

Structural Analysis of Neonatal Clots

Alexander W. Kyu

PI: Ashley Brown

Mentor: Kimberly Nellenbach

Advanced Wound Healing Lab

Neonatal Bleeding Complications

Many neonates are born with congenital heart defects and require corrective surgery with cardiopulmonary bypass (CPB)

Neonates are especially prone to post-operative bleeding, which often results in bleeding complications

Currently addressed through adult blood transfusion products

Inconstant Efficacy and Not always sufficient to restore Hemostasis

Neonatal Fibrinogen

- Quantitative and Qualitative differences in clot structure between neonates and adults
- Possess immature form of fibrinogen
- Normally not an issue for a healthy neonate

Differences in Clot Structure

 Immature Coagulation System leads to distinct differences in clot properties

Adult Fibrin network

Confocal Microscopy. Scale bar= 20 um

Neonatal Fibrin network

Modified from Brown et al. Anesthesiology. (2016)

How are these properties quantified?

Simple Methods of Quantification

Initial Branching Quantification

Hand-counting

Confocal Microscopy. Scale Bar = 25 um

How do you effectively automate this process?

Modified from Brown et al. Anesthesiology. (2016)

Modified from Brown et al. Anesthesiology.(2016)

Modified from Brown et al. Anesthesiology. (2016)

Neonatal Clot

Modified from Brown et al. Anesthesiol

Neonatal Clot

Modified from Brown et a

esthesiology.(2016)

Solution?

Solution? Thresholding based on Intensity Distribution

3D Adult Quantification

Confocal Microscopy. Scale Bar = 25 um

3D Neonatal Quantification

Confocal Microscopy. Scale Bar = 25 um

Clot Quantification

Takeaways

- 1. Neonates that go under cardiopulmonary bypass surgery are at an extreme risk for blood loss
- 2. Immature coagulation proteins in neonates
- Limited image analysis techniques to characterize clot structure
- This image processing method could potentially revolutionize clot structure quantification

Acknowledgements

Principle Investigator:

Dr. Ashley Brown

Mentor:

Kimberly Nellenbach

Advanced Wound Healing Lab

Professor:

Dr. Naji Husseini

Questions?

