TCS-802

B. Tech. (CSE) (Eighth Semester) Mid Semester EXAMINATION, June, 2017

ADVANCED COMPUTER ARCHITECTURE

Time: Two Hours]

[Maximum Marks: 60

- Note: (i) This question paper contains three questions with alternative choice.
 - (ii) All questions are compulsory.
 - (iii) Each question carries four Parts (a), (b),(c) and (d). Attempt either Parts (a) and(b) or (c) and (d) of each question.
 - (iv) Each Part carries ten marks. Total marks assigned to each question are twenty.
- 1. (a) Discuss Flynn's Taxonomy of computer architecture.
 - (b) How are CISC processors different from RISC processors?

Or

- (c) State Amdahl's law and explain the concept of overall speed up.
- (d) Suppose that we want to enhance the processor used for web serving. The new

P. T. O.

A-96

processor is 10 times faster on computation in the web serving application than the original processor. Assuming that the original processor is busy with computation 40% of the time and is waiting for I/O 60% of the time. What is the overall speedup gained by incorporating the enhancement ?10

- (a) What is Data Hazard in pipelining and how to handle it? Explain with an example. 10
 - (b) The delays of various pipeline stages required in a processor to execute instructions are shown below:

Stage	Symbol	Delay
Instruction Fetch	IF	10 ns
Decode	ID	6 ns
ALU Operation	EX	8 ns
Data Memory Read/Write	M	10 ns
Register File Write	WB	4 ns

If the latch delay is 2 ns, ignoring other pipeline overheads, compute the pipeline Speedup and Throughput with respect to non-pipelined processor.

Or

(c) What do you know about RAW and WAW hazards in pipelining concept?

- (d) Answer the following:
 - (i) Discuss Shore's classification on Computer Architecture. 5
 - (ii) Discuss the WAR hazard in pipelining. 5
- 3. (a) Discuss conditional and unconditional branch hazards in pipelining with an example. 10
 - (b) Justify the statement for a pipelining processor with number of stages = k, the maximum speed-up can be 'k' (with expressions).

Or

- (c) What is 'Instruction pipelining'? Explain these terms in pipelining concepts: speed-up, throughput and efficiency.
- (d) Consider a 4-stage pipeline with below mentioned data (I = instructions, S = resource/ stages): [Times are in ns]

	\$1	S2	S3	S4
I1	2	3	2	1
I2	1	2	1	2
13	2	2	3	2
I4	1	2	2	1

- (i) How much time is required to complete the execution of these instructions? 5
- (ii) Calculate the Speed-Up, efficiency and throughput.

TCS-802

230