Šuma

Već je ponoć, a čarobnjak Haris mora proći kroz začaranu N-dimenzionalnu šumu kako bi stigao kući. Sa sobom ima kartu koja prikazuje tu šumu razdijeljenu na polja, gdje je svako polje određeno sa N koordinata. Haris se nalazi na polju (1,1,...,1), a želi doći na polje $(A_1,A_2,...,A_N)$. Na ukupno Q polja raste drveće koje on mora zaobići.

Kako se ne bi izgubio, Haris sa svakim korakom pažljivo napušta polje na kojem se nalazi i prelazi u susjedno polje, koje se od prethodnog razlikuje samo za 1 i to samo po jednoj koordinati. Štoviše, pošto se mnogo boji N-dimenzionalnih vukova, on želi doći kući što prije i kreće se "optimalno", što znači da uvijek prelazi u polje čija je nova koordinata tačno za 1 veća od koordinate prethodnog polja.

Putujući kroz tišinu, Haris pokušava skrenuti svoje misli sa jeze i mraka razmišljajući o ukupnom broju optimalnih putanja koje može odabrati da stigne do cilja. Međutim, on poznaje sebe i zna da će ga taj problem izludjeti ako ga ne riješi prije izlaska iz šume te će u tom slučaju zauvijek ostaviti razum u ukletim dimenzijama. Pomozite Harisu tako što ćete napisati program koji računa ukupan broj putanja, koje su ujedno i optimalne putanje, a kojima Haris može proći kroz šumu zaobilazeći polja s drvećem. Optimalna putanja je ona za koju je potreban broj koraka da bi se stiglo do cilja, minimalan.

Ulazni podaci

Prvi red ulaza sadrži prirodan broj N, broj dimenzija šume. Drugi red sadrži redom brojeve $A_1,A_2,...,A_N$, koordinate Harisovog odredišta. Treći red sadrži prirodan broj Q, broj polja na kojima se nalaze stabla. Slijedi Q

redova, od kojih i-ti red sadrži koordinate i-tog stabla, redom $S_{i,1}, S_{i,2}, ..., S_{i,N}.$

Ograničenja

$$1 \le N \le 500 \ 1 \le S_{i,j} \le A_j \le 500 \ 1 \le Q \le 1000$$

Podzadaci

Podzadatak 1 (10 bodova)

$$N=2$$

Podzadatak 2 (15 bodova)

$$Q = 10$$

Podzadatak 3 (75 bodova)

Bez dodatnih ograničenja.

Izlazni podaci

Prvi i jedini broj izlaza treba biti $R \mod 10^9 + 7$, gdje je R ukupan broj optimalnih putanja koje zaobilaze polja sa drvećem.

Napomena: Kod računanja sa ostacima pri dijeljenju prostim brojem $p=10^9+7$, svaki broj 0 < x < p posjeduje jedinstven inverz $0 < \overline{x} < p$ takav da vrijedi $x\overline{x} \equiv 1 \mod p$. Slijedi da, ako je $m=(u_1...u_s)/(v_1...v_t)$ cijeli broj takav da p ne dijeli proizvod $v_1...v_t$, onda vrijedi $m\equiv u_1...u_s\overline{v}_1...\overline{v}_t \mod p$. Inverz broja možemo pronaći rekurzivno, jer je $\overline{1}=1$, a zatim $\overline{x}\equiv y\cdot \overline{(xy-p)}\mod p$ za brojeve 1 < x < p, te p < xy < p+x. Jedan korak u rekurzivnom postupku se sastoji od pronalaska broja y, koji je jedinstven, a

zatim ponavljanjem postupka za računanje inverza broja xy-p, sve dok ne bude ispunjeno xy-p=1.

Primjer 1

Ulaz 1

Izlaz 1

Objašnjenje 1

Dva moguća optimalna puta prolaze iznad drveta u sredini, a jedan ispod.

Primjer 2

Ulaz 2

Izlaz 2

Objašnjenje 2

Na dijagonali između početnog i ciljnog polja se nalaze 3 drveta. Prolazeći sa jedne strane ovog niza Haris ima 5 mogućih optimalnih putanja, kao i sa druge.

15.06.2024.

Primjer 3

Ulaz 3

Izlaz 3

78720

BHOI - BH Olimpijada iz Informatike

