

Multi-model Intercomparison Project on the Saskatchewan-Nelson-Churchill River Basin (Nelson-MiP project)

First meeting 8 January 2020

Agenda

- 1. Project background, scope & objectives
- 2. Study domain of interest
- 3. Gauge locations
- 4. Project phases and expected model outputs
- 5. Data exchange/data dissemination
- 6. Tentative timeline & Meeting Schedule
- 7. Contributing modeling groups/models

Project Background

- GWF global vision is to position Canada as a global leader in water science and provide new capability for adapting to unprecedented climate, environmental, and societal change
- Under GWF umbrella, IMPC aims to develop pan-Canadian modelling capability for the prediction and management of change at the scale of the major basins in Canada on a 7-year time frame
- Nelson-MiP and GRIP fall under Theme A5 "Hydrologic model intercomparison and multi-model analysis for improved prediction" led by Tolson, co-lead: Stadnyk & Razavi
- Theme A5 is tasked to benchmark the GWF land surface hydrologic models (MESH, VIC, HYPE, etc.) against each other on multiple distinct modelling case studies (e.g. Nelson-Churchill and Great Lakes)

GRIP-E/GL objectives

- Develop strategies to handle cross-border issues of available data and develop unifying approaches
- Test relative performance of different models
- Identify respective strengths of models

GRIP-E/GL focuses on forecasting applications (operational i.e., shorter term)

GRIP-E/GL is led by Bryan Tolson (U. Waterloo) and Tricia Stadnyk (U. Calgary) and coordinated by Juliane Mai (U. Waterloo)

GRIP-E/GL achievements

- In years 1-3, 18 models from 14 institutions have participated to GRIP-E over Lake Erie watershed (incl. Lake St. Clair)
- All models in GRIP-E used different geophysical data but a standard meteorological forcing dataset (RDRS: 15km – hourly – 2010-2014)
- Models in GRIP-E were calibrated (global and/or on-site) for multiple sub-watersheds against measured streamflow only
- Going forward, GRIP-GL is also standardizing the geophysical data for model setup, and expanding both the spatial and temporal coverage of the modelling efforts

Nelson-MIP Objectives (Y4-7)

Main goal: Evaluate internal model processes and generate an ensemble of GWF land surface hydrological models for the Nelson River basin

- i. compare participating hydrologic and land surface models with respect to their performance in reproducing long-term runoff and various hydrologic signatures;
- ii. understand the drivers of the differences among models from an internal process perspective;
- iii. assess the realism of different algorithms in simulating the same processes;
- iv. assess the reliability of the models for the prediction of key hydrologic processes and streamflow under changing climate conditions;
- v. develop robust ensemble averaging methods to reduce the range of uncertainties in streamflow projection under changing climate conditions.

Study Domain (decision to be made on the research scales)

 Modelers are NOT required to simulate processes for all basins.

 BUT modelers should decide on the scale they are contributing to and inform participants (through project coordination) of chosen domain

Gauges Of Interest

 Modelers should suggest <u>per basin</u> the gauge locations they are interested in for model calibration and validation.

• UC-HAL will compile the suggestions and prepare a <u>standardized list</u> of calibration and validation gauge locations, and disseminate the related streamflow data per basin for our next meeting.

- Phase 0: Current model status/baseline (run with user-defined parameter sets)
- Phase 1: Recalibrated model run at unregulated (headwater) gauges
- **Phase 2**: Recalibrated model run at regulated gauges
- **Phase 3**: Ensemble modeling of climate change impacts using CMIP6 to drive the models developed in Phase 1 and/or Phase 2.

OUTPUT: All states and flux <u>at a daily time step</u> to gain a better understanding of the modelled processes. To conserve storage space, some output may be designated as spatial averages per drainage basins (to be determined later).

Modelers are **NOT** required to participate in all phases, but we need to know who is doing what and where!

Integrated Modelling Program for Canada

Data exchange/data dissemination

UC-HAL will provide a private GitHub for data exchange/data transfer for this project.

Other ideas for data exchange/data transfer? Do let us know.

- All modelers will have access to the GitHub repository and thus can access/download inputs and other modelers' outputs.
- If you are NOT willing to share your model outputs and model configuration open source with others? Please let us know before submitting any data. Accommodations can be made, but the preference is that all models and data are shared.
- Webpage for the project as results come out.
- Conferences and joint publications are encouraged and will be initiated by project coordination

You can publish your own model outputs anytime. When using data from other modelers, we require you to get their written consent and inform the project coordination prior to any form of publication.

Tentative timelines (open to discussion)

Total project duration: 2020 - 2023

Submission of model outputs and model configuration

- Phase 0: submission of model outputs by December 2020
- Phase 1: submission of model outputs by December 2020
- Phase 2: submission of model outputs by December 2021
- Phase 3: submission of model outputs by December 2022

Monthly online meeting schedule (1-hour long)

- Goal: Report on status, discuss challenges among group, and provide support as needed.
- Webex or zoom.us meeting every second Wednesday of the month starting at 10:00 am MST (suggestion). Connection link, meeting agenda and reminder will be sent via email a least a weak before the next meeting.

Participating modeling groups and models

MODELS	Watersheds/Scale	Institutions	Contact persons
НҮРЕ	Nelson Churchill	UC-HAL	Tricia Stadnyk tricia.stadnyk@ucalgary.ca Hervé Awoye oyemonbade.awoye@ucalgary.ca Ajay Bajracharya ajay.bajracharya@ucalgary.ca
SWAT-GIW	Upper Assiniboine	Water Security Agency	Ameer Muhammad Ameer.Muhammad@wsask.ca Curtis Hallborg curtis.hallborg@wsask.ca
SWAT-GWF	To be determined	University of Alberta	Monireh Faramarzi <u>faramarz@ualberta.ca</u> Pouya Khalili <u>khalili@ualberta.ca</u> Badrul Masud <u>masud@ualberta.ca</u>
VIC	Lower Nelson River	UNBC	Stephen Dery stephen.dery@unbc.ca Rajtantra Lilhare Rajtantra.lilhare@unbc.ca

Participating modeling groups and models

MODELS	Watersheds/Scale	Institutions	Contact persons
HEC-HMS	Lower Nelson & Red rivers	Strategic Consulting	Scott Pokorny <u>umpokors@myumanitoba.ca</u> Henry David (Hank) Venema <u>hank@strategiccc.ca</u>
SUMMA	Nelson Churchill	University of Saskatchewan	Martyn Clark martyn.clark@usask.ca Wouter Knoben wmk934@usask.ca Shervan Gharari shervan.gharari@usask.ca
WATFLOOD-MH	To be determined	Manitoba Hydro	Kristina Koenig kkoenig@hydro.mb.ca Shane Wruth swruth@hydro.mb.ca Phillip Slota pslota@hydro.mb.ca Mark Gervais mgervais@hydro.mb.ca Kevin Sagan ksagan@hydro.mb.ca

Participating modeling groups and models

MODELS	Watersheds/Scale	Institutions	Contact persons
RAVEN	To be determined	University of Waterloo	James Craig jrcraig@uwaterloo.ca
HBV-EC	To be determined	Manitoba Infrastructure	Fisaha Unduche fisaha.unduche@gov.mb.ca
WATFLOOD-MI	To be determined	Manitoba Infrastructure	Fisaha Unduche fisaha.unduche@gov.mb.ca
Noah-MP	Assiniboine & Red rivers	Western University	Mohammad Reza Najafi mnajafi7@uwo.ca
MESH	Saskatchewan river	ECCC	Bruce Davison bruce.davison@canada.ca
SWAT-RRB	Red River Basin	University of Manitoba	Masoud Asadzadeh Masoud.Asadzadeh@umanitoba.ca

All groups need an alternate - Please specify someone and send us your alternate(s) email address(es)!

Collaborators

Institutions	Contact persons	
	Frank Seglenieks	
ECCC	frank.seglenieks@canada.ca	
	Daniel Princz	
	daniel.princz@canada.ca	
	André Guy Temgoua	
	andreguy.temgoua@canada.ca	
	Bryan Tolson	
	btolson@uwaterloo.ca	
University of Waterloo	Juliane Mai	
	juliane.mai@uwaterloo.ca	
University of Saskatchewan	Mohamed Elshamy	
	mohamed.elshamy@usask.ca	
	Saman Razavi	
	saman.razavi@usask.ca	

Additional Participants?

- It's not too late to join!
- Know of anyone else that may be interested? Please feel free to invite additional participants to the MIP. Pass on the project coordination team information

Hervé Awoye - <u>oyemonbade.awoye@ucalgary.ca</u> Tricia Stadnyk - <u>tricia.stadnyk@ucalgary.ca</u>

Deliverables (due by January 22 2020)

- Specify your alternate contact
- Geophysical inputs template to be filled
- List of gauges for your current model setup
- Gauges you are willing to contributed to Nelson-MiP calibration and validation
- Time periods of interest (calibration vs validation)
- Meteorological forcing data suggestion

Preparation for February 12, 2020

- Would you be willing to setup your model with standardized geophysical data?
- What process validation data do you recommend?

Discussion of the gauges selection (calibration/validation), time periods (calibration/validation) and forcing data