

Name of Examination: Programme Name:	Continuous Assessment Test(CAT-I), Fall Semester 2022-23 (Nov., 2022)					
	B. Tech.	Duration:	90 Minutes Max		Max. Marks:	50 Marks
Slot:	A2+TA2					
Course Code:	BMAT101L	Course	Title:	Calculus		

Answer all the questions (Each question carries 10 marks)

- 1. (a). For the following function $f(x) = \ln (4 + 2x x^2)$, verify that the hypotheses of Rolle's Theorem are satisfied on the interval [-1,3], and find all values of c in that interval that satisfy the conclusion of the theorem.
 - (b). Use Mean-Value Theorem to show $|\tan x \tan y| \ge |x y|$ for all values of x and y in the interval $(-\pi/2, \pi/2)$.
- 2. Find the intervals in which the function given by $f(x) = \sin(x) + \cos(x)$, $0 \le x \le 2\pi$ is strictly increasing or strictly decreasing. [10 M]
- 7. Find the area of the region bounded by the parabola $x^2 = 8y$ and the line segment -x + 2y = 8. [10 M]
- 4. (a). Investigate the continuity of the function $f(x,y) = \frac{\sqrt[3]{x}y^2}{x+y^3}$ at orgin. [5 M]
- (b). Use an appropriate form of the chain rule to find $\frac{\partial z}{\partial u}$ and $\frac{\partial z}{\partial v}$ for z = 3x 2y; $x = u + v \ln(u)$, $y = u^2 v \ln(v)$. [5 M]
- If $u = x\sqrt{1 y^2} + y\sqrt{1 x^2}$ and $v = sin^{-1}x + sin^{-1}y$, show that u, v are functionally related and find the relationship. [10 M]