

Yuchen Wang, Matthieu Chan Chee, Ziyad Edher, Minh Duc Hoang, Shion Fujimori, Jesse Bettencourt

Applying fungicides regularly accounts for

40%

of the banana production cost

Forecast black Sigatoka infections risks

1 month

into the future

Bonus:

Outstanding interpolation capabilities, even when inferencing with **10%** of data window!

Infection rate

 t_0,\ldots,t_N : Observed time steps

(possibly irregular)

Weather conditions

Unobserved time step

 $(t_q \geq t_0)$

w:

Goal: Find infection rate at time tq using weather!! Using MR. NODE:

Innovations:

- (1) 'Partial' autoencoder
- (2) Inject weather into dz/dt

Datasets

Data generation

Bebber (2019)

$$r(T) = \left(\frac{T_{max} - T}{T_{max} - T_{opt}}\right) \left(\frac{T - T_{min}}{T_{opt} - T_{min}}\right)^{\frac{T_{opt} - T_{min}}{T_{max} - T_{opt}}}$$
 $H(t, T) = r(T) \left(\frac{t}{\alpha}\right)^{\gamma}$
 $F(t, T) = 1 - e^{-H(t, T)}$
 $Y(t, T) = \beta F(t, T)$

relative humidity

canopy temperature

moisture storage on canopy

$$(N = 91,556)$$

Relative number of infections

- Encoder: LSTM
- Loss Functions:
 - Negative Log Likelihood (train & valid)
 - Mean Squared Error (test)

Long Extrapolation

	# encoded	#reconstructed	#extrapolated
Training	128	128	0
Validation	100	100	150
Extrapolation Test	100/70/50/30 (drop rate 0/0.3/0.5/0.7)	_	150 (37.5 days)
Interpolation Test	100/70/30/10 (drop rate 0/0.3/0.7/0.9)	100	0

Long Extrapolation

Long Extrapolation

Method	Drop rates	MSE on test set
RNN	0 0.3 0.5 0.7	13.55 13.51 12.62 13.70
LSTM	0 0.3 0.5 0.7	12.76 12.71 17.94 14.12
MR. NODE	0 0.3 0.5 0.7	12.16 12.29 12.40 12.68

Irregular Interpolation

	# encoded	#reconstructed	#extrapolated
Training	128	128	0
Validation	100	100	150
Extrapolation Test	100/70/50/30 (drop rate 0/0.3/0.5/0.7)	-	150 (37.5 days)
Interpolation Test	100/70/30/10 (drop rate 0/0.3/0.7/0.9)	100	0
t1 t3	t128	t1 t2 t3	t128

Irregular Interpolation

(a) dropping rate = 0

(b) dropping rate = 0.3

(c) dropping rate = 0.7

(d) dropping rate = 0.9

Takeaway

- New ML method for time-series with multiple predictors
- Can predict 1 month into the future
- Outstanding interpolation capabilities, even when using only 10% of the data window

Thank you! ©

