BART: Bayesian Additive Regression Trees

Luis D. Suárez

Estimación Bayesiana, Noviembre 2024

Modelo de Árbol

- Soluciones algorítmicas "greedy".
- Requiere prunning.
- Ensembles o boosting para mejorar performance.

$$\begin{split} y = & \mu_1 I_{\{x_3 < 100\}} + \mu_2 I_{\{x_3 \geqslant 100\}} I_{\{x_1 \leqslant 13\}} \\ & + \mu_3 I_{\{x_3 \geqslant 100\}} I_{\{x_1 > 13\}} I_{\{x_5 > 0,4\}} \\ & + \mu_4 I_{\{x_3 \geqslant 100\}} I_{\{x_1 > 13\}} I_{\{x_5 \leqslant 0,4\}} + \epsilon \end{split}$$

Suma de árboles

$$\begin{split} y = & \mu_{11} I_{\{x_3 < 100\}} + \mu_{12} I_{\{x_3 \geqslant 100\}} I_{\{x_1 \leqslant 13\}} + \mu_{13} I_{\{x_3 \geqslant 100\}} I_{\{x_1 > 13\}} I_{\{x_5 > 0, 4\}} \\ & + \mu_{14} I_{\{x_3 \geqslant 100\}} I_{\{x_1 > 13\}} I_{\{x_5 \leqslant 0, 4\}} \\ & + \mu_{21} I_{\{x_5 \leqslant 20\}} + \mu_{22} I_{\{x_5 > 20\}} I_{\{x_3 \leqslant 22\}} + \mu_{23} I_{\{x_5 > 20\}} I_{\{x_3 > 22\}} I_{\{x_4 \leqslant 66\}} \\ & + \mu_{24} I_{\{x_5 > 20\}} I_{\{x_3 > 22\}} I_{\{x_4 \geqslant 66\}} + \epsilon \end{split}$$

BART: un modelo bayesiano de suma de árboles

Modelo de árboles aditivos:

$$Y = \sum_{j=1}^m g(x; \mathcal{T}_j, \mathcal{M}_j) + \epsilon, \qquad \epsilon \sim \mathcal{N}(0, \sigma^2).$$

Prior:

$$p\Big((\mathfrak{T}_1,\mathfrak{M}_1),\ldots,(\mathfrak{T}_m,\mathfrak{M}_m),\sigma\Big)$$

Se propone utilizar un priores bajo el supuesto de independencia de cada $(\mathfrak{T}_{\mathfrak{j}}, \mathfrak{M}_{\mathfrak{j}})$ entre sí y con respecto a σ . Es decir que

$$Prior = \Bigg[\prod_{j} p(\mathcal{M}_{j} \mid \mathcal{T}_{j},) p(\mathcal{T}_{j})\Bigg] p(\sigma), \quad con \; p(\mathcal{M}_{j} \mid \mathcal{T}_{j},) = \prod_{i}^{b_{j}} p(\mu_{ij} \mid \mathcal{T}_{j})$$

- T_j está especificado por tres aspectos:
 - La probabilidad de que un nodo a profundidad d sea no-terminal.
 - La distribución de las variables de división.
 - La distribución de los valores de división.

- \bullet T_j está especificado por tres aspectos:
 - La probabilidad de que un nodo a profundidad d sea no-terminal.
 - La distribución de las variables de división.
 - La distribución de los valores de división.
- $p(\mu_{ij} \mid \Upsilon_j)$ Se puede utilizar un prior conjugado Normal. Si se reescala el target, e.g. (-05, 05), se puede simplificar a

$$\mu_{ij} \sim \mathcal{N}(0, \sigma_{\mu}^2)$$

- ullet \mathcal{T}_{j} está especificado por tres aspectos:
 - La probabilidad de que un nodo a profundidad d sea no-terminal.
 - La distribución de las variables de división.
 - La distribución de los valores de división.
- p(μ_{ij} | T_j)
 Se puede utilizar un prior conjugado Normal.
 Si se reescala el target, e.g. (-05, 05), se puede simplificar a

$$\mu_{ij} \sim \mathcal{N}(0, \sigma_{\mu}^2)$$

• σ Un prior conjugado Gamma inversa (típicamente χ^2 inversa).

$$\sigma \sim \nu \lambda / \chi_{\nu}^2$$

- \bullet $\ensuremath{\mathcal{T}}_j$ está especificado por tres aspectos:
 - La probabilidad de que un nodo a profundidad d sea no-terminal.
 - La distribución de las variables de división.
 - La distribución de los valores de división.
- $p(\mu_{ij} \mid \mathcal{T}_j)$ Se puede utilizar un prior conjugado Normal. Si se reescala el target, e.g. (-05, 05), se puede simplificar a

$$\mu_{ij} \sim \mathcal{N}(0, \sigma_{\mu}^2)$$

• σ Un prior conjugado Gamma inversa (típicamente χ^2 inversa).

$$\sigma \sim \nu \lambda/\chi_{\nu}^2$$

m.

Muestreo del posterior

Bayesian Backfitting MCMC

 $\blacktriangleright \ \, \text{Objetivo: extraer} \,\, m \,\, \text{muestras de} \,\, (\mathfrak{T}_{\mathfrak{j}}, \mathfrak{M}_{\mathfrak{j}}) \,\, | \,\, \mathfrak{T}_{(\mathfrak{j})}, \mathfrak{M}_{(\mathfrak{j})}, \sigma, y$

$$R_j \equiv y - \sum_{k \neq j} g(x; T_k, M_k)$$

El problema se reduce a obtener un árbol por vez usando $R_{\rm j}$ en lugar de y.

Muestreo del posterior

Bayesian Backfitting MCMC

 $\blacktriangleright \ \, \text{Objetivo: extraer} \,\, m \,\, \text{muestras de} \,\, (\mathfrak{T}_{j}, \mathfrak{M}_{j}) \,\, | \,\, \mathfrak{T}_{(j)}, \mathfrak{M}_{(j)}, \sigma, y$

$$R_j \equiv y - \sum_{k \neq j} g(x; T_k, M_k)$$

El problema se reduce a obtener un árbol por vez usando $R_{\rm j}$ en lugar de y.

Generar un nuevo árbol \mathfrak{T}_j^* a partir de un set de reglas:

Grow Prune Swap Change

Muestreo del posterior

Bayesian Backfitting MCMC

 $\blacktriangleright \ \, \text{Objetivo: extraer} \,\, m \,\, \text{muestras de} \,\, (\mathfrak{T}_{\mathfrak{j}}, \mathfrak{M}_{\mathfrak{j}}) \mid \mathfrak{T}_{(\mathfrak{j})}, \mathfrak{M}_{(\mathfrak{j})}, \sigma, y$

$$R_j \equiv y - \sum_{k \neq j} g(x; T_k, M_k)$$

El problema se reduce a obtener un árbol por vez usando $R_{\rm j}$ en lugar de y.

- Generar un nuevo árbol \mathfrak{T}_j^* a partir de un set de reglas: Grow Prune Swap Change
 - lacktriangle Metropolis-Hastings para seleccionar entre \mathfrak{T}_j y \mathfrak{T}_j^*

Conclusión

- BART puede capturar interacciones complejas entre variables predictivas.
- Tiene pocos hiperparámetros que pueden fácilmente determinarse con valores default.
- Puede ser extendido fácilmente (e.g. para clasificación).
- El outcome es un posterior de sumas de árboles:
 - Predicciones con intervalos de credibilidad.
 - Produce medidas directas para Feature Selection.

¡Muchas Gracias!

... preguntas?