

Exercise 11C

Question 24:

ABCD is a quadrilateral in which AD = BC and \angle ADC = \angle BCD Draw DE \perp AB and CF \perp AB

Now, in \triangle ADE and \triangle BCF, we have

$$\angle AED = \angle BFC$$
 [each equal to 90°]
 $\angle ADE = \angle ADC - 90^\circ = \angle BCD - 90^\circ = \angle BCF$
 $AD = BC$ [given]

Thus, by Angle-Angle-Side criterionof congruence, we have \triangle ADE \cong \triangle BCF [by AAS congruence]

The corresponding parts of the congruent triangles are equal.

Now,
$$\angle A + \angle B + \angle C + \angle D = 360^{\circ}$$

$$\Rightarrow \qquad \angle B + \angle D = \frac{360}{2} = 180^{\circ}$$

ABCD is a cyclic quadrilateral.

Question 25:

If one side of a cyclic quadrilateral is produced then the exterior angle is equal to the interior opposite angle.

$$x = 75^{\circ}$$

The opposite angles of the opposite angles of a cyclic quadrilateral is 180°

$$\angle DEF = y^{\circ} = 105^{\circ}$$

********* FND *******