0- piccolo


```
F(x) e' o-piccolo di g(x) per x \to x_0 se esiste una funzione tale che  \begin{cases} f(x) = g(x) & \omega(x) \\ \lim_{x \to x_0} & \omega(x) = 0 \end{cases}  Oppure f(x) = o(g(x)) se \lim_{x \to x_0} \frac{f(x)}{g(x)} = 0
```

Proprietà

Se f4 = 0(g)
$$f_2 = o(g)$$
 per $x \rightarrow x_0$ allora

4.
$$f_1 \pm f_2 = O(q)$$
 4. $f(x) \cdot O(q(x)) = O(f(x) \cdot q(x))$

2.
$$a \cdot F_1 = o(g)$$
 5. $o(F) \cdot o(g) = o(F \cdot g)$

Transitività Se f(x) = O(g(x)) e g(x) = O(h(x)) entrambe per
$$x \to x_0$$
, allora $f(x) = O(h(x))$ per $x \to x_0$

Equivalenta
$$f(x) \sim g(x)$$
 SSE $f(x) = \omega(x) \cdot g(x)$ appure $\lim_{x \to x_0} \frac{f(x)}{g(x)} = 1$

Lim $\omega(x) = 1$
 $\lim_{x \to x_0} \omega(x) = 1$

Baby - sviluppo

$$2eu x = x + O(x)$$
 $CO2X = 4 - \frac{5}{X5} + O(x5)$ $CLC26U X = x + O(x)$