Math 102-2ab 11. Linear Transformations

Alert!! Parit forget about USRI's!

Pefinition: Let Vand W be vector spaces (over R). A map $f: V \rightarrow W$ is said to be linear (or a linear transformation) if $f(1, \vec{v_1} + 1, \vec{v_2}) = \lambda_1 \cdot f(\vec{v_1}) + \lambda_2 \cdot f(\vec{v_2})$ for all $\lambda_1, \lambda_2 \in \mathbb{R}$, $\vec{v_1}, \vec{v_2} \in V$

tact: Every linear transformation I: Rn-Rm is represented by a matrix ($\Psi(\vec{v}) = \mathcal{M}_{p} \cdot \vec{v}$, where \mathcal{M}_{p} is an max matrix), where $\mathcal{M}_{p} = \left[\Psi(\vec{e}_{1}) : \Psi(\vec{e}_{2}) : \cdots : \Psi(\vec{e}_{n}) \right]$

· Fact: Every linear transformation I: Rn-Rm is determined by P(ei), P(ei), ..., P(en)

Proof: Let $\vec{v} \in \mathbb{R}^n$. Then $\vec{v} = 1$, $\vec{e}_1 + 1$, $\vec{e}_2 + \cdots + 1$, \vec{e}_n for some 1, 1, ..., 1, $\in \mathbb{R}$ (because $\{\vec{e}_1, \vec{e}_2, ..., \vec{e}_n\}$ is a basis for \mathbb{R}^n). Hence,

Example: Consider the linear transformation
$$f: \mathbb{R}^3 \rightarrow \mathbb{R}^2$$
 given by $\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} 3x + 13z \\ 2x - 5y - 7z \end{bmatrix}$

Here, $f(\vec{e_i}) = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$, $f(\vec{e_i}) = \begin{bmatrix} 5 \\ 2 \end{bmatrix}$, and $f(\vec{e_i}) = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$.

Then $f(\vec{e_i}) = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$: $f(\vec{e_i}) = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$: $f(\vec{e_i}) = \begin{bmatrix} 3 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 \\$

hen
$$4\left(\begin{bmatrix} 2\\ 1 \end{bmatrix}\right) = \begin{bmatrix} 3.2 + 13.0 \\ 2.2 - 5.1 - 7.0 \end{bmatrix} = \begin{bmatrix} 6\\ 1 \end{bmatrix}$$

and $4\left(\begin{bmatrix} 2\\ 1 \end{bmatrix}\right) = \begin{bmatrix} 3 & 0 & 13\\ 2 & -5 & -7 \end{bmatrix} \cdot \begin{bmatrix} 2\\ 1\\ 0 \end{bmatrix} = \begin{bmatrix} 6\\ 4 - 5 \end{bmatrix} = \begin{bmatrix} 6\\ 1 \end{bmatrix} = 4\left(\begin{bmatrix} 2\\ 1 \end{bmatrix}\right)$