Recherche opérationnelle

DUT Info 2e année, parcours A

Algorithmes gloutons

Florent Foucaud

Algorithme glouton

Définition (algorithme glouton / greedy algorithm)

C'est un type d'algorithme qui construit une solution pas à pas, en prenant la meilleure décision à chaque étape

→ (optimum local mais pas forcémeent global).

Le Glouton ou Carcajou, un animal du grand nord ("Wolverine" en anglais)

Problème : Construire un arbre couvrant T d'un graphe G (T touche tous les sommets)

Objectif: minimiser le poids total des arêtes de l'arbre

Problème : Construire un arbre couvrant T d'un graphe G (T touche tous les sommets)

Objectif: minimiser le poids total des arêtes de l'arbre

Problème : Construire un arbre couvrant T d'un graphe G (T touche tous les sommets)

Objectif: minimiser le poids total des arêtes de l'arbre

Algorithme de Jarník-Prim:

- Choisir un sommet v_0 de départ; $T = (\{v_0\}, \{\})$ Tant que tous les sommets de G ne sont pas dans l'arbre T
 - ▶ Choisir un sommet ν dans $V(G) \setminus V(T)$ qui a le plus petit coût de rattachement à T $ightharpoonup T = T \cup \{v\}$
- Renvover T

Problème : Construire un arbre couvrant T d'un graphe G (T touche tous les sommets)

Objectif: minimiser le poids total des arêtes de l'arbre

Algorithme de Jarník-Prim:

- Choisir un sommet v_0 de départ; $T = (\{v_0\}, \{\})$ Tant que tous les sommets de G ne sont pas dans l'arbre T
 - ▶ Choisir un sommet ν dans $V(G) \setminus V(T)$ qui a le plus petit coût de rattachement à T
 - $T = T \cup \{v\}$

Vojtěch Jarník (1897 - 1970)

Robert C. Prim (1921 -)

Edsger W. Dijkstra (1930-2002)

Problème : couvrir les couloirs d'un bâtiment avec des détecteurs de mouvement. Pour un sommet ν , poser un détecteur coûte $c(\nu)$.

Objectif : minimiser le coût total de la pose des détecteurs

Problème : couvrir les couloirs d'un bâtiment avec des détecteurs de mouvement. Pour un sommet ν , poser un détecteur coûte $c(\nu)$.

Objectif : minimiser le coût total de la pose des détecteurs

Le bâtiment est un graphe non-orienté G = (V, E).

Problème : couvrir les couloirs d'un bâtiment avec des détecteurs de mouvement. Pour un sommet ν , poser un détecteur coûte $c(\nu)$.

Objectif: minimiser le coût total de la pose des détecteurs

Le bâtiment est un graphe non-orienté G = (V, E).

On écrit le PL en nombres entiers suivant :

Une variable x_{v} pour chaque sommet $v: x_{v} = 1$ si on a un détecteur sur v, 0 sinon. Chaque sommet v a un poids c(v) (le coût de la pose d'un détecteur sur v).

minimiser: $\sum_{v \in V} x_v c(v)$ tel que : $x_v + x_v > 1$

On obtient une solution approchée (au pire deux fois moins bonne que l'optimum) en passant par la relaxation linéaire de ce PL. (Voir le cours précédent.)

Problème : couvrir les couloirs d'un bâtiment avec des détecteurs de mouvement. Pour un sommet ν , poser un détecteur coûte $c(\nu)$.

Objectif: minimiser le coût total de la pose des détecteurs

Le bâtiment est un graphe non-orienté G = (V, E).

Algorithme glouton n°1:

- *S* = {}
- Tant que toutes les arêtes ne sont pas couvertes :
 - ightharpoonup Choisir un sommet ν qui touche le plus grand nombre d'arêtes non couvertes par S
 - \triangleright $S = S \cup \{v\}$
- Renvoyer S

Problème : couvrir les couloirs d'un bâtiment avec des détecteurs de mouvement. Pour un sommet ν , poser un détecteur coûte $c(\nu)$.

Objectif: minimiser le coût total de la pose des détecteurs

Le bâtiment est un graphe non-orienté G = (V, E).

Algorithme glouton n°1:

- *S* = {}
- Tant que toutes les arêtes ne sont pas couvertes :
 - Choisir un sommet ν qui touche le plus grand nombre d'arêtes non couvertes par S
 - $\triangleright S = S \cup \{v\}$
- Renvoyer S

Algorithme glouton n°2:

- *S* = {}
 - Tant que toutes les arêtes ne sont pas couvertes :
 - Choisir un sommet ν qui maximise le ratio "nombre d'arêtes non couvertes" / $c(\nu)$
 - $\triangleright S = S \cup \{v\}$
- Renvoyer S

Aucun des deux algos gloutons n'est bon

(tous les sommets ont le même poids)

Les algorithmes gloutons du transparent précédent n'ont

aucune garantie de performances...

