Worksheet 2: Statistical Mechanics and Molecular Dynamics

April Cooper, Patrick Kreissl und Sebastian Weber

November 26, 2012 University of Stuttgart

Contents

1	Statistical Mechanics	2
	1.1 Task 1	2
	1.2 Task 2 - Thermodynamic Variables in the Canonical Ensemble	3
	1.3 Task 3 - Ideal Gas	3
2	Molecular Dynamics: Lennard-Jones Fluid	4
	2.1 Implementation of the Lennard Jones Potential	4

1 Statistical Mechanics

1.1 Task 1

First we had to consider a system A consisting of two subsystems A_1 and A_2 with the related numbers of configurations $\Omega_1 = 10^20$ and $\Omega_2 = 10^22$.

The number of configurations available to the combined system is $\Omega = \Omega_1 \cdot \Omega_2 = 10^{42}$.

As the entropy is defined as $S = ln(\Omega)k_B$ the entropies are:

$$S_1 = k_B ln(\Omega_1) = k_B ln(10^{20}), S_2 = k_B ln(\Omega_2) = k_B ln(10^{22}), S = k_B ln(\Omega) = k_B ln(10^{42}).$$

Then were asked to give the factor by which the number of available configurations increases in a system with given initial V_1, T, p_1 if V_1 was expanded isothermal by 0.001%. With the help of the first law of thermodynamics it follows that for T = const it is: $dS = \frac{p}{T}dV$, which leads with the ideal gas equation to

$$\Delta S = \int_{V1}^{V2} \frac{k_B N}{V} dV$$

$$= k_B N ln \left(\frac{V_2}{V_1}\right)$$

$$= 10^{-7} k_B N \tag{1}$$

If you consider now the definition of S: $\Delta S = ln(\hat{\Delta}\Omega)k_B$ you get with equation (1):

$$\hat{\Delta}\Omega = exp(\frac{\Delta S}{k_B}) = exp(10^{-7}N) = \frac{\Omega_2}{\Omega_1}$$

Finally we were asked to give the factor by which the number of available configurations increases in a system with given initial N, V, T_1 when an energy of 150 kJ is added to the system at constant Volume.

Analogous to the task before it can be derived that $\Delta S = c_v N ln\left(\frac{T_2}{T_1}\right)$. Using again that the factor by which the number of configurations is given by $\hat{\Delta}\Omega = exp(\frac{S}{k_B})$ it follows that:

$$\hat{\Delta}\Omega = exp\left(\frac{c_v N ln(\frac{T_2}{T_1})}{k_B}\right) = exp\left(\frac{c_v N}{k_B}\right) \frac{T_2}{T_1}$$

Using that $T_2 = \frac{\Delta Q}{c_v N} - T_1$ and plugging in the given values leads finally to:

$$\hat{\Delta}\Omega = exp\left(\frac{2c_v}{k_B}\right)\left(\frac{78}{300c_v} - 1\right) = \frac{\Omega_2}{\Omega_1}$$

1.2 Task 2 - Thermodynamic Variables in the Canonical Ensemble

Given the Helmholtz free energy F we were asked to derive expressions for U,p,S. Using the Maxwell relations it follows:

$$S = \frac{-\partial F}{\partial T} = \ln(Q(N, V, T))k_B + \frac{k_B T}{Q(N, V, T)} \frac{\partial Q(N, V, T)}{\partial T}$$
$$p = \frac{-\partial F}{\partial V} = \frac{1}{\beta Q(N, V, T)} \frac{\partial Q(N, V, T)}{\partial V}$$

The derivation of the equation for U is as follows:

It is known from statistical mechanics that $Q(N,V,T) = \frac{1}{h^{3N}N!} \int d\Gamma exp(-\beta H)$. The thermodynamic properties of the system can be obtained by $Q(N,V,T) = exp(-\beta F(N,V,T))$. To justify this identification we show fist that F is extensive and then that F = U - TS, where $U = \langle H \rangle$.

That F is extensive can be derived directly from $Q(N,V,T) = \frac{1}{h^{3N}N!} \int d\Gamma exp(-\beta H)$. When the system is split up into two systems with a very weak corelation, then is Q a product of two factors. To show the second equivalence we rewrite F = U - TS to $U = \langle H \rangle = A - T \left(\frac{\partial A}{\partial T} \right)$. To show this we divide the two expressions of Q that we stated before and therefore get:

$$\frac{1}{h^{3N}N!} \int d\Gamma exp(\beta(F-H)) = 1$$

Deriving both sides by β leads to:

$$\frac{1}{h^{3N}N!} \int d\Gamma exp(\beta(F-H))(F-H+\beta\left(\frac{\partial F}{\partial \beta}\right)) = 0$$

This is equivalent to $F - U - T\left(\frac{\partial F}{\partial T}\right)$, wherefore it is: U = F + TS.

1.3 Task 3 - Ideal Gas

Given the partition function Q(N, V, T) we had to derive expressions for the free Helmholtz energy F(N,V,T) and the pressure p(N,V,T).

As we know from task 2 it is $F = \frac{-ln(Q(N,V,T))}{\beta}$. Plugging in the Q(N,V,T) given on the sheet and using the hint leads to:

$$F = -\frac{\ln(Q(N, V, T))}{\beta}$$

$$= -k_B T \ln\left(\frac{V^N}{\lambda^{3N} N!}\right)$$

$$= -k_B T \left(N \ln(V) - N \ln(\lambda^3) - \ln(N!)\right)$$

$$= -k_B T N \left(\ln(V) - \ln(\lambda^3) - \ln(N) + 1\right)$$

$$= k_B T N \left(\ln\left(\frac{N\lambda^3}{V}\right) - 1\right)$$
(2)

Applying the Maxwell relation $\frac{-\partial F}{\partial V}=p$ on equation (1) it follows:

$$p = \frac{-\partial F}{\partial V}$$

$$= \frac{-\partial k_B T N \left(ln \left(\frac{N \lambda^3}{V} \right) - 1 \right)}{\partial V}$$

$$= \frac{k_B T N}{V}$$
(3)

As it is obvious equation(3) leads to the ideal gas law : $pV = Nk_BT$.

2 Molecular Dynamics: Lennard-Jones Fluid

2.1 Implementation of the Lennard Jones Potential

The Lennard Jones Potential is $V_{LJ}(r) = 4\epsilon \left(\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^6 \right)$