分布式计算

邱怡轩

今天的主题

- 共轭梯度法
- 分布式 Logistic 回归

线性回归

- 当 *n* < *p* 时
- X'X 不再可逆
- ■最小二乘没有唯一解

岭回归

岭回归

- 依然是回归问题 $y = \beta_0 + \beta' x + \varepsilon$
- 当 $n \ll p$ 时, X'X 不可逆
- 此时在损失函数上加入惩罚项 $\lambda || \beta ||^2$
- 回归系数估计值的表达式为 $\hat{\beta}_{\lambda} = (X'X + \lambda I)^{-1}X'Y$
- λ 为一个给定的正数

岭回归

- 注意当 $n \ll p$ 时, $X'X + \lambda I$ 是一个高维的矩阵,无法直接解线性方程组
- 引入共轭梯度法

共轭梯度法

线性方程组

- 考虑线性方程组 Ax = b
- 假设 A 是正定矩阵
- 正定: A 的特征值都大于0
- 求解 $x = A^{-1}b$ 总共分几步?

线性方程组

- 考虑线性方程组 Ax = b
- 假设 A 是正定矩阵
- 正定: A 的特征值都大于0
- 求解 $x = A^{-1}b$ 总共分几步?

- p 步, 某种意义上
- p 是 A 的维度 (A 是方阵)

共轭梯度法

- 共轭梯度法 (Conjugate gradient, CG)
 是一种解正定线性方程组的方法
- 它有趣的地方在于,可以通过乘法运算 $v \to Av$ 来得到逆运算结果 $A^{-1}b$
- 更有意思的是,数学上可以证明它在 p 步迭代之后就可以得到精确解

共轭梯度法

Target: solve linear equation Ax = b. $A_{m \times m}$ is positive definite

Input: A, b, x_0 (initial guess)

$$r_0 := b - Ax_0$$

$$p_0 := r_0$$

$$k := 0$$

Loop until k = m

$$\alpha_k := \frac{r_k' r_k}{p_k' A p_k}$$

$$x_{k+1} := x_k + \alpha_k p_k$$

$$r_{k+1} := r_k - \alpha_k A p_k$$

If r_{k+1} is sufficiently small then exit loop

$$\beta_k := \frac{r'_{k+1} r_{k+1}}{r'_k r_k}$$

$$p_{k+1} := r_{k+1} + \beta_k p_k$$

$$k := k + 1$$

End loop

Output: x_{k+1}

https://en.wikipedia.org/wiki/Conjugate_gradient_method

适用范围

- CG 尤其适合矩阵乘法能高效计算的场合
- 稀疏矩阵
- 分布式矩阵

■ 但一定要注意验证正定性

正定性

■ 哪些矩阵是正定的?

- 特征值均大于0
- 非退化分布的协方差矩阵
- $X'X + \lambda I, \lambda > 0$

实现

■ lec8-cg.ipynb

- 利用 CG 来求解回归问题
- https://cosx.org/2016/11/conjugategradient-for-regression/

岭回归-续

解决思路

- 1. 从原始数据生成 RDD (与线性回归步骤相同)
- 2. 计算 X'Y
- 3. 定义运算 $h \to Ah$, 其中 $A = X'X + \lambda I$
- 4. 利用 CG 解线性方程组

CG

- 利用 CG 求解 Ax = b 时,我们只需要定义计算 Ah 的 "运算符" 即可,其中 h 是任意的向量
- 并不需要真正计算出 A
- 例如对于 $A = X'X + \lambda I$, 计算 $Ah = X'Xh + \lambda h$ 要比计算 A 本身高效得多!

乘法运算

- $A = X'X + \lambda I$
- $\blacksquare Ah = X'Xh + \lambda h$
- X'Xh 可分布式进行

• 计算 $X_i'X_iv = X_i'(X_iv)$ 时应先算 X_iv !

■ lec7-regression.ipynb

Logistic 回归

Logistic 回归

- 假定 $Y|x \sim Bernoulli(\rho(\beta'x))$
- $\rho(x) = 1/(1 + e^{-x})$, 即 Sigmoid 函数
- $\rho(\beta'x)$ 代表 Y 取1的概率

- 给定数据 (y_i, x_i) , i = 1, ..., n
- 估计 β

目标函数

■ 极大似然准则

$$L(\beta) = -\sum_{i=1}^{n} \{ y_i \log \rho_i + (1 - y_i) \log(1 - \rho_i) \}$$

• 其中 $\rho_i = \rho(x_i'\beta)$