FOURTH ORDER METHOD: (EXPLICIT)

$$\begin{aligned} & \text{W}_{j+1} = \text{W}_j + h \left[\omega_1 k_1 + \omega_2 k_2 + \omega_3 k_3 + \omega_4 k_4 \right] \\ & \text{K}_1 = f(t_j, u_j) \\ & \text{K}_2 = f(t_j + c_2 h, u_j + h a_{21} k_1) \\ & \text{K}_3 = f(t_j + c_3 h, u_j + h a_{31} k_1 + h a_{32} k_2) \\ & \text{K}_4 = f(t_j + c_4 h, u_j + h a_{41} k_1 + h a_{42} k_2 + h a_{43} k_3) \end{aligned}$$

Classical Runge-Kutta Method:

$$u_{j+1} = u_j + h \cdot \frac{1}{6} (k_1 + 2k_2 + 2k_3 + k_4)$$
 $k_1 = f(t_j, u_j)$
 $k_2 = f(t_j + \frac{h}{2}, u_j + \frac{h}{2}k_1)$
 $k_3 = f(t_j + \frac{h}{2}, u_j + \frac{h}{2}k_2)$
 $k_4 = f(t_j + h, u_j + h k_3)$

Table form:

	921		
C_3	q 31	932	
C4	a ₄₁	942 943	
	ω_1	wz wz	$\omega_{\mathbf{h}}$

$$\frac{1}{2}$$
 | $\frac{1}{2}$ | $\frac{1}{2}$ | $\frac{1}{6}$ | $\frac{2}{6}$ | $\frac{2}{6}$ | $\frac{1}{6}$ | $\frac{1}{6}$ | $\frac{2}{6}$ | $\frac{2}{6}$ | $\frac{1}{6}$ | $\frac{1}{6}$ | $\frac{1}{6}$ | $\frac{2}{6}$ | $\frac{2}{6}$ | $\frac{1}{6}$ | $\frac{1}{6}$ | $\frac{2}{6}$ | $\frac{1}{6}$ | $\frac{1}{6}$ | $\frac{2}{6}$ | $\frac{1}{6}$ | $\frac{1}$

$$\frac{1}{3}$$
 $\frac{1}{3}$ $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{3}{6}$ $\frac{3}{6}$ $\frac{1}{4}$

Minimum number of function evaluation versus order

ORDER	2	3	4	5	6	7	8	
MNFE.	2	3	4	6	7	9	H	

Remark: The order of an s-stage explicit method (RK)
can not be greater than s.

Also, there does not exist a s-stage method (explicit RK) with order s if s > 5.

Example: Apply Classical Runge tatta method to get y (0.3) with step size h = 0.1 for the problem

Sol: Classical Runge-Kutta Method

$$K_1 = f(\pm_i, u_i)$$
 $K_2 = f(\pm_i + \frac{1}{2}, u_i + \frac{1}{2}, K_1)$
 $K_3 = f(\pm_i + \frac{1}{2}, u_i + \frac{1}{2}, K_2)$
 $K_4 = f(\pm_i + h_i, u_i + h_i, K_3)$

h = 0.1 $u_0 = 1$ u_{11}, u_{12}, u_{13} ?

$$\frac{j=0}{K_1 = f(0,1) = 0+1 = 1}$$

$$K_2 = f(\frac{0.1}{2}, 1 + \frac{0.1}{2}) = 1.1$$

$$K_3 = f(\frac{0.1}{2}, 1 + \frac{0.1}{2} \times 1.1) = 1.105$$

$$K_4 = f(0.1, 1 + 0.1 \times 1.105) = 1.2105$$

$$24 = 1 + \frac{0.1}{6} \left[1 + 2 \times 1.1 + 2 \times 1.105 + 1.2105 \right]$$

$$= 1.11.0341667$$

$$V_1 = 1.210341667$$
 $K_2 = 1.320858750$
 $K_3 = 1.326384604$
 $K_4 = 1.442980127$

U2=1.242805142

K2 = 1.564945399

K3 = 157105241195

Ky = 1.69991038319

U3 = 1.3997169944

七	exact y	Numerical y
0.1	1.110341836	1.110341667
0.2	1.242805516	1.242805/42
0.3	1.399717615	1.399716994

 Ex. Use the Runge-Kutta Method to approximate the posticular solution at re-1 of the differential equation y'=xy through (0,1).

$$K_1 = f(0,1) = 0.$$

$$K_2 = f(0.5,1) = 0.5 \times 1 = 0.5$$
.

$$K_4 = f(1, 1 + 0.625) = (1)(1.625) = 1.625$$

$$= 1 + \frac{1.0}{6} \left(0 + 2 \times 0.5 + 2 \times 0.625 + 1.625 \right)$$

Ex: Consider a scalor problem

The exact solution is $y(t) = \frac{1}{t}$. Compute the numerical solution at t = 1.5 using h = 0.5.

$$= -\left(\frac{1.5}{2}\right)^2 = -0.5625$$

EXACT SOLUTION: 0.6666666