Sobre a complexidade de um algoritmo de regularização quadrática para minimizar funções não suaves e não convexas

Vitaliano S. Amaral - UFPI

Universidade Federal do Piauí

JMatUFPI 2024

Trabalho em parceria com J. O. Lopes, P. S. M. Santos e G. N. Silva

2024

Sumário

- 1. Resultados Preliminares
- 2. O Problema
- 3. O Método
- 4. Convergência e Complexidade
- 5. Exemplos e Testes Numéricos

Resultados Preliminares

Seja $\xi: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ uma função:

- ξ é semicontínua inferiormente em $\bar{\alpha}$ se para cada $\alpha < \xi(\bar{\alpha})$ existe uma vizinhança V de $\bar{\alpha}$ tal que para qualquer $x \in V$ temos $\alpha < \xi(x)$.
- O domínio de ξ é definido por dom $\xi := \{x \in \mathbb{R}^n : \xi(x) < +\infty\}.$
- O subdiferencial de Fréchet de ξ em $\bar{\alpha} \in \text{dom } \xi$ é definido por

$$\mathfrak{d}^F\xi(\overline{\alpha}) = \bigg\{ b \in \mathbb{R}^n : \lim\inf_{\alpha \to \overline{\alpha}} \frac{\xi(\alpha) - \xi(\overline{\alpha}) - \langle b, \alpha - \overline{\alpha} \rangle}{\|\alpha - \overline{\alpha}\|} \geqslant 0 \bigg\}.$$

Se $\bar{a} \notin \text{dom } \xi$, então $\partial^F \xi(\bar{a}) = \emptyset$.

- $\bullet \ \ \text{Usamos} \ u^k \stackrel{\xi}{\to} \bar{u} \ \text{para dizer que} \ u^k \to \bar{u} \ \text{com} \ \xi(u^k) \to \xi(\bar{u}).$
- O subdiferencial de Mordukhovich, $\partial^L \xi(\bar{a})$, de ξ em $\bar{a} \in \text{dom } \xi$ é definido por

$$\text{lim}\sup_{\alpha\overset{\xi}{\to}\bar{\alpha}} \vartheta^F \xi(\alpha) = \left\{ b \in \mathbb{R}^n : \exists \, \alpha^k \overset{\xi}{\to} \bar{\alpha}, \, b^k \in \vartheta^F \xi(\alpha^k), \, b^k \to b \right\}.$$

• Se ξ é convexa, temos $\vartheta^F\xi(\cdot)=\vartheta^L\xi(\cdot).$

Se $\zeta:\mathbb{R}^n \to \mathbb{R}$ é uma função convexa, seu ϵ -subdifferencial é

$$\vartheta_{\varepsilon}\zeta(\bar{\mathbf{x}}) = \{\mathbf{y} \in \mathbb{R}^{\mathbf{n}} : \zeta(z) \geqslant \zeta(\bar{\mathbf{x}}) + \langle \mathbf{y}, z - \bar{\mathbf{x}} \rangle - \varepsilon, \quad \forall z \in \mathbb{R}^{\mathbf{n}} \},$$

onde $\varepsilon \geqslant 0$, e se $\varepsilon = 0$, tem-se $\partial_0 \zeta(\cdot) := \partial \zeta(\cdot)$.

O problema

Consideramos o seguinte problema de otimização:

Minimizar
$$f(x) := g_1(x) + g_2(x) - h(x), \quad x \in \mathbb{R}^n.$$
 (1)

Assumimos:

- $g_1 : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ é própria e semicontínua inferior.
- g₂ diferenciável.
- h é convexa possivelmente não diferenciável.

Algumas observações sobre o Problema (1):

- se $g_1 \equiv h \equiv 0$, temos o problema de minimizar uma função diferenciável.
- se $g_1 \equiv 0$ e g_2 convexa, temos um problema de minimização DC.
- se C um conjunto convexo, usando g₁ como sendo a função indicadora do conjunto C, o Problema (1) resolver o problema

Minimizar
$$f(x) := g_2(x) - h(x), x \in C.$$

O método

Propomos o seguinte método para resolver o Problema (1):

Assuma
$$x^0 \in \mathbb{R}^n$$
, α , θ , $\varepsilon \in (0,1)$, $f_{\text{target}} \in \mathbb{R}$, $\rho_{\text{min}} > 0$, $\eta > 0$.

Inicialize $k \leftarrow 0$ e $\rho_0 = \rho_{min}$.

Passo 1. $\rho \leftarrow \rho_k$.

Passo 2. Escolha
$$\epsilon_k \leqslant \left(\frac{\eta}{\rho}\right)^2$$
 e calcule $w^k \in \mathfrak{d}_{\epsilon_k} h(x^k)$.

Passo 2.1 Considereo modelo

$$M_{x^k,\rho}(x) := g_1(x) + g_2(x^k) - h(x^k) + \langle \nabla g_2(x^k) - w^k, x - x^k \rangle + \rho \|x - x^k\|^2.$$

Encontre \bar{x}^{k+1} tal que $M_{x^k,\rho}(\bar{x}^{k+1})\leqslant f(x^k)$ e

$$d(0, \partial^{L} g_{1}(\bar{x}^{k+1}) + \nabla g_{2}(x^{k}) + 2\rho(\bar{x}^{k+1} - x^{k}) - w^{k}) \leqslant \theta \|\bar{x}^{k+1} - x^{k}\|. \tag{2}$$

 $\begin{array}{l} \textbf{Passo 2.2 Se } \ d\big(0, \partial^L g_1(\bar{x}^{k+1}) + \nabla g_2(x^k) - w^k\big) < \varepsilon \ \text{ou} \\ f(\bar{x}^{k+1}) \leqslant f_{\text{target}}, \ \text{parar. Caso contrário ir para o } \textbf{Passo 3.} \\ \textbf{Passo 3. Se} \end{array}$

$$f(\bar{x}^{k+1}) \leqslant f(x^k) - \frac{\alpha}{36\rho} \epsilon^2. \tag{3}$$

é válido, fazer $x^{k+1}=\bar{x}^{k+1}$, $k\leftarrow k+1$, $\rho_{k+1}=\rho$ e ir para o **Passo 1**. Caso contrário, fazer $\rho\leftarrow 2\rho$ e ir para o **Passo 2**.

Suposição 1.

A função $g_2:\mathbb{R}^n \to \mathbb{R}$ é diferenciável e satisfaz

$$g_2(y) \leqslant g_2(x) + \langle \nabla g_2(x), y - x \rangle + L \|y - x\|^{\beta + 1}$$
(4)

para algum L > 0 e $\beta \in (0, 1]$.

Boa definição do método

De g_1 limitada inferiormente, temos que $M_{x^k,\rho}(x)$ é coerciva, garantindo a boa definição do Passo 2.1.

assumindo a Suposição 1 e d $\left(0, \eth^L g_1(\bar{x}^{k+1}) + \nabla g_2(x^k) - w^k\right) \geqslant \varepsilon$, provamos que

$$\rho \geqslant \max\left\{1, \frac{\theta}{4}, \left[\frac{L}{(1-\alpha)} \left(\frac{\epsilon}{6}\right)^{\beta-1} + \frac{\eta^2}{(1-\alpha)} \left(\frac{\epsilon}{6}\right)^{-2}\right]^{\frac{1}{\beta}}\right\}, \qquad (5)$$

implica

$$f(\bar{x}^{k+1}) \le f(x^k) - \alpha \rho \|\bar{x}^{k+1} - x^k\|^2$$
 (6)

е

$$f(\bar{x}^{k+1}) \leqslant f(x^k) - \frac{\alpha}{36\rho} \epsilon^2. \tag{7}$$

Concluindo a boa definição do método.

Convergência e complexidade

Mostramos que:

 o número de iterações necessárias para atingir o critério de parada definido no Algoritmo é limitado superiormente por

$$\frac{36\gamma \big(f(x^0)-f_{\text{target}}\big)}{\alpha} \, \max \Big\{ \varepsilon^{-\frac{\beta+1}{\beta}}, \eta^{\frac{2}{\beta}} \, \varepsilon^{-\frac{2(\beta+1)}{\beta}} \Big\}$$

ullet o número de vezes em que o parâmetro ho é atualizado é no máximo

$$log_2\Bigg(\frac{\rho_{\text{max}}}{\rho_{\text{min}}}\Bigg)\text{,}$$

 o número máximo de avaliações de f e seu subdiferencial é limitado por

$$\frac{36\gamma \left(f(x^0)-f_{\text{target}}\right)}{\alpha} \ \text{max}\{\varepsilon^{-\frac{\beta+1}{\beta}},\eta^{\frac{2}{\beta}}\varepsilon^{-\frac{2(\beta+1)}{\beta}}\} + log_2\left(\frac{\rho_{\text{max}}}{\rho_{\text{min}}}\right),$$

$$\text{ onde } \gamma := 2 \, \text{max} \left\{ 1, \, \frac{\theta}{4}, \left[\frac{6^{1-\beta} \, L}{(1-\alpha)} + \frac{36}{(1-\alpha)} \right]^{\frac{1}{\beta}}, \rho_{\text{min}} \right\} \, \text{e}$$

$$\rho_{\text{max}} := 2 \max \left\{1, \ \frac{\theta}{4}, \left[\frac{6^{1-\beta}L}{(1-\alpha)} + \frac{36}{(1-\alpha)}\right]^{\frac{1}{\beta}}, \rho_{\text{min}}\right\} \max\{\varepsilon^{\frac{\beta-1}{\beta}}, \eta^{\frac{2}{\beta}}\varepsilon^{-\frac{2}{\beta}}\}.$$

Exemplos

A seguir apresentaremos alguns problemas que poder ser resolvidos utilizando método apresentado.

Exemplo 1: o problema do lasso

$$\min_{x \in \mathbb{R}^{n}} \left\{ \frac{1}{2} \|Ax - b\|^{2} + \lambda \|x\|_{1} \right\}, \ \lambda > 0, \ \ A \in \mathbb{R}^{s \times n}, \tag{8}$$

considerando $g_1(x) = \lambda ||x||_1$, $g_2(x) = \frac{1}{2} ||Ax - b||^2$ e h = 0.

Exemplo 2: o problema:

$$\min \left\{ \|Ax - b\|^2 \colon 0 \leqslant x_i \leqslant 1, i = 1, 2, \dots, n \right\}$$
 (9)

onde $A \in \mathbb{R}^{s \times n}$ e $b \in \mathbb{R}^s$.

Basta minimizar a decomposição $f(x) = g_1(x) + g_2(x)$ com $g_1(x) = \delta_{\Omega}(x)$, $\Omega = \{x \in \mathbb{R}^n : 0 \le x_i \le 1, i = 1, 2, ..., n\}$,

$$g_2(x) = ||Ax - b||^2.$$

Exemplo 3: o problema

$$\min f(x) = \frac{1}{2} \|A(x) - b\|_2^2 + \frac{\lambda}{p} \|\Phi(x)\|_p^p,$$

onde $A:\mathbb{R}^n \to \mathbb{R}^m$ é uma função não-linear e diferenciável, $b\in\mathbb{R}^m$ e Φ é um operador linear.

Exemplo 4: o problema de mínimos quadrados regularizado ℓ_{1-2} :

$$\min_{x \in \mathbb{R}^n} \frac{1}{2} ||Ax - b||^2 + \lambda ||x||_1 - \lambda ||x||, \tag{10}$$

onde $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, e $\lambda > 0$ é o parâmetro de regularização.

Exemplo 1

Problema de mínimos quadrados regularizado ℓ_{1-2} :

$$\min_{\mathbf{x} \in \mathbb{R}^{n}} \frac{1}{2} ||A\mathbf{x} - \mathbf{b}||^{2} + \lambda ||\mathbf{x}||_{1} - \lambda ||\mathbf{x}||, \tag{11}$$

onde $A\in\mathbb{R}^{m\times n}$, $b\in\mathbb{R}^m$, e $\lambda>0$ é o parâmetro de regularização. Consideramos

- m = 720, n = 2560, $g_1(x) = \lambda ||x||_1$, $g_2(x) = \frac{1}{2} ||Ax b||^2$ e $h(x) = \lambda ||x||$, $\theta = \alpha = 0.5$, $\rho_{min} = 0.25$, $x^0 = (0, 0, ..., 0)^T$.
- o critério de parada para ambos os esquemas neste exemplo é:

$$\frac{\|x^k - x^{k-1}\|}{\max\{1, \|x^{k-1}\|\}} < \varepsilon = \text{5e-5}.$$

Comparamos nossa abordagem IPTA com o algoritmo Proximal difference-of-convex com extrapolação ($pDCA_e$) estudado no trabalho¹.

Relatamos o número de iterações (iter), tempos de CPU em segundos (tempo de CPU) e os valores da função ao término (fval), com médias sobre as 30 instâncias aleatórias.

		IPTA		pDCAe		
λ	iter	CPU time	fval	iter	CPU time	fval
-10^{-3}	1	0.4907	0.0427	119.3000	1.3003	0.0457
10^{-4}	1	0.4905	0.0427	120.9000	1.3268	0.0439
10^{-5}	1	0.4942	0.0427	125.8333	1.3981	0.0439
-10^{-6}	1	0.4970	0.0427	125.8333	1.4212	0.0439

¹B. Wen, X. Chen, and T. K. Pong, *A proximal difference-of-convex algorithm with* extrapolation. Comput. Optim. Appl. 69 (2018), pp. 297–324.

Exemplo 2:

Problema

$$\min \left\{ \frac{1}{2} \|Ax - b\|^2 + \lambda \|x\|_1 \right\}, \tag{12}$$

onde λ é o parâmetro de regularização.

Consideramos:

- $\lambda = 5 \times 10^{-5}$
- critério de parada $\frac{\|x^k x^{k-1}\|}{\|x^{k-1}\|} < \epsilon$.
- a razão sinal-ruído de pico (PSNR) para medir o desempenho do algoritmo testado, onde $PSNR(x_k)$ é definida por

$$PSNR(x_k) = 10 \log_{10} \left(\frac{255^2}{MSE} \right),$$

onde $MSE = \frac{1}{m \times n} \|x_k - \overline{x}\|^2$, com \overline{x} sendo a imagem original e $m \times n$ o tamanho da figura.

Neste problema de teste, consideramos uma imagem de teste de $\it carro$ com tamanho 149×311 .

Comparamos com os métodos IMA(Inertial Mann Algorithm) e FISTA(Fast iterative shrinkage-thresholding algorithm) seguindo²

No. Iterations	IMA	FISTA	IPTA
1	14.0449	14.0449	3.9047
5	17.0817	16.6018	6.4192
10	19.4416	18.3511	8.4139
25	22.9385	22.0312	13.3926
100	28.2198	29.4496	24.2047
250	32.0615	32.1528	26.9075
500	33.1078	34.6636	29.0335

²R. Wattanataweekul, and K. Janngam, *An accelerated common fixed point algorithm for a countable family of G-nonexpansive mappings with applications to image recovery.* J. Inequal. Appl. 2022 (2022), pp. 1–15. ← □ → ← ◎ → ←

Algorithm	CPU time	Iterations	final PSNR
IMA	2.7254	301	32.5882
FISTA	4.4889	476	34.4286
IPTA	0.8866	435	28.6268

- O IPTA tem bom tempo de CPU.
- Verificamos que o FISTA apresenta um PSNR mais alto do que o IMA e o IPTA.

- N. T. An and N. M. Nam, *Convergence analysis of a proximal point algorithm for minimizing differences of functions.* Optim. 66.1 (2017), pp. 129–147.
- B. Martinet, *Bréve communication. Régularisation d'inéquations variationnelles par approximations successives.* Revue française d'informatique et de recherche opérationnelle. Série rouge 4.R3 (1970), pp. 154–158.
- R. T. Rockafellar, *Monotone operator and the proximal point algorithm*. SIAM J. Control Optim. 14 (1976), pp. 877–898.
- Y. T. Almeida, J. X. da Cruz Neto, P. R. Oliveira, and J. C. O. Souza, *A modified proximal point method for DC functions on Hadamard manifolds*. Comput. Optim. Appl. 76(2020), pp. 649–673.
- J. S. Andrade, J. O. Lopes, and J. C. O. Souza, *An inertial proximal point method for difference of maximal monotone vector fields in Hadamard manifolds.* J. Glob. Optim. 85.4(2023), pp. 941–968.