

Arquitetura de Computadores - Prof. Raul Bastos

Portas Lógicas

Para me enviar foto ou o teu arquivo contendo as respostas dos exercícios, no endereço abaixo e contém também um simulador pra ser instalado:

http://gg.gg/j73nn

Arquitetura de Computadores -Prof. Raul Bastos

Introdução Portas lógicas (Gates)

As operações de um computador resumem-se na combinação de operações aritméticas básicas: somar, complementar, comparar e mover bits.

"Quem" realiza estas complicadíssimas operações são circuitos eletrônicos conhecidos como circuitos lógicos ou *Gates*.

A lógica é a base da eletrônica digital e da informática.

Histórico

Esta surgiu na **Grécia** antiga com a contribuição de três filósofos:

Sócrates - Pelo sua investigação, se duas verdades são alcançadas individualmente, ao juntá-las tem-se uma **única** verdade.

Platão - Platão (seguidor de Sócrates) escreveu vários de seus diálogos e desenvolveu sua filosofia abrangendo a ética, a política e o conhecimento, tendo como princípio o método da investigação.

Aristóteles - Aristóteles, baseado nos diálogos escritos por Platão, observou que a linguagem deve ter uma estrutura lógica, para que leve, necessariamente, a uma verdade.

Histórico

Os sistemas lógicos estão calcados na **álgebra** dos chaveamentos ou **álgebra de Boole**, instituída pelo matemático inglês <u>George Boole</u> (1815 – 1864) e que admite apenas duas grandezas: **falso** ou **verdadeiro**, representados por 0 e 1 respectivamente.

Esses sinais binários são representados por níveis de tensão nos circuitos do computador.

Um computador pode ser projetado e/ou descrito em diversos níveis de **abstração**. Assim podemos descrever inteiramente um computador através de equações **booleanas** ou o seu equivalente em portas lógicas **E, OU e NOT**.

Variável Booleana

Exemplos:

-Lâmpada:

acesa (1) ou apagada (0)

-Chave:

fechada (1) ou aberta (0)

-Verdadeiro (1) ou Falso(0)

Representação:

Expressão Lógica

Tabela Verdade

Símbolos(portas lógicas)

Circuito Integrado / CI / Microchip (1959)

O primeiro circuito integrado, ou CI, foi fabricado pela Texas Instruments e apresentado em 6 de Fevereiro de 1959.

O desenvolvimento do circuito integrado evoluiu muito nas décadas de 60 e 70, até o surgimento dos microprocessadores, no início dos anos 1980.

Circuito Integrado

Famílias lógicas

Os circuitos integrados digitais estão agrupados em famílias lógicas.

Famílias lógicas bipolares:

RTL – Resistor Transistor Logic – Lógica de transístor e resistência.

DTL – Díode Transistor Logic – Lógica de transístor e díodo.

TTL – *Transistor Transistor Logic* – Lógica transístor-transístor.

HTL – High Threshold Logic – Lógica de transístor com alto limiar.

ECL – *Emitter Coupled Logic* – Lógica de emissores ligados.

I²L – *Integrated-Injection Logic* – Lógica de injecção integrada.

Famílias lógicas MOS (Metal – Óxido – Semicondutor)

CMOS – *Complementary MOS* – MOS de pares complementares NMOS/PMOS

NMOS – Utiliza só transístores MOS-FET canal N.

PMOS – Utiliza só transístores MOS-FET canal P.

Actualmente a família lógica TTL e a CMOS são as mais usadas.

Tensões dos níveis lógicos

Família Lógica TTL

Faixas de tensão correspondentes aos níveis lógicos de entrada:

Entre 2 e 5 Volt, nível lógico 1

Entre 0,8V e 2V o componente não reconhece os níveis lógicos 0 e 1, devendo portanto, ser evitada em projetos de circuitos digitais.

Entre 0 e 0,8 Volt, nível lógico 0

Faixas de tensão correspondentes aos níveis lógicos de saída:

Entre 2,4 e 5 Volt, nível lógico 1

Entre 0,3 e 0,5 Volt, nível lógico 0

Família Lógica CMOS

Faixa de alimentação que se estende de 3V a 15V ou 18V, dependendo do modelo.

A família CMOS possui também, uma determinada faixa de tensão para representar os níveis lógicos de entrada e de saída, porém estes valores dependem da tensão de alimentação e da temperatura ambiente.

Níveis de integração

Os níveis de integração referem-se ao número de portas lógicas que o CI contém.

SSI (Small Scale Integration) – Integração em pequena escala: São os CI com menos de 12 portas lógicas.

MSI (Medium Scale Integration) – Integração em média escala: Corresponde aos CI que têm entre 12 a 99 portas lógicas

LSI (Large Scale Integration) – Integração em grande escala: Corresponde aos CI que têm entre 100 a 9 999 portas lógicas.

VLSI (**V**ery **L**arge **S**cale **I**ntegration) – Integração em muito larga escala: Corresponde aos CI que têm entre 10 000 a 99 999 portas lógicas.

ULSI (**U**ltra **L**arge **S**cale **I**ntegration) – Integração em escala ultra larga: Corresponde aos CI que têm 100 000 ou mais portas lógicas.

Circuitos integrados digitais

Os operadores lógicos ou funções lógicas básicas são as seguintes:

NÃO ou NOT

INVERSOR

Basicamente tem-se uma alternância entre os dois valores.

Tabela -Verdade

Entrada a	Saída s
0	1
1	0

Representação da Porta Lógica Porta NOT ou NÃO

Expressão Boleana

$$s = \bar{a}$$

E ou AND Uma função é verdadeira se, e somente se, todos os termos forem verdadeiros.

Tabela da Verdade

Entrada a	Entrada b	Saída s
0	0	0
0	1	0
1	0	0
1	1	1

Expressão Boleana

$$s = a.b$$

$$s = ab$$

NÃO E OU NAND Equivale a uma porta AND seguida de uma porta NÃO. O resultado é o inverso da saída de uma porta AND.

Tabela da Verdade

Entrada a	Entrada b	Saída s
0	0	1
0	1	1
1	0	1
1	1	0

Expressão Boleana

$$s = \overline{a \cdot b}$$

$$s = \overline{ab}$$

$OU\ /\ OR$ Uma função é verdadeira se, qualquer um dos termos for verdadeiro

Tabela da Verdade

Entrada a	Entrada b	Saída s
0	0	0
0	1	1
1	0	1
1	1	1

Expressão Boleana

$$s = a + b$$

NOR ou Não OU Equivale a uma porta OR seguida de uma porta NÃO. O resultado é o inverso da saída de uma porta OR.

Tabela da Verdade

Entrada a	Entrada b	Saída s
0	0	1
0	1	0
1	0	0
1	1	0

$$s = \overline{a + b}$$

XOR ou OU EXCLUSIVO A função é verdadeira se, e somente se, um dos termos for verdadeiro

Tabela da Verdade

Entrada a	Entrada b	Saída s
0	0	0
0	1	1
1	0	1
1	1	0

Expressão Boleana

$$s = a \oplus b$$

XNOR = Not(XOR) é verdadeira se, todos termos forem verdadeiros ou todos os termos forem falsos

Tabela da Verdade

Entrada a	Entrada b	Saída s
0	0	1
0	1	0
1	0	0
1	1	1

Expressão Boleana

$$s = \overline{a \oplus b}$$

Básicos

Nome	Símbolo Gráfico	Função Algébrica	Tabela Verdade
E (AND)	A S=A.B	S=A.B S=AB	A B S=A.B 0 0 0 0 1 0 1 0 0 1 1 1 1
OU (OR)	A S=A+B	S=A+B	A B S=A+B 0 0 0 0 1 1 1 0 1 1 1 1
NÃO (NOT) Inversor	A S=Ā	S=Ā S=A' S= ¬ A	A S=Ā 0 1 1 0
NE (NAND)	$A \longrightarrow S = \overline{A.B}$	S= A.B S=(A.B)' S= ¬(A.B)	A B S=A.B 0 0 1 0 1 1 1 0 1 1 1 0
NOU (NOR)	$A \longrightarrow S = \overline{A + B}$	S= A+B S=(A+B)' S= ⊣(A+B)	A B S=A+B 0 0 1 0 1 0 1 0 1 0 1 1 0
XOR	$A \longrightarrow S = A \oplus B$	S=A⊕B	A B S=A⊕B 0 0 0 0 1 1 1 0 1 1 1 0

Atividade...

https://qrgo.page.link/fyg16

https://qrgo.page.link/v52Gg

https://qrgo.page.link/fWj8x