Упражнение 1. Известно, что f(n), g(n) > 0, используя определение, докажите следующее свойство $\max(f(n), g(n)) = \Theta(f(n) + g(n))$.

Решение. Разобьем доказательство на две части.

- 1. Заметим, что $\max(f(n),g(n))$ можно оценить сферху, как f(n)+g(n), т.к. f(n),g(n)>0, следовательно $\max(f(n),g(n))=O(f(n)+g(n))$.
- 2. В свою очередь f(n)+g(n) можно оценить сферху, как $2 \cdot \max(f(n),g(n))$, т.к. f(n),g(n)>0, следовательно f(n)+g(n)=O(f(n)+g(n)).

Из этого по определению вытекает то, что и нужно доказать.

Упражнение 2. Покажите, что $\ln n! = \Theta(n \ln n)$.

Pewenue. Наиболее популярный вид записи формулы Стирлинга выглядит следующим образом

$$\ln(n!) = n \ln n - n + O(\ln n),$$

из чего вытекает уже нужная оценка $\ln n! = \Theta(n \ln n)$. Упражнение расчитано на то, чтобы вы покапались в теории и узнали про этот факт, если вам еще не прочитали его в курсе математического анализа.

Упражнение 3. Пусть $f(n) = [\ln n]!$. Существует ли полином p(n), что f(n) = O(p(n))?

Решение. Исходя из формулы стирлинга справедлива следующая оценка $n! > \left(\frac{n}{e}\right)^n$. В свою очередь $[\ln n] > \ln \frac{n}{e}$. Тогда

$$[\ln n]! > \left(\frac{\ln \frac{n}{e}}{e}\right)^{\ln \frac{n}{e}}.$$

Рассмотрим следующий предел

$$\lim_{n\to\infty}\frac{\frac{\frac{n}{e}\cdot n^k}{\left(\ln\frac{n}{e}\right)^{\ln\frac{n}{e}}}=\lim_{n\to\infty}e^p, \text{ где } p=(k+1)\cdot n-1-\ln\left(\ln(\frac{n}{e})\right)(\ln n-1)$$

Заметим, что

$$p > (k+1) \cdot \ln n - 1 - \ln \left(\ln\left(\frac{n}{e}\right)\right) \left(\ln n - \frac{1}{k+1}\right) = (k+1)\left(\ln n - \frac{1}{k+1}\right) \left(1 - \ln \left(\ln\left(\frac{n}{e}\right)\right)\right).$$

Очевидно, что $p \to -\infty$ при $n \to \infty$. А значит такого многочлена не существует, так как предел стремится к 0 при любом k.

Упражнение 4. Верно ли для всех произвольных f(n), g(n) > 0, что, если f(n) = O(g(n)), то и $\ln(f(n)) = O(\ln(g(n)))$.

Решение. Утверждение неверно, очевидно, что $e^{-n^2} = O(e^{-n})$, однако, $n^2 \neq O(n)$.

Упражнение 5. Докажите, что $(\ln n)^k = O(n^{\varepsilon})$, где $\varepsilon > 0$, а $k \in \mathbb{N}^+$.

Peшение. Рассмотрим следующий предел $\lim_{n\to\infty} \frac{(\ln n)^k}{n^\varepsilon}$. Для его вычисление воспользуемя правилом Лопиталя. Применим его один раз

$$\lim_{n\to\infty}\frac{(\ln n)^k}{n^\varepsilon}=\lim_{n\to\infty}\frac{\frac{1}{n}(\ln n)^{k-1}}{n^{\varepsilon-1}}=\lim_{n\to\infty}\frac{(\ln n)^{k-1}}{n^\varepsilon}.$$

Мы уменьшили степень лограрифма, но при это знаменатель не изменился. Таки оразом, применив правило k раз, получим следующий предел $\lim_{n\to\infty}\frac{1}{n^\varepsilon}$. А из этого уже следует необходимый нам факт.