

## High side driver

### Features

| Type    | $R_{DS(on)}$ | $I_{out}$ | $V_{CC}$ |
|---------|--------------|-----------|----------|
| VN751PT | 60 mΩ        | 2.5 A     | 36 V     |



- CMOS compatible input
- Thermal shutdown
- Shorted load protection
- Undervoltage and overvoltage shutdown
- Protection against loss of ground
- Very low standby current
- Compliance to 61000-4-4 IEC test up to 4 kV
- Open drain status output

### Description

The VN751PT is a monolithic device designed in STMicroelectronics VIPower M0-3 technology, intended for driving any kind of load with one side connected to ground. Active  $V_{CC}$  pin voltage clamp protects the device against low energy spikes. Active current limitation combined with thermal shutdown and automatic restart protect the device against overload. Device automatically turns off in case of ground pin disconnection. This device is especially suitable for industrial applications in conformity with IEC 61131-2 programmable controllers international standard.

**Figure 1. Block diagram**



## Contents

|    |                                    |    |
|----|------------------------------------|----|
| 1  | <b>Maximum ratings</b>             | 3  |
| 2  | <b>Pin connections</b>             | 4  |
| 3  | <b>Electrical characteristics</b>  | 5  |
| 4  | <b>Waveforms and truth table</b>   | 7  |
| 5  | <b>Test circuit</b>                | 9  |
| 6  | <b>Application schematic</b>       | 10 |
| 7  | <b>Reverse polarity protection</b> | 11 |
| 8  | <b>Package mechanical data</b>     | 12 |
| 9  | <b>Order code</b>                  | 15 |
| 10 | <b>Revision history</b>            | 16 |

# 1 Maximum ratings

**Table 1. Absolute maximum rating**

| Symbol      | Parameter                                                                    | Value              | Unit             |
|-------------|------------------------------------------------------------------------------|--------------------|------------------|
| $V_{CC}$    | DC supply voltage (overvoltage protected)                                    | 45                 | V                |
| - $V_{CC}$  | Reverse DC supply voltage                                                    | -0.3               | V                |
| - $I_{GND}$ | DC reverse ground pin current                                                | -200               | mA               |
| $I_{OUT}$   | DC output current                                                            | Internally limited | A                |
| - $I_{OUT}$ | Reverse DC output current                                                    | -5                 | A                |
| $I_{IN}$    | DC input current                                                             | +/- 10             | mA               |
| $I_{STAT}$  | DC status current                                                            | +/- 10             | mA               |
| $V_{ESD}$   | Electrostatic discharge ( $R = 1.5 \text{ k}\Omega$ ; $C = 100 \text{ pF}$ ) | 5000               | V                |
| $P_{tot}$   | Power dissipation $T_C = 25 \text{ }^\circ\text{C}$                          | Internally limited | W                |
| $T_J$       | Junction operating temperature                                               | Internally limited | $^\circ\text{C}$ |
| $T_c$       | Case operating temperature                                                   | - 40 to 150        | $^\circ\text{C}$ |
| $T_{stg}$   | Storage temperature                                                          | - 55 to 150        | $^\circ\text{C}$ |
| $E_{AS}$    | Single-pulse avalanche energy                                                | 0.8                | J                |

**Table 2. Thermal data**

| Symbol     | Parameter                               | Value             | Unit                      |
|------------|-----------------------------------------|-------------------|---------------------------|
| $R_{thJA}$ | Thermal resistance junction-ambient Max | 50 <sup>(1)</sup> | $^\circ\text{C}/\text{W}$ |
| $R_{thJC}$ | Thermal resistance junction-case Max    | 3                 | $^\circ\text{C}/\text{W}$ |

1. When mounted on a FR-4 printed circuit board with  $0.5 \text{ cm}^2$  of Cu (at least  $35\mu\text{m}$  thick) connected to all  $V_{CC}$  pins.

## 2 Pin connections

Figure 2. Connection diagram (top view)



Figure 3. Current and voltage conventions



### 3 Electrical characteristics

$8 \text{ V} < V_{CC} < 36 \text{ V}$ ;  $-40^\circ\text{C} < T_J < 125^\circ\text{C}$ , unless otherwise specified

**Table 3. Power**

| Symbol       | Parameter                | Test conditions                                                                                                                                                            | Min | Typ       | Max       | Unit                                        |
|--------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|-----------|---------------------------------------------|
| $V_{CC}$     | Operating supply voltage |                                                                                                                                                                            | 5.5 |           | 36        | V                                           |
| $V_{USD}$    | Undervoltage shut-down   |                                                                                                                                                                            | 3   | 4         | 5.5       | V                                           |
| $V_{OV}$     | Overvoltage shut-down    |                                                                                                                                                                            | 36  |           |           | V                                           |
| $R_{ON}$     | On state resistance      | $I_{OUT} = 2 \text{ A}; T_J = 25^\circ\text{C}$<br>$I_{OUT} = 2 \text{ A}$                                                                                                 |     | 60        | 180       | $\text{m}\Omega$<br>$\text{m}\Omega$        |
| $I_S$        | Supply current           | Off state; $V_{CC} = 24 \text{ V}$ ; $T_{CASE} = 25^\circ\text{C}$<br>On state; $V_{CC} = 24 \text{ V}$<br>On state; $V_{CC} = 24 \text{ V}; T_{CASE} = 100^\circ\text{C}$ |     | 10<br>1.5 | 20<br>1.8 | $\mu\text{A}$<br>$\text{mA}$<br>$\text{mA}$ |
| $I_{L(off)}$ | Off state output current | $V_{IN} = V_{OUT} = 0 \text{ V}$                                                                                                                                           | 0   |           | 10        | $\mu\text{A}$                               |

**Table 4. Switching ( $V_{CC} = 24 \text{ V}$ )**

| Symbol                | Parameter               | Test conditions                                                                | Min | Typ  | Max | Unit                   |
|-----------------------|-------------------------|--------------------------------------------------------------------------------|-----|------|-----|------------------------|
| $t_{d(on)}$           | Turn-on delay time      | $R_L = 12 \Omega$ from $V_{IN}$ rising edge to $V_{OUT} = 2.4 \text{ V}$       |     | 12   |     | $\mu\text{s}$          |
| $t_{d(off)}$          | Turn-off delay time     | $R_L = 12 \Omega$ from $V_{IN}$ falling edge to $V_{OUT} = 21.6 \text{ V}$     |     | 35   |     | $\mu\text{s}$          |
| $dV_{OUT}/dt_{(on)}$  | Turn -on voltage slope  | $R_L = 12 \Omega$ from $V_{OUT} = 2.4 \text{ V}$ to $V_{OUT} = 19.2 \text{ V}$ |     | 0.80 |     | $\text{V}/\mu\text{s}$ |
| $dV_{OUT}/dt_{(off)}$ | Turn -off voltage slope | $R_L = 12 \Omega$ from $V_{OUT} = 21.6 \text{ V}$ to $V_{OUT} = 2.4 \text{ V}$ |     | 0.30 |     | $\text{V}/\mu\text{s}$ |

**Table 5. Input pin**

| Symbol     | Parameter                | Test conditions                                     | Min  | Typ         | Max  | Unit          |
|------------|--------------------------|-----------------------------------------------------|------|-------------|------|---------------|
| $V_{IL}$   | Input low level          |                                                     |      |             | 1.25 | V             |
| $I_{IL}$   | Low level input current  | $V_{IN} = 1.25 \text{ V}$                           | 1    |             |      | $\mu\text{A}$ |
| $V_{IH}$   | Input high level         |                                                     | 3.25 |             |      | V             |
| $I_{IH}$   | High level input current | $V_{IN} = 3.25 \text{ V}$                           |      |             | 10   | $\mu\text{A}$ |
| $V_{hyst}$ | Input hysteresis voltage |                                                     | 0.5  |             |      | V             |
| $I_{IN}$   | Input current            | $V_{IN} = V_{CC} = 5 \text{ V}$                     |      |             | 10   | $\mu\text{A}$ |
| $V_{ICL}$  | Input clamp voltage      | $I_{IN} = 1 \text{ mA}$<br>$I_{IN} = -1 \text{ mA}$ | 6    | 6.8<br>-0.7 | 8    | V<br>V        |

**Table 6. Status pin**

| Symbol      | Parameter                    | Test conditions                                          | Min | Typ         | Max | Unit          |
|-------------|------------------------------|----------------------------------------------------------|-----|-------------|-----|---------------|
| $V_{STAT}$  | Status low output voltage    | $I_{STAT} = 1.6 \text{ mA}$                              |     |             | 0.5 | V             |
| $I_{LSTAT}$ | Status leakage current       | Normal operation; $V_{STAT} = 5 \text{ V}$               |     |             | 10  | $\mu\text{A}$ |
| $C_{STAT}$  | Status pin input capacitance | Normal operation; $V_{STAT} = 5 \text{ V}$               |     |             | 100 | pF            |
| $V_{SCL}$   | Status clamp voltage         | $I_{STAT} = 1 \text{ mA};$<br>$I_{STAT} = -1 \text{ mA}$ | 6   | 6.8<br>-0.7 | 8   | V<br>V        |

**Table 7. Protections**

| Symbol      | Parameter                     | Test conditions                                                                 | Min             | Typ             | Max             | Unit |
|-------------|-------------------------------|---------------------------------------------------------------------------------|-----------------|-----------------|-----------------|------|
| $T_{TSD}$   | Shut-down temperature         |                                                                                 | 150             | 175             | 200             | °C   |
| $T_R$       | Reset temperature             |                                                                                 | 135             |                 |                 | °C   |
| $T_{hyst}$  | Thermal hysteresis            |                                                                                 | 7               | 20              |                 | °C   |
| $I_{lim}$   | Current limitation            | $V_{CC} = 24 \text{ V}, R_{LOAD} = 10 \text{ m}\Omega,$<br>$t = 0.4 \text{ ms}$ | 2.7             |                 | 6.0             | A    |
| $V_{demag}$ | Turn-off output clamp voltage | $R_L = 12 \Omega; L = 6 \text{ mH}$                                             | $V_{CC^-} = 47$ | $V_{CC^-} = 52$ | $V_{CC^-} = 57$ | V    |

## 4 Waveforms and truth table

**Figure 4. Switching time waveforms**



**Table 8. Truth table**

| Conditions         | Input | Output | Status                                 |
|--------------------|-------|--------|----------------------------------------|
| Normal operation   | L     | L      | H                                      |
|                    | H     | H      | H                                      |
| Current limitation | L     | L      | H                                      |
|                    | H     | X      | (T <sub>J</sub> < T <sub>TSD</sub> ) H |
|                    | H     | X      | (T <sub>J</sub> > T <sub>TSD</sub> ) L |
| Overtemperature    | L     | L      | H                                      |
|                    | H     | L      | L                                      |
| Undervoltage       | L     | L      | X                                      |
|                    | H     | L      | X                                      |
| Overvoltage        | L     | L      | H                                      |
|                    | H     | L      | H                                      |

**Figure 5. Waveforms**

## 5 Test circuit

Figure 6. Peak short circuit current test circuit



Figure 7. Avalanche energy test circuit



## 6 Application schematic

**Figure 8. Application schematic**



## 7 Reverse polarity protection

A schematic solution to protect the IC against a reverse polarity condition is proposed.

This schematic is effective with any type of load connected to the outputs of the IC.

The RGND resistor value can be selected according to the following conditions to be met:

$$R_{GND} \leq 600 \text{ mV} / (I_S \text{ in ON state max})$$

$$R_{GND} \geq (-V_{CC}) / (-I_{GND})$$

where  $-I_{GND}$  is the DC reverse ground pin current and can be found in the absolute maximum rating section of the device datasheet.

The power dissipation associated to  $R_{GND}$  during reverse polarity condition is:

$$PD = (-V_{CC})^2 / R_{GND}$$

This resistor can be shared by several different ICs. In such case  $I_S$  value on formula (1) is the sum of the maximum ON-state currents of the different devices.

Please note that if the microprocessor ground and the device ground are separated then the voltage drop across the  $R_{GND}$  (given by  $I_S$  in ON state max \*  $R_{GND}$ ) produce a difference between the generated input level and the IC input signal level. This voltage drop will vary depending on how many devices are ON in the case of several high side switches sharing the same  $R_{GND}$ .

**Figure 9. Reverse polarity protection**



## 8 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: [www.st.com](http://www.st.com).  
ECOPACK is an ST trademark.

**Table 9. PPAK mechanical data**

| Dim.           | Min     | Typ  | Max   |
|----------------|---------|------|-------|
| A              | 2.20    |      | 2.40  |
| A1             | 0.90    |      | 1.10  |
| A2             | 0.03    |      | 0.23  |
| B              | 0.40    |      | 0.60  |
| B2             | 5.20    |      | 5.40  |
| C              | 0.45    |      | 0.60  |
| C2             | 0.48    |      | 0.60  |
| D1             |         | 5.1  |       |
| D              | 6.00    |      | 6.20  |
| E              | 6.40    |      | 6.60  |
| E1             |         | 4.7  |       |
| e              |         | 1.27 |       |
| G              | 4.90    |      | 5.25  |
| G1             | 2.38    |      | 2.70  |
| H              | 9.35    |      | 10.10 |
| L2             |         | 0.8  | 1.00  |
| L4             | 0.60    |      | 1.00  |
| R              |         | 0.2  |       |
| V2             | 0°      |      | 8°    |
| Package weight | Gr. 0.3 |      |       |

**Figure 10. Package dimensions**

## 9 Order code

**Table 10. Order codes**

| Order codes | Package | Packaging     |
|-------------|---------|---------------|
| VN751PT     | PPAK    | Tube          |
| VN751PTTR   |         | Tape and reel |

## 10 Revision history

**Table 11. Document revision history**

| Date        | Revision | Changes                                                                                       |
|-------------|----------|-----------------------------------------------------------------------------------------------|
| 07-Mar-2006 | 1        | Initial release                                                                               |
| 31-Mar-2006 | 2        | Added $V_{SCL}$                                                                               |
| 10-Jul-2006 | 3        | Updated $V_{CC}$ value <a href="#">Table 1</a> , $I_{lim}$ min value <a href="#">Table 7</a>  |
| 12-Mar-2007 | 4        | Typo in <a href="#">Table 4 on page 5</a> , updated $P_{tot}$ value <a href="#">Table 1</a> . |
| 15-May-2007 | 5        | Typo in <a href="#">Table 1 on page 3</a> , $V_{ESD}$                                         |
| 18-Sep-2007 | 6        | Added $I_{STAT}$ value in <a href="#">Table 1 on page 3</a>                                   |
| 08-Jul-2008 | 7        | Added <a href="#">Section 7 on page 11</a>                                                    |
| 30-Nov-2009 | 8        | Updated coverage and <a href="#">Chapter 6 on page 10</a>                                     |

**Please Read Carefully:**

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

**UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.**

**UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.**

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2009 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

[www.st.com](http://www.st.com)

