HOMOLOGY THEORY NOTES & EXERCISES FROM MY INDEPENDENT STUDY

(OR: If I could save Klein in a bottle $\$)

FOREST KOBAYASHI

DEPARTMENT OF MATHEMATICS

Harvey Mudd College

Supervised By Francis Su^1

Last Updated: January 30, 2019

¹Department of Mathematics, Harvey Mudd College

Contents

Introduction		•	
1	Hon	nological Prereqs	1
	1.1	Manifolds	1
	1.2	Simplicial Complexes	2
	1.3	Simplicial Maps and PL Homeomorphisms	Ę
2	Sim	\mathbb{Z}_2 -Homology: Physical Algebra	7

Introduction

What's this?

This document is a compendium of notes, exercises, and other miscellany from my independent study in Homology Theory. For this, I am working through the second half of *Topology Through Inquiry* by Michael Starbird and Francis Su (i.e., chapters 11-20), under supervision from Prof. Su himself. Rough topic coverage should be discernable from the table of contents, as I've tried to name each section identically to the corresponding title in the book.

Notation

Most notation I use is fairly standard. Here's a (by no means exhaustive) list of some stuff I do.

- "WTS" stands for "want to show," s.t. for "such that." WLOG, as usual, is without loss of generality.
- End-of-proof things: is QED for exercises and theorems. □ is used in recursive proofs (e.g., proving a Lemma within a theorem proof). If doing a proof with casework, ✓ will be used to denote the end of each case.
- $(\Rightarrow \Leftarrow)$ means contradiction
- $\mathfrak{I}(U)$ will denote the topology of a topological space U.
- $\mathcal{P}(A)$ is the powerset of A. I don't like using 2^A .
- --- denotes surjection.
- \hookrightarrow denotes injection.
- Thus, \hookrightarrow denotes bijection.
- Important: I use $f^{\rightarrow}(A)$ for the image of A under f, and $f^{\leftarrow}(B)$ for the inverse image of B under f.
- \sim and \equiv are used for equivalence relations. \cong is used to denote homeomorphism. \simeq is for Homotopy equivalence.
- ϵ is for trivial elements (e.g., the trivial path), while ϵ is for small positive quantities.
- \overline{U} denotes the closure of U, U° is the interior of U.

•

Updates:

(01/29/2019)

Summary of previous week:

- It appears that *Topology Through Inquiry* is much more thorough than Kosniowski's *A First Course* in *Algebraic Topology* in its treatment of point-set topology. I suppose this should have been inferable from the title of the latter. Anyways, I think it'd be prudent to go back and do a quick survey of some selected topics from the first half of the book before going on to the second half. I've found that so far, even when I know most of the vocabulary involved in a problem statement in the second half, I'm just not quite comfortable with the process of putting all the pieces together. To me, this indicates a problem that could be fixed with maybe a short week of review.
- Speaking of the first half: so far, I've found all the exercises and concepts here to be very straightforward so far, partially owing to the fact that I've seen lots of the material already. I did most of

chapter 3 between Sunday (1/27/2019) and today (1/29/2019). I found most of the problems fairly straightforward and progress was generally fast. Those solutions I chose to typeset are tabulated in first-half/solutions.pdf. If difficulty is consistent throughout the book, then it would probably be feasible to get all the way through a selected subset of topics prior to next week, at which point I could attack the homology section with confidence.

• My current plan: do selected exercises from chapter 4 today and tomorrow. Thursday, do the same for chapter 5 (this chapter looks short). Friday, chapter 6 (also looks short, but might present some new material). Over the weekend, do 7.2, 7.4, 7.5, then all of chapter 8 (this shouldn't take too too long seeing as continuous functions were emphasized by Kosniowski, and I've done lots of the proofs of "is property X preserved by continuous functions" before), and parts of 9, 10. Start off the new week with a return to chapter 12, adjusting schedule if needed.

Takeway from meeting:

- Don't worry about chapter 5, 6, 7.4, 7.5.
- The course will probably do 5.1 and 5.2, maybe 6.1, 6.2, course will do 7.1 through 7.3, 8.1 through 8.5, 9.1 and 9.2, 10 mostly skipped
- Start in chapter 16! Then work way onwards

1. Manifolds, Simplexes Complexes, and Triangulability: Building Blocks

1.1 Manifolds

We define some basic Euclidean sets for use in homeomorphisms.

Definition 1.1.1

The *n*-dimensional cube, denoted \mathbb{D}^n , is defined as

$$\mathbb{D}^{n} = \{ (x_{1}, \dots, x_{n}) \in \mathbb{R}^{n} \mid 0 \leq x_{i} \leq 1 \text{ for } i = 1, \dots, n \}$$
$$= \underbrace{[0, 1] \times [0, 1] \times \dots \times [0, 1]}_{n \text{ times}} \subset \mathbb{R}^{n}.$$

Definition 1.1.2

The standard n-ball, denoted B^n , is

$$B^n = \{(x_1, \dots, x_n) \in \mathbb{R}^n \mid x_1^2 + \dots + x_n^2 \le 1\}.$$

Definition 1.1.3

The standard n-sphere, denoted \mathbb{S}^n , is

$$\mathbb{S}^n = \{(x_0, \dots, x_n) \in \mathbb{R}^{n+1} \mid x_0^2 + \dots + x_n^2 = 1\}.$$

note that here, our indices start at 0.

Definition 1.1.4

An *n*-dimensional manifold or *n*-manifold is a separable metric space M such that $\forall p \in M, \exists U \in \mathcal{T}(M)$ s.t. $p \in U$ and $U \cong V \subset \mathbb{R}^n$.

15.8. If M is an n-manifold and U is an open subset of M, then U is also an n-manifold.

Proof.

15.9. If M is an m-manifold and N is an n-manifold, then $M \times N$ is an (m+n)-manifold.

Proof.

15.10. Let M^n be an *n*-dimensional manifold with boundary. Then ∂M^n is an (n-1)-manifold.

Proof.

1.2 Simplicial Complexes

Definition 1.2.1: Affine Independence

Let $X = \{v_0, \ldots, v_k\} \subset \mathbb{R}^n$. We say X is affinely independent if $\{v_1 - v_i, \ldots, v_k - v_i\}$ is linearly independent for all v_i .

Example 1.2.0: $X = \{(0,1), (-\sqrt{3}/2, -1/2), (\sqrt{3}/2, -1/2)\}$ is affinely independent.

Definition 1.2.2: Convex combination

A convex combination of v_0, \ldots, v_k is a linear combination of these points whose coefficients are non-negative and sum to 1.

Definition 1.2.3

A k-simplex is the set of all convex combinations of k+1 affinely independent points in \mathbb{R}^n . For affinely independent points v_0, \ldots, v_k in \mathbb{R}^n , $\{v_0 \cdots v_k\}$ denotes the k-simplex

$$\left\{ \lambda_0 v_0 + \lambda_1 v_1 + \dots + \lambda_k v_k \mid \forall i - 1, \dots, k; \ 0 \le \lambda_i \le 1 \text{ and } \sum_{i=0}^k \lambda_i = 1 \right\}$$

each v_i is called a *vertex* of $\{v_0 \cdots v_k\}$. Any point x in the k-simplex is specified uniquely by the k+1 coefficients (λ_i) ; these coefficients are called the *barycentric coordinates of* x. The *barycentric coordinate* of x with respect to vertex v_i is the coefficient λ_i .

Definition 1.2.4

Any simplex τ whose vertices are a nonempty subset of the vertices of a k-simplex σ is called a face of σ . If the number of vertices is i+1, then τ has dimension i and is called an i-face of σ and τ has codimension k-i, the number of dimensions below the top dimension.

Notational Note: if $\sigma = \{v_0 \cdots v_k\}$, the (k-1)-dimensional face of σ obtained by deleting the vertex v_j from the list of vertices of σ is denoted by $\{v_0 \cdots \widehat{v_i} \cdots v_k\}$.

15.11. Show that if σ is a simplex and τ is one of its faces, then $\tau \subset \sigma$.

Solution. This is fairly trivial, so we offer just a sketch. Suppose $\mathbf{v} \in \tau$. Then write \mathbf{v} as an element of σ by taking $\lambda_i = 0$ for all those $v_i \notin \tau$.

Definition 1.2.5

A simplicial complex K (in \mathbb{R}^n) is a collection of simplicies in \mathbb{R}^n satisfying the following conditions.

- 1. If a simplex σ is in K, then each face of σ is also in K.
- 2. Any two simplices in K are either disjoint or their intersection is a face of each.

15.13. Exhibit a collection of simplices that satisfies condition (1) but not condition (2) in the definition of a simplicial complex.

Solution. Consider the following diagram, where the interior of each simplex is taken to be in the complex.

Figure 1.1: An unfortunate collision

Note that to fix this sorry situation, we can't just add two vertices at the points of intersections of the lines above (then the intersection of the resulting simplex with the two shone above would be non-trivial, but still not a face of the larger ones). We'd actually need something much more complicated.

Figure 1.2: Constructing a resolution

Figure 1.3: The completed resolution

Definition 1.2.6

The underlying space |K| of a simplicial complex K is the set

$$|K| = \bigcup_{\sigma \in K} \sigma,$$

the union of all simplices in K, with a topology consisting of sets whose intersection with each simplex $\sigma \in K$ is open in σ . For finite simplicial complexes, this topology is the topology inherited as a subspace of \mathbb{R}^n .

15.14. Let K be the following simplicial complex:

(Omitted because it takes a long time to TeX out)

draw K and its underlying space.

Solution.

Figure 1.4: K (left) and its underlying space (right).

Definition 1.2.7

A topological space X is said to be triangulable if it is homeomorphic to the underlying space of a simplicial complex K. In that case, we say K is a triangulation of X.

15.15. Show that the space shown in Figure 15.2 (not included here) is triangulable by exhibiting a simplicial complex whose underlying space it is homeomorphic to.

Solution.

Figure 1.5: Such a simplicial complex. Note, the left triangle is unfilled.

15.6. For each $n \in \mathbb{N}$, \mathbb{S}^n is triangulable.

Proof. We proceed by induction.

Base Case: Note that S^0 is trivially triangulable by taking $K = \{\{v_0\}, \{v_2\}\}$.

Inductive Hypothesis Suppose that for $k \in \mathbb{N} \cup \{0\}$, \mathbb{S}^k is triangulable by a simplicial complex K.

Inductive Step: Take $v_{k+1} \in \mathbb{R}^{k+1}$ such that $v_{k+1} \in (\operatorname{span}(K))^{\perp}$. Then

1.3 Simplicial Maps and PL Homeomorphisms

2. Simplicial \mathbb{Z}_2 -Homology: Physical Algebra