ECON 8022/4422

Non-Walrasian Markets: Search and Matching Frictions and Unemployment

References: Read Chapter 6 in Ljungqvist and Sargent, and, Chapter 18 in Miao. You are advised to try these problems below seriously as they will appear in the exam.

Problem 1 Consider again the search and matching model discussed in lectures à la Mortensen and Pissarides. Suppose now workers have to pay a proportional tax on labour income. That is, if a worker's earnings per period when employed is w, his after-tax earnings will be $(1-\tau)w$ where $\tau \in [0,1)$ is the tax rate. Suppose the aggregate matching function is $M(u,v) = Au^{\alpha}v^{1-\alpha}$ as explained in class. Worker's and firms determine wages via Nash bargaining, where the worker's bargaining strength is ϕ . Focus your analysis only on the steady state:

- 1. Derive the Beveridge curve relationship between unemployment and vacancies for our assumption on the matching function. Verify that this relationship is convex to the origin in (u, v) space.
- 2. Write down the firm's optimal value function in terms of a Bellman equation and derive the relevant job-creation function.
- 3. Write down the worker's optimal value function in terms of a Bellman equation. Define the firm and worker match surpluses and derive the relevant wage-setting curve under Nash bargaining.
- 4. Define the steady-state equilibrium in terms of (u, θ, w) . Compare the steady-state equilibria when $\tau = 0$ with $\tau \in (0, 1)$. Is unemployment higher or lower when $\tau \in (0, 1)$? Depict your results using relevant diagrams.

Problem 2 This not explicitly covered in lectures but is just another application of dynamic programming (DP). This is a good test to see if you have really understood DP ideas in a new application. Note that in this application, the DP problem involves a discrete action set, instead of a continuous one like in our growth, RBC, NK and Mortensen-Pissarides models.

Mr. Borat Sagdiyev who is currently unemployed draws one wage offer w from a fixed probability distribution function F(w) each period he is unemployed. If he accepts the job offer w he remains employed forever at w. F(w) has the properties: F(0) = 0, and there exists $B < +\infty$ such that F(B) = 1. If Mr. Sagdiyev rejects the offer, he receives unemployment compensation $b \ge 0$ and waits for the next period to draw a new offer. He seeks to maximize the expected discounted value of his earnings, where per period earnings is w_t . His discount factor is $\delta \in (0,1)$.

- 1. Write down Mr. Sagdiyev's Bellman equation.
- 2. Denote Mr. Sagdiyev's optimal reservation wage as \overline{w} . Show that his optimal decision rule (fixed point solution of this Bellman equation) is of a reservation wage form, \overline{w} . What is the expression for this reservation wage, \overline{w} ?
- 3. Consider solving Mr. Sagdiyev's Bellman equation using the method of value function iteration
 - (a) Prove that there exists a unique value function solving the Bellman equation. Show that it is continuous on [0, B] and is non-decreasing.

- (b) Show that the Bellman equation fixed-point problem can be characterized in terms of the reservation wage form.
- (c) Show that for any initial guess of the reservation wage solution \overline{w}_0 , the Bellman equation defines a δ -contraction on the set [0, B]. That is, show that $\overline{w}_n \to \overline{w}$ at modulus $\delta < 1$.

The following extended exercises are for the motivated student. Try this on your own and come and discuss your work with your tutor when you're ready.

Problem 3 (Optional practice.) Do Exercises 6.2, 6.3 and 6.4 in LS.

Problem 4 (More practice.) Do Exercises 1, 2 and 3 from Miao's Chapter 18.