Turing Categories and Computability

Amittai Siavava

05/22/2024

Contents

Introduction	. 1
§1. Preliminaries	. 1
1.1 Categories	1
1.2 Restriction Categories	2
§2. Turing Categories	. 3
References	3

Introduction

In this paper, we construct a turing category \Bbbk and study the resulting implications on computability.

1 Preliminaries

1.1 Categories

Definition 1.1. A $category \mathscr{A}$ consists of:

- **1.** A collection $ob(\mathscr{A})$ of objects;
- **2.** For each pair of objects $A, B \in \mathbf{ob}(\mathscr{A})$, a set $\mathscr{A}(A, B)$ of **arrows** or **morphisms** or **maps** from A to B;
- **3.** For each $A, B, C \in \mathbf{ob}(\mathscr{A})$, a function

$$\circ_{A,B,C}: \mathscr{A}(B,C) \times \mathscr{A}(A,B) \to \mathscr{A}(A,C)$$
$$(f,g) \mapsto f \circ g$$

called *composition*; where $(f \circ g)(x) = f(g(x))$ for all $x \in A$.

4. For each $A \in \mathbf{ob}(\mathscr{A})$, an arrow $\mathrm{id}_A \in \mathscr{A}(A,A)$ called the *identity* on A; such that the following axioms hold:

- **1.** associativity: for all $f \in \mathcal{A}(A, B)$, $g \in \mathcal{A}(B, C)$, and $h \in \mathcal{A}(C, D)$, $(h \circ g) \circ f = h \circ (g \circ f)$.
- **2.** identity laws: for all $f \in \mathcal{A}(A, B)$, $f \circ id_A = f = id_B \circ f$.

Remark 1.2. As simplifications, we write:

- (a) $A \in \mathscr{A}$ to mean $A \in \mathbf{ob}(\mathscr{A})$;
- (b) $f: A \to B$ or $A \xrightarrow{f} B$ to mean $f \in \mathcal{A}(A, B)$;
- (c) fg for $f \circ g$;

 \Diamond

Examples 1.3. 1. There is a category Set, where

- (a) **ob**(Set) is the collection of all sets;
- (b) Set(A, B) is the set of all functions from A to B;
- (c) composition is ordinary function composition;
- (d) the identity on A is the identity function on A.
- 2. There is a category Grp, where
 - (a) **ob**(Grp) is the collection of all groups;
 - (b) $\mathsf{Grp}(G,H)$ is the set of all group homomorphisms from G to H;
 - (c) composition is ordinary function composition;
 - (d) the identity on G is the identity homomorphism on G.
- **3.** There is a category Top of topological space and continuous maps.
- **4.** For each field k, there is a category Vect_k of vector spaces over k and linear maps between them.

 \Diamond

Definition 1.4. A map $f: A \to B$ in a category \mathscr{A} is an *isomorphism* if there exists a map $g: B \to A$ such that $fg = \mathrm{id}_A$ and $gf = \mathrm{id}_B$. Ee call g the *inverse* of f and write $f^{-1} = g$, and say that A and B are *isomorphic* if there exists an isomorphism between them.

Examples 1.5. 1. In Set, isomorphisms are bijections.

- 2. In Grp and Ring, isomorphisms are group and ring isomorphisms respectively.
- **3.** In $Vect_k$, isomorphisms are linear isomorphisms.

 \Diamond

1.2 Restriction Categories

Definition 1.6. A *restriction category* is a category $\mathscr A$ with a *restriction* operation that assigns to each arrow $f: A \to B$ an arrow $\bar f: A \to A$ such that:

- 1. $\bar{f} \circ f = f$;
- **2.** $\bar{f} \circ \bar{g} = \bar{g} \circ \bar{f}$ whenever $\operatorname{dom}(f) = \operatorname{dom}(g)$;
- **3.** $\overline{f \circ \overline{g}} = \overline{g} \circ \overline{f}$ whenever $\operatorname{dom}(f) = \operatorname{dom}(g)$.
- **4.** $\bar{g} \circ f = \bar{g} \circ f \circ \bar{g}$ whenever $\operatorname{dom}(f) = \operatorname{range}(g)$.

Remark 1.7. It follows from the definition that \bar{f} is **idempotent**. That is, $\bar{f} \circ \bar{f} = \bar{f}$. Furthermore, the operation $f \mapsto \bar{f}$ is also monotonic, with $\bar{\bar{f}} = \bar{f}$.

Examples 1.8. Here are a few examples of restriction categories. [1]

- 1. All categories admit the trivial restriction operation that maps $f: A \to B$ to $\bar{f} = id_A$.
- **2.** The category Par of partial functions between sets admits a restriction operation that maps $f:A \rightharpoonup B$ to $\bar{f}=\mathsf{id}_{\mathbf{dom}(f)}$.

 \Diamond

2 Turing Categories

References

[1] Tom Leinster, Basic category theory, 2016.