Stochastic Policy for Continuous Control

Shusen Wang

Continuous Action Space

- The action space \mathcal{A} is a subset of \mathbb{R}^2 .
- The action space \mathcal{A} is continuous:

$$\mathcal{A} = [0^{\circ}, 360^{\circ}] \times [0^{\circ}, 180^{\circ}].$$

• Actions are 2-dim vectors.

Univariate Normal Distribution

- Assume the degree of freedom is one, i.e., $\mathcal{A} \subset \mathbb{R}$.
- Let μ (mean) and σ (std) be functions of s.
- Let policy function be the PDF of normal distribution:

$$\pi(\mathbf{a}|s) = \frac{1}{\sqrt{6.28}\,\sigma} \cdot \exp\left(-\frac{(\mathbf{a}-\mu)^2}{2\sigma^2}\right).$$

Multivariate Normal Distribution

- Let the degree of freedom be d, i.e., action \mathbf{a} is d-dim.
- Let μ , σ : $\mathcal{S} \mapsto \mathbb{R}^d$ be functions of s.
- Let μ_i and σ_i be the *i*-th elements of $\mu(s)$ and $\sigma(s)$, respectively.
- Let policy function be the PDF of multivariate normal:

$$\pi(\mathbf{a}|s) = \prod_{i=1}^{d} \frac{1}{\sqrt{6.28} \,\sigma_i} \cdot \exp\left(-\frac{(a_i - \mu_i)^2}{2\sigma_i^2}\right).$$

Multivariate Normal Distribution

- Let the degree of freedom be d, i.e., action \mathbf{a} is d-dim.
- Let μ , σ : $\mathcal{S} \mapsto \mathbb{R}^d$ be functions of s.
- Let μ_i and σ_i be the *i*-th elements of $\mu(s)$ and $\sigma(s)$, respectively.
- Let policy function be the PDF of multivariate normal:

$$\pi(\mathbf{a}|s) = \prod_{i=1}^{d} \frac{1}{\sqrt{6.28} \,\sigma_i} \cdot \exp\left(-\frac{(a_i - \mu_i)^2}{2\sigma_i^2}\right).$$

Problem: μ and σ (which are functions of s) are unknown.

- Approximate the mean, $\mu(s)$, by the neural network, $\mu(s; \theta^{\mu})$.
- Approximate the std, $\sigma(s)$, by the neural network, $\sigma(s; \theta^{\sigma})$.

- Approximate the mean, $\mu(s)$, by the neural network, $\mu(s; \theta^{\mu})$.
- Approximate the std, $\sigma(s)$, by the neural network, $\sigma(s; \theta^{\sigma})$.
- A better practice is to approximate the log variance:

$$\rho_i = \ln \sigma_i^2, \quad \text{for } i = 1, \dots, d.$$

• Approximate ρ , by the neural network, $\rho(s; \theta^{\rho})$.

Continuous Control

- Observe state s.
- Compute mean and log variance using the neural network:

$$\widehat{\mu} = \mu(s; \theta^{\mu})$$
 and $\widehat{\rho} = \rho(s; \theta^{\rho})$.

Continuous Control

- Observe state s.
- Compute mean and log variance using the neural network:

$$\widehat{\mu} = \mu(s; \theta^{\mu})$$
 and $\widehat{\rho} = \rho(s; \theta^{\rho})$.

- Compute $\hat{\sigma}_i^2 = \exp(\hat{\rho}_i)$, for all $i = 1, \dots, d$.
- Randomly sample action a by

$$a_i \sim N(\hat{\mu}_i, \hat{\sigma}_i^2)$$
, for all $i = 1, \dots, d$.

Training Policy Network

- 1. Auxiliary network (for computing policy gradient).
- 2. Policy gradient.
- 3. Algorithms: actor-critic and REINFORCE.

Training (1/4): Auxiliary Network

• The policy network is:

$$\pi(\mathbf{a}|s; \mathbf{\theta}^{\mu}, \mathbf{\theta}^{\rho}) = \prod_{i=1}^{d} \frac{1}{\sqrt{6.28} \, \sigma_i} \cdot \exp\left(-\frac{(\mathbf{a_i} - \mu_i)^2}{2\sigma_i^2}\right).$$

• The policy network is:

$$\pi(\mathbf{a}|s; \mathbf{\theta}^{\mu}, \mathbf{\theta}^{\rho}) = \prod_{i=1}^{d} \frac{1}{\sqrt{6.28} \sigma_i} \cdot \exp\left(-\frac{(a_i - \mu_i)^2}{2\sigma_i^2}\right).$$

• The natural log of the policy network is:

$$\ln \pi(\mathbf{a}|s; \mathbf{\theta}^{\mu}, \mathbf{\theta}^{\rho}) = \sum_{i=1}^{d} \left[-\ln \sigma_i - \frac{(a_i - \mu_i)^2}{2\sigma_i^2} \right] + \text{const}$$

• The policy network is:

$$\pi(\mathbf{a}|s; \mathbf{\theta}^{\mu}, \mathbf{\theta}^{\rho}) = \prod_{i=1}^{d} \frac{1}{\sqrt{6.28} \sigma_i} \cdot \exp\left(-\frac{(\mathbf{a}_i - \mu_i)^2}{2\sigma_i^2}\right).$$

• The natural log of the policy network is:

$$\ln \pi(\mathbf{a}|s; \mathbf{\theta}^{\mu}, \mathbf{\theta}^{\rho}) = \sum_{i=1}^{d} \left[-\ln \sigma_i - \frac{(a_i - \mu_i)^2}{2\sigma_i^2} \right] + \text{const}$$
$$= \sum_{i=1}^{d} \left[-\frac{\rho_i}{2} - \frac{(a_i - \mu_i)^2}{2 \cdot \exp(\rho_i)} \right] + \text{const.}$$

Identity:
$$\ln \pi(\mathbf{a}|s; \mathbf{\theta}) = \text{const} + \sum_{i=1}^{d} \left[-\frac{\rho_i}{2} - \frac{(a_i - \mu_i)^2}{2 \cdot \exp(\rho_i)} \right].$$
Here, $\mathbf{\theta} = (\mathbf{\theta}^{\mu}, \mathbf{\theta}^{\rho}).$

Identity:
$$\ln \pi(\mathbf{a}|s; \mathbf{\theta}) = \operatorname{const} + \sum_{i=1}^{d} \left[-\frac{\rho_i}{2} - \frac{(a_i - \mu_i)^2}{2 \cdot \exp(\rho_i)} \right].$$

$$= f(s, \mathbf{a}; \boldsymbol{\theta})$$
 (Auxiliary Network)

Auxiliary Network:
$$f(s, \mathbf{a}; \boldsymbol{\theta}) = \sum_{i=1}^{d} \left[-\frac{\rho_i}{2} - \frac{(a_i - \mu_i)^2}{2 \cdot \exp(\rho_i)} \right].$$

Auxiliary Network: $f(s, \mathbf{a}; \boldsymbol{\theta}) = \sum_{i=1}^{d} \left[-\frac{\rho_i}{2} - \frac{(a_i - \mu_i)^2}{2 \cdot \exp(\rho_i)} \right].$

Auxiliary Network: $f(s, \mathbf{a}; \boldsymbol{\theta}) = \sum_{i=1}^{d} \left[-\frac{\rho_i}{2} - \frac{(a_i - \mu_i)^2}{2 \cdot \exp(\rho_i)} \right].$

Auxiliary Network: $f(s, \mathbf{a}; \boldsymbol{\theta}) = \sum_{i=1}^{d} \left[-\frac{\rho_i}{2} - \frac{(a_i - \mu_i)^2}{2 \cdot \exp(\rho_i)} \right].$

Auxiliary Network:
$$f(s, \mathbf{a}; \boldsymbol{\theta}) = \sum_{i=1}^{d} \left[-\frac{\rho_i}{2} - \frac{(a_i - \mu_i)^2}{2 \cdot \exp(\rho_i)} \right].$$

The gradient, $\frac{\partial f}{\partial \theta}$, can be automatically computed.

Recap

We have built three neural networks:

$$\mu(s; \theta^{\mu}), \rho(s; \theta^{\rho}), \text{ and } f(s, \mathbf{a}; \theta).$$

$$\theta = (\theta^{\mu}, \theta^{\rho})$$

Recap

We have built three neural networks:

$$\mu(s; \theta^{\mu}), \rho(s; \theta^{\rho}), \text{ and } f(s, \mathbf{a}; \theta).$$

- $\mu(s; \theta^{\mu})$ computes the mean.
- $\rho(s; \theta^{\rho})$ computes the log variance.

for controlling the agent

Recap

We have built three neural networks:

$$\mu(s; \theta^{\mu}), \rho(s; \theta^{\rho}), \text{ and } f(s, \mathbf{a}; \theta).$$

- Auxiliary network, $f(s, \mathbf{a}; \boldsymbol{\theta})$, helps with the training.
- We will use $\frac{\partial f}{\partial \theta}$ for computing policy gradient.

Training (2/4): Policy Gradient

Return

Definition: Discounted return.

•
$$U_t = R_t + \gamma \cdot R_{t+1} + \gamma^2 \cdot R_{t+2} + \gamma^3 \cdot R_{t+3} + \cdots$$

Value Functions

Definition: Discounted return.

•
$$U_t = R_t + \gamma \cdot R_{t+1} + \gamma^2 \cdot R_{t+2} + \gamma^3 \cdot R_{t+3} + \cdots$$

Definition: Action-value function.

•
$$Q_{\pi}(s, \mathbf{a}) = \mathbb{E}\left[U_t | S_t = s, \mathbf{A}_t = \mathbf{a}\right].$$

Value Functions

Definition: Discounted return.

•
$$U_t = R_t + \gamma \cdot R_{t+1} + \gamma^2 \cdot R_{t+2} + \gamma^3 \cdot R_{t+3} + \cdots$$

Definition: Action-value function.

•
$$Q_{\pi}(s, \mathbf{a}) = \mathbb{E}\left[U_t | S_t = s, A_t = \mathbf{a}\right].$$

Definition: State-value function.

- $V_{\pi}(s) = \mathbb{E}_{\mathbf{A}}[Q_{\pi}(s, \mathbf{A})].$
- The expectation is taken w.r.t. $A \sim \pi(\cdot | s; \theta)$.

Policy Gradient

Policy gradient:

$$\frac{\partial V_{\pi}(s)}{\partial \theta} =$$

$$\mathbb{E}_{\mathbf{A}} \left[\frac{\partial \ln \pi(\mathbf{A} \mid s; \mathbf{\theta})}{\partial \mathbf{\theta}} \right]$$

$$Q_{\pi}(s, A)$$

Policy Gradient

Policy gradient:
$$\frac{\partial V_{\pi}(s)}{\partial \theta} = \mathbb{E}_{A} \left[\frac{\partial \left[n \pi(A \mid s; \theta) \right]}{\partial \theta} Q_{\pi}(s, A) \right].$$

• Recall that $f(s, \mathbf{a}; \mathbf{\theta}) = \ln \pi(\mathbf{a}|s; \mathbf{\theta}) + \text{const.}$

Policy Gradient

Policy gradient:
$$\frac{\partial V_{\pi}(s)}{\partial \theta} = \mathbb{E}_{A} \left[\frac{\partial \left[n \pi(A \mid s; \theta) \right]}{\partial \theta} Q_{\pi}(s, A) \right].$$

- Recall that $f(s, \mathbf{a}; \mathbf{\theta}) = \ln \pi(\mathbf{a}|s; \mathbf{\theta}) + \text{const.}$
- Thus the policy gradient is equal to:

$$\frac{\partial V_{\pi}(s)}{\partial \theta} = \mathbb{E}_{\mathbf{A}} \left[\frac{\partial f(s, \mathbf{A}; \theta)}{\partial \theta} \cdot Q_{\pi}(s, \mathbf{A}) \right].$$

Policy Gradient

Policy gradient:
$$\frac{\partial V_{\pi}(s)}{\partial \theta} = \mathbb{E}_{A} \left[\frac{\partial f(s,A;\theta)}{\partial \theta} \cdot Q_{\pi}(s,A) \right].$$

• Given s and a, we can differentiate the auxiliary network f to obtain $\frac{\partial f(s,a;\theta)}{\partial \theta}$.

Training (3/4): Algorithms

Monte Carlo Approximation

Policy gradient:
$$\frac{\partial V_{\pi}(s)}{\partial \theta} = \mathbb{E}_{A} \left[\frac{\partial f(s,A;\theta)}{\partial \theta} \cdot Q_{\pi}(s,A) \right].$$

Randomly sample action a by:

$$a_i \sim N(\hat{\mu}_i, \hat{\sigma}_i^2)$$
, for all $i = 1, \dots, d$.

Monte Carlo Approximation

Policy gradient:
$$\frac{\partial V_{\pi}(s)}{\partial \theta} = \mathbb{E}_{A} \left[\frac{\partial f(s,A;\theta)}{\partial \theta} \cdot Q_{\pi}(s,A) \right].$$

Randomly sample action a by:

$$a_i \sim N(\hat{\mu}_i, \hat{\sigma}_i^2)$$
, for all $i = 1, \dots, d$.

Stochastic policy gradient:

$$\mathbf{g}(\mathbf{a}) = \frac{\partial f(s,\mathbf{a};\mathbf{\theta})}{\partial \mathbf{\theta}} \cdot Q_{\pi}(s,\mathbf{a}).$$

Approximations to Action-Value

Stochastic policy gradient: $\mathbf{g}(\mathbf{a}) = \frac{\partial f(s,\mathbf{a};\theta)}{\partial \theta} \cdot Q_{\pi}(s,\mathbf{a}).$

Approximations to Action-Value

Stochastic policy gradient:
$$\mathbf{g}(\mathbf{a}) = \frac{\partial f(s,\mathbf{a};\theta)}{\partial \theta} \cdot Q_{\pi}(s,\mathbf{a})$$

- Actor-critic approximates Q_{π} by the value network, $q(s, \mathbf{a}; \mathbf{w})$.
- Update policy network by: $\mathbf{\theta} \leftarrow \mathbf{\theta} + \beta \cdot \frac{\partial f(s,\mathbf{a};\mathbf{\theta})}{\partial \mathbf{\theta}} \cdot q(s,\mathbf{a};\mathbf{w})$.
- Update value network by TD learning.

Approximations to Action-Value

Stochastic policy gradient:
$$\mathbf{g}(\mathbf{a}) = \frac{\partial f(s,\mathbf{a};\theta)}{\partial \theta} \cdot Q_{\pi}(s,\mathbf{a})$$

• **REINFORCE** approximates $Q_{\pi}(s_t, \mathbf{a}_t)$ by the observed return:

$$u_t = r_t + \gamma \cdot r_{t+1} + \gamma^2 \cdot r_{t+2} + \gamma^3 \cdot r_{t+3} + \cdots$$

 $u_t = r_t + \gamma \cdot r_{t+1} + \gamma^2 \cdot r_{t+2} + \gamma^3 \cdot r_{t+3} + \cdots$ • Update policy network by: $\mathbf{\theta} \leftarrow \mathbf{\theta} + \beta \cdot \frac{\partial f(s, \mathbf{a}; \mathbf{\theta})}{\partial \mathbf{\theta}} \cdot u_t$.

Summary

Continuous Control

- The number of actions is infinite.
- Approaches to continuous control:
 - 1. Discretize the action space and use standard DQN or policy network.
 - 2. Deterministic policy network (previous lecture).
 - 3. Stochastic policy network (this lecture).

Network Structure

Training

- Build auxiliary network, $f(s, \mathbf{a}; \boldsymbol{\theta})$, for computing policy gradient.
- Policy gradient algorithms: actor-critic and REINFORCE.

Training

- Build auxiliary network, $f(s, \mathbf{a}; \mathbf{\theta})$, for computing policy gradient.
- Policy gradient algorithms: actor-critic and REINFORCE.
- Improvement: Policy gradient with baseline.
 - Actor-critic ==> A2C.
 - REINFORCE ==> REINFORCE with baseline.

Thank you!