LED Blinking System

Introduction

This project is an Arduino-based Smart LED Blinking System. It integrates multiple sensors such as LDR, PIR, Ultrasonic, and a button to control LED patterns, detect environmental conditions, and provide a basic security feature using a buzzer. The LED blinking patterns are dynamic and change based on sensor readings, enhancing energy efficiency and security.

Integration of Sensors

Includes LDR, PIR, Ultrasonic and button

Dynamic LED Patterns

Changes based on sensor readings

Enhanced Security Feature

Uses a buzzer for alerts

Components Required

Arduino Uno

Main microcontroller board to control all components.

LEDs (x3)

Light-emitting diodes used for blinking patterns.

Push Button

User input to switch between LED patterns.

Potentiometer

Variable resistor to control LED blinking speed.

LDR

Detects ambient light level.

Ultrasonic Sensor

Measures distance to detect nearby objects.

PIR Sensor

Detects motion (human presence).

Buzzer

Produces sound during intruder alert.

Breadboard & Jumper Wires

For connecting components without soldering.

Resistors

Limit current for LEDs and sensors

Circuit Diagram

Working Principle

1 Idle Mode

System stays off until motion is detected via the PIR sensor.

3 Button Control

Pressing the button switches between 3 blinking patterns: Left to right, Right to left, All blink together.

5 Intruder Detection

If distance < 15 cm, buzzer and LEDs activate an alert mode.

2 LDR Check

If ambient light is too high, LEDs are turned off to save energy.

4 Potentiometer

Controls the speed of LED blinking (faster or slower).

6 Auto Sleep

If there's no motion for 30 seconds, system returns to idle state.

Code Logic

```
void loop() {
  if (digitalRead(pirPin) == HIGH) lastMotionTime = millis();
  if (millis() - lastMotionTime > 30000) { allOff();
  return; }
  int ldrVal = analogRead(ldrPin);
  if (ldrVal > 900) { allOff(); return; }
```

```
int distance = getDistance();
if (distance > 0 && distance < 15) {
 alarmMode();
 delay(3000);
 allOff();
 noTone(buzzerPin);
 return;
checkButton();
int potVal = analogRead(potPin);
int speed = map(potVal, 0, 1023, 100, 1000);
updatePattern(pattern, speed);
```

Motion-based Idle Mode (PIR Sensor)

Uses a PIR motion sensor to detect movement.

If no motion for 30 seconds:

Enters "idle mode": turns off LEDs and stops patterns an Resumes when motion is detected again.

LED Pattern Modes (Button-controlled)

Pressing a button cycles through 3 patterns:

Pattern 0: Left to right.

Pattern 1: Right to left.

Pattern 2: All leds blink together.

Intruder Detection & Alarm

Ultrasonic sensor (HC-SR04) detects if something is closer than 15 cm.

If triggered:

- LEDs flash
- Buzzer sounds
- Message: " INTRUDER ALERT!" is printed to Serial Monitor.

Auto-disable in Bright Light (LDR)

Reads ambient light with an LDR (light-dependent resistor).

If it's too bright (LDR > 900):

- Turns off all LEDs.
- Pauses other behavior.
- Prints: "Too Bright | LDR: ..." to Serial Monitor.

Applications

1 Smart Home Lighting

Automated LED control based on motion and light.

3 Energy Saving Systems

Turns off LEDs in bright environments or when idle.

2 Security System

Alerts when intruders are detected via proximity.

4 Classroom or Lab Projects

Ideal for learning Arduino, sensors, and real-world automation.

5 DIY Automation

Useful for prototyping custom home automation setups.

Project Conclusion

1 Successful Integration

The project successfully integrates sensors, LEDs, and user input using Arduino.

2 Smart Automation

> Demonstrates smart automation with energy saving and security features.

Real-World
Applications

Highlights the use of motion, light, and proximity sensors in real-world applications.

Intelligent
Embedded
System

A great example of how simple components can create an intelligent embedded system.

THANK YOU