Chapter 15

Multiple Regression Model Building

Learning Objectives

In this chapter, you learn:

- To use quadratic terms in a regression model
- To measure the correlation among the independent variables
- To build a regression model using either the stepwise or best-subsets approach
- To avoid the pitfalls involved in developing a multiple regression model

Nonlinear Relationships

DCOVA

- The relationship between the dependent variable and an independent variable may not be linear
- Can review the scatter plot to check for nonlinear relationships
- Example: Quadratic model

$$Y_{i} = \beta_{0} + \beta_{1} X_{1i} + \beta_{2} X_{1i}^{2} + \epsilon_{i}$$

 The second independent variable is the square of the first variable

Quadratic Regression Model

DCOVA

Model form:

$$Y_{i} = \beta_{0} + \beta_{1}X_{1i} + \beta_{2}X_{1i}^{2} + \epsilon_{i}$$

where:

 $\beta_0 = Y$ intercept

 β_1 = regression coefficient for linear effect of X on Y

 β_2 = regression coefficient for quadratic effect on Y

 ε_i = random error in Y for observation i

Linear vs. Nonlinear Fit

Quadratic Regression Model

$$Y_{i} = \beta_{0} + \beta_{1} X_{1i} + \beta_{2} X_{1i}^{2} + \epsilon_{i}$$

DCO<u>VA</u>

Quadratic models may be considered when the scatter plot takes on one of the following shapes:

 β_1 = the coefficient of the linear term

 β_2 = the coefficient of the squared term

Testing the Overall Quadratic Model

DCOVA

Estimate the quadratic model to obtain the regression equation:

$$\hat{Y}_{i} = b_{0} + b_{1}X_{1i} + b_{2}X_{1i}^{2}$$

Test for Overall Relationship

 H_0 : $\beta_1 = \beta_2 = 0$ (no overall relationship between X and Y)

 H_1 : β_1 and/or $\beta_2 \neq 0$ (there is a relationship between X and Y)

$$F_{STAT} = \frac{MSR}{MSE}$$

DCOVA

- Testing the Quadratic Effect
 - Compare quadratic regression equation

$$Y_i = b_0 + b_1 X_{1i} + b_2 X_{1i}^2$$

with the linear regression equation

$$Y_i = b_0 + b_1 X_{1i}$$

(continued)

- Testing the Quadratic Effect
 - Consider the quadratic regression equation

$$Y_i = b_0 + b_1 X_{1i} + b_2 X_{1i}^2$$

Hypotheses

 H_0 : $\beta_2 = 0$ (The quadratic term does not improve the model)

 H_1 : $\beta_2 \neq 0$ (The quadratic term improves the model)

(continued)

Testing the Quadratic Effect

Hypotheses

 H_0 : $\beta_2 = 0$ (The quadratic term does not improve the model)

 H_1 : $\beta_2 \neq 0$ (The quadratic term improves the model)

The test statistic is

$$t_{STAT} = \frac{b_2 - \beta_2}{S_{b_2}}$$

$$d.f. = n - 3$$

where:

b₂ = squared term slope coefficient

 β_2 = hypothesized slope (zero)

 S_{b_2} = standard error of the slope

(continued)

Testing the Quadratic Effect

DCOVA

Compare adjusted r² from simple regression to adjusted r² from the quadratic model

If adj. r² from the quadratic model is larger than the adj. r² from the simple model, then the quadratic model is likely a better model

Example 1: Quadratic Model

Purity	Filter Time
3	1
7	2
8	3
15	5
22	7
33	8
40	10
54	12
67	13
70	14
78	15
85	15
87	16
99	17

Purity increases as filter time increases:

Example 1: Quadratic Model

Simple regression results:

(continued)

DCOVA

The regression equation is Purity = - 11.3 + 5.99 Filter Time

Predictor Coef SE Coef T P
Constant -11.283 3.468 -3.25 0.007
Filter Time 5.9852 0.3097 19.33 0.000

S = 6.15996 R-Sq = 96.9% R-Sq(adj) = 96.6%

Analysis of Variance

Source DF SS MS F P
Regression 1 14176 14176 373.58 0.000
Residual Error 12 455 38
Total 13 14631

Example 1: Quadratic Model in Minitab

Quadratic regression results:

The regression equation is Purity = 1.54 + 1.56 Time + 0.245 Time Squared

Predictor SE Coef Coef Constant 1.5390 2.24500 0.69 0.507 1.5650 0.60180 2.60 0.025 Time Time Squared 0.24516 0.03258 7.52 **0.000**

S = 2.59513 R-Sq = 99.5% R-Sq(adj) = 99.4%

The quadratic term is statistically significant (p-value very small)

Example 1: Quadratic Model in Minitab

• Quadratic regression results:

```
^{\land} Y = 1.539 + 1.565 Time + 0.245 (Time)<sup>2</sup>
```

The regression equation is Purity = 1.54 + 1.56 Time + 0.245 Time Squared

 Predictor
 Coef
 SE Coef
 T
 P

 Constant
 1.5390
 2.24500
 0.69
 0.507

 Time
 1.5650
 0.60180
 2.60
 0.025

 Time Squared
 0.24516
 0.03258
 7.52
 0.000

$$S = 2.59513$$
 R-Sq = 99.5% R-Sq(adj) = 99.4%

The adjusted r² of the quadratic model is higher than the adjusted r² of the simple regression model. The quadratic model explains 99.4% of the variation in Y.

Example 2: Quadratic Model

Fly Ash %	Strength (psi)
0	4779
0	4706
0	4350
20	5189
20	5140
20	4976
30	5110
30	5685
30	5618
40	5995
40	5628
40	5897
50	5746
50	5719
50	5782
60	4895
60	5030
60	4648

To illustrate the quadratic regression model, consider a study that examined the business problem facing a concrete supplier of how adding fly ash affects the strength of concrete. Batches of concrete were prepared in which the percentage of fly ash ranged from 0% to 60%. Data were collected from a sample of 18 batches and organized in the following table:

Example 2: Quadratic Model

Simple regression results:

The regression equation is Strength (psi) = 4925 + 10.4 Fly Ash %

Coef SE Coef Predictor Constant 4924.6 213.3 23.09 0.000 Fly Ash % 10.417 5.507 1.89 0.077

S = 460.779 R-Sq = 18.3% R-Sq(adj) = 13.2%

Analysis of Variance

Source MS Regression 759618 759618 3.58 0.077 Residual Error 16 3397072 212317 Total 17 4156690

Example 2: Quadratic Model in Minitab

Quadratic regression results:

The regression equation is Strength (psi) = 4486 + 63.0 Fly Ash % - 0.876 (Fly Ash %)^2

SF Coef Predictor Coef 4486.4 Constant 174.8 25.67 0.000 Fly Ash % 63.01 12.37 5.09 0.000 (Fly Ash %)^2 -0.8765 0.1966 -4.46 **0.000**

S = 312.113 R-Sq = 64.8% R-Sq(adj) = 60.2%

The quadratic term is statistically significant (p-value very small)

Example 2: Quadratic Model in Minitab

Quadratic regression results:

The regression equation is Strength (psi) = 4486 + 63.0 Fly Ash % - 0.876 (Fly Ash %)^2

 Predictor
 Coef
 SE Coef
 T
 P

 Constant
 4486.4
 174.8
 25.67
 0.000

 Fly Ash %
 63.01
 12.37
 5.09
 0.000

 (Fly Ash %)^2
 -0.8765
 0.1966
 -4.46
 0.000

S = 312.113 R-Sq = 64.8% R-Sq(adj) = 60.2%

The adjusted r² of the quadratic model is higher than the adjusted r² of the simple regression model. The quadratic model explains 60.2% of the variation in Y.

Collinearity

- Collinearity: High correlation exists among two or more independent variables
- This means the correlated variables contribute redundant information to the multiple regression model

Collinearity

(continued)

- Including two highly correlated independent variables can adversely affect the regression results
 - No new information provided
 - Can lead to unstable coefficients (large standard error and low t-values)
 - Coefficient signs may not match prior expectations

Some Indications of Strong Collinearity

- Incorrect signs on the coefficients
- Large change in the value of a previous coefficient when a new variable is added to the model
- A previously significant variable becomes nonsignificant when a new independent variable is added
- The estimate of the standard deviation of the model increases when a variable is added to the model

Detecting Collinearity (Variance Inflationary Factor)

DCOVA

VIF_i is used to measure collinearity:

$$VIF_{j} = \frac{1}{1 - R_{j}^{2}}$$

where R_{j}^{2} is the coefficient of determination of variable X_{i} with all other X variables

If $VIF_j > 5$, X_j is highly correlated with the other independent variables

Example: Pie Sales

	Pie	Price	Advertising
Week	Sales	(\$)	(\$100s)
1	350	5.50	3.3
2	460	7.50	3.3
3	350	8.00	3.0
4	430	8.00	4.5
5	350	6.80	3.0
6	380	7.50	4.0
7	430	4.50	3.0
8	470	6.40	3.7
9	450	7.00	3.5
10	490	5.00	4.0
11	340	7.20	3.5
12	300	7.90	3.2
13	440	5.90	4.0
14	450	5.00	3.5
15	300	7.00	2.7

Recall the multiple regression equation of chapter 14:

Sales =
$$b_0 + b_1$$
 (Price)
+ b_2 (Advertising)

Detecting Collinearity in Excelusing PHStat

DCOVA

PHStat / regression / multiple regression ...

Check the "variance inflationary factor (VIF)" box

Regression Analysis					
Price and all othe	r X				
Regression	Statistics				
Multiple R	0.0304				
R Square	0.0009				
Adjusted R Square	-0.0759				
Standard Error	1.2153				
Observations	15				
VIF	1.0009				

Output for the pie sales example:

- Since there are only two independent variables, only one VIF is reported
 - VIF is < 5
 - There is no evidence of collinearity between Price and Advertising

Detecting Collinearity in Minitab

Predictor	Coef	SE Coef	Т	Р	VIF
Constant	306.50	114.3	2.68	0.020	
Price	- 24.98	10.83	-2.31	0.040	1.001
Advertising	74.13	25.97	2.85	0.014	1.001

- Output for the pie sales example:
 - Since there are only two independent variables, the VIF reported is the same for each variable
 - VIF is < 5</p>
 - There is no evidence of collinearity between Price and Advertising

Model Building

- Goal is to develop a model with the best set of independent variables
 - Easier to interpret if unimportant variables are removed
 - Lower probability of collinearity
- Stepwise regression procedure
 - Provide evaluation of alternative models as variables are added and deleted
- Best-subset approach
 - Try all combinations and select the best using the highest adjusted r² and lowest standard error

Stepwise Regression

DCOV<u>A</u>

- Idea: develop the least squares regression equation in steps, adding one independent variable at a time and evaluating whether existing variables should remain or be removed
- The coefficient of partial determination is the measure of the marginal contribution of each independent variable, given that other independent variables are in the model

Best Subsets Regression

DCOVA

 Idea: estimate all possible regression equations using all possible combinations of independent variables

 Choose the best fit by looking for the highest adjusted r² and lowest standard error

Stepwise regression and best subsets regression can be performed using PHStat or Minitab

Alternative Best Subsets Criterion

DCOVA

 Calculate the value C_p for each potential regression model

- Consider models with C_p values close to or below k + 1
 - k is the number of independent variables in the model under consideration

Alternative Best Subsets Criterion

(continued)

■ The C_p Statistic

$$C_p = \frac{(1-R_k^2)(n-T)}{1-R_T^2} - (n-2(k+1))$$

Where k = number of independent variables included in a particular regression model

T = total number of parameters to be estimated in the full regression model

 R_k^2 = coefficient of multiple determination for model with k independent variables

 R_T^2 = coefficient of multiple determination for full model with all T estimated parameters

Steps in Model Building

DCOV<u>A</u>

- Compile a listing of all independent variables under consideration
- 2. Estimate full model and check VIFs
- 3. Check if any VIFs > 5
 - If no VIF > 5, go to step 4
 - If one VIF > 5, remove this variable
 - If more than one, eliminate the variable with the highest VIF and go back to step 2
- 4. Perform best subsets regression with remaining variables ...

Steps in Model Building

(continued)

- List all models with C_p close to or less than (k + 1)
- Choose the best model
 - Consider parsimony
 - Do extra variables make a significant contribution?
- 7. Perform complete analysis with chosen model, including residual and influence analysis
- 8. Transform the model if necessary to deal with violations of linearity or other model assumptions
- 9. Use the model for prediction and inference

Model Building Example (File:

Develop a model to predict Standby Hours using four independent variables (Total Staff Present, Remote Hours, Dubner Hours, and Total labor Hours)

Week	Standby Hours (<i>Y</i>)	Total Staff Present (X₁)	Remote Hours (X ₂)	Dubner Hours (X ₃)	Total Labor Hours (X₄)
1	245	338	414	323	2,001
2	177	333	598	340	2,030
3	271	358	656	340	2,226
4	211	372	631	352	2,154
5	196	339	528	380	2,078
6	135	289	409	339	2,080
7	195	334	382	331	2,073
8	118	293	399	311	1,758
9	116	325	343	328	1,624
10	147	311	338	353	1,889
11	154	304	353	518	1,988
12	146	312	289	440	2,049
13	115	283	388	276	1,796 (continued)

First Check For Collinearity

d	A	В		С	D	E	F	G
1	Standby Hours Anal	lysis						-
2			1 4			A		В
3	Regression St	atistics	1	Durbin-	Watson Cal	culations		
4	Multiple R	0.7894	2					
5	R Square	0.6231	3	Sum of	Squared Di	fference	of Residuals	47241.6126
6	Adjusted R Square	0.5513	4		Squared Re		1	21282.8217
7	Standard Error	31.8350	5					
8	Observations	26	6	Durbin-	Watson Sta	tistic	1	2.2197
9			_				-	
10	ANOVA							
11		df		ss	MS	F	Significance I	=
12	Regression	4	35	181.7937	8795.4484	8.6786	0.000	3
13	Residual	21	21	282.8217	1013.4677			
14	Total	25	56	464.6154				
15								
16		Coefficients	Stando	ard Error	t Stat	P-value	Lower 95%	Upper 95%
17	Intercept	-330.8318	- 1	110.8954	-2.9833	0.0071	-561.451	4 -100.2123
18	Total Staff	1.2456		0.4121	3.0229	0.0065	0.388	7 2.1026
19	Remote	-0.1184		0.0543	-2.1798	0.0408	-0.231	4 -0.0054
20	Dubner	-0.2971		0.1179	-2.5189	0.0199	-0.542	-0.0518
21	Total Labor	0.1305		0.0593	2.2004	0.0391	0.007	2 0.2539

Regression A	naiy	SIS: S	standb	y vers	us Tota	ı Staff,	
The regressi	on e	equat	ion i	s			
Standby = -	331	+ 1.	25 To	tal St	aff - ().118 R	emot
-	0.29	97 Du	bner ·	+ 0.13	1 Total	l Labor	
Predictor		Coef	SE	Coef	Т	P	v
Constant							
Total Staff	1.	.2456	0.	4121	3.02	0.006	1.7
Remote	-0.1	L1842	0.0	5432	-2.18	0.041	1.2
Dubner	-0	.2971	0.	1179	-2.52	0.020	1.4
Total Labor	0.1	L3053	0.0	5932	2.20	0.039	1.9
S = 31.8350 Analysis of		_		% R-	·Sq(adj)	= 55.	1%
Source		DF		MS	F	Р	
Regression							
Residual Err							
Total		25	56465				
Source	DF	Seg	ss				
Total Staff	1	20	667				
Remote	1	6	995				
Dubner	1	2	612				
	1		907				

4	A	В	С	D	E
1	Variance	Inflationary Fact	tor (VIF) Calcu	ulations	
2		500	Regressi	on Model	
3		Total Staff and all other X	Remote and all other X	Dubner and all other X	Total Labor and all other X
4	R Square	0.4143	0.1891	0.3147	0.4998
5	VIF	1.7074	1.2333	1.4592	1.9993

VIF's are small indicating little evidence of collinearity

Durbin-Watson statistic = 2.21971

Stepwise Results For Excel & Minitab

1	A B	С	D	E	F	G	Н
1	Stepwise An	alysis for Stand	dby Hours				
2	Table of Resi	ults for Genera	l Stepwise				
3							
4	Total Staff er	ntered.					
5							
6		df	SS	MS	F	Significance F	
7	Regression	1	20667.3980	20667.3980	13.8563	0.0011	
8	Residual	24	35797.2174	1491.5507			
9	Total	25	56464.6154				
10							
11		Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
12	Intercept	-272.3816	124.2402	-2.1924	0.0383	-528.8008	-15.9625
13	Total Staff	1.4241	0.3826	3.7224	0.0011	0.6345	2.2136
14							
15							
16	Remote ente	ered.					
17							
18		df	SS	MS	F	Significance F	
19	Regression		27662.5429	13831.2714	11.0450		
20	Residual	23	28802.0725	1252.2640			
21	Total	25	56464.6154				
22							
23		Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
24	Intercept	-330.6748	116.4802	-2.8389	0.0093	-571.6322	-89.7175
25	Total Staff	1.7649	0.3790	4.6562	0.0001	0.9808	2.5490
26	Remote	-0.1390	0.0588	-2.3635	0.0269	-0.2606	-0.0173
27							
28							
29	No other yar	iahlas could b	e entered into th	e model Sta	nwise er	nds	

Stepwise Regression: Standby versus Total Staff, Remote, ... Alpha-to-Enter: 0.05 Alpha-to-Remove: 0.05 Response is Standby on 4 predictors, with N = 26Step Constant Total Staff 1.42 1.76 3.72 T-Value 4.66 P-Value 0.001 0.000 -0.139Remote T-Value -2.36P-Value 0.027

35.4

44.56

8.4

Stepwise stops with a two variable model (Total Staff & Remote Hours.) Remaining independent variables are not significant at the 0.05 level and therefore do not enter the model.

38.6

36.60

33.96

13.3

R-Sq

R-Sq(adj)

Mallows Cp

Best-Subsets Results For Excel & Minitab

4	A	В	С	D	E	F
1	Best-Subsets Analy	sis for St	andb	y Hours		
2						
3	Intermediate Calc	ulations				
4	R2T	0.6231				
5	1-R2T	0.3769				
6	n	26				
7	Т	5				
8	n-T	21				
9						
10	Model	Ср	k+1	R Square	Adj. R Square	Std. Error
11	X1	13.3215	2	0.3660	0.3396	38.6206
12	X1X2	8.4193	3	0.4899	0.4456	35.3873
13	X1X2X3	7.8418	4	0.5362	0.4729	34.5029
14	X1X2X3X4	5.0000	5	0.6231	0.5513	31.8350
15	X1X2X4	9.3449	4	0.5092	0.4423	35.4921
16	X1X3	10.6486	3	0.4499	0.4021	36.7490
17	X1X3X4	7.7517	4	0.5378	0.4748	34.4426
18	X1X4	14.7982	3	0.3754	0.3211	39.1579
19	X2	33.2078	2	0.0091	-0.0322	48.2836
20	X2X3	32.3067	3	0.0612	-0.0205	48.0087
21	X2X3X4	12.1381	4	0.4591	0.3853	37.2608
22	X2X4	23.2481	3	0.2238	0.1563	43.6540
23	X3	30.3884	2	0.0597	0.0205	47.0345
24	X3X4	11.8231	3	0.4288	0.3791	37.4466
25	X4	24.1846	2	0.1710	0.1365	44.1619

DCOVA

Best Subsets Regression: Standby versus Total Staff, Remote, ...

```
Response is Standby
                                           R D
     R-Sq R-Sq(adj)
     36.6
                 34.0
     17.1
                 13.7
                                               Х
                  2.1
     49.0
                 44.6
                 40.2
     42.9
                 37.9
  3 53.8
                 47.5
  3 53.6
                 47.3
                                34.503 X X X
     50.9
                 44.2
                 55.1
```

Best-subsets often yields numerous candidate models. Both adjusted r-squared and C_p are used to pick a model to use.

Residual Analysis Should Be Done On The Chosen Model DCOVA

- Utilizing the model with all four independent variables residual analysis (shown on the next three slides) reveals:
 - No autocorrelation (based on the Durbin-Watson test)
 - No apparent patterns in residuals versus the four independent variables
 - No evidence of unequal variance
 - Only a moderate departure from normality
 - No overly influential observations

Check For Independence


```
Regression Analysis: Standby versus Total Staff, ...
The regression equation is
Standby = - 331 + 1.25 Total Staff - 0.118 Remote
          - 0.297 Dubner + 0.131 Total Labor
Predictor
                      SE Coef
                Coef
                                                VIF
                        110.9 -2.98
Constant
              -330.8
                                      0.007
Total Staff
              1.2456
                       0.4121
                                3.02
                                      0.006
                                              1.707
                              -2.18
Remote
            -0.11842 0.05432
                                      0.041
                                              1.233
                       0.1179 -2.52
Dubner
            -0.2971
                                       0.020
                                              1.459
Total Labor 0.13053
                      0.05932
                                2.20 0.039 1.999
S = 31.8350
              R-Sq = 62.3%
                             R-Sq(adj) = 55.1%
Analysis of Variance
Source
                DF
                       SS
                             MS
                                    F
                                 8.68 0.000
Regression
                    35182
                           8795
Residual Error
                21
                    21283
                           1013
Total
                25
                    56465
Source
                 Seq SS
Total Staff
                  20667
              1
                   6995
Remote
Dubner
                   2612
Total Labor
                   4907
```

Durbin-Watson is > 2 indicating no positive autocorrelation

Durbin-Watson statistic = 2.21971

Check For Correct Functional Form

No apparent patterns on any of these plots

Checks For Normality & Unequal Variance

Histogram shows slight departure from normality.

No evidence of unequal variance present in this residual plot

Check For Influential Observations

+	C1	C2	C3	C4	C5	C6	C7	C8
	Standby	Total Staff	Remote	Dubner	Total Labor	TRES1	HI1	COOK1
1	245	338	414	323	2001	1.26648	0.057851	0.019147
2	177	333	598	340	2030	-0.00450	0.159009	0.000001
3	271	358	656	340	2226	1.74109	0.308626	0.246769
4	211	372	631	352	2154	-0.88635	0.317663	0.073903
5	196	339	528	380	2078	0.28517	0.117963	0.002275
6	135	289	409	339	2080	-0.66415	0.404904	0.061665
7	195	334	382	331	2073	-0.55135	0.066692	0.004493
8	118	293	399	311	1758	-0.20251	0.177819	0.001859
9	116	325	343	328	1624	-1.38665	0.453697	0.305928
10	147	311	338	353	1889	-0.36082	0.080160	0.002367
11	154	304	353	518	1988	2.06732	0.521708	0.806606
12	146	312	289	440	2049	-0.50740	0.239542	0.016814
13	115	283	388	276	1796	-0.47510	0.267786	0.017142
14	161	307	402	207	1720	-0.20841	0.219149	0.002554
15	274	322	151	287	2056	1.42189	0.241543	0.122799
16	245	335	228	290	1890	0.84801	0.155157	0.026771
17	201	350	271	355	2187	-2.00716	0.240144	0.222548
18	183	339	440	300	2032	-1.06250	0.073308	0.017752
19	237	327	475	284	1856	2.10290	0.101265	0.085690
20	175	328	347	337	2068	-1.02770	0.071640	0.016257
21	152	319	449	279	1813	-0.49356	0.105621	0.005969
22	188	325	336	244	1808	-0.31659	0.107193	0.002515
23	188	322	267	253	1834	-0.48404	0.100514	0.005434
24	197	317	235	272	1973	-0.52597	0.123908	0.008105
25	261	315	164	223	1839	1.63790	0.193025	0.118818
26	232	331	270	272	1935	0.34618	0.094110	0.002599

Even though a few observations are flagged by the studentized residual and hi criteria, Cooks D does not flag any observations as overly influential.

The Final Model Building Step Is Model Validation

- Models can be validated via multiple methods
 - Collect new data and compare the results
 - Compare the results of the regression model to previous results
 - If the data set is large enough, split the data into two parts and cross-validate the results
 - To do this you split the data prior to building the model and use one half of the data to build the model and the other half to validate the model

Pitfalls and Ethical Considerations

To avoid pitfalls and address ethical considerations:

- Understand that interpretation of the estimated regression coefficients are performed holding all other independent variables constant
- Evaluate residual plots for each independent variable
- Evaluate interaction terms

Additional Pitfalls and Ethical Considerations

(continued)

To avoid pitfalls and address ethical considerations:

- Obtain VIFs for each independent variable before determining which variables should be included in the model
- Examine several alternative models using bestsubsets regression
- Use other methods when the assumptions necessary for least-squares regression have been seriously violated

Chapter Summary

In this chapter we discussed

- The quadratic regression model
- Collinearity
- Model building
 - Stepwise regression
 - Best subsets
- The pitfalls & ethical considerations in multiple regression