Force de lorentz

Force de Lorentz

Champ électrique

Modifie l'énergie cinétique de la particule Énergie potentielle associée : $E_p = qV$

Potentiel électrique

Champ magnétique

Conserve l'énergie cinétique de la particule Modifie la direction de la vitesse

Champ électrostatique uniforme

Principe fondamental de la dynamique

$$m\vec{a} = q\vec{E} = qE\vec{e}_y$$

Mouvement uniformément accéléré

Trajectoire parabolique

Énergie potentielle du point M

$$E_p(x,y) = qEy + K$$

Théorème de l'énergie cinétique

$$v(x,y) = \sqrt{v_0^2 + \frac{2qE}{m}(y - y_0)}$$

Un brin de relativité restreinte

Pour des particules relativistes $v \approx c$

Énergie cinétique

Nest bas a contraint
$$E_c=(\gamma-1)mc^2$$
 avec $\gamma=rac{1}{\sqrt{1-rac{v^2}{c^2}}}$ Quantité de la blace et due les barticules sont très de la blace et due les barticules sont très de la blace et due les barticules $\gamma=\frac{1}{\sqrt{1-rac{v^2}{c^2}}}$ $p=\gamma m$ $p=1$

Quantité de mouvement

$$\vec{p} = \gamma m \vec{v}$$

Particules Mouvement de Chargées

Champ magnétostatique uniforme

Principe fondamental de la dynamique

$$m \, \overrightarrow{a} = q \, \overrightarrow{v} \wedge \overrightarrow{B}$$

Accélération perpendiculaire à \overrightarrow{v}

Trajectoire circulaire uniforme

Détermination du rayon