(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum
5. April 2001 (05.04.2001)

PCT

(10) Internationale Veröffentlichungsnummer WO 01/23446 A1

(51) Internationale Patentklassifikation⁷: C08F 10/02, 2/00, C08L 23/06, C08F 23/16

(21) Internationales Aktenzeichen:

PCT/EP00/08817

(22) Internationales Anmeldedatum:

9. September 2000 (09.09.2000)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität: 199 45 980.0 24. September 1999 (24.09.1999) DE

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): BASELL POLYOLEFINE GMBH [DE/DE]; Am Yachthafen 2, D-77694 Kehl (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): BERTHOLD, Joachim

[DE/DE]; Am Flachsland 54, D-65779 Kelkheim (DE). BÖHM, Ludwig [DE/DE]; Leonhardstrasse 36, D-65795 Hattersheim (DE). ENDERLE, Johannes-Friedrich [DE/DE]; Spohrstrasse 36, D-60318 Frankfurt (DE). SCHUBBACH, Reinhard [DE/DE]; Hölzlweg 17, D-83346 Bergen (DE).

(81) Bestimmungsstaaten (national): AU, BR, CA, CN, IN, JP, KR, RU, US, ZA.

(84) Bestimmungsstaaten (regional): europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Veröffentlicht:

Mit internationalem Recherchenbericht.

Zur Erklärung der Zweibuchstaben-Codes, und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(54) Title: POLYETHYLENE MOULDING COMPOUND WITH AN IMPROVED ESCR-STIFFNESS RELATION AND AN IMPROVED SWELLING RATE, A METHOD FOR THE PRODUCTION THEREOF AND THE USE THEREOF

(54) Bezeichnung: POLYETHYLEN FORMMASSE MIT VERBESSERTER ESCR-STEIFIGKEITSRELATION UND SCHWELLRATE, VERFAHREN ZU IHRER HERSTELLUNG UND IHRE VERWENDUNG

(57) Abstract: The invention relates to a polyethylene moulding compound with multimodal molar weight distribution. Said moulding compound is provided with a total density of ≥ 0.940 g/cm³ and an MFI_{190/5} in the range of 0.01 to 10 dg/min. The inventive moulding compound contains 30 to 60 wt. % of low-molecular ethylene homopolymer A which is provided with a viscosity number VZ_A in the range of 40 to 150 cm³/g. The moulding compound also comprises 30 to 65 wt. % of a high-molecular copolymer B consisting of ethylene and an additional olefin with 4 to 10 C-atoms and having a viscosity number VZ_B in the range of 150 to 800 cm³/g. Said moulding compound further comprises 1 to 30 wt. % of ultrahigh-molecular ethylene homopolymer C which is provided with a viscosity number VZ_C in the range of 900 to 3,000 cm³/g. The invention also relates to a method for producing the moulding compound in a three-step process and to the use thereof for producing hollow bodies.

(57) Zusammenfassung: Die Erfindung betrifft eine Polyethylen-Formmasse mit multimodaler Molmassenverteilung, die eine Gesamtdichte von ≥0,940 g/cm³ besitzt und einen MFI_{190/5} im Bereich von 0,01 bis 10 dg/min. Die erfindungsgemässe Formmasse enthält eine Menge von 30 bis 60 Gew.-% an niedermolekularem Ethylenhomopolymer A, das eine Viskositätszahl VZ_A im Bereich von 40 bis 150 cm³/g, besitzt, eine Menge von 30 bis 65 Gew.-% an hochmolekularem Copolymer B aus Ethylen und einem weiteren Olefin mit 4 bis 10 C-Atomen, das eine Viskositätszahl VZ_B im Bereich von 150 bis 800 cm³/g besitzt, und eine Menge von 1 bis 30 Gew.-% an ultrahochmolekularem Ethylenhomopolymer C, das eine Viskositätszahl VZ_C im Bereich von 900 bis 3000 cm³/g besitzt. Die Erfindung betrifft auch ein Verfahren zum Herstellen der Formmasse in einem Dreistufenprozess und ihre Verwendung für die Herstellung von Hohlkörpern.

Polyethylen Formmasse mit verbesserter ESCR-Steifigkeitsrelation und Schwellrate, Verfahren zu ihrer Herstellung und ihre Verwendung

Die vorliegende Erfindung betrifft eine Polyethylen Formmasse mit multimodaler Molmassenverteilung und ein Verfahren zur Herstellung dieser Formmasse in Gegenwart eines katalytischen Systems aus Ziegler Katalysator und Cokatalysator über eine mehrstufige aus aufeinanderfolgenden Flüssigphasenpolymerisationen bestehenden Reaktionsabfolge und aus der Formmasse durch Blasformextrusion hergestellte Hohlkörper.

10

15

5

Polyethylen wird in großem Umfang zur Herstellung von Formteilen und Behältnissen verwendet, weil er ein Werkstoff mit geringem Eigengewicht ist, der trotzdem eine besonders hohe mechanische Festigkeit, hohe Korrosionsbeständigkeit gegenüber Feuchtigkeit und Wasser in Kombination mit Luftsauerstoff und absolut zuverlässige Langzeitbeständigkeit besitzt, und weil Polyethylen eine gute chemische Beständigkeit aufweist und insbesondere leicht für Flaschen, Kanister und Treibstoffbehälter in Kraftfahrzeugen verarbeitet werden kann.

20

Die EP-A-603,935 beschreibt bereits eine Formmasse auf Basis von Polyethylen, die eine bimodale Molmassenverteilung besitzt und die sich unter anderem auch zur Herstellung von Rohren eignet.

25

Ein Rohstoff mit einer noch weiter verbreiterten Molmassenverteilung ist in der US-PS 5,338,589 beschrieben und wird mit einem hochaktiven Katalysator hergestellt, der aus der WO 91/18934 bekannt ist und bei dem das Magnesiumalkoholat als gelförmige Suspension eingesetzt wird. Überraschend wurde gefunden, daß der Einsatz dieses Werkstoffes in Formteilen, insbesondere in Rohren, eine gleichzeitige Verbesserung der in teilkristallinen Thermoplasten üblicherweise gegenläufigen Eigenschaften Steifigkeit und Kriechneigung einerseits und Spannungsrissbeständigkeit und Zähigkeit andererseits ermöglicht.

Die bekannten bimodalen Produkte zeichnen sich insbesondere durch eine gute Verarbeitbarkeit bei gleichzeitig herausragender Spannungsriss-Steifigkeitsrelation aus. Diese Eigenschaftskombination ist von besonderer Bedeutung bei der Herstellung von Hohlkörpern wie Flaschen, Kanister und Treibstoffbehälter in Kraftfahrzeugen aus Kunststoff. Neben dieser Eigenschaftskombination ist aber für die Herstellung von Hohlkörpern aus Kunststoff eine möglichst hohe Schwellrate der Kunststoffschmelze notwendig, weil die Schwellrate bei der Blasformextrusion unmittelbar dafür verantwortlich ist, dass sich die Wanddickensteuerung, die Ausbildung der Schweißnaht und die Verschweißbarkeit bei der Fertigung im Betrieb optimal einstellen lassen.

Es ist bekannt, dass sich Kunststoffe mit hohen Schwellraten mit sogenannten Phillips-Katalysatoren, das sind Polymerisationskatalysatoren auf Basis von Chromverbindungen, gut erzeugen lassen. Die so hergestellten Kunststoffe besitzen aber eine ungünstige Spannungsriss-Steifigkeitsrelation im Vergleich zu den bekannten Kunststoffen mit bimodaler Molmassenverteilung.

Aus der EP-A-0 797 599 ist ein Verfahren bekannt, das in aufeinanderfolgenden Gasphasen- und Flüssigphasenpolymerisationen sogar ein Polyethylen mit einer trimodalen Molmassenverteilung liefert. Dieses Polyethylen eignet sich zwar schon sehr gut zur Herstellung von Hohlkörpern in Blasformextrusionsanlagen, es ist jedoch in seinem Verarbeitungsverhalten noch verbesserungswürdig, wegen der noch zu niedrigen Schwellrate der Kunststoffschmelze.

25

30

20

5

10

15

Aufgabe der vorliegenden Erfindung war die Entwicklung einer Polyethylen Formmasse, mit der sich gegenüber allen bekannten Werkstoffen ein noch besseres Verhältnis von Steifigkeit zu Spannungsrissfestigkeit realisieren lässt und die außerdem eine hohe Schwellrate ihrer Schmelze besitzt, die bei der Herstellung von Hohlkörpern nach dem Blasformextrusionsverfahren nicht nur eine optimale

Wanddickensteuerung zulässt sondern gleichzeitig auch eine hervorragende Schweißnahtausbildung und Wanddickenverteilung ermöglicht.

Gelöst wird diese Aufgabe durch eine Formmasse der eingangs genannten Gattung, deren Kennzeichenmerkmale darin zu sehen sind, dass sie 30 bis 60 Gew.-% eines niedermolekularen Ethylenhomopolymers A, 65 bis 30 Gew.-% eines hochmolekularen Copolymers B aus Ethylen und einem anderen Olefin mit 4 bis 10 C-Atomen und 1 bis 30 Gew.-% eines ultrahochmolekularen Ethylenhomo- oder -copolymers C enthält, wobei alle Prozentangaben bezogen sind auf das Gesamtgewicht der Formmasse.

Die Erfindung betrifft ferner auch ein Verfahren zur Herstellung dieser Formmasse in kaskadierter Suspensionspolymerisation und Hohlkörper aus dieser Formmasse mit ganz hervorragenden mechanischen Festigkeitseigenschaften.

15

30

10

5

Die erfindungsgemäße Polyethylen Formmasse besitzt eine Dichte bei einer Temperatur von 23 °C im Bereich von ≥ 0,940 g/cm³ und eine breite trimodale Molmassenverteilung. Das hochmolekulare Copolymer B enthält geringe Anteile von bis zu 5 Gew.-% an weiteren Olefinmonomereinheiten mit 4 bis 10 C-Atomen.

- 20 Beispiele für solche Comonomere sind 1-Buten, 1-Penten, 1-Hexen, 1 Octen oder 4-Methylpenten-1. Das ultrahochmolekulare Ethylenhomo- oder –copolymer C kann gegebenenfalls auch eine Menge von 0 bis 10 Gew.-% an einem oder mehreren der vorstehend genannten Comonomeren enthalten.
- Die erfindungsgemäße Formmasse besitzt ferner einen Schmelzflussindex gemäß ISO 1133, ausgedrückt als MFI_{190/5}, im Bereich von 0,01 bis 10 dg/min und eine Viskositätszahl VZ_{ges}, gemessen nach ISO/R 1191 in Dekalin bei einer Temperatur von 135 °C im Bereich von 190 bis 700 cm³/g, vorzugsweise von 250 bis 500 cm³/g.
 - Die Trimodalität kann als Maß für die Lage der Schwerpunkte der drei

Einzelmolmassenverteilungen mit Hilfe der Viskositätszahlen VZ nach ISO/R 1191 der in den aufeinanderfolgenden Polymerisationsstufen gebildeten Polymeren beschrieben werden. Hierbei sind folgende Bandbreiten der in den einzelnen Reaktionsstufen gebildeten Polymeren zu berücksichtigen:

5

Die an dem Polymer nach der ersten Polymerisationsstufe gemessene Viskositätszahl VZ_1 ist identisch mit der Viskositätszahl VZ_A des niedermolekularen Polyethylens A und liegt erfindungsgemäß im Bereich von 40 bis 180 cm³/g.

VZ_B des in der zweiten Polymerisationsstufe gebildeten h\u00f6hermolekularen
 Polyethylens B l\u00e4\u00dfts sich nach der folgenden mathematischen Formel berechnen:

$$VZ_B = \frac{VZ_2 - w_l \cdot VZ_l}{1 - w_l}$$

wobei w_1 für den Gewichtsanteil des in der ersten Stufe gebildeten niedermolekularen Polyethylens steht, gemessen in Gew.-%, bezogen auf das Gesamtgewicht des in den beiden ersten Stufen gebildeten Polyethylens mit bimodaler Molmassenverteilung, und VZ_2 für die Viskositätszahl, die an dem Polymer nach der zweiten Polymerisationsstufe gemessen wird. Der für VZ_8 errechnete Wert liegt normalerweise im Bereich von 150 bis 800 cm³/g.

VZ_c für das in der dritten Polymerisationsstufe gebildete ultrahochmolekulare Homooder Copolymer C berechnet sich nach der folgenden mathematischen Formel:

$$VZ_C = \frac{VZ_3 - w_2 \cdot VZ_2}{1 - w_2}$$

25

15

wobei w₂ für den Gewichtsanteil des in den beiden ersten Stufen gebildeten Polyethylens mit bimodaler Molmassenverteilung steht, gemessen in Gew.-%, bezogen auf das Gesamtgewicht des in allen drei Stufen gebildeten Polyethylens mit trimodaler Molmassenverteilung, und VZ_3 für die Viskositätszahl, die an dem Polymer nach der dritten Polymerisationsstufe gemessen wird und die identisch ist mit der oben bereits erwähnten VZ_{ges} . Der für VZ_c errechnete Wert liegt erfindungsgemäß im Bereich von 900 bis 3000 cm³/g.

5

10

Das Polyethylen wird durch Polymerisation der Monomeren in Suspension oder bei Temperaturen im Bereich von 20 bis 120 °C, einem Druck im Bereich von 2 bis 60 bar und in Gegenwart eines hochaktiven Ziegler-Katalysators erhalten, der aus einer Übergangsmetallverbindung und einer aluminiumorganischen Verbindung zusammengesetzt ist. Die Polymerisation wird dreistufig, d.h. in drei hintereinander geschalteten Stufen geführt, wobei die Molmasse jeweils mit Hilfe von zudosiertem Wasserstoff geregelt wird.

Die für die vorstehend beschriebene kaskadierte Fahrweise erforderliche

Langzeitaktivität des Polymerisationskatalysators wird durch einen speziell
entwickelten Ziegler Katalysator gewährleistet. Ein Maß für die Tauglichkeit dieses
Katalysators ist seine extrem hohe Wasserstoffansprechbarkeit und seine über eine
lange Zeitdauer von 1 bis 8 h gleichbleibend hohe Aktivität. Konkrete Beispiele für
einen derart tauglichen Katalystor sind die in der EP-A-0 532 551, der EP-A-0 068
257 und der EP-A-0 401 776 aufgeführten Umsetzungsprodukte von Magnesiumalkoholaten mit Übergangsmetallverbindungen des Titans, Zirkons oder Vanadiums
und einer metallorganischen Verbindung eines Metalls der Gruppen I, II oder III des
Periodensystems der Elemente.

25

Die erfindungsgemäße Polyethylen Formmasse kann neben dem Polyethylen noch weitere Zusatzstoffe enthalten. Solche Zusatzstoffe sind beispielsweise Wärmestabilisatoren, Antioxidantien, UV-Absorber, Lichtschutzmittel, Metalldesaktivatoren, peroxidzerstörende Verbindungen, basische Costabilisatoren in Mengen von 0 bis 10 Gew.-%, vorzugsweise 0 bis 5 Gew.-%, aber auch Füllstoffe, Verstärkungsmittel, Weichmacher, Gleitmittel. Emulgatoren, Pigmente, optische Aufheller, Flamm-

schutzmittel, Antistatika, Treibmittel oder Kombinationen von diesen in Gesamtmengen von 0 bis 50 Gew.-%, bezogen auf das Gesamtgewicht der Mischung.

Die erfindungsgemäße Formmasse eignet sich besonders gut zur Herstellung von Hohlkörpern wie Kraftstoffkanister, chemikalienresistente Gebinde, Kanister, Fässer und Flaschen, indem die Polyethylen Formmasse zunächst in einem Extruder bei Temperaturen im Bereich von 200 bis 250 °C plastifiziert und dann durch eine Düse in eine Blasform ausgepresst und dort abgekühlt wird.

Für die Verarbeitung zu Hohlkörpern können sowohl konventionelle Einschneckenextruder mit glatter Einzugszone als auch Hochleistungsextruder mit feingenutetem
Zylinder und förderwirksamem Einzug eingesetzt werden. Die Schnecken werden
typischerweise als Dekompressionsschnecken ausgelegt mit einer Länge von 25 bis
30 D (D = Durchmesser). Die Dekompressionsschnecken besitzen eine Austragszone, in der Temperaturunterschiede in der Schmelze ausgeglichen werden und in
der die durch Scherung entstandenen Relaxationsspannungen abgebaut werden
sollen.

Beispiel 1 (erfindungsgemäß):

20

25

30

5

Die Polymerisation von Ethylen wurde in einem kontinuierlichen Verfahren in drei hintereinander in Serie geschalteten Reaktoren betrieben. In den ersten Reaktor wurde ein Ziegler Katalysator, ausreichend Suspensionsmittel, Ethylen und Wasserstoff eingespeist. Die Menge an Ethylen und Wasserstoff wurde so eingestellt, dass auf neun Volumenteile Ethylen ein Volumenteil Wasserstoff entfiel.

Der Katalysator war ein Ziegler Katalysator, wie er in Beispiel 2 der WO 91/18934 beschrieben ist, der dort die Katalysator Komponente a mit der Operations-Nummer 2.2 hatte, und der zusammen mit einem Cokatalysator aus einer metallorganischen Verbindung eines Metalls der Gruppe I, II oder III des Periodensystems der

Elemente zugegeben wird.

In den ersten Reaktor wurden der Katalysator mit dem Cokatalysator und Triethylamin im Verhältnis 1:10 (mol/mol) kontinuierlich zudosiert.

5

Die Polymerisation in dem ersten Reaktor wurde bei einer Temperatur von 76 °C und einem Druck von 0,78 MPa über eine Zeitdauer von 3,3 h bei einem Wasserstoffgehalt im Gasraum von 67 bis 68 Vol.-% durchgeführt.

10 C ü u

Die Suspension aus dem ersten Reaktor wurde danach in einen zweiten Reaktor überführt in dem die Menge an Wasserstoff auf 5 Volumenteile im Gasraum reduziert und die Menge an C₄-Comonomer auf 5 Volumenteile angehoben worden war. Die Reduzierung der Menge an Wasserstoff erfolgte über eine H₂-Zwischenentspannung.

15

Die Polymerisation in dem zweiten Reaktor wurde bei einer Temperatur von 84 °C und einem Druck von 0,5 MPa über eine Zeitdauer von 54 min durchgeführt.

20

Die Suspension aus dem zweiten Reaktor wurde über eine weitere H_2 -Zwischenentspannung, mit der die Menge an Wasserstoff in dem Gasraum des dritten Reaktors auf \leq 5 Vol.-% eingestellt wird, in den dritten Reaktor überführt.

٥

Die Polymerisation in dem dritten Reaktor wurde bei einer Temperatur von 47 °C und einem Druck von ≤ 0,23 MPa über eine Zeitdauer von 30 min durchgeführt.

25

Die den dritten Reaktor verlassende Polymersuspension wurde nach Abtrennen des Suspensionsmittels und Trocknen der Granulierung zugeführt.

30

Die für die Polyethlen Formmasse hergestellt nach Beispiel 1 geltenden Viskositätszahlen und Mengenanteile w_A , w_B und w_C an Polymer A, B und C sind zusammen mit

den entsprechenden Daten der nach den folgenden Beispielen 2 bis 4 hergestellten Formmassen in der später aufgeführten Tabelle 1 angegeben.

Beispiel 2 (erfindungsgemäß)

5

Beispiel 1 wurde mit folgenden Änderungen nachgestellt:

Die Polymerisation in dem ersten Reaktor wurde bei einer Temperatur von 82 °C und einem Druck von 0,89 MPa über eine Zeitdauer von 2,6 h bei einem Wasserstoffgehalt von 68 Vol.-% im Gasraum des Reaktors durchgeführt.

10

15

30

Die Suspension aus dem ersten Reaktor wurde danach in einen zweiten Reaktor überführt in dem die Menge an Wasserstoff auf 10 Volumenteile im Gasraum des Reaktors reduziert und die Menge an C₄-Comonomer auf 0,7 Volumenteile im Gasraum des Reaktors angehoben worden war. Die Reduzierung der Menge an Wasserstoff erfolgte wieder über eine H₂-Zwischenentspannung.

Die Polymerisation in dem zweiten Reaktor wurde bei einer Temperatur von 80 °C

und einem Druck von 0,37 MPa über eine Zeitdauer von 66 min durchgeführt.

Die Suspension aus dem zweiten Reaktor wurde in den dritten Reaktor überführt und die Menge an Wasserstoff in dem Gasraum des dritten Reaktors auf 0,6 Vol.-% und die an C₄-Comonomer auf 0,8 Vol.-% eingestellt.

Die Polymerisation in dem dritten Reaktor wurde bei einer Temperatur von 80 °C und

einem Druck von 0,15 MPa über eine Zeitdauer von 36 min durchgeführt.

Die für die nach Beispiel 2 hergestellte Polyethlen Formmasse geltenden Viskositätszahlen und Mengenanteile w_A , w_B und w_C an Polymer A, B und C sind zusammen mit den entsprechenden Daten der nach den anderen Beispielen hergestellten Formmassen in der später aufgeführten Tabelle 1 angegeben.

Beispiel 3 (erfindungsgemäß)

Beispiel 2 wurde mit folgenden Änderungen nachgestellt:

Die Polymerisation in dem ersten Reaktor wurde bei einer Temperatur von 80 °C und einem Druck von 0,74 MPa über eine Zeitdauer von 2,1 h bei einem Wasserstoffgehalt von 65 Vol.-% im Gasraum des Reaktors durchgeführt.

Die Suspension aus dem ersten Reaktor wurde danach in einen zweiten Reaktor

überführt in dem die Menge an Wasserstoff auf 4,1 Volumenteile im Gasraum des
Reaktors reduziert und die Menge an C₄-Comonomer auf 1,1 Volumenteile im
Gasraum des Reaktors angehoben worden war. Die Reduzierung der Menge an
Wasserstoff erfolgte wieder über eine H₂-Zwischenentspannung.

Die Polymerisation in dem zweiten Reaktor wurde bei einer Temperatur von 80 °C und einem Druck von 0,24 MPa über eine Zeitdauer von 54 min durchgeführt.

Die Suspension aus dem zweiten Reaktor wurde in den dritten Reaktor überführt und die Menge an Wasserstoff in dem Gasraum des dritten Reaktors auf 1,1 Vol.-% und die an C₄-Comonomer auf 0,8 Vol.-% eingestellt.

Die Polymerisation in dem dritten Reaktor wurde bei einer Temperatur von 60 °C und einem Druck von 0,12 MPa über eine Zeitdauer von 30 min durchgeführt.

Die für die nach Beispiel 3 hergestellte Polyethlen Formmasse geltenden Viskositätszahlen und Mengenanteile w_A, w_B und w_C an Polymer A, B und C sind zusammen mit den entsprechenden Daten der nach den anderen Beispielen hergestellten Formmassen in der später aufgeführten Tabelle 1 angegeben.

Beispiel 4 (erfindungsgemäß)

Beispiel 3 wurde mit folgenden Änderungen nachgestellt:

Die Polymerisation in dem ersten Reaktor wurde bei einer Temperatur von 80 °C und einem Druck von 0,82 MPa über eine Zeitdauer von 2,2 h bei einem Wasserstoffgehalt von 74 Vol.-% im Gasraum des Reaktors durchgeführt.

Die Suspension aus dem ersten Reaktor wurde danach in einen zweiten Reaktor überführt in dem die Menge an Wasserstoff auf 4,0 Volumenteile im Gasraum des Reaktors reduziert und die Menge an C₄-Comonomer auf 1,3 Volumenteile im Gasraum des Reaktors angehoben worden war. Die Reduzierung der Menge an Wasserstoff erfolgte wieder über eine H₂-Zwischenentspannung.

Die Polymerisation in dem zweiten Reaktor wurde bei einer Temperatur von 80 °C und einem Druck von 0,20 MPa über eine Zeitdauer von 54 min durchgeführt.

Die Suspension aus dem zweiten Reaktor wurde in den dritten Reaktor überführt und die Menge an Wasserstoff in dem Gasraum des dritten Reaktors auf 1,0 Vol.-% und die an C₄-Comonomer auf 1,0 Vol.-% eingestellt.

20

5

10

15

Die Polymerisation in dem dritten Reaktor wurde bei einer Temperatur von 60 °C und einem Druck von 0,08 MPa über eine Zeitdauer von 30 min durchgeführt.

Die für die nach Beispiel 2 hergestellte Polyethlen Formmasse geltenden Viskositätszahlen und Mengenanteile w_A , w_B und w_C an Polymer A, B und C sind zusammen mit den entsprechenden Daten der nach den anderen Beispielen hergestellten Formmassen in der später aufgeführten Tabelle 1 angegeben.

Vergleichsbeispiel (VB):

Beispiel 1 wurde nachgestellt, jedoch mit dem Unterschied, dass nach der zweiten Reaktionsstufe die Polymerisation abgebrochen wurde.

Die Polymerisation in dem ersten Reaktor wurde bei einer Temperatur von 84 °C und einem Druck von 0,90 MPa über eine Zeitdauer von 4,2 h bei einem Wasserstoffgehalt im Gasraum des Reaktors von 76 Vol.-% durchgeführt.

Die Suspension aus dem ersten Reaktor wurde danach in einen zweiten Reaktor überführt in dem die Menge an Wasserstoff auf 3,0 Volumenteile im Gasraum des Reaktors reduziert und die Menge an C₄-Comonomer auf 1,9 Volumenteile im Gasraum des Reaktors angehoben worden war. Die Reduzierung der Menge an Wasserstoff erfolgte wieder über eine H₂-Zwischenentspannung.

Die Polymerisation in dem zweiten Reaktor wurde bei einer Temperatur von 83 °C und einem Druck von 0,21 MPa über eine Zeitdauer von 80 min durchgeführt.

Dabei entstand ein Polyethylen mit einer bimodalen Molmassenverteilung, wie es dem Stand der Technik nach der EP-A 603 935 entspricht.

5

10

Tabelle 1

Beispiel	1	2	3	4	VB
W _A	0,35	0,45	0,55	0,55	0.52
W _B	0,55	0,45	0,35	0,35	0,48
W _c	0,10	0,10	0,10	0,10	0
VZ₁[cm³/g]	80	80	100	60	55
MFR(2)	3,5	2,3	2,3	2,0	0,7
MFR(3)	1,2	0,7	0,55	0,56	
MFR/5 [g/10']	1,07	0,55	0,30	0,36	0,4
MFR/21,6 [g/10]	17,9	11	9,5	13,8	13,4
FRR 21,6/5	17	20	31,6	36,3	33,6
VZ _{ges} [cm³/g]	306	325	392	373	329
Dichte [g/cm³]	0,954	0,952	0,953	0,954	0,954
BZ 0°C [kJ/m²]	9,6	10,7	12,6	7,8	6
BKM [N/mm²]	1270	1200	1240	1280	1275
SR-Rheometer [%]	200	151	153	143	91
SRB [h]	3,7	16	54,2	54,1	39

Die Abkürzungen der physikalischen Eigenschaften in der Tabelle 1 haben die folgende Bedeutung:

- BKM = Biegekriechmodul, gemessen nach ISO 54852-Z4 in N/mm² als Einminutenwert,
- SRB = Spannungsrissbeständigkeit der erfindungsgemäßen Formmasse. Sie 10 wird nach einer internen Messmethode ermittelt. Diese Labormethode ist von M. Fleißner in Kunststoffe 77 (1987), S. 45 ff, beschrieben. Diese Publikation zeigt, dass zwischen der Bestimmung des langsamen Risswachstums im Zeitstandversuch an rundum gekerbten Probestäben und dem spröden Ast der Zeitstandsinnendruckprüfung nach ISO 1167 ein Zusammenhang besteht. 15 Eine Verkürzung der Zeit bis zum Versagen wird durch die Verkürzung der Rissinitiierungszeit durch die Kerbe (1,6 mm/Rasierklinge) in Ethylenglykol als spannungsrissförderndem Medium bei einer Temperatur von 80 °C und einer Zugspannung von 3,5 MPa erreicht. Die Probenherstellung erfolgt, indem drei Probekörper mit den Abmessungen 10 x 10 x 90 mm aus einer 10 mm dicken Pressplatte heraus gesägt werden. Die Probekörper werden rundum mit einer 20 Rasierklinge in einer eigens dafür angefertigten Kerbvorrichtung (dargestellt in Abbildung 5 in der Publikation von Fleißner) in der Mitte gekerbt. Die Kerbtiefe beträgt 1,6 mm.
- BZ = Bruchzähigkeit der erfindungsgemäßen Formmasse. Sie wird ebenfalls nach einer internen Messmethode an Probestäben mit den Abmessungen 10 x 10 x 80 mm, die aus einer 10 mm dicken Pressplatte herausgesägt wurden, bestimmt. In der bereits erwähnten Kerbvorrichtung werden sechs dieser Probestäbe mit der Rasierklinge in der Mitte gekerbt. Die Kerbtiefe beträgt 1,6 mm. Die Durchführung der Messung entspricht weitgehend der Charpy-

5

10

15

Messprozedur nach ISO 179 bei veränderten Probekörpern und veränderter Schlaggeometrie (Widerlagerabstand). Alle Probekörper werden über eine Zeitdauer von 2 bis 3 h auf die Messtemperatur von 0 °C temperiert. Man legt dann einen Probekörper zügig auf das Widerlager eines Pendelschlagwerks gemäß ISO 179. Der Widerlagerabstand beträgt 60 mm. Der Fall des 2 J Hammers wird ausgelöst, wobei der Fallwinkel auf 160 °, die Pendellänge auf 225 mm und die Auftreffgeschwindigkeit auf 2,93 m/sec eingestellt wird. Zur Auswertung der Messung wird der Quotient aus verbrauchter Schlagenergie und Anfangsquerschnittfläche an der Kerbe a_{FM} in mJ/mm² berechnet. Dabei können nur Werte bei vollständigem Bruch und Scharnierbruch als Grundlage für einen gemeinsamen Mittelwert dienen (siehe ISO 179).

SR = Schwellrate, gemessen in einem Hochdruckkapillarrheometer bei einer Scherrate von 1440 1/s in einer 2/2 Rundlochdüse mit einem konischen Einlauf (Winkel = 15°) bei einer Temperatur von 190°C.

Die Messwerte zeigen deutlich, dass die erfindungsgemäße Formmasse durchweg zu besseren Festigkeitseigenschaften führte und sich auch bei der Herstellung besser verarbeiten ließ.

Tabelle 2
Für die Hohlkörper-Prüfung wurden auf Bekum BAE 3 500 ml Rundflaschen unter folgenden Bedingungen und mit folgendem Ergebnis hergestellt:

Beispiel	1	2	3	4	VB 1
Grundspalt	150	150	150	150	200
Drehzahl [u/min]	17,7	17,7	17,7	17,7	
Blaszeit [sec]	15	14,0	12,0	11,2	12
Gewicht [g]	41,4	37,4	36,0	35,6	38
Wanddicke [mm]	1,2	1,00	0,90	0,85	
Schweißnaht- dicke [mm]	2,0	2,0	1,0	1,0	(0,5) (V-Kerbe)
Schmelzbruch [Note]	2	2	2	2	2
Stippen [Note]	2	2	2	3	1
Bemerkung	matt	matt	matt	matt	matt

5

Man sieht, dass die Formmasse nach dem Vergleichsbeispiel eine zu dünne Schweißnaht bildet, die zudem noch eine V-Kerbe aufweist, was eine Schwachstelle darstellt, die unter Druckbelastung aufplatzen kann.

Patentansprüche

- Polyethylen Formmasse mit multimodaler Molmassenverteilung, die eine
 Gesamtdichte von ≥ 0,940 g/cm³ besitzt und einen MFI₁₃₀₀₅ im Bereich von 0,01
 bis 10 dg/min, dadurch gekennzeichnet, dass sie eine Menge von 30 bis 60
 Gew.-% an niedermolekularem Ethylenhomopolymer A enthält, das eine
 Viskositätszahl VZ₄ im Bereich von 40 bis 150 cm³/g, besitzt, eine Menge von 30
 bis 65 Gew.-% an hochmolekularem Copolymer B aus Ethylen und einem
 weiteren Olefin mit 4 bis 10 C-Atomen, das eine Viskositätszahl VZ₃ im Bereich
 von 150 bis 800 cm³/g, besitzt, und eine Menge von 1 bis 30 Gew.-% an
 ultrahochmolekularem Ethylenhomo- oder -copolymer C, das eine Viskositätszahl
 VZc im Bereich von 900 bis 3000 cm³/g besitzt.
- Polyethylen Formmasse nach Anspruch 1, dadurch gekennzeichnet, dass sie eine hervorragende Verarbeitbarkeit zu Hohlkörpern besitzt, ausgedrückt durch eine Schwellrate im Bereich von 100 bis 300 %.
- Verfahren zum Herstellen einer Polyethylen Formmasse nach Anspruch 1, bei dem die Polymerisation der Monomeren in Suspension bei Temperaturen im Bereich von 20 bis 120 °C, einem Druck im Bereich von 2 bis 60 bar und in Gegenwart eines hochaktiven Ziegler-Katalysators durchgeführt wird, der aus einer Übergangsmetallverbindung und einer aluminiumorganischen Verbindung zusammengesetzt ist, dadurch gekennzeichnet, dass die Polymerisation dreistufig geführt wird, wobei die Molmasse des in jeder Stufe hergestellten Polyethylens jeweils mit Hilfe von Wasserstoff geregelt wird.
 - 4. Verwendung einer Polyethylen Formmasse nach Anspruch 1 zur Herstellung von Hohlkörpern wie Kraftstoffbehälter, Kanister, Fässer oder Flaschen, wobei die Polyethylen Formmasse zunächst in einem Extruder bei Temperaturen im

Bereich von 200 bis 250 °C plastifiziert und dann durch eine Düse in eine Blasform ausgepresst und dort abgekühlt wird.

5

* * * * * * *

PCT/EP 00/08817

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 CO8F10/02 CO8F2/00 CO8L23/06 CO8F23/16

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

 $\begin{array}{ccc} \text{Minimum documentation searched (classification system followed by classification symbols)} \\ IPC 7 & C08F & C08L \end{array}$

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	GB 2 056 996 A (ASAHI CHEMICAL IND) 25 March 1981 (1981-03-25) the whole document	1-4
X	EP 0 129 312 A (ASAHI CHEMICAL IND) 27 December 1984 (1984-12-27) page 21, line 2 - line 22; claims; examples	1-4
X	US 5 422 400 A (KAMIYAMA SAKAE ET AL) 6 June 1995 (1995-06-06) claims	1,3
Α	EP 0 905 151 A (FINA RESEARCH) 31 March 1999 (1999-03-31) claims; examples	1-4
	-/	

Patent family members are listed in annex.		
 "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document member of the same patent lamily 		
Date of mailing of the international search report		
06/12/2000		
Authorized officer Kaumann, E		

INTERNATIONAL SEARCH REPURT

Inter onal Application No PCT/EP 00/08817

Ciccetionation DOCUMENTS Consideration of the Peter School of the Peter School of Collegery* Citation of document, with indication, where appropriate, of the Peter Instance of			FCI/EF 00/	00017
A US 5 338 589 A (BOEHM LUDWIG ET AL) 16 August 1994 (1994-08-16) cited in the application				
A US 5 338 589 A (BOEHM LUDWIG ET AL) 16 August 1994 (1994-08-16) cited in the application claims	Category °	Citation of document, with indication, where appropriate, of the relevant passages		Helevani to claim No.
	А	US 5 338 589 A (BOEHM LUDWIG ET AL) 16 August 1994 (1994-08-16) cited in the application claims		1-4
1				

TERMATIONAL DEARCH RELOR

information on patent family members

Inter anal Application No PCT/EP 00/08817

						511
,	ent document n search report		Publication date		Patent family member(s)	Publication date
GB :	2056996	Α	25-03-1981	JP	1282819 C	27-09-1985
45		• •		JP	56032506 A	02-04-1981
				JP	59010724 B	10-03-1984
				BE	884866 A	16-12-1980
				BR	8005307 A	04-03-1981
				CA	1138148 A	21-12-1982
				DE	3031540 A	09-04-1981
				FR	2463791 A	27-02-1981
				ΙT	1193551 B	08-07-1988
				NL	8004745 A,C	26-02-1981
				US	4336352 A	22-06-1982
EP	0129312	Α	27-12-1984	JP	1012777 B	02-03-1989
				JP	1612249 C	30-07-1991
			•	JP	59196345 A	07-11-1984
				JP	1012778 B	02-03-1989
				JP	1612250 C	30-07-1991
				JP	59196346 A	07-11-1984
				JP	60036546 A	25-02-1985 02-03-1989
				JP	1012781 B 1612255 C	30-07-1991
				JP JP	60036547 A	25-02-1985
				CA	1218181 A	17-02-1987
				DE	3470168 D	05-05-1988
				US	4536550 A	20-08-1985
US	5422400	Α	06-06-1995	JP	2716615 B	18-02-1998
				JP	5117322 A	14-05-1993
EP	0905151	A	31-03-1999	EP	0905153 A	31-03-1999
				JP	11189605 A	13-07-1999
US	5338589	Α	16-08-1994	AT	142672 T	15-09-1996
				CA	2070470 A	06-12-1992
				DE	59207090 D	17-10-1996
				EP	0517222 A	09-12-1992
				ES	2094255 T	16-01-1997
				SG	52612 A	28-09-1998

Inter onales Aktenzeichen PCT/EP 00/08817

A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES IPK 7 C08F10/02 C08F2/00 C08L23/06 C08F23/16

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)

IPK 7 COSF COSL

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	GB 2 056 996 A (ASAHI CHEMICAL IND) 25. März 1981 (1981–03–25) das ganze Dokument	1-4
	das ganze bokument	
X	EP 0 129 312 A (ASAHI CHEMICAL IND) 27. Dezember 1984 (1984-12-27) Seite 21, Zeile 2 - Zeile 22; Ansprüche; Beispiele	1-4
X	US 5 422 400 A (KAMIYAMA SAKAE ET AL) 6. Juni 1995 (1995-06-06) Ansprüche	1,3
A	EP 0 905 151 A (FINA RESEARCH) 31. März 1999 (1999-03-31) Ansprüche; Beispiele	1-4

Y	Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen
	entnehmen

X Siehe Anhang Patentfamilie

- * Besondere Kategorien von angegebenen Veröffentlichungen
- 'A' Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
- "E" ätteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist
- *L* Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
- ausgeführt)

 'O' Veröffentlichung, die sich auf eine mündliche Offenbarung.
- eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht

 P Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist
- 'T' Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
- *X* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden
- 'Y' Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfindertscher T\u00e4tigkeit beruhend betrachtet werden, wenn die Ver\u00f6ffentlichung mit einer oder mehreren anderen Ver\u00f6ffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung f\u00fcr einen Fachmann nahellegend ist
- *&* Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlüsses der internationalen Recherche

30. November 2000

Name und Postanschrift der Internationalen Recherchenbehörde

Europäisches Patentamt, P.B. 5818 Patentlaan 2

NL - 2280 HV Rijswijk

Tet. (+31-70) 340-2040, Tx. 31 651 epo ni,
Fax: (+31-70) 340-3016

Absendedatum des internationalen Recherchenbehörde

Bevollmächtigter Bediensteter

Kaumann, E

HATEVIANTIONAPEN VECTERCITEMOTIFICITE

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

nter nales Aktenzeichen PCT/EP 00/08817

		101/21	00/0001/
Im Recherchenbericht ngeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
GB 2056996 A	25-03-1981	JP 1282819 C JP 56032506 A JP 59010724 B BE 884866 A BR 8005307 A CA 1138148 A DE 3031540 A FR 2463791 A IT 1193551 B NL 8004745 A,C US 4336352 A	27-09-1985 02-04-1981 10-03-1984 16-12-1980 04-03-1981 21-12-1982 09-04-1981 27-02-1981 08-07-1988 26-02-1981 22-06-1982
EP 0129312 A	27-12-1984	JP 1012777 B JP 1612249 C JP 59196345 A JP 1012778 B JP 1612250 C JP 59196346 A JP 60036546 A JP 1012781 B JP 1612255 C JP 60036547 A CA 1218181 A DE 3470168 D US 4536550 A	02-03-1989 30-07-1991 07-11-1984 02-03-1989 30-07-1991 07-11-1984 25-02-1985 02-03-1989 30-07-1991 25-02-1985 17-02-1987 05-05-1988 20-08-1985
US 5422400 A	06-06-1995	JP 2716615 B JP 5117322 A	18-02-1998 14-05-1993
EP 0905151 A	31-03-1999	EP 0905153 A JP 11189605 A	31-03-1999 13-07-1999
US 5338589 A	16-08-1994	AT 142672 T CA 2070470 A DE 59207090 D EP 0517222 A ES 2094255 T SG 52612 A	15-09-1996 06-12-1992 17-10-1996 09-12-1992 16-01-1997 28-09-1998