The max-min-hill-climbing algorithm

Michael Bauer

M.Sc. Comp. Science

April 30, 2014

Learning a graph and its structure

Graph theory - Part I

Probability theory

Reminder

Definition (Independence)

Let A, B denote random variables. Then A and B are independent iff

$$P(A \cap B) = P(A) * P(B)$$
 (1)

Definition (Conditional Probability)

Let A, B denote random variables and P(B) > 0. The probability of A given B is defined as:

$$P(A|B) = \frac{P(A \cap B)}{P(B)} \tag{2}$$

Combining these approaches

Definition (Conditional Independence)

Two variables X and Y are conditionally independent given \mathbf{Z} w.r.t a probability distribution P, denoted as $Ind_p(X; Y|\mathbf{Z})$, if $\forall x, y, \mathbf{z}$, where $P(\mathbf{Z} = \mathbf{z}) > 0$,

$$P(X, Y|\mathbf{Z}) = P(X|\mathbf{Z}) * P(Y|\mathbf{Z})$$
(3)

where $P(X, Y|\mathbf{Z}) = P(X \cap Y|\mathbf{Z})$.

Graph theory - Part II

Collider

Blocked paths and d-seperation (Examples)

Define three sets

Let Z_1 , Z_2 and Z_3 denote sets with:

$$Z_1 = \{W\}$$

 $Z_2 = \{R, V\}$
 $Z_3 = \{R, P\}$

Statistics

The G^2 value

Definition

We calculate the G^2 value under the nullhypothesis of the conditional independence of $Ind(X_i, X_i | \mathbf{X}_k \text{ holding. Then, the } G^2 \text{ value is defined as:}$

$$G^{2} := 2 * \sum_{a,b,c} S_{ijk}^{abc} * In \left(\frac{S_{ijk}^{abc} * S_{k}^{c}}{S_{ik}^{ac} * S_{jk}^{bc}} \right)$$
(4)

http://www.medcalc.org/manual/_help/images/chi-sq_curve.png

Computational properties

- A hybrid algorithm
 - Greedy Algorithm

- A hybrid algorithm
 - Greedy Algorithm
 - Constrained-based

- A hybrid algorithm
 - Greedy Algorithm
 - Constrained-based
- np-hard

- A hybrid algorithm
 - Greedy Algorithm
 - Constrained-based
- np-hard

\mathbf{d}^0	d^1
0.6	0.4

i ⁰	i^1	
0.7	0.3	

	s ⁰	\mathbf{s}^1	
i ⁰	0.95	0.05	
i^1	0.2	0.8	

	I ⁰	l ¹	
\mathbf{g}^1	0.95	0.05	
\mathbf{g}^2	0.2	0.8	
\mathbf{g}^3	0.2	8.0	

	\mathbf{g}^1	\mathbf{g}^2	\mathbf{g}^3
$\mathbf{i}^0,\mathbf{d}^0$	0.3	0.4	0.3
$\mathbf{i}^0,\mathbf{d}^1$	0.05	0.25	0.7
$\mathbf{i}^1, \mathbf{d}^0$	0.9	0.08	0.02
$\mathbf{i}^1, \mathbf{d}^1$	0.5	0.3	0.2