Starting Data Science with Kaggle

Learning, Community, Career, Fun

Gerrit Gruben September 9, 2016

Kaggle Berlin

Table of contents

- 1. Our Meetup group
- 2. Navigating through Data Science
- 3. A project template
- 4. Demo

Our Meetup group

Meetup group

First and foremost this group is about kaggling.

Secondarily, topics relating to kaggle and its contests are of interest, this includes (among others) *machine learning, applied mathematics, data analytics tooling,* and *career in data science.*

History

- · Originally by Ezzeri Esa and more of a tutorial group
- Sister group: Advanced Machine Learning by MARCEL ACKERMANN, see https://www.meetup.com/de-DE/ Advanced-Machine-Learning-Study-Group
- Since last year GERRIT organizes the group. More hackathon oriented.

Insights

Lessons from one year of community building:

- · Do not make a community dependent on a single interest group
- · Keep audience updated, bias for communication
- · Others are more helpful than expected
- · Be receptive to community contributions
- · RSVP discipline is low, probably hardest problem to deal with

Ethics

- · Politeness is inexpensive and should be used in abundance
- · Listen and understand other's opinions, discuss about evidence
- · Proactively work for a proper use of statistics.

Looking for you

Organizer

- · Open and friendly attitude
- · Either long-term kaggler or academic
- Willing to thoroughly check handed-in talks

Presenter

Give a talk about own kaggle experience or a data science topic in general.

Do it!

Navigating through Data Science

Data Scientist

Data scientist somewhat vague, mostly one of:

- · A classical data or BI analyst
- *CEO whisperer* with super powers in computing sciences, mathematics, and business knowledge.
- Concession to a top performer among software engineers (or getting some of them at all)
- ? Knows machine learning, big data, or some other black magic

Data Scientist

Data scientist somewhat vague, mostly one of:

- · A classical data or BI analyst
- *CEO whisperer* with super powers in computing sciences, mathematics, and business knowledge.
- Concession to a top performer among software engineers (or getting some of them at all)
- ? Knows machine learning, big data, or some other black magic rather: data engineer, will converge to canonical CS knowledge

Bottom up (or Forward Selection?)

machine learning, statistics, programming \subseteq hardskills(DS) presentation, communication \subseteq softskills(DS)

Eierlegende Wollmilchsau

For non-native Germans: What is a eierlegende Wollmilchsau?

Eierlegende Wollmilchsau

For non-native Germans: What is a eierlegende Wollmilchsau?

Eierlegende Wollmilchsau

For non-native Germans: What is a eierlegende Wollmilchsau?

Fred, Data Scientist

Dichotomy

Why Kaggle?

$$S = L + MV \times RV$$

Success, Luck, Market Value, Real Value

Why Kaggle?

$$S = L + MV \times RV$$

Success, Luck, Market Value, Real Value

Btw. this is dating advice from Quora

Why Kaggle? - Altruism

Why Kaggle? - Altruism

Honorable mention: DSSG http://dssg-berlin.org/

Why Kaggle? - Domain variety

"The best thing about being a statistician is that you get to play in everyone's backyard." — JOHN TURKEY

Why Kaggle? - Visibility

Why Kaggle? - Learn from the best

Exploring Survival on the Titanic

by Megan Risdal · last run 5 months ago · R notebook · 40759 vie... using data from Titanic: Machine Learning from Disaster

Report Code Output (2) Comments (83) Log Versions (5) Forks (232) **Fork Script**

Exploring the Titanic Dataset

Megan L. Risdal

6 March 2016

- 1 Introduction
 - o 1.1 Load and check data
- 2 Feature Engineering
 - o 2.1 What's in a name?
 - o 2.2 Do families sink or swim together?
 - 2.3 Treat a few more variables ...
- · 3 Missingness
 - o 3.1 Sensible value imputation
 - o 3.2 Predictive imputation
 - o 3.3 Feature Engineering: Round 2
- · 4 Prediction o 4.1 Split into training & test sets
- - o 4.2 Building the model
 - o 4.3 Variable importance o 4.4 Prediction!
- 5 Conclusion

Summary

Kaggling will benefit you in these terms:

- Teaches applied machine learning techniques not found in textbook
- · Create a Data Science project portfolio
- · Get to learn several domains
- · Help mankind
- Learn best practices from experts working on the same problem

Summary

Kaggling in this group will benefit you in these terms:

- Teaches applied machine learning techniques not found in textbook
- · Create a Data Science project portfolio
- · Get to learn several domains
- · Help mankind
- · Learn best practices from experts working on the same problem
- Improve your presentation skills
- · Make friends and team mates

vs. competitive programming

Kaggling is sometimes put in the same basket as competitive programming, though:

- · Diminishing returns much earlier in competitive programming
- · Kaggle projects are more open
- · Crowd structurally different
- · Knowledge gained by kaggling is more applicable to real life

A project template

Goal

Provide a technical environment to do Data Science in:

- Isolation: Project environment should not interact with other parts of the system if not necessary
- Reproducibility: Results should be reproducible by others or on other devices
- Structure: Provide a easy to understand structure to reduce context switch costs
- · Low barrier: Avoid throwing documentation at people
- No boundaries: Make the template itself extensible and use open, freely available tech (Open Source)

Goal

Provide a technical environment to do Data Science in:

- Isolation: Project environment should not interact with other parts of the system if not necessary
- Reproducibility: Results should be reproducible by others or on other devices
- Structure: Provide a easy to understand structure to reduce context switch costs
- · Low barrier: Avoid throwing documentation at people
- No boundaries: Make the template itself extensible and use open, freely available tech (Open Source)

complexity \rightarrow min!

Goal

Provide a technical environment to do Data Science in:

- Isolation: Project environment should not interact with other parts of the system if not necessary
- Reproducibility: Results should be reproducible by others or on other devices
- Structure: Provide a easy to understand structure to reduce context switch costs
- · Low barrier: Avoid throwing documentation at people
- No boundaries: Make the template itself extensible and use open, freely available tech (Open Source)

 $complexity \rightarrow min!$

We use Python...

Existing work

- Kaggle scripts uses Docker images for reproducibility http://blog.kaggle.com/2016/02/05/ how-to-get-started-with-data-science-in-containers
- We tried to use a Vagrant based solution in teaching http://www.cs.uni-potsdam.de/~ggruben/vm.html
- Recent SciPy 2016 talk contains a well-structured project structure and some neat Jupyter tricks http://isaacslavitt.com/2016/07/20/ data-science-is-software-talk (next slides are borrowed from it)

What people do

By artifacts

Parts are automatizable

Final

Getting started

Setting up a new project from the template

```
$ pip install cookiecutter
```

Overview

Can synchronize with S3 (want to add Dropbox later)

Environment

Define environment, which packages and libraries are used? Brings every system on the same page

Makefile

Defines recipes on how artifacts (data files, reports, visualizations). Can also be used for synchronization, code quality, testing.

Examples: 'make data', 'make data/interim/nn_autoencoder_feats.csv'

Source

SRC is made a Python module (accessible from notebooks). Do versioning with Git.

Models

Often benefical to explicitly store models for inspection and later reuse, especially if they take long to train.

Documentation

Submissions

Contains the final submissions in the format needed for the contest.

.env

Optionally you can add

That reads *environment variables* that should **not** be synchronized in public or dependent on your system configuration (AWS authentification keys, Theano flags i.e. GPU)

Demo

Environments

Environment with Anaconda (alternative: virtualenv)

```
$ conda create -n env_name python=3
$ source activate env_name
(env_name) $ ... start to use python like normally ...
# in project path
(env_name) $ pip install -r requirements.txt
# save current dependencies
(env_name) $ pip freeze | requirements.txt
$ conda env list
$ source deactivate
```

Docker 101

Mostly useful if you are not on Linux.

```
$ docker build -t yourproject/tagname .
# wait a while...
# this is based on Kaggle's image (big)
# compatible with Kaggle scripts
# start interactive shell
docker run -i -v $PWD:/tmp/working \
  -w=/tmp/working -t yourproject/tagname \
  /bin/bash
# on windows $PWD -> %cd%
```

Makefile: data

```
data objs = train simple feats.csv test simple feats.csv
requirements:
 pip install -q -r requirements.txt
data: requirements $(data objs)
 echo $(data objs)
train simple feats.csv: requirements data/raw/train.csv
 python src/data/make_dataset.py data/raw/train.csv \
  data/interim/train simple feats.csv
test simple feats.csv: requirements data/raw/test.csv
 python src/data/make dataset.py data/raw/test.csv \
  data/interim/test simple feats.csv
```