EE150: Signals and Systems, Spring 2022 $\underset{(\mathrm{Due\ Thursday,\ Mar.\ 17\ at\ 11:59pm\ (CST))}{Homework\ 2}$

1. [12 points] Determine the continuous-time convolution of x(t) and h(t) for the following three cases:

Figure 1.1: (a)

Figure 1.2: (b)

Figure 1.3: (c)

- 2. [12 points] Consider a discrete-time, linear, shift-invariant system that has unit sample response h[n] and input x[n].
 - (a) Sketch the response of this system if $x[n] = \delta[n n_0]$ for some $n_0 > 0$, and $h[n] = (\frac{1}{2})^n u[n]$.
 - (b) Evaluate and sketch the output of the system if $h[n] = (\frac{1}{2})^n u[n]$ and x[n] = u[n].
 - (c) Consider reversing the role of the input and system response in part (b). That is,

$$h[n] = u[n],$$

$$x[n] = (\frac{1}{2})^n u[n]$$

Evaluate the system output y[n] and sketch.

3. [5 points] Compute the convolution y[n] = x[n] * h[n] when

$$x[n] = \alpha^n u[n], 0 < \alpha < 1,$$

$$h[n] = \beta^n u[n], 0 < \beta < 1,$$

Assume that α and β are not equal.

- 4. [16 points] Determine if each of the following statements is true in general. Provide proofs for those that you think are true and counterexamples for those that you think are false.
 - (a) $x[n] * \{h[n]g[n]\} = \{x[n] * h[n]\}g[n]$
 - (b) If y(t) = x(t) * h(t), then y(2t) = 2x(2t) * h(2t).
 - (c) If x(t) and h(t) are odd signals, then y(t) = x(t) * h(t) is an even signal.
 - (d) If y(t) = x(t) * h(t), then $Ev\{y(t)\} = x(t) * Ev\{h(t)\} + Ev\{x(t)\} * h(t)$.

(Hint: It's taught that for an arbitrary signal x(t), we can have x(t) = g(t) + h(t) where g(t) is an odd signal and h(t) is an even signal, then $Ev\{x(t)\} = h(t)$.)

- 5. [9 points] Let x(t) = u(t-3) u(t-5) and $h(t) = e^{-3t}u(t)$
 - (a) Compute y(t) = x(t) * h(t).
 - (b) Compute $g(t) = \frac{dx(t)}{dt} * h(t)$. (c) How is g(t) related to y(t)?

6. [10 points] Consider the cascade interconnection of three causal LTI systems, illustrated in Figure 6.1. The impulse response $h_2[n]$ is

$$h_2[n] = u[n] - u[n-2],$$

and the overall impulse response is as shown in Figure 6.2.

Figure 6.1: LTI systems

Figure 6.2: overall impulse response

- (a) Find the impulse response $h_1[n]$.
- (b) Find the response of the overall system to the input

$$x[n] = \delta[n] - \delta[n-1].$$

7. [16 points] Consider the evaluation of

$$y[n] = x_1[n] * x_2[n] * x_3[n],$$

where $x_1[n] = (0.5)^n u[n]$, $x_2[n] = u[n+3]$, and $x_3[n] = \delta[n] - \delta[n-1]$.

- (a) Evaluate the convolution $x_1[n] * x_2[n]$.
- (b) Convolve the result of part (a) with $x_3[n]$ in order to evaluate y[n].
- (c) Evaluate the convolution $x_2[n] * x_3[n]$.
- (d) Convolve the result of part (c) with $x_1[n]$ in order to evaluate y[n].

8. [10 points]

(a) Consider an LTI system with input and output related through the equation

$$y(t) = \int_{-\infty}^{t} e^{-(t-\tau)} x(\tau - 2) d\tau.$$

What is the impulse response h(t) for this system?

(b) Determine the response of the system when the input x(t) is as shown in Figure 8.

Figure 8: The Figure of x(t)

9. [10 points] Suppose that the signal

$$x(t) = u(t + 0.5) - u(t - 0.5)$$

is convolved with the signal

$$h(t) = e^{i\omega_0 t}.$$

(a) Determine a value of w_0 which ensures that

$$y(0) = 0,$$

where
$$y(t) = x(t) * h(t)$$
.

(b) Is your answer to the previous part unique?