INTRODUCTION TO AIRCRAFT STRUCTURES

Prof. Ian Lane Senior Structures Expert, Airbus

il14001@Bristol.ac.uk

INTRODUCTION TO AIRCRAFT STRUCTURES: COMPOSITE STRUCTURES

Or 'A weight saving alternative to a metallic structure'

• Reference: Composite Materials in Aircraft Structures, Ed. D.H.Middleton,

Longman

Material Characteristics

- Orthotropic
- Excellent fibre direction properties (Fibre in tension / compression)
- Transverse properties much reduced (Resin in tension / compression)
- Linear Elastic strain to failure
- Notch sensitive for static loads but less sensitivity under cyclic loads
- Can be prone to delamination if structure design and manufacture is not good

- Materials
- Carbon/epoxy
- Good strength and stiffness
- Can be expensive

- Glass/epoxy
- Properties generally not as good as Carbon
- Generally cheaper
- Radar transparent

- Kevlar
- Good in tension
- Poor compressive strength
- Good energy absorption in laminate form
- More sensitive to Environment & difficult to machine

- Tows (bundles of fibres) woven to make 0/90 blanket
- Easier to handle
- Easier to lay on curved surfaces
- Crimping reduces properties

- Typical Composite Material Property notations
- Ref MIL-HNDBK-17-3F
- US DEPARTMENT OF DEFENSE HANDBOOK
- COMPOSITE MATERIALS HANDBOOK
- VOLUME 3. POLYMER MATRIX COMPOSITES
- MATERIALS USAGE, DESIGN, AND ANALYSIS

Typical Composite Material Properties vs Other Aerospace Materials

Material	Density ρ g / mm ³ * 10 ⁻³	Tensile Modulus E (Gpa)	Tensile Strength σ (Mpa)	Specific Modulus (Ε/ρ)	Specific Strength (σ / ρ)
Aluminium 7075 T6	2.8	72	570	26	204
Titanium 6AI 4V	4.5	114	1000	25	222
Steel S 300	8.0	207	2000	26	250
Carbon / Epoxy T800 UD	1.8	154	2570	86	1427

- Sandwich Construction
- Core materials:
- Aluminium honeycomb
- Nomex honeycomb
- Foam (closed & open cell)
- Good bending stiffness and light weight

Sandwich Construction

- Manufacture
- Co-cured skins cured and bonded to core in single operation.
- Secondary bonded procured skins bonded to core in second step.
- Potential Additional problems
- Core failure
- Debonding
- Moisture ingress

- Layups
- Standardised ply orientations normally used: 0/+45/-45/90

- Quasi-isotropic "black aluminium" (25/50/25 Lay-up)
- Equal thickness of 0/90/+45/-45 plies
- Balance and Symmetry preferred avoids distortion during cure and bending under in-plane loading.
- Orthotropic layup tailored to loads in different directions e.g. 0/+45/-45
- Unidirectional structurally most efficient if loads are in one direction, but must avoid excess transverse loading.

- Typical Spar & Cover Layups can be derived by thinking about what type of loading the structure has to carry
- Skin / stringer 'wing cover' carries axial load and torsional shear :
- Typical layup would be 50/40/10 or 60/30/10 (dominance of 0 deg fibres)
- Spar webs carry shear load :
- Typical layup would be 10/80/10 (dominance of ± 45 deg fibres)

- Manufacturing Methods
- Wet lay-up

- Resin is applied to dry fibre blankets in a mould, and cured under a vacuum bag at room temperature or with a heater mat.
- Labour intensive and relatively low technology approach, used mainly for boats, gliders and light aircraft.
- Quality is not so high due to difficulties in controlling resin content, maintaining fibre geometry and avoiding porosity.

Prepreg

- Fibres are pre-impregnated with resin and partially cured to form plies typically 0.125 mm to 0.25 mm lamina thickness.
- Plies are laid up over tooling and cured in an autoclave at temperature, under pressure and with a vacuum bag.
- Much higher quality than wet lay-up, but more expensive.
- Lay-up can be automated with tape laying or fibre placement machines.
- Most widely used process for aerospace structures.

Coriolis Automated Fibre Placement at UK NCC (Bristol)

- Filament winding
- Tow of resin impregnated fibres wound onto a mandrel under tension. Can also be done with strips of prepreg tape.
- Good for components which are axisymmetric e.g. pressure vessels, but geometry and lay-ups are restricted.

- Resin Transfer Moulding
- Liquid resin is infused into a dry fibre preform in a closed mould.
- Can produce complex parts in a single process.

- Critical design issues
- Delamination
- Delamination due to low through thickness strength is a major cause of failure in composite structures.
- Through thickness stresses arise from out-of-plane loading or from geometrical features such as bends and changes in thickness.
- Compression after impact (CAI)
- Composites are susceptible to impact damage due to low through thickness strength.
- Damage may not be visible, but can greatly reduce compressive strength due to buckling between delaminated plies.

Notched strength

 Composites are more brittle and show large reductions in static strength when notched.

Hot/wet properties

 Matrices soften at high temperatures and in the presence of moisture, leading to reduction in strength, especially in compression.

Transverse cracking

- 90° ply cracks can occur at relatively low stresses. These generally have little effect on static strength, but may cause delamination in fatigue or leakage in pressure vessels.
- Transverse cracking can be reduced by avoiding thick blocks of plies of the same orientation.

Repair

 Repair needs to be taken into account at the design stage. For example in a bonded structure it may be necessary to allow enough space and strength margin for a bolted repair.

· Lightning strike

 Lightning can cause large local damage due to poor conductivity. Metal strips or meshes need to be incorporated in vulnerable areas to provide a conducting path.

Composite Structure Examples – AH NH90 & Grob 520

Composite Propeller Blades

Composite Rotor Blades

From A330 to A350XWB: progressive introduction of composite structure

A350 XWB-900 Composite Fuselage Structure

A350 XWB-900 Composite Fuselage Structure

A350 XWB-900 Composite Wing Structure

A350 XWB-900 Composite Wing Structure – Upper & Lower Covers

- Cleansky 2 BLADE Natural Laminar Flow Flight Test A/C
- Integrally moulded wing skin and leading edge panel manufactured by SAAB

