Name:	Signature:				
School:					
P530/1					
BIOLOGY					
(Theory)					
July/Aug. 2024					
2 ½ hours					

MOCK EXAMINATIONS

Uganda Advanced Certificate of Education

BIOLOGY

(THEORY)

Paper 1

2 hours 30 minutes

INSTRUCTIONS TO CANDIDATES:

This paper consists of sections: \boldsymbol{A} and \boldsymbol{B}

Answer **all** questions in both sections

Write answers to section \mathbf{A} in the boxes provided and answers to section \mathbf{B} in the spaces provided

No additional sheets of paper should be inserted in this booklet

For Examiners' Use Only						
Section	Section		Examiner's Signature			
			& No.			
A	1-40					
В	41.					
	42.					
	43.					
	44.					
	45.					
	46.					
Total						

SECTION A: (40 MARKS)

Write the letter corresponding to the right answer in the box provided.

Each question in this section carries one mark.

1. In ruminants, bacterial function takes place in the				in the		
	A.	rumen	B.	omasum		
	C.	caecum	D.	abomasum		
2.	Wha	at is the effect of high levels of ca	rbon di	ioxide in the body tissues? Le	eads	
	to					
	A.	lowering of hemoglobin's affir	nity for	oxygen.		
	В.	increase in the affinity for oxy	gen by	hemoglobin		
	C.	shifting of the dissociation cur	ve to th	e left		
	D.	increase in the loading tension	of hem	noglobin in lungs		
3.	Whi	ch one of the following hormones	suppre	esses immune response to con	ıbat	
	stres	SS				
	A.	Adrenaline	В.	Calcitonin		
	C.	Aldosterone	D.	Cortisol		
4.	In X	Kerophytes, cuticular transpiration	is redu	aced by having		
	A.	succulent leaves	B.	reversed stomatal rhythm		
	C.	small sized leaves	D.	waxy stomata		
5.	Wha	t is the cardiac output of an indivi	idual w	ho has a stroke volume of 70	cm ³	
	and a heart rate of 70 beats per minute?					
	A.	4900cm ³ min ⁻¹	B.	490cm ³ min ⁻¹		
	C.	140cm ³ min ⁻¹	D.	0cm ³ min ⁻¹		
6.	Higl	h levels of Oestrogen and Progest	terone i	n blood may cause		
	A.	healing and repair of the uterin	ne wall			
	B.	increase in concentration of lu	teinizin	g hormone		
	C.	inhibition of release of gonado	trophic	hormones		
	D	onset of the menopause				

			cue con				
7.	Sodium hydrogen carbonate and mucus contained in the intestinal juice are						
	synthesized by the						
	A.	cells at the tips of the villi	В.	Brunners glands			
	C.	lining of intestinal wall	D.	lining of stomach wall			
8.	Whi	ch of the following molecules ha	ıs a struc	ctural similarity with cell	ulose?		
	A.	Chitin	В.	Amylopectin			
	C.	Glycogen	D.	Amylose			
9.	Whic	ch of the following forms of beha	avior co	nserves energy for repro-	duction		
	in an	imals?					
	A.	Territoriality	B.	Conditioning			
	C.	Habituation	D.	Imprinting			
10.	In sl	nort day plants, flowering may be	e induce	d by			
	A.	Ethene	B.	Abscisic acid			
	C.	Auxins	D.	Gibberellins			
11.	Figu	are 1 shows the population growt	h curve	of fruit flies over time			
		A		3			
				•			
		Number of flies					
		2	of flies 2				
		1	Т	▶ ime			
			т g. 1	→ ime			
	At w		g. 1		t on the		
		Fig	g. 1		t on the		
		Fig what point would a density depen	g. 1		t on the		
	popu	Figure 4 what point would a density dependent allation?	g. 1 dent fac	ctor have a greater impact	t on the		
12.	popu A. C.	Figure 1	g. 1 dent fac B. D.	etor have a greater impact 2 Both 1 and 3			
12.	popu A. C. Whi	Figure 1 3	g. 1 dent fac B. D.	etor have a greater impact 2 Both 1 and 3			
12.	popu A. C. Whi	Figure 1 and 1 and 2 and	g. 1 dent fac B. D.	etor have a greater impact 2 Both 1 and 3			

13.	Which	h of the following is not a ro	ole of	amniotic fl	uid during	foetal
	develo	opment?				
	A.	Movement	B.	Heat buffer		
	C.	Protection	D.	Nourishmer	nt	
14.	Which	n one of the following is true abou	ıt com	petitive enzy	me inhibitoi	:s?
	A.	Bind permanently to the active s	ite			
	B.	Alter the shape of the active site				
	C.	Limit formation of enzyme subs	trate co	omplexes		
	D.	Lower the activation energy of the	ne reac	tion		
15.	Which	n one of the following cells co	ontains	highest pro	portion of	single
	memb	orane bound structures?				
	A.	Smooth muscle cell	B.	Ciliated epi	thelial cell	
	C.	Red blood cell	D.	Goblet cell		
16.	In the	nephron, acid excretion takes pla	ce in tl	ne		
	A.	glomerulus	B.	collecting d	uct	
	C.	proximal tubule	D.	distal tubule	e	
17.	Carbo	on dioxide and Nitrogen dioxide a	re gree	nhouse gasse	es because tl	ney
	A.	produce acid rain when dissolved	d in rai	n water		
	B.	prevent short wave radiation from	m reacl	ning the earth	n's surface	
	C.	trap long wave radiation emitted	from t	he earth's su	rface	
	D.	cause depletion of the ozone layer	er			
18.	Which	n one of the following would alwa	ys shov	v a normal pl	nenotype for	a sex-
	linked	l disorder?				
	A.	Homozygote male	B.	Homozygot	e female	
	C.	Heterozygote male	D.	Heterozygo	te female	
19.	Which	h one of the following is correct al	bout th	e extra-cellu	lar matrix of	cells?
	It is m	nade up of				
	A.	Polysaccharides only	B.	Phospholipi	ds only	
	C.	Polysaccharides and glycoprotein	n D. l	Phospholipid	ls and glycop	protein

20.	The	minimum number o	of base substit	utions r	required to change the n	ucleotide
	sequ	ence of the HbA (n	Hbs (sickle cell) allele i	S		
	A.	1		В.	2	
	C.	3		D.	4	
21.	Whi	ch one of the follo	wing process	es does	not increase the availa	ability of
	nitro	ogen for plant uptak	e?			
	A.	Denitrification		В.	Ammonification	
	C.	Nitrification		D.	Nitrogen fixation	
22.	Figu	re 2 shows the vari	ation in the ra	ate of pl	notosynthesis of an aqu	atic plant
	at 35	5 ⁰ C.				
		Rate of photosynthesis		X		
		Fig.2	Lig	ht intensi	ity	
	In re	egion X, the factor l	imiting the ra	ite of ph	otosynthesis is	
	A.	Chlorophyll cond	centration	B.	Carbon dioxide conce	entration
	C.	light intensity		D.	Temperature	
23.	Whi	ch of the following	nitrogenous	wastes i	s excreted by lung fish	es during
	aesti	vation?				
	A.	Urea		B.	Ammonia	
	C.	Guanine		D.	Trimethyl amine oxid	łe 📖
24.	Whi	ch of the following	animal tissue	s is the	most highly specialized	1?
	A.	Blood		B.	Bone	
	C.	Epithelial		D.	Nervous	
25.	The	metabolic process t	that produces	the mos	st ATP molecules is	
	A.	glycolysis		B.	citric acid cycle	
	C.	fermentation		D.	electron transport sys	stem

26.	6. At inhibitory synapse, the release of transmitter substance increases the							
	perm	permeability of postsynaptic membrane to inward diffusion of						
	A.	both chloride and potassium ion	1					
	B.	both chloride and sodium ions						
	C.	chloride ions only						
	D.	potassium ions only						
27.	Whi	ch one of the following is not	a role	e of the circulatory system in				
	mam	nmals?						
	A.	Transmission of respiratory gass	ses					
	B.	Production of red blood cells						
	C.	Buffering PH changes						
	D.	Temperature regulation						
28.	Wha	t is the major fate of net primary	produ	ectivity in a primary consumer?				
	used	in						
	A.	respiration	B.	locomotion				
	C.	growth	D.	digestion				
29.	A hig	gh respiratory quotient in germina	ting se	eds maybe caused by				
	A.	presence of inhibitors	B.	shortage of oxygen				
	C.	presence of large food stores	D.	high soil temperatures				
30.	Whic	ch one of the following is not a	method	l used by antibodies to combat				
	ntige	ens?						
	A.	Opsonisation	B.	Agglutination				
	C.	Neutralization	D.	Diapedesis				
31.	Whi	ch one of the following is correct a	about t	ranslation? One tRNA molecule				
	A.	Pairs with one mRNA molecule						
	B.	Pairs with more than one codon						
	C.	Codes with only one codon						
	D.	Binds with more than one amino	o acid					

32. Which one of the following effects of etiolation occurs only in dicoty				n occurs only in dicotyled	lonous	
	plants?					
	A.	Leave	s remain small			
	B.	Leave	s may remain rolled-up			
	C.	Interne	odes become elongated			
	D.	Chloro	oplasts fail to develop n	ormal me	embrane systems.	
33.	Table	1 show	s the pulse rate of fou	r individu	als A, B, C and D of the	same
	age, s	ex and 1	nass during rest and wh	en exercis	sing. Which of these indiv	iduals
	would	l have t	he lowest risk of develo	oping a ca	ardiovascular disease.	
	Indi	vidual	Resting pulse rate/beats per minute		rate immediately after ise/beats per minute	
	A		64	82		
	В		70	102		
	С		78	135		
	D		68	98		
34.	Direc	t excha	ange of metabolites	can take	place among cells the	irough
	plasm	odesma	ata except in the			
	A.	Xylem	1	B.	Cortex	
	C.	mesop	hyll	D.	Phloem	
35.	The fi	requenc	y and amplitude of an a	action pot	ential in an axon depends	on
	A.	freque	ncy of stimulation of th	ie membra	ane	
	B.	concer	ntration of sodium ions	inside the	e membrane	
	C.	concer	ntration of potassium io	ns inside	the membrane	
	D.	the rel	ative refractory period.			

- **36.** Which of the following is correct about a plant cell that has been immersed in pure water for several hours?
 - A. Osmotic potential equals water potential of the cell
 - B. Wall pressure equals osmotic potential plus turgor pressure
 - C. Wall pressure equals turgor pressure of the cell
 - D. Wall pressure becomes zero.
- **37.** Which of the following best describes the evolution of new species from the same ancestor in different environments?
 - A. Divergent evolution B. Adaptive evolution
 - C. Convergent evolution D. Directional selection
- **38.** Figure **3** illustrates negative feedback in the control of thyroxine production

Fig. 3

Which one of the following represents the correct role of each structure?

	Hypothalamus	Pituitary gland	Thyroid gland	
A.	Regulator	detector	effector	
B.	Detector	regulator	effector	
C.	Detector	effector	regulator	
D.	Regulator	effector	detector	

39.	The	The forward movement of the fish through water is caused by the					
	A.	Pector	al and pelvic fins	B.	dorsal and ventral fi	ns	
	C.	mediar	n fins only	D.	caudal fins only		
40.	Whic	ch one of	the following is the rol	e of dec	omposers in the nitrog	gen cycle?	
	A.	A. Convert animal proteins to ammonium compounds					
	B.	Fix atn	nospheric nitrogen into	the soil			
	C.	Oxidiz	e ammonium compound	ds to nitr	rates		
	D.	Conve	rt nitrates into free nitro	gen			
			SECTION B: (60 MAR	RKS)		
			Write answers in the	spaces _I	provided		
41.	(a)	Name	the Source of the				
		(i).	energy required for th	ne synth	nesis of organic com	pound in	
			chemosynthentic bacter	ria.		(01mark)	
	•••••		compound which is a sbacterial photosynthesis	source c	of hydrogen for Purpl		
	•••••			••••••			
	(b).	Give 1	three differences betw	een pho	otosynthesis in Purpl	e-Sulphur	
		bacteri	a and Cyano bacteria.		((03marks)	
	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	•••••	•••••	
	•••••	• • • • • • • • • • • • • • • • • • • •		•••••	•••••	• • • • • • • • • • • • • • • • • • • •	
	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	•••••	
	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	•••••	••••••	

(c)	Explain how the chemosynthetic bacteria in the	nitrogen cycle are
	adapted for synthesis of organic compounds.	(04marks)
•••••		• • • • • • • • • • • • • • • • • • • •
	••••••	
•••••		•••••
	•••••	
•••••	••••••	• • • • • • • • • • • • • • • • • • • •
•••••		•••••
•••••	••••••	•••••
	•••••	• • • • • • • • • • • • • • • • • • • •
•••••	••••••	•••••
(d)	Suggest an ecological importance of chemoheterotro	phic bacteria in an
	ecosystem.	(01mark)
	ecosystem.	(o'imark)
•••••	•••••	•••••
••••	•••••	• • • • • • • • • • • • • • • • • • • •

42. Figure **4** shows the effect of two stimuli **A** and **B**, on the production of an action potential in a neuron.

Fig.4

(a)	-	Explain the effect of each stimulus on the generation of an action potential.					
	(i)	stimulus A .				`	3marks)
		••••••					
•••••	•••••	•••••	•••••	•••••	•••••	••••••	•••••
		••••••					
		•••••					
	(ii)	stimulus B .				(0	3marks)
•••••	• • • • • • •	•••••	•••••	•••••	•••••	•••••	•••••
•••••	•	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••
(b)	marl	ain the significed \mathbf{X} .				(0	3marks)
		• • • • • • • • • • • • • • • • • • • •					
••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••
•••••	•••••	••••••	•••••	••••••	••••••	••••••	•••••
•••••		•••••					
•••••	• • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	••••••	••••••	•••••••	•••••

. (a) State two major pathways through which microbes enter the body. (02marks) (b) Explain the role of nasal secretions in providing natural defense to the body. (03marks)	((c)	Why is difficult to stimulate an axon at point marked Y.	,
(b) Explain the role of nasal secretions in providing natural defense to the body. (03marks) (c) Explain how the human body is protected from the actions of its own immune system. (04mark)	. ((a)	•••••••••••••••••••••••••••••••••••••••	ne body.
(b) Explain the role of nasal secretions in providing natural defense to the body. (03marks) (c) Explain how the human body is protected from the actions of its own immune system. (04mark)	•	•••••		· · · · · ·
(b) Explain the role of nasal secretions in providing natural defense to the body. (03marks) (c) Explain how the human body is protected from the actions of its owr immune system. (04mark)	•	•••••		•••••
(c) Explain how the human body is protected from the actions of its own immune system. (04mark)	•	•••••	•••••••••••••••••••••••••••••••••••••••	••••••
(c) Explain how the human body is protected from the actions of its own immune system. (04mark)	•	•••••		•••••
(c) Explain how the human body is protected from the actions of its own immune system. (04mark)	((b)		efense to the (03marks)
(c) Explain how the human body is protected from the actions of its own immune system. (04mark)	•	•••••	•••••••••••••••••••••••••••••••••••••••	•••••
(c) Explain how the human body is protected from the actions of its own immune system. (04mark)	•	•••••	••••••	•••••
(c) Explain how the human body is protected from the actions of its own immune system. (04mark)	•	•••••	•••••••••••••••••••••••••••••••••••••••	•••••
(c) Explain how the human body is protected from the actions of its own immune system. (04mark)	•	•••••		•••••
immune system. (04mark)	•	•••••	••••••	•••••
immune system. (04mark)	•	•••••	••••••	•••••
	((c)		s of its own (04mark)
	•	•••••		•••••
	•	•••••		•••••
	•	•••••	•••••••••••••••••••••••••••••••••••••••	•••••
	•	•••••	•••••••••••••••••••••••••••••••••••••••	•••••
•••••••••••••••••••••••••••••••••••••••	•	•••••	••••••	••••••
	•	•••••	•••••••••••••••••••••••••••••••••••••••	

	(d)	Suggest one way helper cells improve the efficiency of the immune system. (01mark)
44 .	(a)	State two ways a dicotyledonous leaf and the alveolus are similarly adapted for gaseous exchange. (02marks)
	•••••	
	(1-)	
	(b)	How is gaseous exchange achieved in the stem of woody plants? (02marks)
	•••••	
	•••••	
	(c)	Explain the effect of decreasing environmental temperature on gaseous exchange in the following;
	•••••	(i) well illuminated foliage. (03marks)
	•••••	••••••
	•••••	
	•••••	•••••••••••••••••••••••••••••••••••••••
	•••••	

(ii)	small mammal.	(03marks)
•••••	•••••••••••••••••••••••••••••••••••••••	
(a)	What is the role of the functional units of the kidney.	
•••••		
• • • • •		•••••
(b)	Why is the counter current exchange mechanism in the	loop of Henle
	described as a multiplier system?	(03marks)
• • • • •	•••••••••••••••••••••••••••••••••••••••	
• • • • •		•••••
• • • • • •	•••••	•••••
•••••		••••••
	(a)(b)	(a) What is the role of the functional units of the kidney. (b) Why is the counter current exchange mechanism in the described as a multiplier system?

(c) Table 2 shows the relationship between the relative thickness of the medulla and urine concentration in the kidneys of different mammals.

3.6	Relative	Maximum urine		
Mammals	thickness	Concentration/arbitrary		
	unoknoss	units		
Beaver	1.0	52		
Pig	1.3	110		
Human	2.6	140		
Rat	5.2	300		
Kangaroo rat	7.8	550		

	(i) Explain the relationship between relative medulla thicknes			
			urine concentration.	(03marks)
	•••••	• • • • • • • •		• • • • • • • • • • • • • • • • • • • •
	•••••	•••••	••••••••••••••••••••••••	• • • • • • • • • • • • • • • • • • • •
	•••••	•••••		• • • • • • • • • • • • • • • • • • • •
	•••••	•••••		• • • • • • • • • • • • • • • • • • • •
	•••••	•••••		• • • • • • • • • • • • • • • • • • • •
	•••••	• • • • • • • •		• • • • • • • • • • • • • • • • • • • •
		(ii)	Giving a reason, suggest the likely natural habitat of	of the beaver
		(11)	Giving a reason, suggest the fixery flatural flabitate	(02marks)
				(02marks)
	•••••	•••••	•••••••••••••••••••••••••••••••••••••••	• • • • • • • • • • • • • • • • • • • •
	•••••	•••••		•••••
46 .	(a)	What	problems are faced by fish during locomotion in wa	ter?
				(03marks)
	•••••	• • • • • • • •		• • • • • • • • • • • • • • • • • • • •
	•••••	•••••	••••••••••••••••••••••••	• • • • • • • • • • • • • • • • • • • •
	•••••	•••••	•••••••••••••••••••••••••••••••	•••••
	•••••	•••••		• • • • • • • • • • • • • • • • • • • •
	(b)	How	do each of the following features contribute	to efficient
		locon	notion in fish?	
		(i)	Pectoral and Pelvic fins.	(03marks)
	•••••	•••••		• • • • • • • • • • • • • • • • • • • •
	•••••	• • • • • • • •	••••••••••••••••••••••••	••••••
	•••••	•••••		• • • • • • • • • • • • • • • • • • • •

	(ii)	Streamlined bod	y shape.			(01mark)
•••••	•••••		••••••	••••••	•••••	•••••
(c)	Outli	ne three difference	es between l	ocomotion is	n fish and b	irds.
						(03marks)
		•••••				
•••••	•••••	•••••	•••••			•••••
•••••	•••••	•••••	••••••	•	••••••	•••••
•••••	•••••		•••••			•••••
•••••	•••••		•••••		••••••	•••••