## **Inverse Functions**

## **Summary**

- 1. Inverse functions act as an "undo" function for a given function.
- 2. The graph of the inverse function is a reflection of the original function across y = x.
- 3.  $f^{-1}(\bullet)$  asks you to find the x-coordinate associated with the y-coordinate of  $\bullet$ .

The **inverse** of the ordered pair (x, y) is (y, x).

**Example 1.** Find the inverse of each.

(a) 
$$(2, -7)$$

(b) (0,3)

Recall that a function is nothing more than a machine that

- 1. Accepts an input, x
- 2. Performs some operation(s)
- 3. Gives an output, y

The inverse function is somewhat of an "undo" function.

Inverse functions allow us to take the output of a function, put it into our inverse function, and get our original input value back.

Suppose we put a value of 10 into the function

$$f(x) = x^2$$

If we put the output (100) into the inverse, we get our 10 back.



We use the notation  $f^{-1}(x)$  to denote the inverse of f(x).

**Note:** The notation does not mean raise the function to the -1 power.

STEPS IN FINDING THE INVERSE OF A FUNCTION

- 1. Rewrite f(x) = as y =
- 2. Switch your x and y variables.
- 3. Solve this result for y and rewrite using inverse notation.

**Example 2.** Find the inverse of each of the following.

(a) 
$$f(x) = 5x$$

(b) 
$$f(x) = 3x + 2$$

$$(c) f(x) = \frac{x+5}{7}$$

(d) 
$$g(x) = x^3 + 1$$

(e) 
$$h(x) = 4x^5 - 1$$

$$(f) g(x) = \frac{5}{x}$$

Visually, when finding the inverse of a function, you are reflecting that function across the line y = x.

Below are the graphs of  $f(x) = 3x^3 - 1$  and  $f^{-1}(x) = \sqrt[3]{\frac{x+1}{3}}$  as well as the line y = x:



## Tabular and Visual Approaches to Inverse Functions

The notation  $f^{-1}(\bullet)$  means what x-coordinate has a y-coordinate of  $\bullet$ ?

**Example 3.** Find the value of each.

(a) 
$$f^{-1}(3)$$

(b) 
$$f^{-1}(-2)$$
 (c)  $f^{-1}(2)$ 

(c) 
$$f^{-1}(2)$$

(d) 
$$f^{-1}(-1)$$

**Example 4.** Find the value of each given the graph of f(x).



- (a)  $f^{-1}(-3)$
- (b)  $f^{-1}(3)$
- (c)  $f^{-1}(5)$
- (d)  $f^{-1}(0)$