Lecture 3: N-gram Language Modelling

First-Year Project 4: Natural Language Processing

Christian Hardmeier

26 April 2022

IT UNIVERSITY OF COPENHAGEN

Language Modelling

Language models learn a probability distribution over sequences of words.

$$p(w_1, w_2, \ldots, w_N)$$

- ► Encode properties of a certain type of language.
- ▶ Distinguish plausible from less plausible word sequences.
- ► Generate plausible-sounding word sequences.
- Learn generic relations between words.
- Often used as components in other models:
 - ► ASR: Acoustic model + Language model
 - Statistical MT: Translation model + Language model

IT UNIVERSITY OF COPENHAGEN

Chain rule of probability

Star light , star bright , first star I see tonight !

$$p(w_1, w_2, \dots, w_N) = p(w_1) \cdot p(w_2|w_1) \cdot p(w_3|w_2, w_1) \cdot p(w_4|w_3, w_2, w_1) \cdots p(w_N|w_{N-1}, \dots, w_2, w_1)$$

$$= p(w_1) \prod_{i=1}^{N} p(w_i|w_1, \dots, w_{i-1})$$

- ▶ We need to estimate values for all these probabilities, for all possible instantiations of w_1, \ldots, w_N .
- ► That's a lot of parameters!

Independence assumptions

- ▶ Recall that natural language has strong *local* dependencies.
 - the strongly favours a following noun (or adjective)
 - After a full stop, we're likely to see a word starting with a capital letter.
- Long-range dependencies do exist and are important, but not as strong (and more difficult to model).
- We can make independence assumptions to simplify the model.

IT UNIVERSITY OF COPENHAGEN

Markov assumption

Markov assumption:

Each element of the sequence depends only on the immediately preceding element and is *independent* of the previous history.

$$p(w_i|w_1,\ldots,w_{i-1}) \approx p(w_i|w_{i-1})$$

► k-th order Markov assumption:

Each element of the sequence depends only on the k immediately preceding elements.

$$p(w_i|w_1,...,w_{i-1}) \approx p(w_i|w_{i-k},...,w_{i-1})$$

► Note: These are approximations!

IT UNIVERSITY OF COPENHAGEN

2nd order Markov assumption

Star light, star bright, first star I see tonight!

$$p(w_1, w_2, \dots, w_N) \approx p(w_1) \cdot p(w_2|w_1) \cdot p(w_3|w_2, w_1) \cdot p(w_4|w_3, w_2) \cdots p(w_N|w_{N-2}, w_{N-1})$$

$$= p(w_1) \prod_{i=1}^N p(w_i|w_{i-2}, w_{i-1})$$

Model size

- ► Let *V* be the vocabulary size and *N* be the maximum sentence length.
- ▶ Each w_i can be any vocabulary item $\rightarrow V$ choices.
- ► For a model without independence assumptions,
 - we need to estimate $p(w_N|w_1, w_2, \dots, w_{N-1})$.
 - ightharpoonup up to V^N model parameters
- ► For a *k*-th order Markov model,
 - we need to estimate $p(w_{k+1}|w_1,\ldots,w_k)$.
 - ightharpoonup up to V^{k+1} model parameters
- In a realistic language model,
 - $ightharpoonup V pprox 10^4 ext{ to } 10^5$
 - $ightharpoonup N \approx 30 \text{ to } 80$
 - ightharpoonup k pprox 2 to 5

IT UNIVERSITY OF COPENHAGEN

Sequence padding

- ▶ Is this a good complete sentence???
 - Star light, star bright, first star I
- ▶ Is this a good start of a sentence???
 - , star bright ,
- Add special symbols to mark the start and end of each sentence!
 - ► ⟨s⟩ or BOS for *beginning of sentence*
 - ► ⟨/s⟩ or EOS for end of sentence
 - $\langle s \rangle$ Star light, star bright, first star I see tonight! $\langle s \rangle$

IT UNIVERSITY OF COPENHAGEN

N-gram language model

- ▶ N-gram models are Markov models for language modelling.
- ▶ N-gram: sequence of *n* tokens in a text.
- ► 1-gram = unigram; 2-gram = bigram; 3-gram = trigram
- $\langle s \rangle$ Star light , star bright , first star I see tonight ! $\langle /s \rangle$ $\langle s \rangle$ Star light

```
Star light ,
light , star
, star bright
star bright ,
bright , first
, first star
first star I
star I see
```

IT UNIVERSITY OF COPENHAGEN

Scoring sentences

- N-gram models estimate probabilities.
- One small factor per token in the sequence:
 - ► Numbers become *really* small very quickly.
 - ▶ Numerical precision suffers the closer you get to zero.
 - ► At some point, your score will get rounded to zero.
- ► Use *log-probabilities* instead!
 - Much better numerical stability.
 - ► Multiplication becomes addition.
 - ▶ Do this *whenever* you use probabilities!

IT UNIVERSITY OF COPENHAGEN

Perplexity

➤ To compare language models, it's also common to use perplexity:

$$PPL = p(w_1, w_2, \dots, w_N)^{-\frac{1}{N}}$$

- Perplexity is an indication of how "confused" the language model is: How many continuations does it consider plausible on average per step?
- Lower perplexity is better!
- Important note: Perplexity values are only comparable if they refer to the same vocabulary!

IT UNIVERSITY OF COPENHAGEN

Parameter Estimation/ Model Training

Maximum-likelihood estimation

Simplest method to estimate a conditional probability: Count how often the target event occurs in the context conditioned on.

$$p(w_3|w_1, w_2) = \frac{\text{\#tokens}(w_1 w_2 w_3)}{\text{\#tokens}(w_1 w_2 \bullet)}$$

Example:

 $\langle s \rangle$ Star light , star bright , first star I see tonight ! $\langle /s \rangle$

$$p(\text{bright}|\text{star}) = \frac{\#\text{tokens}(\text{star bright})}{\#\text{tokens}(\text{star } \bullet)} = \frac{1}{2} = 0.5$$

IT UNIVERSITY OF COPENHAGEN

Problems with maximum likelihood estimation

Any token that has not been seen in a particular context will have a count of 0, and therefore a probability of zero.

(s) I wish I might have the wish I wish tonight! (/s)

$$p(I|\text{wish}) = \frac{\text{\#tokens}(\text{wish I})}{\text{\#tokens}(\text{wish } ullet)} = \frac{2}{3} = 0.667$$

Now score this (assuming a bigram model):

I wish you might have the wish you wish tonight!

$$p(w_1, \dots, w_N) = p(w_1) \prod_{i=1}^{N} p(w_i|w_{i-1})$$

IT UNIVERSITY OF COPENHAGEN

Problems with maximum likelihood estimation

Any token that has not been seen in a particular context will have a count of 0, and therefore a probability of zero.

 $\langle s \rangle$ I wish I might have the wish I wish tonight ! $\langle /s \rangle$

$$p(\mathbf{I}|\mathbf{wish}) = \frac{\# \mathrm{tokens}(\mathbf{wish}\; \mathbf{I})}{\# \mathrm{tokens}(\mathbf{wish}\; \bullet)} = \frac{2}{3} = 0.667$$

Now score this (assuming a bigram model):

I wish you might have the wish you wish tonight!

$$p(\mathsf{you}|\mathsf{wish}) = \frac{\# \mathsf{tokens}(\mathsf{wish}\;\mathsf{you})}{\# \mathsf{tokens}(\mathsf{wish}\;\bullet)} = \frac{0}{3} = 0$$

Problems with maximum likelihood estimation

- MLE underestimates the probability of n-grams not seen in the training data.
- MLE overestimates the probability of n-grams seen only a few times.

$$p(\mathsf{the}|\mathsf{have}) = \frac{\#\mathsf{tokens}(\mathsf{have}\;\mathsf{the})}{\#\mathsf{tokens}(\mathsf{have}\;\bullet)} = \frac{1}{1} = 1$$

- ▶ We get good estimates of very frequent tokens.
- ▶ But Zipf's law says most tokens are not frequent!

IT UNIVERSITY OF COPENHAGEN

Add-one estimate (Laplace smoothing)

- Add one to each count to avoid zero counts.
- ▶ If we add one to the count of each word in the nominator, we need to add |V| (the vocabulary size) to the denominator:

$$p(w_3|w_1, w_2) = \frac{\text{\#tokens}(w_1 w_2 w_3) + 1}{\sum_{w \in V} (\text{\#tokens}(w_1 w_2 w) + 1)}$$
$$= \frac{\text{\#tokens}(w_1 w_2 w_3) + 1}{\text{\#tokens}(w_1 w_2 \bullet) + |V|}$$

▶ The probability of seeing *something new* after the context w_1w_2 is

$$p(\mathsf{new}|w_1, w_2) = \frac{|V| - \#\mathsf{types}(w_1 w_2 \bullet)}{\#\mathsf{tokens}(w_1 w_2 \bullet) + |V|}$$

IT UNIVERSITY OF COPENHAGEN

Too much probability mass is moved

Estimated bigram frequencies from AP data

- 22M tokens training
- ▶ 22M tokens test

Add-one smoothing significantly overestimates unseen events.

$r = f_{MLE}$	f _{emp}	f _{add-1}
0	0.000027	0.000137
1	0.448	0.000274
2	1.25	0.000411
3	2.24	0.000548
4	3.23	0.000685
5	4.21	0.000822
6	5.23	0.000959
7	6.21	0.00109
8	7.21	0.00123
9	8.26	0.00137

 $\label{lem:http://www.cs.cornell.edu/courses/cs6740/2008fa/lectures/smoothing2+backoff.pdf Data from Church and Gale, Computer Speech and Language 5 (1991) 19–54$

Smoothing

Various *smoothing* methods produce better estimates of language model probabilities.

General principle:

- Take away probability mass from the n-grams we have seen by discounting their estimates.
- Assign this probability mass to n-grams we have not seen.
- ► The total probability still sums to 1 for each context!

$$\sum_{\bullet} p(\bullet|w_1,\ldots,w_k) = 1$$

IT UNIVERSITY OF COPENHAGEN

Backoff models

What to do when an actual unseen event occurs?

- Discounting sets aside probability mass for unseen event, but this is for the *totality* of such events, not for an *individual* one.
- ► We may not have enough data for a good trigram model but perhaps it's enough for a bigram model?
- A backoff model uses a lower-order n-gram whenever the higher order isn't available.

I wish I may
$$\rightarrow$$
 wish I may \rightarrow I may \rightarrow may

If we haven't even seen the unigram, we assume a uniform distribution.

IT UNIVERSITY OF COPENHAGEN

Interpolated models

► An **interpolated model** always uses lower-order n-grams and combines them with the higher-order estimates.

$$p'(w_3|w_1, w_2) = \lambda_1 p(w_3|w_1, w_2) + \lambda_2 p(w_3|w_2) + \lambda_3 p(w_3)$$

The λ s must sum to one.

► Recursive formulation:

$$p'(w_{k+1}|w_1,...,w_k) = \lambda p_{\mathsf{ML}}(w_{k+1}|w_1,...,w_k) + (1-\lambda)p'(w_{k+1}|w_2,...,w_k)$$

Note: λ will be different for each $w_{k+1}|w_1,\ldots,w_k$.

λ can be seen as the probability of choosing between the higher-order model and the backoff distribution.

Witten-Bell smoothing

- ▶ Witten-Bell smoothing treats "seeing a new word" as an event in its own right, so we can model its probability explicitly.
- In training, the "new word" event occurs as many times as we have different words.

$$p(\mathsf{new}|w_1, w_2) = \frac{\#\mathsf{types}(w_1w_2 \bullet)}{\#\mathsf{tokens}(w_1w_2 \bullet) + \#\mathsf{types}(w_1w_2 \bullet)}$$

▶ In the interpolated model, this probability corresponds to the weight $(1 - \lambda)$:

$$p'(w_{k+1}|w_1,...,w_k) = \lambda p_{\mathsf{ML}}(w_{k+1}|w_1,...,w_k) + (1-\lambda)p'(w_{k+1}|w_2,...,w_k)$$

IT UNIVERSITY OF COPENHAGEN

Absolute discounting

▶ Subtract a constant discount (0 < d < 1)from the nominator of the counts:

$$p(w_3|w_1, w_2) = \frac{\text{\#tokens}(w_1 w_2 w_3) - d}{\text{\#tokens}(w_1 w_2 \bullet)}$$

- This will have a large effect on small counts, but a small effect on large counts.
- ▶ d can be estimated, e.g. from held-out data.

IT UNIVERSITY OF COPENHAGEN

Absolute discounting

$r = f_{MLE}$	f _{emp}	f _{add-1}
0	0.000027	0.000137
1	0.448	0.000274
2	1.25	0.000411
3	2.24	0.000548
4	3.23	0.000685
5	4.21	0.000822
6	5.23	0.000959
7	6.21	0.00109
8	7.21	0.00123
9	8.26	0.00137

Kneser-Ney smoothing

I can't see without my reading _____

- ▶ The continuation *glasses* is far more likely than *Kong*.
- ▶ But in an English new corpus, *Kong* is more frequent than *glasses*.
- ► Kong only occurs in specific contexts (mostly Hong Kong).
 - We only expect to see Kong in a bigram we know.
 - ▶ We *don't* expect *Kong* to occur in a context we don't know.
 - Contexts we don't know correspond to backoff situations.

IT UNIVERSITY OF COPENHAGEN

(Improved) Kneser-Ney smoothing

- ► Kneser-Ney smoothing uses different distributions for the higher-order and the backoff distributions.
- ► For the higher-order distribution, it uses absolute discounting.
 - Discounts estimated separately for counts 1 and 2.
- ► Backoff distributions are estimated based on the *number of* contexts a word occurs in:

$$p_{\mathsf{cont}}(w) = \frac{\# \mathsf{types}(\bullet \, w)}{\# \mathsf{types}(\bullet \, \bullet)}$$

IT UNIVERSITY OF COPENHAGEN

Smoothing methods

► Laplace smoothing

- Avoids 0 probabilities, very easy to implement.
- Performs worse than other methods.

► (Improved) Kneser-Ney smoothing

- One of the best-performing smoothing methods for natural language.
- Based on absolute discounting, with clever handling of backoff distribution.
- Makes specific assumptions about the distribution of infrequent tokens that work well for natural language.
- For sequences with few infrequent tokens, estimation may fail!

► Witten-Bell smoothing

- Good method for sequences that don't meet the Kneser-Ney assumptions.
- Uses the number of different continuations of an n-gram to estimate how likely yet another new continuation will be.

IT UNIVERSITY OF COPENHAGEN

N-gram modelling tools

- ► NLTK
 - ► The n-gram library in nltk is a teaching tool.
 - You would *not* use it for real projects.
- ► KenLM https://kheafield.com/code/kenlm/
 - Very fast and scalable implementation.
 - Only supports one smoothing method (Kneser-Ney).
 - Free software.
- ► SRILM http://www.speech.sri.com/projects/srilm/
 - Very complete and well-documented package.
 - Supports many different methods and options.
 - ▶ Non-free, free of charge for many non-profit use cases.
 - ► Commercial use costs money.

IT UNIVERSITY OF COPENHAGEN

Exercises

- Experimentation with n-gram models.
- ► Train models for
 - ▶ different domains (Tweets and News),
 - ▶ different n-gram orders, and
 - different smoothing techniques.

IT UNIVERSITY OF COPENHAGEN