

Ruang Vektor Euclidean

Pertemuan ke 9 – 12

Diadopsi dari sumber:

Sub-CPMK

 Mahasiswa dapat melakukan operasi hitung dengan menggunakan konsep ruang vektor dimensi-2, dimensi-3 dan ruang vektor euclidean (C3, A3)

Materi

- Vektor pada ruang dimensi-2, dimensi-3 dan dimensi-n
- 2. Norm, hasil kali titik dan jarak pada ruang dimensi-n
- 3. Hasil kali silang

1. Vektor pada Ruang Dimensi-2, Dimensi-3 dan Dimensi-*n*

1.1. Vektor Geometris (1)

- Vektor 2 dimensi dan 3 dimensi direpresentasikan dengan menggunakan garis panah.
- Arah panah menentukan arah vektor dan panjang panah menentukan besarnya.
- Secara matematika ini dikenal sebagai vektor geometris.
- Ekor panah disebut titik awal (initial) vektor dan ujungnya adalah titik akhir (terminal).

Titik awal

1.1. Vektor Geometris (2)

- Vektor v dengan titik awal A dan titik akhir B dapat dituliskan sebagai AB.
- Vektor dengan panjang dan arah yang sama dikatakan ekuivalen.
- Disini vektor ditentukan oleh panjang dan arahnya, sehingga vektor ekiuvalen dianggap sebagai vektor yang sama meskipun berada pada posisi yang berbeda.
- Dua vektor ekuivalen dapat dituliskan dengan $\mathbf{v} = \mathbf{w}$.

1.2. Penjumlahan Vektor (1)

Aturan Jajar Genjang. Jika \mathbf{v} dan \mathbf{w} adalah vektor pada dimensi-2 atau dimensi-3 yang diposisikan sedemikian sehingga titik awal kedua vektor sama, sehingga kedua vektor membentuk sisi yang berdekatan dari sebuah jajar genjang, dan jumlah $\mathbf{v} + \mathbf{w}$ adalah vektor yang direpresentasikan oleh panah dari titik awal yang sama ke titik berlawanan dari jajar genjang.

Aturan Segitiga. Jika \mathbf{v} dan \mathbf{w} adalah vektor pada dimensi-2 atau dimensi-3 yang diposisikan sedemikian sehingga titik awal \mathbf{w} berada di titik akhir \mathbf{v} , maka jumlah $\mathbf{v} + \mathbf{w}$ diwakili oleh panah dari titik awal \mathbf{v} ke titik akhir \mathbf{w} .

1.2. Penjumlahan Vektor (2)

Penjumlahan dengan Translasi. Jika \mathbf{v} , \mathbf{w} dan \mathbf{v} + \mathbf{w} diposisikan sedemikian sehingga titik awal ketiganya sama, maka titik terminal \mathbf{v} + \mathbf{w} dapat dicari dengan dua cara:

- Titik terminal v + w adalah titik yang diperoleh jika titik terminal v ditranslasikan ke arah w dengan jarak yang sama dengan panjang w.
- Titik terminal v + w adalah titik yang diperoleh jika titik terminal w ditranslasikan ke arah v dengan jarak yang sama dengan panjang v.

Hal ini berarti, dapat dikatakan bahwa $\mathbf{v} + \mathbf{w}$ merupakan translasi dari \mathbf{v} oleh \mathbf{w} , atau translasi dari \mathbf{w} oleh \mathbf{v} .

1.2. Penjumlahan Vektor (3)

Aturan Jajar Genjang

Aturan Segitiga

• Penjumlahan dengan Translasi

1.3. Pengurangan Vektor

- Vektor negatif dari vektor v dituliskan sebagai v, adalah vektor yang memiliki panjang yang sama dengan vektor v namun memiliki arah yang berlawanan.
- Selisih antara vektor v dan vektor w, dinotasikan w v adalah jumlah dari w v = w + (-v).

1.4. Perkalian Skalar

Jika vektor \mathbf{v} adalah vektor tak nol pada ruang dimensi-2 atau dimensi-3, dan jika k adalah suatu konstanta bukan nol, maka dapat didefinisikan **perkalian skalar** \mathbf{v} **dengan** \mathbf{k} merupakan vektor dengan panjang $|\mathbf{k}|$ kali panjang vektor \mathbf{v} dengan arah yang sama jika k positif dan arah berlawanan jika k negatif. Jika k=0 atau $\mathbf{v}=\mathbf{0}$, maka $k\mathbf{v}=0$.

1.4. Vektor Berhimpit dan Sejajar

- Andaikan vektor v dan w adalah vektor pada ruang dimensi-2
 atau dimensi-3 dengan titik awal yang sama. Jika salah satu
 vektor merupakan kelipatan lainnya, maka kedua vektor tersebut
 segaris atau berhimpit.
- Jika salah satu vektor ditranslasikan, maka kedua vektor menjadi sejajar.

1.5. Penjumlahan Tiga Vektor atau Lebih

 Penjumlahan vektor memenuhi aturan assosiatif penjumlahan, artinya saat terdapat tiga vektor, misalkan u, v, dan w, tidak masalah vektor mana yang dijumlahkan terlebih dahulu.

$$\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$$

 Penjumlahan tiga vektor atau lebih memiliki hasil yang sama, tidak tergantung pada urutan vektor yang dijumlahkan.

1.6. Vektor pada Sistem Koordinat (1)

- Jika verktor v pada ruang dimensi-2 atau dimensi-3 memiliki titik awal di titik asal sistem koodinat, maka vektor tersebut dinyatakan dengan koordinat titik akhirnya.
- Koordinat ini disebut komponen dari v relatif terhadap sistem koordinat.

1.6. Vektor pada Sistem Koordinat (2)

- Terkadang vektor tidak memiliki titik awal tidak di pusat sistem koordinat.
- Jika $\overrightarrow{P_1P_2}$ adalah vektor dengan titik awal $P_1(x_1,y_1)$ dan titik akhir $P_2(x_2,y_2)$, maka elemen vektor tersebut dapat didefinisikan sebagai

$$\overrightarrow{P_1P_2} = (x_2 - x_1, y_2 - y_1)$$

Untuk ruang dimensi-3,

$$\overrightarrow{P_1P_2} = (x_2 - x_1, y_2 - y_1, z_2 - z_1)$$

1.7. Ruang Vektor Dimensi-n

- Himpunan semua bilangan real secara geometri merupakan sebuah garis yang disebut garis bilangan real yang dinotasikan R atau R¹.
- Indeks pangkat digunakan untuk memperjelas bahwa garis merupakan satu dimensi.
- Himpunan semua pasangan terurut dan semua triple terurut dari bilangan real masing-masing dinotasikan dengan \mathbb{R}^2 dan \mathbb{R}^3 .
- Jika n merupakan suatu bilangan bulat positif, maka pasangan berurutan-n adalah barisan n bilangan real $(v_1, v_2, ..., v_n)$.
- Himpunan semua pasangan berurutan-n disebut ruang vektor dimensi-n dan dinotasikan \mathbb{R}^n .

1.8. Operasi Vektor di \mathbb{R}^n (1)

- Suatu vektor \mathbf{v} di \mathbb{R}^n dinotasikan dengan $\mathbf{v} = (v_1, v_2, ..., v_n)$ dan vektor $\mathbf{0} = (0,0,...,0)$ disebut sebagai **vektor nol**.
- Vektor $\mathbf{v}=(v_1,v_2,...,v_n)$ dan $\mathbf{w}=(w_1,w_2,...,w_n)$ di \mathbb{R}^n dikatakan **ekuivalen** (sama) jika $v_1=w_1,v_2=w_2,...,v_n=w_n$. Dituliskan $\mathbf{v}=\mathbf{w}$.
- Jika $\mathbf{v}=(v_1,v_2,...,v_n)$ dan $\mathbf{w}=(w_1,w_2,...,w_n)$ adalah vektor di \mathbb{R}^n dan k konstanta skalar, maka

$$\mathbf{v} + \mathbf{w} = (v_1 + w_1, v_2 + w_2, ..., v_n + w_n)$$

$$k\mathbf{v} = (kv_1, kv_2, ..., kv_n)$$

$$-\mathbf{v} = (-v_1, -v_2, ..., -v_n)$$

$$\mathbf{w} - \mathbf{v} = \mathbf{w} + (-\mathbf{v}) = (w_1 - v_1, w_2 - v_2, ..., w_n - v_n)$$

CONTOH SOAL

Contoh 1.1. Elemen vektor $\mathbf{v} = \overrightarrow{P_1P_2}$ dengan titik awal $P_1(2,-1,4)$ dan titik akhir $P_2(7,5,-8)$ adalah

$$\mathbf{v} = (7 - 2.5 - (-1), (-8) - 4) = (5.6, -12)$$

Contoh 1.2. Vektor(a, b, c, d) = (1, -4, 2, 7) jika dan hanya jika a = 1, b = -4, c = 2, dan d = 7.

Contoh 1.3. Jika
$$\mathbf{v} = (1, -3, 2)$$
 dan $\mathbf{w} = (4, 2, 1)$, maka $\mathbf{v} + \mathbf{w} = (5, -1, 3)$, $2\mathbf{v} = (2, -6, 4)$, $-\mathbf{w} = (-4, -2, -1)$, $\mathbf{v} - \mathbf{w} = \mathbf{v} + (-\mathbf{w}) = (-3, -5, 1)$

1.8. Operasi Vektor di \mathbb{R}^n (2)

Jika ${f u}$, ${f v}$, dan ${f w}$ merupakan vektor di ${\Bbb R}^n$ dan jika k dan m adalah kosntanta skalar, maka:

- $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$
- (u + v) + w = u + (v + w)
- u + 0 = 0 + u = u
- u + (-u) = 0
- $k(\mathbf{u} + \mathbf{v}) = k\mathbf{u} + k\mathbf{v}$
- $(k+m)\mathbf{u} = k\mathbf{u} + m\mathbf{u}$
- $k(m\mathbf{u}) = (km)\mathbf{u}$
- $1\mathbf{u} = \mathbf{u}$

1.9. Kombinasi Linier

- Penjumlahan, pengurangan dan perkalian skalar sering digunakan sebagai kombinasi untuk menyusun vektor baru.
- Contoh: $\mathbf{u} = 2\mathbf{v}_1 + 3\mathbf{v}_2 + \mathbf{v}_3 \text{ dan } \mathbf{w} = 7\mathbf{v}_1 6\mathbf{v}_2 + 8\mathbf{v}_3$.
- Jika ${\bf w}$ merupakan vektor di \mathbb{R}^n , maka ${\bf w}$ dikatakan **kombinasi linier** dari vektor ${\bf v}_1, {\bf v}_2, ..., {\bf v}_r$ di \mathbb{R}^n jika dapat dituliskan sebagai ${\bf w} = k_1 {\bf v}_1 + k_2 {\bf v}_2 + \cdots + k_r {\bf v}_r$

dimana $k_1, k_2, ..., k_r$ skalar. Nilai skalar ini disebut **koefisien** dari kombinasi linier.

• Pada kasus dimana r=1, formula diatas menjadi $\mathbf{w}=k_1\mathbf{v}_1$, sehingga kombinasi linier dari suatu vektor merupakan perkalian skalar dari vektor tersebut.

2. Norm, Hasil Kali Titik dan Jarak pada Ruang Dimensi-n

2.1. Norm suatu Vektor (1)

- Panjang suatu vektor v atau biasa disebut norm vektor v, dituliskan sebagai ||v||.
- Berdasarkan teorema Phytagoras, norm vektor (v_1,v_2) pada ruang dimensi-2 adalah

$$\|\mathbf{v}\| = \sqrt{v_1^2 + v_2^2}$$

 Dengan cara yang sama, norm vektor (v_1, v_2, v_3) pada ruang dimensi-3 adalah

$$\|\mathbf{v}\| = \sqrt{v_1^2 + v_2^2 + v_3^2}$$

2.1. Norm suatu Vektor (2)

• Jika $\mathbf{v} = (v_1, v_2, ..., v_n)$ merupakan vektor di \mathbb{R}^n , maka norm dari \mathbf{v} dinotasikan $\|\mathbf{v}\|$, dan didefinisikan oleh

$$\|\mathbf{v}\| = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$$

- Jika ${f v}$ merupakan vektor di ${\Bbb R}^n$, dan jika k sembarang salar, maka
 - a. $\|\mathbf{v}\| \geq 0$
 - b. $\|\mathbf{v}\| = 0$ jika dan hanya jika v = 0
 - c. $||k\mathbf{v}|| = |k| ||\mathbf{v}||$

2.2. Vektor Satuan

- Suatu vektor dengan norm 1 disebut vektor satuan.
- Vektor ini dapat diperoleh dari vektor tak nol v dengan arah yang sama dan mengalikan v dengan kebalikan dari panjangnya.
- Misalnya, jika \mathbf{v} merupakan vektor dengan panjang 2 di \mathbb{R}^2 atau \mathbb{R}^3 , maka $\frac{1}{2}\mathbf{v}$ adalah vektor satuan yang searah dengan \mathbf{v} .
- Vektor unit suatu vektor tak nol \mathbf{v} di \mathbb{R}^n , didefinisikan sebagai:

$$u = \frac{1}{\|\mathbf{v}\|}\mathbf{v}$$

CONTOH SOAL

Contoh 2.1. Norm dari vektor $\mathbf{v} = (-3,2,1)$ di \mathbb{R}^3 adalah

$$\|\mathbf{v}\| = \sqrt{(-3)^2 + 2^2 + 1^2} = \sqrt{14}$$

dan norm dari vektor $\mathbf{v} = (2, -1, 3, -5)$ di \mathbb{R}^4 adalah

$$\|\mathbf{v}\| = \sqrt{2^2 + (-1)^2 + 3^2 + (-5)^2} = \sqrt{39}$$

Contoh 2.2. Tentukan vektor satuan \mathbf{u} dari $\mathbf{v} = (2, 2, -1)$.

Solusi. Vektor **v** memiliki panjang

$$\|\mathbf{v}\| = \sqrt{2^2 + 2^2 + (-1)^2} = 3$$

Sehingga

$$\mathbf{u} = \frac{1}{3}(2,2,-1) = (\frac{2}{3},\frac{2}{3},-\frac{1}{3})$$

Dapat dicek bahwa $\|\mathbf{u}\| = 1$.

2.3. Vektor Satuan Standar (1)

- Pada sistem koordinat di \mathbb{R}^2 atau \mathbb{R}^3 , vektor satuan yang searah dengan sumbu positif disebut **vektor satuan standar**.
- Di \mathbb{R}^2 vektor ini dinotasikan oleh $\mathbf{i} = (1,0)$ dan $\mathbf{j} = (0,1)$ dan di \mathbb{R}^3 dinotasikan oleh $\mathbf{i} = (1,0,0)$, $\mathbf{j} = (0,1,0)$ dan $\mathbf{k} = (0,0,1)$.
- Setiap vektor $\mathbf{v}=(v_1,v_2)$ di \mathbb{R}^2 dan setiap vektor $\mathbf{v}=(v_1,v_2,v_3)$ di \mathbb{R}^3 dapat dituliskan sebagai kombinasi linier dari vektor satuan standar.

$$\mathbf{v} = (v_1, v_2) = v_1(1,0) + v_2(0,1) = v_1 \mathbf{i} + v_2 \mathbf{j}$$

$$\mathbf{v} = (v_1, v_2, v_3) = v_1(1,0,0) + v_2(0,1,0) + v_3(0,0,1)$$

$$= v_1 \mathbf{i} + v_2 \mathbf{j} + v_3 \mathbf{k}$$

2.3. Vektor Satuan Standar (2)

• Secara umum untuk vektor di \mathbb{R}^n , vektor satuan standar didefinisikan oleh

$$\mathbf{e}_1 = (1,0,0,...,0), \mathbf{e}_2 = (0,1,0,...,0),..., \mathbf{e}_n = (0,0,0...,1)$$

dimana setiap vektor $\mathbf{v} = (v_1, v_2, ..., v_n)$ di \mathbb{R}^n dapat dituliskan sebagai

$$\mathbf{v} = (v_1, v_2, \dots, v_n) = v_1 \mathbf{e}_1 + v_2 \mathbf{e}_2 + \dots + v_n \mathbf{e}_n$$

Contoh 2.3. Vektor (2, -3, 4) dan (7, 3, -4, 5) dapat dituliskan sebagai

$$(2,-3,4) = 2\mathbf{i} - 3\mathbf{j} + 4\mathbf{k}$$

 $(7,3,-4,5) = 7\mathbf{e}_1 + 3\mathbf{e}_2 - 4\mathbf{e}_3 + 5\mathbf{e}_4$

VERSITAS BUNDA MU

2.4. Jarak di \mathbb{R}^n

• Jika $\mathbf{u}=(u_1,u_2,...,u_n)$ dan $\mathbf{v}=(v_1,v_2,...,v_n)$ merupakan titik di \mathbb{R}^n maka jarak kedua titik didefinisikan sebagai

$$d(\mathbf{u}, \mathbf{v}) = \|\mathbf{u} - \mathbf{v}\|$$

= $\sqrt{(u_1 - v_1)^2 + (u_2 - v_2)^2 + \dots + (u_n - v_n)^2}$

Contoh 2.4. Jika $\mathbf{u} = (0,2,-1,3,7)$ dan $\mathbf{v} = (3,4,1,-2,0)$ maka jarak vektor \mathbf{u} dan \mathbf{v} adalah

$$d(\mathbf{u}, \mathbf{v}) = \|(0,2,-1,3,7) - (3,4,1,-2,0)\| = \|(-3,-2,-2,5,7)\|$$

$$= \sqrt{(-3)^2 + (-2)^2 + (-2)^2 + 5^2 + 7^2}$$

$$= \sqrt{9 + 4 + 4 + 25 + 49}$$

$$= \sqrt{91}$$

2.5. Hasil Kali Titik (1)

• Jika ${\bf u}$ dan ${\bf v}$ adalah vektor tak nol di ruang dimensi-2 atau dimensi-3, dan jika ${\boldsymbol \theta}$ adalah sudut antara vektor ${\bf u}$ dan ${\bf v}$, maka hasil kali titik dari ${\bf u}$ dan ${\bf v}$ adalah

$$\mathbf{u} \cdot \mathbf{v} = \|\mathbf{u}\| \|\mathbf{v}\| \cos \theta$$

- Jika $\mathbf{u} = \mathbf{0}$ atau $\mathbf{v} = \mathbf{0}$, maka $\mathbf{u} \cdot \mathbf{v} = 0$.
- Dari rumus hasil kali titik, diperoleh rumus menentukan sudut antara 2 vektor

$$\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}$$

Karena $0 \le \theta \le \pi$, maka $\theta = \pi/2$ jika $\mathbf{u} \cdot \mathbf{v} = 0$,

 θ lancip jika $\mathbf{u} \cdot \mathbf{v} > 0$, θ tumpul jika $\mathbf{u} \cdot \mathbf{v} < 0$.

CONTOH SOAL

Contoh 2.5. Tentukan hasil kali titik dari vektor pada gambar disamping.

Solusi. Panjang masing-masing vektor adalah

$$\|\mathbf{u}\| = 1 \, \mathsf{dan}$$

$$\|\mathbf{v}\| = \sqrt{0^2 + 2^2 + 2^2} = \sqrt{8} = 2\sqrt{2}$$

dan kosinus dari sudut heta diantara kedua vektor adalah

$$\cos(45^\circ) = \frac{1}{\sqrt{2}}$$

Maka dari definisi perkalian titik, diperoleh

$$\mathbf{u} \cdot \mathbf{v} = \|\mathbf{u}\| \|\mathbf{v}\| \cos \theta = (1)(2\sqrt{2})(1/\sqrt{2}) = 2$$

2.5. Hasil Kali Titik (2)

- Hasil kali titik dapat dicari dengan menggunakan elemen vektor.
- Misalkan $\mathbf{u}=(u_1,u_2,u_3)$ dan $\mathbf{v}=(v_1,v_2,v_3)$ adalah vektor tak nol. Maka

$$\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + u_3 v_3$$

 Dengan cara yang sama, diperoleh hasil kali titik untuk vektor pada ruang dimensi-2 adalah

$$\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2$$

• Jika $\mathbf{u}=(u_1,u_2,...,u_n)$ dan $\mathbf{v}=(v_1,v_2,...,v_n)$ adalah vektor pada \mathbb{R}^n , maka perkalian titik (perkalian dalam Euclidean) dari \mathbf{u} dan \mathbf{v} didefinisikan sebagai

$$\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + \dots + u_n v_n$$

CONTOH SOAL

Contoh 2.6. Gunakan definisi hasil kali titik dengan menggunakan elemen untuk mencari hasil kali titik vektor **u** dan **v** pada contoh 2.5.

Solusi. Bentuk elemen dari vektor $\mathbf{u} = (0,0,1)$ dan v = (0,2,2). Maka

$$\mathbf{u} \cdot \mathbf{v} = (0)(0) + (0)(2) + (1)(2) = 2$$

Contoh 2.7. Hitung $\mathbf{u}\cdot\mathbf{v}$ untuk vektor di \mathbb{R}^5 berikut

$$\mathbf{u} = (0,2,-1,3,7), \quad \mathbf{v} = (3,4,1,-2,0)$$

Solusi.

$$\mathbf{u} \cdot \mathbf{v} = (0)(3) + (2)(4) + (-1)(1) + (3)(-2) + (7)(0) = 1$$

2.6. Sifat-Sifat Perkalian Titik

Jika \mathbf{u} , \mathbf{v} , dan \mathbf{w} merupakan vektor pada \mathbb{R}^n , dan jika k adalah konstanta skalar, maka:

a)
$$\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$$
 (Simetris)

b)
$$\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$$
 (Distributif)

c)
$$k(\mathbf{u} \cdot \mathbf{v}) = (k\mathbf{u}) \cdot \mathbf{v}$$
 (Homogenitas)

d) $\mathbf{v} \cdot \mathbf{v} \ge 0$ dan $\mathbf{v} \cdot \mathbf{v} = 0$ jika dan hanya jika $\mathbf{v} = \mathbf{0}$ (Kepositifan) Sifat lainnya

a)
$$\mathbf{0} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{0} = 0$$
 d) $(\mathbf{u} - \mathbf{v}) \cdot \mathbf{w} = \mathbf{u} \cdot \mathbf{w} - \mathbf{v} \cdot \mathbf{w}$

b)
$$(\mathbf{u} + \mathbf{v}) \cdot \mathbf{w} = \mathbf{u} \cdot \mathbf{w} + \mathbf{v} \cdot \mathbf{w}$$
 e) $k(\mathbf{u} \cdot \mathbf{v}) = \mathbf{u} \cdot (k\mathbf{v})$

c)
$$\mathbf{u} \cdot (\mathbf{v} - \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} - \mathbf{v} \cdot \mathbf{w}$$

hm: 2.7. Pertidaksamaan Cauchy-Schwarz dan Sudut di \mathbb{R}^n

• Sudut antara dua vektor \mathbf{u} dan \mathbf{v} di \mathbb{R}^2 dan \mathbb{R}^3 didefinisikan oleh

$$\theta = \cos^{-1}\left(\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}\right)$$

· Nilai invers dari cosinus harus memenuhi persamaan

$$-1 \le \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|} \le 1$$

Pertidaksamaan Cauchy-Schwarz. Jika $\mathbf{u} = (u_1, u_2, ..., u_n)$ dan

$$\mathbf{v} = (v_1, v_2, ..., v_n)$$
 merupakan vektor di \mathbb{R}^n , maka

$$|\mathbf{u}\cdot\mathbf{v}|\leq \|\mathbf{u}\|\|\mathbf{v}\|$$

atau dalam bentuk elemen

$$|u_1v_1 + \dots + u_nv_n| \le (u_1^2 + \dots + u_n^2)^{1/2} (v_1^2 + \dots + v_n^2)^{1/2}$$

2.8. Geometri di \mathbb{R}^n (1)

- Sebelumnya, banyak konsep-konsep di \mathbb{R}^2 dan \mathbb{R}^3 yang bisa diperluas ke \mathbb{R}^n .
- Berikut dua teorema dasar geometri yang diperluas ke \mathbb{R}^n :
 - a) Jumlah panjang dua sisi segitiga setidaknya sama dengan yang ketiga.
 - b) Jarak terpendek antara dua titik adalah garis lurus.

Jika \mathbf{u} , \mathbf{v} , dan \mathbf{w} merupakan vektor pada \mathbb{R}^n , maka

a)
$$\|\mathbf{u} + \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$$

b)
$$d(\mathbf{u}, \mathbf{v}) \le d(\mathbf{u}, \mathbf{w}) + d(\mathbf{w}, \mathbf{v})$$

2.8. Geometri di \mathbb{R}^n (2)

Persamaan Jajar Genjang untuk Vektor. Jika ${\bf u}$ dan ${\bf v}$ merupakan vektor di \mathbb{R}^n , maka

$$\|\mathbf{u} + \mathbf{v}\|^2 + \|\mathbf{u} - \mathbf{v}\|^2 = 2(\|\mathbf{u}\|^2 + \|\mathbf{v}\|^2)$$

Jika ${f u}$ dan ${f v}$ merupakan vektor di ${\Bbb R}^n$ dengan perkalian dalam Euclidean, maka

$$\mathbf{u} \cdot \mathbf{v} = \frac{1}{4} \|\mathbf{u} + \mathbf{v}\|^2 - \frac{1}{4} \|\mathbf{u} - \mathbf{v}\|^2$$

2.9. Perkalian Titik sebagai Perkalian Matriks (1)

• Jika \mathbf{u} dan \mathbf{v} matriks kolom. Maka $\mathbf{u} \cdot \mathbf{v} = \mathbf{u}^T \mathbf{v} = \mathbf{v}^T \mathbf{u}$

Contoh: Jika
$$\mathbf{u} = \begin{bmatrix} 1 \\ -3 \\ 5 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} 5 \\ 4 \\ 0 \end{bmatrix}$$

$$\mathbf{u}^T \mathbf{v} = \begin{bmatrix} 1 \\ -3 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} 5 \\ 4 \\ 0 \end{bmatrix} = -7, \qquad \mathbf{v}^T \mathbf{u} = \begin{bmatrix} 5 \\ 4 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} 1 \\ -3 \\ 5 \end{bmatrix} = -7$$

• Jika **u** matriks baris, **v** matriks kolom. Maka $\mathbf{u} \cdot \mathbf{v} = \mathbf{u}\mathbf{v} = \mathbf{v}^T \mathbf{u}^T$

Contoh: Jika
$$\mathbf{u} = \begin{bmatrix} 1 & -3 & 5 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} 5 \\ 4 \\ 0 \end{bmatrix}$$

$$\mathbf{u}\mathbf{v} = \begin{bmatrix} 1 & -3 & 5 \end{bmatrix} \begin{bmatrix} 5 \\ 4 \\ 0 \end{bmatrix} = -7, \qquad \mathbf{v}^T \mathbf{u}^T = \begin{bmatrix} 5 & 4 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ -3 \\ 5 \end{bmatrix} = -7$$

2.9. Perkalian Titik sebagai Perkalian Matriks (2)

• Jika \mathbf{u} matriks kolom, \mathbf{v} matriks baris. Maka $\mathbf{u} \cdot \mathbf{v} = \mathbf{v}\mathbf{u} = \mathbf{u}^T \mathbf{v}^T$

Contoh: Jika
$$\mathbf{u} = \begin{bmatrix} 1 \\ -3 \\ 5 \end{bmatrix}$$
, $\mathbf{v} = \begin{bmatrix} 5 & 4 & 0 \end{bmatrix}$
 $\mathbf{v}\mathbf{u} = \begin{bmatrix} 5 & 4 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ -3 \\ 5 \end{bmatrix} = -7$, $\mathbf{u}^T \mathbf{v}^T = \begin{bmatrix} 1 & -3 & 5 \end{bmatrix} \begin{bmatrix} 5 \\ 4 \\ 0 \end{bmatrix} = -7$

• Jika \mathbf{u} dan \mathbf{v} matriks baris. Maka $\mathbf{u} \cdot \mathbf{v} = \mathbf{u} \mathbf{v}^T = \mathbf{v} \mathbf{u}^T$

Contoh: Jika
$$\mathbf{u} = [1 \ -3 \ 5], \mathbf{v} = [5 \ 4 \ 0]$$

$$\mathbf{u}\mathbf{v}^T = \begin{bmatrix} 1 & -3 & 5 \end{bmatrix} \begin{bmatrix} 5 \\ 4 \\ 0 \end{bmatrix} = -7, \qquad \mathbf{v}\mathbf{u}^T = \begin{bmatrix} 5 & 4 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ -3 \\ 5 \end{bmatrix} = -7$$

2.9. Perkalian Titik sebagai Perkalian Matriks (3)

Jika A merupakan matriks $n \times n$ serta **u** dan **v** merupakan matriks

$$n \times 1$$
, maka

$$A\mathbf{u} \cdot \mathbf{v} = \mathbf{u} \cdot A^T \mathbf{v}$$

$$\mathbf{u} \cdot A\mathbf{v} = A^T \mathbf{u} \cdot \mathbf{v}$$

Contoh 2.8. Misalkan
$$A = \begin{bmatrix} 1 & -2 & 3 \\ 2 & 4 & 1 \\ -1 & 0 & 1 \end{bmatrix}$$
, $\mathbf{u} = \begin{bmatrix} -1 \\ 2 \\ 4 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} -2 \\ 0 \\ 5 \end{bmatrix}$.

Maka

$$A\mathbf{u} = \begin{bmatrix} 1 & -2 & 3 \\ 2 & 4 & 1 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 2 \\ 4 \end{bmatrix} = \begin{bmatrix} 7 \\ 10 \\ 5 \end{bmatrix}, A^T\mathbf{v} = \begin{bmatrix} 1 & 2 & -1 \\ -2 & 4 & 0 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} -2 \\ 0 \\ 5 \end{bmatrix} = \begin{bmatrix} -7 \\ 4 \\ -1 \end{bmatrix}$$

diperoleh
$$A\mathbf{u} \cdot \mathbf{v} = 7(-2) + 10(0) + 5(5) = 11$$

$$\mathbf{u} \cdot A^T \mathbf{v} = (-1)(-7) + 2(4) + 4(-1) = 11$$

Silahkan buktikan untuk $\mathbf{u} \cdot A\mathbf{v} = A^T \mathbf{u} \cdot \mathbf{v}$.

VERSITAS BUNDA

3. Hasil Kali Silang

3.1. Hasil Kali Silang Vektor

Jika vektor $\mathbf{u}=(u_1,u_2,u_3)$ dan $\mathbf{v}=(v_1,v_2,v_3)$ merupakan vektor pada ruang dimensi-3, maka hasil kali silang $\mathbf{u}\times\mathbf{v}$ didefinisikan sebagai

$$\mathbf{u} \times \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix} = \begin{vmatrix} u_2 & u_3 \\ v_2 & v_3 \end{vmatrix} \mathbf{i} - \begin{vmatrix} u_1 & u_3 \\ v_1 & v_3 \end{vmatrix} \mathbf{j} + \begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix} \mathbf{k}$$
$$= (u_2 v_3 - u_3 v_2) \mathbf{i} - (u_1 v_3 - u_3 v_1) \mathbf{j} + (u_1 v_2 - u_2 v_1) \mathbf{k}$$

dalam bentuk vektor baris dituliskan sebagai

$$\mathbf{u} \times \mathbf{v} = (u_2 v_3 - u_3 v_2, u_3 v_1 - u_1 v_3, u_1 v_2 - u_2 v_1)$$

atau dalam notasi determinan

$$\mathbf{u} \times \mathbf{v} = \begin{pmatrix} \begin{vmatrix} u_2 & u_3 \\ v_2 & v_3 \end{vmatrix}, -\begin{vmatrix} u_1 & u_3 \\ v_1 & v_3 \end{vmatrix}, \begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix} \end{pmatrix}$$

3.2. Hubungan Perkalian Silang dan Perkalian Titik

Jika **u**, **v**, dan **w** adalah vektor pada ruang dimensi-3, maka:

CONTOH SOAL

Contoh 3.1. Tentukan $\mathbf{u} \times \mathbf{v}$, jika $\mathbf{u} = (1,2,-2)$ dan $\mathbf{v} = (3,0,1)$.

Solusi. Digunakan notasi determinan, maka diperoleh

$$\mathbf{u} \times \mathbf{v} = \begin{pmatrix} \begin{vmatrix} 2 & -2 \\ 0 & 1 \end{vmatrix}, -\begin{vmatrix} 1 & -2 \\ 3 & 1 \end{vmatrix}, \begin{vmatrix} 1 & 2 \\ 3 & 0 \end{vmatrix} \end{pmatrix} = (2, -7, -6)$$

Contoh 3.2. Perhatikan vektor $\mathbf{u} = (1, 2, -2) \text{ dan } \mathbf{v} = (3, 0, 1).$

Pada contoh 3.1, diperoleh

$$\mathbf{u} \times \mathbf{v} = (2, -7, -6)$$

Karena
$$\mathbf{u} \cdot (\mathbf{u} \times \mathbf{v}) = 1(2) + 2(-7) + (-2)(-6) = 0$$
 dan

$$\mathbf{v} \cdot (\mathbf{u} \times \mathbf{v}) = 3(2) + (0)(-7) + 1(-6) = 0$$

Terbukti bahwa $\mathbf{u} \times \mathbf{v}$ tegak lurus terhadap vektor \mathbf{u} dan \mathbf{v} .

3.3. Sifat-Sifat Perkalian Silang

Jika **u**, **v**, dan **w** adalah vektor pada ruang dimensi-3, maka:

a)
$$\mathbf{u} \times \mathbf{v} = -(\mathbf{v} \times \mathbf{u})$$

b)
$$\mathbf{u} \times (\mathbf{v} + \mathbf{w}) = (\mathbf{u} \times \mathbf{v}) + (\mathbf{u} \times \mathbf{w})$$

c)
$$(\mathbf{u} + \mathbf{v}) \times \mathbf{w} = (\mathbf{u} \times \mathbf{w}) + (\mathbf{v} \times \mathbf{w})$$

d)
$$k(\mathbf{u} \times \mathbf{v}) = (k\mathbf{u}) \times \mathbf{v} = \mathbf{u} \times (k\mathbf{v})$$

e)
$$\mathbf{u} \times \mathbf{0} = \mathbf{0} \times \mathbf{u} = \mathbf{0}$$

f)
$$\mathbf{u} \times \mathbf{u} = \mathbf{0}$$

3.4. Interpretasi Geometri Perkalian Silang (1)

- Jika u dan v adalah vektor pada ruang dimensi-3, maka norm dari u × v dapat digunakan untuk interpretasi geometri.
- Idetitas Lagrange yang terdapat pada hubungan perkalian silang dan perkalian titik menyatakan bahwa

$$\|\mathbf{u} \times \mathbf{v}\|^2 = \|\mathbf{u}\|^2 \|\mathbf{v}\|^2 - (\mathbf{u} \cdot \mathbf{v})^2$$

Jika θ adalah sudut diantara u dan v, maka u · v = ||u|| ||v|| cos θ sehingga

$$\|\mathbf{u} \times \mathbf{v}\|^{2} = \|\mathbf{u}\|^{2} \|\mathbf{v}\|^{2} - \|\mathbf{u}\|^{2} \|\mathbf{v}\|^{2} \cos^{2} \theta$$
$$= \|\mathbf{u}\|^{2} \|\mathbf{v}\|^{2} (1 - \cos^{2} \theta)$$
$$= \|\mathbf{u}\|^{2} \|\mathbf{v}\|^{2} \sin^{2} \theta$$

• Karena $0 \le \theta \le \pi$, maka $\|\mathbf{u} \times \mathbf{v}\| = \|\mathbf{u}\| \|\mathbf{v}\| \sin \theta$.

3.4. Interpretasi Geometri Perkalian Silang (2)

Luas Jajaran Genjang. Jika \mathbf{u} dan \mathbf{v} adalah vektor pada ruang dimensi-3, maka $\|\mathbf{u} \times \mathbf{v}\|$ merupakan luas jajar genjang yang dibentuk oleh \mathbf{u} dan \mathbf{v} .

Contoh 3.3. Tentukan luas area segitiga yang dibentuk oleh titik $P_1(2,2,0)$, $P_2(-1,0,2)$ dan $P_3(0,4,3)$.

Solusi. Luas (L) segitiga tersebut merupakan $\frac{1}{2}$ luas jajar genjang yang dibentuk oleh vektor

$$\overrightarrow{P_3}^{(0,4,3)}$$
 $\overrightarrow{P_1P_2} = (-3,-2,2) \text{ dan } \overrightarrow{P_1P_3} = (-2,2,3).$

Sehingga $\overrightarrow{P_1P_2} \times \overrightarrow{P_1P_3} = (-10,5,-10)$, maka

$$L = \frac{1}{2} \| \overrightarrow{P_1 P_2} \times \overrightarrow{P_1 P_3} \| = \frac{1}{2} (15) = \frac{15}{2}$$

3.4. Interpretasi Geometri Perkalian Silang (3)

 Jika u, v, dan w adalah vektor pada ruang dimensi-3, maka u · (v × w) disebut perkalian skalar tiga vektor dari u, v, dan w yang didefinisikan oleh

$$\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = \begin{vmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix}$$

Contoh 3.4. Jika $\mathbf{u} = 3\mathbf{i} - 2\mathbf{j} - 5\mathbf{k}, \mathbf{v} = \mathbf{i} + 4\mathbf{j} - 4\mathbf{k}, \mathbf{w} = 3\mathbf{j} + 2\mathbf{k},$ maka

$$\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = \begin{vmatrix} 3 & -2 & -5 \\ 1 & 4 & -4 \\ 0 & 3 & 2 \end{vmatrix} = 3 \begin{vmatrix} 4 & -4 \\ 3 & 2 \end{vmatrix} - 1 \begin{vmatrix} -2 & -5 \\ 3 & 2 \end{vmatrix}$$
$$= 60 - 11 = 49$$

SOAL 1

Tentukan elemen dari vektor $\overline{P_1P_2}$, jika

a.
$$P_1(3,5)$$
, $P_2(2,8)$

c.
$$P_1(5,-2,1), P_2(2,4,2)$$

b.
$$P_1(-6,2)$$
, $P_2(-4,-1)$ d. $P_1(0,0,0)$, $P_2(-1,6,1)$

d.
$$P_1(0,0,0), P_2(-1,6,1)$$

SOAL 2

Jika diketahui $\mathbf{u} = (1, 2, -3, 5, 0), \mathbf{v} = (0, 4, -1, 1, 2), dan$ $\mathbf{w} = (7, 1, -4, -2, 3)$. Tentukan elemen dari

a.
$$\mathbf{v} + \mathbf{w}$$

c.
$$(3\mathbf{u} - \mathbf{v}) - (2\mathbf{u} + 4\mathbf{v})$$

b.
$$3(2\mathbf{u} - \mathbf{v})$$

d.
$$\frac{1}{2}(\mathbf{w} - 5\mathbf{v} + 2\mathbf{u}) + \mathbf{v}$$

VERSITAS BUNDA MU

SOAL 3

Tentukan norm dan vektor satuan **u** dari vektor **v**, jika

a.
$$\mathbf{v} = (2, 2, 2)$$

c.
$$\mathbf{v} = (-2, 3, 3, -1)$$

b.
$$\mathbf{v} = (1, -1, 2)$$

d.
$$\mathbf{v} = (1, 0, 2, 1, 3)$$

SOAL 4

Jika diketahui $\mathbf{u} = (2, -2, 3), \mathbf{v} = (1, -3, 4), \text{ dan } \mathbf{w} = (3, 6, -4).$

Tentukan elemen dari

a.
$$\|\mathbf{u} + \mathbf{v}\|$$

c.
$$||3\mathbf{u} - 5\mathbf{v} + \mathbf{w}||$$

b.
$$||-2\mathbf{u} + 2\mathbf{v}||$$

d.
$$||3\mathbf{v}|| - 3||\mathbf{v}||$$

SOAL 5

Carilah $\mathbf{u} \cdot \mathbf{v}$, $\mathbf{u} \cdot \mathbf{u}$ dan $\mathbf{v} \cdot \mathbf{v}$, jika

a.
$$\mathbf{u} = (1, 1, 4, 6), \mathbf{v} = (2, -2, 3, -2)$$

b.
$$\mathbf{u} = (2, -1, 1, 0, -2), \mathbf{v} = (1, 2, 2, 2, 1)$$

SOAL 6

Carilah jarak Euclidean antara ${\bf u}$ dan ${\bf v}$ serta kosinus sudut diantara kedua vektor tersebut. Tentukan apakah sudut tersebut lancip, tumpul atau 90°.

a.
$$\mathbf{u} = (3,3,3), \mathbf{v} = (1,0,4)$$

b.
$$\mathbf{u} = (0, 1, 1, 1, 2), \ \mathbf{v} = (2, 1, 0, -1, 3)$$

SOAL 7

Diketahui $\mathbf{u} = (3, 2, -1), \mathbf{v} = (0, 2, -3), \text{ dan } \mathbf{w} = (2, 6, 7).$ Hitung:

- a. $\mathbf{v} \times \mathbf{w}$ c. $(\mathbf{u} + \mathbf{v}) \times \mathbf{w}$ e. $\mathbf{w} \cdot (\mathbf{w} \times \mathbf{v})$

- b. $\mathbf{w} \times \mathbf{v}$ d. $\mathbf{u} \times (\mathbf{v} + \mathbf{w})$ f. $(\mathbf{u} 3\mathbf{w}) \times (\mathbf{u} 3\mathbf{w})$

SOAL 8

Carilah luas jajar genjang yang dibentuk oleh vektor $\mathbf{u} = (1, -1, 2)$ $dan \mathbf{v} = (0, 3, 1).$

SOAL 9

Carilah luas segitiga yang dibentuk dari titik A(2,0), B(3,4), dan C(-1,2).

IVERSITAS BUNDA MU

SOAL 10

Hitunglah perkalian skalar tiga vektor $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})$, jika

a.
$$\mathbf{u} = (-2, 0, 6), \ \mathbf{v} = (1, -3, 1), \ \mathbf{w} = (-5, -1, 1)$$

b.
$$\mathbf{u} = (-1, 2, 4), \mathbf{v} = (3, 4, -2), \mathbf{w} = (-1, 2, 5)$$

RINGKASAN

- Seara geometris, vektor dapat direpresentasikan dengan menggunakan garis panah, dimana arah panah menentukan arah vektor dan panjang panah menentukan besarnya vektor.
- Terdapat tiga metode penjumlahan vektor, yakni aturan jajar genjang, aturan segitiga dan penjumlahan dengan translasi.
- Vektor negatif dari vektor v adalah vektor yang memiliki panjang yang sama dengan vektor v namun memiliki arah yang berlawanan.
- Dua vektor yang berhimpit memiliki titik awal yang sama dengan panjang salah satu vektor merupakan kelipatan lainnya. Jika salah satu vektor ditranslasikan, kedua vektor menjadi sejajar.

RINGKASAN

- Penjumlahan tiga vektor atau lebih memiliki hasil yang sama, tidak tergantung pada urutan vektor yang dijumlahkan.
- Penjumlahan, pengurangan dan perkalian skalar dari vektor sering digunakan sebagai kombinasi linier untuk menyusun vektor baru.
- Panjang suatu vektor disebut norm vektor. Suatu vektor dengan norm 1 disebut sebagai vektor satuan.
- Pada sistem koordinat, vektor satuan standar merupakan vektor satuan yang searah dengan sumbu positif.
- Jarak dua vektor didefinisikan sebagai norm dari selisih kedua vektor tersebut.

RINGKASAN

- Hasil kali titik dari dua vektor tak nol dapat digunakan untuk menentukan sudut diantara kedua vektor. Hasil kali titik dapat dicari dengan menggunakan elemen vektor.
- Hasil kali silang (perkalian silang) hanya dapat dicari untuk vektor pada ruang dimensi-3.
- Perkalian silang dapat digunakan untuk mencari luas jajar genjang yang dibentuk oleh dua vektor.
- Perkalian skalar tiga vektor dapat dicari dengan menggunakan konsep determinan.

Terima Kasih