수학 1 기말고사 시험지

시험일정: 2021년 6월 5일 (토) 13:10 - 14:40(90분)

모든 문제의 답에 풀이과정을 명시하시오. (총점: 200점)

문제 1. [20점] \mathbb{R}^4 의 표준단위벡터 $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3, \mathbf{e}_4$ 에 대해

$$\mathbf{e}_{ij} = \mathbf{e}_i + \mathbf{e}_j \quad (i \neq j, \ 1 \leq i, j \leq 4)$$

라고 할 때, 다음 물음에 답하시오.

- (a) (10점) 네 벡터 $\mathbf{e}_{12}, \mathbf{e}_{13}, \mathbf{e}_{24}, \mathbf{e}_{34}$ 가 일차종속인지 일차독립인지 판별하시오.
- (b) (10점) 네 벡터 $\mathbf{e}_{12}, \mathbf{e}_{13}, \mathbf{e}_{14}, \mathbf{e}_{34}$ 가 일차종속인지 일차독립인지 판별하시오.

문제 2. [25점] 삼차원 공간에서 크기가 각각 $\sqrt{3}$, $\sqrt{2}$ 인 벡터 \mathbf{a} , \mathbf{b} 가 서로 수직이고 $\mathbf{c} = \mathbf{a} \times \mathbf{b}$ 라고 하자. 이때, 다음을 만족하는 선형사상 $L: \mathbb{R}^3 \to \mathbb{R}^3$ 에 대응하는 행렬의 행렬식을 구하시오.

$$L\begin{pmatrix} 1\\0\\1 \end{pmatrix} = \mathbf{a} + \mathbf{a} \times \mathbf{c}, \qquad L\begin{pmatrix} 0\\1\\1 \end{pmatrix} = \mathbf{a} \times (\mathbf{b} + \mathbf{c}), \qquad L\begin{pmatrix} 0\\0\\1 \end{pmatrix} = \mathbf{a} \times \mathbf{c}$$

문제 3. [25점] 삼차원 공간의 사면체 *OABC*가

$$|\overrightarrow{OA}| = |\overrightarrow{BC}| = a, \quad |\overrightarrow{OB}| = |\overrightarrow{AC}| = b, \quad |\overrightarrow{OC}| = |\overrightarrow{AB}| = c$$

를 만족한다. 세 점 A,B,C 의 중심을 G_1 , 세 점 A,O,C 의 중심을 G_2 라고 할 때 $\overrightarrow{OG_1} \perp \overrightarrow{BG_2}$ 라고 하자. 이때, 다음을 보이시오.

- (a) (10점) $\overrightarrow{BA} \cdot \overrightarrow{BO} = \overrightarrow{OB} \cdot \overrightarrow{OC}$
- (b) $(15점) a^2 + c^2 = 3b^2$

문제 4. [25점] 다음 물음에 답하시오.

(a) (15점) 삼차원 공간의 부분집합 C는 행렬

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & x - y - z & 2x & 2x \\ 0 & 2y & y - z - x & 2y \\ 0 & 2z & 2z & z - x - y \end{pmatrix}$$

가 역행렬을 갖지 않는 (x,y,z)들의 집합이다. C를 구하시오.

(b) (10점) 삼차원 공간의 구면

$$S = \{(x, y, z) \mid (x - 1)^2 + (y - 2)^2 + (z - 3)^2 = 16\}$$

에 대하여 곡선 $S \cap C$ 의 길이를 구하시오.

문제 5. [25점] 삼차원 공간의 곡선

$$X(t) = (e^t \cos t, 1, e^t \sin t)$$

에 대하여 다음 물음에 답하시오.

- (a) (10점) X(t)의 $t=\frac{\pi}{4}$ 에서의 접선 ℓ 의 방정식을 구하시오.
- (b) (15점) 점 P=(0,0,1)을 지나고 벡터 $\mathbf{v}=(1,1,1)$ 과 나란한 직선 ℓ_1 과 (a)에서 구한 ℓ 사이의 거리를 구하시오.

문제 6. [25점] 극좌표계에서 다음 식으로 주어진 영역의 넓이를 구하시오.

$$3 \le r \le 2 + 2\cos\theta$$

문제 7. [30점] 극좌표계에서

$$r(\theta) = 1 + \cos \theta \quad (0 \le \theta \le \pi)$$

로 표현된 곡선 $X(\theta)$ 에 대해 다음 물음에 답하시오.

- (a) (15점) $X(\theta)$ 를 X(0)에서부터 잰 호의 길이로 매개화하시오.
- (b) (15점) 위 곡선의 $\theta = \frac{\pi}{3}$ 에서의 곡률을 구하시오.

문제 8. [25점] 좌표평면의 곡선

$$X(t) = (t, t^2) \quad (0 \le t \le \sqrt{2})$$

의 밀도함수가

$$\mu(t) = \sqrt{1 + 4t^2}$$

일 때 곡선의 질량 m을 구하고, $(m\overline{x},\ m\overline{y})$ 를 구하시오. 단, $(\overline{x},\ \overline{y})$ 는 곡선의 질량중심이다.