Membership problem. Given a CFG G and a string x, is $x \in L(G)$?

Membership problem. Given a CFG G and a string x, is $x \in L(G)$?

Answer. Decidable — CKY algorithm

Membership problem. Given a CFG G and a string x, is $x \in L(G)$?

Answer. Decidable — CKY algorithm

Emptiness problem. Given a CFG G, is $L(G) = \emptyset$?

Answer, Decidable.

Membership problem. Given a CFG G and a string x, is $x \in L(G)$?

Answer. Decidable — CKY algorithm

Emptiness problem. Given a CFG G, is $L(G) = \emptyset$?

Answer, Decidable,

Inductive marking procedure - Determine if a nonterminal generals some stoing.

- 1. Mark all terminal symbols in E.

2. Repeat till no change |- Mark AEN if 3 A→BEP 8.+ all symbols in B are marked

By Induction: A is marked iff $\exists x \in Z^* s.t A \xrightarrow{*} x$.

L(G) is non-empty iff S is marked.

Sunil Simon

Membership problem. Given a CFG G and a string x, is $x \in L(G)$?

Answer. Decidable — CKY algorithm

Emptiness problem. Given a CFG G, is $L(G) = \emptyset$?

Answer, Decidable.

Universality problem. Given a CFG G, is $L(G) = \Sigma^*$?

Answer. Undecidable

Configurations of a Turing machine

A configuration of a Turing machine M is a triple (q, y, n) where

- q is a state,
- y describes the content of the tape,
- *n* an integer describing the head position.

Encoding configurations. We can encode configurations as finite strings over the alphabet $\Gamma \times (Q \cup \{-\})$.

Configurations of a Turing machine

A configuration of a Turing machine M is a triple (q, y, n) where

- q is a state,
- y describes the content of the tape,
- *n* an integer describing the head position.

Encoding configurations. We can encode configurations as finite strings over the alphabet $\Gamma \times (Q \cup \{-\})$.

Start Configuration.

$$Fa_1 a_2 \cdots a_r$$

$$S = - \cdots -$$

Sunil Simon

Alphabet: $\Gamma \times (Q \cup \{-\})$.

A valid computation history of M on x is a string

$$\#\alpha_0\#\alpha_1\#\alpha_2\#\cdots\#\alpha_N\#$$

- α_0 is a start configuration of M on x,
- α_N is a halting configuration (state is either the accept state t or reject state r),
- α_{i+1} follows in one step from α_i according to δ of M. That is, for $0 \le i \le N-1$,

$$\alpha_i \xrightarrow{1} \alpha_{i+1}$$
.

Alphabet: $\Gamma \times (Q \cup \{-\})$.

A valid computation history of M on x is a string

$$\#\alpha_0\#\alpha_1\#\alpha_2\#\cdots\#\alpha_N\#$$

- α_0 is a start configuration of M on x,
- α_N is a halting configuration (state is either the accept state t or reject state r),
- α_{i+1} follows in one step from α_i according to δ of M. That is, for $0 \le i \le N-1$,

$$\alpha_i \xrightarrow{1} \alpha_{i+1}$$
.

Let $\Delta = \{\#\} \cup (\Gamma \times (Q \cup \{-\}))$, then

 $\mathsf{VALCOMPS}(\mathit{M},x) = \{\mathsf{valid} \ \mathsf{computation} \ \mathsf{histories} \ \mathsf{of} \ \mathit{M} \ \mathsf{on} \ x\} \subseteq \Delta^*.$

 $VALCOMPS(M, x) = \emptyset$ iff M does not halt on x.

 $\sqrt{\text{AL(OMPS}(m, x)} = \Delta^* \text{ iff } M \text{ does not half } \text{ on } x$.

Rice's Theorem

Claim 1. $\overline{VALCOMPS(M,x)}$ is a CFL.

Claim 2. We can construct a CFG G for $\overline{VALCOMPS}(M,x)$ from the description of M and x.

Observation. $L(G) = \Delta^*$ iff M does not halt on x.

Reduction.
$$\overline{HP} \leq_m \{G \mid G \text{ is a CFG and } L(G) = \Delta^*\}.$$

• z must begin and end with a #. It must be of the form $\#\alpha_0\#\alpha_1\#\cdots\#\alpha_N\#$,

- z must begin and end with a #. It must be of the form $\#\alpha_0\#\alpha_1\#\cdots\#\alpha_N\#$,
- 2 each α_i is a string of symbols of the form

a a or

- q

where exactly one symbol of α_i has an element of Q on the bottom and others have -, and only the leftmost has a \vdash on top,

- z must begin and end with a #. It must be of the form $\#\alpha_0\#\alpha_1\#\cdots\#\alpha_N\#$,
- **2** each α_i is a string of symbols of the form

a a or

where exactly one symbol of α_i has an element of Q on the bottom and others have -, and only the leftmost has a \vdash on top,

 $oldsymbol{\circ}$ α_0 represents the start configuration of M on x,

q

- z must begin and end with a #. It must be of the form $\#\alpha_0\#\alpha_1\#\cdots\#\alpha_N\#$,
- 2 each α_i is a string of symbols of the form
 - a a or
 - q where exactly one symbol of $lpha_i$ has ar

where exactly one symbol of α_i has an element of Q on the bottom and others have -, and only the leftmost has a \vdash on top,

- \bullet α_0 represents the start configuration of M on x,
- **a** halt state, either t or r appears somewhere in z. That is, α_N is a halting configuration,

- z must begin and end with a #. It must be of the form $\#\alpha_0\#\alpha_1\#\cdots\#\alpha_N\#$,
- **2** each α_i is a string of symbols of the form
 - a or

where exactly one symbol of α_i has an element of Q on the bottom and others have -, and only the leftmost has a \vdash on top,

 \bullet α_0 represents the start configuration of M on x,

q

- a halt state, either t or r appears somewhere in z. That is, α_N is a halting configuration,

- z must begin and end with a #. It must be of the form $\#\alpha_0\#\alpha_1\#\cdots\#\alpha_N\#$,
- 2 each α_i is a string of symbols of the form
 - a or
 - q

where exactly one symbol of α_i has an element of Q on the bottom and others have -, and only the leftmost has a \vdash on top,

- \bullet α_0 represents the start configuration of M on x,
- **1** a halt state, either t or r appears somewhere in z. That is, α_N is a halting configuration,

$$A_{i} = \{x \in \Delta^{*} \mid x \text{ satisfies conditions } (i)\}, \quad 1 \leq i \leq 5$$

$$VALCOMPS(M_{i}x) = \bigcap_{l \leq i \leq 5} A_{i}. \quad ; \quad \overline{VALCOMPS(M_{i}x)} = \bigcup_{l \leq i \leq 5} \overline{A_{i}}.$$
Rice's'

Claim. Sets A_1 , A_2 , A_3 , A_4 are regular sets.

4) 3 right linear CFGs.

• z must begin and end with a #.

Claim. Sets A_1 , A_2 , A_3 , A_4 are regular sets.

• z must begin and end with a #.

Observation. A_1 is the regular set $\#\Delta^*\#$.

• each α_i is a string of symbols of the form

a a or

- q

where exactly one symbol of α_i has an element of Q on the bottom and others have -, and only the leftmost has a \vdash on top,

• each α_i is a string of symbols of the form

a a or

q

where exactly one symbol of α_i has an element of Q on the bottom and others have -, and only the leftmost has a \vdash on top,

Suffices to check that between every two #'s there is exactly one symbol with state q on the bottom and \vdash occurs on the top immediately after each # (except the last) and nowhere else.

Observation. A_2 is the regular set.

ullet α_0 represents the start configuration of M on x,

Observation. A_3 is the regular set

• α_0 represents the start configuration of M on x,

Observation. A_3 is the regular set

• a halt state, either t or r appears somewhere in z. That is, α_N is a halting configuration,

Observation. Suffices to check that t or r appears somewhere in the string.

Condition 5. $\alpha_i \xrightarrow{1}_{M} \alpha_{i+1}$ for $0 \le i \le N-1$.

Claim. $\overline{A_5}$ is a CFL.

Condition 5.
$$\alpha_i \xrightarrow{1}_{M} \alpha_{i+1}$$
 for $0 \le i \le N-1$.

Note di exi+1 should agree on most symbols except a few near the current head position.

... # Гава вы ава # Гава авава#

if S(9,b) = (p,a,L)

To check: $\lambda \xrightarrow{m} \beta$: Check all 3 element substring α of α and corresponding substring α occurring at same distance from α in β and α a α b β are consistent with β since β and β are β are β since β and β are β are β since β are β are β are β since β and β are β are β since β are β are β are β are β are β since β and β are β are β are β are β since β are β a

The pair a b b and a b b in d in B

To check that $d \xrightarrow{m} B$ does not hold, need to

check: 3 a length 3 substring of & s.t. the Corresponding length 3 substring of B is not consistent with S.

An NPDA M S.+ L(M) = A5

M works as follows:

- Guess di non-deferministically.
- Guess length a substring u is ai, check that the Corresponding substring v diti is not Consistent.
- Identify the Corresponding substring in & wing the steck.
 - Push He prefix of di till u in the stack.
 - Pop the symbols in xi+1 ofter # to match the length of the prefix to find the corresponding substring & in xi+1.