Booklet of Code and Output for STAD29/STA 1007 Midterm Exam

List of Figures in this document by page:

List of Figures

1	Packages
2	Copiers data
3	Copiers scatterplot
4	Regression for copiers data
5	Predictions for copiers data
6	Soft drink bottle return data
7	Bottles logistic regression
8	Predictions for bottles data
9	Plot of predictions and proportions
10	Arthritis data (some)
11	Arthritis model
12	Arthritis predictions
13	Patient survival data
14	Patient survival Cox model
15	Headache pain relief times, original layout of data
16	ANOVA with interaction for headache pain relief times 13
17	Analysis of main effects for headache pain relief times 14
18	Simple effects of treatment for males
19	Simple effects of treatment for females
20	Morality of eating meat data (some randomly chosen rows) 17
21	Mean scores by group for meat data
22	Testing of contrasts for meat data
23	Survival curves
24	Headache pain relief times, interaction plot

```
library(MASS)
library(tidyverse)
## -- Attaching packages -----
tidyverse 1.3.1 --
## v ggplot2 3.3.6
                    v purrr 0.3.4
## v tibble 3.1.7 v dplyr 1.0.9
## v tidyr 1.2.0 v stringr 1.4.0
## v readr 2.1.2 v forcats 0.5.1
## -- Conflicts -----
tidyverse_conflicts() --
## x \ dplyr::filter() \ masks \ stats::filter()
## x dplyr::lag() masks stats::lag()
## x dplyr::select() masks MASS::select()
library(broom)
library(survival)
library(survminer)
## Loading required package: ggpubr
##
## Attaching package: 'survminer'
## The following object is masked from 'package:survival':
##
##
      myeloma
```

Figure 1: Packages

minutes	machines
97.0	7.0
86.0	6.0
78.0	5.0
10.0	1.0
75.0	5.0
62.0	4.0
101.0	7.0
39.0	3.0
53.0	4.0
33.0	2.0
118.0	8.0
65.0	5.0
25.0	2.0
71.0	5.0
105.0	7.0
17.0	1.0
49.0	4.0
68.0	5.0

Figure 2: Copiers data

Figure 3: Copiers scatterplot

```
copiers.1=lm(minutes~machines, data=copiers)
summary(copiers.1)
##
## Call:
## lm(formula = minutes ~ machines, data = copiers)
## Residuals:
             1Q Median
##
      Min
                              ЗQ
## -7.6309 -3.2500 -0.2383 4.0235 6.6309
##
## Coefficients:
##
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2.3221 2.5644 -0.906 0.379
## machines 14.7383
                          0.5193 28.383 4.1e-15 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.482 on 16 degrees of freedom
## Multiple R-squared: 0.9805, Adjusted R-squared: 0.9793
## F-statistic: 805.6 on 1 and 16 DF, p-value: 4.097e-15
```

Figure 4: Regression for copiers data

```
new=tibble(machines=6)
p1=predict(copiers.1, new, interval="c")
cbind(new,p1)
##
   machines
                 fit
                          lwr
                                   upr
## 1 6 86.10738 83.32504 88.88973
p2=predict(copiers.1, new, interval="p")
cbind(new,p2)
##
   machines
                 fit
                          lwr
## 1 6 86.10738 76.20721 96.00756
```

Figure 5: Predictions for copiers data

```
bottles
## # A tibble: 6 x 3
## deposit sold returned
     <dbl> <dbl>
##
                    <dbl>
         2
## 1
                      72
             500
## 2
         5
            500
                     103
## 3
        10 500
                      170
## 4
         20 500
                      296
## 5
         25
             500
                      406
## 6
         30
             500
                      449
```

Figure 6: Soft drink bottle return data

```
bottles.1=glm(y~deposit, data=bottles, family=binomial)
summary(bottles.1)
##
## Call:
## glm(formula = y ~ deposit, family = binomial, data = bottles)
##
## Deviance Residuals:
   1 2
                         3
                                          5
## 0.1754 0.4330 0.5784 -2.9193 1.2710 1.2209
##
## Coefficients:
             Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.076565 0.084839 -24.48 <2e-16 ***
## deposit
           0.135851
                         0.004772
                                   28.47 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 1108.171 on 5 degrees of freedom
## Residual deviance: 12.181 on 4 degrees of freedom
## AIC: 53.419
## Number of Fisher Scoring iterations: 3
```

Figure 7: Bottles logistic regression

```
probability=predict(bottles.1, bottles, type="response")
preds=cbind(bottles, probability)
preds
##
    deposit sold returned probability
## 2
        5 500
                   103
                       0.1982432
        10 500
## 3
                   170
                       0.3278210
## 4
        20 500
                   296
                        0.6548554
## 5
        25 500
                   406
                        0.7891326
## 6
        30 500
                   449
                        0.8806877
```

Figure 8: Predictions for bottles data

Figure 9: Plot of predictions and proportions

```
arthritis=read_table("arthritis.txt")
##
## -- Column specification -----
## cols(
## id = col_double(),
   treatment = col_character(),
##
##
    sex = col_character(),
##
    age = col_double(),
##
    impr = col_double()
## )
## Warning: 43 parsing failures.
## row col expected actual
                                     file
   1 -- 5 columns 6 columns 'arthritis.txt'
    2 -- 5 columns 6 columns 'arthritis.txt'
    3 -- 5 columns 6 columns 'arthritis.txt'
   4 -- 5 columns 6 columns 'arthritis.txt'
    5 -- 5 columns 6 columns 'arthritis.txt'
  ... ... ..... .....
## See problems(...) for more details.
arthritis
## # A tibble: 85 x 5
       id treatment sex
                         age impr
     <dbl> <chr> <dbl> <dbl> <dbl> <dbl>
##
       57 Treated Male
## 1
                         27
## 2
       46 Treated Male
                           29
                                0
## 3
       77 Treated Male
                          30
## 4
       17 Treated Male
                          32
                                2
                                 2
   5
                        46
##
       36 Treated
                  Male
##
   6
       23 Treated Male
                           58
                                2
## 7
       75 Treated
                  Male
                           59
                                0
## 8
       39 Treated
                           59
                                2
                  Male
## 9
       33 Treated
                   Male
                           63
                                  0
## 10
                           63
                                  0
       55 Treated
                   Male
## # ... with 75 more rows
```

Figure 10: Arthritis data (some)

```
arthritis.1=polr(factor(impr)~treatment+sex+age, data=arthritis)
drop1(arthritis.1, test="Chisq")
## Single term deletions
##
## Model:
## factor(impr) ~ treatment + sex + age
   Df AIC
                     LRT Pr(>Chi)
            155.46
## <none>
## treatment 1 168.17 14.7095 0.0001254 ***
## sex 1 159.15 5.6880 0.0170812 *
           1 158.03 4.5715 0.0325081 *
## age
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Figure 11: Arthritis model

```
treatment sex age 0 1
##
## 1
      Placebo Female 46 0.6849211 0.15738536 0.15769352
## 2
     Placebo Female 63 0.5318884 0.20439438 0.26371724
## 3 Placebo Male 46 0.8837222 0.06545116 0.05082667
## 4
     Placebo Male 63 0.7988957 0.10817798 0.09292635
## 5
      Treated Female 46 0.2751180 0.20743935 0.51744266
## 6
     Treated Female 63 0.1655413 0.16217047 0.67228824
## 7
      Treated Male 46 0.5702499 0.19503589 0.23471420
## 8 Treated Male 63 0.4095362 0.22067590 0.36978787
```

Figure 12: Arthritis predictions

```
## Rows: 15 Columns: 5
## -- Column specification ------
## Delimiter: "\t'"
## chr (1): status
## dbl (4): id, survtime, treatment, age
## i Use 'spec()' to retrieve the full column specification for
this data.
## i Specify the column types or set 'show_col_types = FALSE' to
quiet this message.
## # A tibble: 15 x 5
##
        id survtime status treatment
                                      age
##
     <dbl>
           <dbl> <chr>
                                    <dbl>
                           <chr>
## 1
        1
                1 Died
                          В
                                       75
## 2
         2
                 1 Died
                          В
                                       79
## 3
         3
                 4 Died
                           В
                                       85
                 5 Died
##
   4
         4
                           В
                                       76
## 5
         5
                 6 Unknown B
                                       66
## 6
         6
                                       75
                 8 Died
                           Α
## 7
        7
                9 Survived B
                                       72
##
   8
        8
                 9 Died
                           В
                                       70
## 9
        9
                                       71
                12 Died
                           Α
## 10
        10
                15 Unknown A
                                       73
## 11
                22 Died
                           В
                                       66
        11
## 12
        12
                25 Survived A
                                       73
## 13
                                       68
        13
                37 Died
## 14
        14
                55 Died
                                       59
                72 Survived A
                                       61
## 15
        15
```

Figure 13: Patient survival data

```
patients.1=coxph(y~treatment+age, data=patients)
summary(patients.1)
## Call:
## coxph(formula = y ~ treatment + age, data = patients)
##
##
    n= 15, number of events= 10
##
##
                coef exp(coef) se(coef)
                                            z Pr(>|z|)
## treatmentB 1.88484 6.58531 0.96833 1.946 0.05160 .
## age
         0.21739
                      1.24283 0.08429 2.579 0.00991 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
             exp(coef) exp(-coef) lower .95 upper .95
                 6.585
                           0.1519
                                      0.987
                                               43.936
## treatmentB
                 1.243
                           0.8046
                                      1.054
                                                1.466
## age
##
## Concordance= 0.873 (se = 0.034)
## Likelihood ratio test= 14.41 on 2 df,
                                           p = 7e - 04
## Wald test
                       = 9.03 on 2 df,
## Score (logrank) test = 12.61 on 2 df,
                                         p=0.002
```

Figure 14: Patient survival Cox model

Treatment	Male	Female
Α	22	21
	25	19
	26	18
	27	24
	24	25
В	14	21
	17	20
	19	23
	20	27
	17	25
C	15	37
	17	34
	19	36
	14	26
	12	29

Figure 15: Headache pain relief times, original layout of data

```
## Rows: 15 Columns: 3
## -- Column specification ---
##
## chr (1): Treatment
## dbl (2): Male, Female
## i Use 'spec()' to retrieve the full column specification for
this data.
## i Specify the column types or set 'show_col_types = FALSE' to
quiet this message.
## # A tibble: 30 x 3
##
     Treatment Gender Time
##
      <chr>
               <chr> <dbl>
##
   1 A
               Male
## 2 A
               Female
                          21
## 3 A
               Male
                          25
##
   4 A
               Female
                          19
## 5 A
                          26
               Male
## 6 A
               Female
                          18
## 7 A
               Male
                          27
##
   8 A
               Female
                          24
## 9 A
               Male
                          24
## 10 A
               Female
## # ... with 20 more rows
```

```
painrelief.1=aov(Time~Treatment*Gender, data=painrelief)
summary(painrelief.1)
##
                   Df Sum Sq Mean Sq F value
                                              Pr(>F)
## Treatment
                       71.5
                              35.73
                                      3.822
                                              0.0362 *
                      313.6 313.63 33.544 5.70e-06 ***
## Gender
                    1
## Treatment:Gender 2 521.9 260.93 27.907 5.46e-07 ***
## Residuals
                   24 224.4
                               9.35
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Figure 16: ANOVA with interaction for headache pain relief times

```
painrelief.2=update(painrelief.1, .~.-Treatment:Gender)
summary(painrelief.2)
##
              Df Sum Sq Mean Sq F value Pr(>F)
               2 71.5 35.73 1.245 0.30456
## Treatment
               1 313.6 313.63 10.927 0.00277 **
## Gender
## Residuals
              26 746.3
                          28.70
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
TukeyHSD(painrelief.2)
##
    Tukey multiple comparisons of means
##
       95% family-wise confidence level
##
## Fit: aov(formula = Time ~ Treatment + Gender, data = painrelief)
##
## $Treatment
      diff
                 lwr
                          upr
                                  p adj
## B-A -2.8 -8.753648 3.153648 0.4819497
## C-A 0.8 -5.153648 6.753648 0.9405350
## C-B 3.6 -2.353648 9.553648 0.3062075
##
## $Gender
##
                   diff
                              lwr
                                                p adj
                                        upr
## Male-Female -6.466667 -10.48785 -2.445488 0.0027695
```

Figure 17: Analysis of main effects for headache pain relief times

```
painrelief %>% filter(Gender=="Male") -> painrelief_male
painrelief.3a=aov(Time~Treatment, data=painrelief_male)
summary(painrelief.3a)
##
              Df Sum Sq Mean Sq F value
                                          Pr(>F)
## Treatment
              2 245.2 122.60 22.56 8.59e-05 ***
## Residuals
             12
                  65.2
                           5.43
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
TukeyHSD(painrelief.3a)
    Tukey multiple comparisons of means
##
##
      95% family-wise confidence level
##
## Fit: aov(formula = Time ~ Treatment, data = painrelief_male)
##
## $Treatment
##
      diff
                  lwr
                            upr
                                    p adj
## B-A -7.4 -11.333026 -3.466974 0.0008076
## C-A -9.4 -13.333026 -5.466974 0.0000968
## C-B -2.0 -5.933026 1.933026 0.3928918
```

Figure 18: Simple effects of treatment for males

```
painrelief %>% filter(Gender=="Female") -> painrelief_female
painrelief.3b=aov(Time~Treatment, data=painrelief_female)
summary(painrelief.3b)
##
              Df Sum Sq Mean Sq F value
                                          Pr(>F)
## Treatment
              2 348.1 174.07
                                13.12 0.000955 ***
## Residuals
             12 159.2 13.27
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
TukeyHSD(painrelief.3b)
    Tukey multiple comparisons of means
##
##
      95% family-wise confidence level
##
## Fit: aov(formula = Time ~ Treatment, data = painrelief_female)
##
## $Treatment
##
      diff
                 lwr
                           upr
                                   p adj
## B-A 1.8 -4.345745 7.945745 0.7210392
## C-A 11.0 4.854255 17.145745 0.0012146
## C-B 9.2 3.054255 15.345745 0.0046858
```

Figure 19: Simple effects of treatment for females

```
## Rows: 30 Columns: 3
## -- Column specification -----
## Delimiter: ","
## dbl (3): Eth, Phil, Other
##
## i Use 'spec()' to retrieve the full column specification for
this data.
## i Specify the column types or set 'show_col_types = FALSE' to
quiet this message.
## # A tibble: 20 x 2
##
     discipline score
##
     <fct>
            <dbl>
## 1 Eth
## 2 Other
                    5
## 3 Other
## 4 Phil
                    1
## 5 Other
                    4
##
   6 Other
   7 Phil
##
                    5
## 8 Phil
                    2
## 9 Phil
                    4
## 10 Eth
## 11 Other
                    5
## 12 Eth
                    5
## 13 Eth
## 14 Phil
                    5
## 15 Phil
                    4
## 16 Eth
                    2
## 17 Other
                    3
## 18 Eth
## 19 Other
                    5
## 20 Eth
```

Figure 20: Morality of eating meat data (some randomly chosen rows)

Figure 21: Mean scores by group for meat data

```
meat.1=lm(score~discipline, data=meat)
summary(meat.1)
##
## Call:
## lm(formula = score ~ discipline, data = meat)
##
## Residuals:
   Min 1Q Median
                             3Q
                                    Max
## -3.6333 -0.7333 0.3667 0.8333 1.2667
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.1778 0.1180 35.409 < 2e-16 ***
## disciplinec1
               0.2167
                          0.1445 1.499 0.13739
## disciplinec2 0.4556
                          0.1669 2.730 0.00766 **
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.119 on 87 degrees of freedom
## Multiple R-squared: 0.1003, Adjusted R-squared: 0.07965
## F-statistic: 4.851 on 2 and 87 DF, p-value: 0.01006
```

Figure 22: Testing of contrasts for meat data

```
## Warning: 'gather_()' was deprecated in tidyr 1.2.0.
## Please use 'gather()' instead.
## This warning is displayed once every 8 hours.
## Call 'lifecycle::last_lifecycle_warnings()' to see where this warning was generated.
```



```
## # A tibble: 4 x 2
## age treatment
## <dbl> <chr>
## 1 67 A
## 2 67 B
## 3 75 A
## 4 75 B
```

Figure 23: Predicted survival curves for ages and treatments given below plot

'summarise()' has grouped output by 'Treatment'. You can
override using the
'.groups' argument.

Figure 24: Headache pain relief times, interaction plot