La formule (eq.1.26) d
termine la fonction d'onde de Bethe ; cette fonction est r
ductible deux particules. Il convient de mentionner que les fonctions d'onde de tous les mod
les rsolubles par l'Ansatz de Bethe ont une forme similaire (eq.1.26). Discutons maintenant des proprits de la fonction d'onde χ_N . La fonction χ_N est une fonction symtrique des variables z_j ($j=1,\ldots,N$) et une fonction continue de chacune d'elles. Ces proprits deviennent videntes si l'on r
crit la repr
sentation (eq.1.26) sous la forme suivante :

equarray
$$\chi_N = \prod_{k < j} (\lambda_j - \lambda_k) \sqrt{N! \prod_{k < j} [(\lambda_j - \lambda_k)^2 + c^2]} \sum_P \exp\left\{i \sum_{n=1}^N z_n \lambda_{P(n)}\right\}$$

On peut galement voir partir de cette formule que χ_N est une fonction antisymtrique des λ_j : equarray $\chi_N(z_1,\cdots,z_N|\lambda_1,\cdots,\lambda_j,\cdots,\lambda_k,\cdots,\lambda_N) = -\chi_N(z_1,\cdots,z_N|\lambda_1,\cdots,\lambda_k,\cdots,\lambda_j,\cdots,\lambda_N)$.