Si $\{a_n\}$ y $\{b_n\}$ son sucesiones convergentes y c es una constante, entonces

$$\lim_{n\to\infty} (a_n + b_n) = \lim_{n\to\infty} a_n + \lim_{n\to\infty} b_n$$

$$\lim_{n\to\infty} (a_n - b_n) = \lim_{n\to\infty} a_n - \lim_{n\to\infty} b_n$$

$$\lim_{n\to\infty} ca_n = c \lim_{n\to\infty} a_n$$

$$\lim_{n\to\infty}c=c$$

$$\lim_{n\to\infty} (a_n b_n) = \lim_{n\to\infty} a_n \cdot \lim_{n\to\infty} b_n$$

$$\lim_{n\to\infty}\frac{a_n}{b_n}=\frac{\lim\limits_{n\to\infty}a_n}{\lim\limits_{b_n}b_n}\ \ \text{si}\ \ \lim\limits_{n\to\infty}b_n\neq0$$

$$\lim_{n \to \infty} a_n^p = \left[\lim_{n \to \infty} a_n \right]^p \quad \text{si} \quad p > 0 \text{ y } a_n > 0$$

Si $a_n \le b_n \le c_n$ para $n \ge n_0$ y $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = L$, entonces $\lim_{n \to \infty} b_n = L$.

6 TEOREMA

Si
$$\lim_{n\to\infty} |a_n| = 0$$
, entonces $\lim_{n\to\infty} a_n = 0$.

7 TEOREMA Si lím $a_n = L$ y la función f es continua en L, entonces

$$\lim_{n\to\infty} f(a_n) = f(L)$$

EJEMPLO 8 Encuentre $\lim_{n\to\infty} \operatorname{sen}(\pi/n)$.

SOLUCIÓN Como la función seno es continua en 0, el teorema 7 hace posible escribir

$$\lim_{n \to \infty} \operatorname{sen}(\pi/n) = \operatorname{sen}\left(\lim_{n \to \infty} (\pi/n)\right) = \operatorname{sen} 0 = 0$$

9 La sucesión $\{r^n\}$ es convergente si $-1 < r \le 1$ y divergente para todos los otros valores de r.

$$\lim_{n \to \infty} r^n = \begin{cases} 0 & \text{si } -1 < r < 1 \\ 1 & \text{si } r = 1 \end{cases}$$

10 DEFINICIÓN Una sucesión $\{a_n\}$ se llama **creciente** si $a_n < a_{n+1}$ para toda $n \ge 1$, es decir, $a_1 < a_2 < a_3 < \cdots$. Se denomina **decreciente** si $a_n > a_{n+1}$ para toda $n \ge 1$. Recibe el nombre de **monótona** si es creciente o decreciente.

11 DEFINICIÓN Una sucesión $\{a_n\}$ está **acotada por arriba** si hay un número M tal que

$$a_n \leq M$$
 para toda $n \geq 1$

Se dice que está **acotada por abajo** si hay un número *m* tal que

$$m \le a_n$$
 para toda $n \ge 1$

Si está acotada por arriba y por abajo, en tal caso $\{a_n\}$ es una sucesión acotada.

TEOREMA DE LA SUCESIÓN MONÓTONA Toda sucesión acotada y monótona es convergente.

2 DEFINICIÓN Dada una serie $\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \cdots$, denote con s_n la n-ésima suma parcial:

$$s_n = \sum_{i=1}^n a_i = a_1 + a_2 + \cdots + a_n$$

Si la sucesión $\{s_n\}$ es convergente y lím $_{n\to\infty}$ $s_n=s$ existe como un número real, entonces la serie Σ a_n se dice **convergente** y se escribe

$$a_1 + a_2 + \cdots + a_n + \cdots = s$$
 o $\sum_{n=1}^{\infty} a_n = s$

El número s se llama **suma** de la serie. Si no es así, la serie se dice **divergente.**

4 La serie geométrica

$$\sum_{n=1}^{\infty} ar^{n-1} = a + ar + ar^2 + \cdots$$

es convergente si |r| < 1 y su suma es

$$\sum_{n=1}^{\infty} ar^{n-1} = \frac{a}{1-r} \qquad |r| < 1$$

Si $|r| \ge 1$, la serie geométrica es divergente.

6 TEOREMA Si la serie $\sum_{n=1}^{\infty} a_n$ es convergente, entonces $\lim_{n \to \infty} a_n = 0$.

7 LA PRUEBA DE LA DIVERGENCIA Si lím a_n no existe o si lím $a_n \neq 0$, entonces la serie $\sum_{n=1}^{\infty} a_n$ es divergente.

8 TEOREMA Si Σ a_n y Σ b_n son series convergentes, entonces también lo son las series $\sum ca_n$ (donde c es una constante), $\sum (a_n + b_n)$ y $\sum (a_n - b_n)$, y

(i)
$$\sum_{n=1}^{\infty} ca_n = c \sum_{n=1}^{\infty} a_n$$

(i)
$$\sum_{n=1}^{\infty} ca_n = c \sum_{n=1}^{\infty} a_n$$
 (ii) $\sum_{n=1}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n$

(iii)
$$\sum_{n=1}^{\infty} (a_n - b_n) = \sum_{n=1}^{\infty} a_n - \sum_{n=1}^{\infty} b_n$$

PRUEBA DE LA INTEGRAL Suponga que f es una función continua, positiva y decreciente en $[1, \infty)$ y sea $a_n = f(n)$. En tal caso la serie $\sum_{n=1}^{\infty} a_n$ es convergente si y sólo si la integral impropia $\int_{1}^{\infty} f(x) dx$ es convergente. En otras palabras:

- (i) Si $\int_{1}^{\infty} f(x) dx$ es convergente, entonces $\sum_{n=1}^{\infty} a_n$ es convergente.
- (ii) Si $\int_{1}^{\infty} f(x) dx$ es divergente, entonces $\sum_{n=0}^{\infty} a_n$ es divergente.
- La serie p, $\sum_{n=1}^{\infty} \frac{1}{n^p}$ es convergente si p > 1 y divergente si $p \le 1$.

PRUEBA POR COMPARACIÓN Suponga que $\sum a_n$ y $\sum b_n$ son series con términos positivos.

- (i) Si Σb_n es convergente y $a_n \le b_n$ para toda n, entonces Σa_n es convergente.
- (ii) Si Σb_n es divergente y $a_n \ge b_n$ para toda n, entonces Σa_n es divergente.

PRUEBA POR COMPARACIÓN EN EL LÍMITE Suponga que $\sum a_n$ y $\sum b_n$ son series con términos positivos. Si

$$\lim_{n\to\infty}\frac{a_n}{b_n}=c$$

donde c es un número finito y c > 0, en seguida ambas series convergen o ambas divergen.

PRUEBA DE LA SERIE ALTERNANTE Si la serie alternante

$$\sum_{n=1}^{\infty} (-1)^{n-1} b_n = b_1 - b_2 + b_3 - b_4 + b_5 - b_6 + \cdots \qquad (b_n > 0)$$

cumple con

(i)
$$b_{n+1} \le b_n$$
 para toda n

(ii)
$$\lim_{n \to \infty} b_n = 0$$

entonces la serie es convergente.

1 DEFINICIÓN Una serie Σ a_n es llamada **absolutamente convergente** si la serie de valores absolutos $\Sigma |a_n|$ es convergente.

2 DEFINICIÓN Una serie Σ a_n se llama **condicionalmente convergente** si es convergente pero no absolutamente convergente.

3 TEOREMA Si una serie $\sum a_n$ es absolutamente convergente, entonces es convergente.

PRUEBA DE LA RAZÓN

- (i) Si $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = L < 1$, entonces la serie $\sum_{n=1}^{\infty} a_n$ es absolutamente convergente (y, en consecuencia, convergente).
- (ii) Si $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = L > 1$, o bien, $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \infty$, entonces la serie $\sum_{n=1}^{\infty} a_n$ es divergente.
- (iii) Si $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = 1$, la regla de comparación no es concluyente; es decir, no se puede sacar conclusión alguna con respecto a la convergencia o a la divergencia de Σ a_n .

PRUEBA DE LA RAÍZ

- (i) Si $\lim_{n\to\infty} \sqrt[n]{|a_n|} = L < 1$, entonces la serie $\sum_{n=1}^{\infty} a_n$ es absolutamente convergente (y, por lo tanto, convergente).
- (ii) Si $\lim_{n\to\infty} \sqrt[n]{|a_n|} = L > 1$ o $\lim_{n\to\infty} \sqrt[n]{|a_n|} = \infty$, entonces la serie $\sum_{n=1}^{\infty} a_n$ es divergente.
- (iii) Si $\lim_{n \to \infty} \sqrt[n]{|a_n|} = 1$, la prueba de la raíz no es concluyente.

1) si
$$a_n = a_1 + (n-1)d$$

donde d es la diferencia $a_n - a_{n-1} = d$

Entonces es una progressión aritmetica

2) si $a_n = a_1 r^{n-1}$ donde r es la razon

 $r = \frac{a_n}{a_{n-1}}$ entonces es progressión geometrica