SUBVIRT: IMPLEMENTING MALWARE WITH VIRTUAL MACHINES

Samuel T. King, Peter M. Chen
University of Michigan
Yi-Min Wang, Chad Verbowski, Helen J. Wang, Jacob R. Lorch
Microsoft Research

Virtual machines

- □ The VMM emulates hardware for each virtual machine
- Virtual Machine Monitor (VMM)
 - Manages hardware resources
 - Provides abstractions of virtual machines

Motivation of malware

- Attackers aim to gain maximum control of a system
- Lower layer -> More control
- Advantages of working in a lower layer?
 - Attacker's perspective?
 - Defender's perspective?
- Malware is migrating from user-level to kernel-level

Rootkits

- □ Kernel-level malware
- Modifies part of an operating system to gain

control

- Sony rootkit debacle?
- Non-hostile rootkits?

Virtual Machine Based Rootkits (VMBR)

- VMM installed below the OS layer
- □ Host the attacked OS over the VMM

Installing the VMBR

- Gain root privileges
- Load the VMBR on disk
 - Windows beginning of primary partition
 - Linux use swap partition
- Modify boot sequence
 - During final stages of shutdown
 - Avoids detection

Malicious services

- Three categories
 - Do not interact with target OS
 - Phishing web servers
 - Observe target OS
 - Keyloggers
 - Perturb execution of target OS
 - Prevent detection
 - redpill

Maintaining Control

- Control lost during start-up till VMBR loads
- Solution: Virtual power-off
 - Provides only an illusion of shutdown/reboot
 - Uses ACPI sleep states
 - "Astute computer users might notice a difference in power LED after an emulated shutdown, but average computer users probably would not"
 - Really???

Evaluation

	Installation	Target Boot Without VMBR	Target Boot After Emulated Reboot	Target Boot After Emulated Shutdown	Host Boot After Power-Off	Host Boot + Target Boot After Power-Off
VMware-Based VMBR	24	53	74	96	52	145
(Linux Target)	24	55	11	50	02	140
Virtual PC-Based VMBR (Windows XP Target)	262	23	54	N/A	45	101

- □ Result : Performance affected
 - Users may not notice
 - Weakest link: Can be used to detect a VMM

Defending VMBR

- Software below VMBR layer
 - Trusted computing
 - Boot from a secure medium
 - Run a secure VMM
- Software above
 - CPU overhead
 - Memory overhead
 - Virtualization of I/O devices
 - Indirect DMA access
 - Imperfect virtualization
 - sidt instruction

Towards Complete Virtualization

□ Good or bad for VMBR?

- □ Good
 - Future enhancements to x86 architecture
 - Hide VMBR better
- Bad
 - Widespread use of VMM
 - Secure VMM
 - Attestation of state

Conclusion

- VMBR has more control than current malware
- Best way to detect VMBR
 - Work below the VMBR layer
- Disadvantages:
 - Hard to install
 - Require a reboot
 - Impacts performance

Take Away

■ VMBR – valid threat

Virtualization – not necessarily a good thing ...

