chaVoc	F	K	G	F	R	G	G	L	D	V	S	Н	G	Õ	Т	G	Α	E
egrGar	F	K	G	F	R	G	G	L	D	v	S	Н	G	Õ	Т	G	Α	E
pygAde	F	K	G	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
aptFor	F	K	G	F	R	G	G	L	D	v	s	Н	G	Q	Т	G	Α	E
nipNip	F	K	G	F	R	G	G	L	D	V	s	Н	G	Q	Т	G	Α	E
anaPla	F	K	G	F	R	G	G	L	D	V	S	Н	G	Q	Т	G	Α	E
melGal	F	K	G	F	R	G	G	L	D	V	S	Н	G	Q	Т	G	Α	E
galGal	F	K	G	F	R	G	G	L	D	v	s	Н	G	Õ	Т	G	V	E
strCam	F	K	G	F	R	G	G	L	D	v	S	Н	G	Q	Т	G	Α	E
aptRow	F	K	G	F	R	G	G	L	D	V	s	Н	G	Q	Т	G	Α	E
aptHaa	F	K	G	F	R	G	G	L	D	v	s	Н	G	Q	T	G	Α	E
aptOwe	F	K	G	F	R	G	G	L	D	v	s	Н	G	Q	Т	G	Α	E
rhePen	F	K	G	F	R	G	G	L	D	v	s	Н	G	Q	Т	G	Α	E
rheAme	F	K	G	F	R	G	G	L	D	v	S	Н	G	Q	Т	G	Α	E
droNov	F	K	G	F	R	G	G	L	D	V	S	Н	G	Õ	Т	G	Α	E
casCas	F	K	G	F	R	G	G	L	D	V	S	Н	G	Q	Т	G	Α	E
eudEle	F	K	G	F	R	G	G	L	D	V	s	Н	G	Q	Т	G	Α	E
notPer	F	K	G	F	R	G	G	L	D	V	S	Н	G	Q	Т	G	Α	E
tinGut	F	K	G	W	S	G	G	L	-	-	-	-	-	-	-	-	-	-
cryCin	F	K	G	F	R	G	G	L	D	v	s	Н	G	Q	Т	G	Α	E
aquChr	F	K	G	F	R	G	G	L	D	v	S	Н	G	Q	Т	G	Α	E
halLeu	F	K	G	F	R	G	G	L	D	V	S	Н	G	Õ	Т	G	Α	E
lepDis	F	K	G	F	R	G	G	L	D	v	S	Н	G	Q	Т	G	Α	E
colLiv	F	K	G	F	R	G	G	L	D	V	s	Н	G	Q	Т	G	Т	E
cucCan	F	K	G	F	R	G	G	L	D	V	S	Н	G	Q	T	G	Α	E
picPub	F	K	G	-	P	G	Н	L	Е	L	-	#	Α	Α	Ε	G	Α	E
calAnn	F	K	G	F	R	G	G	L	D	v	S	Н	G	Q	Т	G	Α	E
chaPel	F	K	G	F	R	G	G	L	D	V	S	Н	G	Q	Т	G	Α	E
falPer	F	K	G	F	R	G	G	L	D	V	S	Н	G	Õ	Т	G	Α	E
melUnd	F	K	G	F	R	G	G	L	D	v	S	Н	G	Q	Т	G	Α	E
corBra	F	K	G	F	R	G	G	L	D	v	s	Н	G	Q	Т	G	Α	E
oseHum	F	K	G	F	R	G	G	L	D	V	S	Н	G	Q	Т	G	Α	E
taeGut	F	K	G	F	R	G	G	L	D	v	S	Н	G	Q	Т	G	V	E
geoFor	F	K	G	F	R	G	G	L	D	v	s	Н	G	Q	Т	G	v	E
ficAlb	F	K	-	-	-	-	-	-	-	-	-	-	G	Q	-	-	-	-
serCan	F	K	G	F	R	G	G	L	D	v	S	Н	G	Q	Т	G	V	E

MALMA_AF344483 A R E G N E I I R E A S K W S P E L A A A C E V W K E I K F MALMA_AF344519 A R E G N E I I R E A S K W S P E L A A A C E V W K E I K F MALMA_AF344467 A R E G N E I I R E A S K W S P E L A A A C E V W K E I K F MALMA AF344470 A R E G N E I I R E A A K W S P E L A A A C E V W K E I K F MALMA_AF344507 A R E G N E I I R E A S K W S P E L A A A C E V W K E I K F BBOBB_AJ235773 AREGNEIIREASNWSPELAAACAVWKEIKF HANCO_AF323190 AREGNEIIREASKWSPELAAACEVWKEIKF HANCO_AF323188 AREGNEI#REASKWSPELAAACEVWKEIKF CRNCO_AY530929 A R E G N E I I R E A S K W S P E L A A A C E V W K E I K F CRNCO_L14395 A # E G N E I I R E A S K W S P E L A A A C E V W K E I K F CRNCO_AY530927 AREGNEIIREASKWSPELAAACEVWKEIK# CRNCO_AF190433 A S E G N E I I R E A S K W S P E L A A A C E V W K E I K F CRNCO L11217 AREGNEIIREASKWSPELAAACEIWKEIKF BERRA_AF203487 A A E G N T I I R E A S K W S P E L A A A C E V W K E I R F PCIER_AJ428893 AREGNEIIREASKWSPELAAACEVWKAIKF MGVER_Z80200 AREGNEIIREASKWSPELAAACEIWKEIKF SLAER_AF421109 AREGNEIIREACKWSPELAAAC<mark>A</mark>VWKEIKF TSTER_Z83149 A R # G N E I I R E A S K W S P - - - - - - - - - - - -SYMER_Z80192 AREGNEIIPAASKWSPELAAACEIWKEIKF PPLER_AF419239 A R E G N E I I R E A S K W S P E L A A A C E V W K E I O F SPTER_Z83135 AREGNEIIREATKWSPELAAACEVWKEIKF LECER_AF077656 A R E G N E I I - - - - - - - - - - R E # S K W S LECER_Z80183 AREGNEIIREASKWSPELAAAC#VWKEIKF LECER_AF077652 AREGNEIIREASKWSPELAAACEVWKEIKF LECER_AF077653 AREGNEIIREASKWSPELAAACEVWKEIKF LECER_Z80177 AREGNEIIR#ASKWSPELAAVCEVWKEIKF LECER_Z80181 AREGNEIIRAASKWSPELAAACEVWKEIKF LECER_AF022134 AREGNEIIRAASKWSPELAAACEVWKEIKF THPER_AF213818 AREGNEIIREASKWSPELAAACEVWKEIKF THPER AF213819 AREGNEIIREACKWSPELAAACEVWKEINL THPER AF213817 AREGNEIIREASKWSPELAAACEVWKEIKF THPER_AF213815 AREGNEIIRAASKWSPELAAACEVW#EIKF PRMER AF394965 AREGNEVIREACKWSPELAAACEVWKEIKF PRMER_AF395006 AREGNEVIREACKWSPELAAACEVWKEIKF PRMER AF213794 AREGNEVIREACKWSPGLAAACEVWKESKF

Sample alignments from recently published papers

These 45,367 hierarchical orthologous groups, or HOGs, were filtered to retain 16,151 HOGs with sequences for at least four species. Protein sequences were aligned with MAFFT v. 7.245 (Katoh and Standley, 2013), and filtered in three steps. First, entire columns were excluded if missing in more than 30% of species, had sequence in fewer than 10 taxa, or was missing in two of the three of the main taxonomic groups (paleognaths, neognaths, or non-avian outgroups). Second, poorly aligned regions were masked according to Jarvis et al. (2014) using a sliding-window similarity approach. Third, columns were removed using the same criteria as the first round. Next, entire sequences were removed from each alignment if they were over 50% shorter than their pre-filtered length or contained excess gaps. Finally, entire HOGs were removed if they contained more than three sequences for any species, did not have more than 1.5x sequences for the given number of species present in the alignment, or were less than 100 base pairs long. Nucleotide sequences for all remaining HOGs were aligned with the codon model in Prank v. 150803 (Löytynoja and Goldman, 2008). In total, 11,247 HOGs remained after all alignment and filtering steps.

After the application of "due diligence" alignment masking and filtering techniques

These 45,367 hierarchical orthologous groups, or HOGs, were filtered to retain 16,151 HOGs with sequences for at least four species. Protein sequences were aligned with MAFFT v. 7.245 (Katoh and Standley, 2013), and filtered in three steps. First, entire columns were excluded if missing in more than 30% of species, had sequence in fewer than 10 taxa, or was missing in two of the three of the main taxonomic groups (paleognaths, neognaths, or non-avian outgroups). Second, poorly aligned regions were masked according to Jarvis et al. (2014) using a sliding-window similarity approach. Third, columns were removed using the same criteria as the first round. Next, entire sequences were removed from each alignment if they were over 50% shorter than their pre-filtered length or contained excess gaps. Finally, entire HOGs were removed if they contained more than three sequences for any species, did not have more than 1.5x sequences for the given number of species present in the alignment, or were less than 100 base pairs long. Nucleotide sequences for all remaining HOGs were aligned with the codon model in Prank v. 150803 (Löytynoja and Goldman, 2008). In total, 11,247 HOGs remained after all alignment and filtering steps.

2021

A E

A E

A E

A E

A E

V E

V E

Evolutionary Biology, Genetics and Genomics

Immune genes are hotspots of shared positive selection across birds and mammals

Allison J Shultz , Timothy B Sackton

Harvard University, United States

Jan 8, 2019 · https://doi.org/10.7554/eLife.41815 🗟 🙃

