Digital Integrated Circuits A Design Perspective

Chapter 5
Arithmetic Circuits

A Generic Digital Processor

Bit-Sliced Datapath

From register files / Cache / Bypass

To register files / Cache

outline

- Adder
- Datapath functional unit
 - Comparators
 - Shifters
 - Multi-input Adders
- Multipliers

Adders

Multitudes of contrivances were designed, and almost endless drawings made, for the purpose of economizing the time and simplifying the mechanism of carriage

__charles babbage, on difference engine No.1,1864

Outline

- Single-bit Addition
- Carry-Ripple Adder
- Carry-Skip Adder
- Carry-Lookahead Adder
- Carry-Select Adder
- Carry-Increment Adder
- Tree Adder

PGK

- For a full adder, define what happens to carries
 - Generate: C_{out} = 1 independent of C
 - G =
 - Propagate: C_{out} = C
 - P =
 - Kill: C_{out} = 0 independent of C
 - K =

PGK

- For a full adder, define what happens to carries
 - Generate: C_{out} = 1 independent of C

- Propagate: C_{out} = C
 - P = A ⊕ B

$$C_o(G, P) = G + PC_i$$

$$S(G,P) = P \oplus C_i$$

- Kill: C_{out} = 0 independent of C
 - K = ~A ~B
- Note that we will be sometimes using an alternate definition for (only for carry)

Propagate
$$(P) = A + B$$

Single-Bit Addition

Half Adder

Α	В	C _{out}	S
0	0		
0	1		
1	0		
1	1		

$$S = A\overline{BC} + \overline{ABC} + \overline{ABC} + ABC$$

$$= A \oplus B \oplus C = P \oplus C$$

$$C_{out} = AB + (A + B)C$$

$$= \overline{AB} + (\overline{A} + \overline{B})\overline{C} = MAJ(A, B, C)$$

Full Adder

Α	В	С	C _{out}	S
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

Single-Bit Addition

Half Adder

Α	В	C _{out}	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

$$S = A\overline{BC} + \overline{ABC} + \overline{ABC} + A\overline{BC} + ABC$$

$$= A \oplus B \oplus C = P \oplus C$$

$$C_{out} = AB + (A + B)C$$

$$= \overline{AB} + (\overline{A} + \overline{B})\overline{C} = MAJ(A, B, C)$$

Full Adder

Full Adder Design I

implementation from eqns

 $C_{out} = AB + (A + B)C$

$$S = A \oplus B \oplus C$$

$$C_{\text{out}} = MAJ(A, B, C)$$

$$A \rightarrow A \rightarrow B \rightarrow B$$

$$C \rightarrow C$$

$$C_{\text{out}} = A \oplus B \oplus C = P \oplus C$$

$$A \rightarrow B \oplus C \rightarrow B$$

$$C \rightarrow C \rightarrow B$$

$$C \rightarrow C \rightarrow C$$

$$C \rightarrow B \rightarrow C \rightarrow C$$

$$C \rightarrow C \rightarrow C$$

$$C \rightarrow C \rightarrow$$

 $=\overline{\overline{AB}+(\overline{A}+\overline{B})\overline{C}}=MAJ(A,B,C)$ Fewer than mentioned above because of sharing some transistors for XOR gate Slide 11

Full Adder Design II

Factor S in terms of C_{out}

$$S = ABC + (A + B + C)(\sim C_{out})$$

Cout=MAJ(A,B,C)

Critical path is usually C to C_{out} in ripple adder

$$C_o = AB + BC_i + AC_i$$
$$S = ABC_i + \overline{C_o}(A + B + C_i)$$

Full Adder Design II

Complimentary Static CMOS Full Adder__28 Transistors

Mirror Adder-Stick Diagram

$$C_o = AB + BC_i + AC_i$$
$$S = ABC_i + \overline{C_o}(A + B + C_i)$$

The Mirror Adder

- The NMOS and PMOS chains symmetrical. A maximum of two series transistors arranged in the carry-generation
- the most critical issue is the minimization of the capacitance at node Co. The reduction of the diffusion capacitances is particularly important.
- The capacitance at node Co is composed of 4 diffusion capacitances, 2 internal gate capacitances, and 6 gate capacitances in the connecting adder cell.
- The transistors connected to Ci are closest to the output.
- Only the transistors in the carry stage have to be optimized for optimal speed. All transistors in the sum stage can be minimal size.

Inversion Property

$$\begin{split} \bar{S}(A,B,C_{i}) &= S(\bar{A},\bar{B},\overline{C}_{i}) \\ \overline{C}_{o}(A,B,C_{i}) &= C_{o}(\bar{A},\bar{B},\overline{C}_{i}) \end{split}$$

Minimize Critical Path by Reducing Inverting Stages

Exploit Inversion Property

Transmission Gate

Pass-Transistor Based

Complementary Pass Transistor Logic

Full Adder Design III

Complementary Pass Transistor Logic (CPL)

Full Adder Design IV

Manchester Carry Chain

Generate / Propagate

- Equations often factored into G and P
- Generate and propagate for groups spanning i:j

$$G_{i:j} = G_{i:k} + P_{i:k} - \mathbf{g} G_{k-1:j}$$

$$P_{i:j} = P_{i:k} gP_{k-1:j}$$

Base case

$$G_{i:i} \equiv G_i = A_i \ gB_i$$

• Sum: $P_{i:i} = P_i = A_i \oplus B_i$

$$G_{0:0} \equiv G_0 = C_{in}$$

$$P_{0:0} \equiv P_0 = 0$$

$$S_i = P_i \oplus G_{i-1:0}$$

PG Logic

$$G_{0:0} \equiv G_0 = C_{in}$$

 $P_{0:0} \equiv P_0 = 0$

1: Bitwise PG logic

$$G_{i:i} \equiv G_i = A_i \ gB_i$$
$$P_{i:i} \equiv P_i = A_i \oplus B_i$$

2: Group PG logic
$$G_{i:j} = G_{i:k} + P_{i:k} \text{ g } G_{k-1:j}$$

$$P_{i:j} = P_{i:k} g P_{k-1:j}$$

3: Sum logic

$$S_i = P_i \oplus G_{i-1:0}$$

Carry-Ripple Revisited

$$G_{i:0} = G_i + P_i gG_{i-1:0}$$

Carry-Ripple PG Diagram

$$t_{\text{ripple}} = t_{pg} + (N - 1)t_{AO} + t_{xor}$$

PG Diagram Notation

Higher-Valency Cells

Manchester Carry Chain

$$C_0 = G_{0:0} = C_0$$

$$C_1 = G_{1:0} = G_1 + P_1C_0$$

$$C_2 = G_{2:0} = G_2 + P_2(G_1 + P_1C_0)$$

$$C_3 = G_{3:0} = G_3 + P_3(G_2 + P_2(G_1 + P_1C_0))$$

Manchester Carry Chain

