PAGEOSO Stude Philosophical Cogic Exercises.

3 A a e by induction that for all PC-Lifts to containing at most one occurrence of each seltence (etter, there exists some PC-interpretation Is and some PC-interpretation I, such that UIO(0)=0, VI, (0)=1.

Base Case

consider arbitrary PC-USP & SULVI FINCT COMPT complexity $C(\Phi) = 0$, then Φ is some sentence letter J. $VI_0(\Phi) = I_0(J) = 0$, by construction of I_0 . $VI_1(\Phi) = I_1(J) = 1$, by construction of I_1 . So there exists some such PC-interpretations. By generalisation, there exist such PC-int interpretations for all such Φ .

Induction Hypothesis.

Given n, for cut m < n for all PC-lift a such that $C(\phi) = m$, there exists to and I, such that $V_{I}(\phi) = 0$ and $V_{I}(\phi) = 1$.

Suppose $\phi = \psi \rightarrow k$. Then Then C(4) + C(k) = n - 1, C(4), C(k) < n, and each of ψ and ψ contains at most one occurrence of each sentence letter and the sentence retters the occurrity in ψ do not occur in ψ or vice versa. By IH, there exists I ψ o, I ψ , I ψ that satisfy the obvious. Cet I ψ is be the interpretation that apreces with I ψ on sentence verters in ψ and with ψ I ψ on those in ψ . Given that ψ and ψ contain distinct sentence verters, such I exists. Then ψ I ψ is ψ of ψ = 1, ψ I ψ is ψ to ψ = 0. Similarly, there exists I ψ on such that ψ I ψ is ψ in ψ in ψ in ψ in ψ .

By cases, conditional proof, generalisation, for all ϕ s.t. $C(\phi) = n$, if ϕ contains at most ..., then there exists $\pm \phi_0$, $\pm \phi_1$, $\pm \phi_2$...

By induction, such is true for all & then for all

then for all & containing at most one ..., = I to : VI to (0) > 0, so by definition, FR.A.

Ea By definition of $\pm V$, \rightarrow curve, $\pm V_{2}(\phi \rightarrow \psi) = \int I \int_{\mathbb{R}} \frac{1}{1} \left(\frac{1}{2} \left(\frac{1}{2} \right) = 0 \right) dt + \frac{1}{2} \left(\frac{1}{2} \right) dt + \frac{1}{2} \left(\frac{$

1 if the (\$) = the (\$) = # 1 of the (\$) = 1 and the (\$) = 0 # other ise

If $tU_{1}(\phi)=0$ then $tV_{1}(\phi) \leq tV_{1}(\psi)$.

If $tU_{1}(\psi)=1$ then $tV_{1}(\phi) \leq tV_{1}(\psi)$ If $tV_{1}(\psi)=tV_{1}(\psi)=tt$, then $tV_{1}(\phi) \leq tV_{1}(\psi)$ If $tV_{1}(\phi) \leq tV_{1}(\psi)$, then $(tV_{1}(\phi), tV_{1}(\psi))=tt$.

(0,0), (0,t), (0,1), 50 either $(1) tV_{1}(\phi)=0$ or

(2) $tV_{1}(\psi)=1$ or $(3) tV_{1}(\phi) \geq tV_{1}(\psi)=tt$. So the chose reduces to $tV_{1}(\phi)=\psi_{1}=\int 1 \int_{0}^{\infty} tV_{1}(\phi) \geq tV_{1}(\psi)$ $\int_{0}^{\infty} 0 \int_{0}^{\infty} tV_{1}(\phi) \geq tV_{1}(\psi)$

If £U_(\$)=1 curve £U_(\$)=0, then £U_(\$→\$)=
0 = 1- (£U_{+}(\$)-£U_{+}(\$+)).

For $\text{EV}_{\underline{I}}(\phi) < \text{EU}_{\underline{I}}(+)$ and $\text{EV}_{\underline{I}}(\phi) = 1$ and $\text{EV}_{\underline{I}}(\phi) < \text{EU}_{\underline{I}}(+)$ and $\text{EV}_{\underline{I}}(\phi) = 1$ and $\text{EV}_{\underline{I}}(\phi) < \text{EV}_{\underline{I}}(\phi) <$

 $2N^{2}(\phi \rightarrow A)=1$. 2(A)=1 then $2N^{2}(\phi)=0$ or $2N^{2}(A)=1$ then 2(A)=0 or $2N^{2}(A)=1$ then 2(A)=1 t

suppose KUI(A)=0 then I(A)=1 cange I(A)=0 then I(A)=0 then I(A)=0 then I(A)=0

Suppose $KVI(D \rightarrow Y) = H$, then either (1) KVI(Q) = I and KVI(Y) = H. Suppose KVI(Y) = W0, or (3) KVI(Q) = KVI(Y) = H. Suppose KVI(Y) = W0, or (3) KVI(Q) = KVI(Y) = H. Suppose KVI(Y) = W0, or (3) KVI(Q) = KVI(Y) = H. Suppose KVI(Y) = W0, or (3) KVI(Q) = KVI(Y) = H. Suppose VI(Y) = W0, VI(Y) = VI(Y) = I VI(Y) = VI(Y) = I VI(Y) = VI(Y) = I VI(Y

By cases, KUICO-++)= SVI (D-++) for distinct axiomictic of 4, assumed throughout.

Does not note then kni(b)=#; $\Delta N_{1}(b \rightarrow k)=1$.

Does not note then $kn_{1}(b)=\#$; $\Delta N_{1}(b \rightarrow k)=1$.

Consider $\phi=k=1$

Does not note when non-examic and distinct. Consider $\varphi = (P \land \neg P) , \forall = (Q \land \neg Q) , I(P) = I(Q) = H , \forall \forall (Q \rightarrow Y) = I$

Consider $\phi = (bv - b)$, A = (bv - b) I(b) = HFig. 100 Hold miles 1000-ctanic and 1001-cystinates E = (bv - b) + (bv - b) +

Couppose That The ϕ , then there exists bivarient interpretation I such that for all Y e T, VI(Y) = 1 and $VI(\phi) = 0$ then PI(Y) = 1 and PI(Y) = 1 and PI(Y) = 1 and PI(Y) = 1 and $PI(\phi) = 0$ of I, hamsely I itself, PI(Y) = 1 and $PI(\phi) = 0$ to $PI(\phi) = 0$ to $PI(\phi) = 0$

Suppose T How Φ , then there exists trivalent interpretation T^3 such that for all $Y \in T$, Φ substitution T^3 such that for all $Y \in T$, there exists precisification T^3 of T^3 such that $V_{T^2}(T)=1$ (for all $Y \in T$), and $V_{T^2}(\Phi)=0$, then T How Φ .

By biconditional proof, THOUD OF THERED, SO