Lab 3 – Ripple Carry Adder

CS1050 Computer Organization and Digital Design

Name: Oshadi Saumya Perera

Index No: 200458M

Lab Task

- In this lab we will design a 4-bit Ripple Carrier Adder (RCA). We will use 2 Half Adders (HA) to build a Full Adder (FA) and 4 Full Adders to build the RCA.
- We will create an FA symbol for future use of FA.
- Also we will learn to build more complex components using many basic components.
- Verify their functionality via simulation.

Truth tables and steps involved in simplifying the Boolean expressions

Half Adder

Truth Table

A	В	S	С
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

K-map (S)

B A	0	1
0	0	1
1	1	0

$$S = A.B' + A'.B = A \oplus B$$

K-map (C)

B A	0	1
0	0	0
1	0	1

$$C = A.B$$

<u>Full Adder</u>

Truth Table

Α	В	C_in	S	C_out
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

K-map (S)

AB Cin	00	01	11	10
0	0	1	0	1
1	1	0	1	0

$$S = A'.B'.Cin + A'.B.Cin' + A.B.Cin + A.B'.Cin'$$

$$S = B'.(A'.Cin + A.Cin') + B.(A'.Cin' + A.Cin)$$

$$(A'.Cin + A.Cin')' = (A + Cin').(A' + Cin)$$

$$(A'.Cin + A.Cin')' = A.A' + A.Cin + Cin'.A' + Cin'.Cin$$

$$(A'.Cin + A.Cin')' = 0 + A.Cin + Cin'.A' + 0$$

$$(A'.Cin + A.Cin')' = A.Cin + Cin'.A'$$

$$S = B'.(A'.Cin + A.Cin') + B.(A'.Cin + A.Cin')'$$

$$S = B \oplus (A'.Cin + A.Cin')$$

$$S = B \oplus (A \oplus Cin)$$

$$S = A \oplus B \oplus Cin$$

K-map (C_out)

AB Cin	00	01	11	10
0	0	0		0
1	0	1	1	1)

$$Cout = A.B + B.Cin + A.Cin$$

Full Adder (2 HA's)

First Half Adder

$$Sh1 = A \oplus B$$
$$Ch1 = A.B$$

• Full Adder

$$S = (A \oplus B) \oplus Cin$$
$$S = Sh1 \oplus Cin$$

$$Cout = A.Cin + A.B + B.Cin$$
 $Cout = A.B + Cin.(A + B)$
 $Cout = A.B + Cin.(A \oplus B) + A.B)$
 $Cout = A.B + Cin.(A \oplus B) + Cin.(A.B)$
 $Cout = A.B.(1 + Cin) + Cin.(A \oplus B)$
 $Cout = A.B.1 + Cin.(A \oplus B)$
 $Cout = A.B + Cin.(A \oplus B)$
 $Cout = Cin.(A \oplus B)$

VHDL design source codes

➤ Half Adder design source code (HA.vhd)

Company:
Engineer:
Create Date: 05/26/2022 10:53:17 PM
Design Name:
Module Name: HA - Behavioral
Project Name:
Target Devices:
Tool Versions:
Description:
Dependencies:
Revision:
Revision 0.01 - File Created
Additional Comments:
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
Uncomment the following library declaration if using
arithmetic functions with Signed or Unsigned values
use IEEE.NUMERIC_STD.ALL;

```
-- Uncomment the following library declaration if instantiating
-- any Xilinx leaf cells in this code.
--library UNISIM;
--use UNISIM.VComponents.all;

entity HA is

Port ( A : in STD_LOGIC;

B : in STD_LOGIC;

C : out STD_LOGIC;

end HA;

architecture Behavioral of HA is

begin

S <= A XOR B;

C <= A AND B;
```

end Behavioral;

➤ Half Adder Test bench code (TB_HA.vhd)

Company:
Engineer:
Create Date: 05/26/2022 11:03:34 PM
Design Name:
Module Name: TB_HA - Behavioral
Project Name:
Target Devices:
Tool Versions:
Description:
Dependencies:
Revision:
Revision 0.01 - File Created
Additional Comments:
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
Uncomment the following library declaration if using
arithmetic functions with Signed or Unsigned values
use IEEE.NUMERIC_STD.ALL;
Uncomment the following library declaration if instantiating
any Xilinx leaf cells in this code.
library UNISIM;

```
--use UNISIM.VComponents.all;
entity TB_HA is
-- Port ();
end TB_HA;
architecture Behavioral of TB_HA is
component HA
  PORT(
    A: in STD_LOGIC;
    B: in STD_LOGIC;
    S: out STD_LOGIC;
    C: out STD_LOGIC
  );
end component;
signal a, b, s, c : STD_LOGIC;
begin
UUT: HA
  PORT MAP(
    A \Rightarrow a
    B \Rightarrow b,
    S => s,
    C => c
  );
  process
  begin
    a <= '0';
    b <= '0';
    wait for 10ns;
```

```
b <= '1';
wait for 10ns;

a <= '1';
b <= '0';
wait for 10ns;

b <= '1';
wait;
end process;</pre>
```

end Behavioral;

> Full Adder design source code (FA.vhd) -- Company: -- Engineer: -- Create Date: 05/26/2022 11:45:25 PM -- Design Name: -- Module Name: FA - Behavioral -- Project Name: -- Target Devices: -- Tool Versions: -- Description: -- Dependencies: -- Revision: -- Revision 0.01 - File Created -- Additional Comments: library IEEE; use IEEE.STD_LOGIC_1164.ALL; -- Uncomment the following library declaration if using -- arithmetic functions with Signed or Unsigned values --use IEEE.NUMERIC_STD.ALL; -- Uncomment the following library declaration if instantiating

-- any Xilinx leaf cells in this code.

--library UNISIM;

```
--use UNISIM.VComponents.all;
entity FA is
  Port ( A : in STD_LOGIC;
     B: in STD_LOGIC;
     C_in: in STD_LOGIC;
     S: out STD_LOGIC;
     C_out : out STD_LOGIC);
end FA;
architecture Behavioral of FA is
component HA
  PORT(
    A: in STD_LOGIC;
    B: in STD_LOGIC;
    S: out STD_LOGIC;
    C : out STD_LOGIC
  );
end component;
signal HA0_S, HA0_C, HA1_S, HA1_C: STD_LOGIC;
begin
HA_0 : HA
  PORT MAP(
    A => A,
    B => B,
    S => HA0_S,
    C => HA0_C
  );
```

```
HA_1: HA
  PORT MAP(
    A \Rightarrow HA0_S,
    B => C_in,
    S => HA1_S,
    C => HA1_C
  );
C_out <= HA0_C OR HA1_C;
S <= HA1_S;
end Behavioral;
   > Full Adder Test bench code (TB_FA.vhd)
-- Company:
-- Engineer:
-- Create Date: 05/27/2022 12:20:00 AM
-- Design Name:
-- Module Name: TB_FA - Behavioral
-- Project Name:
-- Target Devices:
-- Tool Versions:
-- Description:
-- Dependencies:
-- Revision:
-- Revision 0.01 - File Created
```

```
-- Additional Comments:
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC_STD.ALL;
-- Uncomment the following library declaration if instantiating
-- any Xilinx leaf cells in this code.
--library UNISIM;
--use UNISIM.VComponents.all;
entity TB_FA is
-- Port ();
end TB_FA;
architecture Behavioral of TB_FA is
component FA
  PORT(
    A: in STD_LOGIC;
    B: in STD_LOGIC;
    C_in : in STD_LOGIC;
    S: out STD_LOGIC;
    C_out: out STD_LOGIC
  );
end component;
signal a, b, c_in, s, c_out : STD_LOGIC;
```

begin

```
UUT : FA
  PORT MAP(
    A => a,
    B => b,
    C_in => c_in,
    S => s,
    C_out => c_out
  );
  process
  begin
    a <= '0';
    b <= '0';
    c_in <= '0';
    wait for 100ns;
    c_in <= '1';
    wait for 100ns;
    b <= '1';
    c_in <= '0';
    wait for 100ns;
    c_in <= '1';
    wait for 100ns;
    a <= '1';
    b <= '0';
    c_in <= '0';
```

```
wait for 100ns;

c_in <= '1';
  wait for 100ns;

b <= '1';
  c_in <= '0';
  wait for 100ns;

c_in <= '1';
  wait;

end process;</pre>
```

end Behavioral;

> Ripple Carry Adder design source code (RCA_4.vhd)

Company:
Engineer:
Create Date: 05/27/2022 01:18:57 AM
Design Name:
Module Name: RCA_4 - Behavioral
Project Name:
Target Devices:
Tool Versions:
Description:
Dependencies:
Revision:
Revision 0.01 - File Created
Additional Comments:
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
Uncomment the following library declaration if using
arithmetic functions with Signed or Unsigned values
use IEEE.NUMERIC_STD.ALL;
Uncomment the following library declaration if instantiating
any Xilinx leaf cells in this code.
library UNISIM;

```
--use UNISIM.VComponents.all;
entity RCA_4 is
  Port ( A0 : in STD_LOGIC;
     A1 : in STD_LOGIC;
     A2: in STD_LOGIC;
     A3: in STD_LOGIC;
     B0 : in STD_LOGIC;
     B1 : in STD_LOGIC;
     B2 : in STD_LOGIC;
     B3: in STD_LOGIC;
     C_in : in STD_LOGIC;
     S0: out STD_LOGIC;
     S1: out STD_LOGIC;
     S2: out STD_LOGIC;
     S3 : out STD_LOGIC;
     C_out : out STD_LOGIC);
end RCA_4;
architecture Behavioral of RCA_4 is
  component FA
    port (
      A: in std_logic;
      B: in std_logic;
      C_in: in std_logic;
      S: out std_logic;
      C_out: out std_logic
    );
  end component;
```

```
begin
  FA_0 : FA
    port map (
      A => A0,
      B \Rightarrow B0,
      C_in => C_in,
      S => S0,
      C_Out => FAO_C
    );
   FA_1: FA
    port map (
       A => A1,
       B => B1,
      C_in => FA0_C,
       S => S1,
      C_Out => FA1_C
    );
   FA_2 : FA
    port map (
      A => A2,
      B => B2,
      C_in => FA1_C,
      S => S2,
      C_Out => FA2_C
```

```
);
    FA_3 : FA
    port map (
      A => A3,
      B => B3,
      C_in => FA2_C,
      S => S3,
     C_Out => C_out
    );
end Behavioral;
   Ripple Carry Adder Test bench code (TB_4_RCA.vhd)
-- Company:
-- Engineer:
-- Create Date: 05/27/2022 05:00:59 PM
-- Design Name:
-- Module Name: TB_4_RCA - Behavioral
-- Project Name:
-- Target Devices:
-- Tool Versions:
-- Description:
-- Dependencies:
```

```
-- Revision:
-- Revision 0.01 - File Created
-- Additional Comments:
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC_STD.ALL;
-- Uncomment the following library declaration if instantiating
-- any Xilinx leaf cells in this code.
--library UNISIM;
--use UNISIM.VComponents.all;
entity TB_4_RCA is
-- Port ();
end TB_4_RCA;
architecture Behavioral of TB_4_RCA is
  component RCA_4
    PORT(
      A0: in STD_LOGIC;
      A1: in STD_LOGIC;
      A2: in STD_LOGIC;
      A3: in STD_LOGIC;
      B0: in STD_LOGIC;
      B1: in STD_LOGIC;
      B2: in STD_LOGIC;
      B3: in STD_LOGIC;
```

```
C_in: in STD_LOGIC;
      S0 : out STD_LOGIC;
      S1 : out STD_LOGIC;
      S2 : out STD_LOGIC;
      S3 : out STD_LOGIC;
      C_out : out STD_LOGIC
    );
  end component;
  signal a0,a1,a2,a3,b0,b1,b2,b3,c_in : STD_LOGIC;
  signal s0,s1,s2,s3,c_out : STD_LOGIC;
begin
  UUT: RCA_4
    PORT MAP(
      A0 => a0,
      A1 => a1,
      A2 => a2,
      A3 => a3,
      B0 => b0,
      B1 => b1,
      B2 => b2,
      B3 => b3,
      C_in => c_in,
      S0 => s0,
      S1 => s1,
      S2 => s2,
      S3 => s3,
      C_out => c_out
```

```
);
process
begin
  a0 <= '1';
  a1 <= '0';
  a2 <= '1';
  a3 <= '0';
  b0 <= '0';
  b1 <= '0';
  b2 <= '0';
  b3 <= '0';
  c_in <= '0';
  wait for 100ns;
  a0 <= '1';
  a1 <= '1';
  a2 <= '1';
  a3 <= '1';
  b0 <= '0';
  b1 <= '0';
  b2 <= '0';
  b3 <= '0';
  c_in <= '0';
  wait for 100ns;
  a0 <= '0';
  a1 <= '1';
  a2 <= '0';
  a3 <= '1';
```

```
b0 <= '1';

b1 <= '1';

b2 <= '1';

b3 <= '1';

c_in <= '0';

wait;

end process;

end Behavioral;
```

Timing Diagrams

> Half Adder

> Full Adder

> Ripple Carry Adder

Discuss why some of the input combinations results in outputs that cannot be represented using LED LD0-LD3.

In 4-bit RCA there are two types of outputs, sum of each FA (S0, S1, S2, and S3) and carry bit (C_out). We use LED LD0-LD3 to represent sum of each FA and LD15 to represent carry bit.

Discuss the role of LD15.

LD15 is used to connect carry bit (C_out) of 4-bit RCA.

Conclusion

We can develop an 8-bit Ripple Carry Adder using two 4-bit Ripple Carry Adders. Also we can extend RCA to support subtraction.