

CHURCHLANDS SENIOR HIGH SCHOOL MATHEMATICS SPECIALIST 3, 4 TEST ONE 2017

NON-Calculator Section Chapters 1, 2,

Name	Time: 50 minutes
	Total: 49 marks

1.[12 marks: 3,3,3,3]

Describe and sketch each of the following subsets of the complex plane.

a)
$$\{z:|z+1-i|\leq 3\}$$

Description:

b)
$$\{z:|z+2-i|=|z-1+2i|\}$$

Description:

c) $\{z: z \overline{z} = 4\}$

Description:

 $d)[z:Rez-Imz\leq 9]$

Description:

2. [6 marks: 2,1,1,1,1]

Sketch on the complex plane below the region defined by

$$|z-i+1| = 4$$

Hence, find

- i) the maximum value of |z|
- ii) the minimum value of |z|
- iii) the maximum value of Re(z)
- iv) the minimum value of Im(z)
- 3. [7marks: 1,2,4]
- i) Find the remainder when $x^3 4x^2 + 7x 6$ is divided by x 2.

ii) When $x^3 - x^2 + cx - 3$ is divided by x - 3, the remainder is 30. Find c.

iii) When $3x^3 - ax^2 - bx + 1$ is divided by x - 2, the remainder is 15. If x - 1 is a factor of the given polynomial, find the values of a and b.

4. [2 marks]

Plot the roots of $z^8 = 1$ on the Argand diagram below.

5. [4 marks:1,2,1]

Let
$$\beta = 1 - i\sqrt{3}$$
.

- i) Express β in polar form.
- ii) Express β^5 in polar form.

iii) Hence express β^5 in the form x + iy.

6. [12 marks:3, 3, 6 marks]

(a) If
$$z_1 = 3 cis\left(\frac{4\pi}{3}\right)$$
 and $z_2 = \frac{1}{2} cis\left(\frac{\pi}{6}\right)$, prove that: $\frac{z_1}{z_2} = -3(\sqrt{3} + i)$

b) Simplify
$$\frac{\left(3 cis \frac{\pi}{3}\right) \left(4 cis \frac{\pi}{2}\right)}{6 cis \frac{\pi}{4}}$$
 giving your answer in the form $rcis\theta$.

7. [6 marks]

If $z = cis\theta$ and by using De Moivre's theorem together with knowledge of the binomial expansion to find z^3 , show that $\cos 3\theta = \cos^3 \theta - 3\cos\theta \sin^2 \theta$ and $\sin 3\theta = 3\cos^2 \theta \sin\theta - \sin^3 \theta$.