THE TWO-PHASE SIMPLEX METHOD (FULL SIMPLEX METHOD)

Recall that the simplex algorithm requires a <u>starting bfs</u> (<u>initial basic feasible solution</u>). In all the problems we have solved so far, we found a <u>initial basic feasible solution</u> by using the <u>slack variables</u> as our basic variables.

If an LP has any \geq or equality (=) constraints, however, a starting bfs may not be readily apparent.

When a basic feasible solution is not readily available, the two-phase simplex method may be used. In the two-phase simplex method, we add <u>artificial variables</u> to the \geq or = constraints. Then we find a bfs to the original LP by solving the Phase I LP. In the Phase I LP, the <u>objective function</u> is simply to minimize the <u>sum of all artificial variables.</u> At the completion of Phase I, we reintroduce the original LP's objective function and determine the optimal solution to the original LP.

Steps of the two-phase simplex method

Step 1 Modify the constraints so that the <u>right-hand</u> side of each constraint is nonnegative. This requires that each constraint with a negative right-hand side be multiplied through by -1.

Step 1' <u>Identify</u> each constraint that is now(after step 1) an <u>equality or \geq constraint</u>. In Step 3, we will add an artificial variable to each of these constraints.

Step 2 Convert each inequality constraint to the standard form . If constraint i is $a \le constraint$, add a **slack variable** s_i . If constraint i is $a \ge constraint$, subtract an **excess variable** e_i .

Step 3 If(after step 1') constraint i is $a \ge constraint$ or equality (=) constraint, add an <u>artificial variable</u> a_i to constraint i. Also add the sign restriction $a_i \ge 0$.

Step 4 For the time being, ignore the original LP's objective function. Instead solve an LP whose objective function is

min w=(sum of all artificial variables). This is called the Phase I LP.

The act of solving the Phase I LP will force the artificial variables to be zero.

Since each $a_i \ge 0$, solving the <u>Phase I LP</u> will result in one of the <u>following three</u> cases.

Case 1 The optimal value of w is greater than zero. In this case, the original LP <u>has no feasible solution</u> (infeasible).

Case 2 The optimal value of w is equal to zero, and no artificial variables are in the optimal Phase I basis. In this case, we drop all columns in the optimal Phase I tableau that correspond to the artificial variables. We now combine the original objective function with the constraints from the optimal Phase I tableau. This yields the Phase II LP. The optimal solution to the Phase II LP is the optimal solution to the original LP.

Case 3 The optimal value of w is equal to zero, and no artificial variables are in the optimal Phase I basis Sometimes, we can find the optimal solution to the original LP if at the end of Phase I we drop from the optimal Phase I Tableau all non-basic artificial variables and any variable from the original problem which has a negative coefficient in row 0 of the optimal Phase I tableau.

Max
$$\mathbf{Z} = 3x_1 + 4 x_2$$

s.t
 $x_1 \geq 10$
 $x_2 \geq 5$
 $x_1 + x_2 \leq 20$
 $x_1 + 4 x_2 \leq 20$
 $x_1, x_2 \geq 0$

$$x_1$$
 $-e_1$ = 10
 x_2 $-e_2$ = 5
 $x_1 + x_2$ $+ s_1$ = 20
 $-x_1 + 4x_2$ $+ s_2$ = 20

 $NBV=(x_1,x_2)$ $BV=(e_1,e_2,s_1,s_2)=-10,-5,20,20$ no feasible starting solution

Now, we add artificial variables;

$$x_1$$
 $-e_1 + a_1 = 10$
 x_2 $-e_2 + a_2 = 5$
 $x_1 + x_2$ $+ s_1 = 20$
 $-x_1 + 4x_2$ $+ s_2 = 20$

e: excess variable

s: slack variable

a: artificial variable

or

$$x_1$$
 $-x_3 + x_7 = 10$
 x_2 $-x_4 + x_8 = 5$
 $x_1 + x_2$ $+ x_5 = 20$
 $-x_1 + 4x_2$ $+ x_6 = 20$

NBV= (x_1, x_2, x_3, x_4) BV= (x_7, x_8, x_5, x_6) =10,5,20,20 basic feasible staring solution.

Artificial objective function

Min
$$w = a_1 + a_2 = x_7 + x_8$$

Note, however w contains the **basic variables** x_7 , x_8

• x_7 , x_8 must be eliminated from w before we can solve Phase I.

$$x_7 = 10 - x_1 + x_3$$

$$x_8 = 5 - x_2 + x_4$$

$$w = 10 - x_1 + x_3 + 5 - x_2 + x_4$$

$$- w - x_1 - x_2 + x_3 + x_4 = -15$$

$$Z - 3x_1 - 4x_2 = 0$$

Initial Tableau for the Two-Phase Simplex Method

Leaving \	Variable		Entering	variabl	le					
BASIS	x ₁ /	X_2	X ₃	X ₄	X ₅	X ₆	X ₇	X ₈	RHS	RATIO
\mathbf{x}_7	1<	0	-1	0	0	0	1	0	10	10<
\mathbf{x}_8	0	1	0	-1	0	0	0	1	5	∞
X_5	1	1	0	0	1	0	0	0	20	20
\mathbf{x}_{6}	-1	4	0	0	0	1	0	0	20	
- W	-1<	-1 ♠	1	1	0	0	0	0	-15	
\mathbf{Z}	-3	-4	0	0	0	0	0	0	0	
-										_

PHASE I

BASIS	X ₁	\mathbf{x}_2	X ₃	X ₄	X ₅	X ₆	X ₇	X ₈	RHS	RATIO
X ₇	1<	0	-1	0	0	0	1	0	10	10<
X ₈	0	1	0	-1	0	0	0	1	5	∞
X ₅	1	1	0	0	1	0	0	0	20	20
\mathbf{x}_6	-1	4	0	0	0	1	0	0	20	
-w	-1<	-1	1	1	0	0	0	0	-15	
Z	-3	-4	0	0	0	0	0	0	0	
\mathbf{x}_1	1	0	-1	0	0	0	1	0	10	
X ₈	0	1	0	-1	0	0	0	1	5	5<
X ₅	0	1	1	0	1	0	-1	0	10	10
X ₆	0	4	-1	0	0	1	1	0	30	7.5
-w	0	-1<	0	1	0	0	1	0	-5	
Z	0	-4	-3	0	0	0	3	0	30	
\mathbf{x}_1	1	0	-1	0	0	0	1	0	10	
\mathbf{x}_2	0	1	0	-1	0	0	0	1	5	
X ₅	0	0	1	1	1	0	-1	-1	5	5
X ₆	0	0	-1	4<	0	1	1	-4	10	2.5<
_ - w	0		0			0	1	1	0	
Z	0	0	-3	-4<	0	0	3	4	50	

PHASE II

BASIS	X ₁	X ₂	X ₃	X ₄	X ₅	X ₆	X ₇	X ₈	RHS	RATIO
\mathbf{x}_1	1	0	-1	0	0	0			10	
\mathbf{x}_2	0	1	-1/4	0	0	1/4			15/2	
X 5	0	0	5/4<	0	1	-1/4			5/2	2<
\mathbf{x}_4	0	0	-1/4	1	0	1/4			5/2	
Z	0	0	-4<	0	0	1			60	
\mathbf{x}_1	1	0	0	0	4/5	-1/5			12	
\mathbf{X}_{2}	0	1	0	0	1/5	1/5			8	5<
X ₃	0	0	1	0	4/5	-1/5			2	10
X 4	0	0	0	1	1/5	1/5			3	7.5
Z	0	0	0	0	16/5	1/5			68	

 $x_1=12$; $x_2=8$; $x_3=2$; $x_4=3$; $x_5=x_6=x_7=x_8=0$ $Z_{max}=68$

Two-Phase Simplex Method (Phase I and Phase II)

BASIS	\mathbf{x}_1	X ₂	X ₃	X ₄	X ₅	X ₆	X ₇	X ₈	RHS	RATIO
X ₇	1<	0	-1	0	0	0	1	0	10	10<
X ₈	0	1	0	-1	0	0	0	1	5	∞
X ₅	1	1	0	0	1	0	0	0	20	20
X ₆	-1	4	0	0	0	1	0	0	20	
-w	-1<	-1	1	1	0	0	0	0	-15	
\mathbf{z}	-3	-4	0	0	0	0	0	0	0	
\mathbf{x}_1	1	0	-1	0	0	0	1	0	10	
X ₈	0	1	0	-1	0	0	0	1	5	5<
X ₅	0	1	1	0	1	0	-1	0	10	10
X ₆	0	4	-1	0	0	1	1	0	30	7.5
-w	0	-1<	0	1	0	0	1	0	-5	
Z	0	-4	-3	0	0	0	3	0	30	
\mathbf{x}_1	1	0	-1	0	0	0	1	0	10	
\mathbf{x}_2	0	1	0	-1	0	0	0	1	5	
X 5	0	0	1	1	1	0	-1	-1	5	5
X ₆	0	0	-1	4<	0	1	1	-4	10	2.5<
W	0	0	0	0	0	0	1	1	0	
Z	0	0	-3	-4<	0	0	3	4	50	
$\mathbf{x_1}$	1	0	-1	0	0	0			10	
\mathbf{X}_2	0	1	-1/4	0	0	1/4			15/2	
X ₅	0	0	5/4<	0	1	-1/4			5/2	2<
X_4	0	0	-1/4	1	0	1/4			5/2	
Z	0	0	-4<	0	0	1			60	
$\mathbf{x_1}$	1	0	0	0	4/5	-1/5			12	
\mathbf{X}_2	0	1	0	0	1/5	1/5			8	5<
X ₃	0	0	1	0	4/5	-1/5			2	10
X ₄	0	0	0	1	1/5	1/5			3	7.5
Z	0	0	0	0	16/5	1/5			68	

 $x_1=12$; $x_2=8$; $x_3=2$; $x_4=3$; $x_5=x_6=x_7=x_8=0$ $Z_{max}=68$

or

NBV= (x_1,x_2,x_4) BV= (x_3,x_5,x_6) =4,20,10 basic feasible staring solution.

Min W =
$$x_5 + x_6$$

-W -2 x_1 -4 $x_2 + x_4$ = -30
-Z + 2 x_1 + 3 x_2 = 0

Phase I

BASIS	x ₁	X ₂	X ₃	X ₄	X ₅	X ₆	RHS	RATI O
\mathbf{x}_3	1/2	1/4	1	0	0	0	4	16
X 5	1	3<	0	-1	1	0	20	20/3<
X ₆	1	1	0	0	0	1	10	10
-w	-2	-4<	0	1	0	0	-30	
-Z	2	3	0	0	0	0	0	
\mathbf{x}_3	5/12	0	1	1/12	-1/12	0	7/3	28/5
\mathbf{x}_2	1/3	1	0	-1/3	1/3	0	20/3	20
X ₆	2/3<	0	0	1/3	-1/3	1	10/3	5<
-w	-2/3	0	0	-1/3	4/3	0	-10/3	
-Z	1	0	0	1	-1	0	-20	
\mathbf{x}_3	0	0	1	-1/8	1/8	-5/8	1/4	
\mathbf{x}_2	0	1	0	-1/2	1/2	-1/2	5	
\mathbf{x}_1	1	0	0	1/2	-1/2	3/2	5	
-w	0	0	0	0	1	1	0	
-Z	0	0	0	1/2	-1/2	-3/2	-25	

Phase I and Phase II completed at the same time. CASE 3

$$x_1 = 5$$
 $x_2 = 5$ $x_3 = 1/4$ $x_4 = 0$ $Z_{min} = 25$

$$\begin{array}{ccc} \textbf{Max} & \textbf{Z} = 50 \; x_1 + 40 \; x_2 \\ \text{s.t} & & & \\ & & & x_1 + 5 \; x_2 & \leq 150 \\ & & & & x_2 & \leq 20 \\ & & & 8 \; x_1 + 5 x_2 & \leq 300 \\ & & & x_1 + x_2 & \geq 25 \\ & & & x_1 \; , \; x_2 \; \geq \; 0 \end{array}$$

$$3x_1 + 5 x_2 + x_3 = 150$$

$$x_2 + x_4 = 20$$

$$8x_1 + 5x_2 + x_5 = 300$$

$$x_1 + x_2 - x_6 + x_7 = 25$$

$$Z -50 x_1 - 40 x_2 = 0$$

$$W = x_7$$

$$-W - x_1 - x_2 + x_6 = -15$$

Phase I

BASIS	X ₁	X ₂	X ₃	X ₄	X ₅	X ₆	X ₇	RHS	RATIO
\mathbf{x}_3	3	5	1	0	0	0	0	150	50
X ₄	0	1	0	1	0	0	0	20	-
X 5	8	5	0	0	1	0	0	300	37.5
X ₇	1	1	0	0	0	-1	1	25	25<
-w	-1	-1	0	0	0	1	0	-25	
Z	-50	-40	0	0	0	0	0	0	
\mathbf{x}_3	0	2	1	0	0	3	-3	75	25
X ₄	0	1	0	1	0	0	0	20	
X ₅	0	-3	0	0	1	8<	-8	100	12.5<
\mathbf{x}_1	1	1	0	0	0	-1	1	25	
-w	0	0	0	0	0	0	0	0	
Z	0	10	0	0	0	-50<	50	1250	

Phase II

BASIS	X ₁	X ₂	X 3	X ₄	X 5	X ₆	RHS RATIO
\mathbf{x}_3	0	25/8<	1	0	-3/8	0	75/2 12<
X ₄	0	1	0	1	0	0	20 20
\mathbf{x}_6	0	-3/8	0	0	1/8	1	25/2
\mathbf{x}_1	1	5/8	0	0	1/8	0	75/2 60
Z	0	-70/8<	0	0	50/8	0	1875
\mathbf{x}_2	0	1	8/25	0	-3/25	0	12
X 4	0	0	-8/25	1	3/25	0	8
\mathbf{x}_{6}	0	0	3/25	0	2/25	1	17
\mathbf{x}_1	1	0	-5/25	0	5/25	0	30
Z	0	0	14/5	0	26/5	0	1980

$$x_1=30$$
 $x_2=12$ $Z_{max}=1980$

Phase I and II

BASIS	V .	ν.	V.	X ₄	X ₅	V .	X ₇	RHS	RATIO
	\mathbf{x}_1	X ₂	X ₃	-	•	X ₆	•		
X 3	3	5	1	0	0	0	0	150	50
X ₄	0	1	0	1	0	0	0	20	-
X 5	8	5	0	0	1	0	0	300	37.5
X ₇	1	1	0	0	0	-1	1	25	25<
-w	-1	-1	0	0	0	1	0	-25	
Z	-50	-40	0	0	0	0	0	0	
\mathbf{x}_3	0	2	1	0	0	3	-3	75	25
X ₄	0	1	0	1	0	0	0	20	
X ₅	0	-3	0	0	1	8<	-8	100	12.5<
\mathbf{x}_1	1	1	0	0	0	-1	1	25	
-w	0	0	0	0	0	0	0	0	
Z	0	10	0	0	0	-50<	50	1250	
X ₃	0	25/8<	1	0	-3/8	0		75/2	12<
$\mathbf{X_4}$	0	1	0	1	0	0		20	20
X ₆	0	-3/8	0	0	1/8	1		25/2	
\mathbf{x}_1	1	5/8	0	0	1/8	0		75/2	60
Z	0	-70/8<	0	0	50/8	0		1875	
\mathbf{x}_2	0	1	8/25	0	-3/25	0		12	
X ₄	0	0	-8/25	1	3/25	0		8	
X ₆	0	0	3/25	0	2/25	1		17	
\mathbf{x}_1	1	0	-5/25	0	5/25	0		30	
Z	0	0	14/5	0	26/5	0		1980	

$$x_1=30$$
 $x_2=12$ $Z_{max}=1980$

Min
$$\mathbf{Z} = 2x_1 + 3 x_2$$

s.t

$$x_1 + x_2 \ge 10$$

$$3 x_1 + 5 x_2 \le 15$$

$$x_1, x_2 \ge 0$$

$$x_1 + x_2 \qquad -\mathbf{e}_1 + \mathbf{a}_1 = \mathbf{10}$$

$$3 x_1 + 5 x_2 \qquad +\mathbf{s}_1 = \mathbf{15}$$

or

$$x_1 + x_2 - x_3 + x_5 = 10$$

 $3 x_1 + 5 x_2 + x_4 = 15$

NBV= (x_1,x_2,x_3) BV= (x_4,x_5) =10,15 basic feasible starting solution.

Min W =
$$x_5$$

-w - x_1 - x_2 + x_5 = -10
-Z + $2x_1$ + $3x_2$ = 0

BASIS	X ₁	X ₂	X ₃	X 4	X 5	RHS RATIO
X ₅	1	1	-1	0	1	10 10
\mathbf{x}_4	3<	5	0	1	0	15 5 <
-W	-1<	-1	1	0	0	-10
-Z	2	3	0	0	0	0
\mathbf{x}_{5}	0	-2/3	-1	-1/3	1	5
\mathbf{x}_1	1	5/3	0	1/3	0	5
-W	0	2/3	1	1/3	0	-5
-Z	0	-1/3	0	-2/3	0	-10

Case 1 The optimal value of W is greater than zero. In this case, the original LP has no feasible solution (infeasible).