MATH 243 Midterm 1 Solutions

- **1.** By the chain rule, the answer is A.
- **2.** The tangent plane is actually 3x + 4y z = 5, so A is false.

For B, note we can choose our order of derivatives for each term by Clairaut's Theorem. For the 1st term, we do ∂_x first and it vanishes. For the 2nd term, it vanishes under ∂_z . The last term is g(x,z)h(y) where $g(x,z)=(2z+x)^4, h(y)=\sin(\sin(y))$. Then $(g(x,z)h(y))_{zzzxy}=g_{zzzx}h_y=192\cos(\sin(y))\cos(y)$, so B is true.

For C, first identify the curve goes from t=0 to t=2. Calculate $||r'(t)|| = \sqrt{0 + (2t)^2 + (1)^2} = \sqrt{4t^2 + 1}$. Thus, C is true.

For D, note that a plane is determined by 3 non-collinear points, so we only have to plug the 3 points into the plane equation. The equation is true for each point, so D is true and the answer is B, C, D.

3. Let P be the parallelepiped in question. The volume of P is 0 if and only if it's completely flat, which happens if and only if $\mathbf{u}, \mathbf{v}, \mathbf{w}$ lie in the same plane. Thus, A and B are equivalent. The volume of P is given by $\|\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})\|$, so $\text{vol}(P) = 0 \Leftrightarrow \mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = 0 \Leftrightarrow \mathbf{u}, \mathbf{v} \times \mathbf{w}$ are perpendicular, not parallel. So C is out of the loop.

Recall that we may also take a determinant to find volume: $|\det(M)| = \operatorname{vol}(P)$. If $\operatorname{vol}(P) = 0$, then swapping rows of M doesn't affect $\det(M)$ because it goes from 0 to -0. Similarly, if swapping rows doesn't change $\det(M)$, then $\det(M) = 0 \Rightarrow \operatorname{vol}(P) = 0$. So A, B, D are equivalent and the answer is C.

4. Let v_n be the vector where there are n a's following the b so that $v_0 = a \times b$ and $v = v_{50}$.

By cross product properties, $a, v_0 = a \times b, v_1 = v_0 \times a$ are pairwise perpendicular. Thus, $v_2 = v_1 \times a$ is parallel to v_0 and we have $v_2 = kv_0$ for some constant k. By computing $v_0 = (-2, 3, 6), v_2 = (20, -30, -60)$, we find k = -10. We can guess that this pattern repeats to get $v_{2n} = (-10)^n v_0$, and prove it by writing $v_{2n+2} = (v_{2n} \times a) \times a = (-10)^n (v_0 \times a) \times a = (-10)^n v_2 = (-10)^{n+1} v_0$.

Thus, $v = (-10)^{25}(-2, 3, 6)$, making the sum of coordinates $10^{25} \cdot (-7)$, meaning (r, s, t) = (10, 25, -7) and r + s + t = 28.

Note: strictly speaking, we could've stumbled into $v_2 = -10v_0$ without imagining the orientations of earlier vectors. However, the fact that a, v_0, v_1 are pairwise perpendicular gives us a good picture of why v_2, v_3, \ldots keep alternating between pointing along v_0 or v_1 .

- **5.** $\rho^2 = x^2 + y^2 + z^2 = r^2 + z^2 = 3 + 9 = 12$. We already know $\theta = \frac{\pi}{5} = 36^\circ$, and we get $\cos \phi = \frac{z}{\rho} = \frac{3}{\sqrt{12}} = \frac{\sqrt{3}}{2}$, so $\phi = 30^\circ \Rightarrow \phi + \theta = 66^\circ$.
- 6. The numerator and denominator are continuous, so the fraction is continuous and defined whenever the denominator is non-zero, so the limit exists anywhere except possibly when the denominator is 0. The terms e^{\cdots} and $1 + x^2 + y^6$ are non-zero, so we can ignore them when analyzing the denominator, as they will neither make it 0 nor serve to cancel any terms.

neither make it 0 nor serve to cancel any terms. Thus, we have to analyze $\frac{y^3-x^2y}{8x^3-6x^2y-3xy^2+y^3}$. We can let t=y/x and rewrite the denominator as $x^3(t^3-3t^2-6t+8)$. In order to factor the cubic, we can notice t=1 is a root, divide out (t-1), obtain a quadratic in t, and factor the quadratic. However we do it, we arrive at $x^3(t-1)(t+2)(t-4)=(y-x)(y+2x)(y-4x)$. Meanwhile, the numerator factors as $y(y^2-x^2)=y(y-x)(y+x)$.

From our factorizations, the denominator is 0 along the lines y = x, y = -2x, y = 4x. However, the line y = x consists of removable singularities since there is also a y - x factor in the numerator. The limit doesn't

1

exist among the other two lines, so n=2.

7. The line through all the points is the same as the line through B and G, for which one parametrization is $r(t) = B + t(E - B) = (1 - \frac{5}{3}t, 2 + t, 3 - 3t).$

Notice that t = 0 gives us B and t = 1 gives us E. The segment BE consists of three equal segments BC, CD, DE, so r(1/3) = C, r(2/3) = D. Extrapolating forward and backward, we see that r(-1/3) =A, r(5/3) = G. So one parametrization of the segment AG is $r(t) = (1 - \frac{5}{3}t, 2 + t, 3 - 3t), -\frac{1}{3} \le t \le \frac{5}{3}$.

8. Acceleration is simple: $\mathbf{a}(t) = \mathbf{r}''(t) = (0, 1.5t^{-1/2}, 0)$. To compute its components, we use the formula $a_T = \frac{r' \cdot r''}{\|r'\|} = \frac{(1,3t^{1/2},-1) \cdot (0,1.5t^{-1/2},0)}{\|(1,3\sqrt{t},-1)\|} = \frac{4.5}{\sqrt{2+9t}}$. Instead of computing a cross product to get a_N , notice that from $\mathbf{a} = a_T \mathbf{T} + a_N \mathbf{N}$ and the fact \mathbf{T}, \mathbf{N} are

perpendicular, we get $\|\mathbf{a}\|^2 = \mathbf{a} \cdot \mathbf{a} = a_T^2 + a_N^2$, so

$$a_N = \sqrt{\|\mathbf{a}\|^2 - a_T^2} = \sqrt{\frac{9}{4t} - \frac{81}{4(2+9t)}} = \frac{3}{2}\sqrt{\frac{1}{t} - \frac{9}{2+9t}} = \frac{3}{\sqrt{2t(9+2t)}}.$$

9. Let $a = f_x(p), b = f_y(p)$. The unit vector in the direction of (3, -4) is u = (3/5, -4/5), so we get $\nabla f(p) \cdot u = \frac{3a}{5} - \frac{4b}{5} = 9$. The unit vector in the direction of $\theta = 225^{\circ}$ is $(\cos(225^{\circ}), \sin(225^{\circ})) = -\frac{1}{\sqrt{2}}(1, 1)$, so we obtain another equation $-\frac{1}{\sqrt{2}}(a+b) = -4\sqrt{2} \Rightarrow a+b=8$.

Solve the system of 2 linear equations to get a = 11, b = -3. The maximum rate of change occurs in the direction of ∇f and has value $\|\nabla f(p)\| = \|(a,b)\| = \sqrt{130}$. The unit vector along (5,12) is (5/13,12/13), so the desired directional derivative is (5a + 12b)/13 = 19/13.