

МІНІСТЕРСТВО ОСВІТИ ТА НАУКИ УКРАЇНИ НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ «КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ ІМЕНІ ІГОРЯ СІКОРСЬКОГО»

Методичні вказівки

до виконання курсової роботи з кредитного модуля «Паралельні та розподілені обчислення » для студентів ОКР бакалавр спеціальності 123 «Комп'ютерна інженерія»

Розробник: доцент, канд. техн. наук, доцент Корочкін О.В. (посада, вчена ступінь та звання П.І.Б.)

,	Затвердже	но на засід	данні кафедри
Протокол № _	від «_		2019 p.
		Завідува	ч кафедри ОТ
			Стіренко С.Г.
(підп	іис)		(прізвище, ініціали)

ЗАВДАННЯ НА КУРСОВУ РОБОТУ

Курсова робота (КР) по дисципліні «Паралельні та розподілені обчислення» (ПРО) включає дві частини.

Перша частина — виконання аналітичного огляду апаратних засобів сучасних паралельних комп'ютерних систем (ПКС) и програмних засобів, пов'язаних з організацією паралельних обчислень.

Друга частина – розробка двох програм (ПРГ1 та ПРГ2) для рішення заданої математичної задачі для паралельної комп'ютерної системи з загальною пам'яттю (ПКС ОП) та для паралельної комп'ютерної системи з локальною пам'яттю (ПКС ЛП).

Варіант завдання на КР (КП) включає

- завдання до виконання аналітичного огляду;
- математичну задачу (векторна-матричну операцію),
- структуру ПКС ОП;
- структуру ПКС ЛП;
- засоби для програмування процесів та організації їх взаємодії в ПРГ1;
- засоби для програмування процесів та організації їх взаємодії в ПРГ2.

СТРУКТУРА КУРСОВОЇ РАБОТИ (ПРОЕКТУ)

Обсяг КР 40 – 50 сторінок основного тексту без Додатків. Структура роботи, яка відображена в ЗМІСТ, представлена в Додатку А.

Зміст Розділу 1 визначається завданням на КР і відрізняється для кожного студента. Структура інших розділів буде ідентичною.

КР ϵ документом, який ϵ звітом з науково-дослідної роботи і оформлюється згідно державного стандарту ДСТУ 3008-95.

виконання курсової роботи

УВАГА!

Згідно календарного плану ТЗ (див. Додаток «КР. Оформлення») розділи КР надсилаються керівнику у <u>визначені строки</u> на пошту **2018PPOOPP**@GMAIL.COM

Розділи, що прислане пізніше вказаного строку, не розглядаються. Видається нове завдання на розділ. Також зніжується оцінка.

В темі письма ОБОВ'ЯЗКОВО слід вказати групу ПІБ, Розділ IB-72 Сидоров В.І. Розділ 1

Письмо без такої теми не розглядається!

КАЛЕНДАРНИЙ ПЛАН

No	Назва етапів виконання КР	Термін виконання етапів КР
3/П		
1	Виконання розділу 1	1.03.2020
2	Виконання розділу 2	23.03.2020
3	Виконання розділу 3	23.04.2020
4	Оформлення КР	10.05.2020
5	Здача КР керівнику	11.05.202 deadline!!
6	Перевірка КР викладачем	17.05.2020
7	Захист КР	18.05.2020

виконання курсової роботи

Розділ 1 (15 - 20 страніц).

На підставі літературних та Інтернет джерел виконується огляд програмного або апаратного забезпечення ПКС.

Забороняється використання тексту та малюнків, цілком взятих з джерелу. Треба переробити.

При цьому в тексті розділу 1 *обов'язкові* посилання на використані джерела, яки вказані у розділі СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ. Стиль викладання — діловий з використанням дієслів «показано», «запропоновано», «розроблено», «виконано» без слів «я, ми».

Літературні джерела (особливо це стосується Інтернет), як правило, не відповідають ДОСТ, тому їх треба спочатку редагувати, а не вставляти цілком у КР.

Висновки до розділу (3-4 висновки) оформлюються, наприклад, наступним чином :

- 1. Виконано аналіз засобів організації потоків в мові Ада. Показано, що вони базуються на використанні спеціального програмного модуля task, який дозволяє описати задачу або групу задач (задачний тип), встановить ім'я потоку, пріоритет, взаємодії з іншими потоками.....
- 2. Виконано огляд засобів взаємодії потоків в мові Ада через спільні змінні. Це – семафори, захищені модулі Показано що ,
- 3. Виконано аналіз засобів взаємодії потоків в мові Ада через посилку повідомлень. Показано що , що вини базуються
- 4. На основі аналізу, що виконано в розділі 1 можна зробити висновок, що мова Ада має розвінути засоби для

Розділи 2 і 3 (10 - 15 сторінок на кожен розділ).

На початку розділу наводиться структура ПКС (СП для Розділу 2 та ЛП для Розділу 3) з зазначенням процесорів, пристроїв введеннявиведення.

Виконується аналіз паралелізму заданої математичної задачі в рамках концепції необмеженого паралелізму, тобто визначається мінімальний час рішення задачі для необмеженої кількості процесорів.

Виконується розробка програм:

- для ПКС СП з назвою ПРГ1 (Розділ 2),
- для ПКС ЛП з назвою ПРГ2 (Розділ 3).

В подальшому в тексті використати ці назви ПРГ1 та ПРГ2.

В підрозділах описуються *всі кроки розробки програм* ПРГ1 (або ПРГ2 для Розділу 3) аналогічно тому, як це виконувалось в лабораторних роботах:

- розробка паралельного математичного алгоритму;
- розробка алгоритмів потоків;
- розробка схеми взаємодії потоків
- розробка програми ПРГ1 (або ПРГ2).

Схема взаємодії потоків виконується у вигляді рисунка на 1-2 сторінки. Наводиться її опис. Наприклад, структура захищеного модуля (монітору) відображається на рисунку (*Puc. 2.1 Схема взаємодії процесів для ПРГ1*) або (*Puc. 3.1 Схема взаємодії процесів для ПРГ2*), наводиться опис структури монітору с зазначенням кожного захищеного елемента і операції.

Лістинг програми розміщується в Додатку, а в підрозділах 2.4 (и 3.4) виконується опис програми: кількість та призначення кожного модулю (класу), їх структуру, призначення основних змінних і процедур і т.д. Лістинги програми вміщують «шапки», а також коментарі основних частин програми.

У підрозділах 2.5 (3.5) виконується опис результатів *тестування* програм ПРГ1 (або ПРГ2 в 3.5). Тестування пов'язано з визначенням часу виконання програми у реальної ПКС:

6—і ядерним процесором (оцінка A) Виконується в класі 515! 4-х ядерним процесором (оцінки E-B).

Позначення:

Т1 – час виконання програми в ПКС з одним ядром,

T2 – з двома,

T3 – з трьома і т. д,

Т6 – с шістьма.

Обираються три значення розміру векторів або матриць (N) і програми виконуються в ПКС с різними значеннями кількості ядер Р (от 1 до 4 або 6), для цього відключаються через Task Manager Windows ядра в процесорах. Вимір час виконання програми здійснюється *програмно*, за допомогою необхідних засобів роботі з часом (в мові Ада наприклад це — функція Clock), яка дозволяє зафіксувати текуче значення часу і через них - початок (Тпоч) і кінець роботи програми (Тзав) і потім розрахувати час виконання як Т вик = (Тзав – Т поч.).

Результати виміру часу відображаються у таблицях 2.1 і 3.1.

Оцінка А

Таблиця 2.1

Час виконання програми для ПРГ1

N	T1	T2	Т3	T4	Т5	T6
900	536	322	243	199	110	96
1800	• • •	•••	•••	• • •	• • •	•••
2400	•••	•••	•••	•••	•••	

Оцінки В-Е

Таблиця 2.1

Час виконання програми для ПРГ1

N	T1	T2	T3	T4
900	536	322	243	199
1800	•••	•••	•••	•••
2400	•••	•••	•••	•••

На основі даних з таблиць 2.1. і 3.1 виконуються обчислення значень коефіцієнтів прискорення (Ky = T1/T2, Ky= T1/T3, ... Ky = T1/T6), для таблиць 2.2 і 3.2.

<mark>Оцінка А</mark>

Таблиця 2.2

Значення	Кп ппа	ПРГ1
эначення	кид ил	111 1 1

N	T1	T2	Т3	T4	Т5	T6
900	1	1,8	2,7	3,6	4,8	5,5
1800	•••	•••	•••	•••	•••	•••
2400	•••	•••	•••	•••	•••	

Оцінки В-Е

Таблиця 2.2

Значення Кп для ПРГ1

N	Кількість процесорів (Р)			
	1	2	3	4
900	1	1,8	2,7	3,6
1800	•••			
2400	•••	•••	•••	•••

На основі даних з таблиць 2.2. і 3.2 виконуються обчислення значень коефіцієнтів ефективності (Ke= Ky/2 * 100%, Ke= Ky/3* 100%, , Ke = Ky/4* 100%), для таблиць 2.3 і 3.3.

<mark>Оцінка А</mark>

Таблиця 2.3

Значення Кп для ПРГ1

N	T1	T2	Т3	T4	T5	T6
900	100	91	90	90	96	91
1800	•••	•••	•••	•••	•••	•••
2400						

Оцінки В-Е

Таблиця 2.3

Значення Ке для ПРГ1

	Кількість процесорів (Р)			
N	1	2	3	4
900	100	88 91	93	96
1800	•••	•••	•••	•••
2400	•••	•••	•••	•••

На підставі таблиць 2.2 і 2.3 (3.2 і 3.3) будуються графіки поведінки Ку і Ке в залежності від N і Р для ПРГ1 і ПРГ2.

Рис. 2.4 Програма ПРГ1. Графік зміни коефіцієнту прискорення Кп в залежності від кількості ядер. Операція MA = MB*MC + MD*ME. N = 2400

В підрозділах 2.6 и 3.6 надаються висновки по результатам досліджень об ефективності виконання програм в ПКС. Наприклад:

2.6 Висновки до розділу 1

Виконано розробку програми ПРГ1 з використанням мови Ада і засобів синхронізації з бібліотеки WinAPI. Тестування програми показало наступне:

- використання багатоядерної ПКС та програми ПРГ1 забезпечує скорочення часу обчислення заданої математичної задачі. Значення Кп лежать в межах.....;
- максимальне значення Kn забезпечу ε ΠKC з P=... $ma\ N=...$;
- мінімальне значення Кп...
- *з ростом N зміна Ку*......
-
-

В розділі ОСНОВНІ РЕЗУЛЬТАТИ І ВИСНОВКИ ДО РОБОТИ надаються загальні висновки: по одному на кожний розділ (4-5), а також висновок що до порівняння ефективності програм ПРГ1 і ПРГ2.

В розділі СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ наводиться в алфавитному порядку список джерел (літературних і з Інтернету) (10-15 джерел!). Джерела оформлюються згідно ДОСТ! (http://yak.vlynko.com/wp-content/uploads/2013/01/diplom_mag.pdf)

В розділі ДОДАТКИ наводяться згідно ДОСТ и ЄСПД (http://library.tneu.edu.ua/files/EVD/m_okl_algmet.pdf) схеми алгоритмів і структури ПКС (графічний матеріал):

- 1. Схеми алгоритмів кожного потоку для ПРГ1, ПРГ2 (4-6 по кількості процесорів)
- 2. Схеми алгоритмів головної програми з виказанням паралельних ділянок для ПРГ1 і ПРГ2
 - 5. Структурна схема ПКС СП
 - 6. Структурна схема ПКС ЛП

ОФОРМЛЕННЯ КУРСОВОЇ РОБОТИ

КР оформлюється згідно ДОСТ. Шрифт Times New Roman 14, інтервал полуторний - дотримуватися всюди, також робити відступи в нових абзацах та вирівнювання по ширині.

Розділи курсової роботи

Титульний лист

Лист технічного завдання

Зміст

Вступ

Розділ 1

Розділ 2

Розділ 3

Висновки по роботі

Список джерел

Додатки

Схеми взаємодії потоків для ПРГ1 і ПРГ2 не ε документами ДОСТ, тому вони оформляються як малюнки в пояснювальної записці КР.

ВАРІАНТИ ЗАВДАНЬ НА КУРСОВУ РОБОТУ

Варіанти завдань для розділу 1

Варіант	Завдання
1	Огляд засобів роботи з потоками в мові Ада
2	Огляд засобів роботи з потоками в мові Java
3	Огляд засобів роботи з потоками в мові С#
4	Огляд засобів роботи з потоками в бібліотеці WinAPI
5	Огляд засобів роботи з потоками в бібліотеці МРІ
6	Огляд засобів роботи з потоками в бібліотеці OpenMP
7	Огляд засобів роботи з потоками в мові Python
8	Огляд засобів роботи з потоками в бібліотеці POSIX
9	Порівняння реалізації механізму семафорів секції в мовах і
	бібліотеках паралельного програмування
10	Порівняння реалізації механізму моніторів секції в мовах і
	бібліотеках паралельного програмування
11	Порівняння реалізації механізму атомік - змінних секції в
	мовах і бібліотеках паралельного програмування
12	Огляд шести ядерних процесорів компанії АМД
13	Огляд чотирьох ядерних процесорів компанії АМД
14	Огляд чотирьох ядерних процесорів компанії Intel
15	Огляд засобів роботи з потоками в бібліотеках Ада и Java
16	Огляд дванадцяти ядерних процесорів компанії АМД
17	Огляд восьми ядерних процесорів компанії Intel
18	Огляд засобів роботи з потоками в бібліотеках WinAPI і С#
19	Огляд засобів роботи з потоками в бібліотеці PVM
20	Трансп'ютери. Огляд засобів роботи з потоками в мові
	Оккам
21	Потоки в сучасних мовах паралельного програмування
22	Потоки в сучасних бібліотеках паралельного програмування
23	Огляд засобів роботи з потоками в бібліотеках WinAPI і
	POSIX
24	Огляд засобів роботи з потоками в бібліотеках PVM и MPI
25	Порівняння реалізації механізму «критичні секції в мовах і
	бібліотеках паралельного програмування
26	Огляд 8-і ядерних процесорів компанії АМД
27	Огляд і порівняння чотирьох ядерних процесорів компаній
	AMД i Intel
28	Огляд і порівняння шести ядерних процесорів компаній АМД
	та Intel