Aula 10 Pilhas, Filas e Listas Biligadas

Programação II, 2019-2020

v1.3, 2019-05-14

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista

ligada

Implementação em vector

Listas biligadas

Sumário

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista

ligada Implementação em vector

Contract Contract Contract

Listas biligadas

Comparação entre diferentes tipos de listas ligadas

- 1 Pilhas e filas
 - Definições e tipos de dados abstratos Implementação em lista ligada Implementação em vector
- 2 Listas biligadas

Implementação em lista ligada

Implementação em vector

Listas biligadas

Comparação entre diferentes tipos de listas ligadas

 É uma estrutura de dados sequencial que só pode ser modificada por uma das suas extremidades usualmente denominada como "topo".

- Estrutura com gestão LIFO: Last In First Out;
 - O último elemento a entrar é o primeiro a sair.

Pilha: as operações push / pop

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista

ligada Implementação em vector

Listas biligadas

Listas biligadas

ligada Implementação em vector

Listas biligadas

Comparação entre

diferentes tipos de listas ligadas

- Armazenamento de contextos de execução de subrotinas.
- Análise e avaliação de expressões matemáticas.
- Travessia depth-first de árvores e grafos.
- Detecção de marcas de início/fim em texto formatado. Por exemplo, parênteses ou marcas HTML ou XML.
- ...

Pilha: tipo de dados abstrato

· Nome do módulo:

- · Stack
- Serviços:
 - push: insere (empilha) um elemento no topo da pilha
 - pop: remove (desempilha) o elemento no topo da pilha
 - top: devolve o elemento no topo da pilha
 - isEmpty: verifica se a pilha está vazia
 - isFull: verifica se a pilha está cheia
 - size: retorna a dimensão actual da pilha
 - clear: limpa a pilha (retira todos os elementos)

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista

ligada Implementação em vector

Listas biligadas

>-----

Pilha: semântica

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista

ligada Implementação em vector

Listas biligadas

Comparação entre diferentes tipos de listas ligadas

push(e)

• Pré-condição: !isFull()

• Pós-condição: !isEmpty() && (top() == e)

pop()

• Pré-condição: !isEmpty()

Pós-condição: !isFull()

top()

Pré-condição: !isEmpty()

Implementação em vector

Listas biligadas

- É uma estrutura de dados cujo acesso é feito por ambas as extremidades:
 - uma apenas para colocar elementos, e a outra apenas para os retirar.

- Gerida segundo uma política FIFO (First In First Out)
 - extrai-se sempre o valor mais antigo primeiro.

Fila: tipo de dados abstrato

- · Nome do módulo:
 - Queue
- Serviços:
 - in: insere um elemento no fim da fila
 - out: retira elemento do início da fila
 - peek: retorna o elemento do inicio da fila
 - isEmpty: verifica se a fila está vazia
 - isFull: verifica se a fila está cheia
 - · size: retorna a dimensão actual da fila
 - clear: limpa a fila (retira todos os elementos)

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista

ligada Implementação em vector

Listas biligadas

Fila: semântica

• in(v)

Pré-condição: !isFull()Pós-condição: !isEmpty()

out()

Pré-condição: !isEmpty()Pós-condição: !isFull()

• peek()

• Pré-condição: !isEmpty()

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista

ligada Implementação em vector

Listas biligadas

Listas biligada

- Numa aula anterior, estudámos as listas ligadas.
- · Comparando com os vectores, vimos que:
 - A grande vantagem das listas ligadas é serem estruturas de dados dinâmicas, portanto sem limitação na sua capacidade.
 - A grande desvantagem das listas ligadas é não facilitarem o acesso direto a cada elemento.
- No caso particular das pilhas e das filas:
 - Pode ser difícil prever o número de elementos.
 - Não há necessidade de aceder a elementos abaixo do topo da pilha.
 - Não há necessidade de aceder a elementos no meio da fila.
- Assim, em geral, a implementação de pilhas e filas em lista ligada é vantajosa, quando comparada com a implementação em vector.

Relembrando: lista ligada simples

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

Listas biligadas

Relembrando: lista ligada com dupla entrada

- A lista possui acesso direto ao primeiro e último elementos.
- É simples acrescentar elementos no início e no fim da lista.
- É simples remover elementos do início da lista.

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

Listas biligadas

Relembrando: lista ligada - tipo de dados abstrato

Nome do módulo:

LinkedList

· Serviços:

- · addFirst: insere um elemento no início da lista
- addLast: insere um elemento no fim da lista
- first: retorna o primeiro elemento da lista
- · last: retorna o último elemento lista
- removeFirst: retira o elemento no início da lista
- size: retorna a dimensão actual da lista
- isEmpty: verifica se a lista está vazia
- clear: limpa a lista (remove todos os elementos)

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

Listas biligadas

Pilha: implementação em lista ligada

- Usa uma gestão LIFO (Last In First Out)
- O último elemento empilhado (top) é o primeiro a desempilhar.
 - Método push corresponde a addFirst da lista ligada.
 - Método pop corresponde a removeFirst da lista ligada.
- O elemento no topo da pilha fica armazenado no primeiro nó da lista.
- O elemento na base da pilha fica armazenado no último nó da lista.

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

Listas biligadas

```
public class Stack<E> {
  private LinkedList<E> list = new LinkedList<E>();
   public void push(E element) {
      list.addFirst(element);
  public E top() {
      return list.first();
   public void pop() {
      list.removeFirst();
   public int size() {
      return list.size();
  public boolean isEmptv() {
      return list.isEmpty();
```

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

Listas biligadas

Fila: implementação em lista ligada

- Usa uma gestão FIFO (First In First Out).
- O primeiro elemento introduzido é o primeiro a remover, por isso tem que ficar no primeiro nó da lista.
 - Método out corresponde a removeFirst da lista ligada.
- O último elemento introduzido fica armazenado no último nó da lista e será o último a ser removido.
 - Método in corresponde a addLast da lista ligada.

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

Listas biligadas

```
public class Queue<E> {
  private LinkedList<E> list = new LinkedList<E>();
   public void in(E element) {
      list.addLast(element);
  public E peek() {
      return list.first();
   public void out() {
      list.removeFirst();
   public int size() {
      return list.size();
  public boolean isEmpty() {
      return list.isEmpty();
```

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

Listas biligadas

Pilha: implementação em vector

- Precisamos de dois atributos:
 - · O vector que armazena os elementos
 - O número de elementos, que funciona também como índice da primeira posição livre

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

Listas biligadas

```
Pilhas, Filas e Listas
Biligadas
```

```
public class Stack<E> {
  private E[] array;
  private int size;
  public Stack(int maxSize) {
     assert maxSize >= 0;
     array = (E[]) new Object[maxSize];
     size = 0;
  public void push(E e) {
     assert !isFull():
     array[size] = e;
     size++:
     assert !isEmpty() && top() == e;
  public void pop() {
     assert !isEmpty();
     size--:
     assert !isFull();
```

```
public E top() {
   assert !isEmpty();
   return array[size-1];
public boolean isEmpty() {
   return size == 0;
public boolean isFull() {
   return size == array.length;
public int size() {
   return size:
public void clear() {
   size = 0:
   assert isEmpty();
```

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

Listas biligadas

Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista

ligada Implementação em vector

Listas biligadas

- A forma mais eficiente de implementar é uma estrutura conhecida como buffer circular.
- Requer 4 atributos:
 - O vector que armazena os elementos.
 - · O número de elementos.
 - O índice do próximo elemento a ser retirado (cabeça da fila).
 - O índice do próximo elemento a ser ocupado (cauda da fila).
- Sempre que se insere ou retira um elemento, incrementa-se o índice respetivo em aritmética modular.
 - Ou seja, quando o índice atinge o limite, é reposto a zero.

Fila: exemplo

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

Listas biligadas

Fila: exemplo - gestão circular

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

Listas biligadas

Fila: exemplo - empty/full

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

Listas biligadas

```
public class Oueue<E> {
  private E[] array;
  private int size;
  private int head;
  private int tail;
  public Queue(int maxSize) {
      assert maxSize >= 0:
     array = (T[]) new Object[maxSize];
     size = head = tail = 0;
  public void in(E e) {
     assert !isFull();
     array[tail] = e;
     tail = nextPosition(tail);
     size++:
  public void out() {
     assert !isEmptv():
     head = nextPosition(head);
     size--:
```

```
public E peek() {
   assert !isEmpty();
   return array[head];
public int size() {
   return size:
public boolean isEmpty() {
   return size == 0;
public boolean isFull() {
   return size == array.length;
public void clear() {
   head = tail = size = 0:
private int nextPosition(int p) {
   return (p + 1) % array.length;
```

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

Listas biligadas

Correspondência entre listas, pilhas e filas

Lista	descrição	Pilha	Fila
addLast	acrescenta um elemento no fim da lista	-	in
addFirst	acrescenta um elemento no início da lista	push	-
first	devolve o primeiro elemento da lista remove o primeiro elemento da lista	top	peek
removeFirst		pop	out

- Os tipos de dados abstratos das pilhas e filas correspondem a subconjuntos do tipo de dados abstrato da lista ligada.
- Podemos dizer que os tipos de dados abstratos das pilhas e filas são açúcar sintático para certos perfis de utilização das listas.

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista

ligada Implementação em vector

Listas biligadas

ligada Implementação em vector

Listas biligadas

- Implementação em lista ligada:
 - Todos os métodos do tipo de dados abstrato têm complexidade constante (O(1)).
- Implementação em vector com dimensão fixa:
 - Todos os métodos do tipo de dados abstrato têm complexidade constante (O(1)).
- Implementação em vector com re-dimensionamento:
 - Sempre que a pilha ou fila enche, temos que criar um novo vector e transferir a informação para esse vector.
 - Nesses casos, a operação push passa a ter complexidade linear (O(n)).
 - Os restantes métodos do tipo de dados abstrato têm complexidade constante (O(1)).

Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista

ligada Implementação em vector

Listas hilinadas

- Estrutura de dados sequencial em que cada elemento da lista contém uma referência para o próximo elemento e outra para o anterior.
 - Cada uma dessas referências terá o valor null caso o elemento a que se refere não exista.
- Ao contrário da lista ligada, permite um acesso sequencial do fim para o início.
- Facilita a remoção do último elemento (removeLast).

Lista biligada: nós e ligações

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

Transport to the second

Lista biligada: nós e ligações

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

12000 - 12000 - 1200

Lista biligada: nós e ligações

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

istas biligadas

Lista biligada: primeiro e último elementos

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

Listas bilinadas

Lista biligada: tipo de dados abstrato

Nome do módulo:

- LinkedList
- · Serviços:
 - · addFirst: insere um elemento no início da lista.
 - addLast: insere um elemento no fim da lista.
 - first: devolve o primeiro elemento da lista.
 - · last: devolve o último elemento lista.
 - removeFirst: retira o elemento no início da lista.
 - removeLast: retira o elemento no início da lista.
 - size: devolve a dimensão actual da lista.
 - isEmpty: verifica se a lista está vazia.
 - clear: limpa a lista (remove todos os elementos).

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista

ligada Implementação em vector

Lietoe biligadoe

Lista biligada: novo elemento em lista vazia

addLast(1)

size == 0

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos Implementação em lista

ligada

Implementação em vector

istas hilinadas

Lista biligada: novo elemento em lista vazia

addLast(1)

size == 0

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

istas hilinadas

Lista biligada: novo elemento em lista vazia

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

stas hilinadas

Lista biligada: novo elemento em lista vazia

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

istas hilinadas

addLast(8)

size > 0

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

istas hilinada

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

stas hilinadas

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

stas hilinadas

Pilhas, Filas e Listas Biligadas

Pilhas e filas abstratos

Definições e tipos de dados

Implementação em lista ligada

Implementação em vector

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

Listas biligadas

Lista biligada: remoção do último elemento

removeFirst()

size == 1

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

ietae biligadae

Comparação entre diferentes tipos de listas ligadas

-

Lista biligada: remoção do último elemento

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

otoo biliaadaa

Lista biligada: remoção do último elemento

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

Listas hilinadas

removeFirst()

size > 1

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

ietae hilinadae

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

etae hilinadae

removeFirst() size > 1

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

etae hilinadae

Pilhas, Filas e Listas Biligadas

Pilhas e filas

Definições e tipos de dados abstratos

Implementação em lista ligada

Implementação em vector

too biliaadaa

Pil	hae	Δ f	ilae.

Definições e tipos de dados abstratos Implementação em lista

ligada Implementação em vector

Listas biligadas

omparação entre erentes tipos de

Tipo de Lista	Simples	Simples	Circular Simples	Biligada	Circular Biligada
Atributos Operações	first	first last	last	first last	first (last)
insert first	<i>O</i> (1)	<i>O</i> (1)	<i>O</i> (1)	<i>O</i> (1)	<i>O</i> (1)
remove first	<i>O</i> (1)	<i>O</i> (1)	<i>O</i> (1)	<i>O</i> (1)	<i>O</i> (1)
insert last	<i>O</i> (<i>n</i>)	<i>O</i> (1)	<i>O</i> (1)	<i>O</i> (1)	<i>O</i> (1)
remove last	<i>O</i> (<i>n</i>)	<i>O</i> (<i>n</i>)	<i>O</i> (<i>n</i>)	<i>O</i> (1)	<i>O</i> (1)
scan forward	<i>O</i> (<i>n</i>)	<i>O</i> (<i>n</i>)	O(n)	O(n)	O(n)
scan backward	$O(n^2)$	$O(n^2)$	$O(n^2)$	<i>O</i> (<i>n</i>)	O(n)
insert middle	O(n)	O(n)	O(n)	O(n)	O(n)
remove middle	<i>O</i> (<i>n</i>)	O(n)			