1 Essentials	if $dom f$ and f convex	$\mathbf{U} = \mathbf{A}\mathbf{V}\mathbf{D}^{-1}$. 4. normalize each column of \mathbf{U}	5 Non-Negative Matrix Factorization
Norms	2 Principle Component Analysis	and V .	pLSA
$\ \mathbf{M}\ _{F} = \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} \mathbf{m}_{i,j}^{2}} = \sqrt{\sum_{i=1}^{\min\{m,n\}} \sigma_{i}^{2}} =$	Algorithm Implementation	Low-Rank approximation	Conditional independence: $p(w d,z) = p(w z)$
$\sqrt{trace(A^{T}A)}$	$\mathbf{X} \in \mathbb{R}^{D \times N}$. N observations, K rank.	$A = \sum_{i=1}^{k} d_i u_i v_i^T = U_k D_k V_k^T$	Objective: $L(U,V) = \sum_{i,j} x_{ij} \log p(w_j d_i) = \sum_{i,j} x_{ij} \log \sum_{j} x_{i$
$ \mathbf{M} _1 = \sum_{i,j} m_{i,j} \qquad \mathbf{M} _2 = \sigma_{\max}(\mathbf{M})$	1. Center Data: $\mathbf{X} = \mathbf{X} - [\overline{\mathbf{x}}, \dots, \overline{\mathbf{x}}] = \mathbf{X} - \mathbf{M}$.	Echart-Young Theorem	$\sum_{i,j} x_{ij} \log \sum_{z} p(w_{j} z) p(z d_{i}) = \sum_{i,j} x_{ij} \log \sum_{z} v_{zj} u_{z}$
	2. Cov.: $\Sigma = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}_n - \overline{\mathbf{x}}) (\mathbf{x}_n - \overline{\mathbf{x}})^{\top} = \frac{1}{N} \overline{\mathbf{X}} \overline{\mathbf{X}}^{\top}$.	_	$v_{jz} := p(w_j z), u_{zi} := p(z d_i), \sum_z v_{jz} = \sum_k u_{ki} = 1$
$\ \mathbf{M}\ _p = \max_{\mathbf{v} \neq 0} \frac{\ \mathbf{M}\mathbf{v}\ _p}{\ \mathbf{v}\ _p} \qquad \ \mathbf{M}\ _{\star} = \sum_{i=1}^{\min(m,n)} \sigma_i$	3. Eigenvalue Decomposition: $\Sigma = \mathbf{U}\Lambda\mathbf{U}^{T}$.	$\min_{rank(B)=K} A - B _F^2 = A - A_k _F^2 = \sum_{r=k+1}^{rank(A)} \sigma_r^2$	Latent variable: q_{zij} probability of w_i in d_i
(Nuclear Norm) $ M _* = \sum_i \sigma_i, \sigma_i$: singular va-	4. Select $K < D$, keep \mathbf{U}_K, λ_K . 5. Transform data onto new Basis: $\overline{\mathbf{Z}}_K = \mathbf{U}_K^{\top} \overline{\mathbf{X}}$.	$\min_{rank(B)=K} A - B _2 = A - A_k _2 = \sigma_{k+1}$	generated by topic z , $\sum_{z} q_{zij} = 1$
lue of M .	~	4 Matrix Reconstruction	Lower bound: $\log \sum_{z=1}^{K} q_{zij} \frac{u_{zi}v_{zj}}{q_{zii}} \ge$
$rank(XY) \le rank(X)$	6. Reconstruct to original Basis: $\overline{X} = U_k \overline{Z}_K$.	Two formalization	
$rank(XY) = rank(X), \forall Y \in \mathbb{R}^{n \times n}, rank(Y) = n$	7. Reverse centering: $\tilde{\mathbf{X}} = \overline{\mathbf{X}} + \mathbf{M}$.	1. (Low-rank) $\min_{X:rank(X) \le k} A - X _{\mathcal{I}}^2$	$\sum_{z=1}^{K} q_{zij} [\log u_{zi} + \log v_{zj} - \log q_{zij}] $ $ p_{(w, z) p(z d_i)} p_{(z, $
$rank(A) = rank(UDV^T) = rank(D)$	Iterative View Idea: optimal direction = principle eigenvector	Regularize $\Rightarrow L(U, V) = A - U^T V _{\mathcal{I}}^2 + \lambda U _F^2 + \sum_{i=1}^{T} A - U^T V _{\mathcal{I}}^2 + \lambda U _F^2 +$	E-Step: $q_{zij} = \frac{p(w_j z)p(z d_i)}{\sum_{k=1}^{K} p(w_j k)p(k d_i)} := \frac{v_{zj}u_{zi}}{\sum_{k=1}^{K} v_{kj}u_{ki}}$
Derivatives	of the sample Residual r_i : $x_i - \tilde{x}_i = I - uu^T x_i$	$\lambda \ V\ _F^2 = \sum_{(i,j)\in\mathcal{I}} (a_{ij} - u_i^T v_j)^2 + \lambda \sum_{i=1}^m \ u_i\ ^2 + \frac{1}{2} \ v_i\ ^2 + \frac{1}{2} $	M-Step: $u_{zi} = p(z d_i) = \frac{\sum_{j} x_{ij} q_{zij}}{\sum_{z} \sum_{j} x_{ij} q_{zij} = \sum_{j} x_{ij}}$,
$\frac{\partial}{\partial x}(\mathbf{b}^{\top}\mathbf{x}) = \frac{\partial}{\partial x}(\mathbf{x}^{\top}\mathbf{b}) = \mathbf{b} \qquad \frac{\partial}{\partial x}(\mathbf{x}^{\top}\mathbf{x}) = 2\mathbf{x}$	Cov of $r: \frac{1}{n} \sum_{i=1}^{n} (I - uu^{T}) x_{i} x_{i}^{T} (I - uu^{T})^{T} =$	$\lambda \sum_{j=1}^{n} \ v_j\ ^2$	
$\frac{\partial}{\partial x}(\mathbf{x}^{\top}\mathbf{A}\mathbf{x}) = (\mathbf{A}^{\top} + \mathbf{A})\mathbf{x} \qquad \frac{\partial}{\partial x}(\mathbf{b}^{\top}\mathbf{A}\mathbf{x}) = \mathbf{A}^{\top}\mathbf{b}$	$(I - uu^T)\Sigma(I - uu^T)^T = \Sigma - \lambda uu^T$	- non-convex w.r.t (U, V) but convex w.r.t U	$v_{zj} = p(w_j z) = \frac{\sum_i x_{ij} q_{zij}}{\sum_i x_{ij} q_{zij}}$
$\frac{\partial}{\partial \mathbf{X}}(\mathbf{c}^{\top}\mathbf{X}\mathbf{b}) = \mathbf{c}\mathbf{b}^{\top} \qquad \frac{\partial}{\partial \mathbf{X}}(\mathbf{c}^{\top}\mathbf{X}^{\top}\mathbf{b}) = \mathbf{b}\mathbf{c}^{\top}$	1. Find principal eigenvector of $(\Sigma - \lambda uu^T)$,	and V . 2.(Exact matrix) $\min_X rank(X)$, s.t. $ A-X _{\mathcal{I}} = 0$	Latent Dirichlet Allocation
$\frac{\partial}{\partial \mathbf{x}}(\mathbf{x} - \mathbf{b} _2) = \frac{\mathbf{x} - \mathbf{b}}{ \mathbf{x} - \mathbf{b} _2} \qquad \frac{\partial}{\partial \mathbf{x}}(\mathbf{x} _2^2) = \frac{\partial}{\partial \mathbf{x}}(\mathbf{x}^\top \mathbf{x}) = 2\mathbf{x}$	which is the second eigenvector of Σ	- the rank function (objective) is not convex, it	Objective:
$\frac{\partial}{\partial \mathbf{X}}(\ \mathbf{X}\ _F^2) = 2\mathbf{X}$	2. iterating to get d principal eigenvector of Σ	is not smooth	$p(x V,\alpha) = \int p(X V,u)p(u \alpha)du$
$\frac{\partial}{\partial \mathbf{x}}(\mathbf{A}\mathbf{x} - \mathbf{b} _2^2) = 2(\mathbf{A}^{\top}\mathbf{A}\mathbf{x} - \mathbf{A}^{\top}\mathbf{b})$	Power Method Power iteration as a Avt lim as a trace	- the constraint is very stringent. ALS	$p(x V,u) = Multi(x \pi), \pi_j := \sum_z v_{zj} u_z$
Eigenvalue / -vectors	Power iteration: $v_{t+1} = \frac{Av_t}{ Av_t }$, $\lim_{t\to\infty} v_t = u_1$	For the first formalization; low-rank.	Generative model: 1. for d_i , sample $u_i \sim \text{Dirichlet}(\alpha)$
Eigenvalue Problem: $\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$	Assuming $\langle u_1, v_0 \rangle \neq 0$ and $ \lambda_1 > \lambda_j (\forall j \geq 2)$	$u_i = \left(\sum_{j:(i,j)\in\mathcal{I}} v_j v_j^T + \lambda I_k\right)^{-1} \sum_{j:(i,j)\in\mathcal{I}} a_{ij} v_j$	2. for word slot t : (1)sample topic $z^t \sim$
1. solve $\det(\mathbf{A} - \lambda \mathbf{I}) \stackrel{!}{=} 0$ resulting in $\{\lambda_i\}_i$	Reconstruction Error	Interpret: given low-dimensional representati-	$Multi(u_i)$; (2) sample word $w^t \sim Multi(v_{z^t})$
2. $\forall \lambda_i$: solve $(\mathbf{A} - \lambda_i \mathbf{I})\mathbf{x}_i = 0$, for \mathbf{x}_i .	$\min_{rank(B)=K} \frac{1}{N} A - B _F^2 = \frac{1}{N} A - A_k _F^2 =$	ons of the items, compute independently the	NMF Algorithm for quadratic cost function
3. $\mathbf{A} \in \mathbb{R}^{N \times N}$ then $\mathbf{A} = \mathbf{Q} \Lambda \mathbf{Q}^{-1}$ with $\mathbf{Q} \in \mathbb{R}^{N \times N}$.	$\sum_{r=k+1}^{rank(A)} \lambda_r$, λ_r is the eigenvalue of $\Sigma = \frac{1}{N} A A^T$.	best representation of each user	NMF: $\mathbf{X} \approx \mathbf{U}^{T} \mathbf{V}, x_{ij}, \min_{\mathbf{U}, \mathbf{V}} J(\mathbf{U}, \mathbf{V}) = \frac{1}{2} \mathbf{X} - \mathbf{V} \mathbf{V}$
- if fullrank: $\mathbf{A}^{-1} = \mathbf{Q} \mathbf{\Lambda}^{-1} \mathbf{Q}^{-1}$ and $(\mathbf{\Lambda}^{-1})_{i,i} = \frac{1}{\lambda_i}$.	In SVD, there is no $\frac{1}{N}$	Computational complexity for u_i is $O(n_i k^2 +$	$\mathbf{U}^{\top}\mathbf{V}\ _{F}^{2}, \text{ s.t. } \forall i, j, z : u_{zi}, v_{zj} \geq 0$
- if A symmetric: $A = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{\top}$ (Q orthogonal).	Interpret eigenvalues as the variance in the dimension specified by the corresponding ei-	k^3), k features, n_i number of items evaluated	Constraints: non-negativity, normalization.
Convexity	genvector.	by user <i>i</i> . $v_j = (\sum_{i:(i,j)\in\mathcal{I}} u_i u_i^T + \lambda I_k)^{-1} \sum_{i:(i,j)\in\mathcal{I}} a_{ij} u_i$	Projected ALS 1. randomly init U, V 2. repeat
$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y), \forall \lambda \in [0, 1]$	Others	$v_j - (\sum_{i:(i,j) \in \mathcal{I}} u_i u_i + \mathcal{M}_k) - \sum_{i:(i,j) \in \mathcal{I}} u_{ij} u_i$ Interpret: given low-dimensional representati-	for enough times:
Distribution a_{k-1}	1. If $A = BB^T$ then A is semi-positive definite.	ons of the users, compute independently the	2.1. update $\mathbf{U}: (\mathbf{V}\mathbf{V}^{T})\mathbf{U} = \mathbf{V}\mathbf{X}^{T}$, proj. $u_{zi} = \max\{0, u_{zi}\}$
Dirichlet: $p(u_i \alpha) = \prod_{z=1}^K u_{zi}^{\alpha_k - 1}$	Proof: $v^T A v = v^T B B^T v = B^T v _2 \ge 0$	best representation of each item.	2.2. update $(\mathbf{U}\mathbf{U}^{\top})\mathbf{V} = \mathbf{U}\mathbf{X}$, proj. $v_{zi} =$
Multinomial : $p(x \pi) = \frac{I!}{\prod_j x_j!} \prod_j \pi_j^{x_j}$	2. Spectral Theorem: Matrix A is diagonalizable by an orthogonal matrix \Leftrightarrow it is symmetric	Nuclear Norm	$\max\{0, v_{zj}\}$
Gaussian: $f(x) = \frac{1}{2\pi\sqrt{ \Sigma }} e^{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)}$	3. Compared to general linear autoencoder,	(Exact form) $\min_{B} B _{*}, s.t. A - B _{G} = 0$	6 Word Embeddings
KL-Divergence	PCA is unique and interpretable. 4. Compare power methods and SVD.	(Approximate)min _B $ A - B _2^2$, s.t. $ B _* \le r$	(Skip-gram model) Log-likelihood:
$D_{KL}(P Q) = -\sum_{x \in \mathcal{X}} P(x) \log \frac{P(x)}{Q(x)}$	Power: good for small <i>k</i> . Robust and concep-	Property1:rank(B) $\geq B _*, \forall B _2 \leq 1$ Property2: convexity. Proof:	$\max L(\theta; \mathbf{w}) = \sum_{t=1}^{T} \sum_{\Delta \in \mathcal{I}} \log p_{\theta}(w^{(t+\Delta)} w^{(t)})$
$\sum_{KL} (I Q) = \sum_{x \in \mathcal{X}} I(x) \log_{Q(x)} $ $x \sim \mathcal{N}(\mu, \sigma^2) \Rightarrow$	tually easy.	goal: $ \lambda A + (1 - \lambda)B _* \le \lambda A _* + (1 - \lambda) B _*$	Latent vector model
	SVD: good for mid-sized problem. Leverage wealth of numerical techniques, e.g. QR de-	key1: write $\lambda A + (1 - \lambda)B = U_{\lambda}D_{\lambda}V_{\lambda}^{T}$	log-bilinear: $\log p(w w') = \langle \mathbf{x}_w, \mathbf{z}_{w'} \rangle + b_w + \text{const}$ Negative Sampling We change the objecti-
$\int_{-\infty}^{\infty} p(x) \log p(x) dx = -\frac{1}{2} \log(2\pi\sigma^2) - \frac{1}{2}$ Lagrangian Multipliers	composition.	key2: prove trace $(U_{\lambda}^T A V_{\lambda}) \leq \sum_{i} \sigma_{i}(A) = A _{*}$,	ve function as $L(\theta) = \sum_{(i,j) \in \Delta^+} \log \sigma(\langle \mathbf{x}_i, \mathbf{z}_j \rangle) +$
Minimize $f(\mathbf{x})$ s.t. $g_i(\mathbf{x}) \leq 0$, $i = 1,,m$	3 Support Vector Discriminant	using Cauchy-Schwartz inequality.	$\sum_{(i,j)\in\Delta^{-}}\log\sigma(-\langle \mathbf{x}_{i},\mathbf{z}_{j}\rangle)$
(inequality constr.) and $h_i(\mathbf{x}) = \mathbf{a}_i^{\top} \mathbf{x} - b_i =$	$\mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{V}^{\top} = \sum_{k=1}^{\text{rank}(\mathbf{A})} d_{k,k} u_k(v_k)^{\top}$	SVD shrinkage	distribution: ratio to the appearance frequency.
0, i = 1,,p (equality constraint)	$\mathbf{U}^{\top}\mathbf{U} = I = \mathbf{V}^{\top}\mathbf{V} (\mathbf{U}, \mathbf{V} \text{orthonormal})$	Idea: SVD thresholding + projection.	Number: given
Lagrangian: $\hat{L}(\mathbf{x}, \lambda, \nu) := f(\mathbf{x}) + \sum_{i=1}^{m} \lambda_i g_i(\mathbf{x}) +$	\mathbf{U}_{i} : eigenvectors of $\mathbf{A}\mathbf{A}^{\top}$, \mathbf{V}_{i} : eigenvectors of	Objective: $B^* = \arg_B \min\{\ B\ _* + \frac{1}{2\tau}\ B\ _F^2\}$, s.t.	Glove (Weighted Square Loss)
$\sum_{i=1}^p v_i h_i(\mathbf{x})$	$\mathbf{A}^{\top}\mathbf{A}$, \mathbf{D}_{ii} : singular values.	$\Pi_{\mathcal{I}}(A-B) = x_{ij} \forall (i,j) \in \mathcal{I}$	Objective: $\min H(\theta; \mathbf{N})$
Dual function: $D(\lambda, \nu) := \inf_{\mathbf{x}} L(\mathbf{x}, \lambda, \nu) \in \mathbb{R}$	Algorithm Implementation	Algorithm: $B_{t+1} = B_t + \eta \Pi_{\mathcal{I}}(A - shrink_{\tau}(B_t))$	$= \sum_{(i,j)} f(n_{ij}) (\log n_{ij} - \log \exp[\langle \mathbf{x}_i, \mathbf{y}_j \rangle + b_i + d_j])^2$ which tings $f(\mathbf{y}) = \min\{1, (n_i, n_j)\}$
76,7		$shrink_{\tau}$: all singular values are reduced by at	weighting: $f(n) = \min\{1, (\frac{n}{n_{max}})^{\alpha}\}, \alpha \in (0; 1].$
te: $\max_{\lambda,\nu} D(\lambda,\nu) \leq \min_{\mathbf{x}} f(\mathbf{x})$, equality	$D_{ii} = \sqrt{A_{ii}}$ 2. eigenvectors of $\mathbf{A}^{\top}\mathbf{A} \to \mathbf{V}$. 3.	least τ .	SGD solution

```
l(\theta, \phi) := \mathbb{E}_{\tilde{p}_{\theta}}[y \ln q_{\phi}(\mathbf{x}) + (1 - y) \ln(1 - q_{\phi}(\mathbf{x}))]
- \theta: Generator, \tilde{p}_{\theta}(\mathbf{x}, y = 1) = p(y = 1).
 p(\mathbf{x}), \tilde{p}_{\theta}(\mathbf{x}, y = 0) = p(y = 0) \cdot p_{\theta}(\mathbf{x})
- \phi: Discriminator. q_{\phi}: \mathbf{x} \mapsto [0;1]
 Saddle-point problem SGD as a heuristic
 solution (may diverge!)
 \theta^{t+1} = \theta^t - \eta \nabla_{\theta} l(\theta^t, \phi^t), minimize: minus
\phi^{t+1} = \phi^t + \eta \nabla_{\phi} l(\theta^{t+1}, \phi^t), maximize: plus
 Autoregressive model
p(x_1, x_2, \dots, x_m) = \prod_{t=1}^m p(x_t | x_{1:t-1})
11 Sparse Coding
 Orthogonal Basis
 For x and o.n.b. U compute z = U^{T}x. Approx
\hat{\mathbf{x}} = \mathbf{U}\hat{\mathbf{z}}, \hat{z}_i = z_i \text{ if } |z_i| > \epsilon \text{ else } 0. \text{ Reconstruction}
Error \|\mathbf{x} - \hat{\mathbf{x}}\|^2 = \sum_{d \neq \sigma} \langle \mathbf{x}, \mathbf{u}_d \rangle^2.
 Wavelet Basis
Mother wavelet: \psi(t) = 1, 0 \le t \le \frac{1}{2}; = 0, \frac{1}{2} \le t \le 1
\psi_{n,k}(t) = 2^{\frac{n}{2}} \psi(2^n t - k), 0 \le k < 2^n
 Coherence • m(\mathbf{U}) = \max_{i,j:i\neq j} |\mathbf{u}_i^{\mathsf{T}} \mathbf{u}_j|
 • m([\mathbf{B},\mathbf{u}]) \geq \frac{1}{\sqrt{D}} if atom \mathbf{u} is added to or-
 thogonal basis B
 Matching Pursuit (MP)
 1. init: \hat{\mathbf{x}}_0 < - \leftarrow 0, \mathbf{r}_0 \leftarrow \mathbf{x} 2. select the
 basis j^* = \operatorname{arg\,max}_i |\langle \mathbf{u}_i, \mathbf{r}_i \rangle| 3. update coeffi-
cients: \mathbf{x}_{i+1} \leftarrow \mathbf{x}_i + \langle \mathbf{u}_{j\star}, \mathbf{r}_i \rangle \mathbf{u}_{j\star} 4. update resi-
 dual: \mathbf{r}_{i+1} \leftarrow \mathbf{r}_i - \langle \mathbf{u}_{i^*}, \mathbf{r}_i \rangle \mathbf{u}_{i^*}.
Convergence \frac{\|\mathbf{r}_{i+1}\|_2^2}{\|\mathbf{r}_i\|_2^2} = 1 - |\langle \frac{\mathbf{r}_i}{\|\mathbf{r}_i\|_2}, \mathbf{u}_{j^*} \rangle|^2
\exists \mu_m in \in (0,1] (for overcompelete dictionary)
 \|\mathbf{r}_i\|_2^2 \le (1 - \mu_{min})^t \|\mathbf{r}_0\|_2^2
 Compressive Sensing: Compress data while
 gathering: • \mathbf{x} \in \mathbb{R}^D, K-sparse in o.n.b. U. \mathbf{y} \in
 \mathbb{R}^M with y_i = \langle \mathbf{w}_i, \mathbf{x} \rangle: M lin. combinations of si-
 gnal; \mathbf{y} = \mathbf{W}\mathbf{x} = \mathbf{W}\mathbf{U}\mathbf{z} = \theta\mathbf{z}, \ \theta \in \mathbb{R}^{M \times D} \bullet \text{Recon-}
 struct \mathbf{x} \in \mathbb{R}^D from y; find \mathbf{z}^* \in \operatorname{arg\,min}_{\mathbf{z}} \|\mathbf{z}\|_0,
s.t. \mathbf{y} = \theta \mathbf{z} (e.g. with MP). Given \mathbf{z}, reconstruct
 Sufficient conditions: • W = Gaussian random
 projection, i.e. w_{ij} \sim \mathcal{N}(0, \frac{1}{D}) \cdot M \geq cKlog(\frac{D}{K}),
where c is some constant
```

 $\frac{1}{L}\sum_{r=1}^{L}\nabla_{\theta}\log p_{\theta}(\mathbf{x}|\mathbf{h}^{(r)}), \mathbf{h}^{(r)}\sim q_{\phi}(\cdot|\mathbf{x}), \text{ i.i.d}$

 $B(q_{\phi}, \mathbf{x})$

GAN

ζ~simple distribution

 $\mathbb{E}_{z \sim P_z(z)}[\log(1 - D(G(z)))]$ or

In the log-likelihood context: $\mathbb{E}_{q_{\phi}}[\mathcal{L}(\mathbf{x},\mathbf{h})] =$

Re-parametrization trick $q_{\phi}(h;x) = g_{\phi}(\zeta;x)$,

Objective: $\min_{G} \max_{D} \mathbb{E}_{x \sim P_{data}(x)}[\log D(x)] +$

```
12 Dictionary Learning
Objective: (\mathbf{U}^{\star}, \mathbf{Z}^{\star}) \in \operatorname{arg\,min}_{\mathbf{U}, \mathbf{Z}} \|\mathbf{X} - \mathbf{U} \cdot \mathbf{Z}\|_F^2
    Matrix Factorization by Iter Greedy Minimi-
    zation
   1. Coding step: \mathbf{Z}^{t+1} \in \operatorname{arg\,min}_{\mathbf{Z}} \|\mathbf{X} - \mathbf{U}^t \mathbf{Z}\|_F^2 sub-
    ject to Z being sparse (\mathbf{z}_n^{t+1} \in \operatorname{arg\,min}_{\mathbf{z}} ||\mathbf{z}||_0
    \mathbf{s.t.} \|\mathbf{x}_n - \mathbf{U}^t \mathbf{z}\|_2 \le \sigma \|\mathbf{x}_n\|_2
   2. Dict update step: \mathbf{U}^{t+1} \in \operatorname{arg\,min}_{\mathbf{U}} \| \mathbf{X} - \mathbf{U}^{t+1} \| \mathbf{X} - \mathbf{U
   \mathbf{U}\mathbf{Z}^{t+1}|_{F}^{2}. \ \forall l \in 1, 2 \cdots, L:
   \mathbf{set} \ \mathbf{U} = [\mathbf{u}_1^t \cdots \mathbf{u}_l \cdots \mathbf{u}_l^t]
   \min_{u_t} \|\mathbf{X} - \mathbf{U}\mathbf{Z}^{t+1}\|_F^2 = \|(\mathbf{X} - \sum_{e \neq t} \mathbf{u}_e^t(\mathbf{z}_e^{t+1})^\top) - \|\mathbf{u}_e^t(\mathbf{z}_e^{t+1})^\top\|_F^2
 \|\mathbf{u}_l\mathbf{z}_l^{t+1}\|_F^2 = \|\mathbf{R}_l^t - \mathbf{u}_l(\mathbf{z}_l^{t+1})^\top\|_F^2
   Doing 1-SVD on \mathbf{R}'_i = \sum_i \sigma_i \tilde{\mathbf{u}}_i \tilde{\mathbf{v}}_i^{\mathsf{T}}
   update \mathbf{u}_{i}^{t+1} = \tilde{\mathbf{u}}_{1}, z_{i}^{t+1} = \sigma_{1} \tilde{\mathbf{v}}_{i}
```