PPA2, Přednáška 10

Libor Váša

Katedra informatiky a výpočetní techniky, Západočeská univerzita v Plzni

3. 5. 2019

Byly vypsány

- **28.5.** 2019 9:00
- **2** 4.6. 2019 9:00
- **11.6. 2019 9:00**
- **27.6.** 2019 9:00
- **3** 27.8. 2019 9:00
- další nebudou

Byly vypsány

- **28.5.** 2019 9:00
- **2** 4.6. 2019 9:00
- **11.6.** 2019 9:00
- **27.6.** 2019 9:00
- **1** 27.8. 2019 9:00
- další nebudou

Kdo má 24.5. nárok na zápočet, tomu bude na STAG zapsán

Byly vypsány

- **1** 28.5. 2019 9:00
- **2** 4.6. 2019 9:00
- 11.6. 2019 9:00
- **27.6.** 2019 9:00
- **5** 27.8, 2019 9:00
- další nebudou

Kdo má 24.5. nárok na zápočet, tomu bude na STAG zapsán Komu vznikne nárok později, ten musí požádat cvičícího o zapsání na STAG

Byly vypsány

- **28.5.** 2019 9:00
- **4.6.** 2019 9:00
- 11.6. 2019 9:00
- **27.6.** 2019 9:00
- 27.8. 2019 9:00
- další nebudou

Kdo má 24.5. nárok na zápočet, tomu bude na STAG zapsán Komu vznikne nárok později, ten musí požádat cvičícího o zapsání na STAG Do indexu se zápočty budou zapisovat až spolu s výsledkem zkoušky

ADT Graf

Graf

- podchycuje obecný vztah (relaci) mezi prvky
- Strom je speciální druh grafu

(Matematická interpretace pojmu graf, není to graf v excelovském smyslu)

Příklady

Prvek: Město

Vztah: Města jsou spojená jedním úsekem silnice

Příklady

Prvek: Město

Vztah: Města jsou spojená jedním úsekem silnice

Prvek: Trojúhelník

Vztah: Trojúhelníky sousedí v trojúhelníkové síti

Příklady

Prvek: Město

Vztah: Města jsou spojená jedním úsekem silnice

Prvek: Trojúhelník

Vztah: Trojúhelníky sousedí v trojúhelníkové síti

Prvek: Záznam osoby na Facebooku

Vztah: Osoby jsou přátelé na Facebooku

Modular Visualization Environment 2

Orientovaný graf

Podchycuje situaci, kdy vztah není nutně symetrický

Orientovaný graf

Podchycuje situaci, kdy vztah není nutně symetrický

Příklady:

Prvek: Záznam osoby na Facebooku Vztah: Osoba požádala druhou osobu o přátelství (některé mohou být symetrické)

Orientovaný graf

Podchycuje situaci, kdy vztah není nutně symetrický

Příklady:

Prvek: Záznam osoby na Facebooku

Vztah: Osoba požádala druhou osobu o přátelství

(některé mohou být symetrické)

Prvek: Popis činnosti

Vztah: Druhou činnost nelze vykonat předtím, než bude vykonána první činnost

(žádné symetrické)

Formální definice

Neorientovaný graf G je dvojice (V, E):

V: množina vrcholů (vertex, vertices)

E: množina hran (edges)

Hrana je dvouprvková množina $\{a,b\}, a \in V, b \in V$

Formální definice

Neorientovaný graf G je dvojice (V, E):

V: množina vrcholů (vertex, vertices)

E: množina hran (edges)

Hrana je dvouprvková množina $\{a,b\}, a \in V, b \in V$

Orientovaný graf G je dvojice (V, E):

V: množina vrcholů

E: množina hran

Hrana je uspořádaná dvojice prvků $(a,b), a \in V, b \in V$

Značení

- |V| počet vrcholů grafu
- |E| počet hran grafu
- V(G) množina vrcholů grafu G
- E(G) množina hran grafu G
- $y \in V$ je sousedem $x \in V$ právě když
 - existuje orientovaná hrana E = (x, y)
 - existuje neorientovaná hrana $E, x \in E, y \in E$

Příklad neorientovaného grafu

Příklad orientovaného grafu

Příklad neorientovaného grafu

$$V = \{0, 1, 2, 3, 4, 5\}, |V| = 6$$

$$E = \{\{0, 1\}, \{1, 2\}, \{0, 3\}, \{1, 3\}, \{1, 4\}, \{4, 2\}, \{3, 4\}, \{2, 2\}\}, |E| = 8$$

Příklad orientovaného grafu

$$\begin{array}{l} V = \{0,1,2,3,4,5\}, |V| = 6 \\ E = \{(1,0),(0,3),(1,3),(3,1),(3,4),(4,1),(4,2),(5,5)\}, |E| = 8 \end{array}$$

ADT Graf

Operace

- vytvoření grafu s danou množinou vrcholů *V* (bez hran)
- přidání (ne)orientované hrany
- zjištění všech sousedů vrcholu x ∈ V
- zjištění, zda $y \in V$ je sousedem $x \in V$ (test sousednosti)

Reprezentace vrcholů

- s vrcholy mohou být asociována data
- ADT Graf ale neumožňuje vrcholy přidávat a odebírat

Reprezentace vrcholů

- s vrcholy mohou být asociována data
- ADT Graf ale neumožňuje vrcholy přidávat a odebírat

Důsledek

- data přiřazená vrcholům je možné držet mimo ADT v poli
- jedinou reprezentací vrcholu je jeho index

Rozhraní ADT Graf

```
interface IGraph{
  void initialize(int vertexCount);
  void addEdge(int start, int end);
  ArrayList<Integer> neighbours(int vertex);
  boolean isNeighbour(int v1, int v2);
}
```

Použití ADT graf

```
Person[] people = new Person[3];
people[0] = new Person("Jennifer_Aniston");
people[1] = new Person("Brad_Pitt");
people[2] = new Person("Angelina_Jolie");
```

Použití ADT graf

```
Person[] people = new Person[3];
people[0] = new Person("Jennifer_Aniston");
people[1] = new Person("Brad_Pitt");
people[2] = new Person("Angelina_Jolie");

IGraph relations = new Graph();
relations.initialize(3);
relations.addEdge(0,1);
relations.addEdge(1,2);
```

Použití ADT graf

```
Person[] people = new Person[3];
people[0] = new Person("Jennifer_Aniston");
people[1] = new Person("Brad Pitt");
people[2] = new Person("Angelina Jolie");
IGraph relations = new Graph();
relations.initialize(3);
relations.addEdge(0,1);
relations.addEdge(1,2);
ArrayList<Integer> bradsRelations = relations.neighbours(1);
for (int i = 0;i<br/>bradsRelations.size();i++)
  System.out.println(people[bradsRelations.get(i)].name);
```

Implementace ADT Graf

Dvě možnosti:

- seznamy sousednosti
- matice sousednosti

- různé vlastnosti v závislosti na vlastnostech grafu
- implementace se liší pro orientované a neorientované grafy

• sousedé každého vrcholu jsou uloženi v ADT Seznam

- sousedé každého vrcholu jsou uloženi v ADT Seznam
 - mohli bychom použít existující implementaci (třeba LinkedList<Integer>), ale
 - většinu funkcionality nevyužijeme
 - program by byl neefektivní (implicitní konverze int/Integer)
 - chceme vidět jak věci fungují uvnitř

- sousedé každého vrcholu jsou uloženi v ADT Seznam
 - mohli bychom použít existující implementaci (třeba LinkedList<Integer>), ale
 - většinu funkcionality nevyužijeme
 - program by byl neefektivní (implicitní konverze int/Integer)
 - chceme vidět jak věci fungují uvnitř
 - použijeme vlastní, zjednodušenou implementaci
 - typ dat: int

- sousedé každého vrcholu jsou uloženi v ADT Seznam
 - mohli bychom použít existující implementaci (třeba LinkedList<Integer>), ale
 - většinu funkcionality nevyužijeme
 - program by byl neefektivní (implicitní konverze int/Integer)
 - chceme vidět jak věci fungují uvnitř
 - použijeme vlastní, zjednodušenou implementaci
 - typ dat: int
- ullet reference na první prvek každého seznamu jsou uloženy v poli velikosti |V|

Spojovací prvek

```
class Link{
  int neighbour;
  Link next;

public Link(int neighbour, Link next) {
    this.neighbour = neighbour;
    this.next = next;
  }
}
```

Implementace

```
class Graph implements IGraph{
  Link[] edges;

public void initialize(int vertexCount) {
    this.edges = new Link[vertexCount];
  }
  ... // metody
}
```

Seznam sousednosti

Seznam sousednosti

Orientovaný graf

```
void addEdge(int start, int end) {
  edges[start] = new Link(end, edges[start]);
}
```

```
Orientovaný graf
void addEdge(int start, int end) {
  edges[start] = new Link(end, edges[start]);
Neorientovaný graf
void addEdge(int i, int j) {
  edges[i] = new Link(j, edges[i]);
  edges[j] = new Link(i, edges[j]);
```

```
Orientovaný graf
```

```
void addEdge(int start, int end) {
  edges[start] = new Link(end, edges[start]);
}
```

Neorientovaný graf

```
void addEdge(int i, int j) {
  edges[i] = new Link(j, edges[i]);
  edges[j] = new Link(i, edges[j]);
}
```

Vkládáme na začátek seznamu

- na pořadí nezáleží
- vložení na začátek je rychlé

Sousedi vrcholu

```
ArrayList<Integer> neighbours(int v) {
   ArrayList<Integer> result = new ArrayList<Integer>();
   Link n = edges[v];
   while(n!=null) {
      result.add(n.neighbour);
      n = n.next;
   }
   return result;
}
```

Složitost:

- průchod všemi sousedy závisí na jejich počtu
 - husté grafy: počet sousedů může být $\Omega(|V|)$
 - řídké grafy: (průměrný) počet sousedů $\mathcal{O}(1)$
 - např. pro planární trojúhelníkovou síť je průměrný počet sousedů 6 (konstanta!)

Test sousednosti

```
boolean isNeighbour(int i, int j) {
  Link n = edges[i];
  while (n!=null) {
    if (n.neighbour == j)
       return true;
    n = n.next:
  return false;
Složitost závisí na počtu sousedů!
(prochází se seznam)
Složitost: v nejhorším případě (hustý graf): \Omega(|V|)
```

Úprava na ohodnocený graf

Ohodnocený graf

- každé hraně je přiřazeno navíc číslo představující nějakou dodatečnou vlastnost
 - délka cesty
 - propustnost potrubí
 - ..

Seznamy sousedů pak musí obsahovat instance složitější třídy, která zachycuje i ohodnocení

```
class Link {
  int neighbour;
  double edgeValue;
  Link next;
  ...
}
```

Implementace maticí sousednosti

Orientovaný graf

Matice $|V| \times |V|$ obsahuje na pozici [i, j]

- hodnotu 1 pokud z i-tého vrcholu vede hrana do j-tého
- hodnotu 0 v ostatních případech

Neorientovaný graf

Matice $|V| \times |V|$ obsahuje na pozici [i, j] a [j, i]

- hodnotu 1 pokud z *i*-tého vrcholu vede hrana do *j*-tého
- hodnotu 0 v ostatních případech

Příklad orientovaného grafu

 kam

 0
 1
 2
 3
 4
 5

 0
 0
 0
 0
 1
 0
 0

 1
 1
 0
 0
 1
 0
 0

 2
 0
 0
 0
 0
 0
 0

 3
 0
 1
 0
 0
 1
 0

 4
 0
 1
 1
 0
 0
 0

 5
 0
 0
 0
 0
 0
 0
 0

Příklad neorientovaného grafu

	0	1	2	3	4	5
0	0	1	0	1	0	0
1	1	0	1	1	1	0
2	0	1	1	0	1	0
3	1	1	0	0	1	0
4	0	1	1	1	0	0
5	0	0	0	0	0	0

Zapište první dvě řádky matice sousednosti (oddělte středníkem)

Reprezentace matice

- int[][] (dvourozměrné pole integerů)
 - alokováno množství paměti zbytečně
- byte[][] (dvourozměrné pole bytů)
- boolean[][] (dvourozměrné pole bitů)
 - překladač ale stejně obvykle pro každý boolean alokuje celý byte

Implementace

```
class Graph{
  byte[][] matrix;

public void initialize(int vertexCount) {
    this.matrix = new byte[vertexCount][vertexCount];
  }

... // metody
}
```

```
Orientovaný graf
void addEdge(int i, int j) {
  matrix[i][j] = 1;
Neorientovaný graf
void addEdge(int i, int j) {
  matrix[i][j] = 1;
  matrix[i][i] = 1;
```

Sousedi vrcholu

```
ArrayList<Integer> neighbours(int v) {
   ArrayList<Integer> result = new ArrayList<Integer>();
   for (int i = 0;i<matrix[0].length;i++)
      if (matrix[v][i] == 1) result.add(i);
   return result;
}
Složitost Ω(|V|) nezávisle na hustotě grafu</pre>
```

Test sousednosti

```
boolean isNeighbour(int i, int j) {
  return matrix[i][j]==1;
}
Složitost O(1) nezávisle na hustotě grafu
```

Úprava na ohodnocený graf

- matice reprezentována jako double[][]
- v matici na pozici sousedících vrcholů uloženo ohodnocení
- na ostatních pozicích hodnota mimo rozsah možných ohodnocení
 - -1, pokud ohodnocení musí být nezáporné
 - Nan, není-li nan přípustným ohodnocením
 - záleží na aplikaci

Paměťová složitost

- seznam: $\mathcal{O}(|V| + |E|)$
- matice: $\Omega(|V|^2)$

Paměťová složitost

- seznam: $\mathcal{O}(|V| + |E|)$
- matice: $\Omega(|V|^2)$

Vložení hrany

• seznam i matice: $\mathcal{O}(1)$

Paměťová složitost

- seznam: $\mathcal{O}(|V| + |E|)$
- matice: $\Omega(|V|^2)$

Vložení hrany

• seznam i matice: $\mathcal{O}(1)$

Sousedi vrcholu

- seznam: $\Omega(n)$, n je počet sousedů vrcholu
- matice: $\Omega(|V|)$

Paměťová složitost

- seznam: $\mathcal{O}(|V| + |E|)$
- matice: $\Omega(|V|^2)$

Vložení hrany

• seznam i matice: $\mathcal{O}(1)$

Sousedi vrcholu

- seznam: $\Omega(n)$, n je počet sousedů vrcholu
- matice: $\Omega(|V|)$

Test sousednosti

- seznam: $\Omega(n)$, n je počet sousedů vrcholu
- matice: $\mathcal{O}(1)$

Hustota grafu

Řídký graf

- $|E| << |V^2|$
- obvykle vhodnější reprezentace seznamem sousedů
- např. pro planární trojúhelníkové sítě se dá dokázat, že průměrný počet sousedů vrcholu je blízký 6
 - test sousednosti pak také probíhá v průměru v $\mathcal{O}(1)$

Hustota grafu

Řídký graf

- $|E| << |V^2|$
- obvykle vhodnější reprezentace seznamem sousedů
- např. pro planární trojúhelníkové sítě se dá dokázat, že průměrný počet sousedů vrcholu je blízký 6
 - test sousednosti pak také probíhá v průměru v $\mathcal{O}(1)$

Hustý graf

- $|E| \simeq |V^2|$, popř. $|E| = k|V^2|$ pro nějakou konstantu k
- obvykle vhodnější reprezentace maticí sousednosti (rychlejší test sousednosti)

Procházení grafu

Motivace

Typické úlohy:

Existuje v grafu cesta z vrcholu A do vrcholu B?

Graf: bludiště

Vrchol: křižovatka v bludišti

Hrana: cesta mezi křižovatkami

Úkol: Zjistit, zda existuje cesta z jednoho místa na jiné

Motivace

Typické úlohy:

Existuje v grafu cesta z vrcholu A do vrcholu B?

Graf: bludiště
Vrchol: křižovatka v bludišti

Hrana: cesta mezi křižovatkami

Úkol: Zjistit, zda existuje cesta z jednoho místa na jiné

Jak dlouhá (kolik hran) je nejkratší cesta z vrcholu A do vrcholu B?

Graf: Vlaková spojení Vrchol: Nádraží

Hrana: Mezi nádražími jede přímý spoj

Úkol: Vyhledat spojení s nejmenším počtem přestupů

Typické úlohy

Které vrcholy se v grafu vyskytují ve vzdálenosti menší než k (počet hran)?

Graf: síť kontaktů LinkedIn Vrchol: záznam osoby

Hrana: konexe

Úkol: prohledat konexe do úrovně k, zda obsahují hledanou osobu

Typické úlohy

Které vrcholy se v grafu vyskytují ve vzdálenosti menší než k (počet hran)?

Graf: síť kontaktů LinkedIn Vrchol: záznam osoby

Hrana: konexe

Úkol: prohledat konexe do úrovně k, zda obsahují hledanou osobu

Existuje v orientovaném grafu cyklus?

Graf: vztahy buněk v tabulkovém kalkulátoru

Vrchol: buňka

Hrana A→B: hodnota buňky A závisí na hodnotě buňky B

Úkol: zjistit, zda je možné tabulku vyhodnotit (nesmí obsahovat cyklus!)

Typické úlohy

Přiřadit vrcholům orientovaného grafu indexy tak, že hrany vedou vždy od menšího indexu k většímu

Graf: závislosti činností

Vrchol: činnost

Hrana A→B: činnost B může být vykonána, teprve když je činnost A hotová

Úkol: zjistit, v jakém pořadí je možné činnosti vykonat

Prohledávání do šířky

Breadth-First Search (BFS)

Postup zpracovává vrcholy grafu od vrcholu s v pořadí od blízkých ke vzdáleným Postup zpracování vyžaduje označování vrcholů

označení uložíme do pole délky | V |

Prohledávání do šířky

Breadth-First Search (BFS)

Postup zpracovává vrcholy grafu od vrcholu s v pořadí od blízkých ke vzdáleným Postup zpracování vyžaduje označování vrcholů

označení uložíme do pole délky |V|

Možná označení vrcholu:

- nenavštívený ("bílý"), kód 0
- čekající na zpracování ("šedý"), kód 1
- hotový ("černý"), kód 2

Implementace

Díky použití Fronty se zpracují všchny vrcholy ve vzdálenosti k před vrcholy ve
vzdálenosti > k

void BFS(int s) {
 int[] mark = new int[edges.length]; // pocet vrcholu!
 mark[s] = 1;

Queue q = new Queue();
 q.add(s);

Implementace

```
while(!q.isEmpty()) {
  int v = q.pop();
  ArrayList<Integer> nbs = neighbours(v);
  for(int i = 0; i < nbs.size(); i++) {</pre>
    int n = nbs.qet(i)
    if (mark[n] == 0) {
      mark[n] = 1;
      q.add(n);
  mark[v] = 2;
```


Důležitá pozorování

Pozorování

BFS v této podobě nic nedělá

Důležitá pozorování

Pozorování

BFS v této podobě nic nedělá

- je nutné doplnit "užitečný" kód
- kam a jaký záleží na řešeném problému

Důležitá pozorování

Pozorování

BFS v této podobě nic nedělá

- je nutné doplnit "užitečný" kód
- kam a jaký záleží na řešeném problému

Pozorování

BFS zpracuje jen jednu komponentu grafu

Zpracování všech vrcholů

- metoda BFS zpracuje jen vrcholy dosažitelné z počátečního vrcholu
- chceme-li zpracovat všechny vrcholy, musíme BFS restartovat v nezpracovaných vrcholech
- nezpracovaný vrchol se pozná podle toho, že mu zůstane bílé obarvení

```
void BFS_All() {
  int[] mark = new int[edges.length];
  for (int s = 0; s<edges.length; s++) { // smycka pres vrcholy!
    if (mark[s]!=0)
      continue; // s byl jiz zpracovan
    mark[s] = 1; // s je bily, pouzije se jako startovni vrchol
    Queue q = new Queue();
    q.add(s);
    ...</pre>
```

Složitost algoritmu BFS

- vkládání do fronty (každý vrchol je vložen do fronty právě jednou): $\Omega(|V|)$
- procházení sousedů (seznam sousedů pro každý vrchol, každá hrana je zpracována jednou):
 - implementace grafu seznamem: O(|E|)
 - implementace grafu maticí: $\Omega(|V|^2)$

Složitost algoritmu BFS

- ullet vkládání do fronty (každý vrchol je vložen do fronty právě jednou): $\Omega(|V|)$
- procházení sousedů (seznam sousedů pro každý vrchol, každá hrana je zpracována jednou):
 - implementace grafu seznamem: O(|E|)
 - implementace grafu maticí: $\Omega(|V|^2)$

Celkem:

- úplný, popř. hustý graf nebo implementace sousednosti maticí: $\Omega(|V|^2)$
- implementaci sousednosti seznamem: O(|V| + |E|)
 - graf může mít počet hran až $|V|^2$

Aplikace

Určení všech vzdáleností od vrcholu s

```
int[] BFSDistance(int s) {
  int[] result = new int[edges.length];
  for (int i = 0; i < edges.length; i++)
    result[i] = -1:
  result[s] = 0;
  int[] mark = new int[vertices.length];
 mark[s] = 1;
  Queue q = new Queue();
  q.add(s);
  . . .
```

Implementace

```
. . .
while(!q.isEmpty()) {
  int v = q.pop();
  ArrayList<Integer> nbs = neighbours(v);
  for(int i = 0;i<nbs.size();i++) {
    int n = nbs.get(i)
    if (mark[n] == 0) {
      mark[n] = 1;
      q.add(n);
      result[n] = result[v]+1;
 mark[v] = 2;
return result:
```


výsledek:

výsledek:

	0	1	2	3	4	5	6	7	8	9
ſ	3	2	1	2	1	2	2	3	0	4

výsledek:

	1								
3	2	1	2	1	2	2	3	0	4

Použití algoritmu

```
Zjištění zda existuje cesta z s do t:
boolean isPath(int s, int t) {
  int[] d = BFSDistance(s);
  return (d[t]>=0);
}
```

Použití algoritmu

```
Ziištění zda existuje cesta z s do t:
boolean isPath(int s, int t){
  int[] d = BFSDistance(s);
  return (d[t] >= 0);
Určení délky nejkratší cesty z s do t:
int distance(s, t){
  int[] d = BFSDistance(s);
  return d[t];
```

Použití algoritmu

```
Ziištění zda existuje cesta z s do t:
boolean isPath(int s, int t){
  int[] d = BFSDistance(s):
  return (d[t]>=0);
Určení délky neikratší cesty z s do t:
int distance(s, t){
  int[] d = BFSDistance(s);
  return d[t];
```

šlo by významně zrychlit předáním t do BFS a ukončením smyčky ve chvíli, kdy je t přiřazena vzdálenost

BFSDistanceTo

Určení vzdálenosti od vrcholu s

```
int BFSDistanceTo(int s, int t) {
  int[] result = new int[edges.length];
  for (int i = 0;i<edges.length;i++)</pre>
    result[i] = -1;
  result[s] = 0;
  int[] mark = new int[vertices.length];
 mark[s] = 1;
  Queue q = new Queue();
  q.add(s);
```

BFSDistanceTo

```
. . .
while(!q.isEmpty()) {
  int v = q.pop();
  ArrayList<Integer> nbs = neighbours(v);
  for(int i = 0;i<nbs.size();i++) {</pre>
    int n = nbs.get(i)
    if (mark[n] == 0) {
      mark[n] = 1;
      q.add(n);
      result[n] = result[v]+1;
      if (n == t)
        return result[t];
 mark[v] = 2;
return -1;
```

Zjištění počtu komponent

• přidáme užitečný kód do BFS_All()

Zjištění počtu komponent

přidáme užitečný kód do BFS_All ()

```
int componentCount() {
 int result = 0;
 int[] mark = new int[edges.length];
 for (int s = 0;s<edges.length;s++) {</pre>
    if (mark[s]!=0)
      continue; // s byl jiz zpracovan
    result++; // nova komponenta
    mark[s] = 1; // s je bily, pouzije se jako startovni vrchol
   Queue q = new Queue();
   q.add(s);
    . . .
  return result:
```

Příště

Pokračování grafů

- další aplikace prohledávání do šířky (strom dostupnosti)
- prohledávání do hloubky
- topologické řazení