

Total Capture: 3D Deformation Model for Tracking Faces, Hands, and Bodies

Authors:

Hanbyul Joo

Tomas Simon

Yaser Sheikh

Best Student Paper

Award

CVPR 2018

Presented by Anantapadmanaabha Prasannakumar

- Human interactions convey information.
- Information critical for machine understanding.

Marker-based system:

- Laborious process.
- Uncomfortable to the subject.

Marker-based system:

- Doesn't capture occlusions.
- Concentrates on particular body part.

Markerless systems:

- Use Multi-video stereo camera and a template model.
- Detect keypoints to capture motion.
- Still part specific.

Image source: Markerless Motion Capture of Multiple Characters Using Multiview Image Segmentation, Yebin et al., TPAMI 2013

Proposed Solution

- Create a model for the entire body called Frank.
- Utilize Frank and body keypoints to capture entire human motion.

Proposed Solution

- Create a model for the entire body called Frank.
- Utilize Frank and body keypoints to capture entire human motion.
- Create Adam by leveraging Frank.

Building Block

- ❖ A mesh is made up of vertices and edges.
- Each vertex has its normal.
- They are orthogonal to each other.

Prof. Dr. Mario Botsch's Geometry Processing Lecture Notes Computer Graphics and Geometry Processing Group, Bielefeld University

Building Block

- Orthogonality lost during transformation
- Inverse transformation is necessary.

Building Block

Triangles formed form the building block of a polygonal mesh.

Prof. Dr. Mario Botsch's Geometry Processing Lecture Notes Computer Graphics and Geometry Processing Group, Bielefeld University

Skinning (Linear Blend Skinning)

- Skinning is rendering a mesh around the joints.
- Vertices would be in rest pose.

Rest pose

Skinning (Linear Blend Skinning)

- Apply transformation to vertices to bind them to joints.
- If the joint position changes, the transformation matrix changes.

Skinning transformations

Skinning (Linear Blend Skinning)

- Associate each vertex to the joints.
- Transformation of the vertices depends on weights.

Skinning weights

Body Model

- Utilize modified SMPL model.
- Represented as: $\mathbf{V}^B = M^B(\boldsymbol{\theta}^B, \boldsymbol{\phi}^B, \boldsymbol{t}^B)$
- N = 6890 vertices.
- These vertices are in rest pose.

 M^B resembles body model

 $heta^B$ is the pose parameter

 ϕ^B is the shape parameter

 t^{B} is the global translation parameter

Body Model Transformation

- Linear blend skinning applied to each joint.
- Posed mesh vertices given by:

$$J^B = 21$$
 joints

- \bullet $I_{3\times4}$ is the Identity Matrix
- W being the weights.
- T_i^B is the transformation matrix.
- $T_j^B \in SE(3)$
- ❖ Sum of all weigths sum to 1.

$$\mathbf{v}_i^B \!\!=\!\! \mathbf{I}_{3\times 4} \!\cdot \sum_{j=1}^{J^B} w_{i,j}^B \mathbf{T}_j^B \! \left(\!\!\! \begin{array}{c} \!\!\! \mathbf{v}_i^{B0} \! + \sum_{k=1}^{K_b} \! \mathbf{b}_i^k \phi_k^B \\ 1 \!\!\! \end{array} \!\!\! \right)$$

- v_i^{B0} is the mean shape i-th vertex.
- $\star K_b = 10$, number of identity body shape coefficients.
- b_i^k is the vertex of the k-th blendshape.
- $\boldsymbol{\diamond}$ ϕ_k^B is the k-th shape coefficient.

$$\mathbf{v}' = \sum_{j \in H} w_j(\mathbf{v}) \mathbf{T}_j \begin{pmatrix} \mathbf{v} \\ 1 \end{pmatrix}$$

Prof. Alex Jacabson Course Notes, University of Toronto Skinning: Real-Time Shape Deformation, ACM SIGGRAPH 2014 Courses, skinning.org

$$\mathbf{v}' = \sum_{j \in H} w_j(\mathbf{v}) \mathbf{T}_j \begin{pmatrix} \mathbf{v} \\ 1 \end{pmatrix}$$

Prof. Alex Jacabson Course Notes, University of Toronto Skinning: Real-Time Shape Deformation, ACM SIGGRAPH 2014 Courses, skinning.org

Prof. Alex Jacabson Course Notes, University of Toronto Skinning: Real-Time Shape Deformation, ACM SIGGRAPH 2014 Courses, skinning.org

Face Model

- Align the facial mesh [1] with the body model.
- ❖ The face model is given by: $\mathbf{V}^F = M^F(\boldsymbol{\theta}^F, \boldsymbol{\phi}^F, \mathbf{T}^F)$

$$lacktriangledown$$
 Where $\mathbf{V}^F = \left\{ \mathbf{v}_i^F
ight\}_{i=1}^F$

$$N^F = 11510$$

Face model

* Rest pose vertices:

$$\hat{\mathbf{v}}_i^F = \mathbf{v}_i^{F0} + \sum_{k=1}^{K_f} \mathbf{f}_i^k \phi_k^F + \sum_{s=1}^{K_e} \mathbf{e}_i^s heta_s^F$$

- $k_f = 150$, is the identity blendshape.
- f_i^k is the vertex at k-th blendshape.
- ϕ_k^F is the shape coefficient.
- k_e = 200, is the expression blendshape.
- \bullet e_i^s is the vertex at s-th expression blendshape.
- \bullet θ_s^F is the pose blendshape parameter.

Face Model

* Each transformed vertex given by:

$$\mathbf{v}_{i}^{F} \! = \! \mathbf{I}_{3 imes 4} \! \cdot \! \mathbf{T}_{j=F}^{B} \! \cdot \! \mathbf{\Gamma}^{F} \! \begin{pmatrix} \hat{\mathbf{v}}_{i}^{F} \\ 1 \end{pmatrix}$$

- $I_{3\times 4}$: Truncated Identity Matrix.
- $T_i^B \in SE(3)$ denotes the transformation matrix.
- $ightharpoonup \Gamma^F$ is the alignment matrix.

Hand Model

* Each vertex is given by:

$$\mathbf{v}_i^H = \mathbf{I}_{3 imes 4} \cdot \mathbf{T}_{j=H}^B \cdot \mathbf{\Gamma}^H \cdot \sum_{j=1}^J w_{i,j}^H \mathbf{T}_j^H inom{\mathbf{v}_i^{H0}}{1}$$

- $I_{3\times4}$ = Truncated Identity Matrix.
- $\ \ \ T_j^B$ denotes the transformation matrix.

- $\diamond v_i^{H0}$ is the mean shape.
- J indicates number of joints in hand, 16 joints.
- W indicates weights in the hand model.
- $\Leftrightarrow T_j^H$ is the matrix transformation.

Creating Frank

Different templates

Alignment

Frank model

Frank Model

- ❖ Frank model upon stitchina body, face and hands is given by: $\mathbf{V}^U = M^U(\boldsymbol{\theta}^U, \boldsymbol{\phi}^U, \mathbf{t}^U)$
- ullet Where $\mathbf{V}^U {\in} \mathbb{R}^{N^U {\times} 3}$
- $N^U = 18540$
- ullet The linear blending matrix: $\mathbf{V}^U = \mathbf{C} \left[\left(\mathbf{V}^B \right)^T \left(\mathbf{V}^F \right)^T \left(\mathbf{V}^{LH} \right)^T \left(\mathbf{V}^{RH} \right)^T \right]^T$
- � Where: $\mathbf{C} \in \mathbb{R}^{N^U imes (N^B + N^F + 2N^H)}$

- 540 Video Graphics Array Camera.
- 31 High Definition (HD) cameras.
- ❖ 10 Kinect cameras (RGB-D sensors).

140 VGA camera to get 3D triangulated keypoints.

480 VGA cameras to detect 3D foot keypoints.

31 HD cameras to detect finger triangulated keypoints.

Image source: Panoptic Studio, The CMU Robotics Institute

10 Kinect cameras to get Multi-View Stereo Pointclouds.

3D Keypoints and Cloudpoints

Use state-of-the-art methods [1] to get 2D keypoints.

3D Keypoints and Cloudpoints

- Use state-of-the-art methods[1] to get 2D keypoints.
- Use MVS cameras to get 3D triangulated keypoints

3D Keypoints and Cloudpoints

- Use state-of-the-art methods [1] to get 2D keypoints.
- Use MVS cameras to get 3D triangulated keypoints
- Use RealityCapture [3] to 3D cloudpoints.

Fitting Frank

Pointclouds

to 3D data

Objective Functions

- Each frame is fit independently.
- Levenberg Macquardt for optimization purposes.
- ❖ A library called Ceres Solver is used.
- $ightharpoonup
 ightharpoonup
 ightharpoonup
 ightharpoonup E(m{ heta}^U, m{\phi}^U, m{t}^U) = E_{\text{keypoints}} + E_{\text{icp}} + E_{\text{seam}} + E_{\text{prior}}$

Seam Cost

- Frank is composed of part models
- tit would lead to discontinuities.
- Penalizing the distance between vertices of part models.

Seam Constraints

❖The cost function is given by:

$$\begin{split} E_{\text{seam}} &= \sum_{(i,j) \in \mathcal{C}^{LH}} ||\mathbf{B}_i \mathbf{V}^{\mathbf{B}} - (\mathbf{v}_j^{LH})^T||^2 + \\ &\sum_{(i,j) \in \mathcal{C}^{RH}} ||\mathbf{B}_i \mathbf{V}^B - (\mathbf{v}_j^{RH})^T||^2 + \\ &\sum_{(i,j) \in \mathcal{C}^F} ||\mathbf{B}_i \mathbf{V}^B - (\mathbf{v}_j^F)^T||^2, \end{split}$$

- lackappa $\mathbf{B}_i{\in}\mathbb{R}^{1{ imes}N^B}$ where $\mathbf{B}_i\mathbf{1}_{N^B}{=}1$
- C contains correspondences (i, j) where i denotes the cloud points, and denotes the ring

Anatomical Keypoint Cost

- Find correspondences between 3D keypoints and the mesh model.
- It includes joints in body and hands.
- Joints in face, finger tips and toes present on the surface.

Anatomical Keypoint Cost

❖The cost function:

$$E_{ ext{ keypoints}} = \lambda_{ ext{ keypoints}} \, \sum_{i \in \mathcal{D}} \! \left\| \mathbf{J}_i \mathbf{V} - \! \mathbf{y}_i^T
ight\|^2$$

❖ Where: D indicates available keypoints in a frame.

 $\mathbf{J} \in \mathbb{R}^{C \times N^U}$ denotes regression matrix, resembling joints.

C is the number of correspondences.

 N^{U} is the number of vertices in the mesh.

 $y_i \in \mathbb{R}^{3 \times 1}$, indicates 3D detections.

- **Step 1:** optimizing correspondences
- Step 2: optimizing transformations

Set of vertices and pointclouds.

Find correspondences

Take out erroneous data.

Do necessary transformation.

Check for convergence.

Repeat till convergence.

- ICP is used to find the correspondences between the mesh vertices and the 3D Cloud Points.
- Distance along the normal direction is computed using: $E_{ ext{icp}} = \lambda_{ ext{icp}} \sum_{\mathbf{v}_j \in \mathbf{V}^U} \mathbf{n}(\mathbf{x}_{j^*})^T (\mathbf{x}_{j^*} {-} \mathbf{v}_j)$

where: x_i is the closest 3D point to the j-th vertex v_i

 $n(\cdot) \in \mathbb{R}^3$, is the point's normal.

 λ_{icp} is the relative weight.

 N^U is the number of vertices in the mesh.

$$\mathbf{v}' = \sum_{j \in H} w_j(\mathbf{v}) \mathbf{T}_j \begin{pmatrix} \mathbf{v} \\ 1 \end{pmatrix}$$

Prof. Alex Jacabson Course Notes, University of Toronto Skinning: Real-Time Shape Deformation, ACM SIGGRAPH 2014 Courses, skinning.org

$$\mathbf{v}' = \sum_{j \in H} w_j(\mathbf{v}) \mathbf{T}_j \begin{pmatrix} \mathbf{v} \\ 1 \end{pmatrix}$$

Prof. Alex Jacabson Course Notes, University of Toronto Skinning: Real-Time Shape Deformation, ACM SIGGRAPH 2014 Courses, skinning.org

Prof. Alex Jacabson Course Notes, University of Toronto Skinning: Real-Time Shape Deformation, ACM SIGGRAPH 2014 Courses, skinning.org

Prior Cost

- The 3D Point Cloud could be noisy.
- The SMPL and FaceWarehouse models doesn't consider hair and clothing.
- Joint locations of the model are not completely in sync with the 2D keypoints.
- For better fitting of the model to data: $E_{\text{prior}} = E_{\text{prior}}^F + E_{\text{prior}}^B + E_{\text{prior}}^H$

Drawbacks of Frank Model

Frank model doesn't consider hair and clothing

Don't have simple parameterization process.

Adam Model

- Leverage Frank model and train it on 70 subjects.
- Consider 5 frames for each subject, resulting in 350 meshes.
- Single joint hierarchy.
- Common parametrization for all parts.

Fitting Clothes and Hair

- Deform the each vertex along its normal,
- Deformed vertex represented as: $\tilde{v}_i = v_i + n(v_i)\delta_i$

where δ_i is the scalar displacement between mesh vertex and the 3D Cloud Point.

Fitting Clothes and Hair

Pose the problem as a linear system.

$$\bigstar$$
 That is, $\begin{pmatrix} \mathbf{N}^T \\ (\mathbf{WLN})^T \end{pmatrix} \Delta = \begin{pmatrix} (\mathbf{P} - \mathbf{V}^U)^T \\ \mathbf{0} \end{pmatrix}$

Where Δ is the per-vertex displacement.

- ❖ P is the corresponding cloud point.
- \bullet V^U is the number of vertices in the mesh.
- N is the vertex normal.
- W is the diagonal weight matrix.
- ❖ L is the Laplace Beltrami operator to regularize the deformation.

Detection Target Regression

- In order to align the mesh with 3D keypoints properly, the vertices are aligned with 3D keypoints directly.
- The resulting mesh has 61 joints.

Adam model representation

- The model parameterized as: $M^A(\theta^A, \phi^A, t^A) = \mathbf{V}^A$
- $\mathbf{v}^{A} = \left\{\mathbf{v}_{i}^{A}\right\}_{i=1}^{N^{A}}$ where $N^{A} = 18540$, is the number of vertices

where
$$\hat{\mathbf{v}}_i^A = \mathbf{v}_i^{A0} + \sum_{k=1}^{K_A} \mathbf{s}_i^k \phi_k^A$$

 \mathbf{v}_i^{A0} is the mean shape.

 $K_A = 40$, number of blendshape coefficient.

 \mathbf{s}_{i}^{k} is the vertex at k-th blendshape.

 ϕ_k^A is the blendshape coefficient.

Adam Cost Function

- The Cost Function is given by: $E(\theta^A, \phi^A, t^A) = E_{\text{keypoints}} + E_{\text{icp}} + E_{\text{prior}}$
- Does not require seam constraint
- Single set of unified shape and pose parameters for all parts
- Optical flow between frames to avoid jittery video.

Results

- (a) Input image
- (b) SMPL keypoints

- (c) Frank keypoints
- (d) Frank keypoints + ICP
- (f) Adam keypoints + ICP

- * Red: Ground truth
- Green: Rendered silhouettes
- Yellow: Correctly overlapping areas

Results

Silhouette Accuracy

	SMPL[34]	Frank	Frank ICP	Adam ICP
Mean	84.79%	85.91%	87.68%	87.74%
Std.	4.55	4.57	4.53	4.18

Results

Thank You