Roll No.:	

National Institute of Technology, Delhi

Name of the Examination: B.Tech.

Branch : ECE Semester : ilir	Branch	: ECE	Semester	:Illrd
------------------------------	--------	-------	----------	--------

Title of the Course : Electromagnetic Theory Course Code : ECL203

Time: 3 Hours Make-up Exam Maximum Marks: 50

Note: Read the given instructions for each section

Section A: Attempt all ques	tions, each questio	on is of one (01) mar	rk		
Q1. Significance of gauss's la	w for magnetic fie	lds in steady state -			
(i) Non-existence of monopol	e; (ii) existence of	source and sink; (iii)	both (i) &	(ii); (iv) None	(1)
Q2. Velocity of electromagne	tic wave in free spa	ace is –			
(i) 1.5×10^8 m/s; (ii) 3	$\times 10^8$ m/s;	(iii) 2×10^8 m/s;	(iv) no	one	(1)
Q3. Complete the statement:	∮ <i>H.dl</i> =				
(i) I; (ii) Q;	(iii) ρ _ν ;	(iv) zero			(1)
Q4. The force experienced by	current carrying co	onductor lying parall	el to magn	etic field	
(i) Bqvsinθ; (ii) B	gy;	(iii) zero;	(iv) N	one	(1)
Q5. The Lorentz force equation	on is -				
(i) $F = QE$; (ii) $F = Q(E - QE)$	$v \times B$); (iii) $F =$	$= Q(E + v \times B); (iv)$	None		(1)
Q6. Who introduced the conc	ept of displacemen	t current?			
(i) Faraday; (ii) Lenz;	(iii) Maxwell;	(iv) Lorentz	Z		(1)
Q7. According to Lenz's law,	the direction of in-	duced emf and hence	current -		
(i) can be found by right hand				g it;	
(iii) depends on whether the c	oil is wound with a	right or left and spir	ral; (iv) n	one	(1)
Q8. Potential is an example o	f -				
(i) Scalar; (ii) Vector;		(iv) None			(1)
Q9. The unit of the permittivi		-			
(i) F/m; (ii) C^2/Nm^2 ;	•	(iv) None			(1)
Q10. Identify the law: $J = \sigma E$					
(i) Maxwell's equation;	(ii) Ohm's law;	(iii) Ampere	e's law;	(iv) None	(1)
Section B: Attempt any four	(04) questions. E	ach question is of 5	marks		
Q11. (a) Calculate electric fie	ld intensity at a poi	int A(1, 2, 3) in free	space caus	ed by a charge $Q_1 = 5nG$	C at point
P(2, 3, 5) and another charge					(3)
(b) State Divergence and Stok	ces theorem along v	with mathematical ex	pression.		(2)
Q12. (a) A linear, homogeneo	ous, isotropic dielec	tric material has per	mittivitve.	= 3.6 and is covering th	e space
between $z = 0$ and $z = 1$. If V	•				
(iv) Surface charge density of			(, - , ()	2 2	(2)
(b) Determine the tangential a			rv conditio	ons at an interface separ	
dielectrics ε_{r1} and ε_{r2} . Also der	-				(3)
are reserved and off. This der	die iam of fella				(-)
Q13. (a) Find the magnetic fie	eld a distance 's' fr	om a long straight w	ire carryin	g a steady current 'I'.	(2)

(b) Let plane z = 0 and z = 4 carry current $K = -10a_x$ A/m and $K = 10a_x$ A/m respectively. Determine \mathbf{H} at (1, 1, 1) and (0, -3, 10).

Q14. (a) Show that the boundary conditions between two magnetic media on the magnetization vector are -

$$\frac{M_{1t}}{\chi_{m_1}} - \frac{M_{2t}}{\chi_{m_2}} = K \text{ and } \frac{\mu_1}{\chi_{m_1}} M_{1n} = \frac{\mu_2}{\chi_{m_2}} M_{2n}$$
(3)

Q15. An electric field in free space is given by $-E = 50 \cos(10^8 t + \beta x) a_v V/m$

- (a) Find the direction of wave propagation.
- (b) Calculate ' β ' and the time it takes to travel a distance of ' λ /2' (5)

Section C: Attempt any two (02) questions. Each question is of 10 marks

Q16. A line charge density of 70.8π is distributed along the z-axis from z = -5 to $z = -\infty$ and z = +5 to $z = +\infty$. Find E at (2, 0, 0).

Q17. (a) A plane wave propagating through a medium $\varepsilon_r = -8$, $\mu_r = 2$ has $E = 0.5e^{-\frac{2}{3}}sin(10^{8}t - \beta z)a_x \text{ V/m}$. Determine:(i) β , (ii) Loss tangent, (iii) η , and (iv) H.

(b) The ratio J/J_d (conduction current density to displacement current density) is very important at high frequencies. Calculate the ration at 1 GHz for – distilled water ($\mu = \mu_o$, $\varepsilon = 81\varepsilon_o$, $\sigma = 2 \times 10^{-3}$ S/m) (2)

Q18.(a) The point charge Q = 18nC has a velocity of 5×10^6 m/s in the direction $a_v = 0.04a_x - 0.05a_y + 0.2a_z$. Calculate the magnitude of the force exerted on the charge by the field:

(i)
$$B = -3a_x + 4a_y + 6a_z mT$$
 (ii) $E = -3a_x + 4a_y + 6a_z kV/m$ (iii) B and E together (6)

(b) Derive the expression for α , β , and η for the wave propagation in lossy dielectrics. (4)