Dokumentation

Das Programm ist eine automatisierte Lösung zur Analyse von Messdaten. Es ermöglicht die Extraktion von wichtigen Informationen aus den Messdaten durch die Berechnung von Mittelwerten und Standardabweichungen für jede Frequenz. Die Messwerte werden mit Referenzwerten verglichen und mithilfe der 6-Sigma-Regel klassifiziert, um Abweichungen von der Norm zu identifizieren. Das Programm erzeugt eine tabellarische Darstellung und eine Heatmap, um die Qualität jeder Messung visuell zu bewerten. Die Benutzeroberfläche ist einfach und erfordert lediglich die Angabe der zu analysierenden Datei, der Referenzdatei, der Frequenzen, an denen Messwerte extrahiert werden sollen, und eines Namens für die Ausgabedatei.

Hauptfunktionen:

- 1. Peaks und Dips Detektion
- 2. Messung bei einer benutzerdefinierten Frequenz Auslesen
- 3. Qualitätskontrolle

1. Peaks und Dips Detektion

Um ein besseres Verständnis für die Ergebnisse zu erlangen, ist es von Bedeutung zu wissen, bei welcher Frequenz und mit welchem Wert die Proben ihre Höhepunkte und Dips erreicht haben.

Realisierung:

Da das von der Messbox erzeugte Protokoll als Vorlage dient, ist es möglich, den Anfang und das Ende jeder Tabelle von jeder Messung zu bestimmen. Dadurch können die einzelnen Proben separat analysiert werden. Hierfür wird lediglich die erste Zelle jeder Tabelle benötigt, die bei allen Proben identisch ist, und das Ende der Tabelle kann auf Basis des Anfangs der nächsten Tabelle ermittelt werden. Anschließend durchläuft das Programm die Daten und sucht nach Trends. Gelegentlich können die Daten von Parasiten befallen sein und ungenau sein, aber nach einer Interpretation können fast alle Fehler überwunden werden. Die Werte werden in einer Tabelle erfasst und in Excel geschrieben.

1st Peak Hz	1st Peak	2nd Peak Hz	2nd Peak	3rd Peak Hz	3rd Peak	4th Peak Hz	4th Peak	800 MHZ	900 MHZ	1000 MHZ	1100 MHZ
845	-15.421	870	-17.267	890	-18.372	1145	-19.163	-7.669	-17.633	-10.585	-15.339
840	-15.761	865	-17.525	890	-18.572	1150	-18.958	-7.969	-17.633	-10.485	-15.239
845	-15.821	870	-17.467	890	-18.572	1150	-19.258	-7.469	-18.033	-10.685	-15.439
845	-15.721	870	-17.367	890	-18.572	1150	-19.258	-7.469	-17.933	-10.685	-15.439
845	-15.421	870	-16.967	890	-18.072	1150	-19.158	-6.869	-17.633	-10.585	-15.339
845	-16.421	870	-17.967	890	-18.972	1150	-18.758	-8.069	-18.233	-10.785	-15.139
840	-16.361	865	-17.925	885	-18.844	1145	-18.363	-8.469	-17.633	-10.385	-14.839
845	-15.821	870	-17.367	890	-18.472	1155	-19.256	-6.869	-18.133	-10.685	-15.339
845	-16.021	870	-17.767	890	-18.772	1145	-18.763	-7.969	-17.933	-10.685	-15.339
840	-16.161	865	-17.725	885	-18.744	1145	-18.463	-8.869	-17.433	-10.385	-14.939
840	-15.561	870	-17.267	890	-18.372	1150	-19.058	-7.469	-17.533	-10.285	-15.139
840	-15.261	865	-16.925	890	-18.072	1150	-19.058	-7.169	-17.233	-10.385	-15.339
840	-15.161	865	-16.725	890	-17.872	1150	-19.058	-7.569	-17.033	-10.385	-15.239
845	-16.221	870	-17.967	890	-19.072	1150	-18.658	-8.069	-18.233	-10.685	-15.039
845	-15.421	870	-17.167	890	-18.272	1145	-19.363	-7.369	-17.633	-10.785	-15.539
845	-16.021	870	-17.767	890	-18.772	1150	-18.558	-7.969	-18.033	-10.485	-14.939
845	-15.721	870	-17.367	890	-18.472	1150	-19.258	-7.269	-17.933	-10.785	-15.439
845	-16.021	870	-17.667	890	-18.872	1155	-19.256	-6.969	-17.933	-10.785	-15.439
845	-15.921	870	-17.667	890	-18.672	1150	-18.858	-7.769	-18.133	-10.685	-15.239
845	-15.321	870	-17.167	890	-18.272	1150	-19.058	-7.369	-17.533	-10.485	-15.339
845	-16.121	870	-17.567	890	-18.672	1150	-19.158	-7.269	-18.333	-10.885	-15.439
840	-15.561	865	-17.125	890	-18.172	1150	-18.958	-7.469	-17.033	-10.285	-15.139
845	-16.521	870	-17.967	890	-18.972	1150	-18.658	-8.169	-18.333	-10.785	-15.139
840	-16.261	865	-17.625	890	-18.572	1150	-18.658	-8.269	-17.533	-10.485	-15.039
845	-15.721	870	-17.367	890	-18.472	1150	-19.158	-7.569	-17.833	-10.585	-15.339
845	-15.821	870	-17.367	890	-18.472	1150	-19.258	-7.169	-17.933	-10.785	-15.539
840	-15.661	865	-17.125	890	-18,172	1150	-19.158	-7.669	-17.233	-10,485	-15,339
840	-15.761	870	-17.267	890	-18.372	1150	-18.458	-8.169	-17.933		-15.039
840	-15.761	865	-17.525	890	-18.572	1150	-18.958	-7.569	-17.533	-10.385	-15.239
840	-15,961	865	-17,525	890	-18,572	1150	-18.858	-8.069	-17,533	-10.485	-15.239
845	-15.821	870	-17,467	890	-18,572	1150	-19.258	-7.169	-18.133	-10.785	-15.539
845											
845	-16.421	870 870	-17.767	890 890	-18.772	1150	-18.658	-7.769	-18.333	-10.885	-15.139
	-15.821		-17.467		-18.472	1145	-18.863	-7.469	-17.833	-10.585	-15.139
845	-15.821	870	-17.467	890	-18.572	1145	-18.863	-7.869	-17.933	-10.585	-15.239
845	-15.421	870	-17.167	890	-18.272	1150	-19.258	-7.269	-17.633	-10.685	-15.439
845	-16.821	870	-18.267	890	-19.372	1150	-18.858	-8.069	-18.733	-10.985	-15.239
840	-16.461	865	-17.925	885	-18.944	1145	-18.263	-8.569	-17.733	-10.485	-14.939
845	-15.721	870	-17.367	890	-18.472	1150	-19.158	-7.369	-17.933	-10.685	-15.339

2. Messung bei einer benutzerdefinierten Frequenz Auslesen

Das Programm kann auch die Messwerte bei einer benutzerdefinierten Frequenz auslesen. Dadurch kann das Programm bei der Kontrolle des Produkts an spezifischen Punkten während der Messung eingesetzt werden.

3. Qualitätskontrolle

Dieser Teil des Programms ist auf dem Prinzip von 6 Sigma basiert. Mit dieser Funktion können wir den Durchschnitt und die Standardabweichung der Werte bei jeder Frequenz ermitteln. Wir können die Messwerte mit dem Durchschnitt vergleichen und prüfen, ob sie sich innerhalb des Toleranzbereichs befinden. Auf diese Weise können wir die Leistung jedes einzelnen Samples bewerten und bei Abweichungen schnell reagieren. Durch die kontinuierliche Überwachung können wir sicherstellen, dass die Produktionsprozesse stabil bleiben und das Endprodukt den höchsten Qualitätsstandards entspricht.

Jede Messung wird mit einem Referenzwert verglichen und je nach Abweichung in einer bestimmten Farbe markiert. Dabei werden die Messwerte gemäß der 3-Sigma-Regel klassifiziert und mit den Mittelwerten verglichen: Messwerte innerhalb des Bereichs [- σ , σ] werden grün markiert. Messwerte innerhalb des Bereichs [- σ , σ] werden gelb markiert. Messwerte innerhalb des Bereichs [- σ , σ] werden orange markiert. Messwerte außerhalb des Bereichs [- σ , σ] werden rot markiert. Durch diese farbliche Kodierung entsteht eine Heatmap, die es ermöglicht, die Qualität jedes Messwertes auf einen Blick zu erfassen.

4. GUI

