ALJABAR LINIER

DR. RETNO KUSUMANINGRUM, S.SI., M.KOM.

Matriks ~ Invers ~

DEFINISI

Perhatikan sebuah matriks bujur sangkar A berukuran $n \times n$

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}$$

Matriks A disebut memiliki invers, jika terdapat matriks bujur sangkar B, sedemikan sehingga berlaku:

$$AB = BA = I$$

 ${\it B}$ disebut balikan atau invers dari ${\it A}$ dan dituliskan ${\it B}={\it A}^{-1}$

SYARAT

- Syarat matriks A agar mempunyai invers adalah matriks A non singular $(|A| \neq 0)$
- Ijka matriks A matriks singular (|A| = 0) maka matriks A tidak mempunyai invers

Sifat:

- Bila ada invers, tunggal
- $-(A^{-1})^{-1}=A$
- $-(AB)^{-1}=B^{-1}A^{-1}$

INVERS MATRIKS 2 × 2

Invers matriks $A=\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$ adalah sebagai berikut:

$$A^{-1} = \frac{1}{a_{11}a_{22} - a_{12}a_{21}} \begin{bmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{bmatrix}$$

CONTOH

■ Tentukan invers matriks $A = \begin{bmatrix} 3 & 5 \\ 1 & 2 \end{bmatrix}$

Jawaban:

$$A^{-1} = \frac{1}{3.2 - 5.1} \begin{bmatrix} 2 & -5 \\ -1 & 3 \end{bmatrix} = \begin{bmatrix} 2 & -5 \\ -1 & 3 \end{bmatrix}$$

ANOTHER WAY:

$$A = \begin{bmatrix} 3 & 5 \\ 1 & 2 \end{bmatrix} \quad \Rightarrow A^{-1}$$

Misal
$$A^{-1} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, maka : $\begin{bmatrix} 3 & 5 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

(i).
$$3a + 5c = 1$$

(ii).
$$3b + 5d = 0$$

(iii).
$$a + 2c = 0$$

(iv).
$$b + 2d = 1$$

(i)
$$3a + 5c = 1$$

 $3x(iii) 3a + 6c = 0$
 $-c = 1$
 $c = -1$

$$a + 2 \cdot (-1) = 0$$
$$a - 2 = 0$$
$$a = 2$$

(i).
$$3a + 5c = 1$$

(ii).
$$3b + 5d = 0$$

(iii).
$$a + 2c = 0$$

(iv).
$$b + 2d = 1$$

(ii)
$$3b + 5d = 0$$

3x(iv)
$$3b + 6d = 3$$
$$-d = -3$$
$$d = 3$$

$$b + 2.3 = 1$$
$$b + 6 = 1$$
$$b = -5$$

$$A^{-1} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \implies A^{-1} = \begin{bmatrix} 2 & -5 \\ -1 & 3 \end{bmatrix}$$

INVERS MATRIKS DIAGONAL

Bentuk umum matriks diagonal berukuran $n \times n$

$$D = \begin{bmatrix} d_1 & 0 & \dots & 0 \\ 0 & d_2 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & d_n \end{bmatrix}$$

Maka:

$$D^{-1} = \begin{bmatrix} 1/d_1 & 0 & \dots & 0 \\ 0 & 1/d_2 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1/d_n \end{bmatrix}$$

$$D^{m} = \begin{bmatrix} d_{1}^{m} & 0 & \dots & 0 \\ 0 & d_{2}^{m} & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & d_{n}^{m} \end{bmatrix}$$

CONTOH

Jika diketahui
$$D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$
, tentukan D^{-1} dan D^{5} !

SIFAT

- Matriks segitiga bisa diinvers jika dan hanya jika elemen diagonalnya tidak ada yang nol
- Invers pada matriks segitiga bawah adalah matriks segitiga bawah, dan invers pada matriks segitiga atas adalah matriks segitiga atas

2. Dengan matriks adjoin

Jika $A = (a_{ij})$ dan A_{ij} adalah kofaktor dari elemen a_{ij} maka matriks adjoin dari A adalah matriks transpose (A_{ij})

Adj (A) =
$$\begin{pmatrix} A_{11} & A_{21} & \dots & A_{n1} \\ A_{12} & A_{22} & \dots & A_{n2} \\ \dots & \dots & \dots & \dots \\ A_{1n} & A_{2n} & \dots & A_{nn} \end{pmatrix}$$

$$A^{-1} = \frac{1}{\det(A)} Adj(A)$$

CONTOH

Tentukan invers dari matriks
$$A = \begin{bmatrix} 2 & 3 & 1 \\ 1 & 2 & 2 \\ 2 & 1 & 3 \end{bmatrix}$$

$$A_{11} = (-1)^{1+1} \begin{vmatrix} 2 & 2 \\ 1 & 3 \end{vmatrix} = (2.3 - 2.1) = 4$$

$$A_{12} = (-1)^{1+2} \begin{vmatrix} 1 & 2 \\ 2 & 3 \end{vmatrix} = (-1).(1.3 - 2.2) = 1$$

$$A_{13} = (-1)^{1+3} \begin{vmatrix} 1 & 2 \\ 2 & 1 \end{vmatrix} = (1.1 - 2.2) = -3$$

(LANJUTAN I)

Tentukan invers dari matriks
$$A = \begin{bmatrix} 2 & 3 & 1 \\ 1 & 2 & 2 \\ 2 & 1 & 3 \end{bmatrix}$$

$$A_{21} = (-1)^{2+1} \begin{vmatrix} 3 & 1 \\ 1 & 3 \end{vmatrix} = (-1).(3.3 - 1.1) = -8$$

$$A_{22} = (-1)^{2+2} \begin{vmatrix} 2 & 1 \\ 2 & 3 \end{vmatrix} = (2.3 - 1.2) = 4$$

$$A_{23} = (-1)^{2+3} \begin{vmatrix} 2 & 3 \\ 2 & 1 \end{vmatrix} = (-1).(2.1 - 2.3) = 4$$

(LANJUTAN 2)

Tentukan invers dari matriks
$$A = \begin{bmatrix} 2 & 3 & 1 \\ 1 & 2 & 2 \\ 2 & 1 & 3 \end{bmatrix}$$

$$A_{31} = (-1)^{3+1} \begin{vmatrix} 3 & 1 \\ 2 & 2 \end{vmatrix} = (2.3 - 2.1) = 4$$

$$A_{32} = (-1)^{3+2} \begin{vmatrix} 2 & 1 \\ 1 & 2 \end{vmatrix} = (-1).(2.2 - 1.1) = -3$$

$$A_{33} = (-1)^{3+3} \begin{vmatrix} 2 & 3 \\ 1 & 2 \end{vmatrix} = (2.2 - 3.1) = 1$$

(LANJUTAN 3)

Menghitung determinan menggunakan ekspansi kofaktor baris pertama:

$$|A| = a_{11}A_{11} + a_{12}A_{12} + a_{13}A_{13}$$

= 2.4 + 3.1 + 1. (-3)
= 8

Maka
$$A^{-1} = \frac{1}{8} \begin{bmatrix} 4 & -8 & 4 \\ 1 & 4 & -3 \\ -3 & 4 & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & -1 & \frac{1}{2} \\ \frac{1}{8} & \frac{1}{2} & -\frac{3}{8} \\ \frac{3}{8} & \frac{1}{2} & \frac{1}{8} \end{bmatrix}$$