

Online Advanced Methods for Cost-Effectiveness Analysis

Presentation 6: Model structure

6.5: Extensions to the Markov chain and alternatives to cohort modelling

Objectives

- Explore extensions to Markov chain and use of time dependent probabilities
- Understand constraints on implementing time dependency
- Appreciate how constraints can be overcome
 - Tunnel states
 - Individual patient level simulation (PLS)
- Identify potential trade-offs with increased model complexity

Extensions to the Markov chain Time-dependent probabilities

- Standard Markov chain has fixed probabilities with respect to time
- May be a reasonable approximation in many instances, less so in others
- Can relax this assumption using time dependent probabilities (with standard software)
 - Tabular form
 - Functional form

Constraints on implementing time dependency

- If all patients start in the 'Asymptomatic' state and no return is possible, then time dependent probabilities between that state and the others is possible
- When 'time' relates to time in state, time dependent probabilities from 'Progressive' to 'Death' is not feasible
- When 'time' relates to cycles that have elapsed independent of the state occupied (age), time dependency is possible between 'Progressive' and 'Death'

Time dependency using tables

Probability as a function of time in state

(a) Fixed probabi	<u>Time</u>	<u>P(t)</u>			
	Т	1	0.19		
Transition from:	Asymptomatic	Progressive	Dead	2	0.21
			_	3	0.24
Asymptomatic	0.6	0.3	0.1	4	0.25
Progressive	0	0.8	0.2	5	0.28
Dead	0	0	1	6	0.31
				7	0.32
				8	0.34
(b) Time depende	9	0.35			
				0.55	
	T	ransition to:		10	0.35
	Т	ransition to:		10 11	
Transition from:	T Asymptomatic	ransition to: Progressive	Dead	_	0.37
	Asymptomatic	Progressive		11	0.37 0.39
Asymptomatic	Asymptomatic 1-0.1-P(t)	Progressive P(t)	0.1	11 12	0.37 0.39 0.40
	Asymptomatic	Progressive		11 12 13	0.37 0.39 0.40 0.42

Time dependency using tables

Probability as a function of cycle number

	5		5		
(a) Fixed probabi	lities				<u>P(c)</u>
	Т	1	0.072		
Transition from:	Asymptomatic	Progressive	Dead	2	0.076
				3	0.079
Asymptomatic	0.6	0.3	0.1	4	0.071
Progressive	0	0.8	0.2	5	0.083
Dead	0	0	1	6	0.086
				7	0.089
				8	0.092
(b) Time depende	9	0.095			
				10	0.098
	T	11	0.102		
Transition from:	Asymptomatic	Progressive	Dead	12	0.106
	4.5(1).5(1)	5(1)	5()	13	0.108
Asymptomatic	1-P(t)- <mark>P(c)</mark>	P(t)	P(c)	14	0.115
Progressive	0	1-[0.1+P(c)]	[0.1+P(c)]	15	0 118

Dead

15

16

0.118

0.122

Time dependency using functions

- If patient-level data available on time to a given event, can estimate a transition probability as a function of time
- Models used to fit parametric distributions to hazard functions
- Most common distributions used to model survival data are exponential and Weibull distributions
- Exponential distribution assumes hazards are constant over time
- If constancy of hazard is not appropriate, a Weibull distribution may be more appropriate

Loosening the Markov assumption

Tunnel states – adding memory

Alternatives to cohort simulation The additional flexibility of patient level simulation (PLS)

- For simple models (e.g. small number of states) no real advantage in using PLS vs cohort Markov
- IPS has potential value to model more complex prognoses:
 - Where important time dependencies
 - Where patient history determines future prognosis
 - Where adding memory to Markov model results in large/unmanageable models ('state explosion')

What are PLS models?

- Individual patients are simulated one at a time
- Large number sent through sequentially
- Expected values based on averaging across these patients
- Number of simulations important for 'stability' of mean
- Advantages:
 - Not restricted by Markov assumption
 - Can easily keep track of individual's history (tracker variables)
 - Can greatly reduce number of states

Examples of PLS models UKPDS model

Source: Clarke et al. Diabetologia 2004; 47: 1747-59

Trade-offs with PLS models

- Less transparent, less efficient and harder to debug
- Two levels of simulation for PSA
 - Patient level with a given set of parameters (e.g. 10,000)
 - Parameter level with different sets of parameters (e.g. 1000)
 - Total simulations: 10,000 x 1000 = 10,000,000
- Further simulations for value of information analysis
- Therefore PSA often not done with PLS
- Can short cut using emulators (see Stevenson et al. Medical Decision Making 2004; 24: 89-100)
 - Little practical use
 - Small number of parameters

Elements of good practice

- Structural assumptions
 - Transparent and adequately justified
 - Data inputs clearly documented and justified in context of valid review of alternatives
- Alternative scenarios for extrapolation
 - e.g. nil, same as treatment phase, reducing in long term
- Results presented separately for alternative assumptions
 - LYG, QALYs and frequency of clinical events
 - At alternative time points
- Use of structures which limit feasibility of PSA need to be clearly justified
- Choice should not result in failure to express uncertainty

Summary

- Possible to extend basic Markov chain to incorporate some forms of time dependency
 - Increases flexibility
- PLS may be more appropriate in particular circumstances
 - Possible trade-offs with additional complexity
- Choice of model structure should not limit analyses
 - Alternative assumptions
 - Uncertainty analyses