Photogrammetry & Robotics Lab

Machine Learning for Robotics and Computer Vision

Introduction to CNNs

Jens Behley

Last Lecture

- We looked at a couple of applied ML approaches for object detection & image classification
- Designing better features is the main deal

Recap: Feature Engineering

Feature

Classifier

Label

- Applications to Computer Vision tasks: Extract features and apply supervised learning methods
- Most of the time: designing task-specific features → feature engineering

Progress on ImageNet

- Steady progress on ImageNet
- One outlier dramatically improved the error rate in 2012

Deep Learning Ara

MNIST Dataset

German Traffic Sign Recognition Benchmark

- Convolution Neural Networks (CNN) show promising result on small datasets, like MNIST, CIFAR10, traffic sign classification
- Success on ImageNet showed the prospect of Convolution Neural Networks (CNN) for more complex vision tasks

Why are CNNs successful now?

- Several reasons made progress possible:
 - 1. Availability of large-scale data (ImageNet, etc.)
 - 2. Availability of compute capabilities (GPUs)
 - 3. Availability of code (and frameworks)!

- Implementation for most paper available
- Many frameworks made it simple to build and train networks (Caffe, Theano, Torch, etc.)

Deep Learning Frameworks

- All operations must be implemented using GPU to get maximum performance
- DL Frameworks available implementing the operations needed (and many more)

Neural Network

Neuron

$$f(\mathbf{x}) = \sum_{i} w_i x_i + b$$

$$f(\mathbf{x}) = \sum_{i} w_i x_i + b$$
 $f(\mathbf{x}) = \mathbf{W}_2 \sigma(\mathbf{W}_1 \mathbf{x} + b_1) + b_2$

- Composition of functions with non-linear activation function $\sigma(\cdot)$ in between
- Each neuron takes all inputs into account
 → fully-connected layer

(Loose) biological inspiration

- Artificial neurons are inspired by biological neurons in the brain that transmit information
- Therefore, neural nets are often wrongly attributed as "artificial" brains

Beware:

- Current neural nets are much, much simpler then the brain
- Real neurons and activations are much more complicated!
- Neural nets can do amazing things, but this is not intelligence

Alternative Visualization

- Common way of visualization: show just stack of layers with output dimensions
- Multi Layer Perceptron

Activation function

- Common activation functions
- Rectified Linear Units (ReLU) good default for most problems

Example: Image Classification

- Output of neural network are scores for softmax resulting in $P(y|\mathbf{x})$
- Output: $\mathbf{z} \in \mathbb{R}^C$ with C number of classes

Fully-connected Layer: Summary

- Input size: N
- Output size: M
- Parameters: MN + M biases

LINEAR

Fully connected layer in PyTorch

CLASS torch.nn.Linear(in_features, out_features, bias=True)

[SOURCE]

Applies a linear transformation to the incoming data: $y=xA^T+b$

This module supports TensorFloat32.

Parameters

- in_features size of each input sample
- out_features size of each output sample
- bias If set to False, the layer will not learn an additive bias. Default: True

Structure of Images

- Converting images into vector removes neighborhood structure
- Network should use this inductive bias that pixel neighborhood is important
- Convolutional Neural Network (CNN)

A bit of history of CNNs

- 1980: Neocognitron (Fukushima)
- 1986: Backpropagation (Rumelhart, Hinton & Williams): Practical way to train a neural network and compute gradients
- 1998: CNN for handwritten digits (LeCun), commercially used for handwritten checks

Building block of CNNs

- Convolutional networks are build from
 - Convolutional Layers
 - Max Pooling operations
 - Fully-connected Layers

Convolution Neural Network

۱۸/	۱۸/	۱۸/				
vv _{0,0}	VV 0,1	W _{0,2}		-77	-71	277
W _{1.0}	W	W _{1,2}	=	, ,	, -	
1,0	** 1,1	•• 1,2		127	-95	87
W _{2 a}	Waa	W _{2,2}		,		
VV 2,0	۷ ۷ 2,1	VV 2,2				

$$\sum I(x + u, y + v)K(u, v)$$

- Convolution "slides" kernel/filter K over image I
- Trivia: Most DL frameworks use crosscorrelation instead

Translation Equivariance

- Same kernel applied everywhere
- Translation of image will translates feature map → equivariance of convolution

Convolution Neural Network Padding

No Padding

Zero Padding P=(K-1)/2

- Convolution on valid location leads to reduced size of feature map
- Padding adds border values

Convolution Neural Network Stride

$$S = 1$$

$$H = \frac{1}{2}$$

$$W/2$$

$$S = 2$$

$$H = \frac{1}{2}$$

$$W/2$$

- Stride specifies spacing between evaluation of kernels
- Stride > 1 reduces size of feature map

Convolution Neural Network Dilation

- Dilation specifies spacing between entries of the kernel
- Stride > 1 reduces size of feature map

Convolution Neural Network Multiple Input Channels

W

$$3 \times H \times W$$

$$3 \times 3 \times 3$$

 $1 \times H \times W$ (with zero padding)

- For multi-channel input convolutional filter has also as many channels
- Produces still one activation map

Convolutional Layer

- Use multiple kernels to produce C_{out} maps
- Non-linear activation function applied element-wise on convolution results

Convolutional Layer: Summary

Hyperparameter:

- K kernel size
- P padding
- S stride

• Input size: $C_{\rm in} \times H \times W$

• Output size:
$$C_{\mathrm{out}} \times H' \times W'$$
 • D dilation

$$H' = \left\lfloor \frac{H + 2P - D(K - 1) - 1}{S} + 1 \right\rfloor \quad W' = \left\lfloor \frac{W + 2P - D(K - 1) - 1}{S} + 1 \right\rfloor$$

■ Parameters: $C_{\text{out}}C_{\text{in}}K^2 + C_{\text{out}}$ biases

Common:

- K = 1, 3, 5, 7
- $P = (K-1)/2 \rightarrow input = output size$

$$-$$
 S = 1, 2

Channel-first vs. Channel-last

- Organizing tensors in different ways possible
- Main conventions:
 - Channel-first (PyTorch): $C \times H \times W$
 - Channel-last (Tensorflow): $H \times W \times C$
- Ensure that input images are channel-first before applying convolutions in PyTorch
- See ToTensor() in torchvision.transform that converts PIL image to a tensor

ConvLayer on Batch of Images

 Usually all operations are applied on a batch of images (multiple images)

ConvLaver in PvTorch

CONV2D

CLASS torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros') [SOURCE]

Applies a 2D convolution over an input signal composed of several input planes.

In the simplest case, the output value of the layer with input size $(N, C_{\rm in}, H, W)$ and output $(N, C_{
m out}, H_{
m out}, W_{
m out})$ can be precisely described as:

$$\operatorname{out}(N_i, C_{\operatorname{out}_j}) = \operatorname{bias}(C_{\operatorname{out}_j}) + \sum_{k=0}^{C_{\operatorname{in}}-1} \operatorname{weight}(C_{\operatorname{out}_j}, k) \star \operatorname{input}(N_i, k)$$

where \star is the valid 2D cross-correlation operator, N is a batch size, C denotes a number of channels, H is a height of input planes in pixels, and W is width in pixels.

- Also Conv1d & Conv3d available
- LazyConv2d infers parameters from first forward pass

ConvLayer + Activation Function

- Activation function (such as ReLU) applied after each convolutional layer
- Usually only implicit in the graphical representation

Convolution Neural Network

- Stack of convolutional layers
- Pooling layer to increase receptive field of layers and provide translation invariance

Receptive field

- Location in deeper layers take inputs of window of earlier layers
- Deeper layers "see" more from earlier layers

Pooling Layer

- Pooling layers increase the receptive field & aggregates information
- Translation invariance to small shifts
- Common: max pooling, average pooling

Example: Max Pooling

	14	1	4	4	
3	4	5	2	2	3
8	9	12	3	4	7
8	3	4	3	3	4

14	5	4	
9	12	7	

2 × 2 max pooling, stride 2

- Compute maximum in each region
- Common to have non-overlapping windows

Max Pooling in PyTorch

MAXPOOL2D

CLASS torch.nn.MaxPool2d(kernel_size, stride=None, padding=0, dilation=1,
 return_indices=False, ceil_mode=False)

[SOURCE]

Applies a 2D max pooling over an input signal composed of several input planes.

In the simplest case, the output value of the layer with input size (N,C,H,W), output (N,C,H_{out},W_{out}) and kernel_size (kH,kW) can be precisely described as:

$$out(N_i, C_j, h, w) = \max_{m=0,\dots,kH-1} \max_{n=0,\dots,kW-1} \max_{i=0,\dots,kH-1} \max_{n=0,\dots,kW-1} input(N_i, C_j, stride[0] \times h + m, stride[1] \times w + n)$$

If padding is non-zero, then the input is implicitly zero-padded on both sides for padding number of points. dilation controls the spacing between the kernel points. It is harder to describe, but this link has a nice visualization of what dilation does.

AvgPool2d for average pooling

Pooling: Summary

Hyperparameter:

- K kernel size
- P padding
- S stride
- D dilation

• Input size:
$$C_{\rm in} \times H \times W$$

• Output size: $C_{\text{out}} \times H' \times W'$

$$H' = \left[\frac{H + 2P - D(K - 1) - 1}{S} + 1 \right] \quad W' = \left[\frac{W + 2P - D(K - 1) - 1}{S} + 1 \right]$$

Parameters: 0

Common:

- K=2, S=2 (non-overlapping)
- K=3, S=2 (overlapping) in AlexNet

AlexNet Structure

- 5 convolutions, 3 max pooling, 3 fullyconnected layers
- Split across 2 GPUs due to memory constraints

[Krizhevsky, 2012]

AlexNet Structure*

- Here, single network version (similar to PyTorch version of AlexNet)
- Overall, 57 Million parameters (but where?)

36

Number of Parameters

4,096*1,000 + 1,000

FC3:

57,409,444

=4,097,000

Design Decisions

- Experience and trial-and-error
- Most parameter in fully-connected layers
- Modern variants of CNNs:
 - Certain design patterns
 - Single fully connected layer

Additional Parts - Training

Data Augmentation

- Random crops while training
- Horizontal reflection
- Color variation by adding random values along principle components

Dropout

- Randomly set neurons to zero while training
- Dropout in first two fully connected layers

[Krizhevsky, 2012] 39

Additional Parts - Testing

- Average over 5 crops with reflection at test time
- Average over ensemble of 5 CNNs trained with different initializations

[Krizhevsky, 2012] 40

Learned Filters

first layer kernels

- First layer learns "edge features"
- Low-level vision features

Deeper Layers

- Activation maps generated by passing images through network and inverting the convolution
- Higher layers learn texture features
 [Zeiler, 2013]

Deeper Layers

- Later layers react to parts and locations
- Aggregation of high level concepts

[Zeiler, 2013] 43

End-to-End Learning

Feature

Classifier

Label

CNN

Label

- Traditional pipeline: Features-engineering
- Now: end-to-end learning of features and classifier

Summary

- Breakthrough of CNNs on ImageNet
- Main enabler: More Data & more compute
- CNNs learn strong features in end-to-end fashion
- Most ML for vision tasks nowadays tackled using CNNs

References

- Fukushima, "Neocognitron: A self-organizing neural network model for mechanism of pattern recognition unaddected by shift in position", Biological Cybernetics, 36(4): 193-202, 1980.
- Krizhevsky et al. "ImageNet Classification with Deep Convolutional Neural Networks", NeurIPS, 2012.
- Krizhevsky, "One weird trick for parallelizing convolutional neural networks", arxiv:1404.5997, 2014.
- LeCun et al. "Gradient-Based Learning Applied to Document Recognition", Proc. of the IEEE, 1998.
- Rumelhart et al. "Learning representations by back-propagating errors." Nature, 323, p. 533-536, 1986
- Zeiler & Fergus. "Visualizing and Understanding Convolutional Networks", ECCV, 2014.

See you next week!