

Hardware / IP / Applications
Ultra-low-power compute
Sensory processing
At the edge

Neuromorphic Smart Sensors

- Highly informative output / low bandwidth output
- Smart condition detection
- Smart wake-up
- Continuous monitoring
- Low latency → <200 ms
- Low power \rightarrow <10 mW

Hardware families

Vision processing with high speed, low power

DynapCNN

Scalable CNN cores

Speck

Integrated vision sensing

HDK

Smart visual wake-up
Object trakeing
Presence detection

Real-time motion estimation Behaviour detection Gesture interaction

Natural signal processing

Xylo

Ultra-low-power

Audio processing
Bio-signal processing
IMU processing
Condition monitoring

Event-driven Vision Processing

- CNN-based processing stack ML training of visual features
- Event-driven computing Energy-efficient processing

SynSense V Open Source

Rockpool: SNN training and deployment

• github.com/synsense/rockpool

Tonic: Data sets and data wrangling for SNNs

• github.com/synsense/tonic

Sinabs: SNN training and deployment for vision processing

• <u>sinabs.ai</u>

Sinabs CNN Training Pipeline

- Open-source Python library
- Training, Testing, Deploying SNN applications
- Industry-standard PyTorch base
- Supports weight-transfer and BPTT training approaches

