Билеты по математическому анализу для коллоквиума 14 ноября

Шишминцев Дмитрий Владимирович

8 ноября 2022 г.

Содержание

1	Множества и операции над ними	2
2	Отображения и функции	2
3	Эквивалентность, счетность, мощность континума	2
4	Теорема Кантора-Бернштейна и сравнение мощности множеств	2
5	Множество вещественных чисел и его аксиоматика	3
6	Ограниченность множества и его точные грани	3
7	Метод математической индукции	3
8	Бином Ньютона	3
9	Числовая последовательность и ее ограниченность	3
10	Бесконечно большие и бесконечно малые последовательности и их связь	4
11	Сходимость и расходимость последовательностей	4

1 Множества и операции над ними

(Условно) Множество - совокупность некоторых объектов определенных по одному признаку.

 $a \in A$ - элемент а принадлежит множеству A

 $a \notin A$ - элемент а не принадлежит множеству A

 $A \subset B$ - множество A является подмножеством B

Равенство множества Множества равны если каждый элемент множества A является элементом множества B и наоборот

$$A = B \Leftrightarrow \begin{cases} x \in A \Rightarrow x \in B \\ x \in B \Rightarrow x \in A \end{cases}$$

Операции над множествами:

- Пересечение множеств: $A \cup B = \{x | x \in A \text{ и } x \in B\}$ коммутативно и ассоциативно
- Объединение множеств: $A \cap B = \{x | x \in A \text{ или } x \in B\}$ коммутативно и ассоциативно
- Разность множеств: $A \setminus B = \{x | x \in A \bowtie x \notin B\}$
- Симметричная разность: $A \triangle B = (A \backslash B) \cap (B \backslash A)$
- Декартово произведение множеств: $A \times B = \{(a;b) | a \in A, b \in B\}$

2 Отображения и функции

Отображение (функция) - правило по которому $\forall x \in A \exists ! y \in B$

Варианты функциональных отображений $F: X \to Y$

- Функция F сюръективна, если $\forall y \in Y \exists x \in X : y = F(x)$ каждый элемент множества Y является прообразом хотя бы одного элемента множества X
- Функция F инъективна, если $\forall x \in X \exists y \in Y : y = F(x)$ разные элементы множества X переводятся в разные элементы множества Y
- Функция F биективна, если она сюръективна и инъективна одновременна

3 Эквивалентность, счетность, мощность континума

Мощность множества: |A| - число элементов входящих в множество A

Эквивалентность множеств: множества эквивалентны $(A \sim B)$ если |A| = |B|

Счетность множество: бесконечное множество, элементы которого можно пронумеровать натуральными числами

Мощность континуума: мощность множества всех вещественных чисел

4 Теорема Кантора-Бернштейна и сравнение мощности множеств

Теорема Кантора-Бернштейна

- 1. Если $A \sim B'$ (где $B' \subset B$) и $B \sim A'$ (где $A' \subset A$) $\to A \sim B$
- 2. Если $A \subset B \subset C$, причем $A \sim C$, то $A \sim B$

СРАВНЕНИЕ МОЩНОСТЕЙ МНОЖЕСТВ: Если множества A и B неэквивалентны, но $\exists B' \subset B: B' \sim A$ и $\nexists A' \subset A: A' \sim B$, то будем считать, что |A| < |B|

5 Множество вещественных чисел и его аксиоматика

ВЕЩЕСТВЕННЫЕ ЧИСЛА \mathbb{R} : бесконечные десятичные дроби вида $\pm a_0, a_1a_2a_3....$, где выбран определенный знак: + или -, $a_0 \in \mathbb{N} \cup \{0\}$, а все десятичные символы $a_1, a_2...$ - цифры от 0 до 9, т.е. $\forall n \in \mathbb{N} \to a_n \in \{0, 1, 2, ..., 9\}$ АКСИОМАТИКА:

- 1. Линейность: если $x \neq y$, то x > y или x < y
- 2. Транзитивность: $\exists \{>, =\} b, b \{>, =\} c \rightarrow a \{>, =\} c$
- 3. Ассоциативность: $\forall a, b, c \in \mathbb{R} \to (a+b) + c = a + (b+c), a(bc) = (ab)c$
- 4. Коммутативность: $\forall a, b \in \mathbb{R} \rightarrow a + b = b + a, a \cdot b = b \cdot a$
- 5. Дистрибутивность: $\forall a, b, c \in \mathbb{R} \to (a+b) \cdot c = a \cdot c + b \cdot c$

6 Ограниченность множества и его точные грани

Непустое множество $A \subset \mathbb{R}$ называется:

- 1. Ограниченным сверху, если $\exists b \in \mathbb{R} : \forall a \in A \rightarrow a \leqslant b$
- 2. Ограниченным снизу, если $\exists d \in \mathbb{R} : \forall a \in A \to d \leqslant a$
- 3. Ограниченным, если $\exists c \in \mathbb{R} : c > 0$ и $\forall a \in A \rightarrow |a| \leqslant c$

Верхняя и нижняя грань не единственны.

Свойство точной верхней грани: Если $b = \sup A$, то $\forall \epsilon > 0 \exists a \in A : a > b - \epsilon$ Свойство точной нижней грани: Если $d = \inf A$, то $\forall \epsilon > 0 \exists a \in A : a < d + \epsilon$

7 Метод математической индукции

Математическая индукция - метод математического доказательства, который используется, чтобы доказать истинность некоторого утверждения для всех натуральных чисел. Для обоснования метода математической индукции используется свойство натуральных чисел: $\forall A \subset \mathbb{N} : A \neq \emptyset \exists a' \in A : \forall a \in A \rightarrow a' \leqslant a$

Метод математической индукции состоит из следующих шагов:

- 1. База индукции: проверяем справедливость утверждения для а
- 2. Индукционное предположение: предполагаем справедливость для произвольного элемента $a_k \in A$
- 3. Индукционный шаг: доказываем справедливость утверждения для $a_{k+1} \in A$

8 Бином Ньютона

$$(1+x)^n=\sum_{k=0}^n C_n^k x^k$$
, где $C_n^k=\binom{n}{k}=\frac{n!}{k!(n-k)!}$ - биноминальный коэффициент, $n,k\in\mathbb{N},x\in\mathbb{R}$

9 Числовая последовательность и ее ограниченность

Числовая последовательность: функция определенная на множестве $\mathbb N$ и принимающая числовые значения. $\exists x_n = f(n),$ где $f: \mathbb N \to \mathbb R$, тогда $\{x_n\}$ - последовательность

Ограниченность последовательности: последовательность называется ограниченной с обеих сторон, если $\exists A \in \mathbb{R} : \forall n \in \mathbb{N} \to |x_n| \leqslant A$

10 Бесконечно большие и бесконечно малые последовательности и их связь

Бесконечно вольшая последовательность: $\forall c>0 \exists n(c) \in \mathbb{N}: \forall n>n(c) \to |x_n|>c$ Бесконечно малая последовательность: $\forall \epsilon>0 \exists n(\epsilon) \in \mathbb{N}: \forall n>n(\epsilon) \to |x_n|<\epsilon$ Связь: если $\{x_n\}$ - б.м.п. и $\forall n\in \mathbb{N}\to x_n\neq 0$, то $\{\frac{1}{x_n}\}$ - б.б.п и наоборот, если $\{x_n\}$ - б.б.п. и $\forall n\in \mathbb{N}\to x_n\neq 0$, то $\{\frac{1}{x_n}\}$ - б.м.п и наоборот,

11 Сходимость и расходимость последовательностей

```
Определение - Последовательность \{x_n\} называется сходящейся (имеющей предел), если: \forall \epsilon > 0 \exists n(\epsilon) \in \mathbb{N} : \forall n > n(\epsilon) \to |x_n - a| < \epsilon Определение - Последовательность \{x_n\} называется сходящейся (имеющей предел), если: \forall \epsilon > 0 \exists n(\epsilon) \in \mathbb{N} : \forall n > n(\epsilon) \to x_n \in \mathbb{U}_{\epsilon}(a) Последовательности не являющиеся сходящими, принято называть расходящимися. Определение - Последовательность \{x_n\} называется сходящейся (имеющей предел), если: \exists a \in \mathbb{R} \setminus \{\pm \infty\} : a_n является б.м.п, где a_n := x_n - a Если \{x_n\} сходиться, то она имеет единственный предел.
```