WGAN & WGAN-GP

GAN: ONE MORE STEP FURTHER

- $lackbox{FMD에서 }\Pi(p_r,p_g)$ 의 모든 결합 분포를 추적하기는 불가능
- ▶ Kantorovich-Rubinstein duality를 사용:
- $W(p_r, p_g) = \inf_{\gamma \sim \Pi(p_r, p_g)} \mathbb{E}_{(x, y) \sim \gamma} \left[||x y|| \right]$

$$W(p_r, p_g) = \frac{1}{K} \sup_{\|f\|_L \le K} \mathbb{E}_{x \sim p_r}[f(x)] - \mathbb{E}_{x \sim p_g}[f(x)]$$

• Where K=1

$$W(p_r, p_g) = \frac{1}{K} \sup_{\|f\|_L \le K} \mathbb{E}_{x \sim p_r}[f(x)] - \mathbb{E}_{x \sim p_g}[f(x)]$$

- $f = ||f||_L \le K$ 를 만족해야 함
 - ▶ K-lipschitz continuous를 만족한다는 의미
 - 모든 $(x_1, x_2) \in \mathbb{R}^2$ 와 Lipschitz 상수 K 에 대해
 - $|f(x_1) f(x_2)| \le K|x_1 x_2| \equiv \mathbb{C}^2$
 - ▶ 거의 모든 점에서 연속적으로 미분 가능

$$W(p_r, p_g) = \frac{1}{K} \sup_{\|f\|_L \le K} \mathbb{E}_{x \sim p_r}[f(x)] - \mathbb{E}_{x \sim p_g}[f(x)]$$

- K=1 이므로f는 $||f||_{L} \le 1$ 를 만족해야 함
 - $|f(x_1) f(x_2)| \le |x_1 x_2|$

$$\frac{|f(x_1) - f(x_2)|}{|x_1 - x_2|} \le 1$$

▶ f는 임의의 두점 사이 변화율이 1을 넘지 않는 함수

$$W(p_r, p_g) = \frac{1}{K} \sup_{\|f\|_L \le K} \mathbb{E}_{x \sim p_r}[f(x)] - \mathbb{E}_{x \sim p_g}[f(x)]$$

- $KR(p,q) \le W(p,q)$ 이므로
- > sup는 inf의 반대
 - > 상한(upper bound)

$$W(p_r, p_g) = \frac{1}{K} \sup_{\|f\|_L \le K} \mathbb{E}_{x \sim p_r}[f(x)] - \mathbb{E}_{x \sim p_g}[f(x)]$$

- ▶ f를 구하면 EMD를 계산할 수 있음
 - ▶ ƒ를 구하기도 불가능
 - ▶ 그러나 근사는 훨씬 쉬움 · · · NN으로 근사

$$\max_{w \in W} \mathbb{E}_{x \sim p_r}[f_w(x)] - \mathbb{E}_{z \sim p_r(z)}[f_w(g_\theta(z))]$$

- $L(p_r, p_g) = W(p_r, p_g) = \max_{w \in W} \mathbb{E}_{x \sim p_r}[f_w(x)] \mathbb{E}_{z \sim p_r(z)}[f_w(g_\theta(z))]$
 - 파라미터(판별기의 가중치) w에 대하여
 - NN인 f_w 를 업데이트하며 근사

- $L(p_r, p_g) = W(p_r, p_g) = \max_{w \in W} \mathbb{E}_{x \sim p_r}[f_w(x)] \mathbb{E}_{z \sim p_r(z)}[f_w(g_\theta(z))]$
 - $|f|_L \le 1 \text{ M}^{\circ} \text{Old He}$
 - ▶ 가중치 w를 [-0.01, 0.01]로 제한
 - > 공간 W가 compact parameter 공간이 됨
 - f_{w} 에 상한과 하한이 생기면서 제약을 만족
- Terrible way to enforce a Lipschitz constraint

- Weight clipping
 - ▶ 가중치 ₩를 [-0.01, 0.01]로 제한
 - > 공간 W가 compact parameter 공간이 됨
- Terrible way to enforce a Lipschitz constraint

MGAN

LOSS FUNCTION

 $\max_{w \in W} \mathbb{E}_{x \sim p_r}[f_w(x)] - \mathbb{E}_{z \sim p_r(z)}[f_w(g_\theta(z))]$

을 손실 함수의 기반으로 사용

- 판별기 손실 함수
- 생성기 손실 함수

LOSS FUNCTION

- $\max_{w \in W} \mathbb{E}_{x \sim p_r}[f_w(x)] \mathbb{E}_{z \sim p_r(z)}[f_w(g_\theta(z))]$
- 판별기 손실 함수
 - $-W(p_{data}, p_g)$ 를 최소화
 - $L^{(D)} = \mathbb{E}_{x \sim p_{data}} D_w(x) + \mathbb{E}_z D_w(G(z))$

LOSS FUNCTION

- $\max_{w \in W} \mathbb{E}_{x \sim p_r}[f_w(x)] \mathbb{E}_{z \sim p_r(z)}[f_w(g_\theta(z))]$
- 생성기 손실 함수
 - $L^{\scriptscriptstyle (G)}=-\mathbb{E}_zD_w(G(z))$
 - 실제 데이터 관점과 상관 없음

- ▶ 생성기 가중치 θ 의 1회 훈련 전에
- ightharpoonup 판별기 가중치 w를 n_{critic} 회 훈련
 - ho 원 논문에서는 $n_{critic} = 5$
- ▶ WGAN에서는 판별기가 먼저 최적화되어도 유의미한 gradient를 생성하기 때문

- ▶ Momentum-based optimizer는 불안정
 - ▶ RMSProp을 사용

판별기 경사 계산

$$g_w \leftarrow \nabla_w \left[\frac{1}{m} \sum_{i=1}^m f_w(x^{(i)}) - \frac{1}{m} \sum_{i=1}^m f_w(g_\theta(z^{(i)})) \right]$$

- 를 ascending 하거나
- (一)를 곱해 descending 하거나
- Labeling을 다음과 같이 주고 descending
 - ▶ 진짜 데이터: -1.0
 - 가짜 데이터: 1.0

판별기 경사 계산

$$g_w \leftarrow \nabla_w \left[\frac{1}{m} \sum_{i=1}^m f_w(x^{(i)}) - \frac{1}{m} \sum_{i=1}^m f_w(g_\theta(z^{(i)})) \right]$$

(一)를 곱해 descending

$$L = -y_{label} \frac{1}{m} \sum_{i=1}^{m} y_{prediction}$$

- > y_{label} 이 부호의 역할을 수행
 - ▶ 진짜 데이터: 1.0
 - ▶ 가짜 데이터: -1.0

- ▶ 판별기 경사 계산
- $L = -y_{label} \frac{1}{m} \sum_{i=1}^{m} y_{prediction}$
- $-\frac{1}{n}\sum_{i=1}^n(y_ip_i)$
- def wasserstein_loss(y_label, y_pred):
 return -K.mean(y_label * y_pred)

WGAN-GP

WEIGHT CLIPPING IS TERRIBLE WAY

Ref. Gulrajani, Ishaan, et al. "Improved training of wasserstein gans." Advances in neural information processing systems. 2017.

WEIGHT CLIPPING IS TERRIBLE WAY

- ▶ WGAN의 가중치는 clipping boundary 근처로 몰림
 - ▶ Weight clipping 때문

WEIGHT CLIPPING IS TERRIBLE WAY

- ▶ WGAN-GP는 Weight clipping 방법의 해결책을 제시
 - Gradient Penalty (GP)

WGAN 손실 함수:

$$\max_{w \in W} \mathbb{E}_{x \sim p_r}[f_w(x)] - \mathbb{E}_{z \sim p_r(z)}[f_w(g_\theta(z))]$$

- \mathbf{max} 로 만드는 $f = f^*$ 라 하면
- $f^* = arg \max_{\|f\|_L \le 1} \mathbb{E}_{y \sim \mathbb{P}_r}[f(y)] \mathbb{E}_{x \sim \mathbb{P}_g}[f(x)]$
 - $x\sim P_{g'}$ $y\sim P_r$ 로 샘플링

- $f^* = arg \max_{\|f\|_L \le 1} \mathbb{E}_{y \sim \mathbb{P}_r}[f(y)] \mathbb{E}_{x \sim \mathbb{P}_g}[f(x)]$
 - $> x \sim P_g, y \sim P_r$ 로 샘플링
- \mathbf{x} 와 y를 보간한 직선 중 \mathbf{x} 와 y 사이의 점 \mathbf{x}_t

 - \downarrow 0 \leq $t \leq$ 1
 - > 에서는 norm $\left[
 abla f^*(x_t) = rac{y-x_t}{\|y-x_t\|}
 ight] = 1$ 을 만족함이 증명

- x_t 는 $x \sim P_g$, $y \sim P_r$ 로 샘플링한 점을 보간한 직선에서 x와 y 사이의 점 중 하나를 샘플링한 것
- Norm $\left[
 abla f^*(x_t) = rac{y-x_t}{\|y-x_t\|}
 ight] = 1$
 - \rightarrow 최적해 f^* 의 특성

- f가 최적해 f^* 의 특성을 가지도록 근사
 - $| | \nabla f(x_t) | | = 1$ 이 되도록 근사
 - 손실 함수를 수정

$$L = \underbrace{\mathbb{E}_{\hat{\boldsymbol{x}} \sim \mathbb{P}_g} \left[D(\hat{\boldsymbol{x}}) \right] - \mathbb{E}_{\boldsymbol{x} \sim \mathbb{P}_r} \left[D(\boldsymbol{x}) \right]}_{\text{Original critic loss}} + \underbrace{\lambda \mathbb{E}_{\hat{\boldsymbol{x}} \sim \mathbb{P}_{\hat{\boldsymbol{x}}}} \left[(\|\nabla_{\hat{\boldsymbol{x}}} D(\hat{\boldsymbol{x}})\|_2 - 1)^2 \right]}_{\text{Our gradient penalty}}.$$

- $| | \nabla f(x_t) | | = 1$ 이 되도록 근사
- $\hat{\boldsymbol{x}} \sim \mathbb{P}_{\hat{\boldsymbol{x}}}$ 는 uniform하게 샘플링한 x_t
 - $x\sim P_g$, $y\sim P_r$ 로 샘플링한 점을 보간한 직선에서 x와 y 사이의 점 중 하나를 uniform 하게 샘플링

- Adam을 사용할 수 있음
 - 어 안정적인 학습

- ▶ Weight clipping과 GP의 비교
 - > 가중치들이 의미있는 값을 가짐

WGAN & WGAN-GP

GAN: ONE MORE STEP FURTHER