Portfolio assignment 9

25 min: Perform a bivariate analysis on the columns with numerical data in the penguins dataset.

- Use corr() on the DataFrame to calculate all the correlations. Use the code example above to show the correlation table with colors.
- · Look at the corrrelations. Do they match your expectations?
- · Show a scatter plot for
 - The strongest positive correlation
 - The strongest negative correlation
 - The weakest correlation

In [1]:

```
import seaborn as sns
```

In [2]:

```
penguins = sns.load_dataset("penguins")
```

In [3]:

```
exampleDataCorrelations = penguins.corr()
exampleDataCorrelations.style.background_gradient(cmap='coolwarm', axis=None).set_precision
```

C:\Users\dekei\AppData\Local\Temp/ipykernel_14348/3557949741.py:2: FutureWar
ning: this method is deprecated in favour of `Styler.format(precision=..)`
 exampleDataCorrelations.style.background_gradient(cmap='coolwarm', axis=No
ne).set_precision(2)

Out[3]:

	bill_length_mm	bill_depth_mm	flipper_length_mm	body_mass_g
bill_length_mm	1.00	-0.24	0.66	0.60
bill_depth_mm	-0.24	1.00	-0.58	-0.47
flipper_length_mm	0.66	-0.58	1.00	0.87
body_mass_g	0.60	-0.47	0.87	1.00

Strongest positive correlation

In [4]:

```
penguins.plot(kind='scatter', x='flipper_length_mm', y='body_mass_g')
```

Out[4]:

<AxesSubplot:xlabel='flipper_length_mm', ylabel='body_mass_g'>

In [5]:

```
penguins.plot(kind='scatter', x='bill_depth_mm', y='flipper_length_mm')
```

Out[5]:

<AxesSubplot:xlabel='bill_depth_mm', ylabel='flipper_length_mm'>

In [6]:

```
penguins.plot(kind='scatter', x='bill_length_mm', y='bill_depth_mm')
```

Out[6]:

<AxesSubplot:xlabel='bill_length_mm', ylabel='bill_depth_mm'>

