Polynomial Functors

Conor Sheridan

November 27, 2023

Contents

1	Representable functors from the category of sets	2
	1.1 Representable functors and the Yoneda Lemma	2

Chapter 1

Representable functors from the category of sets

1.1 Representable functors and the Yoneda Lemma

Definition 1.1.1 (Representable functors). For a set S, we denote by y^S : **Set** \to **Set** the functor that sends each set X to the set $X^S := \mathbf{Set}(S, X)$ and each function $h: X \to Y$ to the function $h^S: X^S \to Y^S$, that sends $g: S \to X$ to $g \circ h: S \to Y$.

We call a functor (isomorphic to one) of this form a **representable func**tor, or a **representable**. In particular, we call y^S the functor represented by S, and we call S the representing set of y^S . As y^S denotes raising a variable to the power of S, we will also refer to representables as **pure powers**.

Proposition 1.1.1. For any function $f: R \to S$, there is an induced natural transformation $y^f: y^S \to y^R$; on any set X its X-components $X^f: X^S \to X^R$ is given by sending $g: S \to X$ to $f \circ g: R \to X$.

Proof. To prove that given any function $f: R \to S$ the construction $y^f: y^S \to y^R$ is a natural transformation, we must verify that, for any function $h: X \to Y$, the following commutative diagram commutes:

$$X^{S} \xrightarrow{h^{S}} Y^{S}$$

$$X^{f} \downarrow \qquad \qquad \downarrow Y^{f} \qquad .$$

$$X^{R} \xrightarrow{h^{R}} Y^{R}$$

By definition 1.1.1 we have that $h^S := - \, \mathring{\mathfrak{g}} \, h$ and $C^f := f \, \mathring{\mathfrak{g}} - ,$ for X, Y. Let

$CHAPTER\ 1.\ REPRESENTABLE\ FUNCTORS\ FROM\ THE\ CATEGORY\ OF\ SETS 3$

 $s:S\to X$ and consider the naturality square

$$Y^{f}(h^{S}(s)) = Y^{f}(s \circ h)$$

$$= f \circ (s \circ h)$$

$$= (f \circ s) \circ h$$

$$= h^{R}(f \circ s)$$

$$= h^{R}(X^{f}(s))$$

We see that by associativity of composition the diagram commutes.

Theorem 1.1.1 (Yoneda Lemma). Given a functor $F : \mathbf{Set} \to \mathbf{Set}$