What is claimed is:

1	1. A system for dynamically identifying internal hosts in a
2	heterogeneous computing environment with multiple subnetworks, comprising:
3	an analysis module analyzing a plurality of packets, each such packet
4	comprising a source address of an originating host and a destination address of a
5	receiving host; and
6	a classification module classifying an unknown originating host located at
7	the source address of an outbound packet as an inside host with high confidence,
8	classifying an unknown receiving host located at the destination address of an
9	inbound packet as an inside host, and reclassifying the unknown receiving host as
10	an inside host with high confidence upon receiving a further outbound packet
11	having a source address corresponding to the address of the unknown receiving
12	host.
1	2. A system according to Claim 1, further comprising:
	, and a second companies.
2	the classification module further classifying an unknown originating host
3	located at the source address of an inbound packet as an outside host.
1	3. A system according to Claim 2, further comprising:
2	the classification module reclassifying the unknown originating host as an
3	inside host with high confidence upon receiving an outbound packet having a
4	source address corresponding to the address of the unknown originating host.
1	4. A system according to Claim 1, further comprising:
2	the classification module further classifying an unknown receiving host
3	located at the destination address of an outbound packet as an outside host.
1	5. A system according to Claim 4, further comprising:
2	the classification module reclassifying the unknown receiving host as an
3	inside host with high confidence upon receiving an inbound packet having a
4	destination address corresponding to the address of the unknown receiving host.
-	nost.

6.

1

A system according to Claim 1, further comprising:

2	the	classification module maintaining the inside host with high confidence
3	classification	on of the unknown originating host upon receiving at least one of
4	further inbo	ound packets and further outbound packets.
1	7.	A system according to Claim 1, further comprising:
2	the	classification module maintaining the inside host with high confidence
3	classification	on of the unknown receiving host upon receiving at least one of further
4	inbound pa	ckets and further outbound packets.
1	8.	A system according to Claim 1, further comprising:
2	the	classification module managing packet traffic flow by monitoring the
3	packets and	d adjusting control flow thereof.
1	9.	A system according to Claim 8, further comprising:
2	the	classification module ignoring packet traffic flow for each packet with
3	an originati	ing host or a receiving host classified as an inside host with high
4	confidence	•
1	10.	A system according to Claim 1, wherein the packets are
2,	communica	ated via a point-to-point protocol.
1	11.	A system according to Claim 1, wherein the packets are
2	communica	ated via an end-to-end protocol.
1	12.	A system according to Claim 1, wherein the packets are
2	communica	ated via the TCP/IP protocol and each source address and destination
3	address is a	an internet protocol (IP) address.
1	13.	A method for dynamically identifying internal hosts in a
2	heterogene	ous computing environment with multiple subnetworks, comprising:
3	ana	lyzing a plurality of packets, each such packet comprising a source
4	address of	an originating host and a destination address of a receiving host;
5	clas	sifying an unknown originating host located at the source address of
6	an outboun	d packet as an inside host with high confidence;

0214.01.ap6 - 15 -

7	classifying an unknown receiving host located at the destination address of
8	an inbound packet as an inside host; and
9	reclassifying the unknown receiving host as an inside host with high
10	confidence upon receiving a further outbound packet having a source address
11	corresponding to the address of the unknown receiving host.
1	14. A method according to Claim 13, further comprising:
2	classifying an unknown originating host located at the source address of
3	an inbound packet as an outside host.
1	15. A method according to Claim 14, further comprising:
2	reclassifying the unknown originating host as an inside host with high
3	confidence upon receiving an outbound packet having a source address
4	corresponding to the address of the unknown originating host.
1	16. A method according to Claim 13, further comprising:
2	classifying an unknown receiving host located at the destination address of
3	an outbound packet as an outside host.
1	17. A method according to Claim 16, further comprising:
2	reclassifying the unknown receiving host as an inside host with high
3	confidence upon receiving an inbound packet having a destination address
4	corresponding to the address of the unknown receiving host.
1	18. A method according to Claim 13, further comprising:
2	maintaining the inside host with high confidence classification of the
3	unknown originating host upon receiving at least one of further inbound packets
4	and further outbound packets.
1	19. A method according to Claim 13, further comprising:
2	maintaining the inside host with high confidence classification of the
3	unknown receiving host upon receiving at least one of further inbound packets
4	and further outbound packets.

0214.01.ap6

1	20. A method according to Claim 13, further comprising:
2	managing packet traffic flow by monitoring the packets and adjusting
3	control flow thereof.
1	21. A method according to Claim 20, further comprising:
2	ignoring packet traffic flow for each packet with an originating host or a
3	receiving host classified as an inside host with high confidence.
3	receiving nost classified as an inside nost with high confidence.
1	22. A method according to Claim 13, wherein the packets are
2	communicated via a point-to-point protocol.
1	23. A method according to Claim 13, wherein the packets are
2	communicated via an end-to-end protocol.
2	communicated via an end-to-end protocol.
1	24. A method according to Claim 13, wherein the packets are
2	communicated via the TCP/IP protocol and each source address and destination
3	address is an internet protocol (IP) address.
1	25. A computer-readable storage medium holding code for performing
2	the method according to Claims 13, 14, 15, 16, 17, 18, 19, 20 and 21.
1	26. A system for classifying hosts in a heterogeneous computing
2	environment, comprising:
3	a table storing records comprising a plurality of states which each specify
4	a location of a host relative to a network domain boundary, the states comprising:
5	an <i>Unknown</i> state describing an undefined host;
6	an <i>Outside</i> state describing a host located outside the network
7	•
	domain boundary;
8	an <i>Inside</i> state describing a host provisionally located inside the
9	network domain boundary; and
10	an Inside with High Confidence state describing a host located
11	inside the network domain boundary.

12	a traffic manager classifying the hosts based on source address with each
13	outbound packet originating from an Unknown state, Outside state or Inside state
14	into an Inside with High Confidence state and classifying the hosts based on
15	destination address with each inbound packet originating from an Unknown state
16	or Outside state into an Inside with High Confidence state.
1	27. A system according to Claim 26, further comprising:
2	the traffic manager further classifying the hosts based on source address
3	with each inbound packet originating from an Unknown state into an Outside
4	state.
1	28. A system according to Claim 26, further comprising:
2	the traffic manager passing through packet traffic based on source address
3	with each inbound packet originating from an Outside state, Inside state or Inside
4	with High Confidence state and with each outbound packet originating from an
5	Inside with High Confidence state.
1	29. A system according to Claim 26, further comprising:
2	the traffic manager further classifying the hosts based on destination
3	address with each outbound packet originating from an Unknown state into an
4	Outside state.
1	30. A system according to Claim 26, further comprising:
2	the traffic manager passing through packet traffic based on destination
3	address with each outbound packet originating from an Outside state, Inside state
4	or Inside with High Confidence state and with each inbound packet originating
5	from an Inside with High Confidence state.
1.	31. A system according to Claim 26, further comprising:
2	the traffic manager ignoring packet traffic based on source address or
3	destination address with each outbound packet and each inbound packet
4	originating from an Inside with High Confidence state.

1	32. A system according to Claim 26, wherein the heterogeneous	
2	computing environment is IP compliant.	
3	33. A method for classifying hosts in a heterogeneous computing	
4	environment, comprising:	
5	defining a plurality of states which each specify a location of a host	
6	relative to a network domain boundary, the states comprising:	
7	an <i>Unknown</i> state describing an undefined host;	
8	an Outside state describing a host located outside the network	
9	domain boundary;	
10	an Inside state describing a host provisionally located inside the	
11	network domain boundary; and	
12	an Inside with High Confidence state describing a host located	
13	inside the network domain boundary;	
14	classifying the hosts based on source address with each outbound packet	
15	originating from an Unknown state, Outside state or Inside state into an Inside	
16	with High Confidence state; and	
17	classifying the hosts based on destination address with each inbound	
18	packet originating from an Unknown state or Outside state into an Inside with	
19	High Confidence state.	
1	34. A method according to Claim 33, further comprising:	
2	classifying the hosts based on source address with each inbound packet	
3	originating from an <i>Unknown</i> state into an <i>Outside</i> state.	
1	35. A method according to Claim 33, further comprising:	
2	passing through packet traffic based on source address with each inbound	
3	packet originating from an Outside state, Inside state or Inside with High	
4	Confidence state and with each outbound packet originating from an Inside with	
5	High Confidence state.	
1	36. A method according to Claim 33, further comprising:	

2

2	classifying the hosts based on destination address with each outbound
3	packet originating from an <i>Unknown</i> state into an <i>Outside</i> state.
1	
1	37. A method according to Claim 33, further comprising:
2	passing through packet traffic based on destination address with each
3	outbound packet originating from an Outside state, Inside state or Inside with
4	High Confidence state and with each inbound packet originating from an Inside
5	with High Confidence state.
1	38. A method according to Claim 33, further comprising:
2	ignoring packet traffic based on source address or destination address with
3	each outbound packet and each inbound packet originating from an Inside with
4	High Confidence state.
1	39. A method according to Claim 33, wherein the heterogeneous
2	computing environment is IP compliant.
1	40. A computer-readable storage medium holding code for performing

the method according to Claims 33, 34, 35, 36 and 37.