ความสัมพันธ์เวียนเกิด Recurrent relation

การเกิดการอ้างอิงตัวเองอย่างไม่รู้จบ

บทนิยาม 2.1 ให้ $\{a_n\}_{n=0}^\infty$ เป็นลำดับของจำนวนจริง ความสัมพันธ์เวียนเกิด (recurrence relation) อันดับที่ k สำหรับลำดับ $\{a_n\}_{n=0}^\infty$ คือสมการที่อยู่ในรูป

$$a_n = f(a_{n-1}, a_{n-2}, \dots, a_{n-k}, n), \quad n \ge k$$

โดยมีพจน์ a_{n-k} ปรากฏอยู่ในสมการ

- ค่าเริ่มต้น (initial values) คือค่าของ $a_0, a_1, \ldots, a_{k-1}$ ที่ถูกกำหนดไว้
- ผลเฉลย (solution) ของความสัมพันธ์เวียนเกิด คือสูตรของ a_n ในรูปของ n ซึ่งสอดคล้องกับความสัมพันธ์เวียนเกิด และค่าเริ่มต้นที่กำหนดให้ (ถ้ามี)
 - มีรูปแบบการสัมพันธ์ที่อยู่ในรูปแบบที่แน่นอน
- (i) $a_n = 2a_{n-1} + 1, (n > 1); a_0 = 1$ เป็นความสัมพันธ์เวียนเกิดอันดับที่ 1 โดยมีค่าเริ่มต้นคือ $a_0 = 1$
- (ii) $a_n=a_{n-1}+a_{n-2}, (n>2); a_0=0, a_1=1$ เป็นความสัมพันธ์เวียนเกิดอันดับที่ 2 โดยมีค่าเริ่มต้นคือ $a_0=1$ และ $a_1=1$

จงพิจารณาว่าจากความสัมพันธ์เวียนเกิด

$$a_n = 2a_{n-1} - a_{n-2} \quad (n \ge 2).$$

ข้อใดต่อไปนี้เป็นผลเฉลยของความสัมพันธ์เวียนเกิดข้างต้น

$$a_n = 3n$$

$$a_n = 2^n$$

$$a_n = 5$$

จงหาผลเฉลยของความสัมพันธ์เวียนเกิด

(i)
$$a_n = 3a_{n-1}$$
, $(n \ge 1)$; $a_0 = 2$

(ii) $a_n = a_{n-1} + n \cdot n!$, $(n \ge 1)$, $a_0 = 1$

(iii)
$$a_n = a_{n-1} + 2n$$
, $(n \ge 1)$; $a_0 = 1$

แบบฝึกหัด

จงหาผลเฉลยของความสัมพันธ์เวียนเกิด

1.
$$a_n=2a_{n-1}$$
 เมื่อ $n\geq 1$, $a_0=3$

2.
$$a_n = a_{n-1}$$
 มี่อ $n \ge 1$, $a_0 = 2$

3.
$$a_n = 5a_{n-1} - 6a_{n-2}$$
 มื่อ $n \ge 2$, $a_0 = 1, a_1 = 0$

4.
$$a_n = 4a_{n-1} - 4a_{n-2}$$
 is $n \ge 2$, $a_0 = 6, a_1 = 8$

5.
$$a_n = -4a_{n-1} - 4a_{n-2}$$
 in $n \ge 2$, $a_0 = 0, a_1 = 1$

6.
$$a_n = 4a_{n-2}$$
 in $n \ge 2$, $a_0 = 0, a_1 = 4$

7.
$$a_n = a_{n-1} + 6a_{n-2}$$
 land $n \ge 2$, $a_0 = 3, a_1 = 6$

8.
$$a_n = 7a_{n-1} - 10a_{n-2}$$
 lähe $n \ge 2$, $a_0 = 2, a_1 = 1$

9.
$$a_n = 6a_{n-1} - 8a_{n-2}$$
 land $n \ge 2$, $a_0 = 4, a_1 = 10$

10.
$$a_n = 2a_{n-1} - a_{n-2}$$
 land $n \ge 2$, $a_0 = 4, a_1 = 1$

12.
$$a_n = -4a_{n-1} + 5a_{n-2}$$
 läb $n \ge 2$, $a_0 = 2, a_1 = 8$

- 0,1, $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{\varphi}$, $\frac{1}{5}$,...
- 0,-1,2,-3,4,-5,6,...
- 0,1,3,6,10,15,...
- 0,1,1,2,3,5,8,...

- 0,1, $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{\varphi}$, $\frac{1}{5}$,...
- 0,-1,2,-3,4,-5,6,...
- 0,1,3,6,10,15,...
- 0,1,1,2,3,5,8,...

- 0,1, $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{\varphi}$, $\frac{1}{5}$,...
- 0,-1,2,-3,4,-5,6,...
- 0,1,3,6,10,15,...
- 0,1,1,2,3,5,8,...

- 0,1, $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{\varphi}$, $\frac{1}{5}$,...
- 0,-1,2,-3,4,-5,6,...
- 0,1,3,6,10,15,...
- 0,1,1,2,3,5,8,...

- 0,1, $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{\varphi}$, $\frac{1}{5}$,...
- 0,-1,2,-3,4,-5,6,...
- 0,1,3,6,10,15,...
- 0,1,1,2,3,5,8,...

จงหาพจน์ทั่วไปของ 1, 3, 5, 7, 9, ...

จงหาพจน์ทั่วไปของ -13, -9, -5, -1, 3, ...

จงหาพจน์ที่ 15 ของลำดับ -5 , -1, 3, 7, 11,...

ลำดับเลขคณิตลำดับหนึ่ง มีพจน์ที่ 10 เป็น -28 และพจน์ที่ 12 เป็น -50 จงหาผลบวกของพจน์ที่ 5 กับพจน์ที่ 6

จงหาผลบวกของพจน์ที่ 1, 3 และ 5 ของลำดับเลขคณิตซึ้งมี่ผลต่างร่วมเป็น 4 และพจน์ที่ 16 เท่ากับ 48

<u>ตัวอย่าง 2.3</u> ถ้าใช้ส่วนของเส้นตรง n เส้นแบ่งบริเวณภายในของวงกลม จะได้บริเวณย่อย มากที่สุดกี่บริเวณ

<u>ตัวอย่าง 2.4</u> กำหนดให้ในตอนเริ่มต้น (วันที่ 1) มีแบคทีเรียอยู่ในจานเพาะเชื้อจำนวน 4 เซลล์ และสมมติว่า ในทุก ๆ วันหลังจากวันที่ 2 เป็นต้นไป ในช่วงเช้าแบคทีเรียแต่ละเซลล์ ที่ยังมีชีวิตจะแบ่งตัวเป็น 2 เซลล์ และในช่วงบ่ายจะมีแบคทีเรียตายไป 3 เซลล์เสมอ

ให้ a_n คือจำนวนเซลล์ของแบคทีเรียที่ยังมีชีวิตอยู่ในตอนเย็นของวันที่ $n \ (n \geq 1)$

- (i) Tu h a $a_2 = \dots, a_3 = \dots, a_4 = \dots$
- (ii) จงหาเขียนสัมพันธ์เวียนเกิดสำหรับลำดับ $\{a_n\}$ และหาผลเฉลยของความสัมพันธ์

<u>ตัวอย่าง 2.5</u> มีเสา 3 เสา และมีแผ่นกลมเจาะรู n แผ่นที่มีขนาดต่างกันวางซ้อนกันอยู่ใน เสาหนึ่ง เรียงขนาดจากใหญ่ขึ้นไปหาเล็ก ดังรูป

ต้องการย้ายแผ่นกลมทั้งหมดจากเสาต้นเดิมไปวางเรียงในลักษณะเดียวกันในเสาต้นใด ต้นหนึ่งจาก 2 ต้นที่เหลือ โดยให้ย้ายแผ่นกลมได้ครั้งละ 1 แผ่น และไม่ให้แผ่นที่ใหญ่กว่า วางซ้อนอยู่บนแผ่นที่เล็กกว่า

ให้ a_n คือจำนวนครั้งที่น้อยที่สุดในการย้ายแผ่นกลม n แผ่นตามเงื่อนไขดังกล่าว $(n\geq 1)$

- (i) จะใต้ว่า $a_1 =, a_2 =, a_3 =$ และ $a_4 =$
- (ii) จงหาความสัมพันธ์เวียนเกิดสำหรับลำดับ $\{a_n\}_{n=1}^\infty$ และหาผลเฉลยของความสัมพันธ์