

Probability and Stochastic Processes

Joint MGF/CF, Probabilistic Inequalities–Markov's Inequality, Chebyshev's Inequality, Chernoff Bound, Jensen's Inequality

Karthik P. N.

Assistant Professor, Department of AI

Email: pnkarthik@ai.iith.ac.in

11 November 2024

Joint MGF/CF

Joint MGF and Joint Characteristic Functions

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Let X_1, \ldots, X_n be random variables w.r.t. \mathscr{F} .

Joint MGF and Joint Characteristic Function

1. The joint MGF of X_1, \ldots, X_n is a function $M_{X_1, \ldots, X_n} : \mathbb{R}^n \to [0, +\infty]$, defined as

$$M_{X_1,\ldots,X_n}(t_1,\ldots,t_n)=\mathbb{E}[e^{t_1X_1+\cdots+t_nX_n}]=\mathbb{E}[e^{\mathbf{t}^{\mathsf{T}}\mathbf{X}}],$$

where
$$\mathbf{t} = [t_1 \cdots t_n]^{\top}$$
 and $\mathbf{X} = [X_1 \cdots X_n]^{\top}$.

Joint MGF and Joint Characteristic Functions

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Let X_1, \ldots, X_n be random variables w.r.t. \mathscr{F} .

Joint MGF and Joint Characteristic Function

1. The joint MGF of X_1,\ldots,X_n is a function $M_{X_1,\ldots,X_n}:\mathbb{R}^n\to[0,+\infty]$, defined as

$$M_{X_1,\ldots,X_n}(t_1,\ldots,t_n)=\mathbb{E}[e^{t_1X_1+\cdots+t_nX_n}]=\mathbb{E}[e^{\mathbf{t}^{\mathsf{T}}\mathbf{X}}],$$

where
$$\mathbf{t} = [t_1 \cdots t_n]^{\top}$$
 and $\mathbf{X} = [X_1 \cdots X_n]^{\top}$.

2. The joint characteristic function of X_1, \ldots, X_n is a function $C_{X_1, \ldots, X_n} : \mathbb{R}^n \to \mathbb{C}$, defined as

$$\mathcal{C}_{X_1,\ldots,X_n}(s_1,\ldots,s_n)=\mathbb{E}[j(s_1X_1+\cdots+j_nX_n)]=\mathbb{E}[e^{j\mathbf{s}^{\top}\mathbf{X}}],$$

where $\mathbf{s} = [s_1 \cdots s_n]^{\top}$.

Independence and Joint MGF/CF

Fix a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Let X_1, \ldots, X_n be random variables w.r.t. \mathcal{F} .

Theorem (Independence and Joint MGF/CF)

1. Suppose that $M_{X_1,...,X_n}(t_1,...,t_n)<+\infty$ for all $(t_1,...,t_n)\in B(\mathbf{0},\varepsilon)$ for some $\varepsilon>0$, where $B(\mathbf{0},\varepsilon)$ denotes a ball in \mathbb{R}^n centered at the origin $\mathbf{0}$ and having radius ε . Then, the random variables $X_1,...,X_n$ are independent if and only if

$$M_{X_1,...,X_n}(t_1,\ldots,t_n)=\prod_{i=1}^n M_{X_i}(t_i) \qquad orall (t_1,\ldots,t_n)\in\mathbb{R}^n.$$

Independence and Joint MGF/CF

Fix a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Let X_1, \ldots, X_n be random variables w.r.t. \mathcal{F} .

Theorem (Independence and Joint MGF/CF)

1. Suppose that $M_{X_1,...,X_n}(t_1,...,t_n)<+\infty$ for all $(t_1,...,t_n)\in B(\mathbf{0},\varepsilon)$ for some $\varepsilon>0$, where $B(\mathbf{0},\varepsilon)$ denotes a ball in \mathbb{R}^n centered at the origin $\mathbf{0}$ and having radius ε . Then, the random variables $X_1,...,X_n$ are independent if and only if

$$M_{X_1,\dots,X_n}(t_1,\dots,t_n) = \prod_{i=1}^n M_{X_i}(t_i) \qquad orall (t_1,\dots,t_n) \in \mathbb{R}^n.$$

2. The random variables X_1, \ldots, X_n are independent if and only if

$$\mathcal{C}_{X_1,\ldots,X_n}(s_1,\ldots,s_n) = \prod_{i=1}^n \mathcal{C}_{X_i}(s_i) \qquad orall (s_1,\ldots,s_n) \in \mathbb{R}^n.$$

Caution

Caution

To check that two random variables X and Y are independent, it DOES NOT suffice to check that

$$C_{X,Y}(s,s) = C_X(s) C_Y(s) \quad \forall s \in \mathbb{R}.$$

Example:

$$f_{X,Y}(x,y) = egin{cases} rac{1}{4}(1+xy(x^2-y^2)), & |x| < 1, |y| < 1, \ 0, & ext{otherwise}. \end{cases}$$

Probabilistic Inequalities

Markov's Inequality

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Let X be a random variable w.r.t. \mathscr{F} .

Theorem (Markov's Inequality)

Let *X* be a non-negative random variable with $\mathbb{E}[X] < +\infty$. Then,

$$\mathbb{P}(\{X > \alpha\}) \le \frac{\mathbb{E}[X]}{\alpha}, \quad \forall \alpha > 0.$$

Markov's Inequality

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Let X be a random variable w.r.t. \mathscr{F} .

Theorem (Markov's Inequality)

Let *X* be a non-negative random variable with $\mathbb{E}[X] < +\infty$. Then,

$$\mathbb{P}(\{X > \alpha\}) \le \frac{\mathbb{E}[X]}{\alpha}, \quad \forall \alpha > 0.$$

Remarks:

• Markov's inequality only applies to non-negative random variables

Markov's Inequality

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Let X be a random variable w.r.t. \mathscr{F} .

Theorem (Markov's Inequality)

Let *X* be a non-negative random variable with $\mathbb{E}[X] < +\infty$. Then,

$$\mathbb{P}(\{X > \alpha\}) \le \frac{\mathbb{E}[X]}{\alpha}, \quad \forall \alpha > 0.$$

Remarks:

- Markov's inequality only applies to non-negative random variables
- The inequality is useful only for $\alpha > \mathbb{E}[X]$

Example

The course AI5030 has a total registration of 88 students.

The class average in the midterm exam was evaluated to be 6.65 (out of 30).

What is the maximum number of students that could have scored more than 10 marks?

Chebyshev's Inequality

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Let X be a random variable w.r.t. \mathscr{F} .

Theorem (Chebyshev's Inequality)

Let X have mean $\mathbb{E}[X] = \mu \in \mathbb{R}$ and variance $\sigma^2 < +\infty$. Then,

$$\mathbb{P}(\{|X - \mu| > \alpha\}) \le \frac{\sigma^2}{\alpha^2}, \quad \forall \alpha > 0.$$

Chernoff Bound

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Let X be a random variable w.r.t. \mathscr{F} .

Theorem (Chernoff Bound)

Suppose that $M_X(t)<+\infty$ for all $t\in(-\varepsilon,\varepsilon)$ for some $\varepsilon>0$. Then,

$$\mathbb{P}(\{X > \alpha\}) \leq \frac{M_X(t)}{e^{t\alpha}}, \quad \forall \alpha > 0, \ t > 0, \ t \in \text{ROC of } M_X.$$

Noting that the left-hand side of the above inequality is independent of t, we can optimise the right-hand side over t to get

$$\mathbb{P}(\{X > \alpha\}) \le \inf_{\substack{t > 0, \\ t \in \mathbb{P}OC}} \frac{M_X(t)}{e^{t\alpha}}, \qquad \forall \alpha > 0.$$

Jensen's Inequality

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Theorem (Jensen's Inequality)

Let $X : \Omega \to \mathbb{R}$ be a random variable w.r.t. \mathscr{F} .

Let $g: \mathbb{R} \to \mathbb{R}$ be a convex, differentiable function, i.e.,

$$g(y) \ge g(x) + g'(x)(y - x) \qquad \forall x, y \in \mathbb{R}.$$

If
$$\left|\mathbb{E}[X]
ight|<+\infty$$
 and $\left|\mathbb{E}[g(X)]
ight|<+\infty$, then

$$\mathbb{E}[g(X)] \geq g(\mathbb{E}[X]).$$

Jensen's Inequality

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Theorem (Jensen's Inequality)

Let $X : \Omega \to \mathbb{R}$ be a random variable w.r.t. \mathscr{F} .

Let $g : \mathbb{R} \to \mathbb{R}$ be a convex, differentiable function, i.e.,

$$g(y) \ge g(x) + g'(x)(y - x) \qquad \forall x, y \in \mathbb{R}.$$

If
$$\left|\mathbb{E}[X]\right|<+\infty$$
 and $\left|\mathbb{E}[g(X)]\right|<+\infty$, then

$$\mathbb{E}[g(X)] \geq g(\mathbb{E}[X]).$$

Corollary:

$$\mathbb{E}[X^2] \ge (\mathbb{E}[X])^2, \qquad \mathbb{E}[|X|] \ge |\mathbb{E}[X]|, \qquad \mathbb{E}[\log X] \le \log \mathbb{E}[X].$$