Numerical Optimization

Graduate Course

Introduction

Wen Huang School of Mathematical Sciences Xiamen University

Compiled on February 22, 2022

Optimization Problem

Optimization problem:

$$\min_{x \in \mathcal{F}} f(x)$$

- ullet ${\cal F}$ is the domain
- f is a real-valued function from \mathcal{F} to \mathbb{R}

Recipe for Solving an Optimization Problem

Basic recipe:

Initial guess \Longrightarrow If unacceptable \Longrightarrow Update it until acceptable

- Optimality condition
- Algorithm

Domain and objective play important roles in optimality condition analysis and algorithm design.

Optimality conditions

- Necessary conditions: (solutions ⇒ conditions)
- Sufficient conditions: (conditions ⇒ solutions)
- ullet Relate to f and ${\mathcal F}$

For example, $f \in C^2$, $\mathcal{F} = \mathbb{R}$,

- a necessary condition of x_* is $f'(x_*) = 0$
- a sufficient condition of x_* is $f'(x_*) = 0$ and $f''(x_*) > 0$

4

Algorithms

• Generally, we will use iterative methods

$$x_{k+1} = F(x_k, x_{k-1}, \dots, x_{k-s})$$

- Algorithms of interest are
 - · robust analytically and numerically
 - efficient in time and space complexity
 - and must converge reliably and quickly

5

Algorithms

Global vs. Local Convergence

- A locally convergent method converges to a local minimizer only when the initial point is sufficiently close to the local minimizer.
- The particular local minimizer reached is a complicated function of the initial point, the method, and the problem.
- A globally convergent method converges to a stationary point (hopefully also a local minimizer) for any initial point (or fails in one of a small number of detectable ways).
- Global optimization methods attempt (or make it very likely) to find a global minimizer. This is much more difficult in general.

Important Problem Types

- Unconstrained partly smooth/smooth continuous optimization
- Unconstrained continuous and noisy optimization
- Nonlinear programming
- Convex programming
- Quadratic programming
- Convex Quadratic programming
- linear programming (continuous/discrete)
- linear/general integer programming
- general combinatorial programming
- Manifold optimization

This course covers

- Unconstrained smooth optimization
- Constrained smooth optimization
- Unconstrained nonsmooth optimization
- Duality
- Manifold optimization

Unconstrained smooth optimization

- Optimality conditions
- Line-search-based methods
 - For an appropriate step size
 - Step size conditions
 - Algorithms for finding a step size
 - Initial step size
 - Algorithms
 - A steepest descent method
 - Nonlinear conjugate gradient methods
 - Newton method and inexact Newton methods
 - Quasi-Newton methods
 - Limited-memory versions of quasi-Newton methods
 - · Preconditioned versions of all the above methods
 - Convergence analyses
- Trust-region-based methods
 - Approximately solve a local model
 - Schemes for the local model, including Newton and quasi-Newton methods
 - Convergence analysis

Constrained smooth optimization

- Optimality conditions
 - First order optimality condition: Karush-Kuhn-Tucker (KKT) conditions
 - Second order necessary/sufficient conditions
- Linear programming
 - Standard form and geometry
 - Simplex method
 - Interior point method
- Quadratic programming
 - Active set methods
 - Interior point methods
- General constrained smooth optimization problems
 - Penalty and augmented Lagrangian methods
 - Sequential quadratic programming
 - Interior point methods

Unconstrained nonsmooth optimization

- Calculus of partly smooth functions
 - Generalization of differential
 - Calculus of the generalization of differential
- Bundle algorithms
 - Gradient sampling algorithm
 - \bullet ϵ -subgradient with quasi-Newton
- Partly smooth functions with splittable structure
 - Proximal mapping
 - Proximal gradient method
 - Invariant of proximal gradient method

Duality

- Dual problems
 - Dual problem of linear programming
 - Relation to the KKT conditions
- Primal and dual problems
 - Weak and strong duality
 - Geometric and saddle-point interpretations
- Conjugate functions
 - Definition and properties
 - Conjugate calculus
 - Subdifferentials

Manifold optimization

- Motivations
 - Blind source separation
 - Shape space
- Embedded submanifold
 - Definitions
 - Differential
 - Riemannian metric
 - Gradient
 - Retraction
- A Riemannian steepest descent algorithm
 - First order expansion
 - Line search condition
 - Convergence analysis

References I