章节 01 - 03 基本概念

LATEX Definitions are here.

始对象与终对象

范畴由对象及其间箭头构成。本文重点 分析**余积闭范畴** C。首先给出如下定义:

- 0 为始对象当且仅当对任意 C 中对象
 c 都有且仅有唯一的箭头 :c;: 0 → c;
- 1 为终对象当且仅当对任意 C 中对象
 c 都有且仅有唯一的箭头 :c!: c → 1;

(i) Note

其他范畴中始终对象不一定存在。

范畴 C 中我们假设其含 0 和 1 分别作为始对象和终对象,那么根据上述信息可知

- 形如 $0 \stackrel{c}{\rightarrow} 0$ 的箭头 只有一个, 即 :0id;
- 形如 $1 \xrightarrow{c} 1$ 的箭头 只有一个, 即 $_{:1}id$;

始终对象与范畴中其他对象的关系如图:

元素与全局元素

对任意对象 a, a_1 , a_2 , etc, b, b_1 , b_2 , etc 以及任意映射 i, 我们进行如下的规定:

- *i* 为 b 的**元素**当且仅当 *i* tar = b;
- i为 a 的**全局元素**当且仅当 i tar = a 且 i src = 1
- i 不存在仅当 $i \operatorname{tar} = 0$ 。

i Note

其他范畴中刚才的断言未必成立。

箭头构成的集合

这里再给一个定义:

a → b =
 所有从 a 射向 b 的箭头构成的集。

(i) Note

上述断言仅对于**局部小范畴**成立, 在其他范畴里 $a \xrightarrow{c} b$ 未必构成集。

箭头的复合运算

范畴 C 中特定的箭头可以进行复合运算: 对任意 C 中对象 c_1 , c_2 , c_3 我们都会有 $\overset{\text{C}}{\circ}: (c_1 \overset{\text{C}}{\rightarrow} c_2) \times (c_2 \overset{\text{C}}{\rightarrow} c_3) \overset{\text{Set}}{\longrightarrow} (c_1 \overset{\text{C}}{\rightarrow} c_3)$ $\overset{\text{C}}{\circ}: (\quad i_1 \quad . \quad i_2 \quad) \longmapsto i_1 \overset{\text{C}}{\circ} i_2$

若我们还知道箭头 f_1 , i_1 , g_1 分别属于 $a_2\overset{c}{
ightarrow}$ a_1 , $a_1\overset{c}{
ightarrow}$ b_1 , $b_1\overset{c}{
ightarrow}$ b_2 那么便有

• $(f_1 \overset{\mathsf{C}}{\circ} i_1) \overset{\mathsf{C}}{\circ} g_1 = f_1 \overset{\mathsf{C}}{\circ} (i_1 \overset{\mathsf{C}}{\circ} g_1)$ 说明箭头复合运算具有**结合律**。

另外固定住一侧实参便获可得新的函数:

• $(f_1 \overset{\mathsf{C}}{\circ} _) : (\mathsf{a}_1 \overset{\mathsf{C}}{\to} _) \xrightarrow{\mathsf{C} \to \mathsf{Set}} (\mathsf{a}_2 \overset{\mathsf{C}}{\to} _)$ $(f_1 \overset{\mathsf{C}}{\circ} _) : i_1 \longmapsto f_1 \overset{\mathsf{C}}{\circ} i_1$ 称作**前复合**。下图有助于形象理解:

根据上面的定义便不难得出下述结论

- $(f_1 \circ _)$ \circ $(_ \circ g_1) = (_ \circ g_1)$ \circ $(f_1 \circ _)$ \circ $(f_1 \circ _)$ \circ $(f_1 \circ _)$ \circ $(f_1 \circ _)$
- $(-\circ i_1)^{\mathsf{C} \to \mathsf{Set}} \circ (-\circ g_1) = (-\circ (i_1 \circ g_1))$ 前复合与复合运算的关系
- $(i_1 \overset{\mathsf{C}}{\circ} _) \overset{\mathsf{C} \to \mathsf{Set}}{\circ} (f_1 \overset{\mathsf{C}}{\circ} _) = ((f_1 \overset{\mathsf{C}}{\circ} i_1) \overset{\mathsf{C}}{\circ} _)$ 后复合与复合运算的关系

箭头对实参的应用

范畴论里函数的应用亦可视作复合。 假如 a_1 为 a_1 的全局元素则可规定

$$\bullet \quad a_1i_1=a_1 \overset{\mathsf{C}}{\circ} i_1$$

恒等箭头

范畴 C 内的每个对象都有恒等映射:

•
$$a_1 id : a_1 \xrightarrow{c} a_1$$

 $a_1 id : a_1 \mapsto a_1$

如此我们便可以得出下述重要等式:

$$egin{array}{ll} ullet & _{:\mathsf{a}_1}\mathrm{id} \overset{\mathsf{C}}{\circ} i_1 = i_1 \ & = i_1 \overset{\mathsf{C}}{\circ} _{:\mathsf{b}_1}\mathrm{id} \end{array}$$

此外还可以得知

- $(a_1 id \overset{C}{\circ} _) : (a_1 \overset{C}{\rightarrow} _) \overset{C \longrightarrow Set}{\longrightarrow} (a_1 \overset{C}{\rightarrow} _)$ 为恒等自然变换,可以记作是 $(a_1 \overset{C}{\rightarrow} _) id$;

单满态以及同构

接下来给出单/满态和同构的定义。

• i_1 为**单态**当且仅当对任意 a_2 若有 $f_1, f_1': \mathsf{a}_2 \overset{\mathsf{c}}{\to} \mathsf{a}_1$ 满足 $f_1 \overset{\mathsf{c}}{\circ} i_1 = f_1' \overset{\mathsf{c}}{\circ} i_1$ 则有 $f_1 = f_1'$ 。详情见下图:

• i_1 为**满态**当且仅当对任意 b_2 若有 $g_1, g_1': b_1 \overset{\mathsf{C}}{\to} b_2$ 满足 $i_1 \overset{\mathsf{C}}{\circ} g_1 = i_1 \overset{\mathsf{C}}{\circ} g_1'$ 则有 $g_1 = g_1'$ 。详情见下图:

若还提供 $j_1: \mathsf{b}_1 \overset{\mathsf{c}}{\to} \mathsf{c}_1$ 则不难得知

- 若 i_1 , j_1 为单态则 $i_1 \circ j_1$ 为单态 ;
- 若 i_1 , j_1 为满态则 $i_1\circ j_1$ 为满态 ;
- 若 i_1 , j_1 为同构则 $i_1 \circ j_1$ 为同构 ;
- 若 $i_1 \overset{\mathsf{C}}{\circ} j_1$ 为同构 且 i_1 , j_1 其中一个为同构 则 i_1 , j_1 两者皆构成同构 。

此外我们还可以得出下述结论:

- a₁ 为单态,由! 的唯一性可知。
- $_{:0}!=_{:1}$ 为同构 —— 这是因为 $0\overset{c}{
 ightarrow}0=\left\{ _{:0}\mathrm{id}\right\}$, $1\overset{c}{
 ightarrow}1=\left\{ _{:1}\mathrm{id}\right\}$

同构与自然性

下图即为自然性对应的形象解释 。 后面会将自然性进行进一步推广 。

若提供自然变换 β 满足自然性 —— 即对任意 C 中对象 x_1 , x_2 及任意 C 中映射 $f_1: x_2 \xrightarrow{c} x_1$ 都会有 $(f_1 \xrightarrow{c} b_1) \overset{\text{Set}}{\circ} x_2 \overset{\text{Set}}{\circ} = x_1 \overset{\text{Set}}{\circ} (f_1 \xrightarrow{c} b_2)$ (即下图自西向南走向操作结果同自北向东):

那么我们便会有下述结论:

• $b_1 \cong b_2$ 当且仅当对任意 C 中对象 x x^{β} 都是同构 。此时称 β 为**自然同构** 。

若提供自然变换 α 满足自然性 —— 即对任意 C 中对象 x_1 , x_2 及任意 C 中映射 $g_1: x_1 \overset{c}{\rightarrow} x_2$ 都会有 $(a_1 \overset{c}{\rightarrow} g_1) \overset{\text{Set}}{\circ} x_2 \overset{\text{Set}}{\sim} (a_2 \overset{c}{\rightarrow} g_1)$ (即下图自西向南走向操作结果同自北向东):

那么我们便会有下述结论:

• $a_1 \cong a_2$ 当且仅当对任意 C 中对象 x x^{α} 都是同构 。此时称 α 为**自然同构** 。

上一页的第一条定理若用交换图表示则应为

⇒ 易证, ← 用到了米田技巧(考虑特殊情况)

为了方便就用 (etc) 表示 $_{:b_1}\mathrm{id}(\mathsf{b}_1^\beta)$ 。 由上图可知 $f_1(\mathsf{x}_2^\beta) = f_1 \circ (\mathrm{etc})$,故 $\mathsf{x}_2^\beta = \mathsf{x}_2 \to (\mathrm{etc})$;而 $\mathsf{x}_2^\beta = \mathsf{x}_2 \to (\mathrm{etc}) = \mathsf{x}_2^{(-\circ(\mathrm{etc}))}$ 是同构,从而知 ((etc) \circ _) 是同构,(etc) : $\mathsf{b}_1 \to \mathsf{b}_2$ 也是 。

高亮部分省去了部分推理过程,具体在米田嵌入处会详细介绍。

上一页的第二条定理若用交换图表示则应为

⇒ 易证, ← 用到了米田技巧(考虑特殊情况)

为了方便就用 (etc) 表示 $_{:a_1}\mathrm{id}(\mathsf{a}_1^\alpha)$ 。 由上图可知 $g_1(\mathsf{x}_2{}^\alpha) = (\mathrm{etc}) \overset{\mathsf{C}}{\circ} g_1$,故 $\mathsf{x}_2{}^\alpha = (\mathrm{etc}) \overset{\mathsf{C}}{\to} \mathsf{x}_2$;而 $\mathsf{x}_2{}^\alpha = (\mathrm{etc}) \overset{\mathsf{C}}{\to} \mathsf{x}_2 = \mathsf{x}_2{}^{((\mathrm{etc}){}^\circ_\circ_)}$ 是同构,从而知 $(_{-}^\circ)$ (etc) 是同构,(etc) $(_{-}^\circ)$ 是同构。

高亮部分省去了部分推理过程, 具体在米田嵌入处会详细介绍。