

NORTH SYDNEY BOYS HIGH SCHOOL

2007

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 2

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write on one side of the paper (with lines) in the booklet provided
- · Write using blue or black pen
- Board approved calculators may be used
- All necessary working should be shown in every question
- Each new question is to be started on a new page.

· Attempt all questions

Class Teacher:

(Please tick or highlight)

- O Mr Ee
- O Mr Trenwith
- O Mr Weiss

Student Number:	-	

		Γ)	o be used	by the ex	cam mark	ers only.)				
Question No	1	2	3	4	5	6	7	8	Total	Total
Mark	15	15	15	15	15	15		15	120	100

ου	ESTION 1 (15 marks)	Mark
(a)	Find $\int \frac{x}{\sqrt{16-x^2}} dx$	2
(b)	By completing the square, find $\int \frac{8}{x^2 + 4x + 13} dx$	2
(c)	Use integration by parts to evaluate $\int_{1}^{e} x^{4} \log_{e} x \ dx$	4
(d)	Use the substitution $u = \cos x$ to find $\int \cos^2 x \sin^5 x dx$	3
(e)	Express $\frac{3x+7}{(x+1)(x+2)(x+3)}$ in partial fractions and hence prove that $\int_0^1 \frac{3x+7}{(x+1)(x+2)(x+3)} dx = \ln 2$	4
QUE	ESTION 2 (15 marks) Start a new page	
(a)	Let $z = 2+i$ and $w = 1-i$. Find, in the form $x+iy$,	
	(i) $3z + iw$ (ii) $z\overline{w}$ (iii) $\frac{5}{z}$	1 1
(b)	Let $\alpha = -\sqrt{3} + i$.	
	(i) Express α in modulus-argument form.	2
	(ii) Express α^4 in modulus-argument form.	2
	(iii) Hence express α^4 in the form $x+iy$.	1

2

QUESTION 2 (Continued)

(c) If $z_1 = 4 + i$ and $z_2 = 1 + 2i$ show geometrically how to construct the vectors representing.

(i)
$$z_1 + z_2$$
. 1

(ii)
$$z_1 - z_2$$
.

Consider the hyperbola with the equation $\frac{x^2}{16} - \frac{y^2}{9} = 1$.

QUESTION 3 (15 marks) Start a new page

(a) If α , β and γ are the roots of the cubic equation $x^3 + mx + n = 0$, find in terms of m and n, the values of

(i)
$$\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$$

(ii)
$$\alpha^3 + \beta^3 + \gamma^3$$

(iii) Determine the cubic equation whose roots are
$$\alpha^2$$
, β^2 and γ^2 .

(b) Given that the equation
$$x^4 - 5x^3 - 9x^2 + 81x - 108 = 0$$
 has a triple root, find all the roots of the equation.

(c) If
$$y = e^{-x}(A\sin 2x + B\cos 2x)$$
, prove that
$$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 5y = 0$$

QUESTION 4 (15 marks) Start a new page

Given $f(x) = x^2 - 2x$. On separate diagrams sketch the graphs of the following. Indicate clearly any asymptotes, intercepts with the axes and local maxima and minima.

(i)
$$y = |f(x)|$$

(ii) $y = f(|x|)$
(iii) $y = \frac{1}{f(x)}$

(iv)
$$y^2 = f(x)$$
 2
(v) $y = [f(x)]^2$ 1
(vi) $y = \ln[f(x)]$ 2

The region bounded by $y = \ln x$, x = e and the x – axis is rotated about the 3 y - axis. Find the volume of rotation. Use the method of cylindrical shells.

First differentiating both sides of the formula

$$1+x+x^2+x^3+...+x^n=\frac{x^{n+1}-1}{x-1}$$

then find an expression for

$$1+2\times2+3\times4+4\times8+...+n2^{n-1}$$

2

QUESTION 5 (15 marks) Start a new page

(a) In the circle shown below, the diameter AB meets the chord CD at right angles at M. The tangents at C and D meet at T.

- (i) Show that BC bisects ∠MCT.
- (ii) Show that triangle BCM is similar to triangle CAM.

 Hence, show that CM² = AM × BM
- (iii) Show that $TB \times TA = MB \times TA + TB \times TM$

2

2

4

2

3

- (iv) Hence, or otherwise, show that M divides the interval AB internally in the same ratio that T divides AB externally.
- (c) If $I_n = \int \tan^n x \, dx$
 - (i) Show that $I_n = \frac{1}{n-1} \tan^{n-1} x I_{n-2}$.
 - (ii) Find $\int \tan^6 x \, dx$.

QUESTION 6 (15 marks) Start a new page

(a) The solid shown has a semicircular base of radius 2 units. Vertical cross-sections perpendicular to the diameter are right-angled triangles whose height is bounded by the parabola $z = 4 - x^2$.

By slicing at right angles to the x- axis, show that the volume of the solid is given by $V = \int_{0}^{2} (4 - x^{2})^{3/2} dx$, and hence calculate this volume.

5

2

2

(b) The tangents at P(x₁, y₁), Q(x₂, y₂) on the hyperbola xy = 1 intersect at the point T (x₀, y₀).

- (i) Show that the tangent at $P(x_1, y_1)$ has equation $xy_1 + yx_1 = 2$
- (ii) Show that the chord of contact PQ has equation $xy_0 + yx_0 = 2$
- (iii) Show that x_1 and x_2 are the roots of the quadratic equation $y_0\,x^2-2x+x_0=0$
- (iv) Hence, or otherwise, show that the midpoint R, of PQ has coordinates $\left(\frac{1}{y_0},\frac{1}{x_0}\right)$
- (v) Hence, or otherwise, show that as T moves on the hyperbola $xy = c^2$, 0 < c < 1, R moves on the hyperbola $xy = \frac{1}{c^2}$

QUESTION 7 (15 marks) Start a new page

- (a) (i) Show that $\tan(A + \frac{\pi}{2}) = -\cot A$ (ii) Use mathematical induction to prove that $\tan\left[(2n+1)\frac{\pi}{4}\right] = (-1)^n$ for all integer $n \ge 1$.
- (b) Two stones are thrown simultaneously form the same point in the same direction with the same non-zero angle of projection (upward inclination to the horizontal), α , but with different velocities U, V metres per second (U < V).

The slower stone hits the ground at a point P on the same level as the point of projection. At that instant the faster stone just clears a wall of height h metres above the level of projection and its (downward) path makes an angle β with the horizontal.

- (i) Show that while the stones are in flight, the line joining them has a gradient of $\tan \alpha$.
- (ii) Hence, express the horizontal distance from P to the foot of the wall in terms of h and α.
- (iii) Show that $V(\tan \alpha + \tan \beta) = 2U \tan \alpha$.
- (iv) Hence, deduce that, if $\beta = \frac{1}{2}\alpha$, then $U < \frac{3}{4}V$.

3

2

3

OUESTION 8 (15 marks) Start a new page

(ii) Show that $t = k \log \left(\frac{kh}{kg + \nu} \right)$

(a) Show that the locus in the Argand plane represented by the equation |z-1|+|z+1|=4 is a conic and find its cartesian equation.

3

3

3

(b) A particle of mass m is projecteds against a constant gravitational force mg and resistance $\frac{mv}{k}$, where v is the velocity of the particle and k is a constant.

Let x be the distance traveled in time t.

Let x be the distance displacement and $v_o = k(h-g)$, where h is a Initially the particle has zero displacement and $v_o = k(h-g)$, where h is a constant.

(i) Show that the equation of motion of the particle is $x = -\left[\frac{kg + v}{k}\right]$

- (iii) Find the time taken by the particle to reach the maximum height, H, and determine the height of that point.
- A polynomial P(x) is divided by $x^2 a^2$ where $a \neq 0$, and the remainder is px + q.

(i) Show that $p = \frac{1}{2a} [P(a) - P(-a)]$ and $q = \frac{1}{2} [P(a) + P(-a)]$

- $\begin{bmatrix} a \\ +P(-a) \end{bmatrix}$
- (ii) Find the remainder when $P(x)=x^n-a^n$, for n a positive integer, is divided by x^2-a^2 .

(a) (i) $\frac{x^{2}}{16} - \frac{4^{2}x^{2}}{4} = 1$ $a = 4, b = 3.$ $a = 4, b = 3.$ $a = 4, b = 3.$ $a = 16 (e^{2} - 1)$ $e^{2} - \frac{4}{2} + 1 = \frac{25}{16}.$ $e^{2} - \frac{4}{2} + 1 = \frac{25}{16}.$	$S \equiv (ae, 0)$, $S' \equiv (-ae, 0)$ $\equiv (5, 0)$ $\equiv (-5, 0)$ \mathbb{C} when $y = 0$, $\frac{x^2}{16} = 1$ $x = \pm 4$ $\therefore x - \text{intercepts}$ are $4 + 4 + 4$ $\therefore y - \text{intercepts}$ are $4 + 4 + 4$	$ \lambda = \pm \frac{a}{16} $ $ = \pm \frac{16}{5} $ $ \psi = \pm \frac{a}{2}x $ $ = \pm \frac{3}{4}x $ $ \chi = 4 \sec \theta $ $ \psi = 3 \tan \theta $
(i) $3z + i\omega$ (i) $3z + i\omega$ = $3(a+i) + i(1-i)$ = $b + 3i + i + i$ = $a + i(1+i)$ = $a + i(1+i)$ = $a + i(1+i)$ = $a + i + 2i - i$ (ii) $a = a + i + 2i - i$ = $a + i(1+i)$ = $a + $	12 (1) ((1)	$= 16 \text{ Cis} \left(-\frac{21}{3} \right) (2)$ $(1ii) pl^{4} = 16 \cos^{-24} + i \sin^{-24} \frac{7}{3}$ $= 16 \times -\frac{1}{2} + i \left(16 \times -\frac{15}{2} \right)$ $= -8 - 8\sqrt{3}i (0)$
J . ~ (2)	(c) $\int_{0}^{6} x^{4} l_{nx} dx$ $= \left[\frac{2 \ln(x+1) - \ln(x+1) - \ln(x+1) - \ln(x+1)}{2 \ln x} \right]$ $= \left[\frac{2 \ln x}{5 \ln x} \right]^{2} - \int_{0}^{6} \frac{x^{5}}{5} \frac{1}{5} dx$ $= \frac{e^{5}}{5} - \frac{1}{5} \left[\frac{x^{5}}{5} \right]^{2}$	(d) Let $u = con x$ $\frac{du}{dx} = -\sin x du = -\sin x dx$ $\int cos^{2}x \sin^{2}x dx$ $= \int cos^{2}x \sin^{2}x dx$ $= \int u^{2}(1-u^{2})^{2} - du$ $= -\int u^{2} - u^{2} + u^{6} du$

3(a),
$$x^3 + mx + n = 0$$
.
 $\alpha \beta \delta = -n$
 $\alpha + \beta + \delta = 0$
 $\alpha \beta + \alpha \delta + \beta \delta = m$.

(i)
$$\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\delta}$$

$$= \frac{\beta \delta + \alpha \delta + \beta \beta}{\alpha \beta \delta} = \frac{m}{-n}$$

(ii)
$$d^3 + md + n = 0$$
 — (2)
 $\beta^3 + m\beta + n = 0$ — (3)

$$0+0+0 \alpha^{3}+\beta^{3}+\beta^{3}+m(\alpha+\beta+2)+3n=0.$$

$$\alpha^{3}+\beta^{3}+\beta^{3}+2^{2}=-3n.$$

(iii)
$$(\sqrt{x})^{3} + m\sqrt{x} + n = 0$$

$$\sqrt{x}(x+m) + n = 0$$

$$\sqrt{x} = \frac{-n}{x+m}$$

$$\gamma = \frac{n^{2}}{(x+m)^{2}}$$

$$\chi(\gamma+m)^{2} - n^{2} = 0$$

$$\chi^{3} + 2n\chi^{2} + m\bar{\chi} - n^{2} = 0$$

(b)
$$P(x) = x^{2} - 5x^{2} - 9x^{2} + 81x - 108$$

 $P'(x) = 4x^{3} - 15x^{2} - 18x + 81$
 $P''(x) = 12x - 30x - 18$

When
$$f''(x)=0$$
 $12x-30x-18=0$. $x=-\frac{1}{2}$ $x=3$ $y=3$

$$P'(3) + P(3) = 0$$

if the other root is
$$\alpha$$

sum of roots =
$$9 + \alpha = 5$$
.
 $\alpha = -4$.

:, Roots of
$$P(x)=0$$
 are 3,3,3,4-4.

(c)
$$y = e^{-x} (A \sin 2x + B \cos 2x)$$

$$e^{x} \frac{dy}{dx} + ye^{x} = 2Acn2x - 2Bsh2x$$

$$= -4 \operatorname{Asin2x} - 4 \operatorname{Bcn2x} \quad \widehat{U}$$

$$= -4 \operatorname{e}^{x} y .$$

$$e^{2\left(\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 5y\right) = 0}.$$

$$\frac{d^{2}y}{dx^{2}} + 2\frac{dy}{dx} + 5y = 0.$$

(ir)
$$y = f(1 \times 1)$$

(v)
$$y = (f(x))$$

$$SV = \left[\prod (x+5a)^2 - \prod x^2 \right]$$

$$= 2 \prod xy \delta x + \prod y \delta x^2$$

$$= 2 \prod xy \delta x.$$

$$V = \lim_{\delta x \to 0} \sum_{x=1}^{\rho} 2 \prod xy \delta x$$

$$= \int_{1}^{\rho} 2 \prod xy dx$$

$$= 2 \prod_{1}^{\rho} \sum_{x=1}^{\rho} x \ln x dx$$

$$= 2 \prod_{1}^{\rho} \sum_{x=1}^{\rho} \left[\frac{x^2 \ln x}{2} \right]_{1}^{\rho} - 2 \prod_{1}^{\rho} \sum_{x=1}^{\rho} dx$$

$$= \prod_{1}^{\rho} \left[\left(e^2 - e^2 \right) - \left(o - \frac{1}{2} \right) \right]_{1}^{\rho}$$

$$= \prod_{1}^{\rho} \left(e^2 + 1 \right) \text{ unit}^3. \qquad (2)$$

(b) (i) $xy = 1$ $\frac{dy}{dx} = -\frac{1}{x^{2}}$. At (x, y_{1}) $m_{T} = -\frac{1}{x^{2}}$. En $(y + x_{1}) = -\frac{1}{x^{2}}$ $(x - x_{1})$ $(x - x_{1}) = -\frac{1}{x^{2}}$. At $(y - x_{1}) = -\frac{1}{x^{2}}$ $(x - x_{1})$ $(x - x_{1}) = -\frac{1}{x^{2}}$. At $(y - x_{1}) = -xy_{1}$ $+1$ $+1$ $+1$ $+1$ $+1$ $+1$ $+1$ $+1$
$A \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} (4-x)^{3} dx = \frac{1}{2} (4-x)^{3} d$
(i) I., DECM + DCAM. 2 EBMC = LAMC = 90° (CM LAB) 2 CAM = LEB CM = 4° (proved above) 3. DECM III DCAM (equicorgular) 4. DECM III DCAM (equicorgular) 4. DECM III DCAM (equicorgular) 6. CM = AM XBM 6. CM = AM XBM 6. TA TA TB 7 TA XTB 7 TA TA XTB 7 TA TA XTB 7 TA TA XTB 7 TA
4:> $1 + x + x + \dots + x^n = \frac{x^{n+1} - 1}{x^{n-1}}$ 4:> $1 + x + x + \dots + x^{n-1} = \frac{(n+1)x^{n+1}}{(x-1)} = \frac{(n+1)x^{n+1}}{(x-1)}$ 2: $x + 3x + \dots + nx^{n-1} = \frac{(n+1)x^{n+1}}{(x-1)} = (n+1)x^$

