Ayudantía 5 - Mat270

28 de mayo de 2021

Gabriel Vergara Schifferli

Sea f(x) = cos(x). Calcular el polinomio de interpolación de Lagrange de f en los nodos $x-0=\pi/4$, $x_1=\pi/2$, $x_2=\pi$ y calcular el error de aproximación para $x\in(\pi/4,\pi)$.

Interpolador de Lagrange:

Dado un conjunto de n+1 puntos $(x_0, y_0), \dots (x_n, y_n)$, entonces el interpolador de Lagange es:

$$L(x) = \sum_{i=0}^{n} y_i I_i(x)$$

donde

$$l_i(x) = \prod_{j=0, i\neq j}^n \frac{x-x_i}{x_i-x_i}, \quad l_i(x_i) = 1 \quad \wedge \quad l_i(x_j) = 0 \quad \forall j \neq i$$

Gabriel Vergara Schifferli

Construyendo el polinomio de interpolación de Lagrange:

$$\frac{x \quad \pi/4 \quad \pi/2 \quad \pi}{f(x) \quad \frac{1}{\sqrt{2}} \quad 0 \quad -1}$$

$$L(x) = f(x_0) \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} + f(x_1) \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} + f(x_2) \frac{(x - x_1)(x - x_0)}{(x_2 - x_0)(x_2 - x_0)}$$

mas generalmente se puede resolver el problema lineal asociado a la matriz de Vandermonde definida por los puntos a interpolar.

$$L(x) = -\frac{8}{\sqrt{2}\pi^2}(x - \pi/2)(x - \pi)$$
$$+0(x - \pi/4)(x - \pi)$$
$$-\frac{8}{3\pi^2}(x - \pi/4)(x - \pi/2)$$

resolviendo la expreisón,

$$L(x) = -\frac{6\sqrt{2} + 1}{3} + \frac{6\sqrt{2} + 2}{\pi}x - \frac{20\sqrt{2}}{3\pi^2}x^2$$

5 / 17

Obtener el polinomio de interpolación de los puntos:

$$(0,-5), (1,-3) (2,1), (3,13)$$

Utilizando la base de polinomios de Newton.

Interpolador de Newton

Dado un conjunto de n+1 puntos $(x_0, y_0), \dots (x_n, y_n)$ y las diferencias divididas definidas recursivamente como:

$$y[j] = y_j, \quad y[j, \dots, k] = \frac{y[j+1, \dots, k] - y[j, \dots, k-1]}{x_k - x_i}$$

El polinomio de interpolación de Newton es:

$$p(x) = \lambda_0 + \lambda_1(x - x_0) + \lambda_2(x - x_0)(x - x_1) + \dots + \lambda_n \prod_{i=0}^n (x - x_i)$$

Gabriel Vergara Schifferli

Calculando las diferencias divididas:

$$x_0 = 0$$
 $y[0] = -5$ $y[0,1] = \frac{y[1]-y[0]}{x_1-x_0} = 2$ $y[0,1,2] = \frac{y[1,2]-y[0,1]}{x_2-x_0} = 1$
 $x_1 = 1$ $y[1] = -3$ $y[1,2] = \frac{y[2]-y[1]}{x_2-x_1} = 4$ $y[1,2,3] = \frac{y[2,3]-y[1,2]}{x_3-x_1} = 4$
 $x_2 = 2$ $y[2] = 1$ $y[2,3] = \frac{y[3]-y[2]}{x_3-x_2} = 12$
 $x_3 = 3$ $y[3] = 13$

finalmente

$$y[0,1,2,3] = \frac{y[1,2,3] - y[0,1,2]}{x_3 - x_0} = 1$$

entonces,

$$\lambda_0 = -5$$

$$\lambda_1 = 2$$

$$\lambda_2 = 1$$

$$\lambda_3 = 1$$

Por lo tanto el polinomio de interpolación de Newton queda:

$$p(x) = -5 + 2(x - 0) + 1(x - 0)(x - 1) +1(x - 0)(x - 1)(x - 2) = -5 + 3x - 2x^{2} + x^{3}$$

Construir los polinomios interpolantes para las siguientes funciones y obtenga una cota del error absoluto en el intervalo $[x_0, x_n]$.

- 1. $f(x) = \exp 2x \cos 3x$, $x = \{0, 0, 3, 0, 6\}$
- 2. $f(x) = \sin \ln x$, $x = \{2, 2, 4, 2, 6\}$
- 3. $f(x) = \ln x$, $x = \{1, 1, 1, 1, 3, 1, 4\}$

1. $f(x) = \exp 2x \cos 3x$, $x = \{0; 0, 3; 0, 6\}$ f(0) = 1, $f(0, 3) \approx 1, 13$, $f(0, 6) \approx -0, 75$, formulando el sistema matricial mediante la matriz de Vandermonde: $p(x) = a + bx + cx^2$

$$\begin{pmatrix} 1 & 0 & 0 \\ 1 & 0.3 & 0.3^2 \\ 1 & 0.6 & 0.6^2 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} f(0) \\ f(0,3) \\ f(0,6) \end{pmatrix}$$

entonces $p(x) = 1 + 3,81x - 11,22x^2$

2. f(x) = sin(ln(x)), $x = \{2; 2,4; 2,6\}$ $f(2) \approx 0,64$, $f(2,4) \approx 0,77$, $f(2,6) \approx 0,82$, formulando el sistema matricial mediante la matriz de Vandermonde: $p(x) = a + bx + cx^2$

$$\begin{pmatrix} 1 & 2 & 4 \\ 1 & 2,4 & 2,4^2 \\ 1 & 2,6 & 2,6^2 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} f(2) \\ f(2,4) \\ f(2,6) \end{pmatrix}$$

entonces
$$p(x) = -0.63 + 0.90x - 0.13x^2$$

3. f(x) = ln(x), $x = \{1; 1, 1; 1, 3; 1, 4\}$ f(1) = 0, $f(1, 1) \approx 9,53e - 2$, $f(1, 3) \approx 0,26$, $f(1, 4) \approx 0,33$, formulando el sistema matricial mediante la matriz de Vandermonde: $p(x) = a + bx + cx^2 + dx^3$

$$\begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1,1 & 1,1^2 & 1,1^3 \\ 1 & 1,3 & 1,3^2 & 1,3^3 \\ 1 & 1,4 & 1,4^2 & 1,4^3 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} = \begin{pmatrix} f(1) \\ f(1,1) \\ f(1,3) \\ f(1,4) \end{pmatrix}$$

entonces $p(x) = -1.67 + 2.53x - 1.06x^2 + 0.19x^3$

Con una función f las diferencias divididas progresiva están dadas por:

$$x_0 = 0$$
 $f[x_0]$ $f[x_0, x_1]$ $x_1 = 0,4$ $f[x_1]$ $f[x_0, x_1, x_2] = \frac{50}{7}$ $f[x_1, x_2] = 10$ $x_2 = 0,7$ $f[x_2] = 6$

Determinar los datos que faltan en la tabla.

Sea $f(x) = x^{n-1}$ para $x \ge 1$. Encontrar $f[x_1, \dots, x_n]$ y $f[x_1, \dots, x_{n+1}]$. Donde $x_1, x_2, \dots, x_{n+1} \in \mathbb{R}$, son números distintos.

