ES 155: Systems and Control

Lecturer: Na Li (nali@seas.harvard.edu)

Homework 5, Due on October 31th 2018, In class.

Note: In the upper left hand corner of the first page of your homework set, please put the number of hours that you spent on this homework set (including reading).

- 1. (Observer for nutrient model) Continue with Exercise 1 in Homework 4. We will study the observability of the problem and build an observer.
 - (a) Compute the observability matrix for the system and determine whether the system is observable.
 - (b) Consider an observer for the system in the form $\frac{d\hat{x}}{dt} = A\hat{x} + Bu + L(y C\hat{x})$. Here $L = [\ell_1 \quad \ell_2]^T$ is called as an estimator gain matrix. Define $e(t) := x(t) \hat{x}(t)$. Please write down the dynamics of e(t) in the form of $\frac{de}{dt} = A_e e$. In other words, you need to write down A_e using A, B, C, L (Note: you might not need all of them.) Then compute L such that the eigenvalues of A_e are the two roots of equation $\lambda^2 + 2\zeta_e\omega_e\lambda + \omega_e^2 = 0$, where ζ_e, ω_e are considered given.
 - (c) Now we combine the controller you obtained in Homework 4 and the estimator in part (b). Let $u = -K\hat{x} + k_r r$, where \hat{x} is the estimated states in part (e), K and k_r are what you obtained in part (c), and r is a reference signal. Note here \hat{x} follows the dynamics given in part (e), with L being whatever you calculated in part (e). Let $e = x \hat{x}$ be the estimation error. Stack x and e into one 4-dimensional vector $\tilde{x} = [x_1, x_2, e_1, e_2]^T$. Let the state be \tilde{x} , the input be $\tilde{u} = r$, and the output be $\tilde{y} = x_1$, derive a state space model for the closed loop system that takes into account the controller and the estimator. That is to say, find matrices \tilde{A} , \tilde{B} and \tilde{C} in the following state space model

$$\dot{\tilde{x}} = \tilde{A}\tilde{x} + \tilde{B}\tilde{u}$$

$$\tilde{y} = \tilde{C}\tilde{x}$$

(Note: you can represent \tilde{A} , \tilde{B} and \tilde{C} just using k_1, k_2, k_r, l_1, l_2)

Find the eigenvalues of \tilde{A} . Assume $\tilde{u} = 0$ and $\omega_0 > 0, \omega_e > 0, 0 < \zeta_0, 0 < \zeta_e$, determine the stability of the above system.

- 2. (Observer for Whipple bicycle model) Consider the Whipple bicycle model given in Exercise 2 of Homework 4.
 - (a) Let $y = \phi$. Is the system observable from this measurement output? Why?
 - (b) If the system is observable, design an observer for the system with eigenvalues at -4, -20, and at $-2\pm 2i$.
 - (c) Design an output feedback for the system using your observer from part (b) above and the first set of state feedback gains designed in Exercise 2 of Homework 4 (case (i) in Exercise 2 of Homework 4), but with $u = -K\hat{x} + k_r r$ rather than $u = -Kx + K_r r$. Again simulate the response to a step change in the reference value r for the steering angle of 0.002 rad and plot both the steering angle δ and the torque input T(assuming x(0) = 0). Compare with the results obtained with full state feedback in Exercise 2 of Pset 4. For the initial estimate value, plot the results with a perfect initial estimate $\hat{x}(0) = x(0)$, and also with a non-zero error in the estimated value of δ at time zero, e.g., $\tilde{\delta}_0 = \hat{\delta}_0 \delta(0) = 0.0002$.