TWIN-64 Architecture Document

Helmut Fieres June 12, 2025

Contents

Introduction		1
Concepts	 	. 1
This Book	 	. 1
Architecture Overview		3
System Organization		5
Data Types	 	. 5
General Registers	 	. 5
Control Registers	 	. 5
Processor Status Register	 	. 5
Byte Ordering		
TLB		
Caches		
System Memory		7
Virtual Memory	 	. 7
Physical Memory		
Addressing and Access Control		9
Address Translation		g
Access Control		
Access Protection		
Interruptions		11
Traps		
External Interrupts		
Instruction Set		13
Instruction Overview		
Instruction Formats		
ADD Integer Addition		

Introduction

Concepts

This book

Architecture Overview

System Organization

Data Types

General Registers

Control Registers

Processor Status Register

Byte Ordering

TLB

Caches

System Memory

Virtual Memory

Physical Memory

Addressing and Access Control

Address Translation

Access Control

Access Protection

Interruptions

Traps

External Interrupts

Instruction Set

Instruction Overview

Integer Arithmetic Instructions

ADD, SUB, SHLxA, SHRxA

Bit Operations Instructions

AND, OR, XOR, EXTR, DEP, DSR

Immediate Instructions

LDI, ADDIL, LDO

Memory Reference Instructions

LD, ST, LDR, STC

Branch Instructions

B, BR, BV, BB, CBR, MBR

Combined Instructions

ADD, SUB, AND, OR, XOR, CMP

System Instructions

MFCR, MTCR, RSM, SSM, RFI, ITLB, PTLB, PCA, FCA, LDPA, PRBR, PRBW

Instruction Formats

T64 uses few instruction formats. They are grouped by the number of available register slots and the length of the immediate value field.

Immediate S19

The immediate S19 instruction format provides one register and a 19 bit signed immediate field. This format is typically used by branch instructions.

Gr	p	OpCode	Reg R	Opt 1	S-IMM-19
2		4	4	3	19

Immediate S15

The immediate S15 instruction format provides two registers and a 15 bit signed immediate field. This format is used by branch instructions as well as instruction which operate on a register and an immediate value.

Grp	OpCode	Reg R	Opt 1	Reg B	S-IMM-15
2	4	4	3	4	15

Immediate S13

The immediate S13 instruction format provides two registers, an additional option field and a 13 bit signed immediate field. Some instruction use the S-IMM-13 field for special encodings instead of a signed value. This format is used by memory reference instructions where the address is formed by a base register and a 13-bit signed offset.

	Grp	OpCode	Reg R	Opt 1	Reg B	Opt 2	S-IM	M-13 /	specia	al		
į	2	4	4	3	4	2		13	i			

Immediate S9

The immediate S9 instruction format provides three registers, an additional option field and a 9 bit signed immediate field. Some instruction use the S-IMM-9 field for special encodings instead of a signed value instead of a signed value. This instruction format is used for all computational instructions where three registers are needed.

	Grp	OpCode	Reg R	Opt 1	Reg B	Opt 2	Reg A	S-IMM-9 / special
i	2	4	4	3	4	2	4	9

Immediate U20

The immediate U20 format is used by the immediate instruction group to provide a 20bit unsigned value. This value is then placed at certain positions in the register target Reg R.

Grp	OpCode	Reg R	0	U-IMM-20
2	4	4	2	20

ADD Integer Addition

Syntax ADD RegR, RegB, RegA

ADD RegR, RegB, Immed15
ADD RegR, Immed13(RegB)

ADD RegR, RegX (RegB)

Format

The ADD instruction uses the register, the immediate, the indexed and the register indexed instruction formats.

0	1	Reg R	0	Reg B	Opt 2	Reg A	S-IMM-9 / special
2	44	44	3	4	2	4	9 9
0	1	Reg R	0	Reg B		S-IM	M-15
2	44	44	3	4			5
1	1	Reg R	0	Reg B	dw	S-IM	M-13 / special
2	4	44	3	4	2		13
1	1	Reg R	0	Reg B	dw	Reg A	0
2	4	4	3	4	2	4	9

Description

Adds RegA and RegB, storing result in RegR. (text???)

Operation

RegR <- RegB + RegA (register format)</pre>

RegR <- RegB + immOperand() (immediate format)</pre>

RegR <- RegR + memOperand() (indexed formats)</pre>

Exceptions

Integer Overflow

Data Alignment

Memory Access Violation Memory Protection Violation

Data TLB miss

Notes

None.