Departamento de Matemática da Universidade de Aveiro

Cálculo II - Agrupamento 4

Ano letivo 2016/2017 (2º Semestre)

1. Considere a função $f:D\subset\mathbb{R}^2\to\mathbb{R}$ definida por

$$f(x,y) = \frac{\sqrt{1-x^2} + y}{\sqrt{1-y^2}}.$$

- (a) Determine o domínio D de definição de f e represente-o geometricamente.
- (b) Determine:
 - i. a fronteira fr(D) de D;
 - ii. o interior int(D) de D;
 - iii. o exterior ext(D) de D;
 - iv. o conjunto D' dos pontos de acumulação de D (designado por derivado de D).
- (c) Diga, justificando, se D é aberto ou fechado.
- 2. Considere a função $f:D\subset\mathbb{R}^2\to\mathbb{R}$ definida por

$$f(x,y) = \frac{1}{\sqrt{3 - \sqrt{x + y}}}.$$

Determine o domínio D de definição de f e diga, justificando, se D é aberto ou fechado.

3. Para cada uma das funções, justifique a continuidade em $\mathbb{R}^2 \setminus \{(0,0)\}$ e, com base num seu gráfico, diga se a função parece ser prolongável por continuidade a (0,0) (i.e., se parece ser possível atribuir um valor nesse ponto que faça com que a função assim estendida seja contínua em \mathbb{R}^2).

1

(a) $f(x,y) = \frac{3x^2y}{x^2 + y^2}$;

(b)
$$g(x,y) = \frac{x^2 - y^2}{x^2 + y^2}$$
.

- 4. Atendendo às regras que permitem identificar como contínuas as funções construídas à custa de funções contínuas mais simples, justifique a continuidade de cada uma das seguintes funções no seu domínio de definição e descreva esse domínio (nos casos mais complicados não precisa de resolver as inequações resultantes).
 - (a) $f(x,y) = \ln(\cos(x^2 + y^2));$
 - (b) $f(x,y) = \arctan\left(\frac{y}{x}\right);$
 - (c) $f(x,y) = \sqrt{2}$;
 - (d) $f(x,y) = \sin(x^2y);$
 - (e) $f(x, y, z) = xe^{-\frac{1}{x^2+y^2+z^2}}$;
 - (f) f(x, y, z) = y;
 - (g) $f(x,y) = \ln(x^2 + y^2)$;
 - (h) $f(x,y) = \frac{e^{x+y}}{x+y}$.
- 5. Em cada uma das alíneas seguintes, seja S o conjunto de todos os pontos (x,y) em \mathbb{R}^2 satisfazendo as condições dadas. Explique se S é aberto, fechado, simultaneamente aberto e fechado, ou nem aberto nem fechado.
 - (a) $x^2 + y^2 \ge 0$;
 - (b) $x^2 + y^2 < 0$;
 - (c) $x^2 + y^2 \le 1$;
 - (d) $1 < x^2 + y^2 < 2$;
 - (e) $1 \le x^2 + y^2 \le 2$;
 - (f) $1 < x^2 + y^2 \le 2$;
 - (g) $1 \le x \le 2$, $3 \le y \le 4$;
 - (h) $1 \le x \le 2$, $3 \le y < 4$;
 - (i) $y = x^2$;
 - (j) $y \ge x^2$;
 - (k) $y \ge x^2$, |x| < 2;
 - (1) $y \ge x^2$, $|x| \le 2$.
- 6. Em cada uma das alíneas seguintes, seja S o conjunto de todos os pontos (x,y,z) em \mathbb{R}^3 satisfazendo as condições dadas. Explique se S é aberto ou não.

(a)
$$z^2 - x^2 - y^2 - 1 > 0$$
;

- (b) |x| < 1, |y| < 1, |z| < 1;
- (c) x + y + z < 1;
- (d) $|x| \le 1$, |y| < 1, |z| < 1;
- (e) x + y + z < 1, x > 0, y > 0, z > 0;
- (f) $x^2 + 4y^2 + 4z^2 2x + 16y + 40z + 113 < 0$.
- 7. Para cada um dos seguintes conjuntos determine a fronteira, o interior e o exterior e diga, justificando, se o conjunto é aberto, se é fechado e se é limitado.
 - (a) $\{(x,y) \in \mathbb{R}^2 : \sqrt{x+y} < 3\};$
 - (b) $\{(x,y) \in \mathbb{R}^2 : |x| + |y| \le 1\};$
 - (c) $\{(x,y) \in \mathbb{R}^2 : \ln(xy) \le 0\};$
 - (d) $\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \le z < 1\};$
 - (e) $\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \le 1; \ y = x\}.$
- 8. Considere a função $f(x,y)=x^2+y^2$ no domínio $D\subset\mathbb{R}^2$ definido pela condição $|x|+|y|\leq 1$.
 - (a) Aplique cuidadosamente o Teorema de Weierstrass para garantir a existência de extremos absolutos de f.
 - (b) Represente geometricamente o domínio D (neste caso permitimos que use um software gráfico para o efeito) e determine depois os extremos e os extremantes absolutos da função (sugestão: relacione o valor de f em cada (x,y) com a norma desse mesmo ponto).
- 9. Seja $A = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 < 4\}$ e $f(x, y, z) = z^2$. O Teorema de Weierstrass garante a existência de extremos absolutos de f em A? Justifique.
- 10. Seja $f(x,y) = -x^2$. Mostre, usando diretamente a definição de maximizante global, que f possui um número infinito de tais maximizantes.
- 11. Seja $f: \mathbb{R}^2 \to \mathbb{R}$ definida por $f(x,y) = x^2 + y^2$.
 - (a) O Teorema de Weierstrass garante a existência de extremos absolutos de f? Justifique.
 - (b) Verifique, usando diretamente a definição de minimizante absoluto, que (0,0) é um tal minimizante de f.
- 12. Seja $f: \mathbb{R}^2 \to \mathbb{R}$ definida por $f(x,y) = -\sqrt{x^2 + y^2}$. Verifique, usando diretamente a definição de maximizante absoluto, que (0,0) é um tal maximizante de f.

- 13. Sejam $A = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}, B = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$ e f(x,y) = y.
 - (a) Justifique que f possui extremos globais em B.
 - (b) Identifique os extremantes globais de f em B (<u>sugestão</u>: represente geometricamente o conjunto B e "observe" a evolução do valor de f ao longo de segmentos "horizontais" e de segmentos "verticais" dentro de B).
 - (c) f possui extremos em A? Justifique.
- 14. Mostre que a função $f(x,y) = \frac{1}{2} \sin(x^2 + y^2)$ atinge o seu máximo global na origem.
- 15. Calcule as derivadas parciais de primeira ordem das seguintes funções:
 - (a) $f(x,y) = x^3 + 2xy$;
 - (b) $f(x,y) = \frac{1}{x+y}$;
 - (c) $f(x,y) = e^{2xy^3}$;
 - (d) $f(x,y) = \ln(x^2 + y^2);$
 - (e) $f(x,y) = \sin^2(x-3y)$;
 - (f) $f(x,y) = \frac{y}{x}$;
 - (g) $f(x,y) = x^2y + \cos(y) + y\sin(x)$;
 - (h) $f(x, y, z) = x^2 + y^2 + z^2x$.
- 16. Calcule as derivadas parciais de primeira ordem de cada uma das seguintes funções no ponto P:
 - (a) $f(x, y, z) = e^z + xy$, P = (1, 1, 1);
 - (b) $j(x, y, z) = x^2 + y^2 + z^2 x$, P = (1, 0, 1);
 - (c) $g(x,y) = \sqrt{x^2 + y^2}$, P = (0,1);
 - (d) $h(x,y) = \ln(x^2 + y^2)$, P = (1,0);
- 17. Seja $f(x, y, z) = xe^z ye^x + ze^{-y}$. Determine:
 - (a) $\frac{\partial f}{\partial x}(x,-1,0);$
 - (b) $\frac{\partial f}{\partial y}(0, y, -1);$

(c)
$$\frac{\partial f}{\partial z}(0,-1,z)$$
.

- 18. Determine os pontos críticos das seguintes funções:
 - (a) $f(x,y) = 3xy^2 + x^3 3x$;
 - (b) $f(x,y) = x^2y^3(6-x-y)$;
 - (c) $f(x,y) = \sin x \cosh y$; (Relembre que $\cosh y = \frac{1}{2}(e^y + e^{-y})$)
 - (d) $f(x, y, z) = 2x^2 + y^2 + 4z^2$;
 - (e) $f(x, y, z) = x^4 + y^4 + z^4 4xyz$
- 19. Mostre que a função $f(x,y) = (x-1)^2 + (y-2)^2 1$ tem apenas um mínimo local e que este ocorre apenas no ponto (1,2).
- 20. Seja $f: D \subset \mathbb{R}^2 \to \mathbb{R}$ a função definida por $f(x,y) = x^2 + 2xy 4(x-2y)$, onde $D = [0,1] \times [0,2]$.
 - (a) Diga, justificando, se f tem pontos críticos.
 - (b) Prove a existência de extremos absolutos de f e determine-os.
- 21. Determine os extremantes absolutos da função $f(x,y)=x^2+2y^2$ que satisfazem a desigualdade $x^2+y^2\leq 1$.
- 22. Seja $f: \mathbb{R}^2 \to \mathbb{R}$ e suponha que

$$\frac{\partial f}{\partial x}(x,y) = 0$$
 e $\frac{\partial f}{\partial y}(x,y) = 0$,

para qualquer $(x,y) \in \mathbb{R}^2$. Prove que f é constante.

23. Dê um exemplo de uma função $f:D\subset\mathbb{R}^2\to\mathbb{R}$ tal que

$$\frac{\partial f}{\partial x}(x,y) = 0 \text{ e } \frac{\partial f}{\partial y}(x,y) = 0,$$

para qualquer $(x,y)\in D,$ mas que não seja constante.