Disciplina: Matemática Discreta

Lista de Exercícios: Conectivos e operadores lógicos no Excel

Profa.: Patrícia P Lourencano

1) Quais das frases a seguir são proposições?

- a) A Lua é feita de queijo verde.
- b) Ele é, certamente, um homem alto.
- c) Dois é um número primo.
- d) O jogo vai acabar logo?
- e) Os juros vão subir ano que vem. f) Os juros vão descer ano que vem. g) x²-4=0.

2) Dados os valores lógicos A verdadeiro, B falso e C verdadeiro, qual o valor lógico de cada uma das seguintes fórmulas?

- a) $A \land (B \lor C)$
- b) $(A \land B) \lor C$ c) $(A \land B) \lor C$
- d) $A' \lor (B' \land C')$

3) Qual o valor lógico de cada uma das proposições a seguir?

- a) 8 é par ou 6 é ímpar.
- b) 8 é par e 6 é ímpar. c) 8 é ímpar ou 6 é ímpar.
- d) 8 é ímpar e 6 é ímpar.
- e) Se 8 for ímpar, então 6 é ímpar.
- f) Se 8 for par, então 6 é ímpar.
- g) Se 8 for ímpar, então 6 é par.

h) Se 8 for ímpar e 6 for par, então 8<6.

4) Sejam as proposições p: João joga futebol e q: Maria é alta. Escrever na linguagem usual as seguintes proposições:

a.
$$p \vee q$$

d.
$$p' \wedge q'$$

b.
$$p \wedge q$$

c.
$$p \wedge q'$$

5) Dadas as proposições p: Maria é bonita e q : Maria é elegante, escrever na linguagem simbólica as seguintes proposições:

- a. Maria é bonita e elegante.
- b. Maria é bonita, mas não é elegante.
- c. Maria não é bonita nem elegante.

6) Simbolizar as seguintes proposições matemáticas:

- a. x é maior que 5 e menor que 7 ou x não é igual a 6.
- b. x é maior que 5, ou x é menor que 1 e maior que 0.

7) Determinar o valor lógico de cada uma das sentenças:

a.
$$3 + 2 = 7 e 5 + 5 = 10$$

e.
$$0 > 1$$

e.
$$0 > 1 \wedge \sqrt{3}$$
 é irracional

b.
$$2 + 7 = 9 e 4 + 8 = 12$$

f.
$$(\sqrt{-1})^2 = -1 \wedge \pi$$
 é racional

c.
$$\sin \pi = 0 = \cos \pi = 0$$

g.
$$\sqrt{2}$$
 < 1 \wedge $\sqrt{5}$ é racional.

d.
$$1 > 0 \land 2 + 2 = 4$$

- 8) Determinar o valor lógico de cada uma das seguintes proposições:
 - a. Roma é capital da França ou tg $45^0 = 1$.
- b. Fleming descobriu a penicilina ou sen $30^0 = 1/5$.

Disciplina: Matemática Discreta

Lista de Exercícios: Conectivos e operadores lógicos no Excel

- c. $\sqrt{5}$ < 0 ou Londres é capital da Itália.
- d. $2 > \sqrt{5}$ ou Recife é a capital do Ceará.
- e. $2 = 2 \lor \text{ sen } 90^0 \ne \text{ tg } 45^0$.

Profa.: Patrícia P Lourencano

f.
$$5^2 = 10 \lor \pi$$
 é racional.

g.
$$3 \neq 3 \vee 5 \neq 5$$
.

h.
$$\sqrt{-4} = 2 \sqrt{-1} \lor 13$$
 é um número primo.

i.
$$-5 < -7 \lor |-2| = -2$$
.

j.
$$|-5| < 0$$
 \vee tg $\frac{\pi}{1} < 1$

- 9) Determinar o valor lógico de cada uma das seguintes proposições:
 - a) Não é verdade que 12 é um número ímpar.
 - b) Não é verdade que Belém é capital do Pará.
 - c) É falso que 2 + 3 = 5 e 1 + 1 = 3.
- 10) Sabendo-se que os valores lógicos da proposições p e q são respectivamente V e F, determinar o valor lógico (V ou F) de cada uma das seguintes proposições:

a)
$$(p \leftrightarrow \sim q) \rightarrow \sim p \land q$$

b)
$$\sim (p \vee \sim q)$$

c)
$$\sim (p \rightarrow \sim q)$$

d)
$$p \land q \rightarrow p \lor q$$

e)
$$\sim p \rightarrow (q \rightarrow p)$$

$$f$$
) $(p \rightarrow q) \rightarrow p \land q$

g)
$$q \leftrightarrow \sim q \land p$$

h)
$$(p \leftrightarrow \sim q) \leftrightarrow q \rightarrow p$$

i)
$$\sim (\sim p \leftrightarrow q)$$

$$\mathbf{j}$$
) $\sim p \vee q \rightarrow p$

k)
$$(p \lor q) \land \sim (p \land q)$$

1)
$$(p \land \neg q) \lor (\neg p \land q)$$

$$\mathbf{m}) ~ \sim ((p \vee q) ~ \wedge (\sim p \vee \sim q))$$

n)
$$\sim q \vee p \leftrightarrow q \rightarrow \sim p$$

$$\mathbf{o}) \quad (p \vee q) \wedge \sim p \rightarrow (q \rightarrow p)$$

11) Sabendo-se que os valores lógicos da proposições $p,\ q\ e\ r\ são$ respectivamente $F,\ V\ e\ F$, determinar o valor lógico (V ou F) de cada uma das seguintes proposições:

- a) $p \vee (q \wedge r)$
- **b**) $(p \land \neg q) \lor r$
- c) $\sim p \wedge r \rightarrow q \vee \sim r$
- d) $p \rightarrow r \leftrightarrow q \lor \sim r$

- e) $p \rightarrow (p \rightarrow \sim r) \leftrightarrow q \lor r$
- f) $(p \land q \rightarrow r) \lor (\sim p \leftrightarrow q \lor \sim r)$
- g) $(p \lor q) \land (p \lor r)$
- **h**) $(p \lor \sim r) \land (q \lor \sim r)$
- 12) Sabendo-se que os valores lógicos das proposições p e q são verdadeiros e que as proposições r e s, são falsas, determinar o valor lógico (V ou F) de cada uma das seguintes proposições:
 - a) $r \lor s \rightarrow q$
 - **b**) $q \leftrightarrow p \land s$
 - c) $p \rightarrow \sim (r \land s)$
 - d) $(q \rightarrow s) \rightarrow r$
 - e) $\sim r \rightarrow p \land q$

- f) $(q \lor r) \land (p \lor q)$
- g) $(r \rightarrow s) \land (p \land q)$
- **h**) $(p \land \neg q) \lor r$
- i) $\sim ((r \rightarrow p) \lor (s \rightarrow q))$
- 13) Sabendo que V(p)=V(r)=V e V(q)=V(s)=F, determinar o valor lógico (V ou F) de cada uma das seguintes proposições:
 - a) $p \land q \leftrightarrow r \land \sim s$

 - **b**) $(p \leftrightarrow q) \rightarrow (s \leftrightarrow r)$ c) $(\sim p \rightarrow q) \rightarrow (s \rightarrow r)$

- d) $(p \land q) \lor s \rightarrow (p \leftrightarrow s)$
- e) $(q \land r) \land s \rightarrow (p \leftrightarrow s)$
- f) $p \rightarrow \sim q \leftrightarrow (p \lor r) \land s$
- 14) Escreva a negação de cada fórmula a seguir:
 - a) Se a comida é boa, então o serviço é excelente.
 - b) Ou a comida é boa, ou o serviço é excelente.
 - c) Ou a comida é boa e o serviço é excelente, ou então está caro.
 - d) Nem a comida é boa, nem o serviço é excelente.
- 15) Sejam A, B e C as seguintes proposições:
 - A: Rosas são vermelhas.
 - B: Violetas são azuis.
 - C: Açúcar é doce.

Escreva as proposições compostas a seguir em notação simbólica:

- a) Rosas são vermelhas e violetas são azuis.
- b) Rosas são vermelhas, e ou bem violetas são azuis ou bem açúcar é doce.
- c) Sempre que violetas são azuis, rosas são vermelhas e açúcar é doce.
- d) Rosas são vermelhas apenas se violetas não forem azuis e se açúcar for amargo.
- 16) Use A, B e C como no exercício 15 para escrever as seguintes proposições compostas em português:

- $\begin{array}{lll} a) \ B \rightarrow C' & b) \ B' \ \lor (A \land C) & c) \ (C \land A') \ \lor B & d) \ C \rightarrow (A' \ \lor B) \\ e) \ (B \ \lor C')' \ \land A & f) \ A \ \lor (B \rightarrow C') & g) \ (A \land B) \ \lor C' \end{array}$

Disciplina: Matemática Discreta Profa.: Patrícia P Lourencano

- 17) Escreva cada uma das proposições compostas a seguir em notação simbólica usando letras de proposição para denotar as componentes:
 - a) Se o cavalo estiver cansado, o cavaleiro vencerá.

1ª. Lista de Exercícios: Conectivos e operadores lógicos no Excel

- b) O cavaleiro vencerá apenas se o cavalo estiver descansado e a armadura for forte.
- c) Um cavalo descansado é uma condição necessária para o cavaleiro vencer.
- d) O cavaleiro vencerá se, e somente se, a armadura for forte.
- 18) Construa tabelas-verdade para as fórmulas a seguir. Note quaisquer tautologias ou contradições:

a)
$$(p \rightarrow q) \leftrightarrow \sim p \lor q$$

b)
$$(p \land q) \lor r \rightarrow p \land (q \lor r)$$

c)
$$p \land \sim (\sim p \lor \sim q)$$

d)
$$p \land q \rightarrow \sim p$$

e)
$$(p \rightarrow q) \rightarrow [(p \lor r) \rightarrow (q \lor r)]$$
 f) $p \rightarrow (q \rightarrow p)$

f)
$$p \rightarrow (q \rightarrow p)$$

g)
$$p \land q \leftrightarrow \sim q \lor \sim p$$

h)
$$(p \lor \sim q) \land \sim (p \land q)$$

i)
$$[(p \lor q) \land \sim r] \rightarrow \sim p \lor r$$

19) Verifique, com a construção de tabelas verdade, quais das fórmulas a seguir são tautologias:

a)
$$A \vee A'$$

b)
$$(A')' \leftrightarrow A$$

c)
$$A \wedge B \rightarrow B d)A \rightarrow A \vee B$$

e)
$$(A \vee B)' \leftrightarrow A' \wedge B'$$
 (Leis de De Morgan)

f)
$$(A \wedge B)' \leftrightarrow A' \vee B'$$

20) Simplifique por Cálculo Dedutivo (Cálculo Proposicional), as seguintes fórmulas:

a)
$$(p \rightarrow p) \land (\sim p \rightarrow \sim p)$$
 b) $p \land \sim (p \lor \sim q)$

b)
$$p \wedge \sim (p \vee \sim q)$$

c)
$$(p \lor q) \lor (\sim p \lor \sim q)$$
 d) $(\sim p \land q) \land (p \land \sim q)$

$$d)(\sim p \wedge q) \wedge (p \wedge \sim q)$$

21) Elabore o código no Excel, que dada a idade de um nadador, classifique-o em uma das seguintes categorias (Tem um exemplo ao lado da tabela):

•	Infantil A: 5 a 7 anos;	Nadador	Idade	Classificação
•	Infantil B: 8 a 10 anos;	João	2	Não pode competir
•	Juvenil A: 11 a 13 anos;	Pedro	10	Infantil B
•	Juvenil B: 14 a 17 anos;	Claúdia	32	Sênior
•	Sênior: maiores de 18 anos.	Júlia	6	Infantil A

Escreva o teste que você fez no Excel:

Se(idade<=5;"Não pode competir";Se(idade<=7; "Infatil A";...

22) Um Banco concederá um crédito especial aos seus clientes, variável com o saldo médio no último ano. Faça um programa no Excel, que leia o saldo médio de um cliente e calcule o valor do crédito de acordo com a tabela abaixo. Mostre uma mensagem informando o saldo médio e o valor do crédito. Escreva a linha de teste, que você fez no Excel.

Saldo médio	Percentual
-------------	------------

de 0 a 200,00	nenhum crédito (crédito = 0)
de 201,00 a 400,00	20% do valor do saldo médio
de 401,00 a 600,00	30% do valor do saldo médio
acima de 600,00	40% do valor do saldo médio

Exemplo:

Cliente	Saldo Médio		Crédito Disponível	
Ana	R\$	100,00	Nenhu	um Crédito
Bianca	R\$	350,00	R\$	70,00
Bernar	-R\$	100,00	Nenhu	ım Crédito
Carlito	R\$	652,50	R\$	261,00
Sebastiana	R\$ 1	1.253,42	R\$	501,37
Gil	R\$	235,00	R\$	47,00

23) Um vendedor necessita de um programa que calcule o preço total devido por um cliente. O programa deve receber o código de um produto e a quantidade comprada e calcular o preço total, usando a tabela abaixo. Mostrar uma mensagem no caso de código inválido.

Código Produto	Preço Unitário
1001	R\$ 5,32
1324	R\$ 6,45
6548	R\$ 2,37
987	R\$ 5,32
7623	R\$ 6,45

Exemplo:

Cliente: José

Código	Quantidade comprada	Valor Total
1324	45	R\$ 290,25
987	67	R\$ 356,44
6548	102	R\$ 241,74
100	32	Código Inválido
7623	80	R\$ 516,00
Total	326	R\$ 1.404,43