Towards the Robust Image Recognition Using Spiking Neurons

Qian Liu

Abstract—

I. INTRODUCTION

APPENDIX A THESIS OUTLINE

The following section-level outline gives the planned thesis structure for this project. Sections which are reliant on upcoming work are indicated with a star (*);

- 1) Introduction
- 2) Background
 - a) Neural Network on Image Recognition
 - b) Neuron Models and Spiking Neural Network
 - c) Spiking Neural Network Simulation
 - d) Neuromorphic Simulators
- 3) Related Works
 - a) Vision Databases and Benchmarks
 - b) Deep Neural Networks
 - c) Spike-Based Image Recognition
 - d) Real-Time Neuromorphic Vision System
- 4) Benchmarking Spike-Based Visual Recognition
 - a) Database
 - b) Evaluation Methodology
- 5) Spiking Deep Belief Network
 - a) Restricted Boltzmann Machine
 - b) Deep Belief Network
 - c) Spiking RBM and DBN *
- 6) Benchmarks
 - a) ConvNet without Learning
 - b) STDP Learned 2-Layer Network
 - c) Spiking DBN *
- 7) Discussions *
 - a) Benefits of Spikes
 - b) Scalability of H/W SDBN
 - c) Formalisation of SDBN
- 8) Future Work *
 - a) SDBN Toolbox on SpiNNaker
 - b) Learning on Spiking ConvNet
 - c) Video-Based Recognition and Benchmarks

The author is with the School of Computer Science, University of Manchester, Manchester M13 9PL, U.K. (e-mail:qian.liu-3@manchester.ac.uk

REFERENCES

- G. E. Hinton, "Training products of experts by minimizing contrastive divergence," *Neural computation*, vol. 14, no. 8, pp. 1771–1800, 2002
- [2] O. Woodford, "Notes on contrastive divergence,"
- [3] C.-X. Zhang, N.-N. Ji, and G.-W. Wang, "Introduction of Ristricted Boltzmann Machines (Chinese)," www.paper.edu.cn, 2013.
- [4] J. J. Hopfield, "Neural networks and physical systems with emergent collective computational abilities," *Proceedings of the* national academy of sciences, vol. 79, no. 8, pp. 2554–2558, 1982.
- [5] M. Welling, M. Rosen-Zvi, and G. E. Hinton, "Exponential family harmoniums with an application to information retrieval," in *Advances in neural information processing systems*, pp. 1481– 1488, 2004.
- [6] G. E. Hinton, S. Osindero, and Y.-W. Teh, "A fast learning algorithm for deep belief nets," *Neural computation*, vol. 18, no. 7, pp. 1527–1554, 2006.
- [7] I. Arel, D. C. Rose, and T. P. Karnowski, "Deep machine learninga new frontier in artificial intelligence research [research frontier]," *Computational Intelligence Magazine, IEEE*, vol. 5, no. 4, pp. 13– 18, 2010.
- [8] E. Neftci, S. Das, B. Pedroni, K. Kreutz-Delgado, and G. Cauwenberghs, "Event-driven contrastive divergence for spiking neuromorphic systems," Frontiers in neuroscience, vol. 7, 2013.