Lecture 12Section 9.3 Polar Coordinates Section 9.4 Graphing in Polar Coordinates

Jiwen He

1 Polar Coordinates

1.1 Polar Coordinates

Polar Coordinate System

The purpose of the polar coordinates is to represent curves that have symmetry about a point or spiral about a point.

Frame of Reference

In the polar coordinate system, the frame of reference is a point O that we call the pole and a ray that emanates from it that we call the polar axis.

Polar Coordinates

Definition

A point is given *polar coordinates* $[r, \theta]$ iff it lies at a distance |r| from the pole a long the ray θ , if $r \geq 0$, and along the ray $\theta + \pi$, if r < 0.

Points in Polar Coordinates

Points in Polar Coordinates

- $O = [0, \theta]$ for all θ .
- $[r, \theta] = [r, \theta + 2n\pi]$ for all integers n.
- $[r, -\theta] = [r, \theta + \pi].$

1.2 Relation to Rectangular Coordinates

Relation to Rectangular Coordinates

Relation to Rectangular Coordinates

- $x = r \cos \theta$, $y = r \sin \theta$. $\Rightarrow x^2 + y^2 = r^2$, $\tan \theta = \frac{y}{x}$
- $r = \sqrt{x^2 + y^2}, \ \theta = \tan^{-1} \frac{y}{x}.$

Circles in Polar Coordinates

Circles in Polar Coordinates

In rectangular coordinates

angular coordinates In polar coordinates
$$x^2 + y^2 = a^2 \qquad r = a$$

$$x^2 + (y-a)^2 = a^2 \qquad r = 2a \sin \theta$$

$$(x-a)^2 + y^2 = a^2$$

$$r = 2a \sin \theta$$

$$r = 2a \cos \theta$$

$$x^2 + y^2 = a^2 \Rightarrow r^2 = a^2$$

$$x^2 + (y - a)^2 = a^2 \Rightarrow x^2 + y^2 = 2ay \Rightarrow r^2 = 2ar \sin \theta$$

$$(x - a)^2 + y^2 = a^2 \Rightarrow x^2 + y^2 = 2ax \Rightarrow r^2 = 2ar \cos \theta$$

Lines in Polar Coordinates

Lines in Polar Coordinates

In rectangular coordinates

$$y = mx$$

$$\theta = \alpha \text{ with } \alpha = \tan^{-1} m$$

$$x = a$$

$$r = a \sec \theta$$

$$y = a$$

$$r = a \csc \theta$$

$$y = mx$$
 $\Rightarrow \frac{y}{x} = m$ $\Rightarrow \tan \theta = m$
 $x = a$ $\Rightarrow r \cos \theta = a$ $\Rightarrow r = a \sec \theta$
 $y = a$ $\Rightarrow r \sin \theta = a$ $\Rightarrow r = a \csc \theta$

1.3 Symmetry

Symmetry

Lemniscate (ribbon) $r^2 = \cos 2\theta$

 $\cos[2(-\theta)] = \cos(-2\theta) = \cos 2\theta$ [1ex] \Rightarrow if $[r, \theta] \in \text{graph}$, then $[r, -\theta] \in \text{graph}$ [1ex] \Rightarrow symmetric about the x-axis. $\cos[2(\pi - \theta)] = \cos(2\pi - 2\theta) = \cos 2\theta$ [1ex] \Rightarrow if $[r, \theta] \in \text{graph}$, then $[r, \pi - \theta] \in \text{graph}$ [1ex] \Rightarrow symmetric about the y-axis. $\cos[2(\pi + \theta)] = \cos(2\pi + 2\theta) = \cos 2\theta$ [1ex] \Rightarrow if $[r, \theta] \in \text{graph}$, then $[r, \pi + \theta] \in \text{graph}$ [1ex] \Rightarrow symmetric about the origin.

Lemniscates (Ribbons) $r^2 = a \sin 2\theta$, $r^2 = a \cos 2\theta$

Lemniscate $r^2 = a \sin 2\theta$

 $\sin[2(\pi+\theta)] = \sin(2\pi+2\theta) = \sin 2\theta$ [2ex] \Rightarrow if $[r,\theta] \in$ graph, then $[r,\pi+\theta] \in$ graph [2ex] \Rightarrow symmetric about the origin.

2 Graphing in Polar Coordinates

2.1 Spiral

Spiral of Archimedes $r = \theta$, $\theta \ge 0$

The curve is a nonending spiral. Here it is shown in detail from $\theta = 0$ to $\theta = 2\pi$.

2.2 Limaçons

Limaçon (Snail): $r = 1 - 2\cos\theta$

- r = 0 at $\theta = \frac{1}{3}\pi, \frac{5}{3}\pi;$ |r| is a local maximum at $\theta = 0, \pi, 2\pi$.
- Sketch in 4 stages: $[0, \frac{1}{3}\pi], [\frac{1}{3}\pi, \pi], [\pi, \frac{5}{3}\pi], [\frac{5}{3}\pi, 2\pi].$
- $\cos(-\theta)=\cos\theta\Rightarrow$ if $[r,\theta]\in$ graph, then $[r,-\theta]\in$ graph \Rightarrow symmetric about the x-axis.

Limaçons (Snails): $r = a + b \cos \theta$

The general shape of the curve depends on the relative magnitudes of |a| and |b|.

Cardioids (Heart-Shaped): $r = 1 \pm \cos \theta$, $r = 1 \pm \sin \theta$

Each change $\cos\theta \to \sin\theta \to -\cos\theta \to -\sin\theta$ represents a *counterclockwise rotation* by $\frac{1}{2}\pi$ radians.

- Rotation by $\frac{1}{2}\pi$: $r = 1 + \cos(\theta \frac{1}{2}\pi) = 1 + \sin\theta$.
- Rotation by $\frac{1}{2}\pi$: $r = 1 + \sin(\theta \frac{1}{2}\pi) = 1 \cos\theta$.
- Rotation by $\frac{1}{2}\pi$: $r = 1 \cos(\theta \frac{1}{2}\pi) = 1 \sin\theta$.

2.3 Flowers

Petal Curve: $r = \cos 2\theta$

- r = 0 at $\theta = \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4}$; |r| is a local maximum at $\theta = 0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}, 2\pi$.
- Sketch the curve in 8 stages.
- $\cos[2(-\theta)] = \cos 2\theta$, $\cos[2(\pi \pm \theta)] = \cos 2\theta \Rightarrow$ symmetric about the x-axis, the y-axis, and the origin.

Petal Curves: $r = a \cos n\theta$, $r = a \sin n\theta$

- If n is odd, there are n petals.
- If n is even, there are 2n petals.

2.4 Intersections

Intersections: $r = a(1 - \cos \theta)$ and $r = a(1 + \cos \theta)$

- $r = a(1 \cos \theta)$ and $r = a(1 + \cos \theta) \Rightarrow r = a$ and $\cos \theta = 0 \Rightarrow r = a$ and $\theta = \frac{\pi}{2} + n\pi \Rightarrow [a, \frac{\pi}{2} + n\pi] \in \text{intersection} \Rightarrow n \text{ even}, [a, \frac{\pi}{2} + n\pi] = [a, \frac{\pi}{2}]; n \text{ odd}, [a, \frac{\pi}{2} + n\pi] = [a, \frac{3\pi}{2}]$
- \bullet Two intersection points: $[a,\frac{\pi}{2}]=(0,a)$ and $[a,\frac{3\pi}{2}]=(0,-a).$
- The intersection third point: the origin; but the two cardioids pass through the origin at different times (θ) .

Outline

Contents

L	Pola																						
			olar (
	1.2	$R\epsilon$	elatio	n to	Re	ect	ar	ıgı	ıla	r	Cc	001	di	na	te	S .							
	1.3	Sy	mme	try																			
2	Cro	nh	ing i	n D	പം	r	C	00	rc	lir	าก	to	c										
2	Gra	ıph	ing i	n P	ola	ır	\mathbf{C}	oc	rc	lir	ıa	te	\mathbf{s}										
2		-	ing i															•					
		$S_{\rm I}$	oiral																				
	2.1	Sp Li	oiral maço	ns	 								 										