العلامة		/ 1 51 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
العلامة	مجزأة	عناصر الإجابة (الموضوع الأول)	
47		التمرين الأول (04 نقاط)	
1,75	0,5×2	$P(B) = \frac{C_8^3}{C_{11}^3} = \frac{56}{165}$ $P(A) = \frac{C_4^3 + C_5^3}{C_{11}^3} = \frac{14}{165}$ (1)	(1 (I
	0,25	$P(C) = 1 - P(B) = \frac{109}{165}$	
	0,5	$P_{A}(B) = \frac{P(A \cap B)}{P(A)} = \frac{1}{7} \qquad (\hookrightarrow$	
	0,25×4	$\begin{array}{c ccccc} x_i & 0 & 1 & 2 & 3 \\ \hline P(X = x_i) & \frac{56}{165} & \frac{84}{165} & \frac{24}{165} & \frac{1}{165} \\ \end{array}$	
1,75	0,25	$E(X) = \frac{9}{11}$	(2
	0,5	$P(X > 1) = P(X = 2) + P(X = 3) = \frac{5}{33} (= $	
0,5	0,5	$P(D) = 1 - P(\overline{D}) = 1 - \frac{A_9^3}{A_{11}^3} = \frac{27}{55}$ $P(D) = \frac{3A_2^1 \times A_9^2 + 3A_2^2 \times A_9^1}{A_{11}^3} = \frac{27}{55}$	(II)
		التمرين الثاني (04 نقاط)	
1,5	0,5×3	$S = \left\{ 1 - 2\sqrt{3} ; 1 - \sqrt{3} - i ; 1 - \sqrt{3} + i \right\}$	(I
1,5	0,5×3	$z_A - 1 = 2\left(\cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6}\right)$ $z_C - 1 = 2\left(\cos\left(-\frac{5\pi}{6}\right) + i\sin\left(-\frac{5\pi}{6}\right)\right)$ $z_B = \left(2\sqrt{3} - 1\right)\left(\cos\pi + i\sin\pi\right)$	(1 (1)
0,5	0,5	$z_D = \frac{z_1 - z_B + z_C}{1 - 1 + 1} = 1$	(2
0,5	0,5	(AB=AD=2 معيّن ($ABCD$ متوازي أضلاع و $ABCD$	(3
		التمرين الثالث (05 نقاط)	
1,75	$0,25 \times 3$ 0,75 + 0,25	$u_3=\frac{7}{5}$ و $u_2=\frac{1}{2}$ ، $u_1=2$ البرهان بالتراجع أنّه من أجل كل n من $n \leq 2$	(1

	0,5+0,75	$v_n = -\frac{1}{4} \left(-\frac{2}{3} \right)^n$, $v_{n+1} = -\frac{2}{3} v_n$ (1)	
2,25.	0,5	$u_n = \frac{5}{1 - v_n} - 4 \ (\hookrightarrow $	(2
	0,5	$\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} \left(\frac{5}{1 + \frac{1}{4} \left(-\frac{2}{3} \right)^n} - 4 \right) = 1$	
1	0,5	$S_n = -\frac{3}{20} \left(-\frac{2}{3} \right)^n \left(1 + \left(\frac{2}{3} \right)^{2025} \right)$	(2
	$0,25 \times 2$	$T_n = 405 + \frac{3}{100} \left(-\frac{2}{3} \right)^n \left(1 + \left(\frac{2}{3} \right)^{2025} \right)$ ومنه $T_n = \frac{1}{5} \left(2025 - S_n \right)$	(3
		التمرين الرابع (07 نقاط)	
0,75	0,5+0,25	g(x) < 0 فإنّ $g(1) = -1$ من أجل كلّ x من أجل كلّ $g(1)$	(I
	0,5+0,25	$\lim_{x \to +\infty} f(x) = -\infty \cdot \lim_{x \to -\infty} f(x) = +\infty (1)$	
1,75	0,25	$\lim_{x \to +\infty} \left[f(x) - (-2x+3) \right] = 0 (-2x+3)$	(1 (II
	0,75	(Δ) لمّا $(C_f): x>0$ لمّا $(C_f): x<0$ أسفل (Δ) أصفل (Δ) أصفل (Δ)	
	0,5	$f'(x) = g(x) - e^{-x+1}$ (1	
1	0,25	$x - \infty$ ب $+ \infty$ \mathbb{R} متناقصة تماما على f (ب $f'(x)$ -	(2
1	0,25	جدول التغيّرات $+\infty$ $-\infty$	(2
0,75	0,5+0,25	y = -2x + 2 : (T) معادلة ل $x = 1$ تكافئ $f'(x) = -2$	(3
1,75	0,25×2 0,75	رسم (Δ) و (T) رسم (C_f)	(4
	0,5	2 < m < 3 حلّین مختلفین لمّا $f(x) = -2x + m$ ب) تقبل المعادلة	
1	0,5	$\int_{0}^{1} x e^{-x+1} dx = e-2$:باستعمال المكاملة بالتجزئة، نجد (أ	- (5
	0,5	$A = 4(e-2) cm^2$ ومنه: $\int_0^1 (-2x+3-f(x)) dx = e-2$ (ب	(5

العلامة		عناصر الإجابة (الموضوع الثاني)			
العلام	مجزأة				
· ·		التمرين الأول (04 نقاط)			
0,5	0,5	شجرة الاحتمالات $S = \frac{\frac{3}{5} - S}{\frac{5}{5} - \overline{S}}$ $S = \frac{\frac{3}{5} - S}{\frac{2}{5} - \overline{S}}$	(1		
	0,5×3	$P(B) = 3\left(\frac{3}{5}\right)\left(\frac{2}{5}\right)^2 = \frac{36}{125} P(A) = \frac{3}{5}$ $P(C) = \left(\frac{3}{5}\right)^3 + \left(\frac{3}{5}\right)\left(\frac{2}{5}\right)^2 + 2\left(\frac{3}{5}\right)^2\left(\frac{2}{5}\right) = \frac{3}{5}$	(2		
2,25	0,25×3	$P_{C}(A) = \frac{P(A \cap C)}{P(C)} = \frac{3}{5} P(A \cap C) = \left(\frac{3}{5}\right)^{3} + \left(\frac{3}{5}\right)^{2} \left(\frac{2}{5}\right) = \frac{9}{25}$ $P_{C}(A) = P(A) P(A \cap C) = P(A) \times P(C) P(A) = P(A) \times P(C) $	(3		
	0,25	 أ) تبرير أن قيم المتغير العشوائي هي: 30- ، 10- ، 10 ، 30. 			
1,25	0,75	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	(4		
	0,25	E(X)=6 : الأمل الرياضياتي			
		التمرين الثاني (04 نقاط)			
1	0,5×2	$\overline{z+i} = \overline{z} - i$ (أيجابة: أ	(1		
1	0,5×2	$\left(\frac{1+i}{1-i}\right)^{2024} = (i)^{2024} = 1$ (أيجابة: أ	(2		
1	0,5×2	$S_n = 2 \ln 2 (1 + 2 + \dots + n) = n(n+1) \ln 2$ (الإجابة: ب)	(3		
1	0,5×2	$Z = \cos\left(\frac{\pi}{2} - \frac{\pi}{8}\right) + i\sin\left(\frac{\pi}{2} - \frac{\pi}{8}\right) = \cos\frac{3\pi}{8} + i\sin\frac{3\pi}{8} (\Rightarrow i\sin\frac{3\pi}{8})$	(4		
	.1	التمرين الثالث (05 نقاط)	1		
1,5	0,25×4	$ \begin{array}{c cccc} x & 2 & +\infty \\ \hline f'(x) & - & \\ f(x) & \frac{3}{4} & \\ \end{array} $	(1		
	0,5	$\frac{1}{2} < f(x) \le \frac{3}{4}$ فإنّ $x \in [2; +\infty[$ کلّ کارّ الجالت الجارت البتات الجالت المعالم المحالت الجالت المالت الجالت الجالت الجالت الجالت الجالت الجالت الجالت الجالت الجالت المالت الجالت	-		

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
	2 .	0,75	$\frac{u_{n+1}}{u_n} \le \frac{3}{4}$ ومنه $\frac{u_{n+1}}{u_n} = f(n)$ فإنّ $n \ge 2$ ، $\mathbb N$ من أجل كُلّ n من أجل كُلّ من أجل كُلّ أ	
		0,75+0,25	$u_n \le \frac{1}{2} \left(\frac{3}{4}\right)^{n-2} : 2 \le n$ بر هان انّه من اجل کل n من n حیث n	(2
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		0,25		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,5	0,5+1	$n=10$ تعني: $S_n = \frac{511}{1024}$ ، $S_n = \frac{1}{2} \left(1 - \left(\frac{1}{2} \right)^{n-1} \right)$ (ج	
$0,5 \qquad 0,5 \qquad \lim_{x \to 0} f(x) = +\infty g \lim_{x \to +\infty} f(x) = -\infty \qquad (1)(\Pi x) = 0$ $0,5 \qquad f'(x) = \frac{-2g(x)}{x^3} (1) = 0$ $0,25 \qquad f'(x) = 0 = 0$ $0,25 \qquad (C_f) = 0 = 0$ $0,35 \qquad 0,5 \qquad 0,5 \qquad 0 = 0$ $0,5 \qquad 0,5 \qquad 0,5 = 0$ $0,5 \qquad 0 < m < \frac{1}{2e} : (T) \qquad \frac{lmx}{x^2} = m \qquad (d) \qquad (d) = 0$ $0,5 \qquad 0 < m < \frac{1}{2e} : (T) \qquad \frac{lmx}{x^2} = m \qquad (d) \qquad (d) = 0$ $0,5 \qquad 0 < m < \frac{1}{2e} : (T) \qquad \frac{lmx}{x^2} = m \qquad (d) = 0$ $0,5 \qquad 0 < m < \frac{1}{2e} : (T) = 0 \Rightarrow 0$ $0,5 \qquad 0 < m < \frac{1}{2e} : (T) = 0$ $0,5 \qquad 0 < m < \frac{1}{2e} : (T) = 0$ $0,5 \qquad 0 < m < \frac{1}{2e} : (T) = 0$ $0,5 \qquad 0 < m < \frac{1}{2e} : (T) = 0$ $0,5 \qquad 0 < m < \frac{1}{2e} : (T) = 0$ $0,5 \qquad 0 < m < \frac{1}{2e} : (T) = 0$ $0,5 \qquad 0 < m < \frac{1}{2e} : (T) = 0$ $0,5 \qquad 0 < m < \frac{1}{2e} : (T) = 0$ $0,5 \qquad 0 < m < \frac{1}{2e} : (T) = 0$ $0,5 \qquad 0 < m < \frac{1}{2e} : (T) = 0$ $0,5 \qquad 0 < m < \frac{1}{2e} : (T) = 0$ $0,5 \qquad 0 < m < \frac{1}{2e} : (T) = 0$ $0,5 \qquad 0 < m < \frac{1}{2e} : (T) = 0$ $0,5 \qquad 0 < m < \frac{1}{2e} : (T) = 0$ $0,5 \qquad 0 < m < \frac{1}{2e} : (T) = 0$ $0,5 \qquad 0 < m < \frac{1}{2e} : (T) = 0$ $0,5 \qquad 0 < m < \frac{1}{2e} : (T) = 0$ $0,5 \qquad 0 < m < \frac{1}{2e} : (T) = 0$ $0,5 \qquad 0 < m < \frac{1}{2e} : (T) = 0$ $0,5 \qquad 0 < m < \frac{1}{2e} : (T) = 0$ $0,5 \qquad 0 < m < \frac{1}{2e} : (T) = 0$ $0,5 \qquad 0 < m < \frac{1}{2e} : (T) = 0$ $0,5 \qquad 0 < m < \frac{1}{2e} : (T) = 0$ $0 < m < \frac{1}{2e} : (T) = 0$ $0 < m < \frac{1}{2e} : (T) = 0$ $0 < m < \frac{1}{2e} : (T) = 0$ $0 < m < \frac{1}{2e} : (T) = 0$ $0 < m < \frac{1}{2e} : (T) = 0$ $0 < m < \frac{1}{2e} : (T) = 0$ $0 < m < \frac{1}{2e} : (T) = 0$ $0 < m < \frac{1}{2e} : (T) = 0$ $0 < m < \frac{1}{2e} : (T) = 0$ $0 < m < \frac{1}{2e} : (T) = 0$ $0 < m < \frac{1}{2e} : (T) = 0$ $0 < m < \frac{1}{2e} : (T) = 0$ $0 < m < \frac{1}{2e} : (T) = 0$ $0 < m < m < \frac{1}{2e} : (T) = 0$ $0 < m < m < m < m < m < m < m < m < m < $			التمرين الرابع (07 نقاط)	
	0,5	0,5		(I
1,75 $0,25$ $0,$	0,5	0,5	$\lim_{\substack{x \to 0}} f(x) = +\infty \lim_{\substack{x \to +\infty}} f(x) = -\infty$	(1(II
1,75 $0,25$ $f(x)$ $0,70$ 0 0 0 0 0 0 0 0 0		0,5	$f'(x) = \frac{-2g(x)}{x^3} \text{ (i)}$	
1,75 $0,25$ $f(x)$ $f(x)$ $0,70$ 0 0 0 0 0 0 0 0 0		0,25	x = 0 الدّالة f متناقصة تماما على f :	
$0,75$ $0,7 < \alpha < 0,71$ قبل حلا وحيدا α حيث $f(x) = 0$: α ومنه $f(x) = 0$ ومنه $f(x) = 0$ α	1,75	0,25	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(2
$0,7 < \alpha < 0,71 \stackrel{\text{degree}}{=} \alpha \text{lim} f(x) = 0 : \text{equiv} f(x) = 0 : \text{equiv} $		0,75	$f(0,7) \times f(0,71) < 0$ و $[0,7;0,71]$ و $f(0,7) \times f(0,71) = 0$	
$0.75 \qquad 0.5 \qquad]0;1[\ \ $			$0.7 < \alpha < 0.71$ ومنه $f(x) = 0$ تقبل حلا وحيدا م	
$A(1;-1)$ المعادلة (Δ) على $A(1;-1)$ ويقطعه في النقطة $A(1;-1)$ $A(1;-1)$ ويقطع		0,25	(C_f) ومنه $y = -x$ ومنه $\lim_{x \to +\infty} (f(x) + x) = 0$ (أ	
$y = -x - \frac{1}{2e} : (T)$ ومعادلة $y =$	0,75	0,5]0;1[على (Δ) أعلى $f(x)+x=\frac{-\ln x}{x^2}$ على أي:1 $f(x)$	(3
$0,25 \times 2$ (T) الرسم. (T) و Δ) رسم Δ (C_f) رسم Δ (Δ) المعادلة: Δ Δ (Δ) من أجل كل Δ من Δ (Δ) من أجل كل Δ من Δ (Δ) (Δ) Δ (Δ) (Δ			$A(1;-1)$ على $]1;+\infty$ وأسفل (Δ) على $]1;+\infty$	
(T) و (Δ) رسم (Δ) رسم (T) و (Δ) رسم (D, D)	0,75	0,5+0,25	$y = -x - \frac{1}{2e}$: (T) ومعادلة ل $x = \sqrt{e}$ تكافئ $f'(x) = -1$	(4
0,5 $0 < m < \frac{1}{2e}$ حَلَانَ مَخْتَلَفَانَ لَمَا $\frac{\ln x}{x^2} = m$ عَلَانَ مُخْتَلَفَانَ لَمَا $\frac{\ln x}{x^2} = m$ عَلَانَ مُخْتَلَفَانَ لَمَا $\frac{\ln x}{x^2} = m$ عَلَانَ مُخْتَلَفَانَ لَمَا أَجُلُ كُلُّ $\frac{\ln x}{x^2} = m$ عَلَانَ مُنْ أَجُلُ كُلُّ $\frac{\ln x}{x^2} = m$ عَلَانَ مُنْ أَجُلُ كُلُّ $\frac{\ln x}{x^2} = m$ عَلَانَ عَلَى اللّهَ عَلَى اللّهُ		0,25×2		
$H'(x) = h(x) [0; +\infty[$	1,5	0,5	رسم (C_f) و (C_f) رسم (C_f) رسم (C_f) رسم	(5
$H'(x) = h(x) [0; +\infty[$		0,5		
$A(x) = A(x)^2 + A(x)^2 + A(x) = A(x$		0,5		
0,25	1,25	0,5	$\int_{\alpha}^{1} \frac{-\ln x}{x^{2}} dx = H(\alpha) - H(1) = \frac{-1 - \ln \alpha}{\alpha} + 1 (\rightarrow$	(6
		0,25	$\mathcal{A}(\alpha) = 4(\alpha^2 - \frac{1}{\alpha} + 1)$ ومنه $\ln \alpha = -\alpha^3$ نجد: $f(\alpha) = 0$	

ملاحظة: تُقبل جميع طرائق الحلّ الصحيحة مع التقيّد بسلّم التنقيط.