ASSIGNMENT 1. DUE IN CLASS FRI, SEP 1, 2017.

- 1. Let $f: X \to Y, g: Y \to Z$ be two maps, and let $h = g \circ f$ be their composition. Prove that:
 - (a) if h is injective, then f is injective; if additionally f is surjective, then g is injective.
 - (b) if h is surjective, then g is surjective; if additionally g is injective, then f is surjective.
- 2. (a) Let X be a finite set and $f: X \to X$ a map. Prove that f is injective if and only if f is surjective. (You need to prove both implications.)
 - (b) Does the fact "f is injective if and only if f is surjective" continue to hold if X is not finite. Justify your answer (with an example if need be).
- 3. Let X and Y be finite sets having m and n elements respectively. For the last three parts consider all the three cases, m > n, m = n, m < n.
 - (a) What is the cardinality of Y^X ?
 - (b) How many distinct injective maps are there from X to Y?
 - (c) How many distinct surjective maps are there from X to Y?
 - (d) How many bijections are there from X to Y?
- 4. Let X be the set of all maps from \mathbb{R} to \mathbb{R} (i.e. each element $x \in X$ is a real valued function on \mathbb{R}). Let R denote the relation on X defined by: xRy if and only if there exists some c > 0 such that x(t) = y(t) for all t with |t| < c. Prove that R is an equivalence relation on X.
- 5. Let $X = \mathbb{R}^2$ and consider the relation R on X defined by (x', y')R(x'', y'') if and only if x'y' = x''y''.
 - (a) Prove that R is an equivalence relation.
 - (b) Describe the equivalence classes of R (feel free to draw them if you think it helps you to describe them).
 - (c) What is the equivalence class of the origin (0,0)?