

Corrigé Bacc SPC série D session 2022

1. Chimie organique

On considère la représentation de Newman d'un alcool A suivant :

- 1) Sachant que A est une molécule à chaîne linéaire, de masse molaire M(A) = 88g/mol.
 - a- Recopier et compléter cette représentation de Newman
 - b- En déduire sa formule semi-développée
- 2) On fait réagir 13,8g d'acide méthanoïque sur 26,4g de pentan-2-ol. On obtient un composé organique E et de l'eau .
 - a- Écrire l'équation bilan de cette réaction et donner le nom du produit organique E
 - b- Montrer que le mélange initial est équimolaire.
- 3) Le rendement de cette réaction est de 80%. Calculer la masse du produit organique E.

On donne
$$M(H) = 1g/mol$$
; $M(C) = 12g/mol$; $M(O) = 16g/mol$

1) a- Représentation de Newman

- b- FSD : CH_3 $CHOH CH_2 CH_2 CH_3$
- 2) a- Équation bilan de la réaction

méthanoate de méthyl butyle

$$ni (alcool) = 0.8mol$$

mélange équimolaire

3) Masse du produit E

$$r = 0.8$$

et
$$m_E = r.ni.M_E$$

$$m_E = 27,84g$$

2. Chimie minérale

A 25°C, une solution S est obtenue en dissolvant un comprimé de vitamine C de formule brute $C_6H_8O_6$. On verse cette solution S dans un bécher . A l'aide d'une burette graduée, on ajoute progressivement une solution d'hydroxyde de sodium (NaOH) de concentration molaire CB = 5.10-2mol/L . On mesure le pH du mélange pour chaque volume versé.

On obtient le tableau de mesure suivant :

V _B (cm ³)	0	1	2	3	4	5	5,5	6	7	8	9	11
pН	3,4	3,9	4,2	4,5	4,7	5,3	7,6	9	9,9	10,6	10,8	11

- 1) Tracer la courbe pH = $f(V_B)$ échelle : $1 cm \leftrightarrow 1 cm^3 V_B$ et $1 cm \leftrightarrow 1 unité de pH$
- 2) a- Écrire l'équation bilan de la réaction acidobasique
 - b- Déduire de la courbe le pK_A du couple C₆H₈O₆ / C₆H₇O₆
- 3) Calculer les concentrations molaires des espèces chimiques présentes (autres que l'eau) dans le mélange à la demi-équivalence.
- 1) Courbe

2) a- Équation bilan de la réaction

$$C_6H_8O_6$$
 + OF

$$\rightarrow$$
 $C_6H_7O_6^-$

$$_{7}O_{6}^{-}$$
 + $H_{2}O$

$$b - pK_A = 4.7$$

3. Physique nucléaire

1) Le plutonium $\frac{241}{94}$ Pu peut donner de multiples noyaux sous l'action de bombardement neutronique.

L'une de ses réactions est représentée par l'équation suivante :

$$^{241}_{94}Pu + ^{1}_{0}n \rightarrow ^{98}_{Z}Y + ^{141}_{55}Cs + x(^{1}_{0}n)$$

Donner le nom de cette réaction nucléaire puis déterminer x et Z en précisant les lois utilisées.

- 2) Le plutonium $\frac{241}{94}$ Pu est radioactif β de période T = 13,2ans. L'activité de cet échantillon est A₀ =
- 8.10^{10} Bq à l'instant $t_0 = 0$ s.
 - a- Calculer la masse m₀ de cet échantillon de plutonium à l'instant t₀ = 0s.
 - b- A quel instant t, en années, l'activité de cet échantillon sera égale à 1,7.10⁴Bq.

On donne: masse molaire du plutonium M(Pu) = 241g/mol.

Nombre d'Avogadro : $N_A = 6,02.10^{23} \text{mol}^{-1}$ $\ln 2 = 0,7$ 1 an = 365 jrs

1) Détermination de x et Z

Conservation de charge: Z= 39

Conservation masse : x = 2

2) a- Masse m₀ de cet échantillon : $A_0 = \lambda N_0$ $\lambda = \frac{\ln 2}{T}$ $N_0 = \frac{m_0}{M} NA$

$$\rightarrow$$
 $m_0 = \frac{A_0 MT}{\ln 2 NA}$ AN: $m_0 = 19,2.10^{-3} \text{ g} = 19,2 \text{mg}$

b- Instant où
$$A = A_0 e^{-\lambda t}$$
 \rightarrow $\ln \frac{A}{A_0} = e^{-\lambda t}$ \rightarrow $t = \frac{T}{\ln 2} \ln \frac{A_0}{A}$

AN: t = 292,6ans

4. Optique géométrique

Un objet AB de 2cm de hauteur est placé à 3cm devant la lentille (L) , de centre optique , de distance focale f' = 2cm.

- 1- Calculer la vergence C de la lentille (L)
- 2- a- Déterminer par calculs, les caractéristiques (position, nature, sens et grandeur) de l'image A'B' de l'objet AB.
 - b- Vérifier graphiquement le résultat en vraie grandeur.
- 3- On veut obtenir une image A'B' renversée et de même grandeur que l'objet AB à travers la lentille (L) A quelle distance de la lentille (L) doit-on placer l'objet AB ?

2- a- Caractéristiques image

OA': image réelle, située à 6cm derrière L

 γ = -2 : image renversé , deux fois plus grande que l'objet

3- Distance objet image

 $\gamma = -1$ image renversée de même grandeur

$$\gamma = \frac{\overline{OA'}}{\overline{OA}} = -1 \rightarrow \overline{OA'} = -\overline{OA}$$
 (1)

relation de conjugaison : $\frac{1}{\overline{OA'}} - \frac{1}{\overline{OA}} = \frac{1}{f'}$ (2) de (1) et (2) $\rightarrow \overline{OA} = -2f' = -14 cm$

$$\frac{1}{\overline{OA'}} - \frac{1}{\overline{OA}} = \frac{1}{f'}$$

$$\overline{OA} = -2f' = -14 cm$$

l'objet doit être placé à 4cm devant L.

5. Électromagnétisme

Partie A

un solénoïde de centre O, de longueur ℓ = 50m et d'inductance L est formé de N spires , le rayon de chaque spire est r = 5cm. Lorsque la bobine est parcourue par un courant d'intensité I = 50mA, l'intensité du champ magnétique créé au centre de la bobine est B = 6,28.10⁻⁵T.

- 1) Calculer le nombre des spires N.
- 2) Montrer que l'inductance L de la bobine s'écrit : $L=\mu_0 \frac{\pi N^2 r^2}{r^2}$

Faire l'application numérique. On donne $\mu_0 = 4\pi 10^{-7} \text{SI}$

1) Nombre de spires

$$B = \mu_0 \frac{N\,I}{\ell} \qquad \rightarrow \qquad \qquad N = \frac{B\,\ell}{\mu_0\,I} \qquad \qquad {\rm AN} \ : \quad {\rm N} = {\rm 500 \; spires}$$

2) Flux magnétique : $\Phi = N \cdot \vec{B} \cdot \vec{S} = N \cdot B \cdot S = \mu_0 \frac{N^2 I \pi^2 r^2}{\rho}$ flux propre : $\phi = L I$

$$L = \mu_0 \frac{\pi N^2 r^2}{\rho}$$
 cqfd AN : L = 4,93.10⁻³ H = 4,93mH

Partie B

Un circuit électrique AB comprend en série , un conducteur ohmique de résistance R = 100Ω, une bobine d'inductance L = 1H de résistance interne négligeable et un condensateur de capacité C = 100 µF. On applique aux bornes de ce circuit une tension sinusoïdale de fréquence variable.

$$u_{AB}(t) = 12\sqrt{2}\sin(\omega t)$$
 u_{AB} en volt

A la résonance :

- a- Calculer la pulsation propre ω_0 .
- b- Déterminer la valeur de l'intensité efficace I₀.
- 2) On règle la valeur de la pulsation ω tel que $\omega = 2\omega_0$.

Établir l'expression de l'intensité de courant instantanée i(t) de ce circuit.

1) a-

Pulsation propre

$$\omega_0 = \sqrt{\frac{1}{LC}} \quad \text{AN}: \quad \omega_0 = 100 \text{rad/s}$$

b- Intensité efficace I₀ à la résonance

$$I_0 = \frac{U}{R} = 0,12 A$$

$$i(t) = I\sqrt{2} \sin(2\omega_0 t + \varphi)$$

$$Z = \sqrt{R^2 + (L\omega - \frac{1}{C\omega})^2}$$
 avec $Z_L = 2L\omega 0 = 200\Omega$ et $Z_C = \frac{1}{C\omega_0} = 50\Omega$

 $Z_L > Z_C$ donc effet inductif

$$Z = 180\Omega$$

Intensité efficace
$$I = \frac{U}{Z} = 6,69.10^{-2} A$$

$$\cos m = \frac{R}{R} = 0.95$$

Phase ϕ : $\cos \phi = \frac{R}{7} = 0.95$ \rightarrow $\phi = 0.9 \text{rad origine de phase u(t)}$ $\phi < 0$

$$i(t) = 6,65.10^{-2} \sqrt{2} \sin(200 t - 0.9)$$

6. Mécanique

Partie A

Une poulie assimilable à un disque homogène de masse M = 200g et de rayon r = 10cm est mobile autour d'un axe horizontal (Δ) passant par son centre I. On fixe suivant son diamètre une tige homogène de

masse $m = \frac{M}{4}$ et de longueur ℓ = 3r de telle sorte que leur centre d'inertie soient confondus en I. Ils

supportent deux solides (S₁) et (S₂) de masses respectives m₁ = 400g et m₂ = 300g par l'intermédiaire d'un fil inextensible et de masse négligeable qui s'enroule sur la gorge de la poulie. Le solide (S₁) peut glisser sur un plan incliné OC faisant un angle α = 30° par rapport à l'horizontal.

- 1) On abandonne sans vitesse initiale à l'instant t=0 le solide (S_1) à partir du point O . L'accélération linéaire des deux solides est a = 1,2m/s² . Calculer le temps mis par le solide (S_1) pour atteindre le point K tel que OK = 2m.
- 2) a Exprimer l'accélération linéaire a en fonction de m₁, m₂, m , α et g
 - b- Déterminer l'intensité de la tension du fil en B en utilisant a = 1,2m/s²

1)
$$t = \sqrt{\frac{2OK}{a}}$$
 t = 1,825s

2) a-
$$T_1 = m_1 g \sin \alpha + m_1 a$$
 (1) $J_{\Delta} = \frac{Mr^2}{2} + \frac{m \ell^2}{12} = 2 mr^2 + \frac{3 mr^2}{4} = \frac{11 mr^2}{4}$

$$T_2 = m_2 g - m_2 a$$
 (2) $(T_2 - T_1) r = J_{\Delta} \frac{a}{r} \rightarrow T_2 - T_1 = \frac{11 m}{4} a$

$$T_2 \ \ \textbf{-} \ \ T_1 \ = \ m_2 g - m_2 a \ \textbf{-} \ m_1 g sin \alpha \ \textbf{-} \ m_1 a = \left(m_2 - m_1 sin \alpha\right) g \ \textbf{-} \left(m_2 \ + m_1 \ \right) a \rightarrow m_1 g sin \alpha \ \textbf{-} \ m_2 g + m_2 a \ \textbf{-} \ m_2 g$$

$$(m_2 - m_1 \sin \alpha)g - (m_2 + m_1)a = \frac{11 m}{4}a \rightarrow [m_2 + m_1 + \frac{11 m}{4}]a = (m_2 - m_1 \sin \alpha)g$$

d'où
$$a = \frac{(m_2 - m_1 \sin \alpha)g}{(m_2 + m_1 + \frac{11m}{4})}$$

b- Intensit du fil en B:
$$T_2 = m_2 (g - a)$$
 $T_2 = 0.3 (10-1.2) = 2.64N \rightarrow T_2 = 2.64N$

Partie B

On fixe en B à l'extrême inférieur d' un ressort à spires non jointives de raideur k=100N/m de masse négligeable un solide S de masse m=250g. L'autre extrémité supérieur du ressort est fixé en A. Le solide S peut glisser sans frottement sur un plan incliné d'un angle $\alpha=30^\circ$ par rapport au sol horizontal. On pose G_0 la position du centre d'inertie de S à l'équilibre.

- 1) Déterminer l'allongement Δle du ressort à l'équilibre
- 2) A partir de sa position d'équilibre , on écarte le solide S vers le bas d'une distance $OC = x_0 = 2$ cm puis on l'abandonne sans vitesse initiale à la date t=0 en G.
 - a- Montrer que l'énergie mécanique du système {solide S+ressort+terre} a pour expression:

$$E_m = \frac{1}{2}mv^2 + \frac{1}{2}k(\Delta l_e^2 + x^2) + mgH$$

- L'énergie potentielle élastique est nulle lorsque le ressort est à vide
- On prend le sol comme origine des altitudes et origine de l'énergie potentielle de pesanteur
- b- En déduire l'équation différentielle qui régit le mouvement
- c- Calculer la période du mouvement

1) Allongement du ressort : TCI :
$$\vec{T} + \vec{P} + \vec{R} = \vec{0}$$
 suivant x'x : - k Δ le + mgsin α = 0

$$\rightarrow \Delta l_e = \frac{mgsin \alpha}{k}$$
 AN: $\Delta l_e = \frac{0,25.10.\sin 30^{\circ}}{100} = 0,0125 m = 1,25 cm$

2) a- Em = Ec + Epp +Epe
$$\rightarrow$$
 $E_C = \frac{1}{2}mv^2$; Epp = mg(H - xsin α)

$$E_{Pe} = \frac{1}{2}k\left(\Delta l_e + x\right)^2 = \frac{1}{2}k\Delta l_e^2 + k\Delta l_e + \frac{1}{2}kx^2 \qquad \rightarrow \qquad E_m = \frac{1}{2}mv^2 + mgH - mgsin\alpha x + \frac{1}{2}k\Delta l_e^2 + k\Delta l_e + \frac{1}{2}kx^2$$

or
$$-mgsin\alpha + k\Delta l_e = 0$$
 donc $E_m = \frac{1}{2}mv^2 + \frac{1}{2}k(\Delta l_e^2 + x^2) + mgH$ cqfd

b-
$$\frac{dE_m}{dt} = 0 \longrightarrow \frac{1}{2} m2 \dot{x} \ddot{x} + \frac{1}{2} k2 x \dot{x} = 0 \longrightarrow m \ddot{x} + kx = 0 \longrightarrow \ddot{x} + \frac{k}{m} x = 0$$

c-
$$T = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{m}{k}}$$
 car $\omega = \sqrt{\frac{k}{m}}$ AN: $T = 0.314s$