Assignment 1

Table of Contents

1(a). TriDiagLUFac.m	. 1
1(b). TriDiagSolver.m	
1(c). Test of Functions	
Set up given variables for Heat Conduction in Clothing	
2. Create initial temperature profile	
3. Create arrays and LU factorization	
4. Find the temperature profile after ten minutes	
5. Determine when the skin tmeperature drops below 20C	
1 1	

Evan Waldmann (S3620596)

1(a). TriDiagLUFac.m

Function to return the LU factorization of a tridiagonal matrix.

```
function [Aout,Bout] = TriDiagLUfac(a,b,c)
ndim=length(b);
for j = 1:ndim-1
    a(j)=a(j)/b(j);
    b(j+1)=b(j+1) - a(j)*c(j);
end;
Aout = a;
Bout = b;
end
```

1(b). TriDiagSolver.m

Function to solve a tridaigonal system that has been put into LU form.

```
function [Solution]=TriDiagSolver(a,b,c,f)
%forward substitution
ndim=length(f);
for j = 1:ndim-1
    f(j+1)=f(j+1)-a(j)*f(j);
end;
%The backward substitution stage
f(ndim)=f(ndim)/b(ndim);
for k = ndim-1:-1:1
    f(k)=(f(k) - c(k)*f(k+1))/b(k);
end;
Solution = f;
end
```

1(c). Test of Functions

Tested TriDiagLUfac.m and TriDiagSolver.m using a tridiagonal 6x6 matrix with a know solution.

```
% orginal matrix
OM = [3.0000]
                23.0000
                                  0
                                                                  0;
       1.0000
                 34.0000
                           43.0000
                                            0
                                                                  0;
                 2.0000
                           55.0000
                                      22.0000
                                                                  0;
            0
                       0
                            3.0000
                                    18.0000
                                                  3.0000
                                                                  0;
            0
                       0
                                 0
                                       4.0000
                                                 13.0000
                                                           77.0000;
                       0
                                  0
                                                  5.0000
                                            0
                                                           56.0000];
 %vectors containing diagonals and solution
  c = [23 \ 43 \ 22 \ 3 \ 77];
  b = [3 \ 34 \ 55 \ 18 \ 13 \ 56];
  a = [1,2,3,4,5];
  f = [45 \ 43 \ 33 \ 67 \ 89 \ 76];
  knownSolution = [-11.9303]
                               3.5127
                                          -1.5000
                                                      4.9307 -5.7506
 1.8706];
 [a b] = TriDiagLUfac(a,b,c);
 L = diag(a,-1) + eye(6);
  U = diag(b) + diag(c, +1);
  LU = L*U
 %L*U is equal to the original Matrix
 %solve the system
 z = TriDiagSolver(a,b,c,f)
 %z is equal to the known solution
clear;
LU =
    3.0000
             23.0000
                                         0
                                                    0
                                                               0
    1.0000
             34.0000
                        43.0000
                                                    0
                                                               0
              2.0000
                        55.0000
                                   22.0000
                                                               0
         0
                                                    0
         0
                         3.0000
                                  18.0000
                    0
                                               3.0000
                                                               0
                    0
                                   4.0000
         0
                               0
                                              13.0000
                                                         77.0000
         0
                    0
                               0
                                               5.0000
                                                        56.0000
z =
  -11.9303
              3.5127
                        -1.5000
                                    4.9307
                                              -5.7506
                                                         1.8706
```

Set up given variables for Heat Conduction in Clothing

```
% Define variables using numbers per last digit of student number (6) L = 5.5; %(cm) Ua = -15; %(C) N = 100;
```

```
F1 = 1.6; %(C/sec)
A = 12;
B = 22;
```

2. Create initial temperature profile

```
% define variables
k= .0055; %(cm^2/sec)
deltat = .5; %(sec)
% calculate h and s
h=L/N;
s=k*deltat/(h*h);
% calculate Inital Temperature profile
i = 1:N;
InitalTemp = A.*(i .* h./L) + B;
InitalTemp=InitalTemp';
plot(InitalTemp)
% label graph
title('Initial Temperature Profile');
xlabel('N');
ylabel('Temperature (C)');
```


3. Create arrays and LU factorization

```
% set up arrays
b= ones(N,1) + 2*s*ones(N,1);
c= -s* ones(N-1,1);
a= -s* ones(N-1,1);
a(N-1) = -2*s;
j = zeros(N,1);
j(1) = Ua*s;
j(N) = 2*s*h*F1;
% LU factorization
[Upper,Lower] = TriDiagLUfac(a,b,c);
```

4. Find the temperature profile after ten minutes

```
f = j+InitalTemp;
for y=1:1200
    a = TriDiagSolver(Upper,Lower,c,f);
    f = a+j;
end
% graph temperature profile
gridSpace = L/N;
gridPoints = i*h;
% add inital data point
X = [0, gridPoints];
Y = [Ua, a'];
plot(X, Y);
% label graph and fix axis
title('Temperature Profile after 10 minutes');
xlabel('Thickness (cm)');
ylabel('Temperature (C)');
axis([0,L,Ua,a(N)+1]);
```


5. Determine when the skin tmeperature drops below 20C

```
%reset the initial conditions
count=1;
s=k*(deltat)/(h*h);
j = zeros(N,1);
j(1) = Ua*s;
j(N) = 2*s*h*Fl;
f = j+InitalTemp;
while (a(N) > 20)
a = TriDiagSolver(Upper,Lower,c,f);
count = count+1;
f = a+j;
end
% time in minutes taken to drop below 20 C
time = count*deltat/60
time =
   23.7333
```

Published with MATLAB® R2016a