

ECOSYSTEM SERVICE VALUATION

San Vito di Cadore, Italy

September 10, 2015

Rob Griffin, rmgriff@stanford.edu

HIGHLIGHTS

natural capital

What is ecosystem service valuation?

Why value ecosystem services?

How InVEST values ecosystem services?

Expanding beyond InVEST

HIGHLIGHTS

natural capital

What is ecosystem service valuation?

Why value ecosystem services?

How InVEST values ecosystem services?

Expanding beyond InVEST

VALUE ECOSYSTEM SERVICES

Social Relations

Material Needs

Safety

Health

Spiritual Satisfaction

Value depends on human well-being

Tradeoffs between scarce resources

Monetary and non-monetary valuation

ECOSYSTEM SERVICES

BENEFITS PEOPLE OBTAIN FROM ECOSYSTEMS

Provisioning Services

- Food
- Fresh water
- Wood and fiber
- Fuel
- ...

Regulating Services

- Climate regulation
- Flood regulation
- Disease regulation
- Water regulation
- ...

Cultural Services

- Aesthetic
- Spiritual
- Educational
- Recreational
- ...

Supporting Services

- -Nutrient cycling-Water cycling
- Soil formation Primary productionProvision of habitat

Millennium Ecosystem Assessment

MONETARY VALUATION

MONETARY VALUATION

HIGHLIGHTS

What is ecosystem service valuation?

Why value ecosystem services?

How InVEST values ecosystem services?

Expanding beyond InVEST

RESEARCH QUESTION

DETERMINE THE TOTAL BENEFITS FROM ECOSYSTEMS

RESEARCH QUESTION

COST BENEFIT ANALYSIS

More complete accounting of costs and benefits

Recreation

Non-timber forest product

Watershed protection

Carbon Sequestration

Development Cost

Grazing

Timber and fuel wood

RESEARCH QUESTION

FINANCE ECOSYSTEM CONSERVATION

Upstream Watershed Conservation

Water purification Flood control Sediment mitigation

Water utility
Hydropower industry
Beverage company
Municipalities

natural capital

RESEARCH QUESTION

OPTIMAL SITING DECISIONS

NATIONAL ACCOUNTING

TIME TREND OF NATURAL ASSET BASE

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

HIGHLIGHTS

natural capital

What is ecosystem service valuation?

Why value ecosystem services?

How InVEST values ecosystem services?

Expanding beyond InVEST

natural capital

PROCESS-BASED MODELS

COASTAL PROTECTION

VALUATION THEORY

MARGINAL VALUE

Coastal Ecosystem–Based Management with Nonlinear Ecological Functions and Values

Edward B. Barbier, ¹* Evamaria W. Koch, ² Brian R. Silliman, ³ Sally D. Hacker, ⁴ Eric Wolanski, ⁵ Jurgenne Primavera, ⁶ Elise F. Granek, ⁷ Stephen Polasky, ⁸ Shankar Aswani, ⁹ Lori A. Cramer, ¹⁰ David M. Stoms, ¹¹ Chris J. Kennedy, ¹ David Bael, ⁸ Carrie V. Kappel, ¹² Gerardo M. E. Perillo, ¹³ Denise J. Reed ¹⁴

natural capital

MARGINAL VALUE MAP

COASTAL PROTECTION

MONETARY VALUATION

natural capital

PROJECT

integrated valuation of environmental services and tradeoffs

Market-based Valuation

Direct and indirect market

Market Price

Avoided Damages

Replacement Cost

Production Function

Non-market Valuation

Surrogate market

Revealed Preference

Travel Cost

Hedonic Pricing Hypothetical market

Stated Preference

Contingent Valuation

Choice Modeling Other
Approaches

InVEST

Benefit Transfer

Qualitative Metrics

NON-MONETARY VALUE

NON-MONETARY VALUE

INTENSITY OF USE

Overlap Analysis tool

Which areas are used most intensively?

SCENARIOS AND OPTIMIZATION

Scenario-based analysis and optimization using Python

Optimal conservation for watershed ecosystem services under a budget

Landscape-level tool for mitigating environmental losses from development

HIGHLIGHTS

natural capital

What is ecosystem service valuation?

Why value ecosystem services?

How InVEST values ecosystem services?

Expanding beyond InVEST

HEDONIC PRICING

LAND/PROPERTY PRICE= F (ATTRIBUTE1, ATTRIBUTE2,...)

STATED PREFERENCE

CONTINGENT VALUATION AND CHOICE MODELLING

Contingent valuation

Ask respondents to express their willingness to pay (WTP) or willingness to accept (WTA) for changes in ecosystem services

Choice modeling

Ask respondents to rank/rate/choose alternative choice sets which have different combination of price attribute and ecosystem attributes

BENEFIT TRANSFER

CONCEPTS

Benefit transfer uses values from existing studies to estimate value elsewhere

Value transfer → \$/unit

Function transfer \rightarrow f(\$, site or study attributes)

BENEFIT TRANSFER

Based

Water Filtration

EXAMPLE

\$ Benefits per acre per year

Constant

natural capital

GREEN OPEN RIPARIAN SPACE Aesthetic Value \$582 \$1,623 Air Quality \$204 \$215 **Biological Control** \$164 \$13 \$204 **Climate Regulation Erosion Control** \$65 \$11,447 Flood Reduction \$4,007 **Food Provisioning** \$609 Habitat \$835 **Pollination** \$290 Recreation \$5,365 \$15,178 Storm Water \$293 Retention

FEMA (Federal Emergency Management Agency)
Mitigation Policy FP-108-024-01
2013

Service

Notes

- 1. Service based (not bundled by land cover type)
- 2. Constant \$ per acre
- 3. Similarity of a. Service b. Context

\$4,252

THANKS!

MODEL SUMMARY

Method	ES type	InVEST model
Market price	Provisioning Service	Fish Aquaculture Managed Timber Production Wave Energy Hydropower Production Wind energy Recreation (expenditures) Fisheries Agricultural Production Non-timber Forest Product Production
	Regulating Service	Carbon Sequestration (Marine, Terrestrial) Water for Irrigation
Avoided damages/ replacement cost	Regulating Service	Nutrient Retention Carbon Sequestration (Marine, Terrestrial) Sediment Retention Coastal Protection Storm Peak Mitigation
Non \$ Values	All	Overlap Analysis Scenic Quality Coastal Vulnerability Pollination
NA	Cultural/Supporting /Regulating Services	Biodiversity/Habitat quality and rarity Habitat risk assessment