

I. Definition:

The natural logarithmic function $\mathbf{f}(\mathbf{x})$, is the primitive of the function $\mathbf{g}(\mathbf{x}) = \frac{1}{\mathbf{x}}$ defined over $\mathbf{0}$, where $\mathbf{f}(\mathbf{x}) = \mathbf{h}(\mathbf{x})$, and it's called **Napierian logarithm** also.

II. Sign of ln(x):

Don't Forget, the logarithmic function $f(x) = \ln(x)$ defined over $[0,+\infty[$.

 \mathbf{M} ore over :

- $> \ln(x) < 0 \text{ for } x \in [0,1].$
- $> \ln(x) > 0$ for $x \in]1,+\infty[$.
- \rightarrow $\ln(1) = 0$ and $\ln(e) = 1$

III. Properties:

Complete the following tables then, **observe** the properties below:

Table 1:

a	1	b	ln(a)	ln(b)	ln(a×b)	ln(a)+ln(b)	$\ln\left(\frac{\mathbf{a}}{\mathbf{b}}\right)$	ln(a)-ln(b)
	3	4						
8	8	0.5						
0	.2	0.3						

Table 2:

a	ln(a)	n	n×ln(a)	ln(a ⁿ)
2		3		
4		2		
0.1		4		

- Some of these properties can be observed from the results the we get from the above tables:
 - 1) $\ln(a \times b) = \ln(a) + \ln(b)$, where a > 0 and b > 0.
 - 2) $\ln\left(\frac{a}{b}\right) = \ln(a) \ln(b)$, where a > 0 and b > 0.
 - 3) $\ln\left(\frac{1}{a}\right) = -\ln(a)$, where a > 0.
 - 4) $\ln(a^n) = n \ln(a)$, where a > 0 and n is an integer.
 - 5) $\ln(a^r) = r \ln(a)$, where a > 0 and r is rational
 - 6) $\ln(\mathbf{a} \times \mathbf{b}) = \ln|\mathbf{a}| + \ln|\mathbf{b}|$, where **a** and **b** have the same sign.
 - 7) $\ln\left(\frac{a}{b}\right) = \ln|a| \ln|b|$, where **a** and **b** have the same sign.

IV. Limits:

We admits the following limits:

- $\lim_{x \to +\infty} \ln x = +\infty$
- $\lim_{x \to +\infty} \frac{\ln x}{x} = 0$
- $\lim_{x \to 0^+} \ln x = -\infty$
- $4 \quad \lim_{x \to 0} x \ln x = 0$

V. Equations and In equations:

The function ln(x) defined over $]0,+\infty[$ is continuous and strictly increasing, then the following hold:

- o $\ln a = \ln b \Leftrightarrow a = b$ o $\ln a > \ln b \Leftrightarrow a > b$ When
- $\circ \ln a < \ln b \Leftrightarrow a < b$
- $\Rightarrow a > b$ {Where a > 0 and b > 0
- o $\ln x = a \Leftrightarrow x = e^a$, where $a \in \mathcal{H}$

VI. Derivatives:

- If $f(x) = \ln x (x > 0)$ then, $f'(x) = (\ln x)' = \frac{1}{x}$
- In general, if **u** is a differentiable and strictly positive real function then, $(\ln u)' = \frac{u'}{u}$

VII. Study of ln(x):

Consider the function $\mathbf{f}(\mathbf{x}) = \ln(\mathbf{x})$ defined over $]0,+\infty[$ and designate by (\mathbf{C}) be its representative curve in an orthonormal system $(0,\vec{i},\vec{j})$.

- $\stackrel{\bullet}{\longleftarrow} \lim_{x \to 0^+} \ln x = -\infty \text{ and } \lim_{x \to +\infty} \ln x = +\infty.$

So, the table of variation of the function $f(x) = \ln(x)$ is given below.

The adjacent graph represent (C), representative curve of $f(x) = \ln(x)$ in an orthonormal system $(0, \vec{i}, \vec{j})$.

Question 1:

In the table below only one among the proposed answers to each question is correct is correct. Write down the number of each question and give with justification, the corresponding answer.

		Answers		
N°	Questions	a	b	C
1	Let f be a function defined by: $\mathbf{f}(\mathbf{x}) = \frac{\ln(\mathbf{x} - 2)}{\mathbf{x}}$. The domain of definition of f is:]0,+∞[]2,+∞[]0,2[∪]2,+∞[
2	The solution of the equation $\ln(x-2) = \ln(-x+4)$ is:	1	2	3
3	$\ln e^2 - 2 \ln \sqrt{2} - \ln e^{-3} =$	3	4	$\sqrt{2}$
4	$\lim_{x\to +\infty} \frac{1+\ln(x)}{\ln(x)} =$	0	1	+∞
5	The solution(s) of the equation: $\ln x - \frac{1}{\ln x} = 0$ is (are):	$S = \{0, e\}$	S = {e}	$S = \left\{ e, e^{-1} \right\}$
6	$\ln\left(\sqrt{7}-2\right)+\ln\left(\sqrt{7}+2\right)=$	ln 7	ln 5	ln 3
7	$\lim_{x \to 1} \frac{\ln(1 - x^2)}{\ln(x^2 - 4x + 3)} =$	0	1	ln 2

Question 2:

Determine the domain of definition of each of the following functions:

1.
$$f(x) = \ln(3-4x)$$

2.
$$f(x) = \ln(x^2 - 1)$$

3.
$$f(x) = \ln(x-2) + \ln(x+2)$$

$$4. \quad f(x) = \ln\left(\frac{1-x}{1+x}\right)$$

$$5. \quad \mathbf{f}(\mathbf{x}) = \sqrt{\ln(\mathbf{x})}$$

$$6. \quad f(x) = \frac{\ln x + 1}{x}$$

7.
$$f(x) = \frac{x+2}{\ln x - 1}$$

Question 3:

Write each of the following in the simplest form:

1.
$$\ln(e^2 \sqrt{e})$$
; $\ln e^4 + \ln e^2$

2.
$$\ln 16 - 2 \ln 8$$
; $\sqrt{\ln e^9}$; $\frac{1}{\ln \sqrt{\frac{1}{e}}}$

3.
$$\ln(3-2\sqrt{2})+\ln(3+2\sqrt{2})$$

4.
$$\ln\left(\frac{1}{e}\right)^3 - \left(\ln\frac{1}{e}\right)^3$$
; $\ln(3e) + \ln\left(\frac{1}{3}e^2\right)$

Question 4: Evaluate each of the following limits:

1	$\lim_{x\to 1} (x-1) \ln(x^2-1)$	6	$\lim_{x\to 1} \ln\left(\frac{x+1}{x-1}\right)$
2	$\lim_{x\to-\infty} \ln\left(1+\frac{1}{x^2}\right)$	7	$\lim_{x\to e}\frac{\ln x-1}{x-e}$
3	$\lim_{\substack{x \to 4 \\ x > 4}} \ln \left(1 - \frac{4}{x} \right)$	8	$\lim_{x \to 0} \frac{\ln x}{x + \ln x}$
4	$\lim_{x\to 0} \frac{5-4\ln x}{x}$	9	$\lim_{x \to +\infty} \left(x + \frac{lx + 1}{x} \right)$
5	$\lim_{x\to+\infty}\frac{x-1}{\ln x-1}$	10	$\lim_{x\to 0} \left(\ln^2 x - \ln x + 2\right)$

Question 5:

Solve each of the following equations:

1.
$$\ln x + 4 = 0$$

2.
$$\ln(x+2) = \ln(8-2x)$$

3.
$$\ln(2x+1) + \ln(x-1) = \ln 2$$

4.
$$\ln(x-1) - \ln(2x-3) = 0$$

5.
$$\ln x + \ln(x-2) = \ln(2x-3)$$

6.
$$\ln(2x-3)+2\ln(x-2)=\ln(-2x^2+13x-12)$$

7.
$$(\ln x)^2 - 3\ln x - 4 = 0$$

8.
$$\ln^2 x - 3 \ln x + 2 = 0$$

Question 6:

Solve each of the following Inequations:

1.
$$2 \ln x \ge 7$$

2.
$$\ln(2x-3) > 0$$

3.
$$2 \ln x - 6 \le 0$$

4.
$$\ln(2x+1) + \ln(x-1) \le \ln 2$$

5.
$$(\ln x - e)(2\ln x - 4) < 0$$

6.
$$\ln(x-1) + \ln(x+1) \ge \ln 3$$

Question 7:

Shown in the adjacent orthonormal system, the representative curve (C) of a function f that is defined on $]0; +\infty[$.

Indication: the line (d) of equation y = 1

is tangent to the curve (C) at the point (1;1).

- 1) Determine f(1) and f '(1) and set up the table of variations of f.
- 2) The function f is expressed by $f(x) = \frac{a + b(\ln x)}{x}$, prove that a = b = 1.

