Data Mining

Classification I – Decision Tree (Part B)

Dr. Jason T.L. Wang, Professor
Department of Computer Science
New Jersey Institute of Technology
/

Input: A Training Dataset for "Change to new AT&T calling plan"

Phone_Usage	Income_Source	Living_Place	Current_Carrier	Change_Plan
<75	1	City	MCI	Yes
75150	2	Town	MCI	Yes
<75	1	City	Sprint	No
>150	2	Town	AT&T	Yes
75150	1	City	MCI	No
75150	2	Town	AT&T	Yes
<75	2	Town	AT&T	No
>150	2	City	Sprint	Yes
<75	1	City	AT&T	No
75150	1	Town	MCI	Yes
75150	2	City	Sprint	Yes
>150	1	Town	AT&T	Yes
<75	1	Town	AT&T	No
<75	2	City	Sprint	No
75150	2	City	MCI	Yes

Output: A Decision Tree for "Change to new AT&T calling plan"

Attribute Selection by Information Gain Computation

- Class P: change_plan = "yes"
- Class N: change_plan = "no"
- Compute the expected information needed to classify a given sample:

$$I(p,n) = I(9,6) = -\frac{9}{15}\log_2\frac{9}{15} - \frac{6}{15}\log_2\frac{6}{15} = 0.971$$

Information Gain Computation (1) Phone Usage

P_Usage	p _i	n _i	I(p _i , n _i)
<75	1	5	0.65
75150	5	1	0.65
>150	3	0	0

$$E(P _Usage) = \frac{6}{15}I(1,5) + \frac{6}{15}I(5,1) + \frac{3}{15}I(3,0) = 0.52$$

Gain
$$(P _Usage) = I(p,n) - E(P _Usage)$$

= 0.971 - 0.520 = 0.451

Information Gain Computation (2) Income Source

I_Source	p _i	n _i	I(p _i , n _i)
1	3	4	0.985
2	6	2	0.811

$$E(I _ Source) = \frac{7}{15}I(3,4) + \frac{8}{15}I(6,2) = 0.892$$

Gain
$$(I _ Source) = I(p, n) - E(I _ Source)$$

= 0.971 - 0.892 = 0.079

Information Gain Computation (3) Living Place

L_Place	p _i	n _i	I(p _i , n _i)
City	4	4	1
Town	5	2	0.864

$$E(L _ Place) = \frac{8}{15}I(4,4) + \frac{7}{15}I(5,2) = 0.936$$

Gain
$$(L _ Place) = I(p, n) - E(L _ Place)$$

= 0.971 - 0.936 = 0.035

Information Gain Computation (4) Current Carrier

C_Carrier	p _i	n _i	I(p _i , n _i)
MCI	4	1	0.722
Sprint	2	2	1
AT&T	3	3	1

$$E(C _Carrier) = \frac{5}{15}I(4,1) + \frac{4}{15}I(2,2) + \frac{6}{15}I(3,3) = 0.908$$

Gain
$$(C _Carrier) = I(p,n) - E(C _Carrier)$$

= 0.971 - 0.908 = 0.063

Information Gain Computation

■ Select Highest Gain

```
Gain (Phone _ Usage ) = 0.451

Gain (Income _ Source ) = 0.079

Gain (Living _ Place ) = 0.035

Gain (Current _ Carrier ) = 0.063
```

Partitioned Training Data Set by "Phone Usage"

Phone_Usage?

< 75

source

City

City

City

City

Town

Town

place carrier class MCI Yes Sprint No AT&T No AT&T No AT&T No

No

Sprint

75..150

source	place	carrier	class
2	Town	AT&T	Yes
2	City	Sprint	Yes
1	Town	AT&T	Yes

50

source	place	carrier	class
2	Town	MCI	Yes
1	City	MCI	No
2	Town	AT&T	Yes
1	Town	MCI	Yes
2	City	Sprint	Yes
2	City	MCI	Yes

10

Partitioned Training Data Set by "Phone Usage"

Phone_Usage?

75..150

source	place	carrier	class
1	City	MCI	Yes
1	City	Sprint	No
2	Town	AT&T	No
1	City	AT&T	No
1	Town	AT&T	No
2	City	Sprint	No

source	place	carrier	class
2	Town	AT&T	Yes
2	City	Sprint	Yes
1	Town	AT&T	Yes

sourc	ce pla	ace	carrier	class
2	То	wn l	MCI	Yes
1	Cit	y ľ	MCI	No
2	То	wn /	T&T	Yes
1	То	wn l	MCI	Yes
2	Cit	y S	Sprint	Yes
2	Cit	y	MCI	Yes

1

Information Gain Computation for < 75 (1) Income Source

$$I(p,n) = I(1,5) = -\frac{1}{6}\log_2\frac{1}{6} - \frac{5}{6}\log_2\frac{5}{6} = 0.650$$

I_Source	p _i	n _i	I(p _i , n _i)
1	1	3	0.811
2	0	2	0

$$E(I _ Source) = \frac{4}{6}I(1,3) + \frac{2}{6}I(0,2) = 0.541$$

$$Gain(I _ Source) = I(p,n) - E(I _ Source)$$

= 0.650 - 0.541 = 0.109

Information Gain Computation for < 75 (2) Living Place

L_Place	p _i	n _i	I(p _i , n _i)
City	1	3	0.811
Town	0	2	0

$$E(L - Place) = \frac{4}{6}I(1,3) + \frac{2}{6}I(0,2) = 0.541$$

$$Gain(L_Place) = I(p,n) - E(L_Place)$$

= 0.650 - 0.541 = 0.109

Information Gain Computation for < 75 (3) Current Carrier

C_Carrier	p _i	n _i	I(p _i , n _i)
MCI	1	0	0
Sprint	0	2	0
AT&T	0	3	0

$$E(C _Carrier) = \frac{1}{6}I(1,0) + \frac{2}{6}I(0,2) + \frac{3}{6}I(0,3) = 0$$

$$Gain(C_Carrier) = I(p,n) - E(C_Carrier) = 0.650$$

Information Gain Computation for < 75

■ Select Highest Gain

```
Gain (Income _ Source ) = 0.109

Gain (Living _ Place ) = 0.109

Gain (Current _ Carrier ) = 0.650
```

Partitioned Training Data Set by "Phone Usage"

source	place	carrier	class
1	City	MCI	Yes
1	City	Sprint	No
2	Town	AT&T	No
1	City	AT&T	No
1	Town	AT&T	No
2	City	Sprint	No

source	place	carrier	class
2	Town	AT&T	Yes
2	City	Sprint	Yes
1	Town	AT&T	Yes

sourc	e place	carrier	class
2	Town	MCI	Yes
1	City	MCI	No
2	Town	AT&T	Yes
1	Town	MCI	Yes
2	City	Sprint	Yes
2	City	MCI	Yes

16

Information Gain Computation for 75..150 (1) Income Source

$$I(p,n) = I(5,1) = -\frac{5}{6}\log_2\frac{5}{6} - \frac{1}{6}\log_2\frac{1}{6} = 0.650$$

I_Source	p _i	n _i	I(p _i , n _i)
1	1	1	1
2	4	0	0

$$E(I _ Source) = \frac{2}{6}I(1,1) + \frac{4}{6}I(4,0) = 0.333$$

$$Gain(I _ Source) = I(p,n) - E(I _ Source)$$

= 0.650 - 0.333 = 0.317

Information Gain Computation for 75..150 (2) Living Place

L_Place	p _i	n _i	I(p _i , n _i)
City	2	1	0.919
Town	3	0	0

$$E(L - Place) = \frac{3}{6}I(2,1) + \frac{3}{6}I(3,0) = 0.460$$

$$Gain(L_Place) = I(p,n) - E(L_Place)$$

= 0.650 - 0.460 = 0.190

Information Gain Computation for 75..150 (3) Current Carrier

C_Carrier	p _i	n _i	I(p _i , n _i)
MCI	3	1	0.811
Sprint	1	0	0
AT&T	1	0	0

$$E(C _Carrier) = \frac{4}{6}I(3,1) + \frac{1}{6}I(1,0) + \frac{1}{6}I(1,0) = 0.541$$

$$Gain(C_Carrier) = I(p,n) - E(C_Carrier)$$

= 0.650 - 0.541 = 0.109

Information Gain Computation for 75..150

■ Select Highest Gain

```
Gain (Income _ Source ) = 0.317

Gain (Living _ Place ) = 0.190

Gain (Current _ Carrier ) = 0.109
```


Final Decision Tree

Extracting Classification Rules from Tree

```
IF usage = "<75" AND carrier = "MCI" THEN change_plan = "Yes"

IF usage = "<75" AND carrier = "Sprint" THEN change_plan = "No"

IF usage = "<75" AND carrier = "AT&T" THEN change_plan = "No"

IF usage = "75..150" AND source = "1" AND place = "City" THEN change_plan = "No"

IF usage = "75..150" AND source = "1" AND place = "Town" THEN change_plan = "Yes"

IF usage = "75..150" AND source = "2" THEN change_plan = "Yes"

IF usage = ">150" THEN change_plan = "Yes"
```

End of Decision Tree Module (Part B)