LetsGrowMore PRIYANSHI BADAYA Data Science Intern TASK 1: IRIS FLOWER CLASSIFICATION ML PROJECT
Description- This particular ML project is usually referred to as the "Hello World" of Machine Learning. The iris flowers dataset contains numeric attributes, and it is perfect for beginners to learn about supervised ML algorithms, mainly how to load and handle data. Also, since this is a small dataset, it can easily fit in memory without requiring special transformations or scaling capabilities. Data Set Link - http://archive.ics.uci.edu/ml/datasets/Iris IMPORTING LIBRARIES In []: import pandas as pd
<pre>import numpy as np import matplotlib .pyplot as plt import seaborn as sns %matplotlib inline In [38]: columns = ['Sepal length' , 'Sepal width' , 'Petal length' , 'Petal width' , 'Species'] df = pd.read_csv('iris.data',names=columns)</pre>
Out[39]: Sepal length Sepal width Petal length Species 0 5.1 3.5 1.4 0.2 Iris-setosa 1 4.9 3.0 1.4 0.2 Iris-setosa 2 4.7 3.2 1.3 0.2 Iris-setosa 3 4.6 3.1 1.5 0.2 Iris-setosa 4 5.0 3.6 1.4 0.2 Iris-setosa
In [40]: df.shape Out[40]: (150, 5) In [41]: df.isnull()
Out [41]: Sepal length Sepal width Petal length Species 0 False False False False 1 False False False False 2 False False False False 3 False False False False 4 False False False False
In [42]: Sepal length Sepal width Petal width count 150,000000 150,000000 150,000000 150,000000 mean 5.843333 3.054000 3.758667 1.198667 std 0.828066 0.433594 1.764420 0.763161 min 4.300000 2.000000 1.000000 0.100000 25% 5.100000 2.800000 1.600000 0.300000 50% 5.800000 3.00000 4.350000 1.300000 75% 6.400000 3.300000 5.100000 2.500000
VISUALISE THE WHOLE DATASET In [44]: sns.pairplot(df, hoe*Species*) Out[44]: <pre></pre>
In [46]: df.columns Out[46]: Index(['Sepal length', 'Sepal width', 'Petal length', 'Petal width', 'Species'],
<pre>dtype='object') In [47]: df.nunique() Out[47]: Sepal length</pre>
<pre>dtype: int64 In [48]: df.Species.nunique() Out[48]: In [49]: df.Species.value_counts()</pre>
Out[49]: Iris-setosa 50 Iris-versicolor 50 Iris-virginica 50 Name: Species, dtype: int64 In [50]: df.max() Out[50]: Sepal length 7.9 Sepal vidth 7.9
Sepal width 4.4 Petal length 6.9 Petal width 2.5 Species Iris-virginica dtype: object In [51]: df.min()
Out[51]: Sepal length 4.3 Sepal width 2.0 Petal length 1.0 Petal width 0.1 Species Iris-setosa dtype: object DATA PREPROCESSING/CORRELATIONAL MATRIX
1
<pre>LABEL ENCODER In [76]: from sklearn.preprocessing import LabelEncoder le = LabelEncoder() In [81]: df['Species'] = le.fit_transform(df['Species']) df.head()</pre>
Out [81]: Sepal length Sepal width Petal width Species 0 5.1 3.5 1.4 0.2 0 1 4.9 3.0 1.4 0.2 0 2 4.7 3.2 1.3 0.2 0 3 4.6 3.1 1.5 0.2 0
4 5.0 3.6 1.4 0.2 0 0 In [82]: X = df.drop(columns=['Species']) Y = df['Species'] X[:5]
Out [82]: Sepal length Sepal width Petal width Sprecies 0 5.1 3.5 1.4 0.2 0 1 4.9 3.0 1.4 0.2 0 2 4.7 3.2 1.3 0.2 0 3 4.6 3.1 1.5 0.2 0 4 5.0 3.6 1.4 0.2 0 SEPERATE FEATURES AND TARGET
<pre>In [56]: data = df.values X = data[:,0:4] Y = data[:,4] CALCULATE AVERAGE OF EACH FEATURES FOR ALL CLASSES In [67]: Y_Data = np.array([np.average(X[:, i][Y==j].astype('float32')) for i in range (X.shape[1]) for j in (np.unique(Y))]) Y_Data_reshaped = Y_Data.reshape(4, 3) Y_Data_reshaped = np.swapaxes(Y_Data_reshaped, 0, 1) X_axis = np.arange(len(columns)-1) width = 0.25</pre>
<pre>PLOT THE AVERAGE In [68]: plt.bar(X_axis, Y_Data_reshaped[0], width, label = 'Setosa') plt.bar(X_axis+width, Y_Data_reshaped[1], width, label = 'Versicolour') plt.bar(X_axis+width*2, Y_Data_reshaped[2], width, label = 'Virginica') plt.xticks(X_axis, columns[:4]) plt.xlabel("Features") plt.ylabel("Value in cm.") plt.legend(bbox_to_anchor=(1.3,1)) plt.show()</pre>
MODEL TRAINING
<pre>MODEL TRAINING In [69]: from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.3) In [70]: from sklearn.svm import SVC svm = SVC() svm.fit(X_train, y_train)</pre>
<pre>svm.fit(X_train, y_train) Out[70]: SVC() MODEL EVALUATION In [71]: predictions = svm.predict(X_test)</pre>
<pre>from sklearn.metrics import accuracy_score accuracy_score(y_test, predictions) Out[71]: CLASSIFICATION REPORT</pre>
In [72]:
<pre>In [73]: X_new = np.array([[3, 2, 1, 0.2], [4.9, 2.2, 3.8, 1.1], [5.3, 2.5, 4.6, 1.9]]) prediction = svm.predict(X_new) print("Prediction of Species: {}".format(prediction)) Prediction of Species: ['Iris-setosa' 'Iris-versicolor' 'Iris-virginica']</pre>
The model is predicting correctly because the setosa is shortest and virginica is the longest and versicolor is in between these two as we saw this in above graph. Save the model using pickle import pickle with open('Model.pickle', 'wb') as f:
<pre>pickle.dump(svm, f) LOAD THE MODEL In [75]: with open('Model.pickle', 'rb') as f:</pre>
out[75]: array(['Iris-setosa', 'Iris-versicolor', 'Iris-virginica'], dtype=object)