I.9 Solving the Boltzmann Equation

Solve numerically the Boltzmann equation for the dark matter (DM) number density n

$$\frac{dn}{dt} + 3H n = -\langle \sigma v \rangle \left(n^2 - n_{\text{eq}}^2 \right), \tag{I.15}$$

corresponding to the case of 2-to-2 DM annihilations into standard model (SM) states. Assume i) a Universe dominated by SM radiation, ii) conservation of the SM entropy, and iii) an s-wave (i.e. constant) thermally-averaged annihilation cross section $\langle \sigma v \rangle$.

Hints:

1. i) implies that the Hubble expansion rate as a function of the SM temperature T is

$$H(T) = \sqrt{\frac{\rho_R(T)}{3M_P^2}},\tag{I.16}$$

with the SM energy density is given by

$$\rho_R(T) = \frac{\pi^2}{30} g_{\star}(T) T^4, \tag{I.17}$$

 $M_P \simeq 2.4 \times 10^{18}$ GeV is the reduced Planck mass and $g_{\star}(T)$ is the number of relativistic degrees of freedom that contributes to the energy density of the SM. As a first approximation, take, e.g. $g_{\star} = 106.75$. It is a good number for temperatures higher than the top mass.

2. For the DM number density in equilibrium (without chemical potential), use the Maxwell-Boltzmann approximation

$$n_{\rm eq}(T) = \frac{g}{2\pi^2} \, m^2 \, T \, K_2 \left(\frac{m}{T}\right),$$
 (I.18)

where m is the mass of the DM, g is the number of internal degrees of freedom of the DM particle, and K_i the modified Bessel function of the second order.

3. Given i) and ii), Eq. (I.15) can be conveniently rewritten as

$$\frac{dY}{dx} = -\frac{\langle \sigma v \rangle s}{x H} \left[Y^2 - (Y^{\text{eq}})^2 \right], \tag{I.19}$$

where $x \equiv m/T$, $Y(T) \equiv n(T)/s(T)$, and $Y_{eq}(T) \equiv n_{eq}(T)/s(T)$, with

$$s(T) = \frac{2\pi^2}{45} g_{\star s}(T) T^3 \tag{I.20}$$

is the SM entropy density and $g_{\star s}(T)$ the number of relativistic degrees of freedom contributing to the DM entropy. Take $g_{\star s}(T) = g_{\star}(T)$, which is a good approximation for temperatures higher than a few MeVs.

4. For wisely chosen values of m and $\langle \sigma v \rangle$, ¹⁶ solve Eq. (I.19). Recall that observations of the DM relic density require that at low temperatures (i.e. $x \gg 100$)

$$Y \times m \simeq 4.3 \times 10^{-10} \text{ GeV}.$$
 (I.21)

For the initial conditions (yes, a first-order differential equation requires an initial condition!), take $x_{\text{ini}} = 15$ and $Y(x_{\text{ini}}) = Y_{\text{eq}}(x_{\text{ini}})$. For a given DM mass, what is the required value of $\langle \sigma v \rangle$? Calculate $\langle \sigma v \rangle$ in GeV⁻², picobarns, and cm³/s.

- 5. How does the relic abundance (i.e. Y) evolves with an increase / decrease of $\langle \sigma v \rangle$?
- 6. Play wildly with the initial conditions x_{ini} and $Y(x_{\text{ini}})$.
- 7. Repeat point 4 for other values of m, and plot $\langle \sigma v \rangle$ versus m.
- 8. Considering the simple parametrization

$$\langle \sigma v \rangle = \frac{\alpha^2}{m^2} \,, \tag{I.22}$$

with α a dimensionless coupling, plot α versus m. What is the maximal WIMP DM mass compatible with perturbativity?

- 9. One can go one step forward and take into account the temperature dependence of g_{\star} and $g_{\star s}$. Use the tabulated values of g_{\star} and $g_{\star s}$ in the file Data/hgEff/DHS.thg of MicrOMEGAs. In their notation heff = $g_{\star s}$ while geff = g_{\star} . Plot again $\langle \sigma v \rangle$ versus m taking now into account the variation of g_{\star} and $g_{\star s}$.
- 10. Decrease the (constant) value of $\langle \sigma v \rangle$ without fear. Use the initial conditions $x_{\rm ini} = 10^{-1}$ and $Y(x_{\rm ini}) = 0$. Discover a second solution satisfying Eq. (I.21) and corresponding to ultraviolet freeze-in (UV FIMP) paradigm. Why is this freeze-in mechanism called ultraviolet?
- 11. How does the relic abundance (i.e. Y) evolves with an increase / decrease of $\langle \sigma v \rangle$?
- 12. Play wildly with the initial conditions x_{ini} and $Y(x_{\text{ini}})$.
- 13. Plot $\langle \sigma v \rangle$ versus m for UV FIMPs.
- 14. Repeat the WIMP analysis, now for DM semi-annihilation (i.e. reactions DM + DM \rightarrow DM + SM)

$$\frac{dY}{dx} = -\frac{\langle \sigma v \rangle s}{x H} \left[Y^2 - Y Y^{\text{eq}} \right]. \tag{I.23}$$

15. Repeat the WIMP analysis, now for 3-to-2 SIMP DM self-annihilation (i.e. reactions DM + DM + DM \rightarrow DM + DM)

$$\frac{dY}{dx} = -\frac{\langle \sigma v^2 \rangle_{\text{3-to-2}} s^2}{x H} \left[Y^3 - Y^2 Y^{\text{eq}} \right]. \tag{I.24}$$

¹⁶Wisely means masses in the GeV to TeV ballpark and cross sections at the picobarn scale!

16. Considering the simple parametrization

$$\langle \sigma v^2 \rangle_{3-\text{to-}2} = \frac{\alpha^3}{m^5} \,, \tag{I.25}$$

with α a dimensionless coupling, plot α versus m. What is the maximal SIMP DM mass compatible with perturbativity?

17. Forget assumptions i) and ii). Assume instead the existence of a long-lived nonrelativistic particle ϕ of mass m_{ϕ} , that only decays into SM particles with a total decay width Γ_{ϕ} corresponding to a lifetime $\tau_{\phi} = 1/\Gamma_{\phi} \sim 1$ s. The evolution of the number density n_{ϕ} of ϕ and the SM radiation energy density ρ_R can be track by the system of coupled Boltzmann equations

$$\frac{dn_{\phi}}{dt} + 3H n = -\Gamma_{\phi} n_{\phi}, \qquad (I.26)$$

$$\frac{dn_{\phi}}{dt} + 3H n = -\Gamma_{\phi} n_{\phi}, \qquad (I.26)$$

$$\frac{d\rho_R}{dt} + 4H \rho_R = +\Gamma_{\phi} n_{\phi} m_{\phi}, \qquad (I.27)$$

and the Friedmann equation

$$H = \sqrt{\frac{\rho_R + m_\phi \, n_\phi}{3 \, M_P}} \,, \tag{I.28}$$

where $\rho_{\phi} = m_{\phi} n_{\phi}$ is the energy density of ϕ . Rewrite Eqs. (I.26), (I.27) and (I.28) in terms of the comoving quantities $\Phi \equiv n_{\phi} \times a^3$, $R \equiv \rho_R \times a^4$, and the cosmic scale factor a. Solve numerically the new equations, looking for periods where ϕ dominates the total energy density of the Universe. Extract the evolution of the SM temperature using Eq. (I.17). Use the initial condition $a_{\rm ini} = 1$ with $\rho_R(a_{\rm ini}) = 0$ and $\rho_{\phi}(a_{\rm ini}) \neq 0$ for a reheating-like scenario or $\rho_R(a_{\rm ini}) \gg \rho_\phi(a_{\rm ini}) > 0$ and for an early matter domination era. Recall that $H(T) < 2 \times 10^{-5} M_P$.

18. Rewrite Eq. (I.15) using $N \equiv n \times a^3$ and a. Solve it in the previously discussed background. Understand WIMPs during low-temperature reheating, and WIMPs during an early matter dominated era.