Engineering Mathematics-III

Question Bank

ENGINEERING MATHEMATICS-III

Examination 2071 Regular/Back New Course

Full marks: 80 Pass marks: 32

Time: 3 hrs.

Candidates are required to give their answers in their own words as far as practicable.

practicule.

Attempt any Two questions from Group A and Three questions from Group B

Group A

- 1. a) Prepare Cayley table for the set {0, 1, 2, 3} under the operation multiplication modulo 4. Identify the identity element and the inverse of each element if possible.
 - b) Define group. Prove that the identity element of group is unique Also show that the inverse of group is unique.
- 2. a) Solve: $(x + y + 1) \frac{dy}{dx} = 1$.
 - b) Show that the given equation is exact and solve; (x + y - 1)dx + (x - y - 2)dy = 0.
- 3. a) Define convergent and divergent series. Test whether series is convergent or divergent;

$$1 + \frac{1}{2} + \frac{1}{5} + \frac{1}{10} + \dots$$

b) Show that the series is conditionally convergent;

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots$$

Group B

Form a partial differential equations: (Any one) 4.

i)
$$z = ke^{ax} \sin ay$$

ii)
$$lx + my + nz = f(x^2 + y^2 + z^2)$$

Solve the partial differential equations. [Any one] 5.

i)
$$\frac{\partial z}{\partial x}xz + yz\frac{\partial z}{\partial y} = xy$$

ii)
$$xp - yq + x^2 - y^2 = 0$$

6. Find the interval and radius of convergence of power series. [Any one

i)
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n(n+1)}{2} x^{n-1}$$

ii)
$$\sum_{n=0}^{\infty} \frac{(x-2)^n}{10^n}$$

Assuming the convergence of Taylor's series, find the Maclaurin's

series expansion of sin x. 7.

Using definition, find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ from $f(x, y) = x^2 - xy$.

8. Find $\frac{du}{dt}$ (Any one); 9.

i)
$$u = e^{xyz}$$
, $x = t^3$, $y = \frac{1}{t}$, $z = e^t$

i)
$$x^2 + y^2 + z^2$$
, $x = 2t + 1$, $y = t + 5$, $z = 7t$.

Let
$$u = \sin^{-1} \frac{x^2 + y^2}{x + y}$$
, prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \tan u$.

Find the Fourier series of given function on the given interval; 11.

$$f(x) = \begin{cases} 0, 0 < x < \pi \\ 1, \pi < x < 2\pi \end{cases}$$

Test whether the function is even or odd. Also find the 13. corresponding Fourier series;

$$f(x) = \begin{cases} -2x, -\pi < x < 0 \\ 2x, 0 < x < \pi \end{cases}$$

ENGINEERING MATHEMATICS-III

Examination 2072 Back

Full marks: 80 Pass marks: 32

Time: 3 hrs.

Candidates are required to give their answers in their own words as far as practicable.

Attempt any Two questions from Group A and Three questions from Group B

- 1. a) Prepare Cayley table for the set {0, 1, 2, 3, 4, 5}. Under the operation multiplication modulo 6. Identify the identity element and the inverse of each element if possible.
 - b) Define group. Prove that the identity element of group is unique. Also, show that the inverse of group is unique.
- 2 a) If $u = \sqrt{x^2 + y^2 + z^2}$, then prove that: $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = \frac{2}{u}$
 - b) Let $u = \frac{x^4 + y^4}{x + y}$, prove that: $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 3u$
- 3. a) Define the p-series. Test the series for convergence by apply ratio of $\frac{1}{3} + \frac{4}{9} + \frac{9}{27} + \dots$
 - Find the interval and radius of convergence of the power series; $1 + 2x + 3x^2 + 4x^3 + \dots$

- Solve: $(xy^2 + x) dx + (yx^2 + y) dy = 0$ 4.
- Solve: $\frac{dy}{dx} = \frac{y}{x} + \tan \frac{y}{x}$ 5.
- Solve the partial differential equations: (Any one) 6.
 - $z = ax + by + a^2 + b^2$ i)
 - ii) xp + yq = z
- Show that the given equation is exact and solve: 7.

$$(2 ax + by) y dx + (ax + 2 by) x dy = 0$$

- Using definition, find $\frac{\partial f}{\partial y}$ form $f(x, y) = x^2y$ 8.
- Find the Maclaurin's series expansion of $\cos x$. 9.
- Find the smallest positive period p of sin nx. 10.
- Find the Fourier series of given function in the given interval, 11.

$$f(x) = \begin{cases} 0, & -2 < x < 0 \\ 2, & 0 < x < 2 \end{cases}$$

Test whether the function is even or odd. Also, find the 12. corresponding Fourier series;

$$f(x) = \begin{cases} -2x \text{ for } -\pi < x < 0 \\ -2x \text{ for } 0 < x < \pi \end{cases}$$

$$u = x^2 + y^2$$
Find
$$\frac{du}{df} : x = 2t + 1$$

$$y = t^2 + 2$$

13.

ENGINEERING MATHEMATICS-III Examination 2073 Regular/Back

Time: 3 hrs.

Full marks: 80 Pass marks: 32

Candidates are required to give their answers in their own words as far as practicable.

Attempt any Two questions from Group A and Three questions from Group B

- 1. a) Using definition, find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ where $f(x, y) = xy + y^2$.
 - b) Solve the following differential questions by separating the variables.
 - i) $\tan x \, dy + \tan y \, dx = 0$

ii)
$$\frac{dy}{dx} = e^{x-y} + x^2 \times e^{-y}$$

2. a) Define p-series with example. Determine whether the following series is convergent or divergent by comparison test $\frac{1}{1+2}$ $\frac{2}{1+2^2} + \frac{3}{1+2^3} + \dots$

the Maclaurin's expansion of the function: $f(x) = \log(1 + x)$ b) Fina the periodic function. Find the function: $f(x) = \log(1 + x)$ pefine periodic function. Find the fundamental period of function $f(x) = \cos 3x$.

 $f(x) = \cos 3x.$ $f(x) = \{0.0000, -6, -4, -2, 0, 2, 4, 6, ... \}$, then prove that (G, +) is a group.

Verify Euler's theorem for homogenous function if $u = \frac{x^2 + z^2}{xy + yz}$

Find $\frac{du}{dt}$ of (any one) 5.

Find
$$\frac{dt}{dt}$$
 or (any $\frac{dt}{dt}$)
i) $u = x^2 + y^2$, $x = \cos t + \sin t$, $y = \cos t - \sin t$ at $t = 0$

i)
$$u = x^{xyz}$$
, $x = t^3$, $y = \frac{1}{t}$, $z = e^t$

Solve: $\frac{dy}{dx} = \frac{x+y}{x+v+1}$

Prepare clayey table for the set {0, 1, 2, 3, 4} under the operation addition modulo 5. Identify the identity element and the inverse of each element.

Show that the given equation is exact and solve; ŝ.

$$(x+y-1) dx + (x-y-z) dy = 0$$

Form P.D.E. by eliminating the form $lx + my + nz = f(x^2 + y^2 + z^2)$

Define Fourier series check whether the function, f(x) = $\int -2x$ for $-\pi < x < 0$ is odd or even and hence obtain the 1-2x for $0 < x < \pi$ corresponding Fourier series.

Show that the following series is divergent. 11.

Define alternating series with example. Test whether the following series is absolute convergent or conditionally convergent $1 - \frac{1}{2} + \cdots$

Find the interval of convergence and radius of convergence of the given power series $1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots \dots$

Find the Fourier series expansion of f(x) = x, -2 < x < 2

Define group prove that the identity element of group is unique. Also, prove that the inverse of group is unique.

ENGINEERING MATHEMATICS-III

Examination 2074 Regular/Back Special scholarship

Full marks: 80

Pass marks: 32

Candidates are required to give their answers in their own words as far as ^{practicable}.

- Group A 1. a) If $A = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} -2 & 5 \\ 7 & 2 \end{bmatrix}$. Prove that $B^T A^T = (AB)^T$. [5]
 - b) Find the acute angle between the lines whose direction cosines are connected by the relations l + m + n = 0 and $l^2 + m^2 + n^2 = 0$ [5]
- 2. a) Solve using row equivalent matrix method or Cramer's rule: [5] x + 2y - 3z = 02x - y + 3z = 43x + 4y + 7z = 14

b) Prove that:
$$\begin{vmatrix} a & b & c \\ a^2 & b^2 & c^2 \\ a^3 & b^3 & c^3 \end{vmatrix} = abc(a-b)(b-c)(c-a)$$
 [5]

- 3. a) Prove that (use vector method): cos(A + B) = cos A cos B sin A sin B
 - b) Define collinear vectors. Prove that the three points with the following vectors are collinear: $\vec{i} + 2\vec{j} + 3\vec{k}$, $-2\vec{i} + 3\vec{j} + 4\vec{k}$, $7\vec{i} + \vec{k}$ [5]

Group B

- Define complex number and find the cube roots of unity. 4.
- State De-Moivre's theorem and hence use it to find the square 5. roots of $\frac{1}{2} + i \frac{\sqrt{3}}{2}$. [5]
- Find the local maxima and local minima and point of inflection if 6. exists: [5] $f(x) = 2x^3 - 3x^2 - 12x + 4$
- Calculate the Karl Pearson's coefficient of correlation: 7. [5] х 8 4 12 10 Y 11 13 8 9
- 8. A stone thrown into a pond produces a circular ripple which expands from the point of impact. If the radius of the ripple increases at the rate of 1.5 ft/sec., how fast is the area growing with
- Find the area of the region enclosed by $x^2 = 4ay$ and x = y. 9. [5] [5]
- 10. The probability that a student passes a mathematics test is $\frac{3}{5}$ and he passes both mathematics and a chemistry test is $\frac{1}{5}$. The probability that he passes at least one test is $\frac{19}{20}$. What is the probability that he passes the chemistry test? [5]

Calculate A.M., G.M. and H.M. from the following data:

Calculate						
	0-10	10-20	20-30	30-40	40-50	50-60
Marks Number of students	5	7	18	10	8	4
Num						

Find the area enclosed by the circle $x^2 + y^2 = 64$

Determine the maximum value of the objective function F(x, y) =12 x+y subject to the constraints $2x + y \le 20$, $2x + 3y \le 24$, $x \ge 0$, 13.

 $y \ge 0$ (Use graph paper)

ENGINEERING MATHEMATICS-III Examination 2075 Regular/Back

Full marks: 80

Time: 3 hrs.

11.

Pass marks: 32

Candidates are required to give their answers in their own words as far as practicable. Attempt all questions.

Group A

1. a) Define partial derivative of a function. Using definition, find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$: $f(x, y) = xy + y^2$ [5]

b) Define homogenous function. State and prove Euler's theorem for a [5] two variable cases.

2 a) Define ordinary differential equation. Solve by separation of [5] variables: (any one)

i)
$$\frac{dy}{dx} = \frac{x+y}{x+y+1}$$

ii)
$$\frac{dy}{dx} + 1 = e^{x+y}$$

[5] b) Show that the given function is homogenous and solve:

 $x \sin \frac{y}{x} dy = \left(y \sin \frac{y}{x} - x \right) dx$

Show that the given equation is exact and solve:

(2ax + by)y dx + (a + 2by)x dy = 0

3. a) Discuss the convergence of given geometric series for r = 1, -1[5] and |r| < 1, |r| > 1

 $a + ar + ar^2 + \dots + ar^{n-1} + \dots$ b) Test the convergence of series by comparison test or ratio test: (any [5] one)

i) $\sum \frac{\sqrt{n}}{n^2 + 1}$ ii) $\frac{1}{2}x^2 + \frac{2}{3}x^3 + \frac{3}{4}x^4 + \dots$

- Find $\frac{du}{dt}$: (any one) 4.
 - $u = z + \sin(xy)$, x = t, $y = \log t$, $z = e^{t-1}$ i)
 - $u = x^3 y^3$, $x = \cos t$, $y = \sin t$
- Form partial differential equation: $lx + my + nz = f(x^2 + y^2 + z^2)$ [5] 5.
- Solve the partial differentiate equation: $y^2p xyq = x(z 2y)$ 6.
- Find the interval and radius of convergence of the power series: [5] 7.

$$1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$$

- Find the Taylor's series expansion of $f(x) = \sqrt{x}$ about x = 0[5] -8.
- Obtain the Fourier series: $f(x) = \begin{cases} 0, -2 < x < 0 \\ 2, 0 < x < 2 \end{cases}$ [5] 9.
- Find the Fourier series for the function defined as f(x) =10. $(\pi, -1 < x < 0)$ [5] $1-\pi, 0 \le x < 1$
- Define binary operation. Show that multiplication (x) is binary on 11. the set $s = \{1, w, w^2\}$; where, w is the cube root of unity. [5]
- Find the identity element for the binary operation is defined as 12. x * y = x + y + 1 for every $x, y \in \mathbb{R}$. Also, find inverse of 2 and -3.[5]
- Let $G = R \{-1\}$, the set of real numbers without -1. An operation 13. * is defined on G by x * y = x + y + xy for all $x, y \in G$. Show that (G, ∗) is a group. [5]

ENGINEERING MATHEMATICS-III Examination 2076 Regular/Back

Full marks: 80 Pass marks: 32

[5]

Candidates are required to give their answers in their own words as far as

Attempt all questions.

- Group A 1. a) Define trigonometric and Fourier series. Determine the Fourier coefficient a₀ by Euler's formula. [1+1+3]
 - b) Find the Fourier series of the function:

[5] $F(x) = \begin{cases} 0 & 0 < x \le \pi \\ 1 & \pi < x \le 2\pi \end{cases}$

2. a) Define a group. In a group, prove that: $(a \times b)^{-1} = b^{-1} \times a^{-1}$ [5] Also, prove that inverse of each element of a group is unique.

b) Given a set $G = \{0, 1, 2, 3, 4\}$ and a binary operation addition addition G(x) = G(x) is defined on G(x) = G(x). Given a comary operation addition modulo 5(+5) is defined on G. Prepare Caley's table for it. Find the identity and inverse element of 3 and 4. By using definition of partial derivatives, find F_x and F_y for $F_y = x^2 v - xv^3$

 $F(x,y) = x^2y - xy^3$

$$F(x,y) = x^{2}y - xy$$

$$F(x,y) = \sqrt{x^{2} + y^{2} + z^{2}}; \text{ then prove that;}$$

$$\int_{0}^{2} \int_{0}^{2} \int_{0}^{2} \left(\frac{\partial^{2} u}{\partial y^{2}} + \frac{\partial^{2} u}{\partial z^{2}} \right) dz$$
[5]

Group B

p B

Solve:
$$(1 + \cos y) dy = (1 - \cos x) dx$$
 [5]

Form a P.D.E.; $z = \phi(x + iy) + \phi(x - iy)$ [5] 5.

By using ratio test, test the convergence or divergence of the series 6. 7.

By using ratio test, [5]
$$\sum_{n=1}^{\infty} \frac{n!}{(2n-1)!}$$

Test the following series for convergence by Cauchy root test. 8.

Test the following series for
$$x + \frac{3}{5}x^2 + \frac{8}{10}x^3 + \dots$$
 [5]

Find the radius and interval of convergence of the power series 9.

Find the radius and Interval
$$\sum_{n=0}^{\infty} \frac{(x-3)^n}{10^n}$$
 [5]

Define periodic function and its period. Find the least period 10. [5] (fundamental period) of $\tan \frac{3x}{5}$.

11. Find the Taylor's series expansion of
$$f(x) = \frac{1}{1-x}$$
 at $x = 0$ [5]

11. Find the Taylor's series expansion

12. Find
$$\frac{dU}{dx}$$
 of $U = e^{xyz}$, $x = t^3$, $y = \frac{1}{t}$, $z = e^t$

[5]

A binary operation is defined on the set of real numbers as below: $m \times n = 2mn - m + 3n$ for all m, n, $\in \mathbb{R}$. Find the identity element 13. and inverse element of 2 and -4.

ENGINEERING MATHEMATICS-III

Examination 2079 Regular/Back

Full marks: 80

Time: 3 hrs.

Pass marks: 32

Candidates are required to give their answers in their own words as far as ^{practicable}.

Attempt all questions.

- 1. a) Using definition, find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ when $f(x, y) = x^3 + y^3 + 3axy$ [5]
 - b) Find $\frac{du}{dt}$ of $u = e^{xyz}$, $x = t^3$, $y = \frac{1}{t}$, $z = e^t$ [5]
- 2. a) Define group. Prove that the identity element of group is unique. Also, show that the inverse of group is unique. [5]
 - b) If $G = \{..., 6, -4, -2, 0, 2, 4, 6, ...\}$ then prove that (G, +) is [5] a group.
 - 3. a) Test whether the following series is absolutely or conditionally convergent: $1 - \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} - \frac{1}{\sqrt{4}} + \dots$ [5]
 - b) Find the Taylor's series expansion of $f(x) = e^{-x}$ about x = 2. [5]

- Solve by separating the variables: 4. [5]
 - $e^{x-y}dx + e^{y-x}dy = 0$ b) $\frac{dy}{dx} = -\frac{1 + \cos 2y}{1 \cos 2x}$
- Solve the homogeneous differential equation: $\frac{dy}{dx} = \frac{x^2y}{x^3 + y^3}$ 5. [5]
- Find the Fourier series expansion of $f(x) = \begin{cases} 0 & -\pi < x < 0 \\ 1 & 0 < x < \pi \end{cases}$ 6. [5]
- Define periodic function. Find the smallest positive period of P of 7. · sin nx.
- Prepare Cayley table for the set {0, 1, 2, 3, 4, 5} under the operation 8. multiplication module 6. Identify the identity element and the inverse of each element if possible.
- Solve the partial differential equations: (any one) 9. [5]
 - $\frac{\partial z}{\partial x}xz + yz\frac{\partial z}{\partial y} = xy$ [5] b) $xp - yq + x^2 - y^2 = 0$
- Find the interval and radius of convergence of the series: 10. $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n^2}$ [5]
- Verify Euler's theorem for homogeneous function: 11. $f(x, y, z) = x^2 + y^2 + z^2$
- Define convergent and divergent series. Determine whether the 12. followings series is convergent of divergent by ratio test. $\frac{1}{2}x^2 + \frac{2}{3}x^3 + \frac{3}{4}x^4 + \dots$ [5]
- Test whether the function is even or odd. Find the corresponding 13. Fourier series $f(x) = \begin{cases} -\pi, & -1 < x < 0 \\ -\pi, & 0 \le x < 1 \end{cases}$ [5]

Model Question Set -I

New Course: 2021 (Diploma in Engineering All)

Year: II

© Arjun Semester: I

Subject: Engineering Mathematics III

F.M. = 80

P.M. = 32

Time: 3 hrs

Group 'A'

 $[7 \times (2+2) = 28]$

Attempt All Question

www.arjun00.com.np

- 1. (a) Find the derivative of $sin^{-1}(3x-4)$.
 - (b) Find the slope of the curve $y = 2x^2 x$ at (1, 0).
- 2. (a) Find the points of stationary points $f(x) = x^3 3x^2 + 9$.
 - (b) State L' Hospitals's Theorem and use it to evaluate

$$\lim_{x \to 4} \frac{x^2 - 16}{x - 4}$$

3. (a) Find first order partial derivatives of

- (b) Find $\frac{\partial y}{\partial x}$ if $y = x^2 5x + 7$ and $x + 9rs + 2r^2s^2$.
- 4. (a) Test whether the given function is even, odd or neither where, $f(x) = \sqrt{1 + x^2} - \sqrt{1 + x^2}$
 - (b) Find the smallest period of $f(x) = \sin 2x$.
- 5. (a) Find the area bounded by the curve $y = 4x^2$, x axis and the ordinates x = 0, x = 2.
 - (b) Determine the order and degree of the differential equation:

$$\frac{dy}{dx} = (x + y + 1)^2$$

6. (a) Solve by separation of variable method of

$$(1 + \cos x)dy = (1 - \cos x)dx.$$

- (b) Text the exactness of $(x + y^2) dx 2xy dy = 0$.
- 7. (a) State Langrange's Linear Differential Equation with an example.
 - (b) Define Orthogonality of two function with example.

Group 'B'

 $[13 \times 4 = 52]$

Attempt All Questions

www.arjun00.com.np

- Find the equation of tangent and normal to the curve 8. $f(x) = x^2 + 3x + 1$ at (0, 1).
- Find the local maxima and local minima of the function 9. $f(x) = 2x^3 - 15x^2 + 36x + 5$. Also, find the point of inflection.

- 10. Evaluate: $\lim_{x \to 0} \frac{\tan x x}{x^2 \tan x}$ © A r j u n 11. If $u = \log(x^2 + y^2)$ then show that $\frac{\partial^2 u}{\partial x^2} \frac{\partial^2 y}{\partial v^2} = 0$.
- State the Euler's theorem of homogenous function and show that

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = \sin 2u \text{ for } u = \sin^{-1}\frac{x^2 + y^2}{x + y}$$
.

- Integrate the standard integral: $\int \frac{dx}{a \sin x + b \cos x}$.
- Find the area of the plane region bounded by the x-axis the curve $y = e^x$ and the ordinates x = 0, x = b using the limit of sum.
- Find the area of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.
- Define linear equation and solve 2 $\cos x \frac{dy}{dx} + 4y \sin x = \sin 2x$.

17. Show that the differential equation exact and solve:

$$(x + y - 1) dx + (x - y - 2)dy = 0$$

- 18. If the normal at every point of a curve passes through a fixed point, using first order differential equation so that the curve is circle.
- 19. Solve: (mz ny)p + (nx lz)q = ly mx.
- 20. Find the Fourier series of f(x) which is defined by

$$f(x) = \begin{cases} 0 & for - \pi \le x \le 0 \\ \frac{\pi}{4} x \Delta for & 0 < x \le \pi \end{cases}$$

www.arjun00.com.np

Model Question Set-II

New Course - 2021 (Three Years Diploma in Engineering All Programmes)

Year - II

1.

Semester - I

Subject: Engineering Mathematics - III

F.M.: 80

P.M.: 32

Time: 3 hrs

Group 'A'

$[(7\times2)\times2=28]$

Attempt All questions.

- www.arjun00.com.np
- (b) Find the slope of the curve $y = 2x + x^2$ at (0, 1).

Find the derivative of $\tan^{-1} \left(\frac{2x}{1-x^2} \right)$.

- 2. (a) Define stationery points in a curve and find the points of stationary in the curve $5x^3 135x + 22$.
 - (b) State L'Hospital's Theorem and use it to evaluate $\lim_{x \to 3} \frac{x^3 27}{x 3}$.
- 3. (a) Define partial derivative of a function and find fx for $f(x, y) = x^2 y^2 + 2y$
 - (b) Find $\frac{\partial v}{\partial x}$ if $y = x^2 5x + 7$ and $x = 9rs + 2t^2s^2$.
- 4. (a) Test whether the given function is even, odd or neither where $f(x) = \sqrt{1 + x^2} \sqrt{1 x^2}$
 - (b) Test the periodicity and find the smallest period of $f(x) = \cos 2x$.
- 5. (a) Find the area bounded by the curve $y = 3x^2$, x-axis and the ordinates x = 1, x = 2.
 - (b) Determine the order and degree of the differential equation: $\frac{d^2v}{dv^2} + 2\left(\frac{dv}{dv}\right)^2 = xy.$
- 6. (a) Solve by separation of variable method of: (1 + x) y dx + (1 + y) x dy = 0.
 - (b) Define exact differentiate equation and test the exactness of (x+y-1) dx + (x-y-z) dy = 0
- (a) Define the Langrange's Linear Partial Differential Equation with an example.
 - (b) Define Fourier Series and write the formulae to find the Fourier coefficients.

Group 'B'

$[13 \times 4 = 52]$

Attempt All questions.

- 8. Find the equation of tangent and normal to the curve $x^2 y^2 = 7$ at (1, 2). OR
 - If the area of a circle increases at a uniform rate prove that the rate of increase of the perimeter varies inversely as the radius.
- Find the local maxima and local minima of the function below and also find the point of inflection $f(x) = 2x^3 15x^2 + 36x + 11$.
- 10. Evaluate: $\lim_{x \to 0} \frac{x \cos x \log (1+x)}{x^2}$
- 11. If $u = \log (x^2 + y^2)$ then show that $\frac{\partial^2 u}{\partial x^2} \frac{\partial^2 v}{\partial y^2} = 0$.

State the Euler's theorem of homogeneous function and show that

$$x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \sin 2u \text{ for } u = \tan^{-1} \frac{x^3 + y^3}{x - y}$$
.

- 13. Integrate the standard integral: $\int \frac{dx}{3 \sin x + 4 \cos x}$
- 14. Find the area of the plane region bounded by the x-axis the curve $y = e^{3x}$ and the ordinates x = 0, x = b using the limit of sum.
- 15. Find the area of the circle $x^2 + y^2 = 16$.
- 16. Solve the differential equation $x \frac{dy}{dx} = y x \tan \frac{y}{x}$.
- 17. Show that the differential equation exact and solve: $(5x^4 + 3x^2y^2 2xy^3) dx + (2x^3y 3x^2y^2 5y^4) dy = 0$
- 18. Define linear differential equation and solve: $x \frac{dy}{dx} + y = x^4$.
- 19. Solve: (xz ny)p + (nx lz)q = ly mx.

OR

If the portion of a tangent to a curve included between the co-ordinate axes is bisected by the point of contact then show that the curve is rectangular hyperbola.

20. Find the Fourier series of f(x) which is defined by $f(x) =\begin{cases} 1 & \text{for } -\pi < x < 0 \\ -1 & \text{for } 0 \le x < \pi \end{cases}$

000

www.arjun00.com.np