```
import numpy as np
import pandas as pd
import seaborn as sns
sns.set_palette('hus1')
import matplotlib.pyplot as plt
%matplotlib inline

from sklearn import metrics
from sklearn.neighbors import KNeighborsClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split

data = pd.read_csv('../input/Iris.csv')
```

### **Preview of Data**

- There are 150 observations with 4 features each (sepal length, sepal width, petal length, petal width).
- There are no null values, so we don't have to worry about that.
- There are 50 observations of each species (setosa, versicolor, virginica).

```
In [2]: data.head()
```

| Out[2]: |   | Id | SepalLengthCm | SepalWidthCm | PetalLengthCm | PetalWidthCm | Species     |
|---------|---|----|---------------|--------------|---------------|--------------|-------------|
|         | 0 | 1  | 5.1           | 3.5          | 1.4           | 0.2          | Iris-setosa |
|         | 1 | 2  | 4.9           | 3.0          | 1.4           | 0.2          | Iris-setosa |
|         | 2 | 3  | 4.7           | 3.2          | 1.3           | 0.2          | Iris-setosa |
|         | 3 | 4  | 4.6           | 3.1          | 1.5           | 0.2          | Iris-setosa |
|         | 4 | 5  | 5.0           | 3.6          | 1.4           | 0.2          | Iris-setosa |

```
In [3]: data.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 6 columns):
Td
                150 non-null int64
SepalLengthCm
              150 non-null float64
SepalWidthCm
                150 non-null float64
PetalLengthCm
                150 non-null float64
PetalWidthCm
                150 non-null float64
                150 non-null object
Species
dtypes: float64(4), int64(1), object(1)
memory usage: 7.1+ KB
```

In [4]: data.describe()

Out[4]:

|       | ld         | SepalLengthCm | SepalWidthCm | PetalLengthCm | PetalWidthCm |
|-------|------------|---------------|--------------|---------------|--------------|
| count | 150.000000 | 150.000000    | 150.000000   | 150.000000    | 150.000000   |
| mean  | 75.500000  | 5.843333      | 3.054000     | 3.758667      | 1.198667     |
| std   | 43.445368  | 0.828066      | 0.433594     | 1.764420      | 0.763161     |
| min   | 1.000000   | 4.300000      | 2.000000     | 1.000000      | 0.100000     |
| 25%   | 38.250000  | 5.100000      | 2.800000     | 1.600000      | 0.300000     |
| 50%   | 75.500000  | 5.800000      | 3.000000     | 4.350000      | 1.300000     |
| 75%   | 112.750000 | 6.400000      | 3.300000     | 5.100000      | 1.800000     |
| max   | 150.000000 | 7.900000      | 4.400000     | 6.900000      | 2.500000     |

Name: Species, dtype: int64

### **Data Visualization**

- After graphing the features in a pair plot, it is clear that the relationship between pairs of features of a iris-setosa (in pink) is distinctly different from those of the other two species.
- There is some overlap in the pairwise relationships of the other two species, iris-versicolor (brown) and iris-virginica (green).

```
In [6]:
    tmp = data.drop('Id', axis=1)
    g = sns.pairplot(tmp, hue='Species', markers='+')
    plt.show()
```



```
In [7]:
    g = sns.violinplot(y='Species', x='SepalLengthCm', data=data, inner='quartile')
    plt.show()
    g = sns.violinplot(y='Species', x='SepalWidthCm', data=data, inner='quartile')
    plt.show()
    g = sns.violinplot(y='Species', x='PetalLengthCm', data=data, inner='quartile')
    plt.show()
    g = sns.violinplot(y='Species', x='PetalWidthCm', data=data, inner='quartile')
    plt.show()
```





# Modeling with scikit-learn

```
In [8]:
    X = data.drop(['Id', 'Species'], axis=1)
    y = data['Species']
    # print(X.head())
    print(X.shape)
    # print(y.head())
    print(y.shape)
```

```
(150, 4)
(150,)
```

#### Train and test on the same dataset

- This method is not suggested since the end goal is to predict iris species using a dataset the model has not seen before.
- There is also a risk of overfitting the training data.

```
In [9]: # experimenting with different n values
k_range = list(range(1,26))
scores = []
for k in k_range:
    knn = KNeighborsClassifier(n_neighbors=k)
    knn.fit(X, y)
    y_pred = knn.predict(X)
    scores.append(metrics.accuracy_score(y, y_pred))

plt.plot(k_range, scores)
plt.xlabel('Value of k for KNN')
plt.ylabel('Accuracy Score')
plt.title('Accuracy Scores for Values of k of k-Nearest-Neighbors')
plt.show()
```



```
In [10]:
    logreg = LogisticRegression()
    logreg.fit(X, y)
    y_pred = logreg.predict(X)
    print(metrics.accuracy_score(y, y_pred))
0.96
```

### Split the dataset into a training set and a testing set

#### **Advantages**

- By splitting the dataset pseudo-randomly into a two separate sets, we can train using one set and test using another.
- This ensures that we won't use the same observations in both sets.
- More flexible and faster than creating a model using all of the dataset for training.

#### Disadvantages

- The accuracy scores for the testing set can vary depending on what observations are in the set.
- This disadvantage can be countered using k-fold cross-validation.

#### **Notes**

- The accuracy score of the models depends on the observations in the testing set, which is determined by the seed of the pseudo-random number generator (random\_state parameter).
- As a model's complexity increases, the training accuracy (accuracy you get when you train and test the model on the same data) increases.
- If a model is too complex or not complex enough, the testing accuracy is lower.
- For KNN models, the value of k determines the level of complexity. A lower value of k means that the model is more complex.

```
In [11]:
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=5)
    print(X_train.shape)
    print(y_train.shape)
    print(X_test.shape)
    print(y_test.shape)
```

```
(90, 4)
         (90,)
         (60, 4)
         (60,)
In [12]:
          # experimenting with different n values
          k range = list(range(1,26))
          scores = []
          for k in k range:
              knn = KNeighborsClassifier(n_neighbors=k)
              knn.fit(X train, y train)
              y pred = knn.predict(X test)
              scores.append(metrics.accuracy_score(y_test, y_pred))
          plt.plot(k range, scores)
          plt.xlabel('Value of k for KNN')
          plt.ylabel('Accuracy Score')
          plt.title('Accuracy Scores for Values of k of k-Nearest-Neighbors')
          plt.show()
```



```
In [13]:
    logreg = LogisticRegression()
    logreg.fit(X_train, y_train)
    y_pred = logreg.predict(X_test)
    print(metrics.accuracy_score(y_test, y_pred))
```

0.933333333333

## Choosing KNN to Model Iris Species Prediction with k = 12

After seeing that a value of k = 12 is a pretty good number of neighbors for this model, I used it to fit the model for the entire dataset instead of just the training set.

```
In [14]:
    knn = KNeighborsClassifier(n_neighbors=12)
    knn.fit(X, y)

# make a prediction for an example of an out-of-sample observation
    knn.predict([[6, 3, 4, 2]])

Out[14]:
array(['Iris-versicolor'], dtype=object)
```