USEFUL INEQUALITIES

FRED J. HICKERNELL

There are some inequalities that get used over and over by me. Here they are summarized for easy reference.

1. HÖLDER'S INEQUALITY AND ITS GENERALIZATIONS

Let $\{a_i\}_{i\in\mathcal{I}}$, and $\{b_i\}_{i\in\mathcal{I}}$ be two finite or countably infinite sequences of complex numbers. Hölder's inequality states that

(1a)
$$\left| \sum_{i \in \mathcal{I}} a_i b_i \right| \leq \sum_{i \in \mathcal{I}} |a_i b_i| = \|(a_i b_i)_{i \in \mathcal{I}}\|_1 \leq \|(a_i)_{i \in \mathcal{I}}\|_p \|(b_i)_{i \in \mathcal{I}}\|_q,$$

$$1 \leq p, q \leq \infty, \quad \frac{1}{p} + \frac{1}{q} = 1, \text{ i.e., } q = \frac{p}{p-1}.$$

Moreover, in the above inequality,

(1b) equality holds if
$$|a_i|^{p-1} |b_i|^{-1}$$
 is constant $\forall i \in \mathcal{I}$.

This inequality can be generalized. Choose any r > 1. It follows from that

$$\begin{aligned} \|(a_ib_i)_{i\in\mathcal{I}}\|_r &= \|(a_i^rb_i^r)_{i\in\mathcal{I}}\|_1^{1/r} \le \|(a_i^r)_{i\in\mathcal{I}}\|_p^{1/r} \|(b_i^r)_{i\in\mathcal{I}}\|_q^{1/r} \\ &= \|(a_i)_{i\in\mathcal{I}}\|_{pr} \|(b_i)_{i\in\mathcal{I}}\|_{qr} \,, \qquad 1 \le p, q \le \infty, \quad \frac{1}{p} + \frac{1}{q} = 1, \text{ i.e., } q = \frac{p}{p-1}. \end{aligned}$$

By change of notation, this may be re-written as

(2a)
$$\|(a_i b_i)_{i \in \mathcal{I}}\|_r \le \|(a_i)_{i \in \mathcal{I}}\|_p \|(b_i)_{i \in \mathcal{I}}\|_q$$
, $1 \le r \le p, q \le \infty$, $q = \frac{pr}{p-r}$.

Moreover, in the above inequality,

(2b) equality holds if
$$|a_i|^{p-1} |b_i|^{-1}$$
 is constant $\forall i \in \mathcal{I}$.

This provides an bound on an r-norm of a vector whose components are products of two terms as a product of the p-norm of the vector of one factor and the q-norm of the vector of the other factors, where p and q are both no smaller than r.

2. Opposite Direction Inequality

For any $r \ge 1$, define the function $f(a) = (1+a)^r - 1 - a$. Since f(0) = 0, and $f'(a) = r[(1+a)^{r-1} - a^{r-1}] \ge 0$ for all $a \ge 0$, it follows that $f(a) \ge 0$ and so

$$1 + a^r \le (1+a)^r \quad \forall a \ge 0, \ r \ge 1.$$

This can be generalized to

$$a^r + b^r < (a+b)^r \quad \forall a, b > 0, r > 1.$$

Now we prove

$$a_1^r + \dots + a_n^r \le (a_1 + \dots + a_n)^r \quad \forall a_i \ge 0, \ r \ge 1,$$

by induction. It is already true for n=2. Suppose it is true for n=N, and consider n=N+1. It follows that

$$a_1^r + \dots + a_{N+1}^r \le a_1^r + \dots + a_{N-1}^r + b^r, \quad b = a_N + a_{N+1}$$
$$\le (a_1 + \dots + a_{N-1} + b)^r$$
$$= (a_1 + \dots + a_{N-1} + a_N + a_{N+1})^r,$$

thus completing the proof. Therefore, we have

(3)
$$\|(a_i)_{i \in \mathcal{I}}\|_r \le \|(a_i)_{i \in \mathcal{I}}\|_p, \quad 1 \le p \le r \le \infty.$$

Moreover, in the above inequality, equality holds if exactly one a_i is nonzero. Going further, we can can conclude that

(4)
$$\|(a_ib_i)_{i\in\mathcal{I}}\|_r \le \|(a_i)_{i\in\mathcal{I}}\|_p \|(b_i)_{i\in\mathcal{I}}\|_{\infty}, \quad 1 \le p \le r \le \infty,$$

with equality holding if exactly one $a_i = 0$ for all $i \neq j$ and $b_j = ||(b_i)_{i \in \mathcal{I}}||_{\infty}$. Combining this inequality with (2a) it yields

(5)
$$\|(a_ib_i)_{i\in\mathcal{I}}\|_r \le \|(a_i)_{i\in\mathcal{I}}\|_p \|(b_i)_{i\in\mathcal{I}}\|_q$$
, $1 \le r, p \le \infty$, $q = \frac{pr}{\max(p-r,0)}$.

3. Jensen's Inequality and Its Generalizations

Let ϕ be a convex function, i.e.,

$$\phi((1-\lambda)a + \lambda b) \le (1-\lambda)\phi(a) + \lambda\phi(b) \quad \forall a, b, \lambda \text{ with } 0 \le \lambda \le 1.$$

It then follows by induction that

(6)
$$\phi(\lambda_1 a_1 + \dots + \lambda_n a_n) \le \lambda_1 \phi(a_1) + \dots + \lambda_n \phi(a_n)$$
$$\forall a_1, \dots, a_n, \lambda_1, \dots, \lambda_n \text{ with } 0 \le \lambda_i \le 1 \& \lambda_1 + \dots + \lambda_n = 1.$$

For example, if $-\infty , define <math>a_i = b_i^p$, where $b_i > 0$, and note that $\phi: x \mapsto x^{q/p}$ is convex. It follows from (6) that

(7)
$$(\lambda_1 b_1^p + \dots + \lambda_n b_n^p)^{1/p} \le (\lambda_1 b_1^q + \dots + \lambda_n b^q)^{1/q}$$

 $\forall b_1, \dots, b_n, \lambda_1, \dots, \lambda_n \text{ with } b_i > 0, \ 0 \le \lambda_i \le 1 \& \lambda_1 + \dots + \lambda_n = 1.$

This means that the weighted p-mean is no greater than the weighted q-mean. If all the b_i are the same, then the two means are equal.

Room E1-208, Department of Applied Mathematics, Illinois Institute of Technology, 10 W. $32^{\rm ND}$ St., Chicago, IL 60616