Lecture 29: Introducing the EM algorithm

Ciaran Evans

Plan for next week

- ► Monday: continue EM algorithm
- Wednesday and Friday: project work days
- Extra office hours on Tuesday, Wednesday, and Thursday

Motivation: penguins data

Data on 276 penguins (Adelie or Gentoo) on three different islands (Torgersen, Biscoe, Dream) near Antartica. Variables include

- species
- island
- characteristics like bill length, flipper length, etc.

Motivation: penguins data

Question: What do you notice about the distribution of flipper length? Why might this be the case?

Motivation: penguins data

Adelie

Gentoo

15
10
10
180
200
220
180
200
220
180
200
220

Question: How could I model the distribution of flipper length in each group? What parameters would I estimate?

Flipper length (mm)

Motivation: penguins data

Writing down a model

Time between Old Faithful geyser eruptions

Question: What do you notice about the distribution of waiting times? Why might this be the case?

Time between Old Faithful geyser eruptions

Question: It seems like there are two groups here, but we don't know what they are. What should we do to estimate both the groups and their distributions?

Time between Old Faithful geyser eruptions

Model:

Gaussian mixture model

- ightharpoonup Observe data $X_1, ..., X_n$
- Assume each observation i comes from one of k groups. Let $Z_i \in \{1, ..., k\}$ denote the group assignment
 - ► The group *Z* is an unobserved (**latent**) variable

Model:

Estimating model parameters: EM algorithm

The **EM** algorithm allows us to estimate both the unknown group assignments, and the parameters for each group's distribution (we will discuss the details later). In R:

```
library(mixtools)
normalmixEM(geyser$waiting, lambda = c(0.5, 0.5), k=2)
```

- normalmixEM: function for estimating parameters in a mixture of normal distributions
- ▶ lambda: initial guess at the proportion of data in each group
- k: number of groups

Estimating model parameters: EM algorithm

```
library(mixtools)
em_res <- normalmixEM(geyser$waiting, lambda = c(0.5, 0.5)</pre>
                       k=2)
## number of iterations= 28
em res$lambda
## [1] 0.3075953 0.6924047
em res$mu
## [1] 54.20271 80.36036
em_res$sigma
## [1] 4.952044 7.507597
```

Fitted parameters

- ► Estimated proportion of data in each group: 0.308, 0.692
- Estimated group means: $\hat{\mu}_1 = 54.203$, $\hat{\mu}_2 = 80.360$
- ► Estimated group sd: $\hat{\sigma}_1 = 4.951$, $\hat{\sigma}_2 = 7.508$

Your turn

Simulate data from a Gaussian mixture and explore parameter estimation:

https://sta379-s25.github.io/practice_questions/pq_29.html

- Start in class
- Welcome to work with a neighbor
- Solutions will be posted later on the course website