Cravaux Pratiques numéro 1

L. Garnier

L'INSTALLATION DES LIBRAIRIES IDOINES ET DES RÉPERTOIRES EST EXPLIQUÉE DANS LE COURS.

🛇 Exercice 1 . Ecrire :

1) la fonction

vecteur (MaScene, A, B, CoulHexa, longCone, RayonCone)

qui permet de tracer un vecteur \overrightarrow{AB} dans la scène MaScene, de couleur Coulhexa en hexadécimal, tel que le cône ait une longueur de longCone et un rayon maximal longCone;

2) la fonction

repere (MaScene)

qui permet de tracer le repère orthonormé direct dans la scène Mascene où :

- a) le vecteur $\overrightarrow{\imath}$ est en rouge;
- b) le vecteur \overrightarrow{j} est en vert;
- c) le vecteur \overrightarrow{k} est en bleu.

Figure 1 - Capture d'écran de l'exercice 1 : repère direct_

Secretice 2. Djout d'un menu

Reprendre l'exercice 1 et ajouter un menu G.U.I., figure 2, permettant de modifier la position de la caméra (3 degrés de libertés)

- 1) cameraxPos pour l'abscisse;
- 2) camerayPos pour l'ordonnée;
- 3) camerazPos pour la cote;

et la direction de visée de la caméra (3 degrés de libertés)

- 1) cameraxDir pour l'abscisse;
- 2) camerayDir pour l'ordonnée;
- 3) camerazDir pour la cote.

Figure 2 - Capture d'écran de l'exercice 2 : repère direct avec un menu GUI.

© Exercice 3 Produit vectoriel

Soit les vecteurs $\overrightarrow{u} = \frac{1}{9} \left(-7 \overrightarrow{i} + 4 \overrightarrow{j} - 4 \overrightarrow{k} \right)$, $\overrightarrow{v} = \frac{1}{9} \left(4 \overrightarrow{i} + 8 \overrightarrow{j} + \overrightarrow{k} \right)$ et $\overrightarrow{w} = \frac{1}{9} \left(4 \overrightarrow{i} - \overrightarrow{j} - 8 \overrightarrow{k} \right)$ dans la base orthonormée directe $(\overrightarrow{i}; \overrightarrow{j}; \overrightarrow{k})$.

- 1) Officher les vecteurs (positions) \overrightarrow{u} , \overrightarrow{v} et $\overrightarrow{r} = \overrightarrow{u} \times \overrightarrow{v}$ dans la scène, figure 3;
- 2) d'officher, en respectant le C.S.S. de la figure 4, dans la page H.T.M.L. les informations concernant la caméra (position^a et direction de visée^b);
- 3) difficher, en respectant le C.S.S. de la figure 4, dans la page H.T.M.L. les informations prouvant que la base $(\overrightarrow{v}; \overrightarrow{v}; \overrightarrow{w})$ est orthonormale;
- 4) Defficher, en respectant le C.S.S. de la figure 4, dans la page H.T.M.L. si la base orthonormale $(\overrightarrow{u}; \overrightarrow{v}; \overrightarrow{w})$ est directe ou indirecte.

a. La position initiale est (-6, 35; -1, 25; 4, 45)

b. La position initiale est (0;0;0)

Figure 3 - Capture d'écran de l'exercice 3 : affichage des vecteurs.

Contrôle de	e la camai	ra et affich	nage du repè	
Géométrie	Absciss	e Ordoni	née Cote	
Position	-6,35	-1,25	4,45	
Direction	0	0	0	
norme de w(0 u . v = 5.5511 u . w = 5.5511 v . w = 0).444444 15123125 11512312 × v?: (0	4444444 5783e-17 5783e-17	44; -0.11111	444444444; -0.4444444444444444): 0.999999999999999999999999999999999999

Figure 4 – Capture d'écran de l'exercice 3 : affichage des informations sur la base $(\overrightarrow{u};\overrightarrow{v};\overrightarrow{w})$.

© Exercice 4 Courbe dans un plan

Dans la base orthonormée directe $(\overrightarrow{\imath}; \overrightarrow{\jmath}; \overrightarrow{k})$, l'utilisateur entre les composantes non toutes nulles du vecteur unitaire $\overrightarrow{N}(a;b;c)$ au plan \mathcal{P} .

- 1) Construire un vecteur $\overrightarrow{e_1}$ unitaire de $\overrightarrow{\mathcal{P}}$;
- 2) Construire le vecteur $\overrightarrow{e_2}$ unitaire de $\overrightarrow{\mathcal{P}}$ telle que la base $\left(\overrightarrow{e_1};\overrightarrow{e_2};\overrightarrow{N}\right)$ soit directe;
- 3) L'utilisateur entre les coordonnés du point $A(x_A; y_A; z_A)$ de \mathcal{P} , le type de la conique γ . Écrire, dans la page HTML, l'équation de γ dans le repère orthonormé $(A; \overrightarrow{e_1}; \overrightarrow{e_2})$;
- 4) Ecrire, dans la page HTML, l'équation de γ dans le repère orthonormé direct $(O; \overrightarrow{r}; \overrightarrow{J}; \overrightarrow{k})$
- 5) Soit $P_0(x_0; y_0)$, $P_1(x_1; y_1)$ et $P_2(x_2; y_2)$ trois points de \mathcal{P} . Soit γ_B la courbe de Bézier polynomiale de points de contrôle P_0 , P_1 et P_2 . Ecrire, dans la page HTML, l'équation de γ_B dans le repère orthonormé $(A; \overrightarrow{e_1}; \overrightarrow{e_2})$;
- 6) Ecrire, dans la page HTML, l'équation de γ_B dans le repère orthonormé direct $\left(O;\overrightarrow{\imath};\overrightarrow{\jmath};\overrightarrow{k}\right)$