MA4002 Final Exam Solutions 2000

1.(a)
$$T = 30 + 50e^{-0.02t}$$
. As $t \to \infty$ $T \to 30$.

(b)
$$\int_0^1 \frac{1}{1+x^2} = \frac{\pi}{4}$$
.

(c) Put
$$u = \ln x$$
. Then $y = \int_{-\infty}^{u} \frac{e^t}{t} dt$, so $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx} = \frac{e^u}{u} \frac{1}{x} = \frac{1}{\ln x}$, using FTC I. (d) Do it!

(e)
$$\int_{2}^{\infty} \frac{x^5}{x^6 - 1} dx \ge \int_{2}^{\infty} \frac{1}{x} dx = \infty$$
, so the integral diverges.

(f)
$$\bar{y} = \frac{2}{\pi} \int_0^{\frac{\pi}{2}} x \cos x \, dx = 1 - \frac{2}{\pi}$$
, using I by P. (g) $A(x) = 3x^2 + 6x$; $V = \int_0^2 (3x^2 + 6x) dx = 20$.

(h)
$$f(x,y) = \frac{x}{y} + \frac{y}{x}$$
; $f_x = \frac{1}{y} - \frac{y}{x^2}$; $f_y = -\frac{x}{y^2} + \frac{1}{x}$; $f_{xx} = \frac{2y}{x^3}$; $f_{yy} = \frac{2x}{y^3}$; $f_{xy} = -\frac{1}{y^2} - \frac{1}{x^2}$.

(i) Variables separable.
$$\sin^{-1} y = x^2 + C$$
. Solution: $y = \sin(x^2 - 1)$. (j) 4

2.(a) Substitute
$$u = \tan x$$
. Answer: $\sin^{-1}(\tan x) + C$.

(b) Integrate by parts twice with
$$u = e^{3x}$$
 both times to get $I = e^{3\pi} + 1 - 9I$, so $I = \frac{1}{10}(e^{3\pi} + 1)$.

(b) Integrate by parts twice with
$$u=e^{3x}$$
 both times to get $I=e^{3\pi}+1-9I$, so $I=\frac{1}{10}(e^{3\pi}+1)$.
(c) $I=\int (x-2+\frac{2x+20}{x^2+6x+10})\,dx$. Now substitute $u=x+3$ in rational function.

Answer: $\frac{x^2}{2} - 2x + \ln(x^2 + 6x + 10) + 14\tan^{-1}(x+3) + C$.

3.(a)
$$A = \int_{-2}^{3} (12 + 2x - 2x^2) dx = \frac{125}{3}$$
. (b) By cylindrical shells, $V = 2\pi \int_{b-a}^{b+a} x \cdot 2\sqrt{a^2 - (x-b)^2} dx$ $= 2\pi^2 a^2 b$, using substitution $u = x - b$. (c) $s = \int_{0}^{2} t\sqrt{t^2 + 4} = (16\sqrt{2} - 8)/3$.

$$= 2\pi^2 a^2 b$$
, using substitution $u = x - b$. (c) $s = \int_0^2 t \sqrt{t^2 + 4} = (6\pi)^2 b$

(d)
$$M = \int_0^8 (2 \times 4)(2 + \frac{x}{4}) dx = 192;$$
 $\bar{x} = \frac{1}{M} \int_0^8 x(2 \times 4)(2 + \frac{x}{4}) dx = \frac{40}{9}.$

4.(a) Integrate by parts with
$$u = (\ln t)^n$$
 and $dv = dt$. $I_5 = e - 5I_4 = \cdots = 76e - 120I_0 = 120 - 44e$.

(b)
$$y = y_0 e^{-t \ln 2/1000}$$
. Put $t = 700$ to get $y = .6155 y_0$, so 61.55% remains.

(c)
$$y_{n+1} = y_n + 0.2(0.04n^2 + \sqrt{y_n}).$$
 $y_0 = 1.$ $y(0.6) \approx y_3 = 1.698.$

5.(a)
$$\ddot{x} + 4x = 0$$
. So $x = A\cos 2t + B\sin 2t$. Applying initial conditions gives $A = 2$ and $B = \frac{3}{2}$. Amplitude $= \sqrt{A^2 + B^2} = \frac{5}{2}$.

(b)
$$\ddot{x} + 5\dot{x} + 4x = 0$$
. So $x = Ae^{-t} + Be^{-4t}$. Applying initial conditions gives $A = \frac{11}{3}$ and $B = -\frac{5}{3}$.

(c)
$$\ddot{x} + 5\dot{x} + 4x = 34\cos t$$
. Particular solution $x_p = \alpha\cos t + \beta\sin t$. Sub in to find $\alpha = 3$ and $\beta = 5$. So $x = x_h + x_p = Ae^{-t} + Be^{-4t} + 3\cos t + 5\sin t$.

6.(a)
$$h = \frac{1}{n}$$
 and $M_4 < 2$, so $E_S < \frac{h^4}{180}(b-a)M_4 < \frac{1}{45n^4} < 10^{-6}$ if $n > 12.2$. So 26 intervals suffice.

(b)
$$\frac{\Delta w}{w} \approx 2\frac{\Delta x}{x} + 3\frac{\Delta y}{y} - 2\frac{\Delta z}{z} = 2(-.04) + 3(.02) - 2(-.05) = .08$$
. So w increases by 8% (approx.).

(c)
$$f(h,k) = 1 - k - \frac{1}{2}h^2 + k^2 + \cdots$$

7.(a)(i) Subtracting equation 3 from equation 2 gives 2y + 2z = -1, which contradicts equation 1.

So no solution. (ii)
$$(x, y, z) = (0, -2, 3)$$
, unique. (b) $A^{-1} = \begin{bmatrix} -8 & -7 & 6 \\ 7 & 6 & -5 \\ 12 & 11 & -9 \end{bmatrix}$.