Singular Value Decomposition – 3a

Proof of Proposition 51:

- Clearly the vectors $Av_1, Av_2, ..., Av_n$ belong to Col A.
- Also, for j > r, we have $||A\mathbf{v}_j|| = \sqrt{\lambda_j} = \sigma_j = 0$, so $A\mathbf{v}_j = 0$.
- For $i, j \le r$, we have:

$$A\mathbf{v}_i \cdot A\mathbf{v}_j = (A\mathbf{v}_i)^T (A\mathbf{v}_j) = \mathbf{v}_i^T (A^T A)\mathbf{v}_j$$

- = $\mathbf{v}_i^T \lambda_j \mathbf{v}_j$ (since \mathbf{v}_j is an eigenvector of $\mathbf{A}^T \mathbf{A}$ for λ_j)
- = $\lambda_j(\mathbf{v}_i \cdot \mathbf{v}_j) = 0$, since $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is an orthonormal basis for R^n .

Thus, the vectors $A\mathbf{v}_1$, $A\mathbf{v}_2$,..., $A\mathbf{v}_r$ form an orthogonal set of non-zero vectors and are therefore linearly independent.

Singular Value Decomposition – 3b

- Proof of Proposition 51 (continued):
- Finally suppose that y is in Col A. Then y = Ax for some vector x.

Then \mathbf{x} can be expressed in terms of the basis $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$,

$$\mathbf{x} = \mathbf{c}_1 \mathbf{v}_1 + \mathbf{c}_2 \mathbf{v}_2 + \ldots + \mathbf{c}_n \mathbf{v}_n.$$

Then $y = Ax = A(c_1v_1 + c_2v_2 + + c_nv_n)$

= $c_1Av_1 + c_2Av_2 + + c_rAv_r$, since remaining terms are **0**, as noted at the start of the proof.

Thus, the vectors $A\mathbf{v}_1$, $A\mathbf{v}_2$,..., $A\mathbf{v}_r$ also span Col A.