সেরা কলেজের ২০১৭ সালের নির্বাচনি পরীক্ষার প্রশ্নের উত্তর

লজের ২০১৭ সালের নির্বাচনি পরীক্ষার প্রশ্নের উত্তরমালা (ব্যাখ্যাসহ) সজনশীল বহুনির্বাচনি

৯৯. ময়মনসিংহ গার্লস ক্যাডেট কলেজ

	, ,,	, .	' ' '		, ,,,	•		٠.																		
18	٥	ঘ	ર	ঘ	9	গ	8	গ	œ	গ	ب	ঘ	٩	খ	ъ	গ	৯	খ	70	ক	77	খ	১২	ঘ	১৩	ক
कु इंट	84	ক	ኔ ৫	ক	১৬	ক	ኔዓ	ক	76-	গ	১৯	গ	২০	ঘ	২১	ক	২২	ঘ	২৩	গ	২8	ক	২৫	খ		

্ব্যাখ্যা:

 λ . AlCl₃ + 3H₂O \longrightarrow Al(OH)₃ + 3HCl

٩.

Fe³⁺: [Ar]

∴ 5 টি ইলেকট্রন থাকে

b. $Ca^{2+}: 1s^22s^22p^63s^23p^6$ $Cl^-: 1s^22s^22p^63s^23p^6$ Ar: $1s^22s^22p^63s^23p^6$

১৩. VA গ্র^{াল}পের মৌলসমূহের P-অরবিটাল অর্ধপূর্ণ থাকায় এদের আয়নিকরণ শক্তি VIA গ্র[©]পের মৌলসমূহের চেয়ে বেশি হয়।

38. $K = \frac{d[x]}{x}$

∴ হার mol L⁻¹ s⁻¹

+5 ₹o. HNO₃ HIO₃ HClO₄ H_3PO_4

∴ HClO4 সবচেয়ে শক্তিশালী

১০০. পাবনা ক্যাডেট কলেজ

185	١	ঘ	২	গ	৩	*	8	খ	Œ	ক	৬	খ	٩	ক	ъ	ঘ	৯	খ	70	ক	77	ঘ	১২	গ	১৩	ঘ
À	\$8	ঘ	১ ৫	খ	১৬	গ	১৭	গ	ን ৮	খ	১৯	*	২০	ঘ	২১	ক	২২	*	২৩	ক	২8	ঘ	২৫	খ		

বি.দ্র: *৩. সঠিক উত্তর হবে 1.19M। *১৯. সঠিক উত্তর (i)। *২২ সঠিক উত্তর নেই।

১০১ জয়পরহাট গার্লস ক্যাডেট কলেজ

•	-	• - (·, 4.,	1,-	" '	' ',	,,,,,,	, , ,	, -,																		
	তর	7	ঘ	ર	ক	9	ঘ	8	ঘ	œ	ক	૭	খ	٩	ঘ	ъ	ঘ	৯	ক	20	ক	77	গ	১২	ঘ	১৩	ক
J	ē d	3 8	গ	\$&	ঘ	১৬	গ	১৭	ক	ኔ ৮	ঘ	১৯	ক	২০	খ	২১	ক	રર	ঘ	২৩	ঘ	২8	*	২৫	ঘ		

বি.দ: *২৪. ক ও খ উভয়েই উত্তর।

্ব্যাখ্যা:

 $Al_2O_3 + 6HCl \longrightarrow 2AlCl_3 + 3H_2O$ ∴ Al₂O₃ এর অম-ত্ব 6

(2)

$$\begin{array}{ll} pH = -\log \; [H^+] \\ = -\log \; (0.3) \\ = 0.52 \end{array} \hspace{0.25cm} [H^+] = 2 \times 0.15 \\ = 0.3 \\ \end{array}$$

8. $pH = -\log [H^+]$

$$\Rightarrow [H^+] = 10^{-pH} = 10^{-0} = 1M$$

c. HNO₃ H₂SO₄

∴ H₂SO₄ সব থেকে শক্তিশালী অম্-।

৯. 25g দ্রাবকে বিদ্যমান = 8.5 g লবণ

∴ 100 g " =
$$\frac{8.5 \times 100}{25}$$
 g " = 34g লবণ

অতএব, লবণটির দ্রাব্যতা 34।

 $33. N(7) \longrightarrow 1s^2 2s^2 2p_x^1 2p_y^1 2p_z^1$ অর্ধপূর্ণ 2p অরবিটাল হৈতে ইলেকট্রন মুক্ত করতে হয় বিধায় N-এর আয়নিকরণ শক্তি উচ্চ।

১৩. ফসফোনিয়াম আয়ন বলতে PH_{4}^{+} বা PR_{4}^{+} কে বোঝায়। যেখানে sp³ সংকরণ হয় এবং আকৃতি হয় চতুস্থলকীয় বা টেট্রাহেড্রাল।

- ১৪. এখানে, A^{2+} বিজারক ও B^{2+} জারক। সূতরাং, A^{2+} ও B^{2+} যথাক্রমে জারিত ও বিজারিত হয়েছে।
- ১৫. আকারের ক্রমানুযায়ী—

 $Be^{2+} < Mg^{2+} < Sr^{2+} < Ba^{2+}$ সুতরাং, Be^{2+} এর আকার সব থেকে ছোট হওয়ায় ফাজানের নিয়মানুযায়ী পোলারায়ন ক্ষমতা সব থেকে বেশি।

১৯. লেখ দারা প্রকাশ করলে—

সুতরাং, লেখ হতে বিক্রিয়কের শক্তি > উৎপাদের শক্তি। সুতরাং, বিক্রিয়াটি তাপোৎপাদী।

সুতরাং, Ni²⁺ এ অযুগা ইলেকট্রন সংখ্যা 2টি

23.
$$C = \frac{10x}{M} = \frac{10 \times 2}{106} M$$

= 0.19 M

১০২. রংপুর ক্যাডেট কলেজ

(§	١	ঘ	২	ক	9	খ	8	*	ď	ক	৬	ক	٩	ক	ъ	খ	৯	গ	٥٤	ঘ	77	খ	১২	গ	১৩	গ
क्रि	78	গ	36	গ	১৬	ঘ	١٩	ক	ን ৮	খ	አ ৯	ক	২০	খ	২১	ঘ	২২	*	২৩	ঘ	২8	ক	২৫	ঘ		

বি.দ্র: *8. সঠিক উত্তর হবে $1.656 \times 10^{-23} J$ ৷ *২২. সঠিক উত্তর হবে $1.58 \times 10^{-6} mol \ L^{-1}$ ৷

্ব্যাখ্যা:

- 8. $E = \frac{hc}{\lambda} = \frac{6.626 \times 10^{-34} \text{ J.s} \times 3 \times 10^8 \text{ ms}^{-1}}{0.012 \text{ m}} = 1.656 \times 10^{-23} \text{ J}$
- ৫. n = 1, l = 1 হলে হবে 1p অরবিটাল। কিন্তু, 1p অরবিটাল সম্ভব নয়।
- ৭. মিথেন অণুর আকৃতি চতুস্জুলকীয় এবং এতে sp³ সংকরণ ঘটে এবং বন্ধন কোণ হয় 109° 28'।
- ১০. অধাতুর অক্সাইড ও হাইড্রোক্সাইড অম্-ীয়। বোরন অধাতু বলে বোরন ট্রাইহাইডোক্সাইড অম্-ীয় হয়।
- ১১. BF এর গঠন :

:F: :F: :F: B - B;	Tetrahedral (PZŽ) Kxq)
:E;	

- ২১. কেন্দ্রীয় মৌলের জারণ সংখ্যা যত বেশি হবে এবং আকার যত ছোট হবে সে অক্সোএসিডের তীবতা তত বেশি হবে। এখানে HClO₄-এর Cl এর জারণ সংখ্যা +7 এর আকারেও ছোট। তাই, HClO4 অধিক শক্তিশালী।
- $48. AB_3 = A^+ + 3B^ \therefore K_{sp} = [A^+] \times [B^-]^3 = S \times 3S^3$ $\Rightarrow 1.7 \times 10^{-22} = 27S^4$ $\Longrightarrow S^4 = 6.296 \times 10^{-24}$ $\therefore \ S = 1.58 \times 10^{-6} \ mol L^{-1}$

১০৩, ফেনি গার্লস ক্যাডেট কলেজ

34	١	গ	২	ক	9	ঘ	8	ক	ď	ক	৬	খ	٩	ঘ	Ъ	খ	৯	খ	٥٥	ক	77	খ	১২	গ	20	গ
চূত্র	84	খ	ን ৫	ঘ	১৬	গ	১৭	ঘ	3 b	গ	አ ৯	খ	২০	ঘ	২১	খ	২২	গ	২৩	খ	২8	গ	২৫	খ		

১০৪. ফৌজদারহাট ক্যাডেট কলেজ, চট্টগ্রাম

				_					ď		৬	গ	٩	খ	ъ	ক	৯	ক	٥٥	ঘ	۲۲	গ	১২	গ	১৩	ঘ
উত্তর	۶8	খ	36	খ	১৬	ঘ	১৭	ক	3 b	ক	ኔ৯	খ	২০	ক	২১	ঘ	২২	খ	২৩	ঘ	২8	ক	২৫	খ		

্ব্যাখ্যা:

২. $(NH_4^+ Br^-)$ আয়নিক যৌগ। একটি আয়নিক বন্ধন।

NH আয়নে তিনটি সিগমা ও একটি সন্নিবেশ বন্ধন।

১৩. Be, B, C, N, O এর আয়নিকরণ শক্তি যথাক্রমে 900, 800, 1100, 1400, 1320 kJ/mol

- **১**8. A²⁺ হলো Mg²⁺
 - B²⁻ হলো O²⁻
 - ∴ উৎপাদ MgO
- $44. \text{H}_2\text{SO}_4 = 2\text{H}^+ + \text{SO}_4^{2-}$ $[H^+] = 2 \times 0.02 = 0.04 \text{ M}$ $pH = -\log [0.04] = 1.4$

১০৫. বরিশাল ক্যাডেট কলেজ

	• • •	-1 11	• • •		, ,	٠.,																				
185	۵	খ	ર	খ	9	ক	8	ক	¢	ক	৬	গ	٩	গ	Ъ	গ	৯	গ	20	ক	77	ঘ	১২	ক	১৩	গ
हिल्य	84	ঘ	ን ৫	খ	১৬	খ	3٩	গ	ንራ	গ	አ ৯	ক	২০	ঘ	২১	*	২২	ঘ	২৩	গ	২8	খ	২৫	ঘ		

বি.দ্র: *২১. সঠিক উত্তর 4.5 mol।

্ব্যাখ্যা:

- ২. A ও B মৌলদ্বয় যথাক্রমে Mg ও O। সুতরাং, AB যৌগটি MgO।
- ৬. N ও X যথাক্রমে কার্বন (C) ও ক্লোরিন (Cl)
 - ∴ CCl₄ এর গঠন চতুস্ডুলকীয়
- ৭. KX2 হচ্ছে BeCl2, যা একটি সমযোজী যৌগ সুতরাং MgCl2 ও AlCl3 অপেক্ষা সমযোজী ধর্ম বেশি।
 - BeCl2 তে Be এর sp সংকরায়ন হয়। AlCl3 ডাইমার গঠন করে।
- ৯. 3d তে, n + l = 3 + 2 = 5
 - 4d তে, n + l = 4 + 2 = 6
 - ∴ 4s এর শক্তি সর্বনি $4s \, \bigcirc , \, n+l=4+0=4$
 - $4p \, (5, n + l) = 4 + 1 = 5$
- **ኔኔ**. CaCl₂ Hoooooooooo Ca²⁺ + 2Cl⁻

$$S S S 2S$$
∴ $K_{sp} = s \times (2S)^2$

$$= 4S^3$$

$$= 4 \times (2 \times 10^{-4})^3$$

$$= 3.2 \times 10^{-11}$$

১৪. ভ্যান্ট হফ সমীকরণ

$$log K_p = \frac{\Delta H}{2.303 R} \times \frac{1}{T} + C$$

 \therefore লেখচিত্রের ঢাল $=-rac{\Delta H}{2.303}$

∆H = + ve হলে ঢাল ঋণ্ডাক হয়। সুতরাং বিক্রিয়াটি তাপহারী।

- ১৬. X হচ্ছে H₂O সুতরাং, সংকরায়ন sp³
- **\(\)** \(\) MnO_{\(\Lambda \)} + 8H⁺ + 5e⁻ \(\) Mn²⁺ + 4H₂O
 - ∴ 5টি ইলেকট্রন গৃহীত হয়।
- ১৯. বোর তত্ত্ব 1টি ইলেকট্রন বিশিষ্ট পরমাণুর বা আয়নের বেলায় প্রযোজ্য।

 Li^{2+} এ ইলেকট্রন সংখ্যা =1

He⁺ এ ইলেকট্রন সংখ্যা = 1

H⁺ এ ইলেকট্রন সংখ্যা = 0

- **₹3.** C₃H₇OH + $\frac{9}{2}$ O₂ → 3CO₂ + 4H₂O
 - ∴ $\frac{9}{2}$ mol O₂ প্রয়োজন।
- $\mathbf{\mathfrak{Z}}. \quad \mathbf{K}_p = \mathbf{K}_c \; (\mathbf{R}\mathbf{T})^{\Delta n}$

২৪.
$$\frac{31}{15}$$
P এ নিউট্রন সংখ্যা = $31 - 15 = 16$

$${32 \over 16} S$$
 এ নিউট্রন সংখ্যা = $32-16=16$ $\therefore {31 \over 15} P$ ও ${32 \over 16} S$ পরস্পরের আইসোটোন।

সকল বোর্ডের শীর্ষস্থানীয় কলেজের ২০১৭ সালের নির্বাচনি পরীক্ষার প্রশ্নের উত্তরমালা (ব্যাখ্যাসহ) সূজনশীল বহুনির্বাচনি

১০৬. নটর ডেম কলেজ, ঢাকা

						,																					
	উত্তর	۵	গ	২	*	9	গ	8	খ	œ	গ	৬	খ	٩	ঘ	ъ	গ	৯	ঘ	70	খ	77	ঘ	১২	ঘ	১৩	গ
J	Þ	84	ঘ	36	খ	১৬	ক	১৭	খ	ኔ ৮	খ	১৯	খ	২০	গ	২১	ক	২২	ক	২৩	গ	২8	ঘ	২৫	ক		

বি.দ্রঃ *২. সঠিক উত্তর 2.5M, 10⁵ppm।

্ব্যাখ্যা:

- ১. মৃদু ক্ষার NH_3 ও $\mathrm{CH}_3\mathrm{NH}_2$ এর অনুবন্ধী এসিড, তাই অম্-তৃ বেশি।
- ২. 10% $\left(\frac{W}{V}\right)$ NaOH = 2.5 M NaOH = 10^5 ppm NaOH বি. দ্র. : সঠিক উত্তর প্রশ্নে নেই ।
- 8. F ও O এর তড়িৎ ঋণ্টাকতা অধিক হওয়ায় তারা নিশ্ক্রিয় গ্যাসের ইলেক্ট্রন মেঘকে প্রভাবিত করে তাদের সাথে বন্ধন গঠন করতে পারে যেমন— XeF₆, XeO

৬.
$$\begin{split} \frac{P_1}{T_1} &= \frac{P_2}{T_2} \\ &\Rightarrow T_2 = \frac{P_2 \times T_1}{P_1} = \frac{100 \times 298}{75} = 397.33 \text{ K} = 124.33 ^{\circ}\text{C} \\ PM &= dRT \Rightarrow d = \frac{PM}{RT} = \frac{75 \times 2}{0.08321 \times 298} = 6.17 \text{ gL} \\ E &= \frac{3}{2} RT = \frac{3}{2} \times 8.31 \times 298 = 3.7 \times 10^3 \text{ J} \\ \therefore সঠিক উত্তর (i) ও (ii) \end{split}$$

- b. $AB_2 = A^{2+} + 2B^ K_{sp} = S \times (2S)^2 = 4S^3$
- $K_{sp} = S \times (2S)^2 = 4S^3$ $R = \frac{2w}{100}$ $\Rightarrow w = \frac{100 \times R}{2}$ $= \frac{100 \times 0.0002}{2}$ = 0.01 g = 10 mg

১০. Hg (মার্কারি) সাধারণ অবস্থায় তরল

\$8.

$$\begin{array}{c|c}
 & 1s^2 \\
 \hline
 & \Lambda
\end{array}$$

$$\frac{2s^2}{\Lambda}$$

শেষ ইলেকট্রন $2p_x$ অরবিটালের বিপরীতমুখী স্পিনে প্রবেশ করে

$$\therefore$$
 1 ও s এর মান 1 ও $-\frac{1}{2}$
১৭. $\log \frac{1}{T} = \in bC$

$$\Rightarrow C = \frac{\log\left(\frac{1}{0.8}\right)}{1 \times 1 \times 10^4}$$

$$= 9.69 \times 10^{-6} \text{ m}$$

$$= 9.69 \times 10^{-6} \text{ m}$$

58.
$$mvr = \frac{nh}{2\pi}$$

$$\Rightarrow r = \frac{nh}{2\pi \times mv}$$

$$= \frac{3 \times 6.63 \times 10^{-34}}{2\pi \times 9.11 \times 10^{-31} \times 7.28 \times 10^{5}}$$

$$= 4.78 \times 10^{-10} \text{ m}$$

$$= 4.78 \text{ Å}$$

২২.
$$27^{\circ}$$
C তাপমাত্রার RMS বেগ = $\sqrt{\frac{3RT}{M}}$

$$= \sqrt{\frac{3 \times 8.31 \times 300}{\frac{44}{1000}}}$$

$$= 412.28 \text{ ms}^{-1}$$

$$73^{\circ}$$
C তাপমাত্রায় RMS বেগ = $\sqrt{\frac{3RT}{M}}$

$$= \sqrt{\frac{3 \times 8.31 \times 346}{\frac{44}{1000}}}$$

$$= 442.76 \text{ ms}^{-1}$$

$$\therefore \frac{442.76}{412.28} = 1.07$$

১০৭, রাজউক উত্তরা মডেল কলেজ, ঢাকা

(A)	۵	ঘ	২	ক	•	ক	8	গ	ď	খ	৬	খ	٩	খ	ъ	গ	৯	ক	٥٥	গ	77	ঘ	১২	গ	১৩	গ
À	۶٤	গ	ንራ	ঘ	১৬	গ	১৭	ক	3 b	ঘ	አአ	ঘ	২০	ক	২১	খ	২২	গ	২৩	*	২8	খ	২৫	খ		

বি.দ্র: *২৩. সঠিক উত্তর হবে খ ও গ উভয়েই।

্ব্যাখ্যা:

ℰ.

9. [Fe(CN)₆]⁴⁻, Fe এর সংকরায়ন আকৃতি হবে অষ্টতলকীয়।

\oldoto.
$$K_p = K_c(RT)^{\Delta n}$$

$$(ii)$$
 ও (iii) নং বিক্রিয়ায় $\Delta n = O$
তাই $K_p = K_c \ RT^{\Delta} n$
 $\Rightarrow K_p = K_c$

\$9.
$$H_2SO_4 = 2H^+ + SO_4^{2-}$$

 $[H^+] = 2 \times 0.0005$
 $= 0.001$

$$pH = -\log(0.001)$$

= 3

Ro.
$$mvr = \frac{nh}{2\pi} = \frac{2 \times h}{2\pi} = \frac{h}{\pi}$$

২৩. সঠিক উত্তর হবে (খ) ও (গ)।

₹8. N₂O₄ Hooooooooool 2NO₂ সাম্যাবস্থায় $1-\alpha$ মোট মোল $1 - \alpha + 2\alpha = 1 + \alpha$

১০৮ আইডিয়াল স্কল এন্ড কলেজ মতিঝিল ঢাকা

	•			٩ `		, -	٠.,	• • •	1 1 1	, ,																
185	۵	খ	২	ক	9	খ	8	গ	œ	ক	૭	ঘ	٩	খ	ъ	ঘ	৯	গ	٥ د	খ	77	ঘ	১২	*	১৩	咚
唇	78	খ	36	গ	১৬	খ	১৭	খ	76	ক	১৯	ঘ	২০	ক	২১	খ	২২	খ	২৩	গ	২8	ঘ	২৫	গ		

বি.দ্র: *১২. সঠিক উত্তর NH2 এবং H2O |

্ব্যাখ্যা:

 $. \quad X = N; Y = P; B = Cl$

 $XB_3 = NCl_3$; জারণ অবস্থা +3 এবং সমাযোজী যৌগ, YB5 = PCl5; জারণ অবস্থা +5 এবং সমযোজী যৌগ $YB_3 = PCl_3$ জারণ অবস্থা +3 এবং সমযোজী যৌগ

8. A = ফ্লোরিন (F)। এটি পর্যায় সারণির সবচেয়ে বেশি তড়িৎ ঋণ্ডাকতা সম্পন্ন মৌল। এর তড়িৎ ঋণ্ডাকতা = 4.1।

9. $pH = -\log [H^+]$ \therefore [H⁺] = 10^{-3.8} = 1.5 × 10⁻⁴ M

So. $Zn^{2+} + NaOH \longrightarrow Zn(OH)_2 + Na^+$

(সাদা অধঃ)	
$Zn^{2+} + K_4[Fe(CN)_6] \longrightarrow Zn_2[Fe(CN)_6] + K^+$	$Zn^{2+} + K_4$
(সাদা অধঃ)	

\(\Gamma\) C. $pOH = -\log[H^+] = -\log[01]$

 \Rightarrow pOH = 1

 $\therefore pH = 14 - 1 = 13$

 $\therefore 4S^3 = 4 \times 10^{-9}$

 \Rightarrow S = 10^{-3} M (Ans.)

১০৯, ঢাকা রেসিডেনসিয়াল মডেল কলেজ, ঢাকা

1 56	۵	ঘ	২	ঘ	৩	গ	8	গ	ď	ক	৬	ক	٩	ঘ	Ъ	ঘ	৯	খ	20	ঘ	77	ক	১২	গ	20	ঘ
Þ	84	খ	36	ঘ	১৬	খ	١٩	ঘ	3 b	গ	১৯	ক	২০	গ	২১	ঘ	২২	ঘ	২৩	গ	২8	খ	২৫	গ		

্ব্যাখ্যা:

- **3.** $P(15) 1s^2 2s^2 2p^6 3s^2 3p_x^1 3p_y^1 3p_z^1$ সূতরাং. ফসফরাসের ক্ষেত্রে স্থিতিশীল 2p³ হতে ইলেকট্রন মুক্ত করতে হয়। তাই আয়নিকরণ বিভব বেশি।
- \lozenge . $2NaOH + SiO_2 \longrightarrow Na_2SiO_3 + H_2$ সূতরাং, SiO2 একটি অম্-ধর্মী অক্সাইড।
- 8. $A_2(g) + 2B_2(g)$ Hoooooooool $2AB_3(g)$ $\Delta n = 2 - (1 + 3) = -2$ $\therefore K_p = K_c (RT)^{-2}$ \Rightarrow K_c = K_p (RT)²
- \bullet . $HSO_4^- + HCl Hoooooooooo H₂SO₄ + Cl⁻$

সুতরাং, ${
m HSO}_4^-$ এর অনুবন্ধী অম্- ${
m H}_2{
m SO}_4$.

$$\label{eq:collinear} \text{Φ.} \quad K_p = \frac{P_{CO} \times P_{\text{Cl}_2}}{P_{\text{COCl}_2}} = \frac{atm \times atm}{atm} = atm$$

 $\text{ b.} \quad HA + H_2O \; Hooooooooo I \; H_3O^+ + A^ (1-\alpha)$

$$(1 - \alpha)$$

∴ KC =

$$\alpha$$
 α α $\alpha = 707.$

$$\frac{\left(\frac{\alpha}{v}\right)\left(\frac{\alpha}{v}\right)}{\left(\frac{1-\alpha}{v}\right)} = \frac{\alpha^2}{1-\alpha}$$

$$= \frac{(0.7)^2}{1-0.7}$$

$$= 1.63$$

\ 9. $w = n \times M$ $= V(L) \times S \times M$ $= (0.25 \times 0.1 \times 106)g$ = 2.65 g

১৮. P উপস্ভরে, l = 1; m = -1, 0, 1সুতরাং, উপস্ডুর 3টি

২২.

$$mvr = \frac{nh}{2\pi} = \frac{3h}{2\pi}$$

M শেলের জন্য n = 3

১১০. বীরশ্রেষ্ঠ নূর মোহাম্মদ পাবলিক কলেজ, ঢাকা

S	>	ক	২	ক	৩	খ	8	খ	¢	গ	৬	গ	٩	খ	ъ	*	৯	ঘ	20	ঘ	77	গ	১২	ঘ	১৩	গ
唇	\$ 8	ঘ	ን৫	ঘ	১৬	ঘ	১৭	ক	ንራ	গ	১৯	গ	২০	ক	২১	ঘ	২২	ঘ	২৩	ক	২8	ঘ	২৫	ঘ		

বি.দ্র: *৮. সঠিক উত্তর হবে (iii)।

্ব্যাখ্যা:

- ২. হার্ডি শূলজে সূত্রানুযায়ী, আয়নের চার্জ বৃদ্ধিতে কোয়াগুলেশন ক্ষমতা বৃদ্ধি পায়। সুতরাং, Al³+ এর কোয়াগুলেশন ক্ষমতা বেশি।
- পোলারায়িত হওয়ার ক্রমানুয়ায়ী।

 $I^{-} > Br^{-} > Cl^{-} > F^{-}$

সুতরাং, F- আয়নের আকার ছোট হওয়ায় পোলারায়িত কম হয়। সুতরাং, CaF_2 এর গলনাঙ্ক সবার থেকে বেশি।

- ৮. সঠিক উত্তর হবে শুর^ভ (iii)।
- ১২. 1% NaOH এর দ্রবণে $[OH^-] = \frac{1 \times 10}{40} = 0.25$

 \therefore pH = 14 + log (0.25) = 13.4

\$8. CCl₄ এর গঠন Cl – C – Cl

প্রথম কার্বনে 4টি সিগমা বন্ধন আছে এবং দ্বিতীয় কার্বনে 2টিত ও 2টি π বন্ধন আছে। সুতরাং, উভয় মৌলের অষ্টকপূর্ণ হওয়ায় এটি সন্নিবেশ বন্ধন

গঠন করে না।

১৬.

$$Ni^{2+}$$
: [Ar] $A A A \cong \cong$
∴ Ni^{2+} রঙিন যৌগ গঠন করে।

\\$\.
$$K_c = \frac{[AB_3][B_2]}{[AB_5]} = \frac{(molL^{-1}) \times (molL^{-1})}{molL^{-1}} = mol L^{-1}$$

$$H$$

$$CH_3 - CN : H - C - C \equiv N$$

প্রথম কার্বনে 4টি সিগমা বন্ধন আছে এবং দ্বিতীয় কার্বনে 2টি σ ও 2টি π বন্ধন আছে।

সুতরাং, CH_3^- মূলকের কার্বনটি sp^3 সংকরিত ও $-C \equiv N$ এর Cপরমাণুটি sp সংকরিত।

₹७. CaF₂ Hoooooooool Ca²⁺ + 2F⁻

$$\begin{array}{ccc} \text{1-s} & s & 2s \\ \therefore & K_{sp} = s \times (2s)^2 = 4s^3 \end{array}$$

$$\Rightarrow 3.4 \times 10^{-11} = 4s^3$$

 $\therefore~s=2.04\times10^{-4}~mol~L^{-1}$

১১১. হলি ক্রস কলেজ, ঢাকা

টেওর	١	ঘ	ર	ঘ	৩	ক	8	ঘ	ď	গ	৬	গ	٩	গ	ъ	খ	৯	গ	٥٥	খ	77	ক	১২	খ	১৩	গ
Æ	84	ঘ	১ ৫	ঘ	১৬	ঘ	১৭	গ	ንራ	গ	১৯	ক	২০	খ	২১	খ	২২	খ	২৩	গ	২8	গ	২৫	*		

বিদ্র: *২৫. সঠিক উত্তর 13।

্ব্যাখ্যা:

v.
$$Ag_2CO_3 = 2Ag^+ + CO_3^{2-}$$

 $K_{sp} = (2s)^2 \times s = 4s^3$

$$\Rightarrow s = \sqrt[3]{\frac{K_{sp}}{4}}$$

$$= \sqrt[3]{\frac{8.2 \times 10^{-12}}{4}}$$

$$= 1.27 \times 10^{-4}$$

8.
$$Fe^{3+} \rightarrow [Ar] 3d^5$$

$$\begin{split} K_p &= K_c \, (RT)^{\Delta n} \\ K_c &= \frac{K_p}{(RT)^{\Delta n}} \qquad \qquad \Delta n = 1 \\ &= \frac{0.562}{0.0821 \times 298} = 0.023 \end{split}$$

৭. ট্যালকের সংকেত H₂Mg₃(SiO₃)₄

ъ.

$$\frac{1}{\lambda} = R_{H} \left(\frac{1}{2} - \frac{1}{2} \right) \qquad \begin{vmatrix} n_{1} = 2 \\ n_{2} = 5 \\ R_{H} = 109678 \text{cm}^{-1} \end{vmatrix}$$

- ১১. B^{2+} আয়নটি Cu^{2+} এটি $K_4\left[Fe(CN)_6\right]$ এর সাথে লালচে বাদামী বর্ণ দিবে।
- ১২. A মৌলটি Sc

২২. 1000 mL দ্রবণে NaOH 200 mg = 0.2 g

:. 100 " " NaOH
$$\frac{0.2 \times 100}{1000}$$
 g = 0.02 g

$$\therefore \left(\frac{w}{v}\right)\% = 0.02\%$$

১১২ ঢাকা সিটি কলেজ

8	۵	ঘ	২	ক	৩	খ	8	খ	ď	ক	৬	গ	٩	খ	ъ	ঘ	৯	গ	٥٥	গ	77	গ	১২	গ	20	ঘ
屬	ک 8	খ	36	ঘ	১৬	*	১৭	গ	36	ঘ	১৯	ক	২০	খ	২১	গ	২২	খ	২৩	খ	২8	গ	২৫	ক		

বি.দ্র: *১৬. সঠিক উত্তর ক ও খ।

্ব্যাখ্যা:

- ৩. i. 10% NaOH এর ঘনমাত্রা = $\frac{10 \times 10}{40}$ = 2.5 M
 - ii. তড়িৎ ঋণ্ডাক (Cl) ও ক্ষদ্র আকারের কারণে HPO₃ অপেক্ষা HClO₄ শক্তিশালী এসিড। এখানে উভয়েরই জারণ মান +5.
 - iii. 25°C তাপমাত্রায় পানিতে সমান পরিমাণে H+ ও OH- থাকায় pH = pOH = 7

একটি 3d, একটি 4s ও 2টি 4p মিলিতভাবে dsp^2 সংকর অরবিটাল উৎপন্ন করে যা [Cu (NH3)4]²⁺ এর সমতলীয় বর্গাকার গঠনের সাথে মিল আছে।

১২.

১৪. Y মৌলটি হলো Mn যা অবস্থাম্ডর মৌল এবং d → d ইলেকট্রন স্থানাম্প্রের কারণে রঙ্গিন যৌগ গঠন করে না। X(Sc) ও Z(Zn)

d-ব-ক মৌল হলেও অবস্থান্দ্র নয়। তাই Sc ও Zn যৌগ বৰ্ণহীন।

১৬.
$$H_2CO_3 - 2H^+ \longrightarrow CO_3^{2-}$$
 $HCO_3 \xrightarrow{-H^+} CO_3^{2-}$ তাই H_2CO_3 ও HCO_3^-
অম্- ক্ষারক হলো CO_3^{2-} এর অনুবন্ধী অম্-।

- ১৭. I₂ + H₂ Hooooooool 2HI, বিক্রিয়াটির উভয় পাশের অণুর সংখ্যা সমান, তাই এর উপর চাপের প্রভাব নেই। সুতরাং চাপ চারগুণ করলেও উৎপাদের পরিমাণ অপরিবর্তিত থাকে।
- $90. \text{Mg}(OH)_2 \text{ Hooooooool Mg}^{2+} + 2OH^{-1}$

$$1.71 \times 10^{-4} \, 2 \times 1.71 \times 10^{-4}$$

 $K_{sp} = [Mg^{2+}] [OH^{-}]^{2}$ $=2.00\times10^{-11}$

২১. $_{21}{
m Sc-}$ এর ২১ তম ইলেকট্রনটি $_{3d}$ অরবিটালে প্রবেশ করে, তাই

$$n = 3$$
, $l = 2$, $m = 0$ $s = +\frac{1}{2}$

 $Ca(OH)_2$ Hoooooooo $Ca^{2+} + 2OH^{-}$ দ্রাব্যতা: x x

$$K_{sp} = [Ca^{2+}] [OH^-]^2$$

⇒ 7.9 × 10⁻⁶ = x (2x)²
⇒ 4x³ = 7.9 × 10⁻⁶
∴ x = 0.0125 M
 $[OH^-] = 2x = 0.025$
 $pOH = -log [OH^-]$
 $pOH = -log (0.025)$
 $pOH = 1.625$
widia,
 $pH + pOH = 14$
⇒ $pH = 14 - 1.625$
= 12.374 = 12.40

১১৩. মাইলস্টোন কলেজ, ঢাকা

তু তথ	١	ঘ	২	গ	৩	খ	8	গ	œ	গ	৬	গ	٩	ঘ	ъ	ক	৯	খ	٥٥	খ	77	গ	১২	গ	১৩	গ
Æ	ک 8	গ	ኔ ৫	গ	১৬	গ	১৭	খ	ኔ ৮	খ	১৯	ক	২০	খ	২১	খ	২২	খ	২৩	ঘ	২8	ক	২৫	ঘ		

্ব্যাখ্যা:

$$\text{S.} \quad (\text{vse})_{\text{Na}_2\text{CO}_3} = \left(\frac{\text{m}}{\text{M}} \times \text{e}\right)_{\text{Na}_2\text{CO}_3}$$

$$\Rightarrow \frac{250}{1000} \times 0.1 \times 2 = \frac{\text{m}}{106} \times 2$$

$$\Rightarrow \text{m} = 2.65\text{g}$$

b. X = C, Z = O

XZ2 = CO2; ইলেকট্রন শেয়ারের মাধ্যমে গঠিত হয়।

 δ . CaO + H₂O \longrightarrow Ca(OH)₂

\oldot
$$pH = 14 - pOH = 14 - 6.7 = 7.3$$

$$\therefore H^{+} = 10^{-7.3} = 5.01 \times 10^{-8}$$

⇒ [OH⁻] = 1.99 × 10⁻⁷ M এখন

∴
$$[OH^{-}][H^{+}] = 10^{-14}$$

⇒ $[H^{+}] = 5.01 \times 10^{-8} M$

36. $K_C = (mol \ L^{-1})^{-1}$

 $\therefore K_C = \text{mol dm}^3$

 $\mathbf{S}_{P} = K_{C} (RT)^{\Delta n}$

 $\therefore K_P = K_C (RT)^{-2}$

১১৪. মতিঝিল মডেল স্কুল এন্ড কলেজ, ঢাকা

	•				<u> </u>			` ' '		•																
8	١	খ	২	ক	9	ক	8	ঘ	œ	ক	૭	খ	٩	গ	b	ক	৯	ঘ	70	ক	77	গ	১২	গ	১৩	গ
唇	84	ঘ	36	খ	১৬	খ	১৭	খ	36	ক	১৯	খ	২০	খ	২১	খ	২২	খ	২৩	ক	২8	ক	২৫	ক		

্ব্যাখ্যা:

৬. কৌণিক ভরবেগ $mvr = \frac{nh}{2\pi}$

$$n=4$$
 (৪র্থ শক্তিস্ভুর) $mvr=rac{4h}{2\pi}$ $=rac{2h}{\pi}$

৮. যেকোন পর্যায়ে বাম থেকে ডানে গেলে আকার ছোট হতে থাকে ফলে—

> পারমাণবিক ব্যাসার্ধ কমে আয়নিকরণ শক্তি বাড়ে তড়িৎ ঋণ্ডাকতা বাড়ে ইলেকট্রন আসক্তি বাড়ে

গলনাংক ও স্কুটনাংকের ধারাবাহিকতা নেই। এটি ধাতব ও অধাতব বৈশিষ্ট্য দ্বারা নিয়ন্ত্রিত হয়। এক্ষেত্রে ৩য় পর্যায়ের মৌলগুলোকে লক্ষ করি।

মৌল	Na	Mg	Al	Si	P	S	Cl	Ar
গলনাংক (°C)	97.8	650	660	1410	44	119	-103	-189
স্ফুটনাংক (°C)	883	1090	2290	2355	280.5	446	-34.6	-186

১৫. 300g দ্রাবকে ধাতব ক্লোরাইড আছে 45g

100g " " "
$$\frac{45 \times 100}{300}$$

= 15 g

A এর দ্রাব্যতা = 15 g

১৭. উদ্দীপকের ${
m CH_4}$ যৌগের আকৃতি চতুস্ডুলকীয় এবং যৌগের কেন্দ্রীয় পরমাণু কার্বন ${
m sp^3}$ সংকরিত। ${
m sp^3}$ সংকরিত যৌগের কোণের আকতি ${
m 109^\circ 28}$ । অর্থাৎ ${
m CHCH} = {
m 109^\circ 28}$

১৯. বিক্রিয়ার হার =
$$\dfrac{\mbox{ঘনমাত্রার পরিবর্তন}}{\mbox{সময়}}$$
 = $\dfrac{0.1-0.05}{20}\, \mbox{mol}\, L^{-1} \mbox{s}^{-1}$ = $\dfrac{0.05}{20}\, \mbox{mol}\, L^{-1} \mbox{s}^{-1}$ = $2.5 \times 10^{-3}\, \mbox{mol}\, L^{-1} \mbox{s}^{-1}$

₹o. A + 3B Hooooooool 2C

$$K_c = rac{[C]^2}{[A]\,[B]^3}$$
 ঘনমাত্রার একক = $\mod L^{-1}$

$$= rac{(\mod L^{-1})^2}{\mod L^{-1}\,(\mod L^{-1})^3}$$

$$= rac{\mod^2 L^{-2}}{\mod^4 L^{-4}}$$

$$= L^2 \mod^{-2}$$

২১. i. NH3 কেবল প্রোটন গ্রহীতা, তাই এটি ক্ষারক

ii. HCO_{3}^{-} প্রোটন দাতা ও গ্রহীতা হিসেবে কাজ করতে পারে। তাই এটি উভধর্মী—

$$HCO_3^- + NH_3 \longrightarrow CO_3^{2-} + \stackrel{+}{N}H_4$$

 $HCO_3^- + HCl \longrightarrow N_2CO_3 + Cl^-$

১১৫. সরকারি বঙ্গবন্ধু কলেজ, ঢাকা

	-			~		,																			
(in)		i			i .	i	1					i .			1				l .		I	i	১২	i .	ক
উত্তর	84	ক	36	ঘ	১৬	ঘ	ኔዓ	খ	ንራ	গ	১৯	ঘ	২০	ঘ	২১	ক	২২	গ	২৩	ক	২8	গ	২৫	গ	

্বি ব্যাখ্যা:

৩. রাইডার ধ্র^{ক্র}বক =
$$\frac{2 \times 10 \times 10^{-3}}{100}$$
 = 0.0002

9. Mg_3 (PO₄)₂ Hoooooooooo $3Mg^{2+} + 2PO_4^{3-}$

s 3s 2s
∴
$$K_{sp} = (3s)^2 \times (2s)^2 = 108 \text{ s}^5$$

∴ $a = 108 \text{ ; } x = 5$

33. A_2B_3 Hooooooooo $2A^{3+} + 3B^{2+}$

s 2s 3s
∴
$$K_{sp} = (2s)^2 \times (3s)^3 = 108 s^5$$

38. NH₃ + HCl Hoooooooool NH₄ + Cl

∴ NH₃ এর অনুবন্ধী অম্- NH₄ ২8. H₃PO₄ H₂SO₄ H₂SO₃ HNO₃ +5 +6 +4 +5 ∴ H₂SO₃ এর তীব্রতা সব থেকে কম।

১১৬. গাজীপুর ক্যান্টনমেন্ট কলেজ

		~																								
8	۷	घ	২	ঘ	9	ক	8	ক	ď	খ	૭	গ	٩	ক	ъ	গ	৯	গ	70	ঘ	77	*	১২	খ	১৩	খ
慮	78	ঘ	ኔ ৫	ক	১৬	খ	১৭	খ	ንራ	ঘ	አ ৯	ঘ	২০	খ	২১	খ	২২	*	২৩	ঘ	২8	ঘ	২৫	গ		

বিদ্র: *১১. শূন্যক্রম বিক্রিয়ার হার ধ্র^এবকের একক mol L⁻¹S⁻¹। *২২. সঠিক উত্তর 5.47 × 10⁻¹⁴।

্ব্যাখ্যা:

32.
$$K_p = \frac{(P_{NO_2})^2}{P_{N_2O_4}} = \frac{(0.31)^2}{0.69} = 0.1393 \text{ atm}$$

59.
$$x = \frac{1}{2}[V + N - C + A]$$

= $\frac{1}{2}[8 + 4 - 0 + 0]$
= 6

∴ sp³d² সংকরীকরণ এবং চতুস্থলকীয়।

२२.	$CaF_2\ HooooooooI\ Ca^{2+} + 2F^-$
	দেওয়া আছে, CaF_2 এর ঘনমাত্রা, $S = 0.0065 gL^{-1}$

$$\therefore$$
 দ্রাব্যতা গুণফল, $K_{sp}=[Ca^{2+}]$ $[F^-]^2$

$$= s \times (2s)^2 = 4s^3$$

∴
$$S = 1.7 \times 10^{-4}$$

∴ $K_{sp} = 4 \times (1.7 \times 10^{-4}) \text{ gL}^{-1}$
 $= 2.048 \times 10^{-11}$

১১৭. এম ই এইচ আরিফ কলেজ, কোনাবাড়ি, গাজীপুর

			•					,			,		` .														
X	۵		ঘ	২	ক	6	ক	8	খ	œ	খ	૭	গ	٩	গ	Ъ	ক	৯	ঘ	70	গ	77	খ	১২	*	১৩	খ
唇	38	3	খ	ኔ ৫	গ	১৬	খ	১৭	গ	72	ঘ	১৯	ক	২০	খ	২১	ক	২২	গ	২৩	গ	২8	খ	২৫	গ		

বিদ্র: *১২. সঠিক উত্তর ক ও গ।

্ব্রু ব্যাখ্যা:

- ৬. d উপস্ডুরের জন্য l=2
 - ∴ m এর মান সংখ্যা = 21 + 1 = 2.2 + 1

= 5

১২. সঠিক উত্তর হবে (ক) ও (গ)।

- ১৮. $K_c = \frac{[Hl]^2}{[H_2] \ [I_2]} = \frac{(mol \ L^{-1})^2}{(mol \ L^{-1}) \times (mol \ L^{-1})} = 1$ \therefore সুতরাং এই বিক্রিয়ায় K_c এর একক নেই ।
- \$\. [H⁺] = 10^{-pH} = $10^{-6.7}$ mol L^{-1} = 1.99×10^{-7} mol L^{-1}

১১৮. ক্যান্টনমেন্ট পাবলিক স্কল ও কলেজ, মোমেনশাহী, ময়মনসিংহ

\ <u>\range</u>	١	গ	২	ক	9	খ	8	গ	Œ	*	૭	গ	٩	घ	Ъ	ক	৯	খ	٥٤	ক	77	গ	১২	ঘ	১৩	থ
À	84	ঘ	36	ক	১৬	ক	١٩	ক	36	গ	১৯	ক	২০	গ	২১	ঘ	২২	খ	২৩	ক	২8	ক	২৫	ঘ		

বি.দ্র: *৫. সঠিক উত্তর $\frac{h}{\pi}$ ।

্ব্যাখ্যা:

- ৫. কৌণিকভরবেগ mvr = $\frac{nh}{2\pi}$ = $\frac{2 \times h}{2\pi}$ = $\frac{h}{\pi}$
- ৬. Sc এর শেষ ইলেকট্রন 3d তে প্রবেশ করে 3d তে n ও l এর মান 3 ও 2
- q. m এর মান –1 থেকে +1 পর্যল্ড হয়
 1 এর মান 3 হলে m এর মান –3 হওয়া সম্ভব
- \mathbf{b} . $E = h\mathbf{v}$

v = কম্পাঙ্ক, কম্পাঙ্ক কম হলে শক্তি বেশি Microwave এর কম্পাঙ্ক IR, UV, XRAY থেকে কম তাই এর শক্তি কম।

- ৯. সমআয়ন I- এর প্রভাবে দ্রাব্যতা কমবে।
- ১০. Cu^{2+} আয়নের দ্রবর্গে K_4 $[Fe(CN)_6]$ বিকারক যোগ করে Cu_2 $[Fe(CN)_6]$ এর লালচে বাদামী অধ্যক্ষেপ পড়ে।

১১. Y²⁺ হলে Zn²⁺

> Al₂(SO₄)₃ H0000000000I $2Al^{3+} + 3SO_4^{2-}$

$$K_{ip} = (2S)^2 + (3S)^3 = 108 S^5$$

\9. pH = -log(0.1)

\$\text{br.} $\frac{-Ea}{2.303 \text{ R}} = -70$

 \Rightarrow Ea = 70 × 2.303 × 8.314 = 1340.29

- ২১. $\Delta n=0$ তাই চাপের প্রভাব নেই।
- ২২. $K_p α T$ তাই তাপমাত্রা বাড়লে K_p বাড়বে। বিক্রিয়াটি তাপোৎপাদী হওয়ায় তাপমাত্রা বাড়ালে সাম্যাবস্থা ডানে সরে যাবে।

১১৯. সষ্টি কলেজ অব টাঙ্গাইল

	<u> </u>						•																										
9 k ;	١	গ	- 17		ঘ	6	*	8		খ	æ	খ	b	,	ক	٩	গ	1	Ъ	ক	৯	ঘ	30	0	খ	3	۱ د	গ		১২	ক	১৩	গ
			:	- :		:			_ :															_ :					- 1		1	- 1	

১৪ ঘ ১৫ ক ১৬ খ ১৭ ক ১৮ ক ১৯ ঘ ২০ ঘ ২১ খ ২২ খ ২৩ গ ২৪ খ ২৫ ঘ

বি.দ্র: *৩. সঠিক উত্তর 0.000025g।

্ব্যাখ্যা:

৩. রাইডার ধ্র^{ক্র}বক =
$$\frac{2 \times 5 \times 10^{-3}}{200}$$
 = 0.00005

S
$$2S 3S$$

$$\therefore K_{sp} = (2S)^2 \times (3S)^3 = 108S^5$$

১২. D ও E মৌলদ্বয় যথাক্রমে Si ও O সুতরাং, SiO2 যৌগটি হচ্ছে DE_2 । যৌগটি পলিমার গঠন করে, অম্-ধর্মী এবং গলনাঙ্ক উচ্চ।

১৩. DQ4 যৌগটি SiCl4।

$$SiCl_4 + 2H_2O \longrightarrow Si(OH)_2 + 4HCl$$

∴ DQ4 যৌগটি আর্দ্রবিশে-ষিত হয়।

39.
$$C = \frac{10x}{M}$$

= $\frac{10 \times 2.5}{40} = 0.625$

$$pH = 14 + log [OH^{-}]$$

= 14 + log (0.625)
= 13.796

$$NaOH \longrightarrow Na^{+} + OH^{-}$$

$$\therefore [OH^{-}] = 0.625$$

$$λb. Kp = \frac{P_{NH}^{2}_{3}}{P_{N_{2}} \times P_{H_{2}}}$$
$$= \frac{(atm)^{2}}{atm \times (atm)^{3}}$$
$$= atm^{-2}$$

১২০. আর ডি এ ল্যাবঃ স্কুল এন্ড কলেজ, বগুড়া

34	١	খ	২	ক	9	ক	8	গ	Œ	গ	৬	গ	٩	খ	Ъ	গ	৯	খ	٥٥	ক	77	ঘ	১২	ক	১৩	ক
Æ	84	ক	36	গ	১৬	খ	١٩	খ	ኔ ৮	খ	አ ৯	ক	২০	গ	২১	গ	২২	গ	২৩	খ	২8	ঘ	২৫	ক		

্বি ব্যাখ্যা:

উদ্দীপকের D ও E মৌলদ্বয় যথাক্রমে Si ও O এর DE₂ যৌগটি হচ্ছে SiO₂। SiO₂ অয়-ধর্মী এবং পলিমার গঠন করে এবং যৌগটির গলনাল্ক উচ্চ।

- উদ্দীপকের A ও Q মৌলদ্বয় যথাক্রমে Na ও Cl সুতরাং, AQ য়োগটি NaCl যা একটি আয়নিক য়োগ।
- ৮. প্রভাবক বিক্রিয়ার K_p , K_c ও সাম্যাবস্থার কোন পরিবর্তন ঘটায় না। শুধুমাত্র সম্মুখমুখী ও পশ্চাৎমুখী উভয় বিক্রিয়ার গতিবেগ বৃদ্ধি করে।

$$\delta. \quad K_c = \frac{[AB_3]^2}{[A_2] \ [B_2]^3} = \frac{(\text{mol } L^{-1})^2}{(\text{mol } L^{-1}) \times (\text{mol } L^{-1})^3} = L^2 \ \text{mol}^{-2}$$

**\(\Sigma_{\text{Na}_2\text{CO}_3} = n \times M = V(L) \times S \times M \)
$$= 0.25 \times 0.1 \times 10^{-1}$$**

$$= 0.25 \times 0.1 \times 106 = 2.65 \text{ g}$$
 \\$8.

pH = 14 + log [OH⁻]
= 14 + log (0.1)
= 13
$$\begin{array}{c} \text{Ca(OH)}_2 \text{ Hooooooooool Ca}^{2+} + \\ \text{2OH}^- \\ \therefore \text{ [OH^-]} = 2 \times 0.05 \end{array}$$

- ১৭. ${
 m H}^+$ আয়নের ঘনমাত্রা বৃদ্ধি $=rac{10^{-3}}{10^{-2}}$ গুণ $=rac{1}{10}$ গুণ
 - ∴ H⁺ আয়নের ঘনমাত্রা 10 গুণ**্রা**স পায়।
- ১৯. আকার বৃদ্ধির ক্রমানুসারে,
 - $F^- < Cl^- < Br^- < I^-$

আয়নের আকার বৃদ্ধির সাথে সাথে পোলারায়িত হওয়ার প্রবণতা বাড়ে। F- আয়নের আকার সবচেয়ে ছোট হওয়ায় পোলারায়িত হয় সব থেকে কম। সুতরাং, AIF3 যৌগটির সমযোজী বৈশিষ্ট্য সব থেকে কম।

- ২২. $Ag(NH_3)_2Cl$ যৌগটিতে NH_3 অণুগুলোর মধ্যে সমযোজী বন্ধন বিদ্যমান। আবার, Ag^+ , 2টি NH_3 এর সাথে সনিবেশ বন্ধনের মাধ্যমে $[Ag(NH_3)_2]^+$ আয়ন গঠন করে। $[Ag(NH_3)_2]^+$ একটি Cl^- আয়নের সাথে আয়নিক বন্ধনের মাধ্যমে যুক্ত হয়ে $[Ag(NH_3)_2]$ Cl তৈরি করে।
 - সুতরাং, [Ag(NH₃)₂]Cl যৌগটিতে আয়নিক, সমযোজী ও সন্নিবেশ এই তিন ধরনের বন্ধন বিদ্যমান।
- ২৩. $C_2H_5OH + 3O_2 \longrightarrow 2CO_2 + 3H_2O$ সুতরাং, 1 mol C_2H_5OH এর পূর্ণ দহনে 2 mol CO_2 উৎপন্ন হয়।

১২১. কাদিরাবাদ ক্যান্টনমেন্ট স্যাপার কলেজ, নাটোর

K	۵	ক	২	গ	৩	ঘ	8	গ	Œ	গ	৬	ক	٩	ঘ	ъ	গ	৯	খ	٥٥	গ	77	গ	১২	ক	১৩	গ
À	الا	গ	১৫	গ	১৬	ক	১৭	ক	3 b	ঘ	አአ	গ	২০	ক	২১	ঘ	২২	গ	২৩	গ	২8	ঘ	২৫	ক		

্ব্যাখ্যা:

$$Result = \frac{1000W}{MV}$$

$$= \frac{1000 \times 10.6}{106 \times 200}$$

$$= 0.5$$

8.
$$N_2O_4$$
 Hooooooooo I $2NO_2$ সাম্যাবস্থায় $1-\alpha$ 2α মোট মোল $1-\alpha+2\alpha$

$$=1+\alpha$$

৫. আংশিক চাপ
$$=$$
 মোল ভগ্নাংশ $imes$ মোট চাপ

$$=\frac{2\alpha}{a+\alpha}P$$

- b. f এর জন্য l এর মান 3 হয়। কিন্তু তৃতীয় স্তুরে l এর মান সর্বোচ্চ 2 হতে পারে। তাই 3f সম্ভব নয়।
- δ . $\Delta n = -2$

$$\therefore \ K_p = K_c \ (RT)^{\Delta n} \\ = K_c (RT)^{-2}$$

- ৬. ঘনমাত্রা বেশি হলে বিয়োজন মাত্রা বেশি হয়।
- **39.** AlCl₃ = Al³⁺ + 3Cl⁻

 $K_{sp} = S \times (3S)^3 = 27S^4$

 $Fe(OH)_3 = Fe^{3+} + 3OH^{-}$

 $K_{sp} = S \times (3S)^3 = 27S^4$

১৮. ফাজানের নীতি অনুযায়ী Agl ও পোলারায়ন বেশি তাই সমযোজী বৈশিষ্ট্য বেশি।

১৯. HNO3 তে কেন্দ্রীয় পরমাণু N এর জারণমান +5 যা অন্যগুলো থেকে বেশি। তাই তীব্রতা সর্বাধিক।

১২২. দিনাজপুর সরকারি কলেজ, দিনাজপুর

- 1			~				, .		~																	
N.	١	ঘ	ર	গ	9	গ	8	ঘ	ď	ঘ	૭	খ	٩	ঘ	b	ক	৯	ক	70	খ	77	গ	১২	খ	১৩	গ
唇	78	ঘ	36	গ	১৬	ক	١٩	ঘ	76-	গ	১৯	ঘ	২০	ক	২১	ঘ	২২	গ	২৩	ক	২8	ক	২৫	ঘ		

সব্যাখ্যা:

8. $NH_4^+ = 109^{\circ}28'$

 $NH_3=107^{\circ}$

NH2 = আরও কম।

৬. কারণ H2O তে হাইড্রোজেন বন্ধন বিদ্যমান।

>७. pOH =
$$-\log [6.2 \times 10^{-7}]$$

⇒ pOH = 6.21
∴ pH = $14 - 6.21 = 7.8$

১২৩. ক্যান্টনমেন্ট পাবলিক স্কুল ও কলেজ, রংপুর

- \	•						•		٠,	٠٠٩	•															
X	۵	গ	২	খ	9	ক	8	ক	ď	খ	૭	গ	٩	ক	ъ	ক	৯	গ	70	গ	77	ঘ	১২	খ	১৩	ঘ
هٔار	\$ 8	ঘ	ን৫	গ	১৬	খ	১৭	ক	76	ঘ	አ ৯	ঘ	২০	ক	২১	খ	২২	ক	২৩	খ	২৪	গ	২৫	ক		

্বি ব্যাখ্যা:

 \gtrless . aA + bB \longrightarrow mN

বিক্রিয়ার হার, $K=-rac{1}{a}\cdotrac{\Delta[A]}{\Delta t}=-rac{1}{b}\cdotrac{\Delta[B]}{\Delta t}=rac{1}{m}\cdotrac{\Delta[N]}{\Delta t}$

 $\label{eq:No2} \begin{array}{ll} \mbox{\bf \o}. & \mbox{\bf K}_p = \frac{P_{NO_2}}{P_{N_2O_4}} = \frac{(0.31)^2}{0.69} \mbox{ atm} \\ & = 0.1393 \mbox{ atm} \end{array}$

 ϵ . $[H^+]$ আয়নের ঘনমাত্রা বৃদ্ধি $= \frac{10^{-4}}{10^{-6}}$ গুণ $= 10^2$ গুণ

 $. \quad C = \frac{10x}{M} = \frac{10 \times 1}{40} M = 0.25 M$

১২. CO_3^{2-} আয়নে ইলেকট্রন সংখ্যা $= 6 + 3 \times 8 + 2 = 32$

\$\text{\phi}\$. pOH = $-\log [OH^{-}] = -\log (0.5)$

১⊌. $C_2H_5OH + 3O_2 \longrightarrow 2CO_2 + 3H_2O$

∴ 2 mol CO₂ উৎপন্ন হয়।

১৮. অ্যালুমিনা হচ্ছে Al₂O₃.

 $Al_2O_3 + 6HCl \longrightarrow 2AlCl_3 + 3H_2O$

∴ অ্যালুমিনার অম-ত্ব 6.

 $\diamond o. \ COCl_2(g) \longrightarrow CO(g) + Cl_2(g)$

$$K_p = \frac{P_{CO} \times P_{Cl_2}}{P_{COCl_2}} = \frac{atm \times atm}{atm} = atm$$

২৩. XeF4 যৌগে—

Xe-এ 2টি মুক্তজোড় ইলেকট্রন বিদ্যমান। 4টি F পরমাণুতে (4 × 3) = 12 টি মুক্তজোড় ইলেকট্রন থাকে। সুতরাং XeF4 যৌগে মোট 14টি মুক্তজোড় ইলেকট্রন থাকে।

১২৪. সরকারি সিটি কলেজ, চট্টগ্রাম

NE SE	١	*	ર	L	৩	Κ	8	М	ď	М	৬	*	٩	L	ъ	Κ	৯	Ν	20	Ν	77	*	১২	Κ	১৩	Ν
हे खुर हे खुर	الا	Ν	ኔ ৫	*	১৬	М	১৭	L	3 b	Ν	አ አ	Ν	২০	Κ	২১	Ν	২২	Κ	২৩	М	২8	L	২৫	L		

বি.দ্র: *১. ক ও খ উভয়ই উত্তর। *৬. সঠিক উত্তর ক ও খ উভয়েই। *১১. সঠিক উত্তর দেয়া নাই। *১৫. সঠিক উত্তর $1.096 \times 10^7 \mathrm{m}^{-1}$ ।

্ব্যাখ্যা:

১. সঠিক উত্তর হবে (ক) ও (খ)।

 $\bullet. \quad c = v\lambda$

 $\therefore \ v = \frac{c}{\lambda} = \frac{3 \times 10^8}{450 \times 10^{-9}} = 6.67 \times 10^{14} \ Hz$

১২. 'X' মৌলটি ক্যালসিয়াম (Ca).

∴ CaCl2 আয়নিক যৌগ, পানিতে দ্রবনীয় এবং গলনাঙ্ক উচ্চ।

১৩. Ti³⁺: [Ar] 3d¹4s⁰

অসম্পূর্ণ 3d অরবিটাল সুতরাং, Ti অবস্থাম্ডুর মৌল।

১৫. সঠিক উত্তর হবে $1.09678 \times 10^7 \, \mathrm{m}^{-1}$ ।

Ni^{2+} : Λ Λ Λ \cong \cong 4s

3d তে অযুগা ইলেকট্রন বিদ্যমান। সুতরাং প্যারাম্যাগনেটিক

২৫. পৃথকভাবে : $Na_3ASO_3 + O_2 \longrightarrow$ কোন বিক্রিয়া হয় না একত্রে : $Na_3AsO_3 + Na_2SO_3 + O_2 \longrightarrow Na_3AsO_4 + Na_2SO_4$ $\therefore Na_2SO_3$ আবিষ্ট প্রভাবক।

১২৫. জালালাবাদ ক্যান্টনমেন্ট পাবলিক স্কুল এন্ড কলেজ, সিলেট

(ওব	7	L	২	Κ	9	Κ	8	L	ď	М	بي	М	٩	Ν	Ъ	Ν	৯	L	70	М	77	L	১২	Κ	১৩	K
À	\$ 8	Κ	ኔ ৫	Ν	১৬	*	١٩	L	3 b	М	አ ৯	Ν	২০	*	২১	L	રર	Κ	২৩	М	২8	Κ	২৫	М		

্ব্যাখ্যা:

- $\lozenge. Mg(OH)_2 \longrightarrow Mg^{2+} + 2OH^{-}$
 - $\therefore \ K_{sp} = [Mg^+] \times [OH^-]^2$
 - $\therefore K_{sp} = 4S^3$
 - $\Rightarrow 4S^3 = 4 \times 10^{-3}$
 - $\Rightarrow S = 10^{-1} \text{ mol } L^{-1}$
- $\forall . \quad HCO_3^- + H_2O \longrightarrow H_3O^+ + CO_3^{2-}$

Conjugate Acid Conjugate Base

- ৮. আমরা জানি, $x = \frac{1}{2} [V + N C + A]$
 - $=\frac{1}{2}[5+4+1+0]$
 - $∴ sp^3$ সংকরীকরণ।
- **a.** $Al^{3+}: 1s^22s^22p^6$ $F^-: 1s^22s^22p^6$

- $33. \quad C_2H_2 + \frac{5}{2}O_2 \longrightarrow 2CO_2 + H_2O$
- ১৪. CCl4 এর কার্বন ও ক্লোরিন এর তড়িৎ ঋণ্ডাকতার পার্থক্য = 2.8 - 2.5 = 0.3সুতরাং, CCl4 অপোলার সমযোজী।
- **\&.** 1 = 2, m = -2, -1, 0, 1, 2
- ১৬. সুতরাং, সঠিক হবে (গ) ও (ঘ)।
- **3**9. Na⁺ $(1s^22s^22p^6) \longrightarrow Na^{2+} (1s^22s^22p^5) + e^{-}$ সুতরাং, Na এর দ্বিতীয় আয়নিকরণ শক্তির বেলায় Ne এর মত স্থিতিশীল ইলেকট্রন বিন্যাস হতে একটি e⁻ মুক্ত করতে হয়। তাই Na এর দ্বিতীয় আয়নিকরণ বিভব উচ্চমানের।
- $\mathbf{br.} \ \mathbf{k} = \frac{\mathbf{dc}}{\mathbf{dt}}$

সুতরাং একক = $\frac{mol\ L^{-1}}{s}$ = $mol\ L^{-1}\ s^{-1}$ ২০. সুতরাং, সঠিক হবে (ক) ও (ঘ)।

১২৬. বিশ্বনাথ কলেজ, সিলেট

N.	١	ক	ર	গ	೦	ঘ	8	ক	ď	ক	৬	ক	٩	খ	Ъ	ক	৯	ক	20	গ	77	খ	১২	খ	১৩	ক
序	84	খ	ኔ ৫	ঘ	১৬	*	١٩	ঘ	3 b	ক	১৯	খ	২০	খ	২১	খ	২২	খ	২৩	গ	২8	গ	২৫	ক		

বি.দ: *১৬. সঠিক উত্তর 4.087 × 10⁻² mol L⁻¹ ।

্ব্যাখ্যা:

- 8. Cu⁺: [Ar] 3d¹⁰4s⁰
 - Zn^{++} : [Ar] $3d^{10}4s^0$ Fe⁺⁺: [Ar] $3d^64s^0$
- $K_{c} = \frac{[NH_{3}]^{2}}{[N_{2}][H_{2}]^{3}} = \frac{(\text{mol } L^{-1})^{2}}{(\text{mol } L^{-1}) \times (\text{mol } L^{-1})^{3}}$ $= L^{2}\text{mol}^{-2}$
- \forall . $NH_3 + H^+ Hoooooooooo NH_4^+$

সুতরাং, NH_3 এর অনুবন্ধী অম্- NH_4^+

১০. V₂ আয়তন 0.5 M HNO₃ নেওয়া হলে,

$$V_2 = \frac{100 \times 0.1}{0.5} = 20 \text{ mL}$$

 \therefore পানির প্রয়োজন = $(100 - 20) = 80 \text{ mL}$

- ১৩. p অরবিটালের জন্য, $1=1;\, m=-1,\, 0,\, +1,\, s=\pm\, \frac{1}{2}$
 - ∴ অরবিটাল সংখ্যা = 3

ኔሮ. Ni²⁺: [A²] 3d⁸4s⁰ অসম্পূর্ণ 3d অরবিটাল। সুতরাং, N; $^{2+}$ রঙিন যৌগ গঠন করে।

১৬.

$$\begin{array}{c|c} \Delta n = 2 - 1 = 1 \\ \therefore \ K_p = K_c \ (RT)^{\Delta n} \\ \Rightarrow K_c = \frac{K_p}{RT} \end{array} \qquad \qquad \\ \therefore \ K_c = \frac{1}{0.0821 \times 298} \ mol \ L^{-1} \\ = 0.041 \ mol \ L^{-1} \end{array}$$

সুতরাং, সঠিক উত্তর নেই।

১৯. ${\rm HCO}_3^- + {\rm H}_2{\rm O}$ Hoooooooool ${\rm CO}_3^{2-} + {\rm H}_3{\rm O}^+$ (এসিড

 $HCO_3^- + HCl\ Hoooooooooool\ H_2CO_3 + Cl^-$ (ক্ষার হিসেবে) সুতরাং, HCO_3^- উভধর্মী।

\\$\. $C_{12}H_{22}O_{11} + H_2O \xrightarrow{\text{BbfvGUER}} C_6H_{12}O_6 + C_6H_{12}O_6$

 $\xrightarrow{\text{RvBGgR}} 4\text{CH}_3\text{CH}_2\text{OH} + 4\text{CO}_2$

 $CH_3CH_2OH + O_2 \xrightarrow{RV i Y} CH_3COOH + H_2O$

L হচ্ছে CH3CH2OH সুতরাং, অ্যালকোহল

২২. E হচ্ছে CH₃COOH

সুতরাং, ভিনেগার খাদ্য সংরক্ষক ও গ-াস ক্লিনার উভয় হিসাবে

- **R.** C = $\frac{2 \times 1.5 + 1.5 \times 2}{2 + 1.5}$ M = 1.71 M

$$pH = -\log [H^+] = -\log (0.01)$$
 $H^+ = 2 \times 0.005$
= 2 $= 0.01$

১২৭, এম.সি একাডেমী (মডেল স্কল ও কলেজ) গোলাপগঞ্জ, সিলেট

8	7	М	২	Κ	৩	Ν	8	Ν	ď	L	৬	L	٩	Κ	ъ	М	৯	М	٥٥	L	77	Ν	১২	Ν	১৩	М
À	38	М	3 ¢	Κ	১৬	Κ	١٩	L	ንራ	Ν	ል	М	২০	М	২১	М	২২	L	২৩	Ν	২8	Κ	২৫	М		

্ব্যাখ্যা:

- ৭. 'C' যুক্ত মৌলসমূহ প্রাইমারী স্ট্যান্ডার্ড পদার্থ। ব্যতিক্রম: HCl
- ১১. $(V \times S \times e)_{(Na_2CO_3)} = \left(\frac{m}{M} \times e\right)_{Na_2CO_3}$ $\Rightarrow \frac{250}{1000} \times 0.1 \times 2 = \frac{m}{106} \times 2$
 - \Rightarrow m = 2.65g
- **50.** $\Delta n = 0$; $K_p = K_c$

পারমাণবিক সংখ্যা = 33 = As

 $As = Ar 3d^{10} 4s^2 4p^3$

- ২৫. NaOH এর ঘনমাত্রা = $\frac{10 \times 12.5}{40} \left[\Box \text{ S} = \frac{10 \text{ n}}{\text{M}} \right]$ = 3.125
 - \therefore pOH = $-\log [3.125] = 0.49$
 - \therefore pH = 14 0.49 = 13.51

১২৮. ক্যান্টনমেন্ট কলেজ, যশোর

න ල	۵	Ν	ર	L	9	L	8	М	ď	L	৬	Ν	٩	L	ъ	M	a K	١ ٥	o N	77	L	3 ≷ L	১৩	K
--------	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	-----	-----	-----	----	---	--------------	----	---

্বি ব্যাখ্যা:

$$\begin{array}{ll} \boldsymbol{\delta}. & \boldsymbol{X} = \boldsymbol{L} \boldsymbol{i} \\ & \boldsymbol{Z} = \boldsymbol{M} \boldsymbol{g} \\ & \boldsymbol{Y} = \boldsymbol{N} \\ & \boldsymbol{Y} \boldsymbol{X}_3 = \boldsymbol{N} \boldsymbol{L} \boldsymbol{i}_3 \end{array}$$

\o.
$$Z_3Y_2 = Mg_3N_2$$

33.
$$\overline{V} = \frac{1}{\lambda} = \frac{1}{2.5 \times 10^{13}} = 1.2 \times 10^4 \text{ nm}$$

\\$8.
$$pH = -\log(0.002)$$

২২.
$$x = \frac{1}{2} (5 + 5 - O + O) = 5$$

∴ $sp^3 d$ সংকরীকরণ

১২৯. ক্যান্টনমেন্ট পাবলিক স্কল এন্ড কলেজ, জাহানাবাদ সেনানিবাস, খুলনা

- 1						~									, ,											
টেওর	١	М	২	Κ	9	*	8	L	ď	М	৬	Κ	٩	Κ	ъ	L	৯	М	70	Ν	77	М	১২	Κ	১৩	Κ
勴	78	L	26	Ν	১৬	L	১৭	М	ንራ	L	১৯	Κ	২০	М	২১	Ν	২২	L	২৩	Κ	২8	Ν	২৫	L		

বি.দ্র: *৩. সঠিক উত্তর হবে 5 × 10⁻⁴।

্ব্যাখ্যা:

9. $AB_3(aq)$ Hoooooooooo $A^{3+}(aq) + 3B^{-}(aq)$ AB_3 এর দ্রতা $S \text{ mol } L^{-1}$ হলে, $[A^{3+}] = S$

- ϵ . উপশক্তিস্ভূরে (2l+1) সংখ্যক অরবিটাল থাকে। প্রতিটি অরবিটালে বিপরীত স্পিনের দটি করে ইলেক্ট্রন প্রবেশ করে।
 - ∴ উপশক্তিস্**ড**রের ইলেকট্রন ধারণ ক্ষমতা = 2(2*l* + 1)
- 9. $w = 2M = V(L) \times S \times M$ = 0.25 $L\times0.1~mol~L^{-1}\times106~g~mol~L^{-1}$ = 2.65g

- b. A ও B এর তডিৎ ঋণ্মকতার পার্থক্য = 3.5 - 2.2 = 1.4 যা 0.5 - 1.7 এর মধ্যে I সূতরাং. A₂C যৌগটি পোলার সমযোজী।
- ১৩. মৌলটি কপার (Cu). সুতরাং মৌলটি ডায়াম্যাগনেটিক। Cu²⁺ আয়নের ইলেক্ট্রন বিন্যাস— 1s²2s²2p⁶3s²3p⁶3d⁶4s⁰ অসম্পূর্ণ d অরবিটাল থাকায় অবস্থাম্ভুর মৌল।
- λ €. Al₂O₃ + 6HCl \longrightarrow AlCl₃ + 2H₂O সুতরাং, Al₂O₃ এর অম্-ত 6.

54.
$$K_p = \frac{P_{SO_3}^2}{P_{SO_3}^2 \times P_{O_2}} = \frac{(atm)^2}{(atm)^2 \times (atm)} = atm^{-1}$$

 গ্যাসীয় তাঁপোৎপাদী বিক্রিয়য় অণুর সংখ্যা কমে। সুতরাং, সাম্যাবস্থা বামদিকে নিতে হলে তাপ বাড়াতে ও চাপ কমাতে হবে।

১৩০. পটুয়াখালী সরকারি মহিলা কলেজ. পটুয়াখালী

N.	١	М	২	L	9	Ν	8	М	ď	Κ	৬	Κ	٩	Κ	Ъ	М	৯	L	٥٥	Κ	77	K	১২	Ν	১৩	М
À	78	L	36	М	১৬	Ν	১৭	L	76	М	አአ	М	২০	Ν	২১	Κ	২২	L	২৩	Κ	২৪	Κ	২৫	L		

্ব্যাখ্যা:

- ৮. ${31\atop 15}{\rm P}_4$ \longrightarrow 4টি ফসফরাস পরমাণু প্রত্যেকটিতে নিউট্রন আছে = 31 – 15 = 16 b $(15 \times 4) \text{ or } 60$ টি P-এ মোট নিউট্রন = (60×16) টি = 960 টি

৯. AgCl Hoooooool
$$Ag^+ + Cl^-$$
 দ্রাব্যতা, $S = 0.0015$ g
$$\Rightarrow S = \frac{0.0015}{143.5} \text{ mol } L^{-1}$$

$$\Rightarrow S = 1.045 \times 10^{-5} \text{ M}$$
 $K_{sp} = [Ag^+] [Cl^-]$
$$= (1.045 \times 10^{-5})^2$$

$$= 1.09 \times 10^{-10}$$

১৩. ইথাইন $H \overline{G} C \frac{\pi}{\underline{G}} C \overline{G} H$

তিনটি সিগমা ও 2টি পাই বন্ধন বিদ্যমান।

ኔ৫.

A + B Hoooooool 3D $K_p = K_c(RT)^{\Delta n}$ $\Delta n = 3 - (1 + 1)$ $\Rightarrow K_p = K_c(RT)$ \Rightarrow $K_p = K_c RT$

\$9.
$$pH = {}_{p}K_{a} + \log \frac{[j \in Y]}{[%wmW]}$$

= $4.8 + \log \left(\frac{0.02}{0.2}\right)$
= $4.8 - 1$
= 3.8

\$b. 2NO + O2 Hooooooool 2NO2

$$K_c = \frac{[NO_2]^2}{[NO]^2 [O_2]}$$

$$= \frac{(mol \ L^{-1})^2}{(mol \ L^{-1})^2 (mol^{-1})}$$

$$= L \ mol^{-1}$$

$$= dm^3 \ mol^{-1}$$
 ১৯. সঠিক উত্তর হবে $As_2 \ O_3$ ।

১৩১, ভোলা সরকারি কলেজ

\ <u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>	١	Κ	ર	М	•	L	8	L	ď	М	৬	*	٩	М	ъ	L	৯	L	٥٥	Ν	77	L	১২	L	১৩	Ν
À	\$ 8	L	36	Ν	১৬	Κ	১৭	Ν	ንራ	*	አ ৯	Κ	২০	М	২১	L	২২	Ν	২৩	Κ	২৪	Ν	২৫	Κ		

বি.দ্র: *৬. সঠিক উত্তর 3। *১৮. সঠিক উত্তর ক ও খ।

🎤 ব্যাখ্যা:

- 8. NH $_4^+$ আয়নে নাইট্রোজেনে ৭টি ইলেকট্রন এবং 3টি H এর 3টি ইলেকট্রন কিন্তু H $^+$ এর ইলেকট্রন শূন্য। মোট ১০টি।
- ১১. NaCl পানির সাথে বিক্রিয়া করে না বরং দ্রবীভূত হয়। NaCl + H₂O = (Na⁺ + Cl⁻) + H⁺ + OH⁻ ≡ Na⁺(aq) + Cl⁻(aq)
- \$5. 1.5% NaOH = 0.375 M NaOH pOH = - log (0.375) = 0.5 pH = 14 - 0.5 = 13.5