Appendix B

Notational conventions

B.1 List of symbols

N	dimension of feature space	L	primal Lagrangian
$y \in Y$	output and output space	W	dual Lagrangian
$\mathbf{x} \in X$	input and input space	$ \cdot _p$	p-norm, default is 2-norm
$ \mathbf{A} _F$	Frobenius norm of a matrix	$ \mathbf{A} $	spectral/2-norm of a matrix
F	feature space	ln	natural logarithm
${\mathcal F}$	class of real-valued functions	e	base of the natural log
${\cal L}$	class of linear functions	\log	log to the base 2
$\langle \mathbf{x}, \mathbf{z} \rangle$	inner product of \mathbf{x} and \mathbf{z}	\mathbf{x}', \mathbf{X}'	transpose of vector, matrix
ϕ	mapping to feature space	\mathbb{N}, \mathbb{R}	natural, real numbers
$\kappa(\mathbf{x}, \mathbf{z})$	$\operatorname{kernel} \left\langle \phi \left(\mathbf{x} \right), \phi \left(\mathbf{z} \right) \right\rangle$	S	training set
$f(\mathbf{x})$	real-valued function	ℓ	training set size
n	dimension of input space	$\phi(S)$	training set in feature space
R	radius containing the data	η	learning rate
${\cal H}$	Heaviside function	ε	error probability
\mathbf{w}	weight vector	δ	confidence
b	bias	γ	margin
lpha	dual variables	\mathbf{I}^{ξ}	slack variables
\mathbf{C}	covariance matrix	I	identity matrix
$(x)_{+}$	equals x , if $x \ge 0$ else 0	\mathbf{K}	kernel matrix
$\operatorname{sgn}(x)$	equals 1, if $x \ge 0$ else -1	#	cardinality of a set
j	all 1s vector		

B.2 Notation for Tables

Definition B.1 [Kernel matrix displays] We use a standard notation for displaying kernel matrices as

K	1	2	• • •	ℓ
1	$\kappa\left(\mathbf{x}_{1},\mathbf{x}_{1}\right)$	$\kappa\left(\mathbf{x}_{1},\mathbf{x}_{2}\right)$		$\kappa\left(\mathbf{x}_{1},\mathbf{x}_{\ell}\right)$
2	$\kappa\left(\mathbf{x}_{2},\mathbf{x}_{1}\right)$	$\kappa\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$ $\kappa\left(\mathbf{x}_{2}, \mathbf{x}_{2}\right)$		$\kappa\left(\mathbf{x}_{2},\mathbf{x}_{\ell}\right)$
:	:	:	٠.	:
ℓ	$\kappa\left(\mathbf{x}_{\ell},\mathbf{x}_{1}\right)$	$\kappa\left(\mathbf{x}_{\ell}, \mathbf{x}_{2}\right)$	•••	$\kappa\left(\mathbf{x}_{\ell}, \mathbf{x}_{\ell}\right)$

where the symbol K in the top right corner indicates that the table represents a kernel matrix.

Definition B.2 [Dynamic programming tables] Dynamic programming tables are displayed in a table with first row and column used for indices and the top left cell marked with DP, as, for example, in the ANOVA dynamic programming table:

DP	1	2		n
0	1	1		1
1	$x_1 z_1$	$x_1z_1 + x_2z_2$	• • •	$\sum_{i=1}^{n} x_i z_i$
2	0	$\kappa_2^2\left(\mathbf{x}, \mathbf{z}\right)$	• • •	$\kappa_2^n\left(\mathbf{x}, \mathbf{z}\right)$
:	:	:	٠	:
d	0	0		$\kappa_d^n\left(\mathbf{x}, \mathbf{z}\right)$

Downloaded from https://www.cambridge.org/core. National University of Singapore (NUS), on 24 Jun 2019 at 04:26:49, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511809682.015