

# Computational Ocean Acoustics

- Ray Tracing
- Wavenumber Integration
- Normal Modes
- Parabolic Equation
- Broadband Modeling



# **Broadband Modeling**

- Fourier Synthesis
- Time-domain Methods
- Numerical Examples
- Doppler Shift in Ocean Waveguides
  - Numerical Examples



### **Broadband Modeling**

#### **Frequency Domain**



#### **Time Domain**





### Fourier Synthesis of Frequency-Domain Solutions

$$p(r, z, t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} p(r, z, \omega) e^{-i\omega t} d\omega$$
$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} S(\omega) g(r, z, \omega) e^{-i\omega t} d\omega,$$

Frequency Windowing

Conjugate Symmetric 
$$p(r,z,t)=\frac{1}{2\pi}\int_{-\omega_{\rm max}}^{\omega_{\rm max}}S(\omega)\overline{g(r,z,\omega)}\,e^{-i\omega t}\,d\omega\,.$$

$$p(r, z, t) = \operatorname{Re} \left\{ \frac{1}{\pi} \int_0^{\omega_{\text{max}}} S(\omega) g(r, z, \omega) e^{-i\omega t} d\omega \right\}.$$



#### Fast Fourier Transforms

$$t_j = t_{\min} + j \Delta t$$
,  $j = 0, 1 \dots (N-1)$ , 
$$\omega_{\ell} = \ell \Delta \omega, \qquad \ell = -(N/2 - 1) \dots -1, 0, 1 \dots (N/2 - 1)$$
, 
$$FFT \ Sampling$$

$$\Delta t \, \Delta \omega = \frac{2\pi}{N} \, .$$

$$\Delta f = \frac{\Delta \omega}{2\pi} = \frac{1}{T}.$$

Periodicity

$$\sum_{n} p(r, z, t_{j} + nT) = \frac{\Delta \omega}{2\pi} \sum_{\ell = -(N/2 - 1)}^{N/2 - 1} \left[ p(r, z, \omega_{\ell}) e^{-it_{\min}\omega_{\ell}} \right] e^{-i\frac{2\pi\ell j}{N}},$$

$$\sum_{n} p(r, z, t_j + nT) = \frac{\Delta \omega}{2\pi} \operatorname{Re} \left\{ \sum_{\ell=0}^{N/2-1} \epsilon_{\ell} \left[ p(r, z, \omega_{\ell}) e^{-it_{\min}\omega_{\ell}} \right] e^{-i\frac{2\pi\ell j}{N}} \right\},\,$$

$$\epsilon_{\ell} = \begin{cases} 1 & \text{for } \ell = 0, \\ 2 & \text{for } \ell > 0. \end{cases}$$



#### Response in Time Window $[t_{\min}, t_{\min} + T]$

$$p(r, z, t_j) = \frac{\Delta \omega}{2\pi} \operatorname{Re} \left\{ \sum_{\ell=0}^{N/2-1} \epsilon_{\ell} \left[ p(r, z, \omega_{\ell}) e^{-it_{\min}\omega_{\ell}} \right] e^{-i\frac{2\pi\ell_{j}}{N}} \right\} - \sum_{n\neq 0} p(r, z, t_j + nT),$$

$$\frac{N\Delta\omega}{2} > \omega_{\max},$$

$$\frac{N\Delta f}{2} > f_{\text{max}} \,.$$

#### Nyquist Sampling Criterion

$$f_s = \frac{1}{\Delta t} > 2f_{\text{max}}.$$



#### Time Windowing and Sampling

$$t_{\min} \leq \frac{r}{c_{\max}}$$
.

Reduced Time - Running Time Window



#### 'Graphical' Sampling Requirement

$$\Delta t = \frac{T}{N} < \frac{1}{8f_{\text{max}}} \,,$$

#### Complex Frequency Integration

$$p(r, z, t_j) \simeq \frac{\Delta \omega}{2\pi} e^{\delta t_j} \operatorname{Re} \left\{ \sum_{\ell=0}^{N-1} \epsilon_{\ell} \left[ p(r, z, \omega_{\ell} + i\delta) e^{-it_{\min}\omega_{\ell}} \right] e^{-i\frac{2\pi\ell j}{N}} \right\}$$
$$- \sum_{n \neq 0} p(r, z, t_j + nT) e^{-\delta nT} .$$



#### Attenuation and Causality

#### Plane Wave

$$p(0,t) = P\delta(t);$$

$$p(x,t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} Pe^{j\frac{\omega}{c}x - \alpha x} e^{-j\omega t} d\omega$$

#### Causality

$$p(x,t) = 0, \quad t < x/c;$$

#### Hilbert Transform

$$R(\omega) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{I(y)}{\omega - y} dy$$

$$I(\omega) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{R(y)}{\omega - y} dy$$

Plane Wave Solution

$$R(\omega) = e^{-\alpha(\omega)x} \cos(\omega x/c)$$

$$I(\omega) = e^{-\alpha(\omega)x} \sin(\omega x/c)$$

$$\Rightarrow c = c(\omega)$$







#### Attenuation and Causality

#### Plane Wave

$$p(0,t) = P\delta(t);$$

$$p(x,t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} Pe^{j\frac{\omega}{c}x - \alpha x} e^{-j\omega t} d\omega$$

#### Causality

$$p(x,t) = 0, \quad t < x/c;$$

#### **Hilbert Transform**

$$R(\omega) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{I(y)}{\omega - y} dy$$

$$I(\omega) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{R(y)}{\omega - y} dy$$

Plane Wave Solution

$$R(\omega) = e^{-\alpha(\omega)x} \cos(\omega x/c)$$

$$I(\omega) = e^{-\alpha(\omega)x} \sin(\omega x/c)$$

$$\Rightarrow c = c(\omega)$$

#### Causal Dispersion - Futterman

$$\alpha = \begin{cases} 0 & |\omega| < \omega_0 \\ b|\omega| & |\omega| > \omega_0 \end{cases}$$

$$\frac{1}{c(\omega)} = \frac{1}{c_0(\omega)} - \frac{b}{\pi} \log \left| \frac{\omega^2}{\omega_0} - 1 \right|$$





Fig. 4.25. Five attenuation-dispersion pairs: (a) truncated linear frequency; (b) power law attenuation; (c) Kjartansson model; (d) lumped-element model; (e) Voigt solid.

White, J.E. Figure 4.25 from *Underground* sound: application of seismic waves.
Amsterdam; New York: Elsevier, 1983.
Courtesy of Courtenay White. Used with permission.



# $(r_s, z_s)$ $\theta_0$

#### **Time-Domain Solutions**

#### Ray Methods

Single Eigenray Contribution

$$p(s) = A(s) e^{i\omega \tau(s)},$$

$$\tau(s) = \int_0^s \frac{1}{c(s')} \, ds' \, .$$

Fourier Synthesis

$$p(s,t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} S(\omega) p(s,\omega) e^{-i\omega t} d\omega,$$

$$p(s,t) = A(s) \frac{1}{2\pi} \int_{-\infty}^{\infty} S(\omega) e^{-i\omega[t-\tau(s)]} d\omega.$$

$$p[s, t + \tau(s)] = A(s) \frac{1}{2\pi} \int_{-\infty}^{\infty} S(\omega) e^{-i\omega t} d\omega.$$

Time-delayed Source Replica

$$p[s, t + \tau(s)] = A(s) S(t),$$

$$p(s,t) = A(s) S[t - \tau(s)].$$



#### Spectral Integral Techniques

Wave Equation in Cylindrical Coordinates

$$\rho \nabla \cdot \left(\frac{1}{\rho} \nabla p\right) - \frac{1}{c^2(z)} \frac{\partial^2 p}{\partial t^2} = -\frac{S(t)}{r} \delta(z - z_s, r),$$

Ideal Boundary Conditions

$$p(r, 0, t) = 0,$$
  $p_z(r, D, t) = 0.$ 

$$p(r, z, t)$$
 outgoing as  $r \to \infty$ .

$$p(r, z, 0) = p_t(r, z, 0) = 0$$
.

Hankel Transform in Range

$$p(k_r, z, t) = \int_0^\infty p(r, z, t) J_0(k_r r) r dr$$



#### Time-domain FFP

$$\left[\rho \frac{\partial}{\partial z} \left(\frac{1}{\rho} \frac{\partial}{\partial z}\right) - k_r^2 - \frac{1}{c^2(z)} \frac{\partial^2}{\partial t^2}\right] p(k_r, z, t) = -S(t) \,\delta(z - z_s) \,,$$

$$p(k_r, 0, t) = 0,$$

$$p_z(k_r, D, t) = 0,$$

$$p(k_r, z, 0) = p_t(k_r, z, 0) = 0$$
.

$$p(r,z,t) = \int_0^\infty p(k_r,z,t) J_0(k_r r) k_r dk_r$$
.



# Spherical wave incident on half-space: direct, reflected, transmitted, and head/lateral/conical waves

$$S(t) = \begin{cases} \sin(\omega_c t) - \frac{1}{2}\sin(2\omega_c t) & \text{for } 0 < t < 1/f_c \\ 0 & \text{else} \end{cases}.$$

[See Fig 8.2 in Jensen, Kuperman, Porter and Schmidt. *Computational Ocean Acoustics*. New York: Springer-Verlag, 2000.]



# Spherical wave incident on a halfspace



#### Mode Dispersion in a Waveguide

Modal Group Velocity

$$u_m = \frac{d\omega}{dk_m} \,,$$

Modal Cutoff Frequency

[See Jensen Fig 8.5]

$$f_{0m} = \frac{(m - 0.5) c_w}{2D\sqrt{1 - (c_w/c_b)^2}}.$$

Source Signal

$$S(t) = \begin{cases} \frac{1}{2} \sin \omega_c t \left(1 - \cos \frac{1}{4} \omega_c t\right) & \text{for } 0 < t < 4/f_c \\ 0 & \text{else} \end{cases},$$



$$S(t) = \begin{cases} \frac{1}{2} \sin \omega_c t \left(1 - \cos \frac{1}{4} \omega_c t\right) & \text{for } 0 < t < 4/f_c \\ 0 & \text{else} \end{cases},$$

[See Jensen Fig 8.6, 8.7, 8.8]



# Shallow WaterWaveguide with Fast Shear Bottom



[See Jensen, Fig 4.9]

$$C_s = 600 \text{ m/s}$$



## Stratified Elastic Bottom Scholte wave – Fast Sand Seabed





### Scholte Waves in Shallow Water



Fig. 1 Phase-velocities of the lowest modes in shallow water over an extremely "hard" rock-bottom



Fig. 2 Phase-velocities of the lowest modes in shallow water over a relative "soft" rock-bottom



Fig. 8 Installation of the sensor package on the sea floor and mooring of its radio buoy in shallow water



Fig. 12 Radial and vertical particle velocity of the interface wavelet in Fig. 11 with the resulting hodographs



### Seismic Interface Waves

[See Jensen Figs. 8.9, 8.10, 8.11, 8.12]



# Seabed Shear Properties from Scholte Wave Inversions

Table 1 Interface wave experiments

| Investigators                      | Year | Water<br>depth<br>(m) | Bottom<br>type | Centre<br>freq.<br>(Hz) | Measured<br>att.<br>(dB/km) | Inferred<br>shear speed<br>(m/s) | Inferred shear att. $(dB/\lambda_8)$ |
|------------------------------------|------|-----------------------|----------------|-------------------------|-----------------------------|----------------------------------|--------------------------------------|
| Bucker, Whitney, Keir              | 1964 | 1<br>20               | sand<br>sand   | 20<br>25                | 300<br>200                  | 100<br>1 <b>9</b> 5              | 1.4<br>1.4                           |
| Davies <sup>7</sup>                | 1965 | 4410                  | -              | 6                       | -                           | 50-190                           | -                                    |
| Herron, Dorman, Drake <sup>8</sup> | 1968 | 5                     | silt           | 5                       | -                           | 40-115                           |                                      |
| Hamilton et al. <sup>9</sup>       | 1970 | 390<br>985            | silt<br>silt   | - '                     | -                           | 100<br>90                        | -<br>-                               |
| Schirmer <sup>10</sup>             | 1980 | 130                   | sand           | 4.5                     | 7                           | 120                              | 0.2                                  |
| McDaniel, Beebe <sup>ll</sup>      | 1980 | 32                    | sand           | 10                      | -                           | 200                              | -                                    |
| Essen et al. 12                    | 1981 | 1                     | silt           | 4                       | -                           | 75-250                           | -                                    |
| Tuthill et al. 13                  | 1981 | 7                     | mud            | 4.5                     | -                           | 25-50                            | -                                    |
| Whitmarsh, Lilwall <sup>14</sup>   | 1982 | 5260                  | -              | 4.5                     | -                           | 25-170                           | -                                    |
| Holt, Hovem, Syrstad <sup>15</sup> | 1983 | _                     | sand           | 35                      | 600                         | 135-195                          | 2.3                                  |
| Brocher et al. 16                  | 1983 | 67                    | sand           | 5                       | 0.43                        | 260                              | 0.02                                 |
| Schmalfeldt, Rauch <sup>17</sup>   | 1983 | 20<br>30              | -              | 3<br>3                  | 10<br>2                     | 100<br>150                       | 0.3<br>0.1                           |

Reproduced by permission from Jensen, Finn B. and Henrick Schmidt."Shear Properties of Ocean Sediments Determined from Numerical Modelling of Scholte Wave Data." In Ocean Seismo-acoustics: Low Frequency Underwater Acoustics (NATO Conference Series, Marine Sciences). Edited by Tuncay Akal and Jonathan M. Berkson. New York: Plenum Press, 1986.



## Deep-Water Propagation

[See Jensen Figs. 8.14, 8.15]



# Deep-Water Propagation Surface-Duct Propagation with Leakage

[See Jensen Figs. 8.16, 8.17]