Autocontrol

Escuela Rafael Díaz Serdán

Matemáticas 1

J. C. Melchor Pinto

1° de Secundaria 2022-2023

> Guía 31

Variación proporcional con gráficas

Aprendizajes

Analiza y compara situaciones de variación lineal a partir de sus representaciones tabular, gráfica y algebraica. Interpreta y resuelve problemas que se modelan con estos tipos de variación.

Puntuoción

1 dileddioir							
Pregunta	1	2	3	4	5	6	Total
Puntos	10	10	10	10	10	10	60
Obtenidos							

Vocabulario

 $\mathbf{Constante} \to \mathbf{cantidad}$ numérica cuyo valor no cambia.

 $\mathbf{Dinam\acute{o}metro} o \mathbf{Instrumento}$ para medir fuerzas.

Proporcional \rightarrow dependencia constante entre dos variables.

 $\mathbf{Raz\acute{o}n} \to \mathrm{medida}$ comparativa usando la división entre dos cantidades.

 $\mathbf{Relaci\'{o}n}$ funcional o cuando una cantidad depende o se relaciona con otra proporcionalmente.

 $Variable \rightarrow cantidad numérica cuyo valor cambia.$

Variable dependiente \rightarrow cantidad numérica cuyo valor depende de otra variable.

Variable independiente \rightarrow cantidad numérica cuyo valor no depende de ninguna otra variable.

Gráfica de una variación lineal

Una compañía de pizzas vende la pizza pequeña en \$30 pesos. Cada ingrediente cuesta \$8 pesos. Sabemos que el costo de una pizza con 0 ingredientes es de \$30 pesos; una pizza con 1 ingrediente cuesta \$8 pesos más, es decir, \$38 pesos, y así sucesivamente. A continuación mostramos una tabla que exhibe este hecho:

Tabla 1: Costo de una pizza pequeña según la cantidad de ingredientes

Ingredientes	Costo	Coordenada
0	\$30	(0, 30)
1	\$38	(1, 38)
2	\$46	(2,46)
3	\$54	(3, 54)
4	\$62	(4,62)

Podemos utilizar estos pares ordenados para crear la gráfica de la Figura 1.

Figura 1

Ejercicio 1 10 puntos

Una tienda de helados vende 2 bolas de helado por \$5 dólares. Cada bola adicional cuesta \$1 dolar.

10 Completa la Tabla 2 para representar la relación.

Tabla 2: Costo de un helado según la cantidad de bolas.

Bolas de helado	Costo	Coordenada
2	\$5	(2,5)
3	\$6	(3,6)
4	\$7	(4,7)
5	\$8	(5,8)
6	\$9	(6,9)
4	\$7	(7, 10)
5	\$8	(8, 11)
6	\$9	(9, 12)

1b Con ayuda de los pares ordenados de la Tabla 2, grafica los datos en el plano cartesiano de la Figura 2.

Figura 2

Ejercicio 2 10 puntos

La Tabla 3 muestra la distancia que un automóvil recorre en el tiempo indicado.

Tabla 3: Datos sobre el recorrido de un automóvil

Distancia (km)	20	60	80	100
Tiempo (h)	$\frac{1}{2}$	$1\frac{1}{2}$	2	$2\frac{1}{2}$

20 Grafica en el plano cartesiano de la Figura 3 los puntos que indican los datos de la Tabla 3 y únelos con una línea.

Figura 3: Gráfica del recorrido de un automóvil.

2b ¿La relación entre las variables corresponde a una relación de variación proporcional? ¿Por qué?

Solución:

Sí es proporcional, ya que la razón de distancia recorrida entre tiempo es constante.

2c Si el automóvil pasa por el kilómetro cero y se mueve siempre con la misma velocidad, ¿qué distancia recorrerá en 4 horas?

Solución:

160 km.

- 2d Dibuja en color azul en el plano cartesiano de la Figura 3 la gráfica que corresponda al movimiento de otro automóvil que cada hora recorre 20 km más que el primero y que inicia el recorrido al mismo tiempo.
 - I. ¿La relación entre la distancia que recorre el segundo automóvil y el tiempo es de variación proporcional? ¿Por qué?

Solución:

Si, ya que la variación entre la diastancia y el tiempo es constante.

II. ¿Los dos automóviles coinciden en algún momento? Si es así, ¿en qué momento sucede?

Solución:

No, los automóviles no coinciden en ningún momento.

III. Si sólo conocieras las gráficas de ambos automóviles, ¿podrías determinar cuál es el más rápido? ¿Por qué?

Solución:

Sí, por la inclinación de la recta.

Una situación en la que la relación entre las variables involucradas es una variación proporcional tiene asociada la gráfica de una **línea recta**.

Ejercicio 3 10 puntos

Completa la Tabla 4 que muestra cómo cambia el perímetro de un cuadro al variar la longitud de su lado.

Tabla 4: Datos sobre la medida de los lados en un cuadrado con respecto al perímetro.

Lado (cm)	0.5	1	2	$\frac{5}{2}$
Perímetro (cm)	2	4	8	10

3a ¿Cuál es el valor de la constante de proporcionalidad?

Solución:

3b ¿Cuánto mide el lado de un cuadrado cuyo perímetro es cero?

Solución:

3c ¿Cómo es el perímetro de un cuadrado que por lado mide 4 cm con respecto a otro cuadrado cuya longitud por lado es de 2 cm?

Solución:

Es el doble.

3d ¿Cómo se relaciona el perímetro de un cuadrado que por lado mide 4 cm con otro que mide 12 cm por lado?

Solución:

Es la tercera parte.

3e ¿Cómo es la relación entre el perímetro de un cuadrado y la medida de uno de sus lados?

Solución:

El perímetro de un cuadrado es cuatro veces la medida de una de sus lados.

3f ¿Cuánto mide el lado de un cuadrado cuyo perímetro es de 1 cm?

Solución:

 $0.25 \; \mathrm{cm}.$

39 ¿Cuál de las gráficas representa la relación entre la longitud por lado y el perímetro de un cuadrado?

Figura 4

3h La gráfica que representa cómo cambia el perímetro con respecto a la longitud de su lado es creciente. ¿Por qué creen que recibe ese nombre?

Solución:

Porque a cada aumento en la longitud del lado del cuadrado le co- rresponde un aumento en la longitud de su perímetro.

Ejercicio 4

10 puntos

Las gráficas indican la tarifa de internet de dos compañías telefónicas.

Tarifa de internet de Telesound 10 9 8 7 Costo (pesos) 2 1 0 3 4 5 6 Datos (MB) 2 7 8 9 10 1 6

Figura 5

40 ¿Cuál de las dos compañías tiene una tarifa inicial 4c ¿En cuál de las dos compañías la relación entre el de 3 pesos por los primeros 3 MB?

costo y la cantidad de datos es una variación proporcional?

Solución:

Comunica.

Solución:

Telesound.

4b ¿Cuál de las dos compañías ofrece la tarifa más alta después de los 3 MB?

4d ¿Qué características de la gráfica representa una variación proporcional entre el costo y la cantidad de datos?

Solución:

Telesound.

Solución:

La gráfica es una recta que pasa por el origen del plano.

Ejercicio 5 10 puntos

Al colocar a un resorte distintos pesos su longitud aumenta; así es como funciona un dinamómetro. Llamemos alargamiento a la distancia que aumenta la longitud del resorte al colocarle un peso; este comportamiento del resorte se conoce como la ley de Hooke.

Ubica en el plano cartesiano de la Figura 5 los puntos (0,6), $(\frac{1}{2},7)$, (1,8) y (2,10) que indican el peso que se colocó al resorte y su longitud total.

Figura 6: Plano cartesiano

5b Une los puntos en la gráfica. ¿Qué tipo de línea trazaron?

Solución:

Es una línea recta

5c ¿En qué punto interseca esa línea el eje vertical?

Solución:

En el punto (0, 6).

5d ¿Cómo aumenta la longitud del resorte al aumentar el peso?

Solución:

Aumenta $2~\mathrm{cm}$ por cada kilogramo de peso que se agrega.

5e ¿La longitud del resorte es proporcional al peso que se le aplica? *Explica tu respuesta*

Solución:

Si, la razón de la longitud del resorte entre el peso que se le coloca es constante.

Ejercicio 6 10 puntos

Completa la Tabla 5 considerando el alargamiento del resorte y el peso que se coloca.

Tabla 5: Datos sobre el alargamiento de un resorte debido al peso sostenido.

Peso (kg)		$\frac{1}{2}$	1	2	3	5
Alargamiento (cm)	0	1	2	4	6	10

- Dibuja en el plano cartesiano de la Figura 7 los puntos que corresponden al alargamiento del resorte y el peso que se le coloca, y únelos con una línea.
- ¿Qué tipo de relación funcional existe entre el alargamiento del resorte y el peso que se coloca?

Solución:

Es una relación de variación proporcional.

6c ¿En qué punto de la gráfica la línea interseca al eje vertical?

Solución:

En el punto (0, 0).

Figura 7: Plano cartesiano

¿En qué se parecen y en qué difieren las dos gráficas de esta actividad?

Solución:

Ambas gráficas son líneas rectas; pero sólo la segunda interseca al eje vertical en el origen.