Resultados Taller: Métodos para hallar las raíces de una función

Laura Mariana Jiménez Jiménez Paula Valentina Sanchez Peña Sebastián Gutiérrez Zambrano

Análisis Numérico 20-30

$$F(x) = cos(2x)^2 - x^2 [0,3/2]$$
 tol = 10^(-8)

Método Newton-Raphson

Número de iteraciones	X_i	$f(x_i)$	ϵ_a
1	0.75	-0.5574962483002227	0.3128064925362831
2	0.4371935074637169	0.2203420447288530	0.07750896042940039
3	0.5147024678931174	0.0006452465130544205	0.0002307800678113992
4	0.5149332479609288	4.668594644208213e-08	1.670020060115524e-08
5	0.5149332646611293	2.775557561562891e-16	8.766860431908015e-17

Medicion del error Newton Raphson

Raíz = 0.5149332646611294138010592584369099016199

Método Newton-Raphson mejorado con Aitken

Número de iteraciones	X_i	$f(x_i)$	ϵ_a
1	0.75	-0.5574962483002227	0.3128064925362831
2	0.4371935074637169	0.2203420447288530	0.07750896042940042
3	0.5149339371521008	-1.879969667717418e-06	6.724911135735923e-07
4	0.5149332646609872	3.975708651182686e-13	1.422027422634871e-13

Medicion del error Aitken

Raíz = 0.5149332646611294138010592520804315458503

F(x) = x*sin(x)-1 [-1,2] tol = 10^-16

Método Newton-Raphson

Número de iteraciones	X,	F(X _i)	e
1	0.5	-0.7602872306978985	0.8280040340265233
2	1.10392072872192	0.2890542781976755	0.224083305304603
3	1.113706632187435	-0.01422204556605855	0.01023277732312792
4	1.114153506045048	-5.048082454051084e-06	3.634826319932153e-06
5	1.114157140871368	-7.803757640090225e-13	5.618661345273821e-13
6	1.11415714087193	2.220446049250313e-16	1.342640076688285e-26

Raíz = 1.114157140871930087300525178169203903956

Método Newton-Raphson mejorado con Aitken

Número de iteraciones	X_i	F(X _i)	e
1	0.5	-0.7602872306978985	0.8280040340265233
2	1.328004034026523	0.2890542781976755	0.224083305304603
3	1.113706632187435	-0.0006256826268691285	0.0004505001229131445
4	1.114157132310348	-1.189040543803088e-08	8.561582009117027e-09
5	1.11415714087193	2.220446049250313e-16	3.117467025470122e-18

Raíz = 1.114157140871930087300525178169203903538

$$F(x) = x^3 - 2^*x^2 + (4/3)^*x - (8/27)$$

$$[0,2] tol = 10^{-32}$$

Método Newton-Raphson

Medicion del error Newton Raphson

Raíz = 0.6666698708192892000817759410932840828687

Número de iteraciones	X_i	$f(x_i)$	ϵ_a
1	1	0.03703703703703698	0.111111111111111109
2	0.888888888888891	0.01097393689986281	0.07407407407407383
3	0.8148148148148152	0.00325153685921864	0.04938271604938224
4	0.7654320987654329	0.0009634183286573172	0.03292181069958748
5	0.7325102880658455	0.000285457282565238	0.0219478737997235
6	0.710562414266122	8.457993557464683e-05	0.01463191586647905
7	0.6959304983996429	2.506072165187057e-05	0.009754610577645397
8	0.6861758878219976	7.425399007998656e-06	0.006503073718413978
9	0.6796728141035836	2.20011822460453e-06	0.004335382478906219
10	0.6753374316246774	6.518868813643053e-07	0.00289025498585582
11	0.6724471766388216	1.931516685482748e-07	0.001926836657053955
12	0.6705203399817676	5.723012397318428e-08	0.001284557770957683
13	0.6692357822108099	1.695707374516076e-08	0.000856371846380044
14	0.6683794103644298	5.024318294744035e-09	0.0005709145621735373
15	0.6678084958022563	1.488686729445021e-09	0.0003806097034384853
16	0.6674278860988179	4.410924958619944e-10	0.000253739791772211
17	0.6671741463070456	1.306941221912439e-10	0.0001691598375166254
18	0.667004986469529	3.872413500971561e-11	0.0001127731717732978
19	0.6668922132977557	1.147371087029114e-11	7.518199474282684e-05
20	0.6668170313030128	3.399613923704692e-12	5.012106035940353e-05
21	0.6667669102426534	1.007305350242405e-12	3.34134339705358e-05
22	0.666733496808683	2.984279490192421e-13	2.227425865226685e-05
23	0.6667112225500307	8.837375276016246e-14	1.484643737010649e-05
24	0.6666963761126605	2.620126338115369e-14	9.890725121937056e-06
25	0.6666864853875386	7.771561172376096e-15	6.578322766946832e-06
26	0.6666799070647716	2.331468351712829e-15	4.350916829534097e-06
27	0.6666755561479422	6.661338147750939e-16	2.82439914894619e-06
28	0.6666727317487932	2.220446049250313e-16	1.723604961062276e-06
29	0.6666710081438322	1.110223024625157e-16	8.653994635635709e-07
30	0.6666701427443685	1.110223024625157e-16	2.512076879097136e-07
31	0.6666698915366807	1.110223024625157e-16	2.058458232551137e-08
32	0.6666698709520983	1.110223024625157e-16	1.328036332778127e-10
33	0.6666698708192947	0	5.504523902583903e-15
34	0.6666698708192892	0	9.456521864019275e-24
35	0.6666698708192892	0	9.54144068609456e-29
36	0.6666698708192892	0	0

$$F(x) = x^3 - 2x^2 + (4/3)x - (8/27)$$
 [0,2] tol = 10^(-32)

Método Newton-Raphson mejorado con Aitken

Medicion del error Aitken

Número de iteraciones	X_i	$f(x_i)$	ϵ_a
1	1	0.03703703703703698	0.111111111111111109
2	0.888888888888891	0.01097393689986281	0.07407407407407396
3	0.66666666666655	0	0

Raíz = 0.6666666666655