Problem!: A multimode stependex, core d'ameter= squm, relative endex difference = 1.5%, Wavelength =0.85 mm, core (1) = 1.48 (a) V (b) No. of guided modes :NA= ni \20 Sol. $\Delta = 1.5\% = 0.015$ As, V= 2 TTQ (NA) 2a = 80 mm => a= 40 mm = 211 x 40 (0.35 b3) 1=0.85 pm (NA = 1.48 \(\sum_{2\times 0.015} = 1.48 \(\sum_{0.03} \) \(\sum_{=75.8} \)

Total No. of modes:
$$M \simeq \frac{V^2}{2}$$
 for Step-Endex

$$M \simeq \left(\frac{A}{\alpha+2}\right) \frac{V^2}{2}$$
 for Granded index
$$(\frac{A}{\alpha+2}) \approx \frac{A}{2}$$

$$= \frac{2.405 \times 1550 \times 159}{291 \sqrt{1.48^2 - 1.478^2}}$$

$$= 7713 \times 159$$

= 7.713 × 156

i. a= 7.7 µm

38. a = 3 plm, NA = 001 > $\lambda = 8000m$ (2.3%)
Will this fiber exilibit single-mode operation?
(Bosd on V, as $V \leq 2.405$) Single mode) V = 3Graded-index fiber! Drameter = sophin has parabolic 19. refractive index profile ($\alpha=2$). (174) NA=0.22, $\lambda=1310$ nm, Total no. of guided mades? Sol. $a = 25 poin , NA = 0.22, A = 1310 pm , \alpha = 2$ $N = \frac{2\pi a (NA)}{1} = \frac{2\pi \times 25 \times 10^{5} \times 0.22}{1310 \times 10^{9}}$ ⇒ V = 26.379 "No of guided mody = $\left(\frac{\alpha}{\alpha+2}\right)\frac{\sqrt{2}}{2} = \left(\frac{2}{4}\right)\frac{(26.379)^2}{2}$ $= \frac{(26.379)^2}{4} = 173.9 \Rightarrow M=174$ [:, M=174] 3Am a=3µm, NA=0.1, 1=800nm $V = 2719 \text{ (NA)} = 277 \times 3 \times 10^{-6} \text{ (0.1)} = 2.3562$ V = 2.356

· A, V = 2.405 =) Fiber exhibits Single-made operation

. Total Dispersion: D= Dm + Dwg + Dinter
fiber-mulbhode: D= Dinter 9 (Dominate)
fiber-Siglemoder. D = Dm + Dung 1 (Dominate)
Polarized Mode Despersion: Due to polarization
. $n_1 \approx n_2 \rightarrow$ then we will get linear polarized modes . Then we get 2' group velocities 352 year
· Proop delay: DT= L - L' - Ygg
(for weakly = L d Br - L d By dw
Problems:
10. A 6km optical link corrects of multimade step-intex
fiber with a core retractive index of 1.5 and relative refractive index difference of 1%. Estimate (a) the delay
difference the the dowest and the faster modes at the fiber output. (6) The max bet rate that
may be obtained without substantial errors.
(c) the rms pulse broadening due to intermedal disposion link

1 L = 6 km [Aux: gaven: n1=1.5] = 0.001 (liber length) (c) g= 1 n. A = 86. Intermedel Dispossion (a) AT = = = 1, D = 6x103 x1.5x102 = 3 × 10 = 300 n Seconds [: 17 = 300 ns] (6) Broax = 1 ; Max. Bandwidth $= \frac{1}{2 \times 3 \times 10^7} = \frac{10 \times 10^6}{6} = \frac{5 \times 10^6}{3}$ = 1.67 M+PZ Brax = 1.67 MHZ Drift of Ileleas zmo-Zero , material Dipolior Departs Dwg "

Problem: Dm =>
$$\left| \frac{1^2 \left(\frac{d^2 n_1}{d_1 2} \right) \right| = 0.025$$
 & $1 = 0.85 \mu m$
rms spectral width is 20nm ie. $\sqrt{1} = 20nm$
 $\sqrt{1} = \frac{1}{2} \left| \frac{d^2 n_1}{d_1 2} \right| = \frac{9.85 \times 106}{3000} \left(\frac{6.000}{6.000} \right) \left(\frac{1}{1} \frac{d^2 n_1}{d_1 2} \right)$
 $\sqrt{1} = 850 \, \text{nm}$, $C = 3 \times 10^5 \, \text{km}$, $\sqrt{1} = 20 \, \text{nm}$ = $\frac{1}{10} \left(\frac{1^2 \, d^2 n_1}{d_1 2} \right)$
 $\sqrt{1} = 850 \, \text{nm}$, $\sqrt{1} = 20 \, \text{nm}$ = $\frac{1}{10} \left(\frac{1^2 \, d^2 n_1}{d_1 2} \right)$
 $\sqrt{1} = 850 \, \text{nm}$, $\sqrt{1} = 20 \, \text{nm}$ = $\frac{1}{10} \left(\frac{1^2 \, d^2 n_1}{d_1 2} \right)$
 $\sqrt{1} = 850 \, \text{nm}$ pulse broadening $\sqrt{1} = 20 \, \text{nm}$ T $\sqrt{1} = \frac{0.0015}{3 \times 10^5 \times 850} = 98.04$

· RMS pulse broadering perkm: Im = Dm J ns/km · The that of = 1.96 ns/km Iroblen: Dmat = 110 Ps ((nm-km)) 1=860 nm

Ti = 40 nm (spectral bankweath) - at an of wavelength of 860 nm

· yms puble broadering =?

19=10 in= 109 1P=00/xin

Im = Dm I = 110 x860 Ps /km = 9460 ns/km