## 1. Bevezetés

Granuláris anyagoknak a nagy számú  $(10^4-10^6\ db)$  makroszkópikus részecskékből $(10\mu m-10m\ \text{átmérőjű})$  álló rendszereket nevezzük. A granuláris részecskékre ható erőhatások közül a gravitációs erő, két részecske összenyomódásakor fellépő taszítóerő és az érintkezési pontokon fellépő surlódási erő tartozik a legjelentősebbek. A granuláris anyag részecskéinek az átlagos helyzeti energiájához képest az egy szabadsági fokra jutó  $k_BT$  ter mikus energia elhanyagolható. Emiatt a hőmérsékletnek az átlagoló befolyása elvész ezeknél a komplex rendszereknél. Ennek köbetkeztében nem alakul a rendszeren belül termikus egyensúly. Ez azt jelenti, hogy külső megzavarás nélkül a rendszer bármely metastabil állapota végtelen sok ideig fennmaradhat. Keveredés, homogén eloszlások kialakulása helyett rendeződés, szegregáció, komplex struktúrák alakulnak ki.

# 2. A mérés célja

A mérés célja a granuláris anyagokban fellépő nyomás mélységfüggésének a vizsgálata a **Janssen modellel**, majd a rendszeren belüli inhomogén erőeloszlásoknak erőláncoknak a vizsgálata a **q-modell** alkalmazasávál.

### 3. A mérés elve

A nyomás mélységfüggésenek a leírása granuláris oszlopokban különbözik a folyadékoszlopokban létrejövő nyomás leírásától. Granuláris anyagok esetében a folyadékoknál használt  $P(z) = \rho gz$  összefüggés nem áll fent. Azért, hogy meghatározzuk a granuláris oszlopok által keletkeztetett nyomást a Jennsen-modell legfőbb feltevéseit tekintjük. Tekintsünk egy R sugarú,  $\rho$  átlagos sűrűségű hengeres edényt, amelyet granuláris anyaggal megtöltünk. A Jennsen-modell értelmében:

A függőleges nyomás nagysága csak a mélységfügtől függ

$$P(x, y, z) = P(z)$$

A vízszintes irányban mérhető nyomás arányos a függőleges nyomással

$$P_hor = KP(z)$$

Az üveghenger falainal fellépő tapadási surlódási erők felfelé mutatnak és mind a maximális értékeiket veszik fel

$$dF_f rict = \mu KP(z)2\pi Rdz$$

ahol  $\mu$  a henger üvegfala és a granuláris anyag közti statikus súrlódási együttható Továbbá a Jennsen-modell szerint az anyag minden dz vastagságú és  $S=\pi R^2$  felületű vízszintes szeletének egyensúlyban kell lennie. Tehát, mivel ezekre a szeletekre hat a gravitációs erő, a fölötte és alatta mérhető nyomás különbségéből adódó és az üvegfalaknál fellépő súrlódási erő, ezért a Newton-egyenlet

$$\rho g S dz - \frac{dP(z)}{dz} S dz - dF_{frict} = 0$$

A Jennsen-modell egyik feltevéséből kapott  $dF_{frict}$ -et behelyettesítjük a Newton-egyenletbe, majd átrendezve azt kapjuk, hogy

$$dP(z) + \frac{1}{\lambda P} = \rho g$$

ahol

$$\lambda = \frac{R}{2\mu K}$$

A P(0) = 0 kezdeti feltétellet a differenciálegyenlet megoldása

$$P(z)7\lambda\rho g\left(1-e^{\frac{z}{\lambda}}\right)$$

Tehát tetszőlegesen nagy z-re a nyomás nem divergál, hanem  $\lambda$  karakterisztikus távolságon exponenciálisan megy telítésbe. A konkrét feladatra a differenciálegyenlet megoldása

$$P(z) = m_{\infty} \left( 1 - e^{\frac{z}{m_{\infty}}} \right)$$

# 4. A mérés során felhasznált mérési eszközök

- Különböző granuláris anyagok: köles, műanyag- és üveggolyók
- Műanyagpoharak
- Merőkanál
- Üveghenger
- Elektronikus táramérleg
- Talpas fémhenger dugattyúval
- Kartonpapír
- Fénymásoló A4 formátumú papír
- Indigó

## 5. Számolási feladat

P(0) = 0 kezdeti feltétellet a

$$\frac{dP(z)}{dz} + \frac{1}{\lambda}P = \rho g$$

differenciálegyenlet megoldása

$$P(z) = \lambda \rho g \left[ 1 - e^{z/\lambda} \right]$$

Ezt az egyenletet szorozzuk A-val, és osztjuk g-vel, az oszlop keresztmetszetével, illetve az exopnenciális tag kitevőjét bővítjük  $A\rho/A\rho$ -val:

$$\frac{A \cdot P(z)}{g} = A\lambda\rho \left[1 - e^{A\rho z/A\lambda\rho}\right]$$

Bevezetve  $\rho Az = m_{\infty}$  állandót, illetve  $\rho Az = m(z)$ -t, két tömeg dimenziójú mennyiséget kapunk. P(z)-t A-val szorozva súlyerőt, g-vel osztva tömeget kapunk, melyet itt  $m_l$ -el jelölünk.

$$m_l(m) = m_{\infty} \left[ 1 - e^{m/m_{\infty}} \right]$$

# 6. A nyomás mélységfüggése granuális oszlopban

A mérést a laborban lévő anyagok közül kölessel végeztük. A mérőhengerbe egyszerre mindig egy mérőkanálynit szórtunk. Ennek tömegét 3 mérés (16g, 15g, 15g) átlagából határoztuk meg 15,33g-ra. A henger átmérőjét 5cm-nek mértük. A mérésenként  $\sim 20$  mérőkanál anyag került a hengerbe, néhány mérésnél az utolsó betöltést 5 mérőpohárnyi anyaggal végeztük. Az eredményeket az 1.táblázatban foglaltam össze.

A mérés további adatai:

- $\bullet$  egy mérőkanálnyi köles tömege: 15,33g
- $\bullet\,$ egy mérőkanálnyi műanyag-granulátum tömege: 18,33g
- $\bullet\,$ a mérőhenger átmérője: 5cm

|                 | 222    | feltölt                            | és pohárra                         | al - $m_l$             | feltölt                            | és tölcsérre                       | el - $m_l$             | feltölté                           | es csillapít                       | va - $m_l$                         |
|-----------------|--------|------------------------------------|------------------------------------|------------------------|------------------------------------|------------------------------------|------------------------|------------------------------------|------------------------------------|------------------------------------|
| p               | m      | $1.\mathrm{m\acute{e}r\acute{e}s}$ | $2.\mathrm{m\acute{e}r\acute{e}s}$ | $3.\mathrm{m\'er\'es}$ | $1.\mathrm{m\acute{e}r\acute{e}s}$ | $2.\mathrm{m\acute{e}r\acute{e}s}$ | $3.\mathrm{m\'er\'es}$ | $1.\mathrm{m\acute{e}r\acute{e}s}$ | $2.\mathrm{m\acute{e}r\acute{e}s}$ | $3.\mathrm{m\acute{e}r\acute{e}s}$ |
| 0               | 0.00   | 47                                 | 47                                 | 47                     | 47                                 | 47                                 | 47                     | 47                                 | 47                                 | 47                                 |
| 1               | 15.33  | 63                                 | 65                                 | 62                     | 60                                 | 60                                 | 58                     | 61                                 | 48                                 | 62                                 |
| 2               | 30.67  | 81                                 | 80                                 | 76                     | 77                                 | 75                                 | 73                     | 74                                 | 54                                 | 77                                 |
| 3               | 46.00  | 93                                 | 85                                 | 84                     | 92                                 | 90                                 | 89                     | 85                                 | 65                                 | 87                                 |
| 4               | 61.33  | 101                                | 88                                 | 93                     | 105                                | 105                                | 100                    | 96                                 | 75                                 | 98                                 |
| 5               | 76.67  | 111                                | 95                                 | 100                    | 113                                | 113                                | 108                    | 106                                | 81                                 | 106                                |
| 6               | 92.00  | 117                                | 103                                | 107                    | 121                                | 118                                | 114                    | 113                                | 88                                 | 114                                |
| 7               | 107.33 | 128                                | 104                                | 114                    | 128                                | 122                                | 124                    | 122                                | 97                                 | 122                                |
| 8               | 122.66 | 132                                | 107                                | 120                    | 136                                | 130                                | 130                    | 128                                | 102                                | 129                                |
| 9               | 138.00 | 136                                | 113                                | 123                    | 141                                | 134                                | 138                    | 135                                | 108                                | 136                                |
| 10              | 153.33 | 144                                | 117                                | 128                    | 149                                | 139                                | 142                    | 141                                | 113                                | 141                                |
| 11              | 168.66 | 148                                | 120                                | 133                    | 153                                | 145                                | 146                    | 147                                | 119                                | 150                                |
| 12              | 184.00 | 150                                | 122                                | 136                    | 160                                | 150                                | 151                    | 150                                | 127                                | 156                                |
| 13              | 199.33 | 151                                | 125                                | 140                    | 164                                | 153                                | 157                    | 157                                | 129                                | 158                                |
| 14              | 214.66 | 154                                | 128                                | 144                    | 168                                | 157                                | 160                    | 159                                | 136                                | 163                                |
| 15              | 230.00 | 157                                | 131                                | 148                    | 171                                | 160                                | 164                    | 162                                | 140                                | 165                                |
| 16              | 245.33 | 160                                | 133                                | 150                    | 174                                | 163                                | 167                    | 166                                | 144                                | 170                                |
| 17              | 260.66 | 162                                | 134                                | 155                    | 178                                | 166                                | 169                    | 173                                | 146                                | 179                                |
| 18              | 275.99 | 164                                | 136                                | 160                    | 182                                | 168                                | 172                    | -                                  | 150                                | 181                                |
| 19              | 291.33 | 166                                | 137                                | 162                    | 186                                | 171                                | 173                    | -                                  | 153                                | 184                                |
| 20              | 306.66 | 168                                | 138                                | 163                    | =                                  | 173                                | 178                    | =                                  | 155                                | 186                                |
| $\overline{24}$ | 367.99 | -                                  | _                                  | _                      | 190                                | _                                  | -                      | _                                  | _                                  | _                                  |
| 25              | 383.33 | -                                  | -                                  | -                      | -                                  | 180                                | 185                    | -                                  | -                                  | 195                                |

<sup>1.</sup> táblázat. Az első oszolpban a betöltött mérőpoharak száma, a másodikban az ennek megfelelő (valódi) tömeg, a többiben a mérleg által jelzett (látszólagos) tömeg szerepel. A csillapított betöltés 1. illetve 2. mérésénél a henger megrezdült, így ott abbahagytuk a mérést.

### 7. Kiértékelés

### 7.1. Feltöltés pohárral

Először egy műanyag pohárba egy mérőkanálnyi kölest tettünk, és azzal öntöttük a hengerbe az anyagot (így kevesebb szóródott mellé). Az illesztett görbék az 1 ábrán, az illesztés paraméterei a 2.táblázatban láthatóak. Az 1. és 3. mérés illesztési paraméterei hasonlóak, a 2.mérés viszont jelentősen eltér. Ennek oka, hogy mérés során, valószínűleg a hengert ért kis ütés miatt átrendeződött az anyag. A diagramon látható, hogy ez a 2. mérés során többször is megtörtént.







1. ábra. Pohárral való feltöltés diagramjai. A 2. mérésnél látszik, hogy az anyag többször is átrendeződött (50 ill. 100g-nál, és talán 150g körül is). A 3. mérésnél, 140g előtt sokkal jobban illeszkednek a pontok, itt történhetett egy kis rázkódás.

|              | $1.\mathrm{mf e}\mathrm{rf e}\mathrm{s}$ | $2.\mathrm{m\acute{e}r\acute{e}s}$ | $3.\mathrm{m\acute{e}r\acute{e}s}$ |
|--------------|------------------------------------------|------------------------------------|------------------------------------|
| $m_0$        | $52.2 \pm 0.8$                           | $45.9 \pm 1.6$                     | $43.8 \pm 1.3$                     |
| $m_{\infty}$ | $126.8 \pm 2.0$                          | $91.3 \pm 2.9$                     | $125.2 \pm 3.2$                    |

2. táblázat. Pohárral való feltöltés pontjaira illesztett paraméterei.

#### 7.2. Feltöltés tölcsérrel

Ennél a mérésnél egy tölcséren keresztül öntöttük a mérőhenger szájába az anyagot. Az illesztett görbék az 2 ábrán, az illesztés paraméterei a 3.táblázatban láthatóak. A három mérés közül itt illeszkedtek a pontok a legjobban a modellben szereplő görbére. A tölcsér a henger száján ült, így az anyag mindig középre szóródott. Bár az illesztés hibájára







2. ábra. Tölcsérrel való feltöltés diagramjai. A pontok viszonylag jól illeszkednek az egynesekre, a 2.mérésnél 100g körül látható egy kis megcsúszás.

### 7.3. Csillapított ejtés

Az utolsó ejtésnél a hengerbe egy hosszú pálcára erősített kanalat dugtunk, igy a beeső szemcsék csillapítva kerültek az oszlop tetejére. A finomabb ejtés érdekében a szemcséket nem közvetlenül a henger szájába, hanem egy papírtölcséren keresztül a falra irányítva öntöttük be.

|                  | $1.\mathrm{mf \acute{e}r\acute{e}s}$ | $2.\mathrm{m\acute{e}r\acute{e}s}$ | $3.\mathrm{m\acute{e}r\acute{e}s}$ |
|------------------|--------------------------------------|------------------------------------|------------------------------------|
| $\overline{m_0}$ | $50.1 \pm 0.8$                       | $49.1 \pm 0.9$                     | $46.8 \pm 0.6$                     |
| $m_{\infty}$     | $158.7 \pm 2.3$                      | $137.6 \pm 2.2$                    | $148.6 \pm 1.5$                    |

3. táblázat. Tölcsérrel való feltöltés pontjaira illesztett görbe paraméterei.



3. ábra. A csillapított feltöltés diagramjai. A második mérés elején a henger megrezdült (mérés közben nem vettük észre), ezért a görbe egy kicsivel jobbra tolódott.

|              | 1.mérés         | $2.\mathrm{meres}$ | $3.\mathrm{meres}$ |
|--------------|-----------------|--------------------|--------------------|
| $m_0$        | $45.5 \pm 0.5$  | $26.6 \pm 2.4$     | $45.1 \pm 0.9$     |
| $m_{\infty}$ | $150.2 \pm 1.8$ | $138.8 \pm 6.4$    | $164.1 \pm 2.6$    |

4. táblázat. Csillapított feltöltés pontjaira illesztett görbe paraméterei.