FOUNDATIONS OF OPTIMIZATION: IE6001 **LP Duality**

Napat Rujeerapaiboon Semester I, AY2022/2023

Primal LP

Consider an LP in standard form (primal):

minimize
$$c^T x$$

subject to $Ax = b$
 $x \ge 0$,

with an optimal solution x^* .

Relax the constraints Ax = b by introducing a penalty $p \in \mathbb{R}^m$

$$g(p) = \text{minimize} \quad c^T x + p^T (b - Ax)$$

subject to $x \ge 0$

Lower bound property:

$$g(p) \leq c^T x^* + p^T (b - Ax^*) = c^T x^*$$

Searching for the best possible lower bound:

$$\max_{p} \ g(p) = \max_{p} \min_{x \geq 0} \ p^{T}b + (c - A^{T}p)^{T}x$$

$$= \max_{p} \ p^{T}b + \min_{x \geq 0} \ (c - A^{T}p)^{T}x$$

$$= \max_{p} \ p^{T}b + \begin{cases} 0 & \text{if } c - A^{T}p \geq 0 \\ -\infty & \text{otherwise} \end{cases}$$

is equivalent to solving another linear program (dual):

maximize $b^T p$ subject to $A^T p \le c$.

Primal-Dual Pair

Primal LP: Dual LP:

minimize
$$c^T x$$
 maximize $b^T p$
subject to $Ax = b$ subject to $A^T p \le c$
 $x > 0$

Main result in duality theory:

- The dual of dual coincides with the primal.
- The optimal objective value of the dual problem is equal to that of the primal problem, i.e. c^Tx*.
- When p is chosen optimally, then the option of violating the primal constraints Ax = b is of no value.

Standardizing the dual LP

- minimize
$$(-b)^T(p^+-p^-)$$

subject to $\mathbf{A}^T(p^+-p^-)+s=\mathbf{c}$
 $p^+\geq 0, p^-\geq 0, s\geq 0,$

allows us to derive the dual of the dual

- maximize
$$c^T y$$
 subject to $Ay \le -b$, $-Ay \le b$ \Longrightarrow minimize $c^T x$ subject to $Ax = b$ $y \le 0$, $x \ge 0$,

which is the primal.

Shortcut for Deriving the Dual

Primal LP:
$$(a_{i\cdot} := i^{\text{th}} \text{ row of } A)$$
Dual LP:
 $(a_{j} := j^{\text{th}} \text{ column of } A)$ min $c^T x$ max $b^T p$ s.t. $a_{i\cdot} x \ge b_i$ $i \in \mathcal{M}_1$ s.t. $a_j^T p \le c_j$ $j \in \mathcal{N}_1$ $a_{i\cdot} x \le b_i$ $i \in \mathcal{M}_2$ $a_j^T p \ge c_j$ $j \in \mathcal{N}_2$ $a_{i\cdot} x = b_i$ $i \in \mathcal{M}_3$ $a_j^T p = c_j$ $j \in \mathcal{N}_3$ $x_j \ge 0$ $j \in \mathcal{N}_1$ $p_i \ge 0$ $i \in \mathcal{M}_1$ $x_j \le 0$ $j \in \mathcal{N}_2$ $p_i \le 0$ $i \in \mathcal{M}_2$ $x_j \text{ free}$ $j \in \mathcal{N}_3$ $p_i \text{ free}$ $i \in \mathcal{M}_3$

Shortcut for Deriving the Dual

PRIMAL	minimize	maximize	DUAL
	$\geq b_i$	≥ 0	
constraints	$\leq b_i$	≤ 0	variables
	$= b_i$	free	
	≥ 0	$\leq c_j$	
variables	≤ 0	$\geq c_j$	constraints
	free	$= c_j$	

Example

Primal LP:

minimize
$$x_1 + 2x_2 + 3x_3$$

subject to $-x_1 + 3x_2 = 5$ (p_1 free) $2x_1 - x_2 + 3x_3 \ge 6$ ($p_2 \ge 0$) $x_3 \le 4$ ($p_3 \le 0$)

Dual LP:

Example

Dual of the dual LP:

minimize
$$y_1 + 2y_2 + 3y_3$$

subject to $-y_1 + 3y_2 = 5$
 $2y_1 - y_2 + 3y_3 \ge 6$
 $y_3 \le 4$

Dual LP:

Weak Duality

Theorem: If *x* is primal feasible and *p* is dual feasible, then

$$b^T p \leq c^T x$$
.

Proof: WLOG, consider an LP in standard form. It follows that

$$p^Tb = p^T(Ax) = (A^Tp)^Tx \le c^Tx.$$

Corollary: If x is primal feasible, p is dual feasible, $b^T p = c^T x$, then x and p are optimal in their respective problem.

Strong Duality

Theorem: If a (primal) LP has an optimal solution, then so does the dual, and the respective optimal costs are equal.

Proof: WLOG, consider an LP in standard form and suppose that *B* is an optimal basis discovered by the simplex algorithm.

$$r = c_N - N^T B^{-T} c_B \ge 0$$

Choose $p = B^{-T}c_B^{-1}$, we then have

$$N^T p \le c_N, \ B^T p = c_B \implies A^T p \le c,$$
 (dual feas.)

and

$$p^{T}b = c_{B}^{T}(B^{-1}b) = c_{B}^{T}x_{B}.$$
 (dual obj.)

Hence, by weak duality, p is optimal in the dual.

¹shadow prices

Strong Duality

Strong duality may fail if the assumption is violated.

```
Primal LP: Dual LP: minimize 1x maximize 1p subject to 0x \ge 1 subject to 0p = 1 p > 0
```

Both of the LPs are infeasible.

- The optimal objective of the primal (min) LP is $+\infty$.
- The optimal objective of the dual (max) LP is $-\infty$.

The Different Possibilities

Let P^* denote the optimal objective value of the primal LP & D^* denote the optimal objective value of the dual LP.

•
$$P^* = D^* = \begin{cases} \text{ finite value} \\ -\infty \\ +\infty \end{cases}$$

• $P^* = +\infty > -\infty = D^*$ (i.e., both are infeasible)

Ex.
$$P^* = D^* = -\infty$$

minimize $1x$
subject to $1x \le 0$

What's the dual?

Ex.
$$P^* = D^* = +\infty$$

maximize $1x$

subject to $1x \ge 0$

What's the primal?

Complementary Slackness

Theorem: Let x be primal feasible and p be dual feasible. Then, x and p are optimal in their respective problem iff

$$p_i(a_i.x - b_i) = 0 \quad \forall i = 1, ..., m$$

 $x_j(c_j - a_i^T p) = 0 \quad \forall j = 1, ..., n$

Proof:

- Define $u_i = p_i(a_i \cdot x b_i)$ and $v_i = x_i(c_i a_i^T p)$.
- It follows that $u_i \ge 0 \ \forall i$ and $v_i \ge 0 \ \forall j.^2$

$$c^T x - b^T p = x^T (c - A^T p) + p^T (Ax - b) = \sum_i v_i + \sum_i u_i$$

• Hence, $c^T x = b^T p$ iff $u_i = 0 \ \forall i$ and $v_i = 0 \ \forall j$.

²see shortcut for deriving the dual

Applications of Duality

- Similar to the reduced cost vector, the dual LP can provide a certificate of optimality.
- The optimal dual solution is comprised of shadow prices.
- The dual LP may be easier to solve than the primal LP.

Ex. Solve the following LP:

minimize
$$\sum_{i=1}^{n} x_{i}$$
 subject to $x_{i} + x_{i+1} \ge 1$ $i = 1, ..., n-1$