

Running Quantum-Safe Applications on Kubernetes

Paul Schweigert & Michael (Max)imilien, IBM psschwei.com @maximilien

Agenda

1. Understand the Risk

- 2. Becoming Quantum Safe
- 3. Protecting Applications
- 4. Next Steps

1. Understand the Risk

2. Becoming Quantum Safe

3. Protecting Applications

4. Next Steps

Why quantum?

Ex: Shor's algorithm for factoring

Current cryptography is at risk

Prime factors

 $= p \times q$

2048-bit composite integer

251959084756578934940271832400483985714292821262040320 277771378360436620207075955562640185258807844069182906 412495150821892985591491761845028084891200728449926873 928072877767359714183472702618963750149718246911650776 133798590957000973304597488084284017974291006424586918 171951187461215151726546322822168699875491824224336372 59085141865462043576798423387184774447920739342365548 23824281198163815010674810451663773060562016196762561 338441436038339044149526344321901146575444541784240209 246165157233507787077498171257724679629263863563732899 121548314381678998850404453640235273819513786365643921 2010397122822120720357 Expected computation time

The most powerful computer **today:**

Millions of years

Shor's quantum algorithm:

Hours

Per Shor's algorithm, all public key crypto standards are vulnerable to attacks from large scale quantum computers

Public Key Encryption Digital Signatures Key Exchange Algorithms RSA DSA, ECDSA Diffie-Hellman, ECDH

What will a cybercriminal be able to do?

Forge digital signatures

Harvest now, decrypt later

2023 EXPERTS' ESTIMATES OF LIKELIHOOD OF A QUANTUM COMPUTER ABLE TO BREAK RSA-2048 IN 24 HOURS

Number of experts who indicated a certain likelihood in each indicated timeframe

1. Understand the Risk

2. Becoming Quantum Safe

3. Protecting Applications

4. Next Steps

Quantum Safe Cryptography

a.k.a. Post Quantum Cryptography or Quantum Resistant Cryptography

Traditional public-key cryptography relies upon mathematical problems that are difficult to solve on classical computers.

Quantum-safe cryptography includes a suite of algorithms and systems that are resistant to attacks by both classical and quantum computers.

Information Technology Laboratory

COMPUTER SECURITY RESOURCE CENTER

PROJECTS

Post-Quantum Cryptography PQC

Overview

Short URL: https://www.nist.gov/pgcrypto

FIPS 203, FIPS 204 and FIPS 205, which specify algorithms derived from CRYSTALS-Dilithium, CRYSTALS-KYBER and SPHINCS⁺, were published August 13, 2024.

4th Round KEMs

Additional Digital Signature Schemes - Round 1 Submissions

PQC License Summary & Excerpts

For a plain-language introduction to post-quantum cryptography, go to: What Is Post-Quantum Cryptography?

Background

NIST initiated a process to solicit, evaluate, and standardize one or more quantum-resistant public-key cryptographic algorithms. Full details can be found in the Post-Quantum Cryptography Standardization page.

In recent years, there has been a substantial amount of research on quantum computers – machines that exploit quantum mechanical phenomena to solve mathematical problems that are difficult or intractable for conventional computers. If large-scale quantum computers are ever built, they will be able to break many of the public-key cryptosystems currently in use. This would seriously compromise the confidentiality and integrity of digital communications on the Internet and elsewhere. The goal of post-

% PROJECT LINKS

Overview

FAQs

News & Updates

Events

Publications

Presentations

ADDITIONAL PAGES

Post-Quantum Cryptography Standardization

Call for Proposals

Example Files

Round 1 Submissions

Round 2 Submissions

Round 3 Submissions

Round 3 Seminars

Round 4 Submissions

Selected Algorithms 2022

Workshops and Timeline

POC Seminars

Open Source

https://pqca.org

To advance the adoption of postquantum cryptography, by producing high-assurance software implementations of standardized algorithms, and supporting the continued development and standardization of new post-quantum algorithms with software for evaluation and prototyping.

Initial Projects Overview

Open Quantum Safe project

liboqs

Library of many PQ algorithms

- Main profile: standardstrack algorithms
- Experimental profile: new algorithms, NIST signatures on-ramp etc.

OQS demos

Prototype integrations of PQ into protocols and applications to support experiments, standardization, interoperability

OQS OpenSSL 3 Provider

Integration of PQ + hybrid algorithms from liboqs into OpenSSL 3 via OpenSSL provider interface

- TLS key exchange, authentication
- X.509
- S/MIME, CMS, CMP

PQ Code Package

"Kyber" code package

High-assurance production source-code implementations of Kyber

- C, x86_64, ARMv8, ...
- Rust. Go. ...
- audited/certified/formally verified

Plus appropriate wrappers / providers, e.g. Kyber OpenSSL 3 provider

Potential Phase 2 projects

- Dilithium
- XMSS, LMS
- SPHINCS+
- Falcon (-> Phase 3?)

Production track: safe for use in production environments, with external audits or certification,

Experimental track: primarily for prototyping and experiments, mindful of potential production use

Becoming Quantum Safe

<u>Discover</u>: Scan source and object code to locate cryptographic assets, dependencies, and vulnerabilities. Build a cryptography bill of materials (CBOM).

<u>Observe</u>: Create a dynamic cryptographic inventory to guide remediation. Analyze cryptographic posture and compliance to prioritize risks.

<u>Transform</u>: Learn and apply quantum-safe remediation patterns in a development environment. Prepare to deploy quantum-safe solutions to your stack.

1. Understand the Risk

2. Becoming Quantum Safe

3. Protecting Applications

4. Next Steps

https://www.ibm.com/quantum/blog/iqp-quantum-safe

Quantum Safe Flow

High Level View

Quantum Safe Client: Configuring OpenSSL

- Install liboqs & oqs-provider
 - https://github.com/open-quantum-safe/liboqs
 - https://github.com/open-quantum-safe/oqs-provider
- Configure OpenSSL to use Kyber algorithm

Quantum Safe Firewall: Enabling PQC in Web Application Firewall

- Enable PQ encryption on IBM Cloud Internet Services
 - https://cloud.ibm.com/apidocs/cis?code=go#update-origin-post-quantum-encryption
- Create new origin cert for Ingress / VirtualService

Quantum Safe Service Mesh:

Updating Istio

- Envoy
 - QSafe BoringSSL:

https://github.com/google/boringssl/blob/45cf810dbdbd767f09f8cb0b0fcccd342c39041f/src/ssl/ssl_key_share.cc#L285-L293

- Istio
 - Add QSafe supported group: https://github.com/istio/istio/commit/7635f7ea50514958518eb17b631682f953e723cc
 - Secure mesh traffic: https://github.com/istio/istio/issues/52290

Quantum Safe Flow

Detail View

1. Understand the Risk

2. Becoming Quantum Safe

3. Protecting Applications

4. Next Steps

Next Steps

Learn about post-quantum cryptography

Start inventorying your crypto

Next Steps

Learn about postquantum cryptography

Inventory your crypto

Rate this session

Paul Schweigert psschwei.com paulschw@us.ibm.com

Michael (Max)imilien @maximilien maxim@us.ibm.com

