Problem Statement: Abalone Age Prediction

Description:-

Predicting the age of abalone from physical measurements. The age of abalone is determined by cutting the shell through the cone, staining it, and counting the number of rings through a microscope -- a boring and time-consuming task. Other measurements, which are easier to obtain, are used to predict age. Further information, such as weather patterns and location (hence food availability) may be required to solve the problem.

Attribute Information:

Given is the attribute name, attribute type, measurement unit, and a brief description. The number of rings is the value to predict: either as a continuous value or as a classification problem.

Name / Data Type / Measurement Unit / Description

- 1- Sex / nominal / -- / M, F, and I (infant)
- 2- Length / continuous / mm / Longest shell measurement
- 3- Diameter / continuous / mm / perpendicular to length
- 4- Height / continuous / mm / with meat in shell
- 5- Whole weight / continuous / grams / whole abalone
- 6- Shucked weight / continuous / grams / weight of meat
- 7- Viscera weight / continuous / grams / gut weight (after bleeding)
- 8- Shell weight / continuous / grams / after being dried
- 9- Rings / integer / -- / +1.5 gives the age in years

Building a Regression Model

Import libraries

In [1]:

```
import numpy as np
import pandas as pd
from scipy import stats
import matplotlib.pyplot as plt
```

```
import seaborn as sns
plt.style.use('seaborn-whitegrid')
%matplotlib inline
In [2]:
from sklearn.preprocessing import OneHotEncoder, StandardScaler
from sklearn.decomposition import PCA
from sklearn.pipeline import Pipeline
from sklearn.compose import ColumnTransformer, make column selector
from sklearn.model selection import train test split, cross val score,
GridSearchCV, RandomizedSearchCV
In [3]:
from sklearn.neighbors import KNeighborsRegressor
from sklearn.linear model import Ridge
from sklearn.svm import SVR
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor
from xgboost import XGBRegressor
In [4]:
from sklearn.metrics import mean absolute error, mean squared error, r2 score
In [5]:
import warnings
warnings.filterwarnings('ignore')
Download and load the dataset
In [10]:
from google.colab import drive
drive.mount('/content/drive')
Drive already mounted at /content/drive; to attempt to forcibly remount, call
drive.mount("/content/drive", force remount=True).
```

In [12]:

data = pd.read_csv('drive/My Drive/abalone.csv')

data.head()

Out[12]:

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	M	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	15
1	M	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	7
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	9
3	М	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	10
4	I	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	7

In [13]:

data.info()

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 4177 entries, 0 to 4176

Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Sex	4177 non-null	object
1	Length	4177 non-null	float64
2	Diameter	4177 non-null	float64
3	Height	4177 non-null	float64
4	Whole weight	4177 non-null	float64
5	Shucked weight	4177 non-null	float64
6	Viscera weight	4177 non-null	float64

```
7 Shell weight 4177 non-null float64
8 Rings 4177 non-null int64
dtypes: float64(7), int64(1), object(1)
memory usage: 293.8+ KB
```

Visualizations

Univariate Analysis

Univariate analysis provides an understanding in the characteristics of each feature in the data set. Different characteristics are computed for numerical and categorical data.

For the numerical features characteristics are standard deviation, skewness, kurtosis, percentile, interquartile range (IQR) and range.

In [14]:

```
stats_num = data.describe()
stats_num.loc['variance'] = data.select_dtypes(np.number).var().tolist()
stats_num.loc['skewness'] = data.select_dtypes(np.number).skew().tolist()
stats_num.loc['kurtosis'] = data.select_dtypes(np.number).kurtosis().tolist()
stats_num.loc['IQR'] = (data.select_dtypes(np.number).quantile(q=0.75) -
data.select_dtypes(np.number).quantile(q=0.25)).tolist()
stats_num.loc['range'] = (data.select_dtypes(np.number).max() -
data.select_dtypes(np.number).min()).tolist()
```

In [15]:

stats num

Out[15]:

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
count	4177.0000 00	4177.0000 00	4177.0000 00	4177.0000 00	4177.0000 00	4177.0000 00	4177.0000 00	4177.0000 00
mean	0.523992	0.407881	0.139516	0.828742	0.359367	0.180594	0.238831	9.933684

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
std	0.120093	0.099240	0.041827	0.490389	0.221963	0.109614	0.139203	3.224169
min	0.075000	0.055000	0.000000	0.002000	0.001000	0.000500	0.001500	1.000000
25%	0.450000	0.350000	0.115000	0.441500	0.186000	0.093500	0.130000	8.000000
50%	0.545000	0.425000	0.140000	0.799500	0.336000	0.171000	0.234000	9.000000
75%	0.615000	0.480000	0.165000	1.153000	0.502000	0.253000	0.329000	11.000000
max	0.815000	0.650000	1.130000	2.825500	1.488000	0.760000	1.005000	29.000000
varianc e	0.014422	0.009849	0.001750	0.240481	0.049268	0.012015	0.019377	10.395266
skewne ss	-0.639873	-0.609198	3.128817	0.530959	0.719098	0.591852	0.620927	1.114102
kurtosis	0.064621	-0.045476	76.025509	-0.023644	0.595124	0.084012	0.531926	2.330687
IQR	0.165000	0.130000	0.050000	0.711500	0.316000	0.159500	0.199000	3.000000
range	0.740000	0.595000	1.130000	2.823500	1.487000	0.759500	1.003500	28.000000

The feature Height has an example with value which doesn't make sense. This example needs to be removed. In [16]:

```
for column in data.select_dtypes(np.number).columns:
    p_value = stats.shapiro(data[column].dropna())[1]
    if p_value <= 0.05:
        print(f'Null hypothesis of normality for feature {column} is rejected')
    else:</pre>
```

```
print(f'Null hypothesis of normality for feature {column} is
accepted')
Null hypothesis of normality for feature Length is rejected
Null hypothesis of normality for feature Diameter is rejected
Null hypothesis of normality for feature Height is rejected
Null hypothesis of normality for feature Whole weight is rejected
Null hypothesis of normality for feature Shucked weight is rejected
Null hypothesis of normality for feature Viscera weight is rejected
Null hypothesis of normality for feature Shell weight is rejected
Null hypothesis of normality for feature Rings is rejected
The null hypothesis is rejected for every feature and the target, meaning that they aren't modelled with a
normal distribution.
In [17]:
data.hist(figsize=(15,5), layout=(2,4), bins=70)
plt.show()
For the categorical features characteristics are count, cardinality, list of unique values, top and freq.
In [18]:
stats cat = data.select dtypes('object').describe()
In [19]:
stats cat
Out[19]:
      Sex
count
      4177
unique 3
```

top

```
Sex
freq
      1528
In [20]:
def uniqueValues(df):
    for column in df:
        unique values = df[column].unique()
        print(f'Unique values of feature {column} are: {unique_values}')
uniqueValues(data.select dtypes('object'))
Unique values of feature Sex are: ['M' 'F' 'I']
In [21]:
ax = sns.countplot(x=data['Sex'], data=data)
for p in ax.patches:
    x=p.get bbox().get points()[:,0]
    y=p.get bbox().get points()[1,1]
    ax.annotate(f'{p.get_height()}', (x.mean(), y), ha='center', va='bottom')
plt.show()
Bi-Variate Analysis
In [22]:
corr_matrix = data.corr()
sns.heatmap(corr matrix, annot=True)
```

plt.show()

In this case it can be obsreved that there is somewhat weak linear relationship between each of the features and the target, so it is possible that linear models won't have a satisfactory performance.

Multi-Variate Analysis

```
In [23]:
sns.pairplot(data, hue ='Sex', diag kind='hist')
plt.show()
In [24]:
nnum = data.select_dtypes(np.number).shape[1]
cols = 4
rows = 2
fig, axes = plt.subplots(rows, cols, figsize=(20,10))
for ax in axes.flatten():
    ax.set axis off()
for column, ax in zip(data.select_dtypes(np.number).columns, axes.flatten()):
    sns.boxplot(x=data['Sex'], y=data[column], data=data, ax=ax)
    ax.set axis on()
plt.show()
```

Descriptive statistics

```
In [26]:
data.describe()
Out[26]:
```

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
coun t	4177.00000 0	4177.00000 0	4177.00000 0	4177.00000 0	4177.00000 0	4177.00000 0	4177.00000 0	4177.00000 0
mea n	0.523992	0.407881	0.139516	0.828742	0.359367	0.180594	0.238831	9.933684
std	0.120093	0.099240	0.041827	0.490389	0.221963	0.109614	0.139203	3.224169
min	0.075000	0.055000	0.000000	0.002000	0.001000	0.000500	0.001500	1.000000
25%	0.450000	0.350000	0.115000	0.441500	0.186000	0.093500	0.130000	8.000000
50%	0.545000	0.425000	0.140000	0.799500	0.336000	0.171000	0.234000	9.000000
75%	0.615000	0.480000	0.165000	1.153000	0.502000	0.253000	0.329000	11.000000
max	0.815000	0.650000	1.130000	2.825500	1.488000	0.760000	1.005000	29.000000

Handle the Missing values

In [27]:

data.isnull().sum()

Out[27]:

Sex	0
Length	0
Diameter	0
Height	0
Whole weight	0
Shucked weight	0
Viscera weight	0
Shell weight	0

Rings (

dtype: int64

No missing values are found.

Find the outliers and replace the outliers

It was found that Height has a value of , so the whole data set is cleaned from examples that have a zero value because a physical measurment cannot have such value.

In [28]:

```
data = data[(data != 0).all(axis=1)]
```

In [29]:

data.describe()

Out[29]:

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
coun t	4175.00000 0	4175.0000 0	4175.00000 0	4175.00000 0	4175.00000 0	4175.00000 0	4175.00000 0	4175.00000 0
mea n	0.524065	0.40794	0.139583	0.829005	0.359476	0.180653	0.238834	9.935090
std	0.120069	0.09922	0.041725	0.490349	0.221954	0.109605	0.139212	3.224227
min	0.075000	0.05500	0.010000	0.002000	0.001000	0.000500	0.001500	1.000000
25%	0.450000	0.35000	0.115000	0.442250	0.186250	0.093500	0.130000	8.000000
50%	0.545000	0.42500	0.140000	0.800000	0.336000	0.171000	0.234000	9.000000
75%	0.615000	0.48000	0.165000	1.153500	0.502000	0.253000	0.328750	11.000000
max	0.815000	0.65000	1.130000	2.825500	1.488000	0.760000	1.005000	29.000000

Split the data into training and testing

```
In [30]:
train, test = train test split(data, test size=0.15, random state=0)
In [31]:
abaloneLen = len(data.index)
trainLen = len(train.index)
testLen = len(test.index)
trainPercent = np.round(trainLen/abaloneLen*100, 3)
print(trainPercent)
print(np.round(100 - trainPercent, 3))
print(abaloneLen, trainLen, testLen)
84.982
15.018
4175 3548 627
Split the data into dependent and independent variables
In [32]:
X train, y train = train.drop('Rings', axis=1), train['Rings']
X test, y test = test.drop('Rings', axis=1), test['Rings']
Check for Categorical columns and perform encoding
In [33]:
numerical transformer = Pipeline([
    ('standardization', StandardScaler()),
    ('pca', PCA())
])
preprocessor = ColumnTransformer([
```

```
('1hot', OneHotEncoder(sparse=False),
make_column_selector(dtype_include='object')),
    ('num', numerical transformer,
make column selector(dtype include='number'))
])
In [34]:
plt.subplot(1,2,1)
plt.hist(data['Rings'], bins=70)
plt.title('Target distribution')
plt.subplot(1,2,2)
plt.hist(np.log(data['Rings']), bins=70)
plt.title('Transformed target distribution')
plt.show()
In [35]:
y train log, y test log = np.log(y train), np.log(y test)
Scale the independent variables
In [36]:
check = pd.DataFrame(data=StandardScaler().fit transform(X train.drop('Sex',
axis=1)), columns=X_train.drop('Sex', axis=1).columns)
check['Rings'] = y_train_log
check.hist(figsize=(15,5), layout=(2,4), bins=70)
plt.show()
Build the Model
In [37]:
```

```
from sklearn.model selection import RepeatedKFold
from sklearn.compose import TransformedTargetRegressor
from sklearn.preprocessing import PowerTransformer
X, y = data.iloc[:, :-1], data.iloc[:, -1]
# minimally prepare dataset
y = y.astype('float32')
# evaluate model
baseline = SVR(kernel='rbf',gamma='scale',C=10)
transform = ColumnTransformer(transformers=[('c', OneHotEncoder(), [0])],
remainder='passthrough')
target = TransformedTargetRegressor(regressor=baseline,
transformer=PowerTransformer(), check inverse=False)
pipeline = Pipeline(steps=[('ColumnTransformer', transform),
('Model', target)])
cv = RepeatedKFold(n_splits=10, n_repeats=3, random_state=1)
r2 scores = cross val score(pipeline, X, y, scoring='r2', cv=cv, n jobs=-1,
error score='raise')
r2 scores = np.absolute(r2 scores)
print('Baseline: %.3f (+/-%.3f)' % (np.mean(r2_scores), np.std(r2_scores)))
Baseline: 0.562 (+/-0.033)
The regression algorithms that are trained to solve the problem are:
k-Nearest Neighbors;
Ridge Regression;
Support Vector Machines;
Decision Trees;
Random Forests;
```

```
Gradient Boosting for regression;

XGBoost Regressor.

10-fold cross-validation is used as a measure to prevent overfitting.
```

```
In [38]:
models = [
    KNeighborsRegressor(n_jobs=-1),
    Ridge(),
    SVR(),
    DecisionTreeRegressor(random_state=0),
    RandomForestRegressor(n_jobs=-1, random_state=0),
    GradientBoostingRegressor(random_state=0),
    XGBRegressor()
```

Train the Model

```
'Gradient Boosting Regressor',
    ' XGBoost Regressor'
1
for name, regressor in zip(model names, regressors):
    regressor.fit(X train, y train log)
    score = cross val score(estimator=regressor, X=X train, y=y train log,
cv=10, scoring='r2')
   print(f"{name}: {score.mean():.4f} (+/-{score.std():.4f})")
      k-Neighbors Regressor: 0.5951 (+/-0.0425)
          Ridge Regression: 0.5866 (+/-0.0425)
   Support Vector Regressor: 0.6564 (+/-0.0359)
    Decision Tree Regressor: 0.3552 (+/-0.0959)
    Random Forest Regressor: 0.6545 (+/-0.0386)
Gradient Boosting Regressor: 0.6628 (+/-0.0338)
[15:17:26] WARNING: /workspace/src/objective/regression obj.cu:152:
reg:linear is now deprecated in favor of reg:squarederror.
[15:17:27] WARNING: /workspace/src/objective/regression obj.cu:152:
reg:linear is now deprecated in favor of reg:squarederror.
[15:17:27] WARNING: /workspace/src/objective/regression obj.cu:152:
reg:linear is now deprecated in favor of reg:squarederror.
[15:17:27] WARNING: /workspace/src/objective/regression obj.cu:152:
reg:linear is now deprecated in favor of reg:squarederror.
[15:17:28] WARNING: /workspace/src/objective/regression obj.cu:152:
reg:linear is now deprecated in favor of reg:squarederror.
[15:17:28] WARNING: /workspace/src/objective/regression obj.cu:152:
reg:linear is now deprecated in favor of reg:squarederror.
[15:17:28] WARNING: /workspace/src/objective/regression obj.cu:152:
reg:linear is now deprecated in favor of reg:squarederror.
[15:17:28] WARNING: /workspace/src/objective/regression obj.cu:152:
reg:linear is now deprecated in favor of reg:squarederror.
```

```
[15:17:29] WARNING: /workspace/src/objective/regression obj.cu:152:
reg:linear is now deprecated in favor of reg:squarederror.
[15:17:29] WARNING: /workspace/src/objective/regression obj.cu:152:
reg:linear is now deprecated in favor of reg:squarederror.
[15:17:29] WARNING: /workspace/src/objective/regression obj.cu:152:
reg:linear is now deprecated in favor of reg:squarederror.
          XGBoost Regressor: 0.6629 (+/-0.0357)
Test the Model
In [41]:
MAEs = []
MSEs = []
RMSEs = [] # If squared=True returns MSE value, if squared=False returns RMSE
value.
R2 scores = []
In [42]:
for regressor in regressors:
    MAEs.append(mean absolute error(y test log, regressor.predict(X test)))
    MSEs.append(mean squared error(y test log, regressor.predict(X test)))
    RMSEs.append(mean squared error(y test log, regressor.predict(X test),
squared=False))
    R2 scores.append(r2 score(y test log, regressor.predict(X test)))
Measure the performance using metrics
In [43]:
scoring summary = pd.DataFrame({
    'Model': [name.strip() for name in model names],
    'MAE score': MAEs,
    'MSE score': MSEs,
    'RMSE': RMSEs,
    'R2 Score': R2 scores
```

})

In [44]:

scoring_summary.sort_values('R2 Score', ascending=False)

Out[44]:

	Model	MAE score	MSE score	RMSE	R2 Score
2	Support Vector Regressor	0.141558	0.033549	0.183163	0.655027
6	XGBoost Regressor	0.140963	0.033856	0.183999	0.651870
5	Gradient Boosting Regressor	0.141429	0.034010	0.184418	0.650283
4	Random Forest Regressor	0.145248	0.035480	0.188362	0.635164
0	k-Neighbors Regressor	0.153654	0.040948	0.202356	0.578944
1	Ridge Regression	0.159779	0.042259	0.205570	0.565463
3	Decision Tree Regressor	0.191218	0.064029	0.253039	0.341607