Solutions, Assignment 4, Stat 1510

Question 1)	See	The	Solution	manual	Ex. 14.16.
Question 2)	n	4	4	ь	Ex. 14.18.
Question 3)	4	n	4,	do .	Ex. 14.22.
Question 4)	y	h	*	n	Ex. 14.32.
Question 5)		•	и	ay .	Ex.15.10.
Question6)	1	4	*	4	Ex. 15.18.
Question 7)	•	9	n	ч	Ex. 15.28.
Question 8) 4		7	4	4	Ex. 18.14.
Question 9) 1		7	45	6	Ex. 18.20.
Question 10)) 4	,	и	ь	Ex. 18.24.

Question 11) The correlation is exactly 1. Since there is an perfect positive Correlation between the number of plates purchased by a customer and the amount paid. Question 12) (a) The 1Q is the explanatory variable and GPA is the response variable. b) The carrelation is r=0.88 Note those who use Rmarkdown, calculating this by cor Command is enough But if they solved manually, they should show their work c) The least square line is given by: $\gamma = -7.329 + 2.157 \chi$ (Similar to Note in port 6)

d) Intercept: The intercept means the distance of regression line from the

origin (or when X=0). Since IQ=0 and Consequently GPA=-7.32

is NOT possible, the intercept is meaningless practically here.

Slope: The slope means the GPA score grows 2.157 when IQ

Increases one unit.

- e) $\hat{\gamma} = -7.329 + 2.157 (5.3) = 4.1031$
- f) They should scatterplat with regression line take easy this port as long as they have both graphs. That's fine!

Question 13) In order to have a legitimate probability model

$$\sum_{\hat{i}=1}^{6} \rho_{\hat{i}} = 1$$

$$0.2 + 2K + 6K + 0.2 + 0.1 + 0.1 = 1$$

$$\Rightarrow$$
 8K+0.6=1 \Rightarrow 8K=1-0.6=0.4

$$\Rightarrow K = \frac{4}{10.8} = \frac{4}{80} = 0.05$$