Harvard University Computer Science 121 — Professor Harry Lewis

Final Examination — Saturday, December 12, 2009

The points total 180 (the exam is 180 minutes long). $\Sigma = \{a, b\}$ throughout. You may use any result proven in lecture, Sipser, or the homework, provided that you state it clearly.

PROBLEM 1 (10 points)

Suppose you have two algorithms, one running in time $1000 \cdot n^2$ and the other running in time $10 \cdot 10^n$. How big would n have to be to make it worthwhile to use the first algorithm rather than the second?

PROBLEM 2 (4+4+4 points)

State whether each part is true for all languages A and B. Justify or give a counterexample.

- (A) $(A B) \cup B = A$
- (B) A^* is infinite.
- (C) $(A^*)^* = A^*$

PROBLEM 3 (16+16 points)

- (A) Let $L_1 = (a \cup ab \cup ba \cup bab)^*$, and let L_2 be the set of all strings in which every b is adjacent to at least one a. Show that $L_1 = L_2$. (Hint for $L_2 \subseteq L_1$: Induction on the length of a string, and cases based on the first symbol.)
- (B) Draw a DFA that accepts this language.

PROBLEM 4 (4+4+4+4) points

State whether each part is true for every **infinite** language A. Justify or give a counterexample.

- (A) A^* is countable.
- (B) A has countably many subsets.
- (C) A has countably many regular subsets.
- (D) A has countably many non-recursive subsets.

PROBLEM 5 (5+5+5) points

- (A) Define \mathcal{NP} -complete.
- (B) Draw a diagram illustrating the relations between $\mathcal{P}, \mathcal{NP}$, co- \mathcal{NP} , and the \mathcal{NP} -complete, recursive, r.e., and co-r.e. sets on the hypothesis that $\mathcal{P} \neq \mathcal{NP}$.
- (C) Is it possible for an \mathcal{NP} -complete set to be polynomial-time reducible to a proper subset of itself? Explain.

PLEASE TURN OVER

PROBLEM 6 (10+10+10 points)

- (A) Show that $\{\langle G \rangle : G \text{ is a context-free grammar such that } L(G) \neq \emptyset \}$ is recursive.
- (B) Show that $\{\langle G \rangle : G \text{ is a general grammar such that } L(G) \neq \emptyset\}$ is r.e. but not recursive.
- (C) Show that $\{\langle M \rangle : M \text{ is a Turing machine such that } L(M) \text{ is regular} \}$ is not recursive.

PROBLEM 7 (10+10 points)

- (A) Show that $\{x\$y\$z: x,y,z\in \Sigma^* \text{ and } y=y^{\mathrm{R}}\}$ is context-free but not regular (\$ is a new symbol).
- (B) Show that $\{xyz: x, y, z \in \Sigma^* \text{ and } y = y^{\mathbf{R}}\}$ is regular.

PROBLEM 8 (10+10 points)

- (A) Show that there is a polynomial-time algorithm A_k for determining whether a graph has a vertex cover of size k, if k is fixed (5, for example).
- (B) Why doesn't (A) yield a polynomial-time algorithm for VERTEX COVER, as follows? Given $\langle G, k \rangle$, run \mathcal{A}_k on G.

PROBLEM 9 (5+5+15 points)

For any languages A and B, let $A/B = \{x : xy \in A \text{ for some } y \in B\}.$

(A) What is Σ^*/Σ^* ?

Suppose that A is context-free and B is regular.

- (B) Show that A B is context-free but B A need not be.
- (C) Show that A/B is context-free.

THE END