CSC 226 fall 2015

Homework 2 – Theory Part

Instructions: Upload a single pdf file to conneX. Problems 3 and 4 contain tables for you to complete. Print out these tables, complete them, and scan them together with your answers to the other parts to create a single pdf file.

Do not copy answers from other sources. Your write-up must be in your own words. If you consult with others, you must provide their names.

Study the posted slides for lectures 4-6.

1 Single Source Shortest Paths.

Consider an undirected graph G = (V,E), with vertex set $V = \{S, A, B, C\}$ and edge set $E = \{(S,A), (S,B), (A,C), (B,C)\}$. The weights on the edges are as follows:

wt(S,A) = 4

wt(S,B) = 2

wt(A,C) = 1

wt(B,C) = 3

- a) The weights are all distinct, so we know the minimum spanning tree MST is unique. What is the (unique) MST for G, and what is its weight?
- b) List all the Single Source Shortest Path Trees for G that have S as the source (start) vertex. We haven't proved such trees must be unique, so there may be more than one.
- c) Give the weight of each Single Source Shortest Path Tree that you found in b).
- d) Compare your answer to c) with your answer to b). Are the weights of the MST and the Single Source Shortest Path Tree(s) with source (start) vertex S equal? Must all Single Source Shortest Path Trees with start vertex S have the same weight? Explain.
- e) Let's record the lowest cost D[V] for travelling from S to each vertex V in G. Then let's define the *total cost* of a Single Source Shortest Path Tree SPT with source S to be the sum of all these D[V]s. Is the total cost of an SPT the same for all such trees with source S? Explain.

2. Dijkstra's algorithm example.

Graph for Dijkstra's Algorithm

S is the start vertex. The edges have costs (weights).

There are tables numbered 0 to 7 on the next page. In each table, the first column lists the vertices in the graph. The 2^{nd} column shows whether the vertex has been added to the Shortest Path Tree (SPT) T yet. The 3^{rd} column gives the current estimated cost D[] from the start vertex S to the vertex. The 4^{th} column gives the parent vertex P[] on the current best known path from S to the vertex; if no path from S to the vertex is known yet, then the entry for the vertex in the 4^{th} column shows a "-".

For the start vertex S, the cost D[S] from S to itself is always 0, so the entry in the 3rd column for vertex S is 0 for all the tables. Also, vertex S doesn't have a parent vertex in going from S to itself, so the entry in the 4th column for vertex S is N/A (meaning "non-applicable") for all the tables.

Table 0 indicates that no vertices have been added to the tree so far (shown by X's in 2^{nd} column). Initially, all vertices other than S have an infinity symbol in the 3rd column. The "infinity" for D[] is updated to a numerical value when some vertex W that has just been added to the T is being "relaxed", and that vertex W has an edge (W,V) that improves (decreases) D[V] to D[W] + wt(W,V).

Which vertex is added to T next? That vertex V not in T for which the current estimated cost D[V] from S is smallest. Ties can be broken arbitrarily, but as a convention, when ties occur, choose the vertex that is lexicographically first. Note that V = S is the first vertex added to T, as initially, S is the only vertex with a non-infinity value for D[V].

When you add a vertex V to T, how do you "relax" V? Consider each of its neighbors W not in T, and update D[W] to D[V] + wt (V,W) if this lowers the cost to reach W from S.

Table 1 shows the results of relaxing S. Tables 2-7 are only partly complete. Your job is to complete them. Table 7 should give the lowest cost from S to each other vertex, and its 4th column should show how to backtrack from any vertex back to S along some lowest cost path. Note that the last vertex added to T has no edges to relax.

	(Table 0 Initial table)	
V	V in T?	est. cost D[V]	parent
S	Χ	0	N/A
Α	Χ	00	-
В	Χ	00	-
С	Χ	∞	-
D	Χ	∞	-
Ε	Χ	∞	-
F	Χ	00	-

		Table 1	
	new ve	ertex to rela	x: _S_
٧	V in	est. cost	parent
	T?	D[V]	
S	√	0	N/A
Α	Χ	2	S
В	Χ	9	S
С	Χ	3	S
D	Х	00	-
E	Χ	00	-
F	Х	00	-

		Table 2	^
		ertex to rela	T
V	V in	est. cost	parent
	T?	D[V]	
S	1	0	N/A
Α	1	2	S
В	Χ		
С	Χ		
D	Χ		
Е	Χ		
F	X		

		Table 3	
	new v	ertex to rela	ix:
V	V in	est. cost	parent
	T?	D[V]	
S	✓	0	N/A
Α	1	2	S
В			
С			
D			
Е			
F			*

		Table 4	
	new v	ertex to rela	ax:
٧	V in T?	est. cost D[V]	parent
S	√	0	N/A
Α	1	2	S
В			
С			
D			
E			
F			

.,,		Table 5		
NAME OF THE PARTY	new vertex to relax:			
٧	V V in est. cost par		parent	
	T?	D[V]		
S	1	0	N/A	
Α	1	2	S	
В				
С				
D				
Ε				
F				

	Table 6			
	new v	ertex to rela	x:	
٧	V in	est. cost	parent	
	T?	D[V]		
S	1	0	N/A	
Α	1	2	S	
В				
С				
D				
Ε				
F				

	***************************************	Table 7	
1	ast ver	tex added t	o T:
V	V in	est. cost	parent
	T?	D[V]	
S	✓	0	N/A
Α	√	2	S
В	✓		
С	√		
D	√		
Ε	1		
F	1		

Draw the shortest path tree T:

4/5

3. Bellman-Ford algorithm example.

Graph for Bellman-Ford Algorithm (same as for Dijkstra's)

S is the start vertex. The edges have costs (weights) and are 2-way. There are 7 vertices and 10 edges.

The edge list **E** is as follows:

The Bellman-Ford algorithm makes |V| = 7-1 = 6 passes through the edge list **E**. Each pass relaxes the edges in the order they appear on the list. As with Dijkstra's algorithm, we record the current best known cost D[V] to reach each vertex V from the start vertex S, and we also record the parent P[V] of each vertex on the current lowest cost path from S. Initially, D[S] = 0 and P[S] = N/A; also, initially D[V] = "infinity" and P[V] = "-" for all the other vertices. There are 6 tables shown, one for each pass through **E**. The first table has been completed. Your first job to complete the tables for passes 2-6. As some table entries may change during a pass, start by copying each entry from the previous table, then show the changes within each table entry. Table 2 is partly done, to illustrate the sequence of changes.

E = (A,B) (A,D) (A,S) (B,E) (B,F) (B,S) (C,F) (C,S) (D,E) (E,F)

Pass 1		
V	est. cost D[V]	parent
S	0	N/A
Α	2	S
В	9	S
С	3	S
D	∞	-
Е	∞	-
F	∞	-

Pass 2		
٧	est. cost D[V]	parent
S	0	N/A
Α	2	S
В	9	S
С	3	S
D	∞, 6	-, A
Ε	∞, 11, 7	-, B, D
F	∞, ?	-, ?

	Pass 3		
V	est. cost D[V]	parent	
S	0	N/A	
Α			
В			
С			
D			
E			
F			

	Pass 4			
V	est. cost D[V]	parent		
S	0	N/A		
Α				
В				
С				
D				
Ε				
F				

Pass 5			
V	est. cost D[V]	parent	
S	0	N/A	
Α			
В			
С			
D			
Ε			
F			

Pass 6			
V	est. cost D[V]	parent	
S	0	N/A	
Α			
В			
С			
D			
Ε			
F			

- a) Complete the tables above.
- b) Compare the final values for D[V] with those from Dijkstra's algorithm. In general (not just for this example), must they be the same? Explain.
- c) In general (not just for this example), in the final tables for Dijkstra and Bellman-Ford, must the parent entries be the same? Explain.
- d) When executing the Bellman-Ford algorithm, suppose that some pass through the edge list E does not cause any changes to the estimated costs D[V]. Can the algorithm terminate without doing the remaining passes? Explain.