

Turma: IME-ITA

Professor: _ Data:

Instruções:

Nota:

- Faça sua avaliação à caneta.
- Resoluções a lápis não serão corrigidas.
- Questões discursivas sem desenvolvimento não serão consideradas.
- Não serão fornecidas folhas para rascunho.

QUÍMICA

Dados

- Constante de Avogadro, $N_{\rm A} = 6.02 \cdot 10^{23} \, {\rm mol}^{-1}$
- Carga elementar, $e = 1.6 \cdot 10^{-19} \,\mathrm{C}$
- Constante de Planck, $h = 6.6 \cdot 10^{-34} \,\mathrm{m}^2 \,\mathrm{kg} \,\mathrm{s}^{-1}$
- Constante de autoionização da água, $K_{\rm w}=1\cdot 10^{-14}$
- Constante de Faraday, $F = 96500 \,\mathrm{C} \,\mathrm{mol}^{-1}$
- Constante dos gases, $R = 8.31 \,\mathrm{J \, K^{-1} \, mol^{-1}}$
- Constante de Rydberg, $\mathcal{R} = 1.1 \cdot 10^7 \, \text{m}^{-1}$
- Velocidade da luz no vácuo, $c = 3 \cdot 10^8 \,\mathrm{m\,s^{-1}}$

Definições

- Composição do ar atmosférico: 79% N_2 e 21% O_2

Aproximações Numéricas

- $\sqrt{2} = 1.4$

- $\sqrt{3} = 1.7$ $\sqrt{5} = 2.2$ $\log 2 = 0.3$ $\log 3 = 0.5$ $\ln 10 = 2.3$

Tabela Periódica

1	5	6	7	8	11	12	14	16	17	20	32	33	34
Н	В	C	N	0	Na	Mg	Si	S	Cl	Ca	Ge	As	Se
1,01	10,81	12,01	14,01	16,00	22,99	24,31	28,09	32,06	35,45	40,08	72,63	74,92	78,97

Uma estação de rádio transmite em $98,4\,\mathrm{MHz}.$

Determine o comprimento de onda do sinal emitido pela estação.

Questão 2

Um átomo de hidrogênio emite radiação com $n_1=2$ e $n_2=5$.

 ${\bf Determine}$ o comprimento de onda da radiação emitida.

Apresente a configuração eletrônica do estado fundamental e os números quânticos do orbital atômico mais energético o átomo de arsênio.

Questão 4

Considere os íons: S^{2-} , Cl^- , P^{3-} .

 ${\bf Ordene}$ os í
ons em função de seu raio iônico.

Considere os pares de elementos

- 1. Germânio e selênio.
- 2. Boro e carbono.

Compare a afinidade eletrônica dos elementos de cada par.

Questão 6

Considere as equações simplificadas.

1.
$$KClO_3(s) \longrightarrow KCl(s) + O_2(g)$$

2.
$$KClO_3(l) \longrightarrow KCl(s) + KClO_4(g)$$

3.
$$N_2H_4(aq) + I_2(aq) \longrightarrow HI(aq) + N_2(g)$$

$$4. \ P_4O_{10}(s) + H_2O\left(l\right) \longrightarrow H_3PO_4(l)$$

 ${\bf Apresente}$ a equação química balanceada para cada equação simplificada.

O dióxido de carbono pode ser removido dos gases emitidos por uma usina termelétrica combinando-o com uma emulsão de silicato de cálcio em água:

$$2 \operatorname{CO}_2(g) + \operatorname{H}_2O(1) + \operatorname{CaSiO}_3(s) \longrightarrow \operatorname{SiO}_2(s) + \operatorname{Ca}(\operatorname{HCO}_3)_2(\operatorname{aq})$$

Determine a massa de $CaSiO_3$ necessária para reagir completamente com $0.3 \, kg$ de dióxido de carbono.

Questão 8

Quando $0.24\,\mathrm{g}$ de aspirina (um composto de carbono, hidrogênio e oxigênio) é queimado, formam-se $0.52\,\mathrm{g}$ de dióxido de carbono e $0.094\,\mathrm{g}$ de água.

Determine a alternativa com a fórmula empírica da aspirina.

Alguns mergulhadores estão explorando um naufrágio e desejam evitar a narcose associada à respiração de nitrogênio sob alta pressão. Eles passaram a usar uma mistura de neônio-oxigênio que contém 141 g de oxigênio e 335 g de neônio. A pressão nos tanques de gás é 50 atm.

Determine a pressão parcial de oxigênio nos tanques.

Questão 10

A nitroglicerina é um líquido sensível ao choque, que detona pela reação:

$$C_3H_5(NO_3)_3(l) \longrightarrow N_2(g) + H_2O(g) + CO_2(g) + O_2(g)$$

 $\textbf{Determine} \text{ o volume total de gases produzido, em } 88,5\,\mathrm{kPa} \text{ e } 175\,^{\circ}\mathrm{C}, \text{ na detonação de } 454\,\mathrm{g} \text{ de nitroglicerina}.$