Segunda Prova de Algoritmos e Estruturas de Dados I 08/05/2019

O que será avaliado? Especialmente nesta prova, a modularidade: uso de funções e procedimentos, passagem de parâmetros e uso de variáveis locais. Mas também contam: a clareza, a lógica, a criatividade, a sintaxe, o uso correto dos comandos, a correta declaração dos tipos, os nomes das variáveis, a identação e o uso equilibrado de comentários no código.

Boa prova!

- 1. (10 pontos) Defina **protótipos** para as seguintes funções e procedimentos:
 - (a) Um procedimento que lê os números da entrada e armazena em um vetor de números com seu tamanho;
 - (b) Uma função que recebe um número, armazena seus dígitos em um vetor de números e retorna o tamanho do vetor;
 - (c) Uma função que recebe um vetor de números com seu tamanho e retorna um dígito verificador.
- 2. (15 pontos) Fazer um programa em *Pascal* que leia e imprima, *na ordem inversa da entrada*, uma sequência de números informando se o CPF que este número representa é válido ou não. Ele é válido quando os dígitos verificadores conferem. Você deve usar obrigatoriamente **chamadas** para as funções e procedimentos do item 1:(a)-(c).
- 3. (5 pontos) Este programa deve conter também: o cabeçalho contendo o nome do programa e as declarações de constantes, tipos e variáveis.
- 4. (70 pontos (10, 20, 40)) Escrever as funções e os procedimentos 1:(a)-(c). A questão 1:(c) deve implementar o algoritmo descrito no verso desta folha.

Observações:

- A sequência de entrada tem no máximo 100 números e ela termina quando um zero for digitado. O zero não deve ser processado.
- Os números lidos têm exatamente onze dígitos, não precisa testar.
- Pode usar funções e/ou procedimentos adicionais desde que os códigos sejam apresentados.
- Usar a primeira página da folha de respostas para as questões 1-3, deixando a questão 4 para o restante das páginas.

Exemplo: Suponha que temos cinco CPF's para serem lidos: 805.113.477-04, 839.254.066-20, 644.283.352-61, 604.759.367-44 e 663.155.325-25 e supondo que o primeiro e o último têm dígitos verificadores inválidos.

Exemplo de entrada:	Saída esperada:				
80511347704	66315532525 invalido				
83925406620	60475936744 valido				
64428335261	64428335261 valido				
60475936744	83925406620 valido				
66315532525	80511347704 invalido				

Algoritmo base para obtenção dos dígitos verificadores de um CPF

No Brasil, os dígitos verificadores de um CPF são oficialmente calculados a partir do seguinte algoritmo base:

- . Dado um número, inicie do dígito menos significativo até o mais significativo, isto é, da direita para a esquerda, multiplicando cada um respectivamente por 2, por 3, por 4 e assim sucessivamente até todos terem sido processados;
- . Obtenha o somatório SOMA destas multiplicações parciais;
- . Obtenha resto = SOMA mod 11;
- . Se resto < 2, o dígito verificador é 0 (zero), caso contrário será 11 - resto.

Como o CPF possui dois dígitos verificadores, eles são calculados em duas fases: na fase 1, a partir dos nove primeiros dígitos do número dado; na fase 2, a partir dos dez primeiros dígitos do número dado.

Na fase 1 calcula-se o primeiro dígito verificador enquanto que na fase 2 calcula-se o segundo. Basta comparar com os valores informados pelo usuário para saber se o CPF informado é válido ou não.

Exemplo

Tomando como exemplo o número 11144477735, que representa o CPF 111.444.777-35 (fictício):

1. Cálculo do primeiro dígito verificador: os nove primeiros dígitos são: 111444777, multiplicase de 2 a 10, conforme esquema abaixo, obtendo-se SOMA = (10+9+...+21+14) = 162, $resto = 162 \mod 11 = 8$, e como $8 \ge 2$, então o primeiro dígito verificador é 11 - 8 = 3.

1	1	1	4	4	4	7	7	7	
10	9	8	7	6	5	4	3	2	
×	×	×	×	×	×	×	×	×	
10	9	8	28	24	20	28	21	14	SOMA = 162

2. Cálculo do segundo dígito verificador: os dez primeiros dígitos são: 1114447773, multiplicase de 2 a 11, conforme esquema abaixo, obtendo-se SOMA = (11+10+...+21+14) = 204, $resto = 204 \mod 11 = 6$, e como $6 \ge 2$, então o segundo dígito verificador é 11 - 6 = 5.

	1	1	1	4	4	4	7	7	7	3	
	11	10	9	8	7	6	5	4	3	2	
,	×	×	×	×	×	×	×	×	×	×	,
	11	10	9	32	28	24	35	28	21	6	SOMA = 204

Neste caso chegamos ao final dos cálculos e descobrimos que os dígitos verificadores do nosso CPF fictício (35) são válidos pois foram informados os números 3 e 5 e os cálculos indicaram que estes números conferem.