

Strongly π -Regular Matrix Semigroups

Author(s): Jan Okniński

Source: Proceedings of the American Mathematical Society, Vol. 93, No. 2 (Feb., 1985), pp. 215-

217

Published by: <u>American Mathematical Society</u> Stable URL: <u>http://www.jstor.org/stable/2044747</u>

Accessed: 23-12-2015 06:02 UTC

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

American Mathematical Society is collaborating with JSTOR to digitize, preserve and extend access to Proceedings of the American Mathematical Society.

http://www.jstor.org

STRONGLY π -REGULAR MATRIX SEMIGROUPS

JAN OKNIŃSKI

ABSTRACT. We prove that if S is a strongly π -regular multiplicative subsemigroup of the matrix algebra $M_n(K)$, K being a field, then there exists a chain of ideals $S_1 \lhd \cdots \lhd S_t = S$ such that $t \leq 2^{n+1}$ and any Rees factor semigroup S_i/S_{i-1} is either completely 0-simple or nilpotent of index not exceeding $\prod_{j=0}^n \binom{n}{j}$. This sharpens the main result of [4], in particular solving Problem 3.9 from [3].

A semigroup S is said to be strongly π -regular if for any $s \in S$ there exists an integer $k \geq 1$ such that s^k lies in a subgroup of S. Matrix semigroups (i.e. multiplicative subsemigroups of the matrix algebra $M_n(K)$ for some field K and some $n \geq 1$) of this type have been recently the subject of considerable study (for references see [4]). In particular, Putcha proved that any such semigroup admits a chain of ideals $S_1 \triangleleft \cdots \triangleleft S_t = S$ with all factor semigroups S_i/S_{i-1} being completely 0-simple or nilpotent [4]. The purpose of this note is to show that, in this case, t cannot exceed 2^{n+1} and that there is a bound (also depending on n only) on indices of nilpotency of the nilpotent factors. The former solves Problem 3.9 from [3]. The way we shall proceed is quite different from that used in [4] where the Zariski closure was the main tool.

If $a \in M_n(K)$, then by $\rho(a)$ we shall denote the rank of a. Further, for any j, $1 \le j \le n$, we put $I_j = \{a \in M_n(K) | \rho(a) \le j\}$. Certainly, I_j is an ideal of the semigroup $M_n(K)$. Let $a \in M_n(K)$. Then, treating a as a linear transformation of an n-dimensional vector space over K with a fixed basis, we shall denote by $\Lambda^j a$ the jth exterior power of a and treat it (in a usual way) as an element of $M_{\binom{n}{2}}(K)$.

We are indebted to Dr. Z. Marciniak for bringing the following well-known result as well as its usefulness for our considerations to our attention.

LEMMA 1 (CF. [1, §5, EXERCISE 11]). Let $1 \le j \le n$. Then $\Lambda^j : M_n(K) \to M_{\binom{n}{j}}(K)$ is a semigroup homomorphism. Moreover $\rho(\Lambda^j(a)) = 0$ if $\rho(a) < j$ and $\rho(\Lambda^j(a)) = \binom{\rho(a)}{j}$ if $\rho(a) \ge j$.

We shall start with an auxiliary result concerning matrices of rank one.

LEMMA 2. Let $T \subset M_n(K)$ be a set of idempotents of rank one. Then:

- (1) if $(ef)^2 = 0$ for any $e, f \in T$, $e \neq f$, then $|T| \leq 2^n 1$,
- (2) if $(efg)^2 = 0$ for any $e, f, g \in T$, $e \neq g$, then $|T| \leq n$.

PROOF. We will proceed by induction on n. The result is obvious if n=1. Let n>1 and $f,g\in T, f\neq g$. Since $\rho(g)=\rho(f)=1$, the condition $(fg)^2=0$ easily implies that fg=0 or gf=0. Thus, in any case, (1-g)f(1-g) is an idempotent.

Received by the editors March 23, 1984. 1980 Mathematics Subject Classification. Primary 20M10.

©1985 American Mathematical Society 0002-9939/85 \$1.00 + \$.25 per page Let us fix $e \in T$ and define $\overline{f} = (1 - e)f(1 - e)$ for $f \in T \setminus \{e\}$, $\overline{T} = \{\overline{f} | f \in T \setminus \{e\}\}$. Then \overline{T} embeds into $M_{n-1}(K)$. Since $\overline{f}=0$ would imply ef=f or fe=f, then by hypothesis $\rho(\overline{f}) = 1$ for any $\overline{f} \in \overline{T}$.

(1) Put $T_1=\{f\in T|ef=0\}$, $T_2=\{f\in T|fe=0\}$ and $\overline{T}_i=\{\overline{f}|f\in T_i\}$ for i=1,2. If $f,g\in T_1$, then $(\overline{f}\overline{g})^2=(fg)^2(1-e)$. Hence $(\overline{f}\overline{g})^2=0$ if and only if $f \neq g$. This means that \overline{T}_1 satisfies the induction hypothesis and $|\overline{T}_1| = |T_1|$. Since similar arguments can be applied to the set T_2 , by the induction argument we then get

$$|T| \le |T_1| + |T_2| + 1 = |\overline{T}_1| + |\overline{T}_2| + 1 = 2(2^{n-1} - 1) + 1 = 2^n - 1.$$

(2) It may be easily checked that for any $\overline{f}, \overline{g} \in \overline{T}, f \neq g$, the element $\overline{f}\overline{g}$ must be nilpotent. For example, if ef = fg = ge = 0, then $(\overline{f}\overline{g})^2 = (feg)^2 = 0$. Hence, in particular, $\overline{f} = \overline{g}$ implies f = g. Thus, as above, the inclusion argument yields $|T|=|\overline{T}|+1\leq n.$

It is easy to see that the assumption of (1) in Lemma 2 is essentially weaker than that of (2). In fact, take, for example,

$$T=\left\{ egin{pmatrix} 1 & 0 \ 0 & 0 \end{pmatrix}, egin{pmatrix} 0 & 0 \ 1 & 1 \end{pmatrix}, egin{pmatrix} 0 & 1 \ 0 & -1 \end{pmatrix}
ight\} \subset M_2(K).$$

COROLLARY 1. Let $T \in M_n(K)$ be a set of idempotents of rank j. Then

- (1) if $\rho((ef)^2) < j$ for any $e, f \in T$, $e \neq f$, then $|T| \leq 2^{\binom{n}{j}} 1$, (2) if $\rho((efg)^2) < j$ for any $e, f, g \in T$, $e \neq g$, then $|T| \leq \binom{n}{j}$.

PROOF. Let us consider the set $\Lambda^j(T) \subset M_{\binom{n}{j}}(K)$. Since Λ^j is a homomorphism, then the assumption of (1) (hence, also the assumption of (2)) implies that $|T| = |\Lambda^{\hat{I}}(T)|$. Moreover, by Lemma 1, $\Lambda^{\hat{I}}(T)$ consists of idempotents of rank one satisfying the hypotheses of Lemma 2(1), (2) accordingly. Thus, the result follows from Lemma 2.

The first part of Corollary 1 solves Problem 3.9 from [3]. However, to get a stronger result in our structure theorem we will use the second assertion of Corollary

PROPOSITION 1. Let $S \subset M_n(K)$ be a strongly π -regular semigroup. Then Shas at most 2^n regular J-classes.

PROOF. Let $1 \leq j \leq n$. Assume that some idempotents $e, f, g \in S$ of rank j are given with e, g lying in distinct J-classes. Suppose that $\rho((efg)^2) = j$. Then, since S is strongly π -regular, there exist $x \in S$ and $y = y^2 \in S$ such that $(efg)^k x = y$ and $\rho(y) = \rho((efg)^k)$ for some $k \geq 1$. Thus $\rho(y) = j$. Now $y = y^2 = (ey)^2$ and so $\rho(eye) \geq \rho(y) = j$ which implies that $\rho(eye) = j$. Since $(eye)^2 = eye$, this yields eye = e. Hence $(efg)^k xe = eye = e$ and so $e \in SgS$. Similarly $g \in SeS$, a contradiction. Now, from Corollary 1 it follows that there are at most $\binom{n}{i}$ regular *J*-classes of S contained in $I_j \setminus I_{j-1}$. This yields the result.

Let us observe that there exists a semigroup $T \subset M_n(K)$ which is strongly π regular and has exactly 2^n regular J-classes—namely the set of all diagonal idempotents.

PROPOSITION 2. Let $S \subset M_n(K)$ be a strongly π -regular semigroup. If I is an ideal of S such that S/I is a nil semigroup, then $(S/I)^m = 0$, where $m = \prod_{i=1}^n \binom{n}{i}$.

PROOF. Let j be the least integer such that $S \subset I_j$. Define H as the subsemi-group generated by $S \setminus I$. Let $h = g_1 \cdots g_s$, $g_i \in S \setminus I$. By hypothesis, there exist $y \in S$, $e = e^2 \in S$, $k \geq 1$, such that $h^k y = (g_1 \cdots g_s)^k y = e$ and $\rho(e) = \rho(h^k)$. Suppose that $\rho(e) = j$. Then $\rho(h) = \rho(e)$ and from [4, Lemma 4], it follows that $g_1 = eg_1$. Since I is an ideal of S, then we must have $e \notin I$. This contradicts the fact that S/I is nil. Hence $\rho(h^k) = \rho(e) < j$. While $h \in H$ is an arbitrary element, $H/(H \cap I_{j-1})$ is a nil semigroup.

Let us consider the semigroup $\Lambda^j(H) \subset M_{\binom{n}{j}}(K)$. Since, by Lemma 1, $\Lambda^j(I_{j-1}) = 0$, then the first part of the proof implies that $\Lambda^j(H)$ is a nil semigroup. Thus, it is well known that $\Lambda^j(H^{\binom{n}{j}}) = \Lambda^j(H)^{\binom{n}{j}} = 0$ [2, Proposition 17.19]. This means that $H^{\binom{n}{j}} \subset I_{j-1}$. Now we have a natural epimorphism $H/(H \cap I_{j-1}) \to S/(I \cup (I_{j-1} \cap S))$ and the latter is also nilpotent of index not exceeding $\binom{n}{j}$. On the other hand

$$(I \cup (I_{j-1} \cap S))/I \simeq (I_{j-1} \cap S)/(I \cap I_{j-1} \cap S) = (I_{j-1} \cap S)/(I_{j-1} \cap I).$$

Putting $\overline{S} = I_{j-1} \cap S$, $\overline{I} = I_{j-1} \cap I$, we get a strongly π -regular semigroup $\overline{S} \subset I_{j-1}$ and we may repeat the above procedure regarding the nil semigroup $\overline{S}/\overline{I}$. Thus, after j such steps we get $(S/I)^{\binom{n}{j}\binom{n}{j}\binom{n}{j-1}\cdots\binom{n}{l}} = 0$. Hence $(S/I)^m = 0$.

Let us notice that Proposition 2 provides in particular an alternative proof of the implication S/I-nil $\Rightarrow S/I$ -nilpotent, which was proved in [4].

Now, by Propositions 1 and 2 and the structure theorem for strongly π -regular semigroups with finitely many regular J-classes (cf. [3, Lemma 1.9]) we can summarize our results.

THEOREM. Let $S \subset M_n(K)$ be a strongly π -regular semigroup. Then there exists a chain of ideals $S_1 \lhd \cdots \lhd S_t = S$ such that $t \leq 2^{n+1}$ and all factors S_i/S_{i-1} are completely 0-simple or nilpotent of index not exceeding $m = \prod_{j=1}^n \binom{n}{j}$.

At last, observe that, in view of [4], the Theorem establishes the nonexistence of chains of left (right) principal ideals of S with length exceeding $m^{2^{n+1}}$, m as above.

ADDED IN PROOF. Since any periodic semigroup S is strongly π -regular, the Theorem provides a simple proof of the Burnside theorem for semigroups (cf. [5]). In fact, to show that S is locally finite it is enough to prove that all S_i/S_{i-1} are locally finite (cf. [6, Lemma 3]). While the nilpotent case is obvious, the completely 0-simple case easily follows by Rees' theorem and the Burnside theorem for torsion groups.

REFERENCES

- 1. N. Bourbaki, Algèbre, Chapitre III, Hermann, Paris, 1948.
- 2. C. Faith, Algebra. II. Ring theory, Springer-Verlag, Berlin and New York, 1976.
- 3. M. Putcha, On algebraic linear semigroups, Trans. Amer. Math. Soc. 259 (1980), 457-469.
- 4. _____, Matrix semigroups, Proc. Amer. Math. Soc. 88 (1983), 386-390.
- R. McNaughton and Y. Zalcstein, The Burnside problem for semigroups, J. Algebra 34 (1975), 292–299.
- 6. J. Okniński, On regular semigroup rings, Proc. Roy. Soc. Edinburgh (to appear).

INSTITUTE OF MATHEMATICS, UNIVERSITY OF WARSAW, 00-901 WARSAW, POLAND