Alison Kleffner, Susan VanderPlas, Yawen Guan Department of Statistics, University of Nebraska - Lincoln

Introduction

- Sea ice is frozen water in the Arctic Ocean that generally occurs as an ice pack which can drift over the oceans surface
- Cracks, or leads, may form in the ice pack due to dynamic processes
 - Allows for heat from the ocean to be transferred to the atmosphere

- Other Ice Lead detection methods through satellite images
 - Thermal Images
 - Deformation Calculations
- Satellite data can be low in resolution and are affected by atmospheric conditions (clouds, etc.)

Data

- Used motion data from the RADARSTAT Geophysical Processing System (RGPS)
- The movement of sea ice is tracked in sequential radar images
- Due to this data collection, data may be missing

Method Motivation

- Groups of movement patterns within the ice pack.
- Trajectories in the ice sheet can be grouped together when have similar movement.

Alison Kleffner, Susan VanderPlas, Yawen Guan Department of Statistics, University of Nebraska - Lincoln

Clustering: Using Bounding Box

- Created a bounding box around each trajectory, to represent the movement of the trajectory over time.
- Features used:
 - Length of x/y traveled (between max and min location)

•
$$x_{max} - x_{min}, y_{max} - y_{min}$$

• Difference in x/y from latest to earliest observation

•
$$x_1 - x_0, y_1 - y_0$$

- Angle of movement
- Average x/y value
- Sub-trajectories previous time information
- Then used K-means clustering
 - Number of clusters found using Silhouette Statistic

Spatio-Temporal Interpolation

• Define the spatio-temporal neighbors for each missing point, using our previously made clusters

- Member of an intersection are considered spatio-temporal neighbors, because in similar geographic region over time.
- Created univariate models for x and y using the GpGp package in R, which uses the Vecchia's approximation, using the exponential space-time covariance function.
 Output is the MLE of mean and covariance parameters.
- Use Model to predict missing locations and on the grid.

Alison Kleffner, Susan VanderPlas, Yawen Guan Department of Statistics, University of Nebraska - Lincoln

Simulation Study

1. Generate Underlying Process:

$$U_{d,c}(s,t) \sim GP\left(\mu_{d,c}, C_{d,c}(\theta)\right),$$

$$C_{d,c}(\theta) = \sigma^2 e^{-||D^{-1}(x-y)||},$$

$$d=x,y \qquad c=1,2$$

Movement in X

2. Generate Trajectories using Underlying Process

$$(x_{t,j}, y_{t,j}) = (U_{t-1,c,g}^X, U_{t-1,c,g}^Y) + (x_{t-1,j}, y_{t-1,j}),$$

$$j = 1,...,121$$

3. Results

RMSE for Interpolation Methods							
	Intersection Model		Linear Interpolation		No Intersection Model		
	X	Υ	X	Υ	X	Υ	
Overall	1.388	1.304	2.7	1.83	1.441	1.493	
Cluster 1	1.38	1.16	3.1	2.18	1.457	1.664	
Cluster 2	1.402	1.53	1.39	0.35	1.423	1.261	

Alison Kleffner, Susan VanderPlas, Yawen Guan Department of Statistics, University of Nebraska - Lincoln

Ice Data Results

• Clustering:

- Interpolation Cross Validation :
 - Used data in intersection from day before and day after to develop model
 - Compared to Linear Interpolation, and running the model using all the data from the week (no intersections)

RMSE for Interpolation Methods								
	Intersection		Linear		No Intersection			
	Model		Interpolation		Model			
Week	Χ	Υ	X	Υ	X	Υ		
1	3.156	3.24	1.52	4.098	3.093	3.067		
2	3.142	3.062	1.984	1.399	3.198	3.151		
3	3.178	3.093	0.987	1.189	3.19	3.15		

RMSE for Week 1 by Cluster							
	Intersection Model		Linear Interpolation		No Intersection Model		
Cluster	X	Υ	X	Υ	X	Υ	
1	3.018	4.333	3.199	13.042	2.515	3.41	
2	4.376	4.633	0.187	0.359	4.258	4.106	
3	2.641	3.144	1.314	3.066	2.163	2.883	
4	3.024	2.873	1.396	2.442	2.46	2.777	
5	3.925	3.586	0.74	3.036	3.895	3.241	
6	3.143	3.08	1.876	5.459	2.597	3.098	

Conclusion

- Bounding Box method is limited by pre-defined number of clusters, but seems to discover large ice leads. Should be used in conjunction with other ice lead detection methods
- Intersection Interpolation Method shows promise over linear interpolation when data is not linear. Some issues in model creation like if not enough known data in that intersection for a given time, large temporal range, etc.

References

- Guinness, J., & Katzfuss, M. (2021). GpGp: Fast gaussian process computation using vecchia's approximation.
- Key, J., Stone, R., Maslanik, J., & Ellefsen, E. (1993). The detectability of sea-ice leads in satellite data as a function of atmospheric conditions and measurement scale. Annals of Glaciology, 17, 227–232.
- Peterson, K. and D. Sulsky (2011). "Evaluating Sea Ice
 Deformation in the Beaufort Sea Using a Kinematic Crack
 Algorithm with RGPS Data". In: Remote Sensing of the Changing
 Oceans. Berlin, Heidelberg: Springer.
- Schreyer, H. L., D. L. Sulsky, L. B. Munday, et al. (2006). "Elastic-decohesive constitutive model for sea ice". In: Journal of Geophysical Research: Oceans 111.C11.
- Willmes, S. and G. Heinemann (2015). "Pan-Arctic lead detection from MODIS thermal infrared imagery". In: Annals of Glaciology 56, pp. 29–37.