과제 가이드라인

- 1. 본인 프로젝트와 관련 있고, 중요하다고 생각하는 논문 1편 선정
 - 국외, 국내, 학위 논문 등 종류는 상관 없음
 - 비교적 인용 횟수가 높은 논문 선정
 - 지난 주에 배운 논문 검색 방법 활용
- 2. 해당 논문을 정독함
- 3. 논문 내용에 대해 수업 시간에 배운 구성 요소별 내용이 적절하게 배치 되어있는지를 확인함
 - 제시한 표 양식 작성
- 4. 해당 논문의 구성 및 구조에 대한 적절성 평가
- 5. 작성된 ppt를 e-class에 업로드

1. 제목: 고장 예측 알고리즘 개발에 관한 연구

2. 초록

핵심 결과	기계학습 알고리즘의 적용을 통하여 베어링의 고장 예측에 적합한 알고리즘
동기(기존 문제)	4차산업혁명으로 인해 설비의 자동화/자율화를 위한 연구가 활발해짐, 기계 및 장비의 고장을 예측하고 대응할 수 있는 장비 예지보전 기술에 관해 많이 연구되고 있음
나의 방법	기계학습을 이용한 베어링의 고장 예측에 관한 연구 진행 및 다양한 기계학습 알고리즘의 적용을 통하여 베어링의 고장 예측에 적합한 알고리즘에 대하여 기술
논문의 결과	베어링의 고장 예측 알고리즘을 5단계로 나누어 기술
일반적 응용	실시간 기계장비의 상태 모니터링 시스템 및 잔여수명 예측

3. 서론

분야 소개	기계장비의 효율적인 관리 및 유지보수에 관한 연구가 진행됨에 따라 시스템의 고장에 대응하는 방법 변화
기존 문제	기계 및 장비에 손상이나 고장이 발생되면 수리하는 사후정비가 주를 이루고, 고가의 시스템만 예방정비 기술을 이용하였음
논문의 목적	지도학습(Supervised Learning) 방법을 바탕으로 베어링의 고장 예측 모델을 생성하는 것
나의 방법	고장 분류 알고리즘은 정확률, 오류율, 특이도, 민감도, 정밀도 및 재현율의 기준을 바탕으로 최고의 성능을 내는 분류 모델을 선택
결과	다양한 기계학습 알고리즘을 베어링의 결함분류문제에 적용하여 베어링의 고장 분류에 가장 적합한 모델을 구성하는 것으로써 베어링 결함 주파수 데이터를 사용하여 검증

4. 본론

(풀고자 하는)	기계장비 고장 예측 방법을 활용하여 베어링의 결함 예측 문제에 적용하여 베어링 고장 예측에 가장 적합
문제의 가정	한 알고리즘을 제안
(풀고자 하는) 문제 정의	베어링의 고장 분류에 가정 적합한 모델을 구성하는 과정 제시
방법론	1. 베어링 결함 주파수 데이터 및 신호 분석
	2. 데이터 전처리(Preprocessing the data)
	3. 학습 알고리즘
	4. 예측 모델 평가
	5. 예측 모델의 성능 개선
	6. 베어링 고장 예측/분류 모델 검증

5. 실험 결과

실험 환경	기계학습 알고리즘(데이터 전처리, 모델 구축, 모델 평가, 모델 최적화, 예측결과 평가)
결과 소개	기계의 고장 유무를 분류/진단에 있어서 적합한 모델을 생성하기 위해서는 '신뢰성 있는 데이터 확보 ' 와 '적절한 평가 기준 ' 이 요구됨. 적합한 모델/분류 모델을 구성하기 위하여 정밀도와 재현율을 고려한 평가 기준인 F1-score를 활용함
결과 해석	정오분류표를 기준으로 양성(Positive)인 경우를 분류할 때는 F1 score와 정확률이 높은 알고리즘인 Fine KNN 과 Bagged Trees, 음성(Negative)인 경우를 분류할 때는 DNN Sigmoid 알고리즘을 사용하는 것이 좋음

6. 결론

개별적 결과	베어링 고장진단에 적합한 알고리즘을 선택하기 위해서는 특이도가 높은 DNN Sigmoid 알고리즘을 사용하는 것이 더 효과적임
학문적 의의	공학에서는 주로 지지 벡터 기계, 의학에서는 의사결정나무, 그 외 분야에서도 지지 벡터 기계가 빈번하게 활용 됨. 정확률이나 특이도 등의 평가 기준 외에도 알고리즘의 유의미성을 분석해서 기계 시스템에 적용하 는 연구도 필요 함
응용 분야	향후 실시간 학습을 통한 고장 예지에 대한 연구는 F1 score와 특이도, 정확률 뿐만 아니라, 학습에 걸리는 시간도 평가 항목에 추가한 연구를 통해 새로운 데이터에 대한 실시간 학습과 고장 예지에 관한 연구를 진행하고 비지도 학습 분류 모델에도 적용하여 연구를 진행 할 것

