Semestrální zkouška ISS,	1. opravný term	ín, 24.1.2017, skup	ina C
Login: Příjmení a (čitelně!)	jméno:	Podpis	S:
Příklad 1 Nakreslete periodický s a koeficienty Fourierovy řady: $c_1 = \frac{100}{100}$	signál se spojitým časem $50e^{j\frac{\pi}{2}}, c_{-1} = 50e^{-j\frac{\pi}{2}}$	n se základní kruhovou frektor, $c_{10} = 5$, $c_{-10} = 5$ $0 \cos \left(1000 \text{ Te}\right)$	vencí $\omega_1 = 100\pi \text{ rad/s}$
-100		- + [ms]	Viz A
Příklad 2 Signál se spojitým ča spektrální funkci (průběh modulu i		cův impuls $x(t) = \delta(t - t)$	4). Nakreslete jeho
	viz A		
		е	E-
Příklad 3 Nakreslete výsledek ko $x_1(t) = \begin{cases} 1 & \text{pro } 0 \le t \le 2 \\ 0 & \text{jinde} \end{cases} x$ Označte prosím pečlivě hodnoty na	$r_2(t) = \left\{ egin{array}{ll} 1 & ext{pro } 1 \leq t \\ 0 & ext{jinde} \end{array} \right.$	e spojitým časem: $y(t) = 3$ ≤ 2	$x_1(t) \star x_2(t)$.
1 2 3	4 t		+4
Příklad 4 Hodnota spektrální fund Jrčete, jaká bude hodnota spektráln	kce signálu $x(t)$ na kruh ní funkce $Y(j45\pi)$ pro	ové frekvenci $\omega=45\pi~{ m rad/sign}$ signál vzniklý zpožděním:	$y(t) = x(j45\pi) = 1+j.$ y(t) = x(t-0.5)
	Viz A		ਜ਼ੱ
$Y(j45\pi) = \dots$			
Příklad 5 Vzorkovací frekvence je ignál je ideálně vzorkován a ideáln osinusovka, pravoúhlý, stejnosměrn	ě rekontruován. Není j ý,) a frekvenci sigr Splinen	použit anti-aliasingový filt nálu na výstupu.	r. Určete typ (např.
	Cosi muso	stea ha lt	ltz

Vis A

Příklad 7 Systém se spojitým časem má stejnou přenosovou funkci, jako v příkladu 6, tedy $H(s) = \frac{s}{s+1}$. Určete hodnotu jeho kmitočtové charakteristiky $H(j\omega)$ na zadané kruhové frekvenci. Nezpomeňte na to, že se bude pravděpodobně jednat o komplexní číslo. Stačí počítat na jednu platnou cifru. Pokud vyjde jedna složka komplexního čísla podstatně menší než ta druhá, zanedbejte ji.

 $H(j0) = \dots = 0$

Příklad 8 Do kvantizéru vstupují vzorky x[n]. Kvantizér se ale zasekl a pro všechny vstupní vzorky produkuje tu samou výstupní hodnotu: nulu. $x_q[n] = 0$. Určete poměr signálu k šumu (SNR) v deciBellech (dB) takového kvantizéru.

Vi7 A

Příklad 9 Vypočtěte a do tabulky zapište kruhovou konvoluci dvou signálů s diskrétním časem o délce N=4:

$\underline{}$	0	1	2.	3
$x_1[n]$	4	3	1	2
$x_2[n]$	-1	1	0	0
$x_1[n] \otimes x_2[n]$	-2	1	2	-1

Příklad 10 Dokažte, že Fourierova transformace s diskrétním časem (DTFT) je periodická s periodou 2π rad, tedy že $\tilde{X}(e^{j\omega}) = \tilde{X}(e^{j(\omega+k2\pi)})$, kde k je libovolné celé číslo.

Viz A

Příklad 11 Diskrétní signál x[n] má délku N=8 vzorků. Hodnoty jsou následující: x[n]=2 2 3 4 5 0 0 0. Vypočtěte zadaný koeficient jeho diskrétní Fourierovy transformace (DFT) X[k]. Via A $X[4] = 2 - 2 + 3 - 4 + 5 = \frac{9}{4}$

Příklad 12 Diskrétní signál x[n] má délku N=8 vzorků. Hodnoty jsou následující: x[n]=1 -1 0 0 0 0 0 0. Známe hodnotu koeficientu jeho diskrétní Fourierovy transformace (DFT): X[2] = 1 + j. Určete hodnotu koeficientu DFT Y[2] signálu y[n], který je kruhově posunutou verzí signálu x[n]: y[n]=0 0 0 0 0 1 -1 0. predběl. o m=3

 $Y[2] = (1+j)e^{j\frac{2\pi}{8}\cdot 3\cdot 2} = (1+j)e^{j\frac{3\pi}{2}} = (1+j)(-j) = 17$

Příklad 13 Diskrétní signál x[n] má délku N vzorků, N je sudé. Ukládáme pouze hodnoty $X[0] \dots X[\frac{N}{2}]$. Kolik na to potřebujeme proměnných typu float, když na uložení jednoho reálného čísla je potřeba jeden float a na uložení jednoho komplexního čísla dva floaty?

Vã A

Příklad 14 Přenosová funkce číslicového filtru je $H(z) = \frac{1}{1+4z^{-1}+4z^{-2}}$. Určete, zda je filtr stabilní, a vysvětlete proč.

Póly mi mo jednuckt. Creirnici

Příklad 15 Na obrázku je průběh modulu frekvenční charakteristiky číslicového filtru pro normované kruhové frekvence $\omega \in [0, \pi]$ rad. Nakreslete přibližné rozložení nulových bodů a pólů tohoto filtru.

complet sarrible

Příklad 16 V tabulce jsou hodnoty vzorku n=7 náhodného signálu pro $\Omega=10$ realizací:

ω	1	2	3	4	5	6	7	8	9	. 10
$\xi_{\omega}[7]$	67.1	-120.7	71.7	163.0	48.8	103.4	72.6	-30.3	29.3	-78.7

Proveďte souborový odhad funkce hustoty rozdělení pravděpodobnosti p(x,7) a nakreslete ji.

viz A

Příklad 17 Diskrétní signál x[n] má délku N=8 vzorků. Hodnoty jsou následující:

x[n]=1 2 3 4 5 0 0 0.

Proveďte nevychýlený odhad zadaného korelačního koeficientu R[k].

riz A

 $R[3] = \dots$

Příklad 18 Na $\Omega=4000$ realizacích náhodného procesu byla naměřena tabulka (sdružený histogram) hodnot mezi časy n_1 a n_2 . Spočítejte korelační koeficient $R[n_1,n_2]$. Pomůcka: Jako reprezentativní hodnoty x_1 a x_2 při numerickém výpočtu integrálu $R[n_1,n_2]=\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}x_1x_2p(x_1,x_2,n_1,n_2)dx_1dx_2$ použijte středy intervalů v tabulce.

intervaly	\parallel intervaly x_2						
$\underline{} x_1$	[-4, -2]	[-2, 0]	[0, 2]	[2, 4]			
[2, 4]	0	0	0	0			
[0, 2]	0	1000	0	0			
[-2, 0]	0	0	1000	0			
[-4, -2]	0	0	0	2000			

viz A

 $R[n_1, n_2] = \dots$

Příklad 19 Jaké musí být vzorky náhodného signálu, abychom ho mohli považovat za bílý šum?

viz A

-> V2

Příklad 20 Spektrální hustota výkonu náhodného signálu má na normované kruhové frekvenci $\omega = 0.2\pi$ rad hodnotu $G_x(e^{j0.2\pi}) = 5$. Signál prochází číslicovým filtrem, který má na této frekvenci hodnotu frekvenční charakteristiky $H(e^{j0.2\pi}) = \sqrt{2}e^{j\frac{3\pi}{4}}$. Určete spektrální hustotu výkonu výstupního signálu na téže frekvenci.

Viz A

 $G_y(e^{j0.2\pi}) = \dots$