Datasheet

Automotive-grade N-channel 600 V, 37 m Ω typ., 54 A MDmesh DM9 Power MOSFET in an HU3PAK package

HU3PAK

Product status link STHU60N046DM9AG

Product summary		
Order code STHU60N046DM9AG		
Marking	60A046DM9	
Package	HU3PAK	
Packing	Tape and reel	

Features

Order code V _{DS}		R _{DS(on)} max.	I _D	
STHU60N046DM9AG	600 V	46 mΩ	54 A	

- AEC-Q101 qualified
- Fast-recovery body diode
- Very low FOM (R_{DS(on)}·Q_g)
- Low gate charge, input capacitance and resistance
- 100% avalanche tested
- Extremely high dv/dt ruggednes
- Excellent switching performance thanks to the extra driving source pin

Applications

- DC/DC converter for EV/HEV
- On board charger (OBC)

Description

This N-channel Power MOSFET is based on the most innovative super-junction MDmesh DM9 technology, suitable for medium/high voltage MOSFETs featuring very low $R_{DS(on)}$ per area coupled with a fast-recovery diode. The silicon-based DM9 technology benefits from a multi-drain manufacturing process which allows an enhanced device structure. The fast-recovery diode featuring very low recovery charge (Q_{rr}) , time (t_{rr}) and $R_{DS(on)}$ makes this fast-switching super-junction Power MOSFET tailored for the most demanding high-efficiency bridge topologies and ZVS phase-shift converters.

1 Electrical ratings

Table 1. Absolute maximum ratings

Symbol	Parameter	Value	Unit	
V _{GS}	Gate-source voltage	±30	V	
I _D ⁽¹⁾	Drain current (continuous) at T _C = 25 °C	54		
ID(*)	Drain current (continuous) at T _C = 100 °C	34	Α	
I _{DM} ⁽²⁾	Drain current (pulsed)	220	Α	
P _{TOT}	Total power dissipation at T _C = 25 °C	245	W	
dv/dt ⁽³⁾	Peak diode recovery voltage slope	120	V/ns	
di/dt ⁽³⁾	Peak diode recovery current slope	1000	A/µs	
dv/dt ⁽⁴⁾	MOSFET dv/dt ruggedness	120	V/ns	
T _{stg}	Storage temperature range	-55 to 150	°C	
TJ	Operating junction temperature range	-55 to 150	°C	

- 1. Referred to TO-247 long leads package.
- 2. Pulse width limited by safe operating area.
- 3. $I_{SD} \le 27 \text{ A}$, V_{DS} (peak) $< V_{(BR)DSS}$, $V_{DD} = 400 \text{ V}$.
- 4. V_{DS} (peak) $< V_{(BR)}$ DSS, V_{DD} = 400 V.

Table 2. Thermal data

Symbol	Parameter	Value	Unit
R _{thJC}	Thermal resistance, junction-to-case	0.51	°C/W
R _{thJA} ⁽¹⁾	Thermal resistance, junction-to-ambient	30	°C/W

^{1.} When mounted on a standard 1 inch² area of FR-4 PCB with 2-oz copper.

Table 3. Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AR}	Avalanche current, repetitive or non-repetitive (pulse width limited by T _J max.)	6	Α
E _{AS}	Single pulse avalanche energy (starting $T_J = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 50$ V)	839	mJ

DS14756 - Rev 2 page 2/14

2 Electrical characteristics

 T_C = 25 °C unless otherwise specified.

Table 4. On-/off-states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}$	600	-	-	V
I	Zono moto vielto no due in comunit	V _{GS} = 0 V, V _{DS} = 600 V	-	-	5	
I _{DSS}	Zero gate voltage drain current	V _{GS} = 0 V, V _{DS} = 600 V, T _C = 125 °C ⁽¹⁾	-	-	200	μA
I _{GSS}	Gate-body leakage current	V _{DS} = 0 V, V _{GS} = ±25 V	-	-	±100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_{D} = 250 \mu A$	3.5	4.0	4.5	V
R _{DS(on)}	Static drain-source on-resistance	V _{GS} = 10 V, I _D = 27 A	-	37	46	mΩ

^{1.} Specified by design, not tested in production.

Table 5. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance	V 400 V f = 250 kHz V = 0 V	-	4560	-	pF
C _{oss}	Output capacitance	$V_{DS} = 400 \text{ V}, f = 250 \text{ kHz}, V_{GS} = 0 \text{ V}$		89	-	pF
Coss eq. (1)	Equivalent output capacitance	V _{DS} = 0 to 400 V, V _{GS} = 0 V		955	-	pF
R _g	Intrinsic gate resistance	f = 250 kHz, open drain		1	-	Ω
Qg	Total gate charge	V _{DD} = 400 V, I _D = 27 A, V _{GS} = 0 to 10 V		94	-	nC
Q _{gs}	Gate-source charge	(see the Figure 14. Test circuit for gate charge behavior)		24	-	nC
Q _{gd}	Gate-drain charge			34	-	nC

^{1.} $C_{\text{oss eq.}}$ is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to stated value.

Table 6. Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	V _{DD} = 300 V, I _D = 27 A,	-	27	-	ns
t _r	Rise time	$R_G = 4.7 \Omega, V_{GS} = 10 V$	-	6	-	ns
t _{d(off)}	Turn-off delay time	(see the Figure 13. Test circuit for resistive load switching times and	-	68	-	ns
t _f	Fall time	Figure 18. Switching time waveform)	-	5	-	ns

DS14756 - Rev 2 page 3/14

Table 7. Source-drain diode

Symbol	Parameter Test conditions		Min.	Тур.	Max.	Unit
I _{SD} ⁽¹⁾	Source-drain current		-	-	54	А
I _{SDM} ⁽²⁾	Source-drain current (pulsed)		-	-	220	Α
V _{SD} ⁽³⁾	Forward on voltage	I _{SD} = 54 A, V _{GS} = 0 V	-	1.1	1.6	V
t _{rr}	Reverse recovery time	$I_{SD} = 54 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s},$	-	162	-	ns
Q _{rr}	Reverse recovery charge	V _{DD} = 100 V	-	1.1	-	μC
I _{RRM}	Reverse recovery current	(see the Figure 15. Test circuit for inductive load switching and diode recovery times)	-	11	-	Α
t _{rr}	Reverse recovery time	I _{SD} = 54 A, di/dt = 100 A/μs,	-	220	-	ns
Q _{rr}	Reverse recovery charge	V _{DD} = 100 V, T _J = 150 °C	-	2.1	_	μC
I _{RRM}	Reverse recovery current	(see the Figure 15. Test circuit for inductive load switching and diode recovery times)	-	18	-	Α

- 1. Referred to TO-247 long leads package.
- 2. Pulse width is limited by safe operating area.
- 3. Pulsed: pulse duration = $300 \mu s$, duty cycle 1.5%.

DS14756 - Rev 2 page 4/14

2.1 Electrical characteristics (curves)

Figure 2. Maximum transient thermal impedance Z_{thJC} (°C/W) GPDP060820241813ZTH duty=0.5 10 -1 0.2 10 -2 $R_{thJC} = 0.51 \, ^{\circ}\text{C/W}$ $duty = t_{on} / T$ Single pulse 10 -3 $\bar{t_p}$ (s) 10 -6 10 -5 10 -4 10 -2 10 -1 10 -3

Figure 3. Typical output characteristics GPDP070820240816OCH (A) V_{GS}= 9, 10 V 200 8 V 160 120 7 V 80 40 6 V 0 12 16 $\overline{V}_{DS}(V)$

DS14756 - Rev 2 page 5/14

Figure 7. Typical drain-source on-resistance

Figure 8. Normalized on-resistance vs temperature

Figure 9. Normalized gate threshold vs temperature

Figure 10. Normalized breakdown voltage vs temperature

Figure 11. Typical reverse diode forward characteristics

Figure 12. Typical output capacitance stored energy

DS14756 - Rev 2 page 6/14

3 Test circuits

Figure 14. Test circuit for gate charge behavior

Figure 15. Test circuit for inductive load switching and diode recovery times

Figure 17. Unclamped inductive waveform

Figure 18. Switching time waveform

DS14756 - Rev 2 page 7/14

4 Package information

To meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions, and product status are available at: www.st.com. ECOPACK is an ST trademark.

4.1 HU3PAK package information

Figure 19. HU3PAK package outline

DS14756 - Rev 2 page 8/14

Table 8. HU3PAK package mechanical data

	Dimensions			
Ref.		mm		
	Min.	Тур.	Max.	
Α	3.40	3.50	3.60	
A1		0.05		
b	0.50	0.60	0.70	
b2	0.50	0.70	1.00	
b3	0.80	0.90	1.00	
С	0.40	0.50	0.60	
c2	0.40	0.50	0.60	
D	11.70	11.80	11.90	
D1	8.80	8.955	9.10	
Е	13.90	14.00	14.10	
E1	12.30	12.40	12.50	
E2	7.75	7.80	7.85	
е		1.27		
Н	18.00	18.58	19.00	
aaa		0.10		
L	2.40	2.52	2.60	
L1		3.05		
L2	0.90	1.00	1.10	
L3		0.26		
L4	0.075	0.125	0.175	
L5	1.83	1.93	2.03	
L6	2.14	2.24	2.34	
L7	4.44	4.54	4.64	
F1	2.90	3.00	3.10	
F2	2.40	2.50	2.60	
F3	0.25	0.35	0.45	
N1	3.80	3.90	4.00	
N2	0.25	0.30	0.45	
N3	0.80	0.90	1.00	
Т	0.50	0.67	0.70	
T2	9.18	9.38	9.43	
V1		0 °	8°	
V2		0 °	8°	

DS14756 - Rev 2 page 9/14

Figure 20. HU3PAK recommended footprint (dimensions in mm)

4.2 HU3PAK packing information

Figure 21. HU3PAK carrier tape outline

DS14756 - Rev 2 page 10/14

DM00345054_3

Table 9. HU3PAK tape mechanical data

Dimension	Value		
Dilliension	mm		
AO	14.40 ±0.10		
В0	19.70		
D	1.50 ±0.10		
E	1.75 ±0.10		
F	15.65 ±0.10		
10	11.00		
I1	11.60 ±0.10		
I2	8.00		
13	7.00		
K0	4.20		
P0	4.00 ±0.10		
P1	20.00 ±0.10		
P2	2.00 ±0.10		
Т	0.40 ±0.50		
W	32.00 ±0.30		

Figure 22. HU3PAK reel outline (dimensions are in mm)

DM00345054_3_reel

DS14756 - Rev 2 page 11/14

Revision history

Table 10. Document revision history

Date	Revision	Changes
29-Aug-2024	1	First release.
		Updated Section Features and Section Applications.
12-Aug-2025	2	Updated Section 1: Electrical ratings, Section 2: Electrical characteristics, Figure 5. Typical gate charge characteristics, Figure 6. Typical capacitance characteristics, Figure 10. Normalized breakdown voltage vs temperature and Figure 12. Typical output capacitance stored energy.

DS14756 - Rev 2 page 12/14

Contents

1	Electrical ratings Electrical characteristics		2	
2			3	
	2.1	Electrical characteristics (curves)	5	
3	Test circuits		7	
4	Package information		8	
	4.1	HU3PAK package information	8	
	4.2	HU3PAK packing information	10	
Revision history			12	

IMPORTANT NOTICE - READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice.

In the event of any conflict between the provisions of this document and the provisions of any contractual arrangement in force between the purchasers and ST, the provisions of such contractual arrangement shall prevail.

The purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgment.

The purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of the purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

If the purchasers identify an ST product that meets their functional and performance requirements but that is not designated for the purchasers' market segment, the purchasers shall contact ST for more information.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2025 STMicroelectronics – All rights reserved

DS14756 - Rev 2 page 14/14