Colle 0

Mesure de moment d'inertie – Sujet

La figure ci-dessus représente un dispositif conçu pour déterminer le moment d'inertie I d'un solide de révolution (2) par rapport à son axe. Soit R_0 un repère galiléen lié au bâti (S_0) tel que l'axe $(O, \overrightarrow{x_0})$ soit vertical descendant. Les deux portées sur lesquelles roule le solide (2) sont des portions de la surface d'un cylindre de révolution d'axe $(O, \overrightarrow{z_0})$ et de rayon r. Le solide (2), de masse m, de centre d'inertie C, possède deux tourillons de même rayon a. Soit f le coefficient de frottement entre (2) et (S_0) . L'étude se ramène à celle d'un problème plan paramétré de la façon suivante :

- ▶ le tourillon de **(2)**, de centre C, roule sans glisser en A sur la portée cylindrique de **(** S_0 **)**;
- ► R_1 est un repère tel que $\overrightarrow{OA} = r\overrightarrow{x_1}$ et on pose $\theta = (\overrightarrow{x_0}, \overrightarrow{x_1})$;
- ► R_2 est un repère lié à 2 avec $\varphi = (\overrightarrow{x_1}, \overrightarrow{x_2})$. On suppose que $\varphi = 0$ lorsque $\theta = 0$.

Question 1 Donner la relation entre φ et θ .

Question 2 Déterminer l'équation du mouvement de **(2)** par rapport à **(** S_0 **)** en fonction de θ .

Question 3 On suppose que l'angle θ reste petit au cours du mouvement. Montrer que le mouvement est périodique et déterminer la période T des oscillations de **(2)**.

Question 4 En déduire le moment d'inertie *I* de **(S)** sachant que : T = 5 s; a = 12,5 mm; r = 141,1 mm; g = 9,81 m s⁻²; m = 7217 g; f = 0,15.

Question 5 Déterminer l'angle θ_0 maxi pour qu'il n'y ait pas glissement en A. Faire l'application numérique.

Équipe PT – PT★ La Martinière Monplaisir.

C1-05

C2-09

