Khôlles de Mathématiques - Semaine 16

Hugo Vangilluwen, Felix Rondeau

24 Janvier 2024

1 Formule de Leibniz

Soient $(f,g) \in \mathcal{D}^p(I,\mathbb{R})^2$ et $p \in \mathbb{N}^*$. Alors $f \times g \in \mathcal{D}^p(I,\mathbb{R})$ et

$$\forall x \in I, (f \times g)^{(p)}(x) = \sum_{k=0}^{p} \binom{p}{k} f^{(k)}(x) g^{(p-k)}(x)$$

Démonstration. Considérons la propriété $\mathcal{P}(\cdot)$ définie pour tout $n \in [1, p]$ par

 $ho p \geqslant 1$ donc $\mathcal{D}^p(I,\mathbb{R}) \subset \mathcal{D}^1(I,\mathbb{R})$ si bien que $(f,g) \in \mathcal{D}^1(I,\mathbb{R})^2$ donc $f \times g \in \mathcal{D}^1(I,\mathbb{R})$ et

$$(f \times g)' = f \times g' + f' \times g = {1 \choose 0} f^{(0)} \times g^{(1)} + {1 \choose 1} f^{(1)} \times g^{(0)} = \sum_{k=0}^{1} {1 \choose k} f^{(k)} \times g^{(1-k)}$$

Ainsi $\mathcal{P}(1)$ est vraie.

 \triangleright Soit $f \in [1, p-1]$ fixé quelconque tel que $\mathcal{P}(n)$ est vraie.

— La véracité de $\mathcal{P}(n)$ donne

$$(f \times g)^{(n)} = \sum_{k=0}^{n} \binom{p}{k} \underbrace{f^{(k)}}_{\in \mathcal{D}^{p-k}(I,\mathbb{R}) \text{ donc dérivable car}} \times \underbrace{g^{(n-k)}}_{\substack{\in \mathcal{D}^{p-n+k}(I,\mathbb{R}) \text{ donc dérivable car} \\ k \leqslant n \leqslant p-1 \implies p-k \geqslant 1}} \times \underbrace{g^{(n-k)}}_{\substack{\in \mathcal{D}^{p-n+k}(I,\mathbb{R}) \text{ donc dérivable car} \\ 0 \leqslant k \leqslant n \leqslant p-1 \implies p-n+k \geqslant 1}}$$

donc $(f \times g)^{(n)} \in \mathcal{D}^1(I,\mathbb{R})$ en tant que combinaison linéaire de fonctions dérivables.

— Sachant que $(f \times g)^{(n)}$ est dérivable sur I,

$$(f \times g)^{(n+1)} = \left(\sum_{k=0}^{n} \binom{n}{k} f^{(k)} g^{(n-k)}\right)' \quad \text{en utilisant } \mathcal{P}(n)$$

$$= \sum_{k=0}^{n} \binom{n}{k} \left(f^{(k)} g^{(n-k)}\right)' \quad \text{par linéarité de la dérivation}$$

$$= \sum_{k=0}^{n} \binom{n}{k} \left[f^{(k+1)} \times g^{(n-k)} + f^{(k)} \times g^{(n-k+1)}\right] \quad \text{par dérivation d'un produit}$$

$$= \sum_{k=0}^{n} \binom{n}{k} f^{(k+1)} \times g^{(n-k)} + \sum_{k=0}^{n} \binom{n}{k} f^{(k)} \times g^{(n-k+1)}$$

$$= \sum_{k=0}^{n+1} \binom{n}{k} f^{(k+1)} \times g^{(n-k)} + \sum_{k=0}^{n} \binom{n}{k} f^{(k)} \times g^{(n-k+1)} \quad \text{en posant } j = k+1$$

$$= \binom{n}{n} f^{(n+1)} \times g^{(0)} + \sum_{j=1}^{n} \left(\binom{n}{j-1} + \binom{n}{j}\right) f^{(j)} \times g^{(n+1-j)} + \binom{n}{0} f^{(0)} \times g^{(n+1)}$$

$$= \binom{n+1}{n+1} f^{(n+1)} \times g^{(0)} + \sum_{j=1}^{n} \binom{n+1}{j} f^{(j)} \times g^{(n+1-j)} + \binom{n+1}{0} f^{(0)} \times g^{(n+1)} \quad \text{(Pascal part of the part$$

ce qui montre $\mathcal{P}(n+1)$.

Par conséquent, le théorème de récurrence permet de conclure que $\mathcal{P}(p)$ est vraie, ce qui constitue le résultat à prouver.

2 Expression de dérivées successives

Démonstration. Considérons l'application

$$f: \begin{array}{ccc} \mathbb{R}_+^* & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \frac{\ln x}{x} \end{array}$$

Soit $x \in \mathcal{D}_f$. Considérons le prédicat $P(\cdot)$ définit pour $n \in \mathbb{N}$ par :

$$P(n): \ll f^{(n)}(x) = \frac{(-1)^n n!}{x^{n+1}} \left[\ln(x) - \sum_{k=1}^n \frac{1}{k} \right] \gg$$

* Initialisation : Pour n = 0,

$$f^{(0)}(x) = f(x) = \frac{\ln(x)}{x} = \frac{(-1)^0 0!}{x^{0+1}} \left[\ln(x) - \sum_{k=1}^0 \frac{1}{k} \right],$$

donc P(0) est vrai.

* Hérédité : Soit $n \in \mathbb{N}$ tel que P(n) est vraie. On a,

$$f^{(n+1)}(x) = (f^{(n)}(x))' = \left(\frac{(-1)^n n!}{x^{n+1}} \left[\ln(x) - \sum_{k=1}^n \frac{1}{k} \right] \right)'$$

par véracité de P(n). Ainsi,

$$f^{(n+1)}(x) = \frac{(-1)^n n! x^n - (-1)^n (n+1)! x^n \left[\ln(x) - \sum_{k=1}^n \frac{1}{k}\right]}{x^{2(n+1)}}$$

$$= \frac{(-1)^{n+1} (n+1)! \ln(x) - (-1)^{n+1} (n+1)! \sum_{k=1}^{n+1} \frac{1}{k}}{x^{n+2}}$$

$$= \frac{(-1)^{n+1} (n+1)!}{x^{n+2}} \left[\ln(x) - \sum_{k=1}^{n+1} \frac{1}{k}\right]$$

c'est l'expression recherchée, donc P(n+1) est vraie.

Ainsi, par théorème de récurrence sur \mathbb{N} , P(n) est vraie pour tout $n \in \mathbb{N}$.

3 Dérivée d'une bijection réciproque

Soit $f: I \to f(I) \subset \mathbb{R}$ continue, strictement monotone sur I et dérivable en $a \in I$. Si $f'(a) \neq 0$ alors f est bijective, f^{-1} est dérivable en f(a) et $f^{-1}(f(a)) = \frac{1}{f'(a)}$.

Démonstration. Soient de tels objets.

Par définition, f est surjective. Comme elle est strictement monotone, f est injective. Ainsi f est bijective.

Soit $g: J \to \mathbb{R}$ monotone (où J est un intervalle). Nous avons l'équivalence suivante :

$$g(J)$$
 est un intervalle \iff g est continue sur J

Ainsi, f(I) est un intervalle. De plus, nous avons $f^{-1}: f(I) \to I$ avec f(I) et I des intervalles donc f^{-1} est continue sur f(I).

Calculons la limite du taux d'accroissement de f^{-1} en f(a):

$$\forall x \in f(I), \tau_{f^{-1}, f(a)} = \frac{f^{-1}(x) - f^{-1}(f(a))}{x - f(a)}$$

Posons $u = f^{-1}(x)$. D'où :

$$\tau_{f^{-1},f(a)} = \frac{u-a}{f(u) - f(a)}$$

De plus, par continuité de f^{-1} , $u \xrightarrow[x \to f(a)]{} f^{-1}(f(a)) = a$.

Par dérivabilité en a et par continuité de $x \mapsto x^{-1}$ en $f(a) \neq 0$, $\frac{u-a}{f(u)-f(a)} \xrightarrow[u\to a]{} \frac{1}{f('(a))}$. Ainsi, f^{-1} est dérivable en f(a) et $f^{-1}(f(a)) = \frac{1}{f'(a)}$.

4 Dérivée d'un extremum local intérieur au domaine de définition

Soit $f: I \to \mathbb{R}$. Si f admet un extremum local en $a \in \overset{\circ}{I}$ et si f est dérivable en a, alors f'(a) = 0.

Démonstration. Soient de tels objets.

$$a \in \overset{\circ}{I} \implies \exists \eta_1 \in \mathbb{R}_+^* : [a - \eta_1; a + \eta_1] \subset I$$

Fixons un tel η_1 . Calculons le taux d'accroissement en a.

$$\forall x \in [a - \eta_1; a + \eta_1], \tau_{f,a}(x) = \frac{f(x) - f(a)}{x - a}$$

Or f est dérivable en a donc $\tau_{f,a}(x)$ admet une limite lorsque $x \to a$. Traitons le cas où a est maximum local. Par définition :

$$\exists \eta_2 \in \mathbb{R}_+^* : \forall x \in [a - \eta_2; a + \eta_2], f(x) \leqslant f(a)$$

Fixons un tel η_2 . Soit $x \in [a - \eta_2; a + \eta_2] \setminus \{a\}$ fixé quelconque. Alors $f(x) - f(a) \le 0$.

- Si x > a, x a > 0. Alors $\frac{f(x) f(a)}{x a} \le 0$. Donc $\lim_{x \to a} \tau_{f,a}(x) \le 0$.
- Sinon x < a, x a < 0. Alors $\frac{f(x) f(a)}{x a} \ge 0$. Donc $\lim_{x \to a} \tau_{f,a}(x) \ge 0$.

Ainsi $0 \leqslant \lim_{x \to a} \tau_{f,a}(x) \leqslant 0$. Donc f'(a) = 0.

5 Théorème de Rolle et formule des accroissements finis

Soient $(a,b) \in \mathbb{R}^2$ tels que a < b. Soit I le segment a,b. Soit $f: I \to \mathbb{R}$ continue sur ledit segment et dérivable sur l'ouvert associé.

- (i) Théroème de Rolle : Si f(a) = f(b), alors $\exists c \in \overset{\circ}{I}$ tel que f'(c) = 0
- (ii) Formule des accroissements finis :

$$\exists c \in \overset{\circ}{I} : f'(c) = \frac{f(b) - f(a)}{b - a}.$$

FIGURE 1 – Théorème de Rolle

FIGURE 2 – Formule des accroissements finis

Démonstration. Soient de tels objets.

• Prouvons (i), donc supposons f(a) = f(b). f est continue sur I donc par le théorème de Weierstraß, elle est bornée et atteint ses bornes sur ce segment :

$$\exists (x_m, x_M) \in I^2 : (f(x_m) = \min f(I)) \text{ et } (f(x_M) = \max f(I))$$

donc, si $(x_m, x_M) \in \{a, b\}^2$, alors,

$$\forall x \in I, \ f(a) = f(x_m) \leqslant f(x) \leqslant f(x_M) = f(a)$$

donc $\forall x \in I, f(x) = f(a)$ c'est-à-dire que f est constante et donc tous les points intermédiaires à I sont des c valides.

Sinon, $(x_m \notin \{a,b\})$ ou $(x_M \notin \{a,b\})$, quitte à prendre l'autre valeur, supposons que $x_M \notin \{a,b\}$, ainsi, $x_M \in \overset{\circ}{I}$ et $f(x_M)$ est un maximum global donc, f étant dérivable sur $\overset{\circ}{I}$ elle est dérivable en x_M donc $f'(x_M) = 0$, on pose $c = x_M$, ce qui conclut.

• Prouvons (ii). Posons

$$d: \begin{array}{ccc} I & \longmapsto & \mathbb{R} \\ x & \longmapsto & f(x) - \left(\frac{f(b) - f(a)}{b - a}(x - a) + f(a)\right) \end{array}$$

d est continue sur I et dérivable sur $\overset{\circ}{I}$ comme combinaison linéaire de telles fonctions. On a d(a)=0 et d(b)=0 donc d(a)=0=d(b). On peut alors appliquer le Théorème de Rolle pour $f\leftarrow d, a\leftarrow a$ et $b\leftarrow b$: il existe $c\in \overset{\circ}{I}$ tel que d'(c)=0, c'est le résultat.

6 Inégalité des accroissements finis

Soit $f \in \mathcal{C}^0(I,\mathbb{R}) \cap \mathcal{D}^1(\overset{\circ}{I},\mathbb{R})$ et $x_0 \in I$, posons $X_- =]-\infty; x_0]$ la demi-droite fermée en x_0 et vers $-\infty$, de même $X_+ = [x_0; +\infty[$ la demi-droite fermée en x_0 et vers $+\infty$.

(i)
$$\star$$
 Si $\exists m \in \mathbb{R} : \forall x \in \overset{\circ}{I}, m \leqslant f'(x), \text{ alors}, $\forall x \in I \cap X_+, f(x_0) + m(x - x_0) \leqslant f(x)$$

et

$$\forall x \in I \cap X_-, \ f(x) \leqslant f(x_0) + m(x - x_0)$$

* Si
$$\exists M \in \mathbb{R} : \forall x \in \overset{\circ}{I}, f'(x) \leqslant M, \text{ alors},$$

$$\forall x \in I \cap X_+, \ f(x) \leqslant f(x_0) + M(x - x_0)$$

et

$$\forall x \in I \cap X_-, \ f(x_0) + M(x - x_0) \leqslant f(x)$$

$$\star$$
 Si \exists $(m, M) \in \mathbb{R}^2$: $\forall x \in \overset{\circ}{I}$, $m \leqslant f'(x) \leqslant M$, alors,

$$\forall x \in I \cap X_+, \ f(x_0) + m(x - x_0) \le f(x) \le f(x_0) + M(x - x_0)$$

et

$$\forall x \in I \cap X_{-}, \ f(x_0) + M(x - x_0) \leq f(x) \leq f(x_0) + m(x - x_0)$$

(ii) Si $\exists M \in \mathbb{R} : \forall x \in \overset{\circ}{I}, |f'(x)| \leqslant M$, alors,

$$\forall (x,y) \in I^2, |f(y) - f(x)| \leqslant M|y - x|$$

Démonstration.

(i) Soit $x \in I$ et posons S le segment d'extrémités x et x_0 .

 \star Si $x \neq x_0$, f est continue sur S et dérivable sur S, la formule des accroissements finis donne alors l'existence d'un c appartenant à S tel que

$$f(x) - f(x_0) = (x - x_0)f'(c)$$

Si $x > x_0$, $x - x_0 > 0$, or $m \le f'(c) \le M$ donc

$$m(x - x_0) \le (x - x_0)f'(c) \le M(x - x_0)$$

si bien que

$$m(x - x_0) \leqslant f(x) - f(x_0) \leqslant M(x - x_0)$$

d'où

$$f(x_0) + m(x - x_0) \leqslant f(x) \leqslant f(x_0) + M(x - x_0).$$

Si $x < x_0$, il suffit de retourner l'inégalité lors de la première multiplication et (i) est prouvé.

(ii) Soit $y \in I$.

L'hypothèse $\forall x \in \overset{\circ}{I}$, $|f'(x)| \leq M$ équivaut à $\forall x \in \overset{\circ}{I}$, $-M \leq f'(x) \leq M$, donc on peut appliquer (i) pour $x_0 \leftarrow y$, $M \leftarrow M$ et $m \leftarrow -M$:

$$\forall x \in I \cap [y, +\infty[, f(y) - M(x - y) \leqslant f(x) \leqslant f(y) + M(x - y)$$

Or x - y > 0 donc $|f(x) - f(y)| \le M|x - y|$. Et

$$\forall x \in I \cap]-\infty, y], \ f(y) + M(x-y) \leqslant f(x) \leqslant f(y) - M(x-y)$$

Or x - y < 0 donc $|f(x) - f(y)| \le M|x - y|$.

Par conséquent, $\forall (x,y) \in I^2$, $|f(y) - f(x)| \leq M|y - x|$.

FIGURE 3 – Interprétation géométrique des accroissements finis

Caractère lipschitzien d'une fonction C^1 sur un segment

Soit $f \in \mathcal{C}^1(I,\mathbb{R})$, I le segment a,b. Alors f est $||f'||_{\infty,I}$ -lipschitzienne sur I.

Démonstration. Soient de tels objets.

- $\star f \in \mathcal{C}^1(I,\mathbb{R}) \text{ donc } f \in \mathcal{C}^0(I,\mathbb{R}).$
- * $f \in \mathcal{C}^1(I,\mathbb{R})$ donc $f \in \mathcal{D}^1(\overset{\circ}{I},\mathbb{R})$. * $f \in \mathcal{C}^1(I,\mathbb{R})$ donc f' est continue sur I donc le réel $||f'||_{\infty,I}$ est bien défini et

$$\forall x \in \overset{\circ}{I}, |f'(x)| \leqslant ||f'||_{\infty,I}.$$

Ces propriétés permettent d'appliquer le corollaire du TAF qui conclut que f est $||f'||_{\infty,I}$ -lipschitzienne.

Théorème du prolongement de la propriété de la dériva-8 bilité

Soit $f \in \mathcal{F}(I, \mathbb{R})$ et $a \in I$.

$$\begin{array}{c} \textit{Lemme}: \\ \textit{f} \text{ est d\'erivable sur } I \backslash \{a\} \\ \textit{f} \text{ est continue en } a \\ \textit{f'}_{|I \backslash \{a\}} \text{ admet une limite } \ell \in \overline{\mathbb{R}} \text{ en } a \end{array}, \text{ alors } \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \ell$$

$$Th\acute{e}or\grave{e}me:$$

$$Th\acute{e}or\grave{e}me: \\ Si \left\{ \begin{array}{c} f \text{ est d\'erivable sur } I \backslash \{a\} \\ f \text{ est continue en } a \\ f'_{|I \backslash \{a\}} \text{ admet une limite finie } \ell \in \mathbb{R} \text{ en } a \end{array} \right., \\ \text{alors} \left\{ \begin{array}{c} f \text{ est d\'erivable en } a \\ f'(a) = \ell \text{ (donc } f' \text{ est continue en } a) \end{array} \right.$$

Démonstration. Prouvons le lemme pour $\ell \in \mathbb{R}$, c'est le cas qui nous intéresse. Soient de tels objets. Soit $\varepsilon \in \mathbb{R}_+^*$. Appliquons la définition de $\lim_{x \to a \atop x \neq a} f'_{|I \setminus \{a\}}(x) = \ell$ pour $\varepsilon \leftarrow \varepsilon$:

$$\exists \ \eta \in \mathbb{R}_+^* \ : \ \forall x \in I \setminus \{a\}, \ |x - a| \leqslant \eta \ \implies \ |f'_{|I \setminus \{a\}}(x) - \ell| \leqslant \varepsilon.$$

Fixons un tel η .

Soit $x \in I \setminus \{a\}$ tel que $|x - a| \leq \eta$.

La fonction f est continue sur I donc f est continue sur le segment d'extrémités a et x qui est par ailleurs inclus dans I par convexité d'un intervalle.

La fonction f est dérivable sur I donc f est dérivable sur l'intervalle ouvert a, x qui est aussi inclus

dans $\stackrel{\circ}{I}$ par convexité.

L'égalité des accroissements finis s'applique à f sur l'intervalle a et x:

$$\exists c_x \in]a, x[\cup]x, a[: \frac{f(x) - f(a)}{x - a} = f'(c_x)$$

Or $|c_x - a| \le |x - a| \le \eta$ donc ladite définition de la limite s'applique pour $x \leftarrow c_x : |f'(c_x) - \ell| \le \varepsilon$ si bien que

$$\left|\frac{f(x) - f(a)}{x - a} - \ell\right| \leqslant \varepsilon.$$

D'où le lemme.

Prouvons alors le théorème.

Sous ces hypothèses, le lemme s'applique donc $\lim_{x\to a} \frac{f(x)-f(a)}{x-a} = \ell$, or $\ell \in \mathbb{R}$, donc le taux d'accroissement de f en a admet une limite finie en a ce qui prouve la dérivabilité de f en a et $f'(a) = \ell$. Ce qui suffit.

9 La fonction ζ (pas celle-là une autre) est de classe \mathcal{C}^{∞} sur \mathbb{R}

Posons

$$\zeta: \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} \\ \zeta: & & \longmapsto & \left\{ \begin{array}{ccc} 0 & \text{si } x \leqslant 0 \\ \mathrm{e}^{-\frac{1}{x}} & \text{si } x > 0 \end{array} \right.$$

Montrons que $\zeta \in \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R})$.

 $D\'{e}monstration.$

- $\star \ \zeta_{]-\infty;0[} \ est \ constante \ donc \ \zeta \in \mathcal{C}^{\infty}(]-\infty;0[,\mathbb{R}).$
- * $x \mapsto -\frac{1}{x} \in \mathcal{C}^{\infty}(]0; +\infty[,] -\infty; 0[)$ et $\exp \in \mathcal{C}^{\infty}(]-\infty; 0[,\mathbb{R})$ donc, par stabilité de \mathcal{C}^{∞} par composition, $\zeta \in \mathcal{C}^{\infty}(]0; +\infty[,\mathbb{R})$.

Considérons le prédicat $\mathcal{P}(\cdot)$ défini pour tout $n \in \mathbb{N}$:

$$\mathcal{P}: \text{``} \exists P_n \in \mathbb{R}[x]: \forall x \in \mathbb{R}^*, \ \zeta^{(n)} = \left\{ \begin{array}{ll} 0 & \text{si } x < 0 \\ \frac{P_n(x)}{r^{2n}} e^{-\frac{1}{x}} & \text{si } x > 0 \end{array} \right. , \tag{1}$$

- $\star \mathcal{P}(0)$ est vrai par définition de ζ en posant $P_0(x) = 1$
- \star Soit $n\in\mathbb{N}^*$ fixé quel conque tel que $\mathcal P$ est vrai. D'une part, $\forall x\in]-\infty;0[,\zeta^{(n)}(x)=0$ donc

$$\forall x \in]-\infty; 0[, \zeta^{(n+1)}(x) = 0$$

D'autre part, $\forall x \in]0; +\infty[, \zeta^{(n)}(x) = \frac{P_n(x)}{x^{2n}} e^{-\frac{1}{x}}$ ce qui est un produit de trois expressions dérivables. D'où :

$$\forall x \in]-\infty; 0[, \zeta^{(n+1)}(x) = \left(P'_n(x)\frac{1}{x^{2n}} + P_n(x)\frac{-2n}{x^{2n+1}} + \frac{P_n(x)}{x^{2n}}\frac{1}{x^2}\right) e^{-\frac{1}{x}}$$

$$= \frac{x^2 P'_n(x) - 2nx P_n(x) + P_n(x)}{x^{2(n+1)}} e^{-\frac{1}{x}}$$

Si bien qu'en posant $P_{n+1}(x) = x^2 P_n'(x) - 2nx P_n(x) + P_n(x) \in \mathbb{R}[x]$, on obtient :

$$\forall x \in]0; +\infty[, \zeta^{(n+1)}(x) = \frac{P_{n+1}(x)}{x^{2(n+1)}} e^{-\frac{1}{x}}$$

Par conséquent, $\mathcal{P}(x)$ est vrai.

Appliquons maintenant le théorème de prolongement du caractère \mathcal{C}^{∞} .

- * Nous avons montré que $\zeta \in \mathcal{C}^{\infty}(\mathbb{R} \setminus \{0\}, \mathbb{R})$.
- \star Calculons les limites à gauche et à droite de 0. Soit $k \in \mathbb{N}$ fixé quelconque.

$$\star\star\ \zeta^{(k)} \text{ est nulle sur }]-\infty; 0[,\ \zeta^{(k)} \ \xrightarrow[x\to 0^-]{} \ 0.$$

** De plus,
$$\exists P_n \in \mathbb{R}[x] : \forall x \in]0; +\infty[, \zeta^{(k)}(x) = \frac{P_k(x)}{x^{2k}} e^{-\frac{1}{x}}$$
. Posons $u = \frac{1}{x}$, ainsi $\zeta^{(k)}(x) = u^{2k} P_k(\frac{1}{u}) e^{-\frac{1}{x}}$ et $u \xrightarrow[x \to 0^+]{} +\infty$.

Le théorème des croissances comparées donne $u^{2k}P_k(\frac{1}{u})\mathrm{e}^{-u} \xrightarrow[u \to +\infty]{} 0$ donc $\zeta^{(k)}(x) \xrightarrow[x \to 0^+]{} 0$.

Donc $\zeta \in \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R})$.