Lasy z inwazyjnym dębem czerwonym w świetle analiz wielowymiarowych przy użyciu R

Damian Chmura

Konferencja Why R?
Warszawa, 27-29 września 2017

Dąb czerwony – gatunek północnoamerykański. Zaliczany do gatunków inwazyjnych. Introdukowany do Europy w 1691 r. a w Polsce od 1798 r.

Obecny na 63,5 tysiącach stanowisk i zajmuje 14288 ha przy czym jako dominant – 10 506 ha (Woziwoda i in 2014)

(Chmura 2013)

Im więcej dębu w warstwie drzew, podszycie i w runie tym mniejsza liczba gatunków w otoczeniu oraz mniejszy ich udział

Polska złota jesień?

Czym się charakteryzują wtórne lasy z udziałem dębu czerwonego?

Materiał: 180 zdjęć fitosocjologicznych w 52 kompleksach leśnych z udziałem dębu na Wyżynie Śląskiej

Cel: Klasyfikacja wtórnych lasów z udziałem dęba czerwonego

Problem: Jak w praktyce wybrać miarę odległości?

Założenie: skład gatunkowy jest odzwierciedleniem warunków

siedliskowych

Metoda fitondykacyjna: liczby ekologiczne Ellenberga (światło L, temperatura T, wilgotność F, azot N i kwasowość gleby R) Użyto ważone liczby Ellenberga dla poletek

	1	2	3	4	5	6	7	8	9
L Lichtzahl	Tief- schatten		Schat- ten		Halb- schatte n		Halb- licht	Licht	Volllicht
T Temperaturzahl	kalt		kühl		mäßig warm		warm		extrem warm
F Feuchtezahl	stark trocken		trocken		frisch		feucht		nass
R Reaktionszahl	stark sauer		sauer		mäßig sauer		schwach sauer bis basisch		basisch
K Kontinentalität	euozea- nisch	ozea- nisch		suboze- anisch	inter- mediär	subkon- tinental		konti- nental	eukon- tinental
N Nährstoffzahl	Sehr N- arm		N-arm		Mäßig N-reich		N-reich	N- Zeiger	Über- mäßig N-reich

```
> EIVS = read.delim('clipboard')
> rows.num=c(1:180)
> Ell = as.data.frame(rows.num)
> L =as.numeric(as.character(EIVS$L[match(names(spec), EIVS$gat)]))
> Ell$L <- apply(spec, 1, function(x) weighted.mean(L, x, na.rm=TRUE))
> T =as.numeric(as.character(EIVS$T[match(names(spec), EIVS$gat)]))
> Ell$T <- apply(spec, 1, function(x) weighted.mean(T, x, na.rm=TRUE))
> K =as.numeric(as.character(EIVS$K[match(names(spec), EIVS$gat)]))
> Ell$K <- apply(spec, 1, function(x) weighted.mean(K, x, na.rm=TRUE))
> F=as.numeric(as.character(EIVS$F[match(names(spec), EIVS$gat)]))
> Ell$F <- apply(spec, 1, function(x) weighted.mean(F, x, na.rm=TRUE))</pre>
```

😱 Dat	a: EII							x
	rows.num	L	T	K	F	R	N	^
1	1	5.071429	4.500000	4.166667	5.976190	4.261905	4.904762	
2	2	5.250000	5.027027	4.775510	5.660714	4.089286	4.000000	
3	3	5.916667	5.444444	4.758621	5.694444	4.085714	3.771429	
4	4	5.854545	5.352941	3.947368	6.163636	3.865385	4.115385	
5	5	6.090909	5.166667	4.727273	5.386364	4.045455	3.772727	
6	6	5.750000	5.230769	4.653846	5.944444	3.527778	3.805556	
7	7	5.931034	5.129032	5.354167	5.844828	4.224138	4.034483	
8	8	5.796296	5.190476	4.800000	5.777778	3.960784	4.274510	
9	9	6.000000	5.080000	5.384615	5.775510	3.173913	3.369565	
10	10	4.490566	5.239130	3.431373	5.792453	5.230769	5.188679	
11	11	5.393939	5.233333	3.666667	5.272727	4.393939	3.909091	
12	12	5.692308	5.347826	4.217391	6.384615	5.153846	4.538462	
13	13	5.835821	5.285714	4.891304	5.940299	3.546875	3.484375	
14	14	5.962963	5.250000	5.041667	5.777778	3.511111	3.555556	
15	15	6.140000	5.500000	5.550000	5.800000	3.480000	3.540000	
16	16	6.095238	6.000000	5.451613	5.595238	3.263158	3.447368	
17	17	5.936508	5.000000	5.153846	5.841270	3.186441	3.084746	
18	18	5.055556	5.500000	3.794872	5.648148	4.600000	4.716981	
19	19	5.684211	5.300000	3.600000	5.315789	3.789474	3.789474	
								V

euclidean

Package: Vegan: funkcja vegdist, rankindex

Cel: Poszukiwanie gatunków wskaźnikowych dla 4 wyróżnionych zbiorowisk

> indval(spec, grp) Pakiet: labsy Sindval Acera Acerb 0.000000000 0.0017883756 0.0429352069 0.0000000000 Acerb.1 0.000000000 0.0353761255 0.0202216137 0.0011781915 Acerc 0.017138882 0.0172628206 0.0121448997 0.0000000000 Acera.1 Acerb.2 0.000000000 0.0049215767 0.0112530381 0.0044256152 Acerc.1 0.003011243 0.0248863081 0.0554792554 0.0000000000 Achimill 0.000000000 0.0122672508 0.0157773953 0.0000000000 0.019606052 0.0135027908 0.0324174144 0.0118385236 Aegopoda Aesca 0.000000000 0.0000000000 0.0238095238 0.0000000000 > indval = multipatt(spec, grp, control = how(nperm=999)) > summary(indval) Pakiet: indicspecies Multilevel pattern analysis Association function: IndVal.q Significance level (alpha): 0.05 Total number of species: 241 Selected number of species: 42 Number of species associated to 1 group: 26 Number of species associated to 2 groups: 8 Number of species associated to 3 groups: 8

Cel: ordynacja (przyporządkowanie) poletek i gatunków do gradientów

Wzięto pod uwagę wyłącznie gatunki towarzyszące

Zmienne "siedliskowe":

Liczby Ellenberga, udział grup ekologicznych wskaźniki różnorodności funkcjonalnej Pakiet FD oraz pokrycie dębu czerwonego

Konferencja WhyR Warszawa 27-29 września 2017 r.

DCA₁

Zestaw zmiennych wziętych pod uwagę jako zmienne tłumaczące w ordynacji bezpośredniej

FRic FEve FDiv FDis RaoQ	\rightarrow wskaźniki różnorodn	ości funkcjonalnej
LIFE.FORM	forma życiowa	(0,0.1665, 0.333, 0.667, 1)
ABUND	liczebność populacji w Polsce	(1-5)
DYNAMICS	tendencje dynamiczne w Polsce	(-2,-1, 1, 2)
GRIME	strategia Grime	(0, 0.5, 0.667, 1)
WIND	anemochoria - rozsiewanie przez wiatr	(0,1)
Z00	zoochoria - rozsiewanie przez zwierzęta	(0, 0.5, 0.667, 1)
AUTO	autochoria/barochoria - rozsiewanie san	noistne (0, 0.667, 1)
L	światło	
T	temperatura	1
F	wilgotnośc	srednie ważone
R	kwasowość	
N	azot (żyzność)	

Pakiet FD pozwala na obliczenie ważonych cech gatunków

Problem: którą metodę ordynacji wybrać?

Porównanie wartości p w testach permutacyjnych w różnych metodach ordynacji

Zmienna	Dopasowanie wektorowe	RDA tranformacja Hellingera	CCA
	Pr(>r)	Pr(>F)	Pr(>F)
FRic	**	***	***
FEve		***	***
FDiv		***	***
FDis			
RaoQ			
LIFE.FORM	***	***	***
ABUND	*	***	***
DYNAMICS	***	***	***
GRIME		***	***
WIND	***	***	***
Z00	***	***	***
AUTO		***	***
L	***	***	***
T		***	***
F	***	***	***
R	***	***	***
N	***	***	***
Q. rubra - warstwa drzew	**		**
Q. rubra - warstwa krzewów			
Q. rubra - warstwa zielna		*	

*p<0,05
**p<0,01
***p<0,002

Co ma większy wpływ na skład gatunkowy wyróżnionych zbiorowisk: siedlisko czy gatunek inwazyjny?

X1 = ważone liczby Ellenberga

X2 = pokrycie dębu czerwonego

Liczby Ellenberga odpowiadają 1% zmienności a wpływ dębu -12% a łączny wpływ to 0,5%

Funkcja varpart dla RDA w pakiecie vegan

Diagram Venna

Jakie zmienne siedliskowe lub cechy gatunków towarzyszących mają największy wpływ na odnawianie się dębu czerwonego?

Współczynniki	korelacji	Spearmana
	Rs	p

0.2749	0.0002
0.2288	0.002
0.1791	0.0162
0.1627	0.0291
-0.2014	0.0067
-0.225	0.0024
-0.2472	0.0008
-0.2554	0.0005
	0.2288 0.1791 0.1627 -0.2014

Random Forest model

Pakiety: randomForest, caret

DCA1 i DCA = wartości własne dwóch pierwszych osi

