PLANO DE TRABALHO DO BOLSISTA

BOLSISTA 1										
Título do plano de trabalho:	IDENTIFICAÇÃO E CARACTERIZAÇÃO DE PROTEÍNAS REDOX OBTIDAS DE ESPÉCIES NATIVAS DO CARIRI CEARENSE									
Modalidade de bolsa solicitada:	PIBIC									

Objetivos geral e específicos:

O objetivo geral deste trabalho é identificar e caracterizar proteínas redox obtidas de espécies nativas (fauna e flora edáficas) da Região Cariri Cearense, visando a prospecção de biomoléculas com atividade eletrolítica para diferentes compostos de interesse biológico e/ou ambiental, assim como a valorização dos recursos naturais do Bioma Caatinga.

Quanto aos objetivos específicos, pode-se citar:

- (I) Explorar a biodiversidade do Bioma Caatinga, identificando novas espécies ricas em proteínas redox;
- (II) Estudar a interação/reatividade das proteínas (ou extrato proteico) em relação à diferentes moléculas de interesse biológico e ambiental;
- (III) Caracterizar o conteúdo proteico por diferentes técnicas físico-químicas;
- (IV) Estudar estratégias de imobilização do conteúdo proteico sobre superfícies eletródicas, a fim de desenvolver novas plataforma eletroquímicas para biorreconhecimento de moléculas-alvo;
- (V) Testar a performance dos dispositivos então desenvolvidos para a detecção e quantificação de compostos nocivos para a saúde humana e meio ambiente.

Metodologia:

As espécies contempladas neste projeto (micro- e macro-fungos, e plantas nativas) serão coletadas entre os limites da Região Cariri Cearense, mais especificamente na Floresta Nacional do Araripe-Apodi. A amostragem do material será feita em sacos plásticos, devidamente esterilizados e identificados, com posterior acondicionamento dos mesmos em recipientes de poliestireno com gelo. Em seguida, as amostras serão direcionadas à Central Analítica da Universidade Federal do Cariri (UFCA, Campus de Juazeiro do Norte - CE), onde será extraído o conteúdo proteico das espécies (células, extratos ou proteínas isoladas) para a posterior utilização no desenvolvimento dos biossensores eletroquímicos. As proteínas serão identificadas por testes qualitativos padrão, ensaios eletroquímicos, eletroforéticos e cromatográficos, que suportarão estudos computacionais de densidade eletrônica e modelagem molecular. Na configuração dos dispositivos, poderão ser usados suportes eletródicos à base de compósitos poliméricos, carbono vítreo, vidro dopado, metais nobres, nanomateriais, entre outros. A modificação será conduzida por diferentes técnicas de imobilização superficial (drop coating, dip coating, entrapment em membranas ou sistemas híbridos, adsorção em filmes inorgânicos, imobilização em matriz polimérica, etc.), a fim de atribuir maior estabilidade, vida útil e sensibilidade aos dispositivos. A caracterização do material proteico, bem como a modificação das superfícies, será acompanhada por técnicas voltamétricas (perfil característico a cada nova modificação; Potenciostato PGSTAT 101, Metrohm-Autolab),

eletroquímica (alterações na resistência de transferência de carga; Potenciostato μ-Autolab Tipe III, Metrohm-Autolab), microscopia eletrônica (morfologia; microscópio eletrônico de varredura EVO MA 10, Carl Zeiss), entre outras técnicas para caracterização *in situ* ou em solução (composição elementar; difratômetro de raios-X MiniFlex 600, Rigaku; e grupos funcionais; difratômetro de raios-X MiniFlex 600, Rigaku e espectrofotômetro UV-visível Cary 50, Varian).

Os estudos eletroanalíticos serão feitos em solução aquosa, buscando informações referentes ao perfil voltamétrico, intensidade das correntes de pico, potencial necessário para a ocorrência da reação redox, seletividade do processo e menor ruído do sinal analítico. Todas as medidas serão realizadas em triplicata e reportadas como a média aritmética.

Cronograma de atividades:

ATIVIDADE	MÊS											
	1	2	3	4	5	6	7	8	9	10	11	12
Revisão bibliográfica	X	X	X	X	X	X	X	X	X	X	X	X
Coleta de amostras	X	X										
Extração e purificação do conteúdo proteico			X	X								
Caracterização das proteínas isoladas e/ou extratos proteicos				X	X	X						
Imobilização de proteínas sobre eletrodos de trabalho					X	X	X					
Estudo de interação com moléculas de interesse biológico e ambiental						X	X					
Testes de eletroatividades e ensaios eletroanalíticos						X	X	X	X			
Comunicação dos resultados em eventos científicos								X	X	X	X	X
Elaboração e submissão de artigos para periódicos indexados								X	X	X	X	X
Elaboração e envio do Relatório Final Individual											X	X