D 10619 Assignment	1 Umas Khan #02 NC
Question Number #01;	
langraniam polynomial:	
X Y 20 -11.19 4.0 7.19 7.0 10.19 A=19	
Here $x_0 = 2.0$ $y_0 = -11.19$ $x_1 = 4.0$ $y_1 = 7.19$ $y_2 = 10.19$	
f(n) = (X-X1)(X-X2) Y0 + (n-X0-X1)(X0-X2) (NI	-70)(n-N2) Y1 -70)(n1-N2)
+ (n-no)(n-n1) y2 (n2-n)(x2-x1)	
f(n) = (n-4)(n-7) - 11.19 + (n-2)(n-4) + (n-2)(n-4) + (n-2)(n-4)	2)(4-7)

```
= \frac{(n-u)(n-t)}{10} \times (11.19) + (n-2)(n-t) (7.19)
      + (n-2)(n-4) (10.19)
   = (n2-11n+28) (-1.119) + (n2-9n+14) (-1.19833)
       + (12-64+8) (0.67935)
    = -1.11922+12.30921-31.332-1.1983322+107810
         - 16.7766: +0.6793n2-4.075845.434h
F(m)= -1.6380322+19.01812-42.6742
      f(n) = y f(n) = y'
      (4) = -1.63803×44018121-426742
     Y' = -3.2760621+19.0181
        N=3
       ti(n)
                = -3.27606N+19.0181
              = -3.27666(3) + 19.0191

= -9.82818 + 19.0181

= 9.189921
```


	9								
Questim Number #038									
1 03/[10]	0 05 10	1.5 20 30							
X(2.5)	YI .	+2.742.98+3.24	-3.21298						
X (2 * Fract	5) = 21 Table;	39 = 2673	26						
Position Dosage	0 0.5 1.0	152025	30 35						

QUESTION#02:

X	f(x)
1985	19
1986	38
1987	57
1988	356
1989	456
1990	549
1991	659
1992	667
1993	767
1994	836
1995	905

x = 1998

Solution:

The value of table for x and y

X	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995
у	19	38	57	356	456	549	659	667	767	836	905

Numerical divided differences method to find solution

Newton's divided difference table is

х	у	1st ord er	2nd ord er	3rd ord er	4th ord er	5th ord er	6th ord er	7th ord er	8th ord er	9th ord er	10th ord er
198 5	19										
		19									
198 6	38		0								
		19		46.666 7							

MUHAMMAD UMAR KHAN 10619 NC ASSIGNMENT#02

198 7	57		140		- 31.625						
		299		- 79.833 3		11.916 7					
198 8	35 6		-99.5		27.958 3		- 3.1514				
		100		32		- 6.9917		0.6216			
198 9	45 6		-3.5		-7		1.2		- 0.0884		
		93		4		0.2083		- 0.0859		0.0068	
199 0	54 9		8.5		- 5.9583		0.5986		- 0.0269		0.0006
		110		- 19.833 3		3.8		-0.301		0.0132	
199 1	65 9		-51		13.041 7		- 1.5083		0.0919		
		8		32.333 3		-5.25		0.4339			
199 2	66 7		46		- 13.208 3		1.5292				
		100		-20.5		3.925					
199 3	76 7		-15.5		6.4167						
		69		5.1667							
199 4	83 6		0								
		69									
199 5	90 5										

Newton's divided difference interpolation formula is

$$f(x)=y_0+(x-x_0)f[x_0,x_1]+(x-x_0)(x-x_1)f[x_0,x_1,x_2]+(x-x_0)(x-x_1)(x-x_2)f[x_0,x_1,x_2,x_3]+(x-x_0)(x-x_1)(x-x_2)f[x_0,x_1,x_2,x_3]+(x-x_0)(x-x_1)(x-x_2)(x-x_3)f[x_0,x_1,x_2,x_3,x_4]+(x-x_0)(x-x_1)(x-x_2)(x-x_3)(x-x_4)f[x_0,x_1,x_2,x_3,x_4,x_5]+(x-x_0)(x-x_1)(x-x_2)(x-x_3)(x-x_4)(x-x_5)f[x_0,x_1,x_2,x_3,x_4,x_5,x_6]+(x-x_0)(x-x_1)(x-x_2)(x-x_3)(x-x_4)(x-x_5)f[x_0,x_1,x_2,x_3,x_4,x_5,x_6]+(x-x_0)(x-x_1)(x-x_2)(x-x_3)(x-x_4)(x-x_5)(x-x_5)(x-x$$

$$x6)f[x_{0,x_{1},x_{2},x_{3},x_{4},x_{5},x_{6},x_{7}}] + (x-x_{0})(x-x_{1})(x-x_{2})(x-x_{3})(x-x_{4})(x-x_{5})(x-x_{6})(x-x_{6})(x-x_{7})f[x_{0,x_{1},x_{2},x_{3},x_{4},x_{5},x_{6},x_{7},x_{8}}] + (x-x_{0})(x-x_{1})(x-x_{2})(x-x_{3})(x-x_{4})(x-x_{5})(x-x_{6})(x-x_{7})(x-x_{8})f[x_{0,x_{1},x_{2},x_{3},x_{4},x_{5},x_{6},x_{7},x_{8},x_{9}}] + (x-x_{0})(x-x_{1})(x-x_{2})(x-x_{3})(x-x_{4})(x-x_{5})(x-x_{6})(x-x_{7})(x-x_{8})(x-x_{9})f[x_{0,x_{1},x_{2},x_{3},x_{4},x_{5},x_{6},x_{7},x_{8},x_{9},x_{10}}]$$

 $f(x)=19+(x-1985)\times 19+(x-1985)(x-1986)\times 0+(x-1985)(x-1986)(x-1986)(x-1987)\times 46.6667+(x-1985)(x-1986)(x-1987)(x-1988)\times -31.625+(x-1985)(x-1986)(x-1987)(x-1988)(x-1989)\times 11.9167+(x-1985)(x-1986)(x-1987)(x-1988)(x-1989)(x-1990)\times -3.1514+(x-1985)(x-1986)(x-1987)(x-1988)(x-1989)(x-1990)(x-1991)\times 0.6216+(x-1985)(x-1986)(x-1987)(x-1988)(x-1989)(x-1990)(x-1991)(x-1992)\times -0.0884+(x-1985)(x-1986)(x-1987)(x-1988)(x-1989)(x-1990)(x-1991)(x-1992)(x-1993)\times 0.0068+(x-1985)(x-1986)(x-1987)(x-1988)(x-1989)(x-1990)(x-1991)(x-1992)(x-1993)(x-1994)\times 0.0006$

 $f(x)=19+(x-1985)\times 19+\left(x2-3971x+3942210\right)\times 0+\left(x3-5958x2+11832587x-7833171270\right)\times 46.6667+\left(x4-7946x3+23677091x2-31356354226x+15572344484760\right)\times -31.625+\left(x5-9935x4+39481685x3-78450088225x2+77940133040274x-30973393180187600\right)\times 11.9167+\left(x6-11925x5+59252335x4-78450088225x2+77940133040274x-30973393180187600\right)$

652079372868909000x2+432110899967866000000x-122719371385290000000000)×0.6216+(x8-15908x7+110715682x6-440316100280x5+1094460083982770x4-1741065780651520000x3+1731053010722730000000x2-

 $f(x)=19+(19x-37715)+(0)+\Big(46.6667x3-278040x2+552187393.3333x-365547992600\Big)+\Big(-31.625x4+251292.25x3-748788002.875x2+991644702397.25x-492475394330535\Big)+\Big(11.9167x5-64667x3-278040x2+552187393.3333x-365547992600\Big)+\Big(-31.625x4+251292.25x3-748788002.875x2+991644702397.25x-492475394330535\Big)+\Big(-31.625x4+251292.25x3-748788002.875x2+991644702397.25x-492475394330535\Big)+\Big(-31.625x4+251292.25x3-748788002.875x2+991644702397.25x-492475394330535\Big)+\Big(-31.625x4+251292.25x3-748788002.875x2+991644702397.25x-492475394330535\Big)+\Big(-31.625x4+251292.25x3-748788002.875x2+991644702397.25x-492475394330535\Big)+\Big(-31.625x4+251292.25x3-748788002.875x2+991644702397.25x-492475394330535\Big)+\Big(-31.625x4+251292.25x3-748788002.875x2+991644702397.25x-492475394330535\Big)+\Big(-31.625x4+251292.25x3-748788002.875x2+991644702397.25x-492475394330535\Big)+\Big(-31.625x4+251292.25x3-748788002.875x2+991644702397.25x-49247539430535\Big)+\Big(-31.625x4+251292.25x3-748788002.875x2+991644702397.25x-49247539430535\Big)$

MUHAMMAD UMAR KHAN 10619 NC ASSIGNMENT#02

 $737600874627231x2 + 586392348949896000x - 194242322167268000000) + \left(0.6216x7 - 8650.5611x6 + 51591937.7639x5 - 170941229453.944x4 + 339830992181317x3 - 405350133967915000x2 + 268611795555422000000x - 76285672728196900000000) + \left(-0.0884x8 + 1406.9427x7 - 9791967.3118x6 + 38942639226.1528x5 - 96796742546690.3x4 + 153984141215360000x3 - 153098587208265000000x2 + 86981769771242100000000x - 2162037744278290000000000) + \left(0.0068x9 - 122.4379x8 + 974116.0966x7 - 4520870899.7021x6 + 13488009805745.4x5 - 26827628899273600x4 + 35573398453744800000x3 - 30323742899604200000000x2 + 15078458923456900000000000x - 3332333806577030000000000000) + \left(-12.6427x9 + 113187.0055x8 - 600494514.9835x7 + 2090695263163.04x6 - 4991321247467790x5 + 8275185102511510000x4 - 940769021974830000000000x + 61734961101472600000000000000 \right)$ f(x) = -12.6359x9 + 113064.4791x8 - 599518991.3227x7 + 2086164591642.31x6 - 4977794243393290x5 + 8248260505741610000x4 - 9371962496827050000000x3 + 6988236258617400000000000x2 -

Now, differentiate with x

f''(x)=0.0572x8-909.7827x7+6331610.8296x6-25179797635.5521x5+62584937749269.4x4-99555884867865800x3+98979126068899300000x2-56231774980962300000000x+1397647251723480000000000

Now, substitute x=1998

 $f'(1998) = 0.0064 \times 19989 - 113.7228 \times 19988 + 904515.8328 \times 19987 - 4196632939.2587 \times 19986 + 12516987549853.9 \times 19985 - 24888971216966500 \times 19984 + 32993042022966400000 \times 19983 - 28115887490481100000000 \times 19982 + 139764725172348000000000000 \times 19983 - 30878797677581500000000000000 = -35184372088832$

30878797677581500000000000000*x*+613995580350422000000000000000

 $f''(1998) = 0.0572 \times 19988 - 909.7827 \times 19987 + 6331610.8296 \times 19986 - 25179797635.5521 \times 19985 + 62584937749269.4 \times 19984 - 99555884867865800 \times 19983 + 98979126068899300000 \times 19982 - 56231774980962300000000 \times 1998 + 139764725172348000000000000 = 204010946560$