Game of Maximization

There are n piles of stones, where the i^{th} pile has a_i stones. You need to collect the maximum number of stones from these piles, but you must fulfill the following condition:

Let's say you pick $x_i (1 \leq i \leq n)$ stones from the i^{th} pile, then

- $x_1 + x_3 + x_5 + \cdots = x_2 + x_4 + x_6 + \cdots$
- $0 \leq x_i \leq a_i$

For example, if n=3 and a=[2,3,2], you can pick the stones as x=[1,2,1] becuase $x_1+x_3=1+1=2$ and $x_2=2$

Find the maximum total number of stones you can pick.

Input Format

The first line of input contains a single integer n denoting the number of piles.

The second line of input contains n space separated integers a_i , where the i^{th} integer denoted the number of stones in i^{th} pile.

Constraints

- $2 \le n \le 10^5$
- $1 \leq a_i \leq 10^3$

Output Format

Print a single integer denoting the maximum total number of stones you can pick.

Sample Input 0

4 5 1 1 4

Sample Output 0

10

Explanation 0

Let x = [4, 1, 1, 4]. hence $x_1 + x_3 = x_2 + x_4$ and total number of stones picked is 10. It can be checked that its not possible to pick any greater number of stones.

Sample Input 1

3 2 1 2

Sample Output 1

2

Explanation 1

Let x=[0,1,1]. Hence $x_1+x_3=x_2$, and the total number of stones picked is 2.