. ^ .		r	r
M = 0	_ '	' '	\ ,
Model	୯୫.	tima.	tion

Example: Production functions PD

Theory: Q = { (L, V)

product labour capital

- - · L average number of employees · K sum of tangible and inta haible assets in 1.000 m.u.

Model 1: Linear production function

$$Q_i = \beta_1 + \beta_2 L_i + \beta_3 K_i + u_i$$
 (PRM)

E(QilLi,Ki)

$$Q_i = b_1 + b_2 L_i + b_3 K_i + e_i$$
 (SRM)

Model 2: Cobb	-Douglas	product	ion function
Q; = B1. L; B2. K.	B3.ui/ln	·	(PRM)
I lineari zation			
In Q; = In [By. L: In Q; = In By + In InQ; = In By + P	12. K. 13. U; ~ L. 132 + l ~ K	[33 + h U	
InQi = In Bi + p	32 lu Li+ B3	luki + lu	Li.
LQ; Bi	LLi	LK; u	,
LQi = b1 +b2	LLi +b3Lf	(j+e;	(SRM)
	Qi		
Linearized Cobl Regression coeff	o-Douglas	production bepresent	n function elasticities
Stata: · data explorat · logarithmic to · scatter plots		PDF, PP	.1-3.
· logarithmic for	ansforma	Honj	
3001101 00012	,		

Model 1 Estimation by regress and interpretation 1) Model statistics: PDF, pp. 3-4. P(F) { Statistical sign. of the model as a whole 2) ANOVA table: df: k-1 EMS df: n-k RMS = Se df: n-1 TMS RSS 27: h-1 3) Parameter estimates: bj, se(bj), tj, pj, 95% conf. interval Ho: Bj=0

"e+05" means". 105", "e-05" means ". 10-5".

H1: Bj +0

· 62=9687.4

 $p(b_2) = 0.009 < 0.05$, we reject $H_0: \beta_2 = 0$ and conclude that $\beta_2 \neq 0$.

The value is non-random Stat. significant.

Interpretation:

Regression reefficient

If x; increases by I unit of measurement, then on average, cereris paribus, y increases I decreases by b; units of measurement

If the average number of employees increases by I employee, then on average, ceteris parishus, value added increases by 9.7 mill. m. u.

(it's in loop m.u.)

· 63=2.279

 $p(b_3) = 0.003 < d = 0.05$

If the sum of tangible and internaide assets increases by 1000 m.u. then on average, celetis paribus, value added increases by 2279 m.u.

Calculation by using matrix algebra:

b=(XTX)-1XTy

PDF, p.4.

Model 2

PDF, pp.5-6.

Estimation by regress and interpretation

• $b_2 = 0.96$

 $p(b_2) = 0.000 < \chi = 0.05$

Interpretation:

Elasticity

If x; increases by 1 percent, then on average, cetens paribus, y increases/clecreases by b; percent.

If the average number of employees increases by 1 percent, then on average, celeris parabus, value added increases by 0.36 percent.

· 63=0.19

 $p(b_3) = 0.006 < \chi = 0.05$

If the sum of tangible and internaide assets increases by I percent, then on average, celetis paribus, value added increases by 0.19 percent.
Thereases by I percent, then on average,
celetis patibus, value added Thereases by
0.19 percent:
Calculation by using matrix algebra:
For homework.