Problem (Problem 1): Given $z = x + iy \in \mathbb{C}$, define

$$z^* = \left(\frac{2x}{x^2 + y^2 + 1}, \frac{2y}{x^2 + y^2 + 1}, \frac{x^2 + y^2 - 1}{x^2 + y^2 + 1}\right).$$

- (a) Show that $z^* \in S^2$.
- (b) Prove that if $(x_1, x_2, x_3) \in S^2 \setminus \{(0, 0, 1)\}$, then there exists a unique $z \in \mathbb{C}$ such that $z^* = (x_1, x_2, x_3)$.
- (c) A circle in S^2 is the intersection of a plane in \mathbb{R}^3 with S^2 , provided this intersection is nonempty. Prove that if C is a circle in S^2 , then there exists a set $\widetilde{C} \subseteq \mathbb{C}$ that is either a circle or a straight line such that $C \setminus \{(0,0,1)\} = \left\{z^* \in \mathbb{R}^3 \mid z \in \widetilde{C}\right\}$.

Solution:

(a) Via brute force calculation, we see that

$$\frac{4x^{2}}{(x^{2}+y^{2}+1)^{2}} + \frac{4y^{2}}{(x^{2}+y^{2}+1)^{2}} + \frac{(x^{2}+y^{2}-1)^{2}}{(x^{2}+y^{2}+1)^{2}} = \frac{(x^{2}+y^{2})^{1}+1-2(x^{2}+y^{2})+4(x^{2}+y^{2})}{(x^{2}+y^{2}+1)^{2}}$$

$$= \frac{(x^{2}+y^{2})^{1}+1+2(x^{2}+y^{2})}{(x^{2}+y^{2}+1)^{2}}$$

$$= 1.$$

(b) Let $z^* = (x_1, x_2, x_3) \in S^2 \setminus \{(0, 0, 1)\}$, and let L: $[0, \infty) \to \mathbb{R}^3$ be the line parametrized such that $L(1) = (x_1, x_2, x_3)$ and L(0) = (0, 0, 1), which is given by

$$L(t) = (tx_1, tx_2, tx_3 + (1 - t)).$$

Note then that ||L(t)|| = 1 only when t = 0 or t = 1, meaning that L(t) intersects $S^2 \setminus \{(0,0,1)\}$ exactly once. By identifying $\mathbb C$ with $x + iy \mapsto (x,y,0)$, we may find $z \in \mathbb C$ that uniquely maps to (x_1,x_2,x_3) under the z^* identification by taking

$$tx_3 + (1 - t) = 0$$
$$1 + t(x_3 - 1) = 0$$
$$t = \frac{1}{1 - x_3}$$

so that

$$x + iy = \frac{x_1}{1 - x_3} + i \frac{x_2}{1 - x_3}$$

maps to z^* under the given identification.

(c) Let $(x_1, x_2, x_3) \in S^2$ lie on the plane $ax_1 + bx_2 + cx_3 = d$. By substituting $z = x + iy \mapsto z^*$, we get

$$a\frac{2x}{x^2 + y^2 + 1} + b\frac{2y}{x^2 + y^2 + 1} + c\frac{x^2 + y^2 - 1}{x^2 + y^2 + 1} = d$$

$$2ax + 2by + c(x^2 + y^2 - 1) = d(x^2 + y^2 + 1)$$

$$(c - d)x^2 + 2ax + (c - d)y^2 + 2by = c + d.$$

This gives two cases. If c = d, then we get the line

$$ax + by = c$$
.

Else, if $c \neq d$, we get the circle

$$x^{2} + \frac{2a}{c - d}x + y^{2} + \frac{2b}{c - d}y = \frac{c + d}{c - d}$$
$$\left(x - \frac{a}{c - d}\right)^{2} + \left(y - \frac{b}{c - d}\right)^{2} = \frac{a^{2} + b^{2} + c^{2} - d^{2}}{(c - d)^{2}}.$$

Thus, circles in S^2 correspond to either circles or lines in \mathbb{C} .

Problem (Problem 2): Define $f: \mathbb{C} \setminus \{1\} \to \mathbb{C}$ by $f(z) = \left(\frac{z+1}{z-1}\right)^2$.

- (a) Is f injective on D? Why or why not?
- (b) Determine $f(\mathbb{D})$.

Solution:

(a) We consider $q(z) = \frac{z+1}{z-1}$ as a fractional linear transformation on $\hat{\mathbb{C}}$. We see that

$$\begin{split} q\left(e^{i\theta}\right) &= \frac{e^{i\theta}+1}{e^{i\theta}-1} \\ &= \frac{(1+\cos(\theta))+i\sin(\theta)}{(\cos(\theta)-1)+i\sin(\theta)} \\ &= \frac{((\cos(\theta)+1)+i\sin(\theta))((\cos(\theta)-1)-i\sin(\theta))}{(1-\cos(\theta))^2+\sin^2(\theta)} \\ &= \frac{(\cos^2(\theta)-1)+\sin^2(\theta)+i\sin(\theta)(\cos(\theta)-1-(\cos(\theta)+1))}{2-2\cos(\theta)} \\ &= i\frac{\sin(\theta)}{\cos(\theta)-1}, \end{split}$$

and since $\frac{\sin(\theta)}{\cos(\theta)-1}$ maps $(0,2\pi)$ to $\mathbb R$ bijectively, we see that q maps $S^1\setminus\{1\}$ into the imaginary axis. We also see that q(0)=-1, so q maps $\mathbb D$ bijectively onto the left half-plane, $\mathbb L=\{z\mid \mathrm{Re}(z)<0\}$, as the uniqueness of Möbius transformations implies.

Now, notice that the function $h(z) = z^2$ is injective when defined on a half-plane, as the arguments $(\pi/2, 3\pi/2)$ map injectively to $(\pi, 3\pi)$, and the function $|z|^2$ is clearly injective on $(0, \infty)$, so $f = h \circ q$ is injective on \mathbb{D} .

(b) Since $f = h \circ q$, where q maps \mathbb{D} to the left half-plane, and h maps the left half-plane to the full complex plane save for $(-\infty, 0]$, we have that f maps \mathbb{C} to $\mathbb{C} \setminus (-\infty, 0]$.

Problem (Problem 3): Prove that there exists a linear fractional transformation that maps the first quadrant in \mathbb{C} bijectively to the top half of the unit disc, and satisfies f(2) = i.

Solution: We start from the Cayley transform,

$$f_1(z) = \frac{z - i}{z + i},$$

which bijectively maps the upper half-plane to the unit disc. By taking z = x + iy for x, y > 0, we see that

$$f_1(x + iy) = \frac{1}{x^2 + (y + 1)^2} ((x^2 + y^2 - 1) + i(-2x)),$$

implying that the first quadrant is mapped to the *lower* half of the unit disc. Therefore, we flip about the origin by taking $f_2(z) = -f_1(z)$, so that

$$f_2(z) = -\frac{z - i}{z + i},$$

which maps the first quadrant of the upper half plane to the top half of the unit disc. Next, we see that

$$f_2(1) = -\frac{1-i}{1+i}$$

= i,

so to ensure that f(2) = i, we may define $f(z) = f_2(z/2)$, or

$$f(z) = -\frac{z - 2i}{z + 2i}.$$

Problem (Problem 4): Let $f: \mathbb{C} \to \mathbb{C}$ be a function. We say that $\lim_{z\to\infty} f(z) = \infty$ if, for all M > 0, there exists R > 0 such that |f(z)| > M whenever |z| > R.

- (a) Show that if $f: \mathbb{C} \to \mathbb{C}$ is a nonconstant polynomial, then $\lim_{z\to\infty} f(z) = \infty$.
- (b) Suppose that $f: \mathbb{C} \to \mathbb{C}$ is a continuous function satisfying $\lim_{z\to\infty} f(z) = \infty$. Show that there exists some $z_0 \in \mathbb{C}$ for which $|f(z_0)| = \inf_{z\in\mathbb{C}} |f(z)|$.

Solution

(a) If $f(z) = \sum_{k=0}^{n} a_k z^k$, with n > 1 and $a_n \ne 0$, then by a corollary of the triangle inequality, we see that

$$|f(z)| = \left| \sum_{k=0}^{n} a_k z^k \right|$$
$$\ge |a_n z^n| - \sum_{k=0}^{n-1} |a_k z^k|.$$

Now, we notice a few things. First, since $|a_n|$ is nonzero, we may divide by $|a_n|$, giving

$$\frac{1}{|a_n|}|f(z)| \ge |z|^n - \frac{1}{|a_n|} \sum_{k=0}^{n-1} |a_k||z|^k.$$

Now, from real analysis, we know that

$$\lim_{|z|\to\infty}|z|^n=\infty,$$

as we may select $R = M^{1/n}$ to achieve this purpose. So, by using the limit comparison test, we see that

$$\lim_{|z| \to \infty} \frac{|z|^n - \sum_{k=0}^{n-1} |a_k/a_n| |z|^k}{|z|^n} = 1,$$

so

$$\lim_{|z|\to\infty}\frac{1}{|a_n|}|f(z)|=\infty,$$

so

$$\lim_{z\to\infty}|\mathsf{f}(z)|=\infty.$$

(b) Let M > 0 be sufficiently large such that the set $\{z \in \mathbb{C} \mid |f(z)| \le M\}$ is not empty. Since $\lim_{z \to \infty} f(z) = \infty$, there exists R such that |f(z)| > M whenever |z| > R.

We see that on B(0, R), the closed disk of radius R centered at 0, the function f is continuous, and so is the function |f(z)|, as the modulus is also a continuous function. Since B(0, R) is compact, there is some $z_0 \in B(0,R)$ such that $|f(z_0)| = \inf_{z_0 \in B(0,R)} |f(z)|$. In particular, we note that $|f(z_0)| \le M$, as we have specifically selected M to be such that $\{z \in \mathbb{C} \mid |f(z)| \le M\}$ is nonempty, meaning that $|f(z_0)| = \inf_{z \in \mathbb{C}} |f(z)|$, as we have selected R such that $|f(z_0)| > M$ for all $z \in \mathbb{C} \setminus B(0,R)$.