

Анализ данных с использованием кластерного анализа

Анализ данных с помощью кластерного анализа

Цель: изучить методы кластерного анализа для выявления скрытых закономерностей и сегментации больших объёмов данных на примере анализа энергопотребления с использованием инструмента RapidMiner.

Задачи кластерного анализа

Кластерный анализ позволяет выявить группы похожих объектов в больших наборах данных, что важно для обнаружения закономерностей, сегментации рынка, оптимизации ресурсов и выявления аномалий.

Основные подходы кластеризации

Существуют различные подходы: иерархические методы, основанные на плотности (DBSCAN), и методы с заданным количеством кластеров, например, широко используемый метод K-Means.

Выбор метода кластеризации

Выбор метода зависит от целей анализа: K-Means эффективен при больших объёмах данных, DBSCAN подходит для выявления аномалий и кластеров произвольной формы, иерархические — для небольших наборов.

Алгоритм K-Means: принцип работы

Алгоритм K-Means основан на минимизации внутрикластерной дисперсии.

Начальные центры кластеров выбираются случайно, затем объекты распределяются по ближайшим центрам.

Алгоритм K-Means: принцип работы

Центры кластеров пересчитываются как средние значения точек каждого кластера.

Шаги повторяются, пока центры кластеров перестают существенно изменяться.

Преимущества и недостатки K-Means

Преимущества: высокая скорость работы, простота реализации, эффективность на больших выборках.

Недостатки: чувствительность к выбросам и необходимости предварительного задания числа кластеров.

Описание набора данных

Исследуется набор данных энергопотребления домохозяйств (более 2 млн записей).

Параметры: активная и реактивная мощность, напряжение, сила тока, распределение по подсистемам.

Этапы подготовки данных

Качество анализа зависит от предобработки: сначала удаляются или заполняются пропущенные значения, удаляются нечисловые признаки (дата и время), данные стандартизируются.

Этапы подготовки данных

Необходимо выбрать только числовые атрибуты.

Это позволяет корректно использовать алгоритм K-Means, работающий исключительно с количественными данными.

Влияние предобработки на результаты кластеризации

Качество кластеризации напрямую связано с тщательностью предварительной подготовки данных: корректная обработка пропусков существенно улучшает разделение данных на кластеры.

Применение K-Means в RapidMiner

RapidMiner позволяет задать количество кластеров (параметр k=3).Полученные кластеры отражают различные режимы энергопотребления: основной, аномальный и пиковой нагрузки.

Характеристика кластеров

Большинство записей попадает в основной кластер с низким энергопотреблением. Остальные два кластера отражают нетипичные ситуации и пиковые нагрузки, требующие дополнительного анализа.

Cluster Model

Cluster 0: 1969715 items

Cluster 1: 48996 items

Cluster 2: 56548 items

Total number of items: 2075259

Attribute	cluster_0	cluster_1	cluster_2
Global_active_power	0.945	3.657	3.983
Global_reactive_power	0.120	0.191	0.200
/oltage	241.020	237.793	237.190
Global_intensity	4.004	15.546	16.903
Sub_metering_1	0.111	0.816	36.598
Sub_metering_2	0.432	34.828	2.420
Sub_metering_3	6.212	10.796	11.277

Методы оценки качества кластеризации

Оценка качества кластеров осуществляется через вычисление внутрикластерной и межкластерной дисперсии, силуэт-коэффициент (silhouette) и визуальный анализ распределений.

Визуализация результатов кластеризации

Визуализация помогает понять распределение объектов по кластерам.

Наиболее распространённые инструменты: гистограммы, диаграммы размаха, тепловые карты и корреляционные матрицы.

0.25 0.20 -0.15 -0.10 -0.05 -0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 x

Роль гистограмм в кластерном анализе

Гистограммы отображают распределение количественных признаков по кластерам, позволяя быстро оценить преобладание определённых значений, выявить тенденции и аномалии.

Гистограммы в рассматриваемом наборе

данных

Распределение количества записей по кластерам

Гистограмма распределения мощности

Гистограмма распределения напряжения

Диаграмма размаха (Box Plot)

Диаграмма размаха показывает медиану, минимальные и максимальные значения, квартили и выбросы, что позволяет оценить стабильность и вариативность параметров внутри кластеров.

Box plot

Диаграммы размаха в рассматриваемом

Диаграмма размаха для напряжения

Распределения значений активной мощности Распределения интенсивности тока

temperature ozone radiation wind wind radiation ozone temperature

Тепловые карты для визуального анализа

Тепловые карты представляют корреляции между признаками через цветовую интенсивность.

Чем насыщеннее цвет, тем сильнее связь между переменными, выявляя скрытые взаимосвязи.

Тепловые карты в рассматриваемом наборе данных

Тепловая карта распределения записей по кластерам

Тепловая карта среднего значения напряжения

Корреляционный анализ данных

Корреляционная матрица позволяет количественно оценить связи между признаками, выделить наиболее значимые переменные для анализа и интерпретировать полученные кластеры.

Attribu	Global	Global	Voltage	Global	Sub_m	Sub_m	Sub_m
Global	1	0.247	-0.400	0.999	0.484	0.435	0.639
Global_r	0.247	1	-0.112	0.266	0.123	0.139	0.090
Voltage	-0.400	-0.112	1	-0.411	-0.196	-0.167	-0.268
Global_i	0.999	0.266	-0.411	1	0.489	0.440	0.627
Sub_me	0.484	0.123	-0.196	0.489	1	0.055	0.103
Sub_me	0.435	0.139	-0.167	0.440	0.055	1	0.081
Sub_me	0.639	0.090	-0.268	0.627	0.103	0.081	1

Особенности корреляций энергопотребления

Например, активная мощность и сила тока имеют практически идеальную корреляцию (0.999), что важно для выявления базовых закономерностей в энергетических данных.

Практическое значение кластерного анализа

Кластерный анализ данных энергопотребления позволяет оптимизировать расход электроэнергии, выявить неэффективные потребительские паттерны и разработать рекомендации по экономии ресурсов.

Проблемы и ограничения метода K-Means

Алгоритм чувствителен к выбросам и начальному выбору центров кластеров.

Для повышения точности анализа часто требуется многократный запуск с разными начальными условиями.

Заключение

R

В результате изучения кластерного анализа освоены методы выявления структур данных, проведён анализ энергопотребления, определены типичные и аномальные режимы работы электросетей.

