A function
$$f(x)$$
 is continuous if $f(x) = \lim_{x \to 2} f(x)$

3)
$$f(x) = \frac{1}{x}$$
 $\lim_{x\to 0^+} \frac{1}{x} = +\infty$. $\lim_{x\to 0^+} \frac{1}{x} = -\infty$. $x\to 0$ infinite discontinuity at $x=0$.

4) If
$$p(x)$$
 is any polynomial of degree n in which the coefficient of x^n is positive, $\lim_{x\to\infty} p(x) = +\infty$. $\lim_{x\to\infty} p(x) = \int_{-\infty}^{+\infty} \sin u \, du \, du$

5) Let
$$\alpha$$
 be real and suppose that $\int_{x\to a}^{a} f(x) = 1$, $\lim_{x\to a} g(x) = 1$.

a)
$$\lim_{x\to a} [f(x) + g(x)] = \lim_{x\to a} f(x) + \lim_{x\to a} g(x) = l_1 + l_2$$

b)
$$\lim_{x\to a} [f(x) - g(x)] = \lim_{x\to a} f(x) - \lim_{x\to a} g(x) = l_1 - l_2$$

c)
$$\lim_{x\to a} [f(x) \cdot g(x)] = \lim_{x\to a} f(x) \cdot \lim_{x\to a} g(x) = l_1 l_2$$

d)
$$\lim_{x\to a} \frac{f(x)}{g(x)} = \lim_{x\to a} \frac{\lim_{x\to a} f(x)}{\lim_{x\to a} g(x)} = \frac{\ell_1}{\ell_2}$$
 provided $\ell_2 \neq 0$

e)
$$\lim_{x \to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to a} f(x)} = \sqrt[n]{\ell}$$
, provided $\sqrt[n]{\ell}$, ≥ 0 if n is even.

Note et is not always possible to swap the order of operations with limits

Problem 31.

i)
$$\lim_{X \to \infty} \frac{x}{x+1} = \lim_{X \to \infty} \frac{1}{1+\frac{1}{x}} = \frac{1}{1} = 1$$

(i)
$$\lim_{x\to 0} \frac{[x-5]^2-25}{x} = \lim_{x\to 0} \frac{[x-8+8][x-5-5]}{x} = \lim_{x\to 0} \frac{\cancel{k}[x-10]}{\cancel{k}} = \lim_{x\to 0} x-10 = -10$$

(iii)
$$\lim_{x\to\infty} \frac{\sin x}{x} = 0$$
 : sinx oscillates as $x\to\infty$ and $x\to0$

(iv)
$$\lim_{x\to\infty} \left[\tan^{-1}x \right]^{-1} = \left[\frac{\pi}{2} \right]^{-1} = \frac{2}{\pi}$$
. Note: The domain of $\tan^{-1}x$ is $\left(-\frac{\pi}{2}, \frac{\pi}{2} \right)$

V)
$$\lim_{x\to 3} \frac{f(x+1)-2}{x-3} = \lim_{x\to 3} \frac{[f(x+1)-2][f(x+1)+2]}{[x-3][f(x+1)+2]} = \lim_{x\to 3} \frac{y-3}{[x-3][f(x+1)+2]} = \lim_{x\to 3} \frac{1}{f(x+1)+2} = \lim_$$

1/1	$\lim_{x\to\infty} \frac{2x^4 - x^2 + 8x}{-5x^4 + 7} = \lim_{x\to\infty} \frac{2 - \frac{1}{x^2} + 8\frac{1}{x^3}}{-5 + 7\frac{1}{x^4}} = -\frac{2}{5}$
V67	$\chi \rightarrow \infty \qquad {-5\chi^{4} + 7} \qquad \chi \rightarrow \infty \qquad {-5 + 1} \qquad {5}$
	-57 f XH