1. (a) Suppose we have $a, b, c \in \mathbb{Z}$.

Since a-a=0 which is even, we have $a\equiv a \pmod 2$, so reflexivity is proved.

Suppose $a \equiv b \pmod{2}$, then we have $k \in \mathbb{Z}$ that a - b = 2k so that b - a = -2k and $-2k \in \mathbb{Z}$. So we have $b \equiv a \pmod{2}$ and thus the symmetry is proved.

Suppose $a \equiv b \pmod{2}$ and $b \equiv c \pmod{2}$, so we have $k_1, k_2 \in \mathbb{Z}$ that $a-b=2k_1, b-c=2k_2$. So $a-c=(a-b)-(b-c)=2(k_1-k_2)$ that $k_1-k_2 \in \mathbb{Z}$. Thus, $a \equiv c \pmod{2}$. So transitivity is proved. In conclusion, this relation is equivalent.

(b) Since we have $m \equiv n \pmod 2$ and $m' \equiv n' \pmod 2$, so let $k_1, k_2 \in \mathbb{Z}$ that $m - n = 2k_1$ and $m' - n' = 2k_2$. As a result,

$$(m+n) - (m'+n') = (m-m') + (n-n')$$
$$= 2(n-n') + 2(k_1 - k_2)$$
$$= 2(n-n' + k_1 - k_2)$$

Since $n, n', k_1, k_2 \in \mathbb{Z}$, $n - n' + k_1 - k_2 \in \mathbb{Z}$. So we have $m + n \equiv m' + n' \pmod{2}$.

Similarly,

$$mm' - nn' = (n + 2k_1)(n' + 2k_2) - nn'$$
$$= nn' + 2k_1n' + 2k_2n + 4k_1k_2 - nn'$$
$$= 2k_1n' + 2k_2n + 4k_1k_2$$

So we proved that $mm' \equiv nn' \pmod{2}$.

(c) For all $x \in U$, if $x \in A$ and $x \in B$ then $x \in A \cap B$ so that

$$\chi_{A\cap B}(x) = 1 = \chi_A(x)\chi_B(x)$$

if $x \notin A$ or $x \notin B$, then

$$\chi_{A \cap B}(x) = 0 = \chi_A(x)\chi_B(x)$$

so we have

$$\chi_{A \cap B}(x) \equiv \chi_A(x)\chi_B(x) \pmod{2}$$

Suppose $x \in A\Delta B$, then $x \in A$ xor $x \in B$ so

$$\chi_{A\Delta B}(x) = 1 = 1 + 0 = \chi_A(x) + \chi_B(x)$$

Suppose $x \notin A\Delta B$, then $x \notin B$ and $x \notin A$, then so

$$\chi_{A\Delta B}(x) = 0 = 0 + 0 = \chi_A(x) + \chi_B(x)$$

or $x \notin A\Delta B$, then $x \in B$ and $x \in A$, then so

$$\chi_{A\Delta B}(x) = 0$$

$$\chi_A(x) + \chi_B(x) = 1 + 1 = 2$$

So we have

$$\chi_{A\Delta B}(x) \equiv \chi_A(x) + \chi_B(x) \pmod{2}$$

- 2. (1). Since f, g injective, for all $x_1, x_2 \in A$, $x_1 \neq x_2$ implies $f(x_1) \neq f(x_2)$ so $g(f(x_1)) \neq g(f(x_2))$, so we conclude that $g \circ f$ is injectives.
 - (2). Since f, g surjective for all $z \in C$ there is $y \in B$ that g(y) = z and for all $y \in B$ there is $x \in A$ that f(x) = y. So for all $z \in C$ there is $x \in A$ that g(f(x)) = z. We conclude that $g \circ f$ is surjective.
 - (3). Suppose f is not injective then there exist $x_1, x_2 \in A$ that $f(x_1) = f(x_2)$ so $g(f(x_1)) = g(f(x_2))$ which means $g \circ f$ is not injective. So we conclude that f must be injective.
 - (4). Suppose $g \circ f(x) = x$, $f(x) = \sqrt{(x)}$ and $g(x) = x^2$, we see that $g \circ f$ is injective but not g. So we conclude that g is not necessarily injective.
 - (5). Let $A=\{0\}, B=\{0,1\}$ and f(0)=0, g(x)=0, so $g\circ f$ is surjective, but f is not surjective.
 - (6). If g is not surjective, then there is $z \in C$ that no $y \in B$ that g(y) = z. Since for all $x \in A$, $f(x) \in B$. So there is no $x \in A$ that g(f(x)) = z. So we conclude that g must be surjective.
- 3. (a)

$$f(x) = \begin{cases} x/2 & \text{if } x \text{ is even} \\ -\frac{x+1}{2} & \text{otherwise} \end{cases}$$

- (b) Suppose we have countable sets A, B, then we can construct a bijection between A and odd numbers and between B and even numbers. Then we see that there is a bijection between the union of A and B to the union of odd numbers and between B and even numbers, which is \mathbb{Z} . So we conclude that the union of two countable sets is countable.
- 4. Base case: When k=1, $A^k=A,$ which has $1^k=1$ element. Suppose when k=m, $|A^k|=n^m.$ Then when k=m+1, $|A^{m+1}|=|A\times A^m|=|A||A^m|=n\cdot n^m=n^{m+1}.$ In conclusion, $|A^k|=n^k$ for all $k\geq 1.$

5. (1).

$$V \in \mathcal{P}(A) \cap \mathcal{P}(B)$$

$$\Leftrightarrow \mathcal{P}(A) \lor V \in \mathcal{P}(B)$$

$$\Leftrightarrow V \subseteq A \lor V \subseteq B$$

$$\Leftrightarrow V \subseteq A \cap \subseteq B$$

$$\Leftrightarrow V \in \mathcal{P}(A \cap B)$$

So
$$\mathcal{P}(A) \cap \mathcal{P}(B) = \mathcal{P}(A \cap B)$$
.

- (2). Let $A = \{1, 2\}, B = \{2, 3\}, \text{ so } A \cap B = \{1, 2, 3\}.$
- (3). Note that $A \cap B = \{1, 2, 3\} \not\subseteq A$ and $A \cap B = \{1, 2, 3\} \not\subseteq B$. So $A \cap B \notin \mathcal{P}(A) \land A \cap B \notin \mathcal{P}(B)$. Hence, $A \cap B \notin \mathcal{P}(A) \cup \mathcal{P}(B)$. So $\mathcal{P}(A \cup B) \not\subseteq \mathcal{P}(A) \cup \mathcal{P}(B)$.

We conclude that this is not necessarily correct.