COMP9727: Recommender Systems

Lecture 8: Contextual Recommendation

Wayne Wobcke

e-mail:w.wobcke@unsw.edu.au

UNSW ©W. Wobcke et al. 2023–2024

COMP9727 Contextual Recommendation

This Lecture

- Context
 - ▶ Ubiquitous Computing Environments
 - ▶ Pervasive Computing/Wearable Devices
 - ► Group Recommendation
- Application Areas
 - ► Location-Aware Recommender Systems (Mobile Commerce)
 - ► Smart Homes/Cities (Healthcare, Planning)
 - ▶ Virtual/Augmented Reality (Tourism, Museums, Shopping)
- Techniques

UNSW

- ► Factorization Machines
- ► Large Language Models

COMP9727 Contextual Recommendation 2

Context in Ratings

UNSW

©W. Wobcke et al. 2023–2024

COMP9727 Contextual Recommendation 3

Pre- and Post-Filtering

- Arbitrary context features
 - ▶ e.g. location, time, companions, holiday?, ...
- Pre-filtering
 - ▶ Learn model using only context-relevant data (more sparse)
- Post-filtering
 - ▶ Generate candidates as normal, then filter/reweight by context
 - \triangleright Multiply ratings by P(u,i,C) found using content-based methods
 - ▶ Learn P(u,i,C) from all users, e.g. P(comedy|weekend)
 - \triangleright ... or from just the similar users to u, depending on C

Location Hierarchy

COMP9727 Contextual Recommendation 5 COMP9727 Contextual Recommendation

Pairwise Interaction Tensor Factorization

- MF: Factorize ratings matrix $R = UV^T$
 - ightharpoonup R is $m \times n$, U is $m \times k$, V is $n \times k$
 - Estimate $\hat{r}_{ij} = u_i \cdot v_j = \text{sum of } u_{ik} \cdot v_{jk} \text{ over all the factors } k$
- PITF: Factorize ratings tensor $R = UV^T + VW^T + UW^T$
 - ightharpoonup R is $m \times n$, U is $m \times k$, V is $n \times k$, W is $d \times k$
 - $\blacktriangleright \text{ Estimate } \hat{r}_{ijc} = u_i \cdot v_j + v_j \cdot w_c + u_i \cdot w_c$
 - ▶ Solve optimization problem using Stochastic Gradient Descent
 - ▶ Simple generalization of MF that works well with sparse data

Factorization Machines

Problem: Very very sparse matrix

UNSW @W. Wobcke et al. 2023–2024

Factorization Machines

- Number of input variables is p = m + n + d
- Assume one factor vector $\vec{v_i}$ of length k for each input variable x_i
- Estimate $\hat{y}(\vec{x}) = g + \sum_{i=1}^{p} b_i x_i + \sum_{i=1}^{p} \sum_{j=i+1}^{p} (\vec{v}_i \cdot \vec{v}_j) x_i x_j$
- Most of the x_i and x_j are 0, hence most of the $x_i x_j$ are 0
- Solve optimization problem using Stochastic Gradient Descent
 - Update $\theta \leftarrow \theta(1 \alpha\lambda) + \alpha e(\vec{x}) \frac{\partial \hat{y}(\vec{x})}{\partial \theta}$ where $e(\vec{x}) = y(\vec{x}) \hat{y}(\vec{x})$, α is the learning rate and λ is the regularization parameter

$$\frac{\partial \hat{y}(\vec{x})}{\partial \theta} = \begin{cases} 1 & \text{if } \theta \text{ is } g \\ x_i & \text{if } \theta \text{ is } b_i \\ x_i \sum_{j=1}^p v_{jk} x_j - v_{ik} x_i^2 & \text{if } \theta \text{ is } v_{ik} \end{cases}$$

COMP9727 Contextual Recommendation 8 COMP9727 Contextual Recommendation 1

Mobile Commerce

UNSW
©W. Wobcke et al. 2023–2024

COMP9727 Contextual Recommendation 9 COMP9727 Contextual Recommendation 11

Persuasive Technology in Mobile Health

Group-Based Hike Recommender

- Activity (e.g. climbing), distance, time, elevation, steps, incline
- Context: Weather, accessibility, hazards
- Fitness of the hiker(s) aim to learn from past activity

Smart Cities

UNSW

UNSW

UNSW ©W. Wobcke et al. 2023–2024

©W. Wobcke et al. 2023-2024

©W. Wobcke et al. 2023-2024

UNSW

COMP9727

Google Tour Guide

Point-of-Interest CF Recommendation

Shopping Tour Recommendation

©W. Wobcke et al. 2023–2024

Contextual Recommendation

COMP9727 Contextual Recommendation

POI Content-Based Recommendation

13

Google Tour Guide Data

Augmented Reality Museum Visit

COMP9727

Contextual Recommendation

ndation

17

COMP9727

Contextual Recommendation

19

Augmented Reality City Tour

Augmented Reality Museum Visit

COMP9727 Contextual Recommendation 20 COMP9727 Contextual Recommendation 2

Augmented Reality Museum Visit

UNSW ©W. Wobcke et al. 2023–2024

Contextual Recommendation

Augmented Reality Museum Visit

COMP9727

Recommendation in Virtual Commerce

COMP9727

23

- Determine preferred viewpoint from user interactions
- Extract of item for matching and background colour
- Recommend similar items using "style" tags
- Replace existing item in image by recommended item

UNSW
©W. Wobcke et al. 2023–2024

Contextual Recommendation

LLM for Recommender Systems

Task-specific Recommendations (LLMs Outputs)

27

LLM Representations

■ ID-Based Representation

■ Textual Side Information Enhanced Representation

UNSW

©W. Wobcke et al. 2023-2024

©W. Wobcke et al. 2023-2024

25

LLM Prompting

©W. Wohcke et al. 2023–2024

Contextual Recommendation

COMP9727 Contextual Recommendation

LLM Pretraining and Fine-Tuning

Summary

UNSW

COMP9727

- Lot of software engineering surrounding recommender systems
- Context generalizes user-generated tags and temporal features
- Can apply content-based, CF and hybrid methods
- Effectiveness of methods depends heavily on availability of data
 - ▶ Not just quantity, but quality
- Can exploit data from body sensors, Internet of Things, etc.
- Lot of talk about recommendation in smart environments
- Not really sure about virtual/augmented reality, the "metaverse", etc.
- LLMs more about potential approaches at this stage, no real results

UNSW

©W. Wobcke et al. 2023-2024