Kabinet výuky obecné fyziky, UK MFF

Fyzikální praktikum ...

Úloha č					
Název úlohy:					
Jméno:		Obor:	FOF	FAF	FMUZV
Datum měření:	Datum o	devzdá	ní:		

Připomínky opravujícího:

	Možný počet bodů	Udělený počet bodů
Práce při měření	0 - 5	
Teoretická část	0 - 1	
Výsledky měření	0 - 8	
Diskuse výsledků	0 - 4	
Závěr	0 - 1	
Seznam použité literatury	0 - 1	
Celkem	max. 20	

Posuzoval:	dne:
0042014	G. 10 1 11111111111111111111111111111111

Pracovní úkoly

- 1. Změřte tuhost k pěti pružin metodou statickou.
- 2. Sestrojte graf závislosti prodloužení pružiny na působící síle y = y(F).
- 3. Změřte tuhost k pěti pružin metodou dynamickou.
- 4. Z doby kmitu tělesa známé hmotnosti a výchylky pružiny po zavěšení tohoto tělesa určete místní tíhové zrychlení q.
- 5. Sestrojte grafy závislostí:

a.
$$\omega = f(\sqrt{k})$$

b. $\omega = f(\sqrt{\frac{1}{m}})$

6. Při zpracování použijte lineární regresi.

Teoretická část

Síla F_D potřebná k deformaci pružiny je přímo úměrná prodloužení pružiny y.

$$F_D = k \cdot y \ . \tag{1}$$

Konstanta k se nazývá tuhost pružiny.

Statická metoda

Tuhost konkrétní pružiny lze snadno změřit statickou metodou [ZFP], při které pružinu deformujeme známou silou a měříme její prodloužení. V samotném experimentu budeme měřit závislost prodloužení y_0 na hmotnosti zavěšeného závaží m a očekáváme lineární závislost

$$y_0 = a \cdot m \ . \tag{2}$$

Tuhost pružiny určíme z konstanty úměrnosti a podle vztahu

$$k = \frac{g}{a} \,, \tag{3}$$

kde g je tíhové zrychlení. Prodloužení pružiny měříme katetometrem, vzhledem k otřesům v laboratoři odhadujeme standardní odchylku $\sigma_{y0}=2~mm$. Chyba hmotnosti závaží je vzhledem k chybě prodloužení zanedbatelná. Používáme tíhové zrychlení v Praze $g=9,81373~ms^{-2}$ [NKP12]. Závislost $y_0=y_0(F)$ vyneseme do grafu jako

$$y_0 = -\frac{a}{q} \cdot mg = -\frac{a}{q} \cdot F \ . \tag{4}$$

Dynamická metoda

Na závaží zavěšené na pružině působí síla směřující do rovnovážné polohy, jejíž velikost je přímo úměrná výchylce. Po vychýlení tedy vykonává harmonický pohyb daný funkcí

$$y(t) = A \cdot \sin(\omega t + \phi)$$
,

kde A je amplituda výchylky, ϕ je počáteční fáze, ω je úhlová rychlost a t je čas. Úhlová rychlost je dána vztahem

$$\frac{2\pi}{T} = \omega = \sqrt{\frac{k}{m}} \ . \tag{5}$$

Tuhost pružiny můžeme měřit také dynamickou metodou [ZFP]. Na pružinu zavěsíme závaží o hmotnosti m a změříme dobu jednoho kmitu. Změříme závislost

$$\omega = b \cdot \frac{1}{\sqrt{m}} \ . \tag{6}$$

Z konstanty b vypočteme tuhost pružiny jako

$$k = b^2 (7)$$

Měření provedeme elektronickým sonarem a pro větší přesnost měříme více kmitů. Standardní chybu měření odhadujeme na $0,1\ s.$

Tíhové zrychlení

Pokud změříme dvojici pružina-závaží statickou i dynamickou metodou, můžeme do (2) a (3) dosadit známou tuhost a dostaneme tíhové zrychlení

$$g = \omega^2 y_0 . (8)$$

Výsledky měření

Měřili jsme celkem 5 pružin, označili jsme je písmeny A–E. Hmotnosti pružin a jejich délky v nenapjatém stavu jsou uvedeny v tabulce 1.

pružina	délka (cm)	hmotnost (g)
A	9,5	3,9
В	9,8	6,3
С	15,2	43,7
D	13,1	5,4
Е	11,5	2,4

Tabulka 1: Vlastnostni pružin

Statická metoda

Pro každou pružinu jsme změřili prodloužení pro 5 až 6 různých zatížení. Střední hodnotu konstanty a v rovnici (2) určíme pomocí vztahu (9) [Eng06]

$$\tilde{a} = \frac{\sum_{i=1}^{n} m_i^2}{\sum_{i=1}^{n} m_i y_{0i}} , \qquad (9)$$

Naměřené hodnoty jsou uvedeny v tabulce 2. V posledním sloupci jsou uvedeny tuhosti pro každé měření. Je zřejmé, že pružina C není lineární v celé oblasti měření. Hodnoty pro dvě nejmenší zatížení nebudeme dále zpracovávat a tuhost určíme podle zbylých tří. Dále spočítáme disperzi podle vztahu (10) [Eng06]

pružina	$m_i(g)$	$y_{0i}(mm)$	$m_i y_{0i}(g \cdot mm)$	$m_i^2(g^2)$	$k_i(N \cdot m^{-1})$
	100	33	3300	10000	29,7
	120	39	4680	14400	30,2
A	150	49	7350	22500	30,0
A	250	81	20250	62500	30,3
	370	121	44770	136900	30,0
	500	163	81500	250000	30,1
	20	27	540	400	7,3
	50	66	3300	2500	7,4
В	100	135	13500	10000	7,3
	120	161	19320	14400	7,3
	150	201	30150	22500	7,3
	200	267	53400	40000	7,3
	100	17	1700	10000	57,7
	120	21	2520	14400	56,1
C	150	29	4350	22500	50,7
	250	61	15250	62500	40,2
	500	146	73000	250000	33,6
	20	57	1140	400	3,4
	50	144	7200	2500	3,4
D	100	287	28700	10000	3,4
	120	344	41280	14400	3,4
	150	429	64350	22500	3,4
	50	31	1550	2500	15,8
	100	64	6400	10000	15,3
E	120	77	9240	14400	15,3
	150	98	14700	22500	15,0
	250	162	40500	62500	15,1

Tabulka 2: Statická metoda: naměřené hodnoty

$$D_{\tilde{a}} = \frac{\sigma_{y_0}^2}{\sum_{i=1}^n m_i^2} \,, \tag{10}$$

kde $\sigma_{y_0} = 2 \ mm$ je chyba měření prodloužení. Po odmocnění disperze a použití vztahu (3) dostáváme pro jednotlivé pružiny hodnoty v tabulce 3 (P=0,68). Chybu tuhosti počítáme podle vztahu (11). Závislost (4) je vynesena do grafu (obr. 1).

$$\sigma_{\tilde{k}}^2 = (\frac{\partial k}{\partial a})^2 \cdot \sigma_{\tilde{a}}^2 = \frac{\tilde{k}^2}{\tilde{a}^2} \cdot \sigma_{\tilde{a}}^2 \tag{11}$$

pružina	$\tilde{a}(m \cdot kg^{-1})$	$\sigma_{\tilde{a}}(m \cdot kg^{-1})$	$\tilde{k}(N \cdot m^{-1})$	$\sigma_{\tilde{k}}(N\cdot m^{-1})$
A	0,326	0,0028	30,093	0,262
В	1,339	0,0067	7,331	0,037
С	0,276	0,0035	35,503	0,444
D	2,865	0,0090	3,426	0,011
E	0,647	0,0060	15,170	0,140

Tabulka 3: Statická metoda: výsledky

Dynamická metoda

Pro každou pružinu jsme měřili periodu při stejném zatížení jako při statické metodě. Naměřené hodnoty jsou uvedeny v tabulce 4. Vypočteme veličinu $1/\sqrt{m}$, z doby kmitu podle vztahu (5) úhlovou rychlost ω a její chybu podle

$$\sigma_{\tilde{\omega}}^2 = (\frac{\partial \omega}{\partial T})^2 \cdot \sigma_{\tilde{T}}^2 = \frac{\tilde{\omega}^2}{\tilde{T}^2} \cdot \sigma_{\tilde{T}}^2$$

Chybu jednoho kmitu bereme jako chybu měření 0,1s dělenou počtem měřených kmitů. Střední hodnotu veličiny b vypočítáme podle vztahu (12) [Eng06]

$$\tilde{b} = \frac{\sum_{i=1}^{n} \frac{\omega_i}{\sqrt{m_i} \sigma_{\omega_i}^2}}{\sum_{i=1}^{n} \frac{1}{m_i \sigma_{\omega_i}^2}}$$

$$\tag{12}$$

a její disperzi podle [Eng06]

$$D_{\tilde{b}} = \frac{1}{\sum_{i=1}^{n} \frac{1}{m_{i} \sigma_{v,i}^{2}}} \ .$$

Tuhost pružiny získáme z b díky vztahu (7) a její chybu jako

$$\sigma_{\tilde{k}}^2 = (\frac{\partial k}{\partial b})^2 \cdot \sigma_{\tilde{b}}^2 = \frac{4\tilde{k}^2}{\tilde{b}^2} \cdot \sigma_{\tilde{b}}^2$$

Výsledné hodnoty veličiny b, tuhosti a jejich výchylek jsou uvedeny v tabulce 5. Grafy závislostí úhlové rychlosti na \sqrt{k} a $\sqrt{1/m}$ jsou zaneseny do grafů (obr. 2) a (obr. 3) resp. (pozn.)

Tíhové zrychlení

Hodnoty tíhového zrychlení vypočtené z (8) pro každé měření jsou uvedeny v tabulce 6. Průměrné hodnoty a jejich standardní odchylky jsou uvedené v tabulce 7.

Obrázek 1: Graf závislosti prodloužení na tíhové síle závaží

pružina	$m_i(g)$	$1/\sqrt{m_i} \ (kg^{-1/2})$	$T_i(s)$	$\sigma_{Ti}(s)$	$\omega_i \ (s^{-1})$	$\sigma_{\omega i} \ (s^{-1})$
	100	3,162	0,368	0,00588	17,09	0,273
	120	2,887	0,400	0,00714	15,71	0,280
A	150	2,582	0,445	0,00625	14,12	0,198
A	250	2,000	0,571	0,00667	11,01	0,129
	370	1,644	0,695	0,00455	9,05	0,059
	500	1,414	0,804	0,00357	7,81	0,035
	20	7,071	0,346	0,00270	18,16	0,142
	50	4,472	0,531	0,00455	11,83	0,101
В	100	3,162	0,741	0,00588	8,48	0,067
ь	120	2,887	0,811	0,00526	7,75	0,050
	150	2,582	0,903	0,00625	6,96	0,048
	200	2,236	1,038	0,00526	6,05	0,031
	100	3,162	0,331	0,00345	18,98	0,198
	120	2,887	0,379	0,00357	16,60	0,157
C	150	2,582	0,431	0,00435	14,57	0,147
	250	2,000	$0,\!596$	0,00476	10,54	0,084
	500	1,414	0,845	0,00435	7,43	0,038
	20	7,071	0,506	0,00238	12,42	0,058
	50	4,472	0,777	0,00357	8,08	0,037
D	100	3,162	1,084	0,00476	5,80	0,025
	120	2,887	1,183	0,00526	5,31	0,024
	150	2,582	1,318	0,00588	4,77	0,021
	50	4,472	0,366	0,00385	17,16	0,180
	100	3,162	0,514	0,00476	12,22	0,113
E	120	2,887	$0,\!562$	0,00526	11,18	0,105
	150	2,582	0,629	0,00556	9,99	0,088
	250	2,000	0,806	0,00476	7,80	0,046

Tabulka 4: Dynamická metoda: naměřené hodnoty

pružina	$\tilde{b} \ (kg^{1/2}s^{-1})$	$\sigma_{\tilde{b}} \ (kg^{1/2}s^{-1})$	$\tilde{k} \ (N \cdot m^{-1})$	$\sigma_{\tilde{k}} \ (N \cdot m^{-1})$
A	5,51	0,0180	30,32	0,198
В	2,67	0,0074	7,14	0,040
С	5,43	0,0188	29,46	0,204
D	1,82	0,0037	3,30	0,013
Е	3,88	0,0143	15,03	0,111

Tabulka 5: Dynamická metoda: výsledky

Obrázek 2: Graf závislosti $\omega = F(\sqrt{k})$

Obrázek 3: Graf závislosti $\omega=F(\sqrt{\frac{1}{m}})$ (pozn.: přímka náležící pružině C je zdánlivě proložena špatně, mějmě ale na paměti, že jsou to právě hodnoty blízké počátku, které jsou nejpřesnější)

pružina	$m_i(g)$	$y_{0i}(mm)$	$\omega_i \ (s^{-1})$	$g~(ms^{-2})$
	100	33	17,09	9,64
	120	39	15,71	9,62
	150	49	14,12	9,77
A	250	81	11,01	9,82
	370	121	9,05	9,90
	500	163	7,81	9,95
	20	27	18,16	8,91
	50	66	11,83	9,24
В	100	135	8,48	9,70
D D	120	161	7,75	9,68
	150	201	6,96	9,74
	200	267	6,05	9,79
	100	17	18,98	6,12
	120	21	16,60	5,78
C	150	29	14,57	6,15
	250	61	10,54	6,78
	500	146	7,43	8,07
	20	57	12,42	8,80
	50	144	8,08	9,41
D	100	287	5,80	$9,\!65$
	120	344	5,31	9,70
	150	429	4,77	9,75
	50	31	17,16	9,13
	100	64	12,22	$9,\!55$
E	120	77	11,18	9,62
	150	98	9,99	9,78
	250	162	7,80	9,85

Tabulka 6: Hodnoty tíhového zrychlení pro jednotlivá měření

pružina	$g \ (ms^{-2})$	$\sigma_g \ (ms^{-2})$
A	9,78	0,13
В	9,51	0,35
С	6,58	0,90
D	9,46	0,39
E	9,59	0,28

Tabulka 7: Tíhové zrychlení

Diskuze výsledků

Výsledky v tabulce 6 a 7 můžeme využít ke kontrole, tíhové zrychlení by mělo být přibližně 9,8 ms^{-2} . Z výsledků je zřejmé, že pružina C našemu modelu neodpovídá, při měření se závažím $100\ g$ má pružina téměř poloviční hmotnost jako závaží, ale v našem modelu vlastní hmotnost pružiny zanedbáváme. Pružinou C tedy naší metodou tíhové zrychlení měřit nelze, statickou i dynamickou metodou vyšly výrazně odlišné tuhosti. Pro změření skutečné tuhosti by bylo vhodné pružinu umístit vodorovně a závaží zavěsit přes kladku.

Měření ostatních pružin bylo vcelku úspěšné. Jejich hmotnost lze ve většině případů zanedbat oproti hmotnosti závaží. Tuhosti pro tyto pružiny se téměř shodují pro obě metody.

Závěr

Změřili jsme statickou a dynamickou metodou tuhosti pěti pružin (A-E). Ověřili jsme, že pro dostatečně lehké pružiny (A, B, D, E) je skutečně prodloužení při zavěšení závaží přímo úměrné hmotnosti závaží. Tuhost pružiny C, která byla příliš hmotná vzhledem k použitému závaží, se nám spolehlivě změřit nepodařilo. Tuhosti pružin změřené statickou metodou jsou:

- A: $k = (30, 0 \pm 0, 3)Nm^{-1}$
- B: $k = (7, 33 \pm 0, 04)Nm^{-1}$
- C: $k = (35, 5 \pm 0, 5)Nm^{-1}$
- D: $k = (3.43 \pm 0.02)Nm^{-1}$
- E: $k = (15, 2 \pm 0, 2)Nm^{-1}$

a dynamickou metodou:

- A: $k = (30, 3 \pm 0, 2)Nm^{-1}$
- B: $k = (7, 14 \pm 0, 04)Nm^{-1}$
- C: $k = (29.5 \pm 0.3) Nm^{-1}$
- D: $k = (3, 30 \pm 0, 02)Nm^{-1}$
- E: $k = (15, 0 \pm 0, 2)Nm^{-1}$

Měření tuhosti pružiny C je ovšem zatíženo velmi vysokou systematickou chybou, její skutečnou tuhost odhadujeme na $(30\pm3)Nm^{-1}$. Hodnoty tíhového zrychlení změřené kombinací obou metod jsou:

- A: $a = (9.8 \pm 0.2) ms^{-2}$
- B: $g = (9, 5 \pm 0, 4)ms^{-2}$
- C: $q = (6, 6 \pm 0, 9)ms^{-2}$
- D: $g = (9, 5 \pm 0, 4)ms^{-2}$
- E: $q = (9, 6 \pm 0, 3)ms^{-2}$

Všechny uvedené odchylky jsou standardní (P=0,68).

Reference

- [Eng06] Jiří Englich. Úvod do praktické fyziky I. MATFYZPRESS, 2006.
- [NKP12] Steve C. Kenyon John K. Factor Nikolaos K. Pavlis, Simon A. Holmes. The development and evaluation of the earth gravitational model 2008 (egm2008), 2012.
- [ZFP] Studium harmonických kmitů mechanického oscilátoru. Studijní text pro fyzikální praktikum I MFF UK [online] [cit. 10. 3. 2016] Dostupné z http://physics.mff.cuni.cz/vyuka/zfp/_media/zadani/texty/txt_102.pdf.