OBM 2019

Guilherme Zeus Moura zeusdanmou@gmail.com

▶ PROBLEMA 1

Sejam ω_1 e ω_2 duas circunferências de centros C_1 e C_2 , respectivamente, que se cortam em dois pontos P e Q. Suponha que a circunferência circunscrita ao triângulo PC_1C_2 intersecte ω_1 novamente em $A \neq P$ e ω_2 novamente em $B \neq P$. Suponha ainda que Q está no interior do triângulo PAB. Demonstre que Q é o incentro do triângulo PAB.

▶ PROBLEMA 2

São dadas a reta real e os únicos pontos marcados 0 e 1. Podemos realizar quantas vezes quisermos a seguinte operação: tomamos dois pontos já marcados a e b e marcamos o simétrico de a em relação a b. Seja f(n) a quantidade mínima de operações necessárias para marcar na reta real o número n. Por exemplo, f(0) = f(1) = 0 e f(-1) = f(2) = 1. Encontre f(n).

▶ PROBLEMA 3

Seja $\mathbb{R}_{>0}$ o conjunto dos números reais positivos. Determine todas as funções $f:\mathbb{R}_{>0}\to\mathbb{R}_{>0}$ tais que

$$f(xy + f(x)) = f(f(x)f(y)) + x$$

para todos os reais positivos x e y.

► PROBLEMA 4

Prove que para todo inteiro positivo m existe um inteiro positivo n_m tal que para todo inteiro positivo $n \ge n_m$, exitem inteiros positivos (não necessariamente distintos) a_1, a_2, \ldots, a_n tais que

$$\frac{1}{a_1^m} + \frac{1}{a_2^m} + \dots + \frac{1}{a_n^m} = 1.$$

- ▶ PROBLEMA 5 (a) Prove que dadas constantes a, b com 1 < a < 2 < b, não existe partição do conjunto dos inteiros positivos em dois subconjuntos A_0 , A_1 tal que: se $j \in \{0,1\}$ e m, n pertencem a A_j , então n/m < a ou n/m > b.
 - (b) Determine todos os pares de reais (a, b) com 1 < a < 2 < b para os quais vale a seguinte propriedade: existe uma partição do conjunto dos inteiros positivos em três subconjuntos A_0 , A_1 , A_2 tal que se $j \in \{0, 1, 2\}$ e m, n pertencem a A_j , então n/m < a ou n/m > b.

▶ PROBLEMA 6

Seja $A_1A_2A_3A_4A_5$ um pentágono convexo inscritível com $\angle A_i + \angle A_{i+1} > 180^\circ$ para i=1,2,3,4,5, (índices módulo 5 em todo o problema). Defina B_i como a interseção das retas $A_{i-1}A_i$ e $A_{i+1}A_{i+2}$, formando uma estrela. Os circuncírculos dos triângulos $A_{i-1}B_{i-1}A_i$ e $A_iB_iA_{i+1}$ se cortam novamente em $C_i \neq A_i$, e os circuncírculos dos triângulos $B_{i-1}A_iB_i$ e $B_iA_{i+1}B_{i+1}$ se cortam novamente em $D_i \neq B_i$. Prove que as dez retas A_iC_i , B_iD_i , i=1,2,3,4,5, têm um ponto em comum.