Applied Natural Language Processing

Dr Jeff Mitchell, University of Sussex Autumn 2025

Where are we?

Last time

- Pre-processing text documents
 - segmentation
 - tokenization
 - O Zipf's Law
 - o normalization
 - punctuation and stopword removal
 - stemming and lemmatization

This time

- Document classification
 - Feature extraction
 - Word list classifiers
- Evaluation
 - accuracy and error rate
 - the confusion matrix
 - o precision, recall and F1-score

Introduction to the document classification scenario

Part 1

What do the following scenarios have in common?

- Given a corpus of reviews of a new restaurant, determining how many are positive and how many are negative about the restaurant.
- O Given a corpus of recently published scientific articles, identifying all of the ones which are about Natural Language Engineering.
- O Identifying and filtering spam emails.
- O Identifying and blocking posts to a social media website which contain swear words.
- Determining whether tweeters are for or against a particular political campaign (or politician).

Binary classification

5

Multi-class classification

General issues

- Specifying what makes a document in one class or another
 - Can we learn from positive and negative examples?
- Adapting to dynamics of data source
 - O Class specifications may change over time
 - o e.g., words particularly indicative of positive or negative sentiment in a particular domain
- Unbalanced classes
 - One class may be much larger than the other (e.g., many more irrelevant documents than relevant documents)
- Is one decision per document appropriate?

Beyond classification

- Identification of parts of a document which are relevant or where sentiment is expressed
- Identification of specific entities within a document that sentiment (or other classification) may be applied to:
 - O Different films referred to in a review of latest film releases
 - Comparisons with other products/entities:
 - "The One Max is disappointing compared to the excellent iPhone 5"
- Identification of specific features of entities that sentiment (or other classification) may be applied to:
 - "I don't like iPads but the battery life is particularly impressive"

General Architecture for Document Classification

- 1. Feature extractor turns document into a set or **vector** of features
- 2. Classifier consults a model of what features to expect in different classes and decides the **most likely** class accordingly

Questions

- What are the features that we need to extract from documents in order to be able to classify them?
- Where does the model come from?

10

Feature extraction

Words as features

- Words within documents provide excellent evidence of being in a particular class
 - excellent evidence that a review is positive
 - Obitcoin evidence that an email is spam
 - O lemma evidence that an article is relevant to NLE
- KEY IDEA: Just treat a document as a bag-of-words.
 - Ignore order and grammatical structure
 - O Preprocessing critical what constitutes a word?
 - O Sometimes ignore frequency too although then strictly it would be a set-of-words

12

Bag-of-words representation

Feature representation

- May be binary-valued:
 - OD1 = {cats:True, mice: True, chase: True, the: True}
- Or numeric-valued:
 - $OD1 = \{cats: 1, mice: 1, chase: 1, the: 2\}$
- Might be stored with sparse vector representation such as python dictionaries (as above)
 - Odefault value for keys not present is False / zero

value = D1.get(word,0)

Vectors and matrices

O Document features may be stored in fixed length arrays / matrices

	a	bat	car	cat	•••	mice	•••	yelp	zebra
D1	0	0	0	1	•••	1	•••	0	0
D2	1	1	0	0	•••	0	•••	0	0
D3	1	0	1	1	•••	0	•••	1	1

- Length of each row vector = |V|
- Inherent sparsity (lots of zeros)
- Python dictionaries with defaults are much more space efficient data structure

Classification models

Models for document classification

Approaches we will consider:

- OHand-crafted vocabulary lists
- Automatically derived vocabulary lists
- O Naïve Bayes

Word list classifiers

Using vocabulary lists for relevancy classification

19

Using vocabulary lists for sentiment classification

20

Stop and think

- O What words might you expect to occur in a positive review about a movie?
- What words might you expect to occur in a negative review about a movie?

Scoring documents

- A document is treated as a bag-of-words, d
- O Number of occurrences of word w in d is denoted:

• Generalise to total occurrences of words from list L in d:

$$count(d, L) = \sum_{w \in L} count(d, w)$$

Example: Scoring documents for sentiment analysis

- O Positive sentiment word list: L₊
- O Negative sentiment word list: L
- O Class decision for document, d, is given by:

$$class(d) = \begin{cases} positive & \text{if } count(d, L_{+}) > count(d, L_{-}) \\ negative & \text{if } count(d, L_{-}) > count(d, L_{+}) \end{cases}$$

Options

- O Different ways of scoring words occurring in documents.
- 1. Frequency (seen in example) _
- 2. Uniform score for occurrence.
- 3. Weighted by 'importance' of word.
 - But where do these weights come from?
- O Differences in linguistic processing.
 - O Should you use:
 - Case normalization?
 - Number normalization?
 - O Lemmatisation?

$$\rightarrow$$
 $score(d, w) = count(d, w)$

$$\Rightarrow score(d, w) = \begin{cases} 1 & \text{if } w \text{ occurs in } d \\ 0 & \text{otherwise} \end{cases}$$

$$score(d, w) = \begin{cases} imp(w) & \text{if } w \text{ occurs in } d \\ 0 & \text{otherwise} \end{cases}$$

$$score(d, w) = imp(w) \times count(d, w)$$

Problems with hand-crafted lists

- O Degree of variation in the way people express themselves
- O Hard to build comprehensive lists
- Hard to build balanced lists
- Variation in vocabulary across different domains
- Relevance of words not always obvious

Automatic derivation of wordlists

- Use a sample of labelled documents.
 - O Need to ensure that both (all) classes are represented in sample
 - O Class **imbalance** can be a big problem
- Partition this into training and testing sets
 - O Common splits are 50:50, 80:20 and 90:10
- Use training sample of documents to build a model
 - o i.e., select words for word lists
- Use testing sample of documents to find out how well the model works.
- Proper use of training and testing data is essential to avoid over-fitting the data
 - Want to know how well the model works on unseen data NOT how well it works on data that has already been labelled

Supervised learning is great but ...

- Relies on labelled data
- This can be expensive to produce
 - Generally requires humans to hand-label it
- The more complex the model being built, the more labelled training data it will require
- Models in NLE are usually highly domain dependent
- Domain adaptation is a big challenge

27

Selection of words for word lists

O Most frequent terms

- O Positive word list most frequently occurring words in positive documents
- Negative word list most frequently occurring words in negative documents

O Greatest frequency difference

- O A word's score for class c is its total frequency in documents labelled as c minus total frequency in documents labelled as not c.
- O Word list for class c is the words with highest scores for class c

Tuning hyperparameters

- Length of vocabulary lists is an example of a hyperparameter
- Tempting to try lots of different possibilities until one gives good results (on the testing data)
 - O May do well just because a certain word in test data was or wasn't included on the list
 - May not generalize to truly unseen data
 - O This is **over-fitting**
- Empirically determine the optimal value of hyperparameters on held-out development set
 - Requires partitioning labelled data into training, testing and development sets
 - Learn more about other methods for hyperparameter tuning in the Machine Learning module

X

29

Evaluating classifiers

Part 2

Evaluating classifiers

- O Mhy?
 - We want to know how well our classifier will do on unseen documents
 - O We want to be able to choose the best classifier (or parameter settings) in a particular scenario
- Need a labelled dataset that has not been used in training
 - O Evaluate on a held-out **testing** set
 - Good practice to compare different parameter settings on a separate held-out development set, before calculating final performance on the testing set.
- O Here we focus on binary classification
 - Common scenario
 - O May further distinguish one class (e.g., "positive") as being the one of interest
 - Metrics considered do generalize to multi-class cases.

Accuracy and error rate

Accuracy is the proportion of items in the test set that are classified correctly.

$$accuracy = \frac{|\{i|prediction(i) = label(i)\}|}{|\{i\}|}$$

Error rate is the proportion of items in the test set that are classified incorrectly.

$$error\ rate = \frac{|\{i|prediction(i) \neq label(i)\}|}{|\{i\}|}$$

O Note that: $error\ rate = 1 - accuracy$

Stop and think

- Are accuracy and error rate the most appropriate way of assessing/comparing classifiers?
- Can you think of a scenario where using accuracy or error rate might be misleading?

Confusion Matrix

	Predicted Class					
155		+ve	-ve			
e Class	+ve	True Positives (TP)	False Negatives (FN)			
True	-ve	False Positives (FP)	True Negatives (TN)			

Total number of data items:

$$N = TP + FP + TN + FN$$

Accuracy: the proportion classified

correctly
$$Accuracy = \frac{TP + TN}{N}$$

Error rate: the proportion classified incorrectly

$$Error\ rate = \frac{FN + FP}{N}$$

Example 1

	Pred			
SSD		+ve	-ve	total
True Class	+ve	TP=45	FN=5	50
Tru	-ve	FP=15	TN=35	50
	total	60	40	100

$$Accuracy = \frac{45 + 35}{100} = 0.8$$

$$Error\ rate = \frac{5+15}{100} = 0.2$$

Stop and think

Is this an example of a balanced or an unbalanced class distribution?

Example 2

	Predicted Class			
True Class		+ve	-ve	total
	+ve	TP=3	FN=7	10
	-ve	FP=3	TN=87	90
	total	6	94	100

$$Accuracy = \frac{3 + 87}{100} = 0.9$$

$$Error\ rate = \frac{7+3}{100} = 0.1$$

But how good is this classifier at predicting the positive class?

Precision and recall

Recall is the proportion of actually +ve documents that are predicted correctly

$$Recall = \frac{TP}{TP + FN}$$

Precision is the proportion of +ve predictions that are correct

$$Precision = \frac{TP}{TP + FP}$$

Example 1 (again)

	Predicted Class			
True Class		+ve	-ve	total
	+ve	TP=45	FN=5	50
	-ve	FP=15	TN=35	50
	total	60	40	100

For the positive class:

Recall=
$$\frac{TP}{TP+FN}$$
Recall =
$$\frac{45}{45+5} = 0.9$$

Precision=
$$\frac{TP}{TP+FP}$$

Precision=
$$\frac{45}{45+15} = 0.75$$

Example 2 (Again)

	Predicted Class			
True Class		+ve	-ve	total
	+ve	TP=3	FN=7	10
	-ve	FP=3	TN=87	90
	total	6	94	100

For the positive class:

$$Recall = \frac{TP}{TP + FN}$$

$$Precision = \frac{TP}{TP + FP}$$

F1-Score

- In general, we want high precision AND high recall
- We combine precision (P) and recall (R) scores using the F1-score:

$$F1 = \frac{2PR}{P+R}$$

 This is the harmonic mean (and is always closer to the lower of two values) In example 1, R = 0.9 and P = 0.75

$$F1 = \frac{2 \times 0.9 \times 0.75}{0.9 + 0.75} = 0.818$$

In example 2 R = 0.3 and P = 0.5

$$F1 = \frac{2 \times 0.3 \times 0.5}{0.3 + 0.5} = 0.375$$

Trading Off Precision and Recall

For any given classifier, we can change the **decision boundary**, making it more or less likely to classify an item as positive.

L4

- The standard decision rule for a wordlist classifier is score(positive words) > score(negative words)
- Everything below the boundary of the graph is classified as positive, everything above is classified as negative
- If the true labels are as shown, we get some FN and some FP
- Affecting precision and recall

Trading Off Precision and Recall

For any given classifier, we can change the decision boundary, making it more or less likely to classify an item as positive.

- Moving the boundary to the left reduces the number of FN
- Recall → 1

Trading Off Precision and Recall

For any given classifier, we can change the decision boundary, making it more or less likely to classify an item as positive.

- Moving the boundary to the right reduces the number of FP
- Precision → 1

Making progress

• This week you should complete **all** of the exercises in **all 2 notebooks** for week 3 on Document Classification:

- <u>Part 1</u>: Lab_3_1.ipynb
- <u>Part 2</u>: Lab_3_2.ipynb

Keywords Check

binary classification	
bag-of-words	
supervised learning	
over-fitting	
hyperparameter	
accuracy	
error rate	
confusion matrix	
precision	
recall	
F1 Score	46

More Python

Classes in Python

- Classes in python support object-oriented programming paradigm
- Intuitively, classes can be thought of as a user-defined type
- The class defines the attributes that each object needs to have and the methods which can be called on it
- For example, a PERSON class might have
 - o attributes such as name, age and birthplace
 - methods such as is_eligible()
- You instantiate or construct an object belonging to a particular class and call methods on particular objects

PERSON example

```
class Person():
    def __init__(self,name,age,birthplace):
        self.name=name
        self.age=age
        self.birthplace=birthplace

def is_eligible(self,):
    return self.age>17 and self.birthplace.lower()=="brighton"
```

- Note the use of 'self' to refer to this particular instance of a class
- Note the use of __init__() which is automatically called when an instance is created

```
people=[]
person1=Person("john",12,"brighton")
people.append(person1)
person2=Person("diana",19,"brighton")
people.append(person2)
person3=Person("bob",20,"london")
people.append(person3)
for p in people:
    if p.is_eligible():
        print(p.name)
```

Inheritance

- Note that the Student class inherits from the Person class
- All attributes and methods in Person are available in Student UNLESS they are explicitly over-ridden (like __init__)

```
class Student(Person):
    def init (self,name,age,birthplace):
        self.name=name
        self.age=age
        self.birthplace=birthplace
        self.scores=[]
    def add score(self,score):
        self.scores.append(score)
    def average score(self):
        if len(self.scores)>0:
            return sum(self.scores)/len(self.scores)
        else:
            return 0
```

```
person1=Student("diana",19,"brighton")
person1.add_score(45)
person1.add_score(60)
print("The average score for {} is {}".format(person1.name,person1.average_score()))
print("Eligibility of {}: {}".format(person1.name,person1.is_eligible()))
The average score for diana is 52.5
Eligibility of diana: True
```