MARKING SCHEME

${\bf Secondary\ School\ Examination,\ 2024}$

SCIENCE (Subject Code-086)

[Paper Code: 31/5/1]

Maximum Marks: 80

Q. No.	EXPECTED ANSWER / VALUE POINTS	Marks	Total Marks
110.	SECTION A		IVIAIKS
1	(C) /2,2,4	1	1
2	(C)/2,2,4 $(D)/Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$	1	1
3	(A) /Calcium Phosphate	1	1
4	(C)/7	1	1
5	$(B)/Al, Al_2O_3$	1	1
6	(D) / Translocation	1	1
7	(C)/ Receptors in skin →Sensory neuron →Relay neuron → Motor neuron → Effector muscle in arm.	1	1
8	(A) / Nose	1	1
9	(C)/ It has a very small area for glucose and oxygen to pass from mother to the embryo	1	1
10	(A) / (i) and (ii)	1	1
11	(C) / The brightness of the image will reduce	1	1
12	(B) / Refraction, Dispersion and internal reflection	1	1
13	(A) / Red	1	1
14	(C) / A solenoid	1	1
15	(A) / both pointing into the plane of the paper.	1	1
16	(D)/ Crop land ecosystem	1	1
17	(A) / Both Assertion (A) and Reason (R) are the true and Reason (R) is a correct explanation of Assertion (A).	1	1
18	(D) / Assertion (A) is false, but Reason (R) is true.	1	1
19	(B) / Both Assertion (A) and Reason (R) are the true, but Reason (R) is not a correct explanation of Assertion (A).	1	1
20	(B) / Both Assertion (A) and Reason (R) are the true, but Reason (R) is not a correct explanation of Assertion (A).	1	1
	SECTION B		
21	(a) • Copper Oxide • Black	1/2 1/2	
	$2Cu + O_2 \xrightarrow{\text{Heat}} 2CuO$	1	
	OR		
	(b) $BaCl_2$ (aq)+ Na_2SO_4 (aq) \rightarrow $BaSO_4$ (s)+ $2NaCl$ (aq)	1	
	Ba^{2+}, SO_4^{2-}	1/2+1/2	
			2

22	• Low melting points and boiling points – Weak intermolecular forces of	1	
	 attraction. Non-conductors of electricity – Bonding in these compounds does not give rise to any ions. / Covalent bonds or sharing of electrons do not form any charged particles. 	1	
	any charged paraeres.		2
23	(a)Formation of lactic acid in muscles causes cramps.	1	
	Aerobic respiration takes place in the presence of oxygen	1	
	whereas the respiration taking place above is due to lack of oxygen. / End products of aerobic respiration are CO ₂ + H ₂ O +	1	
	Energy whereas in the above case, Lactic acid + Energy is		
	formed.		
	OR (b)		
	• Tissue fluid / Extracellular fluid	1	
	Functions:		
	i. Carries digested and absorbed fats from the intestine.	1/ + 1/	
	ii. Drains excess fluid from extracellular space back into the blood.	$\frac{1}{2} + \frac{1}{2}$	
	iii. Fight against infections. (Any two)		
			2
24	• Plasmodium: Multiple fission- A single cell divides into many daughter	1/2 +1/2	
	cells simultaneously. • Leishmania: Binary fission- Splitting of one cell into two daughter cells	1/2+1/2	
	in definite orientation.	72+72	
			2
25	(a) The sun light is converged at a point by convex lens which generates	1	
	heat causing the paper to burn.	1/	
	(b) •Principal Focus •Real image of the Sun.	1/ ₂ 1/ ₂	
	Treat image of the gain.	, 2	2
26	$Q = I \times t$	1/2	
	$\therefore t = \frac{500 \text{ C}}{25 / 1000 \text{ A}}$	1/	
	25 / 1000 A	1/2	
	= 20000 s	1	
			2
27	SECTION C	1	
27	• Fe(s) + CuSO ₄ (aq) \rightarrow FeSO ₄ (aq) + Cu(s)	1	
	• Displacement reaction – A reaction in which a more reactive metal displaces a less reactive metal from its salt solution.	1/2 +1/2	
	• Zinc, Aluminium, Calcium, Magnesium (Any two)	1/2 ,+1/2	
		, = , . , 2	3
			J

20	s Cinnakan	1/	
28	CinnabarSulphide ore	1/2 1/2	
		72	
	• $2\text{HgS} + 3\text{O}_2 \xrightarrow{Heat} 2\text{HgO} + 2\text{SO}_2$	1	
	• $2\text{HgO} \xrightarrow{\text{Heat}} 2\text{Hg} + \text{O}_2$	1	
			2
20	(i) •Growth hormone	½ x 3	3
29	(i) •Growth hormone •Secreted by pituitary gland.	72 X 3	
	•It stimulates growth in all organs.		
	(ii) •Thyroxin	½ x 3	
	•Secreted by thyroid gland.	72113	
	•It regulates carbohydrate, protein and fat metabolism for body		
	growth.		
			3
30	(a) •All Plants Tall	1/2	
	•Gene combination: Tt	1/2	
	(b) It is a recessive trait / it cannot be expressed in presence of dominant		
	trait.	1	
	(c) Tall: Short	4,	
	3:1	1/2	
	Conclusion: Tall trait is dominant and short trait is recessive.	1/2	3
31	(a)		3
31	(i) • Hypermetropia	1/2	
	• Ciliary muscles/ eye lens	1/2	
	(ii) • Focal length of the eye lens is too long.	1/2	
	• Eyeball becomes too small.	1/2	
	(iii) Converging lenses/ convex lens	1/2	
	They provide the additional focussing power required for forming	1/	
	the image on the retina./ Helps to decrease the focal length of the	1/2	
	eye lens.		
	OR		
	(b)	1	
	The splitting of white light into its constituent colours is called		
	dispersion.	1	
	Cause: Different colours of white light bend through different angles		
	with respect to incident ray.		
	Ą		
	Red of white	1	
	Red Y G		
	B C B		
			3

			I	1
32	(a) • It gets magnetised		1/2	
	• Electromagnet.		1/2	
	_	hen current passes through the	1/2	
	(b)			
		(Any one diagram)	1	
	This pattern indicates that the	magnetic field is uniform.	1/2	3
33				3
33	Food chain	Food web		
	It is a series of organisms feeding on one another at various levels	It is a network of interconnected food chains / series of branching lines which provides a number of feeding connections amongst different organisms.	1+1	
	Population of grass/ first trop.Population of tiger/ third trop.		1/2 1/2	3
	SECT	ION D		
34	(a) (i) The molecules of water of crystal get evaporated on heating.	lisation in ferrous sulphate crystals	1	
	(ii) Green \longrightarrow White			
	(iii) Seven / (FeSO ₄ · 7H ₂ O)			
	(I) CuSO ₄ ⋅ 5H ₂ O			
	(II) $Na_2CO_3 \cdot 10H_2O$			
	(iv) • On heating gypsum (CaSO ₄ ·2H ₂ O) at 373 K it loses water molecules/ CaSO ₄ ·2 H ₂ O $\xrightarrow{\Delta}$ CaSO ₄ · $^{1}/_{2}$ H ₂ O + 1 $^{1}/_{2}$ H ₂ O		1	
	373 K			
	Two uses of plaster of Paris:			
	Making toys / material for		1/ 1/	
	 Supporting fractured bones 	(or any other)	$\frac{1}{2} + \frac{1}{2}$	

	OR		
	 (b) (i) X-Tartaric acid Y-Baking soda Z- Baking powder Y-NaHCO₃ (ii) NaCl + H₂O + CO₂ + NH₃ → NH₄Cl + NaHCO₃ NaHCO₃ + H⁺ → CO₂ + H₂O + Sodium salt of acid 	1/2 1/2 1/2 1/2 1/2	
	CO ₂ released during heating makes the cake soft and spongy	1/2	
	(iii) Magnesium hydroxide; Mg(OH) ₂	1	
			5
35	 Take two healthy potted plants, A and B of nearly the same size. Keep them in darkness for three days. (Destarch the plant) Place a watch glass containing potassium hydroxide by the side of potted plant A but not in potted plant B. Cover both the plants with separate bell jars and seal the bottom of the jars with Vaseline. Keep both the plants in sunlight for two hours. Pluck one leaf each from both the plants and test for the presence of starch with iodine solution. Observation: The leaf of the potted plant A with KOH did not turn blue – black. The leaf of the potted plant B turns blue. Conclusion: KOH absorbs CO₂ so photosynthesis did not occur in potted plant A. 	½ x 6	
	OR (b)		
	(i) In set up (I) lime water turns milky in more time as compared to set up (II) because the air we exhaled contains high percentage of CO ₂ as compared to atmospheric air.	1,1	

		1	
	Guard cells (a) Chloroplast (b) Open Stomatal Pore	1	
	Two labellings : (I) Guard Cells (II) Chloroplast	1/2	
	Two functions performed by stomata:	1/2	
	Gaseous exchange	1/2	
	Transpiration	1/2	5
26	(a)		
36	(a) (i) • Current becomes one-third of its initial value.	1/2	
	Ohm's Law	1/2	
	The potential difference across the ends of a conductor is directly proportional to the current flowing through it, provided its temperature remains the same.	1	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	
	+ HHH+- (•) 6 V K		
	Total Voltage = $V = 4 \times 1.5 V = 6 V$ Total resistance, $R(s) = R_1 + R_2 + R_3$		
	$= 5 \Omega + 10 \Omega + 15 \Omega = 30 \Omega$		
	(I) Current, $I = \frac{V}{R} = \frac{6 \text{ V}}{30 \Omega} = 0.2 \text{ A}$	1	
	(II) $V = IR = 0.2 \text{ A} \times 10 \Omega = 2 \text{ V}$	1	
		•	

		ı	
	OR (b) (i) When 1 joule of work is done to move a charge of 1 coulomb from one point to the other.	1	
	(ii) $d = 0.2 \text{ mm} = 2 \times 10^{-4} \text{ m}; R = 14 \Omega$ $\rho = 1.6 \times 10^{-8} \Omega \text{ m}; A = \frac{\pi d^2}{4}$	1/2	
	$R = \frac{\rho l}{A} = \frac{4\rho l}{\pi d^2} \text{ or } l = \frac{\pi d^2 R}{4\rho}$ $l = \frac{22}{7} \times \frac{(2 \times 10^{-4})^2}{4 \times 1.6 \times 10^{-8}} \times 14$	1/2	
	= 27·5 m	1	
	When the diameter is doubled, $d' = 2d$ A' = 4A	1/2	
	$\frac{R'}{R} = \frac{A}{A'}$ or $R' = \frac{RA}{A'} = \frac{RA}{4A}$		
	$\frac{R^{I}}{14} = \frac{A}{4A}$		
	$R' = 3.5 \Omega$	1	
	Change $(14.0 - 3.5) = 10.5 \Omega$	1/2	5
	SECTION E		
37	BECHONE		
	 (a) Compounds formed by carbon and hydrogen only. (b) Tetravalency and Catenation 	1 1	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1/2 + 1/2	
	$CH_{3}COOH + C_{2}H_{5}OH \xrightarrow{Acid} CH_{3}COOC_{2}H_{5} + H_{2}O$ Ester OR	1	
	(c) (ii) Compounds with identical molecular formula but different structures	1	

	Two isomers of butane C ₄ H ₁₀		
	H H H H H—C—C—C—H H—C—H H H H H H—C—H H H H H	1/2 + 1/2	4
38	(a) Self-pollination Transfer of pollen grains from anther to the stigma of the same flower. Cross-pollination Transfer of pollen grains from the anther of one flower to the stigma of another flower.	1	
	(b) Petals, they dry and fall off.(c)(i) Fusion of male and female gametes to form a zygote	1/2 + 1/2	
	Ovule – Seed, Ovary – fruit OR (c) (ii) Future shoot – Plumule,	1 1/2 1/2 1/2 1/2	
39	Future root – Radicle Cotyledon – Stores food.	1/2	4
 (a) It is straight line passing through the pole and centre of curvature of a concave mirror. (b) Radius of curvature ,R= 20 cm 			
	(c) (i) $u = -10 \text{ cm}, f = +15 \text{ cm}$ $\frac{1}{f} = \frac{1}{v} + \frac{1}{u}$ $\frac{1}{v} = \frac{1}{f} - \frac{1}{u} = \frac{1}{15} - \frac{1}{-10}$		
	$\frac{1}{v} = \frac{1}{6}$ $\Rightarrow v = +6 \text{ cm}$ OR	1	
	(c) (ii) Convex mirror / Diverging mirror	1/2	
