Politecnico di Milano - Courses on Photogrammetry Laboratory report

First Name:	Milad	Person code:	10930504
Last Name:	Ramezani Ziarani	Matriculation:	231865
CFU group:	10	Date:	01/01/2024
Lab Topic:	Close Photogrammetry		

Description of the performed activity (max 50 lines)

Close-Range Photogrammetry Lab Workflow

Introduction

1 2

3

4 5

6

7 8

9

10

11

12

13 14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35 36

37

38 39

Equipment Setup

The initial phase involved setting up the camera. Meticulous selection of camera settings optimized image quality and depth of field.

Image Acquisition

Overlapping images from various angles, enhancing the quality of photogrammetric 3D reconstruction.

Control Points

Identification and marking of control points streamline photogrammetric processes.

Data Processing

Images were imported into PhotoModeler, utilizing a least squares adjustment for accurate reconstruction. Outlier rejection enhanced subsequent precision.

Interior Orientation Parameters (IOP) and Distortion

Capture 27 images of known control points using an Samsung smartphone with a static reference system. Use Open Camera app to mitigate rotation issues.

Calibration Process

Utilize PhotoModeler software to run a bundle block adjustment, extracting points and control points for IOP and distortion estimation.

Outlier Rejection

Delete points with more than 3 residual pixels. Conduct outlier rejection for accurate results, considering a realistic collimation threshold of approximately 5 pixels.

Global Chi-Squared Test

Pass the test, ensuring assumptions align with the software. Conduct parameter significance tests; rerun BBA iteratively for parameters failing the test.

Completion

End the calibration phase with satisfactory IOP and distortion parameters.

Restitution

Photographing the Object

Capture 13 photos of the JBL cube from various angles.

Software Setup

Import camera calibration settings. Collimate points automatically with a grid, then run BBA to obtain an error close to 1 pixel. The statistical least squares adjustment refined camera calibration parameters, optimizing 3D model fit. Emphasis on accuracy assessment and parameter significance was crucial.

Mesh Generation and Texture Mapping

Use software to reconstruct the connection between images and points. Point cloud generation created a detailed mesh, with texture mapping enhancing visual quality using original images.

Scaling

Define a scale based on the grid's 32 mm spacing between Pt 43, Pt 36. Pick furthest points for accuracy is better than.

Validation	٠

Validate the JBL's cube model with statistical tests. Ensure sides pass standard normal distribution tests at a 95% confidence level.

Calibration Results

A warning indicated a significant number of sub-pixel marked points, with the largest residual (Point 89 - 3.97 pixels) exceeding the recommended threshold.

Addressing high residual points and ensuring accurate camera station solving is crucial. The total photo area coverage is 79%, slightly below the recommended 80%. Suggestions include optimizing calibration grid photo captures for better coverage.

Extra Tests

Detailed results and calculations can be found in the provided Excel files.

List of attachments