

Marco Listanti

Esercitazione 7

"Protocolli MAC"

Esercizio 1 (1)

- Con riferimento a una LAN operante con protocollo CSMA/CD
- Calcolare la minima lunghezza L_{min} della PDU di strato MAC in una LAN di lunghezza d=2.5 km nei seguenti casi:
 - Capacità: C = 10 Mbit/s
 - Capacità: C = 1 Gbit/s
- Si assuma la velocità di propagazione del segnale sul mezzo sia uguale a v=200 m/µs
- Si trascuri il tempo T1 necessario alla rivelazione della collisione

Esercizio 1 (2)

Se C è la capacità trasmissiva, una MAC PDU non può avere lunghezza inferiore a

$$L_{\min} = (2\tau_p + T_1) \cdot C$$

$$B \text{ inizia l'emissione}$$

$$t_0 + \tau_p$$

$$Segnale$$

$$"Jamming"$$

$$t_0 + L/C$$

$$La \text{ stazione non è più in ascolto sul canale}$$

$$Spazio$$

$$Tempo$$

$$T_0 + L/C$$

Esercizio 1 (2)

Dalla figura precedente si ottiene

Nel caso di capacità C = 10 Mbit/s si ha

$$L_{\min} = 2\tau_p C = 2\frac{d}{0.2} \cdot 10 = 250$$
 bit

Nel caso di capacità C = 1 Gbit/s si ha

$$L_{\min} = 2\tau_p C = 2\frac{d}{0.2} \cdot 10^3 = 25000$$
 bit

Esercizio 2 (1)

- Con riferimento a una LAN operante con protocollo CSMA/CD, calcolare la minima lunghezza L_{min} di una PDU di strato MAC in una LAN con capacità C=100 Mbit/s nei seguenti casi:
 - Estensione: d=1 km
 - Estensione: d=10 km
- Si assuma la velocità di propagazione del segnale sul mezzo sia uguale a ν=200 m/μs
- Si trascuri il tempo T1 necessario alla rivelazione della collisione

Esercizio 2 (2)

Per quanto detto nell'esercizio 1 si ha

$$L_{\min} = 2\tau_p C = 2\frac{d}{0.2}C = 10 \cdot d \cdot C$$

Nel caso di estensione d=1 km si ha

$$L_{\min} = 10 \cdot d \cdot C = 10 \cdot 100 = 1000$$
 bis

Nel caso di estensione d=10 km si ha

$$L_{\min} = 10 \cdot d \cdot C = 100 \cdot 100 = 10000$$
 bit

Esercizio 3 (1)

Si considerino tre stazioni A, B, C collegate ad una LAN con capacità C=1 Mbit/s

- Si assuma che
 - Ia stazione A riceva un messaggio dagli strati superiori di lunghezza L=980 bit nell'istante t_0 =0
 - Ia stazione B riceva un messaggio dagli strati superiori di lunghezza L=980 bit nell'istante t_1 =0.5 ms
 - la stazione C riceva un messaggio dagli strati superiori di lunghezza L=980 bit nell'istante t₂=2 ms
- Si tracci un POSSIBILE diagramma spazio-temporale della trasmissione delle MAC PDU (lunghezza intestazione H=20 bit) da parte delle stazioni nel caso si adotti
 - Aloha
 - Slotted Aloha ($T_{slot} = 1.1 \text{ ms}$)
 - CSMA-CD 1-persistent

Esercizio 3 (2)

Caso del protocollo ALOHA

Sono trascurati i ritardi di propagazione

Esercizio 3 (3)

Caso del protocollo Slotted ALOHA

Networking Group

Sono trascurati i ritardi di propagazione

Esercizio 3 (4)

Caso del protocollo CSMA - CD

Esercizio 4 (1)

Si consideri la sezione di LAN mostrata in figura:

- Si assuma che:
 - La lunghezza di una MAC PDU è L=1000 bit
 - La capacità trasmissiva è C=10 Mbit/s e gli hubs introducono un ritardo di attraversamento costante di t_{hub}=2 μs
- Si calcoli il ritardo di trasferimento T_{trasf} in assenza di collisioni di una MAC_PDU dalla stazione A alla stazione B
- Si calcoli il ritardo di trasferimento T_{trasf} in assenza di collisioni per N=7 MAC PDU dalla stazione A alla stazione B

Esercizio 4 (2)

$$T_{trasf} = t_{trasm} + \tau_p + 2t_{hub} = \frac{1000}{10} + 0.9 \cdot 5 + 2 \cdot 2 = 108.5$$
 µs

Esercizio 4 (2)

Trasferimento di N = 7 MAC PDU

$$T_{trasf} = N \cdot t_{trasm} + \tau_p + 2t_{hub} = 7\frac{1000}{10} + 0.9 \cdot 5 + 2 \cdot 2 = 708.5$$
 µs

Esercizio 5 (1)

Si consideri la stessa configurazione dell'esercizio precedente, ma al posto dei 2 hub sono ora presenti 2 switch

Si calcoli il tempo di trasferimento "ideale" T_{trasf} (senza attese) da A a B di una PSU e di 7 PDU, assumendo che gli switch abbiano un ritardo di elaborazione di t_{sw}=2·10⁻⁶ s

Esercizio 5 (2)

$$T_{trasf} = 3t_{trasm} + \tau_p + 2t_{sw} = 3\frac{1000}{10} + 0.9 \cdot 5 + 2 \cdot 2 = 308.5$$
 µs

Esercizio 5 (3)

Switch 1 Switch 2 Trasferimento di N = 7 MAC PDU Ritardo di trasferimento

$$T_{trasf} = 2 \cdot t_t + \tau_p + 2t_{sw} + N \cdot t_t = 9 \frac{1000}{10} + 0.9 \cdot 5 + 2 \cdot 2 = 908.5$$

Esercizio 6 (1)

- Si disegni la topologia di una LAN in cui ogni dominio di collisione abbia al più 5 stazioni. Si assuma di dover servire 12 stazioni con i seguenti elementi:
 - 1 switch equipaggiato con 6 porte
 - 2 hub equipaggiati ciascuno con 10 porte
- Si individui il numero di segmenti di collisione nella LAN nell'ipotesi che tutte le porte del bridge gestiscano il protocollo CSMA/CD

Esercizio 6 (2)

La LAN che risponde ai requisiti posti ha la seguente topologia

La LAN ha 4 domini di collisione.

Esercizio 7 (1)

Determinare la massima estensione D di una rete IEEE 802.3 consentita dal protocollo CSMA/CD nei casi C=10Mbit/s e C=1Gbit/s, nell'ipotesi che la velocità di propagazione sul mezzo V=200 m/ μs e tenendo conto che la dimensione minima L di una MAC-PDU nello standard 802.3 è uguale a 64 byte (512 bit)

Esercizio 7 (2)

 Come calcolato nell'esercizio 1, detta D la massima estensione della LAN, per rendere possibile la rivelazione di collisioni, deve essere

$$L_{\min} \ge 2\tau_p C = 2\frac{D}{\nu}C \qquad \Rightarrow \qquad D \le \frac{\nu \cdot L_{\min}}{2C}$$

- si è trascurato il tempo necessario per rivelare la collisione
- Da cui
 - se C=10 Mbit/s $\rightarrow D \le 5120$ m
 - se C=1 Gbit/s $\rightarrow D \leq 51.2$ m
 - Si osservi che ad un aumento di 100 volte del bitrate è corrisposto una diminuzione di 100 volte della dimensione massima della rete

Switch: Backward Learning (1/2)

- Leggendo l'indirizzo sorgente delle trame ricevute, uno switch è in grado di sapere attraverso quale interfaccia è possibile accedere alle stazioni che hanno emesso le trame stesse
- La tabella è aggiornata dinamicamente, gli elementi vecchi vengono periodicamente eliminati
- Quando uno switch riceve una trama
 - 1. Se la LAN sorgente e la LAN destinazione sono accessibili attraverso la stessa interfaccia la trama viene scartata
 - Se sono diverse, la trama viene inviata alla linea di uscita indicata nella tabella
 - 3. Se la LAN destinazione è sconosciuta, usa il flooding

Switch: Backward Learning (2/2)

Switch: Esempio (1/3)

BRIDGE 1

Indirizzo	Interfaccia
00-0A-24-66-51-21	3

BRIDGE 2

Indirizzo	Interfaccia
00-0A-24-66-51-21	14

BRIDGE 1

Switch: Esempio (2/3)

BRIDGE 1

Indirizzo	Interfaccia
00-0A-24-66-51-21	3
00-0A-24-60-5D-36	8

BRIDGE 2

Indirizzo	Interfaccia
00-0A-24-66-51-21	14
00-0A-24-60-5D-36	13

Trama per 00-0A-24-66-51-21

Switch: Esempio (3/3)

BRIDGE 1

Indirizzo	Interfaccia
00-0A-24-66-51-21	3
00-0A-24-60-5D-36	8
00-80-A1-40-9A-26	1

BRIDGE 2

Indirizzo	Interfaccia
00-0A-24-66-51-21	14
00-0A-24-60-5D-36	13
00-80-A1-40-9A-26	13

Switch: Ciclo infinito (1/2)

E' possibile utilizzare più switch per collegare coppie di LAN

Questa tecnica può introdurre il problema del "ciclo

infinito"

Switch: Ciclo infinito (2/2)

- Soluzione al problema del ciclo "infinito": si costruisce l'albero di attraversamento degli switch
- Tra tutti gli switch viene selezionato uno switch "radice", e a partire da questo si costruisce l'albero a cammino minimo che permette di collegare tutte le LAN senza "cicli"

Esercizio 8 (1)

- Con riferimento alla topologia di rete in figura, determinare il risultato finale a cui perviene spanning tree protocol, assumendo che:
 - l'indirizzo MAC dello switch sia del tipo SXX, e quello degli hub HUBXX, dove XX rappresentano le ultime due cifre dell'indirizzo MAC del dispositivo
 - il valore del port path cost è uguale a 10 su ciascun link (costo del link)

Esercizio 8 (2)

- Sulla rete derivata, calcolare l'efficienza a regime della stessa, sapendo che:
 - 1) la rete opera in accordo al protocollo Ethernet CSMA/CD
 - 2) la capacità di trasferimento dei rami è pari a R=1 Mbit/s
 - 3) la lunghezza di tutti i segmenti di interconnessione è di d=5 m
 - 4) la lunghezza delle trame Ethernet è F=128 byte
 - 5) la velocità di propagazione del segnale sul mezzo trasmissivo è c=2.108 m/s
 - 6) in un intervallo di contesa, sussistono ipotesi tali da poter considerare la probabilità di successo il valore limite 1/e, dove "e" rappresenta il numero di Nepero, pari a 2,71.

Esercizio 8 (3)

Spanning tree

L'efficienza è data da

 $Efficienza = \frac{Tempo\ di\ trasmissione\ di\ una\ frame}{Tempo\ medio\ di\ occupazione\ del\ canale} = \frac{T_{trasm}}{T_{occ}}$

si ha

$$T_{trasm} = \frac{F}{R}$$

$$T_{occ} = \frac{F}{R} + n \cdot \frac{2d_{\text{max}}}{C}$$

- dove
 - n: numero medio tentativi di trasmissione

$$n = \sum_{k=1}^{\infty} k \left(1 - \frac{1}{e} \right)^{k-1} \frac{1}{e} = e = 2.71$$

d_{max}: massima distanza tra due stazioni in un dominio di collisione

$$d_{\text{max}} = 2 \cdot d = 10$$
 m

quindi

$$E = 0.99$$

Esercizio 9 (1)

Si consideri la rete mostrata in figura e gli indirizzi
 MAC mostrai in tabella

Nome	Indirizzo MAC
PC1	00-CC-AA-11-22-01
PC2	00-CC-AA-11-22-02
PC3	00-CC-AA-11-22-03
PC4	00-CC-AA-11-22-04
PC5	00-CC-AA-11-22-05
PC6	00-CC-AA-11-22-06
PC7	00-CC-AA-11-22-07
PC8	00-CC-AA-11-22-08
PC9	00-CC-AA-11-22-09
Printer	00-CC-AA-11-22-0A
Server0	00-CC-AA-11-22-0B
Server1	00-CC-AA-11-22-
Router1	00-CC-AA-11-22-0D

Esercizio 9 (2)

Punto 1

- In base al protocollo di accesso IEEE 802.3 indicare per i Gruppi riportati in tabella se tutte le trasmissioni di ciascun Gruppo possono avere luogo contemporaneamente senza produrre collisione
 - Si assuma che gli tutti gli switch abbiano dedotto, attraverso la procedura di apprendimento, l'intera topologia di rete

Gruppo 1	Gruppo 2	Gruppo 3	Gruppo 4	Gruppo 5
Server1>PC7	PC9>PC8	PC5>PC4	PC6>PC3	PC8>PC9
PC1>Printer	PC7>Server1	PC1>PC2	PC3>Server0	PC7>PC6
PC2>Server0	PC1>Printer	PC6>PC9	Server1>Router1	
	PC2>Server0		PC1>PC2	

Esercizio 9 (3)

Punto 2

 Calcolare il numero di domini di collisione e di domini di broadcast della sezione di rete riportata in figura

Esercizio 9 (4)

Punto 3

- Se l'estensione del dominio di collisione maggiore risulta pari a dmax (km), determinare il limite teorico della dimensione minima (Lmin) della trama necessaria per il corretto funzionamento del protocollo di accesso
 - Si supponga una velocità di propagazione nel mezzo pari a 200000 Km/s e un ritmo di trasmissione della trame uguale a R (bit/s)

Esercizio 9 (5)

Punto 4

Supponendo che, all'istante t, le forwarding table degli switch siano:

Switch0		Swite	ch1
Indirizzo	Interfaccia	Indirizzo	Interfaccia
00-CC-AA-11-22-07	5/0	00-CC-AA-11-22-05	0/0
00-CC-AA-11-22-05	4/0		

Switch2		Swite	ch3
Indirizzo	Interfaccia	Indirizzo	Interfaccia
00-CC-AA-11-22-05	1/0	00-CC-AA-11-22-07	2/0
00-CC-AA-11-22-07	0/0		

Indicare l'insieme dei collegamenti sui quali viene inoltrata la trama inviata dal terminale avente indirizzo 00-CC-AA-11-22-07 e diretta verso il terminale con indirizzo 00-CC-AA-11-22-05

Esercizio 9 (6)

Soluzione punto 1

Gruppo 1	Collisioni	Gruppo 4	Collisioni
Server1>PC7		PC6>PC3	
PC1>Printer	SI	PC3>ServerO	NO
PC2>ServerO		Server1>Router1	INO
		PC1>PC2	
Gruppo 2	Collisioni		
PC9>PC8		Gruppo 5	Collisioni
PC7>Server1	SI	PC8>PC9	NO
PC1>Printer	31	PC7>PC6	110
PC2>ServerO			
Gruppo 3	Collisioni		
PC5>PC4			
PC1>PC2	SI		
PC6>PC9			

Esercizio 9 (7)

Soluzione punto 2

- Cinque domini di collisione
- Unico dominio di broadcast

Esercizio 9 (8)

Soluzione punto 3

 L'espressione della lunghezza minima di una frame è la seguente

$$L_{\min} = 2\tau_p R = 2 \cdot \frac{d_{\max}}{2 \cdot 10^5} \cdot R = d_{\max} R \cdot 10^{-5}$$

Supponendo ad esempio $d_{max}=10 \text{ km e R}=10 \text{ Mbit/s, si ha}$

$$L_{\min} = d_{\max} R \cdot 10^{-5} = 100 \ bit$$

Esercizio 9 (9)

Soluzione punto 4

Switch0						
Indirizzo	Interfaccia					
00-CC-AA-11-22-07	5/0					
00-CC-AA-11-22-05	4/0					
Switch1						
Indirizzo	Interfaccia					
00-CC-AA-11-22-05	0/0					

Switch2	
Indirizzo	Interfaccia
00-CC-AA-11-22-05	1/0
00-CC-AA-11-22-07	0/0
Switch3	
Indirizzo	Interfaccia
00-CC-AA-11-22-07	2/0

