- Finde Extrema von  $f(x_1,...,x_n)$  unter den Nebenbedingungen
  - $-N_1(x_1,...,x_n)=0$
  - ...
  - $-\ N_k(x_1,...,x_n) = 0$
- Anzahl der Nebenbedingungen k ist beliebig
- grad f senkrecht auch Tangentialebene von A
  - $-\ grad f \in span \{grad N_1,...,grad N_p\}$
- Satz:
  - $M \subseteq \mathbb{R}^n$  offen
  - f (mind.) 1x stetig diffbar
  - Extremum  $x_0$  unter NB  $N_1(x)=\ldots=N_k(x)=0$  ==>  $\lambda$  für jede NB
  - $grad(f(x_0)) \lambda_1 grad(N_1)(x_0) \ldots \lambda_k grad(N_k)(x_0) = 0$ 
    - \*  $gradf = \lambda gradN$
- Vorgehensweise
  - in obige Formel einsetzen
  - eine Gleichung für jede Variable nach der abgeleitet wird
  - Determinante der Koeffizientenmatrix mit 0 gleichsetzen
    - \* λ bestimmen
  - λ in Gleichung einsetzen und Variablenwerte bestimmen
    - \* ==> mögliche Extrema
    - \* Satz von Weierstraß ==> Min und Max muss existieren
    - \* Min und Max durch logische Vergleiche bestimmen?
- Anschauliches Beispiel



[[Mehrdimensionale Differentialrechnung]]