DESIGN AND ANALYSIS OF ALGORITHMS EXPERIMENT 1A

Manav Bhanushali CSE-DS D1

UID: 2021700008

AIM:

TO IMPLEMENT VARIOUS FUNCTIONS E.G. LINEAR, NON-LINEAR, QUADRATIC, EXPONENTIAL, ETC.

THEORY:

A function is a process or a relation that associates each element 'a' of a non-empty set A , at least to a single element 'b' of another non-empty set B.

A relation f from a set A (the domain of the function) to another set B (the co-domain of the function) is called a function in math. $f = \{(a,b) | \text{ for all } a \in A, b \in B\}$

- A relation is said to be a function if every element of set A has one and only one image in set B.
- A function is a relation from a non-empty set B such that the domain of a function is A and no two distinct ordered pairs in f have the same first element.
- A function from $A \to B$ and $(a,b) \in f$, then f(a) = b, where 'b' is the image of 'a' under 'f' and 'a' is the preimage of 'b' under 'f'.
- If there exists a function $f: A \to B$, the set A is called the domain of the function f, and the set B is called its co-domain.

ALGORITHM:

STEP 1: Start.

STEP_2: Print the header row to make one column for input, ten columns for functions and last column for factorial of a number.

STEP_3: Start a for loop which will run from i=0 to 100 to find values of functions for all numbers from 0 to 100. In this loop:

- (1) First print the input.
- (2) Define function f1 as (3/2)^n. Print its value.
- (3) Define function f2 as n^3. Print its value.
- (4) Define function f3 as 2^(2ⁿ). Print its value.
- (5) Define function f4 as ln(ln(n)). Print its value.
- (6) Define function f5 as $n*(2^n)$. Print its value.
- (7) Define function f6 as ln(n). Print its value.
- (8) Define function f7 as 2ⁿ. Print its value.
- (9) Define function f8 as $2^{(2^{(n+1)})}$. Print its value.
- (10) Define function f9 as e^n. Print its value.
- (11) Define function f10 as lg(n). Print its value.
- (12) To print the factorial of first 20 numbers, put an if statement. Initialise fact=1, put fact=fact*i to calculate factorial and print its value.

STEP 4: Stop.

```
CODE:
```

```
#include <stdio.h>
#include <math.h>
int
main ()
{
 printf
  ("Input (3/2)^n
                                                ln(ln(n))
                        n^3
                                2^(2^n)
                                                                n*(2^n)
                                                                                ln(n) 2<sup>n</sup>
        2^{(2^{(n+1)})}
                        e^n
                                lg(n) Factorial\n");
 for (int i = 0; i \le 100; i++)
   printf ("%d", i);
   float f1 = pow ((float) 3 / 2, i);
   printf ("%f", f1);
   float f2 = pow(i, 3);
   printf ("%f", f2);
   float f3 = pow(2, pow(2, i));
   printf ("%f", f3);
   float f4 = log (log (i));
   printf ("%f ", f4);
   float f5 = i * pow(2, i);
   printf ("%f", f5);
   float f6 = log(i);
   printf ("%f", f6);
   float f7 = pow(2, i);
   printf ("%f", f7);
   float f8 = pow(2, pow(2, i + 1));
   printf ("%f", f8);
   float f9 = pow (2.71, i);
   printf ("%f", f9);
   float f10 = \log(i) / \log(2);
   printf ("%f", f10);
   int fact = 1;
   if (i == 0)
        printf ("0 ");
   else if (i \le 20)
        {
         fact *= i;
         printf ("%d", fact);
   printf ("\n");
 return 0;
```

OUTPUT:

TABLE:

Input(3/2)^n n^3 Factorial		2^(2^n) ln(ln(n))			n*(2^n)ln(n)		2^n2^(2^(n+1)) e^n			lg(n)		
0	1 #NAMI	0 E?	2 0	#NAM	E?	0	#NAM	E?	1	4	1	
1	1.5	1	4	#NAM	E?	2	0	2	16	2.71	0	1
2	2.25 2	8	16	-0.3665	513	8	0.6931	47	4	256	7.3441	1
3	3.375 1.58496	27 52	256 3	0.0940	48	24	1.0986	12	8	65536	19.902	512
4	5.0625 53.9358		65536 2	0.3266 4	34	64	1.3862	94	16	429496	57296	
5	7.59375 1.84467		42949 <i>6</i> 146.16		0.4758 2.3219		160 5	1.6094	38	32		
6	11.3906 inf	525 396.10	216 9955	1.8446 2.5849	-	0.5831 6	98	384	1.7917	59	64	
7	17.0859 2.80735		343 7	inf	0.6657	3896	1.9459	1128	inf	1073.4	58008	
8	25.6289 2909.07		512 3	inf 8	0.7320	99	2048	2.0794	42	256	inf	
9	38.4433 7883.58		729 3.1699	inf 25	0.7871 9	95	4608	2.1972	25	512	inf	

10	57.665039 21364.50781	1000 3.3219		0.834032 10	10240 2.302	585	1024	inf
11	86.497559 57897.82031	1331 3.4594		0.874591 11	22528 2.397	895	2048	inf
12	129.746338 156903.0938	1728 3.5849		0.910235 12	49152 2.484	907	4096	inf
13	194.619507 425207.375	2197 3.7004		0.941939	106496 2.564	949	8192	inf
14	291.92926 1152312	2744 3.8073		0.970422 14	229376 2.639	057	16384	inf
15	437.89389 3.906891	3375 15	inf	0.996229	491520 2.708	0532768	inf	3122765.5
16	656.84082 inf 846269		inf 4	1.019781 16	1048576	2.7725	89	65536
17	985.26123 inf 229339		inf 4.0874	1.041412 63 17	2228224	2.8332	13	131072
18	1477.891846 inf 621508		inf 4.16992	1.061385 25 18	4718592	2.8903	72	262144
19	2216.837891 inf 168428			1.079918 28 19	9961472	2.9444	39	524288
20	3325.256836 inf 456442			1.097189 28 20	20971520	2.9957	32	1048576
21	4987.885254 inf 123695			1.113344 17	44040192	3.0445	23	2097152
22	7481.827637 inf 335215		inf 4.4594	1.128508 32	92274688	3.0910	43	4194304
23	11222.74121 inf 908434				192937984	3.1354	.94	8388608
24	16834.11133 inf 246185				402653184	3.1780	54	16777216
25	25251.16797 inf 667163				838860800	3.2188	76	33554432
26	37876.75391 inf 1.8080				1744830464	3.2580	96	67108864
27	56815.12891 inf 4.8997				78656 3.295	837	134217	7728
28	85222.69531 268435456			1.203634 2E+12 4.8073		3.3322	.05	
29	127834.0391 inf 3.5984				256448 3.367	296	536870)912
30	191751.0625	27000	inf	1.224128	32212254720	3.4011	97	

- 1073741824 inf 9.75166E+12 4.90689
- 31 287626.5938 29791 inf 1.233722 66571993088 3.433987 2147483648 inf 2.6427E+13 4.954196
- 32 431439.875 32768 inf 1.242925 1.37439E+11 3.465736 4294967296 inf 7.16172E+13 5
- 33 647159.8125 35937 inf 1.251765 2.83468E+11 3.496508 8589934592 inf 1.94083E+14 5.044394
- 34 970739.75 39304 inf 1.260266 5.84116E+11 3.526361 17179869184 inf 5.25964E+14 5.087463
- 35 1456109.625 42875 inf 1.268453 1.20259E+12 3.555348 34359738368 inf 1.42536E+15 5.129283
- 36 2184164.5 46656 inf 1.276345 2.4739E+12 3.583519 68719476736 inf 3.86273E+15 5.169925
- 37 3276246.5 50653 inf 1.283962 5.08524E+12 3.610918 1.37439E+11 inf 1.0468E+16 5.209454
- 38 4914370 54872 inf 1.291321.04454E+13 3.637586 2.74878E+11 inf 2.83683E+16 5.247928
- 39 7371555 59319 inf 1.298436 2.14405E+13 3.663562 5.49756E+11 inf 7.68781E+16 5.285402
- 40 11057332 64000 inf 1.305323 4.39805E+13 3.688879 1.09951E+12 inf 2.0834E+17 5.321928
- 41 16585998 68921 inf 1.311994 9.016E+13 3.713572 2.19902E+12 inf 5.646E+17 5.357552
- 42 24878998 74088 inf 1.318462 1.84718E+14 3.737674.39805E+12 inf 1.53007E+18 5.392317
- 43 37318496 79507 inf 1.324738 3.78232E+14 3.7612 8.79609E+12 inf 4.14648E+18 5.426265
- 44 55977744 85184 inf 1.330832 7.74056E+14 3.784191.75922E+13 inf 1.1237E+19 5.459432
- 45 83966616 91125 inf 1.336753 1.5833E+15 3.806663 3.51844E+13 inf 3.04522E+19 5.491853
- 46 125949928 97336 inf 1.342513.23696E+15 3.828641 7.03687E+13 inf 8.25253E+19 5.523562
- 47 188924896 103823 inf 1.348112 6.61466E+15 3.850147 1.40737E+14 inf 2.23644E+20 5.554589
- 48 283387328 110592 inf 1.353565 1.35108E+16 3.871201 2.81475E+14 inf 6.06074E+20 5.584962
- 49 425080992 117649 inf 1.358877 2.75845E+16 3.891825.6295E+14 inf 1.64246E+21 5.61471
- 50 637621504 125000 inf 1.364055 5.6295E+16 3.912023 1.1259E+15 inf 4.45107E+21 5.643856

- 51 956432256 132651 inf 1.369104 1.14842E+17 3.931826 2.2518E+15 inf 1.20624E+22 5.672425
- 52 1434648320 140608 inf 1.374032.34187E+17 3.951244 4.5036E+15 inf 3.26891E+22 5.70044
- 53 2151972608 148877 inf 1.378844.77382E+17 3.970292 9.0072E+15 inf 8.85875E+22 5.727921
- 54 3227958784 157464 inf 1.383537 9.72778E+17 3.988984 1.80144E+16 inf 2.40072E+23 5.754888
- 55 4841938432 166375 inf 1.388126 1.98158E+18 4.007333 3.60288E+16 inf 6.50595E+23 5.78136
- 56 7262907392 175616 inf 1.392612 4.03523E+18 4.025352 7.20576E+16 inf 1.76311E+24 5.807355
- 57 10894361600 185193 inf 1.397 8.21457E+18 4.043051 1.44115E+17 inf 4.77804E+24 5.83289
- 58 16341541888 195112 inf 1.401292 1.67174E+19 4.060443 2.8823E+17 inf 1.29485E+25 5.857981
- 59 24512313344 205379 inf 1.405493 3.40112E+19 4.077538 5.76461E+17 inf 3.50904E+25 5.882643
- 60 36768468992 216000 inf 1.409607 6.91753E+19 4.094345 1.15292E+18 inf 9.50949E+25 5.90689
- 61 55152701440 226981 inf 1.413636 1.40656E+20 4.110874 2.30584E+18 inf 2.57707E+26 5.930737
- 62 82729058304 238328 inf 1.417583 2.85925E+20 4.127134 4.61169E+18 inf 6.98387E+26 5.954196
- 63 1.24094E+11 250047 inf 1.421453 5.81072E+20 4.143135 9.22337E+18 inf 1.89263E+27 5.97728
- 64 1.8614E+11 262144 inf 1.425247 1.18059E+21 4.158883 1.84467E+19 inf 5.12902E+27 6
- 65 2.79211E+11 274625 inf 1.428968 2.39808E+21 4.174387 3.68935E+19 inf 1.38997E+28 6.022368
- 66 4.18816E+11 287496 inf 1.432618 4.86994E+21 4.189655 7.3787E+19 inf 3.76681E+28 6.044394
- 67 6.28224E+11 300763 inf 1.436201 9.88745E+21 4.204693 1.47574E+20 inf 1.0208E+29 6.066089
- 68 9.42336E+11 314432 inf 1.439718 2.00701E+22 4.219508 2.95148E+20 inf 2.76638E+29 6.087463
- 69 1.4135E+12 328509 inf 1.443172 4.07304E+22 4.234107 5.90296E+20 inf 7.49689E+29 6.108524
- 70 2.12026E+12 343000 inf 1.446565 8.26414E+22 4.248495 1.18059E+21 inf 2.03166E+30 6.129283
- 71 3.18038E+12 357911 inf 1.449898 1.67644E+23 4.262682.36118E+21

- 72 4.77057E+12 373248 inf 1.453174 3.4001E+23 4.276666 4.72237E+21 inf 1.49207E+31 6.169925
- 73 7.15586E+12 389017 inf 1.456394 6.89466E+23 4.290469.44473E+21 inf 4.04351E+31 6.189825
- 74 1.07338E+13 405224 inf 1.459561.39782E+24 4.304065 1.88895E+22 inf 1.09579E+32 6.209454
- 75 1.61007E+13 421875 inf 1.462674 2.83342E+24 4.317488 3.77789E+22 inf 2.96959E+32 6.228819
- 76 2.4151E+13 438976 inf 1.465737 5.7424E+24 4.330733 7.55579E+22 inf 8.0476E+32 6.247928
- 77 3.62265E+13 456533 inf 1.468751 1.16359E+25 4.343805 1.51116E+23 inf 2.1809E+33 6.266787
- 78 5.43398E+13 474552 inf 1.471717 2.35741E+25 4.356709 3.02231E+23 inf 5.91023E+33 6.285402
- 79 8.15097E+13 493039 inf 1.474637 4.77526E+25 4.369448 6.04463E+23 inf 1.60167E+34 6.303781
- 80 1.22265E+14 512000 inf 1.477511 9.67141E+25 4.382027 1.20893E+24 inf 4.34054E+34 6.321928
- 81 1.83397E+14 531441 inf 1.480342 1.95846E+26 4.394449 2.41785E+24 inf 1.17628E+35 6.33985
- 82 2.75095E+14 551368 inf 1.483133.96528E+26 4.406719 4.8357E+24 inf 3.18773E+35 6.357552
- 83 4.12643E+14 571787 inf 1.485877 8.02727E+26 4.418849.67141E+24 inf 8.63875E+35 6.37504
- 84 6.18965E+14 592704 inf 1.488584 1.6248E+27 4.430817 1.93428E+25 inf 2.3411E+36 6.392317
- 85 9.28447E+14 614125 inf 1.491251 3.28828E+27 4.442651 3.86856E+25 inf 6.34439E+36 6.409391
- 86 1.39267E+15 636056 inf 1.493881 6.65393E+27 4.454347 7.73713E+25 inf 1.71933E+37 6.426265
- 87 2.08901E+15 658503 inf 1.496473 1.34626E+28 4.465908 1.54743E+26 inf 4.65938E+37 6.442944
- 88 3.13351E+15 681472 inf 1.499028 2.72347E+28 4.477337 3.09485E+26 inf 1.26269E+38 6.459432
- 89 4.70026E+15 704969 inf 1.501549 5.50883E+28 4.488636 6.1897E+26 inf inf 6.475733
- 90 7.05039E+15 729000 inf 1.504035 1.11415E+29 4.499811.23794E+27 inf inf 6.491853
- 91 1.05756E+16 753571 inf 1.506488 2.25305E+29 4.510859 2.47588E+27 inf inf 6.507795

92	1.58634E+16 4.95176E+27	778688 inf inf	1.508908 6.523562	4.55562E+29	4.521789
93	2.37951E+16 9.90352E+27	804357 inf inf	1.511296 6.539159	9.21027E+29	4.532599
94	3.56926E+16 1.9807E+28	830584 inf inf	1.513652 6.554589	1.86186E+30	4.543295
95	5.35389E+16 3.96141E+28	857375 inf inf	1.515979 6.569856	3.76334E+30	4.553877
96	8.03084E+16 7.92282E+28	884736 inf inf	1.518276 6.584962	7.6059E+30	4.564348
97	1.20463E+17 1.58456E+29	912673 inf inf	1.520544 6.599913	1.53703E+31	4.574711
98	1.80694E+17 3.16913E+29	941192 inf inf	1.522783 6.61471	3.10574E+31	4.584968
99	2.71041E+17 inf inf	970299 inf 6.629356	1.524995	6.27487E+31	4.595126.33825E+29
100	4.06561E+17 inf inf	1000000 6.643856	inf 1.5271	81.26765E+32	4.605171.26765E+30
GRA	APHS:				

OBSERVATION_(1) (3/2)^n: The values of the function are gradually increasing. At n=83 there is a sudden rise in value after which the result tends to infinity.

OBSERVATION_(2) n^3: This function has a U shaped graph which starts from 0 and gradually increases to infinity.

OBSERVATION_(3) 2^(2^n): After n=8, the graph of this functions tends to infinity.

OBSERVATION_(4) ln(ln(n)): This function has a negative value at n=2. The graph has sudden increase at first but then gradually acquires a lesser slope.

OBSERVATION_(5) $n*(2^n)$: This function has a sudden rise in value at n=92 after which it tends to infinity.

OBSERVATION_(6) ln(n): The graph starts from ln(1)=0. It first increases steeply and then becomes gradual for higher values of n.

OBSERVATION_(7) 2^n: This function has a sudden rise in value at n=92 after which it tends to infinity.

OBSERVATION_(8) 2^(2^(n+1)): The graph has gradual increase in its values from n=0 to 5, at n=5 there is a sudden increase and the function gradually tends to infinity.

OBSERVATION_(9) e^n: The values of the function are gradually increasing. At n=83 there is a sudden rise in value after which the result tends to infinity.

OBSERVATION_(10) lg(n): The graph starts from lg(1)=0. It first increases steeply and then becomes gradual for higher values of n.

OBSERVATION_(11) Factorial: The value of factorial keeps on increasing as n increases. There is a sudden rise in value at n=13.

CONCLUSION:

From this experiment I learnt how to implement various functions in C Programming language for values of n varying from 0 to 100, and also understood how the graph of each function is affected as value of n changes.