HW1_after Heat of combustion and unit conversion

Due Sep 5 at 12:59pm

Points 11

Questions 7

Available Aug 30 at 11am - Sep 5 at 12:59pm

Time Limit None

Allowed Attempts 3

This quiz was locked Sep 5 at 12:59pm.

Attempt History

	Attempt	Time	Score
LATEST	Attempt 1 (https://canvas.okstate.edu/courses/137119/guizzes/349078/history?version=1)	1,324 minutes	11 out of 11

Correct answers are hidden.

Score for this attempt: 11 out of 11

Submitted Sep 4 at 1:37pm

This attempt took 1,324 minutes.

Question 1

1 / 1 pts

What is the value of x for the following stoichiometric chemical reaction?

1.5

Question 2

1 / 1 pts

What composition below represents air? Assume that air is composed of 21 vol% of Oxygen and 79 Vol% of Nitrogen.

1.2 O2 + 4.51 N2	
O 10 O2 + 36.7 N2	
O 0.21 O2 + 3.76 N2	
2 O2 + 3.76 N2	

Question 3 1 / 1 pts

Calculate the heat of combustion of heptane (C7H16) burning in air in kJ/mole. Round your answer to the first decimal place and do not include any units.

Use the following values:

- Specific heat: CO2 = 54.3 J/mole-K, H2O = 41.3 J/mole-K, N2 = 32.7 J/mole-K.
- Heat of formation: C7H16 = -187.8 kJ/mole,
 CO2 = -393.5 kJ/mole, H2O = -241.8 kJ/mole

4,501.1

Question 4 1 / 1 pts

Calculate the enthalpy of propane in kJ/mole at 1000K assuming a representative specific heat value of 128.7 J/mole-K from 298 K to 1000K. The heat of formation of propane is -103.8 kJ/mole. Write down your answer rounded to the first decimal place without units.

-13.5

Question 5 1 / 1 pts

Using the Ideal Gas Law, calculate the mass (g) of ethylene (C_2H_4) given the following conditions.

Write down your answer rounded to the first decimal place without units.

P = 1 atm = 101325 Pa = 1.01325 bar = 14.7 psi

V = 25 L

R = 8.314 J/mol-K

T = 303 K

Question 6 5 / 5 pts

Assuming that 10 g of a fuel is stoichiometrically reacting with 2 g of air. What is HRR [kW] when 148 g/s of fuel is burned? Round your answer to the first decimal place and do not include any units.

88.8

Question 7 1 / 1 pts

C4H10 is burning in air. Assuming stoichiometric combustion, calculate the amount of heat (kJ) generated per g of O2 reacted. Write down your answer rounded to the first decimal place without units.

Heat of formation: C4H10 = -124.7 kJ/mole,
 CO2 = -393.5 kJ/mole, H2O = -241.8
 kJ/mole

1	2		8
---	---	--	---

Quiz Score: 11 out of 11