Introduction to the multivariate normal distribution

Let
$$\mathbf{Z} = \begin{bmatrix} Z_1 \\ Z_2 \\ \vdots \\ Z_n \end{bmatrix}$$
 be iid standard normal random variables, and let $\mathbf{Y} = A\mathbf{Z} + \boldsymbol{\mu}$, where

A is an $n \times n$ invertible matrix and $\mu \in \mathbb{R}^n$. Then Y is a multivariate normal (\mathbb{R}^n -valued) random variable with mean μ and covariance matrix $\Sigma = AA^T$.

We use the Change of Variables Theorem to find the joint pdf of \mathbf{Y} . Note that $\mathbf{Z} = A^{-1}(\mathbf{Y} - \boldsymbol{\mu})$, and that the joint pdf of \mathbf{Z} is $f_{\mathbf{Z}}(\mathbf{z}) = \frac{1}{(2\pi)^{n/2}} e^{-\frac{1}{2}(z_1^2 + \dots + z_n^2)} = \frac{1}{(2\pi)^{n/2}} e^{-\frac{1}{2}\mathbf{z}^T\mathbf{z}}$. Therefore

$$f_{\mathbf{Y}}(\mathbf{y}) = \frac{1}{(2\pi)^{n/2}} e^{-\frac{1}{2}(A^{-1}(\mathbf{y}-\mu))^{T}A^{-1}(\mathbf{y}-\mu)} |\det(A^{-1})| = \frac{1}{(2\pi)^{n/2}} e^{-\frac{1}{2}((\mathbf{y}-\mu))^{T}(A^{-1})^{T}A^{-1}(\mathbf{y}-\mu)} |\det(A^{-1})| = \frac{1}{(2\pi)^{n/2}} \sqrt{|\det(\Sigma)|} e^{-\frac{1}{2}((\mathbf{y}-\mu))^{T}\Sigma^{-1}(\mathbf{y}-\mu)}.$$