Index

Note: Page numbers followed by b indicate boxes, f indicate figures, t indicate tables and np indicate footnotes.

A	40 phon curve, 26–27, 27 <i>b</i>
Action planning	sound levels, 26
'acoustical planning', 105	
competent authority, 104-105	В
effective and sustainable noise reduction, 104	Broadband vs. tonal noise sources
noise mitigation measures, 105–106, 105t	adjacent bands, 16–18
policymakers, 106	frequency, 16–18
public consultation, 106	level difference, 16–18
AEDT. See Aviation environmental design	tone, 18, 18f
tool (AEDT)	Building/façade insulation, 231–233
Aerodynamic noise, 127	
Aircraft noise	C
ANP database, 155	Calculation methods, noise mapping
'blade-slap', 155	assessment and management, 89, 94b
CNOSSOS-EU, 160–161	CNOSSOS-EU, 94–95
complaints, 153b	Dutch prediction, 93
description, 153	equivalence, 92–93
ECAC-CEAC Doc 29 Version 3, 155–158	French national computation method, 92
engine thrust, 154–155	interim methods, 92
FAA-INM, 158-160	software packages, 95–96, 96b
flight profiles, 167	types, 93–94, 95 <i>t</i>
ground operations at airports, 155b	Calculation of railway noise (CRN)
jet engines, 154	CNOSSOS-EU, 150–153
L_{eq} -based indicators, 166–167	and DEFRA, 148
noise emission, 154	description, 145, 148
noise modelling and mapping, 153	limitations, 150b
propeller driven/driven, 154	quantities, 149
Aircraft noise and performance (ANP)	RMR, 145–148
database, 155, 156, 157, 159–160, 161	rolling noise, track support structure, 148,
Airports	149 <i>t</i>
CNOSSOS-EU model, 189	SEL, 148, 149t
END legislation, 188–189	United Kingdom, 148
noise mapping assessment, 188	Calculation of road traffic noise (CRTN)
Atmospheric absorption	method
attenuation, 42	calculation details, 133-134
sound level, 42	converting $L_{A10,18h}$ to L_{den} and L_{night} , 134–135
temperature, 42, 42t	description, 132–133
Aviation environmental design tool (AEDT),	dual source lines, 133
160 <i>b</i>	emission and propagation models,
A-weighting	132–133
and C-weighting curves, 26, 26f	L_{10} index, 133
human ear, 24–25	noise mapping, 133
loudness, 25b	origin, 132b
and octave bands, 26, 26t	vs. XPS31-33, 134b

Cardiovascular disease and noise	environmental noise, 18
hypertension, 66–68	human ear, 18, 19b
IHD, 68–69	logarithmic addition, 24, 25t
CNOSSOS-EU, railway noise	logarithmic scale, 19b
aerodynamic noise, 153	noise emission and immission, 21b
calculation details, 151	noise sources, 22, 22f
classification, 150-151	reference values, 21
definition, 150	sound intensity, 20
impact noise, 152	sound power, 20
rolling noise, 151–152	sound pressure level, 20
source heights and mechanisms, 151, 151f	sound source, 24, 24b
squeal, 152, 152 <i>t</i>	source of noise, 20
traction noise, 152	DEFRA. See Department for Environment,
Working Group 3, 150	Food and Rural Affairs (DEFRA)
CNOSSOS-EU, road traffic noise	Dense-graded asphaltic concrete (DGAC),
acceleration and deceleration of	137
vehicles, 140	Denton County Transportation Authority
advantages, 140	(DCTA), 237
categories of vehicle, 138	Department for Environment, Food and
description, 138	Rural Affairs (DEFRA), 148
propulsion noise, 138, 139, 139f	DGAC. See Dense-graded asphaltic concrete
rolling noise, 138, 139, 139f	(DGAC)
sound powers, 140	Diffraction
Cognitive impairment and environmental	barrier, 43
noise, children	calculating attenuation coefficients, 44
aircraft noise, 70, 72b	foliage, 46–47, 47t
cardiovascular issues, 70	noise barriers, 45
	•
description, 69–70	path length difference, 43, 44f
mental health, 70–71	temperature inversion, 45, 45f
noisy communities, 71	wind effects, 45, 46f
Construction noise	Disability-adjusted life years (DALYs),
ABC method, 197	53–54, 54 <i>f</i>
factors, 195	E
hours of activity, 195–197	
sensitive, 194–195	ECAC-CEAC Doc 29 Version 3
sources, 195	ANP database, 156
Continuously welded rail (CWR), 217	applications guide, 156
CRN. See Calculation of railway noise	the Commission Recommendation of
(CRN)	2003, 156
CRTN. See Calculation of road traffic noise	description, 155–156
(CRTN)	flight path, 157
CWR. See Continuously welded rail	and ICAO, 158b
(CWR)	noise contour generation process, 156, 157
D	noise contours, 158
D	noise level, 157
DALYs. See Disability-adjusted life years	noise mapping, 157
(DALYs)	and NPD, 156
Data collection, END, 88–89, 90t	pre process airport data, 156
DCTA. See Denton County Transportation	technical guide, 156
Authority (DCTA)	Effective perceived noise level (EPNL), 32
Decibel (dB) scale	Electric vehicles
acoustic tests, 22–23, 23t	acoustic tests, 128, 128f
changing noise levels, 22, 23t	description, 128

END. See Environmental Noise Directive	EU Environmental Noise Directive (END),
(END)	203
Environmental noise	EU noise policy and legislation
acoustics, 10b	complementarities and disparities, 85
adverse effects, 9	END, 84–85
assessment, 9	environmental impacts, 82
A-weighting, 24–27	health relationships, 84
noise metrics, 27–32	road traffic vehicles, 85
sound, 10–18	sources, 82, 83 <i>t</i>
Environmental Noise Directive (END)	WHO estimation, 82–84
action planning, 104–106	,
calculation methods, 89–96	F
and CRTN, 134–135	The US Federal Aviation
data collection, 88–89, 90t	Authority-integrated noise model
definition, 85–87	(FAA-INM)
dissemination, information, 106–110	advantages, 159–160
and ECAC-CEAC Doc 29, 155–156	and AEDT, 160b
EU, 253	and ANP database, 159–160
industrial areas, 86	average input data, 159
legislation, 255–256	DBF structure, 158
Member States, 253–254	DNL/L _{dn} , 159
night-time noise exposure, 84–85	and FAR, 158–159
noise–health problem, 53–54	line source model, 159
noise level reduction, 85	and NASA, 158–159
noise maps, 131–132	and NPD, 159–160
population exposure, 99–104, 251–252	take-off and landing, 159
production, noise map, 96–99	version (7.0c), 158–159
requirements, 87	Federal Aviation Regulation (FAR), 158–159
and RMR, 145	The Federal Highway Administration
roads, railways, airports and	(FHWA), 135, 138
agglomerations, 88	Forum of European National Highway
road traffic noise, 129	Research Laboratories (FEHRL), 239
standardise approach, 88, 89f	
strategic approach, 251–252	G
weighting factors, 87–88	Geographic Information System (GIS), 97,
Environmental noise health	101–102
burden of disease, 52–53, 53t	Geometric divergence
cognitive impairment, children, 69–71	description, 40 , $41b$
DALYs, 53–54, 54 <i>f</i>	thumb rule, 41–42
END, 52–53	GIS. See Geographic Information System (GIS)
EU attitudes, 51, 52f	
noise and cardiovascular disease,	H
66–69	Hypertension
noise pollution, 51	aircraft noise, 67–68
noise–stress relationship, 55–57	evidence base, 68
non-auditory effects, 54–55	road traffic noise, 67
sleep disturbance, 61-65	sympathetic and endocrine system, 66
sound environment, 51–52	
'soundscape', 51–52	I
and tinnitus, 72	IHD. See Ischaemic heart disease (IHD)
WHO methodology, 53–54	Industrial noise
EPNL. See Effective perceived noise level	annoyance, 177–178
(EPNL)	description, 175–176

Industrial noise (Continued)	surface defects, 216–217
dose-response curves, 176	track and wheel irregularities, 216-217
emission, 180–181	
and impulsive noises, 176–177	M
impulsive sound sources, 176–177, 177t	Microphone position, 36
noise maps, 178–186	Mining mineral/extraction sites
penalties, 176, 177t	coal mining, 198
subjective listening tests, 176, 176f	community consultation, 197
The International Convention on	mobile equipment, 197
International Civil Aviation (ICAO),	1 1
158	N
Ischaemic heart disease (IHD)	The National Aeronautics and Space
caveats, 69	Administration (NASA), 158–159
occupational noise, 69	NMPB 96 method
physiological responses, 68	description, 129
road traffic noise, 68–69	disadvantages, 129
, , , , , , , , , , , , , , , , , , , ,	European Commission recommended
L	corrections for road surface,
Land use planning	131–132, 131 <i>t</i>
buildings, noise barrier, 224–225	'Guide du Bruit', 129
description, 224	light vehicles travelling in fluid
development control process, 225	continuous flow, 130–131, 131 <i>t</i>
levels of exposure, 224	and NMPB 2008, 129b
noise abatement effect, demolition,	noise emission, 130
224–225	noise mapping, 129
noise-abating effect, 224–225	nomograms, 130–131
noise-compatible terraced housing, 225	segmentation techniques, 130, 130f
LFN. See Low frequency noise (LFN)	sound emission levels, 130
Low frequency noise (LFN)	sound power, 130
A-weighted noise level, 74	values for spectral correction (R_i) ,
components, 73	131, 131 <i>t</i>
control of annoyance, 73-74, 74t	Noise action planning
description, 73	action plans, 205–206, 208
and health, 73-74	exposure levels, 204
Low-noise road/rail surfaces	'hot spots', 207
abatement measures, 215	implementation timeline, 207–208
absorptive surfaces, 215	leadership role, 206–207
acoustical properties, 213–214	mapping, 208
asphalt rubber concrete, 215	nine-step process, 206–207, 206f
civil engineering properties, 213-214,	noise abatement measures, 208–210
214 <i>f</i>	noise reduction and management, 204
composite brake block technology, 217	plan implementation, 208
CWR, 217	public health policy, 204
engine and rolling noise, 213-214	residential and business community,
lawned light rail track, 217, 218f	208–210
noise emissions, 217–218	responsible authority, 207
noise reduction effect, 215	stakeholder consultation, 208
non-electrified trains, 215-216	stakeholders and role, 208, 209t
open surface structure, 214	strategic mapping, 205
optimal road surface, 216b	structured and coherent process, 205
porous asphalt, 214	urban development, 204–205
roughness-based noise reduction, 217–218	validation mechanism 208–210

Noise and annoyance	Noise metrics
answer cards, verbal and numeric scale,	competent person, 33-34
61, 60 <i>f</i>	continuous equivalent noise level,
health effects, 59–60, 57f	28–29, 29 <i>f</i>
human organism, 59	continuous noise, 28
noise reaction surveys, 61	CRTN method, 38b
prevalence, 61	day/night average sound level, 32
road traffic noise, 59–60	description, 27
sensitivity, 57–59	EPNL, 32
surveys, research, 60-61, 59	extraneous and residual, 36
transportation noise, 57	impulsive noise, 28
Noise assessments, 173–174	intermittent noise, 28
Noise barriers	$L_{\rm peak}$, 32
absorbtion, 228	maximum and minimum levels, 31
angled and dispersive, 229	measurement, 33-39
capped, 228	microphone position, 36
design considerations, 230–231	period measurement, 34–36
earth berms, 227	road traffic noise, 38–39
embankments and earth berms, 229	SEL, 32
ISO 9613, 227–228	sound level metres and calibration, 34
random edge profile, 229	sound metres, 28
range, 228–230, 228f	statistical indicators, 29–30
sonic crystals, 231b	strategic noise maps, 37, 37b
sound transmission, 227	universal EU noise indicators, 30-31
square-lattice structure of sonic crystal,	Noise mitigation
231, 232 <i>f</i>	action planning process, 204–210
transmission loss, 231	detrimental health effects, 210-212
tunnel/sound tube, 229, 230f	driver behaviour, 220
vegetation, 229–230	END, 203
Noise criteria	environmental noise pollution, 210
community noise annoyance assessments,	legislation (regulation), 212-213
174	low-noise road/rail surfaces and
"creep", 175	maintenance, 213–218
dose–response relationships, 174	low-noise tyres, 218–219
"pivot threshold", 175	noise abatement, 210–212
sources, 174–175, 175 <i>t</i>	propagation measures, 224-233
Noise maps	roads, 233–234
area sources, 180	source and propagation measures, 203
determination, sound power,	source-based abatement, 212-224
181–182	traffic engineering and modal shift,
emission, source, 178	223–224
END, 178	traffic management, 220-222
industrial activity, 178	Noise pollution
industrial noise emission, 180–181	annoyance and sleep disturbance
Member States, 179	indicators, 253, 256-257
modelling industrial noise emission,	assessment and reduction programme,
185–186	255–256
operating conditions effect,	A-weighting system, 253
183–184	debates and challenges, 1-3
parameters, 182–183	decibel and A-weighted system, 248
sound power, 179	definitions, 3–4
WG-AEN Good Practice Guide, 179	description, 247

Noise pollution (Continued)	Port noise
END, 251–252	description, 186–187
EU legislative and policy, 251	NoMEPorts project, 187
	. 5 1
EU populations, 257	operational data, 187–188
health effects, 5	practice procedures, 188
human health, 250	sources, 187, 187 <i>t</i>
legislation, 253–254	Propagation measures, noise
low-cost noise measurement devices,	building design, 225–227
259–260	building/façade insulation, 231–233
mitigation, 254	land use planning, 224–225
night-time activity, 248–249	noise barriers, 227–231
noise and human health, 5–6	
noise characteristics, 2–3	R
noise exposure, 250	Railway noise
noise maps, 253	aerodynamic noise, 144
noise prediction capabilities, 252–253	calculation methods, 145-153
noise sources, 249	CNOSSOS-EU, 165–166
outdoor sound, 4	curve and brake squeals, 144
pollutant, 247	50 dB(A), 140–141
population exposure, 257–258	engine noise, 144
sensitivity, 247–248	in Germany, 141
software, 254–255	ground vibrations, bridge noise and
'sound out of place', 4	impact noise, 144
technology, 259–260	line operation, 141
Noise-power-distance (NPD), 156, 157,	mechanism, 141, 141f
159–160	noise emission, 142
Noise–stress relationship	passenger and freight trains, 141
'direct' and 'indirect' arousal, 55	rolling noise, 142–143, 143 <i>f</i>
environmental noise exposure,	roughness, 142b
56–57, 58 <i>t</i>	TWh, 140–141
hormones, 55	Railways
noise effects reaction scheme, 56–57, 56f	Federal Act on Railways Noise Abatement
relaxation and sleep, 56	(2000), 235–236
NoMEPorts project, 187	noise abatement measures, 236
NPD. See Noise-power-distance (NPD)	noise limit values, Switzerland, 234–235, 235 <i>t</i>
0	noise mapping, 234–235
OGAC. See Open-graded asphaltic concrete	political and public support, 236
(OGAC)	public transport programme, 235–236
Open-graded asphaltic concrete (OGAC), 137	Swiss railway infrastructure, 236
	wayside horns utilised for rail-noise
P	abatement, 237, 237f
PCC. See Portland cement concrete (PCC)	Reference energy mean emission level
Population exposure	(REMEL), 136
dwellings, 99–100, 103	RMR standard for railway noise
establishment, dose–effect relations,	concrete and steel structures, 147
103–104	different train categories, 145–146, 145 <i>t</i>
	9
estimation, 103, 110–111, 111 <i>t</i> façade calculations, 100, 101 <i>f</i>	emission values, 146–147, 146t
	measurement method, 147–148
German method, 100–101, 102–103	SRM-I, 146–147
GIS, 101–102	SRM-II, 147
individuals living, 102 Portland cement concrete (PCC) 137	track types, 146–147, 147t Wolfel translated version, 145
romano cemeni concrete CCCC 1.15/	vvoner translated version 145

Roads	broadband vs. tonal noise sources,
aircraft noise, 240–241	16–18
cost-efficiency issues, 239-241	characteristics, 11
END legislation, 233	frequency, 12–15
noise action plan, 234	low-frequency noise, 12–13
noise control and abatement measures,	natural frequencies and resonance, 13–14,
progressive noise management, 233	octave bands, 15, 16f
railways, 234–236	period, 11
rolling and squealing noise, 240np	range of frequencies, 15, 15t
STAIRRS study, 240	SONAR, 10
traffic management strategies, 234	speed, wavelength and frequency, 11–12,
traffic noise management and control,	12b
233	wavelength, 11
tyre labelling, 239–240	wave motion, 10–11, 10 <i>f</i>
urban soundscapes, 236–238	Sound exposure level (SEL), 32, 148–149,
Road traffic noise	149t
CNOSSOS-EU, 138–140, 162–165,	Sound power determination
164f	END, 181
CRTN method, 132–135	engineering method, 181
description, 126	EN ISO 3746, 182
engine noise, 127–128	measurement, 181
NMPB 96 method, 129–132	Sound propagation
rolling noise, 126–127	atmospheric absorption, 42
TNM Version 2.5, 135–138	attenuation mechanisms, 39
vehicle design, 125	calculation methodology, 39
Rolling noise, road traffic	diffraction, 43–45
'horn effect', 127	geometric divergence, 40–42
level of noise emission, 126–127	ground effect, 42–43
low-noise surfaces, 127	industrial source, 39
porous surface, 127	point and line sources, 40b
type of road surface, 127	'Stick-slip' type vibrations, 127
,	Strategic noise mapping
S	Brazil, Chile and Argentina, 116
SBB. See Swiss national railway wagons	data submission, 110
(SBB)	description, 81
SEL. See Sound exposure level (SEL)	END. (see Environmental Noise Directive
Sleep disturbance	(END))
cardiovascular function, 63	EU noise policy and legislation, 82-85
description, 61–62	Eurostat data, 111–112
electroencephalograpy, 62–63	Hong Kong, 115, 117b, 117f
environmental noise, 63–64	Middle East, 116
night-time, 64–65	non-enforcement, 114
performance tasks, 65	Pakistan, 115–116
road traffic noise, 64	proportion of inhabitants,
SWS, 62–63	agglomerations, 112–114, 112f, 113f
tiredness, 65	South Korea, 115
Slow wave sleep (SWS), 62–63	United States (US), 114-115
SMILE. See Sustainable Mobility Initiatives	Sustainable Mobility Initiatives for Local
for Local Environment (SMILE)	Environment (SMILE), 233
Sound	Swiss national railway wagons (SBB),
ageing, 13b	235 <i>np</i>
amplitude, 11	SWS. See Slow wave sleep (SWS)

T	in Europe, 123
Texture depth (TD), 134	French and Dutch methods, 125
Traffic management	measurements/predictions, 124
calming measures, 222	noise mapping, 167
effect, speed reduction, 221–222, 221t	railway, 140–153
engineering and modal shift, 223-224	road traffic, 125–140
night-time restrictions, 222	sound pressure level, 125
noise reduction, 222b	Transport Research Laboratory (TRL),
propulsion noise, 221–222	134–135
sensitive receivers, 220–221	~~
Traffic Noise Model (TNM) Version 2.5	U
European software developers, 135	Uniform and irregular receiver grids, 96–97,
and FHWA, 135, 138	98 <i>f</i>
full-throttle noise emission levels, 136	Urban soundscapes, 236–238
reference vehicle noise emission level,	
100 100	
137–138	W
137–138 and REMEL, 136	W Wind farm noise
and REMEL, 136	Wind farm noise
and REMEL, 136 single lane of single traffic type, 136	Wind farm noise amplitude modulation, 189–190
and REMEL, 136 single lane of single traffic type, 136 user-defined vehicle types, 136–137	Wind farm noise amplitude modulation, 189–190 description, 189 emission, 191 night-time noise limit, 193–194
and REMEL, 136 single lane of single traffic type, 136 user-defined vehicle types, 136–137 vehicle types, 136, 137 <i>f</i>	Wind farm noise amplitude modulation, 189–190 description, 189 emission, 191
and REMEL, 136 single lane of single traffic type, 136 user-defined vehicle types, 136–137 vehicle types, 136, 137f Version 1, 135	Wind farm noise amplitude modulation, 189–190 description, 189 emission, 191 night-time noise limit, 193–194
and REMEL, 136 single lane of single traffic type, 136 user-defined vehicle types, 136–137 vehicle types, 136, 137f Version 1, 135 Version 3.0, 135	Wind farm noise amplitude modulation, 189–190 description, 189 emission, 191 night-time noise limit, 193–194 noise limits, 193–194
and REMEL, 136 single lane of single traffic type, 136 user-defined vehicle types, 136–137 vehicle types, 136, 137f Version 1, 135 Version 3.0, 135 Transportation noise	Wind farm noise amplitude modulation, 189–190 description, 189 emission, 191 night-time noise limit, 193–194 noise limits, 193–194 noise monitoring periods, 193
and REMEL, 136 single lane of single traffic type, 136 user-defined vehicle types, 136–137 vehicle types, 136, 137f Version 1, 135 Version 3.0, 135 Transportation noise aircraft, 153–161	Wind farm noise amplitude modulation, 189–190 description, 189 emission, 191 night-time noise limit, 193–194 noise limits, 193–194 noise monitoring periods, 193 permissible noise limits, 192 shear, 191 sound power levels, 191, 192t
and REMEL, 136 single lane of single traffic type, 136 user-defined vehicle types, 136–137 vehicle types, 136, 137f Version 1, 135 Version 3.0, 135 Transportation noise aircraft, 153–161 calculation methods, 124 CNOSSOS-EU model, 167 description, 123	Wind farm noise amplitude modulation, 189–190 description, 189 emission, 191 night-time noise limit, 193–194 noise limits, 193–194 noise monitoring periods, 193 permissible noise limits, 192 shear, 191 sound power levels, 191, 192t speed and sound power, 190–191, 194
and REMEL, 136 single lane of single traffic type, 136 user-defined vehicle types, 136–137 vehicle types, 136, 137f Version 1, 135 Version 3.0, 135 Transportation noise aircraft, 153–161 calculation methods, 124 CNOSSOS-EU model, 167	Wind farm noise amplitude modulation, 189–190 description, 189 emission, 191 night-time noise limit, 193–194 noise limits, 193–194 noise monitoring periods, 193 permissible noise limits, 192 shear, 191 sound power levels, 191, 192t speed and sound power, 190–191, 194 turbines, 190
and REMEL, 136 single lane of single traffic type, 136 user-defined vehicle types, 136–137 vehicle types, 136, 137f Version 1, 135 Version 3.0, 135 Transportation noise aircraft, 153–161 calculation methods, 124 CNOSSOS-EU model, 167 description, 123	Wind farm noise amplitude modulation, 189–190 description, 189 emission, 191 night-time noise limit, 193–194 noise limits, 193–194 noise monitoring periods, 193 permissible noise limits, 192 shear, 191 sound power levels, 191, 192t speed and sound power, 190–191, 194