Number Fields

February 12, 2020

1 Algebraic Numbers and Algebraic Integers; Number Fields

Here, we will use F to denote any field containing \mathbb{Q} , for instance $F = \mathbb{C}$. Recall that an element $\alpha \in F$ is **algebraic** (over \mathbb{Q}) if it is the root of some polynomial in $\mathbb{Q}[x]$. If so, there is a unique monic polynomial $m_{\alpha} \in \mathbb{Q}[x]$ of minimal degree with $m_{\alpha}(\alpha) = 0$, called the **minimal polynomial** of α . The **degree** of α is the degree of m_{α}

Proposition 1.1. Suppose $\alpha \in F$ is algebraic. Then m_{α} is irreducible in $\mathbb{Q}[x]$, and if $f \in \mathbb{Q}[x]$, then $f(\alpha) = 0 \iff m_{\alpha}|f$.

Proof. If $m_{\alpha} = fg$, then $f(\alpha)g(\alpha) = 0$, and since fields are integral domains we have $f(\alpha) = 0$ or $g(\alpha) = 0$. By minimality of degree, f or g is constant.

If $f(\alpha) = 0$, we write $f = gm_{\alpha} + h$, with $g, h \in \mathbb{Q}[x]$, and $\deg h < \deg m_{\alpha}$. Then $h(\alpha) = f(\alpha) - g(\alpha)m_{\alpha}(\alpha) = 0$, and so by minimality h = 0 and $m_{\alpha}|f$.

I.e. $\{f: f(\alpha) = 0\}$ is a principal ideal in $\mathbb{Q}[x]$ generated by m_{α}

If $\alpha \in F$, define $\mathbb{Q}(\alpha)$ to be the smallest subfield of F containing α . Explicitly, it can be shown that $\mathbb{Q}(\alpha) = \left\{ \frac{f(\alpha)}{g(\alpha)} : f, g \in \mathbb{Q}[x], g(\alpha) \neq 0 \right\}$.

Proposition 1.2. If $\alpha \in F$ is algebraic of degree n, then $1, \alpha, \ldots, \alpha^{n-1}$ is a \mathbb{Q} -basis for $\mathbb{Q}(\alpha)$. Conversely, if $[\mathbb{Q}(\alpha) : \mathbb{Q}] := \dim_{\mathbb{Q}} \mathbb{Q}(\alpha)$ is finite, say n, then α is algebraic of degree n.

Proof. Consider the homomorphism $\phi: \mathbb{Q}[x] \to F; f \mapsto f(\alpha)$. Then $\ker(\phi) = (m_{\alpha})$ which is maximal, so im ϕ is a field, and hence equal to $\mathbb{Q}(\alpha)$. As $\deg m_{\alpha} = n$, a basis for $\mathbb{Q}[x]/(m_{\alpha})$ is $1, x, \ldots, x^{n-1}$, and hence $1, \alpha, \ldots, \alpha^{n-1}$ is a basis for $\mathbb{Q}(\alpha)$.

For the converse part, if $[\mathbb{Q}(\alpha):\mathbb{Q}] = n < \infty$, then $1, \alpha, \dots, \alpha^n$ are linearly dependent and so α is algebraic of some degree. By the first part, this degree is n.

Proposition 1.3. $\{\alpha \in F : \alpha \text{ algebraic}\}\ is\ a\ subfield\ of\ F.$

Galois theory. It is enough to prove that it is closed under +, \times and inverse. For + and \times see 1.6 below for a stronger statement. If $0 \neq \alpha$ is algebraic, then $\sum^n b_j \alpha^j = 0 \implies \sum^n b_{n-j} (\alpha^{-1})^j = 0$, and so α^{-1} is algebraic.

 $\alpha \in F$ is an **algebraic integer** if there is a monic polynomial $f \in \mathbb{Z}[x]$ with $f(\alpha) = 0$.

Lemma 1.5.

- 1. Let $\alpha \in F$. Then the following are equivalent:
 - (a) α is an algebraic integer
 - (b) α is algebraic and $m_{\alpha} \in \mathbb{Z}[x]$
 - (c) $\mathbb{Z}[\alpha]$ is a finitely generated \mathbb{Z} -module

If these hold, then $1, \alpha, \ldots, \alpha^{d-1}$ is a \mathbb{Z} -bases for $\mathbb{Z}[\alpha]$, with $d = \deg \alpha$.

2. $\alpha \in \mathbb{Q}$ is an algebraic integer $\iff \alpha \in \mathbb{Z}$

Recall the notation that, if $\alpha_1, \ldots, \alpha_n \in F$, then $\mathbb{Z}[\alpha_1, \ldots, \alpha_n]$ is the smallest subring of F containing $\{\alpha_i : i \in [n]\}$, i.e. the set of all finite sums of terms of the form $A\alpha_1^{i_1} \ldots \alpha_n^{i_n}$ for $A, i_1, \ldots, i_n \in \mathbb{Z}$.

Proof.

1. $\underline{a} : \Longrightarrow b$. Suppose $f(\alpha) = 0, f \in \mathbb{Z}[x]$, f monic. Then **1.1** gives that $f = gm_{\alpha}$ for some $g \in \mathbb{Q}[x]$ necessarily monic. Gauss's lemma from GRM gives us that m_{α}, g are in $\mathbb{Z}[x]$.

 $\underline{b}. \Longrightarrow \underline{c}.$ Write $m_{\alpha} = x^d + \sum_{j=1}^{d-1} b_j x^j$, for $b_j \in \mathbb{Z}$. Then $\alpha^d = -\sum_{j=1}^{d-1} b_j \alpha^j$, from which we say that every α^n is a \mathbb{Z} -linear combination of $1, \alpha, \ldots, \alpha^{d-1}$. So $\mathbb{Z}[\alpha]$ is generated by $1, \alpha, \ldots, \alpha^{d-1}$ as a \mathbb{Z} -module. There is no linear relation between $1, \alpha, \ldots, \alpha^{d-1}$, as $d = \deg \alpha$. So $\mathbb{Z}[\alpha]$ is finitely generated and $1, \alpha, \ldots, \alpha^{d-1}$ is a \mathbb{Z} -basis.

 $\underline{c. \Longrightarrow a.}$ Assume $\mathbb{Z}[\alpha]$ is finitely generated by $g_1(\alpha), \ldots, g_r(\alpha)$. For some $g_i \in \mathbb{Z}[x]$. Let $k = \max\{\deg g_i\}$. Then $\mathbb{Z}[\alpha]$ is certainly generated by $1, \alpha, \ldots, \alpha^k$ as a \mathbb{Z} -module. So $\alpha^{k+1} = \sum_{j=0}^k b_j \alpha^j$ for $b_j \in \mathbb{Z}$, and so α is an algebraic integer.

2. $\alpha \in \mathbb{Q} \implies m_{\alpha} = x - \alpha$, and so α is an algebraic integer $\iff \alpha \in \mathbb{Z}$ using $(a) \iff (b)$.

Theorem 1.6. If $\alpha, \beta \in F$ are algebraic integers, then so are $\alpha\beta, \alpha \pm \beta$.

Proof. The \mathbb{Z} -module $\mathbb{Z}[\alpha, \beta]$ is generated by $\{\alpha^i \beta^j : 0 \leq i < \deg \alpha; 0 \leq j < \deg \beta\}$, and so is finitely generated. Hence so is the submodule $\mathbb{Z}[\alpha\beta] \subseteq \mathbb{Z}[\alpha, \beta]$. So $\alpha\beta$ is an algebraic integer by **1.4**. The same applies for $\alpha + \beta, \alpha - \beta$.

Now to introduce the main characters of this course:

An algebraic number field (or just number field) is a field $K \supset \mathbb{Q}$ which is a finite extension, i.e. $[K : \mathbb{Q}] < \infty$. The **ring of integers of K**, written \mathfrak{o}_K , is the set of algebraic integers in K. By **1.6** it is a ring. It is useful to have the converse:

Proposition 1.7. Let $\alpha \in F$ be algebraic. Then for some $0 \neq b \in \mathbb{Z}$, $b\alpha$ is an algebraic integer.

Proof. Exercise. \Box

Theorem 1.8 (Primitive Element). If K is a number field, then $K = \mathbb{Q}(\alpha)$ for some $\alpha \in K$.

Proof. Done in Galois theory. \Box

2 Quadratic Fields

K is a quadratic field if $[K:\mathbb{Q}]=2$. In this case, let $\alpha\in K\setminus\mathbb{Q}$. The minimal polynomial m_{α} is a quadratic, and so solving we get $\alpha=x+\sqrt{y^1}$ for $x,y\in\mathbb{Q},y\neq0$. Since y is not a rational square, we can write y uniquely as z^2d for $z\in\mathbb{Q}\setminus\{0\}, d\neq0,1$ a square-free integer. So $K=\mathbb{Q}(\sqrt{d})=\mathbb{Q}[x]/(x^2-d)$. If $d'\neq d$ also square-free, then $\mathbb{Q}(\sqrt{d})\ncong\mathbb{Q}(\sqrt{d'})$.

Now we want to compute \mathfrak{o}_K . Let $\alpha = u + v\sqrt{d} \in K$ for $u, v \in \mathbb{Q}$. If $v = 0, \alpha \in \mathfrak{o}_K \iff \alpha \in \mathbb{Z}$. Otherwise, $\alpha \notin \mathbb{Q}$, and $m_{\alpha} = x^2 - 2ux + (u^2 - dv^2)$. So $\alpha \in \mathfrak{o}_K \iff 2u \in \mathbb{Z}$ and $u^2 - dv^2 \in \mathbb{Z}$.

If $u \in \mathbb{Z}$, then $dv^2 \in \mathbb{Z}$, and since d is square-free, we must have $v \in \mathbb{Z}$. Otherwise, $u = \frac{2a+1}{2}, a \in \mathbb{Z}$, and we must have $4dv^2 - (2a+1)^2 \in 4\mathbb{Z}$, which holds if and only if $v = \frac{k}{2}, k \in \mathbb{Z}$ and $dk^2 \equiv 1 \mod 4$. If $d \equiv 1 \mod 4$, this holds if and only if k is odd, and if d is not $1 \mod 4$, then this congruence cannot hold.

In conclusion,

Theorem 2.1. If $d \in \mathbb{Z} \setminus \{0,1\}$ is square-free, and $K = \mathbb{Q}(\sqrt{d})$, then:

- 1. If $d \not\equiv 1 \mod 4$, then $\mathfrak{o}_K = \{u + v\sqrt{d} : u, v \in \mathbb{Z}\} = \mathbb{Z}[\sqrt{d}]$.
- 2. If $d \equiv 1 \mod 4$, then $\mathfrak{o}_K = \{u + v\sqrt{d} : u, v \in \frac{1}{2}\mathbb{Z}, u v \in \mathbb{Z}\} = \mathbb{Z}\left[\frac{1+\sqrt{d}}{2}\right]$

Examples: If d = -3, then $\mathfrak{o}_{\mathbb{Q}(\sqrt{-3})} = \mathbb{Z}[\frac{1+\sqrt{-3}}{2}] = \mathbb{Z}[\xi_3]$.

Note that, for a general number field K, we needn't have $\mathfrak{o}_K = \mathbb{Z}[\alpha]$ for $\alpha \in K$, and in fact for deg K > 2 this method is unlikely to be practical for computing \mathfrak{o}_K .

3 Embeddings

Let K be a number field with $[K : \mathbb{Q}] = n$.

Theorem 3.1. There are precisely n homomorphisms $\sigma_i : K \hookrightarrow \mathbb{C}$. These are called the **complex embeddings** of K. More generally, if $\mathbb{Q} \subset F \subset K$ are number fields, then each of the $[F : \mathbb{Q}]$ complex embeddings of F extend to exactly [K : F] complex embeddings of K.

Proof. (Galois Theory). Assume $K = \mathbb{Q}(\theta) = \mathbb{Q}[x]/(m_{\theta})$ by the theorem of the primitive element. Then to give $\sigma : K \hookrightarrow \mathbb{C}$ is the same as to give $\phi : \mathbb{Q}[x] \to \mathbb{C}$ with $\phi(m_{\theta}) = 0$. If $z = \phi(x)$, then $\phi(m_{\theta}) = m_{\theta}(z)$, giving a bijection $\{\sigma : K \hookrightarrow \mathbb{C}\} \leftrightarrow \{\text{roots of } m_{\theta} \in \mathbb{C}\}$, coming from $\sigma \mapsto \sigma(\theta)$. The second part is the same as the first, but replacing \mathbb{Q} by F since θ has degree [K : F] over F.

Remarks:

- 1. If $K \subset \mathbb{C}$ we can choose σ to be the inclusion.
- 2. For some $r \in \{0, ..., n\}$, exactly r of the σ_i will be **real**, i.e. $\sigma_i(K) \subseteq \mathbb{R}$. The remaining embeddings will then come in complex conjugate pairs $\sigma_i, \overline{\sigma_i}$. So n = r + 2s, where r is the number of real embeddings, and s is the number of complex conjugate pairs of embeddings.

¹By \sqrt{y} we just mean some $\beta \in K$ with $\beta^2 = y$

Examples:

 $\mathbb{Q}(\sqrt{d})$. We have two cases:

d > 0. There are 2 real embeddings: $\sigma_1 : \sqrt{d} \mapsto +\sqrt{d} \in \mathbb{R}$, and $\sigma_2 : \sqrt{d} \mapsto -\sqrt{d} \in \mathbb{R}$. So (r,s) = (2,0).

d < 0. There is now one pair of complex embeddings, given by $\sigma_1 : \sqrt{d} \to i\sqrt{|d|}; \sigma_2 : \sqrt{d} \to -i\sqrt{|d|}$. So (r,s) = (0,1).

 $\mathbb{Q}(\sqrt[3]{2})$. We have 1 real embedding $\sqrt[3]{2} \mapsto \sqrt[3]{2} \in \mathbb{R}$, and the two complex embeddings $\sqrt[3]{2} \mapsto \omega^{\pm 1} \sqrt[3]{2} \in \mathbb{C}$, so (r,s) = (1,1).

Proposition 3.2. If $\alpha \in K$, then the complex numbers $\sigma_i(\alpha)$ are the complex roots of m_α , each taken $n/\deg(\alpha)$ times.

Proof. Apply the 2nd part of **3.1** with $F = \mathbb{Q}(\alpha)$.

4 Norm and Trace

Given K a number field, $\alpha \in K$, define a map $u_{\alpha} : K \to K$ by $u_{\alpha}(x) = \alpha x$. K is a \mathbb{Q} -vector space, and u_{α} is a \mathbb{Q} -linear map. Define:

- f_{α} to be the **characteristic polynomial** of u_{α} , so $f_{\alpha} = \det(x u_{\alpha}) \in \mathbb{Q}[x]$, monic
- $N_{K/\mathbb{O}}(\alpha) = \det(u_{\alpha}) \in \mathbb{Q}$, the **norm** of α
- $\operatorname{Tr}_{K/\mathbb{Q}}(\alpha) = \operatorname{tr}(u_{\alpha}) \in \mathbb{Q}$, the **trace** of α

More explicitly, let β_1, \ldots, β_n be a \mathbb{Q} -basis for K. Then $\alpha \beta_i = \sum_{j=1}^n A_{ji} \beta_j$ for some $A \in M_{n,n}(\mathbb{Q})$. Then $f_{\alpha} = \det(x \cdot I_n - A), N_{K/\mathbb{Q}}(\alpha) = \det(A), \operatorname{Tr}_{K/\mathbb{Q}} = \operatorname{tr}(A)$. As an exercise, work these out for $\mathbb{Q}(\sqrt{d})$.

Proposition 4.1.

$$\begin{split} \mathbf{N}_{K/\mathbb{Q}}(\alpha\beta) &= \mathbf{N}_{K/\mathbb{Q}}(\alpha)\,\mathbf{N}_{K/\mathbb{Q}}(\beta) \\ \mathrm{Tr}_{K/\mathbb{Q}}(\alpha+\beta) &= \mathrm{Tr}_{K/\mathbb{Q}}(\alpha) + \mathrm{Tr}_{K/\mathbb{Q}}(\beta) \end{split}$$

Proof. From the definition, $u_{\alpha\beta} = u_{\alpha}u_{\beta}$, and $u_{\alpha+\beta} = u_{\alpha} + u_{\beta}$, so the result follows from linear algebra.

Theorem 4.2.

- 1. The minimal polynomial of u_{α} is m_{α} , and $f_{\alpha} \prod_{i=1}^{n} (x \sigma_{i}(\alpha)) = m_{\alpha}^{n/d}$, where $\deg(\alpha) = d$.
- 2. $N_{K/\mathbb{Q}}(\alpha) = \prod_{i=1}^n \sigma_i(\alpha), Tr_{K/\mathbb{Q}}(\alpha) = \sum_{i=1}^n \sigma_i(\alpha).$

We call the $\sigma_i(\alpha)$ the **conjugates** of α .

Proof. Note that $1 \implies 2$, because $\det u_{\alpha} = (-1)^n f_{\alpha}(0)$, the product of the eigenvalues, and $\operatorname{tr} u_{\alpha} = -(\operatorname{coeff. of } x^{n-1} \operatorname{in } f_{\alpha})$.

For 1., we first do the case deg $\alpha = n$, i.e. $K = \mathbb{Q}(\alpha)$. Then $f_{\alpha}, m_{\alpha} \in \mathbb{Q}[x]$ are monic of degree n, and if $\beta \in K$ then $f_{\alpha}(\alpha)\beta = f_{\alpha}(u_{\alpha})\beta = 0$ by Cayley-Hamilton. So $f_{\alpha}(\alpha) = 0 \implies m_{\alpha} = f_{\alpha}$.

In general, if $[K:\mathbb{Q}(\alpha)] = \frac{n}{d}$, then $K \cong \mathbb{Q}(\alpha)^{\oplus (n/d)}$, and then $f_{\alpha} =$ (char. poly. of u_{α} on $\mathbb{Q}(\alpha))^{n/d} = m_{\alpha}^{n/d} = \prod_{i=1}^{n} (x - \sigma_i(\alpha))$.

Corollary 4.3.

- 1. Let $\alpha \in K$. Then $\alpha = 0 \iff N_{K/\mathbb{O}}(\alpha) = 0$.
- 2. Let $\alpha \in \mathfrak{o}_K$. Then $f_{\alpha} \in \mathbb{Z}[x]$, and $N_{K/\mathbb{Q}}(\alpha)$, $Tr_{K/\mathbb{Q}}(\alpha) \in \mathbb{Z}$. Moreover, $N_{K/\mathbb{Q}}(\alpha) \in \{\pm 1\}$ if and only if $\alpha \in \mathfrak{o}_k^*$ is a unit, i.e. $\alpha^{-1} \in \mathfrak{o}_k$.

Proof.

- 1. $\alpha = 0 \iff \sigma_i(\alpha) = 0 \text{ for all } i$.
- 2. $m_{\alpha} \in \mathbb{Z}[x]$, so $f_{\alpha} \in \mathbb{Z}[x]$, and hence $N_{K/\mathbb{Q}}(\alpha)$, $Tr_{K/\mathbb{Q}}(\alpha) \in \mathbb{Z}$, since they are coefficients of f_{α} up to a choice of sign.

If α is a unit, then $N_{K/\mathbb{Q}}(\alpha) N_{K/\mathbb{Q}}(\alpha^{-1}) = N_{K/\mathbb{Q}}(\alpha\alpha^{-1}) = N_{K/\mathbb{Q}}(1) = 1$, and so $N_{K/\mathbb{Q}}(\alpha)$ is a unit and an integer, so in $\{\pm 1\}$.

If
$$N_{K/\mathbb{Q}}(\alpha) \in \{\pm 1\}$$
, $f_{\alpha} = x^n + \sum_{i=1}^{n-1} b_i x^i \pm 1$, so $f_{\alpha}(\alpha) = 0 \implies \alpha \cdot \left(\alpha^{n-1} + \sum_{i=1}^{n-1} b_i \alpha^{i-1}\right) = \pm 1$, so $\alpha^{-1} \in \mathfrak{o}_K$ and we have an explicit representation of α^{-1} .

Note that we can also define, if $\mathbb{Q} \subset F \subset K$ the relative trace $\operatorname{Tr}_{K/F}(\alpha), \operatorname{N}_{K/F}(\alpha)$ as the trace/determinant of u_{α} viewed as an F-linear map from $K \simeq F^{[K:F]}$ to itself, and we have that:

$$\operatorname{Tr}_{K/\mathbb{O}} = \operatorname{Tr}_{F/\mathbb{O}} \cdot \operatorname{Tr}_{K/F} \qquad \operatorname{N}_{K/\mathbb{O}} = \operatorname{N}_{F/\mathbb{O}} \cdot \operatorname{N}_{K/F}$$

5 Some Modules from GRM

Proposition 5.1. G is a finitely generated abelian group written additively with no torsion, i.e. no elements of finite order, and a finite set of generators x_1, \ldots, x_n . Let $H \subset G$ be the subgroup generated by $y_1, \ldots, y_n \in G$, where $y_i = \sum_{j=1}^n A_{ji}x_j$ for some $A \in Mat_{n,n}(\mathbb{Z})$ Then if $\det(A) \neq 0$, H has finite index in G, with $(G:H) = |\det A|$.

Proof. Using Smith normal form, A = PDQ for P, Q, D integer $n \times n$ matrices where $\det P, \det Q \in \{\pm 1\}$ and $D = diag(d_1, \ldots, d_n)$ for $d_i \geq 0$, $d_i | d_{i+1}$. Then $G/H \cong \mathbb{Z}/d_1\mathbb{Z} \times \ldots \times \mathbb{Z}/d_n\mathbb{Z}$, where $\mathbb{Z}/0\mathbb{Z} = \mathbb{Z}$.

Hence if $|\det A| = \prod_i d_i \neq 0$, then G/H contains no \mathbb{Z} terms and has dimension $\prod_i d_i = |\det A|$.

Let V be a \mathbb{Q} -vector space, and $\dim(V) = n < \infty$. Let $H \subset V$ be a subgroup, viewed as a sub- \mathbb{Z} -module. Then define:

$$rank(H) = dim(span(H)) \in \{0, 1, \dots, n\}$$

Proposition 5.2. If H is finitely generated as an abelian group then $H = \bigoplus_{i=1}^r \mathbb{Z}v_i$ where r = rank(H) and $x_1, \ldots, x_r \in V$ are linearly independent.

Proof. H has no torsion as V is a \mathbb{Q} -vector space, so by classification H is an abelian group freely generated by some x_1, \ldots, x_r . If $a_i \in \mathbb{Q}$ and $\sum a_i x_i = 0$ in V, then clearing denominators we have $\sum b_i x_i = 0$ with $b_i \in \mathbb{Z}$. So we must have $b_i = 0$ for all i, so $a_i = 0$ and the x_i are linearly independent, and $r = \operatorname{rank}(H)$ by the definition of rank.

6 Discriminants and Integral Bases

Let $\alpha_1, \ldots, \alpha_n \in K$. Define the **discriminant**

$$\operatorname{Disc}(\alpha_1) = \operatorname{Disc}(\alpha_1, \dots, \alpha_n) = \det(\operatorname{Tr}_{K/\mathbb{Q}}(\alpha_i \alpha_j)) \in \mathbb{Q}$$

Theorem 6.1.

- 1. Disc $(\alpha_1, \ldots, \alpha_n) = \det(\sigma_i(\alpha_j))^2$.
- 2. $\operatorname{Disc}(\alpha_i) \neq 0 \iff \alpha_1, \dots, \alpha_n \text{ is a } \mathbb{Q}\text{-basis for } K.$
- 3. If $\beta_i = \sum_{j=1}^n A_{ji} \alpha_j$ for $A \in Mat_{n,n}(\mathbb{Q})$, then $\operatorname{Disc}(\beta_i) = (\det A)^2 \operatorname{Disc}(\alpha_i)$
- 4. Suppose (α_i) is a \mathbb{Q} -basis. Then $\operatorname{Disc}(\alpha_i)$ depends only on the subgroup $\mathbb{Z}\alpha_1 + \ldots + \mathbb{Z}\alpha_n \in K$.

Proof.

- 1. Let $\Delta = (\sigma_i(\alpha_j))_{ij} \in Mat_{n,n}(\mathbb{C})$. Then $(\Delta^{\intercal}\Delta)_{ij} = \sum_{k=1}^n \sigma_k(\alpha_i)\sigma_k(\alpha_j) = \sum_{k=1}^n \sigma_k(\alpha_i\alpha_j) = \operatorname{Tr}_{K/\mathbb{Q}}(\alpha_i\alpha_j)$
 - So $(\det \Delta)^2 = \det(\Delta^{\mathsf{T}} \Delta) = \det \mathrm{Tr}_{K/\mathbb{Q}}(\alpha_i \alpha_i).$
- 2. If $\alpha_1, \ldots, \alpha_n$ is not a \mathbb{Q} -basis, then there are some $b_1, \ldots, b_n \in \mathbb{Q}$, not all 0, with $\sum b_j \alpha_j = 0$. Then for all i, $0 = \sigma_i \left(\sum_{j=1}^n b_j \alpha_j \right) = \sum_{j=1}^n b_j \sigma_i(\alpha_j)$, so $\det \Delta = 0$, hence $\operatorname{disc}(\alpha_i) = 0$.

For the other direction, suppose (α_i) is a \mathbb{Q} -basis for K, and let $T=(\operatorname{Tr}_{K/\mathbb{Q}}(\alpha_i\alpha_j))_{ij}$. It is enough to prove that, for $b\in\mathbb{Q}^n\setminus\{0\}, Tb\neq 0$, or equivalently that there is $c\in\mathbb{Q}^n$ such that $c^{\mathsf{T}}Tb\neq 0$. But if $\beta=\sum_j jb_j\alpha_j, \gamma=\sum_j c_j\alpha_j$, then $c^{\mathsf{T}}Tb=\sum_{i,j} c_i\operatorname{Tr}_{K/\mathbb{Q}}(\alpha_i\alpha_j)b_j=\operatorname{Tr}_{K/\mathbb{Q}}(\sum_{i,j} c_ib_j\alpha_i\alpha_j)=\operatorname{Tr}_{K/\mathbb{Q}}(\beta\gamma)$, so taking $\gamma=\frac{1}{\beta}$, we get $\operatorname{Tr}_{K/\mathbb{Q}}(1)=n\neq 0$.

- 3. $\Delta = (\sigma_i(\alpha_j)), \Delta' = (\sigma_i(\beta_j)), \text{ so } \Delta'_{ij} = \sum_k \sigma_i(A_{kj}\alpha_k) = \sum_k A_{kj}\sigma_i(\alpha_k) = (\delta A)_{ij}.$ Hence $\det \Delta' = \det \Delta \det A$, and result follows by part 1.
- 4. If (α_i) , (β_i) , generate the same subgroup, then $\beta_i = \sum A_{ji}\alpha_j$, where $A_{ij} \in \mathbb{Z}$, det $A \in \{\pm 1\}$. Then by part 3, $\operatorname{Disc}(\beta_i) = (\det A)^2 \operatorname{Disc}(\alpha_i) = \operatorname{Disc}(\alpha_i)$.

If $H \subset K$ is a finitely generated subgroup of rank n, and $(\alpha_1, \ldots, \alpha_n)$ is a \mathbb{Z} -basis for H, then above implies that $\operatorname{Disc}(\alpha_1, \ldots, \alpha_n)$ is a non-zero rational, depending only on H, which we call $\operatorname{Disc}(H)$.

Lemma 6.2. If $H \subset H' \subset K$ are finitely generated subgroups of rank n, then

$$\operatorname{Disc}(H) = (H':H)^2 \operatorname{Disc}(H')$$

Proof. Pick \mathbb{Z} -bases $(\alpha_i), (\alpha'_i)$ for H, H'. Then $\alpha_i = \sum_j B_{ji} \alpha'_j$, for $B \in Mat_{n,n}(\mathbb{Z})$. Then by **6.1**(3.), together with **5.1**, give that:

$$(H':H)^2 = (\det B)^2 = \operatorname{Disc}(H)/\operatorname{Disc}(H')$$

Theorem 6.3. There exist $\omega_1, \ldots, \omega_n \in \mathfrak{o}_K$ such that $\mathfrak{o}_K = \mathbb{Z}\omega_1 \oplus \ldots \oplus \mathbb{Z}\omega_n$ (i.e. that \mathfrak{o}_K is finitely generated as a \mathbb{Z} -module). We say that (ω_i) is an integral basis for K.

Proof. Certainly, there is $\omega_1, \ldots, \omega_n \in \mathfrak{o}_K$ which form a \mathbb{Q} -basis for K - take any \mathbb{Q} -basis of K and multiply by a suitable non-zero integer. Then for such a basis, $\operatorname{Disc}(H) \in \mathbb{Z} \setminus \{0\}$ where $H = \sum_i \mathbb{Z} \omega_i \subset K$.

Choose such a basis with $|\operatorname{Disc}(H)|$ minimal. Then let $\alpha \in \mathfrak{o}_K$, and let $H' = \mathbb{Z}\alpha + H \subset K$. Then $H' \subset H$ are finitely generated of rank n, and so by **6.2**, $\operatorname{Disc}(H) = (H' : H)^2 \operatorname{Disc}(H')$, and by minimality of $\operatorname{Disc}(H), H' = H$, so $\alpha \in H$.

The **discriminant of K** $d_K = \operatorname{Disc}(\mathfrak{o}_K) = \operatorname{Disc}(\omega_i)$ for any integral basis (ω_i) .

Example: Let $K = \mathbb{Q}(\sqrt{d})$ for d a square free integer not 0 or 1.

 $d \not\equiv 1 \mod 4$: An integral basis is $\{1, \sqrt{d}\}$ and so we have $\Delta = (\sigma_i(\alpha_k)) = \begin{pmatrix} 1 & \delta \\ 1 & -\delta \end{pmatrix}$, where $\sigma_1(\sqrt{d}) = \delta, \sigma_2(\sqrt{d}) = -\delta, \delta^2 = d$, and so $d_K = (\det \Delta)^2 = 4d$.

$$d \equiv 1 \mod 4$$
: An integral basis is $\{1, \frac{1+\sqrt{d}}{2}\}$. Then $d_K = (\det \Delta)^2 = \left| \begin{pmatrix} 1 & (1+\delta)/2 \\ 1 & (1-\delta)/2 \end{pmatrix} \right|^2 = d$.

We will now have a few useful results to help with computation of discriminants:

Proposition 6.4. Suppose $K = \mathbb{Q}(\theta)$, and $f = m_{\theta}$ is the minimal polynomial of θ . Then:

$$\operatorname{Disc}(1, \theta, \dots, \theta^{n-1}) = \prod_{i < j} (\sigma_i(\theta) - \sigma_j(\theta))^2 = (-1)^{n(n-1)/2} \operatorname{N}_{K/\mathbb{Q}}(f'(\theta))$$

Proof. Recall the Vandermonde determinant:

$$VDM(x_1, ..., x_n) = \begin{vmatrix} \begin{pmatrix} x_1^{n-1} & x_2^{n-1} & \cdots & x_n^{n-1} \\ \vdots & \vdots & \ddots & \vdots \\ x_1 & x_2 & \cdots & x_n \\ 1 & 1 & \cdots & 1 \end{vmatrix} = \prod_{i < j} (x_i - x_j)$$

Then $\operatorname{Disc}(1,\ldots,\theta^{n-1}) = \operatorname{VDM}(\sigma_1(\theta),\ldots,\sigma_n(\theta))^2$, giving the first equality. For the second, see example sheet 1 q.7.

Proposition 6.5. Let $\omega_1, \ldots, \omega_n \in \mathfrak{o}_K$ with $\mathrm{Disc}(\omega_i)$ squarefree. Then (ω_i) is an integral basis.²

Proof. Let $H = \sum \mathbb{Z}\omega_j \subset \mathfrak{o}_K$. Then **6.2** implies that $\operatorname{Disc}(\omega_i) = (\mathfrak{o}_k : H)^2 \operatorname{Disc}(\mathfrak{o}_k)$. Since $\operatorname{Disc}(\omega_i)$ is squarefree, then $(\mathfrak{o}_K : H) = 1$ and $\mathfrak{o}_K = H$.

The converse is false, e.g. for $\mathbb{Q}(\sqrt{d})$ with $d \not\equiv 1 \mod 4$ gives $d_K = 4d$, which is not squarefree.

7 Ideals I

Example: $\mathbb{Q}(\sqrt{-5}) = K$, $\mathfrak{o}_K = \mathbb{Z}[\sqrt{-5}]$. Then $6 = 2 \cdot 2 = (1 + \sqrt{-5})(1 - \sqrt{-5})$, and so \mathfrak{o}_K is not a UFD. But it turns out that we can restore unique factorisation by replacing elements of \mathfrak{o}_K by ideals.

Proposition 7.1.

- 1. Let $I \subset \mathfrak{o}_K$ be a nonzero ideal. Then $I = \bigoplus_{i=1}^n \mathbb{Z}\alpha_i$ for some \mathbb{Q} -linearly independent $\alpha_i \in I$, and $(\mathfrak{o}_K : I)^2 = \frac{Disc(I)}{d_K}$
- 2. If $0 \neq \alpha \in \mathfrak{o}_K$, then $(\mathfrak{o}_K : \alpha \mathfrak{o}_K) = |N_{K/\mathbb{Q}}(\alpha)|$.

If $I \subset \mathfrak{o}_K$ is a nonzero ideal, its **norm** is $N(I) := (\mathfrak{o}_K : I) \in \mathbb{Z}_{>0}$.

Proof.

- 1. Since \mathfrak{o}_K is finitely generated as an abelian group, so is I. Let $0 \neq \alpha \in I$, and let $\omega_1, \ldots, \omega_n$ be an integral basis for K. Then $\alpha\omega_1, \ldots, \alpha\omega_n$ are \mathbb{Q} -linearly independent elements of I < so I has rank n. By proposition **5.2**, I is free, and the second statement comes from lemma **6.2**.
- 2. If $I = \alpha \mathfrak{o}_K$ is principal, then we can take $\alpha_i = \alpha \omega_i$ in (1.), and then $\operatorname{Disc}(I) = \operatorname{Disc}(\alpha \omega_i) = (\det \sigma_i(\alpha \omega_i))^2 = (\det \sigma_i(\alpha)\sigma_i(\omega_i))^2 = \operatorname{N}_{K/\mathbb{O}}(\alpha)^2 d_K$.

And so by (1.), $(\mathfrak{o}_k : \alpha \mathfrak{o}_k)^2 = (N_{K/\mathbb{Q}}(\alpha))^2$.

Corollary 7.2.

- 1. $I \neq \{0\} \implies I \cap \mathbb{Z} \neq \{0\}$.
- 2. There are only finitely many ideals of a given norm.

Proof.

- 1. Considering the quotient ring \mathfrak{o}_K/I , we see that for any x in this ring, N(I)x=0 by Lagrange, and so $N(I)\in I$.
- 2. If I is of norm M, then $M \in I$, and so $\sigma_K \supset I \supset M\sigma_K$. There is a bijection between "ideals of σ_K containing $M\sigma_K$ " and "ideals of $\mathfrak{o}_K/M\mathfrak{o}_K$ " by isomorphism theorems. his second set is finite as $\mathfrak{o}_K/M\mathfrak{o}_K$ is finite.

Recall that an ideal $P \subset \mathfrak{o}_K$ is **prime** if $P \neq \mathfrak{o}_K$ and for all $\alpha, \beta \in \mathfrak{o}_K, \alpha\beta \in P \implies \alpha \in P$ or $\beta \in P$. Equivalently, \mathfrak{o}_K/P is an integral domain.

Lemma 7.3. Let $P \subset \mathfrak{o}_K$ be a prime ideal.

- 1. Either $P = \{0\}$ or P is a maximal ideal.
- 2. If $P \neq \{0\}$ then $P \cap \mathbb{Z} = p\mathbb{Z}$ for some prime p, and $N(p) = p^f$ is a power of p for some $1 \leq f \leq n$.

Proof.

- 1. If $P \neq \{0\}$ then as P has finite index, \mathfrak{o}_K/P is a finite integral domain, so a field, and hence P is a maximal ideal.
- 2. By **7.2**(1.), if $P \neq 0$ then $P \cap \mathbb{Z}$ is nonempty, so contains some $m \geq 1$. As P is prime, some prime factor p of m belongs to P. Therefore $\mathbb{Z} \supset P \cap \mathbb{Z} \supset p\mathbb{Z}$. As $P \cap \mathbb{Z}$ is an ideal of \mathbb{Z} , and $P \neq \mathfrak{o}_K$, $P \cap \mathbb{Z} = p\mathbb{Z}$, then $(p) \subset P \subsetneq \mathfrak{o}_K$, so $(\mathfrak{o}_K : P)$ divides $(\mathfrak{o}_K : (p)) = p^n$.

From now on, when we refer to a prime ideal, we will mean a non zero prime ideal. We will also use the following conventions on arithmetic of ideals:

$$I + J = \{\alpha + \beta : \alpha \in I, \beta \in J\}$$
$$IJ = \{\text{finite sums } \sum \alpha_i \beta_j : \alpha_i \in I, \beta_j \in J\}$$

Every ideal of \mathfrak{o}_K is finitely generated as an ideal, and so we say that \mathfrak{o}_K is **Noetherian**. If $\alpha_1, \ldots, \alpha_k \in \mathfrak{o}_K$, we write $(\alpha_1, \ldots, \alpha_k)$ for the ideal they generate. So if $\alpha \in \mathfrak{o}_K$, (α) is the principal ideal $\alpha \mathfrak{o}_K$. Other texts will use angle brackets or square brackets for this notation.

Then we see that $(\alpha_1, \ldots, \alpha_n) + (\beta_1, \ldots, \beta_m) = (\alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_m)$, and $(\alpha_1, \ldots, \alpha_n)(\beta_1, \ldots, \beta_m) = (\alpha_1\beta_1, \ldots, \alpha_1\beta_m, \alpha_2\beta_1, \ldots, \alpha_n\beta_m)$.

8 Ideals II: Unique Factorisation Boogaloo

As an example, take $K = \mathbb{Q}(\sqrt{-5})$. We was before that $\mathfrak{o}_K = \mathbb{Z}[\sqrt{-5}]$ is not a UFD, and so not a PID either, as $6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5})$.

These are both distinct factorisations into irreducibles, which can be checked using the norm. $N_{K/\mathbb{Q}}(x+y\sqrt{-5})=x^2+5y^2$. $N_{K/\mathbb{Q}}(2)=4$, so if if $2=\alpha\beta$ for α,β not units, then by multiplicativity of norm, $N_{K/\mathbb{Q}}(\alpha)=\pm 2=x^2+5y^2$, which has no solutions in the integers.

Some ideal computations:

$$(2, 1 + \sqrt{-5})^2 = (4, 2(1 + \sqrt{-5}), (1 + \sqrt{-5})^2) = (4, 2 + 2\sqrt{-5}, -4 + 2\sqrt{-5}) = (2)$$

$$(3, 1 + \sqrt{-5})(3, 1 - \sqrt{-5}) = (3)$$

$$(2, 1 + \sqrt{-5})(3, 1 \pm \sqrt{-5}) = (1 \pm \sqrt{-5})$$
And so: $(6) = (2, 1 + \sqrt{-5})^2 (3, 1 + \sqrt{-5})(3, 1 - \sqrt{-5})$

As an exercise, check that $N(2, 1+\sqrt{-5}) = 2$, $N(3, 1\pm\sqrt{-5}) = 3$, so these ideals are all maximal, since they have prime norm, and hence are prime. One can check that this is the only factorisation of (6) as a product of prime ideals.

Lemma 8.1. If $I \subset \mathfrak{o}_K$ is a non-zero ideal, with $\alpha \in K$ s.t. $\alpha I \subset I$, then $\alpha \in \mathfrak{o}_K$.

Proof. $\alpha I \subset I \implies \alpha^k I \subset I$ for all $k \geq 0$. Let $0 \neq \beta \in I$. Then $\mathbb{Z}[\alpha]\beta \subset I$, and so $\mathbb{Z}[\alpha]\beta$ is a finitely generated \mathbb{Z} -module, since I is, so $\mathbb{Z}[\alpha]$ is finitely generated, and hence $\alpha \in \mathfrak{o}_K$.

Note that this proof relies on the fact that \mathfrak{o}_K is all the algebraic integers. It fails if you replace \mathfrak{o}_K by a subring. We will next seek to prove that every $I = \prod P_i^{a_i}$ where P_i are prime ideals is a unique representation, i.e. we have unique factorisation into prime ideals.

Lemma 8.2.

- 1. Let $I \neq \{0\}$ be an ideal. Then there are prime ideals P_1, \ldots, P_r not necessarily such that $I \supseteq P_i P_2 \ldots P_r$.
- 2. Let P, P_1, \ldots, P_r be prime ideals with $P \supseteq P_1 \ldots P_r$. Then $P = P_i$ for some i.

Proof.

- 1. We do this by induction on N(I). If $I = \mathfrak{o}_K$ or I = P is prime, then there is nothing to prove. Otherwise, there exists $\alpha, \beta \in \mathfrak{o}_K \setminus I$ with $\alpha\beta \notin I$. Then $I + (\alpha) \supseteq I, I + (\beta) \supseteq I$. By induction, $I + (\alpha) \supseteq P_1 \dots P_r, I + (\beta) \supseteq Q_1 \dots Q_s$ for P_i, Q_i prime ideals. Then $P_1 \dots P_r Q_1 \dots Q_s \subset (I + (\alpha))(I + (\beta)) = I^2 + \alpha I + \beta I + (\alpha\beta) \subseteq I$
- 2. Suppose $P \neq P_1$ and let $\alpha \in P_1 \setminus P$, since prime ideals are maximal $P \not\subseteq P_1, P_1 \not\subseteq P$. Then for all $\beta \in P_2 \dots P_r, \alpha\beta \in P_1 \dots P_r \subset P$, so, as P prime, $\beta \in P$. So $P_w \dots P_r \subset P$, and repeat until one of the P_i is equal to P.

Corollary 8.3. Let $I \subset \mathfrak{o}_K$ be a nonzero proper ideal, $0 \neq \alpha \in I$. Then there exists $\beta \in \mathfrak{o}_K \setminus (\alpha)$ such that $\beta I \subset (\alpha)$.

Proof. Let P be a prime ideal containing I. It is enough to find $\beta \in \mathfrak{o}_K \setminus (\alpha)$ with $\beta P \subset (\alpha)$. By **8.2**, there are prime ideals P_1, \ldots, P_r with $(\alpha) \supset P_1 \ldots P_r$. Choose such a collection of primes with r minimal. Then $P \supset (\alpha)$, without loss of generality we may take $P = P_1$. Then $(\alpha) \not\supseteq P_2 \ldots P_r$, so let $\beta \in P_2 \ldots P_r \setminus (\alpha)$. Then $\beta I \subset PP_2 \ldots P_r = P_1P_2 \ldots P_r \subset (\alpha)$ as required.

Theorem 8.4 ("Ideals are invertible"). Let $I \subset \mathfrak{o}_K$ be a nonzero ideal. Then there exists a nonzero ideal J such that IJ is principal.

Proof. If $I = \mathfrak{o}_K$ then $J = \mathfrak{o}_K$ will do. So assume $I \subsetneq \mathfrak{o}_K$ and that the result holds for every $I' \supsetneq I$. Pick $0 \ne \alpha \in I$, and choose β as in **8.3**. Then $\alpha^{-1}\beta \not\in \mathfrak{o}_K$ and $\alpha^{-1}\beta I \subset \mathfrak{o}_K$. So by **8.1**, $\alpha^{-1}\beta I \not\subseteq I$, and so $I \subsetneq I' := I + \alpha^{-1}\beta I$. So by induction, there is a nonzero ideal J' with $I'J' = (\gamma)$. Let $J = \alpha J' + \beta J' = (\alpha, \beta)J'$. Then $IJ = (\alpha, \beta)IJ' = \alpha I'J' = (\alpha\gamma)$ is principal. \square

The key point in this proof which is obscured is that if $I = P \ni \alpha$ and β are as in 8.3, then $(\alpha\beta)P = (\alpha)$.

Now we come to the main theorem of this section:

Theorem 8.5. Let I, J, I' be nonzero ideals of \mathfrak{o}_K . Then

- 1. If IJ = I'J then I = I' (Cancellation)
- 2. $I \supset J$ if and only if there is an ideal H with IH = J (To divide is to contain)
- 3. There are unique distinct prime ideals P_1, \ldots, P_r and integers $a_i \geq 1$ such that $I = P_1^{a_1} \ldots P_r^{a_r}$. (Unique prime factorisation)

Proof.

1. By 8.4, there is J' with $JJ' = (\alpha)$ principal. Then $\alpha I = IJJ' = I'JJ' = \alpha I' \implies I = I'$.

- 2. The "if" direction is clear. Suppose that $I \supset J$, and let $II' = (\alpha)$ as in **8.4**. Then $JI' \subset (\alpha)$, and so $H := \alpha^{-1}JI' \subset \mathfrak{o}_K$ is an ideal, and $IH = \alpha^{-1}JII' = J$.
- 3. Existence we do by induction in N(I). If $I \neq \mathfrak{o}_K$, let P be prime, $P \supset I$. Then by part 2, I = PJ for some ideal J, and by part 1, $I \neq J$. But $J \supseteq I$, and so by induction, J is a product of prime ideals, and hence so is I.

For uniqueness, suppose $I = P_1 \dots P_K = Q_1 \dots Q_\ell$. If $k = 0, I = \mathfrak{o}_K$, so $\ell = 0$ so done. Otherwise, as $I \subset P_1$, we have $P_1 = Q_j$ for some j by **8.1**. Reordering, $P_1 = Q_1$, and so $P_2 \dots P_k = Q_2 \dots Q_\ell$, and finish by induction

We say two ideals I, J are **equivalent** if there are nonzero $\alpha, \beta \in \mathfrak{o}_K$ such that $\alpha I = \beta J$. It is trivial to check that this is an equivalence relation.

Theorem 8.6. The set of equivalence classes of ideals is an abelian group under multiplication, the ideal class group Cl(K) of K. The identity element is the class of principal ideals.

Proof. All axioms are trivial to check apart from existence of inverses, but this follows from \mathbb{R}^{A}

Alternatively, we can define a **fractional ideal** to be a subset of K of the form αI , for $I \subseteq \mathfrak{o}_K$ some nonzero ideal, and $0 \neq \alpha \in K$. We can then multiply fractional ideals in the same way as ideals, and define a **principal fractional ideal** to be any $\alpha \mathfrak{o}_K$ for α nonzero.

Theorem 8.7. The set of fractional ideals of K is an abelian group under multiplication, and is freely generated by the prime ideals of \mathfrak{o}_K . The principal fractional ideals form a normal subgroup, and the quotient is the class group Cl(K).

Remark: if $I \subseteq \mathfrak{o}_K$ is a nonzero ideal, then its inverse in the group of fractional ideals is $\alpha^{-1}J$, where $IJ = (\alpha)$.

Proposition 8.8. The following are equivalent:

- 1. \mathfrak{o}_K is a principal ideal domain.
- 2. \mathfrak{o}_K is a unique factorisation domain.
- 3. $Cl(K) = \{1\}$ is trivial.

Proof. 1. and 3. are equivalent by definition: $Cl(K) = \{1\}$ if and only if every ideal is equivalent to \mathfrak{o}_K , i.e. if every ideal is principal. Moreover, we know from GRM that every principal ideal domain is a unique factorisation domain, so $1 \implies 2$, so the only part to prove is that $2 \implies 1$.

It is enough to show that, if P is prime, then P is principal. Let $\alpha \in P \setminus \{0\}$, and factor $\alpha = \prod \pi_i$, where π_i are irreducible. As P is prime, some $\pi_i \in P$ - WLOG take it to be π_1 . Then since π_1 is an irreducible in a UFD, (π_1) is a prime ideal and hence maximal, so from $(\pi_1) \subseteq P \subseteq \mathfrak{o}_K$ we must have $P = (\pi_1)$ or \mathfrak{o}_K , both principal.

Theorem 8.9. Let $I, J \subseteq \mathfrak{o}_K$ be nonzero ideals. Then N(IJ) = N(I) N(J).

Proof. It is sufficient to prove, by unique factorisation into primes, that if P is prime, then N(IP) = N(I) N(P). Obviously, $N(IP) = (\mathfrak{o}_K : I)(I : IP)$, so STP that (I : IP) = N(P).

By cancellation, $I \neq IP$. We claim that, if $IP \subset J \subset I$, then J = I or J = IP. Indeed, as $J \subset I, J = IJ'$ for some J', so $P \subset J' \subset \mathfrak{o}_K$ by cancellation, and so J' = P or \mathfrak{o}_K .

Let $\alpha \in I \setminus IP$. Then IP + (|alpha|) = I by the claim. Consider the $(\mathfrak{o}_K$ -module) homomorphism given by $\widetilde{\alpha} : \mathfrak{o}_K/P \to I/IP$; $\widetilde{\alpha}(\beta + P) = \alpha\beta + IP$. It is surjective, since $\mathfrak{Im}(\widetilde{\alpha}) = ((\alpha) + IP)/IP = I/IP$. Also, $\widetilde{\alpha}$ is a homomorphism of (\mathfrak{o}_K/P) -vector spaces.

 $\dim_{\mathfrak{o}_K/P}(\mathfrak{o}_K/P)=1$; as $I\neq IP$, $\dim_{\mathfrak{o}_K/P}(I/IP)\geq 1$. As it is surjective, we must have $\dim(I/IP)=1$, and so $\mathfrak{o}_K/P\cong I/IP$, and so N(P)=(I:IP) as required.

This fails for $R = \mathbb{Z}[2\sqrt{2}]$ and prime ideal $P = (2, 2\sqrt{2})$, since N(P) = 2, whereas $P^2 = (4, 4\sqrt{2})$, so $N(P^2) = 8 \neq 2 \cdot 2$.

9 Factorisation of Rational Primes

If $I \subset \mathfrak{o}_K$, then $I \ni n = \prod p^{a(p)}$ for some $n \ge 1$ (e.g. n = N(I)). So if we first factor (p), we can figure out how to factor $I \supset \prod (p)^{a(p)}$

Theorem 9.1. Let p be a rational prime and $\{P_1: 1 \leq i \leq r\}$ the prime ideals containing p. Let $N(P_i) = p^{f_i}$, for $f_i \geq 1$. Then $(p) = P_1^{e_1} \dots P_r^{e_r}$ for integers $e_i \geq 1$ satisfying $\sum_i e_i f_i = n$.

Proof. The factorisation exists for some $e_i \ge 1$ by **8.5**. Now $\prod N(P_i)^{e_i} = N((p)) = |N_{K/\mathbb{Q}}((p))| = p^n$, and so $\sum e_i f_i = n$.

 f_i is called the **residue class degree** of P_i , and e_i is called the **ramification index/degree** of P_i . We say that p is **ramified** in K if some $e_i > 1$, and is **totally ramified** if $e_1 = n$, so $r = 1 = f_i$. p is **inert** if (p) is prime so $(r = 1 = e_1, f_1 = n)$, and **splits completely** if r = n and so $(e_i = f_i = 1 \text{ for all } i)$.

We will show soon that only finitely many primes p can be ramified, but for now let's think about how to compute the decomposition $(p) = \prod P_i^{e_i}$. The following often works:

Theorem 9.2 (Dedekind's Criterion). Let $K = \mathbb{Q}(\theta), \theta \in \mathfrak{o}_K$, the minimal polynomial $g = m_{\theta} \in \mathbb{Z}[x]$, and let p be prime such that $p \nmid (\mathfrak{o}_K : \mathbb{Z}[\theta])$. Let the reduction $\bar{g} \in \mathbb{F}_p[x]$ factor as $\bar{g} = \prod_{i=1}^r \bar{g}_i^{e_i}, \bar{g}_i \in \mathbb{F}_p[x]$ distinct irreducibles, and $e_i \geq 1$.

Let $g_i \in \mathbb{Z}[x]$ be monic, whose reduction mod p is \bar{g}_i . Then $(p) = \prod_{i=1}^r P_i^{e_i}$, where $P_i = (p, g_i(\theta))$ are distinct prime ideals. Moreover, $N(P_i) = p^{f_i}$, where $f_i = \deg g_i$.

Proof. We will often use the 3rd isomorphism theorem: if $J \subset I \subset R$, then $R/I \cong (R/J)/(I/J)$.

First assume $\mathfrak{o}_K = \mathbb{Z}[\theta]$.

Step 1: Since $\bar{g}_i \in \mathbb{F}_p[x]$ is irreducible, $\mathfrak{o}_K/P_i = \mathbb{Z}[\theta]/(p,g_i(\theta)) \cong Z[x]/(g,p,g_i) \cong \mathbb{F}_p[x]/(\bar{g},\bar{g}_i) = \mathbb{F}_p[x]/(\bar{g}_i)$, is a finite field with p^{f_i} elements. So P_i is prime of norm p^{f_i} .

Step 2: $g = \prod g_i^{e_i} + ph, h \in \mathbb{Z}[x]$, and so:

$$\prod P_i^{e_i} = \prod (p, g_i(\theta))^{e_i} \subset \prod (p, g_i(\theta)^{e_i}) \subset (p, \prod g_i(\theta)^{e_i}) = (p, ph(\theta)) = (p)$$

since $g(\theta) = 0$. But then comparing norms, we have $N(\prod P_i^{e_i}) = p^{\sum e_i f_i}$; $N((p)) = p^n$, where $n = \deg \bar{g} = \sum e_i \deg \bar{g}_i = \sum e_i f_i$. So we have equality $\prod P_i^{e_i} = (p)$.

In general then, it is enough to show that $\phi: \mathbb{Z}[\theta]/Q_i \to \mathfrak{o}_K/P_i$; $\alpha + Q_i \mapsto \alpha + P_i$, where $Q_i = (p, g_i(\theta))$, is an isomorphism. As $\mathbb{Z}[\theta]/Q_i$ is a field, ϕ is injective since the kernel is an ideal and is not the whole ring, so must be trivial. Its image is a subgroup of \mathfrak{o}_K/P_i whose index divides $\#\mathfrak{o}_K/P_i$, and so is a power of p since $p \in P_i$, and also divides $(\mathfrak{o}_K : \mathbb{Z}[\theta])$, which is coprime to p. Hence its index is 1, the map is surjective, and hence is an isomorphism. Then step 2 finishes the proof.

For example, take $K = \mathbb{Q}(\sqrt{d})$ for $d \neq 0, 1$ a squarefree integer. Recall that:

$$\mathfrak{o}_K = \begin{cases} \mathbb{Z}[\sqrt{d}] & d \not\equiv 1 \mod 4\\ \mathbb{Z}[\frac{1+\sqrt{d}}{2}] & d \equiv 1 \mod 4 \end{cases}$$

In the second case, $(\mathfrak{o}_K : \mathbb{Z}[\sqrt{d}]) = 2$.

Then let $\theta = \sqrt{d}$, $g(x) = x^2 - d$. For p prime, g factors mod p as:

$$\bar{g} = \begin{cases} (x - \bar{a})(x + \bar{a}) & p \neq 2, \left(\frac{d}{p}\right) = 1, a^2 \equiv d \mod p \\ \text{irreducible} & p \neq 2, \left(\frac{d}{p}\right) = -1 \\ (x - \bar{d})^2 & p = 2 \text{ or } p|d \end{cases}$$

Then by Dedekind's criterion, if $p \neq 2$, then:

- (Inert) If $\left(\frac{d}{p}\right) = -1$, then (p) is prime, of norm p^2
- (Split) If $\left(\frac{d}{p}\right) = 1$, then $d \equiv a^2 \mod p$, and then (p) = PP' where $P = (p, a + \sqrt{d}), P' = (p, a \sqrt{d}) \neq P$, both of norm p.
 - (Ramified) If p|d, then $(p) = P^2, P = (p, \sqrt{d})$, of norm p.

In the case where $d \not\equiv 1 \mod 4$, $(2) = (d, d - \sqrt{d})^2 = P^2$, of norm 2.

The final case is $p=2, d\equiv 1 \mod 4$. In this case, take $\theta=\frac{1+\sqrt{d}}{2}$, so $\mathfrak{o}_K=\mathbb{Z}[\theta]$. Then $g=m_\theta=x^2-x-\frac{d-1}{4}$, and:

- (2 splits) If $d \equiv 1 \mod 8$, then $\bar{g} = x(x-1)$, hence (2) = PP', where $P = (2, \theta) = (2, \frac{1+\sqrt{d}}{2}), P' = (2, \theta-1) = (2, \frac{1-\sqrt{d}}{2}) \neq P$ of norm 2.
 - (2 inert) If $d \equiv 5 \mod 8$, then $g \equiv x^2 + x + 1 \mod 2$ is irreducible mod 2, so (2) is prime.

Suppose that $\mathfrak{o}_K = \mathbb{Z}[\theta]$, and $(p) = P_1 \dots P_n$ splits completely. Then by Dedekind, m_θ has n distinct roots mod p. So $p \geq n$. In other words, if p < n and p splits completely, then $\mathfrak{o}_K \neq \mathbb{Z}[\theta]$ - even more, there does not exist θ with $p \nmid (\mathfrak{o}_K : \mathbb{Z}[\theta])$. It is not hard to find examples of this see the second examples sheet.

Recall that p ramifies if $(p) = P_1^{e_1} \dots P_r^{e_r}$, and there is some $e_i > 1$.

Theorem 9.3. If p ramifies in K, then $p|d_K$. In particular, only finitely many primes ramify in K.

The converse is also true, and uses some more Galois theory. To prove it, we will need the following lemma:

Lemma 9.4. If $\alpha \in \mathfrak{o}_K$, then $\operatorname{Tr}_{K/\mathbb{Q}}(\alpha P) \equiv \operatorname{Tr}_{K/\mathbb{Q}}(\alpha) \mod p$, for p prime.

Proof. By Fermat's little theorem, $\operatorname{Tr}_{K/\mathbb{Q}}(\alpha) \equiv \operatorname{Tr}_{K/\mathbb{Q}}(\alpha)^p \mod p$. But:

$$\operatorname{Tr}_{K/\mathbb{Q}}(\alpha)^{p} - \operatorname{Tr}_{K/\mathbb{Q}}(\alpha^{p}) = \left(\sum_{i=1}^{n} \sigma_{i}(\alpha)\right)^{p} - \sum_{i=1}^{n} (\sigma_{i}(\alpha)^{p})$$
$$= \sum_{\substack{0 \leq k_{i}$$

and each coefficient is $0 \mod p$.

Proof of Theorem 9.3. Assume $e_1 > 1$. Let $\alpha \in P_1^{e_1-1}P_2^{e_2}\dots P_r^{e_r} \setminus (p)$. Then for any $\beta \in \mathfrak{o}_K$, $(\alpha\beta)^p \in P_1^{p(e_1-1)}P_2^{pe_2}\dots P_n^{pe_n}$, i.e. $(\alpha\beta)^p \in (p)$.

So, by the lemma, $\operatorname{Tr}_{K/\mathbb{Q}}(\alpha\beta) \equiv 0 \mod p$.

Let (θ_i) be an integral basis for K. Write $\alpha = \sum_{i=1}^n b_i \theta_i$ for $b_i \in \mathbb{Z}$. Then $\sum_{i=1}^n b_i \operatorname{Tr}_{K/\mathbb{Q}}(\theta_i \theta_j) = \operatorname{Tr}_{K/\mathbb{Q}}(\alpha \theta_j) \equiv 0 \mod p$

As $\alpha \notin (p)$, not all $b_i \equiv 0 \mod p$, and so the rows of the matrix $(\operatorname{Tr}_{K/\mathbb{Q}}(\theta_i\theta_j))$ are linearly dependent mod p. Then $d_K = \det(\operatorname{Tr}_{K/\mathbb{Q}}(\theta_i\theta_j)) \equiv 0 \mod p$, and so $p|d_K$.

Note - with a bit more care, we can get $\prod p^{(e_i-1)f_i}|d_K$, which is a useful result for computing \mathfrak{o}_K .

For example, take $K = \mathbb{Q}(\sqrt[3]{p})$, where $p \neq 3$ is a prime. Then $\mathfrak{o}_K \supset \mathbb{Z}[\sqrt[3]{p}]$, and $(p) = (\sqrt[3]{p})^3$. So p ramifies. Then:

$$\begin{aligned} \operatorname{Disc}(\mathbb{Z}[\sqrt[3]{p}]) &= \det \operatorname{Tr}_{K/\mathbb{Q}} \begin{pmatrix} 1 & p^{1/3} & p^{2/3} \\ p^{1/3} & p^{2/3} & p \\ p^{2/3} & p & p^{4/3} \end{pmatrix} \\ &= \det \begin{pmatrix} 3 & 0 & 0 \\ 0 & 0 & 3p \\ 0 & 3p & 0 \end{pmatrix} \\ &= -27p^2 \end{aligned}$$

Then p ramifies, and so $p|d_K$,