1

CLAIMS

```
2
          We Claim:
 3
               An input/output circuit for an integrated circuit
 4
          1.
     comprising:
 5
 6
               an input pad;
 7
               a follower circuit coupled to the input pad;
 8
               a pull-up circuit coupled to the input pad; and
               a pull-down circuit coupled to the input pad.
 9
10
          2.
               A method for an input/output circuit for an
11
     integrated circuit comprising:
12
               tri-stating an output buffer; and
13
14
               providing one of a weak pull-up, a weak pull-
          down, and a pad signal follower on an input pad.
15
16
               An input/output circuit for an integrated circuit
17
          3.
    comprising:
18
19
               an input pad;
20
               a pull-up circuit coupled to the input pad;
               a first multiplexer having a control terminal
21
          receiving values from a first plurality of memory
22
23
          cells, the first multiplexer having a first output
          signal coupled to a control terminal of the pull-up
24
25
         circuit;
26
               a pull-down circuit coupled to the input pad;
27
               a second multiplexer having a control terminal
          receiving values from a second plurality of memory
28
         cells, the second multiplexer having a second output
29
30
          signal coupled to a control terminal of the pull-down
31
         circuit:
               a tri-state buffer coupled to the input pad;
32
```

a third multiplexer having a control terminal 1 2 receiving a value from a first memory cell at a first input terminal and receiving a first user-defined 3 value at a second input terminal, the third 4 multiplexer having a third output signal coupled to an 5 6 enable terminal of the tri-state buffer; and 7 a fourth multiplexer having a control terminal receiving a value from a second memory cell at a first 8 input terminal and receiving a second user-defined 9 10 value at a second input terminal, the fourth multiplexer having a fourth output signal coupled to a 11 data output terminal of the tri-state buffer; 12 wherein a configuration signal from a user-defined 13 logic circuit is provided to the control terminals of the 14 first, second, third, and fourth multiplexers. 15 16 A method for an input/output circuit for an 17 4. integrated circuit comprising: 18 19 providing a pull-up circuit to an input pad of the input/output circuit; 20 using a configuration signal to select between a first 21 plurality of memory cells, thereby controlling the pull-up 22 23 circuit; 24 providing a pull-down circuit to an input pad of the 25 input/output circuit; using the configuration signal to select between a 26 27 second plurality of memory cells, thereby controlling the pull-down circuit; 28 providing control signals to a tri-state buffer 29 30 coupled to the input pad; and

1	using the configuration signal to select between a
2	plurality of signals used to control define the control
3	signals.
4	
5	5. A method for providing a minimal hold time
6	relative to a fixed global clock for the data provided to
7	an input/output circuit of a programmable integrated
8	circuit, the method comprising:
9	providing a fixed clock signal to the
10	input/output circuit;
11	providing a data signal to the input/output
12	circuit;
13	receiving the data signal with a programmable
14	delay circuit; and
15	providing the delayed data signal to an input
16	register.
17	
18	6. The method of Claim 5 further including the step
19	of controlling the amount of delay in the programmable
20	delay circuit with values stored in memory cells.
21	
22	7. A circuit for delaying a data input signal to an
23	input/output circuit of an integrated circuit comprising:
24	a plurality of memory cells;
25	a delay structure having control inputs coupled
26	to the plurality of memory cells;
27	a data input pad for receiving a data input
28	signal coupled to a data input terminal of the delay
29	structure;
30	a clock distribution system having a fixed delay

1	a clock input pad for receiving a clock input
2	signal coupled to an input terminal of the clock
3	distribution system;
4	a multiplexer having a first input terminal
5	coupled to an output terminal of the input delay
6	system and having a second input terminal coupled to
7	the data input pad;
8	a first memory cell coupled to a control terminal
9	of the multiplexer; and
10	an input register having a data input terminal
11	coupled to an output terminal of the multiplexer and
12	having a clock input terminal coupled to an output
13	terminal of the clock distribution system.
14	
15	8. A circuit for delaying a data signal comprising:
16	a first inverter;
17	a second inverter coupled to an output terminal
18	of the first inverter;
19	a first plurality of p-channel transistor pairs
20	coupled between a first supply voltage and a first
21	supply rail of the first inverter, one of each
22	transistor pair having a gate coupled to a second
23	supply voltage;
24	a first plurality of n-channel transistor pairs
25	coupled between a third supply voltage and a second
26	supply rail of the first inverter, one of each
27	transistor pair having a gate coupled to a fourth
28	supply voltage;
29	a first capacitor pair having a control terminal
30	coupled to an output terminal of the second inverter;
31	a third inverter coupled to the control terminal
32	of the first capacitor pair;

1	a second plurality of p-channel transistor pairs
2	coupled between a fifth supply voltage and a first
3	supply rail of the third inverter, one of each
4	transistor pair having a gate coupled to a sixth
5	supply voltage;
6	a first plurality of n-channel transistor pairs
7	coupled between a seventh supply voltage and a second
8	supply rail of the third inverter, one of each
9	transistor pair having a gate coupled to a eighth
10	supply voltage;
11	a second capacitor pair having a control terminal
12	coupled to an output terminal of the third inverter;
13	and
14	a fourth inverter coupled to an output terminal
15	of the third inverter.
16	
17	9. A method for delaying a data signal comprising:
18	providing a data signal to a delay circuit;
19	buffering the data signal;
20	inverting the data signal with an inverter having
21	supply rails supplied by series resistor circuits;
22	passing the data signal through a capacitor pair;
23	inverting the data signal with an inverter having
24	supply rails supplied by series resistor circuits;
25	passing the data signal through a capacitor pair;
26	and
27	buffering the data signal.
28	
29	10. A circuit for testing an input/output circuit
30	comprising:
31	a multiplexer coupled to a horizontal bus;
32	a multiplexer coupled to a vertical bus;

an OR gate having a first input terminal coupled 1 2 to the first multiplexer and a second input terminal coupled to the second multiplexer; 3 wherein the output terminal of the OR gate is coupled 4 5 to an input of the input/output circuit. 6 7 A method of testing an input/output circuit, the 11. 8 method comprising: providing a first signal from a horizontal bus; 9 providing a second signal from a vertical bus; 10 11 coupling the first and second signals into a third signal; and 12 providing the third signal to an input of the 13 input/output circuit. 14 15 16 A circuit for transferring data from a first data input pad to a second data input pad comprising: 17 a transistor; and 18 a buffer having an output terminal coupled to the 19 20 transistor, having a first source/drain region coupled to the first data input pad, and having a second 21 source/drain region coupled to the second data input 22 23 . pad; 24 wherein a control signal provided from the buffer to the transistor either couples or de-couples the first and 25 26 second input pads. 27 28 A method for transferring data from a first data 29 input pad to a second data input pad, the method comprising 30 providing a control signal to a first transistor switch, thereby coupling or de-coupling the first and second input 31 32 pads.

1	
2	14. A method of increasing the number of channels
3	available for a direct input/output connection to an
4	input/output circuit for an integrated circuit comprising:
5	providing a bypass signal to a first input
6	terminal of an OR gate;
7	providing an output enable signal to a second
8	input terminal of the OR gate;
9	providing an output signal of the OR gate to a
10	gate of a transistor;
11	providing an input data signal to a source of the
12	transistor;
13	providing the signal at a drain of the transistor
14	to a storage latch;
15	providing an output signal of the storage latch
16	to a first route of a routing structure; and
17	providing the input data signal to a second route
18	of the routing structure.
19	
20	15. An edge-placed I/O tile structure comprising:
21	an OR gate;
22	a horizontal channel multiplexer coupled to a
23	first input terminal of the OR gate;
24	a vertical channel multiplexer coupled to a
25	second input terminal of the OR gate; and
26	an I/O circuit coupled to an output terminal of
27	the OR gate.
28	
29	16. The edge-placed tile structure of Claim 14
30	further comprising a second identical edge-placed tile
31	structure.