CSC 251 -Operating SystemsOutlines

General Information

Course Number	CSC-251-Operating Systems						
Credit Hours	4 (Theory Credit Hour = 3, Lab Credit Hour =0)						
Prerequisite	None						
Course Coordinator	Nooruddin Noonari						

Course Objectives

This course is an introductory course for junior or senior undergraduate level or at the first year graduate level. Operating systems are an essential part of any computer system. Similarly a course on an operating system is an essential part of any computer science education. This field is undergoing change and breathtakingly rapid rate, as computers are now prevalent in virtually every application, from games for children through the most sophisticated planning tools for governments and multinational firms. Yet the fundamental concepts remain fairly clear, and it is on these we base this course. This course provides the clear description of the concepts that underlie operating systems. As prerequisite, we assume that the students are familiar with basic data structures, computer organization, and a High level language such as C. The main objectives of the course are to give students the basic concepts of an operating system, types of an operating system, computer system structures, process management, CPU Scheduling, Process synchronization, Deadlock, Memory management and Virtual memory management. Furthermore the students will learn the operating system design algorithms often based on those used in existing commercial operating systems. Our aim is to present these concepts and algorithms in general setting that are not tied to one particular operating systems. We present the large number of examples that pertain to the most popular operating systems, including Sun Microsystems, Solaris2, LINUX, MS DOS, Windows NT, Windows 2000 and Apple Macintosh operating system.

Catal	log	D	escr	'n	tion	ı
Cutu	.05	_		-1		•

CSC-251

Course Content

SessionNo.	WeekNo.	Topics	SuggestedReadings (Chapters)
01-03	1	 What Operating Systems Do Computer-System Organization Computer-System Architecture Operating-System Structure Operating-System Operations Process Management 	Ch1

1			
04-06	2	 Memory Management Storage Management Protection and Security Kernel Data Structures Computing Environments Open-Source Operating Systems 	Ch1
07-09	3	 Operating-System Services User and Operating-System Interface System Calls Types of System Calls 	Ch2
10-12	4	 System Programs Operating-System Design and Implementation Operating-System Structure 	Ch2, Ch3
13-15	5	 Process Concept Process Scheduling Operations on Processes Inter process Communication Examples of IPC Systems 	Ch3
		First MidExams	
16-18	7	Overview Multicore Programming Multithreading Models Thread Libraries Implicit Threading Threading Issues	Ch4
19-21	8	 Basic Concepts Scheduling Criteria Scheduling Algorithms Thread Scheduling 	Ch5
22-24	9	 Multiple-Processor Scheduling Real-Time CPU Scheduling Operating-System Examples The Critical-Section Problem Synchronization Hardware Mutex Locks 	Ch5, Ch6

25-27	10	 Semaphores Classic Problems of Synchronization Synchronization Examples 	Ch6					
28-30	11	 System Model Deadlock Characterization Methods for Handling Deadlocks 	Ch7					
		Second Mid Exams						
31-35	13	 Deadlock Prevention Deadlock Avoidance Deadlock Detection Recovery from Deadlock 	Ch7					
	14	 Background Swapping Contiguous Memory Allocation Segmentation Paging 	Ch8					
35,40	15	 Background Demand Paging Copy-on-Write Page Replacement Allocation of Frames Thrashing 	Ch9					
Onwards	16	 File Concept Access Methods Directory and Disk Structure File-System Mounting File Sharing Protection 	Ch10					
	FinalExams							

Text Book

OPERATING SYSTEM CONCEPTS 10th Edition by Abraham Silberschatz, Peter Baer Galvin, Greg Gagne

Reference Material

• Operating System design , 8th Edition by William Stallings

Course Learning Outcomes

	Course Learning Outcomes (CLO)
1	To describe basic concepts of Operating System
2	To understand fundamental operating system abstractions such as processes, threads, files, semaphores, IPC abstractions, shared memory regions, etc.
3	To demonstrate concept of operating system through project deliverable

CLO-SO Map

	SO IDs										
CLO ID	a	b	C	d	e	f	g	h	i	j	k
CLO 1	1	0	0	0	0	0	0	0	0	0	0
CLO 2	0	1	0	0	0	0	0	0	0	0	0
CLO 3	0	0	0	1	1	0	0	0	0	0	0