ME597/AAE556 – Fall 2022 Purdue University West Lafayette, IN

Homework Set No. 1

Assignment date: Tuesday, August 30

Due date: Tuesday, September 13 at 11:59 PM (Eastern Time)

Please submit your completed homework assignment by

• Scanning and uploading assignment to **Gradescope**.

Instructions:

- Please upload your HW with following this name code, where ** is the assignment number (e.g., HW**=HW1): HW**ME597/AAE556_Fall22_NameInitial_Lastname
- This assignment is strictly individual.
- Your work will be evaluated considering the **shown procedure to obtain final answers**.
- The procedure and results should be <u>clear</u> and <u>ordered</u>.
- Consider asking questions about the assignment in advance to avoid inconveniences caused by unexpected events close to the submission date.
- Please ensure your work is submitted via Gradescope.

Name			

ME597/AAE556 – Fall 2022 Homework Set No. 1 Problem No. 1 – 50 points

Consider a 1D uncambered wing section with wing area S. A concentrated load P is applied aft of the shear center (SC) to create an applied moment P d. The wing has no initial incidence angle, $\theta_0 = 0$. The twist angle, θ (measured in radians), is resisted by a nonlinear torsional spring producing a restoring moment $M_E = K_1\theta + K_2\theta^3$, where K_1 and K_2 are measured in Nm/rad. The produced aerodynamic lift is calculated using $L = q S a_1\theta$ and is located at the aerodynamic center at a distance e from the SC.

Figure 1: Model schematic and free body diagram

- (a) Derive the torsional equilibrium equation with all terms in θ and its powers on one side and the static loading term P d on the other.
- (b) Derive a nondimensional form of this equation normalizing by K_1 . Write the coefficients of θ in terms of the nondimensional quantity $\hat{q} = q S e a_1/K_1$
- (c) Using the nondimensional equation from (b) setting $K_2 = \frac{8}{3}q$ S e a_1 , obtain:
 - 1. The effective torsional stiffness K_e by finding: $\frac{\partial \hat{P}}{\partial \theta}$, where $\hat{P} = \frac{Pd}{K_1}$
 - 2. Plot K_e as a function of θ for \hat{q} taking values of $\hat{q} = [0,0.5,1,1.5]$
- (d) Plot the nondimensionalized applied torque \hat{P} for the range $\theta \in (-0.5,0.5)$ for $\hat{q} = [0,0.5,1,1.5]$ and discuss the effect of increasing \hat{q} on the stability of the system by identifying for which values we have:
 - 1. Only one twist angle solution.
 - 2. The limit of linear divergence, i.e. for a system with $K_2 = 0$.
 - 3. The system shows multiple stable solutions.

ME597/AAE556 – Fall 2022 Homework Set No. 1 Problem No. 2 – 50 points

An idealized aircraft is shown in the Figure 2 flying at an angle of attack α_0 with its two, uncambered, typical section "wings" twisted an amount θ . The wing lift for each of the two segments is $L = q S \alpha_1 \theta$ where θ is the wing elastic twist and S is the wing area of each wing, S = c * 1. During a banked, constant altitude turn this airplane develops a load factor of n, defined as

$$n = \frac{Total\ lift}{Total\ weight}$$

The total aircraft weight is $W = 2w + W_f$ where w is the weight of each wing and W_f is the weight of everything else. The total lift is (ignoring the tail) $L_{total} = 2L_w + L_T = 2qSa_1(\alpha_0 + \theta)$. The wing center of gravity is located a distance d from the wing shear center.

Figure 2: Aircraft and wing free body diagram

- (a) Solve for the aircraft angle of attack α_0 as a function of n. Plot α_0 vs. n.
- (b) Solve for the wing twist θ as a function of n.
- (c) Plot θ vs. n.
- (d) Solve for the divergence dynamic pressure q_D as a function of n.