ARUN JYOTHI PRAKASH BOOMINATHAN

Phone: (919) 995-4516 Email: arun.j.prakash@gmail.com

TECHNICAL SKILLS

Languages: Python, C, C++, R, MATLAB

Tools: ipython, Amazon Web Services (Elastic MapReduce, EC2, S3, Dynamo), Hadoop stack (MapReduce, YARN, Hive, Pig)

Toolkits: numpy, pandas, scikit-learn, scipy, matplotlib, CUDA, nltk, orange, Theano, Torch, peach, mlpack

Proficient in Machine Learning, Data mining, Predictive and Regression Analysis, Pattern Recognition, Classifiers, Deep Learning

EDUCATION

Colorado State University, Fort Collins, CO

Spring 2015

Master of Science in Electrical Engineering

GPA - 3.185

Courses: Machine Learning, Big Data, Neural Networks and Adaptive Systems, Applications of Random Processes, Robot Motion Planning, Topics in Robotics, Engineering Risk Analysis, Foundations of Systems Engineering, STEM Communications

Visveswaraya Technological University, India

Spring 2012

Bachelor of Engineering in Electronics and Communication Engineering

GPA - 7.06/10

Other Courses: Algorithms, Natural Language Processing, Image Processing, Artificial Intelligence, Game Theory, Distributed Computing

RECENT PROJECTS

Project 1: Prediction and Estimation of Factors affecting Redshift of Quasars (Team: 2)

- Used the Sloan Digital Sky Survey dataset which consisted of detailed parameters of 45000+ Quasars
- Designed and built a Random Forest and implemented Multivariate Adaptive Regression Splines (MARSplines) in Python to perform predictive analysis of Redshift values of Quasars
- Designed and coded a Naïve Bayes' classifier in Python to perform classification analysis of Quasars based on various parameters of the electromagnetic spectrum

Project 2: Weather Prediction using Regression Analysis (Team: 2)

- Deployed Amazon's Elastic MapReduce (EMR) to reduce a 20GB daily global weather measurements dataset (years 1929-2009) from National Climate Data Center (NCDC) to manageable proportions (<1Mb)
- Developed a Multiple Linear Regression (MLR) model that predicts future weather of a location in Python

Project 3: Diagnostic Analyzer for Frequent Errors in HTTP Logs using MapReduce

- Developed software that stores data in the Hadoop Distributed File System (HDFS) and uses Apache Hadoop's MapReduce implementation
- Designed and implemented a log analysis system to perform access, peak, error and correlation analysis of HTTP logs

Project 4: Cloud based Source-aware Key-value storage

- Designed and implemented a simple key-value storage that runs on Amazon's Elastic Compute Cloud (EC2) instance cluster
- The system uses a distributed hash table, Chord protocol, as the underlying algorithm for dispersing datasets
- The key-value store stores/ retrieves data in a decentralized style and is aware of multiple data sources

Project 5: Classification of Brain Tumor and Alzheimer's Disease using Artificial Neural Networks

- Conducted feature extraction from magnetic resonance images using Principal Component Analysis
- Performed classification of Brain Tumor and Alzheimer's, and further classification into benign or malignant (in case of Brain Tumor) or Type 0, Type 0.5, Type 1, Type 2 (in case of Alzheimer's)
- Coded a Feed Forward Neural Network to classify Alzheimer's disease types and K-map Clustering to classify Brain Tumor images into its types

Project 6: Image Data Compression using Self-Organized Feature Maps (SOMs)

- Designed and tested self-organized maps to perform vector quantization on digital images
- Employed a diverse number of neurons to find the optimal number of bits for efficient transmission of images

Project 7: Supervised Learning for Parameter Estimation and Stock Market Prediction

- Time series modelling of procured stock data using linear and non-linear autoregression models
- Usage of parameters such as end-of-day prices to train a developed neural network to predict future stock prices

Project 8: Stock Market Trend Predictor

- Used real time stock data to predict the rising and falling of (trends) future stock prices
- Singular Value Decomposition (SVD) using Principal Components is used as the prediction algorithm

Project 9: Implementation of Mixture of Gaussians algorithm

- Used various datasets from UCI Repository as testing grounds for Mixture of Gaussians; to find optimal number of Gaussians
- Displayed projections onto two dimensions using Principal Component Analysis and modified Sammon Projection mapping