1 Successioni e Limiti

Una successione è una legge che ad ogni numero naturale n fa corrispondere uno ed un solo numero reale a_n . Una successione è una funzione di $\mathbb{N} \in \mathbb{R}$.

- $\mathbb{N} \to \mathbb{R}$
- $1 \rightarrow a_1$
- $2 \rightarrow a_2$
- $3 \rightarrow a_3$
- $n \to a_n$

Simbolo: (a_n) oppure più semplicemente a_n

A noi interessa il comportamento della successione per n grande, più precisamente il **limite** della successione a_n , cioè un numero reale $(a \in \mathbb{R})$ che sia "vicino" ai termini della successione che hanno l'indice n "grande".

Consideriamo a_n con a limite della successione ($a \in \mathbb{R}$). a è il limite della successione se comunque si scelga un intervallo

Figure 1: Intorno

di numeri intorno ad a, diciamo $(a - \varepsilon, a + \varepsilon)$, $\varepsilon > 0$, allora esiste un indice ν , tale che $\forall n > \nu$ a_n sta nell'intervallo $(a - \varepsilon, a + \varepsilon)$, cioè $a - \varepsilon < a_n < a + \varepsilon$.

1.1 Limiti

Un numero reale a è il limite della succesione a_n (si dice che a_n tende o converge ad a) e si scrive:

$$\lim_{n \to +\infty} a_n = a \quad \text{o } a_n \to_{n \to +\infty} a$$

se, qualunque sia $\varepsilon > 0$, esiste un numero ν tale che:

$$|a_n - a| < \varepsilon \quad \forall n > \nu$$

In simboli:

$$\lim_{n \to +\infty} a_n = a \iff \forall \varepsilon > 0 \quad \exists \nu \in \mathbb{N} : |a_n - a| < \varepsilon \quad \forall n > \nu$$

Osservazione: $a - \varepsilon < a_n < a + \varepsilon$ si può scrivere $-\varepsilon < a_n - a < \varepsilon$.

1.2 Proposizione

Se esiste il limite $a \in \mathbb{R}$ della successione a_n , allora è unico.

Dimostrazione: Ragioniamo per assurdo. Supponiamo che:

$$a_n \to a$$
 e $a_n \to b$ con $a \neq b$

Allora $\forall \varepsilon > 0$

$$\exists \nu_1 : |a_n - a| < \varepsilon \quad \forall n > \nu_1$$

$$\exists \nu_2 : |a_n - b| < \varepsilon \quad \forall n > \nu_2$$

Prendo $\varepsilon = \frac{|a-b|}{2} > 0$ e ponendo $\nu = \max\{\nu_1, \nu_2\}, (1)$ e (2) valgono contemporaneamente. Allora:

$$|a - b| = |(a - a_n) + (a_n - b)| < |a - a_n| + |a_n - b| < \varepsilon + \varepsilon = |a - b|$$

Ma allora |a-b| < |a-b|, ASSURDO! \clubsuit

Una succesisone a_n ha limite $+\infty$ (si dice anche che tende o diverge a $+\infty$)

$$\lim_{n \to +\infty} a_n = +\infty$$

se, qualunque sia $M>0\in\mathbb{R},$ esiste un numero ν tale che:

$$a_n > M \quad \forall n > \nu$$

In simboli:

$$\lim_{n \to +\infty} a_n = +\infty \iff \forall M > 0 \quad \exists \nu \in \mathbb{N} : a_n > M \quad \forall n > \nu$$

Analogamente si definisce il limite $-\infty$:

$$\lim_{n \to +\infty} a_n = -\infty \iff \forall M < 0 \quad \exists \nu \in \mathbb{N} : a_n < M \quad \forall n > \nu$$

Osservazione:

- Le successioni che ammettono limite finito si dicono convergenti
- Le successioni che ammettono limite infinito si dicono divergenti
- Le successioni convergenti o divergenti si dicono regolari
- Una successione che tende a zero si dice anche infinitesima
- Una successione divergente si dice anche infinita

1.3 Successioni Limitate

 a_n si dice **limitata** se $\exists M \in \mathbb{R}$:

$$|a_n| \leq M$$

Osservazione: In particolare $a_n = (-1)^n$ è un esempio di successione limitata che non ammette limite. Viceversa, ogni successione che ammette limite finito, è limitata. Vale il seguente:

1.4 Teorema

Ogni successione convergente è limitata.

Dimostrazione: Sia a_n una successione convergente e supponiamo che:

$$\lim_{n \to +\infty} a_n = a$$

Allora $\forall \varepsilon > 0 \quad \exists \nu \in \mathbb{N} : |a_n - a| < \varepsilon \quad \forall n > \nu$

Posso predere $\varepsilon = 1 \implies |a_n - a| < 1$, valuto $|a_n|$:

$$|a_n| = |(a_n - a) + a| \le |a_n - a| + |a| < 1 + |a| \quad \forall n > \nu$$

posso prendere $M = \max\{|a_1|, |a_2|, \cdots, |a_{\nu}|, 1 + |a|\}$.

1.5 Operazioni con i limiti

Supponiamo $\lim_{n\to+\infty} a_n = a$ e $\lim_{n\to+\infty} b_n = b$ con $a,b\in\mathbb{R}$. Allora:

- $\lim_{n\to+\infty} (a_n+b_n)=a+b$
- $\lim_{n\to+\infty} (a_n b_n) = a b$
- $\lim_{n\to+\infty} (a_n \cdot b_n) = a \cdot b$
- $\lim_{n\to+\infty} \frac{a_n}{b_n} = \frac{a}{b}$ se $b\neq 0$

Si dimostra anche che:

•
$$a_n \to a \ b_n \to \pm \infty \implies a_n + b_n \to \pm \infty$$

- $a_n \to a \neq 0$ $b_n \to \pm \infty \implies a_n \cdot b_n \to \pm \infty$
- $a_n \to a \ b_n \to \pm \infty$ entrambe con lo stesso segno $\implies a_n + a_b \to \pm \infty$ e $a_n \cdot b_n \to + \infty$
- $a_n \to a \ b_n \to \pm \infty \implies \frac{a_n}{b_n} \to 0$
- $a_n \to \pm a \ b_n \to \pm 0 \implies \frac{a_n}{b_n} \to +\infty$

1.6 Forme infeterminate o di indecisione

- $\bullet \infty \infty$
- $0 \cdot \infty$

- ∞^0
- 1^{±∞}
- 0⁰

Dire che un limite è una forma indeterminata non significa dire che non esiste, ma che occorre togliere, se possibile, l'indeterminazione, mediante semplificazioni o trasformazioni.

1.7 Teoremi di confronto

Teorema della permanenza del segno

Se $\lim_{n\to+\infty} a_n = a > 0$, esiste un numero ν tale che $a_n > 0 \quad \forall n > \nu$.

Esempio: $a_n = \frac{n-12}{n}$, $\lim_{n \to +\infty} a_n = 1 > 0$, ma i primi termini della successione sono negativi. $a_n = 0$ per n = 12, quindi se prendo $\nu = 12$, e $n > \nu$ allora $a_n > 0$.

Dimostrazione: $\lim_{n\to+\infty} a_n = a \iff \forall \varepsilon > 0 \quad \exists \nu \in \mathbb{N} : |a_n - a| < \varepsilon \quad \forall n > \nu$

a>0,quindi posso prendere $\varepsilon=\frac{a}{2}>0$ e:

$$|a_n-a|<\frac{a}{2} \quad \forall n>\nu \iff -\frac{a}{2}< a_n-a<\frac{a}{2} \quad \forall n>\nu \iff a_n>a-\frac{a}{2}=\frac{a}{2}>0 \quad \forall n>\nu \iff a_n>a-\frac{a}{2}=\frac{a}{2}>0$$

Corollario (viceversa)

Se $\lim_{n\to+\infty} a_n = a$ e $a_n \ge 0$ (vale anche $a_n > 0$), allora $a \ge 0$.

Teorema dei carabinieri 1.7.2

Si consideriamo tre successioni a_n, b_n, c_n con la proprietà che:

$$a_n \le c_n \le b_n$$

Se risulta che $\lim_{n\to+\infty} a_n = \lim_{n\to+\infty} b_n = a$, allora anche $\lim_{n\to+\infty} c_n = a$ (per ipotesi $a_n \to a$).

Dimostrazione:

$$\forall \varepsilon > 0 \ \exists \nu_1 : |a_n - a| < \varepsilon \ \forall n > \nu_1$$

$$\forall \varepsilon > 0 \ \exists \nu_2 : |b_n - a| < \varepsilon \ \forall n > \nu_2$$

Definisco $\nu_3 = \max\{\nu_1, \nu_2\}$ e per ipotesi $a - \varepsilon < a_n \le c_n \le b_n < a + \varepsilon \implies |c_n - a| < \varepsilon \quad \forall n > \nu_3 \implies c_n \to a$ Osservazione: Valgono per i limiti infiniti:

$$a_n \le b_n \quad \forall n \in \mathbb{N} \begin{cases} a_n \to +\infty \implies b_n \to +\infty \\ b_n \to -\infty \implies a_n \to -\infty \end{cases}$$

Dal teorema dei Carabinieri, segue il seguente risultato molto importante per le applicazioni e gli esercizi:

1.7.3 Teorema del limite del prodotto di una successione limitata per una infinitesima

Se a_n è limitata e b_n è infinitesima, allora $a_n \cdot b_n \to 0$ Dimostrazione: Considero $|a_n \cdot b_n| \Longrightarrow$

$$|a_n \cdot b_n| = |a_n| \cdot |b_n| \le M \cdot |b_n|$$

Per la proprietà del valore assoluto $|x| \le r \iff -r \le x \le r$

$$-M|b_n| \le a_n \cdot b_n \le M|b_n|$$
 per ipotesi $b_n \to 0$

 \implies Per il Teorema dei Carabinieri $a_n\cdot b_n\to 0$

1.8 Alcuni limiti notevoli

•
$$\lim_{n \to \infty} a^n = \begin{cases} +\infty & \text{se } a > 1 \\ 0 & \text{se } -1 < a < 11 \end{cases}$$
 se $a = 1$ non esiste se $a \le -1$

•
$$\lim_{n\to\infty} n^b = \begin{cases} +\infty & \text{se } b > 0\\ 1 & \text{se } b = 00 & \text{se } b < 0 \end{cases}$$

•
$$\lim_{n \to +\infty} \sqrt[n]{a} = \lim_{n \to +\infty} a^{\frac{1}{n}} = 1 \quad \forall a > 0$$

•
$$\lim_{n \to +\infty} \sqrt[n]{n^b} = \lim_{n \to +\infty} n^{\frac{b}{n}} = 1 \quad \forall b \in \mathbb{R}$$

1.9 Limiti relativi alle funzioni trigonometriche

•
$$a_n \to 0 \implies \sin a_n \to 0$$

•
$$a_n \to 0 \implies \cos a_n \to 1$$

Ad esempio, se $a_n = \frac{1}{n} \implies \sin \frac{1}{n} \to 0 \in \cos \frac{1}{n} \to 1$.

•
$$a_n \to 0, a_n \neq 0 \quad \forall n \quad (1) \frac{\sin a_n}{a_n} \to 1$$

•
$$a_n \to 0, a_n \neq 0 \ \forall n \ (2) \frac{1 - \cos a_n}{a_n^2} \to \frac{1}{2}$$

Infatti
$$\frac{1 - \cos a_n}{a_n^2} = \frac{(1 - \cos a_n)(1 + \cos a_n)}{a_n^2(1 + \cos a_n)} = \frac{1 - \cos^2 a_n}{a_n^2(1 + \cos a_n)} = \frac{\sin^2 a_n}{a_n^2} \cdot \frac{1}{1 + \cos a_n} = \frac{1}{2}$$

1.10 Successione notevole importante

$$a_n = (1 + \frac{1}{n})^n \qquad 1^{+\infty}$$

Confrontiamola con altre successioni b_n, c_n :

$$b_n = (1 + \frac{1}{n})^3 = (1 + \frac{1}{n}) \cdot (1 + \frac{1}{n}) \cdot (1 + \frac{1}{n}) \to 1$$

$$c_n = (1 + \frac{1}{10})^n = (\frac{11}{10})^n = a^n \to +\infty \quad \text{con } a > 1$$

Quindi a_n è una **forma indeterminata** $1^{+\infty}$, che da una parte, vuole tendere ad 1, dall'altra a $+\infty$, arriverà quindi ad un 'punto di mezzo'. Si definisce e il **numero di Nepero** tale che:

$$e = \lim_{n \to +\infty} (1 + \frac{1}{n})^n$$

4

dove $e \simeq 2,718281828459...$

Si dim
sotra che la succesisone a_n è strettamente crescente e limitata.

1.11 Successioni Monotòne

- a_n strettamente crescente $\iff a_n < a_{n+1} \quad \forall n \in \mathbb{N}$
- a_n strettamente decrescente $\iff a_n > a_{n+1} \quad \forall n \in \mathbb{N}$
- a_n crescente $\iff a_n \le a_{n+1} \quad \forall n \in \mathbb{N}$
- a_n decrescente $\iff a_n \ge a_{n+1} \quad \forall n \in \mathbb{N}$

Una successione si dice monotona se si verifica una delle quattro condizioni.

Una successione si dice **costante** se $a_n = a \quad \forall n \in \mathbb{N}$ con a numero reale. Le successioni costanti sono sia crescenti che decrescenti.

1.12 Teorema sulle successioni monotone

Ogni successione monotona ammette limite. In particolare, ogni successio monotona e limitata ammette limite finito.

Osservazione: Naturalmente non è che ogni successione convergente è monotona. Ad esempio $an = \frac{(-1)^n}{n}$ è convergente $(\to 0)$, ma non è monotona.

Dimostrazione: (1) Sia, ad esempio, a_n crescente e limtata.

Poniamo $l = \sup a_n$ (teorema di esistenza dell'estremo superiore: esiste il sup ed è finito perchè a_n è limitata).

Allora, per le proprietà dell'estremo superiore (data che è il minimo dei maggioranti)

$$\forall \varepsilon > 0 \quad \exists \nu : l - \varepsilon < a_{\nu} \quad (\star)$$

Ma a_n è monotona (crescente), quindi $\forall n > \nu \quad a_{\nu} \leq a_n$, da (\star)

$$l - \varepsilon < a_{\nu} \le a_n \le l < l + \varepsilon \quad \forall n > \nu$$

$$|a_n - l| < \varepsilon \quad \forall n > \nu$$

$$\implies \lim_{n \to +\infty} a_n = l$$

(2) Sia ora a_n crescente e non limitata. Fissiamo M>0, allora esiste ν tale che $a_{\nu}>M$. Dato che a_n è crescente $\forall n>\nu$

$$a_n \ge a_{\nu} > M$$

$$\implies \lim_{n \to +\infty} a_n = +\infty$$

Osservazione: Assioma di completezza \implies Esistenza dell'estremo superiore \implies Esistenza del limite delle successioni monotone

Osservazione: Si dimostra che $a_n = (1 + \frac{1}{n})^n$ è strettamente crescente e limitata. Quindi esiste, ed è un numero reale, il limite per $n \to +\infty$ di a_n , che è e.

1.13 Limiti Notevoli

- $\lim_{n \to +\infty} (1 + \frac{1}{n})^n = e$
- $\lim_{n \to +\infty} (1 + \frac{x}{n})^n = e^x \text{ con } x \in \mathbb{R}$

Più in generale:

- $\lim_{n\to+\infty} (1+\frac{x}{a_n})_n^a = e^x \text{ con } a_n \to +\infty, x \in \mathbb{R}$
- $\lim_{n \to +\infty} (1 + \varepsilon n)^{\frac{1}{\varepsilon}} = e \operatorname{con} \varepsilon \to 0$
- $\lim_{n\to+\infty} (1+x\varepsilon n)^{\frac{1}{\varepsilon}} = e^x \text{ con } \varepsilon \to 0, x \in \mathbb{R}$

Osservazione: Abbiamo visto, nell'ambito dei limiti notevoli, la successione esponenziale a^n , con a > 1 e la successione potenza n^b , con b > 0.

Entrambe divergono a $+\infty$. Spesso tali successioni vengono confrontate con $\log n, n!$ e con n^n , che pure divergono a $+\infty$.

1.13.1 Infiniti di ordine crescente

 $\log n, n^b, a^n, n!, n^n,$ da cui:

•
$$\lim_{n \to +\infty} \frac{\log n}{n^b} = 0$$

•
$$\lim_{n\to+\infty} \frac{a^n}{n!} = 0$$

•
$$\lim_{n \to +\infty} \frac{n!}{n^n} = 0$$

$$\bullet \ \lim_{n \to +\infty} \frac{n^b}{a^n} = 0$$

1.14 Criterio del rapporto per le successioni

Sia a_n una successione a termini positivi.

Sia $\frac{a_n+1}{a_n} \to a$, se $a \in [0,1)$, allora la successione a_n converge a zero.

Se $a \in (1, +\infty)$, allora la successione a_n diverge $a + \infty$.

Osservazione: Il caso a=1 non è contemplato nell'enunciato.

1.15 Successioni estratte

Considero a_n successione di numeri reali e sia n_k una successione strettamente crescente di numeri naturali. La successione a_{nk}

$$k \in \mathbb{N} \to a_{n_k}$$

prende il nome di successione estratta da a_n di inidici n_k .

Osservazione: Si dimostra che se a_n converge ad a, allora ogni successione estratta a_{n_k} converge ad a.

Osservazione: Abbiamo dimostrato che ogni successione a_n convergente è limitata. Il viceversa non è vero, ma vale il seguente notevole risultato:

1.16 Teorema di Bolzano-Weierstrass

Sia a_n una successione limitata. Allora esiste almeno una sua estratta convergente.