

Robust Clearing Price Mechanisms for Reserve Price Optimization

Supplementary Material

OMITTED PROOFS FROM SECTION 3

C.1 Proof of Theorem 3.3

PROOF. We first rewrite the expected utility function $\mathbb{E}_{v_i}[\hat{u}_{i,2}(\alpha;v)]$ in the following way,

$$\begin{split} & \mathbb{E}_{v}[\hat{u}_{i,2}(\alpha;v)] \\ & = \mathbb{E}_{v}\left[\mathbb{E}_{z}\left[\mathbb{E}_{v} \geq \max_{j \neq i} \{v_{j}, p^{*}(\alpha) + z\}\right] \cdot (v_{i} - \max_{j \neq i} \{v_{j}, p^{*}(\alpha) + z\})\right] \Big] \\ & = \mathbb{E}_{v:v_{i} \geq m_{i}}\left[\int_{m_{i} - p^{*}(\alpha)}^{v_{i} - p^{*}(\alpha)} (v_{i} - p^{*}(\alpha) - z) f(z) dz + \int_{-\infty}^{m_{i} - p^{*}(\alpha)} (v_{i} - m_{i}) f(z) dz\right] \\ & = \mathbb{E}_{v:v_{i} \geq m_{i}}\left[(v_{i} - p^{*}(\alpha)) (F(v_{i} - p^{*}(\alpha)) - F(m_{i} - p^{*}(\alpha))) - \int_{m_{i} - p^{*}(\alpha)}^{v_{i} - p^{*}(\alpha)} z f(z) dz + (v_{i} - m_{i}) F(m_{i} - p^{*}(\alpha))\right] \\ & = \mathbb{E}_{v:v_{i} \geq m_{i}}\left[(v_{i} - p^{*}(\alpha)) F(v_{i} - p^{*}(\alpha)) - (m_{i} - p^{*}(\alpha)) F(m_{i} - p^{*}(\alpha)) - \int_{m_{i} - p^{*}(\alpha)}^{v_{i} - p^{*}(\alpha)} z f(z) dz\right] \end{split}$$

For notation simplicity, we denote

simplicity, we denote
$$T(v_i, m_i, \alpha) = \left[(v_i - p^*(\alpha))F(v_i - p^*(\alpha)) - (m_i - p^*(\alpha))F(m_i - p^*(\alpha)) - \int\limits_{m_i - p^*(\alpha)} zf(z)dz \right] \cdot g_i(m_i)$$

By Leibniz integral rule and integral by part, we compute the quantity

$$\lim_{\alpha \to 0} \frac{\mathbb{E}_{v}[\hat{u}_{i,2}(1+\alpha;v)] - \mathbb{E}_{v}[\hat{u}_{i,2}(1-\alpha;v)]}{2\alpha}$$

as follows,

$$\lim_{\alpha \to 0} \frac{\mathbb{E}_{v}[u_{i,2}(1+\alpha;v)] - \mathbb{E}_{v}[u_{i,2}(1-\alpha;v)]}{2\alpha}$$

$$= \frac{\partial \mathbb{E}_{v_{i}} \left[\int_{0}^{v_{i}} T(v_{i}, m_{i}, \alpha) d m_{i} \right]}{\partial \alpha} \Big|_{\alpha=1}$$

$$= \mathbb{E}_{v_{i}} \left[v_{i} \cdot T(v_{i}, v_{i}, \alpha) + \int_{0}^{v_{i}} \frac{\partial T(v_{i}, m_{i}, \alpha)}{\partial \alpha} d m_{i} \Big|_{\alpha=1} \right]$$

$$= \mathbb{E}_{v_{i}} \left[0 + \int_{0}^{v_{i}} \left(F(v_{i} - p^{*}(\alpha)) \cdot \frac{\partial [v_{i} - p^{*}(\alpha)]}{\partial \alpha} - F(m_{i} - p^{*}(\alpha)) \cdot \frac{\partial [m_{i} - p^{*}(\alpha)]}{\partial \alpha} \right) g_{i}(m_{i}) d m_{i} \Big|_{\alpha=1} \right]$$
(By the fact that $T(v_{i}, v_{i}, \alpha) = 0$)
$$= \mathbb{E}_{v_{i}} \left[0 + \int_{0}^{\alpha v_{i}} \left(F(v_{i} - p^{*}(\alpha)) \cdot \left(-\frac{\partial p^{*}(\alpha)}{\partial \alpha} \right) + F(m_{i} - p^{*}(\alpha)) \cdot \frac{\partial p^{*}(\alpha)}{\partial \alpha} \right) g_{i}(m_{i}) d m_{i} \Big|_{\alpha=1} \right]$$

$$= \mathbb{E}_{v_{i}} \left[\int_{0}^{v_{i}} \left[\left(F(m_{i} - p^{*}(1)) - F(v_{i} - p^{*}(1)) \right) \cdot \eta \right] g_{i}(m_{i}) d m_{i} \right]$$

П

Therefore, we have

$$\begin{split} & = \lim_{\alpha \to 0} \frac{\mathbb{E}_{v}[\hat{u}_{i,2}(1+\alpha;v)] - \mathbb{E}_{v}[\hat{u}_{i,2}(1-\alpha;v)]}{2\alpha \mathbb{E}_{v_{i}}[v_{i}x_{i}(v_{i})]} \\ & = -\frac{\eta \cdot \mathbb{E}_{v_{i}} \left[\int\limits_{0}^{v_{i}} (F(v_{i}-p^{*}(1)) - F(m_{i}-p^{*}(1)))g_{i}(m_{i})d\,m_{i}\right]}{\mathbb{E}_{v}[v_{i}x_{i,1}(v)]} \\ & = -\eta \cdot \frac{\mathbb{E}_{v_{i}} \left[\left(F(v_{i}-p^{*}(1))G_{i}(v_{i}) - \int\limits_{0}^{v_{i}} F(m_{i}-p^{*}(1)))d\,G_{i}(m_{i})\right]}{\mathbb{E}_{v}[v_{i}x_{i,1}(v)]} \\ & = -\eta \cdot \frac{\mathbb{E}_{v_{i}} \left[F(v_{i}-p^{*}(1))G_{i}(v_{i}) - F(m_{i}-p^{*}(1))G_{i}(m_{i})\Big|_{0}^{v_{i}}\right]}{\mathbb{E}_{v}[v_{i}x_{i,1}(v)]} - \eta \cdot \frac{\mathbb{E}_{v_{i}} \left[\int\limits_{0}^{v_{i}} G_{i}(m_{i})f(m_{i}-p^{*}(1))d\,m_{i}\right]}{\mathbb{E}_{v}[v_{i}x_{i,1}(v)]} \\ & = -\eta \cdot \frac{\mathbb{E}_{v_{i}} \left[\int\limits_{0}^{v_{i}} G_{i}(m_{i})f(m_{i}-p^{*}(1))d\,m_{i}\right]}{\mathbb{E}_{v_{i}}[v_{i}\cdot G_{i}(v_{i})]} \end{split}$$

where the last equality above holds because

$$x_{i,1}(v) = \mathbb{P}(m_i \le v_i) = G_i(v_i).$$

C.2 Proof of Proposition 3.4

PROOF. Given the definition of $p^*(\alpha)$ and Proposition 3.1, we have $D_i\left(\frac{p^*(\alpha)}{\alpha}\right) + \sum_{j\neq i} D_j(p^*(\alpha)) = n - \lambda$. Taking gradient w.r.t α of the both sides in the above equation, we have

$$\frac{\partial p^*(\alpha)}{\partial \alpha} = \frac{p^*(\alpha)D_i'\left(\frac{p^*(\alpha)}{\alpha}\right)}{\alpha D_i'\left(\frac{p^*(\alpha)}{\alpha}\right) + \alpha^2 \sum_{j \neq i} D_j'(p^*(\alpha))}$$

Therefore,
$$\eta = \frac{p^*(1)D_i'(p^*(1))}{D_i'(p^*(1)) + \sum_{i \neq i} D_i'(p^*(1))}$$

D OMITTED PROOFS FROM SECTION 4

D.1 Proof of Proposition 4.1

PROOF.

$$\begin{split} &\mathbb{E}_{\upsilon \sim D, z \sim F}[\ell^{c}(p, \beta(\upsilon) + z; \lambda)] \\ &= \sum_{i=1}^{n} \int_{0}^{1} \int_{p-\beta_{i}(\upsilon)}^{\infty} (\beta_{i}(\upsilon) + z - p) dF(z) dD_{i}(\upsilon) + \lambda p \\ &= \sum_{i=1}^{n} \int_{0}^{1} (\beta_{i}(\upsilon) - p) \cdot (1 - F(p - \beta_{i}(\upsilon))) dD_{i}(\upsilon) + \sum_{i=1}^{n} \int_{0}^{1} \int_{p-\beta_{i}(\upsilon)}^{\infty} z dF(z) dD_{i}(\upsilon) + \lambda p \end{split}$$

Taking the partial gradient of the above formula w.r.t p, we have

$$\frac{\partial \mathbb{E}_{v,z}[\ell^c(p,\beta(v)+z;\lambda)]}{\partial p}$$

$$= -\sum_{i=1}^n \int_0^1 (1 - F(p-\beta_i(v))) dD_i(v) + \lambda$$

$$= \sum_{i=1}^n \int_0^1 F(p-\beta_i(v)) dD_i(v) - (n-\lambda)$$

Submission ID: 9723. 2022-10-12 07:29. Page 13 of 1-14.

П

If $\sum_{i=1}^{n} \mathbb{E}_{v_i}[F(-\beta_i(v_i))] \ge n - \lambda$, the reserve price is equal to 0. Otherwise, setting the gradient to be zero, we complete the proof.

D.2 Proof of Theorem 4.3

PROOF. We first derive the expected utility of bidder i at stage 2,

$$\begin{split} & \mathbb{E}_{\upsilon_{i}}[\hat{u}_{i,2}(\alpha;\upsilon)] \\ & = \mathbb{E}_{\upsilon}\left[\mathbb{I}\{\upsilon_{i} \geq \max_{j \neq i} \{\upsilon_{j}, r^{*}(\alpha)\}\} \cdot (\upsilon_{i} - \max_{j \neq i} \{\upsilon_{j}, r^{*}(\alpha)\})\right] \\ & = \mathbb{E}_{\upsilon:\upsilon_{i} \geq m_{i}, \upsilon_{i} \geq r^{*}(\alpha)}\left[(\upsilon_{i} - m_{i}) \cdot \mathbb{I}\{m_{i} \geq r^{*}(\alpha)\} + (\upsilon_{i} - r^{*}(\alpha)) \cdot \mathbb{I}\{m_{i} \leq r^{*}(\alpha) \leq \upsilon_{i}\}\right] \\ & = \mathbb{E}_{\upsilon:\upsilon_{i} \geq r^{*}(\alpha)}\left[\int_{r^{*}(\alpha)}^{\upsilon_{i}} (\upsilon_{i} - m_{i})g_{i}(m_{i})dm_{i}\right] + \int_{r^{*}(\alpha)}^{\int_{0}^{r^{*}(\alpha)} (\upsilon_{i} - r^{*}(\alpha))g_{i}(m_{i})dm_{i}dD_{i}(\upsilon_{i}) \\ & = \mathbb{E}_{\upsilon_{i}:\upsilon_{i} \geq r^{*}(\alpha)}\left[\int_{r^{*}(\alpha)}^{\upsilon_{i}} (\upsilon_{i} - m_{i})g_{i}(m_{i})dm_{i}\right] + \int_{r^{*}(\alpha)}^{\int_{0}^{\upsilon_{i}} (\upsilon_{i} - r^{*}(\alpha))G_{i}(r^{*}(\alpha))dD_{i}(\upsilon_{i}) \end{split}$$

Therefore, we have

$$\begin{split} &\lim_{\alpha \to 0} \frac{\mathbb{E}_{\upsilon}[\hat{u}_{i,2}(1+\alpha;\upsilon)] - \mathbb{E}_{\upsilon}[\hat{u}_{i,2}(1-\alpha;\upsilon)]}{2\alpha} \\ &= & \frac{1}{2} \cdot \left(\frac{\partial \mathbb{E}_{\upsilon}[\hat{u}_{i,2}(\alpha;\upsilon)]}{\partial \alpha} \Big|_{\alpha=1^{+}} + \frac{\partial \mathbb{E}_{\upsilon}[\hat{u}_{i,2}(\alpha;\upsilon)]}{\partial \alpha} \Big|_{\alpha=1^{-}} \right) \\ &= & -\mathbb{E}_{\upsilon_{i}:\upsilon_{i} \geq r^{*}(1)} \left[(\upsilon_{i} - r^{*}(1))g_{i}(r^{*}(1)) \cdot \zeta \right] + \mathbb{E}_{\upsilon_{i}:\upsilon_{i} \geq r^{*}(1)} \left[-\eta G_{i}(r^{*}(1)) + (\upsilon_{i} - r^{*}(1))g_{i}(r^{*}(1)) \zeta \right] \\ &= & -\zeta \mathbb{E}_{\upsilon_{i}:\upsilon_{i} \geq r^{*}(1)} \left[G_{i}(r^{*}(1)) \right], \end{split}$$

where $\zeta = \frac{1}{2} \left[\frac{\partial r^*(\alpha)}{\partial \alpha} \Big|_{\alpha=1^+} + \frac{\partial r^*(\alpha)}{\partial \alpha} \Big|_{\alpha=1^-} \right]$. Therefore, the IC-metric for bidder i is

$$\mathtt{DIC}_i = 1 - \frac{\zeta \cdot G_i(r^*(1)) \cdot (1 - D_i(r^*(1)))}{\mathbb{E}_{\upsilon_i}[\upsilon_i \cdot G_i(\upsilon_i)]}$$

Then we can derive ζ in the following way, by Proposition 4.1, when $\sum_{i=1}^{n} \mathbb{E}_{v_i}[F(-v_i)] < n - \lambda$, we have

$$\sum_{i=1}^{n} \int_{0}^{1} F(r^{*}(\alpha) - \alpha v_{i}) dD_{i}(v_{i}) = n - \lambda$$

Taking derivative with respect to α in the both sides, we have

$$\sum_{i=1}^{n} \int_{0}^{1} f(r^{*}(\alpha) - \alpha v_{i}) \cdot \left(\frac{\partial r^{*}(\alpha)}{\partial \alpha} - v_{i} \right) dD_{i}(v_{i}) = 0$$

Thus, we get

$$\left. \frac{\partial r^*(\alpha)}{\partial \alpha} \right|_{\alpha=1} = \frac{\sum_{i=1}^n \int_0^1 v_i f(r^*(1) - v_i) dD_i(v_i)}{\sum_{i=1}^n \int_0^1 f(r^*(1) - v_i) dD_i(v_i)}$$

Then we characterize ζ following a case analysis:

- When $\sum_{i=1}^{n} \mathbb{E}_{\upsilon_i}[F(-\upsilon_i)] > n \lambda$, there exists a $\delta > 0$, $r^*(\alpha) = 0$, $\forall \alpha \in [1 \delta, 1 + \delta]$. Thus $\zeta = 0$. When $\sum_{i=1}^{n} \mathbb{E}_{\upsilon_i}[F(-\upsilon_i)] = n \lambda$, the left derivative of $r^*(\alpha)$ at $\alpha = 1$ ($\alpha = 1^-$) is 0, and the right derivative of $r^*(\alpha)$ at $\alpha = 1$ ($\alpha = 1^+$) is

$$\frac{\sum_{i=1}^{n} \int_{0}^{1} v_{i} f(r^{*}(1) - v_{i}) dD_{i}(v_{i})}{\sum_{i=1}^{n} \int_{0}^{1} f(r^{*}(1) - v_{i}) dD_{i}(v_{i})}$$

Then
$$\zeta = \frac{\sum_{i=1}^{n} \int_{0}^{1} v_{i} f(r^{*}(1) - v_{i}) dD_{i}(v_{i})}{2 \sum_{i=1}^{n} \int_{0}^{1} f(r^{*}(1) - v_{i}) dD_{i}(v_{i})}.$$

Therefore, we complete the