บทที่ 8

เรื่อง Feature Selection

Feature Selection

เป็นการคัดเลือก Feature ที่ดี เนื่องจากบางครั้งการสกัด Feature จากสิ่งที่เราสนใจ บาง Feature อาจจะไม่จำเป็น บาง Feature อาจจะดีหรือไม่ดี เราจะมีวิธีการเลือกอย่างไร เราจะ เลือก Feature ที่ดีและสำคัญออกมา เพื่อนำไปทำการจำแนกได้ อย่างถูกต้อง

Feature Selection

Attribute (Feature) Selection

- ประสิทธิภาพของ Classification ขึ้นอยู่กับ แอตทริบิวต์ หรือ feature ที่นำมาใช้
- attribute selection เป็นวิธีการคัดเลือกแอตทริบิวต์ (หรือ feature)
 ที่สำคัญในการสร้างโมเดล
- การทำ attribute selection เหมาะกับ
 - ช้อมูลที่มีจำนวนแอตทริบิวต์เป็นจำนวนเยอะ เช่น text mining
 - ใช้เวลาในการสร้างโมเดลนาน

Feature ที่ดีจะต้อง

- Large between class distance ระยะทางระหว่าง class ห่างกันมาก

- Samall within class variance ค่าความแปรปรวนต่ำ ๆ

Preprocessing

จะทำการปรับ Feature ให้เหมาะสมก่อนที่จะนำไปใช้งาน เนื่องจาก Feature บาง Feature จะแตกต่างกันมาก ซึ่งก็จะมี วิธีการหลากหลายวิธีเช่น Outlier Removal และวิธี Data Normalization เป็นต้น

Outlier removal จะกระทำลบ data บางตัวที่อยู่ใกลจากกลุ่ม
(ใกลจากค่า Mean)

30% Robust ไม่ควรตัดข้อมูลเกิน 30% เพราะถ้าเกินมัน อาจจะตัด Data ที่ดีทิ้งไป

Data Normalization ทำการปรับ data ให้อยู่ในรูปแบบที่ เหมาะสม

	ı		\overrightarrow{xi} – Mi
F1 F2 F3	Class		δi
x x x	W1		\overrightarrow{xi} คือ ข้อมูลแต่ละตัว
x	W2		•
X	W3		Mi คือ ค่าเฉลี่ย (Mean)
ค่าแตกต่างกันมากเกินไป		โดย	δ คือ <u>std.</u> Standard <u>diviation</u>
	$= \sqrt{\frac{1}{n}} \sum_{i=1}^{n} (xi - mi)^2$		
			\sqrt{n}

ı

Feature Selection

เป็นกระบวนการเลือก Feature ที่จะนำมาใช้ในระบบจำแนก (Classifier) โดยฟีเจอร์ที่เราสกัดมาอาจจะมีจำนวนหลาย Feature แต่ เราจะทราบได้อย่างไรว่า Feature ใหนดี หรือไม่ดีและเหมาะสมกับ งานของระบบของเรามากน้อยแค่ไหน ดังนั้นเราควรมีวิธีการวัดหา Feature เพื่อดูว่า Feature ที่เราสกัดมาดีหรือไม่ดี ดังเช่นวิธีการ

- 1. วัดดูความแตกต่างของ Feature ที่ละ Feature แล้วดูระยะทาง
- 2 วัดดูความแตกต่างของ Feature ทั้งกลุ่ม แล้วดูระยะทาง
- 3 วัดดูกวามแตกต่างของ Feature โดยวิธี Wrapper Approach โดยใช้ Model ของ Classification มาใช้

Feature Selection

Filter approach เป็นการคำนวณค่าน้ำหนัก (หรือค่าความสัมพันธ์) ของแต่ละ แอตทริบิวต์และเลือกเฉพาะแอตทริบิวต์ที่สำคัญเก็บไว้

ID	Free	Won	Cash	Call	Service	Туре		ID	Free	Won	100
1	Υ	Υ	Υ	Υ	Υ	spam	compute weight	1	Υ	Υ	S
2	N	Υ	Υ	Υ	N	spam		2	N	Υ	S

แอตทริบิวต์ทั้งหมดใน training data

Attribute Selection: Filter Approach

แอตทริบิวต์หลังจากการเลือก (selection) แล้ว

 Wrapper approach เป็นการคำนวณค่าน้ำหนักโดยใช้โมเดล classification เป็นตัว วัดประสิทธิภาพของแอตทริบิวต์

ID	Free	Won	Cash	Call	Service	Туре
1	Υ	Υ	Υ	Υ	Υ	spam
2	N	Υ	Υ	Υ	N	spam

แอตทริบิวต์ทั้งหมดใน training data

classification model

ID	Free	Won	Туре
1	Υ	Υ	spam
2	N	Υ	spam

Attribute Selection: Wrapper Approach

แอตทริบิวต์หลังจากการเลือก (selection) แล้ว

วิธีที่ 1. วัดดูความแตกต่างของ Feature ที่ละ Feature แล้วดู ระยะทาง

			3~	
	F1 F2	Class	>M1 61	
X1	0.5 0.4 0.6 0.2	1	โดย	м,-ма>0 8
X2	0.6 0.2			かってる みつり は気
X3 X4	0.7 0.1 0.8 0.8	2		1 + 02 AMI MAN
X4	0.7 0.1 0.8 0.8	2	40	
		رجب	Ma Oa	

จะดู Feature แต่ละตัว แล้ววัดระยะจากนั้นเรียงลำดับจาก มากไปน้อย แล้วค่อยเลือกค่าที่มาก ซึ่งจะทำให้ระบบ AI ของ เราสามารถมีประสิทธิภาพสูงขึ้น

วิธีที่ 2. วัดดูความแตกต่างของ Feature ทั้งกลุ่ม แล้วดูระยะทาง เนื่องจากในบางครั้ง Feature มีความสัมพันธ์กัน

	$ F1 F2 Class = \overline{M_1} \overline{M_2} = \overline{M_2} = \overline{M_2}$
X1	0.5 0.4
X1 X2	0.6 0.2
X3 X4	0.7 0.1
X4	0.8 0.8 m2 62 => E2

นำค่า μ,σ ไปคำนวณหาค่า $\overline{\epsilon}$ (corvarience) โดยขนาดของ $\overline{\epsilon}$ ขึ้นอยู่กับ จำนวน Feature จากนั้นหาระยะทาง d_{ij}

วิธีการนี้จะเลือก Feature บางตัวแล้วหา d., ดังเช่นวิธีการ <u>Back</u> ward และ Forward ก็ได้ Class separability measure เป็นการวัดความสัมพันธ์ระหว่าง Class ว่าดีหรือไม่ดี ซึ่งสามารถบอกได้ว่า Feature ใหนดี หรือไม่ดี

- Divergence ความแตกต่าง

$$d_{12} = D_{12} + D_{21}$$

ถ้า <u>d12</u> ยิ่งมาก แสดงว่า Feature ที่ได้มานั้นดี

D12 =
$$\int_{-\infty}^{\infty} f(\vec{x}/w1) \ln \frac{f(\vec{x}/w1)}{f(\vec{x}/w2)} d\vec{x}$$

$$D21 = \int_{-\infty}^{\infty} f(\vec{x}/w2) \ln \frac{f(\vec{x}/w2)}{f(\vec{x}/w1)} d\vec{x}$$

ในกรณี > 2 Class ให้จับคู่ Wi และ Wj ก่อน

$$d_{ij} = D_{ij} + D_{ji}$$

$$= \int_{-\infty}^{\infty} f(\vec{x}/wi) - f(\vec{x}/wj) \ln \frac{f(\vec{x}/wi)}{f(\vec{x}/wj)} d\vec{x}$$

$$d = (d12 + d13 + d23)/3$$

เมื่อต้องการวัดว่า Feature ดีใหมต้องหาค่าของ Average divergence จากสมการจะเป็นการเอา ค่าที่จับคู่ทุกตัวมาทำการหาค่าเฉลี่ย

Average divergence ค่ายิ่งมากยิ่งดี

$$D = \sum_{i=1}^{M} \sum_{j=1}^{M} P(wi) P(wj) dij$$

กรณีหลาย Dimension เราสามารถหา dij ความแตกต่าง ระหว่าง Class แบบกลุ่มจากสมการ

สมมูติเราให้ $\mathbf{N}(\bar{\mu}_i, \overline{\Sigma}_i), \mathbf{N}(\bar{\mu}_j, \overline{\Sigma}_j)$ ดังนั้นในกรณีหลาย Dimension คือ

$$d_{ij} = \frac{1}{2} \operatorname{trace} \left\{ \overline{\Sigma}_{i}^{-1} \overline{\Sigma}_{j} + \overline{\Sigma}_{j}^{-1} \overline{\Sigma}_{i} - 2\overline{I} \right\} + \frac{1}{2} \left(\overline{\mu}_{i} - \overline{\mu}_{j} \right)^{T} \left(\overline{\Sigma}_{i}^{-1} + \overline{\Sigma}_{j}^{-1} \right) \left(\overline{\mu}_{i} - \overline{\mu}_{j} \right)$$

Trace คือ sum ของ Eigen value ของ Matrix (ผลบวกของแนวทแยง)

$$d_{ij} = \frac{1}{2} \left(\frac{\sigma_j^2}{\sigma_i^2} + \frac{\sigma_i^2}{\sigma_j^2} - 2 \right) + \frac{1}{2} (\mu_i - \mu_j)^2 \left(\frac{1}{\sigma_i^2} + \frac{1}{\sigma_j^2} \right)$$

นำไปวัดทีละ Feature แล้วทำการ Ranking

Bhattacharyya distance (B)

เป็นวิธีการหา Distance อีกวิธีการหนึ่ง คล้ายกันกับ divergence คือจะเป็น การหา distance ระหว่าง Class เหมือนกัน วิธีการนี้จะให้ประสิทธิภาพ แต่จะใช้เวลานาน โดย คำนวณ ได้จากสมการ

$$B = \frac{1}{8} (\vec{\mu}_i - \vec{\mu}_j)^T (\frac{\sum_{i=1}^{m} \sum_{j=1}^{m}}{2})^{-1} (\vec{\mu}_i - \vec{\mu}_j) + \frac{1}{2} \ln \frac{|(\sum_{i=1}^{m} \sum_{j=1}^{m})/2|}{\sqrt{|\sum_{i=1}^{m} \sum_{j=1}^{m}}}$$

Divergence(Number_Del,n) = ((1/2) * trace((inv(Cov1) * Cov2) + (inv(Cov2) * Cov1) - (2 * eye(30-Number_Del,30-Number_Del)))) + ((1/2) * ((m1-m2)' * (inv(Cov1) + inv(Cov2)) * (m1-m2)));

COMPUTER ORGANIZATION

วิธี Sequential Backward

(2) ลบไป 1 Feature โดยลบทีละ 1 Feature (เลือกเอาออก 1 Feature จาก Feature ทั้งหมด)

$$\begin{bmatrix} F1 \\ F2 \end{bmatrix}$$
, $\begin{bmatrix} F1 \\ F2 \end{bmatrix}$, $\begin{bmatrix} F1 \\ F3 \end{bmatrix}$, $\begin{bmatrix} F2 \\ F3 \end{bmatrix}$, $\begin{bmatrix} F3 \\ F4 \end{bmatrix}$

คำนวณหา distance ของทุกกลุ่ม แล้วเลือกกลุ่มที่ดีที่สุดโดยใช้ Divergence หรือ

Brattachargga

F1	F2	F3	Class
0.1	0.2	0.2	1
0.3	0.4	0.5	1
1.8	2.1	2.2	2
2.3	2.4	2.5	2

สมมุติกลุ่มที่คำนวณได้ดีสุด คือ
$$egin{array}{c} F1 \ F2 \ F3 \ \end{bmatrix}$$

(3) ลบอีก 1 Feature แล้วจะได้

$$\begin{bmatrix} F1 \\ F2 \end{bmatrix}$$
, $\begin{bmatrix} F1 \\ F3 \end{bmatrix}$, $\begin{bmatrix} F2 \\ F3 \end{bmatrix}$

จากนั้นคำนวณหา <u>distance</u> แต่ละกลุ่ม แล้วเลือกกลุ่มที่ดีสุด

(4) ทำไปจนกว่าจะได้<u>ผลลัพท</u>์ที่คาคว่าคีที่สุดจากการทคสอบซึ่งอาจจะเหลือไม่กี่ Feature ถ้ามันทคสอบกับการทคลองจริงแล้วได้คีที่สุด

រិតិ៍ Sequential Forward

เป็นวิธีการเลือก Feature แบบหนึ่งที่มีลักษณะการทำงานตรงข้ามกับแบบ <u>Backward</u> โดยมี

1. หา C ของแต่ละ Feature แล้วเลือก Feature ที่ดีที่สุด สมมุติ เป็น F1 (อาจจะสุ่มเอาหรือใช้ วิธีการวัดหาค่าที่ดีที่สุด)

$$[F_1]$$

2. จากนั้นเอา F1 ไปจับคู่ที่เหลือ แล้วหา Distance ของทั้งหมด แล้วเลือกชุดที่ดีที่สุด

$$egin{bmatrix} F_1 \ F_2 \end{bmatrix}, egin{bmatrix} F_1 \ F_3 \end{bmatrix}, egin{bmatrix} F_1 \ F_4 \end{bmatrix}$$
สมมูติ

3. จับคู่ที่เหลือ จนกว่าจะครบที่กำหนดหรือได้ผลลัพธ์ที่ดีที่สุด

$$\begin{bmatrix} F_1 \\ F_3 \\ F_2 \end{bmatrix}, \begin{bmatrix} F_1 \\ F_3 \\ F_4 \end{bmatrix}$$

คำนวณค่า Distance ทุกกลุ่ม และให้ทำไปจนกว่าจะได้ Feature ที่ต้องการที่ดีที่สุด

วิธีที่ 3. วัดดูความแตกต่างของ Feature โดยวิธี Wrapper Approach โดยใช้ Model ของ Classification มาใช้

Wrapper approach เป็นการคำนวณค่าน้ำหนักโดยใช้โมเดล classification เป็นตัว วัดประสิทธิภาพของแอตทริบิวต์

ID	Free	Won	Cash	Call	Service	Туре
1	Υ	Υ	Υ	Υ	Υ	spam
2	N	Υ	Υ	Υ	N	spam

ID	Free	Won	Туре
1	Υ	Υ	spam
2	N	Υ	spam

แอตทริบิวต์ทั้งหมดใน training data

Attribute Selection: Wrapper Approach

(selection) แล้ว

Wrapper Approach

- เป็นวิธีการเลือกแอตทริบิวต์ใส่เข้าไปหรือถอดออกมาเพื่อสร้างโมเดล และเลือก set ของแอตทริบิวต์ที่ดีไว้ใช้
 - ใช้แอตทริบิวต์ Free อย่างเดียว

ID	Free	Won	Cash	Туре
1	Υ	Υ	Υ	spam
2	N	Υ	Υ	spam
3	N	N	N	normal
4	N	N	N	normal
5	Υ	N	N	spam
6	Υ	N	N	spam
7	N	Ν	N	normal
8	N	Y	N	spam
9	N	N	N	normal
10	N	N	N	normal

· ใช้แอตทริบิวต์ Won อย่างเดียว

ID	Free	Won	Cash	Туре
1	Υ	Υ	Υ	spam
2	N	Υ	Y	spam
3	N	N	N	normal
4	N	N	N	normal
5	Υ	N	N	spam
6	Υ	N	N	spam
7	N	N	N	normal
8	N	Υ	N	spam
9	N	N	N	normal
10	N	N	N	normal

ID	Won	Туре
1	Υ	spam
2	Υ	spam
3	N	normal
4	N	normal
5	N	spam
6	N	spam
7	N	normal
8	Υ	spam
9	N	normal
10	N	normal

· ใช้แอตทริบิวต์ Cash อย่างเดียว

ID	Free	Won	Cash	Туре	
1	Υ	Υ	Υ	spam	
2	N	Y	Υ	spam	
3	Ν	N	N	normal	
4	N	N	N	normal	
5	Υ	N	N	spam	
6	Y	N	N	spam	
7	N	N	N	normal	
8	N	Y	N	spam	
9	N	N	N	normal	
10	N	N	N	normal	

ID	Cash	Туре
1	Υ	spam
2	Υ	spam
3	N	normal
4	N	normal
5	N	spam
6	N	spam
7	N	normal
8	N	spam
9	N	normal
10	N	normal

· ใช้แอตทริบิวต์ Free และ Won

ID	Free	Won	Cash	Туре
1	Υ	Υ	Υ	spam
2	N	Υ	Y	spam
3	N	N	N	normal
4	N	N	N	normal
5	Υ	N	N	spam
6	Υ	N	N	spam
7	N	N	N	normal
8	N	Υ	N	spam
9	N	N	N	normal
10	N	N	N	normal

ID	Free	Won	Туре
1	Υ	Υ	spam
2	N	Υ	spam
3	N	N	normal
4	N	N	normal
5	Υ	N	spam
6	Υ	N	spam
7	N	N	normal
8	N	Υ	spam
9	N	N	normal
10	N	N	normal

· ใช้แอตทริบิวต์ Free และ Cash

ID	Free	Won	Cash	Туре	
1	Υ	Υ	Υ	spam	
2	N	Υ	Υ	spam	
3	N	N	N	normal	
4	N	N	N	normal	
5	Υ	N	N	spam	
6	Υ	N	N	spam	
7	N	Ν	N	normal	
8	N	Υ	N	spam	
9	N	N	N	normal	
10	N	N	N	normal	

ID	Free	Cash	Туре
1	Υ	Υ	spam
2	N	Υ	spam
3	N	N	normal
4	N	N	normal
5	Υ	N	spam
6	Υ	N	spam
7	N	N	normal
8	N	N	spam
9	N	N	normal
10	N	N	normal

· ใช้แอตทริบิวต์ Won และ Cash

ID	Free	Won	Cash	Туре
1	Υ	Υ	Υ	spam
2	N	Υ	Υ	spam
3	N	N	N	normal
4	N	N	N	normal
5	Υ	N	N	spam
6	Y	N	N	spam
7	N	N	N	normal
8	N	Υ	N	spam
9	N	N	N	normal
10	N	N	N	normal

ID	Won	Cash	Туре
1	Υ	Υ	spam
2	Υ	Υ	spam
3	N	N	normal
4	N	N	normal
5	N	N	spam
6	N	N	spam
7	N	N	normal
8	Υ	N	spam
9	N	N	normal
10	N	N	normal

· ใช้แอตทริบิวต์ Free, Won และ Cash

ID	Free	Won	Cash	Туре
1	Υ	Υ	Υ	spam
2	N	Υ	Υ	spam
3	N	N	N	normal
4	N	N	N	normal
5	Υ	N	N	spam
6	Υ	N	N	spam
7	N	N	N	normal
8	N	Υ	N	spam
9	N	N	N	normal
10	N	N	N	normal

- เพิ่มแอตทริบิวต์ที่ละ 1 แอตทริบิวต์และคัดเลือกเฉพาะแอตทริบิวต์ที่มีความสำคัญเก็บไว้
 - ถ้าแอตทริบิวต์ที่ใส่เพิ่มเข้าไปให้ค่า performance ดีขึ้นก็จะเก็บแอตทริบิวต์นี้ไว้
 - ถ้าแอตทริบิวต์ที่ใส่เพิ่มเข้าไปให้ค่า performance แย่ลงก็จะดึงแอตทริบิวต์นี้ออก มา

Backward Elimination

- เริ่มจากใช้แอตทริบิวต์ทั้งหมดและตัดแอตทริบิวต์ออกไปทีละ 1 ตัว เพื่อคัดเลือกเฉพาะแอตทริบิวต์ที่มีความสำคัญเก็บไว้
 - ถ้าแอตทริบิวต์ที่ตัดออกไปให้ค่า performance ดีขึ้นก็จะตัดแอตทริบิวต์นี้ทิ้ง
 - ถ้าแอตทริบิวต์ที่ตัดออกไปให้ค่า performance แย่ลงก็จะเก็บแอตทริบิวต์นี้ไว้

- เพิ่มแอตทริบิวต์ที่ละ 1 แอตทริบิวต์และคัดเลือกเฉพาะแอตทริบิวต์ที่มีความสำคัญเก็บไว้
 - ถ้าแอตทริบิวต์ที่ใส่เพิ่มเข้าไปให้ค่า performance ดีขึ้นก็จะเก็บแอตทริบิวต์นี้ไว้
 - ถ้าแอตทริบิวต์ที่ใส่เพิ่มเข้าไปให้ค่า performance แย่ลงก็จะดึงแอตทริบิวต์นี้ออก
 มา

· ใช้แอตทริบิวต์ Free อย่างเดียว

ID	Free	Туре
1	Υ	spam
2	N	spam
3	N	normal
4	N	normal
5	Υ	spam
6	Υ	spam
7	N	normal
8	N	spam
9	N	normal
10	N	normal

ทดสอบประสิทธิภาพ ด้วย Cross-validation

accuracy = 80%

· ใช้แอตทริบิวต์ Won อย่างเดียว

ID	Won	Туре
1	Υ	spam
2	Υ	spam
3	N	normal
4	N	normal
5	Ν	spam
6	N	spam
7	N	normal
8	Υ	spam
9	N	normal
10	N	normal

ทดสอบประสิทธิภาพ ด้วย Cross-validation

accuracy = 80%

· ใช้แอตทริบิวต์ Cash อย่างเดียว

ID	Cash	Туре
1	Υ	spam
2	Υ	spam
3	N	normal
4	N	normal
5	N	spam
6	N	spam
7	N	normal
8	N	spam
9	N	normal
10	N	normal

ทดสอบประสิทธิภาพ ด้วย Cross-validation

accuracy = 50%

· ใช้แอตทริบิวต์ Free และ Won

ID	Free	Won	Туре
1	Υ	Υ	spam
2	N	Υ	spam
3	N	N	normal
4	Ν	N	normal
5	Υ	N	spam
6	Υ	N	spam
7	N	N	normal
8	N	Y	spam
9	N	N	normal
10	Ν	N	normal

ทดสอบประสิทธิภาพ ด้วย Cross-validation

accuracy = 60%

· ใช้แอตทริบิวต์ Free และ Won

ID	Free	Won	Туре
1	Υ	-	spam
2	N	1	spam
3	N		normal
4	N		normal
5	Υ		spam
6	Υ		spam
7	N		normal
8	N		spam
9	N		normal
10	N		normal

ทดสอบประสิทธิภาพ ด้วย Cross-validation

accuracy = 60%

ตัดแอตทริบิวต์ Cash ทิ้งเนื่องจากให้ค่าความถูกต้องลดลง

· ใช้แอตทริบิวต์ Free และ Cash

ID	Free	Cash	Туре
1	Υ	Υ	spam
2	N	Υ	spam
3	N	N	normal
4	N	N	normal
5	Υ	N	spam
6	Υ	N	spam
7	N	N	normal
8	N	N	spam
9	N	N	normal
10	N	N	normal

ทดสอบประสิทธิภาพ ด้วย Cross-validation

accuracy = 80%

· ใช้แอตทริบิวต์ Free และ Cash

ID	Free	Cash	Туре
1	Υ		spam
2	N		spam
3	N		normal
4	N		normal
5	Υ		spam
6	Υ		spam
7	N		normal
8	N		spam
9	N		normal
10	N		normal

W

ตัดแอตทริบิวต์ Cash ทิ้งเนื่องจากไม่ได้ทำให้ค่าความถูกต้องเพิ่มขึ้น

Backward Elimination

- เริ่มจากใช้แอตทริบิวต์ทั้งหมดและตัดแอตทริบิวต์ออกไปที่ละ 1 ตัว เพื่อคัดเลือกเฉพาะแอตทริบิวต์ที่มีความสำคัญเก็บไว้
 - ถ้าแอตทริบิวต์ที่ตัดออกไปให้ค่า performance ดีขึ้นก็จะตัดแอตทริบิวต์นี้ทิ้ง
 - ถ้าแอตทริบิวต์ที่ตัดออกไปให้ค่า performance แย่ลงก็จะเก็บแอตทริบิวต์นี้ไว้

Backward Elimination

· ใช้แอตทริบิวต์ Free, Won และ Cash

ID	Free	Won	Cash	Туре
1	Υ	Υ	Υ	spam
2	N	Υ	Υ	spam
3	N	N	N	normal
4	N	N	N	normal
5	Υ	N	N	spam
6	Υ	N	N	spam
7	N	N	N	normal
8	N	Υ	N	spam
9	N	N	N	normal
10	N	N	N	normal

ทดสอบประสิทธิภาพ ด้วย Cross-validation

accuracy = 60%

Backward Elimination

· ใช้แอตทริบิวต์ Won และ Cash (ตัดแอตทริบิวต์ Free ทิ้ง)

ID	Won	Cash	Туре
1	Υ	Υ	spam
2	Υ	Y	spam
3	N	N	normal
4	N	N	normal
5	N	N	spam
6	N	N	spam
7	N	N	normal
8	Υ	N	spam
9	N	N	normal
10	N	N	normal

ตัดแอตทริบิวต์ Free ทิ้งเนื่องจากทำให้ค่าความถูกต้องเพิ่มขึ้น

INT301 COMPUTER ORGANIZATION Work

Lab6: จงเขียนโปรแกรมในการคำนวณหาค่า Distance ของข้อมูล ในแต่ละ Feature ส่วน Data set ให้หาเพื่อทำการทดสอบเอง เช่น 4 Feature จาก Two classdata ที่ทำใน Assignment 1 การ คำนวณ ใช้สมการตัวนี้ แล้วดูว่า Feature ใหนดีที่สุด

$$d_{ij} = \frac{1}{2} \left(\frac{\sigma_j^2}{\sigma_i^2} + \frac{\sigma_i^2}{\sigma_j^2} - 2 \right) + \frac{1}{2} (\mu_i - \mu_j)^2 \left(\frac{1}{\sigma_i^2} + \frac{1}{\sigma_j^2} \right)$$

Matlab

% 1. โหลดข้อมูล Iris

load fisheriris

X = meas; % ข้อมูล

% 2. แบ่งข้อมูลออกเป็นคลาส Setosa และ Versicolor

setosa_data = X(1:50, :); % ข้อมูลคลาส Setosa

versicolor_data = X(51:100, :); % ข้อมูลคลาส Versicolor

% 3. คำนวณค่าเฉลี่ยและความแปรปรวนของแต่ละ feature สำหรับแต่ละคลาส

mean_setosa = mean(setosa_data); % ค่าเฉลี่ยของคลาส Setosa mean_versicolor = mean(versicolor_data); % ค่าเฉลี่ยของ คลาส Versicolor

variance_setosa = var(setosa_data); % ความแปรปรวนของ คลาส Setosa

variance_versicolor = var(versicolor_data); % ความแปรปรวน ของคลาส Versicolor

```
% 4. คำนวณ Divergence ระหว่าง feature โดยใช้ค่าความแตกต่าง
ของค่าความเฉลี่ยและความแปรปรวน
n = size(X, 2); \% จำนวน feature
divergence_features = zeros(1, n); % เวกเตอร์สำหรับเก็บค่า
Divergence ระหว่าง feature
for i = 1:n
  % คำนวณ Divergence ระหว่าง feature i (ให้เปลี่ยนเหมือนโจทย์)
  divergence features(i) = abs(mean setosa(i) -
mean versicolor(i)) / sqrt(variance setosa(i) +
variance versicolor(i));
```

end

% 5. แสดงผลลัพธ์
disp('Divergence ระหว่าง feature (attribute):');
disp(divergence_features);

python

```
import numpy as np
import pandas as pd
# 1. โหลดข้อมูล Iris
from sklearn.datasets import load_iris
data = load_iris()
X = data.data # ข้อมูล
# 2. แบ่งข้อมูลออกเป็นคลาส Setosa และ Versicolor
setosa_data = X[:50, :] # ข้อมูลคลาส Setosa
versicolor_data = X[50:100, :] # ข้อมูลคลาส Versicolor
```



```
# 3. คำนวณค่าเฉลี่ยและความแปรปรวนของแต่ละ feature สำหรับแต่ละคลาส
mean_setosa = np.mean(setosa_data, axis=0) # ค่าเฉลี่ยของคลาส Setosa
mean_versicolor = np.mean(versicolor_data, axis=0) # ค่าเฉลี่ยของคลาส Versicolor
variance_setosa = np.var(setosa data, axis=0) # ความแปรปรวนของคลาส Setosa
variance_versicolor = np.var(versicolor_data, axis=0) # ความแปรปรวนของคลาส Versicolor
# 4. คำนวณ Divergence ระหว่าง feature โดยใช้ค่าความแตกต่างของค่าความเฉลี่ยและความแปรปรวน
n = X.shape[1] # จำนวน feature
divergence features = np.abs(mean setosa - mean versicolor) / np.sqrt(variance setosa +
variance versicolor)
# 5. แสคงผลลัพธ์
```

df = pd.DataFrame({'Feature': data.feature names, 'Divergence': divergence features})

df = df.sort values(by='Divergence', ascending=False)

print(df)