

MLE-Infrastructure: A Set of Lightweight Tools for Distributed Machine Learning Experimentation Robert Tjarko Lange

@ECNBERLIN

@SCIOI

'The Logic of Scientific Discovery' & Machine Learning

Rapid Hypothesis Testing Infrastructure: Biology Vision

Rapid Hypothesis Testing Infrastructure: In-Silico Version

MLE-Logging: A Lightweight Machine Learning Experiment Logger

```
. .
from mle logging import MLELogger
log = MLELogger(time_to_track=['num_updates', 'num_epochs'],
                what to track=['train loss', 'test loss'],
                experiment_dir="experiment_dir/",
                config fname="config 1.json",
                seed id=1,
                model type='torch',
                verbose=True)
# Training step: Get stats, model checkpoint, figure & extra dict
time_tic = {'num_updates': 10, 'num_epochs': 1}
stats_tic = {'train_loss': 0.1234, 'test_loss': 0.1235}
model = ...
fig = ...
# Log step: Store the data in sub-directories
log.update(time_tic, stats_tic, model, fig, some_dict, save=True)
```


MLE-Scheduler: A Job Manager

```
. .
from mle scheduler import MLEQueue
# Each job requests 5 CPU cores & 1 V100S GPU & loads CUDA 10.0
job_args = {
    "partition": "<SLURM_PARTITION>", # Partition to schedule jobs on
    "env name": "mle-toolbox", # Env to activate at job start-up
    "use conda venv": True, # Whether to use anaconda venv
    "num_logical_cores": 5, # Number of requested CPU cores per job
    "num gpus": 1, # Number of requested GPUs per job
    "gpu_type": "V100S", # GPU model requested for each job
    "modules_to_load": "nvidia/cuda/10.0" # Modules to load at start-up
# Launch/monitor queue of 4 jobs (2 configs x 2 seeds)
queue = MLEQueue(
    resource_to_run="slurm-cluster",
    job_filename="train.py",
    job_arguments=job_args,
    config_filenames=["config_1.yaml", "config_2.yaml"],
    experiment_dir="logs",
    random_seeds=[0, 1]
queue.run()
```


MLE-Hyperopt: A Lightweight Hyperparameter Optimization Tool

```
. .
from mle_hyperopt import RandomSearch
strategy = RandomSearch(real={"lrate": {"begin": 0.1,
                                        "end": 0.5.
                                        "prior": "log-uniform"}},
                        integer={"batch_size": {"begin": 32,
                                                "end": 128,
                                                "prior": "uniform"}},
                        categorical={"arch": ["mlp", "cnn"]})
# Ask for a set of candidate proposals
configs = strategy.ask(5)
# Evaluate the configurations
values = [train_network(**c) for c in configs]
strategy.tell(configs, values)
```


- GCS Sync Protocol: ~
- GCS Sync Results:
- DB Path: ~/local_mle_protocol.db Carpe Diem

14

GCP

0

Local

3

GCS Sync 14

Total 18

SGE

12

0

Slurm

Report

- Last Experiment Configuration -

USER	ALL	失	
dorothea	31	31	0
pml_07			
stefaah94	2	0	2
gastegger			
Sum 38 31		31	7
QUEUE	ALL	*	2
cognition	31	31	0
Sum	31	31	0
NODE	ALL	<u></u>	2
cognition0	4	4	0
cognition0			
cognition0	2	2 2 3 3	0
cognition0			
cognition0	2	2	0
cognition0			
cognition0	3		0
cognition0			
cognition0	4	4	0
cognition1			
cognition1	3	3	0
cognition1			

Sum 31

31 0

Experiment Protocol Summary										
#	D		Project	Purpose	Type	٠	G	CPU	GPU	Completed Jobs ✓
	18	12/08	secret	BS/Wdecay grid	search	SGE	1	2	0	4 / 4 100%
	17	12/08	secret	Lrate grid	search	SGE	1	2	0	4 / 4 100%
	16	12/08	secret	Grid Search	search	Local	1	2	0	0 / 4 0%
	15	12/08	secret	Grid Search	search	Local	1	2	0	0 / 4 0%
	14	12/08	secret	Grid lrate/bs	search	Local	1	2	0	4 / 4 100%
	13	12/08	secret	Grid search	search	SGE	1	2	0	4 / 4 100%
	12	12/08	secret	Lrate/BS search	search	SGE	1	2	0	4 / 4 100%
	11	12/08	secret	Run grid search	search	SGE	1	2	0	4 / 4 100%
	10	12/07	secret	Arch/Lrate/Wdec	search	SGE	1	4	1	48 /48 100%
	9	12/07	secret	Arch/Lrate/Wdec	search	SGE	1	4	1	0 /48 0%
	8	12/07	secret	Total exp plot	search	SGE	1	2	0	4 / 4 100%
	7	12/06	secret	Classic 500D	search	Slurm	5	1	0	180/180 100%
	6	12/06	secret	Classic 100D	search	Slurm	5	1	0	180/180 100%
	5	12/06	secret	Classic 50D	search	Slurm	5	1	0	180/180 100%
	4	12/05	secret	Test single	single	SGE	1	2	0	1 / 1 100%
	3	12/05	secret	Test configs	config	SGE	2	2	0	4 / 4 100%
	2	12/05	secret	Test configs	config	SGE	2	2	0	0 / 4 0%
	1	12/05	secret	Test monitor	search	SGE	1	2	0	4 / 4 100%

MLE-Monitor: A Lightweight Cluster/Cloud VM Monitoring Tool

```
. .
from mle_monitor import MLEProtocol, MLEResource, MLEDashboard
protocol = MLEProtocol("mle_protocol.db")
# Instantiate local machine/slurm/grid engine cluster resource
resource = MLEResource(
    resource_name="slurm-cluster",
    monitor_config={"partitions": ["<partition-1>",
                                   "<partition-2>"]},
# Get current state of resource utilization
util data = resource.monitor()
# Instantiate & run dashboard in a while loop
dashboard = MLEDashboard(protocol, resource)
dashboard.live()
```


X Boilerplate: From Prototype to Protocolled Tuning

MLE-Toolbox: An Infrastructure for Distributed ML Experiments

The MLE-Infrastructure Workflow Under the Hood

Extra Features & Experimental Functionality

A Science of DL $\frac{1}{12}$ \rightarrow \longrightarrow & DL for Science $\frac{1}{12}$ \leftarrow \longrightarrow

Stats/Ckpt Logging

Lab Automation

Parameter Search

Lab Management

Job Scheduling

Lab Protocol

Experiment Protocol

Lab Workspace

Exp. Orchestration

How To Get Started

roberttlange.github.io/mle-infrastructure/

YouTube Tutorial/Walkthrough

github.com/mle-infrastructure/mle-project

Getting Started Colabs/Notebooks

Thank you for your attention!

To Be Continued: MLE-Laboratory

