

Swiss Federal Institute of Technology Dept. of Information Technology and Zurich Electrical Engineering

$\ddot{\mathbf{U}}$ bungsstunde 3

Themenüberblick

• Systeme und Systemeigenschaften:

Linearität, Nullraum und Bildraum, Stetigkeit

Das inverse System

Darstellung linearer Systeme über Matrizen

• Eigenschaften zeitkontinuierlicher linearer Systeme

Zeitinvarianz, Kausalität, Gedächtnis, BIBO-Stabilität

Aufgaben für diese Woche

25, 26, 27, 28, 29, 30, 32

Die <u>fettgedruckten</u> Übungen empfehle ich, weil sie wesentlich zu eurem Verständnis der Theorie beitragen und/oder sehr prüfungsrelevant sind.

Systeme und Systemeigenschaften

Ein System hat folgendes Blockschaltbild:

$$x \longrightarrow H \longrightarrow y \qquad x: \text{ Eingangssignal}$$

 $y: \text{ Ausgangssignal}$

Dabei ist $x \in X$ und $y \in Y$, wobei X und Y lineare Räume sind.

Definition: Ein System H ist eine Abbildung, die einem Eingangssignal x ein Ausgangssignal y zuordnet. Man schreibt y = Hx

Linearität

Definition: Ein System $H: X \to Y$ ist linear, wenn

(i) Additivität: $H(x_1 + x_2) = Hx_1 + Hx_2$, für alle $x_1, x_2 \in X$

(ii) Homogenität: $H(\alpha x) = \alpha H x$, für alle $x \in X$ und alle $\alpha \in \mathbb{C}$

Bemerkungen:

• Ein System, das mindestens eine dieser beiden Bedingungen nicht erfüllt, heisst nichtlinear.

• Wenn H ein lineares System ist, dann muss immer gelten: H0 = 0. Wenn dies also nicht erfüllt ist, dann muss H nichtlinear sein.

Nullraum

Definition: Der Nullraum $\mathcal{N}(H)$ des linearen Systems $H: X \to Y$ ist die Teilmenge von X definiert durch $\mathcal{N}(H) = \{x \in X : Hx = 0\}.$

Bemerkung: $\mathcal{N}(H)$ ist ein linearer Unterraum von X.

Bildraum

Definition: Der Bildraum $\mathcal{R}(H)$ des linearen Systems $H: X \to Y$ ist die Teilmenge von Y definiert durch $\mathcal{R}(H) = \{y = Hx : x \in X\}$.

Bemerkung: $\mathcal{R}(H)$ ist ein linearer Unterraum von Y.

Stetigkeit

Theorem: (Stetige Systeme). Das System H ist linear und stetig, dann und nur dann, wenn für jede konvergente Reihe $\sum_{i=1}^{\infty} \alpha_i x_i$ gilt:

$$H\left(\sum_{i=1}^{\infty} \alpha_i x_i\right) = \sum_{i=1}^{\infty} \alpha_i H x_i$$

 $\varepsilon - \delta$ Stetigkeit (vgl. Analysis 1&2).

Seien $(X, ||\cdot||)$ und $(Y, ||\cdot||)$ normierte lineare Räume. Dann heisst das System $H: X \to Y$ stetig in $x_0 \in X$, falls es zu jedem $\varepsilon > 0$ ein nur von ε abhängiges $\delta > 0$ gibt, so dass für alle $x \in X$ mit $||x - x_0|| < \delta$ folgt, dass $||Hx - Hx_0|| \le \varepsilon$.

Bemerkung: Ab hier nehmen wir in SST1 immer an, dass ein lineares Sysem auch stetig ist, sodass die Gleichung in obigem Theorem immer gilt.

Das inverse System

Das System $H: X \to Y$ ist **invertierbar**, wenn es ein System $G: Y \to X$ gibt, so dass $GH = I_X$ und $HG = I_Y$, wobei I_X bzw. I_Y die Identitätsabbildungen auf X bzw. Y sind. (D.h. $I_X x = x$, für alle $x \in X$ und $I_Y y = y$, für alle $y \in Y$.) In diesem Fall bezeichnen wir G als das zu H zugehörige inverse System und schreiben $H^{-1} = G$.

Wenn ein System invertierbar ist, dann ist seine Inverse eindeutig.

Beweis:

Theorem: Die Inverse eines linearen Systems ist auch linear.

Beweis:

Darstellung linearer Systeme über Matrizen

Man kann ein allgemeines endlich-dimensionales lineares System H durch eine Matrix beschreiben. Dazu betrachten wir die linearen Räume X und Y mit den zugehörigen Basen $B_1 = \{x_1, \ldots, x_n\}$ und $B_2 = \{y_1, \ldots, y_m\}$. $x \in X$ ist das Eingangssignal und $y = Hx \in Y$ das dazugehörige Ausgangssignal. Jedes $x \in X$ und jedes $y \in Y$ lässt sich wie folgt darstellen:

$$x = \alpha_1 x_1 + \dots + \alpha_n x_n$$
, wobei $\{\alpha_1, \dots, \alpha_n\}$ die Koffizienten von x sind. $y = \beta_1 y_1 + \dots + \beta_m y_m$, wobei $\{\beta_1, \dots, \beta_m\}$ die Koffizienten von y sind.

Wir wenden
$$H$$
 auf x an: $Hx = H(\alpha_1 x_1 + \dots + \alpha_n x_n) = \alpha_1 H x_1 + \dots + \alpha_n H x_n,$ (Lin.)

 $Hx_1 = t_{11}y_1 + \cdots + t_{m1}y_m$

Da Hx_1, \ldots, Hx_n in Y sind, können wir sie wie folgt darstellen:

$$Hx_{2} = t_{12}y_{1} + \dots + t_{m2}y_{m}$$

$$\vdots$$

$$Hx_{n} = t_{1n}y_{1} + \dots + t_{mn}y_{m}$$

$$\Longrightarrow Hx = \alpha_{1}(t_{11}y_{1} + t_{21}y_{2} + \dots + t_{m1}y_{m}) + \alpha_{2}(t_{12}y_{1} + t_{22}y_{2} + \dots + t_{m2}y_{m})$$

$$\vdots$$

$$+ \alpha_{n}(t_{1n}y_{1} + t_{2n}y_{2} + \dots + t_{mn}y_{m})$$

$$\beta_{1}$$

$$= \underbrace{(t_{11}\alpha_{1} + t_{12}\alpha_{2} + \dots + t_{1n}\alpha_{n})}_{\beta_{1}}y_{1} + \underbrace{(t_{21}\alpha_{1} + t_{22}\alpha_{2} + \dots + t_{2n}\alpha_{n})}_{\beta_{2}}y_{2}$$

$$\vdots$$

$$\beta_{2}$$

$$+ \underbrace{(t_{m1}\alpha_{1} + t_{m2}\alpha_{2} + \dots + t_{mn}\alpha_{n})}_{\beta_{mn}}y_{m}$$

In Matrixform sieht das Ganze wie folgt aus:

$$\begin{bmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_m \end{bmatrix} = \underbrace{\begin{bmatrix} t_{11} & t_{12} & \dots & t_{1n} \\ t_{21} & t_{22} & \dots & t_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ t_{m1} & t_{m2} & \dots & t_{mn} \end{bmatrix}}_{\mathbf{H}} \cdot \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix}$$

Man sagt, dass die $m \times n$ Matrix **H** das System H in den Basen B_1 und B_2 darstellt.

Aufgabe 25

Seien X und Y die linearen Räume aller Polynome vom Grad ≤ 3 bzw. ≤ 2 :

$$X = \{x(t) = \alpha_0 + \alpha_1 t + \alpha_2 t^2 + \alpha_3 t^3 \mid \alpha_i \in \mathbb{C}\}, \qquad Y = \{y(t) = \beta_0 + \beta_1 t + \beta_2 t^2 \mid \beta_j \in \mathbb{C}\}$$

Wir definieren das System $H:X\to Y$ mit $Hx=\frac{\mathrm{d}x(t)}{\mathrm{d}t}$ (Ableitungsoperator).

- a) Zeigen Sie, dass H linear ist und $\mathcal{R}(H) = Y$.
- b) Berechnen Sie für die Basis $B_1 = \{1, t, t^2, t^3\}$ von X und die Basis $B_2 = \{1, t, t^2\}$ von Y die Matrixdarstellung von H.

Aufgabe 26

Seien X und Y die linearen Räume aller Polynome vom Grad ≤ 3 bzw. ≤ 2 :

$$X = \{x(t) = \alpha_0 + \alpha_1 t + \alpha_2 t^2 + \alpha_3 t^3 \mid \alpha_i \in \mathbb{C}\}, \qquad Y = \{y(t) = \beta_0 + \beta_1 t + \beta_2 t^2 \mid \beta_j \in \mathbb{C}\}$$

Wir definieren das System $H: X \to Y$ mit $Hx = \frac{\mathrm{d}x(t)}{\mathrm{d}t}$ (Ableitungsoperator). Berechnen Sie die Matrixdarstellung von H unter Verwendung der Basen $B_1 = \{1 + t, t + t^2, t^2 + t^3, t^3\}$ für X und $B_2 = \{1, t, t^2\}$ für Y.

Eigenschaften zeitkontinuierlicher linearer Systeme

Zeitinvarianz

Definition: Ein System $H: X \to Y$ ist **zeitinvariant**, wenn

$$HT_{\tau}x = T_{\tau}Hx$$
, für alle $x \in X$, $\tau \in \mathbb{R}$

 $(T_{\tau}x)(t) := x(t-\tau)$ ist der Zeitverschiebungsoperator. Ein System, das nicht zeitinvariant ist, heisst **zeitvariant**.

Intuition: Zeitverschiebung am Eingang des Systems führt zu derselben Zeitverschiebung am Ausgang des Systems.

Kausalität

Definition: Ein System $H: X \to Y$ ist **kausal**, wenn für alle $x_1, x_2 \in X$ und jedes $T \in \mathbb{R}$ gilt

$$x_1(t) = x_2(t)$$
, für alle $t \le T \implies (Hx_1)(t) = (Hx_2)(t)$, für alle $t \le T$.

Intuition: Das Ausgangssignal zu dem Zeitpunkt T kann nur von dem momentanen oder den vergangenen Zeitpunkten abhängig sein. Der Ausgang des Systems ist nicht von zukünftigen Werten abhängig.

Echtzeitrealisierungen sind immer kausal.

Gedächtnis

Definition: Ein System $H: X \to Y$ ist **gedächtnislos**, wenn für alle $x \in X$ und alle Zeitpunkte $t_0 \in \mathbb{R}$ das Ausgangssignal (Hx)(t) zum Zeitpunkt t_0 , d.h., $(Hx)(t_0)$, nur von $x(t_0)$ abhängt. Erfüllt ein System diese Eigenschaft nicht, dann bezeichnen wir es als **gedächtnisbehaftet**.

Gedächtnislosigkeit \implies Kausalität aber nicht umgekehrt.

BIBO-Stabilität

Definition: Ein System $H: X \to Y$ ist **BIBO-stabil** (bounded input bounded output stabil), wenn für alle $x \in X$ mit $|x(t)| \le B_x < \infty$, für alle t, ein $B_y \in \mathbb{R}$ mit $B_y < \infty$ existiert, sodass $|y(t)| \le B_y$, für alle t, wobei y = Hx.

Intuition: Jedes beschränkte Eingangssignal führt zu einem beschränkten Ausgangssignal.

Aufgabe 28

Überprüfen Sie das System (Hx)(t) = tx(t), auf Zeitinvarianz.

Prüfungsaufgabe: Frühjahr 2024, Aufgabe 1.a)i. (1 Punkt)

Ist das System H_3 mit Eingangs-Ausgangsbeziehung $(H_3x)(t) = \frac{dx(t)}{dt}$ ein LTI-System? Hinweis: Sie können die Stetigkeit des Operators $\frac{dx(t)}{dt}$ ohne Beweis annehmen.

Aufgabe 29

Überprüfen Sie die folgenden Systeme auf Kausalität und BIBO-Stabilität.

a)
$$(Hx)(t) = \frac{1}{2}(x(t-1) + x(t+1))$$

b)
$$(Hx)(t) = \int_{t-2}^{t-1} x(\tau+1)d\tau$$

