RELATÓRIO EMULAÇÃO E SIMULAÇÃO DE REDES DE TELECOMUNICAÇÕES

FASE 1 - RELATÓRIO DE ESPECIFICAÇÃO

JOÃO PEDRO DA SILVA FERREIRA RUI FILIPE RIBEIRO FREITAS JÚLIO ISMAEL BARROSO OLIVEIRA TIAGO JOÃO PEREIRA FERREIRA

Docentes -

Maria João Mesquita Rodrigues Cunha Nicolau Pinto António Luís Duarte Costa José Augusto Afonso Paulo Jorge Nicolau Araújo

Escola de Engenharia Mestrado em Telecomunicações e Informática

INDÍCE

1	1 INTRODUÇÃO	4		
2	2 ESPECIFICAÇÃO DO PROJETO		5	
	2.1 ARQUITETURA DO SISTEMA		5	
	2.2 IDENTIFICAÇÃO DAS TECNOLOGIAS E RECURSOS		8	
	2.3 DISCUSSÃO SOBRE AS COMPETÊNCIAS NECESSÁRIAS		9	
	2.4 PLANEAMENTO TEMPORAL		10	

Lista de Figuras

1	Diagrama da arquitetura	5
2	Diagrama de sequência de conexão	6
3	Diagrama de sequência de desconexão	6
4	Topologia de teste.	7
5	Planeamento temporal tabela.	10

1 INTRODUÇÃO

No âmbito da Unidade Curricular de Emulação e Simulação de Redes de Telecomunicações foi-nos proposto o desenvolvimento de uma rede de *overlay* aplicacional que nos permita minimizar o atraso fim-a-fim entre os nós que a compõem. Inicialmente será realizada a topologia sem a rede de *overlay* de modo a podermos retirar valores do atraso e assim comparar com os valores quando é utilizada a rede de *overlay*.

O desenvolvimento deste projeto está dividido em 3 fases principais. A primeira que passa pela elaboração de um relatório inicial com a especificação e planeamento do trabalho, a segunda com uma demonstração intermédia do trabalho realizado até à fase 2(inclusive) e uma terceira com uma demonstração final assim como a entrega de um relatório final.

De modo a sermos capazes de cumprir com os objetivos deste projeto semestral devemos pôr em prática conhecimentos adquiridos noutras unidades curriculares, nomeadamente Redes de Computadores, Laboratórios de Telecomunicações e Informática, Sistemas Operativos, Sistemas Distribuídos, entre outras.

2 ESPECIFICAÇÃO DO PROJETO

2.1 ARQUITETURA DO SISTEMA

Relativamente à arquitetura do sistema esta passará por 3 fases cruciais na sua implementação. Primeiramente pela realização de uma topologia em ambiente CORE de modo a simular uma rede física com o encaminhamento entre os routers a funcionar eficientemente. Após isso passaremos para a implementação de uma rede *overlay* que terá como objetivo principal a elaboração de um protocolo de comunicação entre os vários nós do sistema assim como uma partilha eficiente de recursos entre estes. Para a execuçao desta aplicação iremos utilizar a linguagem Python que apesar de não estarmos muito familiarizados achamos ser a mais apropriada. De modo a podermos testar a eficiência da rede *overlay* iremos realizar uma aplicação com o intuito de testar e controlar o atraso fim-a-fim com e sem o uso da rede *overlay*. Relativamente à aplicação o objetivo passará pela realização de um jogo interativo com múltiplos jogadores.

Decidimos realizar um diagrama de modo a explicar sucintamente como tencionamos realizar a arquitetura do sistema. Quanto ao servidor iremos optar por um servidor central que realizará conexões via TCP com os *peers* em que os *peers* comunicam entre si através do protocolo UDP.

Figura 1: Diagrama da arquitetura.

2.1.1 Arquitetura de software

A arquitetura do sistema é composta por um conjunto de peers e por um servidor central como já foi referido na secção anterior. De modo a implementar a arquitetura proposta iremos desenvolver em linguagem Python um programa para o funcionamento dos *peers* assim como um programa para o funcionamento do sistema central. Relativamente à comunicação entre os vários peers e o servidor iremos elaborar protocolos de comunicação para estes conseguirem comunicar eficientemente uns com os outros.

Quanto à arquitetura de software decidimos realizar um diagrama de sequência de modo a demonstrar de uma forma visual o que pretendemos implementar neste projeto.

Figura 2: Diagrama de sequência de conexão.

Figura 3: Diagrama de sequência de desconexão.

2.1.2 Topologia de teste

Na figura 4 é apresentado uma topologia de teste por nós realizada sendo que para a solução final teremos de obter um programa que consiga utilizar qualquer topologia. Nesta fase estamos a pensar utilizar o protocolo OSPF para o encaminhamento entre os routers. Isto não quer dizer que seja uma decisão definitiva pois ainda estamos a ponderar qual protocolo será o mais eficiente.

Figura 4: Topologia de teste.

2.2 IDENTIFICAÇÃO DAS TECNOLOGIAS E RECURSOS

Para a elaboração do projeto em si, foram precisas algumas tomadas de decisão. Na tabela em baixo estão representadas as nossas escolhas de tecnologias e recursos.

Logotipo	Descrição	Utilização
6	Overleaf	Elaboração do relatório
(GanttProject	Planeamento do projeto através de diagramas de Gantt
	Core	Emulação de redes físicas para o projeto
	Visual Paradigm	Implementação de fluxogramas para a elaboração e especificação do projeto
×	Visual Studio Code	Editor de código escolhido pelo grupo para elaboração do projeto. A linguagem escolhida foi Python
	GitHub	Sincronização do código de todo o projeto
	Discord	Meio de comunicação do grupo

2.3 DISCUSSÃO SOBRE AS COMPETÊNCIAS NECESSÁRIAS

Para este projeto, relativamente à parte teórica temos de dominar todos os conceitos relativos às camadas de rede que serão implementadas assim como os conceitos necessários para entender como funcina uma rede *overlay*.

Para a parte prática teremos de saber trabalhar com o emulador core, no qual já temos uma proximadade adquirida em anos anteriores e também dominar a linguagem python para fazer a aplicação, da qual ainda não temos contacto nenhum e que será um dos desafios do projeto.

Para a parte prática teremos de saber trabalhar com o software de emulação CORE no qual já temos alguma experiência adquirida em anos anteriores assim como dominar a linguagem Python para a realização das aplicações. O contacto a esta ultima competência é bastante escasso pelo que será um dos desafios do projeto, sabendo que o seu domínio será uma mais valia para o nosso futuro.

2.4 PLANEAMENTO TEMPORAL

De modo a que o grupo se mantenha focado no trabalho e com um compromisso para cumprir horários, resolvemos planear as tarefas a fazer ao longo do projeto. Na figura seguinte observamos em forma de tabela os vários assuntos a ser tratados no projeto com um período dado por nós para cumprir.

GANTT		
Name	Begin date	End date
□ • Especificação do Projeto	10/4/21	10/22/21
 Planeamento temporal 	10/4/21	10/4/21
 Definição da arquitetura 	10/4/21	10/4/21
 Elaboração do relatório inicial 	10/6/21	10/13/21
Entrega do relatório	10/22/21	10/22/21
□ • Criação de uma topologia inicial	10/25/21	10/28/21
 Desenvolvimento da topologia 	10/25/21	10/27/21
Realização de testes	10/28/21	10/28/21
$\ \Box \ $ $\ $ Conceção e desenvolvimento do protocolo de construção da rede de overlay	11/1/21	11/29/21
 Definir os requesitos do protocolo 	11/1/21	11/1/21
 Desenvolvimento do protocolo 	11/2/21	11/24/21
Demonstração Inicial	11/29/21	11/29/21
□ • Construção da aplicação que vai assentar sobre a rede de overlay	11/30/21	12/28/21
Definir o modelo do jogo	11/30/21	11/30/21
Desenvolvimento do jogo	12/1/21	12/28/21
□ ■ Estudo do desempenho da solução desenvolvida	1/4/22	1/4/22
 Realização de diferentes testes 	1/4/22	1/4/22
Demonstração final	1/18/22	1/18/22
 Entrega do relatório final 	1/19/22	1/19/22

Figura 5: Planeamento temporal tabela.