What is an image?

- Ideally, we think of an **image** as a 2-dimensional light intensity function, f(x,y), where x and y are spatial coordinates, and f at (x,y) is related to the brightness or color of the image at that point.
- In practice, most images are defined over a rectangle.
- Continous in amplitude ("continous-tone")
- Continous in space: no pixels!

Digital Images and Pixels

- A **digital image** is the representation of a continuous image f(x,y) by a 2-d array of discrete samples. The amplitude of each sample is quantized to be represented by a finite number of bits.
- Each element of the 2-d array of samples is called a pixel or pel (from "picture element")
- Think of pixels as point samples, without extent.

Image Resolution

200x200

100x100

50x50

25x25

- These images were produced by simply picking every n-th sample horizontally and vertically and replicating that value nxn times.
- We can do better
 - prefiltering before subsampling to avoid aliasing
 - Smooth interpolation

Color Components

Monochrome image

R(x,y) = G(x,y) = B(x,y)

Red R(x,y)

Green G(x,y)

Blue B(x,y)

Different numbers of gray levels

How many gray levels are required?

Contouring is most visible for a ramp

Digital images typically are quantized to 256 gray levels.

Brightness discrimination experiment

Can you see the circle?

Note: I is luminance, measured in cd/m^2

Visibility threshold

$$\Delta I/I \approx K_{Weber} \approx 1...2\%$$

"Weber fraction" "Weber's Law"

Contrast with 8 Bits According to Weber's Law

 Assume that the luminance difference between two successive representative levels is just at visibility threshold

$$\frac{I_{\text{max}}}{I_{\text{min}}} = \left(1 + K_{Weber}\right)^{255}$$

• For
$$K_{Weber} = 0.01 \cdots 0.02$$

$$\frac{I_{\text{max}}}{I_{\text{min}}} = 13 \cdots 156$$

- Typical display contrast
 - Cathode ray tube 100:1
 - Print on paper 10:1
- Suggests uniform perception in the log(I) domain ("Fechner's Law")

Gamma characteristic

Cathode ray tubes (CRT) are nonlinear

• Cameras contain γ -predistortion circuit

$$U \sim I^{1/\gamma}$$

$\log vs. \gamma$ -predistortion

Similar enough for most practical applications

Photographic film

Hurter & Driffield curve (H&D curve) for photographic negative

Luminance

$$I = I_0 \cdot 10^{-d}$$

$$= I_0 \cdot 10^{-(-\gamma \log E + d_0)}$$

$$= I_0 \cdot 10^{-d_0} \cdot E^{\gamma}$$

- γ measures film contrast
 - General purpose films: $\gamma = -0.7 \dots -1.0$
 - High-contrast films: $\gamma = -1.5...-10$
- Lower speed films tend to have higher absolute γ

Intensity Scaling

Original image

f(x,y)

Scaled image

 $a \cdot f(x,y)$

Scaling in the γ -domain is equivalent to scaling in the linear luminance domain

$$I \sim (a \cdot f(x,y))^{\gamma} = a^{\gamma} \cdot (f(x,y))^{\gamma}$$

. . . same effect as adjusting camera exposure time.

Adjusting γ

Original image

f(x,y)

γ increased by 50%

 $a \cdot (f(x,y))^{\gamma}$ with $\gamma = 1.5$

... same effect as using a different photographic film ...

Changing gradation by γ-adjustment

Histograms

- Distribution of gray-levels can be judged by measuring a histogram:
 - For B-bit image, initialize 2^B counters with 0
 - Loop over all pixels x,y
 - When encountering gray level f(x,y)=i, increment counter # ι
- Histogram can be interpreted as an estimate of the probability density function (pdf) of an underlying random process.
- You can also use fewer, larger bins to trade off amplitude resolution against sample size.

Example histogram

Cameraman image

Example histogram

Pout image

Histogram equalization

Idea: find a non-linear transformation

$$g = T(f)$$

to be applied to each pixel of the input image f(x,y), such that a uniform distribution of gray levels in the entire range results for the output image g(x,y).

- Analyse ideal, continuous case first, assuming
 - $\bullet \quad 0 \le f \le 1 \qquad \quad 0 \le g \le 1$
 - T(f) is strictly monotonically increasing, hence, there exists

$$f = T^{-1}(g) \qquad 0 \le g \le 1$$

• Goal: $pdf p_g(g) = const.$ over the range

Histogram equalization for continuous case

From basic probability theory

$$p_{g}(g) = \left[p_{f}(f)\frac{df}{dg}\right]_{f=T^{-1}(g)}$$

Consider the transformation function

$$g = T(f) = \int_0^f p_f(\alpha) d\alpha \qquad 0 \le f \le 1$$

• Then . . .
$$\frac{dg}{df} = p_f(f)$$

$$p_{g}(g) = \left[p_{f}(f)\frac{df}{dg}\right]_{f=T^{-1}(g)} = \left[p_{f}(f)\frac{1}{p_{f}(f)}\right]_{f=T^{-1}(g)} = 1 \qquad 0 \le g \le 1$$

Histogram equalization for discrete case

Now, f only assumes discrete amplitude values f_0, f_1, \dots, f_{L-1} with "probabilities"

$$P_0 = \frac{n_0}{n}$$
 $P_1 = \frac{n_1}{n}$... $P_{L-1} = \frac{n_{L-1}}{n}$

■ Discrete approximation of $g = T(f) = \int_0^f p_f(\alpha) d\alpha$

$$g_k = T(f_k) = \sum_{i=0}^k P_i$$

■ The resulting values g_k are in the range [0,1] and need to be scaled and rounded appropriately.

Original image Pout

Pout after histogram equalization

. . . after histogram equalization

Original image Cameraman

Cameraman after histogram equalization

Original image Cameraman

... after histogram equalization

Original image *Moon*

Moon after histogram equalization

Original image *Moon*

... after histogram equalization

Adaptive Histogram Equalization

 Apply histogram equalization based on a histogram obtained from a portion of the image

Sliding window approach: different histogram (and mapping) for every pixel

Tiling approach:
subdivide into overlapping regions,
mitigate blocking effect by smooth blending
between neighboring tiles

Must limit contrast expansion in flat regions of the image,
 e.g. by clipping individual histogram values to a maximum

Adaptive Histogram Equalization

Original

Global histogram

Tiling 8x8 histograms

Tiling 32x32 histograms

Adaptive histogram equalization

Original image *Tire*

Tire after equalization of global histogram

Tire after adaptive histogram equalization 8x8 tiles

Point Operations Combining Images

- Image averaging for noise reduction
- Combination of different exposure for high-dynamic range imaging
- Image subtraction for change detection
- Accurate alignment is always a requirement

Image averaging for noise reduction

Image averaging for noise reduction

- Take N aligned images $f_1(x,y), f_2(x,y), \dots, f_N(x,y)$
- Average image: $\overline{f(x,y)} = \frac{1}{N} \sum_{i=1}^{N} f_i(x,y)$
- Mean squared error vs. noise-free image g

$$E\left\{\left(\overline{f} - g\right)^{2}\right\} = E\left\{\left(\left(\frac{1}{N}\sum_{i}f_{i}\right) - g\right)^{2}\right\} = E\left\{\left(\left(\frac{1}{N}\sum_{i}\left(g + n_{i}\right)\right) - g\right)^{2}\right\}$$

$$= E\left\{\left(\frac{1}{N}\sum_{i}n_{i}\right)^{2}\right\} = \frac{1}{N^{2}}\sum_{i}E\left\{n_{i}^{2}\right\} = \frac{1}{N}E\left\{n^{2}\right\}$$

$$\text{provided } E\left\{n_{i}n_{j}\right\} = 0 \,\forall i, j$$

$$E\left\{n_{i}\right\} = E\left\{n\right\} \,\forall i$$

High-dynamic range imaging

16 exposures, one f-stop (2X) apart

[Debevec, Malik, 1997]

Image subtraction

- Find differences/changes between 2 mostly identical images
- Example from IC manufacturing: defect detection in photomasks by die-to-die comparison

Where is the Defect?

Image A (no defect)

Image B (w/ defect)

Absolute Difference Between Two Images

w/o alignment

w/ alignment

Digital Subtraction Angiography

Contrast enhancement

http://www.isi.uu.nl/Research/Gallery/DSA/