偏振光的研究

何金铭 PB21020660

1 实验目的

研究偏振光的若干性质

2 实验原理

2.1 产生偏振光的元件

2.1.1 利用光在界面反射和透射时光的偏振现象

利用光的电磁理论可以计算出光于不同方向的偏振改变,反射光中的垂直于入射面的光振动(称 s 分量) 多于平行于入射面的光振动 (称 p 分量); 而透射光则正好相反。当入射角为布儒斯特角 i_b 时,反射光为完全线偏振光 (s 分量)。此时有:

$$i_b + \gamma_0 = \frac{\pi}{2} , n_1 \sin i_b = n_2 \sin \gamma_0$$

$$\tan i_b = \frac{\sin i_b}{\cos i_b} = \frac{\sin i_b}{\sin \gamma_0} = \frac{n_2}{n_1}$$

 $n_1 = 1$ (空气折射率) 时,有

$$n_2 = \tan i_b \tag{1}$$

所以通过测量布儒斯特角的大小可以测量介质的折射率。

2.1.2 利用光学棱镜——双折射现象

利用某些特定晶体的双折射现象可制备格兰棱镜,其由两块方解石直角棱镜构成,两棱镜间有空气间隙,方解石的光轴平行于棱镜的棱。自然光垂直于界面射入棱镜后分为 o 光和 e 光, o 光在空气隙上全反射,只有 e 光透过棱镜射出。

2.1.3 偏振片

它是利用聚乙烯醇塑胶膜制成,它具有梳状长链形结构分子,这些分子平行排列在同一方向上, 此时胶膜只允许垂直于排列方向的光振动通过,因而产生线偏振光。

2.2 改变光的偏振态的元件——波晶片

波晶片又称相位延迟片。它是从单轴晶体中切割下来的平行平面板(其光轴方向与表面平行),由于波晶片内 o 光和 e 光的传播速度 v_o 、 v_e 不同(折射率 n_o 、 n_e 不同),所以造成 o 光和 e 光通过波晶片的光程也不同。由此产生了相位的变化。

比如 $\lambda/4$ 波片可以用来改变光的偏振态,改变相位为 $\frac{\pi}{2}$

3 实验仪器

半导体激光器(波长 650 nm)、硅光电池、起偏器、检偏器、旋转样品台、数字式检流计

4 实验内容

- 1. 仪器调节
- 2. 测量半导体激光器的偏振度
- 3. 验证马吕斯定律
- 4. 利用已给实验仪器,根据布儒斯特定律,自行设计实验方案测定玻璃介质的折射率。
- 5. 利用已给实验仪器(偏振片、1/4 波片),判断液晶屏(手机屏、大屏显示器等)所发出光线的偏振状态(线偏振、圆偏振、自然光等)。给出判断结果及详细的判断过程。

5 测量记录

5.1 半导体激光器的偏振度

光强极大值 (10 ⁻⁷ A)	偏振片角度 (°)	光强极小值 (10 ⁻⁷ A)	偏振片角度 (°)
960	246	2	333
943	64	2	154

表 1: 光强 1 对应的数据

光强极大值 (10 ⁻⁷ A)	偏振片角度 (°)	光强极小值 (10 ⁻⁷ A)	偏振片角度 (°)
1729	245	4	334
1694	64	4	154

表 2: 光强 2 对应的数据

5.2 验证马吕斯定律

透振方向夹角 (θ / °)	透射光强 (I / (10 ⁻⁷ A))	透振方向夹角 (θ / °)	透射光强 (I / (10 ⁻⁷ A))
84	0	132	483
90	13	138	568
96	44	144	648
102	91	150	718
108	154	156	775
114	226	162	818
120	308	168	844
126	395	174	853
透振方向夹角 (θ / °)	透射光强 (I / (10 ⁻⁷ A))	透振方向夹角 (θ / °)	透射光强 (I / (10 ⁻⁷ A))
180	844	228	297
186	817	234	216
192	772	240	146
198	713	246	85
204	642	252	39
210	561	258	10
216	475	264	0
222	385	270	8

表 3: 透射光强与透振方向夹角记录表

5.3 测量样品布儒斯特角

5.3.1 方案一

调节偏振片,使得偏振光的方向只有与入射面平行的分量。从一个方向转动旋转样品台,起始位置为入射角为 0 的状态。记录此时的刻度为 α_i 转动样品台,当出现反射光光强为 0,或者接近 0 的状态时,则说明此时转过的角度 $\alpha=i_b$,为布儒斯特角。记录此时的可得为 α_f

5.3.2 方案二

调节偏振片,使得偏振光的方向只有与入射面平行的分量。从一个方向转动旋转样品台,起始位置为入射角为 0 的状态。记录此时的刻度为 α_1 转动样品台,当出现反射光光强为 0,或者接近 0 的状态时,则说明此时转过的角度 $\alpha=i_b$,为布儒斯特角。接着继续旋转样品台,当发现反射光第二次为 0 的时候,记录刻度 α_2 ,

图 1: 实验光路图

	1	2	
α_i	275.2°	21.0°	
α_f	217.0°	325.0°	

表 4: 改进方案前的实验数据

	1	2	3
α_1	80.2°	80.0°	79.0°
α_2	327.9°	327.2°	326.0°

表 5: 改进方案后的实验数据

5.4 判断教室大屏幕显示器所发出光线的偏振状态

实验现象:通过一个偏振片看教室大屏幕,发现当改变偏振片偏振方向的时候可以发现会出现明暗交替的现象,且会出现完全消光的现象。(事实上,是大面积的消光现象,如果仔细观察,还可以看到一些斜着的明条纹,但是占少数。)

分析与讨论 6

6.1 半导体激光器的偏振度

6.1.1 结果分析

首先对数据进行分析,发现每次大约转动90°时,激光的光强就会由最大值变为最小值。

由于光的最小光强不为 0,所以得出激光器不是完美的线偏振光,而是一个椭圆偏振光,存在偏振度 $P=\dfrac{I_{max}-I_{min}}{I_{max}+I_{min}}$ 。 由第一组数据可得:

$$P_1 = \frac{I_{max} - I_{min}}{I_{max} + I_{min}} = \frac{\frac{960 + 943}{2} - 2}{\frac{960 + 943}{2} + 2} = 0.9958$$
 (2)

$$P_2 = \frac{I_{max} - I_{min}}{I_{max} + I_{min}} = \frac{\frac{1729 + 1694}{2} - 4}{\frac{1729 + 1694}{2} + 4} = 0.9953$$
 (3)

发现两组数据测出来相似,偏振度的大约为 0.9955,是一个理想的线偏振光。

6.1.2 误差分析

两组数据有一定偏差, 其来源可能有:

- 1. 测量时的误差导致
- 2. 前后测量时,改变了数字式检流计的灵敏度,导致测量的偏振度发生了改变。

6.2 验证马吕斯定律

定义透射光强 $I=I_{max}=I_0$ 时的透振方向夹角 $\theta=0$, 则变换上方数据中的数据 $\theta'=\theta-174^\circ$ 变换后得到的 $\theta' \in [-90^\circ, 90^\circ]$

分别作图,得:

图 2: $\frac{I}{I_0}$ - $\cos^2\theta$ 关系图 $\theta \in [-90^\circ, 0^\circ]$

并且利用最小二乘法给出了:

$$\frac{I}{I_0} = \begin{cases}
0.011 + 0.994 \cos^2 \theta & \theta \in [-90^\circ, 0^\circ] \\
0.003 + 0.998 \cos^2 \theta & \theta \in [0^\circ, 90^\circ]
\end{cases}$$
(4)

 $\theta \in [-90^{\circ}, 0^{\circ}]$ 时,斜率为 0.994, 截距为 0.011

 $\theta \in [0^{\circ}, 90^{\circ}]$ 时,斜率为 0.998, 截距为 0.003

发现第二组的测量结果比第一组的测量结果更加接近理论值。但是两组的结果都在一定置信区 间内符合要求"斜率为1,截距为0"

6.2.1 误差分析

误差来源有以下可能

- 1. 前 90° 与后 90° 的误差不同,可能的原因是偏振片于两个 $\frac{1}{4}$ 圆周上存在一定不对称结构。
- 2. 由于光路是手动调节的,可能存在主面与光轴不垂直或光学主面间存在微小夹角。
- 3. 数字式检流计的固有误差所导致的测量误差。

6.3 测量样品布儒斯特角

6.3.1 改进前的方案

从一个方向转动,得布儒斯特角

	1	2	average
i_b	58.2°	56°	57.1°

表 6: 方案一结果

由于方案一还存在着旋转样品台本身的误差,所以在这里只参考,不进行误差分析。

6.3.2 改进后的方案

利用
$$2i_b = \frac{360^\circ + \alpha_1 - \alpha_2}{2}$$
 得:

	1	2	3	average
i_b	56.15°	56.4°	56.5°	56.35°

表 7: 方案二结果

6.3.3 误差分析

下面进行不确定度分析:
$$\text{A 类标准不确定度} \ u_A = \sqrt{\frac{\sum_{i=1}^n (X_i - \overline{X})^2}{n(n-1)}} = 0.1^\circ$$

$$\text{B 类标准不确定度} \ u_B = \frac{\sqrt{\Delta_{app}^2 + \Delta_{est}^2}}{C} = \frac{\sqrt{0.5^2 + 1^2}}{3} = 0.37^\circ$$
 拓展不确定度 $U_{ib} = t_p u_A + k_p u_B = 1.2^\circ$

得布儒斯特角 $i_b = 56.4^{\circ} \pm 1.2^{\circ}$ 得玻璃的折射率为 $n = \tan i_b = 1.51$ 不确定度 $U_n = \frac{1}{\cos i_b^2} U_{i_b} = 3.26 \cdot 1.2 \cdot \frac{\pi}{180} = 0.07$ 最终得玻璃的折射率为 $n = 1.51 \pm 0.07$

- 1. 最终相对不确定度为 4% 符合要求
- 2. 误差可能来自于寻找偏振光为 0 时, 手动寻找布儒斯特角的位置。

6.4 判断教室大屏幕显示器所发出光线的偏振状态

大屏幕显示所发出的光绝大部分是线偏振光。

实验操作时通过一个偏振片看教室大屏幕,发现当改变偏振片偏振方向的时候可以发现会出现明暗交替的现象,且会出现完全消光的现象。说明其发出的光为线偏振光。

但值得一提的是,如果仔细观察,还可以看到一些斜着的明条纹,但是占少数。这可能是由于大屏幕本身的内部结构导致的。

7 思考题

7.1 如何鉴别部分偏振光和椭圆偏振光?

首先通过偏振光观察两束光,会发现现象均为会出现明暗交替的现象,但不会出现完全消光的现象。

接着利用 $\frac{1}{4}$ 波片,当其夹角与光轴呈 45° 时,再透过偏振光观察,若能出现完全相消的为椭圆偏振光;不能完全相消的为部分偏振光。

7.2 在摄影的过程中,如果能合理地利用偏振光的原理就可以消除表面反射光的影响, 拍摄出效果更佳的照片(见讲义)。请简述如何实现这一拍摄过程。

反射光大部分都是垂直于界面的光 s 光, 若要消除反光则可添加一个与 s 光偏振相消的偏振片。一方面,这会消除可见光;另一方面,这不会影响自然光和从界面另一端传来的光。