Tutorato di AL310

Tutori

Luciana Longo Sara Milliani Anno Accademico 2016/2017 19 Ottobre 2016

1. Trovare il polinomio minimo dei seguenti numeri complessi (dove non indicato il campo base è Q)

$$(\alpha)^{4}\sqrt{2}$$
 $\beta)^{5}\sqrt{4}$ $\gamma)^{3}\sqrt{2} + 1$ $\delta)^{3}\sqrt{2} + \sqrt{2}$ su $Q(\sqrt{2})$
 $(\epsilon)\sqrt{2} + \sqrt{5}$ su $Q(\sqrt{10})$ $\zeta)\xi_{16}$ su $Q(i)$ $\eta)\frac{4\sqrt{2}}{1 + \sqrt{2}}$

2. Calcolare il grado dei seguenti ampliamenti:

$$\begin{split} \alpha)Q \subseteq Q(\sqrt{7},\sqrt{13}) \qquad \beta)Q \subseteq Q(\sqrt{12},\sqrt{15}) \qquad \gamma)Q \subseteq Q(\sqrt{2},i) \\ \delta)Q \subseteq Q(\sqrt{3},\sqrt{5},\sqrt{60}) \qquad \epsilon)Q \subseteq Q(\frac{2}{3}(^3\sqrt{2}),^3\sqrt{2}-1) \qquad \zeta)Q(\sqrt{3}) \subseteq Q(\sqrt{3},\sqrt{6}) \\ \eta)Q(\pi) \subseteq Q(\pi,^3\sqrt{7}) \qquad \theta)Q(\pi^4) \subseteq Q(\pi) \end{split}$$

- 3. Calcolare il polinomio minimo di $cos(\frac{2\pi}{7})$ e $cos(\frac{2\pi}{9})$ su Q.
- 4. Descrivere il reticolo dei sottocampi di $Q(\xi_5), Q(\xi_7), Q(\xi_9)$ e $Q(\xi_{11})$.
- 5. Sia $Q \subseteq K$ un ampliamento di campi tale che [K:Q]=10. Spiegare perché $\sqrt[3]{2} \notin K$.
- 6. Sia dato il polinomio:

$$f(X) = X^5 - X^3 - 6X - \frac{1}{3}X^4 + \frac{1}{3}X^2 + 2 \in Q[X]$$

Stabilire se gli anelli $\frac{Q[X]}{(f(X))}, \frac{R[X]}{(f(X))}, \frac{C[X]}{(f(X))}$ sono campi e/o domini. (Ripetere l'esercizio con $f(x) = x^3 - 5x + 3$).

- 7. Stabilire se $\pi + \frac{1}{\pi}$ é algebrico o trascendente su Q e su $Q(\pi^2)$.
- 8. Sia $\alpha := \sqrt{3} \, e \, K := Q(\alpha)$.
 - (a) Determinare il polinomio minimo di α in Q.

- (b) Verificare che $Q(\sqrt{3}) \subseteq K$ e determinare il polinomio minimo di α su $Q(\alpha)$.
- (c) Posto $\beta := \sqrt{3} + (\sqrt[4]{27}) 2$, dire perché $\beta \in K$.
- 9. Sia $f(x) = x^3 5x 1 \in Q[x]$.
 - (a) Stabilire se $\frac{Q[x]}{(f(x))}$ è un campo e/o dominio.
 - (b) Sia $\alpha \in C$ tale che $f(\alpha) = 0$. Determinare $[Q(\alpha):Q]$ e descrivere $Q(\alpha)$.
 - (c) Trovare gli inversi di $\alpha + 1$, $\alpha^2 + \alpha + 1$, $2 + \alpha$, $\alpha^3 5\alpha$ in $Q(\alpha)$.
- 10. Determinare il campo di spezzamento in ${\cal C}$ dei seguenti polinomi e calcolarne il grado:
 - (a) $(X^2 5)(X^3 7)$ su Q
 - (b) $X^4 + 30X^2 + 45$ su Q
 - (c) $X^4 X^2 + 5$ su Q