

Proyecto Machine Learning

Alfonso Espinosa de los Monteros Sicilia

Modelo Predictivo de fallos en Transformadores de Potencia

OBJETIVO

Mi propósito es proporcionar una herramienta más dentro del proceso de detección y prevención de accidentes en Transformadores de Potencia.

¿Por qué son tan importantes?

Estas máquinas ayudan a mejorar la seguridad y eficiencia de los sistemas de energía durante su distribución y regulación a través de largas distancias.

Son los que se utilizan para subestaciones y transformación de energía en media y alta tensión.

1

Definición.

 Un transformador eléctrico es una máquina eléctrica estática y reversible que permite aumentar o disminuir la tensión eléctrica (diferencia de potencial o voltaje) en un circuito eléctrico de corriente alterna, manteniendo la potencia eléctrica

Modelo Predictivo de fallos en Transformadores de Potencia

ÁMBITO

- 1. Las inversiones masivas en infraestructura de servicios públicos/energía, la expansión de la población y las necesidades energéticas, el enfoque del gobierno en la construcción de redes eléctricas.
 - 2. El reemplazo de una flota sustancial de transformadores envejecidos instalados en Europa, América del Norte y otras economías desarrolladas es uno de los principales impulsores del crecimiento de los transformadores de potencia en las economías maduras.

Si nos fijamos están en todas partes... ¿Pero cuantos hay?

Solo Iberdrola consta de más de 4.400 subestaciones de alta a media tensión y más de 1,5 millones de transformadores de distribución de media a baja tensión.

Transformers
Segment to Reach
\$56.1 Billion by
2026

¿Qué conseguimos con nuestro modelo?

Estrategia basada en los datos.

Existen tres tipos de mantenimiento: correctivo, preventivo y predictivo. Nuestro objetivo es fortalecer y dar valor en la parte de mantenimiento predictivo. La finalidad es aportar un nuevo enfoque aplicando técnicas de Machine Learning para predecir las posibles fallas en el equipo.

Mayor flexibilidad en la solución.

Nuestro modelo y clasificador propuesto podría servir como una herramienta más para garantizar el funcionamiento saludable de los transformadores de potencia. Sobre todo, nos permitiría ser más independientes.

Reducir el Tiempo de Diagnóstico & Reducción de Costes.

- a) Pretende ofrecer una propuesta computacional menos costosa en comparación con otros enfoques más tradicionales.
- b) Minimizar al máximo el mantenimiento correctivo.
- c) Un mantenimiento apropiado puede incrementar la confiabilidad y vida útil del transformador .
- d) Reducir el número de pruebas a solicitar, así como el material de laboratorio y personal especializado.

FASE I

Entendimiento de los Datos

Como si del propio laboratorio se tratara, nosotros también deberemos analizar y transformar nuestros datos para maximizar la efectividad de nuestro modelo. Por ejemplo:

1.Método de Doernenburg.

2.Método de las relaciones de Rogers.

PRUEBA DE NÚMERO DE NEUTRALIZACIÓN O ACIDEZ

PRUEBA DE RIGIDEZ DIELÉCTRICA

FASE II

Modelo de Regresión

Un modelo de regresión es un modelo matemático que busca determinar la relación entre una variable dependiente ('Health Index'), con respecto a otras variables llamadas explicativas o independientes ('H2', 'O2', 'CH4', etc).

PRUEBA DE CONTENIDO DE INHIBIDOR.

PRUEBA DE CONTENIDO DE HUMEDAD.

PRUEBA DE FACTOR DE POTENCIA
DEL ACEITE

FASE III

Clasificación

K-Means es un algoritmo no supervisado de Clustering. El objetivo de este algoritmo es el de encontrar "K" grupos (clusters). Es decir, esto nos va a servir para etiquetar y descubrir relaciones entre nuestro conjunto de datos (flota de transformadores).

Análisis de Gases Disueltos

PRUEBA DE COMPUESTOS FURANOS

PRUEBA DE COLOR DEL ACEITE.

(1ºFase) Automatización del proceso de análisis

DIRAT- TRATE - LABOR				INSTALACIÓN:			ST EQUIPO MOVIL T-3					Nº FABRICACIÓN: 62390-WES Expediente: 1										
EBRIDGE DIGITAL ACCELERATOR			λL Π	MÁQUINA:			TP-3				M	MARCA WES					POTEN			20		
1E I I DRIVVE ACCELERATOR			LERATOR	TENSIC	ONES (kV):	132/20 P.				P.SI	.SERVICIO: 01/01/1985				TIPO DEPÓSITO SILICAGEL						
			\perp	TIPO	ACEIT	E:	REPSO	L TENS	SION	F	REFRI	GERACIÓN	OFAF				(CTC:				
Informe										1	1	Inforn	ne									1
P. Muestra	FC	FC	FC		FC	FC	FC	FC	FC	FC		P. Mues	tra	0	0	0	FC	FC	FC	FC	FC	FC
GAS (ppm)	09/09/2008	19/02/2010	02/09/2011	31/08/2012	22/11/2013	05/11/2014	2010/2015	01/12/2016	02/11/2017	02/11/2018		Fecha	ı	19/02/2010	02/09/2011	31/00/2012	22/11/2013	05/11/2014	28/10/2015	01/12/2016	02/11/2017	02/11/201
H2	29	4,9	10	12	0,0	4,2	6,8	0,0	7,1	28		Temperatur	a (°C)	3	32	28	0	30	0	10	18	14
02	16686	35655	24635	23213	22905	20837	51636	23921	26262	67114		Color		1,5	1,5	1,5	1,5	1,0	1,5	1,5	1,0	1,0
N2	57389	93945	77889	64448	89449	50609	147407	53499	59383	20142		Aoldez (f	IN)	0,050	0,060	0,070	0,070	0,050	0,050	0,080	0,070	0,059
со	259	54	58	60	57	36	22	46	33	47		Agua (mg	/kg)	4	5	5	6	5	7	4	6	-11
CO2	3362	2062	1732	1761	1351	1181	1058	1671	1630	1326		Tan 6 -DDF	(%)	1,1	1,1	0,90	1,3	1,7	1,5	2,1	1,9	1,3
CH4	37	9,6	2,9	3,3	3,9	1,1	1,3	1,4	1,5	1,0		Rigidez D,	(kV)									
C2H6	33	30	19	20	14	9,7	6,2	7,5	5,4	5,0		Contenido inhi	bidor (%)									
C2H4	94	64	37	29	25	11	4,8	8,0	4,6	4,0												
C2H2	1,3	0,5	0,0	0,0	2,1	0,0	0,0	1,4	0,0	0,0]											
DIAGNÓSTICO								ANTECEDENTES														
s valores obtenidos, tanto en el análisis de cromatografía de gases como en el coquímico del aceite, muestran valores normales. Continuamos por tanto con su gama								FECHA														
coquímico dei aceite, muestran valores normales. Continuamos por tanto con su gama rmal de mantenimiento								lia l	01/01/2000 Reparación en fábrica													
										11/11/1999 Incidencia/Avería												
												-										
													_									
												_										
FECHA PRÓXIMO CONTROL 01/11/2019								FECHA PRÓXIMO CONTROL 01/11/2019				19										
C/C Realizado Gases							Realizado Fisicoquímico					LABORATORIO										
Rivera Laboratorio ext								Laboratorio externo				ı	L. Hernández									

En este caso, el diagnóstico se lleva a cabo por un equipo especializado que a partir de unas pruebas físico-químicas decidirá el estado del transformador al igual que la estrategia a seguir (Normas STDM).

MODELO ENTRENADO

Realizaremos el proceso equivalente, pero en esta ocasión basaremos nuestra respuesta, únicamente, a través de los datos y los resultados previos.

ML

	LGBMRegressor	HistGradient BoostingRegressor	ExtraTrees Regressor	GradientBoosting Regressor	RandomForest Regressor		
MAE	5.176	5.346	5.265	5.107	4.925		
MSE	68.149	65.652	66.226	70.065	74.512		
RMSE/Mean(CVS)	8.255 / 10.158	8.102 / 10.267	8.139 /10.446	8.370 / 10.805	8.632 / 11.007		
Efectividad en Train	0.920	0.90	0.850	0.983	0.940		
Efectividad en Test	0.808	0.773	0.813	0.803	0.790		

(3ªFase) Clasificación

ML

Una vez identificados los distintos grupos, debemos llevar a cabo otro EDA.

CLUSTER_1

Este análisis exploratorio, buscará las características semejantes en cada grupo.

CLUSTER_2

Una vez comprendamos el proceso de etiquetado, se asignará para cada grupo una estrategia distinta de mantenimiento.

CLUSTER_4

- Remplazo inmediato
- Reacondicionamiento del aceite
- Principios de deterioro
- Transformador completamente sano

MI

