Homework 2 for CS-613

Nannan Peng

Student ID: 2329081

Email: npeng@chpaman.edu

October 7, 2020

1. Answer

Assume $x \in \mathbb{C}^n$ and $x = (x_1, x_2, ..., x_n)^T$. So its conjugate transpose is $x' = (\bar{x}_1, \bar{x}_2, ..., \bar{x}_n)$. We also know that for $t, s \in (0, \infty)$,

$$k(t,s) = \frac{1}{t+s} = \int_0^\infty e^{-(t+s)u} du$$

For any $\omega_1, \omega_2, ..., \omega_n \in (0, \infty)$, assume $A = (k(\omega_j, \omega_k))_{j,k=1}^n$. Then it has

$$x'Ax = (\bar{x}_{1}, ..., \bar{x}_{n}) \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} x_{1} \\ \vdots \\ x_{n} \end{bmatrix}$$

$$= (\bar{x}_{1}, ..., \bar{x}_{n}) \begin{bmatrix} \int_{0}^{\infty} e^{-(\omega_{1} + \omega_{1})u} du & \cdots & \int_{0}^{\infty} e^{-(\omega_{1} + \omega_{n})u} du \\ \vdots & \ddots & \vdots \\ \int_{0}^{\infty} e^{-(\omega_{n} + \omega_{1})u} du & \cdots & \int_{0}^{\infty} e^{-(\omega_{n} + \omega_{n})u} du \end{bmatrix} \begin{bmatrix} x_{1} \\ \vdots \\ x_{n} \end{bmatrix}$$

$$= (\bar{x}_{1}, ..., \bar{x}_{n}) \begin{bmatrix} \int_{0}^{\infty} e^{-(\omega_{1} + \omega_{1})u} du & \cdots & \int_{0}^{\infty} e^{-(\omega_{n} + \omega_{n})u} du \\ \vdots \\ \int_{0}^{\infty} e^{-(\omega_{n} + \omega_{1})u} (x_{1}e^{-(\omega_{1} u} + \cdots + x_{n}e^{-(\omega_{n} u})) du \\ \vdots \\ \int_{0}^{\infty} (\bar{x}_{1}e^{-(\omega_{1} u} + \cdots + \bar{x}_{n}e^{-(\omega_{n} u})) (x_{1}e^{-(\omega_{1} u} + \cdots + x_{n}e^{-(\omega_{n} u})) du \\ = \int_{0}^{\infty} \overline{f(u)} f(u) du$$

Where $f(u) = x_1 e^{-\omega_2 u} + \cdots + x_n e^{-\omega_n u}$ and $\overline{(}f(u))$ is the conjugate of f(u). Since $f(u)\overline{f(u)} \ge 0$, $\int_0^\infty \overline{f(u)}f(u)du \ge 0$ and hence $x'Ax \ge 0$. Hence, A is positive and therefore, function k(t,s) is positive definite on $(0,\infty)$.

2. Answer

The answer is basically the same as that in 1, except that matrix A is modified. Follow the same notation as in 1, I am going to show that A is still positive.

$$x'Ax = (\bar{x}_1, ..., \bar{x}_n) \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$

$$= (\bar{x}_1, ..., \bar{x}_n) \begin{bmatrix} e^{\omega_1 + \omega_1} & \cdots & e^{\omega_1 + \omega_n} \\ \vdots & \ddots & \vdots \\ e^{\omega_n + \omega_1} & \cdots & e^{\omega_n + \omega_n} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$

$$= (\bar{x}_1, ..., \bar{x}_n) \begin{bmatrix} e^{\omega_1} (x_1 e^{\omega_1} + \cdots + x_n e^{\omega_n}) \\ \vdots \\ e^{\omega_n} (x_1 e^{\omega_1} + \cdots + x_n e^{\omega_n}) \end{bmatrix}$$

$$= (\bar{x}_1 e^{\omega_1} + \cdots + \bar{x}_n e^{\omega_n}) (x_1 e^{\omega_1} + \cdots + x_n e^{\omega_n})$$

$$= \bar{g}(u) g(u)$$

Where $g(u) = x_1 e^{\omega_1} + \dots + x_n e^{\omega_n}$ and $\overline{g(u)}$ is the conjugate of g(u). Since for i = 1, 2, ..., n, w_i are real numbers, $\overline{g(u)}g(u) \ge 0$ and hence $x'Ax \ge 0$. So A is positive and function $k(t, s) = e^{ts}$ is positive definite on real line.

3. Answer

Below in Table 1 is a boolean function. Suppose the output is Y, then it has

$$Y = ABCD \lor AB\bar{C}\bar{D} \lor A\bar{B}\bar{C}\bar{D}$$

Figure 1 shows how a MLP can represent this boolean function.

4. Answer

Table 1: A boolean function

A	В	С	D	Output
1	1	1	1	1
1	1	0	0	1
1	0	0	0	1

Figure 1: A MLP to represent the boolean function *Y*

5. Answer

To simplify the notation, assume $X = h_1 \wedge h_2$, $Y = h_1 \vee h_2$ and $Z = h_1 \triangle h_2$. I claim their relationships as follows.

Claim 1: $Y \ge_g X$.

For a ω such that $X(\omega)=1$, it means $h_1(\omega)=h_2(\omega)=1$. Hence, $Y(\omega)=1$. Therefore, $Y\geq_g X$.

Claim 2: $Y \ge_g Z$. For a ω such that $Z(\omega) = 1$, it means $h_1(\omega) = 1$ and $h_2(\omega) = 0$, or $h_1(\omega) = 0$ and $h_2(\omega) = 1$. In both cases, it has $Y(\omega) = 1$. Therefore, $Y \ge_g Z$.