Standards of Competence for Category "A" Hydrographic Surveyors

International Hydrographic Organization

Published by the International Hydrographic Organization 4b quai Antoine 1er Principauté de Monaco Tel: (377) 93.10.81.00 Fax: (377) 93.10.81.40 info@iho.int

© Copyright International Hydrographic Organization 2018

This work is copyright. Apart from any use permitted in accordance with the Berne Convention for the Protection of Literary and Artistic Works (1886), and except in the circumstances described below, no part may be translated, reproduced by any process, adapted, communicated or commercially exploited without prior written permission from the International Hydrographic Organization (IHO). Copyright in some of the material in this publication may be owned by another party and permission for the translation and/or reproduction of that material must be obtained from the owner.

This document or partial material from this document may be translated, reproduced or distributed for general information, on no more than a cost recovery basis. Copies may not be sold or distributed for profit or gain without prior written agreement of the IHO and any other copyright holders.

In the event that this document or partial material from this document is reproduced, translated or distributed under the terms described above, the following statements are to be included:

"Material from IHO publication [reference to extract: Title, Edition] is reproduced with the permission of the International Hydrographic Organization (IHO) Secretariat (Permission No/...) acting for the International Hydrographic Organization (IHO), which does not accept responsibility for the correctness of the material as reproduced: in case of doubt, the IHO's authentic text shall prevail. The incorporation of material sourced from IHO shall not be construed as constituting an endorsement by IHO of this product."

"This [document/publication] is a translation of IHO [document/publication] [name]. The IHO has not checked this translation and therefore takes no responsibility for its accuracy. In case of doubt the source version of [name] in [language] should be consulted."

The IHO Logo or other identifiers shall not be used in any derived product without prior written permission from the IHO.

Contents

Fore	word	V
Intro	oduction	vi
Subj	ns and definitionsiects, topics, and elementsrning outcomes and list of content	vii
	gramme preparation and submissionof acronyms and initialisms used in this document	
1. 1.1. 1.2. 1.3. 1.4. 1.5.	BASIC SUBJECTS	
2. 2.1. 2.2. 2.3.	FOUNDATION SCIENCE SUBJECTSF1: Earth ModelsF2: OceanographyF3: Geology and geophysics	10
3. 3.1. 3.2. 3.3. 3.4. 3.5. 3.6. 3.7. 3.8.	HYDROGRAPHIC SCIENCE SUBJECTS H1: Positioning H2: Underwater Sensors and Data Processing H3: LiDAR and Remote Sensing H4: Survey Operations and Applications H5: Water Levels and Flow H6: Hydrographic Data Acquisition and Processing H7: Management of Hydrographic Data H8: Legal Aspects	
4.	CMFP: COMPLEX MULTIDISCIPLINARY FIELD PROJECT	46

Foreword

Comments arising from the experience gained in the application of the guidance are welcome. They should be addressed to the Chair of the International Board on Standards of Competence for Hydrographic Surveyors and Nautical Cartographers at the above address. This document is published periodically. Please check with IHO for the latest edition, including current amendments.

Introduction

All components of the hydrographic surveying and nautical cartography profession face challenges as to how best to ensure the continuance of high standards and how best to ensure the continuation of best practices based on minimum standards of competence world-wide. In order to achieve these objectives, three international organizations (FIG, IHO and ICA) have developed Standards of competence that institutions or professional bodies may adopt for their educational/training programmes and competency schemes.

Standards indicate the minimum competences necessary for hydrographic surveyors. Standards recognize two levels of competence. Category "A" programmes introduces competences from the underlying principles level. Category "B" programmes introduce the competences from a practical level.

The intention is that a Category "A" individual with appropriate experience, would be a senior professional in their chosen field (government, industry, academia). Category "B" individuals with appropriate experience would be technical professionals leading and delivering products and services to meet specifications and outcomes.

Terms and definitions

Subjects, topics, and elements

The S5-A standard contains the following list of **B**asic subjects, **F**oundation Science subjects and **H**ydrographic Science subjects:

- B1: Mathematics, statistics, theory of observations
- B2: Information and Communication Technology
- B3: Physics
- B4: Nautical science
- B5: Meteorology
- F1: Earth Models
- F2: Oceanography
- F3: Geology and geophysics
- H1: Positioning
- H2: Underwater Sensors and Data Processing
- H3: LiDAR and Remote Sensing
- H4: Survey Operations and Applications
- H5: Water Levels and Flow
- H6: Hydrographic Data Acquisition and Processing
- H7: Management of Hydrographic Data
- H8: Legal Aspects
- CMFP: COMPLEX MULTIDISCIPLINARY FIELD PROJECT

Topics and Elements:

- Each Foundation Science, Hydrographic Science or Basic subject comprises a list of topics which are denoted by Bx.y, Fx.y, or Hx.y;
- Each topic contains elements which are denoted by Bx.y<c> Fx.y<c> or Hx.y<c>.

For example, the *subject* H1 "Positioning" contains the *topic* H1.1 Vessel and sensor reference frames that has the *element* H1.1a "Common reference frames for sensors".

Learning outcomes and list of content

It is important to understand that each element is associated with:

- one or more intended *learning outcomes*, that a student should be able to achieve on completion of the programme. All *learning outcomes* should be assessed. This may be done through one of, or a combination of, the following: examination, assessed exercise or presentation, laboratory report, or final project work.
- a list of content. This list is associated with one or more learning outcomes and describes the theoretical knowledge or practical/technical context which the course syllabi should address in order to meet a particular learning outcome.

Programme preparation and submission

The preparation of a programme submission to the IBSC should be done in accordance with the document entitled GUIDELINES FOR THE IMPLEMENTATION OF THE STANDARDS OF COMPETENCE FOR HYDROGRAPHIC SURVEYORS. This document is available from the IHO website: www.iho.int → Standards & Publications.

The cross reference table is a mandatory requirement for a programme submission and **MUST** be completed. A template is specified and is available from the IHO website: www.iho.int

List of acronyms and initialisms used in this document

1D One-dimensional

2D Two-dimensional

3D Three-dimensional

A Advanced (level of knowledge)

ADCP Acoustic Doppler Current Profiler

AIS Automatic Identification System

ASV Autonomous Surface Vehicle

AUV Autonomous Underwater Vehicle

B Basic (level of knowledge)

CAD Computer Aided Design

CMFP Complex Multidisciplinary Field Project

CW Continuous Wavelength

DOP Dilution of Precision

ECDIS Electronic Chart Display and Information System

ECS Electronic Chart System

ENC Electronic Navigational Chart

EPIRB Emergency Position Indicating Radio Beacon

F Fundamental Sciences Subjects

FIG International Federation of Surveyors

FOG Fiber Optic Gyroscope

GEBCO General Bathymetric Chart of the Oceans

GIS Geographical Information System

GK Gauss-Krüger

GLONASS GLObal NAvigation Satellite System

GMDSS Global Maritime Distress and Safety System

GNSS Global Navigation Satellite System

GPS Global Positioning System

GRS80 Geodetic Reference System (1980)

H Hydrographic Sciences Subjects

HAT Highest Astronomical Tide

I Intermediate (level of knowledge)

IBSC International Board on Standards of Competence for

Hydrographic Surveyors and Nautical Cartographers

ICA International Cartographic Association

IHO International Hydrographic Organization

IMU Inertial Motion Unit

INS Inertial Navigation System

LAN Local Area Network

LAT Lowest Astronomical Tide

LiDAR Light Detection And Ranging

MBES Multi-Beam Echo Sounder

MEMS Microelectromechanical systems

MSDI Marine Spatial Data Infrastructure

MSI Maritime Safety Information

MSL Mean Sea Level

NAVTEX Navigational Telex

NMEA National Marine Electronics Association

NtoM Notice to Mariners

P Practicals (fieldwork and/or laboratories)

RAM Random Access Memory

RINEX Receiver Independent Exchange Format

RNC Raster Navigational Chart

ROV Remotely Operated Underwater Vehicle

S-44 IHO Publication S-44 — Standards for Hydrographic

Surveys

S-100 IHO Publication S-100 *Universal Hydrographic Data*

Model

S-102 IHO Publication S-102 Bathymetric Surface Product

Specification

SARSAT Search And Rescue Satellite Aided Tracking

SAS Synthetic Aperture Sonar

SBES Single Beam Echo Sounder

SG Self-guided exercises (or student's personal

independent work)

SQL Structured Query Language

SSDM Standard Seabed Data Model

T Theoretical (theory through lectures)

TIN Triangulated Irregular Network

UNCLOS United Nations Convention on the Law of the Sea

UPS Universal Polar Stereographic

USBL Ultra Short Baseline

UTM Universal Transverse Mercator

WWNWS World Wide Navigational Warning Service

 XML

Extended Markup Language

Standards of Competence for Category "A" Hydrographic Surveyors

1. BASIC SUBJECTS

1.1. B1: Mathematics, statistics, theory of observations

Topic/Element	Content	Learning outcomes	
B1.1 Geometry and Linear Algebra			
B1.1a Geometry <i>(B)</i>	a) Conic Sections, geometry of the ellipse and of the ellipsoid.b) Parametric equations of curves and surfaces.	Express curves and surfaces in parametric form. Compute lengths and coordinates on an ellipse.	
B1.1b Linear Algebra (I)	 a) Vector and affine spaces, vector and inner products, norms. b) Linear operators, matrix representation, composition, transpose. c) Translations, rotations, coordinate transformations, similitudes, orthogonal projection. 	Derive and compute 2D and 3D transformations, as typically involved in geodesy, surveying and survey data georeferencing.	
B1.1c Numerical methods for linear systems of equations (I)	 a) Systems of linear equations, Gauss elimination. b) Matrix decomposition, and factorization. c) Condition number of a matrix. 	Solve linear equations by numerical methods in a scientific computing environment and analyze error bounds.	
B1.2 Differential calcul	ıs and differential equations		
B1.2a Differential and integral calculus (B)	a) Real and vector valued functions.b) Series, Taylor expansionsc) Gradient of a real-valued functions.	Apply differential calculus to real and vector valued functions from a ndimensional vector space. Calculate integral of classical functions and approximate numerical values.	

Topic/Element	Co	ntent	Learning outcomes
	d)	Jacobian matrix	
	e) f)	Integrals of real-valued functions. Numerical integration	
	'	methods.	
	a)	Linear ordinary differential equations, general solution with right hand side.	Compute explicit solutions
B1.2b Differential equations (I)	b)	Nonlinear differential equations, and linearization.	for linear ordinary differential equations and apply numerical methods to approximate solutions to non-linear
	c)	Numerical methods for nonlinear ordinary differential equations.	differential equations.
D1 2c Numa visal	a)	Iterative methods.	A moly my man arian I manth a da ta
B1.2c Numerical solutions of non-linear equation (B)	b)	Rounding and numerical errors.	Apply numerical methods to find approximate solutions for non-linear equations.
B1.3 Probability and sta	tist	ics	
	a)	Probability measures, density functions	
	b)	Mathematical expectation, variance	Define probability measures,
	c)	Covariance, correlation	derive associated formulae and calculate values from data.
B1.3a Probabilities and Bayesian estimation (B, I)	d)	Conditional probabilities, Bayes law	(B) Select a distribution for a given
	e)	Minimum mean square estimation	random variable and apply a Bayesian estimation method. (I)
	f)	Distributions including normal, chi-squared, t and F	
B1.3b Statistics (I)	a)	Random variables, mean, variance, standard deviation	Compute confidence intervals and associated statistical measures for random variables using various distributions.

Topic/Element	Content	Learning outcomes
	b) Estimation of mean,	
	variance, covariance	
	c) Statistical testing, confidence intervals	

1.2. B2: Information and Communication Technology

Topic/Element	Content	Learning outcomes
B2.1 Computer systems (I)	 a) Central Processing Unit b) RAM, data storage devices and standards c) Communication board, serial links, communication ports and standards, buffers, Ethernet links, data transmission rates d) Communication protocols e) Clocks, clocks drift, time tagging and synchronization of data f) Operating systems g) Device drivers 	Describe the different components of a real-time data acquisition system, including various modes of communication and timetagging. Describe the role of a device driver and its relation to data exchange. Create/Configure a data link and evaluate any time delays across the link.
B2.2 Office work software suites (B)	a) Word processorsb) Spreadsheetsc) Graphics software	Use classical office work software suites. Prepare a poster describing scientific or project results.
B2.3 Programming (B)	 a) Basic operations of a computer program or script b) Algorithms (loops, conditional instructions) c) Scientific computation environments 	Write a program or script for data format conversion and/or basic algorithm computation. Configure a small network and transfer data over that network

Topic/Element	Content	Learning outcomes
	d) Application to data exchange, file conversion	
	a) Networks (LANs)	
	b) Network and cloud storage	Describe the different network
B2.4 Web and network services (B)	c) Internet	options used in remote data exchange and storage
	d) Networks integrity	applications.
	e) Communication protocols	
	a) File types (binary, text, XML)	Describe different types of
	b) Relational databases	geospatial data and their representation.
B2.5 Databases (B)	c) Geospatial databases	Construct a database, populate
	d) Database management systems and query languages	it and query its content using a database language, such as SQL.

1.3. B3: Physics

Topic/Element	Content	Learning outcomes
B3.1 Kinematics (B)	a) Angular and linear velocities, accelerationsb) Angular velocities addition rules, accelerations due to	Explain the principle and the relationship between position, velocity and acceleration for both
	rotational motion, Coriolis Law	rotational and linear motion.
	a) The inertial frame	Differentiate between inertial and Earth fixed
	b) Newton's law, forces, accelerations, energy	frames.
B3.2 Gravity (B)	c) Center of gravity, center of instantaneous rotation	Differentiate center of gravity from center of instantaneous rotation.
	d) Gravitational field	Develop the mathematical relationship between
	e) Potential fields	potential and acceleration in a gravitational field.

Topic/Element	Content	Learning outcomes
P2 2 Magneticm (P)	a) Magnetic characteristic of ferrous bodies	Describe ferromagnetic
B3.3 Magnetism (B)	b) Magnetic field	properties and resulting magnetic field.
B3.4 Waves <i>(B)</i>	 a) Harmonic waves modeling and wave parameters (amplitude, frequency, wavelength, celerity and phase) b) Longitudinal and transverse waves 	Explain harmonics in the context of waves and resulting constructive and destructive interferences patterns from multiple waves and sources.
bs.4 waves (b)	c) Intensity, Decibel scale	Use the Decibel scale
	d) Attenuation	to define intensity and characterize attenuation.
	e) Doppler effect	Explain the Doppler effect.
	f) Interferometric principles	
B3.5 Electromagnetic waves (B)	a) Electromagnetic waves properties and propagationb) Radiation, emission and absorption	Calculate field of view and resolving power of optics. Describe aberrations. Describe the effect of wavelength on the
	c) Reflection, refraction, diffraction	propagation in a medium. Describe the effect of a
	d) Optical reflectance	medium in the propagation of an electromagnetic wave
	a) Mirror, prisms, lenses and filters	Model a light ray-path through medium with various reflective and
B3.6 Geometrical optics (B)	b) Telescopic optics and magnification	refractive properties.
	c) Snell-Descartes law	Use the characteristics of a lens to calculate geometrical properties of an image.
	a) Principle of lasers	
B3.7 Lasers <i>(B)</i>	b) Laser parameters (frequency, wavelength)	Describe the operation, unique properties, and applications of stimulated
	c) Types of lasers	sources of emission.

Topic/Element	Content	Learning outcomes
	d) Laser attenuation	
	a) Pressure transducers	Describe different types
B3.8 Transducers and clocks	b) Thermal transducers	of transducers and their calibration requirements.
(B)	c) Types of clocks	Describe time measurement devices in relation to
	d) Measurement of elapsed time	their drift coefficient and accuracy.

1.4. B4: Nautical science

Topic/Element	Content	Learning outcomes
B4.1 Conventional aids to navigation (B)	a) Types of buoys and beaconsb) Radar beacons	Describe the characteristics and purposes of fixed and floating aids to navigation and the use of automatic
	c) AIS systems	identification systems.
	a) Sea areas	
	b) EPIRBs and SARSAT	
	c) Digital selective calling	
	d) NAVTEX	Describe the components and
B4.2 GMDSS (B)	e) SafetyNET	purpose of GMDSS.
	f) Promulgation of Maritime Safety Information (MSI)	
	g) World Wide Navigational Warning Service (WWNWS)	
	a) Content, datum, projection, scale and types of nautical charts	Plan and layout a route on a nautical chart, enter/ plot positions, identify
B4.3 Nautical charts (B)	b) Chart symbols	navigational hazards and revise navigational plan as required.
	c) Chart graticules	·
	d) Uncertainty indicators (e.g. source diagram,	Describe the content of a nautical chart and explain datum, projection and scale.

Topic/Element	Content	Learning outcomes
	reliability diagram, zone of confidence, notes)	
	e) Navigational hazards	Describe the uncertainty indicators associated with
	f) Plotting instruments	nautical charts.
	g) ECDIS, ENC, RNC and ECS	
	a) Sailing directions,	
	b) Light and radio lists,	
B4.4 Navigation publications (B)	c) Tides and current tables	Use content of nautical publications in a survey
	d) Notice to Mariners (NtoM) and Urgent Notice to Mariners	planning context.
	a) Magnetic compasses	Describe the capabilities, limitations and sources of
R4.5 Compassos (R)	b) Gyros	errors of magnetic and gyro compasses.
B4.5 Compasses (B)	c) Compass error and corrections	Determine and apply corrections for magnetic and gyro compass error.
	a) Fire extinguishers	
B4.6 Emergency	b) Life preservers and cold water survival suits, life rafts	Explain the importance of the emergency equipment and procedures.
procedures (B)	c) Distress signals and EPIRB	Identify types of fire
	d) Procedures for man- overboard, fire, and abandoning ship	extinguishers and their use.
	a) Water-tight doors and hatches	Describe procedures for maintaining a safe working
	b) Suspended loads	environment.
B4.7 Safe working practice (B)	c) Enclosed spaces	Design safe cable routes for survey instruments.
	d) Working aloft, with equipment over the side, life lines.	Define procedures for securing equipment for heavy weather.

Topic/Element	Content	Learning outcomes
	e) Work permitting	
	f) Securing equipment for sea	
	g) Cables and antenna installation	
	h) Earthing (grounding) of electrical equipment	
	i) High voltage electrical safety	
	j) Personal protective equipment	
	a) Types of wire and rope	
B4.8 Rope and wires (B)	b) Characteristics (stretch, floating, strength) of ropes and wires.	Select and tie basic knots. Select appropriate wire or
	c) Basic knots	rope.
	a) Rosette systems and instruments	
	b) ROVs, AUVs, ASVs, towed systems, catenary and layback	
B4.9 Towed and over the side instruments (I)	c) A-frames, cable blocks, electro-mechanical wire, wire strength factor for deep casts, slip rings and optical cabling	Specify procedures for deployment and recovery of oceanographic and hydrographic equipment.
	d) Moon pools	
	e) Launch and recovery	
	f) Station keeping and maneuvering	
B4.10 Anchoring (B)	a) Shipboard ground tackle including anchor, chain, windlass, stoppers	Describe ship and small boats anchoring and ground tackle.
	b) Small boat anchoring	

Topic/Element	Content	Learning outcomes
	c) Multiple anchors	Explain how the final position of the vessel can be adjusted through the use of anchors.
	a) Launch and recovery	
B4.11 Instrument moorings (I)	b) Anchors and acoustic releases	Specify types of mooring
	c) Scope, wire, flotation, tension	and procedures for mooring underwater instruments.
	d) Weights	

1.5. B5: Meteorology

Topic/Element	Со	ntent	Learning outcomes
	a)	Vertical structure and the variability of the atmosphere	Define physical meteorological parameters
B5.1 Weather	b)	Temperature, humidity, dewpoint, frost-point	Operate instruments and sensors used to register temperature, pressure, direction and intensity of wind.
fundamentals and observations (B)	c)	Atmospheric pressure, winds	Record these parameters according to internationally accepted standards.
	d)	Clouds and precipitations	decepted standards.
	e)	Rain, snow	Identify characteristics of weather by simple observation of the sea and the sky.
	f)	Visibility, advection fog and radiation fog	of the sea and the sky.
	g)	Pressure systems	
B5.2 Wind, waves and seas	h)	Geostrophic winds, anabatic and katabatic winds	Explain the relation between atmospheric pressure, temperature and wind.
(B)	i)	Instruments and sensors used to register temperatures, pressure, direction and intensity of wind	Describe wind circulation around pressure systems and the effect of friction
	j)	Sea state scales, weather warning categories,	

Topic/Element	Content	Learning outcomes
	wave height, periods and direction	
B5.3 Weather forecasting (B)	a) Synoptic charts b) Weather forecast	Interpret a synoptic chart. Produce an operational short range forecast based on meteorological information, weather bulletins and facsimile charts.

2. FOUNDATION SCIENCE SUBJECTS

2.1. F1: Earth Models

Topic/Element	Content	Learning outcomes
F1.1 Physical geodesy		
F1.1a The gravity field of the	a) Newton's law of gravitation	Describe relationships between the gravity field of
Earth (B)	b) Centrifugal acceleration	the Earth, normal gravity and level surfaces.
	c) Gravity (acceleration)	and level surfaces.
	d) Gravity potential	
	e) Level or equipotential surfaces	
F1.1b Gravity observations	f) The Geoid	Explain methods for observing gravity and
and their reduction. (B)	g) Normal gravity and ellipsoidal models such as GRS80.	computation of gravity anomalies
	h) Gravity anomalies	
	i) Gravity observations	
C1 1 a Hairaht ayatama and	a) Dynamic heights	Describe different height models and the role of
F1.1c Height systems and height determination (B)	b) Orthometric heights	gravity-based heights in
	c) Normal heights	modern levelling networks.
F1.1d Geopotential and geoidal Modelling (I)	d) Level ellipsoid	Describe techniques used to model the Earth's
	e) Theoretical misclosure of a leveling loop	geopotential. Discuss the application
	f) Geopotential models	and limitations of geopotential models and

Topic/Element	Co	ntent	Learning outcomes	
	g)	High resolution global and local geoid grids	their verification in height	
	h)	Deflection of the vertical	determination.	
F1.2 Coordinate Systems				
F1.2a Coordinate Systems for Positioning (I)	a) b)	Traditional geodetic datums Terrestrial reference	Explain principles of astronomic and geocentric datums together with their practical realizations.	
F1.2b Datum transformation techniques (A)	c) d)	systems and reference frames. Modern geodetic datums based on terrestrial reference frames. Datum transformation techniques including similarity transformations and grid based approaches.	Compare datum transformation methods and transform coordinates between datums and between reference frames. Estimate transformation parameters from observations.	
F1.2c Geodetic computations on the ellipsoid (I)	a) b)	Grid computations and spherical trigonometry. Forward and inverse computations for geodesic and normal section curves on the ellipsoid.	Assess the various solutions available for forward and inverse computations on the ellipsoid. Compare grid and spherical methods with ellipsoidal computations.	
F1.2d Three- Dimensional Geodetic Modeling <i>(A)</i>		Local and global Cartesian coordinate frames. Reference to physical plumb line and ellipsoidal normal. Geoid heights and deflections of the vertical. 3D observation equations and 3D adjustment. Laplace equation.	Explain the mathematical model of 3D geodesy, integrating satellite and terrestrial observations. Evaluate a typical hybrid network, using commercial software. Describe application of 3D Geodesy to hydrographic survey control and 3D positioning	
of survey vessels. F1.3 Land surveying methods and techniques				
F1.3a Trigonometric surveys	a)	Principles of distance measurement and angle measurement	Select appropriate methods and use corresponding instruments for local positioning.	

Topic/Element	Co	ntent	Learning outcomes
F1.3b Existing survey control	,	Atmospheric and radiometric corrections for optical measurements.	Recover survey marks and associated documentation with an appreciation for
(1)	c)	Calibration requirements and documentation	the datum and accuracy associated with the historical survey.
F1.3c Establishing survey control (I)	d) e)	Sextant (in legacy context) Theodolite	Establish terrestrial control using GNSS in accordance with published quality
	f)	Total Station	control procedures Field test and use distance
F1.3d Instrument tests (I)	g)	Intersection, Resection, Polar and Traverse	and angle measurement instruments.
	h)	Astronomic methods for determination of	Select appropriate field validation procedures
F1.3e Historical surveys (B)	i) j)	orientation. Establishing ground control using GNSS, distance and angle measurements. Control station recovery	Relate historical surveys to legacy positioning systems.
	k)	Logistical aspects of providing control	
F1.4 Levelling			
F1.4a Levelling instruments (I)		Levelling instruments Total stations	Explain the principles of operation of instruments used in determination of height differences.
F1.4b Height reduction (A)	c) d) e)	Effects of curvature and refraction Reduction of levels and correction to the relevant height datum Calibration requirements and documentation	Conduct surveys in accordance with standards. Reduce elevation measurements and use adjustment procedures.
F1.5 Map Projections			
F1.5a Map Projections (A)	a)	Equidistant, equal area, azimuthal and conformal projections.	Classify the properties of projections.

Topic/Element	Content	Learning outcomes
	 b) Properties and applications of cylindrical, conical and stereographic projections. c) Grids, graticules and associated coordinates. d) Convergence, scale 	Use parameters associated with map projections to compute distortion and apply corrections between geodetic and grid coordinates.
	factors and arc to chord corrections. e) Worldwide cartographic systems Including UTM, GK and UPS.	Use geometrical properties of map projections to contrast and compare the use of different projections for different applications.
F1.6 Trigonometry and leas	t-squares	
F1.6a Trigonometry (B)	a) Plane trigonometryb) Sphere, great circle, rhumb lines, spherical triangles and spherical excess	Apply plane and spherical trigonometry to surveying problems.
F1.6b Theory of observations (I)	 a) Measurements and observation equations b) Notion of uncertainty related to observations c) Accuracy, precision, reliability, repeatability d) Linearized observation equations and variance propagation law e) Propagation of uncertainty in observations through multiple measurements f) Relative and absolute confidence ellipse 	Differentiate between accuracy, precision, reliability and repeatability of measurements. Relate these notions to statistical information. Apply the variance propagation law to a simple observation equation, and derive an estimate uncertainty as a function of observations covariances.
F1.6c Least squares (A)	a) Least squares principleb) Covariance of observationc) Weighted least squares	Solve geodetic problems by least squares estimation. Determine quality measures for least square solution to geodetic problems,

Topic/Element	Content	Learning outcomes
	d) Orthogonal least square	
	e) Total Least Square	
	f) Problems with explicit solutions	
	g) Condition equations	to include reliability and
	h) Covariance of estimated parameters	confidence levels.
	i) Unit variance factor estimate	
	j) Internal and external reliability	

2.2. F2: Oceanography

Topic/Element	Content	Learning outcomes
F2.1 Physical Oceanography	y and measurements	
F2.1a Water masses and circulation (I)	 a) Global ocean circulation b) Mechanisms of regional circulation. c) Global and local water masses and their physical properties. d) World oceanographic databases e) Seasonal and daily variability of temperature and salinity profiles. f) Types of estuaries and their associated salinity profiles. 	Use the knowledge of spatial and temporal variability of the water masses to plan surveys. Establish a water column sampling regime for use within survey operations
F2.1b Physical properties of sea water (A)	a) Sound Velocity Profilers, Conductivity, Temperature, Depth sensors, Expendable probes.	Specify oceanographic sensors to measure physical properties of sea water. Apply appropriate equation to estimate density and speed of sound.

Topic/Element	Content	Learning outcomes
	b) Units used in measuring and describing physical properties of sea water, normal ranges and relationships including:	Create a sound speed profile.
	salinity, conductivity, temperature, pressure, density. c) Sound speed equations	Specify equipment and procedures for oceanographic
F2.1c Oceanographic	d) Oceanographic sampling.	measurement to meet survey requirements.
measurements (I)	e) Oceanographic sensors:	Configure and use
	 Current meters 	oceanographic sensors and sampling equipment.
	— ADCP	sampung equipment.
	 Turbidity sensors and need for calibration 	
	a) Wave measurement by radar and buoys	
F2.1d Waves (B)	 b) Wave parameters and elements involved in the wave growth process including fetch and bathymetry c) Tsunamis 	Outline wave generation processes. Describe the principles of wave measurement systems.
	d) Breaking waves, long- shore drift and rip current processes in relation to beach surveys.	Describe how beach survey monitoring strategies are related to wave regimes.
	e) Beach profiles	

2.3. F3: Geology and geophysics

Topic/Element	Content	Learning outcomes
F3.1 Geology		
F3.1a Earth structure (B)	a) Plate tectonics and other Earth processes	Describe the structure of the Earth and explain the relationship between Earth processes and

Topic/Element	Content	Learning outcomes
	b) Earthquakes zones	
	c) Types of continental margins	
	d) Ocean basins, trenches, ridges and other ocean floor features	bathymetric /topographic
	e) Different types of rocks in the marine environment	features of the Earth.
	f) Subsidence and uplift	
	a) Types of coast	
	b) Seafloor features and bed forms	Interpret geological
F3.1b Geomorphology	c) Erosion, transport and deposition	information and relate expected seafloor features
(A)	d) Estuaries and inlets	to hydrographic survey methodology and need
	e) Seafloor temporal variability	for repeated hydrographic surveys.
	f) Sediment sampling	
	a) Sediment types	
	b) Outcropping rocks	Predict seafloor type and characteristics based
F3.1c Substrates (I)	c) Submerged aquatic vegetation	on observations of local
	d) Corals	geological information.
F3.2 Geophysics		
	a) Gravity meters	
	b) Relative and absolute gravity measurements	Explain the principle
F3.2a Gravity fields and gravity surveys (B)	c) Bathymetric corrections for gravity measurements	of operation of gravity meters and the need for corrections.
	d) Local gravity anomalies and gravity surveys	Discuss the objectives of gravity surveys in relation
	e) Influence of gravity on sea surface topography and correlation with seafloor features	to seabed features.
F3.2b Magnetic fields (B)	a) Magnetic fields of the Earth	Describe the Earth magnetic field, its spatial and temporal variability.

Topic/Element	Content	Learning outcomes
	b) Magnetic anomalies in relation to rock types and tectonic history	
	c) Temporal variations	
	d) Magnetic Earth models and databases	
	a) Continuous reflection/refraction seismic profiling.	
	b) Typical sound sources, receivers and recorders.	
F3.2c Seismic surveys	c) Analogue high resolution seismic systems (including pinger, boomers, sparkers, chirp)	Evaluate coverage and penetration of systems
	d) Frequency and wavelength in relation to resolution and penetration	and correlate equipment with applications.
	e) Equipment configuration for towing, launch and recovery	Distinguish between noise, outliers, and real seafloor features and sub-seafloor geometry
	f) Applications such as pipeline or hazard detection, seabed sediment identification for mapping, shallow sedimentary channels.	,
	g) Principles of seismic stratigraphy	

3. HYDROGRAPHIC SCIENCE SUBJECTS

3.1. H1: Positioning

Topic/Element	Content	Learning outcomes		
H1.1 Vessel and sensor reference frames				
H1.1a Common reference frames for sensors (A)	a) Identification of a common reference point and reference frame for the vessel	Specify a suitable vessel reference frame for sensor offsets and configure software to use values accordingly.		
	b) Centre of rotation for the vessel	Reconcile the application of offsets between various hardware and software		

Topic/Element	Content		Learning outcomes
		Centers of measurement for sensors Sensor offset measurements.	components of the survey system.
H1.1b Integration of reference frames (A)		Sensor body reference frames. Transformations between reference frames associated with sensor bodies, the vessel and local geodetic frame.	Define and apply appropriate transformations between the different frames in the navigation solution.
H1.2 GNSS positioning			
	a)	GNSS Systems, such as GPS, GLONASS, Galileo, Beidou, etc.	
	b)	Signal structure.	Describe the structure of signals broadcast by GNSS
H1.2a GNSS Signals (I, B)	c)	Frequencies, time keeping and logistical segments: Ground, Space, User.	and explain the impact of the atmosphere on these signals.
	d)	Broadcast almanac ephemerides and precise orbit information.	Describe the characteristics of different components of GNSS and detail sources
	e)	Ionospheric and tropospheric effects.	of information relating to the orbital and timing parameters. (B)
	f)	Earth rotation information.	
H1.2b GNSS observables (A)	a)	Code phase and carrier phase observables, mixed observables.	
		Differencing using carrier phase including single, fixed and float double, and triple differences.	Write observation equations for different GNSS observables and develop mathematical and stochastic models for the solutions that include earth rotation and
	c)	Corrections for earth rotation, ionosphere, and troposphere.	ionospheric elements.

Topic/Element	Co	ntent	Learning outcomes
H1.2c Relative and absolute	a)	Differential and Wide area augmentation services.	
	,	Real time kinematic and postprocessed kinematic techniques.	Evaluate and select appropriate system for applications by aligning
techniques (A)		Precise Point Positioning techniques and services.	survey requirements with capabilities and limitations of
	d)	System selection in alignment with survey requirements.	GNSS techniques
	a)	Antenna installation to consider coverage, stability and multipath environment.	Specify, supervise and test
H1.2d Installation and operation (A)	b)	Levels of redundancy in systems and communications	the installation of GNSS hardware and software for both inshore and offshore
	c)	Data exchange formats and protocols such as RINEX and NMEA	operations.
H1.2e Quality control (A)	a)	Sources of error including multipath, atmospheric effects, base station network, sensor offsets, etc.	Develop a quality control
	b)	Measures and monitoring of precision (DOP variations) and reliability (statistical testing).	plan for GNSS operations including risk management associated with GNSS components and services.
	c)	Integrity monitoring of base station data.	Assess the performance of GNSS positioning against the defined quality control criteria.
	d)	Verification checks between systems or against known points.	
H1.3 Inertial navigation systems			
H1.3a Accelerometers and gyroscopes, inclinometers, and compass (A)	a)	Accelerometers technology (pendulums, vibrating elements)	Describe accelerometer technologies, and differentiate between inclinometers, compass and

Topic/Element	Con	tent	Learning outcomes
		Gyroscopes (FOG, Ring aser, Sagnac effect)	
	c) N	MEMS	gyroscopes. Describe error sources associated with these
	d) I	nclinometers	devices.
	e) F	Flux gate compass	
	f t	Technologies available for IMU measurements through gyroscopes and accelerometers	
	s	Sources of error in inertial sensors: bias; scale factor; and, noise.	Describe the technologies used in inertial measurements and quantify associated navigation errors.
H1.3b Strapdown inertial measurement units (A)	(€	The inertial navigation equation and error equations.	Undertake static alignment of an IMU.
		Static alignment of the MU.	Develop strategies for mitigating induced heave and select filter parameters for
	ı '	Heave estimation from gyros and accelerometers.	heave estimation.
	f) I	nduced heave.	
	a) E	Bayesian estimation	Apply Kalman filtering methods to a dynamic
		State representation of	observation process.
111 2- Kalman filharin - (1)		a dynamic observation equation, observability	Define the parameters of a Kalman Filter in relation with
H1.3c Kalman filtering (I)	a	Continuous, Semi-discrete and discrete Kalman iltering	sensors performances and dynamic model uncertainty.
		Optimal smoothing	Differentiate between stationary and nonstationary observation processes
H1.3d Aided inertial	'	NS and GNSS loosely and ightly coupled solutions.	Describe the role of aiding sensors to reduce INS navigation drift.
navigation (I)		/elocity and ranging aided NS navigation.	Apply appropriate settings to filtering and smoothing for aided navigation solutions.

Topic/Element	Conter	nt	Learning outcomes
	alig	namic and aided Inment of INS by man filtering.	
	and Kalı	solutions from IMU I other sensors by man filtering and pothing.	
H1.4 Subsea positioning			
			Describe the signal structure and observables of mobile and fixed acoustic positioning devices.
H1.4a Acoustic positioning principles (A)	a) Lon	ig base line	
principles (7)	b) Sho	ort baseline	Relate observables and platform orientation to
	c) Ultr	ra-short baseline	relative positions through observation equations.
	d) Dop	opler velocity log	Explain how acoustic positioning observables,
	e) Trai	nsponders	orientation and surface positioning data are used to
H1.4b Acoustic positioning	f) Aco	oustic modems	achieve subsea rover spatial referencing.
systems (A)	g) Sub	osea INS	Chacify the deployment
	h) Wat	ter column structure	Specify the deployment and calibration methods for fixed and mobile acoustic
	i) Aco	oustic ray multipath	positioning systems.
H1.4c Acoustic positioning error analysis (I)	j) Tim	ne synchronization	Compute the total propagated uncertainty in acoustic positioning, accounting for time, sound speed and other observable errors.
	a) Tow	ved vehicles	
H1.4d. Acoustic positioning applications (B)	b) Aut	onomous vehicles	
	c) RO\	/ s	Identify appropriate acoustic positioning solutions for
	•	face vessel dynamic iitioning	different applications, considering potential sources of error.
		gineering and callation	

Topic/Element	Content	Learning outcomes
	f) Metrology	
H1.5 Line keeping		<u> </u>
H1.5a Track guidance (B)	 a) Track guidance and route following information systems. b) Tolerances for track guidance in compliance with survey specifications and positioning system precision. c) Maintaining uniform sounding density in swath systems. d) The impact of the environment on the line keeping and data density e) Options for accepting filed data when the navigation or line keeping is not optimal. 	if the real-time navigation systems are interrupted during a survey. Explain how to compensate and mitigate for the effects

3.2. H2: Underwater Sensors and Data Processing

Topic/Element	Content	Learning outcomes
H2.1 Underwater acoustics		
	a) Piezoelectric principles	Analyze the effect of transducer design on beam characteristics and
	b) Transducer arrays design, beam-forming, side lobes.	performance.
H2.1a Transducers and generation of acoustic	c) Transducer Quality factor	Describe the design and use of multifrequency, wide-
	d) Plane and spherical waves in terms of wavelength,	bandwidth and parametric transducers.
waves (I)	amplitude and frequency.	Differentiate between chirp
	e) Absorption, spherical spreading	and CW transmission, and characterize their relative performance.
	f) Frequency, attenuation relationship to range	Determine source level from typically available sonar specification.

Topic/Element	Content	Learning outcomes
	g) Acoustic units, intensities and sound levels	Explain how properties of the acoustic medium and source frequency affect the
	h) Signal to noise ratio	propagation of acoustic waves.
H2.1b Propagation of acoustic waves (A)	 i) Active Sonar Equation including sound source, causes of propagation loss in relation to water properties together with characteristics of the sea floor and targets, acoustic 	Calculate propagation loss in practical situations, using medium property observations and available tables.
	j) Continuous Wavelength (CW), Chirp transmission	Identify the sources of noise and describe the effect of noise on echo sounding. Define the directivity index.
H2.1c Acoustic noise (I)	k) System parameters including bandwidth, pulse length, pulse repetition rate, gain,	Calculate the effect on sonar range of a variety of noise conditions and sonar directivity circumstances.
H2.1d Reflection, scattering and system performance. (I)	detection threshold. l) Range resolution and spatial resolution.	Define the characteristic impedance of an acoustic medium. Assess the effects of varying
a	m) Dynamic range, clipping and saturation	seafloor composition, texture, and slope on echo strength.
	n) Sound speed profile and gradient	
H2.1e Refraction and ray-	o) Ray-tracing theory	Use the sound speed profile to compute the path of
tracing. (A)	p) Sound channelq) Non horizontal sound	sound ray through the water column.
	q) Non horizontal sound speed layers	
H2.2 Single beam systems		
H2.2a Single beam echo sounders principles (I)	a) Single beam, split beam and dual beam concepts	Explain the principles of operation of a single beam sounder detailing
	b) Beam footprint	how acoustic parameters influence sounder returns.
H2.2b Single beam returns interpretation (A)	c) Specification of a single beam echo sounder.	Interpret single beam returns including analysis of full echo envelopes and
	d) Bottom detection principles (matched	features of the sea bed and water column.

Topic/Element	Content		Learning outcomes		
		filtering, thresholding) and range resolution.			
	e)	Full-echo-envelope returns and bottom characterization			
H2.2c Single beam survey system (A)		Components of a single beam echo sounder system to include: positioning system, motion sensor, acquisition system, source of reference level (i.e. tide gauge, GNSS) Acoustic parameters of single beam echosounders Reduction of soundings to the specified datum	Specify survey system to perform a single beam survey in accordance with application requirements. Select appropriate range, scale, frequency and pulse for specific applications in relation to spatial resolution, bottom penetration, depth of water and water column analysis.		
H2.2d Processing of single beam data (I, A)		Systematic effects in system components: - Single Beam Echo-Sounders - IMU/INS - Sound speed profilers and other peripheral sensors Single beam echo sounders data processing workflows	Specify processing workflow for single beam data. (I) Integrate and merge data of various sources and of various types in preparation for product generation. (A)		
112.3 Juliai illiagei y system	H2.3 Sonar imagery systems a) Principles, components				
H2.3a Side-scan sonar systems (A)	b)	and geometry of side scan sonar systems Range, beam angle	Evaluate, select and configure side-scan sonar in alignment with survey		
	c)	Resolution in relation to beam width, sampling rate	operational needs.		

Topic/Element	Со	ntent	Learning outcomes
		angle of incidence and pulse length.	
H2.3b Synthetic Aperture Sonar (I)	a)	Principles of synthetic aperture imaging	Discuss and compare the use of SAS with that of more conventional sonar imaging systems.
H2.4 Swath echo sounder s	yst	ems	
		Principles and geometry of multi-beam sonar systems	Explain the basic principles of multi-beam sonar transmit and receive beam forming and beam steering.
	b)	Combination of transducer elements into transmit and receive arrays.	(I) Explain the effect of
H2.4a Multibeam echo sounders <i>(A, I)</i>	c)	Beam stabilization and beam steering	aperture size and element spacing on array performance. (I)
	d)	Amplitude and phase bottom detection	Analyze the techniques of amplitude and phase methods of bottom
	e)	Variations in beam spacing and footprint size	detection and relate them to depth uncertainty. (A)
	f)	Backscatter recording modes (e.g., beam average, side scan time series, beam time series)	Tune acoustic parameters on-line for depth <i>and</i> backscatter.
H2.4b Multibeam system	g)	Backscatter and seabed classification	Determine the beam footprint size and sounding spacing across the swath and assess the limitations
parameters (A)		Water column data	and likelihood of detecting objects on the seafloor
	i)	Power, gain, pulse length	under varying surveying conditions.
	j)	Multiple signal returns, aliasing of multiple signals in the water.	Explain the use of water column returns and differentiate from bottom detection.
H2.4c Multibeam systems (A)		positioning system, telemetry, motion and attitude sensors,	Specify survey system to perform a multibeam survey in accordance with
	b)	acquisition system,	application requirements.

Topic/Element	Content	Learning outcomes
	c) source of reference level (i.	
	e. tide gauge, GNSS),	
	d) Sound Speed	
	measurements	
	a) Multi-beam data elements:	
	b) Beam and travel-time data	
	c) IMU/INS	Describe how and where
	d) Positioning data	data elements are combined to produce geo-referenced
H2.4d Multibeam data processing (A)	e) Time stamping	soundings.
	f) Offsets between sensor reference points	Integrate and merge data elements in preparation for data processing.
	g) Sound speed profile	,
	h) Data file formats	
H2.4e Interferometric Sonar (A)	 a) Principles and geometry of interferometric (phase measurement) sonar systems b) Sounding determination principles c) Mounting methods and towing d) Transducers arrangement e) Sounding filtering and binning techniques 	Analyze the principles and geometry of interferometry and phase differencing bathymetric sonars and the arrangement of transducer arrays. Explain the need for filtering phase measurement data for depth, object detection and backscatter. Explain the effect of aperture size and transducer geometry on array performance. Assess the relative merits of multi-beam and phase differencing systems for specific mapping applications in water depths from very shallow to full ocean depths.
H2.5 Backscatter		C '((' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '
H2.5a Backscatter from side scan, interferometric swath	a) Relationship between backscatter content and	Specify and configure a side scan sonar and a swath echo

Topic/Element	Content	Learning outcomes
sonars and multi-beam echo sounders (A)	characteristics of the seabed, water column properties and acoustic signal parameters b) Generation of backscatter information within	sounder for backscatter acquisition under varying environmental conditions and for specific application. Monitor and assess quality on-line and apply appropriate compensation. Apply backscatter principles to produce a compensated backscatter mosaic.
	d) Mosaicing	

3.3. H3: LiDAR and Remote Sensing

Topic/Element	Cont	tent	Learning outcomes
H3.1 LiDAR			
H3.1a Airborne LiDAR systems <i>(A)</i>	b) S	Vavelength, water penetration, ground letection and laser rafety. Scanning frequency and pattern in relation to power, coverage and spatial density.	Determine the applicability of topographic and bathymetric LiDAR to specific mapping applications. Specify the appropriate LiDAR technology for given applications and identify supporting survey operations required to conduct the survey and process data.
	ro tı	nfluence of sea surface oughness, water column urbidity on the beam pattern and penetration.	Identify potential sources of error in combined topographic and bathymetric LiDAR data and apply corrective processing techniques as appropriate. (I)
H3.1b Airborne LiDAR data products (I, A)	c b	Sea bed optical characteristics and pottom detection. Influence of seabed on	Evaluate results (x,y,z) of specific bathymetric LiDAR surveys for compliance with hydrographic requirements. (I)
	f) R	eflectance Relationship between full vaveform signature and seabed characteristics.	Explain how to incorporate information from full waveform analysis in the production of LiDAR mapping products. (A)
H3.1c Terrestrial LiDAR	J 0,	Secchi disc and Secchi Iepth	Determine situations where terrestrial and vessel-based LiDAR data can be used to complement

Topic/Element	Со	ntent	Learning outcomes
	h)	Impact of structure and canopy on topographic LiDAR	
	i)	Optical characteristics of coastal terrain.	
	j)	Influence of geometry and waveform on feature detection.	
	k)	Integration of components including time stamping, attitude compensation, sensor offsets and networking.	other coastal and offshore spatial data. Explain the need for calibration and validation of vessel-based LiDAR and describe how data from such system will be integrated
	l)	Sources and levels of uncertainty associated with LiDAR data and products.	with other data streams.
	m)	Combined bathymetric and topographic LiDAR systems	
	n)	Vessel-based LiDAR	
H3.2 Remote Sensing			
	a)	Multispectral imagery and water penetration in relation to wavelength	
	b)	Optical properties of sea water.	
H3.2a Remotely sensed bathymetry (I)	c)	Model based and empirical inversion methods for determining bathymetry.	Explain and compare the methods that enable depth to be determined from wavelength together with optical properties o
	d)	Atmospheric corrections.	both the water and the seabed.
	e)	Spatial resolution and accuracy in position and depth.	
	f)	Reflectance properties of the sea floor.	

Topic/Element	Content	Learning outcomes
H3.2b Satellite altimetry (B)	a) Missions and sensors b) Products	Describe the principles and limitations of satellite altimetry products including sea-surface topography and derived bathymetry
H3.2c Optical methods of shoreline delineation (I)	 a) Color imagery and multispectral imagery. b) Reflectance of multispectral imagery in relation to wavelength and terrain characteristics. c) Use of imagery in shoreline mapping and identification of other topographic features. d) Uncertainty associated with map features derived from imagery. e) Geometrical properties of satellite images and aerial photographs 	Describe geometrical properties of images and principles of orthorectification. Explain how imagery can be used in planning survey operations and in supporting hydrographic products. Compare image based methods with those of LiDAR for shoreline delineation

3.4. H4: Survey Operations and Applications

Topic/Element	Content	Learning outcomes
H4.1 Hydrographic survey p	rojects	
	a) IHO S-44 and other survey quality standards.	Establish procedures required to achieve quality standards in hydrographic surveys.
	b) Underkeel clearance	Specify the type of survey
H4.1a Hydrographic survey requirements (A)	c) Procedures and installations required to conduct hydrographic surveys of specific types, for example:	system and equipment needs together with associated parameters and procedures for various components of the overall survey operation.
	— Nautical charting survey	Evaluate the impact of local physical and environmental factors on survey results.

Topic/Element	Content	Learning outcomes
	Boundary delimitation survey	
	 Ports, harbor and waterways surveys. 	
	Engineering works and dredging surveys	
	Coastal engineering surveys	
	— Inland surveys	
	Erosion and land- sea interface monitoring	
	Oceanographic surveys	
	Deep sea and ROVs / AUVs surveys	
	Seismic, gravity and geomagnetic surveys	
	 Pipeline route, pipeline installation, inspection and cable laying surveys 	
	 Wreck and debris surveys. 	
	a) Hydrographic instructions and tenders.	Prepare hydrographic specifications, instructions and tenders associated with survey
H4.1b Hydrographic survey project management (A)	b) Estimating and drafting survey work plans and schedules	objectives. Estimate the resources, scheduling and timing
	c) Risk assessment in survey operations associated with the proposed work plan.	associated with hydrographic projects and prepare project plans including health and safety requirements,
	proposed work plan.	and salety requirements,

Topic/Element	Content	Learning outcomes
	d) Assessment and reporting of work progress against the work plan	environmental issues and emergency response.
	e) Health and safety compliance	Define, assign and distribute the roles and responsibilities of individuals within a survey
	f) Environmental impact of survey activities	team. Prepare progress reports
	g) Emergency Response Situations and Plan	and submit interim project deliverables.
H4.2 Hydrographic survey o	perations	
	a) Components of survey planning including on-board equipment, platform's dynamic positioning, remote installations, data from satellites and telemetry links.	
H4.2a Survey planning (A)	b) Planning of survey operation considering general depth, bottom character, water column variability, weather, currents, tides, coastal features and vessel/flight safety.	Plan survey lines and schedule to accommodate environmental and topographic conditions for the vessel or aircraft and for towed, remote and autonomous vehicles.
	c) Logistical considerations for survey operations	
	d) Maintaining safe working conditions.	
	a) Transducer mounting	Specify survey procedures and quality assurance practices to
H4.2b Single Beam	b) Calibration techniques and requirements	perform a single beam survey in accordance with application requirements.
operations (A)	c) Line spacing, orientation and line planning	Select appropriate range, scale, frequency and pulse repetition rate for specific application in relations to

Topic/Element	Content	Learning outcomes
	d) Causes and effects of motion artefacts and water properties artefact on data e) Integration with ancillary systems f) Compensation for vessel motion, attitude, dynamic draft g) Feature development h) Data logging parameters	spatial resolution, bottom penetration, depth of water, and water column analysis.
H4.2c Multibeam and Interferometric operations (A)	a) Selection of platform and deployment (hull mount, pole mount, AUV, ROV) b) Swath coverage and resolution c) Object detection d) Sound speed profile e) Survey speed in relation to system parameters f) Causes and effects of motion artefacts and water property artefacts on data g) Swath planning h) Calibration methods and procedures i) Ancillary sensors and integration j) On-line monitoring of data being acquired k) Uncertainty models	Specify survey procedures and quality assurance practices to perform a multibeam or interferometric survey in accordance with application requirements. Identify deficiencies in multi-beam echo sounder or interferometric sonar data, relate issues encountered to system or operational factors and respond appropriately.

Topic/Element	Content	Learning outcomes
	a) Operating principles and sensitivity characteristics of magnetometers and gradiometers	
H4.2d Magnetic surveys (I)	b) Deployment of magnetometers and gradiometers and planning of magnetic surveys	Describe the capabilities and limitations of magnetometers
	c) Objectives of magnetic surveys in the detection of objects such as pipelines, cables, ordnance, debris, wrecks.	and gradiometers in conducting object detection surveys.
	d) Display and interpretation of magnetometer and gradiometer data.	
	a) Calibration techniques and requirements	Specify survey procedures and quality assurance practices to perform a LiDAR survey in accordance with application requirements.
H4.2e Airborne LiDAR	b) Flight line spacing, ground speed, orientation and aircraft turning characteristics	Specify LiDAR coverage and data density requirements for a survey.
surveys (I)	c) Environmental factors affecting data coverage (i.e., sunlight, clouds, rain, smoke, sea conditions, etc.)	Assess LiDAR survey data (xyz point cloud and resultant depth grid) for adequacy and quality of overlap with adjacent acoustic survey data.
		Consider operational and environmental conditions in planning LiDAR surveys.
H4.2f Side scan sonar	a) Selection of platform and deployment (tow, hull mount, AUV)	Design and conduct a side scan sonar survey as part of an integrated data acquisition
operations (A)	b) Elevation above the seafloor.	system in compliance with survey objectives.

Topic/Element	Content	Learning outcomes
	c) Swath coverage	
	 d) Survey speed in relation to sonar system parameters e) Towfish positioning f) Target aspect 	Explain and identify the effects of stratification of the water column and develop
	f) Target aspectg) Effects of motion and water properties on imagesh) Layback calculations	mitigating strategies for surveying in a variety of environmental conditions.
	a) Side scan sonar backscatter and sea floor reflection.	
	b) Side scan images and mosaickingc) Sources of distortion	Interpret side scan sonar imagery through assessment
H4.2g Side-scan sonar data interpretation (A)	and artefacts from water column properties, motion	of individual and overlapping swaths to identify potential sonar targets for further investigation.
	d) Determination of height, size and position of seafloor features	Interpret side scan sonar imagery to assess differences in seafloor composition and topography.
	e) Sonar signature of wrecks, pipelines, gas, fish and fresh water, etc.	
H4.3 Seabed characterization	on	
	a) SBES full echo envelope	Explain the concept of incidence angle dependence and describe the signal
H4.3a Classification from acoustic data (I)	b) Sub-bottom profiler full echoenvelope	processing steps required to obtain corrected backscatter data for seafloor
	c) Side scan sonar images	characterization.
	d) Synthetic aperture sonars images	Explain the techniques available and their limitations for observing, interpreting

Topic/Element	Content	Learning outcomes
	e) Side scan sonar and swath echo sounders backscatter information f) Ground-truthing	and classifying differences in seabed characteristics from acoustic sensors.
H4.3b Classification from optical data (B)	 a) Hyperspectral and multispectral sensors images b) Underwater cameras c) LiDAR d) Ground-truthing 	Explain the techniques available and their limitations for observing and interpreting differences in seabed and inter-tidal zone characteristics from optical sensors.
H4.3c Seabed sampling (I)	a) Grabsb) Corersc) Use in ground-truthing	Plan a sampling campaign to classify the seabed as part of a survey. Use remotely sensed
	, 5	information to select sampling sites.
H4.3d Seabed characterization (I)	a) Classification standardsb) Classification methods	Consider the combination of remotely sensed information with seabed samples in a seafloor characterization survey.
		Apply classification standards to seabed characterization results.

3.5. H5: Water Levels and Flow

Topic/Element	Content	Learning outcomes
H5.1 Principles of Water	Levels	
	a) Tide generating forces, the equilibrium and real tides.	
H5.1a Tide theory (I)	b) Tide constituents and different types of tide.	Characterize features of the tide in terms of tide raising forces and local hydrographic
	c) Amphidromic points and cotidal and co-range lines.	features.

Topic/Element	Content	Learning outcomes
	d) Geomorphological and basin influences on tidal characteristics	
H5.1b Non-tidal water level variations (I)	 a) Changes in water level caused by: atmospheric pressure, wind, seiches, ocean temperature and precipitation. b) Water level variations occurring in inland waters. c) Water level variations in estuaries, wet lands and rivers 	Evaluate the effect of non- tidal influences on water levels in the conduct of a hydrographic survey.
H5.2 Water level measur	ements	
H5.2a Water level gauges (A)	 a) Principles of operation of various types of water level gauges including pressure (vented and unvented), GNSS buoys, float, radar, acoustic sensors and tide poles. b) Installing gauges, establishment and levelling 	Select appropriate type of water level gauge technology according to survey project operations. Install, level to a vertical reference, and calibrate a water level gauge while evaluating sources of errors and applying appropriate corrections.
H5.2b Tidal measurement	d) Networks of water level gaugese) Use of satellite altimetry in	Evaluate and select appropriate sites for water level monitoring. Select water level gauge parameters for logging data, data communication, data download and for network operation with appropriate quality control measures.
H5.2c Uncertainty in water level (I)	f) Uncertainties associated with water level measurement devices g) Uncertainties associated with duration of observations.	Assess and quantify the contribution of water level observations to uncertainties in survey measurements. Assess the uncertainty in water level observations due to duration of observations and distance from water level gauge.

Topic/Element	Content		Learning outcomes
	with s	tainties associated patial separation of level measurements.	
H5.3 Tide modelling			
	,	onic constituents from nomical periods	Compute standard harmonic constituents from astronomical periods.
	residu		Derive harmonic coefficients and residuals from times series observations using
H5.3a Harmonic analysis	,	level time series vations	Fourier analysis.
(1)	d) Fourie analys	er series and Fourier sis	Describe the computation of tide tables from harmonic coefficients.
	e) Tide t predic	ables and tide tion	Compare the tidal characteristics and residuals of two tide stations using harmonic analysis.
	a) Earth	tide	
	b) Harmo	onic astronomic onent	Describe ocean water level
H5.3b Ocean water level (B)	c) Ocear	ographic components	models and observation
	d) Metec	orological component.	methods.
	e) Satell	ite altimetry	
H5.4 Ellipsoid separation	models a	and vertical datums	l
H5.4a Separation models	a) Single mode	e-point and regional ls	Explain the relationship between geoid, ellipsoid, and chart datum.
(1)	•	ple of Separation se construction	Apply relevant offsets to convert between datums
H5.4b Vertical Datums (A)		oid to Chart Datum ation models	Select, establish, interpolate and transfer a vertical datum in various environments.
H5.4c Sounding reduction (A)	datun	y defined vertical ns components, ling LAT, HAT, MSL,	Reduce ellipsoidal referenced survey data to a water level datum using an appropriate separation model with an appreciation for associated uncertainty.

Topic/Element	Со	ntent	Learning outcomes
	e) f) g)	Chart Datum and sounding datum Geoid as a reference surface Datums in oceans coastal waters, estuaries, rivers and lakes Interpolation of datums between water level stations	Apply tide correctors to reduce survey soundings to a chart datum.
	i)	Reduction of survey data to a datum	
H5.5 Currents			
H5.5a Tidally induced currents (B)		The relationship between currents and tides Rectilinear and rotary tidal currents	Explain the forces behind tidally induced currents and describe temporal variations. Differentiate between tidal and non-tidal current.
		acoustic current profilers	
H5.5b Current measurement, portrayal and surveys (I)		Drogues Surface current radar	Select, use techniques and instruments for current measurement.
	')	observation	Plan current surveys.
	g)	Static and mobile current measurements	Use appropriate methods for processing and displaying
	h) i)	Current surveys Portraying current data	current data.

3.6. H6: Hydrographic Data Acquisition and Processing

Topic/Element	Content	Learning outcomes		
H6.1 Real-time data acquisition and control				
H6.1a Hydrographic Data acquisition (A)	a) Integration of data from various sensors in accordance with survey specifications to include equipment such as:	Define, configure and validate a complex survey suite for different types of surveys in accordance with technical specification.		

Topic/Element	Content	Learning outcomes
H6.1b Real-time data monitoring (A)	 Echo-sounder (SBES, MBES) Terrestrial and airborne LiDAR Sound velocity profiler, surface velocity probe Side-scan sonar Surface positioning system IMU / INS Subsea positioning system (USBL) ROVs and AUVs Data acquisition system and software Time-tagging Data quality control methods Types and sources of errors 	Evaluate performance of an integrated survey system against survey specifications using quality control methods and address deficiencies using troubleshooting methods. Identify type and sources of system analysis.
	g) System errors identification methods	
E6.1c Survey data storage and transfer (A)	 a) Content of files in different formats used to record data in survey planning, data acquisition and products. b) Multiple data types 	Export survey data to databases and analysis tools taking account of different data formats. Employ data storage strategies to facilitate survey data flow. Populate and maintain
	c) Storage requirements	metadata associated with

Topic/Element	Со	ntent	Learning outcomes
	d)	Proprietary vs. standard data format	
	e)	Metadata	different data types and products.
	f)	Organization of survey databases.	products.
H6.2 Bathymetric data filte	rin	g and estimation	
	a)	Data cleaning techniques (manual and automated)	
	b)	Identification of outliers	Identify and remove outliers and validate data cleaning
	c)	Identification and classification of systematic errors	and other decisions made in processing single beam data.
IIC 2 o Filhoving and	d)	Total propagated uncertainty—horizontal	Interpret and resolve systematic errors detected during data processing
H6.2 a Filtering and estimation of single beam data (A)	e)	Total propagated uncertainty—vertical	Perform time series analysis of data from multiple sensors to detect artefacts and other
	f)	Comparing crossing data between survey lines	errors that may exist in a survey dataset.
	g)	Comparing overlapping data between platforms	Specify additional coverage and associated survey
	h)	Assessing coverage in relation with contour lines and features	parameters to resolve shortcomings in survey data.
	a)	Data cleaning techniques (manual and automated)	Identify and remove outliers and validate data cleaning
	b)	Identification of outliers	and other decisions made in processing multi-beam data.
H6.2b Filtering and estimation of multi-beam data (A)	c)	Identification and classification of systematic errors	Interpret and resolve systematic errors detected during data processing
	d)	Total propagated uncertainty — horizontal	Perform time series analysis of data from multiple sensors
	e)	Total propagated uncertainty — vertical	to detect artefacts and other errors that may exist in a survey dataset.

Topic/Element	Co	ntent	Learning outcomes
	f)	Comparing crossing and adjacent data between survey lines	Assess processed data for coverage and quality, and
	g)	Comparing overlapping data between platforms	specify remedial surveys.
	a)	A posteriori and a priori total propagated uncertainty (horizontal and vertical)	Differentiate between relative and absolute uncertainties. Estimate and compare
H6.2c Spatial data quality control (A)	b)	Primary and secondary survey sensors used for quality control	uncertainties through the use of different spatial and temporal datasets.
	c)	Relative and absolute uncertainties	Define procedures used to assess and accept or reject data.
	a)	1D polynomial interpolation	
H6.2d Spatial data interpolation (<i>I, A</i>)	b)	Interpolating splines, BSplines, multi- dimensional splines	Choose an appropriate interpolation method and compute a surface from sparse
	c)	Spatial interpolation by inverse distance and Kriging	survey measurements. (I) Select appropriate spatial data processing methods to
	d)	Grids and TIN construction from spatial data	create digital terrain models or gridded surfaces and contouring. (A)
	e)	Contouring techniques	
	a)	Point Clouds	
	b)	Surface models	
	c)	Raster and vector data	Apply estimation procedures to survey measurements to
H6.2e Spatial data representation (I, A)	d)	Spatial resolution	represent data according to survey product requirements.
	e)	Data resolution	(1)
	f)	Horizontal scale and vertical exaggeration	Select optimal parameters for data representation. (A)
	g)	Volume computations	

Topic/Element	Content	Learning outcomes
	h) Profiles	

3.7. H7: Management of Hydrographic Data

Topic/Element	Co	ntent	Learning outcomes	
H7.1 Data organization and	H7.1 Data organization and presentation			
H7.1a Databases (I)	a) b) c)	Relational databases Spatial databases Databases to hold different types of feature and geographical information	Explain the concepts of relational and spatial databases. Conceptualize, develop, and populate a spatial database to represent hydrographic survey elements and define relationships between those elements.	
H7.1b Marine GIS basics (B)	b)	Features and feature types of point, line and polygon with marine examples. Marine and coastal data bases Datums and projections Vertical datums Survey metadata Base maps and images	Identify the data types that might be used to represent features from the marine environment considering the attribute that might be associated with such features. Create a GIS project using marine spatial data. Perform spatial processing on marine data sets including datum and projection transformations.	
H7.2 Marine data sources a	nd	dissemination	I	
H7.2a MSDI <i>(B)</i>	b)	Basic concept of MSDI Importance and role of data standards The value and benefit of good metadata Data exchange and sharing	Describe the role of hydrographic data in Marine Spatial Data Infrastructures.	

Topic/Element	Со	ntent	Learning outcomes
	a)	Open access databases including GEBCO	
H7.2b Open access marine	b)	Marine data portals	Distinguish between types and sources of data as a measure of
data (B)	c)	Data reliability from web sources	reliability and utility.
	d)	Crowd-sourced data	
H7.3 Spatial data integrati	on	and deliverables	
H7.3a Spatial data integration (I)	,	Tools and method for integration and comparison of hybrid data sets Co-registration of hybrid data sets	Integrate data from multiple sources and sensor types in the conduct of a multisensor survey.
	a)	Use of color schemes	
H7.3b Spatial data	b)	Shading and illumination	Evaluate and select the best visualization method to highlight
visualisation (A)	c)	Vertical exaggeration	features of interest and quality- control a hydrographic data set.
	d)	Standards	
	a)	Products provided directly from source data such as sounding data files and metadata.	
H7.3c Deliverables (A)	b)	Feature databases such as wrecks, rocks and obstructions	Describe hydrographic deliverables and produce paper products as well as digital
	c)	Data required for sailing directions, light lists, radio aids to navigation, port guides and notices to mariners.	products in accordance with specifications and standards. Prepare a report on a hydrographic survey.
	d)	Digital and paper products derived from source data for various survey types	

Topic/Element	Content	Learning outcomes
	and usage such as GIS and CAD files and/ or geo-referenced images.	
	e) Reports on quality control, procedures, results and conclusions detailing processes adopted within survey operations and data processing.	
	 f) Standards including: — IHO S-100, and product standards such as S-102. — Standard Seabed Data Model (SSDM). 	

3.8. H8: Legal Aspects

Topic/Element	Content	Learning outcomes
H8.1 Product liability		
H8.1a Responsibilities of the hydrographic surveyor (B, I)	 a) Nautical charts. b) Notice to mariners. c) Survey notes and reports. d) Fundamentals of professional liability relating to surveying e) Professional 	Detail the role and responsibilities of the hydrographic surveyor as required under industrial standards and national/international legislation/conventions. (B) Identify the sources of ethical guidance and discuss ethical considerations when dealing in a professional capacity with client and
	ethics relating to commercial and government projects f) Legal issues and liability associated	contracts. (I) Discuss the potential liability of the hydrographic surveyor in common hydrographic endeavors. (I)

Topic/Element	Content	Learning outcomes
	with hydrographic equipment and products.	
H8.1b Contracts (I)	a) Invitation to tender and survey work specification	Develop the technical content of an invitation to tender.
	b) Response to tender	Analyze the risk and develop the technical content of a response that
	c) Contractual obligations and insurance	would include details and cost of necessary resources.
	d) Survey work and deliverables	Interpret contractual obligations in terms of survey planning, execution and deliverables.
H8.2 Maritime zones		
	 a) Historical development of 1982 UNCLOS. b) Base points. c) Low tide elevations. d) Baselines: normal (including bay closing lines); 	Define the types of baselines under UNCLOS and how the territorial sea limit and other limits are projected from them, including the use of low
H8.2a Delimitations (B)	straight and archipelagic.	tide elevations.
	e) Internal waters.	Plan and specify hydrographic surveys to be utilized in the delimitation of baselines and maritime boundaries.
	f) Territorial seas.	Describe the legal operational
	g) Contiguous zones.	constraints that apply within maritime
	h) Exclusive Economic Zone	zones.
	i) Extended continental shelf.	
	j) High seas.	
E8.2b Impact of surveys	a) Vessel speed restrictions and permanent and temporary	Specify appropriate procedures and limitations for use of surveying equipment in compliance with

Topic/Element	Content	Learning outcomes
	threshold shifts (hearing) and harassment levels for marine mammals.	
	b) Limitation of use of physical techniques such as bottom sampling and moorings in environmentally sensitive areas.	environmental laws and marine protected area regulations.
	c) Respect for cultural traditions in relatio to use of the environment	
	d) Marine protected areas	

4. CMFP: COMPLEX MULTIDISCIPLINARY FIELD PROJECT

Programmes must include a supervised and evaluated Complex Multidisciplinary Field Project with a minimum aggregate period of at **least four weeks**; see "GUIDELINES FOR THE IMPLEMENTATION OF THE STANDARDS OF COMPETENCE FOR HYDROGRAPHIC SURVEYORS AND NAUTICAL CARTOGRAPHERS".

The Complex Multidisciplinary Field Project for Category "A" level shall comprise a comprehensive field survey incorporating different aspects of hydrography in a complex environment with varying sea-floor and oceanographic conditions.

Students should undertake:

- Survey specification and planning;
- Hydrographic and oceanographic measurements using a comprehensive suite of instruments;
- Data processing, quality control and quality assurance;
- Preparation of different type of product deliverables and reports.

NOTE The Complex Multidisciplinary Field Project does not include the practical exercises that form a part of the course modules syllabi and are designed to complement the theory component.