DLT: Conditioned layout generation with Joint Discrete-Continuous Diffusion Layout Transformer

ICCV 2023

Dohyun Kim a12s12@korea.ac.kr

Multimodal Interactive Intelligence Laboratory (MIIL)

Goal

Generate layouts conditioning on constraints (c)—— True or Unknown for each attributes (type, position, size)

Layouts: set of N components $\{B_i\}_{i=1}^N$

 B_i : {Type, position(x, y), size(w, h)}

Method

Autoregressive Transformer based models

- one element only depend on the generated part of the layout
- → hard to consider Global context

Non-autoregressive models(GAN, VAE) to consider global context

- not achieve significantly better performance with single pass

Diffusion model can consider global context and achieve better performance

- takes the layout in the last step as global context

Method

Based on Diffusion model

Layout data: discrete(type) and continuous (position, size)

Joint Discrete-Continuous Diffusion

Position, Size

Continuous diffusion models: DDPM

Type

Discrete diffusion models: D3PM

Generative Models

Generative model: Models that Generate similar data following the distribution of the training data by learning the training data

Diffusion Models

Suggested by "Deep Unsupervised Learning using Nonequilibrium Thermodynamics" (2015)

inspired by considerations from nonequilibrium thermodynamics

 \rightarrow If the model learns the whole system which indicates moving to a uniform state, could it also learn the process of reverting back to the original distribution?

In a very short time, The next position of the molecules is determined within the Gaussian Distribution

Diffusion Models

slowly destroy structure in a data distribution & learn a reverse diffusion process

 \rightarrow Image sampling: sample X_T from pure gaussian distribution + reverse process

Figure 2: The directed graphical model considered in this work.

DDPM "Denoising Diffusion Probabilistic Models" (NeurIPS, 2020): simplify loss term → high quality generated images

Forward(Diffusion) process

$$q(\mathbf{x}_{1:T}|\mathbf{x}_0) \coloneqq \prod_{t=1}^T q(\mathbf{x}_t|\mathbf{x}_{t-1}),$$

$$q(\mathbf{x}_{1:T}|\mathbf{x}_0) := \prod q(\mathbf{x}_t|\mathbf{x}_{t-1}), \qquad q(\mathbf{x}_t|\mathbf{x}_{t-1}) := \mathcal{N}(\mathbf{x}_t; \sqrt{1-\beta_t}\mathbf{x}_{t-1}, \beta_t \mathbf{I})$$

gradually adds Gaussian noise → pure Gaussian noise at timestep T

$$q(\mathbf{x}_t|\mathbf{x}_0) = \mathcal{N}(\mathbf{x}_t; \sqrt{\bar{\alpha}_t}\mathbf{x}_0, (1-\bar{\alpha}_t)\mathbf{I})$$

$$\beta_t$$
: variance schedule

$$\alpha_t$$
: $1 - \beta_t$

$$\overline{\alpha_t} = \prod_{s=1}^t \alpha_s$$

$$\mathbf{x}_t(\mathbf{x}_0, \boldsymbol{\epsilon}) = \sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon} \qquad \boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$$

$$oldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$$

Reparameterization trick

Reverse process

Maximize $log p_{\theta}(X_0)$ but intractable \rightarrow Find Variational upper bound on negative log likelihood

$$\mathbb{E}\left[-\log p_{\theta}(\mathbf{x}_{0})\right] \leq \mathbb{E}_{q}\left[-\log \frac{p_{\theta}(\mathbf{x}_{0:T})}{q(\mathbf{x}_{1:T}|\mathbf{x}_{0})}\right] = \mathbb{E}_{q}\left[-\log p(\mathbf{x}_{T}) - \sum_{t \geq 1} \log \frac{p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t})}{q(\mathbf{x}_{t}|\mathbf{x}_{t-1})}\right] =: L$$

 $\mathbb{E}_{q}\left[\underbrace{D_{\mathrm{KL}}(q(\mathbf{x}_{T}|\mathbf{x}_{0}) \parallel p(\mathbf{x}_{T}))}_{L_{T}} + \sum_{t>1} \underbrace{D_{\mathrm{KL}}(q(\mathbf{x}_{t-1}|\mathbf{x}_{t},\mathbf{x}_{0}) \parallel p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t}))}_{L_{T}} \underbrace{-\log p_{\theta}(\mathbf{x}_{0}|\mathbf{x}_{1})}_{L_{T}}\right]$

Using bayes rule, Markov chain and some tricks

 L_T : Regularization term

In VAE L_0 : Reconstruction term

→ too small & ignored

$$\mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\phi}; \mathbf{x}^{(i)}) = -D_{KL}(q_{\boldsymbol{\phi}}(\mathbf{z}|\mathbf{x}^{(i)})||p_{\boldsymbol{\theta}}(\mathbf{z})) + \mathbb{E}_{q_{\boldsymbol{\phi}}(\mathbf{z}|\mathbf{x}^{(i)})} \left[\log p_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}|\mathbf{z}) \right]$$

Reverse process

$$\sum_{t>1} \underbrace{D_{\mathrm{KL}}(q(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{x}_0) \parallel p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t))}_{L_{t-1}} \rightarrow L_{t-1}$$
: Final loss term

$$\tilde{\beta}_t := \frac{1 - \bar{\alpha}_{t-1}}{1 - \bar{\alpha}_t} \beta_t$$

Untrained (fixed as constant → **simplified)**

$$q(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{x}_0) = \mathcal{N}(\mathbf{x}_{t-1};\underline{\tilde{\boldsymbol{\mu}}_t(\mathbf{x}_t,\mathbf{x}_0)},\underline{\tilde{\boldsymbol{\beta}}_t\mathbf{I}}), \quad p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t) = \mathcal{N}(\mathbf{x}_{t-1};\boldsymbol{\mu}_{\theta}(\mathbf{x}_t,t),\underline{\boldsymbol{\Sigma}_{\theta}(\mathbf{x}_t,t)})$$
Forward process posterior mean
$$= \mathcal{N}(\mathbf{x}_{t-1};\boldsymbol{\mu}_{\theta}(\mathbf{x}_t,t),\sigma_t^2\mathbf{I})$$
Model output

$$L_{t-1} = \mathbb{E}_q \left\lceil \frac{1}{2\sigma_t^2} \| \tilde{\boldsymbol{\mu}}_t(\mathbf{x}_t, \mathbf{x}_0) - \boldsymbol{\mu}_{\theta}(\mathbf{x}_t, t) \|^2 \right\rceil + C \text{ Other KL divergence term } \\ D_{KL}(N_1||N_2) = \log \left(\frac{\sigma_2}{\sigma_1}\right) + \frac{\sigma_1^2 + (\mu_1 - \mu_2)^2}{2\sigma_2^2} - \frac{1}{2} + C \right\rceil + C \\ D_{KL}(N_1||N_2) = \log \left(\frac{\sigma_2}{\sigma_1}\right) + \frac{\sigma_1^2 + (\mu_1 - \mu_2)^2}{2\sigma_2^2} - \frac{1}{2} + C \\ D_{KL}(N_1||N_2) = \log \left(\frac{\sigma_2}{\sigma_1}\right) + \frac{\sigma_1^2 + (\mu_1 - \mu_2)^2}{2\sigma_2^2} - \frac{1}{2} + C \\ D_{KL}(N_1||N_2) = \log \left(\frac{\sigma_2}{\sigma_1}\right) + \frac{\sigma_1^2 + (\mu_1 - \mu_2)^2}{2\sigma_2^2} - \frac{1}{2} + C \\ D_{KL}(N_1||N_2) = \log \left(\frac{\sigma_2}{\sigma_1}\right) + \frac{\sigma_1^2 + (\mu_1 - \mu_2)^2}{2\sigma_2^2} - \frac{1}{2} + C \\ D_{KL}(N_1||N_2) = \log \left(\frac{\sigma_2}{\sigma_1}\right) + \frac{\sigma_1^2 + (\mu_1 - \mu_2)^2}{2\sigma_2^2} - \frac{1}{2} + C \\ D_{KL}(N_1||N_2) = \log \left(\frac{\sigma_2}{\sigma_1}\right) + \frac{\sigma_1^2 + (\mu_1 - \mu_2)^2}{2\sigma_2^2} - \frac{1}{2} + C \\ D_{KL}(N_1||N_2) = \log \left(\frac{\sigma_2}{\sigma_1}\right) + \frac{\sigma_1^2 + (\mu_1 - \mu_2)^2}{2\sigma_2^2} - \frac{1}{2} + C \\ D_{KL}(N_1||N_2) = \log \left(\frac{\sigma_2}{\sigma_1}\right) + \frac{\sigma_1^2 + (\mu_1 - \mu_2)^2}{2\sigma_2^2} - \frac{1}{2} + C \\ D_{KL}(N_1||N_2) = \log \left(\frac{\sigma_2}{\sigma_1}\right) + \frac{\sigma_1^2 + (\mu_1 - \mu_2)^2}{2\sigma_2^2} - \frac{1}{2} + C \\ D_{KL}(N_1||N_2) = \log \left(\frac{\sigma_2}{\sigma_1}\right) + \frac{\sigma_1^2 + (\mu_1 - \mu_2)^2}{2\sigma_2^2} - \frac{1}{2} + C \\ D_{KL}(N_1||N_2) = \log \left(\frac{\sigma_2}{\sigma_1}\right) + \frac{\sigma_1^2 + (\mu_1 - \mu_2)^2}{2\sigma_2^2} - \frac{1}{2} + C \\ D_{KL}(N_1||N_2) = \log \left(\frac{\sigma_2}{\sigma_1}\right) + \frac{\sigma_1^2 + (\mu_1 - \mu_2)^2}{2\sigma_2^2} - \frac{1}{2} + C \\ D_{KL}(N_1||N_2) = \log \left(\frac{\sigma_2}{\sigma_1}\right) + \frac{\sigma_1^2 + (\mu_1 - \mu_2)^2}{2\sigma_2^2} - \frac{1}{2} + C \\ D_{KL}(N_1||N_2) = \log \left(\frac{\sigma_2}{\sigma_1}\right) + \frac{\sigma_1^2 + (\mu_1 - \mu_2)^2}{2\sigma_2^2} - \frac{1}{2} + C \\ D_{KL}(N_1||N_2) = \log \left(\frac{\sigma_2}{\sigma_1}\right) + \frac{\sigma_1^2 + (\mu_1 - \mu_2)^2}{2\sigma_2^2} - \frac{\sigma_1^2 + (\mu_1 - \mu_2)^2}{2\sigma_2^2} - \frac{\sigma_2^2}{2\sigma_2^2} - \frac{\sigma_2^2$$

$$D_{KL}(N_1||N_2) = \log\left(rac{\sigma_2}{\sigma_1}
ight) + rac{\sigma_1^2 + (\mu_1 - \mu_2)^2}{2\sigma_2^2} - rac{1}{2}$$

KL divergence (μ)

Reverse process

Simplify loss term → predict noise

$$\begin{split} L_{t-1} &= \mathbb{E}_q \left[\frac{1}{2\sigma_t^2} \| \underline{\tilde{\mu}}_t(\mathbf{x}_t, \mathbf{x}_0) - \underline{\mu}_\theta(\mathbf{x}_t, t) \|^2 \right] + C \\ \underline{\tilde{\mu}}_t(\mathbf{x}_t, \mathbf{x}_0) &\coloneqq \frac{\sqrt{\bar{\alpha}_{t-1}}\beta_t}{1 - \bar{\alpha}_t} \mathbf{x}_0 + \frac{\sqrt{\alpha_t}(1 - \bar{\alpha}_{t-1})}{1 - \bar{\alpha}_t} \mathbf{x}_t & \underline{\tilde{\mu}}_\theta(\mathbf{x}_t, t) = \underline{\tilde{\mu}}_t \left(\mathbf{x}_t, \frac{1}{\sqrt{\bar{\alpha}_t}} (\mathbf{x}_t - \sqrt{1 - \bar{\alpha}_t} \epsilon_\theta(\mathbf{x}_t)) \right) = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{\beta_t}{\sqrt{1 - \bar{\alpha}_t}} \epsilon_\theta(\mathbf{x}_t, t) \right) \\ \underline{\mathbf{x}}_t(\mathbf{x}_0, \epsilon) &= \sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon \end{split}$$

Reformulating the loss function to predict residuals! (It is possible to predict X_0 but worse quality)

$$\mathbb{E}_{\mathbf{x}_0,\epsilon}\Big[\frac{\beta_t^2}{2\sigma^2\alpha_t(1-\bar{\alpha}_t)}\left\|\epsilon - \epsilon_{\theta}(\sqrt{\bar{\alpha}_t}\mathbf{x}_0 + \sqrt{1-\bar{\alpha}_t}\epsilon,t)\right\|^2\Big] \implies L_{\text{simple}}(\theta) \coloneqq \mathbb{E}_{t,\mathbf{x}_0,\epsilon}\Big[\Big\|\epsilon - \epsilon_{\theta}\big(\sqrt{\bar{\alpha}_t}\mathbf{x}_0 + \sqrt{1-\bar{\alpha}_t}\epsilon,t\big)\Big\|^2\Big]$$

Model can focus on more difficult denoising tasks at lager t terms

DDPM

Overall algorithm

Algorithm 1 Training	Algorithm 2 Sampling					
1: repeat 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$ 3: $t \sim \mathrm{Uniform}(\{1, \dots, T\})$ 4: $\epsilon \sim \mathcal{N}(0, \mathbf{I})$ 5: Take gradient descent step on $\nabla_{\theta} \left\ \epsilon - \epsilon_{\theta} (\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon, t) \right\ ^2$ 6: until converged X_t	1: $\mathbf{x}_{T} \sim \mathcal{N}(0, \mathbf{I})$ 2: for $t = T, \dots, 1$ do 3: $\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})$ if $t > 1$, else $\mathbf{z} = 0$ 4: $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_{t}}} \left(\mathbf{x}_{t} - \frac{1-\alpha_{t}}{\sqrt{1-\bar{\alpha}_{t}}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_{t}, t) \right) + \sigma_{t} \mathbf{z}$ 5: end for 6: return \mathbf{x}_{0}					

Main Contribution: simplify the loss

- Deleting some loss terms with fixed $oldsymbol{eta}_{1:T}$
- Residual Estimation
- Not to learn variance (fix) → make it easy for training

Result of DDPM

Figure 14: Unconditional CIFAR10 progressive generation

Figure 11: CelebA-HQ 256 × 256 generated samples

Evolution of diffusion models

- "Deep Unsupervised Learning using Nonequilibrium Thermodynamics."
- "Denoising Diffusion Probabilistic Models." (DDPM)
- "Improved Denoising Diffusion Probabilistic Models."(DDIM) → accelerate sampling
- "Diffusion Models Beat GANs on Image Synthesis." → high quality on conditional image generation using classifier guidance
- "High-Resolution Image Synthesis with Latent Diffusion models"(LDM) → diffusion in latent space (VQ-VAE)
- "Classifier-Free Diffusion Guidance" → improve conditional image generation
- "Prompt-to-Prompt Image Editing with Cross-Attention Control → image editing

Why is diffusion powerful?

Gradually noising and denoising process

- → Stable training (compared with GAN)
 - Robustness to Overfitting
 - Flexible generators for various types of conditioning
 - Scalability → large models → fine tuning or utilize for derived tasks
- → Interpretable Latent Space (1000 steps)
 - generate diverse samples (randomness between steps)

D3PM

"Structured Denoising Diffusion Models in Discrete State-Spaces" (NeurIPS 2021)

Discrete Denoising Diffusion Probabilistic Models(D3PM): Approach to modeling the diffusion process in discrete state space

- Using transition matrix Q_t

Forward process of D3PM

Can not directly using the forward process in a continuous space (sampling from gaussian distribution)

 \rightarrow Forward process using transition matrix Q_t

$$[\boldsymbol{Q}_t]_{ij} = q(x_t = j | x_{t-1} = i)$$

$$\boldsymbol{Q}_t^{\text{type}} = \begin{bmatrix} 1 - \gamma_t & 0 & \cdots & 0 \\ 0 & 1 - \gamma_t & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ \gamma_t & \gamma_t & \cdots & 1 \end{bmatrix}$$
 mask

Text image mask

$$q(\boldsymbol{x}_t|\boldsymbol{x}_{t-1}) = \operatorname{Cat}(\boldsymbol{x}_t; \boldsymbol{p} = \boldsymbol{x}_{t-1}\boldsymbol{Q}_t) \rightarrow \operatorname{categorical distribution}$$

$$q(\boldsymbol{x}_t|\boldsymbol{x}_0) = \operatorname{Cat}\left(\boldsymbol{x}_t; \boldsymbol{p} = \boldsymbol{x}_0\overline{\boldsymbol{Q}}_t\right), \quad \text{with} \quad \overline{\boldsymbol{Q}}_t = \boldsymbol{Q}_1\boldsymbol{Q}_2\dots\boldsymbol{Q}_t$$

→ categorical distribution is converge at t =T (e.g. uniform distribution, all masked)

loss of D3PM

Focus on using a neural network to predict the logits of distribution $\widetilde{p}_{ heta}(\widetilde{m{x}}_0|m{x}_t)$

$$p_{\theta}(\underline{\boldsymbol{x}_{t-1}}|\boldsymbol{x}_t) \propto \sum_{\widetilde{\boldsymbol{x}}_0} q(\boldsymbol{x}_{t-1}, \boldsymbol{x}_t|\widetilde{\boldsymbol{x}}_0) \widetilde{p}_{\theta}(\widetilde{\boldsymbol{x}}_0|\boldsymbol{x}_t)$$

Loss function:

$$L_{\text{vb}} = \mathbb{E}_{q(\boldsymbol{x}_0)} \left[\underbrace{D_{\text{KL}}[q(\boldsymbol{x}_T | \boldsymbol{x}_0) || p(\boldsymbol{x}_T)]}_{L_T} + \sum_{t=2}^{T} \underbrace{\mathbb{E}_{q(\boldsymbol{x}_t | \boldsymbol{x}_0)} \left[D_{\text{KL}}[q(\boldsymbol{x}_{t-1} | \boldsymbol{x}_t, \boldsymbol{x}_0) || p_{\theta}(\boldsymbol{x}_{t-1} | \boldsymbol{x}_t)]\right]}_{L_{t-1}} \underbrace{-\mathbb{E}_{q(\boldsymbol{x}_1 | \boldsymbol{x}_0)} [\log p_{\theta}(\boldsymbol{x}_0 | \boldsymbol{x}_1)]}_{L_0} \right].$$

$$L_{\lambda} = L_{\text{vb}} + \lambda \mathbb{E}_{q(\boldsymbol{x}_0)} \mathbb{E}_{q(\boldsymbol{x}_t | \boldsymbol{x}_0)} [-\log \widetilde{p}_{\theta}(\boldsymbol{x}_0 | \boldsymbol{x}_t)]$$

auxiliary loss term: λ = 0.001 was best \rightarrow Cross Entropy

DLT

Joint Discrete-Continuous Diffusion

Position, Size

Continuous diffusion models: DDPM

Type

Discrete diffusion models: D3PM

$$q^{c}(\bar{x}_{t}|\bar{x}_{t-1}) = \mathcal{N}(\bar{x}_{t}, \sqrt{1-\beta_{t}}\bar{x}_{t-1}, \beta_{t} \cdot I)$$

$$\mathbf{Q}_t^{ ext{type}} = \left[egin{array}{cccc} 1 - \gamma_t & 0 & \cdots & 0 \ 0 & 1 - \gamma_t & \cdots & 0 \ dots & dots & \ddots & dots \ \gamma_t & \gamma_t & \cdots & 1 \end{array}
ight]$$

Continuous loss: $\mathcal{L}_{box} = \mathbb{E}_{\bar{x}_0, \bar{y}_0 \sim q(\bar{x}_0, \bar{y}_0 | c), t \sim [0, 1]} ||F^c_{\theta}(\bar{x}_t, c, \bar{y}_t) - \bar{x}_0||^2$

keeping or masking (absorbing-state)

Discrete loss:
$$L_{\lambda} = L_{\mathrm{vb}} + \lambda \; \mathbb{E}_{q(\boldsymbol{x}_0)} \mathbb{E}_{q(\boldsymbol{x}_t|\boldsymbol{x}_0)} [-\log \widetilde{p}_{\theta}(\boldsymbol{x}_0|\boldsymbol{x}_t)]$$
 D3PN

$$\mathcal{L}_{cls} = \mathbb{E}_{\bar{y}_0, \bar{x}_0 \sim q(\bar{y}_0, \bar{x}_0|c), t \sim [0,1]} CE(F_{\theta}^d(\bar{x}_t, c, \bar{y}_t), \bar{y}_0) \\ \underset{\text{D3PM objective}}{\text{Reweighted absorbing-state}}$$

$$\mathcal{L}_{model} = \lambda_1 \cdot \mathcal{L}_{box} + \lambda_2 \cdot \mathcal{L}_{cls}$$

Model Architecture

Input: {(type, C), (position, C), (size, C)}...

※ C: condition (true or unknown)

output: {type, position, size}...

Experiments

Dataset	Publiagnet											
	Conditioned on Category				Category + Size				Uncoditioned			
Model	pIOU Overia		Angnment FID		pIOU	Overnap	Alignme	ent FID	pIOU	Overlap	Alignme	nt FID
LT [7]	2.7	7.6	0.41	26.8	7.1	11.7	0.14	22.0	0.62	2.4	0.11	19.3
BLT [16]	0.89	4.4	0.10	36.6	1.7	8.1	0.09	14,2	0.60	2.7	0.12	69.8
VTN[I]	2.1	6.8	0.29	22.1	5.3	15.3	0.09	17.9	0.68	2.6	0.08	14.5
DLT	0.67	3.8	0.11	10.3	0.82	4.2	0.09	11.4	0.59	2.6	0.11	13.8
Dataset	Rico											
	Conditioned on Category				Category + Size				Uncoditioned			
Model	pIOU	Overlap	verlap Alignment FID		pIOU	Overlap Alignment FID		ent FID	pIOU	Overlap	Alignment FID	
LT [7]	25.6	75.2	0.58	14.7	23.8	69.1	0.41	8.4	23.2	65.1	0.40	15.2
BLT [16]	30.2	85.1	0.12	27.8	24.5	79.3	0.30	10.2	23.0	70.6	0.25	18.7
VTN[1]	25.4	74.2	0.43	14.3	24.1	69.6	0.44	7.1	29.4	72.1	0.26	29.4
DLT	21.9	70.6	0.18	9.5	17.2	70.2	0.28	6.3	19.3	58.4	0.21	13.9
Dataset	Magazine											
	Conditioned on Category				Category + Size				Uncoditioned			
Model	pIOU	Overlap	Alignme	nt FID	plOU	Overlap	Alignmo	ent FID	plOU	Overlap	Alignment FII	
LT [7]	19.9	71.0	1.5	44.7	21.4	70.2	1.2	45.3	21.4	70.0	1.1	42.6
BLT [16]	36.4	133	1.4	49	20.5	56.8	1.2	27.3	30.1	134	1.1	52.7
VIN[I]	10.3	38.7	2.4	37.6	9.9	28.8	2.3	29.4	20.1	70.7	0.9	62.7
DLT	5.9	16.1	1.3	26.2	6.8	19.4	1.6	21.7	4.8	12.1	1.8	40.9

Experiments

Conclusion

Contribution

- apply Joint Discrete-Continuous Diffusion to layout generation

Limitation

- Utility↓: model does not generate layout by looking at each contents, the suitable contents must be manually inserted by a person

Our model

Update Text 512 512 **Overfitting Type** (x, y, h, w, r, z) Concat **Ratio** MLP MLP **Image Transformer Predicted Geometry** Layer Geometry MLP (x, y, h, w, r, z) MLP Time step