ÁLGEBRA II (61.08 - 81.02)

Evaluación integradora Duración 3 horas

Segundo cuatrimestre - 2022 8/III/23 - 9:00 hs.

Apellido y Nombres

Legajo

Curso

 Sea II la proyección de R³ sobre el plano {x ∈ R³ : x₃ = 0} en la dirección de la recta generada por [1 0 1]^T. Hallar la imagen por II del subespacio {x ∈ R³ : x₁ − x₃ = 0}.

2. Sea A ∈ R^{3×3} una matriz simétrica tal que Y₁(t) = e^t [1 1 0], Y₂(t) = e^{2t} [0 0 1] y tal que det(A) = -2. Hallar todos los Y₀ ∈ R³ tales que la solución del problema de valores iniciales Y' = AY, Y(0) = Y₀ satisfaga que lím Y(t) = [0 0 0]^T.

3. Sea $A \in \mathbb{R}^{3 \times 3}$ la matriz definida por

$$A = \begin{bmatrix} -1 & 0 & 2 \\ 0 & 1 & 0 \\ -1 & 0 & 2 \end{bmatrix}.$$

Determinar el conjunto de todos los $x \in \mathbb{R}^3$ tales que $\lim_{n \to \infty} A^n x = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$,

4. Sea A ∈ ℝ^{3×3} la matriz en base canónica de la proyección ortogonal de ℝ³ sobre el plano {x ∈ ℝ³ : x₂ = 0}. Hallar todas las soluciones por cuadrados mínimos de la ecuación Ax = [1 1 2]^T y determinar la de norma mínima.

Sea T: R³ → R² la transformación lineal definida por T(x) = Ax, donde

$$A = 4 \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \end{bmatrix} + \begin{bmatrix} -1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & -1 \end{bmatrix}.$$

Hallar entre todos los $x \in \mathbb{R}^3$ que satisfacen ||x|| = 1 aquellos que maximizan ||T(x)|| y determinar el valor $\max_{x \in [-1]} ||T(x)||$.