Quiz 2 Solution

Section 5D

Image:

58	36	5	30	37	62	7	81
42	31	9	11	14	51	62	52
23	90	71	29	10	71	49	55
28	82	30	7	70	55	52	19
52	47	90	29	53	28	96	8
85	45	95	95	9	32	54	48
49	71	26	75	41	50	17	15
63	29	49	77	18	28	40	51

 $Image\ Size = 8x8$

Filter Size =5x5

A. Convolution Layer:

(i) Padding the Image:

0	0	0	0	0	0	0	0	0	0
0	58	36	5	30	37	62	7	81	0
0	42	31	9	11	14	51	62	52	0
0	23	90	71	29	10	71	49	55	0
0	28	82	30	7	70	55	52	19	0
0	52	47	90	29	53	28	96	8	0
0	85	45	95	95	9	32	54	48	0
0	49	71	26	75	41	50	17	15	0
0	63	29	49	77	18	28	40	51	0
0	0	0	0	0	0	0	0	0	0

(ii) Filter 1:

3	2	1	-1	1
0	5	2	3	0
-1	1	-2	-3	-1
5	2	0	1	0
4	2	1	0	-2

Applying on Image,

e.g,

For first cell = relu
$$[(0*3) + (0*2) + (0*1) + (0*1) + (0*1) + (0*0) + (58*5) + (36*2) + (5*3) + (30*0) + (0*-1) + (42*1) + (31*-2) + (9*-3) + (11*-1) + (0*5) + (23*2) + (90*0) + (71*1) + (29*0) + (0*4) + (28*2) + (82*1) + (30*0) + (7*-2)] + 0.5$$

= relu $[560.5]$

= 560.5

Result of F1 on Image:

560.5	694.5	946.5	753.5	392.5	1013.5
256.5	889.5	985.5	467.5	756.5	1337.5
611.5	1672.5	1140.5	1079.5	900.5	1079.5
431.5	1359.5	1409.5	1210.5	1421.5	799.5
479.5	1104.5	1449.5	956.5	1176.5	968.5
819.5	1218.5	910.5	1265.5	665.5	842.5

(iii) Filter 2:

Applying on Image,

e.g,

For first cell = relu[
$$(0*1) + (0*2) + (0*3) + (0*4) + (0*5) + (0*0) + (58*9) + (36*8) + (5*7) + (30*6) + (0*3) + (42*2) + (31*1) + (9*0) + (11*4) + (0*9) + (23*8) + (90*7) + (71*6) + (29*5) + (0*-1) + (28*0) + (82*-2) + (30*4) + (7*8)] + 0.8$$

= relu(2581.8)

= 2581.8

Result of F2 on Image:

2581.8	3197.8	3862.8	3431.8	3334.8	2620.8
2912.8	3140.8	3945.8	3966.8	4179.8	3381.8
4512.8	4534.8	4154.8	4609.8	4261.8	3794.8
4774.8	5513.8	4709.8	5141.8	4262.8	2862.8
4874.8	4937.8	4828.8	4744.8	4528.8	2717.8
4965.8	4854.8	4516.8	4262.8	3591.8	2697.8

B. Max Pooling Layer:

Filter size=2

Stride = 2

(i) For F1 Resultant:

Mean Pooling Result:

600.25	788.25	875
1018.75	1210	1050.25
905.5	1145.5	913.25

(ii) For F2 Resultant:

2581.8	3197.8	3862.8	3431.8	3334.8	2620.8
2912.8	3140.8	3945.8	3966.8	4179.8	3381.8
4512.8	4534.8	4154.8	4609.8	4261.8	3794.8
4774.8	5513.8	4709.8	5141.8	4262.8	2862.8
4874.8	4937.8	4828.8	4744.8	4528.8	2717.8
4965.8	4854.8	4516.8	4262.8	3591.8	2697.8

Mean Pooling Result:

2958.3	3801.1	3379.3
4834.05	4654.05	3795.55
4908.3	4589.05	3384.05

C. Flattening:

(i) For F1 Mean Pooling Resultant:

600.25

788.25

875

1018.75

1210

1050.25

905.5

1145.5

913.25

(ii) For F2 Mean Pooling Resultant:

2958.3

3801.1

3379.3

4834.05

4654.05

3795.55

4908.3

4589.05

3384.05

Combining it we get the flattened layer/input layer,

600.25

788.25

875

1018.75

1210

1050.25

905.5

1145.5

913.25

2958.3

3801.1

3379.3

4834.05

4654.05

3795.55

4908.3

4589.05

3384.05

D. MLP:

(i) Hidden Layer:

Activation function= tanh

Weights=Bias=0.3

$$H = tanh(W^t.I + b1)$$

$$= \tanh \left(\begin{bmatrix} 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 \\ 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 \\ 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 \\ 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 \\ 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 \\ 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 \\ 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 \\ 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 \\ 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 \\ 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 \\ 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 \\ 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 \\ 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 \\ 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 \\ 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 \\ 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 \\ 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 \\ 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 \\ 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 \\ 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 \\ 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 \\ 0.3 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 \\ 0.3 & 0.3 & 0.3 & 0.3 & 0.3 \\ 0.3 & 0.3 & 0.3 & 0.3 & 0.3 \\ 0.3 & 0.3 & 0.3 & 0.3 & 0.3 \\ 0.3 & 0.3 & 0.3 & 0.3 & 0.3 \\ 0.3 & 0.3 & 0.3 & 0.3 \\ 0.3 & 0.3 & 0.3 & 0.3 \\ 0.3 & 0.3 & 0.3 & 0.3 \\ 0.3 & 0.3 & 0.3 & 0.3 \\ 0.3 & 0.3 & 0.3 & 0.3 \\ 0.3 & 0.3 & 0.3 & 0.3 \\ 0.3 & 0.3 & 0.3 & 0.3 \\ 0.3 & 0.3 & 0.3 & 0.3 \\ 0.3 & 0.3 & 0.3 & 0.3 \\ 0.3 & 0.3 & 0.3 & 0.3 \\ 0.3 & 0.3 & 0.3 & 0.3 \\ 0.3 & 0.3 & 0.3 & 0.3 \\ 0.3 & 0.3 & 0.3 & 0.3 \\ 0.3 & 0.3 & 0.3 & 0.3 \\ 0.3 & 0.3 & 0.3 & 0.3 \\ 0.3 & 0.3 & 0.3 & 0.3 \\ 0.3 & 0.3 & 0.3 \\ 0.3 & 0.3 & 0.3 \\ 0.3 & 0.3 & 0.3 \\ 0.3 & 0.3 & 0.3 \\ 0$$

$$= \tanh \begin{pmatrix} \begin{bmatrix} 13443.15 \\ 13443.15 \\ 13443.15 \\ 13443.15 \end{bmatrix} + \begin{bmatrix} 0.3 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.3 \end{bmatrix} \\ = \tanh \begin{pmatrix} \begin{bmatrix} 13443.45 \\ 13443.45 \\ 13443.45 \\ 13443.45 \\ 13443.45 \\ 13443.45 \\ 13443.45 \\ \end{bmatrix} \\ = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

(ii) Output Layer:

Activation function= softmax

Weights=Bias=0.4

 $O = softmax(W^t.H +b2)$

$$= \operatorname{softmax} \left(\begin{bmatrix} 0.4 & 0.4 & 0.4 & 0.4 & 0.4 \\ 0.4 & 0.4 & 0.4 & 0.4 & 0.4 \\ 0.4 & 0.4 & 0.4 & 0.4 & 0.4 \end{bmatrix} * \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 0.4 \\ 0.4 \\ 0.4 \end{bmatrix} \right)$$

$$= softmax \left(\begin{bmatrix} 2.4 \\ 2.4 \\ 2.4 \end{bmatrix} + \begin{bmatrix} 0.4 \\ 0.4 \\ 0.4 \end{bmatrix} \right)$$

$$= softmax \begin{pmatrix} \begin{bmatrix} 2.8 \\ 2.8 \\ 2.8 \end{bmatrix} \end{pmatrix}$$

$$= \begin{bmatrix} 0.33 \\ 0.33 \\ 0.33 \end{bmatrix}$$