Автоматический вывод индуктивных инвариантов программ с алгебраическими типами данных

Костюков Юрий Олегович

Научный руководитель: д. т. н., доцент Кознов Дмитрий Владимирович

2024

resources/block_ru.pdf

Содержание

Обзор предметной области

Постановка задачи

Результаты

Научная новизна

Публикации и выступления

Результаты

$$x, y := 0, 0$$
while * do
 $y := y + x$
 $x := x + 1$
assert $(y \ge 0)$

$$\{x = 0 \land y = 0\}$$
while * do
$$y := y + x$$

$$x := x + 1$$

$$\{y \ge 0\}$$

$$\{x = 0 \land y = 0\}$$
 while * do
$$y := y + x$$

$$x := x + 1$$

$$\{y \ge 0\}$$

Как доказать корректность этой тройки Хоара?

Как доказать корректность этой тройки Хоара?

При помощи *пользовательского* **индуктивного инварианта** arphi)

$$x = 0 \land y = 0 \quad \rightarrow \varphi(x, y)$$

$$\varphi(x, y) \land x' = x + 1 \land y' = y + x \quad \rightarrow \varphi(x', y')$$

$$\varphi(x, y) \quad \rightarrow y \ge 0$$

$$\{x = 0 \land y = 0\}$$
while * do
$$y := y + x$$

$$x := x + 1$$

$$\{y \ge 0\}$$

Как доказать корректность этой тройки Хоара?

(При помощи *пользовательского* **индуктивного инварианта** arphi)

Пользователь: $y \ge 0$ — индуктивный инвариант?

$$x = 0 \land y = 0 \quad \rightarrow \varphi(x, y)$$

$$\varphi(x, y) \land x' = x + 1 \land y' = y + x \quad \rightarrow \varphi(x', y')$$

$$\varphi(x, y) \quad \rightarrow y \ge 0$$

$$\{x = 0 \land y = 0\}$$
while * do
$$y := y + x$$

$$x := x + 1$$

$$\{y \ge 0\}$$

Как доказать корректность этой тройки Хоара?

При помощи *пользовательского* **индуктивного инварианта** arphi

Пользователь: $y \ge 0$ — индуктивный инвариант?

$$VC := \left\{ \begin{array}{ccc} \forall x, y. \Big(x = 0 \land y = 0 & \rightarrow y \ge 0 \\ \forall x, y, x', y'. \Big(y \ge 0 & \land x' = x + 1 \land y' = y + x & \rightarrow y' \ge 0 \\ \forall x, y. \Big(y \ge 0 & \rightarrow y \ge 0 \Big) \end{array} \right.$$

Как доказать корректность этой тройки Хоара?

(При помощи *пользовательского* **индуктивного инварианта** arphi

Пользователь: $y \ge 0$ — индуктивный инвариант?

$$VC \longrightarrow \begin{picture}(20,0) \put(0,0){\line(0,0){100}} \put(0,0){\line(0,$$

Как доказать корректность этой тройки Хоара?

(При помощи *пользовательского* **индуктивного инварианта** arphi

Пользователь: $y \ge 0$ — индуктивный инвариант?

 $\mathsf{SMT} ext{-}\mathsf{peware} ext{-}\mathsf{b}$: Нет, индутивность нарушается при $x\mapsto -1$

$$VC := \left\{ \begin{array}{c} \forall x, y. \Big(x = 0 \land y = 0 \quad \rightarrow y \ge 0 \ \ \Big) \land \\ \forall x, y, x', y'. \Big(y \ge 0 \quad \land x' = x + 1 \land y' = y + x \quad \rightarrow y' \ge 0 \ \ \Big) \land \\ \forall x, y. \Big(y \ge 0 \quad \rightarrow y \ge 0 \Big) \end{array} \right.$$

Как доказать корректность этой тройки Хоара?

(При помощи *пользовательского* **индуктивного инварианта** arphi

Пользователь: $y \geq 0$ — индуктивный инвариант?

 $\mathsf{SMT} ext{-}\mathsf{peшaтeль}\colon\mathsf{Het}$, индутивность нарушается при $x\mapsto -1$

Пользователь: А усиленная формула: $x \geq 0 \land y \geq 0$?

$$x = 0 \land y = 0 \quad \rightarrow \varphi(x, y)$$

 $\varphi(x, y) \land x' = x + 1 \land y' = y + x \quad \rightarrow \varphi(x', y')$
 $\varphi(x, y) \quad \rightarrow y \ge 0$

Как доказать корректность этой тройки Хоара?

(При помощи *пользовательского* **индуктивного инварианта** arphi

 $oxedsymbol{oxedsymbol{oxed}}$ Пользователь: $y \geq 0$ — индуктивный инвариант?

 $\mathsf{SMT} ext{-}\mathsf{peшaтeль}$: Нет, индутивность нарушается при $x\mapsto -1$

Пользователь: А усиленная формула: $x \ge 0 \land y \ge 0$?

SMT-решатель: Да, эта формула является индуктивным инвариантом

$$x = 0 \land y = 0 \quad \rightarrow \varphi(x, y)$$

$$\varphi(x, y) \land x' = x + 1 \land y' = y + x \quad \rightarrow \varphi(x', y')$$

$$\varphi(x, y) \quad \rightarrow y \ge 0$$

Дизъюнкты Хорна с ограничениями

Как автоматизировать вывод индуктивных инвариантов?

$$x = 0 \land y = 0 \rightarrow I(x, y)$$

$$I(x, y) \land x' = x + 1 \land y' = y + x \rightarrow I(x', y')$$

$$I(x, y) \rightarrow y \ge 0$$

Дизъюнкты Хорна с ограничениями

Как автоматизировать вывод индуктивных инвариантов?

Заменить пользовательскую формулу на неинтерпретированный символ I

$$x = 0 \land y = 0 \rightarrow I(x, y)$$

 $I(x, y) \land x' = x + 1 \land y' = y + x \rightarrow I(x', y')$
 $I(x, y) \rightarrow y \ge 0$

Дизъюнкты Хорна с ограничениями

Как автоматизировать вывод индуктивных инвариантов?

Заменить пользовательскую формулу на неинтерпретированный символ /

Дизъюнкты Хорна с ограничениями

$$I(x,y) \land x' = x + 1 \land y' = y + x \rightarrow I(x,y)$$
$$I(x,y) \rightarrow y \geq 0$$

Дизъюнкты Хорна формально

Дизъюнкт Хорна C — это формула первого порядка следующего вида:

$$\varphi \wedge P_1(\overline{x}_1) \wedge \ldots \wedge P_n(\overline{x}_n) \to H$$

- ightharpoonup ограничение arphi это формула теории алгебраических типов данных
- ightharpoonup голова H это либо ложь \bot , либо атом $P(\overline{x})$
- \triangleright P_1, \ldots, P_n, P это неинтерпретированные символы
- ▶ все переменные (неявно) универсально квантифицированы

Система дизъюнктов Хорна — это конъюнкция дизъюнктов Хорна

Применения Хорн-решателей

¹ Gurfinkel и др. The SeaHorn Verification Framework. CAV'15

 $^{^{\}rm 2}$ Tan и др. SolType: refinement types for arithmetic overflow in solidity. POPL'22

³ Alt и др. SolCMC: Solidity Compiler's Model Checker. CAV'22

⁴ Hoenicke и др. Thread Modularity at Many Levels. POPL'17

⁵ Shemer и др. Property Directed Self Composition. CAV'19

Дизъюнкты Хорна над АТД

Пример программы на языке HASKELL:

```
data Nat = Z | S Nat
data List = nil | cons Nat List
drop Z xs = xs
drop _ nil = nil
drop (S n) (cons(_, xs)) = drop n xs
assert (¬∃ n xs . xs /= nil && drop n xs == drop (S n) xs)
```

Условия верификации в виде дизъюнктов Хорна над АТД:

$$op drop(Z,xs,xs)$$
 $op drop(S(n),nil,nil)$
 $drop(n,xs,rs) op drop(S(n),cons(x,xs),rs)$
 $op(xs=nil) \wedge drop(n,xs,ys) \wedge drop(S(n),xs,ys) o ot$

Пусть \mathcal{H} — модель теории АТД, \mathcal{S} — система дизъюнктов Хорна. Индуктивный инвариант \mathcal{I} — расширение модели $\mathcal{I} = \langle \mathcal{H}, \mathcal{R} \rangle$, такое что $\mathcal{I} \models \mathcal{S}$.

Пусть \mathcal{H} — модель теории АТД, \mathcal{S} — система дизъюнктов Хорна. **Индуктивный инвариант** \mathcal{I} — расширение модели $\mathcal{I} = \langle \mathcal{H}, \mathcal{R} \rangle$, такое что $\mathcal{I} \models \mathcal{S}$. $x = Z \land v = S(Z) \rightarrow inc(x, v)$ $x' = S(x) \land y' = S(y) \land inc(x, y) \rightarrow inc(x', y')$ $x = v \wedge inc(x, v) \rightarrow \bot$ $\mathcal{I}_1 = \mathcal{H}\Big\{\mathsf{inc} \mapsto \{(x,y) \mid y = S(x)\Big\}$ $\mathcal{I}_2 = \mathcal{H} \Big\{ inc \mapsto \{(x, y) \mid x \neq y \quad \Big\}$ $\mathcal{I}_3 = \dots$

Индуктивные инварианты составляют решётку

Пусть \mathcal{H} — модель теории АТД, \mathcal{S} — система дизъюнктов Хорна. **Индуктивный инвариант** \mathcal{I} — расширение модели $\mathcal{I} = \langle \mathcal{H}, \mathcal{R} \rangle$, такое что $\mathcal{I} \models \mathcal{S}$. $x = Z \land v = S(Z) \rightarrow inc(x, v)$ $x' = S(x) \land v' = S(v) \land inc(x, v) \rightarrow inc(x', v')$ $x = v \wedge inc(x, v) \rightarrow \bot$ $\mathcal{I}_1 = \mathcal{H}\Big\{\mathsf{inc} \mapsto \{(x,y) \mid y = S(x)\Big\}$ $\mathcal{I}_2 = \mathcal{H}\Big\{\mathsf{inc} \mapsto \{(x,y) \mid x \neq y \qquad \Big\}$ $\mathcal{I}_3 = \dots$

Как представлять эти бесконечные множества?

Пусть \mathcal{H} — модель теории АТД, \mathcal{S} — система дизъюнктов Хорна. Индуктивный инвариант \mathcal{I} — расширение модели $\mathcal{I} = \langle \mathcal{H}, \mathcal{R} \rangle$, такое что $\mathcal{I} \models \mathcal{S}$.

$$x = Z \land y = S(Z)
ightarrow inc(x,y)$$
 $x' = S(x) \land y' = S(y) \land inc(x,y)
ightarrow inc(x',y')$
 $x = y \land inc(x,y)
ightarrow \bot$
 $\mathcal{I}_1 = \mathcal{H} \Big\{ inc \mapsto y = S(x) \Big\}$
 $\mathcal{I}_2 = \mathcal{H} \Big\{ inc \mapsto \neg (x = y) \Big\}$
 $\mathcal{I}_3 = \dots$

Как представлять эти бесконечные множества?

Инварианты обычно представляются в логике первого порядка (ЛПП) ЛПП задаёт т.н. *класс элементарных инвариантов*

$$egin{aligned} x &= Z
ightarrow ext{even}(x) \ ext{even}(y) \land x &= S(S(y))
ightarrow ext{even}(x) \ ext{even}(x) \land ext{even}(S(x))
ightarrow ota \end{aligned}$$

$$x=Z o even(x)$$
 $even(y) \wedge x=S(S(y)) o even(x)$ $even(x) \wedge even(S(x)) o ot$

Постановка задачи

Цель работы — предложение новых классов индуктивных инвариантов для программ с АТД и создание для них методов автоматического вывода. Задачи:

- 1. Предложить новые классы индуктивных инвариантов программ с АТД, позволяющие выражать рекурсивные и синхронные отношения
- 2. Создать методы автоматического вывода инвариантов в новых классах
- 3. Выполнить пилотную программную реализацию предложенных методов
- 4. Провести экспериментальное сопоставление реализованного инструмента с существующими на представительном тестовом наборе

Результаты

- 1. Предложен метод вывода регулярных инвариантов при помощи поиска конечных моделей
- 2. Предложен метод вывода синхронных регулярных инвариантов при помощи поиска конечных моделей
- 3. Предложен класс инвариантов, основанный на булевой комбинации элементарных и регулярных инвариантов Также предложен метод совместного вывода инвариантов в этом классе посредством вывода инвариантов в подклассах
- 4. Проведено теоретическое сравнение рассмотренных классов инвариантов Доказаны леммы о «накачке» для элементарных инвариантов
- 5. Выполнена пилотная реализация предложенных методов на языке F# в рамках инструмента RInGen Разработанный инструмент решил из бенчмарка «Tons of Inductive Problems» в 3.74 раза больше задач, чем наилучший из существующих инструментов

Соответствие результатов паспорту специальности 2.3.5

Результаты соответствуют направлению исследования № 1

Модели, **методы и алгоритмы** проектирования, анализа, трансформации, **верификации** и тестирования **программ** и программных систем из паспорта специальности.

Научная новизна

- 1. Впервые предложен класс инвариантов, основанный на булевой комбинации элементарных и регулярных инвариантов
- 2. Впервые предложен алгоритм вывода инвариантов для программ с АТД, основанный на поиске конечных моделей
- 3. Предложен новый алгоритм совместного вывода инвариантов в комбинации классов инвариантов на базе методов вывода инвариантов в подклассах
- 4. Впервые введены и доказаны леммы о «накачке» для языков первого порядка в сигнатуре теории АТД

Публикации по теме диссертации

Выступления по теме диссертации

- ► Международный семинар HCVS 2021 (28 марта 2021, Люксембург)
- ► Семинар компании Huawei (18-19 ноября 2021, Санкт-Петербург)
- Ежегодный внутренней семинар JetBrains Research (18 декабря 2021, Санкт-Петербург)
- Конференция PLDI 2021 (23-25 июня 2021, Канада)
- Внутренний семинар Венского технического университета (3 июня 2022, Австрия)
- Конференция LPAR 2023 (4-9 июня 2023, Колумбия)

Разработанный инструмент в 2021 и 2022 годах занял, соответственно, 2 и 1 место на АТД секции международных соревнований СНС-СОМР.

Результаты

- 1. Предложен метод вывода регулярных инвариантов при помощи поиска конечных моделей
- 2. Предложен метод вывода синхронных регулярных инвариантов при помощи поиска конечных моделей
- 3. Предложен класс инвариантов, основанный на булевой комбинации элементарных и регулярных инвариантов Также предложен метод совместного вывода инвариантов в этом классе посредством вывода инвариантов в подклассах
- 4. Проведено теоретическое сравнение рассмотренных классов инвариантов Доказаны леммы о «накачке» для элементарных инвариантов
- 5. Выполнена пилотная реализация предложенных методов на языке F# в рамках инструмента RInGen Разработанный инструмент решил из бенчмарка «Tons of Inductive Problems» в 3.74 раза больше задач, чем наилучший из существующих инструментов

Система дизъюнктов

$$op even(Z)$$
 $even(y) op even(S(S(y)))$
 $even(x) \wedge even(S(x)) o ot$

АТД ограничения устранены

$$|\mathcal{M}|_{Nat} = \{0, 1\}$$

 $\mathcal{M}(Z) = 0$
 $\mathcal{M}(S)(x) = 1 - x$
 $\mathcal{M}(even) = \{0\}$

$$\begin{aligned} |\mathcal{M}|_{Nat} &= \{0, 1\} \\ \mathcal{M}(Z) &= 0 \\ \mathcal{M}(S)(x) &= 1 - x \\ \mathcal{M}(\textit{even}) &= \{0\} \end{aligned}$$

$$|\mathcal{M}|_{Nat} = \{0, 1\}$$

 $\mathcal{M}(Z) = 0$
 $\mathcal{M}(S)(x) = 1 - x$
 $\mathcal{M}(even) = \{0\}$

$$|\mathcal{M}|_{Nat} = \{0, 1\}$$

 $\mathcal{M}(Z) = 0$
 $\mathcal{M}(S)(x) = 1 - x$
 $\mathcal{M}(even) = \{0\}$

$$|\mathcal{M}|_{\mathit{Nat}} = \{0, 1\}$$

 $\mathcal{M}(Z) = 0$
 $\mathcal{M}(S)(x) = 1 - x$
 $\mathcal{M}(\mathit{even}) = \{0\}$

$$|\mathcal{M}|_{Nat} = \{0, 1\}$$

 $\mathcal{M}(Z) = 0$
 $\mathcal{M}(S)(x) = 1 - x$
 $\mathcal{M}(\textit{even}) = \{0\}$

$$|\mathcal{M}|_{Nat} = \{0, 1\}$$

 $\mathcal{M}(Z) = 0$
 $\mathcal{M}(S)(x) = 1 - x$
 $\mathcal{M}(\textit{even}) = \{0\}$

$$|\mathcal{M}|_{Nat} = \{0, 1\}$$

 $\mathcal{M}(Z) = 0$
 $\mathcal{M}(S)(x) = 1 - x$
 $\mathcal{M}(\textit{even}) = \{0\}$

$$|\mathcal{M}|_{Nat} = \{0, 1\}$$

 $\mathcal{M}(Z) = 0$
 $\mathcal{M}(S)(x) = 1 - x$
 $\mathcal{M}(even) = \{0\}$

$$|\mathcal{M}|_{\mathit{Nat}} = \{0,1\}$$

 $\mathcal{M}(Z) = 0$
 $\mathcal{M}(S)(x) = 1 - x$
 $\mathcal{M}(\mathit{even}) = \{0\}$

$$egin{aligned} \left|\mathcal{M}
ight|_{\mathit{Nat}} &= \{0,1\} \ \mathcal{M}(Z) &= 0 \ \mathcal{M}(S)(x) &= 1-x \ \mathcal{M}(\mathit{even}) &= \{0\} \end{aligned}$$

$$|\mathcal{M}|_{\mathit{Nat}} = \{0,1\}$$
 $\mathcal{M}(Z) = 0$ $\mathcal{M}(S)(x) = 1-x$ $\mathcal{M}(\mathit{even}) = \{0\}$

$$|\mathcal{M}|_{Nat} = \{0, 1\}$$

$$\mathcal{M}(Z) = 0$$

$$\mathcal{M}(S)(x) = 1 - x$$

$$\mathcal{M}(even) = \{0\}$$

$$|\mathcal{M}|_{Nat} = \{0, 1\}$$
 $\mathcal{M}(Z) = 0$
 $\mathcal{M}(S)(x) = 1 - x$
 $\mathcal{M}(even) = \{0\}$

$$|\mathcal{M}|_{Nat} = \{0, 1\}$$
 $\mathcal{M}(Z) = 0$
 $\mathcal{M}(S)(x) = 1 - x$
 $\mathcal{M}(even) = \{0\}$

$$|\mathcal{M}|_{Nat} = \{0,1\}$$
 $\mathcal{M}(Z) = 0$
 $\mathcal{M}(S)(x) = 1 - x$
 $\mathcal{M}(even) = \{0\}$

$$|\mathcal{M}|_{Nat} = \{0,1\}$$
 $\mathcal{M}(Z) = 0$
 $\mathcal{M}(S)(x) = 1 - x$
 $\mathcal{M}(even) = \{0\}$
 $Z \rightarrow 0$
 S
 1
 S
 $I(even) = \mathcal{L}(A)$

Регулярные языки не позволяют представлять синхронные отношения:

$$T \to lt(Z, S(x))$$

$$lt(x, y) \to lt(S(x), S(y))$$

$$lt(x, y) \land lt(y, x) \to \bot$$

Идея: порождать декларативное описание синхронного автомата

$$R(q) o R(p(d(f,g,q),d(f,g,q)))$$

 $R(p(q_1,q_2)) o \Big(F(q_1) o F(d(S,S,q_2))\Big)$

Из модели можно извлечь определение синхронного автомата

$$A = \left\langle \{0,1\}, \Sigma_F^{\leq 2}, \{1\}, \Delta \right
angle$$

$$\langle Z, Z \rangle \mapsto 0 \qquad Z \mapsto 0 \qquad S(q) \mapsto 0$$

$$\langle Z, S \rangle (q) \mapsto 1 \qquad \langle S, Z \rangle (q) \mapsto 0 \qquad \langle S, S \rangle (q) \mapsto q$$

$$\mathcal{L}(A) = \left\{ \langle S^n(Z), S^m(Z) \rangle \mid n < m \right\}$$

ELDARICA GOLEM

FreqHorn

DUALITY QARMC

Z3/SPACER

Hoice

Хорн-решатели

Инструменты _{вывода теорем}

PROVER.

Vampire

ZIPPERPOSITION

18 / 22

CVC5

 \mathbf{E}

Хорн-решатели

IPROVER CVC5

VAMPIRE E

ZIPPERPOSITION

Инструменты _{вывода теорем}

Теоретическое сравнение классов инвариантов

Класс	ELEM	SizeElem	Reg	Reg_	Reg_{\times}	ELEMREG
Свойство				'		
Замкнут по ∩	Да	Да	Да¹	Дa ²	Да ²	Да
Замкнут по ∪	Да	Да	Да¹	Да ²	Дa ²	Да
Замкнут по \	Да	Да	Да¹	Дa ²	Дa ²	Да
Разрешимо $\overline{t} \in \mathit{I}$	Да ³	Да⁴	Да ⁵	Да ⁷	Да ⁹	Да ¹⁰
Разрешимо $I=arnothing$	Дa ³	Да⁴	Да ⁶	Да ⁸	Да ⁹	Да ¹⁰
Выразимы рекурсив-	Нет	Частично	Да	Да	Да	Да
ные отношения	1161	Тастично	Да	Да	да	да
Выразимы синхрон-	Да	Да	Нет	Частично	Да	Да
ные отношения	да	Да	1161	Тастично	да	Да

Класс	Elem	SizeElem	Reg	Reg+	Reg_{\times}	ElemReg
Elem	Ø	Ø	lr ^{1,4,5}	<i>lr</i> ^{1,5}	lr^1	Ø
SizeElem	∞	Ø	<i>lr</i> ^{1,4,5}	<i>lr</i> ^{1,5}	lr^1	lt ³
Reg	even ²	even ²	Ø	\varnothing^4	$\varnothing^{4,5}$	Ø
Reg+	even ^{2,7}	even ^{2,4}	∞^4	Ø	\varnothing^{5}	lt ³
Reg_{\times}	even ^{2,4,5}	even ^{2,4,5}	$\infty^{4,5}$	∞^{5}	Ø	/t ^{3,5}
ElemReg	∞	even ²	∞	<i>lr</i> ^{1,5}	lr ¹	Ø

Реализация

Рис.: Хорн-решатель RInGen: https://github.com/Columpio/RInGen

Сравнение Хорн-решателей с поддержкой АТД

Инструмент	Класс	Метод	Возвращает	Полностью
	инвариантов		инвариант	автоматический
Spacer	Elem	IC3/PDR	Да	Да
RACER	Catelem	IC3/PDR	Нет	Нет
Eldarica	SizeElem	CEGAR	Да	Да
VeriCaT	_	Трансф.	Нет	Да
Holce	ELEM	ICE	Да	Да
RCHC	Reg+	ICE	Да	Да
RInGen(cvc5)	Reg	Трансф. +	Да	Да
		FMF		
RInGen(Vampire)	_	Трансф. +	Нет	Да
		Насыщение		
RInGen-Sync	$\mathrm{Reg}_{ imes}$	Трансф. +	Да	Да
		FMF		
RInGen-CICI(cvc5)	ElemReg	$CEGAR(\mathcal{O})$	Да	Да
RInGen-CICI(VAMPIRE)	_	$CEGAR(\mathcal{O})$	Нет	Да

Эксперименты

Инструмент	SAT	UNSAT
RACER	26	22
Eldarica	46	12
VeriCaT	16	10
cvc5-Ind	0	13
RInGen(cvc5)	25	21
RInGen(Vampire)	135	46
RInGen-Sync	43	21
RInGen-CICI(cvc5)	117	19
RInGen-CICI(VAMPIRE)	189	28

