The group G is isomorphic to the group labelled by [48, 1] in the Small Groups library. Ordinary character table of $G \cong C3$: C16:

Trivial source character table of $G \cong C3$: C16 at $p = 2$:								
Normalisers N_i	N_1		N_2	Λ	V_3	N_4	N_5	
p-subgroups of G up to conjugacy in G	P_1		P_2	F	3	P_4	P_5	
Representatives $n_j \in N_i$	1a 3	$3a \mid 1$.a 3a	1 <i>a</i>	$\overline{3a}$	1a 3	a $1a$	
$1 \cdot \chi_{1} + 1 \cdot \chi_{2} + 1 \cdot \chi_{3} + 1 \cdot \chi_{4} + 1 \cdot \chi_{5} + 1 \cdot \chi_{6} + 1 \cdot \chi_{7} + 1 \cdot \chi_{8} + 1 \cdot \chi_{9} + 1 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{14} + 1 \cdot \chi_{15} + 1 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{19} +$	16 1	16 (0 0	0	0	0 () 0	
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 1 \cdot \chi_{17} + 1 \cdot \chi_{18} + 1 \cdot \chi_{19} + 1 \cdot \chi_{20} + 1 \cdot \chi_{21} + 1 \cdot \chi_{22} + 1 \cdot \chi_{23} + 1 \cdot \chi_{24} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 1 \cdot \chi_{17} + 1 \cdot \chi_{18} + 1 \cdot \chi_{19} + 1 \cdot \chi_{20} + 1 \cdot \chi_{21} + 1 \cdot \chi_{22} + 1 \cdot \chi_{23} + 1 \cdot \chi_{24} + 0 \cdot \chi_{16} + 1 \cdot \chi_{17} + 1 \cdot \chi_{18} + 1 \cdot \chi_{19} + 1 \cdot \chi_{20} + 1 \cdot \chi_{21} + 1 \cdot \chi_{22} + 1 \cdot \chi_{23} + 1 \cdot \chi_{24} + 0 \cdot \chi_{16} + 1 \cdot \chi_{17} + 1 \cdot \chi_{18} + 1 \cdot \chi_{19} + 1$	16 -	-8 (0 0	0	0	0 () 0	
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot $	8	8 8	8 8	0	0	0 () 0	
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 1 \cdot \chi_{17} + 1 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 1 \cdot \chi_{23} + 1 \cdot \chi_{24} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 1 \cdot \chi_{17} + 1 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 1 \cdot \chi_{23} + 1 \cdot \chi_{24} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{19} + 0$	8 -	-4 8	8 - 4	0	0	0 () 0	
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot $	4	4	4 4	4	4	0 () 0	
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 1 \cdot \chi_{17} + 1 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 1 \cdot \chi_{17} + 1 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0$	4 -	$-2 \mid 4$	4 - 2	4	-2	0 () 0	
$1 \cdot \chi_{1} + 1 \cdot \chi_{2} + 0 \cdot \chi_{3} + 0 \cdot \chi_{4} + 0 \cdot \chi_{5} + 0 \cdot \chi_{6} + 0 \cdot \chi_{7} + 0 \cdot \chi_{8} + 0 \cdot \chi_{9} + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} +$	2	2 2	2 2	2	2	2 2	2 0	
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 1 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 1 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0$	2 -	$-1 \mid 2$	2 - 1	2	-1	2 –	$1 \mid 0$	
$1 \cdot \chi_{1} + 0 \cdot \chi_{2} + 0 \cdot \chi_{3} + 0 \cdot \chi_{4} + 0 \cdot \chi_{5} + 0 \cdot \chi_{6} + 0 \cdot \chi_{7} + 0 \cdot \chi_{8} + 0 \cdot \chi_{9} + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{10} + 0 \cdot \chi_{10} + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{10} +$	1	1 1	1 1	1	1	1 1	. 1	

 $P_2 = Group([(1,5)(2,9)(3,12)(4,14)(6,16)(7,19)(8,21)(10,23)(11,25)(13,27)(15,29)(17,31)(18,32)(20,34)(22,36)(24,38)(26,39)(28,41)(30,42)(33,43)(35,45)(37,46)(40,47)(44,48)]) \cong \mathbb{C}_2$

 $P_3 = Group([(1,5)(2,9)(3,12)(4,14)(6,16)(7,19)(8,21)(10,23)(11,25)(13,27)(15,29)(17,31)(18,32)(20,34)(22,36)(24,38)(26,39)(28,41)(30,42)(33,43)(35,45)(37,46)(40,47)(44,48), (1,4,5,14)(2,8,9,21)(3,11,12,25)(6,15,16,29)(7,18,19,32)(10,22,23,36)(13,26,27,39)(17,30,31,42)(20,33,34,43)(24,37,38,46)(28,40,41,47)(35,44,45,48)]) \cong C4$

 $P_4 = Group([(1,5)(2,9)(3,12)(4,14)(6,16)(7,19)(8,21)(10,23)(11,25)(13,27)(15,29)(17,31)(18,32)(20,34)(22,36)(24,38)(26,39)(28,41)(30,42)(33,43)(35,45)(37,46)(40,47)(44,48), (1,4,5,14)(2,8,9,21)(3,11,12,25)(6,15,16,29)(7,18,19,32)(10,22,23,36)(13,26,27,39)(17,30,31,42)(20,33,43)(35,45)(37,46)(40,47)(44,48), (1,4,5,14)(2,8,9,21)(3,11,12,25)(6,15,16,29)(7,18,19,32)(10,22,23,36)(13,26,27,39)(17,30,31,42)(20,33,43)(35,45)(37,46)(40,47)(44,48), (1,4,5,14)(2,8,9,21)(3,11,12,25)(6,15,16,29)(7,18,19,32)(10,22,23,36)(13,26,27,39)(17,30,31,42)(20,33,43)(35,45)(37,46)(40,47)(44,48), (1,4,5,14)(2,8,9,21)(3,11,12,25)(6,15,16,29)(7,18,19,32)(10,22,23,36)(13,26,27,39)(17,30,31,42)(20,33,43)(35,45)(37,46)(40,47)(44,48), (1,4,5,14)(20,33,43)(35,45)(37,46)(40,47)(44,48), (1,4,5,14)(20,33,43)(35,45)(37,46)(40,47)(44,48), (1,4,5,14)(20,33,43)(35,45)(37,46)(40,47)(44,48), (1,4,5,14)(20,33,43)(35,45)(37,46)(40,47)(44,48), (1,4,5,14)(20,33,43)(35,45)(37,46)(40,47)(44,48), (1,4,5,14)(20,33,43)(35,45)(37,46)(40,47)(44,48), (1,4,5,14)(20,33,43)(35,45)(37,46)(40,47)(44,48), (1,4,5,14)(20,33,43)(35,45)(37,46)(40,47)(44,48), (1,4,5,14)(20,33,43)(35,45)(37,46)(40,47)(44,48), (1,4,5,14)(20,33,44)(40,47)(44,48), (1,4,5,14)(40,47)(40,47)(40,47)(40,47)(40,47)(40,47)(40,47)(40,47)(40,47)(40,47)(40,47)(40,47)(40,47)(40,47)(40,47)($

 $N_3 = Group([(1,4,5,14)(2,3,7,4,4)(14,25,32)(6,15,16,29)(7,18,19,32)(10,22,33,36)(13,26,27,39)(17,30,31,42)(20,33,34,43)(24,37,38,46)(28,40,41,47)(35,44,45,48)(11,25,32)(6,15,16,29)(7,18,19,32)(10,22,23,36)(13,26,27,39)(17,30,31,42)(20,33,34,43)(24,37,38,46)(28,40,41,47)(35,44,45,48)(11,25,32)(43,43)(24,37,38,46)($

 $\begin{vmatrix} \chi_5 \end{vmatrix} 1 - E(8) & E(4) & -1 & 1 & 1 & -E(8)^3 & E(8) & -E(8) & -E(4) & E(4) & E(4) & -1 & -1 & 1 & E(8)^3 & -E(8) & -E(4) & -E(4) & E(4) & -1 & E(8)^3 & -E(8) & -E$

 $|\chi_{10}|$ 1 $-E(16)^3$ $E(8)^3$ -E(4) -1 1 E(16) $E(16)^7$ $E(16)^3$ E(8) $-E(8)^3$ E(8) $-E(8)^3$ E(4) -E(4) $-E(16)^5$ -E(16) $-E(16)^7$ -E(8) -E $\begin{vmatrix} \chi_{11} & 1 & -E(16)^5 & -E(8) & E(4) & -1 & 1 & E(16)^7 & E(16) & E(16)^5 & -E(8)^3 & E(8) & -E(8) & -E(4) & E(4) & -1 & -E(16)^3 & -E(16)^7 & -E(16) & E(8)^3 & -E(8) & -E(4) & E(16)^3 & E(8) & -E(8)^3 & -E(8)^3$ $\begin{vmatrix} \chi_{12} \end{vmatrix} 1 - E(16)^7 - E(8)^3 - E(4) - 1 - 1 - E(16)^5 - E(16)^3 - E(16)^7 - E(8) - E(8)^3 - E(8)^3 - E(8)^3 - E(8)^3 - E(16)^5 - E(16)^5 - E(16)^3 - E(8) - E(8)^3 - E(8) - E(8)^3 - E(8)^$ $|\chi_{13}|$ 1 $E(16)^7$ $-E(8)^3$ -E(4) -1 1 $E(16)^5$ $E(16)^3$ $-E(16)^7$ -E(8) $E(8)^3$ E(4) -E(4) -E(4) $-E(16)^5$ $-E(16)^3$ E(8) -E(8) -E(8)

 $\begin{vmatrix} \chi_{15} \end{vmatrix} 1 & E(16)^3 & E(8)^3 & -E(4) & -1 & 1 & -E(16) & -E(16)^7 & -E(16)^3 & E(8) & -E(8)^3 & E(4) & -E(4) & -1 & E(16)^5 & E(16) & E(16)^7 & -E(8) & E(8) & -E(8)^3 & E(4) & -E(16)^5 & -E(8) & -E(8)^3 & -E(8)$

 $\begin{vmatrix} \chi_{22} \end{vmatrix} 2 & 0 & -2*E(8) & 2*E(4) & -2 & -1 & 0 & 0 & 0 & -2*E(8)^3 & 2*E(8) & E(8) & -2*E(4) & -E(4) & 1 & 0 & 0 & 0 & 2*E(8)^3 & E(8)^3 & -E(8) & E(4) & 0 & -E(8)^3 & -E(8) & -E(8) & -E(8) & -2*E(8) & -2*E(8)$ $\begin{vmatrix} \chi_{23} \end{vmatrix} \ 2 \quad 0 \quad 2*E(4) \quad -2 \quad 2 \quad -1 \quad 0 \quad 0 \quad 0 \quad -2*E(4) \quad 2*E(4) \quad -E(4) \quad -2 \quad 1 \quad -1 \quad 0 \quad 0 \quad 0 \quad -2*E(4) \quad E(4) \quad -E(4) \quad 1 \quad 0 \quad E(4)$ $\begin{vmatrix} \chi_{24} \end{vmatrix} 2 \quad 0 \quad -2*E(4) \quad -2 \quad 2 \quad -1 \quad 0 \quad 0 \quad 0 \quad 2*E(4) \quad -2*E(4) \quad E(4) \quad -2 \quad 1 \quad -1 \quad 0 \quad 0 \quad 0 \quad 2*E(4) \quad -E(4) \quad 1 \quad 0 \quad -E(4)$

 $-E(8) \qquad E(4) \qquad -1 \qquad 1 \qquad -E(16)^7 \qquad -E(16) \qquad -E(16)^5 \qquad -E(8)^3 \qquad E(8) \qquad -E(8) \qquad -E(4) \qquad E(4) \qquad -1 \qquad E(16)^3 \qquad E(16)^7 \qquad E(16) \qquad E(8)^3 \qquad -E(8) \qquad -E(8) \qquad -E(16)^3 \qquad E(8)^3 \qquad -E(16)^3 \qquad E(16)^7 \qquad E(16) \qquad -E(16)^3 \qquad E(16)^7 \qquad -E(16)^3 \qquad E(16)^7 \qquad -E(16)^3 \qquad -E(16)^$

2*E(8) 2*E(4) -2 -1 0 0 0 $2*E(8)^3$ -2*E(8) -E(8) -2*E(4) -E(4) 1 0 0 0 $-2*E(8)^3$ $-E(8)^3$ -E(8) 0 $-E(8)^3$

 $E(4) \quad -1 \quad 1 \quad E(16)^3 \quad E(16)^5 \quad -E(16) \quad E(8)^3 \quad -E(8) \quad E(8) \quad -E(4) \quad E(4) \quad -1 \quad E(16)^7 \quad -E(16)^3 \quad -E(8)^3 \quad E(8)^3 \quad -E(8) \quad -E(4) \quad -E(16)^7 \quad -E(8)^3 \quad -E(8) \quad -E(8)$

-1 1 1 $E(8)^3$ -E(8) E(8) -E(4) E(4) E(4) -1 -1 1 $-E(8)^3$ $E(8)^3$ -E(8)

 $|\chi_9|$ 1 -E(16) E(8) E(4) -1 1 $-E(16)^3$ $-E(16)^5$ E(16) $E(8)^3$ -E(8) E(8) -E(4) E(4) -1 $-E(16)^7$ $E(16)^3$ $E(16)^5$