Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous Graphs

Dasol Hwang*, Hyunwoo J. Kim etc Korea University

NeurIPS 2020

On Index

1. Introduction

2. Related

3. Proposed Approach

4. Experiments

1 Introduction: Why I choose this paper?

- Hot Topic Self-supervised learning for GNN
- GNN for Real word heterogenous graph
- Meta Training
- For any GNN model & Performance Increase

Abstract

"We proposed meta-path prediction as self-supervised auxiliary tasks on heterogeneous graphs"

SELf-supervised Auxiliary LeaRning (SELAR).

Introduction: What this paper proposes

"We proposed meta-path prediction as self-supervised auxiliary tasks on heterogeneous graphs"

What is Heterogeneous Graphs?

What is Self-supervised leaning?

What is Auxiliary Learning?

What is Meta-Paths?

Homogeneous Graphs: only one type node or edge

Heterogeneous Graphs: multiple type of node or edge

(like real-word) (rich information for powerful representation)

Homogeneous Graphs can't catch the rich information?

Homogeneous Graphs(multiple type node) have rich information!

Related: Self-supervised learning

Self-Supervised Learning: pretext task로 NN을 pretrain하여 downstream task로 transfer learning.

pretext task: Unlabeled 데이터들을 이용하여 사용자가 새로운 문제를 정의하여 이에 대한 정답을 Self- supervised label이라 하며 이 때의 새로운 문제를 뜻함.

DOWNSTREAM TASK: Pretrain된 가중치를 사용하여 원하는 테스크에 fine-tune

self- supervised 학습은 일종의 비지도학습으로 라벨이 없는 데이터를 해당 데이터의 구조나 특성을 기반으로 라벨링하여 학습함으로써 High-level representations 학습을 가능케 한다.

Exemplar, 2014 NIPS

Train with STL-10 dataset (96x96)

[Exemplar]

Jigsaw Puzzle, 2016 ECCV

Sample image

Extract 9 patches

[Jigsaw Puzzle]

Related Concepts: Auxiliary Learning

employ auxiliary tasks to assist the primary task

Looks like multi-task learning BUT only care about the performance of the primary task

Related Concepts: Meta-Paths

At Heterogeneous Graph Embedding

3 Proposed Approach: What this paper proposes

Abstract

"We proposed meta-path prediction as self-supervised auxiliary tasks on heterogeneous graphs"

SELf-supervised Auxiliary LeaRning (SELAR).

GOAL: learn with multiple auxiliary tasks to improve the performance of the primary task.

GOAL: learn with multiple auxiliary tasks to improve the performance of the primary task.

meta-path prediction

Hint Networks

GOAL: learn with multiple auxiliary tasks to improve the performance of the primary task.

meta-path prediction Self-supervised leaning

GOAL: learn with multiple auxiliary tasks to improve the performance of the primary task.

GOAL: learn with multiple auxiliary tasks to improve the performance of the primary task.

Understand Complicated and meaningful relations Of Heterogenous Graph

Contribution: It isn't just simple auxiliary learning for GNN

There are so many challenging problem at "Auxiliary task at GNN"

- Graph Structure
- Only Homogeneous Graph
- Manually select the Auxiliary task with domain knowledge

Contribution: It isn't just simple auxiliary learning for GNN

- Propose a self-supervised learning method on a heterogeneous graph via meta-path prediction without additional data.
- Automatically selects meta-paths (auxiliary tasks) to assist the primary task via metalearning.
- Develop Hint Network that helps the learner network to benefit from challenging auxiliary tasks.

- 1) learning weight functions to softly select auxiliary tasks and balance them with the primary task via meta-learning
- 2) learning Hint Networks to convert challenging auxiliary tasks into more relevant and solvable tasks to the primary task learner.

SELAR is learning to learn **a primary task** with multiple **auxiliary tasks** to assist the primary task

$$\min_{\mathbf{w},\Theta} \mathcal{L}^{pr}(\mathbf{w}^*(\Theta)) \quad \text{s.t. } \mathbf{w}^*(\Theta) = \operatorname*{argmin}_{\mathbf{w}} \mathcal{L}^{pr+au}(\mathbf{w};\Theta).$$

- \mathcal{L}^{pr} : Loss function for the primary task
- \mathcal{L}^{pr+au} : Loss functions for the primary task and auxiliary tasks
- W: Model Parameters (for tasks)
- \bullet Θ : Parameters for meta-learning (how to learn)

SELAR is learning to learn **a primary task** with multiple **auxiliary tasks** to assist the primary task

$$\min_{\mathbf{w},\Theta} \mathcal{L}^{pr}(\mathbf{w}^*(\Theta)) \quad \text{s.t. } \mathbf{w}^*(\Theta) = \operatorname*{argmin}_{\mathbf{w}} \mathcal{L}^{pr+au}(\mathbf{w};\Theta).$$

Can be written as (just like my explanation)

$$\min_{\mathbf{w},\Theta} \sum_{i=1}^{M_0} \frac{1}{M_0} \ell^0(y_i^{(0,meta)}, f(x_i^{(0,meta)}; \mathbf{w}^*(\Theta))$$

$$\text{s.t. } \mathbf{w}^*(\Theta) = \operatorname*{argmin}_{\mathbf{w}} \sum_{t=0}^T \sum_{i=1}^{N_t} \frac{1}{N_t} \mathcal{V}(\xi_i^{(t,train)}; \Theta) \ell^t(y_i^{(t,train)}, f^t(x_i^{(t,train)}; \mathbf{w}))$$

- $\ell^t = \ell^t(y_i^{(t,train)}, f^t(x_i^{(t,train)}; \mathbf{w})). \xi_i^{(t,train)}$
- $\xi_i^{(t,train)} = \left[\ell^t; e_t; y_i^{(t,train)}\right]$

SELAR is learning to learn **a primary task** with multiple **auxiliary tasks** to assist the primary task

$$\min_{\mathbf{w},\Theta} \mathcal{L}^{pr}(\mathbf{w}^*(\Theta)) \quad \text{s.t. } \mathbf{w}^*(\Theta) = \operatorname*{argmin}_{\mathbf{w}} \mathcal{L}^{pr+au}(\mathbf{w};\Theta).$$

Can be written as (just like my explanation)

$$\min_{\mathbf{w},\Theta} \sum_{i=1}^{M_0} \frac{1}{M_0} \ell^0(y_i^{(0,meta)}, f(x_i^{(0,meta)}; \mathbf{w}^*(\Theta))$$

$$s.t. \ \mathbf{w}^*(\Theta) = \underset{\mathbf{w}}{\operatorname{argmin}} \sum_{t=0}^{T} \sum_{i=1}^{N_t} \frac{1}{N_t} \underbrace{\mathcal{V}(\xi_i^t; \Theta) \cdot \ell^t(y_i, f(x_i; \mathbf{w}))}_{\text{Weighting function}}$$

•
$$\ell^t = \ell^t(y_i^{(t,train)}, f^t(x_i^{(t,train)}; \mathbf{w})). \xi_i^{(t,train)}$$

•
$$\xi_i^{(t,train)} = \left[\ell^t; e_t; y_i^{(t,train)}\right]$$

Proposed Approach: SELAR How to optimize this Bi-Optimization

Proposed Approach: Hint Network

Meta-path prediction more challeng problem than link prediction/ node classification Provide Hint to convert meta path into more easy problem

convex combination of the learner's answer and HintNet's answer

Datasets

Link prediction: Last-FM and Book-Crossing with knowledge graph

Node classification: ACM and IMDB

Table 2: Datasets on heterogeneous graphs.

	Datasets	# Nodes	# Edges	# Edge type	# Features
Link prediction	Last-FM Book-Crossing	15,084 110,739	73,382 442,746	122 52	N/A N/A
Node classification	ACM IMDB	8,994 12,772	25,922 37,288	4 4	1,902 1,256

Base Model: GCN, GAT, GIN, SG Conv and GTN

Q1. Is meta-path prediction effective for representation learning on **heterogeneous graphs**?

Q2. Can the meta-path prediction be further **improved** by the proposed methods?

Q3. Why are the **proposed methods** effective?

Table 1: Link prediction performance (AUC) of GNNs trained by various learning strategies.

Dataset	Base GNNs	Vanilla	w/o meta-path	w/ meta-path	Ours SELAR	SELAR+Hint
	GCN	0.7963	0.7889	0.8235	0.8296	0.8121
	GAT	0.8115	0.8115	0.8263	0.8294	0.8302
Last-FM	GIN	0.8199	0.8217	0.8242	0.8361	0.8350
Last-Fivi	SGC	0.7703	0.7766	0.7718	0.7827	0.7975
	GTN	0.7836	0.7744	0.7865	0.7988	0.8067
	Avg. Gain	-	-0.0017	+0.0106	+0.0190	+0.0200
	GCN	0.7039	0.7031	0.7110	0.7182	0.7208
	GAT	0.6891	0.6968	0.7075	0.7345	0.7360
Pools Crossing	GIN	0.6979	0.7210	0.7338	0.7526	0.7513
Book-Crossing	SGC	0.6860	0.6808	0.6792	0.6902	0.6926
	GTN	0.6732	0.6758	0.6724	0.6858	0.6850
	Avg. Gain	-	+0.0055	+0.0108	+0.0263	+0.0267

Table 2: **Node classification** performance (F1-score) of GNNs trained by various learning schemes.

Dataset	Base GNNs	Vanilla	w/o meta-path	w/ meta-path	Ours SELAR	SELAR+Hint
	GCN	0.9091	0.9191	0.9104	0.9229	0.9246
	GAT	0.9161	0.9119	0.9262	0.9273	0.9278
ACM	GIN	0.9085	0.9118	0.9058	0.9092	0.9135
ACM	SGC	0.9163	0.9194	0.9223	0.9224	0.9235
	GTN	0.9181	0.9191	0.9246	0.9258	0.9236
	Avg. Gain	-	+0.0027	+0.0043	+0.0079	+0.0090
	GCN	0.5767	0.5855	0.5994	0.6083	0.6154
	GAT	0.5653	0.5488	0.5910	0.6099	0.6044
IMDB	GIN	0.5888	0.5698	0.5891	0.5931	0.5897
IMDB	SGC	0.5779	0.5924	0.5940	0.6151	0.6192
	GTN	0.5804	0.5792	0.5818	0.5994	0.6063
'	Avg. Gain	-	-0.0027	+0.0132	+0.0274	+0.0292

Q3. Why are the **proposed methods** effective?

How we know that?

Work like Focal loss: focus on hard samples(task)

(b) Adjusted Cross Entropy $V(\xi; \Theta)\ell^t(y, \hat{y})$.

Q3. Why are the **proposed methods** effective?

Q3. Why are the **proposed methods** effective?

Table 2: The average of the task-specific weighted loss on Last-FM and Book-Crossing datasets.

Meta-paths (Last-FM)	Avg.	Meta-paths (Book-Crossing)	Avg.
user-item-actor-item	7.675	user-item*	6.439
user-item*	7.608	user-item-literary.series-item-user	6.217
user-item-appearing.in.film-item	7.372	item-genre-item	6.163
user-item-instruments-item	7.049	user-item-user-item	6.126
user-item-user-item	6.878	user-item-user	6.066
user-item-artist.origin-item	6.727	item-user-item	6.025

^{*} primary task

Meta cross-validation

Table 3: Comparison between 1-fold and 3-fold as meta-data on Last-FM datasets.

		SEI	LAR	SELAR+Hint		
Model	Vanilla	1-fold	3-fold	1-fold	3-fold	
GCN	0.7963	0.7885	0.8296	0.7834	0.8121	
GAT	0.8115	0.8287	0.8294	0.8290	0.8302	
GIN	0.8199	0.8234	0.8361	0.8244	0.8350	
SGC	0.7703	0.7691	0.7827	0.7702	0.7975	
GTN	0.7836	0.7897	0.7988	0.7915	0.8067	

Algorithm 1 Self-supervised Auxiliary Learning

Input: training data for primary/auxiliary tasks D^{pr} , D^{au} , mini-batch size N_{pr} , N_{au}

Input: max iterations K, # folds for cross validation C, learning rate α , β

Output: network parameter \mathbf{w}^K for the primary task

```
 Initialize w<sup>1</sup>, Θ<sup>1</sup>

 2: for k = 1 to K do
             D_m^{pr} \leftarrow \text{MiniBatchSampler}(D^{pr}, N_{pr})
             D_m^{au} \leftarrow \text{MiniBatchSampler}(D^{au}, N_{au})
                                                                                                          for c = 1 to C do
                   D_m^{pr(train)}, D_m^{pr(meta)} \leftarrow \mathsf{CVSplit}(D_m^{pr}, c)

    Split Data for CV

                \hat{\mathbf{w}}^k(\Theta^k) \leftarrow \mathbf{w}^k - \alpha \nabla_{\mathbf{w}} \mathcal{L}^{pr+au}(\mathbf{w}^k; \Theta^k) \text{ with } D_m^{pr(train)} \cup D_m^{au}
                                                                                                                                                                ⊳ Eq. (6)
                g_c \leftarrow \nabla_{\Theta} \mathcal{L}^{pr}(\hat{\mathbf{w}}^k(\Theta^k)) \text{ with } D_m^{pr(meta)}
                                                                                                                                                                ⊳ Eq. (7)
             end for
             Update \Theta^{k+1} \leftarrow \Theta^k - \beta \sum_c^C g_c

\mathbf{w}^{k+1} = \mathbf{w}^k - \alpha \nabla_{\mathbf{w}} \mathcal{L}^{pr+au}(\mathbf{w}^k; \Theta^{k+1}) \text{ with } D_m^{pr} \cup D_m^{au}
                                                                                                                                                                ⊳ Eq. (9)
10:
                                                                                                                                                                ⊳ Eq. (8)
```

12: **end for**

Question about the result

- Hint Network really work?
- How it will be apply Hint Network to "with meta" model
- Can MetaCV be applied to any Meta?

Table 1: Link prediction performance (AUC) of GNNs trained by various learning strategies.

Dataset	Base GNNs	Vanilla	w/o meta-path	w/ meta-path	Ours SELAR	SELAR+Hint
	GCN	0.7963	0.7889	0.8235	0.8296	0.8121
	GAT	0.8115	0.8115	0.8263	0.8294	0.8302
Last-FM	GIN	0.8199	0.8217	0.8242	0.8361	0.8350
Last-rivi	SGC	0.7703	0.7766	0.7718	0.7827	0.7975
	GTN	0.7836	0.7744	0.7865	0.7988	0.8067
	Avg. Gain	-	-0.0017	+0.0106	+0.0190	+0.0200
	GCN	0.7039	0.7031	0.7110	0.7182	0.7208
	GAT	0.6891	0.6968	0.7075	0.7345	0.7360
Darle Carrier	GIN	0.6979	0.7210	0.7338	0.7526	0.7513
Book-Crossing	SGC	0.6860	0.6808	0.6792	0.6902	0.6926
	GTN	0.6732	0.6758	0.6724	0.6858	0.6850
	Avg. Gain	-	+0.0055	+0.0108	+0.0263	+0.0267

Table 2: **Node classification** performance (F1-score) of GNNs trained by various learning schemes.

Dataset	Base GNNs	Vanilla	w/o meta-path	w/ meta-path	Ours SELAR	SELAR+Hint
	GCN	0.9091	0.9191	0.9104	0.9229	0.9246
	GAT	0.9161	0.9119	0.9262	0.9273	0.9278
ACM	GIN	0.9085	0.9118	0.9058	0.9092	0.9135
ACM	SGC	0.9163	0.9194	0.9223	0.9224	0.9235
	GTN	0.9181	0.9191	0.9246	0.9258	0.9236
	Avg. Gain	-	+0.0027	+0.0043	+0.0079	+0.0090
	GCN	0.5767	0.5855	0.5994	0.6083	0.6154
	GAT	0.5653	0.5488	0.5910	0.6099	0.6044
IMDB	GIN	0.5888	0.5698	0.5891	0.5931	0.5897
IMDB	SGC	0.5779	0.5924	0.5940	0.6151	0.6192
	GTN	0.5804	0.5792	0.5818	0.5994	0.6063
	Avg. Gain	-	-0.0027	+0.0132	+0.0274	+0.0292

감사합니다