Jordan Winkler Computer Architecture Mon Apr 1 23:43:45 EDT 2019 hw7

1) Do Exercise B.2 on page B-80 of the textbook.

Prove that the two equations for E in the example starting on page B-7 are equivalent by using DeMorgan's theorems and the axioms shown on page B-7.

$$\begin{split} E_1 &= (AB + AC + BC)(ABC)' \\ E_2 &= ABC' + ACB' + BCA' \\ E_1 &= (AB + AC + BC)(ABC)' \\ &= (AB + AC + BC)(A' + B' + C') \\ &= ABA' + ACA' + BCA' + ABB' + ACB' + BCB' + ABC' + ACC' + BCC' \\ &= AA'B + AA'C + BCA' + ABB' + ACB' + BB'C + ABC' + ACC' + BCC' \\ &= ACB' + ABC' + BCA' \\ &= E_2 \end{split}$$

2) Do Exercise B.5 on page B-80 of the textbook.

Prove that the NOR gate is universal by showing how to build the AND, OR, and NOT functions using a two-input NOR gate.

$$A' = (A + A)'$$

$$AB = (A' + B')' = ((A + A)' + (B + B)')'$$

$$A + B = (A'B')' = ((A + B)')' = ((A + B)' + (A + B)')'$$

3) User perfect induction to prove or disprove (A)(A'+B)=AB

+		+	+	++	+
ا		•	•	A(A'+B)	•
ا	0	I 0	1	0 !	0
	0	1 1	1	0	0
	1	0	0	0 	0
	1	1 1	1	1	1
 -		•		1 ++	•

So (A)(A'+B) < -> AB is always 1, or in other words is a tautology.

4) Draw the truth table and the logic circuit for the following function $F=(A+B)\cdot (A'+C')$

(Note, for the logic circuit part, you could draw it by hand) For the truth table, have Separate columns for ALL intermediate steps.

+	+ B	+ C +	+ А'	C,	+ A+B	+	(A+B)(A'+C')
0	0	0	1	1	0	1	0 1
0	0	1 1	1	0 	l 0	1 1	0 1
0	+ 1	0	1	1	1	1	1
0	1 1	1	1	0	1	1	1 1
1	l 0	0	0	1	1	1	1 1
1	l 0	1	0	0	1	0	0 1
1	1	0	0	1	1 1	1 1	1
1	1	1	0	0	1	0	0 1

In scheme

5) Do Exercise B.11 on page B-81 of the textbook.

Assume that X consists of 3 bits, x2 x1 x0. Write four logic functions that are true if and only if

X contains only one 0

$$x_1'x_2x_3 + x_1x_2'x_3 + x_1x_2x_3'$$

X contains an even number of 0s

$$x_1'x_2'x_3 + x_1'x_2x_3' + x_1x_2'x_3'$$

X when interpreted as an unsigned binary number is less than 4

 x_1'

X when interpreted as a signed (two's complement) number is negative

 x_1

And to double check

x1	x2	+ x3	 1 zero		0xx	1xx
0	l 0	0	l 0	0	1	0
0	l 0	1 1	l 0	1	1	0
0	1	0	l 0	1	1	0
0	1	1	1	0	1	0
1	0	0	0	1	0	1
1	0	1	1	0	0	1
1	1	0	1	0	0	1
1	1	1 1	l 0	0	0	1

6) Do Exercise B.14 on page B-81 of the textbook.

Implement a switching network that has two data inputs (A and B), two data outputs (C and D), and a control input (S). If S equals 1, the network is in

pass-through mode, and C should equal A, and D should equal B. If S equals 0, the network is in crossing mode, and C should equal B, and D should equal A.