1. Donades les dades de la taula i les definicions per a la reacció a 25 °C:

$$3N_2O_{4(g)} \rightarrow 2NO_{(g)} + 2N_2O_{(g)} + 4O_{2(g)}$$

$$\Delta S_{sistema}^{0} = \sum S_{productes}^{0} - \sum S_{reactius}^{0} ;$$

 $\sum \Delta H_{f\ nroductes}^{0} - \sum \Delta H_{f\ reactivs}^{0}$

 $\Delta H_{sistema}^0 =$

substància ΔH°_f (KJ·mol⁻¹) S° (J·K⁻¹·mol⁻¹)

$N_2O_{(g)}$	82,5	219,85
$NO_{(g)}$	90,25	210,76
$N_2O_{4(g)}$	9,16	304,29
O _{2(g)}	0	205,14

$$\Delta G = \Delta H_{sistema}^{0} - T \cdot \Delta S_{sistema}^{0}$$
; $\Delta S_{entorn}^{0} = -\frac{\Delta H_{sistema}^{0}}{T}$

a)
$$\Delta S_{sistema}^0 = \sum S_{productes}^0 - \sum S_{reactius}^0 = 4 \cdot S_{O_2}^0 + 2 \cdot S_{N_2O}^0 + 2 \cdot S_{NO}^0 - 3 \cdot S_{N_2O_4}^0$$

$$\Delta S_{sistema}^0 = 4 \cdot 205,14 + 2 \cdot 219,85 + 2 \cdot 210,76 - 3 \cdot 304,29 = 768,91 \frac{J}{mol \cdot K}$$

b)
$$\Delta H_{sistema}^{0} = \sum H_{productes}^{0} - \sum H_{reactius}^{0} = 4 \cdot \Delta H_{O_{2}}^{0} + 2 \cdot \Delta H_{N_{2}O}^{0} + 2 \cdot \Delta H_{NO}^{0} - 3 \cdot \Delta H_{N_{2}O_{4}}^{0}$$

 $\Delta H_{sistema}^{0} = 4 \cdot 0 + 2 \cdot 82,5 + 2 \cdot 90,25 - 3 \cdot 9,16 = 328,02 \frac{kJ}{mol}$

 $\Delta S_{entorn}^{0} = -\frac{\Delta H_{sistema}^{0}}{T} = -\frac{328,02}{298} = 1,1 \frac{kJ}{mol \cdot K}$

1. Donades les dades de la taula i les definicions per a la reacció a 25 °C:

	$3N_2O_{4(g)}$	$\rightarrow 2NO_{(g)}$	$+2N_2O_{(g)}+4O_{2(g)}$	$\Delta S_{sistema}^0 = \sum S_{productes}^0 - \sum S_{reactius}^0$; $\Delta H_{sistema}^0 =$
Dades termoquímiques			niques	$\sum \Delta H_{f\ productes}^{0} - \sum \Delta H_{f\ reactius}^{0}$
	substància <i>L</i>	\H° _f (KJ·mol ⁻¹)	S ^o (J·K ⁻¹ ·mol ⁻¹)	4 0
	$N_2O_{(g)}$	82,5	219,85	$\Delta G = \Delta H_{sistema}^0 - T \cdot \Delta S_{sistema}^0$; $\Delta S_{entorn}^0 = -\frac{\Delta H_{sistema}^0}{T}$
	$NO_{(g)}$	90,25	210,76	
	$N_2O_{4(g)}$	9,16	304,29	c) ΔS_{entorn}^0
	$O_{2(g)}$	0	205,14	$\Delta H_{sistema}^0$ 328,02 kJ

d) ΔG

$$\Delta G = \Delta H_{sistema}^{0} - T \cdot \Delta S_{sistema}^{0} = 328,02 - 298 \cdot 0,769 = 98,86 \frac{kJ}{mol}$$

e) Digues si aquesta reacció és espontània o no espontània i si és reversible o irreversible. La reacció no és espontània a 298 K

$$\Delta G^0 = \Delta H^0 - T \cdot \Delta S^0 = 0 \ \rightarrow T = \frac{\Delta H^0 - \Delta G^0}{\Delta S^0} = \frac{328,02 - 98,86}{0,769} = 297 \ K; \ T > 0 \ \rightarrow Reversible$$

2. Calcula, a partir de les energies d'enllaç, l'entalpia estàndard d'hidrogenació del butadiè.

$$H_2C = CH - CH = CH_{2(g)} + 2H_{2(g)} \rightarrow H_3C - CH_2 - CH_2 - CH_{3(g)} \Delta H^o = ?$$

Entalpies d'enllaç estàndard (kJ·mol-1):

$$\Delta H^0(H-H) = 436$$

$$\Delta H^0(C-H) = 414$$

$$\Delta H^0(C-C) = 347$$

$$\Delta H^0(C=C)=611$$

$$H_2C = CH - CH = CH_{2(g)} + 2H_{2(g)} \rightarrow H_3C - CH_2 - CH_2 - CH_{3(g)} \Delta H^o = ?$$

$$6C - H \qquad 2H - H \qquad 10C - H$$

$$1C - C \qquad 3C - C$$

$$2C = C$$

$$2C = C 2H - H \rightarrow 4C - H$$
$$2C - C$$

$$\Delta H_{reacci\acute{o}}^{0} = \sum H_{productes}^{0} - \sum H_{reactius}^{0} = 4 \cdot \Delta H_{C-H}^{0} + 2 \cdot \Delta H_{C-C}^{0} - 2 \cdot \Delta H_{H-H}^{0} - 2 \cdot \Delta H_{C=C}^{0}$$

$$\Delta H_{reacció}^{0} = 4 \cdot (-414) + 2 \cdot (-347) - 2 \cdot (-436) - 2 \cdot (-611) = -256 \frac{kJ}{mol}$$

3. Per a la reacció: $A \rightarrow Productes$ s'han trobat les següents dades:

Dades cinètiques

Experiment	[A] _o (mol·L ⁻¹)	[A](mol·L ⁻¹)	t(s)
1	1,512	1,496	30
2	2,584	2,552	60

a) Determina l'ordre de reacció.

$$v_{1} = -\frac{\Delta[A]}{\Delta t} = -\frac{[A] - [A]_{0}}{\Delta t} = -\frac{1,496 - 1,512}{30} = 5,3 \cdot 10^{-4} \frac{mol}{L \cdot s}$$

$$v_{2} = -\frac{\Delta[A]}{\Delta t} = -\frac{[A] - [A]_{0}}{\Delta t} = -\frac{2,552 - 2,584}{60} = 5,3 \cdot 10^{-4} \frac{mol}{L \cdot s}$$

v no depèn de[A]₀ i si $v = k \cdot [A] \rightarrow v = k$

$$v_{1} = k[A]_{o}^{\alpha} = k \cdot 1,512^{\alpha}$$

$$v_{2} = k[A]_{o}^{\alpha} = k \cdot 2,584^{\alpha}$$

$$v_{3} = k[A]_{o}^{\alpha} = k \cdot 2,584^{\alpha}$$

$$v_{4} = k[A]_{o}^{\alpha} = k \cdot 2,584^{\alpha}$$

$$v_{5} = k[A]_{o}^{\alpha} = k \cdot 2,584^{\alpha}$$

$$v_{7} = k[A]_{o}^{\alpha} = k \cdot 2,584^{$$

b) Determina el valor de la constant de reacció.

$$v = k \to k = 5.3 \cdot 10^{-4} \frac{mol}{L \cdot s}$$

4. Un possible mecanisme per a una reacció és:

$$A + B \rightarrow I$$
 lenta

$$I + B \rightarrow C + D$$
 ràpida

a) Troba l'equació global de la reacció.

$$A + B \rightarrow I$$
 lenta
 $I + B \rightarrow C + D$ ràpida

$$A + B + \cancel{I} + B \rightarrow \cancel{I} + C + D$$

$$A + 2B \rightarrow C + D$$

b) Indica quina espècie és un intermedi de reacció.

I, atès que no apareix a l'equació global de la reacció.

c) Dona una possible equació de la velocitat de reacció.

Com que la reacció lenta determina la velocitat global de la reacció:

$$v = k \cdot [A] \cdot [B]$$