Extracting plankton physiological parameters from batch culture data

Anne Willem Omta and Mick Follows

Department of Earth, Atmospheric, and Planetary Sciences,

Massachusetts Institute of Technology, Cambridge, MA

David Talmy
University of Tennessee, Knoxville, TN
Daniel Sher
University of Haifa, Israel

Zoe Finkel and Andrew Irwin Dalhousie University, Halifax, NS, Canada

SIMONS FOUNDATION

Ocean ecosystem models: the olden days

http://www.geos.ed.ac.uk/homes/hkettle

Only 2 plankton types (Phytoplankton & Zooplankton)

Parameter values not that critical: Ecosystem will consume nutrients that are supplied

Ocean ecosystem models: nowadays

Competition between many plankton types: \Longrightarrow Need to know parameter values for different plankton species

Data to constrain plankton parameters

www.slideshare.net

We consider batch culture data on the prymnesiophyte Isochrysis galbana (Flynn et al., 1994)

Flynn et al. (1994) batch culture data

Omta et al. (2017) model formulation

$$\frac{dC}{dt} = (C_{syn} - E) P, E = \frac{m_{ex} \left(1 + \tanh\left(\frac{C}{P} - r_{ex}\right)\right)}{2}$$

$$\frac{dP}{dt} = P_{syn}P, P_{syn} = \mu\left(\frac{N}{N+K}\right)$$

$$\frac{dN}{dt} = -\frac{dP}{dt}$$

$$\frac{dr}{dt} = \frac{r_0 - r}{\tau}, r_0 = b\frac{P}{C}$$

Model fits

Estimated parameter values

Parameter	Description	Estimated	Units
		value	
$\overline{\mu}$	Maximum protein	0.234±0.002	d^{-1}
	synthesis rate		
C_{syn}	Maximum photo-	2.19 ± 0.02	mol C/(mol N)
	synthesis rate		d^{-1}
m_{ex}	Maximum C exu-	1.43 ± 0.02	mol C/(mol N)
	dation rate		d^{-1}
r_{ex}	Carb:protein ratio	13.49 ± 0.11	mol C/(mol N)
	above which exu-		
	dation occurs		
au	Photoacclimation	9.59 ± 0.13	d
	time		
b	Photoacclimation	57.1 ± 0.2	μ mol Chl mol C
	parameter		$(\text{mol N})^{-2}$

Posterior parameter distributions

Model extension: diurnal cycle

$$I = \begin{cases} 100 & 12 \text{ hrs/d} \\ 0 & 12 \text{ hrs/d} \end{cases}$$

Possible model extension: Multiple limiting nutrients

Minimum formulation most straightforward:

$$P_{syn} = \mu * \min \left(\frac{N}{N + K_N}, \frac{I}{I + K_I} \right)$$
 But tricky in Stan...

Synthesizing Unit provides an alternative:

$$P_{syn} = \mu \frac{1}{1 + \frac{K_N}{N} + \frac{K_I}{I} - \frac{1}{\frac{N}{K_N} + \frac{I}{K_I}}}$$

Possible model extension: Pahlow/Smith optimal uptake kinetics

Optimal allocation between surface uptake sites and internal enzymes leads to slightly modified uptake kinetics. Instead of:

$$P_{syn} = \mu \frac{N}{N + K_N}$$

we obtain:

$$P_{syn} = \mu \frac{N}{N + 2\sqrt{K_N N} + K_N}$$

Possible model extension: Different exudation formulation

Perhaps make C exudation linearly proportional to Carb:protein ratio?

Instead of:

$$E = \frac{m_{ex} \left(1 + \tanh \left(\frac{C}{P} - r_{ex} \right) \right)}{2}$$

We could simply have:

$$E = m_{ex} \frac{C}{P}$$