Assignment 2 Intro to Modern Analysis

1. Let A be a set, and let P(A) be the collection of all subsets of A. Is there a bijection from A onto P(A)?

2. Let M be an infinite set, and let A be a countable set. Is there a bijection from M onto $M \cup A$?

3. Let $\{A_k\}_{k\geqslant 1}$ be a sequence of subsets of a metric space. Prove or disprove.

(a) For each integer N > 0, we have

$$\bigcup_{k=1}^{N} \overline{A_k} \subset \overline{\bigcup_{k=1}^{N} A_k}$$

(b) For each integer N > 0, we have

$$\bigcup_{k=1}^{N} \overline{A_k} = \overline{\bigcup_{k=1}^{N} A_k}.$$

(c) We have

$$\bigcup_{k=1}^{\infty} \overline{A_k} \subset \overline{\bigcup_{k=1}^{\infty} A_k}.$$

(d) We have

$$\bigcup_{k=1}^{\infty} \overline{A_k} = \overline{\bigcup_{k=1}^{\infty} A_k}$$

4. Let A° denote the set of interior points of A.

- (a) Prove that A° is open.
- (b) Prove that A is open if and only if $A = A^{\circ}$.
- (c) If $B \subset A$ and B is open, prove that $B \subset A^{\circ}$.
- (d) Prove that the complement of A° is the closure of the complement of A.

5. Let X be the interval $[0,2) \subset \mathbb{R}$. The restriction of the usual metric on \mathbb{R} to X is a metric on X.

1

- (a) Is the set [0,1) open relative to X?
- (b) Is the set [1,2) closed relative to X?
- (c) Is the set [1,2) compact relative to X?

- **6.** Give an example of an open cover of (0,1) which admits no finite subcover.
- 7. Let $f(x) = x^2$.
 - (a) Let $x_n = f(2 + \frac{1}{n})$. Does x_n converge? Prove your answer is correct.
 - (b) Let $y_n = f(n)$. Does y_n converge? Prove your answer is correct.
- **8.** Let $\{A_n\}_{n\geqslant 1}$ be a sequence of open dense subsets of \mathbb{R} . Let A denote the intersection

$$A = \bigcap_{n \ge 1} A_n$$
.

- (a) Let U be an open subset of \mathbb{R} . Show that there is a sequence of points $x_n \in U \cap A_k$ together with a sequence of radii $0 < r_n < 1/n$ such that $\overline{B_{r_{n+1}}(x_{n+1})} \subset B_{r_n}(x_n) \cap A_n$.
- (b) Show that the sequence x_n is Cauchy, and hence converges to a point x of \mathbb{R} .
- (c) Show that $x \in U \cap A$.
- (d) Conclude that A is dense in \mathbb{R} .
- **9.** For $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$ and p > 0, write

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}.$$

Fix a point $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$, and for each positive integer k > 0, let a_k denote the sequence of real numbers $a_k = ||x||_k$. Show that

$$\lim_{k \to \infty} a_k = \max_{1 \le i \le n} |x_i|.$$

10. In the notation of the previous question, define a function $d_p: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ by the rule

$$d_p(x,y) = ||x - y||_p$$
.

Is (\mathbb{R}^n, d_p) a metric space for $p \in (0, 1)$ and n > 1?