

INTERNATIONAL QUALIFICATIONS

Please write clearly in	า block capitals.
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	I declare this is my own work.

INTERNATIONAL AS FURTHER MATHEMATICS

(9665/FM01) Unit FP1 Pure Mathematics

Monday 13 May 2024 07:00 GMT Time allowed: 1 hour 30 minutes

Materials

- For this paper you must have the OxfordAQA Booklet of Formulae and Statistical Tables (enclosed).
- You may use a graphical calculator.

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- Show all necessary working; otherwise marks may be lost.

For Examiner's Use				
Question	Mark			
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
TOTAL	_			

	Answer all questions in the spaces provided.	
1	The complex number z is given by	
	$z=2+\mathrm{i}\sqrt{5}$	
1 (a)	Express z in the form $r(\cos\theta+\mathrm{i}\sin\theta)$ where $r>0$ and $-\pi<\theta\leq\pi$	
	Give your value of $ heta$ to three significant figures.	[2 marks]
	Angwar	
	Answer	
1 (b)	Write down the complex number z^* in the form $r(\cos\theta+\mathrm{i}\sin\theta)$ where $r>0$)
	and $-\pi < \theta \le \pi$	[2 marks]
	Answer	

1	(c)	On an Argand diagram, the complex number z^* is represented b	umber z is represented by the point P and the y the point y	
		The point R is such that OPRQ is a	rhombus, where O is the origin.	
1	(c) (i)	Sketch the rhombus OPRQ on the A	gand diagram below. [2 marks]	
		O	Re	
1	(c) (ii)	Find the number represented by point	R [1 mark]	
		Answer		
1	(c) (iii)	Find the area of rhombus OPRQ		
		Give your answer in exact form.	[2 marks]	
		Answer		-

2	(a)	Expand and simplify $(4+h)^3$			
		[2 marks]			
		Answer			
2	(b)	A curve has equation $y = x^3 + 7x$			
	` ,				
2	(b) (i)	A line passes through two points on the curve, one where $x = 4$			
		and the other where $x = 4 + h$			
		and the other where $x - 4 + n$			
		Find the gradient of this line in the form $a+bh+h^2$ where a and b are constants.			
		[3 marks]			
		[omarke]			
		Answer			

2	(b) (ii)	Use your answer to part (b) (i) to find the gradient of the curve at the point where $x = 4$	Do not write outside the box
		Show the limiting process used. [2 marks	l
			-
			-
			-
			-
			-
			_

Answer ____

Turn over for the next question

3	It is	given	that

$$\sum_{r=1}^{n} (ar^{3} + br^{2}) = \frac{1}{12} n(n+1)(3n+4)(5n+1)$$

is true for all integers $n \ge 1$

Find the value of a and the value of	1	b
--	---	---

[4 marks]

-				
-				
-				

$$b =$$

4

$z^2 + 4z + w = 0$	
has roots $ 5-\mathrm{i} $ and $ lpha $	
Find the complex constant w and the root α	
Give your answers in the form $a + ib$	[4
w =	α =

$V = 4h^3$	
where h cm is the height of the sand in the container.	
Sand is flowing out of the container through a small hole in the base at a constant rat of 16 cm ³ per second.	е
Find the rate at which the height of the sand is decreasing when the height of the sar the container is 2.5 cm	d in
Give your answer in centimetres per second to two significant figures. [5 ma	rks]

	Do not write outside the box
	DOX
Answer	5
Turn over for the next question	

ь	(a) (I)	Snow that	
		$\frac{1}{r} - \frac{1}{r+1} = \frac{1}{r(r+1)}$	[1 mark]
6	(a) (ii)	Hence use the method of differences to show that	
		$\sum_{r=1}^{n} \frac{1}{r(r+1)}$	
		can be written as a single simplified fraction in terms of n	
		oun de miner de d'emigre emiprise n'action in terme en n	[4 marks]

6	(b)	Write down the value of		
			$\sum_{r=1}^{\infty} \frac{1}{r(r+1)}$	[1 mark]
			Answer	
6	(c)	Find the exact value of		
Ū	(0)	Tind the exact value of	2000 1	
			$\sum_{r=1001}^{2000} \frac{1}{r(r+1)}$	
				[2 marks]
				 _[
			Answer	

7 The curv	/e C	has	equation
------------	------	-----	----------

$$y = \frac{x^2}{x^2 + ax + 3}$$

where a is a constant such that C has exactly one asymptote.

7	(a)	Write down the equation of the asymptote of C	\mathcal{L}
---	-----	---	---------------

[1 mark]

Answer____

7 (b) Show that

$$a^2 < p$$

where $\,p\,$ is an integer.

[2 marks]

7 (c)	Show that if the line	y = k	does not intersect	\sim	thor

$$k^2 \left(12 - a^2 \right) - 12k > 0$$

[4 marks]

	$a = \sqrt{5}$ use the result from	part (c) to find the v -	coordinate of each
In the case where	$u = \sqrt{3}$, use the result from	part (c) to mid the y	
In the case wher of the stationary	points of C	part (e) to mid the y	[3 marks]
In the case wher of the stationary	points of C	part (e) to mid the y	
In the case wher of the stationary	points of C	part (e) to mid the y	
In the case wher of the stationary	points of C	part (e) to mid the y	
In the case wher of the stationary	points of C	part (e) to mid the y	
In the case wher of the stationary	points of C		
In the case wher of the stationary	points of C		
In the case wher of the stationary	points of C		
In the case wher of the stationary	points of C		
In the case wher of the stationary	points of C		
In the case wher of the stationary	points of C		
In the case wher of the stationary	points of C		

Do not write outside the box

8	(a)	Expand and simplify $\left(\alpha+\beta\right)^4$	
	()		[2 marks]
			[Z IIIai KS]
		Answer	
_		4 . 04	
8	(b)	Hence, or otherwise, express $\alpha^4 + \beta^4$ in terms of $\alpha + \beta$ and $\alpha\beta$	
			[3 marks]
			-
		Answer	

8	(c)	The quadratic equation $2x^2 - x + 6 = 0$ has roots α and β	
8	(c) (i)	Write down the value of $\alpha+\beta$ and the value of $\alpha\beta$	
			[2 marks]
		$\alpha + \beta = \underline{\qquad} \qquad \alpha \beta = \underline{\qquad}$	
8	(c) (ii)	Find a quadratic equation, with integer coefficients, which has roots $\frac{\alpha^2}{\beta^2}$ and	$\frac{\beta^2}{2}$
		eta^2	α^2 [5 marks]
			-
		Answer	
		Answer	

12

9		The line L is the locus of points on an Argand diagram such that
		z-2 = z-4i
9	(a)	Line L passes through the point representing the complex number $z=1+c\mathrm{i}$ where c is a real constant.
		Find the value of $\ c$ [1 mark]
		Answer
9	(b)	Sketch L on the Argand diagram below.
		Include the values where L intersects the real and imaginary axes. $\hbox{ \column{4}{c} \bf 4 \column{4}{c} marks]}$
		lm(z) ↑
		O $Re(z)$

9	(c)	The half-line H is the locus of points on an Argand diagram such that	l
		$\arg(z+a)=\tan^{-1}(b)$	
		where a and b are real constants.	
		Every point on H also lies on L	
9	(c) (i)	Find the value of a [1 mark	3
			_
			_
			_
		Answer_	_
9	(c) (ii)	Find the value of b	
	(0) (11)	[1 mark]
			_
			_
			_
			-
		Answer	_
		Turn over for the next question	

10	The locus of a point $P(x, y)$ is such that the distance from P to the point $(0,9)$ is equal to the distance from P to the line with equation $y = -3$
	The locus of P is the curve C_1
10 (a)	Find the equation of C_1 in the form
	$x^2 = ay + b$
	where a and b are constants. [4 marks]
	Answer
10 (b)	A reflection in the line $y = x$ maps curve C_1 onto curve C_2
10 (b) (i)	Write down the equation of C_2 [1 mark]
	Answer

10	(b) (ii)	Sketch the graph of C_2	
		Include the value of any axis intercepts.	[2 marks]
		<i>y</i> •	
		O	$\stackrel{\longrightarrow}{x}$
10	(b) (iii)	The line with equation $y = mx$ intersects C_2 twice.	
		Find the range of possible values for m	[5 marks]

	Do not writ outside the box
_	
_	
=	
_	
_	
=	
_	
_	
_	
]	
_	

	_		
	-		
	=		
	-		
	_		
	=		
	-		
	-		
	-		
	-		
		Answer	
		/ triower	
10	(b) (iv)	Write down the equations of the two tangents to C_2 which pass through the origin.	
		[2 marks]	
	-		
	=		
	-		
	·-		
			г
	=		
		Answer	
		Answer	L
		END OF QUESTIONS	
			1

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.
	Copyright information
	For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.oxfordaqa.com
	Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and OxfordAQA will be happy to rectify any omissions of acknowledgements. If you have any queries please
	contact the Copyright Team. Copyright © 2024 OxfordAQA International Examinations and its licensors. All rights reserved.

