PRÁCTICA – DATA MINING

0.- OBJETIVO

El objetivo de la práctica es abordar un problema de data mining realista siguiendo la metodología y buenas prácticas explicadas durante las clases teóricas.

Datos: La fuente recoge la información actualizada diariamente de los precios de los combustibles en España. Se muestran las gasolineras y se puede consultar el precio, horario, marcha y fecha de actualización del dato. Los datos sobre gasolineras proceden del Ministerio de Energía, Turismo y Agenda Digital.

El objetivo general es **predecir el precio de la gasolina 95 en España a nivel de provincia,** desde el punto de vista del consumidor.

Modelización: GLM y su comparativa con Regresión y Redes Neuronales

1.- ANÁLISIS PREVIO DE LOS DATOS

Analizaremos la variable dependiente (y), es decir, el objetivo de estudio, para saber cómo debemos tratarla o prepararla.

El primer paso es la identificación y formulación del problema de negocio, esto es:

- Identificación del tipo de problema: análisis predictivo
- Objetivo: predecir el precio de la gasolina 95
- Nombre de la variable objetivo: precio_gasolina_95
- Tipo de variable objetivo: Continua

El objetivo general es predecir el precio de la gasolina 95 en España a nivel de provincia, desde el punto de vista del consumidor.

El dataset del que partimos tiene las siguientes variables y características:

target	tipo	descripción
precio_gasolina_95	numérico	precio de la gasolina 95
		octanos en España

variable	tipo	descripción	
Fecha	numérica	fecha de extracción	
		de la información	
Provincia	alfanumérica	provincia donde está	
		ubicada la gasolinera	
Municipio	alfanumérica	municipio donde	
		está ubicada la	
		gasolinera	
Localidad	alfanumérica	localidad donde está	
		ubicada la gasolinera	

Codigo_postal	alfanumérica	código postal
Direccion	alfanumérica	dirección de la
		gasolinera
Margen	alfanumérica	margen (ver siglas*)
Longitud	alfanumérica	longitud donde está
		ubicada la gasolinera
Latitud	alfanumérica	latitud donde está
		ubicada la gasolinera
Precio_gasolina_95	numérica	precio gasolina 95
		octanos
Precio_gasoleo_A	numérica	precio gasóleo A
Precio_gasoleo_B	numérica	precio gasóleo B
Precio_bioetanol	numérica	precio bioetanol
Precio_nuevo_gasoleo_A	numérica	precio nuevo gasóleo
		Α
Precio_biodiesel	numérica	precio biodiesel
porcentaje_ester_metilico	numérica	porcentaje éster
		metílico
porcentaje_bioalcohol	numérica	porcentaje
		bioalcohol
Precio_gas_natural_comprimido	numérica	precio gas natural
		comprimido
Precio_gas_natural_licuado	numérica	precio gas natural
		licuado
Precio_gases_licuados_del_petroleo	numérica	precio gases licuados
		del petróleo
Rotulo	alfanumérica	rótulo de la
		gasolinera
Tipo_venta	alfanumérica	tipo venta (ver
		siglas*)
Rem	alfanumérica	procedencia (ver
		siglas*)
Horario	alfanumérica	horario de atención

Fuente:

 $\frac{https://datos.gob.es/es/catalogo/e04990201-precio-de-carburantes-en-las-gasolineras-espanolas}{}$

Siglas (*):

- Margen: D: Derecho, I: Izquierdo, N: No aplica
- Tipo venta: P: Venta al público en general, R: Venta restringida a socios o cooperativistas
- Rem: OM: Datos procedentes del operador mayorista, dm: Datos procedentes del distribuidor minorista.

El siguiente paso es la exploración de datos, que consiste en un análisis previo donde se identificarán inconsistencias, duplicidades, missings, outliers y se realizará un análisis estadístico básico.

```
data gasolina95;
   set lib_in.gasolina_in_spain;
run;
```

Al abrir el dataset observamos que partimos de <u>72.113 observaciones y 25 variables</u> (incluida la variable objetivo).

1.1.- ANALISIS DE LA VARIABLE TARGET

Analisis de missing en la variable target

Lo siguiente que haré es comprobar si mi variable target tiene valores missings y de ser así eliminaré esas observaciones. Para ello utilizo el **proc means** con la opción **nmiss**

Se observa que tenemos **2818 valores missing**. Elimino estas observaciones:

```
data gasolina95;
   set gasolina95;
   if Precio_gasolina_95=. then delete;
run;

NOTE: There were 72113 observations read from the data set
WORK.GASOLINA95.
NOTE: The data set WORK.GASOLINA95 has 69295 observations and 25
variables.
```

Nos quedan por tanto: 69.295 observaciones y 25 variables

Análisis de duplicados en base a la clave primaria del fichero

Establecemos que la clave primaria del fichero (primary key) sará la ubicación de las gasolineras con sus coordenadas (longitud y latitud) y la fecha de extracción.

	Fecha	Longitud	A Latitud	Codigo_post al	A Provincia
1	28/10/2019	-2,519194	42,842917	01240	ÁLAVA
2	28/10/2019	-2,509361	42,846028	01240	ÁLAVA
3	28/10/2019	-2,989111	43,044333	01468	ÁLAVA
4	28/10/2019	-2,967611	43,031889	01450	ÁLAVA
5	28/10/2019	-2,477917	42,753194	01120	ÁLAVA
6	28/10/2019	-2,639528	42,941417	01510	ÁLAVA

Deberíamos tener en una única ubicación la gasolinera por día en el que se recogió el dato, luego de estar bien la base de la información no debería contener duplicidad de registros en la primary key de la base de la información. Usaremos el **proc sort** para asegurar que no haya registros duplicados.

```
proc sort data=gasolina95 nodupkey dupout=duplicados;
  by fecha Longitud Latitud;
run;
```

Obtenemos que **existen duplicidades** en las observaciones, como se puede ver en la log de SAS Studio:

```
NOTE: There were 69295 observations read from the data set WORK.GASOLINA95.
```

NOTE: 91 observations with duplicate key values were deleted. NOTE: The data set WORK.DUPLICADOS has 91 observations and 25 variables.

NOTE: The data set WORK.GASOLINA95 has 69204 observations and 25 variables.

Además, analizando la salida "DUPLICADOS" se comprueba que hay una parte de la tabla de datos que parece desplazada una columna a la derecha, quedando la columna Provincia vacía. Se podría tratar de recuperar esos datos desplazando columnas pero hay datos que se han perdido, por ejemplo en la columna Margen parece que está la información de la dirección pero solo aparece un carácter. No tendríamos además la información de la última columna que es la del horario.

Por tanto eliminamos duplicados y nos quedamos con <u>69.204 observaciones y 25</u> variables

Análisis de estadísticos básicos

Pasamos ahora a analizar los estadísticos básicos de nuestra variable objetivo, como es de tipo continuo utilizo **proc means**:

```
proc means data=gasolina95;
  var Precio_gasolina_95;
run:
```

Procedimiento MEANS					
Analysis Variable : Precio_gasolina_95					
N Media Desv. est. Mínimo Máximo					
69204	5860.07	14118.17	0.8690000	43731.81	

Este resultado es bastante raro. El máximo no tiene ningún sentido y tiene que ver con lo mismo que comentábamos en el punto anterior. Parte de la tabla tiene las columnas como desplazadas hacia la derecha de forma que en el Precio de la gasolina de 95 aparecen datos correspondientes a la coordenada geográfica de latitud.

Vuelvo a visualizar el dataset actual y me ayudo de las opciones de Filtro y Orden y Clasificación para poder ver la variable Precio_gasolina_95 ordenada en orden ascendente. Se puede ver que el valor más pequeño es 0,869 que coincide claro está con lo que nos mostró el proc means y si me desplazo hacia abajo se observa el salto debido al error en la tabla, pasa de 1.489 a 277708.333

	Precio_gasoli na_95
58963	1.434
58964	1.434
58965	1.434
58966	1.439
58967	1.439
58968	1.489
58969	1.489
58970	1.489
58971	1.489
58972	1.489
58973	1.489
58974	27705.333
58975	27751.944
58976	27753.306
58977	27760.861
58978	27763 889

Procedo a eliminar todas esas observaciones erróneas

```
data gasolina95;
   set gasolina95;
   if Precio_gasolina_95 > 20000 then delete;
run;

NOTE: There were 69204 observations read from the data set
WORK.GASOLINA95.
NOTE: The data set WORK.GASOLINA95 has 58973 observations and 25
variables.
```

Y me quedan finalmente 58.973 observaciones

Ejecuto de nuevo el **proc means** para comprobar que ahora si obtengo valores más normales:

Análisis de outliers, missings e incongruencias

Realizo ahora un análisis más profundo utilizando el proc univariate:

```
proc univariate data=gasolina95;
  var Precio_gasolina_95;
run;
```

Las tablas complementarias al anterior análisis y más importantes son las siguientes:

	Momentos					
N	58973	Sumar pesos	58973			
Media	1.2911433	Observ suma	76142.594			
Desviación std	0.07761481	Varianza	0.00602406			
Asimetría	-2.3456239	Curtosis	6.52443503			
SC no corregida	98666.2511	SC corregida	355.250796			
Coef. variación	6 01132425	Media error std	0.00031961			

Cuantiles (Definición 5)		
Nivel	Cuantil	
100% Máx	1.489	
99%	1.389	
95%	1.365	
90%	1.355	
75% Q3	1.339	
50% Mediana	1.309	
25% Q1	1.269	
10%	1.217	
5%	1.153	
1%	0.977	
0% Mín	0.869	

Observaciones extremas				
Infe	rior	Superior		
Valor	Obs	Valor	Obs	
0.869	22239	1.489	13053	
0.869	22086	1.489	22902	
0.869	12390	1.489	32719	
0.869	12235	1.489	42533	
0.869	2546	1.489	52344	

Se observa que no hay valores missing. No hay valores 2.5 por encima de la media, por tanto no tenemos valores outliers o anómalos. Tampoco se detectan incongruencias entre los datos.

1.2.- SEPARACION DEL RESTO DE VARIABLES

Una vez analizada la variable objetivo pasamos a ver el resto de variables y lo primero es separarlas en variables de tipo categórico y de tipo analítico

Variables Categóricas	Variables Analíticas
Fecha	Precio_gasolina_95
Provincia	Precio_gasoleo_A
Municipio	Precio_gasoleo_B
Localidad	Precio_bioetanol
Codigo_postal	Precio_nuevo_gasoleo_A
Direccion	Precio_biodiesel
Margen	Porcentaje_ester_metilico
Longitud	Porcentaje_bioalcohol

Latitud	Precio_gas_natural_comprimido
Rotulo	Precio_gas_natural_licuado
Tipo_venta	Precio_gases_licuados_del_petrol
Rem	
Horario	

1.3.- ANALISIS DE VARIABLES CATEGÓRICAS

Las variables longitud y latitud determinan la posición exacta de la gasolinera. Tenemos además la información del código postal que permitiría agrupar las gasolineras por zonas por lo que el código postal va a dar más información a nuestro modelo GLM que las coordenadas. Eliminamos la variables longitud y latitud del estudio

Por otro lado, el código postal en España es una secuencia de 5 números, los dos primeros hacen referencia a la provincia y los otros 3 al municipio por lo que como ya tenemos las variables Provincia y Municipio vamos a **eliminar el código postal del estudio**

```
data gasolina95;
   set gasolina95;
   drop longitude latitude codigo_postal;
run;
```

Análisis de la variable fecha

Analizamos esta variable con un procedimiento de frecuencias

```
proc freq data=gasolina95;
  tables Fecha;
run;
```

	Pro	cedimiento F	REQ	
	Fed	cha de extrac	ción	
Fecha	Frecuencia	Porcentaje	Frecuencia acumulada	Porcentaje acumulado
28/10/2019	9847	16.70	9847	16.70
29/10/2019	9859	16.72	19706	33.42
30/10/2019	9829	16.67	29535	50.08
01/11/2019	9813	16.64	39348	66.72
02/11/2019	9807	16.63	49155	83.35
03/11/2019	9818	16.65	58973	100.00

No se observan missing ni outliers. Está muy balanceada, teniendo todos los días una distribución similar. No hay información del jueves 31/10/2019

Análisis de las variables Provincia, Municipio y Localidad

Se analizan con el mismo procedimiento de frecuencias y no se observan missings ni outliers. No se incluyen tablas al no aportar información relevante.

Como el objetivo es conocer el precio a nivel de provincia voy a eliminar del estudio Municipio y Localidad. De esta forma quito los más granulares

```
data gasolina95;
   set gasolina95;
   drop Municipio Localidad;
run;
```

Análisis de la variable Dirección

La dirección exacta de la gasolinera no nos da grandes ventajas, pasa igual que con las coordenadas geográficas que hemos eliminado. Sin embargo, es posible que podamos extraer información interesante sobre la situación: si es una calle, una autovía..... Si los clientes tienen más propensión a utilizar una gasolinera de una autovía seguramente el precio sea mayor en estas gasolineras. Por tanto, es posible que el precio pueda depender en cierta medida de la ubicación de la gasolinera. Se crea por tanto una variable Zona que contendrá la ubicación de la gasolinera y que extraeremos de la dirección antes de eliminarla.

El código que he utilizado para la creación de la variable Zona que se extrae desde Dirección es el siguiente:

```
data gasolina95;
  set gasolina95;
  format zona $50.;
  if findw(upcase(direccion), "AEROPUERTO")OR
      findw(upcase(direccion), "AÉROPUERTO") then
      zona="AEROPUERTO";
  else if findw(upcase(direccion), "PLAZA") OR
      findw(upcase(direccion), "PZA.") then zona="PLAZA";
  else if findw(upcase(direccion), "AUTOVIA")OR
      findw (upcase (direccion), "CR A") OR findw (upcase (direccion),
      "AUTOVÍA") OR findw (upcase (direccion), "AU") then
      zona="AUTOVIA";
  else if findw(upcase(direccion), "CARRETERA") OR
      findw(upcase(direccion), "KM") OR findw(upcase(direccion),
      "CARRER") OR findw (upcase (direccion), "CR") OR
      findw(upcase(direccion), "CTRA")OR findw(upcase(direccion),
      "CTRA.") OR findw(upcase(direccion), "CRTA.") OR
      findw(upcase(direccion), "CRA.")OR findw(upcase(direccion),
      "P.K.") OR findw(upcase(direccion), "PK")OR
      findw(upcase(direccion), "CARRERA")then zona="CARRETERA";
  else if findw(upcase(direccion), "CALLE") OR
      findw(upcase(direccion), "RUA") OR findw(upcase(direccion),
      "BARRIO")OR findw(upcase(direccion), "CL") OR
      findw(upcase(direccion), "C/")OR findw(upcase(direccion),
      "VIA")OR findw(upcase(direccion), "VÍA")OR
      findw(upcase(direccion), "LUGAR") OR
      findw(upcase(direccion), "URBANIZACIÓN")OR
      findw(upcase(direccion), "BARRIADA")OR
      findw(upcase(direccion), "URB.") OR findw(upcase(direccion),
      "CALZADA") OR findw (upcase (direccion), "RAMBLA") OR
      findw(upcase(direccion), "CUESTA")OR
      findw(upcase(direccion), "PASAJE")OR
      findw(upcase(direccion), "PASSATGE")OR
      findw(upcase(direccion), "UR") OR findw(upcase(direccion),
      "BDA.") OR findw (upcase (direccion), "PARTIDA") OR
      findw(upcase(direccion), "BULEVAR")OR
      findw(upcase(direccion), "BDA.")OR findw(upcase(direccion),
      "CALLEJA") then zona="CALLE";
  else if findw(upcase(direccion), "AVENIDA") OR
      findw (upcase (direccion), "AVD") OR findw (upcase (direccion),
      "AVINGUDA") OR findw(upcase(direccion), "AV.") OR
      findw(upcase(direccion), "AVD.") OR
      findw(upcase(direccion), "AVDA.")OR
```

```
findw(upcase(direccion), "AV") OR findw(upcase(direccion),
    "AVDA") then zona="AVENIDA";
else if findw(upcase(direccion), "POLIGONO") OR
    findw(upcase(direccion), "P.I.")OR findw(upcase(direccion),
    "POLG") OR findw (upcase (direccion), "POLÍGONO") OR
    findw(upcase(direccion), "INDUSTRIAL") OR
    findw(upcase(direccion), "POL.IND.")OR
findw(upcase(direccion), "IND.")OR findw(upcase(direccion),
    "POLIG.") OR findw (upcase (direccion), "POL.") OR
    findw(upcase(direccion), "PGNO.")OR
findw(upcase(direccion), "PG")then zona="POLIGONO";
else if findw(upcase(direccion), "PASEO")OR
    findw(upcase(direccion), "PASSEIG") then zona="PASEO";
else if findw(upcase(direccion), "CAMINO")OR
    findw (upcase (direccion), "CAMI") OR findw (upcase (direccion),
    "VEREDA") OR findw (upcase (direccion), "PARAJE") OR
    findw(upcase(direccion), "CAÑADA")OR
findw(upcase(direccion), "PARATGE") then zona="CAMINO";
else if findw(upcase(direccion), "ROTONDA") OR
    findw(upcase(direccion), "GLORIETA") then zona="ROTONDA";
else if findw(upcase(direccion), "MUELLE") then zona="MUELLE";
else if findw(upcase(direccion), "ESTACION") then
    zona="ESTACION";
else if findw(upcase(direccion), "TRAVESIA") OR
    findw(upcase(direccion), "TRAVESÍA")OR
    findw(upcase(direccion), "TRAVESSERA") then zona="TRAVESIA";
else if findw(upcase(direccion), "RONDA") OR
    findw(upcase(direccion), "RDA.")OR findw(upcase(direccion),
    "RD") then zona="RONDA";
else if findw(upcase(direccion), "CRUCE") then zona="CRUCE";
else if findw(upcase(direccion), "COMERCIAL") then
    zona="CENTRO COMERCIAL";
else if findw(upcase(direccion), "PARQUE") OR
    findw(upcase(direccion), "PARC")then zona="PARQUE";
else if findw(upcase(direccion), "AP")OR
    findw(upcase(direccion), "AT") then zona="AUTOPISTA";
else if findw(upcase(direccion), "PARQUE EMPRESARIAL") then
    zona="PARQUE EMPRESARIAL";
else zona='missings';
```

run;

Tras crear la variable Zona realizo un estudio de frecuencias:

```
proc freq data=gasolina95;
  tables zona;
run;
```

Procedimiento FREQ						
zona	Frecuencia	Porcentaje	Frecuencia acumulada	Porcentaje acumulado		
AEROPUERTO	126	0.21	126	0.21		
AUTOPISTA	42	0.07	168	0.28		
AUTOVIA	3849	6.53	4017	6.81		
AVENIDA	9582	16.25	13599	23.06		
CALLE	12582	21.34	26181	44.39		
CAMINO	621	1.05	26802	45.45		
CARRETERA	27888	47.29	54690	92.74		
CENTRO COMERCIAL	54	0.09	54744	92.83		
CRUCE	18	0.03	54762	92.86		
MUELLE	41	0.07	54803	92.93		
PARQUE	48	0.08	54851	93.01		
PASEO	482	0.82	55333	93.83		
PLAZA	503	0.85	55836	94.68		
POLIGONO	1901	3.22	57737	97.90		
RONDA	248	0.42	57985	98.32		
ROTONDA	96	0.16	58081	98.49		
TRAVESIA	96	0.16	58177	98.65		
missings	796	1.35	58973	100.00		

Se observa que hay 796 observaciones que no se han podido clasificar correctamente. El porcentaje es de **1.35** por lo que se podría eliminar, pero observando esos registros:

	<u> </u>	Direccion		zona
58181	SILVANO,	88-90	missir	ngs
58182	HNOS. GA	RCIA NOBLEJ	missir	ngs
58183	ACCESO I	PLAN PARCIAL	missir	ngs
58184	BENITO P	EREZ GALDOS	missir	ngs
58185	C/Alcalde o	de Lavadores	missir	ngs
58186	ESTRADA	PORRIÑO-GO	missir	ngs
58187	POBLADUI	RA DEL VALLE	missir	ngs
58188	ESTRADA	ESTRADA PO	missir	ngs
58189	XOAN CAF	RLOS I S/N	missir	ngs
58190	SECTOR A	ARROYO ENME	missir	ngs
58191	SEVILLA, 1	33	missir	ngs
58192	PEDRO FE	RNANDEZ VA	missir	nas

se ve que la mayoría se corresponden con CALLES y zonas urbanas, así que vamos a asignarles a los missings la clasificación de CALLE y eliminamos la variable dirección. Para ello solo tenemos que modificar la última instrucción del código anterior:

```
/*else zona='missings';*/
     else zona="CALLE";
     drop direction;
run;
```

Así queda ahora la tabla de frecuencias donde vemos que ya no tenemos missings:

zona	Frecuencia	Porcentaje	Frecuencia acumulada	Porcentaje acumulado
AEROPUERTO	126	0.21	126	0.21
AUTOPISTA	42	0.07	168	0.28
AUTOVIA	3849	6.53	4017	6.81
AVENIDA	9582	16.25	13599	23.06
CALLE	13378	22.68	26977	45.74
CAMINO	621	1.05	27598	46.80
CARRETERA	27888	47.29	55486	94.09
CENTRO COMERCIAL	54	0.09	55540	94.18
CRUCE	18	0.03	55558	94.21
MUELLE	41	0.07	55599	94.28
PARQUE	48	0.08	55647	94.36
PASEO	482	0.82	56129	95.18
PLAZA	503	0.85	56632	96.03
POLIGONO	1901	3.22	58533	99.25
RONDA	248	0.42	58781	99.67
ROTONDA	96	0.16	58877	99.84
TRAVESIA	96	0.16	58973	100.00

Se ve que la mayoría de las gasolineras las tenemos en carreteras.

Análisis de la variable Margen

Analizamos esta variable con un procedimiento de frecuencias:

```
proc freq data=gasolina95;
  tables Margen;
run;
```

Procedimiento FREQ							
Margen	Frecuencia	Porcentaje	Frecuencia acumulada	Porcentaje acumulado			
D	29401	49.86	29401	49.86			
I	15592	26.44	44993	76.29			
N	13980	23.71	58973	100.00			

La variable Margen no presenta missings ni outliers. El descriptivo N es de no aplica y se refiere a zonas urbanas, ya que la variable se utiliza para recoger si la gasolinera está en margen derecho o izquierdo de carreteras, autovías... La distribución no está balanceada ya que se ve que hay una mayor probabilidad de que la gasolinera esté en el margen derecho que en el izquierdo.

Análisis de la variable Rotulo

En la variable Rotulo tenemos la marca de la gasolinera. Queremos diferenciar los precios por marca. Voy a crear una variable Cartel donde iré clasificando las gasolineras por marca obtenida desde la variable Rotulo. Esto es necesario porque por ejemplo las gasolineras REPSOL pueden tener rótulos diferentes pero siempre incluyendo la palabra REPSOL así que tengo que agruparlas. Esto mismo nos ocurre con varias marcas del dataset.

Caso de no poderla clasificar dejo la información contenida en Rotulo.

En primer lugar voy a eliminar el carácter " que hay en algunos rótulos. Lo sustituyo por un espacio en blanco.

```
data gasolina95;
  set gasolina95;
  format rotulo_limpio $60.;
  rotulo_limpio = translate (rotulo, ' ', '"');
run;
```

A continuación indico el código utilizado para la agrupación. En el último paso eliminamos la variable rotulo y rotulo_limpio quedándonos en su lugar con la variable cartel

```
data gasolina95;
  set gasolina95;
  format cartel $50.;
  if findw(upcase(rotulo_limpio), "CEPSA") then cartel="CEPSA";
  else if findw(upcase(rotulo_limpio), "BP") OR
     findw(upcase(rotulo_limpio), "B.P.") then cartel="BP";
```

```
else if findw(upcase(rotulo limpio), "SHELL") then
    cartel="SHELL";
else if findw(upcase(rotulo limpio), "DISA") then
    cartel="DISA";
else if findw(upcase(rotulo limpio), "REPSOL") then
    cartel="REPSOL";
else if findw(upcase(rotulo limpio), "CEPSA") then
    cartel="CEPSA";
else if findw(upcase(rotulo limpio), "GALP") then
   cartel="GALP";
else if findw(upcase(rotulo limpio), "CARREFOUR") OR
    findw(upcase(rotulo limpio), "CARRREFOUR")then
   cartel="CARREFOUR";
else if findw(upcase(rotulo limpio), "ALCAMPO") then
   cartel="ALCAMPO";
else if findw(upcase(rotulo limpio), "AGLA") then
   cartel="AGLA";
else if findw(upcase(rotulo limpio), "ALAMEDA") then
   cartel="ALAMEDA";
else if findw(upcase(rotulo limpio), "AN ENERGETICOS") then
    cartel="AN ENERGETICOS";
else if findw(upcase(rotulo limpio), "ANDAMUR") then
   cartel="ANDAMUR";
else if findw(upcase(rotulo limpio), "ARENTO") then
   cartel="ARENTO";
else if findw(upcase(rotulo limpio), "ASC") then cartel="ASC";
else if findw(upcase(rotulo limpio), "AVANZA") then
   cartel="AVANZA";
else if findw(upcase(rotulo limpio), "AVIA") then
   cartel="AVIA";
else if findw(upcase(rotulo limpio), "BDMED") then
   cartel="BDMED";
else if findw(upcase(rotulo limpio), "BENZINA") then
   cartel="BENZINA";
else if findw(upcase(rotulo limpio), "BENZINERA") then
   cartel="BENZINERA";
else if findw(upcase(rotulo limpio), "BEROIL") then
   cartel="BEROIL";
else if findw(upcase(rotulo limpio), "BIOMAR") then
   cartel="BIOMAR";
else if findw(upcase(rotulo limpio), "CAMPSA") then
   cartel="CAMPSA";
else if findw(upcase(rotulo limpio), "CANARY") then
   cartel="CANAY";
else if findw(upcase(rotulo limpio), "CLC") then cartel="CLC";
else if findw(upcase(rotulo_limpio), "DST") then cartel="DST";
else if findw(upcase(rotulo limpio), "E.LECLERC") OR
    findw(upcase(rotulo_limpio), "E-LECLERC")OR
    findw(upcase(rotulo_limpio), "LECLERC") then
    cartel="LECLERC";
else if findw(upcase(rotulo limpio), "ECOSUMINISTROS") then
    cartel="ECOSUMINISTROS";
else if findw(upcase(rotulo limpio), "EROSKI") then
    cartel="EROSKI";
else if findw(upcase(rotulo limpio), "EXOIL") then
    cartel="EXOIL";
else if findw(upcase(rotulo limpio), "FAMILY ENERGY") then
    cartel="FAMILY ENERGY";
else if findw(upcase(rotulo limpio), "FAST FUEL") then
    cartel="FAST FUEL";
```

```
else if findw(upcase(rotulo limpio), "GACOSUR") then
   cartel="GACOSUR";
else if findw(upcase(rotulo limpio), "RUNNER") then
   cartel="GAS RUNNER";
else if findw(upcase(rotulo limpio), "GASEXPRESS") then
   cartel="GASEXPRESS";
else if findw(upcase(rotulo limpio), "GHC") then cartel="GHC";
else if findw(upcase(rotulo limpio), "GLOBALTANK") then
   cartel="GLOBALTANK";
else if findw(upcase(rotulo limpio), "GP") then cartel="GP";
else if findw(upcase(rotulo limpio), "HAFESA") then
   cartel="HAFESA";
else if findw(upcase(rotulo limpio), "IBERDOEX") then
   cartel="IBERDOEX";
else if findw(upcase(rotulo limpio), "INLOCOR") then
   cartel="INLOCOR";
else if findw(upcase(rotulo limpio), "JAENCOOP") then
   cartel="JAENCOOP";
else if findw(upcase(rotulo limpio), "JULIA-OIL") then
   cartel="JULIA-OIL";
else if findw(upcase(rotulo limpio), "LABOIL") then
   cartel="LABOIL";
else if findw(upcase(rotulo limpio), "LLORSOIL") then
   cartel="LLORSOIL";
else if findw(upcase(rotulo limpio), "MEROIL") then
   cartel="MEROIL";
else if findw(upcase(rotulo limpio), "MINIOIL") then
   cartel="MINIOIL";
else if findw(upcase(rotulo limpio), "MKT") then
   cartel="MKTOIL";
else if findw(upcase(rotulo limpio), "BAROL") then cartel="OIL
   BAROL";
else if findw(upcase(rotulo limpio), "PRIX") then
   cartel="OILPRIX";
else if findw(upcase(rotulo limpio), "OPTYME") then
   cartel="OPTYME";
else if findw(upcase(rotulo limpio), "PCAN") then
   cartel="PCAN";
else if findw(upcase(rotulo limpio), "PETROCASH") then
   cartel="PETROCASH";
else if findw(upcase(rotulo limpio), "PETROCAT") then
   cartel="PETROCAT";
else if findw(upcase(rotulo limpio), "PETROMAX") then
   cartel="PETROMAX";
else if findw(upcase(rotulo limpio), "PETROMIRALLES") then
   cartel="PETROMIRALLES";
else if findw(upcase(rotulo limpio), "PETRONIEVES") then
   cartel="PETRONIEVES";
else if findw(upcase(rotulo limpio), "Q8") then cartel="Q8";
else if findw(upcase(rotulo limpio), "REPOSTAR") OR
   findw(upcase(rotulo limpio), "REPOSTAR.") then
   cartel="REPOSTAR";
else if findw(upcase(rotulo limpio), "ROYMAGA") then
   cartel="ROYMAGA";
else if findw(upcase(rotulo limpio), "SARAS") then
   cartel="SARAS";
else if findw(upcase(rotulo limpio), "STAROIL") then
   cartel="STAROIL";
else if findw(upcase(rotulo limpio), "TAMOIL") then
   cartel="TAMOIL";
```

run;

Ahora realizo el análisis de frecuencias de la variable cartel con un **proc freq**:

```
proc freq data=gasolina95;
  tables cartel;
run;
```

			Frecuencia	Porcentaje
cartel	Frecuencia	Porcentaje	acumulada	acumulado
PETROL STATION	4	0.01	4	0.01
AGRICAR	6	0.01	10	0.02
E.S. LA TORRETA	6	0.01	16	0.03
E.S. SUR	6	0.01	22	0.04
EA SANTA POLA	6	0.01	28	0.05
LAS GABIAS	6	0.01	34	0.06
OCTAPLUS	6	0.01	40	0.07
T. ALBERO	6	0.01	46	0.08
(SIN ROTULO)	69	0.12	115	0.20
(sin rótulo)	6	0.01	121	0.21
+B ENERGIAS	3	0.01	124	0.21
+OIL	6	0.01	130	0.22
-	6	0.01	136	0.23
.ES CABURANTES	6	0.01	142	0.24
.ES CARBURANTES	60	0.10	202	0.34
06/32718	6	0.01	208	0.35
15909	6	0.01	214	0.36
1PRIMER	6	0.01	220	0.37
23ESO68F	6	0.01	226	0.38
24H	6	0.01	232	0.39
3 PUNT TRES	6	0.01	238	0.40
40 PIES	3	0.01	241	0.41
63182867	6	0.01	247	0.42
7267	6	0.01	253	0.43
7345	6	0.01	259	0.44
96053	6	0.01	265	0.45
A CHAN DE AMOEDO	6	0.01	271	0.46
A PALMEIRA	6	0.01	277	0.47
A&B	6	0.01	283	0.48
A. G.	6	0.01	289	0.49
A.AGUAZA	6	0.01	295	0.50

Se puede comprobar que hay valores missings (gasolineras sin rótulo, sin determinar, con un guion o que no se pueden identificar bien). Como estos valores missings no representan un alto porcentaje del conjunto de datos procedo a eliminarlos:

```
data gasolina95;
  set gasolina95;
  if cartel in ("(SIN RÓTULO)", "(sin rótulo)", "-",
   "06/32718", "15909", "23ESO68F", "63182867", "7267", "7345",
   "96053", "A800-02", "NINGUNO", "NO", "NO ROTULO", "NO TIENE",
   "N° 10.935", "N° 15.526", "N° 7374", "SIN DETERMINAR", "SIN
   ROTULO")
   then delete;
```

run;

Vuelvo a hacer el análisis de frecuencias y ordeno:

```
proc freq data=gasolina95 ORDER=freq;
  tables cartel;
run;
```

cartel	Frecuencia	Porcentaje	Frecuencia acumulada	Porcentaje acumulado			
REPSOL	16297	27.73	16297	27.73			
CEPSA	8445	14.37	24742	42.10			
BP	4236	7.21	28978	49.30			
GALP	3189	5.43	32167	54.73			
SHELL	2581	4.39	34748	59.12			
PETRONOR	1144	1.95	35892	61.07			
AVIA	1038	1.77	36930	62.83			
CAMPSA	883	1.50	37813	64.34			
CARREFOUR	838	1.43	38651	65.76			
DISA	807	1.37	39458	67.13			
BALLENOIL	666	1.13	40124	68.27			
SARAS	420	0.71	40544	68.98			
PETROPRIX	414	0.70	40958	69.69			
AGLA	406	0.69	41364	70.38			
MEROIL	300	0.51	41664	70.89			
BONAREA	294	0.50	41958	71.39			
ALCAMPO	289	0.49	42247	71.88			
ESCLATOIL	276	0.47	42523	72.35			
EROSKI	255	0.43	42778	72.78			
VALCARCE	255	0.43	43033	73.22			
GASEXPRESS	234	0.40	43267	73.61			
PETROCAT	234	0.40	43501	74.01			
IBERDOEX	176	0.30	43677	74.31			
PLENOIL	174	0.30	43851	74.61			

Con esto reducimos el número de observaciones a 58.775

run;

Si vemos el número de niveles de cartel que nos quedan son 1.844 que es muy elevado y complicaría el modelo en el caso de que la variable cartel sea una de las que intervienen (que es algo bastante probable).

Para reducir los niveles de cartel opto por escoger las 15 más frecuentes y el resto las agrupo como RESTO.

Mirando el resultado del proc freq anterior veo que las 15 gasolineras más frecuentes son:

REPSOL, CEPSA, BP, GALP, SHELL, PETRONOR, AVIA, CAMPSA, CARREFOUR, DISA, BALLENOIL, SARAS, PETROPRIX, AGLA, MEROIL

Con el código siguiente me quedo con estas 15 y agrupo el resto en RESTO.

```
data gasolina95;
  set gasolina95;
  if cartel not in ("REPSOL", "CEPSA", "BP", "GALP", "SHELL",
   "PETRONOR", "AVIA", "CAMPSA", "CARREFOUR", "DISA",
   "BALLENOIL", "SARAS", "PETROPRIX", "AGLA", "MEROIL")
  then cartel = "RESTO";
```


Análisis de la variable Tipo_Venta

Realizamos un análisis de frecuencias:

```
proc freq data=gasolina95;
  tables Tipo_venta;
run;
```

Procedimiento FREQ						
Tipo_venta	Frecuencia	Porcentaje	Frecuencia acumulada	Porcentaje acumulado		
P	58727	99.92	58727	99.92		
р	48	0.08	58775	100.00		

En este caso podemos ver que todos los valores son P ó p (venta al público) y no se observa ningún valor R (venta restringida a socios cooperativistas), por tanto, al ser todas las observaciones de venta al público, **procedo a eliminar esta variable Tipo_venta del estudio**, ya que no nos aporta información.

```
data gasolina95;
   set gasolina95;
   drop Tipo_venta;
run:
```

Análisis de la variable Rem

Realizamos un análisis de frecuencia de esta variable que es de tipo dicotómico.

```
proc freq data=gasolina95;
  tables Rem;
run;
```

Procedimiento FREQ							
Rem	Frecuencia	Porcentaje		Porcentaje acumulado			
OM	22475	38.24	22475	38.24			
dm	36300	61.76	58775	100.00			

Se observa que no hay valores missings ni outliers. La distribución no está del todo balanceada, se puede ver que hay más datos procedentes de minoristas (dm) que de mayoristas (OM).

Análisis de la variable Horario

La variable Horario contiene información del día de la semana y del horario de atención, así como si es de 24H. Vamos a separar esta información porque a priori una gasolinera que esté abierta más días puede que sea más cara. Lo mismo ocurriría con las gasolineras que estén abiertas las 24H, a priori resultarán más caras.

Así pues vamos a crear dos nuevas variables: dia y atención

Este es el código para crear la nueva variable categórica dia

```
data gasolina95;
  set gasolina95;
  if find( horario, "D") then dia="L-D";
  else if find( horario, "S") then dia="L-S";
  else if find( horario, "V") then dia="L-V";
  else if find( horario, "J") then dia="L-J";
  else dia= tranwrd ( horario, ":", "");
  run;
```

Realizo un estudio de frecuencias de la variable dia

```
proc freq data=gasolina95;
  tables dia;
run;
```

	Procedimiento FREQ							
dia	Frecuencia	Porcentaje	Frecuencia acumulada	Porcentaje acumulado				
L	3129	5.32	3129	5.32				
L-D	52701	89.67	55830	94.99				
L-J	6	0.01	55836	95.00				
L-M	6	0.01	55842	95.01				
L-S	2541	4.32	58383	99.33				
L-V	392	0.67	58775	100.00				

La variable dia no tiene missings ni outliers, presenta una distribución en la que la mayoría de las gasolineras presta servicio de lunes a domingo (89,67%) y el resto no incluyen el domingo. Hay un 5,32% de los datos que no tenemos información de la semana completa ya que no sabemos cuando finaliza el servicio pero si que empieza en lunes.

Este es el código para crear la nueva variable atención:

```
data gasolina95;
    set gasolina95;
    format atencion $10.;
    if find( horario, "24H") then atencion="24H";
    else atencion = "NO ES 24H";
run;
```

Realizo un estudio de frecuencias de la variable atencion:

```
proc freq data=gasolina95;
  tables atencion;
run;
```

Procedimiento FREQ							
atencion Frecuencia Porcentaie acumulada acumular							
24H	24011	40.85	24011	40.85			
NO ES 24H	34764	59.15	58775	100.00			

La variable atencion no tiene ni missings ni outliers, presenta una distribución en el que la mayoría de las gasolineras no tienen atención de 24H (59.15%) frente al 40.85% que si presta ese servicio.

Como último paso elimino la variable horario que queda reemplazada por dia y atencion.

```
data gasolina95;
  set gasolina95;
  drop horario;
run;
```

1.4.- ANALISIS DE VARIABLES ANALÍTICAS

Primero voy a realizar un **proc means** para ver los valores estadísticos básicos de las variables analíticas y su distribución:

```
proc means data=gasolina95;
  var _numeric_;
run;
```

Variable	Etiqueta	N	Media	Desv. est.	Mínimo	Máximo
Fecha	Fecha de extracción	58775	21853.00	2.1605606	21850.00	21856.00
Precio_gasolina_95		58775	1.2911487	0.0776128	0.8690000	1.4890000
Precio gasoleo A		58620	1.2117630	0.0750855	0.8640000	1.3990000
Precio_gasoleo_B		13063	0.8988305	0.0671285	0.6970000	1.2490000
Precio bioetanol		36	1.4790000	0.0565433	1.3660000	1.5280000
Precio_nuevo_gasoleo_A		43245	1.2951772	0.0683600	0.8980000	1.4790000
Precio_biodiesel		282	1.2154362	0.1011859	1.0590000	1.4990000
porcentaje_ester_metilico		0				
porcentaje_bioalcohol		0				
Precio_gasolina_98		37225	1.4259168	0.0892145	0.9690000	1.6790000
Precio gas natural comprimido		62	0.9042258	0.0389095	0.8600000	0.9950000
Precio_gas_natural_licuado		48	0.8607500	0.0476416	0.8190000	0.9800000
Precio gases licuados del petrol	Precio gases licuados del petroleo	3705	0.7167968	0.0469703	0.5150000	0.7800000

Aquí se puede ver que las variables **porcentaje_ester_metalico y porcentaje_bioalcohol** están totalmente vacías, por lo que podemos **eliminarlas del estudio.**

Igualmente se aprecia que hay muy pocas observaciones del Precio_gas_natural_licuado, Precio_gas_natural_comprimido, Precio_bioetanol, Precio_biodiesel, por lo que las vamos también a eliminar del estudio

```
data gasolina95;
  set gasolina95;
  drop porcentaje_ester_metilico porcentaje_bioalcohol
        Precio_gas_natural_licuado
        Precio_gas_natural_comprimido Precio_bioetanol
        Precio_biodiesel;
run;
```

En el resto no se observan missings, ni outliers.

Procedemos ahora a realizar un estadio de correlación de las variables analíticas que nos quedan:

```
proc corr data=gasolina95 outs=correlaciones;
   var _numeric_;
run;
```


Podemos ver que las variables están correladas positivamente y que existe una fuerte correlación entre algunas de ellas.

- El precio de la gasolina de 98 con el precio de la gasolina de 95 (87.77%)
- El precio del nuevo gasóleo A con el precio del gasóleo A (89.91%)
- El precio del gasóleo A con el precio de la gasolina de 95 (87.16%)

Independientemente, en nuestro caso, como el objetivo es la predicción del precio de la gasolina de 95 desde el punto de vista del consumidor podemos eliminar el resto de precios del estudio.

```
data gasolina95;
   set gasolina95;
   drop Precio_gasoleo_A Precio_gasoleo_B Precio_nuevo_gasoleo_A
        Precio_gasolina_98 Precio_gases_licuados_del_petrol;
run;
```

Finalmente me quedo con un dataset, cuyo objetivo es predecir el precio de la gasolina de 95 desde el punto de vista del consumidor que tiene **9 variables explicativas y 58.775 observaciones.**

Tras realizar todo el proceso de data cooking, almaceno en una librería permanente lib_in el dataset limpio trabajado hasta este punto:

```
data lib_in.gasolina95_limpio;
   set gasolina95;
run;
```

Para determinar cuál es el algoritmo adecuado realizo un análisis de normalidad:

```
proc univariate data=lib_in.gasolina95_limpio normal plot;
  var precio_gasolina_95;
  qqplot precio_gasolina_95 / NORMAL (MU=EST SIGMA=EST
        COLOR=RED L=1);
  HISTOGRAM / NORMAL(COLOR=MAROON W=4) CFILL = pink CFRAME =
        LIGR;
  INSET MEAN STD /CFILL=BLANK FORMAT=5.2;
run;
```

Obtengo el test de normalidad y su gráfica:

Test para normalidad							
Test Estadístico P valor							
Kolmogorov-Smirnov	D	0.192675	Pr > D	< 0.0100			
Cramer-von Mises	W-Sq	622.6815	Pr > W-Sq	< 0.0050			
Anderson-Darling	A-Sq	3675.679	Pr > A-Sq	< 0.0050			

El p-valor vemos que es menor a 0.05, por tanto rechazamos la hipótesis nula, es decir los datos **no vienen de una distribución normal**.

2.- MODELADOS CON SAS

2.1.- MODELO LINEAL GENERAL (GLM)

Realizo ahora la partición de los datos para comenzar a entrenar el modelo. De las **58.775 observaciones** realizo estas particiones:

- Entrenamiento (70%): 41.143
- Validación (15%): 8.816
- Test (15%): 8.816

Con este código obtengo los tres datasets para el entrenamiento, la validación y el test según el criterio 70%-15%-15%.

```
data gasolina95_train gasolina95_valida gasolina95_test;
    set lib_in.gasolina95_limpio;
    if _N_ <= 41143 then output gasolina95_train;
    else if _N_ <= 49959 then output gasolina95_valida;
    else output gasolina95_test;
run;</pre>
```

Queremos predecir y explicar las causas del precio de la gasolina 95 y, como estamos con una variable de tipo continua, se determina utilizar un Modelo Lineal General como algoritmo para el análisis de modelización.

Utilizo un **GLM select** para obtener los efectos que intervienen en el modelo. Voy a realizar dos procesos **con y sin interacciones en el modelo.** En ambos comenzaré con la

semila 12345 y realizaré 200 modelos para cada uno escogiendo el método de validación cruzada.

Macro sin interacciones utilizada para generar un fichero txt que contenga los efectos, el ASE y la semilla:

```
%let lib=
"/home/u44690176/my_courses/Mariceli/mariceli0/output/macrogas95_1.txt";
%macro macro GLM select;
%do semilla=12345 %to 12545;
  ods graphics on;
  ods output SelectionSummary=modelos;
  ods output SelectedEffects=efectos;
 ods output Glmselect.SelectedModel.FitStatistics=ajuste;
  proc glmselect data=gasolina95 train plots=all seed=&semilla;
  partition fraction (validate=0.\overline{4});
  class Fecha Provincia Margen Rem zona cartel dia atencion;
 model precio gasolina 95 = Fecha Provincia Margen Rem zona cartel dia
  atencion
  / selection=stepwise(select=aic choose=cv) details=all stats=all;
  run;
  ods graphics off;
  ods html close;
 data union; i=12; set efectos; set ajuste point=i; run;
  data; semilla=&semilla; file &lib mod; set union; put effects @80 nvalue1
  095 semilla;run;
proc sql; drop table modelos, efectos, ajuste, union; quit;
%mend:
%macro GLM select;
```

Creo una tabla SAS con la información que he obtenido en el txt. La ordeno por orden de frecuencia de los efectos de manera descendente

```
data modelo sin interacciones;
length modelo $100;
input modelo $1-76 ase semilla;
cards;
Intercept Provincia Margen Rem zona cartel dia atencion 0.001189 12345
Intercept Provincia Margen Rem zona cartel dia atencion 0.001170 12346
Intercept Provincia Margen Rem zona cartel dia atencion 0.001165
                                                               12347
Intercept Provincia Margen Rem zona cartel dia atencion 0.001177
                                                                12348
Intercept Provincia Margen Rem zona cartel dia atencion 0.001214
Intercept Provincia Margen Rem zona cartel dia atencion 0.001173 12350
run;
proc sql;
  create table modelos sin interacciones as
  select modelo as Modelo GLM sin interacciones,
         count (modelo) as Count model, min(ase) as Min Ase,
         max(ase) as Max Ase,
         avg(ase) as AVG Ase, STD(ase) as STD Ase
  from modelo sin interacciones
  group by modelo
  order by Count model desc;
quit;
```

Se analizan los efectos de los modelos GLM, observando la frecuencia de ocurrencia, el mínimo y máximo alcanzado del ASE junto con su media y desviación

Resultado de la macro sin interacciones

Repito ahora la misma macro pero incluyendo 28 interacciones dos a dos

Fecha*Provincia	Fecha*Margen	Fecha*Rem	Fecha*zona	Fecha*cartel
Fecha*dia	Fecha*atencion	Provincia*Margen	Provincia*Rem	Provincia*zona
Provincia*cartel	Provincia*dia	Provincia*atencion	Margen*Rem	Margen*zona
Margen*cartel	Margen*dia	Margen*atencion	Rem*zona	Rem*cartel
Rem*dia	Rem*atencion	zona*cartel	zona*dia	zona*atencion
cartel*dia	cartel*atencion	dia*atencion		

```
%let lib=
"/home/u44690176/my_courses/Mariceli/mariceli0/output/macrogas95_2.txt";
%macro macro GLM select int;
%do semilla=12345 %to 12545;
 ods graphics on;
  ods output SelectionSummary=modelos;
  ods output SelectedEffects=efectos;
  ods output Glmselect.SelectedModel.FitStatistics=ajuste;
  proc glmselect data=gasolina95 train plots=all seed=&semilla;
  partition fraction(validate=0.\overline{4});
  class Fecha Provincia Margen Rem zona cartel dia atencion;
 model precio_gasolina_95 = Fecha*Provincia Fecha*Margen Fecha*Rem
                             Fecha*zona Fecha*cartel
                             Fecha*dia Fecha*atencion Provincia*Margen
                             Provincia*Rem Provincia*zona
                             Provincia*cartel Provincia*dia
                             Provincia*atencion
                             Margen*Rem Margen*zona Margen*cartel
                             Margen*dia Margen*atencion
                             Rem*zona Rem*cartel Rem*dia Rem*atencion
                             zona*cartel zona*dia
                             zona*atencion cartel*dia cartel*atencion
                             dia*atencion
    / selection=stepwise(select=aic choose=cv) details=all stats=all;
  run;
  ods graphics off;
 ods html close;
  data union; i=12; set efectos; set ajuste point=i; run;
  data; semilla=&semilla; file &lib mod; set union; put effects @80 nvalue1
  @95 semilla;run;
proc sql; drop table modelos, efectos, ajuste, union; quit;
%mend;
%macro GLM select int;
```

Creo al igual que antes una tabla SAS con la información que he obtenido en el segundo txt. La ordeno por orden de frecuencia de los efectos de manera descendente.

Los resultados obtenidos de la macro con interacciones, los efectos del modelo GLM, la frecuencia de ocurrencia, el mínimo y el máximo alcanzado del ASE junto con su media y desviación son:

```
| Flags years | Count price | Processor |
```

Tras esto integro todos los modelos en una única tabla. Ordeno por frecuencia de los modelos y por el ASE de manera descendente con este código:

```
data all_model;
    set modelos_sin_interacciones
        (rename=Modelo_GLM_sin_interacciones = Modelo_GLM)
        modelos_con_interacciones
        (rename=Modelo_GLM_con_interacciones = Modelo_GLM);
run;

proc sort data=all_model;
    by descending Count_model AVG_Ase Min_Ase Max_Ase;
run;
```

La tabla final resultante con todos los modelos GLM (con y sin interacciones) es:

	Modelo_GLM	Count_model	Min_Ase	13	Max_Ase	AVG_Ase	STD_Ase
1	Intercept Provincia Margen Rem zona cartel dia atencion	200	0.0011	4	0.001222	0.0011753	0.0000146449
2	Intercept Provincia*Margen Provincia*Rem Provincia*zona Provincia*cartel Provincia*dia Provincia	54	0.0008	8	0.000958	0.0009111852	0.0000151584
3	Intercept Provincia*Rem Provincia*zona Provincia*cartel Provincia*dia Provincia*atencion zona*c	26	0.0008	6	0.000951	0.0009286538	0.0000157631
4	Intercept Provincia*Rem Provincia*zona Provincia*cartel Provincia*dia Provincia*atencion Rem*c	18	0.0008	11	0.000981	0.0009245	0.0000210021
5	Intercept Provincia*Rem Provincia*zona Provincia*cartel Provincia*dia Provincia*atencion Rem*c	12	0.0008	19	0.000956	0.0009205	0.0000165337
6	Intercept Provincia*Margen Provincia*Rem Provincia*zona Provincia*cartel Provincia*dia Provincia	11	0.0008	15	0.000944	0.0009111818	0.0000156705
7	Intercept Provincia*Margen Provincia*Rem Provincia*zona Provincia*cartel Provincia*dia Provincia	9	0.0008	13	0.000924	0.0009065556	0.0000132958
8	Intercept Provincia*Margen Provincia*Rem Provincia*zona Provincia*cartel Provincia*dia Provincia	9	0.0009	19	0.000954	0.0009332222	0.0000151061
9	Intercept Provincia*Margen Provincia*Rem Provincia*zona Provincia*cartel Provincia*dia Provincia	8	0.0009	1	0.00094	0.00092275	9.2543426E-6
10	Intercept Provincia*Margen Provincia*Rem Provincia*zona Provincia*cartel Provincia*dia Provincia	7	0.0008	17	0.000938	0.0009138571	0.0000142645
11	Intercept Provincia*Margen Provincia*Rem Provincia*zona Provincia*cartel Provincia*dia Provincia	5	0.00)9	0.000955	0.0009228	0.0000213237
12	Intercept Provincia*Margen Provincia*Rem Provincia*zona Provincia*cartel Provincia*dia Provincia	4	0.0008	12	0.000924	0.0009075	0.0000136991
13	Intercept Provincia*Rem Provincia*zona Provincia*cartel Provincia*dia Provincia*atencion Marge	4	0.000	19	0.00096	0.00091375	0.0000321494
14	Intercept Provincia*Rem Provincia*zona Provincia*cartel Provincia*dia Provincia*atencion Rem*c	4	0.0009)1	0.000927	0.000918	0.0000116046
15	Intercept Provincia*Rem Provincia*zona Provincia*cartel Provincia*dia Provincia*atencion Marge	3	0.0009	18	0.000923	0.0009143333	7.7674535E-6
16	Intercept Provincia*Margen Provincia*Rem Provincia*zona Provincia*cartel Provincia*dia Provincia	3	0.0009	13	0.000928	0.0009186667	0.0000136504
17	Intercept Provincia*Margen Provincia*Rem Provincia*zona Provincia*cartel Provincia*dia Provincia	3	0.0009	3	0.000931	0.0009233333	9.2915732E-6
18	Intercept Provincia*Rem Provincia*zona Provincia*cartel Provincia*dia Provincia*atencion Marge	3	0.0009	9	0.000945	0.0009346667	8.9628864E-6
19	Intercept Provincia*Margen Provincia*Rem Provincia*zona Provincia*cartel Provincia*dia Provincia	3	0.0009	7	0.000949	0.0009413333	0.0000124231
20	Intercept Provincia*Rem Provincia*zona Provincia*cartel Provincia*dia Provincia*atencion Marge	2	0.0008	8	0.000914	0.000906	0.0000113137
21	Intercept Provincia*Rem Provincia*zona Provincia*cartel Provincia*dia Provincia*atencion Marge	2	0.0009	13	0.000909	0.000906	4.2426407E-6
22	Intercept Provincia*Margen Provincia*Rem Provincia*zona Provincia*cartel Provincia*dia Provincia	2	0.0009	12	0.000911	0.0009065	6.363961E-6
23	Intercept Provincia*Margen Provincia*Rem Provincia*zona Provincia*cartel Provincia*dia Provincia	2	0.0008	17	0.000918	0.0009075	0.0000148492
24	Intercept Provincia*Margen Provincia*Rem Provincia*zona Provincia*cartel Provincia*dia Provincia	1	0.0009	18	0.000908	0.000908	
25	Intercept Provincia*Margen Provincia*Rem Provincia*zona Provincia*cartel Provincia*dia Provincia	1	0.0009	18	0.000908	0.000908	
26	Intercept Provincia*Margen Provincia*Rem Provincia*zona Provincia*cartel Provincia*dia Provincia	1	0.0009	6	0.000916	0.000916	
27	Intercept Provincia*Rem Provincia*zona Provincia*cartel Provincia*dia Provincia*atencion Rem*c	1	0.0009	26	0.000926	0.000926	
28	Intercept Provincia*Margen Provincia*Rem Provincia*zona Provincia*cartel Provincia*dia Provincia	1	0.0009	14	0.000934	0.000934	
29	Intercept Provincia*Rem Provincia*zona Provincia*cartel Provincia*dia Provincia*atencion zona*c	1	0.0009	13	0.000943	0.000943	
30	Intercept Provincia*Margen Provincia*Rem Provincia*zona Provincia*cartel Provincia*dia Provincia	1	0.0009	13	0.000943	0.000943	
31	Intercept Fecha Provincia Margen Rem zona cartel dia atencion	1	0.0011	8	0.001158	0.001158	

Podemos ver que el primer modelo:

Provincia Margen Rem zona cartel dia atencion

es el que no tiene interacciones, pero presenta mayor error que el resto que son con interacciones. Aunque al ser sin interacciones es más estable en el tiempo, consume menos tiempo de memoria y sería más fácil de implementar.

El segundo modelo:

Provincia*Margen Provincia*Rem Provincia*zona Provincia*cartel Provincia*dia Provincia*atencion Margen*Rem Margen*cartel Rem*cartel zona*cartel zona*dia cartel*dia cartel*atencion

Presenta menos error pero tiene un número elevado de interacciones con lo que debe ser más difícil de implementar.

En principio me quedaré con el segundo modelo, el que contiene interacciones:

```
Precio gasolina 95 = Intercept + Provincia*Margen + Provincia*Rem + Provincia*zona + Provincia*cartel + Provincia*dia + Provincia*atencion + Margen*Rem + Margen*cartel + Rem*cartel + zona*cartel + zona*dia + cartel*dia + cartel*atencion + Error
```

Introduzco estos efectos seleccionados en un proc glm:

```
proc glm data=gasolina95_train;
class Provincia Margen Rem zona cartel dia atencion;
model precio_gasolina_95 = Provincia*Margen Provincia*Rem
Provincia*zona Provincia*cartel Provincia*dia Provincia*atencion
Margen*Rem Margen*cartel Rem*cartel zona*cartel zona*dia
cartel*dia cartel*atencion
/ solution e;
run;
```

Este es el resultado:

```
| R-cuadrado | Var Coef. | Raiz MSE | Media de Precio_gasolina_95 | 0.856141 | 2.285283 | 0.029504 | 1.291058 |
```

Se puede ver el resultado completo de todos los parámetros (es una tabla muy grande) en el fichero "Resultados_Practica95.sas.pdf" que está en este mismo repositorio

Parte inicial de la tabla de parámetros:

			Error		
Parámetro		Estimación	estándar	t valor	Pr > t
T. independiente		1.291870224	0.03347189	38.60	<.0001
Provincia*Margen ALBACETI	E D	0.005698773	0.04287597	0.13	0.8943
Provincia*Margen ALBACETI	I	0.011502847	0.04335525	0.27	0.7908
Provincia*Margen ALBACETI	E N	0.016048844	0.04287405	0.37	0.7082
Provincia*Margen ALICANTE	D	-0.039517743	0.04984853		0.4279
Provincia*Margen ALICANTE		-0.032114307			0.5188
Provincia*Margen ALICANTE		-0.024822685			0.6175
Provincia*Margen ALMERÍA		0.045490021			0.2364
Provincia*Margen ALMERÍA		0.051095600			0.1828
Provincia*Margen ALMERÍA		0.074525689			
Provincia*Margen ASTURIAS		-0.012741164		-0.24	
Provincia*Margen ASTURIAS		-0.011044535		-0.21	
Provincia*Margen ASTURIAS	N	-0.013304326	0.05272432	-0.25	0.8008
Provincia*Margen BADAJOZ		-0.143625794		-2.63	0.0086
Provincia*Margen BADAJOZ		-0.144560253			0.0083
Provincia*Margen BADAJOZ		-0.140287433	0.05469252	-2.57	
Provincia*Margen BALEARS		-0.053526068		-1.09	0.2767
Provincia*Margen BALEARS		-0.050639189			0.3038
Provincia*Margen BALEARS	(ILLES) N	-0.049231242			0.3165
Provincia*Margen BARCELO	NA D	-0.031931056		-0.62	
Provincia*Margen BARCELO	NA I	-0.032790697			0.5215
Provincia*Margen BARCELO	NA N	-0.021916412	0.05106274		0.6678
Provincia*Margen BURGOS [0.047814727			0.2357
Provincia*Margen BURGOS I		0.056641476	0.04039648		0.1609
Provincia*Margen BURGOS N	V	0.067883948	0.04049663		0.0937
Provincia*Margen CANTABRI		0.037994303	3 0.04121812		
Provincia*Margen CANTABRI	AI	0.045061385	0.04143419		0.2768
Provincia*Margen CANTABRI		0.045948173			0.2604
3	ÓN / CASTELLÓ D	-0.029515000			0.5927
	ÓN / CASTELLÓ I	-0.023367747			0.6719
	ÓN / CASTELLÓ N	-0.020943643			0.7047
Provincia*Margen CEUTA D		-0.311810416		-5.62	
Provincia*Margen CEUTA N		-0.297321733			
Provincia*Margen CIUDAD RI	EAL D	-0.083264029	0.05369501		0.1210
Provincia*Margen CIUDAD RI	EAL I	-0.073855348	0.05360325	-1.38	0.1683
Provincia*Margen CIUDAD RI		-0.071655826			
Provincia*Margen CORUÑA (0.011003716			0.7433
Provincia*Margen CORUÑA (0.013533824		0.40	
Provincia*Margen CORUÑA (0.013365921		0.40	0.6902
Provincia*Margen CUENCA D		-0.050412058		-0.95	0.3430
Provincia*Margen CUENCA I		-0.057805558		-1.08	0.2780
Provincia*Margen CUENCA N		-0.039472441	0.05292591	-0.75	0.4558

.....

Tengo un **R-Cuadrado de 0.8561** por lo que parece un buen resultado para la banda de ajuste

<u>Conclusión:</u> tras comparar 400 modelos de GLM, he obtenido uno con un **R=0.8561**, con un ASE de media de 0.000911 y una desviación de 0.000015 por lo que este sería el modelo "champion GLM" para predecir el precio de la gasolina 95 a través de las interacciones de variables: Provincia*Margen Provincia*Rem Provincia*zona Provincia*cartel Provincia*dia Provincia*atencion Margen*Rem Margen*cartel Rem*cartel zona*dia cartel*dia cartel*atencion

Precio_gasolina_95 = 1,2918 + Provincia*Margen + Provincia*Rem + Provincia*zona + Provincia*cartel + Provincia*dia + Provincia*atencion + Margen*Rem + Margen*cartel + Rem*cartel + zona*cartel + zona*dia + cartel*dia + cartel*atencion + épsilon

Donde el valor de cada parámetro viene dado por la tabla de resultado anterior y épsilon es un error aleatorio

A continuación voy a comprobar la robustez del modelo pasándole los datos de **validación**

```
proc glm data=gasolina95_valida;
class Provincia Margen Rem zona cartel dia atencion;
model precio_gasolina_95 = Provincia*Margen Provincia*Rem
Provincia*zona Provincia*cartel Provincia*dia Provincia*atencion
Margen*Rem Margen*cartel Rem*cartel zona*cartel zona*dia
cartel*dia cartel*atencion
/ solution e;
run;
```

Observo que el R-cuadrado es de 0.8718 en las muestras de validación, bastante parecido a lo que he obtenido antes con las muestras de entrenamiento, por tanto podemos considerar que el modulo es robusto.

R-cuadrado Var Coef. Raíz MSE Media de Precio_gasolina_95

1.291305

0.871867 2.432580 0.031412

3.- COMPARACIÓN DE MODELOS

La parte de validación y test la voy a realizar con el Miner pero primero voy a realizar una comparativa de modelos para escoger el modelo "champion" y sobre ese realizar dicha validación y test.

Con la utilidad SAS Miner realizaré una comparación rápida de distintos modelos. Además del GLM compararé con la regresión lineal y con redes neuronales. Así podré ver si realmente el GLM es el mejor o es recomendable escoger otro algoritmo matemático. Utilizaré la versión HP (hight-performance) que equivale a realizar la comparativa con varios modelos.

El primer paso con Miner es asignar la librería donde tengo la información y después agregar la tabla con la fuente de datos creada de gasolina (gasolina95_limpio). Escogeré dentro de la tabla nuestra variable objetivo que es **Precio_gasolina_95**

En la partición de datos aplico la misma proporción que en la primera parte del estudio 70-15-15

Añado los nodos para cada tipo de modelización de alto rendimiento (HP): GLM, regresión y red neuronal.

De todos los resultados que muestra el Miner, aquí están los más relevantes como la tabla de Train con la suma de los cuadrados de los errores y el ASE.

Data Role=Train			
Statistics	HPGLM	HPNNA	HPReg
Train: Average Squared Error	0.00	0.00	0.00
Selection Criterion: Valid: Average Squared Error	0.00	0.00	0.00
Train: Divisor for ASE	23510.00	23510.00	23510.00
Train: Maximum Absolute Error	0.18	0.21	0.21
Train: Sum of Frequencies	23510.00	23510.00	23510.00
Train: Root Average Squared Error	0.03	0.03	0.03
Train: Sum of Squared Errors	18.88	22.59	27.23

Se analiza también los resultados obtenidos de validación de la comparativa.

Data Ro	le=Valid			
Statist:	ics	HPGLM	HPNNA	HPReg
Valid: A	Average Squared Error	0.00	0.00	0.00
Valid: 1	Divisor for ASE	17633.00	17633.00	17633.00
Valid: 1	Maximum Absolute Error	0.32	0.21	0.21
Valid:	Sum of Frequencies	17633.00	17633.00	17633.00
Valid: 1	Root Average Squared Error	0.03	0.03	0.03
Valid:	Sum of Squared Errors	16.74	18.40	21.12

Y por último, se analizará la parte resultante del test de los modelos comparados

Data Role=Test

Statistics	HPGLM	HPNNA	HPReg
Test: Average Squared Error	0.00	0.00	0.00
Test: Divisor for ASE	17632.00	17632.00	17632.00
Test: Maximum Absolute Error	0.32	0.21	0.21
Test: Sum of Frequencies	17632.00	17632.00	17632.00
Test: Root Average Squared Error	0.03	0.03	0.03
Test: Sum of Squared Errors	16.03	17.91	20.92

Según estos datos el modelo GLM parece ser el mejor ya que presenta una ventaja predictiva al ser la suma de los cuadrados de los errores inferior a la de los otros dos. Así pues nos quedamos con el modelo GLM

Conclusión final:

```
Precio_gasolina_95 = 1,2918 + Provincia*Margen + Provincia*Rem + Provincia*zona + Provincia*cartel + Provincia*dia + Provincia*atencion + Margen*Rem + Margen*cartel + Rem*cartel + zona*cartel + zona*dia + cartel*dia + cartel*atencion + épsilon
```

Donde el valor de cada parámetro viene dado por la tabla que aparece en fichero "Resultados_Practica95.sas.pdf" de este mismo repositorio y épsilon es un error aleatorio