Sustainable and Unsustainable Growth: Land Erosivity & Long-Run Development

Sergey K. Egiev Slava Savitskiy

Brown University

Introduction

Long-run development

- UGT describes and endogenously reproduces distinctive phases in the process of growth
 - · Malthusian Regime
 - Transition Phase
 - Modern Growth Regime
- Framework allows to analyze how various factors map into historic development, transition dates and modern prosperity
- Theory captures the important features of the Malthusian economy: fixed land and diminishing productivity of labor
- However, the theory does not capture important feature of the agricultural world: soil erosion

Soil and Society

- Soil quality is a dynamic variable
- Soils can erode or be replenished naturally and due to human activity
- Important feature of the process of growth:
 - Development of agriculture
 - Growing population
 - · Erosion of soil
 - Potential Environmental Catastrophe
- In the most dramatic cases societal collapse can occur:
 - · Maya
 - · Sumer city-states
 - · Easter Island
 - · Khmer Empire

This paper

- Extends UGT to account for endogenous dynamics of soil quality
- Studies how endogeneity of soil quality and fundamentals of its dynamics affect:
 - · Population and growth in the Malthusian regime
 - · Timing of the transition and modern day development
- Takes theoretical predictions to data at a country, ethnicity and cell levels

Theory

Theoretical Model

- · Simplified case of UGT in a Malthusian regime
- · No investment in human capital
- Positive association between income and fertility
- · Land quality is dynamic and endogenous
- Model studies development implications of different land quality dynamics characteristics:
 - · Erosivity
 - Natural reblinishability

Production

Total agricultural output of the society in period t is

$$Y_t = (B_t A_t X)^{\alpha} L_t^{1-\alpha}$$

- · X fixed amount of land
- A_t land quality in t
- B_t level of technology in t
- · L_t population in t
- Total output is split equally between the members of society, so that the percapita income is

$$y_t = Y_t/L_t = (B_tA_tX/L_t)^{\alpha}$$

5

Preference and Constraints

· Preference of a representative member of the society are

$$U(c_t, n_t) = \gamma \log n_t + (1 - \gamma) \log c_t$$

- · Individual maximizes utility by choosing:
 - c_t consumption
 - n_t number of children
- · Subject to the budget constraint

$$c_t + \tau n_t \leq y_t$$

- We assume that there are no investment in human capital at this stage and cost of child-rearing is simply au units of income

Individual Choice and Human Population Dynamics

Individual optimally chooses consumption and fertility:

$$\cdot c_t = (1 - \gamma)y_t = (1 - \gamma)(B_t A_t X/L_t)^{\alpha}$$

·
$$n_t = \gamma/\tau y_t = \gamma/\tau (B_t A_t X/L_t)^{\alpha}$$

Human population evolves as follows

$$L_{t+1} = n_t L_t$$

$$= \gamma / \tau (B_t A_t X)^{\alpha} L_t^{1-\alpha}$$

$$= \phi (L_t, A_t, B_t)$$

• For convince assume $\gamma/\tau=1$ and X=1

Land Quality Dynamics

- · Land quality dynamics reflect several regularities:
 - · Land can naturally replenish its quality up to a certain level
 - · Land quality is diminished by a human activity
 - · The speed of quality replenishment and erosion differs spatially
- · A simple dynamical equation is chosen to reflect all these

$$A_{t+1} = A_t + \rho(\bar{A} - A_t) - \mu L_t$$

= $\psi(L_t, A_t; \rho, \mu)$

- Without humans land quality tends to $\bar{A}>0$ saturation level
- If the quality is below that it replenishes with a speed $\rho \in (0, 1)$
- \cdot Humans deduct from land quality at a $\mu >$ 0 rate
- \cdot The more humans there are, the greater the erosion

Dynamical System

 The joint evolution of human population and land quality is given by a two-dimensional dynamical system

$$\begin{cases} L_{t+1} = (B_t A_t)^{\alpha} L_t^{1-\alpha} \\ \\ A_{t+1} = A_t + \rho(\bar{A} - A_t) - \mu L_t \end{cases}$$

· For now assume no endogenous growth of technology

$$B_t = B \quad \forall t$$

- The dynamics and the steady state of the system are affected by:
 - Replenishment rate ρ
 - Erosion rate μ
 - Technology level B

Phase Diagram

Steady State

- The system is characterized by two distinct steady states:
 - · No humans steady state

$$\begin{cases} L = 0 \\ A = \bar{A} \end{cases}$$

· Non-trivial steady state

$$\begin{cases} L^* = \bar{A} (\mu/\rho + 1/B)^{-1} \\ \\ A^* = \bar{A} (\mu/\rho B + 1)^{-1} \end{cases}$$

Steady State Predictions

- · Three predictions are important:
 - **Prediction 1:** Population in the steady state is positively related to the replenishment rate:

$$\partial L^*/\partial \rho > 0$$

 Prediction 2: Population in the steady state is negatively related to the erosion rate:

$$\partial L^*/\partial \mu < 0$$

 Prediction 3: Population in the steady state is positively related to the technology level:

$$\partial L^*/\partial B > 0$$

Stability Analysis

- The analysis of the non-trivial steady state stability reviles:
 - (L^*, A^*) steady state is not always stable
 - There are parameter combinations under witch the steady state is unstable, namely:

$$\mu\alpha B + (1 - \alpha)(1 - \rho) > 1 \tag{1}$$

- In particular, the steady state is unstable if:
 - Erosivity level μ is too large
 - Replenishment rate ρ is too low
 - · Technology level B is too large

Introducing Endogenous Growth

- Consider the same model with a possibility of an endogenous technological growth
- Following UGT, assume that greater population density speeds up the technological growth

$$\Delta B_{t+1}/B_t = g(L_t)$$
 and $dg(L_t)/dL_t > 0$

• Following the spirit of UGT, assume that once technology reaches a certain level \hat{B} , individual start to invest in human quality and demographic transition takes lace

Dynamic with Endogenous Growth

- There still exists positive association between population and technology (Prediction 3: $\partial L^*/\partial B > 0$)
- Positive loop between L_t and B_t assures endogenous growth to a certain point
- In light of this loop and Predictions 1 and 2 growth is faster:
 - \cdot Under high replenishment rate ho
 - Low erosivity rate μ

Unsustainable Growth

- · As apparent from the dynamics, as technology grows:
 - Population increases
 - · Land quality diminishes
- When B_t is high enough, the system reaches a tipping point where the steady state (L^*, A^*) is unstable
- Namely, from the inequality (1), the system is unstable if:

$$B_t > \bar{B}(\rho, \mu) = \frac{\alpha + (1 - \alpha)\rho}{\mu\alpha}$$

- Once technology surpasses the critical level \bar{B} , population can not be sustained on a given land collapse follows simulation
- If system reaches a level of technology needed for a demographic transition before that, population stabilizes and collapse is avoided

Dynamics Predictions

- Technological growth is faster under higher replenishment rate ρ and lower erosivity μ
- As a result escape from the Malthusian regime occurs earlier under higher replenishment rate ρ and lower erosivity μ
- In light of the great divergence argument, this leads to difference in income per capita in a modern regime
- · Maximal potentially attainable level of technology , \bar{B} , is:
 - Positively affected by the replenishment rate: $d\bar{B}/d\rho > 0$
 - Negatively affected by the erosion rate: $d\bar{B}/d\mu < 0$
- If replenishment rate ρ is too low or erosivity μ is too high, the collapse may occur earlier than demographic transition:

$$\frac{\alpha + (1 - \alpha)\rho}{\mu\alpha} < \hat{B}$$

Empirics

Data

- Global Erosivity Map
- · 30 arc-seconds
- R-factors
- Based on 3625 precipitation stations
- · Based on 60,000 years of rainfall records
- · Within the model this can be interpreted as:
 - · Lower replenishment rate ho
 - · Higher erosion rate μ

Ethnic Group Development

		Jurisdio	tional Hier	archy	Community Size					
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
Log [Erosivity]	-0.637***	-0.602***	-0.670***	-0.650***	-0.409***	-1.438***	-1.315***	-1.487***	-1.134***	-1.036**
	(0.0659)	(0.0762)	(0.0748)	(0.0935)	(0.129)	(0.145)	(0.156)	(0.159)	(0.237)	(0.324)
Neolithic Transition		0.150***	0.125***	0.0302	0.0626		0.215***	0.166**	0.0262	0.138
Timing		(0.0364)	(0.0373)	(0.0503)	(0.0535)		(0.0717)	(0.0731)	(0.0885)	(0.0974)
Crop Yield			0.120***	0.248***	0.230***			0.271***	0.352***	0.320***
(pre-1500CE) (mean)			(0.0310)	(0.0338)	(0.0363)			(0.0770)	(0.0835)	(0.0846)
Region FE	No	No	No	Yes	Yes	No	No	No	Yes	Yes
Geographic controls	No	No	No	No	Yes	No	No	No	No	Yes
Observations	1232	944	944	944	943	636	505	505	505	505
R ²	0.203	0.248	0.257	0.356	0.380	0.459	0.499	0.509	0.541	0.578

Note: Outcome variables are taken from Murdock's Ethnographic Atlas (questions 33 and 31 respectively)

Ethnic Group Population Density

Log [Erosivity] 1 AD (0.0313) 300 AD (0.0337) 600 AD (0.05***) 900 AD (0.0470) 1200 AD (0.05***) 1500 AD (0.0470)											
Log [Erosivity] 1 AD (0.0313) 300 AD (0.0337) 600 AD (0.05***) 900 AD (0.0470) 1200 AD (0.05***) 1500 AD (0.0470)	Log Population Density										
Crop Yield	(6)										
Neolithic Transition Timing 0.253*** 0.253*** 0.253*** 0.237*** 0.249*** 0.262*** 0.00369) 0.0470 0.026** 0.00340 0.0369 0.0392) 0.0392 0.00392 Crop Yield (pre-1500CE) (mean) 0.0589*** 0.0585*** 0.0553*** 0.0553*** 0.0567** 0.0894*** 0.0185) 0.0197) (0.0210) (0.0230) (0.0230) (0.0252) 0.0520 0.0520 Region FE Yes Yes Yes Yes Yes Yes Yes Geographic controls Yes Yes Yes Yes Yes Yes Yes	00 AD										
Neolithic Transition 0.253*** 0.253*** 0.237*** 0.249*** 0.262*** 0.0339 0.0340 0.0369 0.0392 0.05 Crop Yield 0.0589*** 0.0585*** 0.0553*** 0.0567** 0.0894*** 0.07 0.0210 0.0230 0.0252 0.05 Region FE Yes	0867*										
Timing (0.0336) (0.0339) (0.0340) (0.0369) (0.0392) (0.0372) (0.03)505)										
Crop Yield 0.0589*** 0.0585*** 0.0553*** 0.0567** 0.0894*** 0. (pre-1500CE) (mean) (0.0185) (0.0197) (0.0210) (0.0230) (0.0252) (267**										
(pre-1500CE) (mean) (0.0185) (0.0197) (0.0210) (0.0230) (0.0252) </td <td>)399)</td>)399)										
Region FE Yes	101**										
Geographic controls Yes Yes Yes Yes Yes Y)271)										
	/es										
	/es										
Observations 1046 1046 1046 1046 1046 1046	046										
R ² 0.570 0.558 0.530 0.519 0.520 0.	512										

Note: Population Density Data from HYDE database

Dynamic Effect of Erosivity on Population Density: Ethnic Groups

Figure 1: Effect of Erosivity on Population Density

State Complexity (Borcan, Olsson and Putterman; 2018)

				St	ate Comp	lexity Inde	2X				
		Ov	erall Avar	age	5-Century Windows						
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	
Log [Erosivity]	-2.629*	**-1.984*	**-3.180*	**-3.611*	**-2.137*	**-5.055**	-5.379**	-5.083**	-6.811**	**-2.704*	
	(0.362)	(0.416)	(0.695)	(0.699)	(0.630)	(2.464)	(2.218)	(1.940)	(1.779)	(1.061)	
Continent FE	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Geographic controls	No	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Soil controls	No	No	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
YST	No	No	No	No	Yes	Yes	Yes	Yes	Yes	Yes	
Observations	137	137	129	126	122	122	122	122	122	122	
R^2	0.241	0.433	0.553	0.580	0.643	0.596	0.532	0.464	0.530	0.465	

Note: Columns (6)-(10): 5-century windows, starting from 1500-2000

Country transition dates

		Log F transitio			Log Reher transition date					
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)		
Log [Erosivity]	0.00514***	0.00343***	0.00405***	0.00290**	0.00304**	0.00246***	0.00307***	0.00337**		
	(0.00174)	(0.00112)	(0.00142)	(0.00131)	(0.00121)	(0.000693)	(0.000910)	(0.00101)		
Neolithic transition	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		
Continent FE	No	Yes	Yes	Yes	No	Yes	Yes	Yes		
Soil controls	No	No	Yes	Yes	No	No	Yes	Yes		
Geographic controls	No	No	No	Yes	No	No	No	Yes		
Observations	114	114	105	105	116	116	110	110		
R ²	0.134	0.593	0.629	0.638	0.098	0.717	0.739	0.767		

Note: Reher dates of transition from Reher (2004), FDG dates of transition from Fernandez-Villaverde, Delventhal & Guner (2019)

Cell-level analysis

	Cells 0.5x0.5					Cells	1x1		Cells 2x2			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
Log [Erosivity]	-0.181***	-0.155***	-0.152***	-0.149***	-0.189***	-0.188***	-0.194***	-0.182***	-0.217***	-0.217***	-0.241***	-0.230**
	(0.00357)	(0.0104)	(0.00633)	(0.0178)	(0.01000)	(0.0100)	(0.00981)	(0.0130)	(0.00987)	(0.00990)	(0.0111)	(0.0213)
Suitability	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Fixed Effects	No	Yes	Yes	Yes	No	Yes	Yes	Yes	No	Yes	Yes	Yes
Geographic controls	No	No	Yes	Yes	No	No	Yes	Yes	No	No	Yes	Yes
Bio controls	No	No	No	Yes	No	No	No	Yes	No	No	No	Yes
Observations	50790	50790	50790	50789	11657	11657	11657	11656	3224	3224	3224	3224
R ²	0.189	0.205	0.222	0.222	0.222	0.222	0.245	0.247	0.226	0.226	0.259	0.260

Note: Outcome variable: Log [1 + Nighttime Luminosity], based on DMSP Operational Linescan System data

Country GDP per capita (2000)

	Log GDP (2000) per capita									
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)		
Log [Erosivity]	-0.332**	* -0.408**	* -0.425**	* -0.330*	**-0.387*	**-0.481*	**-0.452*	**-0.372**		
	(0.0646)	(0.0688)	(0.0933)	(0.106)	(0.103)	(0.108)	(0.107)	(0.106)		
Continent FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		
Neolithic transition	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes		
Geographic controls	No	No	Yes	Yes	Yes	Yes	Yes	Yes		
Soil controls	No	No	No	Yes	Yes	Yes	Yes	Yes		
Legal origins	No	No	No	No	Yes	Yes	Yes	Yes		
Religion shares	No	No	No	No	No	Yes	Yes	Yes		
Ethnic frac.	No	No	No	No	No	No	Yes	Yes		
Tropical zones	No	No	No	No	No	No	No	Yes		
Observations	139	134	134	130	130	129	129	129		
R^2	0.600	0.630	0.637	0.654	0.711	0.757	0.766	0.777		

Note: GDP per capita in 2000 is from Penn World Table, version 6.2; fractionalization from Alesina et al (2003); tropical zones is the share of the population living in Koppen-Geiger tropical zones; legal origin dummies and the shares of major world religions from the data set of La Porta et al. (1999).

Country: Controlling for diversity

		tra	Log FDG Insition date			Log Reher transition date						
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)		
Log [Erosivity]	0.00514***	0.00343***	0.00405***	0.00294**	0.00309**	0.00304**	0.00246***	0.00307***	0.00337***	0.00374**		
	(0.00174)	(0.00112)	(0.00142)	(0.00143)	(0.00147)	(0.00121)	(0.000693)	(0.000910)	(0.00101)	(0.00108)		
Continent FE	No	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes		
Soil controls	No	No	Yes	Yes	Yes	No	No	Yes	Yes	Yes		
Geographic controls	No	No	No	Yes	Yes	No	No	No	Yes	Yes		
Diversity	No	No	No	No	Yes	No	No	No	No	Yes		
Observations	114	114	105	105	105	116	116	110	110	110		
R ²	0.134	0.593	0.629	0.638	0.646	0.098	0.717	0.739	0.767	0.785		

