Predavanje

Predmet

Digitalni upravljački sistemi

Tema

PID Regulatori

2006-2007 godina

Agenda

- Diskretizacija realnog PID-a
- Metode podešavanja parametara

$$u(t) = K \left(br(t) - y(t) + \frac{1}{T_i} \int_0^t e(\tau) d\tau + T_d \left(c \frac{dr(t)}{dt} - \frac{dy(t)}{dt} \right) \right)$$

P dejstvo

$$P = K(br - y)$$

$$P(t_k) = K[br(t_k) - y(t_k)]$$

I dejstvo

$$I(t) = \frac{K}{T_i} \int_{0}^{t} e(\tau) d\tau \longrightarrow \frac{dI(t)}{dt} = \frac{K}{T_i} e(t)$$

$$\frac{I(t_{k+1}) - I(t_k)}{T} = \frac{K}{T_i} e(t_k) \longrightarrow I(t_{k+1}) = I(t_k) + \frac{KT}{T_i} e(t_k)$$

D dejstvo

$$\frac{T_d}{N}\frac{dD}{dt} + D = -KT_d \frac{dy}{dt}$$

Unapred

$$\frac{T_d}{N} \frac{D(t_{k+1}) - D(t_k)}{T} + D(t_k) = -KT_d \frac{y(t_{k+1}) - y(t_k)}{T}$$

$$D(t_{k+1}) = \left[1 - \frac{NT}{T_d}\right] D(t_k) - KN[y(t_{k+1}) - y(t_k)]$$

D dejstvo

$$\frac{T_d}{N}\frac{dD}{dt} + D = -KT_d \frac{dy}{dt}$$

Unazad

$$\frac{T_d}{N} \frac{D(t_k) - D(t_{k-1})}{T} + D(t_k) = -KT_d \frac{y(t_k) - y(t_{k-1})}{T}$$

$$D(t_{k}) = \left[\frac{T_{d}}{T_{d} + NT} \right] D(t_{k-1}) - \frac{KNT_{d}}{T_{d} + NT} [y(t_{k}) - y(t_{k-1})]$$

D dejstvo

$$\frac{T_d}{N}\frac{dD}{dt} + D = -KT_d \frac{dy}{dt}$$

Tutsin

$$D(t_k) = \left[\frac{2T_d - NT}{2T_d + NT} \right] D(t_{k-1}) - \frac{2KNT_d}{2T_d + NT} [y(t_k) - y(t_{k-1})]$$

Realni PID
$$\frac{T_d}{N} \frac{dD}{dt} + D = -KT_d \frac{dy}{dt}$$
 D dejstvo

Unapred

$$D(t_{k+1}) = \left[1 - \frac{NT}{T_d}\right] D(t_k) - KN[y(t_{k+1}) - y(t_k)] \qquad T_d > \frac{NT}{2}$$

Unazad

$$D(t_{k}) = \left[\frac{T_{d}}{T_{d} + NT} \right] D(t_{k-1}) - \frac{KNT_{d}}{T_{d} + NT} [y(t_{k}) - y(t_{k-1})]$$

Tutsin

$$D(t_k) = \left[\frac{2T_d - NT}{2T_d + NT} \right] D(t_{k-1}) - \frac{2KNT_d}{2T_d + NT} \left[y(t_k) - y(t_{k-1}) \right] \qquad T_d > \frac{NT}{2}$$

$$D(t_k) = a_i D(t_{k-1}) + b_i [y(t_k) - y(t_{k-1})]$$

Brzinska forma

$$\Delta u(t_k) = u(t_k) - u(t_{k-1}) = \Delta P(t_k) + \Delta I(t_k) + \Delta D(t_k)$$

Brzinska forma

$$\Delta u(t_k) = u(t_k) - u(t_{k-1}) = \Delta P(t_k) + \Delta I(t_k) + \Delta D(t_k)$$

$$\Delta P(t_k) = P(t_k) - P(t_{k-1}) = K[br(t_k) - y(t_k) - br(t_{k-1}) + y(t_{k-1})]$$

$$\Delta I(t_k) = I(t_k) - I(t_{k-1}) = \frac{KT}{T_i} e(t_{k-1})$$

$$\Delta D(t_k) = D(t_k) - D(t_{k-1}) = \frac{b_i}{1 - a_i} [y(t_k) - 2y(t_{k-1}) + y(t_{k-2})]$$

Bumpless transfer

IF Auto % Kada je u Automatskog rezimu THEN

Manuel_level=PID_output

END_IF

Agenda

- Diskretizacija realnog PID-a
- Metode podešavanja parametara

	Brzina	Stabilnost	Greška u ustaljenom stanju
K _P	Povećava	Pogoršava	Smanjuje
K,	Smanjuje	Pogoršava	Eliminiše
K _D	Povećava	Povećava	Mala promena

Eksperimenti otvorenoj povratnoj sprezi

$$G_{p}(s) = \frac{K_{p}}{T_{p} s + 1} e^{-s\tau}$$

$$a = \mu K_P$$
; gde je $\mu = \frac{\tau}{T_P}$

Eksperiment nije moguć

- ako prelazna karakteristika nije monotona
- ako proces ima astatizam prvog ili višeg reda
- ako je proces nestabilan

Eksperimenti zatvorenoj povratnoj sprezi

Ku- kritično pojačanje

$$X_p = \frac{\Delta y}{\Delta u}$$
 statičko pojačanje objekta

$$\chi = K_u K_p$$

$$0.1 < \mu = \frac{\tau}{T_P} < 1$$

Zigler-Nicholsove perporuke
$$0.1 < \mu = \frac{\tau}{T_P} < 1$$

 $a = \mu K_P$; gde je $\mu = \frac{\tau}{T_P}$ $I = \int_0^\infty |e(t)| dt = \int_0^\infty |r(t) - y(t)| dt$ za $r(t) = 1$

Regulator	K _P	T_{I}	$T_{\mathbf{D}}$
P	1/a	_	-
PI	0,9/a	3τ	-
PID	1,2/a	2 τ	τ/2

$$\xi = 0.21$$
 6dB Pretek pojačanja

otvorenoj povratnoj sprezi

$$0.1 < \mu = \frac{\tau}{T_{P}} < 1$$

$$a = \mu K_P$$
; gde je $\mu = \frac{\tau}{T_P}$

Za veće
$$\frac{\tau}{T_P}$$
 Koristiti Otto-Smitov prediktor, PIP reulator, IMC regulator. Preporuke Cohena Coona.

Za manje
$$\frac{\tau}{T_n}$$
 Kompezatori višeg reda

Ku- kritično pojačanje

$$K_p = \frac{\Delta y}{\Delta u}$$
statičko pojačanje objekta

$$\chi = K_u K_p$$

Regulator	K _P	T_{I}	T_{D}
P	0,5 K _u	-	-
PI	0,45 K _u	0.833 T _u	_
PID	0,6 K _u	0.5 T _u	0,125 T _u

$$K$$
u- kritično pojačanje $K_p=\frac{\Delta y}{\Delta u}$ statičko pojačanje objekta
$$2<\chi=K_uK_p<20$$

$$\chi = K_u K_p < 2$$
 Treba koristiti zakone upravljanja koji kompezuju kašnjenje

$$\chi = K_u K_p > 20$$
 Treba koristiti složenije zakone upravljanja

$$1.5 < \chi = K_u K_p < 2$$
 PID regulator je upotrebljiv ako željene performanse nisu suviše zahtevne. Modifikovani ZN. Otto-Smithov prediktor IMC

$$\chi = K_u K_p < 1.5$$
 Pokušati sa PI regulatorom, D dejstvo nije od velike koristi. Bolje koristiti druge strukture.

$$K$$
u- kritično pojačanje
$$K_p = \frac{\Delta y}{\Delta u} \quad \text{statičko pojačanje objekta}$$

$$2 < \chi = K_u K_p < 20$$

Pojačanje sistema sa otvorenom povratnom spregom, sa P regulatorom po ZN preproukama (eksp. Otv. sprezi) je:

$$\frac{K_p}{a} = \frac{T_p}{\tau} = \frac{1}{\mu} \approx \frac{\chi}{2}$$

P regulator

$$e_{\text{max}} \approx \frac{0.4}{K}; \quad t_{\text{max}} \approx \frac{T_i}{2}$$

PI regulator

$$t_r \approx \tau$$

Cohen-Coon(ove) perporuke

Cohen-Coon(ove) preporuke					
Tip regulatora	K	T_{i}	T_d		
P	$\frac{1}{K_p} \left(0.35 + \frac{1}{\mu} \right)$				
PI	$\frac{1}{K_p} \left(0.083 + \frac{0.9}{\mu} \right)$	$\frac{3.3 + 0.31\mu}{1 + 2.2\mu}\tau$			
PD	$\frac{1}{K_p} \left(0.16 + \frac{1.24}{\mu} \right)$		$\frac{0.27 - 0.088\mu}{1 + 0.13\mu}\tau$		
PID	$\frac{1}{K_p} \left(0.25 + \frac{1.35}{\mu} \right)$	$\frac{2.5 + 0.46\mu}{1 + 0.61\mu}\tau$	$\frac{0.37}{1+0.19\mu}\tau$		

Za mala kašnjenja u odnosu na vremensku konstantu procesa (malo μ) CC i ZN daju slične parametre. Kod velikih kašnjenja CC se preporučuje jer po njoj D teži nuli.

Chien-Hrones-Reswick(ove) perporuke

CHR preporuke za izbor regulatora			
Tip regulatora	$R = \frac{T_p}{\tau} = \frac{1}{\mu}$		
P	R > 10		
PI	7.5 < R < 10		
PID	3 < R < 7.5		
Višeg reda	R < 3		

- 1. Željeni prelazni režim aperiodični
- 2. Željeni prelazni režim prigušeno periodični i preskokom od 20%

Chien-Hrones-Reswick(ove) perporuke

1. Željeni prelazni režim aperiodični

CHR preporuke aperiodični					
Tip regulatora	K	T_i	T_d		
P	0.3R				
	K_{p}				
PI	0.35R	$1.2T_p$			
	K_p				
PID	<u>0.6R</u>	T_p	0.5τ		
	K_{p}				

Chien-Hrones-Reswick(ove) perporuke

Željeni prelazni režim prigušeno periodični i preskokom od 20%

CHR preporuke pperiodični 20% preskok					
Tip regulatora	K	T_i	T_d		
P	0.7R				
	$\overline{K_p}$				
PI	0.6R	T_p			
	K_p	•			
PID	0.95R	$1.35T_{p}$	0.47τ		
	$\overline{K_p}$	r			

IMC postupak

Projektovanje zavisi od samog jednog parametra – željene vremenske konstante sistema u zatvorenoj povratnoj sprezi Tcl

Pretpostavka:

$$G_{p}(s) = \frac{K_{p}}{T_{p} s + 1} e^{-s\tau}$$

IMC se može interpretirati kao PID sa sledećim parametrima:

$$K = \frac{2T_p + \tau}{2K_p(T_{cl} + \tau)}; \qquad T_i = T_p + \frac{\tau}{2}; \qquad T_d = \frac{\tau T_p}{\tau + 2T_p};$$
$$T_{cl} \ge \frac{t_r}{1.8}; \qquad \text{Veza se tr}$$

 $T_{\rm cl} = (1.5 - 2.5)\tau$ iz prakse

IMC postupak

Projektovanje zavisi od samog jednog parametra – željene vremenske konstante sistema u zatvorenoj povratnoj sprezi Tel

PID po IMC						
Tip regulatora	Tcl	K	T_i	T_d		
PI	$\frac{T_{cl}}{\tau} > 1.7$	T_p	T_p			
PI poboljšani	$\frac{t}{T_{cl}} > 1.7$	$\frac{T_{cl}K_p}{\tau + 2T_p}$	$T_p + \frac{\tau}{2}$			
PID	T_{cl} . 0.25	$\frac{2T_{cl}K_p}{\tau + 2T_p}$	$\frac{1}{\tau}$	$ au T_p$		
	$\left \frac{r_{cl}}{\tau} > 0.25 \right $	$\overline{2K_p(T_{cl}+\tau)}$	$T_p + \frac{\epsilon}{2}$	$\overline{2T_p + \tau}$		

ITAE i ITSE postupak

Kriterijum optimalnosti

$$I = \int_{0}^{\infty} t^{n} f(|e(t)|) dt$$

Integral	Oznaka	f	n
greška	$I_{I\!E}$	e(t)	0
aps. greška	I_{IAE}	e(t)	0
aps. greška * t	I_{ITAE}	e(t)	1
kvadrat greške	I_{ISE}	$e^{2}(t)$	0
kvadrat greške * t	I_{ITSE}	$e^{2}(t)$	1

Takahashi

$$\Delta u(t_k) = K_i[r(t_k) - y(t_k)] - K[y(t_k) - y(t_{k-1})] - K_d[y(t_k) - 2y(t_{k-1}) + y(t_{k-2})]$$

	Takahashy A					
Tip regulatora	K	K _i	K _d			
P	$\frac{T_p}{T+\tau}$					
PI	$\frac{0.9T_p}{T+\tau} - 0.5K_i - \frac{1}{6}$ kada $\frac{\tau}{T} \to 0$ nese					
PID		,	$\frac{0.6T_p}{\tau} \text{ za } \frac{\tau}{T} \approx 0$ $\text{e } \frac{0.5T_p}{\tau} \text{ za } \frac{\tau}{T} \approx 1$			

Takahashi

$$\Delta u(t_k) = K_i[r(t_k) - y(t_k)] - K[y(t_k) - y(t_{k-1})] - K_d[y(t_k) - 2y(t_{k-1}) + y(t_{k-2})]$$

Takahashy B					
Tip regulatora	K	K _i	K_d		
P	$0.5K_u$				
PI	$0.45K_u - 0.5K_i \frac{0.54K_uT}{T_u}$				
	kada $\tau \approx 0.25T$ umanjiti ove iznose				
PID	$0.6K_u - 0.5K_i = \frac{1.2K_uT}{T_u} = \frac{3K_uT}{40T_u}$				
	kada $T \approx 4\tau$ ne preporučuje se				

