浙江大学 2009 - 2010 学年春季学期 《 微积分 II 》课程期末考试试卷

- 一、(每题6分,共18分)
- 1. 设 $|\vec{a}| = 2$, $|\vec{b}| = 3$, 求 $(\vec{a} \times \vec{b}) \cdot (\vec{a} \times \vec{b}) + (\vec{a} \cdot \vec{b})(\vec{a} \cdot \vec{b})$.
- 2. 验证两直线 L_1 : $\begin{cases} x+2y=0 \\ y+z+1=0 \end{cases}$ 与直线 L_2 : $\frac{x-1}{2} = \frac{y}{-1} = \frac{z-1}{1}$ 平行,并求经过此两直线的平面方程.
- 3. 设常数 a = b 不同时为零,直线 L 为 $\begin{cases} x = az \\ y = b \end{cases}$,求 L 绕 z 轴旋转一周生成的旋转曲面方程. 并说明① $a = 0, b \neq 0$,② $a \neq 0, b = 0$,③ $ab \neq 0$ 三种情形时该曲面的名称.
- 二、(每题6分,共24分)
- 4.设函数u(x,y) 具有二阶连续偏导数,且 $du = \frac{(x+2y)dx + aydy}{(x+ay)^2}$, 求常数 a 的值.
- 5. 设函数 f(u) 具有连续的导数, 函数 z=z(x,y) 是由方程 $y+z=xf(z^2-y^2)$ 确定的可微函数, 并设式子中出现的分母不为零, 求 $x\frac{\partial z}{\partial x}+z\frac{\partial z}{\partial y}$.
- 6. 设常数 a>0, b>0, c>0, (1)求椭球面 $\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1$ 在其上点 $M(\frac{a}{2},\frac{b}{2},\frac{c}{\sqrt{2}})$ 处的指向椭球内部的单位法向量 \vec{n}^0 ; (2) 求三元函数 $u=1-(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2})$ 在点 M 处沿 \vec{n}^0 方向的方向导数.
- 7. 设函数 z = f(x, y) 具有二阶连续偏导数,且满足 $4\frac{\partial^2 z}{\partial x^2} + 12\frac{\partial^2 z}{\partial x \partial y} + 5\frac{\partial^2 z}{\partial y^2} = 0$,请确 定常数 b 的值,使上式在变换 u = x 2y, v = x + by 下,可简化为 $\frac{\partial^2 z}{\partial u \partial v} = 0$.

- 三、(每题6分,共18分)
- 8. 计算 $\int_0^1 dy \int_{\sqrt{y}}^1 \sqrt{x^4 y^2} dx$.
- 9. 求半圆 $D = \{(x, y) | x^2 + y^2 \le R^2, y \ge 0\}$ 的形心的纵坐标.
- 10. 以锥面 $z = \sqrt{x^2 + y^2}$ 为顶, 以平面 z = 0上的区域 $D = \{(x, y) | 0 \le y \le x, x^2 + y^2 \le 2x\}$ 为底, 母线平行于 z 轴的柱面为侧面的立体记为 Ω ,试用二重积分计算此 Ω 的体积.
- 四、(每题10分,共40分)
- 11. 计算二重积分 $I = \iint_D r^2 \sin \theta \cdot \sqrt{1 r^2 \cos^2 \theta + r^2 \sin^2 \theta} \, dr d\theta$, 其中 D 在极坐标系统中表示为 $D = \{ (r, \theta) | 0 \le r \le \frac{1}{\cos \theta}, 0 \le \theta \le \frac{\pi}{4} \}$.
- 12. 设点 P(x, y, z) 为曲面 $S: x^2 + y^2 + z^2 yz = 1$ 上的动点, 并设 S 在点 P 处的切平面 总与 xOy 平面垂直. (1) 求点 P 的轨线 C 的方程; (2) 求 C 在 xOy 平面上的投影线的方程; (3) 说明 C 是一条平面曲线, 并求此 C 在它所在的平面上围成的区域的面积.
- 13. (1)设点 (x, y, z) 位于第一 象限的球面 $x^2 + y^2 + z^2 = 5R^2$ 上, 其中 R > 0 为确定的数, 求 $w = \ln x + \ln y + 3\ln z$ 的最大值.
- (2) 证明: 对于任意正数 a,b,c ,成立不等式 $abc^3 \le 27(\frac{a+b+c}{5})^5$.
- 14. 设平面区域 $D = \{(x, y) | 0 \le x \le 2, 0 \le y \le 2\}$, (1) 计算积分 $A = \iint_D |xy 1| d\sigma$.
- (2) 设 f(x,y) 在 D 上连续,且 $\iint_D f(x,y) d\sigma = 0$, $\iint_D xy f(x,y) d\sigma = 1$,证明存在点 $(\xi,\eta) \in D$,使 $|f(\xi,\eta)| A \ge 1$.

参考解答:

1.
$$(\vec{a} \times \vec{b}) \cdot (\vec{a} \times \vec{b}) + (\vec{a} \cdot \vec{b})(\vec{a} \cdot \vec{b}) = |(\vec{a} \times \vec{b})|^2 + (\vec{a} \cdot \vec{b})^2$$

= $|\vec{a}|^2 |\vec{b}|^2 \sin^2 \theta + |\vec{a}|^2 |\vec{b}|^2 \cos^2 \theta = |\vec{a}|^2 |\vec{b}|^2 = 2^2 \times 3^2 = 36$

2.
$$: L_1 : \frac{x}{2} = \frac{y}{-1} = \frac{z+1}{1}, \quad L_2 : \frac{x-1}{2} = \frac{y}{-1} = \frac{z-1}{1}, \quad \therefore \quad L_1 // L_2.$$

解 1. 设过 L_1 的平面束方程: $\lambda(x+2y)+y+z+1=0$, 代入 L_2 上的一个点 (1,0,1),

得 $\lambda = -2$, 故得所求平面方程 2x + 3y - z = 1.

解 2. 分别在直线 L_1 , L_2 上取点 $P_1(0,0,-1)$, $P_2(1,0,1)$, 故所求平面法矢量 $\vec{n} = \overrightarrow{P_1P_2} \times \vec{l_2} = \{1,0,2\} \times \{2,-1,1\} = \{2,3,-1\}$

故所求平面方程 2x+3y-(z+1)=0, 即 2x+3y-z=1.

3. 设旋转曲面上任意一点 (x, y, z) , 绕 z 轴旋转到直线 L 上的一点 (x_1, y_1, z) , 故有 $x_1 = az$, $y_1 = b$, $x^2 + y^2 = x_1^2 + y_1^2$,

由此得旋转曲面方程 $x^2 + y^2 = a^2 z^2 + b^2$

- ① $a = 0, b \neq 0$ 时 $x^2 + y^2 = b^2$ 为圆柱面; ② $a \neq 0, b = 0$ 时 $x^2 + y^2 = a^2 z^2$ 为圆锥面;
- ③ $ab \neq 0$ 时 $x^2 + y^2 a^2 z^2 = b^2$ 为单叶双曲面.

4.
$$\frac{\partial u}{\partial x} = \frac{(x+2y)}{(x+ay)^2}$$
, $\frac{\partial u}{\partial y} = \frac{ay}{(x+ay)^2}$, $\frac{\partial^2 u}{\partial x \partial y} = \frac{2x(1-a)-2ay}{(x+ay)^3}$, $\frac{\partial^2 u}{\partial y \partial x} = \frac{-2ay}{(x+ay)^3}$, \cdots $u(x,y)$ 具有二阶连续偏导数, $\therefore \frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial y \partial x}$, 由此解得 $a=1$.

5. 解 1. 方程两边求全微分 dy+dz=f dx+xf'(2zdz-2ydy),

$$\exists dz = \frac{1}{1 - 2xzf'} [f dx - (1 + 2xyf')dy], \quad \therefore \frac{\partial z}{\partial x} = \frac{f}{1 - 2xzf'}, \quad \frac{\partial z}{\partial y} = -\frac{1 + 2xyf'}{1 - 2xzf'}$$

则
$$x\frac{\partial z}{\partial x} + z\frac{\partial z}{\partial y} = \frac{xf - z - 2xyzf'}{1 - 2xzf'}$$
, 或代入 $xf = y + z$, 有 $x\frac{\partial z}{\partial x} + z\frac{\partial z}{\partial y} = y$.

解 2. 方程两边对
$$x$$
 求偏导, $\frac{\partial z}{\partial x} = f + xf' 2z \cdot \frac{\partial z}{\partial x}$, 解得 $\frac{\partial z}{\partial x} = \frac{f}{1 - 2xzf'}$,

方程两边对 y 求偏导,
$$1 + \frac{\partial z}{\partial y} = xf'(2z \cdot \frac{\partial z}{\partial x} - 2y)$$
, 解得 $\frac{\partial z}{\partial y} = -\frac{1 + 2xyf'}{1 - 2xzf'}$, 则同上.

6. (1)
$$\vec{n} = -\left\{\frac{2x}{a^2}, \frac{2y}{b^2}, \frac{2z}{c^2}\right\}_M = -\left\{\frac{1}{a}, \frac{1}{b}, \frac{\sqrt{2}}{c}\right\}, \quad \therefore \vec{n}^0 = -\left\{\frac{1}{a}, \frac{1}{b}, \frac{\sqrt{2}}{c}\right\} / \sqrt{\frac{1}{a^2} + \frac{1}{b^2} + \frac{2}{c^2}}.$$

$$(2) \frac{\partial u}{\partial \vec{n}^0} = \{ \frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial u}{\partial z} \}_M \cdot \vec{n}^0$$

$$= -\{\frac{1}{a}, \frac{1}{b}, \frac{\sqrt{2}}{c}\} \cdot [-\{\frac{1}{a}, \frac{1}{b}, \frac{\sqrt{2}}{c}\} \bigg/ \sqrt{\frac{1}{a^2} + \frac{1}{b^2} + \frac{2}{c^2}}] = \sqrt{\frac{1}{a^2} + \frac{1}{b^2} + \frac{2}{c^2}} \; .$$

7.
$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} + \frac{\partial z}{\partial v}, \qquad \frac{\partial^2 z}{\partial x^2} = \frac{\partial^2 z}{\partial u^2} + 2 \frac{\partial^2 z}{\partial u \partial v} + \frac{\partial^2 z}{\partial v^2},$$

$$\frac{\partial z}{\partial y} = -2 \frac{\partial z}{\partial u} + b \frac{\partial z}{\partial v}, \qquad \frac{\partial^2 z}{\partial y^2} = 4 \frac{\partial^2 z}{\partial u^2} - 4b \frac{\partial^2 z}{\partial u \partial v} + b^2 \frac{\partial^2 z}{\partial v^2},$$

$$\frac{\partial^2 z}{\partial x \partial y} = -2 \frac{\partial^2 z}{\partial u^2} + (b - 2) \frac{\partial^2 z}{\partial u \partial v} + b \frac{\partial^2 z}{\partial v^2}, \text{代入原方程, } 有$$

$$-8(b + 2) \frac{\partial^2 z}{\partial u \partial v} + (4 + 12b + 5b^2) \frac{\partial^2 z}{\partial v^2} = 0, \implies -8(b + 2) \neq 0, \ 4 + 12b + 5b^2 = 0,$$
则解得 $b = -\frac{2}{5}$.

8. 交换积分次序,

$$\int_{0}^{1} dy \int_{\sqrt{y}}^{1} \sqrt{x^{4} - y^{2}} dx = \int_{0}^{1} dx \int_{0}^{x^{2}} \sqrt{x^{4} - y^{2}} dy$$

$$\underline{\underline{y} = x^{2} \sin t} \int_{0}^{1} dx \int_{0}^{\frac{\pi}{2}} x^{4} \cos^{2} t dt = \frac{\pi}{4} \int_{0}^{1} x^{4} dx = \frac{\pi}{4} \cdot \frac{1}{5} = \frac{\pi}{20}$$

9.
$$\bar{y} = \frac{\iint_{D} y \, d\sigma}{\iint_{D} d\sigma} = \frac{\iint_{D} y \, d\sigma}{\frac{\pi}{2} R^{2}} = \frac{2}{\pi R^{2}} \int_{0}^{\pi} d\theta \int_{0}^{R} r^{2} \sin\theta dr = \frac{2}{\pi R^{2}} \cdot \frac{R^{3}}{3} \cdot 2 = \frac{4R}{3\pi}$$

10.
$$V = \iint_{D} \sqrt{x^{2} + y^{2}} d\sigma = \int_{0}^{\frac{\pi}{4}} d\theta \int_{0}^{2\cos\theta} r^{2} dr = \frac{8}{3} \int_{0}^{\frac{\pi}{4}} \cos^{3}\theta d\theta$$
$$= \frac{8}{3} \int_{0}^{\frac{\pi}{4}} (1 - \sin^{2}\theta) d\sin\theta = \frac{8}{3} (\sin\theta - \frac{1}{3}\sin^{3}\theta) \Big|_{0}^{\frac{\pi}{4}} = \frac{10}{9} \sqrt{2}.$$

11.
$$D = \{ (x, y) | 0 \le x \le 1, 0 \le y \le x \}$$

$$I = \iint_{D} y\sqrt{1 - x^{2} + y^{2}} \, dxdy = \frac{1}{2} \int_{0}^{1} dx \int_{0}^{x} \sqrt{1 - x^{2} + y^{2}} \, d(1 - x^{2} + y^{2})$$

$$= \frac{1}{2} \cdot \frac{2}{3} \int_{0}^{1} (1 - x^{2} + y^{2})^{\frac{3}{2} \left| y = x \atop y = 0} dx = \frac{1}{3} \int_{0}^{1} \left[1 - (1 - x^{2})^{\frac{3}{2}} \right] dx \, (x = \sin t)$$

$$= \frac{1}{3} - \frac{1}{3} \int_{0}^{\frac{\pi}{2}} \cos^{4} t \, dt = \frac{1}{3} - \frac{\pi}{16}.$$

12. (1) 曲面 S 在点 P 处切平面法矢量 $\vec{n} = \{2x, 2y - z, 2z - y\}_P \perp \vec{k} = \{0,0,1\}$ $\vec{n} \cdot \vec{k} = 0 \Rightarrow 2z - y = 0$.

- (2) C 在 xOy 平面上的投影线的方程 $\begin{cases} x^2 + \frac{3}{4}y^2 = 1 \\ z = 0 \end{cases}$.
- (3) 由于 C 在平面 2z-y=0 上,故为一条平面曲线. 它在 xOy 平面上的投影曲线为椭圆, 其所围的面积为 $\sigma_{xy}=\pi\cdot 1\cdot \frac{2}{\sqrt{3}}=\frac{2}{\sqrt{3}}\pi$,

又平面 2z-y=0 的法矢量 $\vec{n}_1=\{0,-1,2\},\cos\gamma=\frac{2}{\sqrt{5}}$,则 C 在平面 2z-y=0 上围成的面积为 $S=\frac{\sigma_{xy}}{\cos\gamma}=\sqrt{\frac{5}{3}}\pi$.

13. (1)设
$$L = \ln x + \ln y + 3\ln z + \lambda(x^2 + y^2 + z^2 - 5R^2)$$
, 由拉格朗日乘数法,

$$L'_{x} = \frac{1}{x} + 2\lambda \ x = 0, \ L'_{y} = \frac{1}{y} + 2\lambda \ y = 0, \ L'_{z} = \frac{3}{z} + 2\lambda \ z = 0, \implies y = x, \ z = \sqrt{3}x$$

$$L'_{\lambda} = x^2 + y^2 + z^2 - 5R^2 = 0$$
, 解得唯一驻点 $x = R$, $y = R$, $z = \sqrt{3}R$,

在约束条件下, 当 $x \to 0^+$ 时, $W \to -\infty$, 故此为 W的最大值点, 且最大值为

$$\max W = W(R, R, \sqrt{3}R) = \ln \sqrt{27}R^5$$
.

(2)
$$\pm (1)$$
, $\ln xyz^3 \le \ln \sqrt{27}R^5$, $\pm xyz^3 \le \sqrt{27}R^5 = \sqrt{27}(\frac{x^2 + y^2 + z^2}{5})^{\frac{5}{2}}$,

即
$$x^2 y^2 z^6 \le 27(\frac{x^2 + y^2 + z^2}{5})^5$$
, 令 $x^2 = a$, $y^2 = b$, $z^2 = c$, 则 $ab \ c^3 \le 27(\frac{a + b + c}{5})^5$

14. (1)解 1. 积分区域分成 2部分:
$$D = D_1(xy \ge 1) + D_2(xy \le 1)$$
, 其中
$$D_1 = \{(x,y) | \frac{1}{2} \le x \le 2, \frac{1}{x} \le y \le 2\},$$

$$A = \iint_D |xy - 1| \, d\sigma = \iint_{D_1} (xy - 1) \, d\sigma + \iint_{D_2} (1 - xy) \, d\sigma$$

$$= \iint_{D_1} (xy - 1) \, d\sigma + \iint_D (1 - xy) \, d\sigma - \iint_{D_2} (1 - xy) \, d\sigma$$

$$= 2\iint_{D_1} (xy - 1) \, d\sigma + \iint_D (1 - xy) \, d\sigma$$

$$= 2\int_{\frac{1}{2}}^2 dx \int_{\frac{1}{x}}^2 (xy - 1) \, dy + 4 - (\int_0^2 x \, dx)^2$$

$$= 2\int_{\frac{1}{2}}^2 (2x + \frac{1}{2x} - 2) \, dx = 2[(x^2 + \frac{1}{2} \ln x)|_{\frac{1}{2}}^2 - 3] = 2(\frac{3}{4} + \ln 2) = \frac{3}{2} + 2\ln 2$$

或解 2. 积分区域分成 3 部分: $D = D_1 + D_2 + D_3$,

$$D_{1} = \{ (x, y) \mid 0 \le x \le \frac{1}{2}, 0 \le y \le 2 \}, D_{2} = \{ (x, y) \mid \frac{1}{2} \le x \le 2, 0 \le y \le \frac{1}{x} \},$$

$$D_3 = \{ (x, y) | \frac{1}{2} \le x \le 2, \frac{1}{x} \le y \le 2 \}$$

$$\mathbb{M} A = \iint_{D_1} (1 - xy) d\sigma + \iint_{D_2} (1 - xy) d\sigma + \iint_{D_3} (xy - 1) d\sigma
= \int_0^{\frac{1}{2}} dx \int_0^2 (1 - xy) dy + \int_{\frac{1}{2}}^2 dx \int_0^{\frac{1}{x}} (1 - xy) dy + \int_{\frac{1}{2}}^2 dx \int_{\frac{1}{x}}^2 (xy - 1) dy = \frac{3}{2} + 2\ln 2.$$

(2)
$$f(x, y)$$
 在 D 上连续, 存在点 $(\xi, \eta) \in D$, 使 $|f(\xi, \eta)| = \max_{(x, y) \in D} |f(x, y)|$,

故
$$1 = \left| \iint_{D} xy f(x, y) d\sigma \right| = \left| \iint_{D} [xy f(x, y) - f(x, y)] d\sigma \right|$$
$$\leq \iint_{D} |xy - 1| \cdot |f(x, y)| d\sigma \leq |f(\xi, \eta)| \iint_{D} |xy - 1| d\sigma = |f(\xi, \eta)| A$$

则存在点 $(\xi,\eta) \in D$, 使 $|f(\xi,\eta)|A \ge 1$.