

Privacidade Diferencial - Mecanismos

Prof. Javam Machado

LSBD/DC/UFC

Novembro/2019

Mecanismos

- Laplace
- Gaussiano
- Exponencial

Mecanismos dirigem a quantidade de ruído adicionado à resposta de uma consulta para garantir a privacidade

Mecanismos de Laplace e Gaussiano são ambos utilizados em consultas sobre valores numéricos

O mecanismo Exponencial é utilizado para consultas sobre valores categóricos

Laplace - Revisão

Função de densidade probabilística (define o ruído)

$$Lap(x) = \frac{1}{2b} \mathrm{exp} \left(-\frac{|x|}{b} \right)$$

Mecanismo de Laplace

$$M(x, f, \varepsilon) = f(x) + Lap(\Delta f/\varepsilon, 0)$$

- $lackbox{1}{\bullet} b > 0$ é o parâmetro de escala ou diversidade
- lacksquare Δf é a sensibilidade da função f
- lacksquare ε é o budget de privacidade

Privacidade Diferencial – Teorema da composição

Composição Sequencial

- Temos um *dataset D* e desejamos saber:
 - O valor médio de idades;
 - A quantidade de pessoas no dado;
 - ...
- Todas as perguntas passam por um mecanismo $\mathcal M$ que garante $\varepsilon ext{-PD}$;
- Nossas respostas estarão garantindo o ε -PD?

Composição Sequencial

- Temos um *dataset D* e desejamos saber:
 - O valor médio de idades;
 - A quantidade de pessoas no dado;
 - **...**
- Todas as perguntas passam por um mecanismo $\mathcal M$ que garante $\varepsilon ext{-PD}$;
- Nossas respostas estarão garantindo o ε -PD?

Não!

Composição Sequencial

- Acontece que se fizermos k perguntas, utilizando ε -PD, $Q = \{q_1, \dots, q_k\}$:
 - lacksquare Temos que a resposta final será karepsilon-PD, ou
 - Em caso de *budgets* diferentes: $\sum_{i=1}^{k} \varepsilon_i$ -PD;

Composição Paralela

- Agora temos $Q = \{q_1, \dots, q_k\}$ consultas utilizando ε -PD;
- Cada consulta $q_j \in Q$ tem um *budgets* atrelado ε_j ;
- Cada consulta é aplicada nos conjuntos de dados disjuntos;
- Dataset D fragmentado em conjuntos disjuntos D_i ;
- O resultado é $\max(\varepsilon_1, \dots, \varepsilon_k)$ -PD.

Composição

- Sequencial: $\sum_{i=1}^{k} \varepsilon_i$ -differential privacy;
- Paralela: $\max(\varepsilon_1, \dots, \varepsilon_k)$ -differential privacy.

Pós-processamento

- \mathcal{M}_1 é um algoritmo que satisfaz o ε -PD;
- Então $\mathcal{M}_2(\mathcal{M}_1(D))$ também satisfaz o ε -PD.

- Sabemos responder as consultas numéricas através do mecanismo de Laplace;
- Mas se quisermos consultas não numéricas:
 - i.e. "Qual a cor de cabelo mais comum na sala de aula?"
- Com o Mecanismo exponencial podemos responder a maioria das consultas numéricas ou não.

- Valor de entrada *x*;
- Conjunto de todas as saídas possíveis: O;
- Função de qualidade (score) q, que mapeia uma entrada e saída a um score;
 - lack q(x,o) é maior quanto melhor a saída o for para entrada x;
 - \bullet $o \in \mathcal{O}$;
 - Sensibilidade $\Delta q = S(q) = \max_{x,x',o} |q(x,o) q(x',o)|$.

- Consulta: "Qual a cor de cabelo mais comum na sala de aula?";
- Possíveis saídas: $\mathcal{O} = \{ castanho, loiro, ruivo \};$
- Dataset: $D = \{ (Joao, Cas.), (Maria, Rui.), (Pedro, Cas.) \};$
- O valor de q(Joao, Castanho) tem que ser maior que q(Joao, Ruivo) e q(Joao, Loiro).

•
$$Pr[\mathcal{M}_{exp}(x) = o] \propto \exp\left(\frac{\varepsilon q(x,o)}{2\Delta q}\right)$$

Valor exato da probabilidade:

$$Pr[\mathcal{M}_{exp}(x) = o] = \frac{\exp(\frac{\varepsilon q(x,o)}{2\Delta q})}{\sum_{o' \in \mathcal{O}} \exp(\frac{\varepsilon q(x,o')}{2\Delta q})};$$

■ Processo feito através da normalização dos valores.

- Mecanismo utilizado para responder consultas não numéricas;
- É modelada como uma generalização de todos os mecanismos da PD;
- Eficiência é um problema.

