

Procesamiento de Lenguaje Natural

Olivia Gutú y Julio Waissman

Maestría en Ciencia de Datos Semana 2: Análisis de sentimientos con Naïve Bayes

Universidad de Sonora

Corpus de N tuits

$$\begin{array}{ll} P(\textit{pos}) = \frac{\textit{N}_\textit{pos}}{\textit{N}} = \frac{6}{16} & \textit{P(feliz)} = \frac{3}{16} \\ P(\textit{neg}) = 1 - P(\textit{pos}) = \frac{10}{16} & \textit{P(pos} \cap \textit{feliz)} = \frac{1}{16} \end{array}$$

$$P(feliz) = \frac{3}{16}$$

 $P(pos \cap feliz) = \frac{1}{16}$

Probabilidades condicionales:

$$P(pos|feliz) = \frac{1}{3} \qquad P(feliz|pos) = \frac{1}{6}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\frac{P(pos \cap feliz)}{P(feliz)} \qquad \qquad \frac{P(feliz \cap pos)}{P(pos)}$$

por tanto:

$$P(pos|feliz)P(feliz) = P(feliz|pos)P(pos)$$

luego:

$$P(pos|feliz) = \frac{P(feliz|pos)P(pos)}{P(feliz)}$$

"U saber de mis higos hasi ni gonndous"

Tuits positivos me encanta la playa amo la playa Tuits negativos odio la playa mar molesto

token w	frec(pos)	frec(neg)	
me	1	0	
encanta	1	0	
la	2	1	
playa	2 1		
amo	1	0	
odio	0	1	
mar	0	1	
molesto	0	1	
N_{class}	7	5	

token w	P(w pos)	P(w neg)
me	$\frac{1}{7} \approx 0.14$	0
encanta	$\frac{1}{7} \approx 0.14$	0
la	$\frac{2}{7} \approx 0.28$	$\frac{1}{5} = 0.2$
playa	$\frac{2}{7} \approx 0.28$	$\frac{1}{5} = 0.2$
amo	$\frac{1}{7} \approx 0.14$	0
odio	0	$\frac{1}{5} = 0.2$
mar	0	$\frac{1}{5} = 0.2$
molesto	0	$\frac{1}{5} = 0.2$

Palabras igualmente probables no aportan nada al sentimiento

Naïve Bayes: regularización

Universidad de Sonora

token w	P(w pos)	P(w neg)	
me	0.134	0.01	
encanta	0.134	0.01	
la	0.274	0.194	
playa	0.274	0.194	
amo	0.134	0.01	
odio	0.01	0.194	
mar	0.01	0.194	
molesto	0.01	0.194	

Naïve Bayes: radio de probabilidades

Universidad de Sonora

token <i>w</i>	P(w pos)	P(w neg)	ratio(w)
me	0.134	0.01	13.4
encanta	0.134	0.01	13.4
la	0.274	0.194	1.41
playa	0.274	0.194	1.41
amo	0.134	0.01	13.4
odio	0.01	0.194	0.05
mar	0.01	0.194	0.05
molesto	0.01	0.194	0.05

0 1 (neutral) ∞

Universidad de Sonora

Nuevo tuit: $w_1 w_2 w_3 \cdots w_n$

$$\frac{P(pos|w_1w_2w_3\cdots w_n)}{P(neg|w_1w_2w_3\cdots w_n)} = \frac{P(pos)}{P(neg)}\prod_{i=1}^n \frac{P(w_i|pos)}{P(w_i|neg)}$$

0 1 (neutral) ∞

$$\log \frac{P(pos)}{P(neg)} + \sum_{i=1}^{n} \log \frac{P(w_i|pos)}{P(w_i|neg)}$$

log prior log likehood

−∞ 0 (neutral) ∞

evita errores numéricos

Universidad de Sonora

$$\lambda(w) = \log_{ratio}(w), \qquad ratio(w) = \frac{P(w|pos)}{P(w|neg)}$$

Nuevo tuit: $w_1 w_2 w_3 \cdots w_n$

Si las clases son equilibradas, log prior es igual a cero, en este caso:

si:

$$\sum_{i=1}^{n} \lambda(w_i) = \log \prod_{i=1}^{n} radio(w_i) > 0$$

📭 si:

$$\sum_{i=1}^{n} \lambda(w_i) = \log \prod_{i=1}^{n} radio(w_i) \leq 0$$

- Recolectar tuits pre-clasificados (conjunto de entrenamiento)
- Pre-procesar los datos
- Establecer el vocabulario de tipos
- Contar las palabras frec(w,class), class = {pos, neg}
- Para cada palabra y cada clase calcular:

$$P(w|class) = \frac{frec(w, class) + 1}{N_{class} + |V|}$$

- Se calcula $\frac{\lambda}{W}(w) = log \frac{P(w|pos)}{P(w|neg)}$
- Se calcula log prior

$$\log \frac{P(pos)}{P(neg)} = \log \frac{\text{núm. tuits positivos}}{\text{núm. tuits negativos}}$$

4□ > 4□ > 4 = > 4 = > = 90

Naïve Bayes: pre-procesamiento

Universidad de Sonora

- convertir todo a minúsculas
- remover signos de puntuación, urls, nombres
- remover palabras vacías (*stop words*)
- aplicar stemming
- tokenizar las oraciones

Resultado: [aqui, pasa, nada, kino]

Nuevo tuit $T \rightarrow [w_1, w_2, \dots, w_n]$ (pre-procesamiento)

sentimiento(T) = si:

$$\log \operatorname{prior} + \sum_{i=1}^{n} \frac{\lambda}{w_i} > 0$$

 $sentimiento(T) = \P si$:

$$\log \operatorname{prior} + \sum_{i=1}^{n} \lambda(w_i) \leq 0$$

Naïve Bayes: supuestos

Universidad de Sonora

- Independecia (i.i.d.) ¡falso en PLN!
- Clases relativamente equilibradas