Федеральное государственное автономное образовательное учреждение высшего образования

«Московский физико-технический институт (национальный исследовательский университет)» Физтех-школа Прикладной Математики и Информатики Кафедра интеллектуальных систем

Направление подготовки / специальность: 03.04.01 Прикладные математика и физика **Направленность (профиль) подготовки:** Математическая физика, компьютерные технологии и математическое моделирование в экономике

ПРИМЕНЕНИЕ ГРАДИЕНТНЫХ МЕТОДОВ ОПТИМИЗАЦИИ ДЛЯ РЕШЕНИЯ НЕКОТОРЫХ ОБРАТНЫХ ЗАДАЧ МАТЕМАТИЧЕСКОЙ ФИЗИКИ

(магистерская диссертация)

	HB
	(подпись студента)
Науч	ный руководитель:
Гасни	ков Александр Владимиров
д-р ф	измат. наук, доц.
	AI
(подг	пись научного руководителя)
Конс	ультант (при наличии):

(подпись консультанта)

Москва 2021

Оглавление

1	Аннотация	2
2	Введение	•
3	Постановка задачи	4
4	Некорректность задачи	
5	Обзор литературы	(
6	Функционал и градиент	7
7	Метод подобных треугольников	(
8	Приближённое решение с использованием разностных схем 1	1
9	Приближённое решение с использованием рядов Фурье	[
10	Определение концепции шума	22
11	Применение техники рестартов	25
12	Заключение][
13	Ссылки	27

1 Аннотация

Работа посвящена изучению применения методов выпуклой оптимизации с целью решения задачи Коши для уравнения Гельмгольца. Некорректно поставленная задача Коши сводится к задаче выпуклой оптимизации в гильбертовом пространстве. Оптимизируемый функционал вычисляется с использованием решения обратных задач, которые, в свою очередь, корректны и допускают решение стандартными численными методами. Экспериментально исследуется сходимость применяемых быстрых градиентных методов и качество получаемого таким образом решения. Формулируется теорема о вычислительной сложности полученного алгоритма. Определяется, что неточность вычислений более адекватно описывается аддитивной концепцией шума.

Ключевые слова: обратные задачи, выпуклая оптимизация, оптимизация в гильбертовом пространстве, методы первого порядка, быстрые градиентные методы, неточный оракул.

2 Введение

Теория обратных и некорректных задач — обширная и бурно развивающаяся область математики, имеющая многообразные приложения в физике, астрономии, геофизике. Если в прямых задачах ищут описание явлений по начальным условиям и параметрам среды, то в обратных — наоборот. Часто такие задачи оказываются некорректно поставленными, и поэтому не могут быть решены обычными методами.

В монографии [9] предпринята попытка описать все известные на данный момент задачи такого рода. Например, некорректно поставленной является задача Коши для уравнения Гельмгольца, что будет доказано в разделе 4.

Настоящая работа посвящена её решению путём сведения к задаче оптимизации в гильбертовом пространстве с дальнейшим применением методов оптимизации первого порядка, то есть методам, использующим лишь значения функции и ее градиента.

Как уже обозначено, эллиптические уравнения, к которым относится и уравнение Гельмгольца, имеют многобразные применения в физических исследованиях. Однако задача Коши для уравнений данного класса некорректна, то есть её решение не является непрерывно зависящим от начальных условий (доказано в разделе 4). Поэтому применение для её решения численных методов затруднено.

Однако существуют достаточно точные методы решения краевых задач. Для получения краевой задачи, имеющей то же решение, что и исходная задача Коши, необходимо решить операторное уравнение. Это, в свою очередь, делается путём решения соответствующей оптимизационной задачи. Такой подход описывается, например, в статье [8]. Его развитие осуществлено в работе.

Поскольку решение данных задач в любом случае требует применения численных методов, при вычислении градиента возникают погрешности, зависящие от выбора шага сетки. Соответственно, требуется баланс между точностью вычисления градиента и скоростью сходимости градиентного метода. Этот вопрос освещается в работе [6]. Соответствующие результаты необходимо распространить на рассматриваемую задачу.

Существуют два основных подхода к описанию шума в градиенте, введённые в работе [10]:

$$||\widetilde{\nabla}J(q)-\nabla J(q)||\leq \delta\; \forall q\in Q$$
— аддитивный шум;

$$||\widetilde{\nabla}J(q)-\nabla J(q)||\leq \alpha||\nabla J(q)||\ \forall q\in Q, \alpha\in[0;1)$$
 — относительный шум.

В статьях [11] и [12] показано, что в случае аддитивного шума результаты пессимистичны: с ростом количества итераций ошибка накапливается. Для относительного шума ситуация намного лучше, лишь замедляется в $\left(\frac{1+\alpha}{1-\alpha}\right)^2$ раз сходимость ([10]). Поэтому данные случаи различимы с помощью эксперимента. В статье [12] описаны результаты, достигаемые в данных концепциях на практике.

Основным содержанием работы являются реализация описанных идей решения некорректной задачи, а также их экспериментальная проверка: проверка применимости к решению градиентных методов, исследование зависимости сходимости от величины шума градиента, выявление модели шума, более адекватно описывающей задачу.

Структура работы: в разделе 3 приводится постановка задачи и описывается, как она сводится к задаче оптимизации; раздел 4 обосновывает некорректность исходной задачи. Раздел 5 содержит обзор литературы, использованной при исследованиях. Раздел 6 посвящён исследованию свойств оптимизируемой функции и её градиента. В разделе 7 описывается ускоренный метод, применяемый для решения оптимизационной задачи. Раздел 8 содержит описание метода приближённого решения и полученных результатов для вычисления градиента с помощью разностных схем, а раздел 9 — то же самое, но с применением рядов Фурье. Раздел 10 посвящён определению адекватной концепции шума. В разделе 11 приводятся результаты, относящиеся к применению рестартов. Раздел 12 — заключительный, в нём собраны ключевые выводы.

3 Постановка задачи

Исследование стационарных процессов часто приводит к задаче Коши для уравнения Гельмгольца:

$$\begin{cases} \Delta u + k^2 u = 0, & (x, y) \in \Omega = (0, 1) \times (0, 1) \\ u|_{x=0} = f(y), & y \in [0, 1] \\ u_x|_{x=0} = g(y), & y \in [0, 1] \\ u|_{y=0} = u|_{y=1} = 0, & x \in [0, 1] \end{cases}$$

Эта задача Коши поставлена некорректно, то есть отсутствует непрерывная зависимость решения от начальных условий. Данное утверждение будет

доказано в следующем разделе.

Рассмотрим обратную задачу (*):

$$\begin{cases} \Delta u + k^2 u = 0, & (x, y) \in \Omega = (0, 1) \times (0, 1) \\ u_x|_{x=0} = g(y), & y \in [0, 1] \\ u|_{y=0} = u|_{y=1} = 0, & x \in [0, 1] \\ u|_{x=1} = q(y), & y \in [0, 1] \end{cases}$$

В отличие от исходной задачи Коши, она корректна и допускает эффективное решение численными методами. И если функция q(y) может быть подобрана так, что решение обратной задачи является также решением исходной задачи Коши, то некорректная задача сводится к корректной. Качество такого подбора может быть оценено с помощью сравнения решения (*) с f(y) — то есть, вычисления нормы разности в гильбертовом пространстве $C^1[0,1]$.

С другой стороны, минимизация данной нормы в гильбертовом пространстве позволяет подобрать требуемую функцию q(y). При решении обратной задачи с граничным условием, соответствующим оптимальному элементу, получается решение исходной задачи Коши.

Таким образом, решение некорректно поставленной задачи Коши сводится к оптимизации в гильбертовом пространстве функционала, который вычисляется с использованием решения корректно поставленных задач.

Этот подход и исследуется в работе. Оценивается вычислительная сложность и погрешность такого решения.

4 Некорректность задачи

Запишем определение непрерывности решения по начальным условиям, согласно учебному пособию [5]:

 $\forall \varepsilon>0\ \exists \delta>0: \forall f,g\in C^1[0,1]$ т. ч. $||f||<\delta,||g||<\delta\hookrightarrow ||u||<\varepsilon,$ где u — решение соответствующей задачи Коши. Используем C-норму соответственно на [0,1] и $[0,1]\times[0,1].$

Взяв $\varepsilon=1$ и зафиксировав $\delta>0$, рассмотрим следующие начальные условия: $f(y)=\frac{\delta}{\pi n}\sin\pi ny$ и $g(y)=\sqrt{\pi^2n^2-k^2}f(y)$ (n — натуральное число, которое будет выбрано позднее). Для них решением задачи Коши будет функция $u(x,y)=\frac{\delta}{\pi n}e^{\sqrt{\pi^2n^2-k^2}x}\sin\pi ny$, что легко проверяется по определению.

 $||f|| = \frac{\delta}{\pi n} < \delta; \, ||g|| = \frac{\delta}{\pi n} \sqrt{\pi^2 n^2 - k^2} < \delta;$ $||u|| = \frac{\delta}{\pi n} e^{\sqrt{\pi^2 n^2 - k^2}} \to +\infty \text{ при } n \to +\infty, \text{ поэтому найдётся } n \text{ такое, что } ||u|| > \varepsilon.$ Это и обозначает отсутствие непрерывности решения по начальным условиям, то есть некорректность поставленной задачи.

5 Обзор литературы

Книги [1], [3] и [7] посвящены оптимизации в функциональных пространствах и теории исследования операций. В них вводится математический аппарат, обобщающий соответствующие понятия из оптимизации в конечномерных пространствах и необходимый для решения рассматриваемых задач. Материал из данных пособий используется при вычислении градиента в гильбертовом пространстве.

Пособие [2] посвящено изложению современного состояния науки в области численных методов оптимизации, а также идеям получения новых методов. Оттуда взята идея рестартов, которая в работе применяется для попытки ускорения сходимости.

В пособии [4] изложены основные методы и идеи вычислительной математики, в частности, необходимые для численного решения дифференциальных уравнений. Также там обоснована применимость разностных схем для краевых задач.

В пособии [5] изложена теория дифференциальных уравнений в частных производных. Именно из этого раздела математики происходит задача, решаемая в работе. Книга содержит объяснения проблем, возникающих при решении подобных (некорректных) задач, и способы решения различных классов корректно поставленных задач.

Статья [6] содержит обзор результатов о применении градиентных методов оптимизации в гильбертовом пространстве. Приведены оценки сходимости, в том числе для неточного оракула. В работе эти результаты обобщаются на новую задачу.

В статье [8] вводится подход к решению обратной задачи для уравнения Гельмгольца, который включает в себя построение оптимизационной задачи и её решение простейшим градиентным спуском — итерацией Ландвебера. Данный подход используется в работе в улучшенном варианте: простейший метод заменяется на ускоренный, а вместо приближённого решения с помощью раз-

ностных схем используются разложения в ряды Фурье.

Монография [9] посвящена классификации обратных и некорректных задач, их свойствам. Формулируются проблемы, возникающие при их решении. Описывается мотивация решения задач, подобных той, которая рассматривается в работе.

Пособие [10] — классический учебник по оптимизации. В работе использованы некоторые доказанные там факты. В частности, как и из статьи [11], получены факты о характере сходимости методов с неточным оракулом.

Статья [12] посвящена исследованию сходимости быстрых градиентных методов с неточным оракулом. В ней введён метод подобных треугольников, получены оценки его сходимости. Проведены эксперименты на модельной функции, показывающие характер сходимости с разным шумом. Эти результаты также применяются в работе.

6 Функционал и градиент

6.1 Постановка задачи оптимизации

Запишем обратную задачу в операторном виде. Для этого на гильбертовом пространстве со стандартным скалярным произведением

$$H = \{q \in L_2(0,1) : q(0) = q(1) = 0\},\$$

которому принадлежит решение обратной задачи, определим оператор $A: H \to H$ следующим образом:

$$(Aq)(y) = u(0, y) \quad \forall y \in (0, 1),$$

где u — решение соответствующей краевой задачи.

Теперь задача принимает вид

$$Aq = f$$
,

ИЛИ

$$J(q) = \frac{1}{2}||Aq - f||_H^2 \to \min_{q \in H}.$$

6.2Вычисление градиента функционала

Из определения следует, что производная Фреше для рассматриваемого функционала равна

$$\nabla J(q) = A^*(Aq - f),$$

где A^* — сопряжённый оператор. Проведём вычисления, следуя методу из пособия [1].

Итак, $J(q) = \frac{1}{2} \int_{0}^{1} |u(0,y) - f(y)|^2 dy$, где u — решение задачи

$$\begin{cases} u_{xx} + u_{yy} + k^2 u = 0, & (x, y) \in (0, 1) \times (0, 1) \\ u|_{x=1} = q(y), & y \in [0, 1] \\ u_x|_{x=0} = g(y), & y \in [0, 1] \\ u|_{y=0} = u|_{y=1} = 0, & x \in [0, 1] \end{cases}$$

Запишем функцию Лагранжа, взяв множители для первых двух строк, а две последние считая задающими «простое» множество.

$$L\left(q,u;\psi=(\psi(x,y),\lambda(y))\right)=\\ =\frac{1}{2}\int\limits_{0}^{1}|u(0,y)-f(y)|^{2}dy-\int\limits_{0}^{1}\int\limits_{0}^{1}(u_{xx}+u_{yy}+k^{2}u)\psi(x,y)dxdy+\int\limits_{0}^{1}(q(y)-u(1,y))\lambda(y)dy$$
 Для получения сопряжённой задачи на ψ варьируем по $\delta u(x,y)$:

$$\delta_u L(q, u; \psi) =$$

$$\begin{split} & \delta_u L(q,u;\psi) = \\ & = \int\limits_0^1 (u(0,y) - f(y)) \delta u(0,y) dy - \int\limits_0^1 \int\limits_0^1 (\delta u_{xx} + \delta u_{yy} + k^2 \delta u) \psi(x,y) dx dy - \int\limits_0^1 \delta u(1,y) \lambda(y) dy \\ & \text{ При этом } \delta u_x(0,y) = \delta u(x,0) = \delta u(x,1) = 0. \end{split}$$

Интегрируем по частям слагаемые с вторыми производными:

$$\int_{0}^{1} \int_{0}^{1} \psi(x,y) \delta u_{xx} dx dy = \int_{0}^{1} \psi(1,y) \delta u_{x}(1,y) dy - \int_{0}^{1} (\psi_{x}(1,y) \delta u(1,y) - \psi_{x}(0,y) \delta u(0,y)) dy + \int_{0}^{1} \int_{0}^{1} \psi_{xx} \delta u(x,y) dx dy$$

$$\int_{0}^{1} \int_{0}^{1} \psi(x,y) \delta u_{yy} dx dy = \int_{0}^{1} \psi(x,1) \delta u_{y}(x,1) dx - \int_{0}^{1} \psi(x,0) \delta u_{y}(x,0) dx + \int_{0}^{1} \int_{0}^{1} \psi_{yy} \delta u(x,y) dx dy$$

Подставляем и вычисляем вариацию функции Лагранжа:

$$\begin{split} & \delta_u L(q,u;\psi) = \\ & = -\int\limits_0^1 \int\limits_0^1 (\psi_{xx} + \psi_{yy} + k^2 \psi) \delta u(x,y) dx dy + \int\limits_0^1 (u(0,y) - f(y) - \psi_x(0,y)) \delta u(0,y) dy + \int\limits_0^1 (u(0,y) - f(y) - \psi_x(0,y)) \delta u(0,y) dy + \int\limits_0^1 (u(0,y) - f(y) - \psi_x(0,y)) \delta u(0,y) dy + \int\limits_0^1 (u(0,y) - f(y) - \psi_x(0,y)) \delta u(0,y) dy + \int\limits_0^1 (u(0,y) - f(y) - \psi_x(0,y)) \delta u(0,y) dy + \int\limits_0^1 (u(0,y) - f(y) - \psi_x(0,y)) \delta u(0,y) dy + \int\limits_0^1 (u(0,y) - f(y) - \psi_x(0,y)) \delta u(0,y) dy + \int\limits_0^1 (u(0,y) - f(y) - \psi_x(0,y)) \delta u(0,y) dy + \int\limits_0^1 (u(0,y) - f(y) - \psi_x(0,y)) \delta u(0,y) dy + \int\limits_0^1 (u(0,y) - f(y) - \psi_x(0,y)) \delta u(0,y) dy + \int\limits_0^1 (u(0,y) - f(y) - \psi_x(0,y)) \delta u(0,y) dy + \int\limits_0^1 (u(0,y) - f(y) - \psi_x(0,y)) \delta u(0,y) dy + \int\limits_0^1 (u(0,y) - f(y) - \psi_x(0,y)) \delta u(0,y) dy + \int\limits_0^1 (u(0,y) - f(y) - \psi_x(0,y)) \delta u(0,y) dy + \int\limits_0^1 (u(0,y) - f(y) - \psi_x(0,y)) \delta u(0,y) dy + \int\limits_0^1 (u(0,y) - f(y) - \psi_x(0,y)) \delta u(0,y) dy + \int\limits_0^1 (u(0,y) - f(y) - \psi_x(0,y)) \delta u(0,y) dy + \int\limits_0^1 (u(0,y) - f(y) - \psi_x(0,y)) \delta u(0,y) dy + \int\limits_0^1 (u(0,y) - f(y) - \psi_x(0,y)) \delta u(0,y) dy + \int\limits_0^1 (u(0,y) - f(y) - \psi_x(0,y)) \delta u(0,y) dy + \int\limits_0^1 (u(0,y) - f(y) - \psi_x(0,y)) \delta u(0,y) dy + \int\limits_0^1 (u(0,y) - f(y) - \psi_x(0,y)) \delta u(0,y) dy + \int\limits_0^1 (u(0,y) - \psi_x(0,y) dy + \int\limits$$

$$+ \int_{0}^{1} (\psi_{x}(1,y) - \lambda(y)) \delta u(1,y) dy - \int_{0}^{1} \psi(1,y) \delta u_{x}(1,y) dy + \int_{0}^{1} \psi(x,0) \delta u_{y}(x,0) dx - \int_{0}^{1} \psi(x,1) \delta u_{y}(x,1) dx$$

Из необходимого условия экстремума получаем систему уравнений:

$$\begin{cases} \psi_{xx} + \psi_{yy} + k^2 \psi = 0, & (x, y) \in (0, 1) \times (0, 1) \\ \psi|_{y=0} = \psi|_{y=1} = 0, & x \in [0, 1] \\ \psi|_{x=1} = 0, & y \in [0, 1] \\ \psi_{x}|_{x=0} = u(0, y) - f(y), & y \in [0, 1] \\ \psi_{x}|_{x=1} = \lambda(y), & y \in [0, 1] \end{cases}$$

Последнее уравнение — связь между множителями Лагранжа. Поскольку $\lambda(y) = L_q(y) = \nabla J(q)(y)$ (формула Демьянова-Данскина-Рубинова [3], [7]), вычисление градиента функционала свелось к решению двух краевых задач.

Обозначим за $\Gamma[a(y),b(y)](x,y)$ решение v(x,y) следующей краевой задачи:

$$\begin{cases} v_{xx} + v_{yy} + k^2 v = 0, & (x, y) \in (0, 1) \times (0, 1) \\ v|_{x=1} = a(y), & y \in [0, 1] \\ v_{x}|_{x=0} = b(y), & y \in [0, 1] \\ v|_{y=0} = v|_{y=1} = 0, & x \in [0, 1] \end{cases}$$

Gradient Precise Oracle

Вход: $q(y) \in H; f(y), g(y), k$ — параметры задачи

- **1** вычислить $u(x,y) = \Gamma[q(y),g(y)](x,y);$
- **2** вычислить $\psi(x,y) = \Gamma[0,u(0,y)-f(y)](x,y);$
- **3** вычислить $\nabla J(q)(y) = \psi_x(1,y)$.

Выход: $\nabla J(q)(y)$.

Константа Липшица для градиента

Из определения очевидно, что оператор A^* является линейным; A — линейный только при $g(y) \equiv 0$, такой оператор обозначим A_0 .

 $||\nabla J(q_1) - \nabla J(q_2)|| = ||A^*(Aq_1 - f) - A^*(Aq_2 - f)|| = ||A^*(Aq_1 - Aq_2)|| =$ $= ||A^*A_0(q_1 - q_2)|| \le L||q_1 - q_2||$, где L — наибольшее собственное число оператора A^*A_0 (поскольку он самосопряжённый и неотрицательно определённый, все собственные числа — вещественные и неотрицательные).

Для нахождения собственных чисел ищем $u(x,y) = \Gamma[q(y),0](x,y)$ и $(A^*A_0q)(y) = \Gamma[0,u(0,y)]_x(1,y)$ в виде ряда по собственным функциям стационарного оператора, то есть в виде $u(x,y) = \sum_{i=1}^{\infty} X_i(x)Y_i(y)$.

X(x)Y(y) удовлетворяет уравнению и условиям Y(0)=Y(1)=0. Подставляя в уравнение, получаем: $X''(x)Y(y)+X(x)Y''(y)+k^2X(x)Y(y)=0$, откуда $\frac{X''(x)}{X(x)}+k^2=-\frac{Y''(y)}{Y(y)}=l$.

Краевая задача Y''(y) = -lY(y), Y(0) = Y(1) = 0 имеет нетривиальные решения только при $l_n = \pi^2 n^2$ (n = 1, 2, ...). $Y_n(y) = \sin \pi ny.$

Как известно из курса математического анализа, система функций $\{\sin \pi ny\}_{n=1}^{\infty}$ является базисом в пространстве функций $\{q(y) \in C[0,1] \mid q(0) = q(1) = 0\}$.

Решая соответствующие уравнения (подробно это будет описано в разделе 9.1), получаем, что

$$\lambda_n = \begin{cases} \frac{1}{\cos^2 \sqrt{k^2 - \pi^2 n^2}}, & \pi n < k \\ 1, & \pi n = k \\ \frac{1}{\cosh^2 \sqrt{\pi^2 n^2 - k^2}}, & \pi n > k \end{cases}$$

При $k \leq \pi$ градиент является липшицевым с L=1. При $k^2=(\pi n)^2+(\frac{\pi}{2}+\pi m)^2$ — вырожденный случай, в котором задача не имеет единственного решения. При других $k>\pi$ градиент липшицев, но L>1. Ограничимся случаем $k\leq \pi$.

Поскольку $\lim_{n\to\infty} \lambda_n = 0$, функционал не является сильно выпуклым ($\mu = 0$). Эти оценки объединяет следующая лемма.

Лемма 1 При $k \leq \pi$ задача минимизации функционала J(q) является выпуклой с липшицевым градиентом, константа Липшица L=1, константа сильной выпуклости $\mu=0$.

7 Метод подобных треугольников

В статье [12] вводится ускоренный метод подобных треугольников (STM), который может применяться для решения выпуклых (не обязательно сильно выпуклых) задач с известными константами Липшица градиента и сильной вы-

пуклости. Выпишем его в применении к решаемой задаче с $L=1,\,\mu=0.\,Q$ в нашей задаче — это множество непрерывно дифференцируемых на [0,1] функций, принимающих на концах отрезка значения 0.

STM

Вход: $f: Q \to \mathbb{R}, x_{start} \in Q, L, N.$

1
$$\tilde{x}_0 = x_{start}$$
; $A_0 = \frac{1}{L}$; $\alpha_0 = \frac{1}{L}$; $z_0 = \tilde{x}_0 - \alpha_0 \widetilde{\nabla} f(\tilde{x}_0)$; $x_0 = z_0$;

2 for k = 1 ... N:

$$3 \qquad \alpha_k = \frac{1}{2L} + \sqrt{\frac{1}{4L^2} + A_{k-1}};$$

4
$$A_k = A_{k-1} + \alpha_k$$
;

$$\mathbf{5} \qquad \tilde{x}_k = \frac{A_{k-1} x_{k-1} + \alpha_k z_{k-1}}{A_k};$$

$$\mathbf{6} \qquad z_k = z_{k-1} - \alpha_k \widetilde{\nabla} f(\tilde{x}_k);$$

$$7 x_k = \frac{A_{k-1}x_{k-1} + \alpha_k z_k}{A_k};$$

Выход: x_N .

Для не сильно выпуклой функции в статье [12] доказана теорема о сходимости данного метода в случае аддитивного шума в градиенте:

$$f(x_N) - f(x^*) \le \frac{4LR^2}{N^2} + 3\tilde{R}\delta + \frac{N\delta^2}{2L},$$

где $R=||x_0-x^*||,\ \tilde{R}=\max_{0\leq k\leq N}\{||x_k-x^*||,||z_k-x^*||,||\tilde{x}_k-x^*||\},\ \delta$ — верхняя оценка шума.

8 Приближённое решение с использованием разностных схем

Стандартный подход к решению краевых задач — аппроксимация уравнений в частных производных разностными схемами. Так действовали авторы статьи [8], последуем их примеру.

8.1 Разностная схема для краевой задачи

Пусть на $[0,1] \times [0,1]$ задана сетка с шагом h, то есть $x=nh, y=mh, 0 \le m, n \le N$ (Nh=1). Тогда $\Gamma_h[a_m,b_m]_{n,m}$ вводится как решение разностной схемы, аналогичной применённой в работе [8]

$$\begin{cases} \frac{v_{n+1,m}-2v_{n,m}+v_{n-1,m}}{h^2}+\frac{v_{n,m+1}-2v_{n,m}+v_{n,m-1}}{h^2}+k^2v_{n,m}=0, & 1\leq n, m\leq N-1\\ v_{N,m}=a_m, & 1\leq m\leq N-1\\ \frac{v_{1,m}-v_{0,m}}{h}=b_m, & 1\leq m\leq N-1\\ v_{n,0}=v_{n,N}=0, & 0\leq m\leq N \end{cases}$$

При этом $a_m = a(mh), b_m = b(mh), v_{n,m} = v(nh, mh)$

Поскольку $v_{n\pm 1,m}=v(nh,mh)\pm\frac{\partial v}{\partial x}h+\frac{\partial^2 v}{\partial x^2}\frac{h^2}{2}\pm\frac{\partial^3 v}{\partial x^3}\frac{h^3}{6}+\frac{\partial^4 v}{\partial x^4}\frac{h^4}{24}+O(h^5), h\to 0,$ $\frac{v_{n+1,m}-2v_{n,m}+v_{n-1,m}}{h^2}=\frac{\partial^2 v}{\partial x^2}+O(h^2),$ аналогично $\frac{v_{n,m+1}-2v_{n,m}+v_{n,m-1}}{h^2}=\frac{\partial^2 v}{\partial y^2}+O(h^2)$ (из формулы Тейлора; все производные берутся в точке (nh,mh)), поэтому первое уравнение системы аппроксимирует уравнение Гельмгольца с невязкой второго порядка.

Аналогично получается, что сеточное приближение для граничного условия имеет первый порядок аппроксимации. Поэтому схема имеет первый порядок аппроксимации.

Поскольку схема устойчива, из теоремы Рябенького — Лакса ([4]) следует сходимость первого порядка к решению дифференциальной краевой задачи при стремлении шага сетки к нулю.

8.2 Приближённое вычисление градиента на сетке

При применении градиентного метода в качестве оракула первого порядка используется следующий алгоритм:

Gradient Approximate Oracle

Вход: $q(y) \in H$; $f_m = f(mh), g_m = g(mh), k$ — параметры задачи, $h = \frac{1}{N}$ — шаг сетки

- **1** вычислить $u_{n,m} = \Gamma_h[q_m, g_m]_{n,m};$
- **2** вычислить $\psi_{n,m} = \Gamma_h[0, u_{0,m} f_m]_{n,m};$
- **3** вычислить $\widetilde{\nabla} J(q)_m = \frac{\psi_{N,m} \psi_{N-1,m}}{h}$.

Выход: $\widetilde{\nabla} J(q)_m$.

8.3 Теоретическая оценка погрешности

Поскольку на каждом шаге Gradient Approximate Oracle результат отличается от точного на величину, пропорциональную шагу сетки, то и

$$\max_{m} |\widetilde{\nabla} J(q)_m - \nabla J(q)(mh)| = O(h), h \to 0.$$

Введём обозначения: $\delta \varphi$ — погрешность вычисления функции ϕ (это может быть u, ψ); $\delta \Gamma[a, b]_{n,m} := \Gamma_h[a(nh), b(mh)]_{n,m} - \Gamma[a(y), b(y)](nh, mh)$ — погрешность решения обратной задачи Γ при её аппроксимации задачей Γ_h на равномерной сетке. Считаем, что $\phi_{n,m}$ и $\phi(nh, mh)$ — это одно и то же.

$$\delta u_{n,m} = \delta \Gamma[q,g]_{n,m};$$

$$\delta \psi_{n,m} = \delta \Gamma[0,u(0,y)-f(y)]_{n,m} + \Gamma_h[0,\delta u_{0,m}]_{n,m} =$$

$$= \delta \Gamma[0,\Gamma[q,g](0,y)-f(y)]_{n,m} + \Gamma_h[0,\delta \Gamma[q,g]_{0,m}]_{n,m} =$$

$$= (\delta \Gamma[0,\Gamma[0,g](0,y)-f(y)]_{n,m} + \Gamma_h[0,\delta \Gamma[0,g]_{0,m}]_{n,m}) +$$

$$+ (\delta \Gamma[0,\Gamma[q,0](0,y)]_{n,m} + \Gamma_h[0,\delta \Gamma[q,0]_{0,m}]_{n,m}).$$

Погрешность — это сумма двух слагаемых, одно из которых зависит от q, а другое — нет. При этом оно не равно тождественно нулю, и зависит от мелкости сетки и начальных условий.

Соответственно, градиент не удовлетворяет концепции относительного шума, потому что погрешность такого рода не допускает оценки сверху величиной, пропорциональной норме истинного значения градиента.

С другой стороны, погрешность пропорциональна мелкости разбиения, поэтому концепция аддитивного шума корректно описывает данный способ вычисления.

Обозначая количество точек отрезка [0,1] на сетке за n, получим, что краевая задача сводится к решению линейной системы порядка n^2 . Это требует $O(n^6)$ арифметических операций, поскольку стандартные методы решения систем линейных уравнений порядка m имеют сложность $O(m^3)$. При этом погрешность вычисления градиента составит $O(n^{-1})$.

Объединим эти результаты и получим следующий факт.

Теорема 1 Применение N итераций STM c приближённым вычислением градиента путём решения разностных задач требует $O(n^6N)$ арифметических
операций и обеспечивает невязку по функционалу $O\left(\frac{R^2}{N^2} + \frac{\tilde{R}}{n} + \frac{N}{n^2}\right)$

Доказательство состоит в подстановке оценки для погрешности и L=1 в теорему о сходимости STM с неточным оракулом, удовлетворяющим аддитивной концепции шума, при $\mu=0$. Лемма 1 гарантирует корректность применения STM.

8.4 Эксперименты

Для исследования сходимости используется задача Коши с $k=\pi$, $f(y)=100(y-y^2),\,g(y)=1000((y-0.5)^2-4(y-0.5)^4),\,$ начальное приближение $-g(y)\equiv 0.$

Проверяется работа классического метода сопряжённых градиентов ([10]) и быстрого метода STM, которому посвящён раздел 7.

Метод сопряжённых градиентов

Первая серия экспериментов показывает характер сходимости метода сопряжённых градиентов при мелкости сетки $0.1,\ 0.05$ и 0.02. На левых рисунках построены графики зависимости функционала от номера итерации, на средних — нормы градиента, а на правых — примеры функций $q_k(y)$, которые получаются на разных итерациях.

За первые две итерации значение функционала уменьшается примерно в 100 раз, дальнейшее уменьшение очень медленное: в 10 раз за примерно 5000 итераций.

Уменьшение функционала на первых шагах значительное, а на последующих — медленнее, чем в предыдущем случае.

На первом шаге функционал уменьшается в 100 раз, а на последующих —

ещё медленнее, чем при h = 0.05.

h	time per iteration, s	function, min
0.1	0.057	1.047
0.05	0.071	5.386
0.02	1.04	7.309

Итак, уменьшение погрешности не ускоряет сходимость, но значительно замедляет вычисления.

Метод подобных треугольников

Структура эксперимента такая же, как и для метода сопряжённых градиентов.

Сходимость теряет строго монотонный характер, но достигаются более близкие к минимуму значения, чем для метода сопряжённых градиентов.

Картина похожая, причём достигнутый минимум ещё ближе к истинному, чем при h=0.1.

И снова нет монотонности — более того, наименьшее значение, достигнутое на примерно 12000-ой итерации, больше не достигается. Однако для ускоренного метода уменьшение шага сетки приводит и к уменьшению невязки по функционалу.

h	time per iteration, s	function, min
0.1	0.34	0.4465
0.05	0.43	0.3448
0.02	1.74	0.2523

Уменьшение погрешности вычисления градиента уменьшает невязку по функционалу. Ускоренный метод показывает лучшие результаты, чем метод сопряжённых градиентов.

Отход от достигнутого минимума позволяет сделать осторожное предположение о том, что относительная концепция шума не является адекватным описанием погрешности, но точный вывод об этом можно сделать лишь после эксперимента с очень большим числом итераций. А это требует вычислять градиент более эффективно. Такой способ обнаружен, и о нём — следующий раздел.

9 Приближённое решение с использованием рядов Фурье

В курсе уравнений математической физики, который достаточно подробно изложен в пособии [5], решения краевых задач на квадрате с нулевыми граничными условиями на двух противоположных сторонах, какой и является задача Γ , часто находятся в виде ряда по собственным функциям стационарного оператора " $-\Delta$ ". Этот подход используется в данном разделе.

9.1 Решение краевой задачи с помощью разложения в ряды Фурье

Поскольку граничные условия непрерывно дифференцируемы и принимают нулевые значения в концах отрезка, то они могут быть разложены в ряды Фурье по системе $\{\sin \pi ny\}_{n=1}^{\infty}$, причём коэффициенты стремятся к нулю не медленнее, чем $O(n^{-2})$ — стандартная теорема из курса математического анализа.

Вычислим $\Gamma[a(y),b(y)](x,y)$.

Пусть
$$a(y) = \sum_{n=1}^{\infty} \alpha_n \sin \pi n y$$
, $b(y) = \sum_{n=1}^{\infty} \beta_n \sin \pi n y$.

Коэффициенты находятся по следующим формулам:

$$\alpha_n = \frac{(a(y), \sin \pi ny)}{(\sin \pi ny, \sin \pi ny)} = \frac{\int_0^1 a(y) \sin \pi ny \ dy}{\int_0^1 \sin^2 \pi ny \ dy} = 2 \int_0^1 a(y) \sin \pi ny \ dy;$$

$$\beta_n = 2 \int_0^1 b(y) \sin \pi ny \ dy.$$

Тогда $\Gamma[a(y),b(y)](x,y)=\sum_{n=1}^{\infty}X_n(x)\sin\pi ny$, где $X_n(x)$ — решение задачи

$$\begin{cases} X_n''(x) + (k^2 - \pi^2 n^2) X_n(x) = 0, & x \in (0, 1) \\ X_n(1) = \alpha_n \\ X_n'(0) = \beta_n \end{cases}$$

Поскольку рассматривается только $k \le \pi$, всегда $k^2 - \pi^2 n^2 \le 0$.

Если $k=\pi, n=1$, то $X_1''(x)=0$, и $X_1(x)=\alpha_1+\beta_1(x-1)$. Иначе, обозначая $\gamma_n=\sqrt{\pi^2n^2-k^2}$, получаем уравнение $X_n''(x)=\gamma_n^2X_n(x)$, и

$$X_n(x) = \left(\frac{\alpha_n}{\operatorname{ch}\gamma_n} - \frac{\beta_n}{\gamma_n} \operatorname{th}\gamma_n\right) \operatorname{ch}\gamma_n x + \frac{\beta_n}{\gamma_n} \operatorname{sh}\gamma_n x.$$

Итак, при $k < \pi$

$$\Gamma[a(y), b(y)](x, y) = \sum_{n=1}^{\infty} \left(\left(\frac{\alpha_n}{\cosh \gamma_n} - \frac{\beta_n}{\gamma_n} \tanh \gamma_n \right) \cosh \gamma_n x + \frac{\beta_n}{\gamma_n} \sinh \gamma_n x \right) \sin \pi n y,$$

а при $k=\pi$

$$\Gamma[a(y), b(y)](x, y) = (\alpha_1 + \beta_1(x - 1)) \sin \pi y + \sum_{n=2}^{\infty} \left(\left(\frac{\alpha_n}{\cosh \gamma_n} - \frac{\beta_n}{\gamma_n} \tanh \gamma_n \right) \cosh \gamma_n x + \frac{\beta_n}{\gamma_n} \sinh \gamma_n x \right) \sin \pi n y.$$

Обоснование сходимости полученного ряда

Оценим сверху (по модулю) общий член данного ряда. Гиперболические синус и косинус положительного аргумента — возрастающие функции, поэтому $\left|\frac{\alpha_n}{\mathrm{ch}\gamma_n}\mathrm{ch}\gamma_n x\right| \leq |\alpha_n|$.

Функция $\varphi(x) = \frac{\sinh \gamma_n x}{\gamma_n} - \frac{\tanh \gamma_n}{\gamma_n} \cosh \gamma_n x$ строго возрастает на [0,1], потому что её производная положительна: $\varphi'(x) = \cosh \gamma_n x - \tanh \gamma_n \sinh \gamma_n x > (1 - \th \gamma_n) \sinh \gamma_n x > 0$. $\varphi(0) = -\frac{\tanh \gamma_n}{\gamma_n}$, $\varphi(1) = 0$, поэтому $|\varphi(x)| \leq \frac{\tanh \gamma_n}{\gamma_n} < 1$.

Итак,

$$\left| \left(\left(\frac{\alpha_n}{\operatorname{ch} \gamma_n} - \frac{\beta_n}{\gamma_n} \operatorname{th} \gamma_n \right) \operatorname{ch} \gamma_n x + \frac{\beta_n}{\gamma_n} \operatorname{sh} \gamma_n x \right) \right| \times \left| \sin \pi n y \right| \le \left| \frac{\alpha_n}{\operatorname{ch} \gamma_n} \operatorname{ch} \gamma_n x \right| + \left| \beta_n \varphi(x) \right| \le \left| \frac{\beta_n}{\operatorname{ch} \gamma_n} \operatorname{ch} \gamma_n x \right| + \left| \beta_n \varphi(x) \right| \le \left| \frac{\beta_n}{\operatorname{ch} \gamma_n} \operatorname{ch} \gamma_n x \right| + \left| \beta_n \varphi(x) \right| \le \left| \frac{\beta_n}{\operatorname{ch} \gamma_n} \operatorname{ch} \gamma_n x \right| + \left| \beta_n \varphi(x) \right| \le \left| \frac{\beta_n}{\operatorname{ch} \gamma_n} \operatorname{ch} \gamma_n x \right| + \left| \beta_n \varphi(x) \right| \le \left| \frac{\beta_n}{\operatorname{ch} \gamma_n} \operatorname{ch} \gamma_n x \right| + \left| \beta_n \varphi(x) \right| \le \left| \frac{\beta_n}{\operatorname{ch} \gamma_n} \operatorname{ch} \gamma_n x \right| + \left| \beta_n \varphi(x) \right| \le \left| \frac{\beta_n}{\operatorname{ch} \gamma_n} \operatorname{ch} \gamma_n x \right| + \left| \beta_n \varphi(x) \right| \le \left| \frac{\beta_n}{\operatorname{ch} \gamma_n} \operatorname{ch} \gamma_n x \right| + \left| \beta_n \varphi(x) \right| \le \left| \frac{\beta_n}{\operatorname{ch} \gamma_n} \operatorname{ch} \gamma_n x \right| + \left| \beta_n \varphi(x) \right| \le \left| \frac{\beta_n}{\operatorname{ch} \gamma_n} \operatorname{ch} \gamma_n x \right| + \left| \beta_n \varphi(x) \right| \le \left| \frac{\beta_n}{\operatorname{ch} \gamma_n} \operatorname{ch} \gamma_n x \right| + \left| \beta_n \varphi(x) \right| \le \left| \frac{\beta_n}{\operatorname{ch} \gamma_n} \operatorname{ch} \gamma_n x \right| + \left| \beta_n \varphi(x) \right| \le \left| \frac{\beta_n}{\operatorname{ch} \gamma_n} \operatorname{ch} \gamma_n x \right| + \left| \beta_n \varphi(x) \right| \le \left| \frac{\beta_n}{\operatorname{ch} \gamma_n} \operatorname{ch} \gamma_n x \right| + \left| \beta_n \varphi(x) \right| \le \left| \frac{\beta_n}{\operatorname{ch} \gamma_n} \operatorname{ch} \gamma_n x \right| + \left| \beta_n \varphi(x) \right| \le \left| \frac{\beta_n}{\operatorname{ch} \gamma_n} \operatorname{ch} \gamma_n x \right| + \left| \beta_n \varphi(x) \right| \le \left| \frac{\beta_n}{\operatorname{ch} \gamma_n} \operatorname{ch} \gamma_n x \right| + \left| \beta_n \varphi(x) \right| \le \left| \frac{\beta_n}{\operatorname{ch} \gamma_n} \operatorname{ch} \gamma_n x \right| + \left| \beta_n \varphi(x) \right| \le \left| \frac{\beta_n}{\operatorname{ch} \gamma_n} \operatorname{ch} \gamma_n x \right| + \left| \beta_n \varphi(x) \right| \le \left| \frac{\beta_n}{\operatorname{ch} \gamma_n} \operatorname{ch} \gamma_n x \right| + \left| \beta_n \varphi(x) \right| \le \left| \frac{\beta_n}{\operatorname{ch} \gamma_n} \operatorname{ch} \gamma_n x \right| + \left| \beta_n \varphi(x) \right| \le \left| \frac{\beta_n}{\operatorname{ch} \gamma_n} \operatorname{ch} \gamma_n x \right| + \left| \beta_n \varphi(x) \right| +$$

$$\leq |\alpha_n| + |\beta_n|$$

Поскольку, как было указано выше, $|\alpha_n| + |\beta_n| = O(n^{-2})$, ряд для функции $\Gamma[a(y),b(y)](x,y)$ мажорируется сходящимся числовым рядом, поэтому сходится абсолютно и равномерно.

9.2 Вычисление градиента через ряды Фурье

Пусть
$$f(y) = \sum_{n=1}^{\infty} f_n \sin \pi n y$$
, $g(y) = \sum_{n=1}^{\infty} g_n \sin \pi n y$, $q(y) = \sum_{n=1}^{\infty} q_n \sin \pi n y$.

Сначала рассмотрим случай $k < \pi$. Тогда, выполняя шаги Gradient Precise Oracle, получаем:

$$u(x,y) = \Gamma[q(y), g(y)](x,y) = \sum_{n=1}^{\infty} \left(\left(\frac{q_n}{\operatorname{ch} \gamma_n} - \frac{g_n}{\gamma_n} \operatorname{th} \gamma_n \right) \operatorname{ch} \gamma_n x + \frac{g_n}{\gamma_n} \operatorname{sh} \gamma_n x \right) \sin \pi n y;$$

$$u(0,y) - f(y) = \sum_{n=1}^{\infty} \left(\frac{q_n}{\operatorname{ch} \gamma_n} - \frac{g_n}{\gamma_n} \operatorname{th} \gamma_n - f_n \right) \sin \pi n y;$$

$$\psi(x,y) = \Gamma[0, u(0,y) - f(y)](x,y) =$$

$$= \sum_{n=1}^{\infty} \left(\frac{q_n}{\gamma_n \operatorname{ch} \gamma_n} - \frac{g_n}{\gamma_n^2} \operatorname{th} \gamma_n - \frac{f_n}{\gamma_n} \right) (\operatorname{sh} \gamma_n x - \operatorname{th} \gamma_n \operatorname{ch} \gamma_n x) \sin \pi n y;$$

$$\nabla J(q)(y) = \psi_x(1,y) = \sum_{n=1}^{\infty} \frac{1}{\operatorname{ch} \gamma_n} \left(\frac{q_n}{\operatorname{ch} \gamma_n} - g_n \frac{\operatorname{th} \gamma_n}{\gamma_n} - f_n \right) \sin \pi n y.$$

Теперь рассмотрим случай $k=\pi$. Выполняя те же шаги, получаем:

$$u(x,y) = \Gamma[q(y), g(y)](x,y) =$$

$$= (q_1 + g_1(x-1))\sin \pi y + \sum_{n=2}^{\infty} \left(\left(\frac{q_n}{\cosh \gamma_n} - \frac{g_n}{\gamma_n} \tanh \gamma_n \right) \cosh \gamma_n x + \frac{g_n}{\gamma_n} \sinh \gamma_n x \right) \sin \pi n y;$$

$$u(0,y) - f(y) = (q_1 - g_1 - f_1) \sin \pi y + \sum_{n=2}^{\infty} \left(\frac{q_n}{\cosh \gamma_n} - \frac{g_n}{\gamma_n} \tanh \gamma_n - f_n \right) \sin \pi n y;$$

$$\psi(x,y) = \Gamma[0, u(0,y) - f(y)](x,y) = (q_1 - g_1 - f_1)(x-1) \sin \pi y +$$

 $+\sum_{n=0}^{\infty} \left(\frac{q_n}{\gamma_n \cosh \gamma_n} - \frac{g_n}{\gamma_n^2} \tanh \gamma_n - \frac{f_n}{\gamma_n} \right) (\sinh \gamma_n x - \tanh \gamma_n \cosh \gamma_n x) \sin \pi n y;$

$$\nabla J(q)(y) = \psi_x(1,y) = (q_1 - g_1 - f_1)\sin \pi y + \sum_{n=2}^{\infty} \frac{1}{\operatorname{ch}\gamma_n} \left(\frac{q_n}{\operatorname{ch}\gamma_n} - g_n \frac{\operatorname{th}\gamma_n}{\gamma_n} - f_n\right) \sin \pi n y.$$

Поскольку ch $0=1, \lim_{t\to 0} \frac{\sinh t}{t}=1,$ формулы для оператора и градиента в случае $k=\pi$ являются просто предельным случаем формул для $k<\pi.$

Необходимо заметить, что ряд для градиента сходится быстрее, чем ряды для f(y), g(y), q(y), потому что его коэффициенты убывают экспоненциально.

При численном решении задачи ряд заменяется конечной суммой; коэффициенты f_k, g_k находятся один раз путём приближённого вычисления интегралов; функция q(y) считается заданной своими коэффициентами Фурье и при необходимости вычисляется в точках сетки.

9.3 Теоретическая оценка погрешности

Как уже было сказано, для начальных условий коэффициенты ряда Фурье убывают пропорционально $O(n^{-2})$, поэтому остаток ряда ограничивается сверху как $O(n^{-1})$, где n — это количество слагаемых в частичной сумме.

Коэффициенты Фурье вычисляются с погрешностью $O(p^{-1})$, где p — количество точек разбиения отрезка при численном интегрировании. p > n для точности вычисления коэффициентов с большими номерами.

Погрешность вычисления градиента состоит из слагаемого, зависящих только от n и начальных условий, и слагаемого, зависящего от функции. Соответственно, концепция относительного шума неприменима.

Поэтому шум в градиенте описывается аддитивной концепцией с $\delta = O(n^{-1} + p^{-1}) = O(n^{-1}).$

На каждой итерации STM требуется O(n) арифметических операций (вычисление градиента по формулам раздела 9.2 и его линейных комбинаций с фиксированным количеством ранее найденных точек).

Коэффициенты Фурье для начальных условий вычисляются один раз до начала итераций STM, это требует O(pn) арифметических операций.

Получаем новый практически важный факт:

Теорема 2 Применение N итераций STM c использованием рядов Фурье для приближённого вычисления градиента требует O((N+p)n) арифметических операций и обеспечивает невязку по функционалу $O\left(\frac{R^2}{N^2} + \frac{\tilde{R}}{n} + \frac{N}{n^2}\right)$.

9.4 Эксперименты

Для исследования сходимости используется задача Коши с $k=\pi$, $f(y)=100(y-y^2),\,g(y)=1000((y-0.5)^2-4(y-0.5)^4),$ начальное приближение $-q(y)\equiv 0.$ Выбраны те же начальные условия, что и в эксперименте с сетками, для адекватного сравнения эффективности подходов.

Метод сопряжённых градиентов

Третья серия экспериментов показывает характер сходимости метода сопряжённых градиентов для 100, 1000 и 10000 слагаемых ряда Фурье (интегрирование производилось на 100000 точках). На левых рисунках построены графики зависимости функционала от номера итерации, на средних — нормы градиента, а на правых — примеры функций $q_k(y)$, которые получаются на разных итерациях.

На первом шаге функционал уменьшается в 100 раз, а на последующих — очень медленно, даже за 30000 итераций не достигая сокращения в 10 раз.

Полностью аналогичная картина.

Видно, что увеличение количества слагаемых в частичной сумме ряда Фурье не влияет на сходимость метода сопряжённых градиентов.

Fourier summands	time per iteration, 10^{-3} s	function, min
100	0.8	5.416
1000	1.5	5.416
10000	1.9	5.416

Метод подобных треугольников

Поскольку использование большого количества слагаемых заведомо не имеет смысла, работа STM проверяется на 10, 100 и 1000 слагаемых.

Нет монотонности; рост количества слагаемых не приводит к улучшению сходимости, но замедляет вычисления.

Fourier summands	time per iteration, 10^{-3} s	function, min
10	0.87	0.1984
100	0.91	0.1993
1000	1.75	0.1993

Применение рядов Фурье даёт меньшую невязку функционала и является намного более эффективным по времени (каждая итерация быстрее в 1000 раз), чем решение с использованием разностных схем.

Теоремы 1 и 2 показывают, что вычисления с использованием рядов Фурье позволяют решать задачу оптимизации намного эффективнее, чем применение разностных схем. Эксперименты это подтверждают.

Модельный случай с точным решением

Проверим работу алгоритма в случае, когда точное решение легко вычислить напрямую: $k = \pi$, $f(y) = \sin \pi y + \frac{\sin 3\pi y}{\text{ch}\pi\sqrt{8}}$, $g(y) = \frac{\pi\sqrt{3}}{\text{sh}\pi\sqrt{3}}\sin 2\pi y$. $q^*(y) = \sin \pi y + \sin 2\pi y + \sin 3\pi y$.

Минимум действительно достигается, что показывает эффективность предложенного метода решения некорректно поставленной задачи.

10 Определение концепции шума

Для того случая, в котором это позволяют ресурсы, выполним эксперимент с 10 миллионами итераций и построим график в логарифмическом масштабе по обоим осям. Это применение метода подобных треугольников с 10 слагаемыми в частичных суммах ряда Фурье.

Цель эксперимента — выяснить, какая из двух концепций шума более адекватно описывает погрешность, возникающую при вычислении градиента.

Для аддитивного шума характерно накопление ошибки и переход к возрастанию невязки; минимум не достигается.

Для относительного шума характерна сходимость, аналогичная отсутствию шума, то есть наклонная прямая на графике в логарифмическом масштабе.

Характерные примеры для обоих концепций приведены в статье [12].

Левый график построен на всём диапазоне $1..10^7$ итераций, правый — на $10^3..10^7$.

Достигаемое значение функционала 0.01736 имеет тот же порядок, что и погрешность аппроксимации частичной суммой из 10 слагаемых ряда Фурье для $f(y) = 100(y-y^2)$, которая входит в выражение для функционала. График в логарифмическом масштабе по обоим осям из горизонтальных участков, участков медленного убывания и небольших нарушений монотонности.

Наблюдаемый эффект свидетельствует о том, что шум градиента более адекватно описывается аддитивной концепцией, но в определённые моменты точность аппроксимации градиента частичной суммой ряда Фурье улучшается, что приводит к локальному ускорению сходимости с последующей стабилизацией невязки.

11 Применение техники рестартов

Для улучшения результатов предпринимается попытка использовать рестарты по невязке функционала. Согласно описанию из пособия [2], рестарт — это перезапуск метода с использованием последней точки в качестве новой начальной после достижения определённого условия на невязку (обычно — её уменьшения вдвое).

Техника рестартов даёт возможность увеличить скорость сходимости в случае, если функция является (локально) сильно выпуклой. Сформулируем ряд

фактов о применении рестартов по невязке функционала в случае, если градиент имеет аддитивный шум.

Лемма 2 Если верхняя оценка шума удовлетворяет неравенству

$$\delta \le \min \left\{ \frac{f(x_0) - f(x^*)}{24R}, \frac{\sqrt[4]{L\mu}\sqrt{f(x_0) - f(x^*)}}{4\sqrt[4]{2}} \right\},$$

то $N = \sqrt{\frac{32L}{\mu}}$ шагов метода подобных треугольников гарантируют уменьшение невязки функционала вдвое:

$$f(x_N) - f(x^*) \le \frac{1}{2} (f(x_0) - f(x^*)).$$

 $3 десь \ x_0 - начальная точка, \ x^* - точка минимума, \ R = ||x_0 - x^*||, \ L - константа Липшица градиента, <math>\mu - ($ локальная) константа сильной выпуклости.

Доказательство: используя следствие определения сильной выпуклости

$$\frac{\mu}{2}||x - x^*||^2 \le f(x) - f(x^*)$$

и теорему из статьи [12] о сходимости метода подобных треугольников

$$f(x_N) - f(x^*) \le \frac{4LR^2}{N^2} + 3R\delta + \frac{N\delta^2}{2L},$$

получаем следующие оценки:

$$f(x_N) - f(x^*) \le \frac{4L||x_0 - x^*||^2}{N^2} + 3R\delta + \frac{N\delta^2}{2L} \le \frac{8L}{\mu N^2} \left(f(x_0) - f(x^*) \right) + 3R\delta + \frac{N\delta^2}{2L} \le \frac{1}{4} \left(f(x_0) - f(x^*) \right) + \frac{3}{24} \left(f(x_0) - f(x^*) \right) + \frac{1}{4} \left(f(x_0) - f(x^*) \right) = \frac{1}{2} \left(f(x_0) - f(x^*) \right),$$
 что и требовалось.

Замечание: если оптимальное значение функции известно, то применение рестартов не требует знания констант или проверки условий, а только вычисления функции в точках x_k для обнаружения момента рестарта. Более того, глобальная сильная выпуклость тоже не требуется, а только локальная (в окрестности траектории).

Теорема 3 Если градиент выпуклой функции f(x) вычисляется с аддитивной неточностью δ , x_0 — начальная точка, x^* — точка минимума, $R = ||x_0 - x^*||$, L — константа Липшица градиента, μ — (локальная) константа сильной выпуклости, а

$$\varepsilon \ge \max \left\{ 24R\delta, \frac{16\sqrt{2}\delta^2}{\sqrt{L\mu}} \right\},$$

то достичь выполнения условия $f(x) - f(x^*) < \varepsilon$ можно за не более, чем

$$\sqrt{\frac{32L}{\mu}}\log_2\frac{f(x_0) - f(x^*)}{\varepsilon}$$

итераций при использовании STM с рестартами при уменьшении функционала вдвое.

Доказательство: поскольку $f(x_0) - f(x^*) > \varepsilon$ (иначе никаких итераций не требуется), то

$$\delta \le \frac{\varepsilon}{24R} \& \delta^2 \le \frac{\sqrt{L\mu}(f(x_0) - f(x^*))}{16\sqrt{2}},$$

то есть выполняются условия леммы 2. Поэтому после не более $N = \sqrt{\frac{32L}{\mu}}$ итераций условие рестарта будет выполнено. $||x_N - x^*|| \leq R$, поэтому неравенство для ε снова будет выполнено. Количество рестартов не превышает $\log_2 \frac{f(x_0) - f(x^*)}{\varepsilon}$, что завершает доказательство.

Эксперименты показывают, что применение рестартов не улучшает сходимость. Это подтверждает тот факт, что задача не является сильно выпуклой.

12 Заключение

Работа посвящена исследованию применения градиентных методов к решению некорректно поставленной задачи Коши для уравнения Гельмгольца путём сведения её к задаче оптимизации в гильбертовом пространстве.

Предложены способы решения задачи ускоренным градиентным методом с использованием для вычисления градиента разностных схем или разложения в ряды Фурье, доказаны теоремы 1 и 2 о вычислительной эффективности данных способов: невязка по функционалу $O\left(\frac{R^2}{N^2} + \frac{\tilde{R}}{n} + \frac{N}{n^2}\right)$ достигается после $O(n^6N)$ арифметических операций для разностных схем или O((N+p)n) арифметических операций для рядов Фурье. Проведены эксперименты, сделан вывод о том, что использование рядов Фурье значительно повышает скорость и качество решения задачи.

Выяснено, что погрешность вычисления градиента более адекватно описывается аддитивной концепцией шума. Это подтверждается как теоретическими выкладками, так и экспериментом. При этом погрешность не накапливается.

Доказана теорема 3 о сходимости метода подобных треугольников с рестартами по невязке функционала: если $\varepsilon \geq \max\left\{24R\delta,\frac{16\sqrt{2}\delta^2}{\sqrt{L\mu}}\right\}$, то достичь выполнения условия $f(x)-f(x^*)<\varepsilon$ можно за не более, чем $\sqrt{\frac{32L}{\mu}}\log_2\frac{f(x_0)-f(x^*)}{\varepsilon}$ итераций. Проверено, что в исследуемой задаче применение рестартов не повышает скорость сходимости.

13 Ссылки

- [1] Васильев Ф. П.: Методы оптимизации, часть вторая: Оптимизация в функциональных пространствах. Регуляризация. Аппроксимация, ISBN 978-5-94057-708-9
- [2] Гасников А. В.: Современные численные методы оптимизации. Метод универсального градиентного спуска: Учебное пособие. 2-е изд., испр. М.: МЦНМО, 2021. 272 с. ISBN 978-5-4439-4199-8
- [3] Демьянов В. Ф.: Минимакс: дифференцируемость по направлениям. Л.: Изд-во Ле-нингр. ун-та, 1974.
- [4] Рябенький В. С.: Введение в вычислительную математику: Учеб. пособие. 2-е изд., исправл. М.: ФИЗМАТЛИТ, 2000. 296 с. ISBN 5-9221-0047-5
- [5] Тихонов А. Н., Самарский А. А.: Уравнения математической физики: Учеб. пособие. 6-е изд., испр, и доп. М.: Изд-во МГУ, 1999. ISBN: 5-211-04138-0
- [6] Gasnikov A., Kabanikhin S., Mohammed A., Shishlenin M.: Convex optimization in Hilbert space with applications to inverse problems, https://arxiv.org/abs/1703.00267
- [7] Danskin J. M.: The theory of Max Min. Berlin: Springer, 1967.
- [8] Kabanikhin S., Shishlenin M., Nurseitov D., Nurseitova A., and Kasenov S.: Comparative Analysis of Methods for Regularizing an Initial Boundary Value Problem for the Helmholtz Equation, http://dx.doi.org/10.1155/2014/786326
- [9] Kabanikhin S.: Inverse and ill-posed problems: theory and applications ISBN 978-3-11-022400-9 (alk. paper)
- [10] Polyak B.: Introduction to Optimization. New York, Optimization Software (1987)
- [11] Polyak B.: Iterative algorithms for singular minimization problems. In: Nonlinear Programming 4, pp. 147–166. Elsevier (1981)
- [12] Vasin A., Gasnikov A., Spokoiny V.: Stopping rules for accelerated gradient methods with additive noise in gradient, https://arxiv.org/abs/2102.02921