Ficha de Exercícios 2

Integrais indefinidos

1. Determine os seguintes integrais indefinidos:

$$(a) \int (3x^2 + 5x + 7) \, dx \qquad (b) \int \sqrt[3]{x} \, dx \qquad (c) \int (x^3 + 1)^2 \, dx$$

$$(d) \int \frac{\operatorname{arctg} x}{1 + x^2} \, dx \qquad (e) \int \frac{3x^2}{1 + x^3} \, dx \qquad (f) \int \frac{1}{x^7} \, dx$$

$$(g) \int \frac{x + 1}{2 + 4x^2} \, dx \qquad (h) \int 4x^3 \cos x^4 \, dx \qquad (i) \int \frac{x}{\sqrt{1 - x^2}} \, dx$$

$$(i) \int \sin x \cos^5 x \, dx \qquad (k) \int \operatorname{tg} x \, dx \qquad (l) \int \frac{\ln x}{x} \, dx$$

$$(m) \int e^{\operatorname{tg} x} \sec^2 x \, dx \qquad (n) \int x7^{x^2} \, dx \qquad (o) \int \sin(\sqrt{2}x) \, dx$$

$$(p) \int \frac{x^2 + 1}{x} \, dx \qquad (q) \int \frac{x}{(7 + 5x^2)^{\frac{3}{2}}} \, dx \qquad (r) \int \frac{x^3}{1 + x^8} \, dx$$

$$(s) \int \frac{5x^2}{\sqrt{1 - x^6}} \, dx \qquad (t) \int \frac{1}{x^2 + 7} \, dx \qquad (u) \int \frac{1}{x^2 + 2x + 5} \, dx$$

2. Determine os seguintes integrais indefinidos:

(v) $\int \frac{x}{1+x^4} dx$

Determine os seguintes integrais indefinidos:

(a)
$$\int \frac{e^{\arccos x}}{\sqrt{1-x^2}} dx$$

(b) $\int \operatorname{tg}^2 x \, dx$

(c) $\int \frac{1}{x} \cos(\ln x) \, dx$

(d) $\int \frac{6}{x \ln^3(4x)} \, dx$

(e) $\int \frac{e^{3x}}{(e^{3x}-2)^6} \, dx$

(f) $\int \operatorname{tg}^3 x \, dx$

(g) $\int \frac{1}{x\sqrt{1-\ln^2 x}} \, dx$

(h) $\int e^x \sqrt{1+e^x} \, dx$

(i) $\int \frac{1}{x \ln x} \, dx$

(j) $\int \frac{1}{\sqrt{x}} e^{\sqrt{x}} \, dx$

(k) $\int \frac{1+\cos x}{x+\sin x} \, dx$

(l) $\int \frac{e^{2x+1}}{e^{2x}+3} \, dx$

(m) $\int x^5 \sin(x^6) \, dx$

(n) $\int \frac{\arccos x-x}{\sqrt{1-x^2}} \, dx$

(o) $\int \frac{\cos(\ln(x^2))}{x} \, dx$

1

(w) $\int \frac{x}{\sqrt{1-x^4}} dx$

(x) $\int \frac{x^3}{\sqrt{1-x^4}} dx$

- 3. Considere a função g definida em \mathbb{R}^+ por $g(x) = \frac{(\ln x)^2}{x}$.
 - (a) Determine a família de todas as primitivas de g.
 - (b) Indique a primitiva da função g que se anula para x=e.

Resolução:

(a)
$$\int \frac{(\ln x)^2}{x} dx = \frac{(\ln x)^3}{3} + c, \quad c \in \mathbb{R}.$$

(b) Para cada $c \in \mathbb{R}$, $G(x) = \frac{(\ln x)^3}{3} + c$ é uma primitiva de g. Pretendemos então determinar $c \in \mathbb{R}$ tal que G(e) = 0.

$$G(e) = 0 \Leftrightarrow \frac{1}{3} + c = 0 \Leftrightarrow c = -\frac{1}{3}$$

Assim, $G(x) = \frac{(\ln x)^3}{3} - \frac{1}{3}$ é a primitiva de g que se anula para x = e.

- 4. Determine a primitiva F para a função $f(x) = \frac{2}{x} + \frac{3}{x^2}$ tal que F(-1) = 1.
- 5. Sabendo que a função f satisfaz a igualdade $\int f(x) dx = \operatorname{sen} x x \cos x \frac{1}{2}x^2 + c$, com $c \in \mathbb{R}$, determinar $f(\frac{\pi}{4})$.
- 6. Determine a primitiva da função $f(x) = \frac{1}{x^2} + 1$ que se anula no ponto x = 2.
- 7. Determine a primitiva da função f definida por $f(x) = \frac{3\cos(\ln x)}{x}$ que toma o valor 2 em x = 1.
- 8. Determine a função g que verifica as seguintes condições:

$$g'(x) = \frac{1}{(1 + \operatorname{arctg}^2(x))(1 + x^2)}$$
 e $\lim_{x \to +\infty} g(x) = 0$.

9. Determine, usando a técnica de integração por partes, os seguintes integrais indefinidos:

(a)
$$\int (x+1)\sin x \, dx$$

Resolução: Fazendo

$$f'(x) = \operatorname{sen} x$$
 temos $f(x) = -\operatorname{cos} x$
 $g(x) = x + 1$ temos $g'(x) = 1$

Assim,

$$\int (x+1)\sin x \, dx = -(x+1)\cos x + \int \cos x \, dx$$
$$= -(x+1)\cos x + \sin x + c, \quad c \in \mathbb{R}$$

(b)
$$\int x \cos x \, dx$$
 (c) $\int x^2 \cos x \, dx$ (d) $\int e^{-3x} (2x+3) \, dx$ (e) $\int \ln^2 x \, dx$ (f) $\int \ln x \, dx$ (g) $\int \ln(x^2+1) \, dx$ (h) $\int x \arctan x \, dx$ (i) $\int \cos(\ln x) \, dx$

(j)
$$\int e^{2x} \operatorname{sen}(x) dx$$
 (k) $\int \operatorname{sen}(\ln x) dx$ (l) $\int \operatorname{arcsen} x dx$ (m) $\int x \operatorname{arcsen} x^2 dx$

(n)
$$\int x^3 e^{x^2} dx$$
 (o) $\int \operatorname{arctg} x dx$ (p) $\int \operatorname{arctg} \frac{1}{x} dx$ (q) $\int \sqrt{x} \ln x dx$

(r)
$$\int \sin x \cos(3x) dx$$
 (s) $\int \cos^2 x dx$ (t) $\int \sec^3 x dx$ (u) $\int \frac{x^2}{\sqrt{(1-x^2)^3}} dx$

10. Determine, usando a técnica de integração por substituição, os seguintes integrais indefinidos:

(a)
$$\int x\sqrt{x+1}\,dx$$

Resolução:

Consideremos a substituição $x+1=t^2$, com $t\geq 0$. Definindo $\varphi(t)=t^2-1,\ t\geq 0$, temos que φ é invertível, diferenciável e $\varphi'(t)=2t$. Então

$$\int x\sqrt{x+1} \, dx = \int (t^2 - 1) \cdot t \cdot 2t \, dt$$
$$= \frac{2t^5}{5} - \frac{2t^3}{3} + c.$$

Atendendo a que $x + 1 = t^2$, com $t \ge 0$, vem que $t = \sqrt{x + 1}$. Assim,

$$\int x\sqrt{x+1} \, dx = \frac{2(x+1)^2\sqrt{x+1}}{5} - \frac{2(x+1)\sqrt{x+1}}{3} + c, \text{ com } c \in \mathbb{R}.$$

(b)
$$\int \frac{x}{1+\sqrt{x}} dx$$
 (c) $\int \frac{1}{x^2\sqrt{1-x^2}} dx$ (d) $\int \frac{1}{x^2\sqrt{x^2+4}} dx$ (e) $\int \frac{1}{x\sqrt{x^2-5}} dx$ (f) $\int x^2\sqrt{1-x} dx$ (g) $\int x^2\sqrt{4-x^2} dx$ (h) $\int \frac{1}{x\sqrt{x^2-1}} dx$ (i) $\int \frac{1}{x\sqrt{x^2+4}} dx$ (j) $\int \frac{1}{x^2\sqrt{9-x^2}} dx$ (k) $\int \frac{x^2}{\sqrt{1-2x-x^2}} dx$ (l) $\int \frac{1}{x^2\sqrt{x^2-7}} dx$ (m) $\int \frac{\sqrt{x}}{1+\sqrt[3]{x}} dx$ (n) $\int x(2x+5)^{10} dx$ (o) $\int (1+x)^{-2} \left(\frac{1-x}{1+x}\right)^{\frac{1}{3}} dx$

(p)
$$\int e^{\sqrt{x}} dx$$
 (q) $\int \frac{\ln x}{x \cdot \sqrt{1 + \ln x}} dx$ (r) $\int \frac{1 + \operatorname{tg}^2 x}{\sqrt{\operatorname{tg} x - 1}} dx$

11. Determine os seguintes integrais indefinidos:

(a)
$$\int \frac{x+2}{(x-1)^2(x^2+4)} \, dx$$

Resolução:

A determinação deste integral indefinido passa por decompor em frações simples a fração

$$\frac{x+2}{(x-1)^2(x^2+4)}.$$

Isto é, passa por escrever a dita fração na seguinte forma

$$\frac{x+2}{(x-1)^2(x^2+4)} = \frac{A}{x-1} + \frac{B}{(x-1)^2} + \frac{Cx+D}{x^2+4} \quad (*)$$

com A, B, C e D constantes reais a determinar.

Temos então que

$$\frac{x+2}{(x-1)^2(x^2+4)} = \frac{(A+C)x^3 + (-A+B-2C+D)x^2 + (4A+C-2D)x - 4A + 4B + D}{(x-1)^2(x^2+4)}$$

donde resulta a igualdade de polinómios

$$x + 2 = (A + C)x^{3} + (-A + B - 2C + D)x^{2} + (4A + C - 2D)x - 4A + 4B + D.$$

Atendendo à condição de igualdade de polinómios resulta que

$$\begin{cases} A+C=0\\ -A+B-2C+D=0\\ 4A+C-2D=1\\ -4A+4B+D=2 \end{cases} \Leftrightarrow \begin{cases} A=-\frac{1}{25}\\ B=\frac{15}{25}\\ C=\frac{1}{25}\\ D=-\frac{14}{25} \end{cases}$$

Voltando a (*), podemos escrever

$$\frac{x+2}{(x-1)^2(x^2+4)} = \frac{-\frac{1}{25}}{x-1} + \frac{\frac{15}{25}}{(x-1)^2} + \frac{\frac{1}{25}x - \frac{14}{25}}{x^2+4}.$$

Assim

$$\int \frac{x+2}{(x-1)^2(x^2+4)} dx = -\frac{1}{25} \int \frac{1}{x-1} dx + \frac{15}{25} \int (x-1)^{-2} dx + \frac{1}{25} \int \frac{x-14}{x^2+4} dx$$

$$= -\frac{1}{25} \ln|x-1| - \frac{3}{5(x-1)} + \frac{1}{25} \int \frac{x}{x^2+4} dx - \frac{14}{25} \int \frac{1}{x^2+4} dx$$

$$= -\frac{1}{25} \ln|x-1| - \frac{3}{5(x-1)} + \frac{1}{50} \ln(x^2+4) - \frac{7}{25} \operatorname{arctg} \frac{x}{2} + c, \quad c \in \mathbb{R}$$

(b)
$$\int \frac{2x-1}{(x-2)(x-3)(x+1)} dx$$
 (c)
$$\int \frac{1}{(x-1)(x+1)^3} dx$$
 (d)
$$\int \frac{1}{x^3+8} dx$$
 (e)
$$\int \frac{x^8}{1+x^2} dx$$
 (f)
$$\int \frac{1}{x^3(1+x^2)} dx$$
 (g)
$$\int \frac{8}{x^4+4x^2} dx$$
 (h)
$$\int \frac{x^5+x^4-8}{x^3-4x} dx$$
 (i)
$$\int \frac{x^2}{(x-1)^3} dx$$
 (j)
$$\int \frac{x^3+3x-1}{x^4-4x^2} dx$$
 (k)
$$\int \frac{x+1}{x^3-1} dx$$
 (l)
$$\int \frac{x^4}{x^4-1} dx$$
 (m)
$$\int \frac{1}{x(x^2+1)^2} dx$$
 (n)
$$\int \frac{x+1}{x^2+4x+5} dx$$

12. Determine

(a)
$$\int \sin^2 \theta \, d\theta$$
 (b) $\int \sin^4 x \, dx$ (c) $\int \sin x \cos^2 x \, dx$ (d) $\int \sin^3 x \, dx$ (e) $\int \sin^5 x \cos^2 x \, dx$ (f) $\int \cos^3 x \, dx$ (g) $\int \frac{1}{\sqrt{2 + x^2}} \, dx$ (h) $\int \frac{\sin \sqrt{x}}{\sqrt{x}} \, dx$ (i) $\int \frac{x}{x^2 - 5x + 6} \, dx$ (j) $\int \frac{1}{\sqrt{2x - x^2}} \, dx$ (k) $\int x \sqrt{(1 + x^2)^3} \, dx$ (l) $\int \frac{\sqrt{x}}{1 + \sqrt{x}} \, dx$ (m) $\int x \ln x \, dx$ (n) $\int \frac{1 + e^x}{e^{2x} + 4} \, dx$ (o) $\int \frac{x}{\cos^2 x} \, dx$ (p) $\int \frac{\sin x}{(1 - \cos x)^3} \, dx$ (q) $\int (2x^2 + 3) \arctan x \, dx$ (r) $\int \frac{1}{\sqrt{x^2 + 2x - 3}} \, dx$ (s) $\int \sqrt{1 + e^x} \, dx$ (t) $\int \frac{1}{\sqrt{e^x - 1}} \, dx$ (u) $\int \cos x \cos(5x) \, dx$ (v) $\int \frac{\sin^3 x}{\sqrt{\cos x}} \, dx$ (w) $\int \sin^5 x \, dx$ (x) $\int \frac{\ln x}{x(\ln^2 x + 1)} \, dx$

Exercícios de testes/exames de anos anteriores

- 13. Determine a primitiva da função $f(x) = \operatorname{tg} x$ cujo gráfico passa pelo ponto de coordenadas $(\pi, 3)$.

 (Teste 1, Cálculo I, 2014/2015)
- 14. Determine a função $f: \mathbb{R} \to \mathbb{R}$ tal que

$$f'(x) = \frac{2e^x}{3+e^x}$$
 e $f(0) = \ln 4$.

(Exame Final, Cálculo I, 2010/2011)

- 15. Determine a função $f: \mathbb{R} \to \mathbb{R}$ tal que f(0) = 1, f'(0) = 2 e f''(x) = 12x, para todo o $x \in \mathbb{R}$. (Miniteste 2, Cálculo I, 2009/2010).
- 16. Determine os seguintes integrais indefinidos:

(a)
$$\int \operatorname{sen}(2x)e^{\cos(2x)} dx$$
 (Miniteste 2, Cálculo I, 2008/2009)

(b)
$$\int \frac{1}{\sqrt{x} - \sqrt[4]{x}} dx$$
 (Miniteste 2, Cálculo I, 2008/2009)

(c)
$$\int \frac{1}{x^2\sqrt{x^2-9}} dx$$
 (Exame de Recurso, Cálculo I, 2008/2009)

(d)
$$\int x^2 \operatorname{arctg} x \, dx$$
 (Exame Época Normal, Cálculo I, 2008/2009)

(e)
$$\int \frac{x+2}{x(x^2+4)} dx$$
 (Miniteste 2, Cálculo I, 2009/2010)

(f)
$$\int \frac{x^2}{\sqrt{1+x^3}} dx$$
 (Miniteste 2, Cálculo I, 2009/2010)

(g)
$$\int \frac{1}{x^2\sqrt{1+x^2}} dx$$
 (Exame Época Normal, Cálculo I, 2009/2010)

(h)
$$\int \frac{3x-1}{x^3+x} dx$$
 (Exame Final, Cálculo I, 2010/2011)

(i)
$$\int \frac{-\cos x}{(1+\sin x)^2} dx$$
 (1° Teste, Cálculo I - Agrupamento IV, 2017/2018)

(j)
$$\int x \cdot \ln(1+x^2) dx$$
 (Exame Final, Cálculo I - Agrupamento IV, 2017/2018)

(k)
$$\int \cos x \cdot \ln(\sin x) dx$$
 (Exame de Recurso, Cálculo I - Agrupamento IV, 2017/2018)

(l)
$$\int \frac{1}{x\sqrt{x^2-4}} dx$$
 (Exame de Recurso, Cálculo I - Agrupamento IV, 2017/2018)

17. Determine a função f tal que

$$f'(x) = \frac{5x - 4}{x(x^2 - 2x + 2)}$$
 e $\lim_{x \to +\infty} f(x) = 0$.

(Exame Época Normal, Cálculo I, 2008/2009)