

Vincent van Hees – 7th of April 2021 Webinar series OS Software in Physical Behaviour Research Field

Clean Code by Uncle Bob

Training videos: https://cleancoders.com
Also 'free' recordings from conference talks on YouTube

Clean Code by Uncle Bob

- Object names
- Function names
- Comment
- Formatting
- Object and data structures
- Error Handling
- Unit-tests

•

Gyroscopes

- Measures angular velocity around each axis
- Works based on resonating mass, see also [1, 2].
- Feasibility has improved in recent years
 - 7 days @ 100 Hertz with 3 accelerometer and 3 gyroscope
 - Based on small battery
- Potential challenges:
 - More data storage
 - More data processing
 - Higher price than accelerometer-only solutions
 - . N. Yazdi, F. Ayazi, and K. Najafi, "Micromachined inertial sensors," *Proceedings of the IEEE*, vol. 86, no. 8, pp. 1640–1658, 1998.
 - 2. Motion tracking in field sports using GPS and IMU MSc Thesis Matthijs Roobeek

Questions to be answered

Added value for physical behaviour research?

How to process the data?

Example data collected from wrist

Advantage of using a gyroscope?

	Orientation tracking during Statistic conditions	Orientation tracking during Dynamic conditions
Accelerometer	Good	Poor
Gyroscope	Poor	Good*
'Fusion' of Accelerometer and Gyroscope	Good*	Good*

^{*} Orientation relative to poles (north/south) remains difficult without additional magnetometer

Applications: Drones, Robots, Gait analysis, Animation industry, ...

Fusion at what level?

- Classification
- Feature
- Raw data

my focus today

Exploration of Fusion algorithms

Rotation axis

parallel to earth

Starting point:

 Pitch / Roll / Yaw angle from Accelerometer

 Pitch / Roll / Yaw angle change from Gyroscope

Rotation axis equals sensor axis

Source Wikipedia, licence: https://creativecommons.org/licenses/by-sa/3.0/deed.en

Exploration of Fusion algorithms

- Luinge and Veltink 2005 https://link.springer.com/article/10.1007/BF02345966
 - No code with original paper
 - External implementations:
 - Matlab: https://github.com/tytell/accelmat
- Madgwick et al. 2009 https://ieeexplore.ieee.org/document/5975346
 - C and Matlab code with original paper https://x-io.co.uk/open-source-imu-and-ahrs-algorithms
 - External implementations:
 - Python: https://github.com/Mayitzin/ahrs/, https://github.com/morgil/madgwick_py, and more
 - R: https://github.com/cran/RAHRS (not on CRAN anymore)
 - C++: https://github.com/arduino-libraries/MadgwickAHRS
- ... and more

... but without a full understanding this may be risky

Own attempt to write a fusion algorithm

• Input:

- 3 x gyro and 3 x acc
- Function g.cwaread from the GGIR Rpackage to read Axivity's AX6 .cwa data
- Output:
 - Orientation of gravity relative to sensor coordinate system
 - Local acceleration without gravity
- Accuracy: Not well tested, only visual checks
- Speed: 24 hours @ 100 Hertz in 30 seconds

https://cran.rproject.org/web/packages/GGIR/vignettes/SensorFusi onWithGGIR.html

Lessons learnt so far

- 1. Algorithm speed is critical
- Gold standard benchmark needed
- 3. Do not give up on existing algorithms yet
- 4. Unclear role of hardware specifications
- 5. Output of interest varies between algorithms

Next steps

- Find / create benchmarks:
 - Simulated data
 - Optical system to track orientation
 - Energy expenditure or Activity type classification
- Get standard algorithms to work, e.g. Madgwick
- Look into gyroscope calibration:
 - Check for bias based on non-movement episodes?
 - Check for scaling error based on …?
- Look into role of hardware specifications
- Work out how to go from pitch/roll/yaw to g-orientation
- Collaboration

