laboratorium: zadanie 11 termin: 5–9 czerwca 2023 r.

KURS JĘZYKA C++

KALKULATOR ONP

Instytut Informatyki Uniwersytetu Wrocławskiego

Paweł Rzechonek

Prolog.

Notacja Polska to beznawiasowy sposób zapisu wyrażeń logicznych i arytmetycznych, w którym najpierw najpierw występuje operator (funkcja) a za nim operandy (argumenty). Taka prefiksowa notacja została przedstawiona w 1920 roku przez polskiego logika Jana Łukasiewicza. Pozwalała ona na łatwiejsze przeprowadzanie operacji na długich formułach logicznych czy wyrażeniach arytmetycznych.

ONP czyli Odwrotna Notacja Polska to sposób zapisu wyrażeń arytmetycznych, w którym operator umieszczony jest po operandach. Jest to więc notacja postfiksowa. Zapis ten pozwala na całkowitą rezygnację z użycia nawiasów w wyrażeniach, jako że jednoznacznie określa kolejność wykonywanych działań (podobnie jak notacja Łukasiewicza).

Odwrotna notacja polska została opracowana przez Arthura Burksa, Dona Warrena i Jessego Wrighta w 1954 roku. Sam algorytm i notacja zostały dopracowane przez australijskiego filozofa i informatyka Charlesa L. Hamblina w połowie lat 50'tych XX wieku. Notacja postfiksowa została odkryta na nowo przez Friedricha L. Bauera i Edsgera W. Dijkstrę na początku lat 60'tych XX wieku, kiedy chcieli oni wykorzystać stos obsługiwany przez procesor do przyspieszenia obliczania wyrażeń arytmetycznych (notacja postfisowa idalnie nadaje się do tego celu).

Zadanie.

Napisz program interaktywnego kalkulatora postfiksowego. Kalkulator ten powinien interpretować i obliczać wyrażenia zapisane w postaci ONP. Program ma odczytywać polecenia ze standardowego wejścia cin, wykonywać obliczenia i wypisywać wyniki na standardowe wyjście cout. Wszelkie komentarze i uwagi program ma wysyłać na standardowe wyjście dla błędów clog. Dodatkową funkcjonalnością tego kalkulatora ma być możliwość zapamiętywania wyników obliczeń w zmiennych.

Zaprojektuj hierarchię klas, która umożliwi łatwą i elegancką klasyfikację poszczególnych symboli w wyrażeniu ONP (abstrakcyjna klasa symbol). Wyrażenie to ciąg operandów (klasa operand) i operatorów albo funkcji (klasa funkcja). Operandy to liczby (klasa liczba pamiętająca wartość typu double), zmienne (klasa zmienna z nazwą zmiennej) albo stałe (klasa stala z nazwą stałej i skojarzoną z nią wartością). Dobrze znane przykłady stałych, które powinny się znajdować w Twoim kalkulatorze to e (2,718281828459), pi (3,141592653589) i fi (1,618033988750). W klasie zmienna umieść statyczną kolekcję asocjacyjną ze zmiennymi (na przykład map<string, double> albo unordered_map<string, double>) — zmienną odszukujemy po nazwie zapamiętanej w pierwszym polu a wartość zmiennej odczytujemy z drugiego pola.

Funkcje to przede wszystkim dwuargumentowe operatory: dodawanie, odejmowanie, mnożenie i dzielenie; należy też zaimplementować funkcje dwuargumentowe modulo, min, max, log i pow oraz jednoargumentowe abs, sgn, floor, ceil, frac, sin, cos, atan, acot, ln i exp.

Symbole występujące w wyrażeniu należy najpierw sparsować, potem utworzyć odpowiednie obiekty a na koniec umieścić je w wybranej *kolekcji sekwencyjnej* (na przykład vector<> albo forward_list<>).

Program kalkulatora ma pracować z użytkownikiem interaktywnie i powinien rozpoznawać trzy rodzaje poleceń:

• print wyrażenieONP

Obliczenie wartości wyrażenia wyrażenie ONP i wypisanie jej na standardowym wyjściu. Wyrażenie będzie zapisane w postaci postfiksowej (Odwrotna Notacja Polska). Czytając kolejne symbole w wyrażeniu program powinien je zamieniać na konkretne obiekty i umieszczać w kolejce (klasa queue<>). Przy obliczaniu wartości wyrażenia należy się posłużyć stosem (klasa stack<>).

ullet set zm to $wyra\dot{z}enieONP$

Utworzenie nowej zmiennej zm i przypisanie jej warości obliczonego wyrażenia wyrażenieONP. Wartość obliczonego wyrażenia należy wypisać na standardowym wyjściu. Jeśli zmienna zm była zdefiniowana już wcześniej, to należy tylko zmodyfikować zapisaną w niej wartość.

• clear

Usunięcie wszystkich zminnych zapamiętanych do tej pory w zbiorze zmiennych. Do kolekcji mogą trafiać tylko zmienne o nazwach będących poprawnymi identyfikatorami różnymi od słów kluczowych, nazw stałych i nazw funkcji występujących w tym programie.

• exit

Zakończenie działania programu. Zamknięcie strumienia wejściowego również powinno zakończyć działanie programu.

Jeśli w wyrażeniu ONP zostanie wykryty błąd (nieznana komenda, źle sformułowane wyrażenie, błędna nazwa, błędny literał stałopozycyjny, czy nierozpoznany operator, funkcja lub zmienna) to należy wypisać stosowny komunikat o błędzie, ale nie przerywać działania programu. Zadbaj o to by nazwa każdej zmiennej nie była dłuższa niż 7 znaków oraz aby była różna od słów kluczowych print, set, to, clear, exit itp.

Do zaprogramowania tego zadania wykorzystaj kolekcje standardowe zdefiniowane w STL. Definicje klas reprezentujących różne symbole w wyrażeniu ONP umieść w przestrzeni nazw kalkulator.

Elementy w programie, na które należy zwracać uwagę.

- Podział programu na pliki nagłówkowe i źródłowe.
- Użycie kolekcji standardowych.
- Wykorzystanie iteratorów do sekwencyjnego przeglądania kolekcji.
- Interaktywne przyjmowanie poleceń od użytkownika.
- Implementacja algorytmu obliczającego wartość wyrażenia ONP.
- Obsługa błędów za pomocą wyjątków.