y; e ? H, T 3

(") 1 5 1 1 ("4) 1/3 2/3 1 - y

Case 1: $f(y) \in \mathcal{F}$ $f(y) \in \mathcal{F}$ $f(y) = (\frac{\pi}{2}) \phi_0^y (1-\theta_0)^{-y}$

Case 2: Misspecification of the model

f(g) & F but then there is some function p(toly) that the closest to fcy).

Sketch Proof 1:

$$\bigoplus_{i \in A_i} finite$$
 $\bigoplus_{i \in A_i} finite$
 $\bigoplus_{i \in A_i} finite$
 $\bigoplus_{i \in A_i} finite$

3.
$$p(\theta = \theta_0) > 0$$
 it's within our prior

Aim: Show $p(\theta=\theta_0|y) \rightarrow 1$ as $n \rightarrow \infty$

Let
$$\theta \neq \theta_0$$

$$\log \left(\frac{P(\theta|y)}{P(\theta_0|y)} \right) = \log \left(\frac{P(\theta) \prod_{i=1}^{n} P(y_i|\theta)}{P(\theta_0) \prod_{i=1}^{n} P(y_i|\theta)} \right)$$

$$= \log \left(\frac{P(\theta)}{P(\theta_0)} \right) + \sum_{i=1}^{n} \log \left(\frac{P(y_i|\theta)}{P(y_i|\theta_0)} \right)$$

Observe:

$$\sum_{i=1}^{\infty} \log \left(\frac{p(y_i | \theta)}{p(y_i | \theta_0)} \right) = \log \left(p(y_i | \theta) \right) - \log \left(p(y_i | \theta_0) \right)$$

=
$$\log \left(p(y; |\theta) \right) - \log \left(f(y;) \right) + \log \left(f(y;) \right) - \log \left(p(y; |\theta_0) \right)$$

= $\log \left(\frac{f(y;)}{p(y; |\theta_0)} \right) - \log \left(\frac{f(y;)}{p(y; |\theta_0)} \right)$

Recally yi are i.i.d. So by the law of large numbers $\log \left(\frac{P(\theta \mid y)}{P(\theta_0 \mid y)} \right) = \log \left(\frac{P(\theta)}{P(\theta_0)} \right) + \sum_{i=1}^{\infty} \left[\log \left(\frac{f(y_i)}{P(y_i \mid \theta_0)} \right) - \log \left(\frac{f(y_i)}{P(y_i \mid \theta_0)} \right) \right]$ = log (P(0)) + n E (log (f(yi))) - n E (log (f(yi)))) = $log(\frac{P(0)}{P(0)}) + n[KL(0) - KL(0)]$ minimizer

conserved $\theta \neq \theta_0$ and θ_0 is a minimizer of KL(0) $\log\left(\frac{p(\theta|y)}{p(\theta_0|y)}\right) \rightarrow -\infty \quad \text{as} \quad n \to \infty$ $\Rightarrow \frac{p(\theta|y)}{p(\theta|y)} \to 0 \Rightarrow p(\theta|y) \to 0$ Because probabilities sum to d_1 $\left[p(\theta_0|y) \Rightarrow d\right]$. Hence, the posterior distribution converges.

A set H is compact if every open cover contains a finite subcover.

Since $\Theta \subseteq \mathbb{R}^n$, we picture this as closed and bounded.

Sketch Proof for Theorem 2

Let Θ be a compact set and define A to be an open cover such that only one set $A_0 \in A$ contains θ_0 .

Since (H) is compact, there exists a finite subcover.

2 Ao, A., ..., Au3 where Ao is the set previously
specified.

Use theorem 1's arguement.

$$\log \left(\frac{\rho(\theta \in A \mid y)}{\rho(\theta \in A_0 \mid y)} \right) \approx \log \left(\frac{\rho(\theta \in A)}{\rho(\theta \in A_0)} \right) + n E \left(\frac{\rho(y; |\theta \in A)}{\rho(y; |\theta \in A_0)} \right)$$

$$P(\theta \in A \mid y) \rightarrow 0$$
 as $n \rightarrow \infty$