

(19) BUNDESREPUBLIK

DEUTSCHLAND

DEUTSCHES
PATENT- UND
MARKENAMT

(12) Offenlegungsschrift

(10) DE 199 46 173 A 1

(51) Int. Cl. 7:

C 12 N 9/00

C 12 N 5/16

DE 199 46 173 A 1

(21) Aktenzeichen: 199 46 173.2
 (22) Anmeldetag: 20. 9. 1999
 (43) Offenlegungstag: 5. 4. 2001

(71) Anmelder:
 Forschungsinstitut für die Biologie
 landwirtschaftlicher Nutztiere, 18196 Dummerstorf,
 DE

(74) Vertreter:
 Uexküll & Stolberg, 20354 Hamburg

(72) Erfinder:
 Seyfert, Hans Martin, 18196 Kessin, DE
 (56) Entgegenhaltungen:
 WO 92 13 102 A1
 Barber M.C. u.a.: Elucidation of a promotor
 activity that directs the expression of acetyl-
 CoA carboxylase α with an alternative N-terminus
 in a tissue-restricted fashion, In: Biochem. J.,
 1998, Vol. 333, S. 17-25;

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

Prüfungsantrag gem. § 44 PatG ist gestellt

(54) Expression der bovinen Acetyl-Coenzym A Carboxylase α

(57) Die vorliegende Erfindung betrifft Nukleinsäuren, die eine DNA-Sequenz aufweisen, welche für bovine Acetyl-Coenzym A Carboxylase α kodiert und/oder die Expression dieses Enzyms in der Milchdrüse von Rindern reguliert. Die Erfindung betrifft ferner Verfahren zur Hemmung der Expression von Acc α in der Milchdrüse von nicht-menschlichen Säugern sowie transgene nicht-menschliche Säugern.

Die vorliegende Erfindung betrifft insbesondere Nukleinsäuren, welche DNA-Sequenzen umfassen, die

a) die in SEQ ID NO: 1 oder SEQ ID NO: 2 dargestellte Sequenz;

b) eine allelische Variante davon oder

c) eines Fragmentes der Sequenzen nach a) oder b)

aufweisen, wobei ein Fragment mindestens einen der Bereiche von Nukleotid 933 bis 966, 2188 bis 2219 oder 3055 bis 3495 der SEQ ID NO: 1, den Bereich von Nukleotid 1 bis 441 der SEQ ID NO: 2 oder den entsprechenden Bereich einer allelischen Variante umfaßt.

Die Erfindung betrifft ferner Vektoren, insbesondere Expressionsvektoren, die entsprechende Nukleinsäuren umfassen. Dabei sind Expressionsvektoren bevorzugt, die Nukleinsäuren umfassen, die den Bereich von Nukleotid 2188 bis 2219 der SEQ ID NO: 1 oder den Bereich von Nukleotid 1 bis 3445 der SEQ ID NO: 1 umfassen.

DE 199 46 173 A 1

Beschreibung

Die vorliegende Erfindung betrifft Nukleinsäuren, die eine DNA Sequenz aufweisen, welche für bovine Acetyl-Coenzym A Carboxylase α kodiert und/oder die Expression dieses Enzyms in der Milchdrüse von Rindern reguliert. Die Erfindung betrifft ferner Verfahren zur Hemmung der Expression von Acc α in der Milchdrüse von nichtmenschlichen Säugern.

Mit zunehmender Bedeutung der Verfahren zur Erzeugung von transgenen Tieren und insbesondere der Expression von rekombinanten Proteinen in der Milch von transgenen Tieren gewinnen induzierbare Promotoren, welche die Expression von Genen in der Milchdrüse kontrollieren, ebenfalls an Bedeutung. Beispielsweise ist es wünschenswert, die Expression der Enzyme zu kontrollieren, die die Zusammensetzung der Milch beeinflussen.

Die bovine Acetyl-Coenzym A Carboxylase α ist ein Enzym, das in der Milchdrüse induzierbar exprimiert wird und die Zusammensetzung der Milch wesentlich beeinflusst.

Acetyl-Coenzym A besteht aus Essigsäure, die über eine Thioester-Bindung an die Sulfhydrylgruppe von Coenzym A gebunden ist. Acetyl-Coenzym A besitzt ein hohes Acetyl-Gruppenübertragungspotential und ist deshalb ein wichtiges Zwischenprodukt bei einer Vielzahl von Biosyntheseverfahren der Zelle.

Acetyl-Coenzym A Carboxylase α (E.C. 6.4.1.2; nachfolgend als Acc α bezeichnet) ist eines der Enzyme, die für die Synthese langkettiger Fettsäuren im Zytoplasma von Säugetieren benötigt werden. Acc α katalysiert die Bildung von Malonyl-CoA aus Acetyl-CoA durch Aaslagerung einer CO₂-Gruppe an den C₂-Körper des Acetyl-CoA, wodurch dieser zu einem C₃-Körper verlängert wird. Bei dieser Reaktion handelt es sich um den Raten-limitierenden Schritt der Fettsäuresynthese (Numa, S. und Tanabe, T., Fatty acid metabolism and its regulation, Herausgeber S. Numa, New York 1984, 1-27).

Eine Vielzahl von Isoformen der Acetyl-Coenzym A Carboxylase wurde inzwischen isoliert. Dabei unterscheidet man zwischen einer Acc α mit einem Molekulargewicht von 265 kDa und einer Acc β mit einem Molekulargewicht von 275 bis 280 kDa, sowie zwischen verschiedenen Isoformen der Acc α , die durch unterschiedliches Spleißen der mRNA erzeugt werden. Obwohl davon ausgegangen wird, daß Acc α primär die Synthese langkettiger Fettsäuren im Zytoplasma von Säugetieren reguliert, während Acc β an der Oxidation der Fettsäuren in den Mitochondrien beteiligt ist, konnte eine klare Aufteilung der verschiedenen Isoformen nach enzymatischer Aktivität experimentell nicht belegt werden (Ki-Han Kim, Annu. Rev. Nutr., Vol. 17 (1997), 77-99). Die Proteinsequenz der Acc β unterscheidet sich von der Sequenz der Acc α hauptsächlich im N-terminalen Bereich.

Fettsäuren erfüllen im Organismus eine Vielzahl von Funktionen, beispielsweise werden sie als Grundstoff für die Membransynthese, als Reservestoff oder als Nahrungsquelle für Säuglinge eingesetzt. Daher wurden aktive Acc α Enzyme in einer Vielzahl von Zellen, darunter Zellen des fettspeichernden Gewebes, der Leber und der Milchdrüse, gefunden (Ki-Han Kim a.a.O.).

Die Aktivität der Acc α und die Rate der Fettsäuresynthese einer Zelle schwanken in Abhängigkeit von Umwelteinflüssen, wie Hormonen, der Zusammensetzung der Nährmedien, der Entwicklungsbedingungen und von genetischen Faktoren (Ki-Han Kim a.a.O.). Aufgrund der vielfältigen Verwendung der Fettsäuren erfolgt die Regulation der enzymatischen Aktivität der Acc α sowohl auf der Ebene der Transkription und Translation als auch durch Aktivierung und Inaktivierung des Proteins.

Acc α und β sind Phosphoproteine, die bis zu 9 Mol Phosphat pro Mol Enzym tragen können. Acc α kann durch Phosphorylierung inaktiviert werden. In Versuchen mit Acc α , dessen Aminosäuresequenz an bestimmten Positionen verändert worden war, wurde festgestellt, daß die Phosphorylierung von Serin in Position 1200 für die Inaktivierung durch cAMP-abhängige Protein-Kinase und die Phosphorylierung von Serin in Position 79 für die Inaktivierung durch 5'-AMP-abhängige Protein-Kinase notwendig ist (Ha et al., J. Biol. Chem., Vol. 269, 22162-22168; und Ki-Han a.a.O.).

Eine erste Beschreibung des für Acc α kodierenden Genes der Ratte wurde von Lopéz-Casillas et al. durchgeführt (Proc. Natl. Acad. Sci. USA, Vol. 85 (1988), 5784-5788). Dabei konnte gezeigt werden, daß dieses Gen gewebespezifisch von unterschiedlichen Promotoren 1 und 2 (PI und PII) exprimiert wird (Lopéz-Casillas et al., Gene, Vol. 83 (1998), 311-319). Es wurden jedoch nur die im 5'-Bereich des Gens gelegenen Exons charakterisiert, wobei festgestellt wurde, daß Exon 5 das Startsignal für die Eiweißsynthese des Enzyms trägt.

Inzwischen wurde auch die cDNA des Acc α Gens vom Menschen kloniert (Abu-Elheiga et al., Proc. Natl. Acad. Sci. USA, Vol. 92 (1995), 4011-4015). Das Gen erstreckt sich über etwa 460 Kb.

Ferner konnte das für Acc β kodierende Gen des Menschen identifiziert werden (Widmer et al., Biochem. J., (1996), 915-922).

Die Kontrolle der Acc α -Aktivität über die Expression des Gens von den Promotoren PI und PII ist im Stand der Technik ausführlich dargestellt worden. Auf der Ebene der Genexpression erfolgt die Kontrolle in zwei Stufen:

(i) Differenzierungs-abhängige und physiologische Aktivierung verschiedener Promotoren; sowie
(ii) Ausbildung verschiedener Spleißvarianten der mRNA, die sich im 5'-nicht-translatierten Bereich unterscheiden

Es konnten fünf verschiedene Formen von Acc α mRNA identifiziert werden, die durch Expression von PI oder PII aus und verschiedene Spleißvorgänge der Transkripte erzeugt werden. Über die physiologische Bedeutung dieser Spleißvarianten ist nichts bekannt, obwohl die verschiedenen mRNAs Gewebe-spezifisch, also in Abhängigkeit des Zustands des Gewebes exprimiert werden.

Die Transkription vom Promotor PI führt zu Klasse 1 mRNAs, die Exon 1 an ihrem 5'-Ende aufweisen, während die Transkription vom PII-Promotor zu Klasse 2 mRNAs führt, welche Exon 2 als 5'-Ende aufweisen (Ki-Han a.a.O.).

Von der Ratte weiß man bezüglich der Promoteraktivierung, daß PI in der Leber und in adiposem Gewebe aktiv ist, durch die Stoffwechsellage des Tieres (Fasten/Ansüttern führt zu starker Aktivierung, Laktation praktisch zur Abschaltung in adiposem Gewebe) reguliert wird und in der Milchdrüse zu allen Zeiten inaktiv ist.

Der PII-Promotor ist in fast allen Geweben konstitutiv aktiv. Der PII-Promotor der Ratte weist ferner Ansatzstellen für

DE 199 46 173 A 1

Vermittler extra-zellulärer Signale auf (z. B. Insulin, Glukose-reguliertes Element, cAMP). Das zeigt, daß die Aktivität dieses – an sich konstitutiven – Promotors zusätzlich in Abhängigkeit von der Stoffwechsellage des Tieres reguliert wird. So wurde beispielsweise die Expression der verschiedenen $\text{Acc}\alpha$ -Isoformen in der Milchdrüse während und nach der Schwangerschaft bestimmt. Dabei wurde festgestellt, daß die Aktivität des PII-Promotors unmittelbar nach der Geburt stark ansteigt, während eine Aktivität des PI-Promotors während dieser Phase nicht nachgewiesen werden konnte. Aus diesen Befunden wurde gefolgt, daß die Aktivität der $\text{Acc}\alpha$ in der Milchdrüse vom PII Promotor reguliert wird (Ki-Han a.a.O.).

In der Ratte wurden Bindungssequenzen für eine Reihe von Transkriptionsfaktoren im Bereich der Sequenz des PI und PI-Promotors identifiziert (Ki-Han a.a.O.; Tac et al., J. Biol. Chem. 269 (1994) 10475–10488). Bezüglich ihrer Entwicklungsspezifischen Aktivierung ist jedoch nichts bekannt.

Bei der Klonierung der $\text{Acc}\alpha$ cDNA des Schafes wurden Transkripte unterschiedlicher Länge erhalten (Barber et al., Gene, Vol. 154 (1995), 271–275). Dabei wurde festgestellt, daß es sich um die Expression der für $\text{Acc}\alpha$ kodierenden DNA von unterschiedlichen Promotoren aus handelt. In erweiternden Studien konnte beim Schaf ein bis dahin unbekannter, dritter Promotor (PIII) nachgewiesen werden, der insbesondere während der Laktation die Expression der $\text{Acc}\alpha$ aktiviert (Barber et al., Biochem. J., Vol. 333 (1998), 17–25). Der PIII-Promotor liegt im Intron 5 des Gens und die Expression von diesem Promotors führt zur Bildung einer mRNA, deren Sequenz sich im 5'-Bereich (in den ersten 15 Aminosäuren) von der Sequenz aller anderen $\text{Acc}\alpha$ mRNA-Sequenzen unterscheidet, da das dcm PIII nachgeordnete Exon 5A nur bei Expression von diesem Promotor transkribiert wird. Von Exon 6 ab ist die Sequenz dieser mRNA identisch mit der Sequenz der übrigen $\text{Acc}\alpha$ mRNA-Moleküle. Expression von dem PIII führt ferner zu einem $\text{Acc}\alpha$ -Enzym, dessen Aminosäuresequenz 58 Aminosäuren kürzer als die übrigen $\text{Acc}\alpha$ -Isoformen ist (die insgesamt 2347 Aminosäuren enthalten).

Von dem PII-Promotor des Schafes sind jedoch bislang lediglich 350 bp bekannt, auf denen keine Bindungssequenzen für laktationsspezifische Transkriptionsfaktoren identifiziert wurden. Über die Sequenzen, welche eine Milchdrüsenspezifische Expression der $\text{Acc}\alpha$ bei Nutztieren kontrollieren, ist fast nichts bekannt.

Insbesondere DNA-Sequenzen, die eine Expression der *Accα* beim wichtigsten Nutztier des Menschen, nämlich beim Rind, steuern, wurden ebenfalls im Stand der Technik noch nicht beschrieben. Die Sequenz könnte als Laktations-spezifischer, induzierbarer Promotor zur Expression von beliebigen Genen in der Milch von transgenen Säugetieren verwendet werden.

Die Verfügbarkeit dieser Sequenzen hätte ferner den Vorteil, daß der Fettgehalt der Milch gezielt verändert werden könnte. Die Reinigung rekombinanter Proteine aus der Milch transgener Kühe kann beispielsweise durch den hohen Fettgehalt der Milch sehr aufwendig sein. Ein weiterer Vorteil von Milch mit verringertem Milchfett-Gehalt wäre, daß sogenannte Magermilch aus entsprechenden Kühen gewonnen werden könnte, ohne daß das Milchfett zuvor entfernt werden müßte.

Aufgabe der vorliegenden Erfindung war es daher, Nukleinsäuren zur Verfügung zu stellen, die DNA-Sequenzen aufweisen, welche für den Milchdrüsen-spezifischen Promotor der $\text{Acc}\alpha$ und/oder das Strukturen der $\text{Acc}\alpha$ des Rindes kodieren.

Diese Aufgabe wurde nunmehr durch Nukleinsäuren gelöst, welche DNA-Sequenzen umfassen, die

- a) die in SEQ ID NO: 1 oder SEQ ID NO: 2 dargestellte Sequenz;
- b) eine allelischen Variante davon; oder
- c) eines Fragmentes der Sequenzen nach a) oder b)

aufweisen, wobei ein Fragment mindestens einen der Bereiche von Nukleotid 933 bis 966, 2188 bis 2219 oder 3055 bis 3495 der SEQ ID NO: 1, den Bereich von Nukleotid 1 bis 441 der SEQ ID NO: 2 oder den entsprechenden Bereich einer allelischen Variante umfaßt.

Im Rahmen der vorliegenden Erfindung werden als "allelische Varianten" natürlicherweise auftretende Variationen der für die bovine *Accα* kodierende DNA-Sequenz oder der entsprechenden PIII-Promotorsequenz bezeichnet.

Durch die vorliegende Erfindung werden erstmals Nukleinsäuren mit der Sequenz des Laktations-spezifischen Promotors der bovinen *Accα* (SEQ ID NO: 1) sowie der entsprechenden cDNA (SEQ ID NO: 2) zur Verfügung gestellt. Diese Nukleinsäuren sowie bestimmte Fragmente davon können zur Expression von Fremdgenen in der Milchdrüse von Rindern und zur Genotypisierung von Rindern verwendet werden.

Ferner ermöglicht die vorliegende Erfundung die Erzeugung transgener, nicht-menschlicher Säugetiere, deren Milch einen verringerten Fettgehalt aufweist. Dafür werden die DNA-Sequenzen, die für den Milchdrüsen-spezifischen Promotor der $Acc\alpha$ oder für das $Acc\alpha$ -Strukturen kodieren, im Genom von nicht-menschlichen, transgenen Säugetieren mindestens teilweise durch eine Sequenz ersetzt, die durch Deletion oder Substitution von einzelnen oder mehreren Nukleotiden so verändert wurde, daß die Expression der $Acc\alpha$ in der Milchdrüse gehemmt wird.

Bei der Sequenzanalyse der SEQ ID NO: 1 wurde festgestellt, daß der PIII Promotor der bovinen *Accα* eine Hauptbindungssequenz (sogenannte "high affinity binding site") und 10 kooperative DNA-Bindungsdomänen (sogenannte "low affinity binding sites") für den Transkriptionsfaktor STAT5 aufweist (vgl. Übersichtsdarstellung Fig. 6A), wobei insbesondere der Bereich der Nukleotide 2188 bis 2219 der SEQ ID NO: 1 eine Häufung von mehreren STAT5-Bindungssequenzen aufweist. Im Rahmen der vorliegenden Erfindung konnte gezeigt werden, daß die STAT5-Bindungssequenzen für die Promotoreigenschaften des PIII der *Accα* wesentlich sind.

Als STATs ("signal transducers and activators of transcription") werden Transkriptionsfaktoren bezeichnet, die durch Interaktion mit bestimmten Zelloberflächenrezeptoren aktiviert werden und – als Folge dieser Aktivierung – in den Zellkern einwandern und an bestimmte DNA-Sequenzen binden können (James E. Darnell, *Science*, Vol. 277 (1997), 1630–1635). Die meisten STATs sind etwa 750 bis 795 Aminosäuren lang und benötigen den COOH-terminalen Bereich für die Genaktivierung.

STAT 5A wurde als Wachstumsfaktor der Milchdrüse isoliert, der an den β -Casein-Promotor bindet (Wakao et al., 1994).

EMBO J., Vol. 13 (1994), 2181–2191). STAT 5B weist eine Aminosäure-Sequenzhomologie von mehr als 90% zu STAT 5A auf und konnte ebenfalls in der Milchdrüse nachgewiesen werden. Obwohl ein proximales Promotorelement des β -Caseins der Ratte zum Nachweis von STATSA-Aktivierung und DNA-Bindung verwendet wurde, war die Synthese von β -Casein in den STATSA deletierten (sogenannten "knock-out") Mäusen möglich. Das saure Molkeprotein ("whey acidic protein") konnte jedoch in diesen Mäusen nicht mehr exprimiert werden. Die Bedeutung der STAT5-Bindungsstellen für die quantitative Regulation Laktations-spezifischer Expression der Gene ist daher von dem jeweiligen Gen abhängig.

Die DNA-Bindungsmotive für STAT5 Faktoren wurden kürzlich identifiziert. Eine Hauptbindungssequenz (TTCNNNGAA, die "highaffinity-site") wird von der zentralen DNA-bindenden Domäne der STAT5 Faktoren gebunden (Darnell, JR, J. E. Science 277 (1997) 1630–1635; Becker et al., Nature 394 (1998) 145–151). Halbseiten dieses Palindroms werden von der N-terminalen Domäne gebunden, dersogenannten "kooperativen DNA-Bindungsdomäne" ("low-affinitysites"; Vinkemeier et al., EMBO J. 15 (1996) 5616–5626; Xu et al., Science 273 (1996) 794–797)).

Kurze Beschreibung der Figuren

15 **Fig. 1** Sequenz des PIII-Promotors der bovinen $Acc\alpha$.
Fig. 2 cDNA-Sequenz der von dem PIII-Promotor gebildeten $Acc\alpha$.
Fig. 3 Aminosäure-Sequenz der von dem PIII-Promotor gebildeten $Acc\alpha$.
Fig. 4 Vergleich der Aminosäure-Sequenz der von dem PIII-Promotor gebildeten $Acc\alpha$ mit der von dem PI-Promotor gebildeten $Acc\alpha$.
Fig. 5A Nachweis des PIII-Promotors im Genom; Restriktionspaltung von DNA des Klons 91, wobei die folgenden Enzyme verwendet wurden:
B, BamHI; D, DraI; E, EcoRI; EV, EcoRV; H, HindIII; K, KpnI; P, PvuII; Sc, Scal; S, SstI; X, XhoI.
Fig. 5B Southern-Blot des Gels nach Fig. 5A, wobei als Sonde Exon 5A aus Klon 357_2 verwendet wurde.
Fig. 6A Expression vom PIII-Promotor der bovinen $Acc\alpha$; Struktur der verwendeten Deletionsklone.
Fig. 6B Expression vom PIII-Promotor der bovinen $Acc\alpha$; Expressionsfrequenz der Deletionsklone in stabil transfizierten HC-11 Zellen.
Fig. 7 Genomische Anordnung der $Acc\alpha$ Promotoren beim Rind.
Fig. 8 Expression der $Acc\alpha$ vom PIII- und PI-Promotor in verschiedenen Geweben; die folgenden Gewebe wurden eingesetzt:
M: Marker; 1: Leber; 2: Adipose Gewebe; 3: Niere; 4: Gehirn; 5: Muskel; 6: Lunge; 7: Mischdrüse, nichtlaktierend; 8: laktierende Milchdrüse; K: PCR Kontrolle (identischer Ansatz ohne RNA).
Fig. 9 Verwendung des Mikrosatelliten zur Genotypisierung.
Die vorliegende Erfindung betrifft Nukleinsäuren, welche DNA-Sequenzen umfassen, die

35 a) die in SEQ ID NO: 1 oder SEQ ID NO: 2 dargestellte Sequenz;
b) eine allelischen Variante davon; oder
c) eines Fragmentes der Sequenzen nach a) oder b)

40 aufweisen, wobei ein Fragment mindestens einen der Bereiche von Nukleotid 933 bis 966, 2188 bis 2219 oder 3055 bis 3495 der SEQ ID NO: 1, den Bereich von Nukleotid 1 bis 441 der SEQ ID NO: 2 oder den entsprechenden Bereich einer allelischen Variante, umfaßt.
Die Erfindung betrifft ferner Vektoren, insbesondere Expressionsvektoren, die entsprechende Nukleinsäuren umfassen. Dabei sind Expressionsvektoren bevorzugt, die Nukleinsäuren umfassen, die den Bereich von Nukleotid 2188 bis 2219 der SEQ ID NO: 1 oder den Bereich von Nukleotid 1 bis 3445 der SEQ ID NO: 1 umfassen.

45 Gemäß einer besonders bevorzugten Ausführungsform der vorliegenden Erfindung werden Expressionsvektoren zur Verfügung gestellt, in denen die Nukleotide 2188 bis 2219 der SEQ ID NO: 1 oder 1 bis 3445 der SEQ ID NO: 1 operativ mit einem Strukturen verknüpft sind. Als Strukturen wird der Bereich eines Gens bezeichnet, der für ein Polypeptid kodiert. Im Rahmen der vorliegenden Erfindung können beliebige Strukturgene verwendet werden, wobei eine Verwendung von Fremdgenen (beliebigen Genen, die nicht für die natürliche $Acc\alpha$ Sequenz kodieren) bevorzugt ist.

50 Diese Ausführungsform der Erfindung weist den besonderen Vorteil auf, daß beliebige Fremdgene unter der Kontrolle des Laktationsspezifischen und induzierbaren Promotors der $Acc\alpha$ exprimiert werden können.
Gemäß einer weiteren Ausführungsform betrifft die vorliegende Erfindung Wirtszellen, die entsprechende Vektoren enthalten. Vorzugsweise handelt es sich dabei um eukaryotische Zellen, wobei nicht-menschliche Säugetierzellen, insbesondere Milchdrüsenepithelzellen, besonders bevorzugt sind.
Die Vektoren können nach beliebigen, im Stand der Technik bekannten Verfahren in die Wirtszellen eingebracht werden.
Beispielweise kann die Liposomen-Technik verwendet werden, wobei die Verwendung des LIPOFECTAMIN Reagensatzes der Firma GIBCO/BRL, entsprechend den Angaben des Herstellers, besonders bevorzugt ist.

55 60 Die vorliegende Erfindung umfaßt ferner transgene nichtmenschliche Säugetiere, die Zellen aufweisen, die einen entsprechenden Vektor enthalten.
Entsprechende Verfahren zum Austausch von DNA-Sequenzen im Genom von Säugetierzellen sind als "gene targeting" bekannt und erlauben den Einbau von Sequenzen an bestimmte Stellen in das Genom von Säugetieren (Tybulewicz et al., Cell, Vol. 65 (1991), 1153–1163; Liu et al., Genes & Dev., Vol. 11 (1997), 179–186). Dabei ist auch der Genaustausch selektiv in ausgewählten Gewebetypen – und nur in diesem Gewebe – möglich (Kühn et al., Science, Vol. 269 (1995), 1427–1429).
Im wesentlichen beruhen diese Verfahren auf der Beobachtung, daß Gewebekulturzellen extern zugesetzte, gereinigte DNA im Austausch zu einem homologen, im Zellkern vorhandenen Genombereich, in ihr Genom aufnehmen. Dieser

Prozess wird homologe Rekombination genannt. Bei Säugern erfolgt er spontan mit geringer Rate (ca. 10^{-5} – 10^{-6} Austauschereignisse/pro Zelle) in Differenzierungszuständen jenseits der Meiose.

Die Rekombination kann genutzt werden, um z. B. Deletionen oder Substitutionen einzelner oder mehrerer Nukleotide in einem Gen oder einem Promotor zu setzen. Dabei kann man beispielsweise ein größeres Stück (5–10 kbp) des Zielgenes isolieren, eine begrenzte Deletion einführen und dieses Konstrukt in Gewebekulturzellen des gleichen Organismus transfizieren.

Nach Rekombination kann auf Zellen selektiert werden, die das Konstrukt aufgenommen haben. Entsprechende Klone, in denen ein vollständiger Austausch tatsächlich erfolgt ist, werden beispielsweise durch Southern-Blot-Analysen verifiziert. Zellkerne mit verändertem Genom werden isoliert. Durch Klonierung können transgene Nutztiere erzeugt werden.

Gemäß einer bevorzugten Ausführungsform der Erfindung wird aus dem Bereich des PII-Promoters der Acc α ein 3 kbp umfassendes HindIII Fragment isoliert, welches das vollständige Exon 5A beherbergt für entsprechende Austauschklonierungen mit einem "gene-targetting"-Vektor geeignet ist. Die 5'-gelegene HindIII Restriktionsschnittstelle findet sich an Position 2960 der SEQ ID Nr 1. Die in diesem Abschnitt genannten DNA-Abschnitte stellen jedoch lediglich Beispiele dar. Basierend auf der vorliegenden Erfindung ist es ohne weiteres möglich beliebige andere Promotoren oder Genabschnitte zu isolieren, die für einen entsprechenden Austausch geeignet sind.

Die vorliegende Erfindung betrifft auch die Verwendung einer Nukleinsäure zur Expression von beliebigen Fremdgenen, wobei die DNA-Sequenz der Nukleinsäure die Nukleotide 2188 bis 2219 der SEQ ID NO: 1 umfaßt, die operativ mit einem Strukturen verknüpft sind. Gemäß einer bevorzugten Abwandlung dieser Ausführungsform umfaßt die Nukleinsäure die Nukleotide 1 bis 3445 der SEQ ID NO: 1.

Bei der erfindungsgemäßen Verwendung zur Expression von Fremdgenen kann die Expression in eukaryotischen Zellen erfolgen, wobei die Expression in Zellen eines nicht-menschlichen Säugetiers, insbesondere in der Milchdrüse, bevorzugt ist.

Die vorliegende Erfindung stellt ferner Verfahren zur Verfügung, mit denen transgene, nicht-menschliche Säugetiere erzeugt werden können, deren Milch einen verringerten Fett-Gehalt aufweist. Bei diesen Verfahren verändert man die Sequenz des Milchdrüsenspezifischen Promotors der Acc α oder des Acc α -Strukturgens im Genom des transgenen nicht-menschlichen Säugetieres durch Deletion oder Substitution von einzelnen oder mehreren Nukleotiden so, daß die Expression der Acc α in der Milchdrüse gehemmt wird.

Dabei kann ein entsprechendes Verfahren Schritte umfassen, bei denen man:

- a) eine Nukleinsäure erstellt, welche eine DNA-Sequenz umfaßt, die durch Deletion oder Substitution von einzelnen oder mehreren Nukleotiden von der DNA-Sequenz des Milchdrüsenspezifischen Promotors der Acc α oder von der DNA-Sequenz des Acc α -Strukturgens abgeleitet wurde;
- b) die Zelle eines nicht-menschlichen Säugetiers mit der Nukleinsäure nach Stufe a) transfiziert;
- c) Zellen, in denen die natürliche DNA-Sequenz im Genom durch die entsprechende Nukleinsäure nach Stufe a) ausgetauscht wurde, auswählt und zu Tieren regeneriert.

Vorzugsweise handelt es sich bei den transgenen nichtmenschlichen Säugetieren um Rinder, Schafe oder Ziegen.

Bei den Verfahren zur Erzeugung von nicht-menschlichen transgenen Säugetieren, deren Milch einen verringerten Milchfett-Gehalt aufweist, sind Verfahren bevorzugt, bei denen die Sequenz des Milchdrüsenspezifischen Promotors der Acc α die Sequenz von Nukleotid 1 bis 3054 der SEQ ID NO: 1 umfaßt. Die mindestens eine Substitution oder Deletion kann im Bereich von Nukleotid 2205 bis 2213 der SEQ ID NO: 1 vorgenommen werden, wobei Substitutionen oder Deletionen im Bereich von Nukleotid 2188 bis 2239 der SEQ ID NO: 1 bevorzugt sind. Diese Bereiche des Promotors der Acc α weisen eine hohe Dichte an STAT5-Bindungssequenzen auf. Bereits die Deletion oder Substitution einzelner Nukleotide führt zu einer verringerten Laktations-spezifischen Expression der Acc α . Aufgrund der konstitutiven Expression dieses Enzyms von dem PII-Promotor aus, erleiden die Tiere durch diese Veränderung des Genoms keine Nachteile.

Gemäß einer weiteren Ausführungsform der Erfindung werden Verfahren zur Erzeugung von nicht-menschlichen transgenen Säugetieren, deren Milch einen verringerten Milchfett-Gehalt aufweist, zur Verfügung gestellt, bei denen man mindestens eine Substitution oder Deletion im Bereich von Nukleotid 3055 bis 3495 der SEQ ID NO: 1 vornimmt. Beispielsweise könnte in dem genannten Bereich ein Stop-Codon eingeführt werden. Alternativ dazu kann man den gesamten Bereich von Nukleotid 3055 bis 3495 der SEQ ID NO: 1 deletieren. Bei den hier genannten Bereichen handelt es sich um DNA-Sequenzen, die nur in der von dem PII-Promotor exprimierten cDNA vorliegen. Durch Veränderungen im Laktationsspezifischen Bereich der cDNA der Acc α ist wiederum eine Verringerung der induzierbaren Acc α -Expression möglich, die sich nicht negativ auf die Gesundheit und das Wohlbefinden der Tiere auswirkt.

Die Erfindung betrifft dementsprechend auch transgene nichtmenschliche Säugetiere, die nach einem der obigen Verfahren erzeugt wurden und deren Milch einen verringerten Milchfett-Gehalt aufweist.

Gemäß einer weiteren Ausführungsform der Erfindung werden Verfahren zur Gewinnung von Milch mit verringertem Milchfett-Gehalt zur Verfügung gestellt, bei dem man die Milch von entsprechenden transgenen, nicht-menschlichen Säugetieren gewinnt.

Im Bereich der Nukleotide 933 bis 966 der SEQ ID NO: 1 wurde ein polymorpher Mikrosatellit identifiziert, der sich hervorragend zur Genotypisierung von Rindern eignet. Eine Genotypisierung von Rindern unter Verwendung dieser Sequenz weist den besonderen Vorteil auf, daß ein bestimmter Genotyp unmittelbar mit einer bestimmten Expressionsmenge der Acc α während der Laktation und daher auch mit einem bestimmten Fettgehalt der Milch korreliert werden kann. Die Gewinnung einer Population von Rindern, die einen besonders hohen oder geringen Fettgehalt in der Milch aufweisen, ist daher auch durch klassische Zuchtverfahren möglich, indem solche Tiere miteinander gekreuzt werden, deren Genotyp auf eine entsprechende Aktivität des PII-Promotors der Acc α hinweist.

Dementsprechend betrifft die vorliegende Erfindung auch Verfahren zur Genotypisierung von Rindern, bei denen man

DE 199 46 173 A 1

eine DNA-Sequenz des Genoms eines Rindes analysiert, wobei die DNA-Sequenz die Nukleotide 933 bis 966 der SEQ ID NO: 1 umfaßt.

Die Analyse der DNA-Sequenz kann eine Amplifikation der DNA mittels PCR umfassen, wobei vorzugsweise Primer eingesetzt werden, die in der PCR Reaktion mit den DNA-Sequenzen des Rindes hybridisieren, welche die Nukleotide 933 bis 966 der SEQ ID NO: 1 flankieren. Gemäß einer besonders bevorzugten Ausführungsform der vorliegenden Form der Erfindung werden für die PCR die Primer:

AccmsP3f 5'-CATTATCTGGCTTGATCTTAG und
AccmsP3r 5'-CAGGTGGTCACAAAGAGTCTG

10

verwendet.

Die Analyse der amplifizierten DNA-Sequenz kann nach beliebigen Verfahren aus dem Stand der Technik erfolgen, beispielsweise kann die Analyse der Sequenz mittels Gelelektrophorese des amplifizierten Fragmentes durchgeführt werden.

15

Beispiel 1

Materialien und Verfahren:

20

1.1 Klonierungen

Alle Klonierungen wurden in handelsüblichen Vektoren vorgenommen. PCR Produkte wurden in den Vektor pKS+ (Stragene, LaJolla; USA) oder in den Vektor "pGEM Teasy" (Promega) kloniert. Expressionssequenzen für die Überprüfung der Promotoreigenschaften wurden in dem promotorlosen Vektor "pGL3 basic" (Promega) kloniert, der für das Reporter-Enzym Luciferase kodiert.

1.2 Sequenzierung

Die Sequenzierungen wurden mit den Sequenzierungsanlagen 310 (Perkin-Elmer, ABI) oder Licor 4200 (MWG) 30 durchgeführt. Sequenzierungsreaktionen wurden mit Reagenzienästen durchgeführt, die von den Anbietern der Sequenzierungsanlagen empfohlen werden.

1.3 PCR-Amplifikationen

35 Generell wurden "touch-down" Programme eingesetzt, entsprechen den Angaben von Don et al., 1991 (Nucl. Acids Res. Vol. 19, 4008). Oligonukleotidprimer wurden grundsätzlich so gestaltet, daß ihre optimale Anlagerungstemperatur (AT) 60 °C betrug, abgeleitet entsprechend der Faustformel: 2°C für jede A oder T Base und 4°C für G oder C. Oligonukleotidprimer wurden von der Firma ARK (Darmstadt) synthetisiert.

In einem typischen Programmablauf wurde, ausgehend von 70°C Anlagerungstemperatur (AT), in jedem der ersten 20 40 Zyklen, die AT um 0,5°C je Zyklus abgesenkt. Sodann wurden 30 weitere Zyklen mit jeweils 60°C AT angeschlossen. Ein Programmzyklus beinhaltete: Denaturierung bei 94°C, 1 min. gefolgt von 0,5 min bei AT zur Primer-Anlagerung, sowie eine Elongationsdauer von 3 min bei 70°C.

1.4 RT-PCR

45

Amplifikationen von mRNA Abschnitten wurden nach Überschreibung der RNA durch das Enzym "Reverse Transkriptase" (SuperScript, von GIBCO BRL) entsprechend den Angaben des Herstellers für diesen Reagenzienatz durchgeführt. Als Startmoleküle für die cDNA-Synthese wurden typischerweise 25 pH des Sequenz-spezifischen Primeroligonukleotids eingesetzt, für einen 25 µl Reaktionsansatz. Als Matrizen dienten gesamte RNA Proben der entsprechenden 50 Gewebe, die mit Reagenzienästen von QIAGEN zur RNA-Extraktion gewonnen wurden.

1.5 Expression von Reporteren-Konstrukten in Gewebekulturzellen

Zur Überprüfung der Promotoreigenschaft von DNA-Fragmenten wurden Zellkulturen der murinen Milchdrüsenepithelzelllinie HC-11 (Ball et al., EMBO J., Vol. 7 (1988), 2089-2095) stabil mit entsprechenden Reporteren-Konstrukten 55 transfiziert. Von dieser permanenten Zelllinie ist bekannt, daß sie auf die Gabe des Laktationshormons Prolaktin unter geeigneten Kulturbedingungen mit einer Steigerung der β-Caseinsynthese reagieren kann (Ball et al., 1988, am angegebenen Ort).

Die Zellen wurden entsprechend den Angaben von Welte et al. (Mol. Endo., Vol. 8, 1091-1102) in RPMI-1640 Medium gehalten, welchem 10% fötalem Kälberserum, 10 ng/ml EGF und 5 µg/ml Insulin zugesetzt wurden. Für die stabile 60 Transfektion dieser Zellen mit den entsprechenden Reporteren-Konstrukten wurde ein übliches Transfektionsverfahren verwendet, welches auf der Liposomentechnik basiert. Zur Transfektion wurde der LIPOFECTAMIN Reagenzienatz entsprechend den Angaben des Herstellers (GIBCO BRL) verwendet.

Typischerweise wurden zur Transfektion der Zellen einer Kulturschale mit 9 cm Durchmesser 4 µg des linearisierten 65 Reporteren-Konstruktes mit 1 µg des linearisierten Plasmides pSV2neo als Selektionsmarker für das Antibiotikum G418 vermischt.

Die Technik der Kotransfektion von unabhängigen Reporteren-Konstrukten und diesem Selektionsmarker wurde von Southern & Berg beschrieben (J. Mol. Appl. Genet. Vol. 1 (1982), 327-341).

DE 199 46 173 A 1

Als Ergebnis einer solchen Transfektion wurden für jedes Reportergen-Konstrukt etwa 60–200 resistente Klone je transfizierter Kulturschale erhalten, die als Gruppe ("pool") gemeinsam aufgezogen wurden. Diese Gruppen wurden später auf die Expression der Reportergen-Konstrukte hin analysiert.

In Anlehnung an die Angaben von Welte et al. (a.a.O.) erfolgte die Analyse der Induzierbarkeit der Promotoren mittels Prolaktin durch einen Vergleich der Reportergen-Aktivität von Kulturen, die für zwei Tage konfluent im Wachstumsmedium gehalten wurden, mit der Aktivität von Kulturen, die für zwei Tage konfluent in einem Medium mit lediglich 5% FKS und ohne EGF, jedoch angereichert mit 0,1 µM Dexamethason und 5 µg/ml ovinem Prolaktin (SIGMA), gezogen worden waren.

Die Reportergen-Aktivität (Luciferase-Aktivität) wurde mit dem DUAL-LIGHT Reagensatz von Perkin-Elmer entsprechend den Angaben des Herstellers gemessen. Für die Bestimmung der Enzymaktivität wurde ein handelsübliches Luminometer (Firma BERTHOLD) eingesetzt. Die Enzymaktivität wird als Relative-Light-Units (RLU) angegeben. Die RLUs werden angegeben als 1000 RLUs je 10000 Zellen (vgl. Fig. 6A und B).

Beispiel 2

Isolierung der Milchdrüsen-Isoform der bovinen $\text{Acc}\alpha$ cDNA

A) Erstellung der $\text{Acc}\alpha$ cDNA-Sequenz entsprechend der vom Promotor PI gebildeten mRNA

Zur Erlangung von Informationen zur Gengstruktur der bovinen $\text{Acc}\alpha$ wurde in Vorversuchen die von dem PI-Promotor aus gebildete cDNA-Sequenz isoliert.

Zunächst wurde durch den Sequenzvergleich der publizierten humanen und Hühnchen cDNA-Sequenzen konservierte Primersequenzen abgeleitet:

Acclf: 5'-GGTTATTTCAGTGTTGCTGCTG und

Acclr: 5'-AGCAGTCCACCGTCGCTCA.

Die Amplifikation eines 530 bp langen cDNA Stückes der $\text{Acc}\alpha$ des Rindes erfolgte in RT-PCR Amplifikationen unter Verwendung dieser Primer und von Gesamt-RNA aus Milchdrüsengewebe.

Das erhaltene cDNA Stück wurde subkloniert und sequenziert sowie als Hybridisierungssonde zur Isolation von genomischen Klonen aus einer Rinder-Genbank eingesetzt. Diese Genbank war in dem Bakteriophagen λ -EMBL3 angelegt worden und bereits mehrfach zur Isolation von bovinen Genen eingesetzt worden (Kozcan et al., Nucl. Acids Res. Vol. 19, (1991), 5591–5596; Seyfert et al., Gene, Vol. 143 (1994), 265–269).

Mittels dieser Sonde wurden dann aus der genannten Genbank zwei λ -Phagen isoliert, die Teilstücke des bovinen $\text{Acc}\alpha$ Genes trugen (Laborbezeichnung λ -Ac2 und λ -Ac3). Sie wurden genutzt, um erste Exons dieses Gens festzulegen. Wie sich später herausstellte, wurde hiermit Exon 9, das am weitesten im 5'-Bereich gelegene Exon des Gens isoliert. Von diesem Exon wurde nun ein nach 5'- gerichteter Primer abgeleitet und in Kombination mit einem, von der mittlerweile publizierten, ovinen cDNA-Sequenz der $\text{Acc}\alpha$ abgeleiteten Primer von Exon 5 zur Isolation eines weiteren Teilstückes des bovinen $\text{Acc}\alpha$ Genes eingesetzt. Unter Verwendung boviner genomicscher DNA als Matrize entstand in "long-span" PCR Experimenten ein 14 kbp Amplifikat, von dem nach Subklonierung und Sequenzierung die Sequenzen der Exons 6–8 abgeleitet werden konnten.

B) Identifizierung der im 3'-Bereich gelegenen cDNA-Sequenzen

Die Identifizierung der im 3'-Bereich gelegenen cDNA-Sequenzen erfolgte in RT-PCR Experimenten, wobei die Primer unter Rückgriff auf die cDNA-Sequenz des Schafes abgeleitet wurden.

Mit diesem Verfahren konnte der größte Teil der bovinen cDNA Sequenz der $\text{Acc}\alpha$ wurde ermittelt werden. Durch Kenntnis der Exon/Intron-Segmentierung des Genes war es ferner möglich, zwei Primer abzuleiten, die das Exon 5 des Genes (253 bp) als singuläre Bande amplifizieren:

Acex5f 5'-CTCTGAGGGCTCGTTCAAG;
Acex5r: 5'-CTCA¹G²TGAAGGCCAAACCAT).

Diese Primersequenzen wurden dazu verwendet, um aus einer bovinen genomicschen BAC-Genbank (BAC, "bacterial artificial chromosome"; Beschreibung der Bank in Cai et al., Genomics, Vol. 29 (1995), 413–425) einen BAC-Klon zu isolieren, der den 5'-Bereich des bovinen $\text{Acc}\alpha$ Genes enthält. Dieser Klon erhielt die Laborbezeichnung "BAC91" und diente als Ausgangsmaterial zur Isolation des Promotors PIII, wie im folgenden dargestellt wird.

Durch Kenntnis der Exon/Intron Segmentierung im Bereich des Genanfangs konnten hochspezifische Primer ermittelt werden, die für aussagekräftige RT-PCR Experimente sehr hilfreich waren, basierend auf RNA Proben aus der Milchdrüse. Hierfür wurde nach 5'- gerichtete Primer:

Acex6-7r 5'-TGGCGATGAGAACCTTCTCAATC

verwendet, dessen eine Hälfte an Exon7 bindet (kursiv), während der restliche Bereich von Exon 6 kodiert wird. Dieser Primer bindet unter üblicher Stringenz der PCR-Reaktion nicht an genomicsche DNA. Die Verwendung dieses Primers in RT-PCR Experimenten verhindert die unbeabsichtigte Bindung an genomicsche DNA, was zu falschen Ergebnissen führen könnte.

DE 199 46 173 A 1

C) Erstellung der $\text{Acc}\alpha$ cDNA Sequenz entsprechend der von PIII synthetisierten mRNA (SEQ ID NO: 2; Fig. 2)

Zur Erstellung der cDNA-Sequenz ausgehend von $\text{Acc}\alpha$ mRNA-Molekülen aus der laktierenden Milchdrüse, wurde eine Gesamt-RNA-Probe dieses Gewebes eingesetzt, um mit dem "MARATHON" 5'-RACE Kit (Reagentiensatz) der Firma CLONETECH cDNA Kopien in klonierter Form zu erhalten. Der Reagentiensatz wurde entsprechend den Angaben des Herstellers verwendet.

Dabei wurde ausgehend von 4 µg gesamt RNA aus Milchdrüsengewebe einer laktierenden Kuh und dem $\text{Acc}\alpha$ spezifischen Primer Acex6-7r (Position 587-565 der cDNA-Sequenz; siehe oben) eine cDNA erstellt, mit dem genannten Reagentiensatz von CLONETECH doppelsträngig gemacht und an das 5'-Ende der mitgclicerierten "Adaptor"-Sequenz ligiert. Anschließend wurde der 5'-Bereich der $\text{Acc}\alpha$ cDNA in zwei PCR-Reaktionen unter Verwendung der Primer Acex6-7r, als $\text{Acc}\alpha$ spezifischem, nach 5'-gerichtetem Primer, sowie zunächst dem Adaptor-Primer 1, in einer ersten PCR-Amplifikationsrunde amplifiziert. Mit dem Adaptor-Primer 2 wurde in einer zweiten, "nested" PCR Amplifikationsrunde nochmals amplifiziert. Beide Adaptor-Primer sind in dem Reagentiensatz von CLONETECH enthalten.

Das knapp 600 bp lange PCR-Fragment dieser Amplifikationsrunde wurde gelelektrophoretisch aufgereinigt und mit dem Genspezifischen Primer Acex6-7r direkt sequenziert (ABI310). Von dieser Sequenz wurde ein weiter innenliegender, nach 5'-gerichteteter, "nested"-Primer abgeleitet:

bAc_5Ar1 5'-TCTCTTCAGCTGTCGGCCTTG,

(entsprechend cDNA-Position 358-340). Dieser Primer wurde eingesetzt, um von 1 µl-Restmenge des Reaktionsproduktes der ersten PCR-Runde und unter Verwendung des Adaptor-Primers 1 ein klonierbares PCR-Produkt zu erzeugen. Dies erbrachte Klone mit etwas unterschiedlicher Einsatzlänge.

Sequenzierung des Klones mit dem längsten cDNA Einsatz (357_2) erbrachte eine neue Sequenz von 358 bp, die nicht zur Leber-spezifischen Variante der bovinen $\text{Acc}\alpha$ cDNA gehörte. Den Beweis über die Zugehörigkeit der cDNA-Sequenz von Klon 357_2 zur bovinen $\text{Acc}\alpha$ erbrachte eine RT-PCR, in der RNA aus der laktierenden Milchdrüse des Rindes zur cDNA-Synthese mit dem genannten Primer Acex6-7r amplifiziert wurde. In der nachfolgenden RT-PCR Reaktion wurde das Oligonukleotid:

bAc_SAF2 5'-AGGCGGAAGCTGCTGAGATCTAC,

(Position 34-56 der cDNA Sequenz, abgeleitet von der Sequenz des Klons 357_2) mit dem auf Exon 6 gelegenen Oligonukleotid:

bAc_Ex6rn 5'-CAAATTCTGCTGGAGAGGCTACA,

(Position 539-517 der cDNA-Sequenz, bekannt aus den Vorversuchen von der leberspezifischen $\text{Acc}\alpha$ -cDNA Sequenz) kombiniert und zur Amplifikation eines 506 bp langen Fragmentes genutzt. Dieses Fragment wurde als Klon 392 kloniert und sequenziert.

Die Sequenzierungen von Klon 357_2 und 392 ergeben die beigelegte cDNA-Sequenz der bovinen Acetyl-CoA-Carboxylase- α , wie sie in der Milchdrüse vorliegt (SEQ ID NO: 2; Fig. 2).

Die Sequenz der Reste 1-441 weicht deutlich von der Leberspezifischen Isoenzymform ab. Erst ab Position 442 der SEQ ID NO: 2 sind die Sequenzen identisch (entspricht Position 568 der Leber-spezifischen Isoenzymform). Translation dieser cDNA Sequenz in die entsprechende Aminosäuresequenz des Proteins wird in SEQ ID NO: 3 gezeigt (Fig. 3; siehe auch vergleichende die Darstellung in Fig. 4).

Durch Vergleich dieser Sequenz mit den in den Vorversuchen ermittelten Teilsequenzen und der $\text{Acc}\alpha$ -Genstruktur zeigt, daß der 5'-terminale, zur Leber-spezifischen cDNA divergierende Sequenzabschnitt ein eigenes Exon darstellt, welches an Exon 6 des den Strukturbereich des Genes kodierenden Abschnitt angespielt wird.

Beispiel 3

Isolatierung des Promotors III (PIII) der bovinen $\text{Acc}\alpha$

3.1 Die Isolation des bovinen PIII der $\text{Acc}\alpha$ wurde ausgehend von

– zwei Oligonukleotidprimern die von der oben dargestellten cDNA-Sequenz abgeleitet wurden (bAc_5Ar1, siehe oben; bAc_5Ar2 (5'-CCACACAGC-ATCAGCTGATTTC, Position 132-111 der cDNA);
– dem in den Vorversuchen erwähnten Klon BAC91; und
– dem "Genome-Walker" Reagentiensatz von CLONETECH (entsprechend den Angaben des Herstellers eingesetzt);

vorgenommen. Im Prinzip umfaßt das Isolationsverfahren die folgenden Schritte:

- (i) der Zerschneidung der DNA des Gesamtgenoms oder von einem bereits isolierten Teilabschnitt des Genoms mit stumpf schneidenden Restriktionsendonukleasen;
- (ii) Ligation von Adaptoren bekannter Sequenz an die doppelsträngigen DNA-Enden; sowie
- (iii) der nachfolgenden PCR-Amplifikation des gesuchten Genomabschnitts, durch den Einsatz eines Genspezifischen Oligonukleotides, in Kombination mit einem an den Adaptor bindenden Oligonukleotid.

DE 199 46 173 A 1

3.2 Detaillierter dargestellt, wurde der Promotor III in folgender Weise isoliert

Die DNA des Klons BAC91 wurde vollständig mit dem Restriktionsenzym EcoRV gespalten. Die Adaptor-Oligonukleotide aus dem Reagentiensatz wurden anligiert. In zwei aufeinandersfolgenden PCR-Amplifikationsrunden wurde mit den Primerkombinationen (i) bAc_5Ar1 (Gen-spezifisch) und Adaptor-Primer 1 (Reagentiensatz) sowie (ii) bAc_5Ar2 (Gen-spezifischer "nested" Primer)/Adaptor-Primer 2 (Reagentiensatz, innenliegend im Vergleich zu Adaptor-Primer 1) ein 3.2 kbp langes PCR-Amplifikat erhalten.

Die Enden des PCR-Produktes wurden mit dem Klenow-Enzym vollständig aufgefüllt, das Produkt mit SalI gespalten (Schnittstelle im Adaptor-Primer 2), und in den SalI, kombiniert mit SmaI, gespaltenen Vektor pKS+ (STRATAGENE) einkloniert. So wurde Klon 364 erhalten.

Grundsätzlich könnte die Isolation des in Klon 364 enthaltenen bovinen Genombereiches mit diesem Verfahren auch unter Verwendung von einem DNA-Präparat des Gesamtgenoms an Stelle von Klon BAC91 durchgeführt werden. Der Einsatz von BAC91 erhöht jedoch die Konzentration der Acc α spezifischen Genabschnitte um den Faktor 1000. Dies erleichterte die Vermehrung des gesuchten Genomabschnittes in den PCR-Reaktionen und verhinderte eine Analyse falscher Amplifikate.

Die vollständige Sequenzierung des Klons 364, basierend auf segmentweiser Subklonierung und unter Einsatz weiterer, anhand der Sequenzierungsergebnisse abgeleiteter Oligonukleotid-Primer führte zu der PIII-Promotorsequenz der Acc α (Position 1-3186, SEQ ID NO: 1; Fig. 1). Das Sequenzende, von Position 3187-3690, wurde durch Direktsequenzierung des BAC91 Klones erhalten, unter Verwendung des von der cDNA abgeleiteten Oligonukleotidprimers bAc_5Af2 (siehe oben).

Der Vergleich der Promoter- mit der cDNA-Sequenz zeigt, daß das Transkript, welches zu cDNA Klon 357_2 geführt hat, bei Position 3055 dieser Sequenz beginnt. Damit ist diese Position als +1 eines Exons ausgewiesen. Das Exon endet mit Position 3495, wie durch den Vergleich mit der cDNA-Sequenz ersichtlich und in Kombination mit der Tatsache, daß das nachfolgend stehende "GT"-Dinukleotid in aller Regel den 5'-Spleißdonor eines Introns darstellt. Das Startkodon "ATG" für die Eiweißsynthese des Enzyms Acc α findet sich an Position 3443-3445.

3.3 Charakteristika der Sequenz

Die Sequenz stellt einen Promotor ohne "TATA-Box" dar, weist jedoch eine Vielzahl von DNA-Bindungsstellen von Transkriptionsfaktoren auf.

Bei Position 2205 beginnt das Sequenzmotif TTCGTGGAA, welches eine Hauptbindungsstelle für den Transkriptionsfaktor STATS darstellt (vgl. Fig. 1).

Zwischen Position 932 und 967 liegt ein Mikrosatellit mit 18 Wiederholungen des Dinukleotids "TG". Dieser Mikrosatellit ist in unterschiedlichen Tieren polymorph, kann mit den Oligonukleotidprimern AccmsP3f (5'-CATT-TATCTGGCTTGATCTTAG, Position 801-824) in Kombination mit AccmsP3r (5'-CAGGTGGTCACAAAGAGTCTG, Position 998-978) zur Typisierung von in der Natur vorkommenden, allelischen Varianten dieses Promotors genutzt werden (vgl. Beispiel 6).

Schnittstellen von Restriktionsendonukleasen zur Erstellung der Expressionsklone (siehe Beispiel 4): EcoRV Schnittstelle (Position 1-6, Sequenz GATATC, Spaltung in GAT-3'/5'-ATC): Die ersten drei Nukleotide dieser Schnittstelle wurden ergänzt, denn die zur Erstellung von Klon 364 verwendete DNA des BAC91 war vollständig mit diesem Enzym gespalten worden. Genomisch ist eine Schnittstelle an dieser Position vorhanden, es werden jedoch die ersten drei Nukleotide durch den Schnitt der Restriktionsendonuklease verloren. Daher befindet sich diese Schnittstelle nicht mehr in Klon 364.

PvuII: An Position 3173 findet sich eine PvuII-Schnittstelle. Diese wurde genutzt, um aus Klon 364 den Promotorbereich bis Position 3172 auszuschneiden, in Kombination mit KpnI (5'-gelegene KpnI Schnittstelle in dem Klonierungsbereich des Vektors pKS+), und Einklonierung in den KpnI/SmaI gespaltenen Expressionsvektor pGL3 basic (PROMEGA). Dies erbrachte den in Fig. 6A dargestellten Expressionsklon 1 (Labornummer 397).

EcoRI: Bei Position 677 findet sich eine Schnittstelle für dieses Enzym. Zur Deletion der 5'-gelegenen Promotoranteile wurde Klon 397 mit KpnI/EcoRI vollständig gespalten, die Überhänge mit Klenow-Enzym geglättet und der Vektor stumpf religiert. Dies erbrachte den dargestellten Expressionsklon 2 (vgl. Fig. 6A; Labornummer 422).

MstII: Die singuläre MstII-Schnittstelle bei 2345 wurde zur Deletion der 5'-gelegenen Promotorabschnitte genutzt: Klon 397 wurde mit KpnI und MstII vollständig gespalten, die Überhänge mit Klenow-Enzym aufgefüllt und der Vektor stumpf religiert. Dies erbrachte den Expressionsklon 3 (vgl. Fig. 6A; Labornummer 423).

Genomische Anordnung des PII in Relation zu anderen Exons der bovinen Acc α : "Long-span" PCR Amplifikationen (mit dem Reagentiensatz von ROCHE/BOEHRINGER, Primer AccEx5f und bAc_5Ar1 und BAC91 als Matrize) zeigten, daß PIII etwa 15 kbp 3'-von Exon 5 gelegen ist. Der Promotorbereich liegt etwa 5,8 kbp 5' vor Exon 6, wie ebenfalls mittels "long-span" PCR Amplifikationen mit den Primern bAc_5Af2 und bAc_Ex6rn zeigten. In Fig. 6A ist die ungefähre genomische Anordnung der übrigen Promotoren der bovinen Acc α dargestellt, sowie die Kenntnis bezüglich der anderen Exons in diesem Genabschnitt zusammengefaßt.

Beispiel 4

Nachweis der Promotor-eigenschaft von PIII

Die Erstellung von Expressionskonstrukten mit dem Promotor PIII und zwei Deletionsvarianten (Expressionsklon 2 und 3; vgl. Fig. 6A;) wurde in Beispiel 3 dargestellt.

Diese Konstrukte wurden stabil in die murine Milchdrüsenepithezelzelllinie HC-11 transfiziert und jeweils als Gruppen von 60-100 Klonen aufgezogen. Jede dieser drei verschiedenen Gruppen stabil transfizierter Zellen wurde in sechs Kul-

DE 199 46 173 A 1

turschalen ausgebracht (übliche Kulturplatten mit 6 Vertiefungen). Alle Zellkulturen wurden nach der Aussaat bis zur Konfluenz gezogen. Sodann wurde von jedem Konstrukt die Hälfte der Subkulturen (drei Schalen) für weitere sechs Tage in Wachstumsmedium (10% fötales Kälberserum) belassen. Die andere Hälfte wurde nach dem Erreichen der Konfluenz für zwei Tage in Hungermedium gehalten (ohne EGF, nur 5% fötales Kälberserum). Anschließend wurde ihnen 5 für vier Tage Induktionsmedium (Hungermedium, mit Prolaktin (5 µg/ml) und Dexamethason (0,1 µM) angereichert) gegeben. Die Expression des Reportergens in Abhängigkeit des verwendeten Expressionskonstruktes und des Mediums wird in **Fig. 6B** dargestellt.

Diese Ergebnisse zeigen eindeutig, daß

10 – das als PIII bezeichnete Genomfragment ein Promotor ist, weil seine Verwendung als Promotor die Bildung des Reporter-Enzyms in Milchdrüsenepithezelzellen antriebt;
– das Laktationshormon Prolaktin die Aktivität dieses Promotors in diesen Milchdrüsenepithezelzellen reguliert; und
– eine Deletion des 5'-Bereiches (bis zur MstII Restriktionsschnittstelle) zu einem massiven Verlust der Promotoraktivität führt, was von einem Verlust der regulierenden Wirkung des Prolaktins begleitet ist.

15 Zur Einordnung und zum Vergleich der Ergebnisse der in **Fig. 6B** dargestellten Ergebnisse wurden diese Reportergen-Konstrukte auch transient in verschiedenen anderen Zellen geprüft und mit Reportergen-Konstrukten verglichen, die von PI angetrieben wurden. Es zeigte sich, daß

20 – PIII (Klon 397) in humanen Milchdrüsenepithezelzellen (MCF7) etwa die 10-fache Stärke eines 2.9 kbp großen PI Promotorstückes hat (PIII Expression 25-fach über der des leeren Vektors pGL3-Basic, in diesem Vergleich);
– PIII in humanen Leberzellen (HepRI) ebenfalls etwa die 10-fach Stärke von PI aufweist, in diesen Zellen – im Gegensatz zu den Milchdrüsenepithezelzellen – jedoch:
 (i) weder eine Prolaktinwirkung nachweisbar ist und
 (ii) die Deletion des 5'-gelegenen Promotorbereiches (bis zur MstII Schnittstelle, was die STAT5-Bindungsstelle einschließt) zu einer Steigerung der Expression führt (1,5-fach gegenüber dem langen Promotorfragment).

25 Auch die Beobachtung, daß die Deletion der STAT5 Ansatzstelle in Leberzellen zu einer Steigerung der Expression des Reportergen-Konstruktes führt, bestätigt daß STAT5, je nach Promotortyp, auch als Repressor der Transkription wirken kann (vgl. auch Luo, G. & Yu-Lee, L.-Y., J. Biol. Chem. Vol. 272 (1997), 26841–26849). Somit konnte gezeigt werden, daß in unterschiedlichen Zelltypen die gleiche STAT5 Bindungsstelle in Abhängigkeit von dem übrigen, zelltypspezifischen Besatz des Promotors mit anderen Transkriptionsfaktoren unterschiedlich wirken kann.

35 Beispiel 5

Nachweis der Gewebespezifität des Promotors

40 Zur Untersuchung der gewebespezifischen Aktivierung von PII wurde RNA von unterschiedlichen Geweben des Rindes isoliert und in RT-PCR Experimenten vergleichend $\text{Acc}\alpha$ Transkripte von zwei verschiedenen Promotoren, PII und PIII, dargestellt (**Fig. 8**).

Zunächst wird die genomische Anordnung der unterschiedlichen Promotoren der $\text{Acc}\alpha$ anhand von **Fig. 7** erläutert. Der Leberspezifische Promotor PI liegt am weitesten im 5'-Bereich. (d. h. am "Genanfang"). Die Aktivität dieses Promotors wird stark in Abhängigkeit von der Stoffwechselallage des Tieres reguliert.

45 In etwa 11 kbp Abstand findet sich beim Rind der konstitutiv exprimierte PII. Es besteht gegenwärtig noch eine gewisse Unsicherheit bezüglich der genauen Anordnung und Sequenz. Bisher wurde beim Rind sicher Exon 3 identifiziert, kloniert und sequenziert. Es umfaßt 47 bp. Im 5'-angrenzenden Bereich von Exon 3 in etwa 1 kbp Entfernung befindet sich ein Sequenzmotiv von 6 bp, welches in 5 unterschiedlichen 5'-RACE Klonen der bovinen $\text{Acc}\alpha$ als 5'-terminale cDNA Basen gefunden wurden, die mit einem nach 5'-gerichteten Oligonukleotid angeprämt wurden, dessen Sequenz 50 von Exon 3 abgeleitet worden war. Es ist anzunehmen, daß diese 6 bp von dem vermutlich sehr kurzen Exon 2 herrühren. Jedoch ist ein Sequenzmotiv von sechs bp kein ausreichender Nachweis für ein Exon. Um diese Unsicherheit darzulegen, wird Exon 2 in **Fig. 7** besonders gekennzeichnet (*) und der Abstand zu Exon 3 als nicht gesichert bezeichnet. Aus dieser Unsicherheit heraus wurde dem von Exon 3 abgeleitete Oligonukleotid die Laborbezeichnung bAc_xf (5'-TCCTCGGA-GATGCTTAGTGAC) gegeben, dessen Bezeichnung der Nachvollziehbarkeit wegen hier beibehalten wird. Bezuglich 55 der Anordnung und Sequenzen der übrigen Exons bestehen keine Unsicherheiten.

Die Bedeutung des PII und der Darstellung des Exons 3 liegt darin, daß sich der Nachweis der Transkripte, die von diesem konstitutiv aktiven Promotor gebildet werden, als aussagekräftige positiv-Kontrollen zum Nachweis von $\text{Acc}\alpha$ -Transkripten eignen.

Für das in **Fig. 8** dargestellte Experiment wurde RNA aus 8 unterschiedlichen Geweben entnommen und jeweils eine 60 einzelsträngige $\text{Acc}\alpha$ cDNA mit dem Primer bAc_Ex6rn erzeugt. Von diesen Proben wurden jeweils zwei identische PCR-Ansätze erstellt, wobei zur PCR Amplifikation entweder der nach 3'-gerichteten Primer bAc_5Af2 (**Fig. 8**) oder der von Exon 3 abgeleiteten Primer bAc_xf verwendet wurde. PCR-Produkte wurden mit dem "Touch-down" Standardprogramm erzeugt und Gel-elektrophoretisch aufgetrennt.

65 Die in **Fig. 8** verwendeten Abkürzungen weisen auf die folgenden Gewebe hin, die für die PCR eingesetzt wurden: 1: Leber; 2: Adipose Gewebe; 3: Niere; 4: Gehirn; 5: Muskel; 6: Lunge; 7: Mischdrüse, nichtlaktierend; 8: laktierende Milchdrüse; K: PCR Kontrolle (identischer Ansatz ohne RNA).

Im Ergebnis zeigt sich:

DE 199 46 173 A 1

- Der Promotor PIII treibt die Bildung eines einheitlichen Transkriptes an, während von PII 2 Typen von Transkripten gebildet werden. Klonierung und Sequenzierung zeigte, daß sich diese beiden Transkripte durch Gegenwart oder Abwesenheit von Exon 4 unterscheiden. Die durch Sequenzierung gefundene Exon-Zusammensetzung der Transkripte ist angegeben.
- Die PIII-Aktivität ist gewebespezifisch. Keine Transkripte finden sich in Gehirn und Muskel. Bedingt durch die Durchführung der Experimente mittels RT-PCR lassen die in Fig. 8 dargestellten Experimente keine Aussage über unterschiedliche Transkriptmengen zu. Sofern auch nur Spuren von Transkriptmengen vorhanden sind, werden sie mit dieser Technik und unter den gewählten Bedingungen als kräftige Bande in der Gelektrophorese dargestellt.
- In allen Geweben wird durch die Aktivität des Promotors PII $\text{Acc}\alpha$ gebildet. Dieses Ergebnis steht im Einklang mit den Befunden von der Ratte.

Diese Ergebnisse belegen, daß die Aktivität des PIII Promotors ganz oder teilweise gehemmt werden kann, ohne daß solche Tiere dadurch lebensunfähig werden, weil diese aufgrund der Aktivität von PII zur $\text{Acc}\alpha$ Bildung befähigt sind. Die lebensnotwendige Grundausstattung der Zellen mit diesem Enzyme ist somit gewährleistet.

Beispiel 6

Einsatz des TG18-Mikrosatelliten im Bereich des PIII zur Genotypisierung

Der in der Sequenz des PIII im Beispiel 3 (Fig. 1; SEQ ID NO: 1) identifizierte Mikrosatellit ist polymorph und kann daher zur Genotypisierung eingesetzt werden.

Die DNA von acht Zuchtbullen wurde mit den Primern AccMSP3f und AccMSP3r in PCR Reaktionen amplifiziert. Dabei zeigten sich wenigstens drei unterschiedliche Allele (vgl. Fig. 9).

Basierend auf der in Beispiel 3 gezeigten DNA-Sequenz des PIII-Promotors lassen sich somit Oligonukleotidprimer ableiten, durch deren Einsatz allelische Varianten von PIII in der Zuchtpopulation von Rindern nachgewiesen werden können. Durch Korrelation verschiedener Allele mit Leistungsparametern im Milchfettgehalt können natürlich vorkommende Leistungsvarianten des Promotors aufgedeckt und züchterisch nutzbar gemacht werden.

5

10

15

20

25

30

35

40

45

50

55

60

65

DE 199 46 173 A 1

SEQUENZPROTOKOLL

<110> Forschungsanstalt für die Biologie landwirtschaftlicher Nutztiere
5 <120> Expression der bovinen Acetyl-Coenzym A Carboxylas
<130> P50515
10 <140>
<141>
<160> 3
<170> PatentIn Vers. 2.0
15 <210> 1
<211> 3690
<212> DNA
<213> Rind
20 <220>
<221> satellite
<222> (933)..(966)
25 <220>
<221> protein_bind
<222> (2188)..(2219)
30 <220>
<221> exon
<222> (3055)..(3495)
<223> Exon 5A
<400> 1
gatatcatcc catttatata tccagaacag gcaaatctat aaagacagaa agtagattag 60
35 tcattgctta ggactgggga gtggttttag gaaaatatgg actgactgct gccgagtaca 120
gggtttctt ggcgggtgct gaaaatgttc caaaatggac ttgtgtatgtat ggttcgcaac 180
tctgtgactg taaggaaaac cattgaatta tatactgtaa atggccaaaa tatatggat 240
40 gtgaattctg tctcaataaa gttaggatt tttaaaatgg gtgtatgatc catacacaaa 300
aatttagttgc atttctatgt actagctagc aatgagcaag caaaaaaaaaa aaaaaaaaaactt 360
aaataatttt attcagaatg gcatcaaaaa gaataaaaata cttaggaatc aattgaacaa 420
45 aaaaagcataa gacttgtaca tttaaaattgt tacattgctg agagaaaatta aagtctgctg 480
ctactgcggc tttagtcactt aagtcatatc tgattcttc tcagccccgt ggactgtac 540
50 ccaccaggct cctctgtccg tgggatttcc caggcaagaa cactgcagtg agttgccatt 600
tccttctcca ggggatcttt ccaacccagg aactgaacct atgtctcctg cttggcaggt 660
gaattctta ccccgagtcc tctgccttgc aaggtggatg cttaaccact agagcaccag 720
55 ggaagttcca cagctaaacc tttttatata taaaaagggtt gatectcttc ttcttcttct 780
ttttttttt tcccaatatt catttatctg gctttgcac ttagttgtgg tatgtgtgg 840
cttccatcat cattgctggg ctctttgggtt gcaacatgctg aattttagc tgtgggtgtgt 900
60

DE 199 46 173 A 1

DE 199 46 173 A 1

cttgacctgc tctccccccg tcttggagtc tgaaactcag tcttacttgt tgtgattggg 2880
 tctcagaaat cacctgttct ttccctctcc ctctagattt cctgacccca ttatttctg 2940
 5 ggcatacgctg tcctcataag cttggcttc tcttttgcc ctgagccctc cctgtcacgt 3000
 gcccctggca gcctggagag gcccgggagc ctctctagtg accgtcagaa gaaa gtg 3057
 acc gtt gtt aaa gca ctt ttg ctg cag cta agg cgg aag ctg ctg aga 3105
 10 tct act tta gag tta tac ctg ctt cta tat ttc tcc ccc tct ctt ctc 3153
 tgt ccc ctt ggg aaa tca gct gat gct gtg tgg gag ccc agt gta atg 3201
 15 ggg ggg ggg gca aac agg agg gga agt atg gag att ggg gac aga gta 3249
 gac aaa aag act gtg gtt tga ggc cat gag gag tac tct act ctg act 3297
 gaa gca ggt cca aga agt agg cag aag gca cag tat ctt ttg tcc tcc 3345
 20 tgg gtt tta agc acc tgc agc ggg agg acg aac tcc agc ttg tgt tta 3393
 caa ggc cga cag ctg aag aga aaa acc tct att cct ttg cca tct tga 3441
 tat gga ggg ttc tgc gga gga gag taa gga aat gag ata tta cat gct 3489
 25 tca aag gtaagtgtta gagggcccta tctaggcaat atatgcctt taaaagcagt 3545
 aaaggcgttg acagctaagc cctggaatta tggcagtct gatttcatgtga ttttttgtg 3605
 30 ggtctgttagg aaactctttt ttttcttaag gaatgaatta aatctatgtt gctcctgatt 3665
 ctgaccttat tttccctcaga ttgac 3690

35 <210> 2
 <211> 7255
 <212> DNA
 <213> Rind

40 <220>
 <221> CDS
 <222> (389)..(7255)

45 <400> 2
 gtgaccgttg ttaaagcact tttgctgcag ctaaggcgga agctgctgag atctacttta 60
 gagttataacc tgcttctata tttctcccc tctcttctct gtcccccgg gaaatcagct 120
 50 gatgctgtgt gggagcccgag tgtaatggga gggggggcaa acaggaggggg aagtatggag 180
 attggggaca gagtagacaa aaagactgtg gtttggggcc atgaggagtagt ctctactctg 240
 actgaagcag gtccaaagaag taggcagaag gcacagtatc ttttgcctc ctgggtttta 300
 55 agcacctgca gcgggaggac gaactccagc ttgtgtttac aaggccgaca gctgaagaga 360
 aaaacctcta ttccttgcctt atcttcatgtt atg gag ggt tct gcg gag gag agt 412
 Met Glu Gly Ser Ala Glu Glu Ser
 1 5

60 aag gaa atg aga tat tac atg ctt caa aga tcc agc atg tct ggc ttg 460

DE 199 46 173 A 1

Lys	Glu	Met	Arg	Tyr	Tyr	Met	Leu	Gln	Arg	Ser	Ser	Met	Ser	Gly	Leu		
10						15						20					
cac	cta	gtc	aag	caa	ggt	cga	gac	cga	aag	aaa	ata	gac	tca	cag	cga	508	5
His	Leu	Val	Lys	Gln	Gly	Arg	Asp	Arg	Lys	Lys	Ile	Asp	Ser	Gln	Arg		
25					30					35					40		
gat	ttc	act	gta	gcc	tct	cca	gca	gaa	ttt	gtt	act	cgt	ttt	ggt	ggg	556	
Asp	Phe	Thr	Val	Ala	Ser	Pro	Ala	Glu	Phe	Val	Thr	Arg	Phe	Gly	Gly		10
										45					55		
aat	aaa	gtg	att	gag	aag	gtt	ctc	att	gcc	aac	aat	ggc	att	gca	gct	604	
Asn	Lys	Val	Ile	Glu	Lys	Val	Leu	Ile	Ala	Asn	Asn	Gly	Ile	Ala	Ala		
										60					70		
gtg	aaa	tgc	atg	aga	tcc	atc	cgc	cgg	tgg	tct	tat	gag	atg	ttt	cga	652	15
Val	Lys	Cys	Met	Arg	Ser	Ile	Arg	Arg	Trp	Ser	Tyr	Glu	Met	Phe	Arg		
										75					85		
aat	gaa	cgt	gca	atc	cga	ttt	gtc	atg	gtc	aca	cct	gaa	gac	ctg		700	20
Asn	Glu	Arg	Ala	Ile	Arg	Phe	Val	Val	Met	Val	Thr	Pro	Glu	Asp	Leu		
						90				95					100		
aaa	gcc	aat	gca	gaa	tac	att	aag	atg	gcg	gat	cac	tac	gtg	ccc	gtg	748	
Lys	Ala	Asn	Ala	Glu	Tyr	Ile	Lys	Met	Ala	Asp	His	Tyr	Val	Pro	Val		
						105				110					120		25
cca	gga	ggc	ccc	aac	aac	aac	aat	gca	aat	gtg	gag	tta	att	ctt		796	
Pro	Gly	Gly	Pro	Asn	Asn	Asn	Asn	Tyr	Ala	Asn	Val	Glu	Leu	Ile	Leu		
						125				130					135		
gac	att	gct	aaa	agg	atc	ccc	gtg	caa	gca	gtt	tgg	gct	ggc	tgg	ggt	844	30
Asp	Ile	Ala	Lys	Arg	Ile	Pro	Val	Gln	Ala	Val	Trp	Ala	Gly	Trp	Gly		
						140				145					150		
cat	gct	tct	gag	aat	ccc	aag	ctc	cca	gaa	ctt	ctc	ttg	aaa	aat	ggc	892	35
His	Ala	Ser	Glu	Asn	Pro	Lys	Leu	Pro	Glu	Leu	Leu	Leu	Lys	Asn	Gly		
						155				160					165		
atc	gcc	ttc	atg	ggt	cct	cca	agc	caa	gcc	atg	tgg	gct	ctg	ggg	gat	940	40
Ile	Ala	Phe	Met	Gly	Pro	Pro	Ser	Gln	Ala	Met	Trp	Ala	Leu	Gly	Asp		
						170				175					180		
aag	atc	gca	tct	tcc	ata	gtg	gct	caa	act	gct	ggt	atc	cca	act	ctt	988	
Lys	Ile	Ala	Ser	Ser	Ile	Val	Ala	Gln	Thr	Ala	Gly	Ile	Pro	Thr	Leu		
						185				190					195		200
cca	tgg	agt	ggc	agt	ggt	ctt	tgt	gtg	gac	tgg	cac	gaa	aat	gat	ttt	1036	45
Pro	Trp	Ser	Gly	Ser	Gly	Leu	Cys	Val	Asp	Trp	His	Glu	Asn	Asp	Phe		
						205				210					215		
tca	aaa	cga	att	tta	aat	gtt	cct	cag	gaa	cta	tat	gaa	aaa	ggt	tat	1084	50
Ser	Lys	Arg	Ile	Leu	Asn	Val	Pro	Gln	Glu	Leu	Tyr	Glu	Lys	Gly	Tyr		
						220				225					230		
gtg	aag	gat	gtg	gat	gat	ggg	ctg	aag	gca	gcg	gag	gaa	gtt	gga	tat	1132	
Val	Lys	Asp	Val	Asp	Asp	Gly	Leu	Lys	Ala	Ala	Glu	Glu	Val	Gly	Tyr		55
						235				240					245		
cca	gta	atg	atc	aag	gcc	tca	gaa	gga	gga	gga	ggg	aag	gga	atc	aga	1180	
Pro	Val	Met	Ile	Lys	Ala	Ser	Glu	Gly	Gly	Gly	Gly	Lys	Gly	Ile	Arg		
						250				255					260		
aaa	gtc	aac	aat	gca	gat	gac	ttc	cct	aac	ctc	ttc	cga	cag	gtt	caa	1228	60

DE 199 46 173 A 1

Lys	Val	Asn	Asn	Ala	Asp	Asp	Phe	Pro	Asn	Leu	Phe	Arg	Gln	Val	Gln		
265					270				275				280				
5	gct	gaa	gtt	cct	ggg	tct	cct	atc	ttt	gtc	atg	aga	cta	gcc	aaa	cag	1276
	Ala	Glu	Val	Pro	Gly	Ser	Pro	Ile	Phe	Val	Met	Arg	Leu	Ala	Lys	Gln	
					285				290				295				
10	tct	cgt	cat	ctg	gag	gtg	cag	atc	tta	gca	gat	cag	tat	ggc	aat	gct	1324
	Ser	Arg	His	Leu	Glu	Val	Gln	Ile	Leu	Ala	Asp	Gln	Tyr	Gly	Asn	Ala	
					300				305				310				
	atc	tct	ttg	ttt	ggt	cgt	gat	tgc	tct	gtg	caa	cgc	agg	cat	cag	aag	1372
	Ile	Ser	Leu	Phe	Gly	Arg	Asp	Cys	Ser	Val	Gln	Arg	Arg	His	Gln	Lys	
					315				320				325				
15	att	att	gaa	gaa	gct	cct	gct	gct	att	gct	act	cca	gca	gta	ttt	gaa	1420
	Ile	Ile	Glu	Glu	Ala	Pro	Ala	Ala	Ile	Ala	Thr	Pro	Ala	Val	Phe	Glu	
					330				335				340				
20	cat	atg	gaa	cag	tgt	gcg	gtg	aaa	ctt	gcc	agg	atg	gtt	ggt	tat	gtg	1468
	His	Met	Glu	Gln	Cys	Ala	Val	Lys	Leu	Ala	Arg	Met	Val	Gly	Tyr	Val	
					345				350				355			360	
25	agt	gct	ggg	act	gtg	gaa	tac	ctc	tac	agc	cag	gat	ggc	agc	ttc	tac	1516
	Ser	Ala	Gly	Thr	Val	Glu	Tyr	Leu	Tyr	Ser	Gln	Asp	Gly	Ser	Phe	Tyr	
					365				370				375				
	ttt	ctg	gaa	ctg	aac	cct	cg	cta	cag	gtg	gag	cac	ccc	tgt	aca	gag	1564
	Phe	Leu	Glu	Leu	Asn	Pro	Arg	Leu	Gln	Val	Glu	His	Pro	Cys	Thr	Glu	
					380				385				390				
30	atg	gtg	gcc	gat	gtc	aac	ctc	cct	gct	gct	cag	ctc	cag	att	gcc	atg	1612
	Met	Val	Ala	Asp	Val	Asn	Leu	Pro	Ala	Ala	Gln	Leu	Gln	Ile	Ala	Met	
					395				400				405				
35	ggg	atc	cct	ctg	tac	aga	atc	aag	gat	atc	cga	atg	atg	tac	ggg	gtc	1660
	Gly	Ile	Pro	Leu	Tyr	Arg	Ile	Lys	Asp	Ile	Arg	Met	Met	Tyr	Gly	Val	
					410				415				420				
40	tct	ccc	tgg	ggc	gat	gtc	ccc	att	gat	ttt	gaa	aat	tcg	gct	cac	gtt	1708
	Ser	Pro	Trp	Gly	Asp	Ala	Pro	Ile	Asp	Phe	Glu	Asn	Ser	Ala	His	Val	
					425				430				435			440	
	cct	tgc	cca	agg	ggc	cat	gtt	att	gct	gct	cgt	atc	act	agt	gaa	sat	1756
	Pro	Cys	Pro	Arg	Gly	His	Val	Ile	Ala	Ala	Arg	Ile	Thr	Ser	Glu	Asn	
					445				450				455				
45	cca	gat	gag	ggt	ttt	aag	ccc	agc	tca	gga	aca	gtt	caa	gag	ctg	aat	1804
	Pro	Asp	Glu	Gly	Phe	Lys	Pro	Ser	Ser	Gly	Thr	Val	Gln	Glu	Leu	Asn	
					460				465				470				
50	ttt	cgc	agc	aat	aag	aac	gtt	tgg	ggt	tat	ttc	agt	gtt	gct	gct	gca	1852
	Phe	Arg	Ser	Asn	Lys	Asn	Val	Trp	Gly	Tyr	Phe	Ser	Val	Ala	Ala	Ala	
					475				480				485				
55	gga	ggg	ctt	cat	gaa	ttt	gct	gat	tct	cag	ttt	ggt	cac	tgc	ttt	tcc	1900
	Gly	Gly	Leu	His	Glu	Phe	Ala	Asp	Ser	Gln	Phe	Gly	His	Cys	Phe	Ser	
					490				495				500				
	tgg	gga	gaa	aac	cga	gag	gaa	gca	att	tca	aac	atg	gtt	gtg	gct	ttg	1948
	Trp	Gly	Glu	Asn	Arg	Glu	Glu	Ala	Ile	Ser	Asn	Met	Val	Val	Ala	Leu	
					505				510				515			520	
60	aag	gag	ctg	tct	atc	cgg	ggc	gac	ttc	cgg	acc	aca	gtc	gag	tac	ctg	1996

DE 199 46 173 A 1

Lys Glu Leu Ser Ile Arg Gly Asp Phe Arg Thr Thr Val Glu Tyr L u			
525	530	535	
atc aaa ctg ctg gag act gaa agc ttt cag ttg aac aga att ggc acg	2044		
Ile Lys Leu Leu Glu Thr Glu Ser Phe Gln L u Asn Arg Ile Gly Thr		5	
540	545	550	
ggc tgg ctg gac aga ctg ata gca gaa aaa gta cag gcg gag cga cct	2092		
Gly Trp Leu Asp Arg Leu Ile Ala Glu Lys Val Gln Ala Glu Arg Pro		10	
555	560	565	
gac acc atg ctg gga gtt gtc tgt ggg gct ctc cat gtg gca gac gtg	2140		
Asp Thr Met Leu Gly Val Val Cys Gly Ala Leu His Val Ala Asp Val			
570	575	580	
agc ctg cgg aat agc atc tcc aac ttc ctt cac tcc tta gag agg ggt	2188		
Ser Leu Arg Asn Ser Ile Ser Asn Phe Leu His Ser Leu Glu Arg Gly		15	
585	590	595	600
caa gtc ctc act gct cat acc ctt ctg aat aca gta gat gtt gaa ctt	2236		
Gln Val Leu Thr Ala His Thr Leu Leu Asn Thr Val Asp Val Glu Leu		20	
605	610	615	
atc tac gag gga gtg aag tat gta ctg aag gtg act cga cag tcc ccg	2284		
Ile Tyr Glu Gly Val Lys Tyr Val Leu Lys Val Thr Arg Gln Ser Pro		25	
620	625	630	
aac tcc tac gtg gtg atc atg aac ggc tcg tgt gtg gaa gta gac gtg	2332		
Asn Ser Tyr Val Val Ile Met Asn Gly Ser Cys Val Glu Val Asp Val			
635	640	645	
cat cga ctg agc gac ggt gga ctg ctc ttg tcc tat gac gtc agc agt	2380		
His Arg Leu Ser Asp Gly Gly Leu Leu Leu Ser Tyr Asp Val Ser Ser		30	
650	655	660	
tac acc acg tac atg aag gag gag gtg gat aga tat cgc atc aca att	2428		
Tyr Thr Thr Tyr Met Lys Glu Glu Val Asp Arg Tyr Arg Ile Thr Ile		35	
665	670	675	680
ggc aat aaa act tgt gtg ttt gag aag gaa aat gac cct tcg gtg ctg	2476		
Gly Asn Lys Thr Cys Val Phe Glu Lys Glu Asn Asp Pro Ser Val Leu		40	
685	690	695	
cgc tca ccc tct gct ggg aag ttg atc cag tac att gtg gag gat gga	2524		
Arg Ser Pro Ser Ala Gly Lys Leu Ile Gln Tyr Ile Val Glu Asp Gly			
700	705	710	
ggc cac gtg ttt gct ggc cag tgc tat gcc gag atc gag gtg atg aag	2572		
Gly His Val Phe Ala Gly Gln Cys Tyr Ala Glu Ile Glu Val Met Lys		45	
715	720	725	
atg gta atg acc tta aca gcc gca gag tct ggc tgt atc cat tat gtc	2620		
Met Val Met Thr Leu Thr Ala Ala Glu Ser Gly Cys Ile His Tyr Val		50	
730	735	740	
aag cgg cct gga gca gct ctt gac ccg ggc tgt gta ata gcc aaa atg	2668		
Lys Arg Pro Gly Ala Ala Leu Asp Pro Gly Cys Val Ile Ala Lys Met		55	
745	750	755	760
caa ctg gac aac ccc agc aag gtc cag cag gct gag ctt cac aca ggc	2716		
Gln Leu Asp Asn Pro Ser Lys Val Gln Gln Ala Glu Leu His Thr Gly			
765	770	775	
agt ctg cca cgg atc cag agc aca gcg ctc aga ggc gag aag ctc cac	2764		
		60	

DE 199 46 173 A 1

Ser	Leu	Pro	Arg	Ile	Gln	Ser	Thr	Ala	L	u	Arg	Gly	Glu	Lys	Leu	His	
780						785								790			
5	cga	gtg	ttc	cac	tat	gtc	ctg	gat	aat	ctg	gtc	aat	gtg	atg	aat	gga	2812
	Arg	Val	Ph	His	Tyr	Val	Leu	Asp	Asn	Leu	Val	Asn	Val	Met	Asn	Gly	
	795						800					805					
10	tac	tgc	ctt	cca	gat	cct	ttc	ttt	agc	agc	agg	gtg	aaa	gac	tgg	gtt	2860
	Tyr	Cys	Leu	Pro	Asp	Pro	Phe	Phe	Ser	Ser	Arg	Val	Lys	Asp	Trp	Val	
	810				815						820						
15	gaa	cg	ttg	atg	aag	acc	ctc	aga	gac	ccc	tcc	ttg	cct	ctc	cta	gaa	2908
	Glu	Arg	Leu	Met	Lys	Thr	Leu	Arg	Asp	Pro	Ser	Leu	Pro	Leu	Leu	Glu	
	825				830					835				840			
20	ttg	cag	gat	atc	atg	act	agc	gtc	tct	gg	cgt	atc	ccg	ccc	aac	gtg	2956
	Leu	Gln	Asp	Ile	Met	Thr	Ser	Val	Ser	Gly	Arg	Ile	Pro	Pro	Asn	Val	
	845					850					855						
25	gaa	aag	tct	atc	aag	aag	gaa	atg	gct	cag	tat	gcc	agc	aac	atc	aca	3004
	Glu	Lys	Ser	Ile	Lys	Lys	Glu	Met	Ala	Gln	Tyr	Ala	Ser	Asn	Ile	Thr	
	860					865					870						
30	tcc	gtg	ctc	tgt	cag	ttt	ccc	agc	cag	cag	att	gcc	aac	atc	cta	gac	3052
	Ser	Val	Leu	Cys	Gln	Phe	Pro	Ser	Gln	Gln	Ile	Ala	Asn	Ile	Leu	Asp	
	875					880					885						
35	agc	cac	gca	gcc	aca	ctg	aac	cgg	aaa	tct	gaa	cgg	gaa	gtc	ttc	ttc	3100
	Ser	His	Ala	Ala	Thr	Leu	Asn	Arg	Lys	Ser	Glu	Arg	Glu	Val	Phe	Phe	
	890					895					900						
40	atg	aac	act	cag	agc	atc	gtc	cag	ctg	gtg	cag	agg	tac	ccg	agt	ggc	3148
	Met	Asn	Thr	Gln	Ser	Ile	Val	Gln	Leu	Val	Gln	Arg	Tyr	Arg	Ser	Gly	
	905					910					915				920		
45	atc	cga	gga	cac	atg	aag	gct	gtg	gtg	atg	gac	ctg	ctg	cgg	cag	tac	3196
	Ile	Arg	Gly	His	Met	Lys	Ala	Val	Val	Met	Asp	Leu	Leu	Arg	Gln	Tyr	
	925						930					935					
50	ctg	cga	gta	gag	aca	caa	ttc	cag	aac	ggt	cac	tat	gac	aaa	tgc	gtg	3244
	Leu	Arg	Val	Glu	Thr	Gln	Phe	Gln	Asn	Gly	His	Tyr	Asp	Lys	Cys	Val	
	940					945					950						
55	tcc	gcc	ctc	cg	gag	gag	aac	aag	agt	gat	atg	aac	act	gtg	ctg	aac	3292
	Phe	Ala	Leu	Arg	Glu	Glu	Asn	Lys	Ser	Asp	Met	Asn	Thr	Val	Leu	Asn	
	955					960					965						
60	tac	atc	ttc	tct	cat	gtc	cag	gtc	acc	agg	aag	aat	ctt	ctg	gtc	acc	3340
	Tyr	Ile	Phe	Ser	His	Ala	Gln	Val	Thr	Arg	Lys	Asn	Leu	Leu	Val	Thr	
	970					975					980						
65	atg	ctt	atc	gat	cag	ctg	tgt	ggc	cgg	ggc	ccc	acc	ctc	act	gat	gag	3388
	Met	Leu	Ile	Asp	Gln	Leu	Cys	Gly	Arg	Gly	Pro	Thr	Leu	Thr	Asp	Glu	
	985					990					995			1000			
70	ctg	ctg	aat	atc	ctc	acg	gag	cta	act	caa	ctc	agc	aag	acc	acc	aac	3436
	Leu	Leu	Asn	Ile	Leu	Thr	Glu	Leu	Thr	Gln	Leu	Ser	Lys	Thr	Thr	Asn	
	1005					1010					1015						
75	gcg	aag	gtg	g	ctc	cga	gca	cgc	cag	gtt	ctt	att	gct	tcc	cat	ttg	3484
	Ala	Lys	Val	Ala	Leu	Arg	Ala	Arg	Gln	Val	Leu	Ile	Ala	Ser	His	Leu	
	1020					1025					1030						
80	cca	tcc	tat	gag	ctt	ctc	ac	aa	gtc	gag	tct	atc	ttc	cta	tcc		3532

DE 199 46 173 A 1

Pro Ser Tyr Glu Leu Arg L u Asn Gln Val Glu Ser Ile Phe Leu Ser			
1035	1040	1045	
gcc att gac atg tat gga cac cag ttc tgc atc gag aac ctg cag aaa	3580		
Ala Ile Asp Met Tyr Gly His Gln Phe Cys Ile Glu Asn Leu Gln Lys		5	
1050	1055	1060	
ctc atc ttg tcc gaa acg tcg att ttt gat gtc cta cca aac ttc ttc	3628		
Leu Ile Leu Ser Glu Thr Ser Ile Phe Asp Val Leu Pro Asn Phe Phe		10	
1065	1070	1075	1080
tat cac agc aac cag gtc gtg agg atg gca gct ctg gag gtg tat gtt	3676		
Tyr His Ser Asn Gln Val Val Arg Met Ala Ala Leu Glu Val Tyr Val			
1085	1090	1095	
cga agg gct tat atc gcc tat gaa ctt aat agc gta caa cac cgg cag	3724		
Arg Arg Ala Tyr Ile Ala Tyr Glu Leu Asn Ser Val Gln His Arg Gln		15	
1100	1105	1110	
ctg aag gac aac acc tgc gtg gaa ttc cag ttc atg ctg ccc aca	3772		
Leu Lys Asp Asn Thr Cys Val Val Glu Phe Gln Phe Met Leu Pro Thr		20	
1115	1120	1125	
tcg cat cca aat aga ggg aac atc ccc acg cta aac aga atg tcc ttc	3820		
Ser His Pro Asn Arg Gly Asn Ile Pro Thr Leu Asn Arg Met Ser Phe		25	
1130	1135	1140	
tcc tcc aac ctc aac cac tac ggc atg act cac gta gcc agt gtc agc	3868		
Ser Ser Asn Leu Asn His Tyr Gly Met Thr His Val Ala Ser Val Ser			
1145	1150	1155	1160
gac gtg ctg ctg gac aac gcg ttc act ccg ccg tgt cag cgg atg ggc	3916		
Asp Val Leu Leu Asp Asn Ala Phe Thr Pro Pro Cys Gln Arg Met Gly		30	
1165	1170	1175	
ggg atg gtc tct ttt cgg acc ttt gaa gat ttt gtc agg atc ttt gat	3964		
Gly Met Val Ser Phe Arg Thr Phe Glu Asp Phe Val Arg Ile Phe Asp		35	
1180	1185	1190	
gaa gtg atg ggc tgc ttc tgt gat tcc cca ccc caa agc ccg aca ttc	4012		
Glu Val Met Gly Cys Phe Cys Asp Ser Pro Pro Gln Ser Pro Thr Phe		40	
1195	1200	1205	
cct gag gca ggt cac acg tct ctg tat gac gaa gac aag gtc ccc agg	4060		
Pro Glu Ala Gly His Thr Ser Leu Tyr Asp Glu Asp Lys Val Pro Arg			
1210	1215	1220	
gat gaa cca att cac att ttg aat gtg gct atc aaa aca gac tgt gac	4108		
Asp Glu Pro Ile His Ile Leu Asn Val Ala Ile Lys Thr Asp Cys Asp		45	
1225	1230	1235	1240
atc gag gat gac agt cta gca gct atg ttc cga gag ttt acc cag caa	4156		
Ile Glu Asp Asp Ser Leu Ala Ala Met Phe Arg Glu Phe Thr Gln Gln		50	
1245	1250	1255	
aac aaa gct acc ctg gtt gaa cat ggg atc cga cgc ctt act ttc ctg	4204		
Asn Lys Ala Thr Leu Val Glu His Gly Ile Arg Arg Leu Thr Phe Leu			
1260	1265	1270	
gtt gca caa aag gat ttc agg aaa caa gtc aac tat gaa gtg gat cag	4252		
Val Ala Gln Lys Asp Phe Arg Lys Gln Val Asn Tyr Glu Val Asp Gln			
1275	1280	1285	
aga ttt cat aga gaa ttt cct aaa ttt ttc acg ttc cga gca agg gat	4300		
		60	

DE 199 46 173 A 1

Arg	Phe	His	Arg	Glu	Phe	Pr	Lys	Phe	Phe	Thr	Phe	Arg	Ala	Arg	Asp		
1290				1295							1300						
5	aag	ttt	gag	gaa	gat	cgt	atc	tat	cgt	cac	ctg	gag	cct	gcc	cta	gct	4348
	Lys	Phe	Glu	Glu	Asp	Arg	Ile	Tyr	Arg	His	Leu	Glu	Pro	Ala	Leu	Ala	
	1305				1310					1315					1320		
10	ttc	cag	tta	gag	ctg	aac	cg	atg	aga	aat	ttt	gac	ctt	act	gcc	atc	4396
	Phe	Gln	Leu	Glu	Leu	Asn	Arg	Met	Arg	Asn	Phe	Asp	Leu	Thr	Ala	Ile	
						1325				1330				1335			
15	ccg	tgt	gcc	aat	cac	aag	atg	cac	ttg	tat	ctt	ggg	gca	gcc	aag	gta	4444
	Pro	Cys	Ala	Asn	His	Lys	Met	His	Leu	Tyr	Leu	Gly	Ala	Ala	Lys	Val	
						1340			1345				1350				
20	gaa	gtg	ggc	aca	gaa	gtg	aca	gac	tac	agg	ttc	ttt	gtt	cgt	gca	atc	4492
	Glu	Val	Gly	Thr	Glu	Val	Thr	Asp	Tyr	Arg	Phe	Phe	Val	Arg	Ala	Ile	
						1355			1360				1365				
25	atc	agg	cat	tct	gat	ctg	gtc	acc	aag	gaa	gct	tcc	ttt	gaa	tat	cta	4540
	Ile	Arg	His	Ser	Asp	Leu	Val	Thr	Lys	Glu	Ala	Ser	Phe	Glu	Tyr	Leu	
						1370			1375				1380				
30	caa	aat	gaa	ggg	gag	cg	ctc	ctc	ctg	gaa	gcc	atg	gat	gag	ttg	gaa	4588
	Gln	Asn	Glu	Gly	Glu	Arg	Leu	Leu	Leu	Glu	Ala	Met	Asp	Glu	Leu	Glu	
						1385			1390				1395		1400		
35	gtc	gcc	ttt	aat	aca	aat	gtc	cg	act	gac	tgc	aa	cac	atc	ttc		4636
	Val	Ala	Phe	Asn	Asn	Thr	Asn	Val	Arg	Thr	Asp	Cys	Asn	His	Ile	Phe	
						1405			1410				1415				
40	ctc	aac	ttt	gtt	cct	aca	gtc	atc	atg	gac	cca	tcg	aa	att	gag	gaa	4684
	Leu	Asn	Phe	Val	Pro	Thr	Val	Ile	Met	Asp	Pro	Ser	Lys	Ile	Glu	Glu	
						1420			1425				1430				
45	tcc	gtg	cg	gc	atg	gtg	atg	cg	tat	gga	agt	cg	ctg	tgg	aag	ctg	4732
	Ser	Val	Arg	Ser	Met	Val	Met	Arg	Tyr	Gly	Ser	Arg	Leu	Trp	Lys	Leu	
						1435			1440				1445				
50	cgt	gtc	ctc	cag	gca	gaa	ctg	aaa	atc	aa	att	cg	ctg	aca	cca	act	4780
	Arg	Val	Leu	Gln	Ala	Glu	Leu	Lys	Ile	Asn	Ile	Arg	Leu	Thr	Pro	Thr	
						1450			1455				1460				
55	gga	aaa	gca	att	ccc	atc	cg	ctc	ttc	ctg	acg	aa	gag	tct	ggc	tat	4828
	Gly	Lys	Ala	Ile	Pro	Ile	Arg	Leu	Phe	Leu	Thr	Asn	Glu	Ser	Gly	Tyr	
						1465			1470				1475		1480		
60	tac	ttg	gac	atc	agc	ctg	tac	aag	gaa	gtg	act	gat	tcc	agg	aca	gca	4876
	Tyr	Leu	Asp	Ile	Ser	Leu	Tyr	Lys	Glu	Val	Thr	Asp	Ser	Arg	Thr	Ala	
						1485			1490				1495				
65	cag	atc	atg	ttt	cag	gca	tat	gga	gac	aaa	cag	gga	cca	tta	cat	gga	4924
	Gln	Ile	Met	Phe	Gln	Ala	Tyr	Gly	Asp	Lys	Gln	Gly	Pro	Leu	His	Gly	
						1500			1505				1510				
70	atg	tta	atc	aa	act	ccg	tac	gtg	acc	aaa	gac	cag	ctt	caa	tcc	aag	4972
	Met	Leu	Ile	Asn	Thr	Pro	Tyr	Val	Thr	Lys	Asp	Gln	Leu	Gln	Ser	Lys	
						1515			1520				1525				
75	agg	tcc	cag	gca	cag	tcc	tta	ggg	aca	aca	tac	ata	tat	gac	atc	cca	5020
	Arg	Phe	Gln	Ala	Gln	Ser	Leu	Gly	Thr	Thr	Tyr	Ile	Tyr	Asp	Ile	Pro	
						1530			1535				1540				
80	gaa	atg	ttt	cg	cag	tcc	ctg	atc	aa	ctc	tgg	gaa	tct	atg	tcc	tcc	5068

DE 199 46 173 A 1

Glu Met Ph Arg Gln S r Leu Ile Lys Leu Trp Glu Ser Met Ser Ser	1545	1550	1555	1560		
caa gca ttc ctt cca ccg ccc cct ctg cct tca gac ata ctg acg tac	1565	1570	1575		5116	5
Gln Ala Phe Leu Pro Pro Pro Pro Leu Pro Ser Asp Ile Leu Thr Tyr						
act gag ctc gtg ttg gat gat caa ggt caa ctg gtt cac atg aac agg	1580	1585	1590		5164	10
Thr Glu Leu Val Leu Asp Asp Gln Gly Gln Leu Val His Met Asn Arg						
ctt cca gga gga aat gag att ggc atg gta gct tgg aaa atg acc ctt	1595	1600	1605		5212	15
Leu Pro Gly Gly Asn Glu Ile Gly Met Val Ala Trp Lys Met Thr Leu						
aaa agt cca gaa tat cca gac ggc cga gat atc att gtt att ggc aat	1610	1615	1620		5260	
Lys Ser Pro Glu Tyr Pro Asp Gly Arg Asp Ile Ile Val Ile Gly Asn						
gac atc act tac cga att ggg tcc ttt gga ccc caa gag gat ttg ctg	1625	1630	1635	1640	5308	20
Asp Ile Thr Tyr Arg Ile Gly Ser Phe Gly Pro Gln Glu Asp Leu Leu						
ttt ctc aga gct tct gag ctt gcc agg gca gag ggc atc cca cgc atc	1645	1650	1655		5356	25
Phe Leu Arg Ala Ser Glu Leu Ala Arg Ala Glu Gly Ile Pro Arg Ile						
tat gta gca gcc aac agt gga gca aga att gga ctg gca gag gaa att	1660	1665	1670		5404	
Tyr Val Ala Ala Asn Ser Gly Ala Arg Ile Gly Leu Ala Glu Glu Ile						
cgt cat atg ttt cac gtg gcc tgg gta gat cct gag gat cct tac aag	1675	1680	1685		5452	30
Arg His Met Phe His Val Ala Trp Val Asp Pro Glu Asp Pro Tyr Lys						
gga tac aaa tat tta tat ctg acc cct caa gat tac aag aga gtc agt	1690	1695	1700		5500	35
Gly Tyr Lys Tyr Leu Tyr Leu Thr Pro Gln Asp Tyr Lys Arg Val Ser						
gct ctc aac tct gtc cat tgt gaa cat gtg gaa gat gaa gga gaa tcc	1705	1710	1715	1720	5548	40
Ala Leu Asn Ser Val His Cys Glu His Val Glu Asp Glu Gly Glu Ser						
agg tac aag atc act gac att att ggg aag gaa gaa gga ctt gga gca	1725	1730	1735		5596	
Arg Tyr Lys Ile Thr Asp Ile Ile Gly Lys Glu Glu Gly Leu Gly Ala						
gag aac ctt cga ggg tct gga atg att gct ggg gaa tcc tcg ttg gcc	1740	1745	1750		5644	45
Glu Asn Leu Arg Gly Ser Gly Met Ile Ala Gly Glu Ser Ser Leu Ala						
tac gac gag atc atc acc atc agc ctg gtt aca tgc agg gcc att ggg	1755	1760	1765		5692	50
Tyr Asp Glu Ile Ile Thr Ile Ser Leu Val Thr Cys Arg Ala Ile Gly						
att ggg gct tac ctc gca ctg gga cag aga acc atc cag gtc gaa	1770	1775	1780		5740	
Ile Gly Ala Tyr Leu Val Arg Leu Gly Gln Arg Thr Ile Gln Val Glu						
aat tct cac tta atc ctg aca gga gct ggg gcc ctc aac aaa gtc ctc	1785	1790	1795	1800	5788	55
Asn Ser His Leu Ile Leu Thr Gly Ala Gly Ala Leu Asn Lys Val Leu						
ggt agg gaa gta tac acc tcc aac aac cag ctg ggg ggc atc cag atc					5836	60

DE 199 46 173 A 1

Gly Arg Glu Val Tyr Thr Ser Asn Asn Gln Leu Gly Gly Ile Gln Ile			
1805 1810 1815			
5 atg cac aac aat ggg gtg acg cac agc acc gtc tgt gac gac ttc gag 5884			
Met His Asn Asn Gly Val Thr His S r Thr Val Cys Asp Asp Phe Glu 1820 1825 1830			
10 ggg gtg ttc acc gtc ctg cac tgg ctg tct tac atg ccg aag agt gta 5932			
Gly Val Phe Thr Val Leu His Trp Leu Ser Tyr Met Pro Lys Ser Val 1835 1840 1845			
15 tac agt tca gtt cct ctc ctg aac tcc aag gat cca ata gac aga gtc 5980			
Tyr Ser Ser Val Pro Leu Leu Asn Ser Lys Asp Pro Ile Asp Arg Val 1850 1855 1860			
20 atc gag ttt gtg ccc acg aag gcg ccg tat gac cct cgg tgg atg ctg 6028			
Ile Glu Phe Val Pro Thr Lys Ala Pro Tyr Asp Pro Arg Trp Met Leu 1865 1870 1875 1880			
25 gca ggc cgg cct cac cca acc cag aaa ggt cag tgg ttg agt gga ttt 6076			
Ala Gly Arg Pro His Pro Thr Gln Lys Gly Gln Trp Leu Ser Gly Phe 1885 1890 1895			
30 ttt gac tat ggc tct ttc tca gag atc atg caa ccg tgg gca cag act 6124			
Phe Asp Tyr Gly Ser Phe Ser Glu Ile Met Gln Pro Trp Ala Gln Thr 1900 1905 1910			
35 gtg gtg gtt ggc aga gcc agg cta gga gga ata ccc gtg gga gta gtt 6172			
Val Val Val Gly Arg Ala Arg Leu Gly Gly Ile Pro Val Gly Val Val 1915 1920 1925			
40 gcc gta gaa acc cga aca gtg gag ctg agc atc ccg gct gat cct gca 6220			
Ala Val Glu Thr Arg Thr Val Glu Leu Ser Ile Pro Ala Asp Pro Ala 1930 1935 1940			
45 aac ctg gat tct gaa gcc aag att atc cag cag gct ggc cag gtt tgg 6268			
Asn Leu Asp Ser Glu Ala Lys Ile Ile Gln Gln Ala Gly Gln Val Trp 1945 1950 1955 1960			
50 ttc cca gac tcc gcg ttt aag acg tat cag gcc att aag gac ttc aac 6316			
Phe Pro Asp Ser Ala Phe Lys Thr Tyr Gln Ala Ile Lys Asp Phe Asn 1965 1970 1975			
55 cgt gaa ggg ctg cct ctg atg gtc ttt gcc aac tgg aga ggc ttc tcc 6364			
Arg Glu Gly Leu Pro Leu Met Val Phe Ala Asn Trp Arg Gly Phe Ser 1980 1985 1990			
60 ggt ggg atg aaa gat atg tac gac cag gtg ctg aag ttc ggc gct tac 6412			
Gly Gly Met Lys Asp Met Tyr Asp Gln Val Leu Lys Phe Gly Ala Tyr 1995 2000 2005			
65 atc gtg gac ggc tta cgg gag tgc tcg cag ccc gtg atg gtc tac atc 6460			
Ile Val Asp Gly Leu Arg Glu Cys Ser Gln Pro Val Met Val Tyr Ile 2010 2015 2020			
70 ccg cct cag gcc gag ctc cga ggc ggc tcc tgg gtg gtg att gac ccc 6508			
Pro Pro Gln Ala Glu Leu Arg Gly Ser Trp Val Val Ile Asp Pro 2025 2030 2035 2040			
75 acc atc aac ccg cgg cac atg gag atg tat gcg gac cgc gag agc agg 6556			
Thr Ile Asn Pro Arg His Met Glu Met Tyr Ala Asp Arg Glu Ser Arg 2045 2050 2055			
80 gga tcc gtt ctg gag ccg gaa ggg aca gtc gaa atc aaa ttc cgc aga 6604			

DE 199 46 173 A 1

Gly Ser Val Leu Glu Pro Glu Gly Thr Val Glu Ile Lys Phe Arg Arg		
2060 2065 2070		
aag gat ctg gtg aaa acc atg cgt cgg gtg gac cca gtc tac atc cac	6652	5
Lys Asp Leu Val Lys Thr Met Arg Arg Val Asp Pro Val Tyr Ile His		
2075 2080 2085		
ttg gct gag cga ttg ggt acc ccc gag ctc agc gtg gcc gag cgg aag	6700	
Leu Ala Glu Arg Leu Gly Thr Pro Glu Leu Ser Val Ala Glu Arg Lys		10
2090 2095 2100		
gag ctg gag agc aag ctg aag gag cga gag gag ttc ctc ctt ccc atc	6748	
Glu Leu Glu Ser Lys Leu Lys Glu Arg Glu Glu Phe Leu Leu Pro Ile		
2105 2110 2115 2120		
tac cac cag gtg gcc gtg cag ttt gca gac ctg cac gac acc ccg ggc	6796	15
Tyr His Gln Val Ala Val Gln Phe Ala Asp Leu His Asp Thr Pro Gly		
2125 2130 2135		
cgc atg cag gag aag ggg gtc att aac gac atc ctg gat tgg aag act	6844	20
Arg Met Gln Glu Lys Gly Val Ile Asn Asp Ile Leu Asp Trp Lys Thr		
2140 2145 2150		
tca cgc acc ttc ttc tac tgg cgg ctg agg cgg ctg ttg ctg gag gac	6892	
Ser Arg Thr Phe Phe Tyr Trp Arg Leu Arg Arg Leu Leu Glu Asp		25
2155 2160 2165		
ctg gtc aag aag aaa atc cac aat gcc aat ccc gag ctg aca gac ggc	6940	
Leu Val Lys Lys Lys Ile His Asn Ala Asn Pro Glu Leu Thr Asp Gly		
2170 2175 2180		
cag atc cag gcc atg cta agg cgc tgg ttt gtg gag gtg gag gga acc	6988	30
Gln Ile Gln Ala Met Leu Arg Arg Trp Phe Val Glu Val Glu Gly Thr		
2185 2190 2195 2200		
gtg aag gcc tat gtc tgg gac aac aac aag gat ctg gtg gag tgg ctg	7036	35
Val Lys Ala Tyr Val Trp Asp Asn Asn Lys Asp Leu Val Glu Trp Leu		
2205 2210 2215		
gag aaa cag ctc aca gag gaa gac ggc gtc cgc tcg gtg att gaa gag	7084	
Glu Lys Gln Leu Thr Glu Glu Asp Gly Val Arg Ser Val Ile Glu Glu		40
2220 2225 2230		
aac atc aag tac atc agc aga gac tac gtc ctc aag cag atc cgc agc	7132	
Asn Ile Lys Tyr Ile Ser Arg Asp Tyr Val Leu Lys Gln Ile Arg Ser		
2235 2240 2245		
ttg gtc cag gcc aac cca gag gtt gcc atg gat tcc atc gtc cac atg	7180	45
Leu Val Gln Ala Asn Pro Glu Val Ala Met Asp Ser Ile Val His Met		
2250 2255 2260		
acg cag cac atc tcg ccc acc cag cga gca gaa gtc gtt cgg atc ctc	7228	
Thr Gln His Ile Ser Pro Thr Gln Arg Ala Glu Val Val Arg Ile Leu		50
2265 2270 2275 2280		
tcg acg atg gac tcg ccc tca acg tag	7255	
Ser Thr Met Asp Ser Pro Ser Thr		
2285		55
		60
		65

DE 199 46 173 A 1

<210> 3
 <211> 2288
 <212> PRT
 <213> Rind
 5
 <400> 3
 Met Glu Gly Ser Ala Glu Glu Ser Lys Glu Met Arg Tyr Tyr Met Leu
 1 5 10 15
 10 Gln Arg Ser Ser Met Ser Gly Leu His Leu Val Lys Gln Gly Arg Asp
 20 25 30
 Arg Lys Lys Ile Asp Ser Gln Arg Asp Phe Thr Val Ala Ser Pro Ala
 35 40 45
 15 Glu Phe Val Thr Arg Phe Gly Gly Asn Lys Val Ile Glu Lys Val Leu
 50 55 60
 Ile Ala Asn Asn Gly Ile Ala Ala Val Lys Cys Met Arg Ser Ile Arg
 65 70 75 80
 20 Arg Trp Ser Tyr Glu Met Phe Arg Asn Glu Arg Ala Ile Arg Phe Val
 85 90 95
 Val Met Val Thr Pro Glu Asp Leu Lys Ala Asn Ala Glu Tyr Ile Lys
 100 105 110
 25 Met Ala Asp His Tyr Val Pro Val Pro Gly Gly Pro Asn Asn Asn Asn
 115 120 125
 30 Tyr Ala Asn Val Glu Leu Ile Leu Asp Ile Ala Lys Arg Ile Pro Val
 130 135 140
 Gln Ala Val Trp Ala Gly Trp Gly His Ala Ser Glu Asn Pro Lys Leu
 145 150 155 160
 35 Pro Glu Leu Leu Lys Asn Gly Ile Ala Phe Met Gly Pro Pro Ser
 165 170 175
 Gln Ala Met Trp Ala Leu Gly Asp Lys Ile Ala Ser Ser Ile Val Ala
 180 185 190
 40 Gln Thr Ala Gly Ile Pro Thr Leu Pro Trp Ser Gly Ser Gly Leu Cys
 195 200 205
 Val Asp Trp His Glu Asn Asp Phe Ser Lys Arg Ile Leu Asn Val Pro
 210 215 220
 45 Gin Glu Leu Tyr Glu Lys Gly Tyr Val Lys Asp Val Asp Asp Gly Leu
 225 230 235 240
 50 Lys Ala Ala Glu Glu Val Gly Tyr Pro Val Met Ile Lys Ala Ser Glu
 245 250 255
 Gly Gly Gly Lys Gly Ile Arg Lys Val Asn Asn Ala Asp Asp Phe
 260 265 270
 55 Pro Asn Leu Phe Arg Gln Val Gln Ala Glu Val Pro Gly Ser Pro Ile
 275 280 285
 Phe Val Met Arg Leu Ala Lys Gln Ser Arg His Leu Glu Val Gln Ile
 290 295 300
 60 Leu Ala Asp Gln Tyr Gly Asn Ala Ile Ser Leu Phe Gly Arg Asp Cys

DE 199 46 173 A 1

305	310	315	320	
Ser Val Gln Arg Arg His Gln Lys Ile Ile	Glu Glu Ala Pr	Ala Ala		
325	330	335		5
Il Ala Thr Pr Ala Val Phe Glu His Met	Glu Gln Cys Ala Val Lys			
340	345	350		
Leu Ala Arg Met Val Gly Tyr Val Ser Ala	Gly Thr Val Glu Tyr Leu			10
355	360	365		
Tyr Ser Gln Asp Gly Ser Phe Tyr Phe Leu	Glu Leu Asn Pro Arg Leu			
370	375	380		
Gln Val Glu His Pro Cys Thr Glu Met Val	Ala Asp Val Asn Leu Pro			15
385	390	395	400	
Ala Ala Gln Leu Gln Ile Ala Met Gly Ile	Pro Leu Tyr Arg Ile Lys			
405	410	415		
Asp Ile Arg Met Met Tyr Gly Val Ser Pro	Trp Gly Asp Ala Pro Ile			20
420	425	430		
Asp Phe Glu Asn Ser Ala His Val Pro Cys	Pro Arg Gly His Val Ile			
435	440	445		
Ala Ala Arg Ile Thr Ser Glu Asn Pro Asp	Glu Gly Phe Lys Pro Ser			25
450	455	460		
Ser Gly Thr Val Gln Glu Leu Asn Phe Arg	Ser Asn Lys Asn Val Trp			
465	470	475	480	30
Gly Tyr Phe Ser Val Ala Ala Ala Gly Gly	Leu His Glu Phe Ala Asp			
485	490	495		
Ser Gln Phe Gly His Cys Phe Ser Trp Gly	Glu Asn Arg Glu Glu Ala			35
500	505	510		
Ile Ser Asn Met Val Val Ala Leu Lys Glu	Leu Ser Ile Arg Gly Asp			
515	520	525		
Phe Arg Thr Thr Val Glu Tyr Leu Ile Lys	Leu Leu Glu Thr Glu Ser			40
530	535	540		
Phe Gln Leu Asn Arg Ile Gly Thr Gly Trp	Leu Asp Arg Leu Ile Ala			
545	550	555	560	
Glu Lys Val Gln Ala Glu Arg Pro Asp Thr	Met Leu Gly Val Val Cys			45
565	570	575		
Gly Ala Leu His Val Ala Asp Val Ser Leu	Arg Asn Ser Ile Ser Asn			
580	585	590		
Phe Leu His Ser Leu Glu Arg Gly Gln Val	Leu Thr Ala His Thr Leu			50
595	600	605		
Leu Asn Thr Val Asp Val Glu Leu Ile Tyr	Glu Gly Val Lys Tyr Val			
610	615	620		
Leu Lys Val Thr Arg Gln Ser Pro Asn Ser	Tyr Val Val Ile Met Asn			55
625	630	635	640	
Gly Ser Cys Val Glu Val Asp Val His Arg	Leu Ser Asp Gly Gly Leu			60
645	650	655		

65

DE 199 46 173 A 1

Leu Leu Ser Tyr Asp Val Ser Ser Tyr Thr Thr Tyr Met Lys Glu Glu
 660 665 670
 5 Val Asp Arg Tyr Arg Ile Thr Ile Gly Asn Lys Thr Cys Val Phe Glu
 675 680 685
 Lys Glu Asn Asp Pro Ser Val Leu Arg Ser Pro Ser Ala Gly Lys Leu
 690 695 700
 10 Ile Gln Tyr Ile Val Glu Asp Gly Gly His Val Phe Ala Gly Gln Cys
 705 710 715 720
 Tyr Ala Glu Ile Glu Val Met Lys Met Val Met Thr Leu Thr Ala Ala
 725 730 735
 15 Glu Ser Gly Cys Ile His Tyr Val Lys Arg Pro Gly Ala Ala Leu Asp
 740 745 750
 Pro Gly Cys Val Ile Ala Lys Met Gln Leu Asp Asn Pro Ser Lys Val
 755 760 765
 20 Gln Gln Ala Glu Leu His Thr Gly Ser Leu Pro Arg Ile Gln Ser Thr
 770 775 780
 Ala Leu Arg Gly Glu Lys Leu His Arg Val Phe His Tyr Val Leu Asp
 25 785 790 795 800
 Asn Leu Val Asn Val Met Asn Gly Tyr Cys Leu Pro Asp Pro Phe Phe
 805 810 815
 30 Ser Ser Arg Val Lys Asp Trp Val Glu Arg Leu Met Lys Thr Leu Arg
 820 825 830
 Asp Pro Ser Leu Pro Leu Leu Glu Leu Gln Asp Ile Met Thr Ser Val
 835 840 845
 35 Ser Gly Arg Ile Pro Pro Asn Val Glu Lys Ser Ile Lys Lys Glu Met
 850 855 860
 Ala Gln Tyr Ala Ser Asn Ile Thr Ser Val Leu Cys Gln Phe Pro Ser
 865 870 875 880
 40 Gln Gln Ile Ala Asn Ile Leu Asp Ser His Ala Ala Thr Leu Asn Arg
 885 890 895
 Lys Ser Glu Arg Glu Val Phe Phe Met Asn Thr Gln Ser Ile Val Gln
 45 900 905 910
 Leu Val Gln Arg Tyr Arg Ser Gly Ile Arg Gly His Met Lys Ala Val
 915 920 925
 50 Val Met Asp Leu Leu Arg Gln Tyr Leu Arg Val Glu Thr Gln Phe Gln
 930 935 940
 Asn Gly His Tyr Asp Lys Cys Val Phe Ala Leu Arg Glu Glu Asn Lys
 945 950 955 960
 55 Ser Asp Met Asn Thr Val Leu Asn Tyr Ile Phe Ser His Ala Gln Val
 965 970 975
 Thr Arg Lys Asn Leu Leu Val Thr Met Leu Ile Asp Gln Leu Cys Gly
 980 985 990
 60 Arg Gly Pro Thr Leu Thr Asp Glu Leu Leu Asn Ile Leu Thr Glu Leu

DE 199 46 173 A 1

995	1000	1005	
Thr Gln Leu Ser Lys Thr	Thr Asn Ala Lys Val	Ala Leu Arg Ala Arg	
1010	1015	1020	5
Gln Val Leu Ile Ala Ser His	Leu Pro Ser Tyr	Glu Leu Arg Leu Asn	
025	1030	1035	1040
Gln Val Glu Ser Ile Phe Leu Ser Ala Ile Asp Met Tyr Gly His Gln			10
1045	1050	1055	
Phe Cys Ile Glu Asn Leu Gln Lys	Leu Ile Leu Ser Glu	Thr Ser Ile	
1060	1065	1070	
Phe Asp Val Leu Pro Asn Phe	Phe Tyr His Ser Asn Gln	Val Val Arg	15
1075	1080	1085	
Met Ala Ala Leu Glu Val Tyr	Val Arg Arg Ala	Tyr Ile Ala Tyr Glu	
1090	1095	1100	
Leu Asn Ser Val Gln His Arg	Gln Leu Lys Asp	Asn Thr Cys Val Val	20
1095	1110	1115	1120
Glu Phe Gln Phe Met Leu Pro Thr Ser His	Pro Asn Arg Gly	Asn Ile	
1125	1130	1135	
Pro Thr Leu Asn Arg Met Ser Phe	Ser Ser Asn Leu Asn His	Tyr Gly	25
1140	1145	1150	
Met Thr His Val Ala Ser Val Ser Asp	Val Leu Leu Asp	Asn Ala Phe	
1155	1160	1165	30
Thr Pro Pro Cys Gln Arg Met Gly	Gly Met Val Ser	Phe Arg Thr Phe	
1170	1175	1180	
Glu Asp Phe Val Arg Ile Phe Asp	Glu Val Met Gly	Cys Phe Cys Asp	35
185	1190	1195	1200
Ser Pro Pro Gln Ser Pro Thr Phe	Pro Glu Ala Gly	His Thr Ser Leu	
1205	1210	1215	
Tyr Asp Glu Asp Lys Val Pro Arg	Asp Glu Pro Ile His	Ile Leu Asn	40
1220	1225	1230	
Val Ala Ile Lys Thr Asp Cys Asp	Ile Glu Asp Asp	Ser Leu Ala Ala	
1235	1240	1245	
Met Phe Arg Glu Phe Thr Gln	Gln Asn Lys Ala	Thr Leu Val Glu His	45
1250	1255	1260	
Gly Ile Arg Arg Leu Thr Phe	Leu Val Ala Gln Lys Asp	Phe Arg Lys	
265	1270	1275	1280
Gln Val Asn Tyr Glu Val Asp Gln	Arg Phe His Arg	Glu Phe Pro Lys	50
1285	1290	1295	
Phe Phe Thr Phe Arg Ala Arg	Asp Lys Phe	Glu Asp Arg Ile Tyr	
1300	1305	1310	55
Arg His Leu Glu Pro Ala Leu	Ala Phe Gln Leu Glu	Leu Asn Arg Met	
1315	1320	1325	
Arg Asn Phe Asp Leu Thr Ala	Ile Pro Cys Ala Asn His	Lys Met His	60
1330	1335	1340	

65

DE 199 46 173 A 1

Leu Tyr Leu Gly Ala Ala Lys Val Glu Val Gly Thr Glu Val Thr Asp
 345 1350 1355 1360
 Tyr Arg Phe Phe Val Arg Ala Ile Ile Arg His Ser Asp Leu Val Thr
 5 1365 1370 1375
 Lys Glu Ala Ser Phe Glu Tyr Leu Gln Asn Glu Gly Glu Arg Leu Leu
 1380 1385 1390
 10 Leu Glu Ala Met Asp Glu Leu Glu Val Ala Phe Asn Asn Thr Asn Val
 1395 1400 1405
 Arg Thr Asp Cys Asn His Ile Phe Leu Asn Phe Val Pro Thr Val Ile
 1410 1415 1420
 15 Met Asp Pro Ser Lys Ile Glu Glu Ser Val Arg Ser Met Val Met Arg
 425 1430 1435 1440
 Tyr Gly Ser Arg Leu Trp Lys Leu Arg Val Leu Gln Ala Glu Leu Lys
 1445 1450 1455
 20 Ile Asn Ile Arg Leu Thr Pro Thr Gly Lys Ala Ile Pro Ile Arg Leu
 1460 1465 1470
 Phe Leu Thr Asn Glu Ser Gly Tyr Tyr Leu Asp Ile Ser Leu Tyr Lys
 25 1475 1480 1485
 Glu Val Thr Asp Ser Arg Thr Ala Gln Ile Met Phe Gln Ala Tyr Gly
 1490 1495 1500
 30 Asp Lys Gln Gly Pro Leu His Gly Met Leu Ile Asn Thr Pro Tyr Val
 505 1510 1515 1520
 Thr Lys Asp Gln Leu Gln Ser Lys Arg Phe Gln Ala Gln Ser Leu Gly
 1525 1530 1535
 35 Thr Thr Tyr Ile Tyr Asp Ile Pro Glu Met Phe Arg Gln Ser Leu Ile
 1540 1545 1550
 Lys Leu Trp Glu Ser Met Ser Ser Gln Ala Phe Leu Pro Pro Pro
 1555 1560 1565
 40 Leu Pro Ser Asp Ile Leu Thr Tyr Thr Glu Leu Val Leu Asp Asp Gln
 1570 1575 1580
 Gly Gln Leu Val His Met Asn Arg Leu Pro Gly Gly Asn Glu Ile Gly
 45 585 1590 1595 1600
 Met Val Ala Trp Lys Met Thr Leu Lys Ser Pro Glu Tyr Pro Asp Gly
 1605 1610 1615
 50 Arg Asp Ile Ile Val Ile Gly Asn Asp Ile Thr Tyr Arg Ile Gly Ser
 1620 1625 1630
 Phe Gly Pro Gln Glu Asp Leu Leu Phe Leu Arg Ala Ser Glu Leu Ala
 1635 1640 1645
 55 Arg Ala Glu Gly Ile Pro Arg Ile Tyr Val Ala Ala Asn Ser Gly Ala
 1650 1655 1660
 Arg Ile Gly Leu Ala Glu Glu Ile Arg His Met Phe His Val Ala Trp
 665 1670 1675 1680
 60 Val Asp Pro Glu Asp Pro Tyr Lys Gly Tyr Lys Tyr Leu Tyr Leu Thr

DE 199 46 173 A 1

1685	1690	1695	
Pro Gln Asp Tyr Lys Arg Val Ser Ala Leu Asn Ser Val His Cys Glu			
1700	1705	1710	5
His Val Glu Asp Glu Gly Glu Ser Arg Tyr Lys Ile Thr Asp Ile Ile			
1715	1720	1725	
Gly Lys Glu Glu Gly Leu Gly Ala Glu Asn Leu Arg Gly Ser Gly Met			
1730	1735	1740	10
Ile Ala Gly Glu Ser Ser Leu Ala Tyr Asp Glu Ile Ile Thr Ile Ser			
745	1750	1755	1760
Leu Val Thr Cys Arg Ala Ile Gly Ile Gly Ala Tyr Leu Val Arg Leu			
1765	1770	1775	15
Gly Gln Arg Thr Ile Gln Val Glu Asn Ser His Leu Ile Leu Thr Gly			
1780	1785	1790	
Ala Gly Ala Leu Asn Lys Val Leu Gly Arg Glu Val Tyr Thr Ser Asn			
1795	1800	1805	20
Asn Gln Leu Gly Gly Ile Gln Ile Met His Asn Asn Gly Val Thr His			
1810	1815	1820	
Ser Thr Val Cys Asp Asp Phe Glu Gly Val Phe Thr Val Leu His Trp			
825	1830	1835	1840
Leu Ser Tyr Met Pro Lys Ser Val Tyr Ser Ser Val Pro Leu Leu Asn			
1845	1850	1855	30
Ser Lys Asp Pro Ile Asp Arg Val Ile Glu Phe Val Pro Thr Lys Ala			
1860	1865	1870	
Pro Tyr Asp Pro Arg Trp Met Leu Ala Gly Arg Pro His Pro Thr Gln			
1875	1880	1885	35
Lys Gly Gln Trp Leu Ser Gly Phe Phe Asp Tyr Gly Ser Phe Ser Glu			
1890	1895	1900	
Ile Met Gln Pro Trp Ala Gln Thr Val Val Val Gly Arg Ala Arg Leu			
905	1910	1915	1920
Gly Gly Ile Pro Val Gly Val Val Ala Val Glu Thr Arg Thr Val Glu			
1925	1930	1935	
Leu Ser Ile Pro Ala Asp Pro Ala Asn Leu Asp Ser Glu Ala Lys Ile			
1940	1945	1950	45
Ile Gln Gln Ala Gly Gln Val Trp Phe Pro Asp Ser Ala Phe Lys Thr			
1955	1960	1965	
Tyr Gln Ala Ile Lys Asp Phe Asn Arg Glu Gly Leu Pro Leu Met Val			
1970	1975	1980	
Phe Ala Asn Trp Arg Gly Phe Ser Gly Gly Met Lys Asp Met Tyr Asp			
985	1990	1995	2000
Gln Val Leu Lys Phe Gly Ala Tyr Ile Val Asp Gly Leu Arg Glu Cys			
2005	2010	2015	
Ser Gln Pro Val Met Val Tyr Ile Pro Pro Gln Ala Glu Leu Arg Gly			
2020	2025	2030	60

65

DE 199 46 173 A 1

Gly S r Trp Val Val Ile Asp Pro Thr Ile Asn Pro Arg His Met Glu
 2035 2040 2045
 5 Met Tyr Ala Asp Arg Glu Ser Arg Gly Ser Val Leu Glu Pro Glu Gly
 2050 2055 2060
 Thr Val Glu Ile Lys Phe Arg Arg Lys Asp Leu Val Lys Thr Met Arg
 065 2070 2075 2080
 10 Arg Val Asp Pro Val Tyr Ile His Leu Ala Glu Arg Leu Gly Thr Pro
 2085 2090 2095
 Glu Leu Ser Val Ala Glu Arg Lys Glu Leu Glu Ser Lys Leu Lys Glu
 2100 2105 2110
 15 Arg Glu Glu Phe Leu Leu Pro Ile Tyr His Gln Val Ala Val Gln Phe
 2115 2120 2125
 Ala Asp Leu His Asp Thr Pro Gly Arg Met Gln Glu Lys Gly Val Ile
 2130 2135 2140
 20 Asn Asp Ile Leu Asp Trp Lys Thr Ser Arg Thr Phe Phe Tyr Trp Arg
 145 2150 2155 2160
 Leu Arg Arg Leu Leu Leu Glu Asp Leu Val Lys Lys Lys Ile His Asn
 2165 2170 2175
 25 Ala Asn Pro Glu Leu Thr Asp Gly Gln Ile Gln Ala Met Leu Arg Arg
 2180 2185 2190
 30 Trp Phe Val Glu Val Glu Gly Thr Val Lys Ala Tyr Val Trp Asp Asn
 2195 2200 2205
 Asn Lys Asp Leu Val Glu Trp Leu Glu Lys Gln Leu Thr Glu Glu Asp
 2210 2215 2220
 35 Gly Val Arg Ser Val Ile Glu Glu Asn Ile Lys Tyr Ile Ser Arg Asp
 2225 2230 2235 2240
 Tyr Val Leu Lys Gln Ile Arg Ser Leu Val Gln Ala Asn Pro Glu Val
 2245 2250 2255
 40 Ala Met Asp Ser Ile Val His Met Thr Gln His Ile Ser Pro Thr Gln
 2260 2265 2270
 Arg Ala Glu Val Val Arg Ile Leu Ser Thr Met Asp Ser Pro Ser Thr
 2275 2280 2285
 45

Patentansprüche

1. Nukleinsäure, welche eine DNA-Sequenz umfaßt, die
 - 50 a) die in SEQ ID NO: 1 oder SEQ ID NO: 2 dargestellte Sequenz;
 - b) eine allelischen Variante davon; oder
 - c) eines Fragmentes der Sequenzen nach a) oder b)
- aufweist, wobei das Fragment mindestens einen der Bereiche von Nukleotid 933 bis 966, 2188 bis 2219 oder 3055 bis 3495 der SEQ ID NO: 1, den Bereich von Nukleotid 1 bis 441 der SEQ ID NO: 2 oder den entsprechenden Bereich einer allelischen Variante umfaßt.
2. Vektor, der eine Nukleinsäure nach Anspruch 1 umfaßt.
3. Expressionsvektor, der eine Nukleinsäure umfaßt, die den Bereich von Nukleotid 2188 bis 2219 der SEQ ID NO: 1 aufweist.
4. Expressionsvektor nach Anspruch 3, dadurch gekennzeichnet, daß die Nukleinsäure den Bereich von Nukleotid 1 bis 3445 der SEQ ID NO: 1 umfaßt.
5. Expressionsvektor nach Anspruch 3 oder 4, dadurch gekennzeichnet, daß die Nukleotide der SEQ ID NO: 1 in dem Vektor operativ mit einem Strukturen verknüpft sind.
6. Expressionsvektor nach Anspruch 5, dadurch gekennzeichnet, daß das Strukturen ein Fremdgen ist.
7. Wirtszelle, die einen Vektor nach einem der Ansprüche 2 bis 6 enthält.
8. Wirtszelle nach Anspruch 7, dadurch gekennzeichnet, daß es sich um eine eukaryotische Zelle handelt.
9. Wirtszelle nach Anspruch 8, dadurch gekennzeichnet, daß es sich um eine Zelle eines nicht-menschlichen Säugetiers handelt.
10. Wirtszelle nach Anspruch 9, dadurch gekennzeichnet, daß es sich um eine Milchdrüsenepithelzelle handelt.

DE 199 46 173 A 1

11. Transgenes nicht-menschliches Säugetier, dadurch gekennzeichnet, daß es Zellen nach Anspruch 9 aufweist.
12. Transgenes nicht-menschliches Säugetier nach Anspruch 11, dadurch gekennzeichnet, daß es sich um ein Rind handelt.
13. Verwendung einer Nukleinsäure zur Expression von Fremdgenen, dadurch gekennzeichnet, daß die DNA-Sequenz der Nukleinsäure die Nukleotide 2188 bis 2219 der SEQ ID NO: 1 umfaßt, die operativ mit einem Strukturgen verknüpft sind. 5
14. Verwendung nach Anspruch 13, dadurch gekennzeichnet, daß die Nukleinsäure die Nukleotide 1 bis 3445 der SEQ ID NO: 1 umfaßt.
15. Verwendung nach Anspruch 13 oder 14, dadurch gekennzeichnet, daß die Expression in eukaryotischen Zellen erfolgt. 10
16. Verwendung nach Anspruch 15, dadurch gekennzeichnet, daß die Expression in Zellen eines nicht-menschlichen Säugetiers erfolgt.
17. Verwendung nach Anspruch 15, dadurch gekennzeichnet, daß die Expression in der Milchdrüse eine nicht-menschlichen Säugetiers erfolgt.
18. Verfahren zur Erzeugung von nicht-menschlichen transgenen Säugetieren, deren Milch einen verringerten Milchfett-Gehalt aufweist, bei dem man die DNA-Sequenz des Milchdrüsenspezifischen Promotors der Acc α oder die DNA-Sequenz des Acc α -Strukturgens im Genom der nicht-menschlichen transgenen Säugetiere mindestens teilweise durch eine Sequenz ersetzt, die durch Deletion oder Substitution von einzelnen oder mehreren Nukleotiden so verändert wurde, daß die Expression der Acc α in der Milchdrüse gehemmt wird. 15
19. Verfahren nach Anspruch 18, bei dem man
 - a) eine Nukleinsäure erstellt, welche eine DNA-Sequenz umfaßt, die durch Deletion oder Substitution von einzelnen oder mehreren Nukleotiden von der DNA-Sequenz des Milchdrüsenspezifischen Promotors der Acc α oder von der DNA-Sequenz des Acc α -Strukturgens abgeleitet wurde;
 - b) die Zelle eines nicht-menschlichen Säugetiers mit der Nukleinsäure nach Stufe a) transfiziert;
 - c) Zellen, in denen die natürliche DNA-Sequenz im Genom durch die entsprechende Nukleinsäure nach Stufe a) ausgetauscht wurde, auswählt und zu Tieren regeneriert.20
20. Verfahren nach Anspruch 18 oder 19, bei dem die transgenen nicht-menschlichen Säugetiere Rinder, Schafe oder Ziegen sind.
21. Verfahren nach einem der Ansprüche 18 bis 20, bei dem die Sequenz des Milchdrüsenspezifischen Promotors der Acc α die Sequenz von Nukleotid 1 bis 3054 der SEQ ID NO: 1 umfaßt. 30
22. Verfahren nach einem der Ansprüche 18 bis 21, bei dem man mindestens eine Substitution oder Deletion im Bereich Nukleotid 2205 bis 2213 der SEQ ID NO: 1 vornimmt.
23. Verfahren nach einem der Ansprüche 18 bis 22, bei dem man mindestens eine Substitution oder Deletion im Bereich von Nukleotid 2188 bis 2239 der SEQ ID NO: 1 vornimmt.
24. Verfahren nach Anspruch 18 oder 19, bei dem man mindestens eine Substitution oder Deletion im Bereich Nukleotid 3055 bis 3495 der SEQ ID NO: 1 vornimmt. 35
25. Verfahren nach Anspruch 24, bei dem man den gesamten Bereich von Nukleotid 3055 bis 3495 der SEQ ID NO: 1 deletiert.
26. Transgenes nicht-menschliches Säugetier, dadurch gekennzeichnet, daß es nach einem Verfahren der Ansprüche 18 bis 25 erzeugt wurde. 40
27. Verfahren zur Gewinnung von Milch mit verringertem Milchfett-Gehalt, bei dem man die Milch von transgenen nichtmenschlichen Säugetieren nach Anspruch 26 gewinnt.
28. Verfahren zur Genotypisierung von Rindern, bei dem man eine DNA-Sequenz des Genoms eines Rindes analysiert, dadurch gekennzeichnet, daß die DNA-Sequenz die Nukleotide 933 bis 966 der SEQ ID NO: 1 umfaßt. 45
29. Verfahren nach Anspruch 28, bei dem die DNA-Sequenz mittels PCR amplifiziert.
30. Verfahren nach Anspruch 29, bei dem Primer eingesetzt werden, die in der PCR Reaktion mit der natürlichen DNA-Sequenzen des Rindes hybridisieren, welche die Nukleotide 933 bis 966 der SEQ ID NO: 1 flankieren.
31. Verfahren nach Anspruch 30, bei dem man die Primer

AccmsP3f 5'-CATTATCTGGCTTGACATCTAG und 50
AccmsP3r 5'-CAGGTGGTCACAAAGAGTCG

verwendet.

32. Verfahren nach einem der Ansprüche 28 bis 31, bei dem man die Analyse der Sequenz mittels Gelelektrophorese des amplifizierten Fragmentes durchführt. 55

Hierzu 13 Seite(n) Zeichnungen

60

65

Fig. 1A

Klon 1

1 GATATCATCC CATTATATA TCCAGAACAG GCAAATCTAT AAAGACAGAA AGTAGATTAG
 61 TCATTGCTTA GGACTGGGAG GTGGTTGAG GGAAATATGG ACTGACTGCT GCCGAGTACA
 121 GGGTTTCTTT GGCGGGTGC GAAAATGTC CAAAATGGC TTGTGATGAT GGTCGCAAC
 181 TCTGTACTG TAAGGAAAC CATTGAATTA TATACTGTAA ATGGCCAAA TATATGGTAT
 241 GTGAATTCTG TCTCAATAAA GTTAAGGATT TTTAAATGG GTGTATGATC CATAACACAA
 301 AATTAGTTGC ATTTCTATGT ACTAGCTAGC AATGAGCAAG CAAAAAAACTT
 361 AAATAATTT ATTCAAGAATG GCATCAAAA GAATAAAATA CTTAGGAATC AATTGAACAA
 421 AAAAGCATAA GACTTGTACA TAAAAATTGT TACATTGCTG AGAGAAATTAA AGTCTGCTG
 481 CTACTGCGT TTAGTCACTT AAGTCATATC TGATTCTTC TCAGCCCCGT GGACTGTAGC
 541 CCACCCAGGCT CCTCTGTCCG TGGGATTTC CAGGCAAGAA CACTGCAGTG AGTTGCCATT
 601 CCTCTCTCCA GGGGATCTTT CCAACCCAGG AACTGAACCT ATGTCCTG CTTGGCAGGT

Klon 2

661 GAATTCTTTA CCCCCAGTCC TCTGCCTTGC AAGGTGGATG CTTAACCACT AGAGCACCAG
 721 GGAAGTTCCA CAGCTAAACC TTTTTATATA TAAAAAGTT GATCCTCTTC TTCTTCTTCT
 781 TTTTTTTTTT TCCCAATATT CATTATCTG GCTTGCATC TTAGTTGTGG TATGTGTGGT
 841 CTTCCATCAT CATTGCTGGG CTCTTTGGTT GCAACATGCG AATTTCAGC ·TGTGGTGTGT
 polymorpher Mikrosatellit

901 GAGATCTAGT ACCCTAGTAT GTGTGTGTT TTGTGTGTGT GTGTGTGTGT GTGTGTGTGT
 961 GTGTGTGCTT TTTGTGTCAG ACTCTTTGTG ACCACCTGGA CTGTAGTCCA TCAGGCTCCT
 1021 TTGTCACTGG AATTTCCAG GCGAGAATAC CGGAGTGGGT TGCCATTTC TAGTCCCTG
 1081 ACCAAGGATC AAACCCAGCC GCACCTCCCC CACCCCGCC CCCCCAGGTT GGGAGTGTAG
 1141 AGTCTCAGCC CCTGGAGCAG GAGGGAAAGTC CCTAACAGCA GACTGATTTT CCAAAGAGGT
 1201 ACATCCCTGA TGCAAGATT CTTGCTTGG GAAAGCCCCA CGTAAAAAAC ACTGTCTCCC
 1261 AGCGTGTGCT GCAGTATAAC TCAGACTGCC TTGCAACCGA CGCAGCTAAA TGCATCACTG
 1321 TCTGCCGGAT AACTGCTAC GTCATCCTG GTGCTTGCA TGTTCATG CTGGGGTCAG
 1381 TGTGGGCTTC TAGTTGGATT TGGTGCCTAG TATGTGTCTA CTTGGACAC TCTCTTTCA
 1441 TGTTAGATTA AAAATGAGGG TGCCCTGAAT TTGGAGGAAAC GAATGTGCGA ATGTGGCCTT
 1501 TTATTCCTG TGTTCTACA TTATAGGAAG ATGGTGGCA GCATCGTAA AGATGAGAA
 1561 ACACATGGCT TGTTTGGAG CTGGGTGTC CCGTTAGG TTGGTTGTT TTAGAAAGAT
 1621 CCCTTGGTG AAGGGAGCA CAAGCTTGTAT TCCCGAGAGT GCCTCTTAG TATATTTTT
 1681 TATATAATCA AGAGCAAAAT AACCTGCTTT TTTTCTATAT GCCATTCTT GCTTTTGA
 1741 TGTTGAACCT AACAAAGGCA GAGAGTGTATT CTCTTCTGGA AAGTGCCTGA TCTAGAGACC
 1801 CTTAGATGTG TGAAAAAATT AAAGCTGCTTC TACATCTGTG GTCAACCGTAA TTGTTCTGAA
 1861 CCAAAGGCTT CAGTGCCTT TTTTTGAGA CTTGTTATCC TGAAGAGAGA TCAAGATAGG
 1921 AGGATTCCTC TGCATCTGCT TCTTTAAAGG AAAAGTAACTTCTTACTGAC TTTATCAGAC
 1981 GTTAGCACAG TGTAAGGA GTGATGCGAGA GTTCGGAAC CAATCCAGGA CTTCCCTCTT
 2041 TTTTTTATTA TGACTAATGG TCATATTGAG TGAGTGGCCT GATTGAGTCT TTTCACCTT
 2101 GGTACACCTGA ATGTCCTAAC ATCAAGGTTT ATCTTAATAA TTATCTTCT AATTGATTT

STATS Bindung

2161 TATCTGTGTT CCAGATCATT TGTTGACTTC TGTTTTGAAG GGTTTTCGTG GAAATGTTAAT
 2221 AGATTCGGCGG CATAGTTGCA TCAGATAAGA GTTAACCATT TGATTCAC CATTTCGGTGA
 2281 GAAGGAATT TTCTGTGGTG CCTGAATCAG GTTAGATGTG ACTCTGGTGA ATTAAATACCA

Klon 3

2341 TTCTGAGGA CTTGGCTCAG GAAATCATGA TCTTTCTGC CATGACAAGG GAGCAGTATT
 2401 TTCACTCATCT ACTTAATTAA AAGCTAAAC AGGATACCAT TTCCCTTCA GTCACTTATT
 2461 CTTTATTAA GTGGCTTATC GCTCTGTGGC AAATGAGCAT AACAAATAGAT GTGTCCCCGT
 2521 GGCTTTAGG CAGGGTTTTT CTCCCCCTGCT TAAACGCCGG GTTAGACCTG TGCTAAAT
 2581 ACTTGCTGCG GCCCTTTAC GTTTCTGTGA CTTTATCCA CATCCTCTCT GTTATCCTGT
 2641 TTGTGCCAGC TCCAGCTTA TTCTCAAATT TTAGTGAATA AGATCTTGA TTTTTGTTG
 2701 TTTTAAAAAA GGTGTGTGA CACCACTACT CTGGCCTTAA AATTAGAGTT GTGACCCCA
 2761 CTTTATTCCA AGTTCTCAG TGGTGGCGTG TCTCGTCTT CTGACCGGCT TGCTTTCCCT
 2821 CTTGACCTGC TCTCCCCCG TCTTGGAGTC TGAAACTCAG TCTTACTTGT TGTGATTGG
 2881 TCTCAGAAAT CACCTGTTCT TTCTCCTCC CTCTAGATT CCTGACCCCA TTATTTCTG
 2941 GGCATAGTG TCCTCATAAG CTGGTCTTC TCTTTTGCC CTGAGCCTTC CCTGTCACGT

Exon 5A

3001 GCCCCTGGCA GCCTGGAGAG GCGCGGGAGC CTCTCTAGTG ACCGTCAGAA GAAAGTGACC
 3061 GTTGTAAAG CACTTTGCT GCAGCTAAGG CGGAAGCTGC TGAGATCTAC TTAGAGTTA
 3121 TACCTGCTTC TATATTTCTC CCCCCTCTCTT CTCTGTCCCC TTGGGAAATC AGCTGATGCT
 3181 GTGTGGGAGC CCAGTGTAAAT GGGGGGGGGGG GCACACAGGA GGGGAAGTAT GGAGATTGGG

Fig. 1B

3241 GACAGAGTAG AAAAAAGAC TGTGGTTGA GGCCATGAGG AGTACTCTAC TCTGACTGAA
3301 GCAGGTCCAA GAAGTAGGCA GAAGGCACAG TATCTTTGT CCTCCTGGGT TTTAAGCACC
3361 TGCAGCGGGGA GGACGAACTC CAGCTTGTGT TTACAAGGCC GACAGCTGAA GAGAAAAACC
3421 TCTATTCCCTTG TGCCATCTTG ATATGGAGGG TTCTGCGGAG GAGAGTAAGG AAATGAGATA

▶ Intron 5A

3481 TTACATGCTT CAAAGGTAAG TGTAGAGGG CCCTATCTAG GCAATATATG CCTTTTAAAAA
3541 GCAGTAAAGG CGTTGACAGC TAAGCCCTGG AATTATGGGC AGTCTGATT GATGATT
3601 TTGTGGGTCT GTAGGAAACT CTTTTTTTC TTAAGGAATG AATTAAATCT ATGTTGCTCC
3661 TGATTCTGAC CTTATTTCC TCAGATTGAC

Fig. 2A

1 GTGACCGTTG TTAAAGCACT TTTGCTGCAG CTAAGGGCGGA AGCTGCTGAG ATCTACTTTA
 61 GAGTTATACC TGCTTCTATA TTTCTCCCCC TCTCTTCTCT GTCCCCTTGG GAAATCAGCT
 121 GATGCTGTGT GGGAGCCAG TGTAAATGGGA GGGGGGGCAA ACAGGAGGGG AAGTATGGAG
 181 ATTGGGGACA GAGTAGACAA AAAGACTGTG GTTTGAGGCC ATGAGGAGTA CTCTACTCTG
 241 ACTGAAGCAG GTCCAAGAAG TAGGCAGAAG GCACAGTATC TTTTGTCTC CTGGGTTTA
 301 AGCACCTGCA GCGGGAGGAC GAACTCCAGC TTGTGTTTAC AAGGCCGACA GCTGAAGAGA
 361 AAAACCTCTA TTCCCTTGCC ATCTTGATAT GGAGGGTCT GCAGGAGGAGA GTAAGGAAAT
 Exon 5A ←→ Exon 6
 421 GAGATATTAC ATGCTCAAA GATCCAGCAT GTCTGGCTTG CACCTAGTCA AGCAAGGTG
 481 AGACCGAAAG AAAATAGACT CACAGCGAGA TTTCACTGTA GCCTCTCCAG CAGAATTGT
 Exon 7 ←→
 541 TACTCGTTT GGTGGGATA AAGTGAATTGA GAAGGTTCTC ATTGCCAACAA ATGGCATTGC
 601 AGCTGTGAAA TGCATGAGAT CCATCCGCCG GTGGTCTTAT GAGATGTTTC GAAATGAACG
 661 TGCATCCGA TTTGTGTCA TGGTCACACC TGAAGACCTG AAAGCCAATG CAGAATACAT
 721 TAAGATGGCG GATCACTACG TGCCCGTGC AGGAGGGCCC AACAACAACA ACTATGCAA
 781 TGTGGAGTTA ATTCTTGACA TTGCTAAAAG GATCCCGTG CAAGCAGTTT GGGCTGGCTG
 841 GGGTCATGCT TCTGAGAATC CCAAGCTCC AGAACTTCTC TTGAAAAATG GCATCGCCTT
 901 CATGGGTCTT CCAAGCCAAG CCATGTGGGC TCTGGGGGAT AAGATCGCAT CTTCCATAGT
 961 GGCTCAAACT GCTGGTATCC CAACTCTTCC ATGGAGTGGC AGTGGTCTT GTGTGGACTG
 1021 GCACGAAAT GATTTTCAA AACGAATTTT AAATGTTCTC CAGAACTAT ATGAAAAGG
 1081 TTATGTGAAAG GATGTGGATG ATGGGCTGAA GGCAGGGAG GAAAGTGGAT ATCCAGTAAT
 1141 GATCAAGGCC TCAGAAGGGAG GAGGAGGGAA GGGAAATCAGA AAAGTCAACA ATGCAGATGA
 1201 CTTCCTTAAC CTCTCCGAC AGGTTCAAGC TGAAGTTCTC GGGTCTCCTA TCTTGTCTAT
 1261 GAGACTAGCC AACAGTCTC GTCATCTGGA GGTGCAGATC TTAGCAGATC AGTATGGCAA
 1321 TGCTATCTCT TTGTTGGTC GTGATTGCTC TGTGCAACGC AGGCATCAGA AGATTATTGA
 1381 AGAAAGCTCCT GCTGCTATTG CTACTCCAGC AGTATTGAA CATATGAAAC AGTGTGGGTT
 1441 GAAACTTGCC AGGATGGTTG TTATGTGAG TGCGGGGACT GTGGAATACC TCTACAGCCA
 1501 GGATGGCAGC TTCTACTTTC TGGAACTGAA CCCTCGGCTA CAGGTGGAGC ACCCTGTAC
 1561 AGAGATGGTG GCCGATGTCA ACCTCCCTGC TGCGCAGCTC CAGATTGCCA TGGGGATCCC
 1621 TCTGTACAGA ATCAAGGATA TCCGAATGAT GTACGGGTC TCTCCCTGGG GCGATGCTCC
 1681 CATTGATTAA GAAAATTGG CTCACGTTCC TTGCCCCAAGG GGCCATGTTA TTGCTGCTCG
 1741 TATCACTAGT GAAAATCCAG ATGAGGGTTT TAAGCCAGC TCAGGAACAG TTCAAGAGCT
 1801 GAATTTCGC AGCAATAAGA ACGTTTGGGG TTATTTCACT GTGCTGCTG CAGGGAGGCT
 1861 TCATGAATTG GCTGATTCTC AGTTGGTC CTGCTTTTC TGGGGAGAAA ACCGAGAGGA
 1921 AGCAATTTCAC AAGATGGTTG TGGCTTTGAA GGAGCTGCT ATCCGGGGCG ACTTCCGGAC
 1981 CACAGTCAG TACCTGATCA ACTGCTGGA GACTGAAGC TTCAAGGTTGA ACAGAATTGG
 2041 CACGGGCTGG CTGGACAGAC TGATAGCAGA AAAAGTACAG GCGGAGCGAC CTGACACCAT
 2101 GCTGGGAGTT GTCTGTGGGG CTCTCCATGT GGCAGACGTG AGCCTGCCA ATAGCATCTC
 2161 CAACTCCCTT CACTCCTTAG AGAGGGGTCA AGTCCTCACT GCTCATACCC TTCTGAATAC
 2221 AGTAGATGTT GAACTTATCT ACGAGGGAGT GAAAGTATGTA CTGAAGGTGA CTCGACAGTC
 2281 CCCGAACCTC TACGTGGTGA TCATGAACGG CTCGTGTTG GAAGTAGACG TGCATCGACT
 2341 GAGCGACGGT GGACTGCTCT TGTCTCTATGA CGTCAGCAGT TACACCACGT ACATGAAGGA
 2401 GGAGGTGGAT AGATATCGCA TCACAATTGG CAATAAAACT TGTGTGTTTG AGAAGGAAAA
 2461 TGACCCCTCG GTGCTGCGCT CACCCCTCTGC TGGGAAGTTG ATCCAGTACA TTGTGGAGGA
 2521 TGGAGGCCAC GTGTTTGTG GCCAGTGTCA TGCCGAGATC GAGGTGATGA AGATGGTAAT
 2581 GACCTTAACA GCCGAGAGT CTGGCTGTAT CCATTATGCA AAGCGGCCAG GAGCAGCTCT
 2641 TGACCCGGGC TGTGTAATAG CAAAAATGCA ACTGGACAAC CCCAGCAAGG TCCAGCAGGC
 2701 TGAGCTTCAC ACAGGCAGTC TGCCACGGG CAAGAGCACA GCGCTCAGAG GCGAGAAGCT
 2761 CCACCGAGGT TTCCACTATG TCTGGATTA TCTGGTCAAT GTGATGAATG GATACTGCCT
 2821 TCCAGATCCT TTCTTTAGCA GCAGGGTGA AGACTGGGT GAACGGTTGA TGAAGACCT
 2881 CAGAGACCCC TCCTTGCTC TCCTAGAATT GCAGGATATC ATGACTAGCG TCTCTGGTCG
 2941 TATCCCGCCC AACGTGGAAA AGTCTATCAA GAAGGAAATG GCTCAGTATG CCAGCAACAT
 3001 CACATCCGT CTCTGTCACT TTCCCAGCCA GCAGATTGCC AACATCCTAG ACAGCCACGC
 3061 AGCCACACTG AACCGGAAAT CTGAACGGGA AGTCTTCTTC ATGAACACTC AGAGCATTG
 3121 CCAGCTGGTG CAGAGGTACG GCAGTGGCAT CCGAGGACAC ATGAAGGCTG TGGTGTGAGA
 3181 CCTGCTGCCG CAGTACCTGC GAGTAGAGAC ACAATTCCAG AACGGTCACT ATGACAAATG
 3241 CGTGTTCGCC CTCCGGGAGG AGAACAAAGAG TGATATGAAAC ACTGTGCTGA ACTACATCTT
 3301 CTCTCATGCT CAGGTCAACCA GGAAGAATCT TCTGGTCACC ATGCTTATCG ATCAGCTGTG
 3361 TGGCCGGGGC CCCACCCCTCA CTGATGAGCT GCTGAATATC CTCACGGAGC TAACTCAACT

Fig. 2B

3421 CAGCAAGACC ACCAACGCGA AGGTGGCGCT CCGAGCACGC CAGGTTCTTA TTGCTTCCCCA
 3481 TTGCCATCC TATGAGCTTC GCCTCAACCA AGTCGAGTCT ATCTCCTAT CCGCCATTGA
 3541 CATGTATGGA CACCAAGTTCT GCATCGAGAA CCTGCAGAAA CTCATCTTGT CCGAAACGTC
 3601 GATTTTTGAT GTCCCTACCAA ACTTCTTCTA TCACAGAAC CAGGTCGTGA GGATGGCAGC
 3661 TCTGGAGGTG TATGTTCGAA GGGCTTATAT CGCCTATGAA CTTAATAGCG TACAACACCG
 3721 GCAGCTGAAG GACAACACCT GCGTGGTGGA ATTCCAGTTC ATGCTGCCA CATCGCATCC
 3781 AAATAGAGGG AACATCCCCA CGCTAAACAG AATGTCCTTC TCCCTCAACC TCAACCACTA
 3841 CGGCATGACT CACCGTAGCCA GTGTCAGCGA CGTGCTGCTG GACAACGCGT TCACTCCGCC
 3901 GTGTCAGCGG ATGGCGGGGA TGGTCTCTT TCGGACCTTT GAAGATTTG TCAGGATCTT
 3961 TGATGAAGTG ATGGGCTGCT TCTGTGATTG CCCACCCAA AGCCCGACAT TCCCTGAGGC
 4021 AGGTACACAG TCTCTGTATG ACGAAGACAA GGTCCCCAGG GATGAACCAA TTACATTTT
 4081 GAATGTGGCT ATCAAAACAG ACTGTGACAT CGAGGATGAC AGTCTAGCAG CTATGTTCCG
 4141 AGAGTTTAC CAGCAAAACAA AAGCTACCC GGTGAACAT GGGATCCGAC GCCTTACTTT
 4201 CCTGGTTGCA CAAAAGGATT TCAGGAAACA AGTCAACTAT GAAGTGGATC AGAGATTCA
 4261 TAGAGAATT CCTAAATTTC TCACGTTCCG AGCAAGGGAT AAGTTGAGG AAGATCGTAT
 4321 CTATCGTCAC CTGGAGCCTG CCCTAGCTT CCAGTTAGAG CTGAACCGGA TGAGAAATT
 4381 TGACCTTACT GCCATCCCGT GTGCCAATCA CAAGATGCAC TTGTATCTTG GGGCAGCCAA
 4441 GGTAGAAGTG GGCACAGAACAG TGACAGACTA CAGGTTCTTT GTCTGTGCAA TCATCAGGCC
 4501 TTCTGATCTG GTCAACCAAGG AAGCTTCTT TGAATATCTA CAAAATGAAG GGGAGCGGCT
 4561 CCTCTGAA GCCATGGATG AGTTGGAAGT CGCCCTTAAAC AATAAAATG TCCGGACTGA
 4621 CTGCAACAC ATCTCCTCA ACTTTGTTCC TACAGTCATC ATGGACCCAT CGAAGATTGA
 4681 GGAATCCGT CGGAGCATGG TGATGCGCTA TGGAAGTCGG CTGTGGAAGC TGCGTGTCT
 4741 CCAGGCAGAA CTGAAAATCA ACATTCGCT GACACCAACT GGAAAAGCAA TTCCCATCCG
 4801 CCTCTTCTG ACGAACGAGT CTGGCTATTAA CTTGGACATC AGCCTGTACA AGGAAGTGAC
 4861 TGATTCCAGG ACAGCACAGA TCATGTTCA GGCATATGGA GACAAACAGG GACCATTACA
 4921 TGGAAATGTTA ATCAACACTC CGTACGTGAC CAAAGACCAG CTTCAATCCA AGAGGTTCCA
 4981 GGCACAGTCC TTAGGGACAA CATAACATATA TGACATCCC GAATGTTTC GGCAGTCCCT
 5041 GATCAAACTC TGGGAATCTA TGCTCTCCCA AGCATTCTT CCACCGCCCC CTCTGCCCTC
 5101 AGACATAACTG ACGTACACTG AGCTCGTGT GGATGATCAA GGTCAACTGG TTACATGAA
 5161 CAGGCTTCCA GGAGGAAATG AGATGGCAT GGTAGCTTGG AAAATGACCC ITAAAAGTCC
 5221 AGAATATCCA GACGGCCGAG ATATCATTGT TATTGGCAAT GACATCACTT ACCGAATTGG
 5281 GTCTCTTGGG CCCCCAAGAGG ATTTGCTGT TCTCAGAGCT TCTGAGCTTG CCAGGGCAGA
 5341 GGGCATCTCA CGCATCTATG TAGCAGCAGA CAGTGGAGCA AGAATTGGAC TGGCAGAGGA
 5401 AATTGTCAT ATGTTTCACG TGGCCTGGGT AGATCTGAG GATCCTTACA AGGGATAACAA
 5461 ATATTTATAT CTGACCCCTC AGATTACAA GAGAGTCAGT GCTCTCAACT CTGTCATTT
 5521 TGAACATGTG GAAGATGAAG GAGAATCCAG GTACAAGATC ACTGACATTA TTGGGAAGGA
 5581 AGAAGGACTT GGAGCAGAGA ACCTTCGAGG GTCTGGAATG ATTGCTGGGG AATCCTCGTT
 5641 GGCCTACGAC GAGATCATCA CCATCAGCCT GTTACATGC AGGGCCATTG GGATTGGGC
 5701 TTACCTCGTC CGACTGGGAC AGAGAACCAT CCAGGTCGAA AATTCTCACT TAATCCTGAC
 5761 AGGAGCTGGG GCCCTCAACA AAGTCCTCGG TAGGGAGTA TACACCTCCA ACAACCAGCT
 5821 GGGGGCATC CAGATCATGC ACAAACATGG GGTGACGCAC AGCACCGTCT GTGACGACTT
 5881 CGAGGGGGTGT TTCACCGTCC TGCACCTGGCT GTCTTACATG CCGAAGAGTG TATACAGTTC
 5941 AGTTCTCTC CTGAACTCCA AGGATCCAAAT AGACAGAGTC ATCGAGTTG TGCCCACGAA
 6001 GGCCTCGTAT GACCTCTGGT GGATGCTGGC AGGCCGGCT CACCAACCC AGAAAGGTC
 6061 GTGGTTGAGT GGATTTTTG ACTATGGCTC TTCTCAGAG ATCATGCAAC CGTGGGCACA
 6121 GACTGTGGTG GTTGGCAGAG CCAGGCTAGG AGGAATACCC GTGGGAGTAG TTGCCGTAGA
 6181 AACCGAACCA GTGGAGCTGA GCATCCCGGC TGATCTGCA AACCTGGATT CTGAAGCCAA
 6241 GATTATCCAG CAGGCTGGCC AGGTTGGTT CCCAGACTCC GCGTTAAAGA CGTATCAGGC
 6301 CATTAAAGGAC TTCAACCGTG AAGGGCTGCC TCTGATGGTC TTTGCCAACT GGAGAGGCTT
 6361 CTCCGGTGGG ATGAAAGATA TGTACGACCA GGTGCTGAAG TTGCGCGCTT ACATCGTGA
 6421 CGGCTTAACG GAGTGTCTGC AGCCCCGTGAT GGTCTACATC CCGCCTCAGG CCGAGCTCC
 6481 AGGCGGCTCC TGGGTTGTA TTGACCCAC CATCAACCC CGGCACATGG AGATGTATGC
 6541 GGACCGCGAG AGCAGGGGAT CGGTTCTGGG CGGGAAGGG ACAGTCGAA TCAAATTCCG
 6601 CAGAAAAGGAT CTGGTAAAAA CCATGCGTCC GTGGACCCCA GTCTACATCC ACTTGGCTGA
 6661 GCGATTGGGT ACCCCCCGAGC TCAGCGTGGC CGAGCGGAAG GAGCTGGAGA GCAAGCTGAA
 6721 GGAGCGAGAG GAGTTCTCC TTCCCCTCTA CCACCAAGTG GCGGTGCAAGT TTGAGACCT
 6781 GCACGACACC CCGGGCCGCA TGCAGGAGAA GGGGGTCAATT AAGGACATCC TGGATTGGAA
 6841 GACTTCACGC ACCTCTTCT ACTGGCGGCT GAGGCGGCTG TTGCTGGAGG ACCTGGCTCAA
 6901 GAAGAAAATC CACAATGCCA ATCCCCGAGCT GACAGACGGC CAGATCCAGG CCATGCTAAG
 6961 GCGCTGGTTT GTGGAGGTGG AGGGAACCGT GAAGGGCTAT GTCTGGGACA ACAACAAGGA
 7021 TCTGGTGGAG TGGCTGGAGA AACAGCTCAC AGAGGAAGAC GGGCTCCGCT CGGTGATTGA
 7081 AGAGAACATC AAGTACATCA GCAGAGACTA CGTCTCAAG CAGATCCGCA GCTTGGTCCA
 7141 GGCCAACCCA GAGGGTGCCTA TGGATTCCAT CGTCCACATG ACCGAGCACA TCTCGCCCCAC
 7201 CCAGCGAGCA GAAGTCGTTG CCGATCTCTC GACGATGGAC TCGCCCTCAA CGTAG

Fig. 3A

5	10	15	20	25	30
1 M E G S A E E S K E M R Y Y M L Q R S S M S G L H L V K Q G					
31 R D R K K I D S Q R D F T V A S P A E F V T R F G G N K V I					
61 E K V L I A N N G I A A V K C M R S I R R W S Y E M F R N E					
91 R A I R F V V M V T P E D L K A N A E Y I K M A D H Y V P V					
121 P G G P N N N N Y A N V E L I L D I A K R I P V Q A V W A G					
151 W G H A S E N P K L P E L L L K N G I A F M G P P S Q A M W					
181 A L G D K I A S S I V A Q T A G I P T L P W S G S G L C V D					
211 W H E N D F S K R I L N V P Q E L Y E K G Y V K D V D D G L					
241 K A A E E V G Y P V M I K A S E G G G G K G I R K V N N A D					
271 D F P N L F R Q V Q A E V P G S P I F V M R L A K Q S R H L					
301 E V Q I L A D Q Y G N A I S I L F G R D C S V Q R R H Q K I I					
331 E E A P A A I A T P A V F E H M E Q C A V K L A R M V G Y V					
361 S A G T V E Y L Y S Q D G S F Y F L E L N P R L Q V E H P C					
391 T E M V A D V N L P A A Q L Q I A M G I P L Y R I K D I R M					
421 M Y G V S P W G D A P I D F E N S A H V P C P R G H V I A A					
451 R I T S E N P D E G F K P S S G T V Q E L N F R S N K N V W					
481 G Y F S V A A A G G L H E F A D S Q F G H C F S W G E N R E					
511 E A I S N M V V A L K E L S I R G D F R T T V E Y L I K L L					
541 E T E S F Q L N R I G T G W I D R L I A E K V Q A E R P D T					
571 M L G V V C G A L H V A D V S L R N S I S N F L H S L E R G					
601 Q V L T A H T L L N T V D V E L I Y E G V K Y V L K V T R Q					
631 S P N S Y V V I M N G S C V E V D V H R L S D G G L L L S Y					
661 D V S S Y T T Y M K E E V D R Y R I T I G N K T C V F E K E					
691 N D P S V L R S P S A G K L I Q Y I V E D G G H V F A G Q C					
721 Y A E I E V M K M V M T L T A A E S G C I H Y V K R P G A A					
751 L D P G C V I A K M Q L D N P S K V Q Q A E L H T G S L P R					
781 I Q S T A L R G E K L H R V F H Y V L D N L V N V M N G Y C					
811 L P D P F F S S R V K D W V E R L M K T L R D P S L P L L E					
841 L Q D I M T S V S G R I P P N V E K S I K K E M A Q Y A S N					
871 I T S V L C Q F P S Q Q I A N I L D S H A A T L N R K S E R					
901 E V F F M N T Q S I V Q L V Q R Y R S G I R G H M K A V V M					
931 D L L R Q Y L R V E T Q F Q N G H Y D K C V F A L R E E N K					
961 S D M N T V L N Y I F S H A Q V T R K N L L V T M L I D Q L					
991 C G R G P T L T D E L L N I L T E L T Q L S K T T N A K V A					
1021 L R A R Q V L I A S H L P S Y E L R L N Q V E S I F L S A I					
1051 D M Y G H Q F C I E N L Q K L I L S E T S I F D V L P N F F					
1081 Y H S N Q V V R M A A L E V Y V R R A Y I A Y E L N S V Q H					
1111 R Q L K D N T C V V E F Q F M L P T S H P N R G N I P T L N					
1141 R M S F S S N L N H Y G M T H V A S V S D V L L D N A F T P					
1171 P C Q R M G G M V S F R T F E D F V R I F D E V M G C F C D					
1201 S P P Q S P T F P E A G H T S L Y D E D K V P R D E P I H I					
1231 L N V A I K T D C D I E D D S L A A M F R E F T Q Q N K A T					
1261 L V E H G I R R L T F L V A Q K D F R K Q V N Y E V D Q R F					
1291 H R E F P K F F T F R A R D K F E E D R I Y R H L E P A L A					
1321 F Q L E L N R M R N F D L T A I P C A N H K M H L Y L G A A					
1351 K V E V G T E V T D Y R F F V R A I I R H S D L V T K E A S					
1381 F E Y L Q N E G E R L L L E A M D E L E V A F N N T N V R T					
1411 D C N H I F L N F V P T V I M D P S K I E E S V R S M V M R					
1441 Y G S R L W K L R V L Q A E L K I N I R L T P T G K A I P I					
1471 R L F L T N E S G Y Y L D I S L Y K E V T D S R T A Q I M F					
1501 Q A Y G D K Q G P L H G M L I N T P Y V T K D Q L Q S K R F					
1531 Q A Q S L G T T Y I Y D I P E M F R Q S L I K L W E S M S S					
1561 Q A F L P P P P L P S D I L T Y T E L V L D D Q G Q L V H M					
1591 N R L P G G G N E I G M V A W K M T L K S P E Y P D G R D I I					
1621 V I G N D I T Y R I G S F G P Q E D I L L F L R A S E L A R A					
1651 E G I P R I Y V A A N S G A R I G L A E E I R H M F H V A W					
1681 V D P E D P Y K G Y K Y L Y L T P Q D Y K R V S A L N S V H					
1711 C E H V E D E G E S R Y K I T D I I G K E E G L G A E N L R					

Fig. 3B

1741 G S G M I A G E S S L A Y D E I I T I S L V T C R A I G I G
1771 A Y L V R L G Q R T I Q V E N S H L I L T G A G A L N K V L
1801 G R E V Y T S N N Q L G G I Q I M H N N G V T H S T V C D D
1831 F E G V F T V L H W L S Y M P K S V Y S S V P L L N S K D P
1861 I D R V I E F V P T K A P Y D P R W M L A G R P H P T Q K G
1891 Q W L S G F F D Y G S F S E I M Q P W A Q T V V V G R A R L
1921 G G I P V G V V A V E T R T V E L S I P A D P A N L D S E A
1951 K I I Q Q A G Q V W F P D S A F K T Y Q A I K D F N R E G L
1981 P L M V F A N W R G F S G G M K D M Y D Q V I L K F G A Y I V
2011 D G L R E C S Q P V M V Y I P P Q A E L R G G S W V V I D P
2041 T I N P R H M E M Y A D R E S R G S V L E P E G T V E I K F
2071 R R K D L V K T M R R V D P V Y I H L A E R L G T P E L S V D
2101 A E R K E L E S K L K E R E E F L L P I Y H Q V A V Q F A D
2131 L H D T P G R M Q E K G V I N D I L D W K T S R T F F Y W R
2161 L R R R L L E D L V K K K I H N A N P E L T D G Q I Q A M L
2191 R R W F V E V E G T V K A Y V W D N N K D L V E W L E K Q L
2221 T E E D G V R S V I E E N I K Y I S R D Y V L K Q I R S L V
2251 Q A N P E V A M D S I V H M T Q H I S P T Q R A E V V R I L
2281 S T M D S P S T *

Fig. 4

Fig. 5A

Fig. 5B

Fig. 6A

Fig. 6B

Expression in HC-11 Zellen (stabil transfiziert, 10 3 RLU/ 10 4 cell/s)

Klon	A	B	Verhältnis B/A
	nicht-induziert	Induziert	
	Mittel \pm S.E.M.	Mittel \pm S.E.M.	
1	338.3 \pm 24.2	1169 \pm 138.4	3.5
2	218.7 \pm 29.5	120.2 \pm 31.3	0.6
3	21.3 \pm 2.3	24.7 \pm 6.1	1.2

n, 3; S.E.M.: mittlerer Fehler des Mittelwertes (s/ Quadratwurzel aus n)

Fig. 7

Fig. 8

Transkripte von PIII (Primer bAc_5Af2 / bAcEx6m)

Transkripte von PII (konstitutiv aktiv; Primer bAc_xf / bAcEx6m)

Fig. 9

Tier Nr.: Allel Beispiel:

Genotyp:

A	B	C
B	C	A
C	A	B

New nucleic acid encoding bovine acetyl coenzyme A carboxylase alpha and its promoter, for milk-specific production of proteins and for regulating fat content of milk

Patent Number: DE19946173

Publication date: 2001-04-05

Inventor(s): SEYFERT HANS MARTIN (DE)

Applicant(s): FORSCH DIE BIOLOG LANDW LICHER (DE)

Requested Patent: DE19946173

Application Number: DE19991046173 19990920

Priority Number(s): DE19991046173 19990920

IPC Classification: C12N9/00; C12N5/16

EC Classification: C12N9/00L

Equivalents:

Abstract

A nucleic acid (1) comprising: (i) a sequence (S1) of 3690 base pairs (bp) or a sequence (S2) of 7255 bp; (ii) allelic variants of (i); or (iii) fragments of (i) or (ii) containing nucleotides (nt) 933-966, 2188-2219 or 3055-3495 of (S1), nt 1-441 of (S2), or the corresponding regions of their allelic variants, is new. Independent claims are also included for the following: (1) vectors that contain (1); (2) an expression vector containing a nucleic acid that includes the 2188-2219 nt region of (S1); (3) host cells containing a vector of (1) or (2); (4) a transgenic, non-human animal containing cells of (3); (5) producing a non-human transgenic mammal in which the milk has reduced fat content; and (6) genotyping cattle by analyzing the nt 933-966 region of (S1).

Data supplied from the esp@cenet database - I2