Signal transduction

- 1. Nuclear receptors
- 2. G protein-coupled receptors
- 3. Receptor Tyrosine kinases (RTK)
- 4. Receptors with associated kinases

Receptor definition (biochemical)

Biomolecule or Biomolecule complex,

- Signal molecule binds,
- Structural changes
- Activation of one or more signal transduction cascades

Receptor ligands (biochemical)

G protein-coupled receptors

G protein-coupled receptors

Nobel price of chemistry 2012 Lefkowitz/Kobilka

Phylogeny of GPCR

GPCR-Classification

G lutamate (Family C)

R hodopsin (Family A)

A dhesion (Family B)

F rizzled/Taste2

 \mathbf{S} ecretin (Family B)

GPCR Gene Repertoire

	Agonist	Orphan	ψ
Family A (Rhodopsin)	~200	~80	30
Adhesion/Family B (Secretin-R.)	25	35	1
Family C (Glutamate R.)	12	7	-
Frizzled	11	-	-
~385 intact Odorant		~570	

Ligand binding at GPCR – internal Agonists

Structural Changes after Ligand binding

ß/γ-Subunits of heterotrimeric G Proteins

- Important for Interaction of the G protein with the GPCR
- ullet Inhibition of the spontaneous dissoziation of the $\alpha-$ subunit-bound GDP
- Activation or inhibition of adenylyl cyclase isoforms
- Regulation of ion channels
- Regulation of signal switch-off by G protein-coupled receptor kinases (GRKs)

G-protein cycle

G-protein cycle

Nobel Prize in Physiology or Medicine, 1994

ALFRED G. GILMAN

MARTIN RODBELL

"for their discovery of G-proteins and the role of these proteins in signal transduction in cells"

Adenylyl cyclase Activation

Adenylyl cyclase activation

Adenosine 5'-triphosphate

Adenylyl cyclase Activation

cAMP – Protein kinase A – Activation

Figure 15-32. Molecular Biology of the Cell, 4th Edition.

PKA - Function

- phosphorylates serine residues
- activates glycogen degradation activates phosphorylase kinase
- inhibits glycogen synthesis
 inactivates glycogen synthase
 inactivates phosphoprotein phosphatase 1
- increases Gluconeogenesis

 activates protein biosynthesis
 of G6Pase, PEPCK, Pyr-Carboxylase, etc.
- inhibits Glycolysis converts Fructose-6-P-2-Kinase to Fructose-2,6-BP-Phosphatase

G-protein cycle and Cholera toxin

G-protein cycle and Cholera toxin

G-protein cycle and Cholera toxin

Interplay of Signal cascades

Toxins acting on G-protein Signaling

Activation of PKC

Activation of PKC

- DAG: Membrane binding + Activation
- Ca++: Activation
 (only conventional PKCs (α, β, γ);
 new PKCs (only DAG)
 atypic PKCs (Serine phosphorylation)

conventional:

- Phosphorylates Serine-/Threonine residues
- Regulation of growth and differentiation
- Rearrangement of the Actin cytoskeleton
- cancerogenesis

"Second" messenger

Figure 14-3
Biochemistry, Sixth Edition
© 2007 W. H. Freeman and Company

G12/13 Protein - Rho-GEF Signaling pathway

G Protein-independent GPCR Signal transduction

Arrestin-1 = Retina

Arrestin-2 = classical GPCR

Arrestin-3 = classical GPCR

Arrestin-4 = Retina

Ligand specificity of odorant receptors

					<i>[[]</i>								<i> </i>	M	
Odorant receptors	1	2	3	4	5	6	7	8	9			12		14	
Odorants															Description
А ~~~~он					0										rancid, sour, goat-like
В ~~~он						(sweet, herbal, woody
С ~~~~°он	0			0	0		0			O	O				rancid, sour, sweaty
D ~~~~oH		0			0	O									violet, sweet, woody
E ~~~~°				0	0			(0	O	0			rancid, sour, repulsive
F ~~~~oH				0	0					O					sweet, orange, rose
G ~~~~ ⁰ он H ~~~~ он				0	0		0	(0		0		•	waxy, cheese, nut-like
Н ~~~~он				0	0					0		0			fresh, rose, oily floral

Accessory Proteins of odorant receptors

Saito et al., Cell. 2004 Nov 24;119(5):679-91.

10< 3-10

0.3-1

0.1-0.3

GPCR – Signal Inactivation

Bourgeonal – Sperm Chemotaxis Odorant receptor

