practical-4-dsbda

May 4, 2025

```
[2]: #practical 4
     import pandas as pd
     import numpy as np
     import matplotlib.pyplot as plt
     import seaborn as sns
     from sklearn.linear_model import LinearRegression
     from sklearn.model_selection import train_test_split
     from sklearn.metrics import mean_squared_error, r2_score
[3]: df = pd.read_csv("Boston.csv")
     df.head()
[3]:
        Unnamed: 0
                        crim
                                zn
                                    indus
                                           chas
                                                    nox
                                                            rm
                                                                  age
                                                                          dis
                                                                               rad
     0
                 1
                    0.00632
                              18.0
                                     2.31
                                               0
                                                  0.538
                                                         6.575
                                                                65.2
                                                                       4.0900
                                                                                 1
                                     7.07
                                                                78.9
                 2
                    0.02731
                                                  0.469
                                                         6.421
     1
                               0.0
                                               0
                                                                       4.9671
                                                                                 2
     2
                 3
                    0.02729
                               0.0
                                     7.07
                                                  0.469
                                                         7.185
                                                                61.1
                                                                       4.9671
                                                                                 2
     3
                    0.03237
                                                  0.458
                                                         6.998
                                                                45.8
                                                                                 3
                 4
                               0.0
                                     2.18
                                               0
                                                                       6.0622
     4
                    0.06905
                                     2.18
                                                  0.458
                                                         7.147
                                                                                 3
                               0.0
                                                                54.2
                                                                       6.0622
            ptratio
                       black
                               lstat
                                      medv
        tax
     0
        296
                15.3
                      396.90
                                4.98
                                      24.0
        242
                17.8 396.90
     1
                                9.14
                                      21.6
     2 242
                17.8
                      392.83
                                4.03
                                      34.7
     3
        222
                18.7
                      394.63
                                2.94
                                      33.4
     4 222
                18.7
                      396.90
                                5.33
                                      36.2
[4]: df.info()
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 506 entries, 0 to 505
    Data columns (total 15 columns):
     #
                                       Dtype
         Column
                      Non-Null Count
         _____
     0
         Unnamed: 0 506 non-null
                                       int64
     1
         crim
                      506 non-null
                                       float64
     2
         zn
                      506 non-null
                                       float64
     3
                      506 non-null
                                       float64
         indus
         chas
                      506 non-null
                                       int64
```

```
5
                506 non-null
                                 float64
    nox
6
    rm
                506 non-null
                                 float64
7
                506 non-null
                                 float64
    age
8
    dis
                506 non-null
                                 float64
9
    rad
                506 non-null
                                 int64
10
   tax
                506 non-null
                                 int64
                506 non-null
                                 float64
11 ptratio
12
   black
                506 non-null
                                 float64
13
   lstat
                506 non-null
                                 float64
                506 non-null
14 medv
                                 float64
```

dtypes: float64(11), int64(4)

memory usage: 59.4 KB

[5]: df.describe()

[5]:		Unnamed: 0	crim	zn	indus	chas	nox	\
	count	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	
	mean	253.500000	3.613524	11.363636	11.136779	0.069170	0.554695	
	std	146.213884	8.601545	23.322453	6.860353	0.253994	0.115878	
	min	1.000000	0.006320	0.000000	0.460000	0.000000	0.385000	
	25%	127.250000	0.082045	0.000000	5.190000	0.000000	0.449000	
	50%	253.500000	0.256510	0.000000	9.690000	0.000000	0.538000	
	75%	379.750000	3.677083	12.500000	18.100000	0.000000	0.624000	
	max	506.000000	88.976200	100.000000	27.740000	1.000000	0.871000	
		rm	age	dis	rad	tax	ptratio	\
	count	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	
	mean	6.284634	68.574901	3.795043	9.549407	408.237154	18.455534	
	std	0.702617	28.148861	2.105710	8.707259	168.537116	2.164946	
	min	3.561000	2.900000	1.129600	1.000000	187.000000	12.600000	
	25%	5.885500	45.025000	2.100175	4.000000	279.000000	17.400000	
	50%	6.208500	77.500000	3.207450	5.000000	330.000000	19.050000	
	75%	6.623500	94.075000	5.188425	24.000000	666.000000	20.200000	
	max	8.780000	100.000000	12.126500	24.000000	711.000000	22.000000	
		black	lstat	medv				
	count	506.000000	506.000000	506.000000				
	mean	356.674032	12.653063	22.532806				
	std	91.294864	7.141062	9.197104				
	min	0.320000	1.730000	5.000000				
	25%	375.377500	6.950000	17.025000				
	50%	391.440000	11.360000	21.200000				
	75%	396.225000	16.955000	25.000000				
	max	396.900000	37.970000	50.000000				

[6]: df.isnull().sum()

```
[6]: Unnamed: 0
                   0
    crim
                   0
     zn
                   0
     indus
                   0
    chas
                   0
    nox
                   0
                   0
    rm
    age
                   0
    dis
                   0
    rad
                   0
    tax
                   0
                   0
    ptratio
    black
                   0
    lstat
                   0
    medv
                   0
    dtype: int64
[8]: sns.pairplot(df[['rm', 'lstat', 'ptratio', 'medv']])
    plt.show()
```



```
[16]: mse = mean_squared_error(y_test, y_pred)
    r2 = r2_score(y_test, y_pred)

print("Mean Squared Error:", mse)
    print("R2 Score:", r2)
```

Mean Squared Error: 24.497819777630365

R² Score: 0.6659408703343039

```
[17]: plt.figure(figsize=(6,4))
   plt.scatter(y_test, y_pred, alpha=0.7)
   plt.xlabel("Actual MEDV")
   plt.ylabel("Predicted MEDV")
   plt.title("Actual vs Predicted House Prices")
   plt.plot([y.min(), y.max()], [y.min(), y.max()], 'r--')
   plt.show()
```

Actual vs Predicted House Prices

