
//Получаем список конечных приращений
finiteDifference = getFiniteDifferences(tempArr);
//Расчет производных по формуле
for (int i = 6; i < 10; i++)
{
    double t = (coordinates[i][0] - coordinates[6][0]) / h;
   resArr[i][0] = coordinates[i][0];
   resArr[i][1] = (finiteDifference.get(0).get(0)
            + ((2.0 * t - 1) * finiteDifference.get(1).get(0) / getFact(2))
            + ((3.0*t*t - 6.0*t + 2) * finiteDifference.get(2).get(0) / getFact(3)
            + ((4.0*t*t*t + 18.0*t*t + 22.0*t - 6.0) *
                                    finiteDifference.get(3).get(0)) / getFact(4))
            + ((5.0*t*t*t*t - 40.0*t*t*t + 105.0*t*t -100.0*t +24.0) *
                                finiteDifference.get(4).get(0) / getFact(5))) / h;
}
//Нахождение производных для последних 6ти членов
//выделяем координаты необходимых точек
tempArr = new double[6][2];
for (int i = 9, j = 0; i < 15; i++, j++)
{
   tempArr[j][0] = coordinates[i][0];
   tempArr[j][1] = coordinates[i][1];
//Получаем список конечных приращений
finiteDifference = getFiniteDifferences(tempArr);
//Расчет производных по формуле
for (int i = 9; i < 15; i++)
```

```
{
        double t = (coordinates[i][0] - coordinates[9][0]) / h;
        resArr[i][0] = coordinates[i][0];
        resArr[i][1] = (finiteDifference.get(0).get(0)
                + ((2.0 * t - 1) * finiteDifference.get(1).get(0) / getFact(2))
                + ((3.0*t*t - 6.0*t + 2) * finiteDifference.get(2).get(0) / getFact(3)
                + ((4.0*t*t*t + 18.0*t*t + 22.0*t - 6.0) *
                                   finiteDifference.get(3).get(0)) / getFact(4))
                + ((5.0*t*t*t*t - 40.0*t*t*t + 105.0*t*t -100.0*t +24.0) *
                                   finiteDifference.get(4).get(0) / getFact(5))) / h;
    }
    return resArr;
}
/**
 * Метод для получения вторых производных при помощи
 * многочлена Ньютона
 * @param coordinates - массив координат точек, в которых
                        необходимо найти производные
 * @return массив значений вторых производных
 * */
@Override
public double[][] getSecondDerivative(double[][] coordinates)
    //Вычисление шага
    double h = coordinates[1][0] - coordinates[0][0];
    double[][] resArr = new double[15][2];
    //Нахождение производных для первых 6ти членов
    //выделяем координаты необходимых точек
    double[][] tempArr = new double[6][2];
    for (int i = 0; i < 6; i++)
    {
        tempArr[i][0] = coordinates[i][0];
        tempArr[i][1] = coordinates[i][1];
    //Получаем список конечных приращений
    List<List<Double>> finiteDifference = getFiniteDifferences(tempArr);
    //Расчет производных по формуле
    for (int i = 0; i < 6; i++)
        double t = (coordinates[i][0] - coordinates[0][0]) / h;
        resArr[i][0] = coordinates[i][0];
```

```
resArr[i][1] = (finiteDifference.get(1).get(0)
            + ((6.0 * t - 6.0) * finiteDifference.get(2).get(0) / getFact(3))
            + ((12.0*t*t - 36.0*t + 22.0) * finiteDifference.get(3).get(0)
                                                               / getFact(4)
            + ((20.0*t*t*t - 120.0*t*t + 210.0*t - 100.0) *
                    finiteDifference.get(4).get(0)) / getFact(5))) / (h*h);
}
//Нахождение производных для следующих 3 членов
//выделяем координаты необходимых точек
tempArr = new double[6][2];
for (int i = 6, j = 0; i < 12; i++, j++)
   tempArr[j][0] = coordinates[i][0];
   tempArr[j][1] = coordinates[i][1];
}
//Получаем список конечных приращений
finiteDifference = getFiniteDifferences(tempArr);
//Расчет производных по формуле
for (int i = 6; i < 10; i++)
    double t = (coordinates[i][0] - coordinates[6][0]) / h;
   resArr[i][0] = coordinates[i][0];
   resArr[i][1] = (finiteDifference.get(1).get(0)
            + ((6.0 * t - 6.0) * finiteDifference.get(2).get(0) / getFact(3))
            + ((12.0*t*t - 36.0*t + 22.0) * finiteDifference.get(3).get(0)
                                                             / getFact(4)
            + ((20.0*t*t*t - 120.0*t*t + 210.0*t - 100.0) *
                      finiteDifference.get(4).get(0)) / getFact(5))) / (h*h);
}
//Нахождение производных для последних 6ти членов
//выделяем координаты необходимых точек
tempArr = new double[6][2];
for (int i = 9, j = 0; i < 15; i++, j++)
{
   tempArr[j][0] = coordinates[i][0];
   tempArr[j][1] = coordinates[i][1];
}
//Получаем список конечных приращений
finiteDifference = getFiniteDifferences(tempArr);
//Расчет производных по формуле
for (int i = 9; i < 15; i++)
```

6. Результаты работы программы

```
Значения первой производной:
3,50 - 33,1220
3,55 . . 34,8088
3,65 · · · 38,4485
3,95 51,9353
4,00 54,6104
4,05 57,4449
4,10 60,4478
4,15 63,6259
4,20 66,9844
Значения второй производной:
3,50 - 32,6900
```

```
Выберите способ нахождения производной:
3,65 - 38,4762
3,55 - 34,8000
3,75 42,5200
3,80 44,7200
  — Введите · q · для · выхода
```

7. Вывод

В ходе данной работы были закреплены знания и умения по вычислению производных первого и второго порядка при помощи интерполяционного многочлена Ньютона формул Лагранжа.