www.mecatronicadegaragem.blogspot.com

Aula 03 Arquitetura PIC18 – Parte I

(18F4520 - Uma Visão Geral)

Microcontroladores PIC18 – Programação em C

Prof. Ítalo Jáder Loiola Batista

Universidade de Fortaleza - UNIFOR Centro de Ciências Tecnológicas - CCT

E-mail: <u>italoloiola@unifor.br</u>

Jan/2011

Características Principais (PIC18F4520)

Features	PIC18F2420	PIC18F2520	PIC18F4420	PIC18F4520
Operating Frequency	DC – 40 MHz	DC - 40 MHz	DC – 40 MHz	DC – 40 MHz
Program Memory (Bytes)	16384	32768	16384	32768
Program Memory (Instructions)	8192	16384	8192	16384
Data Memory (Bytes)	768	1536	768	1536
Data EEPROM Memory (Bytes)	256	256	256	256
Interrupt Sources	19	19	20	20
I/O Ports	Ports A, B, C, (E)	Ports A, B, C, (E)	Ports A, B, C, D, E	Ports A, B, C, D, E
Timers	4	4	4	4
Capture/Compare/PWM Modules	2	2	1	1
Enhanced Capture/Compare/PWM Modules	0	0	1	1
Serial Communications	MSSP, Enhanced USART	MSSP, Enhanced USART	MSSP, Enhanced USART	MSSP, Enhanced USART
Parallel Communications (PSP)	No	No	Yes	Yes
10-bit Analog-to-Digital Module	10 Input Channels	10 Input Channels	13 Input Channels	13 Input Channels
Resets (and Delays)	POR, BOR, RESET Instruction, Stack Full, Stack Underflow (PWRT, OST), MCLR (optional), WDT	POR, BOR, RESET Instruction, Stack Full, Stack Underflow (PWRT, OST), MCLR (optional), WDT	POR, BOR, RESET Instruction, Stack Full, Stack Underflow (PWRT, OST), MCLR (optional), WDT	POR, BOR, RESET Instruction, Stack Full, Stack Underflow (PWRT, OST), MCLR (optional), WDT
Programmable High/Low-Voltage Detect	Yes	Yes	Yes	Yes
Programmable Brown-out Reset	Yes	Yes	Yes	Yes
Instruction Set	75 Instructions; 83 with Extended Instruction Set enabled			
Packages	28-pin PDIP 28-pin SOIC 28-pin QFN	28-pin PDIP 28-pin SOIC 28-pin QFN	40-pin PDIP 44-pin QFN 44-pin TQFP	40-pin PDIP 44-pin QFN 44-pin TQFP

Encapsulamentos

40-Pin PDIP

44-pin TQFP

44-pin QFN

Características Principais

- □32K x 16 bits de memória de programa flash;
- □1536 x 8 bits de memória de dados RAM;
- □256 x 8 bits de memória de dados EEPROM;
- □Pilha implementada por hardware com 32 níveis (até 32 chamadas de rotinas aninhadas);
- □5 Portas de E/S (A, B, C, D, E);

Características Principais

- □ Capacidade de corrente de 20mA/pino;
- □ Fontes de interrupção (internas e externas);
- □ Três pinos de interrupção externa;
- Quatro pinos com detecção de mudança de estado;
- ☐ Treze canais de conversão A/D de 10 bits;
- Dois módulos de Captura/Comparação/PWM (CCP);
- Módulo MSSP podendo operar nos modos SPI e I2C;
- Módulo EUSART com suporte para RS232, RS485 e LIN 1.2;

Características Principais

- □ Recursos de hardware para proteção de código (watchdog timer, detecção de alta e baixa tensão);
- Módulo PSP (Parallel Slave Port);
- Módulo Timer/Counter Timer0 de 16 bits;
- Módulo Timer/Counter Timer1 de 16 bits;
- Módulo Timer Timer2 de 8 bits;
- Módulo Timer/Counter Timer3 de 16 bits;
- Modo de operação com baixo consumo de energia (sleep);

Características Principais - Desempenho

 O PIC18F4520 possui algumas características que contribuem significativamente para o seu desempenho e, denotam superioridade sobre os uC PIC das séries inferiores.

Características Principais - Desempenho

- □ Capacidade de executar 10 milhões de instruções por segundo (10MIPS);
- □ Até 40 MHz de sinal de clock;
- □ De 4MHz até 10Mhz de sinal de clock com o PLL ativo;
- Instruções com 16 bits de tamanho;
- □ Níveis de prioridade de tratamento de interrupção;
- Multiplicação por hardware entre operandos de 8 bits em um único ciclo de máquina;
- Set de instruções estendido;
- Modos de gerenciamento de energia;

Temporizadores (TIMER)

- □ Temporizador é um contador derivado tanto de um pulso de relógio externo quanto de um oscilador interno do microcontrolador
- ■Pode ser de 8 ou 16 bits
- O programa de controle no microcontrolador pode
 - Carregar dado no temporizador
 - Parar o temporizador
 - Iniciar o temporizador

Temporizadores (TIMER)

- A maioria dos temporizadores podem ser configurados para gerar uma interrupção quando atingem uma certa contagem
- □ Temporizadores podem ser usados para realizar operações acuradas em relação a tempo

Interrupção

- ■Uma interrupção faz com que o microcontrolador responda a eventos externos ou internos (e.g. temporizador)
- ■Numa interrupção, o microcontrolador sai do fluxo normal de execução, e passa para uma parte do programa denominada Rotina de Serviço de Interrupção (ISR)

Interrupção

- A Rotina de Serviço de Interrupção inicia num endereço fixo da memória de programa
 - Endereço da rotina de interrupção
- □Interrupções podem ser aninhadas tal que, uma nova interrupção pode interromper a execução de outra interrupção
- ■Diferentes fontes de interrupção podem ter diferentes prioridadades

Conversor A/D

- O conversor A/D é responsável pela conversão de um sinal analógico, tal como tensão, para uma representação digital
- ■Conversores de 8 bits: 256 níveis de quantização
- ■Conversores de 10 bits: 1024 níveis de quantização

Conversor A/D

- O processo de conversão A/D é iniciado pelo programa de usuário e pode levar centenas de microsegundos
- □ Conversores A/D geralmente geram uma interrupção quando o processo de conversão é encerrado
- ■Aplicações:
 - Sensor de temperatura
 - Sensor de pressão
 - Sensor de força

Comunicação

- □RS232
- ■Permite comunicação
 - Com outro microcontrolador
 - Com um computador
- Selecionar
 - □taxa de transmissão de dados
 - □ 300, 1200, 2400, 9600, 19200, etc
 - □bits de paridade e parada

Comunicação

- □ SPI (Serial Peripheral Interface)
- □ I²C (Integrated Inter Connect)

Modulação por Largura de Pulso (PWM)

Diagrama de Blocos

Pinagem do PIC18F4520

Pin Name	Pi	n Numb	er	Pin	Buffer	Description
Fill Name	PDIP	QFN	TQFP	Туре	Type	Description
MCLR/VPP/RE3 MCLR	1	18	18	1	ST	Master Clear (input) or programming voltage (input). Master Clear (Reset) input. This pin is an active-low Reset to the device.
VPP				Р		Programming voltage input.
RE3				- 1	ST	Digital input.
OSC1/CLKI/RA7 OSC1	13	32	30	ı	ST	Oscillator crystal or external clock input. Oscillator crystal input or external clock source input. ST buffer when configured in RC mode;
CLKI				I	CMOS	analog otherwise. External clock source input. Always associated with pin function OSC1. (See related OSC1/CLKI, OSC2/CLKO pins.)
RA7				I/O	TTL	General purpose I/O pin.
OSC2/CLKO/RA6 OSC2	14	33	31	0	_	Oscillator crystal or clock output. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode.
CLKO				O	_	In RC mode, OSC2 pin outputs CLKO which has 1/4 the frequency of OSC1 and denotes the instruction cycle rate.
RA6				I/O	TTL	General purpose I/O pin.

Legend: TTL = TTL compatible input

ST = Schmitt Trigger input with CMOS levels

O = Output

CMOS = CMOS compatible input or output

I = Input P = Power

Pin Name	Pin Number			Pin	Pin Buffer	Description
Pin Name	PDIP	QFN	TQFP	Туре	Туре	Description
RA0/AN0 RA0 AN0	2	19	19	I/O I	TTL Analog	PORTA is a bidirectional I/O port. Digital I/O. Analog input 0.
RA1/AN1 RA1 AN1	3	20	20	I/O I	TTL Analog	Digital I/O. Analog input 1.
RA2/AN2/VREF-/CVREF RA2 AN2 VREF- CVREF	4	21	21	I/O I I O	TTL Analog Analog Analog	Digital I/O. Analog input 2. A/D reference voltage (low) input. Comparator reference voltage output.
RA3/AN3/VREF+ RA3 AN3 VREF+	5	22	22	I/O I I	TTL Analog Analog	Digital I/O. Analog input 3. A/D reference voltage (high) input.
RA4/T0CKI/C1OUT RA4 T0CKI C1OUT	6	23	23	I/O I O	ST ST —	Digital I/O. Timer0 external clock input. Comparator 1 output.
RA5/AN4/SS/HLVDIN/ C2OUT RA5 AN4 SS HLVDIN C2OUT	7	24	24	I/O 	TTL Analog TTL Analog	Digital I/O. Analog input 4. SPI slave select input. High/Low-Voltage Detect input. Comparator 2 output. See the OSC2/CLKO/RA6 pin.
RA7						See the OSC1/CLKI/RA7 pin.

Din Nama	Pin Number		er	Pin	Buffer	Paravintian
Pin Name	PDIP	QFN	TQFP	Туре	Туре	Description
RB0/INT0/FLT0/AN12 RB0 INT0 FLT0 AN12	33	9	8	I/O 	TTL ST ST Analog	PORTB is a bidirectional I/O port. PORTB can be software programmed for internal weak pull-ups on all inputs. Digital I/O. External interrupt 0. PWM Fault input for Enhanced CCP1. Analog input 12.
RB1/INT1/AN10 RB1 INT1 AN10	34	10	9	I/O I I	TTL ST Analog	Digital I/O. External interrupt 1. Analog input 10.
RB2/INT2/AN8 RB2 INT2 AN8	35	11	10	I/O I I	TTL ST Analog	Digital I/O. External interrupt 2. Analog input 8.
RB3/AN9/CCP2 RB3 AN9 CCP2 ⁽¹⁾	36	12	11	I/O I I/O	TTL Analog ST	Digital I/O. Analog input 9. Capture 2 input/Compare 2 output/PWM 2 output.
RB4/KBI0/AN11 RB4 KBI0 AN11	37	14	14	I/O I I	TTL TTL Analog	Digital I/O. Interrupt-on-change pin. Analog input 11.
RB5/KBI1/PGM RB5 KBI1 PGM	38	15	15	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. Low-Voltage ICSP™ Programming enable pin.
RB6/KBI2/PGC RB6 KBI2 PGC	39	16	16	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. In-Circuit Debugger and ICSP programming clock pin.
RB7/KBI3/PGD RB7 KBI3 PGD	40	17	17	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. In-Circuit Debugger and ICSP programming data pin.

Pin Name	Pin Number			Pin Buffer	Donasis time	
Pin Name	PDIP	QFN	TQFP	Туре	Type	Description
D00/T4000/T400//	45	0.4	00			PORTC is a bidirectional I/O port.
RC0/T10SO/T13CKI RC0 T10SO T13CKI	15	34	32	I/O O I	ST — ST	Digital I/O. Timer1 oscillator output. Timer1/Timer3 external clock input.
RC1/T10SI/CCP2 RC1 T10SI CCP2 ⁽²⁾	16	35	35	I/O I I/O	ST CMOS ST	Digital I/O. Timer1 oscillator input. Capture 2 input/Compare 2 output/PWM 2 output.
RC2/CCP1/P1A RC2 CCP1 P1A	17	36	36	I/O I/O O	ST ST	Digital I/O. Capture 1 input/Compare 1 output/PWM 1 output. Enhanced CCP1 output.
RC3/SCK/SCL RC3 SCK	18	37	37	I/O I/O	ST ST	Digital I/O. Synchronous serial clock input/output for SPI™ mode.
SCL				I/O	ST	Synchronous serial clock input/output for I ² C™ mode.
RC4/SDI/SDA RC4 SDI SDA	23	42	42	I/O I I/O	ST ST ST	Digital I/O. SPI data in. I ² C data I/O.
RC5/SDO RC5 SDO	24	43	43	I/O O	ST —	Digital I/O. SPI data out.
RC6/TX/CK RC6 TX CK	25	44	44	I/O O I/O	ST — ST	Digital I/O. EUSART asynchronous transmit. EUSART synchronous clock (see related RX/DT).
RC7/RX/DT RC7 RX DT	26	1	1	I/O I I/O	ST ST ST	Digital I/O. EUSART asynchronous receive. EUSART synchronous data (see related TX/CK).

Din Nama	Pin Number			Pin	in Buffer	
Pin Name	PDIP	QFN	TQFP	Туре	Type	Description
						PORTD is a bidirectional I/O port or a Parallel Slave Port (PSP) for interfacing to a microprocessor port. These pins have TTL input buffers when PSP module is enabled.
RD0/PSP0 RD0 PSP0	19	38	38	I/O I/O	ST TTL	Digital I/O. Parallel Slave Port data.
RD1/PSP1 RD1 PSP1	20	39	39	I/O I/O	ST TTL	Digital I/O. Parallel Slave Port data.
RD2/PSP2 RD2 PSP2	21	40	40	I/O I/O	ST TTL	Digital I/O. Parallel Slave Port data.
RD3/PSP3 RD3 PSP3	22	41	41	I/O I/O	ST TTL	Digital I/O. Parallel Slave Port data.
RD4/PSP4 RD4 PSP4	27	2	2	I/O I/O	ST TTL	Digital I/O. Parallel Slave Port data.
RD5/PSP5/P1B RD5 PSP5 P1B	28	3	3	I/O I/O O	ST TTL	Digital I/O. Parallel Slave Port data. Enhanced CCP1 output.
RD6/PSP6/P1C RD6 PSP6 P1C	29	4	4	I/O I/O O	ST TTL	Digital I/O. Parallel Slave Port data. Enhanced CCP1 output.
RD7/PSP7/P1D RD7 PSP7 P1D	30	5	5	I/O I/O O	ST TTL	Digital I/O. Parallel Slave Port data. Enhanced CCP1 output.

Pin Name	Pin Number			Pin	Buffer	Description	
FIII Name	PDIP	QFN	TQFP	Туре	Type	Description	
						PORTE is a bidirectional I/O port.	
RE0/RD/AN5	8	25	25				
RE0				I/O	ST	Digital I/O.	
RD				- 1	TTL	Read control for Parallel Slave Port	
						(see also WR and CS pins).	
AN5				l	Analog	Analog input 5.	
RE1/WR/AN6	9	26	26				
RE1				I/O	ST	Digital I/O.	
WR					TTL	Write control for Parallel Slave Port	
ANG					A l	(see CS and RD pins).	
AN6				ı	Analog	Analog input 6.	
RE2/CS/AN7	10	27	27				
RE2				I/O	ST	Digital I/O.	
CS				'	TTL	Chip Select control for Parallel Slave Port	
AN7				ı	Analog	(see related RD and WR). Analog input 7.	
				'	7 trialog		
RE3	_	_	_		_	See MCLR/VPP/RE3 pin.	
Vss	12, 31	6, 30,	6, 29	Р	_	Ground reference for logic and I/O pins.	
		31					
VDD	11, 32		7, 28	Р	-	Positive supply for logic and I/O pins.	
		28, 29	10.15				
NC	-	13	12, 13,	_	-	No connect.	
			33, 34				

Osciladores

- Base de tempo utilizada pela CPU para executar cada instrução;
- □ Obtida através de um sinal de clock gerado por um circuito oscilador;
- Onda quadrada;
- □ A freqüência da onda quadrada é o numero de ciclos de clock produzidos em um segundo (Hertz);
- □ Alguns microcontroladores precisam de um circuito de clock externo, outras possuem oscilador interno, como por exemplo o PIC18F4520;
- No PIC18F4520 cada instrução (com algumas exceções) consome quatro ciclos de clock, o que é chamado de Ciclo de Instrução;

Osciladores

Clock de 4 MHz

Clock

250 ns Ciclo de

1 us

Ciclo de Instrução

Osciladores do PIC18F4520

- Opções disponíveis para o oscilador são:
 - □**LP:** Cristal de baixa potência (até 200kHz);
 - ■XT: cristal/ressonador (até 4MHz);
 - ■HS: cristal/ressonador de alta freqüência (acima de 4MHz);
 - □ **HSPLL:** cristal/ressonador de alta freqüência com o PLL habilitado;
 - ■RC: RC externo com pino RA6 configurado como uma saída de clock (Fosc/4);
 - ■RCIO: RC externo com pino o RA6 como I/O pino digital;

Osciladores do PIC18F4520

- Opções disponíveis para o oscilador são:
 - □INTIO1: oscilador interno com Fosc/4 no pino RA6 e o pino RA7 configurado como I/O digital;
 - □INTIO2: oscilador interno com RA6 e RA7 configurados como I/O digital;
 - ■EC: oscilador externo com pino RA6 configurado como uma saída de clock (Fosc/4);
 - ■**ECIO**: oscilador externo com o pino RA6 como I/O pino digital;

Oscilador Cristal/Ressonador

 A opção para os bits de configuração neste caso deve ser LP, XT, HS ou HSPLL;

Osc Type	Crystal Freq	Typical Capacitor Values Tested:				
	rieq	C1	C2			
LP	32 kHz	30 pF	30 pF			
XT	1 MHz 4 MHz	15 pF 15 pF	15 pF 15 pF			
HS	4 MHz 10 MHz 20 MHz 25 MHz 25 MHz	15 pF 15 pF 15 pF 0 pF 15 pF	15 pF 15 pF 15 pF 5 pF 15 pF			

Oscilador RC

- Na configuração RC, um sinal digital com Fosc/4 é fornecido no pino RA6/OSC2/CLKOUT.
- Na configuração RCIO é ativada a função de I/O no pino RA6;

Oscilador Interno

Dispensam a utilização de componentes externos;

INTOSC

- O oscilador principal, o INTOSC, possui uma freqüência de 8
 MHz e pode ser utilizado com oscilador de clock;
- O INTOSC possui um recurso de postscale que permite ajustar a freqüência;

INTRC

- O INTRC, provê uma freqüência de 31kHz;
- O INTRC é habilitado se ele for selecionado como origem do sinal de clock;
- Ele também é habilitado automaticamente quando um dos seguintes recursos é selecionado:
 - Power-Up Timer

- Fail-Safe Clock Monitor

- Watchdog Timer

- Two-Speed Start-up

Oscilador Externo

 Seja pra obter um ato nível de precisão do clock ou para sincronizar o uC com outros dispositivos presente no sistema;

- Na configuração EC, um sinal digital com Fosc/4 é fornecido no pino RA6/OSC2/CLKOUT;
- Na configuração ECIO é ativada a função de I/O no pino RA6;

HSPLL

- O PLL é um recurso utilizado em associação à opção HS;
 - Pode ser utilizado para se obter uma frequência de clock quatro vezes maior do que aquela fornecida pelo cristal;
 - Utilizado quando deseja-se reduzir a emissão do EMI que é maior com a utilização de cristais de alta freqüência;

Escolha do Oscilador

- Fatores a serem levados em consideração:
 - Nível de precisão desejada
 - Temperatura ambiente
 - Interferências eletromagnéticas
 - Custo
 - Etc.
- Parâmetros que devem ser atendidos:
 - 1º Eficácia do projeto
 - 2º Custo do projeto

Reset

Próxima Aula

Aula 04 Ambientes de Programação (IDE - Compilador Simulador - Gravador)