

MLSys 2022 Trip Report

9/30/2022 OpenMindSpore Project Silicon Valley System Software Lab

Contents

- Overview
- Outstanding Paper Awards
- Selected papers of interests
- Comments

5th Conference on Machine Learning and Systems (MLSys)

- Date: August 29 to September 1, 2022
- Location: Santa Clara, CA, USA
- In-person only, no hybrid/virtual attendance supported this year
- 247 papers submitted, 51 paper accepted (20.6% acceptance rate)

MLSys 2022 Sponsors

- Platinum
 - TikTok, Meta
- Gold
 - Netflix, Microwoft, Moloco, Mosaic ML
 - Rebuy, Tesla, Snowflake, Bloomberg
 - Amazon Science
- Silver
 - ARM, Hewlett Packard Enterprise, Relational AI, Alibaba Cloud
 - Qualcomm

Outstanding Paper Awards

- Pathways: Asynchronous Distributed Dataflow for ML (Google)
- QuadraLib: A Performant Quadratic Neural Network Library for Architecture Optimization and Design Exploration
- Random Offset Block Embedding (ROBE) for Compressed Embedding Tables in Deep Learning Recommendation Systems
- ML-EXray: Visibility into ML Deployment on the Edge
- GPU Semiring Primitives for Sparse Neighborhood Methods (Univ of Maryland and Nvidia)

MLSys Presentations of Interests

- Pathways: Asynchronous Distributed Dataflow for ML
- BNS-GCN: Efficient Full-Graph Training of Graph Convolutional Networks with Partition-Parallelism and Random Boundary Node Sampling
- The CoRa Tensor Compiler: Compilation for Ragged Tensors with Minimal Padding
- Apollo: Automatic Partition-based Operator Fusion through Layer by Layer Optimization
- DietCode: Automatic Optimization for Dynamic Tensor Programs
- Towards the Co-Design of Neural Networks and Accelerators
- Efficient Strong Scaling Through Burst Parallel Training
- Synthesizing Optimal Parallelism Placement and Reduction Strategies on Hierarchical Systems for Deep Learning
- dPRO: A Generic Performance Diagnosis and Optimization Toolkit for Expediting Distributed DNN Training

Pathways: Asynchronous Distributed Dataflow for ML (Google)

- A new large scale orchestration layer for accelerators
 - Enabling exploration of new systems and ML research ideas (e.g., different model weights can be updated per example, or even per sub-example)
 - Addressing the restriction of current SPMD programming model, providing state-of-art performance
 - Using shared dataflow graph of asynchronous operators, and gang-scheduling heterogeneous parallel computations on accelerators
 - Overcoming JAX limitations that cannot scale beyond a single TPU pod, enabling communication among thousands of TPU cores over Inter-Core Interconnect (ICI) and DC Network (DCN)
- Pathways executors and schedulers could be replaced by Ray actors (using PyTorch backend) and cluster scheduling, respectively.

(b) Parallel dispatch

MindSpore Perspective

- Pathways mainly tries to overcome JAX's limitation of scaling beyond a single TPU pod (due to collective communication over ICI).
- Current MindSpore using Ascend accelerators shares the same issue of restricted MPI programming model and exclusive resource utilization of accelerators.
- A distributed execution engine like Ray could be adapted so that MindSpore could provide more flexible scheduling of heterogeneous workers for sub-graph execution, resulting in easy expression of new parallelism patterns and comparable performance to SPMD case.

BNS-GCN: Efficient Full-Graph Training of Graph Convolutional Networks with Partition-Parallelism and Random Boundary Node Sampling (Rice Univ & Univ of Illinois)

- Training large GCNs is challenging due to excessive number of boundary nodes of each partitioned subgraph, causing:
 - Heavy communication overhead
 - Prohibitive memory requirement
 - Imbalanced memory consumption
- BNS-GCN techniques
 - METIS-based graph partition achieves balanced computation time, avoiding stragglers blocking other partitions to proceed in synchronous training
 - Random boundary node sampling stores and communicates selected nodes only. Ran
- BNS shows lower feature approximation variance compared to state-of-art sampling methods (GraphSAGE, VR-GCN, FastGCN, LADIES)

Algorithm 1: Boundary node sampling for partition-parallel training (per-partition view) **Input:** partition number m, partition id i, graph partition

 \mathcal{G}_i , boundary node set \mathcal{B}_i , node feature X_i , label Y_i ,

sampling rate p, initial model w[0], learning rate η **Output:** trained model w[T] after T iterations $v \in \mathcal{G}_i : v \notin \mathcal{B}_i$; > create inner node set $_{2}H^{(0)}\leftarrow X_{i};$ initialize input features 3 for $t \leftarrow 1 : T$ do $\mathcal{U}_i \leftarrow \text{randomly pick elements in } \mathcal{B}_i \text{ with probability } p$; $\mathcal{H}_i \leftarrow \text{node induced subgraph of } \mathcal{G}_i \text{ from } \mathcal{V}_i \cup \mathcal{U}_i;$ Broadcast \mathcal{U}_i and Receive $[\mathcal{U}_1, \cdots, \mathcal{U}_m]$; $[S_{i,1},\cdots,S_{i,m}] \leftarrow [\mathcal{U}_1 \cap \dot{\mathcal{V}}_i,\cdots,\mathcal{U}_m \cap \mathcal{V}_i];$ for $\ell \leftarrow 1: L$ do Send $[H_{\mathcal{S}_{i,1}}^{(\ell-1)},\cdots,H_{\mathcal{S}_{i,m}}^{(\ell-1)}]$ to partition $[1,\cdots,m]$ and Receive $H_{\mathcal{U}}^{(\ell-1)}$; $H^{(\ell)} \leftarrow GCN^{(\ell)} \left(\mathcal{H}_i, \begin{bmatrix} H^{(\ell-1)} \\ H_{IL}^{(\ell-1)} \end{bmatrix}, w[t-1] \right);$ $f_i \leftarrow \sum_{v \in \mathcal{V}_i} loss(h_v^{(L)}, y_v);$ ▶ backward pass $q[t] \leftarrow AllReduce(q_i[t]);$ ⊳ share gradients $w[t] \leftarrow w[t-1] - \eta \cdot q[t];$ □ update model 16 end

17 return w[T]

The CoRa Tensor Compiler: Compilation for Ragged Tensors with Minimal Padding (CMU & OctoML)

- Current deep learning frameworks use padding and masking to make data shapes uniform, and offloads computations to optimized kernels for dense tensor algebra.
- Such techniques cause waste computation and loss in performance.
- CoRa (Compiler or Ragged Tensors) proposes new scheduling primitives for ragged tensors, while providing generalized APIs.
 - · Loop scheduling, operation splitting, horizontal fusion, loop and storage padding, tensor dimension scheduling, load balancing
- CoRa is implemented on TVM and shows comparable performance as highly hand-optimized code.
- Ragged tensors are usually much denser compared to sparse tensors and the applications are quite different.
- Recently DL frameworks have begun to support ragged tensors.
 - RaggedTensor (TensorFlow), NestedTensor (PyTorch)

Figure 1: An example operation on ragged tensors.

Figure 4: Overview of CORA's compilation and runtime pipeline.

MindSpore Perspective

- MindSpore has not supported ragged tensors yet.
- Similar to TensorFlow and PyTorch, MindSpore could introduce a new tensor type for ragged tensors, and its operators.
- Automated generate code could be highly portable across different hardware platforms and achieve comparable performance as handoptimized code.

Apollo: Automatic Partition-based Operator Fusion through Layer by Layer Optimization (State Key Lab & Huawei)

- · Problems of existing operator fusion
 - Missing the opportunities to fuse with compute-bound ops and exploiting fusion within an incomplete space (TensorFlow, DLVM, Glow)
 - Scalability of the loop fusion heuristics (TVM)
 - Falling short in supporting custom ops in training scenarios (TASO, Rambler)
- Apollo approach
 - Extending search space of fusion by considering more op types
 - · Allowing reverse feedback from operator-level optimizer for scalability
 - Modeling both data locality and parallelism
 - Reasonable JIT compilation overhead
- Apollo architecture
 - Partition phase (rule-based)
 - extracts maximum set of sub-graphs
 - splits them into individual subgraphs
 - Fusion phase
 - Layer I: carries out loop fusion for each sub-graph (polyhedral loop fusion)
 - · Layer II: implements node grouping (by memory stitching)
 - Layer III: exploits parallelism between independent ops (by parallelism stitching)
- MindSpore integration
 - <a href="https://gitee.com/mindspore/mindspo
 - Apollo enabled by the parameter 'enable_graph_kernel'

Figure 2: Architecture of APOLLO.

DietCode: Automatic Optimization for Dynamic Tensor Programs (Univ of Toronto & AWS)

Dynamic tensor

- All shapes are unknown at compile-time
- Examples: neural architecture search, dynamic by design (models in sequence learning), varying shapes depending on layer position in model
- Existing auto-scheduler frameworks can only support static-shape workloads.

DietCode

- Joint learning approach that optimizes all the possible shapes of workload collectively within the same shape-generic search space (by applying micro-kernels) and collective learning the same cost model
- O(1) complexity of auto tuning (compared to O(|S|) where |S| is # of possible shapes)
- Implemented on top of TVM

Figure 1. Code-generation comparison between (a) existing auto-schedulers and (b) DietCode. Existing approaches auto-schedule each shape individually. DietCode solves the problem by having all shapes jointly search within the same shape-generic search space and update the same micro-kernel cost model.

MindSpore

- Dynamic tensor has not been considered in MindSpore yet.
- MindSpore could adapt the same idea of DietCode by adapting shapegeneric search space in auto tuning and the cost calculation, similar to how DietCode did with TVM.

Towards the Co-Design of Neural Networks and Accelerators (Google)

- NaaS (Neural Architecture and Accelerator Search) jointly searches the best configuration of neural architecture and accelerator.
 - NaaS parameterize neural architecture search and hardware architecture search in a unified joint search space.
 - NaaS is task-driven, not a set of fixed programs or graphs for generalization across vertical tasks.
 - · NaaS is evaluated on a cycle-accurate accelerator simulator.
- NaaS outperforms platform-aware NAS (Neural Architecture Search) or hardware-aware design space exploration, which optimizes one end of space.
 - Optimizing indirect metrics (e.g., parameter counts or FLOPS) won't necessarily improve direct metrics of latency.

 NaaS optimization uses PyGlove, a symbolic programming library using a RL controller (PPO algorithm, Proximity Policy Optimization).

Figure 3. NaaS expands the pareto frontiers.

Figure 1. ImageNet Top 1 Accuracy vs. Energy (mj) comparing NaaS and related work.

Efficient Strong Scaling Through Burst Parallel Training (MIT)

- Challenges for scaling DNN training efficiency
 - Training is less effective beyond a certain point, because larger batch sizes causes a loss in sample efficiency.
 - The uneven parallelism in some layers of many DNN models causes underutilization of GPUs.
 - Conventional data parallel approach is insufficient for GPU hardware utilization in this scenario.
- DeepPool introduces burst parallel training to dynamically adjust # of GPUs to allocate to each layer.
 - This improves overall cluster efficiency by reclaiming underutilized GPUs for other training tasks.
- DeepPool's GPU multiplexing allows to train multiple models on each GPU simultaneously.
 - · QoS-aware admission control in runtime low batch sizes for low priority tasks

Figure 5. Heterogeneous scalability of layers in VGG16. Y-axis

Figure 6. System architecture.

MindSpore Perspective

- DeepPool's burst parallelism, uneven resource allocation of GPU to different layers of DNN models is similar to PipeTransformer's idea on different speed of training phase on different layers.
- PipeTransformer mostly considers DNN training for a single model, whereas DeepPool allows to run multiple DNN training tasks using the same GPU hardware pools.

Synthesizing Optimal Parallelism Placement and Reduction Strategies on Hierarchical Systems for Deep Learning (Univ of Cambridge & DeepMind)

- P²: a tool for parallelism placement and placement-aware synthesis of reduction strategies
 - A novel mapping of data & model parallelism to hierarchical accelerators (e.g., rack, server, CPU, GPU)
 - Formal semantics for collectives based on Hoare triples
 - Domain-specific language expressing simultaneous reductions among device group (Nvidia GPUs forming a ring via NVLink), using syntax-guided program synthesis
 - Lowering programs into sequences of NCCL calls on XLA GPU backend
 - P² outperforms default all-reduce implementation on different GPU hierarchies.

FUTUREWEI
Technologies

Figure 1: Parallelism combination

dPRO: A Generic Performance Diagnosis and Optimization Toolkit for Expediting Distributed DNN Training (Univ of Hong Kong & ByteDance)

- Efficient Profiler: collecting runtime traces of computations and communications
 - Existing systems are error-prone due to lack of global timestamp support and exact time of receiving data
 - · Global DFG (Data Flow Graph) constructed from local DFGs and fine-grained communication topology
- Replayer: simulating execution of global DFG based on modified Kahn's algorithm
- Optimizer: identifying performance bottlenecks and exploring optimization strategies
- Search space speed-up by:
 - Coarsened view of global DFG (grouping tensor-producing and non-tensor-producing ops together)
 - · Partial replay
 - Exploiting symmetry of DNN models (e.g., multiple transformers in BERT)
- Profiler added to TensorFlow, MXNet, communication (to Horovod for NCCL, BytePS for parameter-server-based training)
- dPRO achieves 3.48x speed-up over baseline for training time while maintaining < 5% errors in most cases.
- Source code available at https://github.com/joapolarbear/dpro

Figure 1. Training ResNet50 in 100Gbps network, batch size 32 per GPU (see Sec. 7.1 for testbed details)

Figure 4. An illustration of the global DFG.

Comments

- MLSys is a new conference specialized for ML systems.
- There were 3 invited talks
 - Systems for ML and ML for systems: a virtuous cycle (by Kunle Olukotun from Stanford)
 - Towards building a responsible data economy (by Dawn Song from Univ of Cal, Berkeley)
 - Accelerating engineering with machine learning (by Ryan Adams from Princeton Univ)
- 4 Workshops were co-held.
 - Practical adaption challenges of ML for systems in industry
 - Benchmarking machine learning workloads on emerging hardware
 - Cloud intelligence: Al/ML for efficient and manageable cloud services
 - Cross-community federated learning: algorithms, systems, and co-designs
- Chips & compilers symposium was held last day.
 - https://chips-compilers-mlsys-22.github.io/
 - Topics covered: carbon footprint of ML training, autotuning of ML, PyTorch compilers, ML for small devices, ML optimization for cloud service, efficient code generation for DNNs

