컴퓨터과학기초

^{6주차} 불 대수, 논리식의 간소화

인하공업전문대학 컴퓨터정보과

이수정 교수

차례

Ch.5 불 대수

- 5. 불 대수식의 표현 형태
- 6. 불 대수 법칙을 이용한 논리식의 간소화

1) 곱의 합과 최소항

- -곱의 합(Sum of Product, SOP)
 - •SOP의 구성은 1 단계는 AND항(곱의 항, product term)으로 구성되고, 2 단계는 OR항(합의 항, sum term)으로 만들어진 논리식

■ 최소항(Minterm)

- 최소항: 표준 곱의 항
- 표준 곱의 항이란 함수에 모든 변수를 포함하고 있음
- 예: 4변수 A, B, C, D일 때:

최소항의 예 \overline{ABCD} ABCD

곱의 합(SOP) $F = \bar{A}BC\bar{D} + A\bar{B}\bar{C}\bar{D} + A\bar{B}CD + ABCD \leftarrow \text{minterm}$ $F = B + \bar{A}C + AB\bar{C}D$ $F = \bar{A} + B + C$ $F = A\bar{C}$ non minterm

■ 진리표로부터 최소항식을 표현하는 방법

입	력	출력
A	В	F
0	0	0
0	1	1
1	0	1
1	1	1

(A=0 AND B=1) OR (A=1 AND B=0) OR (A=1 AND B=1) 일 때, F=1이다. 또는

$$(\overline{A} = 1 \text{ AND } B = 1) \text{ OR } (A = 1 \text{ AND } \overline{B} = 1) \text{ OR } (A = 1 \text{ AND } B = 1) 일 때, F = 1 이다. 또는$$

$$AB = 1$$
 OR $AB = 1$ OR $AB = 1$ 일때, $F = 1$ 이다.

$$f = \overline{AB} + A\overline{B} + AB$$

■ 2변수 최소항의 표현 방법

\boldsymbol{A}	В	최소항	기호
0	0	$\overline{A}\overline{B}$	m_0
0	1	$\overline{\overline{A}}B$	m_1
1	0	$A\overline{B}$	m_2
1	1	AB	m_3

입	력	출력	
A	В	F	
0	0	0	m_0
0	1	1	m_1
1	0	1	m_2
1	1	1	m_3

$$F(A,B) = \overline{AB} + A\overline{B} + AB$$
$$= m_1 + m_2 + m_3$$
$$= \sum m(1, 2, 3)$$

■ 3변수 최소항의 표현 방법

A B C	최소항	기호
0 0 0	$\overline{A}\overline{B}\overline{C}$	m_0
0 0 1	$\overline{A}\overline{B}C$	m_1
0 1 0	$\overline{A}B\overline{C}$	m_2
0 1 1	$\overline{\overline{A}}BC$	m_3
1 0 0	$A\overline{B}\overline{C}$	m_4
1 0 1	$A\overline{B}C$	m_5
1 1 0	$AB\overline{C}$	m_6
1 1 1	ABC	m_7
	·	

■ 3변수 최소항의 표현 예

ABC	F	최소항	기호
000	1	$\overline{A}\overline{B}\overline{C}$	m_0
0 0 1	1	\overline{ABC}	m_1
010	0	$\overline{A}B\overline{C}$	m_2
0 1 1	1	$\overline{A}BC$	m_3
100	0	$A\overline{B}\overline{C}$	m_4
101	1	$A\overline{B}C$	m_5
110	0	$AB\overline{C}$	m_6
1 1 1	1	ABC	m_7

$$F(A,B,C) = \sum m(0,1,3,5,7)$$
$$= \overline{A}\overline{B}\overline{C} + \overline{A}\overline{B}C + \overline{A}BC + A\overline{B}C + ABC$$

$$\overline{F}(A,B,C) = \sum m(2,4,6)$$
$$= \overline{A}B\overline{C} + A\overline{B}\overline{C} + AB\overline{C}$$

$$F(A,B,C) = \sum m(0,1,3,5,7) = \overline{A}\overline{B}\overline{C} + \overline{A}\overline{B}C + \overline{A}BC + A\overline{B}C + ABC$$
$$= \overline{F} = \overline{\sum m(2,4,6)} = \overline{\overline{A}B\overline{C} + A\overline{B}\overline{C} + AB\overline{C}}$$

$$\overline{F}(A,B,C) = \sum m(2,4,6) = \overline{A}B\overline{C} + A\overline{B}\overline{C} + AB\overline{C}$$
$$= \overline{\sum m(0,1,3,5,7)} = \overline{\overline{A}B\overline{C} + \overline{A}BC + \overline{A}BC + ABC}$$

예제 5-3 다음 진리표를 이용하여 F와 \bar{F} 를 최소항식으로 나타내어라.

ABC	F	\overline{F}
0 0 0	0	1
0 0 1	1	0
0 1 0	1	0
0 1 1	1	0
1 0 0	1	0
1 0 1	1	0
1 1 0	0	1
1 1 1	0	1

풀이

$$F(A,B,C) = \sum m(1,2,3,4,5)$$

= $\overline{A}\overline{B}C + \overline{A}B\overline{C} + \overline{A}BC + A\overline{B}\overline{C} + A\overline{B}C$

$$\overline{F}(A, B, C) = \sum m(0, 6, 7)$$
$$= \overline{A}\overline{B}\overline{C} + AB\overline{C} + ABC$$

■ 4변수 최소항의 표현 방법

ABCD	최소항	기호	ABCD	최소항	기호
0000	$\overline{A}\overline{B}\overline{C}\overline{D}$	m_0	1000	$A\overline{B}\overline{C}\overline{D}$	m_8
0001	$ \overline{A}\overline{B}\overline{C}D $	m_1	1001	$A\overline{B}\overline{C}D$	m_9
0010	\overline{ABCD}	m_2	1010	$A\overline{B}C\overline{D}$	m_{10}
0011	\overline{ABCD}	m_3	1011	$A\overline{B}CD$	m_{11}
0100	$ \overline{A}B\overline{C}\overline{D} $	m_4	1100	$AB\overline{C}\overline{D}$	m_{12}
0101	$\overline{A}B\overline{C}D$	m_5	1101	$AB\overline{C}D$	m_{13}
0110	$\overline{A}BC\overline{D}$	m_6	1110	$ABC\overline{D}$	m_{14}
0111	$\overline{A}BCD$	m_7	1111	ABCD	m_{15}

$$F(A, B, C, D) = \sum m(0, 1, 5, 9, 11, 15)$$

$$F = \overline{A}\overline{B}\overline{C}\overline{D} + \overline{A}\overline{B}\overline{C}D + \overline{A}B\overline{C}D + A\overline{B}\overline{C}D + A\overline{B}CD + ABCD$$

2) 합의 곱과 최대항

- 합의 곱 구성 : 1 단계는 OR항(합의 항, sum term)으로 구성되고, 2 단계는 AND항(곱의 항, product term)으로 만들어진 논리식.
- 모든 변수를 포함하는 OR항을 맥스텀(maxterm) 또는 최대항이라 한다.
- 예: 4변수 *A*, *B*, *C*, *D*일 때

■최대항 표현 방법

AB	최대항	기호
0 0	A + B	M_0
0 1	$A + \overline{B}$	M_1
10	$\overline{A} + B$	M_2
11	$\overline{A} + \overline{B}$	M_3

<2변수인 경우>

ABC	최대항	기호
000	A+B+C	M_0
001	$A+B+\overline{C}$	M_{1}
010	$A + \overline{B} + C$	M_2
0 1 1	$A + \overline{B} + \overline{C}$	M_3
100	$\overline{A} + B + C$	M_4
101	$\overline{A} + B + \overline{C}$	M_{5}
110	$\overline{A} + \overline{B} + C$	M_{6}
111	$\overline{A} + \overline{B} + \overline{C}$	M_{7}
1 0 0 1 0 1 1 1 0	$ \overline{A} + B + C $ $ \overline{A} + B + \overline{C} $ $ \overline{A} + \overline{B} + C $ $ \overline{A} - \overline{B} + C $	M_4 M_5 M_6

<3변수인 경우>

ABCD	최대항	기호	ABCD	최대항	기호
0000	A+B+C+D	M_0	1000	$ \overline{A} + B + C + D $	M_8
0001	$A+B+C+\overline{D}$	M_1	1001	$ \overline{A} + B + C + \overline{D} $	M_9
0010	$A+B+\overline{C}+D$	M_2	1010	$ \overline{A} + B + \overline{C} + D $	M_{10}
0011	$A+B+\overline{C}+\overline{D}$	M_3	1011	$\left \overline{A} + B + \overline{C} + \overline{D} \right $	M_{11}
0100	$A + \overline{B} + C + D$	M_4	1100	$ \overline{A} + \overline{B} + C + D $	M_{12}
0101	$A + \overline{B} + C + \overline{D}$	M_5	1101	$ \overline{A} + \overline{B} + C + \overline{D} $	M_{13}
0110	$A + \overline{B} + \overline{C} + D$	M_6	1110	$\left \overline{A} + \overline{B} + \overline{C} + D \right $	M_{14}
0111	$A + \overline{B} + \overline{C} + \overline{D}$	M_7	1111	$\left \overline{A} + \overline{B} + \overline{C} + \overline{D} \right $	M_{15}

<4변수인 경우>

[Example]

$$F(A,B) = (A+B)(A+\overline{B})(\overline{A}+B)$$
$$= M_0 \cdot M_1 \cdot M_2$$
$$= \prod M(0,1,2)$$

입력	출력
A B	F
0 0	0
0 1	0
1 0	0
1 1	1

3) 최소항과 최대항의 관계

- 최소항은 출력이 1인 항을 SOP로 나타낸 것이고, 최대항은 출력이 0인 항을 POS로 나타낸 것이다.
- 최소항과 최대항은 상호 보수의 성질을 가진다.

ABC	F	$ar{F}$	최소항	기호	최대항	기호	관 계
0 0 0	0	1	$\overline{A}\overline{B}\overline{C}$	m_0	A+B+C	M_0	$M_0 = \overline{m_0}$
0 0 1	1	0	\overline{ABC}	m_1	$A+B+\overline{C}$	M_1	$M_1 = \overline{m_1}$
010	1	0	$\overline{A}B\overline{C}$	m_2	$A + \overline{B} + C$	M_2	$M_2 = \overline{m_2}$
011	1	0	$\overline{A}BC$	m_3	$A + \overline{B} + \overline{C}$	M_3	$M_3 = \overline{m_3}$
100	1	0	$A\overline{B}\overline{C}$	m_4	$\overline{A} + B + C$	M_4	$M_4 = \overline{m}_4$
1 0 1	1	0	$A\overline{B}C$	m_5	$\overline{A} + B + \overline{C}$	M_5	$M_5 = \overline{m}_5$
110	0	1	$AB\overline{C}$	m_6	$\overline{A} + \overline{B} + C$	M_6	$M_6 = m_6$
111	0	1	ABC	m_7	$\overline{A} + \overline{B} + \overline{C}$	M_7	$M_7 = \overline{m}_7$

$$F(A,B,C) = \sum m(1,2,3,4,5)$$

$$= \overline{ABC} + \overline{ABC} + \overline{ABC} + A\overline{BC} + A\overline{BC}$$

$$= \overline{\overline{ABC}} + \overline{\overline{ABC}} + \overline{\overline{ABC}} + A\overline{BC}$$

$$= \overline{\overline{ABC}} \cdot \overline{\overline{ABC}} \cdot \overline{\overline{ABC}} \cdot \overline{\overline{ABC}} \cdot \overline{\overline{ABC}}$$

$$= (A + B + \overline{C})(A + \overline{B} + C)(A + \overline{B} + \overline{C})(\overline{A} + B + C)(\overline{A} + B + \overline{C})$$

$$= \overline{\prod M(1,2,3,4,5)}$$

$$= \overline{\prod M(1,2,3,4,5)}$$

$$= \overline{\prod M(0,6,7)}$$

$$= \overline{\prod M(0,6,7)}$$

$$= \overline{\sum m(0,6,7)}$$

$$= \overline{\sum m(0,6,7)}$$

$$\overline{F}(A,B,C) = \sum m(0,6,7)$$

$$= \overline{A}\overline{B}\overline{C} + AB\overline{C} + ABC$$

$$= \overline{\overline{A}}\overline{B}\overline{\overline{C}} + \overline{AB}\overline{\overline{C}} + \overline{ABC}$$

$$= \overline{\overline{A}}\overline{B}\overline{\overline{C}} \cdot \overline{AB}\overline{\overline{C}} \cdot \overline{ABC}$$

$$= \overline{(A+B+C)(\overline{A}+\overline{B}+C)(\overline{A}+\overline{B}+\overline{C})}$$

$$= \overline{\prod M(0,6,7)}$$

$$\overline{F}(A,B,C) = \sum m(0,6,7) = \overline{\prod M(0,6,7)} = \prod M(1,2,3,4,5) = \overline{\sum m(1,2,3,4,5)}$$

■ 최소항식과 최대항식의 관계

- 최소항과 최대항을 표기할 때 보수가 된다.
- 최소항을 부정하면 최대항 형식이 되고, 최대항을 부정하면 최소항 형식이 된다.
- 일반적으로 최소항을 선호한다.

		필요한 형태							
		F의 최소항식	F의 최대항식	$ar{F}$ 의 최소항식	$ar{F}$ 의 최대항식				
주	$F = \Sigma m(1, 2, 3, 4, 5)$		ПМ(0, 6, 7)	$\Sigma m(0, 6, 7)$	$\Pi M(1, 2, 3, 4, 5)$				
어 진	$F = \Pi M(0, 1, 2)$	$\Sigma m(3, 4, 5, 6, 7)$		$\Sigma m(0, 1, 2)$	ПМ(3, 4, 5, 6, 7)				
형 태	$\bar{F} = \Sigma m(0, 2, 4, 6)$	$\Sigma m(1, 3, 5, 7)$	$\Pi M(0, 2, 4, 6)$		ПМ(1, 3, 5, 7)				
	$\bar{F} = \Pi M(0, 1, 6, 7)$	$\Sigma m(0, 1, 6, 7)$	ПМ(2, 3, 4, 5)	$\Sigma m(2, 3, 4, 5)$					

•(1)식을 간소화하는 과정

1)
$$\bar{A}B\bar{C} + \bar{A}BC + A\bar{B}\bar{C} + A\bar{B}C + ABC$$

- $\overline{A}B + A\overline{B} + ABC$
- $\overline{A}B + A\overline{B} + AC$
- 4) $\overline{A}B + A\overline{B} + BC$

$$\overline{A}B\overline{C} + \overline{A}BC + A\overline{B}C + A\overline{B}C + ABC = (\overline{A}B\overline{C} + \overline{A}BC) + (A\overline{B}\overline{C} + A\overline{B}C) + ABC$$

$$= \overline{A}B(\overline{C} + C) + A\overline{B}(\overline{C} + C) + ABC$$

$$= \overline{A}B \cdot 1 + A\overline{B} \cdot 1 + ABC$$

$$= \overline{A}B + A\overline{B} + ABC$$

• (1)식을 간소화하는 과정

 $\overline{ABC} + \overline{ABC} + A\overline{BC} + A\overline{BC} + A\overline{BC} + A\overline{BC}$ $= (\overline{ABC} + \overline{ABC}) + (A\overline{BC} + A\overline{BC}) + (ABC + A\overline{BC})$ $= \overline{AB(C} + C) + A\overline{B(C} + C) + AC(B + \overline{B})$

$$= \overline{A}B \cdot 1 + A\overline{B} \cdot 1 + AC \cdot 1$$

$$= \overline{A}B + A\overline{B} + AC$$

동일한 항 추가

$$\overline{A}B\overline{C} + \overline{A}BC + A\overline{B}C + A\overline{B}C + ABC + \overline{A}BC$$

$$= (\overline{A}B\overline{C} + \overline{A}BC) + (A\overline{B}\overline{C} + A\overline{B}C) + (ABC + \overline{A}BC)$$

$$= \overline{A}B(\overline{C} + C) + A\overline{B}(\overline{C} + C) + BC(A + \overline{A})$$

$$= \overline{A}B \cdot 1 + A\overline{B} \cdot 1 + BC \cdot 1$$

$$= \overline{A}B + A\overline{B} + BC$$

*X+X=X*를 이용

• (2)식을 간소화하는 과정

1)
$$\bar{A}B\bar{C} + \bar{A}BC + A\bar{B}\bar{C} + A\bar{B}C + ABC$$

$$\overline{A}B + A\overline{B} + ABC$$

$$\overline{A}B + A\overline{B} + AC$$

4)
$$\overline{A}B + A\overline{B} + BC$$

$$A(\overline{A} + B) = A\overline{A} + AB = 0 + AB = AB$$

$$A + \overline{A}B = (A + \overline{A})(A + B) = 1 \cdot (A + B) = A + B$$

$$\overline{A}B + A\overline{B} + ABC = \overline{A}B + A(\overline{B} + BC) = \overline{A}B + A(\overline{B} + B)(\overline{B} + C)$$

= $\overline{A}B + A \cdot 1 \cdot (\overline{B} + C) = \overline{A}B + A\overline{B} + AC$

$$\overline{A}B + A\overline{B} + ABC = B(\overline{A} + AC) + A\overline{B} = B(\overline{A} + A)(\overline{A} + C) + A\overline{B}$$

= $B \cdot 1 \cdot (\overline{A} + C) + A\overline{B} = \overline{A}B + A\overline{B} + BC$

■ 간소화하는 과정 예

$$F(A,B,C) = \sum m(0,1,3,5,7)$$

$$= \overline{A}\overline{B}\overline{C} + \overline{A}\overline{B}C + \overline{A}BC + ABC$$

$$= \overline{A}\overline{B}(\overline{C} + C) + \overline{A}C(\overline{B} + B) + AC(\overline{B} + B)$$

$$= \overline{A}\overline{B} + \overline{A}C + AC$$

$$= \overline{A}\overline{B} + C(\overline{A} + A)$$

$$= \overline{A}\overline{B} + C$$

$$\overline{F}(A,B,C) = \overline{\sum} m(0,1,3,5,7) = \sum m(2,4,6)$$

$$= \overline{A}B\overline{C} + A\overline{B}\overline{C} + \overline{A}B\overline{C}$$

$$= B\overline{C}(\overline{A} + A) + A\overline{C}(\overline{B} + B)$$

$$= B\overline{C} + A\overline{C} = (A + B)\overline{C}$$

■ 2변수로 나타낼 수 있는 모든 경우

A	В	F_0	F_1	F_2	F_3	F_4	F_5	F_6	F_7	F_8	F_9	F_{10}	F_{11}	F_{12}	F_{13}	F_{14}	F_{15}
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

■ 2변수로 나타낼 수 있는 모든 경우의 논리식

$F_0 = 0$	$F_1 = AB$	$F_2 = A\overline{B}$	$F_3 = A$
$F_4 = \overline{A}B$	$F_5 = B$	$F_6 = \overline{A}B + A\overline{B}$	$F_7 = A + B$
$\overline{F_8} = \overline{A}\overline{B}$	$F_9 = \overline{AB} + AB$	$F_{10} = \overline{B}$	$F_{11} = A + \overline{B}$
$\overline{F_{12}} = \overline{A}$	$F_{13} = \overline{A} + B$	$F_{14} = \overline{A} + \overline{B}$	$F_{15} = 1$

• n개의 입력 변수가 있을 때 진리표의 행의 개수는 2^n 개이며, 2^{2^n} 개의 서로 다른 함수가 존재

$$n=2$$
 $2^{2^2}=16$

$$n=3$$
 $2^{2^3}=2^8=256$

$$n=2$$
 $2^{2^2} = 16$ $n=3$ $2^{2^3} = 2^8 = 256$ $n=4$ $2^{2^4} = 2^{16} = 65536$

$$F_{3} = A\overline{B} + AB = A(\overline{B} + B) = A$$

$$F_{5} = \overline{A}B + AB = (\overline{A} + A)B = B$$

$$F_{7} = \overline{A}B + A\overline{B} + AB = (\overline{A} + A)B + A(\overline{B} + B) = A + B$$

$$F_{10} = \overline{A}\overline{B} + A\overline{B} = (\overline{A} + A)\overline{B} = \overline{B}$$

$$F_{11} = \overline{A}\overline{B} + A\overline{B} + AB = (\overline{A} + A)\overline{B} + A(\overline{B} + B) = A + \overline{B}$$

$$F_{12} = \overline{A}\overline{B} + \overline{A}B = \overline{A}(\overline{B} + B)\overline{B} = \overline{A}$$

$$F_{13} = \overline{A}\overline{B} + \overline{A}B + AB = \overline{A}(\overline{B} + B) + (\overline{A} + A)B = \overline{A} + B$$

$$F_{14} = \overline{A}\overline{B} + \overline{A}B + \overline{A}B + AB = \overline{A}(\overline{B} + B) + (\overline{A} + A)\overline{B} = \overline{A} + \overline{B}$$

차례

Ch.6 논리식의 간소화

1. 2변수 카르노 맵

논리식의 간소화

▶ 논리식을 간소화하는 방법

- 부울 대수를 이용한 간소화 : 복잡하고 실수 확률도 있고 검증도 어렵다.
- 체계적으로 논리식을 간소화하기 위해 카르노 맵(1953년 Maurice Karnaugh가 소개)과 퀸-맥클러스키 방법(1956년 Willard Van Orman Quine과 Edward J. McCluskey 개발)이 필요
- 카르노 맵
 - 함수에서 사용할 최소항들을 각 칸 안에 넣어 표로 만든 것
- 퀸-맥클러스키 방법 ← 체계적으로 논리식을 간소화
 - 많은 변수에 대해서도 쉽게 간소화

■ 2변수 카르노 맵 표현 방법

$$egin{array}{c|cccc} A & \overline{B} & \overline{B} & B \\ \hline A & m_0 & m_1 \\ A & m_2 & m_3 \\ \hline \end{array}$$

A	\overline{A}	A
\overline{B}	m_0	m_2
В	m_1	m_3

- 무관항(don't care)
 - 입력이 결과에 영향을 미치지 않는 최소항
 - x 로 표시하거나 d로 표시

■일반항과 무관항 표현

$$F(A,B) = \sum m(0,3) + \sum d(1)$$

- 출력이 1이거나 무관항만 표시한다.
- 출력 0을 표시하여도 되지만 일반적으로 생략한다.

▶ 카르노 맵을 이용한 간소화 방법

- ① 출력이 같은 항을 1, 2, 4, 8, 16개로 그룹을 지어 묶을 수 있고,
- ② 바로 이웃한 항들끼리 묶을 수 있으며,
- ③ 반드시 직사각형이나 정사각형의 형태로 묶어야 하고,
- ④ 최대한 크게 묶는다.
- ⑤ 중복하여 묶어서 간소화된다면 중복하여 묶는다.
- ⑥ 무관항의 경우 간소화될 수 있으면 묶어 주고, 그렇지 않으면 묶지 않는다.

부울 대수의 법칙으로 풀면

$$F = \overline{A}\overline{B} + \overline{A}B$$
$$= \overline{A}(\overline{B} + B) = \overline{A} \cdot 1 = \overline{A}$$

■ 간소화 예

A	В	F
0	0	1
0	1	1
1	0	1
1	1	0

중복하여도 되므로 크게 묶는다.

$$F = \overline{A} + \overline{B}$$

부울 대수의 법칙으로 풀면

$$F = \sum m(0,1,2) = \overline{A}\overline{B} + \overline{A}B + A\overline{B}$$
$$= \overline{A}(\overline{B} + B) + \overline{B}(\overline{A} + A)$$
$$= \overline{A} \cdot 1 + \overline{B} \cdot 1$$
$$= \overline{A} + \overline{B}$$

