Машинное обучение

Лекция 8. Линейные модели, линейная регрессия

МФТИ 2018

Алексей Романенко, <u>alexromsput@gmail.com</u>

Материалы: В. Кантор, К. Воронцов

План

1. Сингулярное разложение

- 3. Дополнительные темы
 - SVM в задаче SemiSupervised
 - Робастные модели

1. Сингулярное разложение

Сингулярное разложение

A – произвольная (вещественная) матрица $n \times m$

$$A = VDU^T$$

- V ортогональная матрица $n \times n$, ($V^T V = I_n$)
- ullet D диагональная матрица размером n imes m
- ullet U ортогональная матрица m imes m, $(UU^T = I_m)$

Understanding SVD

• $G = A^T A$ – имеет ортонормированный базис из собственных векторов

$$Gx = \lambda x$$

- Базис обозначим как $P = (x_1, ..., x_m)$
- В этом базисе G имеет диагональный вид:

$$egin{bmatrix} \lambda_1 & 0 & \cdots & 0 \ 0 & \lambda_2 & \cdots & 0 \ dots & \cdots & \ddots & dots \ 0 & \cdots & 0 & \lambda_m \end{bmatrix}$$

$$\lambda_i \geq 0, i = \overline{1, m}$$

• Для матрицы $G' = AA^T$ - те же собственные числа

Understanding SVD

- Обозначения: $\sigma_i = \sqrt{\lambda_i}$
- Построим матрицы, D:

$$D = \begin{bmatrix} \sigma_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \sigma_m \\ 0 & \cdots & 0 \\ 0 & \cdots & 0 \end{bmatrix}$$

V:

$$V = \begin{bmatrix} v_1 & \cdots & v_n \end{bmatrix}$$

 v_i - собственный вектор матрицы AA^T

• *U*:

$$U = \begin{bmatrix} x_1 & \cdots & x_m \end{bmatrix}$$

 x_i - собственный вектор матрицы A^TA

Understanding SVD

$$a(x) = \langle w, x \rangle + w_0$$

$$a(x) = \langle w, x \rangle + w_0$$

$$Q = \sum_{i=1}^{N} L(y_i, a(x_i))$$

$$a(x) = \langle w, x \rangle + w_0$$

$$Q = \sum_{i=1}^{N} L(y_i, a(x_i))$$

$$L(y_i, a(x_i)) = (y_i - a(x_i))^2$$

$$a(x) = \langle w, x \rangle + w_0$$

$$Q = \sum_{i=1}^{N} L(y_i, a(x_i))$$

$$L(y_i, a(x_i)) = (y_i - a(x_i))^2$$

 $L(y_i, a(x_i)) = |y_i - a(x_i)|$

Линейная регрессия: формальная постановка

- X объекты (часто \mathbb{R}^n); Y ответы (часто \mathbb{R} , реже \mathbb{R}^m); $X^\ell = (x_i, y_i)_{i=1}^\ell$ обучающая выборка; $y_i = y(x_i), \ y: X \to Y$ неизвестная зависимость;
- a(x) = f(x, w) модель зависимости, $w \in \mathbb{R}^p$ вектор параметров модели.
- Метод наименьших квадратов (МНК):

$$Q(w,X^{\ell}) = \sum_{i=1}^{\ell} k_i (f(x_i,w) - y_i)^2 \to \min_{w},$$

где k_i — вес, степень важности i-го объекта.

 $Q(w^*, X^{\ell})$ — остаточная сумма квадратов (residual sum of squares, RSS).

Линейная регрессия: формальная постановка

- X объекты (часто \mathbb{R}^n); Y ответы (часто \mathbb{R} , реже \mathbb{R}^m); $X^\ell = (x_i, y_i)_{i=1}^\ell$ обучающая выборка; $y_i = y(x_i), \ y: X \to Y$ неизвестная зависимость;
- a(x) = f(x, w) модель зависимости, $w \in \mathbb{R}^p$ вектор параметров модели.
- Метод наименьших квадратов (МНК):

$$Q(w,X^{\ell}) = \sum_{i=1}^{\ell} k_i (f(x_i,w) - y_i)^2 \to \min_{w},$$

где k_i — вес, степень важности i-го объекта.

 $Q(w^*, X^{\ell})$ — остаточная сумма квадратов (residual sum of squares, RSS).

Линейная регрессия: формальная постановка

 $f_1(x), \ldots, f_n(x)$ — числовые признаки;

Модель многомерной линейной регрессии:

$$f(x, w) = \sum_{j=1}^{n} w_j f_j(x), \qquad w \in \mathbb{R}^n.$$

Матричные обозначения:

$$F_{\ell \times n} = \begin{pmatrix} f_1(x_1) & \dots & f_n(x_1) \\ \dots & \dots & \dots \\ f_1(x_\ell) & \dots & f_n(x_\ell) \end{pmatrix}, \quad y_{\ell \times 1} = \begin{pmatrix} y_1 \\ \dots \\ y_\ell \end{pmatrix}, \quad w_{n \times 1} = \begin{pmatrix} w_1 \\ \dots \\ w_n \end{pmatrix}.$$

Функционал квадрата ошибки:

$$Q(w, X^{\ell}) = \sum_{i=1}^{\ell} (f(x_i, w) - y_i)^2 = ||Fw - y||^2 \to \min_{w}.$$

Линейная регрессия: система уравнений

Необходимое условие минимума в матричном виде:

$$\frac{\partial Q}{\partial w}(w) = 2F^{\mathsf{T}}(Fw - y) = 0,$$

откуда следует нормальная система задачи МНК:

$$F^{\mathsf{T}} F w = F^{\mathsf{T}} y$$
,

где $F^{\mathsf{T}}F$ — ковариационная матрица набора признаков f_1,\ldots,f_n .

Решение системы: $w^* = (F^T F)^{-1} F^T y = F^+ y$.

Значение функционала: $Q(w^*) = ||P_F y - y||^2$,

где $P_F = FF^+ = F(F^{\mathsf{T}}F)^{-1}F^{\mathsf{T}}$ — проекционная матрица.

SVD для F:

$$F = VDU^T$$

Линейная регрессия: МНК через SVD

Псевдообратная F^+ , вектор МНК-решения w^* , МНК-аппроксимация целевого вектора Fw^* :

$$F^{+} = (UDV^{\mathsf{T}}VDU^{\mathsf{T}})^{-1}UDV^{\mathsf{T}} = UD^{-1}V^{\mathsf{T}} = \sum_{j=1}^{n} \frac{1}{\sqrt{\lambda_{j}}} u_{j} v_{j}^{\mathsf{T}};$$

$$w^{*} = F^{+}y = UD^{-1}V^{\mathsf{T}}y = \sum_{j=1}^{n} \frac{1}{\sqrt{\lambda_{j}}} u_{j} (v_{j}^{\mathsf{T}}y);$$

$$Fw^{*} = P_{F}y = (VDU^{\mathsf{T}})UD^{-1}V^{\mathsf{T}}y = VV^{\mathsf{T}}y = \sum_{j=1}^{n} v_{j} (v_{j}^{\mathsf{T}}y);$$

$$\|w^{*}\|^{2} = \|D^{-1}V^{\mathsf{T}}y\|^{2} = \sum_{j=1}^{n} \frac{1}{\lambda_{j}} (v_{j}^{\mathsf{T}}y)^{2}.$$

Линейная регрессия: проблема переобучения

Если имеются $\lambda_i \to 0$, то

- **●** МНК-решение w^* неустойчиво и неинтерпретируемо: $||w|| \to \infty$;
- ответы на новых объектах $y' = F'w^*$ неустойчивы;
- в то время как на обучении, казалось бы, «всё хорошо»: $Q(w^*) = \|Fw^* y\|^2 \to 0;$
- мультиколлинеарность влечёт переобучение.

Три стратегии устранения мультиколлинеарности:

- Регуляризация: $||w|| \rightarrow \min$;
- ullet Преобразование признаков: $f_1,\ldots,f_n o g_1,\ldots,g_m$, $m\ll n$;
- Отбор признаков: $f_1, \ldots, f_n \to f_{j_1}, \ldots, f_{j_m}, \ m \ll n.$

Регуляризация: гребневая регрессия

Штраф за увеличение нормы вектора весов ||w||:

$$Q_{\tau}(w) = \|Fw - y\|^2 + \frac{1}{2\sigma} \|w\|^2,$$

где $au = rac{1}{\sigma}$ — неотрицательный параметр регуляризации.

Вероятностная интерпретация: априорное распределение вектора w — гауссовское с ковариационной матрицей σI_n .

Модифицированное МНК-решение (τI_n — «гребень»):

$$w_{\tau}^* = (F^{\mathsf{T}}F + \tau I_n)^{-1}F^{\mathsf{T}}y.$$

Преимущество сингулярного разложения: можно подбирать параметр au, вычислив SVD только один раз.

Регуляризация: Гребневая регрессия

Вектор регуляризованного МНК-решения w_{τ}^* и МНК-аппроксимация целевого вектора Fw_{τ}^* :

$$w_{\tau}^{*} = U(D^{2} + \tau I_{n})^{-1}DV^{\mathsf{T}}y = \sum_{j=1}^{n} \frac{\sqrt{\lambda_{j}}}{\lambda_{j} + \tau} u_{j}(v_{j}^{\mathsf{T}}y);$$

$$Fw_{\tau}^{*} = VDU^{\mathsf{T}}w_{\tau}^{*} = V\operatorname{diag}\left(\frac{\lambda_{j}}{\lambda_{j} + \tau}\right)V^{\mathsf{T}}y = \sum_{j=1}^{n} \frac{\lambda_{j}}{\lambda_{j} + \tau} v_{j}(v_{j}^{\mathsf{T}}y);$$

$$\|w_{\tau}^{*}\|^{2} = \|D^{2}(D^{2} + \tau I_{n})^{-1}D^{-1}V^{\mathsf{T}}y\|^{2} = \sum_{j=1}^{n} \frac{1}{\lambda_{j} + \tau} (v_{j}^{\mathsf{T}}y)^{2}.$$

 $Fw_{\tau}^* \neq Fw^*$, но зато решение становится гораздо устойчивее.

Регуляризация: гребневая регрессия

Сжатие (shrinkage) или сокращение весов (weight decay):

$$\|w_{\tau}^*\|^2 = \sum_{j=1}^n \frac{1}{\lambda_j + \tau} (v_j^{\mathsf{T}} y)^2 < \|w^*\|^2 = \sum_{j=1}^n \frac{1}{\lambda_j} (v_j^{\mathsf{T}} y)^2.$$

Почему говорят о сокращении эффективной размерности?

Роль размерности играет след проекционной матрицы:

$$\operatorname{tr} F(F^{\mathsf{T}}F)^{-1}F^{\mathsf{T}} = \operatorname{tr}(F^{\mathsf{T}}F)^{-1}F^{\mathsf{T}}F = \operatorname{tr} I_n = n.$$

При использовании регуляризации:

$$\operatorname{tr} F(F^{\mathsf{T}}F + \tau I_n)^{-1}F^{\mathsf{T}} = \operatorname{tr}\operatorname{diag}\left(\frac{\lambda_j}{\lambda_j + \tau}\right) = \sum_{i=1}^n \frac{\lambda_j}{\lambda_j + \tau} < n.$$

Регуляризация: Лассо Тибширани

$$\begin{cases} Q(w) = \|Fw - y\|^2 \to \min_{w}; \\ \sum_{j=1}^{n} |w_j| \leqslant \varkappa; \end{cases}$$

Лассо приводит к отбору признаков! Почему?

После замены переменных

$$\begin{cases} w_j = w_j^+ - w_j^-; \\ |w_j| = w_j^+ + w_j^-; \end{cases} \quad w_j^+ \geqslant 0; \quad w_j^- \geqslant 0.$$

ограничения принимают канонический вид:

$$\sum_{j=1}^{n} w_{j}^{+} + w_{j}^{-} \leqslant \varkappa; \quad w_{j}^{+} \geqslant 0; \quad w_{j}^{-} \geqslant 0.$$

Чем меньше \varkappa , тем больше j таких, что $w_j^+ = w_j^- = 0$.

Регуляризация: Лассо vs Ridge

Задача диагностики рака (prostate cancer, UCI)

T. Hastie, R. Tibshirani, J. Friedman. The Elements of Statistical Learning. Springer, 2001.

- 3. Дополнительные темы
 - SVM в задаче SemiSupervised
 - Робастные модели

Semi-supervised обучение: мотивация

Semi-supervised обучение: мотивация

Semi-supervised обучение: мотивация

Функция потерь $\mathscr{L}(M) = \begin{pmatrix} 1 - |M| \end{pmatrix}_+$ штрафует за попадание объекта внутрь разделяющей полосы.

Обучение весов w, w_0 по частично размеченной выборке:

$$Q(w, w_0) = \sum_{i=1}^{\ell} (1 - M_i(w, w_0))_+ + \frac{1}{2C} ||w||^2 +$$

$$+ \gamma \sum_{i=\ell+1}^{\ell+k} (1 - |M_i(w, w_0)|)_+ \rightarrow \min_{w, w_0}.$$

Эффективная реализация:

Sindhwani, Keerthi. Large scale semisupervised linear SVMs. SIGIR 2006.

Гауссовская функция штрафа:

Chapelle, Zien. Semi-supervised classification by low density separation. AISTAT 2005.

Недостатки TSVM:

- решение неустойчиво, если нет области разреженности;
- требуется настройка двух параметров C, γ ;

Semi-supervised SVM (S3VM)

SVM:

$$\sum_{i=1}^{l} \max\{0; 1 - y_i < w, x_i >\} + \alpha ||w||_{l_2}^2 \to \min_{w}$$

Semi-supervised SVM (S3VM)

SVM:

$$\sum_{i=1}^{l} \max\{0; 1 - y_i < w, x_i >\} + \alpha ||w||_{l_2}^2 \to \min_w$$

Идея:

$$y_i < w, x_i > \rightarrow a(x_i) < w, x_i > =$$

= $sign\{< w, x_i > \} < w, x_i > = |< w, x_i > |$

Semi-supervised SVM (S3VM)

SVM:

$$\sum_{i=1}^{l} \max\{0; 1 - y_i < w, x_i >\} + \alpha ||w||_{l_2}^2 \to \min_{w}$$

Идея:

$$y_i < w, x_i > \to a(x_i) < w, x_i > =$$

= $sign\{< w, x_i > \} < w, x_i > = |< w, x_i > |$

$$\sum_{i=1}^{l} \max\{0; 1-y_i < w, x_i >\} + \beta \sum_{i=l+1}^{l+u} \max\{0; 1-|< w, x_i > |\} + \alpha ||w||_{l_2}^2$$

Робастные модели

Линейные модели

• Linear Regression
$$\min_{w} ||Xw - y||_2^2$$

• Ridge
$$\min_{w} ||Xw-y||_2^2 + \alpha ||w||_2^2$$

• Ridge
$$\min_{w} \frac{1}{2n_{samples}} ||Xw-y||_{2}^{2} + \alpha ||w||_{1}$$
 • LASSO

• Multi-task LASSO
$$\min_{w} \frac{1}{2n_{samples}} ||XW-Y||_{Fro}^2 + \alpha ||W||_{21}$$

$$||A||_{Fro} = \sqrt{\sum_{ij} a_{ij}^2} \qquad ||A||_{21} = \sum_i \sqrt{\sum_j a_{ij}^2}$$

Другие модели

• Elastic Net
$$\min_{w} \frac{1}{2n_{samples}}||Xw-y||_2^2 + \alpha\rho||w||_1 + \frac{\alpha(1-\rho)}{2}||w||_2^2$$

$$\bullet \text{ Multi-task Elastic Net} \quad \min_{W} \frac{1}{2n_{samples}} ||XW-Y||_{Fro}^2 + \alpha \rho ||W||_{21} + \frac{\alpha(1-\rho)}{2} ||W||_{Fro}^2$$

• OMP
$$\arg \min ||y - X\gamma||_2^2 \text{ subject to } ||\gamma||_0 \le n_{nonzero_coefs}$$

• Logistic Regression
$$\min_{w,c} \|w\|_1 + C \sum_{i=1}^n \log(\exp(-y_i(X_i^T w + c)) + 1).$$

$$\min_{w,c} \frac{1}{2} w^T w + C \sum_{i=1}^n \log(\exp(-y_i(X_i^T w + c)) + 1).$$

Робастные модели в linear_model

- RANSACRegressor
- HuberRegressor
- Theil-Sen Regressor

RANSACRegressor

RASCANRegressor (RANdom SAmple Consensus)

http://scikit-learn.org/stable/modules/linear_model.html#ransac-regression

HuberRegressor

$$\min_{w,\sigma} \sum_{i=1}^{n} \left(\sigma + H_m \left(\frac{X_i w - y_i}{\sigma} \right) \sigma \right) + \alpha ||w||_2^2$$

$$H_m(z) = \begin{cases} z^2, & \text{if } |z| < \epsilon, \\ 2\epsilon |z| - \epsilon^2, & \text{otherwise} \end{cases}$$

HuberRegressor

$$\min_{w,\sigma} \sum_{i=1}^n \left(\sigma + H_m\left(\frac{X_iw - y_i}{\sigma}\right)\sigma\right) + \alpha||w||_2^2$$

$$H_m(z) = \begin{cases} z^2, & \text{if } |z| < \epsilon, \\ 2\epsilon|z| - \epsilon^2, & \text{otherwise} \end{cases}$$
 120

Χ

http://scikit-learn.org/stable/modules/linear_model.html#ransac-regression

Theil-Sen estimator (median of slope)

Резюме

- 1. SVD очень сильный алгебраический приём, позволяющий решать линейные уравнения
- 2. Линейная регрессия простой метод,
- 3. МНК часто приводит к переобучению из-за мультиколлинеарности
- 4. Гребневая регрессия и Лассо Тибширани простые модификации
- 5. Задачи, где очень много неразмеченных данных, часто решаются методами semi-supervised learning

Отзывы о лекции: https://goo.gl/forms/zeZiu1fSgrpPGp6T2