1. De um exemplo de um sinal digital que pode ser utilizado em um projeto de eletrônica embarcada.

Um sinal digital comumente utilizado em eletrônica embarcada é a modulação por largura de pulso (PWM), a ideia por trás deste sinal é controlar a tensão média do sinal por meio de seu ciclo de trabalho, como mostra a figura a seguir:

As linhas tracejadas representam a tensão média aplicada (e observada pela carga), conforme ocorre a variação de seu ciclo de trabalho. Este sinal pode ser utilizado em aplicações para controle de temperatura na qual a velocidade da ventoinha (cooler) é regulada pela tensão média. Outra aplicação é sua utilização no controle de servo motores.

2. Qual o valor dos resistores de pull-up e pull-down?

Conforme visto no manual do microcontrolador, tanto o resistor de pull-up como o de pull-down possuem valores nominais de $100k\Omega$, o fabricante indica uma faixa de valores que estes resistores podem alcançar, dependendo de parâmetros como temperatura de funcionamento do microcontrolador, indo de $70k\Omega$ até $130k\Omega$.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
R _{PULLDOWN}	Pull-down Resistor	PA0-PA31, PB0-PB14, PC0-PC31, NRST	70	100	130	kΩ
R _{PULLUP}	Pull-up Resistor	PA0-PA31, PB0-PB14, PC0-PC31, NRST	70	100	130	kΩ

2.1. Qual o valor lido pelo PIO quando o botão não estiver pressionado e qual o valor lido quando o botão estiver pressionado?

Os botões presentes neste microcontrolador possuem lógica inversa por estarem conectados ao terra do circuito:

Portanto o PIO receberá nível lógico 0 quando botão for pressionado e nível lógico 1 quando a chave estiver aberta.

3. Qual o valor máximo que PIO_SCDR pode assumir? Quando PIO_SCDR for zero, por quanto o clock principal é dividido?

O PIO _SCDR recebe um valor em binário que é aplicado à equação abaixo, sendo DIV o valor armazenado no PIO SCDR:

$$t_{div slck} = ((DIV + 1) \times 2) \times t_{slck}$$

Sendo assim, quando PIO_SCDR for zero, DIV = 0, logo o período resultante tem o dobro do período do clock principal, resultando consequentemente na metade da freqüência do clock principal. Os valores que podem ser armazenados em PIO_SCDR são indicados na tabela abaixo:

31	30	29	28	27	26	25	24		
_	_	1	1	-	ı	ı	_		
23	22	21	20	19	18	17	16		
_	-	-	-	_	ı	ı	-		
15	14	13	12	11	10	9	8		
_	_	DIV							
7	6	5	4	3	2	1	0		
DIV									

Portanto, podemos concluir que DIV pode receber os valores de 0 até 13, sendo então 13 o valor máximo que PIO_SCDR pode assumir.

4. Interprete os diagramas de tempo a seguir (referentes ao filtro de glitch e deboucing).

Figure 31-4. Input Glitch Filter Timing

Figure 31-5. Input Debouncing Filter Timing

O diagrama do filtro de *glitch* mostra que apenas após um ciclo de clock do periférico, a resposta aparece em PIO_PDSR. Quando ocorre uma borda de subida no clock e o pino está em nível alto, no PIO_PDSR, após 1 ciclo, aparece nível alto se PIO_IFSR = 0, ou após 2 ciclos com o pino em nível alto se PIO_IFSR = 1, ocorrendo o mesmo para nível baixo.

Já o diagrama do filtro de *debouncing*, quando PIO_IFSR = 0, o estado do pino apenas aparece em PIO_PDSR após 2 ciclos do clock do periférico, e quando PIO_IFSR = 1, o estado do pino apenas aparece em PIO_PDSR após um ciclo do clock do divisor e 2 ciclos do clock do periférico.

5. O que pode acontecer caso configuremos o pino do botão como saída?

Caso configuremos o pino do botão como saída, causamos um curto circuito no sistema e consequentemente queimará a unidade de controle.

6. Qual a alternativa para evitar que o status do botão seja verificado continuamente?

Para evitar que o status do botão seja verificado continuamente pode-se fazer um processamento em paralelo no microcontrolador, de modo que o mesmo só seria acionado se houvesse mudança de estado na saída do botão, isto é, caso o botão fosse apertado um pulso seria enviado e acionaria o código.