Training: Computer Vision

Hackathon CentraleSupélec-ESSEC

14/02/2022

- 1. Computer vision approaches
- 2. An overview of the main Deep Learning algorithms
- 3. The "open" dataset : our gold mine
- 4. Measure the performance to improve your algorithm

The amount of data available is a critical element to consider in an image-based application

- 1. More hard engineering ("hacks")
- 2. More ad-hoc algorithm
- 3. Transfer learning

Image recognition

Object detection

Object

- 1. More standard algorithms
- 2.Less hand engineering

Sources of knowledge

- 1.Labeled data (e.g. image \rightarrow dog & cat)
- 2. Hand engineered features, network architecture, etc.

Image Pre-processing

Image scaling
Contrast
enhancement
Cropping and
padding
Noise reduction

Image Pre-processing

Image scaling
Contrast
enhancement
Cropping and
padding
Noise reduction

Feature extraction

Lines/Edge detection
Corners/Blobs/Points
(SIFT/SURF, PCA,
Watershed)

Image Pre-processing

Image scaling
Contrast
enhancement
Cropping and
padding
Noise reduction

Feature extraction

Lines/Edge detection
Corners/Blobs/Points
(SIFT/SURF, PCA,
Watershed)

Classification algorithm

CNN

Image Pre-processing

Image scaling
Contrast
enhancement
Cropping and
padding
Noise reduction

Object
detection
and/or
Identification

YOLO

Image Pre-processing

Image scaling
Contrast
enhancement
Cropping and
padding
Noise reduction

Feature extraction

Lines/Edge detection
Corners/Blobs/Points
(SIFT/SURF, PCA,
Watershed)

Segmentation

Faster R-CNN

Image Pre-processing

Image scaling
Contrast
enhancement
Cropping and
padding
Noise reduction

Feature extraction

Lines/Edge detection
Corners/Blobs/Points
(SIFT/SURF, PCA,
Watershed)

Classification algorithm

CNN

- We can start our process by applying image pre-processing (for instance if we have few data)
- Later we can use detection algorithm in order to find the object of interest
- Finally we can leverage feature extraction to post process the results to make them more precise of follow some field rules

Object
detection
and/or
Identification

YOLO

- 1. Computer vision approaches
- 2. An overview of the main Deep Learning algorithms
 - 3. The "open" dataset : our gold mine
- 4. Measure the performance to improve your algorithm

The 3 main approaches to machine learning vision are Classification, Detection and Segmentation

These different approaches are based on two different types of annotation

Polygon

 Polygon annotations select all pixels belonging to an instance. It is used in segmentation

 Bounding box annotations give position, size and type of object contained in a rectangle parallel to the axes: used in detection

- 1. Computer vision approaches
- 2. An overview of the main Deep Learning algorithms
- 3. The "open" dataset : our gold mine
- 4. Measure the performance to improve your algorithm

To train these models several datasets are available online

Name	Type	** Annotation
СОСО	Natural landscapes	Instance segmentation
ADE20K		
SUN		
IMAGE NET		Bounding boxes detection
PASCAL VOC2012		
CITYSCAPES	City landscapes	Instance segmentation

- Is the context of the dataset close to context of my images?
- Does the format of the dataset compatible with my algorithm?
- What classes are labeled in the dataset?
- Is the dataset balanced between classes?

Transfer learning uses knowledge acquired for one task to solve related ones

†[™] General overview

- Isolated, single task learning:
 - Knowledge is not retained or accumulated
 - Learning is performed without considering past learned knowledge in other tasks
- Dataset

 1

 Learning system Task 1

 Dataset 2

 Learning system system Task 2

- Learning of a new task relies on the previous learned tasks:
 - Learning process can be faster, more accurate and/or need less training data

- There are two variations of transfer learning:
 - > Same domain but different tasks
 - > Same task, but different domains

Transfer learning in deep learning

- Use pre-trained model and freeze most layers of the neural network
 - Freeze layer imply that weights are not updated during the backpropagation, the learning rate (LR) is equal to
- Apply fine tuning to lasts layers in order to adapt the model to the specific task
 - The weights of fine-tuned layers are updated during the backpropagation

- Keep simple and general features from shallow layers
- Retrain complex features from deep layers

- 1. Computer vision approaches
- 2. An overview of the main Deep Learning algorithms
- 3. The "open" dataset : our gold mine
- 4. Measure the performance to improve your algorithm

☆ Local Metrics

Intersect over Union (IoU)

Measuring the common cover on an object can be formalized as:

$$IoU = \frac{aire(Box_{True} \cap Box_{Predicted})}{aire(Box_{True} \cup Box_{Predicted})}$$

We set a threshold $\varepsilon \in [0,1]$

Prediction are considered true if $IoU \ge \varepsilon$.

Model Metrics

Mean Intersect over Union (mIoU)

For a **fixed minimum confidence** level, the IoU is calculated for each annotation and then averaged over a class or globally.

- No indication of the type of error: on/underprediction?
- Depends on a confidence threshold set

 Very "visual" metric, easy to interpret

Intersect over Union (IoU)

Measuring the common cover on an object can be formalized as:

$$IoU = \frac{aire(Box_{True} \cap Box_{Predicted})}{aire(Box_{True} \cup Box_{Predicted})}$$

We set a threshold $\varepsilon \in [0,1]$

Prediction are considered true if $IoU \ge \varepsilon$.

Precision/Recall:

$$precision = \frac{TP}{TP + FP}$$

Precision answers the question: What share of the detected objects were the right ones?

$$recall = \frac{TP}{TP + FN}$$

Recall answers the question: What is the share of the objects that have been detected?

Model Metrics

Mean Intersect over Union (mIoU)

For a **fixed minimum confidence** level, the IoU is calculated for each annotation and then averaged over a class or globally.

- No indication of the type of error: on/underprediction?
- Depends on a confidence threshold set

 Very "visual" metric, easy to interpret

☆ Local Metrics

Intersect over Union (IoU)

Measuring the common cover on an object can be formalized as:

$$IoU = \frac{aire(Box_{True} \cap Box_{Predicted})}{aire(Box_{True} \cup Box_{Predicted})}$$

We set a threshold $\varepsilon \in [0,1]$

Prediction are considered true if $IoU \ge \varepsilon$.

Precision/Recall:

$$precision = \frac{TP}{TP + FP}$$

Precision answers the question: What share of the detected objects were the right ones?

$$recall = \frac{TP}{TP + FN}$$

Recall answers the question: What is the share of the objects that have been detected?

Precision-recall curve:

Precision and recall are calculated for different confidence levels (proba of the class model) in order to obtain the curve: precision = f(recall)

Model Metrics

Mean Intersect over Union (mIoU)

For a **fixed minimum confidence** level, the IoU is calculated for each annotation and then averaged over a class or globally.

- No indication of the type of error: over/underprediction?
- Depends on a confidence threshold set

 Very "visual" metric, easy to interpret

☆ Local Metrics

Intersect over Union (IoU)

Measuring the common cover on an object can be formalized as:

$$IoU = \frac{aire(Box_{True} \cap Box_{Predicted})}{aire(Box_{True} \cup Box_{Predicted})}$$

We set a threshold $\varepsilon \in [0,1]$

Prediction are considered true if $IoU \ge \varepsilon$.

Precision/Recall:

$$precision = \frac{TP}{TP + FP}$$

Precision answers the question: What share of the detected objects were the right ones?

$$recall = \frac{TP}{TP + FN}$$

Recall answers the question: What is the share of the objects that have been detected?

Precision-recall curve :

Precision and recall are calculated for different confidence levels (proba of the class model) in order to obtain the curve: precision = f(recall)

Model Metrics

Mean Intersect over Union (mIoU)

For a **fixed minimum confidence** level, the IoU is calculated for each annotation and then averaged over a class or globally.

- No indication of the type of error: on/underprediction?
- Depends on a confidence threshold set

- Very "visual" metric, easy to interpret

Average Precision (AP)

Once the IoU threshold is set, the AP of a class can be calculated as a measure of the area below the precision-recall curve.

- Difficult to interpret
- Depends on a fixed IoU threshold

- Independent of confidence level
- Gives an indication of the precision/recall trade-off

The mean Average Precision (mAP) is the AP averaged over all classes

The AP reflects the ability to combine precision and recall for a model

Resources: all classical Machine Learning might come handy and a good understanding of Computer Vision libraries will be helpful

----- Computer Vision libraries

Standard library for deep learning

Standard library classical computer vision

An alternative to Pytorch

----- ML + Viz libraries

To develop a wide range of ML models

To exploite model's output and aggregate them

To efficiently develop a dashboard / front-end