V44 - Röntgenreflektometrie

Michael Gutnikov michael.gutnikov@udo.edu Lasse Sternemann lasse.sternemann@udo.edu

Abgegeben am 10.12.2021

Inhaltsverzeichnis

1	Durchführung		
	1.1	Versuchsaufbau	3
	1.2	Kalibrierung des Reflektionsaufbaus	4
	1.3	Refelektionsmessung	6
	1.4	Scan-Parameter	7

1 Durchführung

1.1 Versuchsaufbau

Der Aufbau zur Untersuchung von Oberflächen mit Hilfe von Röntgenreflekometrie setzt sich aus drei Hauptbestandteilen zusammen, die den in Abbildung 1 dargestellten komerziellen Röntgenreflekometrie-Aufbau D8 bilden. Die Quelle der Röntgenstrahlung stellt eine Röntgenröhre mit Kupferanoden dar und ist wie der Detektor um den Probentisch rotierbar. Die Röntgenröhre wird mit einer Beschleunigungsspannung von 40 keV betrieben und sendet zunächst einen divergierenden Strahl aus, der das gesamte Röntgenspektrum enthält. Da jedoch nur eine bestimmte Wellenlängenkomponente genutzt werden soll, wird der Strahl auf einen Göbel-Spiegel gerichtet. Dieser kollimiert den Strahl aufgrund seiner parabolischen Form und ist gleichzeitig dazu in der Lage den Strahl zu monochromatisieren. Dies wird über eine Schichtung von Spiegelebenen in definierten Abständen erreicht, sodass nur die gewünschte Wellenlänge die Bragg-Bedingung erfüllt und konstruktiv interferiert. Zur Positionierung der Probe wird ein in x-, y- und z-Richtung beweglicher Probentisch genutzt, auf dem die Probe aufliegt. Eine konzeptionelle Darstellung des Aufbaus ist in Abbildung 2 dargestellt. Alle Komponenten werden über das Programm XRD Commander angesteuert und auch die Zählraten des Detektor werdden mit diesem Programm aufgenommen und anschließend ausgewertet.

Abbildung 1: Foto des D8-Laborrefraktometers, das zur Röntgenrefletivitätsmessung genutzt wird. Entnommen aus [1]

Abbildung 2: Der konzeptionelle Aufbau zur Untersuchung der Probe durch Röntgenreflekometrie. Die Röntgenquelle enthält eine Röntgenröhre und einen Göbelspiegel. Der Probentisch ist in x-, y- und z-Richtung verschiebbar. Zur Variation des 2θ -Winkels sind die Röntgenquelle und der Detektor um den Probentisch rotierbar.

1.2 Kalibrierung des Reflektionsaufbaus

Um eine optimale Refelektionsmessung durchführen zu können, muss die Probe, wie in Abbildung ... dargestellt zunächst halb in den Strahlengang gefahren sein und exakt parallel zum Strahl liegen, der von der Röntgenquelle zum Detektor läuft, die ebenfalls entlang einer Linie ausgerichtet sein müssen. Um diese Messgeometrie zu garantieren müssen mehrere Scans durchgeführt werden. Diese werden konzeptionell erklärt und die exakten Scan-Parameter in Tabelle 1 aufgelistet.

Abbildung 3: Die zur Justage gewünschte Messgeometrie, bei der die Probe parallel zum Strahl halb in diesem liegt und Röntgenquelle sowie Detektor auf einer Linie liegen. Entnommen aus [1]

Zu Beginn wird die Röntgenröhre auf einen Winkel von $\alpha_i = 0^{\circ}$ gestellt und die Probe aus dem Strahlengang gefahren. Dann fährt der Detektor in einem **Detektorscan** einen geringen Winkelbereich um 0° herum ab und misst dabei die Intensität. Dabei sollte sich ein Gauß-Profil ergeben, aus dem der Winkel bestimmt wird, bei dem Röntgenquelle und Detektor genau entlang einer Quelle liegen. Dieser Winkel wird als neue Referenz gesetzt.

Nachem die Probe per Augenmaß in x- und y-Richtung so zentriert wurde, dass sie vom Strahl getroffen wird, wird ein **z-Scan** durchgeführt. Bei diesem wird die Probe langsam in den Strahlengang gefahren und währenddessen wieder die Intensität gemessen. Aus der resultierenden Kurve, in der die Intensität gegen die z-Koordinate aufgetragen ist, wird die z-Koordinate gewähöt, bei der die Intensität auf die halbe maximale Intensität abgesunken ist. Bei dieser Koordinate befindet sich die Probe halb im Strahlengang.

Um die Parallelität der Probe zum Strahl zu garantieren, folgt ein **Rockingscan**. Die Probe befindet sich in halber Abschattung und Detektor sowie Röntgenquelle erhöhen beziehungsweise verringern ihren Winkel zur Probe, sodass 2θ konstant bleibt. Dies entspricht einer Drehung der Probe im Strahl. Die dabei vermessende Intensität sollte ein Dreieck ergeben, dessen Maximum als $2\theta = 0^{\circ}$ gewählt wird. Wenn eine der Flanken des Dreiecks stärker fällt als die andere Flanke, muss die y-Position der Probe angepasst werden. Bei einem gleichschekligen Dreieck mit Maximum bei $2\theta = 0^{\circ}$ ist die parallel Ausrichtung der Probe zum Strahl erreicht.

Da die Winkeländerung des Strahlverlaufs die Abschattung des Strahls durch die Probe verändert haben kann, wird ein erneuter **z-Scan** analog zum Ersten durchgeführt.

Anschließend wird ein weiterer **Rockingscan** bei einem Winkel von $2\theta = 0.3^{\circ}$ durchgeführt, um anschließend anhand eines Intensitätpeaks die Ein- und Ausfallswinkel von 0.15° für Röntgenquelle und Detektor zu bestimmen.

Um bei der Refelektionsmessung die Probe möglichst komplett mit dem Strahl zu treffen, muss die z-Position auch für einen Winkel von $2\theta \neq 0^{\circ}$ justiert werden. Dazu wird ein Winkel von $2\theta = 0,3^{\circ}$ eingestellt und erneut ein **z-Scan** um die zuvor bestimmte z-Position halber Abschattung durchgeführt. Die Intensitätsmessung soll ein Maximum liefern dessen z-Position als neue Position für die letztendlichen Messungen gewählt wird und die mittlere Geometrie aus Abbildung 4 garantiert.

Abbildung 4: Die möglichen Geometrien für einen Winkel von $2\theta \neq 0^{\circ}$. Die Mittlere ist die gewünschte Geometrie, bei der die maximale Probenfläche getroffen wird. Entnommen aus [1]

1.3 Refelektionsmessung

Nach der vorangegangenen Justierung wird ein **Reflektivitätsscan** durchgeführt, bei dem der Ein- beziehungsweise Ausfallswinkel von Röntgenquelle und Detektor konstant sind, während 2θ variiert wird. So wird die reflektierte Intensität für verschiedene 2θ und damirt verschiedene Impulsüberträge in z-Richtung vermessen. Da es neben der Reflexion auch zu diffuser Streuung kommt, muss diese als auftretender Hintergrund vermessenn werden. Dazu wird der Ausfallswinkel des Detektors um $0,1^{\circ}$ vom Einfallswinkel der Röntgenröhre variiert $\alpha_{\rm f}=\alpha_{\rm f}+0,1^{\circ}$ und ein Scan mit denselben Parametern des Reflektivitätsscans durchgeführt.

1.4 Scan-Parameter

Tabelle 1: Die für die verschiedenen Scans verwendeten Parameter. Die z-Position ist nur eine relative Größe zur Justierung und die Einheit daher beliebig. Bearbeitet aus [1]

Typ	Messbereich	Schrittweite	Messdauer/Messpunkt [s]	
Detektorscan	-0,5° bis 0,5°	0,02°	1	
z-Scan	-1 bis 1	0,04	1	
Rockingscan $2\theta = 0^{\circ}$	-1° bis 1°	0.04°	1	
z-Scan	-0.5 bis 0.5	0,02	1	
Rockingscan $2\theta = 0.3^{\circ}$	0° bis $0,3^{\circ}$	$0{,}005^{\circ}$	1	
z-Scan $2\theta = 0.3^{\circ}$	-0.5 bis 0.5	0,02	1	
Reflektivitätsscan	0° bis 2.5°	$0,005^{\circ}$	5	

Literatur

 $[1] \quad \text{TU Dortmund. } \textit{Versuchsanleitung V44-R\"{o}ntgenreflektometrie. 2022}.$