9.2 控制单元的功能

一、控制单元的外特性

1. 输入信号

9.2

(1) 时钟

CU 受时钟控制

一个时钟脉冲

发一个操作命令或一组需同时执行的操作命令

- (2) 指令寄存器 OP(IR)→ CU 操作码部分送给CU解读 控制信号 与操作码有关
- (3) 标志 CU 受标志控制 如条件转移指令
- (4) 外来信号

如 INTR 中断请求 HRQ 总线请求

2. 输出信号

9.2

(1) CPU 内的各种控制信号

$$\mathbf{R}_i \longrightarrow \mathbf{R}_j$$
 寄存器之间的数据传输 $(\mathbf{PC}) + \mathbf{1} \longrightarrow \mathbf{PC}$

ALU 十、一、与、或 ······

送到CPU外

(2) 送至控制总线的信号

MREQ 访存控制信号

IO/M 访 IO/ 存储器的控制信号

RD 读命令

WR 写命令

INTA 中断响应信号

HLDA 总线响应信号

二、控制信号举例

9.2

1. 不采用 CPU 内部总线的方式 采用分散连接的方式

二、控制信号举例

9.2

1. 不采用 CPU 内部总线的方式

二、控制信号举例

9.2

1. 不采用 CPU 内部总线的方式

Z

(3) ADD @ X 执行周期

- MDR → MAR → 地址线
 MDR₀ MAR_i
- $\cdot 1 \longrightarrow R$
- · 数据线 → MDR
- MDR $\longrightarrow Y \longrightarrow ALU$ MDR₀ Y_i
- $\begin{array}{c} \bullet \text{ AC} \longrightarrow \text{ ALU} \\ \bullet \text{ AC}_0 & \text{ ALU}_i \end{array}$
- $(AC) + (Y) \longrightarrow \mathbb{Z}$
- $\begin{array}{c} \bullet \ Z \longrightarrow \ AC \\ Z_0 & AC_i \end{array}$

三、多级时序系统

9.2

- 1. 机器周期
- (1) 机器周期的概念 <u>所有指令执行过程中的一个基准</u>时间
- (2) 确定机器周期需考虑的因素 每条指令的执行 步骤 每一步骤 所需的 时间
- (3) 基准时间的确定 微操作(取、间、执行、中断)中时间最长的:访问内存时间最长
 - •以完成 最复杂 指令功能的时间 为准
 - •以访问一次存储器的时间为基准

若指令字长 = 存储字长 取指周期 = 机器周期

2. 时钟周期(节拍、状态)

9.2

一个机器周期内可完成若干个微操作

每个微操作需一定的时间

将一个机器周期分成若干个时间相等的时间段(节拍、状态、时钟周期)

时钟周期是控制计算机操作的最小单位时间

用时钟周期控制产生一个或几个微操作命令

2. 时钟周期(节拍、状态)

9.2

3. 多级时序系统

9.2

机器周期、节拍(状态)组成多级时序系统

- 一个指令周期包含若干个机器周期
- 一个机器周期包含若干个时钟周期

4. 机器速度与机器主频的关系

9.2

机器的 主频 ƒ 越快 机器的 速度也越快

在机器周期所含时钟周期数 相同的前提下, 两机平均指令执行速度之比 等于 两机主频之比

[MIPS] = #指令/s
$$\frac{\mathbf{MIPS_1}}{\mathbf{MIPS_2}} = \frac{f_1}{f_2}$$
 T指令 = k1*T机器 = k1*(k2*T时钟) f = 1/T时钟 MIPS = 1/T指令

一台流水, 一台非流水, 也不同

机器速度不仅与主颇有关,还与机器周期中所含时钟周期(主频的倒数)数以及指令周期中所含的 机器周期数有关

四、控制方式

9.2

产生不同微操作命令序列所用的时序控制方式

1. 同步控制方式

任一微操作均由 统一基准时标 的时序信号控制

(1) 采用 定长 的机器周期

以最长的微操作序列和最复杂的微操作作为标准

机器周期内 节拍数相同 可能产生时间浪费

(2) 采用不定长的机器周期

9.2

机器周期内 节拍数不等

(3) 采用中央控制和局部控制相结合的方法 9.2

2. 异步控制方式

9.2

无基准时标信号

无固定的周期节拍和严格的时钟同步 采用 <u>应答方式</u>

- 3. 联合控制方式 同步与异步相结合
- 4. 人工控制方式 调试时使用
 - (1) Reset
 - (2) 连续 和 单条 指令执行转换开关
 - (3) 符合停机开关