Only Two More Weeks!!

Unit 10 – Contingency Tables
Almost-Made-It-Through Professor Colton

Unit 10 - Outline

<u>Unit 10 – Contingency Tables</u>

Intro

Chi Square Test for Dependence

- Observed and Expected Matrices
- Hypotheses Statements
- Test Statistic: Chi-Square Test and p-value
- Examples

Review

Contingency Tables

- Contingency Tables helped us organize data on two variables!
- We used them to find probabilities such as: P(Statistics), P(Art and Poor Attendance), P(Good Attendance | Chemistry), etc.

	Statistics	Art	Chemistry	Total
Perfect	100	40	80	220
Good	20	50	70	140
Poor	30	15	30	75
Total	150	105	180	435

- We also learned about relationship between EVENTS, such as Perfect Attendance and Statistics.
 - Are these events mutually exclusive?? NO
 - How about independent??

Independence of EVENTS

- Two EVENTS were independent if the prior EVENT had NO effect on the subsequent EVENT.
- If this is true, the first EVENT does NOT change the probability of the second EVENT!
 - We could write this in terms of conditional probability:

$$P(B|A) = P(B)$$
 ==> $P(A \text{ and } B) = P(A) \times P(B|A)$, simplify now!
= $P(A) \times P(B)$

LCQ: Multiplication Rule for Independent Events

Setup: If I have a jar of colored marbles and want to select two of them with replacement.

1) Are these events independent or dependent?
 Independent → so now we can use the simpler multiplication rule!
 2) What is the probability both are blue?

New

Independence of VARIABLES

• Now we are going to study the **independence** of two entire <u>VARIABLES</u>, not just individual events

	Statistics	Art	Chemistry	Total
Perfect	100	4	80	220
Good	20	50	70	140
Poor	30	15	30	75
Total	150	105	180	435

Comparison

- Statistics OVERALL (globally) has P() = 150/435 ≈ 0.34
- Is this probability similar to Statistics JUST WITHIN (locally) Perfect Attendance???
- P(Statistics | Perfect) = 100/220 ≈ 0.45?? Is this close enough??
- For this example, our variables are Attendance and Major.
 - Are Attendance and Major related / associated??? Is there a dependence relationship here?? Or are they independent??
- To answer this, we need to actually look at the ALL of the relationships between events of each variable simultaneously (at the same time)!!
 - So that means analyzing: Perfect Attendance and Statistics, Perfect Attendance and Art,... Poor Attendance and Chemistry ALL AT THE SAME TIME!!
 - How to think about this → We are comparing the Global data (column / row totals) to the Local data (middle cells), are the patterns the same??
 - Sounds complex, but we actually have a nice Hypothesis Test that will do this!
- Answering the questions above could be useful and is a very common interest in practice!
 - Let's say the University was reviewing their attendance policy when all classes went virtual, should they have a department specific rule??
 - Or is a University-wide rule effective enough?

Chi-Square Test of Independence

Chi-Square Test of Independence

- The formal name of the test we will be doing is a **Chi-Square Test of Independence** (X^2 Test of Independence)
 - This test is based on the Chi-Square (X^2) distribution, hence the name
 - It is a right-skewed, continuous distribution that has a degrees of freedom parameter
- This test determines if two categorical variables are associated or not

Process

- We start by assuming two variables are unrelated. Here are some examples:
 - 1) Movie genre (variable 1) and Snacks (variable 2)
 - Our idea is that the type of movie someone goes to see and whether or not they purchased snacks is unrelated
 - If true, easier to estimate how many snacks will be sold on any given night because what showings are available wouldn't have an impact
 - 2) Dog breed (variable 1) and Brand of food (variable 2)
 - We think the breed of dog a family has and the dog food brand they buy are unrelated.
 - If true, a store wouldn't have to market small dog or big dog food
- Then we look at the contingency table of the collected data and evaluate our assumption by <u>comparing what actually happened</u> to <u>what should have happened</u> if they were indeed unrelated!!
- Said another way, the independence test checks to see if the actual data is "close enough" to the expected counts that would occur if the two variables are independent → Let's demonstrate!

 https://www.jmp.com/en_au/statistics-knowledge-portal/chi-square-test/chi-square-test-of-independence.html

 $https://www.jmp.com/en_ca/statistics-knowledge-portal/chi-square-test/chi-square-distance and the second control of the second con$

^{**} We aren't going to be checking any assumptions, we just need two categorical variables!

Hypotheses

Logic

- This is pretty much the SAME thing that we have been doing with Hypothesis Tests for Proportions and Means
- Except now we are studying the relationship between two variables (not parameters), specifically testing for **independence** between the <u>row and column</u> variables of a contingency table

Hypotheses

- Null Hypothesis → We start by assuming the <u>row and column variables</u> are **independent** (i.e. **NOT related**)
- Alternative Hypothesis → Then we are trying to show the opposite, that the <u>row are column variables</u> are **NOT independent**, or **dependent** (i.e. **related**)
- So in general:

H₀: The row and column variables are independent

H_A: The row and column variables are dependent

- But we NEED to add CONTEXT for our problem!
- Examples:
 - 1) H₀: Movie genre and Snacks are independent
 - H_A: Movie genre and Snacks or not are NOT independent (or dependent)
 - 2) H₀: Dog breed and Type of food are NOT related
 - H_A: Dog breed and Type of food ARE related

Test Statistic and P-value

Test Statistic

• The **Test Statistic** X^2_{stat} has the following formula:

$$\chi^2 = \sum \frac{(O-E)^2}{E}$$
 with $df = (r-1)(c-1)$ where:
 $O = Observed count$ $c = number of columns$
 $E = Expected count$

https://www.geogebra.org/m/smhy8cxz

- The <u>Observed count</u> is our sample data in the contingency table
- The <u>Expected count</u> is what <u>should have happened</u> if our two variables were indeed unrelated!! In other words, the counts under the Null Hypothesis!

P-Value

- Chi-Square Test for Independence is always RIGHT-tailed
- So the p-value is the probability of getting our Test Statistic or greater

Decisions

 We will make our decisions to Reject or Fail to Reject using the p-value method so that we don't have to find the Critical Value for the X² distribution

Calculator

- We are going to use the calculator to calculate everything! Phew!
- But we need to understand what is happening behind the scenes first!

- Lets go through how expected counts are calculated very slowly with the following example
- Here are our hypotheses:

H₀: Attendance and Major are unrelated

H_A: Attendance and Major are related

	Statistics	Art	Chemistry	Total
Perfect	100	40	80	220
Good	20	50	70	140
Poor	30	15	30	75
Total	150	105	180	435

Process

• We are going to use probabilities to calculate the expected counts, so lets first think about the marginal probabilities

	Statistics	Art	Chemistry	Total	
Perfect				220/435	P(Perfect) = 0.51
Periect				0.51	P(Periect) = 0.51
Good				140/435	P(Good) = 0.32
				0.32	1 (G00a) = 0.32
Poor				75/435	P(Poor) = 0.17
F 001				0.17	F(F001) = 0.17
Total	150/435	105/435	180/435	435/435	
Total	0.34	0.24	0.41	1	
	P(Statistics) = 0.34	P(Art) = 0.24	P(Chemistry) = 0.41		

- Now we need to fill in the probabilities in the middle (joint probabilities, example: P(Perfect AND Statistics)). Well under the Null hypothesis, Attendance and Major are unrelated
 - In probability, that means they are independent!!
 - How can we calculate the probability of independent events???? Just multiply the marginal probabilities of each!
 - P(Perfect and Statistics) = P(Perfect) x P(Stats)

- So lets do that for each of the middle cells!
- P(Perfect AND Statistics) = P(Perfect) x P(Statistics), ..., P(Poor AND Chemistry) = P(Poor) x P(Chemistry)

	Statistics	Art	Chemistry	Total		
Perfect	0.34 x 0.51	0.24 x 0.51	0.41 x 0.51	220/435	P(Perfect) = 0.51	
renect	0.17	0.12	0.21	0.51	r (reffect) = 0.51	
Good	0.34 x 0.32	0.24 x 0.32	0.41 x 0.32	140/435	P(Good) = 0.32	
Good	0.11	0.08	0.13	0.32	r (dood) = 0.32	
Poor	0.34 x 0.17	0.24 x 0.17	0.41 x 0.17	75/435	P(Poor) = 0.17	
FOOI	0.06	0.04	0.07	0.17	P(P001) = 0.17	
Total	150/435	105/435	180/435	435/435		
Total	0.34	0.24	0.41	1		
	P(Statistics) = 0.34	P(Art) = 0.24	P(Chemistry) = 0.41			

- Now to get the counts, what can we do????
- We have the PERCENT of students with Perfect Attendance and Statistics Major

P(Perfect and Stats) = 0.17

• Now I want the actual NUMBER of students in this group! Logically, it would make sense to just <u>multiply</u> this PROBABILITY by the <u>TOTAL number of students in the sample</u>. Correct!!

Expected Count of Perfect and Stats = $0.17 \times 435 = 73.95$

So lets do that!!

	Statistics	Art	Chemistry	Total	
Perfect	0.17 x 435	0.12 x 435	0.21 x 435	220	Observed row totals
refrect	73.95	52.2	91.35	220	
Good	0.11 x 435	0.08 x 435	0.13 x 435	140	
	47.85	34.8	56.55	140	
Poor	0.06 x 435	0.04 x 435	0.07 x 435	75	
Pool	26.1	17.4	30.45	/3	
Total	150	105	180	435	
Total	(130)	105	180	(455)	
	Observed column tot	als			

- We know have our table of **Expected Counts**
- These counts represent what we would expect to see if there truly is no relationship between Attendance and Major.
 - Restated: If their probabilities were independent, then we should have observed these new counts based on the original row and column totals
 - Ex) If there is not a relationship between Attendance and Major, we would expect 73.95 students to have Perfect attendance and be Statistics majors!
 - Now, our Global data matches the Local data, same proportions! → Our marginal probabilities are the same as our conditional probabilities!

• Ex) P(Statistics) = P(Statistics | Perfect)
$$150 = 3506 \approx 3406 = 73.95$$

	Statistics	Art	Chemistry	Total
Perfect	100	40	80	(220)
Good	20	50	70	140
Poor	30	15	30	75
Total	150	105	180	435

and P(Good) = P(Good | Chemistry) $\frac{140}{435} = 32\% \approx 31\% = \frac{56.55}{180}$ ** Note that the numbers,

So these co

• Another way to get the Expected counts is by using this formula:

$$Expected\ Count = \frac{(row\ total)(column\ total)}{n}$$

- This is the formula you will see in every resource. We just went the long way first to show what is actually happening
- If we look back at our calculations, we will see that we were implicitly doing this formula!

Demonstration

• For Perfect and Statistics, the we found the probability by multiplying the two marginal:

$$P(Perfect \ and \ Stats) = \frac{220}{435} \left(\frac{150}{435}\right) = 0.17$$

Then we multiplied this by the sample size to get the expected count!

Expected Count of Perfect and Stats =
$$\frac{220}{435} \left(\frac{150}{435} \right) \times 435 = 73.95$$

• If we simplify the fraction in the calculation above, we see that the following happens:

Expected Count of Perfect and Stats =
$$\frac{row\ total}{n} \left(\frac{column\ total}{n}\right) n = \frac{220}{435} \left(\frac{150}{435}\right) 435 = \frac{220(150)}{435} = \frac{(row\ total)(column\ total)}{n}$$

Which brings us to the formula presented at the top!

	Statistics	7416	Chemistry	, otal	
Perfect	0.34 x 0.51	0.24 x 0.51	0.41 x 0.51	220/435	P(Perfect) = 0.51
renect	0.17	0.12	0.21	0.51] r(reflect) = 0.51
Good	0.34 x 0.32	0.24 x 0.32	0.41 x 0.32	140/435	P(Good) = 0.32
Good	0.11	0.08	0.13	0.32	F(G000) = 0.32
Poor	0.34 x 0.17	0.24 x 0.17	0.41 x 0.17	75/435	P(Poor) = 0.17
POOI	0.06	0.04	0.07	0.17	P(P001) = 0.17
Total	150/435	105/435	180/435	435/435	
rotai	0.34	0.24	0.41	1	
	P(Statistics) = 0.34	P(Art) = 0.24	P(Chemistry) = 0.41		

	Statistics	Art	Chemistry	Total	
Perfect	0.17 x 435	0.12 x 435	0.21 x 435	220	
	73.95	52.2	91.35	220	

	Statistics	Art	Chemistry	Total
Perfect	220 x 150 / 435	220 x 105 / 435	220 x 180 / 435	220
Periect	75.86	53.10	91.03	220
Good	140 x 150 / 435	140 x 105 / 435	140 x 180 / 435	140
Good	48.28	33.79	57.93	140
Poor	75 x 150 / 435	75 x 105 / 435	75 x 180 / 435	75
POOI	25.86	18.10	31.03	73
Total	150	105	180	435

Comparison of Observed and Expected Counts

• Now that we have calculated **expected** counts, we can compare them to the **observed** counts

	Statistics	Art	Chemistry	Total
Perfect	100	40	80	220
Periect	(73.95)	(52.2)	(91.35)	220
Good	20	50	70	140
Good	(47.85)	(34.8)	(56.55)	140
Poor	30	15	30	75
Poor	(26.1)	(17.4)	(30.45)	73
Total	150	105	180	435

Observed count (Expected count)

- If there is no relationship between Attendance and Major, the Observed (actual) counts and the Expected counts will be similar! If there is a relationship, the Observed and Expected will be different.
- Finally, to calculate the **Test Statistic** X^2_{stat} we would use this formula to the right:
 - And eventually p-value and decide to reject or fail to reject and interpret!
 - For this test, only reject for large values of the Test Statistic (which have small p-values)!
 - This is because of the right-skew of the distribution
- Now let's see how to do this in the calc (after another example)!

$$\chi^2 = \sum \frac{(O-E)^2}{E}$$
 with $df = (r-1)(c-1)$

where:

r = number of rows

O = Observed count

where:

c = number of columns

E =Expected count

Comparison of Observed and Expected Counts

Here's another example and visualization of this comparison of the Observed and Expected counts with the Movie and Snack context

Table 2: Contingency table for movie snacks data with row and column totals

Type of Movie	Snacks	No Snacks	Row totals
Action	50	75	125
Comedy	125	175	300
Family	90	30	120
Horror	45	10	55
Column totals	310	290	GRAND TOTAL = 600

Table 3: Contingency table for movie snacks data showing actual count vs. expected count

Type of Movie	Snacks	No Snacks	Row totals
Action	50 65	75 60	125
Comedy	125 155	175 145	300
Family	90 62	30 58	120
Horror	45 28	10 27	55
Column totals	310	290	GRAND TOTAL = 600

Observed count **Expected count**

Here is an alternate dataset

- The row and column totals are the same
- But the Yes/No splits for each movie genre are different (zoom in ⊕):

- The expected counts are the SAME because they are based on the row and column totals
- But the observed have changed

source

Test Statistic $X^2_{\text{stat}} = 0.903 < 7.815 = \text{Critical Value} \rightarrow \text{Fail to Reject}$

Using Calc $-X^2$ Test of Independence

<u>Setup</u>

The University was reviewing their attendance policy when all classes went virtual. Is there enough evidence to conclude there is a significant relationship between Attendance and Major? Use $\alpha = 0.1$

GOAL: Conduct a Hypothesis Test!

	Statistics	Art	Chemistry	Total
Perfect	100	40	80	220
Good	20	50	70	140
Poor	30	15	30	75
Total	150	105	180	435

- 1. Enter contingency table data
 - a) Edit Matrix
 - b) Enter correct dimensions (excluding row and column totals)
 - c) Enter data
- 2. X^2 –Test
 - a) Observed = matrix of contingency table data
 - b) Expected = Output of expected counts \rightarrow Our calculator computes the Expected Counts for us!

 Calculate or Draw So this is where is stores the calculated Expected Counts

Hypotheses

H₀: Attendance and Major are unrelated

H_A: Attendance and Major are related

Using Calc $-X^2$ Test of Independence

Setup

The University was reviewing their attendance policy when all classes went virtual. Is there enough evidence to conclude there is a significant relationship between Attendance and Major? Use $\alpha = 0.1$

GOAL: Conduct a Hypothesis Test!

	Statistics	Art	Chemistry	Total
Perfect	100	40	80	220
Good	20	50	70	140
Poor	30	15	30	75
Total	150	105	180	435

- 1. Enter contingency table data
 - a) Edit Matrix
 - b) Enter correct dimensions (excluding row and column totals)
 - c) Enter data
- 2. X^2 –Test
 - a) Observed = matrix of contingency table data
 - b) Expected = Output of expected counts → Our calculator computes the Expected Counts for us!

 Calculate or Draw So this is where is stores the calculated Expected Counts

Hypotheses

H₀: Attendance and Major are unrelated

H_A: Attendance and Major are related

Calculate Output

X² = Test Statistic

p = p-value

df = Degrees of Freedom

<u>Draw Output</u> Plot (and displays values) of p = p-value and $X^2 = X^2_{\text{stat}}$ on the standard X^2 curve with df = (r-1)(c-1)

** Calculator notation for result here: 3.7 E-8 = 3.7 x 10^{-8} = 3.7/100,000,000 (super small!) \rightarrow can just say it's ≈ 0

Comparing our Expected Counts to the Calculator's

	Statistics	Art	Chemistry
Perfect	0.17 x 435	0.12 x 435	0.21 x 435
Periect	73.95	52.2	91.35
Good	0.11 x 435	0.08 x 435	0.13 x 435
Good	47.85	34.8	56.55
Poor	0.06 x 435	0.04 x 435	0.07 x 435
	26.1	17.4	30.45

We did pretty good! Just roundoff error when we did it by hand (I rounded all the probabilities to 2 decimals)

LCQ - Interpretations

Problem: Write the conclusions and interpretations for our example.

Setup

The University was reviewing their attendance policy when all classes went virtual. Is there enough evidence t conclude there is a significant relationship between Attendance and Major? Use $\alpha = 0.1$

Solution:

LCQ - Interpretations

Problem: Write the conclusions and interpretations for our example.

<u>Setup</u>

The University was reviewing their attendance policy when all classes went virtual. Is there enough evidence t conclude there is a significant relationship between Attendance and Major? Use $\alpha = 0.1$

Solution:

Hypotheses

Need these:

H₀: Attendance and Major are unrelated

H_A: Attendance and Major are related

Conclusion

Because the p-value \approx zero is less than α = 0.1, we reject the null hypothesis!

<u>Interpretation</u>

There IS enough evidence to conclude the alternative \rightarrow NOT full credit, CONTEXT!!! There IS enough evidence to conclude that Attendance and Major are related!

It's important to note that we CAN NOT conclude that the Attendance CAUSES a MAJOR (or vice versa).

- The independence test tells us ONLY <u>whether there is a relationship or not</u>
- Tt does NOT tell us that <u>one variable causes the other</u>

LCQ – Whole Test

Problem:

The table below gives test results for drug use by 100 college students along with information about whether or not the student is actually a drug user. Conduct a hypothesis test to determine if the drug test result is dependent on whether the student actually uses drugs at the 5% level of significance.

	Positive Test	Negative Test
Drug User	26	9
Not a drug user	7	58

Solution:

LCQ – Whole Test

Problem:

The table below gives test results for drug use by 100 college students along with information about whether or not the student is actually a drug user. Conduct a hypothesis test to determine if the drug test result is dependent on whether the student actually uses drugs at the 5% level of significance.

	Positive Test	Negative Test
Drug User	26	9
Not a drug user	7	58

Solution: ** You should know all the steps required when conducting a full Hypothesis Test problem

Hypotheses

 H_0 : Positive test and drug use are unrelated \rightarrow NOT CORRECT! Because positive test result is just a single EVENT, we are talking about the entire VARIABLES

H₀: Test result and drug use are unrelated

H_A: Test result and drug use are related

P-Value (and Test Statistic)

Entered contingency table into matrix [A]

P-value = X^2 -Test(Observed = [A], Expected = [B]) ≈ 0 Test Statistic X^2 = 41.511, df = 1

Conclusion and Interpretation

Since our p-value ≈ 0 is less than alpha = 0.05, we reject the null hypothesis! We have sufficient evidence to conclude that drug use and test result are related

** Even though the menu options won't ever change for this test, we still have to show our work by writing it out! This includes saying where we put the data

For demonstration purposes

- Let's say p-value = 0.10, what re the conclusion and interpretation now??
- Since our p-value 0.1 is greater than significance level = 0.05, we fail to reject the null hypothesis! There is NOT enough evidence to that test result and drug use are related