Lecture 17

Models for areal data

Colin Rundel 3/27/2018 areal / lattice data

Example - NC SIDS

EDA - Moran's I

If we have observations at n spatial locations $(s_1, \dots s_n)$

$$I = \frac{n}{\sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij}} \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} (y(s_i) - \bar{y}) (y(s_j) - \bar{y})}{\sum_{i=1}^{n} \left(y(s_i) - \bar{y}\right)^2}$$

where ${f w}$ is a spatial weights matrix.

4

If we have observations at n spatial locations $(s_1, \dots s_n)$

$$I = \frac{n}{\sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij}} \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} \big(y(s_i) - \bar{y} \big) \big(y(s_j) - \bar{y} \big)}{\sum_{i=1}^{n} \big(y(s_i) - \bar{y} \big)^2}$$

where ${f w}$ is a spatial weights matrix.

Some properties of Moran's I (when there is no spatial autocorrelation):

- $\cdot \ E(I) = -1/(n-1)$
- $\cdot \ Var(I) = {\it Something ugly but closed form} E(I)^2$
- $\cdot \ \lim_{n \to \infty} \tfrac{I E(I)}{\sqrt{Var(I)}} \sim \mathcal{N} \big(0, 1 \big)$

/.

NC SIDS & Moran's I

Lets start by using a normalized adjacency matrix for ${\bf w}$ (shared county borders).

```
morans_I = function(y, w) {
 w = normalize_weights(w)
  n = length(v)
 v bar = mean(v)
  num = sum(w * (y-y_bar) %*% t(y-y_bar))
 denom = sum((y-y bar)^2)
  (n/sum(w)) * (num/denom)
w = 1*st_touches(nc, sparse=FALSE)
morans I(v = nc\$SID74, w)
## [1] 0.1477405
ape::Moran.I(nc$SID74. weight = w) %>% str()
## list of 4
## $ observed: num 0.148
## $ expected: num -0.0101
## $ sd : num 0.0627
## $ p.value : num 0.0118
```

EDA - Geary's C

Like Moran's I, if we have observations at n spatial locations $(s_1,\dots s_n)$

$$C = \frac{n-1}{2\sum_{i=1}^{n}\sum_{j=1}^{n}w_{ij}} \frac{\sum_{i=1}^{n}\sum_{j=1}^{n}w_{ij} (y(s_i) - y(s_j))^2}{\sum_{i=1}^{n} (y(s_i) - \bar{y})^2}$$

where ${f w}$ is a spatial weights matrix.

6

EDA - Geary's C

Like Moran's I, if we have observations at n spatial locations $(s_1, \dots s_n)$

$$C = \frac{n-1}{2\sum_{i=1}^{n}\sum_{j=1}^{n}w_{ij}}\frac{\sum_{i=1}^{n}\sum_{j=1}^{n}w_{ij}\big(y(s_i)-y(s_j)\big)^2}{\sum_{i=1}^{n}\big(y(s_i)-\bar{y}\big)}$$

where ${f w}$ is a spatial weights matrix.

Some properties of Geary's C:

- $\cdot \ 0 < C < 2$
 - · If C pprox 1 then no spatial autocorrelation
 - \cdot If C>1 then negative spatial autocorrelation
 - \cdot If C < 1 then positive spatial autocorrelation
- · Geary's C is inversely related to Moran's I

NC SIDS & Geary's C

Again using an normalized adjacency matrix for ${f w}$ (shared county borders).

```
gearys_C = function(y, w) {
 w = normalize weights(w)
  n = length(y)
 v bar = mean(v)
  y_i = y %*% t(rep(1,n))
 v i = t(v i)
  num = sum(w * (y_i-y_j)^2)
 denom = sum((y-y bar)^2)
  ((n-1)/(2*sum(w)))*(num/denom)
w = 1*st_touches(nc, sparse=FALSE)
gearys_C(y = nc\$SID74, w = w)
## [1] 0.8438767
```

Spatial Correlogram

```
nc_pt = st_centroid(nc)
plot(nc_pt[,"SID74"], pch=16)
```

SID74

Autoregressive Models

AR Models - Time

Lets just focus on the simplest case, an AR(1) process

$$y_t = \delta + \phi \, y_{t-1} + w_t$$

where $w_t \sim \mathcal{N}(0, \sigma^2)$ and $|\phi| < 1$, then

$$\begin{split} E(y_t) &= \frac{\delta}{1-\phi} \\ Var(y_t) &= \frac{\sigma^2}{1-\phi} \\ \rho(h) &= \phi^h \\ \gamma(h) &= \phi^h \frac{\sigma^2}{1-\phi} \end{split}$$

AR Models - Time - Joint Distribution

Previously we saw that an AR(1) model can be represented using a multivariate normal distribution

$$\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} \sim \mathcal{N} \begin{pmatrix} \frac{\delta}{1-\phi} \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix}, \ \frac{\sigma^2}{1-\phi} \begin{pmatrix} 1 & \phi & \cdots & \phi^{n-1} \\ \phi & 1 & \cdots & \phi^{n-2} \\ \vdots & \vdots & \ddots & \vdots \\ \phi^{n-1} & \phi^{n-2} & \cdots & 1 \end{pmatrix} \end{pmatrix}$$

AR Models - Time - Joint Distribution

Previously we saw that an AR(1) model can be represented using a multivariate normal distribution

$$\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} \sim \mathcal{N} \begin{pmatrix} \frac{\delta}{1-\phi} \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix}, \; \frac{\sigma^2}{1-\phi} \begin{pmatrix} 1 & \phi & \cdots & \phi^{n-1} \\ \phi & 1 & \cdots & \phi^{n-2} \\ \vdots & \vdots & \ddots & \vdots \\ \phi^{n-1} & \phi^{n-2} & \cdots & 1 \end{pmatrix} \end{pmatrix}$$

In writing down the likelihood we also saw that an AR(1) is 1st order Markovian,

$$\begin{split} f(y_1,\dots,y_n) &= f(y_1)\,f(y_2|y_1)\,f(y_3|y_2,y_1)\,\cdots\,f(y_n|y_{n-1},y_{n-2},\dots,y_1) \\ &= f(y_1)\,f(y_2|y_1)\,f(y_3|y_2)\,\cdots\,f(y_n|y_{n-1}) \end{split}$$

Alternative Definitions for \boldsymbol{y}_t

$$y_t = \delta + \phi \, y_{t-1} + w_t$$
 vs.

Alternative Definitions for \boldsymbol{y}_t

$$y_t = \delta + \phi \, y_{t-1} + w_t \label{eq:yt}$$
 vs.

$$y_t | y_{t-1} \sim \mathcal{N}(\delta + \phi \, y_{t-1}, \, \sigma^2)$$

In the case of time, both of these definitions result in the same multivariate distribution for y.

AR in Space

• s1	• •2	•3	• • •	• 5	• 6	• e7	• 8	• 9	• •10
51	52	50	54	55	50	57	50	59	510

AR in Space

• •

Even in the simplest spatial case there is no clear / unique ordering,

$$\begin{split} f\big(y(s_1),\dots,y(s_{10})\big) &= f\big(y(s_1)\big)\,f\big(y(s_2)|y(s_1)\big)\,\cdots\,f\big(y(s_{10}|y(s_9),y(s_8),\dots,y(s_1)\big) \\ &= f\big(y(s_{10})\big)\,f\big(y(s_9)|y(s_{10})\big)\,\cdots\,f\big(y(s_1|y(s_2),y(s_3),\dots,y(s_{10})\big) \\ &= ? \end{split}$$

AR in Space

Even in the simplest spatial case there is no clear / unique ordering,

$$\begin{split} f\big(y(s_1),\dots,y(s_{10})\big) &= f\big(y(s_1)\big)\,f\big(y(s_2)|y(s_1)\big)\,\cdots\,f\big(y(s_{10}|y(s_9),y(s_8),\dots,y(s_1)\big) \\ &= f\big(y(s_{10})\big)\,f\big(y(s_9)|y(s_{10})\big)\,\cdots\,f\big(y(s_1|y(s_2),y(s_3),\dots,y(s_{10})\big) \\ &= ? \end{split}$$

Instead we need to think about things in terms of their neighbors / neighborhoods. We will define $N(s_i)$ to be the set of neighbors of location s_i .

• If we define the neighborhood based on "touching" then

$$N(s_3) = \{s_2, s_4\}$$

. If we use distance within 2 units then $N(s_3) = \{s_1, s_2, s_3, s_4\}$

Y AR(L)

Defining the Spatial AR model

Here we will consider a simple average of neighboring observations, just like with the temporal AR model we have two options in terms of defining the autoregressive process,

Defining the Spatial AR model

Here we will consider a simple average of neighboring observations, just like with the temporal AR model we have two options in terms of defining the autoregressive process,

· Simultaneous Autogressve (SAR)

$$y(s) = \delta + \phi \frac{1}{|N(s)|} \sum_{s' \in N(s)} y(s') + \mathcal{N}(0, \sigma^2)$$

Defining the Spatial AR model

Here we will consider a simple average of neighboring observations, just like with the temporal AR model we have two options in terms of defining the autoregressive process,

· Simultaneous Autogressve (SAR)

$$y(s) = \delta + \phi \frac{1}{|N(s)|} \sum_{s' \in N(s)} y(s') + \mathcal{N}(0, \sigma^2)$$

Conditional Autoregressive (CAR)

$$y(s)|\mathbf{y}(-s) \sim \mathcal{N}\left(\delta + \phi \frac{1}{|N(s)|} \sum_{s' \in N(s)} y(s'), \ \sigma^2\right)$$

Simultaneous Autogressve (SAR)

Using

$$y(s) = \phi \frac{1}{|N(s)|} \sum_{s' \in N(s)} y(s') + \mathcal{N}(0, \sigma^2)$$

we want to find the distribution of $\mathbf{y} = \Big(y(s_1),\,y(s_2),\,\dots,\,y(s_n)\Big)^{\mathrm{t}}$.

Simultaneous Autogressve (SAR)

Using

$$y(s) = \phi \frac{1}{|N(s)|} \sum_{s' \in N(s)} y(s') + \mathcal{N}(0, \sigma^2)$$

we want to find the distribution of $\mathbf{y} = \Big(y(s_1),\,y(s_2),\,\dots,\,y(s_n)\Big)^\iota$.

First we can define a weight matrix ${f W}$ where

$$\{\mathbf{W}\}_{ij} = \begin{cases} 1/|N(s_i)| & \text{if } j \in N(s_i) \\ 0 & \text{otherwise} \end{cases}$$

then we can write ${f y}$ as follows,

$$\mathbf{y} = \phi \, \mathbf{W} \, \mathbf{y} + \boldsymbol{\epsilon}$$

where

$$\epsilon \sim \mathcal{N}(0, \sigma^2 \mathbf{I})$$

A toy example

$$A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

$$y = \phi W y + \epsilon$$

$$Y - \phi U Y = \underline{\xi}$$

$$(\underline{T} - \phi U) \underline{Y} = \underline{\xi}$$

$$Y = (\underline{T} - \phi U)^{-1} \underline{\xi}$$

$$\frac{y}{y} = (\underline{\mathbf{I}} - \phi \underline{\mathbf{v}})^{-1} \underline{\mathcal{E}}$$

$$= \sigma^{2} (\underline{\mathbf{I}} - \phi \underline{\mathbf{v}})^{-1} ((\underline{\mathbf{I}} - \phi \underline{\mathbf{v}})^{-1})^{+}$$

$$= \sum_{i=1}^{n} y_{i} \sim N \left(\underline{\mathbf{O}}_{i} - \phi \underline{\mathbf{v}}_{i}\right)^{-1} ((\underline{\mathbf{I}} - \phi \underline{\mathbf{v}}_{i})^{-1})^{+}$$

Conditional Autogressve (CAR)

This is a bit trickier, in the case of the temporal AR process we actually went from joint distribution \rightarrow conditional distributions (which we were then able to simplify).

Since we don't have a natural ordering we can't get away with this (at least not easily).

Going the other way, conditional distributions \rightarrow joint distribution is difficult because it is possible to specify conditional distributions that lead to an improper joint distribution.

Brook's Lemma

For sets of observations ${\bf x}$ and ${\bf y}$ where $p(x)>0 \ \ \forall \ x\in {\bf x}$ and $p(y)>0 \ \ \forall \ y\in {\bf y}$ then

$$\begin{split} \frac{p(\mathbf{y})}{p(\mathbf{x})} &= \prod_{i=1}^{n} \frac{p(y_i \mid y_1, \dots, y_{i-1}, x_{i+1}, \dots, x_n)}{p(x_i \mid x_1, \dots, x_{i-1}, y_{i+1}, \dots, y_n)} \\ &= \prod_{i=1}^{n} \frac{p(y_i \mid x_1, \dots, x_{i-1}, y_{i+1}, \dots, y_n)}{p(x_i \mid y_1, \dots, y_{i-1}, x_{i+1}, \dots, x_n)} \end{split}$$

$$p(y_1,y_2) = p(y_1|y_2)p(y_2) \\$$

$$\begin{split} p(y_1, y_2) &= p(y_1|y_2) p(y_2) \\ &= p(y_1|y_2) \frac{p(y_2|x_1)}{p(x_1|y_2)} p(x_1) \end{split}$$

$$\begin{split} p(y_1,y_2) &= p(y_1|y_2)p(y_2) \\ &= p(y_1|y_2)\frac{p(y_2|x_1)}{p(x_1|y_2)}p(x_1) = \frac{p(y_1|y_2)}{p(x_1|y_2)}p(y_2|x_1)\,p(x_1) \end{split}$$

$$\begin{split} p(y_1,y_2) &= p(y_1|y_2)p(y_2) \\ &= p(y_1|y_2)\frac{p(y_2|x_1)}{p(x_1|y_2)}p(x_1) = \frac{p(y_1|y_2)}{p(x_1|y_2)}p(y_2|x_1)\,p(x_1) \\ &= \frac{p(y_1|y_2)}{p(x_1|y_2)}p(y_2|x_1)\,p(x_1)\left(\frac{p(x_2|x_1)}{p(x_2|x_1)}\right) \end{split}$$

$$\begin{split} p(y_1,y_2) &= p(y_1|y_2)p(y_2) \\ &= p(y_1|y_2)\frac{p(y_2|x_1)}{p(x_1|y_2)}p(x_1) = \frac{p(y_1|y_2)}{p(x_1|y_2)}p(y_2|x_1)\,p(x_1) \\ &= \frac{p(y_1|y_2)}{p(x_1|y_2)}p(y_2|x_1)\,p(x_1)\left(\frac{p(x_2|x_1)}{p(x_2|x_1)}\right) \\ &= \frac{p(y_1|y_2)}{p(x_1|y_2)}\frac{p(y_2|x_1)}{p(x_2|x_1)}\,p(x_1,x_2) \end{split}$$

$$\begin{split} p(y_1,y_2) &= p(y_1|y_2)p(y_2) \\ &= p(y_1|y_2)\frac{p(y_2|x_1)}{p(x_1|y_2)}p(x_1) = \frac{p(y_1|y_2)}{p(x_1|y_2)}p(y_2|x_1)\,p(x_1) \\ &= \frac{p(y_1|y_2)}{p(x_1|y_2)}p(y_2|x_1)\,p(x_1)\left(\frac{p(x_2|x_1)}{p(x_2|x_1)}\right) \\ &= \frac{p(y_1|y_2)}{p(x_1|y_2)}\frac{p(y_2|x_1)}{p(x_2|x_1)}\,p(x_1,x_2) \end{split}$$

$$\frac{p(y_1,y_2)}{p(x_1,x_2)} = \frac{p(y_1|y_2)}{p(x_1|y_2)} \frac{p(y_2|x_1)}{p(x_2|x_1)}$$

Utility?

Lets repeat that last example but consider the case where ${\bf y}=(y_1,y_2)$ but now we let ${\bf x}=(y_1=0,y_2=0)$

$$\frac{p(y_1,y_2)}{p(x_1,x_2)} = \frac{p(y_1,y_2)}{p(y_1=0,y_2=0)}$$

Utility?

Lets repeat that last example but consider the case where ${\bf y}=(y_1,y_2)$ but now we let ${\bf x}=(y_1=0,y_2=0)$

$$\frac{p(y_1, y_2)}{p(x_1, x_2)} = \frac{p(y_1, y_2)}{p(y_1 = 0, y_2 = 0)}$$

$$p(y_1,y_2) \not \succeq \frac{p(y_1|y_2)}{p(y_1=0|y_2)} \frac{p(y_2|y_1=0)}{p(y_2=0|y_1=0)} p(y_1=0,y_2=0)$$

Utility?

Lets repeat that last example but consider the case where ${f y}=(y_1,y_2)$ but now we let ${f x}=(y_1=0,y_2=0)$

$$\begin{split} \frac{p(y_1,y_2)}{p(x_1,x_2)} &= \frac{p(y_1,y_2)}{p(y_1=0,y_2=0)} \\ p(y_1,y_2) &= \frac{p(y_1|y_2)}{p(y_1=0|y_2)} \frac{p(y_2|y_1=0)}{p(y_2=0|y_1=0)} \ p(y_1=0,y_2=0) \\ p(y_1|y_2) \ p(y_2|y_1=0) \end{split}$$

$$\begin{split} p(y_1, y_2) &\propto \frac{p(y_1|y_2) \ p(y_2|y_1 = 0)}{p(y_1 = 0|y_2)} \\ &\propto \frac{p(y_2|y_1) \ p(y_1|y_2 = 0)}{p(y_2 = 0|y_1)} \end{split}$$

$$\begin{aligned} &y(s_1)|y(s_2) \sim \mathcal{N}(\phi W_{12} \ y(s_2), \sigma^2) \\ &y(s_2)|y(s_1) \sim \mathcal{N}(\phi W_{21} \ y(s_1), \sigma^2) \end{aligned}$$

$$\begin{aligned} y(s_1)|y(s_2) &\sim \mathcal{N}(\phi W_{12} \ y(s_2), \sigma^2) \\ y(s_2)|y(s_1) &\sim \mathcal{N}(\phi W_{21} \ y(s_1), \sigma^2) \end{aligned}$$

$$p\big(y(s_1),y(s_2)\big) \propto \frac{p\big(y(s_1)|y(s_2)\big)\, p\big(y(s_2)|y(s_1)=0\big)}{p\big(y(s_1)=0|y(s_2)\big)}$$

$$\begin{aligned} y(s_1)|y(s_2) &\sim \mathcal{N}(\phi W_{12} \ y(s_2), \sigma^2) \\ y(s_2)|y(s_1) &\sim \mathcal{N}(\phi W_{21} \ y(s_1), \sigma^2) \end{aligned}$$

$$\begin{split} p(y(s_1), y(s_2)) &\propto \frac{p(y(s_1)|y(s_2)) \, p(y(s_2)|y(s_1) = 0)}{p\big(y(s_1) = 0|y(s_2)\big)} \\ &\propto \frac{\exp\left(-\frac{1}{2\sigma^2} \left(y(s_1) - \phi \, W_{12} \, y(s_2)\right)^2\right) \exp\left(-\frac{1}{2\sigma^2} \left(y(s_2) - \phi \, W_{21} \, 0\right)^2\right)}{\exp\left(-\frac{1}{2\sigma^2} \left(0 - \phi W_{12} y(s_2)\right)^2\right)} \end{split}$$

$$\begin{aligned} y(s_1)|y(s_2) &\sim \mathcal{N}(\phi W_{12} \ y(s_2), \sigma^2) \\ y(s_2)|y(s_1) &\sim \mathcal{N}(\phi W_{21} \ y(s_1), \sigma^2) \end{aligned}$$

$$\begin{split} p(y(s_1), y(s_2)) &\propto \frac{p(y(s_1)|y(s_2)) \, p(y(s_2)|y(s_1) = 0)}{p(y(s_1) = 0|y(s_2))} \\ &\propto \frac{\exp\left(-\frac{1}{2\sigma^2} \left(y(s_1) - \phi \, W_{12} \, y(s_2)\right)^2\right) \exp\left(-\frac{1}{2\sigma^2} \left(y(s_2) - \phi \, W_{21} \, 0\right)^2\right)}{\exp\left(-\frac{1}{2\sigma^2} \left(0 - \phi W_{12} y(s_2)\right)^2\right)} \\ &\propto \exp\left(-\frac{1}{2\sigma^2} \left(\left(y(s_1) - \phi \, W_{12} \, y(s_2)\right)^2 + y(s_2)^2 - (\phi W_{21} y(s_2))^2\right)\right) \end{split}$$

$$\begin{aligned} y(s_1)|y(s_2) &\sim \mathcal{N}(\phi W_{12} \ y(s_2), \sigma^2) \\ y(s_2)|y(s_1) &\sim \mathcal{N}(\phi W_{21} \ y(s_1), \sigma^2) \end{aligned}$$

$$\begin{split} p(y(s_1), y(s_2)) & \propto \frac{p(y(s_1)|y(s_2)) \, p(y(s_2)|y(s_1) = 0)}{p(y(s_1) = 0|y(s_2))} \\ & \propto \frac{\exp\left(-\frac{1}{2\sigma^2} \left(y(s_1) - \phi \, W_{12} \, y(s_2)\right)^2\right) \exp\left(-\frac{1}{2\sigma^2} \left(y(s_2) - \phi \, W_{21} \, 0\right)^2\right)}{\exp\left(-\frac{1}{2\sigma^2} \left(0 - \phi W_{12} y(s_2)\right)^2\right)} \\ & \propto \exp\left(-\frac{1}{2\sigma^2} \left(\left(y(s_1) - \phi \, W_{12} \, y(s_2)\right)^2 + y(s_2)^2 - (\phi W_{21} \, y(s_2))^2\right)\right) \\ & \propto \exp\left(-\frac{1}{2\sigma^2} \left(y(s_1)^2 - \phi \, W_{12} \, y(s_1) \, y(s_2) - \phi \, W_{21} \, y(s_1) \, y(s_2) + y(s_2)^2\right)\right) \end{split}$$

$$\begin{array}{c|c} & & & \\ & \vdots & & \\ & \vdots & & \\ & & & \\$$

$$\begin{split} p(y(s_1),y(s_2)) &\propto \frac{p(y(s_1)|y(s_2)) \, p(y(s_2)|y(s_1) = 0)}{p(y(s_1) = 0|y(s_2))} \\ &\propto \frac{\exp\left(-\frac{1}{2\sigma^2} \left(y(s_1) - \phi \, W_{12} \, y(s_2)\right)^2\right) \exp\left(-\frac{1}{2\sigma^2} \left(y(s_2) - \phi \, W_{21} \, 0\right)^2\right)}{\exp\left(-\frac{1}{2\sigma^2} \left(0 - \phi W_{12} y(s_2)\right)^2\right)} \\ &\propto \exp\left(-\frac{1}{2\sigma^2} \left(\left(y(s_1) - \phi \, W_{12} \, y(s_2)\right)^2 + y(s_2)^2 - (\phi W_{21} y(s_2))^2\right)\right) \\ &\propto \exp\left(-\frac{1}{2\sigma^2} \left(y(s_1)^2 - \phi \, W_{12} \, y(s_1) \, y(s_2) - \phi \, W_{21} \, y(s_1) \, y(s_2) + y(s_2)^2\right)\right) \\ &\propto \exp\left(-\frac{1}{2\sigma^2} (\mathbf{y} - \mathbf{0}) \left(\begin{array}{cc} 1 & -\phi W_{12} \\ -\phi W_{12} & 1 \end{array}\right) (\mathbf{y} - \mathbf{0})^t \right) \end{split}$$

24

Implications for ${f y}$

$$\mu = 0$$

$$\begin{split} \mathbf{\Sigma}^{-1} &= \frac{1}{\sigma^2} \begin{pmatrix} 1 & -\phi W_{12} \\ -\phi W_{12} & 1 \end{pmatrix} \\ &= \frac{1}{\sigma^2} (\mathbf{I} - \phi \, \mathbf{W}) \end{split}$$

$$\mathbf{\Sigma} = \sigma^2 (\mathbf{I} - \phi \, \mathbf{W})^{-1}$$

$$\mathcal{L} = \sigma^2 \left(\mathbf{I} - \Phi \mathbf{U} \right)^{-1} \left(\mathbf{I} - \Phi \mathbf{U} \right)^{-1}$$

Implications for ${f y}$

$$\mu = 0$$

$$\begin{split} \boldsymbol{\Sigma}^{-1} &= \frac{1}{\sigma^2} \begin{pmatrix} 1 & -\phi W_{12} \\ -\phi W_{12} & 1 \end{pmatrix} \\ &= \frac{1}{\sigma^2} (\mathbf{I} - \phi \, \mathbf{W}) \end{split}$$

$$\mathbf{\Sigma} = \sigma^2 (\mathbf{I} - \phi \, \mathbf{W})^{-1}$$

we can then conclude that for $\mathbf{y}=(y(s_1),\ y(s_2))^t$,

$$\mathbf{y} \sim \mathcal{N}\left(\mathbf{0}, \ \sigma^2(\mathbf{I} - \phi \, \mathbf{W})^{-1}\right)$$

which generalizes for all mean 0 CAR models.

General Proof

$$\frac{p(\mathbf{y})}{p(\mathbf{0})} = \prod_{i=1}^n \frac{p(y_i|y_1, \dots, y_{i-1}, 0_{i+1}, \dots, 0_n)}{p(0_i|y_1, \dots, y_{i-1}, 0_{i+1}, \dots, 0_n)}$$

General Proof

$$\begin{split} \frac{p(\mathbf{y})}{p(\mathbf{0})} &= \prod_{i=1}^{n} \frac{p(y_{i}|y_{1}, \dots, y_{i-1}, 0_{i+1}, \dots, 0_{n})}{p(0_{i}|y_{1}, \dots, y_{i-1}, 0_{i+1}, \dots, 0_{n})} \\ &= \prod_{i=1}^{n} \frac{\exp\left(-\frac{1}{2\sigma^{2}}\left(y_{i} - \phi \sum_{j < i} W_{ij} \, y_{j} - \phi \sum_{j > i} 0_{j}\right)^{2}\right)}{\exp\left(-\frac{1}{2\sigma^{2}}\left(0_{i} - \phi \sum_{j < i} W_{ij} \, y_{j} - \phi \sum_{j > i} 0_{j}\right)^{2}\right)} \end{split}$$

$$\begin{split} \frac{p(\mathbf{y})}{p(\mathbf{0})} &= \prod_{i=1}^{n} \frac{p(y_{i}|y_{1}, \dots, y_{i-1}, 0_{i+1}, \dots, 0_{n})}{p(0_{i}|y_{1}, \dots, y_{i-1}, 0_{i+1}, \dots, 0_{n})} \\ &= \prod_{i=1}^{n} \frac{\exp\left(-\frac{1}{2\sigma^{2}} \left(y_{i} - \phi \sum_{j < i} W_{ij} \, y_{j} - \phi \sum_{j > i} 0_{j}\right)^{2}\right)}{\exp\left(-\frac{1}{2\sigma^{2}} \left(0_{i} - \phi \sum_{j < i} W_{ij} \, y_{j} - \phi \sum_{j > i} 0_{j}\right)^{2}\right)} \\ &= \exp\left(-\frac{1}{2\sigma^{2}} \sum_{i=1}^{n} \left(y_{i} - \phi \sum_{j < i} W_{ij} \, y_{j}\right)^{2} + \frac{1}{2\sigma^{2}} \sum_{i=1}^{n} \left(\phi \sum_{j < i} W_{ij} \, y_{j}\right)^{2}\right) \end{split}$$

$$\begin{split} \frac{p(\mathbf{y})}{p(\mathbf{0})} &= \prod_{i=1}^{n} \frac{p(y_{i}|y_{1}, \dots, y_{i-1}, 0_{i+1}, \dots, 0_{n})}{p(0_{i}|y_{1}, \dots, y_{i-1}, 0_{i+1}, \dots, 0_{n})} \\ &= \prod_{i=1}^{n} \frac{\exp\left(-\frac{1}{2\sigma^{2}} \left(y_{i} - \phi \sum_{j < i} W_{ij} \, y_{j} - \phi \sum_{j > i} 0_{j}\right)^{2}\right)}{\exp\left(-\frac{1}{2\sigma^{2}} \left(0_{i} - \phi \sum_{j < i} W_{ij} \, y_{j} - \phi \sum_{j > i} 0_{j}\right)^{2}\right)} \\ &= \exp\left(-\frac{1}{2\sigma^{2}} \sum_{i=1}^{n} \left(y_{i} - \phi \sum_{j < i} W_{ij} \, y_{j}\right)^{2} + \frac{1}{2\sigma^{2}} \sum_{i=1}^{n} \left(\phi \sum_{j < i} W_{ij} \, y_{j}\right)^{2}\right) \\ &= \exp\left(-\frac{1}{2\sigma^{2}} \sum_{i=1}^{n} y_{i}^{2} - 2\phi y_{i} \sum_{j < i} W_{ij} \, y_{j}\right) \end{split}$$

$$\begin{split} &\frac{p(\mathbf{y})}{p(\mathbf{0})} = \prod_{i=1}^{n} \frac{p(y_{i}|y_{1}, \dots, y_{i-1}, 0_{i+1}, \dots, 0_{n})}{p(0_{i}|y_{1}, \dots, y_{i-1}, 0_{i+1}, \dots, 0_{n})} \\ &= \prod_{i=1}^{n} \frac{\exp\left(-\frac{1}{2\sigma^{2}}\left(y_{i} - \phi \sum_{j < i} W_{ij} \, y_{j} - \phi \sum_{j > i} 0_{j}\right)^{2}\right)}{\exp\left(-\frac{1}{2\sigma^{2}}\left(0_{i} - \phi \sum_{j < i} W_{ij} \, y_{j} - \phi \sum_{j > i} 0_{j}\right)^{2}\right)} \\ &= \exp\left(-\frac{1}{2\sigma^{2}} \sum_{i=1}^{n} \left(y_{i} - \phi \sum_{j < i} W_{ij} \, y_{j}\right)^{2} + \frac{1}{2\sigma^{2}} \sum_{i=1}^{n} \left(\phi \sum_{j < i} W_{ij} \, y_{j}\right)^{2}\right) \\ &= \exp\left(-\frac{1}{2\sigma^{2}} \sum_{i=1}^{n} y_{i}^{2} - 2\phi y_{i} \sum_{j < i} W_{ij} \, y_{j}\right) \\ &= \exp\left(-\frac{1}{2\sigma^{2}} \sum_{i=1}^{n} y_{i}^{2} - \phi \sum_{i=1}^{n} \sum_{j=1}^{n} y_{i} \, W_{ij} \, y_{j}\right) \quad (\text{if } W_{ij} = W_{ji}) \end{split}$$

General Proof

$$\begin{split} &\frac{p(\mathbf{y})}{p(\mathbf{0})} = \prod_{i=1}^{n} \frac{p(y_{i}|y_{1}, \dots, y_{i-1}, 0_{i+1}, \dots, 0_{n})}{p(0_{i}|y_{1}, \dots, y_{i-1}, 0_{i+1}, \dots, 0_{n})} \\ &= \prod_{i=1}^{n} \frac{\exp\left(-\frac{1}{2\sigma^{2}}\left(y_{i} - \phi \sum_{j < i} W_{ij} y_{j} - \phi \sum_{j > i} 0_{j}\right)^{2}\right)}{\exp\left(-\frac{1}{2\sigma^{2}}\left(0_{i} - \phi \sum_{j < i} W_{ij} y_{j} - \phi \sum_{j > i} 0_{j}\right)^{2}\right)} \\ &= \exp\left(-\frac{1}{2\sigma^{2}} \sum_{i=1}^{n} \left(y_{i} - \phi \sum_{j < i} W_{ij} y_{j}\right)^{2} + \frac{1}{2\sigma^{2}} \sum_{i=1}^{n} \left(\phi \sum_{j < i} W_{ij} y_{j}\right)^{2}\right) \\ &= \exp\left(-\frac{1}{2\sigma^{2}} \sum_{i=1}^{n} y_{i}^{2} - 2\phi y_{i} \sum_{j < i} W_{ij} y_{j}\right) \\ &= \exp\left(-\frac{1}{2\sigma^{2}} \sum_{i=1}^{n} y_{i}^{2} - \phi \sum_{i=1}^{n} \sum_{j=1}^{n} y_{i} W_{ij} y_{j}\right) \quad (\text{if } W_{ij} = W_{ji}) \\ &= \exp\left(-\frac{1}{2\sigma^{2}} \left(\mathbf{y} - 0\right)^{t} \mathbf{(I - \phi W)} \mathbf{(y} - 0)\right) \end{split}$$

Simultaneous Autogressve (SAR)

$$y(s) = \phi \sum_{s'} W_{s\,s'}\,y(s') + \epsilon$$

$$\mathbf{y} \sim \mathcal{N}(0, \ \sigma^2 \ ((\mathbf{I} - \mathbf{\phi} \mathbf{W})^{-1})((\mathbf{I} - \mathbf{\phi} \mathbf{W})^{-1})^t)$$

Conditional Autoregressive (CAR)

$$y(s)|\mathbf{y}(-s) \sim \mathcal{N}\left(\sum_{s'} W_{s\,s'}\,y(s'),\;\sigma^2\right)$$

$$\mathbf{y} \sim \mathcal{N}(0, \ \sigma^2 \ (\mathbf{I} - \mathbf{\phi} \mathbf{W})^{-1})$$

Generalization

- Adopting different weight matrices, ${f W}$
 - Between SAR and CAR model we move to a generic weight matrix definition (beyond average of nearest neighbors)
 - · In time we varied p in the AR(p) model, in space we adjust the weight matrix.
 - · In general having a symmetric W is helpful, but not required

Generalization

- \cdot Adopting different weight matrices, ${f W}$
 - Between SAR and CAR model we move to a generic weight matrix definition (beyond average of nearest neighbors)
 - In time we varied p in the AR(p) model, in space we adjust the weight matrix.
 - · In general having a symmetric W is helpful, but not required
- · More complex Variance (beyond $\sigma^2 I$)
 - \cdot σ^2 can be a vector (differences between areal locations)
 - E.g. since areal data tends to be aggregated adjust variance based on sample size