INTRODUÇÃO A CONCEITOS DE COMPUTAÇÃO

Portas lógicas e expressões booleanas

SUMÁRIO

> Computadores e eletricidade

> Transistores e portas

> Portas lógicas

Construindo portas

- Nível de voltagem de 0 a 2 volts é considerado "baixo"
- Nível na faixa de 2 a 5 volts é considerado "alto"

☐ Sinais em um computador estão condicionados a estar em uma faixa (0) ou em outra (1).

- Nível de voltagem de 0 a 2 volts é considerado "baixo"
- Nível na faixa de 2 a 5 volts é considerado "alto"

☐ Sinais em um computador estão condicionados a estar em uma faixa (0) ou em outra (1).

- Porta é um dispositivo que executa uma operação elementar sobre sinais elétricos, aceitando um ou mais sinais de entrada, produzindo um único sinal de saída.
- Circuito é uma combinação de portas que interagem, projetada para realizar uma função lógica específica.

Álgebra booleana é uma notação matemática para expressar funções lógicas baseadas em dois valores

Diagrama lógico é uma representação gráfica de um circuito; cada tipo de porta tem seu próprio símbolo

Transistor:

□ Dispositivo que atua como um fio ou resistor, dependendo da voltagem do sinal de entrada.

Entrada	Saída
1	1
0	0

Α	В	Saída
1	1	1

Transistor:

Corrente

Α	В	Saída
1	1	1
1	0	0

Α	В	Saída
1	1	1
1	0	0
0	1	0

Α	В	Saída
1	1	1
1	0	0
0	1	0
0	0	0

Transistor:

Α	В	АЛВ
1	1	1
1	0	0
0	1	0
0	0	0

Porta lógica Não:

A	¬А
1	0
0	1

Α	В	AVB
1	1	1

Α	В	AVB
1	1	1
1	0	1

Α	В	AVB
1	1	1
1	0	1
0	1	1

Α	В	AVB
1	1	1
1	0	1
0	1	1
0	0	0

Porta lógica Não-E:

Α	В	¬А∧В
1	1	0
1	0	1
0	1	1
0	0	1

Porta lógica Não-Ou:

Α	В	¬(AVB)
1	1	0
1	0	0
0	1	0
0	0	1

Porta lógica: Ou Exclusivo (XOR):

(A⊕ B)

Α	В	(A⊕ B)
1	1	0
1	0	1
0	1	1
0	0	0

Transistor para porta Não

Construindo Portas

Transistor para Não-E

¬(A ∧ B)

Construindo Portas

Transistor para Não-Ou

INTRODUÇÃO A CONCEITOS DE COMPUTAÇÃO

Portas lógicas e expressões booleanas