R.M.K. ENGINEERING COLLEGE

(An Autonomous Institution) RSM Nagar, Kavaraipettai - 601 206

Date : \$7,10.2024

First Internal Assessment Test - October 2024

1st Semester - B.E. / B.TECH.

24CH101 - Engineering Chemistry (Lab Integrated)

Computer Science and Engineering / Computer Science and Design / Artificial Intelligence and Data Science / Information Technology

	All tillems through
COs	Course Outcome: The students, after the completion of the course, are expected to
CO1	To examine the role of polymers in different industrial sectors.
CO2	To identify the suitability of batteries for various fields.
CO3	To apply the fundamental principles of chemical sensors, cheminformatics and their applications across various industries.
CO4	To analyze the types of smart materials used in various engineering fields.
CO5	To explore the applications of nanomaterials in various fields, considering their advantages and limitations.
C06	To integrate the concepts of chemistry for various engineering applications.
	11770

Time: 3 Hours

Answer ALL Questions Part-A ($10 \times 2 = 20 \text{ Marks}$)

Max. Marks: 100

- Define functionality of polymers and give the functionality of vinyl chloride monomer in 1. polyvinyl chloride
- Outline the methods to determine the molecular weight of polymers 2.
- Give the preparation of Teflon. 3.
- Highlight how can molecular weight of polymer be related to glass transition temperature. 4.
- Quote the specific properties of electroactive polymers 5.
- Differentiate electrolytic cells and electrochemical cells 6.
- Mention the advantages of alkaline cells over dry cells 7.
- Express a method of recycling of Li-ion batteries by direct cycling method 8.
- Predict how flow batteries differ from other primary and secondary batteries 9.
- Write the cell reactions in Ni-hydride battery 10.

$Part - B (5 \times 16 = 80 \text{ Marks})$

11.a. Glass transition temperature is an important property of polymers. Articulate how they differ from melting point and write in detail the factors influencing Glass Transition Temperature of Polymers.(16)

- 11.b. Present how Low Density and High Density Polyethylene are prepared. Justify how are these polymers selected for commercial applications based on their properties(16)
- 12.a. Enumerate the synthesis of epoxy resins from their precursors, properties and applications of epoxy resins (16)
- 12.b. Present the theoretical and practical concepts of piezoelectric polymers, the underlying mechanism necessary for materials processing with emphasis on its special properties and applications. (16)
- 13.a. Sketch the importance of electrochemical series and its applications in electrochemistry with illustration. (16) Or
- 13.b. Illustrate the construction and working principle and applications of Lead acid battery and comment on the voltage output obtained (16)

14.a. Fuel cells are the cells of the future world. Discuss in detail the construction, working principle and applications of any one prominent fuel cell, emphasizing its advantage in space vehicles. (16)

Or

- 14.b. Comment on the production of green fuel Hydrogen by different methods. Enumerate the role of Hydrogen fuel in sustainability and green environment(16)
- 15.a. Biodegradable polymer research is blooming up due to stringent implementation of Sustainable Development Goals in industrial sectors. Explain with illustration how biodegradable polymers like polylactic acid helps in attaining circular economy (16)

15.b. Many energy storage devices with advances are advancing into commercial markets. Justify with detail explanation the environmental effects of different energy storage devices, and how E -vehicles can set minimize environmental pollution (16)

000

-	Knowledge Level (Blooms Taxonomy)						
K1	Remembering (Knowledge)		Understanding (Comprehension)		Applying (Application of Knowledge)		
_	Analysing (Analysis)	K5	Evaluating (Evaluation)	K6	Creating (Synthesis)		

	1117	Kno	owledge Lev	el and Cour	rse Outcome	e – Question	wise Mapp	ing		
Part	Part A							10		
Question	1	2	3	4	5	6	7	8	9	10
_	1/1	K1	K1	K2	K1	K2	K2	K2	K2	K1
K Level	K1	N1			117.72	CO2	CO2	CO2	CO2	CO2
CO	CO1	COI	COI	COI	COI	CO2	C02	COZ	C02	
Part	Part B									
Question	11 (a)	11(b)	12 (a)	12 (b)	13 (a)	13 (b)	14 (a)	14 (b)	15 (a)	15 (b)
				` ' /	К3	КЗ	К3	K3	K5	K5
K Level	K3	K3	K3	K3	N.S	K.J			601	CO2
СО	COI	CO1	COI	CO1	CO2	CO2	CO2	CO2	CO1	CO2

R.M.K. ENGINEERING COLLEGE

24CH101-ENGINEERING CHEMISTRY FIRST INTERNAL ASSESSMENT TEST ANSWER KEY

PART-A

Q.No		Answ	Or.				
1	Functionality:						
1							
		ne number of reactive sites or bonding sites or number of reactive functional oups present in a monomer is known as its functionality.					
			•				
		ality of Vinyl chloride monomer in					
2			nined by viscometry, light scattering				
	1	and sedimentation equilibrium methods.					
3	1 -	tion of Teflon:					
			f tetrafluoroethylene under pressure in				
	the prese	nce of benzoyl peroxide catalyst.					
		Benzoyl peroxid					
	n	$F_2C = CF_2 \longrightarrow$	$ \leftarrow F_2C - CF_2 \stackrel{\sim}{=} \underline{n} $				
		Under pressur	e				
	Tetraf	luoroethylene P	Polytetrafluoroethylene				
4	Higher m	nolecular weight polymers generall	y have higher Tg. This is because				
	longer polymer chains entangle more, making the material more resistant to flow						
	and thus raising the Tg.						
5	Properties of electroactive polymer:						
	• Electro active polymers or EAP's are polymers that exhibit a change in						
	size or shape, when stimulated by an electric charge.						
	Versatile mechanical, electrical, electro-mechanical properties.						
	 High mechanical flexibility, low density, structural simplicity, and low 						
		ost.	chorty, off dotar ar off phorty, and low				
		031.					
6.	S.No.	Electrolytic cell	Electrochemical Cell				
	5.110.	Electiony the cen	Electrochemical Cen				
	1.	Electrical energy is converted	Chemical energy is converted into				
		into chemical energy.	electrical energy.				
	2.	The anode is positive.	The anode is negative.				

	3.	The cathode is negative.	The cathode is positive.					
	4.	Electrons are supplied to the	Electrons are drawn from the cell.					
		cell.						
7	The main advantages of alkaline cell over dry cell are:							
	1. There is no leakage, since Zn does not dissolve readily in a basic							
		medium.						
	2. The shelf life of alkaline battery is longer than the dry battery,							
	because there is no corrosion of Zn. An alkaline battery is expected to power a device for a period of two to four months (except in a							
		few low-drain applications).	d of two to four months (except in a					
		• • • • • • • • • • • • • • • • • • • •	s constant voltage, as the current is					
		drawn from it.						
		4. Alkaline batteries are environ	nment-friendly, which can be disposed					
		as trash and do not require ac	ctive collection and recycling.					
8		used for recycling of Li-ion batt	ery by direct cycling method:					
		hermal Regeneration Process						
		2. Chemical Treatments						
	3. Electrochemical Methods							
	4. Mechanical Treatment							
		hemical Reconditioning	1 41 1 4 1 1					
9	Fuel cells or flow batteries work like batteries, but they do not run down or need							
10	recharging. They produce electricity and heat as long as fuel is supplied At Anode:							
10			n of electrons which then combine with					
	hydroxid		Tot elections which then comoline with					
	1	$+2OH^{-}_{(aq)} \longrightarrow M_{(s)} + 2 H_2O_{(l)}$	⊦2 e⁻					
	At Catho							
			ch further combine with H ₂ O to form					
	Ni(OH) ₂ .							
	2 NiO(O)	H) _(s) + 2 H ₂ O _(l) + 2 e ⁻ \longrightarrow 2 N i(OH	$_{2(l)} + 2 OH_{(aq)}$					
	Overall	cell reaction during use (discharg	ring):					
	$MH_{2(s)} + 2 NiO(OH)_{(s)} \longrightarrow M_{(s)} + 2 Ni(OH)_{2(l)}$							
	_ (-, (), ()							

PART-B

Question number		Mark distribution				
a		(i)Glass transition temperature				
		Definition-2 marks				
		Properties-6 marks				
		Factors – 8 marks				
11						
b (i)Polye		(i)Polyethylene				
		Preparation-6 marks				
Proj		Properties – 4 marks				
		Commercial applications-6 marks				
	a	(i)Epoxy resin				
		Preparation-6 marks				
		Properties-4 marks				
		Applications-6 marks				
12	b	(i) Piezoelectric polymer:				
		Preparation-6 marks				
		Properties-4 marks				
		Applications-6 marks				
	a	(i)EMF Series:				
		Defintion with table – 4 marks				
		Significance (any 6) -12 marks				
13	b	(i)Lead acid battery:				
13	l B	Description -4 marks				
		Diagram -4 marks				
		Equation - 4 marks				
		Adv. Dis. Adv. Applns2 marks				
	a	(i) Fuel cell:				
		Description -4 marks				
		Diagram -4 marks				
		Equation - 4 marks				
14		Adv. Dis. Adv. Applns2 marks				
•	b	(i)Hydrogen fuel				
		Production methods (PEC & PC)-6+6= 12 marks				
		Role of sustainability and green Env. = 4 marks				
	a	(i) Biodegradable polymer:				
		Preparation, Properties and Applications -12 marks				
		To attain circular economy				
15		and implementation of SDG - 4 marks				
	b	(i)Environmental effects of different				
		Energy storage devices -13 marks				
		E-Vehicle minimize Env. Pollution -3 marks				
