Esame scritto, Febbraio 2015

punteggio di partenza: 2

esercizi(o)

■ corretto: +8

■ sbagliato: -4 (errore concettuale), 0 (due o più errori di calcolo, errore di conversione), 4 (un errore di calcolo)

non svolto: 0esercizi: 4

1.Una molla ideale può essere compressa di 1.0 m da una forza di 100 N. La stessa molla è posta alla fine di un piano inclinato liscio (senza attrito) che forma un angolo di 30° con l'orizzontale. Una massa M di 10 kg viene lasciata cadere da ferma dal vertice del piano inclinato e si arresta momentaneamente dopo aver compresso la molla di 2.0 m. Qual'è la velocità della massa un attimo prima di toccare la molla?

2. Calcolare la velocità massima alla quale un'automobile di 1 t può percorrere una curva di raggio 900 m e inclinata di $\pi/12$ sapendo che il coefficiente di attrito statico tra asfalto e pneumatico è 0.5.

3. Un rubinetto di sezione $S=1~\rm cm^2$ è inserito nel fondo di una (grande) cisterna aperta superiormente. Il livello dell'acqua nella cisterna è $H=4~\rm m$. Il getto d'acqua uscente dal rubinetto è diretto verticalmente verso il basso. Trascurando tutti I possibili attriti, si determini la sezione Sh del getto d'acqua dopo che questo è sceso verso il basso di un tratto $h=20~\rm cm$. (Poiché la cisterna è grande, si può assumere che il livello dell'acqua H resti costante).

- **4.** Calcolare il periodo di rotazione della Luna attorno alla Terra assumendo che percorra un'orbita circolare di raggio 384000 km, conoscendo l'accelerazione di gravità sulla superficie della Terra, $g = 9.8 \text{ m/s}^2$ e il raggio della Terra 6370 km.
- **5.** Nel circuito in figura, la corrente attraverso la resistenza 6 è i_6 =1.40 A e le resistenze sono R_1 = R_2 = R_3 =2.0 Ohm, R_4 = 16.0 Ohm, R_5 = 8.0 Ohm e R_6 = 4.0 Ohm. Qual'è la forza elettromotrice della batteria (ideale)?

6. Due fili paralleli carichi uniformemente e molto lunghi sono tenuti in posizione come in figura ad una distanza di L=8.0 cm. Le densità di carica lineare sono $\lambda_1=+6.0$ nC/m (positiva) e $\lambda_2=-2.0$ nC/m (negativa). Oltre che all'infinito, dove si annulla il campo elettrico sull'asse X disegnato in figura?

7. La molla della figura ha una costante elastica $k=120\ N/m$ e una lunghezza a riposo di 0.450 m. Quando viene un blocco di massa M viene attaccato alla molla l'estensione di equilibrio della molla è 0.525 m. Il piano inclinato è liscio (senza attrito) e forma un angolo di 40° con l'orizzontale. Se la massa viene tirata leggermente verso il basso e rilasciata, qual'è il periodo di oscillazione?

8. Nell'apparato in figura degli ioni di 12 C vengono emessi dalla sorgente S e vengono accelerati dal campo elettrico E_1 . Le tre aperture A, B e C sono allineate. Il campo elettrico E_2 tra le due armature vale E_2 = 10^6 V/m ed il volume tra le due armature è immerso in un campo magnetico B uniforme uscente nel foglio pari a B = 100 G. Si determini quale deve essere la tensione V che accelera gli ioni emessi dalla sorgente S affinché gli ioni possano passare attraverso C. In altre parole, qual'è la la tensione V per cui gli ioni accelerati attraversano la regione con i campi E_2 e B senza essere deflessi. (carica ione= $1.6*10^{-19}$ C, massa ione = $2,0*10^{-26}$ kg)

