

Available online at www.starresearchjournal.com (Star International Journal)

MATHEMATICS

ON THE POSITIVE PELL EQUATION $y^2 = 112x^2 + 9$

K.MEENA¹, S.VIDHYALAKSHMI² & G.DHANALAKSHMI³

¹Former VC, Bharathidasan university, Trichy-620024. ²Professor, Department of Mathematics, SIGC, Trichy-620002. ³M.Phil scholar, Department of Mathematics, SIGC, Trichy-620002

Abstract

The binary quadratic equation represented by the positive pellian $y^2 = 112x^2 + 9$ is analyzed for its distinct integer solutions. A few interesting relations among the solutions are given. Further, employing the solutions of the above hyperbola, we have obtained solutions of other choices of hyperbolas, parabolas and special Pythagorean triangle.

Keywords: Binary quadratic, hyperbola, parabola, integral solutions, pell equation. 2010 Mathematics Subject Classification: 11D09.

INTRODUCTION

The binary quadratic equation of the form $y^2 = Dx^2 + 1$, where D is a non-square positive integer has been studied by various mathematicians for its non-trivial integral solutions when D takes different integral values[1-4]. For an extensive review of various problems, one may refer [5-20]. In this communication, yet another interesting hyperbola given by $y^2 = 112x^2 + 9$ is considered and infinitely many integer solutions are obtained. A few interesting properties among the solutions are presented.

METHOD OF ANALYSIS

The positive pell equation representing hyperbola under consideration is

$$y^2 = 112x^2 + 9 \tag{1}$$

whose smallest positive integer solution is $x_0 = 1$, $y_0 = 11$.

To obtain the other solutions of (1), consider the pell equation $y^2 = 112x^2 + 1$ whose solution is given by

$$\widetilde{x}_n = \frac{1}{2\sqrt{112}} g_n ,$$

$$\widetilde{y}_n = \frac{1}{2} f_n$$

where

$$\begin{split} f_n &= \left(127 + 12\sqrt{112}\right)^{n+1} + \left(127 - 12\sqrt{112}\right)^{n+1}, \\ g_n &= \left(127 + 12\sqrt{112}\right)^{n+1} - \left(127 - 12\sqrt{112}\right)^{n+1}. \end{split}$$

Applying Brahamagupta Lemma between (x_0, y_0) and $(\tilde{x}_n, \tilde{y}_n)$, the other integer solutions of (1) are given by

$$2\sqrt{112}x_{n+1} = \sqrt{112}f_n + 11g_n,$$

$$2y_{n+1} = 11f_n + \sqrt{112}g_n \quad \text{where } n = 0,1,2,....$$

The recurrence relations satisfied by the solutions x and y are given by

$$x_{n+1} - 254x_{n+2} + x_{n+3} = 0,$$

 $y_{n+1} - 254y_{n+2} + y_{n+3} = 0.$

Some numerical examples of x and y satisfying (1) are given in the Table 1 below.

Table1: Examples

n	x_n	y_n
0	1	11
1	259	2741
2	65785	696203
3	16709131	176832821
4	4244053489	44914840331

From the above table, we observe some interesting relations among the solutions which are presented below.

- 1) Both the values of x_n and y_n are odd.
- 2) Each of the following expressions is a nasty number.

$$\frac{11x_{2n+3} - 2741x_{2n+2} + 108}{9}$$

$$\frac{11x_{2n+4} - 696203x_{2n+2} + 27432}{2286}$$

$$44y_{2n+3} - 116032x_{2n+2} + 4572$$

$$44y_{2n+4} - 29471680x_{2n+2} + 1161252$$

$$96771$$

$$\frac{2784812y_{2n+2} - 448x_{2n+4} + 1161252}{96771}$$

$$\frac{2784812y_{2n+3} - 116032x_{2n+4} + 4572}{381}$$

3) Each of the following expressions is a cubical integer.

Each of the following expressions is a cubical integer.

$$\frac{11x_{3n+4} - 2741x_{3n+3} + 33x_{n+2} - 8223x_{n+1}}{54}$$

$$\frac{11x_{3n+5} - 696203x_{3n+3} + 33x_{n+3} - 2088609x_{n+1}}{13716}$$

$$\frac{22y_{3n+4} - 58016x_{3n+3} + 66y_{n+2} - 174048x_{n+1}}{1143}$$

$$\frac{22y_{3n+5} - 14735840x_{3n+3} + 66y_{n+3} - 44207520x_{n+1}}{290313}$$

$$\frac{2741x_{3n+5} - 696203x_{3n+4} + 8223x_{n+3} - 2088609x_{n+2}}{54}$$

$$\frac{5482y_{3n+3} - 224x_{3n+4} + 16446y_{n+1} - 672x_{n+2}}{1143}$$

$$\frac{5482y_{3n+4} - 58016x_{3n+4} + 16446y_{n+2} - 174048x_{n+2}}{9}$$

$$\frac{5482y_{3n+5} - 14735840x_{3n+4} + 16446y_{n+3} - 44207520x_{n+2}}{1143}$$

$$\frac{1392406y_{3n+3} - 224x_{3n+5} + 4177218y_{n+1} - 672x_{n+3}}{290313}$$

$$\frac{1392406y_{3n+4} - 58016x_{3n+5} + 4177218y_{n+2} - 174048x_{n+3}}{1143}$$

$$\frac{1392406y_{3n+4} - 58016x_{3n+5} + 4177218y_{n+2} - 174048x_{n+3}}{9}$$

$$\frac{1392406y_{3n+5} - 14735840x_{3n+5} + 4177218y_{n+2} - 174048x_{n+3}}{1143}$$

$$\frac{1392406y_{3n+5} - 14735840x_{3n+5} + 4177218y_{n+3} - 44207520x_{n+3}}{9}$$

$$\frac{259y_{3n+3} - y_{3n+4} + 777y_{n+1} - 3y_{n+2}}{54}$$

$$\frac{65785y_{3n+3} - y_{3n+5} + 197355y_{n+1} - 3y_{n+3}}{13716}$$

$$\frac{65785y_{3n+4} - 259y_{3n+5} + 197355y_{n+2} - 777y_{n+3}}{54}$$

4) Relations among the solutions.

*
$$x_{n+3} = 254x_{n+2} - x_{n+1}$$

* $12y_{n+1} = x_{n+2} - 127x_{n+1}$
* $12y_{n+2} = 127x_{n+2} - x_{n+1}$
* $3048y_{n+1} = x_{n+3} - 32257x_{n+1}$
* $24y_{n+2} = x_{n+3} - x_{n+1}$
* $3048y_{n+3} = 32257x_{n+3} - x_{n+1}$

- $127y_{n+1} = y_{n+2} 1344x_{n+1}$
- $32257y_{n+1} = y_{n+3} 341376x_{n+1}$
- 4 32257 $y_{n+2} = 127y_{n+3} 1344x_{n+1}$
- 4 $12y_{n+1} = 127x_{n+3} 32257x_{n+2}$
- 4 12 $y_{n+2} = x_{n+3} 127x_{n+2}$

- $y_{n+3} = y_{n+1} 2688x_{n+2}$
- $y_{n+3} = 127y_{n+2} + 1344x_{n+2}$
- $127x_{n+1} = 32257x_{n+2} 12y_{n+3}$
- $32257y_{n+2} = 127y_{n+1} + 1344x_{n+3}$
- $32257y_{n+3} = 341376x_{n+3} + y_{n+1}$
- 127 $y_{n+3} = 1344x_{n+3} + y_{n+2}$

REMARKABLE OBSERVATIONS

I. Employing linear combinations among the solutions of (1), one may generate integer solutions for other choices of hyperbolas which are presented in the Table2 below.

Tabsle2: Hyperbolas

- C	/Y/ Y/\	
S.	(X,Y)	Hyperbola
N		
0		
1	$(259\sqrt{112}x_{n+1} - \sqrt{112}x_{n+2}, 11x_{n+2} - 2741x_{n+1})$	$Y^2 - X^2 = 11664$
2	$\left(65785\sqrt{112}x_{n+1} - \sqrt{112}x_{n+3}, 11x_{n+3} - 696203x_{n+1}\right)$	$Y^2 - X^2 = 752514624$
3	$\left(5482\sqrt{112}x_{n+1} - 2\sqrt{112}y_{n+2}, 22y_{n+2} - 58016x_{n+1}\right)$	$Y^2 - X^2 = 5225796$
4	$\left(1392406\sqrt{112}x_{n+1} - 2\sqrt{112}y_{n+3}, 22y_{n+3} - 14735840x_{n+1}\right)$	$Y^2 - X^2 = 33712655186$
5	$\left(65785\sqrt{112}x_{n+2} - 259\sqrt{112}x_{n+3}, 2741x_{n+3} - 696203x_{n+2}\right)$	$Y^2 - X^2 = 11664$
6	$(22\sqrt{112}x_{n+2} - 518\sqrt{112}y_{n+1}, 5482y_{n+1} - 224x_{n+2})$	$Y^2 - X^2 = 5225796$
7	$(5482\sqrt{112}x_{n+2} - 518\sqrt{112}y_{n+2}, 5482y_{n+2} - 58016x_{n+2})$	$Y^2 - X^2 = 324$
8	$\left(1392406\sqrt{112}x_{n+2} - 518\sqrt{112}y_{n+3}, 5482y_{n+3} - 14735840x_{n+2}\right)$	$Y^2 - X^2 = 5225796$
9	$\left(22\sqrt{112}x_{n+3} - 131570\sqrt{112}y_{n+1}, 1392406y_{n+1} - 224x_{n+3}\right)$	$Y^2 - X^2 = 337126551876$

10	$\left(5482\sqrt{112}x_{n+3} - 131570\sqrt{112}y_{n+2}, 1392406y_{n+2} - 58016x_{n+3}\right)$	$Y^2 - X^2 = 5225796$
11	$(1392406\sqrt{112}x_{n+3} - 131570\sqrt{112}y_{n+3}, 1392406y_{n+3} - 14735840x_{n+3})$	$Y^2 - X^2 = 324$
12	$(11y_{n+2} - 2741y_{n+1}, 259y_{n+1} - y_{n+2})$	$112Y^2 - X^2 = 1306368$
13	$(11y_{n+3} - 696203y_{n+1}, 65785y_{n+1} - y_{n+3})$	$112Y^2 - X^2 = 842816378$
14	$ (2741y_{n+3} - 696203y_{n+2}, 65785y_{n+2} - 259y_{n+3}) $	$112Y^2 - X^2 = 1306368$

II. Employing linear combinations among the solutions of (1), one may generate integer solutions for other choices of parabolas which are presented in the Table3 below.

Table3: Parabolas

S.	(X,Y)	parabola
N		•
0		
1	$(259\sqrt{112}x_{n+1} - \sqrt{112}x_{n+2}, 11x_{2n+3} - 2741x_{2n+2})$	$X^2 = 54Y - 11664$
2	$\left(65785\sqrt{112}x_{n+1} - \sqrt{112}x_{n+3}, 11x_{2n+4} - 696203x_{2n+2}\right)$	$X^2 = 13716Y - 752514624$
3	$\left(5482\sqrt{112}x_{n+1} - 2\sqrt{112}y_{n+2}, 22y_{2n+3} - 58016x_{2n+2}\right)$	$X^2 = 1143Y - 5225796$
4	$\left(1392406\sqrt{112}x_{n+1} - 2\sqrt{112}y_{n+3}, 22y_{2n+4} - 14735840x_{2n+2}\right)$	$X^2 = 290313Y - 337126551876$
5	$\left(65785\sqrt{112}x_{n+2} - 259\sqrt{112}x_{n+3}, 2741x_{2n+4} - 696203x_{2n+3}\right)$	$X^2 = 54Y - 11664$
6	$(22\sqrt{112}x_{n+2} - 518\sqrt{112}y_{n+1}, 5482y_{2n+2} - 224x_{2n+3})$	$X^2 = 1143Y - 5225796$
7	$(5482\sqrt{112}x_{n+2} - 518\sqrt{112}y_{n+2}, 5482y_{2n+3} - 58016x_{2n+3})$	$X^2 = 9Y - 324$
8	$\left(1392406\sqrt{112}x_{n+2} - 518\sqrt{112}y_{n+3}, 5482y_{2n+4} - 14735840x_{2n+3}\right)$	$X^2 = 1143Y - 5225796$
9	$\left(22\sqrt{112}x_{n+3} - 131570\sqrt{112}y_{n+1}, 1392406y_{2n+2} - 224x_{2n+4}\right)$	$X^2 = 290313Y - 337126551876$
10	$\left(5482\sqrt{112}x_{n+3} - 131570\sqrt{112}y_{n+2}, 1392406y_{2n+3} - 58016x_{2n+4}\right)$	$X^2 = 1143Y - 5225796$
11	$\left(1392406\sqrt{112}x_{n+3} - 131570\sqrt{112}y_{n+3}, 1392406y_{2n+4} - 14735840x_{2n+4}\right)$	$X^2 = 9Y - 324$
12	$(11y_{n+2} - 2741y_{n+1}, 259y_{2n+2} - y_{2n+3})$	$X^2 = 6048Y - 1306368$

13	$(11y_{n+3} - 696203y_{n+1}, 65785y_{2n+2} - y_{2n+4})$	$X^2 = 1536192Y - 84281637888$
14	$(2741y_{n+3} - 696203y_{n+2}, 65785y_{2n+3} - 259y_{2n+4})$	$X^2 = 6048Y - 1306368$

III. Consider $m = x_{n+1} + y_{n+1}$, $n = x_{n+1}$, observe that m > n > 0. Treat m, n as the generators of the pythagorean triangle T (α, β, γ) ,

$$\alpha = 2mn$$
, $\beta = m^2 - n^2$, $\gamma = m^2 + n^2$.

Then the following interesting relations are observed.

a)
$$\alpha + 55\gamma - 56\beta = -9$$

b)
$$57\alpha - \gamma + 9 = \frac{224A}{P}$$

c)
$$\frac{2A}{P} = x_{n+1} y_{n+1}$$

d)
$$29\alpha - 28\beta + 27\gamma - \frac{112A}{P} = -9$$

CONCLUSION

In this paper, we have presented infinitely many integer solutions for the hyperbola represented by the positive pell equation $y^2 = 112x^2 + 9$. As the binary quadratic Diophantine equations are rich in variety, one may search for the other choices of positive pell equations and determine their integer solutions along with suitable properties.

ACKNOWLEDGEMENT

The financial support from the UGC, New Delhi (F-MRP-5123/14(SERO/UGC) dated march 2014) for a part of this work is gratefully acknowledged.

REFERENCES

- 1. Dickson L.E., "History of Theory of Numbers", chelsa Publishing company, Newyork, 1952, vol-2.
- Mordel L.J., "Diophantine Equations", Academic Press, Newyork, 1969.
 Telang S.J., "Number Theory", Tata MC Graw Hill Publishing Company Limited, New Delhi, 2000.
- David. M Burton., "Elementary Number Theory", Tata MC Graw Hill Publishing Company Limited, New Delhi,
- 5. Gopalan M.A., Vidhyalakshmi .S and Devibala .S., "On the Diophantine Equation $3x^2 + xy = 14$ " Acta Cinecia Indica, 2007, volume-XXXIIIM, No.2, 645-648.
- Gopalan M.A and Janaki.G., "Observations on $y^2 = 3x^2 + 1$ ", Acta Cinecia Indica, volume-XXXIVM, 2008, Number 2, 693-696.
- 7. Gopalan M.A and Sangeetha. G., "A Remarkable observation on $y^2 = 10x^2 + 1$ ", Impact Journal of Science and Technology, 2010, number-4, 103-106.
- 8. Gopalan M.A and Vijayalakshmi .R., "Observations on the Integral Solutions of $y^2 = 5x^2 + 1$ ", Impact Journal of Science and Technology, 2010, volume Number4, 125-129.
- Gopalan M.A and Sivagami.B.," Observations on the Integral Solutions of $y^2 = 7x^2 + 1$ ", Antarctica Journal of Mathematics, 2010, 7(3), 291-296.
- 10. Gopalan M.A and Yamuna. R.S., "Remarkable Observations on the Binary Quadratic Equation $y^2 = (k+1)x^2 + 1, k \in z - \{0\}$ ", Impact Journal of Science and Technology, 2010, volume Number 4, 61-65.
- 11. Gopalan M.A and Vijayalakshmi. R., "Special Pythagorean triangle generated through the Integral Solutions of the Equation $y^2 = (k+1)x^2 + 1$," Antarctica Journal of Mathematics, 2010, 7(5), 503-507.
- 12. Gopalan M.A and Srividhya.G., "Relations among M-Gonal Number through the Equation $y^2 = 2x^2 + 1$ ", Antarctica Journal of Mathematics, 2010, 7(3), 363-369.

- 13. Gopalan M.A and Palanikumar. R., "Observation on $y^2 = 12x^2 + 1$ ", Antarctica Journal of Mathematics, 2011, 8(2), 149-152.
- 14. Gopalan M.A., Vidhyalakshmi .S Usha Rani T.R and Mallika .S., "Observations on $y^2 = 12x^2 3$ ", Besse Journal of Math, 2012, 2(3), 153-158.
- 15. Gopalan M.A., Vidhyalakshmi. S., and Umarani .J., "Remarkable Observations on the hyperbola $y^2 = 24x^2 + 1$ ", Bulletin of Mathematics and Statistics Research, 2013, 1, 9-12.
- 16. Gopalan M.A., Vidhyalakshmi. S., Maheswari. D., "Observations on the hyperbola $y^2 = 34x^2 + 1$ ", Bulletin of Mathematics and Statistics Research, 2014, 1, 9-12.
- 17. Geetha. T., Gopalan M.A., Vidhyalakshmi. S., "Observations on the hyperbola $y^2 = 72x^2 + 1$ ", Scholars Journal of Physics, Mathematics and Statistics, 2014, 1(1), 1-3.
- 18. Gopalan M.A and Sivagami. B., "Special Pythagorean triangle generated through the Integral Solutions of the Equation $y^2 = (k^2 + 2k)x^2 + 1$ ", Diaphantus. J. Math., 2(1), 2013, 25-30.
- 19. Gopalan M.A., Vidhyalakshmi .S Usha Rani T.R ., and Agalya. K., "Observations on the hyperbola $y^2 = 110x^2 + 1$ ", International Journal of Multidisplinary Research and Development, 2015, volume 2, Issue 3, 237-239.
- 20. Vidhyalakshmi. S., Gopalan M.A., Sumithra. S., Thiruniraiselvi. N., "Observations on the hyperbola $y^2 = 60x^2 + 4$ ", JIRT, 2014, volume1, issue11, 119-121.