

Som Edouples.
· If f: M - N is smooth the
Jf: TH -> TN
is a bundk humerton.
IJ E 15 a v.S. and SCH
)
is a submanifole, the we have a
Sundle hamanton
Els — E
S — M
Considerat of a fixed vector full 2
on Risa burdle up
$\frac{2\times(-)\cdot \top R^{2} \longrightarrow \top R^{3}}{}.$
Z

· A bundh honnenghan F: E-) E' our H \tilde{F} : $\Gamma(H, E) \rightarrow \Gamma(H, E')$ $\left(\tilde{\mathbf{f}}_{s}\right)\left(\tilde{\mathbf{p}}\right) = \mathbf{f}\left(s\left(\tilde{\mathbf{p}}\right)\right).$ The mp F is linear. But nume Give any $s \in \Gamma(M, E)$ and $f \in C^{\infty}(M)$ ve define or new section $f s \in \Gamma(M, E)$ $(fs)(p) = f(p) \cdot 5(p).$ In this souse $\Gamma(H,E)$ is a $C^{*}(H)$ module. The map \widetilde{F} is a homographism
of $C^{*}(M)$ -nucles:

$$\widetilde{F}(fs) = f \cdot \widetilde{F}(s)$$

for all fect(M), seT(M,E).

is constat.

	hence (FI) =	$\begin{cases} 0 & \chi \neq 0 \\ \chi & \chi = 0 \end{cases}$
Nst	G veek	South of a Uker (Fle).