Data Assimilation and Genetic Algorithms for the Parameter Estimation Problem in Simple Climate Models

Morgan R. Frank & Andrew Reagan

Department of Mathematics & Statistics
Vermont Complex Systems Center
Computational Story Lab
Vermont Advanced Computing Center
University of Vermont

Introduction

The Problem Systems of Intere

Methods

Genetic Algorithms (GA) The GA Experiments

Results

Introduction

The Problem

Methods

Genetic Algorithms (GA)
The GA Experiments

Results

 Start with some observation data for some phenomenon

Introduction

The Problem

Systems of Interes

Methods

Genetic Algorithms (GA)
The GA Experiments

Results

- Start with some observation data for some phenomenon
- Start with a well-principled model for that phenomenon

Introduction

The Problem

Systems of Interes

Methods

Genetic Algorithms (GA)
The GA Experiments

Results

- Start with some observation data for some phenomenon
- Start with a well-principled model for that phenomenon
- Can we find model parameters to reproduce the observation data?

Introduction

The Problem Systems of Intere

Methods

Genetic Algorithms (GA)
The GA Experiments

Results

Systems of Interest

Lorenz '63

$$\frac{dx}{dt} = \sigma(y - x)$$

$$\frac{dy}{dt} = \rho x - y - xz$$

$$\frac{dz}{dt} = xy - \beta z.$$

Lorenz '96

$$\frac{dx_{i}}{dt} = x_{i-1}(x_{i+1} - x_{i-2}) - x_{i} + F - \frac{hc}{b} \sum_{j=1}^{J} y_{(j,i)}$$

$$\frac{dy_{(j,i)}}{dt} = cby_{(j+1,i)}(y_{(j-1,i)} - y_{(j+2,i)}) - cy_{(j,i)} + \frac{hc}{b}x_{i}$$

Introduction

The Problem Systems of Interest

Methods

The GA Experiments

Results

Systems of Interest

Lorenz '63 (L63)

-20<u>L</u>

Lorenz '96 (L96)

Introduction

The Problem

Systems of Interest

Methods

Genetic Algorithms (GA The GA Experiments

Result

Evolution is a pretty sweet problem solver...just need to fit the paradigm

Introduction

The Problem

Systems of Interes

Methods

Genetic Algorithms (GA)
The GA Experiments

Results

- Evolution is a pretty sweet problem solver...just need to fit the paradigm
- Population: real-valued vectors (called individuals or genes), each index represents a parameter choice (or alleles)

Introduction

The Problem

Systems of Interes

Methods

Genetic Algorithms (GA)
The GA Experiments

Results

- Evolution is a pretty sweet problem solver...just need to fit the paradigm
- Population: real-valued vectors (called individuals or genes), each index represents a parameter choice (or alleles)
- Genetic Mutation: with some probability, add or subtract a small amount from an index in a vector

Introduction

The Problem

Systems of Interes

Methods

Genetic Algorithms (GA)
The GA Experiments

Results

- Evolution is a pretty sweet problem solver...just need to fit the paradigm
- Population: real-valued vectors (called individuals or genes), each index represents a parameter choice (or alleles)
- Genetic Mutation: with some probability, add or subtract a small amount from an index in a vector
- ➤ Selection Pressure: integrate model using parameters from an individual in the population. The point-wise root mean square error of this time series compared to observation data (or fitness)

Introduction

The Problem
Systems of Interes

Methods

Genetic Algorithms (GA)
The GA Experiments

Results

- Evolution is a pretty sweet problem solver...just need to fit the paradigm
- Population: real-valued vectors (called individuals or genes), each index represents a parameter choice (or alleles)
- Genetic Mutation: with some probability, add or subtract a small amount from an index in a vector
- ➤ Selection Pressure: integrate model using parameters from an individual in the population. The point-wise root mean square error of this time series compared to observation data (or fitness)
- Feproduction/Crossover: select two individuals from the population, called parents, and select a random index. Create to children vectors. The first child copies the entries from Parent 1 up to the selected index, and fills the remaining entries from Parent 2. Swap the roles of the parents to create the second child. The children replace the parents in the

Introduction

The Problem Systems of Interes

Methods

Genetic Algorithms (GA)
The GA Experiments

Results

Genetic Algorithms

Introduction

The Problem

Systems of Interes

Methods

Genetic Algorithms (GA)
The GA Experiments

Result

▶ For the L63: $\sigma = 10 \& \beta = 8/3$

Introduction

The Problem Systems of Intere

Methods

The GA Experiments

Results

- ▶ For the L63: $\sigma = 10 \& \beta = 8/3$
- ▶ Test the effects of system dynamics on GA by tuning $\rho \in [22, 28, 35]$

Introduction

The Problem Systems of Interes

Methods

The GA Experiments

Results

- ▶ For the L63: $\sigma = 10 \& \beta = 8/3$
- ▶ Test the effects of system dynamics on GA by tuning $\rho \in [22, 28, 35]$
- ▶ For the L96: h = 1, b = c = 10, F = 14 & J = 4

Introduction

The Problem Systems of Interes

Methods

The GA Experiments

Results

- ▶ For the L63: $\sigma = 10 \& \beta = 8/3$
- ▶ Test the effects of system dynamics on GA by tuning $\rho \in [22, 28, 35]$
- ► For the L96: h = 1, b = c = 10, F = 14 & J = 4
- Test the effects of system dimensionality on GA by tuning I ∈ [4, 8, 10, 15]

Introduction

The Problem Systems of Interes

Methods

The GA Experiments

Results

- ▶ For the L63: $\sigma = 10 \& \beta = 8/3$
- ▶ Test the effects of system dynamics on GA by tuning $\rho \in [22, 28, 35]$
- ► For the L96: h = 1, b = c = 10, F = 14 & J = 4
- ► Test the effects of system dimensionality on GA by tuning I ∈ [4, 8, 10, 15]
- Test the effects of subsampling

Introduction

The Problem Systems of Interes

Methods

The GA Experiments

Results

- ▶ For the L63: $\sigma = 10 \& \beta = 8/3$
- ▶ Test the effects of system dynamics on GA by tuning $\rho \in [22, 28, 35]$
- ▶ For the L96: h = 1, b = c = 10, F = 14 & J = 4
- ► Test the effects of system dimensionality on GA by tuning I ∈ [4, 8, 10, 15]
- Test the effects of subsampling
- Test the effects of normal and uniformly distributed noise in the observation data

Introduction

The Problem Systems of Interes

Methods

The GA Experiments

Results

The Effects of Subsampling and Artificial Noise in Observation Data

Effects of Uniform Noise:

Effects of Subsampling:

Introduction

The Problem Systems of Intere

Methods

The GA Experiments

Results

Running the GA

Introduction

The Problem Systems of Inter

Methods

Genetic Algorithms (G/ The GA Experiments

Resul

System Dynamics in L63

Introduction

The Problem Systems of Interes

Methods

Genetic Algorithms (GA The GA Experiments

Results

System Dynamics in L63

Introduction

The Problem
Systems of Interes

Methods

Genetic Algorithms (GA The GA Experiments

Results

Dimensionality in L96

Introduction

The Problem Systems of Intere

Methods

Genetic Algorithms (GA The GA Experiments

Results

Dimensionality in L96

Introduction

The Problem
Systems of Interes

Methods

Genetic Algorithms (GA The GA Experiments

Results

Introduction

The Problem Systems of Intere

Methods

Genetic Algorithms (GA)
The GA Experiments

Result

► GA performs comparably to Data Assimilation (DA) for Parameter Estimation as "out-of-the-box" tools

Introduction

The Problem Systems of Interes

Methods

Genetic Algorithms (GA)
The GA Experiments

Results

- GA performs comparably to Data Assimilation (DA) for Parameter Estimation as "out-of-the-box" tools
- DA diverged for some experiments. Steps can be taken to prevent this. GA performs without special considerations.

Introduction

The Problem Systems of Inter

Methods

Genetic Algorithms (GA) The GA Experiments

Results

- GA performs comparably to Data Assimilation (DA) for Parameter Estimation as "out-of-the-box" tools
- DA diverged for some experiments. Steps can be taken to prevent this. GA performs without special considerations.
- Initial results show GA FAILS the one-variable problem, while DA got it right for many cases.

Introduction

The Problem Systems of Inter

Methods

Genetic Algorithms (GA) The GA Experiments

Results

- GA performs comparably to Data Assimilation (DA) for Parameter Estimation as "out-of-the-box" tools
- DA diverged for some experiments. Steps can be taken to prevent this. GA performs without special considerations.
- ► Initial results show GA FAILS the one-variable problem, while DA got it right for many cases.
- need to try with other simple models. Need to see how far up the model hierarchy before GA is impractical or ineffective.

Introduction

The Problem Systems of Inter

Methods

Genetic Algorithms (GA) The GA Experiments

Results

- GA performs comparably to Data Assimilation (DA) for Parameter Estimation as "out-of-the-box" tools
- DA diverged for some experiments. Steps can be taken to prevent this. GA performs without special considerations.
- Initial results show GA FAILS the one-variable problem, while DA got it right for many cases.
- need to try with other simple models. Need to see how far up the model hierarchy before GA is impractical or ineffective.
- Attempt a real-world problem

Introduction

The Problem Systems of Inte

Methods

Genetic Algorithms (GA) The GA Experiments

Results

