BM 305 Biçimsel Diller ve Otomatlar (Formal Languages and Automata)

Hazırlayan: M.Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü

Deterministic Finite Automata

- Bir finite automaton(automata çoğul) sabit ve sonlu kapasiteye sahip bir merkezi işlem ünitesine sahiptir
- Giriş bilgisini string olarak bir input tape üzerinden alır.
- Bir çıkış üretmez, giriş bilgisinin kabul edilip edilmediğini gösterir.
- Language recognition device (dil tanıyıcı cihaz) olarak işlem yapar.
- Compiler'da lexical analysis(begin, +, for gibi program birimleri belirlenir) aşamasında kullanılır.
- Protokol tanımlamalarında kullanılır.

- Giriş bilgisi input tape üzerinden string olarak elde edilir.
- Makinenin ana kısmı "black box" tır ve sonlu sayıda farklı duruma sahiptir.
- Bu black box finite control olarak adlandırılır ve hareketli reading head(okuma kafası) ile input tape üzerinde herhangi bir pozisyonda bulunan sembolü algılar.
- Başlangıçta okuma kafası en soldaki kare üzerinde bulunur ve finite control initial state(başlangıç durumu) durumundadır.

- Automaton her seferinde input tape'ten bir sembol okur ve yeni bir duruma geçer.
- Yeni duruma geçme sadece ve sadece mevcut durum ile okunan sembole bağlıdır !!!
- Bu yüzden deterministic finite automaton(DFA)'dur.
- Her okumadan sonra okuma kafası bir sağa geçer ve string sonuna kadar okuma devam eder.
- Eğer string bittiğinde DFA final state(s) (sonuç durumları)' lerden birisinde ise bu string kabul edilir.
- Bu DFA tarafından kabul edilen dil, kabul edilen stringler kümesidir.

Definition:

Bir DFA quintuple olarak tanımlanır. $M = (K, \Sigma, \delta, s, F)$

K sonlu sayıda durumlar kümesi

 Σ alfabe

 δ transition function (geçiş fonksiyonu) $K \times \Sigma$ dan K' ya

 $s \in K$ başlangıç durumu (sadece bir tane)

 $F \subseteq K$ final state(s) kümesi

- *M* otomatının sonraki duruma geçişi transition function ile belirlenir.
- Eğer M otomatı $q \in K$ durumunda iken input tape'ten $a \in \Sigma$ okumuşsa, $\delta(q, a) \in K$ unique (tek) durumuna geçer.

Deterministic Finite Automata

Örnek

M bir DFA ve M = $(K, \Sigma, \delta, s, F)$ *şeklinde tanımlanmıştır.*

$$K = \{q_0, q_1\}, \qquad q \qquad \sigma \qquad \delta(q, \sigma)$$

$$\Sigma = \{a, b\}, \qquad q_0 \qquad a \qquad q_0$$

$$S = q_0 \qquad q_0 \qquad b \qquad q_1$$

$$F = \{q_0\} \qquad q_1 \qquad a \qquad q_1$$

$$q_1 \qquad b \qquad q_0$$

L(M) içerisinde çift sayıda b bulunduran tüm stringlerin kümesidir.

- Configuration, otomatın herhangi bir andaki durumu ile input tape'te sağ kısımdaki string'i(okunmamış) ifade eder.
- Configuration $K \times \Sigma^*$ 'ın bir elemanıdır. Aşağıdaki otomat için konfigürasyon $(q_2, ababab)$ 'dir.

Deterministic Finite Automata

- (q, w) ve (q', w') ardarda iki konfigürasyon ise $(q, w) \mid_{M} (q', w')$ şeklinde belirtilir.
 - burada w = aw', $a \in \Sigma$ ve $\delta(q, a) = q'$ olmak zorundadır.
- $\vdash_{\mathbf{M}}$ fonksiyonu $K \times \Sigma^+$ 'dan $K \times \Sigma^*$ 'ya bir fonksiyondur.
- (q, e) konfigürasyonu giriş string'inin sonunu gösterir ve otomat işlemini bitirir.
- \downarrow_M fonksiyonunun reflexive, transitive closure'u \downarrow_M şeklinde tanımlanır.
- Bir string $w \in \Sigma^*$ kabul edilir, eğer sadece ve sadece (s, w) $\downarrow^*_{\mathsf{M}}(q, e)$ ve $q \in F$ ise
- Sonuç olarak bir M otomatı tarafından tanınan dil L(M) olarak gösterilir ve tüm kabul edilen string'ler kümesidir.

Örnek:

M bir DFA ve $M = (K, \Sigma, \delta, s, F)$ şeklinde tanımlanmıştır.

$$K = \{q_0, q_1\}, \\ \Sigma = \{a, b\}, \\ s = q_0 \\ F = \{q_0\}$$

$$q_0 \quad a \quad q_0 \\ q_0 \quad b \quad q_1 \\ q_1 \quad a \quad q_1 \\ q_1 \quad b \quad q_0$$

L(M) içerisinde çift sayıda b bulunduran tüm stringlerin kümesidir.

$$(q_0, aabba) \vdash_M (q_0, abba)$$
$$\vdash_M (q_0, bba)$$
$$\vdash_M (q_1, ba)$$
$$\vdash_M (q_0, a)$$
$$\vdash_M (q_0, e)$$

 $(q_0, aabba) \models^*_M (q_0, e)$ olduğu için aabba M tarafından kabul edilir.

Deterministic Finite Automata

M bir DFA ve M = $(K, \Sigma, \delta, s, F)$ *şeklinde tanımlanmıştır. M otomatı* $L(M) = \{w \in \{a, b\}^* : w \text{ ardarda } \ddot{u}_c \text{ tane } b \text{ bulundurmaz}\} \text{ dilini tanır.}$

$$K = \{q_0, q_1, q_2, q_3\},\$$

$$\Sigma = \{a, b\},\$$

$$s = q_0$$

$$F = \{q_0, q_1, q_2\}$$

q	σ	$\delta(q, \sigma)$
q_{0}	a	q_{0}
q_0	b	q_I
q_{I}	a	q_{0}
q_1	b	q_2
q_2	a	q_0
q_2	b	q_3
q_3	a	q_3
q_3	b	q_3

burada q_3 dead state olarak adlandırılır.

Örnek:

Aşağıdaki otomatın tanıdığı dili regular expression ile ifade ediniz.

Deterministic Finite Automata

Örnek:

 $L(M) = \{w \in \{a, b\}^* : w \text{ içerisinde aaabbb substring'i bulunur}\}$

- Deterministic finite-state transducer, giriş string'ini çıkış string'ine çeviren bir sonlu otomattır.
- Transducer her durum geçişinde output tape üzerine bir sembol, boş sembol veya string yazar.
- *a/w* girişten *a* okur ve çıkışta *w* yazar.

• Yukarıdaki otomat bütün *b*'leri geçer ve her iki *a*'dan ikincisinin yerine *e* yazar.

Deterministic Finite Automata

 Deterministic finite-state transducer, moore ve mealy makinesi olarak iki türdedir.

Moore makinesi

Giriş a b b a a a b b

Durum
$$q_0 \longrightarrow q_1 \longrightarrow q_2 \longrightarrow q_2 \longrightarrow q_0 \longrightarrow q_1 \longrightarrow q_1 \longrightarrow q_2$$

Çıkış a b a a a b b a

Mealy makinesi

Giriş
$$a$$
 b b a a a b

Durum $q_0 \longrightarrow q_1 \longrightarrow q_2 \longrightarrow q_2 \longrightarrow q_0 \longrightarrow q_1 \longrightarrow q_1 \longrightarrow q_2$

Çıkış a b a b a b b

Deterministic Finite Automata

Örnek: (2.1.4.a(i))

• *w* giriş için *a*ⁿ üreten transducer durum çizeneğini oluşturunuz. *n* sayısı *a*'nın tekrar sayısını gösterir ve *w* içinde *ab* substring'inin sayısına eşittir.

Hangi girişler için hatalı çıkış üretir?

Örnek: (2.1.4.a(ii))

• *w* giriş için *a*ⁿ üreten transducer durumu çizeneğini oluşturunuz. *n* sayısı *a*'nın tekrar sayısını gösterir ve *w* içinde *aba* substring'inin sayısına eşittir.

Hangi giriş için hatalı çıkış üretir?

Deterministic Finite Automata

- Deterministic 2-tape finite automaton, string çiftlerini kabul eden ve iki girişe sahip olan sonlu otomattır.
- Transition function 1.tape ve 2.tape için ayrı ayrı tanımlıdır.

• $(w_1, w_2) \in \{a, b\}^* \times \{a, b\}^*$ stringlerini $|w_2| \ge 2 |w_1|$ olması koşuluyla kabul eder.

Örnek:

Bir 2-tape sonlu otomat, tüm $(w_1, w_2) \in \{a, b\}^* \times \{a, b\}^*$ string çiftlerini $|w_1| \le |w_2|$ olması ve tüm i'ler için $w_1(i) \ne w_2(i)$ olması koşuluyla kabul eder.

Deterministic Finite Automata

Örnek:

Bir 2-tape sonlu otomat, tüm $(w_1, w_2) \in \{a, b\}^* \times \{a, b\}^*$ string çiftlerini $|w_2|$ değerinin, w_1 içindeki a sayısının iki katı artı b sayısının üç katına eşit veya büyük olması koşuluyla kabul eder.

Ödev

Problemleri çözünüz 2.1.2, 2.1.3, 2.1.7 (sayfa 60-63)