

Credit Card Default Prediction

Insight Report for XYZ Bank

Prepared by: Abdul Saim Khan, Data Analyst

Client: XYZ Bank

Date: October 2025

Project Overview

XYZBank seeks to reduce loan and credit losses by identifying customers likely to default on credit card payments within the next month4before missed payments occur.

Current Challenge

Defaults detected only after missed payments, resulting in revenue loss, elevated collection costs, and cash flow disruption.

Strategic Objective

Use historical data to predict defaulters in advance, enabling early payment reminders, risk-based credit limit adjustments, and enhanced overall risk management.

Data Overview

Dataset Specifications

Source: UCI Credit Card Default

Dataset (Taiwan)

Record Count: 30,000

customer profiles

Target Variable: DEFAULT (1 =

Default, O = No Default)

Key Features

- **LIMIT_BAL:** Customer credit limit
- **AGE**: Customer age
- BILL_AMT1: Current month bill
- PAY_AMT1: Last month payment
- PAY_0: Payment delay (months)

Key Insights from Data Analysis

Age Profile Risk

Customers under 30 are 1.4× more likely to default than older demographics. Consider smaller credit limits or co-signer requirements.

Payment Behavior

Lowpayment-to-billratio (<40%) indicates poor repayment capacity. These customers warrant early payment reminders and enhanced monitoring.

Payment History

Three or more pastpayment delays is a strong predictive indicator.

High-risk group requiring credit limit reduction or additional collateral.

Power BI Visualization Approach

Interactivedashboardscombiningmultiplevisualizationtechniquestosurfaceactionable credit risk insights across customer segments.

Comparative Analysis

Bar and column charts comparing default rates by age, education, and payment behavior segments.

Trend Monitoring

Line charts tracking monthly payment patterns and default trends across the six-month observation window.

Segment Distribution

Pie and donut charts
displaying category
proportions including
marital status, education, and
payment behavior
classifications.

Key Metrics

KPI cards highlighting total customers, overall default rate, average credit limit, and average customer age for quick reference.

Dashboard

Default Rate Analysis

Python Analytics Results: Ageand Payment Behavior Insights

25%

Highest Risk

Younger customers (20-30 years) show peak default rates.

3X

Payment Ratio Impact

Customers paying <40% of bills are significantly more likely to default.

78%
Model Accuracy

Predictive model achieves approximately 78% accuracy in default identification.

Business Recommendations

Strategic interventions across credit policy,customer engagement,and collections to reduce default rates and optimize risk management.

Credit Policy

Reduce credit limits for customers with repeated payment delays or low payment-to-bill ratios.

Expected Impact: 15320% reduction in credit losses

Customer Engagement

Deploy SMS/email payment reminders 3 days before due dates for high-risk customer segments.

Expected Impact: -10% increase in on-time payments

Collections Optimization

Prioritize collection calls using predicted defaulter list for efficient resource allocation.

Expected Impact: Improved recovery rates and efficiency

Product Innovation

Offer EMI-based repayment plans for high-risk customers to improve affordability.

Expected Impact Higher customer retention and reduced defaults

Model Deployment Plan

Five-step implementation road mapenablingreal-timedefault prediction and continuous monitoring.

Export Model

Serialize trained model (model.pkl) from Python environment.

Dashboard Integration

Integrate model into bank's CRM or analytics dashboard for accessibility.

Automated Updates

Configure auto-refresh predictions every billing cycle.

Data Storage

Store predictions in database for audit trail and monitoring.

Real-Time Capability

Enable seamless prediction updates as new customer data arrives monthly.

Limitations & Future Enhancement

Currentmodelconstraintsandrecommendednextstepstoimprovepredictiveaccuracy and operational utility.

Current Limitations

- Only 5 feature used
- Model is logical regression
- Accuracy < 85%
- Dataset static

Recommended Enhancements

- Add more behaviour data (income, transections)
- Test with Random Forest for better accuracy
- Optimize sample data for balance
- Connect to live pipeline fir real_time prediction

Executive Summary

78% Predictive Accuracy

Successfully identified customers likely to defaulton credit card payments with in one month using historical credit data and advanced analytics.

Risk Reduction

Up to 20% potential reduction in bad debt exposure through proactive intervention.

Early Detection

High-risk customer profiles identified in advance before payment disruption occurs.

Strategic Optimization

Enhanced credit policies and collections strategies based on predictive insights.