				$\frac{ikt_3}{2t_1t_3}$	$\frac{4t_3)}{t_1t_3}$		t ₁ t ₃)
$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{2ikt_1-4ikt_3}{3t_1t_3+6k^2t_1t_3}$	$\frac{i\sqrt{2} k(t_1 + 4t_3)}{3(1 + 2k^2)^2 t_1 t_3}$	0	$\frac{2k^2(t_1+4t_3)}{3(1+2k^2)^2t_1t_3}$
$\tau_{1^{-}\alpha}^{\#1}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{lpha}$	0	0	0	$-\frac{\sqrt{2} (t_1 - 2t_3)}{3 (1 + 2 k^2) t_1 t_3}$	$\frac{t_1+4t_3}{3(1+2k^2)^2t_1t_3}$	0	$-\frac{i\sqrt{2}k(t_1+4t_3)}{3(1+2k^2)^2t_1t_3}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{2(t_1+t_3)}{3t_1t_3}$	$-\frac{\sqrt{2} (t_1-2t_3)}{3(1+2k^2)t_1t_3}$	0	$\frac{2ik(t_1-2t_3)}{3t_1t_3+6k^2t_1t_3}$
$\tau_{1}^{\#1}_{\alpha\beta}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$-\frac{i(2k^3r_1-kt_1)}{(1+k^2)^2t_1^2}$	$\frac{-2k^4r_1+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#2}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{-2k^2r_1+t_1}{(1+k^2)^2t_1^2}$	$\frac{i(2k^3r_1-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{+}\alpha\beta$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
	$\sigma_1^{\#1} + \alpha \beta$	$J_1^{\#2} + \alpha \beta$	$\tau_1^{\#1} + \alpha \beta$	$\sigma_{1}^{\#_{1}} +^{lpha}$	$\sigma_1^{\#2} +^{\alpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_1^{\#2} + \alpha$

Lagrangian density
$-rac{1}{3}t_{1}\;\omega_{'}^{lpha_{'}}\;\omega_{\kappalpha}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
$\omega^{\alpha\beta\chi} \ \sigma_{\alpha\beta\chi} + r_1 \partial_{\scriptscriptstyle l} \omega^{\kappa\lambda}_{ \partial^{\scriptscriptstyle l} \omega_{ \partial_{\theta} \omega_{ \partial_{\theta} \omega_{ \partial_{\theta} \omega_{ } - \frac{2}{3} r_1 \partial_{\theta} \omega_{ \partial_{\kappa} \omega^{\alpha\beta\theta} +$
$\frac{2}{3} r_1 \partial_\theta \omega_{\alpha\beta}^{ \kappa} \partial_\kappa \omega^{\theta\alpha\beta} + r_1 \partial_\alpha \omega_{\lambda}^{ \alpha} \partial_\kappa \omega^{\theta\kappa\lambda} - r_1 \partial_\theta \omega_{\lambda}^{ \alpha} \partial_\kappa \omega^{\theta\kappa\lambda} + r_1 \partial_\alpha \omega_{\lambda}^{ \alpha} \partial_\kappa \omega^{\kappa\lambda\theta} -$
$2r_1\partial_\theta\omega_\lambda^{\ \alpha}\partial_\kappa\omega^{\kappa\lambda\theta} - \tfrac{1}{2}t_1\partial^\alpha f_{\theta\kappa}\partial^\kappa f_{\alpha}^{\ \theta} - \tfrac{1}{2}t_1\partial^\alpha f_{\kappa\theta}\partial^\kappa f_{\alpha}^{\ \theta} - \tfrac{1}{2}t_1\partial^\alpha f^\lambda_{\ \kappa}\partial^\kappa f_{\alpha\lambda} +$
$\frac{1}{3}t_{1}\;\omega_{\kappa\alpha}^{\;\;\alpha}\;\partial^{\kappa}f'_{\;\;\prime}-\frac{2}{3}t_{3}\;\omega_{\kappa\alpha}^{\;\;\alpha}\;\partial^{\kappa}f'_{\;\;\prime}+\frac{1}{3}t_{1}\;\omega_{\kappa\lambda}^{\;\;\lambda}\;\partial^{\kappa}f'_{\;\;\prime}-\frac{2}{3}t_{3}\;\omega_{\kappa\lambda}^{\;\;\lambda}\;\partial^{\kappa}f'_{\;\;\prime}+$
$\frac{2}{3}t_1\partial^{\alpha}f_{\kappa\alpha}\partial^{\kappa}f'_{\prime}-\frac{4}{3}t_3\partial^{\alpha}f_{\kappa\alpha}\partial^{\kappa}f'_{\prime}-\frac{1}{3}t_1\partial_{\kappa}f^{\lambda}_{\lambda}\partial^{\kappa}f'_{\prime}+\frac{2}{3}t_3\partial_{\kappa}f^{\lambda}_{\lambda}\partial^{\kappa}f'_{\prime}+$
$2t_1 \omega_{_{IK}\theta} \partial^{\kappa} f^{_{I}\theta} - \frac{1}{3} t_1 \omega_{_{I}\alpha}^{\ \alpha} \partial^{\kappa} f^{_{I}}_{\ \ \kappa} + \frac{2}{3} t_3 \omega_{_{I}\alpha}^{\ \alpha} \partial^{\kappa} f^{_{I}}_{\ \ \kappa} - \frac{1}{3} t_1 \omega_{_{I}\lambda}^{\ \lambda} \partial^{\kappa} f^{_{I}}_{\ \ \kappa} +$
$\frac{2}{3}t_3\;\omega_{,\lambda}^{\;\;\lambda}\;\partial^{\kappa}f'_{\;\;\kappa}+\frac{1}{2}t_1\;\partial^{\alpha}f^{\lambda}_{\;\;\kappa}\;\partial^{\kappa}f_{\;\lambda\alpha}+\frac{1}{2}t_1\;\partial_{\kappa}f_{\;\;\theta}^{\;\;\lambda}\;\partial^{\kappa}f_{\;\;\lambda}^{\;\;\theta}+\frac{1}{2}t_1\;\partial_{\kappa}f^{\lambda}_{\;\;\theta}\;\partial^{\kappa}f_{\;\;\lambda}^{\;\;\theta}-$
$\frac{1}{3}t_1\partial^{\alpha}f^{\lambda}_{\alpha}\partial^{\kappa}f_{\lambda\kappa} + \frac{2}{3}t_3\partial^{\alpha}f^{\lambda}_{\alpha}\partial^{\kappa}f_{\lambda\kappa} + \frac{2}{3}r_1\partial_{\kappa}\omega^{\alpha\beta\theta}\partial^{\kappa}\omega_{\alpha\beta\theta} - \frac{2}{3}r_1\partial_{\kappa}\omega^{\theta\alpha\beta}\partial^{\kappa}\omega_{\alpha\beta\theta} +$
$\frac{2}{3} r_1 \partial^\beta \omega_{\alpha}^{\ \alpha\lambda} \partial_\lambda \omega_{\alpha\beta}^{\ \prime} - \frac{8}{3} r_1 \partial^\beta \omega_{\lambda}^{\ \lambda\alpha} \partial_\lambda \omega_{\alpha\beta}^{\ \prime} - r_1 \partial_\alpha \omega_{\lambda}^{\ \alpha} \partial^\lambda \omega_{\beta\kappa}^{\ \beta\kappa} + r_1 \partial_\theta \omega_{\lambda}^{\ \alpha} \partial^\lambda \omega^{\theta\kappa}_{\ \kappa}$

$f_1^{\#2}$	0	0	0	$\frac{1}{3}$ \vec{l} k $(t_1 - 2t_3)$	$\frac{1}{3}\bar{l}\sqrt{2}k(t_1+t_2)$	0	$\frac{2}{3}k^{2}(t_{1}+t_{3})$	
$f_{1^-}^{\#1}$	0	0	0	0	0	0	0	
$\omega_{1^{-}\alpha}^{\#2}$	0	0	0	$\frac{t_1-2t_3}{3\sqrt{2}}$	$\frac{t_1+t_3}{3}$	0	$-\frac{1}{3}\bar{l}k(t_1-2t_3)\Big -\frac{1}{3}\bar{l}\sqrt{2}k(t_1+t_3)\Big $	
$\omega_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{1}{6} (t_1 + 4 t_3)$	$\frac{t_1-2t_3}{3\sqrt{2}}$	0	$-\frac{1}{3}ik(t_1-2t_3)$	
$f_{1}^{\#1}{}_{\alpha\beta}$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0	
$\omega_{1}^{\#2}{}_{\!\!\!\!/}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0	
$\omega_{1}^{\#1}{}_{lphaeta}$ $\omega_{1}^{\#2}{}_{lphaeta}$ $f_{1}^{\#1}{}_{lphaeta}$	$+^{\alpha\beta} k^2 r_1 - \frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$\frac{i k t_1}{\sqrt{2}}$	0	0	0	0	
	$\int_{1}^{\#1} + \alpha \beta$	$\int_{1}^{\#2} + \alpha \beta$	$^{+1}_{1}$ $+^{\alpha\beta}$	$\omega_{1}^{\#1} +^{lpha}$	$\omega_{1}^{#2} +^{\alpha}$	$f_{1}^{\#1} \dagger^{\alpha}$	$f_{1}^{#2} + \alpha$	

$\sigma_{2^{-}}^{\#1}lphaeta\chi$	0	0	$\frac{2}{2k^2r_1+t_1}$
$\tau_2^{\#1}_{+\alpha\beta}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_{2}^{\#1}{}_{\alpha\beta}$		$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
	$\sigma_{2}^{\#1} + \alpha \beta$	$\tau_{2}^{\#1} + \alpha \beta$	$r_{z^{-1}}^{*1} +^{\alpha\beta\chi}$

	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2}^{\#1}_{\alpha\beta}$	$\omega_{2}^{\#1}{}_{\alpha\beta\chi}$
$\omega_{2}^{\sharp 1} \dagger^{lpha eta}$	<u>t</u> 1 2	$-\frac{ikt_1}{\sqrt{2}}$	0
$f_{2}^{#1}\dagger^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0
$\omega_{2^{-}}^{\#1}\dagger^{lphaeta\chi}$	0	0	$k^2 r_1 + \frac{t_1}{2}$

	$\omega_0^{\sharp 1}$	$f_{0}^{#1}$	$f_{0^{+}}^{#2}$	$\omega_0^{\#1}$
$\omega_{0}^{\#1}$ †	t_3	$-i \sqrt{2} kt_3$	0	0
$f_{0^{+}}^{#1}$ †	$i\sqrt{2} kt_3$	$2k^2t_3$	0	0
$f_{0}^{#2}$ †	0	0	0	0
$\omega_{0}^{\sharp 1}$ †	0	0	0	$-t_1$

	$\sigma_{0}^{\#1}$	$\tau_0^{\#1}$	$ au_{0}^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0^{+}}^{\#1}$ †	$\frac{1}{(1+2k^2)^2t_3}$	$-\frac{i\sqrt{2} k}{(1+2k^2)^2 t_3}$	0	0
$ au_{0^{+}}^{#1}$ †	$\frac{i\sqrt{2} k}{(1+2k^2)^2 t_3}$	$\frac{2k^2}{(1+2k^2)^2t_3}$	0	0
$ au_{0^{+}}^{\#2} \dagger$	0	0	0	0
$\sigma_{0}^{#1}$ †	0	0	0	$-\frac{1}{t_1}$

Source constraints	
SO(3) irreps	#
$\tau_{0^{+}}^{\#2} == 0$	1
$\tau_{0+}^{\#1} - 2 ik\sigma_{0+}^{\#1} == 0$	1
$\tau_1^{\#2\alpha} + 2ik \sigma_1^{\#2\alpha} == 0$	3
$\tau_{1}^{\#1\alpha} == 0$	3
$\tau_{1+}^{\#1}{}^{\alpha\beta} + ik \sigma_{1+}^{\#2}{}^{\alpha\beta} == 0$	3
$\tau_{2+}^{\#1\alpha\beta} - 2\bar{\imath}k\sigma_{2+}^{\#1\alpha\beta} == 0$	5
Total #:	16

(No massless particles)

$\frac{\text{Unitarity conditions}}{r_1 < 0 \&\& t_1 > 0}$