Samlefil for alle data til prøveeksamen

Filen 1A.txt

Perioden P er 267.8 millioner år

Filen 1B/Oppgave1B_Figur_A.png

Figure 1: Figur fra filen 1B/Oppgave1B_Figur_A.png

$Filen~1B/Oppgave1B_Figur_B.png$

Figure 2: Figur fra filen 1B/Oppgave1B_Figur_B.png

$Filen~1B/Oppgave1B_Figur_C.png$

Figure 3: Figur fra filen 1B/Oppgave1B_Figur_C.png

$Filen~1B/Oppgave1B_Figur_D.png$

Figure 4: Figur fra filen 1B/Oppgave1B_Figur_D.png

Filen 1B/Oppgave1B_Figur_E.png

Figur E 658.15 658.12 658.10 Bølgelengde (nm) 658.08 658.05 658.03 658.00 657.98 10 20 0 30 40 Periode (år)

Figure 5: Figur fra filen 1B/Oppgave1B_Figur_E.png

Filen 1D.txt

Stjerna A: Tilsynelatende visuell størrelseklasse m
-V = 10.06, tilsynelatende blå størrelseklass $m_B=12.32$

Stjerna B: Tilsynelatende visuell størrelseklasse m
_V = 10.06, tilsynelatende blå størrelseklass $m_B = 11.32$

Stjerna C: Tilsynelatende visuell størrelseklasse m $_{\text{-}}\mathrm{V}=4.18,$ tilsynelatende

blå størrelseklass m_B = 6.44

Stjerna D: Tilsynelatende visuell størrelseklasse m
_V = 4.18, tilsynelatende blå størrelseklass $m_B = 5.44$

Filen 1E.txt

For stjerne 1 sin bane om massesenteret er elliptisiteten e=0.90 og store halvakse a=64.77 AU.

For stjerne 2 sin bane om massesenteret er elliptisiteten e=0.90 og store halvakse a=88.95 AU.

Filen 1F.txt

Ved bølgelengden 637.88 nm finner du størst fluks

$Filen~1G/Oppgave1G_Figur_A.png$

Figure 6: Figur fra filen 1G/Oppgave1G_Figur_A.png

$Filen~1G/Oppgave1G_Figur_B.png$

Figure 7: Figur fra filen 1G/Oppgave1G_Figur_B.png

$Filen \ 1G/Oppgave1G_Figur_C.png$

Figure 8: Figur fra filen 1G/Oppgave1G_Figur_C.png

$Filen~1G/Oppgave1G_Figur_D.png$

Figure 9: Figur fra filen 1G/Oppgave1G_Figur_D.png

Filen 1G/Oppgave1G_Figur_E.png

Figur E 2.90 2.80 Tilsynelatende størrelsklasse mv 2.70 2.60 2.50 2.40 2.30 ź ò 4 6 8 10 12 14 Observasjonstid (dager)

Figure 10: Figur fra filen 1G/Oppgave1G_Figur_E.png

Filen 1I.txt

Gass-sky A har masse på 16.00 solmasser, temperatur på 59.90 Kelvin og tetthet 2.45e-21 kg per kubikkmeter

Gass-sky B har masse på 10.20 solmasser, temperatur på 79.50 Kelvin og tetthet 1.22e-21 kg per kubikkmeter

Gass-sky C har masse på 18.60 solmasser, temperatur på 56.40 Kelvin og

tetthet 2.71e-21 kg per kubikkmeter

Gass-sky D har masse på 22.00 solmasser, temperatur på 67.60 Kelvin og tetthet 2.02e-21 kg per kubikkmeter

Gass-sky E har masse på 25.60 solmasser, temperatur på 12.40 Kelvin og tetthet 9.28e-21 kg per kubikkmeter

Filen 1J.txt

STJERNE A) hele stjerna er elektrondegenerert

STJERNE B) stjernas energi kommer hovedsaklig fra fusjon av magnesium i sentrum

STJERNE C) stjernas energi kommer fra vibrerende molekyler og ikke fra fusjon

STJERNE D) stjerna har et degenerert heliumskall

STJERNE E) stjernas overflate består hovedsaklig av helium

Filen 1L.txt

Stjerne A har spektralklasse B9 og visuell tilsynelatende størrelseklasse m_V = 6.68

Stjerne B har spektralklasse M1 og visuell tilsynelatende størrelseklasse m_V = 2.47

Stjerne C har spektralklasse A4 og visuell tilsynelatende størrelseklasse m_V = 3.42

Stjerne D har spektralklasse G6 og visuell tilsynelatende størrelseklasse m_V

= 5.83

Stjerne E har spektralklasse M4 og visuell tilsynelatende størrelseklasse m_V = 8.94

Filen 1P.txt

Alle partiklene har hastighetskomponent kun langs synsretningen som er enten $100~\rm m/s$ mot deg eller fra deg (like mange i hver retning)

$Filen~2A/Oppgave 2A_Figur 1.png$

i

ź

3

5

x-posisjon (buesekunder)

9

10

Figure 11: Figur fra filen 2A/Oppgave2A_Figur1.png

$Filen~2A/Oppgave 2A_Figur 2.png$

Figure 12: Figur fra filen 2A/Oppgave2A_Figur2.png

$Filen\ 2B/Oppgave 2B_Figur\ 4.png$

Figure 13: Figur fra filen 2B/Oppgave2B_Figur 4.png

4.png

Filen 2B/Oppgave2B_Figur3.png

Figur 3 10 9 8 y-posisjon (buesekunder) 7 6 5 3 2 1 i ż ġ ż 5 10 x-posisjon (buesekunder)

Figure 14: Figur fra filen 2B/Oppgave2B_Figur3.png

Filen 2C.txt

Avstand til solen er 0.4190000000000003907985 AU.

Tangensiell hastighet er 52466.877227886754553765 m/s.

Filen 2D.txt

Kometens avstand fra jorda i punkt 1 er r1=2.034 AU.

Kometens avstand fra jorda i punkt 2 er r2=8.290 AU.

Kometens tilsynelatende størrelseklasse i punkt 1 er m1=19.226.

Filen 3A.txt

Romskipets hastighet langs x-aksen er 0.9684 ganger lyshastigheten.

Tiden mellom utsendelse av strålene er 0.00103 sekunder målt i bakkesystemet.

Filen 3B.txt

Avstanden mellom de to romskipene ved første utsendelse er D=690.0 km.

Romskip2 sin hastighet langs x-aksen er 0.9925 ganger lyshastigheten.

Filen 3E.txt

Bølgelengden målt i romskipet som sender ut er 614.70 nm.

Filen 4A.txt

Stjernas masse er 3.85 solmasser.

Stjernas radius er 0.65 solradier.

Filen 4C.png

Figur 4C 1.6500 1.5000 1.3500 Sannsynlighetstetthet i 10⁻⁴ % 1.2000 1.0500 0.9000 0.7500 0.6000 0.4500 0.3000 0.1500 0.0000 -750 -500 -250 250 500 -1000 750 1000 Hastighet i x-retning (km/s)

Figure 15: Figur fra filen 4C.png

Filen 4D.txt

Kun hvis du ikke fikk til forrige oppgave, skal du bruke denne temperaturen her: 25.05 millioner K

Filen 4G.txt

Massen til det sorte hullet er 2.05 solmasser.

r-koordinaten til det innerste romskipet er r $=6.31~\mathrm{km}.$

r-koordinaten til det innerste romskipet er
r $=9.29~\mathrm{km}.$