

LIFE EXPECTANCY ON A RISE: A MYTH OR FACT

Final Data Analysis Project

OSAHENOMASE OMORUYI

ME & DATA?

I was born in Nigeria, moved to Birmingham, UK aged 12
Very Curious [Why? Why?] and highly motivated
BSc Biomedical Science then I have been working in NHS labs.

WHY DATA BOOTCAMP?

- Became a first-time mother
- In search of a hybrid/remote job
- Wanted to somehow navigate into tech
- Luckily found out about the bootcamp
- Discovered my passion for story-telling and data visualisation

BOOTCAMP CONTENT

I have learnt and used different tools, skills and knowledge derived from the bootcamp including Excel, SQL and Tableau and a bit of Python.

OBJECTIVES

Being from a science background, I analysed the **healthcare** dataset aiming to answer these questions:

- How does life expectancy vary over different countries: is it lower in less developed countries in comparison with developed countries?
- Does adult mortality and infant deaths impact life expectancy?
- What impact does BMI have on life expectancy
- In 2015, what were the top 10 countries with the highest life expectancy vs lowest?

EXCEL ANALYSIS

EXCEL ANALYSIS

Using COUNTIF to count the status of the countries and the SUM function to add the total

STATUS	COUNTIF
Developing	2426
Developed	512
TOTAL/SUM	2938

Finding the value for the maximum life expectancy using MAX function

MAX life expectancy =

89

	ntry on the dataset with the y value using XLOOKUP :
В	Belgium

Using COUNTIF Function

Using MAX Function

Using SUM Function

\star \times \checkmark f_x =SUM	I(Y8:Y9)		
Х	Υ		
STATUS	COUNTIF		
Developing	2426		
Developed	512		
TOTAL/SUM	2938		

Using XLOOKUP Function

TOP 10 COUNTRIES WITH HIGHEST VS LOWEST LIFE EXPECTANCY IN 2015

BMI VS LIFE EXPECTANCY IN 2015 & POTENTIAL CONTRIBUTING HEALTH FACTORS

TROUBLESHOOTING Mysc

OH NO! PROBLEM! -

"is it me or mySQLWorkbench acting up?"

- An issue was encountered when using the 'import wizard'.
- I kept having **422** records instead of **2938**!
- Issue had to be resolved.
- Using our best friend 'Google', research was done to convert the csv file to SQL script.
- The SQL schema was then inputted manually using Data Definition Language (DDL) such as the CREATE syntax, to create the table within the 'project' database.

```
₹ ¶ Ø O So
                                                Don't Limit
        USE project;
        CREATE TABLE health(
        country VARCHAR(52)
        , year INTEGER
        ,status VARCHAR(10)
        ,life_expectancy NUMERIC(4,1)
        ,adult_mortality INTEGER
        .infant deaths INTEGER
        ,alcohol NUMERIC(5,2)
10
        ,percentage expenditure NUMERIC(14,9)
11
        ,hepatitis_B INTEGER
12
        ,measles INTEGER
13
        .BMI NUMERIC(4.1)
14
        ,under_five_deaths INTEGER
15
        ,polio INTEGER
        ,total_expenditure NUMERIC(5,2)
17
        ,diphtheria INTEGER
18
        ,HIV AIDS NUMERIC(4,1)
19
        ,GDP NUMERIC(13,7)
20
        ,population NUMERIC(12,2)
21
        ,thinness_1_to_19_years NUMERIC(4,1)
22
        ,thinness_5_to_9_years NUMERIC(4,1)
23
        ,income composition of resources NUMERIC(5,3)
24
        ,schooling NUMERIC(4,1)
25
26
        INSERT INTO health(country, year, status, life_expectancy, adult_mortality, infant_deaths, alcoho
        INSERT INTO health(country, year, status, life_expectancy, adult_mortality, infant_deaths, alcoho
29 •
        INSERT INTO health(country, year, status, life_expectancy, adult_mortality, infant_deaths, alcoho
        INSERT INTO health(country, year, status, life expectancy, adult mortality, infant deaths, alcoho
```

INSERT INTO health(country, year, status, life_expectancy, adult_mortality, infant_deaths, alcoho

MINI PYTHON ANALYSIS

#To get summary about my dataset.
 #Total count = 2938, Max life_expectancy = 89, Min life_expectancy = 36.3 health.describe()

	year	life_expectancy	${\tt adult_mortality}$	${\tt infant_deaths}$	alcohol	percentage_expend
count	2938.000000	2928.000000	2928.000000	2938.000000	2744.000000	2938.0
mean	2007.518720	69.224932	164.796448	30.303948	4.602861	738.2
std	4.613841	9.523867	124.292079	117.926501	4.052413	1987.9
min	2000.000000	36.300000	1.000000	0.000000	0.010000	0.0
25%	2004.000000	63.100000	74.000000	0.000000	0.877500	4.6
50%	2008.000000	72.100000	144.000000	3.000000	3.755000	64.9
75%	2012.000000	75.700000	228.000000	22.000000	7.702500	441.5
max	2015.000000	89.000000	723.000000	1800.000000	17.870000	19479.9

Filtering on Pandas

[] #From the dataset summary, from the overall dataset, we see the max life expectancy is 89.
#I would want to filter the dataset to see which countries have the max life expectancy health[health["life expectancy"] == 89]

	country	year	status	life_expectancy	${\tt adult_mortality}$	infant_deaths	alcohol	percenta
241	Belgium	2014	Developed	89.0	76.0	0	12.60	
915	Finland	2014	Developing	89.0	78.0	0	8.80	

2000 - 2015 GLOBAL LIFE EXPECTANCY

TOP 3 THINGS LEARNT

Educational

- Learnt Advanced Excel including pivot tables and power query.
- Enjoyed creating visualisations using Tableau and PowerBl
- Learnt SQL and Python
- Completed the Google Data Analytics Course

Personally

- I can do anything I put my mind to!
- I have a lot of drive and motivation
- Google is literally My Best Friend!

Career Wise

- KPMG Pushing LimITs Mentorship Programme
- Determination opens doors: I got a job offer and an interview!