

Министерство науки и высшего образования Российской Федерации

Федеральное государственное автономное образовательное учреждение высшего образования ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ (ТУСУР)

Кафедра автоматизированных систем управления (АСУ)

Учебный комплекс для проектирования и обучения нейронных сетей

Презентация по результатам выпускной квалификационной работы

Выполнила: студентка гр. 430-2 Лузинсан Анастасия Александровна

Руководитель: профессор кафедры АСУ, д.т.н. Захарова Александра Александровна

Томск 2024

Цель и задачи

Цель работы

разработка учебного комплекса для проектирования и обучения нейронных сетей, который позволит повысить эффективность процесса формирования компетенций студентов в области глубокого обучения на основе типовых архитектур сверточных сетей.

Задачи:

- 1. Провести анализ требований.
- 2. Определить спецификации и функциональные возможности.
- 3. Выполнить проектирование интерфейса и архитектуры.
- 4. Реализовать учебный комплекс.
- 5. Протестировать учебный комплекс.

- Основы глубокого обучения
- Основы сверточных нейронных сетей
- Архитектуры сверточных нейронных сетей для задачи классификации изображений

$$y=f(\boldsymbol{W}\boldsymbol{x}+\boldsymbol{b}),$$

 $e \partial e d$ – количество признаков;

k – количество классов;

x – входной вектор, $x_i \in \mathbb{R}^d$;

b – смещение, $b_i \in \mathbb{R}^k$;

W – весовые коэффициенты, $w_i^j \in \mathbb{R}^{k \times d}$;

(Wx+b) – вектор условных

вероятностей наблюдения (логиты, о);

f – функция активации;

у – выходной сигнал

- Основы глубокого обучения
- Основы сверточных нейронных сетей
- Архитектуры сверточных нейронных сетей для задачи классификации изображений

$\hat{\mathbf{y}}_i = \frac{exp(o_i)}{\sum_j exp(o_j)}$	Softmax
$l(y, \hat{y}) = \sum_{j=1}^{q} y_j \log(\hat{y}_j)$	Cross-Entropy Loss
ReLU(x) = max(x, o)	
$sigmoid(x) = \frac{1}{1 + exp(-x)}$	Функции активаций
$tanh(x) = \frac{1 - exp(-2x)}{1 + exp(-2x)}$	

- Основы глубокого обучения
- Основы сверточных нейронных сетей
- Архитектуры сверточных нейронных сетей для задачи классификации изображений

Формула сверточного слоя в срезе канала d

$$H_{i,j,d} = \sum_{a=-\Delta}^{\Delta} \sum_{b=-\Delta}^{\Delta} \sum_{c} V_{a,b,c,d} X_{i+a,j+b,c}$$

- Основы глубокого обучения
- Основы сверточных нейронных сетей
- Архитектуры сверточных нейронных сетей для задачи классификации изображений

- LeNet
- AlexNet
- VGG
- NiN
- GoogLeNet

Функциональные требования

Обзор аналогов

	Инструмент визуального проектирования	Ориентирован на неподготовленных пользователей	Акцент на обучении моделей	Бесплатный доступ	Отечественная разработка	Доступ из России
Teachable Machine	+	+	+	+	-	+
KNIME	+	-	-	+	-	+
IBM Watson Studio	+	-	+	-	-	-
Azure Machine Learning Studio	+	-	+	-	-	-
Lobe	+	+	+	+	-	-
Loginom	+	+	-	+	+	+

Стек технологий

Проектирование.

Диаграмма последовательности

Проектирование. Макеты интерфейса

Реализация. Диаграмма интерфейсных

+ set_mouse_pos(node_editor) - submit(parent: Union[String, Integer])

классов

Реализация

Диаграмма ресурсных классов

Реализация

TYCYP TUSUR UNIVERSITY

Диаграмма классов обучения

Демонстрация

Размещение датасета и связывание узлов

Демонстрация

Справочная информация, конфигурация архитектуры, сохранение проекта

Тестирование. GoogLeNet

Заключение

В ходе выполнения работы был разработан учебный комплекс для проектирования и обучения нейронных сетей, который позволяет повысить эффективность процесса формирования компетенций студентов в области глубокого обучения на основе типовых архитектур сверточных сетей.

Дальнейшее развитие учебного комплекса планируется в рамках магистерской диссертации.

По теме выпускной квалификационной работы была подготовлена статья:

Лузинсан А.А. Прототип программного обеспечения для визуального конструирования нейронных сетей на основе принципов Blueprint // Научная сессия ТУСУР-2024: сборник избранных статей международной научно-технической конференции студентов, аспирантов и молодых ученых. Томск: В-Спектр (принято к печати).