Homework 8

- 1. Let J be a matrix which is in Jordan normal form. Suppose that J has the following blocks on its diagonal: $J_{5,\sqrt{2}}$ (a 5×5 block with $\sqrt{2}$ on the diagonal), 3 copies of $J_{4,7}$, 2 copies of $J_{2,7}$, 4 copies of $J_{1,7}$, two copies of $J_{3,\pi}$, and one copy of $J_{2,\pi}$.
 - (a) What is the characteristic polynomial of J?
 - (b) What is the minimal polynomial of J?
 - (c) For each eigenvalue λ of J, what is the dimension of the generalized eigenspace corresponding to λ ?
 - (d) For each eigenvalue λ of J, find the dimension of $\operatorname{Ker}(J-\lambda I)^k$ for every k.
- **2.** Let W be the space of all continuous functions $\mathbb{R} \to \mathbb{R}$, and let $V \subset W$ be the subspace spanned by the functions x, x^2, x^3, e^x, e^{-x} . Let $T: V \to V$ be linear transformation that sends a function to its derivative (so T(f) = f'). Find the Jordan normal form of T.
- **3.** Let V be the space of all continuous functions $f:[0,1]\to\mathbb{R}$. Define the following inner product on $V:\langle f,g\rangle=\int\limits_0^1f(t)g(t)dt$. Let f(x)=0 be the constant function that is equal to 0, let $g(x)=x^2$, $h(x)=x^3-1$. Find the lengths of the sides and the angles of the triangle formed by f,g,h.
- **4.** Let W be the space of all continuous functions $\mathbb{R} \to \mathbb{R}$, and let $V \subset W$ be the subspace spanned by the functions x, x^2, x^3, e^x, e^{-x} . Let $U \subset W$ be the subspace spanned by x, x^2, x^3 . Find the orthogonal projection of e^x to U.
- **5.** Let $V = M_3(\mathbb{R})$ be the space of 3×3 matrices. Define an inner product on V by setting $\langle A, B \rangle = \operatorname{trace}(A^T B)$. Let $U \subset V$ be the subspace of antisymmetric matrices (a matrix A is antisymmetric if $A^T = -A$. Find:
 - (a) The closest point in U to the identity matrix.
 - (b) The distance between the identity matrix and the space U.