NSI 1ère - Données - Complément à deux

QK

Le complément à deux : comment coder les entiers négatifs dans une machine ?

Les entiers relatifs

Rappels:

- Entiers naturels: entiers positifs ou nuls (0, 1, 2 etc.)
- Entiers relatifs : entiers de n'importe quel signe (..., -2, -1, 0, 1,...)

Les entiers relatifs

Le problème du signe :

Un signe n'est pas un nombre...

On ne peut pas l'encoder directement en binaire.

Le principe est d'attribuer au bit de poids fort (premier bit) le signe du nombre.

- Si le bit de poids fort est 0, le nombre est positif,
- Si le bit de poids fort est 1, le nombre est négatif.

Nombres encodés sur un octet

Contrainte immédiate :

Il faut que la machine sache quelle est la taille du nombre!

Sinon:

- Comment déterminer "le bit de poids fort"?
- Comment savoir où s'arrête le nombre ?

Durant tout le chapitre, on encodera nos nombres entiers sur 8 bits.

Approche naïve: binaire signé

Essayons avec cette simple règle :

Pour encoder un entier sur 8 bits,

- On détermine la représentation binaire de sa valeur absolue
- Ensuite on remplit de 0 à gauche.

Signe

- Si le nombre est positif, on garde le bit de poids fort à 0,
- Sinon, on met le bit de poids fort à 1.

Approche naïve : binaire signé

27

27 = 0b11011

On complète sur 8 bits : 27 = 0b 0001 1011

```
27 > 0 on garde le premier bit à 0
```

Approche naïve : binaire signé

-9

```
La valeur absolue de -9 est 9.

9 = 0b1001

On complète sur 8 bits :

9 = 0b 0000 1001

-9 < 0 on remplace le premier bit par -1 :

-9 = 0b 1000 1001
```

Jusqu'ici tout va bien...

Et soudain, c'est le drame...

Essayons d'ajouter ces exemples :

```
Vérifions que 27 + (-9) = 18

0b 0001 1011

+ 0b 1000 1001

------

= 0b 1010 0100

... mais 0b 1010 0100 = 164
```

.

Échec total! Le binaire signé ne permet pas de réaliser les additions habitulles

Exercice 1

On suppose toujours nos entiers encodés sur un octet.

- 1. Donner la représentation binaire naïve de 12 et -100 et de -88.
- 2. Réaliser l'addition binaire bit à bit de ces nombres.
- 3. Comparer avec le résultat obtenu.

La méthode naïve ne permet pas de faire de calculs!

Avec la méthode naïve, on ne peut plus réaliser d'opération naturelle sur les entiers. On a maintenant deux objectifs :

- 1. Représenter les entiers relatifs,
- 2. Conserver le même algorithme pour l'addition

Le complément à deux

Complètement à deux : entiers positifs

Pour les entier positifs

- 1. coder l'entier en binaire comme d'habitude,
- 2. compléter l'octet avec des 0 devant.

Complément à deux : entiers négatifs

Pour les entiers négatifs

- 1. Coder la valeur absolue du nombre en base 2,
- 2. compléter l'octet avec des 0 devant,
- 3. échanger tous les bits $(1 \leftrightarrow 0)$,
- 4. ajouter 1.

Signe du complément à deux

- Si le bit de poids fort est 0 : le nombre est positif
- Si le bit de poids fort est 1 : le nombre est négatif

Exemples: 27

27

- 1. coder l'entier en binaire comme d'habitude,
 27 = 0b11011
- 2. compléter l'octet avec des 0 devant. 27 = 0b 0001 1011

Le complément à 2 sur un octet de 27 est 0b 0001 1011

Exemples: -9

-9

- 1. coder la valeur absolue du nombre :
 9 = 0b1001
- 3. échanger tous les bits : 0b 1111 0110
- 4. ajouter 1 : 0b 1111 0111

Le complément à 2 sur un octet de -9 est 0b 1111 0111

Exercice 2

Donner les compléments de à 2 de 12, -100 et -88.

Vérifions: 27 + (-9)

Vérifions : 27 + (-9) = 18

0001 1011

+ 1111 0111

= 0001 0010

On vérifie immédiatement que 18 = 0b10010

Remarque la dernière retenue (tout à gauche) disparait.

Exercice 3

- 1. Réaliser l'addition binaire des compléments à 2 des nombres 12 et -100.
- 2. Vérifier qu'on retrouve bien le résultat précédent pour -88.

Complément à deux vers décimal

Si l'entier est positif (son premier bit est 0)...

On fait comme d'habitude!

Exemple: 0b 0001 1011

 $1\times 1 + 1\times 2 + 1\times 8 + 1\times 16 = 27$ boom

Complément à deux vers décimal

Si l'entier est négatif (si premier bit est 1)

- 1. On échange tous les bits $0 \leftrightarrow 1$,
- 2. On ajoute 1,
- 3. On converti en binaire comme d'habitude,

4. On change le signe.

Exemple: 0b 1111 0111

Exercice 4

Donner les notations décimales des compléments à deux sur un octet suivants :

```
1. 0b1111 1111
2. 0b1000 0000
3. 0b0111 1111
4. 0b1010 0011
```

Remarque : Si mon entier négatif A à 4 chiffres décimaux, il est PLUS PETIT qu'un entier négatif à 3 chiffres décimaux : -1234 < -999

Cette propriété est-elle préservée dans le complément à deux ?

Table de valeurs

```
bit de signe

0 1 1 1 1 1 1 1 1 = 127
0 ... = ...
0 0 0 0 0 0 0 1 0 = 2
0 0 0 0 0 0 0 0 1 = 1
0 0 0 0 0 0 0 0 0 = 0
1 1 1 1 1 1 1 1 = -1
1 1 1 1 1 1 1 0 = -2
1 ... = ...
1 0 0 0 0 0 0 0 1 = -127
1 0 0 0 0 0 0 0 0 = -128
```

Combien d'entiers relatifs sur un octet?

Règle

- Sur un octet on peut encoder de 0 (0b00000000) à 127 (0b01111111)
- Sur un octet on peut encoder de -1 (0b11111111) à -128 (0b10000000)

Combien d'entiers relatifs sur avec n bits ?

Règle

- Sur un octet on peut encoder de 0 à 2^{n-1} .
- Sur un octet on peut encoder de -1 à -2^n .

Complément à 2 : résumé

On a trouvé une méthode permettant d'ajouter des entiers (et donc de faire les opérations habituelles...) qui fonctionne aussi avec les entiers n'egatifs.

et Python là dedans?

Aie, c'est compliqué. Les opérations précédentes ont toutes supposées une taille fixe des entiers : **codés sur un octet** Dans Python les entiers ont une *taille arbitraire*, il ne peut afficher nativement le complément à deux.

```
>>> bin(12)
'0b1100'
>>> bin(-12)
'-0b1100'
```

Pour ceux que ça intéresse j'ai un TP Colab qui montre différentes manières d'afficher le complément à deux dans Python.