

Image Formation I Chapter 2 (R. Szelisky)

Guido Gerig CS 6320 Spring 2012

Acknowledgements:

- Slides used from Prof. Trevor Darrell, (http://www.eecs.berkeley.edu/~trevor/CS280.html)
- Some slides modified from Marc Pollefeys, UNC Chapel Hill. Other slides and illustrations from J. Ponce, addendum to course book.

GEOMETRIC CAMERA MODELS

- The Intrinsic Parameters of a Camera
- The Extrinsic Parameters of a Camera
- The General Form of the Perspective Projection Equat
- Line Geometry

Reading: Chapter 2.

Camera model

Relation between pixels and rays in space

Camera obscura + lens

The **camera obscura** (Latin for 'dark room') is an optical device that projects an <u>image</u> of its surroundings on a screen (source Wikipedia).

Physical parameters of image formation

Geometric

- Type of projection
- Camera pose

Photometric

- Type, direction, intensity of light reaching sensor
- Surfaces' reflectance properties

Optical

- Sensor's lens type
- focal length, field of view, aperture

Sensor

sampling, etc.

Figure 2.1 A few components of the image formation process: (a) perspective projection; (b) light scattering when hitting a surface; (c) lens optics; (d) Bayer color filter array.

Physical parameters of image formation

- Geometric
 - Type of projection
 - Camera pose
- Optical
 - Sensor's lens type
 - focal length, field of view, aperture
- Photometric
 - Type, direction, intensity of light reaching sensor
 - Surfaces' reflectance properties
- Sensor
 - sampling, etc.

Perspective and art

- Use of correct perspective projection indicated in 1st century B.C. frescoes
- Skill resurfaces in Renaissance: artists develop systematic methods to determine perspective projection (around 1480-1515)

Raphael

Durer, 1525

Perspective projection equations

3d world mapped to 2d projection in image plane

Affine projection models: Weak perspective projection

$$\begin{cases} x' = -mx \\ y' = -my \end{cases} \text{ where } m = \frac{f'}{z_0} \text{ is the magnification.}$$

When the scene relief is small compared to its distance from the Camera, m can be taken constant: weak perspective projection.

Affine projection models: Orthographic projection

$$\begin{cases} x' = x \\ y' = y \end{cases}$$

When the camera is at a (roughly constant) distance from the scene, take m=1.

Homogeneous coordinates

Is this a linear transformation?

no—division by z is nonlinear

Trick: add one more coordinate:

$$(x,y) \Rightarrow \left[egin{array}{c} x \\ y \\ 1 \end{array} \right]$$

homogeneous image coordinates

$$(x,y) \Rightarrow \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
 $(x,y,z) \Rightarrow \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$

homogeneous scene coordinates

Converting from homogeneous coordinates

$$\begin{bmatrix} x \\ y \\ w \end{bmatrix} \Rightarrow (x/w, y/w) \qquad \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} \Rightarrow (x/w, y/w, z/w)$$

Perspective Projection Matrix

Projection is a matrix multiplication using homogeneous coordinates:

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1/f' & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ z/f' \end{bmatrix} \Rightarrow (f'\frac{x}{z}, f'\frac{y}{z})$$
divide by the third coordinate to convert back to non-homogeneous coordinates

Complete mapping from world points to image pixel positions?

Points at infinity, vanishing points

Points from infinity represent rays into camera which are close to the optical axis.

Image source: wikipedia

Perspective projection & calibration

- Perspective equations so far in terms of *camera's* reference frame....
- Camera's intrinsic and extrinsic parameters needed to calibrate geometry.

The CCD camera

CCD camera

Perspective projection & calibration

Extrinsic:

Camera frame ←→World frame

Intrinsic:

Image coordinates relative to camera ←→ Pixel coordinates

> 3D point (4x1)

Intrinsic parameters: from idealized world coordinates to pixel values

Perspective projection

$$u = f \frac{x}{z}$$

$$v = f \frac{y}{z}$$

But "pixels" are in some arbitrary spatial units

$$u = \alpha \frac{x}{z}$$
$$v = \alpha \frac{y}{z}$$

Maybe pixels are not square

$$u = \alpha \frac{x}{z}$$

$$v = \beta \frac{y}{z}$$

We don't know the origin of our camera pixel coordinates

$$u = \alpha \frac{x}{z} + u_0$$

$$v = \beta \frac{y}{z} + v_0$$

May be skew between camera pixel axes

$$u = \alpha \frac{x}{z} - \alpha \cot(\theta) \frac{y}{z} + u_0$$

$$v = \frac{\beta}{\sin(\theta)} \frac{y}{z} + v_0$$

Intrinsic parameters, homogeneous coordinates

Physical retina

Using homogenous coordinates, we can write this as:

 $u = \alpha \frac{x}{z} - \alpha \cot(\theta) \frac{y}{z} + u_0$ $v = \frac{\beta}{\sin(\theta)} \frac{y}{z} + v_0$

$$\begin{pmatrix} u \\ v \\ 1 \end{pmatrix} = \frac{1}{z} \begin{pmatrix} \alpha & -\alpha \cot(\theta) & u_0 & 0 \\ 0 & \frac{\beta}{\sin(\theta)} & v_0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

or:

In pixels

$$\vec{p} = \frac{1}{z} (K)^{C} \vec{p}$$

In camera-based coords

W. Freeman

Perspective projection & calibration

Extrinsic:

Camera frame ←→World frame

Intrinsic:

Image coordinates relative to camera ←→ Pixel coordinates

> 3D point (4x1)

Coordinate Changes: Pure Translations

$$\overrightarrow{O_BP} = \overrightarrow{O_BO_A} + \overrightarrow{O_AP}$$
 , $^BP = ^AP + ^BO_A$

Coordinate Changes: Pure Rotations

$${}^{B}_{A}R = \begin{bmatrix} \mathbf{i}_{A}.\mathbf{i}_{B} & \mathbf{j}_{A}.\mathbf{i}_{B} & \mathbf{k}_{A}.\mathbf{i}_{B} \\ \mathbf{i}_{A}.\mathbf{j}_{B} & \mathbf{j}_{A}.\mathbf{j}_{B} & \mathbf{k}_{A}.\mathbf{j}_{B} \\ \mathbf{i}_{A}.\mathbf{k}_{B} & \mathbf{j}_{A}.\mathbf{k}_{B} & \mathbf{k}_{A}.\mathbf{k}_{B} \end{bmatrix} = ({}^{B}\mathbf{i}_{A}, {}^{B}\mathbf{j}_{A}, {}^{B}\mathbf{k}_{A}) = \begin{bmatrix} {}^{A}\mathbf{i}_{B}^{T} \\ {}^{A}\mathbf{j}_{B}^{T} \\ {}^{A}\mathbf{k}_{B}^{T} \end{bmatrix}$$

Coordinate Changes: Rotations about the *k* Axis

$${}_{A}^{B}R = \begin{bmatrix} \cos\theta & \sin\theta & 0 \\ -\sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

A rotation matrix is characterized by the following properties:

- Its inverse is equal to its transpose, and
- its determinant is equal to 1.

Or equivalently:

• Its rows (or columns) form a right-handed orthonormal coordinate system.

Coordinate Changes: Pure Rotations

$$\overrightarrow{OP} = \begin{bmatrix} \mathbf{i}_A & \mathbf{j}_A & \mathbf{k}_A \end{bmatrix} \begin{bmatrix} A_X \\ A_Y \\ A_Z \end{bmatrix} = \begin{bmatrix} \mathbf{i}_B & \mathbf{j}_B & \mathbf{k}_B \end{bmatrix} \begin{bmatrix} B_X \\ B_Y \\ B_Z \end{bmatrix}$$

$$\Rightarrow {}^{B}P = {}^{B}_{A}R^{A}P$$

Coordinate Changes: Rigid Transformations

$$^{B}P = {}^{B}_{A}R \, ^{A}P + {}^{B}O_{A}$$

Block Matrix Multiplication

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \qquad B = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$

What is AB?

$$AB = \begin{bmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{bmatrix}$$

Homogeneous Representation of Rigid Transformations

$$\begin{bmatrix} {}^{B}P \\ 1 \end{bmatrix} = \begin{bmatrix} {}^{B}R & {}^{B}O_{A} \\ \mathbf{0}^{T} & 1 \end{bmatrix} \begin{bmatrix} {}^{A}P \\ 1 \end{bmatrix} = \begin{bmatrix} {}^{B}R & {}^{A}P + {}^{B}O_{A} \\ 1 \end{bmatrix} = {}^{B}AT \begin{bmatrix} {}^{A}P \\ 1 \end{bmatrix}$$

Extrinsic parameters: translation and rotation of camera frame

$$\vec{p} = {}^{C}_{W}R \quad \vec{p} + {}^{C}_{W}\vec{t}$$

Non-homogeneous coordinates

Homogeneous coordinates

Combining extrinsic and intrinsic calibration parameters, in homogeneous coordinates

Other ways to write the same equation

Conversion back from homogeneous coordinates leads to (note that $z = m^t 3^*P$):

Extrinsic Parameters

• When the camera frame (C) is different from the world frame (W),

$$\begin{pmatrix} {}^{C}P\\1 \end{pmatrix} = \begin{pmatrix} {}^{C}_{W}\mathcal{R} & {}^{C}O_{W}\\\mathbf{0}^{T} & 1 \end{pmatrix} \begin{pmatrix} {}^{W}P\\1 \end{pmatrix}.$$

• Thus,

$$oldsymbol{p} = rac{1}{z} \mathcal{M} oldsymbol{P}, \quad ext{where} \quad egin{cases} \mathcal{M} = \mathcal{K} \left(\mathcal{R} & oldsymbol{t}
ight), \ \mathcal{R} = rac{C}{W} \mathcal{R}, \ oldsymbol{t} = {}^{C} O_{W}, \ oldsymbol{P} = \left(egin{array}{c} {}^{W} P \ 1 \end{array}
ight). \end{cases}$$

• Note: z is not independent of \mathcal{M} and P:

$$\mathcal{M} = egin{pmatrix} m{m}_1^T \ m{m}_2^T \ m{m}_3^T \end{pmatrix} \Longrightarrow z = m{m}_3 \cdot m{P}, \quad ext{or} \quad egin{bmatrix} u = rac{m{m}_1 \cdot m{P}}{m{m}_3 \cdot m{P}}, \ v = rac{m{m}_2 \cdot m{P}}{m{m}_3 \cdot m{P}}. \end{pmatrix}$$

Explicit Form of the Projection Matrix

$$\mathcal{M} = egin{pmatrix} lpha oldsymbol{r}_1^T - lpha \cot heta oldsymbol{r}_2^T + u_0 oldsymbol{r}_3^T & lpha t_x - lpha \cot heta t_y + u_0 t_z \ rac{eta}{\sin heta} oldsymbol{r}_2^T + v_0 oldsymbol{r}_3^T & rac{eta}{\sin heta} t_y + v_0 t_z \ oldsymbol{r}_3^T & t_z \end{pmatrix}$$

Note: If $\mathcal{M} = (\mathcal{A} \ \mathbf{b})$ then $|\mathbf{a}_3| = 1$.

Replacing \mathcal{M} by $\lambda \mathcal{M}$ in

$$\left\{egin{aligned} u = rac{m{m}_1 \cdot m{P}}{m{m}_3 \cdot m{P}} \ v = rac{m{m}_2 \cdot m{P}}{m{m}_3 \cdot m{P}} \end{aligned}
ight.$$

does not change u and v.

M is only defined up to scale in this setting!!

Calibration target

The Opti-CAL Calibration Target Image

Find the position, u_i and v_i , in pixels, of each calibration object feature point.

http://www.kinetic.bc.ca/CompVision/opti-CAL.html