# Video Game Review Analysis

NLP Classification with Machine Learning and Neural Networks

**Andrew Muller** 

# **Business Case**

This goal of this project is to create a model that can predict sentiment of internet talk about video games. Specifically, it will be a neural network model trained on Steam reviews. The reviews are marked either "suggested" or "not suggested", corresponding to a results classification of "positive" or "negative". Eventually, the project will result in a website that, when supplied with a Twitter hashtag or Reddit thread, will analyze the sentiment of the related comments.

## Resources

#### Modeling Data:

- Steam store user reviews
- store.steampowered.com/appreviews

#### Production Data:

- Twitter hashtags
  - twint python library
- Reddit comments
  - o PRAW python library

#### Libraries used:

- BeautifulSoup
- Feather
- Flask
- Gensim
- matplotlib
- NLTK
- pandas
- PRAW
- Scikit-learn
- Talos
- TensorFlow
- twint
- WordCloud

## **Data Collection**

- User reviews collected from Steam
- Available for any Steam user to write.
- Labeled "suggested" or "not suggested"
- Can be voted as "helpful" or "unhelpful"
- Training dataset: most helpful reviews from the 750 most popular games
- Total of 73,096 reviews, as some of the games have less than 100 reviews.





# **Data Processing**

#### Preprocessing:

- 1. Remove markdown tags and punctuation
- 2. Tokenize
  - NLTK RegexpTokenizer
  - Match only English letters and numbers
- 3. Lemmatize
  - NLTK WordNetLematizer
- 4. Stopword removal
  - NLTK English stopwords

#### Feature Engineering:

- TF-IDF
- TF-IDF with Bigrams
- Document Embeddings
  - Gensim Dec2Vec transformer

# Machine Learning Models

|   | Model                   | Processing          | Test Accuracy |
|---|-------------------------|---------------------|---------------|
| 0 | Logistic Regression     | TF-IDF with Bigrams | 0.914090      |
| 1 | Multinomial Naive Bayes | TF-IDF with Bigrams | 0.871614      |
| 2 | Random Forest           | TF-IDF with Bigrams | 0.866963      |

- TF-IDF with bigrams outperformed other processing methods
- Logistic regression outperformed other model types
- Narrow hyperparameter gridsearch performed on logistic regression and random forest models
- Best test accuracy of 91%

### **Neural Networks**

- Basic CNN with only dense and dropout layers
- Talos gridsearch to tune hyperparameters
- Best test accuracy of 91%
- Accuracy matches earlier machine learning model, but may better generalize to non-Steam reviews

```
model = Sequential()

# hidden Layers
model.add(Dense(500, input_dim=8000, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(250, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(125, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(250, activation='relu'))

# output Layer
model.add(Dense(1, activation='sigmoid'))
```

# Flask Demo

# **Conclusions and Future Work**

- Internet chatter about video games is generally positive.
- The models overpredict on the majority class, positive.
- To improve the usefulness of the project, I also need to incorporate some method of topic modelling.
- Gathering data from other sources could lead to a model that is better able to generalize.
- My product for this project can currently only live locally. Incorporating AWS is needed to get it on the internet

# Thank You

Any Questions?