Rank-73731 over GF(2)

January 15, 2021

The equation

The equation of the surface is:

$$X_0 X_3^2 + X_0 X_1 X_2 = 0$$

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0)The point rank of the equation over GF(2) is 73731

General information

Number of lines	10
Number of points	11
Number of singular points	4
Number of Eckardt points	5
Number of double points	0
Number of single points	3
Number of points off lines	0
Number of Hesse planes	0
Number of axes	0
Type of points on lines	3^{10}
Type of lines on points	$4^3, 3^5, 1^3$

Singular Points

The surface has 4 singular points:

$$0: P_0 = \mathbf{P}(1,0,0,0) = \mathbf{P}(1,0,0,0) \\ 1: P_1 = \mathbf{P}(0,1,0,0) = \mathbf{P}(0,1,0,0) \\ 2: P_2 = \mathbf{P}(0,0,1,0) = \mathbf{P}(0,0,1,0)$$

The 10 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}_0 = \mathbf{Pl}(1, 0, 0, 0, 0, 0)_0$$

$$\ell_{1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{4} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{4} = \mathbf{Pl}(0,0,1,0,0,0)_{2}$$

$$\ell_{2} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{28} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{28} = \mathbf{Pl}(0,0,0,0,0,1)_{19}$$

$$\ell_{3} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{3} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{3} = \mathbf{Pl}(1,0,1,0,1,0)_{13}$$

$$\ell_{4} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{30} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{30} = \mathbf{Pl}(0,0,0,1,0,0)_{5}$$

$$\ell_{5} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{29} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{29} = \mathbf{Pl}(0,0,0,1,0,1)_{25}$$

$$\ell_{6} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{34} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{34} = \mathbf{Pl}(0,1,0,0,0,0)_{1}$$

$$\ell_{7} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{31} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{31} = \mathbf{Pl}(0,1,0,0,0,1)_{21}$$

$$\ell_{8} = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{33} = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{33} = \mathbf{Pl}(0,1,0,1,0,0)_{7}$$

$$\ell_{9} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{32} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{32} = \mathbf{Pl}(0,1,0,1,0,1)_{27}$$

Rank of lines: (0, 4, 28, 3, 30, 29, 34, 31, 33, 32)

Rank of points on Klein quadric: (0, 2, 19, 13, 5, 25, 1, 21, 7, 27)

Eckardt Points

The surface has 5 Eckardt points:

 $0: P_0 = \mathbf{P}(1,0,0,0) = \mathbf{P}(1,0,0,0), T = -1$

 $1: P_3 = \mathbf{P}(0,0,0,1) = \mathbf{P}(0,0,0,1), T = 14$

 $2: P_7 = \mathbf{P}(0, 1, 1, 0) = \mathbf{P}(0, 1, 1, 0), T = 14$

 $3: P_{10} = \mathbf{P}(0, 1, 0, 1) = \mathbf{P}(0, 1, 0, 1), T = 14$

 $4: P_{12} = \mathbf{P}(0,0,1,1) = \mathbf{P}(0,0,1,1). T = 14$

Double Points

The surface has 0 Double points:

The double points on the surface are:

Single Points

The surface has 3 single points:

The single points on the surface are:

$$0: P_4 = (1, 1, 1, 1)$$
 lies on line ℓ_3

1 : $P_5 = (1, 1, 0, 0)$ lies on line ℓ_0

The single points on the surface are:

2: $P_6 = (1,0,1,0)$ lies on line ℓ_1

Points on surface but on no line

The surface has 0 points not on any line: The points on the surface but not on lines are:

Line Intersection Graph

 $\begin{array}{c} 0123456789 \\ \hline 0 & 01111110000 \\ 1 & 1011001100 \\ 2 & 1100111111 \\ 3 & 1100010110 \\ 4 & 1010011111 \\ 5 & 1011101111 \\ 6 & 0110110111 \\ 7 & 0111111011 \\ 8 & 0011111101 \\ 9 & 0010111110 \end{array}$

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1	ℓ_2	ℓ_3	ℓ_4	ℓ_5
in point	P_0	P_1	P_0	P_1	P_1

Line 1 intersects

Line	ℓ_0	ℓ_2	ℓ_3	ℓ_6	ℓ_7
in point	P_0	P_2	P_0	P_2	P_2

Line 2 intersects

Line	ℓ_0	ℓ_1	ℓ_4	ℓ_5	ℓ_6	ℓ_7	ℓ_8	ℓ_9
in point	P_1	P_2	P_1	P_1	P_2	P_2	P_7	P_7

Line 3 intersects

Line	ℓ_0	ℓ_1	ℓ_5	ℓ_7	ℓ_8
in point	P_0	P_0	P_{14}	P_{14}	P_{14}

 ${\bf Line~4~intersects}$

Line	ℓ_0	ℓ_2	ℓ_5	ℓ_6	ℓ_7	ℓ_8	ℓ_9
in point	P_1	P_1	P_1	P_3	P_{10}	P_3	P_{10}

Line 5 intersects

Line	ℓ_0	ℓ_2	ℓ_3	ℓ_4	ℓ_6	ℓ_7	ℓ_8	ℓ_9
in point	P_1	P_1	P_{14}	P_1	P_{12}	P_{14}	P_{14}	P_{12}

Line 6 intersects

Line	ℓ_1	ℓ_2	ℓ_4	ℓ_5	ℓ_7	ℓ_8	ℓ_9
in point	P_2	P_2	P_3	P_{12}	P_2	P_3	P_{12}

Line 7 intersects

Line	ℓ_1	ℓ_2	ℓ_3	ℓ_4	ℓ_5	ℓ_6	ℓ_8	ℓ_9
in point	P_2	P_2	P_{14}	P_{10}	P_{14}	P_2	P_{14}	P_{10}

Line 8 intersects

Line	ℓ_2	ℓ_3	ℓ_4	ℓ_5	ℓ_6	ℓ_7	ℓ_9
in point	P_7	P_{14}	P_3	P_{14}	P_3	P_{14}	P_7

Line 9 intersects

Line	ℓ_2	ℓ_4	ℓ_5	ℓ_6	ℓ_7	ℓ_8
in point	P_7	P_{10}	P_{12}	P_{12}	P_{10}	P_7

The surface has 11 points: The points on the surface are:

$0: P_0 = (1,0,0,0)$	$4: P_4 = (1, 1, 1, 1)$	$8: P_{10} = (0, 1, 0, 1)$
$1: P_1 = (0, 1, 0, 0)$	$5: P_5 = (1, 1, 0, 0)$	$9: P_{12} = (0, 0, 1, 1)$
$2: P_2 = (0, 0, 1, 0)$	$6: P_6 = (1,0,1,0)$	$10: P_{14} = (0, 1, 1, 1)$
$3: P_3 = (0,0,0,1)$	$7: P_7 = (0, 1, 1, 0)$	