2016

Theory of Computation

Kun-Ta Chuang
Department of Computer Science and Information Engineering
National Cheng Kung University

Outline

Specifying Language

How do we specify languages?

If language is finite, you can list all of its strings.

```
-L = \{a, aa, aba, aca\}
```

Descriptive:

```
- L = \{x \mid n_a(x) = n_b(x)\}
```

Using basic Language operations

```
- L= \{aa, ab\}^* \cup \{b\}\{bb\}^*
```

Regular languages are described using the last method

Regular Expressions

Regular expressions describe regular languages and the notation involves a combination of:

- Strings of symbols from some alphabet Σ
- Parentheses ()
- Operators +, ·, *

Regular Expressions

Important thing to remember

- A regular expression is not a language
- A regular expression is used to describe a language.
- It is incorrect to say that for a language L,
 L = (a + b + c)*
- But it's okay to say that L is described by (a + b + c)*

Regular Expressions

All finite languages can be described by regular expressions

Example:
$$(a+b\cdot c)* \longleftrightarrow \{\{a\} \cup \{bc\}\}^*$$

describes the language

$${a,bc}^* = {\lambda,a,bc,aa,abc,bca,...}$$

Definition 3.1

Let Σ be a given alphabet. Then

- 1. ϕ , λ , and a ϵ Σ are all regular expressions. These are called primitive regular expressions.
- 2. If r_1 and r_2 are regular expressions, so are r_1+r_2 , $r_1\cdot r_2$, r_1^* and (r_1) .
- 3. A string is a regular expression *iff* it can be derived from the primitive regular expressions by a finite number of applications of the rules in (2).

A regular expression: $(a+b\cdot c)*\cdot(c+\varnothing)$

Not a regular expression: (a + b +)

aⁿ

a⁺

Languages of Regular Expressions

L(r): language of regular expression r

Example

$$L((a+b\cdot c)^*) = \{\lambda, a, bc, aa, abc, bca, \ldots\}$$

Definition 3.2

For primitive regular expressions:

$$L(\varnothing) = \varnothing \tag{1}$$

$$L(\lambda) = \{\lambda\} \tag{2}$$

$$L(a) = \{a\} \tag{3}$$

Definition (continued)

For regular expressions r_1 and r_2

$$L(r_1 + r_2) = L(r_1) \cup L(r_2)$$
 (4)

$$L(r_1 \cdot r_2) = L(r_1) L(r_2)$$
 (5)

$$L(r_1 *) = (L(r_1))*$$
 (6)

$$L((r_1)) = L(r_1) \tag{7}$$

Regular expression: $(a+b)\cdot a^*$

$$L((a+b) \cdot a^*) = L((a+b)) L(a^*)$$

$$= L(a+b) L(a^*)$$

$$= (L(a) \cup L(b)) (L(a))^*$$

$$= (\{a\} \cup \{b\}) (\{a\})^*$$

$$= \{a,b\} \{\lambda,a,aa,aaa,...\}$$

$$= \{a,aa,aaa,...,b,ba,baa,...\}$$

Priority of Operators

• Regular expression: $r = a \cdot b + c$ $r_1 = a \cdot b$ $r_2 = c$ or $r_1 = a$ $r_2 = b + c$ $L(r) = \{ab, c\} \neq \{ab, ac\}$

 Star closure (*) precedes concatenation (·) precedes union (+)

$$\Sigma = \{a,b\}$$

• Regular expression $r = (a+b)^*(a+bb)$

Stands for any string of a's and b's

$$L(r) = \{a,bb,aa,abb,ba,bbb,...\}$$

L(r) is the set of all strings on {a,b}, terminated by either an a or a bb

• Regular expression r = (aa)*(bb)*b

$$L(r) = \{a^{2n}b^{2m+1}: n, m \ge 0\}$$

L(r) is the set of all strings with an even number of a's followed by an odd number of b's

• For $\Sigma = \{0, 1\}$, give a regular expression r such that

L(r) = { w $\in \Sigma^*$: w has at least one pair of consecutive 0 }

00

L(r) = { all strings with no pairs of consecutive 0s }

Regular expression

$$r = (1+01)*(0+\lambda)$$

There are an unlimited number of REs for any given language!

Equivalent Regular Expressions

Definition:

Regular expressions r_1 and r_2

are equivalent if $L(r_1) = L(r_2)$

Example

L = { all strings without two consecutive 0 }

$$r_1 = (1+01)*(0+\lambda)$$

$$r_2 = (1*011*)*(0+\lambda)+1*(0+\lambda)$$

$$L(r_1) = L(r_2) = L$$

 r_1 and r_2 are equivalent regular expressions

- L₁ = {a, aa, aba, aca}
- $L_1 = \{a\} \cup \{aa\} \cup \{aba\} \cup \{aca\}$
- Regular expression describing L₁:
 (a + aa + aba + aca)

- $L_2 = \{x \in \{0,1\}^* \mid |x| \text{ is even}\}$
- $L_2 = \{00, 01, 10, 11\}^*$
- Regular expressions describing L₂:

$$(00 + 01 + 10 + 11)^*$$

 $((0 + 1)(0 + 1))^*$

- L₃ = {x ∈ {0,1}* | x does not end in 01 }
 If x does not end in 01, then either
 x ends in 00, 10, or 11
- A regular expression that describes L₃ is:
 - \bigcirc (0 + 1)*(00 + 10 + 11)

- L₄ = {x ∈ {0,1}* | x contains an odd number of 0s }
 Express x = yz
 y is a string of the form y=1ⁱ01^j
 In z, there must be an even number of 0's
 z = (01^k01^m)*
- A regular expression that describes L₄ is:
 (1*01*)(01*01*)*

Short Quiz

- Give regular expressions for the following language on Σ= {a, b, c}.
 - All strings containing exactly one a

$$r = (b+c)*a(b+c)*$$

Outline

Theorem

 Languages

 Described by

 Regular Expressions

Regular

Languages

For every regular language there is a regular expression For every regular expression there is a regular language

Kleene Theorem:

Regular expressions and Finite Automata are equivalent (w.r.t. the languages they describe/accept)

Theorem - Part 1

1. For any regular expression r the language L(r) is regular

■Theorem 3.1

Theorem - Part 2

2. For any regular language L there is a regular expression r with L(r) = L

■Theorem 3.2

1. For any regular expression r the language L(r) is regular

If we have any regular expression r, we can construct an NFA(DFA) that accepts L(r)

Proof by induction on the size of *r*

Induction Basis

• Primitive Regular Expressions: \emptyset , λ , α

$$L(M_1) = \emptyset = L(\emptyset)$$

$$L(M_2) = \{\lambda\} = L(\lambda)$$

regular languages

$$L(M_3) = \{a\} = L(a)$$

Inductive Hypothesis

Assume for regular expressions r_1 and r_2 that $L(r_1)$ and $L(r_2)$ are regular languages

Inductive Step

∴ REs are derived from these four rules:

$$L(r_1+r_2)$$

$$L(r_1 \cdot r_2)$$

We will prove:

$$L(r_1 *)$$

$$L((r_1))$$

Are regular Languages

By definition of regular expressions:

$$L(r_1 + r_2) = L(r_1) \cup L(r_2)$$

$$L(r_1 \cdot r_2) = L(r_1) L(r_2)$$

$$L(r_1 *) = (L(r_1))*$$

$$L((r_1)) = L(r_1)$$

Schematic representation of an NFA (M(r)) accepting L(r)

We can claim that for every NFA there is only one final state (by exercise 7, section 2.3)

Union

• NFA for $L(r_1 + r_2)$

Concatenation

• NFA for $L(r_1r_2)$

Star Operation

• NFA for $L(r^*)$

By inductive hypothesis we know:

$$L(r_1)$$
 and $L(r_2)$ are regular languages

We also know:

Regular languages are closed under:

Union
$$L(r_1) \cup L(r_2)$$

Concatenation $L(r_1) L(r_2)$
Star $(L(r_1))^*$

Therefore:

$$L(r_1 + r_2) = L(r_1) \cup L(r_2)$$

$$L(r_1 \cdot r_2) = L(r_1) L(r_2)$$

$$L(r_1 *) = (L(r_1))*$$

Are regular languages

And trivially:

 $L((r_1))$ is a regular language

 \therefore For any regular expression r the language L(r) is regular

Example 3.7

Find an NFA that accepts L(r), where

$$r = (a+bb)*(ba*+\lambda)$$

2. For any regular language L there is a regular expression r with L(r) = L

Since any regular language has an associated NFA and hence a transition graph,

all we need to do is to find a regular expression capable of generating the labels of all the walks from q_0 to any final state.

Proof by construction of regular expression

Generalized Transition Graphs (GTG)

From *M* construct the equivalent

Generalized Transition Graph

in which transition labels are regular expressions

GTG may have many states Enumerating all walks is time-consuming

Reducing the states:

Ex. reduce q₁

Simple two-state GTG

Resulting Regular Expression:

$$r = (bb * a) * bb * (a + b)b *$$

$$L(r) = L(M) = L$$

Complete GTG

- If a GTG, after conversion from an NFA, has some edges missing, we put them in and label them with φ
- ■A complete GTG with |V| vertices has exactly |V|² edges

Example 3.9

RE?

$$r = r_1 r_2 (r_4 + r_3 r_1 r_2)^*$$

How about a GTG with more than two states?

We can find an equivalent graph by removing one state at a time

Example 3.10

To remove q_2 , we create edges as follows: \mathcal{C} $\overrightarrow{q_1}\overrightarrow{q_1} \rightarrow$ $\overrightarrow{q_1q_3} \rightarrow$ q_3 q_1 $\overrightarrow{q_3}\overrightarrow{q_1}$ \rightarrow $\overrightarrow{q_3q_3} \rightarrow$ $e + af^*b$ g + df *c q_2 $i + df^*b$ q_1 $r = r_1 r_2 (r_4 + r_3 r_1 r_2)^*$ $(e + af^*b)^*(h + af^*c)((g + df^*c) + (i + df^*b)(e + af^*b)^*(h + af^*c))^*$ h + af *c

$NFA \rightarrow RE$

- 1. Convert the NFA (with single final state) into a complete GTG. Let r_{ii} stand for the label of the edge from q_i to q_i .
 - 2. If the GTG has only two states with $q_i \in q_0$ and $q_i \in F$, as its associated RE is:

$$r = r_{ii}^* r_{ij} (r_{jj} + r_{ji} r_{ii}^* r_{ij})^*$$

3. If the GTG has three states with $q_i \in q_0$, $q_i \in F$, and $q_k \in Q$, introduce new edges, labeled:

$$r_{pq} + r_{pk}r_{kk}r_{kq}$$

for p = i, j, q = i, j. When this is done, remove vertex q_k and its associated edges.

$NFA \rightarrow RE$

4. If the GTG has four or more states, pick a state q_k to be removed. Apply rule 3 for all pairs of states (q_i, q_j) , $i \neq k$, $j \neq k$. At each step apply the simplifying rules

$$r + \varphi = r$$
, $r \cdot \varphi = \varphi$, $\varphi^* = \lambda$

wherever possible. When this is done, remove state q_k .

5. Repeat step 2 to 4 until the correct RE is obtained.

Example 3.11

Find a RE for the language

 $L = \{w \in \{a,b\}^* : n_a(w) \text{ is even and } n_b(w) \text{ is odd}\}.$

Example 3.11

 $L = \{w \in \{a,b\}^* : n_a(w) \text{ is even and } n_b(w) \text{ is odd}\}.$

Outline

Grammar Recap

 \bigcirc

A grammar G is defined as a 4-tuple:

$$G = (V, T, S, P)$$

where

- V is a finite set of variables
- T is a finite set of terminals
- S ∈ V, called start variable
- P is a finite set of production rules

Grammar Recap

Let G = (V, T, S, P) be a grammar. Then the set
 L(G) = {w ∈ T*: S ⇒ w}
 is the language generated by G

• If $w \in L(G)$, then the sequence

$$S \Rightarrow W_1 \Rightarrow W_2 \Rightarrow ... \Rightarrow W_n \Rightarrow W$$

is a derivation of the sentence w.

S, w₁, w₂, ..., w_n are called sentential forms

Linear Grammars

 \bigcirc

Grammars with at most one variable at the right side of a production

Examples:
$$S \rightarrow aSb$$

$$S \to \lambda$$

$$S \rightarrow Ab$$

$$A \rightarrow aAb$$

$$A \rightarrow \lambda$$

Another Linear Grammar

Grammar
$$G: S \to A$$

$$A \to aB \mid \lambda$$

$$B \to Ab$$

$$L(G) = \{a^n b^n : n \ge 0\}$$

A Non-Linear Grammar

Grammar
$$G$$
: $S \to SS$ $S \to \lambda$ $S \to aSb$ $S \to bSa$

$$L(G) = \{w: n_a(w) = n_b(w)\}$$

Number of a in string w

Right-Linear Grammars

• All productions have form: $A \rightarrow xB$

or
$$A \rightarrow x$$

• Example: $S \rightarrow abS$ $S \rightarrow a$

string of terminals

Left-Linear Grammars

• All productions have form: $A \rightarrow Bx$

or $A \rightarrow x$

• Example: $S \rightarrow Aab$

$$A \rightarrow Aab \mid B$$

$$B \rightarrow a$$

string of terminals

Regular Grammars

A regular grammar is either right-linear or left-linear grammar

Examples:

$$G_1 \bigcirc$$
 $S \rightarrow abS$
 $S \rightarrow a$

$$G_2 \bigcirc$$

$$S \rightarrow Aab$$

$$A \rightarrow Aab \mid B$$

$$B \rightarrow a$$

$$G_3$$

$$S \to A$$

$$A \to aB \mid \lambda$$

$$B \to Ab$$

Observation

Regular grammars generate regular languages

A regular grammar is always linear, but not all linear grammars are regular.

G₃ is linear grammar but not regular grammar

$$G_3$$
 $S \to A$
 $A \to aB \mid \lambda$
 $B \to Ab$

Example 3.13

Regular grammars generate regular languages

$$G_{2}$$
 G_{1}
 $S \rightarrow Aab$
 $S \rightarrow abS$
 $A \rightarrow Aab \mid B$
 $S \rightarrow a$

$$L(G_1) = (ab) * a \qquad L(G_2)$$

$$L(G_2) = aab(ab) *$$

Theorem

Languages
Generated by
Regular Grammars

Regular Grammars

Regular Grammars

Theorem - Part 1

Any regular grammar generates a regular language

■Theorem 3.3

Theorem - Part 2

{ Languages
Generated by
Regular Grammars } = { Regular
Languages }

Any regular language is generated by a regular grammar

■Theorem 3.4

Proof - Part 1

Languages
Generated by
Regular Grammars

Regular Languages

The language L(G) generated by any regular grammar G is regular

The case of Right-Linear Grammars

Let *G* be a right-linear grammar

We will prove: L(G) is regular

Proof idea: We will construct NFA M with L(M) = L(G)

Grammar G is right-linear

Example: $S \rightarrow aA \mid B$

$$S \rightarrow aA \mid B$$

$$A \rightarrow aa B$$

$$B \rightarrow b B \mid a$$

Construct NFA M such that every state is a grammar variable:

Add edges for each production:

 $S \rightarrow aA$

$$S \rightarrow aA \mid B$$

$$S \rightarrow aA \mid B$$
 $A \rightarrow aa \mid B$

 $S \Rightarrow aA \Rightarrow aaaB \Rightarrow aaabB \Rightarrow aaaba$

NFA M

Grammar

G

$$S \rightarrow aA \mid B$$

$$A \rightarrow aa B$$

$$B \rightarrow bB \mid a$$

$$L(M) = L(G) =$$

In General

A right-linear grammar G

has variables: V_0, V_1, V_2, \dots

and productions:
$$V_i \rightarrow a_1 a_2 \cdots a_m V_j$$

or

$$V_i \rightarrow a_1 a_2 \cdots a_m$$

We construct the NFA M such that:

each variable V_i corresponds to a node:

For each production: $V_i \rightarrow a_1 a_2 \cdots a_m V_j$

we add transitions and intermediate nodes

$$(V_i)$$
 a_1 a_2 a_2 a_m (V_j)

For each production: $V_i \rightarrow a_1 a_2 \cdots a_m$

we add transitions and intermediate nodes

Example 3.15

 Construct a FA that accepts the language generated by the grammar

The case of Left-Linear Grammars

Let G be a left-linear grammar

We will prove: L(G) is regular

Proof idea:

We will construct a right-linear grammar G' with $L(G) = L(G')^R$

Since G is left-linear grammar the productions look like:

$$A \rightarrow Ba_1a_2 \cdots a_k$$

$$A \rightarrow a_1 a_2 \cdots a_k$$

• Construct right-linear grammar G'

Left G linear

$$A \rightarrow Ba_1a_2 \cdots a_k$$

$$A \rightarrow Bv$$

Right
$$G'$$

$$A \rightarrow a_k \cdots a_2 a_1 B$$

$$A \rightarrow v^R B$$

• Construct right-linear grammar G'

Left linear $A \rightarrow a_1 a_2 \cdots a_k$ $A \rightarrow v$ Right linear G' $A \rightarrow a_k \cdots a_2 a_1$

It is easy to see that: $L(G) = L(G')^R$

Since G' is right-linear, we have:

$$L(G')$$
 \longrightarrow $L(G')^R$ Regular Regular Language Language

Proof - Part 2

{ Languages
Generated by
Regular Grammars } = { Regular
Languages}

Any regular language $\ L$ is generated by some regular grammar $\ G$

Any regular language L is generated by some regular grammar G

Proof idea:

Let M be the NFA with L = L(M)

Construct from M to a regular grammar G such that L(M) = L(G)

Since L is regular there is an NFA M such that L = L(M)

Convert M to a right-linear grammar (BFS-like)

$$L(G) = L(M) = L$$

G $q_0 \rightarrow aq_1$ $q_1 \rightarrow bq_1$ $q_1 \rightarrow aq_2$ $q_2 \rightarrow bq_3$ $q_3 \rightarrow q_1$ $q_3 \rightarrow \lambda$

In General

For any transition:

For any final state:

$$(q_f)$$

Add production:

$$q_f \rightarrow \hat{\lambda}$$

Since G is right-linear grammar

G is also a regular grammar

with
$$L(G) = L(M) = L$$

Summary

 We now have several ways of describing regular languages:

Short Quiz

 Find a regular grammar that generates the language L(aa*(ab+a)*).

$$S_1 \to aS_2$$

$$S_2 \to aS_2 \mid abS_2 \mid \lambda$$

Questions?