1 Постановка задачи.

Дан граф G=(V,E). Необходимо перевести через реку |V| предметов, не оставляя предметы соединенные ребром, без присмотра, имея лодку размера b. Формально, планом перевозки для лодки размера k называется последовательность $(L_i,R_i,B_i), i=1..s$, такая что

- $L_i \sqcup R_i \sqcup B_i = V$
- L_i, R_i независимые множества в G
- $L_1 \cup B_1 = V$
- $R_s \cup B_s = V$
- $L_k = L_{k-1}$ для четных $k \geq 2$
- $R_k = R_{k-1}$ для нечетных $k \geq 3$
- $|B_i| \leq b$.

Обозначим минимальное b для которого существует план перевозки AN(G).

2 Структурная теорема

Пусть VC(G) — размер наименьшего вершинного покрытия в G.

Легко проверить, что $VC(G) \leq AN(G) \leq VC(G) + 1$.

Мы будем использовать следующие факты, доказанные в статье (ссыл-ка).

Теорема 1. План для размера b существует тогда u только тогда, когда существует разбиение $V = X_1 \sqcup X_2 \sqcup X_3 \sqcup Y$, а также два непустых подмножества $Y_1, Y_2 \subset Y$, таких что

- $X_1 \cup Y_1, \ X_2 \cup Y_2, \ X_1 \cup X_2 \cup X_3$ независимые
- \bullet |Y| < b
- $|Y_1| + |Y_2| \ge |X_3|$

Теорема 2. Если в графе есть хотя бы два минимальных вершинных покрытия, то AN(G) = VC(G).

3 Алгоритм для решения из статьи

- ullet Найдем в графе G минимальное вершинное покрытие Y.
- Если b < |Y|, то вернуть «NO».
- Если $b \ge |Y| + 1$ то вернуть «YES».
- Если в графе G есть другое вершинное покрытие (не сложно проверить за b поисков вершинного покрытия), то вернуть «YES».
- Переберем $Y_1, Y_2 \subset Y$.
- В качестве X_1 возьмем вершины $V\setminus Y$ не связные с X_1 , в качестве X_2 —вершины $V\setminus (Y\cup X_1)$ не связные с Y_2 . В качестве X_3 все вершины $V\setminus (Y\cup X_1\cup X_2)$.
- Проверим для полученных множеств утверждение теоремы. Если оно выполнено, вернуть «YES».
- Если для всех $Y_1, Y_2 \subset Y$ утверждение не выполнено вернуть «NO»

Итоговая сложность алгоритма $O^*(b \cdot T_{VC}(b) + 4^b)$, где T_{VC} —время на решение задачи о вершинном покрытии размера k.

4 Улучшенный алгоритм

Будем пытаться найти оптимальное Y_2 за время быстрее, чем 2^k .

После перебора Y_1 удалим из графа все вершины X_1 . Обозначим новый граф G'=(V',E'), .

Посмотрим на множество $Z=X_3\cup (Y\setminus Y_2)$. Оно является вершинным покрытием в графе G' как дополнение независимого $Y_2\cup X_2$. Причем между множествами Z и тройками (Y_2,X_2,X_3) есть естественная биекция. Поэтому, можно вместо выбора Y_2 выбирать Z, при этом автоматически будут выполнены все условия, кроме условия на размеры Y_1,Y_2,X_3 , и условия на непустоту Y_2 . Перепишем условие на размер в терминах Z.

$$|Y_1| + |Y_2| - |X_3| = |Y_1| + |Y| - |Y \setminus Y_2| - |X_3| = b + |Y_1| - |Z| \ge 0$$

То есть задача выбора Z— это поиск вершинного покрытия в графе G' размера не более $b+|Y_1|$, отличного от Y'. Для решения этой задачи переберем вершину $v\in Y'$ которая не войдет в покрытие. Тогда мы обязаны взять всех ее соседей, после чего надо найти вершинное покрытие в графе $G\setminus (\{v\}\cup N_G(v)\cup X_1)$, размера меньше чем $b+|Y_1|-N_G(v)$. Заметим, что если $b+|Y_1|-N_G(v)\geq b-1$, то такое покрытие точно найдется— $Z=Y\setminus \{v\}$, поэтому можно считать, что параметр задачи не превосходит

Суммарная сложность алгоритма $O^*(2^b \cdot b \cdot T_{VC}(b))$.

b. Таким образом, задача решается за $O^*(b \cdot T_{VC}(b))$.

Известно, что вершинное покрытие можно решать за время $T_{VC}(b) = O^*(1.2738^b)$, в таком случае время работы алгоритма $O^*(2.5476^b \cdot b)$

5 Алгоритм за экспоненту от размера графа

5.1 3a 4^n

Найдем вершинное покрытие Y в графе. Если оно не единственно, то все понятно.

Иначе, рассмотрим его дополнение X. Переберем все пары $X_1,X_2\subset X,X_1\cap X_2=\varnothing$.

За Y_1 и Y_2 возьмем максимальное подмножества Y, такие, что $X_1 \sqcap Y_1, X_2 \sqcap Y_2$ независимы. Проверим для этого набора множеств условие теоеремы.

5.2 3a $4^{n-b} + 2^b$

За 2^b можно для всех подмножеств Y найти наибольшее независимое подмножество, с помощью динамического программирования.

Тогда вторую часть можно выполнять за $O^*(1)$ — надо взять самое большое независимое подмножество, среди эелементов Y, не соединенных ни с кем из X_1 или X_2 .

5.3 3a
$$2^{n-b} + 2^b$$

Переберем все $X' \subset X$. Для каждого X', для которого есть непустое $Y_{X'} \subset Y$, такое что $X' \sqcup Y_{X'}$ независимо, выбрем максимальный $Y_{X'}$ по размеру и запишем моном $x^{bits(X')+2^{n-b}|Y|+2^{n-b+logb+1}|X'|}$, где bits(X')—битовая маска длины n-k, соответствующая множеству.

Сложим все эти мономы. Мы получили многочлен степени $O^*(2^{n-b})$. Возведем его в квадрат за $O^*(2^{n-b})$ с помощью быстрого преобразования Фурье.

Рассмотим все мономы имеющие вид $x^{bits(X')+2^{n-b}t+2^{n-b+logb+1}|X'|}$. Они могли быть получены только как произведение двух мономов соответствующих непересекающимся X' (т.к размер сошелся). Среди всех таких необходимо выбрать моном с максимальным t-(n-|X'|). Если эта величина больше 0, то AC(G)=VC(G), иначе AC(G)=VC(G)+1. В качестве множеств X_1 и X_2 следует взять те, из которых был получен данный моном.

5.4 за
$$2^{n-b} \cdot VC^b$$

Все тоже самое, только не предподсчитываем размеры, а решаем задачу для каждого множества отдельно.

5.5 Комбинируем!

Если $b \le 0.425n$, то воспользуемся алгоритмом за $2.5476^b \le 2.5472^{0.425n} \le 1.488^n$.

При $0.425n \le b \le 0.605n$ воспользуемся алгоритмом за $2^{n-b}+2^b$. $max(2^{n-b},2^b) \le 2^{0.605n} < 1.52^n$.

При $b \geq 0.605n$ воспользуемся алгоритмом за $2^{n-b} * VC^b$ Оно убывает $2^{n-b} \cdot VC^b \leq 2^{(1-0.605)n} \cdot 1.2738^{0.605n} = 1.521^n$.