

Tipe Data Abstrak

(TIB11 – Struktur Data)

Pertemuan 3, 4

Sub-CPMK

Mahasiswa mampu menjelaskan konsep tipe data abstrak (C2, A2)

Materi

- Record
- Data set
- Konsep Tipe Data Abstrak

1.

Record

Tipe Data

- Tipe data:
 - Nilai yang mungkin terisi ke variabel
- Variabel agar dapat digunakan harus dideklarasikan sesuai dengan tipe data yang akan ditampungnya
- Suatu variabel tidak dapat menampung data yang tidak sesuai dengan tipe data peruntukannya
- Ada dua macam tipe data
 - A. Tipe data sederhana/primitif
 - B. Tipe data bentukan

Tipe Data Sederhana

Merupakan tipe data bawaan dari bahasa pemrograman.

Beberapa tipe data primitif (ada yang menyebutnya tipe data sederhana) yang umum terdapat pada berbagai bahasa pemrograman

- Boolean → Tipe data yang hanya memperbolehkan dua nilai 1/0 atau TRUE/FALSE saja
- Character → menampung 8 bit data yang diterjemahkan menjadi karakter, Character termasuk tipe data integer
- Integer → bilangan bulat, Terdapat beberapa jenis bilangan integer berdasarkan panjang bit nya:
 Byte, short integer, integer, long integer
- Pecahan → bilangan pecahan, umumnya direpresentasikan dalam bentuk floating point, berdasarkan panjang dan ketelitiannya, floating point dapat dibagi menjadi single precision (32 bit) dan double precision (64 bit)

Tiga Kategori Tipe Data Primitif

Integral (bulat)

Tipe data yang memperlakukan integer atau bilangan tanpa bagian, contoh integer, char dan boolean

Pecahan

Dinyatakan dalam bentuk Floating – point, contoh single, double, real

Enumeration (enumerasi)

user-defined data type. Contoh:

enum bulan {JAN, PEB, MAR, APR, MEI, JUN, JUL, AGU, SEP, OKT, NOP, DES};

Record / Structure

- Rekaman atau record atau structure adalah sekumpulan data yang disusun dari tipe data yang sama atau tipe data yang berbeda.
- Sebuah record berisi beberapa variabel lain yang 'dipaketkan'. Konsep struktur data seperti ini sedikit mirip dengan konsep class dan object dalam object oriented programming
- Record/Structure harus di definisikan terlebih dahulu,
- Hasil definisi Record/Structure diperlakukan seperti tipe data,
- Ketika akan digunakan, Record/Structure harus dideklarasikan dahulu pada sebuah variabel

Mengakses Record

- Record diakses pada field-fieldnya
- Record dapat diakses dengan menyebutkan terlebih dahulu nama variable diikuti nama field yang akan diakses setelah didahului tanda titik

Record dalam Pascal

Definisi

```
Type
  RecordName = Record
  FieldName1 : vartype;
  FieldName2 : vartype;
  FieldName3 : vartype;
  ...
  FieldNamen : vartype;
  End;
```

Penugasan

```
varRecord.FieldNameN := data;
```

Mengakses Record

```
varData:= varRecord.FieldNameN;
```

Deklarasi

```
var
varRecord = RecordName;
```


Contoh Record dalam Pascal

Definisi

```
Type
  Bangun = Record
  x1 : integer;
  y1 : integer;
  x2 : integer;
  y2 : integer;
  x3 : integer;
  y3 : integer;
  Fnd;
```

Penugasan

```
Segitiga.x1 := 10;
Segitiga.y1 := 16;
```

Mengakses Record

```
temp:= Segitiga.x1;
```

Deklarasi

```
var
Segitiga = Bangun;
```


Record dalam C++

Definisi

```
struct RecordName
{
    vartype FieldName1;
    vartype FieldName2;
    vartype FieldName3;
    ...
    vartype FieldNameN;
};
```

Deklarasi

RecordName varRecord;

Penugasan

```
varRecord.FieldNameN = data;
```

Mengakses Record

```
VarData = varRecord.FieldNameN;
```


Record dalam C++

Definisi

```
struct Bangun
{
    int x1;
    int y1;
    int x2;
    int y2;
    int x3;
    int y3;
};
```

Deklarasi

Bangun Segitiga;

Penugasan

```
Segitiga.x1 = 10;
Segitiga.y1 = 16;
```

Mengakses Record

```
Temp = Segitiga.x1;
```


2.

Data Set

UNIVERSITAS BUNDA MULIA

Pengertian Data Set

- Data Set (kumpulan data) adalah sejumlah data dengan susunan homogen
- Data set terdiri record-record sejenis yang tersusun secara sequensial
- Tiap recordnya dapat memiliki field-field yang serupa ataupun berbeda
- Field-field dari tiap recordnya berisi nilai-nilai yang dapat diakses
- Kumpulan data juga bisa terdiri dari kumpulan dokumen atau file.

UNIVERSITAS BUNDA MULIA

Bentuk Data Set

- Dapat diimplementasikan dalam bentuk
 - −Array → disebut Array Based
 - − Linked List → disebut Linked-list Base

3.

Konsep Tipe Data Abstrak

UNIVERSITAS BUNDA MULIA

Tipe Data Abstrak

- Tipe Data Abstrak adalah suatu bentuk struktur data yang memiliki kegunaan atau perilaku yang serupaModel matematika termasuk operasinya
- TDA terdiri dari
 - domain (= a set of values)
 - set of operations

Tipe Data Abstrak (cont.)

Contoh:

Booleans:

- Memiliki dua values: true, false.
- Beberapa operasi boolean: AND, OR, NOT, ...

Fractions: ... are numbers.

- normal arithmetic operations
- maybe specific operations such as normalizing. E.g. 6/9 becomes 2/3.

ADT Basic Form

Linked list

Stack

Queue

out

 $a \rightarrow$

Generalisasi

 ADT adalah generalisasi dari sejumlah bentuk tipe data yang umum (real, integer, dsb.)

Contoh

Integer

character

array [1..10] of integer

int	int	int	int	arr
char		char		arr
arr	arr	arr	arr	arr

21

Contoh Generalisasi dalam bentuk Record / Struct

```
Struct DataMhs {
  char NIM[10];
  int Nilai;
  int tugas[10];
{
```


Enkapsulasi

ADT C

ADT A

Data Structure A

Operation to A

ADT B

Data Structure B

Operation to B

Operation to ADT A and B

- Tipe data abstrak beserta operasinya dapat menjadi penyusun tipe data abstrak lainnya
- Contoh: sebuah stack dengan operasinya beserta stack lain dengan operasinya beserta operasi pemindahan isi stack yang satu ke stack yang lain

Ringkasan

- Sejumlah bentuk struktur data yang memiliki kegunaan atau perilaku yang serupa, berupa model matematika yang memiliki domain dan set operasi
- Struktur Data sebuah set variable yang berisi beberapa tipe data yang berbeda serta memiliki relasi-relasi satu sama lain untuk setiap variabel
- Rekaman atau record atau structure adalah sekumpulan data yang disusun dari tipe data yang sama atau tipe data yang berbeda.
- Record/Structure harus di definisikan terlebih dahulu
- Hasil definisi Record/Structure diperlakukan seperti tipe data, sehingga ketika akan digunakan, Record/Structure harus dideklarasikan dahulu pada sebuah variabel

Terimakasih

TUHAN Memberkati Anda

Teady Matius Surya Mulyana (tmulyana@bundamulia.ac.id)

UNIVERSITAS BUNDA MULIA