Definition. Maximum Likelihood Estimator (MLE)

For
$$X_i \stackrel{iid}{\sim} f(x|\theta)$$
, the MLE is $\hat{\theta} = \underset{\theta}{\operatorname{arg max}} f(x^n|\theta)$ for $\theta \in \Omega \subset \mathbb{R}^k$

1 Consistency of the MLE

This is a summary/direct restatement of Wald [1949] which shows that $\hat{\theta}$ is consistent. It consists of a set of assumptions, some introductory lemmas, and the proof of the main theorem.

Consider the following 8 assumptions

- 1. The distribution function $F_{\theta}(x)$ is either discrete for all θ or absolutely continuous for all θ .
- 2. Let

$$f(x|\theta, p) = \sup_{|\theta - \theta'| \le p} f(x|\theta')$$
$$\phi(x|r) = \sup_{|\theta| > r|} f(x|\theta)$$
$$f^*(x|\theta, p) = \max(1, f(x|\theta, p))$$
$$\phi^*(x|\theta, p) = \max(1, \phi(x|r))$$

Assume that for sufficiently small p and sufficiently large r the expected values

$$\int_{-\infty}^{\infty} \ln f^*(x|\theta, p) \ dF_{\theta_0}(x) \quad \text{and} \quad \int_{-\infty}^{\infty} \ln \phi^*(x|r) \ dF_{\theta_0}(x)$$

are finite, $\theta_0 = \theta_{\text{true}}$.

- 3. If $\lim_{i \to \infty} \theta_i = \theta$ then $\lim_{i \to \infty} f(x|\theta_i) = f(x|\theta)$ for all x, except a set which may depend on θ (but not $\langle \theta_i \rangle$) and has P_{θ_0} probability 0.
- 4. If $\theta_0 \neq \theta_1$, there exists x such that $F_{\theta_0}(x) \neq F_{\theta_1}(x)$
- 5. If $\lim_{i\to\infty} |\theta_i| = \infty$ then $\lim_{i\to\infty} f(x|\theta_i) = 0$ except for a set of P_{θ_0} with probability 0 (and independent of $\langle \theta_i \rangle$)
- 6. $\int_{-\infty}^{\infty} |\log f(x|\theta_0)| dF_{\theta_0}(x) < \infty$
- 7. Ω is a closed subset of \mathbb{R}^k
- 8. $f(x|\theta,p)$ is measurable in x for any θ,p (not necessary for discrete θ)

Summary Wald's hypotheses can be succinctly stated as:

- 1. For all θ there exists $p = p(\theta)$ $E_{\theta} \sup_{|\phi \theta| > p} \ln \frac{f(X|\phi)}{f(X|\theta)} < 0$ (Wald's integrability condition)
- 2. $\forall \theta, \delta > 0$ small enough, $E_{\theta} \ln \frac{f(X|\theta)}{\sup_{(\theta'-\theta)<\delta} f(X|\theta)} < \infty$
- 3. $p(x|\theta) \to 0$ as $||\theta|| \to \infty$

A more thorough explanation of these conditions and the theorem itself is available in Geyer.

Lemma 1. For any $\theta \neq \theta_0$, we have $E \log f(X|\theta) < E \log f(X|\theta_0)$, where X is a chance variable with the distribution $F(X, \theta_0)$

Proof:

Assumption 2 means that the expected values exist.

Assumption 6 means $E|\log f(X,\theta_0)| < \infty$.

If $E \log f(X, \theta) = -\infty$, the lemma obviously holds.

If $E \log f(X, \theta) > -\infty$, then $E|\log f(X, \theta)| < \infty$.

Let $u = \log f(X, \theta) - \log f(X, \theta_0)$. $E|u| < \infty$. We know that for any RV u that is non-constant with probability 1 with finite expectation, $Eu < \log Ee^u$.

Since $Ee^u \le 1$, $Eu < \log Ee^u \le 0$ and thus Eu < 0.

Definition. Kullback-Leibler Information

Note that

$$E \log f(X|\theta) - E \log f(X|\theta_0) = E \log \frac{f(X|\theta)}{f(X|\theta_0)}$$
$$\int \log \frac{f_{\theta}(x)}{f_{\theta_0}(x)} P_{\theta_0}(dx) = \lambda(\theta)$$

By Jensen's Inequality, $\lambda(\theta) \leq 0$ for all θ and $\lambda(\theta) = \lambda(\theta_0)$ iff $f_{\theta}(x) = f_{\theta_0}(x)$ for almost all x (P_{θ_0}). So λ is non-positive on Θ and has a maximum at θ_0 , where $\lambda(\theta_0) = 0$.

Lemma 2. $\lim_{n=0} E \log f(X, \theta, p) = E \log f(X, \theta)$

Proof:

$$\frac{\vec{f}(x,\theta,p)}{Let \ f^*(x,\theta,p)} = \begin{cases}
f(x,\theta,p) & f(x,\theta,p) \ge 1 \\
1 & otherwise
\end{cases} \quad and \ f^*(x,\theta) = \begin{cases}
f(x,\theta) & f(x,\theta) \ge 1 \\
1 & otherwise
\end{cases}$$

$$f^{**}(x,\theta,p) = \begin{cases}
f(x,\theta,p) & f(x,\theta,p) \le 1 \\
1 & otherwise
\end{cases} \quad and \ f^{**}(x,\theta) = \begin{cases}
f(x,\theta) & f(x,\theta) \ge 1 \\
1 & otherwise
\end{cases}$$

$$\lim_{p \to 0} \log f^*(x, \theta, p) = \log f^*(x, \theta) \text{ a.e. (by Assumption 3)}$$

$$\lim_{p\to 0} E\log f^*(X,\theta,p) = E\log f^*(X,\theta) \text{ (since } \log f^*(x,\theta,p) \text{ is incr in } p + Assumption 2)$$

$$|\log f^{**}(x,\theta,p)| \le |\log f^{**}(x,\theta)|$$

$$\lim_{p \to 0} \log f^{**}(x, \theta, p) = \log f^{**}(x, \theta) \text{ for } x \text{ a.e.}$$

 $\lim_{p\to 0} E\log f^{**}(X,\theta,p) = E\log f^{**}(X,\theta) \text{ (follows from the two previous lines)}.$

Since
$$\lim_{p\to 0} E \log f^*(X, \theta, p) = E \log f^*(X, \theta)$$
 and

$$\lim_{n\to 0} E\log f^{**}(X,\theta,p) = E\log f^{**}(X,\theta), \text{ we are done.}$$

Lemma 3.

$$\lim_{r \to \infty} E \log \phi(X|r) = -\infty$$

Proof:

Assumption 5 implies $\lim_{r\to\infty} \log \phi(X|r) = -\infty$ a.e.

Assumption 2 says $E \log \phi^*(X, r) < \infty$.

 $\log \phi(x,r) - \log \phi^*(x,r)$ and $\log \phi^*(x,r)$ are decreasing functions of r, so the lemma follows by the monotone convergence theorem.

The three lemmas posed above are necessary in order to prove the following theorems.

Theorem 4. Let ω be any closed subset of the parameter space Ω which does not contain the true parameter point θ_0 . Then

$$\lim_{n \to \infty} \frac{\sup_{\theta \in \omega} f(X_1, \theta) f(X_2, \theta) \cdots f(X_n, \theta)}{f(X_1, \theta_0) f(X_2, \theta_0) \cdots f(X_n, \theta_0)} = 0 \text{ with probability } 1$$

(more compact notation)
$$\lim_{n\to\infty} \frac{\sup_{\theta\in\omega} f(X^n|\theta)}{f(X^n|\theta_0)} = 0$$
 with probability 1

Proof:

Let r_0 be a positive number chosen such that

$$E\log\phi(X, r_0) < E\log f(X, \theta_0) \tag{1}$$

The existence of such a positive number follows from Lemma 3. Let ω_1 be the subset of ω consisting of all points θ of ω for which $|\theta| \leq r_0$. With each point θ in ω_1 we associate a positive value p_0 such that

$$E\log f(X,\theta,p_{\theta}) < E\log f(X,\theta_0) \tag{2}$$

The existence of such a p_{θ} follows from Lemma 1 and Lemma 2. Since the set ω_1 is closed and bounded (and thus compact), there exist a finite number of points $\theta_1, \dots, \theta_h \in \omega_1$ such that $S(\theta_1, p_{\theta_1}) + \dots + S(\theta_h, p_{\theta_h})$ contains ω_1 as a subset. Here $S(\theta, p)$ denotes the spehere with center θ and radius p. Clearly,

$$0 \le \sup_{\theta \in \omega} f(x_1, \theta) \cdots f(x_n, \theta) \le \sum_{i=1}^h f(x_1, \theta_i, p_{\theta_i}) \cdots f(x_n, \theta_i, p_{\theta_i}) + \phi(x_1, r_0) \cdots \phi(x_n, r_0).$$
 (3)

$$0 \le \sup_{\theta \in \omega} f(X^n | \theta) \le \sum_{i=1}^h f(X^n | \theta_i, p_{\theta_i}) + \phi(X^n | r_0) \text{ (more compact notation)}$$

The theorem is proved if we can show that

$$\lim_{n \to \infty} \frac{f(X_1, \theta_i, p_{\theta_i}) \cdots f(X_n, \theta_i, p_{\theta_i})}{f(X_1, \theta_0) \cdots f(X_n, \theta_0)} = 0 \quad \text{with probability } 1, (i = 1, ..., h)$$

$$(4)$$

and

$$\lim_{n \to \infty} \frac{\phi(X_1, r_0) \cdots \phi(X_n, r_0)}{f(X_1, \theta_0) \cdots f(X_n, \theta_0)} = 0 \quad \text{with probability 1.}$$
 (5)

(cont'd)

That is, we divide the whole expression in Equation (3) by $f(X^n|\theta_0)$ and consider each term of the sum separately.

Using Equation (1), Equation (2), and the strong LLN, we can rewrite Equation (4) and Equation (5) as

$$\lim_{n \to \infty} \sum_{\alpha=1}^{n} \left[\log f(X_{\alpha}, \theta_{i}, p_{\theta_{i}}) - \log f(X_{\alpha}, \theta_{0}) \right] = -\infty \quad \text{with probability 1, } (i = 1, ..., h)$$

$$\lim_{n \to \infty} \left[\log \phi(X_{\alpha}, r_{\theta}) - \log f(X_{\alpha}, \theta_{0}) \right] = -\infty \quad \text{with probability 1.}$$

This essentially shows that the conditions imply that the log likelihood

$$l_n(\theta) = \frac{1}{n} \sum_{i=1}^{n} \log \frac{f_{\theta}(X_i)}{f_{\theta_0}(X_i)}$$

converges to λ (the KL Information) uniformly from above:

$$\lim_{n\to\infty} \sup_{\theta\in\omega} l_n(\theta) \le \sup_{\theta\in\omega} \lambda(\theta) \text{ almost surely}$$

However, the MLE doesn't always exist. We may be interested in what happens when we have an approximate MLE (AMLE) derived from a sequence of estimators $\{\overline{\theta}_n\}$. If the MLE exists, then this sequence should converge to the MLE, but if it doesn't exist, what does the AMLE converge to?

Theorem 5 (Consistency of the approximate MLE). Let $\overline{\theta}_n(x_1,...,x_n)$ be a function of the observations $x_1,...,x_n$ such that

$$\frac{f(x_1, \overline{\theta}_n) \cdots f(x_n, \overline{\theta}_n)}{f(x_1, \theta_0) \cdots f(x_n, \theta_0)} \ge c > 0 \tag{6}$$

for all n and $x_1, ..., x_n$. Then

$$\lim_{n\to\infty} \overline{\theta}_n = \theta_0 \text{ with probability } 1.$$

Since a maximum likelihood estimate $\hat{\theta}_n(x_1, \dots, x_n)$, if it exists, obviously satisfies Equation (6) with c = 1, this establishes the consistency of $\hat{\theta}_n(x_1, \dots, x_n)$ as an estimate of θ .

Proof:

It is sufficient to prove that for any $\epsilon > 0$ the probability is one that all limit points $\overline{\theta}$ of the sequence $\{\overline{\theta}_n\}$ satisfy the inequality $|\overline{\theta} - \theta_0| \le \epsilon$. The event that there exists a limit point $\overline{\theta}$ of the sequence $\{\overline{\theta}_n\}$ such that $|\overline{\theta} - \theta_0| > \epsilon$ implies that

$$\sup_{|\theta-\theta_0|\geq \epsilon} f(x_1,\theta)\cdots f(x_n,\theta) \geq f(x_1,\overline{\theta}_n)\cdots f(x_n,\overline{\theta}_n) \text{ for infinitely many } n.$$

But then

$$\frac{\sup_{|\theta-\theta_0|\geq \epsilon} f(x_1,\theta)\cdots f(x_n,\theta)}{f(x_1,\overline{\theta}_n)\cdots f(x_n,\overline{\theta}_n)} \geq c > 0 \text{ for infinitely many } n.$$

Since, according to Theorem 1, this is an event with probability zero, we have shown that the probability is one that all limit points $\overline{\theta}$ of $\{\overline{\theta}_n\}$ satisfy the inequality $|\overline{\theta} - \theta_0| \le \epsilon$. This completes the proof.

This proves strong convergence, which is stronger than weak convergence (in the sense that consistency is a weak property - a property of distribution functions - and not a strong property - a property of infinite sequences of observed sums).

This proof was then extended by Wolfowitz [1949], to use only the weak law of large numbers. Wald's proof uses the strong LLN, but the same result (consistency) holds with the weak LLN, which is applicable to a larger class of variables.

Theorem 6 (Wolfowitz's Extension). Let η and ϵ be given, arbitrarily small, positive numbers. Let $S(\theta_0, \eta)$ be the open sphere with center θ_0 and radius η , and let $\Omega(\eta) = \Omega - S(\theta_0, \eta)$. Let Wald's assumptions 1-8 hold.

There exists a number $h(\eta)$, 0 < h < 1, and another positive number $N(\eta, \epsilon)$ such that, for any $n > N(\eta, \epsilon)$,

$$P_0\left\{\frac{\sup_{\theta\in\Omega(\eta)}\prod_{i=1}^n f(X_i,\theta)}{\prod_{i=1}^N f(X_i,\theta_0)} > h^n\right\} < \epsilon$$

where P_0 is the probability of the relation in braces according to $f(x,\theta_0)$.

See Wolfowitz [1949] for the proof.

2 Cramèr: Asymptotic properties of MLEs

This section is based heavily on Cramér [1946].

Definition. Likelihood function A sample of n values from a variable has likelihood

$$L(x_1, ..., x_n, \theta) = \begin{cases} f(x_1, \theta) \cdots f(x_n, \theta) & \text{if } x \text{ is continuous} \\ p(x_1, \theta) \cdots p(x_n, \theta) & \text{if } x \text{ is discrete} \end{cases}$$

Definition. Maximum likelihood estimation When $X^n = (x_1, ..., x_n)$ are observed, we obtain the maximum likelihood estimate $\hat{\theta} = \arg \max_{\theta} f(X^n | \theta)$ as the solution to the likelihood equation

$$\frac{\partial \log L}{\partial \theta} = 0$$

where θ is conditioned on the sample values.

When an efficient estimate $\hat{\theta}$ of θ exists, the likelihood equation will have a unique solution equal to $\hat{\theta}$:

$$\frac{\partial \log L}{\partial \theta} = \sum_{i=1}^{n} \frac{\partial \log f(x_i | \theta)}{\partial \theta} = \frac{\partial \log g}{\partial \theta} = k(\hat{\theta} - \theta).$$

When a sufficient estimate $\hat{\theta}$ of θ exists, the likelihood equation reduces to

$$\frac{\partial \log L}{\partial \theta} = \frac{\partial \log g(\hat{\theta}, \theta)}{\partial \theta} = 0$$

Definition. Fisher Information

The Fisher information is the variance of the score:

$$0 \le \mathcal{I}(\theta) = E_{\theta_0} \left[\left(\frac{\partial}{\partial \theta} \log f(X, \theta) \right)^2 \bigg|_{\theta = \theta_0} \right] = \int_{\mathbb{R}} \left(\frac{\partial}{\partial \theta} \log f(x, \theta) \right)^2 f(x, \theta) dx \bigg|_{\theta = \theta_0}$$

If $\log f(x,\theta)$ is twice differentiable with respect to θ , and under certain regularity conditions, the FI may also be written as

$$\mathcal{I}(\theta) = -E_{\theta_0} \left[\left. \frac{\partial^2}{\partial \theta^2} \log f(X, \theta) \right|_{\theta = \theta_0} \right]$$

Theorem 7. Asymptotic Normality of the MLE

Let X_1^n be iid f_{θ} where $\Omega \subset \mathbb{R}$ is an open interval, all f_{θ} have common support, $0 < \mathcal{I}(\theta) < \infty$, $\int f(x|\theta)dx$ is twice differentiable under the integral, and

$$E \sup_{\theta \in B(\theta_0, \epsilon)} \left| \underbrace{\frac{\partial^3}{\partial \theta^3} \log f(x|\theta)}_{exists} \right| < \infty.$$

Suppose $\hat{\theta}_n$ is a consistent sequence of roots of the likelihood equation. Then

$$\sqrt{n}\left(\hat{\theta}_n - \theta\right) \stackrel{d}{\to} N\left(0, \mathcal{I}(\theta)^{-1}\right)$$

Proof:

Write $L(\theta|X^n) = \log f(X^n|\theta)$ (we regard X^n as fixed)

Taylor expansion gives

$$\underbrace{0 = L'(\hat{\theta}_n) = L'(\theta_0) + (\hat{\theta} - \theta_0)L''(\theta_0) + \frac{1}{2}(\hat{\theta} - \theta_0)^2L'''(\theta^*)}_{\hat{\theta} \text{ is MLE}} \theta_n^* \in \left[\theta_0, \hat{\theta}_n\right]$$

$$\sqrt{n}(\hat{\theta} - \theta_0) = \underbrace{\frac{\frac{1}{\sqrt{n}}L'(\theta_0)}{-\frac{1}{n}L''(\theta_0)} - \underbrace{\frac{1}{2n}(\hat{\theta} - \theta_0)L'''(\theta^*)}_{*2}}_{*2} := H_n$$

(cont'd)

We examine each labeled component separately:

*1:
$$\frac{1}{\sqrt{n}}L'(\theta_0) = \sqrt{n} \left(\frac{1}{n} \sum_{i=1}^n \frac{f'(X_i|\theta_0)}{f(X_i|\theta_0)} - \underbrace{E\left[\frac{f'(X_1|\theta_0)}{f(X_1|\theta_0)}\right]}_{=0} \right) \xrightarrow[(by \ CLT)]{d} N(0, \mathcal{I}(\theta_0))$$

*2:
$$-\frac{1}{n}L''(\theta_0) \underbrace{\stackrel{p}{\longrightarrow}}_{(byLLN)} \mathcal{I}(\theta_0)$$

*3:
$$(\hat{\theta} - \theta_0) \cdot \frac{1}{2} \cdot \frac{1}{n} |L'''(\theta^*)|$$

$$\frac{1}{n} |L'''(\theta^*)| \le \frac{1}{n} \sum_{i=1}^n \sup_{\theta \in B(\theta_0, \epsilon)} \left| \frac{\partial^3}{\partial \theta^3} \log f(X_i | \theta) \right| \le E \sup_{\theta \in B(\theta_0, \epsilon)} \left| \frac{\partial^3}{\partial \theta^3} \right| < \infty$$

$$But_{\theta} (\hat{\theta} - \theta_0) \xrightarrow{p} 0$$

$$So_{\theta} \frac{1}{2} \cdot \frac{1}{n} |L'''(\theta^*)| \cdot (\hat{\theta} - \theta_0) \to 0.$$

Combining the above results and using Slutsky's theorem, we have

$$H_n \stackrel{d}{\to} -\frac{1}{\mathcal{I}(\theta_0)} N(0, \mathcal{I}(\theta_0)) \stackrel{d}{=} N\left(0, \frac{1}{\mathcal{I}(\theta_0)}\right) \ under \ \theta_0$$

Definition. Expected and Observed Fisher Information

$$\mathcal{I}_1(\hat{\theta}_n)$$
 is the "expected Fisher information" $-\frac{1}{n}L''(\hat{\theta}_n)$ is the "observed Fisher Information"

Theorem 8. Asymtotic Efficiency of MLE Under the assumptions of Theorem 7, under θ_0 ,

$$(\hat{\theta}_n - \theta_0)\sqrt{-L''(\hat{\theta}_n)} \stackrel{d}{\to} N(0, 1)$$

Note:

For a sequence of estimators $\{\hat{\theta}_n^*\}$ with $\sqrt{n}(\hat{\theta}_n^* - \theta_0) \stackrel{d}{\to} N(0, V(\theta_0))$, under θ_0 ,

$$\frac{\frac{1}{\mathcal{I}_1(\theta_0)}}{V(\theta_0)}$$
 is called the **asymptotic efficiency** of $\{\hat{\theta}_n^*\}$

It is possible (even in regular problems) to find some θ_0 for which the asymptotic efficiency is larger than one (super-efficiency). There are theorems that say that we cannot have too many super-efficiency points.

3 Asymptotic Behavior of Posterior Distributions

This section is from Walker [1969]. Consider a prior $\pi(\theta)$ and a parametric family $f(\cdot|\theta)$. Impose the following conditions:

- A1. $\Omega \subset \mathbb{R}$ is a closed set
- A2. $\sup f(\cdot|\theta)$ is independent of θ
- A3. if $\theta_1 \neq \theta_2$ then $\mu\{x: f(x|\theta_1) \neq f(x|\theta_2)\} > 0$ (μ is a σ -finite measure)
- A4. if $\delta > 0$ is sufficiently small, $E_{\theta_0} \sup_{\theta: |\theta \theta'| < \delta} |\log f(x|\theta)| \to 0 \text{ as } \delta \to 0$
- A5. if Ω not bounded, then for any $\theta_0 \in \Theta$ and sufficiently large Δ ,

$$\log f(x|\theta) - \log f(x|\theta_0) < K_{\Delta}(x,\theta)$$
 whenever $|\theta| > \Delta$,

where
$$\lim_{\Delta \to \infty} \int K_{\Delta}(x|\theta_0) f(x|\theta_0) d\mu < 0$$
 (It is allowable for the limit to be $-\infty$ here)

These conditions are introduced to ensure that when θ_0 is the true value of θ , $L_n(\theta) - L_n(\theta_0)$ is sufficiently small, with probability converging to 1 as $n \to \infty$. for all values of θ not near to θ_0 . In the next conditions, let θ_0 be an interior point of Θ

B1. $\log f(x|\theta)$ is twice differentiable with respect to θ in some neighborhood of θ_0

B2.
$$\mathcal{I}(\theta_0) = \int f(x|\theta_0) \left(\frac{\partial \log f(x|\theta_0)}{\partial \theta_0}\right)^2 d\mu$$
. Then $0 < \mathcal{I}(\theta_0) < \infty$.

B3.
$$\int \frac{\partial f(x|\theta_0)}{\partial \theta_0} d\mu = \int \frac{\partial^2 f(x|\theta_0)}{\partial \theta_0^2} d\mu = 0$$

B4. If $|\theta - \theta_0| < \delta$, where δ is sufficiently small, then

$$\left| \frac{\partial^2 \log f(x|\theta)}{\partial \theta^2} - \frac{\partial^2 f(x|\theta_0)}{\partial \theta_0^2} \right| < M_{\delta}(x,\theta_0) \text{ where } \lim_{\delta \to 0} \int M_{\delta}(x,\theta_0) f(x|\theta_0) d\mu = 0$$

This is equivalent to
$$E_{\theta_0} \sup_{\theta: |\theta - \theta_0| < \delta} \left| \frac{\partial^2}{\partial \theta^2} \log f(x|\theta) \right| < \infty.$$

These conditions make $L_n''(\cdot)$ behave smoothly for values of θ near θ_0 ; asymptotic normality of $\hat{\theta}_n$ is used only to show that $\hat{\theta}_n - \theta_0 = O_p(\sqrt{n})$. These conditions also ensure that when $\theta = \theta_0$, $\sqrt{n}(\hat{\theta}_n - \theta_0) \stackrel{d}{\to} N(0, 1/\mathcal{I}(\theta_0))$.

C1. π is continuous at $\theta = \theta_0$ and $\pi(\theta_0) > 0$

Denote the MLE by $\hat{\theta}_n$, $\hat{\theta}$

Theorem 9. Asymptotic Normality of the Posterior Distribution

Assume the regularity conditions above. Suppose the X_i s are iid $f(\theta_i)$. Let $\sigma_n = \left(-L''_n(\hat{\theta}_n)\right)^{-1/2}$. Then for all a, b,

$$\int_{\hat{\theta}_n + b\sigma_n}^{\hat{\theta}_n + a\sigma_n} \pi_n(\theta | X^n) d\theta \xrightarrow{p} \frac{1}{\sqrt{2\pi}} \int_b^a \exp\left(-\frac{1}{2}y^2\right) dy$$

This theorem arises due to several preliminary results:

Lemma 10. Let $N_0(\delta) = \{\theta : |\theta - \theta_0| < \delta\} = B(\theta_0, \delta) \subset \Omega$. Then there exists a positive number $k(\delta)$ that depends on δ such that

$$\lim_{n \to \infty} P \left[\sup_{\theta \in \Theta - N_0(\delta)} n^{-1} \{ L_n(\theta) - L_n(\theta_0) < -k(\delta) \right] = 1$$
 (7)

This obviously implies that $\hat{\theta}_n$ is weakly consistent, that is, $p \lim_{n \to \infty} \hat{\theta}_n = \theta_0$

Lemma 11.

$$\frac{1}{n}L''(\hat{\theta}_n) \xrightarrow{p} -\mathcal{I}(\theta_0) \tag{8}$$

Lemma 12. $L_n(\theta_0) - L_n(\hat{\theta}) = O_p(1)$

Corollary 13. $E(\Theta|X^n) \stackrel{p}{\to} \theta_0 \text{ provided } \left| \int \theta \pi(\theta) d\theta \right| < \infty$

Theorem 14. Assume that $\tilde{\theta} = E(\theta|X^n)$ is the Bayes estimator under squared error loss with prior density ω and that the conditions of Walker's theorem hold. Then $\sqrt{n}(\tilde{\theta} - \theta_0) \stackrel{d}{\to} N(0, \mathcal{I}(\theta_0)^{-1})$, that is, $\tilde{\theta}$ is consistent and asymptotically efficient.

References

- H. Cramér. *Mathematical Methods of Statistics*. Princeton University Press, 1946. ISBN 978-0-691-08004-8. Google-Books-ID: _db1jwEACAAJ.
- C. J. Geyer. The Wald Consistency Theorem. URL https://www.stat.umn.edu/geyer/8112/ notes/wald.pdf.
- A. Wald. Note on the Consistency of the Maximum Likelihood Estimate. The Annals of Mathematical Statistics, 20(4):595–601, 1949. ISSN 0003-4851. URL https://www.jstor.org/stable/2236315. Publisher: Institute of Mathematical Statistics.
- A. M. Walker. On the Asymptotic Behaviour of Posterior Distributions. Journal of the Royal Statistical Society: Series B (Methodological), 31(1):80–88, 1969. ISSN 2517-6161. doi: 10.1111/j.2517-6161.1969.tb00767.x. URL https://onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1969.tb00767.x. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1969.tb00767.x.
- J. Wolfowitz. On Wald's Proof of the Consistency of the Maximum Likelihood Estimate. *The Annals of Mathematical Statistics*, 20(4):601–602, 1949. ISSN 0003-4851. doi: 10.1214/aoms/1177729953. URL https://www.jstor.org/stable/2236316. Publisher: Institute of Mathematical Statistics.