Artificial Intelligence

CSE 440/EEE 333/ETE333

Chapter 7 Summer 2016

Mirza Mohammad Lutfe Elahi

Department of Electrical and Computer Engineering
North South University

Knowledge Based Agents - Concept

- Knowledge Base or KB
 - a set of sentences describing the world
- Knowledge representation language
 - Expresses each sentence
- Inference
 - the process of deriving new sentences from the knowledge base
 - Tell(P) function that adds knowledge P to the KB
 - Ask(P) function that queries the agent about the truth of
- Have background knowledge about the world

Basic Actions – Ask/Tell

- A knowledge base keeps track of things
- We can TELL it facts or ASK for inference
- For example:
 - TELL: Father of John is Bob
 - TELL: Jane is John's sister
 - TELL: John's Father is the same as John's sister's father
 - ASK: Who's Jane's Father?

Knowledge Based Agents

- At every step:
 - Construct a sentence with assertion about percepts
 - Construct a sentence asking what action is next
 - Constructs a sentence asserting that action

Knowledge-Based Agents

```
function KB-AGENT(percept) returns an action
persistent: KB, a knowledge base
t, a counter, initially 0, indicating time

Tell(KB, Make-Percept-Sentence(percept, t))
action \leftarrow Ask(KB, Make-Action-Query(t))
Tell(KB, Make-Action-Sentence(action, t))
t \leftarrow t + 1
return action
```

A generic knowledge-based agent.

Given a percept –

- the agent adds the percept to its knowledge base,
- asks the knowledge base for the best action, and
- tells the knowledge base that it has in fact taken that action.

The Wumpus World - A Dangerous Grid

- Adjacent rooms are connected (horizontally or vertically)
- Lurking in the cave is the Wumpus
- Player can smell the Wumpus (stench)
- Player feels a breeze if pit nearby
- Player can shoot ONE arrow at (and kill) the Wumpus
- Some rooms contain pits that will trap player
- One room contains a pot of gold (Yay!)

PEAS:

- Performance measure: +1000 for walk out w/gold; -1000 for dying; -1 for each action, -10 for arrow
- Environment a 4 4 grid. Agent starts at [1,1]; gold and pits randomly distributed, etc..
- Actuators Agent can move forward, left or right
- **Sensors**: [Smell, Breeze, Glitter, Bump, Scream]

- Observable? No only local perception
- Deterministic? Yes outcomes exactly specified
- Episodic? No sequential at the level of actions
- Static? Yes Wumpus and Pits do not move
- Discrete? Yes Discrete set of percepts and actions
- Single-agent? Yes Wumpus is essentially a natural feature

- The agent always starts in [1,1].
- The task of the agent is to find the gold, return to the field [1,1] and climb out of the cave.

First percept at [1,1]

[None, None, None, None, None]

Percept at [2,1]

[None, Breeze, None, None, None]

Stench, Breeze, Glitter, Bump, Scream

1,4	2,4	3,4	4,4		
1,3	2,3	3,3	4,3		
1,2 OK	2,2	3,2	4,2		
1,1 A	2,1	3,1	4,1		
OK	OK				

(a)

A	= Agent
В	= Breeze
\mathbf{G}	= Glitter, Gold
OK	= Safe square
\mathbf{P}	= Pit
\mathbf{s}	= Stench
V	= Visited
W	= Wumpus

1,4	2,4	3,4	4,4
I			
I			
I			
1,3	2,3	3,3	4,3
I			
I			
I			
1,2	2.2	3,2	4.2
1,2	2,2 P?	3,2	4,2
OV			
OK			
1,1	2.1	3,1 22	4,1
'	2,1 A	3,1 P?	
v	В		
ок	ок		

(b)

Percept at [1,2]

[Stench, None, None, None, None]

Percept at [2,3]

[Stench, Breeze, Glitter, None, None]

1,4	2,4	3,4	4,4
^{1,3} w!	2,3	3,3	4,3
1,2A S OK	2,2	3,2	4,2
1,1 V OK	2,1 B V OK	^{3,1} P!	4,1

Α	= Agent
В	= Breeze
G	= Glitter, Gold
OK	= Safe square
P	= Pit
S	= Stench
\mathbf{v}	= Visited

= Wumpus

1,4	2,4 P?	3,4	4,4
^{1,3} W!	2,3 A S G B	3,3 _{P?}	4,3
1,2 s v OK	2,2 V OK	3,2	4,2
1,1 V OK	2,1 B V OK	3,1 P!	4,1

(a) (b)

The Wumpus World - Other tight spots

Breeze in (1,2) and (2,1) \rightarrow no safe actions

Smell in (1,1)

→cannot move

Can use a strategy of coercion:

shoot straight ahead

wumpus was there \rightarrow dead \rightarrow safe

wumpus wasn't there → safe

Logic - Basic

- A Logic has syntax
 - : e.g. "x + y = 4" is well formed; "x4y+" = is not
- Semantics define the **truth** of a sentence with respect to each possible world
 - For x + y = 4,
 - true in a world where x is 2 and y is 2
 - false in a world where x is 1 and y is 1
- Models describe possible worlds.
 - Mathematical abstraction
 - Possible models are just all possible assignments to variables
- If a sentence α is true in a model m, m satisfies α or m is a model of α
- $M(\alpha)$ is the set of all models of α

Logic - Entailment

- Entailment is when a sentence logically follows from another $\alpha \models \beta$ α entails β
- $\alpha \mid \beta$ iff in every model where α is true, β is also true.
- $\alpha \models \beta$ iff $M(\alpha) \subseteq M(\beta)$.
- examples:

$$-(x = 0) | (xy = 0)$$

$$-(p = true) \vdash (p \lor q)$$

$$-(p \land q) \vdash (p \lor q)$$

Logic

- Model the world being described by a KB
- Satisfaction model m satisfies a sentence α , if α is true in m
- Entailment the concept that a sentence follows from another sentence:
 - $-\alpha \models \beta$ if α is true then β must also be true.
- Logical inference the process of using entailment to derive conclusions
- Model checking enumeration of all possible models to ensure that a sentence α is true in all models in which KB is true

Model

- Models are formal definitions of possible states of the world
- We say m is a model of a sentence α if α is true in m
- $M(\alpha)$ is the set of all models of α
- Then $KB \models \alpha$ if and only if $M(KB) \subseteq M(\alpha)$

Entailment in the Wumpus World

- Situation after detecting nothing in [1,1], moving right, breeze in [2,1]
- What are possible models for ? – assume only possibility pit or no pit.

?	?		
V	B V	?	

Model the presence of pits in squares [1,2][2,2] and [3,1].

Model the presence of pits in squares [1,2][2,2] and [3,1].

Propositional Logic - Syntax

```
Sentence \rightarrow AtomicSentence \mid ComplexSentence
 AtomicSentence \rightarrow True \mid False \mid P \mid Q \mid R \mid \dots
ComplexSentence \rightarrow (Sentence) \mid [Sentence]
                            \neg Sentence
                            Sentence \wedge Sentence
                            Sentence \lor Sentence
                            Sentence \Rightarrow Sentence
                            Sentence \Leftrightarrow Sentence
```

OPERATOR PRECEDENCE : $\neg, \land, \lor, \Rightarrow, \Leftrightarrow$

Propositional Logic - Semantics

- Defines the rules for determining the truth of a sentence respect to particular model
- Model simply fixes the truth value
- For example:
- m = {P_{1,2} = false, P_{2,2} = false, P_{2,1} = True}
 Or: m = {P_{1,2} = false, P_{2,2} = True, P_{2,1} = false}
- $P_{1,2}$ is just a symbol. It can mean anything.
- Truth value is computed recursively according to...

Propositional Logic - Semantics

- ¬P is true if P is false in m (negation)
- P Λ Q is true iff both P and Q are true in m (conjunction)
- P v Q is true iff either P or Q are true in m (disjunction)
- P →Q is true unless P is true and Q is false (implication)

Propositional Logic - Semantics

in the model $m = \{P_{1,2} = false, P_{2,2} = false, P_{2,1} = True\}$

Evaluate $\neg P_{1,2} \land P_{2,2} \lor P_{3,1}$

Evaluate it for $m = \{P_{1,2} = true, P_{2,2} = true, P_{2,1} = false\}$

Propositional Logic

- Truth table a (simple) representation of a complex sentence by enumerating its truth in terms of the possible values of each of its symbols.
- Truth table for connectives:

P	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
false	false	true	false	false	true	true
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true

A Simple KB - Definitions

For each location [x, y]

- $P_{x,y}$ is true if there's a pit in [x, y]
- $W_{x,y}$ is true if there is a Wumpus in [x, y], dead or alive
- $B_{x,y}$ is true if the agent perceives a breeze in [x, y]
- $S_{x,y}$ is true if the agent perceives a stench in [x, y]

A Simple KB - Rules

For the Wumpus world in general.

$$-R_{1}:\neg P_{1,1}$$

$$-R_{2}:B_{1,1} \leftrightarrow (P_{1,2} \vee P_{2,1})$$

$$-R_{3}:B_{2,1} \leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1})$$

Now, after visiting [1,1], [1,2] and [2,1]

$$-R_4:\neg B_{1,1}$$

$$- R_5: B_{2,1}$$

• KB = $R_1 \wedge R_2 \wedge R_3 \wedge R_4 \wedge R_5$

Inference

- Main goal: decide whether KB $\mid \alpha$
- Want to find whether KB says there's no pit in [1, 2]
- That is, does KB $\vdash \neg P_{1,2}$?
- We say that $\neg P_{1,2}$ is a sentence
- α can be a much more complex query

Inference – Simple Method

- enumerate the models
- for each model, check that:
- if it is true in α is has to be true in KB

In the Wumpus world: 7 relevant symbols:

$$B_{1,1}, B_{2,1}, P_{1,1}, P_{1,2}, P_{2,1}, P_{2,2}, P_{3,1}$$

 2^7 = 128 models. Only 3 are true

Inference - All Possible Models

B _{1,1}	B _{2,1}	P _{1,1}	P _{1,2}	P _{2,1}	P _{2,2}	P _{3,1}	R_1	R_2	R_3	R_4	R_5	KB
false	true	true	true	true	false	false						
false	false	false	false	false	false	true	true	true	false	true	false	false
:	÷	÷	÷	÷	÷	:	:	:	÷	÷	:	:
false	true	false	false	false	false	false	true	true	false	true	true	false
false	true	false	false	false	false	true	true	true	true	true	true	<u>true</u>
false	true	false	false	false	true	false	true	true	true	true	true	<u>true</u>
false	true	false	false	false	true	true	true	true	true	true	true	<u>true</u>
false	true	false	false	true	false	false	true	false	false	true	true	false
:	÷	÷	÷	:	÷	:	÷	:	÷	÷	:	:
true	false	true	true	false	true	false						

Truth Table for Wumpus World KB, consisting of $2^7 = 128$ rows, one each for the different assignments of truth values to the 7 proposition symbols $B_{1,1}$, ..., $P_{3,1}$. KB is true if R_1 through R_5 are true, which occurs just in 3 rows.

Inference - Model Checking Complexity

```
function TT-ENTAILS?(KB, \alpha) returns true or false
  inputs: KB, the knowledge base, a sentence in propositional logic
            \alpha, the query, a sentence in propositional logic
   symbols \leftarrow a list of the proposition symbols in KB and \alpha
   return TT-CHECK-ALL(KB, \alpha, symbols, \{\})
function TT-CHECK-ALL(KB, \alpha, symbols, model) returns true or false
  if EMPTY?(symbols) then
       if PL-TRUE?(KB, model) then return PL-TRUE?(\alpha, model)
       else return true // when KB is false, always return true
  else do
       P \leftarrow \mathsf{FIRST}(symbols)
       rest \leftarrow REST(symbols)
       \mathbf{return} \ (\mathsf{TT}\text{-}\mathsf{CHeck-All}(\mathit{KB}, \alpha, \mathit{rest}, \mathit{model} \ \cup \ \{P = \mathit{true}\})
                and
                TT-CHECK-ALL(KB, \alpha, rest, model \cup \{P = false \}))
```

PL-TRUE? returns true if a sentence holds within a model.

Inference - Model Checking Complexity

If KB and α contain n symbols in all:

- Time complexity: $O(2^n)$
- Space complexity: O(n) because it is depth first.

Inference - Logical Equivalence

$$(\alpha \wedge \beta) \equiv (\beta \wedge \alpha) \qquad \text{commutativity of } \wedge \\ (\alpha \vee \beta) \equiv (\beta \vee \alpha) \qquad \text{commutativity of } \vee \\ ((\alpha \wedge \beta) \wedge \gamma) \equiv (\alpha \wedge (\beta \wedge \gamma)) \qquad \text{associativity of } \wedge \\ ((\alpha \vee \beta) \vee \gamma) \equiv (\alpha \vee (\beta \vee \gamma)) \qquad \text{associativity of } \vee \\ \neg(\neg \alpha) \equiv \alpha \qquad \qquad \text{double-negation elimination} \\ (\alpha \Rightarrow \beta) \equiv (\neg \beta \Rightarrow \neg \alpha) \qquad \text{contraposition} \\ (\alpha \Rightarrow \beta) \equiv (\neg \alpha \vee \beta) \qquad \text{implication elimination} \\ (\alpha \Leftrightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \wedge (\beta \Rightarrow \alpha)) \qquad \text{biconditional elimination} \\ \neg(\alpha \wedge \beta) \equiv (\neg \alpha \vee \neg \beta) \qquad \text{De Morgan} \\ \neg(\alpha \vee \beta) \equiv (\neg \alpha \wedge \neg \beta) \qquad \text{De Morgan} \\ (\alpha \wedge (\beta \vee \gamma)) \equiv ((\alpha \wedge \beta) \vee (\alpha \wedge \gamma)) \qquad \text{distributivity of } \wedge \text{ over } \vee \\ (\alpha \vee (\beta \wedge \gamma)) \equiv ((\alpha \vee \beta) \wedge (\alpha \vee \gamma)) \qquad \text{distributivity of } \vee \text{ over } \wedge$$

Standard logical equivalences. The symbols α , β and γ stand for arbitrary sentences of propositional logic

Inference By Theorem Proving - Concepts

- Logical Equivalence: $\alpha \equiv \beta$ iff $\alpha \models \beta$ and $\beta \models \alpha$
- Validity: A sentence is valid if it is true in **all** models e.g. $P \vee \neg P$ (also known as tautology)
- Deduction: $\alpha \models \beta$ iff $\alpha \rightarrow \beta$ is valid
- Satisfiability: a sentence is satisfiable if it is true in, or satisfied by, some model.

Inference Theorem Proving - Proofs

- Inference rules used to derive a proof
- Common Patterns:
 - Modus Pones $\frac{\alpha \Rightarrow \beta, \alpha}{\beta}$
 - And-Elimination $\frac{\alpha \wedge \beta}{\alpha}$
- Other rules can also be inference rules

$$\frac{\alpha \iff \beta}{(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)}$$

$$\frac{(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)}{\alpha \iff \beta}$$

Inference - In our Wumpus World

Is there a pit in 1,2?

W = Wumpus

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
1,2 OK	2,2 P?	3,2	4,2
1,1 V OK	2,1 A B OK	3,1 P?	4,1

•	R_1 :	$\neg P_{1,1}$

•
$$R_2: B_{1,1} \leftrightarrow (P_{1,2} \lor P_{2,1})$$

•
$$R_3: B_{2,1} \leftrightarrow (P_{1,1} \lor P_{2,2} \lor P_{3,1})$$

•
$$R_4$$
: $\neg B_{1,1}$

Inference – Applied to Wumpus World

We have KB = $R_1 \wedge R_2 \wedge R_3 \wedge R_4 \wedge R_5$. We want to prove $\neg P_{1,2}$

- R_6 : $(B_{1,1} \rightarrow (P_{1,2} \vee P_{2,1})) \wedge ((P_{1,2} \vee P_{2,1}) \rightarrow B_{1,1})$ by biconditional elimination to R_2
- R_7 : $((P_{1,2} \vee P_{2,1}) \rightarrow B_{1,1})$ by And-Elimination
- R_8 : $(\neg B_{1,1} \rightarrow \neg (P_{1,2} \lor P_{2,1}))$ by Contrapositives
- R_9 : $\neg (P_{1,2} \lor P_{2,1})$ by Modus Ponens with R_8 and R_4
- R_{10} : $\neg P_{1,2} \land \neg P_{2,1}$ by De Morgan's rule

That is, neither $P_{1,2}$ nor $P_{2,1}$ contains a pit.

Inference - As Search

- Intial State: The initial Knowledge Base
- Actions: The set of all the inference rules applied to all sentences that match top half
- Result: Add sentence in the bottom half of the inference rule
- Goal: The goal is a state that contains sentence we want to prove

Inference – By Resolution

• Let's say agent returns to [1,1] from [2,1] and goes to [1,2]

1,4	2,4	3,4	4,4
^{1,3} w!	2,3	3,3	4,3
1,2A S OK	2,2 OK	3,2	4,2
1,1 V OK	2,1 B V OK	3,1 P!	4,1

 $\mathbf{B} = Breeze$

G = Glitter, Gold

OK = Safe square

P = Pit

S = Stench

V = Visited

W = Wumpus

We add:

• $R_{11}: \neg B_{1,2}$

• $R_{12}: B_{1,2} \leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{1,3})$

Inference – By Resolution

We can continue using same process as earlier.

- R_{13} : $\neg P_{2,2}$ Contrapositive R_{12} and AND elimination
- R_{14} : $\neg P_{1.3}$ Same as above.
- $R_{15}: P_{1,1} \vee P_{2,2} \vee P_{3,1}$ bi-conditional elimination R_3 and modus ponens R_5

And the literal $\neg P_{2,2}$ in R_{13} resolves with $P_{2,2}$ in R_{15} to give the resolvent

- $R_{16}: P_{1,1} \vee P_{3,1}$
- more generally...

$$\frac{A \vee B, \neg A \vee C}{B \vee C}$$

Resolution - Conjunctive Normal Form (CNF)

- Every sentence in propositional logic can be expressed as conjunctions of disjunctions of literals.
- e.g. $(A \lor B) \land (\neg C \lor D \lor \neg E) \land ...$

$$B_{1,1} \leftrightarrow (P_{1,2} \vee P_{2,1})$$
 in CNF?

- Eliminate \leftrightarrow replacing $\alpha \leftrightarrow \beta$ with $(\alpha \rightarrow \beta) \land (\alpha \rightarrow \beta)$
 - $(B_{1,1} \to (P_{1,2} \vee P_{2,1})) \wedge ((P_{1,2} \vee P_{2,1})) \to B_{1,1})$
- Eliminate \rightarrow by replacing $\alpha \rightarrow \beta$ with $\neg \alpha \lor \beta$

$$- (\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg (P_{1,2} \lor P_{2,1}) \lor B_{1,1})$$

- Symbol should appear next to each literal: DeMorgan
 - $-\neg(\alpha\vee\beta)\equiv\neg\alpha\wedge\neg\beta$ and $\neg(\alpha\wedge\beta)\equiv\neg\alpha\vee\neg\beta$
 - $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land ((\neg P_{1,2} \land \neg P_{2,1}) \lor B_{1,1})$
- Distribute v over Λ and flatten

$$- (\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg P_{1,2} \lor B_{1,1}) \land (\neg P_{2,1} \lor B_{1,1})$$

Resolution

Algorithm works using **proof by contradiction**.

To show $KB \models \alpha$ we show that $KB \land \neg \alpha$ is not satisfiable

Apply resolution to KB $\wedge \neg \alpha$ in CNF and Resolve pairs with complementary literals

$$\frac{l_1 \vee ... \vee l_k, \quad m_1 \vee ... \vee m_n}{l_1 \vee ... l_{i-1} \vee l_{i+1} ... \vee l_k \vee m_1 \vee ... \vee m_{j-1} \vee m_{j+1} ... \vee m_n}$$

If I_i and m_i are complimentary literals

and add new clauses until

- there are no new clauses to be added
- two clauses resolve to the empty class, which means $KB \models \alpha$

Resolution algorithm

• Proof by contradiction, i.e., show $KB \land \neg \alpha$ is unsatisfiable

```
function PL-RESOLUTION(KB, \alpha) returns true or false
   inputs: KB, the knowledge base, a sentence in propositional logic
              \alpha, the query, a sentence in propositional logic
   clauses \leftarrow the set of clauses in the CNF representation of KB \land \neg \alpha
   new \leftarrow \{ \}
   loop do
        for each C_i, C_j in clauses do
              resolvents \leftarrow PL-Resolve(C_i, C_i)
              if resolvents contains the empty clause then return true
              new \leftarrow new \cup resolvents
        if new \subseteq clauses then return false
         clauses \leftarrow clauses \cup new
```

Resolution example

Say the agent is in [1,1], no breeze, so no pits can be in there.

- $\alpha = \neg P_{1,2}$
- $KB = R_2 \wedge R_4$
- $KB = (B_{1,1} \leftrightarrow (P_{1,2} \lor P_{2,1})) \land \neg B_{1,1}$
- $KB \wedge \neg \alpha = (\neg P_{2,1} \vee B_{1,1}) \wedge (\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}) \wedge (\neg P_{1,2} \vee B_{1,1}) \wedge (\neg B_{1,1}) \wedge (P_{1,2})$

