Tema 4. El sistema de entrada y salida Arguitectura de Computadores

Área de Arquitectura y Tecnología de Computadores Departamento de Informática Universidad de Oviedo

Curso 2021-2022

Índice

- 1 El sistema de entrada/salida
- 2 El sistema de interconexión
- 3 Periféricos
- 4 Virtualización de E/S

Objetivos

- Mejoras del rendimiento
 Cambios organizativos para mejorar el rendimiento.
- 2.- Soporte a los sistemas operativos multitarea Funcionalidad necesaria para su correcto funcionamiento

El sistema de E/S

Permite comunicación con el exterior

El sistema de E/S

Permite comunicación con el exterior

El sistema de E/S

¿Qué comprende?

- Periféricos
 - Realizan la interacción con el exterior
- 2 Interfaces
 - Gestión y control de comunicación computador-periféricos
- Buses
 - comunican interfaces con CPU, memoria, y periféricos

Operación de E/S

Entrada

Copia de información periférico $\stackrel{interfaz}{\longrightarrow}$ memoria

Salida

Copia de información memoria $\stackrel{\text{interfaz}}{\longrightarrow}$ periférico

Operación de E/S

Entrada

Copia de información periférico $\stackrel{\text{interfaz}}{\longrightarrow}$ memoria

Salida

Copia de información memoria $\stackrel{interfaz}{\longrightarrow}$ periférico

Interfaces

Puente de comunicación entre periférico y computador

Formadas por registros (puertos)

Alternativas

- · Compartir el E.D. de memoria
- E.D. específico para E/S

Espacio de direcciones de memoria

Compartir espacio de direcciones de memoria

- · Dispositivos de memoria
- · Interfaces de periféricos

Ventajas

Simple

Mismas instrucciones que para acceder a memoria

Espacio de direcciones independiente

Utilizado solo por las interfaces

Inconvenientes

Más complejo

- Líneas de control adicionales
- Uso de instrucciones específicas

Combinación

- Interfaz en E.D. de memoria
- Interfaz en F D de F/S
- · Interfaz en ambos E.D.

Combinación

- Interfaz en E.D. de memoria
- Interfaz en E.D. de E/S
- Interfaz en ambos E D

Combinación

- Interfaz en E.D. de memoria
- Interfaz en E.D. de E/S
- · Interfaz en ambos E.D.

Protección del sistema de E/S

Sistema monotarea

Sistema multitarea

Protección del sistema de E/S

Sistema monotarea

Sistema multitarea

Protección del sistema de E/S

E.D. de E/S

Uso de instrucciones específicas privilegiadas

Ejemplo

instrucciones in y out en IA-32 + registro IOPL

E.D. de memoria

Uso del mismo mecanismo que para proteger memoria del S.O.

Ejemplo

Fijar nivel de supervisor en las páginas que contienen las interfaces

Técnicas de E/S

Sincronización

Cómo la CPU conoce el inicio/fin de las operaciones

- E/S programada (muestreo)
- E/S mediante interrupciones

Optimización: descarga de la CPU

Reducir carga de CPU durante la E/S

- E/S mediante DMA
- · Procesadores de E/S

Técnicas de E/S

Sincronización

Cómo la CPU conoce el inicio/fin de las operaciones

- E/S programada (muestreo)
- E/S mediante interrupciones

Optimización: descarga de la CPU

Reducir carga de CPU durante la E/S

- E/S mediante DMA
- Procesadores de E/S

E/S programada

Interfaces

Dos tipos de registros

- Estado: estado de la interfaz (lista/ocupada)
- Datos: transferencia de datos

Funcionamiento

CPU consulta continuamente el registro de estado

Estado = listo ⇒ se inicia operación

Características

- CPU realiza la transferencia de datos
- CPU se encarga de la sincronización (registro estado)

E/S programada

Ventajas

Técnica muy simple, CPU se encarga de todo

Inconvenientes

Ineficiente y lenta

· CPU ocupada durante la operación

Consiste

Se evita que CPU esté ocupada muestreando

Interfaz avisa cuando está lista ⇒ interrupción

Modificación de la CPU

Comprobar si hay interrupción al final de cada instrucción

- X No: continúa la ejecución
- Sí: se interrumpe la ejecución
 - · Ejecuta rutina de tratamiento
 - Reanuda la tarea

Características

Más compleja pero más eficiente

- CPU ocupada en la transferencia
- interfaz se encarga de la sincronización

Problemática

- Priorización
- Control
- Identificación

CPU no debe ser interrumpida

- · Proceso crítico. Ej. modificar tabla de páginas
- · Evitar encadenamiento de interrupciones

Control

No enmascarables

- Se atienden siempre
- Entrada específica de la CPU

Enmascarables

- Se pueden deshabilitar (flag de control)
- ✓ No enmascaradas ⇒ se aceptan
- ★ Enmascaradas ⇒ no se aceptan

Dos técnicas

Polling o consulta

CPU pregunta a las interfaces

Vectorización

- Interfaz se identifica (vector)
- Rutina de servicio asociada

E/S mediante DMA

Objetivo

Liberar a la CPU del movimiento de información

- · Necesario elemento adicional para mover datos
- · CPU puede ejecutar otras tareas
- Crítico en S.O. multitarea
- · Sincronización mediante interrupciones

- 1 T2 solicita E/ ⇒ T1
- 2 T1 ejecutando
- Sin E/ ⇒ transferencia
- 4 T2 ejecutando

E/S mediante DMA

- 1 T2 solicita E/ ⇒ T1
- T1 eiecutando
- Fin F/ ⇒ transferencia
- T2 ejecutando

- 1 T2 solicita E/ ⇒ T1
- 2 T1 ejecutando
- Fin E/ ⇒ transferencia
- 4 T2 ejecutando

E/S mediante DMA

- 1 T2 solicita E/ ⇒ T1
- T1 eiecutando
- Fin F/ ⇒ transferencia
- T2 eiecutando

E/S mediante DMA

Sin DMA

- 1 T2 solicita E/ ⇒ T1
- 2 T1 ejecutando
- 3 Fin E/ ⇒ transferencia
- 4 T2 ejecutando

- T2 solicita E/ ⇒ T1
- T1 eiecutando
- Fin E/ ⇒ transferencia
- T2 eiecutando

E/S mediante DMA

Sin DMA

- 1 T2 solicita E/ ⇒ T1
- 2 T1 ejecutando
- 3 Fin E/ ⇒ transferencia
- 4 T2 ejecutando

- T2 solicita E/ ⇒ T1
- T1 eiecutando
- Fin E/ ⇒ transferencia
- T2 eiecutando

- 1 T2 solicita E/ \Rightarrow T1
- 2 T1 ejecutando
- 4 T2 ejecutando

E/S mediante DMA

- 1 T2 solicita E/ ⇒ T1
- 2 T1 ejecutando
- Sin E/ ⇒ transferencia
- 4 T2 ejecutando

- 1 T2 solicita E/ ⇒ T1
- 2 T1 ejecutando
- 4 T2 ejecutando

E/S mediante DMA

- 1 T2 solicita E/ ⇒ T1
- 2 T1 ejecutando
- Fin E/ ⇒ transferencia
- 4 T2 ejecutando

- 1 T2 solicita E/ ⇒ T1
- 2 T1 ejecutando
- 4 T2 ejecutando

E/S mediante DMA

- 1 T2 solicita E/ ⇒ T1
- 2 T1 ejecutando
- 3 Fin E/ ⇒ transferencia
- 4 T2 ejecutando

- 1 T2 solicita E/ ⇒ T1
- 2 T1 ejecutando
- Fin F/ ⇒ transferencia
- 4 T2 ejecutando

E/S mediante DMA

- 1 T2 solicita E/ ⇒ T1
- 2 T1 ejecutando
- 3 Fin E/ ⇒ transferencia
- 4 T2 ejecutando

Procesadores de E/S

Consiste

Dispositivos con CPU y capacidad bus mastering

- · CPU principal envía órdenes de alto nivel
- · CPU de E/S ejecuta esas órdenes
- No hay intervención de la CPU principal

Ejemplos

- Tarjetas aceleradoras gráficas (GPU)
- Tarjetas de (de)codificación de audio y vídeo (DSPs)

Índice

- El sistema de entrada/salida
- 2 El sistema de interconexión
- 3 Periféricos
- 4 Virtualización de E/S

Objetivos

- 1.- Técnicas de interconexión Especialmente los buses
- 2.- Interconexión en el PC Interconexión de sistemas reales

El sistema de interconexión

Comunicación entre diferentes componentes

El sistema de interconexión

Comunicación entre diferentes componentes

Topologías de interconexión

Formas de interconectar componentes

- · Canal punto a punto
- Concentrador
- Bus

Canal punto a punto

Ventajas

- Simple ⇒ fácil de implementar
- Elevado ancho de banda
- Transferencias en paralelo

Inconvenientes

- Muchas conexiones
- · Multicasting costoso

$$\frac{N^{\varrho} \text{ de dispos.} \times (N^{\varrho} \text{ de dispos.} - 1)}{2}$$

Concentrador

Ventajas

- · Menos conexiones
- Fácil multicasting

Inconvenientes

- · Identificación de dispositivos
- · Posible cuello de botella

Nº de dispositivos

Bus

Ventajas

- Ecónomico (1 medio)
- Fácil multicasting

Inconvenientes

- Identificación de dispositivos
- Imposible transferencias en paralelo
- Posible cuello de botella

 $N^{\underline{o}}$ de conexiones $=N^{\underline{o}}$ de dispositivos

Comunicación de componentes

Antiguamente siempre buses

Hoy en día varias topologías

Punto a punto

- · Puerto serie
- · Puerto paralelo
- Puerto PS/2
- Puerto de infrarrojos
- Puerto AGP
- PCle

Buses

- Bus PCI
- Bus USB
- · Bus Firewire
- Bus Ethernet

Concentrador

- Concentrador de memoria
- Concentrador de E/S

Esquema actual

Bus

Características

- Tamaño de los datos
- Sincronización
- Serie o paralelo
- Multiplexado o no multiplexado
- Longitud máxima de la conexión
- · Capacidades operativas: Plug & Play, conexión en caliente, etc.

Bus

Características

- Tamaño de los datos
- Sincronización
- Serie o paralelo
- Multiplexado o no multiplexado
- Longitud máxima de la conexión
- · Capacidades operativas: Plug & Play, conexión en caliente, etc.

Ancho de banda

Sincronización

Secuenciación de los pasos en la comunicación

Existencia de señal de reloj

Canal síncrono

Señal de reloj

- Más simples y sencillos de implementar
- Mayor velocidad de transferencia
- Todos los dispositivos a la misma velocidad
- ★ Longitud limitada ⇒ clock skew

Canal asíncrono

Varias señales de control a modo de flags

- Pueden ser de mayor longitud
- Mayor variedad de dispositivos (velocidad)

Tamaño de dato

Dato transferido en cada ciclo de lectura o escritura

Eficiencia de la transmisión (información útil)

Tiempo información útil Tiempo de la transmisión

Serie o paralelo

Forma de transmitir los datos

Comunicación en serie

Bits se envía uno tras otro

- Habitualmente una sola línea
- Más rápida

Comunicación en paralelo

Cada bit se envía en línea independiente

- · Tantas líneas como bits tiene el dato
- Interferencias

Tendencia actual Combinar varios canales serie en paralelo

Multiplexado o no multiplexado

Multiplexación

Utilizar un conjunto de líneas para tareas diferentes

- Direcciones
- Datos
- Menor coste
- Mayor fiabilidad
- Menor velocidad (en escritura)

Ejemplo bus

- Paralelo
- Síncrono con una frecuencia de 100 MHz
- · Dato de 16 bits

2 bytes
$$\times$$
 (100 · 10⁶) $\frac{\text{ciclos}}{\text{s}} = 200 \frac{\text{MB}}{\text{s}} \approx 190.73 \frac{\text{MiB}}{\text{s}}$

- Serie
- Síncrono con una frecuencia de 1 GHz
- Una línea de datos
- · Transferencias en flancos ascedentes y descendentes

$$2 \text{ bits} \times (1 \cdot 10^9) \, \frac{\text{ciclos}}{\text{s}} \times \frac{1 \text{ byte}}{8 \text{ bits}} = 250 \, \frac{\text{MB}}{\text{s}} \approx 238.42 \, \frac{\text{MiB}}{\text{s}}$$

Ejemplo bus

- Paralelo
- Síncrono con una frecuencia de 100 MHz
- · Dato de 16 bits

2 bytes
$$\times$$
 (100 \cdot 10^6) $\frac{ciclos}{s} = 200 \, \frac{MB}{s} \approx 190.73 \, \frac{MiB}{s}$

- Serie
- Síncrono con una frecuencia de 1 GHz
- Una línea de datos
- Transferencias en flancos ascedentes y descendentes

$$2 \text{ bits} \times (1 \cdot 10^9) \frac{\text{ciclos}}{\text{s}} \times \frac{1 \text{ byte}}{8 \text{ bits}} = 250 \, \frac{\text{MB}}{\text{s}} \approx 238.42 \, \frac{\text{MiB}}{\text{s}}$$

Ejemplo bus

- Paralelo
- Síncrono con una frecuencia de 100 MHz
- · Dato de 16 bits

2 bytes
$$\times$$
 (100 \cdot 10⁶) $\frac{ciclos}{s} =$ 200 $\frac{MB}{s} \approx$ 190.73 $\frac{MiB}{s}$

- Serie
- Síncrono con una frecuencia de 1 GHz
- Una línea de datos
- Transferencias en flancos ascedentes y descendentes

2 bits
$$\times$$
 $(1 \cdot 10^9) \frac{\text{ciclos}}{\text{s}} \times \frac{1 \text{ byte}}{8 \text{ bits}} = 250 \frac{\text{MB}}{\text{s}} \approx 238.42 \frac{\text{MiB}}{\text{s}}$

Ejemplo bus

- Paralelo
- Síncrono con una frecuencia de 100 MHz
- · Dato de 16 bits

2 bytes
$$\times$$
 (100 \cdot 10⁶) $\frac{ciclos}{s} =$ 200 $\frac{MB}{s} \approx$ 190.73 $\frac{MiB}{s}$

- Serie
- Síncrono con una frecuencia de 1 GHz
- Una línea de datos
- · Transferencias en flancos ascedentes y descendentes

$$2 \text{ bits} \times (1 \cdot 10^9) \frac{\text{ciclos}}{\text{s}} \times \frac{1 \text{ byte}}{8 \text{ bits}} = 250 \frac{\text{MB}}{\text{s}} \approx 238.42 \frac{\text{MiB}}{\text{s}}$$

Otras características

Longitud máxima

Limitaciones notables con la longitud

- Retraso de la señal de reloj ⇒ clock skew
- Cables = antenas ⇒ interferencias

Plug & Play

Mecanimos para identificar dispositivos

- Requisitos hardware (posiciones en E/S, interrupciones, DMA)
- Conexión automática
- Gestión centralizada ⇒ evitar conflictos

Conexión en caliente

Conectar/desconectar dispositivos sin apagar el computador

Ideal en equipos 24×7

Otras características

Longitud máxima

Limitaciones notables con la longitud

- Retraso de la señal de reloj ⇒ clock skew
- Cables = antenas ⇒ interferencias

Plug & Play

Mecanimos para identificar dispositivos

- Requisitos hardware (posiciones en E/S, interrupciones, DMA)
- Conexión automática
- Gestión centralizada ⇒ evitar conflictos

Conexión en caliente

Conectar/desconectar dispositivos sin apagar el computador

Ideal en equipos 24×7

Otras características

Longitud máxima

Limitaciones notables con la longitud

- Retraso de la señal de reloj ⇒ clock skew
- Cables = antenas ⇒ interferencias

Plug & Play

Mecanimos para identificar dispositivos

- Requisitos hardware (posiciones en E/S, interrupciones, DMA)
- Conexión automática
- Gestión centralizada ⇒ evitar conflictos

Conexión en caliente

Conectar/desconectar dispositivos sin apagar el computador

Ideal en equipos 24×7

Jerarquía de canales

Bus único: problemas

- ↑ dispositivos ⇒ ↑ longitud ⇒ problema con las señales
- Cuello de botella
- Dispositivos muy variados

Solución: jerarquía de canales

- · Dispositivos rápidos en canales rápidos
- · Dispositivos lentos en canales lentos
- Interconectar canales
- Mejora la velocidad
- ✓ Transmisiones simultáneas

Jerarquía de canales

Bus único: problemas

- ↑ dispositivos ⇒ ↑ longitud ⇒ problema con las señales
- Cuello de botella
- · Dispositivos muy variados

Solución: jerarquía de canales

- · Dispositivos rápidos en canales rápidos
- Dispositivos lentos en canales lentos
- · Interconectar canales
- Mejora la velocidad
- Transmisiones simultáneas.

PCI Express

Compatible a nivel software con PCI Diferencias

	PCI	PCI Express
Topología Canal	Bus Paralelo (32 o 64 bits)	Punto a punto (bidirecc.) Serie (1 línea)
Gariai	Taraicio (02 0 04 bits)	1x, 2x, 4x, 8x, 12x, 16x o 32x
Reloj	33 MHz	2.5 GHz
Capacidad	133 MB/s	0.5 GB/s (bidirecc.)
Coste	alto (muchas líneas)	Bajo (2 líneas por canal)

PCI Express

Interconexión en el PC

Intel 495 (Core i5-i7 10th gen)

Índice

- 1 El sistema de entrada/salida
- 2 El sistema de interconexiór
- 3 Periféricos
- 4 Virtualización de E/S

Introducción

Interfaz

Intérpretes entre la CPU y los periféricos.

Taxonomía

- Periféricos de entrada
- Periféricos de salida
- · Periféricos de entrada/salida
- Periféricos de almacenamiento

Introducción

Interfaz

Intérpretes entre la CPU y los periféricos.

Taxonomía

- · Periféricos de entrada
- Periféricos de salida
- Periféricos de entrada/salida
- Periféricos de almacenamiento

Periféricos de almacenamiento

Requisitos

- Bajo coste
- Alta capacidad
- Alta velocidad
- Persitencia de la información
- Mobilidad

Tecnologías

- Almacenamiento óptico
- Almacenamiento magnético
- Almacenamiento magnético-óptico
- Almacenamiento basado en semiconductores

Periféricos de almacenamiento

Requisitos

- Bajo coste
- Alta capacidad
- Alta velocidad
- Persitencia de la información
- Mobilidad

Tecnologías

- Almacenamiento óptico
- · Almacenamiento magnético
- Almacenamiento magnético-óptico
- Almacenamiento basado en semiconductores

Discos duros

Características

Discos rígidos

- · Organización física
- · Organización de los datos
- Características
 - Capacidad
 - · Tiempo de acceso
 - Densidad de almacenamiento

Discos duros

Organización física

- · Uno o varios platos
- · Cubiertos de material ferromagnético

- Platos
 - Uno o varios
- Eje
 - Los platos giran juntos
- Brazos
 - Estrucutra mecánica
- Cabezas

Discos duros

Organización física

- · Uno o varios platos
- Cubiertos de material ferromagnético

- Platos
 - Uno o varios
- Eje
 - Los platos giran juntos
- Brazos
 - Estrucutra mecánica
- Cabezas

Organización física

- · Uno o varios platos
- Cubiertos de material ferromagnético

- Platos
 - Uno o varios
- Eje
 - Los platos giran juntos
- Brazos
 - Estrucutra mecánica
- Cabezas

Organización física

- · Uno o varios platos
- Cubiertos de material ferromagnético

- Platos
 - Uno o varios
- Eje
 - Los platos giran juntos
- Brazos
 - Estrucutra mecánica
- Cabezas

- Superficies
- Pistas
 - 0 es la mas externa
- · Sectores
 - Unidad mínima de información (512 or 1024 bytes)
- Clusters

- Superficies
- Pistas
 - 0 es la mas externa
- Sectores
 - · Unidad mínima de información (512 or 1024 bytes
- Clusters

- Superficies
- Pistas
 - · 0 es la mas externa
- Sectores
 - Unidad mínima de información (512 or 1024 bytes)
- Clusters

- Superficies
- Pistas
 - · 0 es la mas externa
- Sectores
 - Unidad mínima de información (512 or 1024 bytes)
- Clusters

Organización de los datos

Cilindro

Low-level format

Organización en sectores, pistas y cilindros.

· meta-data en disco

Organización de los datos

Cilindro

Low-level format

Organización en sectores, pistas y cilindros.

· meta-data en disco

Organización de los datos

Cilindro

Low-level format

Organización en sectores, pistas y cilindros.

· meta-data en disco

Sectores por pista

- constante ⇒ densidad de almacenamiento variable
- variable ⇒ densidad de almacenamiento constante

Sectores por pista

- constante ⇒ densidad de almacenamiento variable
- variable ⇒ densidad de almacenamiento constante

Capacidad

$$Capacidad = \frac{bytes}{sector} \times \frac{sectores}{pista} \times \frac{pistas}{superficie} \times \frac{superficie}{dispositivo}$$

Ejemplo

Capacidad

$$Capacidad = \frac{bytes}{sector} \times \frac{sectores}{pista} \times \frac{pistas}{superficie} \times \frac{superficie}{dispositivo}$$

Ejemplo

$$Capacidad = \hspace{0.5cm} \times \hspace{0.5cm} \times \hspace{0.5cm} \times \hspace{0.5cm} \times$$

Capacidad

$$Capacidad = \frac{bytes}{sector} \times \frac{sectores}{pista} \times \frac{pistas}{superficie} \times \frac{superficie}{dispositivo}$$

Ejemplo

Capacidad =
$$512 \times \times \times$$

Capacidad

$$Capacidad = \frac{bytes}{sector} \times \frac{sectores}{pista} \times \frac{pistas}{superficie} \times \frac{superficie}{dispositivo}$$

Ejemplo

$$Capacidad = 512 \times 18 \times \times$$

Capacidad

$$Capacidad = \frac{bytes}{sector} \times \frac{sectores}{pista} \times \frac{pistas}{superficie} \times \frac{superficie}{dispositivo}$$

Ejemplo

$$\text{Capacidad} = 512 \times 18 \times 80 \times$$

Capacidad

$$Capacidad = \frac{bytes}{sector} \times \frac{sectores}{pista} \times \frac{pistas}{superficie} \times \frac{superficie}{dispositivo}$$

Ejemplo

$$\text{Capacidad} = 512 \times 18 \times 80 \times 2$$

Capacidad

$$Capacidad = \frac{bytes}{sector} \times \frac{sectores}{pista} \times \frac{pistas}{superficie} \times \frac{superficie}{dispositivo}$$

Ejemplo

Capacidad =
$$512 \times 18 \times 80 \times 2 = 1474560$$
 bytes = 1.41 MiB

Tiempo de acceso

Tiempo para leer o escribir un sector

Tiempo de acceso = Tiempo de búsqueda+Latencia+Tiempo de transferencia

Tiempo de búsqueda

Situar la cabeza sobre la pista

Latencia

Cabeza se sitúa sobre el sector

estimación ⇒ mitad del tiempo de rotación

Tiempo de transferencia

Tiempo de acceso

Tiempo para leer o escribir un sector

Tiempo de acceso = Tiempo de búsqueda+Latencia+Tiempo de transferencia

Tiempo de búsqueda

Situar la cabeza sobre la pista

Latencia

Cabeza se sitúa sobre el sector

estimación ⇒ mitad del tiempo de rotación

Tiempo de transferencia

Tiempo de acceso

Tiempo para leer o escribir un sector

Tiempo de acceso = Tiempo de búsqueda+Latencia+Tiempo de transferencia

Tiempo de búsqueda

Situar la cabeza sobre la pista

Latencia

Cabeza se sitúa sobre el sector

estimación ⇒ mitad del tiempo de rotación

Tiempo de transferencia

Tiempo de acceso

Tiempo para leer o escribir un sector

Tiempo de acceso = Tiempo de búsqueda+Latencia+Tiempo de transferencia

Tiempo de búsqueda

Situar la cabeza sobre la pista

Latencia

Cabeza se sitúa sobre el sector

estimación ⇒ mitad del tiempo de rotación

Tiempo de transferencia

Densidad de almacenamiento Basada en dimensiones y capacidad

Pistas por pulgada densidad radial

Bits por pulgada densidad longitudinal

Densidad de almacenamiento Basada en dimensiones y capacidad

Pistas por pulgada densidad radial

Bits por pulgada densidad longitudinal

Densidad de almacenamiento Basada en dimensiones y capacidad

Pistas por pulgada densidad radial

Bits por pulgada densidad longitudinal

- Celda: unidad mínima de información
- Página: unidad mínima de lectura/escritura (programada)
- · Bloque: unidad mínima eliminable

- Celda: unidad mínima de información
- Página: unidad mínima de lectura/escritura (programada)
- · Bloque: unidad mínima eliminable

- Celda: unidad mínima de información
- Página: unidad mínima de lectura/escritura (programada)
- · Bloque: unidad mínima eliminable

- Celda: unidad mínima de información
- Página: unidad mínima de lectura/escritura (programada)
- · Bloque: unidad mínima eliminable

HDD vs. SSD

	HDD	SSD
Velocidad		V
Ruido		/
Tamaño		/
Ambientes hostiles		/
Densidad	✓	
Coste por GiB	✓	
Tiempo de vida	~	

Índice

- El sistema de entrada/salida
- 2 El sistema de interconexión
- 3 Periféricos
- 4 Virtualización de E/S

Virtualización de E/S

Objetivo

Acceso de varios Sistemas Operativos virtualizados.

Tipos

- Virtualización de E/S basado en software
- · Virtualización de E/S asistida por hardware

Virtualización de E/S

Objetivo

Acceso de varios Sistemas Operativos virtualizados.

Tipos

- Virtualización de E/S basado en software
- Virtualización de E/S asistida por hardware

Virtualización de E/S basado en software

Emulación de dispositivos

El Monitor (VMM) proporciona una interfaz virtual al Sistema Operativo virtualizado.

- · Driver de dispositivos físicos
- · Técnica Trap-and-emulate
- El Monitor captura las operaciones en la interfaz virtual.
- El Monitor envía las operaciones a la interfaz física.
- · Bajo rendimiento.

Paravirtualización

El Monitor (VMM) proporciona una interfaz paravirtualizada al Sistema Operativo virtualizado.

- · Mejor coordinación con el Monitor
- Mejora el rendimiento de la emulación.
- Driver específicos

Virtualización de E/S basado en software

Emulación de dispositivos

El Monitor (VMM) proporciona una interfaz virtual al Sistema Operativo virtualizado.

- · Driver de dispositivos físicos
- · Técnica Trap-and-emulate
- El Monitor captura las operaciones en la interfaz virtual.
- El Monitor envía las operaciones a la interfaz física.
- · Bajo rendimiento.

Paravirtualización

El Monitor (VMM) proporciona una interfaz paravirtualizada al Sistema Operativo virtualizado.

- · Mejor coordinación con el Monitor
- Mejora el rendimiento de la emulación.
- · Driver específicos

Virtualización de E/S basado en software

Emulación de dispositivo

Paravirtualización de dispositivo

Virtualización asistida por hardware

Passthrough de dispositivo

Interfaz asignada a una VM

- · Mejor rendimiento
- Solo una máquina virtual
- Driver soportado solo por el SO invitado

Compartición de dispositivos

El dispositivo expone multiples interfaces

- Una interfaz se asigna a una máquina virtual
- · PCIe Single Root I/O Virtualization (SR-IOV

Virtualización asistida por hardware

Passthrough de dispositivo

Interfaz asignada a una VM

- Mejor rendimiento
- Solo una máquina virtual
- Driver soportado solo por el SO invitado

Compartición de dispositivos

El dispositivo expone multiples interfaces

- Una interfaz se asigna a una máquina virtual
- PCIe Single Root I/O Virtualization (SR-IOV)

Virtualización de E/S asistida por Hardware

Compartición de dispositivo

Virtualización de E/S asistida por Hardware

Problemas

- SO invitado DMA con direcciones físicas de invitado (GPA)
- · Dispositivo opera con direcciones físicas de anfitrión (HPA)

