PATENT ABSTRACTS OF JAPAN

(11)Publication number:

09-293538

(43) Date of publication of application: 11.11.1997

(51)Int.CI.

H01M 10/40 H01M 4/02 H01M 4/50 H01M 4/58

(21)Application number: 08-257488

(71)Applicant: FUJI PHOTO FILM CO LTD

(22)Date of filing:

06.09.1996

(72)Inventor: MIYASAKA TSUTOMU

(30)Priority

Priority number: 07228732

Priority date: 06.09.1995

Priority country: JP

08 39564

27.02.1996

JP

(54) LITHIUM ION SECONDARY BATTERY

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a lithium ion secondary battery in which discharging capacity is enhanced, and safety and cost performance are superior.

SOLUTION: A lithium ion secondary battery is composed of a positive electrode, a negative electrode, nonaqueous electrolyte, and a vessel containing them in a sealed state. In the lithium ion secondary battery, the positive electrode contains positive electrode active material which is formed by electrochemically discharging lithium ions from a positive electrode active material precursor which is mainly composed of manganese oxide and the lithium ion containing amount of which is heightened by the electrochemical insertion of the lithium ions in the vessel. The negative electrode contains negative electrode active material which is formed by inserting the lithium ions discharged from the positive electrode active material precursor into a negative electrode active material mainly composed of metal oxide.

LEGAL STATUS

[Date of request for examination]

17.07.2003

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

THIS PAGE LEFT BLANK

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-293538

(43)公開日 平成9年(1997)11月11日

(51) Int.Cl. ⁶	微別配号	庁内整理番号	FΙ			技術表示箇所
H 0 1 M 10/40			H01M	10/40	• 2	Z
4/02				4/02	(
					I)
4/50				4/50		
4/58			4/58			
			審査請求	未聞求	請求項の数22	FD (全 14 頁)
(21) 出願番号	特顯平8-257488		(71) 出顧人	. 0000052	01	
				當士写》	【フイルム株式会	社
(22)出願日	平成8年(1996)9月	6日		神奈川県	幕南足柄市中招2	10番地
			(72)発明者	宮坂 カ	b	
(31)優先権主張番号	特顯平7-228732		-	神奈川川	具南足柄市中招2	10番地 富士写真
(32)優先日	平7 (1995) 9月6日			フイルル	人株式会社内	
(33) 優先権主張国	日本(JP)		(74)代理人	. 弁理士	柳川 泰男	
(31)優先権主張番号	特顯平8-39564					
(32) 優先日	平 8 (1996) 2 月27日				•	
(33)優先権主張国	日本(JP)					
		• • •				
			· ·		•	

(54) 【発明の名称】 リチウムイオン二次電池

(57) 【要約】

【課題】 放電容量が向上し、また安全性、コストパフォーマンスが優れたリチウムイオン二次電池を提供すること。

【解決手段】 正極、負極および非水電解質、そしてそれらを密封状態で収容している容器からなるリチウムイオン二次電池であって、該正極が、該容器内において電気化学的にリチウムイオンが挿入されて、リチウムイオン含量が高められたマンガン酸化物を主成分とする正極活物質前駆体から電気化学的にリチウムイオンを放出させた正極活物質を含むものであり、そして該負極が、金風酸化物を主成分とする負極活物質前駆体に、該正極活物質前駆体から放出されたリチウムイオンが挿入されて形成された負極活物質を含むものであるリチウムイオン二次電池、およびそのリチウムイオン二次電池の製造に利用される電池前駆体。

【特許請求の範囲】

【請求項1】 正極、負極および非水電解質、そしてそれらを密封状態で収容している容器からなるリチウムイオン二次電池であって、

該正極が、該容器内において電気化学的にリチウムイオンが挿入されて、リチウムイオン含量が高められたリチウムマンガン酸化物を主成分とする正極活物質前駆体から電気化学的にリチウムイオンを放出させた正極活物質を含むものであり、

そして該負極が、金属酸化物を主成分とする負極活物質 前駆体に、該正極活物質前駆体から放出されたリチウム イオンが挿入されて形成された負極活物質を含むもので あることを特徴とするリチウムイオン二次電池。

【請求項2】 正極活物質前駆体が Li_{1+x} Mn_2 O_4 (0.3 < x < 1) の組成式で表わされる正方晶系結晶構造を有する物質であって、正極活物質が、 Li_y Mn_2 O_4 (但し、0 < y < 0.3) の組成式で表わされる立方晶系結晶構造を有する物質である請求項1に記載のリチウムイオン二次電池。

【請求項3】 正極が、副活物質として $Li_x CoO_2$ (0. $5 < x \le 1$) もしくは $Li_x Co_y Ni_z O_2$ (0. $5 < x \le 1$ 、 $0 \le y \le 1$ 、 $0 < z \le 1$) の少なく とも一方を含む請求項1に記載のリチウムイオン二次電池。

【請求項4】 正極活物質前駆体が、リチウムマンガン酸化物と金属リチウムもしくはリチウム含有合金との間の該容器内での電気化学的自己放電により形成されたものである請求項1に記載のリチウムイオン二次電池。

【請求項5】 正極活物質前駆体が、リチウムマンガン酸化物と、負極活物質前駆体に近接して担持した金属リチウムもしくはリチウム含有合金との間の該容器内での外部電気回路を利用しての電気化学的放電により形成されたものである請求項1に記載のリチウムイオン二次電池。

【請求項6】 負極活物質が、リチウムイオンが挿入された錫を主成分とする非晶質の複合金属酸化物である請求項1に記載のリチウムイオン二次電池。

 イオン二次電池。

【請求項8】 負極活物質前駆体へのリチウム挿入量に対する電池放電時のリチウム放出量の比が、電池電圧3 Vまでの放電において、正極活物質前駆体の組成式のx を用いて1/(1+x)以下で示される請求項2に記載のリチウムイオン二次電池。

【請求項9】 正極前駆体、負極前駆体及び非水電解 質、そしてそれらを密封状態で収容している容器からな るリチウムイオン二次電池前駆体であって、

該正極前駆体が、該容器内において電気化学的にリチウムイオンが挿入されて、リチウムイオン含量が高められたリチウムマンガン酸化物を主成分とする正極活物質前 駆体を含むものであり、

そして該負極前駆体が、金属酸化物を主成分とする負極 活物質前駆体を含むものであることを特徴とするリチウ ムイオン二次電池前駆体。

【請求項10】 正極活物質前駆体が、 $Li_{1+x}Mn_2$ O_4 (0.3<x<1)の組成式で表わされる正方晶系結晶構造を有する物質である請求項9に記載のリチウムイオン二次電池前駆体。

【請求項11】 正極前駆体が、副括物質として、 $Li_x CoO_2$ (0. $5 < x \le 1$) または $Li_x Co_y Ni_z O_2$ (0. $5 < x \le 1$ 、 $0 \le y \le 1$ 、 $0 < z \le 1$) の 少なくとも一方を含む請求項9に記載のリチウムイオン 二次電池前駆体。

【請求項12】 正極活物質前駆体が、リチウムマンガン酸化物と金属リチウムもしくはリチウム含有合金との間の該容器内での電気化学的自己放電により形成されたものである請求項9に記載のリチウムイオン二次電池前駆体。

【請求項13】 正極活物質前駆体が、リチウムマンガン酸化物と、負極活物質前駆体に近接して担持された金属リチウムもしくはリチウム含有合金との間の該容器内での外部電気回路を利用しての電気化学的放電により形成されたものである請求項9に記載のリチウムイオン二次電池前駆体。

【請求項14】 負極活物質前駆体が、錫を主成分とする非晶質の複合金属酸化物である請求項9に記載のリチウムイオン二次電池前駆体。

【請求項 15】 負極活物質前駆体が、錫を主成分とする非晶質の複合金属酸化物であり、その組成式が、Sn L_k O_z (Lは、Al、B、P、Si、周期律表第 $1\sim 3$ 族に属する元素の原子、ハロゲン原子からなる群より選ばれる少なくとも一つの原子を表し;そしてk 及びz は、それぞれ 0. $2 \le k \le 2$ 、及び $1 \le z \le 6$ を満足する数値を表す)、もしくは、 Sn_d Q_{1-d} L_k O_z (Qは、遷移金属原子を表し;L は、Al 、B、P、Si 、周期律表第 $1\sim 3$ 族に属する元素の原子、ハロゲン原子からなる群より選ばれる少なくとも一つの原子を表し;そして d、k 及びz は、それぞれ 0. $1 \le d \le 0$. 9 、

0.2≤k≤2、及び1≤z≤6を満足する数値を表す。)で示されるものである請求項9に配載のリチウムイオン二次億池前駆体。

【請求項16】 正極前駅体原料、負極前駅体及び非水 電解質、そしてそれらを密封状態で収容している容器からなるリチウムイオン二次電池前駅体であって、 該正 極前駅体原料がリチウムマンガン酸化物を主成分として 含み、その正極活物質前駅体原料に近接して金属リチウムもしくはリチウム合金が電気的に短絡する状態で接合 されており、

そして該負極前駆体が、金属酸化物を主成分とする負極 活物質前駆体を含むものであることを特徴とするリチウ ムイオン二次電池前駆体。

【請求項17】 正極活物質前駆体原料が、 Li_{1+x} M n_2 O_4 (0. 3 < x < 1) の組成式で表わされる正方 晶系結晶構造を有する物質である請求項16 に配轍のリチウムイオン二次電池前駆体。

【請求項18】 正極前駆体原料が、副活物質として i_x CoO_2 (0.5<x \le 1)または Li_x Co_y N i_z O_2 (0.5<x \le 1、0 \le x \le 1、0 \le z \le 1)の少なくとも一方を含む請求項16に記載のリチウムイオン二次電池前駆体。

【請求項19】 正極活物質前駆体原料が、スピネル型 結晶構造のリチウムマンガン酸化物である請求項16に 記載のリチウムイオン二次電池前駆体。

【請求項20】 正極前駆体原料、負極前駆体及び非水 電解質、そしてそれらを密封状態で収容している容器か らなるリチウムイオン二次電池前駆体であって、 該正 極前駆体原料がリチウムマンガン酸化物を主成分として 含み、そして該負極前駆体が、金属酸化物を主成分とす る負極活物質前駆体を含むものであり、その前駆体に近 接して金属リチウムもしくはリチウム合金が電気的に接 続し得る状態で接合されていることを特徴とするリチウ ムイオン二次電池前駆体。

【請求項21】 負極活物質前駆体が、錫を主成分とする非晶質の複合金属酸化物である請求項20に記載のリチウムイオン二次電池前駆体。

【請求項22】 負極活物質前駆体が、錫を主成分とする非晶質の複合金風酸化物であり、その組成式が、 SnL_kO_z (Lは、A1、B、P、Si、周期律表第1~3族に属する元素の原子、ハロゲン原子からなる群より選ばれる少なくとも一つの原子を表し;そしてk及びzは、それぞれ0. $2 \le k \le 2$ 、及び $1 \le z \le 6$ を満足する数値を表す)、もしくは、 $Sn_dQ_{1-d}L_kO_z$ (Qは、遷移金風原子を表し;Lは、A1、B、P、Si、周期律表第1~3族に属する元素の原子、ハロゲン原子からなる群より選ばれる少なくとも一つの原子を表し;そして d、k及びzは、それぞれ0. $1 \le d \le 0$. 9、0. $2 \le k \le 2$ 、及び $1 \le z \le 6$ を満足する数値をす。)で示されるものである請求項20に記載のリチウ

ムイオン二次電池前駆体。

【発明の詳細な説明】

[0001]

【発明の風する技術分野】本発明は、リチウムイオン二 次館池に関する。

[0002]

【従来の技術】従来から、4 V級の電圧と高容量を特徴とするリチウムイオン二次電池の正極活物質には、L i イオンの挿入放出に有効な化合物として、スピネル型構造のL i Mn O_2 、 L i Co O_2 、L i Co O_2 、 D i

【0003】特開平3-147276号公報には、原料の供給量が多く、低コストで環境適性の良いマンガンを原料として作られるスピネル型構造の $LiMn_2O_4$ を正極材料に用いた二次電池が提案されている。しかし、一般に $LiMn_2O_4$ は $LiCoO_2$ に比べて体積当たりの充電容量(Li放出量)が10~20%小さいため、これと高容量の負極活物質とを組み合わせて電池を作成した場合には、正極活物質の使用体積量を増加させる必要があり、その結果、電池に組み込む負極活物質の量が制限され、充分な電気容量が得られないとの問題がある。

【0004】特開平4-147573号公報には、Li Mn_2 O_4 に比べさらに充電容量の大きい Li_{1+x} Mn_2 O_4 (x>0) を合成し、これを正極活物質、そしてリチウムをドープし、かつ脱ドープし得る、炭素質材料などの負極活物質をそれぞれ電池の正極、負極として組み込むことにより、電池容量が改善された非水電解質二次電池が提案されている。

[0005]

【発明が解決しようとする課題】前記特開平4-147573号公報に記載のリチウムイオン二次電池においては、正極の活物質の形成に用いられるLi_{1+x} Mn₂ O 4は、製品電池に組み込む前に電解還元あるいは化学合成によってLiを導入する方法で予め電池の外部で製造されており、そして得られた活物質は、低電位で酸化されやすく不安定であり、電池用の活物質として供給するには、保存上および取り扱い上の問題がある。そこで、本発明の発明者は、出発原料として安定なLiMn₂ O 4を用いながら、これを電池内の密閉系で充放電操作に先立って電気化学的に放電させ、一時的にLi_{1+x} Mn₂ O 4に電解還元する方法を検討した。従って、本発明の課題は、放電容量が向上し、また安全性、コストパフォーマンスが優れたリチウムイオン二次電池を提供することである。

[0006]

【課題を解決するための手段】本発明は、第一に、正極、負極および非水電解質、そしてそれらを密封状態で収容している容器からなるリチウムイオン二次電池であって、該正極が、該容器内において電気化学的にリチウムイオンが挿入されて、リチウムイオン含量が高められたリチウムマンガン酸化物を主成分とする正極活物質前駆体から電気化学的にリチウムイオンを放出させた正極活物質を含むものであり、そして該負極が、金属酸化物を主成分とする負極活物質前駆体に、該正極活物質前駆体から放出されたリチウムイオンが挿入されて形成された負極活物質を含むものであることを特徴とするリチウムイオン二次電池にある。

【0007】本発明は、第二に、正極前駆体、負極前駆体及び非水電解質、そしてそれらを密封状態で収容している容器からなるリチウムイオン二次電池前駆体であって、該正極前駆体が、該容器内において電気化学的にリチウムイオンが挿入されて、リチウムイオン含量が高められたリチウムマンガン酸化物を主成分とする正極活物質前駆体を含むものであり、そして該負極前駆体が、金属酸化物を主成分とする負極活物質前駆体を含むものであることを特徴とするりチウムイオン二次電池前駆体にある。

【0008】本発明は、第三に、正極前駆体原料、負極前駆体及び非水電解質、そしてそれらを密封状態で収容している容器からなるリチウムイオン二次電池前駆体であって、該正極前駆体原料がリチウムマンガン酸化物を主成分として含み、その前駆体原料に近接して金属リチウムもしくはリチウム合金が電気的に短絡する状態で接合されており、そして該負極前駆体原料が、金属酸化物を主成分とする負極活物質前駆体を含むものであることを特徴とするリチウムイオン二次電池前駆体にある。

【0009】本発明は、第四に、正極前駆体原料、負極 前駆体及び非水電解質、そしてそれらを密封状態で収容 している容器からなるリチウムイオン二次電池前駆体で あって、該正極前駆体原料がリチウムマンガン酸化物を 主成分として含み、そして該負極前駆体が、金属酸化物 を主成分とする負極活物質前駆体を含むものであり、そ の前駆体に近接して金属リチウムもしくはリチウム合金 が電気的に接続し得る状態で接合されていることを特徴 とするリチウムイオン二次電池前駆体にもある。

[0010]

【発明の実施の形態】本発明の好ましい態様を以下に記載する。

- 1)正極活物質前駆体が Li_{1+x} Mn_2 O_4 (0.3 < x < 1) の組成式で表わされる正方晶系結晶構造を有する物質であって、正極活物質が、 Li_y Mn_2O_4 (但し、0.3 < y < 1) の組成式で表わされる立方晶系結晶構造を有する物質である。
- 2) 正極が、副活物質としてLi_x CoO₂ (0.5<

 $x \le 1$) または $Li_xCo_yNi_zO_2$ (0.5< $x \le 1$ 、 $0 \le x \le 1$ 、 $0 \le z \le 1$) の少なくとも一方を含 te.

- 3) 正極活物質前駆体が、リチウムマンガン酸化物と金属リチウムもしくはリチウム含有合金との間の該容器内での電気化学的自己放電により形成されたものである。 【0011】4) 正極活物質前駆体が、リチウムマンガン酸化物と、負極活物質前駆体に近接して担持した金属リチウムもしくはリチウム含有合金との間の該容器内での外部電気回路を利用しての電気化学的放電により形成されたものである。
- 5) 負極活物質が、リチウムイオンが挿入された錫を主成分とする非晶質の複合金属酸化物である。
- 6)負極活物質前駆体が、錫を主成分とする非晶質の複合金属酸化物であり、その組成式が、 SnL_kO_z (Lは、Al、B、P、Si、周期律表第 $1\sim3$ 族に属する元素の原子、ハロゲン原子からなる群より選ばれる少なくとも一つの原子を表し;そしてk及びzは、それぞれ $0.2 \le k \le 2$ 、及び $1 \le z \le 6$ を満足する数値を表す)、もしくは、 $Sn_dQ_{1-d}L_kO_z$ (Qは、遷移金属原子を表し;Lは、Al、B、P、Si、周期律表第 $1\sim3$ 族に属する元素の原子、ハロゲン原子からなる群より選ばれる少なくとも一つの原子を表し;そして d、k及びzは、それぞれ $0.1 \le d \le 0.9$ 、 $0.2 \le k \le 2$ 、及び $1 \le z \le 6$ を満足する数値を表す。)で示されるものである。

【0012】7) 負極活物質前駆体へのリチウム挿入量 に対する電池放電時のリチウム放出量の比が、電池電圧 3 Vまでの放電において、正極活物質前駆体の組成式の xを用いて1/(1+x)以下で示される。

8) 正極活物質前駆体が、スピネル型結晶構造のリチウムマンガン酸化物である。

【0013】本発明のリチウムイオン二次電池は、リチウムマンガン複合酸化物を主成分とする正極活物質前駆体と前駆体原料を用いている。リチウムマンガン複合酸化物として好ましく用いられるものは、高電圧を与えるスピネル型結晶構造を持つリチウム含有マンガン酸化物である。スピネル型酸化物は、一般式 $A(B_2)O_4$ で表される結晶構造をもち、式中、酸素アニオンは、結晶中で立方最密充填形で配列しており、四面体および八面体の面と頂点の一部を占めている。カチオン「A」の分布状態によって、 $A(B_2)O_4$ を正常スピネル、B

(A, B) O_4 を逆スピネルと呼ぶ。これらの中間の状態に当たる、 A_x B_y $(A_{1-x}$ B_{1-y}) O_4 の構造もスピネルとして存在する。正常スピネル構造を持つリチウムマンガン酸化物の代表例として、L i Mn_2 O_4 が挙げられる。この構造中でMn D_4 D_4 D_5 D_6 D_7 D_8 D_8

が除かれた形の欠陥のあるスピネル構造であり、この結晶構造中ではMnカチオンはすべて4価である。本発明で用いるリチウムマンガン酸化物の正極活物質は、正常スピネル型、逆スピネル型のもの、および欠陥のないスピネル構造もしくは欠陥のある化学量論的でないスピネル構造のもののいずれであってもよい。

【0014】本発明に用いられるリチウムマンガン酸化物(すなわち、リチウム含有マンガン酸化物)としては、一般式 Li_{1+x} $[Mn_{2-y}]$ O_4 $(0 \le x < 1.7, 0 \le y < 0.7)$ で表される酸化物が挙げられる。この酸化物の例としては、 Li_4Mn_5 O_{12} 、あるいはスピネル構造表示でLi $[Li_{1/3}$ $Mn_{5/3}$] O_4 で表わされるものが挙げられる。この他、下記の式で表わされる化合物も、上記の一般式の範囲に含まれる(構造式は一般式表示の整数倍もしくは少数倍で示すものも含む)。

Li₄ Mn₄ O₉ Li₂ MnO₃

Li₅ Mn₄ O₉

Li4 Mn5 O12

【0015】本発明で用いることのできるスピネル型リ チウム含有マンガン酸化物の他の好ましい例としては、 一般式Li_{1-x} [Mn_{2-y}]O₄ (0<x<1.0、0 ≦y<0.5)で示される酸化物を挙げることができ る。この中でも特に好ましいものは、一般式Li1-x $(Mn_{2-y}) O_4 (0.20 < x < 1.0, 0 < y < 1)$ 0. 2) で表わされる酸化物である。この酸化物の例と しては、たとえば、特開平4-240117号公報に示 されている、化学量論的でないスピネル化合物であるL i。Mng O11、あるいはスピネル構造表示でLi1-x $(Mn_{2-y}) O_4 (x=0.273, y=0.182)$ で表わされるものが挙げられる。また、他の好ましい酸 化物の例は、一般式Li_{1-x} [Mn_{2-y}] O₄ (0<x **≦0.20、0<y<0.4)で示されるものである。** この酸化物の例としては、Li₂Mn₄O_pが挙げられ る。この他、下記式で表わされる化合物も、上記一般式 Li_{1-x} [Mn_{2-v}]_d O₄ の範囲に含まれる (構造式 には一般式表示の整数倍もしくは少数倍で示すものも含 まれる)。

【0016】本発明の電池に充填する前の正極活物質の前駆体原料であるリチウムマンガン酸化物は、常法に従って、リチウム塩とマンガン塩もしくはマンガン酸化物を高温で固相で反応させることで得られる。原料に炭酸リチウムと二酸化マンガンを用いる場合、焼成温度は350℃から900℃、好ましくは350℃から500℃であり、焼成時間は8時間から48時間である。また、リチウム塩として、低融点の硝酸リチウム(融点261

℃)を用いる場合は、焼成温度は300℃から900℃ であり、好ましくは300℃から500℃である。この マンガン酸化物としては、 $\lambda - MnO_2$ 、電解的に調製 されたMnO₂ (EMD)、化学的に調製されたMnO 。(CMD)、およびそれらの混合物を任意に用いるこ とができる。リチウムの原料としては他に、リチウム・ マンガン複合酸化物(たとえば、Li₂ Mn₄ O₉ な ど)を用いることができる。この場合には、リチウム・ マンガン複合酸化物を二酸化マンガンなどのマンガン原 料と混合して350℃~500℃の範囲で焼成する。 【0017】本発明の正極活物質前駆体原料には、リチ ウムマンガン複合酸化物として上記の化合物のほかに、 岩塩型構造の $LiMnO_2$ 、およびスピネル型構造のLi Mng Oa にLiイオンが挿入して生じたLi +x M n₂ O₄ (0≤x≤0. 5) や、LiMn₂ O₄ からL iイオンが化学的に脱離して生じた、Li_{1-x} Mn₂O

4 (0≤x≤0.5)が添加されていても良い。 【0018】正極活物質前駆体原料にはリチウムマンガ ン酸化物に、ほかの遷移金属複合酸化物を副活物質とし て混合することができる。混合できる副活物質として好 ましい酸化物は、同じく高容量高電圧型のリチウムコバ ルト複合酸化物、Li_x CoO₂ (0.5<x≦1)で ある。またリチウムコバルトニッケル複合酸化物、Li $_{x}$ Co $_{y}$ N i $_{z}$ O $_{2}$ (0. $5 < x \le 1$, $0 \le y \le 1$, 0 < z ≤ 1) も好ましい酸化物である。LiCoO2 のほ かに、Coに加えて各種の遷移金属、非遷移金属、アル カリ元素、希土類元素などが添加された固溶体も副活物 質として用いることができる。正極活物質前駆体のリチ ウマンガン酸化物への好ましい混合比率は、例えば、副 活物質としてリチウムコバルト酸化物を用いる場合は、 リチウムコパルト酸化物とリチウムマンガン酸化物の重 量比が2/8から9/1の範囲であり、3/7から7/ 3の範囲となることがより好ましい。本発明の正極活物 質前駆体原料は好ましくは結晶性化合物であるが、非晶 質であってもよい。また結晶性化合物と非晶質化合物の 混合物であってもよい。

【0019】本発明のリチウムイオン二次電池で、正極活物質と組み合わせて用いられる角極活物質は、Liイオンを実質的に含まない負極活物質前駆体を、製品電池の容器内で予めLiイオンの挿入により活性化し、低電位の活物質に転化する方法により得られる高容量型の活物質である。ここでLiイオンを実質的に含まないとは、可動性のLiイオンを含まないことを言う。本発明に従って後述の方法で活性化されて得られる高容量型の正極活物質と併用したときに、上記の負極活物質の活性化の際に起こる初期充放電の不効率がもたらす放電容量低下の問題が解消され、電池容量を向上させることができる。

【0020】負極活物質前駆体として好ましいものは錫を含む複合金風酸化物である。錫を含む複合金風酸化物

は、非晶質であることが好ましく、特に好ましくは次の一般式(1)もしくは(2)で示されるものである。 (1) SnL_k O_z

ここで、Lは、Al、B、P、Si、周期律表第1~3 族に属する元素の原子、及びハロゲン原子からなる群よ り選ばれる少なくとも一つの原子を示す。k、及びzは、それぞれ0. $2 \le k \le 2$ 、及び $1 \le z \le 6$ を満足す る数値である。

ここで、Tは、Al、B、及びPからなる群より選ばれる少なくとも一つの原子を表す。Rは周期律表第 $1\sim3$ 族に属する元素の原子、及びハロゲン原子からなる群より選ばれる少なくとも一つの原子を示す。h、iおよびzは、それぞれ $0.2\le h\le 2$ 、 $0.01\le i\le 1$ 、 $0.2\le h+i\le 2$ 、及び $1\le z\le 6$ を満足する数値である。

【0023】負極活物質前駆体は、電池への組み込み時(すなわち、製品電池の容器への充填時)には、主として非晶質であることが好ましい。ここで言う非晶質とは $CuK\alpha$ 線を用いたX線回折法で20値で20°から40°に頂点を有するプロードな散乱帯を与える物質であり、散乱帯中に結晶性の回折線を有してもよい。好ましくは、20値で40°以上70°以下に見られる結晶性の回折線のうち最も強い強度が、20値で20°以上40°以下に見られるプロードな散乱帯の頂点の回折線の強度の500倍以下であるものであり、更に好ましくは100倍以下、特に好ましくは5倍以下であり、最も好ましくは結晶性の回折線を有しないことである。

【0024】本発明のリチウム二次電池において、正極活物質と組み合わせて用いる負極活物質は放電容量が極めて大きいことを特徴とするが、これらは負極活物質前駆体にLiを挿入することによって得ることができる。本発明で用いることができる負極活物質前駆体の例を以下に示す。 $SnSi_{0.8} P_{0.2} O_{3.1}$ 、 $SnSi_{0.5} Al_{0.1} B_{0.2} P_{0.2} O_{1.95}$ 、 $SnSi_{0.8} Blook Bloo$

SnAl_{0.3} B_{0.5} P_{0.2} O_{2.7} , SnK_{0.2} P O_{3.6} 、 SnRb_{0.2} Al_{0.05}P_{0.8} O_{3.25}, SnAl _{0.3} B_{0.7} O_{2.5} 、 S n B a _{0.1} A l _{0.15} P 1.45O_{4.7} , SnLa_{0.1} Al_{0.1} P_{0.9} O_{3.55}, Sn Na_{0.1} Al_{0.05}B_{0.45}O_{1.8} 、SnLi_{0.2}B_{0.5} P 0.5 O_{3.1} , SnCs_{0.1} B_{0.4} P_{0.4} O_{2.65}, SnB a_{0.1} B_{0.4} P_{0.4} O_{2.7}, SnCa_{0.1} Al_{0.15}B 0.45 P_{0.55}O_{3.9} , SnY_{0.1} Al_{0.3} B_{0.6} P_{0.6} O 4 、 SnRb_{0.2} Al_{0.1} B_{0.3} P_{0.4} O_{2.7} 、 SnC so. 2 Alo. 1 Bo. 3 Po. 4 O2. 7 \ SnCso. 1 Al $_{0.1}$ $B_{0.4}$ $P_{0.4}$ $O_{2.8}$ \sim $Sn K_{0.1}$ $Cs_{0.1}$ $B_{0.4}$ Po. 4 O_{2.7} , SnBa_{0.1} Cs_{0.1} B_{0.4} P 0.4 O_{2.75}, SnMg_{0.1} K_{0.1} B_{0.4} P_{0.4} O_{2.75}, $S\,n\,C\,a_{\,0.\,1}\,\,K_{\,0.\,1}\,\,B_{\,0.\,4}\,\,P_{\,0.\,5}\,\,O_{3}\,\,,\,\,S\,n\,B\,a_{\,0.\,1}\,\,K$ o. 1 Alo. 1 Bo. 3 Po. 4 O2. 75, SnMgo. 1 Cs 0.1 Alo.1 Bo.3 Po.4 O2.75 SnCao.1 Ko.1 Al_{0.1} B_{0.3} P_{0.4} O_{2.75}, SnMg_{0.1} Rb_{0.1} A lo. 1 Bo. 3 Po. 4 O2. 75 SnCa o. 1 Bo. 2 Po. 2 F_{0.2} O_{2.6} , SnMg_{0.1} Cs_{0.1} B_{0.4} P_{0.4} F $_{0.2}$ $O_{3.3}$, $SnMg_{0.1}$ $Al_{0.2}$ $B_{0.4}$ $P_{0.4}$ $F_{0.2}$ $O_{2.9}$, $Sn_{0.5} Mn_{0.5} Mg_{0.1} B_{0.9} O_{2.45}$, Sno. 5 Mno. 5 Cao. 1 Po. 9 O3. 35 Sno. 5 Geo. 5 Mg_{0.1} P_{0.9} O_{3.35}, Sn_{0.5} Fe_{0.5} Ba_{0.1} P 0.9 O_{3.35}, S n_{0.5} F e_{0.5} A l_{0.1} B_{0.9} O_{2.5}, Sno.8 Feo.2 Cao.1 Po.9 O3.35 Sno.3 Fe 0.7 Ba_{0.1} P_{0.9}O_{3.35}, Sn_{0.9} Mn_{0.1} Mg_{0.1} $P_{\,0.\,9}\,\,O_{\,3.\,35},\ S\,n_{\,0.\,2}\,\,M\,n_{\,0.\,8}\,\,M\,g_{\,0.\,1}\,\,P_{\,0.\,9}$ $O_{3.35}$, $Sn_{0.7}$ $Pb_{0.3}$ $Ca_{0.1}$ $P_{0.9}$ $O_{3.35}$, Sno. 2 Geo. 8 Bao. 1 Po. 9 O3. 35 Sn1. 0 Alo. 1 B_{0.5} P_{0.5} O_{3.15}, Sn_{1.0} Cs_{0.1} B_{0.5} P_{0.5} O 3.05, Sn_{1.0} Cs_{0.1} Al_{0.1} B_{0.5} P_{0.5} O_{3.20}, $S n_{1.0} C s_{0.1} A l_{0.3} B_{0.5} P_{0.5} O_{3.50}$, S n1.0 Cs_{0.1} Ge_{0.05}Al_{0.1} B_{0.5} P_{0.5} O_{3.30}, S n_{1.0} Cs_{0.1} Ge_{0.05}Al_{0.3} B_{0.5} P_{0.5} O_{3.60} 【0025】本発明で用いる負極活物質は、上記の負極 活物質前駆体に製品電池の容器内でリチウムイオンを電 気化学的に予備挿入することにより得られる。電気化学 的にリチウムイオンを挿入する方法では、本発明の正極 活物質前駆体を対極として、リチウム塩を含む非水電解 質からなる電池内で負極側をカソード分極して充電を実 施することによりリチウムイオンを負極活物質前駆体に 挿入する。特に、本発明で用いる負極活物質は、負極活 物質前駆体に初期充電(活性化)の過程で挿入されるリ チウム量に対して、電池を3Vまで放電したときに負極 から放出されるリチウム量の比(F)が、正極活物質前 駆体の組成Li1+x Mn2O4 のxを用いてF≤1/ (1+x) で表現されるようなものであることが好まし

【0026】負極活物質前駆体へのLi挿入量(予備挿入量)は、特に限定されないが、例えばLi-Al合金

(80-20重量%) に対し、0.05 Vになるまで挿入することが好ましい。さらに0.1 Vまで挿入することが好ましく、特に、0.15 Vまで挿入することが好ましい。このときの、リチウムイオンの予備挿入の当量は電位に依存し3~10当量となるため、予備挿入の容量は通常500mAh/gの高い値となる。この容量に対応させて正極側での正極活物質前駆体原料と、それにリチウムイオンを電気化学的に挿入するために用いられるしょ金属(もしくはしょ合金)の使用量が決定される。具体的には、正極活物質前駆体原料としょ金属(もしくはしょ合金)から発生しえる放出可能なしょイオンの合計当量が、上記のリチウムイオン挿入の当量の0.5~2 倍となるように設定することが望ましい。

【0027】本発明のリチウムイオン二次電池で用いる正極活物質、その前駆体、その原料と負極活物質とその前駆体の平均粒径は、 $0.03\sim50\mu$ mが好ましく、特に平均粒径 0.1μ m~ 20μ mが好ましい。ここでいう平均粒径とは、最頻度点を示すモード径のことであり、電子顕微鏡写真を目視で観察した値の平均値もしくは粒度分布測定装置により測定された値である。またこれらの活物質の比表面積は $0.1\sim50\,\mathrm{m}^2$ /gの範囲にあることが好ましい。正極活物質とその前駆体については、特に好ましい比表面積は $1\sim10\,\mathrm{m}^2$ /gである。

【0028】次に、本発明において、製品電池の容器に 充填された正極活物質前駆体を活性化する方法について 説明する。本発明で言う活性化とは、活物質が高い放電 エネルギーを持ち、且つ可逆的に充放電が可能な電位に まで充電されることを意味する。正極の活性化とは、正 極活物質がLiイオンの放出によって高い放電容量をも ち可逆的に充放電が可能な十分に高い電位まで充電され ることを意味する。本発明において、正極の充放電に用 いるのがLiMn2O4の場合には、この十分に高い電 位とはしiイオンに対して3.8V以上好ましくは4. 2 V以上の電位であり、4.2 V以上の電位においては LiMn₂ O₄ の構造中のLiイオンはO. 9当量以上 (4. 3 Vにおいては0. 95当量以上)が放出され る。しかしながらLiMn。Oaの構造から充電を開始 したときのLiイオンの放出量(すなわち充電容量) は、活物質の重量当たりに換算すると、たとえばLiC oO2 に対しては10~20%小さい。本発明のリチウ ムイオン二次電池の構成のように、負極活物質として、 前駆体の活性化に必要な予備充電(Liイオン挿入)の 容量が大きい金風酸化物が用いられる場合は、正極のし iイオン放出量をとりわけ大きくすることが必要とな る。従って、LiMn₂O₄を正極活物質の製造原料に 用いる場合は、LiMn2O4にさらにLiイオンが挿 入した構造である遠元型のLil+x Mn2 O4 を活性化 前の前駆体として用いて、負極活物質前駆体へのLiイ オン放出量を増加させる必要がある。

【0029】活性化前の正極活物質前駆体の Li_{1+x} M n_2 O_4 は保存上不安定であることから、特開平4-1 47573 号公報に記載されているような従来の構成のリチウム二次電池では、活性化の直前に別の電池の内部で合成した上で、製品電池の容器内にに組み込むことが必要であった。本発明では、正極活物質前駆体の調製を製品電池の容器の内部で、リチウムマンガン酸化物とLi金風もしくはLi合金を反応の出発物質として、正極上でこの両者を自己放電させる方法、あるいは正極上のリチウムマンガン酸化物と負極上のLi金風もしくはLi合金を外部回路を経て放電させる方法を利用することによって行なうことを特徴とする。

【0030】製品電池の容器内において、放電によって 正極活性物質の前駆体を調製する典型的な方法としては 以下の方法を挙げることができる。

- 1) リチウムマンガン酸化物を含む正極活物質が担持された正極集電体にLi金属もしくはLi合金を電気的に短絡されるように接合し、これをLiイオンを含む電解液中で反応させる方法。
- 2) リチウムマンガン酸化物を含む正極活物質前駆体が 担持された正極集電体の活物質前駆体層の表面に、Li 金属もしくはLi合金の薄膜を接合し、これをLiイオ ンを含む電解液中で反応させる方法。
- 3) リチウムマンガン酸化物を含む正極活物質前駆体が 担持された正極集電体の活物質前駆体層に被覆された導 電材などの表面保護層の上に、Li金属またはLi合金 の薄膜を接合し、これをLiイオンを含む電解液中で反 応させる方法。
- 【0031】4) 金属酸化物からなる負極活物質前駆体が担持された負極集電体にLi金属もしくはLi合金を電気的に接続され得るように接合し、これをLiイオンを含む電解液中で反応させる方法。
- 5) 金属酸化物からなる負極活物質前駆体が担持された 負極集電体の活物質前駆体層の表面にLi金属もしくは Li合金の薄膜を接合し、これをLiを含む電解液中で 反応させる方法。
- 6)金属酸化物からなる負極活物質前駆体が担持された 負極集電体の活物質前駆体層の表面に被覆された導電材 などの表面保護層の上にLi金属もしくはLi合金の薄 膜を接合し、これをLiを含む電解液中で反応させる方 法。なお、この放電の過程において、負極の負極活物質 前駆体には負極上のリチウムの一部が自己放電によって 同時に挿入される。すなわち、活性化により、負極上に 担持したリチウムが正極活物質前駆体と負極活物質前駆 体の両方に同時に挿入されて、最終的にすべて消費され る。

【0032】上記の方法のなかで好ましい方法は2と3であり、特に好ましいのは3の方法である。すなわち3の方法ではリチウムマンガン酸化物とLi金属(あるいはリチウム合金)との間に適当な導電性を持った中間層

が挿入されることによって、リチウムマンガン酸化物とLi金属との急激な反応が緩和され、反応に伴う発熱を抑制することができる。前駆体の組成式Li_{1+x} Mn₂ O₄ においてxは、0.3 < x < 1 であることが好ましい。また、LiCoO₂ などの高容量活物質に対して、充電の体積当たり容量の点でリチウムマンガン酸化物が優位となるための前駆体の好ましい組成は、0.5 < x \leq 0.9 である。また、正極活物質前駆体を、高い放電容量を持った充電状態の正極活物質に活性化するためには、その前駆体からLiイオンが電気化学的に放出された結果として、少なくともLi_y Mn₂ O₄ (0 < y < 0.3) の組成の活物質が得られることが必要である。さらに、放電容量の増加のためにはLi_y Mn₂ O₄ (0 < y < 0.2) の組成となるように活性化することが好ましい。

【0033】本発明において、活性化終了後の二次電池が充放電のサイクルを行う際、正極活物質中のリチウムマンガン酸化物の組成は、高い電位を保持する必要性から、 $Liy Mn_2 O_4 (0 < y < 1)$ の組成の範囲にあり、充放電に関わる正極活物質の組成が、 $Liy Mn_2 O_4 (1 < y)$ となることはない。また、本発明の二次電池の充放電に関わる正極活物質の組成の好ましい範囲は、 $Liy Mn_2 O_4 (0 < y < 0.9)$ である。

【0034】リチウムマンガン酸化物とLi金属もしくはLi合金との反応に用いられるリチウム材料として純度95%以上のLi金属が好ましい。リチウム金属は好ましくは均一な厚みの薄膜(箔)の状態であり、その厚さは10~100μmが好ましい。リチウムと他の金属との合金としては、LiーA1、Li-A1ーMn系、Li-A1ーMg系、Li-A1ーSn系、Li-A1 ーIn、Li-A1ーCd系などが使用できる。Li金属もしくはLi合金は乾燥ガスの雰囲気のもとで活物質前駆体層、もしくはその上層に塗設した保護層の上に圧着させる。

【0035】本発明のリチウム二次電池では、他の負極活物質も併用することができる。この併用することのできる負極活物質としては、リチウム金属、上記のリチウム合金などや、リチウムイオンまたはリチウム金属を吸蔵・放出できる炭素質化合物があげられる。上記リチウム金属やリチウム合金の併用目的は、リチウムイオンを電池内で挿入させるためのものであり、電池反応として、リチウム金属などの溶解・析出反応を利用するものではない。

【0036】本発明でリチウムイオン二次電池の製造に 用いる電池前駆体(すなわち、製品電池内に正極活物質 前駆体と負極活物質前駆体、そして電解質溶液を組込ん だもの)は、製造対照の電池の容器内に、前述した正極 活物質前駆体原料、及び負極活物質前駆体を組み込んで 構成されるが、これらの構成以外は、従来から知られて いる構成とすることができる。即ち、例えば円筒型の電 池前駆体の場合には、電極(正、負極)シート、電解 液、そしてセパレータなどが組み込まれる。添付の図1 は、本発明のリチウムイオ二次電池の一例(円筒型の電 池)の断面模式図を示すものである。図1に示すよう に、円筒型の電池は、電池缶(電池容器)11(負極端 子を兼ねる)内に電極を構成する正極シート8と負極シート9、両極を分離するためのセパレータ10、そして 電解被13が、ガスケットを介して電池蓋12(正極端 子を兼ねる)によって密閉状態で収容されたものであ る。また電池内には、安全弁14が設けられている。正 極シート9および負極シート9は、セパレータ10を介 して積層され、渦巻き状に巻かれている。

【0037】正、負極の電極シートは、前記それぞれの前駆体に、導電剤、結着剤、あるいはフィラーなどを加えてなる混合物(この混合物を合剤、あるいは電極合剤という場合がある)を溶媒に分散させた分散液をそれぞれの集電体上に塗布することにより得ることができる。 【0038】 連貫剤は、構成された電池において、化学

【0038】導電剤は、構成された電池において、化学変化を起こさない電子伝導性材料であれば何でもよい。通常、天然黒鉛(鱗状黒鉛、鱗片状黒鉛、土状黒鉛など)、人工黒鉛、カーボンプラック、アセチレンブラック、ケッチェンブラック、炭素繊維や金属(銅、ニッケル、アルミニウム、銀など)粉、金属繊維あるいはポリフェニレン誘導体などの導電性材料を一種またはこれらの混合物として含ませることができる。黒鉛とアセチレンプラックの併用が特に好ましい。その添加量は、特に限定されないが、1~50重量%の範囲にあることが好ましく、特に2~30重量%の範囲にあることが好ましく、特に2~30重量%の範囲にあることが好ましい。カーボンや黒鉛では、2~15重量%の範囲にあることが特に好ましい。

【0039】結着剤には、通常、でんぷん、ポリビニルアルコール、カルボキシメチルセルロース、ヒドロキシプロピルセルロース、再生セルロース、ジアセチルセルロース、ポリビニルクロリド、ポリビニルピロリドン、テトラフルオロエチレン、ポリ弗化ビニリデン、ポリエチレン、ポリプロピレン・ジエンターポリマー(EPDM)、スルホン化EPDM、スチレンブタジエンゴム、ポリブタジエン、フッ素ゴム、ポリエチレンオキシドなどの多糖類、熱可塑性樹脂、ゴム弾性を有するポリマーなどが1種またはこれらの混合物として用いられる。結着剤の添加量は、2~30重量%の範囲にあることが好ましい。

【0040】フィラーは、構成された電池において、化学変化を起こさない繊維状材料であれば何でも用いることができる。通常、ポリプロピレン、ポリエチレンなどのオレフィン系ポリマー、ガラス、炭素などの繊維が用いられる。フィラーの添加量は特に限定されないが、0~30重量%の範囲にあることが好ましい。正極や負極の合剤には電解液あるいは支持塩を含ませてもよい。例えば、イオン導電性ポリマーやニトロメタン、電解液を

含ませる方法が知られている。

【0041】集電体としては、構成された電池において 化学変化を起こさない電子伝導体であれば何でもよい。 例えば、正極には、材料としてステンレス鋼、ニッケ ル、アルミニウム、チタン、焼成炭素などの他に、アル ミニウムやステンレス鋼の表面にカーボン、ニッケル、 チタンあるいは銀を処理させたもの、負極には、材料と してステンレス鋼、ニッケル、鍋、チタン、アルミニウ ム、焼成炭素などの他に、銅やステンレス鋼の表面にカ ーボン、ニッケル、チタンあるいは銀を処理させたも の)、A1-Cd合金などが用いられる。これらの材料 は、フォイル(箔)のほか、フィルム、シート、ネット (ラス体)、パンチされたシート、多孔質体、発泡体、 繊維群の成形体などの形状で用いられる。厚みは、特に 限定されないが、通常5~100μmのものが用いられる。

【0042】電解液(電解質溶液)は、非プロトン性有 機溶媒とその溶媒に溶けるリチウム塩(電解質)からな るものである。有機溶媒としては、例えば、プロピレン カーボネート、エチレンカーボネート、プチレンカーボ ネート、ジメチルカーボネート、ジエチルカーボネー ト、γープチロラクトン、1,2ージメトキシエタン、 テトラヒドロフラン、2-メチルテトラヒドロフラン、 ジメチルスルフォキシド、1,3-ジオキソラン、ホル ムアミド、ジメチルホルムアミド、ジオキソラン、アセ トニトリル、ニトロメタン、蟻酸メチル、酢酸メチル、 リン酸トリエステル、トリメトキシメタン、ジオキソラ ン誘導体、スルホラン、3ーメチルー2ーオキサゾリジ ノン、プロピレンカーボネート誘導体、テトラヒドロフ ラン誘導体、ジエチルエーテル、1,3-プロパンサル トンを挙げることができる。これらは、一種以上を混合 して用いることができる。

【0043】リチウム塩としては、例えばLiCl O_4 、LiB F_6 、LiP F_6 、LiC F_3 S O_3 、LiС F_3 C O_2 、LiAs F_6 、LiSb F_6 、LiB10С 1_{10} 、低級脂肪族カルボン酸リチウム、LiAlC 1_4 、LiCl、LiBr、LiI、クロロボランリチウム、四フェニルホウ酸リチウムを挙げことができる。これらは、一種以上を混合して用いることができる。本発明においては、プロピレンカーボネートあるいはエチレンカボートと1,2一ジメトキシエタンおよび/あるいはジエチルカーボネートの混合液にLiC F_3 S O_3 、LiCl O_4 、LiB F_4 および/あるいはLiP F_6 を含む電解液を用いることが好ましい。

【0044】電池内に添加する電解液の量は、特に限定されないが、正極活物質(前駆体及び原料)や負極活物質(前駆体)の量や電池のサイズに合わせて、その必要量が用いられる。溶媒の体積比率は、特に限定されないが、プロピレンカーボネートあるいはエチレンカーボネ

ート対1, 2ージメトキシエタンおよび/あるいはジエチルカーボネートの混合液の場合、0. 4/0. 6~0. 6/0. 4 (1, 2ージメトキシエタンとジエチルカーボネートを両用するときの混合比率は0. 4/0. 6~0. 6/0. 4) であることが好ましい。 電解質の濃度は、特に限定されないが、電解液1リットル当たり0. 2~3モルが好ましい。

【0045】電解液には、次の様な有機固体電解質を含有させることができる。ポリエチレンオキサイド誘導体か該誘導体を含むポリマー、ポリプロピレンオキサイド誘導体か該誘導体を含むポリマー、イオン解離基を含むポリマー、イオン解離基を含むポリマーと上記非プロトン性電解液の混合物、リン酸エステルポリマーが有効である。さらに、ポリアクリロニトリルを電解液に添加する方法もある。また、無機と有機固体電解質を併用する方法(特開昭60-1768号公報)も知られている。

【0046】本発明のリチウムイオン二次電池には、充 放電特性を改良する目的で、以下に示す化合物を電解液 に添加することもできる。例えば、ピリジン、トリエチ ルフォスファイト、トリエタノールアミン、環状エーテ ル、エチレンジアミン、n-グライム、ヘキサリン酸ト リアミド、ニトロペンゼン誘導体、硫黄、キノンイミン 染料、N-置換オキサゾリジノンとN, N'-置換イミ ダゾリジノン、エチレングリコールジアルキルエーテ ル、四級アンモニウム塩、ポリエチレングリコール、ピ ロール、2ーメトキシエタノール、三塩化アルミニウ ム、導電性ポリマー電極活物質のモノマー、トリエチレー ンホスホンアミド、トリアルキルホスフィン、モルフォ リン、カルボニル基を持つアリール化合物、ヘキサメチ ルホスホリックトリアミド、4-アルキルモルフォリ ン、二環性の三級アミン、オイル、四級ホスホニウム 塩、三級スルホニウム塩などが挙げられる。

【0047】また、電解液を不燃性にするために含ハロゲン溶媒、例えば、四塩化炭素、三弗化塩化エチレンを 電解液に含ませることができる。また、高温保存に適性 をもたせるために電解液に炭酸ガスを含ませることができる。

【0048】セパレータとしては、大きなイオン透過度を持ち、所定の機械的強度を持ち、電気絶縁性の薄膜が用いられる。耐有機溶剤性と疎水性から、ポリエチレンやポリプレビレンなどのオレフィン系ポリマーあるいはガラス繊維あるいはポリエチレンどからつくられたシートや不織布が用いられる。セパレータの孔径は、一般に電池用として有用な範囲、通常0.01~10μmの範囲である。セパレータの厚みも同様に、通常5~300μmの範囲である。なお、電解質にポリマーなどの固体電解質が用いられる場合には、固体電解質がセパレータを兼ねる場合がある。

【0049】また、正極活物質の表面を改質することもできる。例えば、金風酸化物の表面をエステル化剤やキ

レート化剤で処理したり、導電性高分子、ポリエチレン オキサイドなどの表面層の被覆によって改質する方法が 挙げられる。また、同様に負極活物質の表面を改質する こともできる。例えば、イオン導電性ポリマーやポリア セチレン層で被覆したり、Li塩により表面処理するこ とが挙げられる。

【0050】電池の形状はコイン、ボタン、シート、シリンダ、角などいずれにも適用できる。コインやボタン形では、電極合剤はペレットの形状にプレスされて用いられる。また、シート、シリンダー、角形では、電極合剤は、集電体の上に塗布、乾燥、脱水、プレスされて用いられる。その塗布層の厚みは、電池の大きさにより決められるが、乾燥後の圧縮された状態で、10~500μmの範囲にあることが特に好ましい。

【0051】本発明の方法で得られるリチウムイオンニ 次電池 (非水系リチウムイオン二次電池) の用途は、特 に限定されないが、例えば、電子機器に搭載する場合、 カラーノート型パーソナルコンピュータ、白黒ノート型 パーソナルコンピュータ、ペン入力型パーソナルコンピ ュータ、ポケット型 (パームトップ) パーソナルコンピ ュータ、ノート型ワードプロセッサ、ポケット型ワード プロセッサ、電子ブックプレーヤ、携帯電話、コードレ スフォン子機、ページャー、ハンディターミナル、携帯 ファックス、携帯コピー、携帯プリンタ、ヘッドフォン ステレオ、ビデオムービー、液晶テレビ、ハンディクリ ーナ、ポータプルCDプレーヤ、ミニディスクプレー ヤ、電気シェーバ、電子翻訳機、自動車電話、トランシ **ーバ、電動工具、電子手帳、電卓、メモリカード、テー** プレコーダ、ラジオ、バックアップ電源、メモリカード などが挙げられる。その他に、自動車、電動車両、モー タ、照明器具、玩具、ゲーム機器、ロードコンディショ ナ、アイロン、時計、ストロボ、カメラ、医療機器(ペ ースメーカ、補聴器、肩もみ機など)などが挙げられ る。更に、各種軍需用、宇宙用として用いることができ る。また、太陽電池と組み合わせることもできる。

【0052】 【実施例】以下に電池作製の実施例をあげ、本発明をさらに詳しく説明するが、発明の主旨を越えない限り、本 発明は実施例に限定されるものではない。

【0053】 [負極活物質前駆体の合成]

(1) SnB_{0.5} P_{0.5} O₃ (化合物A-1) SnO (67.4g)、B₂ O₃ (17.4g)、Sn₂ P₂ O₇ (102.8g) を混合し、自動乳鉢で十分に粉砕、混合した後、アルミナ製るつぼに充填してアルゴンガス雰囲気下で1000℃で10時間焼成を行った。焼成後、100℃/分の速度で急冷し、黄色透明ガラス状の負極活物質前駆体SnB_{0.5} P_{0.5} O₃ を得た(化合物A-1)。活物質のX線回折を測定したところ、結晶構造に帰属する回折線は検出されず、活物質構造がアモルファス(非晶質)であることが判明した。

(2) 同様な方法で、下記の負極活物質前駆体を合成した。

Sn_{1.5} K_{0.2} PO_{3.5} (化合物A-2) SnAl_{0.1} B_{0.5} P_{0.5} Mg_{0.1} F_{0.2} O_{3.15} (化合物A-3)

【0054】 [正極活物質前駆体(原料)の調製]

(1)スピネル結晶型構造のLi_{1.02}Mn₂ O₄ (化合 物C-1)

粒径 5 ~ 5 0 μ m、B E T 表面積 4 0 ~ 7 0 m² / g の 電解合成二酸化マンガン(EMD、不純物としてそれぞ れ1重量%以下のMn₂ O₃ とMn₃ O₄ および3重量 %以下の硫酸塩と水分を含む)と、平均粒径が1~10 μ mとなるように粉砕した水酸化リチウムを、Li/Mnのモル比が1.02/2となるように乾式もしくは湿 式で混合し、100℃で1時間乾燥した後、400~6 00℃で3時間加熱処理し、生成物を再度粉砕して、7 00℃で48時間空気中で焼成した。最終焼成物を室温 までおよそ2℃/分の速度で徐冷し、自動乳鉢で粉砕し た結果、得られた粒子は、一次粒径が 0. 5 μmであ り、二次粒子の粒径は8~20μmであった(メジアン 径で12.5μm)。 BET法表面積は粉砕条件に依存 し、 $2\sim4\,\mathrm{m}^2$ $/\mathrm{g}$ の範囲であった。生成物の構造と組 成をICPとX線回折で同定した結果、焼成物はスピネ ル結晶型構造のLi_{1.02}Mn₂ O₄ であった。Cuα線 を用いたX線回折における $2\theta=36$ の回折ピークの半 値幅はおよそ0.3であり、その強度は2θ=18.6のピークに対して28%の値であった。また結晶のa軸 の格子定数は8.22Aであった。また、焼成物中には 微量LiMnO2 が混入されていることもわかった。 焼 成物5gを100ccの純水に分散してpHを測定した 結果、8.0であった。

【0055】 (2) Li₂ Mn₄ O₉ (化合物C-2) とLi₄ Mn₅ O₁₂ (化合物C-3)

焼成条件を空気中650℃、48時間で一段の焼成とした以外は、上記の方法に従って、合成原料の混合比(Li/Mn比)を変更することによって、 $\text{Li}_2\text{Mn}_4\text{O}_9$ (化合物C-2)、および $\text{Li}_4\text{Mn}_5\text{O}_{12}$ (化合物C-3)を合成した。これらはいずれも歪んだスピネル型構造をもった結晶であり、メジアン径は Li_2Mn_4 O $_9$ が $9\,\mu$ m、 $\text{Li}_4\text{Mn}_5\text{O}_{12}$ が $2\,0\,\mu$ mであった。【 $0\,0\,5\,6$ 】(3) $\text{Li}_{\text{C}}\text{OO}_2$ (化合物C-4:正極副活物質)

 Co_3O_4 、 Co_2O_3 の混合物と炭酸リチウムをLi/Coモル比が 1.05となるように混合し、空気中で 600℃で 4時間、さらに 880℃で 8時間の焼成を行った。焼成物を自動乳鉢で粉砕した結果、得られた粒子は、粒径がメジアン径で 6μ m、BET法比表面積が 0.5m²/gであり、X線回折によって $LiCoO_2$ と同定された。上記の方法で測定した活物質のpHは 10.5であった。

(4) LiNi_{0.8} Co_{0.2} O₂ (化合物C-5:正極 副活物質)

上記の (3) に記載の原料のほかに、水酸化ニッケルを 金属源として混合し、800℃で酸素雰囲気下にて48 時間の焼成を行うことによって、LiNi_{0.8}Co_{0.2} O,を得た。

【0057】 [電極合剤シートの作製]

(1) 正極合剤シート

正極活物質前駆体原料として化合物C-1を87重量%、鱗片状黒鉛を6重量%、アセチレンブラック3重量%、結着剤としてポリテトラフルオロエチレンの水分散物3重量%とポリアクリル酸ナトリウム1重量%を混合したのち、これに水を加えて混練し、得られたスラリーを厚さ20 μ mのアルミニウムフィルムの両面に塗布して、正極合剤シートを作製した。塗布シートを乾燥、プレスした結果測定したところ、乾膜の塗布量はおよそ340 g/m^2 、塗布膜の厚みはおよそ120 μ mであった。

(2) 負極合剤シート

負極活物質前駆体として化合物A-1を86重量%、鱗片状黒鉛を6重量%、アセチレンプラック3重量%、結 着剤としてスチレンープタジエンゴムの水分散物4重量%およびカルボキシメチルセルロース1重量%を混合したのち、これに混合物に水を加えて混練し、得られたスラリーを厚さ18μmの頻フィルムの両面に塗布して、負極合剤シートを作製した。塗布シートを乾燥、プレスしたのち測定したところ、乾膜の塗布量はおよそ70g/m²、塗布膜の厚みはおよそ30μmであった。

【0058】 [シリンダ型電池の作製]

[比較電池1] 上記の正極合剤シートを35mmの幅に 裁断し、また負極合剤シートを39mmの幅に裁断し て、シートの末端にそれぞれアルミニウム、ニッケルの リード板をスポット溶接した後、露点−40℃の乾燥空 気中で150℃で2時間、脱水乾燥した。図1の電池断 面図に示すように、脱水乾燥済みの正極合剤シート

(8)、セパレータとして多孔性プロピレンフィルム(セルガード2400)(10)、脱水乾燥済みの負極合剤シート(9)、そしてセパレータ(10)の順でこれらを積層し、巻き込み機で渦巻き状に巻回した。この巻回体をニッケルメッキを施した鉄製の有底円筒型電池缶(11)(負極端子を兼ねる)に収納した。この電池缶の中に、電解質液として1モル/リットルのLiPF。(エチレンカーボネート、ブチレンカーボネート、ジメチルカーボネートの2:2:6(体積比)混合液)を注入した。正極端子を有する電池蓋(12)をガスケットを介してかしめて直径14mm高さ50mmの円筒型電池を作製した。なお、正極端子(12)は正極合剤シート(8)と、電池缶(11)とは、負極合剤シート(9)とあらかじめリード端子により接続し、電池内には安全弁(14)を設けた。

【0059】 [比較電池2~5] 正極活物質前駆体としてC-1に代えて、C-2、C-3、およびC-1とC-4との2:1(重量比)混合物、そしてC-1とC-5との2:1(重量比)混合物を用い、また負極活物質前駆体としてA-1に代えてA-2、A-3を用い、これらの正極合剤シートと負極合剤シートとを任意に組み合わせて巻き回した以外は、比較電池1の場合と同様な方法で電池を作製し、それぞれ表1に示した正極/負極の構成をもつ比較電池2~5を得た。

【0060】 [本発明の電池前駆体6~10] 厚さ30 μmのLi金属箔を幅20mm、長さ320mmに裁断 し(重量としておよそ100mg)、更に長さ方向を4 mmの均一幅の断片に分断した後、露点-60℃の乾燥 空気中で、上記の正極活物質前駆体原料C-1~3を塗 布した正極合剤シートの両面の活物質層表面に、均一な 間隔で圧着ローラを用いて付着させた。また同じLi金 展箔を幅14mm、長さ320mmに裁断し(重畳とし ておよそ70mg)、上記の正極活物質前駆体原料C-1とC-4との混合物およびC-1とC-5との混合物 を塗布した正極合剤シートの両面の活物質層表面に圧着 ローラを用いて付着させた。このようにLi金属箔を担 持した正極合剤シートを、上記の比較電池の作製方法と 同様な方法で電池缶に収容して、それぞれ表1の正極/ 負極の構成に示したような本発明に従うリチウムイオン 二次電池前駆体6~10を作製した。

【0061】 [本発明の電池前駅体11~15] 正極合 剤シートの作製において、活物質前駅体層の表面に、鱗片状黒鉛と酸化アルミニウムの1:4 (重量比) からなる混合物の保護層 (平均厚さ5μm) を塗設した以外は、上記の電極合剤シート作製の方法と同様な方法で、各種活物質前駅体を塗設した表面保護層付きの正極合剤シートを作製した。この正極合剤シートの表面保護層の上に、上記の電池6~10と同様に、厚さ30μmのLi金属箔(幅20mm、長さ320mm、重量としておよそ100mg)を、付着させた。このようにLi金属箔を担持した正極合剤シートを、上記の比較電池の作製の方法と同様な方法で電池缶に収容して、それぞれ表1に示す正極/負極の構成を持つ本発明に従うリチウムイオン二次電池前駆体11~15を作製した。

【0062】 [本発明の電池前駅体16~17] 正極合 剤シートの末端の活物質前駅体が盗股されていないアルミニウムフィルム (集電体) の両面に、導電性カーボンを厚さ10μmに真空蒸着し、その両面の上に厚さ200μmのLi金属箔100mgを圧着ローラを使って付着させることにより、Li金属を集電体上に担持した正極合剤シートを作製した。この正極合剤シートを使って、それぞれ表1に示す正極/負極の構成を持つ、本発明に従うリチウムイオン二次電池前駅体16~17を作製した。

【0063】 [本発明のリチウムイオン二次電池6~1

7の製造] Li金属を担持した正極合剤シートを組み込んだ上記の本発明の各電池前駆体は、充放電試験に先立って40℃のもとでエージングを実施して、正極部位で自己放電を起こさせて、正極合剤シート上の $Li金属からリチウムイオンを正極活物質前駆体に挿入させた。なお、電池前駆体<math>16\sim17$ についてはエージング1日間とし、電池前駆体 $6\sim15$ についてはエージング1日間とした。

【0064】 [本発明の電池前駆体18~22] 厚さ35μmのLi金属箔を、幅20mm長さ320mmに裁断し(重量としておよそ100mg)、露点-60℃の乾燥空気中で、前記の負極活物質前駆体A-1~3をそれぞれ塗布した負極合剤シートの両面の活物質前駆体層の表面に圧着ローラーを用いて付着させた。このようにしてLi金属箔を担持した負極合剤シートを、上記の比較電池の作製方法と同様な方法で電池缶に収容して、それぞれ表1に示す正極/負極の構成を持つ、本発明に従うリチウムイオン二次電池前駆体18~22を作製した。

【0065】[本発明の電池前駆体23~27] 負極合 剤シートの作製において、活物質前駆体層の表面に、鱗片状黒鉛と酸化アルミニウムの1:4(重量比)からなる混合物の保護層(平均厚さ5μm)を塗設した、以外は、同様な方法で、各種活物質前駆体を塗設した、表面保護層付きの負極合剤シートを作製した。このシートの表面保護層の上に、上記の本発明の電池18~22と同様に、厚さ35μmのLi金属箔(幅20mm長さ320mm、重量としておよそ100mg)を付着させた。このようにLi金属箔を担持した負極合剤シートを、上記の比較電池の作製の方法と同様な方法で電池缶に収容して、それぞれ表1に示す正極/負極の構成を持つ本発明に従うリチウムイオン二次電池前駆体23~27を作製した。

【0066】 [本発明の電池前駆体28~29] 負極合 剤シートの末端の活物質前駆体の塗設されていない頻集 電体の両面に、厚さ200μmのLi金属箔100mg を圧着ローラを使って付着させることにより、Li金属を集電体上に担持した負極合剤シートを作製した。この 負極合剤シートを使って、それぞれ表1に示す正極/負

極の構成を持つ本発明のリチウムイオン二次電池前駆体 28~29を作製した。

【0067】 [本発明のリチウムイオン二次電池18~29の製造] 上記のLi金属を担持した負極合剤シートを組み込んだ上記の電池前駆体は、それぞれ室温で5時間放置後、外部電極回路を設置し、0.2Aの一定電流のもとで放電を行い、最終的に電池の開放起電力が0.2 Vとなるまでさらに低電流で放電を行った。放電処理をした電池はその後、充放電サイクル試験に先立って40℃のもとで2日間エージングを実施した。このエージングの工程で、負極上に残存するLiの全ては負極活物質前駆体の中に挿入されたことを確認した。

【0068】 [リチウムイオン二次電池の評価] 本発明のリチウムイオン二次電池前駆体6~17を、充電終止電圧4.2V、放電終止電圧2.7V、充放電電流を1mA/cm²のもとで繰り返し充放電させて充電容量を評価した。本発明のリチウムイオン二次電池18~29は、充電終止電圧4.2V、放電終止電圧2.8V、充放電電流密度1mA/cm²のもとで繰り返し充放電させて充電容量を評価した。

【0069】上記の比較電池および本発明の電池の正極 /負極の構成と、放電の容量および放電の平均電圧の関 係をそれぞれ以下の表1に示す。なお、表2は、表1で 示した構成の電池前駆体の一部について、エージング終 了後の充電操作前に電池を分解し、Liとの反応が終了 した正極活物質前駆体中のリチウムマンガン酸化物の組 成と構造とをICP発光分析法とX線回折で分析した結 果と、電池前駆体を4. 2 Vまで予備充電して活性化し た後、電池を繰り返し充放電させたときの正極活物質中 のリチウムマンガン酸化物活物質の組成の範囲を示した ものである。これらの電池について、正極の活性化はい ずれもリチウムマンガン酸化物の活物質組成が、Li o. os-o. 10 Mn₂ O₄ の範囲となる程度の深度まで実施 した。活性化の深度が浅く、Li_{>:0.30} Mn₂ O₄ の組 成範囲となる場合は電池の放電容量は30%以上の大幅 な減少となった。

【0070】 【表1】

表 1 電池の放電容量と平均放電電圧の比較

電池番号	正極活物質 前駆体(原料)	-	負極活物質 前駆体	放電容量 (Ah)	放電電圧 (V)
比較電池					
1	C-1	(なし)	A-1	0.42	3.65
2	C-2	(なし)	A-3	0.43	3.65
3	c-3	(なし)	A-2	0.44	3.66
4	C - 1/4	(なし)	A-1	0.50	3. 55

	d (正極Li金)				
6		(活物質層上)			3.65
7		(活物質層上)		0.47	3.65
8		(活物質層上)		0.49	3.65
9	C-1/4	(活物質層上)	A-1	0.55	3. 55
10	C-1/5	(活物質層上)	A-1	0.56	3.50
1 1	C-1	(保護層上)	A-1	0.51	3.66
1 2	C-2	(保護層上)	A-3	0.48	3.66
13	C-3	(保護層上)	A-2	0.50	3.66
14	C-1/4	(保護層上)	A-1	0.56	3.56
1 5	C-1/5	(保護層上)	A-1	0.56	3.51
16	C-1	(集電体上)	A-1	0.49	3.65
1 7	C-1/5	(集電体上)	A-1	0.53	3. 50
発明電流	也(負極Li金	属担持)			
18	C-1	(活物質層上)	A-1	0.50	3.65
19	C-2	(括物質層上)	A-3	0.48	3.65
2 0	C-3	(活物質層上)	A-2	0.49	3.65
2 1	C-1/4	(活物質層上)	A-1	0.54	3. 55
	C-1/5	(括物質層上)	A-1	0.55	3.52
22	C-1	(保護層上)	A-1	0.51	3.65
2 2 2 3	0 1	/m=#=== ()	A 0	0.47	3.66
	C-2	(保護層上)	A-3		
2 3		(保護層上) (保護層上)		0.50	3.66
2 3 2 4	C-2 C-3		A-2	0.50 0.55	
2 3 2 4 2 5	C-2 C-3 C-1/4	(保護層上)	A-2 A-1		
2 3 2 4 2 5 2 6	C-2 C-3 C-1/4	(保護層上) (保護層上) (保護層上)	A-2 A-1 A-1	0.55	3. 56 3. 50

[0071]

【表2】 表2

正極の自己放電反応後 (正極活性化前) のリチウムマンガン 酸化物の構造と充放電中のリチウムマンガン酸化物の組成

電池番号	自己放電後の組成式	充放電中の組成の範囲	
6	Li _{1.7} Mn ₂ O ₄	Li _{0.1-0.85} Mn ₂ O ₄	_
7	Li _{1.6} Mn ₂ O ₄	Li _{0.1-0.83} Mn ₂ O ₄	
8	Li _{1.8} Mn ₂ O ₄	Li _{0.1-0.84} Mn ₂ O ₄	
14	Li _{1.7} Mn ₂ O ₄	Li _{0.1-0.90} Mn ₂ O ₄	
1 5	Li _{1.7} Mn ₂ O ₄	Li _{0.1-0.85} Mn ₂ O ₄	
16	Li _{1.7} Mn ₂ O ₄	Li _{0.1-0.85} Mn ₂ O ₄	
23	Li _{1.7} Mn ₂ O ₄	Li _{0.1-0.86} Mn ₂ O ₄	
24	Li _{1.6} Mn ₂ O ₄	Li _{0.1-0.83} Mn ₂ O ₄	
2 5	L i 1.8 Mn ₂ O ₄	L i _{0. 1-0. 85} Mn ₂ O ₄	

【0072】表1の結果から、本発明に従ってLi金属を担持したリチウムマンガン酸化物から合成した正極活

物質前駆体の合剤シートを用いて製品電池容器内で製造 したリチウムイオン二次電池、および本発明に従ってL i 金属を担持した金属酸化物から合成された負極活物質前駆体の合剤シートを用いて製品電池容器内で製造したリチウムイオン二次電池はいずれも、従来法で作製したリチウムマンガン酸化物からなる正極活物質を用いるリチウムイオン二次電池に比較して、放電容量の増加において優れることがわかる。また本発明により、放電容量と放電電圧のいずれか、あるいは両者で特に優れたリチウムイオン二次電池が得られることがわかる。

[0073]

【発明の効果】本発明により、放電容量あるいは放電電 圧のうちの少なくとも一方が大きいリチウムイオン二次 電池が、安全性高く、また安価な製造コストで容易に得 ることができる。

【図面の簡単な説明】

【図1】実施例で作製したシリンダー型リチウムイオン 二次電池の断面図を示したものである。

【符号の説明】

- 8 正極シート
- 9 負極シート
- 10 セパレータ
- 11 電池缶
- 12 電池蓋
- 13 電解質
- 14 安全弁

【図1】

