- 1. Un gas s'expansiona isobàricament p = 6 bar des d'un volum inicial $V_1 = 1 dm^3$ fins a $V_2 = 4 dm^3$. Determineu el treball W produït en l'expansió i representeu el procés en un diagrama PV.
- 2. Dins un cil·lindre de $100 \, mm$ de diàmetre hi ha un èmbol a $x_1 = 50 \, mm$ del fons. El cilindre és ple d'aire a $p_1 = 2 \, bar$ de pressió i $T_1 = 20 \, ^{\circ}C$. S'escalfa l'aire sense deixar moure l'èmbol fins que la pressió augmenta fins a $p_2 = 4 \, bar$, i després es desbloqueja l'èmbol fins a situar-se a $x_2 = 150 \, mm$ del fons, sense que variï la temperatura. Quin és el treball W total realitzat. Representeu el procés en un diagrama PV.
- 3. En l'exercici anterior, si l'energia interna de l'aire era inicialment de $U_1 = 500 J$ i la final de $U_2 = 1000 J$, quina serà la calor comunicada al sistema?
- 4. Un mol de gas ideal s'expandeix adiabàticament ($\gamma = 1, 5$) des d'una pressió $p_1 = 1\,MPa$ i $T_1 = 5\,^{\circ}C$ fins a una pressió de $p_2 = 300\,kPa$. Es demana:
 - (a) Els volums V_1 inicial i V_2 final.
 - (b) La temperatura T_2 final.
 - (c) El treball W realitzat pel gas durant l'expansió.
- 5. Es comprimeix isotèrmicament un volum $V_1 = 10 L$ d'aire a una pressió inicial $p_1 = 1 \, bar$ fins a reduir el seu volum a $V_2 = 1 \, L$. Determineu el treball W necessari per a la compressió i la calor Q extreta durant el procés. Podeu suposar que l'aire es comporta com un gas ideal.
- 6. S'efectua un treball de $25 \, kJ$ per comprimir $0, 5 \, kg$ d'alcohol etílic situat a l'interior d'un cilindre a una temperatura inicial de $18 \,^{\circ}C$. En el procés s'escapen $10 \, kJ$ d'energia calorífica. Suposant conegut $C_e = 2, 4 \, kJ/kg \,^{\circ}C$, es demana:
 - (a) Quina és la variació d'energia interna de l'alcohol durant el procés?
 - (b) Quina serà la temperatura final?
- 7. Un inventor diu que ha dissenyat una màquina que treballa entre dues fonts de $T_c = 20\,^{\circ}C$ i $T_h = 100\,^{\circ}C$, extreu $Q_h = 300\,J$ de la font calenta i fa un treball de $W = 150\,J$. És possible que tal màquina existeixi? Justifiqueu la resposta.
- 8. Expliqueu per què en el funcionament de màquines tèrmiques reals sempre hi ha un increment de l'entropia de l'univers.

- 9. Una màquina tèrmica treballa entre $T_c = 120\,^{\circ}C$ i $T_h = 3000\,^{\circ}C$, extreu $Q_h = 1672\,kJ$ de la font calenta i en cedeix $|Q_c| = 1045\,kJ$ a la freda. Es demana calcular el treball perdut W_p en irreversibilitats i la variació d'entropia a la màquina ΔS i a l'univers ΔS_t en cada cicle.
- 10. Un motor tèrmic ideal treballa entre dos focus, l'un a $T_h=2700\,^{\circ}C$ i l'altre a $T_c=1200\,^{\circ}C$. Es demana:
 - (a) Suposant que rep $Q_h = 500 \, kJ$ de la font calenta en cada cicle de treball, calculeu el treball W que pot desenvolupar.
 - (b) Calculeu la quantitat de calor $|Q_c|$ cedida a la font freda.
 - (c) Calculeu la variació d'entropia.
- 11. Un refrigerador amb un COP = 2,5 extreu calor de l'evaporador a raó de $Q_c = 104,5\,kJ/min$. Es demana:
 - (a) Calculeu la potència elèctrica P consumida pel motor del compressor si el grup motor-compressor té un rendiment $\eta=85\,\%$
 - (b) Calculeu la calor transmesa pel condensador $|Q_h|$ en un dia de funcionament.
- 12. Una instal·lació industrial necessita produir $m = 500 \, kg$ de gel a $T_g = -5 \,^{\circ}C$ cada hora a partir d'uns dipòsits on l'aigua es troba a $T_a = 15 \,^{\circ}C$. Quina serà la potència P que consumirà el refrigerador si té un COP = 5, 6? Si aprofitéssim la calor despresa al condensador, quants kJ/h es podrien obtenir?
- 13. Es vol escalfar una casa que es troba inicialment a $T_1 = 12 \,^{\circ}C$ fins a $T_2 = 25 \,^{\circ}C$ amb una bomba de calor que té un COP = 8 i en un temps màxim de $t = 30 \, minuts$. si es necessiten $Q = 376200 \, kJ$ per aconseguir la temperatura desitjada, determineu la potència P_b que consumirà la bomba. Quina potència P_c consumiríem si féssim servir estufes elèctriques en comptes de la bomba de calor?
- 14. Una màquina tèrmica treballa entre un focus fred a $T_c = 250 \,^{\circ}C$ i un de calent a $T_h = 1400 \,^{\circ}C$. Quina és l'eficiència tèrmica màxima que pot tenir?
- 15. Un frigorific extreu $Q_c = 250 J$ de l'evaporador i el condensador subministra $|Q_h| = 350 J$ a l'exterior en cada cicle. Quin és el seu COP?
- 16. Una màquina de vapor extreu $800\,MJ$ d'una font tèrmica calenta a $500\,^{\circ}C$ i en cedeix $550\,MJ$ a una font freda a $120\,^{\circ}$. Quina és la seva eficiència segons el segon principi?

- 17. Una màquina de vapor que extreu $Q_h = 800\,MJ$ de la font tèrmica calenta a $T_h = 500\,^{\circ}C$ fa un treball net de $W = 250\,MJ$ i en cedeix $|Q_c| = 550\,MJ$ a la font freda a $T_c = 120\,^{\circ}C$. Quina és las seva eficiència η_s segons el segon principi? Quant val el treball perdut W_p en irreversibilitats? Quina és la variació d'entropia ΔS de l'aigua del riu que s'utilitza per refrigerar el condensador?
- 18. Un refrigerador domèstic amb un motor de P = 450 W i un COP = 2, 5 vol refredar a $T_2 = 8 \,^{\circ}C$ una massa $m = 10 \, kg$ de fruita que es troba inicalment a $T_1 = 20 \,^{\circ}C$. Quant de temps t trigarà a fer-ho, considerant la calor específica de la fruita de $C_e = 4, 2 \, kJ/kg \,^{\circ}C$.
- 19. Es vol mantenir un habitatge a $T_1 = 18\,^{\circ}C$, quan la temperatura exterior és de $T_e = 30\,^{\circ}C$. Quina potència P caldrà subministrar a una bomba de calor, utilitzada com a refrigerador, amb un COP = 4, per tal de mantenir la temperatura a l'interior de l'habitatge, si la transmissió de calor des de l'exterior a l'interior de la casa, a través de les parets, portes, finestres, etc., és de Q = 125400kJ/h

