Section 2

Last Updated: 21 Sept 2023

Date: 22 Sept 2023

Introduction

In this section, we will discuss:

- Reasoning by Representation
- Derivation path of distribution representations
- Poisson Processes

Reasoning by Representation

Some of the important terms and definitions of Chapter 3 is as follow:

- 1. **Bernoulli**: A random variable Y has the *Bernoulli distribution* with parameter p, denoted $Y \sim Bern(p)$, if P(Y = 1) = p and P(Y = 0) = 1 p
- 2. **Binomial**: sum of n iid Bernoulli random variables
- 3. **Uniform**: $U = \sum_{i=1}^{\infty} \frac{B_i}{2^i} \sim \text{Unif where } B_i \text{ iid } Bern(0.5).$
- 4. **PIT sampling**: Let F be any CDF with quantile function F^{-1} , let $U \sim Unif$ then $F^{-1}(U) \sim F$.
- 5. **PIT pivoting**: Let F be a continuous CDF, and $Y \sim F$, then $F(Y) \sim Unif$.
- 6. **Exponential**: Let $U \sim \text{Unif}$. Then $X = -\log U \sim \text{Expo}$.
- 7. **Gamma**: For a positive integer n, $G_n = X_1 + X_2 + \dots + X_n \sim Gamma(n),$ where $X_i \overset{i.i.d}{\sim}$ Expo.
- 8. Laplace : $L \sim \text{Laplace}$ if $L \sim SX$ where S is random sign and $X \sim Expo$.
- 9. Weibull: $W = X^{\beta} \sim \text{Wei}(\beta)$ where $X \sim Expo$ and $\beta > 0$.
- 10. **Beta**: $B = \frac{G_a}{G_a + G_b} \sim Beta(a,b)$ where \$ G_a Gamma(a)\$, $G_b \sim Gamma(b)$ and $G_a \perp G_b$; note that $U^{1/\alpha} \sim Beta(\alpha,1)$.
- 11. Beta-Gamma: Let $G_a \sim Gamma(a) \perp \!\!\! \perp G_b \sim Gamma(b)$, $B = \frac{G_a}{G_a + G_b}$ and $T = G_a + G_b \sim Gamma(a+b)$. Then $T \perp \!\!\! \perp B$.
- 12. Chi-squared: $G \sim \chi_n^2$ if $G \sim 2Gamma\left(\frac{n}{2}\right)$.

- 13. Normal: $Z = SX \sim \mathcal{N}(0, 1)$ where S is random sign and $X \sim \chi_1$.
- 14. Box-Muller: $U_1, U_2 \overset{i.i.d}{\sim}$ Unif. Then $\sqrt{-2 \ln U_2} \cos{(2\pi U_1)}, \sqrt{-2 \ln U_2} \sin{(2\pi U_1)} \overset{i.i.d}{\sim} \mathcal{N}(0, 1)$
- 15. Student t-distribution: $T = \frac{Z}{\sqrt{V_n/n}} \sim t_n$ where $Z \sim N(0,1) \perp V_n \sim \chi_n^2$.
- 16. Cauchy: $C = \frac{Z_1}{Z_2} \sim \text{Cauchy} \sim t_1 \text{ where } Z_1, Z_2 \sim_{i.i.d} \mathcal{N}(0, 1).$

For ease of referencing, Eric Zhang have summarized how to move from one distribution to next in a figure, in which we will discuss in the next section.

Derivation path of distribution representations:

Below is a pitcure showing derivation path of distribution representations, kindly created by Eric Zhang:

Pencil 3.3.2

Show that if $U \sim Unif$, then $1-U \sim Unif$. Also, show that $2U-1 \sim SU$ for S a random sign independent of U (so 2U-1 is symmetric about 0, while U is symmetric about 1/2; see Section 3.10 for more information.)

Solution

If $U \sim Unif$, 1-U=1+(0-1)U is Uniform between 1 and 0 so $1-U \sim Unif$ as well.

2U-1=-1+(1-(-1))U is Uniform between -1 and 1, and SU is also Uniform between -1 and 1 by definition, so $2U-1\sim SU$

Pencil 3.4.12

Let Y_1 and Y_2 be r.v.s (possibly deifnied on different Ω 's) with CDFs F_1 and F_2 respectively. A commonly used partial order on distributions (and thus on r.v.s), stochastic domination is defined by the relation $Y_1 \leq Y_2$ iff $F_1(y) \geq F_2(y)$ for all $y \in \mathbb{R}$.

Find an example of Y_1 and Y_2 on the same space with $Y_1 \preceq Y_2$ but $P(Y_1 > Y_2) \geq 0.95$

Solution

As in the previous clock example, we can let Y_1 and Y_2 be discrete Uniform on a clock with $\lfloor 1/0.95 \rfloor$ numbers, so that $Y_1 \sim Y_2$ when $Y_1 \preceq Y_2$. Then, $P(Y_1 > Y_2) \geq P(Y_1 = Y_2 + 1) \geq 0.95$

Pencil 3.5.10

Let $W_1 \sim Wei(\beta_1), W_2 \sim Wei(\beta_2).$ Show that $(W_1|W_1 \geq 1) \preceq (W_2|W_2 \geq 1)$ iff $\beta_1 \leq \beta_2.$

Solution

 $\begin{array}{l} (W_1|W_1\geq 1) \preceq (W_2|W_2\geq 1) \text{ implies that } F_1(w)\geq F_2(w), \text{ which by definition implies that } 1-exp(-w^{1/\beta_1})\geq 1-exp(-w^{1/\beta_2}). \end{array} \text{ This further implies that } exp(-w^{1/\beta_2})\geq exp(-w^{1/\beta_1}), \text{ which implies that } -w^{1/\beta_2}\geq -w^{1/\beta_1}, \text{ which is similar to } w^{1/\beta_1}\geq w^{1/\beta_2}, \\ \text{which further implies than when } w\geq 1, \ \frac{1}{\beta_1}\geq \frac{1}{\beta_2}, \text{ thus we show that } \beta_1\leq \beta_2. \end{array}$