Algoritmusok II. gyakorlat

8. gyakorlat, március 30.

- Két különböző $p_1=(x_1,y_1)$ és $p_2=(x_2,y_2)$ pont konvex kombinációja egy $p_3=(x_3,y_3)$ pont, ha valamely $0\leq\alpha\leq1$ valós számra $(x_3,y_3)=\alpha(x_1,y_1)+(1-\alpha)(x_2,y_2)$.
- a $\overline{p_1p_2}$ szakasz, ami összeköti p_1 -et és p_2 -t, a p_1 és p_1 összes konvex kombinációja.

- Legyen P_1 és P_2 két pont a síkon.
- A $p_1 \times p_2$ keresztszorzat a megadott paralelogramma előjeles területeként értelmezhető.

$$p_1 \times p_2 = \det \begin{pmatrix} x_1 & x_2 \\ y_1 & y_2 \end{pmatrix} = x_1 y_2 - x_2 y_1 = -p_2 \times p_1.$$

Bővebb magyarázat Hirling Dominik videójában: https://www.youtube.com/watch?v=jv5YXkvMan4

- Ha $p_1 \times p_2$ negatív, akkor \overrightarrow{op}_1 az óramutató járásával ellentétes forgásirányba esik \overrightarrow{op}_2 -höz képest.
- Ha $p_1 \times p_2$ pozitív, akkor \overrightarrow{op}_1 az óramutató járásával megegyező forgásirányba esik \overrightarrow{op}_2 -höz képest.
- Ha $p_1 \times p_2 = 0$, akkor \overrightarrow{op}_1 és \overrightarrow{op}_2 kollineárisak.
- Annak eldöntéséhez, hogy egy $\overrightarrow{p_0p_1}$ irányított szakasz óramutató járásával megegyező vagy azzal ellentétes forgásirányba esik-e egy másik, $\overrightarrow{p_0p_2}$ irányított szakaszhoz képest, közös p_0 végpontból felmérve őket, egyszerűen eltoljuk a vektorokat úgy, hogy p_0 az origóba essen.

- Tekintsük a $p'_1 \times p'_2$ keresztszorzatot, ahol $p'_1 = p_1 p_0$, $p'_2 = p_2 p_0$.
- Ekkor $p_1' \times p_2' = (x_1 x_0)(y_2 y_0) (x_2 x_0)(y_1 y_0)$.
- Döntsük el, hogy a két egymást követő szakasz, a $\overrightarrow{p_0p_1}$, illetve a $\overrightarrow{p_1p_2}$ esetében a p_Γ ben balra vagy jobbra fordul a p_1 .
- Vagyis $\overrightarrow{p_0p_2}$ az óramutató mozgási irányában van $\overrightarrow{p_0p_1}$ -hez képest, vagy nem.

$$(p_2 - p_0) \times (p_1 - p_0) < 0$$

Ekkor ellenkező irány, vagy bal fordulat.

$$(p_2 - p_0) \times (p_1 - p_0) > 0$$

Ekkor megegyező irány, vagy jobb fordulat.

- Annak eldöntésére, hogy két szakasz metszi-e egymást, ellenőrizzük, hogy az egyik szakasz átfogja-e a másik egyenesét.
- A $\overline{p_1p_2}$ szakasz átfog egy egyenest, ha a p_1 pont az egyenes egyik oldalára, a p_2 pont pedig a másik oldalára esik. Határesetben p_1 vagy p_2 illeszkedik az egyenesre.
- Két szakasz akkor és csak akkor metszi egymást, ha:
 - Mindkét szakasz átfogja a másik egyenesét.
 - Az egyik szakasz egyik végpontja illeszkedik a másik szakaszra.
 (Ez a feltétel felel meg a határesetnek.)

• Átfedés tesztelése keresztszorzattal:

• ellenőrizzük, hogy $\overline{p_3p_4}$ átfogja-e a p_1 és p_2 által meghatározott L egyenest

Ha p_3p_4 átfogja a p_1 és p_2 által meghatározott egyenest, akkor a következő keresztszorzatok előjele különböző:

$$(p_3 - p_1) \times (p_2 - p_1)$$

 $(p_4 - p_1) \times (p_2 - p_1)$

Határeset, amikor $\overline{p_3p_4}$ átfogja *L*-et. Legalább egy keresztszorzat 0.


```
Metsző-szakaszok (pl, p2, p3, p4)
   d1 ← Forgásirány (p3, p4, p1)
   d2 ← Forgásirány (p3, p4, p2)
   d3 ← Forgásirány(p1, p2, p3)
   d4 ← Forgásirány (p1, p2, p4)
   if ((d1 > 0 \text{ és } d2 < 0) \text{ vagy } (d1 < 0 \text{ és } d2 > 0)) \text{ és}
       (d3 > 0 \text{ \'es } d4 < 0) \text{ vagy } (d3 < 0 \text{ \'es } d4 > 0))
   then return igaz
   else
         határesetek vizsgálata
Forgásirány (pi, pj, pk)
   return (pk - pi) \times (pj - pi)
```

- Adott n szakasz, határozzuk meg, hogy létezik-e két olyan szakasz, melyek metszik egymást.
- Söprés: Egy képzeletbeli függőleges vonal mozog az *x* tengelyen (amely időtengelyként működik) balról jobbra.
- Az összes szakasz végpontot balról jobbra haladva sorrendben vesszük figyelembe. Abban az esetben, ha több pont x koordinátája megegyezik, tehát holtverseny esetén a szakaszkezdő pontokat a szakasz záró pontok elé soroljuk. Ha ezen belül is van még további holtverseny, akkor pedig a kisebb y-koordinátájú pontok nagyobbak elé sorolásával döntjük el.

- Rendezés definíciója: Legyen s_1 és s_2 két szakasz.
 - A szakaszok összehasonlíthatók t-ben, ha a t-ben lévő függőleges egyenes mindkettőt metszi.
 - Ha s_1 és s_2 összehasonlíthatók t-ben, akkor azt mondjuk hogy s_1 fölötte van s_2 -nek t-ben, amit úgy jelölünk hogy $s_1>_t s_2$, ha s_1 magasabb pontban metszi az egyenest t-ben mint s_2 .

- A seprő egyenesek T teljes rendezésének kezelésére a következő műveletekre van szükségünk:
 - INSERT(*T*,*s*) az s szakasz beszúrása *T*-be
 - DELETE(T,s) az s szakasz törlése T-ből
 - ABOVE(T,s) visszaadja a közvetlenül s felett lévő szakaszt T-ben
 - BELOW(T,s) visszaadja a közvetlenül s alatt lévő szakaszt T-ben
- Többek között kiegyensúlyozott keresőfákkal, pl. AVL-fa megvalósíthatók ilyen műveletek $O(\log n)$ időben.

VAN-E-METSZŐ-SZAKASZPÁR(S)

T← Ø

return FALSE

```
Rendezzük az S-beli szakaszok végpontjait balról jobbra, döntsük el a holtversenyt a bal végpontok jobb végpontok elé sorolásával, a további holtversenyt pedig a kisebb y-koordinátájú pontok nagyobbak elé sorolásával.

for minden p pontra a végpontok rendezett listájában

if p egy s szakasz bal végpontja then

INSERT(T,s)

if [ABOVE(T,s) létezik and metszi s-et] or

[BELOW(T,s) létezik and metszi s-et] then return TRUE

if p egy s szakasz jobb végpontja then

if [ABOVE(T,s) and BELOW(T,s) is létezik] and

[ABOVE(T,s) metszi BELOW(T,s)-t] then return TRUE

DELETE(T,s)
```

Döntsük el az A = [0; 4];B = [2; 2], valamint a C = [0; 2];D = [3; 4] végpontokkal adott szakaszokról, hogy metszik-e egymást?

I. CD átfogja-e AB-t?

I/a) Forgásirány(A;B;C) =
$$\det\begin{pmatrix} 2 - 0 & 0 - 0 \\ 2 - 4 & 2 - 4 \end{pmatrix} = \det\begin{pmatrix} 2 & 0 \\ -2 & -2 \end{pmatrix} = -4 < 0$$

Tehát az AB szakaszhoz képest a C csúcs jobbra fordulva érhető el.

I/b) Forgásirány(A;B;D) =
$$\det\begin{pmatrix} 2 - 0 & 3 - 0 \\ 2 - 4 & 4 - 4 \end{pmatrix} = \det\begin{pmatrix} 2 & 3 \\ -2 & 0 \end{pmatrix} = 6 > 0$$

Tehát az AB szakaszhoz képest a D csúcs balra fordulva érhető el.

II. AB átfogja-e CD-t?

II/a) Forgásirány(C;D;A) =
$$\det\begin{pmatrix} 3 - 0 & 0 - 0 \\ 4 - 2 & 4 - 2 \end{pmatrix} = \det\begin{pmatrix} 3 & 0 \\ 2 & 2 \end{pmatrix} = 6 > 0$$

Tehát az CD szakaszhoz képest a A csúcs balra fordulva érhető el.

II/b) Forgásirány(C;D;B) =
$$\det\begin{pmatrix} 3 - 0 & 2 - 0 \\ 4 - 2 & 2 - 2 \end{pmatrix} = \det\begin{pmatrix} 3 & 2 \\ 2 & 0 \end{pmatrix} = -4 < 0$$

Tehát az CD szakaszhoz képest a B csúcs jobbra fordulva érhető el.

I. és II. alapján az AB és CD szakaszok metszik egymást.

Döntsük el az A = [0; 4];B = [2; 2], valamint a C = [1; 0];D = [3; 3] végpontokkal adott szakaszokról, hogy metszik-e egymást?

I. AB átfogja-e CD-t?

I/a) Forgásirány(C;D;A) =
$$\det\begin{pmatrix} 3-1 & 0-1 \\ 3-0 & 4-0 \end{pmatrix} = \det\begin{pmatrix} 2 & -1 \\ 3 & 4 \end{pmatrix} = 11 > 0$$

Tehát az CD szakaszhoz képest a A csúcs balra fordulva érhető el.

I/b) Forgásirány(C;D;B) =
$$\det\begin{pmatrix} 3-1 & 2-1 \\ 3-0 & 2-0 \end{pmatrix} = \det\begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix} = 1 > 0$$

Tehát az CD szakaszhoz képest a B csúcs balra fordulva érhető el.

Az AB és CD szakaszok nem metszik egymást.

Hatékony algoritmussal határozzuk meg, hogy az alábbi szakaszok között található-e egymást metsző szakaszpár!

AB = [(1; 5); (4; 4)] CD = [(2; 5); (5; 6)] EF = [(4; 3); (8; 7)] GH = [(4; 7); (7; 5)] IJ = [(5; 3); (7; 3)]

Rendezzük a szakaszok végpontjait x-koordinátájuk szerint. A holtversenyeket a szakaszok kezdőpontjainak végpontjainak elé sorolásával döntsük el. Az esetleges további holtversenyeket a kisebb y-koordinátájú pontok nagyobbak elé sorolásával oldjuk föl.

Eredmény: A;C;E;G;B;I;D;J;H;F

A szakaszokat tartalmazó AVL keresőfa állapotai a seprőegyenes (s_i) haladása szerint.

S1: BESZÚR(AB)

S2: BESZÚR(CD)

S3(a): BESZÚR(EF)

S3(b): BESZÚR(GH)

S3(c): TÖRÖL(AB)

S4(a): BESZÚR(IJ)

S4(b): TÖRÖL(CD)

Szorgalmi feladat:

Adottak az alábbi ábrán látható szakaszok. Mutassuk be a példán az egymást metsző szakaszokat kereső algoritmus lépéseit piros-fekete fa használatával!

