ИУ7, 6-й сем., Математическая статистика, РК1 Перепис. 3 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 1.

1. Известно, что случайная величина $X\geqslant 0$ имеет математическое ожидание MX=4. Оценить вероятность события $\{X\geqslant 7\}$. Как изменится ответ, если дополнительно известно, что DX=1?

2. Пусть $X \sim N(m, \sigma^2)$, где значения m и σ^2 неизвестны. Построить для σ^2 доверительный интервал уровня $\gamma = 0.8$, если после n = 16 испытаний получены значения $\overline{x} = 15$, $S(\vec{x}) = 2.5$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 Перепис. 3 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 2.

- 1. Известно, что случайная величина $Y\geqslant 0$ имеет математическое ожидание MY=3. Оценить вероятность события $\{X\geqslant 4\}$. Как изменится ответ, если дополнительно известно, что DY=0.25?
- 2. Пусть $Y \sim \text{Exp}(\lambda)$, где значение λ неизвестно. Построить для λ доверительный интервал уровня $\gamma = 0.95$, если после n = 16 испытаний получены значения $\overline{y} = 10$, $S(\overline{y}) = 1.1$.

)H_77 (DH_					
711-12 4/11	№ вопроса	1	2	$\Sigma = \max$	min
	Баллы	17	17	34	20
-					

ИУ7, 6-й сем., Математическая статистика, РК1 Перепис. 3 (модуль 1, теория и задачи), 2019-2020 уч. год $\overline{\mathbf{B}}$ илет 3.

- 1. Известно, что случайная величина $Z\geqslant 0$ имеет математическое ожидание MZ=15. Оценить вероятность события $\{X\geqslant 20\}$. Как изменится ответ, если дополнительно известно, что DZ=9?
- 2. Случайная величина Z имеет нормальное распределение с дисперсией $DZ = \sigma^2$. Сколько нужно произвести независимых наблюдений за случайной величиной Z, чтобы с вероятностью 0.85 наблюденное среднее отличалось от теоретического значения ее математического ожидания не более, чем на 0.1σ ?

ИУ7, 6-й сем., Математическая статистика, РК1 Перепис. 3 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 4.

- 1. Известно, что случайная величина $U\geqslant 0$ имеет математическое ожидание MU=7. Оценить вероятность события $\{X\geqslant 10\}$. Как изменится ответ, если дополнительно известно, что DU=4?
- 2. Пусть $U \sim N(m, \sigma^2)$, где значения m и σ^2 неизвестны. Построить для σ^2 доверительный интервал уровня $\gamma = 0.99$, если после n = 11 испытаний получены значения $\overline{u} = 21$, $S(\vec{u}) = 5$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 Перепис. 3 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 5.

- 1. Известно, что случайная величина $V\geqslant 0$ имеет математическое ожидание MV=11. Оценить вероятность события $\{X\geqslant 15\}$. Как изменится ответ, если дополнительно известно, что DV=4?
- 2. Пусть $V \sim \text{Exp}(\lambda)$, где значение λ неизвестно. Построить для λ доверительный интервал уровня $\gamma = 0.9$, если после n = 36 испытаний получены значения $\overline{v} = 18.6$, $S(\vec{v}) = 2.3$.

№ вопроса	11	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 Перепис. 3 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 6.

- 1. Известно, что случайная величина $W\geqslant 0$ имеет математическое ожидание MW=1. Оценить вероятность события $\{X\geqslant 5\}$. Как изменится ответ, если дополнительно известно, что DW=1?
- 2. Случайная величина W имеет нормальное распределение с дисперсией $DW = \sigma^2$. Сколько нужно произвести независимых наблюдений за случайной величиной W, чтобы с вероятностью 0.95 наблюденное среднее отличалось от теоретического значения ее математического ожидания не более, чем на 0.1σ ?

	№ вопроса	1	2	$\Sigma = \max$	min
п-	Баллы	17	17	34	20

. 6-й сем.. Математическая статистика. РК1 Перепис. 3 (модуль 1. теория и задачи). 2019-2020 уч. год

Билет 7.

- 1. Известно, что случайная величина $X\geqslant 0$ имеет математическое ожидание MX=2. Опенить вероятность события $\{X\geqslant 4\}$. Как изменится ответ, если дополнительно известно, что DX=2.25?
- 2. Пусть $X \sim N(m, \sigma^2)$, где значения m и σ^2 неизвестны. Построить для σ^2 доверительный интервал уровня $\gamma = 0.8$, если после n = 16 испытаний получены значения $\overline{x} = 9.8$, $S(\vec{x}) = 3.5$.

	12				
411	№ вопроса	1	2	$\Sigma = \max$	min
	Баллы	17	17	34	20

497, 6-й сем., Математическая статистика, РК1 Перепис. 3 (модуль 1, теория и задачи), 2019-2020 уч. го Билет 8.

- 1. Известно, что случайная величина $V\geqslant 0$ имеет математическое ожидание MV=6. Оценить вероятность события $\{X\geqslant 10\}$. Как изменится ответ, если дополнительно известно, что DV=2?
- 2. Пусть $V \sim \text{Exp}(\lambda)$, где значение λ неизвестно. Построить для λ доверительный интервал уровня $\gamma = 0.85$, если после n = 26 испытаний получены значения $\overline{v} = 11$, $S(\vec{v}) = 4.1$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 Перепис. 3 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 9.

- 1. Известно, что случайная величина $Z\geqslant 0$ имеет математическое ожидание MZ=8. Оценить вероятность события $\{X\geqslant 10\}$. Как изменится ответ, если дополнительно известно, что DZ=0.81?
- 2. Случайная величина Z имеет нормальное распределение с дисперсией $DZ = \sigma^2$. Сколько нужно произвести независимых наблюдений за случайной величиной Z, чтобы с вероятностью 0.99 наблюденное среднее отличалось от теоретического значения ее математического ожидания не более, чем на 0.1σ ?

№ вопроса 1 2 $\Sigma = \max$ min Баллы 17 17 34 20

DH-12