MLOps AML notes(Arka's(Borda's) (DEEP)research work)

1 Introduction to MLOps

- In MLOps, **compute and storage are decoupled**, meaning that storage and computation are independent.
- This ensures that data persists even if the system is turned off, preventing data loss.

2 System Architecture Overview

The architecture typically consists of:

- Data Store \rightarrow Stores raw data.
- **Server** → Performs computations.
- Model Store \rightarrow Stores trained models.

Diagram Representation:

```
Data Store --> Server --> Model Store
```

3 Scalability in MLOps

- Scaling Storage: If additional storage is required, more data storage can be added.
- Scaling Computation: If additional computing power is required, more servers can be added.
- The system is designed to scale up or down **based on demand** dynamically.

4 Computation and Performance Optimization

• Data Loading Process:

- Data is first loaded from the **data store to the server**.
- Computation happens at **RAM level** instead of disk level.
- This results in a **10x increase in speed** and **lower latency** compared to disk-level computation.

5 Evolution from Hadoop to Spark

5.1 Traditional Systems (Hadoop)

- Hadoop partially decoupled computation and storage.
- However, most computations happened on disk, leading to slower performance.

5.2 Modern Systems (Spark)

• Spark introduced a shift by moving most computations to RAM, significantly improving speed and efficiency.

6 Introduction to MLOps

- In MLOps, **compute and storage are decoupled**, meaning that storage and computation are independent.
- This ensures that data persists even if the system is turned off, preventing data loss.

7 System Architecture Overview

The architecture typically consists of:

- Data Store \rightarrow Stores raw data.
- **Server** → Performs computations.
- Model Store \rightarrow Stores trained models.

Diagram Representation:

Data Store --> Server --> Model Store

8 Scalability in MLOps

- Scaling Storage: If additional storage is required, more data storage can be added.
- Scaling Computation: If additional computing power is required, more servers can be added.
- The system is designed to scale up or down **based on demand** dynamically.

9 Computation and Performance Optimization

- Data Loading Process:
 - Data is first loaded from the **data store to the server**.
 - Computation happens at **RAM level** instead of disk level.
 - This results in a **10x increase in speed** and **lower latency** compared to disk-level computation.

10 Evolution from Hadoop to Spark

10.1 Traditional Systems (Hadoop)

- Hadoop partially decoupled computation and storage.
- However, most computations happened on disk, leading to slower performance.

10.2 Modern Systems (Spark)

• Spark introduced a shift by **moving most computations to RAM**, significantly improving speed and efficiency.

11 Experiment Tracking in MLOps

- Git is not designed to handle ML systems due to data versioning complexities.
- Experiment Tracking involves:
 - Taking data.
 - Training the model.
 - Adding more data or modifying weights/hyperparameters.

Key Concept: Experiment tracking allows recording of all changes to ensure **reproducibility**.

11.1 Popular Experiment Tracking Tools

- MLflow
- Weights and Biases (W&B)
- OpenAI Tracking System

Example MLflow command:

mlflow.log_metrics({"train_loss": train_loss, "val_loss": val_loss}, step=epoch)

12 Principles of MLOps

MLOps follows principles similar to DevOps:

- Consideration of ML Systems: Whether predictions are given in batch mode or real-time stream mode determines the system architecture.
- Version Control: Writing and deploying multiple versions of ML code requires version control. Git is commonly used for this.

12.1 ML Version Control Challenges

- Version controlling just the code is insufficient.
- ML systems also require data and model versioning.

Comparison of Version Control Tools:

Data	Model	Code
DVC (Data Version Control)	MLflow	Git

13 Challenges in Using Git for ML

- Storing large datasets in Git is impractical.
- As data grows, Git repositories become too large.

14 Data Version Control (DVC)

14.1 Handling Large Datasets

- Data is often very large, making it impractical to push directly to Git.
- Instead of pushing large files, we use data.xml.dvc, which is a lightweight pointer to the actual dataset stored in the DVC repository.
- The actual data is stored in a **DVC remote storage** (e.g., Google Drive, AWS S3).

14.2 Ignoring Large Files in Git

- Use .gitignore to specify files that should be ignored by Git.
- This helps avoid pushing large dataset files.

14.3 Versioning Datasets

• Copy datasets for version control:

```
cp data/data.xml /tmp/data.xml
```

• View commit history:

```
git log --oneline
```

• Checkout a previous dataset version:

```
git checkout HEAD~1 data/data.xml.dvc
```

14.4 Basic Idea of DVC

- DVC extends Git to track large files outside of the Git repository, similar to how Google Drive works.
- Git handles version control, while DVC manages large dataset files.

15 Steps to Set Up Data Version Control

1. Initialize Git:

```
git init
```

2. Initialize DVC:

```
git:(master) dvc init
```

3. Create a data directory:

```
mkdir data
```

- 4. Use dvcget to download data from a registry to local storage:
 - dvcget is similar to curl for fetching remote files.
- 5. Add dataset to DVC:

```
dvc add data/filename
git add data/filename.dvc
git commit -m "Add raw data"
```

6. Push dataset to remote storage:

```
dvc remote add -d storage gdrive://ID_of_folder
```

16 Code Versioning and Git Remote

16.1 Git Remote Repository

- A Git remote repository is stored in the cloud, not on a local PC.
- The remote repository is linked to a local repository for syncing.

16.2 Git Workflow

Git Commands Workflow:

```
git add -> git commit -> git push
```

Data Flow:

Working Directory -> Staging Area -> Local Repo -> Remote Repo

Restoring Previous Versions:

git restore -> git checkout / revert

17 Artifacts and Data Tracking

- Large datasets grow over time, but most changes are small.
- Git and DVC maintain **hash values** to track incremental changes efficiently.
- Maintaining hash-based tracking helps in:
 - Efficient storage management.
 - Versioning of datasets with minimal redundancy.
 - Faster rollback and recovery of data.

18 Request-Response Model and APIs

18.1 What is an API?

- API stands for Application Programming Interface.
- It allows different systems to communicate with each other.
- An API endpoint is a URL used to send and receive requests.

Example API Endpoint:

http://www.xyz.com/recommendation/predict

18.2 Public vs Local API

• APIs can be either **public** (accessible over the internet) or **local** (restricted within a network).

18.3 Request and Response Format

- The API follows a request-response model:
 - Request is sent in **JSON format**.
 - Response is received in JSON format.

19 Continuous Integration and Continuous Deployment (CI/CD)

19.1 Definitions

- CI (Continuous Integration): The practice of automatically integrating code changes.
- CD (Continuous Deployment): The practice of automatically deploying code changes to production.

19.2 CI Pipeline Stages

- $\bullet \ \mathbf{Build} \to \mathbf{Test} \to \mathbf{Merge}.$
- Automated testing ensures the code passes before merging.

CI Workflow:

Build --> Test --> Merge

19.3 Continuous Delivery and Deployment

- Continuous Delivery: Automatically releases code to a repository.
- Continuous Deployment: Automatically deploys code to production.

20 Distributed Training in MLOps

20.1 What is Distributed Training?

- Distributed training distributes computations across multiple machines to speed up model training.
- This is essential for training large models in a reasonable amount of time.

20.2 Ray Train Framework

- Ray Train is a framework for distributed training.
- It consists of:
 - **Head node**: Orchestrates the training process.
 - Worker nodes: Train the model and send results back to the head node.

Distributed Training Workflow:

```
Head Node

|--> Worker Node
|--> Worker Node
|--> Worker Node
```

21 Cloning a Repository

21.1 What is Cloning?

• Cloning copies a remote Git repository to a local computer.

21.2 Command to Clone a Repository

git clone <repository-url>

22 MLflow Experiment Tracking

22.1 Tracking Dataset Versions

- MLflow logs references to dataset versions or data markers to track which dataset was used in each experiment.
- This ensures reproducibility by maintaining dataset logs.

22.2 Model Performance Comparison

• Different datasets or subsets can be compared in MLflow to evaluate model performance.

22.3 Logging Experiment Parameters

- MLflow logs:
 - Hyperparameters
 - Training metrics
 - Model artifacts

22.4 Model Registry and Deployment

- A model is stored in a registry to maintain version control.
- Production-ready models are logged and monitored.

23 Git Hooks and CI/CD Pipeline Integration

23.1 Git Hooks for Automation

- DVC (Data Version Control) maintains dataset versions.
- Git maintains pointers to dataset versions.
- Any change in a data pointer can trigger a CI pipeline.

23.2 Triggering Model Training

- A push or merge in the Git repository can trigger a CI/CD pipeline.
- The pipeline runs an integration test before retraining the model.

24 Data and Model Updates in MLOps

24.1 Data Updates

- Dataset versions are updated via DVC.
- Version updates trigger workflow events such as:
 - Data cleaning
 - Validation
 - Feature engineering

24.2 Model Updates

- When raw data is ingested or code changes, an automated pipeline retrains the model.
- The pipeline computes evaluation metrics.
- If the model exceeds performance thresholds, it is automatically marked for production.

24.3 Handling Data Drift

- Automated data profiling detects data drift.
- If data drift is detected:
 - A data drift alert is generated.
 - The pipeline may trigger a new model training cycle.

25 CI/CD Pipeline for Software Production

25.1 Overview of CI/CD

• CI/CD (Continuous Integration and Continuous Deployment) automates the software release process.

25.2 CI/CD Workflow

- **Software Development:** Version control maintains code changes in a repository. A CI/CD pipeline is triggered.
- Build Phase: Merges source code with dependencies. Creates a runnable software instance.
- Testing Phase: Unit tests validate individual components. Integration tests ensure system-wide compatibility. Cross-platform testing verifies performance across environments.
- **Deployment Phase:** Deploys the system to a production-like environment. Automation testing ensures reliability. The final step is **production validation**.

CI/CD Pipeline Steps:

```
Software Developed -> CI/CD Pipeline Triggered
    |
    v
Build Phase -> Test Phase -> Deployment Phase
```

26 Model Testing and Monitoring

26.1 Distribution Checks

• Check if the dataset distribution is balanced before training.

26.2 Model Considerations

- Tolerance: Slight changes in data should not drastically change predictions.
- The model should maintain **minimum functionality**.
- Behavioral Check: Does changing certain words (e.g., "amazing" to "horrible") change sentiment predictions accordingly?

26.3 Testing vs Monitoring

Testing (Pre-deployment)

- $\bullet\,$ Offline validation.
- Fixed dataset.
- \bullet Checks known requirements.

Monitoring (Post-deployment)

- Live data checks.
- Detects data drift.
- Identifies edge cases.
- Tracks prediction quality.

27 Types of Testing in CI/CD Pipelines

27.1 Testing in CI/CD

• Each successful CI/CD pipeline run can build a new Docker image and push it to a registry.

27.2 Types of Tests

- Unit Tests: Check functionality of individual components.
- Integration Tests: Verify if different parts work together across platforms.
- System Tests: Validate the entire system for failure points.
- Acceptance Tests: Ensure the system satisfies basic user requirements.

Regression Testing

• Re-tests previously fixed bugs after code updates.

27.3 What to Test?

Data Schema Validation

- Check every aspect of the data schema.
- Validate columns, row formats, and data structure.

Data Quality Check

• Detect missing values in critical fields.

28 Model Deployment

28.1 Deploying Models as Microservices

• Deployed using Flask as a web service.

28.2 Blue-Green Deployment

• Strategy used by cloud services like AWS to deploy new models while keeping the old model live.

28.3 Web Serving with Flask

- A Flask app can host an endpoint that:
 - Receives feature data.
 - Returns real-time predictions.

28.4 Containerization for Deployment

- Containers help package model inference and preprocessing pipelines.
- Docker is used to containerize the model.

Deployment Workflow:

Model + Inference Code --> Docker Image --> Deploy via Kubernetes

29 Eyeballing Predictions

- Manually inspect correct/incorrect predictions to catch subtle issues that automated tests might miss.
- Example: Confusing "apple" with "apple inc." due to entity recognition errors.

29.1 Automated Testing

• Code testing across environments can be automated using pytest.

29.2 Profiling for Optimization

- Measure memory and time consumption of critical steps.
- Identify and optimize performance bottlenecks.

30 Out-of-Range Value Checks

30.1 What?

• Validate numerical ranges and categorical values.

30.2 Why?

- Catch errors such as:
 - Negative ages.
 - Invalid categorical values.

Example check for valid age range:

assert df["age"].between(0, 120).all()

31 Model Overfitting Check

31.1 What?

• Compare training vs. validation metrics (loss/accuracy).

31.2 Why?

• Ensure the model generalizes well beyond the training dataset.

Example assertion for loss comparison:

assert val_loss < 1.2 * train_loss</pre>

32 Target Distribution Check

32.1 What?

• Verify class balance of target features (for classification) or output value range (for regression).

32.2 Why?

• Prevents bias toward dominant classes.

Example check for class imbalance:

assert df["label"].value_counts(normalize=True).min() > 0.1

33 Key Predictor Distributions

33.1 What?

• Compare feature distributions between training and production data.

33.2 Why?

• Detect data drift.

33.3 Tools for Distribution Checks

- \bullet Kullback-Leibler (KL) Divergence Test.
- Great Expectations for data validation.