PERMUTACJE

Permutacją zbioru n-elementowego X nazywamy każdą wzajemnie jednoznaczną funkcję $f:X\to X$

$$|Bij(X, X)| = n!$$
, dla $|X| = n$

n	<i>n</i> !
0	1
1	1
2	2
3	6
4	24
5	120
6	720
7	5040
8	40320
9	362880
10	3628800
11	39916800
12	479001600
13	6227020800
14	87178291200
15	1307674368000
16	20922789888000
17	355687428096000
18	6402373705728000
19	121645100408832000
20	2432902008176640000

Przykład permutacji

dla
$$X = \{a, b, c, d\}$$
: $f(a) = d, f(b) = a, f(c) = c, f(d) = b$

Zapis permutacji w postaci tablicy:
$$f = \begin{pmatrix} a & b & c & d \\ d & a & c & b \end{pmatrix},$$

w górnym wierszu - elementy zbioru X w dowolnej kolejności, w dolnym wierszu - pod elementem $x \in X$ wypisujemy f(x). Jeśli uporządkujemy elementy w górnym wierszu tablicy, to danej permutacji odpowiada jednoznacznie wektor z dolnego wiersza, składający się z elementów zbioru X: (d, a, c, b)

Zatem dowolny wektor n-elementowy, zawierający <u>różne</u> elementy zbioru X (dla |X|=n), możemy także nazywać permutacją zbioru X.

Przyjmujemy dalej dla uproszczenia, że $X = \{1, 2, 3, ..., n\}$

 S_n - zbiór wszystkich permutacji zbioru $\{1, 2, ..., n\}$ Każdy element $f \in S_n$ identyfikujemy z wektorem $(a_1, ..., a_n)$, gdzie $a_i = f(i)$ lub zapisujemy w postaci tablicy:

$$f = \begin{pmatrix} 1 & 2 & \dots & n \\ a_1 & a_2 & \dots & a_n \end{pmatrix}$$

Definicja

Złożeniem permutacji f i g nazywamy permutację fg, taką że $fg\left(i\right)=f\left(g(i)\right)$

(jest to po prostu złożenie funkcji, gdzie g jest funkcją wewnętrzną)

Przykład złożenia permutacji

$$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 3 & 2 & 1 & 4 \end{pmatrix}, \qquad g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 5 & 3 & 1 & 4 \end{pmatrix}$$
$$f g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 2 & 5 & 1 \end{pmatrix}$$

Definicja

Permutację $e = \begin{pmatrix} 1 & 2 & \dots & n \\ 1 & 2 & \dots & n \end{pmatrix}$ nazywamy **permutacją identycznościową**

Permutacja $e \in S_n$ jest elementem neutralnym dla operacji złożenia:

$$\forall f \in S_n : ef = fe = f$$

Definicja

Permutacją odwrotną do $f \in S_n$ nazywamy permutację $f^{-1} \in S_n$, taką że: $f^{-1}f = e$

$$f = \begin{pmatrix} & \dots & i & \dots \\ & \dots & j & \dots \end{pmatrix} \qquad f^{-1} = \begin{pmatrix} & \dots & j & \dots \\ & \dots & i & \dots \end{pmatrix}$$

Dla każdej permutacji f zachodzi: $f^{-1}f = f f^{-1} = e$

$$f^{-1}f = ff^{-1} = e$$

Rozważmy trzy dowolne permutacje $f, g, h \in S_n$:

$$f = \begin{pmatrix} \dots & k & \dots \\ \dots & l & \dots \end{pmatrix}, g = \begin{pmatrix} \dots & j & \dots \\ \dots & k & \dots \end{pmatrix}, h = \begin{pmatrix} \dots & i & \dots \\ \dots & j & \dots \end{pmatrix}$$

$$f(gh) = \begin{pmatrix} \dots & i & \dots \\ \dots & l & \dots \end{pmatrix} \quad i \quad (fg)h = \begin{pmatrix} \dots & i & \dots \\ \dots & l & \dots \end{pmatrix}$$

zatem zachodzi

$$f(gh) = (fg)h$$
 (łączność złożenia)

Dla dowolnych permutacji $f, g, h \in S_n$ spełnione są zależności:

$$f(gh) = (fg)h$$

$$fe = ef = f$$

$$f^{-1}f = ff^{-1} = e$$

Zbiór permutacji S_n jest zatem **grupa** ze względu na działanie złożenia (grupa symetryczna stopnia *n*)

Dowolny podzbiór $G \subseteq S_n$ spełniający warunki:

$$f, g \in G \Rightarrow fg \in G$$

 $f \in G \Rightarrow f^{-1} \in G$

nazywany jest **grupą permutacji stopnia** *n*

Przykłady grup permutacji stopnia 3

$$G_{1} = \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \right\},$$

$$G_{2} = \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \right\}.$$

GRAFICZNA REPREZENTACJA PERMUTACJI

$$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 3 & 2 & 1 & 4 \end{pmatrix}$$

Permutacja przedstawiana jest w formie **grafu skierowanego** o zbiorze wierzchołków $X = \{1, ..., n\}$, w którym:

- z wierzch. $l \in X$ wychodzi dokładnie jeden łuk do wierzch. f(l),
- do wierzch. $l \in X$ dochodzi dokładnie jeden łuk z wierzch. $f^{-1}(l)$.

Graf każdej permutacji składa się z pewnej liczby fragmentów, z których każdy jest zamkniętą skierowaną drogą, prowadzącą przez pewien podzbiór wierzchołków grafu.

Definicja

Permutacją $f \in S_n$ nazywamy **cyklem** wyznaczonym przez ciąg różnowartościowy $(a_{i_1}, a_{i_2}, ..., a_{i_k})$ o wyrazach ze zbioru $\{1, ..., n\}$ dla $1 \le k \le n$, jeśli:

- $f(a_{i_1}) = a_{i_2}$, $f(a_{i_2}) = a_{i_3}$, ..., $f(a_{i_k}) = a_{i_1}$
- $f(a_j) = a_j$ dla $j \neq i_1, i_2, ..., i_k$

Cykl oznaczamy symbolem $[a_{i_1}, a_{i_2}, ..., a_{i_k}]$ (${\bf k}$ jest jego długością) np.

$$f_1 = [1, 5, 4]$$
 i $f_2 = [2, 3]$

ROZKŁAD PERMUTACJI NA CYKLE

Każdą permutację $f \in S_n$ można przedstawić w postaci złożenia m rozłącznych cykli ($1 \le m \le n$) o długościach $n_1, ..., n_m$

$$(n_1 + ... + n_m = n).$$

Przykład rozkładu permutacji na cykle

$$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 3 & 2 & 1 & 4 \end{pmatrix}$$

$$f = f_1 f_2$$
, gdzie $f_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 2 & 3 & 1 & 4 \end{pmatrix}$ i $f_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 2 & 4 & 5 \end{pmatrix}$

Zapisujemy: $f_1 = [1, 5, 4]$, $f_2 = [2, 3]$ i f = [1, 5, 4] [2, 3]

Definicja

Mówimy, że permutacja jest **typu** $(\lambda_1, \lambda_2, ..., \lambda_n)$, jeśli zawiera w rozkładzie na rozłączne cykle dokładnie λ_i cykli o długości i dla i = 1, 2, ..., n.

Typ permutacji często zapisujemy w postaci:

$$1^{\lambda_1} 2^{\lambda_2} \dots n^{\lambda_n}$$

(symbol i^{λ_i} pomijamy w zapisie, jeśli $\lambda_i = 0$)

Przykład oznaczania typu permutacji

$$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & 5 & 1 & 4 & 2 & 3 & 6 & 9 & 8 \end{pmatrix}$$

(1 krok) rozkład na cykle: f = [1, 7, 6, 3][2, 5][4][8, 9];zatem typ permutacji: $1^1 2^2 4^1$

Definicja

Parę (a_i, a_j) , dla $i < j \le n$, nazywamy **inwersją** permutacji $(a_1, a_2, ..., a_n)$, jeśli $a_i > a_j$.

Liczbę wszystkich inwersji w permutacji $f \in S_n$ oznaczamy I(f)

Definicja

Znakiem permutacji $f \in S_n$ nazywamy liczbę $sgn(f) = (-1)^{I(f)}$.

Definicja

Permutację $f \in S_n$ nazywamy **parzystą**, jeśli sgn(f) = 1, albo **nieparzystą**, jeśli sgn(f) = -1.

Przykład wyznaczania znaku permutacji

$$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 3 & 2 & 1 & 4 \end{pmatrix}$$

inwersje f: (5,3), (5,2), (5,1), (5,4), (3,2), (3,1), (2,1);

zatem I(f) = 7; znak permutacji $sgn(f) = (-1)^7 = -1$.

$$g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 4 & 5 & 2 \end{pmatrix}$$

inwersje g:(3,1),(3,2),(4,2),(5,2);

zatem I(g) = 4; znak permutacji sgn $(g) = (-1)^4 = 1$.

Definicja

Permutację, która jest cyklem o długości 2, nazywamy transpozycją.

Przykład transpozycji

$$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 5 & 4 & 3 \end{pmatrix} = [3, 5]$$

Lemat

Dowolną permutację $f \in S_n$ można przedstawić w postaci złożenia I(f) transpozycji sąsiednich elementów

(tzn. transpozycji postaci [i, i+1])

Przykład rozkładu na transpozycje

$$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 4 & 5 & 2 \end{pmatrix}, I(f) = 4 \text{ i } f = [2, 3][3, 4][4, 5][1, 2]$$

Lemat

Znak dowolnego cyklu o długości k jest równy $(-1)^{k-1}$

Wniosek

Każda transpozycja jest permutacją nieparzystą.

Lemat

Dla dowolnych permutacji $f, g \in S_n$ $sgn(fg) = sgn(f) \cdot sgn(g)$.

Przykład wyznaczania znaku permutacji z zastosowaniem lematu

$$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & 5 & 1 & 4 & 2 & 3 & 6 & 9 & 8 \end{pmatrix}$$

rozkład na rozłączne cykle:
$$f = [1, 7, 6, 3][2, 5][4][8, 9]$$

znaki poszczególnych cykli:

$$sgn([1, 7, 6, 3]) = (-1)^3 =$$

-1,

$$sgn([2, 5]) = (-1)^1 = -1, sgn([4]) = (-1)^0 = 1, sgn([8, 9]) = (-1)^1 = -1$$

zatem znak permutacji
$$\operatorname{sgn}(f) = (-1) \cdot (-1) \cdot 1 \cdot (-1) = -1$$

i permutacja jest nieparzysta

Twierdzenie

Znak dowolnej permutacji $f \in S_n$, która jest typu $1^{\lambda_1} 2^{\lambda_2} \dots n^{\lambda_n}$ wyraża się wzorem

$$\operatorname{sgn}(f) = (-1)^{\frac{\lfloor n/2 \rfloor}{\sum \lambda_{2j}}}$$

Przykład wyznaczania znaku permutacji na podstawie twierdzenia

$$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & 5 & 1 & 4 & 2 & 3 & 6 & 9 & 8 \end{pmatrix}; \qquad n = 9, \lfloor n/2 \rfloor = \lfloor 4,5 \rfloor = 4$$

rozkład na cykle: f = [1, 7, 6, 3][2, 5][4][8, 9]

typ permutacji: $1^1 2^2 4^1$

$$sgn(f) = (-1)^{j=1} = (-1)^{\lambda_2 + \lambda_4 + \lambda_6 + \lambda_8} = (-1)^{2+1} = -1$$

i permutacja jest nieparzysta.

PODZBIORY ZBIORU

 $X = \{x_1, ..., x_n\},$ $\mathbb{P}(X)$ - zbiór wszystkich podzbiorów zbioru X

dla dowolnego podzbioru $Y \in \mathbb{P}(X)$ wyznaczamy jego **wektor charakterystyczny** $\xi(Y) = (b_1, b_2, ..., b_n)$ według wzoru:

$$b_i = \begin{cases} 1 & \text{jeśli } x_i \in Y \\ 0 & \text{jeśli } x_i \notin Y \end{cases}, \quad \text{dla } i = 1, ..., n$$

 $(\xi - \operatorname{grecka} \operatorname{litera} ksi)$

- dowolny wektor $(b_1, b_2, ..., b_n)$, gdzie $b_i \in \{0, 1\}$, jednoznacznie wyznacza pewien podzbiór zbioru X
- wektor charakterystyczny może być utożsamiony z funkcją

$$f: \{1, 2, ..., n\} \to \{0, 1\} \implies |\mathbb{P}(X)| = 2^n$$

Liczba wszystkich podzbiorów zbioru n-elementowego wynosi 2^n

Wyznaczanie wszystkich podzbiorów zbioru X

1 sposób:

wystarczy zauważyć, że wektorowi charakterystycznemu ($b_1, ..., b_n$), gdzie $b_i \in \{0, 1\}$, odpowiada liczba z przedziału [$0; 2^n - 1$]

Przykład

$$X = \{ a, b, c, d, e \}, n = 5, Y = \{ b, d, e \} \subseteq X,$$

$$\xi(Y) = (\mathbf{0}, \mathbf{1}, \mathbf{0}, \mathbf{1}, \mathbf{1})$$

$$\updownarrow$$

$$\mathbf{01011}_{(2)} = \mathbf{0} \cdot 2^4 + \mathbf{1} \cdot 2^3 + \mathbf{0} \cdot 2^2 + \mathbf{1} \cdot 2^1 + \mathbf{1} \cdot 2^0 = 8 + 2 + 1 = \mathbf{11}_{(10)} \in [0; 31]$$

Zatem wypisując po kolei wszystkie liczby z przedziału $[0; 2^n - 1]$ w systemie dwójkowym można wskazać wszystkie podzbiory zbioru n-elementowego.

2 sposób (binarny kod Gray'a rzędu n):

kod rzędu n jest ciągiem n-elementowych wektorów binarnych o długości 2^n , w którym każdy kolejny wektor różni się od poprzedniego tylko jedną współrzedną.

Dla dowolnego naturalnego $n \ge 1$ kod Gray'a można wyznaczać rekurencyjnie :

• dla n = 1 ciąg składa się z dwoch jednoelementowych wektorów binarnych:

$$C_1 = (0)$$
 i $C_2 = (1)$

• jeśli dla n > 1 mamy wyznaczony ciąg n-elementowych wektorów binarnych C_1 , C_2 , ..., C_m ($m = 2^n$), w których dwa sąsiednie wektory różnią się dokładnie jedną współrzędną, to tworzymy ciąg wektorów binarnych (n+1)-elementowych według schematu: $(C_1, 0), (C_2, 0), ..., (C_{m-1}, 0), (C_m, 0), (C_m, 1), (C_{m-1}, 1), ..., (C_1, 1)$

Przykł	ad								
n = 1	:	0	1						
n = 2	:	00	10	11	01				
n = 3	:	000	100	110	010	011	111	101	001
n = 4	:	0000	1000	1100	0100	0110	1110	1010	0010
		0011	1011	1111	0111	0101	1101	1001	0001
<i>n</i> = 5	:	00000	10000	11000	01000	01100	11100	10100	00100
		00110	10110	11110	01110	01010	11010	10010	00010
		00011	10011	11011	01011	01111	11111	10111	00111
itd.		00101	10101	11101	01101	01001	11001	10001	00001

PODZBIORY k-ELEMENTOWE

$$X = \{ x_1, ..., x_n \}$$

Przyjmijmy dla dowolnego naturalnego k oznaczenie:

 $\binom{n}{k}$ - liczba wszystkich podzbiorów k-elementowych zbioru n-elementowego (współczynnik dwumianowy)

Symbol $\binom{n}{k}$ występuje w tzw. wzorze dwumianowym:

$$(x+y)^n = \sum_{i=0}^n \binom{n}{i} x^i y^{n-i}$$

Twierdzenie

$$\binom{n}{k} = \frac{n^{\underline{k}}}{k!} = \frac{n!}{k!(n-k)!} = \frac{n(n-1)...(n-k+1)}{1 \cdot 2 \cdot ... \cdot k}$$

Tożsamości spełnione przez współczynniki dwumianowe:

$$\sum_{i=0}^{n} \binom{n}{i} = 2^{n}$$

$$\sum_{i=0}^{n} \binom{n}{i} i = n 2^{n-1}$$

$$\binom{n}{k} = \binom{n}{n-k}$$

$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$$

W tzw. trójkącie Pascala *i*-ty wiersz zawiera kolejno $\binom{i}{0}$, $\binom{i}{1}$, ..., $\binom{i}{i}$

	$\binom{n}{k}$													
	k = 0	1	2	3	4	5	6	7	8	9	10	11	12	
n = 0	1	0	0	0	0	0	0	0	0	0	0	0	0	
1	1	1	()	0	()	0	()	0	()	0	0	0	0	
2	1	2	1	()	0	0	()	0	()	0	0	0	0	
3	1	3	3	1	()	0	()	0	0	0	0	0	0	
4	1	4	6	4	1	0	()	0	0	0	0	0	0	
5	1	5	10	10	5	1	0	0	0	0	0	0	0	
6	1	6	15	20	15	6	1	0	0	0	0	0	0	
7	1	7	21	35	35	21	7	1	0	0	0	0	0	
8	1	8	28	56	70	56	28	8	1	0	0	()	0	
9	1	9	36	84	126	126	84	36	9	1	0	0	()	
10	1	10	45	120	210	252	210	120	45	10	1	0	0	
11	1	11	55	165	330	462	462	330	165	55	11	1	0	
12	1	12	66	220	495	792	924	792	495	220	66	12	1	Ĺ
														Γ_