Diszkrét matematika 2

4. előadás Számelmélet

Mérai László

merai@inf.elte.hu

https://sites.google.com/view/laszlomerai

Komputeralgebra Tanszék

2023 ősz

Hatványmaradékok

Az $a^i \mod n$ hatványok:

 $10^i \bmod 7 \qquad \qquad 2^i \bmod 20$

Euler-Fermat tétel

Tétel (Euler-Fermat)

Legyenek $a, n \in \mathbb{Z}$, (a, n) = 1. Ekkor

$$a^{\varphi(n)} \equiv 1 \mod n$$
,

ahol φ az Euler-féle függvény.

Bizonyítás: később

Példa

- $2^6 \equiv 1 \mod 7$, mert $\varphi(7) = 6$.
- $3^6 \equiv 1 \mod 7$, mert $\varphi(7) = 6$.
- $9^8 \equiv 1 \mod 20$, mert $\varphi(20) = 8$.

Figyelem, kisebb hatvány is lehet 1:

- $1^6 = 1 \equiv 1 \mod 7$,
- $2^3 = 8 \equiv 1 \mod 7$.
- $9^2 = 81 \equiv 1 \mod 20$.

Maradékosztályok

Jelölés: Legyen $\mathbb{Z}_n = \{0, 1, \dots, n-1\}$ a nemnegatív maradékok halmaza, és tekintsük a $+, \cdot$ műveleteket modulo n

Példa

$$\mathbb{Z}_3 = \{0, 1, 2\}$$

$$\mathbb{Z}_4 = \{0, 1, 2, 3\}.$$

+	0	1	2			0	1	2
0	0	1	2	·	0	0	0	0
1	1	2	0		1	0	1	2
2	2	0	1		2	0	2	1

+	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

	0	1	2	3
0	0	0	0	0
1	0	1	2	3
2	0	2	0	2
3	0	3	2	1

Emlékeztető: ha (a, n) = 1, akkor $ax \equiv b \mod n$ kongruenciának mindig létezik egyértelmű megoldása modulo n.

Legyen $\mathbb{Z}_n^* = \{1 \le a < n : (a, n) = 1\}$. Speciálisan $\#\mathbb{Z}_n^* = \varphi(n)$.

Példa

$$\mathbb{Z}_3^* = \{1, 2\}, \mathbb{Z}_4^* = \{1, 3\}, \mathbb{Z}_{12}^* = \{1, 5, 7, 11\}$$

Euler-Fermat tétel – bizonyítás

Legyenek $a, n \in \mathbb{Z}$, (a, n) = 1. Ekkor $a^{\varphi(n)} \equiv 1 \mod n$.

Bizonyítás. A bizonyítás lineáris kongruenciákkal!

Tekintsük az $ax \equiv b \mod n$ lineáris kongruenciát. Mivel (a,n)=1, minden b-hez létezik egyértelmű x megoldás. Azaz az $x \mapsto ax \mod n$, \mathbb{Z}_n^* egy bijekciója. Így a

$$\mathbb{Z}_n^*$$
 és $\{ax \bmod n : x \in \mathbb{Z}_n^*\}$

halmazok azonosak. Ekkor a halmazok elemeinek szorzata is megegyezik:

$$\prod_{x \in \mathbb{Z}_n^*} x \equiv \prod_{x \in \mathbb{Z}_n^*} ax \equiv a^{\varphi(n)} \prod_{x \in \mathbb{Z}_n^*} x \mod n.$$

Mivel

$$\left(n, \prod_{x \in \mathbb{Z}_n^*} x\right) = 1$$

így a szorzattal egyszerűsíthetünk: $1 \equiv a^{\varphi(n)} \mod n$.

Euler-Fermat tétel – példák

Tétel (Euler-Fermat) $(a, m) = 1 \Rightarrow a^{\varphi(m)} \equiv 1 \mod m$

Példa

Mi lesz a 3¹¹¹ utolsó számjegye tízes számrendszerben? Mi lesz 3¹¹¹ mod 10?

$$\varphi(10) = 4 \Rightarrow 3^{111} = 3^{4 \cdot 27 + 3} = \left(3^4\right)^{27} \cdot 3^3 \equiv 1^{27} \cdot 3^3 = 3^3 = 27 \equiv 7 \mod 10$$

Példa

Oldjuk meg a $2x \equiv 5 \mod 7$ kongruenciát! $\varphi(7) = 6$. Szorozzuk be mindkét oldalt 2^5 -el. Ekkor

$$5 \cdot 2^5 \equiv 2^6 x \equiv x \mod 7$$
. És itt $5 \cdot 2^5 = 5 \cdot 32 \equiv 5 \cdot 4 = 20 \equiv 6 \mod 7$.

Példa

Oldjuk meg a $23x \equiv 4 \mod 211$ kongruenciát! $\varphi(211) = 210$. Szorozzuk be mindkét oldalt 23^{209} -el. Ekkor $4 \cdot 23^{209} \equiv 23^{210}x \equiv x \mod 211$. És itt $4 \cdot 23^{209} \equiv \dots \mod 211$.

Gyors hatványozás

Legyenek n, a, k pozitív egészek, n > 1. Szeretnénk kiszámolni $a^k \mod n$ maradékot hatékonyan.

Ötlet:

Ábrázoljuk k-t 2-es számrendszerben:

$$k = \sum_{i=0}^{\ell} \varepsilon_i 2^i = (\varepsilon_{\ell} \varepsilon_{\ell-1} \dots \varepsilon_1 \varepsilon_0)_{(2)}, \text{ ahol } \varepsilon_0, \varepsilon_1, \dots, \varepsilon_{\ell} \in \{0, 1\}.$$

$$a^k \equiv a^{\sum_{i=0}^{\ell} \varepsilon_i 2^i} \equiv \prod_{i=0}^{\ell} (a^{\varepsilon_i})^{2^i}$$

$$\equiv \left(\left(\dots \left((a^{2\varepsilon_{\ell}} \bmod n) \cdot a^{\varepsilon_{\ell-1}} \bmod n \right)^2 \dots \right)^2 \cdot a^{\varepsilon_1} \bmod n \right)^2 \cdot a^{\varepsilon_0} \bmod n$$

Példa
$$3^{11} \equiv ? \mod 5$$
. $11 = 2^3 + 2^1 + 2^0 = (1011)_2$. **Így**

$$3^{11} \equiv \left(\left(\left(3^{2 \cdot 1} \bmod 5 \right) \cdot 3^0 \bmod 5 \right)^2 \cdot 3^1 \bmod 5 \right)^2 \cdot 3^1 \bmod 5$$

Gyors hatványozás

Legyenek n, a, k pozitív egészek, n > 1. Szeretnénk kiszámolni $a^k \mod n$ maradékot hatékonyan.

Általában:
$$k = (\varepsilon_{\ell}\varepsilon_{\ell-1}\dots\varepsilon_1\varepsilon_0)_{(2)}$$
.
 Legyen k_j $(0 \le j \le \ell)$ az első $j+1$ jegy által meghatározott szám: $k_j = \lfloor k/2^{\ell-j} \rfloor = (\varepsilon_{\ell}\varepsilon_{\ell-1}\dots\varepsilon_{\ell-j+1})_{(2)}$

Ekkor meghatározzuk minden *j*-re az $x_i \equiv a^{k_j} \mod n$ maradékot:

$$k_0 = \varepsilon_{\ell} = 1, x_0 = a.$$

$$k_j = 2 \cdot k_{j-1} + \varepsilon_{\ell-j} \Rightarrow x_j = x_{j-1}^2 \cdot a^{\varepsilon_{\ell-j}} \bmod n = \begin{cases} x_{j-1}^2 \bmod n, & \text{ha } \varepsilon_{\ell-j} = 0 \\ x_{j-1}^2 \cdot a \bmod n, & \text{ha } \varepsilon_{\ell-j} = 1 \end{cases} \Rightarrow x_{\ell} = a^k \bmod n.$$

- Az algoritmus helyessége HF
- Számítási igény: $\approx \log k$ művelet n méretű számokon.

Gyors hatványozás – példa

Példa

Mi lesz $3^{111} \mod 10$? (Euler-Fermat tétel szerint: \Rightarrow 7) $111_{(10)} = 1101111_{(2)}$ itt $\ell = 6$, a = 3.

\boldsymbol{j}	k_{j}	$x_j = a^{\varepsilon_j} \cdot x_{j-1}^2$	$x_j \mod 10$
0	1	1	3
1	11	$x_1 = 3 \cdot 3^2$	7
2	110	$x_2 = 7^2$	9
3	1101	$x_3 = 3 \cdot 9^2$	3
4	11011	$x_4 = 3 \cdot 3^2$	7
5	110111	$x_5 = 3 \cdot 7^2$	7
6	1101111	$x_6 = 3 \cdot 7^2$	7

Gyors hatványozás – példa

Példa

Oldjuk meg a $23x \equiv 4 \mod 211$ kongruencát!

Euler-Fermat $\Rightarrow x \equiv 4 \cdot 23^{209} \equiv \dots \mod 211$.

Mi lesz $23^{209} \mod 211$? $209_{(10)} = 11010001_{(2)}$ itt $\ell = 7$, a = 23.

j	k_{j}	$x_j = a^{\varepsilon_j} \cdot x_{j-1}^2$	$x_j \mod 211$
0	1	_	23
1	11	$x_1 = 23 \cdot 23^2$	140
2	110	$x_2 = 140^2$	188
3	1101	$x_3 = 23 \cdot 188^2$	140
4	11010	$x_4 = 140^2$	188
5	110100	$x_5 = 188^2$	107
6	1101000	$x_6 = 107^2$	55
7	11010001	$x_6 = 23 \cdot 55^2$	156

$$x \equiv 4 \cdot 23^{209} \equiv 4 \cdot 156 \equiv 202 \mod 211$$
.

Hatványok maradékai még egyszer

Legyen p egy prímszám és $p \nmid a$. Ekkor az Euler-Fermat tétel szerint $a^{p-1} \equiv 1 \mod p$. $(\varphi(p) = p - 1)$

Vannak jó a alapok, melyekenk p-1 különböző hatványa van modulo p.

Generátorok

Tétel (NB)

Legyen p prímszám. Ekkor \mathbb{Z}_p^* -ban van generátor (primitív gyök): van olyan 1 < g < p egész, melyre, $\{1 = g^0, g \mod p, g^2 \mod p, \ldots, g^{p-2} \mod p\} = \mathbb{Z}_p^* = \{1, 2, \ldots, p-1\}.$

Példa

3 generátor modulo 7

Generátor – példa

Példa

2 generátor modulo 11

n	0	1	2	3	4	5	6	7	8	9
$2^n \mod 11$	1	2	4	8	5	10	9	7	3	6

Példa

2 nem generátor modulo 7

n	0	1	2	3	4	5
$2^n \mod 7$	1	2	4	1	2	4

Diszkrét logaritmus

Definíció

Legyen p prímszám, g generátor modulo p. Ekkor az $a \in \mathbb{Z}$: $(p \nmid a)$ g alapú diszkrét logaritmusa (indexe)

$$\log_g a = n$$
: $a \equiv g^n \mod p$, $0 \le n .$

Példa

3 generátor modulo 7:

n	0	1	2	3	4	5
3^n	1	3	2	6	4	5

Γ	3 ⁿ	3	2	6	4	5	1
Γ	n	1	2	3	4	5	0

azaz

a	3	2	6	4	5	1
$\log_3 a$	1	2	3	4	5	0

Diszkrét logaritmus

Példa

2 generátor modulo 11

n		0	1	2	3	4	5	6	7	8	9
$2^n \mod 1$	1	1	2	4	8	5	10	9	7	3	6

Logaritmus-táblázat:

a	1	2	3	4	5	6	7	8	9	10
$\log_2 a$	0	1	8	2	4	9	7	3	6	5

Tétel (HF)

Legyen p prímszám, g generátor modulo p, $1 \le a,b < p$, $n \in \mathbb{Z}$. Ekkor

$$\log_g(a \cdot b) \equiv \log_g a + \log_g b \mod p - 1$$
$$\log_g(a^n) \equiv n \cdot \log_g a \mod p - 1$$

Alkalmazások

Számelmélet alkalmazási területei:

- Kriptográfia
 - üzenetek titkosítása;
 - digitális aláírás;
 - azonosítás, ...
- Kódelmélet
- ...

Caesar kód

Julius Caesar katonáival a következő módon kommunikált:

Feleltessük meg az (angol) ábécé betűit a $\{0,1,\ldots,25\}=\mathbb{Z}_{26}$ halmaznak:

```
\begin{array}{lll} \mathbf{a} \mapsto \mathbf{0} \\ \mathbf{b} \mapsto \mathbf{1} \\ \mathbf{c} \mapsto \mathbf{2} \\ & \vdots \\ \mathbf{z} \mapsto \mathbf{25} \end{array} \qquad \begin{array}{ll} \textbf{Titkos kulcs } s \in \{0,1,\ldots,25\}. \\ \textbf{Titkosítás } \text{ adott } a \in \{0,1,\ldots,25\} \text{ esetén } a \text{ titkosítás a} \\ a \mapsto a + s \bmod 26. \text{ Üzenet titkosítás betűnként.} \\ \textbf{Kititkosítás } \text{ adott } b \in \{0,1,\ldots,25\} \text{ esetén } b \text{ kititkosítás a} \\ b \mapsto a - s \bmod 26. \text{ Üzenet kititkosítás betűnként.} \end{array}
```

Példa

```
hello titkosítása az s=13 kulccsal: hello \rightarrow 7 4 11 11 14 \stackrel{\text{titkosítás}}{\rightarrow} 20 17 24 24 1 \rightarrow uryyb uryyc kititkosítása az s=13 kulccsal: uryyb \rightarrow 20 17 24 24 1 \stackrel{\text{kititkosítás}}{\rightarrow} 7 4 11 11 14 \rightarrow hello
```

Caesar kód

Ha s = 13 kulcsot választjuk: Rot13.

Titkosítás és kititkosítás ugyanazzal a kulccsal: $-13 \equiv 13 \mod 26$.

A titkosítás nem biztonságos: betűgyakoriság vizsgálattal törhető.

Ha a különböző pozíciókban különböző kulcsokat választhatunk (véletlenszerűen) ⇒ bizonyítottan biztonságos

Gyakorlatban: One Time Pad - OTP

Üzenetek: bináris formában: m=100100101 **Kulcs:** bináris sorozat: s=010110110

Titkosítás: bitenkénti XOR (mod 2 összeadás):

m=100100101 XOR s=010110110 c=110010011

Kritikus pont: az s titkos kulcs átadása.