월간 데이콘 소설 작가 분류 AI 프로젝트

16기 김상옥 17기 김연규 우윤규

2023 Winter

Project Introduction & Overview

EDA & Data Preprocessing

LSTM Modeling

Feature Engineering & XGBoost

월간 데이콘 소설 작가 분류 AI 프로젝트

CONTENTS

발표 목차

Project Introduction EDA & Data & Background

프로젝트 제안 및 배경

Preprocessing

EDA 및 데이터 전처리

LSTM Modeling & ML Ensemble

모델링 및 앙상블

Conclusion & Interpretaion

결론 및 결과 분석

월간 데이콘 소설 작가 분류 AI 프로젝트

Project Introduction & Background

프로젝트 제안 및 배경

Project Introduction & Overview

EDA & Data Preprocessing

LSTM Modeling

Feature Engineering & XGBoost

프로젝트 제안 및 배경

1. Project Introduction & Background

KUBIG CONTEST DL분반 - NLP 2팀

월간 데이콘 소설 작가 분류 AI 프로젝트

23 겨울 DL 분반 학습 내용

- MLP, CNN 등 **기초 딥러닝 모델 구조** 학습
- Optimization, Dataloader, Batch normalization 등
 모델링 내부 기법 학습
- RNN, LSTM 등 Sequential Data에 적합한 모델
- Tokenizing, embedding 등 Text Data 전처리

프로젝트 제안 및 배경

1. Project Introduction & Background

KUBIG CONTEST DL분반 - NLP 2팀

월간 데이콘 소설 작가 분류 AI 프로젝트

월간 데이콘 소설 작가 분류 AI 경진대회

1500자 이내 소설 텍스트 데이터['text']를 바탕으로 **5인 중 한 명의 작가**['author'] 예측하는 분류 문제

DL 분반에서 학습한 tokenizing, embedding 등 Text Data 전처리 & RNN, LSTM 기반 분류 모델링 적용 가능

과거 2020년 진행된 대회로, 기존 수상작 파이프라인을 참고하여 추가 개선 방안 고려

월간 데이콘 소설 작가 분류 AI 프로젝트

EDA & Data Preprocessing

EDA 및 데이터 전처리

Project Introduction & Overview

EDA & Data Preprocessing

LSTM Modeling

Feature Engineering & XGBoost

EDA

┃2. EDA 및 데이터 전처리

KUBIG CONTEST DL분반 - NLP 2팀

월간 데이콘 소설 작가 분류 AI 프로젝트

데이터셋 파일 구성

train.csv: 학습용 소설 데이터 (3 x 54,578)

text: 텍스트 데이터(x) author: 작가 (target)

test_x.csv: 텍스트용 소설 데이터 (2 x 19,617)

text: 텍스트 데이터(x)

Sample_submission.csv의 target에 대응

sample_submission.csv:

평가용 제출 데이터 (6 x 19,617)

author: 작가 (target) - 각각의 예측 확률, 공란

데이터 분포 관련 plot

(타겟 변수['author'] 분포 비율〉

EDA

▮2. EDA 및 데이터 전처리

KUBIG CONTEST DL분반 - NLP 2팀

월간 데이콘 소설 작가 분류 AI 프로젝트

데이터 주요 분포 Plot

〈텍스트['text'] **길이** 분포〉

데이터 전처리 - 토큰화

▮2. EDA 및 데이터 전처리

NLTK, TensorFlow 내장 Tokenizer 활용

Raw Data

소설 텍스트 데이터 원문 —

Removing stopwords & Separation 불용어 제거 및 단어 리스트화 ————

Tokenization - Word Indexing 워드 인덱싱, 공백 기준 토큰화 ———

월간 데이콘 소설 작가 분류 AI 프로젝트

	index	text	author
0	0	He was almost choking. There was so much, so m	3
1	1	"Your sister asked for it, I suppose?"	2
2	2	She was engaged one day as she walked, in per	1
3	3	The captain was in the porch, keeping himself	4

KUBIG CONTEST DL분반 - NLP 2팀

	text	author
index		
0	[He, was, almost, choking, There, was, so, muc	3
1	[Your, sister, asked, for, it, suppose]	2
2	[She, was, engaged, one, day, as, she, walked,	1
3	[The, captain, was, in, the, porch, keeping, h	4

	text	author
index		
0	[8, 12, 235, 1, 35, 12, 32, 92, 32, 92, 8, 415	3
1	[49, 289, 140, 17, 10, 324]	2
2	[26, 12, 784, 42, 137, 18, 26, 354, 7, 1, 547,	1
3	[2, 342, 12, 7, 2, 1, 982, 111, 1, 56, 5, 2, 1	4

EDA - 타겟별 토큰 사용 빈도

KUBIG CONTEST DL분반 - NLP 2팀

┃2. EDA 및 데이터 전처리

월간 데이콘 소설 작가 분류 Al 프로젝트

LSTM Modeling & ML Ensemble

모델링 및 앙상블

Project Introduction & Overview

EDA & Data Preprocessing

LSTM Modeling

Feature Engineering & XGBoost

LSTM 모델링

KUBIG CONTEST **DL분반 - NLP 2팀**

월간 데이콘 소설 작가 분류 AI 프로젝트

3. 모델링 및 앙상블

LSTM 모델 개요

모델 설명 및 파이프라인

Sequential Data에 강점이 있는 LSTM을 4개 레이어로 쌓아 각 관측치의 단어 종류 및 순서를 학습해서 Hidden state 반환, Linear Layer로 타겟 확률 도출

LSTM 모델링

KUBIG CONTEST DL분반 - NLP 2팀

3. 모델링 및 앙상블

월간 데이콘 소설 작가 분류 AI 프로젝트

모델링 성능 및 분석

Train set에서 준수한 성능 그러나, Vaild set에서 accuracy 하락 및 loss 증가

```
Output exceeds the <u>size limit</u>. Open the full output data <u>in a text editor</u>
train_losses : 1.600804033279419, valid_loss : 1.5836521577144014, lowest_loss : 1.5836521577144014, lowest_epoch : 0, epoch :0
Train_accuracy: 8703 / 35122 (24.78 %)
Valid_accuracy: 2146 / 8781 (24.44 %)
...

train_losses : 1.0905305097319864, valid_loss : 1.2858069167620894, lowest_loss : 1.2824267684549526, lowest_epoch : 180, epoch :201
Train_accuracy: 28580 / 35122 (81.37 %)
Valid_accuracy: 5410 / 8781 (61.61 %)

train_losses : 1.0893966787511653, valid_loss : 1.2890571183052615, lowest_loss : 1.2824267684549526, lowest_epoch : 180, epoch :202
Train_accuracy: 28627 / 35122 (81.51 %)
Valid_accuracy: 5395 / 8781 (61.44 %)
```

LSTM 블록 대체 시도

CNN - 데이터 크기로 인해 학습 시간 정체 / RNN - Gradient Vanishing 문제로 성능 확보 불가 → 데이터와 인공 신경망 모델 구조적 적합성 문제 의심

Model Diagnosis

3. 모델링 및 앙상블

자연어 전처리 과정 검토

문장을 더 살펴본 결과, **불용어로 판단해 제거한** 문장부호와 일부 불용어들의 빈도수가 작가들의 문체를 구분하는 기준이 될 수 있음을 파악

KUBIG CONTEST DL분반 - NLP 2팀

월간 데이콘 소설 작가 분류 AI 프로젝트

데이터 성격 검토

'Odin'이라는 동일 인물을 중심으로 작성된 소설임을 확인, 이로 인해 문맥에 따라 분류하는 LSTM, RNN 모델이 상대적으로 문체 구분에 취약하게 작용하여 오히려 과적합이 발생했을 것으로 추론

ML 접목 - Feature Engineering

3. 모델링 및 앙상블

Meta Feature

: stopword 갯수, 단어갯수, 문장부호 갯수 등 **텍스트에서 뽑아낸 특성**

- 단어, 문자, 불용어, 구두점의 수 및 대문자가 포함된
 단어 수 등을 특성으로 생성
- 더불어 문장부호 및 자주 사용되는 단어(The, I, He, She, a 등) 의 **빈도수**를 특성으로 추가

실제로 Feature Importance 확인 결과, 마침표/쉼표의 빈도수, 평균 단어 길이가 가장 명확한 구분 기준으로 평가됨

KUBIG CONTEST DL분반 - NLP 2팀

월간 데이콘 소설 작가 분류 AI 프로젝트

ML 접목 - Feature Engineering

KUBIG CONTEST DL분반 - NLP 2팀

월간 데이콘 소설 작가 분류 AI 프로젝트

3. 모델링 및 앙상블

Text-Based Feature

: 단어 등장 빈도수, word2vec 등 **문장 그 자체에서 추출**한 특성 - **TF-IDF 벡터화 활용**

TfidfVectorizer

(stop_words='english', ngram_range=(1,3))

: 기존에 저장된 **영어 불용어 제거**, 1~3개의 단어 묶음으로 단어의 중요도를 파악

(ngram_range=(1,5), analyzer='word')

: 1~5개의 단어 묶음에 대해 단어의 중요도 파악

(ngram_range=(1,5), analyzer='char')

: 1~5개의 단어 묶음에 대해 **문자(a, b, …)의 중요도** 파악

TruncatedSVD (n_components=n_comp, algorithm='arpack')

: Sigma 행렬에 있는 특이값 중 상위 일부 데이터만 추출해 차원을 줄이는 방식

- 전체 문서에 대해 단어 빈도수를 살펴본 결과 수천 x 수천의 큰 희소행렬이 생성
- 큰 희소행렬를 **효율적으로 축소하기 위해 arpack 알고리즘**을 활용

CalibratedClassifierCV (MultinomialNB(alpha=0.03), method='isotonic')

- Multinomial Naïve Bayesian 알고리즘은 자체 확률 예측값을 기준으로 분류
- 그러나 calibrated를 활용하면 더 나은 방식을 활용해 확률값을 다시 계산
- Train 데이터셋의 row 수가 5만개 이상이기 때문에 더 복잡하지만 예측값의 정확 도가 높은 isotonic regression을 활용

머신 러닝 모델링 & Soft voting

KUBIG CONTEST DL분반 - NLP 2팀

3. 모델링 및 앙상블

월간 데이콘 소설 작가 분류 AI 프로젝트

Soft Voting & Prediction

5 each prob.

타겟(0~4)별 확률 산술평균해 최종 예측 결과 도출

월간 데이콘 소설 작가 분류 AI 프로젝트

Conclusion & Interpretaion

결론 및 결과 해석

Project Introduction & Overview

EDA & Data Preprocessing

LSTM Modeling

Feature Engineering & XGBoost

결론

4. 결론 및 결과 해석

KUBIG CONTEST DL분반 - NLP 2팀

월간 데이콘 소설 작가 분류 AI 프로젝트

모델별 제출 결과 (Test set Log Loss 기준)

	제목	제출 일시	public점수 private점수	제출선택
812369	submission_XGB.csv ML-XGBoost Model edit	2023-02-28 10:46:30	0.1914026394 0.2071161424	0
811960	submission_RF.csv ML-Random Forest Model edit	2023-02-27 21:58:14	0.2606441347 0.2712051432	0
811956	LSTM_prop.csv DL-LSTM Model edit	2023-02-27 21:57:01	0.6688502274 0.6785401406	0
811954	submission_reverted.csv Soft Voting Result edit	2023-02-27 21:54:03	0.2788159872 0.2902634976	

결론

KUBIG CONTEST DL분반 - NLP 2팀

월간 데이콘 소설 작가 분류 AI 프로젝트

| 4. 결론 및 결과 해석

결과 요약 및 해석

- DACON 제출 결과 ML > Soft Voting > DL 순으로 분류 성능 우수
- 딥러닝 모델에서 발생한 과적합을 Feature Engineering과 머신러닝 모델로 상당 부분 해소
- 문체로 작가를 구분하는 해당 문제에서는 텍스트의 특징을
 잘 나타내는 특성을 추출하는 것이 분류 모델의 성능 향상에
 지대한 영향을 미치는 것으로 파악됨
- Bert 등 텍스트 데이터에 특화된 **pre-trained 모델을 사용하거나**, **더 많은 특성을 추출한다면 향상된 결과**를 얻을 수 있을 것으로 사료됨

월간 데이콘 소설 작가 분류 Al 프로젝트

감사합니다!

이상으로 발표를 마칩니다.

16기 김상옥 17기 김연규 우윤규

Project Introduction & Overview

EDA & Data Preprocessing

LSTM Modeling

Feature Engineering & XGBoost