Heaps

Ernesto Rodriguez - Juan Roberto Alvaro Saravia

Universidad Francisco Marroquin

ernestorodriguez@ufm.edu - juanalvarado@ufm.edu

Heap Binario

- Se puede representar con un arreglo
- Cada elemento del arreglo es un nodo del heap
- Todo elemento (menos el primero) tiene un padre
- Todo elemento tiene como maximo dos hijos: derecho e izquierdo
- Existe una porpiedad p, tal que:

$$\forall n_i \in Ns. p (padre n_i) n_i$$

- La propiedad p define un orden: $p \ a \ b \ \& \ p \ b \ c \rightarrow \ p \ a \ c$
- Cuando un heap se representa con un arreglo:

```
padre n_i := n_{i/2}
hijo_izquierdo n_i := n_{2i}
hijo_derecho n_i := n_{2i+1}
```

Heap Binario

Si $p \ a \ b := a \ge b$

Min y Max Heap

- En este curso se consideraran dos heaps:
 - Cuando (max heap) $p \ a \ b := a \ge b$
 - Cuando (min heap) $p \ a \ b := a \le b$
- ¿Que valor seria la raiz en un min y max heap?
- ¿Que caracteristica cumplen los hijos de todo valor?
- Los algoritmos de ordenamiento por lo general utilizan el max heap
- Un min heap se utiliza a menudo para colas
- Nota: A partir de este momento, la palabra heap se referira a un max heap.

La invariante de heaps

• ¿Que propiedades se cumplen para todo heap?

La invariante de (max) heaps

- ¿Que propiedades se cumplen para todo heap?
 - \bullet $\forall n_i \in Ns. \text{ padre } n_i \geq n_i$
 - ② $\forall n_i \in Ns$. hijo_derecho $n_i \leq n_i$
 - ③ \forall $n_i \in Ns$. hijo_izquierdo $n_i \leq n_i$
- Se utilizara la primera (1) como la invariante. Tambien se llamara la "Condicion de un heap".

Heapify

- Algoritmo que restaura la condicion de un heap.
- Funciona inductivamente:
 - Dado un elemento n_i, asumir que los heaps encabezados por "hijo_derecho n_i" e "hijo_izquierdo n_i" son un heap y cumplen la condición de heap.

Heapify

- Algoritmo que restaura la condicion de un heap.
- Funciona inductivamente:
 - Dado un elemento n_i, asumir que los heaps encabezados por "hijo_derecho n_i" e "hijo_izquierdo n_i" son un heap y cumplen la condición de heap.
 - Si n_i < hijo_derecho n_i o n_i < hijo_izquierdo, intercambiar el mayor de estos valores con n_i
 - Repetir el algoritmo con el valor que fue intercambiado.

Heapify

Algorithm 1 Heapify

```
1: procedure HEAPIFY(Ns,i)
        izq \leftarrow hijo_izquierdo(i)
 2:
        der \leftarrow \text{hijo\_derecho}(i)
 3:
 4:
        mayor \leftarrow i
        if izq \leq len(Ns) and Ns[izq] > Ns[mayor] then
 5:
            mayor \leftarrow izg
 6:
        if der \leq len(Ns) and Ns[der] > Ns[mayor] then
 7:
 8:
            mayor \leftarrow der
9:
        if mayor \neq i then
            intercambiar(Ns, i, mayor)
10:
            heapify(Ns, mayor)
11:
```

9/9