

(19)日本国特許庁 (JP)

(12) 特許公報 (B2)

(11)特許番号

第2599569号

(45)発行日 平成9年(1997)4月9日

(24)登録日 平成9年(1997)1月9日

(51)Int.Cl.[®]
C 08 J 5/18
B 05 B 7/16

識別記号 庁内整理番号

F I
C 08 J 5/18
B 05 B 7/16

技術表示箇所

請求項の数4(全13頁)

(21)出願番号 特願平6-66707
(22)出願日 平成6年(1994)3月9日
(65)公開番号 特開平7-252671
(43)公開日 平成7年(1995)10月3日

(73)特許権者 000001144
工業技術院長
東京都千代田区霞が関1丁目3番1号
(74)上記1名の復代理人 弁理士 西澤 利夫 (外1名)
(73)特許権者 000002820
大日精化工業株式会社
東京都中央区日本橋馬喰町1丁目7番6号
(73)特許権者 390014535
新技術事業団
埼玉県川口市本町4丁目1番8号
(74)上記2名の代理人 弁理士 西澤 利夫
(72)発明者 平賀 隆
茨城県つくば市春日1-101-308

最終頁に続く

(54)【発明の名称】複合型光学薄膜の製造方法とその製造装置

1

(57)【特許請求の範囲】

【請求項1】 2成分以上の有機系光学材料を溶液または分散液状態で各成分毎に設けた噴霧ノズルから高真空容器内に噴霧して基板上に堆積させ、加熱処理することを特徴とする複合型光学薄膜の製造方法。

【請求項2】 請求項1の複合型光学薄膜の製造方法において、加熱処理の後に加圧成形することを特徴とする複合型光学薄膜の製造方法。

【請求項3】 真空容器、この真空容器内に2成分以上の有機系光学材料を溶液または分散液状態で各成分毎に噴霧する噴霧手段、真空容器内において噴霧された有機系光学材料を堆積させる基板、その基板を加熱する加熱手段、および、真空容器の排気手段を備えた複合型光学薄膜の製造装置からなることを特徴とする複合型光学薄膜の製造装置。

2

【請求項4】 請求項3の複合型光学薄膜の製造装置において、噴霧手段として、噴霧ノズルを備え、その噴霧ノズルの開閉機構部は、ニードルバルブ構造を構成してなる複合型光学薄膜の製造装置。

【発明の詳細な説明】

【0001】

【産業上の利用分野】 この発明は、複合型光学薄膜の製造方法とその製造装置に関するものである。さらに詳しくは、この発明は、波長選択透過膜、反射膜、光非線形

10 効果膜、光電変換装置等の光技術、および、オプトエレクトロニクス技術等に特に有用な、高機能性の光学薄膜としての複合型光学薄膜を、高品質かつ高効率で製造することを可能とする新しい複合型光学薄膜の製造方法とその製造装置に関するものである。

【0002】

【従来の技術と課題】従来より、各種の組成からなる光学薄膜が様々な応用分野において使用されており、例えば、光の吸收あるいは干渉を利用した波長選択透過や反射機能を利用した光学薄膜が一般的に用いられている。そして特に近年においては、レーザー光を利用したオプトエレクトロニクスの分野において、光の多重性を利用した情報の多元並列高速処理のための応用や、光非線形効果および光電気効果の応用のために、従来とは異なる高機能を有する光学薄膜の開発が盛んに進められている。

【0003】このような新しい高機能光学薄膜を形成するための素材として注目されているものに有機系光学材料がある。この有機系光学材料を用いた有機系光学薄膜の製造方法について各種の検討がこれまでにも進められており、たとえば以下のようないわゆる方法が知られており。

(1) 溶液、分散液、または、展開液を用いる湿式法
塗布法、ブレードコート法、ロールコート法、スピンドルコート法、ディッピング法、スプレー法などの塗工法、平板、凸版、凹版、孔版、スクリーン、転写などの印刷法、電着法、電解重合法、ミセル電解法（特開昭63-243298号報）などの電気化学的手法、および、水の上に形成させた単分子膜を移し取るラングミア・プロジェット法など。

(2) 原料モノマーの重合ないし重縮合反応を利用する方法

例えば、モノマーが液体の場合、キャスティング法、リアクション・インジェクション・モールド法、プラズマ重合法、および、光重合法など。

(3) 気体分子を用いる方法（加熱による気化法）

昇華転写法、蒸着法、真空蒸着法、イオンビーム法、スパッタリング法、プラズマ重合法、および、光重合法など。

(4) 溶融あるいは軟化を利用する方法

ホットプレス法（特開平4-99609号報）、射出成形法、延伸法、および、溶融薄膜の単結晶化方法など。

【0004】しかしながら、これらの従来の製造方法の場合には、対象とされる光学薄膜の組成および構造は比較的単純なものに限られており、より高度な微細構造の制御を可能とした高機能な有機系光学薄膜を製造するには適していないのが実情であった。たとえば、従来の複合型光学薄膜の製造方法においては、有機イオン結晶等の融点が存在しない材料を用いた場合には、加熱によりその材料が分解してしまい、またその材料に融点が存在しても気化温度においてその材料が分解してしまうため、これらの現象を制御することや、この制御により高機能な有機系光学薄膜を実現することは困難であった。

【0005】これらの課題を解決するための手段の一つとして、この発明の発明者は、特願平5-52102において、溶液または分散液状態の有機系光学材料を高真空容器内に噴霧して基板上に堆積させ、加熱処理するこ

とを特徴とする有機系光学薄膜の製造方法をすでに発明している。この方法により有機系光学材料の分解温度よりもはるかに低い温度において、マイクロメートル未満の微細領域で構造の制御された光学薄膜の作製が可能になった。

【0006】しかしながら、この発明の有機系光学薄膜の製造方法を用いて、有機系光学材料を複数成分使用して複合型光学薄膜を製造しようとする場合、組み合わせて使用して同時に噴霧させる成分の選定およびそれらの成分を溶解または分散させる溶媒の選定に制限があるという課題があった。さらに、異なる成分を切り替えて噴霧しようとする場合に、異なる成分の噴霧ノズルに至る配管内での混合を防止するために、各噴霧が終了した後に、噴霧ノズルに至る配管内を溶媒で洗浄する操作が必須となるため、作業能率が著しく低下するという課題もあった。

【0007】したがって、このような従来の複合型光学薄膜の製造方法を用いて、高機能性複合型光学薄膜を効率よく製造することには、自ずと限界があった。

【0008】この発明は、以上の通りの従来技術の欠点を解消し、光学材料の熱分解をもたらすことなく、より低温において、高度な微細構造制御をもち、より高機能な複合型光学薄膜を効率良く製造することを可能とする新しい複合型光学薄膜の製造方法とその製造装置を提供することを目的としている。

【課題を解決するための手段】この発明は、上記の課題を解決するために、2成分以上の有機系光学材料を溶液または分散液状態で各成分毎に設けた噴霧ノズルから高真空容器内に噴霧して基板上に堆積させ、加熱処理することを特徴とする複合型光学薄膜の製造方法を提供する。

【0010】さらにこの発明は、前記の複合型光学薄膜の製造方法において、加熱処理の後に加圧成形することを特徴とする複合型光学薄膜の製造方法をも提供する。

【0011】またさらに、この発明においては、前記の製造方法を実現するための製造装置として、真空容器、この真空容器内に2成分以上の有機系光学材料を溶液または分散液状態で各成分毎に噴霧する噴霧手段、真空容器内において噴霧された有機系光学材料を堆積させる基板、その基板を加熱する加熱手段、および、真空容器の排気手段を備えた複合型光学薄膜の製造装置からなることを特徴とする複合型光学薄膜の製造装置をも提供する。

【0012】さらに以下詳しく述べてこの発明について説明すると、この発明は、2成分以上の有機系光学材料を溶液または分散液状態で各成分毎に設けた噴霧ノズルから高真空容器内に噴霧して基板上に堆積させ、加熱処理することを特徴としており、2成分以上の有機系光学材料の組合せの具体例としては、たとえば、有機高分子化合物

と有機低分子化合物との組合せ、有機高分子化合物と液晶との組合せ、2種類以上の有機高分子化合物の組合せ、有機高分子化合物と低分子化合物との混合物と高分子化合物との組合せなどを挙げることができる。これらの組合せにおいて、個々の成分は、揮発性を有する溶媒に溶解可能なものの、あるいは分散媒に分散可能なものであれば任意の種類のものが用いられる。また、個々の成分はそれ自身単独で光学機能を発揮するものでも、混合または複合化されて光学機能を実現するものであっても、いずれでも良い。また、必要に応じて、これらの個々の成分に、セレン、テルル、ゲルマニウム、珪素、シリコンカーバイド、硫化カドミウム、セレン化カドミウム、Cd-Zn-Mn-Se-Te-S-OやGa-In-Al-As-Pなどの半導体微粒子、および、金コロイドなどの金属微粒子を混合した状態で使用することができる。

【0013】いずれにせよ、有機高分子化合物、有機低分子化合物、有機化合物の微粒子、および、液晶などを各々溶液または分散液状態にして使用することができる。この発明の方法では、2成分以上の有機系光学材料を溶液または分散液状態で各成分毎に設けた噴霧ノズルから高真空容器内に噴霧するため、各成分毎に最適な溶媒または分散媒を選択して使用することが可能であり、さらにまた、溶液または分散液の濃度を各成分毎に最適に設定することができる。

【0014】以下、個々の成分について、さらに具体的に例示する。

[有機高分子材料]

有機高分子化合物の内、いわゆる「光学的性質や機能」を有するものは、この発明の複合型光学薄膜の材料の一成分として利用することができる。このような有機高分子材料の具体例としては、ポリスチレン、ポリ(α -メチルスチレン)、ポリインデン、ポリ(4-メチル-1-ペンテン)、ポリビニルピリジン、ポリビニルホルマール、ポリビニルアセタール、ポリビニルブチラール、ポリ酢酸ビニル、ポリビニルアルコール、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルメチルエーテル、ポリビニルエチルエーテル、ポリビニルベンジルエーテル、ポリビニルメチルケトン、ポリ(N-ビニカルバゾール)、ポリ(N-ビニルピロリドン)、ポリアクリル酸メチル、ポリアクリル酸エチル、ポリアクリル酸、ポリアクリロニトリル、ポリメタクリル酸メチル、ポリメタクリル酸エチル、ポリメタクリル酸ブチル、ポリメタクリル酸ベンジル、ポリメタクリル酸シクロヘキシル、ポリメタクリル酸、ポリメタクリル酸アミド、ポリメタクリロニトリル、ポリアセトアルデヒド、ポリクロラール、ポリエチレンオキシド、ポリプロピレンオキシド、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリカーボネイト類(ビスフェノール類+炭酸)、ポリ(ジエチレングリコール・ビスマリルカーボ

ネイト)類、6-ナイロン、6、6-ナイロン、12-ナイロン、6、12-ナイロン、ポリアスパラギン酸エチル、ポリグルタミン酸エチル、ポリリジン、ポリプロリン、ポリ(γ -ベンジル-L-グルタメート)、メチルセルロース、エチルセルロース、ベンジルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロビルセルロース、アセチルセルロース、セルローストリニアセテート、セルローストリブチレート、アルキド樹脂(無水フタル酸+グリセリン)、脂肪酸変性アルキド樹脂

(脂肪酸+無水フタル酸+グリセリン)、不飽和ポリエステル樹脂(無水マレイン酸+無水フタル酸+プロピレングリコール)、エポキシ樹脂(ビスフェノール類+エピクロロヒドリン)、ポリウレタン樹脂、フェノール樹脂、尿素樹脂、メラミン樹脂、キシレン樹脂、トルエン樹脂、グアナミン樹脂などの樹脂、ポリ(フェニルメチルシラン)などの有機ポリシラン、有機ポリゲルマンおよびこれらの共重合・共重縮合体、および、二硫化炭素、四フッ化炭素、エチルベンゼン、パーグルオロベンゼン、パーグルオロシクロヘキサン、トリメチルクロロシランなどの、通常では重合性のない化合物をプラズマ重合して得た高分子化合物などを挙げることができる。

【0015】また、これら有機高分子化合物は、有機色素や光非線形効果を示す有機低分子化合物の残基をモノマー単位の側鎖として、あるいは架橋基として、共重合モノマー単位として、または、重合開始末端として含有していても良い。

【0016】[有機低分子化合物] この発明の複合型光学薄膜の材料の一成分として用いられる有機低分子化合物の具体例としては、尿素およびその誘導体、m-ニトロアニリン、2-メチル-4-ニトロアニリン、2-(N,N-ジメチルアミノ)-5-ニトロアセトアニリド、N,N'-ビス(4-ニトロフェニル)メタンジアミンなどのベンゼン誘導体、4-メトキシ-4'-ニトロフェニルなどのビフェニル誘導体、4-メトキシ-4'-ニトロスチルベンなどのスチルベン誘導体、4-ニトロ-3-ピコリン=N-オキシド、(S)-(−)-N-(5-ニトロ-2-ピリジル)-プロリノールなどのピリジン誘導体、2',4,4'-トリメトキシカルコンなどのカルコン誘導体、チエニルカルコン誘導体などの2次非線形光学活性物質の他、各種の有機色素、および、有機顔料などを挙げることができる。

【0017】[液晶]

この発明の複合型光学薄膜の材料の一成分として用いられる液晶の具体例としては、種々のコレステロール誘導体、4'-n-ブトキシベンジリデン-4-シアノアニリン、4'-n-ヘキシルベンジリデン-4-シアノアニリンなどの4'-アルコキシベンジリデン-4-シアノアニリン類、4'-エトキシベンジリデン-4-n-ブチルアニリン、4'-メトキシベンジリデンアミノアゾベンゼン、4-(4'-メトキシベンジリデン)アミ

ノビフェニル、4-(4'-メトキシベンジリデン)アミノスチルベンなどの4'-アルコキシベンジリデンニアリリン類、4'-シアノベンジリデン-4-n-ブチトキシアニリン、4'-シアノベンジリデン-4-n-ヘキシルオキシアニリンなどの4'-シアノベンジリデン-4-アルコキシアニリン類、4'-n-ブトキシカルボニルオキシベンジリデン-4-メトキシアニリン、p-カルボキシフェニルn-アミルカーボネット、n-ヘプチル4-(4'-エトキシフェノキシカルボニル)フェニルカーボネットなどの炭酸エステル類、4-n-ブチル安息香酸4'-エトキシフェニル、4-n-ブチル安息香酸4'-オクチルオキシフェニル、4-n-ペンチル安息香酸4'-ヘキシルオキシフェニルなどの4'-アルキル安息香酸4'-アルコキシフェニルエステル類、4、4'-ジ-n-アミルオキシアゾキシベンゼン、4、4'-ジ-n-ノニルオキシアゾキシベンゼンなどのアゾキシベンゼン誘導体、4-シアノ-4'-n-オクチルビフェニル、4-シアノ-4'-n-ドデシルビフェニルなどの4-シアノ-4'-アキルビフェニル類などの液晶、および(2S, 3S)-3-メチル-2-クロロペンタノイック酸4', 4"-オクチルオキシビフェニル、4'-(2-メチルブチル)ビフェニル-4-カルボン酸4-ヘキシルオキシフェニル、および、4'-オクチルビフェニル-4-カルボン酸4-(2-メチルブチル)フェニルなどの強誘電性液晶を挙げることができる。

【0018】たとえば以上の通り例示することのできる有機高分子材料、有機低分子材料、および、液晶物質は、この発明においては複合して使用される成分毎に、適宜な溶媒に溶解するか、あるいは分散媒に分散させて高真空容器内に噴霧される。この際の溶媒もしくは分散媒についても各種のものを使用することができるが、上記のような複合型光学薄膜の個々の成分を溶解または分散する溶剤であり、揮発性を有し、腐食性のないものであれば、任意のものが使用できる。

【0019】具体的にはメタノール、エタノール、イソプロピルアルコール、n-ブタノール、アミルアルコール、シクロヘキサン、ベンジルアルコールなどのアルコール類、エチレングリコール、ジエチレングリコール、グリセリンなどの多価アルコール類、酢酸エチル、酢酸n-ブチル、酢酸アミル、酢酸イソプロピルなどのエステル類、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサンなどのケトン類、ジエチルエーテル、ジブチルエーテル、メトキシエタノール、エトキシエタノール、ブトキシエタノール、カルビトールなどのエーテル類、テトラヒドロフラン、1、4-ジオキサンなどの環状エーテル類、ジクロロメタン、クロロホルム、四塩化炭素、1、2-ジクロロエタン、1、1、2-トリクロロエタン、トリクレンなどのハロゲン化炭化水素類、ベンゼン、トルエン、キシレン、ク

ロロベンゼン、o-ジクロロベンゼン、ニトロベンゼン、アニソール、 α -クロロナフタレンなどの芳香族炭化水素類、n-ペントン、n-ヘキサン、n-ヘプタン、シクロヘキサンなどの脂肪族炭化水素類、N, N-ジメチルホルムアミド、N, N-ジメチルアセトアミド、ヘキサメチルホスホリックトリアミドなどのアミド類、N-メチルピロリドンなどの環状アミド類、テトラメチル尿素、1、3-ジメチル-2-イミダゾリジノンなどの尿素誘導体類、ジメチルスルホキシドなどのスルホキシド類、炭酸エチレン、炭酸プロピレンなどの炭酸エステル類、アセトニトリル、プロピオニトリル、ベンゾニトリルなどのニトリル類、ピリジン、キノリンなどの含窒素複素環化合物類、トリエチルアミン、トリエタノールアミン、ジエチルアミノアルコール、アニリンなどのアミン類、などの他、水、ニトロメタン、二硫化炭素、スルホランなどの溶剤を用いることができる。

【0020】これらの溶剤は、また、複数の種類のものを混合して用いても良い。

【0021】この発明は、これらの溶媒もしくは分散媒に溶解または分散させた状態で、2成分以上の有機系光学材料を各成分毎に設けた噴霧ノズルから高真空容器内に噴霧して基板上に堆積させ、加熱処理することを特徴としているが、この方法の実施に際しては、たとえば以下の通りの装置とその操作方法の採用によって複合型光学薄膜の形成を可能とすることができる。

【0022】すなわち、まず、この発明の複合型光学薄膜の製造装置は、例えば図1に例示したものをひとつつの態様として示すことができ、有機系材料の溶液または分散液をたとえば圧力 1×10^{-4} Pa以下の真空中へ噴霧するための手段として2ヶ以上の噴霧ノズル(1)および個々の噴霧ノズルの開閉機構部(2)を真空容器(3)内に有し、さらに、この真空容器(3)内で揮発した溶媒等の蒸気を迅速に排気し、真空容器(3)内の圧力を 1×10^{-4} Pa以下に保つ真空ポンプ(4)を備えている。

【0023】また、この発明の複合型光学薄膜製造装置には、前記真空容器(3)内に設置した圧力測定装置(5)、真空容器(3)内で揮発した溶媒等の蒸気が真空ポンプ(4)へ到達することを防止するためのコールドトラップ(6)、噴霧ノズル(1)と基板(19)との間を遮蔽するシャッター(7)、基板加熱装置(8)、および基板温度測定装置(9)をも備え、これらの装置により真空容器(3)内の基板(19)表面に複合型光学薄膜を形成することが可能となる。

【0024】この装置には、必要に応じて、真空容器(3)のベーキング装置(10)、ゲート弁(11)、イオン化装置(12)、質量分析装置(13)、基板導入装置(14)、マニュピュレーター(15)、およびこれらの制御装置を設けることが好ましい。

【0025】真空ポンプ(4)は真空容器(3)を大気

圧から高真空、より好ましくは、 1×10^{-4} Pa以下の圧力へできる限り迅速に排気し、かつ、真空容器内で揮発して、コールドトラップ(6)で捕獲されきれなかつた溶媒等の気体成分を迅速に排気し、真空容器(3)内の圧力を 1×10^{-4} Pa以下に保つことができるものであれば、任意のものが使用可能である。具体的にはターボ分子ポンプとロータリーポンプとの組合せや、油拡散ポンプとロータリーポンプとの組合せを使用することができる。

【0026】また、前記図1に例示したように真空容器(3)に備えたイオン化装置(12)および、質量分析装置(13)、および基板導入装置(14)には別系統の真空ポンプ(16)(17)を接続することが好ましい。なお、圧力測定装置(5)については、一般的には 1×10^{-2} Pa以下の圧力を正確に測定できるものであれば公知の任意のものを使用することができる。たとえば具体的には、Bayard-Alpert型などの電離真空計を使用できる。

【0027】真空容器(3)については装置構成部品を、真空系の容積が最小になるように配置する形態のものが好ましく、材質は高真空仕様のアルミニウムまたはステンレスが好ましい。基板加熱装置(8)は、基板温度を所定の値に制御する機構を含むものが好ましく、ヒーター部分を真空系内に置く形式と、真空系外から加熱する方式のいずれでも良く、基板(19)の形態に応じて、任意のものが使用可能である。

【0028】基板温度測定装置(9)は、基板(19)の温度を測定するものであり、熱電対など測温部を高真空中に置いて作動するものであれば任意のものが使用できる。

【0029】ベーキング装置(10)は真空系を構成する部品全てを加熱処理できるものが好ましく、また、コールドトラップ(6)は高真空容器内で揮発した溶媒等の蒸気を確実に捕捉し、かつ排気の妨げにならないものであれば、任意の方式のものが使用できる。

【0030】イオン化装置(12)および質量分析装置(13)は必ずしも必要ではないが、基板(19)上の堆積物から発生する揮発成分が完全に除去されたことを確認する上で有用である。ゲート弁(11)はイオン化装置(12)および質量分析装置(13)と真空容器(3)との間に適時遮蔽するものであり、必ずしも設ける必要はないが、真空系内に噴霧された成分および溶剤などが飛来して質量分析装置(13)を汚染することを防ぐ上で有用である。このゲート弁(11)を設ける場合は真空容器(3)および質量分析装置(13)に別系統の真空ポンプを接続することが好ましい。

【0031】イオン化装置(12)は該真空系内に存在する揮発成分をイオン化する形式のものであれば公知の各種のものが使用可能である。具体的にはガス放電式、アーク放電式、および、電子衝撃式などのイオン化装置

【0032】質量分析装置(13)はイオン化装置(12)で発生させたイオンの質量mをそのイオンの電荷eで除した数m/eに応じて質量を分離する部分(質量分離系)と、m/eに応じて分離されたイオンの数を電気的に計数する部分(検出・記録系)からなるものであれば、公知の各種のものが使用できる。質量分離系は磁界および/または電界を制御してm/eに応じてイオンを分離するものであり、パラボラ型、速度収束型、方向収束型、二重収束型、および、飛行時間型などの形式のいずれでも良い。また、検出・記録系としてはファラデー箱と高感度直流増幅器との組合せ、二次電子増倍装置と高感度直流増幅器との組合せなどの方式のものを使用することができる。

【0033】基板導入装置(14)は、必ずしも設ける必要はないが、真空容器(3)内へ基板(19)を設置する際の排気時間を短縮する上で有効である。基板導入装置(14)は真空容器、外部から基板(19)を導入するための蓋またはゲート弁、磁気カップリング式またはペローズ式の直線導入機、真空容器(3)との間のゲート弁、真空ポンプ(17)、および、真空計から成る。

【0034】マニュピュレーター(15)は、必ずしも設ける必要はないが、噴霧ノズル(1)に対する基板(19)の位置や向きを微調整する際に有用である。

【0035】材料の溶液または分散液を真空容器内へ噴霧するための噴霧ノズル(1)は、この発明の複合型光学薄膜の製造装置の中で特に重要な部品である。そして、噴霧ノズル(1)から噴霧する液体が噴霧ノズル部分で固化してノズルを閉塞させることを防止するために、さらに噴霧量をも制御するために、ノズル開閉機構を備える必要がある。

【0036】ノズルの閉塞を解消する機構としては、例えば、真空系外から操作するワイヤー等を使用することができますが、操作性および効果の点で難点があることは明かである。この発明の発明者は噴霧ノズル(1)の一例として、例えば、図2に例示したように、高加工精度のニードルバルブを利用できることを見出した。

【0037】すなわち、噴霧ノズル(1)には、ニードルバルブ(100)を設け、ノズル開閉機構部(2)によってこのニードルバルブ(100)を動かし、噴霧ノズル(1)からの材料溶液または分散液の噴霧量を調整し、その結果、その閉塞を防止することが可能となる。

【0038】有機系光学材料の溶液または分散液は、液体溜め(18)より噴霧ノズル(1)に供給する。この発明は、2成分以上の有機系光学材料を溶液または分散液状態で各成分毎に設けた噴霧ノズルから高真空容器内に噴霧して基板上に堆積させ、加熱処理することを特徴としており、上記の噴霧ノズル(1)、ノズル開閉機構

部(2)、および液体溜り(18)の組は、使用する有機系光学材料の成分数に応じて2系統以上を設けるものとする。たとえば、図1に例示した製造装置の例では、噴霧ノズル(1)、ノズル開閉機構部(2)、および液体溜め(18)の組を3系統図示してある。

【0039】また、有機系光学材料の溶液または分散液の一成分について、2組以上の噴霧ノズル(1)およびノズル開閉機構部(2)を設けても良い。

【0040】この発明の複合型光学薄膜の製造方法の操作方法としては、たとえば図1に例示した製造装置の液体溜め(18)の一つには第一の成分、たとえば高分子化合物の溶液を充填し、もう一つには第2の成分、たとえば有機色素の溶液を充填し、各々の液体溜りに対応したノズル開閉機構部(2)によって噴霧量を成分毎に制御しながら噴霧ノズル(1)から真空容器(3)内へ噴霧し、溶媒または分散媒を真空蒸発させながら、基板(19)上にたとえば2成分からなる複合型光学材料による薄膜を堆積させる。

【0041】そして、この発明においては、この基板(19)を堆積物の熱分解温度を越えない温度まで加熱して揮発成分を除去し、さらに必要に応じて基板上の堆積物を加熱および/または加圧して所要のものに成形する。

【0042】また、この発明においては、基板(19)の種類に特に限定はなく、ガラス、石英をはじめ、セラミック、珪素、および、高分子フィルムなどの任意のものであって良い。そしてこの基板(19)上の堆積物の加熱処理は、基板(19)の加熱として行うことができるし、あるいは、前記図1に例示するような基板の表面加熱装置(20)によって堆積物を加熱しても良い。

【0043】この表面加熱装置(20)としては、電熱ヒーターや赤外線照射方式など適宜な手段を採用することができる。

【0044】また、さらに成形のための加圧については、熱間圧延処理(たとえば特開平4-99609号報)として公知の手段を採用しても良い。以下、実施例を示し、さらに詳しくこの発明について説明する。

【0045】

【実施例】実施例1

前記図1に構成を例示したこの発明の複合光学薄膜の製造装置を用いて光学薄膜を製造した。有機色素の一例として使用したヨウ化3、3'−ジエチルオキサジカルボシアニン(以下DODCIと略記する)は、米国エキシコン社製のものを使用した。このDODCIは融点を示さず、窒素雰囲気下、10°/分で昇温したとき約230°Cで分解し、また、10⁻⁵Paの高真空中150°Cに加熱しても昇華しなかった。

【0046】高分子化合物の一例として使用したポリ(メタクリル酸メチル)(以下PMMAと略記する)、ポリ(メタクリル酸2-ヒドロキシプロピル)(以下、PHPMAと略記する)、および、ポリカーボネイト(以下、PCと略記する)は、米国アルドリッヂ社製のものを使用した。基板(19)として、たとえばカバーガラス(18mm角、厚さ150±2μm)または石英板(20mm角、厚さ1000±2μm)を用いた。

【0047】成分の一つとしてDODCIをアセトンに10mg/リットルの濃度で溶解し、液体溜め(18)の一つに充填した。また、もう一つの成分としてPMMAをアセトンに1g/リットルの濃度で溶解し、もう一つの液体溜め(18)に充填した。これらの溶液を、それぞれの噴霧ノズル(1)から真空容器(3)の中へ同時に噴霧した。この間、真空容器(3)内の圧力はターボ分子ポンプとロータリーポンプ、および液体窒素で冷却したコールドトラップにより、10⁻⁴Pa以下に維持した。ノズル開閉機構部(2)の開閉間隔を調節することにより、噴霧速度をDODCI溶液について333マイクロリットル/分に、また、PMMA溶液について100マイクロリットル/分に、それぞれ制御し、100分間噴霧を続けた。この間、基板(19)の温度は、基板加熱装置(8)および基板温度測定装置(9)によって40±2°Cに維持した。基板(19)上に堆積されたDODCIを含有するPMMA薄膜をホットプレス法により真空中にて150°Cに加熱、4.9MPaの静水圧加圧処理し、光学的に透明な薄膜を得た。この光学薄膜中のDODCI濃度を重量%で表すと、表1に記載の通りであった。

【0048】

【表1】

実施例番号	DODCI溶液	DODCI濃度	DODCI 発光の極大波長
	噴霧速度 [μl/分]	(光学薄膜中) 【重量%】	粒子径 (励起590nm) [nm]
1	33.33	2.5	6.6 61.5および72.0
2	11.11	1.0	6.7 61.4および72.0
3	5.26	5	6.5 61.5および71.9
4	2.56	2.5	6.4 61.5および71.8
5	1.01	1.0	4.8 61.2
6	5.0	0.5	4.0 61.5
7	2.5	0.25	3.0 61.3
8	1.0	0.10	1.5 60.9
9	5	0.05	4 60.0
10	2.5	0.025	5 59.9

この光学薄膜のX線回折を計測したが、明確な回折線は認められなかった。そこで、この薄膜内のDODCIの粒子径をX線小角散乱法により測定すると、表1に記載の通りであった。また、この薄膜を波長590nmの光で励起したときの発光(蛍光)を市販の蛍光光度計で測定したところ、発光の極大波長は前記表1に記載の通りであった。

【0049】実施例2～10

DODCI溶液の噴霧速度を前記表1に記載の通りに変えた他は実施例1と同様にして光学薄膜を製造した。これらの光学薄膜内のDODCI濃度、DODCI粒子径をX線小角散乱法により測定した結果、および波長590nmの光で励起したときの発光の極大波長を前記表1に示す。この結果から明らかなように、この発明の方法により、光学薄膜中の色素(DODCI)の粒子径を数十ナノメートルの領域で制御することができた。

【0050】比較例1

アセトン1リットル当たりにDODCIを50mgおよびPMMAを950mgの比率で溶解した液をスライドガラスヘスピントコート法によって塗工し、塗工回数を調節することによって、膜厚0.1μmおよび10μmのDODCI/PMMA複合膜を製造した。この膜中のDODCI濃度は5重量%と計算され、色素濃度の点で上記の実施例3に比較しうる膜である。

【0051】この膜厚0.1μmの膜を光学顕微鏡で観察したところ青色結晶の析出が観察され、膜厚10μmの膜についてX線回折を測定したところ、DODCIの結晶に相当する回折線が確認された。すなわち、塗工法でDODCI濃度5重量%の膜を作成したところ、DODCI結晶の成長を制御できず、粗大な粒子として析出してしまったことが判った。

【0052】実施例11

DODCI溶液の噴霧速度を、図3に例示するように、

時間に比例させて連続的に減じ、噴霧開始時の2.56マイクロリットル/分から、噴霧開始後100分においてゼロになるようにして、基板上に堆積する薄膜中のDODCI濃度を連続的に変化させた他は実施例1と同様にして、膜に垂直な方向(以下、「深さ方向」と言う)に連続的にDODCI濃度の変化した光学薄膜を製造した。

【0053】深さ方向のDODCI濃度の変化を確認するため、DODCIに基づくヨウ素原子の深さ方向の濃度分布を光電子分光装置(以下、ESCAと略記する)を用いて測定したところ、深さに比例して、濃度がほぼ直線的に変化していることが判った。この光学薄膜の発光を、励起光の波長を590nmに固定して測定したところ、励起光の照射方向、光強度、および発光を検出する方向に応じて、発光の様子が異なることが判った。例えば、DODCI濃度が高い方の表面に励起光を照射し、励起光の照射側から発光を測定すると、励起光の強度に拘らず、発光の極大波長は61.4±1nmおよび71.9±1nmであった。また、DODCI濃度の低い方の表面に励起光を照射し、励起光の照射側から発光を測定すると、励起光の強度に応じて発光極大波長が変化し、弱い励起のとき5.99ないし6.00nm、強い励起のとき6.12ないし6.20nmであった。

【0054】実施例12

成分の一つとしてDODCIをアセトンに0.1g/リットルの濃度で溶解し、液体溜め(18)の一つに充填した。また、もう一つの成分としてPMMAをアセトンに1g/リットルの濃度で溶解し、もう一つの液体溜め(18)に充填した。これらの溶液を、それぞれの噴霧ノズル(1)から、各々のノズル開閉機構部(2)およびシャッター(7)を動作させて、真空容器(3)の中へ交互に噴霧した。この間、真空容器(3)内の圧力はターボ分子ポンプとロータリーポンプ、および液体空素

で冷却したコールドトラップにより、 10^{-4} Pa以下に維持した。2系統のノズル開閉機構部(2)およびシャッター(7)の開閉時間の間隔を調節することにより、DODCIをアセトンに溶解した溶液を一定時間噴霧した後、両方の溶液の噴霧を停止し基板上のアセトンを完全に除去し、次にPMMAをアセトンに溶解した溶液を一定噴霧した後、再び両方の噴霧を停止し基板上のアセトンを完全に除去するという操作を100回繰り返した。この時ノズル開閉機構部(2)およびシャッター(7)の開閉時間を調節することにより、休止時間を考慮した噴霧の平均速度をDODCI溶液について250マイクロリットル/分に、また、PMMA溶液について*

*75マイクロリットル/分に、それぞれ制御した。この間、基板(19)の温度は、基板加熱装置(8)および基板温度測定装置(9)によって 40 ± 2 °Cに維持した。基板(19)上に堆積されたDODCIを含有するPMMA薄膜をホットプレス法により真空中にて150 °Cに加熱、4.9 MPaの静水圧加压処理し、光学的に透明な薄膜を得た。

【0055】この光学薄膜内のDODCIの濃度を重量%で表すと、表2に記載の通りであった。

【0056】

【表2】

実施例番号	溶液噴霧の平均速度		DODCI濃度 (光学薄膜中) 【重量%】	DODCI粒子径 【nm】
	DODCI 【μl/分】	PMMA 【μl/分】		
12	260	76	26	74
13	200	80	20	75
14	150	85	15	73
15	100	90	10	75
16	50	95	5.0	74
17	26	97.6	2.6	75
18	10.11	100	1.0	73
19	5.03	100	0.5	75
20	2.51	100	0.26	74

この薄膜内のDODCIの粒子径をX線小角散乱法により測定すると、前記表2に記載の通りであった。

【0057】実施例13～20

2成分の溶液噴霧の平均速度を前記表2に記載の通りに変えた他は実施例12と同様にして光学薄膜を製造した。これらの薄膜内のDODCIの粒子径をX線小角散乱法により測定した結果を前記表2に示す。この結果から明らかのように、この発明の方法により、光学薄膜中の色素(DODCI)の粒子径を一定に制御しながら薄膜中の平均的な色素濃度を変えることができた。

【0058】実施例21

成分の一つとしてアセトン1リットル当たりにDODCIを10mgおよびPMMAを990mgの比率で溶解した液(以下、A液と呼ぶ)を、液体溜め(18)の一つに充填した。また、2番目の成分としてアセトン1リットル当たりにDODCIを10mgおよびPHPMAを990mgの比率で溶解した液(以下、B液と呼ぶ)を、2番目の液体溜め(18)に充填した。これらの溶液を、それぞれの噴霧ノズル(1)から真空容器(3)の中へ、各々のノズル開閉機構部(2)の操作により、図4に示すように噴霧速度を相互に連動させて変化せながら噴霧した。すなわち、噴霧開始時は、A液の噴霧速度を100マイクロリットル/分、B液の噴霧速度を

ゼロに調節して開始し、時間に比例させてA液の噴霧速度を減じ、一方、B液の噴霧速度を増加させ、両方の噴霧速度の合計を100マイクロリットル/分に保ちながら、100分後に、A液についてゼロおよびB液について100マイクロリットル/分とした。

【0059】この間、真空容器(3)内の圧力はターボ分子ポンプとロータリーポンプ、および液体窒素で冷却したコールドトラップにより、 10^{-4} Pa以下に維持した。また、基板(19)の温度は、基板加熱装置(8)および基板温度測定装置(9)によって 40 ± 2 °Cに維持した。基板(19)上に堆積されたDODCIを含有するPMMA/PHPMA複合型薄膜をホットプレス法により真空中にて150°Cに加熱、4.9 MPaの静水圧加压処理し、光学的に透明な薄膜を得た。

【0060】この光学薄膜内の深さ方向のヨウ素原子濃度をESCAで測定すると一定であった。すなわち、DODCIの濃度は深さ方向に一定であることが判った。仕込比率から計算すると1重量%である。また、この薄膜内のPMMA/PHPMAの比率は深さ方向に連続的に変化していると推測される。そこで薄膜を深さ方向に、ななめに研磨して、研磨面の顕微全反射FT-IRスペクトルを測定したところ、PHPMAに帰属されるアルコール性水酸基の吸収強度は深さ方向で、深さに比

例して増減していることが確認された。

【0061】この光学薄膜の発光を、励起光の波長を590 nmに固定して測定したところ、励起光の照射方向、光強度、および発光を検出する方向に応じて、発光の様子が異なることが判った。例えば、PHPMMA濃度が高い方の表面に励起光を照射し、励起光の照射側から発光を測定すると、励起光の強度によらず、発光の極大波長は 618 ± 1 nmおよび 641 ± 1 nmであった。また、PMMA濃度の高い方の表面に励起光を照射し、励起光の照射側から発光を測定すると、励起光の強度に応じて発光極大波長が変化し、弱い励起のとき 613 ± 2 nm、強い励起のとき 618 ± 1 nmおよび 641 ± 1 nmであった。

【0062】実施例22

成分の一つとしてDODCIをアセトンに10 mg/リットルの濃度で溶解し、液体溜め(18)の一つに充填した。また、2番目の成分としてDODCIをメタノールに10 mg/リットルの濃度で溶解し、2番目の液体溜め(18)に充填した。また、3番目の成分としてPMMAをアセトンに1 g/リットルの濃度で溶解し、3番目の液体溜め(18)に充填した。これらの溶液を、それぞれの噴霧ノズル(1)から真空容器(3)の中へ、各々のノズル開閉機構部(2)およびシャッター(7)の操作により順番に噴霧した。この間、真空容器(3)内の圧力はターボ分子ポンプとロータリーポンプ、および液体窒素で冷却したコールドトラップにより、 10^{-4} Pa以下に維持した。3系統のノズル開閉機構部(2)およびシャッター(7)の開閉時間の間隔を*

*調節することにより、DODCIをアセトンに溶解した溶液を一定時間噴霧した後、全てのシャッターを閉じて噴霧を停止し基板上のアセトンを完全に除去し、次にPMMAをアセトンに溶解した溶液を一定時間噴霧した後、再び全てのシャッターを閉じて噴霧を停止し基板上のアセトンを完全に除去し、次にDODCIをメタノールに溶解した溶液を一定時間噴霧した後、全てのシャッターを閉じて噴霧を停止し基板上のメタノールを完全に除去し、次にPMMAをアセトンに溶解した溶液を一定時間噴霧した後、再び全てのシャッターを閉じて噴霧を停止し基板上のアセトンを完全に除去するという操作を100回繰り返した。この操作の間、ノズル開閉機構部(2)およびシャッター(7)の開閉間隔を調節することにより、休止時間を考慮した噴霧の平均速度をDODCIアセトン溶液について10マイクロリットル/分に、DODCIメタノール溶液について40マイクロリットル/分に、また、PMMA溶液について49.5マイクロリットル/分に、それぞれ制御した。この間、基板(19)の温度は、基板加熱装置(8)および基板温度測定装置(9)によって 40 ± 2 °Cに維持した。基板(19)上に堆積されたDODCIを含有するPMMA薄膜をホットプレス法により真空中にて 150 °Cに加熱、4.9 MPaの静水圧加圧処理し、光学的に透明な薄膜を得た。

【0063】この光学薄膜内のDODCIの濃度(平均値)を重量%で表すと、表3に記載の通りである。

【0064】

【表3】

実施例 番号	溶液噴霧の平均速度			DODCI	
	DODCI アセトン溶液	DODCI メタノール溶液	PMMA	濃度	粒子径
	[μl/分]	[μl/分]	[μl/分]	[重量%]	[nm]
22	10	40	49.5	1.0	75および4
23	20	30	49.5	1.0	74および3
24	30	20	49.5	1.0	73および3
25	40	10	49.5	1.0	75および4
26	50	0	49.5	1.0	73のみ
27	0	50	49.5	1.0	3ないし4

(光学薄膜中)

濃度をESCAで分析したところ、DODCIを含有する層と含有しない層の積層構造であることが確認された。更に、実施例26および27の薄膜中のDODCI粒子径の測定結果から推測すると、実施例22ないし25の薄膜は、図5に示すように、DODCI粒子径3ないし4 nmの層(202)と、 74 ± 1 nmの層(203)が、DODCIを含有しない層(201)を挟んで交互に積層された断面構造であると考えられる。

【0065】実施例23～27

3成分の噴霧の平均速度を前記表3に記載の通りに変えた他は実施例22と同様にして光学薄膜を製造した。これらの薄膜内のDODCIの粒子径をX線小角散乱法により測定した結果を前記表3に示す。この結果から明らかのように、この発明の方法により、光学薄膜中の色素(DODCI)の平均濃度を一定に保ちながら色素の粒子径の分布を制御ことができた。

【0066】これらの光学薄膜の深さ方向のDODCI

50 【0067】これらの光学薄膜の発光は、励起光の強度

(10)

19

によって、過渡応答が異なることが確認された。

【0068】実施例28

成分の一つとしてPMMAをアセトンに1g/リットルの濃度で溶解し、液体溜め(18)の一つに充填した。また、もう一つの成分としてPCをジクロロメタンに1g/リットルの濃度で溶解し、もう一つの液体溜め(18)に充填した。これらの溶液を、それぞれの噴霧ノズル(1)から、各々のノズル開閉機構部(2)およびシャッター(7)を動作させて、真空容器(3)の中へ交互に噴霧した。この間、真空容器(3)内の圧力はターボ分子ポンプとロータリーポンプ、および液体窒素で冷却したコールドトラップにより、 10^{-4} Pa以下に維持した。2系統のノズル開閉機構部(2)およびシャッター(7)の開閉時間の間隔を調節することにより、PMMAをアセトンに溶解した溶液を一定時間噴霧した後、両方の溶液の噴霧を停止し基板上のアセトンを完全に除去し、次にPCをジクロロメタンに溶解した溶液を一定*

*噴霧した後、再び両方の噴霧を停止し基板上のジクロロメタンを完全に除去するという操作を100回繰り返した。この時ノズル開閉機構部(2)およびシャッターの開閉時間を調節することにより、休止時間を考慮した噴霧の平均速度をPMMAアセトン溶液について10マイクロリットル/分に、また、PCジクロロメタン溶液について10マイクロリットル/分に、それぞれ制御した。この間、基板(19)の温度は、基板加熱装置(8)および基板温度測定装置(9)によって 40 ± 2 ℃に維持した。基板(19)上に堆積されたPMMA/PC複合薄膜をホットプレス法により真空中にて150℃に加熱、4.9MPaの静水圧加压処理し、光学的に透明な薄膜を得た。

【0069】この薄膜内の屈折率をアッペ屈折率計により測定すると、表4に記載の通りであった。

【0070】

【表4】

実施例番号	溶液噴霧の平均速度		PMMA:PC	
	PMMA [μl/分]	PC [μl/分]	重量比率	屈折率
28	10	40	1:4	1.566
29	20	30	2:3	1.547
30	25	25	1:1	1.538
31	30	20	3:2	1.529
32	40	10	4:1	1.510

【0071】実施例29~32

2成分の溶液噴霧の平均速度を前記表4に記載の通りに変えた他は実施例28と同様にして光学薄膜を製造した。これらの薄膜の屈折率をアッペ屈折率計により測定した結果を前記表4に示す。

【0072】実施例33

過塩素酸カドミウム6水和物をアセトニトリル中へ 2×10^{-3} モル/リットルの濃度で溶かした溶液中に窒素ガスのアワを通じて酸素ガスを充分除いた後、この溶液へヘリウムガスで0.02容積%に希釈した硫化水素ガスを通じて硫化カドミウム(CdS)のコロイド状の分散液を作製した。分散液中のCdSの濃度は0.289g/リットルであった。この分散液を成分の一つとして、液体溜め(18)の一つに充填した。また、もう一つの成分としてPCをジクロロメタンに1.0g/リットルの濃度で溶解し、もう一つの液体溜め(18)に充

填した。これらの溶液を、それぞれの噴霧ノズル(1)から真空容器(3)の中へ、ノズル開閉機構部(2)の開閉間隔を調節することにより、噴霧速度をCdS分散液について100マイクロリットル/分に、また、PC溶液について100マイクロリットル/分に、それぞれ制御し、20分間噴霧を続けた。この間、真空容器(3)内の圧力はターボ分子ポンプとロータリーポンプ、および液体窒素で冷却したコールドトラップにより、 10^{-4} Pa以下に維持した。基板(19)上に堆積されたCdSを含有するPC薄膜をホットプレス法により真空中にて250℃に加熱、4.9MPaの静水圧加压処理し、光学的に透明な薄膜を得た。

【0073】この光学薄膜内のCdS濃度を重量%で表すと、表5に記載の通りである。

【0074】

【表5】

実験番号	溶液噴霧の平均速度		CdS濃度 (光学薄膜中) 【重量%】	CdS粒子径 【nm】
	CdS 【μl/分】	PC 【μl/分】		
33	100	100	22	10
34	80	100	19	11
35	60	100	15	10
36	40	100	10	9
37	20	100	5	11

この薄膜内のCdS粒子径をX線小角散乱法により測定すると、前記表5に記載の通りであった。

【0075】実施例34～37

CdS微分散液の噴霧速度を前記表5に記載の通りに変えた他は実施例33と同様にして光学薄膜を製造した。これらの薄膜内のCdSの粒子径をX線小角散乱法により測定した結果を前記表5示す。この結果から明らかなように、この発明の方法により、CdS微粒子の粒子径を保ったまま、種々の濃度の光学薄膜を製造することができた。

【0076】実施例38

基板(19)として、インジウムー錫複合酸化物の透明導電性膜を表面に設けたガラス(以下、ITOガラスと略記する)を使用した。成分の一つとして液晶物質の4-ヘプ上キシ-4'ーシアノビフェニル(以下、7OCBと略記する)をジクロロメタンに1g/リットルの濃度で溶解し、液体溜め(18)の一つに充填した。また、もう一つの成分としてニトリル・ブタジエンゴム(以下、NBRと略記する)をジクロロメタンに1g/リットルの濃度で溶解し、もう一つの液体溜め(18)に充填した。これらの溶液を、それぞれの噴霧ノズル(1)から真空容器(3)の中へ同時に噴霧した。この間、真空容器(3)内の圧力はターボ分子ポンプとロータリーポンプ、および液体窒素で冷却したコールドトラップにより、10⁻⁴Pa以下に維持した。ノズル開閉機構部(2)の開閉間隔を調節することにより、噴霧速度を7OCB溶液について60マイクロリットル/分に、また、NBR溶液について40マイクロリットル/分に、それぞれ制御した。この間、ITOガラス基板(19)の温度は、基板加熱装置(8)および基板温度測定装置(9)によって40±2℃に維持した。基板(19)上に堆積された液晶7OCBを含有するNBR薄膜の上に、もう一枚のITOガラスを重ね、ホットプレス法により真空中にて150℃に加熱、4.9MPaの静水圧加圧処理し、透明電極にサンドイッチされた液晶/高分子複合薄膜を得た。

【0077】この薄膜は、通常は白濁しているが、透明電極間に直流電圧を印加すると液晶が配向し、透明にな

った。この液晶/高分子複合薄膜をITOガラスから剥離し、エタノール中で加熱し、液晶部分を溶かし出し、溶け残った高分子部分を走査型電子顕微鏡で観察したところ、緻密なスポンジ状微細構造であることが確認された。

【0078】

【発明の効果】以上詳しく述べた通り、この発明によつて、有機系光材料の分解温度よりもはるかに低い温度において高品質で高機能な複合型光学薄膜の製造が可能となる。また、この発明によつて、2成分以上の有機系光材料から成る複合型光学薄膜において、マイクロメートル未満の微細領域で構造が制御された複合型光学薄膜の製造が可能になり、またさらに、2成分以上の有機系光材料から成る複合型光学薄膜において、その深さ方向に成分の濃度を任意に変化させたものの製造が可能となる。

【0079】そして、この発明の光学薄膜の製造方法に使用される有機系光材料は、加熱および/または加圧により成形することが可能なものであれば任意のものを使用することができ、さらに、2成分以上の有機系光材料の成分毎に最適な溶媒を選択することができ、この発明は、複合型光学材料を開発、改良する上で、極めて有用なものである。

【図面の簡単な説明】

【図1】この発明の装置構成を例示した構成図である。
【図2】噴霧ノズルおよびノズル開閉機構部を例示した構成断面図である。

【図3】実施例11におけるDODCI溶液の噴霧速度の時間変化を示す関係図である。

【図4】実施例21におけるA液およびB液の噴霧速度の時間変化を示す関係図である。

【図5】実施例22ないし25の複合型光学薄膜の断面構造を表した模式図である。

【符号の説明】

- 1 噴霧ノズル
- 2 ノズル開閉機構部
- 3 真空容器
- 4 真空ポンプ

- 5 圧力測定装置
 6 コールドトラップ
 7 シャッター
 8 基板加熱装置
 9 基板温度測定装置
 10 ベーキング装置
 11 ゲート弁
 12 イオン化装置
 13 質量分析装置
 14 基板導入装置
 15 マニュピュレーター

- * 16 真空ポンプ
 17 真空ポンプ
 18 液体溜め
 19 基板
 20 表面加熱装置
 100 ニードルバルブ
 201 DODCIを含有しない層
 202 粒子径3ないし4nmのDODCI粒子を含有する層
 * 203 粒子径74±1nmのDODCI粒子を含有する層

【図1】

【図2】

【図3】

【図4】

【図 5】

フロントページの続き

(72)発明者 守谷 哲郎
茨城県つくば市梅園1丁目1番4号 通
産省工業技術院 電子技術総合研究所内

(72)発明者 田中 教雄
東京都足立区堀之内1丁目9番4号 大
日精化工業株式会社 東京製造事業所内

審査官 増田 亮子

*** NOTICES ***

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

1. This document has been translated by computer. So the translation may not reflect the original precisely.
2. **** shows the word which can not be translated.
3. In the drawings, any words are not translated.

CLAIMS

(57) [Claim(s)]

[Claim 1] The manufacture approach of the compound-die optical thin film characterized by spraying the organic system optical material of two or more components into a high vacuum container from the spraying nozzle prepared for every component in the state of a solution or dispersion liquid, making it deposit on a substrate, and heat-treating it.

[Claim 2] The manufacture approach of the compound-die optical thin film characterized by carrying out pressing after heat-treatment in the manufacture approach of the compound-die optical thin film of claim 1.

[Claim 3] The manufacturing installation of the compound-die optical thin film characterized by consisting of a manufacturing installation of the compound-die optical thin film equipped with a vacuum housing, a spraying means to spray the organic system optical material of two or more components for every component in the state of a solution or dispersion liquid into this vacuum housing, the substrate on which the organic system optical material sprayed into the vacuum housing is made to deposit, a heating means to heat that substrate, and the exhaust air means of a vacuum housing.

[Claim 4] It is the manufacturing installation of the compound-die optical thin film with which it has a spraying nozzle as a spraying means in the manufacturing installation of the compound-die optical thin film of claim 3, and the closing motion device section of the spraying nozzle comes to constitute needle valve structure.

[Translation done.]

*** NOTICES ***

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

1. This document has been translated by computer. So the translation may not reflect the original precisely.
2. **** shows the word which can not be translated.
3. In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention]**[0001]**

[Industrial Application] This invention relates to the manufacture approach and manufacturing installation of a compound-die optical thin film. It is efficient and the still more detailed compound-die optical thin film as an optical thin film of highly efficient nature with this invention especially useful on opto-electronics, such as wavelength selection transparency film, reflective film, optical nonlinear effect film, and photo-electric-conversion equipment, an optoelectronics technique, etc. is related at the manufacture approach and manufacturing installation of the new compound-die optical thin film which makes it possible high quality and to manufacture.

[0002]

[Description of the Prior Art] Generally the optical thin film using the wavelength selection transparency which is conventionally used in the applicable field with various optical thin films which consist of various kinds of presentations, for example, used the absorption of light or interference, or a reflex function is used. And especially in recent years, development of the optical thin film which has different high efficiency from the former for the application for informational plural juxtaposition high-speed processing in which the multiplicity of light was used, and application of an optical nonlinear effect and the photoelectricity effectiveness is briskly furthered in the field using laser light of optoelectronics.

[0003] An organic system optical material is one of those which attract attention as a material for forming such a new highly efficient optical thin film. It is, even if various kinds of examination is advanced until now about the manufacture approach of the organic system optical thin film using this organic system optical material, for example, the following approaches are learned.

(1) The electrochemical technique, such as print processes, such as coating methods, such as the wet method applying method using a solution, dispersion liquid, or a developing solution, the blade coat method, the roll coat method, a spin coat method, a dipping method, and a spray method, the Taira version, letterpress, an intaglio, a mimeograph, a screen, and an imprint, an electrodeposition process, an electrolytic polymerization method, and a micell electrolytic decomposition process (JP,63-243298,A news), Lang Mia Blodgett's technique which moves the monomolecular film made to form on water.

(2) When the method of using the polymerization thru/or polycondensation reaction of a raw material monomer, for example, a monomer, is a liquid, they are the casting method, the reaction injection mold method, a plasma polymerization method, a photopolymerization method, etc.

(3) The approach using a gas molecule (the evaporating method by heating)

A sublimation replica method, vacuum deposition, vacuum evaporation technique, the ion beam method, the sputtering method, a plasma polymerization method, a photopolymerization method, etc.

(4) The approach hot pressing (JP,4-99609,A news) using melting or softening, an injection-molding method, the extending method, the single crystal-ized approach of a melting thin film, etc.

[0004] However, in these conventional manufacture approaches, the actual condition was not suitable manufacturing the highly efficient organic system optical thin film which the target presentation and structure of an optical thin film are restricted to the comparatively simple thing, and enabled control of the more advanced fine structure. For example, in the manufacture approach of

the conventional compound-die optical thin film, since that ingredient decomposed with heating, and that ingredient decomposed in evaporation temperature even if the melting point exists in that ingredient when the ingredient with which the melting point of organic ionic crystal etc. does not exist is used, it was difficult to control these phenomena or to realize a highly efficient organic system optical thin film by this control.

[0005] As one of the means for solving a technical problem of these, in Japanese Patent Application No. 5-52102, the artificer of this invention sprayed the solution or the organic system optical material of a dispersion-liquid condition into the high vacuum container, was made to deposit it on a substrate, and has already invented the manufacture approach of the organic system optical thin film characterized by heat-treating. Production of the optical thin film by which structure was controlled by the detailed field of under the micrometer in temperature far lower than the decomposition temperature of an organic system optical material by this approach was attained.

[0006] However, when two or more component use of the organic system optical material tended to be carried out and it was going to manufacture a compound-die optical thin film using the manufacture approach of the organic system optical thin film this invention, the technical problem that selection of the solvent which dissolves or distributes selections of the component in which uses, combining, and is made to spray on coincidence, and it deals, and those components had a limit occurred. Furthermore, since the actuation which washes with a solvent the inside of piping which results in a spraying nozzle became indispensable after each spraying is completed, in order to prevent mixing within piping which results in the spraying nozzle of a different component, when it is going to change and spray a different component, the technical problem that it fell remarkably also had working capacity.

[0007] Therefore, there was a limitation in manufacturing efficiently a highly efficient nature compound-die optical thin film naturally using the manufacture approach of such a conventional compound-die optical thin film.

[0008] Without canceling the fault of the conventional technique as above and bringing about the pyrolysis of an optical material, this invention has advanced fine structure control in whenever [low-temperature] more, and aims at offering the manufacture approach and manufacturing installation of the new compound-die optical thin film which makes it possible to manufacture efficiently a more highly efficient compound-die optical thin film.

[0009]

[Means for Solving the Problem] In order to solve the above-mentioned technical problem, spray this invention into a high vacuum container from the spraying nozzle which prepared the organic system optical material of two or more components for every component in the state of a solution or dispersion liquid, it is made to deposit on a substrate, and offers the manufacture approach of the compound-die optical thin film characterized by heat-treating.

[0010] The manufacture approach of the compound-die optical thin film furthermore characterized by carrying out pressing of this invention after heat-treatment in the manufacture approach of the aforementioned compound-die optical thin film is also offered.

[0011] furthermore, in this invention, as a manufacturing installation for realizing the aforementioned manufacture approach A vacuum housing, a spraying means to spray the organic system optical material of two or more components for every component in the state of a solution or dispersion liquid into this vacuum housing, The manufacturing installation of the compound-die optical thin film characterized by consisting of a manufacturing installation of the compound-die optical thin film equipped with the substrate on which the organic system optical material sprayed into the vacuum housing is made to deposit, a heating means to heat the substrate, and the exhaust air means of a vacuum housing is also offered.

[0012] When this invention is furthermore explained in detail below, this invention Spray into a high vacuum container from the spraying nozzle which prepared the organic system optical material of two or more components for every component in the state of a solution or dispersion liquid, and it is made to deposit on a substrate. It is characterized by heat-treating. As an example of the combination of the organic system optical material of two or more components For example, the combination of an organic high molecular compound and an organic low molecular weight compound, the combination of an organic high molecular compound and liquid crystal, the combination of two or

more kinds of organic high molecular compounds, the combination of the mixture of an organic high molecular compound and a low molecular weight compound and a high molecular compound, etc. can be mentioned. In these combination, if the distribution to the thing which can be dissolved in the solvent which has volatility, or a dispersion medium is possible for each component, the thing of the class of arbitration will be used. Moreover, it may be compound-ized, an optical function may be realized and any are [being mixing or] sufficient also as that to which each component demonstrates an optical function independently in itself. Moreover, if needed, where metal particles, such as semi-conductor particles, such as a selenium, a tellurium, germanium, silicon, silicon carbide, a cadmium sulfide, a cadmium selenide, Cd-Zn-Mn-Se-Te-S-O, and Ga-In-aluminum-As-P, and gold colloid, are mixed for each components of these, it can be used.

[0013] Anyway, it can be respectively used by changing the particle of an organic high molecular compound, an organic low molecular weight compound, and an organic compound, liquid crystal, etc. into a solution or a dispersion-liquid condition. By the approach of this invention, since the organic system optical material of two or more components is sprayed into a high vacuum container from the spraying nozzle prepared for every component in the state of a solution or dispersion liquid, it is possible to use it for every component, choosing the optimal solvent or the optimal dispersion medium, and the concentration of a solution or dispersion liquid can be set up the optimal for every component further again.

[0014] Hereafter, it illustrates still more concretely about each component.

[Organic polymeric materials]

What has the so-called "so-called optical property and function" among organic high molecular compounds can be used as one component of the ingredient of the compound-die optical thin film of this invention. As an example of such organic polymeric materials Polystyrene, Pori (alpha methyl styrene), the poly indene, Pori (4-methyl-1-pentene), Polyvinyl pyridine, a polyvinyl formal, a polyvinyl acetal, A polyvinyl butyral, polyvinyl acetate, polyvinyl alcohol, a polyvinyl chloride, A polyvinylidene chloride, polyvinyl methyl ether, polyvinyl ethyl ether, Polyvinyl benzyl ether, a polyvinyl methyl ketone, Pori (N-vinylcarbazole), Poly(N-vinylpyrrolidone), polymethylacrylate, polyacrylic acid ethyl, Polyacrylic acid, a polyacrylonitrile, a polymethyl methacrylate, Polymethacrylic acid ethyl, polymethacrylic acid butyl, polymethacrylic acid benzyl, Polymethacrylic acid cyclohexyl, polymethacrylic acid, a polymethacrylic acid amide, The poly methacrylonitrile, the poly acetaldehyde, the poly trichloroacetic aldehyde, Polyethylene oxide, polypropylene oxide, polyethylene terephthalate, Polybutylene terephthalate and polycarbonates (bisphenols + carbonic acid) Pori (diethylene-glycol bisallyl carbonate), 6-nylon, 6 and 6-nylon, 12-nylon, 6, 12-nylon, Pori aspartic-acid ethyl, Polyglutamic acid ethyl, the poly lysine, polyproline, Pori (gamma-benzyl-L-glutamate), Methyl cellulose, ethyl cellulose, benzyl cellulose, hydroxyethyl cellulose, Hydroxypropylcellulose, an acetyl cellulose, cellulose triacetate, Cel low SUTORI butyrate, alkyd resin (phthalic anhydride + glycerol), Fatty-acid modified alkyd resin (fatty-acid + phthalic anhydride + glycerol), an unsaturated polyester resin (maleic-anhydride + phthalic anhydride + propylene glycol), An epoxy resin (bisphenols + epichlorohydrin), polyurethane resin, Phenol resin, a urea-resin, melamine resin, xylene resin, a toluene resin, Organic polysilane, such as resin, such as guanamine resin, and Pori (phenyl methylsilane), The organic poly germane, these copolymerization and copolycondensation objects, and a carbon disulfide, In usual [, such as carbon tetrafluoride ethylbenzene, perfluoro benzene, a perfluoro cyclohexane, and trimethylchlorosilane,], the high molecular compound which carried out the plasma polymerization of the compound without polymerization nature, and obtained it can be mentioned.

[0015] Moreover, it may contain as a copolymerization monomeric unit as the side chain of a monomeric unit, or a bridge formation radical, and these organic high molecular compound may contain the residue of the organic low molecular weight compound which shows organic coloring matter and an optical nonlinear effect as a polymerization initiation end.

[0016] [Organic low molecular weight compound] as an example of the organic low molecular weight compound used as one component of the ingredient of the compound-die optical thin film of this invention A urea and its derivative, meta nitroaniline, 2-methyl-4-nitroaniline, Benzene derivatives, such as 2-(N and N-dimethylamino)-5-nitro acetanilide, N, and N'-bis(4-nitrophenyl) methane diamine, Stilbene derivatives, such as biphenyl derivatives, such as - nitro biphenyl, and a

4-methoxy-4' 4'-methoxy -4'-nitro stilbene, 4-nitro-3-picoline = N-oxide, (S)-(-)-N -(5-nitro-2-pyridyl)- Pyridine derivatives, such as prolinal, Others, various kinds of organic coloring matter, an organic pigment, etc. can be mentioned. [active substances /, such as chalcone derivatives, such as 2', 4, and a 4'-trimethoxy chalcone, and a thienyl chalcone derivative, / secondary nonlinear optics] [0017] [Liquid crystal]

As an example of the liquid crystal used as one component of the ingredient of the compound-die optical thin film of this invention Various cholesterol derivatives, a 4'-n-butoxy benzylidene-4-cyano aniline, 4'4, such as -n-hexyl benzylidene-4-cyano aniline,-alkoxy benzylidene-4-cyano aniline, A 4' - ethoxy benzylidene-4-n-butyl aniline and 4'-methoxybenzylideneamino azobenzene, 4'-alkoxy benzylidene aniline, such as 4-(4'-methoxy benzylidene) amino biphenyl and 4-(4'-methoxy benzylidene) amino stilbene, A 4'-cyano benzylidene-4-n-BUCHITOKISHI aniline, 4'4, such as - cyano benzylidene-4-n-hexyloxy aniline,-cyano benzylidene-4-alkoxy aniline, 4'-n- butoxycarbonyloxy benzylidene-4-methoxyaniline, Being [they / p-carboxyphenyl n-amyl carbonate and n-heptyl 4-(4'-ethoxy phenoxy carbonyl) phenyl carbonate] ***** 4-n-butyl benzoic-acid 4' - ethoxy phenyl and 4-n-butyl benzoic-acid 4'-octyloxy phenyl, 4 -n-pentyl benzoic-acid 4'4, such as - hexyloxy phenyl,-alkyl benzoic-acid 4'-alkoxy phenyl ester -- Azoxybenzene derivatives, such as - G n-amyloxy azoxybenzene, and 4 and 4'4, 4'-G n-nonyloxy azoxybenzene, Liquid crystal, such as a 4-cyano-4'-n-octyl biphenyl and 4-cyano-4'4-cyano-4, such as -n-dodecyl biphenyl,-AKIRU biphenyls, And (2S, 3S) -3-methyl-2-chloro pentanoic acid 4', a 4"-octyloxy biphenyl, Ferroelectric liquid crystals, such as 4' - (2-methylbutyl) biphenyl-4-carboxylic-acid 4-hexyloxy phenyl and 4'-octyl biphenyl-4-carboxylic-acid 4-(2-methylbutyl) phenyl, can be mentioned.

[0018] For example, for every component compounded and used in this invention, it dissolves in a proper solvent, or a dispersion medium is distributed, and the organic polymeric materials which can be illustrated as above, an organic low-molecular ingredient, and the liquid crystal matter are sprayed into a high vacuum container. Although various kinds of things can be used also about the solvent or dispersion medium in this case, it is the solvent which dissolves or distributes each component of the above compound-die optical thin films, and the thing of arbitration can be used, if it has volatility and there is corrosive [no].

[0019] Specifically A methanol, ethanol, isopropyl alcohol, n-butanol, Alcohols, such as amyl alcohol, a cyclohexanol, and benzyl alcohol, Polyhydric alcohol, such as ethylene glycol, a diethylene glycol, and a glycerol Ester, such as ethyl acetate, n-butyl acetate, amyl acetate, and isopropyl acetate Ketones, such as an acetone, a methyl ethyl ketone, methyl isobutyl ketone, and a cyclohexanone Diethylether, dibutyl ether, methoxy ethanol, ethoxy ethanol, Ether, such as butoxy ethanol and carbitol, a tetrahydrofuran, Cyclic ether, such as 1 and 4-dioxane, dichloromethane, chloroform, A carbon tetrachloride, 1, 2-dichloroethane, 1 and 1, 2-trichloroethane, Halogenated hydrocarbon, such as trichlene, benzene, toluene, a xylene, A chlorobenzene, o-dichlorobenzene, a nitrobenzene, an anisole, Aromatic hydrocarbon, such as alpha-chloronaphthalene, n pentane, n-hexane, Aliphatic hydrocarbon, such as n-heptane and a cyclohexane, N,N-dimethylformamide, Amides, such as N,N-dimethylacetamide and hexamethylphosphoric triamide Urea derivatives, such as cyclic amide [, such as N-methyl pyrrolidone], tetramethylurea, 1, and 3-dimethyl-2-imidazolidinone Carbonates, such as sulfoxides, such as dimethyl sulfoxide, ethylene carbonate, and propylene carbonate Nitril, such as an acetonitrile, propionitrile, and a benzonitrile Solvents, such as water besides being amines, such as nitrogen-containing heterocyclic compounds, such as a pyridine and a quinoline, triethylamine, triethanolamine, diethylamino alcohol, and an aniline, etc., nitromethane, a carbon disulfide, and a sulfolane, can be used.

[0020] The thing of two or more classes may be mixed and used for these solvents again.

[0021] this invention be in the condition which these solvents or dispersion media be made to dissolve or distribute , spray it into a high vacuum container from the spraying nozzle which prepared the organic system optical material of two or more components for every component , and make it deposit on a substrate , and although it characterize by to heat-treat , it can enable formation of a compound die optical thin film on the occasion of operation of this approach , for example by adoption of the equipment and the operating instructions as follows .

[0022] First namely, the manufacturing installation of the compound-die optical thin film of this

invention For example, it comes out that what was illustrated to drawing 1 is shown as one mode, and it can do. It has the closing motion device section (2) of two or more spraying nozzles (1) and each spraying nozzle in a vacuum housing (3) as a means for spraying the solution or dispersion liquid of an organic system ingredient into the vacuum of 1×10^{-4} or less Pa of pressures.

Furthermore, steams, such as a solvent which volatilized within this vacuum housing (3), were exhausted quickly, and it has the vacuum pump (4) which keeps the pressure in a vacuum housing (3) at 1×10^{-4} or less Pa.

[0023] moreover, to the compound-die optical thin-film-fabrication equipment of this invention The cold trap for preventing that steams, such as pressure survey equipment (5) installed in said vacuum housing (3) and a solvent which volatilized within the vacuum housing (3), reach to a vacuum pump (4) (6), It has the shutter (7) which covers between a spraying nozzle (1) and substrates (19), substrate heating apparatus (8), and substrate thermometry equipment (9), and it becomes possible to form a compound-die optical thin film in the substrate (19) front face in a vacuum housing (3) with these equipments.

[0024] To this equipment, it is desirable to form the oven (10) of a vacuum housing (3), a gate valve (11), ionization equipment (12), a mass spectroscope (13), substrate installation equipment (14), manipulators (15), and these control units if needed.

[0025] Its thing of arbitration is usable, if it can exhaust to the pressure of 1×10^{-4} or less Pa as quickly as possible, and it can volatilize within a vacuum housing more preferably, a vacuum pump (4) can exhaust quickly gas components, such as a high vacuum and a solvent which was captured by the cold trap (6) and did not go out, for a vacuum housing (3) from atmospheric pressure and the pressure in a vacuum housing (3) can be kept at 1×10^{-4} or less Pa. Specifically, the combination of a turbo molecular pump and a rotary pump and the combination of an oil diffusion pump and a rotary pump can be used.

[0026] Moreover, it is desirable to connect the vacuum pump (16) of another network and (17) to the ionization equipment (12) with which the vacuum housing (3) was equipped as illustrated to said drawing 1 , a mass spectroscope (13), and substrate installation equipment (14). In addition, about pressure survey equipment (5), if the pressure of 1×10^{-2} or less Pa can generally be measured correctly, the thing of well-known arbitration can be used. For example, specifically, ionization vacuum gages, such as a Bayard-Alpert mold, can be used.

[0027] About a vacuum housing (3), the thing of the gestalt which arranges equipment configuration components so that the volume of a vacuum system may become min is desirable, and the aluminum or stainless steel of the quality of the material of a high vacuum specification is desirable. A thing including the device which controls substrate temperature to a predetermined value is desirable, any of the format of placing a heater part into a vacuum system, and the method heated from the outside of a vacuum system are sufficient as substrate heating apparatus (8), and its thing of arbitration is usable according to the gestalt of a substrate (19).

[0028] Substrate thermometry equipment (9) measures the temperature of a substrate (19), and the thing of arbitration can be used for it, if it puts the temperature measurement sections, such as a thermocouple, on the bottom of a high vacuum and it operates.

[0029] As for an oven (10), what can heat-treat all the components that constitute a vacuum system is desirable, and if a cold trap (6) catches certainly steams, such as a solvent which volatilized within the high vacuum container, and it does not become the hindrance of exhaust air, it can use the thing of the method of arbitration.

[0030] Although ionization equipment (12) and a mass spectroscope (13) are not necessarily required, when checking that the volatile component generated from the deposit on a substrate (19) has been removed completely, they are useful. Although a gate valve (11) does not need to cover between ionization equipment (12) and a mass spectroscope (13), and vacuum housings (3) timely and does not necessarily need to prepare it, it is useful when preventing a component, a solvent, etc. which were sprayed into the vacuum system coming flying, and polluting a mass spectroscope (13). When preparing this gate valve (11), it is desirable to connect the vacuum pump of another network to a vacuum housing (3) and a mass spectroscope (13).

[0031] If ionization equipment (12) is the thing of the format which ionizes the volatile component which exists in this vacuum system, various kinds of well-known things are usable. Specifically,

ionization equipments, such as a discharge-in-gases type, an arc discharge type, and an electron impact type, can be used.

[0032] A mass spectroscope (13) can use various kinds of well-known things, if it consists of a part (mass separation system) which separates mass according to several m / e which **(ed) mass m of the ion generated with ionization equipment (12) with the charge e of the ion, and a part (detection and recording system) which carries out counting of the number of the ion separated according to m/e electrically. A mass separation system may control a field and/or electric field, and may separate ion according to m/e, and any of the format of a parabola mold, a rate convergence mold, a direction focusing mold, a double-focusing mold, a time-of-flight mold, etc. are sufficient as it. Moreover, as detection and a recording system, the thing of methods, such as combination of a Faraday cage and high sensitivity DC amplifier and combination of secondary electron multiplication equipment and high sensitivity DC amplifier, can be used.

[0033] Although it is not necessary to necessarily form substrate installation equipment (14), when shortening the purge timing at the time of installing a substrate (19) into a vacuum housing (3), it is effective. Substrate installation equipment (14) consists of a lid [for introducing a substrate (19) from a vacuum housing and the exterior] or gate valve, magnetic coupling type, or bellows-type straight-line installation machine, the gate valve between vacuum housings (3), a vacuum pump (17), and a vacuum gage.

[0034] Although it is not necessary to necessarily form it, in case a manipulator (15) tunes the location and sense of a substrate (19) to a spraying nozzle (1) finely, it is useful.

[0035] The spraying nozzles (1) for spraying the solution or dispersion liquid of an ingredient into a vacuum housing are components especially important in the manufacturing installation of the compound-die optical thin film of this invention. And in order that the liquid sprayed from a spraying nozzle (1) may prevent solidifying in a spraying nozzle part and making a nozzle blockade, in order to also control the amount of spraying further, it is necessary to have a nozzle breaker style.

[0036] Although the wiper operated from the outside of a vacuum system can be used as a device which cancels lock out of a nozzle, for example, it is in ** that there is a difficulty in respect of operability and effectiveness. As the artificer of this invention illustrated to drawing 2 as an example of a spraying nozzle (1), it found out that the needle valve of high process tolerance could be used.

[0037] That is, it becomes possible to prepare a needle valve (100) in a spraying nozzle (1), to move this needle valve (100) to it by the nozzle closing motion device section (2), and to adjust the amount of spraying of the ingredient solution from a spraying nozzle (1), or dispersion liquid, consequently to prevent that lock out.

[0038] The solution or dispersion liquid of an organic system optical material is supplied to a spraying nozzle (1) from liquid reservoir (18). shall spray this invention into a high vacuum container from the spraying nozzle which prepared the organic system optical material of two or more components for every component in the state of a solution or dispersion liquid, it shall be make to deposit on a substrate, and shall be characterize by heat-treat, and the group of above spraying nozzle (1) nozzle closing motion device section (2) and liquid **** (18) shall prepare two or more lines according to the number of components of the organic system optical material to be use. For example, in the example of the manufacturing installation illustrated to drawing 1 , three groups of the spraying nozzle (1) nozzle closing motion device section (2) and liquid reservoir (18) are illustrated.

[0039] Moreover, 2 or more sets of spraying nozzles (1) and the nozzle closing motion device section (2) may be prepared about one component of the solution of an organic system optical material, or dispersion liquid.

[0040] As operating instructions of the manufacture approach of the compound-die optical thin film of this invention To one of the liquid reservoir (18) of the manufacturing installation illustrated to drawing 1 , for example, the first component, For example, it is filled up with the solution of a high molecular compound, and one more is filled up with the solution of the 2nd component, for example, organic coloring matter. Spraying into a vacuum housing (3) from a spraying nozzle (1), controlling the amount of spraying by the nozzle closing motion device section (2) corresponding to each liquid **** for every component, and carrying out vacuum evaporation of a solvent or the dispersion medium The thin film by the compound-die optical material which consists for example, of two

components is made to deposit on a substrate (19).

[0041] And in this invention, this substrate (19) is heated to the temperature which does not exceed the pyrolysis temperature of a deposit, a volatile component is removed, the need is accepted further, and the deposit on a substrate is heated and/or pressurized and is fabricated to a necessary thing.

[0042] Moreover, in this invention, especially limitation may not be in the class of substrate (19), glass and a quartz may be begun, and you may be the thing of arbitration, such as a ceramic, silicon, and a high polymer film. And a deposit may be heated with the surface heating apparatus (20) of a substrate which can also perform heat-treatment of the deposit on this substrate (19) as heating of a substrate (19), or is illustrated to said drawing 1.

[0043] As this surface heating apparatus (20), proper means, such as an electrical heater and an infrared exposure method, are employable.

[0044] Furthermore, about the pressurization for shaping, a means well-known as hot rolling processing (for example, JP,4-99609,A news) may be adopted. Hereafter, an example is shown and this invention is explained in more detail.

[0045]

[Example] The optical thin film was manufactured using the manufacturing installation of the compound light study thin film of this invention that illustrated the configuration to example 1 aforementioned drawing 1. The iodation 3 and 3'-diethyl OKISA dicarbocyanine (it outlines Following DODCI) which were used as an example of organic coloring matter used the thing by the U.S. exciton company. This DODCI was not sublimated, even if it decomposed at about 230 degrees C and heated at 150 degrees C under the high vacuum of ten to 5 Pa, when the melting point was not shown but a temperature up was carried out by part for 10-degree/under nitrogen-gas-atmosphere mind.

[0046] The thing by U.S. Aldrich was used for Pori (methyl methacrylate) (it outlines Following PMMA) used as an example of a high molecular compound, Pori (2-hydroxypropyl methacrylate) (it is hereafter written as PHPMA), and a polycarbonate (it is hereafter written as PC). As a substrate (19), cover glass (150**2 micrometers in 18mm angle, thickness) or a quartz plate (1000**2 micrometers in 20mm angle, thickness) was used.

[0047] DODCI was dissolved in the acetone by the concentration of 10mg/l. as one of the components, and one of the liquid reservoir (18) was filled up. Moreover, PMMA was dissolved in the acetone by the concentration of 1g/l. as another component, and another liquid reservoir (18) was filled up. These solutions were sprayed on coincidence into the vacuum housing (3) from each spraying nozzle (1). In the meantime, the pressure in a vacuum housing (3) was maintained to 10 - 4 or less Pa by the turbo molecular pump, the rotary pump, and the cold trap cooled by liquid nitrogen. By adjusting closing motion spacing of the nozzle closing motion device section (2), it controlled to a part for 3333 microliter/about the DODCI solution, and spray velocity was controlled to a part for 100 microliter/about the PMMA solution, respectively, and spraying was continued for 100 minutes. In the meantime, the temperature of a substrate (19) was maintained at 40**2 degrees C with substrate heating apparatus (8) and substrate thermometry equipment (9). Heating and 4.9MPa carried out hydrostatic-pressure pressure treatment of the PMMA thin film containing DODCI deposited on the substrate (19) to 150 degrees C in the vacuum by hot pressing, and the transparent thin film was obtained optically. When the DODCI concentration in this optical thin film was expressed with weight %, it was as given in Table 1.

[0048]

[Table 1]

実施例番号	DODCI溶液	DODCI濃度	DODCI 発光の極大波長	
	噴霧速度 [μl/分]	(光学薄膜中) 【重量%】	粒子径 [nm]	(励起590nm) [nm]
1	3333	2.5	6.6	61.5および72.0
2	1111	1.0	6.7	61.4および72.0
3	526	5	6.5	61.5および71.9
4	256	2.5	5.4	61.5および71.8
5	101	1.0	4.8	61.2
6	50	0.5	4.0	61.5
7	25	0.25	3.0	61.3
8	10	0.10	1.5	60.9
9	5	0.05	4	60.0
10	2.5	0.025	5	59.9

Although the X diffraction of this optical thin film was measured, the clear diffraction line was not accepted. Then, when the particle diameter of DODCI in this thin film was measured by the X-ray-small-angle-scattering method, it was as given in Table 1. Moreover, when luminescence (fluorescence) when exciting this thin film with light with a wavelength of 590nm was measured with the commercial fluorophotometer, the maximum wave length of luminescence was as given in said table 1.

[0049] The spray velocity of an example 2 - 10DODCI solutions was changed as given in said table 1, and also the optical thin film was manufactured like the example 1. The maximum wave length of luminescence when exciting with light with a wavelength of 590nm as a result of measuring the DODCI concentration in these optical thin films and DODCI particle diameter by the X-ray-small-angle-scattering method is shown in said table 1. The particle diameter of the coloring matter (DODCI) in an optical thin film was controllable by the approach of this invention in the dozens of nm field clearly from this result.

[0050] 0.1 micrometers of thickness and 10-micrometer DODCI/PMMA bipolar membrane were manufactured by carrying out coating of the liquid which dissolved 50mg and PMMA for DODCI in per 11. of example of comparison 1 acetones by the ratio of 950mg with a spin coat method to slide glass, and adjusting the count of coating. The DODCI concentration in this film is the film which it is calculated with 5 % of the weight, and may be compared with the above-mentioned example 3 with the point of coloring matter concentration.

[0051] When the film of 0.1 micrometers of this thickness was observed with the optical microscope, the deposit of a blue crystal was observed, and when the X diffraction was measured about the film which is 10 micrometers of thickness, the diffraction line equivalent to the crystal of DODCI was checked. That is, when the film of 5 % of the weight of DODCI concentration was created by the coating method, DODCI crystal growth could not be controlled but it turned out that it has deposited as a big and rough particle.

[0052] Make it be proportional to time amount, reduce continuously, and it is made to become zero from a part for 256 microliter [at the time of spraying initiation]/[in 100 minutes after spraying initiation] so that the spray velocity of an example 11DODCI solution may be illustrated to drawing 3 . The optical thin film from which the DODCI concentration in the thin film deposited on a substrate was changed continuously, and also DODCI concentration changed in the direction (henceforth the "depth direction") perpendicular to the film continuously like the example 1 was manufactured.

[0053] In order to check change of the DODCI concentration of the depth direction, when concentration distribution of the depth direction of an iodine atom based on DODCI was measured using photoelectron spectroscopy equipment (it is hereafter written as ESCA), in proportion to the depth, it turned out that concentration is changing almost linearly. When the wavelength of

excitation light was fixed to 590nm and luminescence of this optical thin film was measured, according to the direction of radiation of excitation light, optical reinforcement, and the direction that detects luminescence, it turned out that the situations of luminescence differ. For example, when DODCI concentration irradiated excitation light on the front face of the higher one and measured luminescence from the exposure side of excitation light, the maximum wave length of luminescence was 614**1nm and 719**1nm irrespective of excitation luminous intensity. Moreover, when excitation light was irradiated on the front face with lower DODCI concentration and luminescence was measured from the exposure side of excitation light, luminescence maximum wave length changed according to excitation luminous intensity, and when it was weak excitation, they were 612 thru/or 620nm at the time of 599 thru/or 600nm, and strong excitation.

[0054] DODCI was dissolved in the acetone by the concentration of 0.1g/l. as one of the example 12 components, and one of the liquid reservoir (18) was filled up. Moreover, PMMA was dissolved in the acetone by the concentration of 1g/l. as another component, and another liquid reservoir (18) was filled up. From each spraying nozzle (1), each nozzle closing motion device section (2) and shutter (7) were operated, and these solutions were sprayed by turns into the vacuum housing (3). In the meantime, the pressure in a vacuum housing (3) was maintained to 10 - 4 or less Pa by the turbo molecular pump, the rotary pump, and the cold trap cooled by liquid nitrogen. By adjusting spacing of the two nozzle closing motion device sections (2) and the closing motion time amount of a shutter (7) After carrying out fixed time amount spraying of the solution which dissolved DODCI in the acetone, stop spraying of both solutions and the acetone on a substrate is removed completely. Next, after carrying out fixed spraying of the solution which dissolved PMMA in the acetone, both spraying was stopped again and actuation of removing the acetone on a substrate completely was repeated 100 times. By adjusting the nozzle closing motion device section (2) and the closing motion time amount of a shutter (7) at this time, it controlled to a part for 250 microliter/about the DODCI solution, and the mean velocity of spraying in consideration of the quiescent time was controlled to a part for 75 microliter/about the PMMA solution, respectively. In the meantime, the temperature of a substrate (19) was maintained at 40**2 degrees C with substrate heating apparatus (8) and substrate thermometry equipment (9). Heating and 4.9MPa carried out hydrostatic-pressure pressure treatment of the PMMA thin film containing DODCI deposited on the substrate (19) to 150 degrees C in the vacuum by hot pressing, and the transparent thin film was obtained optically.

[0055] When the concentration of DODCI in this optical thin film was expressed with weight %, it was as given in Table 2.

[0056]

Table 2

実施例番号	溶液噴霧の平均速度		DODCI濃度 (光学薄膜中) [重量%]	DODCI粒子径 [nm]
	DODCI [μl/分]	PMMA [μl/分]		
1 2	2 6 0	7 6	2 5	7 4
1 3	2 0 0	8 0	2 0	7 5
1 4	1 5 0	8 5	1 5	7 3
1 5	1 0 0	9 0	1 0	7 5
1 6	5 0	9 5	5. 0	7 4
1 7	2 5	9 7. 5	2. 5	7 5
1 8	1 0. 1 1	1 0 0	1. 0	7 3
1 9	5. 0 3	1 0 0	0. 5	7 5
2 0	2. 5 1	1 0 0	0. 2 5	7 4

When the particle diameter of DODCI in this thin film was measured by the X-ray-small-angle-scattering method, it was as given in said table 2.

[0057] The mean velocity of solution spraying of 13 to example 202 component was changed as

given in said table 2, and also the optical thin film was manufactured like the example 12. The result of having measured the particle diameter of DODCI in these thin films by the X-ray-small-angle-scattering method is shown in said table 2. The average coloring matter concentration in a thin film was changeable by the approach of this invention, controlling uniformly the particle diameter of the coloring matter (DODCI) in an optical thin film so that clearly from this result.

[0058] One of the liquid reservoir (18) was filled up with the liquid (it is hereafter called A liquid) which dissolved 10mg and PMMA for DODCI in per 1l. of acetones by the ratio of 990mg as one of the example 21 components. Moreover, the 2nd liquid reservoir (18) was filled up with the liquid (it is hereafter called B liquid) which dissolved 10mg and PHPMA for DODCI in per 1l. of acetones by the ratio of 990mg as 2nd component. It sprayed interlocking spray velocity mutually and changing these solutions from each spraying nozzle (1) by actuation of each nozzle closing motion device section (2), into a vacuum housing (3), as shown in drawing 4. Namely, at the time of spraying initiation, the spray velocity of a part for 100 microliter/and B liquid was adjusted to zero, and was started, the spray velocity of A liquid was proportioned in time amount, and the spray velocity of A liquid was reduced, and on the other hand, it was considered [liquid / A] as a part for 100 microliter/about zero and B liquid after 100 minutes, having made the spray velocity of B liquid increase and maintaining the sum total of both spray velocity at a part for 100 microliter/.

[0059] In the meantime, the pressure in a vacuum housing (3) was maintained to 10 - 4 or less Pa by the turbo molecular pump, the rotary pump, and the cold trap cooled by liquid nitrogen. Moreover, the temperature of a substrate (19) was maintained at 40**2 degrees C with substrate heating apparatus (8) and substrate thermometry equipment (9). Heating and 4.9MPa carried out hydrostatic-pressure pressure treatment of the PMMA/PHPMA compound-die thin film containing DODCI deposited on the substrate (19) to 150 degrees C in the vacuum by hot pressing, and the transparent thin film was obtained optically.

[0060] It was fixed when the iodine atom concentration of the depth direction in this optical thin film was measured by ESCA. Namely, it turned out in the depth direction that the concentration of DODCI is fixed. When it calculates from a loading ratio, it is 1 % of the weight. Moreover, it is surmised that the ratio of PMMA/PHPMA in this thin film is changing in the depth direction continuously. Then, when the thin film was aslant ground in the depth direction and the micro total reflection FT-IR spectrum of a polished surface was measured, the absorption intensity of the alcoholic hydroxyl group which belongs to PHPMA is the depth direction, and fluctuating in proportion to the depth was checked.

[0061] When the wavelength of excitation light was fixed to 590nm and luminescence of this optical thin film was measured, according to the direction of radiation of excitation light, optical reinforcement, and the direction that detects luminescence, it turned out that the situations of luminescence differ. For example, when PHPMA concentration irradiated excitation light on the front face of the higher one and measured luminescence from the exposure side of excitation light, it was not based on excitation luminous intensity, but the maximum wave length of luminescence was 618**1nm and 641**1nm. Moreover, when excitation light was irradiated on the front face with higher PMMA concentration and luminescence was measured from the exposure side of excitation light, luminescence maximum wave length changed according to excitation luminous intensity, and when it was weak excitation and was 613**2nm and strong excitation, they were 618**1nm and 641**1nm.

[0062] DODCI was dissolved in the acetone by the concentration of 10mg/l. as one of the example 22 components, and one of the liquid reservoir (18) was filled up. Moreover, DODCI was dissolved in the methanol by the concentration of 10mg/l. as 2nd component, and the 2nd liquid reservoir (18) was filled up. Moreover, PMMA was dissolved in the acetone by the concentration of 1g/l. as 3rd component, and the 3rd liquid reservoir (18) was filled up. These solutions were sprayed in order into the vacuum housing (3) from each spraying nozzle (1) by actuation of each nozzle closing motion device section (2) and a shutter (7). In the meantime, the pressure in a vacuum housing (3) was maintained to 10 - 4 or less Pa by the turbo molecular pump, the rotary pump, and the cold trap cooled by liquid nitrogen. By adjusting spacing of the three nozzle closing motion device sections (2) and the closing motion time amount of a shutter (7) After carrying out fixed time amount spraying of the solution which dissolved DODCI in the acetone, close all shutters, stop spraying and

the acetone on a substrate is removed completely. Next, after carrying out fixed time amount spraying of the solution which dissolved PMMA in the acetone, close all shutters again, stop spraying and the acetone on a substrate is removed completely. Next, after carrying out fixed time amount spraying of the solution which dissolved DODCI in the methanol, All the shutters were closed, spraying was stopped, the methanol on a substrate was removed completely, after carrying out fixed time amount spraying of the solution which dissolved PMMA in the acetone next, all the shutters were closed again, spraying was stopped, and actuation of removing the acetone on a substrate completely was repeated 100 times. the mean velocity of spraying which took the quiescent time into consideration by adjusting the nozzle closing motion device section (2) and closing motion spacing of a shutter (7) during this actuation -- a DODCI acetone solution -- a part for 10 microliter/- DODCI methanol solution -- a part for 40 microliter-- moreover, it controlled to a part for 49.5 microliter/about the PMMA solution, respectively. In the meantime, the temperature of a substrate (19) was maintained at 40**2 degrees C with substrate heating apparatus (8) and substrate thermometry equipment (9). Heating and 4.9MPa carried out hydrostatic-pressure pressure treatment of the PMMA thin film containing DODCI deposited on the substrate (19) to 150 degrees C in the vacuum by hot pressing, and the transparent thin film was obtained optically.

[0063] When the concentration (average) of DODCI in this optical thin film is expressed with weight %, it is as given in Table 3.

[0064]

[Table 3]

実施例 番号	溶液噴霧の平均速度			DODCI	DODCI
	DODCI	DODCI	PMMA	濃度	粒子径
	アセトン溶液	メタノール溶液		(光学薄膜中)	
	【μl/分】	【μl/分】	【μl/分】	【重量%】	【nm】
2 2	1 0	4 0	4 9. 5	1. 0	7 5および4
2 3	2 0	3 0	4 9. 5	1. 0	7 4および3
2 4	3 0	2 0	4 9. 5	1. 0	7 3および3
2 5	4 0	1 0	4 9. 5	1. 0	7 5および4
2 6	5 0	0	4 9. 5	1. 0	7 3のみ
2 7	0	5 0	4 9. 5	1. 0	3ないし4

[0065] The mean velocity of spraying of 23 to example 273 component was changed as given in said table 3, and also the optical thin film was manufactured like the example 22. The result of having measured the particle diameter of DODCI in these thin films by the X-ray-small-angle-scattering method is shown in said table 3. while keeping constant the average concentration of the coloring matter (DODCI) in an optical thin film by the approach of this invention so that clearly from this result -- distribution of the particle diameter of coloring matter -- control -- things were made.

[0066] When the DODCI concentration of the depth direction of these optical thin films was analyzed by ESCA, it was checked that it is the laminated structure of the layer containing DODCI and the layer which is not contained. Furthermore, if it guesses from the measurement result of the DODCI particle diameter in the thin film of examples 26 and 27, it will be thought that an example 22 thru/or the thin film of 25 are the cross-section structures where the laminating of the DODCI particle diameter 3 thru/or a 4nm layer (202), and the 74**1nm layer (203) was carried out by turns on both sides of the layer (201) which does not contain DODCI as shown in drawing 5 .

[0067] As for luminescence of these optical thin films, it was checked by excitation luminous intensity that transient responses differ.

[0068] PMMA was dissolved in the acetone by the concentration of 1g/l. as one of the example 28 components, and one of the liquid reservoir (18) was filled up. Moreover, PC was dissolved in dichloromethane by the concentration of 1g/l. as another component, and another liquid reservoir (18) was filled up. From each spraying nozzle (1), each nozzle closing motion device section (2) and

shutter (7) were operated, and these solutions were sprayed by turns into the vacuum housing (3). In the meantime, the pressure in a vacuum housing (3) was maintained to 10 - 4 or less Pa by the turbo molecular pump, the rotary pump, and the cold trap cooled by liquid nitrogen. By adjusting spacing of the two nozzle closing motion device sections (2) and the closing motion time amount of a shutter (7) After carrying out fixed time amount spraying of the solution which dissolved PMMA in the acetone, stop spraying of both solutions and the acetone on a substrate is removed completely. Next, after carrying out fixed spraying of the solution which dissolved PC in dichloromethane, both spraying was stopped again and actuation of removing the dichloromethane on a substrate completely was repeated 100 times. By adjusting the nozzle closing motion device section (2) and the closing motion time amount of a shutter at this time, it controlled to a part for 10 microliter/about the PMMA acetone solution, and the average speed of spraying in consideration of the quiescent time was controlled to a part for 40 microliter/about PC dichloromethane solution, respectively. In the meantime, the temperature of a substrate (19) was maintained at 40**2 degrees C with substrate heating apparatus (8) and substrate thermometry equipment (9). Heating and 4.9MPa carried out hydrostatic-pressure pressure treatment of the PMMA/PC compound thin film deposited on the substrate (19) to 150 degrees C in the vacuum by hot pressing, and the transparent thin film was obtained optically.

[0069] When the refractive index in this thin film was measured with the ABBE refractive-index meter, it was as given in Table 4.

[0070]

[Table 4]

実施例番号	溶液噴霧の平均速度		PMMA : PC	
	PMMA [μl/分]	PC [μl/分]	重量比率	屈折率
28	10	40	1 : 4	1. 566
29	20	30	2 : 3	1. 547
30	25	25	1 : 1	1. 538
31	30	20	3 : 2	1. 529
32	40	10	4 : 1	1. 510

[0071] The mean velocity of solution spraying of 29 to example 322 component was changed as given in said table 4, and also the optical thin film was manufactured like the example 28. The result of having measured the refractive index of these thin films with the ABBE refractive-index meter is shown in said table 4.

[0072] After removing oxygen gas enough through the foxtail millet of nitrogen gas in the solution which melted example 33 perchloric-acid cadmium 6 hydrate by the concentration of 2xten - three mols/l. into the acetonitrile, the micro-disperse liquid of the colloid of a cadmium sulfide (CdS) was produced through the hydrogen-sulfide gas diluted with gaseous helium to 0.02 volume % to this solution. The concentration of CdS in dispersion liquid was 0.289g/l. One of the liquid reservoir (18) was filled up with these dispersion liquid as one of the components. Moreover, PC was dissolved in dichloromethane by the concentration of 1.0g/l. as another component, and another liquid reservoir (18) was filled up. By adjusting closing motion spacing of the nozzle closing motion device section (2) for these solutions into a vacuum housing (3) from each spraying nozzle (1), it controlled to a part for 100 microliter/about CdS dispersion liquid, and spray velocity was controlled to a part for 100 microliter/about PC solution, respectively, and spraying was continued for 20 minutes. In the meantime, the pressure in a vacuum housing (3) was maintained to 10 - 4 or less Pa by the turbo molecular pump, the rotary pump, and the cold trap cooled by liquid nitrogen. Heating and 4.9MPa carried out hydrostatic-pressure pressure treatment of the PC thin film containing CdS deposited on the substrate (19) to 250 degrees C in the vacuum by hot pressing, and the transparent thin film was obtained optically.

[0073] When the CdS concentration in this optical thin film is expressed with weight %, it is as

given in Table 5.

[0074]

[Table 5]

実施例番号	溶液噴霧の平均速度		CdS濃度 (光学薄膜中) 【重量%】	CdS粒子径 【nm】
	CdS 【μl/分】	PC 【μl/分】		
3 3	1 0 0	1 0 0	2 2	1 0
3 4	8 0	1 0 0	1 9	1 1
3 5	6 0	1 0 0	1 5	1 0
3 6	4 0	1 0 0	1 0	9
3 7	2 0	1 0 0	6	1 1

When the CdS particle diameter in this thin film was measured by the X-ray-small-angle-scattering method, it was as given in said table 5.

[0075] The spray velocity of an example 34 - 37CdS micro-disperse liquid was changed as given in said table 5, and also the optical thin film was manufactured like the example 33. The result of having measured the particle diameter of CdS in these thin films by the X-ray-small-angle-scattering method is shown aforementioned table 5. The optical thin film of various concentration was able to be manufactured by the approach of this invention, with the particle diameter of a CdS particle maintained so that clearly from this result.

[0076] As example 38 substrate (19), the glass (it is hereafter written as ITO glass) which prepared the transparent conductive film of an indium-tin multiple oxide in the front face was used. The 4-heptoxy-4'-cyano biphenyl (it is hereafter written as 7OCB) of the liquid crystal matter was dissolved in dichloromethane by the concentration of 1g/l. as one of the components, and one of the liquid reservoir (18) was filled up. Moreover, nitril butadiene rubber (it is hereafter written as NBR) was dissolved in dichloromethane by the concentration of 1g/l. as another component, and another liquid reservoir (18) was filled up. These solutions were sprayed on coincidence into the vacuum housing (3) from each spraying nozzle (1). In the meantime, the pressure in a vacuum housing (3) was maintained to 10 - 4 or less Pa by the turbo molecular pump, the rotary pump, and the cold trap cooled by liquid nitrogen. By adjusting closing motion spacing of the nozzle closing motion device section (2), it controlled to a part for 60 microliter/about 7OCB solutions, and spray velocity was controlled to a part for 40 microliter/about the NBR solution, respectively. In the meantime, the temperature of an ITO glass substrate (19) was maintained at 40**2 degrees C with substrate heating apparatus (8) and substrate thermometry equipment (9). The ITO glass of one more sheet was piled up on the NBR thin film containing liquid crystal 7OCB deposited on the substrate (19), heating and 4.9MPa carried out hydrostatic-pressure pressure treatment to 150 degrees C in the vacuum by hot pressing, and the liquid crystal / macromolecule compound thin film sandwiched by the transparent electrode were obtained.

[0077] Although this thin film was usually cloudy, when it impressed direct current voltage between transparent electrodes, liquid crystal carried out orientation of it, and it became transparence. When the macromolecule part which exfoliated from ITO glass, heated this liquid crystal / macromolecule compound thin film in ethanol, began to melt a liquid crystal part, and melted and remained was observed with the scanning electron microscope, it was checked that it is the precise sponge-like fine structure.

[0078]

[Effect of the Invention] In far low temperature, manufacture of a quality and highly efficient compound-die optical thin film is attained from the decomposition temperature of an organic system light ingredient by this invention as explained in detail above. Moreover, manufacture of the compound-die optical thin film with which structure was controlled by this invention in the detailed field of under the micrometer in the compound-die optical thin film which consists of the organic

system light ingredient of two or more components is attained, and also in the compound-die optical thin film which consists of the organic system light ingredient of two or more components, although the concentration of a component was changed to arbitration in that depth direction, manufacture becomes possible.

[0079] And it is very useful, when the thing of arbitration can be used if the organic system light ingredient used for the manufacture approach of the optical thin film this invention can be fabricated by heating and/or pressurization, the optimal solvent can be further chosen for every component of the organic system light ingredient of two or more components, and this invention develops a compound-die optical material and it improves.

[Translation done.]