A Proximal-ADMM-incorporated Nonnegative Latent-Factorization-of-Tensors Model for Representing Dynamic Cryptocurrency Transaction Network Supplementary File

Anonymous

I. INTRODUCTION

This is the supplementary file for paper entitled *A Proximal-ADMM-incorporated Nonnegative Latent-Factorization-of-Tensors for Dynamic Cryptocurrency Transaction Network Embedding*. The convergence proof of PNL, supplementary procedure, experimental results, and related work are put into this file.

II. CONVERGENCE PROOF OF PNL

Given $i \in I$, $j \in J$, and $k \in K$, the PNL model's convergence proof is presented as follows:

(a) Proof of Step 1: Note that we present the proof procedure for variable \hat{u}_{ir} , u_{ir} , and d_{ir} , and the similar variables also applies to the same conclusion.

Lemma 1. With (11), $(d_{ir}^{t+1} - d_{ir}^t)^2$, $(h_{ir}^{t+1} - h_{ir}^t)^2$, and $(l_{tr}^{t+1} - l_{tr}^t)^2$ are bounded as:

$$\left(d_{ir}^{t+1} - d_{ir}^{t}\right)^{2} \leq 8\left(\left(\eta - 1\right)^{2} \alpha_{i}^{2} + \rho^{2}\right) \left(\hat{u}_{ir}^{t+1} - \hat{u}_{ir}^{t}\right)^{2} + 8\alpha_{i}^{2} \left(\left(\eta - 1\right)^{2} + 1\right) \left(s_{ir}^{t+1} - s_{ir}^{t}\right)^{2}$$

$$+ 8\rho^{2} \left(\hat{u}_{ir}^{t} - \hat{u}_{ir}^{t-1}\right)^{2} + 8\alpha_{i}^{2} \left(u_{ir}^{t} - u_{ir}^{t-1}\right)^{2} + 4\left(\Delta_{ir}^{t+1} - \Delta_{ir}^{t}\right)^{2} = \varphi_{d}$$
(S1)

Where Δ_{ir}^{t+1} is defined as:

$$\Delta_{ir}^{t+1} = \sum_{y_{ijk} \in \Lambda} \left(y_{ijk} - \left(\sum_{f_i=1}^{r-1} \hat{u}_{if_1}^{t+1} \hat{v}_{if_1}^{t+1} \hat{w}_{kf_1}^{t+1} + \hat{u}_{ir}^{t+1} \hat{v}_{jr}^{t} \hat{w}_{kr}^{t} + \sum_{f_2=r+1}^{R} \hat{u}_{if_2}^{t} \hat{v}_{jf_2}^{t} \hat{w}_{if_2}^{t} + \hat{a}_i^{t} + \hat{c}_j^{t} + \hat{e}_k^{t} \right) \right) \left(-\hat{v}_{jr}^{t} \hat{w}_{kr}^{t} \right). \tag{S2}$$

Proof 1. Note that (7) is non-convex and its zero-gradient points, such as local/global optimum and saddle point, should be regarded as a feasible solution. Therefore, assuming that \hat{u}_{ir}^{t+1} is the solution to \hat{u}_{ir} by (11), the following condition is fulfilled:

$$\Delta_{ir}^{t+1} + \alpha_i \left(\hat{u}_{ir}^{t+1} - u_{ir}^t + \frac{d_{ir}^t}{\alpha_i} \right) + \rho \left(\hat{u}_{ir}^{t+1} - \hat{u}_{ir}^t \right) = 0.$$
 (S3)

By substituting the update rule in (11) and (15) into (S3), the following equation is achieved:

$$d_{ir}^{t+1} = (\eta - 1)\alpha_i (\hat{u}_{ir}^{t+1} - u_{ir}^{t+1}) - \alpha_i (u_{ir}^{t+1} - u_{ir}^{t}) - \rho (\hat{u}_{ir}^{t+1} - \hat{u}_{ir}^{t}) - \Delta_{ir}^{t+1}.$$
(S4)

Further, the difference between d_{ir}^{t+1} and d_{ir}^{t} is given as:

$$\left(d_{ir}^{t+1} - d_{ir}^{t} \right)^{2} = \left(\left(\eta - 1 \right) \alpha_{i} \left(\left(\hat{u}_{ir}^{t+1} - u_{ir}^{t+1} \right) - \left(\hat{u}_{ir}^{t} - u_{ir}^{t} \right) \right) - \alpha_{i} \left(\left(u_{ir}^{t+1} - u_{ir}^{t} \right) - \left(u_{ir}^{t} - u_{ir}^{t-1} \right) \right)$$

$$- \rho \left(\left(\hat{u}_{ir}^{t+1} - \hat{u}_{ir}^{t} \right) - \left(\hat{u}_{ir}^{t} - \hat{u}_{ir}^{t-1} \right) \right) - \left(\Delta_{ir}^{t+1} - \Delta_{ir}^{t} \right) \right)^{2}.$$
(S5)

With the inequality $(a-b-c-d)^2 \le 4(a^2+b^2+c^2+d^2)$, we have:

$$\left(d_{ir}^{t+1} - d_{ir}^{t}\right)^{2} \leq 4(\eta - 1)^{2} \alpha_{i}^{2} \left(\left(\hat{u}_{ir}^{t+1} - u_{ir}^{t+1}\right) - \left(\hat{u}_{ir}^{t} - u_{ir}^{t}\right)\right)^{2} + 4\alpha_{i}^{2} \left(\left(u_{ir}^{t+1} - u_{ir}^{t}\right) - \left(u_{ir}^{t} - u_{ir}^{t-1}\right)\right)^{2} + 4\rho^{2} \left(\left(\hat{u}_{ir}^{t+1} - \hat{u}_{ir}^{t}\right) - \left(\hat{u}_{ir}^{t} - \hat{u}_{ir}^{t-1}\right)\right)^{2} + 4\left(\Delta_{ir}^{t+1} - \Delta_{ir}^{t}\right)^{2}.$$
(S6)

With (S6), we implement (S1) by using the inequality $(a-b)^2 \le 2(a^2+b^2)$. Note that applying the same principle, we can get

$$\left(h_{ir}^{t+1} - h_{ir}^{t}\right)^2 \le \varphi_h$$
 and $\left(l_{kr}^{t+1} - l_{kr}^{t}\right)^2 \le \varphi_l$. Hence, **Lemma 1** stands.

(b) Proof of Step 2: *Lemma* 1 has been proved, then we perform Step 2. For simplicity, we first introduce seven functions and intermediate variables to express similar structures as follows:

$$F_{1}(\hat{u}_{ir}, u_{ir}, \alpha_{i}) = \left(\frac{8((\eta - 1)^{2}\alpha_{i}^{2} + \rho^{2})}{\eta\alpha_{i}} - \frac{1}{2}\left(\sum_{i \in \Lambda(i)} (\hat{v}_{jr}^{t}\hat{w}_{kr}^{t})^{2} + \alpha_{i} + \rho\right)\right) (\hat{u}_{ir}^{t+1} - \hat{u}_{ir}^{t})^{2} + \left(\frac{8\rho^{2}}{\eta\alpha_{i}}\right) (\hat{u}_{ir}^{t} - \hat{u}_{ir}^{t-1})^{2} = F_{1}^{I}.$$
(S7)

With (S7), we define a function expression for $\{\hat{u}_{ir}, u_{ir}, \alpha_i\}$. Note that the above three variables are related to the *I*-dimension of the tensor, and we can get F_1^J and F_1^K for $\{\hat{v}_{jr}, v_{jr}, \beta_j\}$ in *J*-dimension and $\{\hat{w}_{kr}, w_{kr}, \delta_k\}$ in *K*-dimension by adopting the

similar expression. Note that for the term $\sum_{i \in \Lambda(i)} (\hat{v}_{jr}^t \hat{w}_{kr}^J)^2$ in *I*-dimension, its expression for the *J*-dimension and *K*-dimension are $\sum_{j \in \Lambda(j)} (\hat{u}_{ir}^t \hat{w}_{kr}^J)^2$ and $\sum_{k \in \Lambda(k)} (\hat{u}_{ir}^t \hat{v}_{jr}^J)^2$, respectively. Hence, we define the first intermediate variable $A_1 = F_1^I + F_1^J + F_1^K$. Next the second function expression is as follows:

$$F_{2}(\hat{u}_{ir}, u_{ir}, \alpha_{i}, \Delta_{ir}) = \left(\left(\frac{\alpha_{i}}{2} - \frac{8\alpha_{i}((\eta - 1)^{2} + 1)}{\eta} \right) (\hat{u}_{ir}^{t+1} - \hat{u}_{ir}^{t})^{2} - \frac{8\alpha_{i}(\hat{u}_{ir}^{t} - \hat{u}_{ir}^{t-1})^{2}}{\eta} - \frac{4(\Delta_{ir}^{t+1} - \Delta_{ir}^{t})^{2}}{\eta \alpha_{i}} \right) = F_{2}^{I}.$$
 (S8)

Similarly, with (S8), we get F_2^I, F_2^J, F_2^K and thus the second intermediate variable $A_2 = F_2^I + F_2^J + F_2^K$

The third function expression is given as follows:

$$F_{3}(\hat{u}_{ir}, u_{ir}, \alpha_{i}) = \sum_{i \in I} \alpha_{i} \left(\sum_{f_{i}=1}^{r-1} (\hat{u}_{if_{1}}^{t+1} - u_{if_{1}}^{t+1})^{2} + \sum_{f_{2}=r}^{R} (\hat{u}_{if_{2}}^{t} - u_{if_{2}}^{t})^{2} \right) = F_{3}^{I}.$$
 (S9)

With (S9), the third intermediate variable is defined as $A_3 = F_3^I + F_3^J + F_3^K$. Similarly, the fourth function expression is:

$$F_{4}(\hat{u}_{ir}) = \frac{\rho}{2} \left(\sum_{i \in I} \left(\sum_{f_{1}=1}^{r-1} \left(\hat{u}_{if_{1}}^{t+1} - \hat{u}_{if_{1}}^{t} \right)^{2} + \sum_{f_{2}=r}^{R} \left(\hat{u}_{if_{2}}^{t} - \hat{u}_{if_{2}}^{t-1} \right)^{2} \right) \right) = F_{4}^{I}.$$
(S10)

Correspondingly, the fourth intermediate variable is $A_4 = F_4^I + F_4^J + F_4^K$. The next fifth function expression is given as follows:

$$F_{s}(\hat{u}_{ir}, u_{ir}, \alpha_{t}, \Delta_{ir}) = \sum_{i \in I} \left(\sum_{f_{1}=2}^{r-1} \left(\alpha_{i} \left(u_{if_{1}}^{t+1} - u_{if_{1}}^{t} \right) + \Delta_{if_{1}}^{t+1} + \rho \left(\hat{u}_{if_{1}}^{t+1} - \hat{u}_{if_{1}}^{t} \right) \right) \left(u_{if_{1}}^{t+1} - \hat{u}_{if_{1}}^{t+1} \right) \right) + \sum_{i \in I} \left(\sum_{f_{2}=r}^{R} \left(\alpha_{i} \left(u_{if_{2}}^{t} - u_{if_{2}}^{t-1} \right) + \Delta_{if_{2}}^{t} + \rho \left(\hat{u}_{if_{2}}^{t} - \hat{u}_{if_{2}}^{t-1} \right) \right) \left(u_{if_{2}}^{t} - u_{if_{2}}^{t} \right) \right) = F_{s}^{I}.$$
(S11)

With (S11), the fifth intermediate variable is $A_5 = F_5^I + F_5^J + F_5^K$.

A functional expression is given as:

$$F_{6}(\hat{u}_{ir}, u_{ir}, d_{ir}) = \sum_{i \in I} \left(\sum_{f_{i}=1}^{r-1} d_{if_{i}}^{t+1} \left(\hat{u}_{if_{i}}^{t+1} - u_{if_{i}}^{t+1} \right) + \sum_{f_{2}=r}^{R} d_{if_{2}}^{t} \left(\hat{u}_{if_{2}}^{t} - u_{if_{2}}^{t} \right) \right) = F_{6}^{I}.$$
(S12)

With (S12), we can get the *J*-dimension and *K*-dimension versions, F_6^J and F_6^K . Hence, the sixth intermediate variable is $A_6 = F_6^I + F_6^J + F_6^K$. Finally, a functional expression for the bias is given as:

$$F_{6}(\hat{u}_{ir}, u_{ir}, d_{ir}) = \sum_{i \in I} \left(\sum_{f_{i}=1}^{r-1} d_{if_{i}}^{t+1} \left(\hat{u}_{if_{i}}^{t+1} - u_{if_{i}}^{t+1} \right) + \sum_{f_{2}=r}^{R} d_{if_{2}}^{t} \left(\hat{u}_{if_{2}}^{t} - u_{if_{2}}^{t} \right) \right) = F_{6}^{I}.$$
(S13)

With (S13), it defines a function expression for $\{\hat{a}_i, a_i, \sigma_i, o_i\}$ and is related to the *I*-dimension. We can obtain expressions about the *J*-dimension and *K*-dimension by similar expressions for $\{\hat{c}_j, c_j, \phi_j, s_j\}$ and $\{\hat{e}_k, e_k, \psi_k, z_k\}$, i.e., F_7^J and F_7^K . Therefore, we get the last intermediate variable as $A_7 = F_7^J + F_7^J + F_7^K$.

Lemma 2. If the following inequality is satisfied:

$$A_1 \le A_2. \tag{S14}$$

Then the following inequalities holds:

$$L_{p}\left(\mathcal{D}_{1}^{t+1} \cup \mathcal{D}_{2}^{t+1} \cup \mathcal{D}_{3}^{t+1}\right) - L_{p}\left(\mathcal{D}_{1}^{t} \cup \mathcal{D}_{2}^{t} \cup \mathcal{D}_{3}^{t}\right) \leq 0. \tag{S15}$$

Note that we have:

$$L_{p}\left(\mathcal{D}_{1}^{t}\cup\mathcal{D}_{2}^{t}\cup\mathcal{D}_{3}^{t}\right)\geq0. \tag{S16}$$

With the following condition:

$$\eta \ge \frac{1}{2} - \frac{A_4 + A_5 + A_7}{A_3}.\tag{S17}$$

Proof 2. By expanding the second-order Taylor expansion of L_p at the point $\mathcal{D}_1^{t+1} \cup \mathcal{D}_2^t \cup \mathcal{D}_3^t$, we can get the following equality:

$$L_{p}\left(D_{1}^{t+1} \cup D_{2}^{t} \cup D_{3}^{t}\right) - L_{p}\left(D_{1}^{t} \cup D_{2}^{t} \cup D_{3}^{t}\right)^{(11)} = -\frac{1}{2} \left(\sum_{y_{ik} \in \Lambda(i)} \left(\hat{v}_{jr}^{t} \hat{w}_{kr}^{t}\right)^{2} + \alpha_{i} + \rho\right) \left(\hat{u}_{ir}^{t+1} - \hat{u}_{ir}^{t}\right)^{2} - \frac{1}{2} \left(\sum_{y_{ik} \in \Lambda(j)} \left(\hat{u}_{ir}^{t} \hat{w}_{kr}^{t}\right)^{2} + \beta_{j} + \rho\right) \left(\hat{v}_{jr}^{t+1} - \hat{v}_{jr}^{t}\right)^{2} - \frac{1}{2} \left(\sum_{y_{ik} \in \Lambda(i)} \left(\hat{u}_{ir}^{t} \hat{v}_{jr}^{t}\right)^{2} + \delta_{k} + \rho\right) \left(\hat{w}_{kr}^{t+1} - \hat{w}_{kr}^{t}\right)^{2}.$$
(S18)

Note that the equality (S18) holds when the first-order terms in (9) are equal zero. Therefore, the difference between $L_n(\mathcal{D}_1^{t+1} \cup \mathcal{D}_2^{t+1} \cup \mathcal{D}_3^t)$ and $L_n(\mathcal{D}_1^{t+1} \cup \mathcal{D}_3^t)$ is given as:

$$L_{p}\left(D_{1}^{t+1} \cup D_{2}^{t+1} \cup D_{3}^{t}\right) - L_{p}\left(D_{1}^{t+1} \cup D_{2}^{t} \cup D_{3}^{t}\right)^{(9)} \leq -\frac{\alpha_{i}}{2}\left(u_{ir}^{t} - u_{ir}^{t+1}\right)^{2} - \frac{\beta_{j}}{2}\left(v_{jr}^{t} - v_{jr}^{t+1}\right)^{2} - \frac{\delta_{k}}{2}\left(w_{kr}^{t} - w_{kr}^{t+1}\right)^{2}. \tag{S19}$$

Note that the inequality (S19) considers the optimal condition of (11) and the projection rule of (14), the first-order terms equal to or less than zero are omitted. Therefore, the difference between $L_p(\mathcal{D}_1^{t+1} \cup \mathcal{D}_2^{t+1} \cup \mathcal{D}_3^{t+1})$ and $L_p(\mathcal{D}_1^{t+1} \cup \mathcal{D}_2^{t+1} \cup \mathcal{D}_3^t)$ is:

$$L_{p}\left(D_{1}^{t+1} \cup D_{2}^{t+1} \cup D_{3}^{t+1}\right) - L_{p}\left(D_{1}^{t+1} \cup D_{2}^{t+1} \cup D_{3}^{t}\right)^{(11),(14)} = \frac{\left(d_{ir}^{t+1} - d_{ir}^{t}\right)^{2}}{\eta\alpha_{i}} + \frac{\left(h_{jr}^{t+1} - h_{jr}^{t}\right)^{2}}{\eta\beta_{j}} + \frac{\left(l_{kr}^{t+1} - l_{kr}^{t}\right)^{2}}{\eta\delta_{k}}$$

$$\stackrel{\text{(S1)}}{\leq \frac{\varphi_{d}}{\eta\alpha_{i}} + \frac{\varphi_{h}}{\eta\beta_{j}} + \frac{\varphi_{l}}{\eta\delta_{k}},$$
(S20)

where the equality depends on (11) and (15), and the inequality follows Lemma 1. With (S18)-(S20), we have:

$$L_{p}\left(D_{1}^{t+1} \cup D_{2}^{t+1} \cup D_{3}^{t+1}\right) - L_{p}\left(D_{1}^{t} \cup D_{2}^{t} \cup D_{3}^{t}\right) \le A_{1} - A_{2}. \tag{S21}$$

Therefore, with (S14), the following inequality evidently holds

$$L_{p}\left(D_{1}^{t+1} \cup D_{2}^{t+1} \cup D_{3}^{t+1}\right) - L_{p}\left(D_{1}^{t} \cup D_{2}^{t} \cup D_{3}^{t}\right) \le 0. \tag{S22}$$

Hence, the proximal-incorporated augmented Lagrangian of (7) is non-increasing. Moreover, after the t-th iteration, (7) is formulated as:

$$L_{p}\left(D_{1}^{t} \cup D_{2}^{t} \cup D_{3}^{t}\right) = \frac{1}{2} \sum_{y_{ijk} \in \Lambda} \left(y_{ijk} - \sum_{f_{1}=1}^{r-1} \hat{u}_{if_{1}}^{t+1} \hat{v}_{jf_{1}}^{t+1} \hat{w}_{kf_{1}}^{t+1} - \sum_{f_{2}=r}^{R} \hat{u}_{if_{2}}^{t} \hat{v}_{jf_{2}}^{t} \hat{w}_{kf_{2}}^{t} - \hat{a}_{i}^{t} - \hat{c}_{j}^{t} - \hat{e}_{k}^{t}\right)^{2} + \frac{A_{3}}{2} + A_{4} + A_{6} + A_{7}. \tag{S23}$$

By substituting (S4) into (S23), the following deduction is achieved:

$$L_{p}\left(D_{1}^{t} \cup D_{2}^{t} \cup D_{3}^{t}\right) = \frac{1}{2} \sum_{y_{ijk} \in \Lambda} \left(y_{ijk} - \sum_{f_{1}=1}^{r-1} \hat{u}_{if_{1}}^{t+1} \hat{v}_{jf_{1}}^{t+1} \hat{w}_{kf_{1}}^{t+1} - \sum_{f_{2}=r}^{R} \hat{u}_{if_{2}}^{t} \hat{v}_{jf_{2}}^{t} \hat{w}_{kf_{2}}^{t} - \hat{a}_{i}^{t} - \hat{c}_{j}^{t} - \hat{e}_{k}^{t}\right)^{2} + \frac{(2\eta - 1)A_{3}}{2} + A_{4} + A_{5} + A_{7}. \tag{S24}$$

With (S17) and (S24), (S16) is fulfilled, i.e., (7) is lower-bounded. Therefore, *Lemma* 2 holds.

(c) Proof of Step 3: Considering $U \ge 0$, $V \ge 0$, and $W \ge 0$, the proximal augmented Lagrangian of (7) is extended as:

$$L_{p}^{\#} = L_{p} - tr(GU) - tr(MV) - tr(PW) = L_{p} - \sum_{i \in I} \sum_{r=1}^{R} g_{ir} u_{ir} - \sum_{i \in J} \sum_{r=1}^{R} m_{jr} v_{jr} - \sum_{k \in K} \sum_{r=1}^{R} p_{kr} w_{kr},$$
 (S25)

where $tr(\cdot)$ calculates the trace of an involved matrix. G, M, and P denote Lagrangian multiplier for PNL's nonnegative constraint. Then, **Theorem 1** is presented:

Theorem 1. If the following conditions hold:

$$\begin{cases}
\frac{8((\eta - 1)^{2}(\alpha_{i})^{2} + \rho^{2})}{\eta \alpha_{i}} \neq -\frac{1}{2} \left(\sum_{y_{ijk} \in \Lambda(i)} (\hat{v}_{jr}^{i} \hat{w}_{kr}^{i})^{2} + \alpha_{i} + \rho \right) \\
\frac{8((\eta - 1)^{2}(\beta_{j})^{2} + \rho^{2})}{\eta \beta_{j}} \neq -\frac{1}{2} \left(\sum_{y_{ijk} \in \Lambda(j)} (\hat{u}_{ir}^{i} \hat{w}_{kr}^{j})^{2} + \beta_{j} + \rho \right) \\
\frac{8((\eta - 1)^{2}(\delta_{k})^{2} + \rho^{2})}{\eta \delta_{k}} \neq -\frac{1}{2} \left(\sum_{y_{ijk} \in \Lambda(k)} (\hat{u}_{ir}^{i} \hat{v}_{jr}^{i})^{2} + \delta_{k} + \rho \right) \\
\frac{\alpha_{i}}{2} \neq \frac{8\alpha_{i} ((\eta - 1)^{2} + 1)}{\eta}, \frac{\beta_{j}}{2} \neq \frac{8\beta_{j} ((\eta - 1)^{2} + 1)}{\eta}, \frac{\delta_{k}}{2} \neq \frac{8\delta_{k} ((\eta - 1)^{2} + 1)}{\eta} \\
\rho \neq 0, \eta \neq 0, \alpha_{i} \neq 0, \beta_{i} \neq 0, \delta_{k} \neq 0.
\end{cases} (S26)$$

With (11), the equilibrium point $\mathcal{D}_1^* \cup \mathcal{D}_2^* \cup \mathcal{D}_3^*$ of $\mathcal{D}_1 \cup \mathcal{D}_2 \cup \mathcal{D}_3$ is a KKT stationary point, and the following KKT conditions holds:

$$\hat{u}_{ir}^* - u_{ir}^* = 0, \hat{v}_{ir}^* - v_{ir}^* = 0, \hat{w}_{kr}^* - w_{kr}^* = 0,$$
(S27a)

$$\frac{\partial L_{p}^{\#}}{\partial \hat{u}_{ir}}\Big|_{\hat{u}_{\mu}=\hat{u}_{ir}^{*}} = \Delta_{ir}^{*} + d_{ir}^{*} = 0; \frac{\partial L_{p}^{\#}}{\partial \hat{v}_{jr}}\Big|_{\hat{v}_{jr}=\hat{v}_{jr}^{*}} = \Delta_{jr}^{*} + h_{jr}^{*} = 0; \frac{\partial L_{p}^{\#}}{\partial \hat{w}_{kr}}\Big|_{\hat{w}_{kr}=\hat{w}_{kr}^{*}} = \Delta_{kr}^{*} + l_{kr}^{*} = 0, \tag{S27b}$$

$$\frac{\partial L_{p}^{\#}}{\partial u_{ir}}\Big|_{v_{r}=v_{r}^{*}} = -\alpha_{i} \left(\hat{u}_{ir}^{*} - u_{ir}^{*} + \frac{d_{ir}^{*}}{\alpha_{i}} \right) - g_{ir}^{*} = 0; \frac{\partial L_{p}^{\#}}{\partial v_{jr}}\Big|_{v_{r}=v_{r}^{*}} = -\beta_{j} \left(\hat{v}_{jr}^{*} - v_{jr}^{*} + \frac{h_{jr}^{*}}{\beta_{j}} \right) - m_{jr}^{*} = 0; \frac{\partial L_{p}^{\#}}{\partial w_{kr}}\Big|_{v_{r}=v_{r}^{*}} = -\delta_{k} \left(\hat{w}_{kr}^{*} - w_{kr}^{*} + \frac{I_{kr}^{*}}{\delta_{k}} \right) - p_{kr}^{*} = 0, \quad (S27c)$$

$$g_{ir}^* u_{ir}^* = 0, m_{ir}^* v_{ir}^* = 0, p_{kr}^* w_{kr}^* = 0,$$
 (S27d)

$$u_{ir}^* \ge 0, v_{ir}^* \ge 0, w_{kr}^* \ge 0,$$
 (S27e)

$$g_{ir}^* \ge 0, m_{ir}^* \ge 0, p_{kr}^* \ge 0.$$
 (S27f)

Proof 3. With **Lemma 2**, the following inequality holds since $t \to \infty$:

$$L_{p}\left(\mathcal{D}_{1}^{t+1} \cup \mathcal{D}_{2}^{t+1} \cup \mathcal{D}_{3}^{t+1}\right) - L_{p}\left(\mathcal{D}_{1}^{t} \cup \mathcal{D}_{2}^{t} \cup \mathcal{D}_{3}^{t}\right) \leq A_{1} - A_{2} \to 0. \tag{S28}$$

Based on (S24) and (S28), we can get:

$$\begin{cases}
\lim_{t \to \infty} \left(\hat{u}_{ir}^{t+1} - \hat{u}_{ir}^{t} \right) \to 0, \lim_{t \to \infty} \left(u_{ir}^{t+1} - u_{ir}^{t} \right) \to 0, \lim_{t \to \infty} \left(\Delta_{ir}^{t+1} - \Delta_{ir}^{t} \right) \to 0 \\
\lim_{t \to \infty} \left(\hat{v}_{jr}^{t+1} - \hat{v}_{jr}^{t} \right) \to 0, \lim_{t \to \infty} \left(v_{jr}^{t+1} - v_{jr}^{t} \right) \to 0, \lim_{t \to \infty} \left(\Delta_{jr}^{t+1} - \Delta_{jr}^{t} \right) \to 0 \\
\lim_{t \to \infty} \left(\hat{w}_{kr}^{t+1} - \hat{w}_{kr}^{t} \right) \to 0, \lim_{t \to \infty} \left(w_{kr}^{t+1} - w_{kr}^{t} \right) \to 0, \lim_{t \to \infty} \left(\Delta_{kr}^{t+1} - \Delta_{kr}^{t} \right) \to 0.
\end{cases} \tag{S29}$$

With (S1), we infer that:

$$\lim_{t \to \infty} \left(d_{ir}^{t+1} - d_{ir}^{t} \right) \to 0; \lim_{t \to \infty} \left(h_{jr}^{t+1} - h_{jr}^{t} \right) \to 0; \lim_{t \to \infty} \left(l_{kr}^{t+1} - l_{kr}^{t} \right) \to 0.$$
 (S30)

According to (15) and (S30), (S27a) holds. (11) can be reconstructed as

$$\begin{cases}
\left(\hat{u}_{ir}^{t} - \hat{u}_{ir}^{t+1}\right) \left(\sum_{y_{ijk} \in \Lambda(i)} \hat{v}_{jr}^{t} \hat{w}_{kr}^{t} + \alpha_{i} + \rho\right) = \Delta_{ir}^{t+1} + \alpha_{i} \left(\hat{u}_{ir}^{t} - u_{ir}^{t}\right) + d_{ir}^{t} \\
\left(\hat{v}_{jr}^{t} - \hat{v}_{jr}^{t+1}\right) \left(\sum_{y_{ijk} \in \Lambda(j)} \hat{u}_{ir}^{t} \hat{w}_{kr}^{t} + \beta_{j} + \rho\right) = \Delta_{jr}^{t+1} + \beta_{j} \left(\hat{v}_{jr}^{t} - v_{jr}^{t}\right) + h_{jr}^{t} \\
\left(\hat{w}_{kr}^{t} - \hat{w}_{kr}^{t+1}\right) \left(\sum_{y_{ijk} \in \Lambda(k)} \hat{u}_{ir}^{t} \hat{v}_{jr}^{t} + \delta_{k} + \rho\right) = \Delta_{kr}^{t+1} + \delta_{k} \left(\hat{w}_{kr}^{t} - w_{kr}^{t}\right) + l_{kr}^{t}.
\end{cases}$$
(S31)

Note that (S27b) holds via (S27a), (S29), and (S31). Further, the following inference holds by applying the partial derivation of $L_p^{\#}$ to u_{ir} , v_{jr} , and w_{kr} :

$$\begin{cases} \frac{\partial L_{p}^{\#}}{\partial u_{ir}} = -\alpha_{i} \left(\hat{u}_{ir} - u_{ir} + \frac{d_{ir}}{\alpha_{i}} \right) - g_{ir} = 0 \\ \frac{\partial L_{p}^{\#}}{\partial v_{jr}} = -\beta_{j} \left(\hat{v}_{jr} - v_{jr} + \frac{h_{jr}}{\beta_{j}} \right) - m_{jr} = 0 \Rightarrow \begin{cases} g_{ir} = -\alpha_{i} \left(\hat{u}_{ir} - u_{ir} + \frac{d_{ir}}{\alpha_{i}} \right) \\ m_{jr} = -\beta_{j} \left(\hat{v}_{jr} - v_{jr} + \frac{h_{jr}}{\beta_{j}} \right) \\ \frac{\partial L_{p}^{\#}}{\partial w_{kr}} = -\delta_{k} \left(\hat{t}_{kr} - w_{kr} + \frac{l_{kr}}{\delta_{k}} \right) - p_{kr} = 0 \end{cases}$$

$$(S32)$$

With (S32), g_{ir} , m_{jr} , and p_{kr} are implicitly updated and generate their limits g_{ir}^* , m_{jr}^* , p_{kr}^* . Considering (S26)'s KKT conditions that $\forall g_{ir}, u_{ir}: g_{ir}u_{ir} = 0$, $\forall m_{jr}, v_{jr}: m_{jr}v_{jr} = 0$, and $\forall p_{kr}, w_{kr}: p_{kr}w_{kr} = 0$, we have:

$$\begin{cases}
-\alpha_{i}u_{ir}\left(\hat{u}_{ir} - u_{ir} + \frac{d_{ir}}{\alpha_{i}}\right) = 0 \\
-\beta_{j}v_{jr}\left(\hat{v}_{jr} - v_{jr} + \frac{h_{jr}}{\beta_{j}}\right) = 0 \Rightarrow \begin{cases}
u_{ir} = \hat{u}_{ir} + \frac{d_{ir}}{\alpha_{i}} \\
v_{jr} = \hat{v}_{jr} + \frac{h_{jr}}{\beta_{j}} \\
-\delta_{k}w_{kr}\left(\hat{w}_{kr} - w_{kr} + \frac{l_{kr}}{\delta_{k}}\right) = 0
\end{cases}$$
(S33)

Hence, we can update u_{ir} , v_{jr} , and w_{kr} by (S33). Additionally, the nonnegative truncation is applied to u_{ir} , v_{jr} , and w_{kr} to ensure its nonnegativity and (S26)'s KKT conditions, it's given as:

$$u_{ir} = \max\left(0, \hat{u}_{ir} + \frac{d_{ir}}{\alpha_i}\right); v_{jr} = \max\left(0, \hat{v}_{jr} + \frac{h_{jr}}{\beta_j}\right); w_{kr} = \max\left(0, \hat{w}_{kr} + \frac{l_{kr}}{\delta_k}\right).$$
 (S34)

Note that the update rules of (14) and (S34) are equivalent. When $t \to \infty$, (S27c)-(S27e) are hold via (14) and (S32)-(S34).

Hence, considering (S27e)'s conditions that $g_{ir}^* \ge 0$, $m_{ir}^* \ge 0$, and $p_{kr}^* \ge 0$, there are two cases as:

• If $u_{ir}^* = 0$, $v_{jr}^* = 0$, and $w_{kr}^* = 0$, the following inequality holds according to (14):

$$\hat{u}_{ir}^* + \frac{d_{ir}^*}{\alpha_i} \le 0; \hat{v}_{jr}^* + \frac{h_{jr}^*}{\beta_i} \le 0; \hat{w}_{kr}^* + \frac{l_{kr}^*}{\delta_k} \le 0, \tag{S35}$$

which indicates that $g_{ir}^* \ge 0$, $m_{jr}^* \ge 0$, and $p_{kr}^* \ge 0$ by collectively analyzing (S32);

• If $u_{ir}^* > 0$, $v_{ir}^* > 0$, and $w_{kr}^* > 0$, the following equality is inferred according to (14):

$$u_{ir}^* = \hat{u}_{ir}^* + \frac{d_{ir}^*}{\alpha_i}; v_{jr}^* = \hat{v}_{jr}^* + \frac{h_{jr}^*}{\beta_j}; w_{kr}^* = \hat{w}_{kr}^* + \frac{l_{kr}^*}{\delta_k}.$$
 (S36)

With (S32) and (S36), $g_{ir}^* = 0$, $m_{jr}^* = 0$, and $p_{kr}^* = 0$. Therefore, (S27f) holds and **Theorem 1** holds. Based on the above inferences, the implemented steps 1-3 demonstrate that the PNL's convergence is theoretically guaranteed.

III. ADDITIONAL PROCEDURES

Fig. S1. An example of three threads for PNL's parallel design.

Procedu	ıre: Parallel_update_Ŵ	
Input:	$\hat{\boldsymbol{u}}_r, \hat{\boldsymbol{v}}_r, \hat{\boldsymbol{w}}_r, \boldsymbol{u}_r, \boldsymbol{d}_r, \boldsymbol{ au}_{(p)}, \Lambda, K, Q$	
Output:	Updated Ŵ, W, L	
Operati	on	Cost
1. Init	$\mathbf{W}_{-}\mathbf{U}^{ K \times R}, \mathbf{W}_{-}\mathbf{D}^{ K \times R} = 0$	$\Theta(2\times N\times R)$
2. for ea	ch $q \in Q$ *Parallelization*	imes Q
3. fo	or each $r=1$ to R do	×R
4.	for each $y_{ijk} \in \Lambda_q$	$\times \Lambda_q $
5.	$err = y_{ijk} - \widetilde{y}_{ijk}$	$\Theta(1)$
6.	$\mathbf{W}_{\mathbf{U}_{kr}} + = \hat{u}_{ir} \hat{v}_{jr} (err + \hat{u}_{ir} \hat{v}_{jr} \hat{w}_{kr})$	$\Theta(1)$
7.	$\mathbf{W}_{\mathbf{D}_{kr}} + = (\hat{u}_{ir}\hat{v}_{jr})^2$	$\Theta(1)$
8.	for each $k \in K_q$	$ imes K_q $
9.	$\hat{w}_{kr} = \frac{\mathbf{W}_{-}\mathbf{U}_{kr} + \lambda_{(p)} \Lambda_{(k)} w_{kr} - l_{kr} + \rho_{(p)}}{\mathbf{W}_{-}\mathbf{D}_{kr} + \lambda_{(p)} \Lambda_{(k)} + \rho_{(p)}}$	$\frac{\hat{w}_{kr}^t}{\Theta(1)}$
10.	$w_{kr} = \max\left(0, \hat{w}_{kr} + \frac{l_{kr}}{\lambda_{(p)} \Lambda_{(k)} }\right)$	Θ(1)
11.	$l_{kr} += \eta_{(p)} \lambda_{(p)} \mid \Lambda_{(k)} \mid (\hat{w}_{kr} - w_{kr})$	$\Theta(1)$

Proced	ure: Parallel_update_ê	
Input:	$\hat{m{e}},m{e},m{z},m{ au}_{(p)},\Lambda,K,Q$	
Outpu	t: Updated ê, e, z	
Operat	tion	Cost
1. Init	$\mathbf{E}_{-}\mathbf{U}^{ N } = 0$	$\Theta(N)$
2. for e	$ach \ q \in Q *Parallelization*$	$\times Q$
3.	for each $y_{ijk} \in \Lambda_q$	$\times \Lambda_q $
4.	$err = y_{ijk} - \tilde{y}_{ijk}$	$\Theta(1)$
5.	$\mathbf{E}_{\mathbf{U}_{k}} + = err + \hat{e}_{k}$	$\Theta(1)$
6.	for each $k \in K_q$	$ imes K_q $
7.	$\hat{e}_{k} = \frac{\mathbf{E}_{-}\mathbf{U}_{k} + \lambda_{(p)} \Lambda_{(k)} e_{k} - z_{k} + \rho_{(p)} \hat{e}_{k}^{t}}{ \Lambda_{(k)} + \lambda_{(p)} \Lambda_{(k)} + \rho_{(p)}}$	Θ(1)
9.	$e_{_k} = \max(0, \hat{e}_{_k} + \frac{z_{_k}}{\lambda_{_{(P)}} \mid \Lambda_{_{(k)}} \mid})$	Θ(1)
10.	$z_{\scriptscriptstyle k} += \eta_{\scriptscriptstyle (p)} \lambda_{\scriptscriptstyle (p)} \mid \Lambda_{\scriptscriptstyle (k)} \mid (\hat{e}_{\scriptscriptstyle k} - e_{\scriptscriptstyle k})$	$\Theta(1)$

IV. EXPERIMENTAL RESULTS

TABLE S1

P²SO PARAMETERS SETTINGS

Parameters	Settings
P	5
ω	0.724
c_1	2
c_2	2
r_1	random number $\in [0, 1]$
r_2	random number $\in [0, 1]$
μ	1
$[\widecheck{ ho}, \widehat{ ho}]$	[10, 100]
$[\widecheck{\lambda}, \widehat{\lambda}]$	[0.1, 1]
$[\widecheck{\eta}, \widehat{\eta}]$	[0.1, 1]
$[\widecheck{arphi}_ ho, \widehat{arphi}_ ho]$	$[-0.2\times(\widehat{\rho}-\widecheck{\rho}),0.2\times(\widehat{\rho}-\widecheck{\rho})]$
$[\widecheck{\nu}_{\!\scriptscriptstyle \lambda}, \widehat{\nu}_{\!\scriptscriptstyle \lambda}]$	$[-0.2\times(\widehat{\lambda}-\widecheck{\lambda}),0.2\times(\widehat{\lambda}-\widecheck{\lambda})]$
$[\widecheck{\mathcal{o}}_{\eta}, \widehat{\mathcal{o}}_{\eta}]$	$[-0.2\times \left(\widehat{\eta}-\widecheck{\eta}\right),0.2\times \left(\widehat{\eta}-\widecheck{\eta}\right)]$

TABLE S2
DATASET DETAILS

Datasets	Nodes	Time Slots	Density	Entries
D1	16428	124	6.85×10 ⁻⁷	22938
D2	36055	149	3.06×10^{-7}	59334
D3	60500	168	1.49×10^{-7}	91978
D4	90971	248	7.85×10^{-8}	161136
D5	98022	360	6.08×10^{-8}	210354
D6	240114	496	1.99×10 ⁻⁸	570820
D7	426840	620	7.88×10 ⁻⁹	891063
D8	460891	720	7.25×10 ⁻⁹	1109218

TABLE S3
THE OPTIMAL HYPER-PARAMETERS BY MANUAL TUNING

Datasets -	Optima	al Hyper-param	neters
Datasets	ho	λ	η
D 1	90	0.3	0.2
D2	100	0.3	0.1
D3	90	0.9	0.1
D4	100	0.1	0.3
D5	80	1.0	0.1
D6	100	0.1	0.3
D7	80	0.4	0.2
D8	90	0.2	0.3

 $TABLE\ S4$ The performance of PNL with hyper-parameter adaptation and manual tuning

Datamata		Estimation	Accuracy		Iteration	Count		Time Cos	st (Secs)
Datasets		Adaptive	Manual	•	Adaptive	Manual	•	Adaptive	Manual
	RMSE	1.0694±0.0156	1.0711 ± 0.0013	I.RMSE*	2±0	10±0	T.RMSE**	2.756±0.006	1267.168
D1	MAE	0.8760 ± 0.0095	0.8793 ± 0.0024	I.MAE	3±0	14 ± 1	T.MAE	3.113 ± 0.010	1744.036
D2	RMSE	0.7703 ± 0.0030	0.7736 ± 0.0010	I.RMSE	8±2	40 ± 1	T.RMSE	7.568±1.178	6200.060
DZ	MAE	0.6091 ± 0.0020	0.6097 ± 0.0011	I.MAE	20±2	113±4	T.MAE	19.39±1.343	17515.170
D3	RMSE	0.8326 ± 0.0014	0.8345 ± 0.0007	I.RMSE	6±1	31 ± 1	T.RMSE	11.10±1.578	5798.217
DS	MAE	0.6789 ± 0.0011	0.6792 ± 0.0004	I.MAE	17±1	90±2	T.MAE	28.07±1.566	16833.534
D4	RMSE	0.7583 ± 0.0013	0.7615 ± 0.0004	I.RMSE	6±1	33 ± 1	T.RMSE	15.83±2.833	7003.429
D4	MAE	0.6113 ± 0.0007	0.6131 ± 0.0003	I.MAE	12±2	71 ± 2	T.MAE	31.51±3.400	15067.985
D5	RMSE	0.7064 ± 0.0011	0.7083 ± 0.0005	I.RMSE	9±2	34 ± 1	T.RMSE	27.06±6.592	12229.457
DS	MAE	0.5357 ± 0.0008	0.5359 ± 0.0005	I.MAE	21±1	94 ± 2	T.MAE	64.92±7.405	33810.853
D6	RMSE	0.6724 ± 0.0021	0.6750 ± 0.0003	I.RMSE	8±2	54±1	T.RMSE	60.85 ± 7.778	63636.940
Du	MAE	0.4918 ± 0.0007	0.4928 ± 0.0002	I.MAE	30 ± 2	138 ± 2	T.MAE	221.6±12.62	16267.738
D 7	RMSE	0.6019 ± 0.0014	0.6020 ± 0.0002	I.RMSE	8±2	38 ± 1	T.RMSE	122.2 ± 13.01	120227.394
D/	MAE	0.3966 ± 0.0009	0.3975 ± 0.0002	I.MAE	31±3	119 ± 2	T.MAE	486.9±21.63	397994.657
D8	RMSE	0.6919 ± 0.0020	0.6940 ± 0.0002	I.RMSE	6±1	40 ± 0	T.RMSE	101.2±15.55	171180.498
	MAE	0.4693±0.0006	0.4706 ± 0.0001	I.MAE	20±3	93±1	T.MAE	309.2±26.89	397994.657

^{*} Iteration Count in RMSE and also applies to the MAE; ** Time Cost in RMSE and also applies to the MAE.

TABLE S5 MODEL DETAILS

Models	Descriptions
M1	The proposed model in this paper.
M2	A multi-dimensional tensor decomposition model [14] based on the CPD framework that employs the gradient descent algorithms and alternating least square to train the desired latent features.
М3	A robust tensor model [15] that evaluates the gap between the predicted and true values via Cauchy Loss and provides accurate predictions.
M4	A biased nonnegative tensor factorization model that incorporates biases into the CPD framework and uses a nonnegative update method to maintain data nonnegativity.
M5	An integrated multi-linear algebra model [16] that achieves effective estimation by combining tensor decomposition and reconstruction optimization algorithms.
M6	An Adam-incorporated LFT model that adopts the Adam algorithm to train the desired model parameters.
M7	A temporal-aware latent factor analysis model, its objective function combines temporal effects to effectively describes temporal patterns of dynamic data. Its input is a set of matrices derived from a three-order tensor split by the temporal dimension.
M8	A graph convolutional network (GCN) model [17], which uses a light graph convolutional layer to adjust the normalization process of neighborhood aggregation, thereby achieving a balance between model accuracy and novelty Moreover, it gets graph slices by splitting the DCTN along the temporal dimension and considers them as inputs.

TABLE S6
HYPER-PARAMETERS SETTING OF M1-8

Datasets	M1	M2	M3	M4	M5	M6	M7	M8
D1	P ² SO	$\eta = 5 \times 10^{-2}$	$\eta = 10^{-5}$	$\lambda = 10^{-2}$	$\eta = 5 \times 10^{-3}$	$\alpha = 5 \times 10^{-3}, \beta_1 = 0.7$	$\eta = 10^{-2}$	$K=3, \eta=1, \lambda=0.5$
D1	Q = 16	$\lambda = 10^{-2}$	$\gamma=40$	$\lambda_b = 10^{-2}$	$\lambda = 5 \times 10^{-3}$	$\beta_2 = 0.999$	$\lambda = 10^{-2}$	mini-batch size=2048
D2	P^2SO	$\eta = 5 \times 10^{-2}$	$\eta = 10^{-6}$	$\lambda = 10^{-2}$	$\eta = 5 \times 10^{-3}$	$\alpha = 5 \times 10^{-3} \beta_1 = 0.7$	$\eta = 10^{-1}$	$K=3, \eta=1, \lambda=1$
DZ	Q = 16	$\lambda = 10^{-2}$	$\gamma=80$	$\lambda_b = 10^{-2}$	$\lambda = 5 \times 10^{-3}$	$\beta_2 = 0.999$	$\lambda = 10^{-1}$	mini-batch size=2048
D3	P^2SO	$\eta = 10^{-2}$	$\eta = 10^{-6}$	λ =0.5	$\eta = 5 \times 10^{-3}$	$\alpha = 5 \times 10^{-3}, \beta_1 = 0.7$	$\eta = 10^{-1}$	$K=3, \eta=1, \lambda=10^{-1}$
DS	Q = 16	$\lambda = 10^{-1}$	$\gamma=80$	$\lambda_b = 10^{-1}$	$\lambda = 10^{-2}$	$\beta_2 = 0.999$	$\lambda = 10^{-1}$	mini-batch size=2048
D4	P^2SO	$\eta = 10^{-2}$	$\eta = 10^{-5}$	λ =0.5	$\eta = 5 \times 10^{-3}$	$\alpha = 5 \times 10^{-2}, \beta_1 = 0.7$	$\eta = 10^{-1}$	$K=3, \eta=1, \lambda=1$
D4	Q = 16	$\lambda = 10^{-1}$	$\gamma=20$	$\lambda_b = 10^{-1}$	$\lambda = 10^{-2}$	$\beta_2 = 0.999$	$\lambda = 5 \times 10^{-2}$	mini-batch size=2048
D5	P^2SO	$\eta = 10^{-2}$	$\eta = 10^{-5}$	λ =0.5	$\eta = 5 \times 10^{-3}$	$\alpha = 5 \times 10^{-2}, \beta_1 = 0.5$	$\eta = 10^{-1}$	$K=3, \eta=5\times10^{-2}, \lambda=5\times10^{-2}$
DS	Q = 16	$\lambda = 10^{-1}$	$\gamma=40$	$\lambda_b = 10^{-1}$	$\lambda = 5 \times 10^{-3}$	$\beta_2 = 0.999$	$\lambda = 5 \times 10^{-2}$	mini-batch size=2048
D6	P^2SO	$\eta = 10^{-2}$	$\eta = 10^{-5}$	λ =0.5	$\eta = 5 \times 10^{-3}$	$\alpha = 5 \times 10^{-2}, \beta_1 = 0.5$	$\eta = 10^{-1}$	$K=3, \eta=1, \lambda=1$
Du	Q = 16	$\lambda = 0.5$	$\gamma=40$	$\lambda_b = 10^{-1}$	$\lambda = 5 \times 10^{-3}$	$\beta_2 = 0.999$	$\lambda = 5 \times 10^{-3}$	mini-batch size=2048
D 7	P^2SO	$\eta = 10^{-2}$	$\eta = 10^{-5}$	$\lambda = 10^{-1}$	$\eta = 10^{-3}$	$\alpha = 5 \times 10^{-3}, \beta_1 = 0.7$	$\eta = 10^{-1}$	$K=3, \eta=10^{-1}, \lambda=10^{-1}$
D/	Q = 16	$\lambda = 10^{-1}$	$\gamma=40$	$\lambda_b = 5 \times 10^{-2}$	$\lambda = 10^{-3}$	$\beta_2 = 0.999$	$\lambda = 5 \times 10^{-3}$	mini-batch size=2048
D8	P^2SO	$\eta = 5 \times 10^{-3}$	$\eta = 10^{-5}$	λ =0.5	$\eta = 10^{-3}$	$\alpha = 5 \times 10^{-3}, \beta_1 = 0.9$	$\eta = 10^{-1}$	$K=3, \eta=10^{-1}, \lambda=10^{-1}$
D6	<i>Q</i> =16	$\lambda = 10^{-3}$	$\gamma=40$	$\lambda_b=0.5$	$\lambda = 10^{-3}$	$\beta_2 = 0.999$	$\lambda = 5 \times 10^{-3}$	mini-batch size=2048

Fig. S2. Performance comparison of M1-8 on D1-8.

Fig. S3. Training curves of M1-7 in RMSE and MAE on D1-8.

TABLE S7
ESTIMATION ACCURACY OF ALL MODELS FOR RMSE AND MAE ON D1-8, INCLUDING WIN/LOSS COUNTS AND FRIEDMAN TEST

Datasets	M1	M2	М3	M4	M5	M6	M7	M8
_{D1} RMSE	1.0694±0.0156	1.1241±0.0017	1.0895±0.0005	1.0780 ± 0.0008	1.1363±0.0044	1.1222±0.0011	1.1549±0.0001	1.9658±0.0008
MAE MAE	0.8760 ± 0.0095	0.8811 ± 0.0016	0.8893 ± 0.0008	$0.9051 {\pm} 0.0008$	0.8867 ± 0.0047	0.8869 ± 0.0010	$1.0320 {\pm} 0.0001$	1.5500 ± 0.0008
D2 RMSE	0.7703±0.0030	0.7922 ± 0.0021	0.8431 ± 0.0007	0.8352 ± 0.0004	0.8067 ± 0.0031	0.7942 ± 0.0014	0.9391 ± 0.0006	1.3308 ± 0.0004
MAE MAE	0.6091±0.0020	0.6134 ± 0.0016	0.6136 ± 0.0006	0.6705 ± 0.0002	0.6131 ± 0.0021	0.6127 ± 0.0013	0.7801 ± 0.0007	0.9453 ± 0.0004
D3 RMSE	0.8326±0.0014	0.8422 ± 0.0014	0.8672 ± 0.0007	0.8363 ± 0.0006	0.8783 ± 0.0022	$0.8701 {\pm} 0.0007$	0.8918 ± 0.0004	$1.3138 {\pm} 0.0002$
MAE MAE	0.6789±0.0011	0.6871 ± 0.0012	0.6796 ± 0.0005	0.7179 ± 0.0005	0.6801 ± 0.0013	0.6840 ± 0.0007	0.7710 ± 0.0008	0.9504 ± 0.0001
D ₄ RMSE	0.7583±0.0013	0.8065 ± 0.0008	0.8095 ± 0.0008	0.7611 ± 0.0004	0.8066 ± 0.0019	0.7994 ± 0.0005	0.8166 ± 0.0007	$1.2983 {\pm} 0.0002$
MAE	0.6113±0.0007	0.6220 ± 0.0006	0.6131 ± 0.0006	0.6293 ± 0.0003	0.6153±0.0009	0.6132 ± 0.0006	0.6900 ± 0.0010	0.9777 ± 0.0002
D5 RMSE	0.7064±0.0011	0.7173 ± 0.0005	0.7410 ± 0.0014	0.7120 ± 0.0007	0.7154 ± 0.0014	$0.7343{\pm}0.0005$	0.7596 ± 0.0005	1.1713 ± 0.0001
MAE	0.5357±0.0008	0.5442 ± 0.0007						
D6 RMSE	0.6724±0.0021	0.6844 ± 0.0004						
MAE	0.4918±0.0007	0.5155 ± 0.0004	0.4985 ± 0.0006	0.5087 ± 0.0003	0.5075 ± 0.0006	0.5265 ± 0.0005	0.5891 ± 0.0021	0.6903 ± 0.0001
D7 RMSE	0.6019±0.0014	0.6027 ± 0.0005	0.6072 ± 0.0002	0.6042 ± 0.0001	0.6188 ± 0.0006	0.6053 ± 0.0003	0.6625 ± 0.0049	0.8585 ± 0.0001
MAE	0.3966±0.0009	0.4309 ± 0.0041	0.3975 ± 0.0002	0.4195 ± 0.0001	0.3986 ± 0.0020	0.4543 ± 0.0007	0.4985 ± 0.0098	0.5120 ± 0.0001
D8 RMSE	0.6916±0.0020	0.7035 ± 0.0003	0.7005 ± 0.0004	$0.7119 {\pm} 0.0001$	0.7106 ± 0.0007	0.7051 ± 0.0004	0.7461 ± 0.0017	0.9884 ± 0.0001
MAE MAE	0.4693±0.0006	0.5152 ± 0.0004	0.4730 ± 0.0006	0.4881 ± 0.0001	0.4847 ± 0.0005	0.5251 ± 0.0005	0.5569 ± 0.0026	0.6190 ± 0.0001
Win/Loss	_*	16/0	16/0	16/0	16/0	16/0	16/0	16/0
Rank	1.00	3.88	3.75	4.19	4.19	4.00	7.00	8.00

^{*} Not involved

TABLE~S8 Iteration count of all models for RMSE and MAE on D1-8, including win/loss counts and friedman test

D	Datasets	M1	M2	M3	M4	M5	M6	M7	M8
D1	I.RMSE	2±0	20±0	113±2	149±1	58±3	158±3	112±0	-
וע	I.MAE	3±0	37 ± 2	140 ± 2	119±1	60 ± 2	127±5	114 ± 0	-
D2	I.RMSE	8±2	16±1	187±2	69±1	41±2	109±4	244±22	-
D2	I.MAE	20±2	40 ± 3	181 ± 2	74 ± 1	56 ± 2	91±4	244 ± 22	-
D2	I.RMSE	6±1	69±4	85±2	92±1	46±3	120±3	169±24	-
D3	I.MAE	17±1	116 ± 2	90 ± 2	95±1	61 ± 2	106 ± 12	170 ± 24	-
D4	I.RMSE	6±1	88±1	87±2	73±3	55±2	37±3	70±27	-
D4	I.MAE	12±2	103 ± 1	91 ± 2	82 ± 2	58 ± 2	35 ± 7	69 ± 29	-
D.F	I.RMSE	9±2	96±2	92±2	79±3	58±2	74±3	142±22	-
D5	I.MAE	21±1	132 ± 2	86 ± 2	92±2	77 ± 2	67±5	144 ± 22	-
D6	I.RMSE	8±2	70±2	99±1	90±3	85±6	42±2	30±6	-
Du	I.MAE	30±2	133 ± 1	98 ± 1	96 ± 2	123 ± 3	76 ± 3	31 ± 7	-
D7	I.RMSE	8±2	111±11	29±1	118±1	212±6	34±1	34±18	-
D /	I.MAE	31±3	140 ± 28	38 ± 2	143 ± 1	274 ± 10	72±4	37 ± 24	-
D8	I.RMSE	6±1	88±3	69±1	26±1	230±8	51±2	48±10	-
סט	I.MAE	20±3	184 ± 2	81±1	27±1	259±3	55±2	63±15	-
V	/in/Loss	-	16/0	16/0	16/0	16/0	16/0	16/0	-
	Rank	1.00	4.75	5.06	4.56	4.13	3.75	4.75	-

TABLE~S9 Time cost of all models for RMSE and MAE on D1-8, including win/loss counts and friedman test (secs)

I	Datasets	M1	M2	M3	M4	M5	M6	M7	M8
D1	T.RMSE	1.178±0.146	5.892 ± 0.016	12.10 ± 0.043	17.57 ± 0.092	24.20 ± 0.207	5.702 ± 0.053	14.40 ± 0.057	4533±11.63
——	T.MAE	1.398 ± 0.247	11.05 ± 0.033	15.00 ± 0.054	14.09 ± 0.075	25.24 ± 0.227	4.571 ± 0.042	14.65 ± 0.058	4727±12.74
D2	T.RMSE	3.216±0.654	11.41 ± 0.041	51.76 ± 0.078	25.19 ± 0.056	48.85 ± 0.273	14.97 ± 0.105	101.8 ± 0.464	6188±12.97
DZ	T.MAE	8.493±0.735	27.84 ± 0.148	50.21±0.074	26.85 ± 0.059	65.91 ± 0.352	12.43 ± 0.090	101.9±0.465	8081±16.83
D3	T.RMSE	5.788±0.641	0.641 117.7±3.072 46.55		58.54 ± 0.123	180.1 ± 0.608	32.36 ± 0.101	135.3 ± 0.801	6580±15.72
ЪЗ	T.MAE	13.44±0.678	197.6±5.311	48.95±0.112	60.48 ± 0.118	235.7±0.574	28.77±0.151	136.0 ± 0.802	8319±17.88
D4	T.RMSE	7.256±1.149	286.8 ± 0.500	82.89 ± 0.120	78.04 ± 0.170	259.4 ± 0.501	18.56 ± 0.076	104.6±1.615	7343±57.19
D4	T.MAE	15.09±1.354	336.9 ± 0.629	87.29 ± 0.110	88.49 ± 0.142	276.3 ± 0.408	17.65 ± 0.150	103.6 ± 1.732	8527±53.94
D 5	T.RMSE	12.46±1.139	391.4 ± 1.089	101.8 ± 0.128	99.03 ± 0.229	320.2 ± 0.497	46.87 ± 0.188	267.0 ± 2.256	8712 ± 15.26
סע	T.MAE	30.26±1.858	539.3±1.554	95.35 ± 0.132	115.4 ± 0.201	427.8 ± 0.433	42.06 ± 0.174	270.3±2.254	8669±15.71
D6	T.RMSE	31.11±4.917	1058±6.459	326.8 ± 0.353	346.0 ± 0.536	1723±4.288	76.37 ± 0.214	182.4±1.304	10919±57.35
Ъ	T.MAE	110.2±7.594	2003±10.92	320.9 ± 0.353	369.0 ± 0.443	2485±2.376	136.3 ± 0.422	190.7±1.510	10845±72.71
D7	T.RMSE	59.52±10.86	2744 ± 9.479	176.6 ± 0.280	893.4 ± 8.890	9437±122.7	101.1 ± 0.234	352.9 ± 7.289	12291 ± 21.23
υ /	T.MAE	208.6±14.41	3455±25.85	235.3 ± 0.410	1078 ± 10.82	12154±158.5	212.1±0.679	381.3 ± 9.851	16648 ± 23.64
D8	T.RMSE	53.77±9.566	2696 ± 8.711	489.1 ± 0.282	677.2 ± 7.767	13547 ± 200.0	195.3 ± 0.438	604.8 ± 4.886	6129 ± 39.30
Ъо	T.MAE	153.7±13.08	5655±15.23	575.4±0.422	724.3 ± 8.340	15250±217.8	207.1 ± 0.473	799.7±7.350	19236±49.87
V	Vin/Loss	-	16/0	16/0	16/0	16/0	16/0	16/0	16/0
	Rank	1.00	5.44	3.81	4.25	6.56	2.06	4.88	8.00

 $TABLE\ S10$ Wilcoxon signed rank test results of M1 versus M2-8 with the significance level equal to 0.05

Madal Camparisan	Est	imation	Accuracy	Iteration Count			Time Cost		
Model Comparison	w^{+*}	w^{-}	<i>p</i> -value**	w^+	$w^{\text{-}}$	p-value	w^{+}	$w^{\text{-}}$	<i>p</i> -value
M1 vs M2	136	0	0.000	136	0	0.000	136	0	0.000
M1 vs M3	136	0	0.000	136	0	0.000	136	0	0.000
M1 vs M4	136	0	0.000	136	0	0.000	136	0	0.000
M1 vs M5	136	0	0.000	136	0	0.000	136	0	0.000
M1 vs M6	136	0	0.000	136	0	0.000	136	0	0.000
M1 vs M7	136	0	0.000	136	0	0.000	136	0	0.000
M1 vs M8	136	0	0.000	136	0	0.000	136	0	0.000

^{*} w^+ denotes the counts that M1 outperforms its peers, and w^- denotes the opposite; ** p-value denotes a probability value, i.e., the hypothesis of M1 outperforms its peers can be accepted when p-value<0.05.

Fig. S4. Industrial Application Instances of PNL Implementing DCTNE.

V. RELATED WORK

So far, researchers developed various DCTNE methods for the extraction of the desired knowledge, such as dynamic random walk models, Recurrent Neural Network (RNN) model, GCN models, etc. Specifically, Lin *et al.* [18] introduce a temporal weighted multi-graph embedding model, employing the random walk approach with temporal walk and edge sampling strategies to efficiently capture the attributes of the trading network. Wang *et al.* [19] present a generative link sequence model, which employs a self-tokenization mechanism to capture network topology information and temporal link formation patterns. Jiao *et al.* [20] design a variational-autoencoder-incorporated dynamic network embedding model, which update node representations via a self-attention mechanism and RNN.

Li et al. [21] propose a dynamic GCN model to efficiently extract structural and temporal information in dynamic graphs by performing spatio-temporal convolution operations. Xie et al. [22] introduce a graph temporal edge aggregation approach that combines a sequence model and a temporal encoder to learn node representations via graph neural networks. Bonner et al. [23] present a temporal neighborhood aggregation model, which learns temporal evolution patterns in different vertex neighborhoods based on graph convolution to capture topological and temporal information. Dave et al. [24] develop an effective GraNite framework, which incorporates a time-preserving node embedding method into graphlet-based time-ordering to solve triangle completion time prediction. Wu et al. [25] design an encoder-predictor-decoder framework that employs a recurrent architecture Graph Neural Networks (GNN) to extract the time evolution patterns of dynamic networks.

Pareja et al. [26] present an EvolveGCN model, which combines RNN and GNN to acquire the dynamics in the networks. Gao et al. propose a network topology transformation-based representations method that flips the edge links of node pairs and learns the node representations from the original and transformed networks. Zhang et al. propose a multi-view fuzzy method for multi-view representation learning, which transforms the multi-view data into a high-dimensional fuzzy feature space to explore the common information between views and view-specific information, and preserves the geometric structure of the data through Laplace diagrams. Chang et al. [27] design a multivariate timeseries representation learning framework, which employs a CLS token strategy and the instance-contrastive tasks for representation learning to achieve efficient learning of timeseries data.

Xia et al. [28] propose a self-supervised framework DiscoGNN to perform graph representation learning. It first replaces some nodes and edges randomly, then pre-trains the GNN to detect and correct the replaced nodes and edges from all nodes and edges, and finally captures the similarity ranking information between graphs. Kwon et al. [29] propose an exact decomposition method for irregular tensors, which reduces the output size by unifying all first mode factor matrices into a single matrix and enhances its representation by using the Tucker decomposition principle, thus providing more accurate representation precision. Li et al. [30] introduced a novel framework based on dynamic neural dowker networks to capture higher-order topological features of dynamic directed graphs, which employs a source-sink line GNN layer to capture the neighborhood relationships between dynamic edges and utilizes a duality edge fusion mechanism to ensure the duality principle of dowker complexes.

The above models are effective for extracting knowledge in DCTNs. However, they afford the expensive computational and storage overheads, constraining the application and generalization of these models. On the contrary, the PNL model attains high computational efficiency and affordable memory overhead by employing the proximal-incorporated ADMM learning scheme and hyper-parameters adaptation approach. Consequently, the PNL model exhibits elegant handling of DCTNs compared to these DCTNE models.