

Edge computing: A survey

Wazir Zada Khan , Ejaz Ahmed, Jazan University

FGCS 2019

汇报人: 刘聪

- 边缘计算是计算领域的新模式
- 使云计算的服务和应用更靠近终端用户
- 快速的处理+快速的应用程序响应

欧洲电信标准协会(ETSI)一移动边缘计算(MEC)

思科(Cisco)一雾计算

- 在终端和数据中心之间再加一层,叫网络边缘层。
- 无需上传云的数据直接本地化处理。
- 好像把数据送到身边的雾气里,而非云端。

Satyanarayanan等人—Cloudlets

条目	发起者	部署位置	主要驱动力及应用 场景
MEC	诺基亚,华为, IBM, 英特尔, NTT DoCoMo, 沃达丰	位于终端和数据中心之间,可以 和接入点、基站、流量汇聚点、 网关等组件共址	主要致力于为应用降低时延,适合物联网、车辆网、视频加速、AR/VR等多种应用场景
微云	美国卡耐基梅隆大 学,英特尔,华为, 沃达丰	位于终端和数据中心之间,可以和接入点、基站、流量汇聚点、 网关等组件共址;还可以直接运行在车辆、飞机等终端上	主要从触觉互联网 获得灵感,同样适用 于物联网
雾计算	思科	位于终端和数据中心之间,可以 和接入点、基站、流量汇聚点、 网关等组件共址	针对需要分布式计 算和存储的物联网 场景设计
			htt

Fig. 1. Edge computing applications.

- 移动性支持
- 位置感知
- 超低的延迟
- 接近用户

本文的主要贡献包括:

- 全面调研了边缘计算的各个方面(Cloudlet, Fog和Mobile-Edge)。
- 为边缘计算中多层面计算范式进行了新的分类。
- 提出了构建边缘计算的关键要求。
- 对开放式挑战的探索。

云计算是一种计算范式,通过包括存储、计算资源等在内的计算资源池为终端用户提供按需服务。

基础架构即服务(IAAS)

平台即服务(PAAS)

软件即服务(SAAS)。

边缘计算将计算数据,应用程序和服务从云服务器端迁移到网络边缘。内容提供商也因此能提供更接近用户的服务。

位置服务

增强现实

视频分析

数据缓存

相同点:

边缘计算提供与云计算相似的服务,比如应用程序、数据计算和存储服务等

不同点:

- ① 服务器的位置不同:边缘计算位于边缘网络,而云在互联网中。
- ② 云计算使用集中模型,而边缘计算使用分布式模型。
- ③ 云计算的用户是普通的互联网用户,边缘计算是边缘用户。
- ④ 边缘计算范围有限,硬件功能有限,可扩展性低于云。

边缘计算有独特的显著特征:

Fig. 2. Classifications of Edge computing.

雾计算:实时应用程序

- ▶ J.K. Zao等人提出了一种加强脑计算机接口(A-BCI)的架构,关键组件是安装在电视机顶盒或PC机上的雾服务器,用作信号处理器和数据中心。(2014)
- M. Aazam等人提出了一种紧急警报服务架构,它利用雾和云平台,在紧急情况下,向家庭成员和紧急处理部门发送警报消息。(2015)
- M.A. Al Faruque等人通过雾计算搭建家庭能源管理(HEM)平台,监控多个设备以达到节能、降低成本的目的。(2016)

雾计算:大数据分析

- ➤ R. Iqbal等人提出了一个基于雾的数据分析框架,为车联网提供上下文感知服务,但没有具体实施,体现不出优势。(2018)
- ▶ J. He等人提出了一种多层雾计算模型,目的是为智慧城市应用提供大规模数据分析。 实验结果很好,但缺少对模型的评估和验证。(2018)
- ➤ M. Aazam等人提出了一种用于雾计算的智能网关(SG)架构,执行数据收集、预处理、数据安全和隐私等任务,可以单跳或多跳连接雾。(2014)

雾计算:资源管理

- ➤ L. Yin等人提出了基于容器的任务调度算法,通过最小化延迟来帮助提高资源利用率,但容器中的图像放置问题有待解决。(2018)
- ➤ L. Gu等人提出了基于雾计算的医疗网络物理系统(FC-MCPS),利用高计算复杂度的混合整数非线性规划来实现有效的资源管理。(2017)
- K. Hong等人提出了一种称为移动雾的高级PaaS编程模型,支持按需分配计算资源, 以网络带宽,CPU利用率等监视指标来制定策略。(2013)

雾计算:安全和隐私

- ➤ T. Wang等人提出了一种基于雾计算的三层隐私保护存储方案,并设计了算法来计算存储在云,雾和本地机器中的分布比例,但容易受到网络和物理攻击。(2018)
- ➤ L. Zhang等人提出提出了一种基于连续消息扩展的隐私保护方案,通过具有完全密钥的妥协抵抗来保证用户的隐私。(2018)
- ➤ S.J. Stolfo提出了一种利用诱饵信息保护云的方法,诱饵指无用的数据,用来误导和混 着入侵者,使他们相信已经访问了有价值的数据。(2012)

Cloudlets:资源管理

- ➤ K. Habak等人设计了一个称为FemtoClouds的动态自配置的Cloudlet系统,可协调多个移动设备来提供计算卸载服务。(2015)
- ➤ L. Liu等人提出了一种两级优化机制,第一级根据用户需求选择最佳的Cloudlet,第二级开发资源分配模型。但是,在实际部署之前还需研究复杂性和开销。(2018)

Cloudlets:大数据分析

M. Satyanarayanan等人提出了GigaSight架构,目的是说明边缘计算如何提高基于物联网的高速率应用程序的性能。(2015)

Cloudlets: Cloudlets的放置

- ➤ L. Zhao等人重点关注了基于SDN的物联网中Cloudlets的最佳布局,提出了基于枚举的最优放置算法(EOPA)和基于排序的近似放置算法(RNOPA)。(2018)
- ➤ M. Jia等人以两种启发式算法实现最佳布局,一种是在工作负载最重的AP上放置 Cloudlet,一种是基于密度的聚类算法,在用户密集的位置部署Cloudlets。(2017)

Cloudlets:协同计算

▶ F. Hao等人为边缘计算提出了一个双层多社区框架(2L-MC3),通过综合考虑成本, 能耗,安全级别来分配Cloudlets的任务。虽然最小化了访问成本,但增加了复杂度。 (2018)

Cloudlets:分层计算结构

➤ Q. Fan等人提出了一种分层的Cloudlet网络架构,将传入的用户请求分配给适当的 Cloudlet。如果第1层Cloudlet无法处理该请求,则向上层转发,直到云。(2018)

Cloudlets:安全和隐私

➤ Z. Xu等人提出了物联网中基于隐私保护的卸载和数据传输机制,在数据传输上,使用 Dijkstra算法选择最短路径的AP,在保护隐私上,将数据处理卸载到不同的Cloudlet。 (2018)

移动边缘计算:资源管理

- ▶ Q. Fan 等人提出了应用程序工作负载分配(AREA)方案,在负载最轻的Cloudlet之间分配不同的用户设备请求。(2017)
- ▶ W. Chen等人提出了一种用于MECC的多用户多任务计算卸载框架,将工作负载从移动设备映射到多个无线设备上,最大限度地提高整体系统效用。(2018)
- ➤ G. Jia等人解决了边缘计算中数据存储和检索的核心问题,提出了一种新的高速缓存策略,其中混合使用PRAM和DRAM。但改进率只有4.6%,仍有提升空间。(2019)

移动边缘计算:服务管理

➤ S. Wang等人讨论了在用户移动期间,QoS预测在上下文感知服务中的重要性,他们提出了一种基于协同过滤的服务推荐方法来实现QoS预测。(2017)

移动边缘计算:实时应用程序

- ➤ Z. Zhao等人提出了三阶段部署方法,即离散化,效用度量和部署算法,用于减少边缘服务器的数量,以提高IoT和边缘节点之间的吞吐量。(2018)
- M. Chen等提出了基于边缘和认知计算(ECC)的智能医疗系统。用于分析和监测紧急情况下患者的身体健康状况,但可能泄露患者的隐私。(2018)

移动边缘计算:安全和隐私

- M. Du等人确认了机器学习算法中训练数据的隐私问题,提出了利用差分隐私来保护训练数据中隐私。(2018)
- ▶ R. Kozik等人提出了一种分布式攻击检测系统,基于机器学习模型且使用极限学习机(ELM)来进行网络流量分析和分类,实现异常和攻击检测。(2018)
- ➤ R. Rapuzzi等人讨论了雾和边缘计算中检测到的网络威胁,通过提出的概念框架从不同层次感知并抵御这些威胁。但仍需在实际中检验它的有效性。(2018)

关键要求和开放式挑战

Fig. 3. Requirements for Enabling Edge computing.

关键要求

动态计费机制

多服务提供商和运营商的参与用户移动性、请求资源不同等

联合管理和部署

不同的供应商,不同的商业模式

支持实时应用程序

电子学习和游戏化 节点放置灵活

资源管理

用户服务需求增加 计算和网络资源分配

关键要求

负载不断增加 满足稳定的应用性能

冗余和故障切换

保证可靠性和弹性 服务不间断。

安全性

边缘计算系统的异构性 入侵,未授权访问和各种安全攻击的风险

开放式挑战

用户的信任

与技术的安全性和隐私密切相关

服务发现和无缝交付

自动且对用户透明地选择计算节点不间断平稳地迁移,不同计费策略

动态的定价模型

单一的模型无法满足多个用户服务质量的和运营成本的平衡

异构系统的协作

互操作性,同步,数据隐私,负 载平衡,异构资源共享

开放式挑战

低成本容错模型

故障转移和冗余技术实现容错 远程备份服务器需要高带宽和昂贵的硬件

安全性

位置感知,分布式架构,移动性支持身份验证,访问控制系统,隐私管理

- 1、本文全面研究了与云计算和边缘计算相关的基本概念。
- 2、从应用领域出发,对边缘计算中的最新技术进行了分类。
- 3、提出了为实现边缘计算需要满足的关键要求,确定并讨论了几项开放式挑战。

本文为未来的研究人员提供了一份很好的材料,以推动解决边缘计算中尚存的问题!

感谢在座各位聆听