Jonathan Cosme

Project Luther

Contents

1

Background

Purpose, brief time series background

2

Models

Data overview, and model walk-through

3

Conclusion

Model evaluation, and further consideration

Background

- Purpose of project
- Time series background

Purpose

A: Compare Simple & Complex

We will build two models:

- "Simple" model: 1 variable.
- "Complex" model: 13 variables. and compare the results.

B: Compare NN to rest

We will **build** a **Neural Network** model, and **compare** it's performance **to** the "**Simple**" and "**Complex**" models.

- Need Stationarity
- E.g. can build an AR model on temperature data.

- Need Stationarity
- E.g. cannot build an AR model on stock prices!

- Need Stationarity
- We use the return
 (continous % change)
 of stock prices.

• Step 1: Plot the ACF

- Step 1: Plot the ACF
- Step 2: Plot the PACF

Models

- Data used in models
- Simple Model
- Complex Model
- Neural Network Model

The Data

- Scrape S&P 500 components from Wikipedia
- Used Yahoo Finance API to obtain price information from Oct 1, 2019 to Sep 29, 2020
- Scraped components stats from Yahoo Finance Page

The Data

Volume	DateDelta	Return	HighLow	Market Cap (intraday) 5	Enterprise Value 3	Trailing P/E	Forward P/E 1	PEG Ratio (5 yr expected)	Price/Sales (ttm)	Price/Book (mrq)	Enterprise Value/Revenue 3	Enterprise Value/EBITDA 6
3271500.0	1.0	-0.037305	1.044509	9.454000e+10	1.082200e+11	19.83	15.87	4.12	3.03	9.38	13.54	44.10
2972300.0	1.0	-0.017387	1.016750	9.454000e+10	1.082200e+11	19.83	15.87	4.12	3.03	9.38	13.54	44.10
3025700.0	1.0	-0.002702	1.030834	9.454000e+10	1.082200e+11	19.83	15.87	4.12	3.03	9.38	13.54	44.10
2646400.0	1.0	0.003794	1.010687	9.454000e+10	1.082200e+11	19.83	15.87	4.12	3.03	9.38	13.54	44.10
2471200.0	3.0	-0.014871	1.011920	9.454000e+10	1.082200e+11	19.83	15.87	4.12	3.03	9.38	13.54	44.10
•••	***	***	***	2***	***		***			****	2***	***
2017300.0	1.0	0.004057	1.040024	3.060000e+09	5.670000e+09	15.31	24.27	NaN	0.44	1.32	2.73	48.09
3239000.0	1.0	-0.043440	1.089782	3.060000e+09	5.670000e+09	15.31	24.27	NaN	0.44	1.32	2.73	48.09
2027400.0	1.0	-0.007275	1.036829	3.060000e+09	5.670000e+09	15.31	24.27	NaN	0.44	1.32	2.73	48.09
1841600.0	1.0	-0.002132	1.029639	3.060000e+09	5.670000e+09	15.31	24.27	NaN	0.44	1.32	2.73	48.09
1633700.0	3.0	-0.012579	1.044836	3.060000e+09	5.670000e+09	15.31	24.27	NaN	0.44	1.32	2.73	48.09

The Data

Volume	DateDelta	Return	HighLow	Market Cap (intraday) 5	Enterprise Value 3	Trailing P/E	Forward P/E 1	PEG Ratio (5 yr expected) 1	Price/Sales (ttm)	Price/Book (mrq)	Enterprise Value/Revenue 3	Enterprise Value/EBITDA 6
3271500.0	1.0	-0.037305	1.044509	9.454000e+10	1.082200e+11	19.83	15.87	4.12	3.03	9.38	13.54	44.10
2972300.0	1.0	-0.017387	1.016750	9.454000e+10	1.082200e+11	19.83	15.87	4.12	3.03	9.38	13.54	44.10
3025700.0	1.0	-0.002702	1.030834	9.454000e+10	1.082200e+11	19.83	15.87	4.12	3.03	9.38	13.54	44.10
2646400.0	1.0	0.003794	1.010687	9.454000e+10	1.082200e+11	19.83	15.87	4.12	3.03	9.38	13.54	44.10
2471200.0	3.0	-0.014871	1.011920	9.454000e+10	1.082200e+11	19.83	15.87	4.12	3.03	9.38	13.54	44.10
•••			***		***					•••	***	***
2017300.0	1.0	0.004057	1.040024	3.060000e+09	5.670000e+09	15.31	24.27	NaN	0.44	1.32	2.73	48.09
3239000.0	1.0	-0.043440	1.089782	3.060000e+09	5.670000e+09	15.31	24.27	NaN	0.44	1.32	2.73	48.09
2027400.0	1.0	-0.007275	1.036829	3.060000e+09	5.670000e+09	15.31	24.27	NaN	0.44	1.32	2.73	48.09
1841600.0	1.0	-0.002132	1.029639	3.060000e+09	5.670000e+09	15.31	24.27	NaN	0.44	1.32	2.73	48.09
1633700.0	3.0	-0.012579	1.044836	3.060000e+09	5.670000e+09	15.31	24.27	NaN	0.44	1.32	2.73	48.09

We will have multicolinearity

Simple Model

Simple Model

- Step 1: Plot the ACF
- Note: No significant autocorrelation in series. Thus, an AR model is not appropriate for this data.

Simple AR(1) Model

OLS Regression Re	sults				
Dep. Variable	:	у	R-s	quared:	0.024
Model	:	OLS	Adj. R-s	quared:	0.024
Method	: Least	Squares	F-s	tatistic:	1527.
Date	: Tue, 06 (Oct 2020	Prob (F-st	atistic):	0.00
Time	:	16:11:30	Log-Like	elihood:	1.1495e+05
No. Observations	:	61507		AIC:	-2.299e+05
Df Residuals	:	61505		BIC:	-2.299e+05
Df Model	:	1			
Covariance Type	: n	onrobust			
coef	std err	t P	> t [0.025	0.975]	
const -0.0026	0.000 -17	7.030 0.0	0.003	-0.002	
x1 -0.1559	0.004 -39	0.083 0.0	000 -0.164	-0.148	
Omnibus:	34108.526	Durb	in-Watson:		1.946
Prob(Omnibus):	0.000	Jarque	-Bera (JB):	174743	6.161
Skew:	-1.951		Prob(JB):		0.00

Cond. No.

26.5

Kurtosis:

Complex Model

Complex Model

 We regress all 13 variables, (plus the 13 "notMissing" encodings), on T+1 returns.

13.54 44.10 13.54 13.54 44.10 9.38 9.38 13.54 44.10 13.54 15.31 24.27 NaN 2.73 0.44 1.32 48.09 1.32 2.73 1.32 2.73 48.09 1.32 2.73 48.09 48.09

notMissingPEG
Ratio (5 yr notMissingPrice/Sales notMissingPrice/Book notMissingEnterprise notMissingEnterprise notMissingTrailing notMissingForward 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0 0.0 1.0 1.0 0.0 0.0

3

Enterprise Value/EBITDA 6	Enterprise Value/Revenue 3	Price/Book (mrq)	Price/Sales (ttm)	PEG Ratio (5 yr expected)	Forward P/E 1	Trailing P/E
44.10	13.54	9.38	3.03	4.12	15.87	19.83
44.10	13.54	9.38	3.03	4.12	15.87	19.83
44.10	13.54	9.38	3.03	4.12	15.87	19.83
44.10	13.54	9.38	3.03	4.12	15.87	19.83
44.10	13.54	9.38	3.03	4.12	15.87	19.83
	200	***			***	
48.09	2.73	1.32	0.44	0.00	24.27	15.31
48.09	2.73	1.32	0.44	0.00	24.27	15.31
48.09	2.73	1.32	0.44	0.00	24.27	15.31
48.09	2.73	1.32	0.44	0.00	24.27	15.31
48.09	2.73	1.32	0.44	0.00	24.27	15.31

1

PEG Ratio (5 yr (pected) 1	Price/Sales (ttm)		notMissingHighLow	notMissingMarket Cap (intraday) 5	notMissingEnterprise Value 3	notMissingTrailing P/E	notMissingForward P/E 1	notMissingPEG Ratio (5 yr expected) 1
4.12	3.03		1.0	1.0	1.0	1.0	1.0	1.0
4.12	3.03		1.0	1.0	1.0	1.0	1.0	1.0
4.12	3.03		1.0	1.0	1.0	1.0	1.0	1.0
4.12	3.03		1.0	1.0	1.0	1.0	1.0	1.0
4.12	3.03		1.0	1.0	1.0	1.0	1.0	1.0
		jess	***	***		***	300	
0.00	0.44		1.0	1.0	1.0	1.0	1.0	0.0
0.00	0.44		1.0	1.0	1.0	1.0	1.0	0.0
0.00	0.44		1.0	1.0	1.0	1.0	1.0	0.0
0.00	0.44		1.0	1.0	1.0	1.0	1.0	0.0
0.00	0.44		1.0	1.0	1.0	1.0	1.0	0.0

Complex Model

OLS Re	gression Resi	ults				
De	p. Variable:		у	В	l-squared:	0.037
	Model:		OLS	Adj. F	-squared:	0.037
	Method:	Least S	Squares	F	-statistic:	125.2
	Date:	Tue, 06 O	ct 2020	Prob (F	-statistic):	0.00
	Time:	1	6:16:50	Log-L	ikelihood:	1.1536e+05
No. Ob	servations:		61507		AIC:	-2.307e+05
Di	Residuals:		61487		BIC:	-2.305e+05
	Df Model:		19			
Covar	iance Type:	no	nrobust			
	coef	std err	t	P> t	[0.025	0.975]
const	0.0077	0.001	11.747	0.000	0.006	0.009
x1	-3.736e-11	1.49e-11	-2.499	0.012	-6.67e-11	-8.06e-12
x2	0.0037	0.000	20.847	0.000	0.003	0.004
х3	-0.1600	0.004	-39.591	0.000	-0.168	-0.152
х4	-0.0623	0.004	-15.422	0.000	-0.070	-0.054
х5	-5.352e-16	5.37e-15	-0.100	0.921	-1.11e-14	9.99e-15
х6	3.975e-15	5.41e-15	0.735	0.462	-6.63e-15	1.46e-14
х7	-2.475e-06	1.34e-06	-1.844	0.065	-5.11e-06	1.56e-07
х8	-2.414e-05	1.02e-05	-2.363	0.018	-4.42e-05	-4.12e-06
х9	1.79e-05	7.92e-06	2.260	0.024	2.38e-06	3.34e-05
x10	0.0004	0.000	3.397	0.001	0.000	0.001

x11	1.31e-06	7.21e-06	0.182	0.856	-1.28e-05	1.54e-05
x12	-5.369e-05	3e-05	-1.790	0.073	-0.000	5.09e-06
x13	3.613e-06	1.16e-06	3.124	0.002	1.35e-06	5.88e-06
x14	0.0077	0.001	11.747	0.000	0.006	0.009
x15	0.0077	0.001	11.747	0.000	0.006	0.009
x16	0.0077	0.001	11.747	0.000	0.006	0.009
x17	0.0077	0.001	11.747	0.000	0.006	0.009
x18	0.0077	0.001	11.747	0.000	0.006	0.009
x19	0.0007	0.001	1.263	0.207	-0.000	0.002
x20	0.0009	0.001	1.215	0.224	-0.001	0.002
x21	-0.0004	0.001	-0.255	0.799	-0.003	0.002
x22	0.0006	0.000	1.399	0.162	-0.000	0.002
x23	0.0077	0.001	11.747	0.000	0.006	0.009
x24	-0.0004	0.001	-0.573	0.567	-0.002	0.001
x25	0.0007	0.001	1.263	0.207	-0.000	0.002
x26	9.651e-05	0.001	0.127	0.899	-0.001	0.002
,	Omnibus: 2	9744.239	Durbir	n-Watsor	n:	1.963
Prob(C	mnibus):	0.000	Jarque-E	Bera (JB)): 158526	5.867
	Skew:	-1.566		Prob(JB):	0.00

Neural Network Model

Neural Network Model

- We use 2 layers.
- L1: 26 nodes; leaky relu activation
- L2: 1 node; relu activation

Conclusion

- Model Performance
- Further consideration

Simple vs Complex

- Dev set MSE for Simple model: 0.0014718622471362882
- Dev set MSE for Complex model: 0.0015187861917754437
- One-way ANOVA results:F-Stat = 2.8797 (pval = 0.0897)

NN vs Rest

- Dev set MSE for Neural Net model: 0.001402712182856231
- One-way ANOVA results:F-Stat = 7.003 (pval = 0.0081)
- Dev set MSE for Simple model: 0.0014718622471362882
- Dev set MSE for Complex model: 0.0015187861917754437

Further Consideration

- Using levels rather than returns makes performance worse, in addition to violating the stationarity condition of AR models.
- Using more than 1 year of data would also help build a better model.
- Note S&P 500 components change over time; it's important to make sure one gets correct components for the time period.
- Building a **categorical** predictive **model**, rather than a coninuous model (predict if returns will be positive or negative, rather than the value of the return) might be **more appropriate** for this data.
- Building a continuous **model for** predicting the **squared returns** (volatility) would also be **more appropriate** for this data. Serial correlation of volatility is a well known phenomenon.
- Combining the above two: build a categorical predictive model, then a model for predicting squared returns for each, would be an interesting thing to explore.

Thanks!

Does anyone have any questions?