Topic: Asymptotic notations

CSI-406 [3(3-0)]

Basic Concepts

An algorithm is a finite set of precise instructions for performing a computation or for solving a problem.

- What is the goal of analysis of algorithms?
 - To compare algorithms mainly in terms of running time but also in terms of other factors (e.g., memory requirements, programmer's effort etc.)
- What do we mean by running time analysis?
 - Determine how running time increases as the size of the problem increases.

Types of Analysis

OWorst case

- *Provides an upper bound on running time
- ♠ An absolute guarantee that the algorithm would not run longer, no
 matter what the inputs are

OBest case

- *Provides a lower bound on running time

OAverage case

- Provides a prediction about the running time
- *Assumes that the input is random

Asymptotic Analysis

- To compare two algorithms with running times f(n) and g(n), we need a rough measure that characterizes how fast each function grows.
- Express running time as a function of the input size n (i.e., f(n)).
- Compare different functions corresponding to running times.
- Such an analysis is independent of machine time, programming style,etc.
- Compare functions in the limit, that is, asymptotically!
 (i.e., for large values of n)

Asymptotic notation

A way to describe the behavior of functions in the limit or without bounds.

- Φ The notations are defined in terms of functions whose domains are the set of natural numbers $N=\{0,1,2,...\}$.
- Φ Such notations are convenient for describing the worst-case running time function T(n).
- #It can also be extended to the domain of real numbers.

Asymptotic notations

Asymptotic growth rate: -

- ◆ Big Oh (O) -notation
- igspace Omega (Ω) -notation
- ◆ Theta (Θ) -notation
- ◆ Little Oh (o) -notation
- ♦ ω-notation

O notation: asymptotic "less than" : $f(n) \le cg(n)$

 Ω notation: asymptotic "greater than" : $f(n) \ge c g(n)$

 Θ notation: asymptotic "equality" : $c_1 g(n) \le f(n) \le c_2 g(n)$

"O" in asymptotic analysis

Big-O Notation (Omicron)

possibly asymptotically tight upper bound for f(n) - Cannot do worse, can do better

- n is the problem size.
- f(n) ∈ O(g(n)) where:

 $O(g(n)) = \{ f(n) : \exists positive constants c, n_0 such that <math>0 \le f(n) \le cg(n), \forall n \ge n_0 \}$

Meaning for all values of $n \ge n_0 f(n)$ is on or below g(n).

O(g(n)) is a set of all the functions f(n) that are less than or equal to cg(n), $\forall n \ge n_0$.

If $f(n) \le cg(n)$, c > 0, $\forall n \ge n_0$ then $f(n) \in O(g(n))$

" Ω " in asymptotic analysis

Big Omega Notation (Ω)

possibly asymptotically tight **lower** bound for f(n) - Cannot do better, can do worse $f(n) \in \Omega(g(n))$ where:

 $\Omega(g(n)) = \{f(n): \exists \text{ positive constants } c > 0, n_0 \text{ such that } 0 \le cg(n) \le f(n), \forall n \ge n_0\}$

Meaning for all values of $n \ge n_0 f(n)$ is on or above g(n).

 $\Omega(g(n))$ is a set of all the functions f(n) that are greater than or equal cg(n), $\forall n \ge n_0$.

If $cg(n) \le f(n)$, c > 0 and $\forall n \ge n_0$, then $f(n) \in \Omega(g(n))$

"Θ" in asymptotic analysis

Big Theta Notation(⊕)

asymptotically tight bound for f(n) $f(n) \in \Theta(g(n))$ where :

 $\Theta(g(n)) =$ $\{f(n): \exists \text{ positive constants} c_1, c_2, n_0 \text{ such that } 0 \le c_1 \ g(n) \le f(n) \le c_2 g(n), \forall n \ge n_0\}$

- Positive means greater than 0.
- $\Theta(g(n))$ is a set of all the functions f(n) that are between c_1 g(n) and $c_2g(n)$, $\forall n \geq n_0$.
- If f(n) is between c_1 g(n) and c_2 g(n), \forall $n \ge n_0$, then $f(n) \in \Theta(g(n))$

Relations Between Θ, Ω, O

Theorem: For any two functions g(n) and f(n),

$$f(n) = \Theta(g(n))$$
 iff
 $f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$.

- \triangleright I.e., $\Theta(g(n)) = O(g(n)) \cap \Omega W(g(n))$
- In practice, asymptotically tight bounds are obtained from asymptotic upper and lower bounds.

