

Enhanced H₂O adsorption by Ca²⁺ doping substantially improves the catalytic performance for light-driven thermocatalytic steam cellulose reforming on Ni/Ca_{1/8}-SiO₂

Jichun Wu, Yuanzhi Li*, Chongyang Zhou, Qianqian Hu, Mengqi Zhong, Huamin Cao, Yaqi Hu, Lei Ji

State Key Laboratory of Silicate Materials for Architectures (Wuhan University of Technology), 122 Luoshi Road, Wuhan 430070, PR China

ARTICLE INFO

Keywords:

Light-driven thermocatalytic
Steam cellulose reforming
Hydrogen-rich syngas
Ni catalyst
Ca²⁺ doping

ABSTRACT

Using renewable biomass to produce syngas can form a closed carbon cycle, curbing carbon emissions. However, thermocatalysis suffers from high energy consumption, while the reaction rates of photocatalysis are relatively low. Here, we report the light-driven thermocatalytic steam cellulose reforming to hydrogen-rich syngas on the Ni nanoparticles loaded on Ca²⁺ doping SiO₂ (Ni/Ca_{1/8}-SiO₂). It exhibits a high production rate of hydrogen-rich syngas (H₂ 3059.4 and CO 1612.1 mmol g⁻¹ catalyst h⁻¹) and good cycling durability. Tar from cellulose pyrolysis, which is inherently challenging to prevent, is substantially decreased by the involvement of H₂O. Ca²⁺ doping dramatically enhances H₂O adsorption, resulting in a significant improvement in catalytic performance. The efficient light-driven thermocatalysis derives from the strong absorption over the whole solar spectrum of Ni/Ca_{1/8}-SiO₂ on the one hand. On the other hand, noticeable photoactivation effect is observed to promote the oxidation of carbon species by oxygen due to the surface Ni-O bonds being activated upon light illumination.

1. Introduction

Syngas (comprising of H₂ and CO) production plays a vital role in the chemical industry as it is a fundamental raw material for producing high value-added chemicals or fuels [1–5]. Traditionally, syngas is mainly produced by the thermocatalytic reforming of non-renewable fossil fuels such as coal, oil, and natural gas. This leads to a release of greenhouse gases, resulting in global warming and frequent extreme weather [6]. Biomass is a renewable and resource-rich energy source. Utilizing it as the feedstock for producing syngas will effectively help close carbon cycle and reduce carbon emissions.

To date, biomass conversion to value-added chemicals and fuels is mainly achieved by pyrolysis [7,8], thermocatalysis [9–16] and photocatalysis [17–33]. Both pyrolysis and thermocatalysis are typically performed at high temperatures to decompose biomass, leading to an increased energy consumption. Additionally, its high tar selectivity results in reduced syngas yield and may lead to reactor clogging and corrosion [9–16]. To cut down energy consumption, scientific researchers have focused on photocatalytic biomass conversion on semiconductor photocatalysts using renewable solar energy [17–33]. In

general, solar radiation excites the electrons in the valence bands of the semiconductor photocatalysts to the conduction bands, leaving holes in the valence bands. The electrons participate in the reduction of electron acceptors, while the holes participate in the oxidation of electron donors [34–36]. Due to the band gap matching requirement by photocatalysis, it is very difficult to efficiently utilize infrared light, which accounts for above 50 % of solar energy, resulting in a relatively low reaction rate [37].

Recently, by combining the advantages of photocatalysis (low energy consumption) and thermocatalysis (high production rate), light-driven thermocatalysis has been applied to CO₂ reduction [38–45], VOCs oxidation [46–48], hydrogenation [49–52], water-gas shift [53,54], and so on. Very recently our previous work [37] has demonstrated that it is an efficient route for producing hydrogen-rich syngas through light-driven thermocatalytic steam biomass reforming by using a catalyst of mesoporous silica supported Ni nanoparticles. It is important and of grand challenge to further significantly improve syngas production rate and reduce the amount of tar and char as by-products.

Biomass reforming involves the adsorption and dissociation of H₂O to oxygen and hydrogen species, the pyrolysis of biomass to very

* Corresponding author.

E-mail address: liyuanzhi@whut.edu.cn (Y. Li).

complicated carbon-contained species, and the oxidation of the carbon-contained species by oxygen species [37]. It is expected that the enhanced H₂O adsorption and dissociation is helpful to promote biomass steam reforming. In this work, we report a catalyst of Ni nanoparticles loaded on silica doped by Ca²⁺ ions (denoted as Ni/Ca_{1/8}-SiO₂) for efficient light-driven thermocatalytic biomass cellulose reforming. We find that the Ca²⁺ doping enhances the adsorption of H₂O, leading to a considerable increase in hydrogen-rich syngas production and a substantial decrease in tar selectivity. We also find that focused illumination significantly enhances syngas production rate as compared to that in the dark (photoactivation). Based on a number of experimental evidences, we put insight in the role of Ca²⁺ doping and the photoactivation.

2. Experimental

2.1. Preparation

The catalyst supports with varying amounts of Ca²⁺ ions were prepared following the procedure. 11.3680 g of Na₂SiO₃·9 H₂O were dissolved in 80 g deionized H₂O in four separate beakers. Meanwhile, 0, 0.3675, 0.7351, and 1.4701 g (The molar ratio of Ca/Si are 0, 1/16, 1/8, and 1/4, respectively.) of CaCl₂·2 H₂O were dissolved in 40 g deionized H₂O in another four different beakers. Afterward, the aqueous solution was added to the Na₂SiO₃ solution dropwise with magnetic stirring. After being stirred for 1 h, a solution of C₄H₆O₆ with a concentration of 1 mol L⁻¹ was added to the mixed solution dropwise with magnetic stirring to adjust pH≈ 10. After being stirred for 0.5 h, we continued to adjust pH≈ 8 by slowly adding the C₄H₆O₆ solution with magnetic stirring. After stirring for another 1 h, the resulting suspension was sealed in the beakers with preservative film and aged in an electric oven at 90 °C for 24 h. After cooling to room temperature (RT), the precipitation was vacuum filtered, washed with deionized H₂O, and dried at 180 °C for 12 h. Then the solid was evenly ground and calcined at 700 °C for 2 h in a muffle furnace with a heating rate of 10 °C min⁻¹ from RT to 700 °C. The obtained powders were denoted as SiO₂, Ca_{1/16}-SiO₂, Ca_{1/8}-SiO₂, and Ca_{1/4}-SiO₂, respectively.

The catalysts of Ni nanoparticles loading on supports containing varying content of Ca²⁺ were prepared according to the following procedure. 0.23 g Ni(CH₃COO)₂·4 H₂O was added in four evaporating dishes, respectively. Then 5 mL diluted ammonia (volume ratio of concentrated ammonia (25–28 wt%) to H₂O is 1:3) was added in the dishes, respectively, to dissolve the Ni(CH₃COO)₂·4 H₂O. After that, 1.0307 g of SiO₂, Ca_{1/16}-SiO₂, Ca_{1/8}-SiO₂, and Ca_{1/4}-SiO₂ (The weight ratio of Ni/(Ni and support) is 0.05.) were added to the dishes, respectively. The evaporating dishes were transferred on heating plates holding at 150 °C, respectively, to dry the paste by constantly grinding. After that, the powders were dried at 150 °C for 12 h in an electric oven. The powder obtained were labeled as Ni(OH)₂/SiO₂, Ni(OH)₂/Ca_{1/16}-SiO₂, Ni(OH)₂/Ca_{1/8}-SiO₂, and Ni(OH)₂/Ca_{1/4}-SiO₂, respectively. Finally, the obtained samples were reduced in a quartz tubular reactor at 700 °C for 2 h with a 15 mL min⁻¹ flow of pure H₂. The obtained catalysts were denoted as Ni/SiO₂, Ni/Ca_{1/16}-SiO₂, Ni/Ca_{1/8}-SiO₂, and Ni/Ca_{1/4}-SiO₂, respectively.

2.2. Characterization

The chemical compositions of Ni/SiO₂, Ni/Ca_{1/16}-SiO₂, Ni/Ca_{1/8}-SiO₂, and Ni/Ca_{1/4}-SiO₂ were analyzed on an X-ray fluorescence (XRF) spectrometer (Axios advanced). X-ray diffraction (XRD) patterns were obtained from a diffractometer (Empyrean) with Cu K α radiation. Transmission electron microscopy (TEM) images and EDS mappings were collected on a transmission electron microscope (FEI Talos F200X). Specific surface area and pore volume were measured on an absorption instrument (ASAP 2020) using N₂ absorption at -196 °C. The compositions of the agricultural wastes were analyzed on a CHNS elemental analyzer (Vario EL cube, Elementar) (Table S1). The amount of char

produced by the reaction and the total amount of organic compounds in the wastes were determined by calcining the residual solid after reaction and agricultural wastes in a muffle furnace. Diffuse reflectance absorption spectra were recorded on a spectrophotometer (Lambda 750S). Fourier transform infrared (FTIR) spectra were recorded on a Nicolet 6700 IR spectrometer.

2.3. Light-driven thermocatalytic and photocatalytic tests

Light-driven thermocatalytic steam cellulose reforming on the samples was evaluated in a homemade light-driven thermocatalysis reactor (Scheme S1) [37]. A known amount of cellulose was mixed well with the catalyst according to a weight ratio of 15:1 by grinding them in an agate mortar. Then the deionized H₂O with a weight ratio of about 1.9 to cellulose was dropped into the mixture. After being mixed evenly, a known amount of the paste containing 0.05 g of cellulose was added to a corundum crucible supported by a piece of aluminum silicate insulation cotton. Details of the reaction procedure and the analysis of produced gases have been reported in our previous work (Scheme S2) [37]. The power values of the UV-vis-IR, $\lambda > 420$ nm, and $\lambda > 560$ nm vis-IR illumination focused into the reactor are 6849.8, 5856.4, and 5076.1 mW, respectively. The diameter of the irradiated range of the mixture is 7 mm (the diameter of crucible). Their corresponding light intensity values are 178.0, 152.2, and 131.9 kW m⁻², respectively.

The catalyst durability was tested according to the procedure as follows: After the light-driven thermocatalytic test mentioned above, a residual solid mixture of the catalyst and char, remained in an alumina crucible in the reactor, was collected. The amount of char in the solid mixture was measured by calcining the residual solid in a muffle furnace. Thus, the amount of catalyst in the residual solid was calculated. Then, cellulose was mixed with the residual solid according to a weight ratio of cellulose/catalyst of 15:1. Deionized H₂O with a weight ratio of 1.9 to cellulose was dropped into the mixture. After the mixture was uniformly ground in an agate mortar, a known amount of the resultant mixture paste containing 0.05 g of cellulose was added in the reactor. The other procedure was the same as the above light-driven thermocatalytic test. As the mixture grinding procedure led to a loss of the mixture paste, more mixture paste was needed to be prepared for the next recycling test by using more the residual solid. Therefore, each light-driven thermocatalytic test was repeated for several times in parallel, thus more residual solid was collected for the next recycling test.

For dry cellulose pyrolysis under focused illumination, 0.05 g of the dry cellulose and catalyst with a weight ratio of 15:1 was compressed into a tablet.

For steam biomass reforming under focused illumination, the cellulose was replaced by the powder of rice straw, wheat straw, or corn stalk (Table S1). We tabulated the specific amounts of reactants for steam cellulose/biomass reforming (Table S2).

The photocatalytic reaction on Ni/Ca_{1/8}-SiO₂ was conducted by placing the mixture on the reactor bottom kept at near room temperature (RT) in an ice-water bath.

2.4. Controlled catalytic tests

Controlled catalytic tests in a fixed bed with illumination or in the dark at varying temperatures were evaluated on a set-up, as reported in our previous work (Scheme S3) [37]. The reactor was heated at a rate of 5 °C min⁻¹ to 700 °C with focused illumination or in the dark.

For controlled catalytic steam cellulose reforming, the mixture was prepared by the same procedure for the light-driven thermocatalytic steam cellulose reforming described above. Then a known amount of the mixture containing 0.05 g cellulose was added in a tubular quartz reactor (Scheme S3). Before the reaction, we purged the system by high-purity Ar.

For controlled catalytic dry cellulose pyrolysis, the mixture was prepared by the same procedure for the light-driven thermocatalytic dry

Fig. 1. XRD patterns of Ni/SiO₂, Ni/Ca_{1/16}-SiO₂, Ni/Ca_{1/8}-SiO₂, and Ni/Ca_{1/4}-SiO₂ (A), HAADF image (B), and corresponding EDS mappings of Ni (C), Ca (D), Si (E), and O (F) of Ni/Ca_{1/8}-SiO₂.

Fig. 2. Production rates (A), carbon selectivities of gas, char, and tar (B), and light-to-fuel efficiencies (C) of steam cellulose reforming on the catalysts under focused UV-vis-IR illumination.

cellulose pyrolysis described above without compressing them to be tablets. Before starting the reaction, the mixture was dried at 100 °C for 1 h in a 30 mL min⁻¹ high-purity Ar flow in the tubular quartz reactor.

For controlled catalytic pre-formed char reacting with adsorbed H₂O, 0.64 g of the same mixture prepared for controlled catalytic dry cellulose

Fig. 3. Production rates (A), carbon selectivities of gas, char, and tar (B), and light-to-fuel efficiencies (C) of cycling steam cellulose reforming on Ni/Ca_{1/8}-SiO₂ four times under focused UV-vis-IR illumination.

pyrolysis was placed in the tubular quartz reactor ([Scheme S4](#)). After a flow of high-purity Ar purged the system, the reactor was heated to 700 °C and held for 30 min. After cooling to RT, the residual solid containing about 0.01 g of char was placed in the tubular quartz reactor. High-purity Ar purged the system for 30 min with a flow rate of 30 mL min⁻¹. Then the high-purity Ar was switched to pass through the bubbler containing deionized H₂O before entering the reactor. After adsorbing H₂O for 2 h, the system was purged by dry high-purity Ar flow for another 2 h.

Fig. 4. Production rates (A), carbon selectivities of gas, char, and tar (B), and light-to-fuel efficiencies (C) of light-driven thermocatalytic steam rice straw, wheat straw, and corn stalk reforming on Ni/Ca_{1/8}-SiO₂ under focused UV-vis-IR illumination.

2.5. Isotope labeling

Isotope labeling experiment of reaction between cellulose and H₂¹⁸O or adsorbed H₂¹⁸O on Ni/Ca_{1/8}-SiO₂ or Ni/SiO₂ was performed in the homemade light-driven thermocatalysis reactor (**Scheme S1**) [37] too. The produced CO₂ and CO were analyzed by FTIR. For the reaction of cellulose and H₂¹⁸O, the procedure was the same as steam cellulose

reforming under focused illumination described above. For the reaction of cellulose and adsorbed H₂¹⁸O, 0.045 g of Ni/Ca_{1/8}-SiO₂ or Ni/SiO₂ was impregnated in 0.045 g of H₂¹⁸O for 12 h. Then the catalyst was dried at 70 °C for 12 h. After that, 0.015 g of the catalyst was reduced in 5 vol% H₂/Ar with a flow rate of 24 mL min⁻¹ at 200 or 400 °C for 0.5 h. Then the catalyst was mixed with dry cellulose according to a weight ratio of 1:2 by grinding them in an agate mortar. Finally, 0.045 g of the mixture was compressed to be a tablet. The other procedure was the same as light-driven thermocatalytic dry cellulose pyrolysis under focused illumination described above.

2.6. H₂-TPR of pre-chemisorbed oxygen

H₂ temperature-programmed reduction (H₂-TPR) of the pre-chemisorbed oxygen on the surface of Ni nanoparticles with paralleled illumination or in the dark was conducted on a TP5080 multifunctional adsorption apparatus using a tubular quartz reactor linked to a quartz window. 0.0050 g of Ni/Ca_{1/8}-SiO₂ was fed into the reactor. The sample was heated to 700 °C at a rate of 10 °C min⁻¹ with a 24 mL min⁻¹ pure H₂ flow and held at 700 °C for 2 h. After cooling to RT, the gas was switched to 5 vol% O₂/He with a flow rate of 24 mL min⁻¹ and kept at RT for 30 min. After that, the gas was switched to 5 vol% H₂/Ar with a flow rate of 24 mL min⁻¹. Finally, the sample was heated from RT to 700 °C with a heating rate of 10 °C min⁻¹ in 5 vol% H₂/Ar flow with paralleled UV-vis-IR illumination or in the dark.

3. Results and discussion

3.1. Characterization

XRF analysis shows that the weight ratios of Ni in Ni/SiO₂, Ni/Ca_{1/16}-SiO₂, Ni/Ca_{1/8}-SiO₂, and Ni/Ca_{1/4}-SiO₂ are 5.22, 5.17, 4.88 and 5.14 wt%, respectively. Additionally, the molar ratio of Ca/Si in Ni/SiO₂, Ni/Ca_{1/16}-SiO₂, Ni/Ca_{1/8}-SiO₂, and Ni/Ca_{1/4}-SiO₂ are 0, 4.34, 9.83, and 21.99 mol%, respectively (**Table S3**). The XRD patterns of Ni/SiO₂, Ni/Ca_{1/16}-SiO₂, Ni/Ca_{1/8}-SiO₂, and Ni/Ca_{1/4}-SiO₂ (**Fig. 1A**) reveal that Ni species are present in a metallic nickel phase with a cubic structure (JCPDS No. 65–2865). Silica, on the other hand, are amorphous phase, which is identifiable by the broad peak ranging from 15° to 30°. By applying the Scherrer formula ($L = 0.89\lambda/(\beta\cos\theta)$) to the peak corresponding to (111) facets ($2\theta = 44.5^\circ$), average Ni crystal sizes are 4.4, 3.4, 3.5, and 4.2 nm in Ni/SiO₂, Ni/Ca_{1/16}-SiO₂, Ni/Ca_{1/8}-SiO₂, and Ni/Ca_{1/4}-SiO₂, respectively (**Table S3**). No XRD peaks of Ca compounds are observed in Ni/Ca_{1/16}-SiO₂, Ni/Ca_{1/8}-SiO₂, and Ni/Ca_{1/4}-SiO₂, suggesting that Ca²⁺ ions are highly dispersed. We mainly characterized the Ni/Ca_{1/8}-SiO₂ due to its superior performance for light-driven thermocatalytic cellulose reforming (See **Section 3.2**). The HAADF image of Ni/Ca_{1/8}-SiO₂ indicates well-distributed Ni nanoparticles (bright dots) on Ca_{1/8}-SiO₂ (**Fig. 1B**). It also can be confirmed by EDS mapping of Ni (**Fig. 1C**) and TEM image of Ni/Ca_{1/8}-SiO₂ (**Fig. S1A**, the black dots). In comparison, corresponding EDS mappings of Ca, Si, and O demonstrate that they are all uniformly distributed in Ni/Ca_{1/8}-SiO₂ (**Fig. 1D–F**). HRTEM shows a distinct lattice spacing of 0.203 nm corresponding to (111) facets of Ni nanocrystals (**Fig. S1B**). No lattice spacing of Ca compounds or SiO₂ are observed in the HRTEM image of Ni/Ca_{1/8}-SiO₂.

The surface area and pore volume of the samples were measured by N₂ adsorption. The BET surface areas of Ni/SiO₂, Ni/Ca_{1/16}-SiO₂, Ni/Ca_{1/8}-SiO₂, and Ni/Ca_{1/4}-SiO₂ are 55.45, 168.94, 89.73, and 65.04 m² g⁻¹, respectively (**Table S3**). The result indicates that a small amount of Ca²⁺ doping (Ni/Ca_{1/16}-SiO₂) leads to a considerable increase in BET surface area, but further increasing Ca²⁺ doping amount (Ni/Ca_{1/8}-SiO₂ and Ni/Ca_{1/4}-SiO₂) results in a gradual reduction in BET surface area. The BJH adsorption volumes of Ni/SiO₂, Ni/Ca_{1/16}-SiO₂, Ni/Ca_{1/8}-SiO₂, and Ni/Ca_{1/4}-SiO₂ are 0.49, 0.72, 0.46, and 0.32 cm³ g⁻¹, respectively. Their average pore sizes are 35.9, 17.0, 20.6, and 19.8, respectively (**Table S3**, **Fig. S2, S3, S4 and S5**).

Fig. 5. FTIR spectra of CO and CO_2 produced by cellulose reforming with H_2^{18}O on $\text{Ni}/\text{Ca}_{1/8}\text{-SiO}_2$ for 9 min under focused UV-vis-IR illumination (A). Production rates (B), carbon selectivities of gas, char, and tar (C), and light-to-fuel efficiencies (D) of dry cellulose pyrolysis on $\text{Ni}/\text{Ca}_{1/8}\text{-SiO}_2$ and Ni/SiO_2 for 9 min under focused UV-vis-IR illumination.

3.2. Light-driven thermocatalytic performance

As shown in Fig. 2, Ni/SiO_2 demonstrates good catalytic activity for cellulose steam reforming under focused UV-vis-IR illumination. After 9 min of illumination, its production rates of H_2 , CO , CH_4 , and CO_2 are 2180.6, 1202.3, 30.7, and 644.9 $\text{mmol g}_{\text{catalyst}}^{-1} \text{h}^{-1}$, respectively (Fig. 2A). Its selectivities of carbon for gas, char, and tar are 50.7 %, 9.1 % and 40.2 %, respectively (Fig. 2B). The molar ratio of H_2/CO (≈ 1.8) is higher than the stoichiometric ratio (1.0) of steam cellulose reforming ($(\text{C}_6\text{H}_{10}\text{O}_5)_n + n\text{H}_2\text{O} = 6n\text{CO} + 6n\text{H}_2$). It is mainly attributed to the side reaction of the Water-Gas Shift Reaction (WGSR: $\text{H}_2\text{O} + \text{CO} = \text{H}_2 + \text{CO}_2$) [37]. Interestingly, a small amount of Ca^{2+} doping in SiO_2 ($\text{Ni}/\text{Ca}_{1/16}\text{-SiO}_2$) leads to a significant increase in the H_2 and CO production rates, and a considerable decrease in the tar selectivity. By increasing the Ca^{2+} -doping amount, a catalyst of $\text{Ni}/\text{Ca}_{1/8}\text{-SiO}_2$ with the best catalytic performance is obtained. Its production rates of H_2 , CO , CH_4 , and CO_2 are 3059.4, 1612.1, 26.7, and 811.0 $\text{mmol g}_{\text{catalyst}}^{-1} \text{h}^{-1}$, respectively. Its selectivities of carbon for gas, char, and tar are 66.1 %, 6.7 %, and 27.2 %, respectively (Fig. 2B). Further increasing the Ca^{2+} doping amount ($\text{Ni}/\text{Ca}_{1/4}\text{-SiO}_2$) results in a slight reduction in activity probably due to a decrease in BET surface area and an increase in the size of Ni nanoparticles (Table S3). To reveal the catalytic active sites in $\text{Ni}/\text{Ca}_{1/8}\text{-SiO}_2$, we measured the catalytic activity of $\text{Ca}_{1/8}\text{-SiO}_2$ as support in the same conditions. As shown in Fig. 2, $\text{Ca}_{1/8}\text{-SiO}_2$ performs a low catalytic activity. Its production rates of H_2 , CO , CH_4 , and CO_2 are 511.5, 842.6, 137.96, and 201.19 $\text{mmol g}_{\text{catalyst}}^{-1} \text{h}^{-1}$, respectively. The selectivities of carbon for gas, char, and tar are 31.9 %, 9.4 %, and 58.7

%, respectively (Fig. 2B). The results show that Ni nanoparticles are the primary catalytic sites. To compare with $\text{Ca}_{1/8}\text{-SiO}_2$, the catalytic activity of SiO_2 was also measured. The production rates of H_2 , CO , CH_4 , and CO_2 are 144.7, 562.5, 66.1, and 177.2 $\text{mmol g}_{\text{catalyst}}^{-1} \text{h}^{-1}$, respectively (Fig. 2A). The selectivities of carbon for gas, char, and tar are 21.8 %, 16.5 % and 61.7 %, respectively (Fig. 2B). This shows that Ca^{2+} doping slightly promotes the performance of SiO_2 as support.

As a highly endothermic reaction ($\Delta H_{298} = 1144.8 \text{ kJ mol}^{-1}$), the light-to-fuel efficiency (η) of steam cellulose reforming is calculated by the following formula [37].

$$\eta = (r_{\text{CO}} \times \Delta_c H_{\text{CO}}^0 + r_{\text{H}_2} \times \Delta_c H_{\text{H}_2}^0 + r_{\text{CH}_4} \times \Delta_c H_{\text{CH}_4}^0 - r_{\text{C}_6\text{H}_{10}\text{O}_5, \text{gas}} \times \Delta_c H_{\text{C}_6\text{H}_{10}\text{O}_5}^0) \times m_{\text{catalyst}} / (P \times 3600)$$

$\Delta_c H_{\text{CO}}^0$, $\Delta_c H_{\text{H}_2}^0$, $\Delta_c H_{\text{CH}_4}^0$, and $\Delta_c H_{\text{C}_6\text{H}_{10}\text{O}_5}^0$ are the standard combustion heats (298.15 K) of CO, H_2 , CH_4 , and cellulose as fuels, respectively. r_{CO} , r_{H_2} , and r_{CH_4} represent production rates of CO, H_2 , and CH_4 , respectively. $r_{\text{C}_6\text{H}_{10}\text{O}_5}$ is the reaction rate of cellulose consumed to produce gases. P (mW) represents illumination power [37].

The η values of $\text{Ni}/\text{Ca}_{1/8}\text{-SiO}_2$, Ni/SiO_2 , and $\text{Ca}_{1/8}\text{-SiO}_2$ are 5.8 %, 3.8 %, and 0.8 %, respectively (Fig. 2C). As compared with light-driven biomass reforming that have been reported, $\text{Ni}/\text{Ca}_{1/8}\text{-SiO}_2$ has exhibited excellent performance in the light-driven steam biomass reforming (Table S4).

We also evaluated the activity of $\text{Ni}/\text{Ca}_{1/8}\text{-SiO}_2$ under focused $\lambda > 420$ or $\lambda > 560 \text{ nm}$ vis-IR illumination. Under focused $\lambda > 420 \text{ nm}$ vis-IR illumination, the production rates of H_2 , CO , CH_4 , and CO_2 are 2706.6, 1412.8, 26.3, and 766.1 $\text{mmol g}_{\text{catalyst}}^{-1} \text{h}^{-1}$, respectively

Fig. 6. FTIR spectra of fresh Ni/Ca_{1/8}-SiO₂, cellulose, and the residual solid after steam cellulose reforming (A) and dry cellulose pyrolysis (B) on Ni/Ca_{1/8}-SiO₂ for specific times under focused UV-vis-IR illumination. Carbon selectivities of gas, char, and tar after steam cellulose reforming for 2.5 min and dry cellulose pyrolysis for 1 min on Ni/Ca_{1/8}-SiO₂ (C).

(Fig. S6A). The carbon selectivities of gas, char, and tar are 29.5 %, 9.4 % and 31.1 %, respectively (Fig. S6B). Under focused $\lambda > 560$ nm vis-IR illumination, H₂, CO, CH₄, and CO₂ production rates are 2390.3, 1175.8, 20.7, and 737.1 mmol g_{catalyst}⁻¹ h⁻¹, respectively (Fig. S6A). The selectivities of carbon for gas, char, and tar are 52.2 %, 10.7 %, and 37.1 %, respectively (Fig. S6B). The η values of under focused $\lambda > 420$, and $\lambda > 560$ nm vis-IR illumination are 5.8 %, and 5.6 %, respectively (Fig. S6C). Even the illumination intensity reduces from 178.0 kW m⁻²

(UV-vis-IR) to 131.9 kW m⁻² ($\lambda > 560$ nm vis-IR), Ni/Ca_{1/8}-SiO₂ still exhibited good performance in light-driven steam cellulose reforming.

Catalyst durability is crucial for practical applications, so we evaluated the light-driven thermocatalytic durability of Ni/Ca_{1/8}-SiO₂ for steam cellulose reforming. After four cycles, the production rates of H₂ and CO are 2677.2 and 1668.1 mmol g_{catalyst}⁻¹ h⁻¹ (Fig. 3A). The selectivities of carbon for gas, char, and tar are 65.6 %, 17.6 % and 16.8 %, respectively (Fig. 3B). The η is 5.61 % (Fig. 3C). These results indicate that Ni/Ca_{1/8}-SiO₂ exhibits good durability during steam cellulose reforming. To reveal the excellent durability of Ni/Ca_{1/8}-SiO₂, the residual solids were analyzed by Raman and TEM. As shown in Fig. S7A, Ni nanoparticles (black dots) still distribute well in Ni/Ca_{1/8}-SiO₂ after the durability test. No visible sintering is observed compared to the fresh Ni/Ca_{1/8}-SiO₂ (Fig. S1A). Despite the marked graphite-like char deposition on Ni/Ca_{1/8}-SiO₂ after the durability test (Fig. S7C), the Ni nanoparticles still exhibit a clear lattice spacing in the (111) plane, illustrated in the HRTEM image (Fig. S7B). This suggests that the surface of Ni nanoparticle has not been entirely covered by the deposited char, which could hinder the contact between Ni nanoparticles and reactants, leading rapid deactivation. Consequently, Ni/Ca_{1/8}-SiO₂ demonstrates reliable catalytic durability in the reaction.

As a comparison, we also tested the durability of Ni/SiO₂ under the same conditions as those of Ni/Ca_{1/8}-SiO₂. Ni/SiO₂ also shows good durability in the recycling tests (Fig. S8). However, the syngas production rates of Ni/SiO₂ are significantly lower than that of Ni/Ca_{1/8}-SiO₂, and the tar and char selectivities are significantly higher than those of Ni/Ca_{1/8}-SiO₂, which further demonstrates that Ca²⁺ doping effectively promotes the catalytic activity and reduces the tar and char selectivities. The good durability of both Ni/Ca_{1/8}-SiO₂ and Ni/SiO₂ indicates that Ni nanoparticles as main catalytic active components are stabilized by their supports of Ca_{1/8}-SiO₂ and SiO₂ (Table S3) via their interaction (e.g. -Si-O-Ni- bonds), thus avoiding the sintering of Ni nanoparticles at high temperature under focused illumination.

In order to examine the performance of Ni/Ca_{1/8}-SiO₂ in practical applications, we selected three primary agricultural wastes for steam biomass reforming under focused UV-vis-IR illumination. For rice straw, the production rates of H₂, CO, CH₄, and CO₂ are 1074.6, 772.5, 56.5, and 248.8 mmol g_{catalyst}⁻¹ h⁻¹, respectively (Fig. 4A). The carbon selectivities of gas, char, and tar are 32.5 %, 28.8 %, and 38.7 %, respectively (Fig. 4B). H₂, CO, CH₄, and CO₂ production rates of wheat straw are 1173.2, 810.2, 68.2, and 279.9 mmol g_{catalyst}⁻¹ h⁻¹, respectively (Fig. 4A). The carbon selectivities of gas, char, and tar are 36.1 %, 28.9 % and 35.0 %, respectively (Fig. 4B). For corn stalk, H₂, CO, CH₄, and CO₂ production rates are 1275.5, 940.6, 66.5, and 313.3 mmol g_{catalyst}⁻¹ h⁻¹, respectively (Fig. 4A). The carbon selectivities of gas, char, and tar are 40.5 %, 34.8 %, and 24.7 %, respectively (Fig. 4B). The η values of rice straw, wheat straw, and corn stalk are 1.65 %, 1.63 %, and 1.64 %, respectively (Fig. 4C). These results show that Ni/Ca_{1/8}-SiO₂ also exhibits good performance in light-driven steam biomass reforming.

3.3. Roles of H₂O and Ca²⁺

To reveal the role of H₂O in the cellulose steam reforming, an isotope labeling test of cellulose reacts with H₂¹⁸O on Ni/Ca_{1/8}-SiO₂ was performed. CO and CO₂ produced in the reaction were analyzed by FTIR. The peaks around 2358, 2343, and 2324 cm⁻¹ correspond to the C–O stretching modes of C¹⁶O₂, C¹⁶O¹⁸O, and C¹⁸O₂, respectively (Fig. 5A). The two peaks around 2168 and 2116 cm⁻¹ represent the C–O stretching modes of C¹⁶O, while the other two peaks around 2127 and 2076 cm⁻¹ represent those of C¹⁸O (Fig. 5A). The presence of ¹⁸O in the produced CO and CO₂ shows that H₂O participates in cellulose reforming.

To investigate the impact of H₂O on the reaction, we performed dry cellulose pyrolysis on Ni/Ca_{1/8}-SiO₂ and Ni/SiO₂ under focused UV-vis-IR illumination. After reacting for 9 min, the production rates of H₂, CO, CH₄, and CO₂ are 1485.7, 860.6, 11.7, and 413.1 mmol g_{catalyst}⁻¹

Fig. 7. Amounts of H₂ (A), CO (B), CH₄ (C), and CO₂ (D) produced by steam cellulose reforming or dry cellulose pyrolysis on Ni/Ca_{1/8}-SiO₂ for specific times under focused UV-vis-IR illumination.

h⁻¹, respectively (Fig. 5B) for dry cellulose pyrolysis on Ni/Ca_{1/8}-SiO₂. For Ni/SiO₂, the production rates of H₂, CO, CH₄, and CO₂ are 1425.8, 788.6, 16.0, and 428.8 mmol g_{catalyst}⁻¹ h⁻¹, respectively (Fig. 5B). The carbon selectivities for gas, char and tar of Ni/Ca_{1/8}-SiO₂ are 34.7 %, 9.1 %, and 56.2 %, while those of Ni/SiO₂ are 33.3 %, 15.3 %, and 51.4 %, respectively (Fig. 5C). The η values of cellulose pyrolysis on Ni/Ca_{1/8}-SiO₂ and Ni/SiO₂ are 2.5 %, and 2.3 % (Fig. 5D), respectively. Compared to steam cellulose reforming, the hydrogen-rich syngas production rate and η of dry cellulose pyrolysis significantly decrease (Figs. 2A and 5B). On the other hand, there is a noticeable increase in the selectivity of tar for dry cellulose pyrolysis in contrast to steam cellulose reforming (Figs. 2B and 5C). These results indicate that the presence of H₂O significantly improves the production of hydrogen-rich syngas and dramatically reduces the selectivity of tar.

To investigate the mechanism of H₂O participating in the reaction on Ni/Ca_{1/8}-SiO₂, steam cellulose reforming and dry cellulose pyrolysis for specific times were conducted. When the C–H bonds in the residue disappear after the reaction, it can be inferred that cellulose has been absolutely pyrolyzed into char. As shown in Fig. 6A and B, the FTIR spectra of the residual solid indicate that the disappearance of C–H stretching peak of cellulose around 2906 cm⁻¹ takes about 2.5 min during steam cellulose reforming, while in dry cellulose pyrolysis, it only takes about 1 min. After reacting on Ni/Ca_{1/8}-SiO₂ for 2.5 min, the carbon selectivities of gas, char, and tar are 45.8 %, 30.0 % and 24.2 %, respectively (Fig. 6C). After dry cellulose pyrolysis on Ni/Ca_{1/8}-SiO₂ for 1 min, those are 26.0 %, 20.6 %, and 53.4 %, respectively (Fig. 6C). Combined with the carbon selectivities of steam cellulose reforming (Fig. 2B) and dry cellulose pyrolysis (Fig. 5C) on Ni/Ca_{1/8}-SiO₂ for 9 min, it can be observed that selectivity of tar barely changes after the disappearance of C–H bonds. The participation of H₂O before the

disappearance of C–H bonds considerably promotes the conversion of cellulose to char and decreases the selectivity of tar. Since cellulose is essentially insoluble in H₂O, the result is caused by the reaction on the surface of Ni nanoparticles of H₂O with the carbon-containing intermediates from the cellulose pyrolysis. In addition, a significant decrease in char is observed after C–H bonds disappear during steam cellulose reforming. This observation suggests H₂O can react with char to increase hydrogen-rich syngas production. A decrease of char can also be observed during dry cellulose pyrolysis on Ni/Ca_{1/8}-SiO₂ due to the reaction between char with the H₂O generated by cellulose pyrolysis.

As shown in Fig. 7, the gas amounts produced by steam cellulose reforming and dry cellulose pyrolysis on Ni/Ca_{1/8}-SiO₂ for specific times under focused UV-vis-IR illumination were recorded. The production of hydrogen-rich syngas increases rapidly before C–H bonds disappear due to cellulose pyrolysis and the reaction of carbon-containing intermediates with H₂O. After C–H bonds disappear, hydrogen-rich syngas is primarily produced by char reacting with H₂O. The increase of CO is almost negligible after C–H bonds disappear, attributed to the WGSR.

In summary, on the one hand, H₂O can react with the carbon-containing intermediates generated by cellulose pyrolysis to increase the production of char and hydrogen-rich syngas while decreasing tar generation. On the other hand, once cellulose has entirely converted to char, H₂O can further increase hydrogen-rich syngas production, especially H₂ production, by reacting with the char.

Interestingly, although Ni/Ca_{1/8}-SiO₂ exhibits no advantages in dry cellulose pyrolysis for 9 min under focused UV-vis-IR illumination (Fig. 5), it performs much better than Ni/SiO₂ in steam cellulose reforming (Fig. 2). Thus, Ca²⁺ ions may significantly improve the performance of Ni/Ca_{1/8}-SiO₂ by enhancing the adsorption of H₂O and promoting the participation of H₂O in steam cellulose reforming. To

Fig. 8. FTIR spectra of CO produced by the reaction between cellulose and H_2^{18}O pre-adsorbed on $\text{Ni/Ca}_{1/8}\text{-SiO}_2$ (A) and Ni/SiO_2 (B) after reduction in a flow of 5 vol% H_2/Ar at $400\text{ }^\circ\text{C}$ (a_1 , a_2), $200\text{ }^\circ\text{C}$ (b_1 , b_2), after drying at $70\text{ }^\circ\text{C}$ (c_1 , c_2), and CO produced by the reaction between cellulose and H_2^{16}O adsorbed on $\text{Ni/Ca}_{1/8}\text{-SiO}_2$ after drying at $70\text{ }^\circ\text{C}$ (d_1 , d_2).

investigate whether Ca^{2+} ions play a vital role in the reaction, we also conducted steam cellulose reforming and dry cellulose pyrolysis on Ni/SiO_2 in the same conditions as $\text{Ni/Ca}_{1/8}\text{-SiO}_2$. As shown in Fig. S9A and S9B, the FTIR spectra of residual solid indicate that the disappearance of C–H bonds in reaction on Ni/SiO_2 takes the same time as on $\text{Ni/Ca}_{1/8}\text{-SiO}_2$. Compared with dry pyrolysis for 1 min, there are apparent differences in the carbon selectivities between Ni/SiO_2 and $\text{Ni/Ca}_{1/8}\text{-SiO}_2$ after steam cellulose reforming for 2.5 min (Fig. 6C and S9C). Before the disappearance of C–H bonds, char formation is accelerated during steam cellulose reforming on $\text{Ni/Ca}_{1/8}\text{-SiO}_2$, while tar production is decreased. Furthermore, by comparing the carbon selectivities of steam cellulose reforming on $\text{Ni/Ca}_{1/8}\text{-SiO}_2$ or Ni/SiO_2 for 2.5 and 9 min (Figs. 6C, 2C, and S9C), it is observed that the consumption of char is much more pronounced on $\text{Ni/Ca}_{1/8}\text{-SiO}_2$. This suggests that Ca^{2+} doping promotes the reaction of char with H_2O on the other hand.

We also recorded the gas amounts produced during steam cellulose reforming and dry cellulose pyrolysis on Ni/SiO_2 for specific times. As shown in Fig. S10, the hydrogen-rich syngas production of steam cellulose reforming on Ni/SiO_2 is significantly reduced whether before or after the disappearance of C–H bonds compared to the reaction on $\text{Ni/Ca}_{1/8}\text{-SiO}_2$ (Fig. 7). However, the amounts of hydrogen-rich syngas produced by dry cellulose pyrolysis on the two catalysts are similar. The results demonstrate that the excellent performance of $\text{Ni/Ca}_{1/8}\text{-SiO}_2$ comes from enhancing the adsorption and participation of H_2O in the reaction by Ca^{2+} ions.

To confirm the enhancement of H_2O adsorption by Ca^{2+} doping in

$\text{Ni/Ca}_{1/8}\text{-SiO}_2$, we performed another isotope labeling experiment of cellulose reforming with H_2^{18}O pre-adsorbed on $\text{Ni/Ca}_{1/8}\text{-SiO}_2$ and Ni/SiO_2 . As shown in Fig. 8A, for the reaction between cellulose and H_2^{18}O pre-adsorbed on $\text{Ni/Ca}_{1/8}\text{-SiO}_2$, C^{18}O peaks still exist though the catalyst has been reduced in a flow of 5 vol% H_2/Ar at $400\text{ }^\circ\text{C}$ for 0.5 h. While for Ni/SiO_2 , no C^{18}O peaks are observed though the catalyst is just dried at $70\text{ }^\circ\text{C}$ for 12 h (Fig. 8B). That is to say, neither Ni nanoparticles nor SiO_2 support has strong adsorption of H_2O . The results demonstrate that the presence of Ca^{2+} ions dramatically enhances the adsorption of H_2O on $\text{Ni/Ca}_{1/8}\text{-SiO}_2$, thus significantly improving catalytic activity as compared to Ni/SiO_2 .

3.4. Roles of light

3.4.1. Heating effect

Due to the strong absorption over the whole solar spectrum (Fig. 9A), the surface temperature of $\text{Ni/Ca}_{1/8}\text{-SiO}_2$ and Ni/SiO_2 will rise rapidly under focused UV-vis-IR illumination to which thermocatalytic steam cellulose reforming can be triggered. As the reaction progressed, the cellulose quickly coked, and the temperature of the reactant reached an equilibrium point. The surface temperature of the reactant was measured. As shown in the temperature evolution of the catalyst and cellulose mixture with the time of focused illumination (Fig. S11), the equilibrium temperature of steam cellulose reforming on Ni/SiO_2 under focused UV-vis-IR illumination is $700\text{ }^\circ\text{C}$ (Fig. 9B). For the reaction on $\text{Ni/Ca}_{1/8}\text{-SiO}_2$ under focused UV-vis-IR, $\lambda > 420\text{ nm}$, and $\lambda > 560\text{ nm}$ vis-IR, the equilibrium temperatures are $693\text{ }^\circ\text{C}$, $629\text{ }^\circ\text{C}$, and $594\text{ }^\circ\text{C}$, respectively (Fig. 9B). To verify whether the strong absorption over the whole solar spectrum of $\text{Ni/Ca}_{1/8}\text{-SiO}_2$ causes photocatalytic activity, steam cellulose reforming on $\text{Ni/Ca}_{1/8}\text{-SiO}_2$ under UV-vis-IR illumination was conducted at near RT. After illuminating for 30 min, no CO or H_2 was detected (Fig. S12). Therefore, the high catalytic activity of $\text{Ni/Ca}_{1/8}\text{-SiO}_2$ is primarily ascribed to light-driven thermocatalysis rather than photocatalysis.

3.4.2. Photoactivation

Does the excellent catalytic performance of $\text{Ni/Ca}_{1/8}\text{-SiO}_2$ merely derive from the thermocatalysis? To address this inquiry, the reaction on $\text{Ni/Ca}_{1/8}\text{-SiO}_2$ was conducted in a fixed bed at varying temperatures with illumination or in the dark (Scheme S3). With UV-vis-IR, $\lambda > 420\text{ nm}$, and $\lambda > 560\text{ nm}$ vis-IR illumination, the initial temperatures for H_2 formation are $150\text{ }^\circ\text{C}$, $200\text{ }^\circ\text{C}$, and $250\text{ }^\circ\text{C}$, respectively, while in the dark, it increases to $450\text{ }^\circ\text{C}$ (Fig. 9C). For CO formation, the initial temperatures with UV-vis-IR, $\lambda > 420\text{ nm}$ vis-IR, and $\lambda > 560\text{ nm}$ vis-IR illumination are $100\text{ }^\circ\text{C}$, $150\text{ }^\circ\text{C}$, and $200\text{ }^\circ\text{C}$, respectively, while in the dark it is $250\text{ }^\circ\text{C}$ (Fig. 9D). These results indicate the significant effect of illumination in reducing the initial formation temperature of the hydrogen-rich syngas. Additionally, compared to the reaction in the dark, the amount of hydrogen-rich syngas produced with illumination is much higher. The absence of photocatalytic activity on $\text{Ni/Ca}_{1/8}\text{-SiO}_2$ (Fig. S12) suggests a photoactivation effect of illumination in addition to the heating effect, thus improving the activity of $\text{Ni/Ca}_{1/8}\text{-SiO}_2$.

3.5. The origin of photoactivation

To further understand the photoactivation, the effect of illumination on dry cellulose pyrolysis on $\text{Ni/Ca}_{1/8}\text{-SiO}_2$ at varying temperatures was conducted (Scheme S3). With UV-vis-IR illumination, the initial formation temperatures of H_2 and CO are $200\text{ }^\circ\text{C}$ and $100\text{ }^\circ\text{C}$, respectively, while in the dark, these temperatures increase to $325\text{ }^\circ\text{C}$ and $275\text{ }^\circ\text{C}$, respectively (Fig. 10A and B). In addition, the final H_2 and CO amounts at $700\text{ }^\circ\text{C}$ of cellulose pyrolysis with illumination are 129.2 and $80.0\text{ mmol g}_{\text{catalyst}}^{-1}$, respectively, while in the dark, these amounts decrease to 73.4 and $35.4\text{ mmol g}_{\text{catalyst}}^{-1}$, respectively (Fig. 10A and B). The results suggest that illumination accelerates the dry cellulose pyrolysis on $\text{Ni/Ca}_{1/8}\text{-SiO}_2$. Since solid-solid contact prevents the catalyst

Fig. 9. Diffusive reflectance spectrum (A) of $\text{Ni}/\text{Ca}_{1/8}\text{-SiO}_2$ and Ni/SiO_2 . Equilibrium temperatures (B) of $\text{Ni}/\text{Ca}_{1/8}\text{-SiO}_2$ and Ni/SiO_2 under focused illumination. The amounts of H_2 (C), CO (D), CH_4 (E), and CO_2 (F) produced by steam cellulose reforming on $\text{Ni}/\text{Ca}_{1/8}\text{-SiO}_2$ at varying temperatures in fixed bed with UV-vis-IR (a), $\lambda > 420 \text{ nm}$ (b), and $\lambda > 560 \text{ nm}$ (c) vis-IR illumination or in the dark (d).

from effectively participating in cellulose pyrolysis, the photoactivation observed in the reaction should be ascribed to promote adsorbed H_2O from cellulose pyrolysis participating in the reaction. To determine the origin of photoactivation during dry cellulose pyrolysis on $\text{Ni}/\text{Ca}_{1/8}\text{-SiO}_2$, the reaction was also conducted on Ni/SiO_2 . As shown in Fig. S13, dry cellulose pyrolysis on Ni/SiO_2 shows little difference between with illumination and in the dark. Moreover, although $\text{Ni}/\text{Ca}_{1/8}\text{-SiO}_2$ exhibits better performance than Ni/SiO_2 in the reaction with illumination, their performance in the dark is almost the same. This demonstrates that the photoactivation during the dry cellulose pyrolysis on $\text{Ni}/\text{Ca}_{1/8}\text{-SiO}_2$ should be ascribed to promote the adsorbed H_2O from cellulose pyrolysis participating in the reaction.

In contrast to dry cellulose pyrolysis in a fixed bed with illumination (Scheme S3), $\text{Ni}/\text{Ca}_{1/8}\text{-SiO}_2$ does not perform better than Ni/SiO_2 during the dry cellulose pyrolysis in the stainless-steel reactor (Scheme S1) under focused UV-vis-IR illumination (Figs. 5, 7, and S10). This is attributed to the fact that the heating rate under focused UV-vis-IR illumination is too fast for H_2O from cellulose pyrolysis to adsorb on the catalysts, and the vacuum condition aggravates the difficulty of H_2O adsorption. To verify the conclusion, steam cellulose reforming was also conducted on Ni/SiO_2 at varying temperatures in a fixed bed with illumination or in the dark. As shown in Fig. S14, little difference can be observed in the reaction on Ni/SiO_2 in the dark compared to $\text{Ni}/\text{Ca}_{1/8}\text{-SiO}_2$ (Fig. 10). Nevertheless, with illumination, the performance of Ni/SiO_2

Fig. 10. Amounts of H₂ (A), CO (B), CH₄ (C), and CO₂ (D) produced by dry cellulose pyrolysis on Ni/Ca_{1/8}-SiO₂ at varying temperatures in fixed bed with UV-vis-IR illumination or in the dark.

Ca_{1/8}-SiO₂ is considerably better than Ni/SiO₂. Since the adsorption of H₂O on Ni/Ca_{1/8}-SiO₂ is much stronger than Ni/SiO₂, these results verify that light promotes the reactions between the intermediate species (by cellulose pyrolysis) and the strongly adsorbed H₂O on Ca²⁺ doped SiO₂ for Ni/Ca_{1/8}-SiO₂.

Our previous work has shown that the C* species oxidation by O* on Ni nanoparticles is the rate-determining step [37]. In this study, the effect of illumination on pre-formed char reacting with adsorbed H₂O on Ni/Ca_{1/8}-SiO₂ in a fixed bed was also investigated (Scheme S3 and S4). With illumination, the initial temperature of H₂ formation is 400 °C, while in the dark, it increases to 600 °C (Figs. 11A and 11B). The final H₂ and CO amounts at 700 °C with illumination are 94.1 and 57.6 mmol g_{catalyst}⁻¹, respectively, whereas in the dark, they are 60.9 and 46.5 mmol g_{catalyst}⁻¹, respectively (Fig. 11A and B). These results suggest that illumination also significantly enhances the reaction of char with adsorbed H₂O on Ni/Ca_{1/8}-SiO₂. As a comparison, the reaction was also performed on Ni/SiO₂. With UV-vis-IR illumination, the initial formation temperature of H₂ is 525 °C, while in the dark, it reaches 625 °C (Fig. S15A and S15B). The final H₂ and CO amounts at 700 °C with illumination are 49.2 and 36.3 mmol g_{catalyst}⁻¹, respectively, while in the dark, they are 31.9 and 22.2 mmol g_{catalyst}⁻¹, respectively (Fig. S15A and S15B). As we can see, benefiting from the stronger H₂O adsorption, Ni/Ca_{1/8}-SiO₂ exhibits much better than Ni/SiO₂ during pre-formed char reaction with adsorbed H₂O, whether with illumination or in the dark.

As described in our previous work [37], photoactivation has a negligible impact on the H₂O dissociation on Ni particles but promotes C* species oxidation by O* species. Here, we also investigated how illumination affects the reduction of pre-chemisorbed oxygen on the surface of Ni nanoparticles in Ni/Ca_{1/8}-SiO₂ via H₂-TPR. As depicted in

Fig. 12, with illumination, the peak of H₂ consumption significantly shifts from 239 °C to 30 °C, in contrast to H₂-TPR in the dark. According to the results, the illumination significantly activates the Ni-O bonds, thus promoting C* species oxidation by O* species and enhancing the catalytic performance of Ni/Ca_{1/8}-SiO₂. The light-induced Ni-O activation on the surface of Ni nanoparticles is probably due to the following reason: upon focused illumination, the electrons of Ni nanoparticles are promoted to the excitation states, which weakens the bond of the adsorbed surface oxygen with Ni atoms [37].

Based on the above evidences in Sections 3.3, 3.4 and 3.5, a mechanism of light-driven thermocatalytic steam cellulose reforming on Ni/Ca_{1/8}-SiO₂ is proposed in Scheme 1. Steam cellulose reforming on Ni/Ca_{1/8}-SiO₂ initiates with cellulose pyrolyzing to carbon-containing intermediates including tar (C_xH_yO_z), H₂O, syngas, char, etc. Meanwhile, H₂O molecules are weakly adsorbed on SiO₂ and strongly adsorbed on Ca²⁺ ions. They transfer via the Ni/Ca_{1/8}-SiO₂ interface to the surface of metallic Ni nanoparticles, where they are dissociated to H* and O* (forming Ni-O bonds) species. The C_xH_yO_z including tar is oxidized by O* species, generating syngas. Char on the surface of Ni nanoparticles also reacts with O* species to produce CO. Due to the side-reaction of WGSR, a portion of CO is oxidized by O* species to be CO₂, promoting H₂ production, thus leading to the amount of H₂ much higher than CO. Compared to the reactions on Ni/SiO₂ where only H₂O molecules are weakly adsorbed on SiO₂, the strongly adsorbed H₂O molecules on Ca²⁺ ions for Ni/Ca_{1/8}-SiO₂ substantially promote the oxidation of both C_xH_yO_z and char, thus significantly enhancing syngas production rates and decreasing the char and tar selectivities. Light can promote the oxidation of carbon species by O* species chemisorbed on the surface of Ni nanoparticles due to the surface Ni-O bonds being activated upon light illumination, thus significantly facilitating the reactions.

Fig. 11. The amounts of H₂ (A), CO (B), CH₄ (C), and CO₂ (D) produced by pre-formed char reacting with adsorbed H₂O on Ni/Ca_{1/8}-SiO₂ at varying temperatures in fixed bed with UV-vis-IR illumination or in the dark.

Fig. 12. H₂-TPR profiles of Ni/Ca_{1/8}-SiO₂ after pre-chemisorbing oxygen on Ni nanoparticles with UV-vis-IR illumination and in the dark.

4. Conclusion

In summary, we synthesize a catalyst of Ni nanoparticles loading on Ca²⁺ doped SiO₂. The catalyst shows a high hydrogen-rich syngas production rate and good durability for light-driven thermocatalytic steam cellulose reforming merely under focused UV-vis-IR illumination. The participation of H₂O substantially decreases tar selectivity, increasing hydrogen-rich syngas production. Ca²⁺ doping enhances H₂O

adsorption, thus promoting the participation of H₂O in the reaction. Light not only act as a heating role, but also significantly promotes the reaction between carbon species (produced by cellulose pyrolysis) and the strongly adsorbed H₂O on Ca²⁺ doped silica due to oxygen chemisorbed on the surface of Ni nanoparticles being activated upon illumination, thus facilitating the cellulose reforming. The present strategy of loading Ni nanoparticles on SiO₂ doped by Ca²⁺ ions can be applied to design catalysts for effectively reducing tar production while maintaining excellent activity and durability during light-driven thermocatalytic steam biomass reforming.

CRediT authorship contribution statement

Jichun Wu: Conceptualization, Investigation, Methodology, Writing – original draft. **Yuanzhi Li:** Conceptualization, Funding acquisition, Methodology, Writing – review & editing. **Chongyang Zhou:** Conceptualization, Methodology. **Qianqian Hu:** Methodology, Writing – review & editing. **Mengqi Zhong:** Methodology, Writing – review & editing. **Huamin Cao:** Methodology, Writing – review & editing. **Yaqi Hu:** Methodology, Writing – review & editing. **Lei Ji:** Methodology, Writing – review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Scheme 1. Schematically illustrated mechanism of light-driven thermocatalytic steam cellulose reforming on $\text{Ni}/\text{Ca}_{1/8}\text{-SiO}_2$.

Data Availability

Data will be made available on request.

Acknowledgement

This work was supported by National Natural Science Foundation of China (21972109).

Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at [doi:10.1016/j.apcatb.2023.123388](https://doi.org/10.1016/j.apcatb.2023.123388).

References

- [1] A.S. Al-Fatesh, Y. Arafat, S.O. Kasim, A.A. Ibrahim, A.E. Abasaeed, A.H. Fakheeha, In situ auto-gasification of coke deposits over a novel Ni-Ce/W-Zr catalyst by sequential generation of oxygen vacancies for remarkably stable syngas production via CO_2 -reforming of methane, *Appl. Catal. B-Environ.* 280 (2021), 119445, <https://doi.org/10.1016/j.apcatb.2020.119445>.
- [2] K. Han, Y. Wang, S. Wang, Q. Liu, Z. Deng, F. Wang, Narrowing band gap energy of CeO_2 in $(\text{Ni}/\text{CeO}_2)/\text{SiO}_2$ catalyst for photothermal methane dry reforming, *Chem. Eng. J.* 421 (2021), 129989, <https://doi.org/10.1016/j.cej.2021.129989>.
- [3] A.A. Khan, M. Tahir, Well-designed 2D/2D $\text{Ti}_3\text{C}_2\text{T}_{\text{A/R}}$ MXene coupled g-C₃N₄ heterojunction with in-situ growth of anatase/rutile TiO_2 nucleates to boost photocatalytic dry-reforming of methane (DRM) for syngas production under visible light, *Appl. Catal. B-Environ.* 285 (2021), 119777, <https://doi.org/10.1016/j.apcatb.2020.119777>.
- [4] Y.F. Xu, X.Y. Li, J.H. Gao, J. Wang, G.Y. Ma, X.D. Wen, Y. Yang, Y.W. Li, M.Y. Ding, A hydrophobic FeMn@Si catalyst increases olefins from syngas by suppressing C1 by-products, *Science* 371 (2021) 610–613, <https://doi.org/10.1126/science.abb3649>.
- [5] I.V. Yentekakis, P. Panagiotopoulou, G. Artemakis, A review of recent efforts to promote dry reforming of methane (DRM) to syngas production via bimetallic catalyst formulations, *Appl. Catal. B-Environ.* 296 (2021), 120210, <https://doi.org/10.1016/j.apcatb.2021.120210>.
- [6] C. Mora, T. McKenzie, J.M. Gaw, J.M. Dean, H. von Hammerstein, T.A. Knudson, R. O. Setter, C.Z. Smith, K.M. Webster, J.A. Patz, E.C. Franklin, Over half of known human pathogenic diseases can be aggravated by climate change, *Nat. Clim. Change* 12 (2022) 869–875, <https://doi.org/10.1038/s41558-022-01426-1>.
- [7] D. Zhong, Z. Chang, K. Zeng, J. Li, Y. Qiu, Q. Lu, G. Flamant, H. Yang, H. Chen, Solar pyrolysis of biomass - part I: volatile evolution mechanism, *Energy Conv. Manag.* 267 (2022), 115951, <https://doi.org/10.1016/j.enconman.2022.115951>.
- [8] A. Curcio, S. Rodat, V. Vuillerme, S. Abanades, Design and validation of reactant feeding control strategies for the solar-autothermal hybrid gasification of woody biomass, *Energy* 254 (2022), 124481, <https://doi.org/10.1016/j.energy.2022.124481>.
- [9] N. García-Gómez, J. Vallecillos, A. Remiro, B. Valle, J. Bilbao, A.G. Gayubo, Effect of reaction conditions on the deactivation by coke of a NiAl_2O_4 spinel derived catalyst in the steam reforming of bio-oil, *Appl. Catal. B-Environ.* 297 (2021), 120445, <https://doi.org/10.1016/j.apcatb.2021.120445>.
- [10] A.D. Lalsare, B. Leonard, B. Robinson, A.C. Sivri, R. Vukmanovich, C. Dumitrescu, W. Rogers, J. Hu, Self-regenerable carbon nanofiber supported Fe – Mo_2C catalyst for $\text{CH}_4\text{-CO}_2$ assisted reforming of biomass to hydrogen rich syngas, *Appl. Catal. B-Environ.* 282 (2021), 119537, <https://doi.org/10.1016/j.apcatb.2020.119537>.
- [11] S. Valizadeh, S.-H. Jang, G. Hoon Rhee, J. Lee, P. Loke Show, M. Ali Khan, B.-H. Jeon, K.-Y. Andrew Lin, C. Hyun Ko, W.-H. Chen, Y.-K. Park, Biohydrogen production from furniture waste via catalytic gasification in air over Ni-loaded ultra-stable Y-type zeolite, *Chem. Eng. J.* 433 (2022), 133793, <https://doi.org/10.1016/j.cej.2021.133793>.
- [12] J. Wang, B. Zhao, S. Liu, D. Zhu, F. Huang, H. Yang, H. Guan, A. Song, D. Xu, L. Sun, H. Xie, W. Wei, W. Zhang, T. Helmer Pedersen, Catalytic pyrolysis of biomass with Ni/Fe-CaO-based catalysts for hydrogen-rich gas: DFT and experimental study, *Energy Conv. Manag.* 254 (2022), 115246, <https://doi.org/10.1016/j.enconman.2022.115246>.
- [13] X. Yang, S. Gu, A. Kheradmand, T. Kan, J. He, V. Strezov, R. Zou, A. Yu, Y. Jiang, Tunable syngas production from biomass: synergistic effect of steam, Ni–CaO catalyst, and biochar, *Energy* 254 (2022), 123904, <https://doi.org/10.1016/j.energy.2022.123904>.
- [14] G. Kong, X. Zhang, K. Wang, L. Zhou, J. Wang, X. Zhang, L. Han, Tunable H_2/CO syngas production from co-gasification integrated with steam reforming of sewage sludge and agricultural biomass: a experimental study, *Appl. Energy* 342 (2023), 121195, <https://doi.org/10.1016/j.apenergy.2023.121195>.
- [15] L. Ruivo, T. Silva, D. Neves, L. Tarelho, J. Frade, Thermodynamic guidelines for improved operation of iron-based catalysts in gasification of biomass, *Energy* 268 (2023), 126641, <https://doi.org/10.1016/j.energy.2023.126641>.
- [16] J. Seo, H. Kim, S. Jeon, S. Valizadeh, Y. Khani, B.H. Jeon, G.H. Rhee, W.H. Chen, S. Lam, M.A. Khan, Y.K. Park, Thermocatalytic conversion of wood-plastic composite over HZSM-5 catalysts, *Bioresour. Technol.* 373 (2023), 128702, <https://doi.org/10.1016/j.biortech.2023.128702>.
- [17] R. Zou, Z. Chen, L. Zhong, W. Yang, T. Li, J. Gan, Y. Yang, Z. Chen, H. Lai, X. Li, C. Liu, S. Admassie, E.I. Iwuoha, J. Lu, X. Peng, Nanocellulose-assisted molecularly engineering of nitrogen deficient graphitic carbon nitride for selective biomass photo-oxidation, *Adv. Funct. Mater.* 33 (2023), <https://doi.org/10.1002/adfm.202301311>.
- [18] H. Zhao, J. Liu, N. Zhong, S. Larter, Y. Li, M.G. Kibria, B.L. Su, Z. Chen, J. Hu, Biomass photoreforming for hydrogen and value-added chemicals co-production on hierarchically porous photocatalysts, *Adv. Energy Mater.* 13 (2023), <https://doi.org/10.1002/aenm.202300257>.
- [19] Y. Yan, X. Yu, C. Shao, Y. Hu, W. Huang, Y. Li, Atomistic structural engineering of conjugated microporous polymers promotes photocatalytic biomass valorization, *Adv. Funct. Mater.* (2023), <https://doi.org/10.1002/adfm.202304604>.
- [20] C. Shi, F. Kang, Y. Zhu, M. Teng, J. Shi, H. Qi, Z. Huang, C. Si, F. Jiang, J. Hu, Photoreforming lignocellulosic biomass for hydrogen production: optimized design of photocatalyst and photocatalytic system, *Chem. Eng. J.* 452 (2023), 138980, <https://doi.org/10.1016/j.cej.2022.138980>.
- [21] H. Zhang, H. Zhao, S. Zhai, R. Zhao, J. Wang, X. Cheng, H.S. Shiran, S. Larter, M. G. Kibria, J. Hu, Electron-enriched Lewis acid-base sites on red carbon nitride for simultaneous hydrogen production and glucose isomerization, *Appl. Catal. B-Environ.* 316 (2022), 121647, <https://doi.org/10.1016/j.apcatb.2022.121647>.
- [22] Y. Choi, R. Mehrotra, S.H. Lee, T.V.T. Nguyen, I. Lee, J. Kim, H.Y. Yang, H. Oh, H. Kim, J.W. Lee, Y.H. Kim, S.Y. Jang, J.W. Jang, J. Ryu, Bias-free solar hydrogen production at 19.8 mA cm^{-2} using perovskite photocathode and lignocellulosic biomass, *Nat. Commun.* 13 (2022) 5709, <https://doi.org/10.1038/s41467-022-33435-1>.
- [23] Z. Zhang, M. Wang, H. Zhou, F. Wang, Surface sulfate ion on CdS catalyst enhances syngas generation from biopolymers, *J. Am. Chem. Soc.* 143 (2021) 6533–6541, <https://doi.org/10.1021/jacs.1c00830>.

- [24] L. Wang, R. Tang, A. Kheradmand, Y. Jiang, H. Wang, W. Yang, Z. Chen, X. Zhong, S.P. Ringer, X. Liao, W. Liang, J. Huang, Enhanced solar-driven benzaldehyde oxidation with simultaneous hydrogen production on Pt single-atom catalyst, *Appl. Catal. B-Environ.* 284 (2021), 119759, <https://doi.org/10.1016/j.apcatb.2020.119759>.
- [25] C.Y. Toe, C. Tsounis, J. Zhang, H. Masood, D. Gunawan, J. Scott, R. Amal, Advancing photoreforming of organics: highlights on photocatalyst and system designs for selective oxidation reactions, *Energy Environ. Sci.* 14 (2021) 1140–1175, <https://doi.org/10.1039/d0ee03116j>.
- [26] Y. Li, R. He, P. Han, B. Hou, S. Peng, C. Ouyang, A new concept: volume photocatalysis for efficient H₂ generation – using low polymeric carbon nitride as an example, *Appl. Catal. B-Environ.* 279 (2020), 119379, <https://doi.org/10.1016/j.apcatb.2020.119379>.
- [27] D. Mateo, A. García-Mulero, J. Albero, H. García, N-doped defective graphene decorated by strontium titanate as efficient photocatalyst for overall water splitting, *Appl. Catal. B-Environ.* 252 (2019) 111–119, <https://doi.org/10.1016/j.apcatb.2019.04.011>.
- [28] Y. Choi, S. Choi, I. Lee, T.V.T. Nguyen, S. Bae, Y.H. Kim, J. Ryu, S. Park, J. Ryu, Solar biomass reforming and hydrogen production with earth-abundant Si-based photocatalysts, *Adv. Mater.* (2023), e2301576, <https://doi.org/10.1002/adma.202301576>.
- [29] Y. Xu, L. Wang, Z. Shi, N. Su, C. Li, Y. Huang, N. Huang, Y. Deng, H. Li, T. Ma, X. Y. Kong, W. Lin, Y. Zhou, L. Ye, Peroxide-mediated selective conversion of biomass polysaccharides over high entropy sulfides via solar energy catalysis, *Energy Environ. Sci.* 16 (2023) 1531–1539, <https://doi.org/10.1039/d2ee03357g>.
- [30] Q. Cheng, Y.-J. Yuan, R. Tang, Q.-Y. Liu, L. Bao, P. Wang, J. Zhong, Z. Zhao, Z.-T. Yu, Z. Zou, Rapid hydroxyl radical generation on (001)-facet-exposed ultrathin anatase TiO₂ nanosheets for enhanced photocatalytic lignocellulose-to-H₂ conversion, *ACS Catal.* 12 (2022) 2118–2125, <https://doi.org/10.1021/acscatal.1c05713>.
- [31] H. Zhao, C.-F. Li, X. Yu, N. Zhong, Z.-Y. Hu, Y. Li, S. Larter, M.G. Kibria, J. Hu, Mechanistic understanding of cellulose β -1,4-glycosidic cleavage via photocatalysis, *Appl. Catal. B-Environ.* 302 (2022), 120872, <https://doi.org/10.1016/j.apcatb.2021.120872>.
- [32] V.-C. Nguyen, D.B. Nimbalkar, L.D. Nam, Y.-L. Lee, H. Teng, Photocatalytic cellulose reforming for H₂ and formate production by using graphene oxide-dot catalysts, *ACS Catal.* 11 (2021) 4955–4967, <https://doi.org/10.1021/acscatal.1c00217>.
- [33] D.W. Wakerley, M.F. Kuehnle, K.L. Orchard, K.H. Ly, T.E. Rosser, E. Reisner, Solar-driven reforming of lignocellulose to H₂ with a CdS/CdO_x photocatalyst, *Nat. Energy* 2 (2017) 17021, <https://doi.org/10.1038/nenergy.2017.21>.
- [34] D. Aboagye, R. Djellabi, F. Medina, S. Contreras, Radical-mediated photocatalysis for lignocellulosic biomass conversion into value-added chemicals and hydrogen: facts, opportunities and challenges, *Angew. Chem. -Int. Ed.* (2023), e202301909, <https://doi.org/10.1002/anie.202301909>.
- [35] U. Nwosu, A. Wang, B. Palma, H. Zhao, M.A. Khan, M. Kibria, J. Hu, Selective biomass photoreforming for valuable chemicals and fuels: a critical review, *Renew. Sust. Energ. Rev.* 148 (2021), 111266, <https://doi.org/10.1016/j.rser.2021.111266>.
- [36] X. Wu, N. Luo, S. Xie, H. Zhang, Q. Zhang, F. Wang, Y. Wang, Photocatalytic transformations of lignocellulosic biomass into chemicals, *Chem. Soc. Rev.* 49 (2020) 6198–6223, <https://doi.org/10.1039/d0cs00314j>.
- [37] C. Zhou, J. Wu, Y. Li, H. Cao, Highly efficient UV-visible-infrared light-driven photothermocatalytic steam biomass reforming to H₂ on Ni nanoparticles loaded on mesoporous silica, *Energy Environ. Sci.* 15 (2022) 3041–3050, <https://doi.org/10.1039/d2ee00816e>.
- [38] H. Shi, C. Tian, X. Liu, N. Sun, C. Song, H. Zheng, K. Gao, X. Wang, Z. Jiang, Y. Xuan, Y. Ding, Ni-phyllosilicate nanotubes coated by CeO₂ for ultra-efficiency of 36.9% and near-limit CO₂ conversion in solar-driven conversion of CO₂-to-fuel, *Chem. Eng. J.* 454 (2023), 140063, <https://doi.org/10.1016/j.cej.2022.140063>.
- [39] Q. Hu, Y. Li, J. Wu, Y. Hu, H. Cao, Y. Yang, Extraordinary catalytic performance of nickel half-metal clusters for light-driven dry reforming of methane, *Adv. Energy Mater.* 13 (2023), <https://doi.org/10.1002/aenm.202300071>.
- [40] L. Zhou, J.M.P. Martirez, J. Finzel, C. Zhang, D.F. Swearer, S. Tian, H. Robatjazi, M. Lou, L. Dong, L. Henderson, P. Christopher, E.A. Carter, P. Nordlander, N. Halas, Light-driven methane dry reforming with single atomic site antenna-reactor plasmonic photocatalysts, *Nat. Energy* 5 (2020) 61–70, <https://doi.org/10.1038/s41560-019-0517-9>.
- [41] G. Zhang, S. Wu, Y. Li, Q. Zhang, Significant improvement in activity, durability, and light-to-fuel efficiency of Ni nanoparticles by La₂O₃ cluster modification for photothermocatalytic CO₂ reduction, *Appl. Catal. B-Environ.* 264 (2020), 118544, <https://doi.org/10.1016/j.apcatb.2019.118544>.
- [42] S. Wu, Y. Li, Q. Zhang, Q. Hu, J. Wu, C. Zhou, X. Zhao, Formation of NiCo alloy nanoparticles on Co doped Al₂O₃ leads to high fuel production rate, large light-to-fuel efficiency, and excellent durability for photothermocatalytic CO₂ reduction, *Adv. Energy Mater.* 10 (2020), 2002602, <https://doi.org/10.1002/aenm.202002602>.
- [43] S. Wu, Y. Li, Q. Zhang, Z. Jiang, Y. Yang, J. Wu, X. Zhao, High light-to-fuel efficiency and CO₂ reduction rates achieved on a unique nanocomposite of Co/Co doped Al₂O₃ nanosheets with UV-vis-IR irradiation, *Energy Environ. Sci.* 12 (2019) 2581–2590, <https://doi.org/10.1039/c9ee01484e>.
- [44] Q. Zhang, M. Mao, Y. Li, Y. Yang, H. Huang, Z. Jiang, Q. Hu, S. Wu, X. Zhao, Novel photoactivation promoted light-driven CO₂ reduction by CH₄ on Ni/CeO₂ nanocomposite with high light-to-fuel efficiency and enhanced stability, *Appl. Catal. B-Environ.* 239 (2018) 555–564, <https://doi.org/10.1016/j.apcatb.2018.08.052>.
- [45] H. Huang, M. Mao, Q. Zhang, Y. Li, J. Bai, Y. Yang, M. Zeng, X. Zhao, Solar-light-driven CO₂ reduction by CH₄ on silica-cluster-modified Ni nanocrystals with a high solar-to-fuel efficiency and excellent durability, *Adv. Energy Mater.* 8 (2018), 1702472, <https://doi.org/10.1002/aenm.201702472>.
- [46] M. Zhang, H. Gao, J. Chen, E.A. Elimian, H. Jia, Calcination engineering of urchin-like CoO_x-CN catalysts to enhance photothermocatalytic oxidation of toluene via photo-/thermo- coupling effect, *Appl. Catal. B-Environ.* 307 (2022), 121208, <https://doi.org/10.1016/j.apcatb.2022.121208>.
- [47] H. Gao, X. Lv, M. Zhang, Q. Li, J. Chen, Z. Hu, H. Jia, Copper-cobalt strong interaction to improve photothermocatalytic performance of cobalt-copper oxides supported on copper foam for toluene oxidation, *Chem. Eng. J.* 434 (2022), 134618, <https://doi.org/10.1016/j.cej.2022.134618>.
- [48] E.A. Elimian, M. Zhang, J. Chen, H. Jia, Y. Sun, J. He, Construction of Pt-mTiO₂/USY multifunctional catalyst enriched with oxygen vacancies for the enhanced light-driven photothermocatalytic degradation of toluene, *Appl. Catal. B-Environ.* 307 (2022), 121203, <https://doi.org/10.1016/j.apcatb.2022.121203>.
- [49] S. Ning, H. Ou, Y. Li, C. Lv, S. Wang, D. Wang, J. Ye, Co⁰-Co⁶⁺ interface double-site-mediated C-C coupling for the photothermal conversion of CO₂ into light olefins, *Angew. Chem. -Int. Ed.* 62 (2023), e202302253, <https://doi.org/10.1002/anie.202302253>.
- [50] S. Ning, Y. Sun, S. Ouyang, Y. Qi, J. Ye, Solar light-induced injection of hot electrons and photocarriers for synergistically enhanced photothermocatalysis over Cu/Co/SrTiO₃ catalyst towards boosting CO hydrogenation into C₂-C₄ hydrocarbons, *Appl. Catal. B-Environ.* 310 (2022), 121063, <https://doi.org/10.1016/j.apcatb.2022.121063>.
- [51] Q. Hao, Z. Li, Y. Shi, R. Li, Y. Li, S. Ouyang, H. Yuan, T. Zhang, Boron-doped CN supported metallic Co catalysts with interfacial electron transfer for enhanced photothermal CO hydrogenation, *Nano Energy* 102 (2022), 107723, <https://doi.org/10.1016/j.nanoen.2022.107723>.
- [52] J. Zhao, Y. Bai, X. Liang, T. Wang, C. Wang, Photothermal catalytic CO₂ hydrogenation over molybdenum carbides: crystal structure and photothermocatalytic synergistic effects, *J. CO₂ Util.* 49 (2021), 101562, <https://doi.org/10.1016/j.jcou.2021.101562>.
- [53] Y. Tong, L. Song, S. Ning, S. Ouyang, J. Ye, Photocarriers-enhanced photothermocatalysis of water-gas shift reaction under H₂-rich and low-temperature condition over CeO₂/Cu_{1-x}Mn_{1-x}O₄ catalyst, *Appl. Catal. B-Environ.* 298 (2021), 120551, <https://doi.org/10.1016/j.apcatb.2021.120551>.
- [54] L. Zhao, Y. Qi, L. Song, S. Ning, S. Ouyang, H. Xu, J. Ye, Solar-driven water-gas shift reaction over CuO_x/Al₂O₃ with 1.1% of light-to-energy storage, *Angew. Chem. Int. Ed.* 58 (2019) 7708–7712, <https://doi.org/10.1002/anie.201902324>.