Solarwind-Heliosperic Imaging in Latitude and Longitude by Estimating Large-scale Attributes (SHILLELagh)

Input:

TIME RANGE **SPACE CRAFT** SPATIAL BOUNDS

SW_PROPAGATE: Use space craft data to estimate the properties of the solar wind at every point in the ecliptic plane.

(used in CALC_HELIO_PROPS)

SW_GET_DATA

- O initialize model box and other variables
- O fill time observed, velocity, magnetic field, density and temperature
- O calculate the "propagated" position of each observation using:
 - R=Vel.*(time_obs-time_this)+R_spacecraft
- O use SW model to convert observations to "propagated" values (CALC_HELIO_PROPS)
- O calculate longitude of each observation using longitude of Earth at each observation time
- O assuming the SW is static, and a value for Sun's rotation speed, "propagate" observations along archimedean spirals (SW_SPIRAL)

SW_SPIRAL:

O Reduce set to points between 0 and Max Radius of model box **FOR EACH** OBSERVED POINT:

- O correct for (-) radii if necessary
- O initialize spiral arm array with Nelements determined from THETA_BIN
- O calculate propagated properties for each point along spiral
 - O longitude=longitude_observe + THETA_BIN
 - OR = R_observe THETA_BIN * Velocity / sun_angular_rotation_speed
 - O Use CALC_HELIO_PROPS to calculate other properties along spiral
- O remove points propagated to (-) R values

Save propagated SW properties as compressed IDL ".sav" file.

NOTES: *SW = Solar Wind

> *Propagate = predicting what the properties of an observation (a point on the data graph) will be when it reaches a particular location. Each observed point is treated as a "blob" of plasma moving radially outward from the Sun. We assume that each longitude on the solar surface continues releasing blobs of plasma with the same properties.