

CENG 223

Discrete Computational Structures

Fall 2023 - Take Home Exam 2 Solutions Sets and Functions

Question 1 - Answer

a) Assume that the set $C \in \mathbb{R}^n$ is a convex set. For arbitrary m, show that

$$\sum_{i=1}^{m} \lambda_i x_i = C$$

where $x_i \in C$ and $\lambda_i \in \mathbb{R}$, i = 1, 2, ..., m satisfying $\lambda_i \geq 0$ and $\sum_{i=1}^m \lambda_i = 1$.

By definition of set convexity, $\forall x_1, x_2 \in C, \lambda \in [0, 1], \lambda x_1 + (1 - \lambda)x_2 \in C$.

Then we can prove by induction. Let, $p(n) = \lambda_1 x_1 + \lambda_2 x_2 + \dots + \lambda_n x_n$ where $i = 1, \dots, n$; $\lambda_i \in [0, 1]$ and $x_i \in C$ satisfying $\sum_{i=1}^{n} \lambda_i = 1$.

Since $p(1) = x_1 \in C$ is trivial and $p(2) = \lambda_1 x_1 + \lambda_2 x_2 = \lambda_1 x_1 + (1 - \lambda_1) x_2 \in C$ by set convexity,

let's assume that $p(k) \in C$ where i = 1, ..., k; $\lambda_i \in [0, 1]$ and $x_i \in C$ satisfying $\sum_{i=1}^k \lambda_i = 1$.

Since $p(k) \in C$, we can pick an element $x_{k+1} \in C$ and state $(1-\alpha)p(k) + \alpha x_{k+1} \in C$, by set convexity. Let's expand the statement below

$$(1-\alpha)(\lambda_1 x_1 + \lambda_2 x_2 + \dots + \lambda_k x_k) + \alpha x_{k+1} = (1-\alpha) \sum_{i=1}^k \lambda_i x_i + \alpha x_{k+1} \in C$$

Let's rewrite $\alpha = \lambda_{k+1}^*$ such that $\lambda_i = \lambda_i^*/(1-\alpha) = \lambda_i^*/(1-\lambda_{k+1}^*)$ satisfying $\sum_{i=1}^{k+1} \lambda_i^* = \sum_{i=1}^k (1-\lambda_{k+1}^*)\lambda_i + \lambda_{k+1}^* = (1-\lambda_{k+1}^*) + \lambda_{k+1}^* = 1$ where $i = 1, \ldots, k$ and $\alpha = \lambda_{k+1}^* \in (0,1)$. Therefore the statement is also equal to,

$$(1 - \lambda_{k+1}^*) \sum_{i=1}^k \frac{\lambda_i^*}{(1 - \lambda_{k+1}^*)} x_i + \lambda_{k+1}^* x_{k+1} = \sum_{i=1}^k \lambda_i^* x_i + \lambda_{k+1}^* x_{k+1} = p(k+1) \in C$$

Since λ values for p(k) are arbitrary satisfying just $\lambda_i \in [0,1]$ and $\sum_{i=1}^k \lambda_i = 1$, for p(k+1) we can consider that λ_i^* values from p(k) are λ_i values from p(k+1).

Therefore, by induction, the statement is true for any arbitrary m by $p(2) \Rightarrow \cdots \Rightarrow p(k) \Rightarrow$ $p(k+1) \Rightarrow \cdots \Rightarrow p(m)$.

b) No, counterexample is any non-increasing convex $f: \mathbb{R} \to \mathbb{R}$ and any convex $g: \mathbb{R} \to \mathbb{R}$ functions. For example, The composition of f(x) = -x and $g(x) = x^2$ is $f \circ g(x) = -x^2$ is not a convex function.

The convexity of f(x) is entailed by the following equality

$$\forall x_1, x_2 \in \mathbb{R}, \lambda \in [0, 1] : f(\lambda x_1 + (1 - \lambda)x_2) = -(\lambda x_1 + (1 - \lambda)x_2)$$

$$= \lambda(-x_1) + (1 - \lambda)(-x_2) = \lambda f(x_1) + (1 - \lambda)f(x_2)$$

$$\therefore f(\lambda x_1 + (1 - \lambda)x_2) \le (\lambda f(x_1) + (1 - \lambda)f(x_2))$$

Similarly, The convexity of g(x) is entailed by the left hand side from the right hand side of the convexity inequality

$$\forall x_1, x_2 \in \mathbb{R}, \lambda \in [0, 1] : g(\lambda x_1 + (1 - \lambda)x_2) - (\lambda g(x_1) + (1 - \lambda)g(x_2))$$

$$= (\lambda x_1 + (1 - \lambda)x_2)^2 - (\lambda x_1^2 + (1 - \lambda x_2^2))$$

$$= \lambda^2 x_1^2 + 2\lambda(1 - \lambda)x_1x_2 + (1 - \lambda)^2 x_2^2 - \lambda x_1^2 - (1 - \lambda)x_2^2$$

$$= (\lambda^2 - \lambda)x_1^2 + 2\lambda(1 - \lambda)x_1x_2 + ((1 - \lambda)^2 - (1 - \lambda))x_2^2$$

$$= (\lambda^2 - \lambda)x_1^2 - 2(\lambda^2 - \lambda)x_1x_2 + (\lambda^2 - \lambda)x_2^2$$

$$= (\lambda^2 - \lambda)(x_1 - x_2)^2 \le 0$$

$$\therefore g(\lambda x_1 + (1 - \lambda)x_2) \le (\lambda g(x_1) + (1 - \lambda)g(x_2))$$

However, let $x_1 = 1$, $x_2 = -1$, $\lambda = 0.5$. Then we have the followings

- $h(\lambda x_1 + (1 \lambda)x_2) = h(0.5 0.5) = h(0) = 0$
- $\lambda h(x_1) + (1 \lambda)h(x_2) = 0.5h(1) + 0.5h(-1) = -0.5 0.5 = -1.$

Thus, $h(\lambda x_1 + (1 - \lambda)x_2) = 0 \not\leq -1 = \lambda h(x_1) + (1 - \lambda)h(x_2)$. Therefore, we have a witness stating that h(x) is not convex.

c) (\Rightarrow) Assume that f(x) is convex, then by definition of convexity, S is convex too.

$$\forall y, z \in \text{dom}(g) \quad x + yv, x + zv \in S$$

$$\forall t \in [0, 1] \quad t(x + yv) + (1 - t)(x + zv) = x + (ty + (1 - t)z)v \in S \quad \text{(by convexity of S)}$$

 $\implies ty + (1-t)z \in \text{dom}(g) \implies \text{dom}(g)$ is convex. Lastly,

$$g(ty + (1 - t)z) = f(x + (ty + (1 - t)z)v)$$

$$= f(t(x + yv) + (1 - t)(x + zv))$$

$$\leq tf(x + yv) + (1 - t)f(x + zv)$$

$$= tg(y) + (1 - t)g(z)$$

- \implies g(x) is convex.
- (\Leftarrow) Assume that f is not conxex and S is convex. Then,

$$\exists x, y \in S, \exists t \in [0, 1] \quad f(ty + (1 - t)x) > tf(y) + (1 - t)f(x)$$

Put v = y - x,

$$g(t) = f(x + t(y - x))$$

$$= f(ty + (1 - t)x)$$

$$> tf(y) + (1 - t)f(x)$$

$$= tg(1) + (1 - t)g(0)$$

 \implies g(x) is not convex.

Question 2 - Answer

Considering the subsets of X under mild assumptions and their consequential propositions,

- a) $\Sigma = \{ U \subseteq X : U^c \text{ is either finite or empty set } \} = \{ U \subseteq X : U^c \text{ is finite } \} \cup \{ X \}.$
 - (*) $X \in \Sigma$ is trivially satisfied for every choice of X.
 - (*) Assume X is finite or empty, i.e. bijective to \mathbb{Z}_n . Every subset $U^c \subseteq X$ has a finite or empty complementary set $(U^c)^c = U$ by Proposition 1 and Lemma 1. Thus, $\forall U^c \subseteq X. (x \in \Sigma) \Rightarrow (\Sigma = P(X))$. Therefore, Σ is a σ -algebra by Corrolary 2.
 - (*) Assume X is countably infinite, i.e. bijective to \mathbb{Z}^+ . Every finite subsets $U^c \subseteq X$, has an countably infinite complement $(U^c)^c = U \in \Sigma$, by Proposition 3. Therefore, Σ includes only countably infinite subsets U whose complement U^c is a finite set.

However, Σ is **not** a σ -algebra, considering such a countably infinite set $U \subseteq X$, whose complement U^c is a finite set U^c as we assumed. Thus $U \in \Sigma$ but $U^c \notin \Sigma$ since $(U^c)^c = U$ is not finite.

- (*) Assume X is uncountable, i.e. not bijective to \mathbb{Z} . Every finite subsets $U^c \subseteq X$ has an uncountable complementary subset $(U^c)^c = U$ by Proposition 4. However, considering such an uncountable subset $U \subseteq X$, whose complement U^c is a finite set U^c as we assumed. Thus $U \in \Sigma$ but $U^c \notin \Sigma$ since $(U^c)^c = U$ is not finite. Therefore, Σ is **not** a σ -algebra.
- b) $\Sigma = \{ U \subseteq X : U^c \text{ is either countable or } X \} = \{ U \subseteq X : U^c \text{ is countable } \} \cup \{ \emptyset \}.$ (*) $X \in \Sigma \text{ since } X^c = \emptyset \text{ is countable.}$
 - (*) Assume X is finite, i.e. bijective to \mathbb{Z}_n . Every subset $U \subseteq X$ has a countable complementary set U^c by Proposition 1 and Lemma 1. Thus, $\forall U^c \subseteq X. (x \in \Sigma) \Rightarrow (\Sigma = P(X))$. Therefore, Σ is a σ -algebra by Corrolary 2.
 - (*) Assume X is countably infinite, i.e. bijective to \mathbb{Z}^+ . Every subset $U \subseteq X$ has a countable complementary set U^c by Propositions 2 and 3.

Thus, $\forall U^c \subseteq X. (x \in \Sigma) \Rightarrow (\Sigma = P(X))$. Therefore, Σ is a σ -algebra by Corrolary 2.

- (*) Assume X is uncountable, i.e. not bijective to \mathbb{Z} . Every countable subset $U^c \subseteq X$ has an uncountable complementary set $(U^c)^c = U$ by Proposition 4. However, considering an uncountable subset $U \subseteq X$, whose complement U^c is countable U^c as we assumed. Thus $U \in \Sigma$ but $U^c \notin \Sigma$ since $(U^c)^c = U$ is countable. Therefore, Σ is **not** a σ -algebra.
- c) $\Sigma = \{ U \subseteq X : U^c \text{ is uncountable or } \emptyset \text{ or } X \} = \{ U \subseteq X : U^c \text{ is uncountable } \} \cup \{ \emptyset, X \}.$
 - (*) $X \in \Sigma$ and $\emptyset \in \Sigma$ by definition.
 - (*) Assume X is finite, i.e. bijective to \mathbb{Z}_n . Since every subset U and the related complement U^c is finite, there is no uncountable subset of X, thus $\{U \subseteq X : U^c \text{ is uncountable }\} = \emptyset$ and $\Sigma = \{\emptyset, X\}$. Therefore, Σ is a trivial σ -algebra by Corrollary 1.

¹However, stating that Σ is not a sigma algebra (unless $X = \emptyset$) because \emptyset is not countably infinite is acceptable.

- (*) Assume X is countably infinite, i.e. bijective to \mathbb{Z}^+ . Since every subset $U^c \subseteq X$ is countable, $\Sigma = \{\emptyset, X\}$, by Proposition 2. Therefore, Σ is a trivial σ -algebra by Corrollary 1.
- (*) Assume X is uncountable, i.e. not bijective to \mathbb{Z} . Every countable subsets $U^c \subseteq X$, has an uncountable complement $(U^c)^c = U \in \Sigma$, by Proposition 4. However, Σ is **not** a σ -algebra, considering such an uncountable subset $U \subseteq X$, whose complement U^c is a countable set as we assumed. Thus $U \in \Sigma$ but $U^c \notin \Sigma$ since $(U^c)^c = U$ is not uncountable.

Question 3 - Answer

a) (\Rightarrow) Assume $ax \equiv b \pmod{p}$ has a solution. Then,

$$ax - b = pq, \exists q \in \mathbb{Z}$$
 (1)

Take $d = \gcd(a, p)$ We have, by Bezout's Identity,

$$d = at + pr, \quad \exists t, r \in \mathbb{Z}$$
 (2)

Since
$$d = \gcd(a, p) \implies d|a \wedge d|p$$

 $\implies a = dq_1 \wedge p = dq_2, \quad \exists q_1, q_2 \in \mathbb{Z}$
from (1) we have $b = ax - pq = (dq_1)x - (dq_2)q$
 $= d(q_1x - q_2q) = dc, \exists c \in \mathbb{Z} \implies d|b$

 (\Leftarrow) Assume $d = \gcd(a, p)$ and d|b. Then we have again Bezout's Identity (2).

$$b = dc = (at + pr)c = atc + nrc$$

$$\implies b - a(tc) = p(rc)$$

$$\implies a(tc) \equiv b \pmod{p}$$

$$\implies ax \equiv b \pmod{p} \text{ has a solution when } x = tc$$

b) The method to find a solution for the pair of two congruences below will take the following approach: first, write $x = b_1 + kp_1$. Plug that in to the second equation to obtain $kn_1 \equiv b_2 - b_1 \pmod{p_2}$.

$$x \equiv b_1 \pmod{p_1}$$

 $x \equiv b_2 \pmod{p_2}$

If p_1 and p_2 share factors, then we may not be able to solve this equivalence, by the assumption in part (a). Hence, we can demand that p_1 and p_2 are relatively prime, and this should solve that problem

c) For each i with $1 \le i \le k$, put $m_i = \frac{\Pi}{p_i}$. Notice that since the moduli are relatively prime, and m_i is the product of all the moduli other than ni, we have that $p_i \perp m_i$, and hence $m_i i$ has a multiplicative inverse modulo p_i , say y_i . Moreover, note that m_i is a multiple of n_j for all $j \ne i$

Put
$$x = y_1b_1m_1 + y_2b_2m_2 + \cdots + y_kb_km_k$$
.

Notice that for each i with $1 \le i \le k$, we obtain

$$x \equiv y_1b_1m_1 + y_2b_2m_2 + \cdots + y_kb_km_k \pmod{p_i}$$
 (Since we put x it so)
 $\equiv y_ib_im_i \pmod{p_i}$ (since each m_j with $j \neq i$ is a multiple of p_i)
 $\equiv b_i \pmod{p_i}$ (since y_i is an inverse to m_i modulo p_i).

Therefore, we have that $x \equiv b_i \pmod{p_i}$ for all $1 \leq i \leq k$. Finally, we wish to show uniqueness of the solution (mod Π). Suppose that x and y both solve the congruences. Then we have that for each i, p_i is a divisor of x - y. Since the p_i are relatively prime, this means that Π is a divisor of x - y, and hence x - y are congruent modulo Π .

Question 4 - Answer

a) Let's denote this set by X^{ω} . Then we will show that a function $g: \mathbb{Z}^+ \to X^{\omega}$ cannot be surjective to prove the uncountability of this set.

For a such defined function g, we have $g(p)=(x_{n1},\,x_{n2},\,\ldots,\,x_{nn},\,\ldots)$ where each x_{ij} are either 0 or 1. Then we consider $y=(y_1,\,y_2,\,\ldots)\in X^\omega$ given by

$$y_n = \begin{cases} 0 & \text{if } x_{nn} = 1\\ 1 & \text{if } x_{nn} = 0 \end{cases}.$$

Such defined y is not mapped to by g: it differs from each g(p) by at least one coordinate. Hence g cannot be surjective. Hence, the uncountability of X^{ω} .

b) The question basically asks whether the countable union of countable sets is countable. By being countable, each Y_i admits a surjective function $f_i: \mathbb{Z}^+ \to Y_i$. Then we can define a function $g: \mathbb{Z}^+ \times \mathbb{Z}^+ \to \bigcup_{i \in \mathbb{Z}^+} Y_i$ such that $g(i,j) = f_i(j)$. With this, we have defined a surjective function from $\mathbb{Z}^+ \times \mathbb{Z}^+$ which has the same cardinality with \mathbb{Z} (no need to prove this, as stated in the note). Thus, the given set is countable.

Extra Proofs

Definition 1. The subset of the domain of the mapping f to A is $Sub(f|A) = \{x \in dom(f) : f(x) \in A\}$.

Definition 2. The graph of a mapping $f: A \to B$ is $G(f) = \{(x,y) \in A \times B : f(x) = y\}$.

Proposition 1. Let X be a finite or empty set. Every subset $U \subseteq X$ is either a finite or an empty set.

Proof. (see also finite-measure) Since X is a finite or an empty set, there is a bijection $f_X : \mathbb{Z}_n \to X$ (or an injection $g: X \to \mathbb{Z}_n$). The restriction of the g's domain to U, $g|U: \mathbb{Z}_n \to U$, defined by g|U(u) = g(u) for every $u \in U$, is an injection since if $u_1, u_2 \in U$, then $g|U(u_1) = g|U(u_2) \Rightarrow g(u_1) = g(u_2) \Rightarrow u_1 = u_2$.

Lastly, setting the co-domain of g|U into Sub(g|U) defines a bijection $f_U: Sub(f_X|U) \to U$ by definition 1. Since $Sub(f_X|U) \subseteq \mathbb{Z}_n \subset \mathbb{Z}^+$, by definition, an arbitrary subset $U \subseteq X$ is finite.

Lemma 1. Let X be a finite or empty set. The complementary sets of any subset $U^c = X - U \subseteq X$, entailed by proposition 1.

Proposition 2. Let X be a countably infinite set. Every subset $U \subseteq X$ is countable.

Proof. Let X be a countably infinite set. Then, there exists a bijection $f: X \to \mathbb{Z}$. Assume there exists an uncountable subset $U \subseteq X$. Thus, there exists no bijection from U to any subset of \mathbb{Z} , i.e. $g: U \to \mathbb{Z}_n$ cannot be bijective. However, considering $f|U: U \to \mathbb{Z}$, where f|U(x) = f(x) for every $x \in U$, is an

injection since f is a bijection. Moreover, setting the co-domain of f|U into Sub(f|U) defines a bijection $h: U \to Sub(f|U)$. Therefore, this is a contradiction.

Proposition 3. Let X be a countably infinite set. Every finite subset U, has a countably infinite complementary set $U^c = X - U$.

Proof. Considering the proof for Proposition 2, Assume $U \subseteq X$ is a finite set and its complement U^c isn't countably infinite, i.e. finite. Therefore, there are two bijections $f: U \to \mathbb{Z}_n$ and $g: U^c \to \mathbb{Z}_m$ as a logical consequence of their finiteness. We can define a bijection $h: U \cup U^c \to \mathbb{Z}_{m+n}$, where

$$h(x) = \begin{cases} f(x) & \text{if } x \in U \\ g(x) + n & \text{if } x \notin U. \end{cases}$$

Therefore, $h: X \to \mathbb{Z}_{m+n}$ implies that X is a finite set, which is a contradiction.

Proposition 4. Let X be a continuum. Every finite or countable subset $U \in X$ has an uncountable complement $U^c = X - U$.

Proof. Let X be a continuum. Assume that there exists a finite set $U \subseteq X$, whose the complement U^c isn't uncountable, i.e. U^c is countable. Therefore, there exists a bijection $f: U \to \mathbb{Z}_n$ and $g: U^c \to \mathbb{Z}^+$. Thus, we can construct a bijection $h: U \cup U^c \to \mathbb{Z}^+$, where

$$h(x) = \begin{cases} f(x) & \text{if } x \in U \\ g(x) + n & \text{if } x \notin U = x \in U^c. \end{cases}$$

Since, $h: X \to \mathbb{Z}^+$ is a bijection, X is countable, which is a contradiction. Therefore there exists no finite set $U \subseteq X$, whose subset U^c is countable.

Proposition 5. Let P(X) be the power set of X. Then $\forall U_i \in P(X) : n = 1, 2, ... : \bigcup_{n \in \mathbb{Z}^+} U_n \in P(X)$.

Proof. Let $\{U_n\}_{n\in\mathbb{Z}^+}$ be a countable infinite sequence of sets in P(X).

Consider an element of the union of all the sets in this $\{U_n\}_{n\in\mathbb{Z}^+}$:

$$x\bigcup_{n\in\mathbb{N}}U_n$$

By definition of union, $\exists n \in \mathbb{N} : x \in U_n$.

But $U_n \in P(X)$ and so by definition $U_n \subseteq X$. By definition of subset, it follows that $x \in X$.

Hence, again by definition of subset:

$$\bigcup_{n\in\mathbb{N}} U_n \subseteq X$$

Finally, by definition of power set:

$$\bigcup_{n\in\mathbb{N}} U_n \in P(X)$$

.

Thus, The power set is closed under countable unions.

Corollary 1. The set $\Sigma = \{\emptyset, X\}$ is (minimal or trivial) σ -algebra. see separable sigma-algebras.

Proof. We have the following properties satisfied:

- $X \in \Sigma$ by definition.
- $X^c = \emptyset \in \Sigma$ and $\emptyset^c = X \in \Sigma$ by definition.
- $\emptyset \cup \emptyset = \emptyset$ and $\emptyset \cup X = X \cup \emptyset = X \cup X = X$ by idempotency and commutativity of union. Thus, $\forall U_i = X, \emptyset : \bigcup_{i \in \mathbb{Z}^+} U_i \in \Sigma$

So, by definition, $\{\emptyset, X\}$ is a σ -algebra.

Corollary 2. The power set of X is a σ -algebra is (discrete) σ -algebra.

Proof. see power-set sigma-algebras.

We have the following properties satisfied:

- $X \in P(X) = \Sigma$ by definition of power set.
- $\forall U \subseteq X : U^c = X U \subseteq X$, implies $U^c \in P(X) = \Sigma$ by definition of power set.
- $\forall U_n \in P(X) : n = 1, 2, \dots : \bigcup_{n \in \mathbb{N}} U_n \in P(X)$ by Proposition 5.

So, by definition, P(X) is a σ -algebra.