Visualización de superficies en 3D

Representación por *raytracing* de superficies definidas por funciones distancia con signo y conversión de superficies implícitas y paramétricas usando bases de Gröbner

Daniel Zufrí Quesada

Ing. Informática y Matemáticas Universidad de Granada

Septiembre, 2023

- 1 Introducción
- 2 SDFs
- 3 Renderizado
- 4 Implementación
- 6 Resultados
- 6 Demo
- Conclusione:

Motivación

Figura 1: Modelo 3D del videojuego Ratchet & Clank: Una dimensión aparte

Motivación

Figura 1: Modelo 3D del videojuego Ratchet & Clank: Una dimensión aparte

- > 180.000 triángulos
- > 550.000 vértices
- > 19 MB

Motivación

Figura 2: Modelo BlobTree

- 1 Introducción
- 2 SDFs
- 3 Renderizado
- 4 Implementación
- 6 Resultados
- 6 Demo
- Conclusione:

Definiciones

Definición (Signed Distance Function)

Sea $\Omega\subset\mathbb{R}^3$. La función distancia con signo asociada a Ω es el campo escalar de la forma:

$$\phi_{\Omega} \colon \mathbb{R}^3 \to \mathbb{R}, \ x \mapsto egin{cases} d_{\Omega}(x), & x \in \mathbb{R}^3 \setminus \mathring{\Omega}, \\ -d_{\Omega}(x), & x \in \mathring{\Omega}, \end{cases}$$

donde d_{Ω} es la función distancia asociada a Ω

Ejemplos de operaciones

Rotación

Intersección

Torsión

Diferencia

Repetición

Aproximación de implícitas

Proposición

Sea $\phi \colon \mathbb{R}^3 \to \mathbb{R}$ una función infinitamente diferenciable. Entonces

$$|\operatorname{\mathsf{sdf}}_{\mathcal{S}_\phi}(p)| \geq rac{|\phi(p)|}{\|
abla\phi(p)\|}.$$

Problema de implicitación

Introducción

Conjunto $V \subseteq A^n$ cuya parametrización es

$$\begin{cases} x_1 &= \frac{f_1(t_1, \dots, t_r)}{q_1(t_1, \dots, t_r)}, \\ \vdots & \\ x_n &= \frac{f_n(t_n, \dots, t_r)}{q_n(t_1, \dots, t_r)}. \end{cases}$$

Definimos

$$\begin{split} \phi \colon A^r \setminus \mathbb{V}(q_1, \dots, q_n) &\to A^n, \\ (\alpha_1, \dots, \alpha_r) &\mapsto \left(\frac{f_1(\alpha_1, \dots, \alpha_r)}{q_1(\alpha_1, \dots, \alpha_r)}, \dots, \frac{f_n(\alpha_1, \dots, \alpha_r)}{q_n(\alpha_1, \dots, \alpha_r)}\right). \end{split}$$

Problema de implicitación

Teorema (Implicitación Racional)

Sea $f_1, \ldots, f_n, q_1, \ldots, q_n \in A[t_1, \ldots, t_r]$ con A cuerpo infinito, $W = \mathbb{V}(q_1, \ldots, q_n)$ y la aplicación

$$\phi \colon A^r \setminus W \to A^n,$$

$$(a_1, \ldots, a_r) \mapsto \left(\frac{f_1(a_1, \ldots, a_r)}{q_1(a_1, \ldots, a_r)}, \ldots, \frac{f_n(a_1, \ldots, a_r)}{q_n(a_1, \ldots, a_r)}\right).$$

Definimos los ideales:

•
$$I = \langle q_1x_1 - f_1, \ldots, q_nx_n - f_n, 1 - q_1 \cdots q_ny \rangle$$

•
$$J = I \cap A[x_1, \ldots, x_n].$$

Entonces, $\mathbb{V}(I)$ es la menor variedad que contiene a $\phi(A^r \setminus W)$.

- 1 Introducción
- 2 SDFs
- 3 Renderizado
- 4 Implementación
- 6 Resultados
- 6 Demo
- Conclusione:

Raytracing

Raymarching vs Spheretracing

Figura 3: Raymarching

Raymarching vs Spheretracing

Figura 3: Raymarching

Figura 4: Spheretracing

ntroducción SDFs **Renderizado** Implementación Resultados Demo Conclusiones 200 00000 000 000 000 000 000 000

Raymarching vs Spheretracing

Modelo de Blinn-Phong

Sombras

Oclusión ambiental

Antialiasing

- 1 Introducción
- 2 SDFs
- Renderizado
- 4 Implementación
- 6 Resultados
- 6 Demo
- Conclusiones

Tipos de nodos

- 1 Introducción
- 2 SDFs
- 3 Renderizado
- 4 Implementación
- 6 Resultados
- 6 Demo
- Conclusione:

Rendimiento lienzo

Resolución alta

Rendimiento librería Implicitación

- 1 Introducción
- 2 SDFs
- 3 Renderizado
- 4 Implementación
- 6 Resultados
- 6 Demo
- Conclusione

- 2 SDFs
- Renderizado
- 4 Implementación
- 6 Resultados
- 6 Demo
- Conclusiones

Conclusiones

- Estudio de las SDFs y bases de Gröbner.
- Creación de aplicación web en React para la creación y manipulación de superficies.
- Desarrollo de librería en TypeScript para trabajar con polinomios en varias variables y aplicar el T^a Implicitación.

¿Preguntas?

Introducción