Algebra

— Blatt 1 —

(Tutoriumsblatt)

Aufgabe 0 (Vorbereitung auf das Tutorium)

- (a) Geben Sie je zwei Beispiele an für (i) Halbgruppen, die keine Monoide sind (ii) Monoide, die keine Gruppen sind (iii) abelsche Gruppen.
- (b) Welche Bedingungen muss ein Halbgruppen-, ein Monoid-, ein Gruppenhomomorphismus jeweils erfüllen?
- (c) Übertragen Sie den Ausdruck $(gh)^5h^{-1}g^{-1}$ in additive Schreibweise.
- (d) Was sind die invertierbaren Elemente der Monoide (\mathbb{N},\cdot) und (\mathbb{Q},\cdot) ?
- (e) Gibt es Monoide ohne invertierbare Elemente? Ist es sinnvoll, auch in einer Halbgruppe, die kein Monoid ist, von invertierbaren Elementen zu sprechen?

Aufgabe 1

Entscheiden Sie, ob es sich bei den folgenden Paaren bestehend aus einer Menge X und einer Verknüpfung auf X um Halbgruppen, Monoide oder Gruppen handelt.

(a)
$$(\mathbb{Z}, -)$$
 (b) $(\mathcal{M}_{2,\mathbb{R}}, \cdot)$ (c) $(\mathbb{Z} \times \mathbb{Z}, *)$ mit $(a, b) * (c, d) = (ac + 2bd, bc + ad)$

Die Verknüpfung in Teil (a) ist also die Subtraktion auf den ganzen Zahlen, und in Teil (b) bezeichnet $\mathcal{M}_{2,\mathbb{R}}$ die Menge der reellen 2×2 -Matrizen.

Aufgabe 2

Sei G eine Gruppe, und seien $g, h \in G$ mit gh = hg. Beweisen Sie für alle $m, n \in \mathbb{Z}$ die folgenden Gleichungen.

(a)
$$q^{m+n} = q^m \cdot q^n$$
 (b) $(q^m)^n = q^{mn}$ (c) $(qh)^m = q^m h^m$.

Anleitung: Zeigen Sie die Gleichungen zunächst für $m,n\in\mathbb{N}$ durch vollständige Induktion. Führen Sie anschließend die restlichen Fälle auf diesen Fall zurück. Denken Sie daran, dass $g^0=e$ und die negativen Potenzen durch $g^{-m}=(g^m)^{-1}$ für $g\in G$ und $m\in\mathbb{N}$ definiert wurden.

Aufgabe 3 (Staatsexamen Frühjahr 1995)

Sei X eine Menge mit einer Verknüpfung \circ . Wie bei den Halbgruppen bezeichnen wir ein Element $e \in X$ als Neutralelement bezüglich \circ , wenn für jedes $x \in X$ jeweils $x \circ e = e \circ x = x$ gilt. Ist e das einzige Neutralelement, und sind $x, y \in X$, so bezeichnen wir x als Linksinverses von y und y als Rechtsinverses von x, wenn $x \circ y = e$ gilt. Wir betrachten nun auf $X = \mathbb{R}$ die Verknüpfung \circ gegeben durch

$$x \circ y = x + y + x^2 y.$$

- (a) Weisen Sie nach, dass \circ weder kommutativ noch assoziativ ist.
- (b) Zeigen Sie, dass es in $\mathbb R$ genau ein Neutralelement bezüglich \circ gibt.
- (c) Zeigen Sie, dass es zu jedem $x \in \mathbb{R}$ genau ein Rechtsinverses gibt.
- (d) Für welche $x \in \mathbb{R}$ gibt es ein Linksinverses?

Dieses Blatt wird vom 25. bis zum 29. Oktober im Tutorium bearbeitet.

Lineare Algebra

— Blatt 1 —

(Globalübungsblatt)

Aufgabe 1 (2+1+4+3 Punkte)

Auf dem Tutoriumsblatt haben wir gesehen, dass die Menge $\mathcal{M}_{2,\mathbb{R}}$ der 2×2 -Matrizen mit der Multiplikation von Matrizen als Verknüpfung ein Monoid ist.

- (a) Ein Element g in einem Monoid (G, \cdot) wird *idempotent* genannt, wenn $g \cdot g = g$ gilt. Zeigen Sie: Ist (G, \cdot) sogar eine Gruppe, dann gibt es in (G, \cdot) genau ein idempotentes Element.
- (b) Zeigen Sie, dass in $(\mathcal{M}_{2,\mathbb{R}},\cdot)$ die folgenden Elemente idempotent sind.

$$B = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \qquad , \qquad C = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$$

- (c) Zeigen Sie, dass das Monoid $(\mathcal{M}_{2,\mathbb{R}},\cdot)$ unendlich viele idempotente Elemente besitzt.
- (d) Welche idempotenten Elemente gibt es im Monoid $(\mathcal{M}_{2,\mathbb{R}},+)$?

Aufgabe 2 (10 Punkte)

Sei G eine Menge und \cdot eine Verknüpfung auf G. Wir setzen voraus, dass die folgenden Bedingungen erfüllt sind.

- (i) Die Verknüpfung \cdot auf G ist assoziativ.
- (ii) Es gibt ein Element $e \in G$ mit $e \cdot a = a$ für alle $a \in G$.
- (iii) Für jedes $a \in G$ gibt es ein $b \in G$ mit $b \cdot a = e$.

Ein Element e mit der Eigenschaft (ii) wird als linksneutral bezeichnet, und ein Element b mit der Eigenschaft (iii) ist ein zu a linksinverses Element. Beweisen Sie, dass G eine Gruppe ist.

Hinweis: Zeigen Sie zuerst, dass für vorgegebenes $a \in G$ jedes $b \in G$ mit ba = e auch ab = e erfüllt. Beachten Sie dabei, dass auch b ein Linksinverses besitzt.

- bitte wenden -

Aufgabe 3 (Staatsexamen Herbst 1992) (3+3+4 Punkte)

Sei G eine endliche Gruppe, |G| = n, und sei $P \subseteq G$ die Menge aller Produkte, die man erhält, indem man die Elemente von G in beliebiger Reihenfolge multipliziert, also die Menge aller Produkte $g_1 \cdot \ldots \cdot g_n$, für die das Tupel (g_1, \ldots, g_n) die Bedingung $G = \{g_1, \ldots, g_n\}$ erfüllt.

- (a) Zeigen Sie, dass P eine Vereinigung von Konjugationsklassen von G ist. Dabei ist die Konjugationsklasse eines Elements $x \in G$ einer Gruppe G definiert durch $[x] = \{gxg^{-1} \mid g \in G\}$. Hinweis: Es gilt $g(xy)g^{-1} = (gxg^{-1})(gyg^{-1})$ für alle $x, y \in G$.
- (b) Zeigen Sie: Ist G eine abelsche Gruppe und n = |G| ungerade, so gilt $P = \{e\}$.

 Hinweis: Zeigen Sie zunächst, dass G außer e kein Element g mit $g^2 = e$ enthält, weil ansonsten eine Zerlegung von G in lauter zweielementige Mengen existieren würde.
- (c) Bestimmen Sie die Konjugationsklassen von S_3 . Zeigen Sie dann: Ist $G = S_3$, so ist die zugehörige Menge P die Menge der Transpositionen.

Aufgabe 4 (Zahlentheorie) (Staatsexamen Herbst 2020) (10 Punkte)

Ein nichtkommutativer Ring mit Eins ist ein Tripel $(R, +, \cdot)$ bestehend aus einer Menge R und zwei Verknüpfungen + und \cdot auf R, wobei (R, +) eine abelsche Gruppe und (R, \cdot) ein Monoid ist und das Distributivgesetz gilt. Gegenüber der Ringdefinition aus der Vorlesung wird also lediglich die Kommutativität von (R, \cdot) fallengelassen. Desweiteren bezeichnen wir ein Element $r \in R$ wie oben als idempotent, wenn $r^2 = r$ gilt, und als nilpotent, wenn $r^n = 0_R$ für ein $n \in \mathbb{N}$ erfüllt ist.

Wir setzen nun voraus, dass in einem solchen nichtkommutativen Ring mit Eins zwei Elemente $a, b \in R$ mit $ab = 1_R$ und $ba \neq 1_R$ existieren. Zeigen Sie:

- (a) Das Element $1_R ba$ ist idempotent.
- (b) Für jedes $n \in \mathbb{N}$ ist $b^n(1_R ba)$ nilpotent.
- (c) Es gibt unendlich viele nilpotente Elemente in R.

Abgabe: Dienstag, 2. November 2021, 12:15 Uhr

Verspätete Abgaben können aus organisatorischen Gründen leider nicht nachträglich angenommen werden. Bitte geben Sie auf jeder Abgabe die Nummer Ihrer Übungsgruppe an.