# Présentation de mi-parcours de PFE

 $Apprent is sage \ par \ renforcement \ multi-agents$ 

David Albert

INSA Rouen

14 janvier 2019

- Aspect théorique
  - Le cadre
  - Prérequis
  - Multi-Agent Acteur-Critique

- Aspect pratique
  - Apprentissage pour système d'agents mixtes
  - UML

- Aspect théorique
  - Le cadre
  - Prérequis
  - Multi-Agent Acteur-Critique

- Aspect pratique
  - Apprentissage pour système d'agents mixtes
  - UML

# Le cadre : Apprentisage par renforcement multi-agents

- Motivation: De nombreuses applications impliquent l'intéraction de plusieurs agents:
  - Navigation multi-robot (ex: voiture autonome)
  - Analyse des dilèmmes sociaux (ex: Sequential Social Dilemnas)
  - Intéragir de manière utile avec l'homme
  - Jeux multi-joueurs (ex: football)
- Objectif: Apprendre un comportement pour chaque agent permettant un comportement global optimal.
- Difficultés: Les méthodes de RL mono-agent s'adaptent mal au cas multi-agents.
  - ullet Environnement non-stationaire o Apprentisage très instable
- Types d'agents:
  - Agents indépendants: but ne sont pas liés
  - Agents collaboratifs: difficile de modéliser les bénéfices propres à chacun
  - Agents compétitifs: buts opposés

 La base: Apprentisage par renforcement mono-agent



# Prérequis - Jeux stochastiques

#### Definition

Un processus de décision markovien (MDPs) est une framework mathématique permettant de décrire un agent évoluant dans un environnement.

#### Definition

Les **jeux stochastiques** (ou de Markov) sont une extension des processus de décision markovien (MDPs) pour le cas de N agents.

Un jeu markovien est décrit par un tuple  $\{S, A, T, O, \mathbf{r}, \rho, \mathbf{o}\}$ :

- ullet  ${\cal S}$  : espace d'états
- $\mathcal{A} = \{\mathcal{A}_1, \mathcal{A}_2, ..., \mathcal{A}_N \ \}$  : ensemble d'espaces d'actions
- $\mathcal{O} = \{\mathcal{O}_1, \mathcal{O}_2, ..., \mathcal{O}_N \}$  : ensemble d'espaces d'observations
- $\mathcal{T}: \mathcal{S} \times \mathcal{A}_1 \times ... \times \mathcal{A}_N \to \mathcal{S}$ : fonction de transition
- N fonctions de récompense  $r_i$ , un état initial  $\rho$  et N fonctions d'observation  $o_i$

**Definition**: S'il existe au moins un agent i tel que l'observation  $o_i$  n'est pas injective alors on se situe dans un jeu de Markov partiellement observable.

### Approche 1: Estimation de la fonction de valeur

• Approximation itérativement de la fonction de valeur d'action optimale  $q_*$ 

$$\rightarrow q_*(s,a) = \max_{\pi} \mathbb{E}_{\pi} \left\{ G_t | S_t = s, A_t = a \right\}$$

- Cas 1 : Espace d'état fini (Q-learning)
  - Update Q by  $Q(S_t, A_t) = (1 \alpha_t) Q(S_t, A_t) + \alpha_t G_t$
- Cas 2 : Espace d'état "infini" (DQN)
  - Utilise réseau de neurones pour approximer q<sub>\*</sub>
  - Utilise buffer d'expérience replay
  - Utilise target network
  - $\bullet \ \ \text{Minimiser} \ \ \bar{\mathcal{L}}\left(\theta\right) = \mathbb{E}_{s,a,r,s'}\left\{\left(Q_*(s,a|\theta) y\right)^2\right\} \qquad \text{where} \quad y = r + \gamma \max_{a'} \ \bar{Q}_*(s',a')$



Cas multi-agent: Environnement non-stationnaire du point de vu de chaque agent.

## Prérequis - RL mono-agent

### Approche 2: Optimiser directement la politique $\pi$

**Pourquoi ?**: Apprendre des politiques stochastiques

→ Mieux guand partiellement observable

**Méthode**: Maximiser  $J(\theta) = \mathbb{E}_{\pi_{\theta}} \{G_1\}$ 

$$o$$
  $\nabla_{\theta} J(\theta) = \mathbb{E}_{s \sim p^{\pi}, a \sim \pi_{\theta}} \{ q_{\pi}(s, a) \ \nabla_{\theta} \log \ \pi_{\theta}(a|s) \}$  (policy gradient theorem)

→ REINFORCE et Actor-Critic algorithmes

Cas déterministe: Deterministic Policy Gradient (DPG)

$$\begin{array}{l} \rightarrow \ \nabla_{\theta} J(\theta) = \mathbb{E}_{s \sim p^{\mu}} \left\{ \nabla_{\theta} \mu_{\theta}(\mathsf{a}|\mathsf{s}) \ \nabla_{\mathsf{a}} q_{\mu}(\mathsf{s},\mathsf{a}) |_{\mathsf{a} = \mu_{\theta}(\mathsf{s})} \right\} \\ \rightarrow \ \mathsf{Espace} \ \mathsf{d'action} \ \mathcal{A} \ \mathsf{doit} \ \hat{\mathsf{e}}\mathsf{tre} \ \mathsf{continue} \end{array}$$



Cas multi-agent: Variance extrêmement élevée. Impossible d'utiliser un point de référence à cause de la non-stationnarité.

# Prérequis - RL mono-agent

Approche 1: Estimation de la fonction de valeur

Approche 2: Optimiser directement la politique  $\pi$ 

## Approche 3: Utilisation d'un modèle de l'environnement



Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments Lowe et al. [2018]

#### Definition

L'apprentissage est dit décentralisé si l'agent n'a accès qu'à une information locale, issue de ses capteurs.

Le principe : Adapter les méthodes **Actor-Critic** (DDPG) pour faire face aux problèmes de non-stationnarité de l'environnement et de variances élevée.

Idée : Si on connait les actions prises par tous les agents l'environnement devient stationnaire même si les politiques changent.

• 
$$p(s'|s, a_1, ..., a_N, \pi_1, ..., \pi_N) = p(s'|s, a_1, ..., a_N) = p(s'|s, a_1, ..., a_N, \pi'_1, ..., \pi'_N)$$

Solution proposée : Apprentisage centralisée et politique déterministe

- → Permet une exécution décentralisée
- → L'acteur n'utilise que l'information locale
- → Le critique utilise les états/actions de tous les agents
- $\rightarrow$  Entraı̂ne K sous-politiques pour chaque agent (K=3)



### **Environnement MADDPG**

### L'environnement

Simple





### **Environnement MADDPG**

### L'environnement

- Simple
- Speaker-Listener



https://www.youtube.com/watch?v=qAUf9z0M70M

PFE

8/14

### **Environnement MADDPG**

#### L'environnement

- Simple
- Speaker-Listener
- Prey-Predator



https://www.youtube.com/watch?v=sSltKKwCXbM

- Aspect théorique
  - Le cadre
  - Prérequis
  - Multi-Agent Acteur-Critique

- Aspect pratique
  - Apprentissage pour système d'agents mixtes
  - UML

PFE

# Apprentissage pour système d'agents mixtes

L'idée: Développer une bibliothèque python permettant d'entraîner différent agents avec des méthodes d'apprentissage différentes qui leur sont propre. L'environnement utilisé doit implémenter les fonctions des environnements Gym.

#### Exemple d'utilisation :

```
from marl, model import MlpNet, GumbelMlpNet
from marl.agent import DONAgent, MADDPGAgent
from marl import MARL
# Declare your Gym environment
env = make_env("env_name")
obs_space_0 = env.observation_space[0]
act_space_0 = env.action_space[0]
obs space 1 = env.observation space[1]
act space 1 = env.action space[1]
# Decalre an agent trained following DQN algorithm
first_agent = DQNAgent( model='MlpNet', observation_space=obs_space_0.
                        action space=act space @. name="DON Agent")
# Declare an agent trained following MADDPG algorithm
n_inputs_critic = obs_space_0.shape[0] + obs_space_1.shape[0] + act_space_0.n
               + act space 1.n
critic = MlpNet(n_inputs_critic,1)
ag2 = MADDPGAgent(critic_model=critic, actor_model='GumbelMlpNet',
                    observation_space=obs_space_1, action_space=act_space_1,
                    index=1, name="MADDPG_Agent")
# Declare the multi-agent system ()
marl_sys = MARL(agents_list=[ag1, ag2], name='Two-Agent-RL')
# Multi-Agent algorithms as MADDPG usually need to have access to ohter agents attributed
# --> Centralized Training
ag2.set mas(marl sys)
# Train simultaneously all agents for 25 000 timesteps
marl_sys.learn(env. nb_timesteps=25000)
```

### UML - Diagramme de Classe



### UML - Diagramme de séquence



- Aspect théorique
  - Le cadre
  - Prérequis
  - Multi-Agent Acteur-Critique

- Aspect pratique
  - Apprentissage pour système d'agents mixtes
  - UML

## Orientation du projet

- Orientations possibles/envisagées
  - Continuer développement de la librairie python
  - Tenter d'obtenir des résultats intéressant avec l'algo MADDPG
  - Développer un environnement 3D simple sous Unity et appliquer une méthode d'apprentissage adaptée



- Etudier méthodes récentes d'apprentissage de communication
- Lien avec Hierarchical Learning?