UYGULAMA HAFTA 10

Section 12.8-Kapalı Fonksiyonlar

Section 13.1-Uç Değerler

HATIRLATMALAR

Jacobian: u = u(x, y) ve v = v(x, y) fonksiyonlarının x ve y değişkenlerine göre Jacobian determinantı (ya da kısaca Jacobianı)

$$\frac{\partial(u,v)}{\partial(x,y)} = \begin{vmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{vmatrix}$$

determinantidir.

İkinci Türev Testi: (a,b) noktasının, f(x,y) fonksiyonunun tanım kümesi içinde yer alan bir kritik noktası olduğunu varsayalım. (a,b) nin bir komşuluğunda f nin ikinci kısmi türevlerinin sürekli olduğunu ve o noktada

$$A = f_{xx}(a, b), \quad B = f_{xy}(a, b), \quad C = f_{yy}(a, b)$$

değerlerini aldığını varsayalım.

- (a) $B^2 AC < 0$ ve A > 0 ise o zaman f, (a, b) de bir yerel minimum değere sahiptir.
- (b) $B^2 AC < 0$ ve A < 0 ise o zaman f, (a, b) de bir yerel maksimum değere sahiptir.
 - (c) $B^2 AC > 0$ ve ise o zaman f nin (a, b) de bir eyer noktası vardır.
- (d) $B^2 AC = 0$ ise o zaman bu test hiçbir bilgi vermez; f, (a, b) de bir yerel maksimum ya da bir yerel minimum değere veya bir eyer noktaya sahip olabilir.

Asagida veriler derkleuler igin belirtilen türevleri hesaplayı-112. Hangi kokullar altında belirtilen türevin gözümü vardır?

5.1.

$$e^{y^{2}} - x^{2} + \ln y = \pi$$
 : $y = y(x, 2)$

Verilen derkleuin =-ye göre kısmi türevini hesoployolim.

$$e^{y^2}\left(\frac{\partial y}{\partial x} + y\right) - x^2\left(\ln y + 2\frac{1}{y}\frac{\partial y}{\partial x}\right) = 0$$

$$=) y e^{y^{2}} + 2 \frac{\partial y}{\partial z} e^{y^{2}} - x^{2} ln y - \frac{x^{2}z}{y} \frac{\partial y}{\partial z} = 0$$

$$\frac{\partial y}{\partial x} \left(2e^{y^2} - \frac{x^2 x}{y} \right) = x^2 \ln y - y e^{y^2}$$

$$=) \frac{\partial y}{\partial z} = \frac{x^{2} \ln y - y e^{y^{2}}}{2 e^{y^{2}} - x^{2} z} = \frac{x^{2} y \ln y - y^{2} e^{y^{2}}}{y^{2} e^{y^{2}} - x^{2} z}$$

$$= \frac{x^{2} y \ln y - y^{2} e^{y^{2}}}{2 (y e^{y^{2}} - x^{2})}$$

0 holde; y70 (lny), 2+0 ve ye +x2 olması durumunda belirtilen türevin Gözümü vərdir.

olmosi aurumunois

(i)
$$x^2 + y^2 + 2^2 + w^2 = 1$$
 $\forall e \times + 2y + 32 + 4w = 2$ is e

($\frac{\partial x}{\partial y}$)₂?

Sol.

Sol.
$$\left(\frac{\partial x}{\partial y}\right)_{2} = \frac{1}{2} \times \sqrt{2} \quad \text{with } y = 2 - n \text{ in forksiyonlar i}$$

$$\left(\frac{\partial x}{\partial y}\right)_{2} = \frac{1}{2} \times \sqrt{2} \quad \text{with } y = \frac{1}{2} - n \text{ in forksiyonlar i}$$

$$x^{2}+y^{2}+2^{2}+\omega^{2}=1$$
 $y = x = x(y,2)$
 $x+2y+32+4\omega=2$ $y = w = w(y,2)$

Her iki derklenin y-ye göre kuni türevlerini ələlim.

$$2 \times \frac{\partial \lambda}{\partial x} + 3\lambda + 3m \frac{\partial \lambda}{\partial m} = 0$$

$$\frac{-\frac{1}{2}w}{\partial y} + 2 + 4 \frac{\partial w}{\partial y} = 0$$

$$\left(2x - \frac{1}{2}w\right) \frac{\partial x}{\partial y} + 2y - w = 0$$

$$=) (4x-w) \frac{\partial x}{\partial y} + 4y - 2w = 0.$$

O holde
$$\left(\frac{\partial x}{\partial y}\right)_2 = \frac{2w - 4y}{4x - w}$$

w + 4x olması durumunda belirtilen türevin Gázümü yardir.

(2)
$$x^2y + y^2u - u^3 = 0$$
 ve $x^2 + yu = 1$ ise $\frac{du}{dx}$?

Sol.

Sol.

$$\int x^{2}y + y^{2}u - u^{3} = 0 = 0$$

$$\int x^{2} + yu = 1$$

$$(x^{2} + yu = 1)$$

Her iki derkleum x-e göre türevlemi

$$\int (2xy + x^{2} \frac{dy}{dx}) + (2y \frac{dy}{dx} + y^{2} \frac{dy}{dx}) - 3u^{2} \frac{dy}{dx} = 0$$

$$2x + (u \frac{dy}{dx} + y \frac{dy}{dx}) = 0$$

$$\frac{-u}{2xy} + (x^{2} + 2yu) \frac{dy}{dx} + (y^{2} - 3u^{2}) \frac{du}{dx} = 0$$

$$\frac{x^{2} + 2yu}{2x + u} \frac{dy}{dx} + y \frac{du}{dx} = 0$$

$$\frac{t}{-2xyu - u(y^2 - 3u^2)} \frac{du}{dx} + 2x(x^2 + 2yu) + y(x^2 + 2yu) \frac{du}{dx} = 0$$

$$= \frac{du}{dx} = -\frac{2x(x^2+yu)}{3u^3+x^2y+y^2u} = -\frac{2x\cdot 1}{3u^3+u^3} = -\frac{x}{2u^3}$$

=> u = 0 amosi durumundo belintiles tirevin apsana radic

14) Hangi (r,s) noktolari yakınında
$$x=r^2+2s$$
, $y=s^2-2r$

donüzümű, x ve y-nin forksiyorları olarak r ve s-ye gore gozulebilir? Gozumun birinci kısmi türevlerinin degerlerini orijinde hesoplayiniz.

Sol.

x=x(r,s), y=y(r,s) forusiyonlarının r ve s deği Ekenlerine gore Jacobiani,

$$\frac{\partial(x,y)}{\partial(r,s)} = \begin{vmatrix} \partial x/\partial r & \partial x/\partial s \\ \partial y/\partial r & \partial y/\partial s \end{vmatrix}$$
$$= \begin{vmatrix} 2r & 2 \\ 2s \end{vmatrix} = 4(rs+1)$$

4(rs+1) = 0 yani rs = -1 olduğu her -(ris) roltasi yakınında bu dönüşüm x ve y-nin Kapali Fork. forksyonari derak r ve a igin gözülebilir. TED.

Simdi dr, dr , ds ve ds kısmi türevlerini

bulmaya Galigalim.

$$X = r^2 + 2s$$
 , $Y = s^2 - 2r$

$$=) 1 = 2r \frac{\partial r}{\partial x} + 2 \frac{\partial s}{\partial x} \quad (1) \quad 0 = 2s \frac{\partial s}{\partial x} - 2 \frac{\partial r}{\partial x} \quad (3)$$

$$0 = 2r \frac{\partial r}{\partial y} + 2 \frac{\partial s}{\partial y}$$
 (2)
$$1 = 2s \frac{\partial s}{\partial y} - 2 \frac{\partial r}{\partial y}$$
 (4)

(2)
$$v=(4)$$
 geregi; $\frac{\partial s}{\partial y} = \frac{c}{2(rs+1)}$, $\frac{\partial c}{\partial y} = -\frac{1}{2(rs+1)}$.

(1) ve (3) geregi;
$$\frac{\partial r}{\partial x} = \frac{s}{2(rs+1)}$$
, $\frac{\partial s}{\partial x} = \frac{1}{2(rs+1)}$.

$$\Rightarrow \frac{\partial s}{\partial y}\Big|_{(0,0)} = 0 , \frac{\partial c}{\partial y}\Big|_{(0,0)} = -\frac{1}{2}$$

$$\frac{\partial x}{\partial C} = 0 \quad , \quad \frac{\partial x}{\partial S} = \frac{1}{2}$$

verilen faksiyaların kritik Asagidaki alistirmalarda sinifladiriniz. noktalami bulunua ve

Sol.

Ff = 0 -1 soğlayan ortak (x,y) noktaları kritik noktola-dir.

$$\vec{\nabla} f = \langle f_x, f_y \rangle = \langle 0, 0 \rangle$$

$$=) \int f_{x} = 4x^{3} - 4y = 0 \qquad =) \int x^{3} = y \qquad =) x^{9} - x = 0$$

$$\int f_{y} = 4y^{3} - 4x = 0 \qquad =) x^{3} = y \qquad =) x^{(x^{8} - 1)} = 0$$

$$=$$
 $y = 0 , y = 1 , y = -1$

O holde; (0,0), (1,1), (-1,-1) noktolori kritik noktolordir

Sniflandirmak ich;

$$A = f_{xx} = 12x^2$$
, $B = f_{xy} = -4$, $C = f_{yy} = 12y^2$

· (0,0) noktosindo.

$$A=0$$
, $B=-4$, $C=0$ olup $B^2-AC=1670-dir.
=) (0,0) bir eyer noktosidir.$

· (1,1) noktoundo,

A=12,
$$B=-4$$
, $C=12$ slup $B^2-AC=-128<0-dir.$
Ayrıca A70 olduğundan (1,1) bir yerel minimum noktasıdır.

· (-1,-1) noktosi do berzer sekilde bir yerel minimum nok+asidir.

Sol.

(0,0) \$ D(t) => (0,0) pir pitip vorts qedilqir. (-4,2) bir kritik noktadir.

$$A = f_{xx} = \frac{16}{x^3}$$
, $B = f_{xy} = -\frac{1}{y^2}$, $C = f_{yy} = \frac{2x}{y^3}$

· (-4,2) noktosindo,

$$A = -\frac{1}{4}$$
, $B = -\frac{1}{4}$, $C = -\frac{1}{4}$ olup $B^2 - AC = -\frac{3}{16}$ < 0 - dir.

Agrico A <0 olduğundan (-4,2) bir yerel moksimum noktosidir.

Sol.

$$\begin{cases} f_X = -\sin x = 0 \\ f_Y = -\sin y = 0 \end{cases} \Rightarrow \begin{cases} x = mT \\ y = nT \end{cases} ; m, n \in \mathbb{Z}.$$

O holde (mtt, ntt) kritik noktolordir.

$$A=f_{xx}=-\cos x$$
, $8=f_{xy}=0$, $C=f_{yy}=-\cos y$

olmak üzere,

· (mTT, nTT) noktolorindo,

$$A = -GS(m\pi) = -(-L)^{m} = (-1)^{m+1}$$
, $B = 0$,

$$= B^{2} - AC = -(-1)^{m+n+2} = (-1)^{m+n+3}$$

-) m ve n gift ise,

$$B^2-AC=-1<0$$
 ve $A=-1<0$ oldugundan (mTI, nTT)

bir yerel maksimum noktasıdır.

-) m ve n tek ise,

$$8^2-AC=-1<0$$
 ve $A=470$ oldugundan (mT, nT)
bir yerel minimum nettasıdır.

$$\rightarrow$$
 m ve n-nin Diri tek Diri cift ise,
 $B^2-AC=170$ olup (mT, nT) bir eyer noktosidir.

11)
$$f(x,y) = xe^{-x^3+y^3}$$

Sol.

$$\begin{cases}
f_{x} = (1 - 3x^{3}) e^{-x^{3} + y^{3}} = 0 \\
f_{y} = 3xy^{2} e^{-x^{3} + y^{3}} = 0
\end{cases} \Rightarrow \begin{cases}
3x^{3} = 1 \\
3xy^{2} = 0
\end{cases}$$

$$\Rightarrow x = \frac{1}{3^{1/3}}, y = 0.$$

Tek kritik nokta (1/3/13,0) - dir.

$$A = f_{xx} = S_{x^2}(3x^3-4) = -x^3+y^3$$

$$B = f_{xy} = -3y^2(3x^3-1)e^{-x^3+y^3}$$

$$C = fyy = 3xy(3y^3+2)e^{-x^3+y^3}$$

olmak secre,

$$A<0$$
, $B=C=0$. $\Rightarrow B^2-AC=0$ \Rightarrow lkinci turev testi sougsus.

$$f\left(\frac{1}{3^{1/3}}, 0\right) = \frac{1}{3^{1/3}} e^{-1/3} \approx 0.97$$
 iken

$$f(0,0) = 0 < 0.97$$
 ve $f(\frac{1}{3^{1/3}}, -1) = \frac{1}{3^{1/3}} e^{-\frac{4}{3}} \approx 2.6370.87$

minimuma satiptic

$$(\frac{1}{3^{1/3}}, 0)$$
 bir eyer noktasıdır.

Scanned with CamScanner

27) e^{22x-x^2} $= 3e^{22y+y^2} = 2$ detleumi sogloyon = = g(x,y) faksiyonum kritik noktolorini bulunus.

Sol.

Veriler derklaum x ve y-ye gåre tirevini alalm.

Kritik voktolor idin
$$\frac{\partial \Phi}{\partial x} = 0$$
 ve $\frac{\partial \Phi}{\partial y} = 0$ -1 sogloyon

degerler incelemedidir.

Bu durind : (*) ve (**) derkleuterinden;

$$(2z-2x)e^{2zx-x^2}$$
 $(2z+2y)3e^{2zy+y^2}=0$
 $\Rightarrow 2=x$ $\Rightarrow 2=-y$

Derklande yerne yozalm.

$$e^{2x^2-z^2}-3e^{-2z^2+z^2}=2$$

$$e^{2^{2}} - 3e = 2$$

$$=) e^{2^{2}} - \frac{3}{2^{2}} - 2 = 0$$

$$=) (e^{2^{2}} - 3)(e^{2^{2}} + 1) = 0$$

$$=) (e^{2^{2}} - 3)(e^{2^{2}} + 1) = 0$$

$$=) e^{2^{2}} = 3 \quad \forall e \quad e^{2^{2}} = -1 \quad ?$$

$$e^{\frac{2}{2}}=3=)$$
 $e^{2}=0.3$
 $=)$ $e=\pm\sqrt{1.8}$. By dwards tritic rollsty;
 $(\sqrt{1.13},-\sqrt{1.13}),(-\sqrt{1.13},\sqrt{1.13}).$