

Faculteit Ingenieurswetenschappen

Formules Wiskunde

Egon Geerardyn

revisie 3.6 (31 mei 2008)

Voorwoord

Deze uitgave is geen officiële uitgave van de Vrije Universiteit Brussel, slechts een formularium gemaakt door een student. Mogelijk staan er hier of daar nog fouten in, indien u er tegenkomt, stuur gerust een mailtje naar egon.geerardyn@vub.ac.be.

Copyright © Egon Geerardyn.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License" in the source code and available on: http://www.gnu.org/copyleft/fdl.html.

De LaTeX-broncode is vrij beschikbaar onder GNU Free Document License. Mogelijk is er reeds een nieuwe versie beschikbaar op http://students.vub.ac.be/~egeerard/projects.html

Referenties

- 0. e.a., Van Basis Tot Limiet 5/6 (...), Die Keure 2004.
- 1. S. CAENEPEEL, Analyse I, Dienst uitgaven Vrije Universiteit Brussel 2006.
- 2. S. CAENEPEEL, Analyse II, Dienst uitgaven Vrije Universiteit Brussel 2006.
- 3. S. CAENEPEEL, Complexe Analyse, Dienst uitgaven Vrije Universiteit Brussel 2007.
- 4. S. CAENEPEEL, *Basistechnieken voor Computersimulaties*, Dienst uitgaven Vrije Universiteit Brussel 2001.
- 5. Ph. Cara, Lineaire Algebra Volume I, Dienst uitgaven Vrije Universiteit Brussel 2006.
- 6. Ph. Cara, Lineaire Algebra Volume II, Dienst uitgaven Vrije Universiteit Brussel 2006.
- 7. J.C.A. Wevers, Wiskundig Formularium, http://www.xs4all.nl/~johanw/2005.
- 8. J. CLAEYS, MATH-abundance, http://home.scarlet.be/~ping1339/ 2004.

Inhoudsopgave

1		ometrie	4
	1.1	Formules	4
	1.2	Vergelijkingen	5
	1.3	Cyclometrie	5
	1.4	Hyperbolische functies	5
	1.5	Tabellen	6
2	Vlak	ke meetkunde	7
_	2.1	Rechthoekige driehoeken	7
	2.2	Willekeurige driehoeken	7
	2.3	Regelmatige Veelhoeken	8
	2.4	Cirkel	8
	2.4	Circl	
3	Ana		9
	3.1	Logaritmen	9
	3.2	Taylorreeksen	9
		3.2.1 Algemene benaderende reeksen	9
		3.2.2 Specifieke Taylor/McLaurin-reeksen	ç
	3.3		10
	3.4		12
	3.5	Differentialen	13
	3.6	Integratie	14
		1 0	14
		3.6.2 Integraaltheorema's	15
		3.6.3 Toepassingen	15
4	Line	aire Algebra	16
•	4.1	o	16
	4.2		16
	٦.۷	<u> </u>	16
	4.3		16
5	Vect	oren	16
6	Ruir		18
	6.1	Vergelijkingen van rechten	18
	6.2		19
	6.3	Loodrechte en evenwijdige stand	20
	6.4		21
	6.5	Bollen	22
7	Kan	srekening 2	23
•	7.1		23
	7.2		23
_	_	•	
8			25
	8.1	0 11	25
	8.2	•	25
	8.3	·	25
	8.4	<u> </u>	26
			26
			26
		v	26
	8.5	Discrete Verdelingen	26

		8.5.1 8.5.2	Uniforme discrete verdeling	27
		8.5.3	Binomiale verdeling	
		8.5.4	Hypergeometrische verdeling	27
		8.5.5	Geometrische verdeling	27
		8.5.6	Poissonverdeling	28
	8.6		ue Verdelingen	
		8.6.1	Uniforme continue verdeling	28
		8.6.2	Normaalverdeling	28
		8.6.3	Exponentiële verdeling	28
	8.7	Betrou	wbaarheidsintervallen	29
	8.8	Lineaire	e enkelvoudige regressie en correlatie	29
_			AL S	20
			Algoritmes	30
	9.1		jkingen oplossen	
	9.2		s oplossen	
	9.3		e stelsels oplossen	31
		9.3.1	Iteratieve methodes	31
		9.3.2	Directe methodes	32
	9.4	Eigenw	vaardes en eigenvectoren	32
	9.5	Interpo	olatie	32
		9.5.1	Lagrangeveeltermen	32
		9.5.2	Hermiteveeltermen	32
		9.5.3	Cubic Spline	32
	9.6	Least-s	squares benadering	33
	9.7	Numeri	ieke differentiatie	33
	9.8		ieke integratie	33
		9.8.1	Newton-Cotes-integratie	33
		9.8.2	Gauss-integratie	34
	9.9	Differe	ntiaalvergelijkingen met beginvoorwaarden	
	3.3	9.9.1	Expliciete eenstapsmethodes	
		9.9.2	Explicite meerstapsmethodes	
		9.9.3	Implicite meerstapsmethodes	
	9 10		ntiaalvergeliikingen met randvoorwaarden	

1 Goniometrie

1.1 Formules

Hoofdeigenschap en afleidingen

$$\sin^2 \alpha + \cos^2 \alpha = 1$$
$$1 + \tan^2 \alpha = \sec^2 \alpha$$
$$1 + \cot^2 \alpha = \csc^2 \alpha$$

Som- en verschilformules

$$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$$
$$\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$$
$$\tan(\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta}$$

Verdubbelingsformules

$$\sin 2\alpha = 2 \sin \alpha \cdot \cos \alpha$$

$$= \frac{2 \tan \alpha}{1 + \tan^2 \alpha}$$

$$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha$$

$$= 1 - 2 \sin^2 \alpha$$

$$= 2 \cos^2 \alpha - 1$$

$$= \frac{1 - \tan^2 \alpha}{1 + \tan^2 \alpha}$$

$$\tan 2\alpha = \frac{2 \tan \alpha}{1 - \tan^2 \alpha}$$

t-formules $(t = \tan \frac{\alpha}{2})$

$$\sin \alpha = \frac{2t}{1+t^2}$$

$$\cos \alpha = \frac{1-t^2}{1+t^2}$$

$$\tan \alpha = \frac{2t}{1-t^2}$$

Productformules

$$\sin 3\alpha = 3\sin \alpha - 4\sin^3 \alpha$$

$$\cos 3\alpha = 4\cos^3 \alpha - 3\cos \alpha$$

$$\sin^2 \alpha = \frac{1 - \cos 2\alpha}{2}$$

$$\cos^2 \alpha = \frac{1 + \cos 2\alpha}{2}$$

Formules van Simpson (product naar som)

$$2\sin\alpha \cdot \cos\beta = \sin(\alpha + \beta) + \sin(\alpha - \beta)$$
$$2\cos\alpha \cdot \cos\beta = \cos(\alpha + \beta) + \cos(\alpha - \beta)$$
$$2\sin\alpha \cdot \sin\beta = \cos(\alpha - \beta) - \cos(\alpha + \beta)$$
$$2\cos\alpha \cdot \sin\beta = \sin(\alpha + \beta) - \sin(\alpha - \beta)$$

Formules van Simpson (som naar product)

$$\sin p + \sin q = 2\sin\frac{p+q}{2}\cos\frac{p-q}{2}$$

$$\sin p - \sin q = 2\cos\frac{p+q}{2}\sin\frac{p-q}{2}$$

$$\cos p + \cos q = 2\cos\frac{p+q}{2}\cos\frac{p-q}{2}$$

$$\cos p - \cos q = -2\sin\frac{p+q}{2}\sin\frac{p-q}{2}$$

1.2 Vergelijkingen

$$\begin{split} \sin x &= \sin \alpha \Leftrightarrow x = \alpha + k \cdot 2\pi \vee x = \pi - \alpha + k \cdot 2\pi & \text{met } k \in \mathbb{Z} \\ \cos x &= \cos \alpha \Leftrightarrow x = \alpha + k \cdot 2\pi \vee x = -\alpha + k \cdot 2\pi & \text{met } k \in \mathbb{Z} \\ \tan x &= \tan \alpha \Leftrightarrow x = \alpha + k \cdot \pi & \text{met } k \in \mathbb{Z} \\ \cot x &= \cot \alpha \Leftrightarrow x = \alpha + k \cdot \pi & \text{met } k \in \mathbb{Z} \end{split}$$

1.3 Cyclometrie

$$\begin{split} & \arg \sin x = \alpha \Leftrightarrow \sin \alpha = x \wedge \alpha \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \\ & \arccos x = \alpha \Leftrightarrow \cos \alpha = x \wedge \alpha \in \left[0, \pi \right] \\ & \arg \tan x = \alpha \Leftrightarrow \tan \alpha = x \wedge \alpha \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\\ & \arg \cot x = \alpha \Leftrightarrow \cot \alpha = x \wedge \alpha \in \left[0, \pi \right] \end{split}$$

/	sin	cos	tan	cot
$\arcsin x$	x	$\sqrt{1-x^2}$	$\frac{x}{\sqrt{1-x^2}}$	$\frac{\sqrt{1-x^2}}{x}$
argcos x	$\sqrt{1-x^2}$	x	$\frac{\sqrt{1-x^2}}{x}$	$\frac{x}{\sqrt{1-x^2}}$
$\operatorname{argtan} x$	$\frac{x}{\sqrt{1+x^2}}$	$\frac{1}{\sqrt{1+x^2}}$	x	$\frac{1}{x}$
$\operatorname{argcot} x$	$\frac{1}{\sqrt{1+x^2}}$	$\frac{x}{\sqrt{1+x^2}}$	$\frac{1}{x}$	x

1.4 Hyperbolische functies

$$\cosh x = \frac{e^x + e^{-x}}{2} \qquad \qquad \tanh x = \frac{\sinh x}{\cosh x} = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

$$\sinh x = \frac{e^x - e^{-x}}{2} \qquad \qquad \coth x = \frac{\cosh x}{\sinh x} = \frac{e^x + e^{-x}}{e^x - e^{-x}}$$

Hoofdeigenschap

$$\cosh^2 \alpha - \sinh^2 \alpha = 1$$

Som- en verschilformules

$$\sinh(x \pm y) = \sinh x \cosh y \pm \cosh x \sinh y$$

 $\cosh(x \pm y) = \cosh x \cosh y \mp \sinh x \sinh y$

Symmetrie van Hyperbolische functies

	sinh	cosh	tanh	coth	beschrijving
-x	$-\sinh x$	$\cosh x$	$-\tanh x$	$-\coth x$	tegengesteld

Inverse functies

$$\label{eq:argsinh} \begin{split} & \text{argsinh } (x) = \ln \left(x + \sqrt{x^2 + 1} \right) \\ & \text{argcosh } (x) = \ln \left(x + \sqrt{x^2 - 1} \right) \\ & \text{argtanh } (x) = \frac{1}{2} \ln \frac{1 + x}{1 - x} \end{split}$$

Omzetting stabel

	$\sinh(x)$	$\cosh\left(x\right)$	$\tanh(x)$	$\coth\left(x\right)$
$\sinh(x) =$	$\sinh\left(x\right)$	$\pm\sqrt{\cosh^2(x)-1}$	$\frac{\tanh(x)}{\sqrt{1-\tanh^2(x)}}$	$\pm \frac{1}{\sqrt{\coth^2(x)-1}}$
$\cosh\left(x\right) =$	$\sqrt{1+\sinh^2\left(x\right)}$	$\cosh\left(x\right)$	$\frac{1}{\sqrt{1-\tanh^2(x)}}$	$\frac{ \coth(x) }{\sqrt{\coth^2(x)-1}}$
$\tanh(x) =$	$\frac{\sinh(x)}{\sqrt{1+\sinh^2(x)}}$	$\pm \frac{\sqrt{\cosh^2(x) - 1}}{\cosh(x)}$	tanh(x)	$\frac{1}{\coth(x)}$
$\coth(x) =$	$\frac{\sqrt{1+\sinh^2(x)}}{\sinh(x)}$	$\pm \frac{\cosh(x)}{\sqrt{\cosh^2(x) - 1}}$	$\frac{1}{\tanh(x)}$	$\coth\left(x\right)$

waarin \pm overeenkomt met het teken van \boldsymbol{x}

1.5 Tabellen

Frequente waarden

radialen	graden	$\sin \alpha$	$\cos \alpha$	$\tan \alpha$	$\cot \alpha$
0	0°	0	1	0	$ +\infty _{-\infty}$
$\frac{\pi}{6}$	30°	$\frac{1}{2}$	$ \begin{array}{r} \frac{\sqrt{3}}{2} \\ \frac{\sqrt{2}}{2} \\ \frac{1}{2} \end{array} $	$\frac{\sqrt{3}}{3}$	$\sqrt{3}$
$\frac{\pi}{4}$	45°	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	1
$\frac{\pi}{3}$	60°	$\frac{\frac{\sqrt{2}}{2}}{\frac{\sqrt{3}}{2}}$	$\frac{1}{2}$	$\sqrt{3}$	$\frac{\sqrt{3}}{3}$
$\frac{\pi}{2}$	90°	1	0	$ +\infty _{-\infty}$	0
$\frac{2\pi}{3}$	120°	$ \begin{array}{c c} \frac{\sqrt{3}}{2} \\ \hline \frac{\sqrt{2}}{2} \\ \hline \frac{1}{2} \\ 0 \end{array} $	$\frac{-1}{2}$	$-\sqrt{3}$	$\frac{-\sqrt{3}}{3}$
$\frac{3\pi}{4}$	135°	$\frac{\sqrt{2}}{2}$	$\frac{-\sqrt{2}}{2}$	-1	-1
$\frac{5\pi}{6}$	150°	$\frac{1}{2}$	$\frac{-\sqrt{3}}{2}$	$\frac{-\sqrt{3}}{3}$	$-\sqrt{3}$
π	180°	0	-1	0	$-\infty$ $ +\infty$
$\frac{7\pi}{6}$	210°	$\frac{-1}{2}$	$\frac{-\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	$\sqrt{3}$
$ \begin{array}{r} $	225°	$\frac{-\sqrt{2}}{2}$	$\frac{-\sqrt{2}}{2}$	1	1
$\frac{4\pi}{3}$	240°	$\frac{-\sqrt{3}}{3}$	$\frac{\frac{-1}{2}}{\frac{\sqrt{3}}{2}}$	$\sqrt{3}$	$\frac{\sqrt{3}}{3}$
$\frac{3\pi}{2}$	270°	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$+\infty$ $ -\infty$	0
$\frac{5\pi}{3}$	300°	$\frac{-\sqrt{3}}{2}$	$\frac{\frac{1}{2}}{\frac{\sqrt{2}}{2}}$	$-\sqrt{3}$	$\frac{-\sqrt{3}}{3}$
$\frac{7\pi}{4}$	315°	$\frac{-\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	-1	-1
$\frac{11\pi}{6}$	330°	$\frac{-1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{-\sqrt{3}}{3}$	$-\sqrt{3}$
2π	360°	$\frac{1}{2}$	ĩ	0	$ +\infty _{-\infty}$

Verwante hoeken

	sin	cos	tan	cot	beschrijving
$\alpha + k \cdot 2\pi$	$\sin \alpha$	$\cos \alpha$	$\tan \alpha$	$\cot \alpha$	gelijk
$-\alpha$	$-\sin \alpha$	$\cos \alpha$	$-\tan \alpha$	$-\cot \alpha$	tegengesteld
$\pi - \alpha$	$\sin \alpha$	$-\cos \alpha$	$-\tan \alpha$	$-\cot \alpha$	supplementair
$\pi + \alpha$	$-\sin \alpha$	$-\cos \alpha$	$\tan \alpha$	$\cot \alpha$	anti-supplementair
$\frac{\pi}{2} - \alpha$	$\cos \alpha$	$\sin \alpha$	$\cot \alpha$	$\tan \alpha$	complementair
$\frac{\pi}{2} + \alpha$	$\cos \alpha$	$-\sin \alpha$	$-\cot \alpha$	$-\tan \alpha$	anti-complementair

2 Vlakke meetkunde

2.1 Rechthoekige driehoeken

In een rechthoekige driehoek $\triangle ABC$ met $\widehat{A}=90^{\circ}$ geldt:

$$\sin \widehat{B} = \frac{\text{overstaande zijde}}{\text{schuine zijde}} = \frac{b}{a}$$

$$\cos \widehat{B} = \frac{\text{aanliggende zijde}}{\text{schuine zijde}} = \frac{c}{a}$$

$$\tan \widehat{B} = \frac{\sin \widehat{B}}{\cos \widehat{B}} = \frac{\text{overstaande zijde}}{\text{aanliggende zijde}} = \frac{b}{c}$$

$$\cot \widehat{B} = \frac{1}{\tan \widehat{B}} = \frac{\text{aanliggende zijde}}{\text{overstaande zijde}} = \frac{c}{b}$$

$$\sec \widehat{B} = \frac{1}{\cos \widehat{B}} = \frac{\text{schuine zijde}}{\text{aanliggende zijde}} = \frac{a}{c}$$

$$\csc \widehat{B} = \frac{1}{\sin \widehat{B}} = \frac{\text{schuine zijde}}{\text{overstaande zijde}} = \frac{a}{b}$$

$$a^2 = b^2 + c^2 \qquad \text{Stelling van Pythagoras}$$

2.2 Willekeurige driehoeken

Sinusregel (waarbij r de straal van de omgeschreven cirkel is)

$$\frac{a}{\sin \widehat{A}} = \frac{b}{\sin \widehat{B}} = \frac{c}{\sin \widehat{C}} = 2 \cdot r$$

Cosinusregel

$$a^2 = b^2 + c^2 - 2bc \cdot \cos \widehat{A}$$

Tangensregel

$$\frac{a+b}{a-b} = \frac{\tan\frac{A+B}{2}}{\tan\frac{A-B}{2}}$$

Algemene formules in een willekeurige driehoek ΔABC :

$$a+b+c=2p \Leftrightarrow a+b-c=2(p-c)$$

Cosinus van de halve hoek

$$\cos\frac{\widehat{A}}{2} = \sqrt{\frac{p \cdot (p-a)}{b \cdot c}}$$

Sinus van de halve hoek

$$\sin\frac{\widehat{A}}{2} = \sqrt{\frac{(p-b)\cdot(p-c)}{b\cdot c}}$$

Tangens van de halve hoek

$$\tan\frac{\widehat{A}}{2} = \sqrt{\frac{(p-b)\cdot(p-c)}{p\cdot(p-a)}}$$

Lengte van de hoogtelijnen h in een driehoek

$$h_A = b \cdot \sin \widehat{C} = c \cdot \sin \widehat{B}$$

Lengte van de bissectrices d in een driehoek

$$d_A = \frac{2 \cdot bc \cdot \cos\frac{\widehat{A}}{2}}{b+c}$$

Oppervlakteformules (S)

$$S = \frac{1}{2} \cdot bc \cdot \sin \widehat{A}$$

$$S = \sqrt{p \cdot (p-a) \cdot (p-b) \cdot (p-c)}$$
 (Formule van *Heroon*)

2.3 Regelmatige Veelhoeken

In een regelmatige n-hoek met straal r geldt

de middelpuntshoek $2\alpha_n$

$$2\alpha_n = \frac{2\pi}{n} \Leftrightarrow \alpha_n = \frac{\pi}{n}$$

de lengte van de apothema a_n

$$a_n = r \cdot \cos \frac{\pi}{n}$$

de lengte van de zijde z_n

$$z_n = 2 \cdot r \cdot \sin \frac{\pi}{n}$$

 $\mathbf{de}\ \mathbf{omtrek}\ O$

$$O = n \cdot z_n = 2 \cdot n \cdot r \cdot \sin \frac{\pi}{n}$$

 $\ \, \text{de oppervlakte}\,\, S$

$$S = \frac{n \cdot z_n \cdot a_n}{2} = n \cdot r^2 \cdot \sin \frac{\pi}{n} \cos \frac{\pi}{n}$$

2.4 Cirkel

In een cirkel met straal r en een gegeven middelpuntshoek 2α geldt voor

de lengte d van de bijhorende koorde

$$d = 2 \cdot r \cdot \sin \alpha$$

de lengte d van het middelpunt tot de bijhorende koorde

$$d = r \cdot \cos \alpha$$

3 Analyse

3.1 Logaritmen

$$a \log x = y \Leftrightarrow x = a^{y}$$

$$x = a^{a \log x}$$

$$a \log \left(\prod x_{i}^{n_{i}} \right) = \sum n_{i} a \log x_{i}$$

$$b \log x = \frac{a \log x}{a \log b}$$

$$b \log a = \frac{1}{a \log b}$$

3.2 Taylorreeksen

3.2.1 Algemene benaderende reeksen

Taylor-reeks benadering van f(x) in x = a van graad n

$$P_n(x) = \sum_{n=0}^{n} \frac{f^{(n)}(a)}{n!} (x - a)^n + r_n(x)$$

McLaurin-reeks benadering van f(x) in x = 0 van graad n

$$P_n(x) = \sum_{n=0}^{n} \frac{f^{(n)}(0)}{n!} x^n + r_n(x)$$

Restterm van Lagrange van orde n

$$r_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-a)^{n+1} \mod \xi \in /;]a, x[$$

Restterm van de Liouville van orde \boldsymbol{n}

$$r_n(x) = \frac{(x-a)^n}{n!} \lambda(x) \quad \text{met } \lim_{x \to a} \lambda(x) = 0$$

Restterm van Lagrange van orde n voor een McLaurin-reeks

$$r_n\left(x\right) = \frac{f^{(n+1)}\left(\theta x\right)}{(n+1)!} x^{n+1} \quad \text{met } \theta \in /; \left]0,1\right[\text{ of } \theta x \in /; \left]0,x\right[$$

3.2.2 Specifieke Taylor/McLaurin-reeksen

$$\forall x : e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24} + \frac{x^5}{120} + \frac{x^6}{720} + \dots$$

$$\forall |x| < 1 : \ln(1+x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n+1} x^{n+1} = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots$$

$$\forall x : \sin x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1} = x - \frac{x^3}{6} + \frac{x^5}{120} - \frac{x^7}{5040} + \dots$$

$$\forall x : \cos x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n} = x - \frac{x^2}{2} + \frac{x^4}{24} - \frac{x^6}{720} + \dots$$

Formules wiskunde revisie 3.6 pagina 10

$$\forall |x| < \frac{\pi}{2} : \sec x = \sum_{n=0}^{\infty} \frac{(-1)^n E_{2n}}{(2n)!} x^{2n} = 1 + \frac{x^2}{2} + \frac{5x^4}{24} + \frac{61x^6}{720} + \frac{277x^8}{8064} + \dots$$

$$\forall |x| < 1 : \arcsin x = \sum_{n=0}^{\infty} \frac{(2n)!}{4^n (n!)^2 (2n+1)} x^{2n+1} = x + \frac{x^3}{6} + \frac{3x^5}{40} + \frac{5x^7}{112} + \frac{35x^9}{1152} + \dots$$

$$\forall |x| \le 1 : \arctan x = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} x^{2n+1} = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \frac{x^9}{9} + \dots$$

$$\forall x : \sinh(x) = \sum_{n=0}^{\infty} \frac{1}{(2n+1)!} x^{2n+1} = x + \frac{x^3}{6} + \frac{x^5}{120} + \frac{x^7}{5040} + \frac{x^9}{362880} + \dots$$

$$\forall x : \cosh(x) = \sum_{n=0}^{\infty} \frac{1}{(2n)!} x^{2n} = 1 + \frac{x^2}{2} + \frac{x^4}{24} + \frac{x^6}{720} + \frac{x^8}{40320} + \dots$$

$$\forall |x| < \frac{\pi}{2} : \tanh(x) = \sum_{n=0}^{\infty} \frac{B_{2n} 4^n (4^n - 1)}{(2n)!} x^{2n-1} = x - \frac{x^3}{3} + \frac{2x^5}{15} - \frac{17x^7}{315} + \frac{62x^9}{2835} + \dots$$

3.3 Limieten

Limiet van een rij

$$\lim_{n \to \infty} = l \quad \Leftrightarrow \quad \forall \varepsilon > 0 : \exists \ n > N_{\varepsilon} : l - \varepsilon < u_n < l + \varepsilon$$

Minimum en Maximum

$$\min A \in A : \forall a \in A : \min A \le a$$
$$\max A \in A : \forall a \in A : a < \max A$$

Infimum en Supremum

$$\forall \varepsilon > o : \exists \ a \in A : \inf A \le a < \inf A + \varepsilon$$

$$\forall \varepsilon > o : \exists \ a \in A : \sup A - \varepsilon < a < \sup A$$

Bewerkingen met limieten

$$\lim_{n \to \infty} u_n + v_n = \lim_{n \to \infty} u_n + \lim_{n \to \infty} v_n$$

$$\lim_{n \to \infty} u_n \cdot v_n = \lim_{n \to \infty} u_n \cdot \lim_{n \to \infty} v_n$$

$$\lim_{n \to \infty} |u_n| = \left| \lim_{n \to \infty} u_n \right|$$

$$\lim_{n \to \infty} \frac{v_n}{u_n} = \frac{\lim_{n \to \infty} v_n}{\lim_{n \to \infty} u_n}$$

Cauchyrij

$$\forall \varepsilon > 0 : \exists N > 0 : n, m > N \Rightarrow |u_n - u_m| < \varepsilon$$

Limiet van een functie

$$\lim_{x \to a} f(x) = b \quad \Leftrightarrow \quad \forall \varepsilon > 0 : \exists \ \delta > 0 : 0 < |x - a| < \delta \Rightarrow |f(x) - b| < \varepsilon$$

$$\lim_{\vec{x} \to \vec{x}} \vec{f}(\vec{x}) = \vec{b} \quad \Leftrightarrow \quad \forall \varepsilon > 0 : \exists \ \delta > 0 : 0 < ||\vec{x} - \vec{a}|| < \delta \Rightarrow ||f(x) - b|| < \varepsilon$$

Oneigenlijke limieten

$$\lim_{x \to +\infty} f(x) = b \quad \Leftrightarrow \quad \forall \varepsilon > 0 : \exists \ \alpha \in \mathbb{R} : x > \alpha \Rightarrow |f(x) - b| < \varepsilon$$

$$\lim_{x \to -\infty} f(x) = b \quad \Leftrightarrow \quad \forall \varepsilon > 0 : \exists \ \alpha \in \mathbb{R} : x < \alpha \Rightarrow |f(x) - b| < \varepsilon$$

$$\lim_{x \to a} f(x) = +\infty \quad \Leftrightarrow \quad \forall \alpha \in \mathbb{R} : \exists \ \delta > 0 : 0 < |x - a| < \delta \Rightarrow f(x) > \alpha$$

$$\lim_{x \to a} f(x) = -\infty \quad \Leftrightarrow \quad \forall \alpha \in \mathbb{R} : \exists \ \delta > 0 : 0 < |x - a| < \delta \Rightarrow f(x) < \alpha$$

Rekenregels voor oneindig

$$\forall a \in \mathbb{R}^0 : a \cdot (\pm \infty) = \text{sign}(a) (\pm \infty)$$

 $\forall a \in \mathbb{R} : a + (\pm \infty) = \pm \infty$

Onbepaalde vormen

$$0 \cdot (\pm \infty) \ , \ \frac{0}{0} \ , \ \pm \frac{\infty}{\infty} \ , \ \pm \infty \mp \infty \ , \ 0^0 \ , \ (\pm \infty)^0 \ , \ 1^{\pm \infty}$$

Merkwaardige limieten

$$\lim_{x\to +\infty} \left(1+\frac{1}{x}\right)^x = e$$

Regel van de l'Hopital

geldig voor:
$$\lim_{x\to a} f(x) = \lim_{x\to a} g(x) = 0 \quad \text{of} \quad \lim_{x\to a} f(x) = \lim_{x\to a} g(x) = \pm \infty$$

$$\lim_{x\to a} \frac{f(x)}{g(x)} \stackrel{\mathrm{H}}{=} \lim_{x\to a} \frac{f(x)}{g(x)}$$

Omvormen van limieten bij onbepaalde vormen om de regel van de l'Hopital toe te kunnen passen:

$$\lim_{x \to a} f(x) - g(x) = \lim_{x \to a} f(x)g(x) \left(\frac{1}{g(x)} - \frac{1}{f(x)}\right)$$

$$\lim_{x \to a} f(x)g(x) = \lim_{x \to a} \frac{f(x)}{\frac{1}{g(x)}} = \lim_{x \to a} \frac{g(x)}{\frac{1}{f(x)}}$$

$$\lim_{x \to a} f(x)^{g(x)} = \exp\lim_{x \to a} g(x) \ln f(x)$$

3.4 Afgeleiden

Definitie

$$D_x f(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \frac{\mathrm{d}f}{\mathrm{d}x}$$

Richtingsafgeleide volgens \vec{u}

$$D_{\vec{u}}f(\vec{a}) = \lim_{h \to 0} \frac{f(\vec{a} + h\vec{u}) - f(\vec{a})}{h}$$

Rekenregels

$$\begin{aligned} \mathbf{D}\alpha &= 0 \\ \mathbf{D}x &= 1 \\ \mathbf{D}\left(\alpha f \pm \beta g\right) &= \alpha \ \mathbf{D}f \pm \beta \ \mathbf{D}g \\ \mathbf{D}\left(f \cdot g\right) &= f \ \mathbf{D}g + g \ \mathbf{D}f \\ \mathbf{D}\left(\frac{f}{g}\right) &= \frac{g \ \mathbf{D}f - f \ \mathbf{D}g}{g^2} \\ \mathbf{D}x^n &= nx^{n-1} \\ \mathbf{D}f^m &= m \cdot f^{m-1} \cdot \mathbf{D}f \qquad \text{met } m \in \mathbb{Q} \end{aligned}$$

 $\mathsf{met}\ m \in \mathbb{Q}_0$

Kettingregel

$$\begin{split} &\operatorname{D}\left[\left(g\circ f\right)\left(x\right)\right] = \ \operatorname{D}\!g\left[f\left(x\right)\right] \cdot \ \operatorname{D}\!f\left(x\right) \\ &\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} \qquad \text{met } u = f\left(x\right) \end{split}$$

Afgeleide van de inverse functie

$$Df^{-1} = \frac{1}{Df(f^{-1}(x))}$$
$$\frac{dx}{dy} = \left(\frac{dy}{dx}\right)^{-1}$$

Frequente vormen

$$De^{x} = e^{x}$$

$$Da^{x} = a^{x} \ln a$$

$$D(\ln x) = \frac{1}{x}$$

$$D(^{a} \log x) = \frac{1}{x \cdot \ln a}$$

$$D(f^{g}) = f^{g} \left(Dg \ln f + \frac{f}{g}Df\right)$$

$$D(\sin x) = \cos x$$

$$D(\cos x) = -\sin x$$

$$D(\tan x) = \frac{1}{\cos^2 x} = \sec^2 x$$

$$D\left(\cot x\right) = \frac{-1}{\sin^2 x} = -\csc^2 x$$

$$D\left(\arcsin x\right) = \frac{1}{\sqrt{1 - x^2}}$$

$$D\left(\arccos x\right) = \frac{-1}{\sqrt{1-x^2}}$$

$$D\left(\operatorname{argtan} x\right) = \frac{1}{1+x^2}$$

$$D\left(\operatorname{argcot} x\right) = \frac{-1}{1+x^2}$$

$$D\left(\sinh x\right) = \cosh x$$

$$D\left(\cosh x\right) = \sinh x$$

$$D\left(\tanh x\right) = \frac{1}{\cosh^2 x}$$

$$D\left(\coth x\right) = \frac{-1}{\sinh^2 x}$$

$$D\left(\operatorname{argsinh} x\right) = \frac{1}{\sqrt{1+x^2}}$$

$$D\left(\operatorname{argcosh} x\right) = \frac{1}{\sqrt{x^2 - 1}}$$

$$D\left(\operatorname{argtanh} x\right) = \frac{1}{1 - x^2}$$

$$D\left(\operatorname{argtanh} x\right) = \frac{1}{1 - x^2}$$

3.5 Differentialen

$$df(x) = \frac{df}{dx} dx = D_x(f) dx$$

Totale differentiaal van een functie

$$f(x_1, \dots, x_N) \Rightarrow df = \sum_{i=1}^{N} \frac{\partial f}{\partial x_i} dx_i$$

Differentiaal van hogere orde (voor een functie van 2 veranderlijken)

$$f(x,y) \Rightarrow d^n f = \sum_{i=0}^n \binom{n}{k} \frac{\partial^n f}{\partial x^k \partial y^{n-k}} dx^k dy^{n-k}$$

Differentiaal van hogere orde (de macht $.^{[n]}$ is slechts formeel!)

$$f(x_1, \dots, x_N) \Rightarrow d^n f = \left(\sum_{k=1}^N \frac{\partial}{\partial x_i} dx_i\right)^{[n]} f$$

Kettingregel

$$\frac{\mathrm{d}f}{\mathrm{d}t} = \sum_{i=1}^{m} \frac{\partial f}{\partial x_i} \frac{\mathrm{d}x_i}{\mathrm{d}t}$$

3.6 Integratie

3.6.1 Frequente integralen

1.1 Frequente integralen
$$\int dx = x + c$$

$$\int x^n dx = \frac{x^{n+1}}{n+1} + c \quad \text{met } n \in \mathbb{R} / \{-1\}$$

$$\int \frac{1}{x} dx = \int x^{-1} dx = \ln |x| + c$$

$$\int e^x dx = e^x + c$$

$$\int \ln(ax+b) dx = x \ln(ax+b) - x + \frac{b}{a} \ln(ax+b) + c$$

$$\int a^x \cdot dx = \frac{a^x}{\ln a} + c$$

$$\int \sin x \cdot dx = -\cos x + c$$

$$\int \cos x \cdot dx = \sin x + c$$

$$\int \csc^2 x \cdot dx = \int \frac{1}{\cos^2 x} = \tan x + c$$

$$\int \csc^2 x \cdot dx = \int \frac{1}{\sin^2 x} = -\cot x + c$$

$$\int \cos^2 ax \cdot dx = \frac{x + \sin(2ax)}{2} + c$$

$$\int \frac{dx}{1+x^2} = \operatorname{argtan} x + c = -\operatorname{argcot} x + c$$

$$\int \frac{dx}{\sqrt{1-x^2}} = \operatorname{argtanh} x + c = \frac{1}{2} \ln \frac{1+x}{1-x}$$

$$\int \sinh x \cdot dx = \cosh x + c$$

$$\int \cosh x \cdot dx = \sinh x + c$$

$$\int \cos^2 x \, dx = \frac{x + \sin x \cdot \cos x}{2} + c$$

$$\int \sin^2 x \, dx = \frac{x - \sin x \cdot \cos x}{2} + c$$

$$\int \tan x \, dx = -\ln|\cos x| + c = \ln|\sec x| + c$$

$$\int \cot x \, dx = \ln|\sin x| + c$$

$$\int \frac{dx}{a^2 + x^2} = \frac{\arctan \frac{x}{a}}{a} + c$$

$$\int \frac{dx}{\sqrt{a^2 + x^2}} = \arcsin \frac{x}{a} + c$$

$$\int f^n(x) \cdot f'(x) \, dx = \frac{f^{n+1}(x)}{n+1} + c$$

$$\int f^n(x) f'(x) \, dx = \frac{f^{n+1}(x)}{n+1} + c \qquad \text{met } n \in \mathbb{R} / \{-1\}$$

$$\int f(x) \, dg(x) = f(x)g(x) - \int g(x) \, df(x) + c$$

3.6.2 Integraaltheorema's

Green-Riemann

$$\oint_{C+} P(x,y) \, dx + Q(x,y) \, dy = \iint_{C} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, dS$$

Oppervlakteintegraal

$$S = \iint_C \left\| \frac{\partial \vec{r}}{\partial u} \times \frac{\partial \vec{r}}{\partial v} \right\| du dv$$

Stokes

$$\iint \left(\vec{\operatorname{rot}} \, \vec{f} \right) \vec{n}_u = \oint_C \vec{f}(\vec{r}) \cdot \, \mathrm{d}\vec{r}$$

Ostrogradsky

$$\iint\limits_{S} \left(\vec{f} \cdot \vec{n}_{u} \right) \, \mathrm{d}S = \iiint\limits_{V} \, \mathrm{div} \, \vec{f} \, \, \mathrm{d}V$$

3.6.3 Toepassingen

Inhoud van een omwentelingslichaam bepaald door wenteling van f(x) om de x-as begrensd door a en b

$$V = \pi \int_{a}^{b} \left[f(x) \right]^{2} dx$$

Booglengte van een kromme

$$L = \int_a^b \left\| \frac{\mathrm{d}\vec{r}}{\mathrm{d}t} \right\| \, \mathrm{d}t$$

$$L = \int_a^b \, \mathrm{d}s \qquad \text{met } \, \mathrm{d}s = \sqrt{\, \mathrm{d}x^2 + \, \mathrm{d}y^2 + \, \mathrm{d}z^2}$$

Booglengte van een kromme bepaald door f(x) tussen a en b

$$L = \int_{a}^{b} \sqrt{1 + \left(\frac{\mathrm{d}f}{\mathrm{d}x}\right)^{2}} \,\mathrm{d}x$$

Booglengte van een parameterkromme bepaald door x=f(t) en y=g(t) tussen a en b

$$L = \int_{a}^{b} \sqrt{\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)^{2} + \left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)^{2}} \,\mathrm{d}t$$

Manteloppervlakte van een omwentellingslichaam bepaald door wenteling van f(x) om de x-as begrensd door a en b

$$S = 2\pi \int_a^b |f(x)| \sqrt{1 + [f'(x)]^2} dx$$

$$S = 2\pi \int_a^b f(x) ds \qquad \text{met } ds = \sqrt{dx^2 + dy^2 + dz^2}$$

Flux door een oppervlakte

$$\Phi_F = \int \int_G \left(\vec{F} \cdot \vec{n}_u \right) \, \mathrm{d}S$$

4 Lineaire Algebra

4.1 Vectorruimte

Euclidische Ruimte is een reële vectorruimte uitgerust met

- Scalair Product: $\left\langle \vec{a}, \vec{b} \right\rangle$
 - Symmetrisch
 - Bilineair
 - Positief Definiet: $\forall \vec{x} \neq \vec{0} : \langle \vec{x}, \vec{x} \rangle > 0$

Pre-Hilbert-ruimte is een complexe vectorruimte uitgerust met

- ullet Scalair Product: $\left\langle ec{a},ec{b}
 ight
 angle$
 - Symmetrisch
 - Sequilineair
 - Positief Definiet: $\forall \vec{x} \neq \vec{0} : \langle \vec{x}, \vec{x} \rangle > 0$

4.2 Lineaire Afbeeldingen

4.2.1 Eigenwaarden en eigenvectoren

Karakteristieke veelterm

$$\det\left(A - \lambda \mathbf{I}_n\right) = 0$$

4.3 Complexe Getallen

$$z = a + bi$$

$$r = \sqrt{a^2 + b^2}$$

$$\theta = \arctan \frac{b}{a}$$

$$z = r(\cos \theta + i \sin \theta)$$

$$z = r \cdot e^{i\theta}$$

5 Vectoren

$$\overrightarrow{AB} = \overrightarrow{B} - \overrightarrow{A}$$

Rekenregels

$$\begin{aligned} \forall \vec{a} : \vec{a} \cdot \vec{o} &= 0 = \vec{o} \cdot \vec{a} \\ \forall \vec{a} \neq \vec{o} : \vec{a} \cdot \vec{a} &= ||\vec{a}||^2 \\ \forall \vec{a}, \vec{b} : \vec{a} \cdot \vec{b} &= \vec{b} \cdot \vec{a} \Leftrightarrow \left\langle \vec{a}, \vec{b} \right\rangle &= \left\langle \vec{b}, \vec{a} \right\rangle \\ \forall \vec{a}, \vec{b} \neq \vec{o} : \vec{a} \bot \vec{b} \Leftrightarrow \vec{a} \cdot \vec{b} &= 0 \end{aligned}$$

Scalair product

$$\forall \vec{u}, \vec{v} \neq \vec{o} : \vec{u} \cdot \vec{v} = ||\vec{u}|| \cdot ||\vec{v}|| \cdot \cos\left(\widehat{\vec{u}, \vec{v}}\right) = \sum_{i=1}^{n} u_i v_i$$

Vectoriëel Product

$$ec{a} imes ec{b} = \left| egin{array}{ccc} ec{u}_x & ec{u}_y & ec{u}_z \ a_x & a_y & a_z \ b_x & b_y & b_z \end{array}
ight|$$

Gemengd product

$$\left(ec{a} imes ec{b}
ight) \cdot ec{c} = \left| egin{array}{ccc} c_x & c_y & c_z \ a_x & a_y & a_z \ b_x & b_y & b_z \end{array}
ight|$$

Lengtes/Normen

$$\|\vec{x}\| = \|\vec{x}\|_1 = \sqrt{\sum_i^n x_i^2} \qquad \text{Euclidische norm}$$

$$\|\vec{x}\|_2 = \max\{x_1,\dots,x_n\} \qquad \text{maximumnorm}$$

$$\|\vec{x}\|_3 = \sum_i^n |x_i| \qquad \text{Chebyshevnorm}$$

Differentiaaloperatoren

Differentiaaloperator van de Eerste Orde

$$\vec{\nabla} = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)$$

Gradiënt

$$\operatorname{grad}\left(f\right) = \vec{\nabla} f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)$$

Divergentie

$$\operatorname{div}\left(\vec{v}\right) = \vec{\nabla} \cdot \vec{v} = \frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z}$$

Rotatie

$$\operatorname{rot}\left(\vec{v}\right) = \vec{\nabla} \times \vec{v} = \left| \begin{array}{ccc} \vec{u}_{x} & \vec{u}_{y} & \vec{u}_{z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ v_{x} & v_{y} & v_{z} \end{array} \right|$$

Differentiaaloperator van de Tweede Orde (Laplaciaan)

$$\Delta\left(f\right) = \operatorname{div}\left(\operatorname{grad}\left(f\right)\right) = \vec{\nabla}\cdot\left(\vec{\nabla}f\right) = \vec{\nabla}^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}$$

Coördinatenstelsels

Cartesisch

$$\begin{cases} x = x \\ y = y \\ z = z \end{cases}$$
$$|J| = 1$$

Poolcoördinaten/Cilindercoordinaten

$$\begin{cases} x = r \cos \theta \\ y = r \sin \theta \\ z = z \end{cases}$$

$$|J| = \begin{vmatrix} \cos \theta & -r \sin \theta & 0 \\ \sin \theta & r \cos \theta & 0 \\ 0 & 0 & 1 \end{vmatrix} = r$$

Bolcoördinaten

$$\begin{cases} x = r \sin \theta \cos \phi \\ y = r \sin \theta \sin \phi \\ z = r \cos \theta \end{cases}$$

$$|J| = \begin{vmatrix} \sin \theta \cos \phi & r \cos \theta \cos \phi & -r \sin \theta \sin \phi \\ \sin \theta \sin \phi & r \cos \theta \sin \phi & r \sin \theta \cos \phi \\ \cos \theta & -r \sin \theta & 0 \end{vmatrix} = r^2 \sin \theta$$

6 Ruimtemeetkunde

6.1 Vergelijkingen van rechten

Rechte bepaald door een punt $P_1(x_1, y_1, z_1)$ en richtingsvector $\vec{R}(a, b, c)$

vectoriële vergelijking

$$\vec{P} = \vec{P}_1 + k \cdot \vec{R} \qquad \text{met } k \in \mathbb{R}$$

parametervoorstelling

$$\begin{cases} x = x_1 + k \cdot a \\ y = y_1 + k \cdot b \\ z = z_1 + k \cdot c \end{cases} \quad \text{of} \quad \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix} + k \cdot \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$

cartesische vergelijking

$$\frac{x-x_1}{a} = \frac{y-y_1}{b} = \frac{z-z_1}{c} \quad \text{met } a, b, c \in \mathbb{R}_0$$

Rechte bepaald door twee punten $P_1(x_1, y_1, z_1)$ en $P_2(x_2, y_2, z_2)$

vectoriële vergelijking

$$ec{P} = ec{P}_1 + k \cdot \left(ec{P}_2 - ec{P}_1
ight) \qquad ext{met } k \in \mathbb{R}$$

parametervoorstelling

$$\begin{cases} x = x_1 + k \cdot (x_2 - x_1) \\ y = y_1 + k \cdot (y_2 - y_1) \\ z = z_1 + k \cdot (z_2 - z_1) \end{cases} \quad \text{of} \quad \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix} + k \cdot \begin{bmatrix} x_2 - x_1 \\ y_2 - y_1 \\ z_2 - z_1 \end{bmatrix}$$

cartesische vergelijking

$$\frac{x-x_1}{x_2-x_1} = \frac{y-y_1}{y_2-y_1} = \frac{z-z_1}{z_2-z_1}$$

Richtingsgetallen (a,b,c,) van de snijlijn van twee vlakken α en β

$$\begin{split} d &\leftrightarrow \left\{ \begin{array}{l} u_1 x + v_1 y + w_1 z + t_1 &= 0 \\ u_2 x + v_2 y + w_2 z + t_2 &= 0 \end{array} \right. \text{ waarbij } r \left(\left[\begin{array}{l} u_1 & v_1 & w_1 \\ u_2 & v_2 & w_2 \end{array} \right] \right) = 2 \\ a &= k \cdot \left| \begin{array}{l} v_1 & w_1 \\ v_2 & w_2 \end{array} \right| \text{ en } b = -k \cdot \left| \begin{array}{l} u_1 & w_1 \\ u_2 & w_2 \end{array} \right| \text{ en } c = k \cdot \left| \begin{array}{l} u_1 & v_1 \\ u_2 & v_2 \end{array} \right| \end{split}$$

6.2 Vergelijkingen van vlakken

Algemene vergelijking van een vlak

$$ux + vy + wz + t = 0$$
 met $\neg (u = v = w = 0)$

Vergelijking van basisvlakken

 $\begin{array}{ll} \mbox{vlak yz:} & x=0 \\ \mbox{vlak xz:} & y=0 \\ \mbox{vlak xy:} & z=0 \end{array}$

Vlak bepaald door ëen punt $P_1(x_1,y_1,z_1)$ en twee richtingsvectoren $\vec{R}_1(a_1,b_1,c_1)$ en $\vec{R}_2(a_2,b_2,c_2)$

vectoriële vergelijking

$$\vec{P} = \vec{P}_1 + k \cdot \vec{R}_1 + m \cdot \vec{R}_2$$

parametervoorstelling

$$\left\{ \begin{array}{lll} x & = & x_1 + k \cdot a_1 + m \cdot a_2 \\ y & = & y_1 + k \cdot b_1 + m \cdot b_2 \\ z & = & z_1 + k \cdot c_1 + m \cdot c_2 \end{array} \right. \quad \text{of} \quad \left[\begin{array}{l} x \\ y \\ z \end{array} \right] = \left[\begin{array}{l} x_1 \\ y_1 \\ z_1 \end{array} \right] + k \cdot \left[\begin{array}{l} a_1 \\ b_1 \\ c_1 \end{array} \right] + m \cdot \left[\begin{array}{l} a_2 \\ b_2 \\ c_2 \end{array} \right]$$

cartesische vergelijking

$$\begin{vmatrix} x & y & z & 1 \\ x_1 & y_1 & z_1 & 1 \\ a_1 & b_1 & c_1 & 0 \\ a_2 & b_2 & c_2 & 0 \end{vmatrix} = 0 \quad \text{of} \quad \begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix} = 0$$

Vlak bepaald door drie niet-collineaire punten P_1 , P_2 en P_3

vectoriële vergelijking

$$\vec{P} = \vec{P}_1 + k \cdot \left(\vec{P}_2 - \vec{P}_1\right) + m \cdot \left(\vec{P}_3 - \vec{P}_1\right)$$

parametervoorstelling

$$\begin{cases} x = x_1 + k \cdot (x_2 - x_1) + m \cdot (x_3 - x_1) \\ y = y_1 + k \cdot (y_2 - y_1) + m \cdot (y_3 - y_1) \\ z = z_1 + k \cdot (z_2 - z_1) + m \cdot (z_3 - z_1) \end{cases}$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix} + k \cdot \begin{bmatrix} x_2 - x_1 \\ y_2 - y_1 \\ z_2 - z_1 \end{bmatrix} + m \cdot \begin{bmatrix} x_3 - x_1 \\ y_3 - y_1 \\ z_3 - z_1 \end{bmatrix}$$

cartesische vergelijking

$$\begin{vmatrix} x & y & z & 1 \\ x_1 & y_1 & z_1 & 1 \\ x_2 & y_2 & z_2 & 1 \\ x_3 & y_3 & z_3 & 1 \end{vmatrix} = 0$$

Vergelijking van een vlak op de assegmenten vlak α snijdt x, y, z in P_1 (a,0,0), P_2 (0,b,0), P_3 (0,0,c)

$$\alpha \leftrightarrow \frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$

Vergelijking van de vlakkenwaaier door d

$$d \leftrightarrow \left\{ \begin{array}{ll} u_1x + v_1y + w_1z + t_1 & = & 0 \\ u_2x + v_2y + w_2z + t_2 & = & 0 \end{array} \right.$$

$$k\left(u_1x + v_1y + w_1z + t_1\right) + m\left(u_2x + v_2y + w_2z + t_2\right) = 0 \text{ met } k, m \in \mathbb{R} \text{ en } \neg \left(k = m = 0\right)$$

6.3 Loodrechte en evenwijdige stand

Evenwijdigheid rechten e en f met richtingsgetallen (a_1,b_1,c_1) en (a_2,b_2,c_2)

$$e/f \Leftrightarrow \exists k \in \mathbb{R}_0 : a_2 = ka_1 \wedge b_2 = kb_1 \wedge c_2 = kc_1$$

Evenwijdigheid vlakken
$$\alpha \leftrightarrow u_1x + v_1y + w_1z + t_1 = 0$$
 en $\beta \leftrightarrow u_2x + v_2y + w_2z + t_2 = 0$
$$\alpha//\beta \Leftrightarrow \exists k \in \mathbb{R}_0 : u_2 = ku_1 \wedge v_2 = kv_1 \wedge w_2 = kw_1$$

Evenwijdigheid rechte d met richtingsgetallen (a,b,c) en het vlak $\alpha \leftrightarrow u_1x + v_1y + w_1z + t_1 = 0$

$$d//\alpha \Leftrightarrow ua + vb + wc = 0$$

Formules wiskunde revisie 3.6 pagina 21

Loodrechte stand van rechten e en f met richtingsgetallen (a_1,b_1,c_1) en (a_2,b_2,c_2)

$$e \perp f \Leftrightarrow a_1 a_2 + b_1 b_2 + c_1 c_2 = 0$$

Loodrechte stand van een rechte e met richtingsgetallen (a,b,c) en een vlak $\alpha \leftrightarrow ux+vy+wz+t=0$

$$e \perp \alpha \Leftrightarrow a = k \cdot u \wedge b = k \cdot v \wedge c = k \cdot w \qquad \text{met } k \in \mathbb{R}_0$$

Loodrechte stand van twee vlakken $\alpha \leftrightarrow u_1x + v_1y + w_1z + t_1 = 0$ en $\beta \leftrightarrow u_2x + v_2y + w_2z + t_2 = 0$

$$\alpha \perp \beta \Leftrightarrow u_1 u_2 + v_1 v_2 + w_1 w_2 = 0$$

Normaalvector van een vlak

 $\vec{N}\left(u,v,w\right)$ is een normaalvector van het vlak $\alpha \leftrightarrow ux+vy+wz+t=0$

Stelsel vergelijkingen van de loodlijn m uit $P(x_1, y_1, z_1)$ op het vlak $\alpha \leftrightarrow ux + vy + wz + t = 0$

$$m \leftrightarrow \frac{x - x_1}{u} = \frac{y - y_1}{v} = \frac{z - z_1}{w} \qquad \text{met } u, v, w \in \mathbb{R}_0$$

Vergelijking van het loodvlak α uit $P(x_1, y_1, z_1)$ op een rechte e met richtingsgetallen (a, b, c)

$$\alpha \leftrightarrow a(x - x_1) + b(y - y_1) + c(z - z_1) = 0$$

6.4 Afstanden en hoeken

Afstand tussen de punten $A\left(x_{1},y_{1},z_{1}\right)$ en $B\left(x_{2},y_{2},z_{2}\right)$

$$d(A,B) = |AB| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

Afstand van een punt $A(x_1, y_1, z_1)$ tot het vlak $\alpha \leftrightarrow ux + vy + wz + t = 0$

$$d(A, a) = \frac{|ux_1 + vy_1 + wz_1 + t|}{\sqrt{u^2 + v^2 + w^2}}$$

Hoek van twee rechten met richtingsgetallen (a_1,b_1,c_1) en (a_2,b_2,c_2)

$$\cos\left(\widehat{ab}\right) = \frac{|a_1a_2 + b_1b_2 + c_1c_2|}{\sqrt{a_1^2 + b_1^2 + c_1^2} \cdot \sqrt{a_2^2 + b_2^2 + c_2^2}}$$

De hoek van een rechte a en een vlak α is het complement van de hoek gevormd door de rechte a en de loodlijn m op dat vlak. a met stel richtingsgetallen (a,b,c) en $\alpha \leftrightarrow ux+vy+wz+t=0$

$$\cos\left(\widehat{am}\right) = \frac{|au + vb + wc|}{\sqrt{a^2 + b^2 + c^2} \cdot \sqrt{u^2 + v^2 + w^2}} \quad \text{en } \widehat{a\alpha} = 90^\circ - \widehat{am}$$

Hoek van van twee vlakken $\alpha \leftrightarrow u_1x + v_1y + w_1z + t_1 = 0$ en $\beta \leftrightarrow u_2x + v_2y + w_2z + t_2 = 0$ is de hoek van twee loodlijnen op de respectievelijke vlakken

$$\cos\left(\widehat{\alpha\beta}\right) = \frac{|u_1u_2 + v_1v_2 + w_1w_2|}{\sqrt{u_1^2 + v_1^2 + w_1^2} \cdot \sqrt{u_2^2 + v_2^2 + w_2^2}}$$

6.5 Bollen

Middelpuntsvergelijking van een bol

$$\mathscr{B}(M(x_1,y_1,z_1),r) \leftrightarrow (x-x_1)^2 + (y-y_1)^2 + (z-z_1)^2 = r^2$$

Algemene vergelijking van een bol

$$x^2+y^2+z^2+2ax+2by+2cz+d=0 \qquad \text{als } a^2+b^2+c^2-d\geq 0$$
 met middelpunt $M\left(-a,-b,-c\right)$ en straal $r=\sqrt{a^2+b^2+c^2-d}$

7 Kansrekening

7.1 Combinatieleer

$$\begin{split} V_n^p &= \frac{n!}{(n-p)!} \\ \overline{V}_n^p &= n! \\ P_n &= V_n^n = n! \\ \overline{P}_n^{a_1, a_2, \dots, a_i} &= \frac{n!}{a_1! a_2! \dots a_i!} \\ C_n^p &= \binom{n}{p} = \frac{V_n^p}{P_p} = \frac{n!}{p! (n-p)!} \\ \overline{C}_n &= C_{n+p-1}^p = \frac{V_{n+p-1}^p}{P_p} = \frac{(n+p-1)!}{p! (n-1)!} \end{split}$$

Formule van Stifel-Pascal

$$C_{n+1}^p = C_n^p + C_n^{p-1} \qquad \text{of} \qquad \left(\begin{array}{c} n+1 \\ p \end{array} \right) = \left(\begin{array}{c} n \\ p \end{array} \right) + \left(\begin{array}{c} n \\ p-1 \end{array} \right)$$

Binomium van Newton

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

7.2 Rekenregels voor kansen

Somregel

$$P\left(A\vee B
ight)=P\left(A\cup B
ight)=P\left(A
ight)+P\left(B
ight)\Leftrightarrow\ A\ ext{en}\ B\ ext{zijn}\ ext{onafhankelijke gebeurtenissen}$$

$$P\left(A\vee B
ight)=P\left(A\cup B
ight)=P\left(A
ight)+P\left(B
ight)-P\left(A\cap B
ight)$$

Verschilregel

$$P(A \backslash B) = P(A) - P(A \cap B)$$

Stelling van Boole

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Productregel

$$P\left(A \wedge B\right) = P\left(A \cap B\right) = P\left(A\right) \cdot P\left(B\right) \Leftrightarrow \ A \ \text{en} \ B \ \text{zijn onafhankelijke gebeurtenissen}$$

Voorwaardelijke kansen

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Regel van Bayes

$$P(A|B) P(B) = P(B|A) P(A)$$

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

$$P(A|B) = \frac{P(B|A) P(A)}{P(B|A) P(A) + P(B|A^c) P(A^c)}$$

8 Statistiek

8.1 Standaardbegrippen

Gemiddelde

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Variantie

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

Standaardafwijking

$$s = \sqrt{s^2}$$

MED MOD MAD

8.2 Steekproef

Gemiddelde

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_1 = \frac{1}{n} \sum_{i=1}^{n} n_i x_1$$
 voor gegroepeerde gegevens

Variantie

$$s^2 = \frac{1}{n-1} \sum_{i=1}^n \left(x_i - \overline{x}\right)^2 = \frac{1}{n-1} \sum_{i=1}^n n_i \left(x_i - \overline{x}\right)^2 \text{ voor gegroepeerde gegevens}$$

Standaardafwijking

$$s = \sqrt{\frac{1}{n-1}\sum_{i=1}^{n}\left(x_{i}-\overline{x}\right)^{2}} = \sqrt{\frac{1}{n-1}\sum_{i=1}^{n}n_{i}\left(x_{i}-\overline{x}\right)^{2}} \text{ voor gegroepeerde gegevens}$$

8.3 Populatie

Gemiddelde

$$\mu = rac{1}{N} \sum_{i=1}^N x_1 = rac{1}{N} \sum_{i=1}^N n_i x_1$$
 voor gegroepeerde gegevens

Variantie

$$\sigma^2 = \frac{1}{N} \sum_{i=1}^N \left(x_i - \mu\right)^2 = \frac{1}{N} \sum_{i=1}^N n_i \left(x_i - \mu\right)^2 \text{ voor gegroepeerde gegevens}$$

Standaardafwijking

$$\sigma = \sqrt{\frac{1}{N}\sum_{i=1}^{N}\left(x_{i}-\mu\right)^{2}} = \sqrt{\frac{1}{N}\sum_{i=1}^{N}n_{i}\left(x_{i}-\mu\right)^{2}} \text{ voor gegroepeerde gegevens}$$

8.4 Kansverdelingen

8.4.1 Verwachtingswaarde

$$E[X] = \int_{-\infty}^{+\infty} x \, \mathrm{d}F_X$$

Eigenschappen

$$E[aX + b] = a \cdot E[X] + b$$
$$E[X + Y] = E[X] + E[Y]$$
$$E[X] \ge$$

8.4.2 Variantie

$$\operatorname{Var}\left[X\right] = \operatorname{E}\left[\left(X - \operatorname{E}\left[X\right]\right)^{2}\right]$$

8.4.3 \sqrt{n} -wet

$$S = \sum_{i=1}^{n} X_{i}$$

$$\mu_{S} = E[S] = n \cdot E[X] = n\mu_{X}$$

$$\sigma_{S}^{2} = n\sigma_{X}^{2} \Leftrightarrow \sigma_{S} = \sqrt{n}\sigma_{X}$$

$$\overline{X} = \frac{1}{n}S = \frac{1}{n}\sum_{i=1}^{n} X_{i}$$

$$\mu_{\overline{X}} = \mu_{X}$$

$$\sigma_{\overline{X}}^{2} = \frac{1}{n^{2}}n\sigma_{X}^{2} = \frac{1}{n}\sigma_{X}^{2} \leftrightarrow \sigma_{\overline{X}} = \frac{\sigma_{X}}{\sqrt{n}}$$

8.5 Discrete Verdelingen

$$E[X] = \sum_{i=1}^{n} x_i P(X = x_i) = \sum_{i=1}^{n} x_i p_i$$

$$Var[X] = \sum_{i=1}^{n} (x_i - E[X])^2 P(X = x_i) = \sum_{i=1}^{n} (x_i - E[X])^2 p_i$$

8.5.1 Uniforme discrete verdeling

$$E[X] = \mu_x = \frac{n+1}{2}$$

$$P(X = x_i) = \frac{1}{n}$$

$$Var[X] = \sigma_x^2 = \frac{n^2 - 1}{12}$$

8.5.2 Bernouilli-verdeling

Een experiment waarbij de mogelijke uitkomsten 1 (waar) en 0 (niet-waar) zijn.

$$X \sim \text{Bernouilli}(p)$$

$$P(X = 1) = p$$

$$P(X = 0) = q = 1 - p$$

$$E[X] = p$$

$$Var[X] = pq = p(1 - p)$$

8.5.3 Binomiale verdeling

Een herhaling van n Bernouilli-experimenten met kans p.

$$X \sim \operatorname{Binom}(n, p)$$

$$p + q = 1$$

$$P(X = i) = \binom{n}{k} p^{i} q^{n-i}$$

$$\operatorname{E}[X] = np$$

$$\operatorname{Var}[X] = npq$$

$$\gamma_{1} = \frac{q - p}{\sqrt{npq}}$$

$$\gamma_{2} = \frac{1 - 6pq}{npq}$$

8.5.4 Hypergeometrische verdeling

Een populatie met N elementen waarvan er P elementen voldoen (1) en de andere niet. De kans op k succesvolle experimenten bij trekken zonder teruglegging. Een som van N Bernouilli-experimenten, waarbij de kans steeds afneemt. $p=\frac{P}{N}$

$$X \sim \operatorname{hypergeom}\left(N,p,n\right) \quad \operatorname{met} \ p = \frac{P}{N}$$

$$P\left(X=j\right) = \frac{\binom{P}{j}\binom{N-P}{n-j}}{\binom{N}{n}}$$

$$\operatorname{E}\left[X\right] = np$$

$$\operatorname{Var}\left[X\right] = npq\frac{N-n}{N-1}$$

8.5.5 Geometrische verdeling

De kans dat de eerste k trekkingen falen uit een experiment zoals de hypergeometrische.

$$P(X_i = 0 \forall i < k; X_k = 1) = pq^k$$

$$E[X] = \frac{q}{p}$$

$$Var[X] = \frac{q}{p^2}$$

8.5.6 Poissonverdeling

$$f_X = \frac{(\lambda t)^n}{n!} e^{-\lambda t}$$

$$E[X] = \lambda$$

$$Var[X] = \lambda$$

8.6 Continue Verdelingen

$$E[X] = \mu_X = \int_a^b x f(x) \, dx$$

$$Var[X] = \sigma_X^2 = \int_a^b (x - \mu_x)^2 f(x) \, dx = \int_a^b x^2 f(x) \, dx - \mu_x^2$$

8.6.1 Uniforme continue verdeling

$$f(x) = \begin{cases} \forall x \in [a, b] : & f(x) = \frac{1}{b-a} \\ \forall x \notin [a, b] : & f(x) = 0 \end{cases}$$
$$\mu_X = \frac{a+b}{2}$$
$$\sigma_X = \frac{b-a}{\sqrt{12}} = \frac{b-a}{2\sqrt{3}}$$

8.6.2 Normaalverdeling

$$X \sim N\left(\mu,\sigma\right) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

Standaardnormaalverdeling

$$z = \frac{x - \mu}{\sigma}$$

$$X \sim Z = N\left(0, 1\right) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(z)^2}$$

8.6.3 Exponentiële verdeling

$$f_X(t) = \begin{cases} \forall t > 0 & \lambda e^{-\lambda t} \\ \forall t \le 0 & 0 \end{cases}$$
$$F_X(t) = \begin{cases} \forall t > 0 & 1 - e^{-\lambda t} \\ \forall t \le 0 & 0 \end{cases}$$
$$E[X] = \frac{1}{\lambda}$$
$$Var[X] = \frac{1}{\lambda^2}$$

8.7 Betrouwbaarheidsintervallen

$$\mu_{\hat{p}} = \frac{1}{n} np = p$$

$$\sigma_{\hat{p}} = \frac{1}{n} \sqrt{npq} = \sqrt{\frac{p(1-p)}{n}}$$

$$\mu_{\hat{\mu}} = \mu_x$$

$$\sigma_{\hat{\mu}} = \frac{\sigma_x}{\sqrt{n}}$$

a%-betrouwbaarheidsinterval voor p

$$\left[\hat{p} - z_a \cdot \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}; \hat{p} + z_a \cdot \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right]$$

a%-betrouwbaarheidsinterval voor $\hat{\mu}$

$$\left[\mu - z_a \cdot \frac{\sigma}{\sqrt{n}}; \mu + z_a \cdot \frac{\sigma}{\sqrt{n}}\right]$$

8.8 Lineaire enkelvoudige regressie en correlatie

Regressielijn Kleinste kwadratenmethode

$$y = ax + b$$

$$a = \frac{\sum_{i=1}^{n} (x_i - \overline{x}) (y_i - \overline{y})}{\sum_{i=1}^{n} (x_i - \overline{x})^2}$$

$$b = \overline{y} - a\overline{x}$$

Correlatiecoëfficiënt

$$r = \frac{1}{n-1} \sum_{i=1}^{n} z_x \cdot z_y = \frac{1}{n-1} \sum_{i=1}^{n} \left(\frac{x_i - \overline{x}}{s_x} \right) \cdot \left(\frac{y_i - \overline{y}}{s_y} \right) = \frac{\sum_{i=1}^{n} \left(x_i - \overline{x} \right) \left(y_i - \overline{y} \right)}{\left(n - 1 \right) s_x s_y}$$

9 Numerieke Algoritmes

9.1 Vergelijkingen oplossen

$$f(x) = 0 \Rightarrow x = ?$$

Conventies

$$f_n = f(x_n)$$

$$f'_n = f'(x_n)$$

Algemeen algoritme:

$$x_{n+1} = x_n + k(x)f(x)$$

Newton (tweede orde)

$$x_{n+1} = x_n - \frac{f_n}{f_n'}$$

✓ Vrij snelle convergentie

★ Afgeleide berekenen is moeilijk

Vaste richting

$$x_{n+1} = x_n - \frac{f_n}{f_0'}$$

✓ Slechts 1 afgeleide te berekenen

▼ Tragere convergentie dan Newton

Koorde

$$x_{n+1} = \frac{x_n f_{n-1} - x_{n-1} f_n}{f_{n-1} - f_n}$$

 x_0 en x_1 nodig bij het begin

☑ Geen afgeleide nodig

Regula Falsi

 \boxtimes Zelfde als methode van de koorde, met de extra voorwaarde dat x_k en x_{k+1} steeds een verschillend teken hebben op elke iteratiestap k.

Dichotomie

naloog aan regula falsi, maar het interval wordt steeds in twee exact even grote delen gesplitst.

Tragere convergentie dan regula falsi

Newton voor veelterm

$$f(x) = \sum_{i=0}^{N} a_i x^{N-i} = a_0 x^N + a_1 x 6N - 1 + \dots + a_N$$

$$b_0 = a_0$$

$$c_0 = a_0 + a_k$$

$$b_k = x_n b_{k-1} + a_k \quad \forall k = 1 \to N$$

$$c_k = x_n c_{k-1} + b_k \quad \forall k = 1 \to N - 1$$

$$x_{n+1} = x_n - \frac{b_N}{c_{N-1}}$$

9.2 Stelsels oplossen

$$\vec{F}(\vec{x}) = 0 \Leftrightarrow \begin{cases} f_1(x_1, \dots, x_N) = 0 \\ \vdots \\ f_N(x_1, \dots, x_N) = 0 \end{cases}$$

Algemeen algoritme:

$$\vec{x}_{m+1} = \vec{x}_m + K(\vec{x}_m)\vec{F}(\vec{x}_m)$$
 met K een $n \times n$ -matrix

Newton-Raphson (cfr. Newton)

$$\frac{\partial(f_1,\ldots,f_n)}{\partial(x_1,\ldots,x_n)}(\vec{x}) = J(\vec{x}) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1}(\vec{x}) & \cdots & \frac{\partial f_1}{\partial x_n}(\vec{x}) \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1}(\vec{x}) & \cdots & \frac{\partial f_n}{\partial x_n}(\vec{x}) \end{bmatrix}$$
 Jacobiaan

$$\vec{x}_{m+1} = \vec{x}_m - J^{-1}(\vec{x}_m)\vec{F}(\vec{x}_m)$$

Per iteratie een lineair stelsel oplossen.

Morrey (cfr. vaste richting)

$$\vec{x}_{m+1} = \vec{x}_m - J^{-1}(\vec{x}_0)\vec{F}(\vec{x}_m)$$

Diagonaalterm

$$D(\vec{x}) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1}(\vec{x}) & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \frac{\partial f_n}{\partial x_n}(\vec{x}) \end{bmatrix}$$
 diagonaalmatrix van de Jacobiaan

$$\vec{x}_{m+1} = \vec{x}_m - D^{-1}(\vec{x}_m)\vec{F}(\vec{x}_m)$$

Enkel gebruiken als de niet-diagonaal elementen van de Jacobiaan verwaarloosbaar klein zijn.

9.3 Lineaire stelsels oplossen

9.3.1 Iteratieve methodes

Versnelling van de convergentie: overrelaxatie

Formules wiskunde revisie 3.6 pagina 32

Stabilisatie van de convergentie: onderrelaxatie

$$\omega \leq 1$$

Jacobi

G = iteratiematrix

Gauss-Seidel

9.3.2 Directe methodes

9.4 Eigenwaardes en eigenvectoren

9.5 Interpolatie

Vertrekkende van een functietabel $f_i = f(x_i)$ voor waarden van $i = 0 \to n$, de functie benaderen in de punten daartussen of daarbuiten. Eventueel zijn ook $f'_i = f'(x_i)$ gekend.

9.5.1 Lagrangeveeltermen

$$L_j(x) = \prod_{\substack{i=0\\i\neq j}}^n \frac{x - x_i}{x_j - x_i}$$
$$p_n(x) = \sum_{i=0}^n n f_i L_i(x)$$

9.5.2 Hermiteveeltermen

$$H(x) = \sum_{i=0}^{n} f_i H_i + \sum_{i=0}^{n} f'_i \hat{H}_i$$

$$H_i(x) = [1 - 2(x - x_i)L'_i(x_i)] L_i^2(x)$$

$$\hat{H}_i(x) = (x - x_i)L_i^2(x)$$

9.5.3 Cubic Spline

$$\forall x \in [x_i, x_{i+1}]: S_i(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2 + d_i(x - x_i)^3$$

Vrije / natuurlijke randvoorwaarden

$$S''(x_0) = S''0(x_0) = 0$$

 $S''(x_n) = S''_{n-1} = 0$

Ingeklemde randvoorwaarden

$$S'(x_0) = S'0(x_0) = f'(x_0)$$

$$S'(x_n) = S'_{n-1} = f'(x_n)$$

Uitwerking voor vrije randvoorwaarden

$$\begin{split} h_j &= x_{j=1} - x_j \\ \forall j \in [0,n]: \quad a_j &= f_j \\ \forall j \in [0,n-1]: \quad b_j &= \frac{a_{j+1} - a_j}{h_j} - \frac{h_j}{3} \left(2*c_j + c_{j+1} \right) \\ \forall j \in [0,n-1]: \quad d_j &= \frac{c_{j+1} - c_j}{3h_j} \end{split}$$

- 9.6 Least-squares benadering
- 9.7 Numerieke differentiatie
- 9.8 Numerieke integratie

$$\int_{a}^{b} f(x) dx$$
 berekenen

9.8.1 Newton-Cotes-integratie

Deze formules worden ook vaak gebruikt door per deelinterval te integreren om zo hun nauwkeurigheid op te drijven. Per conventie wordt de integratie uitgevoerd over het interval [a,b], waarbij de functiewaardes $f_0=f(x_0)$ tot $f_n=f(x_n)$ gebruikt worden. $\mathrm{L}_i(x)$ is de interpolatieveelterm van Lagrange. We werken hier steeds met equidistante spilpunten.

$$\int_{a}^{b} f(x) dx = \sum_{i=0}^{n} c_{i} f_{i} + E(f)$$

$$c_{i} = \int_{a}^{b} L_{i}(x) dx = \int_{a}^{b} \prod_{\substack{j=0 \ j \neq i}}^{n} \frac{x - x_{j}}{x_{i} - x_{j}} dx = \frac{(-1)^{n}}{h^{n} i! (n - i)!} \int_{a}^{b} \prod_{\substack{j=0 \ j \neq i}}^{n} (x - x_{j}) dx$$

Open formules (a en b worden niet als spilpunt gebruikt)

$$b = x_{n+1}$$

$$h = \frac{b-a}{n+2}$$

$$x_k = x_{-1} + (k+1)h$$

$$\int_a^b f(x) \, \mathrm{d}x = \dots$$

$$\int_{x_{-1}}^{x_1} f(x) \, \mathrm{d}x = 2hf_0 + \frac{h^3}{3}f^{(2)}(\xi) \qquad \text{centrale Riemannsom}$$

$$\int_{x_{-1}}^{x_2} f(x) \, \mathrm{d}x = \frac{3h}{2} \left(f_0 + f_1 \right) + \frac{3h^3}{4}f^{(2)}(\xi)$$

$$\int_{x_{-1}}^{x_3} f(x) \, \mathrm{d}x = \frac{4h}{3} \left(2f_0 - f_1 + 2f_2 \right) + \frac{28h^5}{90}f^{(4)}(\xi) \qquad \text{Milne}$$

$$\int_{x_{-1}}^{x_4} f(x) \, dx = \frac{5h}{24} \left(11f_0 + f_1 + f_2 + 11f_3 \right) + \frac{95h^5}{144} f^{(4)}(\xi)$$

Gesloten formules (a en b worden wel als spilpunt gebruikt)

$$a = x_0$$

$$b = x_n$$

$$h = \frac{b-a}{n}$$

$$x_h = x_0 + kh$$

$$\int_a^b f(x) \, \mathrm{d}x = \dots$$

$$\int_{x_0}^{x_1} f(x) \, \mathrm{d}x = f\left(\frac{a+b}{2}\right)$$

$$\int_{x_0}^{x_2} = \frac{h}{3} \bigg(f_0 + 4f_1 + f_2 \bigg) - \frac{h^5}{90} f^{(4)}(\xi) \qquad \mathsf{Simpson}$$

Trapeziumregel (gesloten met 2 spilpunten)

$$\int_{x_0}^{x_1} f(x) \, \mathrm{d}x = \frac{h}{2} \left(f_0 + f_1 \right)$$

Simpson (gesloten met 3 spilpunten)

x

Milne (open met 3 spilpunten)

9.8.2 Gauss-integratie

9.9 Differentiaalvergelijkingen met beginvoorwaarden

Probleemstelling Oplossen van een differentiaalvergelijking, of een stelsel differentiaalvergelijkingen. Voor hogere ordes herleiden tot $N \times N$ -stelsel van eerste orde.

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f(x,y) \qquad \text{of} \qquad \frac{\mathrm{d}\vec{y}}{\mathrm{d}x} = f(x,\vec{y}) \qquad \text{met } \vec{y}(x_0) = \vec{y}_0$$

Hierbij maakt men gebruik van een stapgrootte h.

9.9.1 Expliciete eenstapsmethodes

Predictors worden steeds als \hat{y} weergegeven, f_i is een verkorte notatie voor $f(x_i, y_i)$.

Euler (orde 1)

$$y_{n+1} = y_n + h \cdot f_n$$

Heun (orde 2).

$$\hat{y}_{n+1} = y_n + h \cdot f_n$$

$$y_{n+1} = y_n + \frac{h}{2} \left(f(x_n, y_n) + f(x_{n+1}, \hat{y}_{n+1}) \right)$$

Midpoint method (orde 2)

$$\hat{y}_{n+1} = y_n + h \cdot f_n$$

$$y_{n+1} = y_n + h \cdot f\left(x_n + \frac{h}{2}, y_n + \frac{h}{2}f(x_n, y_n)\right)$$

Runge-Kutta I (orde 4)

$$k_{1} = h \cdot f_{n}$$

$$k_{2} = h \cdot f\left(x_{n} + \frac{h}{2}, y_{n} + \frac{k_{1}}{2}\right)$$

$$k_{3} = h \cdot f\left(x_{n} + \frac{h}{2}, y_{n} + \frac{k_{1} + k_{2}}{4}\right)$$

$$k_{4} = h \cdot f\left(x_{n} + h, y_{n} - k_{2} + 2k_{3}\right)$$

$$y_{n+1} = y_{n} + \frac{k_{1} + 4k_{3} + k_{4}}{6}$$

Runge-Kutta II (orde 4)

$$k_{1} = h \cdot f_{n}$$

$$k_{2} = h \cdot f\left(x_{n} + \frac{h}{2}, y_{n} + \frac{k_{1}}{2}\right)$$

$$k_{3} = h \cdot f\left(x_{n} + \frac{h}{2}, y_{n} + \frac{k_{2}}{2}\right)$$

$$k_{4} = h \cdot f\left(x_{n} + h, y_{n} + k_{3}\right)$$

$$y_{n+1} = y_{n} + \frac{k_{1} + 2k_{2} + 2k_{3} + k_{4}}{6}$$

9.9.2 Expliciete meerstapsmethodes

Om te starten, maakt men voor de eerste k spilpunten gebruik van een eenstapsmethode van dezelfde of hogere orde, voordat men deze formules kan toepassen.

Adams-Bashforth (2 spilpunten, orde 2)

$$y_{n+1} = y_n + \frac{h}{2} \left(3f_n - f_{n-1} \right)$$

Adams-Bashforth (3 spilpunten, orde 3)

$$y_{n+1} = y_n + \frac{h}{12} \left(23f_n - 16f_{n-1} + f_{n-2} \right)$$

Adams-Bashforth (4 spilpunten, orde 4)

$$y_{n+1} = y_n + \frac{h}{24} \left(55f_n - 59f_{n-1} + 37f_{n-2} - 9f_{n-3} \right)$$

9.9.3 Impliciete meerstapsmethodes

Praktisch gezien zal men voor f_{n+1} een predictor \hat{f}_{n+1} gebruiken, zoals berekend met de expliciete meerstapsmethodes. Hierbij maakt men steeds gebruik van een methode van gelijke of hogere orde. Dit is voor Adams-Moluton en Adams-Bashforth gelijk aan het aantal spilpunten.

Adams-Moulton / Crank-Nicholson / trapeziumschema (2 spilpunten, orde 2)

$$y_{n+1} = y_n + \frac{h}{2} \left(\hat{f}_{n+1} + f_n \right)$$

Adams-Moulton (3 spilpunten, orde 3)

$$y_{n+1} = y_n + \frac{h}{12} \left(5\hat{f}_{n+1} + 8f_n - f_{n-1} \right)$$

Adams-Moulton (4 spilpunten, orde 4)

$$y_{n+1} = y_n + \frac{h}{24} \left(9\hat{f}_{n+1} + 19f_n - 5f_{n-1} + f_{n-2} \right)$$

9.10 Differentiaalvergelijkingen met randvoorwaarden

Probleemstelling

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x} = f\left(x, y, \frac{\mathrm{d}y}{\mathrm{d}x}\right) \qquad \text{met randvoorwaarden } y(a) = y_a \text{ en } y(b) = y_b$$

Shooting method] Door $y'(a) = \lambda_a$ te gokken en de zo bekomen functie op te lossen met een methode voor beginvoorwaarden. Nadien kan gecontroleerd worden of de geschatte waarde plausibel is, door de randvoorwaarden na te gaan.

Discretisatie Men deelt het interval [a,b] op in n deelintervallen en stelt $h=\frac{b-a}{n}$ en $x_k=a+kh$. Men bepaalt de oplossing door in de differentiaalvergelijking alle afgeleides te vervangen door een numerieke afleiding en zodoende bekomt men per spilpunt een lineaire vergelijking met y_k als onbekenden, ofwel in het totaal een lineair $n \times n$ -stelsel.