Міністерство освіти і науки України Національний авіаційний університет Навчально-науковий інститут комп'ютерних інформаційних технологій Кафедра комп'ютеризованих систем управління

Лабораторна робота №5 з дисципліни «Комп'ютерна електроніка» на тему «Дослідження тригерів» Варіант №3

> Виконав: студент ННІКІТ СП-225 Клокун Владислав Перевірив: Андрєєв О. В.

Київ 2017

1 Мета та основні завдання роботи

- 1. Вивчення принципів побудови й логіки роботи тригерів на інтегральних мікросхемах.
- 2. Вивчення умовно-графічних позначень тригерів.
- 3. Освоєння методики дослідження асинхронних і синхронних тригерів у статичному й динамічному режимах.
- 4. Вивчення УГЗ, законів функціонування і принципу дії RS-, JK- і D-тригерів.

2 Обладнання та прилади

До лабораторної установки входять:

- 1. RS-, JK- і D-тригери.
- 2. Два вольтметра постійної напруги для виміру значень вихідних напруг, відповідних логічним «0» і «1».
- 3. Індикатори логічних рівнів.
- 4. Генератор слів.
- 5. Логічний аналізатор.
- 6. Набір схем для дослідження логічних елементів в статичному і динамічному режимах.

3 Хід роботи

3.1 Дослідження асинхронного RS-тригера

Готуємо віртуальну установку (рис. 1) до роботи. Для цього перемикачі SA1 SA2 встановлюємо у нижнє положення, при якому вхідні змінні S і R дорівнюють O. Вмикаємо установку на моделювання. Перевіряємо всі набори таблиці істинності. Вимикаємо моделювання.

Досліджуємо RS-тригер у динамічному режимі. Для цього використовуємо схему на рис. 2, до якої входять асинхронний RS-тригер, генератор слів і логічний аналізатор.

Рис. 1: Схема віртуальної лабораторної установки для перевірки закону функціонування асинхронного RS-тригера

R (B)	S (B)	Q_t (B)	Q_{t+1} (B)	$\overline{Q_{t+1}}$ (B)
0,015	0,015	0,015	0,015	2,496
0,015	0,015	2,495	2,496	0,015
0,015	2,495	0,015	2,496	0,015
0,015	2,495	2,495	2,496	0,015
2,495	0,015	0,015	0,015	2,496
2,495	0,015	2,495	0,015	2,496
2,495	2,495	0,015	0,015	0,015
2,495	2,495	2,495	0,015	0,015

Табл. 1: Таблиця істинності асинхронного RS-тригера

Рис. 2: Схема віртуальної лабораторної установки для дослідження асинхронного RS-тригера в динамічному режимі

Параметр	Значення
Режим	Step
Trigger	Internal
Фронт	Передній (🗐)
Frequency	150 Hz
Набір слів	000A
	000E
	0101
	0101
	000E
	000E

Табл. 2: Налаштування генератора слів для дослідження асинхронного RSтригера

Налаштовуємо генератор слів. Для цього встановлюємо параметри, наведені у табл. 2.

Вмикаємо схему на моделювання. За результатами моделювання будуємо часову діаграму RS-тригера (рис. 3) та таблицю його переходів (табл. 3).

R	S	Q_t	Q_{t+1}
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	
1	1	1	

Табл. 3: Таблиця переходів асинхронного RS-тригера

3.2 Дослідження синхронного RS-тригера

Перевіряємо закон функціонування синхронного RS-тригера за допомогою віртуальної лабораторної установки (рис. 4). Отримані дані наведені у табл. 4 Досліджуємо RS-тригер у динамічному режимі. Для цього використовуємо

Рис. 3: Часова діаграма асинхронного RS-тригера

Рис. 4: Схема віртуальної лабораторної установки для перевірки закону функціонування синхронного RS-тригера

C(B)	R (B)	S (B)	Q_t (B)	Q_{t+1} (B)	$\overline{Q_{t+1}}$ (B)
2,495	0,015	0,015	0,015	0,015	2,496
2,495	0,015	0,015	2,495	2,496	0,015
2,495	0,015	2,495	0,015	2,496	0,015
2,495	0,015	2,495	2,495	2,496	0,015
2,495	2,495	0,015	0,015	0,015	2,496
2,495	2,495	0,015	2,495	0,015	2,496
2,495	2,495	2,495	0,015	0,015	0,015
2,495	2,495	2,495	2,495	0,015	0,015

Табл. 4: Таблиця істинності синхронного RS-тригера

схему на рис. 5, до якої входять синхронний RS-тригер, генератор слів і логічний аналізатор.

Налаштовуємо генератор слів. Для цього встановлюємо параметри, наведені у табл. 5.

Параметр	Значення
Режим	Step
Trigger	Internal
Фронт	Передній (🗐)
Frequency	150 Hz
Набір слів	000E
	0101
	000A
	000E
	000A
	0101

Табл. 5: Налаштування генератора слів для дослідження синхронного RSтригера

Вмикаємо схему на моделювання. За результатами моделювання будуємо часову діаграму RS-тригера (рис. 6) та таблицю його переходів (табл. 6).

3.3 Дослідження синхронного ЈК-тригера

Перевіряємо закон функціонування JK-тригера за допомогою віртуальної лабораторної установки (рис. 7). Отримані дані наведені у табл. 7.

Рис. 5: Схема віртуальної лабораторної установки для дослідження синхронного RS-тригера в динамічному режимі

Рис. 6: Часова діаграма синхронного RS-тригера

С	R	S	Q_t	Q_{t+1}
1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	
1	1	1	1	_

Табл. 6: Таблиця переходів синхронного RS-тригера

Рис. 7: Схема віртуальної лабораторної установки для перевірки закону функціонування синхронного JK-тригера

C (B)	$J\left(\mathrm{B}\right)$	K (B)	Q_t (B)	Q_{t+1} (B)
2,495	0,015	0,015	0,015	0,015
2,495	0,015	0,015	2,495	2,495
2,495	0,015	2,495	0,015	0,015
2,495	0,015	2,495	2,495	0,015
2,495	2,495	0,015	0,015	2,495
2,495	2,495	0,015	2,495	2,495
2,495	2,495	2,495	0,015	2,495
2,495	2,495	2,495	2,495	0,015

Табл. 7: Таблиця істинності синхронного ЈК-тригера

Досліджуємо ЈК-тригер у динамічному режимі. Для цього використовуємо схему на рис. 8, до якої входять синхронний ЈК-тригер, генератор слів і логічний аналізатор. Також налаштовуємо генератор слів. Для цього встановлюємо параметри, наведені у табл. 8. Вмикаємо схему на моделювання. За результатами моделювання будуємо часову діаграму синхронного ЈК-тригера (рис. 9) та таблицю переходів (табл. 9).

Рис. 8: Схема віртуальної лабораторної установки для дослідження синхронного JK-тригера в динамічному режимі

Параметр	Значення
Режим	Step
Trigger	Internal
Фронт	Передній 🗐
Frequency	150 Hz
Набір слів	0101
	000A
	000E
	000A
	03E7
	03E7

Табл. 8: Налаштування генератора слів для дослідження синхронного JKтригера

Рис. 9: Часова діаграма синхронного ЈК-тригера

Табл. 9: Таблиця переходів синхронного ЈК-тригера

C	J	K	Q_t	Q_{t+1}
1	0	0	0	0
1	0	0	1	1
1	0	1	0	0
1	0	1	1	0
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

3.4 Дослідження D-тригера з динамічним керуванням

Перевіряємо закон функціонування D-тригера за допомогою віртуальної лабораторної установки (рис. 10). Отримані дані наведені у табл. 10.

Рис. 10: Схема віртуальної лабораторної установки для перевірки закону функціонування D-тригера

C (B)	D (B)	Q_t (B)	Q_{t+1} (B)
2,496	0,015	0,015	0,015
2,496	0,015	2,496	0,015
2,496	2,496	0,015	2,496
2,496	2,496	2,496	2,496

Табл. 10: Таблиця істинності D-тригера

Досліджуємо D-тригер у динамічному режимі. Для цього використовуємо схему на рис. 11, до якої входять D-тригер, генератор слів і логічний аналізатор. Також налаштовуємо генератор слів. Для цього встановлюємо параметри, наведені у табл. 11. Вмикаємо схему на моделювання. За результатами моделювання будуємо часову діаграму D-тригера (рис. 12).

4 Висновки

Під час виконання даної лабораторної роботи ми вивчили принципи побудови та логіку роботи тригерів на інтегральних мікросхемах; вивчили умовнографічні позначення тригерів; освоїли методики дослідження асинхронних

Рис. 11: Схема віртуальної лабораторної установки для дослідження Dтригера в динамічному режимі

Параметр	Значення
Режим	Step
Trigger	Internal
Фронт	Передній (🗐)
Frequency	150 Hz
Набір слів	0101
	0101
	000A
	000A
	0101
	0101

Табл. 11: Налаштування генератора слів для дослідження D-тригера

C	D	Q_t	Q_{t+1}
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Табл. 12: Таблиця переходів D-тригера

Рис. 12: Часова діаграма D-тригера

і синхронних тригерів у статичному й динамічному режимах; вивчили умовнографічні позначення, закони функціонування та принципи дії RS-, JK- і D-тригерів.