

Xử lý event

Giảng Viên: Lưu An Phú

Agenda

- Tổng quan về event
- Xử lý event bằng cơ chế pooling
- Xử lý event bằng ngắt
- Xử lý exception

Tổng quan về event

2 phương pháp để xử lý event

- Xử lý theo cơ chế pooling.
 - Implement đơn giản.
 - Không hiệu quả, tốn cpu.
- Xử lý bằng interrupt và execption
 - Xử lý phức tạp hơn pooling.
 - Hiệu quả hơn.

Xử lý event bằng pooling

- Trong source code có 1 vòng while liên lục kiểm tra sự kiện đã xảy ra hay chưa.
- Tạo một timer theard chạy định kỳ để kiểm tra.
 - struct timer_list
 - init_timer_on_stack
 - add_timer

Example code


```
struct timer list exp timer;
10
11
     static void do something (unsigned long data)
12
13
         printk(KERN INFO . "Your timer expired and app has been called \n");
14
15
16
     static int init tst init (void)
17
    □ {
18
         \rightarrowint ·delay·=·300;
19
20
         printk(KERN INFO . "Init called\n");
21
22
          init timer on stack(&exp timer);
23
24
          exp timer.expires = jiffies + delay * HZ;
25
          exp timer.data = 0;
26
          exp timer.function = do something;
27
28
          add timer(&exp timer);
29
30
          return · 0;
31
32
33
     static void exit tst exit(void)
34
    □{
35
         del timer(&exp timer); ...
36
          printk(KERN INFO · "Exit · called\n");
37
```

Thực hành

 Kết nối đèn led và button vào chân GPIO của board. Config GPIO cho cả đèn led và button. Viết 1 kernel module khởi tạo 1 timer check trạng thái chân GPIO của button mỗi 1ms. Nếu thấy button được nhấn thì bật đèn led. Nếu thấy button được nhả thì tắt đèn led.

Xử lý event bằng interrupt và exception

Giới thiệu về interrupt

- Định nghĩa
- Ngắt cứng
- Ngắt mềm
- Ngắt có thể bỏ qua
- Ngắt không thể bỏ qua

• Định nghĩa

Vector table

 Nơi chứa địa chỉ của tất cả interrupt and exception handler.

Figure 2: the minimal layout of the vector table in an STM32 MCU based on a Cortex-M3/4/7 core

Interrupt handler

- Là function được gọi ra khi có interrupt.
- Mỗi khi interrupt xảy ra, cpu stop câu lệnh hiện tại và save trạng thái vào stack. Sau đó thực thi interrupt.
 - Không được sleep trong interrupt handler.
 - Phải thực thi nhanh nhất có thể.
 - Thường chia sẻ data với các irq handler khác

Example code


```
irgreturn t irg handler (int irg, void *dev id, struct pt regs *regs)
 3
          →static · int · initialised ·= ·0;
          →static ·unsigned ·char ·scancode;
 4
 5
          →static struct work struct task;
 6
          →unsigned ·char ·status;
           →return ·IRQ HANDLED;
 8
 9
10
11
       int init module()
12
     □ {
13
           >free irq(1, NULL);
14
15
            return \cdot request irg(1, \longrightarrow /* \cdot The \cdot number \cdot of \cdot the \cdot keyboard \cdot IRQ \cdot on \cdot PCs \cdot */
16
                     →···irq handler, →/*·our·handler·*/
17
                     →···SA SHIRQ, ·"test keyboard irq handler",
18
                \rightarrow \longrightarrow \cdots (void *) (irq handler));
      L<sub>}</sub>
19
```

View interrupt list in user-space

• cat /proc/interrupt

```
phula@alb-machine-test:~$ cat /proc/interrupts
           CPU0
                      CPU1
                                  CPU2
                                              CPU3
  Θ:
             13
                                                     IO-APIC
                                                                2-edge
                                                                            timer
                          Θ
                                                                1-edge
                                                                            i8042
                          Θ
                                                     IO-APIC
  7:
              Θ
                          Θ
                                                     IO-APIC
                                                                7-edge
                                                                            parport0
  8:
                          Θ
                                     Θ
                                                     IO-APIC
                                                                8-edge
                                                                            rtc0
                          Θ
                                                                9-fasteoi
  9:
              4
                                                     IO-APIC
                                                                            acpi
17:
             72
                   1701401
                               3908202
                                                     IO-APIC
                                                              17-fasteoi
                                                                            enp3s0
                                                                            ehci_hcd:usb1
18:
           1044
                   7912246
                               2169330
                                                              18-fasteoi
                                                     IO-APIC
19:
           6537
                       2834
                                715905
                                             20997
                                                              19-fasteoi
                                                                            ata piix, ata piix
23:
                                                     IO-APIC 23-fasteoi
                                                                            ehci hcd:usb2
             29
                          Θ
24:
                                                     PCI-MSI 32768-edge
                                                                              i915
            106
                         95
                               2664599
                                              2059
25:
             13
                                                     PCI-MSI 360448-edge
                                                                               mei me
                         Θ
26:
            711
                                                     PCI-MSI 442368-edge
                                                                               snd hda intel:card0
                       241
                                     Θ
27:
                        640
                                               354
                                                     PCI-MSI 2097152-edge
                                  8640
                                                                                enp4s0
```

Thực hành

 Kết nối đèn led và button vào chân GPIO của board. Config GPIO cho cả đèn led và button. Viết 1 kernel module khởi tạo 1 interrupt hander cho button. Mỗi khi button được nhấn thì gọi interrupt handler ra để bật led. Nếu button nhả ra thì gọi handler ra để tắt led.

Top half và bottom half

Top half

 Xử lý những công việc critical, không thể delay được.

Bottom half

- Xử lý các việc cần nhiều thời gian, có thể delay được.
- Mẹo: Trong interrupt handler gọi hàm add_timer
 để tạo 1 timer xử lý sau.

Những lưu ý khi đang trong top-half

- Kmalloc with GFP_ATOMIC
- Delay() thay thê cho msleep()
- Printk()

Disable interrupt

- local_irq_disable
- local_irq_save
- local_bh_disable
- spinlock_irq_get

Checking interrupt context

- Dùng cho các hàm có thể được gọi từ interrupt context và non-interrupt context.
- Irqs_disabled()
- In_interrupt()
- In_irq()

Exception handler

- Không thể bị bỏ qua
- Không bị ngắt quãng bởi exception khác
- Không cần protect data
- Sau khi kết thúc, có thể không chạy tiếp instruction trước đó.

Thank you

