1 Overview

- 1. What are finite-state machines?
- 2. How do they generalize n-gram models?
- 3. N-gram models are one example of probabilistic deterministic finite-state machine (PDFMs).
- 4. PDFM-based language models can be trained with basically the same techniques, and they can express various types of long-distance dependencies.
- 5. Multiple PDFMs can be combined as independent factors to provide a joint distribution over string space, and they too can be trained with basically the same techniques [Shibata and Heinz, 2019].
- 6. Probabilistic Non-determinisistic FMs (PNFMs) are even more expressive than PDFMs, and there are learning strategies, but no guarantees.
- 7. Probabilistic Context-Free Grammars (PCFGs) are even more expressive than PNFMs.

n-gram model
$$\subsetneq$$
 PDFM \subsetneq PNFM \subsetneq PCFG

2 Finite-State Machines

Finite-State Machines process *strings* (or more generally any recursive data structure).

2.1 Acceptors

Is there a path through the machine for these strings?

- 1. bababa
- 2. babaab
- 3. bbabba
- 4. baabaa

Transducers

Multiplying along paths

Boolean

Draw paths for the following strings which also show the outputs. Multiply the outputs with *conjunction*.

- 1. bababa
- 2. babaab
- 3. bbabba
- 4. baabaa

Counting

Draw paths for the following strings which also show the outputs. Multiply the outputs with addition.

- 1. bababa
- 2. babaab
- 3. bbabba
- 4. baabaa

Probability

Draw paths for the following strings which also show the outputs. Multiply the outputs with *multiplication*.

- 1. bababa
- 2. babaab
- 3. bbabba
- 4. baabaa

Strings

Draw paths for the following strings which also show the outputs. Multiply the outputs with *concatenation*. Note λ denotes the empty string.

- 1. bababa
- 2. babaab
- 3. bbabba
- 4. baabaa

Summing across paths

The above acceptors were *deterministic*. That is, at each state upon reading a letter, there was at most one transition arc to take. Consequently, there is at most one path for each string.

The ones below are *non-deterministic*, which means there can be more than one path for each string. In this case, you have to take *all* the paths and *sum* them up.

Draw all the paths for the string *baa* which also show the outputs. As before, along a path, multiplication is concatenation. Across paths, summing is *addition*.

So what is the probability of baa according to this transducer?

Strings

Draw all the paths for the string [daw] which also show the outputs. As before, along a path, multiplication is concatenation. Across paths, summing is *union*.

So what is the output of this transducer given the input [darv] 'dive'?

Semirings

A semiring is a set K over which two binary operations are defined \oplus , \otimes , called 'addition/plus' and 'multiplication/times' which contains elements 1 and 0 with the following properties satisfied: if $x, y, z \in K$ then

• $x \oplus y, x \otimes y \in K$	(closure under \oplus and \otimes)
$\bullet \ x \oplus y = y \oplus x$	$(\oplus \text{ is commutative})$
$\bullet \ 0 \oplus x = x \oplus 0 = x$	(0 is the identity for \oplus)
• $1 \otimes x = x \otimes 1 = x$	(1 is the identity for \otimes)
$\bullet \ 0 \otimes x = x \otimes 0 = 0$	(0 is an annihilator for \otimes)
• $x \otimes (y \oplus z) = (x \otimes y) \oplus (x \otimes z)$.	$(\otimes \text{ right distributes over } \oplus)$

Name	K	\oplus	\otimes	0	1
Boolean	$\{ \mathtt{true}, \mathtt{false} \}$	V	\wedge	false	true
Natural	\mathbb{N}	+	\times	0	1
Viterbi	[0, 1]	max	\times	0	1
Tropical	$\mathbb{R} \cup \{\infty\}$	min	+	∞	0
Language	$\mathcal{P}(\Sigma^*)$	\cup	•	Ø	$\{\lambda\}$

If the outputs of a finite-state machine M belong to K then M computes a function $f_M: \Sigma^* \to K$ as follows.

$$f_M(w) = \bigoplus_{w\text{-paths } p \in M} \qquad \bigotimes_{\text{transitions } t \in p} (\text{output of } t)$$

3 N-gram models as Probabilistic Finite-state Machines

Figure 1: Example: Bigram Model with $\Sigma = \{a, b\}$.

The parameters of the n-gram model are the transitions in a particular finite-state machine where the states represent the *recent* history.

The MLE is obtained by passing the data through the deterministic finite-state machine and normalizing [Vidal et al., 2005a,b]. This is true for any deterministic finite-state model, not just ones representing n-gram models.

For example, suppose $D = \{ab, aabb\}$. Then for the machine above, we would determine the following.

Parameters	counts	normalized
$\theta_{ times a}$	2	1
$ heta_{ times b}$	0	0
$ heta_{ times dash}$	0	0
θ_{aa}	1	1/3
$ heta_{ab}$	2	2/3
$ heta_{a\ltimes}$	0	0
θ_{ba}	0	0
$egin{array}{l} heta_{bb} \ heta_{boldsymbol{ iny b}} \end{array}$	1	1/3
θ_{b}	2	2/3

If the finite-state machines have different structures then different kinds of patterns, including certain non-local effects, can also be modeled [Heinz and Rogers, 2010].

Figure 2: Example: Strictly Piecewise Model

References

Jeffrey Heinz and James Rogers. Estimating strictly piecewise distributions. In *Proceedings* of the 48th Annual Meeting of the Association for Computational Linguistics, pages 886–896, Uppsala, Sweden, July 2010. Association for Computational Linguistics.

- Chihiro Shibata and Jeffrey Heinz. Maximum likelihood estimation of factored regular deterministic stochastic languages. In *Proceedings of the 16th Meeting on the Mathematics of Language*, pages 102–113, Toronto, Canada, 18–19 July 2019. Association for Computational Linguistics.
- Enrique Vidal, Franck Thollard, Colin de la Higuera, Francisco Casacuberta, and Rafael C. Carrasco. Probabilistic finite-state machines-part I. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 27(7):1013–1025, 2005a. ISSN 0162-8828. doi: http://doi.ieeecomputersociety.org/10.1109/TPAMI.2005.147.
- Enrique Vidal, Frank Thollard, Colin de la Higuera, Francisco Casacuberta, and Rafael C. Carrasco. Probabilistic finite-state machines-part II. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 27(7):1026–1039, 2005b. ISSN 0162-8828. doi: http://doi.ieeecomputersociety.org/10.1109/TPAMI.2005.148.