

Section 2: Graph Pattern Matching

Never Stand Still

Faculty of Engineering

Computer Science and Engineering

Outline of Section 2

- Introduction
- Given a set of graphs and a pattern graph
 - G-Index
 - FG-Index (brief)
 - QuickSI
- All-matching
 - > TurbolSO
 - > CFL-Match
- Distributed Algorithms
- Similarity All-matching

Introduction

- Graph Pattern Matching is an important problem in the graph theory.
- Two categories:
 - Graph Pattern Matching in Graph Database D
 Given a query pattern, find all graphs in the database D containing this pattern.

Query graph

Graph Database D

Introduction

2. All-Matching

Given a query pattern, enumerate all subgraph embeddings of this pattern in the data graph G.

Graph Pattern Matching in Graph Database

Subgraph Isomorphism

An subgraph isomorphism is an injective function $f:V(g)\to V(g')$ such that

(1)
$$\forall u \in V(g), \ l(u) = l'(f(u))$$

(2) $\forall (u, v) \in E(g)$

where l and l' are the label function of g and g', respectively.

Graph Pattern Matching in Graph Database

- Naive Method
 - Verify all graphs in the graph database D for the given query
 - ➤ Infeasible: subgraph isomorphism testing is NP-complete.
- Index-based methods
 - ➤ G-Index
 - > FG-Index
 - **>**

G-Index Framework

Overview of G-Index framework

Cost Analysis

Query Response Time =
$$T_{\text{search}} + |C_q| * T_{\text{iso_test}}$$

To improve the query response time, we need to minimize:

- the size of graph feature set |F|
- 2) the size of candidate set C_q

gIndex Pruning

Substructure Search: gIndex

- \square Index a set F of features from D.
- $\neg \forall f \in F$, $\mathbf{D_f}$: set of graph ids in D contain f

>Filtering:
$$C_q = \underset{f \subseteq q \wedge f \in F}{\cap} D_f$$

Verification: verify each data graph in C_a .

G-Index Overview

- Index Construction
 - build an inverted index on the graph feature set F

- Query Processing
 - 1) Search: query the index to compute the candidate set
 - 2) Verification: perform subgraph isomorphism test

Frequent Fragment

Frequency

Given a graph database D, the *frequency* of g, denoted as $freq(g) = |D_g|$

, is the number of graphs in D, which contain g as a subgraph.

$$c-c-c$$
 $c-c$ $c-$

For the graph "c-c", its frequency in the database consisting of the above three graphs, is 3.

Frequent Fragment

Frequent graph

A graph/pattern g is *frequent* if its occurrence frequency is no less then a minimum frequency threshold, *minFreq*.

$$c-c-c$$
 $c-c$ $c-$

If minFreq is set to 2, then pattern "c-c", "c-c-c" and "c-c-c-c" are frequent.

Can you locate all frequent patterns with *minFreq*=2 in the above given database?

Frequent Fragment

Uniform minFreq is infeasible

➤ In a completely connected graph with 10 vertices, there are 45 1-edge subgraphs, 360 2-edge ones and more than 1,1814,400 8-edge ones.

It's more appropriate to have

- Low minimum frequency (threshold) on small fragments (for effectiveness)
- High minimum frequency (threshold) on large fragments (for compactness)

Size-Increasing Frequency

➤ Pattern g is *frequent* if and only if $freq(g) \ge f$ (size (g)), where freq is the occurrence frequency and f (x) is an increasing function.

Discriminative Fragment

Do we need to index every frequent fragment?

All the graphs in the sample database contain carbon-chains: c, c-c, c-c-c, and c-c-c-c. Fragments c-c, c-c-c, and c-c-c-do not provide more indexing power than fragment c. Thus, they are useless for indexing.

- Redundant fragment
 - > Fragment x is redundant with respect to feature set F if

$$D_{x} \approx \bigcap_{f \in F \land f \subset x} D_{f}$$

> c-c, c-c-c, and c-c-c are redundant in the above example.

Discriminative Fragment

- Discriminative fragment
 - Fragment x is discriminative with respect to feature set F if

$$D_{x} << \bigcap_{f \in F \land f \subset x} D_{f}$$

- In the previous example, graph (a), graph (b) and the carbon ring in graph (c) are discriminative fragments.
- Discriminative ratio

$$\gamma = \frac{|\bigcap_i D_{f_{\varphi_i}}|}{|D_x|}$$

where D_x is the set of graphs containing x and $\bigcap_i D_{f_{\varphi_i}}$ is the set of graphs which contain the proper subgraphs of x in the feature set

Discriminative Fragment

- Use γ_{min} to mine discriminative fragments
- Example with $\gamma_{min} = 1.5$

c—c—c c—c c—c c—c c—c c—c c—c f₁
$$f_2$$

Graph database D

Current feature set F

Given
$$\int_{c}^{c}$$
, its discriminative ratio is $\frac{1}{2} = 2 > \gamma min$. Thus, we add it into the feature set F.

Only graph(c) contains this pattern

G-Index Construction

- Once discriminative fragments are selected, we construct G-Index using the following two steps:
 - Graph Sequentialization
 - Transfer each discriminative fragment into a sequence
 - ➤ Build G-Index Tree
 - Store all sequences of discriminative fragments into a prefix tree

Graph Sequentialization

- DFS Code Generation
 - > DFS Coding translates a graph into an unique edge sequence, by performing a depth first search (DFS) in a graph.

Bold edges are the edges of DFS tree originated from the node v_0 .

The DFS Code corresponding to the DFS tree in (b) is $\langle (v_0,v_1),(v_1,v_2),(v_2,v_0),(v_1,v_3) \rangle$

Graph Sequentialization

- **DFS Code Generation**
 - ightharpoonup Represent each edge by a 5-tuple $(i,j,l_i,l_{(i,j)},l_j)$

 - and and id of v_i and v_j
 i and j are the labels of v_i and v_j
 l_i l_j the label of the edge connecting v_i and v_j
 - > The previous DFS code can be represented as

$$\langle (0, 1, X, a, X) (1, 2, X, a, Z) (2, 0, Z, b, X) (1, 3, X, b, Y) \rangle$$

- Canonical label
 - The minimum DFS code among all of g's DFS code, denoted by dfs(g) based on the lexicographic order.
 - > If two fragments are the same, they must share the same canonical label.

Build G-Index Tree

G-Index Tree

a prefix tree that store the canonical labels of discriminative fragments

> Each node corresponds to a ID-list

➤ Some redundant fragments are also stored in the G-Index Tree as intermediate nodes (white nodes).

Query G-Index

- 1) Enumerate all its fragments of q up to maximum size and locate them in the G-Index.
- 2) Intersect the ID-lists associated with found fragments to obtain candidate set C.
- 3) Verify the candidate set C.

Two Rules for Query G-Index

- Apriori Pruning
 - ➤ If a fragment is not in the G-Index tree, we need not check its super-graphs any more.

- Maximum Discriminative Fragments
 - \triangleright If a query q has two fragments, $f_x \subset f_y$, it is not necessary to intersect C_q with D_{f_x} , as

$$C_q \cap D_{f_x} \cap D_{f_y} = C_q \cap D_{f_y}$$

Less intersections of ID lists

QuickSI (VLDB2008)

- An Efficient algorithm for Testing Subgraph Isomorphism
 - Proposed for taming verification hardness (NP-complete)
 - > A synchronized depth-first traversal technique
 - > Three novel pruning techniques

Related Work

- Ullmann Algorithm
 - > First proposed subgraph isomorphism testing.
 - Random matching order + Backtracking

QI-Sequence

- A sequence that represents a rooted spanning tree for q
 - \triangleright Basic spanning entries, T_i records basic information
 - \triangleright Extra entries, R_{ij} records degree/back edges.

A possible QI-sequence for q

- 1. Determine the access order in *q*
- 2. Detect corresponding subgraphs in g_1 , g_2 which can be mapped to the currently traversed vertices.

- 1. Determine the access order of *q*
- 2. Detect corresponding subgraphs in g_1 , g_2 which can be mapped to the currently traversed vertices.

- 1. Determine the access order of *q*
- 2. Detect corresponding subgraphs in g_1 , g_2 which can be mapped to the currently traversed vertices.

Access infrequent labels as early as possible

- 1. Determine the access order for *q*.
- 2. Detect corresponding subgraphs in g_1 , g_2 which can match the currently traversed vertices.

 Access infrequent labels as early as possible

Retain connectivity

- 1. Determine the access order for *q*.
- 2. Detecting corresponding subgraphs in g_1 , g_2 which can match the currently traversed vertices.

Access infrequent labels as early as possible

Retain connectivity

Effectively use degree information

- 1. Determine the access order for *q*.
- 2. Detecting corresponding subgraphs in g_1 , g_2 which can match the currently traversed vertices.

Access infrequent labels as early as possible

Retain connectivity

Effectively use degree information

- 1. Determine the access order for *q*.
- 2. Detecting corresponding subgraphs in g_1 , g_2 which can match the currently traversed vertices.

Swift Index

- A New Filter Approach
 - Precompute QI-Sequence for all indexed features(fragments)
 - Only tree features are indexed for lower cost of feature mining
 - ➤ Index all QI-Sequences in a prefix tree, called **Swift Index**

Swift Index

Query Swift Index

Given a query q, traverse the prefix tree from the top to the bottom in the depth-first fashion, to obtain candidate set.

Thank you!

Questions?

