

ESTIMASI POSE TIGA DIMENSI DARI GAMBAR MONOKULER MENGGUNAKAN DEEP NEURAL NETWORK

Nama : Denilson

NPM : 51416815

Jurusan : Teknik Informatika

Pembimbing : Dr. Dharmayanti, ST., MMSi

LATAR BELAKANG

Gunadarma University

Teknologi Digital

Menghasilkan Data/Jejak Digital

Data Digital Bersifat Laten : Makna tersebunyi; diolah secara khusus

Hilangnya Informasi Posisi Terhadap Kamera Monokuler

Rekronstruksi Ulang dengan Sebuah Fungsi Pemetaan

Estimasi Pose Tiga Dimensi

GAMBAR MONOKULER POSE 3D

More Information
GUNADARMA UNIVERSITY
Cina Depok Indonesia

RUMUSAN MASALAH

OpenPose

Cao et al. OpenPose: Realtime multi-person 2d pose estimation using part affinity fields.IEEE Transactions on Pattern Analysis and Machine Intelligence.

BATASAN MASALAH

- Pose 2D dan Pose 3D berada koordinat lokal
- Area pose tidak bersifat grounded
- Setiap pose menggunakan posisi titik pinggang sebagai titik nol atau tengah

TUJUAN PENELITIAN

Aplikasi:

- Estimasi titik kunci pose tiga dimensi dari sebuah citra visual monokuler / datar.
- Fungsi pemetaan / estimasi menggunakan neural network
- Visualisasi

TEOREMA PENAKSIRAN UNIVERSAL

- Sebuah model jaringan feed-forward dapat membentuk fungsi apapun secara subjektif.
- Sebuah model jaringan saraf tiruan dibentuk dari serangkaian lapisan yang didalamnya terdapat deretan sel saraf atau neuron
- Rangkaian lapisan panjang dapat memetakan fungsi yang lebih sulit

Kratsios, A. (2019). The Universal Approximation Property: Characterization s, Existence, and a Canonical Topology for Deep-Learning. arXiv e-prints, page arXiv:1910.03344.

RESIDUAL NETWORK

He, K., Zhang, X., Ren, S., dan Sun, J. (2015). Deep Residual Learning for Image Recognition.arXiv e-prints, page arXiv:1512.03385.

DATA PELATIHAN

Ionescu et al. Human3.6m: Large scale datasets and predictive methods

for 3d human sensing in natural environments

- 0 Pinggang
- 1 Paha Kanan
- 2 Lutut Kanan
- 3 Pergelangan Kaki Kanan
- 4 Paha Kiri
- 5 Lutut Kiri
- 6 Pergelangan Kaki Kiri
- 7 Leher
- 8 Bahu Kanan
- 9 Siku Kanan
- 10 Pergelangan Tangan Kanan
- 11 Bahu Kiri
- 12 Siku Kiri
- 13 Pergelangan Tangan Kiri
- 14 Kepala

Bentuk Vektor Datar:

2D: [PGx, PGy, PKAx, PKAy, ...]

- 36 elemen

3D: [PGx, PGy, PGz, PKAx, PKAy, PKAz, ...]

48 elemen

Terdapat 2110396 pasang titik kunci.

75% => Pelatihan

25% => Validasi

RESIDUAL LINEAR

MODEL NEURAL NETWORK

HASIL PELATIHAN

ANALISIS INPUT

Gunadarma University

More Information
GUNADARMA UNIVERSITY

Jl. Margonda Raya 100, Pondok Cina - Depok, Indonesia
Telp. (+62-21) 7888 1112

UJI COBA

ANALISIS

ANALISIS

ANALISIS

PENUTUP

KESIMPULAN:

- Aplikasi estimasi pose tiga dimensi menggunakan model deep neural network berhasil dilatih
- Hasil rata-rata kesalahan akhir 0.0437 (MSE)

PENELITIAN SELANJUTNYA:

- Menggunakan model yang lebih kompleks
- Data dengan domain yang lebih luas seperti estimasi pose pada hewan tertentu.

