Series 2

1. Credible intervals

Unlike the central credible interval, the highest posterior density credible interval is not invariant to transformations as you will show in the following.

Assume that X_i i.i.d $\sim \mathcal{N}(0, \sigma^2)$, $i = 1, \ldots, n$ and that σ has the improper prior $\pi(\sigma) \propto \frac{1}{\sigma}$. Show that for the transformed parameter σ^2 , the 95% highest posterior density (HPD) credible interval is not the same as the interval obtained when taking the square of the endpoints of the HPD credible interval for σ .

2. Conjugate priors

In the lecture, we saw the following examples of conjugate priors for exponential family distributions.

Model	Prior	Posterior
$\operatorname{Binomial}(n,\theta)$	$\operatorname{Beta}(lpha,eta)$	$\mathrm{Beta}(\alpha+x,\beta+n-x)$
Multinomial	$\operatorname{Dirichlet}(\alpha_1,\ldots,\alpha_k)$	$Dirichlet(\alpha_1 + x_1, \dots, \alpha_k + x_k)$
$(n,\theta_1,\ldots,\theta_k)$		
i.i.d. $Poisson(\theta)$	$\operatorname{Gamma}(\gamma,\lambda)$	$\operatorname{Gamma}(\gamma + \sum_{i} x_i, \lambda + n)$
i.i.d. Normal $(\mu, \frac{1}{\tau})$	$Normal(\mu_0, \frac{1}{n_0 \tau}) \times$	$Normal(\frac{n}{n+n_0}\bar{x} + \frac{n_0}{n+n_0}\mu_0, \frac{1}{(n+n_0)\tau}) \times$
$\theta = (\mu, \tau)$	$\operatorname{Gamma}(\gamma,\lambda)$	Gamma $(\gamma + \frac{n}{2}, \lambda + \frac{1}{2} \sum_{i} (x_i - \bar{x})^2 + \frac{nn_0}{2(n+n_0)} (\bar{x} - \mu_0)^2)$
$\mathrm{Uniform}(0,\theta)$	$\mathrm{Pareto}(lpha,\sigma)$	$Pareto(\alpha + n, max(\sigma, x_1, \dots, x_n))$

Show that one indeed obtains the posteriors in the table when using the priors and likelihoods specified in the table.

3. Improper priors

Consider the Poisson model

$$f(x|\theta) = P_{\theta}(X = x) = \frac{\theta^x}{x!}e^{-\theta}, \quad x \in \mathbb{N}_0, \ \theta > 0,$$

and the improper prior

$$\pi(\theta) = \frac{1}{\theta}.$$

Show that the posterior distribution is not well defined for all x.