JURIS

	RA Number & Name	Date	Signed by:
RA 3720	Food, Drug, Cosmetics and Devices Act	June 22, 1963	Ferdinand Marcos
RA 5921	Philippine Pharmacy Law	June 23, 1969	Ferdinand Marcos
RA 6425	Dangerous Drugs Act of 1972	March 30, 1972	27.22
RA 6675	Generics Act on 1988	September 13,1988	Fidel Ramos
RA 7432	Senior Citizens Act	February 7,1992	Corazon Aquino
RA 7394	Consumer Act of the Philippines	April 13, 1992	1//
RA 7581	Price Act	May 27,1992	
RA 7876	Senior Citizen Center Act of the Philippines	February 14, 1995	V
RA 8172	Salt Iodization Nationwide Act	December 29, 1995	Fidel Ramos
RA 8203	Special Law on Counterfeit Drugs	September 4, 19Num96	Fidel Ramos
RA 8293	Intellectual Property Code	$\wedge A \vee A$	
RA 8424	Tax Reform Act of 1997		
RA 8432	Traditional and Alternative Medicine Act	December 9,1997	Fidel Ramos
RA 8981	PRC Modernization Act of 2000	December 5, 2000	
RA 9165	Comprehensive Dangerous Drugs Act of 2002	June 7, 2002	Gloria Arroyo
RA 9257	Expanded Senior Citizen's Act of 2003	February 26, 2003	Gloria Arroyo
RA 9211	Tobacco Regulation Act of 2003	June 23, 2003	Gloria Arroyo
RA 9334	Increase tax on alcohol	July 26,2004	
RA 9502	Universally Accesible Cheaper and Quality Medicines Act of of 2008	June 6, 2008	Gloria Arroyo
RA 9711	Food & Drug Administration Act of 2009	August 18,2009	Gloria Arroyo
RA 9994	Expanded Senior Citizen's Act of 2010	February 15, 2010	
RA 10351	Restructing Excise Tax on Alcohol & Tobacco Products	July 23, 2012	
RA 10623	Amended RA 7581 (Price Act)	July 23, 2912	
RA 10640	Anti-Drug Campaign	July 22, 2013	
RA 10645	PhilHealth Benefits for Senior Citizens	July 28,2014	
RA 10912	Continuing Professional Development Act of 2016	July 27, 2015	
RA 10918	Philippine Pharmacy Act	July 21, 2016	Benigno Aquino

PHYSICAL PHARMACY

Hydrogen- Lipophilic Balance	$HLB = \frac{H}{L}$	St	andard Condition	ıs	Ideal Gas Law					P	V = nRT	
Anti-foaming	1-3	Temp	Kelvin (K) 273 + °0			P Pressure				atm		
Water in oil	4-6	Pressure	ATM (atmosphere)	~ ~	V	17 -	Volun	ne	Ц,		
Wetting agents	7-9		760 mmHg/ (torr) /	76 cm Hg n Moles			s		<u>:</u>	grams MW		
Oil in water	8-18	1 atm	1.01325 X 10 ⁶ dyr	es/cm²		R	Unive	ersal Gas	Cons	stant	0.082	$05\frac{L \cdot atm}{n \cdot K}$
Detergents	13-16	777	1.01325 X 10 ⁵ N/n	n² or Pa	scal	T		Tempera	ature	V		K
Solubilizer	5-20	00,	1.01325 bar			Den	sity	mas volur	10.00	'n	g nL	$rac{g}{L}$
	Constant	Fo	ormula	Non-Ideal Gas Law a = correction for pressure				[_I	$\left[P - \frac{n2a}{V2}\right][V - nb] = nRT$			
Boyle's Law	Temperature	P_1V	$V_1 = P_2V_2$			orrection for volume			Ľ	V2	?] [[] ' '	$i \nu_{\rm J} = i i \kappa_{\rm J}$
Charles' Law	Pressure	$\frac{T1}{T2} = \frac{V1}{V2}$	$\frac{T1}{T2} = \frac{V1}{V2}$	Claus	sius-C	sius-Clapeyron Equation			lo	$g\left(\frac{P2}{P1}\right)$	$=\frac{\Delta Hr}{2.30}$	(T2 – T1) 03 RT1T2
Gay-Lusaac's	Volume	$\frac{P1}{T1} = \frac{P2}{T2}$	$\frac{P1}{T1} = \frac{P2}{T2}$	Р		Pressure				Atm / mmHg		mmHg
Avogadro's Law	11/	$\frac{V^2}{V^2}$		Т		Te	mperat	ure		K		
Combined Gas Law	P1V1 P2V2		R		Ga	s Cons	tant		SI 8.3	14 Joul	es/n-K	
Combined Gas Law	Y M	<i>T</i> 1	$T=\frac{1}{T2}$	11		Ja	3 00113	tarit		Non-SI 1.987 Cal/n-K		Cal/n-K
Dalton's Law of Part	tial Pressure	$P_T = P_1 +$	P ₂ +P ₃ P(n)	ΔHr	La	tent He	at of Va	aporizati	on		J/	'n
Raoult's Law ∆Vp	$o = P_i \circ - P_i$ Δ'	Vp = X _{solute} ■ P	P_{I}° $P_{I} = X_{solvent}$	• P _I °		Specific gravity				$rac{ ho \ substance}{ ho \ standard}$		

	Stok	es Law		VO	LUME		рКа =	-logKa	pKa + pKb = 14	
V	Volume			Vg :	= Vp + intraparticular sp	oace	pKb =	-logKb	7	
d	diameter	pKb = -logKb	True Volume (Vp)	Vb = Vp + Intra- + Inter-			Weak /	Acid pl	$H = pKa + log \frac{[Sa]}{[Wa]}$	
ρs	Density-solid			Vb = Vg + interparticular space					$H = pKa + log \frac{[Ba]}{[Sa]}$	
ρο	Density medium		Intraparticular porosity	$\frac{Vg}{V}$	$\frac{-Vp}{Vg} \times 100$		Buffer Capacity / Index / Efficiency Value			
g	Gravity	$d = \sqrt{\frac{18n \cdot V}{(\rho s - \rho o)g}}$	Interparticular porosity		$\frac{-Vg}{b} \times 100$		$\frac{\Delta N}{\Delta pH} = \frac{Change\ in\ Normality}{Change\ in\ pH}$			
n	n viscosity		Total porosity	I porosity $\frac{Vb - Vp}{Vb} \times 100$				Newtons Law of Flow		
	COMPRI	ESSIBILITY	Fluidity	tan	$\tan \theta = \frac{h}{r}$			$I = \frac{F \to}{G \to}$	shear stress rate of shear	
С	arr's Index	$CI = \frac{Vo - Vf}{Vo} \times 100$	Solubility	N	$\frac{amt.of\ solute\ (g)}{volume\ of\ solvent\ (L)}$			Viscosity	y Unit: Stokes	
0 =	Vo = Vf	Not compressible	Molar solubility		amt. of solute (moles	_	absolute viscosity			
		1 0			volume of solution (L	,)		De	ensity	
1-99	9 = Vo > Vf	compressible	Molarity	- /	$\frac{mote}{L}$		Retrieve	e Viscosit	t y No unit	
100) = Vf = O	Not possible	Molality		moles of solute				e viscosity	
	1 1/	Vo		- 1	kg solvent			viscosit	sy of water	
Hau	Hausner's Ratio $HR = \frac{Vo}{Vf}$		Boiling F	Point	Elevation	Kb (H ₂	H ₂ O) = 0.52°C/molal			
I = \	I = Vo = Vf Not compressible		$\Delta Tb = Tbsoln$	-Tbº	$\Delta Tb =$	mKb		$\Delta Tb = im$	Kb - electrolyte	
> 1	> 1 = Vo>Vf Compressible		Freezing F	oint	Depression	Kf (H ₂	f (H ₂ O) = 1.86°C/molal			
<1 :	= Vo = Vf	Not possible	$\Delta Tf = Tf^{0}$ -so	ΔTb =	$\Delta Tb = mKf$ $\Delta Kf = imKf - electrolyte$			Kf - electrolyte		
	V			1						

		Class I - add	Theorie	s	Acid	Base		
D Method	l		E Method		Arrheniu *hydroge	400	l+ donor	H+ acceptor
1 10	<u>%</u> 0.52	Old	$Evalue = 17 \frac{Liso Drug}{MW Drug}$		Bronsted Lowry *proton	Pro	oton donor	Proton acceptor
Strong electrolyte	Strong electrolyte $i = 2$ New $Evalue = \frac{MW \ NaCl}{iNaCl} x \frac{Liso \ Drug}{MW \ Drug}$			77	Lewis *electro		Electron acceptor	Electron donor
Weak electro	lyte		T D I	Liso		8 8 2		
# ions	i (80%)	Non-elect	Sucrose, Urea, Glycerin	1.9	Goodlant	! Kaya mo	no taya . Kon	lang =) hindi ka ti na kung, ngayar
2	1.8	Weak elect	H ₃ BO ₃ , Cocaine, Phenobarbital	ka sa ka s	westo?! Ma	apalunga tung	napapagod. Nag	
3	2.6	Divalent	MgSO ₄ , ZnSO ₄	ponghinaan, hindi ka mag-isa sa laban na ito.				
4	3.4	Uni-uni	NaCl, KCl, Pilocarpine NO ₂ , Ephedrine SO ₄			- Gapang	Phonua: *	
5	4.2	Uni-di	Na ₂ SO ₄ , Atropine SO ₄	A				
Non electrolyte	i = 1	Di-uni	ZnCl ₂ , CaBr ₂	REACTION KINETICS				
Class II – add s	olvent	Mono-tri	Na Citrate, K Citrate	5.2		Zero	First	Second
White Vincent N	lethod	Tri-mono	AICl ₃ , FeCl ₃	6	K	Co Ct		Co Ct 1
$Vol \ of \ H2O = wt \ x$	E x 111.1	\mathcal{M}			(reaction Constant)	$\frac{Co-Ct}{t}$	$In(\frac{Co}{Ct})(\frac{l}{t})$	$\frac{Co - Ct}{Co \cdot Ct} \left(\frac{l}{t}\right)$
Sprowl's Met	hod		Newtons Law of Flow		t _{1/2}	$\frac{0.5 \ Co}{Ko}$	$\frac{0.693}{K1}$	$\frac{1}{Co \cdot K2}$
$Vvalue = 0.3g \ x \ E$	E x 111.1		$N = \frac{F \to shear\ stress}{G \to rate\ of\ shear}$	t ₉₀	0.1 <i>Co Ko</i>	$\frac{0.105}{K1}$		
\vee		1			Unit of K	Conc. Time	$\frac{1}{Time}$	1 Conc. • Time

MANUF

	DEPARTMENT	S OF			S OF	PACKAGING			RS OF PLAS	STIC	
	MANUFACTURING	PLANT	Prin	nary	Imm	ediate container	1. PET (Polyethy	lene	beverages		
1.	Research & Developme	ent	Sec	condary	Oute	er Packaging	Terepthalate)	()	3-		
2.	Production Department		Tertiary Corrugated box				2. HDPE (High-Density		Thermoset	for solid dosage	
3. \	Warehouse Deparment	•	CLA	ASSIFICA	ATIO	N OF CONTAINERS	Polyethylene)		forms		
4.	Quality Assurance Dep	artment	A. F	Protectio	n Ab	ility	3. PVC (Polyviny		Less resist	ant to permeation	
5.	Quality Control Departn	nent	1. V	Vell-Close	ed	4. Light-resistant	Chloride)			11/	
6.	Marketing Department		2. T	ight	50.00	5. Child-resistant	4. LDPE (Low-De	ensity	Thermopla	stic for squeeze	
7.	Regulatory Department		3. H	lermetic	\cup	6. Tamper-resistant	Polyethylene)	0 6	bottles & m	edicine droppers	
8.	Engineering Departmer	nt	B. C	Quantity	Held	1 /	5. Polypropylene	4 4	High temp,	resistance	
9.	Medical Department		1.Si	ingle Unit		2. Multiple Unit	6. Polystyrene	Λ / Λ			
S	TAGES OF DRUG DEV	/ELOPMENT	C. N	Materials	Use	d	7. Others	0			
1.	Discovery & Developmo	ent	1. G	Blass		4. Rubber		LA	BELLING		
2.	Pre-clinical Research	13.	2. Plastic 5. Metal			1. Name of the P	roduct	, , , , , , , , , , , , , , , , , , ,			
3.	Clinical Research		3. Foils, Films & Laminates			2. Dosage form &		5. Name &	Complete address		
4.	FDA Review		TYPES OF GLASSES			strength	X.	of Manufacturer, trader or			
Ph	ase			l Highly resistant Borosilicate glass					distributor		
1	Healthy human	Safety	H _B	Treated	Soda	a Lime Glass	3. Pharmacologic		6. Net Con	tont	
2	Subj w/ dse. (Small)	Efficacy	Ш	Soda Lir	ne G	lass	category				
3	Subj w/ dse.	Safety &	IV	General			STORAGE	CONDI	TIONS	9C = 5F - 160	
3	(Larger)	Efficacy		TYP	PES C	OF PLASTIC		NMT 8	8°C	Refrigerator	
4	Post Marketing	$\lambda I \Lambda$	1. T	hermopla	astic	2. Thermoset	Cold	Freez	~ -	→ 2-8 °C	
	Surv.			•					to -10 °C		
	• 5	TABLET CO				T	Cool	8-15 °			
	APIs	0.05.44.41.4		Colorant	ts		Room Temp		. prevailing i	n the place	
	2. Diluents/Fillers LaSuSDiAMiMa					Controlled RT	20-25				
	3. Binder StAT GeSuCeP		9.	Sweeter	ners		Warm	30-40			
	4. Disintegrant SCC						Excessive Heat	>40 °C	<u> </u>		
	Super disintegrants										
6.	Antifrictionals L	_AG									

DILUENTS/FILLERS		SUPER DIS	INTEGRANT	ANTIFRICTIONALS						
1. Lactose	1. Sodium St	arch Glycolate	Explotab ®,	Primogel ®	3 Roles:	Lubricant	t, Aı	nti-adheren	t, Glidant	
2. Sucrose	2. Croscarme	ellose Na	Cross polyn	nore	Stearates	Mg,Ca,Na	3 roles			
3. Starch	3. Crospovid	one	Cross polyn	Heis	Purified Ta	lc		LA		
4. Dibasic CaHPO ₄		ANTIFRI	CTIONALS		Colloidal T	alc		Glidant		
5. Anhydrous Lactose	Blue No.1	Brilliant blue	Red No.40	Allura Red	Colloidal S	iO ₂		Gildani	Cab-o-sil®	
6. Microcrystalline Cellulose	Blue No.2	Indigotine	Yellow No.5	Tartrazine	Silicates C	a,Mg		Glidant		
7. Mannitol & Xylitol	Green No.3	Fast Green	Yellow No.6	Sunset	PEG & SLS					
BINDER	Red No.3	Erythrosine		Yellow	SWEETENERS					
1. Starch		FLA	VORS	S		1000x	۸٥	esulfame K	180-200x	
2. Acacia	Salty	Cinnamon, Or	ange,	SCCOB	Sucralose	Splenda	AC	esullatile K	100-2008	
3. Tragacanth	Saity	Cherry, Butter	scoth	SCCOB	Saccharin	500x	As	partame	180-200x	
4. Gelatins	Bitter	Chocolate, Ch	nerry,	Bitter C CRaM	Na	300x	NIC	ovolomoto	30x magic	
5. Sucrose	Dillei	Raspberry, Mi	nt	Diller C CRaivi	Saccharin	300X	INA	cyclamate	sugar	
6. Cellulose	Sour	Raspberry, Lemon, Fruity		SouRaLF	Eau		lfom	no K. I. Aspor	rtomo	
7. PVP	Oily	Mint, Lemon,	Orange	OiLeM	Equal = Acesulfame K			ie K + Aspai	tame	
	Unpleasant Sweet	Vanilla, Fruity		UnVF						

PROCESS IN TABLET MANUF

Dispensing → Milling → Mixing → Granulation → Tableting → Coating

MILLING EQUIPMENTS	MIXING EQUIPMENTS	GRANULATIO	GRANULATION				
1. Cutter Mill	1. Batch Type Mixer	Methods:		Parts:			
2. Edge Runner Mill	a. Rotating Shell Mixer	1. Wet Granulation	2. Dry Granulation	1. Hopper	4. Punches		
3. Hammer Mill	 Drum-type blender 	Old Process	a. Slugging	2. Feed Shoe	5.Cam tracks		
4. Fluid Energy Mill	 Slanted Position of the 	1. Blending of Dry Ingredients	b. Roller	3. Die			
5. Roller Mill	Cylindrical Drum	2. Addition of Liquid Blender	Compaction	Types:			
6. Ball Mill	b. Fixed Shell Mixer	3. Screening of Damp Mass		Single Station	Multiple		
	 Ribbon Blender 	4. Drying the Granulation		Single Station	Station		
	 Sigma Blade Mixer 	5. Screening the dry granules		Requirements:			
//	 Planetary Mixer 	New Process		1. Flowability	(2)		
	 Vertical Impeller 	Fluid Bed Granulator		2. Compressibli	ty		

TABLET D	EFECTS							COATING)				
Process		Equipment	ts:		Examp	oles		FILM-C	OATING STEPS	3	Exa	amples	
1. Capping	3. Cracking	1. Standar	ds Coa	ting Pan	Pelleg	rini Fan		1. Film-form	mer	T	5		
2. Lamination		2. Perforat	od Coc	oting Dan	Accela	-Cota F	Pan,	NonCeMe	P Non-enteri	c C	Cellulose, M	ethacylate, PVP	
Excipients		Z. Peliolai	eu Coa	alling Fan	Glatt c	oater			Enteric	S	Shellac, CAF	P, PVAP, salol	
1. Chipping	3. Picking	3. Fluid Be	nd Coat	or	Air suspension or			2. Plasticiz	er PlastiCErin		Castor oil, G	lycerin	
2. Sticking		S. I luiu be	eu Coalei		Wurste	er proce	ess	3. Surfacta	ınt	F	Polysorbate	Tween®	
Machine	Types:				_	$C\lambda$,	Substance		PEG			
1. Double impr		1. Sugar-c				-coatin	g	5. Glossan			Beeswax	N	
More than 1 fa	ctor	S	SUGAR	-COATIN	_			6. Volatile	solvent/vehicle		Alcohol + Ac	etone	
1. Mottling		1. Sealing	-	CAP Cel		Aceta					EFECTS		
		1: Coaming	17	PVAP Po				1. Mottling				Cracking Type I	
		2. Subcoat	ting	Alternate	•		&	2. Sweating				Cracking Type II	
	70		Dusting Powders			3	ш.	3. Bridging 8. Blushing			13.Delaye	ed dissolution	
			ing	60-70% \$	<u> </u>		1 /	4. Erosion					
	Γ, -	4. Color-co	<u> </u>					5. Cratering	g 10. Orange	Peel			
7.	1	5. Polishin		Beeswax	& Carn	auba w			w .				
	MANUFAC	TURING OF CAPSULES						MANUFAC'	TURING OF SE	MI-SC	DLID DOSA	GE FORMS	
A. Hard Gelati	n Capsules		B. So	ft Gelatin	Capsu	le	A. Ointments						
Steps:	Special	Technique	Metho	od		V	Methods: 1. Incorporation r				method 2. Fusion		
1. Supply	1. Sealir	ng	1. Pla	te Proces	S	- //	B. 6	Sels					
2. Rectification	Gelatir	n Bonding	2. Rot	tary Die P	rocess	Λ	Algi	nic Acid			loidal SiO ₂	Cab-o-sil®	
3.Separation	Heat w	elding/	3. Red	ciprocatin	g Die Pr	ocess	Cell	ulose	Natural	Mg .	Al Silicate	Veegum®	
4. Filling		al coupling					Trag	gacanth		Carl	bomer	Carbopol [®]	
5. Joining/Clos	ing 2. Imprir 3. Coati												
6.Finishing													
			MA	NUFACT	URING	OF LIQ	UID I	DOSAGE FO	ORMS				
A. Equipments	A. Equipments:						Co	mponents:			Stability Enchancers		
1. Mixing tanks	1. Mixing tanks SS 304 SS316				1. APIs			4. Viscos	sity Enhancers	Pres	servatives		
2 Miyore	2. Mixers - Mechanical stirrer - Homogenizer			genizer	2. Solvent or vehicle 5. Humectant			Anti	ioxidants				
Z. IVIIACIS	Colloidal	Mill -	Ultras	onifier	3. Buffe	er		6. Stabili	ity Enchancers				

PRESER	VATIVES	ANTIOXIDANTS				SOLUTION					
Parabens (p-hydrox	ybenzoic acid)	True Antioxid	ants		Dis	spen	sing → M	lixing → St	orage	→ Filtration	on → Filling
MOA: taken by cell	membrane of	1. Vit. E	2. Alkylgalat	es				& A	ging	2	
microorganisms & ly	sis the cell	Butylated 3. Toluene B		3HT	Co-sc	olven	ts: Alcoho	ol : Glyceri	in		
<u>M</u> ethylparaben	molds	Hydroxy 4. Anisole BH		HA	0.22 µr		0.22 µm	For sterile dosage from			
Ethylparaben		 Reducing Age 	ents		Membrane Filter 0.5 µm			0.5 µm		Smallest	bacteria
Propylparaben	Yeasts & bacteria	1. Vit. C	3. Glutathior	ne	T	D	20	QC: Bubb	le poi	nt Test	
Benzoic acid	Disrupting of Cell	2. Sulfites		H	7.7	Fillir	ng	Gravimetr	ric	Constant	level
Sorbic acid	membrane	 Antioxidant sy 	ynergist	7 7				SUSPE	ENSIC	N	
Benzyl alcohol	Protein	1. EDTA	3. Tartaric a	cid				Formu	ulation		7-7-3-2
Chlorobutanol	denaturation	2. Citric acid)			Sus	spending		\sim	Wettin	ig agents
Benzalkonium Cl	Disrupting of Cell		emonics		Veeg		Bento	nite magm		Slycerin	Syrup
	membrane		VeCeAT BeA	GCa	Cellul		Gelati	n N		PEG	Surfactant
Thimerosal &	Cause enzyme		SurfGlyPPS			Acacia Agar		9 V	P		
Phenylmercuric NO	inhibition	Flocculating Na/K CI			Tragacanth Carageenan						
7.		Thui clou			Floce	culati	ng agents	s NaCl	KC		
			EMULS	ION							
Theories:	Key words	Carbohy	Carbohydrates			Finely Divided Solid			Insta	bilities:	
1. Surface Tension	"spherical"	Acacia	Pectin	Bent	ntonite		AIOH ₂		1. Se	dimentatio	n
2. Oriented Wedge	"monomolecular"	Agar	Xanthan	MgO	H_2				2. Creaming		
2 Interfecial Film	"Interface between	Carageenan	Tragacanth	Synt	ynthethic surfactants				3. Br	eaking/Cra	cking
3. Interfacial Film	the oil & water"	Prot	ein	a. Ar	nionic				4. Pr	ase invers	ion
4. Viscosity	"viscosity"	Gelatin	Casein	Soap	S						
Emulsify	ing agents	Eggyolk	Casein	Codi			Sulfate S	SLS			
1. Carbohydrates 4	1. Finely Divided Solid	HMW a	alcohol	5001	um Lau	uryı	Ether SL	E			
2. Proteins 5	5. Synthethic	Stearyl alcoho	ol	b. Ca	ationic		Benzalko	onium Cl			
3. HMW Alcohol	Surfactants	Cetyl alcohol		c. Ar	nphote	eric	Betaine ((Cocamido	propy	d betaine)	
			ostearate	d. No	n-ionio	С	Span® &	Tween®			
~ /			Cholesterol		n® Se	ebo	<u> </u>		Mond	ostearate &	Monoacetate
					en® Tu	ubig	Polyoxy	ethylene s	orbita	ane	
		•		•	1						

		MAN	UFACTURIN	IG OF	STERILE	DOSAGE F	ORMS	
		B. Depyrogenation						
	Instrument	MOA	Condit	ion	E	31	Oven	settings
Moist heat	Autoclave	Protein coagulation	121°C, 1 15mir	•		cillus rmophillus	180°C for 4hrs. 250°C for 45mins.	600°C for 1hr.
Dry heat	Oven	Oxidation	160-170 °C,				ALL LA PARTIE	roduction Area
Dry neat	Oven	Oxidation	2-4hr	S.	Dacillus	ร ธนมแทธ	Clean Room Parts:	
Membrane		Physical		-	Brevun	dimonas	1. Ante-room	ISO Class 100,000
Filtration					diminuta		2. Buffer Area	ISO Class 10,000
Coo	Ethylene Oxide	Alladation	(170		Bacillus subtilis		3. Compounding Area	
Gas	or β-popiolactone	Alkylation	14 -		Dacillus Subtills		4. Aseptic Filling Area	W
Ionizing	Gamma or	DNA mutatio	n	Decillus numitus		umiluo	5. Quarantine Area	
radation	cathode rays	DINA Mutatio	П		Bacillus pumilus		6. Finishing Area	
			PROCEDU	RE				
1. Dispensing	y &		4 Filling	Net	weight = so	lids	l .	
Cleaning	3		4. Filling	Volu	ımetric & G	ravimetric fo	or liquids	
0. 0	Spray drying & Freeze		. /	Vials	s: Siliconiati	ion or Halog	genization	
2. Compound	drying for steri	le solids	Cooling	Λ 100 10	T	ip/Bead sea	ıling	
2 Filtrotics	Clarification	2-3 µm	5. Sealing		oules:	ull sealing		
3. Filtration	Cold filtration	0.2-2.3 µm	' W		A			