Ejercicio 3

Consigna

Sea $T:\mathbb{R}_2[t]\to\mathbb{R}^4$ tal que T(p)=(2a+3b-8c,a+b+c,4a-5c,6b), con $p(t)=a+bt+ct^2$, $\forall t\in\mathbb{R}$. Hallar $_{\mathcal{A}}(T)_{\mathcal{B}}$ en los siguientes casos:

- 1. $\mathcal B$ y $\mathcal A$ son las bases canónicas de $\mathbb R_2[t]$ y $\mathbb R^4$ respectivamente.
- 2. $\mathcal{B} = \{1, t-1, (t-1)^2\}$ y \mathcal{A} es la base canónica de \mathbb{R}^4 .

Resolución (parte 1)

- $\mathcal{B} = \{1, t, t^2\}$
- $\mathcal{A} = \{(1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1)\}$

Antes de calcular los transformados de la base \mathcal{B} , busquemos los valores de (a, b, c) para cada uno de ellos (aunque en este caso sea trivial).

- 1:(1,0,0)
- t:(0,1,0)
- $t^2:(0,0,1)$

Entonces ahora si, hallemos los transformados de estos vectores:

- T(1) = (2, 1, 4, 0)
- T(t) = (3, 1, 0, 6)
- $T(t^2) = (-8, 1, -5, 0)$

Y como la base de llegada es canónica:

$$_{\mathcal{A}}(T)_{\mathcal{B}} = \begin{pmatrix} 2 & 3 & -8 \\ 1 & 1 & 1 \\ 4 & 0 & -5 \\ 0 & 6 & 0 \end{pmatrix}$$

Resolución (parte 2)

- $\mathcal{B} = \{1, t-1, (t-1)^2\}$ $\mathcal{A} = \{(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)\}$

Calculemos (a, b, c) para cada vector de la base \mathcal{B} :

- 1:(1,0,0)
- $\begin{array}{l} \bullet \ t-1:(-1,1,0) \\ \bullet \ (t-1)^2=t^2-2t+1:(1,-2,1) \end{array}$

Ahora si, los transformados de los vectores de la base $\mathcal B$ son:

- T(1) = (2, 1, 4, 0)
- T(t-1) = (1,0,-4,6)
- $T((t-1)^2) = (-12, 0, -1, -12)$

$$_{\mathcal{A}}(T)_{\mathcal{B}} = \begin{pmatrix} 2 & 1 & -12 \\ 1 & 0 & 0 \\ 4 & -4 & -1 \\ 0 & 6 & -12 \end{pmatrix}$$