http://groups.google.com/group/master-rsd?hl=fr

Master I - RSD - MEPS - 2009-2010 Corrigé Interro

Exercice 1: Voir TD (noté sur 5)

Exercice 2: (noté sur 10)

 $C = \{1, 2, 3, 4, 5\}$

 $C_1=\{1,2\}, C_2=\{6,7\}, C_3=\{3,4,5\}$ sont les classes de communications

$$C = C_1 \cup C_2 \cup C_3$$
 et $C_1 \cap C_1 = \phi$

La classe C_1 est transitoire. Si on quitte C_1 on n'y revient pas.

La classe C2 et C3 sont absorbantes (récurrentes positives).

Périodicité : $d(1)=d(2) = d(6)=d(7) = pgcd\{2,4,...\} = 2$;

$$d(3)=pgcd{3,5,7,...}=1;$$
 $d(4)=d(5)=pgcd{2,3,....}=1;$

La classe C_2 est périodique, finie, récurrente. Si elle admet une distribution stationnaire Π_1 =(0,0,0,0,0,a,1-a), et vérifie : Π_1 = Π_1 P ;avec P matrice des probabilités de transition de la chaîne .On a alors Π_1 =(0,0,0,0,0,0,0,5,0.5)

La classe C_3 est apériodique, finie, récurrente positive, donc ergodique. Elle admet une unique distribution stationnaire Π_2 =(0,0, α , β ,1- α - β ,0,0), et vérifie : Π_2 = Π_2 P; avec P matrice des probabilités de transition de la chaîne . On a alors Π_2 = (0,0,0.2,0.4,0.4,0,0).

Ainsi la chaîne de Markov admet une infinité de distributions stationnaires qui sont toutes les combinaisons convexes possibles de Π_1 et Π_2 , c'est-à-dire $\Pi=x\Pi 1+(1-x)\Pi 2$, $x\in [0,1]$

Lim $p_{64} = 0$ car les états 2 et 4 sont dans 2 classes disjointes, absorbantes (on ne peut pas sortir vers une autre classe)

Lim $p_{52} = 0$ car les états 2 et 5 sont dans 2 classes disjointes, absorbantes (on ne peut pas sortir vers une autre classe)