

0.1 Déterminer les actions mécaniques en dynamique dans le cas où le mouvement est imposé.

Exercice 1 - Banc Balafre *

C2-08 Pas de corrigé pour cet exercice.

La figure suivante représente le paramétrage permettant de modéliser les actions mécaniques s'exerçant sur l'ensemble $S = \{JR + CB\}$. On nommera G le centre d'inertie de l'ensemble S.

Données et hypohèses

- On note $\overrightarrow{BM} = z \overrightarrow{z_0} + R_J \overrightarrow{u}(\theta)$ où R_J est le rayon du joint avec $R_J = 175 \,\text{mm}$;
- la longueur du joint est $L_J = 150 \,\mathrm{mm}$. La position du point B, centre du joint est $\overrightarrow{OB} = z_B \overrightarrow{z_0}$ avec $z_B = 425 \,\mathrm{mm}$;
- Le coeur de butée a une masse M_{CB} = 40 kg et la position de son centre d'inertie G_{CB} est paramétrée par OG_{CB} = L_{CB} z̄₀ avec L_{CB} = 193 mm;
 L'ensemble JR = {Joint(rotor)+ Butée double} a
- une masse $M_{JR} = 100 \,\mathrm{kg}$ et la position de son centre d'inertie G_{JR} est paramétrée par $\overrightarrow{OG_{JR}} = L_{JR} \overrightarrow{z_0}$ avec $L_{JR} = 390 \,\mathrm{mm}$. On notera $I_{G_{JR}}(JR) = \begin{pmatrix} A_{JR} & -F_{JR} & -E_{JR} \end{pmatrix}$

$$\begin{pmatrix} A_{JR} & -F_{JR} & -E_{JR} \\ -F_{JR} & B_{JR} & -D_{JR} \\ -E_{JR} & -D_{JR} & C_{JR} \end{pmatrix}$$
 la matrice d'inertie de

l'ensemble JR au point G_{JR} exprimée dans une base $\mathcal{B}_{JR} = (\overrightarrow{x_{JR}}, \overrightarrow{y_{JR}}, \overrightarrow{z_0})$ liée à JR;

• Les positions des points A_4 et A_8 sont paramétrées par $\overrightarrow{OA_4} = z_4 \overrightarrow{z_0} - R_{CB} \overrightarrow{y_0}$ et $\overrightarrow{OA_8} = -R_{CB} \overrightarrow{y_0}$ avec $z_4 = 280 \, \text{mm}$ et $R_{CB} = 150 \, \text{mm}$.

Pour simplifier l'étude, on s'intéresse au mouvement généré uniquement dans le plan $(y_0, \overrightarrow{z_0})$, lorsque les ac-

tionneurs 4 et 8 sont commandés en phase, et en opposition de phase avec les actionneurs 2 et 6. Pendant ce mouvement, les actionneurs 1, 3, 5 et 7 sont laissés libres. On considérera donc qu'ils n'ont aucune action sur le coeur de butée.

Question 1 Décrire la nature du mouvement obtenu pour le coeur de butée CB par rapport au bâti 0 dans ces conditions.

Les actionneurs sont utilisés uniquement pendant les phases de mesure. L'ensemble JR a donc un mouvement de rotation uniforme par rapport au coeur de butée. On donne les torseurs cinématiques (exprimés dans le repère lié au bâti $(O; \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0})$) : $\{\mathcal{V}(JR/CB)\}$ =

$$\left\{\begin{array}{l}
\overrightarrow{\Omega(JR/CB)} = \Omega \overrightarrow{z_0} \\
\overrightarrow{0}
\end{array}\right\}_{G_{JR}} \text{ avec } \Omega \text{ constante. } \{\mathscr{V}(CB/0)\} = \left\{\begin{array}{l}
\overrightarrow{0} \\
\nu(t) \overrightarrow{y_0}
\end{array}\right\}_{G_{CR}}.$$

La fonction v(t) représente la vitesse de translation du coeur de butée par rapport au bâti. On peut donc relier v(t) aux déplacements $y(t) = y_4(t) = y_8(t)$ provoqués en A_4 et A_8 par les actionneurs 4 et 8. On isole l'ensemble S= { JR + CB} afin de quantifier les efforts dans les actionneurs.

On considérera l'expression suivante pour le torseur

dynamique de
$$S$$
 par rapport à $0: \{\mathcal{D}(S/0)\} = \left\{\begin{array}{c} M\dot{v}\,\overline{y_0} \\ \overrightarrow{0} \end{array}\right\}_G$ où $M = 140$ kg.

Question 2 Exprimer le torseur $\{T_{V\to CB}\}$ (actionneurs 2 et 4 sur CB) au point A_4 en fonction de FV et le torseur $\{T_{R\to CB}\}$ (actionneurs 6 et 8 sur CB) au point A_8 en fonction de F_R .

Question 3 En expliquant clairement chaque étape de la démarche utilisée, montrer que :

$$\begin{cases} F_{V} = M \frac{z_{G}}{z_{4}} \dot{v}(t) + 2p(t)R_{J}L_{J} \frac{z_{B}}{z_{4}} \\ F_{R} = M \left(1 - \frac{z_{G}}{z_{4}}\right) \dot{v}(t) + 2p(t)R_{J}L_{J} \left(1 - \frac{z_{B}}{z_{4}}\right) \end{cases}$$

Question 4 En utilisant le résultat de la question précédente, déterminer les acctionneurs les plus sollicités par le mouvement en phase : actionneurs du plan avant (2 et 4) ou du plan arrière (6 et 8).

Corrigé voir ??.