COMP0078 Supervised Learning

Coursework 1

Student Number: 22108699

Student Number: 22197365

November 16th, 2022

Contents

1	Par	t I: Regression	1
	1.1	Question 1	1
		1.1.1 la	1
		1.1.2 1b	1
		1.1.3 1c	1
	1.2	Question 2	1
		1.2.1 2a	1
		1.2.2 2b	1
		1.2.3 2c	2
		1.2.4 2d	2
	1.3	3	2
		1.3.1 3b	2
		1.3.2 3c	3
		1.3.3 3d	3
	1.4	Question 4	3
		1.4.1 4a	3
		1.4.2 4b	3
		1.4.3 4c	4
		1.4.4 4d	6
	1.5	Question 5	6
		1.5.1 5a	6
		1.5.2 5b	6
		1.5.3 5c	6
		1.5.4 5d	7
2	KN	'N	8
_	2.1	6	8
	2.2	7	8
	2.3	8	8
3	Par	t III: Kernel with Regression	9
	3.1	Question 9	9
		3.1.1 9a	9
		3.1.2 9b	10
	2.0	0	11

 ${\rm COMP0078~CW1}$ Page I

1 Part I: Regression

1.1 Question 1

1.1.1 1a

Figure 1 shows the fitted curves.

Figure 1: Fitted curves

1.1.2 1b

The equation corresponding to k = 1 is 2.5

The equation corresponding to k = 2 is 1.5 + 0.4x

The equation corresponding to k = 3 is $9 - 7.1x + 1.5x^2$

The equation corresponding to k = 4 is $-5 + 15.17x - 8.5^2 + 1.33x^3$

1.1.3 1c

MSE of k = 1 is 3.25

MSE of k = 2 is 3.05

MSE of k = 3 is 0.80

MSE of k = 4 is $3.97 * 10^{-26}$

1.2 Question 2

1.2.1 2a

Figure 2 shows the curve $sin^2(2x)$, 0 < x < 1 and random data generated with noise.

Figure!3 shows the fitted curves by the polynomial of dimension k = 2, 5, 10, 14, 18.

1.2.2 2b

Figure 4 shows the $ln(te_k(S))$ with the polynomial of dimension k = 1, ..., 18.

Figure 2: $sin^2(2x)$ and random data points

Figure 3: $sin^2(2x)$ and random data points

1.2.3 2c

Figure 5 shows the $ln(tse_k(S,T))$ versus the polynomial dimension k. Due to the overfitting, the $ln(tse_k(S,T))$ starts to increase when k > 10.

1.2.4 2d

Figure 6 shows the average MSE of the training/testing dataset in 100 runs for each k.

1.3 3

Same assumptions about data generation but different basis

$$\{\sin(1\pi x), \sin(2\pi x), \sin(3\pi x), \dots, \sin(k\pi x)\}\$$
 (for $k = 1, \dots, 18$)

1.3.1 3b

Figure 7 shows $ln(te_k(S))$ versus the polynomial dimension k.

Figure 4: $ln(te_k(S))$ versus the polynomial dimension k

Figure 5: $ln(tse_k(S,T))$ versus the polynomial dimension k

1.3.2 3c

Figure 8 shows $ln(te_k(S))$ versus the polynomial dimension k.

1.3.3 3d

Figure 9 shows $ln(te_k(S))$ versus the polynomial dimension k.

1.4 Question 4

1.4.1 4a

average MSE on the training dataset is 84.81 average MSE on the testing dataset is 83.88

1.4.2 4b

the constant function $f=b,\,b$ is the average of the column "MEDV" in the training data.

Figure 6: average $\ln(tse_k(S,T))$ versus the polynomial dimension k in 100 runs

Figure 7: $ln(te_k(S))$ versus the polynomial dimension k

1.4.3 4c

MSE of the training data for each attribute is

'CRIM': 70.75276745986666,

'ZN': 73.52147656913385,

'INDUS ': 65.05844672735891,

'CHAS': 80.86247683096228,

'NOX': 69.58952147626793,

'RM': 42.83782680571877,

'AGE': 73.6715507255629,

'DIS': 81.63960934803552,

'RAD': 70.71004870796806,

'TAX': 66.49290329447254,

'PTRATIO': 61.825393429721586,

'LSTAT': 37.90032741236634

Figure 8: $ln(tse_k(S,T))$ versus the polynomial dimension k

Figure 9: average $ln(tse_k(S,T))$ versus the polynomial dimension k in 100 runs

MSE of the testing data for each attribute is

'CRIM': 74.37228480113156, 'ZN ': 73.75857512716416,

'INDUS ': 64.53283018377144,

'CHAS': 84.23612457474943,

'NOX': 68.21252910202332,

'RM': 45.518639076003026,

'AGE': 70.38497960286736,

'DIS': 74.6391037972427,

'RAD': 75.39307851180165, 'TAX': 65.21728225351555,

'PTRATIO': 64.68264104968723, 'LSTAT': 39.914718537251744

1.4.4 4d

MSE of the training data for all attributes is 22.757 MSE of the testing data for all attributes is 23.424

1.5 Question 5

1.5.1 5a

 $(\gamma,\sigma)_{best}=(2^{-35},2^{10.5})$ with the 5-folds cross-validation error=12.62.

1.5.2 5b

Figure 10: 5-folds cross-validation error with the order of (γ, σ)

1.5.3 5c

testing error is 16.42 and training error is 6.84 with ($\gamma,\sigma)_{best}=(2^{-35},2^{10.5})$

1.5.4 5d

Method	MSE train	MSE test
Naive Regression	$83.87 \pm \sigma' 4.704$	$85.74\pm\sigma' 9.236$
LR (attribute 1)	$70.95 \pm \sigma' 4.083$	$74.26 \pm \sigma' 8.130$
LR (attribute 2)	$73.21 \pm \sigma' 4.649$	$74.26 \pm \sigma' 9.137$
LR (attribute 3)	$64.41 \pm \sigma' 4.589$	$65.52 \pm \sigma' 9.107$
LR (attribute 4)	$81.44 \pm \sigma' 4.356$	$83.10 \pm \sigma' 8.630$
LR (attribute 5)	$68.42 \pm \sigma' 4.577$	$70.47 \pm \sigma' 9.059$
LR (attribute 6)	$42.70 \pm \sigma' 3.567$	$45.76 \pm \sigma' 7.254$
LR (attribute 7)	$71.92 \pm \sigma' 4.934$	$73.76 \pm \sigma' 9.736$
LR (attribute 8)	$78.57 \pm \sigma' 5.099$	$80.68 \pm \sigma' 10.046$
LR (attribute 9)	$71.64 \pm \sigma' 4.426$	$73.48 \pm \sigma' 8.732$
LR (attribute 10)	$65.38 \pm \sigma' 4.421$	$67.23 \pm \sigma' 8.731$
LR (attribute 11)	$63.23 \pm \sigma' 4.076$	$61.91 \pm \sigma' 8.025$
LR (attribute 12)	$37.92 \pm \sigma' 2.348$	$39.95 \pm \sigma' 4.690$
LR (attribute all)	$22.00 \pm \sigma' 1.655$	$24.36 \pm \sigma' 3.550$
Kernel Ridge Regression	$13.50 \pm \sigma' 5.009$	$15.90 \pm \sigma' 6.230$

2 KNN

2.1 6

Figure 11 shows the decision region of a hypothesis $h_{S,v}$ visualized with |S| = 100 and v = 3.

Figure 11: A hypothesis $h_{S,v}$ visualized with |S| = 100 and v = 3.

$2.2 \quad 7$

Figure 12 shows the generalization error of k-NN as a function of k. Explanation:

- 1. The figure is expected as a U-shape curve and our simulation is closed to the expectation.
- 2. The error first decreases as k grows (in this case, $k \in (0, 10)$) due to under-fitting. As k is big enough, the error increases as k grows due to over-fitting. the optimal k is around 10.
- 3. The error attaches its maximum when k = 1, this is because at that time, we predict the label uniformly. (as it seek the closed point and we generated our training points with its label uniformly.)
- 4. The error is up and down as k grows one by one.

2.3 8

Figure 13 shows the optimal k for a group of m during 100 runs. Explanation:

- 1. The figure is expected as an increasing curve and our simulation is closed to the expectation.
- 2. As the number of training points increasing, we need more points (information) to locate the test points at the hypothesis space and thus the optimal k is getting bigger.

Figure 12: generalization error of k-NN as a function of k.

Figure 13: the optimal k for a group of m during 100 runs.

3 Part III: Kernel with Regression

3.1 Question 9

3.1.1 9a

The given function is $K_c(x,z) := c + \sum_{i=1}^n x_i z_i$. If the K_c is a positive semidefinite kernel, it is symmetric and the matrix $(K(x_i, x_j) : i, j = 1, ..., k)$ is positive semidefinite for every $k \in \mathbb{N}$ and every $x_1, ..., x_k \in \mathbb{R}^n$.

If the matrix K(x,x) is a positive semidefinite matrix, then we have

$$\sum_{i,j=1}^{m} c_{i}c_{j}K(x_{i}, x_{j}) \geq 0$$

$$\sum_{i,j=1}^{m} c_{i}c_{j}(c + \sum_{k=1}^{n} x_{ki}x_{kj}) \geq 0$$

$$\sum_{i,j=1}^{m} c_{i}c_{j}c \geq -\sum_{i,j=1}^{m} c_{i}c_{j} \sum_{k=1}^{n} x_{ki}x_{kj}$$

$$(\sum_{i=1}^{m} c_{i})^{2}c \geq -\sum_{i,j=1}^{m} \sum_{k=1}^{n} c_{i}c_{j}x_{ki}x_{kj}$$

$$(\sum_{i=1}^{m} c_{i})^{2}c \geq -\sum_{i,j=1}^{m} \sum_{k=1}^{n} (c_{i}x_{ki})(c_{j}x_{kj})$$

$$(\sum_{i=1}^{m} c_{i})^{2}c \geq -(\sum_{i}^{m} \sum_{k=1}^{n} c_{i}x_{ki})^{2}$$

$$c \geq -\frac{(\sum_{i=1}^{m} c_{i})^{2}}{(\sum_{i=1}^{m} c_{i})^{2}},$$

$$(1)$$

where $m \in \mathbb{N}, c_i, c_j \in \mathbb{R}, i, j = 1, \dots, m$.

Since the RHS is only with two values of square, the maximum of RHS is 0. Therefore the condition that K(x,x) is a positive semidefinite matrix is $c \ge 0$.

If K_c is symmetric matrix, we can rewrite $K_c(x,z)$ as

$$K_{c}(x,z) = c + \sum_{i=1}^{n} x_{i}z_{i}$$

$$= (\sqrt{c}, x_{1}, x_{2}, \dots, x_{i})(\sqrt{c}, z_{1}, z_{2}, \dots, z_{i})^{T}$$

$$= \phi(x)^{T} \phi(z),$$
(2)

where $\phi : \mathbb{R}^n \to \mathcal{W}$ and Hilbert space \mathcal{W} and for all $c \geq 0$.

Hence, K_c is a positive semidefinite kernel if $c \geq 0$.

3.1.2 9b

By Representer Theorem, we have $f(\mathbf{x}) = \sum_{i=1}^{m} \alpha_i K(\mathbf{x}_i, \mathbf{x})$, when consider the linear regression with kernel under square error lost, we have the error

$$\varepsilon = \sum_{i=1}^{m} \left(\sum_{j=1}^{m} \alpha_{j} K_{c} (\mathbf{x}_{i}, \mathbf{x}) - y_{i} \right)^{2}$$

$$= \sum_{i=1}^{m} \left(\sum_{j=1}^{m} \alpha_{j} c + \sum_{j=1}^{m} \alpha_{j} \sum_{i=1}^{n} (x_{i})^{2} - y_{i} \right)^{2}$$

$$= \sum_{i=1}^{m} \left(\sum_{j=1}^{m} \alpha_{j} c + \sum_{i=1}^{n} (\sum_{j=1}^{m} \alpha_{j} x_{i}^{2} - y_{i}) \right)^{2}$$

$$= \sum_{i=1}^{m} (\sum_{j=1}^{m} \alpha_{j} c)^{2} + \sum_{i=1}^{n} (\sum_{j=1}^{m} \alpha_{j} x_{i}^{2} - y_{i})^{2} + 2c \sum_{i=1}^{m} (\sum_{j=1}^{m} \alpha_{j} \sum_{i=1}^{n} (\sum_{j=1}^{m} \alpha_{j} x_{i}^{2} - y_{i}))$$

Due to $\sum_{i=1}^{n} (\sum_{j=1}^{m} \alpha_j x_i^2 - y_i)^2$ is the error for linear regression under square error lost, the rest terms $f(c, \alpha) = \sum_{i=1}^{m} (\sum_{j=1}^{m} \alpha_j c)^2 + 2c \sum_{i=1}^{m} (\sum_{j=1}^{m} \alpha_j \sum_{i=1}^{n} (\sum_{j=1}^{m} \alpha_j x_i^2 - y_i))$ can be regarded as regularization terms. Hence, α is inverse proportion to c and if c is big enough, α will tend to zero.

3.2 Question 10

If we want our trained linear classifier to simulate a 1-NN on the same dataset, that means, for the test point \mathbf{t} , $f(\mathbf{t})$ is determined by one point (\mathbf{x}_n, y_n) only, where $(\mathbf{x}_n, y) \in \Re^n \times \{-1, 1\}$ and

$$\|\mathbf{x}_n - \mathbf{t}\|^2 \le \|\mathbf{x}_i - \mathbf{t}\|^2 \text{ for } i = 1, ..., m, i \ne n$$

For a fixed β , we have

$$\exp\left(-\beta \|\mathbf{x}_n - \mathbf{t}\|^2\right) \ge \exp\left(-\beta \|\mathbf{x}_i - \mathbf{t}\|^2\right) \text{ for } i = 1, ..., m, i \ne n$$

For a fixed pair (x, \mathbf{t}) , the function K_{β} is a decreasing function on $\beta \in \Re$. $K_{\beta=0} = 1$ and

$$\lim_{\beta \to \infty} K_{\beta} = 0$$

Hence,

$$\forall \epsilon > 0, \exists \beta \in [0, \infty], \text{s.t. } \exp\left(-\beta \|\mathbf{x}_{i\neq n} - \mathbf{t}\|^2\right) < \epsilon, \exp\left(-\beta \|\mathbf{x}_n - \mathbf{t}\|^2\right) = c, \ c > 0$$

This is, there exist a β such that all kernel $K_{\beta}(\boldsymbol{x}, \mathbf{t}) = \exp\left(-\beta \|\boldsymbol{x} - \mathbf{t}\|^2\right)$ tends to zero except $\boldsymbol{x} = \boldsymbol{x}_n$. Let β satisfied the above condition, consider $f(\mathbf{t}) = \sum_{i=1}^{m} \alpha_i K_{\beta}\left(\boldsymbol{x}_i, \mathbf{t}\right)$ and classifier of kernel, we can rewrite into

$$\operatorname{sign}(f(\mathbf{t})) = \operatorname{sign}(\sum_{i=1}^{m} \alpha_{i} K_{\beta} (\mathbf{x}_{i}, \mathbf{t}))$$

$$= \operatorname{sign}(\alpha_{n} K_{\beta} (\mathbf{x}_{n}, \mathbf{t}))$$

$$= \operatorname{sign}(c\alpha_{n})$$
(3)

By linear regression model, we have $\mathbf{y} = \mathbf{K}\alpha^*$ That is,

$$y_n = \sum_{i=1}^{m} \alpha_i K_\beta \left(\mathbf{x}_i, \mathbf{x}_n \right) = a_n$$

Hence, we have

$$sign(f(\mathbf{t})) = sign(cy_n), c > 0$$

where the corresponding training point (\mathbf{x}_n, y_n) satisfied $\|\mathbf{x}_n - \mathbf{t}\|^2 \le \|\mathbf{x}_i - \mathbf{t}\|^2$ for $i = 1, ..., m, i \ne n$ Proved.