AE1MCS: Mathematics for Computer Scientists

Huan Jin, Heshan Du University of Nottingham Ningbo China

September 2021

Reading

Kenneth H. Rosen, *Discrete Mathematics and Its Applications*, 7th Edition, 2013.

- Chapter 2, Section 2.1. Sets
- Chapter 2, Section 2.2. Set Operations

Discrete Structures

- Much of discrete mathematics is devoted to the study of discrete structures, used to represent discrete objects..
- Many important discrete structures are built using **sets**, which are collections of objects.
 - combinations: unordered collections of objects used extensively in counting;
 - relations: sets of ordered pairs that represent relationships between objects;
 - **graphs**: sets of vertices and edges that connect vertices;
 - finite state machines, used to model computing machines;
 - ...

Set

An intuitive definition (not part of a formal theory of sets)

Definition

A set is an unordered collection of objects, called *elements* or *members* of the set. A set is said to contain its elements. We write $a \in A$ to denote that a is an element of the set A. The notation $a \notin A$ denotes that a is not an element of the set A.

Uppercase letters are usually used to denote sets. Lowercase letters are usually used to denote elements of sets.

Describe a Set

{a, c, b} {a, a, ch

There are several ways to describe a set.

- List all the members of a set (if it is possible): e.g. $\{a,b,c\}$, $\{1,a\}$, $\{1,2,3,\ldots$ 99} (positive integers < 100)
- 2 Use <u>set builder</u> notation: characterize all elements in a set by stating the property or properties they must have.
 - $O = \{x \mid x \text{ is an odd positive integer less than } 10\} = \{1, 3, 5, 7, 9\}$
 - or $O = \{x \in \mathbb{Z}^+ \mid x \text{ is odd and } x < 10\}$

Important Sets

- \blacksquare $\mathbb{N} = \{0, 1, 2, 3, ...\}$, the set of natural numbers
- \blacksquare $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$, the set of **integers**
- \blacksquare $\mathbb{Z}^+ = \{1, 2, 3, ...\}$, the set of **positive integers**
- $lackbox{0.5}\mathbb{Q}=\{p/q\mid p\in\mathbb{Z},q\in\mathbb{Z},\, ext{and}\, \underline{q
 eq0}\},\, ext{the set of } ext{rational numbers}$
- R, the set of real numbers
- \mathbb{R}^+ or $\mathbb{R}_{>0}$, the set of **positive real numbers**

Equal Sets

Definition

Two sets are equal if and only if they have the same elements. Therefore, if A and \overline{B} are sets, then A and B are equal if and only if $\forall x (x \in A \leftrightarrow x \in B)$. We write A = B if A and B are equal sets.

- \blacksquare {1,2,2,3,3,3}

Empty Set and Singleton Set

- Empty set: a set that has no element. It is denoted by \emptyset or $\{\}$.
- Singleton set: a set that has only one element.

Venn Diagram

- Sets can be represented graphically using Venn diagrams 1.
- The universal set *U*, which contains all the objects under consideration, is represented by a rectangle.
- Inside this rectangle, circles or other geometrical figures are used to represent sets.
- Sometimes points are used to represent the particular elements of the set.
- Venn diagrams are often used to indicate the relationships between sets.

Huan Jin, Heshan Du AE1MCS September 2021 9 / 33

¹named after the English mathematician John Venn, who introduced their use in 1881.

Subsets

Definition

The set A is a <u>subset</u> of B if and only if every element of A is also an element of B. We use the notation $A \subseteq B$ to indicate that A is a subset of the set B.

$$A \subseteq B$$
 iff $\forall x (x \in A \rightarrow x \in B)$

Prove or Disprove A is a Subset of B

Showing that A is a Subset of B To show that $A \subseteq B$, show that if x belongs to A then x also belongs to B.

Showing that A is Not a Subset of B To show that $A \nsubseteq B$, find a single

 $x \in A$ but $x \notin B$.

Countered ample

Proper Subset

A is a proper subset of B ($A \cap B$) if and only if

$$\forall x \ (x \in A \rightarrow x \in B) \land \exists x \ (x \in B \land x \not\in A)$$

Equal Sets

$$A = B$$
 iff $A \subseteq B$ and $B \subseteq A$.

The Size of a Set

Definition

Let S be a set. If there are exactly n distinct elements in S where n is a nonnegative integer, we say that S is a *finite set* and that n is the cardinality of S. The cardinality of S is denoted by S.

Definition

A set is said to be infinite if it is not finite.

Power Sets

Definition

Given a set S, the *power set* of S is the set of all subsets of the set S. The power set of S is denoted by $\mathcal{P}(S)$.

- What is the power set of the set $\{0,1,2\}$? $\mathcal{P}(s) = \{0,1,1\}, \{0,1\}, \{0,2\}, \{0,2\}, \{0,1\}, \{0,2\}, \{0,1\}, \{0,2\},$
- What is the power set of the set $\{\emptyset\}$?

If a set has n elements, then its power set has 2^{n} elements.

$$S = \left\{ \frac{1}{2}, \dots n \right\}$$

$$\left| p(s) \right| = 2^n$$

Ordered *n*-tuples

Definition $(b_1, b_2, ..., b_n)$ The *ordered n-tuple* $(a_1, a_2, ..., a_n)$ is the ordered collection that has a_1 as its first element, a_2 as its second element,..., and a_n as its nth element.

- We say that two ordered *n*-tuples are equal if and only if each corresponding pair of their elements is equal.
- Ordered 2-tuples are called ordered pairs.

Cartesian products

Definition

Let A and B be sets. The *Cartesian product* of A and B, denoted by $A \times B$, is the set of all ordered pairs (a,b), where $a \in A$ and $b \in B$. Hence, $A \times B = \{(a,b) \mid a \in A \land b \in B\}$.

■ What is the Cartesian product of $A = \{1, 2\}$ and $B = \{a, b, c\}$?

$$\frac{A \times B}{A \times B} = \frac{B \times A?}{\{(a,b) \mid a \in A \land b \in B\}} = \frac{\{(1,a),(1,b),(1,c),(2,c)\}}{\{(2,a),(2,b),(2,c)\}}$$

$$B \times A = \frac{\{(a,1),(a,2),(b,1),(b,2),(c,1),(c,2)\}}{\{(a,1),(a,2),(b,1),(b,2),(c,1),(c,2)\}}$$

Cartesian products

Definition

The *Cartesian product* of the sets A_1 , A_2 ,..., A_n , denoted by $A_1 \times A_2 \times ... \times A_n$, is the set of ordered *n*-tuples $(a_1, a_2, ..., a_n)$, where a_i belongs to A_i for i = 1, 2, ..., n. In other words,

$$A_{1} \times A_{2} \times ... \times A_{n} = \{(a_{1}, a_{2}, ..., a_{n}) \mid a_{i} \in A_{i} \text{ for } i = 1, 2, ..., n\}$$

$$A_{0} = \{(a_{1}, a_{2}, ..., a_{n}) \mid a_{i} \in A \text{ for } i = 1, 2, ..., n\}$$

$$A_{3} = \{(1, 1, 1), (1, 2, 1), (1, 2, 2), (1, 2, 2), (2, 2, 1), (2, 2, 2)\}$$

Using Set Notation with Quantifiers

- Sometimes we restrict the domain of a quantified statement explicitly by making use of a particular notation.
- For example, $\forall x \in S P(x)$ denotes the universal quantification of P(x) over all elements in the set S.
- $\forall x \in S \ P(x) \equiv \forall x \ (x \in S \rightarrow P(x))$
- $\exists x \in S \ P(x)$ denotes the existential quantification of P(x) over all elements in S.
- $\blacksquare \exists x \in S \ P(x) \equiv \exists x \ (x \in S \land P(x))$

$$\exists A \in \mathbb{Z} (\chi^2 = 1)$$

Truth Sets and Quantifiers

- We will now tie together concepts from set theory and from predicate logic.
- Given a predicate P, and a domain D, we define the truth set of P to be the set of elements x in D for which P(x) is true.
- The truth set of P(x) is denoted by $\{x \in D \mid P(x)\}$.
- $\forall x \ P(x)$ is true over the domain U if and only if the truth set of P is the set U.
- $\exists x \ P(x)$ is true over the domain U if and only if the truth set of P is nonempty.

Set Operations

- Union
- Intersection
- Difference
- Complement

Union

Definition

Let A and B be sets. The *union* of the sets A and B, denoted by $A \cup B$, is the set that contains those elements that are either in A or in both.

Intersection

Definition

Let A and B be sets. The *intersection* of the sets A and B, denoted by $A \cap B$, is the set containing those elements in both A and B.

$$A \cap B = \{x \mid x \in A \land x \in B\}$$

Disjoint

Definition

Two sets are called *disjoint* if their intersection is the empty set.

Difference

Definition

Let A and B be sets. The *difference* of A and B, denoted by A - B, is the set containing those elements that are in A but not in B. The difference of A and B is also called the complement of B with respect to A.

$$A - B = \{x \mid x \in A \land x \notin B\}$$

Remark: The difference of sets A and B is sometimes denoted by $A \setminus B$.

Complement

Once the universal set \underline{U} has been specified, the complement of a set can be defined.

Definition

Let U be the universal set. The *complement* of the set A, denoted by \overline{A} , is the complement of A with respect to U. Therefore, the complement of the set A is U - A.

$$\overline{A} = \{x \in U \mid x \notin A\}$$

Difference and Complement

$$A - B = A \cap \overline{B}$$

Set Identities

	Identity	Name
1	$A \cap U = A$	Identity laws
2	$A \cup \emptyset = A$	
3	$A \cup U = U$	Domination laws
4	$A \cap \emptyset = \emptyset$	
5	$\overline{A \cup A} = A$	Idempotent laws
6	$A \cap A = A$	
7	$\overline{(\overline{A})} = A$	Complementation law
8	$A \cup B = B \cup A$	Commutative laws
9	$A \cap B = B \cap A$	

Set Identities

	Identity	Name
10	$A \cup (B \cup C) = (A \cup B) \cup C$	Associative laws
11	$A \cap (B \cap C) = (A \cap B) \cap C$	
12	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	Distributive laws
13	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	
14	$\overline{A \cap B} = \overline{A} \cup \overline{B}$	De Morgan's laws
15	$\overline{A \cup B} = \overline{A} \cap \overline{B}$	
16	$A \cup (A \cap B) = A$	Absorption laws
17	$A \cap (A \cup B) = A$	
18	$A \cup \overline{A} = U$	Complement laws
19	$A\cap \overline{A}=\emptyset$	

Exercise

Let A, B and C be sets. Show that

$$\blacksquare \overline{A \cap B} = \overline{A} \cup \overline{B}.$$

$$\overrightarrow{A \cap (B \cup C)} = (A \cap B) \cup (A \cap C).$$

$$\overrightarrow{A \cup (B \cap C)} = (\overline{C} \cup \overline{B}) \cap \overline{A}$$

$$\blacksquare \overline{A \cup (B \cap C)} = (\overline{C} \cup \overline{B}) \cap \overline{A}$$

Reason.

 $\overline{A} \, \overline{NB} = \{ x | x \notin \underline{A} \, \underline{NB} \} \quad \text{defn of complement}$ $= \{ x | \neg (x \in \underline{A} \, \underline{NB}) \} \quad \text{defn of doesn't belong Symbol.}$ $= \{ x | \neg (x \in \underline{A} \, \underline{N} \, \underline{x} \in \underline{B}) \} \quad \text{defn of intesection}$ $= \{ x | \neg (x \in \underline{A} \, \underline{N} \, \underline{V} \, \neg (x \in \underline{B}) \} \quad \text{De Movgn's for beginnegative}$ $= \{ x | x \notin \underline{A} \, \underline{V} \, x \notin \underline{B} \} \quad \text{defn of doesn's belong symbol}$ $= \{ x | x \in \overline{A} \, \underline{V} \, x \notin \underline{B} \} \quad \text{defn of complement}$ $= \{ x | x \in \overline{A} \, \underline{V} \, x \notin \underline{B} \} \quad \text{defn of union}$ $= \overline{A} \, \underline{V} \, \underline{B} \quad \text{obstanton}$

Generalized Unions and Intersections

$$\frac{A_1 \cup A_2 \cup \dots \cup VA_n}{A_1 \cap A_2 \cap \dots \cap A_n} = \frac{\bigcup_{i=1}^n A_i}{\bigcap_{i=1}^n A_i}$$
Definition

The *union* of a collection of sets is the set that contains those elements that are members of *at least one* set in the collection.

Definition

The *intersection* of a collection of sets is the set that contains those elements that are members of *all* the sets in the collection.

Homework: Proving a Theorem

Theorem

For every set S, $\emptyset \subseteq S$ and $S \subseteq S$.

Reading

Kenneth H. Rosen, *Discrete Mathematics and Its Applications*, 7th Edition, 2013.

- Chapter 2, Section 2.1. Sets
- Chapter 2, Section 2.2. Set Operations

 $\int_{i=1}^{n} A_{i} = \bigcup_{i=1}^{n} \{i, i+1, i+2, \dots \} = \{1, 2, 3, \dots \} = \{1, 2, 3, \dots \}$

 $\bigcap_{i=1}^{n} \left\{ \hat{\nu}, \hat{\gamma}+1, \hat{\gamma}+2, \dots \right\} = \left\{ n, n+1, n+2, \dots \right\} = A_n$