Range-Based Set Reconciliation

Aljoscha Meyer

Set Reconciliation

- set union over a network
- between (exactly) two machines
- unstructured data
- no shared state or history

Trivial Reconciliation

Model and Analysis

- Alfie and Betty talk over a network
- reliable communication, rounds of unit length, unlimited bandwidth
- probabilistic solutions

Model and Analysis

- Alfie and Betty talk over a network
- reliable communication, rounds of unit length, unlimited bandwidth
- probabilistic solutions
- n: size of the union
- n_{\triangle} : size of the symmetric difference

Model and Analysis

- roundtrips
- communicated bytes
- computation time per reconciliation session
- computation space per reconciliation session
- computation time per item
- computation space per item

P2P Reconciliation

Peer-to-peer systems:

- iterating over local set infeasible
- loading local set into memory infeasible
- some peers are out to get us

P2P Reconciliation

Peer-to-peer systems:

- iterating over local set infeasible
- loading local set into memory infeasible
- some peers are out to get us
- ⇒ traditional approaches don't work

Reducing Computation Times

• Step 1: Put a Merkle tree on it

• Step 2: ???

• Step 3: Profit

Auvolat, Alex, and François Taïani. "Merkle search trees: Efficient state-based CRDTs in open networks." 2019 38th Symposium on Reliable Distributed Systems (SRDS). IEEE, 2019.

Merkle Trees

Merkle Trees

10/22

- inflexible data representation
- inacceptable worst-case complexity
 - remember, some peers are out to get us

Range-Based Set Reconciliation

Some Nice Properties

- reasonably efficient: $\mathcal{O}(\min(n_{\triangle} \cdot \log(n), n))$ bytes communication, $\mathcal{O}(1)$ working memory
- can interpolate toward trivial
- arbitrary recursion anchor protocols
- arbitrary partition techniques

Some Nice Properties

- reasonably efficient: $\mathcal{O}(\min(n_{\triangle} \cdot \log(n), n))$ bytes communication, $\mathcal{O}(1)$ working memory
- can interpolate toward trivial
- arbitrary recursion anchor protocols
- arbitrary partition techniques
- but: linear computation times

Order-Statistic Trees

- ullet set of labels: ${\mathbb N}$
- binary associative function: +
- neutral element: 0

- ullet set of labels: ${\mathbb N}$
- binary associative function: +
- neutral element: 0
- lifting into the monoid: $\lambda x.1$

- ullet set of labels: ${\mathbb N}$
- binary associative function: +
- neutral element: 0
- lifting into the monoid: $\lambda x.1$
- set of labels: $\{n: 0 <= n < 2^{256} 1\}$

• lifting into the monoid: sha256

- ullet set of labels: ${\mathbb N}$
- binary associative function: +
- neutral element: 0
- lifting into the monoid: $\lambda x.1$
- set of labels: $\{n: 0 <= n < 2^{256} 1\}$
- binary associative function: xor
- neutral element: 0
- lifting into the monoid: sha256

Resulting Hash Functions

Let U be a set, \leq a linear order on U, $\mathcal{M}=(M,\oplus,\mathbb{O})$ a monoid, and $f:U\to M$.

We lift f to finite sets via \mathcal{M} to obtain lift $\mathcal{P}(U) \rightharpoonup M$ with:

$$\begin{split} & \mathsf{lift}_\mathsf{f}^\mathcal{M}(\emptyset) := \mathbb{O}, \\ & \mathsf{lift}_\mathsf{f}^\mathcal{M}(S) := \mathsf{f}\big(\mathsf{min}(S)\big) \oplus \mathsf{lift}_\mathsf{f}^\mathcal{M}\big(S \setminus \{\mathsf{min}(S)\}\big). \end{split}$$

That is:
$$\operatorname{lift}_{\mathsf{f}}^{\mathcal{M}}(S) = \mathsf{f}(s_1) \oplus \mathsf{f}(s_2) \oplus \cdots \oplus \mathsf{f}(s_{|S|}).$$

Advantages

- solid worst-case communication complexity
- implementation independence

• adversary must sabotage reconciliation

- adversary must sabotage reconciliation
- active and passive adversaries

- adversary must sabotage reconciliation
- active and passive adversaries
- randomized boundaries defeat individual collisions

- adversary must sabotage reconciliation
- active and passive adversaries
- randomized boundaries defeat individual collisions
- better protection: secure hash functions

Secure Hash Functions

Let U be a set, $\mathcal{M}=(M,\oplus,\mathbb{O})$ a monoid, and $f:\mathcal{P}(U)\to M.$ f is set-homomorphic if $f(U_1\cup U_2)=f(U_1)\oplus f(U_2).$

Secure Hash Functions

Let U be a set, $\mathcal{M}=(M,\oplus,\mathbb{O})$ a monoid, and $f:\mathcal{P}(U)\to M$.

f is set-homomorphic if $f(U_1 \cup U_2) = f(U_1) \oplus f(U_2)$.

XOR, addition, multiplication, lattices, RSA, eliptic curves.

Secure Hash Functions

Let U be a set, $\mathcal{M}=(M,\oplus,\mathbb{O})$ a monoid, and $f:\mathcal{P}(U)\to M$.

f is set-homomorphic if $f(U_1 \cup U_2) = f(U_1) \oplus f(U_2)$.

XOR, addition, multiplication, lattices, RSA, eliptic curves.

Let further \leq a linear order on U.

f is a tree-friendly function if for $S_0, S_1 \in \mathcal{P}(U)$ with $\max(S_0) \prec \min(S_1)$, we have $f(S_0 \cup S_1) = f(S_0) \oplus f(S_1)$.

No commutativity: Cayley hash functions

Conclusion

Unlike conventional reconciliation techniques:

- robust
- simple