18.303 Problem Set 5

Due Wednesday, 17 October 2012.

Problem 1: Conquering Inversity

Consider the operator $\hat{A} = -c(\mathbf{x})\nabla^2$ in some 2d region $\Omega \subseteq \mathbb{R}^2$ with Dirichlet boundaries $(u|_{\partial\Omega} = 0)$, where $c(\mathbf{x}) > 0$. Suppose the eigenfunctions of \hat{A} are $u_n(\mathbf{x})$ with eigenvalues λ_n [that is, $\hat{A}u_n = \lambda_n u_n$] for $n = 1, 2, \ldots$, numbered in order $\lambda_1 < \lambda_2 < \lambda_3 < \cdots$. Let $G(\mathbf{x}, \mathbf{x}')$ be the Green's function of \hat{A} .

- (a) If $f(\mathbf{x}) = \sum_{n} \alpha_n u_n(\mathbf{x})$ for some coefficients $\alpha_n = \underline{}$ (expression in terms of f and u_n), then $\int_{\Omega} G(\mathbf{x}, \mathbf{x}') f(\mathbf{x}') d^2 \mathbf{x}' = \underline{}$ (in terms of α_n and α_n).
- (b) The maximum possible value of

$$\frac{\int_{\Omega} \int_{\Omega} \frac{1}{c(\mathbf{x})} \overline{u(\mathbf{x})} G(\mathbf{x}, \mathbf{x}') u(\mathbf{x}') d^2 \mathbf{x} d^2 \mathbf{x}'}{\int_{\Omega} \frac{|u(\mathbf{x}'')|^2}{c(\mathbf{x}'')} d^2 \mathbf{x}''},$$

Problem 2: More Green stuff

Recall that the displacement u(x,t) of a stretched string [with fixed ends: u(0,t) = u(L,t) = 0] satisfies the wave equation $\frac{\partial^2 u}{\partial x^2} + f(x,t) = \frac{\partial^2 u}{\partial t^2}$, where f(x,t) is an external force density (pressure) on the string.

- (a) Suppose that $f(x,t) = \text{Re}[g(x)e^{-i\omega t}]$, an oscillating force with a frequency ω . Show that, instead of solving the wave equation with this f(x,t), we can instead use a complex force $\tilde{f}(x,t) = g(x)e^{-i\omega t}$, solve for a complex $\tilde{u}(x,t)$, and then take $u = \text{Re } \tilde{u}$ to obtain the solution for the original f(x,t).
- (b) Suppose that $f(x,t) = g(x)e^{-i\omega t}$, and we want to find a *steady-state* solution $u(x,t) = v(x)e^{-i\omega t}$ that is oscillating everywhere at the same frequency as the input force. (This will be the solution after a long time if there is any dissipation in the system to allow the initial transients to die away.) Write an equation $\hat{A}v = g$ that v solves. Is \hat{A} self-adjoint? Positive/negative definite/semidefinite?
- (c) Solve for the Green's function G(x, x') of this \hat{A} , assuming that $\omega \neq n\pi/L$ for any integer n (i.e. assume ω is not an eigenfrequency [why?]). [Write down the continuity conditions that G must satisfy at x = x', solve for $x \neq x'$, and then use the continuity conditions to eliminate unknowns.]
- (d) Form a finite-difference approximation A of your \hat{A} . Compute an approximate G(x, x') in Matlab by $A \setminus dk$, where d_k is the unit vector of all 0's except for one $1/\Delta x$ at index $k = x'/\Delta x$, and compare (by plotting both) to your analytical solution from the previous part for a couple values of x' and a couple of different frequencies ω (one $< \pi/L$ and one $> \pi/L$) with L = 1.
- (e) Show the limit $\omega \to 0$ of your G relates in some expected way to the Green's function of $-\frac{d^2}{dx^2}$ from class.