# Cálculo 1

Límite de una función (versión intuitiva - Parte II)



### LÍMITES INFINITOS

Escribiremos

$$\lim_{x o a}f(x)=\infty$$

arbitrariamente grande y positivo.

Escribiremos

$$\lim_{x o a}f(x)=-\infty$$

si x se acerca al número a, entonces f(x) se hace x si x se acerca al número x, entonces x0 se hace arbitrariamente grande y negativo.

En cualquiera de estos casos diremos que el límite no existe.





**EJEMPLO.** En las imágenes se presentan las gráficas de  $f(x)=rac{1}{x^2}$  y  $g(x)=rac{1}{x}$ , respectivamente.





A partir de las gráficas, decida si es posible determinar  $\lim_{x o 0} f(x)$  y  $\lim_{x o 0} g(x)$ .

## CRITERIO PARA LÍMITES INFINITOS

Sean p(x) y q(x) funciones tales que

$$\lim_{x o a} p(x) = L 
eq 0 \qquad ext{y} \qquad \lim_{x o a} q(x) = 0$$

- **1.** Si p(x) y q(x) tienen el mismo signo para todo x suficientemente cerca de a, entonces  $\lim_{x o a} \frac{p(x)}{q(x)} = +\infty$ .
- **2.** Si p(x) y q(x) tienen el signo contrario para todo x suficientemente cerca de a, entonces  $\lim_{x o a} rac{p(x)}{q(x)} = -\infty$ .

Nota. El criterio anterior también se aplica para límites laterales.

**EJEMPLO.** Calcule los siguiente límites.

1. 
$$\lim_{x \to 2} \frac{1-x}{(x-2)^2}$$

2. 
$$\lim_{x o -1^-} rac{x}{x+1}$$

3. 
$$\lim_{x o -3^+}rac{x+1}{x^2+x-6}$$

# LÍMITES LATERALES INFINITOS

## 1. Escribiremos

$$\lim_{x o a^-}f(x)=\infty$$

$$\lim_{x o a^+}f(x)=\infty$$

$$\lim_{x o a^-}f(x)=-\infty$$

$$\lim_{x o a^+}f(x)=-\infty$$









En cada uno de estos casos diremos que **el límite no existe**.

**EJEMPLO.** En la imagen se muestra la gráfica de una función f.



Determine, en caso que sea posible, los siguientes límites. Además, decida si el límite existe o no existe.

1. 
$$\lim_{x o 1^-} f(x)$$

2. 
$$\lim_{x o 1^+} f(x)$$

#### ASÍNTOTA VERTICAL

Diremos que la recta x=a es **asíntota vertical** de la curva y=f(x) si al menos uno de los siguientes límites se cumple

$$\circ \lim_{x o a} f(x) = \infty$$

$$\circ \lim_{x o a} f(x) = -\infty$$

$$\circ \lim_{x o a^-} f(x) = \infty$$

$$\circ \lim_{x o a^-} f(x) = -\infty$$

$$\circ \lim_{x o a^+} f(x) = \infty$$

$$\circ \lim_{x o a^+} f(x) = -\infty$$

Nota. Para determinar si la curva y=f(x) tiene por asíntota vertical a la recta x=a solo es necesario verificar que  $\lim_{x\to a^-}f(x)=\pm\infty$  о  $\lim_{x\to a^+}f(x)=\pm\infty$ .







**EJEMPLO.** A partir de la gráfica de f, determine cada uno de los siguientes límites y las ecuaciones de las asíntotas verticales.

(a) 
$$\lim_{x o -3^-} f(x)$$

(d) 
$$\lim_{x o 6^-} f(x)$$

(b) 
$$\lim_{x o -3^+} f(x)$$

(e) 
$$\lim_{x o 6^+} f(x)$$

(c) 
$$\lim_{x o -3} f(x)$$





## **EJEMPLO.** Considere la función

$$f(x) = rac{x^2 - 4}{x^2 - 3x + 2}$$

- 1. Identifique los números  $\boldsymbol{x}$  donde  $\boldsymbol{f}$  podría tener asíntota.
- 2. Determine las asíntotas verticales de f.