Introduction to Machine Learning Concepts

Joaquin Vanschoren, Eindhoven Univeristy of Technology

Artificial Intelligence

1950s: Can computers be made to 'think'?

- automate intellectual tasks normally performed by humans
- encompasses learning, but also many other tasks (e.g. logic, planning,...)
- *symbolic AI*: programmed rules/algorithms for manipulating knowledge
 - Great for well-defined problems: chess, expert systems,...
 - Pervasively used today (e.g. chip design)
 - Hard for complex, fuzzy problems (e.g. images, text)

Machine Learning

Are computers capable of learning and originality? Alan Turing: Yes!

- Learn to perform a task T given experience E, always improving according to some metric M
- New programming paradigm
 - System is *trained* rather than explictly programmed
 - Finds rules or functions (models) to act/predict

Machine learning vs Statistics

• Both aim to make predictions of natural phenomena:

- Statistics:
 - Help humans understand the world
 - Parametric: assume that data is generated according to parametric model

- Machine learning:
 - Automate a task entirely (replace the human)
 - Non-parametric: assume that data generation process is unknown
 - Engineering-oriented, less (too little?) mathematical theory

See Breiman (2001): Statical modelling: The two cultures

How to represent learning?

All machine learning algorithms consist of 3 components:

- Representation: A model must be represented in a formal language that the computer can handle
 - Defines the 'concepts' it can learn, the _hypothesis space-
 - E.g. a decision tree, neural network, set of annotated data points
- Evaluation: An internal way to choose one hypothesis over the other
 - Objective function, scoring/loss function
 - E.g. Difference between correct output and predictions
- Optimization: An *efficient* way to search the hypothesis space
 - Start from simple hypothesis, extend (relax) if it doesn't fit the data
 - Defines speed of learning, number of optima,...
 - E.g. Gradient descent

How to represent the problem?

- We need 3 inputs:
 - Input data, e.g. measurements, images, text
 - Expected output: e.g. correct labels produced by humans
 - Performance measure: feedback signal, are we learning the right thing?
- Algorithm needs to correctly transform the inputs to the right outputs
- Often includes transforming the data to a more useful representation (or encoding)
 - Can be done end-to-end (e.g. deep learning) or by first 'preprocessing' the data

Deep Learning

- Most machine learning techniques require humans to build a good representation of the data
 - Sometimes data is naturally structured (e.g. medical tests)
 - Sometimes not (e.g. images) -> extract features
- Deep learning: learn your own representation of the data
 - Through multiple layers of representation (e.g. layers of neurons)
 - Each layer transforms the data a bit, based on what reduces the error

Example: digit classification

- Input pixels go in, each layer transforms them to an increasingly informative representation for the given task
- Often less intuitive for humans

Overview

Success stories:

- Search engines (e.g. Google)
- Recommender systems (e.g. Netflix)
- Automatic translation (e.g. Google Translate)
- Speech understanding (e.g. Siri, Alexa)
- Game playing (e.g. AlphaGo)
- Self-driving cars
- Personalized medicine
- Progress in all sciences: Genetics, astronomy, chemistry, neurology, physics,...

Example: dating

Nr	Day of Week	Type of Date	Weather	TV Tonight	Date?
1	Weekday	Dinner	Warm	Bad	No
2	Weekend	Club	Warm	Bad	Yes
3	Weekend	Club	Warm	Bad	Yes
4	Weekend	Club	Cold	Good	No
Now	Weekend	Club	Cold	Bad	?

- Is there a combination of factor that works? Is one better than others?
- What can we assume about the future? Nothing?
- What if there is noise / errors?
- What if there are factor you don't know about?

Types of machine learning

We often distinguish 3 types of machine learning:

- **Supervised Learning**: learn a model from labeled *training data*, then make predictions
- **Unsupervised Learning**: explore the structure of the data to extract meaningful information
- **Reinforcement Learning**: develop an agent that improves its performance based on interactions with the environment

Note:

- Semi-supervised methods combine the first two.
- ML systems can combine many types in one system.

Supervised Machine Learning

- Learn a model from labeled training data, then make predictions
- Supervised: we know the correct/desired outcome (label)

2 subtypes:

- Classification: predict a *class label* (category), e.g. spam/not spam
 - Many classifiers can also return a *confidence* per class
- Regression: predict a continuous value, e.g. temperature
 - Some algorithms can return a *confidence interval*

Most supervised algorithms that we will see can do both.

Classification

- Class labels are discrete, unordered
- Can be *binary* (2 classes) or *multi-class* (e.g. letter recognition)
- Dataset can have any number of predictive variables (predictors)
 - Also known as the dimensionality of the dataset
- The predictions of the model yield a *decision boundary* separating the classes

Regression

- Target variable is numeric
- Find the relationship between predictors and the target.
 - E.g. relationship between hours studied and final grade
- Example: Linear regression (fits a straight line)

Reinforcement learning

- Develop an agent that improves its performance based on interactions with the environment
 - Example: games like Chess, Go,...
- Reward function defines how well a (series of) actions works
- Learn a series of actions that maximizes reward through exploration

Unsupervised Machine Learning

- Unlabeled data, or data with unknown structure
- Explore the structure of the data to extract information
- Many types, we'll just discuss two.

Clustering

- Organize information into meaningful subgroups (clusters)
- Objects in cluster share certain degree of similarity (and dissimilarity to other clusters)
- Example: distinguish different types of customers

Dimensionality reduction

- Data can be very high-dimensional and difficult to understand, learn from, store,...
- Dimensionality reduction can compress the data into fewer dimensions, while retaining most of the information
- Contrary to feature selection, the new features lose their (original) meaning
- Is often useful for visualization (e.g. compress to 2D)

Basic Terminology (on Iris dataset)

Building machine learning systems

A typical machine learning system has multiple components:

- Preprocessing: Raw data is rarely ideal for learning
 - Feature scaling: bring values in same range
 - Encoding: make categorical features numeric
 - Discretization: make numeric features categorical
 - Feature selection: remove uninteresting/correlated features
 - Dimensionality reduction can also make data easier to learn

- Learning and model selection
 - Every algorithm has its own biases
 - No single algorithm is always best (No Free Lunch)
 - Model selection compares and selects the best models
 - o Different algorithms
 - Every algorithm has different options (hyperparameters)
 - Split data in training and test sets

• Together they form a workflow of pipeline

