Mini-Projet: Gestion d'Utilisateurs avec AWS, Python et SQL

Objectif du Projet

Créer une application qui permet :

- L'ajout, la lecture, la modification et la suppression d'utilisateurs via une API.
- La sauvegarde des utilisateurs dans une base de données MySQL hébergée sur AWS RDS.
- L'enregistrement des logs d'activités dans un bucket S3.
- L'automatisation du traitement des logs avec AWS Lambda.

Plan des Exercices

Étape 1 : Création d'une API CRUD en Python

Objectifs:

- Développer une API REST en utilisant FastAPI ou Flask.
- Implémenter les endpoints suivants :
 - POST /users: Ajouter un utilisateur.
 - GET /users/{id}: Récupérer un utilisateur.
 - PUT /users/{id}: Modifier un utilisateur.
 - DELETE /users/{id}: Supprimer un utilisateur.
- Stocker temporairement les utilisateurs dans une base SQLite.

Tâches:

- Installer les dépendances (FastAPI, SQLite, SQLAlchemy).
- Tester l'API en local avec Postman ou curl.
- Ajouter des validations sur les entrées utilisateur (nom, email, âge).

Étape 2 : Migration vers AWS RDS (MySQL)

Objectifs:

- Créer une base MySQL sur AWS RDS.
- Connecter l'API à cette base.

Tâches:

- Créer une instance RDS MySQL sur AWS.
- Configurer la connexion (pymysql ou SQLAlchemy).
- Mettre à jour l'API pour enregistrer les utilisateurs dans RDS.
- Vérifier les performances avec SELECT et EXPLAIN.

Étape 3 : Gestion des logs avec AWS S3

Objectifs:

- Enregistrer les logs des opérations utilisateur dans un fichier local.
- Sauvegarder automatiquement ces logs sur S3.

Tâches:

- Créer un bucket S3 sur AWS.
- Utiliser boto3 pour :
 - Uploader les logs.
 - Lister les fichiers du bucket.
 - Télécharger un fichier de log spécifique.

Étape 4: Automatisation avec AWS Lambda

Objectifs:

- Déclencher une fonction Lambda lorsqu'un fichier est ajouté à S3.
- Lire le fichier de log et analyser les opérations utilisateur.

Tâches:

- Développer une fonction Lambda en Python.
- Configurer un trigger sur S3.
- Stocker les statistiques dans une table MySQL.

Étape 5 : Analyse des logs avec AWS Athena & Glue

Objectifs:

- Interroger les logs directement depuis S3.
- Automatiser la création du schéma avec AWS Glue.

Tâches:

- Configurer un Data Catalog avec Glue.
- Exécuter des requêtes SQL avec Athena.
- Analyser l'activité des utilisateurs.

Étape 6 : Déploiement sur AWS EC2

Objectifs:

• Héberger l'API sur une instance EC2.

Tâches:

- Configurer une instance t3.micro.
- Installer Python, l'API et gunicorn.
- Tester l'API en ligne.

Finalisation du projet

- Ajouter des tests unitaires (pytest).
- Documenter le projet (README.md, tutoriel d'installation).
- Héberger le code sur GitHub avec un guide d'utilisation.

Technologies utilisées

• **Python**: API avec FastAPI/Flask, interactions AWS avec boto3.

• AWS: S3, RDS (MySQL), Lambda, Glue, Athena, EC2.

• Base de données : MySQL (RDS).

• **Déploiement** : EC2 avec gunicorn et nginx.

Estimation du Temps

Étape	Temps estimé
API CRUD	4 - 6h
Migration RDS	6 - 8h
Gestion des logs S3	5 - 7h
Lambda	6 - 8h
Athena & Glue	6 - 8h
Déploiement EC2	8 - 12h
Total	40 - 55h (~1-2 semaines)

Résultat final : Un mini-projet concret démontrant tes compétences en **Python, AWS et bases de données**, idéal pour ton CV.