Lecture 11: Sept 15

Last time

• Discrete Random Variables

Today

- Continuous Random Variables
- Transformations of Random Variables

Continuous Random Variables

Definition A random variable X is continuous if $F_X(x)$ is a continuous function of x.

Definition A random variable X is absolutely continuous if $F_X(x)$ is an absolutely continuous function of x.

Definition A function F(x) is absolutely continuous if it can be written

$$F(x) = \int_{-\infty}^{x} f(x)dx.$$

Absolute continuity is stronger than continuity but weaker than differentiability. An example of an absolutely continuous function is one that is:

- continuous everywhere
- differentiable everywhere, except possibly for a countable number of points.

Definition The probability density function or pdf, $f_X(x)$, of a continuous random variable X is the function that satisfies

$$F_X(x) = \int_{-\infty}^x f_X(t)dt$$
 for all x .

Notation: We write $X \sim F_X(x)$ for the expression "X has a distribution given by $F_X(x)$ " where we read the symbol " \sim " as "is distributed as". Similarly, we can write $X \sim f_X(x)$ or , if X and Y have the same distribution, $X \sim Y$.

Theorem A function $f_X(x)$ is a pdf (or pmf) of a random variable X if and only if

- 1. $f_X(x) \ge 0$ for all x.
- 2. $\int_{-\infty}^{\infty} f_X(x) dx = 1$ (pdf) or $\sum_x f_X(x) = 1$ (pmf).

Example Suppose $F(x) = 1 - e^{-\lambda x}$ for x > 0 and F(x) = 0 otherwise. Is F(x) a cdf? What is the associated pdf? solution:

Notes

- If X is a continuous random variable, then f(x) is not the probability that X = x. In fact, if X is an absolutely continuous random variable with density function f(x), then Pr(X = x) = 0. (Why?) proof
- Because Pr(X = a) = 0, all the following are equivalent:

$$\Pr(a \leqslant X \leqslant b)$$
, $\Pr(a \leqslant X < b)$, $\Pr(a < X \leqslant b)$ and $\Pr(a < X < b)$

• f(x) can exceed one!

Transformations of Random Variables

Theorem If X is a r.v. with sample space $\mathcal{X} \subset \mathbb{R}$ and cdf $F_X(x)$, then any function of X, say Y = g(X) is also a random variable. The new random variable Y has a new sample space $\mathcal{Y} = g(X) \subset \mathbb{R}$. The objective is to find the cdf $F_Y(y)$ of Y.

Probability mapping: For any set $A \subset \mathcal{Y}$:

$$Pr(Y \in A) = Pr(g(X) \in A)$$
$$= Pr(\{x \in \mathcal{X} : g(x) \in A\})$$
$$= Pr(X \in g^{-1}(A)),$$

where we have defined

$$g^{-1}(A) = \{x \in \mathcal{X} : g(x) \in A\}.$$

Notice that $g^{-1}(A)$ is well defined even if $g(\cdot)$ is not necessarily bijective.

Example (Binomial transformation) A discrete random variable X has a binomial distribution if its pmf is of the form

$$f_X(x) = \Pr(X = x) = \binom{n}{x} p^x (1-p)^{n-x}, \quad x = 0, 1, \dots, n,$$

where n is a positive integer and $0 \le p \le 1$. Values such as n and p that can be set to different values, producing different probability distributions, are called *parameters*. Consider a random variable Y = g(X), where g(x) = n - x; that is, Y = n - X. Here $\mathcal{X} = \{0, 1, \dots, n\}$

and $\mathcal{Y} = \{y : y = g(x), x \in \mathcal{X}\} = \{0, 1, \dots, n\}$. For any $y \in \mathcal{Y}$, n - x = g(x) = y if and only if x = n - y. Therefore, $g^{-1}(y) = n - y$ and

$$f_Y(y) = \sum_{x \in g^{-1}(y)} f_X(x)$$

$$= f_X(n - y)$$

$$= \binom{n}{n - y} p^{n - y} (1 - p)^{n - (n - y)}$$

$$= \binom{n}{y} (1 - p)^y p^{n - y}.$$

Therefore, Y also has a binomial distribution, but with parameters n and 1-p.

Example (exercise 2.3) Suppose X has the geometric pmf $f_X(x) = \frac{1}{3}(\frac{2}{3})^x$, $x = 0, 1, 2, \ldots$. Determine the probability distribution of Y = X/(X+1). Note that here both X and Y are discrete random variables. To specify the probability distribution of Y, specify its pmf. Solution: