BASIC MICROBIOLOGY SERIES

Introduction to Modern Virology

N. J. DIMMOCK BSc, PhD

Professor of Virology Department of Biological Sciences University of Warwick, Coventry

S. B. PRIMROSE BSc, PhD

Amersham International plc Amersham, Buckinghamshire

FOURTH EDITION

bBlackwell
Science

REST AVAILABLE COPY

(© 1974, 1988, 1987, 1994 by Blackwell Science Ltd Editorial Offices: Osney Mead, Oxford OX2 OEL 25 John Street, London WC1N 2BL 23 Amslie Place, Edinburgh EH2 6AJ 238 Msin Street, Cambridge Massachusetts O2142, USA 54 University Street, Carlton Victoria 3055, Australia

Other Editorial Offices: Amette Blackwell SA 1, rue de Lille, 75007 Paris France

Blackwell Wissenschafts-Verlag GmbH Kurfürstendamm 57 10707 Berlin, Germany

Blackwell MZV Feldgasse 13, A-1238 Wien Austria

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the copyright owner.

First published 1974 Reprinted 1978 Second edition 1980 Third edition 1987 Fourth edition 1994

Set by Setrite Typesetters, Hong Kong Printed and bound in Great Britain at the University Press, Cambridge DISTRIBUTORS.

Marston Book Services Ltd PO Box 67 Oxfard OX2 0DT [Orders: Tel: 01865 791155 Fax: 01865 791927 Telex: 837515]

Algera

USA
Blackwell Science, Inc.
238 Main Street
Cambridge, MA 02142
(Orders: Tel: 800 759-6102
617 876-7000)

Canada
Oxford University Press
70 Wynford Drive
Dom Mills
Oxtario M3C 1j9
{Orders: Tel: 416 441-2941}

Australia
Blackwell Science Pry Ltd
54 University Street
Carlton, Victoria 3053
[Orders: Tel: 03 347-5552]

A catalogue record for this title is available from the British Library

ISBN 0-632-08403-3

Library of Congress Cataloging in-Publication Data

Dimmock, N. J.
Introduction to modern virology/
N. J. Dimmock, S. B. Primrose. —4th ed.
p. cm.
Includes bibliographical references and index.
ISBN 0-632-03403-3
1. Virology. 1. Primrose, S. B.
II. Title. III. Series.
[DNIM: I. Virus Diseases.
2. Viruses. QW 160 D582i 1994]
QR360.D56 1994
616: 0.194—dc20

BEST AVAILABLE COPY

342 Chapter 21

Family: Reoviridae (class III)

10-12 segments of double-stranded RNA of total M_{τ} 12-20 × 10⁶. Particle is a 60-80 nm icosahedron. Has an isometric nucleocapsid with transcriptase activity. Cytoplasmic multiplication.

Genera: Reovirus - of vertebrates Orbivirus - of vertebrates, but also multiply in insects Rotavirus - of vertebrates

Cytoplasmic polyhedrosis viruses - of insects Phytoreovirus - clover wound tumour virus Fijivirus - Fiji distase of plants

See: Estes, M. K. & Cohen, J. (1989) Rotavirus gene structure and function. Microbiological Reviews, 53, 410-449.

Estes, M. K., Palmer, E. L. & Obijeski, J. F. (1983) Rotaviruses: a review. Current Topics in Microbiology and Immunology, 105, 123-184.

Joklik, W. K. (1985) Recent progress in reovirus research. Annual Review of Genetics, 19, 537-575.

Nuss, D. L. & Dall, D. J. (1990) Structural and functional properties of plant reovirus genomes. Advances in Virus Research, 38, 249-306. Roy, P. & Gorman, B. M. (1990) Bluetongue viruses. Current Topics in Microbiology and Immunology, 162, 1-200.

Pamily: Birnaviridae (class III)

Two segments of double-stranded RNA of M, 2.5×10^6 and 2.3×10^6 in one 60 nm particle. Icosahedral with 45 nm core. RNA transcriptase present. Cytoplasmic.

Genus: Birnavirus (pancreatic necrosis virus of fish; infectious bursal disease of chickens; Drosophila X virus)

See: Becht, H. (1980) Infectious bursal disease virus. Current Topics in Microbiology and Immunology, 90, 107-121.

Family: Picornaviridae (class IV)

Single-stranded RNA of M, 2.5×10^6 . Icosahedral particles of 30 nm. Multiplication is cytoplasmic.

Genera: Enterovirus (acid-resistant, primarily viruses of gastrointestinal tracti

Rhinovirus (acid-labile, mainly viruses of upper respiratory

Aphthovirus (foot-and-mouth disease virus)

Cardiovirus (encephalomyocarditis (EMC) virus of mice)

Hepatitis A virus (of humans) Also various viruses of insects

See: Macnaughton, M. R. (1982) The structure and replication of thinoviruses. Current Topics in Microbiology and Immunology, 97, 1-26.

BEST AVAILABLE COPY

The classification and nomenclature of viruses 345

Subfamily: Betaherpesvirinae

ERIC POTTER CLARKSON

Human cytomegalovirus Mouse cytomegalovirus

Subfamily: Gammaherpesvirinae (lymphoproliferative viruses)

Epstein-Barr virus Herpesvirus saimiri

Unclassified: Marek's disease virus

See: Davison, A. J. (1991) Varicella-zoster virus. Journal of General Virology, 72, 475-486.

Mach, M. et al. (1989) Human cytomegalovirus: recent aspects from molecular biology. Journal of General Virology, 70, 3117-3146.

Roizman, B. (1990) Herpesviridae: a brief introduction. In: Virology [2nd edn], Vol. 2, pp. 1787—1794. Fields, B. N. & Knipe, D. M. (eds.). New York: Raven Press.

Roizman, B. & Sears, A. E. (1990) Herpes simplex viruses and their replication. In: Virology (2nd edn), Vol. 2, pp. 1795-1841. Fields, B. N. & Knipe, D. M. (eds.). New York: Raven Press.

Rouse, B. T. (1992) Herpes simplex virus: pathogenesis, immunobiology and control. Current Topics in Microbiology and Immunology, 179,

Stevens, J. G. (1989) Human herpesviruses: a consideration of the latent state. Microbiological Reviews, 53, 318-332.

Family: Adenoviridae (class I)

Double-stranded DNA of M_c 20-30 × 106. Particle is a 70-90 nm icosahedron which replicates and is assembled in the nucleus.

Genera: Mastadenovirus (adenoviruses of mammals) Aviadenovirus (adenoviruses of birds)

See: Doefler, W. (ed.) (1983/1984) The molecular biology of adenoviruses. Current Topics in Microbiology and Immunology, 109 (1983), 110, 111 (1984).

Ginsberg, H. S. [ed.] [1984] The adenoviruses. New York: Plenum

Horwitz, M. S. (1990) Adenoviridae and their replication. In: Virology (2nd edn), Vol. 2, pp. 1679-1722. Fields, B. N. & Knipe, D. M. (eds). New York: Raven Press.

Family: Papovaviridae (class I)

Double-stranded circular DNA. Particles have 72 capsomers in a skew arrangement and are assembled in the nucleus. Haemagglurinate. Oncogenic.

Genera: Papillomavirus (producing papillomas in several mammalian species including man | 50-55 nm particle; DNA $5 \times 10^6 M_{\pi}$ Polyomavirus (found in rodents, humans and other primates) 40-45 nm particle; DNA 3×106 Mr. Includes simian virus type 40 (SV40) and polyomavirus itself

BEST AVAILABLE COPY AN ABLE COPY

346 Chapter 21

See: Lambert, P. F. (1991) Papillomavirus DNA replication. Journal of Virology, 65, 3417-3420.

Salzman, N. P. (1986) The Papovaviridae, Vol. 1, The polyomaviruses. New York: Plenum Press.

Salzman, N. P. & Howley, P. M. (1987) The Papovaviridae, Vol. 2, The papillomaviruses. New York: Plenum Press.

Tooze, J. (1981) DNA tumor viruses (2nd edn), Chapters 2-6. Cold Spring Harbor Laboratory, NY.

Family: Hepadnaviridae (class I)

One complete DNA minus strand of $M_{\rm r}$ 1×10^6 with a 5' terminal protein. DNA is circularized by an incomplete plus strand of variable length (50-100%) which overlaps the 3' and 5' termini of DNA minus. There is a 42 nm enveloped particle containing a core with DNA polymerase and protein kinase activities. Includes hepatitis B (HBV) of humans, Pekin duck hepatitis, beechy ground squirrel hepatitis and woodchuck hepatitis viruses. HBV is strongly associated with

Virology, 67, 1215-1235. Marion, P. L. & Robinson, W. S. (1983) Hepadnaviruses: heparitis B and related viruses. Current Topics in Microbiology and Immunology,

Mason, W. S. & Seeger, C. (1991) Hepadnaviruses: molecular biology and pathogenesis. Current Topics in Microbiology and Immunology, 168, 1-206.

Tiollais, P., Pourcel, C. & Dejean, A. (1985) The hepatitis B virus. Nature (London), 317, 489-495.

Family: Coronaviridae (class IV)

Single-stranded RNA of Mr 2-11 × 106. Enveloped particles of 60-220 nm with club-shaped sparse spikes. Contains a helical nucleocapsid 9 nm diameter. Cytoplasmic, budding from Golgi and endoplasmic reticulum.

Genera: Coronavirus (avian infectious bronchitis virus and related viruses, including equine arteritis virus) Torovirus (enveloped biconcave 130 nm particles with spikes. Helical nucleocapsid. Nucleus required for replication. Berne virus of horses).

See: Horzinek, M. C. et al. (1987) A new family of vertebrate viruses: Toroviridae. Intervirology, 27, 17-24.

Lai, M. M. C. (1990) Coronaviruses: organization, replication and expression of the genome. Annual Review of Microbiology, 44, 303-333.

