

Regression & Classification

Help: https://hackmd.io/xjPlheHATE23Ez7qOzaogw?view

<Hint> You maybe need these packages:
pandas, matplotlib, statsmodels, scikit-learn

Data Preprocess (4 * 4%)

全國高級中等學校畢業生數

學年別 (X)	總計 (Y)
106學年	241,288
105學年	233,642
104學年	250,172
103學年	272,662
102學年	277,047
101學年	277,910
100學年	279,381
99學年	282,605
98學年	278,717
97學年	277,150
96學年	279,320

- 1. 請讀入給定的資料集 graduates.csv 並補上最後一筆資料 {'96學年': '279,320'}
- 2. 請將資料的中文部分移除
- 3. 請將千分位的逗號移除, 並確認該欄位的 type 並非字串 以便數值運算
- 4. 將結果輸出成一個 csv 檔 , 命名為 <student ID> graduates.csv
- e.g. 0856029_graduates.csv
- <Hint> 必須使用程式產生此檔案,禁止手打

Data Preprocess (4 * 4%)

year	graduates
106	241,288
105	233,642
104	250,172
103	272,662
102	277,047
101	277,910
100	279,381
99	282,605
98	278,717
97	277,150
96	279,320

- 1. 請讀入給定的資料集 graduates.csv 並補上最後一筆資料 {'96學年': '279,320'}
- 2. 請將資料的中文部分移除
- 3. 請將千分位的逗號移除, 並確認該欄位的 type 並非字串 以便數值運算
- 4. 將結果輸出成一個 csv 檔 , 命名為 <student ID> graduates.csv
- e.g. 0856029_graduates.csv
- <Hint> 必須使用程式產生此檔案,禁止手打

Data Preprocess (4 * 4%)

year	graduates	
106	241288	
105	233642	
104	250172	
103	272662	
102	277047	
101	277910	
100	279381	
99	282605	
98	278717	
97	277150	
96	279320	

- 1. 請讀入給定的資料集 graduates.csv 並補上最後一筆資料 {'96學年': '279,320'}
- 2. 請將資料的中文部分移除
- 3. 請將千分位的逗號移除, 並確認該欄位的 type 並非字串 以便數值運算
- 4. 將結果輸出成一個 csv 檔 , 命名為 <student ID> graduates.csv
- e.g. 0856029_graduates.csv
- <Hint> 必須使用程式產生此檔案,禁止手打

1-1

Data Preprocess (4 * 4%)

- 1. 請讀入給定的資料集 graduates.csv 並補上最後一筆資料 {'96學年': '279,320'}
- 2. 請將資料的中文部分移除
- 3. 請將千分位的逗號移除, 並確認該欄位的 type 並非字串 以便數值運算
- 4. 將結果輸出成一個 csv 檔 , 命名為 <student_ID>_graduates.csv
- **e.g.** 0856029_graduates.csv

<Hint> 必須使用程式產生此檔案,禁止手打

1-2 (Polynomial) Regression Using processed_graduates.csv

1. (8%) Let $y = \beta_0 + \beta_1 x$, use the least squares method to find coefficients β_0 , β_1 . Calculate R squared (R²). Predict Y at X=107, 108, ..., 111.

- 2. (8%) Let $y = \beta_0 + \beta_1 x + \beta_2 x^2$, use the least squares method to find coefficients β_0 , β_1 , β_2 . Calculate R squared (R²). Predict Y at X=107, 108, ..., 111.
- 3. (8%)
 Compare the two models and describe what you found. (Write in your report)

Single regression (32%)

- 1. 請讀入給定的資料集 MEAP93.csv
- 2. 用其餘 16 個 attribute 作單變數迴歸 預測 math10,並作圖。

	Inchprg	enroll	staff	expend	salary	benefits	droprate	gradrate	math10
0	1.4	1862	112.599999	5765	37498	7420	2.9	89.199997	56.400002
1	2.3	11355	101.199997	6601	48722	10370	1.3	91.400002	42.700001
2	2.7	7685	114.000000	6834	44541	7313	3.5	91.400002	43.799999
3	3.4	1148	85.400002	3586	31566	5989	3.6	86.599998	25.299999

Single regression

(2% in each plot)

- 1. 請讀入給定的資料集 MEAP93.csv
- 2. 用其餘 16 個 attribute 作單變數迴歸 預測 math10,並作圖。

16 Single regression to fit math10

Multiple regression (10%)

1. 使用任意 attribute 和任意 model 使得你的 R-squared 超過 0.25

<Note> 你可以自己決定 Training/Testing set 的分割方式

	R2
lasso1	0.226157
lasso2	0.237468
lasso3	0.252793
lasso4	0.247986
lasso5	-0.513768
	R2
ridge1	R2 0.209356
ridge1 ridge2	
	0.209356
ridge2	0.209356 0.231698

3-1

Load Iris data (5%)

- 1. 使用 sklearn 的 load_iris() 載入資料
- 2. 使用 5-fold cross validation
- 3. 使用任意 model 進行分類,並印出 accuracy (分對的比例)
- 4. 畫出/印出 confusion matrix 請在報告中寫下你分類的結果

Ref:

https://scikitlearn.org/stable/auto_examples/datasets/ plot_iris_dataset.html from sklearn.datasets import load_iris

raw = load_iris()

X = pd.DataFrame(raw.data, columns=raw.feature_names)

y = pd.DataFrame(raw.target, columns=['class'])

pd.concat([X,y], sort=False, axis=1).head()

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	class
0	5.1	3.5	1.4	0.2	0
1	4.9	3.0	1.4	0.2	0
2	4.7	3.2	1.3	0.2	0
3	4.6	3.1	1.5	0.2	0
4	5.0	3.6	1.4	0.2	0

K-fold Cross Validation (5%)

- 1. 使用 sklearn 的 load_iris() 載入資料
- 2. 使用 5-fold cross validation
- 3. 使用任意 model 進行分類,並印出 accuracy (分對的比例)
- 4. 畫出/印出 confusion matrix 請在報告中寫下你分類的結果

Ref: https://scikit-learn.org/stable/modules/generated/sklearn.
model_selection.KFold.html

```
from sklearn.model_selection import KFold
from sklearn.datasets import load_iris
raw = load_iris()
X = raw.data
y = raw.target
kf = KFold(n_splits=5)
kf.get n splits(X)
print(kf)
for train_index, test_index in kf.split(X):
   # split data to 80% training set & 20% testing set
   print("TRAIN:", train_index, "TEST:", test_index)
  X_train, X_test = X[train_index], X[test_index]
  y_train, y_test = y[train_index], y[test_index]
   # Train your model
   # Test your model
   # Confusion matrix
```

3-3

Classification (5%)

- 1. 使用 sklearn 的 load_iris() 載入資料
- 2. 使用 5-fold cross validation
- 3. 使用任意 model 進行分類,並印出 accuracy (分對的比例)
- 4. 畫出/印出 confusion matrix 請在報告中寫下你分類的結果

<Note> 你可以使用任意分類器,當然也推薦使用 sklearn package 以外的函式。

Ref: https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html

Confusion Matrix (5%)

- 1. 使用 sklearn 的 load_iris() 載入資料
- 2. 使用 5-fold cross validation
- 3. 使用任意 model 進行分類,並印出 accuracy (分對的比例)
- 4. 畫出/印出 confusion matrix 請在報告中寫下你分類的結果

https://scikit-

<u>learn.org/stable/auto_examples/model_selection/plot_confusion_matrix.html#sphx-glr-auto-examples-model-selection-plot-confusion-matrix-py</u>

Hand in your homework to e3

Hand in your report & code to e3(https://e3new.nctu.edu.tw)
Briefly describe how your code works and show results. Make sure TA could run your code.

You should only hand in 2 files:

```
hw2_<student_id>.pdf
hw2_<student_id>.zip
```

(e.g. hw2_0123456.pdf, hw2_0123456.zip)

Due: 10/22 (Tue.) 11:00 a.m.

TA:

蔡旻均 <u>dollars9256741@gmail.com</u> 劉昱劭 <u>ysl@cs.nctu.edu.tw</u>