

Driver State Modeling and Real-Time Estimation: A Case Study of Driver Fatigue

Yubo Jiao Postdoctoral Researcher McGill University

The Impact of Driver State on Traffic Safety

Situational Factors

- Physical Environment
- Tools/Technology

Condition of the Operators

- Mental States
- Physiological States
- Physical/Mental Limitations

Personnel Factors

- Communication,
 Coordination, & Planning
- Fitness for Duty

Errors

- Decision Errors
- Skill-based Errors
- Perceptual Errors

Violations

- Routine Violations
- Exceptional Violations

incident/accident

The Importance of Driver State Modeling and Estimation

Driver State Modeling

$$u_t$$

$$\mathbf{y}_t = f(\mathbf{u}_t)$$
$$\mathbf{x}_t = g(\mathbf{y}_t)$$

$$\widehat{\boldsymbol{y}}_t = h_{\theta}(\boldsymbol{x}_t)$$

Driver Responses for State Estimation

Driver Fatigue Dataset

Fatigue Labels and Data

Fatigue Classification Using Heart Rate Signals

Fatigue Classification Using Heart Rate and Electrodermal Activity

Results

Individual Differences

Future Work

