SERIES CONVERGENCE/DIVERGENCE FLOW CHART

1. Convergence and Divergence Tests for Series

Test	When to Use	Conclusions
Divergence Test	for any series $\sum_{n=0}^{\infty} a_n$	Diverges if $\lim_{n\to\infty} a_n \neq 0$.
Integral Test	$\sum_{n=0}^{\infty} a_n \text{ with } a_n \ge 0 \text{ and } a_n \text{ decreasing}$	$\int_{1}^{\infty} f(x)dx \text{ and } \sum_{n=0}^{\infty} a_n \text{ both converge/diverge}$ where $f(n) = a_n$.
Comparison Test	$\sum_{n=0}^{\infty} a_n \text{ and } \sum_{n=0}^{\infty} b_n$ if $0 \le a_n \le b_n$	$\sum_{n=0}^{\infty} b_n \text{ converges} \Longrightarrow \sum_{n=0}^{\infty} a_n \text{ converges.}$ $\sum_{n=0}^{\infty} a_n \text{ diverges} \Longrightarrow \sum_{n=0}^{\infty} b_n \text{ diverges.}$
Limiting Comparison Test	$\sum_{n=0}^{\infty} a_n, (a_n > 0). \text{ Choose } \sum_{n=0}^{\infty} b_n, (b_n > 0)$ if $\lim_{n \to \infty} \frac{a_n}{b_n} = L$ with $0 < L < \infty$	
	$\text{if } \lim_{n \to \infty} \frac{a_n}{b_n} = 0$	$\sum_{n=0}^{\infty} a_n \text{ and } \sum_{n=0}^{\infty} b_n \text{ both converge/diverge}$ $\sum_{n=0}^{\infty} b_n \text{ converges} \Longrightarrow \sum_{n=0}^{\infty} a_n \text{ converges.}$ $\sum_{n=0}^{\infty} b_n \text{ diverges} \Longrightarrow \sum_{n=0}^{\infty} a_n \text{ diverges.}$
	$\text{if } \lim_{n \to \infty} \frac{a_n}{b_n} = \infty$	$\sum_{n=0}^{\infty} b_n \text{ diverges} \Longrightarrow \sum_{n=0}^{\infty} a_n \text{ diverges.}$
Convergent test	$\sum_{n=0}^{\infty} (-1)^n a_n (a_n > 0)$	converges if
for alternating Series	n=0	$\lim_{n \to \infty} a_n = 0 \text{ and } a_n \text{ is decreasing}$
Absolute Convergence	for any series $\sum_{n=0}^{\infty} a_n$	If $\sum_{n=0}^{\infty} a_n $ converges, then $\sum_{n=0}^{\infty} a_n$ converges, (definition of absolutely convergent series.)
Conditional Convergence	for any series $\sum_{n=0}^{\infty} a_n$	if $\sum_{n=0}^{\infty} a_n $ diverges but $\sum_{n=0}^{\infty} a_n$ converges. $\sum_{n=0}^{\infty} a_n$ conditionally converges
	For any series $\sum_{n=0}^{\infty} a_n$,	there are 3 cases:
Ratio Test:	Calculate $\lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right = L$	if $L < 1$, then $\sum_{n=0}^{\infty} a_n $ converges;
Root Test:	Calculate $\lim_{n \to \infty} \sqrt[n]{ a_n } = L$	if $L > 1$, then $\sum_{n=0}^{\infty} a_n $ diverges;
		if $L = 1$, no conclusion can be made.

2. Important Series to Remember

Series	How do they look	Conclusions
Geometric Series	$\sum_{n=0}^{\infty} ar^n$	Converges to $\frac{a}{1-r}$ if $ r < 1$ and diverges if $ r \ge 1$
p-series	$\sum_{n=1}^{\infty} \frac{1}{n^p}$	Converges if $p > 1$ and diverges if $p \le 1$

Binomial Series
$$(a+b)^n = \sum_{i=0}^n {n \choose i} a^{n-i} b^i$$

$$= a^n + na^{n-1}b + \frac{n(n-1)}{2!} a^{n-2}b^2 + \dots + nab^{n-1} + b^n$$