## **Financial Engineering Lab (MA374)**

Name - Kartikeya Singh Roll Number - 180123021 Lab - 01

3 Files are made for each question.

To Run the file for q1 type **python3 180123021\_Kartikeya\_Singh\_q1.py** on the terminal.

To Run the file for q2 type **python3 180123021\_Kartikeya\_Singh\_q2.py** on the terminal.

To Run the file for q3 type **python3 180123021\_Kartikeya\_Singh\_q3.py** on the terminal.

## **Question 1**

(The output generated is stored in a file named q1\_data.csv)

The Prices of European Call and Put Options are calculated using the continuous compounding convention. Two matrices *call* and *put* are made.

call[t][i] represents the value of a call option at time 't' if the underlying stock goes down 'i' times and goes up 't-i' times.

putl[t][i] represents the value of a put option at the time 't' if the underlying stock goes down 'i' times and goes up 't-i' times.

call[0][0] and put[0][0] would represent the initial option prices for call and put options respectively.

No-Arbitrage condition is also checked using -

$$d < e^{rt} < u$$

The results obtained are as follows -

| М   | Call Price  | Put Price   |  |
|-----|-------------|-------------|--|
| 1   | 38.16763503 | 19.94171725 |  |
| 5   | 34.90653251 | 16.68061473 |  |
| 10  | 33.62502175 | 15.39910398 |  |
| 20  | 33.85944949 | 15.63353171 |  |
| 50  | 33.98118437 | 15.75526659 |  |
| 100 | 34.01116098 | 15.78524321 |  |
| 200 | 34.0195787  | 15.79366093 |  |
| 400 | 34.01913177 | 15.79321399 |  |

## **Question 2**

(The 4 graphs shown below are generated by running the code and are saved as Call\_1.png, Call\_5.png, Put\_1.png and Put\_5.png)









It can be observed from the graph, on increasing the value of M (The number of subintervals), The option prices converge to a fixed value.

The Call Option Price converges to **34.019** (approx.) and The Put option price converges to **15.793** (approx.)

It can also be observed that these option prices satisfy the put-call parity -

$$C^E - P^E = S(0) - Ke^{-rT}$$

As  $C^E - P^E = 18.226$  and  $S(0) - Ke^{-rT} = 18.226$  using the values S(0) = 100, K = 105, r = 0.05, T = 5,  $C^E = 34.019$  and  $P^{E} = 15.793$ .

## **Question 3**

The values of put and call options are calculated for M = 20 at t = 0,0.50,1,1.50,3,4.5.

(nUmD represents that the price went up 'n' times and went down 'm' times)

For t = 0, there is only 1 possible option price.

For t = 0.5, there are 3 possible option prices (  $2U0D^*$ , 1U1D; 0U2D)

For t = 1, there are 5 possible option prices ( 4U0D, 3U1D, 2U2D, 1U3D, 0U4D) Similarly for t = 1.5, there are 7 possible prices, for t = 3, there are 13 possible option prices, and for t = 4.5, there are 19 possible prices.

The Call Option prices are -

| Т                                   | 0       | 0.5                           | 1                                                   | 1.5                                                                      | 3                                                                                                                                         | 4.5                                                                                                                                                                                                                    |
|-------------------------------------|---------|-------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| European<br>Call<br>Option<br>Price | 33.8594 | 59.9588<br>31.8933<br>15.0959 | 100.6627<br>57.7000<br>29.8040<br>13.4697<br>5.1548 | 160.6114<br>98.4389<br>55.2954<br>27.5732<br>11.7675<br>4.1214<br>1.1250 | 519.0997<br>359.9342<br>242.0302<br>154.8417<br>91.1934<br>46.9762<br>19.7252<br>6.1485<br>1.2360<br>0.1183<br>0.0000<br>0.0000<br>0.0000 | 1419.4245<br>1024.9934<br>732.7916<br>516.3232<br>355.9595<br>237.1591<br>149.1496<br>83.9506<br>36.2515<br>8.1492<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000 |

The Put Option prices are -

| Т                                  | 0       | 0.5                          | 1                                                 | 1.5                                                                    | 3                                                                                                                                     | 4.5                                                                                                                                                                                       |
|------------------------------------|---------|------------------------------|---------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| European<br>Put<br>Option<br>Price | 15.6335 | 8.4792<br>15.4871<br>24.6728 | 3.5042<br>8.0042<br>15.2694<br>24.9833<br>35.9653 | 0.9424<br>2.9982<br>7.4363<br>14.9634<br>25.2710<br>36.9701<br>48.3050 | 0.0000<br>0.0007<br>0.0087<br>0.1721<br>1.2357<br>4.9582<br>13.2218<br>25.9550<br>40.5333<br>53.8548<br>64.4333<br>72.3577<br>78.2282 | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.6015<br>8.2812<br>26.6400<br>46.2776<br>60.8254<br>71.6028<br>79.5868<br>85.5015<br>89.8832<br>93.1293<br>95.5341 |