(a) If there are b bees in the swarm at the start of round i, what is the expected number of bees remaining at the start of round i + 1?

Solution:

Given: n bees and n flowers, each bee can choose any flower at random.

Design: For some number p > 0, each bee will attempt to access a flower in each round with probability p, independently of the decisions of the other bees. So, if exactly one bee decides to make the attempt on a particular flower in a given round, it will succeed.

Assume Y as a random variable.

For our case Y = r.v. that is flower with exactly one bee

Goal = find E[Y]

This can be rewritten as a sum of simple r.v's:

$$Y = X1 + X2 + + Xn$$

where Xi = 1 if flower 1 has 1 bee only

else Xi = 0

Expected Values: E[Y]

$$E[Y] = \sum_{i=1}^{n} E[X_i] = n * E[X_1]$$

= n *
$$(1* P[1 \text{ flower with exact } 1 \text{ bee}] + 0 * [else])$$

$$= n * nC1* (1/n) * ((n-1)/n * (n-1)/n *....*(n-1)/n))$$

$$= bC1 * ((n-1)/n)^{b-1}$$
 (b total bees)

Remaining bees before round i + 1 =

Total - E[Y]

$$= b - b * ((n-1)/n)^{b-1}$$

(b) Given: $xj + 1 \le xj^2/n$

Consider,
$$x^2 <= x^{1^2/n}$$

$$x3 <= x2^2/n$$

Substitute value of x2 in terms of x1

$$x3 \le (x1^2/n)^2/n$$

Generalizing terms $xk + i \le x_i^{2^k}/n^{2^k-1}$

At some point in time at the ith iteration when we use the equation from a, number of bees reduce to half.

$$<=(n/2)^{2^k}/n^{2^k-1} <= n/2^{2^k}$$

Substituting the above as 1.

we get
$$n = 2^{2^k}$$

$$log(n) = 2^k log(2)$$

$$log(log(n)) = log(2^k) * 1$$

Hence Proved,

$$k = Total \ rounds = log(log(n))$$

(a) the guest with name-tag i and the guest with name-tag j are wearing matching masks

Solution:

Given: n people and m masks, each person is given a m type mask randomly.

Assume Y as a random variable.

For our case Y = r.v. that is no. of pairs having matching masks

Goal = find E[Y]

This can be rewritten as a sum of simple r.v's:

$$Y = X1 + X2 + + Xn$$

where Xi = 1 if pair[i,j] has matching masks

else
$$Xi = 0$$

Expected Values: E[Y]

E[Y] = Probability that i chooses a mask * Probablity that j chooses the same mask * NC2

E[Y] = (1 - Probability that i chooses a mask * Probablity that j chooses some other mask) * NC2

$$= (1 - (1 * (m-1)/m) * NC2)$$

$$= ((1/m) * NC2)$$

$$= ((1/m) * (n*(n-1)/2))$$

$$=(n^2-n)/2*m$$

For what value of n (as a function of m) does this number become 1?

$$(n^2 - n)/2 * m = 1$$

$$= (n^2 - n) = 2 * m$$

$$= n^2 - n - 2 * m = 0$$

On solving this using the quadratic formula we get

$$n = (1 + \sqrt{1 + 8m})/2$$

(b) Prove that the probability of this having happened (if the template library really has a million designs) is very small

Solution:

Consider the Expected value equation that we got from above:

Substitute $m = 10^6$ and n = 200

we get
$$E(X) = (200^2 - 200)/2 * 1000000$$

= 0.0199

We can use Markov's inequality eqn to determine how likely is outcome to match the expected value.

Hence,

Pr[Observed value >= t*E[Y]] <= 1/t

= Pr[2 families getting same kits] >= t*0.0199 <= 1/t

From this we get $t \le 2/0.0199$

$$t <= 100.5$$

$$1/t = 0.01$$

Therefore, The probability of 2 families receiving the same kit from millions of kits is 0.01.

(a) Algorithm description

The basic idea is similar to finding the kth smallest element using the pivot method as we did in the class. We would find a random pivot point in A and then create two sub-arrays, one containing elements less than the pivot and the other having more than the pivot. We then calculate the size with the left sub-array and the pivot element. If the size value is present in K (using Binary Search) then we got our kth smallest element for that index. We then remove that element from K and divide K into 2 parts similar to A. We perform recursive calls with left partition A and left partition K. Similarly with the right partitions. And keep on adding the results to our final set.

(b) Consider the following algorithm.

```
Algorithm 1: Calculate the ki-th smallest number in A for all i = 1, 2, \ldots, m
```

Input: An array A[1..n], containing n elements

An Array K[1..m] containing m elements

Output: Final ResultSet containing kth smallest element for each k in K

/* Here's my algorithm. */

```
KSmallestMulti(A[n],K[m]) {
 1
 2
          Create Result R of size m
 3
 4
          if(K is empty) then
 5
              return null
 6
          end
 7
 8
          Pick a random Pivot p from A
 9
          Partition A such that
10
          A1 <- Elements from A < p
          A2 \leftarrow Elements from A > p
11
12
          size = A1.size + 1
13
14
          if (size in K) then
15
              remove size from K
16
              add {size : p} in R
17
          end
18
19
          Partition K such that
20
          K1 <- Elements from K < size
21
          K2 <- Elements from K > size
22
23
          R.append( KSmallestMulti(A1, K1) )
24
          Subtract size from each element in K2
25
          R.append( KSmallestMulti(A2, K2) ) // Add size to index while appending
26
27
          return R
     }
28
```

(c) Correctness:

Consider the example given in question: $A = \{1, 5, 9, 3, 7, 12, 15, 8, 21\}, K = \{2, 5, 7\}$ Suppose we take the random pivot as 8.

$$A1 = 1,5,3,7 \text{ and } A2 = 9,12,15,21$$

$$size = 4 (A1.size) + 1 = 5$$

We have 5 in our K hence we add 5: 8 in our result set (indicating 5th smallest element is 8) Now recursively call the same method for 1,5,3,7 with $K = \{2 \}$ and 9,12,15,21 with $K = \{2 \}$ 7 minus 5) $\}$ We would get the 2nd smallest element as 3 and the 7th smallest element (2nd smallest in the right subarray) as 12.

(d) Running time analysis.

$$T(n) = n + 2T(n/2, m/2)$$

$$T(n) = n + n + 4T(n/4, m/4)$$

$$T(n) = n + n + + n + 8T(n/8, m/8)$$

Similarly

$$T(n) = k*n + 2^k T(n/2^k, m/2^k)$$

$$m/2^{k} = 1$$

$$k = logm$$

Hence on substituting,

$$T(n) = O(n*log(m))$$

(a) Algorithm description

The basic idea is similar to finding the kth smallest element using the pivot method as we did in the class. We would find a random pivot point in A and then create two sub-arrays, one containing elements less than the pivot and the other having more than the pivot. We then calculate the size with the left sub-array and the pivot element. If the size value is present in K then we got our kth smallest element for that index. We then remove that element from K and divide K into 2 parts similar to A. We perform recursive calls with left partition A and left partition K. Similarly with the right partitions. And keep on adding the results to our final set.

(b) Consider the following algorithm.

Algorithm 2: find the largest element x in A such that the sum of the elements of A less than x is at most M

Input: An array A[1..n], containing n elements

M = target sum

Output: Largest element with leftmost elements having at most sum M

/* Here's my algorithm. */

```
1
      kthSmallestSum(A, M)
 2
 3
          Pick a random Pivot P
 4
          Partition A such that
 5
          A1: set of elements of A < P
          A2: set of elments of A > P
 6
 7
 8
          sum = sum of Elements in A1
 9
10
          if (sum == M) then
11
              return p
12
          else if (sum > M)
13
              return kthSmallestSum(A1, M)
14
          else
15
              if (sum + P) > M
                                   // Adding pivot exceeds M
16
                  return P
17
              else
                  return kthSmallestSum(A2, M-sum-p)
18
19
              end
20
          end
21
   }
22
```

(c) Correctness:

Consider the example given in question: $A = \{4, 8, 5, 2, 3, 6, 1\}$, M = 10 Suppose we take the random pivot P as 6. A1 = 4,5,2,3,1 and A2 = 8 sum of A1 = 15 15 \vdots 10 we repeat same for A1 Assume random pivot 3 A1 = 2,1 and A2 = 4,5 Sum of A1 = 3 3 \vdots 10 Go to A2 and M = 10 - 3 - 3 = 4 Consider pivot 5 for 4,5 A1 = 4 and A2 = empty set A1 sum = 4 Since sum = M, hence return pivot = 5

(d) Running time analysis.

Answer = 5

Time complexity here would be similar to the kth smallest element done in class where we solved the recurrence relation $T(n) = T(Max\{|A1|, |A2|\}) + n$ and got O(n).