NONOGRAM MAKER

Maturitní práce z předmětu Informatika, Tomáš Vrána, 2018/2019 Vedoucím práce je Emil Miler

Obsah

Zadání práce	3
A co to ten nonogram vlastně je?	4
Metody pro řešení nonogramu	5
Použité programy, knihovny	7
Běh programu	8
Instalace programu	12
7ávěr	13

Zadání práce

Vytvořte program, který z fotografie vygeneruje nonogram v černobílé barvě. Součástí aplikace bude nastavení, kde si uživatel nastaví velikost (a tedy i detail) nonogramu.

Prohlašuji, že jsem jediným autorem této maturitní práce a všechny citace, použitá literatura a další zdroje jsou v práci uvedené.

Tímto dle zákona 121/2000 Sb.ve znění pozdějších předpisů uděluji bezúplatně škole Gymnázium Jana Keplera, Praha 6, Parléřova 2 oprávnění k výkonu práva na rozmnožování díla (§ 13) a práva sdělování díla veřejnosti (§ 18) na dobu časově neomezenou a bez omezení územního rozsahu.

Tomáš Vrána

V této Maturitní práci jsem si dal za cíl vytvořit program, který dokáže z vloženého obrazového materiálu vytvořit černobílý rébus, mající původ v Japonsku, zvaný nonogram.

A co to ten nonogram vlastně je?

"Malovaná křížovka (nonogram, někdy také Zakódovaný obrázek) je logický hlavolam, při kterém je okolo mřížky umístěná legenda s čísly a pomocí nich lze získat obrázek. Každé číslo v legendě určuje počet za sebou následujících čtverečků stejné barvy."

Jednoduše řečeno, cílem řešitele je pomocí horizontálních a vertikálních nápověd vyluštit pozici černých pixelů, které tvoří nějaký obrazec. Každé číslo reprezentuje blok po sobě jdoucích černých pixelů (jejich délku udává dané číslo), které se bezprostředně po sobě nacházejí v dané řádce/ daném sloupci. Mezi více bloky na řádku/ sloupci musí být minimálně jeden bílý pixel.

¹ Zdroj úryvku v kurzívě a obrázku: (https://cs.wikipedia.org/wiki/Malovan%C3%A1_k%C5%99%C3%AD%C5%BEovka)

Metody pro řešení nonogramu²

K řešení nonogramu je jako u většiny podobných hlavolamů zapotřebí kromě nějakých postupů využít i selský rozum. Jednotlivé metody je však dobré znát a mít při řešení na paměti.

1) Superpozice extrémních pozic

 Pokud je v daném řádku / sloupci pouze jedna nápověda, jejíž hodnota je větší než polovina příslušného rozměru výsledného obrázku v daném směru, tak i když blok umístíme zcela doleva, nebo zcela doprava; vždy zbydou uprostřed pixely, které budou pokaždé černé; můžeme je tedy začernit.

 Pokud je v řádku/sloupci více nápověd, můžeme zkusit podobnou metodu; bloky s jednou mezerou mezi sebou dáme zcela doprava a zcela doleva. Může nastat situace, že některé pixely budou začerněny pořád; můžeme je tedy v obrázku začernit.

2) Vyplnění z kraje

 Pokud je v řádce/ sloupci již vybarvený pixel, můžeme blok dát co nejvíc doprava a doleva tak, aby již existující pixel byl součást bloku. Ne vždy k této situaci dojde, ale podobně jako v 1.) může dojít k překryvu; tyto pixely můžeme vybarvit

² Jelikož neexistuje nějaké jednotné značení, jednotlivé metody jsem roztřídil a rozlišil podle stránek: https://www.nonograms.org/methods Ze stejné stránky jsem použil také obrázky k této kapitole.

3) Nepřístupnost

 Tato metoda je vlastně komplementární k obou předchozím. Pokud bloky budeme posouvat do jejich krajních pozic, může nastat situace, že některé pixely nebudou zabarveny nikdy. S těmito pixely se při řešení nonogramu také pracuje; daný čtvereček se proškrtne.

4) "Does not fit"

 Může nastat situace, že nám dva "křížky" ohraničují počet pixelů, do kterého se žádná nápověda již nevejde. Poté můžeme zaškrtat i tyto pixely.

5) Oddělení

 Pokud jsou v řádku/ sloupci již některé pixely vybarvené (s jednou mezerou mezi sebou), je potřeba se podívat, jestli jejich propojení odpovídá nějaké nápovědě. Jestli ne, tak mezeru můžeme proškrtnout.

6) Dvojité umístění

 Pokud nastane situace, kdy budou existovat jen dvě možné varianty umístění bloků; je dobré obě dvě vyzkoušet a zaznačit si jejich případný překryv, příp. zajisté nezabarvené pixely.

Použité programy, knihovny

K programování jsem použil programovací jazyk <u>Python</u> (ve verzi 3.7) a k samotnému psaní kódu vývojové prostředí <u>PyCharm</u>, které mě zaujalo svou grafickou přívětivostí a také přímým napojením na webovou službu GitHub, kterou jsem používal k verzování projektu.

Ze standartních knihoven pythonu jsem při tvorbě využil:

- OS (konkrétně OS.path)
 - o K práci se jmény souborů a adresářů.

Kromě standartních knihoven pythonu jsem využil:

- Pillow
 - o K práci s obrazovým materiálem.
- PyQt5
 - o Pro vytvoření grafického rozhraní
- Numpy
 - Kvůli lepší práci se seznamy.

K následné konverzi kódu do samostatně spustitelné formy (.exe) jsem použil nástroj pyinstaller.

Běh programu

Program pracuje poměrně jednoduše; nejdříve se program uživatele zeptá, jestli "chce využít stínování".

Jedná se o použití argumentu "Dither" v knihovně Pillow, který určuje to, jak je obrázek přetransformovaný do dvou barev – černé a bílé. (viz. níže)

Poté uživatele vyzve k vybrání obrazového podkladu (ve formátech .png .jpg a .bmp). Program si při svém spuštění vytvoří složku _IMG, která se nachází ve stejné složce jako program samotný, avšak obrázek lze vybrat zcela kdekoli na disku počítače.

Poté program zjistí rozměry obrázku a zeptá se uživatele, jestli je s rozměry spokojený, nebo je chce změnit.

Pokud uživatel chce rozměry změnit, do dialogového okna zadá požadovanou hodnotu horizontálního rozměru obrázku a program obrázek upraví ve správném poměru stran.

Pokud je uživatel s velikostí obrázku spokojený, může buď v poli ponechat nulu a potvrdit stiskem "OK", nebo operaci změny velikosti zrušit tlačítkem "Cancel"

Následně se obrázek převede do černé a bílé barvy. Vstupní obrázek se vždy převede do odstínů šedé, avšak další postup se odvíjí od toho, jestli uživatel povolí "stínování" (viz. výše), nebo ne.

- Pokud uživatel zvolí, že chce "stínování", při konvertování obrázku se využije Floyd-Steinbergova metoda, která slouží ke změně barevné charakteristiky obrazu při zachování původní vizuální informace v co největší míře³.
- Pokud uživatel zvolí, že nechce "stínování", program vyhodnotí u každého bodu, jestli hodnota jedné z barevných složek je menší než 128 → přemění se na černý pixel, a naopak. Tuto "metodu" jsem pracovně nazval "Metoda jednoduché separace"

Na další straně můžete vidět využití obou metod. Je poměrně očividné, že obě metody mají svá uplatnění. Floyd-Steinbergova metoda je obecně vhodnější pro všechny složitější obrázky, u kterých chceme zachovat veškeré detaily, avšak je výrazně pomalejší. Oproti tomu metoda jednoduché separace je poměrně rychlá, a navíc dodá výsledným obrázkům více "nonogramový vzhled".

-

³ Použito z: https://cs.wikipedia.org/wiki/Floydova%E2%80%93Steinbergova_metoda

Floyd-Steinbergova metoda

Metoda jednoduché separace

Metoda jednoduché separace

Takto vzniklá obrazová data jsou přetransformována do nested listů a následně jsou z těchto listů vytvořeny horizontální a vertikální "nápovědy" nonogramu.

Tyto nápovědy jsou po určitém formátování spolu s černobílým obrázkem uloženy do nově vytvořené složky (ve stejném umístění jako spuštěný program se vytvoří složka _NONOGRAM, ve které se vždy vytvoří složka s názvem obrázku).

Instalace programu

- Pro běh .exe souboru (běží pouze na OS Windows) vám stačí si stáhnout <u>tento</u> <u>soubor</u> na GitHubu, ze kterého lze po extrahování rovnou spustit "Nonogram_maker.exe"
- Pro případný běh kódu v pythonu je potřeba mít stažený:
 - o Python (odzkoušeno na pythonu3.7)
 - o Knihovnu Pillow
 - o Knihovnu PyQt5
 - o Knihovnu Numpy
 - o A samozřejmě i samotný kód

Všechny zmíněné knihovny se dají nainstalovat pomocí nástroje pip

Po instalaci všeho potřebného a extrahování souboru z GitHubu již lze pomocí pythonu spustit soubor "Nonogram_maker.pyw"

V obou případech je na počítači potřeba mít nainstalovaný libovolný textový editor (mě se osvědčil Notepad++) a libovolný prohlížeč fotografií, či obrázkový editor. Samotný program lze bez těchto aplikací spustit, avšak jsou potřeba pro zobrazení vytvořených souborů nonogramu.

Závěr

Jelikož se jedná o můj první počin v tomto směru vůbec, tak se tvorba neobešla bez mnohého vyhledávání informací a četného testování, za kterém ve velké části případů stála nějaká poměrně malá chyba.

Myslím si, že i přesto program splňuje zadaná kritéria, avšak jak na samotném kódu, tak na GUI celého programu by se dalo ještě zapracovat...

Samotná tvorba programu mi však přinesla mnoho zajímavých poznatků a zkušeností, které se mi zajisté budou hodit k mému budoucímu studiu na fakultě informatiky.