Exercice 1:

Pour $n \in \mathbb{N}$, on considère la fonction f_n définie sur \mathbb{R} par :

$$f_n(x) = \begin{cases} x^n \sin(\frac{1}{x}) & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$$

- 1. Montrez que f_0 est continue sur \mathbb{R}^* mais discontinue en 0.
- 2. Montrez que f_1 est continue sur \mathbb{R} , dérivable sur \mathbb{R}^* , mais n'est pas dérivable en 0.
- 3. Montrez que f_2 est continue sur \mathbb{R} , dérivable sur \mathbb{R} , mais que sa dérivée n'est pas continue en 0.
- 4. Montrez que f_3 est continue sur \mathbb{R} , dérivable sur \mathbb{R} , et que sa dérivée est continue sur \mathbb{R} .

Exercice 2:

Démontrez qu'il existe deux points antipodaux (diamétralement opposées) de l'équateur où il fait la même température. Explicitez vos hypothèses.