

Grundbegriffe der Informatik **Tutorium 36** | 2.11.2017

Maximilian Staab, uxhdf@student.kit.edu Lukas Bach, lukas.bach@student.kit.edu

Maß für Information

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas bach@student.kit.edu

Wiederholung und Übung

Wörter

Formale Sprachen Die Zahl der verschiedenen mäglichen Nachrichten ist ein Maß für die Information einer Nachricht, wenn das Auftreten der Nachrichten gleichverteilt ist.

- Logarithmus naturalis: natural units (nat)
- Logarithmus zur Basis 10: Hartley (Hart)
- Logarithmus dualis: Shannon (Sh)

Mengen

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Wiederholung und Übung

Formale

Sprachen

Seien $A = \{1, 2, 3, 4\}, B = \{3.4.5.6.7\}, C = \{5, 6, 7\}$. Bestimme

- $A \cup B$
- $A \cup C$
- \bullet $A \cap B$
- \bullet $A \cap C$

sowie die Kardinalität dieser Mengen.

Mengen

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Wiederholung und Übung

Lösung:

Wörter

•
$$A \cup B = \{1, 2, 3, 4, 5, 6, 7, \}$$
 und $|A \cup B| = 7$

Formale Sprachen

Mengen

Maximilian Staab. uxhdf@student.kit.edu. Lukas Bach, lukas bach@student kit edu

Wiederholung und Übung

Wörter

Formale Sprachen Lösung:

•
$$A \cup B = \{1, 2, 3, 4, 5, 6, 7, \}$$
 und $|A \cup B| = 7$

•
$$A \cup B = \{1, 2, 3, 4, 5, 6, 7, \}$$
 und $|A \cup C| = 7$

Mengen

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas hach@student.kit.edu

Wiederholung und Übung

Wörter

Formale Sprachen

Lösung:

- $A \cup B = \{1, 2, 3, 4, 5, 6, 7, \} \text{ und } | A \cup B | = 7$
- $A \cup B = \{1, 2, 3, 4, 5, 6, 7,\} \text{ und } | A \cup C | = 7$
- $A \cap B = \{3, 4\} \text{ und } | A \cap B | = 2$

Mengen

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas hach@student.kit.edu

Wiederholung und Übung

Wörter

Formale

Sprachen

Lösung:

- $A \cup B = \{1, 2, 3, 4, 5, 6, 7, \}$ und $|A \cup B| = 7$
 - $A \cup B = \{1, 2, 3, 4, 5, 6, 7, \}$ und $|A \cup C| = 7$
 - $A \cap B = \{3, 4\} \text{ und } | A \cap B | = 2$
 - $A \cap C = \emptyset \text{ und } |\emptyset| = 0$

Mengen

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas bach@student.kit.edu

Wiederholung und Übung Aufgabe aus WS16/17

Es seinen A,B und C Mengen. Beweisen oder widerlegen Sie:

Wörter

 $A \backslash (B \backslash C) = (A \backslash B) \backslash C$

Formale Sprachen

Mengen

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas bach@student.kit.edu

Wiederholung und Übung

Aufgabe aus WS16/17

Es seinen A,B und C Mengen. Beweisen oder widerlegen Sie:

Wörte

$$A \setminus (B \setminus C) = (A \setminus B) \setminus C$$

Formale Sprachen

Widerlegung durch Gegenbeispiel

Seien
$$A=\{1,2,3\}, B=\{3,4,5\}$$
 und $C=\{3\}$. Dann ist $\{1,2,3\}\setminus(\{3,4,5\}\setminus\{3\})=\{1,2,3\}\setminus\{4,5\}=\{1,2,3\}\neq\{1,2\}=\{1,2\}\setminus\{3\}=(\{1,2,3\}\setminus\{3,4,5\})\setminus\{3\}$

Mengenäquivalenz

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach,

lukas.bach@student.kit.edu

Wiederholung und Übung

Wörter

Formale Sprachen

Zeigen Sie

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

Mengenäquivalenz

Maximilian Staab. uxhdf@student.kit.edu. Lukas Bach,

lukas.bach@student.kit.edu

Wiederholung und Übung

Formale Sprachen

Zeigen Sie

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

• " \subseteq ": Sei $x \in A \cup (B \cap C)$. Dann ist $x \in A$ oder $x \in (B \cap C)$

Mengenäquivalenz

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach,

lukas.bach@student.kit.edu

Wiederholung und Übung

Wörter

Formale Sprachen

Zeigen Sie

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

- " \subseteq ": Sei $x \in A \cup (B \cap C)$. Dann ist $x \in A$ oder $x \in (B \cap C)$
 - Falls $x \in A$, dann gilt auch $x \in (A \cup B)$ und $x \in (A \cup C)$. Also insbesondere $x \in (A \cup B) \cap (A \cup C)$.

Mengenäquivalenz

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach,

lukas.bach@student.kit.edu

Wiederholung und Übung

Wörter

Sprachen

Zeigen Sie

 $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

- " \subseteq ": Sei $x \in A \cup (B \cap C)$. Dann ist $x \in A$ oder $x \in (B \cap C)$
 - Falls $x \in A$, dann gilt auch $x \in (A \cup B)$ und $x \in (A \cup C)$. Also insbesondere $x \in (A \cup B) \cap (A \cup C)$.
 - Falls $x \in (B \cap C)$, dann gilt auch $x \in (A \cup B)$ und $x \in (B \cup C)$. Also insbesondere $x \in (A \cup B) \cap (A \cup C)$.

Mengenäquivalenz

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach.

lukas.bach@student.kit.edu

Wiederholung und Übung

Wörter

Formale Sprachen

Zeigen Sie

 $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

- " \subseteq ": Sei $x \in A \cup (B \cap C)$. Dann ist $x \in A$ oder $x \in (B \cap C)$
 - Falls $x \in A$, dann gilt auch $x \in (A \cup B)$ und $x \in (A \cup C)$. Also insbesondere $x \in (A \cup B) \cap (A \cup C)$.
 - Falls $x \in (B \cap C)$, dann gilt auch $x \in (A \cup B)$ und $x \in (B \cup C)$. Also insbesondere $x \in (A \cup B) \cap (A \cup C)$.
- "⊇": $x \in (A \cup B) \cap (A \cup C)$. Dann liegt x in $(A \cup B)$ und $(A \cup C)$. Also liegt x entweder in A oder in (B und C). Folglich gilt $x \in A \cup (A \cap C)$.

Mengenäquivalenz

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach.

lukas.bach@student.kit.edu

Wiederholung und Übung

Wörter

Formale Sprachen

Zeigen Sie

 $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

- " \subseteq ": Sei $x \in A \cup (B \cap C)$. Dann ist $x \in A$ oder $x \in (B \cap C)$
 - Falls $x \in A$, dann gilt auch $x \in (A \cup B)$ und $x \in (A \cup C)$. Also insbesondere $x \in (A \cup B) \cap (A \cup C)$.
 - Falls $x \in (B \cap C)$, dann gilt auch $x \in (A \cup B)$ und $x \in (B \cup C)$. Also insbesondere $x \in (A \cup B) \cap (A \cup C)$.
- "⊇": $x \in (A \cup B) \cap (A \cup C)$. Dann liegt x in $(A \cup B)$ und $(A \cup C)$. Also liegt x entweder in A oder in (B und C). Folglich gilt $x \in A \cup (A \cap C)$.
- Insgesamt ist also $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.

Mengen

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.

Aufgabe aus WS16/17

Es sei M eine Menge und es seien $A \subseteq M$ und $B \subseteq M$. Beweisen Sie:

 $M \setminus (A \cap B) = (M \setminus A) \cup (M \setminus B)$

Wiederholung und Übung

Wörter

Formale Sprachen

Mengen

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.

Aufgabe aus WS16/17

Wiederholung und Übung Es sei M eine Menge und es seien $A \subseteq M$ und $B \subseteq M$. Beweisen Sie: $M \setminus (A \cap B) = (M \setminus A) \cup (M \setminus B)$

Wörter

■ "⊆": Sei $x \in M \setminus (A \cap B)$. Dann ist $x \in M$ und $x \notin A$ oder $x \notin B$. Somit ist

Sprachen

- $x \in M$ und $x \notin A$ oder
- $x \in M \text{ und } x \notin B.$

Also ist $x \in (M \backslash A)$ oder $(M \backslash B)$, folglich also $x \in (M \backslash A) \cup (M \backslash B)$.

Mengen

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.

Aufgabe aus WS16/17

Wiederholung und Übung Es sei M eine Menge und es seien $A \subseteq M$ und $B \subseteq M$. Beweisen Sie: $M \setminus (A \cap B) = (M \setminus A) \cup (M \setminus B)$

Worter

■ "⊆": Sei $x \in M \setminus (A \cap B)$. Dann ist $x \in M$ und $x \notin A$ oder $x \notin B$. Somit ist

Spracher

- $x \in M$ und $x \notin A$ oder
- $x \in M$ und $x \notin B$.

Also ist $x \in (M \backslash A)$ oder $(M \backslash B)$, folglich also $x \in (M \backslash A) \cup (M \backslash B)$.

- "⊇": Sei $x \in (M \setminus A) \cup (M \setminus B)$. Dann ist $x \in (M \setminus A)$ oder $x \in (M \setminus B)$. Somit ist
 - $x \in M$ und $x \notin A$ oder
 - $x \in M$ und $x \notin B$.

Also ist $x \in M$, und $x \notin A$ oder $x \notin B$. Dann ist $x \in M$ und $x \notin (A \cap B)$, folglich also $x \in M \setminus (A \cap B)$.

Wörter

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas bach@student.kit.edu

Wiederholung

und Übung

Konkatenation

Durch Konkatenation werden einzelne Buchstaben aus einem Alphabet miteinander verbunden.

Wörter

Formale Sprachen

Wörter

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas bach@student.kit.edu

Wiederholung

und Übung

Konkatenation

Durch Konkatenation werden einzelne Buchstaben aus einem Alphabet miteinander verbunden.

Wörter

Formale Sprachen ■ Symbol: ·

Wörter

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas hach@student.kit.edu

Wiederholung

und Übung

Konkatenation

Durch Konkatenation werden einzelne Buchstaben aus einem Alphabet miteinander verbunden.

Wörter

Formale Sprachen ■ Symbol: ·, also zwei Buchstaben *a* und *b* miteinander konkateniert: *a* · *b*.

Wörter

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas bach@student.kit.edu

Wiederholung und Übung

Wörter

Formale Sprachen

Konkatenation

Durch Konkatenation werden einzelne Buchstaben aus einem Alphabet miteinander verbunden.

- Symbol: ·, also zwei Buchstaben a und b miteinander konkateniert: a · b.
- Nicht kommutativ : $a \cdot b \neq b \cdot a$

Wörter

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Wiederholung und Übung

Wörter

Formale Sprachen

Konkatenation

Durch Konkatenation werden einzelne Buchstaben aus einem Alphabet miteinander verbunden.

- Symbol: ·, also zwei Buchstaben a und b miteinander konkateniert: a · b.
- Nicht kommutativ : $a \cdot b \neq b \cdot a$
- Aber assoziativ : $(a \cdot b) \cdot c = a \cdot (b \cdot c)$

Wörter

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Wiederholung und Übung

Wörter

Formale Sprachen

Konkatenation

Durch Konkatenation werden einzelne Buchstaben aus einem Alphabet miteinander verbunden.

- Symbol: ·, also zwei Buchstaben a und b miteinander konkateniert: a · b.
- Nicht kommutativ : $a \cdot b \neq b \cdot a$
- Aber assoziativ : $(a \cdot b) \cdot c = a \cdot (b \cdot c)$
- Kurzschreibweise : Ohne Punkte , also $a \cdot b = ab$

Wörter

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas bach@student.kit.edu

Wiederholung und Übung

Wörter

Formale Sprachen

Wörter: Intuitivere Definition

Ein Wort *w* entsteht durch die Konkatenation durch Buchstaben aus einem Alphabet.

ightarrow Also Abfolge von Zeichen über ein Alphabet A.

Wörter

Maximilian Staab. uxhdf@student.kit.edu. Lukas Bach, lukas bach@student kit edu

Wiederholung und Übung

Wörter

Formale

Sprachen

Wörter: Intuitivere Definition

Ein Wort w entsteht durch die Konkatenation durch Buchstaben aus einem Alphabet.

→ Also Abfolge von Zeichen über ein Alphabet A.

Sei $A := \{a, b, c\}.$

Wörter

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas hach@student.kit.edu

Wiederholung und Übung

Wörter

Formale Sprachen

Wörter: Intuitivere Definition

Ein Wort *w* entsteht durch die Konkatenation durch Buchstaben aus einem Alphabet.

 \rightarrow Also Abfolge von Zeichen über ein Alphabet A. Sei $A := \{a, b, c\}$.

Mögliche Worte:

Wörter

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas bach@student.kit.edu

Wiederholung und Übung

Wörter

Formale Sprachen

Wörter: Intuitivere Definition

Ein Wort *w* entsteht durch die Konkatenation durch Buchstaben aus einem Alphabet.

 \rightarrow Also Abfolge von Zeichen über ein Alphabet A. Sei $A := \{a, b, c\}$.

■ Mögliche Worte: $w_1 := a \cdot b$

Wörter

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Wiederholung und Übung

Wörter

Formale Sprachen

Wörter: Intuitivere Definition

Ein Wort *w* entsteht durch die Konkatenation durch Buchstaben aus einem Alphabet.

 \rightarrow Also Abfolge von Zeichen über ein Alphabet A. Sei $A := \{a, b, c\}$.

■ Mögliche Worte: $w_1 := a \cdot b$, $w_2 = b \cdot c \cdot c$

Wörter

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Wiederholung und Übung

Wörter

Formale Sprachen

Wörter: Intuitivere Definition

Ein Wort *w* entsteht durch die Konkatenation durch Buchstaben aus einem Alphabet.

 \rightarrow Also Abfolge von Zeichen über ein Alphabet A. Sei $A := \{a, b, c\}$.

■ Mögliche Worte: $w_1 := a \cdot b$, $w_2 = b \cdot c \cdot c$, $w_3 = a \cdot c \cdot c \cdot b \cdot a$.

Wörter

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas bach@student.kit.edu

Wiederholung und Übung

Wörter

Formale Sprachen

Wörter: Intuitivere Definition

Ein Wort *w* entsteht durch die Konkatenation durch Buchstaben aus einem Alphabet.

 \rightarrow Also Abfolge von Zeichen über ein Alphabet A. Sei $A := \{a, b, c\}$.

- Mögliche Worte: $w_1 := a \cdot b$, $w_2 = b \cdot c \cdot c$, $w_3 = a \cdot c \cdot c \cdot b \cdot a$.
- Keine möglichen Worte:

Wörter

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas bach@student.kit.edu

Wiederholung und Übung

Wörter

Formale Sprachen

Wörter: Intuitivere Definition

Ein Wort *w* entsteht durch die Konkatenation durch Buchstaben aus einem Alphabet.

 \rightarrow Also Abfolge von Zeichen über ein Alphabet A. Sei $A := \{a, b, c\}$.

- Mögliche Worte: $w_1 := a \cdot b$, $w_2 = b \cdot c \cdot c$, $w_3 = a \cdot c \cdot c \cdot b \cdot a$.
- Keine möglichen Worte: d.

Wörter

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach,

lukas.bach@student.kit. Wörter: Abstraktere Definition

Wiederholung und Übung

Ein Wort w über dem Alphabet A ist definiert als surjektive Abbildung $w: \mathbb{Z}_n \to A$. Dabei heißt n die Länge |w| des Wortes.

Wörter

Formale Sprachen

Wörter

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach,

lukas.bach@student.kit. Wörter: Abstraktere Definition

Wiederholung und Übung Ein Wort w über dem Alphabet A ist definiert als surjektive Abbildung $w: \mathbb{Z}_n \to A$. Dabei heißt n die Länge |w| des Wortes.

Wörter

Formale Sprachen

Wörter

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach,

lukas.bach@student.kit. Wörter: Abstraktere Definition

Wiederholung und Übung

Ein Wort w über dem Alphabet A ist definiert als surjektive Abbildung $w: \mathbb{Z}_n \to A$. Dabei heißt n die Länge |w| des Wortes.

Wörter

Sprachen

$$\mathbb{Z}_n = \{ i \in \mathbb{N} : 0 \le i < n \}$$

$$\mathbb{Z}_3 = \{ 0, 1, 2 \}, \mathbb{Z}_2 = \{ 0, 1 \}, \mathbb{Z}_0 = \emptyset.$$

Wörter

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach,

lukas.bach@student.kit. Wörter: Abstraktere Definition

Wiederholung und Übung

Ein Wort w über dem Alphabet A ist definiert als surjektive Abbildung $w: \mathbb{Z}_n \to A$. Dabei heißt n die Länge |w| des Wortes.

Wörter

 $\mathbb{Z}_n = \{ i \in \mathbb{N} : 0 \le i < n \}$ $\mathbb{Z}_3 = \{ 0, 1, 2 \}, \mathbb{Z}_2 = \{ 0, 1 \}, \mathbb{Z}_0 = \emptyset.$

Sprachen

■ Länge oder Kardinalität eines Wortes: |w|.

Wörter

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach,

lukas.bach@student.kit. Wörter: Abstraktere Definition

Wiederholung und Übung Ein Wort w über dem Alphabet A ist definiert als surjektive Abbildung $w: \mathbb{Z}_n \to A$. Dabei heißt n die Länge |w| des Wortes.

Wörter

 $\mathbb{Z}_n = \{ i \in \mathbb{N} : 0 \le i < n \}$ $\mathbb{Z}_3 = \{ 0, 1, 2 \}, \mathbb{Z}_2 = \{ 0, 1 \}, \mathbb{Z}_0 = \emptyset.$

Sprachen

■ Länge oder Kardinalität eines Wortes: |w|. |abcde| = 5.

Wörter

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.

Wörter: Abstraktere Definition

Wiederholung und Übung

Ein Wort w über dem Alphabet A ist definiert als surjektive Abbildung $w: \mathbb{Z}_n \to A$. Dabei heißt n die Länge |w| des Wortes.

Wörter

■
$$\mathbb{Z}_n = \{i \in \mathbb{N} : 0 \le i < n\}$$

 $\mathbb{Z}_3 = \{0, 1, 2\}, \mathbb{Z}_2 = \{0, 1\}, \mathbb{Z}_0 = \emptyset.$

- Länge oder Kardinalität eines Wortes: |w|. |abcde| = 5.
- Wort w = abdec als Relation aufgeschrieben:

Wörter

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.

Wörter: Abstraktere Definition

Wiederholur und Übung Ein Wort w über dem Alphabet A ist definiert als surjektive Abbildung $w: \mathbb{Z}_n \to A$. Dabei heißt n die Länge |w| des Wortes.

Wörter

$$\mathbb{Z}_n = \{ i \in \mathbb{N} : 0 \le i < n \}$$

$$\mathbb{Z}_3 = \{ 0, 1, 2 \}, \mathbb{Z}_2 = \{ 0, 1 \}, \mathbb{Z}_0 = \emptyset.$$

- Länge oder Kardinalität eines Wortes: |w|. |abcde| = 5.
- Wort w = abdec als Relation aufgeschrieben: $w = \{(0, a), (1, b), (2, d), (3, e), (4, c)\}$. Also w(0) = a, w(1) = b, w(2) = d, ...

Wörter

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.

Wörter: Abstraktere Definition

Wiederholur und Übung

Ein Wort w über dem Alphabet A ist definiert als surjektive Abbildung $w : \mathbb{Z}_n \to A$. Dabei heißt n die Länge |w| des Wortes.

Wörter

$\mathbb{Z}_n = \{ i \in \mathbb{N} : 0 \le i < n \}$ $\mathbb{Z}_3 = \{ 0, 1, 2 \}, \mathbb{Z}_2 = \{ 0, 1 \}, \mathbb{Z}_0 = \emptyset.$

Sprachen

- Länge oder Kardinalität eines Wortes: |w|. |abcde| = 5.
- Wort w = abdec als Relation aufgeschrieben: $w = \{(0, a), (1, b), (2, d), (3, e), (4, c)\}$. Also w(0) = a, w(1) = b, w(2) = d, ...Damit sieht man auch: $|w| = |\{(0, a), (1, b), (2, d), (3, e), (4, c)\}| = 5$.

Grundbegriffe Wörter der Informatik

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Wort der Kardinalität 0?

Wiederholung und Übung

Wörter

Wörter

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Wort der Kardinalität 0?

Wiederholung und Übung

Das leere Wort

Wörter

Das leere Wort ϵ ist definiert ein Wort mit Kardinalität 0 , also mit 0 Zeichen.

Wörter

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach,

lukas.bach@student.kit.edu

Wort der Kardinalität 0?

Wiederholung und Übung

Das leere Wort

Das leere Wort ε ist definiert ein Wort mit Kardinalität 0 , also mit 0 Zeichen.

Wörter

Formale Sprachen Leere Wort wird interpretiert als "nicht sichtbar" und kann überall platziert werden

Wörter

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Wort der Kardinalität 0?

Wiederholung und Übung

Das leere Wort

Das leere Wort ε ist definiert ein Wort mit Kardinalität 0 , also mit 0 Zeichen.

Wörter

Formale Sprachen Leere Wort wird interpretiert als "nicht sichtbar" und kann überall platziert werden: $aabc = a\varepsilon abc = \varepsilon \varepsilon a\varepsilon bc\varepsilon$.

Wörter

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Wort der Kardinalität 0?

Wiederholung und Übung

Das leere Wort

Das leere Wort ε ist definiert ein Wort mit Kardinalität 0 , also mit 0 Zeichen.

Wörter

- Leere Wort wird interpretiert als "nicht sichtbar" und kann überall platziert werden: $aabc = a\varepsilon abc = \varepsilon \varepsilon a\varepsilon bc\varepsilon$.
- $|\{\varepsilon\}|$

Wörter

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Wort der Kardinalität 0?

Wiederholung und Übung

Das leere Wort

Das leere Wort ε ist definiert ein Wort mit Kardinalität 0 , also mit 0 Zeichen.

Wörter

- Leere Wort wird interpretiert als "nicht sichtbar" und kann überall platziert werden: $aabc = a\varepsilon abc = \varepsilon \varepsilon a\varepsilon bc\varepsilon$.
- $|\{\varepsilon\}| = 1$, die Menge ist nicht leer! Das leere Wort ist nicht *nichts*! (Vergleiche leere Menge)

Wörter

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Wort der Kardinalität 0?

Wiederholung und Übung

Das leere Wort

Das leere Wort ε ist definiert ein Wort mit Kardinalität 0 , also mit 0 Zeichen.

Wörter

Sprachen

- Leere Wort wird interpretiert als "nicht sichtbar" und kann überall platziert werden: $aabc = a\varepsilon abc = \varepsilon \varepsilon a\varepsilon bc\varepsilon$.
- $|\{\varepsilon\}|=1$, die Menge ist nicht leer! Das leere Wort ist nicht *nichts*! (Vergleiche leere Menge)
- $|\varepsilon|=0.$

Mehr über Wörter

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.

 A^n

Wiederholung und Übung

Zu einem Alphabet A ist A^n definiert als die Menge aller Wörter der Länge n über dem Alphabet A.

Wörter

Mehr über Wörter

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.

 A^n

Wiederholung und Übung

Zu einem Alphabet A ist A^n definiert als die Menge aller Wörter der Länge n über dem Alphabet A.

Wörter

Formale Sprachen Nicht mit Mengenpotenz verwechseln!

Mehr über Wörter

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.

 A^n

Wiederholung und Übung

Zu einem Alphabet A ist A^n definiert als die Menge aller Wörter der Länge n über dem Alphabet A.

Wörter

- Nicht mit Mengenpotenz verwechseln!
- $A := \{a, b, c\}$

Mehr über Wörter

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.

 A^n

Wiederholung und Übung

Zu einem Alphabet A ist A^n definiert als die Menge aller Wörter der Länge n über dem Alphabet A.

Wörter

Nicht mit Mengenpotenz verwechseln!

Sprachen

• $A := \{a, b, c\}, A^2 = \{aa, ab, ac, ba, bb, bc, ca, cb, cc\}.$

Mehr über Wörter

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.

 A^n

Wiederholung und Übung

Zu einem Alphabet A ist A^n definiert als die Menge aller Wörter der Länge n über dem Alphabet A.

Wörter

Formale Sprachen Nicht mit Mengenpotenz verwechseln!

•
$$A := \{a, b, c\}, A^2 = \{aa, ab, ac, ba, bb, bc, ca, cb, cc\}.$$

 $A^1 = A,$

Mehr über Wörter

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.

Δr

Wiederholung und Übung

Zu einem Alphabet A ist A^n definiert als die Menge aller Wörter der Länge n über dem Alphabet A.

Wörter

Formale Sprachen Nicht mit Mengenpotenz verwechseln!

•
$$A := \{a, b, c\}, A^2 = \{aa, ab, ac, ba, bb, bc, ca, cb, cc\}.$$

 $A^1 = A, A^0 = \{\epsilon\}.$

Mehr über Wörter

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.

 A^n

Wiederholung und Übung

Zu einem Alphabet A ist A^n definiert als die Menge aller Wörter der Länge n über dem Alphabet A.

Wörter

Formale Sprachen

Nicht mit Mengenpotenz verwechseln!

•
$$A := \{a, b, c\}, A^2 = \{aa, ab, ac, ba, bb, bc, ca, cb, cc\}.$$

 $A^1 = A, A^0 = \{\epsilon\}.$

Die Menge aller Wörter beliebiger Länge:

Mehr über Wörter

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.

Δr

Wiederholung und Übung

Zu einem Alphabet A ist A^n definiert als die Menge aller Wörter der Länge n über dem Alphabet A.

Wörter

Formale Sprachen

Nicht mit Mengenpotenz verwechseln!

•
$$A := \{a, b, c\}, A^2 = \{aa, ab, ac, ba, bb, bc, ca, cb, cc\}.$$

 $A^1 = A, A^0 = \{\epsilon\}.$

Die Menge aller Wörter beliebiger Länge:

$$lacksquare A^* := \bigcup_{i \in \mathbb{N}_0} A_i$$

Mehr über Wörter

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.

Δr

Wiederholung und Übung

Zu einem Alphabet A ist A^n definiert als die Menge aller Wörter der Länge n über dem Alphabet A.

Wörter

Formale Sprachen

Nicht mit Mengenpotenz verwechseln!

•
$$A := \{a, b, c\}, A^2 = \{aa, ab, ac, ba, bb, bc, ca, cb, cc\}.$$

 $A^1 = A, A^0 = \{\epsilon\}.$

Die Menge aller Wörter beliebiger Länge:

$$lacksquare$$
 $A^* := \bigcup_{i \in \mathbb{N}_0} A_i$

•
$$A := \{a, b, c\}$$
 . $aa \in A^*$, $abcabcabc \in A^*$, $aaaa \in A^*$, $\epsilon \in A^*$.

Mehr über Wörter

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas hach@student.kit.edu

Wiederholung und Übung

Wörter

Formale Sprachen

Wort Potenzen

Mehr über Wörter

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas bach@student.kit.edu

Wiederholung und Übung

Wörter

Formale Sprachen

Wort Potenzen

$$a^4 = aaaa$$

Mehr über Wörter

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas hach@student.kit.edu

Wiederholung und Übung

Wörter

Formale Sprachen

Wort Potenzen

$$a^4 = aaaa, b^3 = bbb$$

Mehr über Wörter

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas bach@student.kit.edu

Wiederholung und Übung

Wörter

Formale Sprachen

Wort Potenzen

•
$$a^4 = aaaa, b^3 = bbb, c^0 =$$

Mehr über Wörter

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas bach@student.kit.edu

Wiederholung und Übung

Wörter

Formale Sprachen

Wort Potenzen

•
$$a^4 = aaaa$$
, $b^3 = bbb$, $c^0 = \varepsilon$

Mehr über Wörter

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas bach@student.kit.edu

Wiederholung und Übung

Wörter

Formale Sprachen

Wort Potenzen

•
$$a^4 = aaaa, b^3 = bbb, c^0 = \epsilon, d^1 =$$

Mehr über Wörter

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Wiederholung und Übung

Wörter

Sprachen

Wort Potenzen

•
$$a^4 = aaaa, b^3 = bbb, c^0 = \varepsilon, d^1 = d.$$

Mehr über Wörter

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas bach@student.kit.edu

Wiederholung und Übung

Wörter

Formale Sprachen

Wort Potenzen

- $a^4 = aaaa, b^3 = bbb, c^0 = \varepsilon, d^1 = d.$
- $a^3c^2b^6$

Mehr über Wörter

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas bach@student.kit.edu

Wiederholung und Übung

Wörter

Sprachen

Wort Potenzen

- $a^4 = aaaa, b^3 = bbb, c^0 = \varepsilon, d^1 = d.$
- $a^3c^2b^6 = aaaccbbbbbb.$

Mehr über Wörter

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas bach@student.kit.edu

Wiederholung und Übung

Wörter

Spracher

Wort Potenzen

- $a^4 = aaaa, b^3 = bbb, c^0 = \varepsilon, d^1 = d.$
- \bullet $a^3c^2b^6 = aaaccbbbbbbb.$
- $\bullet b \cdot a \cdot (n \cdot a)^2$

Mehr über Wörter

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas hach@student.kit.edu

Wiederholung und Übung

Wörter

Formale

Sprachen

Wort Potenzen

- $a^4 = aaaa, b^3 = bbb, c^0 = \varepsilon, d^1 = d.$
- $a^3c^2b^6 = aaaccbbbbbbb.$
- $b \cdot a \cdot (n \cdot a)^2 = banana$.

Übung zu Wörter

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach.

lukas.bach@student.kit.edSei A ein Alphabet.

Wiederholung und Übung

Wörter

Formale Sprachen

Übung zu Wörter

- 1. Finde Abbildung $f: A^* \to A^*$, sodass für alle $w \in A^*$ gilt: $2 \cdot |w| = |f(w)|$.
- 2. Finde Abbildung $g: A^* \to A^*$, sodass für alle $w \in A^*$ gilt: |w| + 1 = |g(w)|.
- 3. Sind *f*, *g* injektiv und/oder surjektiv?

Übung zu Wörter

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach.

lukas.bach@student.kit.edSei A ein Alphabet.

Wiederholung und Übung

Wörter

Formale Sprachen

Übung zu Wörter

- 1. Finde Abbildung $f: A^* \to A^*$, sodass für alle $w \in A^*$ gilt: $2 \cdot |w| = |f(w)|$.
- 2. Finde Abbildung $g:A^*\to A^*$, sodass für alle $w\in A^*$ gilt: |w|+1=|g(w)|.
- 3. Sind *f*, *g* injektiv und/oder surjektiv?
- 1. $f: A^* \rightarrow A^*, w \mapsto w \cdot w$.

Übung zu Wörter

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach.

lukas.bach@student.kit.edSei A ein Alphabet.

Wiederholung und Übung

Wörter

Formale Spracher

Übung zu Wörter

- 1. Finde Abbildung $f: A^* \to A^*$, sodass für alle $w \in A^*$ gilt: $2 \cdot |w| = |f(w)|$.
- 2. Finde Abbildung $g: A^* \to A^*$, sodass für alle $w \in A^*$ gilt: |w| + 1 = |g(w)|.
- 3. Sind *f*, *g* injektiv und/oder surjektiv?
- 1. $f: A^* \rightarrow A^*, w \mapsto w \cdot w$.
- 2. $g: A^* \rightarrow A^*, w \mapsto w \cdot x, x \in A$.

Übung zu Wörter

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Wiederholung und Übung

1. $f: A^* \rightarrow A^*, w \mapsto w \cdot w$.

Wörter

Übung zu Wörter

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Wiederholung und Übung

- 1. $f: A^* \rightarrow A^*, w \mapsto w \cdot w$.
 - f ist injektiv

Wörter

Übung zu Wörter

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas hach@student.kit.edu

Wiederholung und Übung

1. $f: A^* \rightarrow A^*, w \mapsto w \cdot w$.

f ist injektiv, denn jedes w aus der Bildmenge wird von maximal einem Wort abgebildet.

Wörter

Übung zu Wörter

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Wiederholung und Übung

Wörter

Formale Sprachen

- *f* ist injektiv, denn jedes *w* aus der Bildmenge wird von maximal einem Wort abgebildet.
- f ist nicht surjektiv

Übung zu Wörter

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas bach@student.kit.edu

Wiederholung und Übung

Wörter

Formale Sprachen

- f ist injektiv, denn jedes w aus der Bildmenge wird von maximal einem Wort abgebildet.
- f ist nicht surjektiv, denn z.B. bildet nichts auf $x \in A$ ab (oder auf andere Wörter mit ungerader Anzahl an Buchstaben).

Übung zu Wörter

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas bach@student.kit.edu

Wiederholung und Übung

Wörter

Sprachen

- f ist injektiv, denn jedes w aus der Bildmenge wird von maximal einem Wort abgebildet.
- f ist nicht surjektiv, denn z.B. bildet nichts auf $x \in A$ ab (oder auf andere Wörter mit ungerader Anzahl an Buchstaben).
- 2. $g: A^* \rightarrow A^*, w \mapsto w \cdot x, x \in A$.

Übung zu Wörter

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas bach@student.kit.edu

Wiederholung und Übung

Wörter

Sprachen

- f ist injektiv, denn jedes w aus der Bildmenge wird von maximal einem Wort abgebildet.
- f ist nicht surjektiv, denn z.B. bildet nichts auf $x \in A$ ab (oder auf andere Wörter mit ungerader Anzahl an Buchstaben).
- 2. $g: A^* \rightarrow A^*, w \mapsto w \cdot x, x \in A$.
 - g ist injektiv.

Übung zu Wörter

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas bach@student.kit.edu

Wiederholung und Übung

Wörter

Sprachen

- f ist injektiv, denn jedes w aus der Bildmenge wird von maximal einem Wort abgebildet.
- f ist nicht surjektiv, denn z.B. bildet nichts auf $x \in A$ ab (oder auf andere Wörter mit ungerader Anzahl an Buchstaben).
- 2. $g: A^* \rightarrow A^*, w \mapsto w \cdot x, x \in A$.
 - g ist injektiv.
 - g ist nicht surjektiv

Übung zu Wörter

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Wiederholung und Übung

Wörter

Sprachen

- f ist injektiv, denn jedes w aus der Bildmenge wird von maximal einem Wort abgebildet.
- f ist nicht surjektiv, denn z.B. bildet nichts auf $x \in A$ ab (oder auf andere Wörter mit ungerader Anzahl an Buchstaben).
- 2. $g: A^* \rightarrow A^*, w \mapsto w \cdot x, x \in A$.
 - g ist injektiv.
 - g ist nicht surjektiv, denn z.B. bildet nichts auf ε ab.

Formale Sprache

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Wiederholung und Übung

Wörter

Maximilian Staab.

Formale Sprache

uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu Was war nochmal A*? Menge aller Wörter beliebiger Länge über Alphabet A.

Wiederholung und Übung

Wörter

Formale Sprache

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas bach@student.kit.edu Was war nochmal A*? Menge aller Wörter beliebiger Länge über Alphabet A.

Wiederholung und Übung

Formale Sprache

Eine Formale Sprache L über einem Alphabet A ist eine Teilmenge $L\subseteq A^*$.

Wörter

Formale Sprache

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas bach@student.kit.edu Was war nochmal A*? Menge aller Wörter beliebiger Länge über Alphabet A.

Wiederholung und Übung

Formale Sprache

Eine Formale Sprache L über einem Alphabet A ist eine Teilmenge $L \subseteq A^*$.

Wörter

Zufälliges Beispiel:

Formale Sprache

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas bach@student.kit.edu Was war nochmal A*? Menge aller Wörter beliebiger Länge über Alphabet A.

Wiederholung und Übung

Formale Sprache

Eine Formale Sprache L über einem Alphabet A ist eine Teilmenge $L \subseteq A^*$.

Wörter

■ Zufälliges Beispiel: $A := \{b, n, a\}$.

Formale Sprache

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas hach@student.kit.edu Was war nochmal A*? Menge aller Wörter beliebiger Länge über Alphabet A.

Wiederholung und Übung

Formale Sprache

Eine Formale Sprache L über einem Alphabet A ist eine Teilmenge $L \subseteq A^*$.

Wörter

■ Zufälliges Beispiel: $A := \{b, n, a\}$.

Formale Sprachen • $L_1 := \{ban, baan, nba, aa\}$ ist eine mögliche formale Sprache über A.

Formale Sprache

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu Was war nochmal A*? Menge aller Wörter beliebiger Länge über Alphabet A.

Wiederholung und Übung

Formale Sprache

Eine Formale Sprache L über einem Alphabet A ist eine Teilmenge $L \subseteq A^*$.

Wörte

■ Zufälliges Beispiel: $A := \{b, n, a\}$.

- $L_1 := \{ban, baan, nba, aa\}$ ist eine mögliche formale Sprache über A.
- $L_2 := \{banana, bananana, banananana, ...\}$

Formale Sprache

Maximilian Staah uxhdf@student.kit.edu. Lukas Bach. lukas.bach@student.kit.edu Was war nochmal A*? Menge aller Wörter beliebiger Länge über Alphabet A.

Wiederholung und Übung

Formale Sprache

Eine Formale Sprache L über einem Alphabet A ist eine Teilmenge $L \subseteq A^*$.

- Zufälliges Beispiel: $A := \{b, n, a\}$.
 - $L_1 := \{ban, baan, nba, aa\}$ ist eine mögliche formale Sprache über A.
 - $L_2 := \{banana, bananana, banananana, ...\}$ $= \{ w : w = bana(na)^k, k \in \mathbb{N} \}$ auch.

Formale Sprache

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas bach@student.kit.edu Was war nochmal A*? Menge aller Wörter beliebiger Länge über Alphabet A.

Wiederholung und Übung

Formale Sprache

Eine Formale Sprache L über einem Alphabet A ist eine Teilmenge $L \subseteq A^*$.

Wörte

_ .

- Zufälliges Beispiel: $A := \{b, n, a\}$.
 - $L_1 := \{ban, baan, nba, aa\}$ ist eine mögliche formale Sprache über A.
 - $L_2 := \{banana, bananana, banananana, ...\}$ = $\{w : w = bana(na)^k, k \in \mathbb{N}\}$ auch.
 - $L_3 := \{ban, baan, baaan, ...\}$ auch.

Formale Sprache

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas bach@student.kit.edu Was war nochmal A*? Menge aller Wörter beliebiger Länge über Alphabet A.

Wiederholung und Übung

Formale Sprache

Eine Formale Sprache L über einem Alphabet A ist eine Teilmenge $L \subseteq A^*$.

Wörte

Formale

- Zufälliges Beispiel: $A := \{b, n, a\}$.
 - $L_1 := \{ban, baan, nba, aa\}$ ist eine mögliche formale Sprache über A.
 - $L_2 := \{banana, bananana, banananana, ...\}$ = $\{w : w = bana(na)^k, k \in \mathbb{N}\}$ auch.
 - $L_3 := \{ban, baan, baaan, ...\}$ auch. Andere Schreibweise?

Formale Sprache

Maximilian Staah uxhdf@student.kit.edu. Lukas Bach. lukas bach@student kit edu Was war nochmal A*? Menge aller Wörter beliebiger Länge über Alphabet A.

Wiederholung und Übung

Formale Sprache

Eine Formale Sprache L über einem Alphabet A ist eine Teilmenge $L \subseteq A^*$.

Formale

Sprachen

- Zufälliges Beispiel: $A := \{b, n, a\}$.
 - $L_1 := \{ban, baan, nba, aa\}$ ist eine mögliche formale Sprache über A.
 - $L_2 := \{banana, bananana, banananana, ...\}$ $= \{ w : w = bana(na)^k, k \in \mathbb{N} \}$ auch.
 - $L_3 := \{ban, baan, baaan, ...\}$ auch. Andere Schreibweise? $L_3 = \{ w : w = ba^k n, k \in \mathbb{N} \}$

Formale Sprache

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas hach@student.kit.edu Was war nochmal A*? Menge aller Wörter beliebiger Länge über Alphabet A.

Wiederholung und Übung

Formale Sprache

Eine Formale Sprache L über einem Alphabet A ist eine Teilmenge $L \subseteq A^*$.

Wörte

Formale

Sprachen

- Zufälliges Beispiel: $A := \{b, n, a\}$.
 - $L_1 := \{ban, baan, nba, aa\}$ ist eine mögliche formale Sprache über A.
 - $L_2 := \{banana, bananana, banananana, ...\}$ = $\{w : w = bana(na)^k, k \in \mathbb{N}\}$ auch.
 - $L_3 := \{ban, baan, baaan, ...\}$ auch. Andere Schreibweise? $L_3 = \{w : w = ba^k n, k \in \mathbb{N}\}$
- Formale Sprachen sind also nicht zwangsweise endliche Mengen.

Formale Sprache

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu Was war nochmal A*? Menge aller Wörter beliebiger Länge über Alphabet A.

Wiederholung und Übung

Formale Sprache

Eine Formale Sprache L über einem Alphabet A ist eine Teilmenge $L \subseteq A^*$.

Wörte

Formale Sprachen ■ Zufälliges Beispiel: $A := \{b, n, a\}$.

• $L_1 := \{ban, baan, nba, aa\}$ ist eine mögliche formale Sprache über A.

■ $L_2 := \{banana, bananana, banananana, ...\}$ = $\{w : w = bana(na)^k, k \in \mathbb{N}\}$ auch.

■ $L_3 := \{ban, baan, baaan, ...\}$ auch. Andere Schreibweise? $L_3 = \{w : w = ba^k n, k \in \mathbb{N}\}$

- Formale Sprachen sind also nicht zwangsweise endliche Mengen.
- Praktischeres Beispiel: A := {w : w ist ein ASCII Symbol }.

Formale Sprache

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu Was war nochmal A*? Menge aller Wörter beliebiger Länge über Alphabet A.

Wiederholung und Übung

Formale Sprache

Eine Formale Sprache L über einem Alphabet A ist eine Teilmenge $L \subseteq A^*$.

Wörte

Formale Sprachen ■ Zufälliges Beispiel: $A := \{b, n, a\}$.

• $L_1 := \{ban, baan, nba, aa\}$ ist eine mögliche formale Sprache über A.

■ $L_2 := \{banana, bananana, banananana, ...\}$ = $\{w : w = bana(na)^k, k \in \mathbb{N}\}$ auch.

■ $L_3 := \{ban, baan, baaan, ...\}$ auch. Andere Schreibweise? $L_3 = \{w : w = ba^k n, k \in \mathbb{N}\}$

- Formale Sprachen sind also nicht zwangsweise endliche Mengen.
- Praktischeres Beispiel: A := {w : w ist ein ASCII Symbol }.
 - $L_4 := \{class, if, else, while, for, ...\}$ ist eine formale Sprache über A.

Formale Sprache

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas bach@student.kit.edu Was war nochmal A*? Menge aller Wörter beliebiger Länge über Alphabet A.

Wiederholung und Übung

Formale Sprache

Eine Formale Sprache L über einem Alphabet A ist eine Teilmenge $L \subseteq A^*$.

Wörte

- Formale
- Formale Sprachen

- Zufälliges Beispiel: $A := \{b, n, a\}$.
 - $L_1 := \{ban, baan, nba, aa\}$ ist eine mögliche formale Sprache über A.
 - $L_2 := \{banana, bananana, banananana, ...\}$ = $\{w : w = bana(na)^k, k \in \mathbb{N}\}$ auch.
 - $L_3 := \{ban, baan, baaan, ...\}$ auch. Andere Schreibweise? $L_3 = \{w : w = ba^k n, k \in \mathbb{N}\}$
- Formale Sprachen sind also nicht zwangsweise endliche Mengen.
- Praktischeres Beispiel: A := {w : w ist ein ASCII Symbol }.
 - $L_4 := \{class, if, else, while, for, ...\}$ ist eine formale Sprache über A.
 - L₅ := {w : w = a ⋅ b mit a als Großbuchstabe und b als Groß- oder Kleinbuchstabe }

Formale Sprache

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu Was war nochmal A*? Menge aller Wörter beliebiger Länge über Alphabet A.

Wiederholung und Übung

Formale Sprache

Eine Formale Sprache L über einem Alphabet A ist eine Teilmenge $L \subseteq A^*$.

Wörte

Formale

Sprachen

- Zufälliges Beispiel: $A := \{b, n, a\}$.
 - $L_1 := \{ban, baan, nba, aa\}$ ist eine mögliche formale Sprache über A.
 - $L_2 := \{banana, bananana, banananana, ...\}$ = $\{w : w = bana(na)^k, k \in \mathbb{N}\}$ auch.
 - $L_3 := \{ban, baan, baaan, ...\}$ auch. Andere Schreibweise? $L_3 = \{w : w = ba^k n, k \in \mathbb{N}\}$
- Formale Sprachen sind also nicht zwangsweise endliche Mengen.
- Praktischeres Beispiel: $A := \{w : w \text{ ist ein ASCII Symbol }\}.$
 - $L_4 := \{class, if, else, while, for, ...\}$ ist eine formale Sprache über A.
 - $L_5 := \{ w : w = a \cdot b \text{ mit } a \text{ als Großbuchstabe und } b \text{ als Groß- oder } Kleinbuchstabe } \setminus L_4$

Formale Sprache

Maximilian Staab uxhdf@student.kit.edu. Lukas Bach. lukas bach@student kit edu Was war nochmal A*? Menge aller Wörter beliebiger Länge über Alphabet A.

und Übung

Formale Sprache

Eine Formale Sprache L über einem Alphabet A ist eine Teilmenge $L \subseteq A^*$.

Formale

Sprachen

- Zufälliges Beispiel: A := {b, n, a}.
 - $L_1 := \{ban, baan, nba, aa\}$ ist eine mögliche formale Sprache über A.
 - $L_2 := \{banana, bananana, banananana, ...\}$ $= \{ w : w = bana(na)^k, k \in \mathbb{N} \}$ auch.
 - $L_3 := \{ban, baan, baaan, ...\}$ auch. Andere Schreibweise? $L_3 = \{ w : w = ba^k n, k \in \mathbb{N} \}$
- Formale Sprachen sind also nicht zwangsweise endliche Mengen.
- Praktischeres Beispiel: A := {w : w ist ein ASCII Symbol }.
 - $L_4 := \{class, if, else, while, for, ...\}$ ist eine formale Sprache über A.
 - $L_5 := \{ w : w = a \cdot b \text{ mit } a \text{ als Großbuchstabe und } b \text{ als Groß- oder } b \}$ Kleinbuchstabe $\{\setminus L_{\perp}\}$ ist eine formale Sprache von korrekten Klassennamen in Java.

Übung zu formalen Sprachen

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.edu

Wiederholung und Übung

$$A:=\{a,b\}$$

Wörter

Übung zu formalen Sprachen

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas hach@student.kit.edu

Wiederholung und Übung

$$A := \{a, b\}$$

Sprache L aller Wörter über A, die nicht das Teilwort ab enthalten?

Wörter

Übung zu formalen Sprachen

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas hach@student.kit.edu

Wiederholung und Übung

$$A:=\{a,b\}$$

Wörter

- Sprache L aller Wörter über A, die nicht das Teilwort ab enthalten?
 - Was passiert wenn ein solches Wort ein a enthält?

Übung zu formalen Sprachen

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas bach@student.kit.edu

Wiederholung und Übung

$$A:=\{a,b\}$$

Wörter

■ Sprache *L* aller Wörter über *A*, die nicht das Teilwort *ab* enthalten?

Formale Sprachen Was passiert wenn ein solches Wort ein a enthält? Dann keine b's mehr!

Übung zu formalen Sprachen

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas hach@student.kit.edu

Wiederholung und Übung

$$A:=\{a,b\}$$

Wörter

Formale Sprachen ■ Sprache *L* aller Wörter über *A*, die nicht das Teilwort *ab* enthalten?

- Was passiert wenn ein solches Wort ein a enthält? Dann keine b's mehr!
- $L = \{w_1 \cdot w_2 : w_1 \in \{b\}^* \text{ und } w_2 \in \{a\}^*\}$

Übung zu formalen Sprachen

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas bach@student.kit.edu

Wiederholung und Übung

$$A:=\{a,b\}$$

Wörter

Formale Sprachen Sprache L aller Wörter über A, die nicht das Teilwort ab enthalten?

- Was passiert wenn ein solches Wort ein a enthält? Dann keine b's mehr!
- $L = \{w_1 \cdot w_2 : w_1 \in \{b\}^* \text{ und } w_2 \in \{a\}^*\}$
- Andere Möglichkeit

Übung zu formalen Sprachen

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas bach@student.kit.edu

Wiederholung und Übung

$$A:=\{a,b\}$$

Wörte

Formale Sprachen ■ Sprache *L* aller Wörter über *A*, die nicht das Teilwort *ab* enthalten?

- Was passiert wenn ein solches Wort ein a enthält? Dann keine b's mehr!
- $L = \{w_1 \cdot w_2 : w_1 \in \{b\}^* \text{ und } w_2 \in \{a\}^*\}$
- Andere Möglichkeit: Suche Wörter mit ab und nehme diese Weg.

Maximilian Staab

Übung zu formalen Sprachen

uxhdf@student.kit.edu, Lukas Bach, lukas bach@student.kit.edu

Wiederholung und Übung

Wörter

$$A := \{a, b\}$$

- Sprache L aller Wörter über A, die nicht das Teilwort ab enthalten?
 - Was passiert wenn ein solches Wort ein a enthält? Dann keine b's mehr!
 - $L = \{w_1 \cdot w_2 : w_1 \in \{b\}^* \text{ und } w_2 \in \{a\}^*\}$
 - Andere Möglichkeit: Suche Wörter mit ab und nehme diese Weg.
 - $L = \{a, b\}^*$

Übung zu formalen Sprachen

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas bach@student.kit.edu

Wiederholung und Übung

Formale Sprachen

 $A := \{a, b\}$

- Sprache L aller Wörter über A, die nicht das Teilwort ab enthalten?
 - Was passiert wenn ein solches Wort ein a enthält? Dann keine b's mehr!
 - $L = \{w_1 \cdot w_2 : w_1 \in \{b\}^* \text{ und } w_2 \in \{a\}^*\}$
 - Andere Möglichkeit: Suche Wörter mit ab und nehme diese Weg.
 - $L = \{a, b\}^* \setminus \{w_1 \cdot ab \cdot w_2 : w_1, w_2 \in \{a, b\}^*\}$

Übung zu formalen Sprachen

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach.

lukas.bach@student.kit.ed $Sei\ A := \{a, b\}, B := \{0, 1\}.$

Wiederholung und Übung

Wörter

Formale Sprachen

- 1. Sprache $L_1 \subseteq A^*$ von Wörtern, die mindestens drei *b*'s enthalten.
- 2. Sprache $L_2 \subseteq A^*$ von Wörtern, die gerade Zahl von *a*'s enthält.
- 3. Sprache $L_3 \subseteq B^*$ von Wörtern, die, interpretiert als Binärzahl eine gerade Zahl sind.

Übung zu formalen Sprachen

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach.

lukas.bach@student.kit.ed $Sei\ A := \{a, b\}, B := \{0, 1\}.$

Wiederholung und Übung

Wörter

Formale Sprachen

- 1. Sprache $L_1 \subseteq A^*$ von Wörtern, die mindestens drei *b*'s enthalten.
- 2. Sprache $L_2 \subseteq A^*$ von Wörtern, die gerade Zahl von *a*'s enthält.
- 3. Sprache $L_3 \subseteq B^*$ von Wörtern, die, interpretiert als Binärzahl eine gerade Zahl sind.
- 1. $L_1 = \{w = w_1bw_2bw_3bw_4 : w_1, w_2, w_3, w_4 \in A^*\}$

Übung zu formalen Sprachen

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach.

lukas.bach@student.kit.ed $Sei\ A := \{a, b\}, B := \{0, 1\}.$

Wiederholung und Übung

Wörter

Formale Sprachen

- 1. Sprache $L_1 \subseteq A^*$ von Wörtern, die mindestens drei *b*'s enthalten.
- 2. Sprache $L_2 \subseteq A^*$ von Wörtern, die gerade Zahl von *a*'s enthält.
- 3. Sprache $L_3 \subseteq B^*$ von Wörtern, die, interpretiert als Binärzahl eine gerade Zahl sind.
- 1. $L_1 = \{ w = w_1 b w_2 b w_3 b w_4 : w_1, w_2, w_3, w_4 \in A^* \}$
- 2. $L_2 = \{ w = (w_1 a w_2 a w_3)^* : w_1, w_2, w_3 \in \{b\}^* \}$

Übung zu formalen Sprachen

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach.

lukas.bach@student.kit.ed $Sei\ A := \{a,b\}, B := \{0,1\}.$

Wiederholung und Übung

Wörter

Formale Sprachen

- 1. Sprache $L_1 \subseteq A^*$ von Wörtern, die mindestens drei *b*'s enthalten.
- 2. Sprache $L_2 \subseteq A^*$ von Wörtern, die gerade Zahl von *a*'s enthält.
- 3. Sprache $L_3 \subseteq B^*$ von Wörtern, die, interpretiert als Binärzahl eine gerade Zahl sind.
- 1. $L_1 = \{ w = w_1 b w_2 b w_3 b w_4 : w_1, w_2, w_3, w_4 \in A^* \}$
- 2. $L_2 = \{w = (w_1 a w_2 a w_3)^* : w_1, w_2, w_3 \in \{b\}^*\}$ (Ist da ε drin?)

Übung zu formalen Sprachen

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach.

lukas.bach@student.kit.ed $Sei\ A := \{a,b\}, B := \{0,1\}.$

Wiederholung und Übung

Wörter

Formale Sprachen

- 1. Sprache $L_1 \subseteq A^*$ von Wörtern, die mindestens drei *b*'s enthalten.
- 2. Sprache $L_2 \subseteq A^*$ von Wörtern, die gerade Zahl von *a*'s enthält.
- 3. Sprache $L_3 \subseteq B^*$ von Wörtern, die, interpretiert als Binärzahl eine gerade Zahl sind.
- 1. $L_1 = \{ w = w_1 b w_2 b w_3 b w_4 : w_1, w_2, w_3, w_4 \in A^* \}$
- 2. $L_2 = \{ w = (w_1 a w_2 a w_3)^* : w_1, w_2, w_3 \in \{b\}^* \}$ (Ist da ε drin?)
- 3. $L_3 = \{ w = w \cdot 0 : w \in B^* \}$

Maximilian Staab, uxhdf@student.kit.edu, Lukas Bach, lukas.bach@student.kit.ed

Wiederholung und Übung

Wörter

