ИЗПИТ

по Компютърни числени методи, спец. Информатика 4 курс, задочно,

Указание: Задачите се решават на лист, на който е записано име и Ф№. Ако използвате софтуер, на листа се записват отговорите на поставените въпроси от изхода на софтуера. След приключване на работата връщате отговор на изпратеното Ви задание Google classroom, който съдържа: Всички работни файлове, които сте създали от Wolfram Mathematica. Без тях решенията не се зачитат! Желателно е файловете да са с име Ф№ фамилия (например 1901681005_Nikolov.nb).

Приятна и успешна работа!

Задача 1. (15 т.) Да се намери приближено най-големият реален корен на уравнението $x^4 - 3x^2 - 2.\cos(x+1) = 0$ по избран от вас метод:

- а) (2 т.) Определете подходящ интервал [a, b], в който е локализиран коренът: a = ?, b = ?;
- б) (3т.) Проверете условията за прилагане на метода в интервала [a, b];
- в) (1т.) Определете началното приближение $x_0 = ?;$
- г) (8т.) Изчислете приближено корена с 5 итерации и запишете резултатите в таблица.
- д) (1т.) Определете точността на полученото приближение.

2 задача. (15 т.) Дадена е системата:

$$\begin{vmatrix} 10x_1 - 3x_2 + x_3 - x_4 = 1 \\ x_1 + 5x_2 + x_3 + x_4 = 1 \\ 2x_1 + x_2 - 9x_3 + 2x_4 = 2 \\ -x_1 - x_2 - 2x_3 + 8x_4 = 0 \end{vmatrix}$$

- а) (5 т.) Подгответе системата във вид за прилагане на МПИ (проста итерация). Запишете преобразуваната матрица C=? и свободния стълб d=?;
- б) (8 т.) Решете системата по метода на проста итерация с точност 10^{-3} с нулево начално приближение и запишете резултата ($1^{-\text{ва}}$, $2^{-\text{ра}}$ и последната итерации) в таблица:

k	X 1	X2	X3	X4	err
0					
1					
2					
n					

в) (2 т.) Покажете, че метода е сходящ.

Задача 3. (15 m.) Дадена е следната таблица на функцията $f(x) = \sqrt{x^2 + 3}$:

						•			
x_i	1.0	1.3	1.6	1.9	2.2	2.5	2.8	3.1	3.4
Уi	2.	2.166	2.358	2.571	2.8	3.041	3.292	3.551	3.816

Да се намери приближена стойност в точката x' = 1.65 с полином на Лагранж от втора степен или с интерполационен полином на Нютон:

- а) (4 т.) Запишете таблично избраните възли за интерполацията;
- б) (4 т.) Запишете полученият полином;
- в) (4 т.) Запишете приближената и точната стойност в точката х';
- г) (3 т.) Оценете теоретичната грешка на приближението.

Задача 4. (15 т.) Дадена е следната таблица:

Xi	3.0	3.2	3.4	3.6	3.8	4.0	4.2	4.4	4.6	4.8	5.0	5.2	5.4	5.6	5.8	6.0
Уi	12.87	14.27	15.75	17.31	18.96	20.69	22.50	24.40	26.37	28.43	30.57	32.79	35.09	37.47	39.94	42.48

- а) *(5 m.)* Да се намери полином от първа степен по метода на най-малките квадрати и да се оцени грешката;
- б) (5 м.) Да се намери полином от втора степен по метода на най-малките квадрати и да се оцени грешката;
- в) (5 *т.*) За полинома с по-добро приближение да се пресметне стойността в точката *х* =4.7. Заб. Задачата може да решите и като използвате линейни сплани.

Задача 5. (15 m) Изчислете приближената стойност на интеграла $\int_{3}^{7} \sqrt{x^3 - x - 1} \, dx$.

- а) (4 m.) По методите на правоъгълниците при n = 10 и оценете грешката;
- б) (4 *m.*) По методите на трапците при n = 5 и оценете грешката;
- в) (4 m.) По методите на Симпсън при n = 4 и оценете грешката;
- г) (3 *т.*) Да се определи големината на стъпката h, така че метода на трапците да гарантира точност на резултата 10^{-3} .

Задача 6. (15 m) По метода на Рунге-Кута $O(h^5)$ да се реши системата ОДУ:

$$|y' = 3z |z' = xz + \sin(xy + z) y(0) = 1, z(0) = 1, x \in [0;1], h = 0.2$$