Time Series
Midterm project

Sven Bergmann

03/12/24

Part 1

1.

I am expecting a somewhat clear upward trend due to the increase in the population. Also, there could be a seasonal trend, such that the retail sales are higher on special holidays. Since the Brexit was later than 2007, I am not expecting a big sink somewhere in the graph.

```
library(TSA)
library(tseries)

data(retail)
plot(retail, xlab = expression("Time"), ylab = expression("Retail sales"),
    main = expression("Time Series Plot of Retail sales"))
points(retail, pch = as.vector(season(retail)))
```

Time Series Plot of Retail sales

Seeing the actual graph, I can confirm the upward trend and also a very strong seasonal behaviour. I clearly expected more holidays to be that present as christmas. There surely is a really strong seasonal behaviour due to christmas. This means that the sales are going up starting November each year and reach the peak in December before dropping again.

2.

I would try a seasonal ARIMA model, given the upward trend and the potential seasonality.

```
model <- forecast::auto.arima(retail, seasonal = TRUE)
summary(model)</pre>
```

```
## Series: retail
  ARIMA(1,0,4)(0,1,1)[12] with drift
##
##
##
   Coefficients:
##
                                                                drift
            ar1
                      ma1
                               ma2
                                       ma3
                                                ma4
                                                         sma1
##
         0.8469
                  -0.5939
                           0.0504
                                    0.0878
                                             0.1742
                                                      -0.0966
                                                               0.3083
         0.0533
                   0.0788
                           0.0740
                                    0.0772
                                             0.0756
                                                               0.0405
##
                                                      0.0631
##
                      log likelihood = -491.04
## sigma^2 = 3.413:
## AIC=998.07
                 AICc=998.69
                                BIC=1026.02
##
## Training set error measures:
                             ME
                                    RMSE
                                               MAE
                                                           MPE
                                                                   MAPE
                                                                              MASE
##
```

```
## Training set -0.0003999956 1.777353 1.287341 -0.1007814 1.485438 0.3327206
## ACF1
## Training set 0.00339952
```

Model type and coefficients

Looking at the summary, we are given an ARIMA model with p=1, d=0, q=4, where q is the autoregressive order with the coefficient $ar_1=0.8469$, also known as the lag order. d is the number of differences we take, which is 0, so that indicates that the data is already stationary. And q is the order of the moving average process, where the coefficients are $ma_1=-0.5939$, $ma_2=0.0504$, $ma_3=0.0878$, $ma_4=0.1742$. Speaking in a sentence, we have a first order degree autoregressive model with zero order of differencing and a fourth order moving average model. That was for the non-seasonal part. For the seasonal part, we have p=0, d=1, q=1, where p, d and q are exactly as above. The number 12 in brackets just states the number of seasons (here: months).

\mathbf{Fit}

We have some values to rate the model fit, which are

$$\sigma^2 = 3.413,$$
 $\log \text{likelihood} = -491.04,$
 $AIC = 998.07,$
 $AICc = 998.69,$
 $BIC = 1026.02.$

Here, we can just look at AIC and BIC which suggest a reasonable choice based on model complexity vs fit. The other values are basically for forecasting reasons.

3.

Time Series Plot of Residuals

The plot of the residuals is kind of displaying the seasonal/periodic behaviour.

```
par(mfrow = c(1, 2))
qqnorm(res, main = "Normal Probability Plot vs \n Residuals Fit")
abline(a = 0, b = 1, col = "red")
hist(res, xlab = "Residual", main = "Histogram of Residuals")
```

Normal Probability Plot vs Residuals Fit

Histogram of Residuals

The residuals look like they are normally distributed, indicating a good model fit.

shapiro.test(res)

```
##
## Shapiro-Wilk normality test
##
## data: res
## W = 0.97597, p-value = 0.0002613
```

Since the p-value of the Shapiro-Wilk test is also really low, we can say that they are normally distributed.

```
acf(res, main = "Autocorrelation Plot of Residuals")
```

Autocorrelation Plot of Residuals

Since there are just some "spikes" which are not at all big, the chosen model seems to capture the time-series pretty well. Also, no value is outside of the confidence interval.

Part 2

```
data <- as.ts(read.delim(file = "../homework/MidtermPt2.txt",
    header = TRUE, sep = " "))
plot(data, main = "Original Series")</pre>
```

Original Series


```
adf_test <- adf.test(data)
print(adf_test)

##

## Augmented Dickey-Fuller Test
##

## data: data
## Dickey-Fuller = -2.2725, Lag order = 4, p-value = 0.4637

## alternative hypothesis: stationary

d_data <- diff(data)
plot(d_data, main = "Differenced Series")</pre>
```

Differenced Series


```
adf_test <- adf.test(d_data)
## Warning in adf.test(d_data): p-value smaller than printed p-value

print(adf_test)

##
## Augmented Dickey-Fuller Test
##
## data: d_data
## Dickey-Fuller = -4.0875, Lag order = 4, p-value = 0.01
## alternative hypothesis: stationary

log_data <- log(data)

## Warning in log(data): NaNs produced

plot(log_data, main = "Log Transformed Series")</pre>
```

Log Transformed Series


```
# adf_test <- adf.test(log_data) print(adf_test)</pre>
model <- forecast::auto.arima(d_data)</pre>
summary(model)
## Series: d_data
## ARIMA(0,0,0) with zero mean
## sigma^2 = 3.94: log likelihood = -210.45
## AIC=422.91
               AICc=422.95
                               BIC=425.51
## Training set error measures:
##
                                  {\tt RMSE}
                                            MAE MPE MAPE
                                                                           ACF1
                          ME
                                                                MASE
## Training set -0.05495792 1.984958 1.589698 100 100 0.7621968 0.06560549
# model <- forecast::auto.arima(log_data) summary(model)</pre>
model <- forecast::auto.arima(data)</pre>
summary(model)
## Series: data
## ARIMA(2,0,1) with zero mean
## Coefficients:
```

```
## ar1 ar2 ma1
## 1.8705 -0.8893 -0.8441
## s.e. 0.1036 0.0944 0.1535
##
## sigma^2 = 3.72: log likelihood = -209.37
## AIC=426.75 AICc=427.16 BIC=437.21
##
## Training set error measures:
## Training set -0.1121809 1.899798 1.518746 15.07285 141.2535 0.9553675
## Training set -0.03684619
```