## Sujet de contrôle Conception Conjointe SoC

Polytech Nice Sophia Antipolis

#### 35 YEARS OF MICROPROCESSOR TREND DATA



Original data collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond and C. Batten Dotted line extrapolations by C. Moore Cours 2

#### No more Moore

Hennessy & Patterson, Computer Architecture, a quantitative approach, 6e Ed., 2018

#### 40 years of Processor Performance



#### From system description to standard cells



#### Evolution of number of foundries

|                   |            |           | Number o        | of Foundries wi | th a Cutting Ed | dge Logic Fab |             |         |         |       |
|-------------------|------------|-----------|-----------------|-----------------|-----------------|---------------|-------------|---------|---------|-------|
| SilTerra          |            |           |                 |                 |                 |               |             |         |         |       |
| X-FAB             |            |           |                 |                 |                 |               |             |         |         |       |
| Dongbu HiTek      |            |           |                 |                 |                 |               |             |         |         |       |
| ADI               | ADI        |           |                 |                 |                 |               |             |         |         |       |
| Atmel             | Atmel      |           |                 |                 |                 |               |             |         |         |       |
| Rohm              | Rohm       |           |                 |                 |                 |               |             |         |         |       |
| Sanyo             | Sanyo      |           |                 |                 |                 |               |             |         |         |       |
| Mitsubishi        | Mitsubishi |           |                 |                 |                 |               |             |         |         |       |
| ON                | ON         |           |                 |                 |                 |               |             |         |         |       |
| Hitachi           | Hitachi    |           |                 |                 |                 |               |             |         |         |       |
| Cypress           | Cypress    | Cypress   |                 |                 |                 |               |             |         |         |       |
| Sony              | Sony       | Sony      |                 |                 |                 |               |             |         |         |       |
| Infineon          | Infineon   | Infineon  |                 |                 |                 |               |             |         |         |       |
| Sharp             | Sharp      | Sharp     |                 |                 |                 |               |             |         |         |       |
| Freescale         | Freescale  | Freescale |                 |                 |                 |               |             |         |         |       |
| Renesas (NEC)     | Renesas    | Renesas   | Renesas         | Renesas         |                 |               |             |         |         |       |
| SMIC              | SMIC       | SMIC      | SMIC            | SMIC            |                 |               |             |         |         |       |
| Toshiba           | Toshiba    | Toshiba   | Toshiba         | Toshiba         |                 |               |             |         |         |       |
| Fujitsu           | Fujitsu    | Fujitsu   | Fujitsu         | Fujitsu         |                 |               |             |         |         |       |
| TI                | TI         | TI        | TI              | TI              |                 |               |             |         |         |       |
| Panasonic         | Panasonic  | Panasonic | Panasonic       | Panasonic       | Panasonic       |               |             |         |         |       |
| TMicroelectronics | STM        | STM       | STM             | SMT             | STM             |               |             |         |         |       |
| UMC               | UMC        | UMC       | UMC             | UMC             | UMC             |               |             |         |         |       |
| IBM               | IBM        | IBM       | IBM             | IBM             | IBM             | IBM           |             |         |         |       |
| AMD               | AMD        | AMD       | GlobalFoundries | GF              | GF              | GF            | GF          |         |         |       |
| Samsung           | Samsung    | Samsung   | Samsung         | Samsung         | Samsung         | Samsung       | Samsung     | Samsung | Samsung |       |
| TSMC              | TSMC       | TSMC      | TSMC            | TSMC            | TSMC            | TSMC          | TSMC        | TSMC    | TSMC    |       |
| Intel             | Intel      | Intel     | Intel           | Intel           | Intel           | Intel         | Intel       | Intel   | Intel   | Futur |
| 180 nm            | 130 nm     | 90 nm     | 65 nm           | 45 nm/40 nm     | 32 nm/28 nm     | 22 nm/20 nm   | 16 nm/14 nm | 10 nm   | 7 nm    | 5 nn  |

## Comparaison ASIC - FPGA

|              | FPGA       | Gate array | Standard cell | Full custom  | Macro cell |
|--------------|------------|------------|---------------|--------------|------------|
| Density      | Low        | Medium     | Medium        | High         | High       |
| Flexibility  | Low (high) | Low        | Medium        | High         | Medium     |
| Analog       | No         | No         | No            | Yes          | Yes        |
| Performance  | Low        | Medium     | High          | Very high    | Very high  |
| Design time  | Low        | Medium     | Medium        | High         | Medium     |
| Design costs | Low        | Medium     | Medium        | High         | High       |
| Tools        | Simple     | Complex    | Complex       | Very complex | Complex    |
| Volume       | Low        | Medium     | High          | High         | High       |

### Pourquoi les FPGAs?



Source: Altera, SOPC World Seminar 2001



S. Tredennick, The Rise of Reconfigurable Systems, ERSA 2003



# Systèmes embarqués temps réel



#### Exemples :

- Catégorie 1 :
  - Pilotage automatique de la ligne 14
  - Dispositif de surveillance d'une centrale nucléaire
  - Système de guidage de missiles
  - Régulateur de vitesse en automobile
- Catégorie 2 :
  - Téléphone portable
  - Lecteur DVD, électroménager







## State diagram



#### Comparison of memory technologies

|                                      |                    |                  |                     | <del></del> |         |                      |  |
|--------------------------------------|--------------------|------------------|---------------------|-------------|---------|----------------------|--|
|                                      | SRAM               | DRAM             | NAND Flash          | PC-RAM      | STT-RAM | R-RAM &<br>Memristor |  |
| Data Retention                       | N                  | N                | Y                   | Y           | Y       | Y                    |  |
| Memory Cell Factor (F <sup>2</sup> ) | 50-120             | 6-10             | 2-5                 | 6-12        | 4-20    | <1                   |  |
| Read Time (ns)                       | 1                  | 30               | 50                  | 20-50       | 2-20    | <50                  |  |
| Write /Erase Time (ns)               | 1                  | 50               | 106-10 <sup>5</sup> | 50-120      | 2-20    | <100                 |  |
| Number of Rewrites                   | 1016               | 1016             | 10 <sup>5</sup>     | $10^{10}$   | 1015    | 1015                 |  |
| Power Read/Write                     | Low                | Low              | High                | Low         | Low     | Low                  |  |
| Power (Other than R/W)               | Leakage<br>Current | Refresh<br>Power | None                | None        | None    | None                 |  |

#### Human, a thinking machine...

Processeur principal : Cerveau

• Type : Processeur analogique

Consommation : 10 W

Fréquence d'horloge : de l'ordre de 100 Hz

Débit : 1Tb/s

Efficacité énergétique : Seul 1 à 16% des neurones fonctionnent à un moment donné

Nombre d'éléments : ~100 Milliards de neurones

Nombre de connexions : ~20 000 connexions par neurone

• Volume : 22 dm3

Capacité de calcul : 10<sup>15</sup> (100 Tera)opérations/sec

Capacité mémoire : 10 bits à chacun des 10<sup>14</sup> synapses

<sup>\*</sup>estimations