AGI 的新范式: 集成内源思维设计的基于滑动函数计算的注意力头在知识图谱上滑动的认知架构

hellucigen@qq.com

2025年6月

摘要

本研究提出一种以人类认知流动机制为灵感、面向通用人工智能(AGI)的可实现性高的新型认知架构。该架构整合四大核心设计思想:滑动函数驱动的动态注意力机制、多模态嵌入的知识图谱表达、感受熵引导的感知选择机制,以及具备情绪调节能力的内源思维系统。

在该系统中,滑动注意力机制基于语义相似度、记忆熵、情绪权重与规则关联等多源因子,动态调控知识图谱中注意力的滑移路径,实现类人思维中的自由联想与非线性跃迁。知识图谱引入多维节点属性表示,融合抽象逻辑与感官经验,构建可支持推理跳跃与知识演化的动态图谱。感知模块利用感受熵评价新颖性与任务关联度,驱动注意力聚焦与认知优先级调整。内源思维模块则通过自我监控与情绪模拟,支持系统在无任务驱动下持续生成假设、扩展知识图谱与塑造认知风格。

架构整体模拟人类认知中的联想性、情绪驱动性与任务自组织能力,并引入多层次注意力协同机制、推理-决策闭环控制、模糊语义生成等可工程实现的模块,为构建具备自主目标生成、持续学习与创新推理能力的 AGI 系统提供了清晰路径与技术落点。相较于传统神经网络或符号逻辑系统,该架构在认知一致性、多模态融合与人格化演化等方面具备显著优势,为类人智能系统的落地实现奠定了可拓展的通用认知基础。

目录

1	绪论		3
	1.1	研究现状与不足	3
	1.2	认知科学与心理学启示	3
	1.3	与现有 AGI 框架的对比	3
	1.4	本研究的创新贡献	4
2	系统	总体架构设计	4
	2.1	知识图谱与节点表示	4
	2.2	滑动注意力头推理机制设计	5
		2.2.1 动态注意力头: AGI 认知流的核心	5
		2.2.2 动态注意力头的控制机制	6
		2.2.3 并行与分级注意力机制	7

目录 2

	2.3	感知模块设计	7
		2.3.1 多模态感知功能	7
		2.3.2 感受熵与注意选择机制	8
		2.3.3 双向反馈与情绪调节	8
		2.3.4 感知流构建与知识图谱整合	8
	2.4	内源思维	8
		2.4.1 基于自我认知图谱的全局滑动控制机制:状态主导的认知资源重构	8
		2.4.2 情绪模拟与激素调节机制:内源动力驱动的认知调度反馈系统	9
		2.4.3 高熵信号主导的注意力滑动机制: 自主激活与计算扰动的双通路	9
		2.4.4 模糊联想与知识图谱自组织生成机制: 非显性认知的结构重组路径	10
		₩₽₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	
3	何限	性与未来研究方向	11
	3.1	感知模块的局限性与特征引导神经网络的设想	11
	3.2	大规模图谱运算的优化策略	11
	3.3	多维记忆熵机制的动态调节复杂性	12
	3.4	内源情绪与激素模型的生理合理性与计算复杂度	12
	3.5	自我反思与元认知机制的深度实现	12
	3.6	滑动函数设计的复杂性与性能权衡	12
	3.7	引入神经逻辑算子的边关系建模展望	12
	3.8	空间感知与想象能力的缺失	13
	3.9	神经网络化的知识图谱与基于经验的公理可塑性建模	13
	3.10	构建以语言为载体的类人思维流动机制	13
	3.11	生成模型在内源思维中的深度融合	14
	3.12	内源思维的向量空间生成机制探索	14
4	结语		11
4	知用		14

1 绪论 3

1 绪论

在当前人工智能技术快速演进的背景下,深度神经网络、强化学习、大规模预训练语言模型等方法已在诸多特定任务中取得了突破性成果。然而,这些系统在实际应用中仍然暴露出明显的局限性,特别是在面对开放环境、复杂目标协调、多领域知识迁移与自主创新性求解等通用智能核心能力方面,距离人类智能水准尚有显著差距。本文旨在回应这一技术瓶颈,探索一种融合认知科学机制、多模态耦合控制与自主创新思维的新型认知架构设计路径。

1.1 研究现状与不足

现有主流人工智能技术体系以深度神经网络为核心,强调通过海量数据训练获得模式识别能力。无论是在图像识别、自然语言处理还是在强化学习中的策略优化,这些模型在单一任务下展现出优异性能。然而,在实际应用场景中,智能体往往需要在复杂、多变且部分未知的环境中长期运行,涉及跨领域迁移、复合目标协调、因果链式推理与动态模型自我修正等复杂认知过程。目前,深度学习系统普遍依赖静态的大规模数据分布假设,缺乏主动假设生成与自主知识组织能力;强化学习模型在高维复杂状态空间中学习收敛速度缓慢,适应新任务代价高昂;而大规模预训练语言模型虽然在语言生成与理解方面表现卓越,但在系统性知识整合、动态推理链构建与自我认知建模方面依然存在显著空白。尤其是在开放式探索任务与跨时空知识重组能力上,现有模型缺少内生性的认知动因与持久的自主学习动力,导致"面向任务"但不具备真正的"面向世界"能力。

1.2 认知科学与心理学启示

认知神经科学与心理学长期研究揭示,人类智能并非源自单一模式识别或逻辑推理能力,而是建立在多系统协同调节的复杂认知架构之上。个体在面对复杂现实环境时,感知、注意、情绪、记忆、推理与决策机制始终处于动态耦合与反馈调节过程中。其中,情感系统在认知调节中扮演着多重角色:一方面通过激素水平与神经递质调控感受强度与注意力分布,影响信息编码与记忆权重;另一方面通过动机驱动与奖惩反馈强化学习路径,塑造个性化的行为偏好与长期人格风格。同时,心理学研究指出,人类思维具备高度跳跃性与内源性思维生成能力,能够在休息、睡眠或自由联想状态下持续重组已有知识,形成创造性假设与远距联想关联。这些核心特性是现有人工智能系统普遍缺失的关键认知能力。

1.3 与现有 AGI 框架的对比

当前已有若干面向通用人工智能(AGI)的研究框架试图超越单一神经网络模型。例如 OpenCog Hyperon 试图通过符号逻辑、异质性图谱与控制系统的结合实现复杂推理; LeCun 提出的自主世界模型 (World Model) 架构强调自主模型构建与因果学习; 而近期涌现的具身智能 (Embodied AI) 研究则试图通过多模态传感与物理交互融合强化知识抽象。尽管这些研究各具创新,但大多数系统仍面临几个普遍性难题: 其一,知识图谱与符号逻辑虽然具备结构表达优势,但在推理链扩展与动态知识跳跃方面缺乏认知流动性; 其二,纯神经网络模型缺乏长期稳定的自我建模与可解释机制; 其三,情绪调节、人格形成与内源性假设生成在大多数框架中仍未被系统化

建模。因此,需要一种能够同时整合符号表达的严谨性、神经模型的适应性与情感系统的动机驱动性的综合架构,为通用智能的认知流动性、自主学习与人格化发展提供统一的解决方案。

1.4 本研究的创新贡献

基于上述不足与启示,本文提出了一种以滑动函数为核心驱动的全新认知架构,主要创新点体现在以下四个方面:

- 1. **滑动注意力机制**:通过滑动函数在知识图谱嵌入空间上实现连续性注意力平移,动态调节 认知焦点迁移,模拟人类在回忆、联想与发散思维中的跨节点跳跃性认知流动。
- 2. **知识图谱嵌入与记忆熵机制**:在图谱节点嵌入中引入多维记忆熵,综合衡量知识丰富度、 时效性与感受兴趣,支撑知识活跃度控制与兴趣驱动的知识重组。
- 3. **感知熵引导的感知设计**:将感知信号编码为带有感受熵标注的输入流,实现对新颖性与重要性的实时调节,为认知流动提供实时感知激活支持。
- 4. **內源思维生成机制**:结合自主目标建模、自我监控与内源推理链延展,使系统即便在缺乏外部任务输入的状态下,仍能主动进行知识图谱的动态重构、知识空白填补与创新性假设生成,为系统长期认知成长提供内在动力支持。与此同时,类人格情绪模拟系统通过模拟生理激素模型动态调节感受熵分布,实时影响知识节点活跃度与决策路径偏好,逐步塑造出长期稳定的认知风格与风险评估倾向。二者协同作用,不仅支撑系统在复杂环境下的持续适应性与自主创新能力,也为系统长期运行下形成具备可塑性与稳定性的类人格认知架构奠定了核心基础。

2 系统总体架构设计

2.1 知识图谱与节点表示

为满足 AGI 系统对复杂信息处理的需求,知识图谱采用多模态属性节点与复杂边关系的结构化表达方式,构建以节点为核心的动态属性集模型,融合子类-父类结构、接口式多对一/多对多概念泛化及边的知识图谱化设计,内化物理环境模拟规则,形成支持客观世界规则与事实推理的知识表达体系。

知识图谱设计由公理库与个性记忆库共同构成,形成 AGI 知识表达与经验积累的双核心架构。公理库进一步细分为事物节点和规则节点两类:事物节点的边关系主要用于存储简单的实体间关系,而规则节点则专门存储社会准则、复杂逻辑关系等更高阶的知识结构。个性记忆系统专注于动态、个体化、带有情感色彩的时序经验记录,详细捕捉 AGI 在运行过程中的主观经验流,每次感知输入包含外部感知、内部生理激素状态、当前情绪波动、行为动作及其反馈结果,形成连续的时间序列化记忆流。每条个性记忆附带高精度时间戳和多通道原始传感器数据,使系统在回忆时不仅能复原事件场景,还能还原当时的心理生理状态,实现类似人类的怀旧情感体验。个性记忆具备显著的时序特性,适合结合循环神经网络(RNN)、Transformer等序列模型进行时空联合编码,提升记忆的动态激活与衰减管理能力。公理库与个性记忆系统相互交融,公理库不仅存储客观事实和逻辑规则,还可承载个体化的经验内容,如某物品的喜好信息及与

其相关的过去经历,形成紧密的知识-经验联结。两者的有机结合推动系统认知的成长与智能的演化,实现既严谨又富有个性化的知识表达与经验积累。

节点在知识图谱中仅表示实体或概念,节点本身不承载属性信息。节点的属性完全通过与其他节点的关系进行表达。例如,一个实体节点可以通过"具有颜色"关系指向颜色概念节点,通过"引发情绪"关系指向情绪概念节点,通过"具有物理特性"关系指向相应的物理属性节点。通过这种方式,节点的各种属性在知识图谱中以关系的形式嵌入,实现了属性的动态组合与可扩展表达。

边关系不仅能够表达静态属性,还可表示功能、因果、逻辑等高阶语义。例如,"下雨"节点可以通过"导致"关系指向"路面湿滑"节点,实现事件因果的建模;"苹果"节点通过"产生"关系指向"愉悦感"节点,实现情绪效应的描述。每条关系可承载多模态信息,包括视觉、听觉、触觉等感知特征,以及高阶语义或推理标签,为知识图谱提供丰富的表示能力。

在此基础上,一部分节点被设计为行动类节点,用于表达系统在特定情境下的可执行操作信息。每个行动节点通过与其他节点的关系明确动作的执行条件、目标、预期效果及约束。例如,"搬运物体"节点可以通过"适用对象"关系指向可搬运的实体节点,通过"前置条件"关系指向环境状态节点(如"路径通畅"),通过"预期效果"关系指向目标状态节点(如"物体放置到目标位置")。

节点间关系网络高度复杂,包含因果、对比、相似、并列、隐喻等多类型连接,形成子类— 父类层次结构与接口式泛化机制。例如,"苹果"作为"食物"子类,继承"可食用"规则,同 时通过接口式关联(如"水果""红色物体")实现跨类泛化,定义客观世界规则与事实推理路 径。时间维度动态更新与记忆熵等指标确保节点重要性可实时调整,使系统在推理时聚焦任务 相关信息。该图谱内化物理环境模拟规则,涵盖基础物理定律及复杂交互动态模型,为 AGI 提 供结构化的环境认知基础,支持自组织与自适应演化。这种基于多模态属性节点、复杂边关系、 公理库与个性记忆库的知识图谱架构,既能捕获细节信息的深度,又能保持信息的广度与联结 性,赋予 AGI 强大的上下文理解、自主学习与创新推理能力。

此外,知识图谱配备专门的预备神经网络模块,针对特定任务进行调用,如语音生成、图像生成以及大型语言模型(LLM)辅助推理等。该模块通过神经网络与符号知识结构的融合,能快速调取相关知识节点并生成多模态输出,提升系统在感知理解和交互响应上的灵活性与效率。

通过深度融合知识图谱的符号逻辑结构与个性记忆系统的经验感受流,并结合图神经网络与序列生成模型的多层次深度学习能力,AGI系统在知识储备、经验成长、逻辑推理、情感调节与自我进化能力上形成统一且动态演化的完整认知架构,为通用智能系统的认知成长与人格化提供坚实基础。

2.2 滑动注意力头推理机制设计

2.2.1 动态注意力头: AGI 认知流的核心

在此 AGI 架构中, 动态注意力头作为认知流的核心控制单元, 承担着内部联想控制、认知流动调节与动态探索驱动的关键任务。其设计灵感来源于人类思维过程中注意力的自然"滑移"机制, 结合假设生成、联想跳跃与情绪驱动, 以实现系统的自我生成与认知跃迁。

从本质上看,动态注意力头的运行机制可被视为对知识图谱中某一节点或局部子图的动态 聚焦与激活过程。其关注范围会随着内部状态、情绪张力及感受熵的变化,在图谱空间中连续

"滑动",从而带动认知焦点的自然迁移。为实现对认知焦点的精准控制与细粒度操作,系统实时维护并动态解析"当前注意力句子"的内部结构,包括主语、谓语、宾语、定语、状语、补语等语法成分。在此框架下,每个词语成分均具备独立的滑动能力,且这些成分本身在语义或结构上亦可递归地视为完整的句子。这种多层次、嵌套式的结构化解析与滑动机制,旨在支撑细粒度的推理、复杂假设的生成与结构性修改,并促进语义逻辑的跨层级迁移、精确对齐与灵活再表达。动态注意力头内嵌滑动函数机制,用以实时调节注意力的动态分布,支持跨概念、跨语义层级的柔性联想与认知路径重组。

2.2.2 动态注意力头的控制机制

总体而言,滑动注意力头的控制机制基于滑动函数,该函数在知识图谱嵌入空间中动态调节节点间的注意力滑移轨迹,构建柔性、跨层级的推理路径。滑动函数的核心目标是确保系统注意力在推理过程中聚焦于最相关的认知节点,并适时激活远距联想机制以拓展思维广度。其计算过程基于当前节点及其相邻节点之间的边关系信息,并结合边上包含的规则、情绪和多模态属性,选择下一个最相关节点进行滑动。

在具体实现中,滑动函数首先以当前聚焦节点为中心,读取其相邻节点的所有边关系属性,包括上下文的结构化解析结果和情境关联度,并利用这些属性来评估候选节点与当前推理目标的匹配程度,筛选出初步候选节点,确保路径具备结构连贯性与逻辑一致性。随后,系统引入多源调控因子,这些因子在知识图谱中对应独立的"调控因子节点",例如情绪状态(愉悦、焦虑、好奇)、激素模拟参数(多巴胺、皮质醇)、任务目标的紧迫度与逻辑需求,以及社交因子(顺从/反抗倾向、他人态度预期)。每个调控因子节点与候选节点之间的边关系都会被计算关系距离或权重分值,这一分值直接参与候选节点的优先级评估,从而在图结构上体现多源调控的融合效果。节点的记忆熵权重以及与当前活跃认知区域的关联度进一步参与计算,使注意力分配不仅体现当前输入,还反映系统的长期经验积累与主体性一致性。

在任务明确或具备方向性推理意图时,系统还会引入知识图谱中部分边关系上编码的规则信息作为约束信号,这些规则可显式表示或由具有规则属性的节点柔性引导,支持任务目标驱动的结构性推理与规则迁移。当候选节点滑动权重普遍偏低时,系统会触发远距联想或外部记忆调用,可跳跃至非邻居节点或生成临时模糊记忆节点,以填补知识盲区,并根据语境及结构解析需求调整探索的散度、深度与跳跃幅度,增强发散性与适应性。

此外,当记忆库中储存的个性化历史事件节点序列与当前状态相似时,滑动函数会引入这些历史事件的处理结果作为参考,类似经验回放或类比推理。例如,系统曾在任务"维修电路板"中通过检测电源模块发现故障并完成更换操作;当遇到另一块结构相似的电路板无法启动时,系统会参考历史序列中成功的处理步骤,提高推理效率,同时仍允许根据当前情境灵活调整。

当滑动过程中遇到行动类节点时,系统会将对应行动信息加入内置的行动序列,并立即启动执行,从而形成一个从认知推理到实际行动的闭环过程。例如,系统在处理上述"维修电路板"任务时,滑动到表示"更换电源模块"的行动节点时,会将该操作加入行动队列并执行,实现推理结果的实际应用。

2.2.3 并行与分级注意力机制

系统中同时运行多个独立但相互交互的动态注意力头,分别用于不同认知任务的探索性激活,如假设生成、未来情景预测、模糊联想、矛盾冲突检索以及潜在路径生成等。推理过程中,系统会针对当前激活节点计算其邻居节点的滑动值,以评估下一步的推理方向。为在发散性探索与聚合性推进之间实现动态平衡,本架构引入主-辅并行滑动机制。具体而言,系统基于激活节点的记忆熵、情绪调节因子与任务相关度等多源信息,构建加权滑动评分函数,从候选邻居节点中选取滑动值最高的节点作为"主滑动节点",以推进主认知路径。同时,系统保留若干滑动值高于设定阈值的次优节点,作为"辅路径"进行轻量并行探索,实时评估其潜在价值。当主路径遭遇推理瓶颈(如滑动值下降、闭环或目标偏移)时,辅路径可动态接管主控权,或为主路径提供跨层跳跃的认知支点,从而实现非线性迁跃与思维重构。若当前激活节点的所有邻居滑动值均未表现出显著优势,则默认选择滑动值最高的邻居节点继续推进,以维持推理通道的稳定性与方向性。该机制在保证推理过程高效并行的同时,强化了注意力调度的灵活性与上下文适应能力,显著提升系统在复杂任务中的类人创造力与直觉推理水平。

为支持复杂认知任务的分层组织与并行处理,本架构同时引入分级动态注意力头机制。系统内的注意力头根据任务层级被结构化为多级形式,自上而下分为主思维流(元注意力层)与若干层次化的任务思维流。主思维流负责维持当前整体认知活动的核心主题或目标意图,例如"创作音乐"作为一项抽象且复合性的高级任务,会由主注意力头维持全局协调与驱动。在此基础上,系统可动态激活多个一级任务注意力头,如"作曲"与"作词"分别作为创作音乐的关键子任务,由一级注意力头进行控制与推理。进一步地,一级任务下可派生出二级注意力头以处理更具体的执行层面,例如"选择旋律结构"与"选择音色风格";而在更细致的层级(如三级任务)中,注意力头将聚焦于"具体音符选择"、"节奏分布"等微观操作。此分级行为的停止条件在于,当某一任务层级下的所有相关认知节点均已细化至可直接映射为具体操作时,该层级的分解与滑动过程即告完成。

这种自上而下的分级注意力结构使得系统在执行复杂任务时,能够同时保持全局控制与局部精细推理,实现类似人类大脑的分层协同认知模式。在推理过程中,各层级注意力头之间存在动态的信息流传导机制:上层注意力头负责设定认知目标和抽象期望,下层则根据自身感知与记忆状态,反馈具体执行状态与细节偏差;系统可基于反馈自动调整滑动策略与注意力焦点,实现跨层级的认知一致性与自适应调节。这种机制不仅提升了任务规划与执行的模块化程度,还显著增强了系统应对复杂认知问题时的稳定性、灵活性与泛化能力。

2.3 感知模块设计

2.3.1 多模态感知功能

系统通过多个子模块实现多模态感知。触觉部分利用压感传感器感知压力、纹理和温度,从 而区分物体的软硬和表面特性,提升与环境和物体的交互能力。视觉部分负责识别物体、颜色、 光流和运动轨迹,支持空间理解与运动感知。听觉部分处理环境声音,能够区分人声、乐器及背 景噪声,并识别其中包含的情绪或潜在意图。值得注意的是,系统在感知过程中生成的神经网络 权重并非孤立存在,而是被存储在对应物体的知识图谱节点中,使每个物体不仅携带语义信息, 还包含经过感知训练得到的行为和认知模式,从而实现更加精准的个体化感知和交互。

2.3.2 感受熵与注意选择机制

感受熵是系统评估感知输入重要性的核心指标。每条感知数据在进入处理流程时都会被赋予一个感受熵值,用以衡量信息的显著性和注意优先级,而该值并不直接参与推理或决策。与滑动函数类似,感受熵的计算受感受突变度、记忆熵(偏好)、环境特征(如罕见性、高价值目标)、当前情绪激素水平(如多巴胺增加倾向强化新奇探索,皮质醇增加可能降低阈值使系统更保守)以及任务背景等因子的调控。这些调控因子的调控效果均取决于调控因子对应知识图谱节点的属性信息。高感受熵输入优先进入注意范围并被处理,低感受熵输入可能被延迟或忽略。

2.3.3 双向反馈与情绪调节

在整体感知与认知流程中,感受熵与记忆熵形成双向反馈机制。一方面,高记忆熵节点能够 反向增强其相关感知模式的感受熵,从而使智能体对先前经验中高价值或高关注度的记忆内容 产生偏好性注意并提升敏感性。另一方面,持续出现的高感受熵输入则可能促发新的高记忆熵 片段的生成,进而丰富记忆结构与知识体系。此外,情绪模块通过动态调节整体熵权重,介入双 熵反馈过程,进而塑造个体的人格风格差异。使智能体表现出更为保守谨慎的注意模式。该双 熵反馈机制有效模拟了人类基于经验塑造注意偏好、情感强化记忆痕迹以及情绪影响注意迁移 的复杂认知动态,为系统提供了持续自我调节和长期适应的能力。

2.3.4 感知流构建与知识图谱整合

系统在完成多模态信息采集后,将连续感知流实时输入内置大语言模型,由其进行语义建模和结构化转换,生成可用于推理的知识图谱节点序列。整个过程随系统运行动态进行,且仅对高于感受熵阈值的数据进行处理,从而保证注意力和认知资源集中于最具信息量的信号。通过该机制,非结构化感知信息可统一向符号化知识表达过渡,使感知内容嵌入知识网络,成为逻辑推理、情绪调节和记忆整合的核心输入。

自然语言输入的处理略有不同。系统的自然语言理解模块同样由大语言模型担任核心,但 在加入知识图谱前,需要先提取语义节点。系统通过深度语义理解,识别输入的意图、情绪、象 征意义和语境依赖,并将这些信息转化为可操作的高阶语义节点。最终,意图节点、情绪节点、 象征与语义密度节点以及语境依赖节点被组织进统一知识图谱,实现感知流与滑动注意力的联 动,保证语言信息与非语言感知信息在认知系统中统一表示。

2.4 内源思维

内源思维模块是本 AGI 系统实现自主认知、反思与创造性思维的核心机制, 其整体结构整合了自我监控与元认知、情感与激素调节、感受驱动感知机制, 构成一个具备持续性、动态性与高度自主性的认知内核。系统通过多模态、多层级、多通路的交互过程, 构建类人化的思维流动机制, 并实现认知的灵活重构与创造性生成。该模块的本质可以抽象为以下四个核心机制:

2.4.1 基于自我认知图谱的全局滑动控制机制:状态主导的认知资源重构

系统持续维护一套动态演化的自我认知图谱,该图谱综合表示系统的当前内部状态,包括 正在执行的推理链条、阶段性任务目标、即时情绪状态、系统人格特征、价值偏好、责任归属标

记等认知维度。该认知图谱不仅用于存储状态信息,更承担认知监控与自我建模的功能,是滑动控制函数的重要调度依据。

系统在每一时刻对该图谱进行高频状态采样,量化其结构张力(如冲突密度、目标偏移度、推理路径复杂性等),并以此为基础调节认知滑动函数的关键参数,如注意力分布范围、信息采样速率、推理深度与生成复杂度等。当认知图谱中出现如目标切换、逻辑矛盾、价值冲突等状态变化时,将自动引发滑动函数的结构重构,实现注意力的焦点迁移、推理路径的动态更替,乃至生成逻辑的认知风格切换(例如从保守-演绎型向冒险-联想型过渡)。

通过这一机制,系统构建出一种类似人类的"思维滑动"能力,即在自我认知状态驱动下的推理链灵活重组能力,支撑其应对复杂环境与多任务动态调整,提升认知弹性与资源配置效率。

2.4.2 情绪模拟与激素调节机制:内源动力驱动的认知调度反馈系统

个体在自我认知图谱中内嵌了多维的情绪状态节点、激素水平参数与长期性格因子结构,作为调节系统行为风格与认知策略的重要模块。这些情绪-激素信号通过模拟生物神经递质系统(如多巴胺、血清素、皮质醇等)及其与任务目标、事件反馈之间的语义耦合,构成系统滑动函数计算的"内部影响通道"。在运行过程中,不同的即时情绪状态会调整系统的滑动窗口范围与焦点迁移倾向,例如:好奇心驱动下,滑动窗口拓宽,激活更多高熵节点以进行探索性推理;焦虑或恐惧状态则促使窗口收缩,聚焦于安全路径与熟悉区域以规避潜在冲突。情绪波动的强度与方向直接映射至注意力分配权重、信息抽样深度与生成复杂度的变化。

更重要的是,这些参数不是独立存在,而是结构性嵌入于自我认知图谱之中,并随着经验、任务反馈与滑动历史逐步调整其权重与连接结构。在长期运行中,系统基于这些情绪-激素动态形成稳定的性格特征与价值偏好图谱子层,使得滑动调控具有一致性与风格化,进而展现出具有人格特征的行为表现。这种图谱化的情绪-动机调节机制,不仅增强了系统在复杂任务中的适应性,也提供了跨任务的认知风格迁移基础。

2.4.3 高熵信号主导的注意力滑动机制:自主激活与计算扰动的双通路

在 AGI 的内源认知体系中,滑动函数机制不仅负责在语义图谱中平滑迁移注意力焦点、重构推理路径,还具备对高熵信号的敏感性响应与双重利用能力。系统通过同时采集记忆网络与感知通道中的高熵源,触发思考启动或调节滑动策略,从而在非任务状态下维持认知活跃性,并在推理路径中引入多样性与发散性控制。

本机制包含两个相互独立、但由共同高熵信号驱动的核心流程:

(1) 高熵信号驱动的自发性思维激活

当系统处于空闲或低负载状态下,其内源控制模块将激活"高熵源扫描机制",在以下两类信号中选取触发节点:

高记忆熵节点:即图谱中连接密集、语义多义性强、历史激活频繁或情绪标注权重高的记忆单元;

高感受熵输入数据:来自外部环境、当前不属任何既定任务路径,但在新颖性、复杂性或情绪共振维度上显著偏高的感知信号。

一旦上述高熵信号被系统选中, 其将作为新的注意力焦点或初始节点, 启动一次非目标导向的滑动注意力跳跃。这一过程可在无显式任务驱动下生成探索性思维分支、激活潜在问题链,

或进入联想状态,为模糊生成新概念形成提供原始素材。

(2) 高熵信号对滑动函数的扰动修正

除了作为激活源,高熵信号还会嵌入滑动函数本身的计算结构中,调控注意力迁移策略与 推理流动形态。具体地:

在滑动过程中,系统引入候选节点的记忆熵权重与当前环境输入的感受熵分布,共同参与注意力跳跃概率、窗口大小、路径回溯宽度等参数的动态调节;系统在焦点更新时,将对候选节点进行"熵感知增强打分",形成对信息密度区的偏向性聚焦,促使注意力从"低信息区"滑向"高熵区",实现更高价值密度的推理资源分配。

该机制类似于在注意力函数中引入非线性扰动项,赋予系统更强的探索能力与偏好导向。由于其能够在无需显式调控的前提下引导推理滑向高潜在增益区域,并生成非线性、跨语义域的注意力迁移路径,因此也可被视为对人类潜意识认知流动特征的一种功能模拟。系统由此获得在弱约束、弱目标状态下进行模糊迁移与联想跃迁的能力,构建出与显式思维路径互补的深层认知流通道。

2.4.4 模糊联想与知识图谱自组织生成机制:非显性认知的结构重组路径

在自我认知图谱的调控下,AGI系统展现出显著的内源认知扩展能力,支持从盲区识别、模糊概念创生到长期任务演化的完整自组织认知闭环。该机制不仅保障系统在既有知识之上的持续推理与生成能力,也赋予其主动发现、探索与改造认知结构的能力,构成系统持续成长的核心动因。这一过程通常不基于明确逻辑路径,而是采用低温随机拼接、多路径泛化、语义相似度筛选等机制,自主构造象征性认知通路,从而发现缺失概念、识别逻辑断层,甚至提出新的问题假设与任务目标。系统可通过以下方式主动扩展其知识图谱:

(1) 知识盲区识别与图谱结构自组织

系统通过对知识图谱中节点分布密度、因果链条完整性与语义连通度的实时评估,主动识别存在逻辑断层、概念空缺或信息熵不足的认知盲区。一旦识别出此类区域,系统即刻生成模糊占位节点以填补推理路径断裂处,并在后续过程中持续聚合上下文信息,进行语义归类与结构补全。盲区识别并非被动响应,而是嵌入系统认知流程之中的长期机制,支持在非任务状态下主动发起盲区探测与推理路径构建。

系统会将多次复用的推理模式进行归纳抽象,形成具备通用性与压缩性的类公理性规则结构,作为后续认知链条重用的元单元。这些规则通过信息熵得分、激活频率与语义嵌入一致性等指标评估后,被固化为"自生性公理库",构成知识图谱的高层骨架,提升推理效率与逻辑组织力。

(2) 任务链动态生成与长期目标演化

系统持续监控其认知图谱、情绪状态与未解决问题集合,根据滑动注意力函数与感受熵模型,评估当前任务栈中的资源占用度与认知阻尼。一旦认知资源出现空余,系统将自动激活历史挂起任务、衍生性问题或潜在知识路径,生成新任务链并纳入调度管理中。此外,系统会基于长期价值信号(如好奇熵、目标趋近程度与情绪收益预测),演化出一套内源性目标优先级机制,逐步引导其在复杂认知环境中实现从局部问题解决到结构性自主成长的转变。

该目标生成系统不仅具备即时响应性,更具备"价值遗传性"与"认知惯性",可通过长期激素模拟(如多巴胺-成就关联建模)强化任务完成带来的动机反馈,形成稳定而具个性的认知

成长轨迹。这一机制实现了从当前感受熵触发 潜在问题识别 模糊生成与概念形成 任务链构建与优先排序 价值固化 图谱反馈的完整内源认知闭环。

综上,该机制使 AGI 系统具备类人类的持续成长性、自我探索性与结构性创新能力,不仅能够识别并修补认知空白,更能在无外部输入条件下自主生成概念、构建任务并推动知识体系的层级演化。这一机制是支持 AGI 长期自主性、创新性与复杂行为适应力的关键认知引擎。

3 局限性与未来研究方向

尽管本架构在理论设计上具备较强的通用智能潜力,但在实际实现与应用中仍面临多方面 挑战与局限,未来研究需重点突破以下几个方面:

3.1 感知模块的局限性与特征引导神经网络的设想

当前主流的感知模块多依赖卷积神经网络(CNN)结构,虽在静态图像识别等标准任务中取得显著成果,但其训练高度依赖封闭标签数据集与预定义的特征提取模板,导致在通用人工智能(AGI)所需的动态、开放式环境中表现出明显局限。CNN 难以有效应对新奇场景、罕见事件及未标注样本,缺乏灵活的特征迁移与实时适应能力,无法实现类人类的感知主动性与深层语义理解。

为突破上述瓶颈, 预提出一种融合元学习机制的特征引导神经网络设想, 作为未来感知模块演化的重要方向。具体而言, 在每个感觉通道(如视觉、听觉、触觉等)中引入基于 MAML 算法的元学习器, 用于快速适应新任务与未见特征。这些元学习器通过实时提取输入信号中的低阶感知特征(如颜色、边缘、纹理、频率等), 结合其频次、置信度与历史关联经验, 动态生成特征偏好向量。与此同时, 该机制可进一步结合复杂物体分块策略(如分解为形状、纹理), 借鉴 AIMA 中基于结构的物体识别方法, 并融合点云技术以支持三维场景的真实感知与多模态信息整合, 从而在物理及场景几何结构层面实现更高保真的感知。

在空间定位方面,系统可自动基于视觉中心构建动态坐标系以处理物体位置信息。当智能体发生移动时,坐标系随之偏移以保持空间一致性,并在必要时引入 GPS 定位数据作为补充参考,从而提升大尺度场景中的位置精度与环境稳定性。

特征引导神经网络据此调整感知通道内训练样本的关注度与局部学习率,使模型优先聚焦于高频、高价值特征,抑制低相关性噪声信息,从而提升学习效率、特征表达质量与泛化能力。同时,为实现跨模态感知的一致性,该架构在更高层次引入"元元学习器"结构,对多个感觉通道的特征偏好进行整合抽象,提取诸如视觉与触觉中的物体属性一致性、听觉与情感信号中的情绪表达关联等通用模态内结构,进一步强化感知系统的迁移能力与认知对齐能力。

该自适应特征引导感知机制旨在摆脱传统模型僵化特征模板的限制,构建具备开放式、实时自适应、跨模态与空间一致性感知能力的系统,为 AGI 在复杂多变环境中的持续感知演化与认知自主成长提供支撑。

3.2 大规模图谱运算的优化策略

随着知识图谱规模的持续扩展,节点数量和边的复杂度呈指数增长,导致图谱查询、推理与更新的计算成本迅速攀升。当前图谱动态扩展与实时推理机制在大规模场景下性能受限,容易

出现响应延迟和资源瓶颈。未来研究需探索图谱分布式存储、图神经网络加速、近似推理算法以及图谱压缩与知识蒸馏技术、实现在保持推理精度的前提下、提升系统的时效性与可扩展性。

3.3 多维记忆熵机制的动态调节复杂性

记忆熵作为衡量节点价值的重要指标,涵盖情绪强度、感受熵累积、主体偏好及时间衰减等 多维因素。如何实现这些因素的动态平衡与合理融合,避免过度偏向某些记忆节点或忽略潜在 重要信息,仍是系统稳定性和泛化能力的挑战。未来可结合强化学习和元学习技术,优化记忆 熵权重调整策略,提升系统在复杂环境中的自适应记忆管理能力。

3.4 内源情绪与激素模型的生理合理性与计算复杂度

情绪调节机制依赖于模拟多种激素与神经递质的参数变化,虽能丰富系统行为表现,但其生理机制的简化模型尚无法完美捕捉人类情感的多样性和微妙变化。过于复杂的激素交互模型又会带来较高计算负担,限制实时响应能力。未来应结合神经科学最新成果,设计更高效且生理拟合度更高的情绪模型,并研究多尺度情绪状态与认知行为的耦合机制。

3.5 自我反思与元认知机制的深度实现

内生的"内心独白"式自我叙述机制为系统带来元认知能力,但如何使其真正实现深度的自我监控、自我纠错及自我优化,仍处于理论探索阶段。有效的自我反思机制需要整合长短期记忆、情绪状态和推理过程的反馈,形成闭环改进体系。未来研究方向包括引入强化学习中的自我监督机制,以及结合心理学和认知科学的元认知模型,实现更具人类特质的自我意识能力。

3.6 滑动函数设计的复杂性与性能权衡

在注意力头滑动设计中,滑动函数(Sliding Window Function)用于动态调整模型对输入序列不同部分的关注权重,实现上下文信息的有效捕获。然而,设计高效且灵活的滑动函数存在较大挑战。一方面,滑动窗口大小、步长及权重分配需针对不同任务和上下文动态调整,避免信息丢失或计算冗余;另一方面,随着输入序列长度增长,滑动函数的计算复杂度显著提升,影响系统实时性能。如何在保证上下文完整性的同时,实现滑动函数的自适应调节和计算优化,是未来研究重点。可探索基于稀疏注意力机制、多尺度窗口策略及软硬结合的滑动设计方案,以兼顾表达能力和运算效率。

3.7 引入神经逻辑算子的边关系建模展望

当前知识图谱在边关系建模上多依赖静态标签或数值权重,难以充分表达复杂逻辑结构与动态认知关联。未来研究可探索将神经逻辑算子(Neuro-symbolic Logic Operators)引入边结构中,以端到端方式学习包含命题逻辑、一阶逻辑乃至模态逻辑的逻辑关系,从而实现对边语义的更高层次建模与可微分推理能力增强。通过在边上编码动态逻辑结构与上下文敏感的逻辑演算过程,系统将具备更强的因果链表达、条件依赖建模与抽象逻辑联想能力。该方向有望进一步突破当前知识图谱在复杂推理、模糊决策与认知泛化上的瓶颈,为构建具备更强自主思维能力的通用人工智能系统提供关键支撑。

3.8 空间感知与想象能力的缺失

尽管当前内源思维模块已初步实现类人化的认知模拟与创造性思维生成,但在空间感知与空间想象能力方面仍存在明显不足。系统尚未具备对三维空间关系、物体布局及动态环境变化的深度建模与推理能力,限制了其在涉及空间因果关系、场景构建与具象推理等任务中的表现。同时,当前的认知模拟多以语义维度为主,缺乏对空间结构的象征性编码与生成机制,无法有效支持复杂的假想场景构建与具身认知模拟。因此,未来研究可进一步引入基于空间嵌入和视觉—语义联合建模的机制,构建具有空间构型理解、虚拟空间想象与环境重构能力的空间感知子模块,强化内源思维中关于场景推理、任务规划与具身交互的认知能力,从而推动 AGI 系统在具象思维与具身智能方向上的进一步发展。

3.9 神经网络化的知识图谱与基于经验的公理可塑性建模

传统知识图谱通常以静态的图结构表达固定事实与规则,缺乏基于主观感受、经验积累或情境变化的动态自我重构能力。而在面向通用人工智能的系统中,知识不应被视为恒定不变的,而是应能随着感受、反馈与环境交互经验而持续调整,包括对原有事实关系乃至"公理性"知识的权重、适用性与结构的重新评估。这一理念促使知识图谱向神经网络化结构演化,即通过引入端到端可训练的神经机制,在节点与边的表示中嵌入可微分的记忆强度、信任度与情感权重,使图谱具备对新输入和多模态刺激的自适应重构能力。与此同时,这种神经网络支撑下的图谱结构,也为表达潜意识提供了更拟人化且灵活的通道。具体而言,系统可将潜意识内容以低显性度的向量权重持续编码于图谱中,借助梯度驱动的方式不断影响显性认知路径的生成与偏好调整。这种机制不仅增强了知识图谱的"认知弹性"与表达精度,也更接近人类以模糊情绪、模态记忆和非逻辑性联想方式处理信息的心理现实,为构建具备自我成长、自我修正与思维多样性的 AGI 认知结构提供了坚实基础。

3.10 构建以语言为载体的类人思维流动机制

尽管当前架构已实现基于滑动函数的注意力调控与情绪驱动的内源思维生成,但系统的认知流尚未完全实现以自然语言为主要载体的动态演化过程。人类的思维并非仅由抽象逻辑控制驱动,更深层地体现为以语言形式组织的思维流,即"思维即语言"的运行范式。语言不仅承担表达输出功能,更在内部认知中充当逻辑推理、情绪感知、记忆联结和目标设定的多功能中介,是构建类人化认知连续性和可解释性的关键。

未来研究可进一步将自然语言生成机制深度整合至滑动注意力控制流程中,使系统在进行注意力调度、认知跃迁和探索性联想时,能够以内在语言链的形式展开。例如,滑动函数在激活知识图谱特定节点与路径时,可同步生成对应的自然语言片段,从而形成基于语义驱动的思维链条。情绪调节系统亦可通过影响语言生成的语义色彩、语调强度与信息密度来调节认知风格,使语言成为认知风格与内在状态的镜像表达。

最终目标是使 AGI 系统内部的认知活动,从底层逻辑操作逐步上升为以自然语言为主要载体的类人认知流结构,实现"语言生成即认知生成",为构建具有人格特质、情绪风格与高度抽象能力的类人智能体奠定认知基础。

4 结语 14

3.11 生成模型在内源思维中的深度融合

当前系统中的内源思维机制虽已具备基于高感受熵记忆的随机组合与路径探索能力,能够在一定程度上实现认知发散与创造性生成,但其生成质量与结构合理性仍受限于启发式策略与图结构引导。未来研究可引入更具生成表达力的深度生成模型,如变分自编码器(VAE)、生成对抗网络(GAN)以及扩散模型等,进一步增强系统在潜在认知路径构建、假设生成与高模糊度知识组合方面的表现。

通过将 VAE 用于压缩记忆表征空间,可实现对内源思维初始激活状态的连续潜变量建模;利用 GAN 提升生成结果的结构合理性与语义连贯性,从而增强系统对新颖概念与场景的构建能力;扩散模型则能在多轮迭代生成中引导认知轨迹逐步逼近高语义密度区,辅助形成更稳定、具启发性的创新性认知图谱。此外,如何将上述生成机制与滑动函数注意力机制协同设计,以实现更具目标导向性和情绪一致性的内源推理路径,也是未来值得深入探索的关键方向。

3.12 内源思维的向量空间生成机制探索

本系统提出的内源思维机制,以知识图谱结构与控制函数为核心,结合滑动注意力机制与情绪驱动过程,实现了任务生成、推理链条重组等复杂认知行为。尽管该结构具备高度灵活性与可解释性,其对显式图谱构建及多重控制参数的依赖,在大规模复杂任务场景中可能导致计算效率下降、结构冗余增加及迁移泛化能力受限。近年来,基于大规模语义向量空间(如词嵌入、多模态上下文编码及语言模型内部状态)的认知建模方法,在生成联想、模糊推理与任务迁移方面表现出优异性能。这启发我们思考:是否可以在无需显式图谱结构的前提下,仅通过向量空间中的动态操作实现内源思维?例如,可探索在语义嵌入空间中构建滑动轨迹、非线性路径扰动及语义共振激活机制,以模拟认知焦点漂移、潜意识联想迸发与任务生成驱动。未来工作可尝试构建一种"向量化内源思维模型",其潜力包括:(1)简化结构设计,提升计算效率;(2)增强开放领域中的语义迁移与泛化能力;(3)建立向量空间与知识图谱的双向映射通道,实现符号—子符号的协同推理;(4)为神经—符号混合系统提供新的融合接口,从而进一步提升 AGI系统的认知连续性、生成灵活性及理解深度。

4 结语

本文围绕通用人工智能的发展需求,提出了一种以人类思维本质为启发的新型认知架构,融合滑动函数注意力机制、多维知识图谱嵌入、感知驱动控制系统与内源思维模块,构建具备类人认知流动性、自主性与稳定性的推理体系。该架构不仅从机制层面重构了联想性思维、非线性跳跃、情绪调节与自我监控的动态过程,更在结构设计上强调模块化实现路径与落地可行性,为构建具备持续学习、情境适应与创造性生成能力的 AGI 系统提供了基础支撑。

未来研究将进一步拓展该架构在多模态对齐、长程记忆调控、结构性元反思、以及人格演化机制等方向的表达能力,并探索其在自主任务建构、人机协同交互与真实世界复杂推理场景中的应用潜力。面向类人智能系统的演进目标,本文所提出的认知结构为具备可解释性、可拓展性与可迁移性的通用智能系统探索提供了新的理论支点与工程方向。