Compito del 30/07/2018

1. Siano dati i seguenti cinque punti del piano:

$$\begin{pmatrix} X \\ Y \end{pmatrix} = \begin{pmatrix} 0 & 1.2566 & 2.5133 & 3.7699 & 5.0265 \\ 0.8156 & 1.0748 & 0.7298 & 0.3317 & 0.3555 \end{pmatrix}$$

Un modello prevede che tali punti appartengano ad una funzione y = f(x) periodica di periodo 2π . Si vuole trovare una funzione del tipo

$$\phi(x; a_1, a_2, a_3) = a_1 + a_2 \cos x + a_3 \sin x$$

che approssimi i dati nel senso dei minimi quadrati. Scrivere le equazioni normali per la determinazione dei coefficienti a_1 , a_2 e a_3 , che si ottengono minimizzando la somma dei quadrati degli scarti:

$$\mathcal{E} = \frac{1}{2} \sum_{i=1}^{n} (\phi(x_i; a_1, a_2, a_3) - y_i)^2$$

[Si ricorda che le equazioni normali hanno la forma

$$S\mathbf{a} = \mathbf{b}$$

dove $\mathbf{a}^{\top} = (a_1, a_2, a_3).$

Se si usa una calcolatrice adoperare almeno quattro cifre significative]

[12 punti]

2. Siano date le seguenti due funzioni

$$f(x) = \exp[-10(\sin x)^2], \quad g(x) = \exp[-(x - \pi/2)^2].$$

- Stabilire quanti sono i punti di intersezione delle due funzioni nell'intervallo $x \in [0, \pi]$.
- Determinare le ascisse di tali punti di intersezione nell'intervallo $[0, \pi]$, con un errore minore di 10^{-6} .

[8 punti]

3. Calcolare il valore dell'integrale

$$I = \int_0^{\pi} \exp(-10(\sin x)^2) \, dx$$

con un errore relativo minore di 10^{-6} (10^{-3} se si usa una calcolatrice invece che Python). Se possibile fornire una stima del valore minimo di intervalli necessario per soddisfare la tolleranza.

[Suggerimento: usare la formula dei trapezi composita con N intervalli e con 2N intervalli e confrontare i risultati. Scegliere un valore di N per cui l'errore relativo fra i risultati è più piccolo della tolleranza prefissata]. [10 punti]

Si ricorda che gli argomenti delle funzioni trigonometriche sono espressi in radianti e non in gradi. Si consiglia di usare Python per effettuare i calcoli.