Algorithmique et structures de données

CM 6 - Arbres binaires

Plan du CM 6

Évaluation de conditions

Arbres binaires particuliers

Nombre de nœuds et hauteur

Algorithmes de parcours sur un arbre binaire

Évaluation de conditions •00000

condition1 ou condition2

- la condition1 est d'abord évaluée
- si la condition1 est vérifiée, on retourne Vrai
- si la condition1 n'est pas vérifiée, on évalue la condition2
- on retourne Vrai si la condition2 est vérifiée et Faux sinon

Exemple

```
base(A : arbreBinaire): booléen
  retourner A = None ou (A->qauche = None et A->droit = None)
```

La procédure teste si l'arbre binaire A est l'arbre vide ou l'arbre racine.

condition1 ou condition2

L'ordre entre les deux conditions a une importance

Exemple

```
base2(A : arbreBinaire): booléen
  retourner (A->qauche = None et A->droit = None) ou A = None
```

Si l'arbre binaire *A* est vide la procédure retourne une erreur car on ne peut utiliser l'instruction A->qauche = None lorsque *A* vaut None.

condition1 ou condition2

La procédure

```
base(A : arbreBinaire): booléen
  retourner A = None ou (A->gauche = None et A->droit = None)
```

est équivalente à la procédure

```
base(A : arbreBinaire): booléen
    si A = None alors
        retourner Vrai
    si (A->gauche = None et A->droit = None) alors
        retourner Vrai
    retourner Faux
```


condition1 et condition2

- la condition1 est d'abord évaluée
- si la condition1 n'est pas vérifiée, on retourne Faux
- si la condition1 est vérifiée, on évalue la condition2
- on retourne Vrai si la condition2 est vérifiée et Faux sinon

Exemple

```
mystere(A : arbreBinaire): booléen
  retourner A <> None et A->qauche <> None
```


condition1 et condition2 L'ordre entre les deux conditions a une importance

Exemple

Évaluation de conditions 00000

```
mystere (A : arbreBinaire): booléen
   retourner A <> None et A->gauche <> None
```

est différent de

```
mystere (A : arbreBinaire): booléen
   retourner A->gauche <> None et A <> None
```

car on ne peut utiliser l'instruction A->gauche lorsque A vaut None.

Plan du CM 6

Arbres binaires particuliers

Arbre dégénéré ou filiforme

Un arbre est dégénéré lorsque tout nœud possède au plus un fils.

Exemple

Lien entre hauteur et nombre de nœuds

$$N(A) = h(A) + 1.$$

Arbre dégénéré ou filiforme

Un arbre est dégénéré lorsque tout nœud possède au plus un fils.

Procédure vérifiant si un arbre A est dégénéré

```
estDegenere(A : arbreBinaire) : booléen
    si A = None alors
        retourner Vrai
    si A->gauche <> None et A->droit <> None alors
        retourner Faux
    si A->gauche <> None alors
        retourner estDegenere(A->gauche)
    si A->droit <> None alors
        retourner estDegenere(A->droit)
    retourner Vrai #condition terminale le noeud est une feuille
```


Procédure vérifiant si un arbre A est dégénéré

```
estDegenere(A : arbreBinaire) : booléen
    si A = None alors
        retourner Vrai
    si A->gauche <> None et A->droit <> None alors
        retourner Faux
    si A->gauche <> None alors
        retourner estDegenere(A->gauche)
    si A->droit <> None alors
        retourner estDegenere(A->droit)
    retourner estDegenere(A->droit)
    retourner Vrai #condition terminale le noeud est une feuille
```

Exercice

- montrez que la procédure est récursive terminale
- donnez le nombre d'appels récursifs

Arbre complet

Définition d'un arbre complet

Un arbre de hauteur h est complet lorsque tous les niveaux de 0 à h sont remplis.

Exemple

Arbre complet

Lien entre hauteur et nombre de nœuds

Nous avons un seul arbre complet pour une hauteur h.

$$N(A) = 2^{h(A)+1} - 1.$$

Nœuds internes et feuilles

- l'arbre complet de hauteur h possède 2^h 1 nœuds internes
- l'arbre complet de hauteur h possède 2^h feuilles

Lien entre hauteur et nombre de nœuds

Cas général

Soit A un arbre binaire.

$$h(A) + 1 \le N(A) \le 2^{h(A) + 1} - 1.$$

- égalité à gauche pour les arbres dégénérés
- égalité à droite pour les arbres complets

Exercice

Donnez un schéma d'induction pour construire les arbres dégénérés et les arbres complets.

Définition

Un arbre binaire est localement complet lorsque chaque nœud possède

- soit deux fils
- soit aucun fils (c'est une feuille)

Exemple

Lien entre nombre de nœuds internes et nombre de feuilles

$$N_f(A) = N_i(A) + 1$$

$$N_f(A) = N_i(A) + 1$$
 et $N(A) = 2N_i(A) + 1$.

Définition

Un arbre binaire est localement complet lorsque chaque nœud possède

- soit deux fils
- soit aucun fils (c'est une feuille)

Schéma d'induction

- i) l'arbre racine est localement complet
- ii) Soient B et C deux arbres localement complets.

$$A = (\bullet, B, C)$$
 est localement complet

Expressions arithmétiques ou logiques

Arbres binaires particuliers 00000000000000000

Il faut avoir uniquement des opérateurs binaires

Définition

Un arbre binaire est localement complet lorsque chaque nœud possède

- soit deux fils
- soit aucun fils (c'est une feuille)

Procédure vérifiant si un arbre binaire est localement complet

```
estLC(A : arbreBinaire) : booléen
   si A = None alors # l'arbre vide n'est pas localement complet
      retourner Faux
   si A->qauche = None et A->droit = None alors # condition terminale
      alors retourner Vrai # l'arbre racine est localement complet
   si A->gauche <> None et A->droit <> None alors#le noeud possède
      retourner estLC(A->qauche) et estLC(A->droit) #deux enfants
   retourner Faux # le noeud ne possède qu'un seul enfant
```


Procédure vérifiant si un arbre binaire est localement complet

```
estLC(A : arbreBinaire) : booléen
  si A = None alors # l'arbre vide n'est pas localement complet
    retourner Faux
  si A->gauche = None et A->droit = None alors # condition terminale
    alors retourner Vrai # l'arbre racine est localement complet
  si A->gauche <> None et A->droit <> None alors#le noeud possède
    retourner estLC(A->gauche) et estLC(A->droit)#deux enfants
  retourner Faux # le noeud ne possède qu'un seul enfant
```

Calcul de C(A), le nombre d'appels de la fonction

- nous avons au moins un appel de la fonction sur A
- pas d'appel de fonction pour les feuilles
- pas d'appel de fonction pour les nœuds internes avec un seul enfant
- deux appels de fonction pour les nœuds internes avec deux enfants

$$C(A) = 1 + 2N_i(A).$$

Calcul de C(A), le nombre d'appels de la fonction

$$C(A) = 1 + 2N_i(A).$$

Calcul de C(A) en fonction de N(A) lorsque A est localement complet

$$C(A) = N(A)$$
.

C'est immédiat car nous avons Preuve.

$$N_f(A) = N_i(A) + 1$$
 et $N(A) = 2N_i(A) + 1$.

Calcul de C(A) en fonction de N(A) lorsque A n'est pas localement complet

Cela dépend fortement de l'arbre A.

Exemple

• on s'aperçoit que l'arbre n'est pas localement complet qu'au dernier nœud

$$C(A) = N(A)$$
.

Calcul de C(A) en fonction de N(A) lorsque A n'est pas localement complet

Cela dépend fortement de l'arbre A.

Exemple

• on s'aperçoit que l'arbre n'est pas localement complet dès le deuxième nœud

$$C(A) = 2.$$

Arbre binaire parfait

Définition d'un arbre parfait

Tous les niveaux sont remplis sauf éventuellement le dernier niveau, dans ce cas tous les noeuds sont regroupés à gauche.

Exemple

Exercice

Calculez le nombre d'arbres parfait de hauteur h.

Réponse : $2^h - 1$

Arbre binaire quasi-parfait

Arbre quasi-parfait

Tous les niveaux sont remplis sauf éventuellement le dernier niveau.

Exemple

Exercice

Calculez le nombre d'arbres quasi-parfait de hauteur h.

Réponse : $2^{2^h} - 1$

Arbre équilibré

Objectif

Contrôler la hauteur par rapport au nombre de nœuds.

Plusieurs définitions possibles

Exemple de définition

Soit A un arbre binaire. A est équilibré lorsque tout sous-arbre B de A vérifie

$$|h(B_g)-h(B_d)|\leq 1,$$

où B_a et B_d sont les sous-arbres gauche et droit de B.

Exemples

Arbres complets, arbres parfaits, arbres quasi-parfaits.

Plan du CM 6

Évaluation de conditions

Arbres binaires particuliers

Nombre de nœuds et hauteur

Algorithmes de parcours sur un arbre binaire

Rappel - structure de nœud et type arbreBinaire

Structure de nœud

Un nœud est constitué d'une valeur (ici un entier), d'un pointeur sur le sous-arbre gauche et d'un pointeur sur le sous-arbre droit.

```
structure noeud{
    valeur : entier
    gauche : pointeur sur noeud
    droit : pointeur sur noeud
```

type arbreBinaire = pointeur sur noeud

Exemple

Calcul du nombre de nœuds

Soit A un arbre binaire et A_a et A_d ses sous-arbres gauche et droit.

Nombre de nœuds en fonction de A_g et A_d

$$N(A) = N(A_g) + N(A_d) + 1.$$

Procédure

```
nombreNoeuds(A: arbreBinaire): entier
    si A = None alors # condition terminale
        retourner 0
    retourner 1 + nombreNoeuds(A->gauche) + nombreNoeuds(A->droit)
```

Exercice (voir TD)

- 1. donnez une procédure calculant le nombre de feuilles.
- 2. donnez une procédure calculant le nombre de nœuds internes.

Calcul du nombre de nœuds

Calcul de C(A), le nombre d'appels récursifs de la fonction

- la racine est appelée une fois
- pour chaque nœud, on effectue deux appels de fonction

$$C(A) = 1 + 2N(A)$$
.

Réduction du nombre d'appels de la procédure

Nous pouvons réduire le nombre d'appels de la rocédure en supposant que l'arbre est non vide.

Calcul du nombre de nœuds

Réduction du nombre d'appels de la procédure

Nous pouvons réduire le nombre d'appels de la procédure en supposant que l'arbre est non vide.

Nouvelle procédure

```
nombreNoeuds(A : arbreBinaire) : entier
N : entier ; N = 1
si A->gauche <> None alors
N = N + nombreNoeuds(A->gauche)
si A->droit <> None alors
N = N + nombreNoeuds(A->droit)
retourner N # condition terminale
# lorsque A est une feuille
```

Calcul de C(A), le nombre d'appels de la procédure

Nous avons un appel de la procédure pour chaque nœud.

$$C(A) = N(A).$$

Procédure

```
nombreNoeuds(A : arbreBinaire) : entier
    si A = None alors # condition terminale
        retourner 0
    retourner 1 + nombreNoeuds(A->qauche) + nombreNoeuds(A->droit)
```

Calcul du nombre de nœuds

Exemple

Calcul de la hauteur d'un arbre binaire

Définition inductive

- l'arbre racine (réduit à une racine) est de hauteur 0
- par convention, l'arbre vide est de hauteur −1.
- soit A un arbre binaire de sous-arbre gauche A_g et de sous-arbre droit A_d .

$$h(A)=1+\sup(A_g,A_d).$$

Procédure

```
hauteurArbre(A : arbreBinaire) : entier
    si A = None alors # condition terminale
        retourner -1
    hG, hD : entier
    hG = hauteurArbre(A->gauche)
    hD = hauteurArbre(A->droit)
    si hG > hD alors
        retourner hG + 1
    retourner hD + 1
```


Calcul de la hauteur d'un arbre binaire

Procédure

```
hauteurArbre(A : arbreBinaire) : entier
    si A = None alors # condition terminale
        retourner -1
    hG, hD : entier
    hG = hauteurArbre(A->gauche)
    hD = hauteurArbre(A->droit)
    si hG > hD alors
        retourner hG + 1
    retourner hD + 1
```

Exemple

Un arbre de hauteur *h* est complet lorsque

$$N(A) = 2^{h(A) + 1} - 1.$$

Comment tester si un arbre est complet

- on ne peut pas tester directement si un arbre binaire est complet
- il n'y a pas de test local (directement sur les nœuds)

Procédure vérifiant si un arbre A est complet

On utilise des procédures déjà définies.

```
estComplet(A : arbreBinaire) : booléen
n, h : entier
n = nombreNoeuds(A)
h = hauteur(A)
retourner n = 2**(h+1) - 1
```


Plan du CM 6

Évaluation de conditions

Arbres binaires particuliers

Nombre de nœuds et hauteur

Algorithmes de parcours sur un arbre binaire

Parcours en profondeur

Parcours en profondeur

On part de la racine, on descend le plus à gauche possible et on retourne en arrière pour explorer les autres branches.

Exemple

Ordre de parcours

Chaque nœud est visité trois fois

- 1. première visite premier passage sur le nœud
- 2. seconde visite après l'exploration du sous-arbre gauche
- 3. troisième visite après l'exploration du sous-arbre droit

Affichage des nœuds par ordre préfixe

Ordre préfixe

On effectue le traitement (par exemple afficher les valeurs des nœuds) uniquement à la première visite.

Exemple

7 4 12 9 1 2 20 5 11

Algorithme récursif d'affichage

```
affichagePrefixe(A : arbreBinaire)
si A <> None alors
    afficher A->valeur
    affichagePrefixe(A->gauche)
    affichagePrefixe(A->droite)
```


(1)

(2)

(3)

Ordre infixe

Ordre infixe

On effectue le traitement à la seconde visite.

Exemple

124197520112

Algorithme récursif d'affichage

affichageInfixe(A : arbreBinaire)

affichageInfixe(A->droite)

```
si A <> None alors
   affichageInfixe(A->gauche)
                                               (2)
   afficher A->valeur
                                               (1)
```


(3)

Ordre suffixe ou postfixe

Ordre suffixe ou postfixe

On effectue le traitement à la troisième visite.

Exemple

12 1 9 4 5 11 20 2 7

Algorithme récursif d'affichage

```
affichageSuffixe(A : arbreBinaire)
 si A <> None alors
```

```
affichageSuffixe (A->gauche)
                                              (2)
affichageSuffixe (A->droite)
                                              (3)
```


(1)

On utilise une pile (de nœuds) pour mémoriser les prochains nœuds à visiter.

Affichage itératif avec l'ordre préfixe

```
affichagePrefixeIteratif(A : arbreBinaire)
    si A <> None alors
    P : pile ; P = initPile() ; P = empiler(A)
    tant que nonVide(P) faire
    B : pointeur sur noeud ; B = sommet(P); P = depiler(P)

    afficher B->valeur
    si B->droit <> None alors
        P = empiler (P, B->droit) #on commence à droite
    si A->gauche <> None alors# car l'ordre
        P = empiler (P, B->gauche) #est inversé avec la pile
```


Exécution sur un exemple

Au début la pile est vide

Exécution sur un exemple

2

- on affiche 1
- on dépile 1
- on empile 5
- on empile 2

- on affiche 2
- on dépile 2
- on empile 3

- on affiche 3
- on dépile 3
- on empile 4

- on affiche 4
- on dépile 4

Exécution sur un exemple

6 7

- on affiche 5
- on dépile 5
- on empile 7
- on empile 6

Exécution sur un exemple

8

- on affiche 7
- on dépile 7
- on empile 8

- on affiche 8
- on dépile 8
- la pile est vide, on s'arrête

On définit un algorithme itératif.

On utilise une file (de nœuds) pour mémoriser les prochains nœuds à visiter.

Affichage des nœuds avec un parcours en largeur

```
affichageLargeur (A : arbreBinaire)
   si A <> None alors
      F: file ; F = initFile() ; F = enfiler(F,A)
      tant que nonVide(F) faire
          B : pointeur sur noeud ; B = tet(F) ; F = defiler(F)
          afficher B->valeur
          si B->gauche <> None alors
             F = enfiler(F,B->gauche)
          si B->droit <> None
             F = enfiler(F,B->droit)
```


Exécution sur un exemple

 au début la file est vide

- on affiche 1
- on défile 1
- on enfile 2
- on enfile 3

- on affiche 2
- on défile 2
- on enfile 4

4	5	6

- on affiche 3
- on défile 3
- on enfile 5
- on enfile 6

5	6	7

- on affiche 4
- on défile 4
- on enfile 7

- on affiche 5
- on défile 5

- on affiche 6
- on défile 6
- on enfile 8

Exécution sur un exemple

8

- on affiche 7
- on défile 7

- on affiche 8
- on défile 8
- la file est vide, on s'arrête

