

Expanding the Boundaries of the Al Revolution:

An In-depth Study of High Bandwidth Memory

Changyong Ahn & Nayoung Lee | March 2019

Outline

- SK hynix Overview
- Memory challenges of Deep Learning
- HBM Overview
- HBM Deep Dive
- Future HBM solution

Memory challenges of Deep Learning

Machine Learning/Deep Learning Use Cases

Machine Learning

Autonomous Driving

Gaming

Medical Diagnostics

Memory Challenges of Deep Learning

Deep Neural Network Fundamental Concepts

Deep Neural Network

Source: Standford

Year	CNN	# of layers	# of Parameters	Memory size (MB)	Top5 Error Rate
1998	LeNet	8	60K		
2012	AlexNet	7	60 million	240	15.3%
2014	GoogleNet	19	4 million		6.67%
2014	VGG Net	16	138 million	574	7.3%
2015	ResNet	50/152		519	3.6%

Memory Solution for ML/DL Systems

Memory Sub system hierarchy change

* Source : SK hynix

1) In-Package Memory 2) SCM("Storage Class Memory"): 3DXP, PCRAM

"In Package Memory"

	Conventional DRAM	IPM
Target Market/Price	Broad & Cheap	Specific & high Premium
Standardization	JEDEC	Semi Custom
Qualification Period	Relatively short	Relatively long
Key factors	Price Competitiveness	Reliability / Performance

HBM, What's the difference?

GDDR/DDR/LPDDR

> FBGA

Directly soldered on PCB or used as a DI MM

HBM

> KGSD

> HBM in 2.5D SiP

HBM Advantages

More Bandwidth
High Power Efficiency
Small Form Factor

To Achieve 1TB Bandwidth

40ea of DDR4-3200 Module 160ea of DDR4-3200

4ea HBM2 in a single 50mm x 50mm Sip

	DDR4	LPDDR4(X)	GDDR6	НВМ2	HBM2E (JEDEC)	HBM3 (TBD)
Data rate	3200Mbps	3200Mbps (up to 4266 Mbps)	14Gbps (up to 16Gb ps)	2.4Gbps	2.8Gbps	>3.2Gbps (TBD)
Pin count	x4/x8/x16	x16/ch (2ch per die)	x16/x32	x1024	x1024	x1024
Bandwidth	5.4GB/s	12.8(17)GB/s	56GB/s	307GB/s	358GB/s	>500GB/s
Density (per package)	4Gb/8Gb	8Gb/16Gb/2 4Gb/32Gb	8Gb/16Gb	4GB/8GB	8GB/16GB	8GB/16GB/ 24GB (TBD)

HBM Deep Dive

HBM Architecture

HBM2 core die supports 4 pseudo channels or 2 channels

Each channel consists of 2 Pseudo Channels. Only BL4 is supported

Items	Target
# of Stack	4/8(Core) + 1(Base)
Ch./Slice	2
Total Ch. for KGSD	8/16 (8ch based operation)
IO/Ch.	128
Total IO/KGSD	1024(=128 x 8)
Address/CMD	Dual CMD
Data Rate	DDR

Next-Gen. System Architecture Leveraging HBM

HBM and 2.5D SiP integration unlock new system architecture

Network & Graphics (B/W)

Client-DT & NB (B/W & Cost)

Bandwidth

Solution

Post-DDR4

Cost Solution

HBM Test Flow

Quality and Reliability Features

HBM Features enable high quality and reliability at post 2.5D assembly

Collaterals Available from HBM vendors

Item	Remarks	
Functionality	Datasheet (Jedec/Vendor)	
	Verilog (mission mode and DFT)	
	IBIS	
	Hspice	
Mechanical/Interposer design	GDS	
	Bump pad netlist	
	Bump Ballout	
Thermal Simulation	Flotherm	
	Icepak	

Future of HBM Solution

HBM would penetrate various market segments in the short future.

