Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

САНКТ-ПЕТЕРБУРГСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

Кафедра Систем Управления и Информатики Группа Р3340

Лабораторная работа №8 "Экспериментальное построение областей устойчивости линейной системы на плоскости **двух параметров**" Вариант - 5

Выполнил			(фамилия, и.о.)	(подпись)
Проверил			(фамилия, и.о.)	(подпись)
""	20Γ.		Санкт-Петербург,	20Γ.
Работа выполнен	а с оценкой	_		
Дата защиты "		20	r.	

Цель работы. Ознакомление с экспериментальными методами построения областей устойчивости линейных динамических систем и изучение влияния на устойчивость системы ее параметров.

Исходные данные: $g = 0, y(0) = 1, T_1 = const = 1.5, T_2 = var$

1 Моделирование системы

Схема моделирования представлена на рисунке 1

Рисунок 1 - Схема моделирования

При $T_2=0.1$ и K=5 система устойчива, при K=10.6 система находится на колебательной границе, а при K=15 неустойчива. Все эти положения представлены на рисунке $2,\ 3$ и 4 соответственно.

Рисунок 2 – Устойчивая система

Рисунок 3 - Система на колебательной границе устойчивости

Рисунок 4 - Неустойчивая система

Будем изменять значение T_2 и искать значение K при котором система находится на границе. Значения представлены в таблице 1, а получившаяся граница устойчивости - на рисунке 5

Таблица 1 – Данные моделирования

T_2 , c	0.1	0.5	1	1.5	2	2.5	3	3.5	4	4.5
K	10.6	2.7	1.7	1.35	1.2	1.1	1	0.95	0.9	0.85

Корни характеристического уравнения (1) при соответствующих параметрах:

$$T_1 T_2 s^3 + (T_1 + T_2) s^2 + s + K = 0 (1)$$

- ullet При $T_1=1.5,\ T_2=0.1,\ K=10.67:s_1=-10.67;\ s_{2,3}=\pm 2.65i$
- ullet При $T_1=1.5,\ T_2=0.1,\ K=15: s_1=-10.9;\ s_{2,3}=0.12\pm3.03i$
- При $T_1=1.5,\ T_2=0.1,\ K=5: s_1=-10.33;\ s_{2,3}=-0.17\pm1.79i$

Рисунок 5 – Граница устойчивости

2 Теоретический расчет границы устойчивости с использованием критерия Гурвица

Рассмотрим характеристический многочлен системы:

$$T_1 T_2 s^3 + (T_1 + T_2) s^2 + s + K (2)$$

Составим матрицу Гурвица:

$$\begin{pmatrix} T_1 + T_2 & K & 0 \\ T_1 T_2 & 1 & 0 \\ 0 & T_1 + T_2 & K \end{pmatrix}$$
 (3)

Для колебательной границы устойчивости должно выполняться равенство:

$$K = \frac{T_1 + T_2}{T_1 T_2} \tag{4}$$

Рассчитаем значения K при полученных ранее T_2 . Результаты представлены в таблице 2, получившаяся граница устойчивости представлена на рисунке 6

Таблица 2 - Расчетные данные

T_2	, c	0.1	0.5	1	1.5	2	2.5	3	3.5	4	4.5
I	K	10.67	2.67	1.67	1.34	1.17	1.07	1	0.95	0.92	0.89

Рисунок 6 - Граница устойчивости

Вывод

В данной работе была построена область устойчивости системы с помощью моделирования и аналитически: параметр T оставался неизменным и для каждого T_2 находилось значение K, при котором система будет на границе.

Также был произведен теоретический расчет границы устойчивости с помощью критерия Гурвица, результат которого совпал с результатом моделирования.