

# Visualizing Data using t-SNE

By: Albertini Federico

Bertamini Riccardo

Calamita Corrado



### INDEX

- Introduction
- Stochastic Neighbor Embedding
- t-Distributed Stochastic Neighbor Embedding
  - Symmetric SNE
  - The Crowding Problem
  - Mismatched Tails can Compensate for Mismatched Dimensionalities
- Experiments
  - Data-Sets
  - Experimental Setup
  - Results
- Applying t-SNE to Large Data-sets
- Discussion
- Future Directions
- Code

# Visualizing Data using t-SNE

#### Algorithm 1: Simple version of t-Distributed Stochastic Neighbor Embedding.

```
Data: data set \mathcal{X} = \{x_1, x_2, ..., x_n\}, cost function parameters: perplexity Perp, optimization parameters: number of iterations T, learning rate \eta, momentum \alpha(t). Result: low-dimensional data representation \mathcal{Y}^{(T)} = \{y_1, y_2, ..., y_n\}. begin | compute pairwise affinities p_{j|i} with perplexity Perp (using Equation 1) set p_{ij} = \frac{p_{j|i} + p_{i|j}}{2n} sample initial solution \mathcal{Y}^{(0)} = \{y_1, y_2, ..., y_n\} from \mathcal{N}(0, 10^{-4}I) for t = I to T do | compute low-dimensional affinities q_{ij} (using Equation 4) compute gradient \frac{\delta C}{\delta \mathcal{Y}} (using Equation 5) set \mathcal{Y}^{(t)} = \mathcal{Y}^{(t-1)} + \eta \frac{\delta C}{\delta \mathcal{Y}} + \alpha(t) \left(\mathcal{Y}^{(t-1)} - \mathcal{Y}^{(t-2)}\right) end end
```





# Dimensionality reduction



Modern datasets are extremely high-dimensional, with high correlated data



## How to deal with it?





Non linear methods

t-distributed Stochastic Neighbor Embedding

# Stochastic Neighbor Embedding





$$q_{j|i} = \frac{\exp(-\|y_i - y_j\|^2)}{\sum_{k \neq i} \exp(-\|y_i - y_k\|^2)}$$

we are interested in modelling pairwise similarities



# Cost function

idea:

if the map points y\_i and y\_j correctly model the similarity between the high dimensional data points x\_i and x\_j, the conditional probabilities will be equal

$$C = \sum_{i} KL(P_i||Q_i) = \sum_{i} \sum_{j} p_{j|i} \log \frac{p_{j|i}}{q_{j|i}},$$

uses a Kullback-Leinbler divergence

we want to minimize it

## Minimisation of the cost function

It is performed using a gradient descent method where the gradient has a surprisingly simple form:

$$\frac{\delta C}{\delta y_i} = 2\sum_{j} (p_{j|i} - q_{j|i} + p_{i|j} - q_{i|j})(y_i - y_j)$$

Phisically it's like all the map points are connected by some springs that exert a repelling or attracting force

### Gradient descent method

reducing from 2D to 1D



(same color means the point belong to the same cluster)

At each step, a point on the line is attracted to points it is near in the scatter plot, and repelled by points it is far from

#### t-sne embedding

#### Original





# Sigma value ()

SNE performs a binary search to find the right value that produces a P<sub>i</sub> with a fixed perplexity that is specified by the user

$$Perp(P_i) = 2^{H(P_i)}$$

# The crowding problem in SNE



difficult to preserve distances in some cases

even the small (not relevant) forces of the springs, summed for the number of data points creates a strong force that crushed the points in the center of the map

3

we are trying to embed very high dimensional data into a low dimensional space

## t-SNE (differences)

#### t-

#### symmetric

it uses a Student t-distribution with one degree of freedom, also called Cauchy distribution in the low dimensional space

$$p_{ij}=p_{ji}$$
 and  $q_{ij}=q_{ji}$ 

$$q_{ij} = \frac{\left(1 + \|y_i - y_j\|^2\right)^{-1}}{\sum_{k \neq l} \left(1 + \|y_k - y_l\|^2\right)^{-1}}$$

inverse square law

symmetrized conditional probabilities and it uses a simpler form of gradient which is faster to compute

# Experiments

#### **Performance Evaluation of:**

- 1.t-SNE
- 2. Sammon Mapping
- 3. Isomap
- 4. LLE







### Data-Sets



#### MNIST data-set

60 000 grayscale images of handwritten digits and pictures are 28x28

#### Olivetti faces data-set

400 images of 40 individuals, each image has a unique viewpoint (and in some cases also glasses) and pictures are 92x112 pixels

#### Coil-20

1440 images of 20 objects from 72 equally spaced orientations, pictures are 32x32 pixels

### **Experimental Setup**

use PCA to reduce the data to 30 dimensionalities

Use the dimensionality reduction technique to go from 30d to 2d and plot results

#### The Scatterplots:

- information about each single datapoint
- class information used to select colors/symbols, not to determine spatial coordinates of the map points
- coloring used to evaluate how well the map preserves similarities within each class

| Technique      | Cost function parameters |
|----------------|--------------------------|
| t-SNE          | Perp = 40                |
| Sammon mapping | none                     |
| Isomap         | k = 12                   |
| LLE            | k = 12                   |

Perp -> is the perplexity of the conditional probability distribution induced by a Gaussian Kernel (p)



Perplexity as a function of entropy

$$H(P_i) = -\sum_{j 
eq i} p_{j|i} \log_2 p_{j|i}$$

entropy

$$p_{j|i} = rac{\exp(-\|x_i - x_j\|^2/2\sigma^2)}{\sum_{k 
eq i} \exp(-\|x_i - x_k\|^2/2\sigma^2)}$$

sigma is the scale parameter of the Gaussian Kernel

The Perplexity is hence used to represent the effective number of neighbors each point has and:

- sigma very small -> distribution becomes nearly deterministic, low perplexity
- sigma very large -> distribution becomes nearly uniform over all points, leading to high perplexity

# Results

#### MNIST DATA-SET



# Results

# OLIVETTI FACES DATA-SET



# Results

COIL-20 DATA-SET



#### LARGE DATASETS

O(n^2)
Computational
cost

Infeasable on large datasets

Using subsets of the dataset leads to wrong results

#### **Solutions:**

- 1. Random Walk Approach
- 2. Analytical Approach

### Random Walk



#### **Select landmarks**

Landmarks are a number of points arbitrarily selected

#### **Create Neighbourhoods**

Neighborhoods are created by selecting a hyperparameter k and creating a graph connecting each vertex to the k other closest vertices

#### Perform random walks

Perform random walks on the edges until two landmark masses connect where the probability of selecting an edge is  $e^{-\|x_i-x_j\|^2}$ 

# Analytical Solution



#### Solve system of equations

A system of sparse linear equations can be solved to find the pairwise similarities

#### **Effectiveness**

In the experiments presented in the paper there did not seem to be a significant difference between random walk and analytical solution

#### **Pros and cons**

The analytical solution is more computationally intensive, although it is more effective on high dimensional data that presents very sparse data



# Preserving long distances

Classical (linear) scaling Isomap

LLE

Diffusion maps

# Preserving short distances

Sammon mapping CCA MVU

# Weaknesses

- 1. Dimensionality reductions with more than 3 dimensions
- 2. Assumption of linearity of the manifold (Euclidean distance)
- 3. Non-convexity of the of the cost function

# Future steps

- 1. Investigate using t-distributions with higher df
- 2. Combining t-SNE with neural networks to explicitly map manifolds