Ejercicio 19 de la colección de problemas

Enunciado:

Obtén el equivalente de Thévenin del circuito de la figura respecto de A y B, así como la impedancia a conectar en estos terminales para obtener la máxima potencia posible.

Datos:

$$\overline{\epsilon}_g = 12 - 16j \text{ V}$$

 $\overline{Z}_1 = 1 - j \Omega$
 $\overline{Z}_2 = 1 + j \Omega$
 $\overline{Z}_3 = 5 + 3j \Omega$
 $\alpha = 2$

Solución:

Dejamos el circuito en abierto y calculamos la tensión en AB:

$$\overline{U}_{AB} = \overline{\epsilon}_g + (1 + \alpha)\overline{I} \cdot \overline{Z}_2$$

$$\overline{U}_{AB} = -\overline{I} \cdot \overline{Z}_3$$

Combinando estas ecuaciones obtenemos la tensión:

$$\overline{\epsilon}_{th} = \overline{U}_{AB} = \frac{\overline{\epsilon}_g}{1 + (1 + \alpha)\overline{\overline{Z}_2}} = 6 - 10j = 11,66/-59,04^{\circ} \text{ V}$$

Para obtener la impedancia equivalente, apagamos las fuentes independientes. Como hay fuentes dependientes, debemos aplicar una fuente de prueba a la salida del circuito, con fuerza electromotriz $\bar{\epsilon}_0$ y corriente inyectada \bar{I}_0 :

$$\overline{\epsilon}_0 = [(1+\alpha)\overline{I} + \overline{I}_0] \cdot \overline{Z}_2$$

$$\overline{\epsilon}_0 = -\overline{I} \cdot \overline{Z}_3$$

Combinando ambas expresiones obtenemos:

$$\overline{Z}_{th} = \frac{\overline{\epsilon}_0}{\overline{I}_0} = \frac{\overline{Z}_2 \cdot \overline{Z}_3}{(1+\alpha)\overline{Z}_2 + \overline{Z}_3} = 0.64 + 0.52j\,\Omega$$

Para obtener la máxima potencia disponible hay que conectar una impedancia igual a:

$$\overline{Z}_L = \overline{Z}_{th}^* = 0.64 - 0.52j\Omega$$

Esta impedancia disipará una potencia:

$$P_L = \frac{\epsilon_{th}^2}{4 \cdot R_{th}} = 53,11 \,\mathrm{W}$$