Relatório de Laboratório - Interligação de duas redes através de um roteador

Nome: Luiza Kuze Gomes Disciplina: RCO786202

Procedimento

5. Anotar os endereços de hardware (ou MAC) e IP de cada dispositivo na rede. No terminal de cada PC execute: ifconfig ou ip a

```
root@pc1:/# ifconfig
eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
       inet 10.0.0.20 netmask 255.255.255.0 broadcast 0.0.0.0
       inet6 fe80::4000:aaff:fe00:0 prefixlen 64 scopeid 0x20<link>
       ether 42:00:aa:00:00:00 txqueuelen 50 (Ethernet)
       RX packets 78 bytes 6500 (6.3 KiB)
       RX errors 0 dropped 0 overruns 0 frame 0
       TX packets 8 bytes 656 (656.0 B)
       TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
lo0: flags=73<UP,LOOPBACK,RUNNING> mtu 16384
       inet 127.0.0.1 netmask 255.0.0.0
       inet6 ::1 prefixlen 128 scopeid 0x10<host>
       loop txqueuelen 1000 (Local Loopback)
       RX packets 0 bytes 0 (0.0 B)
       RX errors 0 dropped 0 overruns 0 frame 0
       TX packets 0 bytes 0 (0.0 B)
       TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
```

```
root@pc2:/# ifconfig
eth0: flags=4163<UP, BROADCAST, RUNNING, MULTICAST> mtu 1500
       inet 10.0.0.21 netmask 255.255.255.0 broadcast 0.0.0.0
       inet6 fe80::4000:aaff:fe00:1 prefixlen 64 scopeid 0x20<link>
       ether 42:00:aa:00:00:01 txqueuelen 50 (Ethernet)
       RX packets 88 bytes 7196 (7.0 KiB)
       RX errors 0 dropped 0 overruns 0 frame 0
       TX packets 9 bytes 726 (726.0 B)
       TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
lo0: flags=73<UP,LOOPBACK,RUNNING> mtu 16384
       inet 127.0.0.1 netmask 255.0.0.0
       inet6 ::1 prefixlen 128 scopeid 0x10<host>
       loop txqueuelen 1000 (Local Loopback)
       RX packets 0 bytes 0 (0.0 B)
       RX errors 0 dropped 0 overruns 0 frame 0
       TX packets 0 bytes 0 (0.0 B)
       TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
```

```
root@pc3:/# ifconfig
eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
       inet6 fe80::4000:aaff:fe00:3 prefixlen 64 scopeid 0x20<link>
       ether 42:00:aa:00:00:03 txqueuelen 50 (Ethernet)
       RX packets 98 bytes 7712 (7.5 KiB)
       RX errors 0 dropped 0 overruns 0 frame 0
       TX packets 11 bytes 866 (866.0 B)
       TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
lo0: flags=73<UP,L00PBACK,RUNNING> mtu 16384
       inet 127.0.0.1 netmask 255.0.0.0
       inet6 ::1 prefixlen 128 scopeid 0x10<host>
       loop txqueuelen 1000 (Local Loopback)
       RX packets 0 bytes 0 (0.0 B)
       RX errors 0 dropped 0 overruns 0 frame 0
       TX packets 0 bytes 0 (0.0 B)
       TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
```

```
root@pc4:/# ifconfig
eth0: flags=4163<UP, BROADCAST, RUNNING, MULTICAST> mtu 1500
       inet 10.0.1.21 netmask 255.255.255.0 broadcast 0.0.0.0
       inet6 fe80::4000:aaff:fe00:4 prefixlen 64 scopeid 0x20<link>
       ether 42:00:aa:00:00:04 txqueuelen 50 (Ethernet)
       RX packets 109 bytes 8678 (8.4 KiB)
       RX errors 0 dropped 0 overruns 0 frame 0
       TX packets 11 bytes 866 (866.0 B)
       TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
lo0: flags=73<UP,LOOPBACK,RUNNING> mtu 16384
       inet 127.0.0.1 netmask 255.0.0.0
       inet6 ::1 prefixlen 128 scopeid 0x10<host>
       loop txqueuelen 1000 (Local Loopback)
       RX packets 0 bytes 0 (0.0 B)
       RX errors 0 dropped 0 overruns 0 frame 0
       TX packets 0 bytes 0 (0.0 B)
       TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
```

• pc1:

o IP: 10.0.0.20

o MAC: 42:00:aa:00:00:00

• pc2:

o IP: 10.0.0.21

o MAC: 42:00:aa:00:00:01

• pc3:

o IP: 10.0.1.20

o MAC: 42:00:aa:00:00:03

• pc4:

o IP: 10.0.1.21

o MAC: 42:00:aa:00:00:04

6. Observar, interpretar e anotar a tabela de roteamento em todos os hospedeiros pc1 - pc4 e no roteador router1. Identificar os *default gateways* em cada PC. route

root@pcl:/# rou Kernel IP routi Destination default 10.0.0.0	ng table	Genmask 0.0.0.0 255.255.255.0	Flags UG U	Metric 0 0	Ref 0 0	0	Iface eth0 eth0
root@pc2:/# rou Kernel IP routi Destination default 10.0.0.0		Genmask 0.0.0.0 255.255.255.0	Flags UG U	Metric 0	Ref 0 0	0	Iface eth0 eth0
root@pc3:/# rou Kernel IP routi Destination root@pc3:/#	ng table	Genmask	Flags	Metric	Ref	Use	Iface
ree+0ps4./# rev	+-						
root@pc4:/# rou Kernel IP routi Destination default 10.0.1.0		Genmask 0.0.0.0 255.255.255.0	Flags UG U	Metric 0	Ref 0 0	0	Iface eth0 eth0
root@router1:/# Kernel IP routi Destination 10.0.0.0 10.0.1.0	ng table	Genmask 255.255.255.0 255.255.255.0	Flags U U	Metric 0 0	Ref 0 0	0	Iface eth0 eth1

pc1 e pc2:

- Default Gateway: 10.0.0.1
- Rotas:
 - o 10.0.0.0/24 diretamente conectada via eth0.

pc3 e pc4:

- Default Gateway: 10.0.1.1
- Rotas:
 - o 10.0.1.0/24 diretamente conectada via eth0.

router1:

- Rotas:
 - \circ 10.0.0.0/24 via interface eth0.
 - \circ 10.0.1.0/24 via interface eth1.
- 7. Observar, "provar" e anotar que pacotes indo do pc1 para pc2 são enviados diretamente para pc2, ou seja, entrega direta. Explique a entrega direta.
 - 1. Deixe o ping entre pc1 e pc2 executando no pc1: ping 10.0.0.21
- 2. No router1 capture pacotes com o Wireshark na interface eth0: Clique com o botão direito do mouse sobre o router1 >> Wireshark >> eth0...
 - 3. Observe que não há tráfego de pacotes no router1, portanto, entrega direta.

	1 0.000000	10.0.0.1	224.0.0.9	RIPv2	66 Request
	2 0.000117	fe80::4000:aaff:fe0	ff02::9	RIPng	86 Command Request, Version
	3 0.002848	10.0.0.1	224.0.0.22	IGMPv3	54 Membership Report / Join g
	4 0.497860	10.0.0.1	224.0.0.22	IGMPv3	54 Membership Report / Join g
L	5 16.259054	10.0.0.1	224.0.0.9	RIPv2	66 Response

Os pacotes são enviados diretamente porque pc1 e pc2 estão na mesma sub-rede (10.0.0.0/24). O roteador router1 não é utilizado para essa comunicação.

Isso pode ser verificado com: ping 10.0.0.21 executado no pc1 mostra resposta direta e a captura no router1 (Wireshark) na interface eth0 demonstra que nenhum tráfego referente ao ping entre pc1 e pc2 passa pelo roteador.

- 8. Observar, "provar" e anotar que pacotes indo de pc1 para pc4 são encaminhados ao roteador e, em seguida, entregues ao destino, ou seja, entrega indireta.
 - 1. Explique a entrega indireta.

Os pacotes precisam ser enviados ao roteador router1 porque pc1 e pc4 estão em sub-redes diferentes (10.0.0.0/24 e 10.0.1.0/24).

Fluxo da entrega indireta:

- 1. pc1 envia o pacote para seu gateway padrão (10.0.0.1 router1).
- 2. O roteador encaminha o pacote pela interface eth1 para o IP de destino 10.0.1.21 (pc4).

Prova da entrega indireta:

- 1. Captura no router1 com Wireshark nas interfaces eth0 e eth1 demonstra o tráfego dos pacotes do ping entre pc1 e pc4.
- 2. O endereço IP de origem e destino confirma o encaminhamento pelo roteador.

Configuração básica de interface de rede

- 2. Assim sendo, configure a interface de rede no pc3. Anote todos os comandos executados.
 - a. Inicie configurando o IP com o comando ifconfig (man ifconfig) ou ip a (man ip). Dica: Observe a configuração de rede do pc4, que está na mesma sub-rede, e tente adaptá-la para o pc3.
 - i. Assim que a configuração do IP for bem sucedida o ping para o pc4 deverá funcionar.
 - b. Tente "pingar" para o pc1. Ainda não haverá sucesso, pois não há um roteador devidamente configurado no pc3.
 - c. Configure o roteador no pc3 com o comando route (man route).
 - i. Assim que a configuração do roteador for bem sucedida o ping para o pc1, e qualquer outro PC da rede, deverá funcionar.
 - d. O mesmo deverá ser capaz de "pingar" para qualquer outro PC ou ser "pingado".
- 3. Execute o comando ping do pc3 para o pc4. Obteve sucesso? Se não corrija as configurações.
- 4. Execute o comando ping do pc3 para o pc1. Obteve sucesso? Se não corrija as configurações.

Com esses comandos abaixo obtivemos sucesso para um ping do pc3 para pc4 e do pc3 para pc1.

```
root@pc3:/# ifconfig eth0 10.0.1.20 netmask 255.255.255.0 up
root@pc3:/# ping 10.0.1.21
PING 10.0.1.21 (10.0.1.21) 56(84) bytes of data.
64 bytes from 10.0.1.21: icmp seq=1 ttl=64 time=0.109 ms
64 bytes from 10.0.1.21: icmp seq=2 ttl=64 time=0.117 ms
^c
--- 10.0.1.21 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1039ms
rtt min/avg/max/mdev = 0.109/0.113/0.117/0.004 ms
root@pc3:/# route add default gw 10.0.1.1
root@pc3:/# ping 10.0.0.20
PING 10.0.0.20 (10.0.0.20) 56(84) bytes of data.
64 bytes from 10.0.0.20: icmp seq=1 ttl=63 time=0.316 ms
64 bytes from 10.0.0.20: icmp seq=2 ttl=63 time=0.129 ms
64 bytes from 10.0.0.20: icmp seq=3 ttl=63 time=0.150 ms
^c
--- 10.0.0.20 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2033ms
rtt min/avg/max/mdev = 0.129/0.198/0.316/0.083 ms
root@pc3:/#
```

5. Execute o comando ping do pc2 para o pc3. Obteve sucesso? Se não corrija as configurações.

Obteve sucesso.

```
root@pc2:/# ping 10.0.1.20
PING 10.0.1.20 (10.0.1.20) 56(84) bytes of data.
64 bytes from 10.0.1.20: icmp_seq=1 ttl=63 time=0.158 ms
64 bytes from 10.0.1.20: icmp_seq=2 ttl=63 time=0.163 ms
^C
--- 10.0.1.20 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1034ms
rtt min/avg/max/mdev = 0.158/0.160/0.163/0.002 ms
root@pc2:/# []
```