Mathematical analysis 2

Chapter 1: Multivariable and vectorial functions

Part 2: Limits and continuity

R. KECHKAR

2023/2024

- 1 Limites and continuity
 - Limits and continuity of numerical functions
 - Generalities
 - Limit of numerical function of several variables
 - Continuity of numerical function of several variables
 - Limites and continuity of vectorial functions
 - Generalities
 - Limit of vectorial function of several variables
 - Continity of vectorial function of several variables

- Limites and continuity
 - Limits and continuity of numerical functions
 - Generalities
 - Limit of numerical function of several variables
 - Continuity of numerical function of several variables
 - Limites and continuity of vectorial functions
 - Generalities
 - Limit of vectorial function of several variables
 - Continity of vectorial function of several variables

Numerical function

Definition

- We call **numerical function** of n variables the mapping f defined by $f: D \subseteq \mathbb{R}^n \longrightarrow \mathbb{R}$ $(x_1, \dots x_n) \longmapsto f(x_1, \dots x_n)$
- We call **domain** of f and we note D_f the set of all $X \in \mathbb{R}^n$ such that f exists, that is

$$D_f = \{X \in \mathbb{R}^n : f(X) \text{ exists}\}.$$

- We call range of f the set of values that f takes on D_f , that is $\{f(X) \text{ such that } X \in D_f\}$
- We call **graph** of a function f of n variables the set

$$\{(X, f(X)) \text{ such that } X \in D_f\}$$

Numerical functions: example

Remark

Let $f: \mathbb{R}^n \to \mathbb{R}$. $X \mapsto f(X)$. $X \in \mathbb{R}^n$ is called **independent variables** and f(X) dependent variable.

Example.

Let us determine the domain of the following functions

$$f_1: \mathbb{R}^2 \longrightarrow \mathbb{R}$$
 $f_2: \mathbb{R}^3 \longrightarrow \mathbb{R}$ $(x,y) \longmapsto f_1(x,y) = \frac{xy}{x^2 + y^2}$ $(x,y,z) \longmapsto f_2(x,y,z) = \frac{\ln(z)}{x + y}$

- $D_{f_1} = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \neq 0\} \implies D_{f_1} = \mathbb{R}^2 \setminus \{0, 0\}.$
- $D_{f_2} = \{(x, y, z) \in \mathbb{R}^3 : x + y \neq 0, z > 0\} \Rightarrow D_{f_2} = \{(x, y, z) \in \mathbb{R}^3 : y \neq x, z > 0\}.$

Level curves

Definition

The **level curves** of a function f of two variables are the curves with equations f(x, y) = k, where k is a constant.

- 1 Limites and continuity
 - Limits and continuity of numerical functions
 - Generalities
 - Limit of numerical function of several variables
 - Continuity of numerical function of several variables
 - Limites and continuity of vectorial functions
 - Generalities
 - Limit of vectorial function of several variables
 - Continity of vectorial function of several variables

Limit of numerical function of several variables

Definition

Let $f: D \subseteq \mathbb{R}^n \to \mathbb{R}$, $X = (x_1, \dots, x_n) \mapsto f(X)$ a function and $a = (a_1, \dots a_n)$ an accumulation point of D. We say that the limit of f as X approaches a is L if

$$\forall \varepsilon > 0$$
, $\exists \delta > 0$ such that $(\forall X \in D \text{ and } ||X - a|| < \delta) \Longrightarrow |f(X) - L| < \varepsilon$

Then we write

$$\lim_{X \to a} f(X) = L$$

Remark

The limit of a function doesn't depend on the chosen norm because on \mathbb{R}^n all norms are equivalent.

Limit of numerical function of several variables

Proposition

Let $f: D \subseteq \mathbb{R}^n \to \mathbb{R}$, a function and a an accumulation point of D. If limit of f at a exists then this limit is unique.

Proposition

Let $f: D \subseteq \mathbb{R}^n \to \mathbb{R}$ a function and a an accumulation point of D. We have the following equivalence

$$\lim_{X \to a} f(X) = L \Leftrightarrow \lim_{X \to a} |f(X) - L| = 0$$

Limit of numerical function of several variables

Proposition

Let $f: D \subseteq \mathbb{R}^n \to \mathbb{R}$ a function and a an accumulation point of D.

- $\bullet \quad \lim_{X \to a} f(X) = +\infty \Leftrightarrow \forall M > 0, \exists \delta > 0 : (\forall X \in D : ||X a|| < \delta) \Rightarrow f(X) > M.$
- $\bullet \quad \lim_{X \to a} f(X) = -\infty \Leftrightarrow \forall M > 0, \exists \delta > 0 : (\forall X \in D : ||X a|| < \delta) \Rightarrow f(X) < -M.$

Properties of limit of numerical function of several variables

Proposition

Let f et $g: D \subseteq \mathbb{R}^n \longrightarrow \mathbb{R}$ and a an accumulation point de D. Suppose that $\lim_{X \to a} f(X) = l_1$ and $\lim_{X \to a} g(X) = l_2$. Then

- $\forall \alpha, \beta \in \mathbb{R}$, $\lim_{X \to a} f(X)(\alpha f + \beta g)(X) = \alpha l_1 + \beta l_2$.
- $\lim_{X \to a} f(X)(f.g)(X) = l_1 \cdot l_2$.
- If $l_2 \neq 0$, $\lim_{X \to a} f(X) \left(\frac{f}{g} \right) (X) = \frac{l_1}{l_2}$.

• **Subtitution** when the limit is trivial to calculate we plug in directly the the given value.

Example.

Hier we just have to plug in the given points

•
$$\lim_{(x,y)\to(0,0)} e^{x^2+y^2} = e^{0+0} = 1$$

•
$$\lim_{(x,y)\to(\pi,\pi)} \frac{x^2 \cos y}{x+y} = \frac{-\pi^2}{2\pi} = -\frac{\pi}{2}$$

• Path approach We use generally this method to show that the limit doesn't exist

Proposition

Let $f: D \subseteq \mathbb{R}^2 \to \mathbb{R}$ and (a,b) an accumulation point of D. If there exist tow continuous functions $y = \varphi_1(x)$, $y = \varphi_2(x)$ that pass through (a,b) such that

$$\lim_{x \to a} f(x, \varphi_1(x)) \neq \lim_{x \to a} f(x, \varphi_2(x))$$

then $\lim_{(x,y)\to(a,b)} f(x,y)$ doesn't exist.

Example.

Let f a function defined by $f(x,y) = \frac{x^2}{y}$. find $\lim_{(x,y)\to(0,0)} f(x,y)$

- If we set $y = x^2$ then $\lim_{(x,y)\to(0,0)} f(x,y) = 1$
- if we set $y = 2x^2$ then $\lim_{(x,y)\to(0,0)} f(x,y) = \frac{1}{2}$

So, we have found two different paths such that we have two different limits; therefore, the limit does not exist.

Double limit

Proposition

Let
$$f: D \subseteq \mathbb{R}^2 \to \mathbb{R}$$
 such that $\lim_{(x,y)\to(a,b)} f(x,y) = l$. Suppose that

- $\forall x \in \mathbb{R}$, $\lim_{y \to b} f(x, y)$ exist.
- $\forall y \in \mathbb{R}$, $\lim_{x \to a} f(x, y)$ exist.

Then
$$\lim_{y \to b} \left(\lim_{x \to a} f(x, y) \right) = \lim_{x \to a} \left(\lim_{y \to b} f(x, y) \right)$$

Example.

Let find
$$\lim_{(x,y)\to(0,0)} \frac{\sin x^2 \cos y}{x^2 + y^2}$$

 $\lim_{y\to 0} \lim_{x\to 0} \frac{\sin x^2 \cos y}{x^2 + y^2} = \lim_{y\to 0} \frac{0}{y^2} = 0 = l_1$
 $\lim_{x\to 0} \lim_{y\to 0} \frac{\sin x^2 \cos y}{x^2 + y^2} = \lim_{x\to 0} \frac{\sin x^2}{x^2} = 1 = l_2$
Since $l_1 \neq l_2$ we deduce that $\lim_{(x,y)\to(0,0)} \frac{\sin x^2 \cos y}{x^2 + y^2}$ doesn't exist.

• Sandwich approach by using squeeze theorem

Theorem

(Squeeze theorem) Let f et $g: D \subseteq \mathbb{R}^n \longrightarrow \mathbb{R}$ and a an accumulation point of D. If

- $\forall X \in v(a) \cap D, f(X) \le h(X) \le g(X)$
- $\lim_{X \to a} f(X) = \lim_{X \to a} g(X) = l$

Then $\lim_{X \to a} h(X) = l$.

Corollaire

Let f et $g: D \subseteq \mathbb{R}^n \longrightarrow \mathbb{R}$ and a an accumulation point of D. If

- $\forall X \in v(a) \cap D, |f(X)| \le |g(X)|$
- $\lim_{X \to a} g(X) = 0$

Then $\lim_{X \to a} f(X) = 0$.

Example.

Let
$$f(x,y) = (x+y)\cos\left(\frac{1}{x^2+y^2}\right)$$
, $\lim_{(x,y)\to(0,0)} f(x,y)$?

We have

$$-1 \leq \cos\left(\frac{1}{x^2+y^2}\right) \leq 1 \Longrightarrow -(x+y) \leq (x+y)\cos\left(\frac{1}{x^2+y^2}\right) \leq (x+y).$$

Since $(x,y) \rightarrow (0,0)$ then

$$\lim_{(x,y)\to(0,0)} f(x,y) = 0$$

Change of variable

Example.

Let $f(x,y) = \frac{|x-1||y-2|}{|x-1|+|y-2|}$. We want to find $\lim_{(x,y)\to(1,2)} f(x,y)$ We use the change of variable : x' = x - 1 et y' = y - 2. Then when $(x,y) \to (1,2)$, $(x',y') \to (0,0)$. We have,

$$\begin{cases} |x'| & \leq |x'| + |y'| \\ |y'| & \leq |x'| + |y'| \end{cases} \Rightarrow |x'||y'| \leq (|x'| + |y'|)^2$$

$$f(x,y) = \frac{|x'| |y'|}{|x'| + |y'|} \le |x| + |y| \to 0$$

Example.

Let
$$f(x,y) = \frac{x^3y}{x^2 + y^2}$$
. $\lim_{(x,y) \to (0,0)} f(x,y)$?

Using polar coordinates and set $x = r\cos(\theta)$ and $y = r\sin(\theta)$ with $r \ge 0$ and $\theta \in [0, 2\pi[$. Then,

$$|f(x,y)| = \frac{|r^4 \cos(\theta)^3 \sin(\theta)|}{r^2} = r^2 |\cos(\theta)|^3 |\sin(\theta)| \le r^2 \to 0$$

Then we get
$$\lim_{(x,y)\to(0,0)} f(x,y) = 0$$
.

Example.

Let
$$f(x,y) = \frac{xy}{x^2 + y^2}$$
. $\lim_{(x,y) \to (0,0)} f(x,y)$?

Using polar coordinates and set $x = r\cos(\theta)$ et $y = r\sin(\theta)$ with $r \ge 0$ and $\theta \in [0, 2\pi[$. Then we have,

$$f(x,y) = \frac{r^2 \cos \theta \sin \theta}{r^2} = \cos \theta \sin \theta.$$

Then if $\lim_{(x,y)\to(0,0)} f(x,y)$ exists, it will be equal to

$$\lim_{r\to 0}\cos\theta\sin\theta = \cos\theta\sin\theta$$

Then it is not unique (since it depends on the value of θ). Consequently $\lim_{(x,y)\to(0,0)} f(x,y)$ doesn't exist.

Taylor expansion

Example.

Let
$$f(x,y) = \frac{x(\sin y - y)}{x^2 + y^2}$$
. We have $\sin(y) = y - y^2 \varepsilon(1)$ with $\lim_{y \to 0} \varepsilon(1) = 0$, then

$$0 \le |f(x,y)| = \frac{\left|xy^2 \varepsilon(1)\right|}{x^2 + y^2} \le |x\varepsilon(1)|.$$

We have also $x\varepsilon(1) \to 0$ when $(x,y) \to (0,0)$ then by squeeze theorem we get $\lim_{(x,y)\to(0,0)} f(x) = 0$.

- Limites and continuity
 - Limits and continuity of numerical functions
 - Generalities
 - Limit of numerical function of several variables
 - Continuity of numerical function of several variables
 - Limites and continuity of vectorial functions
 - Generalities
 - Limit of vectorial function of several variables
 - Continity of vectorial function of several variables

Continuity of numerical function of several variables

Definition

Let $f: D \subseteq \mathbb{R}^n \to \mathbb{R}$ and $a = (a_1, \dots a_n) \in D$.

- We say that f is **continuous** at the point a if an only if $\lim_{X \to a} f(X) = f(a)$. That is to say
- $\forall \varepsilon > 0, \quad \exists \delta > 0 \text{ such that } (\forall X \in D \text{ and } ||X a|| < \delta) \Longrightarrow |f(X) f(a)| < \varepsilon$
- We say that f is continuous on D if f is continuous at all points in D.

Definition

Let $f: D \subseteq \mathbb{R}^n$ and $a = (a_1, \dots a_n) \in \mathbb{R}^n$. We say that f is continuous at a if the three conditions are satisfied

- f is defined at a ($a \in D$).
- $\lim_{X \to a} f(X)$ exists and is finite.
- $\lim_{X \to a} f(X) = f(a)$.

Properties of continuous functions

Proposition

Let $f, g: D \subseteq \mathbb{R}^n \to \mathbb{R}$ and $a \in D$. Suppose that f, g are continuous at a than

- $\forall \alpha, \beta \in \mathbb{R}$, $(\alpha f + \beta g)$ is continous at a.
- f.g is continous at a.
- If $g(a) \neq 0$, $\frac{f}{g}$ is continuous at a.

Proposition

Let $f: D \subseteq \mathbb{R}^n \to A \subseteq \mathbb{R}$ and $g: A \subseteq \mathbb{R} \to \mathbb{R}$. Suppose that f is continuous at a and g is continuous at f(a). Then the function $f \circ g: D \subseteq \mathbb{R}^n \to \mathbb{R}$ is continuous at a.

Example

Example.

We want to study the continuity on \mathbb{R}^2 of

$$f(x,y) = \begin{cases} \frac{x^2 y^2}{x^2 + y^2} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

Solution: On $\mathbb{R}^2 - \{(0.0)\}, f$ est continous since it is the quotient of tow polynomials. At (0.0), We have

$$x^2 \le x^2 + y^2 \Rightarrow \frac{x^2}{x^2 + y^2} \le 1$$

Then

s. At (0.0), we have
$$x^{2} \le x^{2} + y^{2} \Rightarrow \frac{x^{2}}{x^{2} + y^{2}} \le 1$$

$$\forall (x, y) \in \mathbb{R}^{2}_{*}, \quad f_{1}(x, y) = \frac{x^{2}y^{2}}{x^{2} + y^{2}} = y^{2} \frac{x^{2}}{x^{2} + y^{2}} \le y^{2} \to 0.$$

Consequentely

$$\lim_{(x,y)\to(0,0)} f(x,y) = 0.$$

Conclusion: f is continous at (0,0) then on \mathbb{R}^2 .

Limites and continuity

- Limits and continuity of numerical functions
 - Generalities
 - Limit of numerical function of several variables
 - Continuity of numerical function of several variables

• Limites and continuity of vectorial functions

- Generalities
- Limit of vectorial function of several variables
- Continity of vectorial function of several variables

- Limites and continuity
 - Limits and continuity of numerical functions
 - Generalities
 - Limit of numerical function of several variables
 - Continuity of numerical function of several variables
 - Limites and continuity of vectorial functions
 - Generalities
 - Limit of vectorial function of several variables
 - Continity of vectorial function of several variables

Vectorial functions of several variables

Definition

(Vectorial function)

• We call **vectorial function** of n variables the mapping f defined by

$$\begin{split} f: D \subseteq \mathbb{R}^n &\longrightarrow \mathbb{R}^m \ (m \ge 2) \\ X = (x_1, \cdots x_n) &\longmapsto f(X) = (f_1(X), \cdots, f_m(X)) \end{split}$$

• We call **domain** of f and we note D_f the set given by

$$D_f = \underset{1 \leq j \leq m}{\cap} D_{f_j} = \{X \in \mathbb{R}^n : f_j \ exist, \ \forall \ 1 \leq j \leq m\}.$$

Vectorial functions: Example

Example.

$$f: D \subseteq \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

 $(x,y) \longmapsto f(x,y) = (\frac{xy}{x^2 + y^2}, \sqrt{1 - x^2 - y^2}).$

We have

•
$$f_1(x,y) = \frac{xy}{x^2 + y^2}$$
 $D_{f_1} = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \neq 0\} = \mathbb{R}^2 \setminus \{0,0\}$

$$D_f = D_{f_1} \cap D_{f_2} = \bar{\mathcal{D}}((0,0),1) \setminus (0,0).$$

- Limites and continuity
 - Limits and continuity of numerical functions
 - Generalities
 - Limit of numerical function of several variables
 - Continuity of numerical function of several variables
 - Limites and continuity of vectorial functions
 - Generalities
 - Limit of vectorial function of several variables
 - Continity of vectorial function of several variables

Limit of vectorial function of several variables

Definition

Let $f: D \subseteq \mathbb{R}^n \to \mathbb{R}^m$ a function and $a = (a_1, \dots a_n)$ an accumulation point of D. We say that the limit of f as X approaches a is $L = (l_1, \dots, l_2)$ if

$$\forall \varepsilon > 0$$
, $\exists \delta > 0$ such that $(\forall X \in D \text{ and } ||X - a|| < \delta) \Longrightarrow ||f(X) - L|| < \varepsilon$

Then we write

$$\lim_{X \to a} f(X) = L$$

Proposition

Let $f: D \subseteq \mathbb{R}^n \to \mathbb{R}^m$ a function and $a = (a_1, \dots a_n)$ an accumulation point of D. Suppose that $L = (l_1, \dots, l_2)$ than we have

$$\lim_{X \to a} f(X) = L \iff \forall i = 1, \cdots, m, \ \lim_{X \to a} f_i(X) = l_i$$

Limit of vectorial functions: Example

Example.

Let

$$f(x,y) = \left(xy\log\left(x^2 + y^2\right), \frac{\sin xy}{y}, \frac{e^{x^2y} - 1}{xy}\right).$$

Give the domaine of definition of f and find $\lim_{(x,y)\to(0,0)} f(x,y)$.

Solution

1) Domaine of definition of f: $-f_1(x,y) = xy \log (x^2 + y^2), D_{f_1} = \{(x,y) \in \mathbb{R}^2 / x \neq 0 \lor y \neq 0\} = \mathbb{R}^2,$ $-f_2(x,y) = \frac{\sin xy}{y}, D_{f_2} = \{(x,y) \in \mathbb{R}^2 / y \neq 0\} = \mathbb{R} \times \mathbb{R}^*.$ $-f_3(x,y) = \frac{e^{x^2y - 1}}{xy}, D_{f_3} = \{(x,y) \in \mathbb{R}^2 / x \neq 0 \land y \neq 0\} = \mathbb{R}^* \times \mathbb{R}^*.$ Then, $D_f = D_{f_1} \cap D_{f_2} \cap D_{f_3} = \mathbb{R}^* \times \mathbb{R}^*.$

Solution

2) Let's find $\lim_{(x,y)\to(0,0)} f(x,y)$:

We know that $\begin{cases}
|x| \le \sqrt{x^2 + y^2} \\
|y| \le \sqrt{x^2 + y^2}
\end{cases} \Rightarrow |x||y| \le x^2 + y^2$

Then $\forall (x,y) \in \mathbb{R}^* \times \mathbb{R}^* \left| f_1(x,y) \right| = \left| xy \log \left(x^2 + y^2 \right) \right| \leq \left(x^2 + y^2 \right) \left| \log \left(x^2 + y^2 \right) \right|$ Since $\lim_{(x,y) \to (0,0)} \left(x^2 + y^2 \right) \left| \log \left(x^2 + y^2 \right) \right| = 0$, then from squeeze theorem we have

$$\lim_{(x,y)\to(0,0)} f_1(x,y) = 0$$

.

Solution

$$\lim_{(x,y)\to(0,0)} f_2(x,y) = \lim_{(x,y)\to(0,0)} \frac{\sin xy}{y} = \lim_{(x,y)\to(0,0)} x \frac{\sin xy}{xy} = 0.$$

$$- \lim_{(x,y)\to(0,0)} f_3(x,y) = \lim_{(x,y)\to(0,0)} \frac{e^{x^2y} - 1}{xy} = \lim_{(x,y)\to(0,0)} x \frac{e^{x^2y} - 1}{x^2y} = 0.$$

On en conclut : $\lim_{(x,y)\to(0,0)} f(x,y) = (0,0,0)$. Note that

$$\lim_{u \to 0^{+}} u \log u = 0, \quad \lim_{u \to 0} \frac{e^{u} - 1}{u} = 1, \quad \lim_{u \to 0} \frac{\sin u}{u} = 1$$

Properties of continuoues vectorial functions

Proposition

Let $f, g: D \subseteq \mathbb{R}^n \to \mathbb{R}^m$ and a an accumulation point of D. Suppose that $\lim_{X \to a} f(X) = l_1$ and $\lim_{X \to a} g(X) = l_2$ then $\bullet \ \forall \alpha, \beta \in \mathbb{R}, \ \lim_{X \to a} (\alpha f + \beta g) = \alpha l_1 + \beta l_2$

Remark

Product and quotion of vectorial functions are not defined.

- 1 Limites and continuity
 - Limits and continuity of numerical functions
 - Generalities
 - Limit of numerical function of several variables
 - Continuity of numerical function of several variables
 - Limites and continuity of vectorial functions
 - Generalities
 - Limit of vectorial function of several variables
 - Continity of vectorial function of several variables

Continity of vectorial function of several variables

Definition

Let $f: D \subseteq \mathbb{R}^n \to \mathbb{R}^m$ and $a = (a_1, \dots a_n) \in D$.

• We say that f is **continuous** at the point a if an only if $\lim_{X \to a} f(X) = f(a)$. That is to say

$$\forall \varepsilon > 0, \ \exists \delta > 0 : (\forall X \in D : 0 < ||X - a|| < \delta) \Longrightarrow ||f(X) - f(a)|| < \varepsilon$$

• We say that f is continuous on D if f is continuous at all points in D.

Proposition

Let $f: D \subseteq \mathbb{R}^n \to \mathbb{R}^m$ and $a = (a_1, \dots a_n) \in D$. We say that f is continuous at a if and only if all f_i , $i = 1, \dots, m$ are continuous at a. That is to say f continuous at $a \iff \forall i = 1, \dots, m$ f_i continuous at a

Properties of Continity vectorial function of several variables

Proposition

Let $f, g: D \subseteq \mathbb{R}^n \to \mathbb{R}^m$ and $a \in D$. Suppose that f, g are continuous at a than

• $\forall \alpha, \beta \in \mathbb{R}$, $(\alpha f + \beta g)$ is continous at a.

Proposition

Let $f: D \subseteq \mathbb{R}^n \to A \subseteq \mathbb{R}^m$ and $g: A \subseteq \mathbb{R}^m \to \mathbb{R}^p$. Suppose that f is continuous at a and g is continuous at f(a). Then the function $f \circ g: D \subseteq \mathbb{R}^n \to \mathbb{R}^p$ is continuous at a.