Question number	Answer		Mark
4(a)(i)	Vernier calipers as the range of the micrometer is too small	(1)	1
4(a)(ii)	There may be a source of systematic error Or the Vernier calipers may not have been checked for zero error Therefore the values may not be close to the true value	(1) (1)	2
4 (b)	Mean $x = 2.12$ (mm) Uncertainty of 0.02 (mm) from calculation of half range [Accept furthest from the mean]	(1) (1)	2
	Example of calculation mean $x = (2.11+2.10+2.13+2.14+2.11)$ mm/5 = 2.118 = 2.12 mm Uncertainty = $(2.14-2.10)$ mm/2 = 0.02 mm		
4(c)(i)	Use of $n = 1 + \frac{d^2 + (t - x)^2}{8f(t - x)}$ Correct value of n to 2 or 3 s.f. [e.c.f (b)]	(1) (1)	2
	Example of calculation $n = 1 + \frac{d^2 + (t - x)^2}{8f(t - x)} = 1 + \frac{5.10^2 + (0.830 - 0.212)^2}{8 \times 9.8 \times (0.830 - 0.212)} = 1 + \frac{26.01 + 0.618^2}{48.45}$ $= 1.54$		
4(c)(ii)	Addition of uncertainties shown Conversion to %U to minimum 2 s.f. [e.c.f (b)]	(1) (1)	2
	Example of calculation $U = 0.01 + 0.02 = 0.03$ $\%U = 0.03 / (8.30 - 2.12) \times 100\% = 0.49 \%$		

4(c)(iii)	Use of $2 \times \%$ U in d and $2 \times \%$ U $(t-x)$ shown [e.c.f (b)]	(1)	
	Calculation of U in d^2 and U in $(t-x)^2$ shown	(1)	
	Addition of uncertainties shown	(1)	
	Correct value of U to 3 s.f. (do not penalise if square root of final value is taken)	(1)	4
	Example of calculation		
	%U in $d^2 = 2 \times (0.01/5.1 \times 100) = 0.392\%$		
	U in $d^2 = 5.1^2 \times 0.392/100 = 0.102$		
	%U in $(t - x)^2 = 2 \times 0.49 = 0.98\%$		
	U in $(t - x)^2 = 0.618^2 \times 0.98/100 = 0.004$		
	U = 0.102 + 0.004 = 0.106		
4(c)(iv)	Correct calculation of %U in n shown [e.c.f. (c)(ii) and (iii)]	(1)	
	Calculation of relevant limit shown [e.c.f (c)(i)]	(1)	
	Valid conclusion based on comparison of calculated values	(1)	
	[MP3 dependent on MP2]		
	Example of calculation		
	%U = $(0.106/26.4 \times 100) + 0.485 + (0.3/9.8 \times 100) = 0.402 + 0.485 + 3.06$		
	= 3.95%		
	Upper limit = $1.54 \times 1.04 = 1.60$		
	Lower limit = $1.54 \times 0.96 = 1.48$		
	The lens is most likely to be made of crown glass as it is the only value to fall within the range		
	Or		
	Correct calculation of %U in n shown [e.c.f. (c)(ii) and (iii)]	(1)	
	Correct calculation of relevant %D shown [e.c.f (c)(i)]	(1)	
	Valid conclusion based on comparison of calculated values	(1)	3
	[MP3 dependent on MP2]		

Total mark for Question 4 = 16	
The lens is most likely to be made of crown glass as the %D is less than the %U whereas %D is larger than %U for flint glass.	
Flint glass %D = $(1.66-1.54)/1.66 \times 100 = 7.23$ %	
Crown glass %D = $(1.54-1.52)/1.52 \times 100 = 1.32 \%$	
= 3.95%	
%U = $(0.106/26.4 \times 100) + 0.485 + (0.3/9.8 \times 100) = 0.402 + 0.485 + 3.06$	
Example of calculation	