# Compte rendu stage Simulation parfaite

Antonin LAURENT 11 avril 2019

## Table des matières

| 1        | Chapitre 1 | 3 |
|----------|------------|---|
| <b>2</b> | Chapitre 3 | 6 |

### 1 Chapitre 1

#### Définition : Fonction calculable / Computable function

Une fonction est dite calculable (computable en anglais) si il existe un algorithme capable de retourner le résultat de la fonction.

#### Définition: Algorithme probabiliste / Randomized algorithm

Soient  $\mathcal{I}$  un ensemble d'indices tel que pour tout  $I \in \mathcal{I}$ , il existe une distribution  $\pi_I$  sur un espace d'états  $\Omega_I$ . On se donne une suite de variables aléatoires  $X_1, X_2, \ldots$  où les  $X_I \in S_I$ .

Un algorithme probabiliste est une famille de temps d'arrêts  $\{T_I\}_{I\in\mathcal{I}}$  et de fonctions calculables  $\{f_{I,t}\}_{i\in\mathcal{I},t\in\{1,2,\ldots\}}$ . La sortie de l'algorithme est  $f_{I,T_I}(X_1,\ldots,X_{T_I})$ .

# Définition : Algorithme de simulation parfaite / Perfect simulation algorithm

Un algorithme de simulation parfaite est un algorithme probabiliste dont la sortie est une variable aléatoire qui provient d'une distribution cible. Les algorithmes de simulation parfaite sont une sous-classe des algorithmes de simulation exacte, algorithmes qui tirent d'une distribution ciblée. Cependant les algorithmes dont le temps d'arrêt  $T_I$  est déterministe (algorithmes tournant selon un nombre fini de choix aléatoires) sont généralement considérés comme algorithmes de simulation exacte mais pas comme algorithmes de simulation parfaite.

#### Théorème fondamental de la simulation parfaite

On suppose que pour  $U_1, U_2, ...$  iid tel que  $U_i \sim \text{Unif}([0,1])$ , il existe des fonctions calculables b, g et f telles que la fonction b aie pour image  $\{0, 1\}$  et  $\mathbb{P}(b(U) = 1) < 0$ .

Pour une variable aléatoire X qui vérifie :

$$X \sim b(U)g(U) + (1 - b(U))f(X, U),$$
 (1)

soit  $T = \inf\{t : b(U_t) = 1\}$ . On a alors que :

$$Y = f(\dots f(f(g(U_T), U_{T-1}), U_{T-2}), \dots, U_1)$$

a la même distribution que X et on a  $\mathbb{E}[T] = \frac{1}{\mathbb{P}(b(U) = 1)}.$ 

#### <u>Preuve:</u>

Soient  $X_0, X_1, \ldots$  des tirages indépendants chacun distribués selon X, et  $U_1, U_2, \ldots$  iid tel que  $U_i \sim \text{Unif}([0,1])$ . Pour  $X_t$ , fixons  $X_{t,t} = X_t$  et récursivement, on pose :

$$X_{t,i} = b(U_{i+1})g(U_{i+1}) + (1 - b(U_{i+1}))f(X_{t,i+1}, U_{i+1}),$$
 pour  $i \in \{0, \dots, t-1\}.$ 

On a alors d'après la relation (1) :  $X_{t,0} \sim X$ . On montre ce résultat pour les premiers indices t, les suivants sont prouvés de la même manière.

 $\underline{\mathbf{t}} = \underline{\mathbf{0}}$ 

$$X_{0,0} = X_0$$

comme on l'a posé précédemment, d'où

$$X_{0.0} \sim X$$
.

 $\underline{\mathbf{t}} = \mathbf{1}$ 

$$X_{1,0} = b(U_1)g(U_1) + (1 - b(U_1))f(X_{1,1}, U_1)$$

Or,

$$X_{1,1} = X_1 \sim X.$$

En remplaçant dans l'équation précédente, on obtient :

$$X_{1,0} = b(U_1)g(U_1) + (1 - b(U_1))f(X_1, U_1)$$

D'après la relation (1), on obtient alors  $X_{1,0} = X_1 \sim X$ .

 $\underline{\mathbf{t}} = \underline{\mathbf{2}}$ 

$$X_{2,0} = b(U_1)g(U_1) + (1 - b(U_1))f(X_{2,1}, U_1)$$
  

$$X_{2,1} = b(U_2)g(U_2) + (1 - b(U_2))f(X_{2,2}, U_2)$$
  

$$= b(U_2)g(U_2) + (1 - b(U_2))f(X_2, U_2)$$

À nouveau, par la relation (1), on a :  $X_{2,1} = X_2$  On remplace donc par cette valeur dans  $X_{2,0}$  et on obtient :

$$X_{2.0} = b(U_1)g(U_1) + (1 - b(U_1))f(X_2, U_1)$$

D'après la relation (1), on obtient alors  $X_{2,0} = X_2 \sim X$ .

On a donc  $X_{0,0}, X_{1,0}, X_{2,0}, \ldots$  de même distribution que X mais pas forcément indépendants. On considère à présent la variable Y énoncée dans le théorème. On a alors la relation suivante :  $X_{t,0} = Y$  si  $t \geq T$ . On illustre ce résultat avec comme exemple T = 2 et t = 2, 3: On a donc :

$$Y = f(q(U_2), U_1)$$

Montrons que  $X_{2,0}=X_{3,0}=Y$ . Étant donné que T=2, on a  $b(U_1)=0$  et  $b(U_2)=1$  , d'où :

$$X_{2,0} = f(X_{2,1}, U_1)$$
$$X_{2,1} = g(U_2)$$

on remplace dans la première équation et on obtient

$$X_{2,0} = f(g(U_2), U_1)$$

D'où le résultat pour t=2. Voyons pour t=3.

De même, puisque T=2, on a  $b(U_1)=0$  et  $b(U_2)=1$ , d'où :

$$X_{3,0} = f(X_{3,1}, U_1)$$
$$X_{3,1} = g(U_2)$$

on remplace dans la première équation et on obtient

$$X_{3,0} = f(g(U_2), U_1)$$

D'où le résultat.

Ensuite, puisque les  $U_i$  sont indépendants, on a que :  $\mathbb{P}(T > t) = (1 - \mathbb{P}(b(U) = 1))^t$  et puisque, par hypothèse,  $\mathbb{P}(b(U) = 1) > 0$ , on a la relation qui tend vers 0 pour t tendant vers l'infini. Il ne reste plus qu'à montrer  $Y \sim X$ . Pour tout t, pour tout ensemble C:

$$\mathbb{P}(Y \in C) = \mathbb{P}(Y \in C, t \ge T) + \mathbb{P}(Y \in C, t < T)$$

puisque  $X_{t,0} = Y$  si  $t \geq T$ , on a

$$= \mathbb{P}(X_{t,0} \in C, t \ge T) + \mathbb{P}(Y \in C, t < T)$$
  
=  $\mathbb{P}(X_{t,0} \in C) - \mathbb{P}(X_{t,0} \in C, t < T) + \mathbb{P}(Y \in C, t < T)$ 

puisque  $X_{t,0} \sim X$ , on a

$$= \mathbb{P}(X \in C) - \mathbb{P}(X_{t,0} \in C, t < T) + \mathbb{P}(Y \in C, t < T)$$

Les deux derniers termes sont bornés par  $\mathbb{P}(T>t)=(1-\mathbb{P}(b(U)=1))^t$ , et puisque l'équation est vraie pour n'importe quel t, on obtient :  $\mathbb{P}(Y\in C)=\mathbb{P}(X\in C)$  pour tout ensemble C, donc  $Y\sim X$ . Le fait que  $\mathbb{E}[T]=\frac{1}{\mathbb{P}(b(U)=1)}$  provient du fait que T suit une loi géométrique de paramètre  $\mathbb{P}(b(U)=1)$ 

### 2 Chapitre 3

#### Définition : Fonction de mise à jour / Update function

On dit que  $\phi: \Omega \times [0,1] \to \Omega$  est une fonction de mise à jour pour une chaîne de Markov  $\{X_t\}$  si, pour  $U \sim \text{Unif}[0,1], [X_{t+1}|X_t] \sim \phi(X_t, U)$ .

La fonction  $\phi$  est déterministe : tout l'aléatoire est contenu dans la variable U.

Toute chaîne qui peut-être simulée sur ordinateur est un exemple de fonction de mise à jour.

Une même chaîne de Markov peut-être représentée par plusieurs fonctions de mise à jour : la fonction de mise à jour n'est pas forcément unique.

À l'aide d'une fonction de mise à jour  $\phi$ , on peut représenter la trajectoire d'une chaîne de Markov  $\{X_t\}$ . En effet, soient  $U_0, U_1, U_2, \ldots$  iid  $\sim$  Unif([0,1]). Pour un état initial  $x_0$ , on a :  $X_1 = \phi(x_0, U_0)$  puis pour i > 1,

$$X_i = \phi(X_{i-1}, U_{i-1}).$$

On notera alors la trajectoire jusqu'au temps t sous la forme :

$$\phi_t(x_0, U) = \phi(\phi(\phi(\dots (\phi(x_0, U_0), U_1), \dots, U_{t-1}))$$

Ensuite, pour n'importe quels états  $x_0$  et  $y_0$  dans  $\Omega$ , on définit pour une fonction de mise à jour  $\phi: X_t = \phi_t(x_0, U)$  et  $Y_t = \phi_t(y_0, U)$  (en utilisant les mêmes valeurs de U). On appelle ce procédé un couplage. Notons qu'avec ce couplage, si il existe  $t \geq 0$  tel que  $X_t = Y_t$ , alors on dit que les processus ont fusionné (ou se sont rejoints,etc).

#### Définition: Couplage / Coupling

Soit S un ensemble de processus stochastiques définis sur un même ensemble  $\mathcal{I}$  et un même espace d'états  $\Omega$ . Si il existe un indice  $i \in \mathcal{I}$  et un état  $x \in \Omega$  tels que pour tout  $S \in S$ , on aie  $S_i = x$ , alors on dit que les processus stochastiques ont fusionné (ou se sont rejoints,couplés,etc).

#### Exemple

Soit  $\Omega = \{0, 1, 2\}$ . Soit une fonction de mise à jour  $\phi$  telle que :

$$\phi(x,U) = x + \mathbf{1}(x < 2, U > \frac{1}{2}) - \mathbf{1}(x > 0, U \le \frac{1}{2}).$$

Soient  $\{X_t\}$  et  $\{Y_t\}$  deux chaînes de Markov ayant  $\phi$  comme fonction de mise à jour et telles que  $X_0 = 0$  et  $Y_0 = 2$ . On suppose que  $U_0 = 0.64, U_1 = 0.234$  et  $U_2 = 0.1$ . On a donc les trajectoires suivantes :  $(X_0, X_1, X_2, X_3) = (0, 1, 0, 0)$  et  $(Y_0, Y_1, Y_2, Y_3) = (2, 2, 1, 0)$ .

Les deux chaînes ont donc fusionné à t=3.