

Project Name - Anemia Sense: Leveraging Machine Learning For Precise Anemia Recognitions

Team ID: SWTID1720080033
Final Project Report

1.Introduction

1.1 Project Overview

Millions of people throughout the world suffer from anaemia, this is characterized as the lack of red blood cells or haemoglobin. If left untreated, anaemia can have major negative effects on health. In order to help healthcare providers identify anaemia and enable earlier intervention and better patient outcomes, the project intends to create a dependable, effective, and easily available diagnostic tool by utilising machine learning.

1.2 Objectives

The principal aim of this project is to create a machine learning model that can precisely identify anaemia in patients by utilising medical data.

Scope of the Project:

• Data Collection from Kaggle:

Make use of a dataset that contains information on gender, haemoglobin levels, MCHC, MCV, and test results.

Data preprocessing and cleaning:

To deal with missing values, remove outliers, and guarantee consistency, clean up the data. If needed, normalise or standardise the data to get it ready for analysis.

Model Building:

Investigate and put into practice different machine learning methods, including Support Vector Machines, Random forests, Logistic Regression, Decision Trees, and Naïve Bayes.

Validation and Training of Models:

Utilise a dataset to train the chosen model. To maximise performance, cross-validate the models and adjust the hyper-parameters, if needed.

• Web Development and Deployment:

Create an intuitive user interface using Flask frameworks. Make sure the interface enables efficient patient data entry and diagnostic result delivery for healthcare practitioners.

Anticipated Advantages:

- Early Detection
- Enhanced Accessibility
- Efficiency
- Scalability

2. Project Initialization and Planning Phase

2.1. Define Problem Statement

Problem Statement (PS)	I am (Customer)	I'm trying to	But	Because	Which makes me feel
I am a patient who frequently experience fatigue and weakness.	Worried if these symptoms might be due to anemia.	Get an accurate diagnosis to understand what's going on in my body and start treatments if required.	Getting an appointment with the doctor, getting the tests done and waiting for results would take more time.	I have limited access to healthcare facilities since a I stay far away from such locations.	Frustrated and worried about the health issues I might get if not checked and diagnosed well in advance
I am a product manager at a healthcare technology company.	Focused on developing medicine-related innovations that could improve diagnosis and accuracy.	Create an efficient and reliable tool that can sense anemia and can be easily adopted in healthcare providing centres.	Present solutions are either costly or inefficient	There is a need for an accessible and accurate tool that can diagnose and be used in various health care settings.	Challenged by the technical and market demands, but working with the aim to develop a solution that could essentially solve the problems

Problem Statement:

I am a primary care physician in a community health clinic.

2.2. Project Proposal (Proposed Solution)

Project Overview	J
Objective	This project's main goal is to create a machine learning model that, given certain parameters and medical data, can correctly diagnose anaemia in patients. Themodel aims to assist healthcare professionalsin early diagnosis and management of anemia by providing a reliable and efficient tool for analysing patients.
Scope	 Collect blood testdata from reliable sources such as Kaggle. Pre-Processingand Data cleaning Identify and selectthe most relevant features that contribute toanemia detection. Explore and select suitable machine learning algorithms for classification Test the modelwith a separate validation dataset to ensure it generalizes well to unseen data. Develop a user-friendly web application for healthcare professionals to input patient data and receive anemia diagnosis results. Maintain comprehensive documentation throughout the project, including data sources, preprocessing steps, model development, evaluation metrics, and deployment procedures. Boundaries: The project will focus solely on anemia detection and will notextend to diagnosing other blood disorders. The model will use a predefined set of blood parameters andwill not incorporate additional tests or patient history. The deployment will be limited to a software tool without hardware integration.

Problem Statement	
Description	Anemia is a common blood disorder characterized by a deficiency of red blood cellsor hemoglobin, leading to reduced oxygentransport inthe body. It affects millions of people worldwide, causing fatigue, weakness, and other health complications. Early detection and diagnosis of anemia are crucial for effective management and treatment. Traditional diagnostic methods often require multiple laboratory tests and can be time-consuming. With machine learning, there is an opportunity to develop an automated, efficient, and accurate tool to assist healthcare professionals in diagnosing anemia usingreadily available blood parameters.
Impact	 A reliable andaccurate machine learning model for anemiadetection. Improve patient diagnosis and management of anemia. Streamline the process of detecting anemia by reducing dependency on traditional medical practices. An easy-to-use interface for healthcare professionals. Lower overall healthcare costs associated withmanaginganemia-related complications.
Proposed Solution	
Approach	 Obtain data fromKaggle and other reliable sources Handle imbalanced data to createa robust model which is notbiased. Visualize the data in order to find correlation among thefeatures. Evaluate various algorithms suitable for the task (Linear Regression, decision trees, random forests, Naïve Bayes, support vector machines, Gradient Boosting). Assess and choose the best model in-order to provide the most accurate results. Create a webapplication using flaskand integrate themodel.
Key Features	Utilizes machine learning algorithms to accurately detect anemia basedon comprehensive analysis of blood parameters.

- Identifies and leverages crucial blood parameters (e.g., hemoglobin levels) specifically relevant to anemia detection.
- Provides detailed reports and visualizations to users, communicating findings, methodology, and insights effectively.
- Web Application allowing users to themselves to enter theirdata and check if they are anemic or not.

2.2. Project Proposal (Proposed Solution)

Resource Requirements

Resource Type	Description	Specification/Allocation					
Hardware							
Computing Resources	CPU specifications, number of cores	Intel(R) Core(TM) i5- 10210UCPU @ 1.60GHz, 2112 Mhz, 4 Core(s) 8					
Memory	RAM specifications	8 GB					
Storage	Disk spacefor data, models,and logs	500 GB SSD					
Software							
Frameworks	Python frameworks	Flask					
Libraries	Additional libraries	sklearn, pandas, numpy, pickle,					
Development Environment	IDE, version control	Jupyter Notebook, Git					
Data							
Data	Kaggle, 34KB,CSV	Kaggle dataset – 1421dataentries					

2.3. Initial Project Planning

Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members	Sprint Start Date	Sprint End Date (Planned)
Data Collection and Preprocessing	USN-1	Collect and clean datasets	1,2	Medium	Manas <u>Gunti</u> Ashish David John Rajashri S Vishnu Adithya C	8 th July,2024	8 th July,2024
Model Development and valuation	USN-2	Develop and train ML models	1,2	High	Manas <u>Gunti</u> Ashish David John Rajashri S Vishnu Adithya C	8 th July,2024	8 th July,2024
Model selection and tuning	USN-3	Evaluate model performance to validate and tune the best model	1,2	High	Manas Gunti Ashish David John Rajashri S Vishnu Adithya C	8 th July,2024	8 th July,2024

Functional Requirement	User Story Number	User Story / Task	Story Points	Priority	Team Members	Sprint Start	Sprint End Date
(Epic)						Date	(Planned)
Frontend	USN-4	Integrate model predictions into	1,2	Medium	Manas Gunti	9т	9th
development		frontend			Ashish David	July,2024	July,2024
					John		
					Rajashri S		
					Vishnu Adithya C		
Deployment	USN-5	Deploy model using Flask	1,2	Medium	Manas Gunti	9 th	9 th
using Flask					Ashish David	July,2024	July,2024
					John		
					Rajashri S		
					Vishnu Adithya C		
Final Report	USN-6	Compile the final report	-	Medium	Manas Gunti	10 th	10 th
					Ashish David	July,2024	July,2024
					John		
					Rajashri S		
					Vishnu Adithya C		
Video	USN-7	A video demonstrating the	-	Medium	Manas Gunti	11 th	11 th
Demonstration		project from the beginning till			Ashish David	July,2024	July,2024
		the end.			John		
					Rajashri S		
					Vishnu Adithya C		

3. Data Collection and Preprocessing Phase

3.1 Data Collection Plan and Raw Data Sources Identified

Data Collection Plan:

Section	Description
	The Anemia Sense project is a model designed to leverage
	machine learning algorithms to accurately predict cases of
	anemia, a condition characterized by the deficiency of RBCs
	or hemoglobin inthe blood, when given a set of relevant
Project Overview	data. By predicting such a condition, diagnosis, treatment
	plans andoverall monitoring canbecome more effective and
	efficient.
	The Determinate of the make walls come
Data Collection Plan	The Datawill be collected fromkaggle.com.
Raw Data Sources	Anemia.csv – kaggle dataset that holds fields such as
Identified	Gender, Hemoglobin, MCH, MCHC, MCV and
	dependent field Result

Raw Data Sources:

Souce Name	Description	Location/URL	Format	Size	Access Permissions
	The kaggle dataset	https://drive.go			
Dataset 1	on anemia patients	og			
(Anemia.csv)	containing relevant	le.com/file/d/1K			
	data points and	MJFNFGwoaQo			
	correct	AouIPabMEHc	CSV	34 KB	Public
	classifications.	T1			
		bvqEXau/view?			
		usp=sharing			

3.2 Data Quality Report

Data Souce	Data Quality Issue	Severity	Resolution Plan
Dataset provided in skill wallet	There were no nullvalues or anyoutliers in the dataset. However,the dataset had unequal gender data entries. This difference in the data of the male and female gender may cause biased results.	Moderate	Handling the imbalanced valuesby undersampling the majority class to be equal to the minorityclass.

3.3 Data Exploration and Preprocessing

Section	Desc	Description							
		Gender	Hemoglobin	МСН	МСНС	MCV	Result		
	count	1240.000000	1240.000000	1240.000000	1240.000000	1240.000000	1240.000000		
Data Overview	mean	0.540323	13.218145	22.903952	30.277984	85.620968	0.500000		
	std	0.498573	1.976190	3.993624	1.394515	9.673794	0.500202		
	min	0.000000	6.600000	16.000000	27.800000	69.400000	0.000000		
	25%	0.000000	11.500000	19.400000	29.100000	77.300000	0.000000		
	50%	1.000000	13.000000	22.700000	30.400000	85.300000	0.500000		
	75%	1.000000	14.900000	26.200000	31.500000	94.225000	1.000000		
	max	1.000000	16.900000	30.000000	32.500000	101.600000	1.000000		

Outliers and Anomalies	NIL
------------------------	-----

Data Preprocessing Code Screenshots				
Loading Data	<pre>df=pd.read_csv('anemia.csv') [2]: df=pd.read_csv('anemia.csv')</pre>			
Handling Missing Data	df.isnull().sum() [8]: df.isnull().sum() [8]: Gender 0 Hemoglobin 0 MCH 0 MCH 0 MCHC 0 MCV 0 Result 0 dtype: int64			
Data Transformation	NIL			
Feature Engineering	NIL			

Save Processed Data	NIL

4.Model Development Phase

4.1 Feature Selection Report

Feature	Description	Selected (Yes/No)	Reasoning
Hemoglobin	Hemoglobin is a protein in red blood cells that carries oxygen	Yes	Anemia is diagnosed whena blood test shows a hemoglobin valueof less than 13.5 gm/dlin a man or lessthan 12.0 gm/dl in a woman
MCH (Mean corpuscular hemoglobi n)	mean corpuscular hemoglobin, which is a measurement of the average amount of hemoglobin in red blood cells	Yes	High or low numbers may indicate a vitamin deficiency or certain typesof anemia.
MCHC (Mean corpuscular	A blood test that measures the average amount of hemoglobin in	Yes	The MCHC value is used to evaluate the severity and cause of anemia.
hemoglobi n concentrati on)	red blood cells (RBCs) in relation to the cell's volume, (Concentration)	Yes	Hemoglobin is a important indicator of anemia

MCV (Mean corpuscular volume)	blood test that measures the average size of red blood cells (RBCs) in a blood sample	Yes Yes	MCV blood test can help your healthcare provider determine if you have anemia, liver disease or other conditions.
Gender	Sex of the Patient	Yes	Measurement standards to diagnose anemia are gender-dependent.

4.2 Model Selection Report

multiple trees.

Model Logistic Regression Model	Description Logistic regression is used for predicting the categorical dependent variable using a given set of independent variables. It can be either Yes or No, 0 or 1, true or False, etc. but instead of giving the exact value as 0 and 1, it gives the probabilistic values which lie between 0 and 1.	Hyperparameters None, as the accuracy of the model was 100% without hyperparameters	Performance Metric (e.g.,
Random Forest Model	Random Forest Model's algorithm is a classifier that contains a number of decision trees on various subsets of the given dataset and takes the average to improve the predictive accuracy of that dataset. It improves the accuracy and controls overfitting by combining	None, as the accuracy of the model was 100% without hyperparameters	Accuracy Score of Random Forest Model: 1.0 precision recall f1-score support 9 1.09 1.09 1.09 1.09 118 accuracy 1.00 1.00 1.00 285 macro avg 1.00 1.00 1.00 285 weighted avg 1.00 1.00 1.00 285

	SVM is a powerful classification algorithm that works by finding		Before H	of SVM Mod	el: 0.990	64912280701	1754
SVM Model	the hyperplane that best separates the data into classes. It uses support vectors, the data points closest to the hyperplane, and aims to	permagnid = ('C1 (0.1, 1, 10, 100), 'C1 (0.1, 1, 10, 100), 'servel'1 ('librar', 'poby', 'rest', 'signals'), 'depret'1 (2.3, 4), 'quam'1 ('scale', 'sate'), 'quam'1 ('scale', 'sate'),)	0 1 accuracy macro avg weighted avg	1.00 0.99 1.00 1.00	0.99 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00	167 118 285 285 285
	maximize the margin between the classes.		After Hyp The Best hyperparameters for accuracy_score of 50% 1.8				

Gradient Boosting Classifier Model n c p it	An ensemble technique where multiple weak models (typically decision trees) are built sequentially, with each new model attempting to correct errors made by its predecessors. It's known for its effectiveness in predictive modeling and achieving high accuracy.	None, as the accuracy of the model was 100% without hyperparameters	accurecy_sconclassification 0 1 accuracy sacro avg weighted avg				r Model: ; support 167 118 285 285 285	1.0
--	---	---	--	--	--	--	--	-----

4.3 Initial Model Training Code, Model Validation and Evaluation Report

Initial Model Training Code:

Splitting Data Into Train and Test

```
from sklearn.model_selection import train_test_split

x_train,x_test,y_train,y_test=train_test_split(X,Y,test_size=0.2,random_state=20)

print(x_train.shape)

print(x_test.shape)

print(y_train.shape)

print(y_test.shape)
```

Logistic Regression

 $from \ sklearn. linear_model \ import \ Logistic Regression$

from sklearn.metrics import accuracy score

from sklearn.metrics import classification_report

from sklearn.metrics import accuracy_score, classification_report, confusion_matrix

logistic_regression=LogisticRegression()

logistic_regression.fit(x_train,y_train)

pred=logistic_regression.predict(x_test)

pred

```
acc_lr=accuracy_score(y_test,pred)
confusion_matrix(y_test,pred)
acc_lr=accuracy_score(y_test,pred)
c_lr=classification_report(y_test,pred)
print('Accuracy Score: ',acc_lr)
print(c_lr)
```

Random Forest Model

```
from sklearn.ensemble import RandomForestClassifier

rf=RandomForestClassifier(n_estimators=10,criterion='entropy',random_state=0)

rf.fit(x_train,y_train)

pred=rf.predict(x_test)

pred

y_test

from sklearn.metrics import accuracy_score,confusion_matrix,classification_report

acc_rf=accuracy_score(y_test,pred)

conmat=confusion_matrix(y_test,pred)

print(acc_rf)

print(conmat)

c_rf=classification_report(y_test,pred)

c_rf
```

Decision tree

```
from sklearn.tree import DecisionTreeClassifier

from sklearn.metrics import accuracy_score, confusion_matrix, classification_report

decision_tree_model = DecisionTreeClassifier()

decision_tree_model.fit(x_train, y_train)

y_pred = decision_tree_model.predict(x_test)
```

```
y_pred
y test
acc_dt = accuracy_score(y_test, y_pred)
acc dt
conmat = confusion_matrix(y_test, y_pred)
conmat
c_dt = classification_report(y_test, y_pred)
print(c_dt)
Naive Bayes Model
from sklearn.naive bayes import GaussianNB
nb = GaussianNB()
nb.fit(x train,y train)
pred = nb.predict(x test)
acc_nb=accuracy_score(pred,y_test)
c_nb=classification_report(pred,y_test)
print("Accuracy Score: ",acc nb)
print(c_nb)
Support Vector Machine
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
from sklearn import metrics
st x= StandardScaler()
x train= st x.fit transform(x train)
x_test= st_x.transform(x_test)
```

support vector=SVC()

```
support_vector.fit(x_train,y_train)
y_pred=support_vector.predict(x_test)
acc_svc=metrics.accuracy_score(y_test,y_pred)
c_svc=metrics.classification_report(y_test,y_pred)
print("accuracy score: ",acc svc)
print("classification_report: ")
print(c_svc)
Gradient Boosting Classifier
from sklearn.ensemble import GradientBoostingClassifier
GBC= GradientBoostingClassifier()
GBC.fit(x_train,y_train)
y pred2=GBC.predict(x test)
acc gbc=metrics.accuracy score(y test,y pred2)
c_gbc=metrics.classification_report(y_test,y_pred2)
print("accuracy_score: ",acc_gbc)
print("classification report: ")
print(c_gbc)
```

Model Validation Report:

Model		Classific	ation R	Report		Accuracy	Confusion Matrix
	Accuracy Scor	e: 1.0 precision	recall	f1-score	support		
Logistic	0	1.00	1.00 1.00	1.00 1.00	167 118	1.0	array([[167, 0],
Regression	accuracy macro avg weighted avg	1.00 1.00	1.00 1.00	1.00 1.00 1.00	285 285 285		[0, 110]], utype=11104/
	<pre>c_lr=classifi print(c_lr)</pre>	ication_repo	rt(y_test	,pred)			2000/[[455 42]
Random	0	precision 0.97	recall 0.93	f1-score 0.95	••	1.0	array([[155, 12], [5, 113]], dtype=int64)
Forest Tree	accuracy macro avg weighted avg		0.96 0.94 0.94	0.94 0.94	285 285		[5, 225]], 46,64-211657/
	0	precision	recall	f1-score	support		////
Decision Tree	accuracy macro avg weighted avg	1.00	1.00	1.00 1.00 1.00 1.00	118 285 285 285 285	1.0	array([[167, 0],
Naïve Bayes	0 1	precision 0.93 0.96	recall 0.97 0.90	f1-score 0.95 0.93	support 160 125	0.940350877 1929825	array([[155, 12],
Model	accuracy macro avg weighted avg	0.94 0.94	0.94 0.94	0.94 0.94 0.94	285 285 285		[5, 113]], dtype=int64)

Support	classification	_report: precision 1.00	recall 0.99	f1-score	support	0.996491228	<pre>conmat = confusion_matrix(y_test, pred) conmat</pre>
Vector	1	0.99	1.00	1.00	118	0701754	
Machine	accuracy macro avg weighted avg	1.00	1.00 1.00	1.00 1.00 1.00	285 285 285		array([[155, 12], [5, 113]], dtype=int64)
Gradient	classification	_report: precision 1.00	recall	f1-score	support		<pre>conmat = confusion_matrix(y_test, y_pred2) conmat</pre>
Boosting	1	1.00	1.00	1.00	118	1.0	
Classifier	accuracy macro avg weighted avg	1.00	1.00 1.00	1.00 1.00 1.00	285 285 285	1.0	array([[167, 0], [0, 118]], dtype=int64)

5.Model Optimization and Tuning Phase:5.1 Hyperparameter Tuning Phase

Model	Tuned Hyperparameters	Optimal Values
Logistic Regression Model	None, as the accuracy of the model was 100% without hyperparameter tuning.	Default Values
Random Forest Model	None, as the accuracy of the model was 100% without hyperparameter tuning.	Default Values
Decision Tree Model	None, as the accuracy of the model was 100% without hyperparameter tuning.	Default Values
Naive Bayes Model	<pre>param_grid = { 'var_smoothing': [1e-9, 1e-8, 1e-7, 1e-6, 1e-5] }</pre>	Best hyperparameters for Gaussian Naive Bayes: {'var_smoothing': 1e-09}

5.2 Performance Metrics and Comparison Report

Logistic Regression Model	Accuracy Scor	precision		on Model:						
Logistic Regression Model				f1-score	support	Accuracy Scor	precision	recall	f1-score	suppor
		1.00	1.00		167 118	9	1.00	1.00	1.00	16:
	accuracy macro avg weighted avg	1.00	1.00		285 285 285	accuracy macro avg weighted avg	1.00	1.00	1.00 1.00 1.00	28: 28: 28:
Random Forest Model	accuracy macro avg weighted avg	1.00 1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00	167 118 285 285 285 285	accuracy macro avg weighted avg	1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00	167 118 285 285 285
	Accuracy Scor	e of Decision		odel: 1.0 f1-score	support	Accuracy Scor	re of Decision		del: 1.0 fl-score	support
Decision	0 1	1.00	1.00	1.00	167 118	9	1.00 1.00	1.00	1.00	167 118
Tree Model	accuracy macro avg weighted avg	1.00	1.00	1.00 1.00 1.00	285 285 285	accuracy macro avg weighted avg	1.00	1.00	1.00 1.00 1.00	285 285 285

Naive Bayes	## Recuracy Score of Naive Bayes Model: 0.9403508771929825 ## precision recall f1-score support 0
SVM	accuracy_score of SYM Model: 0.9964912280701754 classification_report: precision recall f1-score
Gradient Boosting Classifier	accuracy_score of Gradient Boosting Classifier Model: 1.0 classification_report: precision recall f1-score support 0 1.00 1.00 1.00 1.00 1.00 1.0

5.3 Final Model Selection Justification

Final Model	Reasoning
Random Forest Model	The Random Forest Model algorithm contains many decision trees on various subsets of the given dataset and takes the <u>mean</u> of it to improve the accuracy of that dataset. It improves <u>the accuracy</u> and reduces overfitting by combining multiple trees. Random Forest Model also analyses feature importance by looking at how much each feature decreases the impurity (entropy) on average across all trees in the forest. Features that lead to larger reductions in impurity are considered more important.

In the Anemia Detection Process, a lot of blood parameters are considered, finding the most important features amongst them is vital in order to create a model that will understand the underlying pattern. Detecting Anemia is a safety critical process which will directly result in the overall well being of the patient. Therefore, a model which will analyze multiple patterns and give a good accuracy along with identifying the important features in a must.

6.Results

6.1 Output screenshots

Anemia Sense

About Anemia Sense

Revolutionizing Anemia Detection

Anemia Sense combines cutting-edge AI technology with medical expertise to provide accurate and early detection of anemia. Our mission is to make anemia screening accessible, quick, and reliable for everyone.

Try it now

Φ.

Anemia Sense Predict \equiv Smart Expert-Privacy Early Detection Backed Focused Diagnosis Our Al algorithms analyze blood Developed in parameters to Identify potential collaboration with Your health data detect anemia anemia risks hematologists is protected with

and data

scientists.

the highest level

of security.

before symptoms

become severe.

Anemia Sense

with high

accuracy.

Anemia Sense \equiv **Anemia Prediction** Gender Select your gender Hemoglobin (g/dL) MCH (pg) MCHC (g/dL) MCH (pg) MCHC (g/dL) MCV (fL) Q Get Prediction

Contact Give Us Your Valuable Feedback Ontact Give Us Yo

Example:

Hemoglobir	1 (g/aL)	
12.7		
MCH (pg)		
28		
MCHC (g/d	L)	
34.5		
MCV (fL)		
81.2		A
	Q Get Prediction	
Anemia Sense		Home About
	Anemia Prediction Result	
	Hence, based on	
	Calculations: You don't have	
	any Anemic Disease	
	Based on the provided information, our model predicts that you are not anemic. However, if you have any concerns, it's always best to consult with a healthcare professional.	

7. Advantages and Disadvantages

Advantages:

• Early Detection:

Helps with early anaemia diagnosis, enabling prompt intervention and therapy that can avoid complications and enhance patient outcomes.

• Efficiency:

Reduces the time and effort needed for healthcare providers to make manual diagnoses by automating the diagnostic procedure. This may result in the more effective use of medical staff and resources.

Accessibility:

Provide access to a diagnostic tool that can be utilised in a variety of situations, such as isolated or resource-constrained locations with limited access to specialised medical staff and equipment.

Consistency and accuracy:

Machine learning models have the potential to reduce the unpredictability and potential inaccuracies associated with human interpretation by offering consistent and objective diagnoses.

Scalability:

The solution is suitable for usage in various clinical settings and with greater patient populations because it can be scaled and incorporated into current healthcare systems.

Constant Enhancement:

In order to maintain accuracy and relevance when new data becomes available, the model can be updated and retrained on a regular basis.

Disadvantages:

• Data Quality and Availability:

Data quality and comprehensiveness have a major impact on the machine learning model's accuracy. Predictions that are not accurate can be caused by partial, biassed, or noisy data.

• Interpretability:

Certain machine learning models might be challenging to understand, particularly those that are sophisticated like neural networks. This lack of transparency may be problematic in medical situations when it's critical to comprehend the decision-making process.

• Initial Setup and Expenses:

Time, knowledge, and resources must be committed in large amounts at the first stages of developing and implementing a machine learning model. This covers gathering data, training models, and setting up infrastructure.

• Maintenance & Updates:

To make sure the model stays accurate and dependable over time, ongoing upkeep, upgrading, and maintenance are required. This continuous work necessitates committed resources.

 Ethical and Legal Issues: Using patient data raises ethical and legal issues, such as data security and patient privacy. It is imperative to guarantee adherence to rules like the Health Insurance Portability and Accountability Act. Over-reliance on technology is a potential consequence of using a machine learning model for diagnosis. It's critical to strike a balance and make sure medical professionals keep applying their clinical judgement in addition to the model's suggestions.

8.Conclusion

The development of a machine learning model for diagnosing anemia presents a significant opportunity to enhance healthcare delivery by leveraging advanced data analysis techniques. This project aims to create a reliable and efficient diagnostic tool that can accurately identify anemia based on key health indicators such as gender, haemoglobin levels, MCHC, and MCV. By automating the diagnostic process, the model promises to facilitate early detection and timely treatment of anemia, ultimately improving patient outcomes and reducing the burden on healthcare systems.

The proposed solution offers several notable advantages, including increased diagnostic efficiency, improved accessibility to medical diagnosis in resource-limited areas, consistent and accurate results, and scalability. However, it also presents challenges, such as the need for high-quality data, interpretability of complex models, initial setup costs, ongoing maintenance, and ethical considerations regarding patient data.

In conclusion, the successful implementation of this project could revolutionize the way anemia is diagnosed, making the process faster, more accessible, and more accurate. By continuously refining the model and addressing potential drawbacks, this project has the potential to make a meaningful impact on public health, particularly in underserved communities. As healthcare continues to evolve with technological advancements, integrating machine learning into diagnostic processes represents a critical step towards more efficient, equitable, and effective healthcare solutions.

9.Future Scope

The machine learning project for detecting anaemia has a wide range of potential applications in the future, as well as many avenues for improvement and development. The following are some important areas for project expansion and improvement:

- Integration with Electronic Health Records (EHR)
- Expansion to Other Blood Disorders
- Personalized Treatment Recommendations
- Incorporation of Advanced Machine Learning Techniques
- Mobile Application Development
- Real-Time Monitoring and Alerts
- Global Health Initiatives
- Longitudinal Data Analysis
- User Feedback and Iterative Improvement
- Collaborative Research and Development

10.Appendix

10.1 Source Code

#Data collection and Preprocessing

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
df=pd.read csv('anemia.csv')

```
df.head()
df.tail()
df.columns()
df.isna()
df.info()
df.isnull().sum()
#Handling Imbalanced and missing values
results = df['Result'].value counts()
results.plot(kind='bar',color=['blue','green'])
plt.xlabel('Result')
plt.ylabel('Frequency')
plt.title('Count of Result')
df['Gender'].value counts()
from sklearn.utils import resample
majorclass = df[df['Gender']==1]
minorclass = df[df['Gender']==0]
major downsample = resample(majorclass, replace=False,
n samples=len(minorclass),random state=42)
df=pd.concat([major downsample,minorclass])
print(df['Gender'].value counts())
results = df['Gender'].value counts()
results.plot(kind='bar',color=['blue','green'])
plt.xlabel('Gender')
plt.ylabel('Frequency')
```

plt.title('Count of Gender')

```
#Descriptive Analysis
df.describe()
plt.figure(figsize=(10, 6))
sns.histplot(df['Hemoglobin'], kde=True)
plt.title('Distribution of Hemoglobin Levels')
plt.xlabel('Hemoglobin Level')
plt.ylabel('Frequency')
plt.show()
plt.figure(figsize=(10, 6))
sns.histplot(df, x='Hemoglobin', hue='Gender', element='step', kde=True)
plt.title('Distribution of Hemoglobin Levels by Gender')
<u>plt.xlabel('Hemoglobin Level')</u>
plt.ylabel('Frequency')
plt.show()
#Univariate Analysis
output=df['Gender'].value counts()
output.plot(kind='bar',color=['orange','green'])
plt.xlabel('Gender')
plt.ylabel('Frequency')
plt.title('Gender Count')
plt.show()
sns.displot(df['Hemoglobin'],kde=True)
#Bivariate Analysis
```

```
df = pd.read csv('anemia.csv')
mean hemoglobin = df.groupby(['Gender', 'Result'])['Hemoglobin'].mean().reset index().
plt.figure(figsize=(10, 6))
sns.barplot(x='Gender', y='Hemoglobin', hue='Result', data=mean hemoglobin,
<u>palette='viridis')</u>
plt.title('Mean Hemoglobin Levels by Gender and Result')
plt.xlabel('Gender')
plt.ylabel('Mean Hemoglobin Level')
plt.legend(title='Result')
plt.show()
#box plot
plt.figure(figsize=(10, 6))
sns.boxplot(x='Gender', y='Hemoglobin', data=df, palette='viridis')
plt.title('Box Plot of Hemoglobin Levels by Gender')
plt.xlabel('Gender')
plt.ylabel('Hemoglobin Level')
plt.show()
#Multivariate Analysis
sns.pairplot(df)
sns.heatmap(df.corr(),annot=True,cmap='RdYlGn',linewidths=0.2)
fig=plt.gcf()
fig.set size inches(10,8)
plt.show()
#Splitting Data Into Train and Test
```

```
from sklearn.model selection import train test split
x train,x test,y train,y test=train test split(X,Y,test size=0.2,random state=20)
print(x train.shape)
print(x test.shape)
print(y_train.shape)
print(y_test.shape)
#Logistic Regression
from sklearn.linear model import LogisticRegression
from sklearn.metrics import accuracy score
from sklearn.metrics import classification report
from sklearn.metrics import accuracy score, classification report, confusion matrix
logistic regression=LogisticRegression()
logistic regression.fit(x train,y train)
pred=logistic regression.predict(x test)
pred
acc Ir=accuracy score(y test,pred)
confusion matrix(y test,pred)
acc Ir=accuracy score(y test,pred)
c lr=classification report(y test,pred)
print('Accuracy Score: ',acc Ir)
print(c lr)
#Random Forest Model
from sklearn.ensemble import RandomForestClassifier
rf=RandomForestClassifier(n estimators=10,criterion='entropy',random state=0)
rf.fit(x train,y train)
```

pred=rf.predict(x test)

```
pred
y test
from sklearn.metrics import accuracy_score,confusion_matrix,classification_report
acc rf=accuracy score(y test,pred)
conmat=confusion matrix(y test,pred)
print(acc_rf)
print(conmat)
c rf=classification report(y test,pred)
c rf
#Decision tree
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy score, confusion matrix, classification report
decision tree model = DecisionTreeClassifier()
decision_tree_model.fit(x_train, y_train)
y pred = decision tree model.predict(x test)
y pred
y test
acc dt = accuracy score(y test, y pred)
acc dt
conmat = confusion matrix(y test, y pred)
conmat
c dt = classification report(y test, y pred)
print(c dt)
```

#Naive Bayes Model

from sklearn.naive bayes import GaussianNB

```
nb = GaussianNB()
nb.fit(x train,y train)
pred = nb.predict(x_test)
acc nb=accuracy score(pred,y test)
c nb=classification report(pred,y test)
print("Accuracy Score: ",acc_nb)
print(c nb)
#Support Vector Machine
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
from sklearn import metrics
st x= StandardScaler()
x train= st x.fit transform(x train)
x_test= st_x.transform(x_test)
support vector=SVC()
support vector.fit(x train,y train)
y_pred=support_vector.predict(x_test)
acc svc=metrics.accuracy score(y test,y pred)
c svc=metrics.classification report(y test,y pred)
print("accuracy score: ",acc svc)
print("classification report: ")
print(c svc)
#Gradient Boosting Classifier
from sklearn.ensemble import GradientBoostingClassifier
GBC= GradientBoostingClassifier()
```

```
GBC.fit(x train,y train)
y pred2=GBC.predict(x test)
acc gbc=metrics.accuracy score(y test,y pred2)
c gbc=metrics.classification report(y test,y pred2)
print("accuracy score: ",acc gbc)
print("classification_report: ")
print(c gbc)
#Testing the Models
#Logistic Regression Model
pred Ir=logistic regression.predict([[0,11.6,0,30.9,74.5]])
print("Logistic Regression:",pred_lr)
if(pred Ir==0):
  print("You don't have Anemic Disease")
elif(pred lr==1):
  print("You have Anemic Disease")
#Random forest model
pred rf=rf.predict([[0,11.6,0,30.9,74.5]])
print("Random forest:",pred rf)
if(pred rf==0):
  print("You don't have Anemic Disease")
elif(pred rf==1):
  print("You have Anemic Disease")
#Decision Tree Model
pred dt=decision tree model.predict([[0,11.6,0,30.9,74.5]])
```

```
print("Random forest:",pred dt)
if(pred_dt==0):
  print("You don't have Anemic Disease")
elif(pred dt==1):
  print("You have Anemic Disease")
#Gaussian Navies Bayes
pred_nb=nb.predict([[0,11.6,0,30.9,74.5]])
print("Random forest:",pred_nb)
if(pred nb==0):
  print("You don't have Anemic Disease")
elif(pred_nb==1):
  print("You have Anemic Disease")
#Support Vector Machine
pred svm=support vector.predict([[0,11.6,0,30.9,74.5]])
print("Random forest:",pred svm)
if(pred_svm==0):
  print("You don't have Anemic Disease")
elif(pred svm==1):
  print("You have Anemic Disease")
#Gradient Boosting Classifier
pred_gbc=GBC.predict([[0,11.6,0,30.9,74.5]])
print("Random forest:",pred gbc)
if(pred gbc==0):
  print("You don't have Anemic Disease")
```

```
elif(pred_gbc==1):
    print("You have Anemic Disease")
```

#Performance Testing

model = pd.DataFrame({'Model':['Linear Regression','Decision Tree Classifier','Random Forest Classifier','Gaussian Naive Bayes','Support Vector Machine',

```
'Gradient Boosting Classifier'],

'Score':[acc_lr,acc_dt,acc_rf,acc_nb,acc_svc,acc_gbc],
})
```

model

10.2 GitHub and Project Link

Github link:

https://github.com/Vishnu-Adi/Anemia_Sense.git

Presentation link:

https://drive.google.com/file/d/1pLpP6MtpWn1UUn1KYzlJkBZNDtMZWkAD/view?usp=sharing

Website link:

https://anemiasense.onrender.com/