CSA - Computer systems architecture

1. Match the computer systems generations:

First generation			
	1945-1958		
Second generation			
	1958-1964		
Third generation			
	1964-1974		
Fourth generation			
	1974 - present		

2. Controls the operation of the computer and performs its data processing functions:

- Main memory
- o I/O
- CPU
- System interconnection

3. What provides storage internal to the CPU?

- Registers
- o Arithmetic and logic unit
- CPU interconnection
- o Control unit

4. ENIAC stands for:

- o Electronical Numerical Integrator And Computer
- Electronic Numerical Integration Analogue Computer
- Electronic Numerical Integrator And Computer
- Electronic Numerical Interaction And Calcuation

5. The figure reveals that both the control unit and the ALU contain storage, called

registers, match the definitions:

Contains a word to be stored in memory or sent to the I/O unit, or is used to receive a word from memory or from the I/O unit.

Memory buffer register (MBR)					
Specifies the address in memory of the word to be written from or read into the MBR.					
Memory address register (MAR)					
Contains the 8-bit opcode instruction being executed.					
Instruction register (IR)					
Employed to hold temporarily the right-hand instruction from a word in memory.					
Instruction buffer register (IBR)					
Contains the address of the next instruction pair to be fetched from memory.					
Program counter (PC)					
Employed to hold temporarily operands and results of ALU operations.					
Accumulator (AC) and multiplier quotient (MQ)					

- 6. How the central termination point for data channels, the CPU, and memory is called. It schedules access to the memory from the CPU and data channels, allowing these devices to act independently.
- Transistor
- Multiplexor
- o Integrated circuit
- o Resistors
- Capacitors

7. Expand the abbreviation VLSI

- Very-large-scale integration
- Very-little-scale integration
- Very-large-scale interactions
- Very-large-scale integrator
- 8. Which technique allows to processor simultaneously work on multiple instructions?
- Branch prediction
- Data flow analysis
- Pipelining
- Speculative execution
 - 9. Using this technique processor looks ahead in the instruction code fetched from memory and predicts which groups of instructions are likely to be processed next.
- Branch prediction
- Data flow analysis
- Pipelining
- Speculative execution
 - 10. Which technique helps to processor investigates which instructions are dependent on each other's results, or data, to create an optimized schedule of instructions
- Branch prediction
- Data flow analysis
- o Pipelining

- Speculative execution
- 11. This technique enables the processor to keep its execution engines as busy as possible by executing instructions that are likely to be needed.
- o Branch prediction
- o Data flow analysis
- o Pipelining
- Speculative execution
 - 12. The world's first general-purpose microprocessor. It was used in the first personal computer, the Altair.
- o **8070**
- 8080
- 0 8086
- o **8090**
- 13. Which of the following laws deals with the potential speedup of a program using multiple processors compared to a single processor.
- Moor's Law
- Little's Law
- Murphy's law
- Amdahl's law
 - 14. Match the letters with the right name of the Computer Components: Top-Level View:

- 15. The processor responds by suspending operation of the current program, branching off to a program to service that particular I/O device, known as ______, and resuming the original execution after the device is serviced. Which of the following will be the missing word:
- interrupt handler
- interrupt cycle
- disabled interrupt
- o interrupt request

16. What is the data line?

- provide a path for moving data among system modules
- o is used to designate the source or destination of the data on the data bus
- o is used to control the access to and the use of the data and address lines
- o indicates that a module needs to gain control of the bus

17. What is used to manage the access to and the use of the data and address lines?

- o address bus
- control lines
- o memory write
- o bus grant
- o address lines

18. Bus lines can be separated into two generic types:

- Dedicated
- Centralized
- Distributed
- Multiplexed
- Synchronous
- Asynchronous

19.PCI stands for:

- o Power Control Interface
- Peripheral component interconnect
- Property Casualty Insurers
- Programmable Communications Interface

20. The methods of accessing units of data:

- Seguential access
- Pseudo access
- Direct access
- Indirect access
- Single access
- Random access

Associative access

21. Match the letters on the picture with right name of the cash memory component's names:

Address buffer

Data buffer

22. What kind of memory type stores data using virtual addresses:

o Logical

F

- Virtual
- o Peripheral
- o Main
- Buffer

23. Amdahl's law:

- \circ Speed up= 1/(1 + f) * f/N
- \circ Speed up= 1/(1 f) * f/N
- Speed up= 1/(1 f) f/N
- Speed up= 1/(1 f) + f/N
- \circ Speed up= 1/(1 + f) + f/N

24. AMAT stands for:

- Average memory access time
- Automatic Message Accounting Transmitter
- Asymptotic Mean Acquisition Time

- o Absolute memory access time
 - 25._____ is a special purpose system that is used to perform one or few dedicated functions.
- Distributed systems
- Embedded systems
- o Ultra-Large-Scale Systems
- Centralized systems
- Ubiquitous systems

26. Microprocessor can't do all the functions of a computer system on its own

27. Match the statements with the right architecture

Von Neuma	nn
	One memory for data and program, with one bus for both
Von Neuma	nn
	CPU provides address to get data or instructions
Von Neuma	nn
	Data and instructions must have the same width
Harvard	
	Separate program and data memories and separate busses, can be accessed simultaneously
Harvard	
	Separated buses allow one instruction to execute while the next instruction is fetched
Harvard	
	Data and instructions mustn't have the same width

28. How many generations semiconductor memory has been through, since 1970? (please write number)

• 13

29. MIC stands for:

- o mini integrated core
- many integrated core
- o main integrated core
- o many interaction core
- o main interaction core

30. Clock Frequency of SDRAM is equal to:

- o 200
- o 600
- o 300
- 166
- 0 156
- 31. An instruction pipeline increases the performance of a processor by overlapping the processing of several different instructions. How many stages it is consist of:

0	3
•	5
0	7
0	4
3	2. There are three types of hazards that can happen while pipelined execution. Match the hazards with their definitions:
	Structural hazards different instructions in different stages (or the same stage) conflicting for the same resource
	Data hazards an instruction cannot continue because it needs a value that has not yet been generated by an rlier instruction
	Control hazards fetch cannot continue because it does not know the outcome of an earlier branch – special se of a data hazard
3	3 is the amount of time it takes the program to perform in seconds
0	Elapsed time
0	Overall time
0	Estimate time
•	Execution time
0	Process time
3	4. How many number systems are exist?
•	4
0	3
0	2
0	1
0	5
3	5. Basic memory elements hold only two states: Zero / One
•	True
0	False
3	6. Which of the following is the right result for this operation: 11001+110001=
0	10101010
0	10101110
•	
0	01001010
	01001010 01100110
0	
	01100110
	01100110 10001010
3	01100110 10001010 7. Convert decimal 230 to the binary:
3	01100110 10001010 7. Convert decimal 230 to the binary: 011000110

3	38. Convert binary 1100111 to decimal:				
•	103				
0	100				
0	95				
0	130				
0	110				
3	9. A single, self-contained transistor is called				
0	integrated circuit				
0	microchip				
•	discrete component				
0	single transistor				
0	small-scale integration				
4	0.GPU stands for:				
0	graphical processing unit				
0	graphical performing units				
•	graphics processing units				
0	graphics processing utility				
4	1. What measures the ability of a computer to complete a single task?				
0	Clock rate				
•	Speed metric				
0	Clock speed				
0	Clock cycle				
0	Execution speed				
4	2.Convert hexadecimal value: DAD to decimal:				
0	3500				
•	3501				
0	4501				
0	4500				
0	3503				
4	3.Convert decimal value: 877 to hexadecimal:				
•	36D				
0	38A				
0	36B				
0	38C				
0	36A				
4	4. How we call the thing that is connects major computer components (processor, memory, I/O)?				
0	System connector				

- System controllers
- System bus
- System interconnector

45. Match the three performance parameters with their definitions

Access time (latency)

This is the time it takes to perform a read or write operation, that is, the time from the instant that an address is presented to the memory to the instant that data have been stored or made available for use

Memory cycle time

This concept is primarily applied to random-access memory and consists of the access time plus any additional time required before a second access can commence.

Transfer rate

This is the measurement at which data can be transferred into or out of a memory unit

46. Which of the following is the result of the binary multiplication: 100010*100101=

- 0 11011101010
- 0 10111101010
- 0 10010001010
- o 10010101010
- 10011101010

47. Convert the binary value: 111011 to decimal

- 59
- o **58**
- 0 56
- 0 60
- 0 69

48. DRAM stands for:

- Direct random access memory
- Dynamic random accessible memory
- Dynamical random access memory
- Dynamic random access memory
- Discrete random access memory

49. How is called the permanent physical defect when the memory cell or cells affected cannot reliably store data but become stuck at 0 or 1 or switch erratically between 0 and 1?

- Soft error
- Hard error
- Hard failure
- Soft failure
- Epic failure

50. How is called a random, nondestructive event that alters the contents of one or more memory cells without damaging the memory?

- Soft error
- o Hard error
- o Hard failure
- Soft failure
- o Epic failure

51. Choose the feature(s) of first generation computer architecture

- Magnetic core memory
- Semiconductor memory
- o Machine code
- Vacuum tubes
- Assembly language

52. Choose the feature(s) of third generation computer architecture

- o Object-Oriented programming
- o Floating point arithmetic
- o Graphics
- Timesharing
- Use of cache memory

53. Choose the feature(s) of second generation computer architecture

- High level languages
- Transistors
- o 2 Kb memory, 10 KIPS
- o 2 Mb memory, 5 MIPS
- Different types of supported instructions

54. Choose the feature(s) of fourth generation computer architecture

- Object-Oriented programming
- Wide spread use of data communications
- Smallest in size
- Use of cache memory
- o Use of drum memory or magnetic core memory

55. How many generations of computer architecture are there?

- 4
- 0 3
- 0 2
- 0 1
- 0 5

0 1945-1964 • 1945-1958 57. Choose the years of the second generation computer architecture 0 1945-1958 0 1964-1974 o 1974-present 0 1945-1964 • 1958-1964 58. In 1976 Apple II computer model was released o True False 59.IBM System/360 Model 91 was introduced in 1966 • True o False 60. Choose two types of models for a computing machine Harvard architecture Von Neumann architecture Oxford architecture Stanford architecture 61. How many number systems are there? 0 1 0 2 0 3 62. How a binary digit is called? o byte o digit o kilobyte bit 63. Four bits make octal digit o True

1958-19641964-19741974-present

False

64. Three bits make hexadecimal digit

- o True
- False

65. Octal and hexadecimal numbers are hard on use and conversion

- o True
- False

66. Which digits are used in octal number system?

- 0-7
- o 0 and 1
- 0 0-9
- All digits

67. What does CPI stand for?

- Cycles Per Instruction
- o Clocks Per Instruction
- o Cycles Per Interface
- o Clocks Per Interface

68. What is time elapsed to program execution?

- o CPU Time
- User time + OS Time
- o I/O waiting & Other programs
- CPU Time + I/O waiting & Other programs

69. The execution time of a program clearly depends on the number of instructions

- o True
- False

70. The more clock rate of processor, the faster is processor

- o True
- False

71. CPU Time = I * CPI / R. Which parameter requires special profiling software?

- Cycles Per instruction
- Clock Rate
- Numbers of instructions
- o Execution time

72. Select the correct interpretation(s) of Amdahl's Law

- o is used to compare computers' performance
- o is used calculate the execution time of a program
- is used to find the maximum expected improvement
- it means that it is the algorithm that decides the speedup not the number of processors

73. Into how many parts a program (or algorithm) which can be parallelized can be split up?					
0 3					
0 4					
o 5					
• 2					
74. The time interval is called a clock rate					
o True					
• False					
75. What does LRU stand for?					
o Least Right Used					
o Last Recently User					
o Last Recently Used					
Least Recently Used					
76. Static RAM has a reduced power consumption, and a large storage capacity					
o True					
• False					
77. How a memory unit accessed by contents is called?					
Associative Memory					
Content Addressable Memory					
o Auxiliary Memory					
o Cache Memory					
o Virtual Memory					
78. Choose the access method(s)					
o Parallel Access					
o Indirect Access					
Random Access					
Direct Access					
Sequential Access					
79. ROM is the place in a computer where the operating system, application programs, and data in current use are kept.					
o True					
• False					
80. In which cache memory mapping technique any block from main memory can be placed anywhere in the cache?					

Associative Mapping

o Set Associative Mapping

Direct Mapping

81. In LRU replacement algorithm, the block that is in the cache longest is replaced

- o True
- False

82. In which cache memory mapping technique any memory block is mapped to exactly one block in the cache?

- Direct Mapping
- Set Associative Mapping
- Associative Mapping

83. In which cache memory mapping technique any memory block mapped to subset of cache locations?

- Set Associative Mapping
- Direct Mapping
- Associative Mapping

84. Which type of memory accessed via the input/output channels?

- Main Memory
- o Cache Memory
- Virtual Memory
- Auxiliary Memory
- Secondary Memory

85. Which type of memory stores frequently used data?

- Main Memory
- Virtual Memory
- Auxiliary Memory
- Secondary Memory
- Cache Memory

86. Choose the right formula for AMAT

- AMAT = Hit time + Miss rate + Miss penalty
- AMAT = Hit time * Miss rate + Miss penalty
- AMAT = Hit time * Miss rate * Miss penalty
- AMAT = Hit time + Miss rate * Miss penalty

87. Choose the definition for compulsory misses

- o Occurs if the cache cannot contain all the blocks needed during execution of a program
- Occurs if the block placement strategy is not fully associative
- The very first access to a block cannot be in the cache

88. Choose the definition for capacity misses

Occurs if the cache cannot contain all the blocks needed during execution of a program

- o The very first access to a block cannot be in the cache
- Occurs if the block placement strategy is not fully associative

89. Choose the definition for conflict misses

- Occurs if the block placement strategy is not fully associative
- o Occurs if the cache cannot contain all the blocks needed during execution of a program
- The very first access to a block cannot be in the cache

90. Select cache optimizations to reduce miss penalty

- Multilevel Caches
- Giving Reads Priority over Writes
- Way Prediction
- Higher associativity

91. Select cache optimizations to increase the Cache Bandwidth

- Nonblocking Caches
- Multibanked Caches
- Pipelined Cache Access
- Multilevel Caches
- Small and Simple First-Level Caches

92. In virtual memory, memory can be used efficiently because a section of program always loaded

- o True
- False

93. The advantage of virtual memory is that it takes less time to switch between applications because of additional memory

- o True
- False

94. Choose basic cache optimizations

- o Compiler-Controlled Prefetching
- Nonblocking Caches
- Small and Simple First-Level Caches
- Multilevel Caches
- Avoiding Address Translation during Cache Indexing

95. Choose advanced cache optimizations

- o Giving Reads Priority over Writes
- o Larger Cache Size
- Hardware Prefetching of Instructions and Data
- Merging Write Buffer

Critical Word First and Early Restart

96. Select cache optimizations to reduce hit time (both basic and advanced)

- Avoiding Address Translation during Cache Indexing
- Small and Simple First-Level Caches
- Way Prediction
- Compiler Optimizations
- o Compiler-Controlled Prefetching
- 97. Physical address used by program, and which OS must translate into virtual address
 - o True
 - False
- 98. Process of instruction execution is divided into two or more steps, called
 - o pipelining
 - pipe stages
 - pipe segments
 - o instruction execution
 - o pipeline hazard
- 99. Pipelining can only be implemented on hardware
 - o True
 - False
- 100. Choose hazard for the following definition: different instructions in different stages (or the same stage) conflicting for the same resource
 - Structural
 - o Data
 - o Control
- 101. Choose hazard for the following definition: an instruction cannot continue because it needs a value that has not yet been generated by an earlier instruction
 - Data
 - o Structural
 - o Control
- 102. Choose hazard for the following definition: fetch cannot continue because it does not know the outcome of an earlier branch special case of a data hazard
 - Control
 - o Structural
 - o Data
- 103. A technique used in advanced microprocessors where the microprocessor begins executing a first instruction before the second has been completed is called pipelining

- o True
- False

104. Stage in which the instruction is fetched from memory and placed in the instruction register called

- o Memory read/write
- o Instruction Decode
- o Execution
- Write Back
- Instruction Fetch

105. Which stage is responsible for storing and loading values to and from memory?

- o Instruction Fetch
- Memory read/write
- o Instruction Decode
- o Execution
- Write Back

106. How the stage in which the results of the operation are written to the destination register is called?

- o Instruction Fetch
- Write Back
- o Instruction Decode
- o Execution
- o Memory read/write

107. In execution stage identification of the operation is performed

- o True
- False

108. Choose data dependences

- o Read-After-Read
- Read-After-Write
- Write-After-Write
- Write-After-Read

109. Halting the flow of instructions until the required result is ready to be used is called

- o waiting
- o delaying
- o halting
- stalling

110. A common measure of performance for a processor is the rate at which instructions are executed, called

- o CPI
- Clock Rate
- o MFLOPS
- MIPS

111. Floating point performance is expressed as

- o CPI
- o FLOPS
- o MIPS
- MFLOPS

112. Choose the key characteristics of computer memory systems

- Location
- Unit of Transfer
- Access Method
- o Stalling
- o Hazards

113. Choose the key characteristics of computer memory systems

- Capacity
- Performance
- Organization
- o Instruction Fetch
- o Instruction Decode

114. Choose the key characteristics of computer memory systems

- Physical Type
- Physical Characteristics
- Access Method
- Unit of Transfer
- Performance

115. Word is the "natural" unit of organization of memory

- True
- o False

116. The "natural" unit of organization of memory is called block

- o True
- False

117. After implementing embedded systems, you can easily use them for another purposes

0	True
•	False
118.	Digital circuits are inflexible and slower, because they are technology dependent
0	True
•	False
119.	When using microprocessor based systems, it is enough to update the software
•	True
0	False
120. is	For random-access memory, the time it takes to perform a read or write operation called
0	Clock Rate
0	CPI
•	Access Time
•	Latency
121.	The rate at which data can be transferred into or out of a memory unit is called
0	Transfer time
•	Transfer Rate
0	MIPS
0	FLOPS
0	MFLOPS
122.	The particular block is currently being stored is called tag
•	True
0	False
123.	How many elements of cache design are there?
0	2
	5
0	
0	6
•	7
124.	Choose the element(s) of cache design
0	Tag
0	Latency
0	AMAT
•	Mapping Function
•	Replacement Algorithm

Number of Caches

125.	Choose the element(s) of cache design
0	Tag
0	Latency
0	AMAT
•	Cache Size
•	Line Size
•	Number of Caches
126.	There are three types of cache addresses
0	True
•	False
127.	There are two types of mapping functions
0	True
•	False
128.	We can find needed block in associatively mapped cache by its block address
0	True
•	False
129.	How many access methods are there?
•	3
0	2
0	4
0	5
0	6
130.	Choose the type(s) of auxiliary memory
•	Flash Memory
•	Optical Disk
0	Hard Drive
0	SSD
0	RAM
131.	How many performance factors are there
•	5
	3
0	
0	6
132.	Choose the performance factor(s)

o Cache Size

o Line Size • Instruction Count • Number of Processor Cycles Mapping function Latency 133. Choose the performance factor(s) o Cache Size o Line Size Instruction Count Number of Processor Cycles Number of memory references 134. Choose the system attribute(s) by which the performance factors are influenced o Cache size Unit of Transfer Compiler Technology Processor Implementation • Cache and memory hierarchy How many physical characteristics of disk systems are there? 135. 0 4

136. Choose the physical characteristic(s) of disk systems

- o Disk system implementation
- o Disk Size

• 5

0 3

- Head Mechanism
- Platters
- Sides

137. Choose the physical characteristic(s) of disk systems

- Disk system implementation
- o Disk Size
- Head Mechanism
- Head Motion
- Disk Portability

138. What does RAID stand for?

- Random Array of Independent Disks
- Redundant Array of Independent Disks
- Redundant Array of Interoperable Disks
- Random Access to Independent Disks

139. The RAID scheme consists of 7 levels

- True
- False

140. Choose the components of SSD

- Controller
- Addressing
- Data buffer/cache
- o Data size
- Memory hierarchy

141. SSD is over 10 times faster than the spinning disks in HDD

- True
- o False

142. SSDs are susceptible to mechanical wear

- o True
- False

143. SSDs are more susceptible to physical shock and vibration

- o True
- False

144. SSD stands for

- Solid State Drive
- o Solid State Driver
- Speed State Drive
- Speed State Driver

145. Choose the component of SSD for the following definition: provides SSD device level interfacing and firmware execution

- Controller
- o Addressing
- Data buffer/cache
- Error correction
- Flash memory components

146. Choose the component of SSD for the following definition: Logic for error detection and correction

- Error CorrectionAddressingData buffer/cache
- Controller
- Flash memory components

147. Choose the component of SSD for the following definition: Individual NAND flash chips

- Flash Memory Components
- Addressing
- Data buffer/cache
- o Controller
- Error Correction

148. Choose the component of SSD for the following definition: Logic that performs the selection function across the flash memory components

- Addressing
- Flash Memory Components
- o Data buffer/cache
- Controller
- Error Correction

149. Choose the component of SSD for the following definition: High speed RAM memory components used for speed matching and to increased data throughput

- Data buffer/cache
- Flash Memory Components
- Addressing
- o Controller
- Error Correction

150. The basic element of a semiconductor memory is the memory cell

- True
- o False

151. How external nonvolatile memory is called?

- Secondary memory
- Main memory
- Cache memory
- Virtual memory

152. What is included into physical type characteristic of computer memory systems?

- Semiconductor
- Magnetic
- Word

- Access Time
- Number of bytes

153. What is included into performance characteristic of computer memory systems?

- Access time
- Cycle Time
- Transfer Rate
- Word
- Number of bytes
- Number of words

154. What does IDE stand for?

Integrated Development Environment

155. Choose the characteristics of CISC processors

- large number of instructions
- support many addressing modes
- more elaborate way of accessing data
- o less number of instructions
- instructions are of fixed length
- few addressing modes

156. Choose the characteristics of RISC processors

- less number of instructions
- instructions are of fixed length
- few addressing modes
- o large number of instructions
- o support many addressing modes
- more elaborate way of accessing data

157. Choose the characteristics of Von Neumann architecture

- one memory for data and program
- CPU provides address to get data or instructions
- data and instructions must have the same width
- o separate busses, can be accessed simultaneously
- separated buses allow one instruction to execute while the next instruction is fetched
- o data and instructions mustn't have the same width

158. Choose the characteristics of Harvard architecture

- separate program and data memories
- separated buses allow one instruction to execute while the next instruction is fetched

- data and instructions mustn't have the same width
- o one memory for data and program
- CPU provides address to get data or instruction
- o data and instructions must have the same width

159. Which of the following architectures differs by memory accessing?

- Von Neumann
- Harvard
- Complex Instruction Set Computers
- Reduced Instruction Set Computers

160. Choose the correct answer for the following characteristics: 1. Depend mainly on its peripherals 2. Used for a few dedicated functions 3. Usually used as a part of a larger system

- Microcontroller
- o General purpose microprocessor

161. Choose the correct syntax of assembly statements

- name operation operand(s) comments
- o operation name operand(s) comments
- o operation operand(s) name comments
- comments name operation operand(s)

162. The assembler translates names into memory addresses

- True
- False

163. Name field of assembly statement is not case sensitive

- True
- False

164. Choose the legal name(s) in assembly

- @variable name
- variable?
- o variable&name
- o variable name
- 1variable

165. In two-operand instruction, the first operand is source and the second operand is destination

- o True
- False

166. An instruction may have one or more operands

o True

- False
- 167. In assembly language you can express data only in binary and decimal
 - o True
 - False
- 168. You should use a radix symbol in order to differentiate between binary, octal or hexadecimal
- True
- False
- 169. Which symbol you should use to leave the variable uninitialized
- ?
- 0!
- 0 @
- 0 \$
- 170. In assembly language, you can skip the name of variable
- True
- o False
- 171. Choose the correct syntax of variable declaration in assembly
- variable_name type initial_value
- o type variable_name initial_vaule
- variable_name type initial_value
- o type initial_value variable_name

172. Match the memory models in assembly

Small	
	code in one segment, data in one segment
Medium	
	code in more than one segment, data in one segment
Compact	
	code in one segment, data in more than one segment
Large	
	both code and data in more than one segments, no array larger than 64kb
Huge	
J	both code and data in more than one segments, array may be larger than 64kb

173. Choose the definition of code segment in assembly

- Contains a program's instructions
- A block of memory to store a stack
- All variable definitions

174. Choose the definition of data segment in assembly

All variable definitions

0	Α	block of memory to store a stack				
0	Contains a program's instructions					
17	5.	Choose the definition of stack segment in assembly				
•	> All variable definitions					
17	6.	There is no memory allocated for constants in assembly language				
•	Tr	ue				
0	Fa	lse				
17	7.	Which keyword you should use in order to define a constant in assembly language				
•	ΕÇ	งก				
0	DE					
0	CC	DNST				
0	ΕÇ	2				
0	D۱	N .				
17	8.	In assembly statement name and comment are mandatory				
	0	True				
	•	False				
17	9.	How many deadlock recovery algorithms are there?				
•	4					
0	3					
0	2					
0	5					
0	1					
18	0.	There are 3 approaches of deadlock avoidance				
	0	True				
	•	False				
18	181. There are 2 policies of deadlock prevention					
	•	True				
	0	False				
182. Choose the correct approach for the following definition "involves recognizing when deadlock has occurred, and trying to recover"						
•	Deadlock detection and recovery					
0	De	eadlock avoidance				

o Deadlock prevention

- 183. Choose the correct approach for the following definition "involves making dynamic choices that guarantee prevention"
- Deadlock avoidance
- Deadlock prevention
- Deadlock detection and recovery
- 184. Choose the correct approach for the following definition "adopting a static policy that disallows one of the four conditions above"
- Deadlock prevention
- Deadlock detection and recovery
- Deadlock avoidance
- 185. There are 4 approaches of dealing with deadlock
 - o True
 - False
- 186. Choose the correct answer for the following definition "A closed chain of processes exists, such that each process is blocked waiting for a resource held by another process in the set"
- Circular wait
- Mutual exclusion
- No preemption
- Hold and wait
- 187. Choose the correct answer for the following definition: "No process can be forced to release a resource"
- No preemption
- Mutual exclusion
- Hold and wait
- Circular wait
- 188. Choose the correct answer for the following definition "A process may hold some resources while waiting for others"
- Hold and wait
- Mutual exclusion
- Circular wait
- No pre-emption
- 189. Choose the correct answer for the following definition "Only one process may use a resource at one time"
- Mutual exclusion
- o Circular wait
- No preemption
- Hold and wait
- 190. How many policy conditions for deadlock to be possible are there?

191. What is the deadlock?

- Permanent blocking of a set of processes that either compete for global resources or communicate with each other
- o Interleaving of processes in time to give the appearance of simultaneous execution
- When one process is inside a critical section of code, other processes must be prevented from entering that section
- Processes "communicate" via global counters that are initialized to a positive integer and that can be accessed only through two atomic operations

192. Deadlock occurs when each process in the set is blocked awaiting an event that can be triggered only by another blocked process in the set

- True
- o False

193. In which of the following approaches there is no shared data?

- Message passing
- o Mutual exclusion
- Monitors
- Semaphores

194. Choose the correct answer for the following definition "Synchronization between processes is defined by the blocking policy attached to the sending and receiving of messages"

- Message passing
- Mutual exclusion
- Monitors
- Semaphores

195. Monitors are similar to classes in java and has methods and fields

- True
- o False

196. In atomic operations semSignal(x) and semWait(x), what is the 'x'?

- The number of processes that can execute critical section
- The number of processes
- The number of monitors
- No correct answer

197. When using semaphores, processes communicate using messages

o True

	•	False
19	8.	We can implement mutex through the OS or using programming languages
	•	True
	0	False
19	9.	How many approaches of mutex implementation are there?
•	3	
0	4	
0	2	
0	5	
0	1	
20		Choose the correct answer for the following definition "When one process is inside a critica ction of code, other processes must be prevented from entering that section"
•	Мι	utual exclusion
0	Se	emaphores
0	Mo	onitors
0		essage passing
0	Cr	ritical section
20	1.	In concurrency optimal allocation of resources is difficult
	•	True
	0	False
20	2. cc	In concurrency, locating programming errors can't be difficult, because the ontexts in which errors occur cannot always be reproduced easily
	0	True
	•	False
20	3.	In concurrency, sharing global resources safely is difficult
	•	True
	0	False
20	4.	Concurrency offers genuine simultaneous execution
	0	True
	•	False
20	5. si	Parallelism is interleaving of processes in time to give the appearance of multaneous execution
	0	True
	•	False

206. Choose the correct answer for the following definition "multiple processes on multiple

systems"

Multiprocessing Choose the correct answer for the following definition "multiple processes on a system with 207. multiple processors" Multiprocessing Multiprogramming Distributed processing Choose the correct answer for the following definition "multiple processes on a system with 208. a single processor" Multiprogramming Multiprocessing Distributed processing How many categories of process management are there? 209. 3 2 4 5 1 210. Operations performed by a processor, such as fetching an instruction, decoding the instruction, performing an arithmetic operation, and so on, are governed by: a system clock a system processor a clock processor a processor a clock Typically all operations performed by a processor begin with the: 211. pulse of the clock pulse of the processor it begins by itself both of clock and processor pulse none of the above

Distributed processing

Multiprogramming

212.

Cycle time
Clock speed
Clock rate
Clock cycle

The time between pulses called?

213. A processor is driven by a clock with a constant frequency f or, equivalently, a constant cycle time t, where t = 1/f:

- Instruction execution rate
- o Instruction execution cycle
- Instruction execution time
- o Instruction execution period
- None of the above

214. Measures such as MIPS and MFLOPS have proven adequate to evaluating the performance of processors.

- False
- o True

215. ENIAC stands for:

- Electronic Numerical Integrator and Computer
- o Electronic Nuclear Integrator and Computer
- o Encapsulation Numerical Integrator and Commerce
- Encapsulation Numerical Integrator and Computer
- o Electronic Numerical Integer and Computer

216. Contains a word to be stored in memory or sent to the I/O unit, or is used to receive a word from memory or from the I/O unit

- Memory buffer register (MBR)
- Memory address register (MAR)
- Instruction register (IR)
- o Instruction buffer register (IBR)
- Program counter (PC)

217. Specifies the address in memory of the word to be written from or read into the MBR

- Memory address register (MAR)
- Memory buffer register (MBR)
- o Instruction register (IR)
- Instruction buffer register (IBR)
- Program counter (PC)

218. Contains the 8-bit opcode instruction being executed

- Instruction register (IR)
- Memory buffer register (MBR)
- Memory address register (MAR)
- Instruction buffer register (IBR)
- Program counter (PC)

219. Employed to hold temporarily the right-hand instruction from a word in memory

• Instruction buffer register (IBR)

- Memory buffer register (MBR)
- Memory address register (MAR)
- o Instruction register (IR)
- Program counter (PC)

220. Contains the address of the next instruction pair to be fetched from memory

- Program counter (PC)
- o Memory buffer register (MBR)
- o Memory address register (MAR)
- Instruction register (IR)
- Instruction buffer register (IBR)

221. The use of the _____ defines the second generation of computers.

- Transistor
- Vacuum tube
- o Small and medium-scale integration
- Large-scale integration
- Very-large-scale integration

222. The use of the _____ defines the first generation of computers.

- Vacuum tube
- o Transistor
- o Small and medium-scale integration
- o Large-scale integration
- Very-large-scale integration

223. The use of the _____ defines the third generation of computers.

- Small and medium-scale integration
- Transistor
- Vacuum tube
- o Large-scale integration
- Very-large-scale integration

224. RAID stands for

- Redundant Array Independent Disk
- o Random Access Integral Disk
- Redundant Access Integral Disk
- o Random Array Independent Disk
- Redundant Access Independent Disk

225. The basic element of a semiconductor memory is:

- Memory cell
- Cache memory
- o RAM

- DRAM
 None of the above
 226. A state in which data requested for processing by a component or application is found in the cache memory
 Cache hit
 Cache miss
 - Cache set
 - Cache overwrites
 - Cache access time
 - 227. For random-access memory, this is the time it takes to perform a read or write operation
 - Access time
 - Memory cycle time
 - Transfer rate
 - Performance
 - All of the above
 - 228. Memory is organized into units of data, called records; access must be made in a specific linear sequence
 - Sequential access
 - Word
 - Addressable units
 - Unit of transfer
 - Direct access
 - 229. The "natural" unit of organization of memory
 - Word
 - Sequential access
 - Addressable units
 - Unit of transfer
 - Direct access
 - 230. Moore's law: "The cost of a chip has remained virtually unchanged during this period of rapid growth in density. This means that the cost of computer logic and memory circuitry has increasing at a dramatic rate"
 - False
 - o True
 - 231. Moore's law: "Because logic and memory elements are placed closer together on more densely packed chips, the electrical path length is shortened, decreasing operating speed"
 - False
 - o True
 - 232. Moore's law: "The computer becomes smaller, making it more convenient to place in a variety of environments"

- True False Moore's law: "There is a reduction in power and cooling requirements" 233.
- True
- **False**
- 234. Moore's law: "The interconnections on the integrated circuit are much more reliable than solder connections. With less circuitry on each chip, there are fewer interchip connections"
- True
- **False**
- 235. Processor can simultaneously work on multiple instructions. How this technique called?
- **Pipelining**
- Branch prediction
- Data flow analysis
- Speculative execution
- None of the above
- The L2 cache is slower and typically larger than the L1 cache, and the L3 cache is slower 236. and typically larger than the L2 cache
- True
- **False**
- The L2 cache is faster and typically larger than the L1 cache, and the L3 cache is slower and typically larger than the L2 cache
- False
- True