Probleme propuse * Setul 3

- **21.** (structuri algebrice) Mulțimea matricelor de forma $M(x) = \begin{pmatrix} 2-x & x-1 \\ 2(1-x) & 2x-1 \end{pmatrix}$, $x \neq 0$, formează relativ la înmulțirea matricelor un grup izomorf cu grupul multiplicativ \mathbb{R}^* . Atunci
- a) $(M(2))^5 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$; b) $(M(2))^5 = \begin{pmatrix} -30 & 31 \\ -62 & 63 \end{pmatrix}$; c) $(M(2))^5 = \begin{pmatrix} 7 & 8 \\ 10 & 11 \end{pmatrix}$; d) $(M(2))^5 = \begin{pmatrix} -14 & 15 \\ -30 & 31 \end{pmatrix}$; e) $(M(2))^5 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$; f) $(M(2))^5 = \begin{pmatrix} 7 & 7 \\ 0 & 1 \end{pmatrix}$.
- **22.** (structuri algebrice) Pe \mathbb{R} se consideră legile de compoziție $x \oplus y = mx + ny 1$, $x\odot y=2xy-2x-2y+p$. Să se determine m,n și p astfel încât $(\mathbb{R},\oplus,\odot)$ să fie corp.
- a) 1,2,3; b) 1,1,3; c) $m=n=1, p \in \mathbb{R}, d$ 1,1,1+i; e) problema nu are soluție; f) 1,1,0.
- 23. (funcția de gradul doi) Fie x_1 și x_2 soluțiile ecuației $2x^2 + 2(m+2)x + m^2 + 4m + 3 = 0$, unde m este un parametru real. Care este mulțimea valorilor parametrului m pentru care $|x_1 + x_2 + 3x_1x_2| < 1$?
- a) $m \in (-3, -\frac{1}{3})$; b) $m \in (\frac{-5 \sqrt{10}}{3}, -\frac{7}{3})$; c) $m \in (-3, -\frac{7}{3}) \cup (-1, -\frac{1}{3})$; d) $m \in (-\infty, -\frac{7}{3}) \cup (-1, +\infty)$; e) $m \in (-\infty, -3) \cup (-\frac{1}{3}, +\infty)$; f) $m \in \emptyset$.
- **24.** (şiruri) Fie $a, r, q \in \mathbb{R}, q \neq 1$ fixate şi fie şirurile $x_n = (a + (n-1)r)q^{n-1}$ şi $y_n = \sum_{k=1}^n x_k$. Care afirmaţie este adevărată?
- a) x_n este o progresie geometrică; b) $y_n = a \frac{1-q^n}{1-q} + rq \frac{(n-1)q^n nq^{n-1} + 1}{(1-q)^2}$;
- c) $y_n = a \frac{1-q^n}{1-q} + rq(q^n-1) \frac{nq-1}{(1-q)^2}$; d) x_n este şir nemărginit $\forall a, r, q \in \mathbb{R}$; e) $y_n = a \frac{1-q^n}{1-q} + rq(q^{n-1}-1) \frac{nq^2-(n-1)q+1}{(1-q)^2}$; f) $y_n = a \frac{1-q^n}{1-q} + nr \frac{(n-1)q^{n+1}-nq^n+2}{(1-q)^2}$.
- **25.** (şiruri) Se consideră șirul cu termenul general $x_n = \frac{\sin n!}{1+4n}, n \in \mathbb{N}$. Atunci
- a) (x_n) este monoton și mărginit; b) (x_n) este monoton; c) sup $x_n = 0$;
- d) (x_n) este convergent; e) inf $x_n = 0$; f) $x_n \ge 0, \forall n \in \mathbb{N}$.
- **26.** (derivabilitate) Fie $f:(-\infty,-1]\cup[1,\infty)\to\mathbb{R},\ f(x)=(x+\sqrt{x^2-1})^\alpha,\ (\alpha\in\mathbb{R}).$ Pentru orice $x\in(-\infty,-1)\cup(1,\infty),$ valoarea expresiei $E(x)=(x^2-1)f''(x)+xf'(x)$ este
- a) $\alpha^2 f(x)$; b) f(x); c) 0; d) f'(x); e) $\alpha f'(x)$; f) $\alpha^2 f'(x)$.
- **27.** (integrale definite) Să se calculeze $I = \lim_{a \to \infty} \int_{1}^{3} \frac{\mathrm{d}x}{1 + |x a|}$.
- a) $I = \ln 3$; b) I = 1; c) I = e; d) $I = e^{-1}$; e) $I = \ln 2$; f) I = 0.
- **28.** (geometrie analitică) Fie ecuațiile $6\sin^2 x + 3\sin x \cos x 5\cos^2 x = 2$ și $\tan^2 x + \cot^2 x = 2$. Câte soluții comune au aceste ecuații?
- a) nici una; b) o infinitate; c) două; d) toate; e) trei; f) patru.
- **29.** (funcții trigonometrice) Fie $E = \sin\left(\arccos\frac{3}{5} + \arccos\frac{15}{17}\right)$. Atunci
- a) $E = \frac{34}{35}$; b) $E = \frac{84}{85}$; c) $E = \frac{83}{85}$; d) $E = \frac{13}{85}$; e) $E = \frac{27}{85}$; f) $E = \frac{36}{85}$.
- **30.** (ecuații trigonometrice) Fie $A = \{x \in \mathbb{R} \mid \cos(3\arccos x) = \cos(2\arccos x) + 1\}$. Atunci
- a) $A = \{0, 1, -1\}$; b) $A = \{0, \frac{1-\sqrt{13}}{4}; \frac{1+\sqrt{13}}{4}\}$; c) $A = \{0, \frac{1+\sqrt{13}}{4}\}$;
- d) $A = \left\{0, \frac{1-\sqrt{13}}{4}\right\}$; e) A = [-1, 1]; f) $A = \mathbb{R}$.