

BIL301 SAYISAL YÖNTEMLER 10. Hafta Sayısal Türev

Doç. Dr. Sercan YALÇIN

SAYISAL TÜREV

- □=Değişimin matematiği
- ☐ Mühendisler değişen sistemler ve süreçlerle sürekli olarak uğraşmak zorunda oldukları için türev ve integral kavramları mesleğimizin temel araçları arasındadır.
- □ Bağımlı değişkenin / bağımsız değişken

Türev Tanımı: (matematikte),

fark (difference) yaklaşımı idi

• Diferansiyel, farkları belirlemek, ayırmak anlamına gelir

$$\frac{\Delta f}{\Delta x} = \frac{f(x_i + \Delta x) - f(x_i)}{\Delta x}$$

$$f'(x) = \frac{\partial f(x)}{\partial x} = \lim_{\Delta x \to 0} \frac{f(x_i + \Delta x) - f(x_i)}{\Delta x}$$

Mühendislikte türev

 Newton'un ikinci yasası temel bir örnek olup, bir cismin konumuyla değil, konumunun zamana göre değişimiyle ilgilenmektedir

$$v = dX/dt$$

- Isı geçişleri, sıcaklık farkına bağlı olarak, akım yasası potansiyel farkına bağlı olarak ifade edilir.
- Benzer şekilde, L,C elemanlarının uç denklemleri;

$$V_L = L \frac{d i_L}{dt}, i_c = C \frac{d v_c}{dt}$$

Yüksek matematikte diferansivelin ters işlemi; integraldir

Birleştirme, biraraya getirme, toplama(sum)

Mühendislikte integral: (fonksiyonuneğrinin altında kalan alan)

Sayısal Türev

İki noktalı basit türev yaklaşımları

a) Geri Fark Yaklaşımı

Şekil.8.2. Geri Fark Yaklaşımı

$$f'(x_i) \cong \frac{\Delta f}{\Delta x} = \frac{f(x_i) - f(x_i - h)}{h}$$
 (8.4)

Geri Fark Formülü

İki noktalı basit türev yaklaşımları

a) İleri Fark Yaklaşımı

$$f'(x_i) \cong \frac{\Delta f}{\Delta x} = \frac{f(x_i + h) - f(x_i)}{h}$$
 (8.5)

İleri Fark Formülü

Şekil.8.3. İleri Fark Yaklaşımı

b) Merkez Fark Yaklaşımı

$$\Delta x = 2h$$

$$f'(x_i) \cong \frac{\Delta f}{\Delta x} = \frac{f(x_i + h) - f(x_i - h)}{2h}$$
(8.6)

Merkez Fark Formülü

Şekil.8.4. Merkez Fark Yaklaşımı

Örnek: $y=x^2$ işlevinin x=2'deki türevini h=0.1 kullanarak her üç yöntemle yaklaşık olarak bulunuz.

a) İleri fark yöntemiyle

$$f'(2) = \frac{f(2+0.1) - f(2)}{0.1} = \frac{(2.1)^2 - 2^2}{0.1} = 4.1$$

b) Geri fark yöntemiyle

$$f'(2) = \frac{f(2) - f(2 - 0.1)}{0.1} = \frac{(2)^2 - (1.9)^2}{0.1} = 3.9$$

c) Merkez fark yöntemiyle

$$f'(2) = \frac{f(2+0.1) - f(2-0.1)}{0.2} = \frac{(2.1)^2 - 1.9^2}{0.2} = 4$$

Taylor Serisi yardımıyla çok noktalı türev yaklaşımları

□ İki noktalı türev yaklaşımları

$$f(x_i + h) = f(x_i) + \frac{h^1 f'(x_i)}{1!} + \frac{h^2 f''(x_i)}{2!} + \dots + \frac{h^n f''(x_i)}{n!}$$

$$-4 / f(x_i + h) = f(x_i) + \frac{h^1 f'(x_i)}{1!} + \frac{h^2 f''(x_i)}{2!}$$

$$f(x_i + 2h) = f(x_i) + \frac{(2h)^1 f'(x)}{1!} + \frac{(2h)^2 f''(x)}{2!}$$

İki noktalı türev yaklaşımları : Taylor serisi için ileri fark yöntemi

$$-4f(x_i + h) = -4f(x_i) - 4hf'(x_i) - 4\frac{h^2 f''(x_i)}{2}$$
$$f(x_i + 2h) = f(x_i) + 2hf'(x_i) + \frac{4h^2 f''(x)}{2}$$

$$f'(x_i) = \frac{1}{2h} \left[-3f(x_i) + 4f(x_i + h) - f(x_i + 2h) \right]$$

$$\int_{a}^{b} f_{i} = \frac{1}{2h} \left[-3f_{i} + 4f_{i+1} - f_{i+2} \right]$$

Taylor serisi için ileri fark formülü

b) Aynı işlemler, geriye (x_{i-1} noktasına) doğru yapılırsa

Şekil.8.5. Taylor Serisi yardımıyla iki noktalı türev yaklaşımları

İki noktalı türev yaklaşımları : Taylor serisi için geri fark yöntemi

$$f(x_i - h) = f(x_i) + \frac{(-h)^1 f'(x_i)}{1!} + \frac{(-h)^2 f''(x_i)}{2!}$$

$$f(x_i - 2h) = f(x_i) + \frac{(-2h)^1 f'(x)}{1!} + \frac{(-2h)^2 f''(x)}{2!}$$

$$f_{i} = \frac{1}{2h} \left[+3f_{i} - 4f_{i-1} + f_{i-2} \right]$$

Taylor serisi için geri fark formülü

Üç noktalı türev yaklaşımları

Taylor serileri 3. dereceden kuvvetlerine kadar açılarak ve yine taraf tarafa yok etme işlemleri kullanılarak 1. 2. ve 3. dereceden türevleri yaklaşık olarak bulunabilir. Buradan

$$f_{i} = \frac{1}{6h} \left[-11f_{i} + 18f_{i+1} - 9f_{i+2} + 2f_{i+3} \right]$$
(8.15)

$$f_{i}'' = \frac{1}{h^{2}} \left[2f_{i} - 5f_{i+1} + 4f_{i+2} - f_{i+3} \right]$$
(8.16)

$$f_{i}^{"} = \frac{1}{h^{3}} \left[-f_{i} + 3f_{i+1} - 3f_{i+2} + f_{i+3} \right]$$
(8.17)

Ödev: Taylor serisine açarak bu denklemleri ispatlayın

Örnek: $f(x)=e^{x-2}$ işlevinin x=2 noktasındaki yaklaşık türevini gördüğümüz yöntemlerle bulunuz. (h=0,1 Analitik çözüm: $f'(2)=e^{2-2}=1$)

Çözüm:

• İki noktalı ileri farkla çözüm

$$f_{i} = f(2) = e^{2-2} = 1$$

$$f_{i+1} = f(2+0,1) = e^{2.1-2} = e^{0.1} = 1.105179, \quad f_{i+2} = f(2+0,2) = e^{2.2-2} = e^{0.2} = 1.22140$$

$$f_{i} = \frac{1}{2h} \left[-3f_{i} + 4f_{i+1} - f_{i+2} \right] \text{ olduğundan, } \quad f_{i} = \frac{1}{2*0.1} \left[-3*1 + 4*1,105179 - 1.22140 \right] = 0.9964$$

• Basit ileri farkla çözüm;

$$f'(2) = \frac{f(2,1) - f(2)}{h} = \frac{e^{0.1} - e^0}{0.1}$$

Örnek (devam)

• İki noktalı geri farkla çözüm

$$f_i = f(2) = e^{2-2} = 1$$

$$f_{i-1} = f(2-0,1) = e^{1.9-2} = e^{-0.1} = 0.90483, \quad f_{i-2} = f(2-0,2) = e^{1.8-2} = e^{-0.2} = 0.81873$$

$$f_i = \frac{1}{2h} \left[+3f_i - 4f_{i-1} + f_{i-2} \right]$$
 olduğundan, $f_i = \frac{1}{2*0.1} \left[3*1 + 4*0,90483 + 0.81873 \right] = 0.99705$

• Basit geri farkla çözüm;

$$f_i'(2) = \frac{f(2) - f(1,9)}{h} = \frac{e^0 - e^{-0.1}}{0.1} = \frac{1 - 0,90483}{0.1}$$

Merkez farkla çözüm;

$$f_{i}'(2) = \frac{f(2,1) - f(1,9)}{2h} = \frac{e^{0,1} - e^{-0.1}}{0.2} = \frac{1,10517 - 0,90483}{0.2} = \frac{1,001}{0.2}$$