STAT571B Ken Youens-Clark Homework 7

Montgomery 13.2

(a) Analyze the data from this experiment, assuming that both parts and operators are random effects.

```
data d13 2;
input part inspector y @@;
cards;
1 1 37 1 1 38 1 1 37 1 2 41 1 2 41 1 2 40 1 3 41 1 3 42 1 3 41
2 1 42 2 1 41 2 1 43 2 2 42 2 2 42 2 2 42 2 3 43 2 3 42 2 3 43
3 1 30 3 1 31 3 1 31 3 2 31 3 2 31 3 2 31 3 3 29 3 3 30 3 3 28
4 1 42 4 1 43 4 1 42 4 2 43 4 2 43 4 2 43 4 3 42 4 3 42 4 3 42
5 1 28 5 1 30 5 1 29 5 2 29 5 2 30 5 2 29 5 3 31 5 3 29 5 3 29
6 1 42 6 1 42 6 1 43 6 2 45 6 2 45 6 2 45 6 3 44 6 3 46 6 3 45
7 1 25 7 1 26 7 1 27 7 2 28 7 2 28 7 2 30 7 3 29 7 3 27 7 3 27
8 1 40 8 1 40 8 1 40 8 2 43 8 2 42 8 2 42 8 3 43 8 3 43 8 3 41
9 1 25 9 1 25 9 1 25 9 2 27 9 2 29 9 2 28 9 3 26 9 3 26 9 3 26
10 1 35 10 1 34 10 1 34 10 2 35 10 2 35 10 2 34 10 3 35 10 3 34 10 3 35
run;
/* random effects model*/
proc glm data=d13 2;
class inspector part;
model y=inspector|part;
random inspector part inspector*part/test;
output out=diag r=res p=pred; run;
proc plot;
data=diag;
plot res*pred;
run;
```

			The GLM F Dependent						
Source	DF		Sum of Squar	es	s Mean Square		e F Value		Pr > F
Model	29		4023.7333	33	138.7	19425	5 27	1.47	<.0001
Error	60		30.6666	67	0.5	11111	1		
Corrected Tota	l 89		4054.4000	00					
	R-Squar 0.99243				-		Mean 30000		
Source	D	F	Type I SS	N	/lean Squ	are	F Valu	ıe	Pr > F
Source inspector		F 2	Type I SS 39.266667	N	/lean Squ 19.6333		F Valu	-	Pr > F <.0001
			,,	N		333		41 <	
inspector		2	39.266667	N	19.6333	333 395	38.4	41 <	<.0001
inspector part inspector*pa	art 1	9	39.266667 3935.955556 48.511111		19.6333 437.3283 2.6950	333 395 062	38.4 855.6 5.2	41 <64 <27 <	<.0001 <.0001 <.0001
inspector		9	39.266667 3935.955556		19.6333 437.3283	333 395 062	38.4 855.6	41 <64 <27 <	<.0001
inspector part inspector*pa	art 1	9	39.266667 3935.955556 48.511111		19.6333 437.3283 2.6950	333 395 062 are	38.4 855.6 5.2	41	<.0001 <.0001 <.0001
inspector part inspector*pa	art 1	2 9 8	39.266667 3935.955556 48.511111 Type III SS		19.6333 437.3283 2.6950	333 395 062 are	38.4 855.6 5.2	41	<.0001 <.0001 <.0001 Pr > F

From the SAS output, the overall effect (top table) is highly significant (<.0001). The third table show that each factor, "inspector" and "part," are highly significant (<.0001) as well as their interaction, so for each we would reject the null hypothesis and state that they do affect the outcome.

Tests of	Нуро	thes	es for Rand	Procedure om Model Analy t Variable: y	sis of Var	iance
Source	DF	Т	ype III SS	Mean Square	F Value	Pr > F
inspector	2	;	39.266667	19.633333	7.28	0.0048
part	9	393	35.955556	437.328395	162.27	<.0001
Error	18		48.511111	2.695062		
Error: MS(i	nspec	tor*	part)			
Source		DF	Type III SS	Mean Squar	e F Valu	e Pr > F
inspector*part		18	48.511111	2.69506	2 5.2	7 <.000
Error: MS(Error)		60	30.666667	0.51111	1	

(b) Estimate the variance components using the analysis of variance method.

```
proc varcomp data=d13_2 method=type1;
class inspector part;
model y=inspector part inspector*part;
run;
```



```
MS(E) = 0.51

Var(T) = [MS(A) - MS(AB)]/bn = (19.6333 - 2.695) / 10(3) = 0.5646

Var(B) = [MS(B) - MS(AB)]/an = (437.3284 - 2.695) / 3(3) = 48.2926

Var(TB) = [MS(AB) - MS(E)]/n = (2.695 - 0.51) / 3 = 0.7283
```

The VARCOMP method gives estimates greater than 0 for every factor, supporting the previous analysis that all are significant; however, the estimates for "inspector" and the interaction between "inspector/part" are quite small while that for "part" is quite large.

(c) Estimate the variance components using the REML method. Use the confidence intervals on the variance components to assist in drawing conclusions.

```
proc mixed data=d13_2 cl maxiter=20 covtest method=reml;
class inspector part;
model y = ;
random inspector part inspector*part; run;
```

Covariance Parameter Estimates											
Cov Parm	Estimate	Standard Error	Z Value	Pr > Z	Alpha	Lower	Upper				
inspector	0.5646	0.6551	0.86	0.1944	0.05	0.1344	67.3537				
part	48.2926	22.9067	2.11	0.0175	0.05	22.7624	162.52				
inspector*part	0.7280	0.3011	2.42	0.0078	0.05	0.3717	2.0164				
Residual	0.5111	0.09332	5.48	<.0001	0.05	0.3682	0.7575				

These results match the VARCOMP almost exactly, supporting the decision to reject the null hypotheses for the parts (p=0.0175 < α =0.05) and the interaction between inspectors and parts (p=0.0078 < α =0.05) but to fail to reject the null hypotheses for inspector (p=0.19 > α =0.05). Further, none of the confidence intervals (lower/upper) include 0 but the one for inspector (which we suspect has no bearing on outcome) very nearly includes 0.

Montgomery 13.7

Reanalyze the measurement system experiment in Problem 13.2, assuming that operators are a fixed factor. Estimate the appropriate model components using the ANOVA method.

```
proc mixed data=d13_2 cl maxiter=20 covtest method=type1;
class inspector part;
model y = ;
random part inspector*part; run;
```

	Type 1 Analysis of Variance											
Source	DF	Sum of Squares	Mean Square	Expected Mean Square	Error Term	Error DF	F Value	Pr > F				
part	9	3935.955556	437.328395	Var(Residual) + 3 Var(inspector*part) + 9 Var(part)	MS(inspector*part)	20	99.64	<.0001				
inspector*part	20	87.777778	4.388889	Var(Residual) + 3 Var(inspector*part)	MS(Residual)	60	8.59	<.0001				
Residual	60	30.666667	0.511111	Var(Residual)								

Covariance Parameter Estimates											
Cov Parm	Estimate	Standard Error	Z Value	Pr Z	Alpha	Lower	Upper				
part	48.1044	22.9070	2.10	0.0357	0.05	3.2074	93.0013				
inspector*part	1.2926	0.4637	2.79	0.0053	0.05	0.3838	2.2014				
Residual	0.5111	0.09332	5.48	<.0001	0.05	0.3682	0.7575				

Changing the operators to fixed (leaving them out of the "random" category) increase the confidence interval for "part" (upper bound from 67 to 93) as some of the variability has been shifted to this factor. P-values for "part" and the interaction of "part"/"inspector" remain well below 0.05, so we still reject the null hypotheses for them.

Montgomery 13.26

Analyze the data in Problem 13.1, assuming that operators are fixed, using both the unrestricted and the restricted forms of the mixed models. Compare the results obtained from the two models.

Unrestricted

```
data dat;
input part operator y @@;
cards:
1 1 50 1 1 49 1 1 50 1 2 50 1 2 48 1 2 51
2 1 52 2 1 52 2 1 51 2 2 51 2 2 51 2 2 51
3 1 53 3 1 50 3 1 50 3 2 54 3 2 52 3 2 51
4 1 49 4 1 51 4 1 50 4 2 48 4 2 50 4 2 51
5 1 48 5 1 49 5 1 48 5 2 48 5 2 49 5 2 48
6 1 52 6 1 50 6 1 50 6 2 52 6 2 50 6 2 50
7 1 51 7 1 51 7 1 51 7 2 51 7 2 50 7 2 50
8 1 52 8 1 50 8 1 49 8 2 53 8 2 48 8 2 50
9 1 50 9 1 51 9 1 50 9 2 51 9 2 48 9 2 49
10 1 47 10 1 46 10 1 49 10 2 46 10 2 47 10 2 48
run;
proc glm data=dat;
class operator part;
model y=operator|part;
random part operator*part / test;
means operator / tukey lines E=operator*part;
lsmeans operator / adjust=tukey E=operator*part tdiff stderr;
run;
```

The GLM Procedure Dependent Variable: y											
Source		DF S		Sum of Squares		Mean Square		re F Va	F Value		
Model		19		104.85000	00	5.51	8421	11 3	3.68	0.0003	
Error		40		60.00000	00	1.50	0000	00			
Corrected Tot	al	59		164.85000	00						
	R-S	quar	е	Coeff Var	R	oot MSE	у	Mean			
	0.6	3603	3	2.451942	.451942 1.224745		49.95000				
'											
Source		DF		Type I SS	N	lean Squa	are	F Value	F	Pr > F	
operator		1	0.41666667			0.41666667		0.28	3 0	.6011	
part		9	99.01666667			11.00185185		7.33	3 <	.0001	
operator*p	art	9	5.41666667			0.60185185		0.40 0		.9270	
Source		DF		Type III SS	N	Mean Square		F Value		Pr > F	
operator		1		0.41666667		0.416666	67	7 0.28		.6011	
part		9	9	9.01666667		11.001851	85 7.3		3 <	.0001	
operator*p	art	9		5.41666667		0.601851	85	0.40	0	.9270	

The p-values in the above ANOVA table for "operator" (0.6) and "operator/part" (0.927) are well above α =0.05, so we accept the null hypotheses for those factors, but the p-value for "part" (<0.0001) is well below, so we reject the null hypothesis for this factor and state that it has a significant effect.

We need to incorporate additional tests. I got very confused on this part. As I understand the lecture notes, we need to compute the following:

Testing hypotheses:

$$H_0: \tau_1 = \tau_2 = \dots = 0 \rightarrow \text{MS}_A/\text{MS}_{AB}$$

 $H_0: \sigma_\beta^2 = 0 \rightarrow \text{MS}_B/\text{MS}_E$
 $H_0: \sigma_{\tau\beta}^2 = 0 \rightarrow \text{MS}_{AB}/\text{MS}_E$

```
"operator" H0: F = MS(A)/MS(AB) = 0.4167/0.602 = 0.6914 "part" H0: F = MS(B)/MS(E) = 11.0019/1.5 = 7.3346 "interaction" H0: F = MS(AB)/MS(E) = 0.6019/1.5 = 0.4013
```

But I think that is for the "restricted" model, in which case we need to make the change to the test for beta:

Test
$$H_0: \sigma_{\beta}^2 = 0$$
 using MS_{AB} in denominator

Which puts the F value much higher:

```
"part" H0: F = MS(B)/MS(AB) = 11.0019/0.602 = 18.2756
```

The first F value for "part" matches that the ANOVA as does the one for the interaction; while the F value for "operator" is slightly higher, the resulting p-value (0.28 vs 0.69) is still high enough to support the above conclusions.

Restricted

```
proc mixed data=dat alpha=0.05 cl covtest;
class operator part;
model y=operator / ddfm=kr;
random part operator*part;
lsmeans operator / alpha=0.05 cl diff adjust=tukey; run;
```

Covariance Parameter Estimates										
Cov Parm	Estimate	Standard Error	Z Value	Pr > Z	Alpha	Lower	Upper			
part	1.6111	0.8655	1.86	0.0313	0.05	0.7020	6.7389			
operator*part	0									
Residual	1.3350	0.2697	4.95	<.0001	0.05	0.9316	2.0731			

The confidence intervals for "part" does not include 0, so we can assume that this factor does affect the outcome.

Least Squares Means										
Effect	operator	Estimate	Standard Error	DF	t Value	Pr > t	Alpha	Lower	Upper	
operator	1	50.0333	0.4534	11.3	110.34	<.0001	0.05	49.0384	51.0283	
operator	2	49.8667	0.4534	11.3	109.97	<.0001	0.05	48.8717	50.8616	

The numbers for the two operators across this chart are extremely close, therefore we could assume that there is very little variation caused by the operators, a finding supported by our failure to reject the null hypothesis for this factor above.