Safe and Efficient Off-Policy Reinforcement Learning

Yasuhiro Fujita

Preferred Networks Inc.

January 11, 2017

[Munos et al. 2016]

Safe and efficient off-policy reinforcement learning

Rémi Munos munos@google.com Google DeepMind

Anna Harutyunyan

Anna Harutyunyan anna.harutyunyan@vub.ac.be Vrije Universiteit Brussel

Tom Stepleton stepleton@google.com Google DeepMind

Marc G. Bellemare bellemare@google.com Google DeepMind

- ▶ Proposes a new off-policy multi-step RL method: Retrace(\(\lambda\))
 - Good theoretical properties: low-variance, safe and efficient
 - It outperforms one-step Q-learning and existing multi-step variants
- ▶ Proves the convergence of Watkins's $Q(\lambda)$ for the first time

Multi-step methods

- Multi-step methods have some advantages over single-step methods
 - ▶ They can balance bias and variance
 - ▶ They can propagate values more quickly
- Example: SARSA(λ)
 - n-step return

$$\mathcal{R}_{s}^{(n)} = \sum_{t=s}^{s+n} \gamma^{t-s} r_{t} + \gamma^{n+1} Q(x_{s+n+1}, a_{s+n+1})$$

 \triangleright λ -return based update rule

$$\Delta Q(x_s, a_s) = \sum_{t \ge s} (\lambda \gamma)^{t-s} \delta_t$$

$$\delta_t = r_t + \gamma Q(x_{t+1}, a_{t+1}) - Q(x_t, a_t)$$

Multi-step methods in off-policy settings

- Can we apply multi-step methods to off-policy cases?
 - Policy evaluation: estimate Q^{π} from samples collected by μ ($\pi \neq \mu$)
 - ▶ Control: estimate Q^* from samples collected by μ
- ▶ In "Algorithms for Reinforcement Learning", p. 57

There exist multi-step versions of Q-learning (e.g., Sutton and Barto, 1998, Section 7.6). However, these are not as appealing (and straightforward) as the multi-step extensions of TD(0) since Q-learning is an inherently off-policy algorithm: the temporal differences underlying Q-learning do not telescope even when $X_{t+1} = Y_{t+1}$.

Watkins's $Q(\lambda)$ [Watkins 1989]

- Classic multi-step algorithm for off-policy control
- ▶ Cut off traces whenever a non-greedy action is taken

$$\mathcal{R}_s^{(n)} = \sum_{t=s}^{s+n} \gamma^{t-s} r_t + \gamma^{n+1} \max_{a} Q(x_{s+n+1}, a)$$
 (for any $n < \tau = \operatorname*{arg\,min}_{u \geq 1} \mathbb{I}\{\pi_{s+u} \neq \mu_{s+u}\}$)

- ▶ Converges to Q^* under a mild assumption (proved in this paper)
- ► Only little faster than one-step Q-learning if non-greedy actions are frequent (i.e. not "efficient")

Backup diagram of $Q(\lambda)$

General operator ${\cal R}$

▶ To compare off-policy multistep methods, consider the general operator \mathcal{R} :

$$\mathcal{R}Q(x,a) := Q(x,a) + \mathbb{E}_{\mu} \Big[\sum_{t \ge 0} \gamma^t \Big(\prod_{s=1}^t c_s \Big) \big(r_t + \gamma \mathbb{E}_{\pi} Q(x_{t+1}, \cdot) - Q(x_t, a_t) \big) \Big], \tag{3}$$

- ▶ Different non-negative coefficients *c_s* (traces) result in different methods
- ▶ (Is this equation correct?)

Desired properties

- Low variance
 - Variance of the online estimate is small
 - $ightharpoonup pprox \mathbb{V}(c_1\cdots c_t)$ is small
 - ▶ $\approx \mathbb{V}(c)$ is small
- Safe
 - ▶ Convergence to Q^{π} (policy evaluation) or Q^{*} (control) is guaranteed
- ► Efficient
 - lacktriangle Traces are not unnecessarily cut if π and μ are close

Comparison of properties

	Definition of c_s	Estimation variance	Guaranteed convergence†	Use full returns (near on-policy)
Importance sampling	$rac{\pi(a_s x_s)}{\mu(a_s x_s)}$	High	for any π , μ	yes
$\overline{Q^{\pi}(\lambda)}$	λ	Low	for π close to μ	yes
$\overline{\mathrm{TB}(\lambda)}$	$\lambda \pi(a_s x_s)$	Low	for any π , μ	no
Retrace(λ)	$\lambda \min\left(1, rac{\pi(a_s x_s)}{\mu(a_s x_s)} ight)$	Low	for any π , μ	yes

Table 1: Properties of several algorithms defined in terms of the general operator given in (3). \dagger Guaranteed convergence of the expected operator \mathcal{R} .

- ▶ Retrace(λ) is low-variance, safe and efficient
- Note that Watkins's $Q(\lambda) \neq Q^{\pi}(\lambda)$

Importance Sampling (IS) [Precup et al. 2000]

$$\mathcal{R}Q(x,a) := Q(x,a) + \mathbb{E}_{\mu} \Big[\sum_{t>0} \gamma^t \Big(\prod_{s=1}^t c_s \Big) \big(r_t + \gamma \mathbb{E}_{\pi} Q(x_{t+1}, \cdot) - Q(x_t, a_t) \big) \Big], \tag{3}$$

$$c_s = \frac{\pi(a_s|x_s)}{\mu(a_s|x_s)}$$

- $\mathcal{R}Q = Q^{\pi}$ for any Q in this case
 - ▶ If Q = 0, it just becomes the basic IS estimate $\sum_{t>0} \gamma^t (\prod_{s=1}^t c_s) r_t$
- ▶ High variance, mainly due to the variance of the product

$$\frac{\pi(a_1|x_1)}{\mu(a_1|x_1)}\cdots\frac{\pi(a_t|x_t)}{\mu(a_t|x_t)}$$

Off-policy $Q^{\pi}(\lambda)$ and $Q^{*}(\lambda)$ [Harutyunyan et al. 2016]

$$\mathcal{R}Q(x,a) := Q(x,a) + \mathbb{E}_{\mu} \Big[\sum_{t \ge 0} \gamma^t \Big(\prod_{s=1}^t c_s \Big) \big(r_t + \gamma \mathbb{E}_{\pi} Q(x_{t+1}, \cdot) - Q(x_t, a_t) \big) \Big], \tag{3}$$

$$c_s = \lambda$$

- A very recently proposed alternative
 - $ightharpoonup Q^{\pi}(\lambda)$ for policy evaluation, Q^* for control
- ▶ To guarantee convergence, π and μ must be sufficiently close:
 - ▶ In policy evaluation, $\lambda < \frac{1-\gamma}{\gamma \epsilon}$, where $\epsilon := \max_{\mathbf{x}} \|\pi(\cdot|\mathbf{x}) - \mu(\cdot|\mathbf{x})\|_{1}^{\epsilon}$ $\bullet \text{ In control, } \lambda < \frac{1-\gamma}{2\gamma}$
- lacktriangle Available even if μ is unknown and/or non-Markovian

Tree Backup (TB) [Precup et al. 2000]

$$\mathcal{R}Q(x,a) := Q(x,a) + \mathbb{E}_{\mu} \Big[\sum_{t \ge 0} \gamma^t \Big(\prod_{s=1}^t c_s \Big) \big(r_t + \gamma \mathbb{E}_{\pi} Q(x_{t+1}, \cdot) - Q(x_t, a_t) \big) \Big], \tag{3}$$

$$c_s = \lambda \pi (a_s | x_s)$$

- ▶ The operator defines a contraction, thus is safe
- ▶ Not efficient because it cuts traces even if $\pi = \mu$
- Available even if μ is unknown and/or non-Markovian

Useful table [Harutyunyan et al. 2016]

Algorithm n-step return		Update rule for the λ -return	
$\mathrm{TD}(\lambda)$	$\sum_{t=s}^{s+n} \gamma^{t-s} r_t + \gamma^{n+1} V(x_{s+n+1})$	$\sum_{t \geq s} (\lambda \gamma)^{t-s} \delta_t$	V^{μ}
(on-policy)		$\delta t = r_t + \gamma V(x_{t+1}) - V(x_t)$	
$SARSA(\lambda)$	$\sum_{t=s}^{s+n} \gamma^{t-s} r_t + \gamma^{n+1} Q(x_{s+n+1}, a_{s+n+1})$	$\sum_{t>s} (\lambda \gamma)^{t-s} \delta_t$	Q^{μ}
(on-policy)		$\delta_t = r_t + \gamma Q(x_{t+1}, a_{t+1}) - Q(x_t, a_t)$	
$\mathbb{E} \operatorname{SARSA}(\lambda)$	$\sum_{t=s}^{s+n} \gamma^{t-s} r_t + \gamma^{n+1} \mathbb{E}_{\mu} Q(x_{s+n+1}, \cdot)$	$\sum_{t>s} (\lambda \gamma)^{t-s} \delta_t + \mathbb{E}_{\mu} Q(x_s, \cdot) - Q(x_s, a_s)$	Q^{μ}
(on-policy)		$\delta_t = r_t + \gamma \mathbb{E}_{\mu} Q(x_{t+1}, \cdot) - \mathbb{E}_{\mu} Q(x_t, \cdot)$	
General $Q(\lambda)$	$\sum_{t=s}^{s+n} \gamma^{t-s} r_t + \gamma^{n+1} \mathbb{E}_{\pi} Q(x_{s+n+1}, \cdot)$	$\sum_{t \geq s} (\lambda \gamma)^{t-s} \delta_t + \mathbb{E}_{\pi} Q(x_s, \cdot) - Q(x_s, a_s)$	$Q^{\mu,\pi}$
(off-policy)		$\delta_t = r_t + \gamma \mathbb{E}_{\pi} Q(x_{t+1}, \cdot) - \mathbb{E}_{\pi} Q(x_t, \cdot)$	
$PDIS(\lambda)$	$\sum_{t=s}^{s+n} \gamma^{t-s} r_t \prod_{i=s+1}^t \rho_i$	$\sum_{t>s} (\lambda \gamma)^{t-s} \delta_t \prod_{i=s+1}^t \rho_i$	Q^{π}
(off-policy)	$+\gamma^{n+1}Q(x_{s+n+1},a_{s+n+1})\prod_{i=s}^{s+n}\rho_i$	$\delta_t = r_t + \gamma ho_{t+1} Q(x_{t+1}, a_{t+1}) - Q(x_t, a_t)$	
$TB(\lambda)$	$\sum_{t=s}^{s+n} \gamma^{t-s} \prod_{i=s+1}^{t} \pi_i \left[r_t + \gamma \mathbb{E}_{\pi}^{a \neq a_{t+1}} Q(x_{t+1}, \cdot) \right]$	$\sum_{t>s} (\lambda \gamma)^{t-s} \delta_t \prod_{i=s+1}^t \pi_i$	Q^{π}
(off-policy)	$+\gamma^{n+1}\prod_{i=s+1}^{s+n+1}\pi_iQ(x_{s+n+1},a_{s+n+1})$	$\delta_t = r_t + \gamma \mathbb{E}_{\pi} Q(x_{t+1}, \cdot) - Q(x_t, a_t)$	-
$\mathbf{Q}^{\pi}(\lambda)$	$\sum_{t=s}^{s+n} \gamma^{t-s} \left[r_t + \mathbb{E}_{\pi} Q(x_t, \cdot) - Q(x_t, a_t) \right]$	$\sum_{t>s} (\lambda \gamma)^{t-s} \delta_t$	Q^{π}
(on/off-policy)		$\delta_t = r_t + \gamma \mathbb{E}_{\pi} Q(x_{t+1}, \cdot) - Q(x_t, a_t)$	
$Q(\lambda)$	$\sum_{t=s}^{s+n} \gamma^{t-s} r_t + \gamma^{n+1} \max_a Q(x_{s+n+1}, a)$	$\sum_{t=s}^{s+\tau} (\lambda \gamma)^{t-s} \delta_t \prod_{i=s+1}^t$	Q^*
(Watkins's)	(for any $n < \tau = \arg\min_{u \ge 1} \mathbb{I}\{\pi_{s+u} \ne \mu_{s+u}\}$)	$\delta_t = r_t + \gamma \max_a Q(x_{t+1}, a) - Q(x_t, a_t)$	
$Q(\lambda)$	$\sum_{t=s}^{s+n} \gamma^{t-s} r_t + \gamma^{n+1} \max_a Q(x_{s+n+1}, a)$	$\sum_{t=s}^{s+n} (\lambda \gamma)^{t-s} \delta_t + \max_a Q(x_s, a) - Q(x_s, a_s)$	$Q^{\mu,*}$
(P & W's)		$ \overline{\delta_t} = r_t + \gamma \max_a Q(x_{t+1}, a) - \max_a Q(x_t, a) $	
$\mathbf{Q}^*(\lambda)$	$\sum_{t=s}^{s+n} \gamma^{t-s} \left[r_t + \max_a Q(x_t, a) - Q(x_t, a_t) \right]$	$\sum_{t>s} (\lambda \gamma)^{t-s} \delta_t$	Q^*
	$+\gamma^{n+1} \max_a Q(x_{s+n+1}, a)$	$\delta_t = r_t + \gamma \max_a Q(x_{t+1}, a) - Q(x_t, a_t)$	

Retrace(λ)

$$\mathcal{R}Q(x,a) := Q(x,a) + \mathbb{E}_{\mu} \Big[\sum_{t \ge 0} \gamma^t \Big(\prod_{s=1}^t c_s \Big) \big(r_t + \gamma \mathbb{E}_{\pi} Q(x_{t+1}, \cdot) - Q(x_t, a_t) \big) \Big], \tag{3}$$

$$c_s = \lambda \min(1, \frac{\pi(a_s|x_s)}{\mu(a_s|x_s)})$$

- Proposed by this paper
- IS ratio truncated at 1
- ▶ If π is close to μ , c_s is close to 1, avoid unnecessarily cutting traces

Experiments on Atari 2600

- Trained asynchrounously with 16 threads
- ► Each thread has private replay memory holding 62,500 transitions
- Q-learning uses a minibatch of 64 transitions
- ► Retrace, TB and Q* use four 16-step sequences

Performance comparison

Figure 1: Inter-algorithm score distribution for λ -return ($\lambda = 1$) variants and Q-Learning ($\lambda = 0$).

- ▶ 0 and 1 of inter-algorithm scores respectively correspond to the worst and best scores for a particular game
- ▶ Retrace(λ) performs best on 30 out of 60 games

Sensitivity to λ

Figure 2: Average inter-algorithm scores for each value of λ . The DQN scores are fixed across different λ , but the corresponding inter-algorithm scores varies depending on the worst and best performer within each λ . Note that average scores are not directly comparable across different values of λ .

- Note that the Q-learning scores are fixed across different λ
- $ightharpoonup {\rm Q}^*$ performs best for small values of λ

Conclusions

- ▶ Retrace(λ)
 - is low-variance, safe and efficient
 - outperforms one-step Q-learning and existing multi-step variants on Atari 2600
 - (is already applied to A3C in another paper [Wang et al. 2016])
- ▶ Watkins's $Q(\lambda)$ now has a convergence guarantee

Future work

- **E**stimate μ if it is unknown
- ▶ Relaxing the Markov assumption in the control case to allow $c_s > 1$:

$$c_s = \lambda \min(rac{1}{c_1 \cdots c_{s-1}}, rac{\pi(a_s|x_s)}{\mu(a_s|x_s)})$$

Theorem 1

Theorem 1. The operator \mathcal{R} defined by (3) has a unique fixed point Q^{π} . Furthermore, if for each $a_s \in \mathcal{A}$ and each history \mathcal{F}_s we have $c_s = c_s(a_s, \mathcal{F}_s) \in \left[0, \frac{\pi(a_s|x_s)}{\mu(a_s|x_s)}\right]$, then for any Q-function Q $\|\mathcal{R}Q - Q^{\pi}\| < \gamma \|Q - Q^{\pi}\|$.

- \blacktriangleright π and μ are stationary
- ► c_s can be non-Markovian

Theorem 2

Definition 1. We say that a sequence of policies $(\pi_k : k \in \mathbb{N})$ is increasingly greedy w.r.t. a sequence $(Q_k : k \in \mathbb{N})$ of Q-functions if the following property holds for all $k \colon P^{\pi_{k+1}}Q_{k+1} \ge P^{\pi_k}Q_{k+1}$.

Theorem 2. Consider an arbitrary sequence of behaviour policies (μ_k) (which may depend on (Q_k)) and a sequence of target policies (π_k) that are increasingly greedy w.r.t. the sequence (Q_k) :

$$Q_{k+1} = \mathcal{R}_k Q_k,$$

where the return operator \mathcal{R}_k is defined by (3) for π_k and μ_k and a Markovian $c_s = c(a_s, x_s) \in [0, \frac{\pi_k(a_s|x_s)}{\mu_k(a_s|x_s)}]$. Assume the target policies π_k are ε_k -away from the greedy policies w.r.t. Q_k , in the sense that $\mathcal{T}^{\pi_k}Q_k \geq \mathcal{T}Q_k - \varepsilon_k \|Q_k\|e$, where e is the vector with 1-components. Further suppose that $\mathcal{T}^{\pi_0}Q_0 \geq Q_0$. Then for any $k \geq 0$,

$$||Q_{k+1} - Q^*|| \le \gamma ||Q_k - Q^*|| + \varepsilon_k ||Q_k||.$$

In consequence, if $\varepsilon_k \to 0$ then $Q_k \to Q^*$.

- $\blacktriangleright \pi$ is not stationary
- ► c_s must be Markovian

Theorem 3

Theorem 3. Consider a sequence of sample trajectories, with the k^{th} trajectory $x_0, a_0, r_0, x_1, a_1, r_1, \ldots$ generated by following μ_k : $a_t \sim \mu_k(\cdot|x_t)$. For each (x, a) along this trajectory, with s being the time of first occurrence of (x, a), update

$$Q_{k+1}(x,a) \leftarrow Q_k(x,a) + \alpha_k \sum_{t \ge s} \delta_t^{\pi_k} \sum_{j=s}^t \gamma^{t-j} \Big(\prod_{i=j+1}^t c_i \Big) \mathbb{I}\{x_j, a_j = x, a\},$$
 (7)

where $\delta_t^{\pi_k} := r_t + \gamma \mathbb{E}_{\pi_k} Q_k(x_{t+1}, \cdot) - Q_k(x_t, a_t)$, $\alpha_k = \alpha_k(x_s, a_s)$. We consider the Retrace(λ) algorithm where $c_i = \lambda \min\left(1, \frac{\pi(a_i \mid x_i)}{\mu(a_i \mid x_i)}\right)$. Assume that (π_k) are increasingly greedy w.r.t. (Q_k) and are each ε_k -away from the greedy policies (π_{Q_k}) , i.e. $\max_x \|\pi_k(\cdot \mid x) - \pi_{Q_k}(\cdot \mid x)\|_1 \leq \varepsilon_k$, with $\varepsilon_k \to 0$. Assume that P^{π_k} and $P^{\pi_k \wedge \mu_k}$ asymptotically commute: $\lim_k \|P^{\pi_k} P^{\pi_k \wedge \mu_k} - P^{\pi_k \wedge \mu_k} P^{\pi_k}\| = 0$. Assume further that (1) all states and actions are visited infinitely often: $\sum_{t \geq 0} \mathbb{P}\{x_t, a_t = x, a\} \geq D > 0$, (2) the sample trajectories are finite in terms of the second moment of their lengths T_k : $\mathbb{E}_{\mu_k} T_k^2 < \infty$, (3) the stepsizes obey the usual Robbins-Munro conditions. Then $Q_k \to Q^*$ a.s.

- Convergence of sample-based online algorithm
- ▶ As a corollary, Watkins's $Q(\lambda)$ converges to Q^*
 - Only c_s is different

参考文献I

- Anna Harutyunyan et al. "Q(λ) with Off-Policy Corrections". In: Proceedings of Algorithmic Learning Theory (ALT). 2016. arXiv: 1602.04951.
- [2] Remi Munos et al. "Safe and Efficient Off-Policy Reinforcement Learning". In: Proceedings of Neural Information Processing Systems (NIPS). 2016. arXiv: 1606.02647.
- [3] Doina Precup, Richard S Sutton, and Satinder P Singh. "Eligibility Traces for Off-Policy Policy Evaluation". In: ICML '00: Proceedings of the Seventeenth International Conference on Machine Learning (2000), pp. 759–766.
- [4] Ziyu Wang et al. "Sample Efficient Actor-Critic with Experience Replay". In: arXiv (2016), pp. 1–20. arXiv: 1611.01224.
- [5] Christopher John Cornish Hellaby Watkins. "Learning from delayed rewards". PhD thesis. Cambridge University, 1989.