# Sesión 6: Análisis no supervisado ML-IA: Módulo de Machine learning

Jacob Muñoz-Castro

Universidad de los Andes

19 de noviembre de 2020

# Agenda

- Recap
- Métricas de evaluación
- Medidas de similitud: distancias
- Análisis de clústeres

Recap: Árboles

#### Métricas de evaluación

- Para regresión teníamos como medida MSE.
- En nuestro caso discreto, tenemos entonces una tabla de frecuencia cruzada entre la variable observada y la proyectada.
- A esto le llamamos Matriz de Confusión.

|                 | PREDICTED CLASS |           |          |
|-----------------|-----------------|-----------|----------|
| ACTUAL<br>CLASS |                 | Class=Yes | Class=No |
|                 | Class=Yes       | а         | b        |
|                 | Class=No        | С         | d        |

- a es un verdadero positivo (TP)
- b es un falso negativo (FN)
- c es un falso positivo (FP)
- d es un verdadero negativo (TN)

# Exactitud (accuracy)

|                 | PREDICTED CLASS |           |          |
|-----------------|-----------------|-----------|----------|
| ACTUAL<br>CLASS |                 | Class=Yes | Class=No |
|                 | Class=Yes       | а         | b        |
|                 | Class=No        | С         | d        |

 Definimos Exactitud de la predicción como el número de aciertos respecto al total predicho

$$Exactitud = \frac{a+d}{a+b+c+d}$$

#### Problemas con Exactitud

- Esta medida parece adecuada(?)
- Considere un problema de dos clases
- El número de casos de la clase 0 es 9990
- El número de casos de la clase 1 es 10
- Creemos un modelo ingenuo: todo va a clase 0!
- Entonces, la exactitud es 99.9 %.
- Ahora no resulta tan buena medida del poder predictivo de un modelo pensando en que naturalmente estos casos extremos son los que en la realidad son más costosos (liquidaciones, siniestros, identificación de cáncer,...).

## Precisión

|                 | PREDICTED CLASS |           |          |
|-----------------|-----------------|-----------|----------|
| ACTUAL<br>CLASS |                 | Class=Yes | Class=No |
|                 | Class=Yes       | а         | b        |
|                 | Class=No        | С         | d        |

$$p = \frac{a}{a+c}$$

# Sensibilidad o Recall

|                 | PREDICTED CLASS |           |          |
|-----------------|-----------------|-----------|----------|
| ACTUAL<br>CLASS |                 | Class=Yes | Class=No |
|                 | Class=Yes       | а         | b        |
|                 | Class=No        | С         | d        |

$$r = \frac{a}{a+b}$$

# Puntaje F1

|                 | PREDICTED CLASS |           |          |
|-----------------|-----------------|-----------|----------|
| ACTUAL<br>CLASS |                 | Class=Yes | Class=No |
|                 | Class=Yes       | а         | b        |
|                 | Class=No        | С         | d        |

Usamos el promedio armónico entre recall y precisión

$$F1 = \frac{rp}{r+p} = \frac{2a}{2a+b+c}$$

# TPR y FPR

|                 | PREDICTED CLASS |           |          |
|-----------------|-----------------|-----------|----------|
| ACTUAL<br>CLASS |                 | Class=Yes | Class=No |
|                 | Class=Yes       | а         | b        |
|                 | Class=No        | С         | d        |

Tasa de verdaderos positivos (TPR)

$$TPR = \frac{a}{a+b} = r$$

Tasa de falsos positivos (FPR)

$$FPR = \frac{c}{c+d}$$



#### **Umbrales**

- Si tenemos probabilidades reportadas, podemos variar el umbral al que se deciden las clases
- Este umbral se vuelve un parámetro

| Pid | Prediction | T=0.5    | T=0.25   | T=0.75   |
|-----|------------|----------|----------|----------|
| 2   | .95        | Survived | Survived | Survived |
| 3   | .86        | Survived | Survived | Survived |
| 5   | .02        | Dead     | Dead     | Dead     |
| 7   | .15        | Dead     | Dead     | Dead     |
| 13  | .48        | Dead     | Survived | Dead     |
| 14  | .35        | Dead     | Survived | Dead     |
| 21  | .12        | Dead     | Dead     | Dead     |
| 24  | .01        | Dead     | Dead     | Dead     |
| 34  | .74        | Survived | Survived | Dead     |
| 54  | .63        | Survived | Survived | Dead     |

# ROC (Reciever Operating Characteristic)

- Diseñada para analizar señales ruidosas
- Eje x: Predicción errónea para  $\hat{y} = 0$
- ullet Eje y: Predicción acertada para  $\hat{y}=1$



# ROC (Reciever Operating Characteristic)

- La curva ideal está en morado: 100 % de aciertos y 0 % de error (falsos positivos)
- La curva azul es el peor de los casos (random chance)
- Entonces nuestra curva ROC representa la calidad del modelo



# Área bajo la curva (AUC)

- En este caso, ningún modelo se desempeña mejor que el otro consistentemente
- El morado es mejor en umbrales bajos
- El rojo es mejor en umbrales altos
- Mientras más área haya bajo la curva, mejor es nuestro modelo...directamente es mejor el rojo



#### Medidas de similitud:

Distancia de Minkowski

$$D(x,y) = \left(\sum_{i} |x_i - y_i|^p\right)^{1/p}$$

Deriva en:

Distancia Euclindiana

$$d(x,y) = \sqrt{\sum_{i} (x_i - y_i)^2}$$

Distancia Manhattan

$$M(x,y) = \sum_{i} |x_i - y_i|$$

#### Medidas de similitud: índices

Similitud coseno

$$\cos(\theta) = \frac{x \cdot y}{||x|| \ ||y||} \in [-1, 1]$$

Índice Jaccard

$$J(x,y) = \frac{x \cdot y}{||x|| + ||y|| - x \cdot y} \in [0,1]$$

# Intuición gráfica

# Recordemos tipos de aprendizaje

#### Aprendizaje supervisado

- Valores de clase conocidos
- Datos de entrenamiento marcados con valores de clase
- Meta: Encontrar una forma de mapear atributos a valores de clase
- Clasificación y regresión

#### Aprendizaje no supervisado

- Valores de clase desconocidos
- Datos de entrenamiento desmarcados
- Meta: descubrir información escondida en los datos.
- Agrupamiento (clustering)

# Clustering

- Esencialmente: grupos de elementos tales que dentro del cluster estos elementos son similares entre sí, pero muy diferentes de los elementos fuera del cluster.
- Clasificación no supervisada: cluster no es para asociar atributos a clases o variables latentes, sino para estimar membresía de distintos grupos
- Los grupos reciben etiquetas por interpretación post-estimación.
- Típicamente usado cuando no sabemos (o nunca sabremos) la "verdaderaçlase.
- Issues: cómo ponderar distancia resulta arbitrario

#### K-medias

- Esencia: asignar cada elemento a uno de los k clusters, donde la meta es minimizar las diferencias within-cluster y maximizar diferencias between-cluster.
- Usa posiciones iniciales aleatorias e itera hasta estabilizar
- Como con kNN, k-means clustering trata los valores de los atributos como coordenadas en un espacio multidimensional.
- Ventajas: simplicidad, flexibilidad, eficiente.
- Desventajas: nno hay una regla para determinar k, usa un elemento de aleatoriedad para valores iniciales.

## K-medias



## Agrupamientos jerarquizados

#### El algoritmo:

- Start by considering each item as its own cluster, for n clusters
- ullet calculate the N(N-1)/2 pairwise distances between each of the n clusters, store in a matrix  $D_0$
- Find smallest (off-diagonal) distance in  $D_0$ , and merge the items corresponding to the i, j indexes in  $D_0$  into a new "cluster"
- Recalculate distance matrix  $D_1$  with new cluster(s). Options for determining the location of a cluster include:
  - Centroids (mean)
  - Most dissimilar objects
  - ► Ward's measure(s) based on minimising variance
- Repeat 3–4 until a stopping condition is reached e.g. all items have been merged into a single cluster
- ullet To plot the dendrograms, need decisions on ordering, since there are 2(N-1) possible orderings

# Agrupamientos jerarquizados

