六、實驗數據

Part 1: 測量靜態、動態彈性係數

	彈	簧(静態)				彈簧(動息	<u>(ž</u>)	
A	砝碼 m(kg)	伸長量(m)	k_A	A	滑車 M(kg)	彈簧 ms	週期T	k_A
	0.1001	0.071	13.83072		0.40442	0.0112	1.0782	6.930338
В	砝碼 m(kg)	伸長量(m)	k_{B}	В	滑車 M(kg)	彈簧 ms	週期T	k_{C}
	0.1001	0.139	7.064612		0.40442	0.0137	1.385	4.208616
С	砝碼 m(kg)	伸長量(m)	$k_{\rm C}$	С	滑車 M(kg)	彈簧 ms	週期T	$k_{\rm C}$
	0.1001	0.848	1.157996		0.40442	0.01125	2.7767	1.044992

Part 2: 週期與滑車質量關係

滑車質量 mB(kg)	週期(T)	T^2
0.40442	1.2284	1.508967
0.44442	1.2922	1.669781
0.48442	1.3489	1.819531

斜率	3.8821
k(實驗值)	5.084673
k(理論值)	4.208616
誤差	0.208158

斜率:3.8821 k實驗值:5.0847 k理論值:4.2086 誤差:20.82%

Part 3: 週期與彈性係數關係

彈力係數(k)	1/k	週期(T)	T^2
13.86068	0.072147	1.0782	1.162515
8.417232	0.118804	1.385	1.918225
2.089984	0.478473	2.7767	7.710063

斜率	16.11
滑車質量(實驗值)	0.408071
滑車質量(理論值)	0.40442
誤差	0.009028

斜率:16.11

滑車質量實驗值:0.4081kg 滑車質量理論值:0.4044 kg

誤差:0.9%

Part 4: 週期與振幅之關係

滑車質量 M(kg)	振幅(A)(m)	週期(T)
	0.05	1.2325
0.40442	0.1	1.2343
	0.15	1.2267

Part 5: Arduino 一般滑車

 V_0 = -0.13158, A(振幅) = 8.28 計算時間 t = 1.645, x = 7.45 時的速度 V_x

$$V_x = V_0 \frac{\sqrt{A^2 - x^2}}{A}$$

 $V_{x \text{ }^{2}\text{ }^{\mathrm{i}}\text{ }^{\mathrm{i}}\text{ }^{\mathrm{i}}\text{ }^{\mathrm{i}})} = \text{-}0.05742$

 $V_{x \; \hat{g} \& \hat{u}} = -0.0539$

誤差:-6.64%

Part 6: Arduino 阻尼滑車

$$eta_{\perp} = 0.92$$

 $eta_{\perp} = 1.484$
 滑車質量 $M = 0.4636 kg$
 阻尼常數 b

$$b = 2 * M * \beta$$

$$b_{|\!\!|\!\!|} = 0.8530$$

$$b_{\,\pm} = 1.3760$$

Part 7: Tracker 阻尼滑車

七、結果與討論

Part 1: 測量靜態、動態彈性係數

靜態彈性係數、動態彈性係數相差甚多,但是這次的實驗是測量滑車的振 動運動,都是以動態彈性係數來計算,沒有比較靜態、動態的問題,這個現象 只能指出彈簧的不完美。

Part 2: 週期與滑車質量關係

雖然感覺實驗做得不差,三個數據的趨勢線十分線性,判定係數 R² 高達 0.9996,然而誤差高達 20.82%,雖然各個環節都可能有些微誤差,但我認為最大原因實驗樣本過少,因此若有一次操作上有較大誤差都特別容易影響最終數據。

Part 3: 週期與彈性係數關係

這部分實驗鰻完美的,誤差只有 0.9%,三個數據的趨勢線幾乎呈一直線,判定係數 R2 是完美的 1,也因此誤差能夠這麼小。

Part 4:

數據幾乎呈水平,說明了振幅與週期沒有關係。然而從趨勢線的斜率為負數可以看出其實在我們的實驗中,振幅越大,雖然差距微乎其微,但週期也越會短。我推測其背後原因為摩擦力的存在:振幅越大,移動距離越多,根據W=f*S,可知被施以的負功也越多,因此原本應該有的動能減少得更多,使得振幅下降更快,造成原本該走的距離減少更多,造成週期稍小。

Part 5: Arduino 一般滑車

任取一個點帶入公式,誤差為-6.64%,推測其原因是含有摩擦力存在,理 論值為由下式

$$V_x = V_0 \frac{\sqrt{A^2 - x^2}}{A}$$

計算的結果,實驗值為光電計時器的量測數據,由於摩擦力存在,使得速度不 斷小,因此會有誤差且誤差為負號。

Part 6: Arduino 阻尼滑車

可看出,摩擦力較大的阻尼係數較高,然而,沒有確切理論值無法算誤 差。

Part 7: Tracker 阻尼滑車

可看出摩擦力較大的滑車,阻尼係數較高,速度量值下降也較快。,

以下為一般滑車、阻尼滑車振動實驗的 V-X 圖

一般滑車,其圖形幾乎呈一致,三個週期的圖形皆相差不多,因此符合下式

$$\frac{1}{2}kx^2 + \frac{1}{2}mU_x^2 = \#$$

然而,阻尼滑車受磨擦力影響,速率隨週期快去下降,也因此無法回到最大位 移點,能量因而快速下降,無法符合上式。

誤差來源:

設備系統誤差: 軌道非光滑, 具有摩擦力、電子秤、光電計時器量測的精確度

人為系統誤差:Trackerg 實驗所用的影片相機,未架設在平衡位置

環境系統誤差:風阻影響滑車、空氣擾動影響實驗數據

八、問題與討論

1. 在何種情況下,彈簧不遵守虎克定律?

Ans:

彈性疲乏,超過它的最大伸長量。

2. 為何滑車上要兩邊裝彈簧而不能只用一條?

Ans:

振動時容易彈出軌道。

3. 如果彈簧的質量 ms 不能忽略,而且振盪時彈簧的伸長是均勻的,試證週期應為 $T = 2\pi \sqrt{\frac{m + \frac{1}{3} m_s}{k}}$

Ans:

不考慮彈簧質量

$$K = \frac{1}{2}mv^2 = \frac{1}{2}mw^2A^2 = \frac{2m\pi^2A^2}{T^2}$$

$$K = U = \frac{1}{2}kA^2 = \frac{2m\pi^2A^2}{T^2}$$

$$T = 2\pi \sqrt{\frac{m}{k}}$$

考慮彈簧質量 ms

$$\begin{split} \mathbf{K} &= \frac{1}{2} \mathbf{m} v^2 + \frac{1}{2} \int v^2 dm_S = \frac{1}{2} \mathbf{m} v^2 + \frac{1}{2} \left[\left(\frac{x}{l} \right) v \right]^2 \rho dx \\ &= \frac{1}{2} \mathbf{m} v^2 + \frac{\frac{1}{2} \rho v^2}{l^2} \int_0^1 x^2 dx = \frac{1}{2} \mathbf{m} v^2 + \frac{\frac{1}{2} \rho v^2}{l^2} * \frac{1}{3} l^3 \\ &= \frac{1}{2} \mathbf{m} v^2 + \frac{1}{2} \left(\frac{1}{3} l \rho \right) v^2 = \frac{1}{2} \left(m + \frac{1}{3} m_S \right) v^2 = \frac{2m \pi^2 A^2}{T^2} \left(m + \frac{1}{3} m_S \right) \\ \mathbf{T} &= 2\pi \sqrt{\frac{m + \frac{1}{3} m_S}{k}} \end{split}$$

4. 做簡諧運動的滑車終將停止,找出至少兩個會使滑車停止運動的原因。

Ans:

摩擦力、彈簧伸長、縮短時彈性係數會改變、滑車左右兩方彈簧不完全相同、空氣阻力。

5. 空氣軌不水平對本實驗會有何影響?

Ans:

如果軌道非水平,左右彈簧就會有重力-mgsinθ影響,平衡點會改變。

九、心得

簡諧運動是大一普物第二次段考範圍,許多公式都由微分方程推導,且第二次段考範圍真的比第一次困難不少,幸好實驗只是運用最後的結果(公式), 使得實驗操作上、整理數據,沒有太過困難。

十、參考資料

清大普物實驗室: http://www.phys.nthu.edu.tw/~gplab/exp009.html