ILLOUING ILUINGO

Universidade Eduardo Mondlane

Faculdade de Ciências Departamento de Física

FÍSICA - I: (Cursos de Licenciatura em Engenharia Mecânica, Eléctrica, Electrônica, Química, Ambiente, Civil e Informática)

Aula Laboratorial N°01

_	_		
Erros	de	Medição	

1 Introdução

A Física é uma ciência que estuda os fenómenos naturais, os constituintes da matéria e as suas interacções mútuas. Esse estudo baseia-se em desenvolver teorias e/ou modelos que explicam a razão da existencia e/ou ocorrência desses fenómenos assim como a possibilidade de os mesmos virem a ocorrer em um determinado tempo e em determinado espaço. A validação das tais teorias e modelos baseia-se no quão próximo são os seus resultados se comparados com os das medições, pelo que, o ideal é que as medições tivessem uma precisão absoluta. Porém, como as medições são em gerais feitas usando-se instrumentos com precisões limitadas, todas as medidas realizadas tem consigo incertezas e, por via disso, representam uma aproximação do valor verdadeiro. Assim, é importante que qualquer valor de medição seja acompanhado por um outro referente à tal incerteza.

2 Objectivos

- I) Desenvolver técnicas experimentais;
- II) Medir comprimento
- III) Medir área e volume
- IV) Medir tempos
- V) Medir massas e pesos
- VI) Trabalhar com algarismos significativos.

3 Resumo teórico

Todas as medições são susceptíveis à imperfeições que resultam em erros¹ na medida da grandeza de interesse. Esses erros tem duas razões fundamentais em que, a primeira está associada às imperfeições dos equipamentos e/ou aparelhos utilizados e a segunda, está relaccionada às limitações impostas pelos nossos orgãos de sentido (visão, audição, e mais outros) para o registo da informação.

¹Erro é definido como a diferença entre um valor observado ou calculado e o valor real [Bevington, P.R. and Robinson, D.K., 2003. pp.1-15]

on mount difficulties mounted

Os erros podem ser classificados baseando-se nas suas causas (por exemplo, metodológicos², instrumentais³ e pessoais⁴) assim como baseando-se em suas propriedades (por exemplo em sistemáticos e aleatórios). Nesta aula consideraremos a segunda forma de classificação.

Um erro é considerado **sistemático** se ele permanece constante ou varia de uma forma regular quando a medição de uma dada grandeza é repetida por várias vezes. Este tipo de erros é causado pela falha dos instrumentos de medição, a falta de calibração ou mesmo o uso do método errado. Assim, a minimização deste este tipo de erro baseia-se na introdução de **correcções** dependendo do nível do conhecimento pela pessoa que faz a medição.

Relativamente aos erros **aleatórios** também designados de acidentais, estes dizem respeito à variação da medida de uma grandeza sempre que se repete a medição nas mesmas condições. Os erros aleatórios são minimizados melhorando-se o método experimental usado assim como aumentar-se o número de medições.

Os erros aleatórios são avaliados recorrendo-se ao tratamento matemático e para tal, é necessário determinarse algumas grandezas estatíscas como: média aritmética dos valores medidos, o desvio padrão, desvio padrão da média e erro relativo.

3.1 Média aritmética dos valores medidos

Os erros aleatórios tendem a desviar de uma forma arbitrária as medidas de uma grandeza. Assim, quando várias medições são realizadas, aproximadamente metade das medidas estarão acima e outra estará abaixo da medida correcta, pelo que, a boa estimativa da medida correcta é o valor médio cuja a forma é dada pela Eq.1.

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i \tag{1}$$

onde x_i é a i-ésima medida e N é o número total de medições.

3.2 Desvio padrão

As medidas de uma grandeza podem estar muito afastadas (mais dispersas) ou mais concentrados (menos dispersos) em torno da média. No primeiro caso, diz-se que a medida é pouco precisa e no segundo é mais precisa.

A grandeza que permite saber quão dispera estão as medidas da média denominada-se **desvio padrão** e a sua expressão é dada pela Eq.2

$$\Delta x \equiv \sigma \equiv s = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (x_i - \overline{x})^2}$$
 (2)

3.3 Desvio padrão da média

À medida que se repete mais a medição, a compensação dos erros aleatórios entre si vai melhorando e a média das medidas \overline{x} vai ficando mais precisa. Assim, a grandeza que permite estimar a dispersão que seria obtida em médias de diferentes conjuntos de medidas efetuadas nas mesmas condições denomina-se **desvio padrão da média** e é dada pela Eq.3.

$$\Delta \overline{x} \equiv \sigma_m \equiv s_m = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (x_i - \overline{x})^2} = \frac{s}{\sqrt{N}}$$
 (3)

Assim, para o cálculo da incerteza da medida de uma grandeza usa-se a seguinte expressão:

$$\sigma_p \equiv s_p = \sqrt{\sigma_m^2 + \sigma_c^2} \tag{4}$$

onde σ_c é a incerteza do instrumento de medição.

²causados pela aplicação de metodologia errada

³causados pelas imperfeições dos instrumentos

⁴relacionados com o erro cometido pela pessoa que faz a medição

or Erropercontain ou remarks

3.4 Erro percentual ou relativo

Erro relativo é a percentagem da medida da grandeza e é expresso pela Eq.5.

$$(\Delta \overline{x})_r \equiv \varepsilon_r = \frac{\Delta \overline{x}}{\overline{x}} \times 100\% \tag{5}$$

3.5 Algarismos Significativos

Algarismo significativo é o número de algarismos que compõem o valor de uma grandeza sendo que:

- O digito diferente de zero à esquerda é o mais significativo;
- Na ausência de casas decimais, o último digito à direita é o menos preciso mesmo que este seja zero (0);
- Todos os digitos compreendidos entre o menos e o mais significativo são considerados como significantes

Como exemplo, consideremos a tabela1.

 Medida
 Número de algarismos significativos

 12.45
 4

 4.3
 2

 0.000573
 3

 12×10^2 2

 0.9×10^2 1

2

3

Tabela 1: Exemplo de determinação de algarismos significativos

3.5.1 Adição e subtração

Na operação de adição e subtração, o número de casas decimais significativas do resultado é o da medida que tiver menor número de digitos. Por exemplo: 7.16 + 8.3 = 15.5.

3.5.2 Multiplicação, divisão e raiz quadrada

 $\frac{17}{160}$

Na operação de multiplicação, divisão o número total de algarismos significativos do resultado é igual ao número total de algarismos significativos da medida que tiver menor número deles. Por exemplo, $32.34 \times 4.52 = 146.1768$ mas, como a medida com menor número de algarismos significativos tem 3 algarismos significativos, então o resultado da operação é arredondado para 146.

3.6 Propagação de incertezas

Ném é sempre que a grandeza que se pretende conhecer a sua magnitude permite uma medição directa. Assim, uma forma de se conhecer a sua medida será por via indirecta na qual poderá se usar correlações ou expressões matemáticas que a relacionam com outras grandezas medidas directamente. Portanto, dado que cada grandeza medida directamente tem a sua incerteza na sua medida, é óbvio que essas incertezas tem impacto na medida final da grandeza de interesse.

Considere por exempo que se pretende conhecer a incerteza na medida de uma grandeza f que depende de três outras grandezas (x,y e z) independentes e que são medidas directamente, isto é, f = f(x,y,z). A expressão mais comum usada pelos cientistas experimentais e engenheiro é dada pela Eq.6.

$$\sigma_f = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 \sigma_x^2 + \left(\frac{\partial f}{\partial y}\right)^2 \sigma_y^2 + \left(\frac{\partial f}{\partial z}\right)^2 \sigma_z^2} \tag{6}$$

Onde, σ_f é desvio padrão da função f, σ_x é desvio padrão da grandeza x, σ_y é desvio padrão da grandeza y e σ_z é desvio padrão da grandeza z.

Uma outra forma simplificada de se obter a incerteza de uma medição indirecta é a tal chamada **regra da diferencial logarítmica**. Esta regra consiste em aplicar-se logarítmos naturais em ambos os membro da função f = f(x, y, z) e depois fazer se a derivação.

Por exemplo, suponha que se pretende determinar a incerteza na medida do volume de um cilindro de altura h e diâmetro d. A fórmula do volume do cilíndro é $V = \frac{\pi}{4}d^2h$ e, feita a logaritimização e depois a derivação fica:

$$lnV = ln(\tfrac{\pi}{4}) + 2lnd + lnh$$

$$\frac{\Delta V}{V} = 2\frac{\Delta d}{d} + \frac{\Delta h}{h}$$

4 Material

- 1. Fita métrica ou régua milimétrica;
- 2. Cronómetro:
- 3. Dinamómetro:
- 4. Balança;
- 5. Grave:
- 6. Massas

5 Procedimento experimental

5.1 Medição de comprimento, área e volume

- 1. Trace uma recta numa folha **A4**. Divide em *centímetros* (**cm**) a linha recta traçada. Dobre a folha de modo que a linha graduada em *centímetros* funcione como uma régua.
- Meça com essa régua graduada do item anterior, a maior dimensão do corpo de madeira com a forma dum paralelepípedo. Repeta o processo de medição 8 vezes e organize os seus dados em forma de tabela.
- 3. Ache através do método estatístico, o erro cometido na medição do comprimento;
- 4. Medça uma única vez com a régua graduada em milímetros o comprimento, a largura e a altura do corpo de madeira;
- 5. Com os resultados, calcule o volume do corpo de madeira.
- 6. Ache através do método do diferencial logaritmo, o erro cometido na medição do volume;
- 7. Trace uma circunferência com o auxílio da moeda. Meça o diâmetro e determine a área da circunferência. Exprima correctamente os resultados em termos de algarísmos significativos.
- 8. Ache através do método do diferencial logaritmo, o erro cometido na medição da área.

5.2 Medição de tempo

- 1. Prepare o cronómetro;
- 2. Largue uma grave de uma altura de 2*m* e meça com o cronómetro o tempo de queda do corpo.
- 3. Repita o procedimento do item anterior 8 vezes e registe o tempo numa tabela;
- 4. Ache através do método estatístico, o erro cometido na medição do tempo de queda
- 5. Compare esse erro com a precisão do cronómetro.

o REFERENCE DE DEDETO GRUIT TOTA

5.3 Medição de massa e peso

- 1. Com auxílio da balança meça a massa de um corpo.
- 2. Considerando que a aceleração de gravidade é $g = 9.8 m s^{-2}$, calcule o valor do peso do corpo usando a expressão: $P = m \times g$;
- 3. Com auxílio do dinamómetro, meça a força de gravidade do corpo em questão;
- 4. Compare os valores obtidos em 2 e 3 (repetir os itens 1, 2 e 3 de modo a obter 3 ensaios).
- 5. Repita todos os items anteriores com outros corpos sucessivamente superiores.
- 6. Registe os dados das massas e dos respectivos pesos numa tabela;
- 7. Faça um gráfico de *P* versus *m*; Determine o declive da recta e explique o seu sentido físico;
- 8. Faça uma análise crítica tendo em consideração aos erros cometidos nesta experiência e de uma forma clara explique como é que os mesmos poderiam ser minimizados.

6 Referências bibliográficas

[1] Bevington, P.R. and Robson, D.K. *Data Reduction Error Analysis for the Physical Sciences*. Third Edition. McGraw - Hill. New York NY, 2003.