Homework3

2022年12月9日 上午 11:09

1. Find the projection of the vector **v** onto the subspace S.

S=span{
$$[0 \ 0 \ -1 \ 1]^T$$
, $[0 \ 1 \ 1 \ 1]^T$ }
v= $[1 \ 0 \ 1 \ 1]^T$

2. Find the least squares solution of the system **Ax=b**.

$$\mathbf{A}_{3\times2}$$
=[2 1;1 2;1 1], \mathbf{b} =[2 0 -3]^T
 $\mathbf{B}_{4\times3}$ ==[1 0 1;1 1 1;0 1 1;1 1 0], \mathbf{b} =[4 -1 0 1]^T

3. Find the least squares regression line (y=ax+b) for the data points:

```
(-1, 1), (1, 0), (3 -3)
```

4. Find the least squares regression quadratic polynomial ($y=ax^2+x+c$) for the data points: (-2, 0), (-1, 0), (0, 1), (1, 2), (2, 5)

- 5. Find a unit vector orthogonal to both $\mathbf{u} = [1 4 \ 1]^T$ and $\mathbf{v} = [2 \ 3 \ 0]^T$.
- 6. Find the area of a parallelogram that has $\mathbf{u} = [-3 \ 4 \ 1]^T$ and $\mathbf{v} = [0 \ -2 \ 6]^T$ as adjacent sides.
- 7. Apply the Gram Schmidt process to $B=\{[0\ 3\ 4]^T, [1\ 0\ 0]^T, [1\ 1\ 0]^T\}$ (according to this order).
- 8. **C**_{3x3}=**QR** using the Gram Schmidt process.

 \mathbf{C} 's 1st column is $[0\ 0\ 1]^T$, 2nd column is $[0\ 1\ 1]^T$, 3rd column is $[1\ 1\ 1]^T$.

9. Find the determinant of

$$\mathbf{D}_{5x5}$$
=[2 0 1 3 -2;-2 1 3 2 -1;1 0 -1 2 3;3 -1 2 4 -3;1 1 3 2 0]

10. Find an equation of the plane passing through (0, 1, 0), (-1, 3, 2), (-2 0 1).

11. Find the determinant of \mathbf{E}_{nxn} (The values on the diagonal are (1-n) and others are 1).

12. Use the Cramer's rule to solve x, y and z.

) -da+[1 1			
O _n =det[1 -1			
1 1 -1			
1 1	-1		
	1 1-1		
	1 1]		
Calculate D ¹⁵ .			
alculate D.			