

Se estudia el comportamiento de circuitos con señales periódicas no naturales.

Estas señales periódicas no naturales pueden ser generadas por las fuentes o por no nealidades de los elementos pasivos.

SEÑALES POLIARMÓNICAS

Son señales **periódicas no naturales**, que se encuentran con frecuencia en electrónica y con cada vez mayor asiduidad en las redes, debido a la influencia que los circuitos electrónicos tienen en las mismas

Algunos ejemplos típicos son

Rectificada media onda

Diente de sierra

SEÑALES POLIARMÓNICAS

Señal periódica no senoidal arbitraria debida a carga no lineal

¿Cómo se estudian los circuitos que presentan este tipo de señales?

SERIE DE FOURIER

Si la señal es periódica de periodo T se cumple que

$$F(t) = f(t+T)$$

Una serie de Fourier es una suma de infinitos términos senos y/o cosenos de amplitudes adecuadas y cuyas frecuencias son múltiplos de la frecuencia de la onda original, que se suele denominar frecuencia fundamental, mediante la cual es posible representar funciones periódicas no senoidales

$$u(t) = A_0 + A_1 sen(\omega_1 t) + A_2 sen(\omega_2 t) + A_3 sen(\omega_3 t) + \cdots$$

$$\cdots + B_1 cos(\omega_1 t) + B_2 cos(\omega_2 t) + B_3 cos(\omega_3 t) + \cdots$$

$$= U_0 + U_1 sen(\omega_1 t + \phi_1) + U_2 sen(\omega_2 t + \phi_2) + U_3 sen(\omega_3 t + \phi_3) + \cdots$$

con
$$\omega_2=2\omega_1$$
; $\omega_3=3\omega_1$; etc.
 $U_i=\sqrt{A_i^2+B_i^2}$; $\phi_i=arctg(B_i/A_i)$

¿Cómo se calculan los coeficientes de la serie a partir de la expresión analítica de la función original?

SERIE DE FOURIER

Para que exista una representación por serie de Fourier la función en estudio debe cumplir las condiciones de Dirichlet:

- •La función debe ser periódica
- •El valor medio en en el período debe ser finito
- •Si la función es discontinua, el número de discontinuidades en el período debe ser finito
- •Debe tener un número finito de máximos positivos y negativos en el período

Cumplidas las condiciones anteriores, se puede demostrar que el cálculo de los coeficientes de la serie se puede realizar

con las siguientes expresiones

$$A_0 = \frac{1}{T} \int_0^T u(t) dt$$

Observar que corresponde al valor medio de la función original

$$A_{n} = \frac{2}{T} \int_{0}^{T} u(t) \operatorname{sen}(n\omega t) dt$$

$$B_n = \frac{2}{T} \int_0^T u(t) \cos(n\omega t) dt$$

SERIE DE FOURIER

ESPECTRO DE FRECUENCIAS O DE LÍNEAS

Para una dada forma de onda se grafican las amplitudes (en módulo) de los coeficientes en función de los armónicos.

$$u(t) = U_0 + U_1 sen(\omega_1 t + \phi_1) + U_2 sen(\omega_2 t + \phi_2) + U_3 sen(\omega_3 t + \phi_3) + \cdots$$

SERIE DE FOURIER

ESPECTRO DE FRECUENCIAS O DE LÍNEAS

SERIE DE FOURIER

ESPECTRO DE FRECUENCIAS O DE LÍNEAS

Para una dada forma de onda se grafican las amplitudes (en módulo) de los coeficientes en función de los armónicos.

$$u(t) = U_0 + U_1 sen(\omega_1 t + \phi_1) + U_2 sen(\omega_2 t + \phi_2) + U_3 sen(\omega_3 t + \phi_3) + \cdots$$

SERIE DE FOURIER

ESPECTRO DE FRECUENCIAS O DE LÍNEAS

Para una dada forma de onda se grafican las amplitudes (en módulo) de los coeficientes en función de los armónicos.

$$u(t) = U_0 + U_1 sen(\omega_1 t + \phi_1) + U_2 sen(\omega_2 t + \phi_2) + U_3 sen(\omega_3 t + \phi_3) + \cdots$$

SERIE DE FOURIER

ESPECTRO DE FRECUENCIAS O DE LÍNEAS

$$u(t) = U_0 + U_1 sen(\omega_1 t + \phi_1) + U_2 sen(\omega_2 t + \phi_2) + U_3 sen(\omega_3 t + \phi_3) + \cdots$$

Si las funciones tienen grandes discontinuidades las amplitudes del espectro decrecen lentamente (se necesitan muchos términos de la serie); si el espectro disminuye rápidamente significa que la serie se puede representar con pocos términos

SEÑALES POLIARMÓNICAS

VALOR EFICAZ

Si u(t) es una poliarmónica

$$u(t)=U_0+U_1sen(\omega_1t+\phi_1)+U_2sen(\omega_2t+\phi_2)+U_3sen(\omega_3t+\phi_3)+\cdots$$

La expresión general del valor eficaz de u(t)

$$U_{ef}^{2} = \frac{1}{T} \int_{0}^{T} u^{2}(t) dt$$

$$U_{ef}^{2} = \frac{1}{T} \int_{0}^{T} \left(U_{0} + U_{1} sen(\omega_{1}t + \phi_{1}) + U_{2} sen(\omega_{2}t + \phi_{2}) + U_{3} sen(\omega_{3}t + \phi_{3}) + \cdots \right)^{2} dt$$

Reordenando la expresión anterior

SEÑALES POLIARMÓNICAS

VALOR EFICAZ

$$U_{ef}^{2} = \frac{1}{T} \int_{0}^{T} U_{0}^{2} dt + \frac{1}{T} \int_{0}^{T} U_{1}^{2} sen^{2} \left(\omega_{1}t + \phi_{1}\right) dt + \frac{1}{T} \int_{0}^{T} U_{2}^{2} sen^{2} \left(\omega_{2}t + \phi_{2}\right) dt + \frac{1}{T} \int_{0}^{T} U_{3}^{2} sen^{2} \left(\omega_{3}t + \phi_{3}\right) dt + \cdots$$

pues los productos de subíndices diferentes son nulos

Se puede observar que cada término resulta en el valor eficaz del correspondiente armónico, y que el valor eficaz del término que representa el valor medio es el mismo valor medio

$$U_{ef}^{2} = U_{0ef}^{2} + U_{1ef}^{2} + U_{2ef}^{2} + U_{3ef}^{2} + \cdots$$

SEÑALES POLIARMÓNICAS

APLICACIÓN

Una señal de tensión poliarmónica u(t)=10sen(50t)+10sen(100t)+10sen(150t) V se aplica a un resistor $R=1\Omega$. Mediante la aplicación del **principio de superposición** determinar y graficar cada componente de corriente resultante, así como la corriente total.

Pues $u(t)=u_1(t)+u_2(t)+u_3(t)$

SEÑALES POLIARMÓNICAS

APLICACIÓN

SOLUCIÓN → aplicación del **principio de superposición**

$$i(t)=i_1(t)+i_2(t)+i_3(t)=10sen(50t)+10sen(100t)+10sen(150t)A$$

SEÑALES POLIARMÓNICAS

APLICACIÓN

SEÑALES POLIARMÓNICAS

APLICACIÓN

Se intercala ahora una impedancia serie LC, con L=100 mH y C=1 mF ¿qué tipo de circuito resulta? Repetir lo realizado en el caso anterior.

Comparar los resultados y efectuar comentarios.

SOLUCIÓN → aplicación del **principio de superposición**

$$i_2(t)=10sen(100t) A$$

$$i_3(t)=1,19sen(150t-1,45) A$$

SEÑALES POLIARMÓNICAS

APLICACIÓN

i(t)=0,67sen(50t+1,5)+10sen(100t)+1,19sen(150t-1,45)A

SEÑALES POLIARMÓNICAS

APLICACIÓN

TÉCNICAS QUE SIMPLIFICAN EL CÁLCULO DE LOS COEFICIENTES DE LA SERIE DE FOURIER

Repasando:

Si la señal es periódica de periodo T se cumple que

$$F(t) = f(t+T)$$

Una **serie de Fourier** es una suma de infinitos términos senos y/o cosenos de amplitudes adecuadas y cuyas frecuencias son múltiplos de la frecuencia de la onda original, que se suele denominar **frecuencia fundamental**, mediante la cual es posible representar funciones periódicas no senoidales

$$u(t) = A_0 + A_1 sen(\omega_1 t) + A_2 sen(\omega_2 t) + A_3 sen(\omega_3 t) + \cdots$$

$$\cdots + B_1 cos(\omega_1 t) + B_2 cos(\omega_2 t) + B_3 cos(\omega_3 t) + \cdots$$

$$= U_0 + U_1 sen(\omega_1 t + \phi_1) + U_2 sen(\omega_2 t + \phi_2) + U_3 sen(\omega_3 t + \phi_3) + \cdots$$

con
$$\omega_2=2\omega_1$$
; $\omega_3=3\omega_1$; etc.
 $U_i=\sqrt{A_i^2+B_i^2}$; $\phi_i=arctg(B_i/A_i)$

SERIE DE FOURIER

Para que exista una representación por serie de Fourier la función en estudio debe cumplir las condiciones de Dirichlet:

- •La función debe ser periódica
- •El valor medio en en el período debe ser finito
- •Si la función es discontinua, el número de discontinuidades en el período debe ser finito
- •Debe tener un número finito de máximos positivos y negativos en el período

Cumplidas las condiciones anteriores, se puede demostrar que el cálculo de los coeficientes de la serie se puede realizar con las siguientes expresiones

$$A_0 = \frac{1}{T} \int_0^T u(t) dt$$

Obse

Observar que corresponde al valor medio de la función original

$$A_{n} = \frac{2}{T} \int_{0}^{T} u(t) \operatorname{sen}(n\omega t) dt$$

$$B_n = \frac{2}{T} \int_0^T u(t) \cos(n\omega t) dt$$

SERIE DE FOURIER

Se puede simplificar el cálculo y la expresión de la serie observando las simetrías de la función original; algunos ejemplos:

Función impar (simetría respecto al origen)

La serie que representa a este tipo de funciones sólo contienen términos seno

$$f(t) = -f(-t)$$

Función par (simetría respecto al eje de ordenadas):

La serie que representa a este tipo de funciones sólo contienen términos coseno

$$f(t) = f(-t)$$

SERIE DE FOURIER

Ejercicio: Encontrar la serie de Fourier que representa a la siguiente forma de onda:

<u>Tips</u>: ightharpoonup El valor medio de la señal es **nulo** ightharpoonup ightharpoonup El valor medio de la señal es **nulo** ightharpoonup ightharpoonup

► De acuerdo a dónde se ubique el eje de ordenadas, la simetría puede ser par (**) o impar (*), → serie de cosenos o de senos

SERIE DE FOURIER

Ejercicio: Encontrar la serie de Fourier que representa a la siguiente forma de onda:

Si se supone el eje en (*), se deduce que los $B_n = 0$ (sólo hay términos del seno) y el cálculo de los A_n resultan

$$An = \frac{2U}{\pi \cdot n} (1 - \cos n\pi)$$

$$An = \frac{4U}{\pi \cdot n} \text{ si } n \text{ es impar}$$

$$An = 0 \text{ si } n \text{ es par}$$

SERIE DE FOURIER

Ejercicio: Encontrar la serie de Fourier que representa a la siguiente forma de onda:

Y la serie se escribe
$$\Rightarrow u(t) = \frac{4U}{\pi} sen(\omega t) + \frac{4U}{3\pi} sen(3\omega t) + \frac{4U}{5\pi} sen(5\omega t) +$$

Resolver para el caso en que el eje se ubique en (**)

SEÑALES POLIARMÓNICAS

BIBLIOGRAFÍA

- * Circuitos Eléctricos. Parte 2 Morcelle-Deorsola
- * Circuitos Eléctricos Spinadel
- * Principios de Electrotecnia, Tomo 2 Netushil-Strajov
- * Apuntes de Electrotecnia General Faradje-Kahn
- * Circuitos en Ingeniería Eléctrica Skilling
- * Circuitos Eléctricos Dorf
- * Análisis Básico de Circuitos Eléctricos Johnson-Hilburn-Jonhson