Contents:

- Struktur von Modell02
- Beispiel von Kollektormodell in openmodelica verstehen
- Kollektordaten und Weatherdaten verändern
- Hauptprogramme beschreiben
 - Weatherdaten zu verändern
 - Kollektordaten zu verändern
- Vergleichen Modell 02 mit Modell 01
- Simulation zu laufen
- Ergebnisse in OM zu zeigen
- Ergebnisse in Matlab auszugeben

- Struktur von Modell02
- Weatherdateneinlesen:

■ Zuordnung und Analyse von Ergebnissen

Beispiel von Kollektormodell in openmodelica verstehen

In diese openmodelica_Liberary haben wir eine gute Beispiel 'SingleCollectorTest' gefunden.

Es gibt 6 Komponenten in diese Schaubild.

Zuerst wird WeatherDataReader **Gb**, **Gd**, die geogradische Koordinaten von eine Stadt(z.B. Wurzburg) als Eintrittsparameter in 'SolarRadiationTransformer' und **Ta** in 'Heattransfer' importieren.

Danach wird 'SolarRadiationTransfer' G an 'RadiationPort', auch Azimut, tilt angle in Kollektor importieren. **Ta** von 'Heattransfer' importieren an 'Heatport' von Kollektor. 'MassFlowSource1' wird die Massenstrom und Eintrittstemperatur von Kollektor in Kollektor importieren.

Zuletzt wird die Austrittstemperatur von Kollektor in 'MassFlowSource2' exportieren.

Kollektordaten und Weatherdaten verändern

Package als 'Modell 02' einstellen. Block 'Potsdam2019_Meteronorm_ASCII' in 'Modell 02' einstellen. Model 'Kollektordaten' und 'hauptprogramme' in 'Modell 02' einstellen.

■ Weatherdaten zu verändern

Block 'Potsdam2019_Meteronorm_ASCII' beschreiben.

```
block Potsdam2019 Meteonorm ASCII
 extends
BuildingSystems.Climate.WeatherData.BaseClasses.WeatherDa
taFileASCII(info = "Source: Meteonorm 7.0", filNam =
Modelica.Utilities.Files.loadResource("modelica://Modell0
2/Potsdam2019.txt"), 'Weatherdaten zu lesen'
final tabNam = "tab1", final timeFac = 1.0 / 3600.0,
final deltaTime = 1800.0, final columns = {5, 6, 3, 8, 9,
4, 7}, final scaleFac = {1.0, 1.0, 1.0, 1.0, 1.0, 0.01,
1.0}, final latitudeDeg = 49.47, final longitudeDeg =
9.57, final longitudeDeg 0 = 1.0);
'Einlesensparameter'
 // beam horizontal radiation
 // diffuse horizontal radiation
 // air temperature
 // wind speed
 // wind direction
 // relative humidity
 // cloud cover
 annotation (
   Documentation(info = "<html>source: Meteonorm
7.0</html>"));
end Potsdam2019 Meteonorm ASCII;
```

■ Kollektordaten zu verändern

'Kollektordaten' beschreiben

```
model Kollektordata
  record Modell2SolarCollector =
BuildingSystems.Technologies.SolarThermal.Data.Collectors
.CollectorPartial(final IAMC = 0.92, final V_A = 1 / 0.1
/ 980, final C_0 = 0.80, final C_1 = 3.5, final C_2 =
0.01, A = 2.0) annotation(
  uses(BuildingSystems(version = "2.0.0-beta")));
end Kollektordata;
```

model hauptprogramme beschreiben :


```
model hauptprogramme
  package Medium =
BuildingSystems.Media.Antifreeze.PropyleneGlycolWater(X_a
= 0.40, property_T = 293.15);

Modelica.Thermal.HeatTransfer.Sources.PrescribedTemperatu
re prescribedTemperature annotation(
    Placement(visible = true, transformation(origin = {-
14, 16}, extent = {{10, -10}, {-10, 10}}, rotation =
0)));
```

```
BuildingSystems.Fluid.Sources.MassFlowSource T
boul(nPorts = 1, m flow = 0.02083, redeclare package
Medium = Medium, T = 323.15) annotation(
   Placement(visible = true, transformation(origin = {-
93, -9}, extent = {{-13, -13}, {13, 13}}, rotation =
0)));
 BuildingSystems.Fluid.Sources.Boundary pT bou2 (redeclare
package Medium = Medium, nPorts = 1) annotation(
   Placement(visible = true, transformation(origin = {-5,
-9}, extent = {{11, -11}, {-11, 11}}, rotation = 0)));
BuildingSystems.Climate.SolarRadiationTransformers.SolarR
adiationTransformerIsotropicSky radiation(rhoAmb = 0.2)
annotation (
   Placement(visible = true, transformation(origin = {-
48, 34}, extent = \{\{-14, -14\}, \{14, 14\}\}, rotation =
0)));
   'Weatherdaten zu lesen'
 BuildingSystems.Climate.WeatherData.WeatherDataReader
weatherData(redeclare block WeatherData =
Model102.Potsdam2019 Meteonorm ASCII) "time Gdot beam
Gdot diffuse T air env" annotation (
   Placement (visible = true, transformation (origin = {-
83, 68}, extent = \{\{-13, -12\}, \{13, 12\}\}, rotation =
0)));
 'Kollektordaten zu lesen'
BuildingSystems. Technologies. SolarThermal. ThermalCollecto
r collector(redeclare package Medium = Medium, redeclare
Kollektordata. Modell 2 Solar Collector collector Data,
angleDegAzi = 0.0, angleDegTil = 45.0, dp nominal = 2.0,
m flow nominal = 0.02083, nEle = 1) annotation(
   Placement(visible = true, transformation(origin = {-
43, -8}, extent = {{-11, -10}, {11, 10}}, rotation =
'alle Komponenten zu verbinden'
equation
 connect(collector.heatPortCon,
prescribedTemperature.port) annotation(
   Line (points = \{\{-37.5, 1\}, \{-37.5, 16\}, \{-24, 16\}\},
color = \{191, 0, 0\});
 connect(collector.angleDegAzi, radiation.angleDegAzi)
annotation (
```

```
Line(points = \{\{-51, -17\}, \{-51, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{-74, -20\}, \{
74, 26}, \{-59, 26\}}, color = \{0, 0, 127\});
       connect (weatherData.IrrDifHor, radiation.IrrDifHor)
annotation (
              Line(points = \{\{-84, 55\}, \{-84, 37\}, \{-59, 37\}\}, color
= \{0, 0, 127\});
       connect (weatherData.longitudeDeg,
radiation.longitudeDeg) annotation(
             Line (points = \{\{-69, 76\}, \{-48, 76\}, \{-48, 45\}\}, color
= \{0, 0, 127\});
       connect(radiation.radiationPort,
collector.radiationPort) annotation(
              Line (points = \{\{-37, 34\}, \{-44, 34\}, \{-44, 1\}\}\));
       connect(weatherData.TAirRef, prescribedTemperature.T)
annotation (
              Line (points = \{\{-92, 55\}, \{-92, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22, 52\}, \{-22
16}, \{-2, 16\}}, color = \{0, 0, 127\});
       connect(collector.angleDegTil, radiation.angleDegTil)
annotation (
              Line(points = \{\{-48.5, -17\}, \{-48.5, -20\}, \{-74, -20\},
\{-74, 31\}, \{-59, 31\}\}, color = \{0, 0, 127\});
      connect(boul.ports[1], collector.port a) annotation(
              Line (points = \{\{-80, -9\}, \{-66, -9\}, \{-66, -8\}, \{-54, -9\}\}
-8}, color = {0, 127, 255}));
       connect (weatherData.longitudeDeg0,
radiation.longitudeDeg0) annotation(
             Line (points = \{\{-69, 74\}, \{-42, 74\}, \{-42, 45\}\}, color
= \{0, 0, 127\});
       connect(radiation.latitudeDeg, weatherData.latitudeDeg)
annotation (
             Line (points = \{\{-53, 45\}, \{-53, 79\}, \{-69, 79\}\}, color
= \{0, 0, 127\});
       connect(collector.port b, bou2.ports[1]) annotation(
              Line (points = \{\{-32, -8\}, \{-27, -8\}, \{-27, -9\}, \{-16, -27\}\}
-9}, color = {0, 127, 255}));
      connect(weatherData.IrrDirHor, radiation.IrrDirHor)
annotation (
             Line (points = \{\{-87, 55\}, \{-87, 42\}, \{-59, 42\}\}, color
= \{0, 0, 127\});
       annotation (
              uses (Modelica (version = "3.2.3"),
BuildingSystems(version = "2.0.0-beta")),
```

```
Diagram(graphics = {Text(lineColor = {0, 0, 255},
extent = {{-94, -26}, {-4, -46}}, textString = "Solar
thermal collector under real weather data")}),
    experiment(StartTime = 0, StopTime = 31536000,
Tolerance = 1e-6, Interval = 3600));
end hauptprogramme;
```

• Simulation zu laufen

Um die Simulation zu laufen, wählen Sie das Arbeitsverzeichnis als Aktendeckel' Model_02_v15 '.

Wenn man ,ModellO2.hauptprogramme 'zu laufen bringen möchte, muss man auch Omlibrary ,Buildingsystem 'öffnen, um die Komponenten aus dem in Ordnung zu funktionieren.

• Vergleich Modell 02 mir Modell 01

G:

Qabs:

Quse:

Qverlust:

• Ergebnisse:

Modell01 und Modell02 haben die gleiche Weatherdatenquelle ("Germany_Potsdam_2019_DWD.txt") benutzt. Die Ergebnisse zeigt, Modell01 und Modell02 kann gut miteinander anpassen. So können wir weiter gehen.

• Ergebnisse in Matlab auszugegebn

Zuerst gebe ich die Simulationsergebnisse von OpenModelica als Mat-File aus. Die ausgegebene Mat-Dateien sind als "Sortieren_res.mat" in Aktiendeckel "Sortieren_output" von "Modell02_v15" gespeichert.

Danach darstelle und analysiere ich die ausgegebene Ergebnissevarianten in Matlab durch folgende Matlab-Code.

```
clc
clear all
응응
% load Sim out.mat
                   % individueller Name
derAusgabedatei, alle Var: .*
load 'Model102.hauptprogramme/Sortieren res.mat' %
alternativ
%% Datenaufbereitung
[r,c] = size(data 2);
%% Header
col1 = string(name(:,1:r)');
col2 = string(description(:,1:r)');
data = (data 2);
res 0 = table(col1,col2,data);
res 0.Properties.VariableNames{1} = 'Bez var';
res 0.Properties.VariableNames{2} = 'OM var';
%% Dateneinlesen
res 0.0M var
ts0 = res 0.data(1,:)';
% Zeile 3: "collector.IrrTot
" Total solar radiation on collector's absorber
surfcace [W/m2]
GTO = res 0.data(3,:)';
% Zeile 4: "collector.QCon[1].y
" "Value of Convective heat flow Real output
Qv0 = res 0.data(4,:)';
% Zeile 6: "collector.replicatorQrad.y[1]
" "Value of Radiative heat flow Real output signals
Qabs0 = res 0.data(6,:)';
% Zeile 7: "collector.sumConRad[1].y
" "Value of Useenergy Real output signal
Quse0 = res 0.data(7,:)';
```

```
%% Filter für Stundenwerte
p = ts0/3600 - fix(ts0/3600); %
pp = p ==0; % wenn pp ==1, dann voller Stundenwert
ts = ts0(pp)/3600; % Auwahl der vollen Stunden
ts = ts(2:end-1,1); % Eliomination erster / letzter Wert
GT = GTO(pp);
GT = GT(2:end-1,1);
Qv = Qv0(pp);
Qv = Qv(2:end-1,1);
Qabs = Qabs0(pp);
Qabs = Qabs(2:end-1,1);
Quse = Quse0(pp);
Quse = Quse(2:end-1,1);
%% Eingabeswert
Tci = 50;
Quse (Quse<0) =0;
ctr=Quse./Quse;
ctr(isnan(ctr))=0;
%% Zuordnung der Ergebnissen
figure(1)
subplot(2,1,1)
plot(ts/3600 ,GT.*ctr ,'.-r');
hold on
plot(ts/3600 ,Qabs/2.*ctr,'.-b');
hold off
legend('GT','Qabs/2')
grid
ylabel('w/m^2')
subplot(2,1,2)
plot(ts/3600 ,Qv/2.*ctr,'.-r');
hold on
plot(ts/3600 ,Quse/2.*ctr,'.-g');
hold off
grid
legend('Qv/2','Quse/2')
xlabel('Stunden des Jahres')
ylabel('W/m^2')
```



```
응응
QuseD=sum(reshape(Quse(1:8760,1),[24,365]))./1000;
QuseM(1,1) = sum(QuseD(1:31));
QuseM(1,2) = sum(QuseD(32:59));
QuseM(1,3) = sum(QuseD(60:90));
QuseM(1, 4) = sum(QuseD(91:120));
QuseM(1,5) = sum(QuseD(121:151));
QuseM(1, 6) = sum(QuseD(152:181));
QuseM(1,7) = sum(QuseD(182:212));
QuseM(1,8) = sum(QuseD(213:243));
QuseM(1, 9) = sum(QuseD(244:273));
QuseM(1,10) = sum(QuseD(274:304));
QuseM(1,11) = sum(QuseD(305:334));
QuseM(1,12) = sum(QuseD(335:365));
응응
figure (2)
title 'Monatssummen'
bar(QuseM, 'grouped');
legend(['T{ci}=',num2str(Tci),';æ'])
xlim([1 12])
q sol=sum(QuseM)/2;
xlabel(['Jahresertrag: ',num2str(ceil(q sol)),...
   'kwh/(m^2-a) : '])
ylabel('kwh/M')
```

Wenn Tci=50

Wenn Tci=25

Wenn Tci=75

