Supplementary Figures

Table 1: Samples and body sizes

Species size statistics					
Species	Min Size (mg)	Max Size (mg)	Mean Size (mg)		
Oonopidae	0.2	0.5	0.4		
Neoscona theisi	0.5	24.2	9.4		
Geophilomorpha	2.6	28.4	11.3		
Scytodes longipes	1.1	40.7	13.2		
Euborellia annulipes	0.4	53.4	15.4		
Smeringopus pallidus	8.5	28.2	16.2		
Phisis holdhausi	4.1	78.5	33.1		
Pantala flavescens	151.1	259.8	205.7		
Heteropoda venatoria	1.3	929.0	280.8		

Table 2: samples and sequencing run

Species and sample sizes by sequencing run Individuals **Species** Run Heteropoda venatoria 39 а Neoscona theisi 24 а Scytodes longipes 7 а Geophilomorpha 12 b Phisis holdhausi 42 b Smeringopus pallidus 13 b Euborellia annulipes 18 С Oonopidae 4 С Pantala flavescens 9 С Heteropoda venatoria 14 d

Table 3: Prey Class, Order, and Family taxonomies.

Class	Order	Family
Arachnida	Araneae	Araneidae
Arachnida	Araneae	Oxyopidae
Arachnida	Araneae	Pholcidae
Arachnida	Araneae	Salticidae
Arachnida	Araneae	Theridiidae
Arachnida	Sarcoptiformes	Acaridae
Arachnida	Sarcoptiformes	Pyroglyphidae
Arachnida	Sarcoptiformes	Suidasiidae
Chilopoda	Geophilomorpha	Mecistocephalidae
Collembola	Entomobryomorpha	Entomobryidae
Collembola	Entomobryomorpha	Isotomidae
Collembola	Symphypleona	Bourletiellidae
Collembola	Symphypleona	Sminthuridae
Insecta	Blattodea	Blaberidae
Insecta	Blattodea	Blattidae
Insecta	Blattodea	Ectobiidae
Insecta	Coleoptera	Coccinellidae
Insecta	Coleoptera	Curculionidae
Insecta	Coleoptera	Elateridae
Insecta	Coleoptera	Hydrophilidae
Insecta	Coleoptera	Staphylinidae
Insecta	Dermaptera	Anisolabididae
Insecta	Diptera	Agromyzidae
Insecta	Diptera	Calliphoridae
Insecta	Diptera	Cecidomyiidae
Insecta	Diptera	Ceratopogonidae
Insecta	Diptera	Chloropidae
Insecta	Diptera	Culicidae
Insecta	Diptera	Dolichopodidae
Insecta	Diptera	Limoniidae
Insecta	Diptera	Lonchaeidae
Insecta	Diptera	Phoridae
Insecta	Diptera	Platystomatidae
Insecta	Diptera	Psychodidae
Insecta	Diptera	Sciaridae
Insecta	Diptera	Stratiomyidae

1	11	A1
Insecta	Hemiptera	Aleyrodidae
Insecta	Hemiptera	Coccidae
Insecta	Hemiptera	Pseudococcidae
Insecta	Hymenoptera	Eulophidae
Insecta	Hymenoptera	Evaniidae
Insecta	Hymenoptera	Formicidae
Insecta	Lepidoptera	Agonoxenidae
Insecta	Lepidoptera	Crambidae
Insecta	Lepidoptera	Erebidae
Insecta	Lepidoptera	Tineidae
Insecta	Odonata	Libellulidae
Insecta	Orthoptera	Acrididae
Insecta	Orthoptera	Mogoplistidae
Insecta	Orthoptera	Tettigoniidae
Insecta	Psocoptera	Ectopsocidae
Insecta	Psocoptera	Lepidopsocidae
Insecta	Psocoptera	Liposcelididae
Insecta	Psocoptera	Myopsocidae
Insecta	Thysanoptera	Thripidae
Malacostraca	Isopoda	Philosciidae

Table 4: Model outputs for size model

Model selection of predator-prey size linear model						
log10 Predator mass	Predator species	log10 Predator mass*Predator species	df	logLik	AICc	delta
0.41	+	NA	12	-710.04	1,445.04	0.00
-0.46	+	+	20	-702.38	1,447.41	2.37
NA	+	NA	11	-719.36	1,461.52	16.49
0.27	NA	NA	4	-758.61	1,525.34	80.30
NA	NA	NA	3	-764.52	1,535.12	90.08

Table 5 & 6: CCA model summaries

Partitioning of scaled Chi-square:

	Inertia	Proportion
Total	14.455	1.000
Constrained	1.926	0.1332
Unconstrained	12.529	0.8668

R²: 0.1332

Adjusted R²: 0.0957

Permutation test for CCA under reduced model:

Number of permutations: 10000

Model: community_matrix ~ predator_species

	DF	Chi-Square	F	Pr(>F)
Model	3	1.9259	3.5354	9.999e-05***
Residual	69	12.5293		

Table 7: Model selection of web use model

Model selection of web use linear model					
Web use	df	logLik	AICc	delta	weight
+	4.00	-468.22	944.55	0.00	0.66
NA	3.00	-469.89	945.85	1.30	0.34

Figure 1: Sequencing depth of initial four samples rarefaction

We initially determined how many samples per sequencing run based on a MiSeq Nano run with four samples. From this, we determined that samples needed to be sequenced to a depth of roughly 140,000 reads to capture full OTU diversity. Thus, we based the number of samples per run (roughly 100) based on this optimal sequencing depth per sample.

Figure 2: Run-to-run variation in ASV number and diet family number

There was significant cross-run variation, with significant differences (pair-wise differences between runs with p-value ≤ 0.05) between run 1-4, 2-3, and 2-4. On average, samples had: A: 2.26 ± 0.15 , B: 2.33 ± 0.24 , C: 1.72 ± 0.23 , and D: 1.44 ± 0.15 species in each sample. Because each species was run on a sequencing run with all other individuals from that species and because we did not compare species richness as a response variable across predator species in this study, we report this as the variation across sequencing runs but do not correct for it in future analyses.

pipeline dada unoise

Figure 3: Dada2 vs UNOISE3 – histogram

We compared the reads assigned using both the DADA2 and UNOISE3 algorithms. DADA2 produced more samples with high read abundances than UNOISE3 and so we used this denoising algorithm for this study.

A2C A2G A2T 1e+08 1e+05 1e+02 C2C 1e+08 1e+05 1e+02 run Four 1e+05 1e+02 T2G T2C T2T

40 0 Qual

Figure 4: DADA2 – cross-run errors

1e+08

1e+05

1e+02

We ran DADA2 on samples across all four runs simultaneously and verified that error rates were similar (above figures) across all runs before doing so.

Figure 5: Sequencing depth across samples

Samples can be sequenced at wide ranges of sequencing depths (10,000 - 100,000) for the current study). We used these sequencing depths to determine which samples had been sequenced below a threshold after which the data from them was incomplete compared to samples that had been sequenced with greater depth.

Figure 6: Inflection point of quantiles of sequencing depth graph

Based on varying sequencing depths from above, we determined the quantiles of sequencing depths and removed all samples from analyses below the lowest quantile with the highest difference between it and the next quantile (at increments of 0.01). This was determined to be the 13th quantile and a sequencing depth below 11,211. All samples with sequencing depths below this threshold were removed from further analyses.

Figure 7: Mass-length relationships by species table and graph

We predicted the mass of predators in this study based on mass-length relationships from predators from Palmyra Atoll and the literature. Plotted are each species' $log_{10}-log_{10}$ mass-length relationships, with the lines and black dots indicating predicted values for predator individuals in this study and the grey background dots the distributions of those predators used to build those models. This model had a significant by-species slope and $R^2_m = 0.62$ and $R^2_c = 0.95$.

Figure 8: Phylogenetic tree of prey items

Figure 9: Prey size distribution. Prey family average size spans between 3.8×10^{-4} to 3.1×10^{2} .

Predator species

E. annulipes

H. venatoria

N. theisi

P. holdhausi

10

Predator mass (mg)

100

Figure 10: Size distribution for predators in CCA analysis

0.0

Figure 11:

Figure 12: Bipartite interaction plot with prey families categorized

Arar	ne	a	e:
- 1	_	Δ	ra

1 - Araneidae Coleoptera: 2 - Curculionidae Diptera:

3 - Culicidae Collembola:

> 4 - Entomobryidae Hymenoptera: 5 - Isotomidae

Hemiptera: 6 - Coccidae Psocoptera:

7 - Liposcelididae

Collembola:

8 - Sminthuridae Geophilomorpha:

9 - Mecistocephalidae

10 - Evaniidae

Lepidoptera:

11 - Agonoxenidae

Diptera:

12 - Chloropidae 13 - Limoniidae

14 - Lonchaeidae

15 - Sciaridae Coleoptera:

16 - Coccinellidae

17 - Elateridae

18 - Hydrophilidae

19 - Staphylinidae

Diptera:

20 - Caliphoridae

21 - Ceratopogonidae

22 - Psychodidae

23 - Stratiomyidae

Lepidoptera:

24 - Crambidae 25 - Tineidae

Collembola:

26 - Bourletiellidae

Orthoptera:

27 - Mogoplistidae Psocoptera:

28 - Ectopsocidae

Blattodea:

29 - Blaberidae

Hymenoptera:

30 - Formicidae

Psocoptera:

31 - Myopsocidae Araneae:

32 - Salticidae

Hymenoptera:

33 - Eulophidae Orthoptera:

34 - Tettigoniidae Araneae:

35 - Pholcidae