Técnicas Clássicas de Reconhecimento de Padrões (2020/01)

Exercício 02 - Classificação da Base de Dados de Leucemia

Reprodução dos Resultados Apresentados por Golub et al 1999

Aluno: Ramon Gomes Durães de Oliveira (2019720188)

Pré-processamento de dados

Carregando os Dados

Foram utilizados os dados disponibilizados pela plataforma Kaggle.

- "class_df": contém as classes de cada observação
- "train_df": contém as observações do conjunto de treinamento
- "test_df": contém as observações do conjunto de teste

```
In [247]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

class_df = pd.read_csv('./data/actual.csv')
    train_df = pd.read_csv('./data/data_set_ALL_AML_train.csv')
    test_df = pd.read_csv('./data/data_set_ALL_AML_independent.csv')
```

Limpando os Dados

Nesta seção os dados são limpados, removendo colunas desnecessárias e transpondo os dados. Além disso, a classe de cada observação é extraída do conjunto de dados "class_df" e integrada aos dados de treinamento e teste. As classes do conjunto de teste serão utilizadas apenas para avaliação da classificação. Os conjuntos de dados resultantes possuem 38 observações de treinamento e 34 de teste, como no artigo do Golub. Há dados para 7129 genes.

```
In [248]: valid_columns = [col for col in train_df.columns if "call" not in col]
    train_df = train_df[valid_columns]
    train_df = train_df.T
    train_df = train_df.drop(['Gene Description','Gene Accession Number'],axis=0)
    train_df.index = pd.to_numeric(train_df.index)
    train_df.sort_index(inplace=True)
    class_dict = {'AML':0,'ALL':1}
    train_df['class'] = class_df[:38]['cancer'].replace(class_dict).values
    train_df.head()
```

Out[248]:

	0	1	2	3	4	5	6	7	8	9	 7120	7121	7122	7123	7124
1	-214	-153	-58	88	-295	-558	199	-176	252	206	 511	-125	389	-37	793
2	-139	-73	-1	283	-264	-400	-330	-168	101	74	 837	-36	442	-17	782
3	-76	-49	-307	309	-376	-650	33	-367	206	-215	 1199	33	168	52	1138
4	-135	-114	265	12	-419	-585	158	-253	49	31	 835	218	174	-110	627
5	-106	-125	-76	168	-230	-284	4	-122	70	252	 649	57	504	-26	250

5 rows × 7130 columns

1

Dados de teste:

```
In [249]: valid_columns = [col for col in test_df.columns if "call" not in col]
    test_df = test_df[valid_columns]
    test_df = test_df.T
    test_df = test_df.drop(['Gene Description','Gene Accession Number'],axis=0)
    test_df.index = pd.to_numeric(test_df.index)
    test_df.sort_index(inplace=True)
    test_df['class'] = class_df[38:]['cancer'].replace(class_dict).values
    test_df.head()
```

Out[249]:

	0	1	2	3	4	5	6	7	8	9	 7120	7121	7122	7123	7124
39	-342	-200	41	328	-224	-427	-656	-292	137	-144	 1023	67	214	-135	1074
40	-87	-248	262	295	-226	-493	367	-452	194	162	 529	-295	352	-67	67
41	-62	-23	-7	142	-233	-284	-167	-97	-12	-70	 383	46	104	15	245
42	22	-153	17	276	-211	-250	55	-141	0	500	 399	16	558	24	893
43	86	-36	-141	252	-201	-384	-420	-197	-60	-468	 91	-84	615	-52	1235

5 rows × 7130 columns

Seleção e Classificação

Seleção de Genes Relevantes

Para selecionar um subconjunto de genes relevantes e efetivos para a classificação, no artigo os autores criam dois genes simbólicos com o grau de expressão máximo para uma das classes e mínimo para a outra.

Nos dados utilizados pelo autor, os valores máximos e mínimos correspondiam ao range de 0 a 1. Neste conjunto de dados este não é o caso. Logo, será utilizado o máximo e mínimo amostral do nível de expressão de cada gene.

No artigo, a correlação de um gene com a classificação desejada é calculada utilizando a fórmula:

$$P(g,c) = [\mu_1(g) - \mu_2(g)]/[\sigma_1(g) + \sigma_2(g)]$$

Na qual:

- g é um gene
- μ é a média amostral
- σ é o desvio padrão amostral
- os números subscritos (μ₁,μ₂) indicam as classes 1 e 2.

Aqui, busca-se por valores altos de |P(g,c)|. Essa medida será calculada para todos os genes e eles serão ordenados de acordo com seu valor absoluto:

```
In [250]: mu1 = train_df[train_df['class']==0].iloc[:,:-1].mean()
    sigma1 = train_df[train_df['class']==0].iloc[:,:-1].std()
    mu2 = train_df[train_df['class']==1].iloc[:,:-1].mean()
    sigma2 = train_df[train_df['class']==1].iloc[:,:-1].std()
    Pgc = (mu1 - mu2) / (sigma1 + sigma2)
    abs_Pgc = np.abs(Pgc)
    plt.hist(abs_Pgc, bins = 40);
```


O artigo diz que o número de genes selecionado foi de certa forma arbitrário. Eles mantiveram 50 para ter um classificador razoavelmente robusto mas a performance foi semelhante para diversos subconjuntos de genes. Selecionando os 50 genes com maior valor absoluto de P(g,c), estabelece-se um threshold em 0.91. Os genes selecionados foram:

Nota-se que agora o conjunto de dados tem 38 observações mas apenas 50 genes.

```
In [252]: train_df[selected_genes].shape
Out[252]: (38, 50)
```

Classificação por Votação

No artigo, a classificação é feita utilizando apenas o conjunto de dados de treinamento e o subconjunto selecionado de genes. Para cada gene deste subconjunto, parâmetros (a_q, b_q) são definidos de forma que:

- $a_g = P(g,c)$: reflete a correlação enter os níveis de expressão do gene g e a distinção de classes;
- $b_g = [\mu_1(g) + \mu_2(g)]/2$: é a média do nível de expressão média entre as classes.

Considerando uma nova observação X a ser classificada, x_g é o nível de expressão do gene g na observação. Dessa forma, o voto do gene g é definido por:

$$v_g = a_g(x_g - b_g)$$

Com um valor positivo indicando um voto para a classe 1 e um valor negativo indicando um voto para a classe 2. Os totais de votos para cada classe são obtidos somando os votos individuais.

Erro de Validação Cruzada (Leave-One-Out):

Para validar os resultados obtidos para o classficador durante o treinamento, os autores utilizam validação cruzada do estilo "leave-one-out": para cada observação, treina-se o classificador nas n-1 observações restantes e avalia-se o resultado na observação selecionada. O total de erros é considerado o erro de validação cruzada. Desta forma, utiliza-se todo o conjunto de treinamento para treinar e para testar a performance do classificador.

Abaixo, o processo de seleção de genes será repetido e o erro de validação será obtido utilizando esta técnica:

```
In [330]: | n = train df.shape[0]
          valid pred = []
          for i in np.arange(1, n+1):
              valid_train_df = train_df[~train_df.index.isin([i])]
              valid test df = train df[train df.index.isin([i])]
              mu1 = valid train df[valid train df['class']==0].iloc[:,:-1].mean()
              sigma1 = valid train df[valid train df['class']==0].iloc[:,:-1].std()
              mu2 = valid_train_df[valid_train_df['class']==1].iloc[:,:-1].mean()
              sigma2 = valid_train_df[valid_train_df['class']==1].iloc[:,:-1].std()
              Pgc = (mu1 - mu2) / (sigma1 + sigma2)
              abs Pgc = np.abs(Pgc)
              ag = Pgc[selected genes]
              bg = (mu1[selected genes] + mu2[selected genes])/2
              V = ag * (valid_test_df[selected_genes] - bg) # matriz com os votos de cad
          a gene para cada observação
              V1 = np.sum(V>0, axis=1) # soma dos votos para uma classe
              V2 = V.shape[1] - V1 # soma dos votos para a outra classe
              pred = 1 * (V1 <= V2)
              valid pred.append(pred.values[0])
          confusion matrix(train df.iloc[:,-1], valid pred)
Out[330]: array([[11, 0],
```

[0, 27]], dtype=int64)

A matriz de confusão acima mostra que todas as observações foram classificadas corretamente no conjunto de validação!

Erro de teste:

Agora, o classificador treinado no conjunto de treinamento é avaliado para o conjunto de teste:

A matriz de confusão acima mostra que, das 34 observações do conjunto de teste, 31 foram classificadas corretamente utilizando a abordagem do artigo. Para a classe 0 (AML), 03 observações foram classificadas erroneamente, enquanto para a classe 1 (ALL) todas foram corretamente classificadas.

A matriz de confusão acima denota o erro de validação cruzada obtido através da técnica Leave-One-Out. Desta vez, das 38 observações do conjunto de treinamento.

Prediction Strength (PS)

Para aumentar a certeza da classificação, o artigo define um índice chamado Prediction Strength ("Força da Predição", PS) de acordo com a fórmula abaixo:

```
• PS = (V_{win} - V_{lose})/(V_{win} + V_{lose})
```

em que V_{win} é o total de votos da cclasse vencedora e V_{lose} é o total de votos da classe perdedora. A medida reflete a margem de vitória. Caso ela seja menor que 0.3, a classe da observação é dada como indefinida.

Abaixo é calculada a métrica PS para todas as observações.

A escolha do threshold de PS como 0.3 feita no artigo faz com que, das 34 observações de treinamento, 26 tenham PS significativo. A escolha do threshold de PS como 0.3 é baseada numa análise anterior que era hospedada no site da organização do autor mas que provavelmente já foi retirado de lá nos últimos 20 anos (não encontrei).

Calculando a proporção de acertos para as observações com PS > 0.3:

Para as predições com índice de força PS acima de 0.3, todas as observações são classificadas corretamente!

Extra: Classificação por SOMs

Após a classificação por votação majoritária, o artigo cita ainda uma classificação utilizando Self-Organizing Maps (SOMs). Para fazer uma clusterização similar à que foi feita no artigo, será utilizado um KNN simples com 2 clusters. A performance primeiro será avaliada no conjunto de treinamento e em seguida no conjunto de teste.

A matriz de confusão do conjunto de treinamento acima mostra que todas as observações foram classificadas corretamente no conjunto de treinamento.

Avaliemos agora a performance no conjunto de teste:

Para o conjunto de teste, a classificação acertou 30 das 34 observações.