Truth Tables

We can model compound Boolean conditions using truth tables. Take, for example:

```
if (roll1 == 4 || roll2 == 4) {
    //statements to be executed go here
}
```

The corresponding truth table is:

roll1 == 4	roll2 == 4	roll1 == 4 roll2 == 4
T	T	T
T	F	Т
F	T	Т
F	F	F

In other words, if roll1 == 4 evaluates to T, roll2 == 4 evaluates to T, then we can look at the corresponding row of the truth table and see that (roll1 == 4 || roll2 == 4) will also evaluate to T.

Often, instead of writing out entire statements like (roll1 == 4 $\mid \mid$ roll2 == 4) we will use variables (P,Q,R...), called predicates, when modeling this logic. Here is the general truth table for (inclusive) or:

P	Q	P Q
T	T	Т
T	F	T
F	T	T
F	F	F

The other basic truth tables:

P	!P
T	
T	

P	Q	P && Q
T	T	
T	F	
F	T	
F	F	

P	Q	P xor Q
T	T	
T	F	
F	Т	
F	F	

P	Q	P == Q
T	T	
T	F	
F	T	
F	F	

To do more complicated truth tables, we generally create extra columns to help us through the intermediate steps.

Example: The truth table for !(!P && Q) is

Q	P	!P	!P && Q	!(!P && Q)
Т	Т	F		
Т	F	Т		
F	Т	F		
F	F	Т		

Example: The truth table for P || (Q && R) is

P	Q	R	Q && R	P (Q && R)
Т	Т	Т		
Т	Т	F		
Т	F	Т		
Т	F	F		
F	Т	Т		
F	Т	F		
F	F	Т		
F	F	F		

Example: The truth table for (P && Q && R) || !P

P	Q	R	P && Q && R	(P && Q && R) !P

Number of rows:

A truth table with one proposition P has 2 rows and a truth table with two propositions P and Q has 4 rows.

How many rows are there in a truth table with 3 propositions?

4 propositions?

n propositions?

DeMorgan's Laws:

$$!(P \&\& R) =$$

Distributive Laws:

$$P \&\& (Q || R) =$$

$$P || (Q \&\& R) =$$

Tautology and Contradition:

Order of Operations:

- 1. () 2. !
- 3. == and !=
- 4. &&
- 5. ||

Example: Make a truth table for P && Q $\mid\mid$ P && R. Simplify the expression first using the distributive law.

P	Q	R	

Example: Prove one of DeMorgan's Laws by making two truth tables and showing that both expressions are equivalent.

P	Q	!(P && Q)
T	Т	
T	F	
F	Т	
F	F	

P	Q	! P ! Q
T	T	
T	F	
F	Т	
F	F	