Agenda

- 1. Adding predictors to logistic regressions
- 2. Odds (and odds ratios) versus probabilities
- 3. Transforming posterior distributions
- 4. Prior predictive simulation in R

Cocaine use among adolescents

$$C_i \sim \operatorname{Bernoulli}(p_i)$$
 $\operatorname{logit}(p_i) = a + \beta G_i$

$$a \sim \text{Norm}(0, 1.5)$$
 $\beta \sim \text{Norm}(0, 0.3)$ Where did this prior come from?

Priors in logistic regressions

$C_i \sim \text{Bernoulli}(p_i)$

$$logit(p_i) = \alpha + \beta G_i$$

 $a \sim \text{Norm}(0, 1.5)$

Prior predictive simulation

(min. grade)

Logistic regression coefficients

$$C_i \sim \text{Bernoulli}(p_i)$$

$$logit(p_i) = a + \beta G_i$$

$$a \sim \text{Norm}(0, 1.5)$$

$$\beta \sim \text{Norm}(0, 0.3)$$

	Mean	90% HPDI
а	-4.59	-5.41 -3.91
β	0.12	0.05 0.20

"The expected probability of having tried cocaine for a student with β =0 is: logistic(-4.59) = 0.01 = 1%"

Standardized G_i "The expected probability of having tried cocaine for a student in grade 9.54: logistic(-4.59) = 0.01 = 1%"

Logistic regression coefficients

Interpreting \(\beta \)

Odds ratio

$$\exp(oldsymbol{eta}) = rac{\left(rac{oldsymbol{p}^{eta=1}}{1-oldsymbol{p}^{eta=1}}
ight)}{\left(rac{oldsymbol{p}^{eta=0}}{1-oldsymbol{p}^{eta=0}}
ight)}$$

"For every unit increase in the covariate, the expected odds of the outcome is multiplied by exp(β)"

"For every 1.67 grades a student completes, their expected *odds* of trying cocaine increased by 13%"

$$\log \operatorname{it}(p) = a + \beta G$$
 $\log \left(\frac{p}{1-p}\right) = a + \beta G$
 $\frac{p}{1-p} = \exp(a + \beta G)$
 $\frac{p}{1-p} = \exp(a) \times \exp(\beta G)$

Odds ratios

Logistic regression coefficients

Alternatives to odds ratios

Cases

"An average 7th grade student has about a 0.83% chance of having tried cocaine, while for an average 12th grader, that probability is about 1.21%"

Posterior visualization

Logistic posteriors

Adding covariates

G_i: Grade in school (standardized)

D_i: Delinquency (standardized)

W_i: White (indicator)

$$C_i \sim ext{Bernoulli}(p_i)$$
 $ext{logit}(p_i) = a + eta_G G_i + eta_D D_i + eta_W W_i$

$$a \sim \text{Norm}(0, 1.5)$$

$$\beta_G \sim \text{Norm}(0, 0.5)$$

$$\beta_D \sim \text{Norm}(0, 0.5)$$

$$\beta_W \sim \mathsf{Norm}(0, 0.5)$$

	Mean	90% HPDI	
а	-6.26	-7.25	-5.30
βG	0.18	0.09	0.27
$oldsymbol{eta}_D$	0.90	0.77	0.99
βw	0.70	0.40	1.00

$$logit^{-1}(a) = 0.0019$$

$$\exp(\beta_G) = 1.2022$$

$$\exp(\beta_D) = 2.4611$$

$$\exp(\beta_W) = 2.0164$$