Formulario

EL-4703 Señales y Sistemas

Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica

Prof.: Dr. Pablo Alvarado Moya

Prof.: M.Sc. José Miguel Barboza Retana

$$\sum_{n=0}^{M} \alpha^{n} = \frac{1-\alpha^{M+1}}{1-\alpha}$$

$$\sum_{n=0}^{\infty} \alpha^{n} = \frac{1}{1-\alpha}, \quad |\alpha| < 1$$

$$\operatorname{sen}(A \pm B) = \operatorname{sen}(A) \operatorname{cos}(B) \pm \operatorname{cos}(A) \operatorname{sen}(B)$$

$$\operatorname{cos}^{2}(A) = \frac{1}{2}(1 + \operatorname{cos}(2A))$$

$$\operatorname{sen}(A) \operatorname{sen}(B) = \frac{1}{2} (\operatorname{cos}(A - B) - \operatorname{cos}(A + B))$$

$$\operatorname{sen}(A) \operatorname{cos}(B) = \frac{1}{2} (\operatorname{sen}(A - B) + \operatorname{sen}(A + B))$$

$$\operatorname{sen}(A) \operatorname{cos}(B) = \frac{1}{2} (\operatorname{sen}(A - B) + \operatorname{sen}(A + B))$$

$$\operatorname{tan}(A) = \operatorname{sen}(A) / \operatorname{cos}(A)$$

$$\operatorname{sen}\left(\frac{A}{2}\right) = \sqrt{\frac{1}{2}(1 - \operatorname{cos}(A))}$$

$$\operatorname{cos}\left(\frac{A}{2}\right) = \sqrt{\frac{1}{2}(1 + \operatorname{cos}(A))}$$

$$\operatorname{cos}\left(\frac{A}{2}\right) = \sqrt{\frac{1}{2}(1 + \operatorname{cos}(A))}$$

$$\operatorname{tan}(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

$$\operatorname{cos}(\omega) = \frac{e^{j\omega} + e^{-j\omega}}{2}$$

$$\operatorname{senh}(\omega) = \frac{e^{j\omega} - e^{-j\omega}}{2}$$

$$\operatorname{cosh}(\omega) = \frac{e^{\omega} + e^{-\omega}}{2}$$

Ley de los senos
$$\frac{a}{\operatorname{sen} A} = \frac{b}{\operatorname{sen} B} = \frac{c}{\operatorname{sen} C}$$

Lev de los cosenos

$$c^2 = a^2 + b^2 - 2ab\cos C$$

Teorema de De Moivre

$$(re^{j\theta})^p = r^p e^{jp\theta} \to (re^{j\theta})^{1/n} = \left[re^{j(\theta + 2k\pi)} \right]^{1/n} = r^{1/n} e^{j(\theta + 2k\pi)/n} ; n, k, p \in \mathbb{Z}, k \in [0, 1, ..., n-1]$$

Logaritmo de un número complejo

$$\operatorname{Ln}(re^{j\theta}) = \operatorname{ln} r + j\theta$$
$$\operatorname{ln}(re^{j\theta}) = \operatorname{Ln}(re^{j\theta}) + j2k\pi$$
$$= \operatorname{ln} r + j(\theta + 2k\pi), \quad k \in \mathbb{Z}$$

Posiciones del círculo unitario |z|=1

Integrales (C es una constante cualquiera)

$$\int f(z) dz = F(z) \quad \Rightarrow \quad F'(z) = f(z)$$

$$\int z^n dz = \frac{z^{n+1}}{n+1} + C; \quad n \neq -1$$

$$\int e^{az} dz = \frac{e^{az}}{a} + C$$

$$\int sen(az) dz = -\frac{\cos(az)}{a} + C$$

$$\int cos(az) dz = \frac{\sin(az)}{a} + C$$

$$\int sen^2(az) dz = \frac{1}{2}z - \frac{1}{4a} sen(2az) + C$$

$$\int cos^2(az) dz = \frac{1}{2}z + \frac{1}{4a} sen(2az) + C$$

$$\int \ln(az) dz = z(\ln az) - z + C$$

$$\int z \cos(az) dz = \frac{1}{2}z + \frac{1}{4a} sen(2az) + C$$

$$\int \frac{1}{z^2 + a^2} dz = \frac{1}{a} arctan\left(\frac{z}{a}\right) + C$$

Descomposición en funciones simétricas

$$f(t) = f_e(t) + f_o(t),$$
 $f_e(t) = f_e(-t),$ $f_o(t) = -f_o(-t)$
 $f_e(t) = \frac{f(t) + f(-t)}{2}$ $f_o(t) = \frac{f(t) - f(-t)}{2}$

Mapeos

$$z = x + jy \longrightarrow w = u + jv$$

Círculo centrado en z_0 y radio r:

 $|z - z_0| = r$ Recta mediatriz al segmento entre a y b: |z - a| = |z - b|

Mapeo lineal:

 $w = \alpha z + \beta$

Mapeo de inversión:

$$w = 1/z$$

Mapeo de rectas: $ z - a = z - b $	Mapeo de círculos: $ z - z_0 = r$
Sea $\beta = a ^2 - b ^2$:	Sea $\alpha = r^2 - z_0 ^2$:
Si $\beta = 0$: $v = \frac{\operatorname{Re}\left\{a - b\right\}}{\operatorname{Im}\left\{a - b\right\}}u$	Si $\alpha = 0 : v = \frac{x_0}{y_0}u - \frac{1}{2y_0}$
Si $\beta \neq 0 : w - w_0 = r_w$ con:	Si $\alpha \neq 0 : w - w_0 = r_w \text{ con: }$
$r_w = \left \frac{a-b}{\beta} \right , w_0 = \frac{(a-b)^*}{\beta}$	$r_w = \left rac{r}{lpha} \right , w_0 = rac{-z_0^*}{lpha}$

Mapeo bilineal:

$$w = \frac{az+b}{cz+d} = \lambda + \frac{\mu}{\alpha z + \beta},$$

$$\lambda = a/c, \ \mu = bc - ad, \ \alpha = c^2, \ \beta = cd$$

$$w = e^z = e^{x+jy} = e^x e^{jy}$$

Mapeo exponencial:

Derivación compleja

Para f(z = x + jy) = u(x, y) + jv(x, y).

Ecuaciones de Cauchy Riemann:

$$\exists f'(z) \Leftrightarrow \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$
$$f'(z) = \frac{\partial u}{\partial x} + j\frac{\partial v}{\partial x} = \frac{\partial v}{\partial y} - j\frac{\partial u}{\partial y}$$

Funciones u(x,y) y v(x,y) conjugadas si cumplen Ec. Cauchy-Riemann.

Función armónica: $\frac{\partial^2 u(x,y)}{\partial x^2} + \frac{\partial^2 u(x,y)}{\partial u^2} = 0$

Mapeo conforme: $\exists f'(z), f'(z) \neq 0$

Series

Radio de convergencia
$$R$$
 y razón de D'Alembert para
$$\sum_{n=0}^{\infty} a_n z^n \colon R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|$$

Serie de Taylor:
$$f(z) = \sum_{n=0}^{\infty} \frac{(z-z_0)^n}{n!} f^{(n)}(z_0)$$

Serie de Laurent:
$$f(z) = \sum_{n=-\infty}^{\infty} c_n (z-z_0)^n$$

Residuo:
$$a_{-1} = \frac{1}{(m-1)!} \lim_{z \to z_0} \left\{ \frac{d^{m-1}}{dz^{m-1}} \left[(z-z_0)^m f(z) \right] \right\}$$

$$e^z = 1 + \frac{z}{1!} + \frac{z^2}{2!} + \dots + \frac{z^n}{n!} + \dots \qquad ; |z|$$

$$e^{z} = 1 + \frac{z}{1!} + \frac{z^{2}}{2!} + \dots + \frac{z^{n}}{n!} + \dots \qquad ; |z| < \infty$$

$$\sin z = z - \frac{z^{3}}{3!} + \frac{z^{5}}{5!} - \dots + (-1)^{n} \frac{z^{2n+1}}{(2n+1)!} + \dots \qquad ; |z| < \infty$$

$$\cos z = 1 - \frac{z^{2}}{2!} + \frac{z^{4}}{2!} - \dots + (-1)^{n} \frac{z^{2n}}{2!} + \dots \qquad ; |z| < \infty$$

$$\cos z = 1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \dots + (-1)^n \frac{z^{2n}}{(2n)!} + \dots \qquad ; |z| < \infty$$

$$\frac{1}{z-a} = \begin{cases} \sum_{n=1}^{\infty} \frac{(a-z_0)^{n-1}}{(z-z_0)^n} & \text{para } |z-z_0| > |a-z_0| \\ -\sum_{n=0}^{\infty} \frac{(z-z_0)^n}{(a-z_0)^{n+1}} & \text{para } |z-z_0| < |a-z_0| \end{cases}$$

Integración compleja

Teorema de la integral de Cauchy:
$$\oint_C f(z) dz = 0$$
 si $\exists f'(z)$ dentro y sobre C .

Fórmula de la integral de Cauchy:
$$\oint_C \frac{f(z)}{(z-z_0)^{n+1}} dz = f^{(n)}(z_0) \frac{2\pi j}{n!}$$

Teorema del residuo:
$$\oint_C f(z) dz = 2\pi i \sum_{i=1}^n a_{-1}^{(i)}$$

Evaluación de integrales reales

Caso 1: Integrales impropias

$$\int_{-\infty}^{\infty} f(x) dx = \oint_{C} f(z) dz \Leftrightarrow \lim_{z \to \infty} z f(z) = 0, \qquad C : \text{trayectoria de integración semicircular}$$

• Caso 2: Integrales de funciones reales trigonométricas

$$\int_0^{2\pi} G(\operatorname{sen}\theta, \cos\theta) \, d\theta = \oint_C f(z) \, dz \qquad \operatorname{con} z = e^{j\theta}, d\theta = \frac{dz}{jz}$$

C: es el círculo unitario |z|=1

$$sen \theta = \frac{1}{2j} \left(z - \frac{1}{z} \right), \quad \cos \theta = \frac{1}{2} \left(z + \frac{1}{z} \right)$$

Series de Fourier

Producto interno:
$$\langle u_k(t), x(t) \rangle = \int_a^b u_k^*(t) x(t) dt$$

Norma:
$$||x(t)||^2 = \langle x(t), x(t) \rangle$$

$$x(t) = \sum_{k=-\infty}^{\infty} c_k u_k(t)$$
 con $\{u_k \mid k \in \mathbb{Z}\}$ una base funcional ortogonal, $c_k \in \mathbb{C}$.

Generalizada:
$$c_k = \frac{\langle u_k(t), x(t) \rangle}{\|u_k(t)\|^2}$$

Fourier exponencial compleja (para funciones periódicas de periodo T_p).

$$x(t) = \sum_{k=-\infty}^{\infty} c_k e^{j\omega_0 kt}$$
 $c_k = \frac{1}{T_p} \int_{t_0}^{t_0 + T_p} e^{-j\omega_0 kt} x(t) dt$

Fourier cosenoidales desfasadas

$$x(t) = c_0 + \sum_{k=1}^{\infty} \tilde{c}_k \cos(\omega_0 kt + \theta_k)$$
 $\tilde{c}_k = 2|c_k|, \ \theta_k = \angle c_k, \ k > 0$

Fourier trigonométrica

$$x(t) = \frac{1}{2}a_0 + \sum_{k=1}^{\infty} a_k \cos(\omega_0 kt) + \sum_{k=1}^{\infty} b_k \sin(\omega_0 kt)$$

$$c_k = \frac{a_k - jb_k}{2}, \qquad a_k = 2\operatorname{Re}\{c_k\}, b_k = -2\operatorname{Im}\{c_k\}$$

$$a_k = \frac{2}{T_p} \int_{t_0}^{t_0 + T_p} x(t) \cos(\omega_0 kt) dt = 2|c_k| \cos(\theta_k)$$

$$b_k = \frac{2}{T_p} \int_{t_0}^{t_0 + T_p} x(t) \sin(\omega_0 kt) dt = -2|c_k| \sin(\theta_k)$$

Propiedades de la Serie de Fourier (periodo $T_p,\,\omega_0=2\pi/T_p)$

Propiedad	Señal en el tiempo	Coeficientes
	x(t)	c_k
	$x_1(t)$	c_{1_k}
	$x_2(t)$	c_{2_k}
Linealidad	$\alpha_1 x_1(t) + \alpha_2 x_2(t)$	$\alpha_1 c_{1_k} + \alpha_2 c_{2_k} $
Simetría par	x(t) = x(-t)	$c_k = \frac{2}{T_p} \int_0^{\frac{T_p}{2}} x(t) \cos(\omega_0 kt) dt$
		$c_k \in \mathbb{R}$
Simetría impar	x(t) = -x(-t)	$c_k = -\frac{2j}{T_p} \int_0^{\frac{T_p}{2}} x(t) \operatorname{sen}(\omega_0 kt) dt$
		$c_k \in j\mathbb{R}$
Función real	$x(t) \in \mathbb{R}$	$c_k = c^*_{-k}$
Desplazamiento temporal	x(t- au)	$e^{-j\omega_0k au}c_k$
Conjugación	$x^*(t)$	c^*_{-k}
Inversión en el tiempo	x(-t)	c_{-k}
Escalamiento en el tiempo	$x(\alpha t), \alpha > 0$	c_k
Convolución periódica	$x(\alpha t), \alpha > 0$ $\int_{T_p} x_1(\tau) x_2(t-\tau) d\tau$	$T_p c_{1_k} c_{2_k}$
Multiplicación	$x_1(t)x_2(t)$	$\sum_{l=-\infty}^{\infty} c_{1_l} c_{2_{k-l}}$
Diferenciación	$\frac{dx(t)}{dt}$	$jk\omega_0c_k$
Integración	$\int_{-\infty}^{t} x(t) dt, c_0 = 0$	$rac{c_k}{jk\omega_0}$
Relación de Parseval	$\int_{-\infty}^{t} x(t) dt, c_0 = 0$ $\frac{1}{T_p} \int_{t_0}^{t_0 + T_p}$	$ x(t) ^2 dt = \sum_{k=-\infty}^{\infty} c_k ^2$

Transformada de Fourier

Transformada directa: $X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t} dt$ Transformada inversa: $x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega)e^{j\omega t} d\omega$

Algunas Transformadas de Fourier

Nombre	Señal en el tiempo	Transformada
Transformación	$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega)e^{j\omega t} d\omega$	$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t} dt$
Impulso unitario	$\delta(t)$	$J-\infty$
Escalon unitario	u(t)	$\frac{1}{i\omega} + \pi\delta(\omega)$
Impulso rectangular	$\frac{1}{\tau}[u(t-t_0) - u(t-t_0-\tau)]$	$\frac{1}{j\omega} + \pi\delta(\omega)$ $e^{-j\omega(t_0 + \frac{\tau}{2})} \operatorname{sa}(\omega\tau/2)$
Exponencial	$e^{-at}u(t)$, $\operatorname{Re}\{a\} > 0$	$\frac{1}{a+j\omega}$
Exponencial por rampa	$e^{-at}tu(t)$, $\operatorname{Re}\{a\} > 0$	$\frac{1}{(a+j\omega)^2}$
Laplaciana	$e^{-a t }, \operatorname{Re}\{a\} > 0$	$\frac{2a}{a^2 + \omega^2}$
Exponencial compleja	$e^{j\omega_0 t}$	$\frac{a^2 + \omega^2}{2\pi\delta(\omega - \omega_0)}$
Constante	c	$2\pi c\delta(\omega)$
Función periódica*	$\sum_{k=0}^{\infty} c_k e^{jk\omega_0 t}$	$\sum^{\infty} 2\pi c_k \delta(\omega - k\omega_0)$
	$k=-\infty$	$c_k = \frac{1}{T} X_T(j\omega_0 k); \ \omega_0 = \frac{2\pi}{T}$
Función muestreada	$\sum_{k=1}^{\infty} x(kT)\delta(t-kT)$	$c_k = \frac{1}{T} X_T(j\omega_0 k); \ \omega_0 = \frac{2\pi}{T}$ $\sum_{k=0}^{\infty} X(j\omega - jk\omega_0); \ \omega_0 = \frac{2\pi}{T}$
Impulso gaussiano	$\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{t}{\sigma}\right)^2}$	$e^{-\frac{1}{2}(\omega\sigma)^2}$
Seno	$\operatorname{sen}(\omega_0 t)$	$\frac{\pi}{j} \left[\delta(\omega - \omega_0) - \delta(\omega + \omega_0) \right]$
Coseno	$\cos(\omega_0 t)$	$\pi \left[\delta(\omega - \omega_0) + \delta(\omega + \omega_0) \right]$

^{*} Para la función periódica x(t) se asume que $X_T(j\omega)$ es la transformada de Fourier de un único periodo de x(t).

Propiedades de la Transformada de Fourier

Propiedad	Señal en el tiempo	Transformada
	x(t)	$X(j\omega)$
	$x_1(t)$	$X_1(j\omega)$
	$x_2(t)$	$X_2(j\omega)$
Linealidad	$\alpha_1 x_1(t) + \alpha_2 x_2(t)$	$\alpha_1 X_1(j\omega) + \alpha_2 X_2(j\omega)$
Simetría par	x(t) = x(-t)	$2\int_{0}^{\infty}x(t)\cos(\omega t)dt$
		$X(j\omega) \in \mathbb{R}$
Simetría impar	x(t) = -x(-t)	$-2j\int_{0}^{\infty}x(t)\operatorname{sen}(\omega t)dt$
		$X(j\omega) \in j\mathbb{R}$
Función real	$x(t) \in \mathbb{R}$	$X(j\omega) = X^*(-j\omega)$
Dualidad	X(jt)	$2\pi x(-\omega)$
Desplazamiento temporal	$ \begin{array}{l} x(t-\tau) \\ e^{j\omega_0 t} x(t) \end{array} $	$e^{-j\omega\tau}X(j\omega)$
Desplazamiento en frecuencia	$e^{j\omega_0 t}x(t)$	$X(j\omega - j\omega_0)$
Modulación	$\cos(\omega_0 t) x(t)$	$\frac{1}{2}X(j\omega - j\omega_0) + \frac{1}{2}X(j\omega + j\omega_0)$
Conjugación	$x^*(t)$	$X^*(-j\omega)$
Inversión en el tiempo	x(-t)	$X(-j\omega)$
Escalamiento en el tiempo	x(at)	$\frac{1}{ a }X\left(\frac{j\omega}{a}\right)$
Convolución	$\int_{-\infty}^{\infty} x_1(\tau) x_2(t-\tau) d\tau$	$X_1(j\omega)X_2(j\omega)$
Multiplicación	$x_1(t)x_2(t)$	$X_1(j\omega)X_2(j\omega)$ $\frac{1}{2\pi}X_1(j\omega)*X_2(j\omega)$
Diferenciación	$\frac{dx(t)}{dt}$	$j\omega X(j\omega)$
	$\frac{d^n x(t)}{dt^n}$	$(j\omega)^n X(j\omega)$
	tx(t)	$j\frac{d}{d\omega}X(j\omega)$
Integración	$\int_{-\infty}^{t} x(t) dt$	$\frac{1}{j\omega}X(j\omega) + \pi X(0)\delta(\omega)$
Relación de Parseval	$\int_{-\infty}^{\infty} x(t) ^2 dt$	$\frac{1}{j\omega}X(j\omega) + \pi X(0)\delta(\omega)$ $= \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) ^2 d\omega$

Transformada de Laplace

Bilateral:
$$X(s) = \int_{-\infty}^{\infty} x(t)e^{-st} dt$$
 Inversa: $x(t) = \frac{1}{2\pi j} \int_{\sigma-j\infty}^{\sigma+j\infty} X(s)e^{st} ds$ Propiedades de la Transformada Bilateral de Laplace

Propiedad	Señal en el tiempo	Transformada	ROC
	x(t)	X(s)	R
	$x_1(t)$	$X_1(s)$	R_1
	$x_2(t)$	$X_2(s)$	R_2
Linealidad	$\alpha_1 x_1(t) + \alpha_2 x_2(t)$	$\alpha_1 X_1(s) + \alpha_2 X_2(s)$	$\geq R_1 \cap R_2$
Función real	$x(t) \in \mathbb{R}$	$X(s) = X^*(s^*)$	R
Desplazamiento temporal	x(t- au)	$e^{-s\tau}X(s)$	R
Desplazamiento en s	$e^{s_0 t} x(t)$	$X(s-s_0)$	$R + s_0$
Conjugación	$x^*(t)$	$X^*(s^*)$	R
Inversión en el tiempo	x(-t)	X(-s)	-R
Escalamiento en el tiempo	x(at)	$\frac{1}{ a }X\left(\frac{s}{a}\right)$	R/a
Convolución	$x_1(t) * x_2(t)$	$X_1(s)X_2(s)$	$\geq R_1 \cap R_2$
Diferenciación	$\frac{dx(t)}{dt}$	sX(s)	$\geq R$
	$\frac{d^n x(t)}{dt^n}$	$s^n X(s)$	$\geq R$
	-tx(t)	$\frac{d}{ds}X(s)$	R
Integración	$\int_{-\infty}^{t} x(\tau) d\tau$	$\frac{1}{s}X(s)$	$\geq R \cap \{\sigma > 0\}$

Transformadas Bilaterales de Laplace de funciones elementales

Señal	Transformada	ROC	Señal	Transformada	ROC
$\delta(t)$	1	todo s	u(t)	$\frac{1}{s}$	$\sigma > 0$
-u(-t)	$\frac{1}{s}$	$\sigma < 0$	$\frac{t^{n-1}}{(n-1)!}u(t)$	$\frac{1}{s^n}$	$\sigma > 0$
$-\frac{t^{n-1}}{(n-1)!}u(-t)$	$\frac{1}{s^n}$	$\sigma < 0$	$e^{at}u(t)$	$\frac{1}{s-a}$	$\sigma > a$
$-e^{at}u(-t)$	$\frac{1}{s-a}$	$\sigma < a$	$\frac{t^{n-1}}{(n-1)!}u(t)$ $e^{at}u(t)$ $\frac{t^{n-1}}{(n-1)!}e^{at}u(t)$ $\delta(t-\tau)$ $[\sec(\omega_0 t)]u(t)$ $[e^{at} \sec(\omega_0 t)]u(t)$	$\frac{1}{(s-a)^n}$	$\sigma > a$
$-\frac{t^{n-1}}{(n-1)!}e^{at}u(-t)$	$\frac{1}{(s-a)^n}$ $\frac{s}{s^2 + \omega_0^2}$	$\sigma < a$	$\delta(t- au)$	$e^{-s\tau}$	todo s
$[\cos(\omega_0 t)]u(t)$	$\frac{s}{s^2 + \omega_0^2}$	$\sigma > 0$	$\left[\operatorname{sen}(\omega_0 t)\right] u(t)$	$\frac{\omega_0}{s^2 + \omega_0^2}$	$\sigma > 0$
$[e^{at}\cos(\omega_0 t)]u(t)$	$\frac{s-a}{(s-a)^2+\omega_0^2}$	$\sigma > a$	$e^{at} \operatorname{sen}(\omega_0 t) u(t)$	$\frac{\omega_0}{(s-a)^2 + \omega_0^2}$	$\sigma > a$
$\frac{d^n}{dt^n}\delta(t)$	s^n	todo s			

Transformada Unilateral de Laplace: $X(s) = \int_{0^-}^{\infty} x(t)e^{-st} \, dt$

Propiedades de la Transformada Unilateral de Laplace

Propiedad	Señal en el tiempo	Transformada	ROC
	x(t) = x(t)u(t)	X(s)	R
	$x_1(t) = x_1(t)u(t)$	$X_1(s)$	R_1
	$x_2(t) = x_2(t)u(t)$		R_2
Linealidad	()	$\alpha_1 X_1(s) + \alpha_2 X_2(s)$	
Función real	$x(t) \in \mathbb{R}$	$X(s) = X^*(s^*)$	R
Desplazamiento temporal	$x(t-\tau), \tau > 0$	$e^{-s\tau}X(s)$	R
Desplazamiento en s	$e^{s_0t}x(t)$	$X(s-s_0)$	$R+s_0$
Conjugación	$x^*(t)$	$X^*(s^*)$	R
Escalamiento en el tiempo	x(at), a > 0	$\frac{1}{a}X\left(\frac{s}{a}\right)$	R/a
Convolución	$x_1(t) * x_2(t)$	$\overset{a}{X}_1(s)\overset{a}{X}_2(s)$	$\geq R_1 \cap R_2$
Diferenciación	$\frac{dx(t)}{dt}$	$sX(s) - x(0^-)$	$\geq R$
Diferenciación múltiple	$\frac{d^n}{dt^n}x(t)$	$s^n X(s)$	
		$-\sum_{i=1}^{n} s^{n-i} x^{(i-1)}(0^{-})$	
Diferenciación en s	-tx(t)	$-\sum_{i=1}^{n} s^{n-i} x^{(i-1)}(0^{-})$ $\frac{d}{ds} X(s)$	R
Integración	$\int_{0^{-}}^{t} x(\tau) d\tau$	$\frac{1}{s}X(s)$	$\geq R \cap \{\sigma > 0\}$
Teorema de valor inicial	$x(0^+)$	$\lim_{s \to \infty} sX(s)$	
Teorema de valor final	$\lim_{t \to \infty} x(t)$	$\lim_{s \to 0} sX(s)$	

Transformadas Unilaterales de Laplace de funciones elementales

Señal	Transformada	ROC	Señal	Transformada	ROC
$\delta(t)$	1	todo s	1	$\frac{1}{s}$	$\sigma > 0$
$\frac{t^{n-1}}{(n-1)!}$ t^{n-1}	$\frac{1}{s^n}$	$\sigma > 0$	e^{at}	$\frac{1}{s-a}$	$\sigma > a$
$\frac{t^{n-1}}{(n-1)!}e^{at}$	$\frac{1}{(s-a)^n}$	$\sigma > a$	$\delta(t-\tau), \tau > 0$	$e^{-s\tau}$	${\rm todo}\; s$
$\cos(\omega_0 t)$	$\frac{s}{s^2 + \omega_0^2}$	$\sigma > 0$	$\operatorname{sen}(\omega_0 t)$	$\frac{\omega_0}{s^2 + \omega_0^2}$	$\sigma > 0$
$e^{at}\cos(\omega_0 t)$	$\frac{s-a}{(s-a)^2+\omega_0^2}$	$\sigma > a$	$e^{at}\operatorname{sen}(\omega_0 t)$	$\frac{\omega_0}{(s-a)^2 + \omega_0^2}$	$\sigma > a$
$\frac{d^n}{dt^n}\delta(t)$	s^n	${\rm todo}\; s$			

Transformada z

	Propiedades de	Propiedades de la transformada z bilateral.	
Propiedad	Dominio n	Dominio z	ROC
Notación	$x[n] = \frac{1}{2\pi j} \oint_C X(z) z^{n-1}$	$X(z) = \sum_{n=0}^{\infty} x[n]z^{-n}$	$R = \{ z \mid r_2 < z < r_1 \}$
	$x_1[n] = x_2[n]$	$X_1(z) \qquad \qquad n = -\infty$ $X_2(z)$	R_1 R_2
Linealidad	$a_1 x_1[n] + a_2 x_2[n]$	$a_1 X_1(z) + a_2 X_2(z)$	por lo menos $R_1 \cap R_2$
Desplazamiento en n	x[n-k]	$z^{-k}X(z)$	$R \setminus \{0\}$ si $k > 0$ y $R \setminus \{\infty\}$ si $k < 0$
Escalado en z	$\alpha^n x[n]$	$X(\alpha^{-1}z)$	$ \alpha r_2 < z < \alpha r_1$
Reflexión en n	x[-n]	$X(z^{-1})$	$\frac{1}{r_1} < z < \frac{1}{r_2}$
Conjugación	$x^*[n]$	$X^*(z^*)$	R
Parte real	$\mathrm{Re}\{x[n]\}$	$\frac{1}{2} [X(z) + X^*(z^*)]$	Incluye R
Parte imaginaria	$\operatorname{Im}\{x[n]\}$	$\frac{1}{2}\left[X(z) - X^*(z^*)\right]$	Incluye R
Derivación en z	nx[n]	$-z \frac{dX(z)}{dz}$	$r_2 < z < r_1$
Convolución	$x_1[n] * x_2[n]$	$X_1(z)X_2(z)$	Por lo menos $R_1 \cap R_2$
Teorema del valor inicial	Si $x[n]$ es causal	$x[0] = \lim_{z \to \infty} X(z)$	
	Propiedades de	Propiedades de la transformada z unilateral.	
Notación	$x[n] = \frac{1}{2\pi j} \oint_C X(z) z^{n-1}$	$X(z) = \sum_{n=0}^{\infty} x[n]z^{-n}$	$R = \{z \mid z > r_2\}$
Retardo temporal	x[n-k], k > 0	$z^{-k}X(z) + \sum_{n=1}^{\kappa} x[-n]z^{n-k}$	$R\setminus\{0\}$
Adelanto temporal	x[n+k], k > 0	$z^k X(z) - \sum_{z=0}^{k-1} x[n] z^{k-n}$	R
Teorema del valor final		$\lim_{n \to \infty} x[n] = \lim_{z \to 1} (z - 1)X(z)$	

Transformada z bilateral de algunas funciones comunes

Señal $x[n]$	Transformada $z, X(z)$	ROC
$\delta[n]$	1	Plano z
u[n]	$\frac{1}{1-z^{-1}}$	z > 1
$a^n u[n]$	$\frac{1}{1 - az^{-1}}$	z > a
$na^nu[n]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z > a
$-(a^n)u[-n-1]$	$\frac{1}{1 - az^{-1}}$	z < a
$-n(a^n)u[-n-1]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a
$\cos(\omega_0 n)u[n]$	$\frac{1 - z^{-1}\cos\omega_0}{1 - 2z^{-1}\cos\omega_0 + z^{-2}}$	z > 1
$\operatorname{sen}(\omega_0 n)u[n]$	$\frac{z^{-1} \sec \omega_0}{1 - 2z^{-1} \cos \omega_0 + z^{-2}}$	z > 1
$a^n \cos(\omega_0 n) u[n]$	$\frac{1 - az^{-1}\cos\omega_0}{1 - 2az^{-1}\cos\omega_0 + a^2z^{-2}}$	z > a
$a^n \operatorname{sen}(\omega_0 n) u[n]$	$\frac{az^{-1}\sin\omega_0}{1 - 2az^{-1}\cos\omega_0 + a^2z^{-2}}$	z > a

Transformada z unilateral de algunas funciones comunes Soñal x[n] Transformada z Y(z) POC

Señal $x[n]$	Transformada $z, X(z)$	ROC
$\delta[n]$	1	Plano z
1	$\frac{1}{1-z^{-1}}$	z > 1
a^n	$\frac{1}{1 - az^{-1}}$	z > a
na^n	$\frac{az^{-1}}{(1-az^{-1})^2}$	z > a
$\cos(\omega_0 n)$	$\frac{1 - z^{-1}\cos\omega_0}{1 - 2z^{-1}\cos\omega_0 + z^{-2}}$	z > 1
$\operatorname{sen}(\omega_0 n)$	$\frac{z^{-1} \sin \omega_0}{1 - 2z^{-1} \cos \omega_0 + z^{-2}}$	z > 1
$a^n \cos(\omega_0 n)$	$\frac{1 - az^{-1}\cos\omega_0}{1 - 2az^{-1}\cos\omega_0 + a^2z^{-2}}$	z > 1
$a^n \operatorname{sen}(\omega_0 n)$	$\frac{az^{-1}\sin\omega_0}{1 - 2az^{-1}\cos\omega_0 + a^2z^{-2}}$	z > 1