\mathcal{L}^p Spaces

For any measurable space $(\Omega, \mathcal{F}, \mu)$ and $0 , <math>\mathcal{L}^p(\Omega, \mathcal{F}, \mu)$ denotes the set of all measurable functions f on Ω such that $\int |f|^p d\mu < \infty$ and the values of f are real numbers except possibly on a set of measure 0, where f may be undefined or infinite. For $1 \le p < \infty$, let $||f||_p = \left(\int |f|^p d\mu\right)^{1/p}$, called the L^p norm of f.

Theorem 1 (Hölder Inequality)

If
$$1 , $p^{-1} + q^{-1} = 1$, $f \in \mathcal{L}^p$ and $g \in \mathcal{L}^q$, then $fg \in \mathcal{L}^1$ and $|\int fg d\mu| \le \int |fg| d\mu \le ||f||_p ||g||_q$.$$

Proof

If $||f||_p = 0$, then f = 0 a.e., so fg = 0 a.e., $\int |fg| d\mu = 0$, and the inequality holds, and likewise if $||g||_q = 0$. Assume that the norms are not 0. Now, for any constant c > 0, $||cf||_p = c||f||_p$, dividing out by the norms, we can assume $||f||_p = ||g||_q = 1$. We will use the fact that for any numbers u,v and $0 < \alpha < 1$, $u^{\alpha}v^{1-\alpha} \le \alpha u + (1-\alpha)v$. This implies that with $\alpha = 1/p$, $u = |f|^p$ and $v = |g|^q$, $|fq| \le \alpha |f|^p + (1-\alpha)|g|^q.$

Integrating gives

$$\int |fg| d\mu \le \alpha \int |f|^p d\mu + (1 - \alpha) \int |g|^q d\mu$$
$$= \alpha ||f||_p^p + (1 - \alpha) ||g||_q^q = 1.$$

Corollary (Cauchy-Schwarz)

For any f and g in \mathcal{L}^2 , we have $fg \in \mathcal{L}^1$, and

$$\left| \int fg d\mu \right| \leq \|f\|_2 \|g\|_2.$$

Theorem 2 (Minkowski's)

For
$$1 \le p < \infty$$
, if f and g are in $\mathcal{L}^p(S, \mathcal{M}, \mu)$, then $f + g \in \mathcal{L}^p(S, \mathcal{M}, \mu)$ and $||f + g||_p \le ||f||_p + ||g||_p$.

Proof

Since $|f + g| \le |f| + |g|$, we can replace f and g by their absolute values and so assume $f \ge 0$, $g \ge 0$. If f = 0 a.e. or g = 0 a.e., the inequality is clear. If p = 1 or ∞ the inequality is straightforward. For $1 we have <math>(f + g)^p \le 2^p \max(f^p, g^p) \le 2^p (f^p + g^p)$.

Applying Holder inequality gives

$$||f + g||_{p}^{p} = \int (f + g)^{p} d\mu$$

$$= \int f(f + g)^{p-1} d\mu + \int g(f + g)^{p-1} d\mu$$

$$\leq ||f||_{p} ||(f + g)^{p-1}||_{q} + ||g||_{p} ||(f + g)^{p-1}||_{q}.$$

Now (p-1)q = p, so $||f + g||_p^p \le (||f||_p + ||g||_p)||f + g||_p^{p/q}$ which leads to the result.

A seminorm on a real vector space X is a function $\|\cdot\|$ from X into $[0,\infty)$ such that

- (i) ||cx|| = |c| ||x|| for all $c \in \mathbb{R}$ and $x \in X$, and
- (ii) $||x + y|| \le ||x|| + ||y||$ for all $x, y \in X$.

A seminorm $\|\cdot\|$ is called a norm if and only if $\|x\| = 0$ only for x = 0. A normed space $(X, \|\cdot\|)$ is complete if for any sequence $\{x_n\}$ in X with

 $\lim_{m,n\to\infty} ||x_m - x_n|| = 0 \text{ there exists an } x \in X \text{ with}$

$$\lim_{n\to\infty}||x_n-x||=0.$$

Remark

The function $\|\cdot\|_p$ is a seminorm on \mathcal{L}^p but not a norm. For each f, we define the equivalence class [f] by $[f] = \{g : f = g \text{ a.e.}\}$. For each \mathcal{L}^p , we define the factor space of equivalence classes L^p by $L^p = \{[f] : f \in \mathcal{L}^p\}$. On L^p we define the real valued function $\|\cdot\|_p$ by $\|[f]\|_p = \|f\|_p$. Then $(L^p, \|\cdot\|_p)$ is a complete normed linear space.

A semi-inner product on a real vector space H is a function (\cdot,\cdot) from $H \times H$ into \mathbb{R} such that

- (i) (cf + g, h) = c(f, h) + (g, h) for all $c \in \mathbb{R}$ and $f, g \in H$.
- (ii) (f,g) = (g,f) for all $f,g \in H$.
- (iii) $(f, f) \ge 0$ for $f \in H$.

A semi-inner product (\cdot,\cdot) is called an inner product if and only if (f, f) = 0 implies f = 0.

Let $(H, (\cdot, \cdot))$ be an inner product space. Then H is called a Hilbert space if it is complete for the norm $||x|| = (x, x)^{1/2}$.

 $L^{2}(\Omega, \mathcal{F}, \mu)$ is a Hilbert space with inner product

$$([f],[g]) = (f,g) = \int fg d\mu$$
.

A function f from a Hilbert space H into \mathbb{R} is linear and continuous if and only if for some $h \in H$, f(x) = (x, h) for all $x \in H$. If so, then h is unique.

Let $(\Omega, \mathcal{F}, \mu)$ be any finite measure space. Then for $1 \leq r < s < \infty, \mathcal{L}^s(\Omega, \mathcal{F}, \mu) \subseteq \mathcal{L}^r(\Omega, \mathcal{F}, \mu)$, and the identity function from L^s into L^r is continuous.

Proof

By Holder inequality with p = s/r,

$$\int |f|^r d\mu = \int |f|^r \cdot 1 d\mu \le \left(\int |f|^{r(s/r)}\right)^{\frac{r}{s}} \mu(\Omega)^{\frac{1}{q}} < \infty.$$

Thus $||f||_r \le ||f||_s \mu(\Omega)^{\frac{1}{qr}}$ for all $f \in \mathcal{L}^s$. This implies continuity.

Let ν and μ be two measures on the same measurable space (Ω, \mathcal{F}) . We say that ν is absolutely continuous with respect to μ , denoted $\nu \prec \mu$, if and only if $\nu(A) = 0$ whenever $\mu(A) = 0$. We say that μ and ν are singular, denoted $\nu \perp \mu$, if and only if there is an $A \in \mathcal{F}$ with $\mu(A) = \nu(A^c) = 0$.

Lebesgue Decomposition

Let (Ω, \mathcal{F}) be a measurable space and μ and ν two σ finite measures on it. Then there are unique measures ν_{ac} and ν_s such that $\nu = \nu_{ac} + \nu_s$, $\nu_{ac} \prec \mu$ and $\nu_s \perp \mu$.

Theorem 7 (Radon-Nikodym)

On the measurable space (Ω, \mathcal{F}) let μ be a σ -finite measure. Let ν be a finite measure, absolutely continuous with respect to μ . Then there exists a nonnegative f such that $\nu(A) = \int_A f \ d\mu$ for all A in \mathcal{F} . Any two such f are equal a.e. (μ) .

Proof

Form the Hilbert space $H = L^2(\Omega, \mathcal{F}, \mu + \nu)$ then $L^2 \subseteq L^1$ and the identity function from L^2 into L^1 is continuous. The linear function $h \mapsto \int h d\nu$ is continuous from H to the set of real numbers and, hence, there is a $g \in H$, such that $\int h d\nu = \int h g d(\mu + \nu)$ for all $h \in H$. Note that the above can be written as

$$\int h(1-g)d(\mu+\nu) = \int hd\mu$$

for all $h \in H$.

Let $A = \{\omega : g(\omega) = 1\}$. For all $E \in \mathcal{F}$, let $\nu_s(E) = \nu(E \cap A)$ and $\nu_{ac}(E) = \nu(E \cap A^c)$. Then ν_s and ν_{ac} are measures with $\nu = \nu_s + \nu_{ac}$, $\nu_{ac} < \mu$ and $\nu_s \perp \mu$. If $\nu < \mu$ then $\nu = \nu_{ac}$ and $\nu_s = 0$. Let f = g/(1-g) on A^c and f = 0 on A. Then $\int_E f d\mu = \int_{E \cap A^c} g d(\mu + \nu) = \nu(E \cap A^c) = \nu(E)$.