Monday, January 27, 2025 12:18 PM

If
$$\vec{y} \sim MUN(\vec{n}, \vec{k})$$
, then
$$\vec{y} = \vec{n} + \vec{k} \cdot \vec{z}, \quad \vec{z} \sim N(0, \vec{x})$$

- For univariate: Let
$$X_i \sim N(M, \sigma^2)$$

$$\Rightarrow X_i = M + \delta \cdot \Xi_i, \quad \Xi_i \sim N(0, 1)$$

Estimators

- Let $\vec{o} \in \mathbb{R}^p$ be a parameter (vector) of a model. We want an estimator that is associated with the distribution we are considering.

The estimator is a R.V., but the estimate is a realization from the estimator.

Ex) Suppose you have
$$X_1, X_2, \dots, X_N$$
.
we can define the estimators
$$\overline{X} = \frac{1}{N} \underbrace{Z}_{i=1}^{N} \underbrace{X}_{i} + \underbrace{S}^{2} = \frac{1}{N-1} \underbrace{Z}_{i\geq 1}^{N} \underbrace{(X_i - \overline{X})^2}_{i\geq 1}$$

. Given Ilealizations,
$$x_i$$
, $i=1,...,N$

$$\Rightarrow \overline{X} = \frac{1}{N} \underbrace{\sum_{i=1}^{N} x_i}_{N-1} \underbrace{\sum_{i=1}^{N} \left(x_i - \overline{x}\right)^2}_{N}$$

- It we assume $X_i \sim N(u, \sigma^2)$, then the Sampling Distribution of $X + 5^2$ are

$$\frac{1}{2} \sim N(M, \sqrt[3]{N}), \quad S^2 \sim \frac{\sigma^2}{N-1} \chi^2(N-1)$$

. Note: What happens as N > 00

$$\cdot \times \Rightarrow \delta(x-x)$$

$$. S^2 \rightarrow \delta(\chi - 6^2)$$

Confidence Intervals

- Based on realizations of X, $\overline{X} = [X_1, ..., X_N]$, we want a interval estimator, $L(\overline{X}) + U(\overline{X})$, where for any parameter \overline{B} based on \overline{X}

$$L(x) \leq 0 \leq U(x)$$

- If we have L(x) + U(x), then $\alpha = 1-\alpha$ Confidence interval is defined as $P[L(x) \leq \Theta \leq U(x)] = 1-\alpha$

. Note: a is unknown, but fixed.

In terente

- Let Yi denote observations from some process, t let f(2:10), where 2: is independent variable to parameters.

. We assume & approximates the time process. Then

. We assume & approximates the time process. Then

$$Y_{i} = \mathcal{F}(\hat{A}_{i}; \hat{O}) + \mathcal{E}_{i}, \quad i = 1, ..., N$$

where E. accounts for difference between Y. + F.

- · Y: landon Observations (real. y)
- . E: Pandon Measurement errors (real 6;)
- . 0: Parameters
 - or Frequentist: fixed, une nown
 - D Bayesian: rundom variables