STOCHASTIC PROCESSES

STAT 150

Instructor: Benson Au

KELVIN LEE

Contents

1	Prol	pability Review
	1.1	Basic Definitions
	1.2	Overview
	1.3	Useful Properties
	1.4	Conditional Probability
	1.5	Random Variables
		1.5.1 Discrete Random Variables
		1.5.2 Indicator Random Variable
		1.5.3 Continuous Random Variables
		1.5.4 Cumulative Distribution Function (CDF)
		1.5.5 Expectation
		1.5.6 Variance
		1.5.7 Moments
		1.5.8 Joint Distribution
		1.5.9 Independence
		1.5.10 Linearity of Expectation
		1.5.11 Convolution
		1.5.12 Gamma Distribution
		1.5.13 Moment Generating Function
	1.6	Conditional Probability (Cont'd)
		1.6.1 Conditional Expectation
2	Ran	dom Sums
	2.1	Mean and Variance of Random Sums
3	Mar	kov Chains
	3.1	Discrete-time Markov Chains
		3.1.1 <i>n</i> -step transition probabilities
	3.2	First Step Analysis
		3.2.1 The General Absorbing Markov Chain
	3.3	Random Walk
	3.4	Branching Process
		3.4.1 Generating Functions
4	The	Long Run Behavior of Markov Chains 22
	4.1	Regular Transition Probability Matrices
	4.2	Doubly Stochastic Matrices
	4.3	Interpretation of π

1 Probability Review

1.1 Basic Definitions

Definition 1.1.1 (Probability Space). A probability space $(\Omega, \mathcal{F}, \mathbb{P})$ is a triple consisting of a set Ω called the *sample space*, a set $\mathcal{F} \subseteq \Omega$ satisfying certain closure properties, and a function $\mathbb{P}: \mathcal{F} \to [0,1]$ that assigns probabilities to events in a coherent way.

Requirements for \mathcal{F} :

- (i) $\Omega \in \mathcal{F}$.
- (ii) If $E \in \mathcal{F}$, then $E^c \in \mathcal{F}$.
- (iii) If $\{E_i\}_{i=1}^{\infty} \subseteq \mathcal{F}$, then

$$\bigcap_{i=1}^{\infty} E_i \in \mathcal{F}.$$

Requirements for \mathbb{P} :

- (i) $\mathbb{P}(\Omega) = 1$.
- (ii) If $\{E_i\}_{i=1}^{\infty} \subseteq \mathcal{F}$ are pairwise disjoint (meaning $E_i \cap E_j = \emptyset$ for $i \neq j$, then

$$\mathbb{P}\left(\bigcup_{i=1}^{\infty} E_i\right) = \sum_{i=1}^{\infty} \mathbb{P}\left(E_i\right)$$

Definition 1.1.2 (Random Variable). A random variable is a function $X: \Omega \to \mathbb{R}$ such that $X^{-1}(B) \in \mathcal{F}$ whenever B is a "nice" subset of \mathbb{R} .

Example 1.1.3. $\Omega = \{H, T\}, \quad \mathcal{F} = 2^{\Omega}, \quad \mathbb{P}(\{H\}) = \frac{1}{2}. \ X(H) = 1, \quad X(T) = 0.$

$$\mathbb{P}(X=1) = \mathbb{P}(\{H\}) = \frac{1}{2}, \quad \mathbb{P}(X=0) = \mathbb{P}(\{T\}) = \frac{1}{2}.$$

1.2 Overview

Definition 1.2.1 (Stochastic Process). A stochastic process is a collection $\{X_t : t \in T\}$ of random variables $X_t : \Omega \to S \subseteq \mathbb{R}$ all defined on the some probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Here T is some index set (typically representing time) and S is the state space. One write this as

 $X: \Omega \times T \to S$, $(w,t) \mapsto X_t(\omega)$. For a given outcome $\omega \in \Omega$, we get a sample path trajectory $X(\omega): T \to S, t \mapsto X_t(\omega)$. A stochastic process can then be thought of as a random function.

The theme of this course is what can we say about the distribution of trajectories?

Example 1.2.2 (Branching Process (DTDS)). $X_0 = 1$, one individual in the 0th generation individuals produce a random number of offspring, i.i.d. $(\xi_i^{(n)})_{i \in \mathbb{N}, n \in \mathbb{N}_0}$.

$$X_{n+1} = \sum_{i=1}^{X_n} \xi_i^{(n)}.$$

One interesting question would be what is $\mathbb{P}(X_n = 0 \text{ eventually})$, the probability of dying out?

Example 1.2.3 (Poisson Process (CTDS)). Recall that the Poisson distribution is used to model the number of occurrences of a rare event in some fixed period of time. The Poisson process $(N_t)_{t\geq 0}$ models the number of occurrences throughout time. $N_t = \#$ of occurrences by time t.

1.3 Useful Properties

(i) (DeMorgan) $(E \cup F)^c = E^c \cap F^c, \quad (E \cap F)^c = E^c \cup F^c.$

- (ii) (Complementation) $\mathbb{P}(E) = 1 \mathbb{P}(E^c).$
- (iii) (Inclusion-exclusion) $\mathbb{P}(E \cup F) = \mathbb{P}(E) + \mathbb{P}(F) \mathbb{P}(E \cap F)$ $\mathbb{P}\left(\bigcup_{i=1}^{n} E_i\right) = \sum_{j=1}^{n} (-1)^{j-1} \sum_{S \in [n]: |S| = j} \mathbb{P}\left(\bigcap_{i \in S} E_i\right).$
- (iv) (Partitioning) If $\bigsqcup_{i=1}^{\infty} E_i = \Omega$, then

$$\mathbb{P}(F) = \mathbb{P}\left(\bigsqcup_{i=1}^{\infty} (F \cap E_i)\right) = \sum_{i=1}^{\infty} \mathbb{P}(F \cap E_i)$$

1.4 Conditional Probability

Conditioning: For $\mathbb{P}(F) > 0$,

$$\mathbb{P}(E \mid F) = \frac{\mathbb{P}(E \cap F)}{\mathbb{P}(F)}.$$

 $\mathbb{P}(\cdot \mid F)$ defines a new probability measure on (Ω, \mathcal{F}) .

Multiplication rule:

$$\mathbb{P}(E \cap F) = \mathbb{P}(F)\mathbb{P}(E \mid F).$$

If $\bigsqcup_{i=1}^{\infty} F_i = \Omega$, then

$$\mathbb{P}(E) = \sum_{i=1}^{\infty} \mathbb{P}(E \cap F_i) = \sum_{i=1}^{\infty} \mathbb{P}(F_i) \mathbb{P}(E \mid F_i).$$

Bayes' rule:

$$\mathbb{P}(F_j \mid E) = \frac{\mathbb{P}(F_j)\mathbb{P}(E \mid F_j)}{\sum_{i=1}^{\infty} \mathbb{P}(F_i)\mathbb{P}(E \mid F_i)}$$

1.5 Random Variables

1.5.1 Discrete Random Variables

If $X:\Omega\to S\subseteq\mathbb{R}$ is discrete,

$$\mathbb{P}(X \in E) = \sum_{x \in E} \mathbb{P}(X = x) = \sum_{x \in E \cap S} \mathbb{P}(X = x).$$

1.5.2 Indicator Random Variable

$$X(\omega) = \mathbb{I}_E(\omega) = \begin{cases} 1 & \omega \in E \\ 0 & \omega \notin E. \end{cases}$$

1.5.2.1 Binomial Random Variable

$$X = \sum_{i=1}^{n} \mathbb{I}_{E_i}, \quad \mathbb{P}(E_i) = p.$$

$$p_X(x) = \mathbb{P}(X = x) = \binom{n}{x} p^x (1-p)^{n-x}.$$

1.5.3 Continuous Random Variables

If X continuous,

$$\mathbb{P}(X \in E) = \int_{E} f_{X}(x)dx.$$

$$\mathbb{P}(X \in [a, b]) = \int_{a}^{b} f_{X}(x)dx.$$

1.5.3.1 Exponential Random Variable

$$f_X(x) = \lambda e^{-\lambda x} \mathbb{I}_{x \ge 0}.$$

1.5.3.2 Gaussian Random Variable

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/2\sigma^2}.$$

1.5.4 Cumulative Distribution Function (CDF)

 $F_X: \mathbb{R} \to [0,1],$

$$F_X(r) = \mathbb{P}(X \le r) = \mathbb{P}(X \in (-\infty, r]).$$

If X is discrete,

$$F_X(r) = \sum_{x_i \le r} p_X(x_i).$$

If X is continuous,

$$F_X(r) = \int_{-\infty}^r f_X(x) dx.$$

$$\frac{d}{dr}F_X(r) = f_X(r).$$

1.5.5 Expectation

1.5.5.1 Discrete case

$$\mathbb{E}[X] = \sum_{x_i \in S} x_i \mathbb{P}(X = x_i).$$

$$\mathbb{E}[X] = \sum_{n=1}^{\infty} \mathbb{P}(X \ge n).$$

$$\mathbb{E}[g(X)] = \sum_{x_i \in S} g(x_i) \mathbb{P}(X = x_i).$$

1.5.5.2 Continuous case

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} x f_X(x) dx.$$

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} x \mathbb{P}(X \ge x) dx.$$

$$\mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) dx.$$

1.5.6 Variance

$$var(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2.$$

1.5.7 Moments

$$\mathbb{E}[X^m] = \int_0^\infty mx^{m-1} \mathbb{P}(X \ge x) dx.$$

1.5.8 Joint Distribution

1.5.8.1 Discrete

$$p_{X,Y}(x,y) = \mathbb{P}(X=x,Y=y)$$

1.5.8.2 Continuous

$$\mathbb{P}((X,Y) \in E) = \int \int_{E} f_{X,Y}(x,y) dx dy$$

1.5.8.3 Marginal Distribution

$$p_X(x) = \sum_{y \in S_Y} p_{X,Y}(x,y).$$

$$f_X(x) = \int_{y \in S_Y} f_{X,Y}(x,y)dy$$

1.5.9 Independence

$$p_{X,Y}(x,y) = p_X(x)p_Y(y).$$

$$f_{X,Y}(x,y) = f_X(x)f_Y(y).$$

$$\mathbb{P}(X \le x, Y \le y) = F_X(x)F_Y(y).$$

1.5.10 Linearity of Expectation

$$\mathbb{E}\left[\sum_{i=1}^{n} c_i X_i\right] = \sum_{i=1}^{n} c_i \mathbb{E}[X_i]$$

If $(X_i)_{i=1}^n$ independent,

$$\left(g\left(X_{i}\right)\right)_{i=1}^{n}$$

independent.

$$\mathbb{E}\left[\prod_{i=1}^{n} g(X_i)\right] = \prod_{i=1}^{n} \mathbb{E}\left[g\left(x_i\right)\right]$$

$$\operatorname{Var}\left(\sum_{i=1}^{n} x_i\right) = \sum_{i=1}^{n} \operatorname{Var}\left(x_i\right)$$

In general,

$$\operatorname{Var}\left(\sum_{i=1}^{n} x_{i}\right) = \sum_{i,j=1}^{n} \operatorname{Cov}\left(x_{i}, x_{j}\right)$$

1.5.11 Convolution

Discrete case: X, Y discrete $X \perp \!\!\! \perp Y$

$$\begin{split} \mathbb{P}(X+Y=z) &= \sum_{Y} \mathbb{P}(X+Y=z,Y=y) \\ &= \sum_{y} \mathbb{P}(X=z-y,Y=y) \\ &= \sum_{y} \mathbb{P}(X=z-y) \mathbb{P}(Y=y) \quad (= \sum_{x} \mathbb{P}(X=x) \mathbb{P}(Y=z-x)). \end{split}$$

If X, Y are \mathbb{Z} -valued, this becomes

$$\mathbb{P}(X+Y=n) = \sum_{k=-\infty}^{\infty} \mathbb{P}(X=n-k)\mathbb{P}(Y=y)$$
$$= \sum_{k=-\infty}^{\infty} \mathbb{P}(X=k)\mathbb{P}(Y=n-k)$$
$$= (\mathbb{P}_X * \mathbb{P}_Y)(n)$$

Example 1.5.1 (Poisson). $X \sim \text{Poisson } (\lambda), \quad Y \sim \text{Poisson } (\mu), \quad X + Y \sim \text{Poisson } (\lambda + \mu)$

$$\mathbb{P}(X+Y=n) = \sum_{h=0}^{n} \mathbb{P}(X=k)P(Y=n-k)$$

$$= \sum_{k=0}^{n} e^{-\lambda} \frac{\lambda^{k}}{\mu!} e^{-\mu} \frac{\mu^{n-\mu}}{n-k!}$$

$$= e^{-(\lambda+\mu)} \sum_{k=0}^{n} \frac{n!}{k!(n-k)!} \lambda^{k} \mu^{n-k}$$

$$= \frac{e^{-(\lambda+\mu)}}{n!} (\lambda+\mu)^{n}$$

$$= \mathbb{P}(Z=n)$$

where $Z \sim \text{Poisson}(\lambda + \mu)$.

Continuous case: X, Y continuous

$$\mathbb{P}(X+Y\leqslant z) = \int_{-\infty}^{\infty} \int_{-\infty}^{z-x} f_X(x) f_Y(y) dy dx$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{z} f_X(x) f_Y(y-x) dy dx$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_X(x) f_Y(y-x) dx dy$$

$$f_{X+Y}(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(z-x) dx = \int_{-\infty}^{\infty} f_Y(y) f_X(z-y) dy = f_X * f_Y.$$

Example 1.5.2 (Convolution in uniform distributions). $X, Y \sim U[0, 1], X \perp\!\!\!\perp Y.$

$$f_{X+Y}(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(z - x) dx.$$

$$f_X(x) = \mathbb{I}_{[0,1]}(x) \qquad f_Y(y) = \mathbb{I}_{[0,1]}(y)$$

SO

$$f_{X+Y}(z) = \int_{x \in [0,1], z-x \in [0,1]} 1 dx$$

$$= \int_{x \in [0,1], x \in [-1+z,z]} 1 dx$$

$$= \int_{\max(0,-1+z)}^{\min(1,z)} 1 dx$$

$$= \min(1,z) - \max(0,-1+z).$$

1.5.12 Gamma Distribution

Definition 1.5.3 (Gamma function). Let $\alpha > 0$. The gamma function $\Gamma : (0, \infty) \to (0, \infty)$ is defined by

$$\Gamma(\alpha) = \int_0^\infty x^{\alpha - 1} e^{-x} dx = \mathbb{E}[X^{\alpha - 1}]$$

where $X \sim \text{Exp}(1)$ Let $\alpha, \lambda > 0$. The Gamma (α, λ) distribution is defined by

$$f(x) = \frac{\lambda^{\alpha} x^{\alpha - 1}}{\Gamma(\alpha)} e^{-\lambda x} \mathbb{I}_{x \ge 0}.$$

Exercise 1.5.4. $\Gamma(n) = (n-1)!$ for $n \in \mathbb{N}$. (Hint: use induction)

1.5.13 Moment Generating Function

Definition 1.5.5 (MGF). For a random variable X, the moment generating function (MGF) is the function $M_X : \mathbb{R} \to \mathbb{R}_{\geq 0} \cup \{+\infty\}$,

$$M_X(t) = \mathbb{E}[e^{tX}].$$

If $M_X(t) < +\infty$ for $t \in (-\epsilon, \epsilon)$, then

$$M_x(t) = \sum_{k=0}^{\infty} \frac{t^k \mathbb{E}[x^k]}{k!} \text{ for } |t| < \epsilon$$

For independent RVs $(X_i)_{i=1}^n$,

$$M_{\sum_{i=1}^{n} X_i}(t) = \prod_{i=1}^{n} M_{X_i}(t)$$

Exercise 1.5.6. If $X \sim \text{Exp}(\lambda)$, then $M_x(t) = \frac{\lambda}{\lambda - t}$ if $t < \lambda, +\infty$ otherwise. If $X \sim \text{Gamma}(n, \lambda)$, then

$$M_x(t) = \left(\frac{\lambda}{\lambda - t}\right)^n.$$

If $X \sim \text{Gamma}(\alpha, \lambda)$, then

$$M_x(t) = \left(\frac{\lambda}{\lambda - t}\right)^{\alpha}.$$

1.6 Conditional Probability (Cont'd)

Exercise 1.6.1 (Generalization). $(X_i)_{i=1}^n$, $(Y_j)_{j=1}^m$

$$p_{X_1,...,X_n|Y_1,...,Y_m}(x_1,...,x_n \mid y_1,...,y_m) =?$$

Example 1.6.2. Let $M \in \mathbb{N}$ and $p, q \in (0, 1)$. Consider $N \sim \text{Bin}(M, q)$ and $X \sim \text{Bin}(N, p)$. What is the distribution of X?

$$\begin{split} \mathbb{P}(X=k) &= \sum_{n=0}^{M} \mathbb{P}(N=n) \mathbb{P}(X=k \mid N=n) \\ &= \sum_{n=0}^{M} \binom{M}{n} q^{n} (1-n)^{M-n} \binom{n}{k} p^{k} (1-p)^{n-k} \\ &= \frac{p^{k}}{k!} \sum_{n=k}^{M} \frac{M!}{(M-n)!(n-k)!} q^{n} (1-q)^{M-n} (1-p)^{n-k} \\ &= \frac{p^{k}}{k!(M-k)!} \sum_{n=k}^{M} \frac{M!(M-k)!}{(M-n)!(n-k)!} q^{n} (1-q)^{M-n} (1-p)^{n-k} \\ &= \binom{M}{k} p^{k} q^{k} \sum_{n=k}^{M} \binom{M-k}{n-k} q^{n-k} (1-q)^{M-j} (1-p)^{n-k} \\ &= \binom{M}{k} p^{k} q^{k} \sum_{t=0}^{M-k} \binom{M-k}{t} (q(1-p))^{t} (1-q)^{M-k-t} \\ &= \binom{M}{k} (pq)^{k} (q(1-p) + (1-q))^{M-k} \\ &= \binom{M}{k} (pq)^{k} (1-pq)^{M-k}. \end{split}$$

Thus, $X \sim \text{Bin}(M, pq)$.

Remark. What if k > n in $\mathbb{P}(X = k \mid N = n)$ above in the first line? The probability is simply 0.

Question. Why does this answer make sense?

Answer. Think about retesting whenever we succeeded for the first M trials. Then X is simply the number of trials with double successes, thus we have the pq parameter.

Exercise 1.6.3. Consider $N \sim \text{Poisson}(\lambda), X \sim \text{Bin}(N, p)$. What is the distribution of X?

Answer. $X \sim \text{Poisson}(\lambda p)$.

Question. How can we interpret this?

Answer. We can interpret X as the number of customers visiting a store who purchase something.

1.6.1 Conditional Expectation

For X, Y discrete, $g: \mathbb{R} \to \mathbb{R}$. Assume $\mathbb{E}[|g(X)|] = \sum_{x} |g(x)p_X(x)| < \infty$.

Definition 1.6.4 (Conditional expectation). The *conditional expectation* is defined as

$$\mathbb{E}[g(X) = y] = \sum_{x} g(x) p_{X|Y}(x|y)$$

if $p_Y(y) \neq 0$.

Remark. Note that $\mathbb{E}[g(X) \mid Y = y]$ is a real number, whereas $\mathbb{E}[g(X) \mid Y]$ is a random variable.

1.6.1.1 Tower Property

$$\mathbb{E}[\mathbb{E}[g(X) \mid Y]] = \mathbb{E}\left[\sum_{y} \mathbb{E}[g(X) \mid Y = y]\right]$$

$$= \sum_{y} \mathbb{E}[g(X) \mid Y = y]p_{Y}(y)$$

$$= \sum_{y} \sum_{x} g(x)p_{X|Y}(x|y)p_{Y}(y)$$

$$= \sum_{x} g(x) \sum_{y} p_{X|Y}(x|y)p_{Y}(y)$$

$$= \sum_{x} g(x)p_{X}(x)$$

$$= \mathbb{E}[g(X)].$$

Remark. One intuitive example would be considering the averages of heights of students from a classroom. We divide it into several groups and let Y denote the whichever group we select and let $\mathbb{E}[g(X) \mid Y]$ be the average of those from group Y. Then the average height of the entire classroom $\mathbb{E}[g(X)]$ is equivalent to the average of the average of heights of each group, which is $\mathbb{E}[\mathbb{E}[g(X) \mid Y]]$.

Properties of conditional expectations:

1.
$$\mathbb{E}\left[c_{1}g\left(x_{1}\right)+c_{2}h\left(x_{2}\right)\mid Y=y\right]=c_{1}E\left[g\left(X_{1}\right)\mid Y=y\right]+c_{2}E\left[h\left(X_{2}\right)\mid Y=y\right]$$

2. If
$$g \ge 0$$
, then $E[g(x) | Y = y] \ge 0$.

3.
$$\mathbb{E}[f(X,Y) \mid Y = y] = \mathbb{E}[f(X,y) \mid Y = y].$$

4. If
$$X \perp \!\!\!\perp Y, \mathbb{E}[g(X) \mid Y = y] = \mathbb{E}[g(X)]$$

5.
$$\mathbb{E}[g(x)h(y) \mid Y = y] = h(y)\mathbb{E}[g(x) \mid Y = y]$$

6.
$$\mathbb{E}[g(x)h(y)] = \sum_{y} h(y)E[g(x) \mid Y = y]p_y(y) = \mathbb{E}[h(Y)\mathbb{E}[g(X) \mid Y]]$$

Proof of 3.

$$\mathbb{E}[f(X,Y) \mid Y = y] = \sum_{x,z} f(x,z) p_{X,Y|Y}(x,z|y)$$

$$= \sum_{x,z} f(x,z) \frac{p_{X,Y,Y}(x,z,y)}{p_{Y}(y)}$$

$$= \sum_{x} f(x,y) \frac{p_{X,Y}(x,y)}{p_{Y}(y)}$$

$$= \mathbb{E}[f(X,y) \mid Y = y].$$

Remark. $\mathbb{E}[f(X,y)] \neq \mathbb{E}[f(X,y) \mid Y=y].$

2 Random Sums

Definition 2.0.1. Let $(\xi_i)_{i=1}^{\infty}$ be i.i.d random variables, N be a \mathbb{N}_0 -valued random variable, $N \perp \!\!\! \perp (\xi_i)_{i=1}^{\infty}$. The *random sum* is defined as

$$X = \sum_{i=1}^{N} \xi_i = \sum_{n=0}^{\infty} \left(\sum_{i=1}^{n} \xi_i \right) \mathbf{1}_{N=n} = \begin{cases} \sum_{i=1}^{n} \xi_i & \text{if } N = n \ge 1\\ 0 & \text{if } N = 0. \end{cases}$$

Question. What is the distribution of X?

Let X, N be random variables. N is \mathbb{N}_0 -valued. The condition CDF is

$$F_{X|N}(x|n) = \mathbb{P}(X \le x \mid N = n)$$

if $\mathbb{P}(N=n) \neq 0$. The is an actual CDF, but for the random variable $X \mid N=n$.

Suppose that X is continuous and $F_{X|N}(x|n)$ is a differentiable function of x for each n such that $p_N(n) > 0$. The conditional PDF is

$$f_{X|N}(x|n) = \frac{d}{dx} F_{X|N}(x|n).$$

$$\int_{a}^{b} f_{X|N}(x|n) dx = F_{X|N}(b|n) - F_{X|N}(a|n)$$
$$= \mathbb{P}(X \in [a, b] \mid N = n).$$

Answer.

$$F_X(x) = \mathbb{P}(X \le x) = \sum_{n=0}^{\infty} \mathbb{P}(N=n)\mathbb{P}(X \le x \mid N=n).$$

$$f_X(x) = \sum_{n=0}^{\infty} \mathbb{P}(N=n) f_{X|N}(x|n).$$

2.1 Mean and Variance of Random Sums

Assume
$$\mathbb{E}[N] = \nu$$
 and $\mathbb{E}[\xi_i] = \mu$. Then
$$\mathbb{E}[X] = \mathbb{E}[\mathbb{E}[X \mid N]]$$

$$= \mathbb{E}\left[\mathbb{E}\left[\sum_{i=1}^N \xi_i \mid N\right]\right]$$

$$= \mathbb{E}[N\mathbb{E}[\xi_1]]$$

$$= \mathbb{E}[N\mu]$$

$$= \mu\nu.$$

3 Markov Chains

3.1 Discrete-time Markov Chains

Definition 3.1.1 (Markov process). A is a stochastic process $(X_t)_{t\in T}$ such that the future, given the present, is independent of the past.

Definition 3.1.2 (Markov property). The *Markov property* for a DTDS stochastic process is

$$\mathbb{P}(X_{n+1} = j \mid X_n = i, X_{n-1} = i_{n-1}, \dots, X_0 = i_0) = \mathbb{P}(X_{n+1} = j \mid X_n = i)$$

Example 3.1.3 (Gambler's ruin). $(X_n)_{n=0}^{\infty}, X_n = \text{your wealth after } n \text{ turns.}$ Stop if $X_n = 0$ or 5. Each play, you win \$1 with probability p and lose \$1 with probability 1-p independently of all previous plays. This process satisfies the markov property.

Example 3.1.4 (Ehrenfest model). Box of N particles. X_n = number of particles on the left side at time n. $N - X_n$ be the number of particles on the other side.

$$\mathbb{P}(X_{n+1} = i + 1 \mid X_n = i) = \frac{N - i}{N}$$

$$\mathbb{P}(X_{n+1} = i - 1 \mid X_n = i) = \frac{i}{N}.$$

Theorem 3.1.5.

Joint PMF of the Markov Chain is determined by initial distribution and $P = (p_{i,j})_{i,j \in S}$.

Proof.

$$\mathbb{P}(X_n = i_n, \dots, X_0 = i_0) = \mathbb{P}(X_n = i_n \mid X_{n-1} = i_{n-1}, \dots, X_0 = i_0) \mathbb{P}(X_{n-1} = i_{n-1}, \dots, X_0 = i_0)$$
$$= p_{i_{n-1}, i_n} p_{i_{n-2}, i_{n-1}} \cdots p_{i_0, i_1} \mathbb{P}(X_0 = i_0).$$

3.1.1 *n*-step transition probabilities

$$p_{i,j} = \mathbb{P}(X_{n+1} = j \mid X_n = i).$$

Theorem 3.1.6.

$$p_{i,j}^{(m)} = \mathbb{P}(X_{n+m} = j \mid X_n = i) = (P^m)_{i,j}.$$

Proof.

$$\mathbb{P}(X_{n+m+1} = j \mid X_n = i) = \sum_{k \in S} \mathbb{P}(X_{n+m+1} = j, X_{n+m} = k \mid X_n = i)$$
$$= \sum_{k \in S} \mathbb{P}(X_{n+m+1} = j \mid X_{n+m} = k) \mathbb{P}(X_{n+m} = k \mid X_n = i).$$

Example 3.1.7.

$$\begin{aligned} p_{i,j}^{(2)} &= \mathbb{P}(X_2 = j \mid X_0 = i) \\ &= \sum_{k \in S} \mathbb{P}(X_2 = j, X_1 = k \mid X_0 = i) \\ &= \sum_{k \in S} \mathbb{P}(X_2 = j \mid X_1 = k, X_0 = i) \mathbb{P}(X_1 = k \mid X_0 = i) \\ &= \sum_{k \in S} P_{i,k} P_{k,j} \\ &= (P^2)_{i,j} \end{aligned}$$

Example 3.1.8 (Inventory model). X_n = inventory that you have of this product after the nth business day. If $X_n \leq s$, place an order that brings inventory back to S by next morning. ξ_n = demand on nth day and (ξ_n) are i.i.d..

$$\mathbb{P}(X_{n+1} = j \mid X_n = i) = \begin{cases} \mathbb{P}(\xi_{n+1} = S - j) & \text{if } i \le s \\ \mathbb{P}(\xi_{n+1} = i - j) & \text{if } i > s. \end{cases}$$

 $\lim_{n\to\infty} \mathbb{P}(X_n < 0) = \text{chance of excess demand.}$

3.2 First Step Analysis

Consider $(X_n)_{n\geq 0}$ Markov chain on $\{1,\ldots,r\}\cup\{r+1,\ldots,N\}$ where $\{1,\ldots,r\}$ are the transient states and $\{r+1,\ldots,N\}$ are the absorbing states such that

$$\lim_{n \to \infty} p_{i,j}^{(n)} = 0 \qquad \forall i, j \in \{1, \dots, r\}$$
$$\lim_{n \to \infty} p_{i,i}^{(n)} = 1 \qquad \forall i \in \{r + 1, \dots, N\}$$

Then we can express the transition matrix P as

$$P = \begin{pmatrix} Q & R \\ 0 & I \end{pmatrix},$$

where Q and R is some transition matrices for the corresponding partitioned states and 0 is the zero matrix and I is the identity matrix.

Let $T = \min\{n \geq 0 : X_n \geq r+1\}$ be the time of absorption and X_T be the state we get absorbed into. Define $u_{i,k} = \mathbb{P}(X_T = k \mid X_0 = i)$. Then we have

$$u_{i,k} = \sum_{j=1}^{N} \mathbb{P}(X_T = k, X_1 = j \mid X_0 = i)$$

$$= \sum_{j=1}^{N} \mathbb{P}(X_T = k \mid X_1 = j, X_0 = i) \mathbb{P}(X_1 = j \mid X_0 = i)$$

$$= \sum_{j=1}^{N} p_{i,j} \mathbb{P}(X_T = k \mid X_1 = j)$$

$$= \sum_{j=1}^{N} \mathbb{P}(X_T = k \mid X_0 = j)$$

$$= \sum_{j=1}^{r} p_{i,j} u_{j,k} + \sum_{j=r+1, j \neq k}^{N} p_{i,j} u_{j,k} + p_{i,k} u_{k,k}.$$

Thus,

$$u_{i,k} = \sum_{j=1}^{r} P_{i,j} u_{j,k} + p_{i,k}$$

Hence, we have

$$U = QU + R \implies (I - Q)U = R \implies U = (I - Q)^{-1}R$$

where U contains all the $(u_{i,k})_{i\in\{1,\dots,r\},k\in\{r+1,\dots,N\}}$.

3.2.1 The General Absorbing Markov Chain

Let's suppose that associated with each transient state i is a rate g(i) and that we wish to determine the mean total rate that is accumulated up to absorption. Let v_i be this mean total amount, where the subscript i denotes the starting position $X_0 = i$, i.e.,

$$v_i = \mathbb{E}\left[\sum_{n=0}^{T-1} g(X_n) \mid X_0 = i\right]$$

The choice g = 1 will give $v_i = \mathbb{E}[T \mid X_0 = i]$. We can also write for $i \in \{1, \dots, r\}$ that

$$v_{i} = g(i) + \mathbb{E}\left[\sum_{n=1}^{T-1} g(X_{n}) \mid X_{0} = i\right]$$
$$= g(i) + \sum_{j=1}^{N} p_{i,j}v_{j} \qquad (= \sum_{j=1}^{N} p_{i,j}(g(i) + v_{i})).$$

Then we can condense this into the following form

$$v = g + Qv \implies v = (I - Q)^{-1}g.$$

where $v = (v_i)_{i \in \{1,\dots,r\}}$ and $g = (g(i))_{i \in \{1,\dots,r\}}$.

3.3 Random Walk

 $(\xi_n)_{n=1}^{\infty}$ i.i.d and \mathbb{Z} -valued. Then

$$X_n = \sum_{i=0}^n \xi_i.$$

$$\mathbb{P}(X_{n+1} = j \mid X_n = i, X_{n-1} = i_{n-1}, \dots, X_1 = i_1) = \mathbb{P}(\xi_{n+1} = j - i \mid \xi_n = i - i_{n-1}, \dots, \xi_1 = i_1)$$

$$= \mathbb{P}(\xi_{n+1} = j - i)$$

$$= \mathbb{P}(\xi_{n+1} = j - i \mid X_n = i).$$

Example 3.3.1 (Gambler's Ruin). Win 1 dollar with probability p and lose 1 dollar with probability q = 1 - p. Stop when we lose all money or make N dollars. We are interested in $u_k = \mathbb{P}(X_T = 0 \mid X_0 = k)$ and $v_k = \mathbb{E}[T \mid X_0 = k]$. Clearly $u_0 = 1, u_N = 0$. For $k = 1, \ldots, N-1$, we have

$$u_k = pu_{k+1} + qu_{k-1} \implies q(u_k - u_{k-1}) = p(u_{k+1} - u_k)$$

Let $\Delta_{k+1} = u_{k+1} - u_k$. Then we have

$$q\Delta_k = p\Delta_{k+1}$$

$$\Delta_{k+1} = \frac{q}{p}\Delta_k = \dots = \left(\frac{q}{p}\right)^k \Delta_1.$$

$$\sum_{i=1}^m \Delta_i = \Delta_1 \sum_{i=1}^m \left(\frac{q}{p}\right)^{i-1} = \sum_{i=1}^n u_i - u_{i-1} = u_m - u_0 = u_m - 1$$

Thus,

$$u_m = 1 + \Delta_1 \frac{1 - \left(\frac{q}{p}\right)^m}{1 - \frac{q}{p}} \qquad m = 1, \dots, N$$

When m = N,

$$0 = 1 + \Delta_1 \frac{1 - \left(\frac{q}{p}\right)^N}{1 - \frac{q}{p}} \implies \Delta_1 = -\frac{1 - \frac{q}{p}}{1 - \left(\frac{q}{p}\right)^N}.$$

Substituting the expression for Δ_1 gives

$$u_{m} = 1 + \left(-\frac{1 - \frac{q}{p}}{1 - \left(\frac{q}{p}\right)^{N}}\right) \left(\frac{1 - \left(\frac{q}{p}\right)^{m}}{1 - \frac{q}{p}}\right) = 1 - \frac{1 - \left(\frac{q}{p}\right)^{m}}{1 - \left(\frac{q}{p}\right)^{N}} = \frac{\left(\frac{q}{p}\right)^{m} - \left(\frac{q}{p}\right)^{N}}{1 - \left(\frac{q}{p}\right)^{N}}.$$

Note that $p \neq q$. If p = q, then

$$\sum_{i=1}^{m} \Delta_i = \Delta_1 m = u_m - 1 \implies u_m = \frac{N - m}{N}.$$

If we take limit as $N \to \infty$ for $p \le q$, then

$$\lim_{N \to \infty} u_m = 1,$$

which implies that we will be broke at the end no matter how much money we started with. If p > q, then

$$\lim_{N \to \infty} u_m = \left(\frac{q}{p}\right)^m.$$

If m is large, then this quantity becomes small. This implies that if p > q and we started with a lot of money, then the chance of us being broke ultimately becomes smaller.

Now lets compute v_k when $p = q = \frac{1}{2}$. Clearly, $v_0 = 0$ and $v_N = 0$. For $k = 1, \ldots, N-1$, we have

$$v_k = 1 + \frac{1}{2}v_{k+1} + \frac{1}{2}v_{k-1}.$$

Let $\Delta_k = v_k - v_{k-1}$. Then we have

$$0 = 1 + \frac{1}{2}(\Delta_{k+1} - \Delta_k).$$

Summing both sides gives

$$\sum_{k=1}^{m} 0 = m + \sum_{k=1}^{m} \frac{1}{2} (\Delta_{k+1} - \Delta_k) \implies \Delta_1 = 2m + \Delta_{m+1} \qquad m = 0, \dots, N-1.$$

Then

$$\sum_{m=0}^{k} \Delta_1 = \sum_{m=0}^{k} (2m + \Delta_{m+1})$$

$$(k+1)\Delta_1 = (k+1)v_1 = \sum_{m=0}^{k} 2m + \sum_{m=0}^{k} \Delta_{m+1}$$

$$(k+1)v_1 = k(k+1) + (v_{k+1} - v_0) \implies (k+1)v_1 = k(k+1) + v_{k+1}.$$

Take k = N - 1 gives

$$Nv_1 = (N-1)N + 0 \implies v_1 = N-1.$$

Then

$$v_{k+1} = (k+1)(v_1 - k) = (k+1)(N-1-k).$$

Hence,

$$v_k = k(N - k).$$

3.4 Branching Process

 $\left(\xi_i^{(n)}\right)_{i=1,n=0}^{\infty,\infty}$ i.i.d. \mathbb{N}_0 -valued random variables where $\xi_i^{(n)}$ is the number of offspring of ith individual in nth generation. $X_0 = 1$. $\mathbb{E}[\xi_i] = \mu$ and $\operatorname{Var}(\xi_i) = \sigma^2$. The population of at time n+1 is

$$X_{n+1} = \sum_{i=1}^{X_n} \xi_i^{(n)}$$

Our goal is to compute $\mathbb{P}(X_n = 0 \text{ eventually } | X_0 = 1)$. But let's first compute $\mathbb{E}[X_{n+1}]$ and $\operatorname{Var}(X_{n+1})$. Recall that

$$\mathbb{E}\left[\sum_{i=1}^{N} \xi_{i}\right] = \mathbb{E}[N]\mathbb{E}[\xi_{i}]$$
$$\operatorname{Var}\left(\sum_{i=1}^{N} \xi_{i}\right) = \operatorname{Var}(N)\mathbb{E}[\xi_{i}]^{2} + \operatorname{Var}(\xi_{i})\mathbb{E}[N].$$

Then we have

$$\mathbb{E}[X_{n+1}] = \mu \mathbb{E}[X_n] = \mu^{n+1}$$

$$\operatorname{Var}(X_{n+1}) = \mu^2 \operatorname{Var}(X_n) + \mu^n \sigma^2.$$

$$c_0 = \operatorname{Var}(X_0) = 0$$

$$c_n = \operatorname{Var}(X_n)$$

$$c_{n+1} = \mu^2 c_n + \mu^n \sigma^2.$$

Define the generating function f(x) as

$$f(x) = \sum_{n=0}^{\infty} c_n x^n = \sum_{n=0}^{\infty} c_{n+1} x^{n+1} = \mu^2 x \sum_{n=0}^{\infty} c_n x^n + \sigma^2 x \sum_{n=0}^{\infty} \mu^n x^n$$
$$= \mu^2 x f(x) + \frac{\sigma^2 x}{1 - \mu x}.$$

Then

$$f(x) = \frac{\sigma^2 x}{(1 - \mu x)(1 - \mu^2 x)} = \sigma^2 x \frac{1}{1 - \mu x} \frac{1}{1 - \mu^2 x}.$$

Since

$$\sum_{j=1}^{\infty} c_j x^j = \sigma^2 x \sum_{n=0}^{\infty} \mu^n x^n \cdot \sum_{m=0}^{\infty} \mu^{2m} x^m,$$

the coefficient of $x^{j-1} = \sum_{k=0}^{j-1} x^k x^{j-1-k}$ is

$$c_j = \sum_{k=0}^{j-1} \mu^k \mu^{2(j-1-k)}.$$

Thus

$$\operatorname{Var}(X_n) = \sigma^2 \mu^{n-1} \cdot \begin{cases} n & \text{if } \mu = 1\\ \frac{1-\mu^{n-1}}{1-\mu} & \text{if } u \neq 1. \end{cases}$$

Remark. When $\mu = 1$, expectation is constant, variance is growing linearly. When $\mu \neq 1$, expectation is increasing/decreasing geometrically, same with variance.

Now let $T = \min \{n \geq 0 : X_n\}$ be the time the population dies out and let $u_n = \mathbb{P}(T \leq n) = \mathbb{P}(X_n = 0)$. Then $\lim_{n \to \infty} u_n$ is the probability of extinction.

$$u_{n+1} = \sum_{k=0}^{\infty} p_k u_n^k$$

where $p_k = \mathbb{P}(\xi = k)$. We have $u_0 = 0, u_1 = p_0$.

Let $\phi_{\xi}:[0,1]\to[0,1]$ be the generating function of ξ defined by

$$\phi_{\xi}(s) = \mathbb{E}[s^{\xi}] = \sum_{k=0}^{\infty} p_k s^k.$$

Then we have

$$u_{n+1} = \phi(u_n) \implies u_{\infty} = \lim_{n \to \infty} u_{n+1} = \lim_{n \to \infty} \phi(u_n) \implies u_{\infty} = \phi(\lim_{n \to \infty} u_n) = \phi(u_{\infty}).$$

Thus, u_{∞} is a fixed point for ϕ .

3.4.1 Generating Functions

Given any \mathbb{N}_0 -valued random variable ξ with $p_k = \mathbb{P}(\xi = k)$. Then the generating function is given by

$$\phi_{\xi}(s) = \mathbb{E}[s^{\xi}] = \sum_{k=0}^{\infty} p_k s^k.$$

 ϕ_{ξ} completely recovers the distribution of ξ . We have $\phi_{\xi}(0) = p_0 \phi_{\xi}(1) = 1$. We can recover p_k via

$$p_k = \frac{\phi^{(k)}(0)}{k!}.$$

Then

$$\mathbb{E}[X] = \phi'(1) = \sum_{k=1}^{\infty} k p_k.$$

In fact, one can check that

$$\phi''(1) = \mathbb{E}[X(X-1)]$$

$$\phi^{(k)}(1) = \mathbb{E}[X(X-1)\cdots(X-k+1)].$$

Suppose ξ_1, \ldots, ξ_n i.i.d has generating function ϕ . Then $Z = \sum_{i=1}^n \xi_i$ has the following generating function:

$$\phi_Z(s) = \mathbb{E}[s^Z] = \mathbb{E}[s^{\sum_{i=1}^n \xi_i}] = \prod_{i=1}^n \mathbb{E}[s^{\xi_i}] = \phi^n(s).$$

But if instead we have $Z = \sum_{i=1}^{N} \xi_i$ where N is a random variable and N has gnerating function g_N . Then the generating function would be

$$\mathbb{E}[s^{\sum_{i=1}^{N} \xi_i}] = \sum_{n=0}^{\infty} \mathbb{P}(N=n)\phi^n(s)$$
$$= g_N(\phi(s)).$$

Now suppose $\phi_n(s)$ is the generating function of X_n defined by

$$X_{n+1} = \sum_{i=1}^{X_n} \xi_i^{(n)}.$$

Then applying the result from above, we have

$$\phi_{n+1}(s) = \phi_n(\phi(s)) = \phi^{(n+1)}(s).$$

4 The Long Run Behavior of Markov Chains

4.1 Regular Transition Probability Matrices

Suppose $(X_n)_{n=0}^{\infty}$ is a Markov Chain on $\{1, \ldots, N\}$.

Definition 4.1.1 (Regular). $(X_n)_{n=0}^{\infty}$ is regular if $\exists m \geq 1$ such that P^m has all positive entries.

Theorem 4.1.2.

If $(X_n)_{n=0}^{\infty}$ is regular, there exists a limiting distribution $\hat{\pi} = (\pi_1, \dots, \pi_N)$, where $\pi_i > 0$ and $\sum_{i=1}^{N} \pi_i = 1$ such that

$$\lim_{n \to \infty} \mathbb{P}(X_n = j \mid X_0 = i) = \pi_j, \quad \forall i, j \in \{1, \dots, N\}.$$

This limiting distribution does not depend on initial distribution.

Corollay 4.1.3. Suppose $\mathbb{P}(X_0 = i) = \alpha_i$. Then

$$\lim_{n \to \infty} \mathbb{P}(X_n = j) = \pi_j > 0.$$

Question. How do we find π ?

Theorem 4.1.4.

 π is the unique solution to $\pi P = \pi$ satisfying $\langle \hat{\pi}, \hat{1} \rangle = \sum_{i=1}^{N} \pi_i = 1$ and $\pi_i \geq 0$ for all i.

Proof. We first check that π is a solution.

$$\begin{split} \pi &= \lim_{n \to \infty} \pi P^n \\ \pi P &= \lim_{n \to \infty} \pi P^{n+1} = \lim_{m \to \infty} \pi P^m = \pi. \end{split}$$

Now we check for uniqueness. Let τ be any distribution that satisfies $\tau P = \tau$. Then

$$\lim_{n \to \infty} \tau P^n = \pi$$

$$\lim_{n \to \infty} \tau = \pi$$

$$\tau = \pi$$

4.2 Doubly Stochastic Matrices

Definition 4.2.1 (Doubly stochastic). A matrix is *doubly stochastic* if every row and column sums to 1.

Proposition 4.2.2. If (X_n) is doubly stochastic, then

$$\pi = \left(\frac{1}{N}, \cdots, \frac{1}{N}\right).$$

Proof.

$$\left(\frac{1}{N}, \dots, \frac{1}{N}\right) P = \left(\frac{1}{N}, \dots, \frac{1}{N}\right) \begin{pmatrix} P_{1,1} & \dots & \vdots \\ P_{2,1} & \dots & \vdots \\ \vdots & \ddots & \vdots \\ P_{N,1} & \dots & \vdots \end{pmatrix}$$

$$= \left(\frac{1}{N} \sum_{i=1}^{N} P_{i,1}, \dots, \frac{1}{N} \sum_{i=1}^{N} P_{i,m}\right)$$

$$= \left(\frac{1}{N}, \dots, \frac{1}{N}\right).$$

4.3 Interpretation of π

• $\pi_j = \lim_{n \to \infty} \mathbb{P}(X_n = j \mid X_0 = i) = \lim_{n \to \infty} P_{i,j}^n$.

• π_j is the mean fraction of time the process spends in state j.

$$\pi_j = \lim_{n \to \infty} \mathbb{E} \left[\frac{1}{n+1} \sum_{m=0}^n \mathbf{1} \{ X_m = j \} \mid X_0 = i \right]$$
$$= \lim_{n \to \infty} \frac{1}{n+1} \sum_{m=0}^n P_{i,j}^m$$
$$= \pi_j.$$