Abbott, D. C., 327, 329	Allis, W. P., 229
aberration effect, 79, 102–104, 112, 114, 291	ALTAIR, 252
Abramowitz, M., 232	Ambartsumian, V. A., 95
absorption, 76, 153–158, 230	amplification factor, 44
bound-bound, 172	AMR, 59–62, 67
power-law distribution, 328	block-structured, 60, 61
bound–free, see photoionization	cell-based, 61
free-free, see bremsstrahlung, inverse	AMR refinement criterion, 61
multiphoton, 77	AMR refinement factor, 60
negative, 77	angle
true, 89	diffraction, 70
absorption coefficient, 76	polar, 283
line, 124	position, 221
Rosseland mean, 119	solid, 70
absorptivity, 75–78, 86, 89, 102, 158, 172, 182, 213	apparatus
anisotropic, 78	intensity definition, 70
free-free, 170	polarization measuring, 218
invariant, 106	approximate operator iteration (AOI), see ALI
nonrefractive, 217	arbitrary Lagrangian Eulerian, see ALE
refractive, 215, 216	ARES code, 62
Stokes vector, 226	astrophysics, stellar, 206
accelerated Lambda iteration, see ALI	Athay, R. G., 179, 191, 192, 273
acceleration equation, 46, 47, 61	atmosphere
Adams, M. L., 278, 283	hydrostatic, 141
Adams, T. F., 201, 202, 280	oscillations
adaptive mesh refinement, see AMR	with radiation pressure, 141–151
advection	semi-infinite, 91
donor-cell, 50	Atwood number, 19
flux, 50, 51	Auer, L. H., 192–194, 251, 262, 270, 276, 277, 288
step, 49, 50	Avrett, E. H., 186, 189, 191
Ahrens, C., 292	Axford, W. I., 304
albedo, 81, 96, 97, 287	•
single-scattering, 89, 183, 202, 315, 318	balance, local, 81
Alcouffe, R. E., 282, 290	Baldwin, C., 246, 254, 256, 257
ALE, 10–12, 61–62, 67	Balmer lines, 192
3-D, 62	Balsara, D., 59
equations, 11	Barbier, D., 99
grid motion, 61	barotropic law, 15
zone	barrier, insulating, 304
mass, 11	Baschek, B., 133
volume, 11	Beckers, J. M., 226
algebraic equation, asymptotic solution, 145	Beer's law, 76
ALI, 126, 286–291	Bell, J. B., 60

Berger, M. J., 60	Chandrasekhar, S., 87, 92, 218, 266, 318
Bernoulli constant, 66	Chapman–Enskog method, 265
Bernoulli's law, 15–20	Chapman–Jouget process, 307
strong form, 15, 18	characteristic
weak form, 15	$C_{-}, 27, 307$
Biberman, L. M., 209	$C_{+}, 27, 32, 307$
birefringence, 225	$C_0, 27$
Blinnikov, S. I., 131, 133, 135	equation of, 25
Boltzmann equation, 76	characteristics, 24–29, 115, 276
Boltzmann law, 156, 183	fan of, 28
Boltzmann number, 238, 320, 323, 324	long, 274
Born, M., 219	method of, 24
Bose–Einstein distribution, 309, 312	short, 274
fugacity, 309	charge, separation of, 31
boundary	Chebyshev series, 65
free, 44	Christy, R. F., 237, 240
rigid, 44	chromosphere, 188
vacuum, 91	circulation, of velocity, 16
boundary conditions	clouds, molecular, 65
diffusion, 243	coarse graining, 74, 212
Dirichlet, 243, 244, 295, 296	coherence, quantum state, 182
extrapolation length, 244	Colella, P., 41, 54–56, 60, 65
hydrodynamic, 44	Colgate, S. A., 237
incident intensity, 243	collision
Milne, 244	electron, 175
Neumann, 243, 244, 296	electron—ion, 213
reflection, 244	collocation, 65
specified flux, 244	combustion front, 306, 307
spherical, 271	commutator relation, 155, 164, 169
vacuum, 243	complete linearization method, 192, 193
boundary layer, 81, 97	
	complete redistribution, 188, 195, 196, 198–200, 204,
thickness, 81	207, 209, 211
viscous, 16	compression ratio, ionization front, 305
Boussinesq approximation, 148	Compton effect, 160
Bowers, R. L., 41, 49, 50, 61	Compton reflection, inverse, 318
Boyd, J. P., 65	Condon, E. U., 152
Brandt, J. C., 303	conduction
bremsstrahlung, 168–172	heat, 12–14, 299, 300, 320
inverse, 168–172, 214, 230, 295	artificial, 56
Brown, F. B., 292	conductivity, thermal, 14, 23, 300
Brown, P. N., 259	configuration interaction, 168, 176
Broyden, C. G., 290	confluent hypergeometric equation, 316
Buchler, JR., 110-113, 288	confluent hypergeometric functions, 316
	conservation equations, 30
CALE code, 62	conservation laws, 56, 57, 300
Calvetti, D., 252	material plus radiation, 85
Canfield, E. H., 291	conservation-law form, 52
Canfield, R. C., 191, 273, 274	constraint
Cannon, C. J., 288	time-step, 237
Canuto, C., 65	radiation diffusion, 237
capture, radiative, 165	contact discontinuity, 38, 54, 55
Caramana, E. J., 41, 48	smearing, 40
Carlson, B. G., 281, 283, 284	continua, photoionization, 272
Carlsson, M., 288, 290	continuity equation, 30
	continuous medium picture, 212
Castor, J. I., 84, 102, 110, 123, 126, 132, 134, 135,	1 '
139, 189, 192, 260, 278, 291, 327, 329	Cook, J. D., 211
Cauchy integral formula, 315	cooling
CFL condition, 44, 51, 60, 237	Newton's, 21, 139
radiative, 237	time constant, 22, 141, 292
Chamberlain, J. W., 303	minimum, 141
Chan, K. L., 130	Cooper, G., 312

G 1 100	1.1. 200
Cooper, J., 196	validity, 298
coordinates	diffusion approximation, 80–84, 172, 217, 237, 240,
angle, 70, 75	248, 253, 257, 258, 265
curvilinear, 78	comoving frame, 117–122
spherical, 268	distinct from Eddington, 83
coronal hole, 303	explicit differencing, 238
corrections, velocity, 108	pressure tensor, 83
correlation	with velocity gradient, 133
function, two-particle, 213	diffusion coefficient, 264
plasma, 214	diffusion region, 108
Courant Condition, see CFL condition	dimensional analysis, 35
Courant, R., 24, 28, 29, 44, 307	dipole approximation, 164
Cowie, L. L., 299	dipoles, oscillating, 214
Cox, A. N., 176	direct Eulerian method, 54, 55
Cox, J. P., 69, 80, 158, 212, 215–217, 237	direct numerical simulation (DNS), 65
CRD, see complete redistribution	direction cosine, 283
cross section	direction vector, radiation, 75
absorption	discrete ordinates, method of, 95, 266–268
line, 157, 158, 190 differential, 160, 163, 163, 160, 200	dispersion
differential, 160, 162, 163, 169, 309	plasma, 214
moments of, 311	dispersion function, 21, 231
Klein–Nishina, 161, 291, 311 photoionization, 164	dispersion relation, 17, 19, 21, 22, 145, 294
	VEF equation, 261
radiative capture, 165	dissipation
scattering, 159 Thomson, 160, 161	viscous, 13, 14
	dissipation function, 14 dissipative, numerical method, 238
Cummings, J. D., 291 curve-of-growth function, 208	•
curve-or-growth function, 208	distribution function, phase space, 69
de avaitation collisional 101	distribution, Poisson, 132, 136
de-excitation, collisional, 181	domain of dependence, 25
Debye length, 171	Doppler effect, 79, 102–104, 112, 114, 123, 161, 291
deflagration, 307	Doppler width, 184, 231
degeneracy, electron, 166	Dreizler, S., 290
density electron 184	duality, wave-particle, 74
density, electron, 184	Dykema, P. G., 189, 192, 260, 278
departure coefficient, from LTE, 189 detonation, 307	DYNA3D code, 62
dielectric constant, 212	dynamics
complex, 213	gas, 5–40
dielectric tensor, 226, 229	structural, 62 vortex, 16
differencing, conservative, 277	$E_n(x)$, 90–92, 96, 266, 287, 289
differential equation	$E_{R}(x)$, 90–92, 90, 200, 287, 269
regular singular point, 329	Eastman, R. G., 133-135, 291
singular locus, 329	Eddington approximation, 83, 91–93, 97, 199,
singular point, 328	242–245, 260, 263–265, 294, 323, 324
regularity, 329	Eddington factor, 94, 245, 263, 264, 270
stiff, 181, 239	Eddington limit, 147
diffusion	Eddington luminosity, 147
1-D, 245	Eddington tensor, 260, 262, 277, 282
approximation, 245	Eddington, A. S., 139
double, 200	Eddington–Barbier relation, 99–101, 187
equilibrium, 240–241, 258, 259	eigenvectors, generalized, 25
finite-difference	Einstein coefficient, 154–158, 165
2-D, 245	A_{ba} , 155, 191
flux-limited, 264–266	B_{ab} , 156
frequency, 130, 198	B_{ba} , 156 B_{ba} , 155
multidimensional, 245	electric field, 31
nonlinear, 258, 265	electron, free, 213
second order, 119	electron spin, 164
thermal, 240–241, 243, 245, 294, 295, 298, 304,	element mixture
323, 324	astrophysical, 174
525, 52 i	asaspiijsivai, 171

emission, 76, 153–158	evaporation, of interstellar cloud, 299-303
microwave, 226	evaporation rate, 303
spontaneous, 181, 230	evaporation front, 299
stimulated, 77, 172, 181, 191, 206, 214, 226, 230,	excitation, collisional, 181
309	excited-state population, Monte Carlo estimate, 292
thermal, 220, 224, 282	exothermic, combustion front, 307
emission coefficient, 77	expansion opacity, 130–137
emissivity, 75-78, 86, 89, 102, 158, 174, 182, 204,	iron spectrum, 135
309	monochromatic, 131
anisotropic, 79	Rosseland mean, 131, 132, 134
effective, 292	s parameter, 130
invariant, 106	expansion, asymptotic, 81
refractive, 216	exponential-integral function, see $E_n(x)$
Stokes vector, 224, 225, 227	
energy	Faraday depolarization, 235
relativistic, 103	Faraday rotation, 226, 228, 229, 235
uncertainty, 196	Feautrier equation, 98–99, 192, 193, 205, 271, 276,
energy coupling	277
radiation-matter, 85, 173, 308	Hermite differencing, 276
implicit, 286, 290, 291	Fermi function, 167
energy density	Fermi's Golden Rule, 154, 159
radiation, 71, 72, 107, 138, 215	FFT, 66
comoving frame, 119	Fick's law, 114, 117, 244
Monte Carlo estimate, 291	field
refractive, 216	electromagnetic, 152
spectral, 72	macroscopic, 214
total, 72	quantization, 152, 214
energy equation	finite difference method, 49–51
combined, 241	finite element method, 275, 278
linearized, 22, 291	discontinuous, 275
radiation, 272	bilinear (BLD), 278, 280
ENO, 57, 59, 67	linear, 278, 279
equilibrium	mass lumping, 279
collisional–radiative, 260	second order accurate, 279
hydrostatic, 192	finite volume method, 49, 52, 279
radiative, 192	FLASH code, 62
statistical, 180, 189	Fleck, J. A., Jr., 291
equivalent two-level atom (ETLA) method, 189, 192,	flow
260	high Mach number, 126
error	inviscid, 29
amplification factor, 250, 255, 288	irrotational, 15, 17
mode	isentropic, 27
short-wavelength, 254	isothermal, 328
truncation, 238	potential, 15, 17
error function, complex, 232	self-similar, 35, 38
escape factor, 191	steady, 300
escape probability, 91, 204	supersonic, 123
angle-dependent, 126	transonic, 299, 301
approximation, 91, 126, 191, 272–274	fluid approximation, 6, 31
second-order, 273, 274	flux
single-flight, 204, 260, 272	conserved, 52
as approximate lambda operator, 289	diffusion, 83
two-sided, 91, 186, 205, 272, 273	emergent, 100, 187, 188
Sobolev, 126	enthalpy, 114
Euler equations, 6–8, 49, 61	fluid frame, 114
first, 7	frequency-integrated, 120
linearized, 20, 142	kinetic energy, 320
second, 7	radiation enthalpy, 138
third, 8	vector, 72, 107
Eulerian method, 26, 49–61, 67, 276	flux divergence coefficient, 191
Eulerian picture, 6	flux limit, lack of, 84

flux limiter, 84, 264–266	Green's function, 143, 144
Levermore, 265	Greenough, J. A., 61, 68
max, 265	
sum, 265	H and K lines, of Ca II, 188, 192
Fokker–Planck method, 197, 311	h and k lines, of Mg II, 188
force	H II region, 308
drag, 213	\mathbf{H}_{ν} , 73
ponderomotive, 217	<i>H</i> -function, Chandrasekhar, 95, 100, 268, 318
formal solution, 271	Hamann, WR., 288
four-momentum, 103, 104	Hamiltonian, 152
four-vector, 103, 105	Hammer, J. H., 299
four-velocity, 103	Hanbury Brown, R., 220
Fourier coefficients, 219	Harrington, J. P., 197, 199–203
Fourier series, 65	Hauschildt, P. H., 289
Fourier space, 66	Hearn, A. G., 151
Fourier transform, 95, 200, 210	heat of reaction, 307
Fourier's law, 14	heating rate, matter, 85
Fraser, A. R., 102	Heitler, W., 196
free energy, Gibbs, 166	Helmholtz equation, 143
Freeman, B. E., 260	Henson, V. E., 253
frequencies, radio, 218	Hermiticity, 220
frequency	Hernquist, L., 63, 64
Brunt–Väisälä, 147, 149	Hestenes, M. R., 249
cyclotron, electron, 229, 230	Holstein, T., 209, 211
electron-ion collision, 213, 229, 326	Hopf function, 92–94, 244, 266, 268, 285
radiation, 70	Howell, L. H., 61
frequency width	Huard, S., 221
characteristic, in PRD, 201	Hubeny, I., 289, 290
Friedrichs, K. O., 24, 28, 29, 44, 59, 307	Huebner, W. F., 178
Friend, D. B., 132, 134, 135	Hugoniot curve, 33
Frisch, H., 197, 273	Hummer, D. G., 124, 126, 186, 196, 201, 202, 205,
Frisch, U., 273	272, 289, 290
FronTier code, 67	Hurwitz–Routh criterion, 150
Tionities code, or	Husfeld, D., 288
γ	hydrodynamics
effective, 22	1-D, 41–45
relativistic, 103	2-D, 45–62, 276
Galerkin method, 65, 278	3-D, 62
gas	numerical, 40–68
ideal, 26, 33, 320	Hyman, J. M., 259
ideal Fermi, 166	11yman, J. 1vi., 237
gaunt factor	Iglesias, C. A., 177
bound–free, 167	impact parameter, 269, 281
free-free, 170, 183	impact parameter, 205, 201 impacts, asteroid, 65
radio frequency, 170	indicial equation, 316
* *	infinite medium, 200
geometry Riemannian, 78	instability
slab, 41, 98, 188, 204, 266, 274, 295	absolute, 144, 145, 147, 151
spherical, 239, 262, 268–272, 274, 276,	convective, 144, 147
280	global, 144 Kelvin–Helmholtz, 17, 19, 67
Germaschewski, K., 60 Gingold, R. A., 63	
6 1	growth rate, 19
Gittings, M. L., 61 Giuli, R. T., 69, 80, 158, 212, 215–217	pulsation, 139 Rayleigh—Taylor, 17, 19, 59, 67
	growth rate, 19
Glaz, H. M., 54, 60 Godunov method, 52–56, 61, 67	Richtmyer–Meshkov, 62, 67
Godunov, S. K., 24, 57	instability, numerical, 241
Goddinov, S. K., 24, 37 Gol'din, V. Ya., 260	intensity, 69–74
Grauer, R., 60	emergent, 99, 100
gravity, self, 64	frequency-integrated, 72
Great Red Spot, 16	Lorentz invariant, 106
Oreat Neu Spot, 10	LOTORIZ HIVARIARI, 100

mean, 205, 266	kernel approximation method, 267
negative, 277	kernel function, 185
steady-state, 207	SPH, 63
total, 218	Kershaw, D. S., 257
x component, 218	kinematics, relativistic, 103, 291
y component, 218	kinetic equations, 179–181, 189, 192–194, 206, 253,
interior solution, 91	272, 289
internal energy equation, 42, 43, 46, 114, 240, 242,	Klein, R. I., 61, 189, 192, 260, 278, 327, 329
272, 286, 290	Knoll, D. A., 259
Eulerian, 8	Kompaneets equation, 154
Lagrangian, 7, 9	Kompaneets, A. S., 312
interpolation	Kopp, H. J., 282
monotonic, 50	Kourganoff, V., 87, 92, 99, 287
parabolic, 277	Kramers law, 167
piecewise-parabolic, 55	Kramers–Kronig relation, 231
subzone, 50	KULL code, 62
van Leer, 51, 54, 55	Kunasz, P. B., 276, 277, 289
interstellar medium, 299	Kurucz, R. L., 135
invariant momentum volume element, 105	1141402, 141 2.1, 100
invariant phase-space volume element, 105	L'Hospital's rule, 301
invariant spatial volume element, 105	Lagrange plus remap, 49–51, 54, 55
ion, hydrogen-like, 168	Lagrange step, 49, 51, 55
ionization, 31	Lagrangian method, 9–10, 29, 40–48, 51, 63, 66, 67,
collisional, 326	240
ionization front, 24, 304–308	Lagrangian picture, 6
D-critical, 306	Lamb, H., 141
D-type, 307	lambda iteration, 282, 287
D-type conditions, 306	lambda operator, 287
M-type conditions, 306	approximate, 288–290
R-critical, 306	diagonal, 289
R-type, 307	lagging, 290
R-type conditions, 306	tri-diagonal, 289
strong, 306	Lanczos, C., 249, 252
subsonic, 306	Landau, L. D., 5, 35, 36, 215, 307
supersonic, 306	Landi Degl'Innocenti, E., 226, 230, 231, 235
weak, 306	Landi Degl'Innocenti, M., 226
ionosphere, 226	Lanz, T., 290
Irons's theorem, 204–205, 272	Laplace transform, 142, 207, 315
iteration, source, 282	inverse, 143, 208, 209
Ivanov's approximation, 188, 274	Larsen, E. W., 292, 294
Ivanov, V. V., 96, 179, 188, 194, 202–204, 267	laser targets, 206
	Lasher, G., 130
\bar{J} , 185, 200, 273, 274, 289	latent heat, of ionization, 305
J_{ν} , 73	Lathrop, K. D., 284
Jefferies, J. T., 192, 228	Lax, P. D., 56, 59
Jiang, G. S., 41	Lax–Friedrichs method, 59
Jones, J. E., 259	Lax-Wendroff method, 56
•	two-step, 56, 57
$K_1(\tau)$, 92, 95, 185, 267, 273	Lenoir, W. B., 226, 231
asymptotic, 210	Levermore, C. D., 265
$K_2(\tau)$, 185, 188, 202, 205, 272, 273	Lewis, E. E., 281, 282
K_{ν} , 73	Lewy, H., 44
$\tilde{K}_1(k), 210$	Liepmann, H. W., 29
Kahn, F. D., 304	lifetime
Kalkofen, W., 236, 288	electron collision, 180
Kamm, J. R., 68	radiative, 180
Karp, A. H., 130, 135	recombination, 180
Katz, N., 63, 64	spontaneous, 205, 206, 209
Keller, G., 175, 178	Lifshitz, E. M., 5, 35, 36, 215, 307
Kelvin-Helmholtz instability, see instability,	Lightman, A. P., 311, 318
Kelvin–Helmholtz	Lindquist, R. W., 106, 107

line broadening, 175	flux, 108
Doppler, 125, 175, 185, 187, 195, 196, 199, 200,	intensity, 106
202, 203, 210	pressure tensor, 108
electron impact, 175, 177, 180, 196	radiation, 104–107
ion, quasistatic, 175, 177	radiation moments, 107–110
natural, 196	
	Los Alamos Opacity Library, 178
line profile function, 125, 158, 184, 187, 190, 191	LTE, 88, 172, 179, 182, 235, 304
complex, 230	Lucy, L. B., 63
Lorentzian, 175, 187, 196, 202, 203, 210	Lyman lines, 192
Voigt, 202, 203, 209, 210, 231	
line profile, Stokes, 233	Mach number, 34, 40, 65, 305, 306
line strength, 155	isothermal, 327
line width, 124	magnetic field, 234, 235
linear equations	transverse, 235
Gaussian elimination, 193, 239, 246	magnetometer, 235
incomplete Cholesky factorization, 257	Manteuffel, T. A., 252, 259
incomplete LU factorization	mapping, bilinear, 46
with thresholding (ILUT), 257	Marshak, R. E., 294
incomplete LU factorization (ILU), 256	Marshak wave, 294–299, 304
iterative solution, 241, 245–260, 287	analytic, 294
alternating-direction implicit (ADI), 248–250,	asymptotic, 294, 299
257	• •
	subsonic, 299
biconjugate gradient (BCG), 250–253	temperature distribution, 296
block Jacobi, 248	Martin, W. R., 292
Chebyshev, 246, 250–253, 259	mass density, relativistic, 109
conjugate gradient, 246, 249–250, 252, 254–256	mass shell, 104
convergence rate, 248–250	mass, rest, 103
convergent, 256	matching, velocity, 18
Gauss-Seidel, 246-248, 257	material, opaque, 74
generalized conjugate residual (GCR), 251	matrix
generalized minimum residual (GMRES), 246,	absorption, 227
250–253, 257, 259	coherency, 219, 226, 227
ILU-GMRES, 257	condition number, 250, 255
ILUT-GMRES, 257	density, 219, 220, 224
incomplete Cholesky conjugate gradient (ICCG),	radiation, 220
257	eigenvalues, 247
iteration count, 254	emission
Jacobi, 246–248, 256	spontaneous, 231
Krylov subspace methods, 249, 252, 259	stimulated, 231
multigrid, 246, 253–254, 257, 259	G, 226–228, 230, 233
Ng, 250–253, 260, 290	Hermitian, 219
nonsymmetric, 250, 260	Hermitian adjoint, 226
ORTHOMIN, 246, 250–253	ill-conditioned, 255
preconditioned, 255	Jacobian, 24, 246, 258, 260, 286
preconditioned conjugate gradient, 246, 257	K, 227, 228, 230, 233
relaxation, 254, 255	lower-triangular, 247
semi-coarsening multigrid (SMG), 254, 259	Mueller, 222
SOR overrelaxation parameter, 248	orthogonalization
successive overrelaxation (SOR), 246–248, 250,	Gram-Schmidt, 250
257	Householder, 250
preconditioning, 249, 255, 259, 282, 286, 288	principal minors, 150
sparse, 243, 246	prolongation, 253
fill-in, 256, 257	rank-1, 290
linearization, opacity, 241, 242	restriction, 253
local thermodynamic equilibrium, see LTE	symmetric positive-definite, 241, 249, 254, 257
Loeser, R., 191	upper-triangular, 247
longest-single-flight picture, 185, 209	matrix element, quantum mechanical, 155
Lorentz invariant, 104, 105	matter, interstellar, 230
Lorentz transformation, 103	Maxwell equations, 226
absorption and emission, 106	Maxwellian distribution, 182
energy density, 108	McClymont, A. N., 274

McKee, C. F., 299	fixed frame, 109
mean free path, 31, 80	frequency integrated, 79
line scattering, 185	simplified comoving frame
Rosseland, 297	frequency-dependent, 113, 260
mechanical energy equation, 8	frequency-integrated, 113
mechanics, Newtonian, 102	spherical, 269, 270
medium	moments, see radiation, moments
anisotropic, 225	momentum density
dispersive, 215	radiation, 84
infinite, 92, 207	relativistic, 109
interstellar, 226	momentum equation, 30, 43
Meijerink, J. A., 257	Lagrangian, 9
Mercier, B., 292	momentum, material, 85
mesh	Monaghan, J. J., 63, 65
3-D	monotonicity, 55
hexahedral, 279	Monte Carlo method, 63, 291–293, 319
tetrahedral, 279	cost, 292
AMR, 60	Montry, G. R., 282
coarsening, 253	Morel, J. E., 282
recursive, 253	Morton, K. W., 41, 280
corner, of cell, 279	multifrequencygray method, 290
distorted, 283	multiphase
dynamic, 48	MUSCL, 54–56
hexahedral, 62	
hierarchical, 60	Nagel, W., 226
level 1, 60	Navier–Stokes equation, 13, 29, 65
level 2, 60	incompressible, 65
logical, 46	Net Radiative Bracket, 191, 192, 204, 205, 253, 260,
quadrilateral, 279	272
staggered, 41–48, 51, 61, 67	Newton–Krylov method, 193, 246, 258–260, 290
sweeping, 276, 277	Newton–Raphson method, 193, 238, 240–242, 246,
transport, 276	258, 259, 290
unstructured, 48, 62	convergence, 239
Messiah, A., 152, 158	convergence, robust, 239
Mészáros, P., 226	Ng, K. C., 251
metric, Minkowski, 105	Noble, L. M., 303
Meyerott, R. E., 175, 178	Noh problem, 67
Mihalas, B. W., 2, 5, 20, 21, 69, 84, 102, 104, 109,	noise, electric field, 220
110, 118, 119, 121, 139, 268, 276, 294, 304,	non-LTE, 124, 126, 133, 156, 179–194, 235, 260, 286,
320 Will B 2 5 20 21 (0 04 102 104 100 110	289, 292, 304
Mihalas, D., 2, 5, 20, 21, 69, 84, 102, 104, 109, 110,	multilevel atom, 188–194
118, 119, 121, 139, 179, 192–194, 245, 268,	problem, 181
276, 294, 304, 320	normal vector, surface, 104
Miller, W. F., Jr., 281, 282	Norman, M. L., 41, 276
Milne equation, 91–93	Nowak, P. F., 283
first, 92–94, 266	number conservation, 193
second, 95–97, 183, 186, 194, 199, 273, 287	number of scatterings, distribution, 313, 318
Milne problem, resolvent function, 95–97, 100 Milne relation, 165, 167	0- 220 220
	ω_B , 229, 230
Milne–Eddington model, 233 mode	ω_{pe} , 213, 217, 218, 229, 230 occupation number, 153, 154
acoustic, 22	octant, for angle quadrature, 284
cooling, 22, 139	Olson, G. L., 251, 259, 288, 289, 295
isobaric, 23	Onson, G. L., 231, 239, 288, 289, 293 Omont, A., 196
isochoric, 23	opacity, 172, 173
moment equations, 78–80, 83, 90, 264, 282	astrophysical, 175
closure, 78	calculation of, 172–178
combined, 84, 241, 242	continuous, 130, 204, 207
comoving frame, 112, 117	effective, 134, 135
frequency-dependent, 112	flux mean, 147
frequency-integrated, 113	frequency-dependent, 326
ricquency-integrated, 113	rrequency-dependent, 520

opacity cont.	momentum, 72
gray, 92, 93, 287	number density, 72, 312
lagging, 241	phase-space density, 72, 104, 309
Planck mean, 140, 173, 174	photosphere, 184, 188, 206, 263
Rosseland mean, 136, 173, 174, 176, 217, 218, 242,	Picard iteration, 258, 259
294, 295, 326	Pinto, P. A., 133–135, 291
Opacity Project, 176, 177	Planck function, 81, 88, 119, 124, 156, 310
OPAL, 176, 177	Planck mean, 136
operator	plane, tangent, 276
annihilation, 153, 215	plasma
creation, 153, 215	dense, 214
diffusion, 282	frequency, electron, 172, 213, 214, 217, 218, 229
finite-difference, 253	230
Kompaneets, 313	magnetized, 79, 225
projection, 59, 66	interstellar, 229
operator splitting, 49, 54, 236–240, 242, 248, 286	microfield, 175
directional, 51, 54, 55	PLMDE, 55, 61, 67, 68
optical depth, 76, 87, 184, 188, 198, 199, 201, 238,	Poincaré sphere, 221, 228
273	Poisson equation, 66, 262
Sobolev, 125, 328	Poisson process, 134
optically thick region, 322	Poisson statistics, 314
optically thin regions, 241, 245	polarizability, AC, 162
optics, geometrical, 74	polarization, 70
oscillator strength, 157, 190	component, σ , 235
emission, 157	mode, 164, 219, 220
sum rule, 157	left-circular, 223
4) 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	orthogonal, 221, 228
(p, z) coordinates, 270, 274, 276	right-circular, 223
Panofsky, W., 107	rotation, 226
parallel displacement, 78	plane of, 221
parametric-potential method, 176	rotation, 230
Parker, E. N., 303, 329	polarized light, 160, 218–235
partial differential equation	anisotropic media, 225–235
conservative form, 275, 281	basis, 222, 227
elliptic, 253 hyperbolic, 24	birefingent media, 225–235 circular, 221, 235
self-adjoint, 260	compensator, 222
partial redistribution, 182, 194–203, 207, 209, 211,	component, 228
309	elliptical, 220, 221
angle dependent, 292	ellipticity, 221
asymptotic, 199–201	left-circular, 221
particles, Monte Carlo, 291	linear, 221, 225, 235
partitioning, of matrix, 193	mathematical description of, 218
Rybicki, 193, 194, 276	phase plate, 222
path length	right-circular, 221
mean, 201–204	polarizer, 228
Payne, M. G., 211	polynomial
permeability, magnetic, 226	Chebyshev, 252
permittivity, electric, 226	Legendre, 284
perturbation, surface, 17	Pomraning, G. C., 2, 69, 84, 86, 264, 275, 294, 295,
phase function, 160, 162, 284	311
Philips, M., 107	populations, atomic level, 179, 189, 191, 200, 235
photoexcitation, 181	position vector, 75
photoionization, 163-168, 172, 190, 295	positivity, of transfer solution, 277–279
photon	potential
boson statistics, 220	chemical, 166
conservation of, 312	vector, 152, 215
dressed, 214	velocity, 15, 17
four-momentum, 103	Poynting vector, 108
mean frequency	PPM, 55, 56, 62, 67, 68
Compton boost, 313	PPMLR, 55

Prandtl number, 14	slab geometry, 87–91
PRD, see partial redistribution	steady-state, 86–101
pre-conditioning, 193	work term, 242
processes	radiation transport
nonlinear, 77	comoving frame, 102–137
stochastic, 220	numerical, 236–293
PROMETHEUS code, 67	spectral line, 123
protostar, 238	radiation–matter coupling, 84–85, 114, 140
pseudo-spectral method, 65	comoving frame, 109
pseudo-viscosity, 43, 48, 51, 56	fluid frame, 109
centering, 48	four-vector, 109
linear, 45	stationary frame, 109
monotonic, 45, 51	radiative acceleration, 328
Puetter, R. C., 191, 274	α-power law, 328
pulsar, 226	radiative transfer
dispersion measure, 230	LTE, 226
dispersion measure, 250	probabilistic, 273
QED, 152–154, 226	spherical symmetry, 268–272
quadrature	radiative transitions, net rate, 156, 191, 289
angle, 266, 282	RAGE code, 61, 67
adaptive, 285	Raizer, Yu. P., 3, 35, 294, 307, 320
Gaussian, 266	
quarter-wave plate, 218, 221, 222	Ramoné, G. L., 283
	random walk, 130, 185
quasar, broad emission lines, 274	Rankine–Hugoniot relations, 29–35, 322
quasi-Newton method, 290 quenching, 183, 191, 202, 209	Rasio, F. A., 63
quencining, 183, 191, 202, 209	rate
$R_I(x, x')$, 196, 197	electron collision, 182, 189
	inelastic, 180
$R_{II}(x, x')$, 196–198, 202, 203	photoabsorption, 180, 189, 205
$R_{III}(x, x'), 196$	radiative, 180, 189
$R_{IV}(x, x')$, 196, 197	effective, 289
Rachkovsky, D. N., 226	radiative decay, 190
radiation	spontaneous, 180
angle moments, 72, 79, 82	stimulated, 180
body force due to, 126, 129, 147,	rate coefficient, 180, 189
327	rate matrix, eigenvalue, 181
comoving frame, 242, 291	ray effect, 283, 285
Comptonization of, 308–319	Rayleigh—Jeans approximation, 226
energy advection term, 242	Rayleigh–Taylor instability, see instability,
energy, conservation of, 79,	Rayleigh–Taylor
277	rays, curved, 215, 276
enthalpy, 139	reciprocity relation, 165, 169
entropy, 139	recombination
field, symmetries, 284	coefficient, 167
γ , 139	radiative, 31, 163–168, 326
$\gamma = 4/3$ ideal gas, 74	rate, 167
imprisoned, 138–139	spontaneous, 167
incident, 243	recursion, stable, 245
isotropic, 74	redistribution function, 195
moments, 69–74, 90, 107, 271	Compton, 308
momentum, 79, 80, 217	symmetry, 309, 310
line, 327	symmetric, 195
pressure, 138	Reed, W. H., 282
isotropic, 83	Rees, D. E., 223, 233
refractive, 216	reflectance, diffuse, 318
pressure tensor	reflection, diffuse, 318
monochromatic, 121	refraction, 212–218
quantized, 220	index of, 212, 213, 217
response to fluctuations, 140	tensor index of, complex, 226
transfer	region of influence, 55
astrophysical, 98	remap step, 55

residual, preconditioned, 255	Scharmer, G. B., 288
resonance fluorescence, 182	Schwarzschild, M., 80
Reynolds number, 121	searchlight problem, 277
Richardson extrapolation, 61	Seaton, M. J., 176, 177
Richtmyer, R. D., 41, 43, 56, 280	Sedov, L. I., 35–37
Rider, W. J., 68, 259	Shi, J., 59
Riemann invariant, 27, 28	shock tube, 37–40, 52
Riemann problem, 52, 56	shock wave, 28–35, 37, 51, 52, 307
general, 53	adiabatic, 327
ringing, at discontinuity, 40, 57	cooling region, 324, 326
RK3, 57, 59	entropy jump, 34, 42
rocket effect, 303	internal energy jump, 33
Rogers, F. J., 177	internal structure of, 31
Rosen, M. D., 299	isothermal, 326
Roshko, A., 29	jump conditions, 31, 38, 305
rotation measure, 230	isothermal, 326
Runge-Kutta method, 57, 66	postshock cooling, 323
Rybicki, G. B., 124, 126, 193, 204, 205, 273,	postshock cooling, 326
288–290, 311, 318	precursor heating, 323
	precursor region, 323, 324, 326
S _N method, 270, 274–286, 289, 292	radiating, 319–327
angle sets, 283–286	diagnostic diagram, 320
for 2-D and 3-D, 285–286	supercritical, 322
level symmetric, 284	release, 53
Set A, 283	spreading, 43
Set B, 283	strong, 34
corner balance, 275, 280	structure, radiating, 323
corner intensity, 279, 280	temperature spike, 325
nonlinear, 278	thickness of, 31
simple (SCB), 279, 280	velocity jump, 33, 51, 57
upstream (UCB), 278, 280	shock-within-a-shock, 322
diamond difference, 275, 280–282	Shortley, G. H., 152
diffusion synthetic acceleration, 282, 290	Shu, C. W., 41, 59
step difference, 275, 280–282	
•	similarity solution, 35
transport synthetic acceleration, 282, 283	Smith, E. W., 196
weighted diamond difference, 282	smoothed particle hydrodynamics, see SPH
Saad, Y., 246, 248, 252, 256, 257, 259	Sobel'man, I. I., 152, 158, 163, 179
Saha equation, 166, 167	Sobolev, V. V., 95, 96, 122, 188 Sobolev approximation 122, 120, 125, 272, 227
Salpeter, E. E., 130	Sobolev approximation, 122–130, 135, 272, 327
Sampson, D. H., 179	diffusion correction, 127
Scarf, F. L., 303	finite cone-angle, 331
scattering, 77, 88, 89, 153, 154, 158–163, 282	radial beaming, 129, 331
Compton, 89, 291, 308	Sobolev equation, 124
bias, 310	Sobolev escape probability, 127, 130
inverse, 316, 318	approximate, 128
Kompaneets equation, 312, 313, 316, 318	Sobolev optical depth, 127, 130, 135
y parameter, 313, 316	Sod, G. A., 57
conservative, 92, 100, 195, 202	Sod shock tube, 57, 59, 65, 68
effective, 282, 292	solar atmosphere, 233
electron, 89, 295, 308	solar corona, 161, 218, 285, 303
generating function, 313, 315, 318	solar flare, 285
isotropic, 78	solar photosphere, magnetized, 226
line, 183	solar spectrum, 188
mean number of, 201–205, 287, 313, 314	solid angle, 75
polarized, 224	sound speed
Raman, 162	barotropic, 21
Rayleigh, 162, 172, 182, 183, 214, 224	isothermal, 300, 305, 328
redistribution function, 78	source function, 88, 95, 96, 156, 165, 183, 184,
resonance line, 124, 195	186–191, 205, 210, 266, 268, 273, 274, 276,
stimulated, 78, 154, 160, 172, 309, 313	277, 282
Thomson, 158, 172, 183, 185, 214, 224, 308, 328	angle-dependent, 99

frequency-independent, 182	Stewart, J. N., 176
line, 124, 182	Stibbs, D. W. N., 196
scattering, 89	Stiefel, E. L., 249
Stokes vector, 227	stimulation factor, 310
total, 89	Stokes parameters, 219, 220, 223, 228,
spectral distribution, Comptonized, 313–315	234
spectral lines	Stokes vector, 223, 227, 230
cyclotron, 226	additivity, 224
frequency distribution, 130	Stone, J. M., 276
stochastic, 132, 134	strain rate, 127
narrow, 190–192	Strang splitting, 55, 239
resonance, 196, 198, 206	Strang, W. G., 55
subordinate, 198	stress, viscous, 12
transport, 179–211	Su, B., 295
infinite medium, 209	sunspot, 234
time-dependent, 205–211	super transition array (STA), 177
trapping, 209	supergranulation cell, 285
wings, 199	supernova, 126
spectral method, 63–67	spectra, 289
spectrum, microwave, 226	susceptibility, electric, 212, 213
speeds	symmetry
characteristic, 26	axial, 276, 280, 281
postshock, 32	three-fold, of angle sets, 283
preshock, 32	Synge, J. L., 104
SPH, 63–66	
Spitzer, L., 300	Taylor, G. I., 35–37
spline, 63	temperature
stability, numerical, 237	effective, 93
staggering, time, 42, 46, 240	stagnation, 322
Stark effect, 175	temperature distribution, gray atmosphere,
stars	93
binary, 65	temperature front, 294
cepheid variable, 139, 240	temperature minimum, 188
hot, 184	tensor
luminous, 149	divergence of
neutron, 226	spherical symmetry, 269
oscillations, 139	pressure, 73, 74
pulsation, 238, 240, 327	radiation, 73, 107, 121
RR Lyrae, 240, 241	rate-of-strain, 12, 127, 130
states, density of, 159, 163, 165, 214	scalar, 74, 264
stellar atmosphere, 308	stress, 12
stellar interiors model, 138	Maxwell, 108
stellar wind, 126, 300	stress-energy, 107
boundary conditions, 328	electromagnetic, 107
CAK model, 134, 327–332	terrestrial problems, 206
equations, 328	thermalization, 95–97
hypersonic, 330	depth, 97, 100, 186–188, 201
Parker model, 303	layer, 100
Parker radius, 328	length, 96, 97, 199, 200
radiatively-driven, 327–332	thermodynamic equilibrium, 81, 88, 119, 156
instability, 327, 332	thermodynamics, second law of , 216
mass-loss rate, 328, 331	Thomas, L. H., 102
singular point, 330	Thomas, R. N., 191, 192
singular point radius, 331	three-volume, oriented, 104, 105
terminal velocity, 331	3 <i>j</i> symbol, 232
velocity law, 331	tidal disruption, 65
x-ray emission, 327	time
sonic point, 329	cooling, 145
stencil	dwelling, 203
differencing, 58	dynamical, 145
upwind, 59	flow, 180

time cont.	tri-diagonal matrix, 245, 248
light-travel, 181, 207	block, 193, 194, 246, 276
for mean free path, 205, 206	recursion method, 245
thermalization length, 209	triangle number, 283, 284
mean decay, 209	turbulence, homogeneous, 61, 65
proper, 103	TVB (total variation bounded), 57
element of, 104	TVD (total variation diminishing), 57
relativity of, 111	Twiss, R. Q., 220
retarded, 86	two-level atom, 181–188, 206, 207, 274
scales in line transport, 205	
time centering, 241	Unno, W., 226
time differencing	update, conservative, 55, 56
Crank–Nicholson, 241	upwind difference, 275, 278
explicit, 237	
time-differencing, implicit, 238, 239, 241, 258,	V-cycle, 253, 254, 259
265	vacuum region, 261
Tipton, R., 62	van Leer, B., 41, 54
TLUSTY code, 290	Van Regemorter, H., 183
total energy	variable Eddington factor, see VEF approximation
discrete, 43	variables, zone-centered, 52
material, 85	VEF approximation, 94, 260–264, 271, 290
total energy equation, 8, 14, 30, 114, 286	conformal factor, 261
matter plus radiation, 108	curl condition, 261, 262
track length, Monte Carlo, 291	
	integrating factor, 261, 270
tracking, Monte Carlo, 291	spherical, 270
transfer equation, 88, 191, 226, 227, 266, 272, 274	velocity
2-D, 9-point stencil, 276	edge-centered, 50
angle derivative, 280	effective, for line transport, 210, 211
even-parity, 98	grid, 10
formal solution, 263	group, 19, 215, 216
second order, 98	lagging, 43
spherical	phase, 19, 21, 212, 216
(p, z) coordinates, 270	velocity distribution, electron, relativistic, 291
Stokes, 230	Vinsome, P. K. W., 251
transformations, unitary, 222	viscosity, 12–14
transition	bulk, radiation, 121
free-free, 170	coefficient of, 13
two-electron, 168	bulk, 13
transition probability, 154	radiation, 121
transition region, solar, 188	volume element, momentum space, 104
transmission, diffuse, 101	volume, specific, 32
transport equation, 75–78, 86, 207, 276, 287	•
comoving frame, 110–114, 118, 123	von Neumann, J., 41, 43
	von Waldenfels, W., 133
acceleration terms, 111	vortex sheet, 17, 19
angle derivative, 124	vorticity, 15, 16, 19, 66
boundary-value problem, 114–117	baroclinic, 17
frequency derivative, 123	conservation, 16
summary, 114	vorticity equation, 16
time derivative, 124	
covariant, 107	wave
formal solution	blast, 35–37
3-D, 86–87	colliding, 68
linear, 291	density, 36
polarized light	pressure, 36
anisotropic medium, 228, 230	velocity, 36
isotropic medium, 223–225	bleaching, 297
refractive, 215	compression, 28
retardation, 263	deep water, 17, 19
spherical, 269, 275	deflagration, 24
tree method, 64	detonation, 24
TREESPH code, 64	excitation, 211
INDESTIT COUC, OT	Cacitation, 211

gravity mode, 147 Whitham, G. B., 29 mode, 21 Wien function, 316, 318 longitudinal, 21 Wien peak, 319 nonadiabatic, 139–141 Wien's displacement law, 118, 119 radiation-coupled, 138–151 Wiener–Hopf method, 92, 95 radio, 228 Wigner–Eckart theorem, 232 rarefaction, 28, 37, 52, 54 Wilson, J. R., 41, 49, 50, 61		Whith C D 20
longitudinal, 21 Wien peak, 319 nonadiabatic, 139–141 Wien's displacement law, 118, 119 radiation-coupled, 138–151 Wiener–Hopf method, 92, 95 radio, 228 Wigner–Eckart theorem, 232	gravity mode, 147	w nitnam, G. B., 29
nonadiabatic, 139–141 Wien's displacement law, 118, 119 radiation-coupled, 138–151 Wiener–Hopf method, 92, 95 radio, 228 Wigner–Eckart theorem, 232	mode, 21	Wien function, 316, 318
radiation-coupled, 138–151 Wiener–Hopf method, 92, 95 radio, 228 Wigner–Eckart theorem, 232	longitudinal, 21	Wien peak, 319
radio, 228 Wigner–Eckart theorem, 232	nonadiabatic, 139–141	Wien's displacement law, 118, 119
	radiation-coupled, 138–151	Wiener-Hopf method, 92, 95
rarefaction, 28, 37, 52, 54 Wilson, J. R., 41, 49, 50, 61	radio, 228	Wigner-Eckart theorem, 232
	rarefaction, 28, 37, 52, 54	Wilson, J. R., 41, 49, 50, 61
centered, 28, 38 windows, spectral, 326	centered, 28, 38	windows, spectral, 326
shock, see shock wave Wolf, E., 219	shock, see shock wave	Wolf, E., 219
simple, 24–29, 40 Woodward, C. S., 259	simple, 24–29, 40	Woodward, C. S., 259
sinusoidal, 20 Woodward double Mach reflection, 59	sinusoidal, 20	Woodward double Mach reflection, 59
sound, 20–24 Woodward, P. R., 41, 55, 56, 59, 65	sound, 20–24	Woodward, P. R., 41, 55, 56, 59, 65
adiabatic, 22 Wooley, R. v. d. R., 196	adiabatic, 22	Wooley, R. v. d. R., 196
damping, 23, 140 work, radiation, 109	damping, 23, 140	work, radiation, 109
radiation-driven, 141	radiation-driven, 141	
spectrum, 146 Zeeman component, σ_{-} , 233	spectrum, 146	Zeeman component, σ , 233
acoustic branch, 146 Zeeman effect, 79, 225, 226, 231	acoustic branch, 146	Zeeman effect, 79, 225, 226, 231
thermal branch, 146 anomalous, 235	thermal branch, 146	anomalous, 235
thermal, 294 Zeeman splitting, 231	thermal, 294	Zeeman splitting, 231
self-similar, 294 Zeeman triplet, normal, 231, 235	self-similar, 294	Zeeman triplet, normal, 231, 235
wave equation, 84 Zel'dovich, Ya. B., 3, 35, 294, 307,	wave equation, 84	Zel'dovich, Ya. B., 3, 35, 294, 307,
wave packet, 19 319	wave packet, 19	319
wave vector, 20, 213 ZEUS-2D code, 41, 276, 277	wave vector, 20, 213	ZEUS-2D code, 41, 276, 277
waves, spherical, 164 Zhang, H. L., 179	waves, spherical, 164	Zhang, H. L., 179
Wehrse, R., 132, 133, 135 Zhang, Y. T., 59	Wehrse, R., 132, 133, 135	Zhang, Y. T., 59
weighted essentially Nonoscillatory, see WENO zone	weighted essentially Nonoscillatory, see WENO	zone
Weisskopf, V. F., 196 area, 46	Weisskopf, V. F., 196	area, 46
Wendroff, B., 56 bowtie, 47	Wendroff, B., 56	bowtie, 47
WENO, 56–59, 67 donor, 50	WENO, 56-59, 67	donor, 50
WENO5, 59, 67, 68 dual, 47, 51	WENO5, 59, 67, 68	dual, 47, 51
WENO9, 59, 67 logical, 46	WENO9, 59, 67	logical, 46
Werner, K., 288, 290 phantom, 44	Werner, K., 288, 290	phantom, 44
Wesseling, P., 253 polygonal, 48	Wesseling, P., 253	polygonal, 48
White, R. H., 237 quadrilateral, 46	White, R. H., 237	quadrilateral, 46