Colle 15A: Dimension finie

Question de cours :

Formule de Grassmann.

Exercice 1:

Un polynôme trigonométrique de degré au plus n est une fonction :

$$T: \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \longmapsto \frac{a_0}{2} + \sum_{k=1}^{n} \left(a_k \cos(kx) + b_k \sin(kx) \right)$$

avec $(a_0, \ldots, a_n, b_1, \ldots, b_n) \in \mathbb{R}^{2n+1}$. On définit alors \mathcal{T}_n l'ensemble des polynômes trigonométriques de degré au plus n.

- 1. Montrer que \mathcal{T}_n est un espace vectoriel.
- 2. Soit $T \in \mathcal{T}_n$. Calculer pour tout $k \in \mathbb{N}$, les intégrales :

$$\int_{-\pi}^{\pi} \sin(kx)T(x)dx \qquad \int_{-\pi}^{\pi} \cos(kx)T(x)dx$$

3. Montrer que la famille composée des fonctions $x \mapsto \cos(kx)$ pour $k \in [0, n]$ et des fonctions $x \mapsto \sin(jx)$ pour $j \in [1, n]$ est une base de \mathcal{T}_n . En déduire la dimension de \mathcal{T}_n .

Exercice 2:

Montrer qu'un sous-espace vectoriel de $\mathbb{R}^{\mathbb{R}}$ ne contenant que des applications de signe constant est de dimension au plus 1.

Valentin Messina

Aux Lazaristes - Maths Sup

Colle 15B: Dimension finie

Question de cours :

Théorème de la base incomplète.

Exercice 1:

Soit E un espace vectoriel de dimension finie, $u \in L(E)$ nilpotent d'indice p et :

$$\begin{array}{cccc} \Phi: & L(E) & \longrightarrow & L(E) \\ & v & \longmapsto & u \circ v - v \circ u \end{array}$$

1. Montrer que, pour tout $n \in \mathbb{N}$ et $v \in L(E)$:

$$\Phi^n(v) = \sum_{k=0}^n (-1)^k \binom{n}{k} u^{n-k} \circ v \circ u^k$$

- 2. Montrer que Φ est nilpotente et donner une majoration de son indice de nilpotence.
- 3. Soit $a \in L(E)$. Montrer qu'il existe $b \in L(E)$ tel que $a \circ b \circ a = a$.
- 4. En déduire l'indice de nilpotence de Φ .

Exercice 2:

Soit $a_0 < a_1 < \cdots < a_N$ et E l'espace des fonctions continues sur $[a_0, a_N]$ et affines par morceaux pour la subdivision $a_0 < a_1 < \cdots < a_N$.

- 1. Montrer que $\dim(E) = N + 1$.
- 2. Déterminer une base de E.

Colle 15C: Dimension finie

Question de cours :

L'image d'une famille génératrice par une application linéaire surjective est une famille génératrice.

Exercice 1:

Soit $Q \in \mathbb{R}_n[X]$ de degré n. On pose, pour tout $i \in [0, n], Q_i(X) = Q(X + i)$.

- 1. Montrer que la famille $(Q, Q', Q'', \dots, Q^{(n)})$ est une base de $\mathbb{R}_n[X]$.
- 2. Montrer que pour tout forme linéaire φ sur $\mathbb{R}_n[X]$, il existe des scalaires $\alpha_0, \dots, \alpha_n$ tels que pour tout $P \in \mathbb{R}_n[X]$,

$$\varphi(P) = \sum_{j=0}^{n} \alpha_j P^{(j)}(0)$$

- 3. Soit φ une forme linéaire sur $\mathbb{R}_n[X]$ tel que $\varphi(Q_0) = \cdots = \varphi(Q_n) = 0$. Montrer que φ est nulle. (Indice : considérer le polynôme $\sum_{j=0}^n \alpha_j Q^{(j)}$)
- 4. En déduire que la famille (Q_0, \dots, Q_n) est une base de $\mathbb{R}_n[X]$.

Exercice 2:

Soit u et v deux endormorphismes d'un espace vectoriel E de dimension finie. Montrer que :

$$|rg(u) - rg(v)| \le rg(u+v)$$

Exercice 3:

Montrer qu'un sous-espace vectoriel F est stable par un endomorphisme u de rang 1 ssi $\mathrm{Im}(u) \subset F$ ou $F \subset \mathrm{Ker}(u)$.