DEC7536 Projeto e Análise de Algoritmos Primeira Lista de Exercícios

- 1. (Cris-IME-USP) Usando a definição de notação O, prove que
 - a. $n^2 + 10n + 20 = O(n^2)$, b. $\lceil n/3 \rceil = O(n)$
 - c. $\log_2 n = O(\log_{10} n)$, d. $\log_{10} n = O(\log_2 n)$, e. $n = O(2^n)$
 - f. n/1000 não é O(1), g. $n^2/2$ não é O(n), h. 3^n não é $O(2^n)$
- 2. (Cris-IME-USP) Prove ou dê contra-exemplo para as afirmações abaixo:
 - a. $\log \sqrt{n} = O(n^2)$
 - b. Se f(n) = O(g(n)) e g(n) = O(h(n)) então f(n) = O(h(n))
 - c. Se f(n) = O(g(n)) e $g(n) = \Theta(h(n))$ então $f(n) = \Theta(h(n))$
 - d. Suponha que $\log(g(n)) > 0$ e que f(n) > 1 para todo n suficientemente grande. Neste caso, se f(n) = O(g(n)) então $\log(f(n)) = O(\log(g(n))$.
 - e. Se f(n) = O(g(n)) então $2^{f(n)} = O(2^{g(n)})$.
- **3.** (DPV) Mostre que, se c é um número real positivo, então $g(n) = 1 + c + c^2 + \ldots + c^n$ é:
 - a. $\Theta(1)$ se c < 1.
 - b. $\Theta(n)$ se c=1.
 - c. $\Theta(c^n)$ se c > 1.
- **4.** (DPV) Mostre que $\log(n!) = \Theta(n \log n)$. (Dica: Para mostrar uma cota superior, compare n! com n^n . Para mostrar uma cota inferior, compare com $(n/2)^{n/2}$.)
- 5. (DPV) Suponha que você esteja escolhendo entre os seguintes algoritmos:
 - Algoritmo A resolve problemas dividindo-os em cinco subproblemas de metade do tamanho, solucionando cada subproblema recursivamente e, então, combinando as soluções em tempo linear.
 - Algoritmo B resolve problemas de tamanho n resolvendo recursivamente dois subproblemas de tamanho n-1 e, então, combinando as soluções em tempo constante.

• Algoritmo C soluciona problemas de tamanho n dividindo-os em nove subproblemas de tamanho n/3, resolvendo recursivamente cada subproblema e, então, combinando as respostas em tempo $O(n^2)$.

Qual o tempo de execução de cada um desses algoritmos (em notação O) e qual você escolheria?

6. (DPV) Resolva as seguintes relações de recorrência e dê uma cota O para cada uma delas.

(a)
$$T(n) = 2T(n/3) + O(1)$$

(b)
$$T(n) = 5T(n/4) + O(n)$$

(c)
$$T(n) = 7T(n/7) + O(n)$$

(d)
$$T(n) = 9T(n/3) + O(n^2)$$

(e)
$$T(n) = 8T(n/2) + O(n^3)$$

(f)
$$T(n) = 49T(n/25) + O(n^{3/2} \log n)$$

(g)
$$T(n) = T(n-1) + 2$$

(h)
$$T(n) = T(n-1) + n^c$$
, onde $c \ge 1$ é uma constante

(i)
$$T(n) = T(n-1) + c^n$$
, onde $c > 1$ é uma constante

(j)
$$T(n) = 2T(n-1) + 1$$

(k)
$$T(n) = T(\sqrt{n}) + 1$$

7. (DPV) Quantas linhas, em função de n (e na notação Θ), o seguinte programa imprime? Escreva e resolva uma recorrência. Você pode considerar que n é uma potência de 2.

f(n)

- 1. se n > 1
- 2. então imprime linha("ainda rodando")
- 3. f(n/2)
- 4. f(n/2)
- 8. (DPV) É dado um vetor de n elementos e você nota que alguns dos elementos são duplicados, ou seja, eles aparecem mais de uma vez no vetor. Mostre como remover todos os duplicados do vetor em tempo $O(n \log n)$.