Варіант 1

- 1. Дві маленькі однакові за розміром заряджені кульки, що знаходяться на відстані r одна від одної, притягуються з силою F_1 . Кульки доторкнули одна до одної, а потім розвели на таку ж саму відстань. Після цього кульки почали відштовхуватись з силою F_2 . Визначити початкові заряди кульок q_1 та q_2 .
- 2. Відомо величини опорів R_1 , R_2 , R_3 та ЕРС є джерела струму. Знайти струм, що протікає через опір R_2 , нехтуючи опором джерела.

Варіант 2

- 1. Який заряд розташовано на поверхні сфери радіусом R, якщо потенціал в її центрі дорівнює ϕ ?
- 2. Відомі величини ЕРС джерел струму ε_1 і ε_2 та опори R_1 , R_2 , R_3 . Знайти падіння напруги на R_2 . Опорами джерел знехтувати.

Варіант 3

- 1. В трьох вершинах квадрату зі стороною а знаходяться три однакові додатні заряди q_1 , а в четвертій негативний заряд q. Визначити напруженість електричного поля в центрі квадрату.
- 2. Яку частку ЕРС джерела є складає різниця потенціалів на його затискачах, якщо його внутрішній опір в празів менший зовнішнього опору?

Варіант 4

- 1. Точка A віддалена на відстань r_1 , а точка B на відстань r_2 від точкового заряду q. Чому дорівнює різниця потенціалів між точками A і B?
- 2. Дві електричні лампочки з опорами R_1 та R_2 увімкнені в мережу паралельно. Чому дорівнює відношення потужностей, які вони споживають?

Варіант 5

1. Чотири однакові за модулем точкових заряди q, два з яких додатні, а два від'ємні, розташовані у вершинах квадрату зі стороною b так, як показано на рисунку. Знайти силу, що діє на розміщений в центрі квадрату додатній точковий заряд q₀.

2. 25-ватна та 100-ватна лампочки, розраховані на однакову напругу, з'єднують послідовно і вмикають у мережу. В якій з них виділиться більше тепла?

Варіант 6

- 1. Знайти ємність системи конденсаторів, зображеної на рисунку. Ємність кожного з них дорівнює $0.5 \text{ мк}\Phi$.
- 2. До джерела струму з внутрішнім опором г під'єднані два паралельно з'єднаних резистора з опорами R_1 і R_2 . Знайти відношення струмів, що проходять через резистор R_1 до і після розриву в колі резистора R_2 .

Варіант 7

1. Знайти напруженість E електричного поля в точці, що знаходиться посередині між додатнім точковим зарядом q_1 та від'ємним точковим зарядом q_2 . Відстань між зарядами дорівнює r.

E2. 12

2. Визначити силу струму в схемі, що складається з двох елементів з ϵ_1 та ϵ_2 та внутрішніми опорами ϵ_1 і ϵ_2 , що з'єднані однойменними полюсами.

Варіант 8

- 1. В плоскому горизонтально розташованому конденсаторі крапля ртуті, заряджена до заряду q, знаходиться в рівновазі при напруженості електричного поля Е. Знайти радіус краплі.
- 2. В схемі, зображеній на рисунку, ЕРС джерела дорівнює $\xi = 5$ В, ξr опори $R_1 = 4$ Ом, $R_2 = 6$ Ом, внутрішній опір джерела r = 0,1 Ом. Знайти струми, які проходять через опори R_1 та R_2

Варіант 9

- 1. Два точкові однойменні заряди q_1 і q_2 були на відстані r_1 один від одного. Яку роботу виконали електричні сили, якщо відстань зменшилася в п разів?
- 2. Два елементи з ЕРС ϵ_1 та ϵ_2 і однаковими внутрішніми опорами г з'єднані паралельно. Опір резистора R. Знайти струми, що протікають через кожний елемент кола.

Варіант 10

- 1. Кулька масою m, що має додатний заряд q, рухається зі швидкістю V. На яку відстань зможе наблизитися кулька до додатного заряду q_0 .
- 2. Амперметр з опором R_1 , під'єднаний до джерела, показує струм I_1 . Вольтметр з опором R_2 , підключений до такого ж джерела, показує напругу U. Знайти внутрішній опір джерела.

Варіант 11

- 1. Кулька з масою m та зарядом q переміщується з точки з потенціалом ϕ_1 в точку з потенціалом ϕ_2 . Знайти її швидкість v_1 в початковій точці, якщо в кінцевій вона стала рівною V_2 .
- 2. Різниця потенціалів між точками A та B дорівнює U. Емності конденсаторів дорівнюють C_1 та C_2 . Знайти заряди q_1 та q_2 та різниці потенціалів U_1 та U_2 на обкладинках кожного конденсатора.

Варіант 12

- 1. Конденсатор ємністю C заряджено до напруги U, конденсатори ємностями C_1 і C_2 незаряджені. Які заряди пройдуть через C_1 гальванометри C_1 і C_2 при замиканні ключа?
- 2. В електрочайник з опором нагрівача R налили воду масою m при температурі t, ввімкнули в мережу з напругою U і забули вимкнути. Через який час вода википить, якщо ККД чайника η?

Варіант 13

- 1. Ртутна кулька, потенціал якої $\phi = 1200 \ B$, розбивається на $N = 1000 \ однакових краплин. Знайти потенціал <math>\phi_0$ кожної краплини.
- 2. Яка різниця потенціалів на затискачах двох джерел, увімк нених паралельно, якщо їх ЕРС дорівнюють ε_1 та ε_2 , а внутрішні опори r_1 та r_2 , відповідно?

$\varepsilon_{1}, \gamma_{1}$ $\varepsilon_{2}, \gamma_{2}$

Варіант 14

- 1. Два точкові заряди знаходяться на певній відстані один від одного. Якщо відстань між ними зменшується на Δr , то сила їх взаємодії збільшується в k разів. Знайти початкову відстань між зарядами.
- 2. Два паралельно з'єднаних елементи з однаковими EPC $\epsilon_1 = \epsilon_2 = \epsilon$ та внутрішніми опорами r_1 та r_2 замкнуті на зовнішній опір R. Знайти струм в кожному з елементів.

