Projeto - Causas de mortes - Brasil

André Campos da Silva

7 de Novembro, 2021

Projeto - Analise de causas de mortes de doenças no Brasil 2019/2020.

Realizar uma analise exploratória das ocorrências de mortes causadas por diferentes doenças no Brasil.

Os cartórios do Brasil decidiram disponibilizar alguns prontuários sobre as mortes registradas no Brasil desde a pandemia do coronavírus. Através dos pedidos de visualização destes gráficos é possível obter os dados brutos e fazer as nossas próprias análises ou visualizações.

Esses dados contêm o número de óbitos registrados por dia, estado, sexo, idade, cor da pele e causa da morte (principalmente com foco em covid-19 e doenças cardiovasculares) ocorridos entre 01-01-2019 e 15-09-2020.

Esses dados foram coletados entre 14/09/2020 e 16/09/2020 e podem ser atualizados, pois pode demorar alguns dias até que o óbito seja registrado pela família, no cartório e posteriormente disponibilizado na plataforma.

Link do dataset https://www.kaggle.com/amandalk/cause-of-death-in-brazil-20192020 (https://www.kaggle.com/amandalk/cause-of-death-in-brazil-20192020)

Carregando os pacotes

library("plyr")

```
# Pacotes usados no projeto
library('tidyverse')
## -- Attaching packages ------
                               ----- tidyverse 1.3.0 --
                 v purrr
## v ggplot2 3.3.2
                         0.3.4
## v tibble 3.0.4 v dplyr 1.0.2
## v tidyr 1.1.2
                v stringr 1.4.0
## v readr 1.4.0
                 v forcats 0.5.0
## -- Conflicts -----
                                ## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
```

```
## -----
```

```
## You have loaded plyr after dplyr - this is likely to cause problems.
## If you need functions from both plyr and dplyr, please load plyr first, then dplyr:
## library(plyr); library(dplyr)
##
## Attaching package: 'plyr'
## The following objects are masked from 'package:dplyr':
##
       arrange, count, desc, failwith, id, mutate, rename, summarise,
##
##
       summarize
## The following object is masked from 'package:purrr':
##
##
       compact
library('lubridate')
##
## Attaching package: 'lubridate'
## The following objects are masked from 'package:base':
##
##
       date, intersect, setdiff, union
library('gridExtra')
##
## Attaching package: 'gridExtra'
## The following object is masked from 'package:dplyr':
##
##
       combine
```

Carregando os Dados

```
# Carrego o dataset para análise
data <- read_csv('Dados/death_cause_brazil.csv')</pre>
```

```
##
## -- Column specification ----
## cols(
##
     date = col date(format = ""),
##
     state = col_character(),
##
     gender = col_character(),
##
     age = col_character(),
##
     color = col character(),
##
     cause = col_character(),
##
     total = col_double()
## )
```

```
data <- as.data.frame(data)
```

Tratamento dos dados

```
# Vou extrair o dia, mês e ano da variável date para variáveis separadas, para poder fazer uma a
nálise exploratória mais detalhada.

# Crio a função que vai fazer a extração e criação de novas variáveis.

# Crio uma amostra para testar.
data_test <- data[5000:10000,]
data_test$day <- sapply(data_test$date, day)
data_test$month <- sapply(data_test$date, month)
data_test$year <- sapply(data_test$date, year)
head(data_test)</pre>
```

```
age color
                                                          cause total day month
##
             date state gender
                             M 40 - 49 White
## 5000 2019-01-02
                     PΙ
                                                     Septicemia
                                                                    1
                                                                        2
                                                                              1
                     PΙ
                             M 50 - 59 White
                                                         Others
                                                                       2
## 5001 2019-01-02
                                                                    1
                                                                              1
## 5002 2020-01-02
                     PΙ
                             M 50 - 59 White
                                                         Others
                                                                    1
                                                                       2
## 5003 2019-01-02
                     PΙ
                             M 60 - 69 White
                                                  Hearth attack
                                                                  1 2
                                                                              1
## 5004 2019-01-02
                     PΙ
                             M 70 - 79 White
                                                  Hearth attack
                                                                        2
                                                                    1
                                                                              1
                                                                1 2
                            M 70 - 79 White Respiratory failure
                     PΙ
## 5005 2019-01-02
                                                                              1
##
       year
## 5000 2019
## 5001 2019
## 5002 2020
## 5003 2019
## 5004 2019
## 5005 2019
```

```
# Verificando que esta tudo ok, faço para todo o dataset.
data$day <- sapply(data$date, day)
data$month <- sapply(data$date, month)
data$year <- sapply(data$date, year)
head(data)</pre>
```

```
cause total day month
##
           date state gender
                                  age
                                            color
## 1 2020-01-01
                   AC
                            F 60 - 69 East asian
                                                                         1
                                                                             1
                                                         Septicemia
## 2 2019-01-01
                   AC
                            F 80 - 89
                                            White
                                                      Hearth attack
                                                                         1
                                                                             1
                                                                                   1
## 3 2019-01-01
                   AC
                            F 30 - 39 Indigenous
                                                             Others
                                                                         1
                                                                             1
                                                                                   1
## 4 2019-01-01
                   AC
                            F 70 - 79
                                            Mixed Cardiogenic shock
                                                                             1
                                                                         1
                                                                                   1
## 5 2020-01-01
                   AC
                            F 70 - 79
                                            Mixed
                                                          Pneumonia
                                                                         1
                                                                             1
                                                                                   1
## 6 2020-01-01
                   AC
                                  < 9
                                            Mixed
                                                          Pneumonia
                                                                         1
                                                                             1
                                                                                   1
##
     year
## 1 2020
## 2 2019
## 3 2019
## 4 2019
## 5 2020
## 6 2020
```

```
# Irei adicionar uma nova coluna com as regiões para a fase de análise.
# Verifico cada valor único dos estados
unique(data$state)
```

```
## [1] "AC" "AL" "AM" "AP" "BA" "CE" "DF" "ES" "GO" "MA" "MG" "MS" "MT" "PA" "PB"
## [16] "PE" "PI" "PR" "RJ" "RN" "RO" "RR" "RS" "SC" "SE" "SP" "TO"
```

```
# Crio as regiões contendo as siglas dos estados para usar na programação de atribuição.
Norte <- c('AC','AP','AM','PA','RO','RR','TO')
Sudeste <- c('ES','MG','RJ','SP')
Nordeste <- c('AL','BA','CE','MA','PB','PE','PI','RN','SE')
Centro_Oeste <- c('DF','GO','MT','MS')
Sul <- c('PR','RS','SC')
# Crio a variável region com o valor NA
data$region <- NA
head(data)</pre>
```

```
##
           date state gender
                                            color
                                                               cause total day month
                                  age
## 1 2020-01-01
                    AC
                            F 60 - 69 East asian
                                                                             1
                                                         Septicemia
                                                                         1
                                                                                    1
                            F 80 - 89
## 2 2019-01-01
                    AC
                                            White
                                                      Hearth attack
                                                                         1
                                                                             1
                                                                                    1
## 3 2019-01-01
                    AC
                            F 30 - 39 Indigenous
                                                             Others
                                                                         1
                                                                             1
                                                                                    1
## 4 2019-01-01
                    AC
                            F 70 - 79
                                            Mixed Cardiogenic shock
                                                                             1
                                                                                    1
                                                                         1
## 5 2020-01-01
                    AC
                            F 70 - 79
                                            Mixed
                                                                             1
                                                                                    1
                                                          Pneumonia
                                                                         1
## 6 2020-01-01
                    AC
                                  < 9
                                            Mixed
                                                          Pneumonia
                                                                         1
                                                                             1
                                                                                    1
##
     year region
## 1 2020
              NA
## 2 2019
              NA
## 3 2019
              NA
## 4 2019
              NA
## 5 2020
              NA
## 6 2020
              NA
```

Aplico a função adicionando o valor respondente para a região na coluna criada anteriormente. # Caso o pc tenha muita memória rode esse que está comentando pois ja fara todas as regiões em u ma so programação, porem caso tenha pouca memória ou queria acompanhar o processo feito por regi ão, rode o segundo que será o que vou usar, um por vez.

```
"for (i in 1:length(data$state)){
  if (data$state[i] %in% Norte){
    data$region[i] = 'Norte'
  }else if
  (data$state[i] %in% Nordeste){
    data$region[i] = 'Nordeste'
  }else if
  (data$state[i] %in% Sudeste){
    data$region[i] = 'Sudeste'
  }else if
  (data$state[i] %in% Sul){
    data$region[i] = 'Sul'
  }else if
  (data$state %in% Centro_Oeste){
    data$region[i] = 'Centro_Oeste'
  }
}"
```

```
## [1] "for (i in 1:length(data$state)){\n if (data$state[i] %in% Norte){\n data$region[i] =
'Norte'\n \n }else if \n (data$state[i] %in% Nordeste){\n data$region[i] = 'Nordeste'\n
\n }else if \n (data$state[i] %in% Sudeste){\n data$region[i] = 'Sudeste'\n \n }else if
\n (data$state[i] %in% Sul){\n data$region[i] = 'Sul'\n \n }else if\n (data$state %in%
Centro_Oeste){\n data$region[i] = 'Centro_Oeste' \n } \n}"
```

```
# Descomente e execute cada loop for por vez.
for (i in 1:length(data$state)){
  if (data$state[i] %in% Nordeste){
    data$region[i] = 'Nordeste'
  }}
for (i in 1:length(data$state)){
  if (data$state[i] %in% Sudeste){
    data$region[i] = 'Sudeste'
  }}
for (i in 1:length(data$state)){
  if (data$state[i] %in% Sul){
    data$region[i] = 'Sul'
  }}
for (i in 1:length(data$state)){
  if (data$state[i] %in% Centro_Oeste){
    data$region[i] = 'Centro_Oeste'
  }}
for (i in 1:length(data$state)){
  if (data$state[i] %in% Norte){
    data$region[i] = 'Norte'
 }}
```

```
## [1] "\nfor (i in 1:length(data$state)){\n if (data$state[i] %in% Nordeste){\n data$region
[i] = 'Nordeste'\n }\n\nfor (i in 1:length(data$state)){\n if (data$state[i] %in% Sudeste){\n data$region[i] = 'Sudeste'\n }} \n\nfor (i in 1:length(data$state)){\n if (data$state[i] %in% Sul){\n data$region[i] = 'Sul'\n }}\n\nfor (i in 1:length(data$state)){\n if (data$state[i] %in% Centro_Oeste){\n data$region[i] = 'Centro_Oeste'\n }\n\nfor (i in 1:length(data$state)){\n if (data$state[i] %in% Norte){\n data$region[i] = 'Norte'\n }}\n"
```

```
# Salvo o dataset já tratado para análise.
# write_csv(data, 'Dados/death_cause_brazil_treated.csv')
# Carrego o dataset tratado sobreponto o data.
data <- read_csv('Dados/death_cause_brazil_treated.csv')</pre>
```

```
##
## -- Column specification ---
## cols(
##
     date = col date(format = ""),
     state = col_character(),
##
##
     gender = col_character(),
##
     age = col_character(),
##
     color = col character(),
     cause = col_character(),
##
##
     total = col_double(),
##
     day = col double(),
##
     month = col_double(),
##
     year = col double(),
     region = col_character()
##
## )
```

```
data <- as.data.frame(data)</pre>
```

Análise Exploratória de Dados

```
# Verifico os formatos dos dados
glimpse(data)
```

```
## Rows: 1,098,241
## Columns: 11
## $ date
                                                            <date> 2020-01-01, 2019-01-01, 2019-01-01, 2019-01-01, 2020-01-01,...
## $ state <chr> "AC", "
<chr> "60 - 69", "80 - 89", "30 - 39", "70 - 79", "70 - 79", "< 9"...
## $ age
                                                          <chr> "East asian", "White", "Indigenous", "Mixed", "Mixed", "Mixe...
## $ color
## $ cause <chr> "Septicemia", "Hearth attack", "Others", "Cardiogenic shock"...
## $ day
<dbl> 2020, 2019, 2019, 2019, 2020, 2020, 2020, 2020, 2020, 2020, ...
## $ year
## $ region <chr> "Norte", "No
```

```
# Verifico as primeiras linhas
head(data)
```

```
##
           date state gender
                                  age
                                            color
                                                               cause total day month
## 1 2020-01-01
                    AC
                            F 60 - 69 East asian
                                                                             1
                                                          Septicemia
                                                                         1
## 2 2019-01-01
                    AC
                            F 80 - 89
                                            White
                                                      Hearth attack
                                                                             1
                                                                                    1
## 3 2019-01-01
                    AC
                            F 30 - 39 Indigenous
                                                              Others
                                                                         1
                                                                             1
                                                                                    1
## 4 2019-01-01
                    AC
                            F 70 - 79
                                            Mixed Cardiogenic shock
                                                                         1
                                                                             1
                                                                                    1
## 5 2020-01-01
                    AC
                            F 70 - 79
                                            Mixed
                                                          Pneumonia
                                                                         1
                                                                             1
                                                                                    1
## 6 2020-01-01
                    AC
                                  < 9
                                            Mixed
                                                          Pneumonia
                                                                         1
                                                                             1
                                                                                    1
##
     year region
## 1 2020
           Norte
## 2 2019
           Norte
## 3 2019
           Norte
## 4 2019
           Norte
## 5 2020
           Norte
## 6 2020
           Norte
```

```
# Faço um resumo dos dados
summary(data)
```

```
##
         date
                             state
                                                 gender
                                                                      age
                                                                 Length:1098241
           :2019-01-01
                          Length:1098241
                                              Length:1098241
##
    Min.
##
    1st Qu.:2019-06-17
                          Class :character
                                              Class :character
                                                                 Class :character
##
    Median :2019-11-29
                          Mode :character
                                             Mode :character
                                                                 Mode :character
           :2019-11-22
##
    Mean
    3rd Qu.:2020-05-06
##
           :2020-09-15
##
    Max.
##
       color
                           cause
                                                total
                                                                  day
##
    Length:1098241
                       Length: 1098241
                                           Min.
                                                   : 1.000
                                                                     : 1.00
    Class :character
                       Class :character
                                           1st Qu.: 1.000
                                                             1st Qu.: 8.00
##
    Mode :character
                       Mode :character
                                           Median : 1.000
                                                             Median :15.00
##
##
                                           Mean
                                                   : 1.872
                                                             Mean
                                                                     :15.58
##
                                            3rd Qu.: 2.000
                                                             3rd Qu.:23.00
##
                                                   :43.000
                                                                    :31.00
                                           Max.
                                                             Max.
##
        month
                                        region
                           year
##
   Min.
           : 1.000
                     Min.
                             :2019
                                     Length: 1098241
    1st Qu.: 3.000
##
                      1st Qu.:2019
                                     Class :character
##
    Median : 6.000
                      Median :2019
                                     Mode :character
           : 5.807
                             :2019
##
    Mean
                     Mean
##
    3rd Qu.: 8.000
                      3rd Qu.:2020
##
    Max.
           :12.000
                     Max.
                             :2020
```

```
# Verifico se existe valores nulos nos dados
sum(is.na(data))
```

```
## [1] 0
```

Analise gráfica

Análise mais ampla pegando as informações por região.

```
data %>%
  ddply(.(region),
  summarize,
  Total = sum(total))%>%
  ggplot(aes(x = region, y = Total))+
  geom_bar(stat = "identity",color = "white", fill = "lightblue")+
  ggtitle('Total de casos por região') + xlab('Região') + ylab('Total de casos')
```

Total de casos por região

A região sudeste tem o maior número de casos, uma vez que ela possui quase metade do total populacional do brasil.

```
pl1 <- data %>%
  filter(year == '2019')%>%
  ddply(.(region),
        summarize,
        Total = sum(total))%>%
  ggplot(aes(x = region, y = Total))+
  geom_bar(stat = "identity",color = "white", fill = "lightblue")+
  ggtitle('Total de casos por região em 2019') + xlab('Região') + ylab('Total de casos')
pl2 <- data %>%
  filter(year == '2020')%>%
  ddply(.(region),
        summarize,
        Total = sum(total))%>%
    ggplot(aes(x = region, y = Total))+
    geom_bar(stat = "identity",color = "white", fill = "lightblue")+
    ggtitle('Total de casos por região em 2020') + xlab('Região') + ylab('Total de casos')
grid.arrange(pl1,pl2, nrow=1,ncol=2)
```


Realizando uma subdivisão dos casos entre os anos 2019 e 2020 que são os anos reportados nesses dados, podemos constatar que a quantidade de casos se mantém praticamente em um padrão constante.

```
pl1 <- data %>%
  filter(gender == 'M')%>%
  ddply(.(region),
        summarize,
        Total = sum(total))%>%
  ggplot(aes(x = region, y = Total))+
  geom_bar(stat = "identity",color = "white", fill = "lightblue")+
  ggtitle('Total de casos por região - Homens') + xlab('Região') + ylab('Total de casos')
pl2 <- data %>%
  filter(gender == 'F')%>%
  ddply(.(region),
        summarize,
        Total = sum(total))%>%
  ggplot(aes(x = region, y = Total))+
  geom_bar(stat = "identity",color = "white", fill = "lightblue")+
  ggtitle('Total de casos por região - Mulheres') + xlab('Região') + ylab('Total de casos')
grid.arrange(pl1,pl2, nrow=1,ncol=2)
```


Realizando uma subdivisão dos casos entre o sexo, podemos constatar também que existe um padrão entre os dois sexos, porem um pouco mais de casos do sexo feminino em relação ao masculino em cada região.

Total de casos por região - Idade.

Neste gráfico podemos constatar que há um padrão em todas as regiões onde o número de mortes ocorrem em maior quantidade a partir dos 60 anos.

Total de casos por região - Raça

Nas regiões Sudeste e Sul, os maiores números de casos aparem em pessoal brancas, já nas demais aparecem em pessoas consideradas misturadas segundo a descrição do dataset.

Total de casos por região em 2019 - Causas

Existe um padrão dos casos por região em 2019, tirando a opção de outros que tem o maior número de casos, porém sem uma causa exata divulgada no dadaset, dos nomes informados das causas de mortes o ataque cardíaco e pneumonia são as que mais tem casos.

Total de casos por região em 2020 - Causas

Segue o praticamente o mesmo padrão de 2019, porem com o surgimento da pandemia do Covid-19 no início de 2020, já podemos notar casos de mortes pela pandemia, porém ainda em uma escala pequena, isso se deve provavelmente pois a coleta dos dados para esse dataset foi feito no início da pandemia.

Agora uma análise mais especifica baseado por estado. Farei basicamente a mesma análise feita por região, mas agora segmentando por estado.

```
data %>%
  ddply(.(state),
       summarize,
       Total = sum(total))%>%
  ggplot(aes(x = state, y = Total))+
  geom_bar(stat = "identity",color = "white", fill = "lightblue")+
  ggtitle('Total de casos por estado') + xlab('Estado') + ylab('Total de casos')
```

Total de casos por estado

Como vimos que a região sudeste é a que tem maior número de casos, temos os 3 estados dessa região em destaque em número de casos, São Paulo, Rio de Janeiro e Minas Gerais respectivamente.

```
pl1 <- data %>%
  filter(year == '2019')%>%
  ddply(.(state),
        summarize,
        Total = sum(total))%>%
  ggplot(aes(x = Total, y = state))+
  geom_bar(stat = "identity",color = "white", fill = "lightblue")+
  ggtitle('Total de casos por estado em 2019') + xlab('Total de casos') + ylab('Estado')
pl2 <- data %>%
  filter(year == '2020')%>%
  ddply(.(state),
        summarize,
        Total = sum(total))%>%
  ggplot(aes(x = Total, y = state))+
  geom_bar(stat = "identity",color = "white", fill = "lightblue")+
  ggtitle('Total de casos por estado em 2020') + xlab('Total de casos') + ylab('Estado')
grid.arrange(pl1,pl2, nrow=1,ncol=2)
```

Total de casos por estado em 2019

Total de casos por estado em 2020

Existe um padrão entre o número de casso separando por ano, o ano de 2020 tem um pouco menos de casos para cada estado, isso se deve pelo fato da data de extração dos dados para a análise, temos um ano inteiro de 2019 e uma parte de 2020, como a diferença é pequena podemos considerar proporcionalmente que ao final do ano de 2020 os casos em cada estado podem ter superado os de 2019.

Total de casos por estado - Idade.

Assim como por região a taxa de mortalidade se mantem igual em todos os estados, onde os maiores casos de mortes por doença são a partir dos 50 anos.

```
data %>%
  ddply(.(state,color),
       summarize,
       Total = sum(total))%>%
  ggplot(aes(x = state, y = Total,fill = color))+
  geom_bar(stat = "identity",color = "white")+
  labs(title = 'Total de casos por estado - Raça',x = 'Estado',y = 'Total de casos', fill = 'Raça')
```

Total de casos por estado - Raça

Nesse gráfico podemos ver com mais detalhes o que foi visto no gráfico por região, onde estados como SP, SC, RS, RJ e PR os casos em grandes partes são de pessoas brancas, MG e BA constam um grande número onde esse dado foi ignorado,

Total de casos por estado em 2019 - Causas

A análise em 2019 por estado segue o mesmo padrão das regiões, com um destaque agora nos estados de SP, RJ e MG, onde casos de septicemia aparecem também em destaque além do ataque cardíaco e pneumonia.

Total de casos por estado em 2020 - Causas

A análise em 2020 já podemos ver alguns casos de covid em alguns estados em destaque os mais populosos como SP e RJ assim como um aumento nos casos de septicemia.

Total de casos por causas - Idade

Doenças cardíacas, vasculares, respiratórias e covid por exemplo, são doenças com mais mortalidade a partida da faixa de 60 anos, bem relevante uma vez que com o passar dos anos e com a idade o corpo fica mais frágil e tais doenças e sua recuperação são mais complicadas devido à idade

```
data %>%
  ddply(.(cause,color),
       summarize,
       Total = sum(total))%>%
  ggplot(aes(x = Total, y = cause,fill = color))+
  geom_bar(stat = "identity",color = "white")+
  labs(title ='Total de casos por causas - Raça', x = 'Total de casos',y = 'Doença', fill = 'Causas')
```

Total de casos por causas - Raça

Seguem o mesmo padrão da análise por região e estado, maiores casos de doenças em pessoas brancas e consideras misturadas.

Analise individual das demais variáveis

```
data %>%
  ddply(.(color),
       summarize,
       Total = sum(total))%>%
  ggplot(aes(x = color, y = Total))+
  geom_bar(stat = "identity",color = "white", fill = "lightblue")+
  ggtitle('Total de casos por raça') + xlab('Raça') + ylab('Total de casos')
```

Total de casos por raça

Total geral de casos, temos o que já vimos anteriormente, brancos e misturados com maiores ocorrências.

Total de casos por sexo

Bem balanceado o total de casos dividido por sexo.

```
data %>%
  ddply(.(age),
       summarize,
       Total = sum(total))%>%
  ggplot(aes(x = age, y = Total))+
  geom_bar(stat = "identity",color = "white", fill = "lightblue")+
  ggtitle('Total de casos por idade') + xlab('Idade') + ylab('Total de casos')
```

Total de casos por idade

Como já vimos entre 50 a 100 estão entre os maiores casos, com um pico maior entre 70 a 89.

```
data %>%
  ddply(.(year),
       summarize,
       Total = sum(total))%>%
  ggplot(aes(x = as.factor(year), y = Total))+
  geom_bar(stat = "identity",color = "white", fill = "lightblue")+
  ggtitle('Total de casos por ano') + xlab('Ano') + ylab('Total de casos')
```


Como temos dados do ano todo de 2019 e apenas metade do de 2020, normal ter mais casos em 2019, mas podemos constatar mais uma vez que a probabilidade de 2020 passar 2019 e bem grande.

Considerações Finais

Com esses gráficos podemos ter insights como explicado em cada imagem, a respeito de tendência de probabilidades de ocorrência dessas doenças, em vários aspectos, região, estado, raça, idade, e etc, muito possivelmente pegando um dado atualizado com o ano de 2020 vamos ter um grande aumento nos casos de covid.

Obrigado! Entre em contato comigo acessando meu portifolio (https://campos1989.github.io/ (https://campos1989.github.io/)) no menu contato!