

Applied Matrix Theory - Math 551

Homework assignment 14

Created by Prof. Diego Maldonado and Prof. Virginia Naibo

Due date: Thursday, May 9th at 5:00pm. Use the drop box adjacent to CW120. No late homework will be accepted.

Instructions: Unless indicated otherwise, you are strongly encouraged to use your calculator or Matlab to complete this assignment. Write legibly, use extra sheets of paper if needed, and **staple your work**. Also, try to do a two-sided printing of this assignment.

Honor pledge: "On my honor, as a student, I have neither given nor received unauthorized aid on this academic work."

Exercises. All answers must be justified by using matrix theory

1. The 2D stress state of a material point is given by the following data: $\sigma_x = 8$, $\tau_{xy} = \tau_{yx} = 2$ and $\sigma_y = 4$. Find the principal directions and principal stresses.

2. The 3D stress state of a material point is given by the following data: $\sigma_x = 16$, $\sigma_y = 10$, $\sigma_z = 4$, $\tau_{xy} = \tau_{yx} = 2$, $\tau_{xz} = \tau_{zx} = 1$, and $\tau_{yz} = \tau_{zy} = 3$. Find the principal directions and principal stresses.

3. Find a decomposition of the vector $v = \begin{bmatrix} 1 \\ 4 \\ 4 \end{bmatrix}$ of the form $v = \bar{v} + w$ such that \bar{v} belongs to the subspace $\mathcal{U} = span\{u_1, u_2\}$, where $u_1 = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$ and $u_2 = \begin{bmatrix} 1 \\ -2 \\ -1 \end{bmatrix}$, and $w \in \mathcal{U}^{\perp}$.

4. Find a 2×2 matrix A that represents a linear transformation $T: \mathbf{R}^2 \to \mathbf{R}^2$ such that

$$T\left(\left[\begin{array}{c}2\\2\end{array}\right]\right)=\left[\begin{array}{c}1\\4\end{array}\right]\quad \text{and}\quad T\left(\left[\begin{array}{c}-1\\2\end{array}\right]\right)=\left[\begin{array}{c}-4\\-5\end{array}\right].$$

Is T one-to-one? Is T onto? Justify.

5. Find a decomposition of the vector
$$v = \begin{bmatrix} 1 \\ 2 \\ -2 \\ 4 \\ 1 \end{bmatrix}$$
 of the form $v = \bar{v} + w$ such that \bar{v} belongs to the subspace $\mathcal{U} = span\{u_1, u_2\}$, where $u_1 = \begin{bmatrix} 2 \\ 1 \\ 1 \\ -2 \\ 1 \end{bmatrix}$ and $u_2 = \begin{bmatrix} 1 \\ 2 \\ 3 \\ -1 \\ 1 \end{bmatrix}$, and $w \in \mathcal{U}^{\perp}$.

to the subspace
$$\mathcal{U} = span\{u_1, u_2\}$$
, where $u_1 = \begin{bmatrix} 2\\1\\1\\-2\\1 \end{bmatrix}$ and $u_2 = \begin{bmatrix} 1\\2\\3\\-1\\1 \end{bmatrix}$, and $w \in \mathcal{U}^{\perp}$.

Hint: Notice that u_1 and u_2 are **not** orthogonal and the Gram-Schmidt orthonormalization process comes in handy.

6. Write a Matlab function that takes an arbitrary $n \times n$ matrix A and two indices j and k, with $1 \le j < k \le n$, and returns the sum of the angles between the last column of A and the l-th column of A for all l with $j \le l \le k$. The code should display an error message if the input matrix is not a square matrix.

7. A town's economy is based on the following three sectors: Administration (A), Housing (H), and Transportation (T). These sectors are related as follows: The production of one dollar of A requires 72 cents of A, 18 cents of H, and 10 cents of T. Each dollar produced by H requires 35 cents of A, 45 cents of H, and 20 cents of T. Each dollar of T requires 20 cents of A, 25 cents of H, and 55 cents of T. Is this an open or a close economy model? Find the production schedule and identify the consumption matrix. If this economy is worth 1 million dollars, how much A, H, and T must be produced? Which sector consumes the least H?

Hint: Begin with the key questions: how much A is consumed? How much H is consumed? How much T is consumed?.

T or F . The system $Ax = b$ has a solution if and only if $b \in col(A)$.
T or F . If P is an $n \times n$ column-stochastic matrix, then its columns form a basis of \mathbf{R}^n .
T or F . The system $Mx = 0$ has at least one solution only if the columns of M are linearly independent.
T or F . If v_1 is orthogonal to v_2 and v_2 is a multiple of v_3 , then v_1 is orthogonal to v_3 .
T or F . If \bar{v} is the projection of v onto the subspace \mathcal{U} , then $\ \bar{v} - v\ $ equals the (shortest) distance from v to \mathcal{U} .
Points obtained in this assignment (out of 16):

8. True or False - Circle the right one (1 point each)