

Continuous Sampling
X(+): continuous time signal X[n]: sampled version of X(+) Cfs
$X(\omega): \omega = [-\pi, \pi]$ X[K]: K = [0, N-1]
ACC.
X(w): digital frequency, how do we get the real frequency "f"?
$f_{\text{max}} = f_s/2$ $f = [-f_s/2, f_s/2]$
Resolution: Bandwidth Fs
Number Samples N force = $\frac{1}{2\pi} \frac{\omega_0}{T_s} = \frac{f_s \omega_0}{2\pi}$ where ω_0 is digital freq

1.) $X[n] = (-\frac{1}{3})^n u[n] - (\frac{1}{2})^n u[-n-1]$ a. 1 Find X(2) b.) draw the ROC C.) Does this sequence have a DTFT Sol: a.) $\left(-\frac{1}{3}\right)^n u[n] \rightarrow \frac{1}{1+\frac{1}{3}z^{-1}}$ $\frac{1}{3}z^{-1}$ $-\left(\frac{1}{2}\right)^{n} u \left\{-n-1\right\} \rightarrow \frac{1}{1-\frac{1}{2}z^{-1}} |z| < \frac{1}{2}$: X(2)= 1+32-1 + 1-121>3 0 121<b.) C.) Desir ROC does not contain unit circle so DTFT does not exist

2	Show DIFT {x[n-n,]} = X(w) e-jwn.
α.	(XZII-11633)
	Σ x[n-noJe-jωn
	Let m=n-n.
-	m+n0=n 300
	= \(\times \(\text{Lm} \) \(\text{P} \) \(\text{M} + \text{N} \)
	$= e^{-j\omega n} \cdot \sum_{i=1}^{\infty} x(m)e^{-j\omega n}$
	m=-00
	$=e^{j\omega n_o} X(\omega)$
	Transmir Transmir
	total minimum della comment

3.) Use ztransform properties to find
$$H(z)$$
 for $A[n7- Na^nu[n]]$

a.) is $A[n]$ left-stock or right stock b.) find $H(z)$

Sol

 $A^nu[n] \rightarrow \frac{1}{1-az^{-1}}$
 $A(a^nu[n]) \rightarrow -\frac{1}{2} \frac{1}{8z} \left(\frac{1}{1-az^{-1}}\right)$
 $A(z) = -2 \frac{1}{(1-az^{-1})^2} \left(\frac{1}{2}\right)^2 \left(\frac{1}{2}\right)^2$
 $A(z) = -2 \frac{1}{(1-az^{-1})^2} \left(\frac{1}{2}\right)^2 \left(\frac{1}{2}\right)^2$

Show derivative property of Z-transform $nx[n] \rightarrow -\frac{20}{22}(X(z))$ 7 { x(n]} = x(z) = 5 x[n]z-n $\frac{2\{n\times [n]\}}{n=-\infty} = \frac{\infty}{n}$ $= -\frac{\mathcal{Z}(-n)\times[n]}{2} + \frac{1}{2} + \frac{1}{2}$ $= -\frac{2}{2} \frac{5}{n} - n \times [n] z^{-n-1}$ $= -7 \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \sum_{n=0}^{\infty} x(n) z^{-n}$ Z{nx[n]} = -2 = X(Z) Note $\frac{2}{2\pi}\sum_{n=-\infty}^{\infty}x[n]z^{-n}=\sum_{n=-\infty}^{\infty}-nx[n]z^{-n-1}$