Statistical Inference on population means and variances

The information provided in this document are for reference only

3 conditions

- A. Normal Distributions
- B. Parameters Known
- C. Large Sample Size

Legend for conditions: Y = Yes, N = No, -- = It does not matter

Confidence Interval

One Sample

Estimation of the population mean, μ

	1 1	<u> </u>	
Conditions (A, B, C)	Pivotal Quantity	Distribution	$100(1-\alpha)\%$ Confidence Interval
$(Y, Y(\sigma^2),)$	$T = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}}$	N(0,1)	$\bar{X} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$
$(N, Y(\sigma^2), Y)$	$T = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}}$	Approximate N(0,1) (CLT)	$\bar{X} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$
(Y, N,)	$T = \frac{\bar{X} - \mu}{S/\sqrt{n}}$	t(n-1)	$\bar{X} \pm t_{n-1;\alpha/2} \frac{S}{\sqrt{n}}$
(N, N, Y)	$T = \frac{\bar{X} - \mu}{S/\sqrt{n}}$	Approximate N(0,1) (CLT & LLN)	$\bar{X} \pm z_{\alpha/2} \frac{S}{\sqrt{n}}$

^{*} Y = Yes, N = No, - = It does not matter

CLT: Central Limit Theorem, LLN = Law of Large Numbers

$$\Pr(Z > z_{\alpha/2}) = \alpha/2 \text{ with } Z \sim N(0,1), \Pr(T > t_{v;\alpha/2}) = \alpha/2 \text{ with } T \sim t(v)$$

Estimation of the population variance, σ^2

	<u> </u>		
Conditions (A, B, C)	Pivotal Quantity	Distribution	100(1-lpha)% Confidence Interval
$(Y, Y(\mu),)$	$T = \frac{\sum_{i=1}^{n} (X_i - \mu)^2}{\sigma^2}$	$\chi^2(n)$	$\frac{\sum_{i=1}^{n} (X_i - \mu)^2}{\chi_{n;\alpha/2}^2} < \sigma^2 < \frac{\sum_{i=1}^{n} (X_i - \mu)^2}{\chi_{n;1-\alpha/2}^2}$
(Y, N, N)	$T = \frac{(n-1)S^2}{\sigma^2}$	$\chi^2(n-1)$	$\frac{(n-1)S^2}{\chi^2_{n-1;\alpha/2}} < \sigma^2 < \frac{(n-1)S^2}{\chi^2_{n-1;1-\alpha/2}}$

$$\Pr(W > \chi^2_{(v;\alpha)}) = \alpha \text{ with } W \sim \chi^2(v)$$

Two Samples

Paired Samples

Consider $D_i = X_i - Y_i$. Let $\mu_D = \mu_X - \mu_Y$

Estimation of the population mean, μ_D

		. 2	
Conditions (A, B, C)	Pivotal Quantity	Distribution	$100(1-\alpha)\%$ Confidence Interval
(Y, N, N)	$T = \frac{\bar{X}_D - \mu_D}{S_D / \sqrt{n}}$	t(n-1)	$\bar{X}_D \pm t_{n-1;\alpha/2} \frac{S_D}{\sqrt{n}}$
(N, N, Y)	$T = \frac{\bar{X}_D - \mu_D}{S_D / \sqrt{n}}$	Approximate $N(0,1)$ (CLT & LLN)	$\bar{X}_D \pm z_{\alpha/2} \frac{S_D}{\sqrt{n}}$

Two Independent Samples

Estimation of the difference of population means, $\mu_1-\mu_2$

Conditions (A, B, C)	Pivotal Quantity	Distribution	100(1-lpha)% Confidence Interval
$(Y, Y(\sigma_1^2, \sigma_2^2),)$	$T = \frac{\bar{X}_1 - \bar{X}_2 - (\mu_1 - \mu_2)}{\sqrt{\sigma_1^2 / n_1 + \sigma_2^2 / n_2}}$	N(0,1)	$\bar{X}_1 - \bar{X}_2 \pm z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$
$(N, Y(\sigma_1^2, \sigma_2^2), Y)$	$T = \frac{\bar{X}_1 - \bar{X}_2 - (\mu_1 - \mu_2)}{\sqrt{\sigma_1^2 / n_1 + \sigma_2^2 / n_2}}$	Approximate N(0,1)	$\bar{X}_1 - \bar{X}_2 \pm z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$
$(Y, N(\sigma_1^2 = \sigma_2^2),)$	$T = \frac{\bar{X}_1 - \bar{X}_2 - (\mu_1 - \mu_2)}{\sqrt{S_p^2(1/n_1 + 1/n_2)}}$	$t(n_1+n_2-2)$	
(N, N, Y)	$= \frac{\bar{X}_1 - \bar{X}_2 - (\mu_1 - \mu_2)}{\sqrt{S_1^2/n_1 + S_2^2/n_2}}$	Approximate N(0,1) (CLT & LLN)	$\bar{X}_1 - \bar{X}_2 \pm z_{\alpha/2} \sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}$

Estimation of the ratio of population variances, σ_1^2/σ_2^2

Conditions (A, B, C)	Pivotal Quantity	Distribution	100(1-lpha)% Confidence Interval
(Y, N,)	$T = \frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2}$	F_{n_1-1,n_2-1}	$ \frac{S_1^2}{S_2^2} \frac{1}{F_{n_1-1,n_2-1; \alpha/2}} < \frac{\sigma_1^2}{\sigma_2^2} < \frac{S_1^2}{S_2^2} F_{n_2-1,n_1-1; \alpha/2} $ $ \text{Or} $ $ \frac{S_1^2}{S_2^2} \frac{1}{F_{n_1-1,n_2-1; \alpha/2}} < \frac{\sigma_1^2}{\sigma_2^2} < \frac{S_1^2}{S_2^2} \frac{1}{F_{n_1-1,n_2-1; 1-\alpha/2}} $

 $\Pr(W > F_{v_1, v_2; \alpha}) = \alpha \text{ with } W \sim F(v_1, v_2)$

Hypothesis Testing

One Sample

Hypothesis testing on the population mean. H₀: $\mu=\mu_0$

Candiniana			
Conditions (A, B, C)	Test Statistic	Alternative	Reject H₀ if
	$\bar{X} = \mu_{\tau}$	H_1 : $\mu \neq \mu_0$	$T < -z_{\alpha/2}$ or $T > z_{\alpha/2}$
$(Y, Y(\sigma^2),)$	$T = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}}$	$H_1: \mu > \mu_0$	$T > z_{\alpha}$
	σ/γπ	$H_1: \mu < \mu_0$	$T < -z_{\alpha}$
	$T = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}}$	H_1 : $\mu \neq \mu_0$	$T < -z_{\alpha/2}$ or $T > z_{\alpha/2}$
$(N, Y(\sigma^2), Y)$		$H_1: \mu > \mu_0$	$T > z_{\alpha}$
		H ₁ : $\mu < \mu_0$	$T < -z_{\alpha}$
	$T = \frac{\bar{X} - \mu_0}{S/\sqrt{n}}$	H_1 : $\mu \neq \mu_0$	$T < -t_{n-1; \alpha/2} \text{ or } T > t_{n-1; \alpha/2}$
(Y, N,)		H ₁ : $\mu > \mu_0$	$T > t_{n-1; \alpha}$
		H ₁ : $\mu < \mu_0$	$T < -t_{n-1; \alpha}$
	$\overline{V} = U$	H_1 : $\mu \neq \mu_0$	$T < -z_{\alpha/2}$ or $T > z_{\alpha/2}$
(N, N, Y)	$T = \frac{\bar{X} - \mu_0}{S/\sqrt{n}}$	H ₁ : $\mu > \mu_0$	$T > z_{\alpha}$
	S/\sqrt{n}	H ₁ : $\mu < \mu_0$	$T < -z_{\alpha}$

^{*} Y = Yes, N = No, - = It does not matter

Hypothesis testing on the population variance. H₀: $\sigma^2 = \sigma_0^2$

	<i>J</i> 1	0 1 1		0
	Conditions (A, B, C)	Test Statistic	Alternative	Reject H₀ if
	(Y, N,)	$(n-1)C^2$	$H_1: \sigma^2 \neq \sigma_0^2$	$T < \chi^2_{(n-1;1-\alpha/2)} \text{ or } T > \chi^2_{(n-1;\alpha/2)}$
		$T = \frac{(n-1)S^2}{r^2}$	$H_1: \sigma^2 > \sigma_0^2$	$T > \chi^2_{(n-1;\alpha)}$
		σ_0^-	$H_1: \sigma^2 < \sigma_0^2$	$T < \chi^2_{(n-1; 1-\alpha)}$

 $\Pr(W > \chi^2_{(v;\alpha)}) = \alpha \text{ with } W \sim \chi^2(v)$

Two Samples

Paired Samples

Consider $D_i = X_i - Y_i$. Let $\mu_D = \mu_X - \mu_Y$

Hypothesis testing on the population mean, H_0 : $\mu_D=0$

Conditions (A, B, C)	Test Statistic	Alternative	Reject H₀ if
	$\bar{X}_{-}=0$	H_1 : $\mu_D \neq 0$	$T < -t_{n-1; \alpha/2} \text{ or } T > t_{n-1; \alpha/2}$
(Y, N,)	$T = \frac{\bar{X}_D - 0}{S_D / \sqrt{n}}$	$H_1: \mu_D > 0$	$T > t_{n-1; \alpha}$
		H_1 : $\mu_D < 0$	$T < -t_{n-1; \alpha}$
	$T = \frac{\bar{X}_D - 0}{S_D / \sqrt{n}}$	H_1 : $\mu_D \neq 0$	$T < -z_{\alpha/2}$ or $T > z_{\alpha/2}$
(N, N, Y)		$H_1: \mu_D > 0$	$T > z_{\alpha}$
		H_1 : $\mu_D < 0$	$T < -z_{\alpha}$

Two Independent Samples

Hypothesis testing on the difference of population means, H_0 : $\mu_1 - \mu_2 = 0$

Conditions (A, B, C)	Test Statistic	Alternative	Reject H₀ if
$(Y, Y(\sigma_1^2, \sigma_2^2),)$	$T = \frac{\bar{X}_1 - \bar{X}_2 - 0}{\sqrt{\sigma_1^2 / n_1 + \sigma_2^2 / n_2}}$	H ₁ : $\mu_1 - \mu_2 \neq 0$ H ₁ : $\mu_1 - \mu_2 > 0$ H ₁ : $\mu_1 - \mu_2 < 0$	$T < -z_{\alpha/2} \text{ or } T > z_{\alpha/2}$ $T > z_{\alpha}$ $T < -z_{\alpha}$
$(N, Y(\sigma_1^2, \sigma_2^2), Y)$	$T = \frac{\bar{X}_1 - \bar{X}_2 - 0}{\sqrt{\sigma_1^2 / n_1 + \sigma_2^2 / n_2}}$	H ₁ : $\mu_1 - \mu_2 \neq 0$ H ₁ : $\mu_1 - \mu_2 > 0$ H ₁ : $\mu_1 - \mu_2 < 0$	$T < -z_{\alpha/2} \text{ or } T > z_{\alpha/2}$ $T > z_{\alpha}$ $T < -z_{\alpha}$
$(Y, N(\sigma_1^2 = \sigma_2^2),)$	$T = \frac{\bar{X}_1 - \bar{X}_2 - 0}{\sqrt{S_p^2(1/n_1 + 1/n_2)}}$	H ₁ : $\mu_1 - \mu_2 \neq 0$ H ₁ : $\mu_1 - \mu_2 > 0$ H ₁ : $\mu_1 - \mu_2 < 0$	$T < -t_{n_1+n_2-2; \alpha/2} \text{ or } $ $T > t_{n_1+n_2-2; \alpha/2} $ $T > t_{n_1+n_2-2; \alpha} $ $T < -t_{n_1+n_2-2; \alpha} $
(N, N, Y)	$T = \frac{\bar{X}_1 - \bar{X}_2 - 0}{\sqrt{S_1^2/n_1 + S_2^2/n_2}}$	$H_1: \mu_1 - \mu_2 \neq 0$ $H_1: \mu_1 - \mu_2 > 0$ $H_1: \mu_1 - \mu_2 < 0$	$T < -z_{\alpha/2} \text{ or } T > z_{\alpha/2}$ $T > z_{\alpha}$ $T < -z_{\alpha}$

Hypothesis testing on the ratio of population variances, H₀: $\sigma_1^2/\sigma_2^2=1$

Conditions (A, B, C)	Test Statistic	Alternative	Reject H₀ if
	S ²	$H_1: \sigma_1^2/\sigma_2^2 \neq 1$	$F < F_{n_1-1,n_2-1; 1-\alpha/2} \text{ or } F > F_{n_1-1,n_2-1; \alpha/2}$
(Y, N,)	$T=\frac{S_1}{S_2}$	$H_1: \sigma_1^2/\sigma_2^2 > 1$	$F > F_{n_1 - 1, n_2 - 1; \alpha}$
	\mathcal{S}_{2}^{-}	$H_1: \sigma_1^2/\sigma_2^2 < 1$	$F < F_{n_1-1,n_2-1;1-\alpha} \ (= 1/F_{n_2-1,n_1-1;\alpha})$

$$\Pr(W > F_{v_1, v_2; \alpha}) = \alpha \text{ with } W \sim F(v_1, v_2)$$