Vertex Form

We explore the vertex form of a quadratic.

The Vertex Form of a Quadratic

We have learned the standard form of a quadratic function's formula, which is $f(x) = ax^2 + bx + c$. we will learn another form called the vertex form.

Vertex Form of a Quadratic Function A quadratic function whose graph has vertex at the point (h, k) is given by

$$f(x) = a(x-h)^2 + k$$

Using graphing technology, consider the graphs of $f(x)=x^2-6x+7$ and $g(x)=(x-3)^2-2$ on the same axes.

We see only one parabola because these are two different forms of the same function. Indeed, if we convert g(x) into standard form:

$$g(x) = (x-3)^2 - 2$$
$$= (x^2 - 6x + 9) - 2$$
$$= x^2 - 6x + 7$$

it is clear that f and g are the same function.

Graph of $f(x) = x^2 - 6x + 7$ and $g(x) = (x - 3)^2 - 2$ the graphs of the two parabolas overlap each other completely

Learning outcomes: Author(s): David Kish

The formula given for g is said to be in vertex form because it allows us to read the vertex without doing any calculations. The vertex of the parabola is (3, -2). We can see those numbers in $g(x) = (x-3)^2 - 2$. The x-value is the solution to (x-3) = 0, and the y-value is the constant added at the end.

Example 1. Here are the graphs of three more functions with formulas in vertex form. Compare each function with the vertex of its graph.

$$r(x) = (x-2)^2 + 1$$

$$s(x) = -\frac{1}{4}(x+1)^2 + 3$$

$$t(x) = 4(x+3)^2 - 3.5$$

Notice that the x-coordinate of the vertex has the opposite sign as the value in the function formula. On the other hand, the y-coordinate of the vertex has the same sign as the value in the function formula. Let's look at an example to understand why. We will evaluate r(2).

$$r(2) = (2-2)^2 + 1 = 1$$

The x-value is the solution to (x-2)=0, which is positive 2. When we substitute 2 for x we get the value y=1. Note that these coordinates create the vertex at (2,1). Now we can define the vertex form of a quadratic function.