STAT 432: Basics of Statistical Learning

Clustering and PCA

Shiwei Lan, Ph.D. <shiwei@illinois.edu>

http://shiwei.stat.illinois.edu/stat432.html

January 22, 2019

University of Illinois at Urbana-Champaign

Unsupervised Learning

Unsupervised Learning

- No response variable Y, only $\{x_i\}_{i=1}^n$.
- Goal: learn patterns in X.
- Examples
 - Estimate the density, covariance, graph (network), etc. of X could be difficult in high-dimensional settings
 - Cluster analysis: identify multiple regions of the feature space that contains modes of density.
 - Dimension reduction: identify low-dimensional manifold within the feature space $\mathcal X$ that represents high data density.
- Often times, there is no clear measure of success.

Cluster Analysis

Cluster Analysis

- Group the dataset into subsets so that those within each subset are more closely related (similar) to each other than those objects assigned to other subsets. Each subset is called a cluster
- Flat clustering vs. hierarchical clustering: flat clustering divides the dataset into k cluster, and hierarchical clustering arranges the clusters into a natural hierarchy.
- Clustering results are crucially dependent on the measure of similarity (or distance) between the "points" to be clustered.

Distance Metric

- A distance metric or a distance function is a function that defines the similarity of two elements (points, sets, etc.)
- For the distance of two points (with continuous entries), the most commonly used measurement is the <u>Euclidian distance</u>:

$$d(u, v) = ||u - v||_2$$
$$= \sqrt{\sum_{j=1}^{p} (u_j - v_j)^2}$$

For categorical entries, the Hamming distance is usually used

$$d(u,v) = \sum_{j=1}^{p} \mathbf{1}\{u_j \neq v_j\}$$

Distance measures should be defined based on the application.
 There is no universally best approach.

Clustering

- Suppose we have a set of n data points
- We want to form $K \ll n$ clusters, indexed by $k \in \{1, \dots, K\}$.
- Let $C(\cdot)$ be a cluster index function that assign th ith observation or cluster C(i).
- Consider: search for a function $C: \{1, \dots, n\} \to \{1, \dots, K\}$ to minimize the within cluster distance:

$$W(C) = \frac{1}{2} \sum_{k=1}^{K} \sum_{C(i),C(i')=k} d(x_i, x_{i'}).$$

Clustering

This is equivalent to maximizing the between cluster distance

$$B(C) = \frac{1}{2} \sum_{k=1}^{K} \sum_{C(i)=k} \sum_{C(i')\neq k} d_{ii'}$$

Note that the total distance can be broke down into

$$T = \frac{1}{2} \sum_{i=1}^{n} \sum_{i'=1}^{n} d_{ii'} = \frac{1}{2} \sum_{k=1}^{K} \sum_{C(i)=k} \left[\sum_{C(i')=k} d_{ii'} + \sum_{C(i')\neq k} d_{ii'} \right]$$
$$= W(C) + B(C)$$

· The total distance is fixed for a given set of data, hence

minimize $W(C) \iff \text{maximize } B(C)$

Clustering

- Given a specific distance measure $d(\cdot,\cdot)$, several algorithms can be used to find the clusters
 - Combinatorial algorithm
 - K-means clustering
 - Hierarchical clustering

Combinatorial Algorithm

Combinatorial Algorithms

- For small n and K, we could minimize W by brute-force search.
- · However, the number of "tries" needed to complete the search is

$$S(n,K) = \frac{1}{K!} \sum_{k=1}^{K} (-1)^{K-k} {K \choose k} k^n$$

- For example S(10,4) = 34,105; $S(19,4) \approx 10^{10}$.
- This is not feasible for large n and K, since the number of distinct assignments can be extremely large.
- It calls for more efficient algorithms: may not be optimal but a reasonably good suboptimal partition.

· Consider an enlarged optimization problem:

$$\min_{\substack{C, \{m_k\}_{k=1}^K \\ k \neq 1}} \sum_{k=1}^K \sum_{C(i)=k} ||x_i - m_k||^2$$

- · Hence, we are solving both
 - the cluster index function $C(\cdot)$,
 - and also the cluster centers m_k , $k = 1 \dots K$.
- This problem is NP-hard for ≥ 2 dimensions.

- · Combinatorial algorithm is too expansive.
- Instead, consider an algorithm that alternatively updates the two components:
 - C, the cluster assignments
 - $\{m_k\}_{k=1}^K$: the cluster means
- We will do an iterative update by:
 - 1) Fixing C, find the best $\{m_k\}_{k=1}^K$
 - 2) Fixing $\{m_k\}_{k=1}^K$, find the best C

• Fixing C, we know the cluster label of each subject. For any set $\{i:C(i)=k\}$, finding the mean is

$$m_k = \underset{m}{\arg\min} \sum_{C(i)=k} ||x_i - m||^2.$$

This is simply finding the mean within cluster k, i.e.

$$m_k = \frac{\sum_{C(i)=k} x_i}{\sum_i \mathbf{1}\{C(i)=k\}}$$

• Fixing the cluster means $\{m_k\}_{k=1}^K$, to find the new cluster assignments, we simply recalculate the distance from an observation to each of the cluster mean.

$$C(i) = \underset{k \in \{1, \dots, K\}}{\operatorname{arg\,min}} \ d(x_i, m_k)$$

Hence each point will be assigned to the closest cluster mean

- A K-means Clustering algorithm:
 - 1) Randomly split the dataset into K different subsets. Assign each subsets a cluster label. Then iterate between 2) and 3).
 - 2) Given the cluster assignment C, calculate the cluster mean vectors m_1, \ldots, m_K .
 - 3) Given the current set of means $\{m_1, \ldots, m_K\}$, assign each observation to the closest current cluster mean.
- Stop the algorithm when C does not change

- Note: We usually initiate the cluster labels randomly. However, this algorithm does not guarantee to global minimum. Example?
- The algorithm still has a descent property, which leads to a local minimizer.

Alternative Version

- K-medoids is an alternative version of K-means:
- Replace the second step by searching for the one observation that minimizes the distance to all others in the cluster

$$i_k^* = \underset{i:C(i)=k}{\arg\min} \sum_{C(i')=k} D(x_i, x_{i'})$$

• Use $x_{i_k^*}$ as the "center" of cluster k.

Applications

- ullet See the supplementary R file
- Example 1: the iris data
- · Example 2: cluster pixels in a picture

Additional Issues

- Why do clustering when we have the true label?
- How to choose K
- · Which variables to include?

Hierarchical Clustering

Hierarchical Clustering

- Choosing the number of clusters K can be difficult
- · A hierarchical representation which
 - · at the lowest level, each cluster contains a single observation.
 - at the highest level there is only one cluster containing all observations.
- Use dendrogram to display the clustering result.

Hierarchical Clustering

• Suppose we have a set of 6 observations

Dendrogram

- · A typical dendrogram from hierarchical clustering
- · How to construct this?

Algorithm (agglomerative)

- · An agglomerative algorithm is a "bottom up" approach:
 - · Begin with every observation representing a singleton cluster.
 - At each step, merge two "closest" clusters into one cluster and reduce the number of clusters by one.
 - · Stop when all observations are in the same cluster
- · How to choose which two clusters to merge?
- · This requires:
 - A distance measure between any two observations $d(x_i, x_{i'})$
 - A distance measure between any two sets of observations d(G,H)

Distance Measures

- Distance d(G, H) between two clusters G and H can be defined in different ways:
 - Complete linkage (default of hclust()): the furthest pair

$$d(G, H) = \max_{i \in G, i' \in H} d_{ii'}$$

Single linkage: the closest pair

$$d(G, H) = \min_{i \in G, i' \in H} d_{ii'}$$

· Average linkage: average dissimilarity

$$d(G, H) = \frac{1}{n_G n_H} \sum_{i \in G} \sum_{i' \in H} d_{ii'}$$

· Different choice may results in different hierarchical structures

Distance Matrix

- To perform a hierarchical clustering, a matrix of all the pair-wise distances is sufficient
- · We don't have to know the values of the original observations
- This is an $n \times n$ matrix: the (i, i')'s element represents the distance between x_i and $x_{i'}$
- This matrix is also called a dissimilarity matrix.
 - Symmetric
 - · diagonal elements are zero

Applications

- ullet See the supplementary R file
- Example 1: the iris data
- Example 2: RNA expression data

- Principle Component Analysis (PCA) is an old but very useful technique invented by Karl Pearson in 1901
- The main purpose is data visualization (mostly in 2d)
- · It also serves as a dimension reduction method
- Unsupervised method, can be used for preprocessing the data.

- Given that we have a $n \times p$ design matrix X, there are many equivalent approaches (motivations):
 - Explain the most variation: Produce a derived set of uncorrelated variables $\mathbf{Z}_k = \mathbf{X}\alpha_k, \, k=1,\ldots,q < p$ that are linear combinations of the original variables, and explain most of the variation in the original set
 - Approximate the design matrix: Approximate the design matrix X
 by the best (using Frobenius norm) rank-q matrix, which can be
 performed through SVD

- Suppose we have an $n \times p$ design matrix \mathbf{X}
- The first step is to center each variable, i.e., subtract the column means from each column respectively.
- In the following, we assume that X is already centered.
- Centering X does nothing but re-positioning the axis

Singular Value Decomposition

 One way to understand the PCA is using a singular value decomposition (SVD)

$$\mathbf{X}_{n \times p} = \mathbf{U}_{n \times n} \mathbf{D}_{n \times p} \mathbf{V}_{p \times p}^{\mathsf{T}},$$

where both \mathbf{U} and \mathbf{V} are orthogonal matrices, i.e. $\mathbf{U}^\mathsf{T}\mathbf{U} = \mathbf{U}\mathbf{U}^\mathsf{T} = \mathbf{I}$, and same for \mathbf{V} ; and $\mathbf{D}_{n \times p}$ is a diagonal matrix.

• The diagonal elements of $\mathbf{D}_{n \times p}$ are of a decreasing order.

Low Rank Approximation

- If we have to choose a rank-1 matrix A to approximate X_{n×p}, what would we do?
- · Turns out that the best choice is

$$\mathbf{U}_1 d_{11} \mathbf{V}_1^\mathsf{T},$$

where U_1 is the first column of U, V_1 is the first column of V, and d_{11} is the first diagonal element of D

- In other words, $\|\mathbf{X} \mathbf{U}_1 d_{11} \mathbf{V}_1^\mathsf{T}\|_2^2$ is minimized with this choice.
- Hence, $\mathbf{U}_1 d_{11} \mathbf{V}_1^\mathsf{T}$ is a rank-1 matrix that explained the variations in \mathbf{X} as much as possible.

- Let's consider the sample covariance matrix $\widehat{\Sigma} = \mathbf{X}^{\mathsf{T}} \mathbf{X} / (n-1)$, since \mathbf{X} is already centered.
- $\widehat{\Sigma}$ can be diagonalize into

$$\widehat{\Sigma} = \mathbf{V} \mathbf{D}^* \mathbf{V}^\mathsf{T},$$

where columns of ${f V}$ are principle directions (loadings) and projecting ${f X}$ on these loadings gives the principal components

· On the other hand, based on SVD,

$$X = UDV^{\mathsf{T}},$$

we can rewrite $\widehat{\Sigma}$ as

$$\widehat{\Sigma} = \mathbf{V} \mathbf{D}^\mathsf{T} \mathbf{U}^\mathsf{T} \mathbf{U} \mathbf{D} \mathbf{V}^\mathsf{T} / (n-1) = \mathbf{V} \frac{\mathbf{D}^2}{n-1} \mathbf{V}^\mathsf{T}$$

 So the right singular vectors V of X are just the principle directions, and the principal components are basically projecting each row (observation) of X onto those directions:

$$\mathbf{X}\mathbf{V} = \mathbf{U}\mathbf{D}\mathbf{V}^\mathsf{T}\mathbf{V} = \mathbf{U}\mathbf{D}$$

- The first column of ${\bf U}$ is the first PC, and d_{11} is the variation along that direction, which is also the squared eigenvalue from SVD.
- PCA should be performed by centering X first (column-wise, i.e., by each variable).

Demonstration

Demonstration

- PCA is a dimension reduction tool, often used for visualization
- The leading PCs may display interesting information of the underlying (unobserved) clusters/manifold
- PCA is unsupervised, i.e., the directions does not necessarily reflect the relationship with the response (if there is any)