Estimation of the Black-Scholes model

Amel BENHEBRI Maïté CAZENAVE Jean-Baptiste REBOUL

Supervisor : Mr Marie ESME Sudria

16 décembre 2016

Introduction

Table of Contents

- History
- Brownian Motion
- Asset
- Black-Scholes Model
- Volatility
- Risk-Free Rate
- Simulation

Financial Mathematics History

Brownian Motion

- Gaussian process
 - Stochastic : depending on time and randomness
 - Process distribution : Gaussian distribution
- Continuous path
- Covariance : $cov(B_s, B_t) = t \wedge s$

Brownian Motion Simulation

Asset

Black-Scholes Equation

Stochastic differential equation :

$$\begin{cases} dS_t = \mu S_t dt + \sigma S_t dB_t \\ S_0 > 0 \end{cases}$$

 S_t price of the asset at a time t

 μ : drift

 σ : volatility

Black-Scholes Solution

$$S_t = S_0 \exp(\theta t + \sigma B_t)$$

 S_t : price of the asset at a time t

t: time until maturity

B: Brownian motion

heta : risk-free rate $(\mu - rac{\sigma^2}{2})$

 σ : volatility

Black-Scholes Simulation

Volatility

$$S_t = S_0 \exp(\theta t + \sigma B_t)$$

Measure of the amplitude of the financial asset variations

- HIGH Volatility
 - risky investment

- LOW Volatility
 - asset with few risks

Volatility Estimation

$$\widehat{\sigma}_{n}^{2} = \frac{1}{n-1} \left(\sum_{k=0}^{n-1} \frac{|X_{t_{k+1}} - X_{t_{k}}|^{2}}{t_{k+1} - t_{k}} - \frac{|X_{T} - X_{0}|^{2}}{T} \right)$$

Risk-Free Rate

$$S_t = S_0 \exp(\theta t + \sigma B_t)$$

The theoretical rate of return of an investment with no risk of financial loss

$$\theta = \mu - \frac{\sigma^2}{2}$$

- μ : drift -> trend
- σ : volatility -> noise

Risk-Free Rate Estimation

$$\widehat{\theta}_T = \frac{X_T - X_0}{T}$$

Drift

$$\begin{cases} dS_t = \mu S_t dt + \sigma S_t dB_t \\ S_0 > 0 \end{cases}$$

$$\theta = \mu - \frac{\sigma^2}{2}$$

Trends that controls the deterministic component of the process

Relevance Of Estimation

Application

Thank you for your attention!