GAS BARRIER POLYAMIDE RESIN MOLDING

Publication number: JP8283567
Publication date: 1996-10-29

Inventor:

YASUE KENJI; TAMURA TSUNEO; KOJIMA KAZUE;

KATAHIRA SHINICHIRO; YOSHIDA IZUMI

Applicant:

UNITIKA LTD

Classification:

- international:

C08K3/34; C08L77/00; C08K3/00; C08L77/00; (IPC1-

7): C08L77/00; C08K3/34

- european:

Application number: JP19950088016 19950413 Priority number(s): JP19950088016 19950413

Report a data error here

Abstract of JP8283567

PURPOSE: To obtain a molded article with excellent heat resistance and gas barrier properties by molding a polyamide resin composition having a swelling fluoromica-based mineral homogeneously dispersed therein. CONSTITUTION: For example, mixture of an oxide such as silicon oxide or magnesium oxide with various fluorine compounds is melted at 1400-1500 deg.C and fluoromica crystals are allowed to grow in the cooling step, or a talc is used as a starting material alkali metal ions intercalated therein, and subjected to heat treatment at 700-1200 deg.C in a porcelain crucible to give a swelling fluoromica-based mineral. A monomer that forms a polyamide is polymerized in a state in which the mineral is present in an amount of 0.01-60wt.% based on the whole to give a polyamide resin having the fluoromica-based mineral sufficiently dispersed therein. Examples of the polyamide include nylon 6, nylon 46, nylon 66, etc., and copolymers and mixtures thereof. The polyamide is mixed, if necessary, with a reinforcing filler, such as glass fibers, and a stabilizer, etc., to give the polyamide resin composition.

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出顧公開番号

特開平8-283567

(43)公開日 平成8年(1996)10月29日

(51) Int.Cl. ⁶	識別記号	庁内整理番号	FI		技術表示箇所
COSL 77/00	ккт		COSL 77/00	ККТ	
C 0 8 K 3/34			C 0 8 K 3/34		

審査請求 未請求 請求項の数1 OL (全 4 頁)

(21)出願番号	特願平7 -88016	(71)出題人 000004503
		ユニチカ株式会社
(22)出顧日	平成7年(1995)4月13日	兵庫県尼崎市東本町1丁目50番地
		(72)発明者 安江 健治
		京都府宇治市宇治小桜23番地 ユニチカギ
		式会社中央研究所内
		(72)発明者 田村 恒雄
		京都府宇治市宇治小桜23番地 ユニチカ杉
		式会社中央研究所内
		(72)発明者 小島 和重
		京都府宇治市宇治小桜23番地 ユニチカ杉
		式会社中央研究所内

(54)【発明の名称】 ガスパリヤー性ポリアミド樹脂成形品

(57)【要約】

【目的】 優れた耐熱性、ガスパリヤー性を有するポリ アミド樹脂成形品を提供する。

【構成】 膨潤性フッ素雲母系鉱物 0.01 ~60重量%が 均一に分散したポリアミド樹脂組成物からなるガスバリ ヤー性に優れたポリアミド樹脂成形品。

1

【特許請求の範囲】

【請求項1】 膨潤性フッ素雲母系鉱物 0.01 ~60重量 %が均一に分散したボリアミド樹脂組成物からなるガス バリヤー性に優れたポリアミド樹脂成形品。

【発明の詳細な説明】・

[0001]

【産業上の利用分野】本発明は、優れた耐熱性、ガスバ リヤー性を有するポリアミド樹脂成形品に関する。

的性質、耐薬品性などを有することから、その成形品 は、自動車部品や電気部品をはじめ広汎な用途に使用さ れている。たとえば、ボリアミド樹脂は、ガソリンタ ンク、オイルタンク、吸排気系統のパイプなどの自動車 部品用材料として用いられているが、水分、アルコー ル、フレオンガス、ガソリンなどの気体の耐透過性(ガ スバリヤー性) は必ずしも充分とはいえない。たとえ ば、冷凍機などに用いられるフレオン用のチューブとし てポリアミド樹脂を用いた場合、フレオンが透過し、冷 凍機内のフレオンが経時的に減少したり、自動車のブレ 20 ンMXD6)、ポリウンデカメチレンテレフタラミド ーキオイルタンクやガソリンタンク用材料としてポリア ミド樹脂を用いた場合には、貯蔵中にブレーキオイルや ガソリンに水分が混入するという問題があった。

【0003】また、ポリアミド樹脂の耐熱性は必ずしも 充分でなく、高温下や、高湿度下では剛性が低下したり する問題があった。

【0004】本発明者らは先に、ポリアミド樹脂と膨潤 性フッ素雲母系鉱物とからなる樹脂組成物が優れた耐熱 性、機械的強度を有し、しかも、成形品のそりが小さい てとを見出した(特開平6-248176号公報)。

[0005]

【発明が解決しようとする課題】本発明は、従来のポリ アミド樹脂の問題点を改良し、優れた耐熱性及びガスバ リヤー性を有する成形品を提供することを目的とする。 [0006]

【課題を解決するための手段】本発明者らは上記問題点 を解決するために鋭意研究を重ねた結果、膨潤性フッ素*

 $\alpha (MF) \cdot \beta (aMgF_1 \cdot bMgO) \cdot \gamma SiO_1$

ただし、Mはナトリウム又はリチウムを表し、 α 、 β 、 γ 、a およびb はそれぞれ係数を表し、0. $1 \le \alpha \le$ $2 \cdot 2 \le \beta \le 3$. $5 \cdot 3 \le \gamma \le 4$. $0 \le a \le 1$. $0 \le b$ ≤ 1 , a+b=1 $rac{1}{2}$ $rac{1}$ $rac{1}{2}$ $rac{1}$ $rac{1}{2}$ $rac{1}{2}$ $rac{1}{2}$ $rac{1}{2}$ $rac{1}{2}$ $rac{1}{2}$ $rac{1}{2}$ $rac{1}{2}$ $rac{1}$ $rac{1}$ $rac{1}$ $rac{1}$ $rac{1}$ $rac{1}$ $rac{1}$ $rac{1}$ $rac{1}$ $rac{1}$ r

【0010】とのようなフッ素雲母系鉱物の製造法とし ては、たとえば酸化珪素、酸化マグネシウム、酸化アル ミニウムなどの酸化物と各種フッ素化合物を混合し、そ の混合物を電気炉あるいはガス炉中で 1400 ~ 1500 ℃ の温度範囲で完全に溶融し、その冷却過程で反応容器内 にフッ素雲母を結晶成長させる、いわゆる溶融法があ

* 雲母系鉱物 0.01 ~60重量%が均一に分散したポリアミ ド樹脂組成物を原料として用いた成形品が、優れた耐熱 性及びガスパリヤー性を有することを見出し、本発明に 到達した。

7

【0007】本発明に用いるポリアミドとして好ましい ものとしては、ボリカプロアミド(ナイロン6)、ボリ テトラメチレンアジバミド (ナイロン46)、ポリヘキサ メチレンアジパミド (ナイロン66)、ボリヘキサメチレ ンセパカミド (ナイロン610)、ボリヘキサメチレンド 【従来の技術】ボリアミド樹脂は、優れた耐熱性、機械 10 デカミド(ナイロン612)、ボリウンデカメチレンアジ パミド (ナイロン116) 、ポリウンデカミド (ナイロン 11)、ポリドテカミド(ナイロン12)、ポリトリメチル ヘキサメチレンテレフタラミド(TMHT)、ポリヘキ サメチレンテレフタラミド (ナイロン6T)、ポリヘキ サメチレンイソフタラミド (ナイロン61)、ポリビス (4-アミノシクロヘキシル) メタンドデカミド (ナイ ロンPACM12)、ポリピス(3-メチル-4-アミノ シクロヘキシル) メタンドデカミド (ナイロンジメチル PACM12)、ポリメタキシリレンアジバミド(ナイロ (ナイロン11T)、ポリウンデカメチレンヘキサヒドロ テレフタラミド (ナイロン11T(H)) 及びこれらの共 重合ポリアミド、混合ポリアミドなどがある。中でも特 に好ましくはナイロン6、ナイロン46、ナイロン66、ナ イロン610、ナイロン11、ナイロン12及びこれらの共重 合ポリアミド、混合ポリアミドである。

【0008】本発明で用いられるポリアミドの相対粘度 は特に制限されないが、溶媒としてフェノール/テトラ クロルエタン=60/40 (重量比) を用い、温度25℃、濃 30 度 l g/dlの条件で測定した相対粘度が 1.5~5.0 の範囲 であることが好ましい。相対粘度が 1.5未満である場合 には樹脂組成物の機械的性能が低下するので好ましくな い。また、5.0 を超える場合には樹脂組成物の成形性が 急速に低下するので好ましくない。

【0009】本発明で用いられる膨潤性フッ素雲母系鉱 物は次式(1)で表わされる。

(1)

5号公報に開示された方法がある。

【0012】すなわち、タルクを出発物質として用い、 これにアルカリ金属イオンをインターカレーションして フッ素雲母を得る方法である。この方法ではタルクに珪 フッ化アルカリあるいはフッ化アルカリを混合し、磁性 ルツボ内で約 700~1200°Cで短時間加熱処理することに よってフッ素雲母が得られる。本発明で用いる膨潤性の フッ素雲母系鉱物は特にこの方法で製造されたものが好 ましい。

【0013】膨潤性のフッ素雲母系鉱物を得るにために は、珪フッ化アルカリあるいはフッ化アルカリのアルカ 【0011】また、他の方法としては特開平2- 14941 50 リ金属は、ナトリウムあるいはリチウムとすることが必

要である。これらのアルカリ金属は単独で用いてもよい し、併用してもよい。アルカリ金属のうち、カリウムの 場合には膨潤性のフッ素雲母が得られないが、ナトリウ ムあるいはリチウムと併用し、かつ限定された量であれ ば膨潤性を調節する目的で用いることが可能である。

【0014】本発明でいう膨潤性とは、フッ素雲母がア ミノ酸、ナイロン塩、水分子などの極性分子あるいは陽 イオンを層間に吸収することにより、層間距離が広が り、あるいはさらに膨潤へき開して、超微細粒子となる 特性である。式(1)で表されるフッ素雲母はそのよう 10 としては、ポリアミド樹脂との合計重量の60%以下であ な膨潤性を示す。

【0015】また本発明で用いる膨潤性フッ素雲母系鉱 物を製造する工程において、アルミナを少量配合し、生 成する膨潤性フッ素雲母系鉱物の膨潤性を調整するとと も可能である。

【0016】膨潤性フッ素雲母系鉱物の配合量は、全体 量に対して 0.01 ~ 60 重量%、好ましくは 0.1~20重 量%である。 0.01 重量%未満では本発明の目的とする 耐熱性、機械的強度、ガスバリヤー性の改良効果が得ら れず、 60 重量%を超える場合には靭性の低下が大きく 20 なるので好ましくない。

【0017】ポリアミド樹脂又はポリアミド樹脂を含む 樹脂混合物中に膨潤性フッ素雲母系鉱物を均一に分散さ せるには、ポリアミドを形成するモノマーに対して、膨 潤性フッ素雲母系鉱物を所定量存在させた状態で、モノ マーを重合する方法が好ましい。との場合には、膨潤性 フッ素雲母系鉱物がポリアミド中に十分細かく分散した ポリアミド樹脂組成物が得られる。との場合、本発明で 用いる膨潤性フッ素雲母系鉱物は膨潤化処理を前もって 合すればよい。

【0018】本発明のガスバリヤー性に優れたポリアミ ド樹脂成形品としては、ガソリンタンク、アルコールタ ンク、フユエルチューブ、フユエルストレーナー、ブレ ーキオイルタンク、クラッチオイルタンク、パワーステ アリングオイルタンク、クーラー用フレオンチューブ、 フレオンタンク、キャニスタータンク、エアクリーナー などの自動車用部品や、農薬用ボトル、飲料水用ボトル

. などの各種ボトル、エアーダクトやインテークマニホー ルドなどを例示することができる。

4

【0019】本発明においては、ポリアミド樹脂に他の ポリマーを混合することができる。

【0020】とのような他のポリマーとしては、ポリプ ロビレン、ABS樹脂、ポリフェニレンオキサイド、ボ リカーボネート、ポリエチレンテレフタレート、ポリブ チレンテレフタレート、ポリアリレート、各種エラスト マーなどが挙げられる。これらの他のポリマーの混合量 るととが好ましい。

【0021】また、本発明における樹脂組成物には、必 要に応じてガラス繊維、炭素繊維、アラミド繊維、炭酸 カルシウム、タルク、マイカ、チタン酸カリウム、窒化 ホウ素、無機ケイ酸塩、シリカゲル、ハイドロタルサイ ト、クリストバライト、クレイなどのような補強充填剤 や熱安定剤、光安定剤、酸化防止剤、可塑剤、滑剤、着 色剤、発泡剤、離型剤、耐衝撃性改良剤などの添加剤を 添加してもよい。

[0022]

【実施例】次に、実施例によりさらに具体的に説明す る。なお、実施例及び比較例の評価に用いた原料及び測 定法は次のとおりである。

【0023】1. 原料

膨潤性フッ素雲母系鉱物

ボールミルにより平均粒径が2μmとなるように粉砕し たタルクに対し、平均粒径が同じく2μmの表1に示す 珪フッ化物を全量の20重量%となるように混合し、これ を磁性ルツボに入れ、電気炉で1時間 800℃に保持して 行う必要はなく、そのままモノマーに所定量配合して重 30 フッ素雲母M-1及びM-2を合成した。生成したフッ 素雲母の平均粒径は 1.8μmであった。

> 【0024】また、X線粉末法で測定した結果、原料タ ルクのC軸方向の厚み 9.2Aに対応するピークは消失 し、膨潤性フッ素雲母系鉱物の生成を示す12~16AC対 応するピークが認められた。

[0025]

【表1】

5

フゥ素雲母系鉱物種類		M-1	M - 2	
EC.	タルク	80	80	
合組成	珪フッ化ナトリウム	20		
1000	珪フッ化リチウム		20	

(備考) 各配合物の化学式

タルク

: Mg & S i O 10 (OH) 2

珪フッ化ナトリウム; Na₂SiF₅

珪フッ化リチウム ; LiaSiFa

【0026】2. 測定法

- (1)曲げ強度、曲げ弾性率:ASTM D-790に基 づいて測定した。
- (2) 熱変形温度: ASTM D 648に基づき、荷重1 8.6kg/cm で測定した。
- (3)配合物の重量%:ペレットを600℃で焼成した 20 M-1の代わりにM-2を用いた他は実施例2と同様に 後の残存灰分の量を測定することによって求めた。
- (4) ガスバリヤー性:吹き込み成形で成形した、肉厚 1mm、底面積35cm'、高さ約14cmの樹脂製の ボトルに500ccの水及びガソリンを入れ、50℃、 相対湿度65%の雰囲気中に2週間放置し、その重量変 化率からガスバリヤー性を評価した。変化率の大きいも のはガスバリヤー性が劣る。

【0027】実施例1

ε-カプロラクタム10kgに対して、1kgの水と2 00gのM-1を配合し、これを内容量30リットルの 30 反応缶に入れ、M-lの存在下でε-カプロラクタムを 重合し、強化ナイロン6樹脂組成物を得た。重合反応は 次のように行った。すなわち、攪拌しながら250℃に 加熱し、常圧から15kg/cm'の圧力まで昇圧し た。その後、常圧まで放圧し、260°Cで3時間重合し た。重合の終了した時点で反応缶から強化ナイロン6樹 脂組成物を払い出し、これを切断してベレットとした。 得られた強化ナイロン6樹脂組成物のペレットを95℃ の熱水で処理し、精練を行い、その後真空乾燥した。と のペレットを用いて温度270℃で物性測定用試験片及 40 びガスバリヤー性測定用ボトルを成形し、試験に供し た。結果を表2に示す。

実施例2~3

* 400g及び600gのM-1を、それぞれ用いた他は 実施例1と同じ方法で強化ナイロン6樹脂組成物のペレ ットを得た。実施例1と同様に評価を行った結果を表2 に示す。

【0028】実施例4

して、強化ナイロン6樹脂組成物のペレットを得た。実 施例2と同様に評価を行った結果を表2に示す。

【0029】比較例1

膨潤性フッ素雲母配合ナイロン6の代わりに、相対粘度 4. 0のナイロン6を用いた他は実施例1と同様にして 評価を行った結果を表2に示す。

[0030]

【表2】

7 4 E		実 施 例			
24 15	1	2	3	4	1
配合物種類	M-1	⊮ -1	N~1	M −2	なし
配合物重量 (%)	2.2	4.1	6. 1	4.1	-
曲げ強度 (MPa)	150	169	170	153	102
曲げ弾性率 (GPa)	4.0	5.6	6.5	5. 1	2.3
熱変形温度(℃) (18.6kg/cm²)	135	154	160	148	55
重量変化率 (%) 水 ガソリン	12. 3 0. 05	10, 0 0, 04	7. 4 0. 0 3	9. 7 0. 03	24. 1 0. 12

[0031]

*

【発明の効果】本発明によれば、優れた耐熱性、ガスバ リヤー性を有するポリアミド樹脂成形品が提供される。

フロントページの続き

(72)発明者 片平 新一郎

京都府宇治市宇治小桜23番地 ユニチカ株 式会社中央研究所内

(72)発明者 吉田 泉

京都府宇治市宇治小桜23番地 ユニチカ株 式会社中央研究所内