Comparing Statistical Models

Andy Grogan-Kaylor

26 Oct 2020 17:58:03

Introduction

Using the *general linear model* framework, we could conceivably compare different statistical models on several grounds.

- 1. Theoretical plausibility
- 2. Functional form of the dependent variable
- 3. Functional form of the entire model
- 4. Statistical criteria of fit.

Frequently, there is no one correct way to analyze data, and different statistical approaches need to be weighed on multiple criteria to ascertain which approach(es) is / are appropriate.

Theoretical and Functional Concerns

Statistical Model	Stata Command	Theoretical plausibility	Functional form of the dependent variable	Functional form of the entire model
OLS	regress	Continuous dependent variable?	y can range from negative infinity to positive infinity	y is a linear function of the x's
Logistic Regression	logit	Binary dependent variable?	y must be 0 or 1	logit(y) is a linear function of x's

Statistical Model	Stata Command	Theoretical plausibility	Functional form of the dependent variable	Functional form of the entire model
Ordinal logistic regression	ologit	Ordered dependent variable where distance between categories does not matter	y can range from negative infinity to positive infinity	logit(y (higher category vs. lower category)) is a linear function of x's
Multinomial Logistic Regression	mlogit	Dependent variable with multiple unordered categories	y can range from negative infinity to positive infinity	logit(y (one category vs. another)) is a linear function of x's
Poisson Regression	poisson	Dependent variable representing a count	y must be an integer greater than or equal to 0	ln(y (count)) is a linear function of x's
Negative Binomial Regression	nbreg	Dependent variable representing a count	y must be an integer greater than or equal to 0	ln(y (count)) is a linear function of x's

Assessing Model Fit

Get Data And Create Count of ACEs

```
. clear all
```

```
. use "NSCH_ACES.dta", clear
```

Explore Some Models

We use quietly to suppress model output at this stage.

```
. quietly: regress acecount sc_sex i.sc_race_r i.higrade // OLS
```

[.] egen acecount = any count(ace*R), values(1) $\ //\$ generate count of ACES

- . estimates store OLS
- . quietly: ologit acecount sc_sex i.sc_race_r i.higrade // ordinal logit
- . estimates store ORDINAL
- . quietly: poisson acecount $sc_sex i.sc_race_r i.higrade // Poisson$
- . estimates store POISSON
- . quietly: nbreg acecount sc_sex i.sc_race_r i.higrade // Negative Binomial
- . estimates store NBREG

Compare The Models Including Fit Measures

. estimates table OLS ORDINAL POISSON NBREG, var(20) star stats(N 11 aic bic) equations(1)

	T			
Variable	OLS	ORDINAL	POISSON	NBREG
#1 sc_sex	01358634	02856135	01282301	0127557
Sc_race_r Black or African American Indian o Asian alone Native Hawaiian a Some Other Race a Two or More Races	.32583464*** .88542522*** 46503425*** .2516065 .07433855 .33035205***	.47967243*** .88482406***76002818*** .35416681 .14197623* .39265187***	.26627607*** .59710627*** 62438214*** .20674094* .06755212* .28181254***	.28235733*** .62278046***62012779*** .21879323 .08062919 .28198179***
higrade High school (inc) More than high sc	.10021068 45113751***			.06584405 38098265***
_cons	1.411494***		.33994246***	.33915207***
cut1 _cons		78624597***		
cut2 _cons		.65037457***		
cut3		1.5299647***		
cut4		2.2019291***		
cut5		2.8850071***		
cut6		3.6106908***		
cut7		4.4853373***		

cut8	cons		5.9106719***		
			5.9100719***		
cut9					
	_cons	7.5036903***			
lnalpha					
	_cons				54430672***
Statistics					
	N	30530	30530	30530	30530
	11	-52340.464	-42451.588	-44758.999	-42775.864
	aic	104700.93	84939.175	89537.999	85573.728
	bic	104784.19	85089.052	89621.263	85665.319

legend: * p<0.05; ** p<0.01; *** p<0.001

In terms of log-likelihood a higher value indicates a better fit. We can also use the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC) to compare models. For AIC and BIC, lower values indicate a better fit.

Thus, on strictly statistical grounds, the *ordinal* model would appear to provide the best fit, followed by the *negative binomial* model, the *Poisson* model, and the *OLS* model. However, we should note that the differences in fit between the *ordinal*, *negative binomial* and *Poisson* models are not exceptionally large. We would also worry that any differences in fit that we do see might be due to overfitting in this particular sample, or to capitalizing upon chance.

We need to balance these differences in fit against the fact that theoretically, a count data model seems more appropriate.

In this case, we would most likely choose to proceed with a count regression model.