Multiplier

- A multiplier multiplies two binary numbers.
- It follows the same rules as in decimal numbers.
- Most of the multiplication techniques involve a set of partial products, shifting them to left, and then sum up them together using adders. A repeated shift and add process.
- In partial products, there is no need to remember any multiplication table of numbers. Because there are 0 and 1 only, and result will be 0 and 1. It is easier.

```
\begin{array}{r}
    11 \\
    x 10 \\
    \hline
    00 \\
    \hline
    11 \\
    \hline
    110
\end{array}
```

- This process can be done by using the add and shift features of the ALU.
- For long numbers, this process is time consuming.
- Hardware multiplier can be used also which is faster.
- In modern computers, multiplication of signed numbers is done usually using two's compliment representation.

Multiplier_(contd.)

- Multiplication of positive numbers: is a combination of a full adder and an AND gate in each portion of partial product. Figure 6.6
- Multiplication of signed numbers: two's complement representation.
 - Case 1: multiplicand is negative and multiplier is positive. For example: multiplicand -13 (11101) and multiplier +11 (01011). Generates a double length product. Here, the sign bit of the multiplicand has to extend to the left as far as the product will extend.

```
\begin{array}{c} 1\ 0\ 0\ 1\ 1\ (\text{two's complement of -13}) \\ \underline{x\ 0\ 1\ 0\ 1\ 1} \\ 1\ 1\ 1\ 1\ 1\ 1\ 0\ 0\ 1\ 1 \\ 0\ 0\ 0\ 0\ 0\ 0\ 0 \\ 1\ 1\ 1\ 0\ 0\ 1\ 1 \\ 0\ 0\ 0\ 0\ 0\ 0 \\ 1\ 1\ 1\ 1\ 0\ 0\ 1\ 1 \\ \end{array}
```

Case 2: If the multiplier is negative, then two's complement of the both multiplicand and multiplier is made. Then proceed as case 1.

Booth's Algorithm

- It is an algorithm that multiplies two signed binary numbers efficiently using two's compliment representation.
- It requires less addition/subtraction operations.
- It speeds up the multiplication process.
- It treats both positive and negative numbers uniformly.
- This algorithm generates a 2n-bit products.

Booth's Algorithm_(contd.)

How it works:

- ➤ Booth's algorithm checks the bits of the multiplier and shifts the partial product.
- ➤ Before shifting, the multiplicand may be added to or subtracted from the partial product depending on the following rules:
 - ✓ The multiplicand is subtracted from the partial product upon encountering the first least significant 1 (provided that there was a previous 0) in a string of 1's in the multiplier.
 - ✓ The multiplicand is added to the partial product upon encountering the first 0 (provided that there was a previous 1) in a string of 0's in the multiplier.
 - ✓ The partial product does not change when the multiplier bit is identical to the previous multiplier bit (0 0 or 1 1).

In other words,

- ✓ If Q_0 and Q_n are 10, then subtract the multiplier from the partial product.
- ✓ If Q_0 and Q_n are 01, then add the multiplier to the partial product.
- ✓ If Q_0 and Q_n are the same, then no change required.

Booth's Algorithm Example

• MD (multiplicand)=-5=1011

2's complement of MD=0101

MR(multiplier)=-7=1001

So, the product would be of 8 bit

Sequence Counter	AC Register	MR	1 bit Register Qn	Operation
4	0000	1001	0	Initialization
3	0101 0010	1001 1 <mark>100</mark>	0 1	AC=AC-MD then right shift
2	1101 1110	1100 1110	1 0	AC=AC+MD then right shift
1	1110 1111	11 <mark>10</mark> 011 1	0	No change then right shift
0	0100 0010	011 <mark>1</mark> 0011	0 1	AC=AC-MD then right shift

Product=AC MR=00100011=35

Divider

- Binary division follows the same ways as decimal division does.
- Restoring division: In restoring division,

an n bit positive divisor is loaded into register M.

an n bit positive dividend is loaded into register Q (after completing the division operation, register Q contains the quotient).

Register A is set to 0 (after completing the division operation, register A contains the remainder). Algorithm: repeat the following steps n times.

- Step 1: Initialization: M — divisor, Q — dividend, A — 0 and n — number of bits in dividend
- Step 2: Left shift of A and Q by one bit position.
- Step 3: Subtract M from A and place the result in A.
- Step 4: if the sign bit of A is 1, set q_0 to 0 and add M back to A (that is restore A). Otherwise set q_0 to 1.

See Zaky (Chapter 6: Arithmetic)

Divider (contd.)

• Example:

Dividend=8=1000

Divisor=3=11

n	M	Α	Q	Operation
4	00011	00000	1000	Initialization
	00011	00001	000_	Left shift of A and Q
	00011	11110	000_	A=A-M
		00001	0000	Sign bit of A is 1, set q_0 to 0, add M back to A
3				