实验目的

1. 雪报惠斯登电桥侧量相电阻的居理和特点; 2. 学会利用解复斯登电桥测量和电阻,并掌握许算测量结果的不确定度; 3. 学会用输气单臂电桥,测量净值电阻 4. 了解电桥灵敏度对测量结果的最好的,以及常用减小测量误差的办法.

实验仪器名称 [型号、主要参数]

干电池,直流指针式, 社流行、 ZX Y型 电阻箱、滑线变阻器 QJ Y型箱式电桥、开关,导送等。

一校流州文献度有限、当电标程了时,经流行们有电流通过,只是当近小龙城湖 出。电桥在号之相对的。设电桥在号二时开发了,则有Rx平5。若将及改变一个了量 呢,电桥左头去开发了,但当了到松汕不出来,则认为电桥依然不复了,因而及=R+以, 山界,是由于检流计灵敏度不够带来的测量误差从下。电桥灵敏度 S=△G/G (号即号) 电桥平线时,例2号R5、平线了点、附近△R10号R5。

· R R , AST可取太大

S= 岛·如(= Si-Si (Si为松流计电流更敏度, Si为电精线路是敏度)

由基本程长统律(不考虑电源内阻)可得: 1g=(RLRink, R,R)E

考虑右手後点附近 RzRx-PiRs≈0 可得:
•
5- E RITRETRSTRX + Rg[2+1/R, + Rs/]
二整个电话表映度 $S = \frac{Si E}{R_1 + R_2 + R_3 + R_4 + \frac{R_5}{R_2} + \frac{R_5}{R_2} / J}$
RITESTRAT Ry[2+(R)]
2. 交换法测电阻.
些精彩的由Rx=是Rs可得其不确定度为:
$\frac{u(R_x)}{R_x} = \sqrt{\left(\frac{u(R_x)^2}{R_x}\right)^2 + \left(\frac{u(R_x)}{R_x}\right)^2 + \left(\frac{u(R_x)}{R_x}\right)^2}$
把Rx与Rs交换,调整Rs至Rs使电新重新平衡(A.R.改),有Rx=管Rs'
上两式和東、 $R= [R_sR_s']$ 见 $u(R_s) = \int_{\left(\frac{1}{2}, \frac{u(R_s')}{R_s}\right)^2 + \left(\frac{1}{2}, \frac{u(R_s')}{R_s'}\right)^2}$
二.操作步骤
1.自搭惠,斯登电桥侧电阻:自搭惠斯登电桥并用其分别测两未知电阻人。
和风、电报:合理选择尺、尺、快尽、风沙量结果有四位有效数字。
2:交换法测电阻:在上进基础上,交换Rs和R的位置,分别测量行测电阻.
3. (8]23型箱式电桥测量和电阻
要我选择后适的比多简倍数, 使被测电阻有四位有效数字.
高欣璐
12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
() 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

	实验数据处	理与讨论	② 【实验数	据计算、不	确定度公式推导与计算、结果表示与讨论等]	
	1.直搭惠具	1登电梯	御堂。	时电阻		
	Rx	及(九)	R2(P)	RSIR)	待知)和阻值:	
	≈30r	100.0	700.0	2085	Rx, = 12 Rs = 29.79 D	
	=1.5~2kz	750.0	150.0	395.8	Rx2= R2R, = 1979 12	
	电扫粉的	义器误差	: AR =	(0.1+ 0.2	一下)儿, m取占.	
	也一次20	是、则	Ug(x)=1			
0	Rx≈3012: "	1(R) = AR	·= (0.1+	$0.2 \times \frac{6}{R_1}$	% = υ. Σ'/,	
	$\frac{u(P_{2})}{P_{1}} = \frac{dP}{R} = (0.1 + 0.1 \times \frac{b}{P_{2}})^{2}/. = 0.102^{2}/.$					
	$\frac{u(R_s)}{R_s} = \frac{aR}{R} = (v.1 + 0.1 \times \frac{b}{R_s})^* / = 0.10 b' / $ $\frac{u(R_s)}{R_s} - \frac{u(R_s)^2}{(u(R_s)^2 + (u(R_s)^2 + 0.10 b')} - 12 (v.1)$					
	$\frac{1}{ R_{x} } = \int \left(\frac{u R_{1} ^{2}}{ R_{1} ^{2}}\right)^{2} + \left(\frac{u R_{2} ^{2}}{ R_{2} ^{2}}\right)^{2} $					
	PP ? Rx ± nlrx) = (29.79±0.05) 12 nlrx) x100) = 0.18%					
G	(2) 00 11 MR1 AR (11122 6-21)					

$$\frac{|A|R_{1}|}{|R_{1}|} = \frac{|A|R_{1}|}{|R_{1}|} = \frac{|A|R_{2}|}{|R_{1}|} = \frac{|A|R_{2}|}{|R_{2}|} = \frac{|A$$

2.交换法测电阻.

·	127.				
RX	R,(2)	RIA)	Rs(R)	Rs'(n)	
26602	500.0	400.0	539.7	843.6	

M Rx= [Rs. Rs' = 1539.7×843.6 = 674.812.

$$\frac{120}{12x} = \sqrt{\frac{(u(R_s))^2 + (u(R_s))^2 - 0.07}{R_s^2}} = 0.07$$

3.比较和讨论。

利用交换的测量结果的不确定度和比自搭惠斯登电桥测量的的不确定度,下降)—并以上.

回答问题与实验总结	
1. P., R. 在交换的后不可以改变; 应为等债效效, 指於在R., P.人储台以减力设置 若交换, 会使电阻箱设置发生变化	_
2. "电计"键为接通松流计、观察指针偏键、判断是否达到手续形态	— —
一、"短路"键闭了使指针在摆放时较快回到手约住置。	
<u> </u>	
使用后直露出的点。	
3. 刚平校定保护电路的价明;当调电阻接加实际阻值时,滑溪度阻器、调为完起到提高、检流计关敏度的作用.	3.
4-1)会: 导致检洗计偏幅不明显,以不会:无能电射, 松流计两端等等。	
3/会:无证准确利断是否平衡 切会:电流规则时,检流计无法显示.	
大,接O, 0.9 几程线柱	
15 10 R2接0月,9月12接往.	
Rs 美 9.9, 99999.92 接收注.	
苍的闭无电流,则闭合气,微镜表示数不胜度他,此时, Rg=元, Rs	
二. 京起表话	
三.3000000000000000000000000000000000000	
任课教师指导意见	
	\

实验 3.3 惠斯登电桥测量中值电阻

姓名张沙哥合作者 班级加沙洲320教师高依辖实验时间 3.27 实验组号 8

一、预习要点

- 1. 惠斯登电桥的测量原理和特点;
- 2. 交换法减小测量误差的基本原理; 交换法测量时, R_1, R_2 的阻值是否可以改变;
- 3. 哪些参量影响电桥的灵敏度?如何测量电桥灵敏度?
- 4. 从减小测量误差的角度出发,说明如何选择桥臂电阻;

二、实验注意事项

1. 检流计不能在短路情况下调零。使用时露出红点。使用后露出白点。

三、实验内容

- 1. 自搭惠斯登电桥测量数据表中指定的两个电阻 R_x 。采用三个电阻箱作为桥臂电阻,要求测量结果 R_x 有 4 位有效数字;
- 2. 利用交换法测量数据表中指定的电阻;要求测量结果 R_x 有 4 位有效数字;

四、数据表格

1. 自搭惠斯登电桥测量两个电阻

R_x	R_1 (Ω)	R_2 (Ω)	R_s (Ω)
≈ 30Ω	100.0	<u>د.ه م ل</u>	108.5
$\approx 1.5 \sim 2k\Omega$	750.0 +202	150.0	395.8

2. 交换法测电阻

R_x	$R_1 (\Omega)$	$R_2(\Omega)$	R_s (Ω)	R_s' (Ω)
≈ 680Ω	200.0	400,0	139.7	843.6

3. 设计实验,测量自搭单臂电桥的灵敏度。(选作)

ے عدد سال یا	高欣璐		
教师签字			