

Marginal Kolmogorov-Smirnov Analysis:

Measuring Lack of Fit in Logistic Regression

Edinburgh Credit Scoring Conference

29 August 2013

Gerard Scallan
gerard.scallan@scoreplus.com

→ data → information → profit

Marginal Kolmogorov Smirnov Analysis Look Ma, no grouping!

- \rightarrow
- Sufficient Statistic
- Marginal Information
- Marginal KS
- Open Questions

Complexity: the Enemy

Complexity → **Confusion** → **Unmanageable** → **Wrong Decisions**

Goal: Simplify Policies Dimensionality Reduction → Scores

e.g. Parameter = PD

Marginal Kolmogorov-Smirnov Analysis Edinburgh Credit Scoring Conference 2013 © ScorePlus SARL 2013

Definition:

Score = Sufficient Statistic for Aspect of Behaviour

Sufficient Statistic:

"No other statistic which can be calculated from the same sample provides any additional information as to the value of the parameter"

- R.A. Fisher (1922) p. 310 E.g. if Pr(Default) = 5%, then must have Pr(Default|Own) = Pr(Default|Rent) = 5%

Sufficient Statistic ← Actual = Expected

Sufficient Statistic →
 Maximum Likelihood

- ♦ → Logistic Regression
- ♦ → Actual = Expected
 - For scorecard build sample
- Proof: See Appendix

Default by Loan Term

Operational Definition of Sufficient Statistic

Marginal Kolmogorov Smirnov Analysis Look Ma, no grouping!

- **/**
- Sufficient Statistic
- \rightarrow
- Marginal Information
- Marginal KS
- Open Questions

Applying Actual = Expected Development or Validation

Model Development

Given: Default Rates

Match: PDs

Model Validation

Given: PDs

Match: Default Rates

MEASURE GAP

- ♦ How big?... Marginal Information
 - ♦ Is it reliable?... Marginal Chi²

Modify Model

Characteristics, Attributes

Modify Model or Strategies

Score weights, new chars.

Pricing, limits, features ...

Ensure Score is Sufficient Statistic

Model \rightarrow **Probabilities for Each Point**

Measuring the Gap Discrete Predictors

From probabilities calculated by model

Residential	OBSERVED								
Status	Goods	Bads	Total	WoE					
Owner	7092	81	7173	0.639					
Renter	2331	123	2454	-0.891					
All Other	1068	23	1091	0.005					
TOTAL	10491	227	10718						
'	Chi ² =	42.58		D.F. = 2					

Goods	Bads	Total	WoE	Δ-score
7046.8	126.2	7173	0.189	0.450
2376.7	77.3	2454	-0.408	-0.484
1067.5	23.5	1091	-0.017	0.022
1049 1.0	227.0	10718		
p-value:	0.0000	0006%	MIV =	0.298

- Weight of Evidence: WoE = $ln(G_A/B_A) ln(G_{total}/B_{total})$
- Chi² = 2 x Observed x In(Observed/Expected)
- Degrees of Freedom: D.F. = # Attributes -1
- Δ-score = Observed WoE Expected WoE
- igoplus Marginal Information Value: MIV = Avg_{Goods}(Δ-score) Avg_{Bads}(Δ-score)
- ♦ Cf. Scallan (2009)

Distance: Marginal Information Value Certainty: Marginal Chi²

Applications of Marginal Analysis

- Selection of characteristics to enter model
- "Classing" characteristics in model
 - Now done "automatically" in logistic regression
- Model segmentation
- Policy rule assessment
- Tracking shifts in predictive patterns
- Evaluating price sensitivity

Used "everywhere" in development and validation

Selecting Scorecard Characteristics Marginal Analysis Application

		DaysXsL6m	ToB	SinceDish	AutoCr	CurDaysXs
Characteristic	IV .	Score1	\$core2	Score3	#core4	%core5
CurBal	0.032	0.019	0.017	0.013	0.010	0.008
CurCTO	0.185	0.121	0.086	0.089	0.007	0.006
CurDaysXs	0.616	0.125	0.113	0.106	0.094	0.021
CurDTO	0.215	0.117	0.087	0.093	0.026	0.025
CurValXs	0.515	0.121	0.110	0.093	0.090	0.007
ToB	0.692	0.526	0.010	0.026	0.025	0.025
MthsInact	0.012	0.005	0.001	0.004	-0.002	-0.003
MthsNoCTO	0.077	0.066	0.043	0.045	0.001	0.000
NetTO	0.074	0.028	0.007	0.010	0.002	0.000
DaysDbL3m	0.055	0.008	0.013	0.008	0.005	0.004
DaysXsL6m	0.856	0.000	0.008	0.011	0.015	0.012
CurMxBal	0.033	0.015	0.018	0.013	0.005	0.003
DishL1m	0.291	0.090	0.084	-0.006	-0.008	-0.010
DishL3m	0.292	0.081	0.077	0.005	0.011	0.011
SinceDish	0.810	0.397	0.299	0.057	0.050	0.051
InterCTO	0.017	0.004	-0.003	-0.004	-0.001	-0.001
InterDTO	0.003	0.001	0.000	0.000	-0.002	-0.002
AutoCr	0.209	0.143	0.108	0.106	0.005	0.004
ValDishL6m	0.468	0.145	0.137	-0.001	-0.001	0.003

- At each step...
- Rank predictors by (Marginal) IV
- Predictor with maximum Marginal IV enters model
- ... provided Marginal Chi²
 can be "made" significant
- Continue until no significant Marginal IV left
- Significance Threshold:

MIV > .020 Marginal Chi² p-level < 5%

Deals with collinearity ... and tells the story

Marginal Analysis as Management Tool

Model Development

Can easily analyse 1000s of predictors

- ... and interactions
- ... automate discretisation
- ... with reasonable computation

Coherent framework for model selection

Distance → Marginal Information
Certainty → Marginal Chi²

Ongoing Management

Can identify changes in performance

- ... rapidly
- ... and suggest corrections to model

Measure effect of policy variation e.g. price levels, marketing mix

Evaluate policy rules

Measure consequences of overrides

Operational Implementation of Sufficient Statistic ...BUT ...

Issue 1A: Needs Preliminary Classing

Residential	OBSERVED								
Status	Goods	Bads	Total	WoE					
Owner	7092	81	7173	0.639					
Renter	2331	123	2454	-0.891					
All Other	1068	23	1091	0.005					
TOTAL	10491	227	10718						
•	Chi ² =	42.58		D.F. = 2					

Goods	Bads	Total	WoE	Δ-score
7046.8	126.2	7173	0.189	0.450
2376.7	77.3	2454	-0.408	-0.484
1067.5	23.5	1091	-0.017	0.022
10491.0	227.0	10718		
p-value:	0.0000	0006%	MIV =	0.298

- Must have a preliminary classing to compute Marginal IV and Chi²
- Scores must be calibrated on sample
 - Fit score-odds line on validation sample
 - Guarantees actual = expected for total line

Problem on continuous predictors

Issue 1B: Values Depend on Classing

			_				
Attribute	Act	ual	Ехре	cted	Delta	Chi2	MIV
	Good	Bad	Good	Bad	Score	Contrib	ution
Α	980	19	979	20	0.052	0.05	0.000
В	980	25	985	20	-0.228	1.18	0.006
С	980	11	971	20	0.607	4.93	0.027
D	980	29	989	20	-0.381	3.63	0.017
F	980	13	973	20	0.438	2.85	0.015
G	980	27	987	20	-0.307	2.26	0.011
Н	980	17	977	20	0.166	0.48	0.002
1	980	23	983	20	-0.143	0.44	0.002
J	980	15	975	20	0.293	1.40	0.007
K	980	21	981	20	-0.050	0.05	0.000
TOTAL	9800	200	9800	200		17.27	0.089
•	DF	9			p-level	4.465%	
					·		
A to C	2940	55	2935	60	0.089	0.44	0.002
D to F	2940	69	2949	60	-0.143	1.31	0.006
G to H	1960	40	1960	40	0.000	0.00	0.000
I to K	1960	36	1956	40	0.107	0.42	0.002
TOTAL	9800	200	9800	200		2.17	0.011
•	DF	3			p-level	53.706%	

- Artificial data 10 atts.
- Expecteds no pattern
- Actuals strong values
 - ♦ MIV = .089
 - p-level 4.4%
- But Δ-scores not sensible
- Class -> 4 attributes
 - ◆ MIV = .011
 - p-level = 53%
 - Not usable!

Would you put this in a model?

Issue 2: Ignores Rank Ordering

Attribute	Act	ual	Ехре	cted	Delta	Chi2	MIV
	Good	Bad	Good	Bad	Score	Contril	oution
С	980	11	971	20	0.607	4.93	0.027
F	980	13	973	20	0.438	2.85	0.015
J	980	15	975	20	0.293	1.40	0.007
Н	980	17	977	20	0.166	0.48	0.002
Α	980	19	979	20	0.052	0.05	0.000
K	980	21	981	20	-0.050	0.05	0.000
1	980	23	983	20	-0.143	0.44	0.002
В	980	25	985	20	-0.228	1.18	0.006
G	980	27	987	20	-0.307	2.26	0.011
D	980	29	989	20	-0.381	3.03	0.017
TOTAL	9800	200	9800	200		17.27	0.089
'	DF	9			p-level	4.465%	

- Pattern not sensible
- Re-sort to get story right
- → Pay attention to rank ordering
- ... but MIV and Chi² unchanged
- … PROBLEM

Triple Test

- Distance
 - \rightarrow

Marginal IV

◆Certainty -

Marginal Chi²

♦Coherence →

Tell a good story

Marginal Kolmogorov Smirnov Analysis Look Ma, no grouping!

- ✓ ◆ Sufficient Statistic
- ✓ ◆ Marginal Information
- → Marginal KS
 - Open Questions

Find a Simpler Measure ...

- Goal: Measure gap between "actual" and "expected"
- Continuous distribution
- ♦ → Kolmogorov Smirnov
 - **♦** Statistic
 - Test

Re-Use Familiar Concepts!

Aside: K-S and Gini Curve

 KS ranking invariant under monotone transformation of predictor

 \bullet E.g. Score \rightarrow PD – same ranking

◆ Convert predictor → %iles of "goods" on predictor

Cumulative Good distribution 29%

→ Diagonal!

By definition

◆ Cumulative Bads → ROC

a.k.a. Gini curve

♦ KS graph = ROC

K-S statistic is largest vertical distance between ROC and diagonal

Actual vs. Expected on Continuous Predictor

Model 0: Expected = Pop. Bad Rate

With each step
"Expected" moves
closer to Actual

Goal: Expected → Actual

But Which KS? Goods or Bads?

In Numbers:

- ♦ In % terms:
 - ★ KS_G = max | Act Exp|
 Total Goods
 OR KS_B = max | Act Exp|
 Total Bads
- Answer: Marginal KS
 MKS = KS_G + KS_B
 See Appendix for details

- "Null" model: everyone has same Pr(Bad)
 = N_R/(N_G + N_R)
- ♦ Then: MKS = KS
- Formal Notation
 - Value of predictor i on case j = x_{ij}
 - With respect to model β
 - ◆ 1_G indicator function
 = 1 if good, 0 if bad

$$MKS_{i}(\boldsymbol{\beta}) = \left(\frac{1}{N_{G}} + \frac{1}{N_{B}}\right) \max_{r} \left| \sum_{j:x_{ij} \leq r} \left(1_{G}(j) - \Pr_{\boldsymbol{\beta}}(j \in G)\right) \right|$$

MKS Statistic Can Replace Marginal IV

MKS Statistic measures distance between model and reality

Issue 1B: Values Depend on Classing Revisit with Marginal KS

Attribute	Act	ual	Ехре	cted	Delta	Chi2	MIV	Marginal
	Good	Bad	Good	Bad	Score	Contril	bution	KS
Α	980	19	979	20	0.052	0.05	0.000	-0.51%
В	980	25	985	20	-0.228	1.18	0.006	2.04%
С	980	11	971	20	0.607	4.93	0.027	-2.55%
D	980	29	989	20	-0.381	3.63	0.017	2.04%
F	980	13	973	20	0.438	2.85	0.015	-1.53%
G	980	27	987	20	-0.307	2.26	0.011	2.04%
Н	980	17	977	20	0.166	0.48	0.002	0.51%
1	980	23	983	20	-0.143	0.44	0.002	2.04%
J	980	15	975	20	0.293	1.40	0.007	-0.51%
K	980	21	981	20	-0.050	0.05	0.000	0.00%
TOTAL	9800	200	9800	200		17.27	0.089	2.55%
	DF	9			p-level	4.465%		99.96%
A to C	2940	55	2935	60	0.089	0.44	0.002	-2.55%
D to F	2940	69	2949	60	-0.143	1.31	0.006	2.04%
G to H	1960	40	1960	40	0.000	0.00	0.000	2.04%
I to K	1960	36	1956	40	0.107	0.42	0.002	0.00%
TOTAL	9800	200	9800	200		2.17	0.011	2.55%
	DF	3			p-level	53.706%		99.96%

Marginal KS: independent of classing

Issue 2: Ignores Rank Ordering Revisit with Marginal KS

Attribute	Acti	ual	Expected		Delta	Chi2	MIV	Marginal	
	Good	Bad	Good	Bad	Score	Contri	bution	KS	
A	980	11	971	20	0.607	4.93	0.027	-4.59%	
В	980	13	973	20	0.438	2.85	0.015	-8.16%	
C	980	15	975	20	0.293	1.40	0.007	-10.71%	
B	980	17	977	20	0.166	0.48	0.002	-12.24%	
A	980	19	979	20	0.052	0.05	0.000	-12.76%	
6	980	21	981	20	-0.050	0.05	0.000	-12.24%	
Н	980	23	983	20	-0.143	0.44	0.002	-10.71%	
В	980	25	985	20	-0.228	1.18	0.006	-8.16%	
Œ	980	27	987	20	-0.307	2.26	0.011	-4.59%	
Ø	980	29	989	20	-0.381	3.63	0.017	0.00%	
TOTAL	9800	200	9800	200		17.27	0.089	12.76%	
-	DF	9			p-level	4.465%		0.34%	

◆ Reminder: Marginal IV and Chi² don't change with ordering

◆ But Marginal KS: Unordered KS = 2.55% p-level 99.9%
 Ordered KS = 12.76% p-level 0.3%

Scorecard Characteristic Selection with Marginal Kolmogorov Smirnov

Description

Worst rating in L36m Good Active months in L36m Number of Trades at Bureau Number of months delinquent in L36m Months since last delinquent Good - Bad Months in L48m Good - Bad Months in L24m Current Bal/Avg Bal L36m Avg Bal L3m/Avg Bal L48m Current Bal/Max Bal L6m Current Bal/Avg Bal L48m (unsecured only) Number of Revolving Accounts at Bureau L3m Number of consumer credit trades at Bureau L3m

MARGINAL KOLMOGOROV-SMIRNOV w.r.t. Model

0	1	2	3	4	6
6.8%	8.1%	6.9%	6.0%	3.5%	0.7%
15.6%	11.6%	11.9%	2.1%	2.7%	2.6%
15.5%	15.8%	1.0%	1.0%	1.0%	0.8%
6.8%	8.1%	6.9%	6.0%	3.5%	2.0%
6.8%	8.1%	6.9%	6.0%	4.2%	0.8%
16.5%	12.4%	12.8%	2.5%	3.8%	2.8%
15.7%	11.8%	11.8%	2.5%	3.0%	2.8%
16.7%	10.6%	9.0%	3.8%	4.7%	2.9%
12.9%	8.3%	6.5%	2.4%	2.5%	1.8%
10.0%	5.5%	2.7%	4.8%	4.2%	0.9%
12.7%	7.4%	4.6%	5.0%	5.1%	1.1%
15.3%	15.6%	1.3%	1.3%	1.3%	1.1%
3.3%	7.0%	5.7%	2.9%	3.6%	2.9%

- Select characteristic with largest MKS to enter model
- ... subject to significant MKS p-level

Marginal KS can substitute for Marginal IV

Significance Test – Kolmogorov-Smirnov *Measures Certainty*

Standard KS Test

- 2-sample test
- \bullet D = max $|F_1(x) F_2(x)|$
 - ◆F₁ and F₂ ~ sample cumulative distn functions
- Null Hypothesis: Differences between F1 and F2 are down to random variation
 - ◆Same underlying distribution
- ◆ Then (with sample > 50):

$$D \times \sqrt{\frac{N_1 N_2}{N_1 + N_2}} \approx \text{KS distribution}$$

Marginal Kolmogorov-Smirnov Analysis Edinburgh Credit Scoring Conference 2013 © ScorePlus SARL 2013

Marginal KS Test

- Null Hypothesis: Sample comes from underlying distribution described by model
 - ◆ Discrepancies are random
- ♦ Formula for D is (a bit) different

$$D = \left(\frac{1}{N_G} + \frac{1}{N_B}\right) \max \left| \text{Actual - Exp'd} \right|$$

so
$$\sqrt{\frac{N_G N_B}{N_G + N_B}} D = \sqrt{\frac{1}{N_G} + \frac{1}{N_B}} \max \left| \text{Actual - Exp'd} \right|$$

Can we believe what we see?

Model Exhausts Predictive Content of Database

Distance

Reliability

Description	Model	0		Model	6	
	KS	p-level	Info Value	MKS	p-level	Marg IV
Worst rating in L36m	6.8%	0.000%	4.5%	0.7%	99.643%	0.3%
Good Active months in L36m	15.6%	0.000%	21.7%	2.6%	2.181%	5.1%
Number of Trades at Bureau	15.5%	0.000%	19.4%	0.8%	97.966%	0.5%
Number of months delinquent in L36m	6.8%	0.000%	4.8%	2.0%	12.593%	1.3%
Months since last delinquent	6.8%	0.000%	7.8%	0.8%	96.914%	1.7%
Good - Bad Months in L48m	16.5%	0.000%	22.9%	2.8%	0.983%	3.9%
Good - Bad Months in L24m	15.7%	0.000%	20.6%	2.8%	1.024%	4.7%
Current Bal/Avg Bal L36m	16.7%	0.000%	16.7%	2.9%	0.637%	3.0%
Avg Bal L3m/Avg Bal L48m	12.9%	0.000%	11.2%	1.8%	24.522%	1.9%
Current Bal/Max Bal L6m	10.0%	0.000%	5.6%	0.9%	92.980%	0.7%
Current Bal/Avg Bal L48m (unsecured only)	12.7%	0.000%	8.7%	1.1%	77.674%	0.5%
Number of Revolving Accounts at Bureau L3m	15.3%	0.000%	18.0%	1.1%	81.412%	0.7%
Number of consumer credit trades at Bureau L3m	3.3%	0.142%	7.8%	2.9%	0.782%	2.7%

Little information left MKS > 2%

Goal: Build a Sufficient Statistic

And mostly not reliable p-level < 5%

Marginal KS: Summary

Marginal KS gives alternative way to analyse Actual vs. Expected:

DISTANCE: Marginal KS statistic ↔ Marginal Info Value

Do not need any prior classing

But rank ordering must be reasonable ...

Aesthetic advantage over Marginal Information/Chi²

Useful in development and in validation/monitoring

Useful alternative to Marginal Information

Marginal Kolmogorov Smirnov Analysis Look Ma, no grouping!

- ✓ ◆ Sufficient Statistic
- ✓ Marginal Information
- ✓ ◆ Marginal KS
- → Open Questions

Marginal KS: Work in Progress

How to deal with "discrete attributes" in continuous predictors?

- ◆E.g. Retired in Time on Job
- ◆ Leads to under-estimate p-levels

◆Use for monitoring policy rules?

How is MKS affected by truncation?

"Reject Inference" problem

Given predictor identify model variable(s)

- Predictor > MKS point Yes/No?
- What about splines?

Can MKS approximate correction to model coefficients?

 $igoplus Like \Delta$ -scores in Marginal IV

Comparison of power of test

♦ Marginal Chi² vs. Marginal KS

Your input is welcome!

Marginal Kolmogorov Smirnov Analysis Look Ma, no grouping!

Thanks to:

- Banco de Credito del Perù for the question which led to this research
 - Antonio Usquiano
 - José Carlos Sanchez
 - Elisabeth Tong
- (Anonymous) Bank which supplied test data
- Ross Gayler for persistently advocating continuous predictors

APPENDIX: THE STATISTICAL STUFF

- Actual = Expected for discrete and continuous predictors
- Weighting on Marginal KS

Actual = Expected Equations ... equivalent to Maximum Likelihood

Problem: estimate scorecard β from sample of Goods (G) and Bads (B)

For case *i*:
$$\Pr_{\beta}(i \in G) = \frac{e^{x_i'\beta}}{1 + e^{x_i'\beta}}$$
 $\Pr_{\beta}(i \in B) = \frac{1}{1 + e^{x_i'\beta}}$

Likelihood Function:
$$L(\beta) = \prod_{i \in G} \frac{e^{x_i'\beta}}{1 + e^{x_i'\beta}} \times \prod_{i \in B} \frac{1}{1 + e^{x_i'\beta}}$$

$$ln L(\beta) = \sum_{i \in G} x_i' \beta - \sum_{i \in G \cup B} ln(1 + e^{x_i' \beta})$$

Maximise by setting partial derivatives w.r.t. each component j of β to zero:

$$\frac{\partial \operatorname{In} L(\beta)}{\partial \beta_{j}} = \sum_{i \in G} x_{ij} - \sum_{i \in G \cup B} \frac{e^{x_{i}'\beta} x_{ij}}{1 + e^{x_{i}'\beta}} = \sum_{i \in G} x_{ij} - \sum_{i \in G \cup B} x_{ij} \operatorname{Pr}_{\beta} (i \in G) = 0$$

Let $x_{ii} = 1$ if i is in category A_i , $x_{ij} = 0$ otherwise:

$$||A_{j} \cap G|| = \sum_{i \in A} \Pr_{\beta}(i \in G)$$

Actual Goods = Expected Goods

Actual = Expected Continuous Variables

$$\sum_{i \in G} x_{ij} = \sum_{i} \frac{e^{\mathbf{x}_{i}'^{\beta}} X_{ij}}{1 + e^{\mathbf{x}_{i}'^{\beta}}} \text{ for a continuous } \mathbf{x}_{\square j}$$
or
$$\sum_{i \in G} x_{ij} = \sum_{i} \Pr_{\beta} (i \in G) x_{ij}$$

Divide both sides by total number of "goods", ||G||

$$Avg_{G}(x_{\square j}) = 1/\sum_{i} Pr_{\beta}(i \in G) x_{ij}$$

Because of the intercept term

$$\|G\| = \sum_{i} \mathsf{Pr}_{\beta} (i \in G)$$

so
$$Avg_G(x_{\square j}) = \frac{\sum_{i} Pr_{\beta}(i \in G)x_{ij}}{\sum_{i} Pr_{\beta}(i \in G)}$$

or
$$Avg_G(x_{\square i}) = Avg_{EG}(x_{\square i})$$

where EG is the set of "expected goods"

Average over Actuals = Average over Expecteds

How to Weight Marginal KS

Notation: $x_{ii} \sim value$ of predictor for predictor variable i, sample point j) $p_{ik} \sim value$ estimated probability of "bad" (sample point j, model k)

KS, ~ Kolmogorov Smirnov statistic for predictor i

MKS_{ik} ~ Marginal Kolmogorov Smirnov statistic for predictor i, model k

 $\mathbf{1}_{G_j}, \mathbf{1}_{B_j} \sim \text{Indicator variables for sample point j in "Goods" or "Bads"}$ $N_G, N_B \sim \text{Total sample size of "Goods" and "Bads"}$

$$KS_{i} = \max_{r} \left| \sum_{j:x_{ij} \leq r} \left(\frac{1_{Bj}}{N_{B}} - \frac{1_{Gj}}{N_{G}} \right) \right| \qquad MKS_{ik} = \max_{r} \left| \sum_{j:x_{ij} \leq r} \left(1_{Bj} - \rho_{jk} \right) \right| \times C \quad \text{for some constant } C$$

Consider MKS₁₀, the Marginal KS w.r.t. "null" model where everyone gets same probabilities: $p_{j0} = p_0 = N_B / (N_G + N_B)$ $1 - p_0 = N_G / (N_G + N_B)$

$$\begin{aligned} MKS_{i0} = \max_{r} \left| \sum_{j: x_{ij} \leq r} \left(\mathbf{1}_{Bj} - p_{0} \right) \right| \times C &= \max_{r} \left| \sum_{j: x_{ij} \leq r} \left(\mathbf{1}_{Bj} - p_{0} \left(\mathbf{1}_{Gj} + \mathbf{1}_{Bj} \right) \right) \right| \times C &= \max_{r} \left| \sum_{j: x_{ij} \leq r} \left(\mathbf{1}_{Bj} \left(\mathbf{1} - p_{0} \right) - \mathbf{1}_{Gj} p_{0} \right) \right| \times C &= \max_{r} \left| \sum_{j: x_{ij} \leq r} \mathbf{1}_{Bj} \left(\mathbf{1} - p_{0} \right) - \sum_{j: x_{ij} \leq r} \mathbf{1}_{Bj} \left(\mathbf{1} - p_{0} \right) - \sum_{j: x_{ij} \leq r} \mathbf{1}_{Bj} \left(\mathbf{1} - p_{0} \right) - \sum_{j: x_{ij} \leq r} \mathbf{1}_{Bj} \left(\mathbf{1} - p_{0} \right) - \sum_{j: x_{ij} \leq r} \mathbf{1}_{Bj} \left(\mathbf{1} - p_{0} \right) - \sum_{j: x_{ij} \leq r} \mathbf{1}_{Bj} \left(\mathbf{1} - p_{0} \right) - \sum_{j: x_{ij} \leq r} \mathbf{1}_{Bj} \left(\mathbf{1} - p_{0} \right) - \sum_{j: x_{ij} \leq r} \mathbf{1}_{Bj} \left(\mathbf{1} - p_{0} \right) - \sum_{j: x_{ij} \leq r} \mathbf{1}_{Bj} \left(\mathbf{1} - p_{0} \right) - \sum_{j: x_{ij} \leq r} \mathbf{1}_{Bj} \left(\mathbf{1} - p_{0} \right) - \sum_{j: x_{ij} \leq r} \mathbf{1}_{Bj} \left(\mathbf{1} - p_{0} \right) - \sum_{j: x_{ij} \leq r} \mathbf{1}_{Bj} \left(\mathbf{1} - p_{0} \right) - \sum_{j: x_{ij} \leq r} \mathbf{1}_{Bj} \left(\mathbf{1} - p_{0} \right) - \sum_{j: x_{ij} \leq r} \mathbf{1}_{Bj} \left(\mathbf{1} - p_{0} \right) - \sum_{j: x_{ij} \leq r} \mathbf{1}_{Bj} \left(\mathbf{1} - p_{0} \right) - \sum_{j: x_{ij} \leq r} \mathbf{1}_{Bj} \left(\mathbf{1} - p_{0} \right) - \sum_{j: x_{ij} \leq r} \mathbf{1}_{Bj} \left(\mathbf{1} - p_{0} \right) - \sum_{j: x_{ij} \leq r} \mathbf{1}_{Bj} \left(\mathbf{1} - p_{0} \right) - \sum_{j: x_{ij} \leq r} \mathbf{1}_{Bj} \left(\mathbf{1} - p_{0} \right) - \sum_{j: x_{ij} \leq r} \mathbf{1}_{Bj} \left(\mathbf{1} - p_{0} \right) - \sum_{j: x_{ij} \leq r} \mathbf{1}_{Bj} \left(\mathbf{1} - p_{0} \right) - \sum_{j: x_{ij} \leq r} \mathbf{1}_{Bj} \left(\mathbf{1} - p_{0} \right) - \sum_{j: x_{ij} \leq r} \mathbf{1}_{Bj} \left(\mathbf{1} - p_{0} \right) - \sum_{j: x_{ij} \leq r} \mathbf{1}_{Bj} \left(\mathbf{1} - p_{0} \right) - \sum_{j: x_{ij} \leq r} \mathbf{1}_{Bj} \left(\mathbf{1} - p_{0} \right) - \sum_{j: x_{ij} \leq r} \mathbf{1}_{Bj} \left(\mathbf{1} - p_{0} \right) - \sum_{j: x_{ij} \leq r} \mathbf{1}_{Bj} \left(\mathbf{1} - p_{0} \right) - \sum_{j: x_{ij} \leq r} \mathbf{1}_{Bj} \left(\mathbf{1} - p_{0} \right) - \sum_{j: x_{ij} \leq r} \mathbf{1}_{Bj} \left(\mathbf{1} - p_{0} \right) - \sum_{j: x_{ij} \leq r} \mathbf{1}_{Bj} \left(\mathbf{1} - p_{0} \right) - \sum_{j: x_{ij} \leq r} \mathbf{1}_{Bj} \left(\mathbf{1} - p_{0} \right) - \sum_{j: x_{ij} \leq r} \mathbf{1}_{Bj} \left(\mathbf{1} - p_{0} \right) - \sum_{j: x_{ij} \leq r} \mathbf{1}_{Bj} \left(\mathbf{1} - p_{0} \right) - \sum_{j: x_{ij} \leq r} \mathbf{1}_{Bj} \left(\mathbf{1} - p_{0} \right) - \sum_{j: x_{ij} \leq r} \mathbf{1}_{Bj} \left(\mathbf{1} - p_{0} \right) - \sum_{j: x_{ij} \leq r} \mathbf{1}_{Bj} \left(\mathbf{1} - p_{0} \right) - \sum_{j: x_{ij} \leq r}$$

This reduces to KS_i iff: $C = \frac{N_G + N_B}{N_G N_B} = \frac{1}{N_G} + \frac{1}{N_B}$

Marginal KS Statistic:
$$MKS_{ik} = \left(\frac{1}{N_G} + \frac{1}{N_B}\right) \max_{r} \left| \sum_{j: x_{ij} \le r} \left(1_{Bj} - p_{kj}\right) \right|$$

References

- R.A. FISHER (1922) "On the Mathematical Foundations of Theoretical Statistics" (Philosophical Transactions of the Royal Society, A, 222: pp. 309-368)
- Gerard SCALLAN (2009) "Marginal Chi² Analysis: Beyond Goodness of Fit for Logistic Regression Models" (http://www.scoreplus.com/ref/001.pdf)
- W. J KRZANOWSKI and D.J. HAND (2011) "Testing the difference between two Kolmogorov-Smirnov values in the context of Receiver Operating Characteristic curves" (Journal of Applied Statistics, 38, pp. 437-450)

