Методи класифікації нот в акустичному сигналі

Виконав: Красницький Микита Олександрович

Керівник: Шпилька Олександр Олександрович

Актуальність

Рисунок 1.1 — Приклади використання машинного навчання

Популярні класифікатори

- 1. Гаусівський наївний Байєсівський класифікатор
- 2. SVM
- 3. Перцептрон
- 4. Класифікатор лінійного дискримінантного аналізу
- 5. Дерево прийняття рішення

Постановка задачі

Рисунок 1.2 — Приклад композиції що відповідає задачі

Частоти нот

Таблиця 1.1 – Частоти нот кожної октави

Ноты	Суббконтр- октава	Контр- октава	Большая	Малая	Первая	Вторая	Третья	Четвертая	Пятая
до	16,35	32,70	65,41	130,82	261,63	523,26	1046,52	2093,04	4186,08
ДО диез	17,32	34,65	69,30	138,59	277,18	554,36	1108,72	2217,44	4434,88
PE	18,35	36,71	73,42	146,83	293,66	587,32	1174,64	2349,28	4698,56
РЕ диез	19,45	38,89	77,78	155,57	311,13	622,26	1244,52	2489,04	4978,08
МИ	20,60	41,20	82,41	164,82	329,63	659,26	1318,52	2637,04	5274,08
ФА	21,83	43,65	87,31	174,62	349,23	698,46	1396,92	2793,84	5587,68
ФА диез	23,12	46,25	92,50	185,00	369,99	739,98	1479,96	2959,92	5919,84
соль	24,50	49,00	98,00	196,00	392,00	784,00	1568,00	3136,00	6272,00
СОЛЬ диез	25,96	51,91	103,83	207,65	415,30	830,60	1661,20	3322,40	6644,80
ЛЯ	27,50	55,00	110,00	220,00	440,00	880,00	1760,00	3520,00	7040,00
ЛЯ диез	29,14	58,27	116,54	233,08	466,16	932,32	1864,64	3729,28	7458,56
СИ	30,87	61,74	123,47	246,94	493,88	987,76	1975,52	3951,04	7902,08

Рисунок 1.3 – Відповідність нотам октав частот

Теорія нот

Рисунок 1.4 – Зображення нот різної тривалості

$$t_4 = \frac{1}{bpm/60} = 277 \text{M}c$$
$$t_{32} = \frac{t_4}{8} = 35 \text{M}c$$

Найкоротша тривалість ноти

Тембр нот

Рисунок 1.5 — Зображення збуджених хвиль

Рисунок 1.6 — Часові зміни гармонік

Емпіричний метод

$$V = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} * \begin{bmatrix} k_1 & k_2 & k_3 & k_4 & k_5 & k_6 & k_7 \end{bmatrix} \qquad M_s = V * M$$

$$M = \begin{bmatrix} a_{1,1} & \cdots & a_{1,12} \\ \vdots & \ddots & \vdots \\ a_{7,1} & \cdots & a_{7,12} \end{bmatrix}$$

$$M_s = \begin{bmatrix} \sum_{i=1}^7 k_1 * a_{i,1} & \sum_{i=1}^7 k_1 * a_{i,2} & \sum_{i=1}^7 k_1 * a_{i,12} \\ \sum_{i=2}^7 k_2 * a_{i,1} & \sum_{i=2}^7 k_2 * a_{i,2} & \sum_{i=2}^7 k_2 * a_{i,12} \\ \vdots & \ddots & \vdots \\ k_7 * a_{7,1} & k_7 * a_{7,2} & \cdots & k_7 * a_{7,12} \end{bmatrix}$$
аіј - Спектральний відлік що

аіј - спектральний відлік що відповідає і-ої ноти ј-ої октави

Формула для матриці сум октав

Емпіричний метод

Рисунок 1.7— Зображення матриці Ms зліва та M зправа

Рисунок 1.8— Результат класифікації по матриці сум. Помилка 32%

Гаусівський наївний Байєсів класифікатор

$$P(y_j|\mathbf{x}_q) = \frac{P(\mathbf{x}_q|y_j)P(y_j)}{P(\mathbf{x}_q)}$$

$$P(y_j|\mathbf{x}_q) = P(y_j) * \prod_{i=1}^N P(x_{q,i}|y_j)$$

Рисунок 1.9 — Байєсівський класифікатор Рисунок 1.10 — наївний Байєсівський класифікатор

Значення приналежності до класу уј виконується по максимуму апостеріорної вірогідності Р(уј | **x**q)

Гаусівський наївний Байєсів класифікатор

Рисунок 1.11 — Результат класифікації по спектру. Помилка 8.5%

Рисунок 1.12 — Результат класифікації по матриці сум октав. Помилка 3%

SVM

Рисунок 1.13 — Оптимальна роздільна гіперплощина в R²

Рисунок 1.14 — Результат збільшення розмірності данних задля їх відокремлення гіперплощиною

SVM

Рисунок 1.15 — Результат класифікації SVM по матриці сум. Помилка 1.8%

Рисунок 1.16 — Результат класифікації SVM по спектру. Помилка 1.1%

Приклад вирішення задачі

Рисунок 1.17 — Приклад класифікації композиції що відповідає задачі використовуючи SVM класифікатор по спектру. Помилка 1.3%

Висновки

SVM БК Емпіричний метод Нормування за Нормування за Без нормування Помилка 32% за максимумом СУМОЮ Помилка 1.1% за Помилка 3% за матрицею Ms матрицею Ms спектром Найбільший час розрахунку

Подальший розвиток класифікатора може бути воконаний шляхом:

- Використання методу максимальної правдоподібності, який допоможе позбутися одиничних помилок запропонованого класифікатора на поточній ноті.
- Врахування статистичних залежностей між нотами.

Дякую за увагу