МФТИ, сложность вычислений, осень 2023 Семинар 03. **NP**-полные языки (1)

Утверждение. Пусть SYSTEMLINEQ = $\{(A,b) \mid$ для матрицы целых/рациональных чисел A размера $n \times m$ и столбца целых/рациональных чисел b размера $n \times 1$ существует столбец рациональных чисел x размера $m \times 1$, такой что $Ax = b\}$. Тогда SYSTEMLINEQ \in **P**.

Определение. Пусть G — граф. Тогда его хроматическим числом $\chi(G)$ называют минимальное такое k, что вершины G можно раскрасить в k цветов правильным образом (концы каждого ребра должны быть разноцветными).

Определение. Пусть G — граф. Тогда его кликовым числом $\omega(G)$ называют максимальное такое k, что в G есть подмножество из k вершин, попарно соединённых рёбрами между собой.

Определение. Язык A полиномиально сводится к языку B (сводится по Карпу), если существует полиномиально вычислимая функция f, такая что для произвольного слова x выполнена эквивалентность: $x \in A \Leftrightarrow f(x) \in B$. В таком случае пишем $A \leqslant_p B$.

Определение. Язык B называется **NP**-трудным, если $\forall A \in \mathbf{NP} : A \leqslant_p B$.

Определение. Язык B называется **NP**-полным, если $B \in \mathbf{NP}$ и B является **NP**-трудным.

Теорема Кука—Левина. Язык $\mathsf{SAT} = \{ \varphi \mid \text{пропозициональная формула } \varphi \text{ выполнима} \}$ является NP -полным.

Замечание. Из (доказательства) теоремы Кука—Левина, на самом деле, можно вывести **NP**-полноту языка CNFSAT = $\{\varphi \mid \varphi$ — выполнимая формула в KH Φ $\}$.

- **1.** Докажите, что $2COL = \{G \mid \chi(G) \leq 2\} \in \mathbf{P}$.
- **2.** Докажите, что $\mathsf{3COL} = \{G \mid \chi(G) \leqslant 3\} \in \mathbf{NP}$. Что можно сказать о $\mathsf{COL} = \{(G, k) \mid \chi(G) \leqslant k\}$? А что о языке $\mathsf{EXACTCOL} = \{(G, k) \mid \chi(G) = k\}$?
- **3.** Докажите, что 10CLIQUE = $\{G \mid \omega(G) \geqslant 10\} \in \mathbf{P}$. Докажите, что CLIQUE = $\{(G,k) \mid \omega(G) \geqslant k\} \in \mathbf{NP}$. Что можно сказать о языке EXACT10CLIQUE = $\{G \mid \omega(G) = 10\}$? А что о языке EXACTCLIQUE = $\{(G,k) \mid \omega(G) = k\}$?
- **4.** Предъявите сводимость $CBS = \{s \mid \text{строка } s \text{ из круглых открывающих и закрывающих скобок задаёт правильную скобочную последовательность} к 3COL.$
- 5. Докажите, что:
 - a) $A \leqslant_{p} A$;
 - б) если $A \leqslant_p B$ и $B \leqslant_p C$, то $A \leqslant_p C$;
 - в) если $A \in \mathbf{P}$, $B \neq \emptyset$ и $B \neq \Sigma^*$, то $A \leqslant_{\mathfrak{p}} B$;
 - г) если $B \in \mathbf{P}$ и $A \leqslant_p B$, то $A \in \mathbf{P}$;
 - д) если $B \in \mathbf{NP}$ и $A \leq_p B$, то $A \in \mathbf{NP}$;
 - е) если $A \leqslant_p B$, то $\overline{A} \leqslant_p \overline{B}$.
- 6. Докажите, что:
 - а) если $A \mathbf{NP}$ -трудный язык и $A \leqslant_p B$, то $B \mathbf{NP}$ -трудный;
 - б) если $\mathbf{P} = \mathbf{NP}$, то любой язык из \mathbf{NP} (кроме \varnothing и Σ^*) является \mathbf{NP} -полным;
 - в) если $A \mathbf{NP}$ -трудный и $A \in \mathbf{P}$, то $\mathbf{P} = \mathbf{NP}$.
- 7. Докажите NP-полноту языка 3SAT = $\{\varphi \mid \varphi$ выполнимая формула в 3-КН $\Phi\}$ путем сведения SAT и CNFSAT к нему.
- **8.** Докажите **NP**-полноту языка **EXACTONE3SAT** = $\{\varphi \mid \varphi \text{формула в 3-KH}\Phi$, в которой при некотором наборе значений переменных в каждой скобке выполнен ровно 1 литерал $\}$.
- **9.** Рассмотрим формулы в 3-КНФ. Назовём формулу хорошей, если существует набор значений переменных, для которого (а) в каждой скобке выполнено хотя бы два литерала; (б) в каждой скобке выполнено не более одного литерала. Что можно сказать о сложности этих языков?
- 10. Докажите NP-полноту языков:
 - а) SUBSETSUM = $\{(k, n_1, n_2, \dots, n_k, N) \mid$ из набора чисел n_1, \dots, n_k можно выбрать подмножество с суммой $N\}$;

- б) KNAPSACK = $\{(k, w_1, \dots, w_k, c_1, \dots, c_k, W, C) \mid$ из набора предметов с весами w_i и стоимостями c_i можно выбрать подмножество с суммарным весом не более W и суммарной стоимости по крайней мере $C\}$;
- в) $\{(k, n_1, n_2, \dots, n_k, N) \mid \exists a_1, \dots, a_k$ целые неотрицательные числа такие, что $\sum_i a_i n_i = N\}$.

- 1. Если граф красится в два цвета, то можно покрасить v в первый цвет, всех соседей v во второй, всех их соседей в первый, и так далее.
- **2.** 3COL, COL \in NP. С EXACTCOL есть проблема: неясно, можно ли доказать нераскрашиваемость в k-1 цвет.
- **3.** Найти клику размера 10 можно, перебрав все наборы из 10 вершин. Убедиться в отсутствии клик размера 11 можно, перебрав все наборы из 11 вершин.
- **4.** Машина, вычисляющая сводящую функцию, может проверить принадлежность x к CBS.

5.

- а) Положите f = id.
- б) Композиция полиномиально вычислимых функций полиномиально вычислима.
- в) Сводящая функция может запустить процедуру распознавания A и вернуть некий фиксированный элемент из B (или не из B).
- г) Для распознавания A можно распознать B, сведя к нему A.
- д) Можно привлечь недетерминированные машины Тьюринга.
- е) Подойдёт та же сводящая функция.

6.

- а) Воспользуйтесь транзитивностью сводимости.
- б) К любому языку, отличному от \varnothing и Σ^* , сводятся все языки из ${\bf P}$.
- в) Все языки из NP сводятся к A, а потому разрешимы за полином.
- 7. Сведение SAT \leqslant_p 3SAT: постройте дерево разбора формулы φ , результат каждой операции замените на свежую переменную, от листьев к корню; равенства можно представить с помощью 3-КНФ. Сведение CNFSAT \leqslant_p 3SAT: выполнимость формулы $(a \lor b \lor c \lor d \lor e)$ эквивалентна выполнимости формулы $(a \lor b \lor x) \land (\neg x \lor c \lor y) \land (\neg y \lor d \lor e)$).
- 8. Сведите 3SAT к EXACTONE3SAT: преобразуйте скобку $(a \lor b \lor c)$ в $(\neg a \lor z_1 \lor z_2) \land (\neg b \lor z_3 \lor z_4) \land (\neg c \lor z_5 \lor z_6) \land (z_1 \lor z_3 \lor z_5)$.
- 9. Это языки из \mathbf{P} , они сводятся к 2SAT. 10.
 - а) Сведите EXACTONE3SAT к SUBSETSUM. В десятичной записи каждого числа участвуют только нули и единицы. Каждой переменной и каждой скобке соответствует свой выделенный разряд. Каждой переменной соответствуют два числа, у которых единицы стоят в разряде, соответствующем этой переменной, а также в разрядах, соответствующих скобкам, в которые входит сама переменная (для первого числа), и скобкам, в которые входит отрицание переменной (для второго числа). Нужно набрать $N=1\dots 1$.
 - б) Положите $w_i = n_i = c_i, W = N = C$.
 - в) Дополните сведение EXACTONE3SAT к SUBSETSUM: добавьте в начало всех чисел новый разряд, в котором стоит 1 в каждом числе, а старший разряд в N равен числу переменных n. Тогда придётся выбрать $a_i \in \{0,1\}$.