

NILGIRI COLLEGE OF ARTS AND SCIENCE

(Affiliated to Bharathiar University)

PG DEPARTMENT OF COMPUTER SCIENCE

DATA MINING USING

R - LAB

PRACTICAL RECORD

2020-2021

NAME
REGISTER No
CLASS
SEMESTER

Estd.2012

NILGIRI COLLEGE OF ARTS AND SCIENCE

(Affiliated to Bharathiar University)

PG DEPARTMENT OF COMPUTER SCIENCE

DATA MINING USING R - LAB

PRACTICAL RECORD

NAME		
REGIST	TER No	
student of M. Sc.	s the bonafide record of work do Computer Science in the Data M ratory during the year 2020- 202	lining Using R
Staff in-charge	Head of the Department	Principal
Submitted for the Pr	ractical Examination held on	

External Examiner

Internal Examiner

INDEX

SL.No	DATE	PROGRAM NAME	PAGE No.	REMARK
1		APRIORI ALGORITHM		
2		K-MEANS CLUSTERING		
3		HIERARCHAL CLUSTERING		
4		CLASSIFICATION ALGORITHM		
5		DECISION TREE		
6		LINEAR REGRESSION		
7		DATA VISUALIZATION		

Ex. No : 1	- APRIORI ALGORITHM
Date :	
Aim:	
Implement Apriori a	lgorithm to extract association rule of datamining
Algorithm :	
Step 1:Start the Proc	ress
Step 2:Select the cra	n mirror
Step 3:install the page	ckage arules.
Step 4: include the l	ibrary Function of arules
Step 5:inspect rules	and summary the rules
Stop 6: Stop the pro-	cess


```
OUTPUT
 tr<-read.transactions("E:/Mic.txt",format="basket",sep=",")
 Warning message:
 In readLines(file, encoding = encoding):
  incomplete final line found on 'E:/Mic.txt'
 >inspect(tr)
   items
 [1] \{A,B,C\}
 [2] \{B,C\}
 [3] \{A,B,D\}
 [4] \{A,B,C,D\}
 [5] \{A\}
 [6] {B}
 Apriori
 Parameter specification:
 confidence minval smax arem aval originalSupport maxtime support minlen
      0.5 0.1 1 none FALSE
                                       TRUE
                                                 5
                                                     0.5
            1 maxlen target ext
    10 rules TRUE
 Algorithmic control:
filter tree heap memopt load sort verbose
   0.1 TRUE TRUE FALSE TRUE 2
                                         TRUE
 Absolute minimum support count: 3
 set item appearances ...[0 item(s)] done [0.00s].
 set transactions ...[4 item(s), 6 transaction(s)] done [0.00s].
 sorting and recoding items ... [3 item(s)] done
 [0.00s]. creating transaction tree ... done [0.00s].
 checking subsets of size 1 2 done
```

[0.00s]. writing ... [7 rule(s)] done [0.00s]. creating S4 object ... done [0.00s].

inspect(rules)

lhs rhs support confidence coverage lift count

[1] {} => {C} 0.5000000 0.5000000 1.0000000 1.0 3

 $[2] \; \{\} \; \Longrightarrow \{A\} \; 0.6666667 \; 0.6666667 \; 1.00000000 \; 1.0 \; \; 4$

 $[3] \; \{\} \; \Longrightarrow \{B\} \; 0.8333333 \; 0.8333333 \; \; 1.00000000 \; 1.0 \; \; 5$

 $[4] \ \{C\} \Longrightarrow \{B\} \ 0.50000000 \ 1.00000000 \ 0.50000000 \ 1.2 \ 3$

 $[5] \ \{B\} \Longrightarrow \{C\} \ 0.50000000 \ 0.60000000 \ 0.83333333 \ 1.2 \ 3$

 $[6] \{A\} \Rightarrow \{B\} 0.5000000 0.7500000 0.6666667 0.9 3$

 $\label{eq:B} \mbox{[7] $\{B\}$} \Longrightarrow \{A\} \ 0.50000000 \ 0.60000000 \ 0.83333333 \ 0.9 \ 3$

set of 7 rules

rule length distribution (lhs +

rhs):sizes

1 2

3 4

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.000 1.000 2.000 1.571 2.000 2.000

summary of quality measures:

support confidence coverage lift

Min.: 0.5000 Min.: 0.5000 Min.: 0.5000 Min.: 0.900

1st Qu.:0.5000 1st Qu.:0.6000 1st Qu.:0.7500 1st Qu.:0.950

Median :0.5000 Median :0.6667 Median :0.8333 Median :1.000

Mean :0.5714 Mean :0.7071 Mean :0.8333 Mean :1.029

3rd Qu.:0.5833 3rd Qu.:0.7917 3rd Qu.:1.0000 3rd Qu.:1.100

Max.: 0.8333 Max.: 1.0000 Max.: 1.0000 Max.: 1.200

count

Min. :3.00

1st

Qu.:3.000

Median :3.000

Mean: 3.429

3rd Qu.:3.500

Max. :5.000

mining info:

data ntransactions support confidence

tr 6 0.5 0.5

RESULT:

Ex. No : 2	K-MEANS CLUSTERING
Date :	K-WEANS CLUSTERING
Aim:	
Implement k means	Clustering.
Algorithm:	
Step 1:Start the Proc	eess
Step 2:Install the iris	
	ems in the iris dataset
Step4:Display the pl	ot diagram of iris dataset
Step5:Stop the proce	ess.

K-means clustering with 3 clusters of sizes 62, 50, 38

Cluster means:

Sepal.Length Sepal.Width Petal.Length

Petal.Width 1 5.901613 2.748387 4.393548

1.433871

2 5.006000 3.428000 1.462000 0.246000

3 6.850000 3.073684 5.742105 2.071053

Clustering vector:

[149] 3 1

Within cluster sum of squares by cluster:

[1] 39.82097 15.15100 23.87947

 $(between_SS / total_SS = 88.4 \%)$

Available components:

[1] "cluster" "centers" "totss" "withinss" "tot.withinss"

[6] "betweenss" "size" "iter" "ifault"

1 2 3

setosa 0500

versicolor 48 0 2

virginica 14 0 36

RESULT:

Ex. No : 3	HIED ADOLLAL OLLIGHEDING
Date :	HIERARCHAL CLUSTERING
Aim:	
Implement any one l	Hierarchal Clustering.
Algorithm:	
Step1: Start the Proce	
Step2: Install the iris	
Step3: Specify the Sp Step4: verify the outp	
Step4: Verify the outp	
Steps. Stop the Froce	,55

Code: >idx <- sample(1:dim(iris)[1], 40) > irisSample <- iris[idx,] > irisSample\$Species <- NULL > hc <- hclust(dist(irisSample), method="ave") > plot(hc, hang = -1, labels=iris\$Species[idx]) > rect.hclust(hc, k=3) > groups <- cutree(hc, k=3)

Ex. No : 4	
Date :	CLASSIFICATION ALGORITHM
Aim:	
Implement Class	sification Algorithm
Algorithm:	
Step1:Start the Proce	ess
Step2:Install the iris	datasets in the program
Step3:set the plot in	Decision tree based classification
Step4:Verify the outp	out
Step5:Stop the Proce	ess


```
Classification tree:
```

```
rpart(formula = Kyphosis ~ Age + Number + Start, data = kyphosis, method = "class")
```

Variables actually used in tree construction:

[1] Age Start

Root node error: 17/81 = 0.20988

n = 81

CP nsplit rel error xerror xstd

Call:

rpart(formula = Kyphosis ~ Age + Number + Start, data = kyphosis, method = "class") n= 81

CP nsplit rel error xerror xstd

Variable importance

Start Age Number

64 24 12

```
Node number 1: 81 observations, complexity param=0.1764706
predicted class=absent expected loss=0.2098765 P(node) =1
  class counts: 64 17
 probabilities: 0.790 0.210
 left son=2 (62 obs) right son=3 (19 obs)
 Primary splits:
   Start < 8.5 to the right, improve=6.762330, (0 missing)
   Number < 5.5 to the left, improve=2.866795, (0 missing)
   Age < 39.5 to the left, improve=2.250212, (0 missing)
 Surrogate splits:
   Number < 6.5 to the left, agree=0.802, adj=0.158, (0 split)
Node number 2: 62 observations, complexity param=0.01960784
predicted class=absent expected loss=0.09677419 P(node) =0.7654321
  class counts: 56
 probabilities: 0.903 0.097
 left son=4 (29 obs) right son=5 (33 obs)
 Primary splits:
   Start < 14.5 to the right, improve=1.0205280, (0 missing)
   Age < 55 to the left, improve=0.6848635, (0 missing)
   Number < 4.5 to the left, improve=0.2975332, (0 missing)
 Surrogate splits:
   Number < 3.5 to the left, agree=0.645, adj=0.241, (0 split)
   Age < 16 to the left, agree=0.597, adj=0.138, (0 split)
Node number 3: 19 observations
 predicted class=present expected loss=0.4210526 P(node) =0.2345679
  class counts: 8 11
 probabilities: 0.421 0.579
Node number 4: 29 observations
predicted class=absent expected loss=0 P(node) =0.3580247
  class counts: 29
 probabilities: 1.000 0.000
Node number 5: 33 observations, complexity param=0.01960784
predicted class=absent expected loss=0.1818182 P(node) =0.4074074
```

```
class counts: 27
 probabilities: 0.818 0.182
 left son=10 (12 obs) right son=11 (21 obs)
 Primary splits:
   Age < 55 to the left, improve=1.2467530, (0 missing)
   Start < 12.5 to the right, improve=0.2887701, (0 missing)
   Number < 3.5 to the right, improve=0.1753247, (0 missing)
 Surrogate splits:
   Start < 9.5 to the left, agree=0.758, adj=0.333, (0 split)
   Number < 5.5 to the right, agree=0.697, adj=0.167, (0 split)
Node number 10: 12 observations
predicted class=absent expected loss=0 P(node) =0.1481481
  class counts: 12
 probabilities: 1.000 0.000
Node number 11: 21 observations, complexity param=0.01960784
predicted class=absent expected loss=0.2857143 P(node) =0.2592593
  class counts: 15 6
 probabilities: 0.714 0.286
 left son=22 (14 obs) right son=23 (7 obs)
Primary splits:
   Age < 111 to the right, improve=1.71428600, (0 missing)
   Start < 12.5 to the right, improve=0.79365080, (0 missing)
   Number < 3.5 to the right, improve=0.07142857, (0 missing)
Node number 22: 14 observations
predicted class=absent expected loss=0.1428571 P(node) =0.1728395
  class counts: 12
 probabilities: 0.857 0.143
Node number 23: 7 observations
predicted class=present expected loss=0.4285714 P(node) =0.08641975
  class counts: 3 4
 probabilities: 0.429 0.571
```

classification tree for kyphosis

classification tree for kyphosis

RESULT:

Ex. No : 5	DECISION TREE
Date :	
Aim:	
Implement Decis	sion Tree
Algorithm:	
Step1: Start the Proce	
Step2:install the iris of	
Step3:include here tra	
Step4:install the pack	
Step5:Verify the outp	ut
Step6:Stop the process	

```
Code:
> str(iris)
> set.seed(1234)
> ind <- sample(2, nrow(iris), replace=TRUE, prob=c(0.7, 0.3))
> trainData <- iris[ind==1,]
> testData <- iris[ind==2,]
> library(party)
> myFormula <- Species ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Width
> iris_ctree <- ctree(myFormula, data=trainData)
> table(predict(iris_ctree), trainData$Species)
> print(iris ctree)
> plot(iris_ctree)
> plot(iris_ctree, type="simple")
```

'data.frame': 150 obs. of 5 variables:

\$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...

\$ Sepal.Width: num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...

\$ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...

\$ Petal.Width: num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...

\$ Species : Factor w/ 3 levels "setosa", "versicolor", ..: 1 1 1 1 1 1 1 1 1 1 ...

setosa versicolor virginica

 setosa
 40
 0
 0

 versicolor
 0
 37
 3

 virginica
 0
 1
 31

Conditional inference tree with 4 terminal

nodes Response: Species

Inputs: Sepal.Length, Sepal.Width, Petal.Length, Petal.Width

Number of observations: 112

- 1) Petal.Length <= 1.9; criterion = 1, statistic = 104.643 2)* weights = 40
- 1) Petal.Length > 1.9
- 3) Petal.Width <= 1.7; criterion = 1, statistic = 48.939
 - 4) Petal.Length <= 4.4; criterion = 0.974, statistic = 7.397 5)* weights = 21
 - 4) Petal.Length >
 - 4.4 6)* weights
 - = 19
- 3) Petal. Width >

1.7 7)* weights

= 32

RESULT:

Ex. No : 6	I DIE AD DECDECCION
Date :	LINEAR REGRESSION
Aim:	
Implement Linear R	egression
Algorithm:	
Step1: Start the Process	
Step2:read the health da	taset
Step3:campare lungcapa	acity and age
Step4:Make a code for a	abline
Step5:Verify the output	
Step6:Stop the process	

Call:

 $lm(formula = health1\$lungcap \sim health1\$age)$

Coefficients:

(Intercept) health1\$age

0.2783

1.0087

RESULT:

DATA VISUALIZATION Date: Aim: Implement Data Visualization				
Aim: Implement Data Visualization Algorithm: Step1: Start the Process Step2:read the sample dataset Step3:Display the Histogram Diagram Step4:Display the barplot and boxplot Diagram Step5:Verify the output	Ex. No : 7	DATA VISUALIZATION		
Implement Data Visualization Algorithm: Step1: Start the Process Step2:read the sample dataset Step3:Display the Histogram Diagram Step4:Display the barplot and boxplot Diagram Step5:Verify the output	Date :			
Algorithm: Step1: Start the Process Step2:read the sample dataset Step3:Display the Histogram Diagram Step4:Display the barplot and boxplot Diagram Step5:Verify the output	Aim:			
Step1: Start the Process Step2:read the sample dataset Step3:Display the Histogram Diagram Step4:Display the barplot and boxplot Diagram Step5:Verify the output	Implement Data Visu	alization		
Step2:read the sample dataset Step3:Display the Histogram Diagram Step4:Display the barplot and boxplot Diagram Step5:Verify the output	Algorithm :			
Step2:read the sample dataset Step3:Display the Histogram Diagram Step4:Display the barplot and boxplot Diagram Step5:Verify the output				
Step3:Display the Histogram Diagram Step4:Display the barplot and boxplot Diagram Step5:Verify the output	Step1: Start the Proce	ess		
Step4:Display the barplot and boxplot Diagram Step5:Verify the output	Step2:read the sample	e dataset		
Step5:Verify the output	Step3:Display the His	stogram Diagram		
	Step4:Display the bar	plot and boxplot Diagram		
Step6:Stop the process	Step5:Verify the outp	ut		
	Step6:Stop the proces	Step6:Stop the process		

Code:
> v1<-read.csv("E:/sample dataset.csv")
> hist(v1\$Mark,col="pink",main="Histogram Diagram")
> v2<-table(v1\$Percent)
> barplot(v2)
> boxplot(v1\$Mark)
> summary(v1\$Mark)

Min. 1st Qu. Median Mean 3rd Qu. Max. 67.00 79.75 85.50 83.67 87.50 98.00

Histogram Diagram

Barplot

Boxplot

RESULT: