Abstract Algebra Chapter 2

---- (-)

December 27, 2022

Important Statements:

Groups:

- 1. Associativity: $(ab)c = a(bc) \forall a, b, c \in G$
- 2. Identity:
- 3. Inverses:

Uniqueness of the Identity:

In a group G, there is only one identity element.

Cancellation:

In a group G, the right and left cancellation laws hold; that is,

$$ba = ca \Rightarrow b = c$$
 and $ab = ac \Rightarrow b = c$

Uniqueness of Inverses:

For each element a in a group G, there is a unique element b in G such that ab = ba = e.

Socks-Shoes Principle:

For group elements a and b, $(ab)^{-1} = b^{-1}a^{-1}$.

End of Chapter Exercises

Question 1.

Give two reasons why the set of odd integers under addition is not a group.

Question 2.

Referring to Example 13, verify the assertion that subtraction is not associative.

Question 3.

Show that $\{1,2,3\}$ under multiplication modulo 4 is not a group but that $\{1,2,3,4\}$ under multiplication modulo 5 is a group.

Question 4.

Show that the group $GL(2,\mathbb{R})$ of Example 9 is non-Abelian by exhibiting a pair of matrices A and B in $GL(2,\mathbb{R})$ such that $AB \neq BA$.

Question 5.

Find the inverse of the element a in $GL(2, \mathbb{Z}_{11})$.

Question 6.

Give an example of group elements a and b with the property that $a^{-1}ba \neq b$.

Question 7.

Translate each of the following multiplicative expressions into its additive counterpart. Assume that the operation is commutative.

- (a) a^2b^3
- **(b)** $a^{-2}(b^{-1}c)^2$
- (c) $(ab^2)^{-3}c^2 = e$