Análisis Funcional I – 2024 Práctico 2

ESPACIOS DE BANACH. ESPACIOS DE HILBERT. CONVEXIDAD

- (1) Hacer los siguientes ejercicios de capítulo 2 del libro Linear Functional Analysis de Rynne y Youngson:
 - (a) ejercicio 2.3 (página 38),
 - (b) ejercicios 2.6, 2.7 y 2.8 (páginas 44 y 45),
 - (c) ejercicios 2.10, 2.11 y 2.12¹ (página 50).
- (2) Espacios de funciones continuas
 - (a) Probar que $(C([a,b]), \|\cdot\|_p)$ es de Banach si y sólo si $p=\infty$
 - (b) Probar que
 - (i) $C_b := \{ f \in C(\mathbb{R}) \mid f \text{ es acotada } \},$
 - (ii) $C_0 := \{ f \in C(\mathbb{R}) \mid \lim_{x \to \infty} f(x) = 0 \}$ y
 - (iii) $C_p := \{ f \in C(\mathbb{R}) \mid f(x) = f(x + 2\pi) \ \forall x \in \mathbb{R} \}$

son espacios de Banach con $\|\cdot\|_{\infty}$

- (c) Probar que $(C_c(\mathbb{R}), \|\cdot\|_{\infty})$ no es de Banach, aquí:
 - (i) $C_c(\mathbb{R}) := \{ f \in C(\mathbb{R}) \mid \overline{\operatorname{sop}(f)} \text{ es acotado} \}.$
- (3) Dado $x \in \mathbb{R}$, definimos el operador de traslación por x:

$$L_x: L^1(\mathbb{R}) \longrightarrow L^1(\mathbb{R}) \qquad L_x(f)(y) := f(y-x).$$

(a) Probar que la aplicación

$$\mathbb{R} \times L^1(\mathbb{R}) \longrightarrow L^1(\mathbb{R}) \qquad (x, f) \longmapsto L_x(f)$$

define una acción del grupo $(\mathbb{R}, +)$ sobre $L^1(\mathbb{R})$.

(b) Dada $g \in L^1(\mathbb{R})$, probar que el operador

$$T: L^1(\mathbb{R}) \longrightarrow L^1(\mathbb{R}) \qquad T(f) := f * g$$

es invariante por traslaciones, es decir, $L_x(T(f)) = T(L_x(f))$ para todo $x \in \mathbb{R}$ y toda $f \in L^1(\mathbb{R})$.

Observación: Este pos dice que T es un operador que entreleza la acción L consign misma

Observación: Esto nos dice que T es un operador que entrelaza la acción L_x consigo misma, actuando en el espacio de Banach $L^1(\mathbb{R})$.

- (4) Decimos que una función $\varphi : \mathbb{R} \to \mathbb{R}$ es un homomorfismo de \mathbb{R} si cumple que $\varphi(x+y) = \varphi(x) + \varphi(y)$ para todo $x, y \in \mathbb{R}$.
 - (a) ¿Cuáles son los homomorfismos de $\mathbb R$ con repecto de la operación suma? Dar una descripción no explícita.
 - (b) ¿Cuáles son los homomorfismos continuos de $\mathbb R$ respecto de la operación suma?

¹En 2.12(b), $z_n = x + (1 - \frac{1}{n})(z - x)$.

- (c) ¿Todos los homomorfismos de \mathbb{R} son continuos?
- (5) Hacer los siguientes ejercicios de capítulo 3 del libro Linear Functional Analysis de Rynne y Youngson:
 - (a) ejercicio 3.1 (página 59),
 - (b) ejercicios 3.8, 3.10 y 3.11 (páginas 64 y 65),
 - (c) ejercicios 3.14, 3.15, 3.16 y 3.17 (página 72).
- (6) Sea S subespacio vectorial del espacio de Hilbert \mathcal{H} .
 - (a) S es denso si y sólo si $S^{\perp} = 0$.
 - (b) $\overline{S} = S^{\perp \perp}$.
 - (c) Si S es un subconjunto no vacío de \mathcal{H} y $\langle S \rangle$ es el espacio generado por S, entonces $\overline{\langle S \rangle} = S^{\perp \perp}$.
- (7) Sea \mathcal{P} un pre-Hilbert. Si $S \subset \mathcal{P}$ no vacío, entonces
 - (a) $S \subset (S^{\perp})^{\perp} \doteq S^{\perp \perp}$.
 - (b) $S^{\perp\perp\perp} = S^{\perp} = (\overline{S})^{\perp}$.
 - (c) $S \cap S^{\perp} \subset \{0\}$.
- (8) Sea A un subconjunto de un EV X. Probar que $2A \neq A + A$ pero que la igualdad vale si A es convexo.
- (9) Consideremos el espacio C[0,1], con la norma $||\cdot||_{\infty}$. Sea $S = \left\{ f \in C[0,1] : \int_0^{\frac{1}{2}} f \int_{\frac{1}{2}}^1 f = 1 \right\}$. Probar que S es convexo y cerrado y que no existe una f en S con distancia mínima al cero.
- (10) Consideremos C[0,1] con la $||\cdot||_1$. Sea $S = \{f \in L^1 : \int_0^1 f = 1\}$. Probar que S es convexo y cerrado y que existen infinitas f con distancia mínima al cero.
- (11) (a) Sea \mathcal{N} normado. Probar que la bola unidad (abierta o cerrada) es convexa.
 - (b) Consideremos $L^p(\mathbb{R}^n)$ con la medida de Lebesgue. Probar que, para 1 la bola unidad es estrictamente convexa.

EJERCICIOS ADICIONALES

(12) Definición: Sea G un abierto en \mathbb{C} , denotamos por $L^2_a(G)$ el conjunto de todas las funciones analíticas en G tal que

$$\int \int_{G} |f(x+iy)|^2 dx dy < \infty.$$

 $L_a^2(G)$ Se llama el espacio de Bergman para G. Observar que $L_a^2(G) \subset L^2(\mu)$ donde μ es la medida de lebesgue restringida a G. Esto implica que $L_a^2(G)$ tiene un producto interno (y norma) natural heredado de $L^2(\mu)$.

(a) Si f es analítica en un entorno de $\overline{B}(a,r)$ entonces

$$f(a) = \frac{1}{\pi r^2} \int \int_{B(a,r)} f.$$

(b) Si $f \in L_a^2(G)$, $a \in G$ y $0 < r < \operatorname{dist}(a, \partial G)$, entonces

$$|f(a)| \le \frac{1}{r\sqrt{\pi}}||f||_2$$

(c) Probar que $L^2_a({\cal G})$ es un espacio de Hilbert.