Low rank attention denoising

Nikita Okhotnikov

MIPT

2025

Introduction

Problem

- ► Noisy attention weights distribution in modern LLMs hurts interpretability and potentially limits the performance
- ► Existing solution utilizes large number of additional parameters and requires training from scratch

Objective

Implement parameter and training time efficient attention score denoiser

Assumption

Attention noise has lower intrinsic dimensionality than the signal

Proposal

Low rank implementation of existing adaptive denoiser¹ that does not require training from scratch

¹Yueyang Cang et al. DINT Transformer, 2025

Attention & DIFF attention

$$Q = XW_Q, K = XW_K, V = XW_V$$

 $Q. K. V \in \mathbb{R}^{N \times d}$ – projected queries, keys, values

Attention = softmax
$$\left(\frac{QK^T}{\sqrt{d}}\right)V$$

DIFF attention mechanism

$$X \in \mathbb{R}^{N \times d_{model}}$$
 – input, $W_Q, W_K \in \mathbb{R}^{d_{model} \times 2d}, W_V \in \mathbb{R}^{d_{model} \times d}$ – projection matrices

$$[Q_1, Q_2] = XW_Q, [K_1, K_2] = XW_K, V = XW_V$$

 Q_1 , K_1 , Q_2 , K_2 , $V \in \mathbb{R}^{N \times d}$ – projected queries, keys, values

$$\mathsf{DIFFAttention} = \left(\mathsf{softmax}\left(\frac{Q_1 K_1^T}{\sqrt{d}}\right) - \lambda \cdot \mathsf{softmax}\left(\frac{Q_2 K_2^T}{\sqrt{d}}\right)\right) V, \ \lambda \in (0,1)$$

DINT Attention & low rank modification

DINT Attention

$$A_1 = \operatorname{softmax}\left(\frac{Q_1 K_1^T}{\sqrt{d}}\right), A_2 = \operatorname{softmax}\left(\frac{Q_2 K_2^T}{\sqrt{d}}\right), A_3 = \operatorname{repeat}\left(\frac{1}{N} \sum_{i=1}^N A_1[i,:], N\right)$$

$$\operatorname{DINTAttention} = (\lambda \cdot A_3 + A_1 - \lambda \cdot A_2) V$$

Low rank DINT
$$Q_1 = XW_{Q_1}, K_1 = XW_{K_1}, Q_2 = XW_{Q_2}^{down}W_{Q_2}^{up}, K_2 = XW_{K_2}^{down}W_{K_2}^{up}$$

$$W_1 - XW_{Q_1}, N_1 - XW_{K_1}, Q_2 - XW_{Q_2}, V_{Q_2}, N_2 - XW_{K_2}$$

$$W_2 \cdot W_k \in \mathbb{R}^{d_{model} \times d} \cdot W_2^{down}, W_2^{down} \in \mathbb{R}^{d_{model} \times r} \cdot W_2^{up}, W_2^{up} \in \mathbb{R}^{r \times r}$$

$$W_{Q_1}, W_{K_1} \in \mathbb{R}^{d_{model} \times d}; W_{Q_2}^{down}, W_{K_2}^{down} \in \mathbb{R}^{d_{model} \times r}; W_{Q_2}^{up}, W_{K_2}^{up} \in \mathbb{R}^{r \times d}$$

$$A_1 = \operatorname{softmax}\left(\frac{Q_1 K_1^T}{\sqrt{d}}\right), A_2 = \operatorname{softmax}\left(\frac{Q_2 K_2^T}{\sqrt{d_2}}\right), A_3 = \operatorname{repeat}\left(\frac{1}{N} \sum_{i=1}^N A_1[i,:], N\right)$$

as linear layer of shape[
$$d_{in}, d_{out}$$
] is initialized with $w[i,j] \sim U[-\sqrt{d_{in}}, \sqrt{d_{in}}]$

$$\mathbb{D}[W_{Q_2}^{down}W_{Q_2}^{up}[i,j]] = \mathbb{D}[W_{K_2}^{down}W_{K_2}^{up}[i,j]] = \frac{1}{3d_{model}} \cdot \frac{1}{3r} \cdot r = \frac{1}{9}\mathbb{D}[Q_1[i,j]]$$

$$\Longrightarrow d_2 = \frac{d}{81}, \quad \text{LowRankDINTAttention} = (\lambda \cdot A_3 + A_1 - \lambda \cdot A_2) V$$

Experiments

SFT of Llama-3.2-1B model² on OpenMathInstruct-2 dataset³
HERE SHOULD BE TRAINING CURVES

²https://huggingface.co/meta-llama/Llama-3.2-1B

 $^{^3} https://hugging face.co/datasets/nvidia/OpenMathInstruct-2$