ACM ICPC REGIONAL 2011

1. Generales

1.1. LIS en O(nlgn).

```
vector<int> LIS(vector<int> X) {
   int n = X.size(), L = 0, M[n+1], P[n];
   int lo, hi, mi;

L = 0;
   M[0] = 0;

for(int i=0, j; i<n; i++) {
   lo = 0; hi = L;

   while(lo!=hi) {
      mi = (lo+hi+1)/2;

      if(X[M[mi]]<X[i]) lo = mi;
      else hi = mi-1;
   }

   j = lo;</pre>
```

1.2. Problema de Josephus.

```
int survivor(int n, int m) {
   for (int s=0,i=1;i<=n;++i) s = (s+m)%i;</pre>
```

1.3. Lectura rápida de enteros.

```
void readInt(int &n) {
   int sign = 1;
   char c;
  bool found = false;
```

```
P[i] = M[j];

if(j==L || X[i]<X[M[j+1]]) {
        M[j+1] = i;
        L = max(L, j+1);
    }

int a[L];

for(int i=L-1, j=M[L]; i>=0; i--) {
    a[i] = X[j];
    j = P[j];
}

return vector<int>(a, a+L);
}
```

```
return (s+1);
}

n = 0;
```

c = getc(stdin);

while(true) {

```
switch(c) {
   case '-' :
      sign = -1;
      found = true;
      break;
   case '_':
      if(found) goto jump;
      break;
   case '\n':
      if(found) goto jump;
      break;
```

1.4. Contar inversiones.

```
#define MAX_SIZE 100000
int A[MAX_SIZE],C[MAX_SIZE],pos1,pos2,sz;

long long countInversions(int a, int b) {
   if (a==b) return 0;

   int c = ((a+b)>>1);
   long long aux = countInversions(a,c)+countInversions(c+1,b);
   pos1 = a; pos2 = c+1; sz = 0;

while(pos1<=c && pos2<=b) {
   if (A[pos1]<A[pos2]) C[sz] = A[pos1++];
   else{</pre>
```

1.5. Números dada la suma de pares.

```
bool solve(int N, int sums[], int ans[]) {
  int M = N*(N-1)/2;
  multiset<int> S;
  multiset<int> :: iterator it;

  sort(sums,sums+M);

  for(int i = 2;i<M;++i) {
    if((sums[0]+sums[1]-sums[i])%2!=0) continue;

  ans[0] = (sums[0]+sums[1]-sums[i])/2;</pre>
```

```
default:
         if(c>='0' && c<='9'){
            n = n * 10 + c - '0';
            found = true;
          }else goto jump;
         break;
jump:
   n *= sign;
      C[sz] = A[pos2++];
      aux += c-pos1+1;
   ++sz;
if (pos1>c) memcpy (C+sz, A+pos2, (b-pos2+1) *sizeof(int));
else memcpy(C+sz,A+pos1,(c-pos1+1)*sizeof(int));
sz = b-a+1;
memcpy(A+a,C,sz*sizeof(int));
return aux;
   S = multiset<int>(sums,sums+M);
   bool valid = true;
   for(int j = 1; j<N && valid; ++j) {</pre>
      ans[j] = (*S.begin())-ans[0];
      for (int k = 0; k< j && valid; ++k) {</pre>
         it = S.find(ans[k]+ans[j]);
         if(it==S.end()) valid = false;
```

```
else S.erase(it);
}

if(valid) return true;
```

return false;
}

2. Grafos

2.1. Ciclo de Euler.

```
// Las listas de adyacencia se deben ordenar de forma ascendente para
// obtener el ciclo lexicografico minimo deacuerdo a la numeracion
// de las aristas
#define MAX_V 44
#define MAX_E 1995
int N, deg[MAX_V], eu[MAX_E], ev[MAX_E];
list<int> G[MAX_V],L;
bool visited[MAX_V];
stack<int> S;
queue<int> Q;
bool connected() {
   int cont = 0;
   Q.push(0);
   memset (visited, false, sizeof (visited));
   visited[0] = true;
   while(!Q.empty()){
      int v = Q.front(); Q.pop();
      ++cont;
      for(list<int>::iterator it = G[v].begin();it!=G[v].end();++it){
            int e = *it;
            int w = eu[e] == v? ev[e] : eu[e];
         if(!visited[w]){
            visited[w] = true;
            Q.push(w);
   return cont == N:
```

```
bool eulerian(){
  if(!connected()) return false;
   for (int v = 0; v < N; ++v)
     if(deg[v]&1)
         return false;
   return true;
void take_edge(int v, int w) {
  --deg[v]; --deg[w];
  int e = G[v].front();
  G[v].pop_front();
   for(list<int>::iterator it = G[w].begin();it!=G[w].end();++it){
      if(*it==e){
         G[w].erase(it);
         break;
void euler(int v) {
  while(true) {
      if(G[v].empty()) break;
      int e = G[v].front();
      int w = eu[e] == v? ev[e] : eu[e];
      S.push(e);
      take_edge(v,w);
      v = w;
```

```
bool find_cycle(int s) {
   if(!eulerian()) return false;

int v = s,e;
   L.clear();

do{
     euler(v);
     e = S.top(); S.pop();
     L.push_back(e);

   v = eu[e] == v? ev[e] : eu[e];
} while(!S.empty());

return true;
```

2.2. Union-Find.

```
#define MAX_SIZE 26
int parent[MAX_SIZE], rank[MAX_SIZE];

void Make_Set(const int x) {
   parent[x] = x; rank[x] = 0;
}

int Find(const int x) {
   if(parent[x]!=x) parent[x] = Find(parent[x]);
   return parent[x];
}
```

2.3. Punto de articulación.

```
#define SZ 100
bool M[SZ][SZ];
int N,colour[SZ],dfsNum[SZ],num,pos[SZ],leastAncestor[SZ],parent[SZ];
int dfs(int u) {
   int ans = 0,cont = 0,v;
   stack<int> S;
   S.push(u);
```

```
void print_cycle(int s){
  if(!find_cycle(s)) printf("-1\n");
      bool first = true;
      reverse(L.begin(), L.end());
      for(list<int>::iterator e = L.begin();e!=L.end();++e){
            if(!first) printf("_");
            first = false;
         printf("%d",1+(*e));
      printf("\n");
void Union(const int x, const int y) {
  int PX = Find(x), PY = Find(y);
  if(rank[PX]>rank[PY]) parent[PY] = PX;
      parent[PX] = PY;
      if(rank[PX] == rank[PY]) ++ rank[PY];
   while(!S.empty()){
      v = S.top();
      if(colour[v] == 0) {
         colour[v] = 1;
         dfsNum[v] = num++;
         leastAncestor[v] = num;
      for(;pos[v]<N;++pos[v]){</pre>
         if(M[v][pos[v]] && pos[v]!=parent[v]) {
```

2.4. Detección de puentes.

```
#define SZ 100
bool M[SZ][SZ];
int N,colour[SZ],dfsNum[SZ],num,pos[SZ],leastAncestor[SZ],parent[SZ];

void dfs(int u) {
   int v;
   stack<int> S;
   S.push(u);

   while(!S.empty()) {
      v = S.top();
      if(colour[v] == 0) {
        colour[v] = 1;
        dfsNum[v] = num++;
        leastAncestor[v] = num;
   }
```

```
for(int j = 0; j<N; j++)
         if(M[i][j] && parent[j]==i && leastAncestor[j]>=dfsNum[i]) {
            printf("%d\n",i);
            ++ans;
            break;
   return ans;
void Articulation_points(){
   memset(colour, 0, sizeof(colour));
   memset(pos, 0, sizeof(pos));
   memset (parent, -1, sizeof (parent));
   num = 0;
   int total = 0;
   for(int i = 0;i<N;++i) if(colour[i]==0) total += dfs(i);</pre>
   printf("#_Articulation_Points_:_%d\n",total);
      for(;pos[v]<N;++pos[v]){</pre>
         if(M[v][pos[v]] && pos[v]!=parent[v]){
            if(colour[pos[v]]==0){
               parent[pos[v]] = v;
               S.push(pos[v]);
               break;
            }else leastAncestor[v] <?= dfsNum[pos[v]];</pre>
      if (pos[v]==N) {
         colour[v] = 2;
         S.pop();
         if(v!=u) leastAncestor[parent[v]] <?= leastAncestor[v];</pre>
```

```
void Bridge_detection() {
   memset(colour,0,sizeof(colour));
   memset(pos,0,sizeof(pos));
   memset(parent,-1,sizeof(parent));
   num = 0;
   int ans = 0;
   for(int i = 0;i<N;i++) if(colour[i]==0) dfs(i);</pre>
```

2.5. Componentes biconexas (Tarjan).

```
#define MAXN 100000
int V;
vector<int> adj[MAXN];
int dfn[MAXN],low[MAXN];
vector< vector<int> > C;
stack< pair<int, int> > stk;
void cache_bc(int x, int y) {
   vector<int> com;
   int tx, ty;
      tx = stk.top().first, ty = stk.top().second;
      stk.pop();
      com.push_back(tx), com.push_back(ty);
   }while(tx!=x || ty!=y);
   C.push_back(com);
void DFS(int cur, int prev, int number) {
   dfn[cur] = low[cur] = number;
   for (int i = adj[cur].size()-1;i>=0;--i){
      int next = adj[cur][i];
      if(next==prev) continue;
```

```
for (int i = 0; i < N; i++)</pre>
      for(int j = 0; j<N; j++)
         if(parent[j]==i && leastAncestor[j]>dfsNum[i]){
            printf("%d_-_%d\n",i,j);
            ++ans;
  printf("%d_bridges\n",ans);
      if (dfn[next] ==-1) {
         stk.push(make_pair(cur,next));
         DFS (next, cur, number+1);
         low[cur] = min(low[cur], low[next]);
         if(low[next]>=dfn[cur]) cache_bc(cur,next);
      }else low[cur] = min(low[cur],dfn[next]);
void biconnected_components() {
   memset (dfn, -1, sizeof (dfn));
  C.clear();
  DFS(0,0,0);
   int comp = C.size();
  printf("%d\n",comp);
   for (int i = 0; i < comp; ++i) {</pre>
      sort(C[i].begin(),C[i].end());
      C[i].erase(unique(C[i].begin(),C[i].end()),C[i].end());
      int m = C[i].size();
      for(int j = 0; j<m; ++j) printf("%d_", 1+C[i][j]);</pre>
      printf("\n");
```

2.6. Componentes fuertemente conexas (Tarjan).

```
#define MAX_V 100000
vector<int> L[MAX_V],C[MAX_V];
int V, dfsPos, dfsNum[MAX_V], lowlink[MAX_V], num_scc, comp[MAX_V];
bool in_stack[MAX_V];
stack<int> S;
void tarjan(int v) {
   dfsNum[v] = lowlink[v] = dfsPos++;
   S.push(v); in_stack[v] = true;
   for(int i = L[v].size()-1;i>=0;--i){
      int w = L[v][i];
      if(dfsNum[w] == -1) {
         tarjan(w);
         lowlink[v] = min(lowlink[v],lowlink[w]);
      }else if(in_stack[w]) lowlink[v] = min(lowlink[v], lowlink[w]);
   if(dfsNum[v] == lowlink[v]) {
      vector<int> &com = C[num_scc];
      com.clear();
      int aux;
```

2.7. Ciclo de peso promedio mínimo (Karp).

```
#define MAX_V 676

vector< pair<int, int> > L[MAX_V+1];
int dist[MAX_V+1][MAX_V+2];

void karp(int n) {
    for(int i = 0;i<n;++i)
        if(!L[i].empty())
            L[n].push_back(make_pair(i,0));
        ++n;

for(int i = 0;i<n;++i)
    fill(dist[i],dist[i]+(n+1),INT_MAX);

dist[n-1][0] = 0;</pre>
```

```
do√
         aux = S.top(); S.pop();
         comp[aux] = num_scc;
         com.push_back(aux);
         in_stack[aux] = false;
      }while (aux!=v);
      ++num_scc;
void build_scc(int _V) {
  V = V;
   memset (dfsNum, -1, sizeof (dfsNum));
   memset(in_stack, false, sizeof(in_stack));
  dfsPos = num_scc = 0;
   for (int i = 0; i < V; ++i)</pre>
      if(dfsNum[i]==-1)
         tarjan(i);
   for (int k = 1; k \le n; ++k) for (int u = 0; u \le n; ++u) {
      if (dist[u][k-1] == INT_MAX) continue;
      for(int i = L[u].size()-1;i>=0;--i)
         dist[L[u][i].first][k] = min(dist[L[u][i].first][k],
                                   dist[u][k-1]+L[u][i].second);
```

bool flag = true;

if(flag){

for(int i = 0;i<n && flag;++i)</pre>

if (dist[i][n]!=INT_MAX)

flag = false;

```
//El grafo es aciclico
return;
}
double ans = 1e15;
for (int u = 0;u+1<n;++u) {
   if (dist[u][n]==INT_MAX) continue;
   double W = -1e15;</pre>
```

2.8. Minimum cost arborescence.

```
#define MAX_V 1000
typedef int edge_cost;
edge_cost INF = INT_MAX;
int V, root, prev[MAX_V];
bool adj[MAX_V][MAX_V];
edge_cost G[MAX_V][MAX_V], MCA;
bool visited[MAX_V], cycle[MAX_V];
void add_edge(int u, int v, edge_cost c){
   if(adj[u][v]) G[u][v] = min(G[u][v],c);
   else G[u][v] = c;
   adj[u][v] = true;
void dfs(int v){
   visited[v] = true;
   for (int i = 0; i < V; ++i)</pre>
      if(!visited[i] && adj[v][i])
         dfs(i);
bool check(){
   memset (visited, false, sizeof (visited));
   dfs(root);
   for(int i = 0;i<V;++i)</pre>
      if(!visited[i])
         return false;
   return true;
```

```
for (int k = 0; k < n; ++k)
         if(dist[u][k]!=INT_MAX)
             W = max(W, (double) (dist[u][n]-dist[u][k])/(n-k));
      ans = min(ans, W);
int exist_cycle(){
  prev[root] = root;
   for (int i = 0; i < V; ++i) {</pre>
      if(!cycle[i] && i!=root){
         prev[i] = i; G[i][i] = INF;
         for (int j = 0; j<V; ++j)</pre>
             if(!cycle[j] && adj[j][i] && G[j][i] <G[prev[i]][i])</pre>
                prev[i] = j;
   for (int i = 0, j; i < V; ++i) {</pre>
      if(cycle[i]) continue;
      memset (visited, false, sizeof (visited));
      j = i;
      while(!visited[j]){
         visited[j] = true;
         j = prev[j];
      if(j==root) continue;
      return j;
   return -1;
void update(int v) {
```

```
MCA += G[prev[v]][v];
for(int i = prev[v];i!=v;i = prev[i]){
   MCA += G[prev[i]][i];
   cycle[i] = true;
for (int i = 0; i < V; ++i)</pre>
   if(!cycle[i] && adj[i][v])
      G[i][v] -= G[prev[v]][v];
for(int j = prev[v]; j!=v; j = prev[j]) {
   for(int i = 0;i<V;++i){</pre>
      if(cycle[i]) continue;
      if(adj[i][j]){
         if(adj[i][v]) G[i][v] = min(G[i][v],G[i][j]-G[prev[j]][j]);
         else G[i][v] = G[i][j]-G[prev[j]][j];
         adj[i][v] = true;
      if(adj[j][i]){
         if(adj[v][i]) G[v][i] = min(G[v][i],G[j][i]);
         else G[v][i] = G[j][i];
```

2.9. Ordenamiento Topológico.

```
#define MAX_v 100000
#define MAX_E 100000

int V,E,indeg[MAX_V],topo_pos[MAX_V];
int last[MAX_V],next[MAX_E],to[MAX_E];
int Q[MAX_V],head,tail;

void init() {
    memset(indeg,0,sizeof(indeg));
    memset(last,-1,sizeof(last));
}

void add_edge(int u, int v) {
    to[E] = v, next[E] = last[u], last[u] = E; ++E;
    ++indeg[v];
}

void topological_sort() {
```

```
bool min_cost_arborescence(int _root) {
   root = _root;
  if(!check()) return false;
   memset(cycle, false, sizeof(cycle));
  MCA = 0;
   int v;
   while((v = exist_cycle())!=-1)
      update(v);
   for (int i = 0; i < V; ++i)</pre>
     if(i!=root && !cycle[i])
         MCA += G[prev[i]][i];
   return true;
  head = tail = 0;
   for (int i = 0; i < V; ++i) {</pre>
      if(indeg[i]==0){
         topo_pos[i] = tail;
         Q[tail++] = i;
   while (head!=tail) {
      int u = Q[head++];
      for(int e = last[u], v; e!=-1; e = next[e]) {
         v = to[e];
         --indeg[v];
         if(indeg[v]==0){
            topo_pos[v] = tail;
```

adj[v][i] = true;

```
Q[tail++] = v;
```

2.10. Diámetro de un árbol.

```
#define MAX_SIZE 100
bool visited[MAX_SIZE];
int prev[MAX_SIZE];
int most_distant(int s) {
    queue<int> Q;
    Q.push(s);

    memset(visited, false, sizeof(visited));
    visited[s] = true;
    prev[s] = -1;
    int ans = s;

while(!Q.empty()) {
        int aux = Q.front();
    }
}
```

2.11. Stable marriage.

```
Q.pop();
ans = aux;

for(int i=L[aux].size()-1;i>=0;--i){
   int v = L[aux][i];
   if(visited[v]) continue;
   visited[v] = true;
   Q.push(v);
   prev[v] = aux;
}
```

return ans;

2.12. Bipartite matching (Hopcroft Karp).

```
#define MAX_V1 50000
#define MAX_V2 50000
#define MAX_E 150000
int V1, V2, left[MAX_V2], right[MAX_V1];
int E, to[MAX_E], next[MAX_E], last[MAX_V1];
void hopcroft_karp_init(int v1, int v2){
  V1 = v1; V2 = v2; E = 0;
   memset(last,-1, sizeof(last));
void hopcroft_karp_add_edge(int u, int v) {
   to[E] = v; next[E] = last[u]; last[u] = E++;
bool visited[MAX_V1];
bool hopcroft_karp_dfs(int u) {
   if(visited[u]) return false;
   visited[u] = true;
   for (int e = last[u], v; e! = -1; e = next[e]) {
      v = to[e];
      if(left[v] ==-1 || hopcroft_karp_dfs(left[v])){
         right[u] = v;
         left[v] = u;
```

2.13. Algoritmo húngaro.

```
#define MAX_v 500

int V,cost[MAX_V][MAX_V];
int lx[MAX_V],ly[MAX_V];
int max_match,xy[MAX_V],yx[MAX_V],prev[MAX_V];
bool S[MAX_V],T[MAX_V];
int slack[MAX_V],slackx[MAX_V];
int q[MAX_V],head,tail;

void init_labels(){
    memset(lx,0,sizeof(lx));
```

```
return true;
   return false;
int hopcroft_karp_match() {
   memset(left,-1, sizeof(left));
   memset(right, -1, sizeof(right));
  bool change = true;
   while (change) {
      change = false;
      memset (visited, false, sizeof (visited));
      for(int i = 0; i<V1; ++i)</pre>
         if(right[i]==-1)
             change |= hopcroft_karp_dfs(i);
   int ret = 0;
   for (int i = 0; i < V1; ++i)</pre>
      if(right[i]!=-1) ++ret;
   return ret;
   memset(ly,0,sizeof(ly));
   for (int x = 0; x < V; ++x)
      for (int y = 0; y < V; ++y)
         lx[x] = max(lx[x], cost[x][y]);
void update_labels() {
   int x,y,delta = INT_MAX;
```

for(y = 0;y<V;++y) if(!T[y]) delta = min(delta,slack[y]);</pre>

```
for (x = 0; x < V; ++x) if (S[x]) lx[x] -= delta;
   for (y = 0; y < V; ++y) if (T[y]) ly [y] += delta;
   for(y = 0;y<V;++y) if(!T[y]) slack[y] -= delta;</pre>
void add_to_tree(int x, int prevx) {
   S[x] = true;
   prev[x] = prevx;
   for (int v = 0; v < V; ++v) {
      if(lx[x]+ly[y]-cost[x][y]<slack[y]){
          slack[y] = lx[x]+ly[y]-cost[x][y];
          slackx[y] = x;
void augment(){
   int x,y,root;
   head = tail = 0;
   memset(S, false, sizeof(S));
   memset(T, false, sizeof(T));
   memset(prev,-1, sizeof(prev));
   for (x = 0; x < V; ++x) {
      if (xy[x]==-1) {
          q[tail++] = root = x;
          prev[root] = -2;
         S[root] = true;
          break;
   for (y = 0; y < V; ++y) {
      slack[y] = lx[root]+ly[y]-cost[root][y];
      slackx[y] = root;
   while(true) {
      while(head<tail) {</pre>
         x = q[head++];
          for (y = 0; y < V; ++y) {
             if(cost[x][y] == lx[x] + ly[y] && !T[y]) {
                if (yx[y] ==-1) break;
```

```
T[y] = true;
                q[tail++] = yx[y];
                add_to_tree(yx[y],x);
         if(y<V) break;</pre>
      if(y<V) break;</pre>
      update_labels();
      head = tail = 0;
      for (y = 0; y < V; ++y)  {
         if(!T[y] && slack[y]==0){
            if(yx[y]==-1){
                x = slackx[y];
               break;
            T[y] = true;
            if(!S[yx[y]]){
               q[tail++] = yx[y];
                add_to_tree(yx[y],slackx[y]);
      if(y<V) break;</pre>
   ++max_match;
   for (int cx = x, cy = y, ty; cx!=-2; cx = prev[cx], cy = ty) {
      ty = xy[cx];
      yx[cy] = cx;
      xy[cx] = cy;
int hungarian(){
   int ret = 0;
   max_match = 0;
  memset(xy,-1, sizeof(xy));
```

```
memset (yx,-1,sizeof(yx));
init_labels();
for(int i = 0;i<V;++i) augment();</pre>
```

2.14. Non bipartite matching.

```
#define MAXN 222
int n;
bool adj[MAXN][MAXN];
int p[MAXN],m[MAXN],d[MAXN],c1[MAXN], c2[MAXN];
int q[MAXN], *qf, *qb;
int pp[MAXN];
int f(int x) {return x == pp[x] ? x : (pp[x] = f(pp[x]));}
void u(int x, int y) {pp[f(x)] = f(y);}
int v[MAXN];
void path(int r, int x) {
  if (r == x) return;
   if (d[x] == 0) {
     path(r, p[p[x]]);
     int i = p[x], j = p[p[x]];
     m[i] = j; m[j] = i;
   else if (d[x] == 1) {
     path(m[x], c1[x]);
     path(r, c2[x]);
     int i = c1[x], j = c2[x];
     m[i] = j; m[j] = i;
int lca(int x, int y, int r){
   int i = f(x), j = f(y);
   while (i != j && v[i] != 2 && v[j] != 1) {
     v[i] = 1; v[j] = 2;
     if (i != r) i = f(p[i]);
     if (j != r) j = f(p[j]);
   int b = i, z = j;
```

```
for (int x = 0; x < V; ++x) ret += cost[x][xy[x]];
  return ret;
  if(v[j] == 1) swap(b, z);
   for (i = b; i != z; i = f(p[i])) v[i] = -1;
  v[z] = -1;
   return b;
void shrink_one_side(int x, int y, int b) {
   for(int i = f(x); i != b; i = f(p[i])){
     u(i, b);
     if(d[i] == 1) c1[i] = x, c2[i] = y, *qb++ = i;
bool BFS(int r) {
  for(int i=0; i<n; ++i)
     pp[i] = i;
  memset(v, -1, sizeof(v));
  memset(d, -1, sizeof(d));
  d[r] = 0;
  qf = qb = q;
   *qb++ = r;
  while(qf < qb){</pre>
      for(int x=*qf++, y=0; y<n; ++y) {</pre>
         if(adj[x][y] && m[y] != y && f(x) != f(y)){
            if(d[y] == -1){
               if(m[y] == -1) {
                                     path(r, x);
                                     m[x] = y; m[y] = x;
                                     return true;
               else{
                                     p[y] = x; p[m[y]] = y;
                                     d[y] = 1; d[m[y]] = 0;
                                     *qb++ = m[y];
```

```
}
}
else if(d[f(y)] == 0) {
    int b = lca(x, y, r);
        shrink_one_side(x, y, b);
        shrink_one_side(y, x, b);
}
}
return false;
```

2.15. Flujo máximo (Dinic).

```
struct flow_graph{
  int MAX_V,E,s,t,head,tail;
  int *cap, *to, *next, *last, *dist, *q, *now;
  flow_graph(){}
  flow_graph(int V, int MAX_E) {
     MAX_V = V; E = 0;
     cap = new int[2*MAX_E], to = new int[2*MAX_E], next = new int[2*MAX_E];
     last = new int[MAX_V], q = new int[MAX_V];
     dist = new int[MAX_V], now = new int[MAX_V];
     fill(last, last+MAX_V, -1);
  void clear(){
     fill(last, last+MAX_V, -1);
     E = 0;
  void add edge(int u, int v, int uv){
     to[E] = v, cap[E] = uv, next[E] = last[u]; last[u] = E++;
     to[E] = u, cap[E] = 0, next[E] = last[v]; last[v] = E++;
  bool bfs(){
     fill(dist, dist+MAX_V, -1);
     head = tail = 0;
     q[tail] = t; ++tail;
     dist[t] = 0;
```

```
int match(){
  memset(m, -1, sizeof(m));
  int c = 0;
   for (int i=0; i<n; ++i)</pre>
      if (m[i] == -1)
         if (BFS(i)) c++;
         else m[i] = i;
   return c;
      while(head<tail) {</pre>
         int v = q[head]; ++head;
         for(int e = last[v];e!=-1;e = next[e]){
            if(cap[e^1]>0 && dist[to[e]]==-1){
               q[tail] = to[e]; ++tail;
               dist[to[e]] = dist[v]+1;
      return dist[s]!=-1;
   int dfs(int v, int f){
      if(v==t) return f;
      for(int &e = now[v];e!=-1;e = next[e]){
         if(cap[e]>0 && dist[to[e]]==dist[v]-1){
            int ret = dfs(to[e],min(f,cap[e]));
            if(ret>0){
               cap[e] -= ret;
               cap[e^1] += ret;
               return ret;
```

```
return 0;
}
long long max_flow(int source, int sink) {
  s = source; t = sink;
  long long f = 0,df;

while(bfs()) {
  for(int i = 0;i<MAX_V;++i) now[i] = last[i];</pre>
```

2.16. Flujo máximo - Costo Mínimo (Succesive Shortest Path).

```
#define MAX V 350
#define MAX_E 2*12500
typedef int cap_type;
typedef long long cost_type;
const cost_type INF = LLONG_MAX;
int V, E, prev[MAX_V], last[MAX_V], to[MAX_E], next[MAX_E];
bool visited[MAX V];
cap_type flowVal, cap[MAX_E];
cost_type flowCost,cost[MAX_E],dist[MAX_V],pot[MAX_V];
void init(int _V) {
   memset(last,-1, sizeof(last));
   V = _{V}; E = 0;
void add_edge(int u, int v, cap_type _cap, cost_type _cost) {
   to[E] = v, cap[E] = \_cap;
   cost[E] = _cost, next[E] = last[u];
  last[u] = E++;
  to[E] = u, cap[E] = 0;
  cost[E] = -_cost, next[E] = last[v];
   last[v] = E++;
bool BellmanFord(int s, int t) {
   bool stop = false;
   for(int i = 0;i<V;++i) dist[i] = INF;</pre>
   dist[s] = 0;
   for (int i = 1;i<=V && !stop;++i) {</pre>
```

```
while(true) {
            df = dfs(s,INT_MAX);
            if (df==0) break;
            f += df;
      return f;
};
      stop = true;
      for (int j = 0; j < E; ++j) {
         int u = to[j^1], v = to[j];
         if(cap[j]>0 && dist[u]!=INF && dist[u]+cost[j]<dist[v]){</pre>
            stop = false:
            dist[v] = dist[u]+cost[j];
   for(int i = 0;i<V;++i) if (dist[i]!=INF) pot[i] = dist[i];</pre>
   return stop;
void mcmf(int s, int t){
   flowVal = flowCost = 0;
   memset (pot, 0, sizeof (pot));
   if(!BellmanFord(s,t)){
      printf("Ciclo_negativo_de_capacidad_infinita");
      return;
   while(true) {
      memset (prev, -1, sizeof (prev));
      memset (visited, false, sizeof (visited));
      for(int i = 0;i<V;++i) dist[i] = INF;</pre>
      priority_queue< pair<cost_type, int> > Q;
```

Q.push(make_pair(0,s));

```
dist[s] = prev[s] = 0;
while(!Q.empty()) {
   int aux = Q.top().second;
   Q.pop();

   if(visited[aux]) continue;
   visited[aux] = true;

   for(int e = last[aux];e!=-1;e = next[e]) {
      if(cap[e]<=0) continue;
      cost_type new_dist = dist[aux]+cost[e]+pot[aux]-pot[to[e]];
      if(new_dist<dist[to[e]]) {
         dist[to[e]] = new_dist;
         prev[to[e]] = e;
         Q.push(make_pair(-new_dist,to[e]));
      }
   }
}</pre>
```

2.17. Flujo máximo (Dinic + Lower Bounds).

```
struct flow_graph{
  int V,E,s,t;
  int *flow, *low, *cap, *to, *next, *last, *delta;
  int *dist,*q,*now,head,tail;
  flow_graph(){}
   flow_graph(int V, int E) {
      (*this).V = V; (*this).E = 0;
     int TE = 2 * (E+V+1);
     flow = new int[TE]; low = new int[TE]; cap = new int[TE];
     to = new int[TE]; next = new int[TE];
     last = new int[V+2]; delta = new int[V];
     dist = new int[V+2]; q = new int[V+2]; now = new int[V+2];
  void clear(int V) {
      (*this).V = V; (*this).E = 0;
      fill(last,last+V,-1);
  void add_edge(int a, int b, int 1, int u) {
     to[E] = b; low[E] = 1; cap[E] = u; flow[E] = 0;
     next[E] = last[a]; last[a] = E++;
```

```
if (prev[t]==-1) break;
   cap_type f = cap[prev[t]];
   for(int i = t;i!=s;i = to[prev[i]^1]) f = min(f,cap[prev[i]]);
   for(int i = t;i!=s;i = to[prev[i]^1]){
      cap[prev[i]] -= f;
      cap[prev[i]^1] += f;
   flowVal += f;
   flowCost += f*(dist[t]-pot[s]+pot[t]);
   for(int i = 0; i < V; ++i) if (prev[i]!=-1) pot[i] += dist[i];</pre>
   to[E] = a; low[E] = 0; cap[E] = 0; flow[E] = 0;
   next[E] = last[b]; last[b] = E++;
bool bfs(){
   fill(dist, dist+V+2,-1);
  head = tail = 0;
   q[tail] = t; ++tail;
   dist[t] = 0;
   while(head<tail){</pre>
      int v = q[head]; ++head;
      for(int e = last[v];e!=-1;e = next[e]){
         if(cap[e^1]>flow[e^1] && dist[to[e]]==-1){
            q[tail] = to[e]; ++tail;
            dist[to[e]] = dist[v]+1;
```

return dist[s]!=-1;

```
int dfs(int v, int f){
   if(v==t) return f;
   for(int &e = now[v];e!=-1;e = next[e]){
      if(cap[e]>flow[e] && dist[to[e]] == dist[v]-1) {
         int ret = dfs(to[e],min(f,cap[e]-flow[e]));
         if(ret>0){
            flow[e] += ret;
            flow[e^1] -= ret;
            return ret;
   return 0;
int max_flow(int source, int sink) {
   fill(delta, delta+V, 0);
   for(int e = 0; e < E; e += 2) {</pre>
      delta[to[e^1]] -= low[e];
      delta[to[e]] += low[e];
      cap[e] -= low[e];
   last[V] = last[V+1] = -1;
   int sum = 0;
   for(int i = 0;i<V;++i){</pre>
      if(delta[i]>0){
         add_edge(V,i,0,delta[i]);
         sum += delta[i];
      if(delta[i]<0) add_edge(i, V+1, 0, -delta[i]);</pre>
   add_edge(sink, source, 0, INT_MAX);
   s = V; t = V+1;
```

```
int f = 0, df;
      fill(flow,flow+E,0);
      while(bfs()){
         for(int i = V+1;i>=0;--i) now[i] = last[i];
         while(true) {
            df = dfs(s,INT_MAX);
            if(df==0) break;
            f += df;
      if(f!=sum) return -1;
      for(int e = 0; e < E; e += 2) {</pre>
         cap[e] += low[e];
         flow[e] += low[e];
         flow[e^1] -= low[e];
         cap[e^1] -= low[e];
      s = source; t = sink;
      last[s] = next[last[s]];
      last[t] = next[last[t]];
      E = 2;
      while(bfs()){
         for(int i = V-1;i>=0;--i) now[i] = last[i];
         while(true) {
            df = dfs(s,INT_MAX);
            if (df==0) break;
            f += df;
      return f;
};
```

2.18. Corte mínimo de un grafo (Stoer - Wagner).

```
#define MAX V 500
int M[MAX_V][MAX_V], w[MAX_V];
bool A[MAX_V], merged[MAX_V];
int minCut(int n){
   int best = INT_MAX;
   for(int i=1;i<n;++i) merged[i] = false;</pre>
   merged[0] = true;
   for (int phase=1;phase<n;++phase) {</pre>
      A[0] = true;
      for (int i=1; i<n; ++i) {</pre>
         if(merged[i]) continue;
         A[i] = false;
         w[i] = M[0][i];
      int prev = 0,next;
      for(int i=n-1-phase; i>=0; --i) {
          // hallar siquiente vrtice que no esta en A
         next = -1;
          for(int j=1; j<n; ++j)
             if(!A[j] && (next==-1 || w[j]>w[next]))
```

2.19. Graph Facts (No dirigidos).

Un grafo es bipartito si y solo si no contiene ciclos de longitud impar. Todos los arboles son bipartitos.

3. Cadenas

3.1. Knuth-Morris-Pratt.

```
#define MAX_L 70
int f[MAX_L];

void prefixFunction(string P) {
   int n = P.size(), k = 0;
```

```
next = j;

A[next] = true;

if(i>0) {
    prev = next;

    // actualiza los pesos
    for(int j=1;j<n;++j)
        if(!A[j]) w[j] += M[next][j];
    }
}

if(best>w[next]) best = w[next];

// mezcla s y t
for(int i=0;i<n;++i) {
    M[i][prev] += M[next][i];
    M[prev][i] += M[next][i];
}

merged[next] = true;
}

return best;</pre>
```

Las aristas que forman un ciclo, se encuentran en una misma componente biconexa.

```
f[0] = 0;

for(int i=1;i<n;++i) {
    while(k>0 && P[k]!=P[i]) k = f[k-1];
    if(P[k]==P[i]) ++k;
```

++buckets;

```
f[i] = k;
int KMP(string P, string T){
   int n = P.size(), L = T.size(), k = 0, ans = 0;
   for (int i=0;i<L;++i) {</pre>
      while (k>0 \&\& P[k]!=T[i]) k = f[k-1];
3.2. Suffix array.
#define MAX LEN 40000
#define ALPH_SIZE 123
char A[MAX_LEN+1];
int N, pos[MAX_LEN], rank[MAX_LEN];
int cont[MAX_LEN], next[MAX_LEN];
bool bh[MAX_LEN+1], b2h[MAX_LEN+1];
void build_suffix_array(){
   N = strlen(A);
   memset(cont, 0, sizeof(cont));
   for (int i = 0; i < N; ++i) ++cont[A[i]];</pre>
   for(int i = 1;i<ALPH_SIZE;++i) cont[i] += cont[i-1];</pre>
   for(int i = 0;i<N;++i) pos[--cont[A[i]]] = i;</pre>
   for (int i = 0; i < N; ++i) {</pre>
      bh[i] = (i==0 || A[pos[i]]!=A[pos[i-1]]);
      b2h[i] = false;
   for (int H = 1; H<N; H <<= 1) {</pre>
      int buckets = 0;
       for(int i = 0, j; i < N; i = j) {</pre>
          j = i+1;
          while(j<N && !bh[j]) ++j;</pre>
          next[i] = j;
```

```
if(P[k]==T[i]) ++k;
   if(k==n){
      ++ans;
      k = f[k-1];
return ans;
   if(buckets==N) break;
   for(int i = 0; i < N; i = next[i]) {</pre>
      cont[i] = 0;
      for (int j = i; j < next[i]; ++j)</pre>
         rank[pos[j]] = i;
   ++cont[rank[N-H]];
   b2h[rank[N-H]] = true;
   for(int i = 0; i < N; i = next[i]) {</pre>
      for (int j = i; j<next[i];++j) {</pre>
         int s = pos[j]-H;
         if(s>=0){
             int head = rank[s];
             rank[s] = head+cont[head];
            ++cont[head];
             b2h[rank[s]] = true;
      for (int j = i; j < next[i]; ++j) {</pre>
         int s = pos[j]-H;
         if(s>=0 && b2h[rank[s]]) {
             for(int k = rank[s]+1;!bh[k] && b2h[k];++k)
                b2h[k] = false;
```

```
}
      for(int i = 0; i<N; ++i) {</pre>
          pos[rank[i]] = i;
         bh[i] \mid = b2h[i];
   for(int i = 0;i<N;++i) rank[pos[i]] = i;</pre>
int height[MAX_LEN];
// height[i] = lcp(pos[i],pos[i-1])
// Complejidad : O(n)
void getHeight() {
   height[0] = 0;
   for (int i = 0, h = 0; i < N; ++i) {</pre>
      if(rank[i]>0){
          int j = pos[rank[i]-1];
          while (i+h< N \&\& j+h< N \&\& A[i+h] == A[j+h]) ++h;
          height[rank[i]] = h;
          if(h>0) --h;
// Queries para el Longest Common Prefix usando una Sparse Table.
```

3.3. Aho-Corasick.

```
struct AhoCorasick{
    static const int UNDEF = 0;
    static const int MAXN = 360;
    static const int CHARSET = 26;

    int end, have;
    int tag[MAXN];
    int fail[MAXN];
    int trie[MAXN][CHARSET];

void init() {
      tag[0] = UNDEF;
    }
}
```

```
#define LOG2_LEN 16
int RMQ[MAX_LEN][LOG2_LEN];
// Complejidad : O(nlgn)
void initialize_rmq() {
   for(int i = 0;i<N;++i) RMQ[i][0] = height[i];</pre>
   for (int j = 1; (1<<j) <=N; ++j) {</pre>
      for (int i = 0; i+(1 << j) -1 < N; ++i) {
         if (RMQ[i][j-1]<=RMQ[i+(1<<(j-1))][j-1])</pre>
            RMQ[i][j] = RMQ[i][j-1];
            RMQ[i][j] = RMQ[i+(1 << (j-1))][j-1];
// lcp(pos[x],pos[y])
int lcp(int x, int y){
   if(x==y) return N-rank[x];
   if(x>y) swap(x,y);
   int log = 0;
   while((1<<log)<=(y-x)) ++log;
   --log;
   return min(RMQ[x+1][log],RMQ[y-(1<<log)+1][log]);</pre>
      fill(trie[0],trie[0] + CHARSET,-1);
      end = 1;
      have = 0;
   void add(int len, const int* s) {
      int p = 0;
      for(int i = 0; i < len; ++i) {</pre>
         if(trie[p][*s] == -1) {
            tag[end] = UNDEF;
            fill(trie[end], trie[end] + CHARSET, -1);
```

```
trie[p][*s] = end++;
}

p = trie[p][*s];
++s;
}

tag[p] = (1 << have);
++have;
}

void build(){
  queue<int> bfs;
  fail[0] = 0;

for(int i = 0;i < CHARSET;++i){
    if(trie[0][i] != -1){
      fail[trie[0][i]] = 0;
      bfs.push(trie[0][i]);
    }else{</pre>
```

3.4. Rotación lexicográfica mínima.

```
int min_rotation(char *s) {
   int N = strlen(s), ans = 0,p = 1, len = 0;

while(p < N && ans + len + 1 < N) {
    if(s[ans + len] == s[(p + len) % N]) ++len;
   else if(s[ans + len] < s[(p + len) % N]) {
      p = p + len + 1;
      len = 0;
   }else(</pre>
```

3.5. Algoritmo Z.

```
int next[MAX_P_LEN];
// next[i] : lcp entre la cadena y su sufijo
// a partir del i-esimo caracter

void prefix_kmp(char *P) {
   int L = strlen(P), p = 0, t;

   for(int i = 1; i < L; i++) {</pre>
```

```
trie[0][i] = 0;
}

while(!bfs.empty()){
   int p = bfs.front();
   tag[p] |= tag[fail[p]];
   bfs.pop();

for(int i = 0;i < CHARSET;++i){
    if(trie[p][i] != -1){
      fail[trie[p][i]] = trie[fail[p]][i];
      bfs.push(trie[p][i]);
   }else{
      trie[p][i] = trie[fail[p]][i];
   }
}

ans = max(ans + len + 1,p);
   p = ans + 1;
   len = 0;</pre>
```

```
if(i
```

return ans;

```
t = i;
}
}

void LCP(char * P, char *T, int *lcp) {
   int LP = strlen(P), LT = strlen(T);
   int p = 0,t;

for(int i = 0;i < LT;i++) {
   if(i < p && next[i-t] < p-i) lcp[i] = next[i-t];
}</pre>
```

4. Geometría

else{

int j = max(0,p-i);

lcp[i] = j;

p = i + j;

t = i;

while(i+j < LT && T[i+j] == P[j]) ++j;</pre>

4.1. Punto y Línea.

```
const double eps = 1e-9;
struct point{
   double x, y;
  point(){}
   point(double _x, double _y) {
      x = _x; y = _y;
   point operator + (const point &p) const{
      return point(x+p.x,y+p.y);
   point operator - (const point &p) const{
      return point(x-p.x,y-p.y);
   point operator * (double v) const{
      return point(x*v,y*v);
   point perp(){
      return point(-y,x);
   point normal(){
      return point(-y/abs(),x/abs());
```

```
double dot(const point &p) const{
      return x*p.x+y*p.y;
   double abs2() const{
      return dot(*this);
  double abs() const{
      return sqrt(abs2());
  bool operator < (const point &p) const{</pre>
      if(fabs(x-p.x)>eps) return x<p.x;</pre>
      return y>p.y;
};
struct line{
  point p1,p2;
  line(){}
  line(point _p1, point _p2){
     p1 = _p1; p2 = _p2;
     if(p1.x>p2.x) swap(p1,p2);
};
```

4.2. Área y orientación de un triángulo.

double signed_area(const vector<point> &poly) {

int n = poly.size();
if(n<3) return 0.0;</pre>

double S = 0.0;

```
double signed_area(const point &p1, const point &p2, const point &p3) {
   return (p1.x*p2.y+p2.x*p3.y+p3.x*p1.y-p1.y*p2.x-p2.y*p3.x-p3.y*p1.x)/2;
4.3. Fórmulas de triángulos.
double AreaHeron (double const &a, double const &b, double const &c) {
   double s=(a+b+c)/2;
   return sqrt (s*(s-a)*(s-b)*(s-c));
double Circumradius(const double &a, const double &b, const double &c) {
   return a*b*c/4/AreaHeron(a,b,c);
4.4. Orientación de un polígono.
//verdadero : sentido anti-horario, Complejidad : O(n)
bool ccw(const vector<point> &poly) {
   //primero hallamos el punto inferior ubicado ms a la derecha
   int ind = 0,n = poly.size();
   double x = poly[0].x, y = poly[0].y;
   for (int i=1; i<n; i++) {</pre>
      if (poly[i].y>y) continue;
      if (fabs(poly[i].y-y)<eps && poly[i].x<x) continue;</pre>
4.5. Área con signo.
//valor positivo : vrtices orientados en sentido antihorario
//valor negativo : vrtices orientados en sentido horario
```

```
bool ccw(const point &p1, const point &p2, const point &p3) {
  return signed_area(p1,p2,p3)>-eps;
double Circumradius(const point &P1, const point &P2, const point &P3) {
   return (P2-P1).abs()*(P3-P1).abs()*(P3-P2).abs()/4/fabs(signed_area(P1,P2,P3));
double Inradius (const double &a, const double &b, const double &c) {
   return 2*AreaHeron(a,b,c)/(a+b+c);
      ind = i;
      x = poly[i].x;
      y = poly[i].y;
   if (ind==0) return ccw(poly[n-1],poly[0],poly[1]);
   return ccw(poly[ind-1],poly[ind],poly[(ind+1)%n]);
      for (int i=1; i<=n; ++i)</pre>
            S += poly[i%n].x*(poly[(i+1)%n].y-poly[i-1].y);
      S /= 2;
      return S;
```

4.6. Punto dentro de un polígono.

```
bool PointInsideConvexPolygon(const point &P, vector<point> &poly) {
   int n = poly.size();
   if(!ccw(poly)) reverse(poly.begin(),poly.end());

   for(int i=1;i<=n;++i)
        if(!ccw(poly[i-1],poly[i%n],P))
            return false;

   return true;
}

bool PointInsidePolygon(const point &P, const vector<point> &poly) {
   int n = poly.size();
   bool in = 0;
```

4.7. Distancia desde un punto.

```
//Distancia de un punto a una recta infinita
double PointToLineDist(const point &P, const line &L) {
    return 2 * fabs(signed_area(L.pl,L.p2,P)) / (L.p2 - L.pl).abs();
}

//Distancia de un punto a un segmento de recta
double PointToSegmentDist(const point &P, const line &L) {
    point v = L.p2 - L.pl, w = P - L.pl;
```

4.8. Intersección de líneas.

```
//verdadero : s se intersectan, I : punto de interseccin
bool lineIntersection(line &L1, line &L2, P &I) {
   point n = (L2.p2-L2.p1).perp();

   double denom = n.dot(L1.p2-L1.p1);
   if(fabs(denom)<eps) return false; // las rectas son paralelas</pre>
```

4.9. Convex Hull (Monotone Chain).

```
vector<point> ConvexHull(vector<point> P) {
```

```
for (int i = 0, j = n-1; i < n; j = i++) {
   double dx = poly[j].x-poly[i].x;
   double dy = poly[j].y-poly[i].y;
   if((poly[i].y<=P.y+eps && P.y<poly[j].y) ||</pre>
       (poly[j].y<=P.y+eps && P.y<poly[i].y))</pre>
      if(P.x-eps<dx*(P.y-poly[i].y)/dy+poly[i].x)</pre>
         in \hat{} = 1;
return in;
double aux1 = w.dot(v);
if(aux1 < eps) return (P-L.p1).abs();</pre>
double aux2 = v.dot(v);
if(aux2 <= aux1+eps) return (P-L.p2).abs();</pre>
return PointToLineDist(P,L);
double t = n.dot(L2.p1-L1.p1)/denom;
I = L1.p1 + (L1.p2-L1.p1)*t;
return true;
sort(P.begin(), P.end());
```

```
int n = P.size(),k = 0;
point H[2*n];

for(int i=0;i<n;++i){
   while(k>=2 && !ccw(H[k-2],H[k-1],P[i])) --k;
   H[k++] = P[i];
}
```

4.10. Teorema de Pick.

```
El Teorema de Pick nos dice que : A=I+B/2-1, donde,

A = Area de un poligono de coordenadas enteras
I = Nmero de puntos enteros en su interior
B = Nmero de puntos enteros sobre sus bordes

Haciendo un cambio en la frmula : I=(2A-B+2)/2, tenemos una forma de calcular el numero de puntos enteros en el interior del poligono

int IntegerPointsOnSegment(const point &P1, const point &P2) {
    point P=P1-P2;
```

4.11. Par de puntos más cercano.

```
#define MAX_N 100000
#define px second
#define py first
typedef pair<long long, long long> point;

int N;
point P[MAX_N];
set<point> box;

bool compare_x(point a, point b) { return a.px<b.px; }

inline double dist(point a, point b) {
   return sqrt((a.px-b.px)*(a.px-b.px)+(a.py-b.py)*(a.py-b.py));
}

double closest_pair() {
   if(N<=1) return -1;</pre>
```

```
for (int i=n-2, t=k; i>=0; --i) {
      while (k>t && !ccw(H[k-2],H[k-1],P[i])) --k;
      H[k++] = P[i];
   return vector<point> (H,H+k);
  P.x=abs(P.x); P.y=abs(P.y);
  if(P.x==0) return P.y;
  if(P.y==0) return P.x;
   return (__gcd(P.x,P.y));
Se asume que los vertices tienen coordenadas enteras. Sumar el valor de esta
funcion para todas las aristas para obtener el numero total de punto en el borde
del poligono.
   sort(P,P+N,compare_x);
   double ret = dist(P[0],P[1]);
  box.insert(P[0]);
   set<point> :: iterator it;
   for(int i = 1,left = 0;i<N;++i){</pre>
      while(left<i && P[i].px-P[left].px>ret) box.erase(P[left++]);
      for(it = box.lower_bound(make_pair(P[i].py-ret,P[i].px-ret));
        it!=box.end() && P[i].py+ret>=(*it).py;++it)
            ret = min(ret, dist(P[i],*it));
      box.insert(P[i]);
```

return ret;

4.12. Unión de rectángulos (Área).

```
#define MAX N 10000
struct event{
   int ind;
   bool type;
   event(){};
   event(int ind, int type) : ind(ind), type(type) {};
};
struct point{
   int x,y;
};
int N;
point rects[MAX_N][2];
// rects[i][0] : esquina inferior izquierda
// rects[i][1] : esquina superior derecha
event events_v[2*MAX_N], events_h[2*MAX_N];
bool in_set[MAX_N];
bool compare_x(event a, event b) {
   return rects[a.ind][a.type].x<rects[b.ind][b.type].x;</pre>
bool compare_y (event a, event b) {
   return rects[a.ind][a.type].y<rects[b.ind][b.type].y;</pre>
long long union_area(){
   int e = 0;
   for (int i = 0; i < N; ++i) {</pre>
      events_v[e] = event(i,0);
      events_h[e] = event(i,0);
      events_v[e] = event(i,1);
      events_h[e] = event(i,1);
```

```
sort (events_v, events_v+e, compare_x);
sort(events_h, events_h+e, compare_y);
memset(in_set, false, sizeof(in_set));
in_set[events_v[0].ind] = true;
long long area = 0;
int prev_ind = events_v[0].ind, cur_ind;
int prev_type = events_v[0].type, cur_type;
for (int i = 1; i < e; ++i) {</pre>
   cur_ind = events_v[i].ind; cur_type = events_v[i].type;
   int cont = 0, dx = rects[cur_ind][cur_type].x-rects[prev_ind][prev_type].x;
   int begin_y;
   if (dx!=0) {
      for(int j = 0; j <e; ++j) {
         if(in_set[events_h[j].ind]){
            if(events_h[j].type==0){
                if(cont==0) begin_y = rects[events_h[j].ind][0].y;
                ++cont:
            }else{
                --cont;
                if (cont==0) {
                   int dy = rects[events_h[j].ind][1].y-begin_y;
                   area += (long long) dx*dy;
   in_set[cur_ind] = (cur_type==0);
   prev_ind = cur_ind; prev_type = cur_type;
return area;
```

5.1. Algoritmo de Euclides.

```
struct EuclidReturn{
   int u,v,d;

   EuclidReturn(int _u, int _v, int _d) {
      u = _u; v = _v; d = _d;
   }
};

EuclidReturn Extended_Euclid(int a, int b) {
   if(b==0) return EuclidReturn(1,0,a);
   EuclidReturn aux = Extended_Euclid(b,a%b);
   int v = aux.u-(a/b)*aux.v;
   return EuclidReturn(aux.v,v,aux.d);
}
```

5.2. Criba para la función phi de Euler.

```
fill(factors, factors+N+1,0);
phi[1] = 1;

for(int i = 2; i<=N; i++) {
   if(factors[i]==0) {
      factors[i] = i;
      phi[i] = i-1;

   if(i<=sqrt(N)) for(int j = i*i; j<=N; j += i) factors[j] = i;
   }else {
   int aux = i, exp = 0;</pre>
```

5.3. Teorema chino del resto.

```
// rem y mod tienen el mismo nmero de elementos
long long chinese_remainder(vector<int> rem, vector<int> mod) {
   long long ans = rem[0],m = mod[0];
   int n = rem.size();

   for(int i=1;i<n;++i) {
      int a = modular_inverse(m,mod[i]);
   }
}</pre>
```

```
// ax = b \pmod{n}
int solveMod(int a,int b,int n) {
   EuclidReturn aux = Extended_Euclid(a,n);
   if (b%aux.d==0) return ((aux.u * (b/aux.d))%n+n)%n;
   return -1; // no hay solucuin
// ax = 1 \pmod{n}
int modular_inverse(int a, int n) {
   EuclidReturn aux = Extended_Euclid(a,n);
   return ((aux.u/aux.d)%n+n)%n;
      while (aux%factors[i] == 0) {
         aux /= factors[i];
         ++exp;
      phi[i] = 1;
      for(int j = 0; j < exp; ++j) phi[i] *= factors[i];</pre>
      phi[i] -= phi[i]/factors[i];
      phi[i] *= phi[aux];
      int b = modular_inverse(mod[i],m);
      ans = (ans*b*mod[i]+rem[i]*a*m)%(m*mod[i]);
      m *= mod[i];
   return ans;
```

5.4. Número combinatorio.

```
long long comb(int n, int m) {
   if(m>n-m) m = n-m;

  long long C = 1;
    //c^{n}_{i} -> c^{n}_{i+1}
  for(int i=0;i<m;++i) C = C*(n-i)/(1+i);
   return C;
}

Cuando n y m son grandes y se pide comb(n,m)%MOD, donde MOD es un numero primo, se puede usar el Teorema de Lucas.

#define MOD 3571

int C[MOD][MOD];

void FillLucasTable() {
   memset(C,0,sizeof(C));</pre>
```

5.5. Test de Miller-Rabin.

typedef unsigned long long ULL;

```
ULL mulmod(ULL a, ULL b, ULL c) {
    ULL x = 0, y = a%c;

    while(b>0) {
        if(b&1) x = (x+y)%c;
        y = (y<<1)%c;
        b >>= 1;
    }

    return x;
}

ULL pow(ULL a, ULL b, ULL c) {
    ULL x = 1, y = a;

    while(b>0) {
        if(b&1) x = mulmod(x,y,c);
        y = mulmod(y,y,c);
    }
}
```

```
for (int i=0;i<MOD;++i) C[i][0] = 1;</pre>
   for(int i=1;i<MOD;++i) C[i][i] = 1;</pre>
   for (int i=2;i<MOD;++i)</pre>
      for(int j=1; j<i; ++j)</pre>
         C[i][j] = (C[i-1][j]+C[i-1][j-1])%MOD;
int comb(int n, int k){
  long long ans = 1;
   while(n!=0){
      int ni = n%MOD,ki = k%MOD;
      n /= MOD; k /= MOD;
      ans = (ans*C[ni][ki])%MOD;
   return (int)ans;
      b >>= 1;
   return x;
bool miller_rabin(ULL p, int it) {
   if(p<2) return false;</pre>
   if(p==2) return true;
  if((p&1)==0) return false;
  ULL s = p-1;
   while(s%2==0) s >>= 1;
   while (it--) {
      ULL a = rand()%(p-1)+1, temp = s;
      ULL mod = pow(a,temp,p);
```

if (mod==-1 | | mod==1) continue;

```
while (temp!=p-1 && mod!=p-1) {
   mod = mulmod(mod,mod,p);
   temp <<= 1;
}</pre>
```

5.6. Polinomios.

```
vector<int> add(vector<int> &a, vector<int> &b) {
   int n = a.size(),m = b.size(),sz = max(n,m);
   vector<int> c(sz,0);

   for(int i = 0;i<n;++i) c[i] += a[i];
   for(int i = 0;i<m;++i) c[i] += b[i];

   while(sz>1 && c[sz-1]==0) {
      c.pop_back();
      --sz;
   }

   return c;
}

vector<int> multiply(vector<int> &a, vector<int> &b) {
   int n = a.size(),m = b.size(),sz = n+m-1;
   vector<int> c(sz,0);

   for(int i = 0;i<n;++i)
      for(int j = 0;j<m;++j)</pre>
```

5.7. Fast Fourier Transform.

```
#define lowbit(x) (((x) ^ (x-1)) & (x))
typedef complex<long double> Complex;

void FFT(vector<Complex> &A, int s) {
   int n = A.size(), p = 0;

   while(n>1) {
        ++p;
        n >>= 1;
   }
```

```
if (mod!=p-1) return false;
   return true;
         c[i+j] += a[i]*b[j];
   while (sz>1 && c[sz-1]==0) {
      c.pop_back();
      --sz;
   return c;
bool is_root(vector<int> &P, int r) {
   int n = P.size();
  long long y = 0;
   for (int i = 0; i < n; ++i) {</pre>
      if(abs(y-P[i])%r!=0) return false;
      y = (y-P[i])/r;
   return y==0;
  n = (1 << p);
   vector<Complex> a = A;
   for (int i = 0; i < n; ++i) {</pre>
      int rev = 0;
      for(int j = 0; j<p; ++j) {</pre>
         rev <<= 1;
         rev |= ((i >> j) \& 1);
      A[i] = a[rev];
```

```
Complex w,wn;
for (int i = 1; i <= p; ++i) {</pre>
   int M = (1 << i), K = (M >> 1);
   wn = Complex(\cos(s*2.0*M_PI/(double)M)), \sin(s*2.0*M_PI/(double)M));
   for(int j = 0; j < n; j += M) {</pre>
       w = Complex(1.0, 0.0);
       for (int 1 = j; 1<K+j; ++1) {</pre>
          Complex t = w;
          t \star = A[1 + K];
          Complex u = A[1];
          A[1] += t;
          u -= t;
          A[1 + K] = u;
          w *= wn;
if(s==-1){
   for(int i = 0; i < n; ++i)</pre>
      A[i] /= (double)n;
```

```
}

vector<Complex> FFT_Multiply(vector<Complex> &P, vector<Complex> &Q){
    int n = P.size()+Q.size();
    while(n!=lowbit(n)) n += lowbit(n);

P.resize(n,0);
Q.resize(n,0);

FFT(P,1);
FFT(Q,1);

vector<Complex> R;
for(int i=0;i<n;i++) R.push_back(P[i]*Q[i]);

FFT(R,-1);

return R;
}

// Para multiplicacin de enteros grandes
const long long B = 100000;
const int D = 5;
</pre>
```

6. Estructuras de datos

6.1. **BIT.**

```
#define MAX_SIZE 20001
//los indices que se pueden usar van desde 1 hasta MAX_SIZE-1

void update(long long T[], int idx, int val) {
   for(;idx<MAX_SIZE;idx+=(idx & -idx)) T[idx]+=val;
}

long long f(long long T[], int idx) {
   long long sum = T[idx];

   if(idx>0) {
      int z = idx-(idx & -idx);
      --idx;
   }
```

```
while(idx!=z) {
    sum -= T[idx];
    idx -= (idx & -idx);
}

return sum;
}

long long F(long long T[], int idx) {
    long long sum = 0;
    for(;idx>0;idx -= (idx & -idx)) sum += T[idx];
    return sum;
}
```

6.2. Range Minimum Query.

```
#define MAX_N 100000
#define LOG2_MAXN 16
long long A[MAX_N];
int N,ind[(1<<(LOG2_MAXN+2))];

void initialize(int node, int s, int e){
   if(s==e) ind[node] = s;
   else{
      initialize(2*node+1, s, (s+e)/2);
      initialize(2*node+2, (s+e)/2+1, e);
      if(A[ind[2*node+1]]<=A[ind[2*node+2]]) ind[node] = ind[2*node+1];
      else ind[node] = ind[2*node+2];
   }
}</pre>
```

6.3. Lowest Common Ancestor.

```
#define MAX N 100000
#define LOG2_MAXN 16
// NOTA : memset(parent, -1, sizeof(parent));
int N, parent [MAX_N], L[MAX_N];
int P[MAX_N][LOG2_MAXN + 1];
int get_level(int u) {
   if(L[u]!=-1) return L[u];
   else if(parent[u]==-1) return 0;
   return 1+get_level(parent[u]);
void init(){
      memset(L,-1,sizeof(L));
       for(int i = 0; i < N; ++i) L[i] = get_level(i);</pre>
      memset(P,-1,sizeof(P));
       for(int i = 0; i<N; ++i) P[i][0] = parent[i];</pre>
      for(int \dot{j} = 1; (1 << \dot{j}) < N; + + \dot{j})
          for (int i = 0; i < N; ++i)</pre>
                if(P[i][j-1]!=-1)
                       P[i][j] = P[P[i][j-1]][j-1];
```

```
int ind1 = query(2*node+1,s,(s+e)/2,a,b);
  int ind2 = query(2*node+2,(s+e)/2+1,e,a,b);
  if(ind1==-1) return ind2;
   if(ind2==-1) return ind1;
  if(A[ind1] <= A[ind2]) return ind1;</pre>
   return ind2;
int LCA(int p, int q){
  if(L[p]<L[q]) swap(p,q);
  int log = 1;
   while((1<<log)<=L[p]) ++log;
   --log;
   for(int i = log; i>=0; --i)
      if(L[p]-(1<<i)>=L[q])
         p = P[p][i];
   if(p==q) return p;
   for (int i = log;i>=0;--i) {
      if(P[p][i]!=-1 && P[p][i]!=P[q][i]){
         p = P[p][i];
         q = P[q][i];
   return parent[p];
```

int query(int node, int s, int e, int a, int b){

if(a<=s && e<=b) return ind[node];</pre>

if(b<s || a>e) return -1;

6.4. Maximum Sum Segment Query.

```
#define MAX_N 100000
#define LOG2_MAXN 16
const long long INF = 10000000001LL;
int N,a[MAX N];
long long c[MAX_N+1],int_min[1<<(LOG2_MAXN+2)],int_max[1<<(LOG2_MAXN+2)];</pre>
long long int_best[1<<(LOG2_MAXN+2)];</pre>
void build_tree(int node, int lo, int hi) {
   if(lo==hi){
      if(lo!=0){
         int_min[node] = c[lo-1];
         int_max[node] = c[lo];
         int\_best[node] = c[lo]-c[lo-1];
      }else{
         int_min[node] = 0;
         int_max[node] = 0;
         int best[node] = 0;
   }else{
      int mi = (lo+hi)>>1;
      build_tree(2*node+1,lo,mi);
      build_tree(2*node+2,mi+1,hi);
      int_min[node] = min(int_min[2*node+1],int_min[2*node+2]);
      int_max[node] = max(int_max[2*node+1],int_max[2*node+2]);
      int_best[node] = max(int_max[2*node+2]-int_min[2*node+1],
                  max(int_best[2*node+1], int_best[2*node+2]));
void init(){
   c[0] = 0;
6.5. Treap.
long long seed = 47;
long long rand() {
   seed = (seed * 279470273) % 4294967291LL;
   return seed;
```

```
for(int i = 0;i<N;++i) c[i+1] = c[i]+a[i];</pre>
  build_tree(0,0,N);
long long minPrefix;
int s,e;
long long tree_query(int node, int lo, int hi) {
   if (s<=lo && hi<=e) {
      long long ret = int best[node];
      if (minPrefix!=INF) ret = max(ret,int_max[node]-minPrefix);
      minPrefix = min(minPrefix,int_min[node]);
      return ret;
   }else{
      int mi = (lo+hi)>>1;
      if (mi<s) return tree_query (2*node+2, mi+1, hi);</pre>
      else if(mi>=e) return tree_query(2*node+1,lo,mi);
      else{
         long long val1 = tree_query(2*node+1, lo, mi);
         long long val2 = tree_query(2*node+2,mi+1,hi);
         return max(val1, val2);
// Los indices van de 1 a N
long long solve_msq(int x, int y) {
  minPrefix = INF;
  s = x; e = y;
   return tree_query(0,0,N);
typedef int treap_type;
class treap{
```

public:

```
treap_type value;
   long long priority;
   treap *left, *right;
   int sons;
   treap(treap_type value) : left(NULL), right(NULL), value(value), sons(0){
      priority = rand();
   ~treap(){
      if(left) delete left;
      if(right) delete right;
};
treap* find(treap* t, treap_type val) {
   if(!t) return NULL;
  if(val == t->value) return t;
   if(val < t->value) return find(t->left, val);
   if(val > t->value) return find(t->right, val);
inline void rotate_to_right(treap* &t){
   treap* n = t->left;
   t->left = n->right;
   n->right = t;
   t = n:
inline void rotate_to_left(treap* &t) {
   treap* n = t->right;
   t->right = n->left;
  n->left = t;
   t = n;
void fix_augment(treap* t){
   if(!t) return;
   t->sons = (t->left ? t->left->sons + 1 : 0) +
      (t->right ? t->right->sons + 1 : 0);
void insert(treap* &t, treap_type val){
```

```
if(!t) t = new treap(val);
  else insert(val <= t->value ? t->left : t->right, val);
  if(t->left && t->left->priority > t->priority)
      rotate_to_right(t);
   else if(t->right && t->right->priority > t->priority)
      rotate_to_left(t);
   fix_augment(t->left); fix_augment(t->right); fix_augment(t);
inline long long get_priority(treap* t){
   return t ? t->priority : -1;
void erase(treap* &t, treap_type val){
  if(!t) return;
  if(t->value != val) erase(val < t->value ? t->left : t->right, val);
  else{
     if(!t->left && !t->right){
        delete t;
        t = NULL;
      }else{
         if(get_priority(t->left) < get_priority(t->right))
            rotate_to_left(t);
         else
            rotate_to_right(t);
         erase(t, val);
   fix_augment(t->left); fix_augment(t->right); fix_augment(t);
int getKth(treap* &t, int K){
   int left = (t->left==NULL? 0 : 1+t->left->sons);
   int right = (t->right==NULL? 0 : 1+t->right->sons);
  if(1+left==K) return t->value;
  else if(left<K) return getKth(t->right,K-1-left);
   return getKth(t->left,K);
```

7.1. Exponenciación de matrices.

```
#define MAX_SIZE 64
int size;
const long long MOD = 1000000007;
struct Matrix{
   long long X[MAX_SIZE][MAX_SIZE];
  Matrix(){}
   void init(){
      memset(X,0,sizeof(X));
      for(int i = 0; i < size; ++i) X[i][i] = 1;</pre>
}aux;
void mult(Matrix &m, Matrix &m1, Matrix &m2) {
   memset(m.X, 0, sizeof(m.X));
   for (int i = 0; i < size; ++i)
      for(int j = 0; j < size; ++ j)</pre>
         for (int k = 0; k < size; ++k)
            m.X[i][k] = (m.X[i][k] + m1.X[i][j] * m2.X[j][k]) % MOD;
Matrix pow(Matrix &MO, int n) {
      Matrix ret;
      ret.init();
      if(n == 0) return ret;
      if(n == 1) return M0;
      Matrix P = M0;
      while(n != 0){
```

7.2. Determinante.

```
#define MAX_SIZE 500
int size;
struct Matrix{
```

```
if(n & 1) {
            aux = ret;
            mult(ret,aux,P);
         n >>= 1;
         aux = P;
         mult(P,aux,aux);
   return ret;
// para exponente n escrito en base 2<=b<=10
Matrix exp(Matrix &MO, string &n, int b) {
  Matrix P[b + 1];
   for (int i = 0; i <= b; ++i) P[i] = pow(M0,i);</pre>
   int L = n.size();
  Matrix ret;
   ret.init();
   for (int i = 0; i < L; ++i) {</pre>
      int x = n[i] - '0';
      M0 = ret;
      ret = pow(M0,b);
      aux = ret;
      mult(ret,aux,P[x]);
   return ret;
   double X[MAX_SIZE][MAX_SIZE];
  Matrix(){}
```

```
const double eps = 1e-7;
double determinant (Matrix M0) {
   double ans = 1;

for(int i = 0,r = 0;i<size;++i) {
   bool found = false;

   for(int j = r;j<size;++j)
        if(fabs(M0.X[j][i])>eps) {
        found = true;

        if(j>r) ans = -ans;
        else break;

        for(int k = 0;k<size;++k) swap(M0.X[r][k],M0.X[j][k]);</pre>
```

7.3. Elimación gaussiana módulo MOD.

```
#define MAX R 500
#define MAX_C 501
int R, C, MOD;
struct Matrix{
   int X[MAX_R][MAX_C];
   Matrix(){}
};
//cuidado con overflow
int exp(int a, int n) {
   if(n==0) return 1;
   if(n==1) return a;
   int aux=exp(a,n/2);
   if(n&1) return ((long long)a*(aux*aux)%MOD)%MOD;
   return (aux*aux)%MOD;
void GaussianElimination(Matrix &M0){
   for(int i = 0,r = 0;r<R && i<C;++i){</pre>
      bool found = false;
      for (int j = r; j<R; ++j) {</pre>
         if(M0.X[j][i]>0){
            found = true;
```

```
break:
   if (found) {
      for(int j = r+1; j < size; ++ j) {</pre>
          double aux = M0.X[j][i]/M0.X[r][i];
          for(int k = i; k < size; ++k) M0.X[j][k] -= aux * M0.X[r][k];</pre>
      r++;
   }else return 0;
for(int i = 0;i<size;++i) ans *= M0.X[i][i];</pre>
return ans;
          if(j==r) break;
          for(int k = i; k < C; ++k) swap(M0.X[r][k], M0.X[j][k]);</pre>
          break;
   if (found) {
      int aux = modular_inverse(M0.X[r][i], MOD);
      for(int j = i; j < C; ++j) M0.X[r][j] = (M0.X[r][j] *aux) %MOD;</pre>
      for (int j = r+1; j<R; ++j) {</pre>
          aux = MOD-M0.X[j][i];
          for (int k = i; k < C; ++k)
             M0.X[j][k] = (M0.X[j][k]+aux*M0.X[r][k])%MOD;
       ++r;
   }else return;
for (int i = R-1; i>0; --i)
   for (int j = 0; j < i; ++j)
```

 $\label{eq:mox_sign} \mbox{M0.X[j][C-1] = (M0.X[j][C-1] + (MOD-M0.X[j][i]) *M0.X[i][C-1]) & MOD;} \\ \mbox{M0.X[j][C-1] = (M0.X[j][C-1] + (MOD-M0.X[j][i]) *M0.X[i][C-1]) & MOD;} \\ \mbox{M0.X[j][C-1] = (M0.X[j][C-1] + (MOD-M0.X[j][i]) *M0.X[i][C-1]) & MOD;} \\ \mbox{M0.X[j][C-1] = (M0.X[j][C-1] + (MOD-M0.X[j][i]) *M0.X[i][C-1]) & MOD;} \\ \mbox{M0.X[j][C-1] = (M0.X[j][C-1] + (MOD-M0.X[j][i]) & MOD;} \\ \mbox{M0.X[j][C-1] = (M0.X[j][C-1] + (M0D-M0.X[j][i]) & MOD;} \\ \mbox{M0.X[j][C-1] = (M0.X[j][C-1] + (M0.X[j$

8. Mathematical facts

8.1. **Números de Catalan.** están definidos por la recurrencia:

$$C_{n+1} = \sum_{i=0}^{n} C_i C_{n-i}$$

Una fórmula cerrada para los números de Catalán es:

$$C_n = \frac{1}{n+1} \binom{2n}{n} = \binom{2n}{n} - \binom{2n}{n+1}$$

8.2. Números de Stirling de primera clase. son el número de permutaciones de n elementos con exactamente k ciclos disjuntos.

8.3. Números de Stirling de segunda clase. son el número de formas de dividir n elementos en k conjuntos.

$${n \brace k} = k {n-1 \brace k} + {n-1 \brace k-1}$$

Además:

$${n \brace k} = \frac{1}{k!} \sum_{j=0}^{k} (-1)^{k-j} {k \choose j} j^n$$

8.4. **Números de Bell.** cuentan el número de formas de dividir n elementos en subconjuntos.

$$\mathcal{B}_{n+1} = \sum_{k=0}^{n} \binom{n}{k} \mathcal{B}_k$$

x	5	6	7	8	9	10	11	12
\mathcal{B}_x	52	203	877	4.140	21.147	115.975	678.570	4.213.597

8.5. Funciones generatrices. Una lista de funciones generatrices para secuencias útiles:

$(1,1,1,1,1,1,\ldots)$	$\frac{1}{1-z}$
$(1,-1,1,-1,1,-1,\ldots)$	$\frac{1}{1+z}$
$(1,0,1,0,1,0,\ldots)$	$\frac{1}{1-z^2}$
$(1,0,\ldots,0,1,0,1,0,\ldots,0,1,0,\ldots)$	$\frac{1}{1-z^2}$
$(1,2,3,4,5,6,\ldots)$	$\frac{1}{(1-z)^2}$
$(1, \binom{m+1}{m}, \binom{m+2}{m}, \binom{m+3}{m}, \dots)$	$\frac{1}{(1-z)^{m+1}}$
$(1,c,\binom{c+1}{2},\binom{c+2}{3},\ldots)$	$\frac{1}{(1-z)^c}$
$(1,c,c^2,c^3,\ldots)$	$\frac{1}{1-cz}$
$(0,1,\frac{1}{2},\frac{1}{3},\frac{1}{4},\ldots)$	$\ln \frac{1}{1-z}$

Truco de manipulación:

$$\frac{1}{1-z}G(z) = \sum_{n} \sum_{k \le n} g_k z^n$$

8.6. The twelvefold way. ¿Cuántas funciones $f: N \to X$ hay?

N	X	Any f	Injective	Surjective
dist.	dist.	x^n	$(x)_n$	$x!\binom{n}{x}$
indist.	dist.	$\binom{x+n-1}{n}$	$\binom{x}{n}$	$\binom{n-1}{n-x}$
dist.	indist.	$\binom{n}{1} + \ldots + \binom{n}{x}$	$[n \le x]$	$\binom{n}{k}$
indist.	indist.	$p_1(n) + \dots p_x(n)$	$[n \leq x]$	$p_x(n)$

Where $\binom{a}{b} = \frac{1}{b!}(a)_b$ and $p_x(n)$ is the number of ways to partition the integer n using x summands.

8.7. **Teorema de Euler.** si un grafo conexo, plano es dibujado sobre un plano sin intersección de aristas, y siendo v el número de vértices, e el de aristas y f la cantidad de caras (regiones conectadas por aristas, incluyendo la región externa e infinita), entonces

$$v - e + f = 2$$

8.8. Burnside's Lemma. Si X es un conjunto finito y G es un grupo de permutaciones que actúa sobre X, sean $S_x = \{g \in G : g*x = x\}$ y $Fix(g) = \{x \in X : g*x = x\}$. Entonces el número de órbitas está

dado por:

$$N = \frac{1}{|G|} \sum_{x \in X} |S_x| = \frac{1}{|G|} \sum_{g \in G} |Fix(g)|$$

ACM ICPC TEAM REFERENCE - CONTENIDOS

Universidad Nacional de Ingeniería - FIIS

Contents		3.1. Knuth-Morris-Pratt	18
1. Generales	1	3.2. Suffix array	19
	1	3.3. Aho-Corasick	20
1.1. LIS en O(nlgn)	1	3.4. Rotación lexicográfica mínima	21
1.2. Problema de Josephus	1	3.5. Algoritmo Z	21
1.3. Lectura rápida de enteros	1	4. Geometría	22
1.4. Contar inversiones	2	4.1. Punto y Línea	22
1.5. Números dada la suma de pares	2	4.2. Área y orientación de un triángulo	23
2. Grafos	3	4.3. Fórmulas de triángulos	23
2.1. Ciclo de Euler	3	4.4. Orientación de un polígono	23
2.2. Union-Find	4	,	
2.3. Punto de articulación	4	4.5. Area con signo	23
2.4. Detección de puentes	5	4.6. Punto dentro de un polígono	24
2.5. Componentes biconexas (Tarjan)	6	4.7. Distancia desde un punto	24
2.6. Componentes fuertemente conexas (Tarjan)	7	4.8. Intersección de líneas	24
2.7. Ciclo de peso promedio mínimo (Karp)	7	4.9. Convex Hull (Monotone Chain)	24
2.8. Minimum cost arborescence	8	4.10. Teorema de Pick	25
2.9. Ordenamiento Topológico	9	4.11. Par de puntos más cercano	25
2.10. Diámetro de un árbol	10	4.12. Unión de rectángulos (Área)	26
2.11. Stable marriage	10	5. Matemática	26
2.12. Bipartite matching (Hopcroft Karp)	11	5.1. Algoritmo de Euclides	27
2.13. Algoritmo húngaro	11	5.2. Criba para la función phi de Euler	27
2.14. Non bipartite matching	13	5.3. Teorema chino del resto	27
2.15. Flujo máximo (Dinic)	14	5.4. Número combinatorio	28
2.16. Flujo máximo - Costo Mínimo (Succesive Shortest Path)		5.5. Test de Miller-Rabin	28
2.17. Flujo máximo (Dinic + Lower Bounds)	16	5.6. Polinomios	29
2.18. Corte mínimo de un grafo (Stoer - Wagner)	18	5.7. Fast Fourier Transform	29
2.19. Graph Facts (No dirigidos)	18	6. Estructuras de datos	30
3. Cadenas	18	6.1. BIT	30
o. Cauchas	10	6.2. Range Minimum Query	31

Universidad Nacional	de Ingeniería - FIIS
----------------------	----------------------

6.3. Lowest Common Ancestor	31	8.1. Números de Catalan	36
6.4. Maximum Sum Segment Query	32	8.2. Números de Stirling de primera clase	36
6.5. Treap	32	8.3. Números de Stirling de segunda clase	36
7. Matrices	33	8.4. Números de Bell	36
7.1. Exponenciación de matrices	34	8.5. Funciones generatrices	36
7.2. Determinante	34	8.6. The twelvefold way	36
7.3. Elimación gaussiana módulo MOD	35	8.7. Teorema de Euler	36
8. Mathematical facts	36	8.8. Burnside's Lemma	3'