Zero-Dimensional Nanostructures: Nanoparticles

Principles of homogeneous nucleation

Video

Reaction between AgNO3 and NaCl (Silver nitrate + Sodium Chloride)

https://www.youtube.com/watch?v=0AyLFP26r4o

Reflection:

- 1) How much Cl⁻ is needed to precipitate the Ag+?
- 2) Assume that you take away all the Na+ and the NO₃ ions, and you are just left with the AgCl. What happens afterward?

AgCl(s).
$$\rightleftharpoons$$
. Ag+(aq). +. Cl-(aq)

$$Ksp = [Ag+(aq)][Cl-(aq)]$$

Constantes del Producto de Solubilidad Apéndice C

5

Compuesto	Nombre	Kps	
AgBr	Bromuro de plata	5 × 10 ⁻¹³	
AgCl	cloruro de plata	1.8×10^{-10}	
AgI	yoduro de plata	8,3 × 10 ⁻¹⁷	
AgBrO ₃	bromato de plata	4×10^{-5}	
AgIO ₃	yodato de plata	3.0×10^{-8}	
Ag ₂ S	sulfuro de plata	$2,1 \times 10^{-49}$	
Ag ₃ PO ₄	fosfato de plata	$1,3 \times 10^{-20}$	
Ag ₂ CO ₃	carbonato de plata	6.2×10^{-12}	
Ag ₂ Cr ₂ O ₇	dicromato de plata	$2,7 \times 10^{-11}$	
Ag ₂ SO ₄	sulfato de plata	1.6×10^{-5}	
Ag ₃ AsO ₄	arseniato de plata	1.0×10^{-22}	
AgCN	cianuro de plata	$1,2 \times 10^{-16}$	
Ag ₂ CrO ₄	cromato de plata	1.9×10^{-12}	
Al(OH) ₃	hidróxido de aluminio	5×10^{-33}	
AuC1	cloruro de oro(I)	$2,0 \times 10^{-13}$	
AuCl ₃	cloruro de oro(III)	$3,2 \times 10^{-25}$	
BaCO ₃	carbonato de bario	8,1 × 10 ⁻⁹	
BaC ₂ O ₄	oxalato de bario	1.7×10^{-7}	
BaCrO ₄	cromato de bario	$1,2 \times 10^{-10}$	
BaF ₂	fluoruro de bario	$2,4 \times 10^{-5}$	
Ba(IO ₃) ₂	yodato de bario	6.0×10^{-10}	
Ba(OH) ₂	hidróxido de bario	5×10^{-3}	
BaSO ₄	sulfato de bario	1.1×10^{-10}	
Be(OH) ₂	hidróxido de berilio	$2,0 \times 10^{-18}$	
Bi ₂ S ₃	sulfuro de bismuto(III)	3.0×10^{-96}	
CaCO ₃	carbonato de calcio	4,8 × 10 ⁻⁹	
CaC ₂ O ₄	oxalato de calcio	$2,6 \times 10^{-9}$	
CaCrO ₄	cromato de calcio	7.1×10^{-4}	

Thermodynamic Approach

$$DG_V = -\frac{kT}{W}\ln(\frac{C}{Co}) = -\frac{kT}{W}\ln(1+S)$$

Atomic volume

$$S = (C-Co)/Co$$

Solidification

 Solidification of metals and alloys usually represents a transformation from a non-crystalline liquid to a crystalline solid.

 If a liquid metal is cooled below its equilibrium melting point, T_m, the system can lower its free energy (G = H-TS) by forming a solid phase.

P2

The change in free energy for solidification, $\Delta G_v = G_S - G_L$, or

$$\Delta G_{v} = \Delta H_{v} - T \Delta S_{v} \tag{1}$$

where ΔH_v and ΔS_v are the changes in enthalpy and entropy.

At the equilibrium melting temperature, T_m , the driving force for transformation, $\Delta G_v = ?$

$$\Delta H_v - T_m \Delta S_v = 0$$

 $\Delta S_v = \Delta H_v / T_m$

Substituting this expression for ΔS_v into Equation (1):

$$\Delta G_{v} = \Delta H_{v} - (T \Delta H_{v} / T_{m})$$

$$= \Delta H_{v} (1 - T / T_{m})$$

$$= \Delta H_{v} (T_{m} - T) / T_{m}$$

But $T_m - T = \Delta T$, the undercooling, and so we have:

$$\Delta G_v = \Delta H_v \Delta T / T_m$$

$$\Delta G_V = \frac{\Delta H_V \Delta T}{T_m}$$

This energy change is the **driving force** for solidification.

Although solidification cannot occur without a **thermodynamic** driving force, the rate (**kinetics**) cannot be predicted from this alone.

Yes, this is the thermodynamic explanation, but...

How is the phenomenon at the molecular/atomic level?

Principles of phase transformation

Nucleation:

- The physical process by which a new phase is produced in a material. In the case of solidification, this refers to the formation of a tiny, stable solid particles in the liquid.

Growth:

 The pysical process by which a new phase increases in size. In the case of solidification, this refers to the formation of a stable solid as the liquid freezes.

Nucleation is the **initial stage** of formation of one phase from another phase (L o S)

When a liquid metal is cooled towards the melting temperature, some atoms are already beginning to **randomly arrange** themselves into small **crystal**-like clusters.

The formation of such clusters arises from the **random motion** of the atoms within the liquid.

The average cluster **size increases** as the temperature falls **below T_m**.

When the cluster form we have:

Total Free Energy Change

Volume Free Energy Change

Surface FreeEnergy Change

$$\Delta G = V_s \Delta G_V + A_{sl} \sigma_{sl}$$

Assuming the interfacial free energy is isotropic, the cluster will grow spherically.

$$\Delta G = V_s \Delta G_V + A_{sl} \sigma_{sl}$$

$R_{embryo} < r^*$

Free energy increase.

The solid remelts,

$R_{embryo} > r^*$

The solid will grow,

free energy decrease.

r* to Homogeneous Nucleation

$$\Delta G_V = \frac{\Delta H_V \Delta T}{T_m}$$

$$\Delta G = V_s \Delta G_V + A_{sl} \sigma_{sl}$$

$$\Delta G = \frac{4}{3} \pi r^3 \Delta G_V + 4 \pi r^2 \sigma_{sl}$$

$$4 \pi r^{*2} \Delta G_V + 8 \pi r^* \sigma_{sl} = 0$$

$$r^* = \frac{-2\sigma_{sl}}{\Delta G_V}$$

$$r^* = \frac{2\sigma_{sl}T_m}{\Delta H_V \Delta T}$$

TABLE 8-1 ■ Values for freezing temperature, latent heat of fusion, surface energy, and maximum undercooling for selected materials

P2

	Freezing Temperature (T_m)	Heat of Fusion (ΔH_f)	Solid-Liquid Interfacial Energy (σ_{sl})	Typical Undercooling for Homogeneous Nucleation (ΔT)
Metal	(°C)	(J/cm³)	(J/cm²)	(°C)
Ga	30	488	56×10^{-7}	76
Bi	271	543	54×10^{-7}	90
Pb	327	237	33×10^{-7}	80
Ag	962	965	126×10^{-7}	250
Cu	1085	1628	177×10^{-7}	236
Ni	1453	2756	255×10^{-7}	480
Fe	1538	1737	204×10^{-7}	420
NaCl	801			169
CsCl	645			152
H ₂ O	0			40

Is it possible to reduce the r*

$$r^* = -2\frac{\gamma}{\Delta G_{\nu}}$$

The free energy is a function of T and supersaturation (C-Co)/Co However...

the supersaturation decreases as T increases the surface tension _____ as T increases

Important considerations

- Identical size
- Identical shape or morphology
- Identical chemical composition and crystal structure
- Individually disperse or monodispersed

Debate

Debate...

Based on the information provided so far...

Depict a process to get small particles with the narrowest size distribution possible

Synthesis Methods

- Thermodynamic approach
 - i. supersaturation
 - ii. nucleation
 - iii.growth

Kinetic approach

Desirable features

Uniform size distribution

- Identical shape or morphology
- Identical chemical composition and crystal structure

Individually dispersed

Critical size (r*)

How to reduce the value of r*?

$$r^* = -2\frac{\gamma}{\Delta G_V}$$

$$\Delta G^* = \frac{16\pi\gamma}{\left(3\Delta G_V\right)^2}$$

Energy barrier to overcome, so nulceation can start

SO

$$\Delta G_{V}$$
 \uparrow

$$\Delta G_V = \frac{kT}{\Omega} \ln \left(\frac{C}{C_0} \right) = \frac{kT}{\Omega} \ln \left(1 + \sigma \right)$$

$$C \uparrow$$

$$T \uparrow \longrightarrow$$

It affects
surface energy
(specially near
roughening
temperature)

Other variables affecting r*

Besides of C and T:

Solvent type (polarity)

Additives (i.e.: viscosity)

Impurities

Rate of nucleation (R_N)

$$R_N = f(n, P, \Gamma)$$

n is the number of growth species/volume

P is the probability of fluctuations of the critical free energy ΔG^*

 Γ is the frecuency of species jumping from one growing site to another one

$$P = \exp\left(\frac{-AG^*}{kT}\right)$$

$$\Gamma = \frac{kT}{3\pi\lambda^3\eta}$$

$$\Delta G^* = \frac{16\pi\gamma}{(3\Delta G_V)^2}$$

$$R_N = nP\Gamma = \left[\frac{C_0 kT}{3\pi\lambda^3 \eta}\right] \exp\left[\frac{-\Delta G^*}{kT}\right]$$

$$\Delta G_V = \frac{kT}{\Omega} \ln\left(\frac{C}{C_0}\right) = \frac{kT}{\Omega} \ln(1+\sigma)$$

Growth of the nulcei

Steps:

- generation of the species
- · diffusion from the bulk to the surface

- · adsorption onto the growth surface
- surface growth onto the solid surface

diffusion limited

growth limited

Diffusion controlled growth

Promotes the formation of uniformly sized particles

$$\frac{dr}{dt} = D(C - Cs) \frac{V_m}{r}$$

D is the diffusion coefficient

$$rdr = D(C - Cs)V_m dt$$

at time t=0, $r=r_0$

$$r^2 = 2D(C - Cs)V_m t + r_o^2$$

$$r^2 = k_D t + r_o^2$$

where: $k_D=2D(C-C_s)V_m$ is the diffusion constant

For this type of growth the radius difference among particles is given by:

$$\rightarrow$$
 $r \delta r = r_o \delta r_o$

$$\delta r = \frac{r_0 \delta r_0}{r}$$

Therefore such difference decreases with time as well as with higher values of r_{o} and higher k_{D}

$$\delta r = \frac{r_0 \delta r_0}{\sqrt{k_D t + r_0^2}}$$

Surface controlled growth

Does not promote the formation of uniformly sized particles

Monolayered

 $\frac{dr}{dt}\alpha$ surface area

$$\frac{dr}{dt} = k_m r^2$$

$$\frac{dr}{r^2} \neq k_m dt$$

$$\frac{1}{r} = \frac{1}{r_0} - k_m t$$

If the radius of the nulcei increases, then the radius difference among particles increases:

$$\delta r = \frac{r^2 \delta r_0}{r_0^2}$$

substitution of r:

$$\delta r = \frac{\delta r_0}{\left(1 - k_m r_0 t\right)^2}$$

therefore:

as t increases...

Surface controlled growth

Does not promote the formation of uniformly sized particles

Polinuclear growth

surface process is very fast, growth rate is constant

$$\frac{dr}{dt} = k_p$$

$$r = k_p t + r_0$$

Therofore, the radius difference remains constant:

$$\delta r = \delta r_0$$

Advantages of solution processes

It is easy to:

- prevent agglomeration
- extract
- do surface modifications and applications
- control the process
- have mass production