EC3204: Programming Languages and Compilers

Lecture 13 — Semantic Analysis (4) *Interval Analysis*

Sunbeom So Fall 2024

Fixed Point Computation May Not Terminate

- We compute fixed points to obtain safe approximations.
- Q. Does this computation always terminate?

Fixed Point Computation May Not Terminate

- We compute fixed points to obtain safe approximations.
- Q. Does this computation always terminate?
- A. Yes if the abstract domain (lattice) is finite. Otherwise, it may not.
- Unfortunately, many useful domains have infinite heights. To ensure the termination, we need **widening** operators.

Example: Interval Domain

The interval domain I has an infinite height.

$$\mathbb{I} = \{\bot\} \cup \{[l,u] \mid l,u \in \mathbb{Z} \cup \{-\infty,+\infty\} \land l \leq u\}$$

- ullet Abstract values are expressed by lower and upper bounds: [l,u]
 - If the abstract value of x is [1,3] at some program point p, $1 \le x \le 3$ is an invariant at p.

Example: Non-Terminating Fixed Point Computation

Q. What is the resulting abstract state at the loop entry?

```
1  x = 0;
2  y = 0;
3  while (x < 10) {
4   x = x+1;
5  y = y+1;
6 }
```

Example: Non-Terminating Fixed Point Computation

Q. What is the resulting abstract state at the loop entry?

```
1  x = 0;
2  y = 0;
3  while (x < 10) {
4   x = x+1;
5  y = y+1;
6 }
```

A. You cannot obtain it, because computation does not terminate (i.e., we cannot reach a fixed point).

Γ		0	1	2	 9	10	11	12	 k
	\boldsymbol{x}	[0, 0]	[0, 1]	[0, 2]	 [0, 9]	[0, 10]	[0, 10]	[0, 10]	 [0, 10]
	\boldsymbol{y}	[0,0]	[0,1]	[0, 2]	 [0, 9]	[0, 10]	[0, 11]	[0,12]	 [0,k]

Fixed Point Computation with Widening and Narrowing

Two staged fixed point computations:

- Widening: If the abstract domain does not have the finite-height property, we need a widening operator

 to enforce convergence.
- **2 Narrowing**: After finding a post-fixed point using widening, we have a second pass using a narrowing operator \triangle .

Example: Fixed Point Computation with Widening

Find a post-fixed point at the loop entry using a widening operator.

```
x = 0;
  v = 0;
3 while (x < 10) {
4 \quad x = x+1;
   y = y+1;
```

- Initially: $\widehat{m}_0 = \{x \mapsto [0,0], y \mapsto [0,0]\}$
- After the 1st iteration:
 - $\widehat{m}_1 = \{x \mapsto [0,1], y \mapsto [0,1]\} = \widehat{m}_0 \sqcup \{x \mapsto [1,1], y \mapsto [1,1]\}.$
 - Apply widening:

$$\widehat{m}_1 \leftarrow \widehat{m}_0 \bigtriangledown \widehat{m}_1$$

where the resulting $\widehat{m}_1 = \{x \mapsto [0, +\infty], y \mapsto [0, +\infty]\}.$

▶ Since $\widehat{m}_1 \not\sqsubseteq \widehat{m}_0$ (i.e., not a fixed point), we attempt the 2nd iteration.

Example: Fixed Point Computation with Widening

Find a post-fixed point at the loop entry using a widening operator.

```
1  x = 0;
2  y = 0;
3  while (x < 10) {
4   x = x+1;
5  y = y+1;
6 }
```

- After the 2nd iteration:
 - $\widehat{m}_2 = \{x \mapsto [0, 10], y \mapsto [0, +\infty]\} = \widehat{m}_0 \sqcup \{x \mapsto [1, 10], y \mapsto [1, +\infty]\}.$
 - Apply widening:

$$\widehat{m}_2 \leftarrow \widehat{m}_1 \bigtriangledown \widehat{m}_2$$

where the resulting $\widehat{m}_2 = \{x \mapsto [0, +\infty], y \mapsto [0, +\infty]\}.$

• Since $\widehat{m}_2 \sqsubseteq \widehat{m}_1$ (i.e., a fixed point), we terminate.

Example: Fixed Point Computation with Widening

Find a post-fixed point at the loop entry using a widening operator.

```
1  x = 0;
2  y = 0;
3  while (x < 10) {
4   x = x+1;
5  y = y+1;
6 }
```

	0	1	2
\boldsymbol{x}	[0,0]	$[0,\infty]$	$[0,\infty]$
\boldsymbol{y}	[0,0]	$[0,\infty]$	$[0,\infty]$

Example: Fixed Point Computation with Narrowing

Find a post-fixed point at the loop entry using a widening operator.

```
1  x = 0;
2  y = 0;
3  while (x < 10) {
4   x = x+1;
5  y = y+1;
6 }
```

- \bullet Initially: $\widehat{m}_0' = \{x \mapsto [0,+\infty], y \mapsto [0,+\infty]\}$
- After the 1st iteration:
 - $\widehat{m}_1 = \{x \mapsto [0, 10], y \mapsto [0, +\infty]\} = \widehat{m}_0 \sqcup \{x \mapsto [1, 10], y \mapsto [1, +\infty]\}.$
 - Apply narrowing:

$$\widehat{m}_1 \leftarrow \widehat{m}_0' \bigtriangleup \widehat{m}_1$$

where the resulting $\widehat{m}_1 = \{x \mapsto [0,10], y \mapsto [0,+\infty]\}$.

▶ Since $\widehat{m}'_0 \not\sqsubseteq \widehat{m}_1$ (i.e., not a fixed point), we attempt the 2nd iteration.

Example: Fixed Point Computation with Narrowing

Find a post-fixed point at the loop entry using a widening operator.

```
1  x = 0;
2  y = 0;
3  while (x < 10) {
4   x = x+1;
5  y = y+1;
6 }
```

- After the 2nd iteration:
 - $\widehat{m}_2 = \{x \mapsto [0, 10], y \mapsto [0, +\infty]\} = \widehat{m}_0 \sqcup \{x \mapsto [1, 10], y \mapsto [1, +\infty]\}.$
 - ► Apply narrowing:

$$\widehat{m}_2 \leftarrow \widehat{m}_1 \bigtriangleup \widehat{m}_2$$

where the resulting $\widehat{m}_2 = \{x \mapsto [0, 10], y \mapsto [0, +\infty]\}.$

• Since $\widehat{m}_1 \sqsubseteq \widehat{m}_2$ (i.e., a fixed point), we terminate.

Example: Fixed Point Computation with Narrowing

Find a post-fixed point at the loop entry using a widening operator.

```
1  x = 0;
2  y = 0;
3  while (x < 10) {
4   x = x+1;
5  y = y+1;
6 }
```

With widening:

	0	1	2
\boldsymbol{x}	[0,0]	$[0,\infty]$	$[0,\infty]$
\boldsymbol{y}	[0,0]	$[0,\infty]$	$[0,\infty]$

• With narrowing:

	0	1	2
\boldsymbol{x}	$[0,\infty]$	$[0,10] (= [0,\infty] riangle [0,10])$	[0, 10]
y	$[0,\infty]$	$[0,\infty](=[0,\infty] igtriangleup [0,\infty])$	$[0,\infty]$

Step 1. Interval Domain

Plan: formally define the widening/narrowing operators for the interval domain.

The interval domain is a pair of $(\mathbb{I}, \sqsubseteq)$.

- $\bullet \ \mathbb{I} = \{\bot\} \cup \{[l,u] \mid l,u \in \mathbb{Z} \cup \{-\infty,+\infty\} \land l \leq u\}$
- How to define □?
 - lacksquare $oxedsymbol{\perp} oxedsymbol{\sqsubseteq} i$ for all $i \in \mathbb{I}$
 - ullet $i\sqsubseteq [-\infty,\infty]$ for all $i\in\mathbb{I}$
 - $\blacktriangleright \ [1,3] \sqsubseteq [0,4]$
 - ▶ $[1,3] \not\sqsubseteq [0,2]$

Step 1. Interval Domain

Plan: formally define the widening/narrowing operators for the interval domain.

The interval domain is a pair of $(\mathbb{I}, \sqsubseteq)$.

- $\bullet \ \mathbb{I} = \{\bot\} \cup \{[l,u] \mid l,u \in \mathbb{Z} \cup \{-\infty,+\infty\} \land l \leq u\}$
- How to define <u>□</u>?
 - lacksquare ot $oxedsymbol{\sqsubseteq}$ i for all $i\in\mathbb{I}$
 - lacksquare $i \sqsubseteq [-\infty,\infty]$ for all $i \in \mathbb{I}$
 - $\blacktriangleright \ [1,3] \sqsubseteq [0,4]$
 - ▶ $[1,3] \not\sqsubseteq [0,2]$

$$i_1 \sqsubseteq i_2 \iff \left\{ egin{array}{ll} i_1 = ot \lor \ i_2 = [-\infty, \infty] \lor \ (i_1 = [l_1, u_1] \land i_2 = [l_2, u_2] \land l_1 \ge l_2 \land u_1 \le u_2) \end{array}
ight.$$

Abstract semantics for the arithmetic expressions:

$$\begin{split} \widehat{\mathcal{A}} \llbracket \ a \ \rrbracket \ : \ \widehat{\mathbf{State}} \to \mathbb{I} \\ \widehat{\mathcal{A}} \llbracket \ n \ \rrbracket (\hat{s}) \ &= \ \alpha(\{n\}) \\ \widehat{\mathcal{A}} \llbracket \ x \ \rrbracket (\hat{s}) \ &= \ \hat{s}(x) \\ \widehat{\mathcal{A}} \llbracket \ a_1 + a_2 \ \rrbracket (\hat{s}) \ &= \ \widehat{\mathcal{A}} \llbracket \ a_1 \ \rrbracket (\hat{s}) \ \hat{+} \ \widehat{\mathcal{A}} \llbracket \ a_2 \ \rrbracket (\hat{s}) \\ \widehat{\mathcal{A}} \llbracket \ a_1 \star a_2 \ \rrbracket (\hat{s}) \ &= \ \widehat{\mathcal{A}} \llbracket \ a_1 \ \rrbracket (\hat{s}) \ \hat{\star} \ \widehat{\mathcal{A}} \llbracket \ a_2 \ \rrbracket (\hat{s}) \\ \widehat{\mathcal{A}} \llbracket \ a_1 - a_2 \ \rrbracket (\hat{s}) \ &= \ \widehat{\mathcal{A}} \llbracket \ a_1 \ \rrbracket (\hat{s}) \ \hat{-} \ \widehat{\mathcal{A}} \llbracket \ a_2 \ \rrbracket (\hat{s}) \end{split}$$

where $\alpha:\mathbb{Z}\to\mathbb{I}$ abstracts the integer constants:

$$\alpha(z) = [z, z]$$

Abstract arithmetic operators:

Abstract arithmetic operators:

$$\begin{array}{rcl} \bot \stackrel{.}{+} i & = & \bot \\ i \stackrel{.}{+} \bot & = & \bot \\ [l_1, u_1] \stackrel{.}{+} [l_2, u_2] & = & [l_1 + l_2, u_1 + u_2] \\ & \bot \stackrel{.}{-} i & = & \bot \\ i \stackrel{.}{-} \bot & = & \bot \\ [l_1, u_1] \stackrel{.}{-} [l_2, u_2] & = & [l_1 - u_2, u_1 - l_2] \\ & \bot \stackrel{.}{\star} i & = & \bot \\ i \stackrel{.}{\star} \bot & = & \bot \\ [l_1, u_1] \stackrel{.}{\star} [l_2, u_2] & = & [\min(l_1 \star l_2, l_1 \star u_2, u_1 \star l_2, u_1 \star u_2), \\ & & \max(l_1 \star l_2, l_1 \star u_2, u_1 \star l_2, u_1 \star u_2)] \end{array}$$

Abstract semantics for the boolean expressions:

$$\begin{split} \widehat{\mathcal{B}} \llbracket \ b \ \rrbracket \ : \ \widehat{\mathbf{State}} \to \widehat{\mathbf{T}} \\ \widehat{\mathcal{B}} \llbracket \ \mathsf{true} \ \rrbracket (\hat{s}) \ = \ \widehat{\mathit{true}} \\ \widehat{\mathcal{B}} \llbracket \ \mathsf{false} \ \rrbracket (\hat{s}) \ = \ \widehat{\mathit{false}} \\ \widehat{\mathcal{B}} \llbracket \ a_1 = a_2 \ \rrbracket (\hat{s}) \ = \ \widehat{\mathcal{A}} \llbracket \ a_1 \ \rrbracket (\hat{s}) \ \widehat{=} \ \widehat{\mathcal{A}} \llbracket \ a_2 \ \rrbracket (\hat{s}) \\ \widehat{\mathcal{B}} \llbracket \ a_1 \le a_2 \ \rrbracket (\hat{s}) \ = \ \widehat{\mathcal{A}} \llbracket \ a_1 \ \rrbracket (\hat{s}) \ \widehat{\leq} \ \widehat{\mathcal{A}} \llbracket \ a_2 \ \rrbracket (\hat{s}) \\ \widehat{\mathcal{B}} \llbracket \ \mathsf{h} \ \mathbb{I} \ \widehat{\mathsf{h}} \ \mathbb{I} \ \mathbb{I} \ \widehat{\mathsf{h}} \ \mathbb{I} \ \widehat{\mathsf{h}} \ \mathbb{I} \ \widehat{\mathsf{h}} \ \mathbb{I} \ \widehat{\mathsf{h}} \ \mathbb{I} \ \mathbb{I} \ \mathbb{I} \ \mathbb{I} \ \widehat{\mathsf{h}} \ \mathbb{I} \ \mathbb$$

Step 2: Abstract Semantics (Cont'd)

$$\begin{split} \widehat{\mathcal{C}} \llbracket \ c \ \rrbracket \ : \ \widehat{\mathbf{State}} \to \widehat{\mathbf{State}} \\ \widehat{\mathcal{C}} \llbracket \ x := a \ \rrbracket \ &= \ \lambda \widehat{s}. \widehat{s} [x \mapsto \widehat{\mathcal{A}} \llbracket \ a \ \rrbracket (\widehat{s})] \\ \widehat{\mathcal{C}} \llbracket \ \mathrm{skip} \ \rrbracket \ &= \ \mathrm{id} \\ \widehat{\mathcal{C}} \llbracket \ c_1; c_2 \ \rrbracket \ &= \ \widehat{\mathcal{C}} \llbracket \ c_2 \ \rrbracket \circ \widehat{\mathcal{C}} \llbracket \ c_1 \ \rrbracket \\ &= \begin{cases} \bot & \cdots \widehat{\mathcal{B}} \llbracket \ b \ \rrbracket (\widehat{s}) = \bot \\ \widehat{\mathcal{C}} \llbracket \ c_1 \ \rrbracket (\widehat{s}) & \cdots \widehat{\mathcal{B}} \llbracket \ b \ \rrbracket (\widehat{s}) = \widehat{true} \\ \widehat{\mathcal{C}} \llbracket \ c_1 \ \rrbracket (\widehat{s}) & \cdots \widehat{\mathcal{B}} \llbracket \ b \ \rrbracket (\widehat{s}) = \widehat{false} \\ \widehat{\mathcal{C}} \llbracket \ c_1 \ \rrbracket (\widehat{filter}(b)(\widehat{s})) & \cdots \widehat{\mathcal{B}} \llbracket \ b \ \rrbracket (\widehat{s}) = \top \\ & \ \bot \widehat{\mathcal{C}} \llbracket \ c_2 \ \rrbracket (\widehat{filter}(\neg b)(\widehat{s})) \end{cases} \end{split}$$

$$\widehat{\mathcal{C}} \llbracket \ \mathrm{while} \ b \ c \ \rrbracket \ &= \lambda \widehat{s}. \\ \widehat{\mathbf{filter}} (\neg b)(\widehat{fix}(\lambda \widehat{x}.\widehat{s}) \sqcup \widehat{\mathcal{C}} \llbracket \ c \ \rrbracket (\widehat{\mathbf{filter}}(b)(\widehat{s})))) \end{split}$$

 $extbf{filter}(p)(\hat{s})$ returns the abstract state \hat{s}' that can make p true. Let $\hat{s}(x) = [l,u]$.

$$\begin{aligned} & \mathsf{filter}(x < n)(\hat{s}) &= \left\{ \begin{array}{l} \lambda y \in \mathbb{X}.\bot & \text{if } l \geq n \\ \hat{s}[x \mapsto [l, n-1]] & \text{if } l < n \leq u \\ \hat{s} & \text{if } u < n \end{array} \right. \\ & \\ & \mathsf{filter}(x \leq n)(\hat{s}) &= \left\{ \begin{array}{l} \lambda y \in \mathbb{X}.\bot & \text{if } l > n \\ \hat{s}[x \mapsto [l, n]] & \text{if } l \leq n < u \\ \hat{s} & \text{if } u \leq n \end{array} \right. \end{aligned}$$

Other cases can be defined in similar ways.

Widening and Narrowing

During analyzing while-loop, replace \bigsqcup with \bigtriangledown and \triangle in sequence (possibly after some iterations).

A simple widening operator:

$$egin{array}{lll} [a,b] igtriangledown igsquare & = & [a,b] \ igtriangledown igtriangledown [c,d] & = & [c,d] \ [a,b] igtriangledown igtriangledown [c,d] & = & [(c < a? - \infty:a), (b < d? \infty:b)] \end{array}$$

A simple narrowing operator:

$$\begin{array}{rcl} [a,b] \bigtriangleup \bot &=& \bot \\ \bot \bigtriangleup [a,b] &=& \bot \\ [a,b] \bigtriangleup [c,d] &=& [(a=-\infty?c:a), (b=+\infty?d:b)] \end{array}$$

Summary

- Fixed point computations may not terminate.
- Widening ensures convergence and narrowing helps to regain precision.