

b)
$$\frac{11}{5}(\frac{180^{\circ}}{11}) = \frac{180^{\circ}}{5} = 36$$

c)
$$\frac{2\pi/3}{8}$$
 $\frac{2}{8}$ $\frac{2}{8}$

LoS:
$$\frac{\sin(\theta)}{5} = \frac{\sin(2\pi/3)}{8} = \frac{\sin(\alpha)}{\alpha}$$

d)
$$f(x)=3 \sin(2(x+2))+0$$
 $f(x)=3 \sin(2(x+2))+0$
 $f(x)=3 \sin(2(x+2))+$

(2)
$$a$$
) $tan(2\pi/3) = -tan(\pi/3) = -\sqrt{3}$ $tan(2\pi/3) = \frac{2 tan(\pi/3)}{1 - tan(\pi/3)^2}$

or:

$$tan(2\pi/3) = \frac{sin(2\pi/3)}{cos(2\pi/3)} = \frac{sin(3)}{-cos(7/3)} = \frac{\sqrt{3}/2}{-1/2} = -\sqrt{3}.$$

$$sin(105°) = sin(\frac{1}{2}(210°))$$

 $sin(105°) = sin(60° + 45°)$
 $sin(105°) = sin(150° - 45°)$

$$sin(105^\circ) = sin(60^\circ) + 45^\circ = sin(60^\circ) + cos(60^\circ) + cos(60^\circ$$

$$sin(\frac{1}{2}(2b^{\circ})) = \pm \sqrt{\frac{1-cos(210^{\circ})}{2}}$$

$$=\pm \sqrt{1-(-\sqrt{3}/2)}$$

$$= \pm \sqrt{\frac{1+\sqrt{3}/2}{2}}$$

$$= + \sqrt{\frac{2 + \sqrt{3}}{2}}$$

$$= \pm \sqrt{\frac{2+\sqrt{3}}{4}}$$

$$=\frac{\pm\sqrt{2+13}}{2}$$

c)
$$f(x) = 2 sin(x-h) - \sqrt{3}$$

$$h \neq 0$$
 because then $f(0) = 2 \sin(0-0) - 13 = -13$

$$\frac{\sqrt{3}}{2} = \sin(-h)$$

$$-h = \frac{\pi}{3} + 2\pi n$$
or
 $-h = \frac{2\pi}{3} + 2\pi n$

$$h = -T/3$$

$$arccos(\frac{\sqrt{3}}{2}) = \frac{\pi}{6}$$

$$d = \frac{\sqrt{3}}{2}$$

$$\theta = \frac{\pi}{6} + 2\pi n$$

$$\theta = \frac{11\pi}{6} + 2\pi n$$

either:
$$tan(T/4) = 1$$
 and slope < 0, so $tm(3T/4) = -1$

$$\sin \left(\frac{3\pi}{4}\right) = \frac{\sqrt{2}}{2} \cos \left(\frac{3\pi}{4}\right) = -\frac{\sqrt{2}}{2}, \text{ so}$$

$$\tan \left(\frac{3\pi}{4}\right) = \frac{\sqrt{2}/2}{\sqrt{2}} = -1.$$

b) g(b) is a transformation of tan(b).

- Horizontal stretch by a factor of 1/3

- Vertical reflection

- Vertical shift up 1

c)
$$g(\theta)=0$$

 $\tan(3\theta)=1$

$$\theta = \frac{5\pi}{12} + \frac{2\pi n}{3}$$

$$c^{2} = 4^{2} + 5^{2} - 2 \cdot 4 \cdot 5 \cdot cos(60^{\circ})$$

$$c^{2} = |6 + 25 - 40(\frac{1}{2})$$

$$c^{2} = 2|$$

$$c = \sqrt{2}|$$

b)
$$\frac{\sin (\alpha)}{y} = \frac{\sin (60^{\circ})}{C} = \frac{\sqrt{3}/2}{\sqrt{21}}$$

$$\alpha = \arcsin \left(4\left(\frac{\sqrt{3}/2}{\sqrt{21}}\right)\right)$$

$$\sin(60^\circ) = \frac{h}{4}$$

$$h = 4\left(\frac{\sqrt{3}}{2}\right) = 2\sqrt{3}$$

$$A = \frac{1}{2}(5)(2\sqrt{3}) = 5\sqrt{3}$$

Def: A viit rector is a rector v with ||v||=1.

Def: The two standard unit vectors in two dimensions are I and J, where i points in the positive - x direction and J in the positive - y direction.

Theorem: Any vector \vec{v} can be written as $\vec{v} = c \vec{t} + d \vec{j}$ for a unique pair of scalars c and d. This is called the unit vector decomposition of \vec{v} .

Prop Let
$$\vec{v} = c\vec{t} + d\vec{j}$$
 and $\vec{w} = e\vec{i} + f\vec{j}$.

(1) $\vec{v} + \vec{w} = (c+e)\vec{i} + (d+f)\vec{j}$

(2) $\vec{v} - \vec{\omega} = (c-e)\vec{i} + (d-f)\vec{j}$

(3)
$$b\vec{z} = (bc)\vec{i} + (bd)\vec{j}$$

(4)
$$||\vec{v}|| = \sqrt{c^2 + d^2}$$
 (Pythagorean theorem)

$$E_{X}$$
: if $\vec{7} = 3\vec{1} - 2\vec{7}$, then $||\vec{7}|| = \sqrt{3^2 + (-2)^2} = \sqrt{13}$

Prop: Let i be a rector with angle of from the horizontal. Then

$$\vec{\nabla} = \left(||\vec{\nabla}|| \ (2S(\theta)) \vec{c} + \left(||\vec{\nabla}|| \ Sin(\theta) \right) \vec{J}.$$

$$\vec{J} = 4 \cos(2\pi/3) \vec{i} + 4 \sin(2\pi/3) \vec{j}$$

= -2 \(\tau + 2\square{3} \)

comment: Given the unit rector decomposition of a vector V, we can find its angle with the horizontal via arctan.

Announcement: change to HW 7 (problem 2 easier)

Prop let (x, y,) and (x2, y2) be two points in the plane. The vector that starts at

$$(x_2-x_1)^{\frac{1}{c}}+(y_2-y_1)^{\frac{1}{c}}$$

$$(3-1)\vec{t} + (5-2)\vec{j} = 2\vec{t} + 3\vec{j}$$

The Dot Product

Connent: The dot product is a way to multiply
two rectors, but it gives a scalar, not
a vector.

Def: Let $\vec{v} = a\vec{i} + b\vec{j}$ and $\vec{w} = c\vec{i} + d\vec{j}$. The dot product of \vec{v} and \vec{w} is $\vec{v} \cdot \vec{w} = ac + bd$.

 $= (2\vec{t} - \vec{j}) \cdot (3\vec{t} + 4\vec{j}) = 2 \cdot 3 + (-1) \cdot 4 = 2$

Ex: Find VOW:

We first have to find Heir unit vector decompositions.
$$\vec{v} = 2\cos(\frac{\pi}{4})\vec{t} + 2\sin(\frac{\pi}{4})\vec{j}$$

$$= 52\vec{t} + 52\vec{j}$$

$$\vec{\nabla} \cdot \vec{w} = (\vec{\Sigma})(\vec{z}) + (\vec{\Sigma})(-3) = -3\sqrt{2}$$

Prop:

6
$$\vec{v} \cdot \vec{v} = ||\vec{v}||^2$$
 (think of $x \times = |x|^2$)

$$||\vec{v}|| = ||\vec{v}|| = ||\vec{v}||^2 = a^2 + b^2$$

$$||\vec{v}||^2 = a^2 + b^2$$

$$||\vec{v}||^2 = a + b + b$$

Comment: You might expect a property like $\vec{u} \cdot (\vec{v} \cdot \vec{v}) = (\vec{u} \cdot \vec{v}) \cdot \vec{v} - \text{but this}$ doesn't make sense! $\vec{u} \cdot \vec{v}$ is a scalar,

and you can't obt scalars with vectors.

Prop: Let it and it be rectors that form an angle of 0 when stanting at the same point.

Then $\vec{v} \cdot \vec{v} = ||\vec{v}|| ||\vec{v}|| \cos(\theta)$.

Connert: In this sense, the dot product measures
the dayree to which i and is are
parallel.

Ex: Find the angle between
$$\vec{v} = 3\vec{c} + \vec{j}$$
 and $\vec{u} = 2\vec{c} - \vec{j}$.

$$\vec{\nabla} \cdot \vec{w} = 3.2 + (-1)(1) = 6 - 1 = 5$$

$$||\vec{\nabla}|| = \sqrt{3^2 + 1^2} = \sqrt{10}$$

$$||\vec{w}|| = \sqrt{2^2 + (-1)^2} = \sqrt{5}$$

$$\vec{\sigma} = \arccos\left(\frac{5}{\sqrt{10}\sqrt{5}}\right) = \arccos\left(\frac{5}{\sqrt{2}\sqrt{5}\sqrt{5}}\right)$$

$$= \arccos\left(\frac{1}{\sqrt{2}}\right) = \frac{1}{\sqrt{4}}$$

Comment: If you want the angle that vector

makes with the horizontal, use arctan

If you want the angle that two vectors

nake with one another, use this.

Def: Vectors \vec{v} and \vec{w} are orthogonal if $\vec{v} \cdot \vec{v} = 0$.

Comment: If neither v nor w is the zero

rector, then orthogonal means perpendicular.

Your book uses perpendicular, but we'll use

orthogonal.

Fx: $\vec{l} = 2\vec{c} + 3\vec{j}$ and $\vec{w} = -3\vec{c} + 2\vec{j}$ are orthogonal, because $\vec{l} \cdot \vec{w} = 2(-3) + 3(2)$ = -6 + 6 = 0.

Ex: Find all vertors orthogonal to $-3\hat{i} + 2\hat{j}$. Let $\vec{v} = a\hat{i} + b\hat{j}$ and solve $\vec{v} \cdot (-3\hat{i} + 2\hat{j}) = 0$ -3a + 2b = 0First solve for $a \cdot -3a = -2b$ $a = \frac{2}{3}b$

Set b=t for a variable t.

b = t $a = \frac{2}{3}t$

 $\vec{J} = \frac{2}{3}t\vec{i} + t\vec{j}$ for any t.

(Note: t = 3 gives the previous example).

What's happening geometrically? プ= も (3 ご+ 」) -36 + 2J 2/3 2+5