Reg. No.	
----------	--

B.Tech/ M.Tech (Integrated) DEGREE EXAMINATION, MAY 2024

Fourth Semester

21CSE309J - GPU POWERED COMPUTING

(For the candidates admitted from the academic year 2022-2023 onwards)

(i)	Part - A should be answered in OMR sheet within first 40 minutes and OMR sheet should hall invigilator at the end of 40 th minute.	a be na	indec	love	я ю
(ii)	Part - B and Part - C should be answered in answer booklet.				
Time: 3	Hours	Max.	Ma	rks:	75
10.	$PART - A (20 \times 1 = 20Marks)$ Answer ALL Questions	Marks	BL	СО	PO
1.	is a common parallel programming paradigm used in scientific computing to distribute computation among multiple processors. (A) Object-oriented programming (B) Functional programming (C) Message passing interface (D) Procedural programming	1	2	1	1
2.	What is the primary motivation for parallelizing scientific computing tasks? (A) Reducing the complexity of (B) Decreasing the need for algorithms (C) Improving performance by (D) Simplifying the implementation of numerical methods	1	2	1	1
3.	In OpenMP programming, which directive is used to parallelize loops and distribute iterations among threads? (A) #pragma omp for (B) #pragma omp critical (C) #pragma omp task (D) #pragma omp parallel	1	1	1	1
4.	is the best describes the scope of variables declared within a parallel region in OpenMP? (A) The variables are accessible only (B) The variables are accessible within the parallel region where globally by all threads they are declared (C) The variables are accessible only (D) The scope of variables is by the master thread declares them		3	1	2
5.	In MPI parallel computing model, how is data typically shared between processes? (A) Through shared memory (B) By passing messages between processes (C) By broadcasting data to all (D) Through centralized storage accessible by all processes		2	2	1
6.	is a characteristic of the local memory in MPI parallel computing. (A) It is shared among all parallel (B) Each parallel process has its own processes local memory (C) It is dynamically allocated and (D) It is accessed using global deallocated during runtime pointers		2	_ 2	1

Note:

/.		tiple processor cores within the sam			1	1	2	2
		Segments		Sectors				
	(C)		. ,					
	(C)	Ciusteis	(D)	Nodes				
8.	strue	MPI datatype is used to create conctures.	uston	n datatypes for non-contiguous data	1	3	2	2
		MPI INT	(B)	MPI_CHAR				
	` '	MPI_DOUBLE		MPI_Datatype_Create_Struct				
	(-)		(D)	TALL Paralypo_Oreate_Struct				
9.	(A)	parallel programming model ed-memory parallelism in numerica MPI-Message Passing Interface CUDA-Compute Unified Device Architecture	l met (B)	chods on multicore CPUs? OpenMP-Open Multi-Processing	1	2	3	1
10.	and of the with	rge system of linear equations needs OpenMP. Which approach would be ne coefficient matrix among MPI pain each process using OpenMP?	e mo	st suitable for distributing the rows sses and parallelizing the solution		3	2	
		Row-wise partitioning	(B)	Column-wise partitioning				
	(C)	Domain decomposition	(D)	Shared-memory parallelism				
11.	the diffe	arallel numerical integration using integration domain into equal segnerent MPI process? Trapezoidal rule Monte Carlo Method	MPI, nents (B) (D)	which strategy involves dividing and assigning each segment to a Simpson's rule Midpoint rule	. 1	1	3	2
12.	men whil key	arallel finite-difference solver is used brane. Each MPI process is response of the OpenMP threads within each procedural processed that needs to be addressed Load balancing among MPI processes Synchronization of threads within each MPI process	sible cess hed in (B)	for updating a portion of the mesh, nandle the computations. What is a this parallelization strategy? Minimizing communication overhead between MPI processes	1	3	3	1
13	Data	dependence is			1	2	4	1
15.		Involves only those tasks	(B)	It exists between program		_	т	1
34	(21)	executing a communication	(D)	1 &				
		operation a communication		statements when the order of statement execution affects the results of the program				
	(C)	It refers to the practice of	(D)	It can be considered as				
		distributing work among task, so that all tasks are kept busy all of the time	(12)	minimization of task idle time				12
14.		programming framework is asso	ciata	d with NVIDIA GPUs for general-	1	2	4	2
- 11	purn	ose computing?	oraio	a wini it a tipity of 02 for Religial-	-	_	-	-
		DirectX	(R)	OpenCL				
	(C)	CUDA	(D)	OpenGL				
Page 2 of	` /	147	(1)		7MA4-2	ICSE:	IOO.T	

17MA4-21CSE309J

23. a.	. Differentiate between MPI and OpenMP with sample program.				1
b.	(OR) Explain blocking communication with diagram.	8	3	3	1
24. a.	What is OpenACC? Write simple compiler directive program model. (OR)	2+6	3	4	2
b.	Draw OpenACC development cycle and define each stage.	8	3	4	2
25. a.	Illustrate GPU programming models with diagram.	8	2	5	2
b.	(OR) How can parallel computation help expedite the analysis of large datasets compared to traditional sequential processing methods? Briefly explain with diagram.	8	2	5	2
	PART – C $(1 \times 15 = 15 \text{ Marks})$ Answer ANY ONE Question	Marks	BL	со	РО
26.	A software developer working on a project that involves heavy computational tasks, and exploring the use of GPU acceleration to improve performance. His team is implementing CUDA programming for this purpose. During a team meeting, one of his colleagues raises concerns about the compatibility of CUDA with different GPU models and the potential limitations in may pose. How would he address these concerns and explain the benefits of using CUDA for GPU acceleration in this scenario?	15	4	5	2
27.	Describe collection communication operations for the following scenario: (i) To compute prefix-sums (ii) If the result of the reduction operation is needed by all processes (iii) The corresponding scatter operations	5 5	4	3	2

17MA4-21CSE309J

9 1

15.	The purpose of a compiler in programn	ning is	S	1	1	4	1
	(A) Executes the program	(B)	Translates source code to machine code				
	(C) Interprets code in real time	(D)	Optimizes code for better performance				
16.	is unified virtual machine.			1	2	4	2
	(A) It is a technique that allow both CPU and GPU to read from single virtual machine simultaneously	• /	It is a technique for managing separate host and device memory spaces	4	1		
	(C) It is a technique for executing device code on host and host code on device		It is a technique for executing general purpose programs on device instead of host				
17.	Both the CISC and RISC architectures	have l	peen developed to reduce the .	1	3	5	1
	(A) Cost		Time delay				
	(C) Semantic gap	(D)	Capacity				
18.	Two processors A and B have clock respectively. Suppose A can execute a and B can execute with an average of instruction which processor is faster?	n inst	ruction with an average of 3 steps ps. For the execution of the same	1	2	5	2
	(A) A(C) Both take the same time	(B)	Insufficient information				
	(c) Both taxe the same time	(1)	insufficient information				
19.	Which metric provides a more co performance of a parallel program, communication operations? (A) CPU time	includ			3	5	2
	(C) Processor speed	(D)	Memory utilization				
20	XXI: 1.0 1.0		CLYD I O	1		_	
20.	Which function is used for free the mer (A) CudaFree ()	•	n CUDA? Free ()	1	2	5	3
	(C) cudaFree ()	, ,	Cudafree ()				
	DADE D'	40.75.7		Maste	D.I	60	DO.
•	$PART - B (5 \times 8 = Answer ALL Q)$,	Marks	BL	CO	PU
21. a.	Define OpenMP. How it is a sta Programming? Elaborate parallel direct			2+6	3	1	1
b.	OR) Define the thread. List out thread basics a thread-based programming paradigm.		strate the logical machine model of	2+6	3	1	1
22. a.	Write the purpose of MPI_Comm_rank in the MPI environment with example.	funct	ion and demonstrate how is it used	8	3	2	2
	(OR)						
b.	Describe the concept of MPI data typoperations.	es an	d how MPI supports parallel I/O	8	3	2	2

17MA4-21CSE309J

Page 3 of 4