Computer Architecture: Homework 2

TA: 翁齊宏

R08943010@ntu.edu.tw

Date: 2020/10/27

Gaussian filter

Gaussian function in two dimensions

$$G(x,y) = rac{1}{2\pi\sigma^2} e^{-rac{x^2+y^2}{2\sigma^2}}$$

The 5*5 kernel used in this homework is as the following

$$\begin{bmatrix} 0.0039 & 0.0156 & 0.0234 & 0.0156 & 0.0039 \\ 0.0156 & 0.0625 & 0.0938 & 0.0625 & 0.0156 \\ 0.0234 & 0.0938 & 0.1408 & 0.0938 & 0.0234 \\ 0.0156 & 0.0625 & 0.0938 & 0.0625 & 0.0156 \\ 0.0039 & 0.0156 & 0.0234 & 0.0156 & 0.0039 \end{bmatrix}$$

Step by step

- Input: 128*128 array
 - 1. Padding (we use zero padding in this homework)
 - 2. Convert to double
 - 3. Do Gaussian filtering
 - 4. Convert the result back to **64-bit** integer
 - 5. Calculate RMSE between input and result

Useful instructions

- fcvt.d.l
- fcvt.l.d
- fadd.d
- fmul.d
- fsqrt.d

Data:

data_i	(128*128)	For input data
data_o	(128*128)	For output data
data_pad	(132*132)	For padding data_i
rmse_ans		For output rmse
buffer	(5*5)	For buffer
kernel_5	(5*5)	Gaussian filter

It is fine if you don't use data_pad or buffer.

Requirement

- 1. (75%) Convolution data_i & kernel_5 with Gaussian filter and store it in data_o.
 - Zero padding is needed
 - Remember to convert data i to double before you calculate convolution
 - Convert result to integer and store it in data_o
- 2. (25%) Calculate root mean square error (RMSE) between data_i & data_o (both in 128*128), and store the result in rmse_ans. Screenshot the console showing RMSE.

$$\sqrt{\frac{1}{m}\sum_{i=1}^{m}(y_i-y_i)^2}$$

- 3. Dump memory in the decimal format to ans.txt
- 4. Briefly describe how you finish the work (padding, convolution, RMSE), it may help you get partial credits if your answer is not correct
- 5. (Option) Use smaller array provided in HW1 and implementation with other languages (C/C++, python) for debugging

Dump memory

1. Uncheck "Values displayed in hexadecimal"

2. File → Dump Memory

3. Filename: ans.txt

Due: 2020/11/10 13:00 Tuesday (Upload to CEIBA)

• Format:

HW2_yourID.zip

HW2_yourID/

HW2.s (The assembly code)

ans.txt

RMSE.jpg (Screenshot of your RMSE output in double)

report.pdf (Briefly discuss your code)