CS 174A – Fall 2016 Introduction to Computer Graphics

Professor Demetri Terzopoulos TAs: Garett Ridge, Sam Amin

Computer Graphics The Art and Science of creating imagery by computer Art Mathematics Vision Optics Biomechanics Artificial Intelligence

Applications of CG

Entertainment

- Films
- Computer Games
- Virtual reality

Visualization

- Scientific visualization
- Medical visualization
- Flight simulation
- Architecture

Education, etc.

History

- 2000 B.C.
 - orthographic projection
- 1400s
 - Perspective: Italian Renaissance
- 1600s
 - coordinate systems: Descartes
 - optics: Huygens
 - calculus, physics, optics: Newton

History

- 1897 oscilloscope: Braun
- 1950-1970
 - computers with vector displays
- 1966
 - first true raster display
- 1993
 - 1200x1200, 500k triangles/sec, 36-bit color, stereo, texture mapping... all at 60Hz
- 1995
 - feature-length CG films
- Today...still rapidly evolving

Genesis of Computer Graphics and Interactive Techniques

A PhD project at MIT in the early 1960s

• Ivan E. Sutherland, 1963

"Sketchpad, a man-machine graphical communication system"

Quiz

https://design.osu.edu/carlson/history/timeline.html

When was the term "Computer Graphics" first stated?

William Fetter of Boeing coins the term "computer graphics" for his human factors cockpit drawings 1960.

- 1. When was the Graphical User Interface developed?

 GUI developed by Xerox (Alan Kay) 1969
- 2. When was Tron released?

Disney contracts Abel, III, MAGI and DE to create computer graphics for the movie Tron released in 1981.

Quiz

- 4. Which is the first **animated** movie to employ CG?
 - "The Great Mouse Detective" (1986) was the first animated film to be aided by CG.
- 5. When was the game "Doom" released? 1993
- 6. Which is the best selling game of all time?

http://en.wikipedia.org/wiki/List_of_best-selling_video_games Tetris (135M copies), Wii Sports (82M), Minecraft (54M), Super Mario Bros. (40M), Mario Kart Wii (35M), Grand Theft Auto V (34M), ...

Quiz

- 7. Which is the newest CG animated movie??? (trick question)
- 8. Which is bigger in terms of gross revenue, the game industry or the (Hollywood) movie industry?

 The game industry
- 9. Which is your favorite animated movie?

The First Computer Game? Spacewars, PDP-1, MIT, 1961

Movies

Digital Compositing

Cartoons

Graphical User Interfaces

Steven Schkolne

Basic Elements

Modeling
Animation
Rendering
Interaction

Basic Elements

- Modeling
 - How do we model (mathematically represent) objects?
 - How do we construct models of specific objects?
- Animation
 - How do we represent the motions of objects?
 - How do we give animators control of this motion?
- Rendering
 - How do we simulate the real-world behavior of light?
 - How do we simulate the formation of images?
- Interaction
 - How do we enable humans and computers to interact?
 - How do we design human-computer interfaces?

Modeling

Primitives

- 3D points
- 3D lines and curves
- surfaces (BREPs): polygons, patches
- volumetric representations
- image-based representations

Attributes

- Color, texture maps
- Lighting properties

Geometric transformations

Rendering

Visibility

Simulating light propagation

- Reflection
- Asborption
- Scattering
- Emission
- Interference

Animation

Keyframe animation

Motion capture

Procedural animation

- Physics-based animation
- Behavioral animation

Interaction

Input/Output Devices

Tools

Modeling, animation, and rendering

Reflectance Modeling

Complex Reflectance

Subsurface Scattering

Translucency and varied levels of light penetration can be created using subsurface scattering effects

Texture

Multilevel texture synthesis

Cloth Simulation

Fluid Simulation

Modeling

- Incompressibility
- Viscocity

Navier-Stokes Equations

Level Sets

$$\nabla \cdot \mathbf{u} = 0$$

$$\frac{\partial \mathbf{u}}{\partial t} = v \nabla \cdot (\nabla \mathbf{u}) - (\mathbf{u} \cdot \nabla) \mathbf{u} - \frac{1}{\rho} \nabla p + \mathbf{g}$$

u: fluid velocity field

g: gravity

p: pressure

v: viscosity

 ρ : density

Smoke Simulation

Assumptions

No viscosity

Rendering

- Photon maps
- Multiple scattering

$$\nabla \cdot \mathbf{u} = 0$$

$$\frac{\partial \mathbf{u}}{\partial t} = (\mathbf{u} \cdot \nabla)\mathbf{u} - \frac{1}{\rho}\nabla p + \mathbf{f}$$

u: smoke velocity field

 ${f f}$: external forces

p: pressure

 ρ : density

Animation

Behavioral animation

Reality is *Very* Complex

Great! But what are we going to do?

Learn the mathematical foundations of graphics
Apply them in 3 programming assignments
Show that you know them in 2 exams

Summary of the Syllabus

- + Mathematics of computer graphics
- + Rendering
- + Modeling
- + Animation
- Interaction
- Hardware

Mathematics of Computer Graphics

Linear (vector/matrix) algebra

Coordinate systems

Geometry

Points, lines, planes

Affine transformations

Projection transformations

More geometry

Curves, surfaces

Typical Comments From Prior 174A Course Offerings

- Lots of math!
- A lot of material
- Fast pace
- A lot of programming
- Tough third project
- Challenging final exam
- Great animation shows at the start of each lecture!
- Please post copies of the lecture slides prior to each lecture
 - NO, I won't do that, because...

Advice

- Attend lectures and discussion sessions!
 - You will perform better on this course if you do (trust me)
 - The lecture slides are your "bible" for the exams
- Start the assignments EARLY!!
 - Get HELP from us with the assignments EARLY!
- Do NOT do more on the assignments than you are required, unless you are done with the required part of the assignment
 - You will NOT get more points for additional work
- Refresh your knowledge of linear algebra and geometry, and keep up with the math

Important Issues to Remember

- Lectures normally begin at <u>5 min past the hour</u> and run for 1.5 hrs non-stop
- Manage your course load
- Do individual work
- No plagiarism (of course)

A Basic Graphics System

Input devices

Output devices

Computing & rendering

system

Input Devices

Keyboard

Mouse

Game controller

Tablet & Pen

Other sensors

- Data glove
- Etc.

Output Devices

Display

- LCD, Micromirror, Plasma, CRT
- VR headset

Printer

2D and 3D Printers

Standard Display Devices

LCD
(Liquid Crystal Display)

Plasma

CRT
(Cathode Ray Tube)

Color

Common format RGB (3x8 = 24 bits per pixel)

Rendering System

Software

- Interface
- Primitives
- Techniques

Hardware

Graphics Pipeline

Per Vertex Operations and Per Pixel / Fragment Operations

Vertex Processor

Vertex shaders

Fragment Processor

Fragment shaders

Graphics Pipeline

Modeling

Illumination

Viewing (Projection)

Clipping

Visibility

Rasterization

Modeling

Geometric Primitives

- Points
- Lines
- Planes
- Polygons
- Parametric surfaces
- Implicit surfaces
- Etc.

Texture Mapping

Other Issues

Shadows

Participating media

Subsurface scattering

Motion blur

Camera models

Etc.

Final Result

