

E	录				2.6 卢卡斯定理	6
1	数学	<u>4</u>	1		2.6.2 扩展卢卡斯	6
	1.1	FWT	1		2.7 原根与离散对数	6
	1.2	多项式	1		$2.7.1$ 原根 \dots	6
		1.2.1 FFT	1		2.7.2 BSGS	6
	1.3	组合数行区间和	2		2.8 杂项	7
	1.4	二项式反演	2		$2.8.1$ 大数整除小数取模 \dots	7
~	Met s				$2.8.2$ 立方根复杂度求 mobius 函数 \dots	7
2	数计		3		$2.8.3$ 直接求 euler 函数 \dots	7
	2.1	常见预处理与快速幂	3	า	四八	
	2.2	因数分解与素性判定	3	3	图论	8
		2.2.1 朴素因数分解	3		3.1 最小生成树	8
		2.2.2 Miller-Rabin 与 Pollard-Rho	3		3.1.1 Boruvka算法	8
	2.3	筛法	4		3.1.2 动态最小生成树	8
		2.3.1 线性筛	4		3.2 费用流	9
		2.3.2 Min25 筛	4		3.2.1 SPFA费用流	9
	2.4	扩展欧几里得	5		3.2.2 Dijkstra费用流	10
	2.5	中国剩余定理	6	4	<u> </u>	
		2.5.1 两个数的 crt	6	4	子付串	12
		2.5.2 excrt	6		4.1 后缀自动机	12

1 数学

1.1 FWT

矩阵表示

or 形式 (子集卷积):

$$T_{ij} = [i|j=i] = [j \in i]$$

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

and 形式 (超集卷积):

$$T_{ij} = [i \& j = i] = [i \in j]$$

$$\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$$

xor 形式 (T与自身互为逆矩阵):

$$T_{ij} = (-1)^{parity(i\&j)}$$

$$\begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$$

```
using ll = long long;
2
3
   void FWT(ll *a, int len, int inv) {
4
       for (int h = 1; h < len; h <<= 1) {</pre>
           for (int i = 0; i < len; i += (h << 1)) {
                for (int j = 0; j < h; ++j) {</pre>
                    a[i + j + h] += a[i + j] * inv;
                }
10
           }
11
       }
12
  }
   // and
13
   void FWT(ll *a, int len, int inv) {
14
       for (int h = 1; h < len; h <<= 1) {</pre>
15
           for (int i = 0; i < len; i += (h << 1)) {
16
17
                for (int j = 0; j < h; ++j) {
18
                    a[i + j] += a[i + j + h] * inv;
19
           }
20
       }
21
  }
22
   // xor
   void FWT(ll *a, int len, int inv) {
25
       for (int h = 1; h < len; h <<= 1) {</pre>
            for (int i = 0; i < len; i += (h << 1)) {
26
                for (int j = 0; j < h; ++j) {
27
                    11 x = a[i + j], y = a[i + j + h];
28
                    a[i + j] = x + y, a[i + j + h] = x - y;
29
                    if (inv == -1)
30
                         a[i + j] /= 2, a[i + j + h] /= 2;
31
                }
32
           }
33
       }
34
35
  }
```

1.2 多项式

1.2.1 FFT

```
1 // 使用时一定要注意double的精度是否足够(极限大概是10 ^ 14) 68 67 68 68
```

```
// 手写复数类
  // 支持加减乘三种运算
  // += 运算符如果用的不多可以不重载
  struct Complex {
      double a, b; // 由于Long double精度和double几乎相同,通
    → 常没有必要用Long double
10
      Complex(double a = 0.0, double b = 0.0) : a(a), b(b) {}
11
12
      Complex operator + (const Complex &x) const {
13
          return Complex(a + x.a, b + x.b);
14
15
16
      Complex operator - (const Complex &x) const {
17
          return Complex(a - x.a, b - x.b);
18
19
20
      Complex operator * (const Complex &x) const {
21
          return Complex(a * x.a - b * x.b, a * x.b + b *
22
    \rightarrow x.a);
      }
23
24
      Complex operator * (double x) const {
25
          return Complex(a * x, b * x);
26
27
28
      Complex &operator += (const Complex &x) {
29
          return *this = *this + x;
30
31
32
      Complex conj() const { // 共轭, 一般只有MTT需要用
33
          return Complex(a, -b);
34
35
  } omega[maxn], omega_inv[maxn];
  const Complex ima = Complex(0, 1);
  int fft_n; // 要在主函数里初始化
  // FFT初始化
41
  void FFT_init(int n) {
42
      fft_n = n;
43
      for (int i = 0; i < n; i++) // 根据单位根的旋转性质可以
45
    → 节省计算单位根逆元的时间
          omega[i] = Complex(cos(2 * pi / n * i), sin(2 * pi
46
    \hookrightarrow / n * i));
      omega_inv[0] = omega[0];
      for (int i = 1; i < n; i++)
          omega_inv[i] = omega[n - i];
      // 当然不存单位根也可以,只不过在FFT次数较多时很可能会
    → 增大常数
  }
52
  // FFT 主 过程
  void FFT(Complex *a, int n, int tp) {
      for (int i = 1, j = 0, k; i < n - 1; i++) {
          k = n;
57
          do
58
              j ^= (k >>= 1);
59
          while (j < k);
          if (i < j)
62
              swap(a[i], a[j]);
63
64
65
      for (int k = 2, m = fft_n / 2; k \le n; k *= 2, m /= 2)
66
          for (int i = 0; i < n; i += k)</pre>
              for (int j = 0; j < k / 2; j++) {
```

```
Complex u = a[i + j], v = (tp > 0 ? omega :

→ omega_inv)[m * j] * a[i + j + k / 2];

a[i + j] = u + v;
a[i + j + k / 2] = u - v;

for (int i = 0; i < n; i++) {
a[i].a /= n;
a[i].b /= n; // 一般情况下是不需要的,只有MTT时
→ 才需要

79
80 }
```

钦定 (至少) k 个与恰好 k 个之间的转化记号:

记 f(n) 表示先钦定至少选 n 个,再统计钦定情况如此的方案数之和,其中会包含重复的方案数.

记 g(n) 表示恰好选 n 个的方案数, 不会重复.

那么,对于 $i \geq n$,g(i) 在 f(n) 中被重复计算了 $\binom{i}{n}$ 次,故 $f(n) = \sum_{i=n}^{m} \binom{i}{n} g(i)$,其中 m 为数目上限 通常,f 较易求,再通过反演即可求 g

1.3 组合数行区间和

```
using 11 = long long;
  // 边界从 (s, x) 移动到 (s + 1, nx)
  11 move(int x, int nx, int s, ll sum) {
      assert(x >= -1);
      11 res = (2 * sum + mod - C(s, x)) % mod;
      while (x + 1 \le nx) {
          res = (res + C(s + 1, x)) \% mod;
10
      while (x > nx) {
          res = (res + mod - C(s + 1, x)) \% mod;
13
14
15
      return res;
16
  };
  void proc(int k) {
      // 第 s 行的 左右边界
19
      auto le = [&](int s) -> int {
20
21
22
      auto ri = [&](int s) -> int {
      // 这里应该暴力计算首行和图当首行为 @ 时也可以这样写
26
      ll lsum = move(-1, le(\emptyset), -1, \emptyset);
27
      ll rsum = move(-1, ri(0), -1, 0);
      for (int s = 0; s <= k; s++) {
           if (le(s) < ri(s)) {
31
               // ... 第 s 行对答案的贡献
32
33
          lsum = move(le(s), le(s + 1), s, lsum);
34
35
           rsum = move(ri(s), ri(s + 1), s, rsum);
36
```

1.4 二项式反演

形式一:

$$f(n) = \sum_{i=m}^{n} \binom{n}{i} \iff g(i)g(n) = \sum_{i=m}^{n} (-1)^{n-i} \binom{n}{i} f(i)$$

形式二: (常用)

$$f(n) = \sum_{i=n}^{m} \binom{i}{n} g(i) \iff g(n) = \sum_{i=n}^{m} (-1)^{i-n} \binom{i}{n} f(i)$$

常见用法

2 数论

2.1 常见预处理与快速幂

```
// 预处理组合数
   const int N = 2e5 + 7;
   const 11 mod = 998244353;
   11 fac[N], ifac[N];
   void init() {
       fac[0] = 1;
       for (int i = 1; i < N; ++i) fac[i] = i * fac[i-1] %</pre>
       ifac[N - 1] = fpow(fac[N - 1], mod - 2);
9
       for (int i = N - 1; i; --i) ifac[i - 1] = i * ifac[i] %
10
11
   }
   11 C(int n, int k) {
13
       if (k < 0 \mid \mid k > n) return 0;
14
       return (fac[n] * ifac[k] % mod) * ifac[n - k] % mod;
15
16
   }
17
   // 线性求逆元☞注意有效的 i < mod
   11 inv[maxn];
19
   void init() {
20
       inv[0] = 0, inv[1] = 1;
21
       for (int i = 2; i < N; ++i)
22
            inv[i] = inv[mod % i] * (mod - mod / i) % mod;
23
25
   // 快速幂
26
   11 \text{ fpow}(11 \text{ a, } 11 \text{ k} = \text{mod} - 2, 11 \text{ p} = \text{mod})  {
27
       ll res = 1; a %= p;
28
       for (; k; k >>= 1, a = a * a % p) {
29
30
            if (k & 1)
                res = res * a % p;
31
32
       return res:
33
   }
34
```

2.2 因数分解与素性判定

2.2.1 朴素因数分解

```
// 素因数分解
  int p[maxn], 1[maxn], cnt2 = 0;
  void Fact(int x) {
      cnt2 = 0;
       for (int i = 2; 111 * i * i <= x; i++) {
           if(x % i == 0) {
6
               p[++cnt2] = i; 1[cnt2] = 0;
               while(x % i == 0) {
                   x /= i; ++1[cnt2];
               }
10
           }
11
12
      if (x != 1) { // 则此时x一定是素数\emptyset且为原本x的大于根
13
    → 号x的唯一素因子
           p[++cnt2] = x; l[cnt2] = 1;
15
16
  }
17
   // vector ver. 无次数
18
   void Fact(ll x, vector<int>& fact) {
19
       for (ll i = 2; lll * i * i <= x; ++i) {
20
           if(x % i == 0) {
21
               fact.push_back(i);
22
               while(x \% i == \emptyset) x /= i;
23
           }
24
```

2.2.2 Miller-Rabin 与 Pollard-Rho

#include<hits/stdc++.h>

```
using namespace std;
   typedef long long 11;
   11 randint(ll l, ll r) {
       static mt19937 eng(time(0));
       uniform_int_distribution<ll> dis(1, r);
       return dis(eng);
9
  }
10
   bool is_prime(ll x) {
      int s = 0; 11 t = x - 1;
       if (x == 2) return true;
       if (x < 2 \mid | !(x \& 1)) return false;
       while (!(t & 1)) { //将x分解成(2^s)*t的样子
           s++; t >>= 1;
16
       ll lst[] = {2, 325, 9375, 28178, 450775, 9780504,
    \rightarrow 1795265022};
      for(11 a : 1st) { //随便选一个素数进行测试
19
           if(a >= x) break;
20
           ll b = Pow(a, t, x); //先算出a^t
           for (int j = 1; j <= s; ++j) { //然后进行s次平方
               11 k = mul(b, b, x);
                                          //求b的平方
               if (k == 1 && b != 1 && b != x - 1) //用二次探
24
    →测判断
                   return false;
25
              b = k;
26
           if (b != 1)
              return false; //用费马小定律判断
29
30
       return true; //如果进行多次测试都是对的@那么x就很有可
31
    → 能是素数
  }
  11 gcd(l1 a, l1 b) { return b == 0 ? a : gcd(b, a % b); }
34
35
   // @author: Pecco
36
   11 Pollard_Rho(11 n) {
37
       if (n == 4) return 2;
       if (is_prime(n)) return n;
       while (1) {
           ll c = randint(1, n - 1); // 生成随机的c
41
           auto f = [=](11 x) { return ((__int128)x * x + c) %
42
    → n; }; // lll表示__int128型防溢出
           11 t = f(0), r = f(f(0));
43
           while (t != r) {
45
               11 d = \underline{gcd(abs(t - r), n)};
46
               if (d > 1)
                  return d:
47
               t = f(t), r = f(f(r));
49
           }
  }
51
52
   // 优化掉一个Log
  11 Pollard_Rho(ll n) {
       if (n == 4) return 2;
       if (is_prime(n)) return n;
       while (1) {
58
           11 c = randint(1, n - 1);
59
           auto f = [=](11 x) { return ((__int128)x * x + c) %
60
    \hookrightarrow n; };
```

```
11 t = 0, r = 0, p = 1, q;
61
           do {
62
              for (int i = 0; i < 128; ++i) { // 令固定距
    → 离C=128
                  t = f(t), r = f(f(r));
64
                   if (t == r || (q = (111)p * abs(t - r) % n)
65
    → == 0) // 如果发现环②或者积即将为❷退出
                      break;
66
              }
              11 d = gcd(p, n);
69
              if (d > 1)
70
                   return d;
71
           } while (t != r);
72
73
  vector<11> factors;
   void getfactors(ll n) {
      if (n == 1) return;
      if (is_prime(n)) { factors.push_back(n); return; } //
    → 如果是质因子
      11 p = n;
81
      while (p == n)
82
          p = Pollard_Rho(n);
83
84
      getfactors(n / p), getfactors(p); //递归处理
85
```

2.3筛法

2.3.1线性筛

```
const int maxn = 1000000 + 5;
  bool isnt[maxn];
   int prime[maxn];
  int cnt = 0;
   // 线性筛法 [1, n] 内素数
   void Prime(int n) {
       isnt[1] = true;
       for (int i = 2; i <= n; i++) {
10
           if (!isnt[i]) prime[++cnt] = i;
           for (int j = 1; j <= cnt; j++) {</pre>
               if (111 * i * prime[j] > n) break;
13
               isnt[i * prime[j]] = 1;
               if (i % prime[j] == 0) break;
15
16
  }
19
   // 线性筛求积性函数
20
   int phi[maxn], mu[maxn], d[maxn], D[maxn], q[maxn];
21
   void Sieve(int n) {
22
       isnt[1] = true;
       phi[1] = 1;
       //mu[1] = 1;
25
       cnt = 0:
26
       for(int i = 2; i <= n; i++) {
27
           if (!isnt[i]) {
               prime[++cnt] = i;
               phi[i] = i - 1;
31
               //mu[i] = -1;
               // d[i] = 2; q[i] = 1;
32
               // D[i] = i + 1; q[i] = 1;
33
34
           for (int j = 1; j <= cnt; j++) {</pre>
               int x = i * prime[j];
36
               if (x > n) break;
37
               isnt[x] = 1;
```

```
if (i % prime[j] == 0) {
                     phi[x] = phi[i] * prime[j];
40
                     // mu[x] = 0;
                     // d[x] = d[i] / (q[i] + 1) * (q[i] + 2),
42
     \hookrightarrow q[x] = q[i] + 1;
                     // D[x] = D[i] / (prime[j] ^ (q[i] + 1) -
43
     (-1) * (prime[j] ^ (q[i] + 2) - 1), q[x] = q[i] + 1;
                } else {
45
                     phi[x] = phi[i] * (prime[j] - 1); // mu[x]
46
     \hookrightarrow = -mu[i]
                     // d[x] = 2 * d[i], q[x] = 1;
47
                     // D[x] = (prime[j] + 1) * D[i], q[x] = 1;
48
49
            }
50
       }
51
52 }
```

2.3.2 Min25 筛

5

12

13

17

18

19

20

21

22

23

24

25

26

27 28

29

30

31

32

35

36

37

40

41

42

43

44

45

46

47

48

49

```
using ll = long long;
2 using i128 = __int128;
 //using i128 = int64_t;
  const 11 mod = 998244353;
  namespace min25 {
      const int N = 1e6 + 10;
      11 po[40][N];
      inline ll fpow(ll e, ll k) {
          return po[e][k];
      void precalc() {
          for(int e = 0; e < 40; ++e) {</pre>
               po[e][0] = 1;
               for(int i = 1; i < N; i++)</pre>
                   po[e][i] = e * po[e][i - 1] % mod;
          }
      }
      11 n;
      int B;
      int _id[N * 2];
      inline int id(ll x) {
          return x \le B ? x : n / x + B;
      }
      inline int Id(ll x) {
          return _id[id(x)];
      // f(p) = p - 1 = fh(p) - fg(p);
      inline 11 fg(11 x) {
          // assert(x <= sqrt(n));</pre>
          return 1;
      }
      inline 11 fh(11 x) {
          // assert(x <= sqrt(n));</pre>
          return x;
      }
      // \sum_{i=2}^n fg(i)
      inline 11 sg(11 x) {
          return (x - 1) % mod;
      // \sum_{i=2}^n fh(i)
      inline ll sh(ll x) {
          return ((i128) x * (x + 1) / 2 + mod - 1) % mod;
      // f(p^e)
      inline ll f(ll p, ll e) {
          //return (pe - pe / p) % mod;
          return (p + (mod - 2) * fpow(e, p)) % mod;
      }
```

```
bitset<N> np;
51
        11 p[N>>2], pn;
52
        11 pg[N>>2], ph[N>>2];
53
        void sieve(ll sz) {
54
             for(int i = 2; i <= sz; i++) {
55
                 if(!np[i]) {
56
                      p[++pn] = i;
57
                      pg[pn] = (pg[pn - 1] + fg(i)) \% mod;
58
                      ph[pn] = (ph[pn - 1] + fh(i)) \% mod;
59
60
                 for(int j = 1; j <= pn && i * p[j] <= sz; j++)</pre>
61
      np[i * p[j]] = 1;
62
                      if(i % p[j] == 0) {
63
                          break;
64
                      }
65
                 }
        11 m;
        11 g[N * 2], h[N * 2];
        11 w[N * 2];
        void compress() {
73
             for (int i = 1; i <= m; i++) {
                 g[i] = (h[i] + mod - g[i] + mod - g[i]) % mod;
76
             for (int i = 1; i <= pn; i++) {
77
                 pg[i] = (ph[i] + mod - pg[i] + mod - pg[i]) %
78
      \hookrightarrow mod:
79
        }
80
81
        11 dfs_F(int k, 11 n) {
             if (n < p[k] || n <= 1) return 0;</pre>
             11 res = g[Id(n)] + mod - pg[k - 1], pw2;
84
             for (int i = k; i <= pn && (pw2 = (11) p[i] * p[i])</pre>
85
      ←→ <= n; ++i) {</pre>
                 ll pw = p[i];
86
                 for (int c = 1; pw2 <= n; ++c, pw = pw2, pw2 *=
87
      \hookrightarrow p[i])
                      res = (res + ((11) f(p[i], c) * dfs_F(i +
88
      \hookrightarrow 1, n / pw) + f(p[i], c + 1))) % mod;
89
             return res;
90
91
        void init(ll _n) {
             n = _n;
             B = sqrt(n) + 100;
             pn = 0;
             sieve(B);
             m = 0;
             for(11 i = 1, j; i \le n; i = j + 1) {
                 j = n / (n / i);
100
                 11 t = n / i;
                 _{id[id(t)] = ++m;}
102
                 w[m] = t;
103
                 g[m] = sg(t);
104
                 h[m] = sh(t);
105
                 //printf("id: %lld, w: %lld, g: %lld, h:
106
      \hookrightarrow %lld\n", m, t, g[m], h[m]);
107
             for (int j = 1; j <= pn; j++) {</pre>
108
                 11 z = (11) p[j] * p[j];
109
                 for(int i = 1; i <= m && z <= w[i]; i++) {</pre>
110
                      int k = Id(w[i] / p[j]);
111
                      g[i] = (g[i] + (11) \pmod{-fg(p[j])} *
112
      \hookrightarrow (g[k] - pg[j - 1] + mod)) % mod;
```

```
h[i] = (h[i] + (l1) \pmod{-fh(p[j])} *
      \hookrightarrow (h[k] - ph[j - 1] + mod)) % mod;
114
115
             compress();
116
117
             /* 递推 min25
             for(int j = pn; j > 0; j--) {
                  ll z = (ll) p[j] * p[j];
120
                  for(int i = 1; i <= m && z <= w[i]; i++) {
121
                       ll pe = p[j];
122
                      for(int \ e = 1; \ pe \ * p[j] <= w[i]; \ e++, \ pe
123
      \hookrightarrow *= p[j]) {
                           g[i] = (g[i] + (ll) f(p[j], e) *
124
      \hookrightarrow (g[Id(w[i] / pe)] - pg[j] + mod) + f(p[j], e + 1)) %
      \hookrightarrow mod:
126
         11 get(11 x) { // x == n / i}
129
             if(x < 1) return 0;
130
             return (dfs_F(1, x) + 1) % mod;
        11 get(11 1, 11 r) {
             return get(r) - get(1 - 1);
134
135
136
137
    void Solve() {
        long long n:
139
         scanf("%lld", &n);
140
        min25::init(n);
141
        long long res = min25::get(n);
         printf("%lld\n", res);
144
145
    int main() {
146
        min25::precalc();
147
         int T;
148
         scanf("%d", &T);
         while(T--) {
             Solve();
151
152
    }
153
```

2.4 扩展欧几里得

```
using i128 = __int128;
  // ax + by = c
  // 有解当且仅当 gcd(a, b) / c
  // 要求 a, b 不全为 0
  // 无合法性检查
  void exgcd(i128 a, i128 b, i128 &x, i128 &y, i128 c = 1) {
      if (b == 0) {
          x = c / a;
          y = 0;
10
       } else {
11
           exgcd(b, a % b, x, y, c);
           i128 \text{ tmp} = x;
14
          x = y;
          y = tmp - (a / b) * y;
15
      }
16
17
  }
```

2.5 中国剩余定理

2.5.1 两个数的 crt

2.5.2 excrt

```
using 11 = long long;
  11 gcd(ll a, ll b) {
       return b == 0 ? a : gcd(b, a % b);
   // x === a1 \ (mod \ b1), \ x === a2 \ (mod \ b2)
   // 合法性检查@返回 -1 则为无解
  pair<11, 11> excrt(11 a1, 11 b1, 11 a2, 11 b2) {
       ll g = gcd(b1, b2);
       11 lcm = (b1 / g) * b2;
       if ((a1 - a2) % g) return {-1, -1};
14
       i128 x, y;
15
       exgcd(b1, b2, x, y, a1 - a2);
16
       11 \text{ res} = (a1 - b1 * x) \% \text{ lcm};
17
       if (res < 0) res += lcm;
       return {res, lcm};
19
20
  }
```

2.6 卢卡斯定理

2.6.1 模素数卢卡斯

2.6.2 扩展卢卡斯

```
// 扩展卢卡斯定理
  // 扩欧求逆元
  11 INV(11 a, 11 p) {
      11 x, y;
      exgcd(a, p, x, y);
      return (x \% p + p) \% p;
  }
  // 递归求解(n! / px) mod pk
  11 F(11 n, 11 p, 11 pk) {
      if (n == 0) return 1;
      ll rou = 1; // 循环节
      ll rem = 1; // 余项
      for (11 i = 1; i \le pk; ++i) {
15
          if (i % p)
16
              rou = rou * i % pk;
17
18
      rou = fpow(rou, n / pk, pk);
      for (ll i = pk * (n / pk); i <= n; ++i) {</pre>
20
          if (i % p)
21
              rem = rem * (i % pk) % pk; // 小心诈炸int
```

```
23
       return F(n / p, p, pk) * rou % pk * rem % pk;
24
25
26
  // 素数p在n!中的次数
27
  11 G(11 n, 11 p) {
28
       if (n < p) return 0;
       return G(n / p, p) + (n / p);
32
  11 C_pk(11 n, 11 m, 11 p, 11 pk) {
33
       11 fz = F(n, p, pk), fm1 = INV(F(m, p, pk), pk),
34
          fm2 = INV(F(n - m, p, pk), pk);
35
       11 mi = fpow(p, G(n, p) - G(m, p) - G(n - m, p), pk);
36
       return fz * fm1 % pk * fm2 % pk * mi % pk;
37
38
39
  11 exlucas(11 n, 11 m, 11 P) {
40
       Fact(P); // 素因子分解②见素因子分解.cpp
41
       for (int i = 1; i <= cnt2; ++i) {
           11 pk = 1;
           for (int j = 0; j < l[i]; ++j) {
44
               pk *= p[i];
45
46
47
           bi[i] = pk, ai[i] = C_pk(n, m, p[i], pk);
48
       return excrt(cnt2) % P;
50 }
```

2.7 原根与离散对数

2.7.1 原根

```
// 得到 p 的原根
   11 generator(11 p) {
       static ll rec, ans;
       if (p == rec)
           return ans;
       rec = p;
       vector<11> fact;
       11 \text{ phi} = p - 1, n = phi;
       for (ll i = 2; lll * i * i <= n; ++i) {
            if (n % i == 0) {
                fact.push_back(i);
                while (n \% i == \emptyset)
12
                    n /= i;
13
            }
14
15
       if (n > 1)
16
            fact.push_back(n);
17
       for (11 res = 2; res <= p; ++res) {</pre>
18
           bool ok = 1;
19
            for (ll factor : fact) {
20
                if (fpow(res, phi / factor, p) == 1) {
22
                    ok = false;
                    break;
23
                }
24
25
            if (ok)
26
                return ans = res;
       return ans = -1;
29
30 }
```

2.7.2 BSGS

```
1  // a ^ k == b mod p
2  ll BSGS(ll a, ll b, ll p) { // p <= 1e9
3     static ll rec;
4     static map<ll, ll> mp;
```

```
5
       11 sq = (11)ceil(sqrt(p));
6
       if (rec != p) {
           rec = p;
           mp.clear();
           11 le = 1, bs = fpow(a, sq, p);
10
           for (ll i = 1; i \le sq; ++i) {
11
               le = le * bs % p;
               if (le < 0)
                   le += p;
               mp[le] = i * sq;
15
           }
16
       }
17
18
       11 ri = (b \% p);
19
       if (ri < 0)
20
          ri += p;
21
       for (11 j = 0; j <= sq; ++j) {
22
           if (mp.count(ri)) {
23
               return mp[ri] - j;
25
           ri = ri * a % p;
26
           if (ri < 0)
27
               ri += p;
28
29
30
       return -1;
31
32
   // x ^ a == b \mod p
33
  11 calc(11 a, 11 b, 11 p) {
34
       ll g = generator(p); // 求原根-见原根.cpp
35
       11 ga = fpow(g, a, p);
       11 c = BSGS(ga, b, p);
       ll res = fpow(g, c, p);
38
       return res;
39
40
  }
```

```
ll phi = x, num = x;
       for (int p : primes) {
           if (p > x / p) break;
           if (x % p == 0)
              phi = (phi / p) * (p - 1), x /= p;
           while (x % p == 0)
               x /= p;
10
       if (x > 1)
11
           phi = phi / x * (x - 1);
12
       return phi;
13
14
  }
```

2.8 杂项

2.8.1 大数整除小数取模

计算 $\frac{a}{b} \bmod p$ 当 a 的本值太大无法表示时 可以计算 a 对 b * p 取模的结果 再除 b 模 p

$$\frac{a}{b} \bmod p = \frac{a \bmod b * p}{b} \bmod p$$

2.8.2 立方根复杂度求 mobius 函数

```
int getmu(int x) {
       int pr, cur = 0;
2
       for (int i = 1; i <= cnt; ++i) {
           cur = 0;
           while (x % prime[i] == 0) {
               ++cur; x /= prime[i];
           }
           if (cur > 1) return 0;
       if (x == 1) return 1;
11
       int sq = sqrt(x) + 0.5;
       if (111 * sq * sq == x) return 0;
12
       return 1:
13
14
  }
```

2.8.3 直接求 euler 函数

```
1 // primes 为预处理的素数表
2 ll getPhi(ll x) {
```

39

43

44

47

51

52

最小生成树 3.1

3.1.1 Boruvka算法

思想: 每次选择连接每个连通块的最小边, 把连通块缩起来. 每次连通块个数至少减半,所以迭代 $O(\log n)$ 次即可得到最小生成 $_{45}$ // 需要调用Reduction和Contraction

一种比较简单的实现方法:每次迭代遍历所有边,用并查集维护连通 性和每个连通块的最小边权.

应用: 最小异或生成树

3.1.2 动态最小生成树

动态最小生成树的离线算法比较容易, 而在线算法通常极为复杂. 一个跑得比较快的离线做法是对时间分治, 在每层分治时找出一定 在/不在MST上的边,只带着不确定边继续递归.

简单起见, 找确定边的过程用Kruskal算法实现, 过程中的两种重要 操作如下:

- Reduction: 待修改边标为+INF, 跑MST后把非树边删掉, 减少 58
- Contraction: 待修改边标为-INF, 跑MST后缩除待修改边之外 的所有MST边, 计算必须边

每轮分治需要Reduction-Contraction, 借此减少不确定边, 从而保 $_{63}$ 证复杂度.

复杂度证明: 假设当前区间有k条待修改边, n和m表示点数和边数, 64那么最坏情况下R-C的效果为 $(n,m) \to (n,n+k-1) \to (k+1,2k)$. 65

```
// 全局结构体与数组定义
                                                           67
  struct edge { //边的定义
                                                           68
      int u, v, w, id; // id表示边在原图中的编号
                                                           69
      bool vis; // 在Kruskal时用,记录这条边是否是树边
                                                           70
      bool operator < (const edge &e) const { return w < e.w;</pre>
    → }
                                                           72
  } e[20][maxn], t[maxn]; // 为了便于回滚,在每层分治存一个副
                                                           73
                                                           74
                                                           75
  // 用于存储修改的结构体,表示第id条边的权值从u修改为v
                                                           76
  struct A {
                                                           77
      int id, u, v;
                                                           78
  } a[maxn];
                                                           79
13
                                                           80
  int id[20][maxn]; // 每条边在当前图中的编号
  int p[maxn], size[maxn], stk[maxn], top; // p和size是并查集
    → 数组, stk是用来撤销的栈
  int n, m, q; // 点数,边数,修改数
18
                                                           85
19
                                                           86
  // 方便起见,附上可能需要用到的预处理代码
20
                                                           87
  for (int i = 1; i <= n; i++) { // 并查集初始化
                                                           88
      p[i] = i;
22
                                                           89
      size[i] = 1;
23
                                                           90
24
  }
  for (int i = 1; i <= m; i++) { // 读入与预标号
26
                                                           93
      scanf("%d%d%d", &e[0][i].u, &e[0][i].v, &e[0][i].w);
27
                                                           94
      e[0][i].id = i;
                                                           95
      id[0][i] = i;
29
                                                           96
  }
30
                                                           97
31
                                                           98
  for (int i = 1; i <= q; i++) { // 预处理出调用数组
32
                                                           99
      scanf("%d%d", &a[i].id, &a[i].v);
33
                                                           100
      a[i].u = e[0][a[i].id].w;
34
      e[0][a[i].id].w = a[i].v;
35
                                                           101
36 }
```

```
for(int i = q; i; i--)
      e[0][a[i].id].w = a[i].u;
  CDQ(1, q, 0, m, 0); // 这是调用方法
  // 分治主过程 O(nlog^2n)
  void CDQ(int 1, int r, int d, int m, long long ans) { //
    → CDO分治
      if (1 == r) { // 区间长度已减小到1,输出答案,退出
          e[d][id[d][a[1].id]].w = a[1].v;
          printf("%11d\n", ans + Kruskal(m, e[d]));
          e[d][id[d][a[1].id]].w=a[1].u;
          return;
      }
      int tmp = top;
      Reduction(1, r, d, m);
      ans += Contraction(1, r, d, m); // R-C
      int mid = (1 + r) / 2;
      copy(e[d] + 1, e[d] + m + 1, e[d + 1] + 1);
      for (int i = 1; i <= m; i++)
          id[d + 1][e[d][i].id] = i; // 准备好下一层要用的数
    →组
      CDQ(1, mid, d + 1, m, ans);
      for (int i = 1; i <= mid; i++)</pre>
         e[d][id[d][a[i].id]].w = a[i].v; // 进行左边的修改
      copy(e[d] + 1, e[d] + m + 1, e[d + 1] + 1);
      for (int i = 1; i <= m; i++)
          id[d + 1][e[d][i].id] = i; // 重新准备下一层要用的
    →数组
      CDQ(mid + 1, r, d + 1, m, ans);
      for (int i = top; i > tmp; i--)
         cut(stk[i]);//撤销所有操作
      top = tmp:
  // Reduction(减少无用边):待修改边标为+INF,跑MST后把非树边删
    → 掉,减少无用边
83 // 需要调用Kruskal
  void Reduction(int 1, int r, int d, int &m) {
      for (int i = 1; i <= r; i++)
         e[d][id[d][a[i].id]].w = INF;//待修改的边标为INF
      Kruskal(m, e[d]);
      copy(e[d] + 1, e[d] + m + 1, t + 1);
      int cnt = 0:
      for (int i = 1; i <= m; i++)
          if (t[i].w == INF || t[i].vis){ // 非树边扔掉
             id[d][t[i].id] = ++cnt; // 给边重新编号
             e[d][cnt] = t[i];
      for (int i = r; i >= 1; i--)
         e[d][id[d][a[i].id]].w = a[i].u; // 把待修改的边改
    → 回去
```

```
m=cnt;
102
103
105
    // Contraction(缩必须边):待修改边标为-INF,跑MST后缩除待修改
106
     → 边之外的所有树边
    // 返回缩掉的边的总权值
   // 需要调用Kruskal
   long long Contraction(int 1, int r, int d, int &m) {
       long long ans = 0;
111
       for (int i = 1; i <= r; i++)
           e[d][id[d][a[i].id]].w = -INF; // 待修改边标为-INF
       Kruskal(m, e[d]);
       copy(e[d] + 1, e[d] + m + 1, t + 1);
117
       int cnt = 0;
       for (int i = 1; i <= m ; i++) {
120
           if (t[i].w != -INF && t[i].vis) { // 必须边
121
               ans += t[i].w;
               mergeset(t[i].u, t[i].v);
           }
           else { // 不确定边
               id[d][t[i].id]=++cnt;
               e[d][cnt]=t[i];
127
           }
128
       }
129
       for (int i = r; i >= 1; i--) {
131
           e[d][id[d][a[i].id]].w = a[i].u; // 把待修改的边改
132
     →回去
           e[d][id[d][a[i].id]].vis = false;
134
135
       m = cnt;
136
       return ans;
139
140
141
   // Kruskal算法 O(mlogn)
142
   // 方便起见,这里直接沿用进行过缩点的并查集,在过程结束后撤
143
     →销即可
   long long Kruskal(int m, edge *e) {
144
       int tmp = top;
       long long ans = 0;
146
       sort(e + 1, e + m + 1); // 比较函数在结构体中定义过了
149
       for (int i = 1; i <= m; i++) {
150
           if (findroot(e[i].u) != findroot(e[i].v)) {
               e[i].vis = true;
               ans += e[i].w;
               mergeset(e[i].u, e[i].v);
           else
156
               e[i].vis = false;
157
158
159
       for(int i = top; i > tmp; i--)
160
           cut(stk[i]); // 撤销所有操作
161
       top = tmp;
162
163
       return ans;
164
165
166
167
   // 以下是并查集相关函数
168
```

```
int findroot(int x) { // 因为需要撤销,不写路径压缩
       while (p[x] != x)
170
           x = p[x];
171
       return x;
174
   }
175
   void mergeset(int x, int y) { // 按size合并,如果想跑得更快
176
     → 就写一个按秩合并
       x = findroot(x); // 但是按秩合并要再开一个栈记录合并之
     →前的秩
       y = findroot(y);
178
179
       if (x == y)
180
           return:
181
182
       if (size[x] > size[y])
183
           swap(x, y);
184
185
       p[x] = y;
186
       size[y] += size[x];
187
       stk[++top] = x;
188
   }
189
190
   void cut(int x) { // 并查集撤销
192
       int y = x;
           size[y = p[y]] -= size[x];
       while (p[y]! = y);
       p[x] = x;
199
   }
```

3.2 费用流

3.2.1 SPFA费用流

```
constexpr int maxn = 20005, maxm = 200005;
   struct edge {
       int to, prev, cap, w;
   e[maxm * 2];
   int last[maxn], cnte, d[maxn], p[maxn]; // 记得把Last初始化
    → 成-1, 不然会死循环
   bool inq[maxn];
   void spfa(int s) {
11
       memset(d, -63, sizeof(d));
12
       memset(p, -1, sizeof(p));
13
14
       queue<int> q;
15
       q.push(s);
17
       d[s] = 0;
18
19
       while (!q.empty()) {
20
           int x = q.front();
           q.pop();
           inq[x] = false;
23
24
           for (int i = last[x]; ~i; i = e[i].prev)
25
               if (e[i].cap) {
26
                   int y = e[i].to;
28
                   if (d[x] + e[i].w > d[y]) {
29
                       p[y] = i;
30
                       d[y] = d[x] + e[i].w;
31
```

```
if (!inq[y]) {
32
                             q.push(y);
33
                             inq[y] = true;
35
36
                    }
                }
37
       }
38
39
   int mcmf(int s, int t) {
       int ans = 0;
42
43
       while (spfa(s), d[t] > 0) {
44
            int flow = 0x3f3f3f3f3f;
45
            for (int x = t; x != s; x = e[p[x] ^ 1].to)
46
                flow = min(flow, e[p[x]].cap);
47
48
           ans += flow * d[t];
49
50
            for (int x = t; x != s; x = e[p[x] ^ 1].to) {
                e[p[x]].cap -= flow;
                e[p[x] ^ 1].cap += flow;
54
55
56
       return ans;
57
58
   void add(int x, int y, int c, int w) {
60
       e[cnte].to = y;
61
       e[cnte].cap = c;
62
       e[cnte].w = w;
65
       e[cnte].prev = last[x];
66
       last[x] = cnte++;
67
  }
68
   void addedge(int x, int y, int c, int w) {
69
       add(x, y, c, w);
70
71
       add(y, x, 0, -w);
72
  }
```

3.2.2 Dijkstra费用流

有的地方也叫原始-对偶费用流.

原理和求多源最短路的Johnson算法是一样的,都是给每个点维护一个势 h_u ,使得对任何有向边 $u \to v$ 都满足 $w + h_u - h_v \ge 0$.

如果有负费用则从s开始跑一遍 SPFA 初始化,否则可以直接初始 61 化 $h_u=0$.

每次增广时得到的路径长度就是 $d_{s,t}+h_t$,增广之后让所有 $h_u={}^{63}$ $h'_u+d'_{s,u}$,直到 $d_{s,t}=\infty$ (最小费用最大流)或 $d_{s,t}\geq 0$ (最小费用 ${}^{64}_{65}$ 流)为止.

注意最大费用流要转成取负之后的最小费用流,因为Dijkstra求的是 67 最短路.

```
69
  struct edge {
       int to, cap, prev, w;
                                                                      71
  } e[maxe * 2];
                                                                      72
  int last[maxn], cnte;
                                                                      74
   long long d[maxn], h[maxn];
                                                                      76
   int p[maxn];
                                                                      77
  bool vis[maxn];
  int s, t;
11
12
   void Adde(int x, int y, int z, int w) {
                                                                      81
13
       e[cnte].to = y;
14
       e[cnte].cap = z;
                                                                      83
15
       e[cnte].w = w;
```

```
e[cnte].prev = last[x];
       last[x] = cnte++;
18
19
20
   void addedge(int x, int y, int z, int w) {
21
       Adde(x, y, z, w);
22
       Adde(y, x, 0, -w);
23
24
25
   void dijkstra() {
26
       memset(d, 63, sizeof(d));
27
28
       memset(vis, 0, sizeof(vis));
29
       priority_queue<pair<long long, int> > heap;
30
31
32
       d[s] = 0;
       heap.push(make_pair(011, s));
33
34
       while (!heap.empty()) {
35
           int x = heap.top().second;
36
           heap.pop();
37
38
           if (vis[x])
39
               continue;
40
41
           vis[x] = true;
42
           for (int i = last[x]; ~i; i = e[i].prev)
43
                if (e[i].cap > 0 \&\& d[e[i].to] > d[x] + e[i].w
44
     \hookrightarrow + h[x] - h[e[i].to]) {
                    d[e[i].to] = d[x] + e[i].w + h[x] -
45
     \hookrightarrow h[e[i].to];
                    p[e[i].to] = i;
46
                    heap.push(make_pair(-d[e[i].to], e[i].to));
47
                }
48
       }
49
50
51
   pair<long long, long long> mcmf() {
53
       spfa();
       for (int i = 1; i <= t; i++)
55
           h[i] = d[i]:
56
       // 如果初始有负权就像这样跑一遍SPFA预处理
57
       long long flow = 0, cost = 0;
       while (dijkstra(), d[t] < 0x3f3f3f3f3f) {</pre>
           for (int i = 1; i <= t; i++)
               h[i] += d[i];
           int a = 0x3f3f3f3f3f;
           for (int x = t; x != s; x = e[p[x] ^ 1].to)
               a = min(a, e[p[x]].cap);
           flow += a;
           cost += (long long)a * h[t];
           for (int x = t; x != s; x = e[p[x] ^ 1].to) {
                e[p[x]].cap -= a;
                e[p[x] ^ 1].cap += a;
       return make_pair(flow, cost);
82
  }
```

84 // 记得初始化 85 memset(last, -1, sizeof(last));

4 字符串

4.1 后缀自动机

```
// 在字符集比较小的时候可以直接开go数组,否则需要用map或者
    → 哈希表替换
  // 注意!!!结点数要开成串长的两倍
  // 全局变量与数组定义
  int last, len[maxn], fa[maxn], go[maxn][26], sam_cnt;
  int c[maxn], q[maxn]; // 用来桶排序
  // 在主函数开头加上这句初始化
  last = sam\_cnt = 1;
  // 以下是按vaL进行桶排序的代码
11
  for (int i = 1; i <= sam_cnt; i++)</pre>
12
      c[len[i] + 1]++;
13
  for (int i = 1; i <= n; i++)</pre>
14
      c[i] += c[i - 1]; // 这里n是串长
15
  for (int i = 1; i <= sam_cnt; i++)</pre>
16
      q[++c[len[i]]] = i;
17
18
  //加入一个字符 均摊0(1)
19
  void extend(int c) {
20
      int p = last, np = ++sam_cnt;
22
      len[np] = len[p] + 1;
23
      while (p && !go[p][c]) {
^{24}
```

```
go[p][c] = np;
25
           p = fa[p];
26
       }
27
28
       if (!p)
29
           fa[np] = 1;
30
       else {
31
           int q = go[p][c];
32
33
            if (len[q] == len[p] + 1)
34
                fa[np] = q;
35
            else {
36
                int nq = ++sam_cnt;
37
                len[nq] = len[p] + 1;
38
                memcpy(go[nq], go[q], sizeof(go[q]));
39
40
                fa[nq] = fa[q];
41
                fa[np] = fa[q] = nq;
42
43
                while (p \&\& go[p][c] == q){
44
                    go[p][c] = nq;
45
                    p = fa[p];
46
                }
47
48
            }
49
       }
50
       last = np;
51
52 }
```

	Theoretical	Computer Science Cheat Sheet				
	Definitions	Series				
f(n) = O(g(n))	iff \exists positive c, n_0 such that $0 \le f(n) \le cg(n) \ \forall n \ge n_0$.	$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}, \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}, \sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4}.$				
$f(n) = \Omega(g(n))$	iff \exists positive c, n_0 such that $f(n) \ge cg(n) \ge 0 \ \forall n \ge n_0$.	$ \begin{array}{ccc} $				
$f(n) = \Theta(g(n))$	iff $f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$.	$\sum_{i=1}^{n} i^{m} = \frac{1}{m+1} \left[(n+1)^{m+1} - 1 - \sum_{i=1}^{n} \left((i+1)^{m+1} - i^{m+1} - (m+1)i^{m} \right) \right]$				
f(n) = o(g(n))	iff $\lim_{n\to\infty} f(n)/g(n) = 0$.	$\sum_{k=1}^{n} i^{m} = \frac{1}{m+1} \sum_{k=1}^{m} {m+1 \choose k} B_{k} n^{m+1-k}.$				
$\lim_{n \to \infty} a_n = a$	iff $\forall \epsilon > 0$, $\exists n_0$ such that $ a_n - a < \epsilon$, $\forall n \ge n_0$.	i=1 $k=0$ Geometric series:				
$\sup S$	least $b \in \mathbb{R}$ such that $b \geq s$, $\forall s \in S$.	$\sum_{i=0}^{n} c^{i} = \frac{c^{n+1} - 1}{c - 1}, c \neq 1, \sum_{i=0}^{\infty} c^{i} = \frac{1}{1 - c}, \sum_{i=1}^{\infty} c^{i} = \frac{c}{1 - c}, c < 1,$				
$\inf S$	greatest $b \in \mathbb{R}$ such that $b \le s$, $\forall s \in S$.	$\sum_{i=0}^{n} ic^{i} = \frac{nc^{n+2} - (n+1)c^{n+1} + c}{(c-1)^{2}}, c \neq 1, \sum_{i=0}^{\infty} ic^{i} = \frac{c}{(1-c)^{2}}, c < 1.$				
$ \liminf_{n \to \infty} a_n $	$\lim_{n \to \infty} \inf \{ a_i \mid i \ge n, i \in \mathbb{N} \}.$	Harmonic series: $H_n = \sum_{i=1}^{n} \frac{1}{i}, \qquad \sum_{i=1}^{n} iH_i = \frac{n(n+1)}{2}H_n - \frac{n(n-1)}{4}.$				
$\limsup_{n \to \infty} a_n$	$\lim_{n \to \infty} \sup \{ a_i \mid i \ge n, i \in \mathbb{N} \}.$	i=1 $i=1$				
$\binom{n}{k}$	Combinations: Size k subsets of a size n set.	$\sum_{i=1}^{n} H_i = (n+1)H_n - n, \sum_{i=1}^{n} {i \choose m} H_i = {n+1 \choose m+1} \left(H_{n+1} - \frac{1}{m+1} \right).$				
$\begin{bmatrix} n \\ k \end{bmatrix}$	Stirling numbers (1st kind): Arrangements of an n element set into k cycles.	1. $\binom{n}{k} = \frac{n!}{(n-k)!k!}$, 2. $\sum_{k=0}^{n} \binom{n}{k} = 2^n$, 3. $\binom{n}{k} = \binom{n}{n-k}$,				
$\left\{ egin{array}{c} n \\ k \end{array} \right\}$	Stirling numbers (2nd kind): Partitions of an n element set into k non-empty sets.	$4. \binom{n}{k} = \frac{n}{k} \binom{n-1}{k-1}, \qquad \qquad 5. \binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}, \\ 6. \binom{n}{m} \binom{m}{k} = \binom{n}{k} \binom{n-k}{m-k}, \qquad \qquad 7. \sum_{k=0}^{n} \binom{r+k}{k} = \binom{r+n+1}{n}, $				
$\langle {n \atop k} \rangle$	1st order Eulerian numbers: Permutations $\pi_1\pi_2\pi_n$ on $\{1, 2,, n\}$ with k ascents.	$8. \sum_{k=0}^{n} \binom{k}{m} = \binom{n+1}{m+1}, \qquad 9. \sum_{k=0}^{n} \binom{r}{k} \binom{s}{n-k} = \binom{r+s}{n},$				
$\left\langle\!\left\langle {n\atop k}\right\rangle\!\right\rangle$	2nd order Eulerian numbers.	10. $\binom{n}{k} = (-1)^k \binom{k-n-1}{k}$, 11. $\binom{n}{1} = \binom{n}{n} = 1$,				
C_n	Catalan Numbers: Binary trees with $n+1$ vertices.	12. $\binom{n}{2} = 2^{n-1} - 1$, 13. $\binom{n}{k} = k \binom{n-1}{k} + \binom{n-1}{k-1}$,				
14. $\begin{bmatrix} n \\ 1 \end{bmatrix} = (n-1)$	15. $\begin{bmatrix} n \\ 2 \end{bmatrix} = (n - 1)^n$	$16. \begin{bmatrix} n \\ n \end{bmatrix} = 1, \qquad \qquad 17. \begin{bmatrix} n \\ k \end{bmatrix} \ge \begin{Bmatrix} n \\ k \end{Bmatrix},$				
		${n \choose n-1} = {n \choose n-1} = {n \choose 2}, 20. \sum_{k=0}^n {n \brack k} = n!, 21. \ C_n = \frac{1}{n+1} {2n \choose n},$				
$22. \left\langle {n \atop 0} \right\rangle = \left\langle {n \atop n-1} \right\rangle$	22. $\binom{n}{0} = \binom{n}{n-1} = 1$, 23. $\binom{n}{k} = \binom{n}{n-1-k}$, 24. $\binom{n}{k} = (k+1)\binom{n-1}{k} + (n-k)\binom{n-1}{k-1}$,					
25. $\begin{pmatrix} 0 \\ k \end{pmatrix} = \begin{cases} 1 & \text{if } k = 0, \\ 0 & \text{otherwise} \end{cases}$ 26. $\begin{pmatrix} n \\ 1 \end{pmatrix} = 2^n - n - 1,$ 27. $\begin{pmatrix} n \\ 2 \end{pmatrix} = 3^n - (n+1)2^n + \binom{n+1}{2},$						
28. $x^n = \sum_{k=0}^n \left\langle {n \atop k} \right\rangle {x+k \choose n},$ 29. $\left\langle {n \atop m} \right\rangle = \sum_{k=0}^m {n+1 \choose k} (m+1-k)^n (-1)^k,$ 30. $m! \left\{ {n \atop m} \right\} = \sum_{k=0}^n \left\langle {n \atop k} \right\rangle {k \choose n-m},$						
$31. \left\langle {n \atop m} \right\rangle = \sum_{k=0}^{n} \left\langle {n \atop m} \right\rangle = \sum_{k=0}^$	$ \binom{n}{k} \binom{n-k}{m} (-1)^{n-k-m} k!, $	32. $\left\langle \left\langle {n\atop 0}\right\rangle \right\rangle = 1,$ 33. $\left\langle \left\langle {n\atop n}\right\rangle \right\rangle = 0$ for $n \neq 0,$				
34. $\left\langle \!\! \left\langle \!\! \right\rangle \!\! \right\rangle = (k + 1)^n$	-1) $\left\langle \left\langle {n-1\atop k}\right\rangle \right\rangle + (2n-1-k)\left\langle \left\langle {n-1\atop k}\right\rangle \right\rangle$	$ \begin{array}{c c} -1 \\ -1 \\ \end{array} $ 35. $ \sum_{k=0}^{n} \left\langle \!\! \begin{pmatrix} n \\ k \end{pmatrix} \!\! \right\rangle = \frac{(2n)^n}{2^n}, $				
$36. \left\{ \begin{array}{c} x \\ x-n \end{array} \right\} = \sum_{k}^{\infty}$	$\sum_{k=0}^{n} \left\langle \!\! \left\langle n \right\rangle \!\! \right\rangle \left(x + n - 1 - k \right), $	37. $\binom{n+1}{m+1} = \sum_{k} \binom{n}{k} \binom{k}{m} = \sum_{k=0}^{n} \binom{k}{m} (m+1)^{n-k},$				

$$\mathbf{38.} \begin{bmatrix} n+1\\ m+1 \end{bmatrix} = \sum_{k} \begin{bmatrix} n\\ k \end{bmatrix} \binom{k}{m} = \sum_{k=0}^{n} \begin{bmatrix} k\\ m \end{bmatrix} n^{\underline{n-k}} = n! \sum_{k=0}^{n} \frac{1}{k!} \begin{bmatrix} k\\ m \end{bmatrix}, \qquad \mathbf{39.} \begin{bmatrix} x\\ x-n \end{bmatrix} = \sum_{k=0}^{n} \left\langle \!\!\! \begin{pmatrix} n\\ k \end{pmatrix} \!\!\! \right\rangle \binom{x+k}{2n},$$

40.
$$\binom{n}{m} = \sum_{k} \binom{n}{k} \binom{k+1}{m+1} (-1)^{n-k},$$

42.
$${m+n+1 \brace m} = \sum_{k=0}^{m} k {n+k \brace k},$$

44.
$$\binom{n}{m} = \sum_{k} \binom{n+1}{k+1} \binom{k}{m} (-1)^{m-k},$$

$$\mathbf{46.} \ \left\{ \begin{array}{l} n \\ n-m \end{array} \right\} = \sum_{k} \binom{m-n}{m+k} \binom{m+n}{n+k} \binom{m+k}{k}, \qquad \mathbf{47.} \ \left[\begin{array}{l} n \\ n-m \end{array} \right] = \sum_{k} \binom{m-n}{m+k} \binom{m+n}{n+k} \binom{m+k}{k},$$

48.
$${n \choose \ell+m} {\ell+m \choose \ell} = \sum_{k} {k \choose \ell} {n-k \choose m} {n \choose k},$$
 49.
$${n \choose \ell+m} {\ell+m \choose \ell} = \sum_{k} {k \choose \ell} {n-k \choose m} {n \choose k}.$$

41.
$$\begin{bmatrix} n \\ m \end{bmatrix} = \sum_{k=0}^{\infty} \begin{bmatrix} n+1 \\ k+1 \end{bmatrix} {k \choose m} (-1)^{m-k},$$

43.
$$\begin{bmatrix} m+n+1 \\ m \end{bmatrix} = \sum_{k=0}^{m} k(n+k) \begin{bmatrix} n+k \\ k \end{bmatrix},$$

44.
$$\binom{n}{m} = \sum_{k} {n+1 \brace k+1} {k \brack m} (-1)^{m-k}, \quad \textbf{45.} \quad (n-m)! \binom{n}{m} = \sum_{k} {n+1 \brack k+1} {k \brack m} (-1)^{m-k}, \quad \text{for } n \ge m,$$

Trees

Every tree with nvertices has n-1edges.

Kraft inequality: If the depths of the leaves of a binary tree are

$$d_1, \dots, d_n$$
:

$$\sum_{i=1}^{n} 2^{-d_i} \le 1,$$

and equality holds only if every internal node has 2 sons.

Recurrences

Master method:

$$T(n) = aT(n/b) + f(n), \quad a \ge 1, b > 1$$

If $\exists \epsilon > 0$ such that $f(n) = O(n^{\log_b a - \epsilon})$

$$T(n) = \Theta(n^{\log_b a}).$$

If
$$f(n) = \Theta(n^{\log_b a})$$
 then $T(n) = \Theta(n^{\log_b a} \log_2 n)$.

If $\exists \epsilon > 0$ such that $f(n) = \Omega(n^{\log_b a + \epsilon})$, and $\exists c < 1$ such that $af(n/b) \leq cf(n)$ for large n, then

$$T(n) = \Theta(f(n)).$$

Substitution (example): Consider the following recurrence

$$T_{i+1} = 2^{2^i} \cdot T_i^2, \quad T_1 = 2.$$

Note that T_i is always a power of two. Let $t_i = \log_2 T_i$. Then we have

$$t_{i+1} = 2^i + 2t_i, \quad t_1 = 1.$$

Let $u_i = t_i/2^i$. Dividing both sides of the previous equation by 2^{i+1} we get

$$\frac{t_{i+1}}{2^{i+1}} = \frac{2^i}{2^{i+1}} + \frac{t_i}{2^i}.$$

Substituting we find

$$u_{i+1} = \frac{1}{2} + u_i, \qquad u_1 = \frac{1}{2},$$

which is simply $u_i = i/2$. So we find that T_i has the closed form $T_i = 2^{i2^{i-1}}$. Summing factors (example): Consider the following recurrence

$$T(n) = 3T(n/2) + n$$
, $T(1) = 1$.

Rewrite so that all terms involving Tare on the left side

$$T(n) - 3T(n/2) = n.$$

Now expand the recurrence, and choose a factor which makes the left side "telescope"

$$1(T(n) - 3T(n/2) = n)$$
$$3(T(n/2) - 3T(n/4) = n/2)$$

$$3^{\log_2 n - 1} (T(2) - 3T(1) = 2)$$

Let $m = \log_2 n$. Summing the left side we get $T(n) - 3^m T(1) = T(n) - 3^m =$ $T(n) - n^k$ where $k = \log_2 3 \approx 1.58496$. Summing the right side we get

$$\sum_{i=0}^{m-1} \frac{n}{2^i} 3^i = n \sum_{i=0}^{m-1} \left(\frac{3}{2}\right)^i.$$

Let $c = \frac{3}{2}$. Then we have

$$n \sum_{i=0}^{m-1} c^i = n \left(\frac{c^m - 1}{c - 1} \right)$$
$$= 2n(c^{\log_2 n} - 1)$$
$$= 2n(c^{(k-1)\log_c n} - 1)$$
$$= 2n^k - 2n.$$

and so $T(n) = 3n^k - 2n$. Full history recurrences can often be changed to limited history ones (example): Consider

$$T_i = 1 + \sum_{j=0}^{i-1} T_j, \quad T_0 = 1.$$

Note that

$$T_{i+1} = 1 + \sum_{j=0}^{i} T_j.$$

Subtracting we find

$$T_{i+1} - T_i = 1 + \sum_{j=0}^{i} T_j - 1 - \sum_{j=0}^{i-1} T_j$$

= T_i .

And so
$$T_{i+1} = 2T_i = 2^{i+1}$$
.

Generating functions:

- 1. Multiply both sides of the equation by x^i .
- 2. Sum both sides over all i for which the equation is valid.
- 3. Choose a generating function G(x). Usually $G(x) = \sum_{i=0}^{\infty} x^i g_i$.
- 3. Rewrite the equation in terms of the generating function G(x).
- 4. Solve for G(x).
- 5. The coefficient of x^i in G(x) is g_i . Example:

$$g_{i+1} = 2g_i + 1, \quad g_0 = 0.$$

$$\sum_{i \geq 0} g_{i+1} x^i = \sum_{i \geq 0} 2g_i x^i + \sum_{i \geq 0} x^i.$$

We choose $G(x) = \sum_{i>0} x^i g_i$. Rewrite in terms of G(x):

$$\frac{G(x) - g_0}{x} = 2G(x) + \sum_{i \ge 0} x^i.$$

Simplify

$$\frac{G(x)}{x} = 2G(x) + \frac{1}{1-x}.$$

Solve for
$$G(x)$$
:
$$G(x) = \frac{x}{(1-x)(1-2x)}.$$

Expand this using partial fractions:
$$G(x) = x \left(\frac{2}{1-2x} - \frac{1}{1-x}\right)$$

$$= x \left(2\sum_{i \geq 0} 2^i x^i - \sum_{i \geq 0} x^i\right)$$

$$= \sum_{i \geq 0} (2^{i+1} - 1)x^{i+1}.$$

So
$$g_i = 2^i - 1$$
.

			Theoretical Computer Science Cheat Sheet				
	$\pi \approx 3.14159,$	$e \approx 2.7$	$\gamma 1828, \qquad \gamma \approx 0.57721,$	$\phi = \frac{1+\sqrt{5}}{2} \approx 1.61803,$	$\hat{\phi} = \frac{1 - \sqrt{5}}{2} \approx61803$		
i	2^i	p_i	General		Probability		
1	2	2	Bernoulli Numbers ($B_i =$	$= 0, \text{ odd } i \neq 1)$: Continu	ious distributions: If		
2	4	3	$B_0 = 1, B_1 = -\frac{1}{2}, B_2 =$	$=\frac{1}{6}, B_4=-\frac{1}{30},$	$\Pr[a < X < b] = \int_{a}^{b} p(x) dx,$		
3	8	5	$B_6 = \frac{1}{42}, B_8 = -\frac{1}{30}$	$B_{10} = \frac{1}{66}$.	Ja		
4	16	7	Change of base, quadrati	c formula: then p is X . If	s the probability density fund		
5	32	11	$\log_b x = \frac{\log_a x}{\log_a b}, \qquad \frac{-b}{a}$	$b \pm \sqrt{b^2 - 4ac}$	$\Pr[X < a] = P(a),$		
6	64	13	108a 0	$\frac{}{2a}$. then P	is the distribution function of		
7	128	17	Euler's number e:	P and p	both exist then		
8	256	19	$e = 1 + \frac{1}{2} + \frac{1}{6} + \frac{1}{24}$	120	$P(a) = \int_{-\infty}^{a} p(x) dx.$		
9	512	23	$\lim_{n\to\infty} \left(1+\frac{x}{n}\right)^n$	$e^x = e^x$.	$I(u) = \int_{-\infty} p(x) dx.$		
10	1,024	29	$(1+\frac{1}{n})^n < e < (1)$	Expects	ation: If X is discrete		
11	2,048	31	(167	" / F	$\mathbb{E}[g(X)] = \sum g(x) \Pr[X = x]$		
12	4,096	37	$\left(1 + \frac{1}{n}\right)^n = e - \frac{e}{2n} + \frac{1}{24}$	$\frac{1e}{\ln^2} - O\left(\frac{1}{n^3}\right)$. If $X \in \mathbb{R}$	ntinuous then		
13	8,192	41	Harmonic numbers:	11 11 001			
14	16,384	43	$1, \frac{3}{2}, \frac{11}{6}, \frac{25}{12}, \frac{137}{60}, \frac{49}{20}, \frac{36}{14}$	$\frac{3}{9}, \frac{761}{999}, \frac{7129}{9799}, \dots$ $E[g(X)]$	$ =\int_{-\infty}^{\infty} g(x)p(x) dx = \int_{-\infty}^{\infty} g(x)$		
15	32,768	47	-7 27 67 127 60 7 207 14	Varianc	e, standard deviation:		
16	65,536	53	$\ln n < H_n < \ln$	n+1,	$VAR[X] = E[X^2] - E[X]^2,$		
17	131,072	59	$H_n = \ln n + \gamma +$	$O(\frac{1}{2})$	$\sigma = \sqrt{\text{VAR}[X]}.$		
18	262,144	61		For ever	A and B :		
19	524,288	67	Factorial, Stirling's appro	eximation: $\Pr[A \setminus A]$	$\forall B] = \Pr[A] + \Pr[B] - \Pr[A]$		
20	1,048,576	71	1, 2, 6, 24, 120, 720, 5040, 4	$\Pr[A]$	$\wedge B] = \Pr[A] \cdot \Pr[B],$		
21	2,097,152	73	$ (n)^n$	(1))	iff A and B are independent		
22	4,194,304	79	$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1\right)^n$	$+\Theta\left(\frac{1}{n}\right)$.	$A B] = \frac{\Pr[A \land B]}{\Pr[B]}$		
23	8,388,608	83	Ackermann's function an	d inverse:	11[2]		
24	16,777,216	89	$\int 2^j$	i=1 For range $i=1$	dom variables X and Y :		
25	33,554,432	97	$a(i,j) = \begin{cases} 2^j \\ a(i-1,2) \\ a(i-1,a(i,j)) \end{cases}$	j=1	$[Y \cdot Y] = E[X] \cdot E[Y],$ if X and Y are independent		
26	67,108,864	101		[77	[X] and $[Y]$ are independently $[X] + [Y] = E[X] + E[Y],$		
27	134,217,728	103	$\alpha(i) = \min\{j \mid a(j,j)\}$	— ·)	[cX] = E[X] + E[Y], [cX] = cE[X].		
28	268,435,456	107	Binomial distribution:	Darrag', 4	$c[cA] = c_{E[A]}.$ theorem:		
29	536,870,912	109	$\Pr[X = k] = \binom{n}{k} p^k q^{n-k}$:			
30	1,073,741,824	113		11[$A_i B] = \frac{\Pr[B A_i]\Pr[A_i]}{\sum_{i=1}^n \Pr[A_i]\Pr[B A_i]}$		
31	2,147,483,648	127	$E[X] = \sum_{i=1}^{n} k \binom{n}{k} p^{k}$	$k^k q^{n-k} = np.$ Inclusio	on-exclusion:		
32	4,294,967,296	131	k=1		n.		
	Pascal's Triangl	e	Poisson distribution: $e^{-\lambda \lambda k}$	$ \Pr \bigcup_{i=1}^{r} V_i $	$\left[X_i \right] = \sum_{i=1}^{\infty} \Pr[X_i] +$		
	1		$\Pr[X = k] = \frac{e^{-\lambda} \lambda^k}{k!},$	$E[X] = \lambda.$			
	1 1		Normal (Gaussian) distri		$\sum_{k=2}^{n} (-1)^{k+1} \sum_{i_i < \dots < i_k} \Pr\left[\bigwedge_{j=1}^{k} \right]$		
	1 2 1		$p(x) = \frac{1}{\sqrt{2\pi}} e^{-(x-\mu)^2/2}$				
	1 2 2 1		$P(x) = \frac{1}{\sqrt{2}} \epsilon$	$, \mathbf{E}[\mathbf{x}] - \mu. \text{Momen}$	t inequalities:		

$$p(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/2\sigma^2}, \quad E[X] = \mu.$$

The "coupon collector": We are given a random coupon each day, and there are ndifferent types of coupons. The distribution of coupons is uniform. The expected number of days to pass before we to collect all n types is

 nH_n .

$$\Pr[a < X < b] = \int_a^b p(x) \, dx,$$

ility density function of

$$\Pr[X < a] = P(a),$$

ution function of X. If hen

$$P(a) = \int_{-\infty}^{a} p(x) \, dx.$$

$$\mathbb{E}[g(X)] = \sum_{x} g(x) \Pr[X = x].$$

$$\mathrm{E}[g(X)] = \int_{-\infty}^{\infty} g(x)p(x)\,dx = \int_{-\infty}^{\infty} g(x)\,dP(x).$$

$$VAR[X] = E[X^{2}] - E[X]^{2},$$

$$\sigma = \sqrt{VAR[X]}.$$

$$\begin{split} \Pr[A \vee B] &= \Pr[A] + \Pr[B] - \Pr[A \wedge B] \\ \Pr[A \wedge B] &= \Pr[A] \cdot \Pr[B], \end{split}$$

 ${\cal B}$ are independent.

$$\Pr[A|B] = \frac{\Pr[A \land B]}{\Pr[B]}$$

$$E[X \cdot Y] = E[X] \cdot E[Y],$$

Y are independent.

$$E[X+Y] = E[X] + E[Y],$$

$$E[cX] = c E[X].$$

$$\Pr[A_i|B] = \frac{\Pr[B|A_i]\Pr[A_i]}{\sum_{i=1}^{n} \Pr[A_i]\Pr[B|A_i]}.$$

$$\Pr\left[\bigvee_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} \Pr[X_i] +$$

$$\sum_{k=2}^n (-1)^{k+1} \sum_{i_i < \dots < i_k} \Pr \Big[\bigwedge_{j=1}^k X_{i_j} \Big].$$

$$\Pr\left[|X| \ge \lambda \operatorname{E}[X]\right] \le \frac{1}{\lambda},$$

$$\Pr\left[\left|X - \mathrm{E}[X]\right| \ge \lambda \cdot \sigma\right] \le \frac{1}{\lambda^2}.$$

Geometric distribution:
$$\Pr[X=k] = pq^{k-1}, \qquad q=1-p,$$

$$E[X] = \sum_{k=1}^{\infty} kpq^{k-1} = \frac{1}{p}.$$

Trigonometry

Pythagorean theorem:

$$C^2 = A^2 + B^2$$

Definitions:

$$\sin a = A/C, \quad \cos a = B/C,$$

$$\csc a = C/A, \quad \sec a = C/B,$$

$$\tan a = \frac{\sin a}{\cos a} = \frac{A}{B}, \quad \cot a = \frac{\cos a}{\sin a} = \frac{B}{A}.$$

Area, radius of inscribed circle:

$$\frac{1}{2}AB$$
, $\frac{AB}{A+B+C}$.

Identities:

$$\sin x = \frac{1}{\csc x}, \qquad \cos x = \frac{1}{\sec x},$$

$$\tan x = \frac{1}{\cot x}, \qquad \sin^2 x + \cos^2 x = 1,$$

$$1 + \tan^2 x = \sec^2 x, \qquad 1 + \cot^2 x = \csc^2 x,$$

$$\sin x = \cos\left(\frac{\pi}{2} - x\right), \qquad \sin x = \sin(\pi - x),$$

$$\cos x = -\cos(\pi - x), \qquad \tan x = \cot\left(\frac{\pi}{2} - x\right),$$

$$\cot x = -\cot(\pi - x), \qquad \csc x = \cot\frac{\pi}{2} - \cot x,$$

 $\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y.$

 $\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y,$

$$\tan(x \pm y) = \frac{\tan x \pm \tan y}{1 \mp \tan x \tan y},$$

$$\cot(x \pm y) = \frac{\cot x \cot y \mp 1}{\cot x \pm \cot y},$$

$$\sin 2x = 2\sin x \cos x, \qquad \qquad \sin 2x = \frac{2\tan x}{1 + \tan^2 x}$$

$$\cos 2x = \cos^2 x - \sin^2 x,$$
 $\cos 2x = 2\cos^2 x - 1,$
 $\cos 2x = 1 - 2\sin^2 x,$ $\cos 2x = \frac{1 - \tan^2 x}{1 + \tan^2 x}.$

$$\tan 2x = \frac{2\tan x}{1 - \tan^2 x},$$
 $\cot 2x = \frac{\cot^2 x - 1}{2\cot x},$

$$\sin(x+y)\sin(x-y) = \sin^2 x - \sin^2 y,$$

$$\cos(x+y)\cos(x-y) = \cos^2 x - \sin^2 y.$$

Euler's equation:

$$e^{ix} = \cos x + i\sin x, \qquad e^{i\pi} = -1.$$

v2.02 © 1994 by Steve Seiden sseiden@acm.org http://www.csc.lsu.edu/~seiden

Matrices

Multiplication:

$$C = A \cdot B$$
, $c_{i,j} = \sum_{k=1}^{n} a_{i,k} b_{k,j}$.

Determinants: $\det A \neq 0$ iff A is non-singular.

$$\det A \cdot B = \det A \cdot \det B,$$

$$\det A = \sum_{\pi} \prod_{i=1}^{n} \operatorname{sign}(\pi) a_{i,\pi(i)}.$$

 2×2 and 3×3 determinant:

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc,$$

$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = g \begin{vmatrix} b & c \\ e & f \end{vmatrix} - h \begin{vmatrix} a & c \\ d & f \end{vmatrix} + i \begin{vmatrix} a & b \\ d & e \end{vmatrix}$$
$$= \frac{aei + bfg + cdh}{-ceq - fha - ibd}.$$

Permanents:

$$\operatorname{perm} A = \sum_{\pi} \prod_{i=1}^{n} a_{i,\pi(i)}.$$

Hyperbolic Functions

Definitions:

$$\sinh x = \frac{e^x - e^{-x}}{2}, \qquad \cosh x = \frac{e^x + e^{-x}}{2},$$

$$\tanh x = \frac{e^x - e^{-x}}{e^x + e^{-x}}, \qquad \operatorname{csch} x = \frac{1}{\sinh x},$$

$$\operatorname{sech} x = \frac{1}{\cosh x}, \qquad \operatorname{coth} x = \frac{1}{\tanh x}.$$

Identities:

$$\cosh^2 x - \sinh^2 x = 1, \qquad \tanh^2 x + \mathrm{sech}^2 x = 1,$$

$$\coth^2 x - \mathrm{csch}^2 x = 1, \qquad \sinh(-x) = -\sinh x,$$

$$\cosh(-x) = \cosh x, \qquad \tanh(-x) = -\tanh x,$$

$$\sinh(x+y) = \sinh x \cosh y + \cosh x \sinh y,$$

$$\cosh(x+y) = \cosh x \cosh y + \sinh x \sinh y,$$

$$\sinh 2x = 2\sinh x \cosh x,$$

$$\cosh 2x = \cosh^2 x + \sinh^2 x,$$

$$\cosh 2x = \cosh^2 x + \sinh^2 x,$$

$$\cosh x + \sinh x = e^x, \qquad \cosh x - \sinh x = e^{-x},$$

$$(\cosh x + \sinh x)^n = \cosh nx + \sinh nx, \quad n \in \mathbb{Z},$$

$$2\sinh^2 \frac{x}{2} = \cosh x - 1, \qquad 2\cosh^2 \frac{x}{2} = \cosh x + 1.$$

$\sin \theta$	$\cos \theta$	$\tan \theta$
0	1	0
$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$
$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1
		$\sqrt{3}$
1	0	∞
	0	$ \begin{array}{ccc} 0 & 1 \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{array} $

... in mathematics you don't understand things, you just get used to them.

– J. von Neumann

More Trig.

$$c^2 = a^2 + b^2 - 2ab\cos C$$

Area:

$$A = \frac{1}{2}hc,$$

$$= \frac{1}{2}ab\sin C,$$

$$= \frac{c^2\sin A\sin B}{2\sin C}.$$

$$A = \sqrt{s \cdot s_a \cdot s_b \cdot s_c},$$

$$s = \frac{1}{2}(a+b+c),$$

$$s_a = s-a,$$

$$s_b = s-b,$$

$$s_c = s-c.$$

More identities:

more identities:

$$\sin \frac{x}{2} = \sqrt{\frac{1 - \cos x}{2}}$$

$$\cos \frac{x}{2} = \sqrt{\frac{1 + \cos x}{1 + \cos x}}$$

$$= \frac{1 - \cos x}{1 + \cos x},$$

$$= \frac{\sin x}{1 + \cos x},$$

$$\cot \frac{x}{2} = \sqrt{\frac{1 + \cos x}{1 - \cos x}},$$

$$= \frac{1 + \cos x}{\sin x},$$

$$= \frac{\sin x}{1 - \cos x},$$

$$\sin x = \frac{e^{ix} - e^{-ix}}{2i},$$

$$\cos x = \frac{e^{ix} + e^{-ix}}{2},$$

 $\tan x = -i\frac{e^{ix} - e^{-ix}}{e^{ix} + e^{-ix}}$

 $\sin x = \frac{\sinh ix}{i}$

 $\cos x = \cosh ix,$

 $\tan x = \frac{\tanh ix}{i}.$

Theoretical Computer Science Cheat Sheet Number Theory Graph Theory The Chinese remainder theorem: There ex-Definitions: ists a number C such that: Loop An edge connecting a vertex to itself. $C \equiv r_1 \mod m_1$ DirectedEach edge has a direction. SimpleGraph with no loops or : : : multi-edges. $C \equiv r_n \mod m_n$ WalkA sequence $v_0e_1v_1\dots e_\ell v_\ell$. if m_i and m_j are relatively prime for $i \neq j$. TrailA walk with distinct edges. Path trail with distinct Euler's function: $\phi(x)$ is the number of vertices. positive integers less than x relatively ConnectedA graph where there exists prime to x. If $\prod_{i=1}^{n} p_i^{e_i}$ is the prime faca path between any two torization of x then vertices. $\phi(x) = \prod_{i=1}^{n} p_i^{e_i - 1} (p_i - 1).$ ComponentΑ $_{ m maximal}$ connected subgraph. Euler's theorem: If a and b are relatively TreeA connected acyclic graph. prime then Free tree A tree with no root. $1 \equiv a^{\phi(b)} \bmod b$. DAGDirected acyclic graph. Eulerian Graph with a trail visiting Fermat's theorem: each edge exactly once. $1 \equiv a^{p-1} \bmod p$. Hamiltonian Graph with a cycle visiting The Euclidean algorithm: if a > b are ineach vertex exactly once. tegers then CutA set of edges whose re $gcd(a, b) = gcd(a \mod b, b).$ moval increases the number of components. If $\prod_{i=1}^{n} p_i^{e_i}$ is the prime factorization of x Cut-setA minimal cut. $Cut\ edge$ A size 1 cut. $S(x) = \sum_{d|n} d = \prod_{i=1}^{n} \frac{p_i^{e_i+1} - 1}{p_i - 1}.$ k-Connected A graph connected with the removal of any k-1Perfect Numbers: x is an even perfect numk-Tough $\forall S \subseteq V, S \neq \emptyset$ we have ber iff $x = 2^{n-1}(2^n - 1)$ and $2^n - 1$ is prime. $k \cdot c(G - S) \le |S|.$ Wilson's theorem: n is a prime iff k-Regular A graph where all vertices $(n-1)! \equiv -1 \mod n$. have degree k. Möbius inversion: $\mu(i) = \begin{cases} 1 & \text{if } i = 1. \\ 0 & \text{if } i \text{ is not square-free.} \\ (-1)^r & \text{if } i \text{ is the product of} \\ r & \text{distinct primes.} \end{cases}$ Möbius inversion: k-regular k-Factor Α spanning subgraph. Matching A set of edges, no two of which are adjacent. CliqueA set of vertices, all of If which are adjacent. $G(a) = \sum_{d|a} F(d),$ A set of vertices, none of Ind. set which are adjacent. then Vertex cover A set of vertices which $F(a) = \sum_{u} \mu(d) G\left(\frac{a}{d}\right).$ cover all edges. Planar graph A graph which can be embeded in the plane. Prime numbers: $p_n = n \ln n + n \ln \ln n - n + n \frac{\ln \ln n}{\ln n}$ Plane graph An embedding of a planar $+O\left(\frac{n}{\ln n}\right),$ $\sum_{v \in V} \deg(v) = 2m.$ $\pi(n) = \frac{n}{\ln n} + \frac{n}{(\ln n)^2} + \frac{2!n}{(\ln n)^3}$ If G is planar then n-m+f=2, so $f \le 2n - 4, \quad m \le 3n - 6.$

 $+O\left(\frac{n}{(\ln n)^4}\right).$

Notatio	n:			
E(G)	Edge set			
V(G)	Vertex set			
c(G)	Number of components			
G[S]	Induced subgraph			
deg(v)	Degree of v			
$\Delta(G)$	Maximum degree			
$\delta(G)$	Minimum degree			
$\chi(G)$	Chromatic number			
$\chi_E(G)$	Edge chromatic number			
G^c	Complement graph			
K_n	Complete graph			
K_{n_1, n_2}	Complete bipartite graph			
$\mathrm{r}(k,\ell)$	Ramsey number			
Geometry				

Geometry

Projective coordinates: (x, y, z), not all x, y and z zero. $(x, y, z) = (cx, cy, cz) \quad \forall c \neq 0.$ Cartesian Projective

Cartesian	1 To Jecuive
(x,y)	(x, y, 1)
y = mx + b	(m,-1,b)
x = c	(1, 0, -c)
D	

Distance formula, L_p and L_{∞}

$$\sqrt{(x_1 - x_0)^2 + (y_1 - y_0)^2},$$
$$\left[|x_1 - x_0|^p + |y_1 - y_0|^p \right]^{1/p},$$

$$\lim_{p \to \infty} \left[|x_1 - x_0|^p + |y_1 - y_0|^p \right]^{1/p}.$$

Area of triangle $(x_0, y_0), (x_1, y_1)$ and (x_2, y_2) :

$$\frac{1}{2} \operatorname{abs} \begin{vmatrix} x_1 - x_0 & y_1 - y_0 \\ x_2 - x_0 & y_2 - y_0 \end{vmatrix}.$$

Angle formed by three points:

$$(x_2, y_2)$$

$$(0, 0) \qquad \ell_1 \qquad (x_1, y_1)$$

$$\cos \theta = \frac{(x_1, y_1) \cdot (x_2, y_2)}{\ell_1 \ell_2}.$$

Line through two points (x_0, y_0) and (x_1, y_1) :

$$\begin{vmatrix} x & y & 1 \\ x_0 & y_0 & 1 \\ x_1 & y_1 & 1 \end{vmatrix} = 0.$$

Area of circle, volume of sphere:

$$A = \pi r^2, \qquad V = \frac{4}{3}\pi r^3.$$

If I have seen farther than others, it is because I have stood on the shoulders of giants.

- Issac Newton

Any planar graph has a vertex with de-

gree ≤ 5 .

Wallis' identity:
$$\pi = 2 \cdot \frac{2 \cdot 2 \cdot 4 \cdot 4 \cdot 6 \cdot 6 \cdots}{1 \cdot 3 \cdot 3 \cdot 5 \cdot 5 \cdot 7 \cdots}$$

Brouncker's continued fraction expansion:

$$\frac{\pi}{4} = 1 + \frac{1^2}{2 + \frac{3^2}{2 + \frac{5^2}{2 + \frac{7^2}{2 + \dots}}}}$$

Gregory's series:
$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \cdots$$

Newton's series:

$$\frac{\pi}{6} = \frac{1}{2} + \frac{1}{2 \cdot 3 \cdot 2^3} + \frac{1 \cdot 3}{2 \cdot 4 \cdot 5 \cdot 2^5} + \cdots$$

Sharp's series:

$$\frac{\pi}{6} = \frac{1}{\sqrt{3}} \left(1 - \frac{1}{3^1 \cdot 3} + \frac{1}{3^2 \cdot 5} - \frac{1}{3^3 \cdot 7} + \cdots \right)$$

Euler's series:

$$\frac{\pi^2}{6} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2} + \cdots$$

$$\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \frac{1}{9^2} + \cdots$$

$$\frac{\pi^2}{12} = \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \frac{1}{5^2} - \cdots$$

Partial Fractions

Let N(x) and D(x) be polynomial functions of x. We can break down N(x)/D(x) using partial fraction expansion. First, if the degree of N is greater than or equal to the degree of D, divide N by D, obtaining

$$\frac{N(x)}{D(x)} = Q(x) + \frac{N'(x)}{D(x)},$$

where the degree of N' is less than that of D. Second, factor D(x). Use the following rules: For a non-repeated factor:

$$\frac{N(x)}{(x-a)D(x)} = \frac{A}{x-a} + \frac{N'(x)}{D(x)}$$

where

$$A = \left[\frac{N(x)}{D(x)}\right]_{x=a}.$$

For a repeated factor:

$$\frac{N(x)}{(x-a)^m D(x)} = \sum_{k=0}^{m-1} \frac{A_k}{(x-a)^{m-k}} + \frac{N'(x)}{D(x)},$$

$$A_k = \frac{1}{k!} \left[\frac{d^k}{dx^k} \left(\frac{N(x)}{D(x)} \right) \right]_{x=a}.$$

The reasonable man adapts himself to the world; the unreasonable persists in trying to adapt the world to himself. Therefore all progress depends on the unreasonable. - George Bernard Shaw

Derivatives:

1.
$$\frac{d(cu)}{dx} = c\frac{du}{dx}$$

1.
$$\frac{d(cu)}{dx} = c\frac{du}{dx}$$
, 2. $\frac{d(u+v)}{dx} = \frac{du}{dx} + \frac{dv}{dx}$, 3. $\frac{d(uv)}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$

3.
$$\frac{d(uv)}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$$

$$4. \frac{d(u^n)}{dx} = nu^{n-1} \frac{du}{dx},$$

4.
$$\frac{d(u^n)}{dx} = nu^{n-1}\frac{du}{dx}, \quad \mathbf{5.} \quad \frac{d(u/v)}{dx} = \frac{v\left(\frac{du}{dx}\right) - u\left(\frac{dv}{dx}\right)}{v^2}, \quad \mathbf{6.} \quad \frac{d(e^{cu})}{dx} = ce^{cu}\frac{du}{dx}$$

Calculus

$$6. \ \frac{d(e^{cu})}{dx} = ce^{cu}\frac{du}{dx}$$

7.
$$\frac{d(c^u)}{dx} = (\ln c)c^u \frac{du}{dx}$$

$$8. \ \frac{d(\ln u)}{dx} = \frac{1}{u} \frac{du}{dx},$$

$$9. \ \frac{d(\sin u)}{dx} = \cos u \frac{du}{dx}$$

$$10. \ \frac{d(\cos u)}{dx} = -\sin u \frac{du}{dx}$$

11.
$$\frac{d(\tan u)}{dx} = \sec^2 u \frac{du}{dx}$$

12.
$$\frac{d(\cot u)}{dx} = \csc^2 u \frac{du}{dx}$$

13.
$$\frac{d(\sec u)}{dx} = \tan u \sec u \frac{du}{dx}$$

14.
$$\frac{d(\csc u)}{dx} = -\cot u \csc u \frac{du}{dx}$$

15.
$$\frac{d(\arcsin u)}{dx} = \frac{1}{\sqrt{1-u^2}} \frac{du}{dx}$$

16.
$$\frac{d(\arccos u)}{dx} = \frac{-1}{\sqrt{1-u^2}} \frac{du}{dx}$$

17.
$$\frac{d(\arctan u)}{dx} = \frac{1}{1 + u^2} \frac{du}{dx}$$

18.
$$\frac{d(\operatorname{arccot} u)}{dx} = \frac{-1}{1+u^2} \frac{du}{dx}$$

19.
$$\frac{d(\operatorname{arcsec} u)}{dx} = \frac{1}{u\sqrt{1-u^2}} \frac{du}{dx},$$

20.
$$\frac{d(\arccos u)}{dx} = \frac{-1}{u\sqrt{1-u^2}} \frac{du}{dx}$$

21.
$$\frac{d(\sinh u)}{dx} = \cosh u \frac{du}{dx}$$

22.
$$\frac{d(\cosh u)}{dx} = \sinh u \frac{du}{dx}$$

23.
$$\frac{d(\tanh u)}{dx} = \operatorname{sech}^2 u \frac{du}{dx}$$

24.
$$\frac{d(\coth u)}{dx} = -\operatorname{csch}^2 u \frac{du}{dx}$$

25.
$$\frac{d(\operatorname{sech} u)}{dx} = -\operatorname{sech} u \tanh u \frac{du}{dx}$$

26.
$$\frac{d(\operatorname{csch} u)}{dx} = -\operatorname{csch} u \operatorname{coth} u \frac{du}{dx}$$

27.
$$\frac{d(\operatorname{arcsinh} u)}{dx} = \frac{1}{\sqrt{1+u^2}} \frac{du}{dx},$$

28.
$$\frac{d(\operatorname{arccosh} u)}{dx} = \frac{1}{\sqrt{u^2 - 1}} \frac{du}{dx}$$

$$29. \ \frac{d(\operatorname{arctanh} u)}{dx} = \frac{1}{1 - u^2} \frac{du}{dx},$$

30.
$$\frac{d(\operatorname{arccoth} u)}{dx} = \frac{1}{u^2 - 1} \frac{du}{dx}$$

31.
$$\frac{d(\operatorname{arcsech} u)}{dx} = \frac{-1}{u\sqrt{1-u^2}} \frac{du}{dx}$$

32.
$$\frac{d(\operatorname{arccsch} u)}{dx} = \frac{-1}{|u|\sqrt{1+u^2}} \frac{du}{dx}$$

Integrals:

1.
$$\int cu \, dx = c \int u \, dx,$$

$$2. \int (u+v) dx = \int u dx + \int v dx,$$

3.
$$\int x^n dx = \frac{1}{n+1}x^{n+1}$$
, $n \neq -1$, **4.** $\int \frac{1}{x} dx = \ln x$, **5.** $\int e^x dx = e^x$,

4.
$$\int \frac{1}{x} dx = \ln x$$
, **5.** $\int e^x$

6.
$$\int \frac{dx}{1+x^2} = \arctan x,$$

7.
$$\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx,$$

8.
$$\int \sin x \, dx = -\cos x,$$

$$\mathbf{9.} \int \cos x \, dx = \sin x,$$

$$\mathbf{10.} \int \tan x \, dx = -\ln|\cos x|,$$

$$\mathbf{11.} \int \cot x \, dx = \ln|\cos x|,$$

$$12. \int \sec x \, dx = \ln|\sec x + \tan x|$$

12.
$$\int \sec x \, dx = \ln|\sec x + \tan x|$$
, **13.** $\int \csc x \, dx = \ln|\csc x + \cot x|$,

14.
$$\int \arcsin \frac{x}{a} dx = \arcsin \frac{x}{a} + \sqrt{a^2 - x^2}, \quad a > 0,$$

Calculus Cont.

15.
$$\int \arccos \frac{x}{a} dx = \arccos \frac{x}{a} - \sqrt{a^2 - x^2}, \quad a > 0,$$

16.
$$\int \arctan \frac{x}{a} dx = x \arctan \frac{x}{a} - \frac{a}{2} \ln(a^2 + x^2), \quad a > 0,$$

17.
$$\int \sin^2(ax)dx = \frac{1}{2a}(ax - \sin(ax)\cos(ax)),$$

18.
$$\int \cos^2(ax)dx = \frac{1}{2a}(ax + \sin(ax)\cos(ax)),$$

$$19. \int \sec^2 x \, dx = \tan x,$$

$$20. \int \csc^2 x \, dx = -\cot x,$$

21.
$$\int \sin^n x \, dx = -\frac{\sin^{n-1} x \cos x}{n} + \frac{n-1}{n} \int \sin^{n-2} x \, dx,$$

22.
$$\int \cos^n x \, dx = \frac{\cos^{n-1} x \sin x}{n} + \frac{n-1}{n} \int \cos^{n-2} x \, dx,$$

23.
$$\int \tan^n x \, dx = \frac{\tan^{n-1} x}{n-1} - \int \tan^{n-2} x \, dx, \quad n \neq 1,$$

24.
$$\int \cot^n x \, dx = -\frac{\cot^{n-1} x}{n-1} - \int \cot^{n-2} x \, dx, \quad n \neq 1,$$

25.
$$\int \sec^n x \, dx = \frac{\tan x \sec^{n-1} x}{n-1} + \frac{n-2}{n-1} \int \sec^{n-2} x \, dx, \quad n \neq 1,$$

26.
$$\int \csc^n x \, dx = -\frac{\cot x \csc^{n-1} x}{n-1} + \frac{n-2}{n-1} \int \csc^{n-2} x \, dx, \quad n \neq 1, \quad$$
27. $\int \sinh x \, dx = \cosh x, \quad$ **28.** $\int \cosh x \, dx = \sinh x,$

29.
$$\int \tanh x \, dx = \ln|\cosh x|, \ \mathbf{30.} \ \int \coth x \, dx = \ln|\sinh x|, \ \mathbf{31.} \ \int \operatorname{sech} x \, dx = \arctan \sinh x, \ \mathbf{32.} \ \int \operatorname{csch} x \, dx = \ln|\tanh \frac{x}{2}|,$$

33.
$$\int \sinh^2 x \, dx = \frac{1}{4} \sinh(2x) - \frac{1}{2}x,$$

33.
$$\int \sinh^2 x \, dx = \frac{1}{4} \sinh(2x) - \frac{1}{2}x,$$
 34. $\int \cosh^2 x \, dx = \frac{1}{4} \sinh(2x) + \frac{1}{2}x,$ **35.** $\int \operatorname{sech}^2 x \, dx = \tanh x,$

$$\mathbf{35.} \int \operatorname{sech}^2 x \, dx = \tanh x$$

36.
$$\int \operatorname{arcsinh} \frac{x}{a} dx = x \operatorname{arcsinh} \frac{x}{a} - \sqrt{x^2 + a^2}, \quad a > 0,$$

37.
$$\int \operatorname{arctanh} \frac{x}{a} dx = x \operatorname{arctanh} \frac{x}{a} + \frac{a}{2} \ln |a^2 - x^2|,$$

38.
$$\int \operatorname{arccosh} \frac{x}{a} dx = \begin{cases} x \operatorname{arccosh} \frac{x}{a} - \sqrt{x^2 + a^2}, & \text{if } \operatorname{arccosh} \frac{x}{a} > 0 \text{ and } a > 0, \\ x \operatorname{arccosh} \frac{x}{a} + \sqrt{x^2 + a^2}, & \text{if } \operatorname{arccosh} \frac{x}{a} < 0 \text{ and } a > 0, \end{cases}$$

39.
$$\int \frac{dx}{\sqrt{a^2 + x^2}} = \ln\left(x + \sqrt{a^2 + x^2}\right), \quad a > 0,$$

40.
$$\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \arctan \frac{x}{a}, \quad a > 0,$$

41.
$$\int \sqrt{a^2 - x^2} \, dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin \frac{x}{a}, \quad a > 0,$$

42.
$$\int (a^2 - x^2)^{3/2} dx = \frac{x}{8} (5a^2 - 2x^2) \sqrt{a^2 - x^2} + \frac{3a^4}{8} \arcsin \frac{x}{a}, \quad a > 0,$$

43.
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a}, \quad a > 0,$$
 44. $\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left| \frac{a + x}{a - x} \right|,$ **45.** $\int \frac{dx}{(a^2 - x^2)^{3/2}} = \frac{x}{a^2 \sqrt{a^2 - x^2}},$

44.
$$\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left| \frac{a + x}{a - x} \right|$$

45.
$$\int \frac{dx}{(a^2 - x^2)^{3/2}} = \frac{x}{a^2 \sqrt{a^2 - x^2}},$$

46.
$$\int \sqrt{a^2 \pm x^2} \, dx = \frac{x}{2} \sqrt{a^2 \pm x^2} \pm \frac{a^2}{2} \ln \left| x + \sqrt{a^2 \pm x^2} \right|,$$

47.
$$\int \frac{dx}{\sqrt{x^2 - a^2}} = \ln \left| x + \sqrt{x^2 - a^2} \right|, \quad a > 0,$$

48.
$$\int \frac{dx}{ax^2 + bx} = \frac{1}{a} \ln \left| \frac{x}{a + bx} \right|,$$

49.
$$\int x\sqrt{a+bx}\,dx = \frac{2(3bx-2a)(a+bx)^{3/2}}{15b^2},$$

50.
$$\int \frac{\sqrt{a+bx}}{x} dx = 2\sqrt{a+bx} + a \int \frac{1}{x\sqrt{a+bx}} dx,$$

51.
$$\int \frac{x}{\sqrt{a+bx}} dx = \frac{1}{\sqrt{2}} \ln \left| \frac{\sqrt{a+bx} - \sqrt{a}}{\sqrt{a+bx} + \sqrt{a}} \right|, \quad a > 0,$$

52.
$$\int \frac{\sqrt{a^2 - x^2}}{x} dx = \sqrt{a^2 - x^2} - a \ln \left| \frac{a + \sqrt{a^2 - x^2}}{x} \right|,$$

53.
$$\int x\sqrt{a^2 - x^2} \, dx = -\frac{1}{3}(a^2 - x^2)^{3/2},$$

54.
$$\int x^2 \sqrt{a^2 - x^2} \, dx = \frac{x}{8} (2x^2 - a^2) \sqrt{a^2 - x^2} + \frac{a^4}{8} \arcsin \frac{x}{a}, \quad a > 0,$$

55.
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = -\frac{1}{a} \ln \left| \frac{a + \sqrt{a^2 - x^2}}{x} \right|,$$

56.
$$\int \frac{x \, dx}{\sqrt{a^2 - x^2}} = -\sqrt{a^2 - x^2},$$

57.
$$\int \frac{x^2 dx}{\sqrt{a^2 - x^2}} = -\frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin \frac{x}{a}, \quad a > 0,$$

58.
$$\int \frac{\sqrt{a^2 + x^2}}{x} dx = \sqrt{a^2 + x^2} - a \ln \left| \frac{a + \sqrt{a^2 + x^2}}{x} \right|,$$

59.
$$\int \frac{\sqrt{x^2 - a^2}}{x} dx = \sqrt{x^2 - a^2} - a \arccos \frac{a}{|x|}, \quad a > 0,$$

60.
$$\int x\sqrt{x^2 \pm a^2} \, dx = \frac{1}{3}(x^2 \pm a^2)^{3/2},$$

61.
$$\int \frac{dx}{x\sqrt{x^2 + a^2}} = \frac{1}{a} \ln \left| \frac{x}{a + \sqrt{a^2 + x^2}} \right|,$$

Calculus Cont.

62.
$$\int \frac{dx}{x\sqrt{x^2 - a^2}} = \frac{1}{a} \arccos \frac{a}{|x|}, \quad a > 0, \qquad 63. \int \frac{dx}{x^2\sqrt{x^2 \pm a^2}} = \mp \frac{\sqrt{x^2 \pm a^2}}{a^2 x}$$

63.
$$\int \frac{dx}{x^2 \sqrt{x^2 \pm a^2}} = \mp \frac{\sqrt{x^2 \pm a^2}}{a^2 x},$$

64.
$$\int \frac{x \, dx}{\sqrt{x^2 \pm a^2}} = \sqrt{x^2 \pm a^2},$$

65.
$$\int \frac{\sqrt{x^2 \pm a^2}}{x^4} dx = \mp \frac{(x^2 + a^2)^{3/2}}{3a^2 x^3},$$

66.
$$\int \frac{dx}{ax^2 + bx + c} = \begin{cases} \frac{1}{\sqrt{b^2 - 4ac}} \ln \left| \frac{2ax + b - \sqrt{b^2 - 4ac}}{2ax + b + \sqrt{b^2 - 4ac}} \right|, & \text{if } b^2 > 4ac, \\ \frac{2}{\sqrt{4ac - b^2}} \arctan \frac{2ax + b}{\sqrt{4ac - b^2}}, & \text{if } b^2 < 4ac, \end{cases}$$

67.
$$\int \frac{dx}{\sqrt{ax^2 + bx + c}} = \begin{cases} \frac{1}{\sqrt{a}} \ln \left| 2ax + b + 2\sqrt{a}\sqrt{ax^2 + bx + c} \right|, & \text{if } a > 0, \\ \frac{1}{\sqrt{-a}} \arcsin \frac{-2ax - b}{\sqrt{b^2 - 4ac}}, & \text{if } a < 0, \end{cases}$$

68.
$$\int \sqrt{ax^2 + bx + c} \, dx = \frac{2ax + b}{4a} \sqrt{ax^2 + bx + c} + \frac{4ax - b^2}{8a} \int \frac{dx}{\sqrt{ax^2 + bx + c}}$$

70.
$$\int \frac{dx}{x\sqrt{ax^2 + bx + c}} = \begin{cases} \frac{-1}{\sqrt{c}} \ln \left| \frac{2\sqrt{c}\sqrt{ax^2 + bx + c} + bx + 2c}{x} \right|, & \text{if } c > 0, \\ \frac{1}{\sqrt{-c}} \arcsin \frac{bx + 2c}{|x|\sqrt{b^2 - 4ac}}, & \text{if } c < 0, \end{cases}$$

71.
$$\int x^3 \sqrt{x^2 + a^2} \, dx = (\frac{1}{3}x^2 - \frac{2}{15}a^2)(x^2 + a^2)^{3/2}$$

72.
$$\int x^n \sin(ax) dx = -\frac{1}{a} x^n \cos(ax) + \frac{n}{a} \int x^{n-1} \cos(ax) dx$$

73.
$$\int x^n \cos(ax) dx = \frac{1}{a} x^n \sin(ax) - \frac{n}{a} \int x^{n-1} \sin(ax) dx$$
,

74.
$$\int x^n e^{ax} dx = \frac{x^n e^{ax}}{a} - \frac{n}{a} \int x^{n-1} e^{ax} dx,$$

75.
$$\int x^n \ln(ax) \, dx = x^{n+1} \left(\frac{\ln(ax)}{n+1} - \frac{1}{(n+1)^2} \right),$$

76.
$$\int x^n (\ln ax)^m \, dx = \frac{x^{n+1}}{n+1} (\ln ax)^m - \frac{m}{n+1} \int x^n (\ln ax)^{m-1} \, dx.$$

Finite Calculus

Difference, shift operators:

$$\Delta f(x) = f(x+1) - f(x),$$

$$\mathbf{E} f(x) = f(x+1).$$

Fundamental Theorem:

$$f(x) = \Delta F(x) \Leftrightarrow \sum f(x)\delta x = F(x) + C.$$

$$\sum_{a}^{b} f(x)\delta x = \sum_{i=a}^{b-1} f(i).$$

Differences

$$\Delta(cu) = c\Delta u, \qquad \Delta(u+v) = \Delta u + \Delta v,$$

$$\Delta(uv) = u\Delta v + \mathbf{E}\,v\Delta u,$$

$$\Delta(x^{\underline{n}}) = nx^{\underline{n}-1},$$

$$\Delta(H_x) = x^{-1}, \qquad \qquad \Delta(2^x) = 2^x,$$

$$\Delta(c^x) = (c-1)c^x, \qquad \Delta\binom{x}{m} = \binom{x}{m-1}.$$

$$\sum cu\,\delta x = c\sum u\,\delta x,$$

$$\sum (u+v)\,\delta x = \sum u\,\delta x + \sum v\,\delta x,$$

$$\sum u \Delta v \, \delta x = uv - \sum E \, v \Delta u \, \delta x,$$

$$\sum x^{\underline{n}} \, \delta x = \frac{x^{\underline{n+1}}}{\underline{n+1}}, \qquad \qquad \sum x^{\underline{-1}} \, \delta x = H_x,$$

$$\sum c^x \, \delta x = \frac{c^x}{c-1}, \qquad \qquad \sum {x \choose m} \, \delta x = {x \choose m+1}.$$

Falling Factorial Powers:

$$x^{\underline{n}} = x(x-1)\cdots(x-n+1), \quad n > 0,$$

$$x^{\underline{n}} = \frac{1}{(x+1)\cdots(x+|n|)}, \quad n < 0,$$

$$x^{\underline{n+m}} = x^{\underline{m}}(x-m)^{\underline{n}}$$

Rising Factorial Powers:

$$x^{\overline{n}} = x(x+1)\cdots(x+n-1), \quad n > 0,$$

$$x^{\overline{n}} = \frac{1}{(x-1)\cdots(x-|n|)}, \quad n < 0,$$

$$x^{\overline{n+m}} = x^{\overline{m}}(x+m)^{\overline{n}}.$$

Conversion:

$$x^{\underline{n}} = (-1)^n (-x)^{\overline{n}} = (x - n + 1)^{\overline{n}}$$

$$=1/(x+1)^{\overline{-n}},$$

$$x^{\overline{n}} = (-1)^n (-x)^{\underline{n}} = (x+n-1)^{\underline{n}}$$

$$=1/(x-1)^{-n},$$

$$x^{n} = \sum_{k=1}^{n} {n \brace k} x^{\underline{k}} = \sum_{k=1}^{n} {n \brace k} (-1)^{n-k} x^{\overline{k}},$$

$$x^{\underline{n}} = \sum_{k=1}^{n} \begin{bmatrix} n \\ k \end{bmatrix} (-1)^{n-k} x^k,$$

$$x^{\overline{n}} = \sum_{k=1}^{n} \begin{bmatrix} n \\ k \end{bmatrix} x^k.$$

Series

Taylor's series:

$$f(x) = f(a) + (x - a)f'(a) + \frac{(x - a)^2}{2}f''(a) + \dots = \sum_{i=0}^{\infty} \frac{(x - a)^i}{i!}f^{(i)}(a).$$

Expansions:

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + x^4 + \cdots = \sum_{i=0}^{\infty} x^i,$$

$$\frac{1}{1-cx} = 1 + cx + c^2x^2 + c^3x^3 + \cdots = \sum_{i=0}^{\infty} c^ix^i,$$

$$\frac{1}{1-x^n} = 1 + x^n + x^{2n} + x^{3n} + \cdots = \sum_{i=0}^{\infty} x^{ni},$$

$$\frac{x}{(1-x)^2} = x + 2x^2 + 3x^3 + 4x^4 + \cdots = \sum_{i=0}^{\infty} i^nx^i,$$

$$e^x = 1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3 + \cdots = \sum_{i=0}^{\infty} i^nx^i,$$

$$\ln(1+x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \frac{1}{4}x^4 + \cdots = \sum_{i=0}^{\infty} (-1)^{i+1}\frac{x^i}{i},$$

$$\ln \frac{1}{1-x} = x + \frac{1}{2}x^2 + \frac{1}{3}x^3 - \frac{1}{4}x^4 + \cdots = \sum_{i=0}^{\infty} (-1)^{i+1}\frac{x^i}{i},$$

$$\sin x = x - \frac{1}{3}x^3 + \frac{1}{9}x^5 - \frac{1}{17}x^7 + \cdots = \sum_{i=0}^{\infty} (-1)^{i}\frac{x^{2i+1}}{(2i+1)!},$$

$$\cos x = 1 - \frac{1}{2!}x^2 + \frac{1}{4}x^4 - \frac{1}{6!}x^6 + \cdots = \sum_{i=0}^{\infty} (-1)^{i}\frac{x^{2i+1}}{(2i+1)!},$$

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2}x^2 + \cdots = \sum_{i=0}^{\infty} \binom{n}{i}x^i,$$

$$\frac{1}{(1-x)^{n+1}} = 1 + (n+1)x + \binom{n+2}{2}x^2 + \cdots = \sum_{i=0}^{\infty} \binom{n}{i}x^i,$$

$$\frac{x}{e^x - 1} = 1 - \frac{1}{2}x + \frac{1}{12}x^2 - \frac{1}{720}x^4 + \cdots = \sum_{i=0}^{\infty} \binom{n}{i}x^i,$$

$$\frac{1}{\sqrt{1-4x}} = 1 + x + 2x^2 + 6x^3 + \cdots = \sum_{i=0}^{\infty} \binom{2i}{i}x^i,$$

$$\frac{1}{\sqrt{1-4x}} = 1 + (2+n)x + \binom{4+n}{2}x^2 + \cdots = \sum_{i=0}^{\infty} \binom{2i+n}{i}x^i,$$

$$\frac{1}{1-x} \ln \frac{1}{1-x} = x + \frac{3}{2}x^2 + \frac{1}{10}x^3 + \frac{25}{21}x^4 + \cdots = \sum_{i=0}^{\infty} \binom{2i+n}{i}x^i,$$

$$\frac{1}{2}\left(\ln\frac{1}{1-x}\right)^2 = \frac{1}{2}x^2 + \frac{3}{4}x^3 + \frac{11}{24}x^4 + \cdots = \sum_{i=0}^{\infty} \binom{2i+n}{i}x^i,$$

$$\frac{x}{1-x-x^2} = x + x^2 + 2x^3 + 3x^4 + \cdots = \sum_{i=0}^{\infty} F_{ii}x^i.$$

Ordinary power series:

$$A(x) = \sum_{i=0}^{\infty} a_i x^i.$$

Exponential power series:

$$A(x) = \sum_{i=0}^{\infty} a_i \frac{x^i}{i!}.$$

Dirichlet power serie

$$A(x) = \sum_{i=1}^{\infty} \frac{a_i}{i^x}.$$

Binomial theorem

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k.$$

$$x^{n} - y^{n} = (x - y) \sum_{k=0}^{n-1} x^{n-1-k} y^{k}.$$

For ordinary power series

$$\alpha A(x) + \beta B(x) = \sum_{i=0}^{\infty} (\alpha a_i + \beta b_i) x^i$$

$$x^k A(x) = \sum_{i=k}^{\infty} a_{i-k} x^i,$$

$$\frac{A(x) - \sum_{i=0}^{k-1} a_i x^i}{x^k} = \sum_{i=0}^{\infty} a_{i+k} x^i,$$

$$A(cx) = \sum_{i=0}^{\infty} c^i a_i x^i,$$

$$A'(x) = \sum_{i=0}^{\infty} (i+1) a_{i+1} x^i,$$

$$xA'(x) = \sum_{i=1}^{\infty} i a_i x^i,$$

$$\int A(x) dx = \sum_{i=1}^{\infty} i a_{i-1} x^i,$$

$$\frac{A(x) + A(-x)}{a_{i+1}} = \sum_{i=1}^{\infty} a_{2i} x^{2i},$$

$$\frac{A(x) + A(-x)}{2} = \sum_{i=1}^{\infty} a_{2i} x^{2i},$$

$$\frac{A(x) - A(-x)}{2} = \sum_{i=0}^{\infty} a_{2i+1} x^{2i+1}.$$

Summation: If $b_i = \sum_{j=0}^i a_i$ then

$$B(x) = \frac{1}{1 - x} A(x).$$

Convolution:

$$A(x)B(x) = \sum_{i=0}^{\infty} \left(\sum_{j=0}^{i} a_j b_{i-j} \right) x^i.$$

God made the natural numbers; all the rest is the work of man. Leopold Kronecker

Escher's Knot

Expansions:
$$\frac{1}{(1-x)^{n+1}} \ln \frac{1}{1-x} = \sum_{i=0}^{\infty} (H_{n+i} - H_n) \binom{n+i}{i} x^i, \qquad \left(\frac{1}{x}\right)^{-n} = \sum_{i=0}^{\infty} \begin{Bmatrix} i \\ n \end{Bmatrix} x^i,$$

$$x^{\overline{n}} = \sum_{i=0}^{\infty} \begin{bmatrix} n \\ i \end{bmatrix} x^i, \qquad (e^x - 1)^n = \sum_{i=0}^{\infty} \begin{Bmatrix} i \\ n \end{Bmatrix} \frac{n!x^i}{i!},$$

$$x \cot x = \sum_{i=0}^{\infty} \frac{(-4)^i B_2}{(2i)!}$$

$$\tan x = \sum_{i=1}^{\infty} (-1)^{i-1} \frac{2^{2i}(2^{2i} - 1) B_{2i} x^{2i-1}}{(2i)!}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{1}{i^x},$$

$$\frac{1}{\zeta(x)} = \sum_{i=1}^{\infty} \frac{\mu(i)}{i^x}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{\phi(i)}{i^x},$$

$$\zeta(x) = \prod_{p} \frac{1}{1-p^{-x}},$$

$$\zeta(x) = \prod_{p} \frac{1}{1-p^{-x}},$$

$$\zeta(x) = \prod_{p} \frac{1}{1-p^{-x}},$$

$$\zeta(x) = \prod_{p} \frac{1}{1-p^{-x}},$$

$$\zeta(x) = \prod_{p} \frac{\phi(i)}{i^x}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{\phi(i)}{i^x},$$

$$\zeta(x) = \prod_{p} \frac{1}{1-p^{-x}},$$

$$\zeta(x) = \prod_{p} \frac{1}{1-p^{-x}},$$

$$\zeta(x) = \prod_{p} \frac{1}{1-p^{-x}},$$

$$\zeta(x) = \prod_{p} \frac{\phi(i)}{1-p^{-x}},$$

$$\zeta(x) = \prod_{p} \frac$$

$$(e^{x} + i)x^{i}, \qquad \left(\frac{1}{x}\right)^{-n} = \sum_{i=0}^{\infty} \begin{Bmatrix} i \\ n \end{Bmatrix} x^{i},$$

$$(e^{x} - 1)^{n} = \sum_{i=0}^{\infty} \begin{Bmatrix} i \\ n \end{Bmatrix} \frac{n!x^{i}}{i!},$$

$$x \cot x = \sum_{i=0}^{\infty} \frac{(-4)^{i}B_{2i}x^{2i}}{(2i)!},$$

$$-\frac{1}{2}B_{2i}x^{2i-1}}{(2i)!}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{1}{i^{x}},$$

$$\frac{\zeta(x-1)}{\zeta(x)} = \sum_{i=1}^{\infty} \frac{\phi(i)}{i^{x}},$$

Stieltjes Integration

If G is continuous in the interval [a, b] and F is nondecreasing then

$$\int_{a}^{b} G(x) \, dF(x)$$

exists. If a < b < c then

$$\int_{a}^{c} G(x) \, dF(x) = \int_{a}^{b} G(x) \, dF(x) + \int_{b}^{c} G(x) \, dF(x).$$

$$\int_{a}^{b} (G(x) + H(x)) dF(x) = \int_{a}^{b} G(x) dF(x) + \int_{a}^{b} H(x) dF(x),$$

$$\int_{a}^{b} G(x) d(F(x) + H(x)) = \int_{a}^{b} G(x) dF(x) + \int_{a}^{b} G(x) dH(x),$$

$$\int_{a}^{b} c \cdot G(x) dF(x) = \int_{a}^{b} G(x) d(c \cdot F(x)) = c \int_{a}^{b} G(x) dF(x),$$

$$\int_{a}^{b} G(x) dF(x) = G(b)F(b) - G(a)F(a) - \int_{a}^{b} F(x) dG(x).$$

If the integrals involved exist, and F possesses a derivative F' at every point in [a, b] then

$$\int_a^b G(x) dF(x) = \int_a^b G(x)F'(x) dx.$$

 $\left(\frac{\arcsin x}{x}\right)^2 = \sum_{i=0}^{\infty} \frac{4^i i!^2}{(i+1)(2i+1)!} x^{2i}.$

 $= \sum_{i=0}^{\infty} \frac{(4i)!}{16^i \sqrt{2}(2i)!(2i+1)!} x^i,$

If we have equations:

$$a_{1,1}x_1 + a_{1,2}x_2 + \dots + a_{1,n}x_n = b_1$$

$$a_{2,1}x_1 + a_{2,2}x_2 + \dots + a_{2,n}x_n = b_2$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$a_{n,1}x_1 + a_{n,2}x_2 + \dots + a_{n,n}x_n = b_n$$

Let $A = (a_{i,j})$ and B be the column matrix (b_i) . Then there is a unique solution iff $\det A \neq 0$. Let A_i be A with column i replaced by B. Then

$$x_i = \frac{\det A_i}{\det A}.$$

Improvement makes strait roads, but the crooked roads without Improvement, are roads of Genius.

William Blake (The Marriage of Heaven and Hell)

00 47 18 76 29 93 85 34 61 52 86 11 57 28 70 39 94 45 02 63 95 80 22 67 38 71 49 56 13 04 37 08 75 19 92 84 66 23 50 41 14 25 36 40 51 62 03 77 88 99 21 32 43 54 65 06 10 89 97 78 42 53 64 05 16 20 31 98 79 87

The Fibonacci number system: Every integer n has a unique representation

$$n = F_{k_1} + F_{k_2} + \dots + F_{k_m},$$

where $k_i \ge k_{i+1} + 2$ for all i , $1 \le i < m$ and $k_m \ge 2$.

Fibonacci Numbers

 $1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, \dots$ Definitions:

$$F_{i} = F_{i-1} + F_{i-2}, \quad F_{0} = F_{1} = 1,$$

$$F_{-i} = (-1)^{i-1} F_{i},$$

$$F_{i} = \frac{1}{\sqrt{5}} \left(\phi^{i} - \hat{\phi}^{i} \right),$$

Cassini's identity: for i > 0:

$$F_{i+1}F_{i-1} - F_i^2 = (-1)^i$$
.

Additive rule:

$$F_{n+k} = F_k F_{n+1} + F_{k-1} F_n,$$

$$F_{2n} = F_n F_{n+1} + F_{n-1} F_n.$$
 Calculation by matrices:

$$\begin{pmatrix} F_{n-2} & F_{n-1} \\ F_{n-1} & F_n \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}^n.$$