University Physics A(1)

Worksheet #7

Name (名字): Student number (学号):

New words: Write the Chinese next to these words as you learn them.

elastic collision rotational angular momentum inelastic collision torque

internal energy torque relative to...

translational angular momentum

Problems Show all working.

- (1) [10.P.21] A car of mass 2300 kg collides with a truck of mass 4300 kg, and just after the collision the car and truck slide along, stucktogether, with no rotation. The car's velocity just before the collision was $\langle 38, 0, 0 \rangle$ m/s, and the truck's velocity just beforethe collision was $\langle -16, 0, 27 \rangle$ m/s.
- (a) What is the velocity of the stuck-together car and truck just after the collision? Write clearly which fundamental principle you are using, and what objects you choose to be in your system.
- (b) In your analysis in part (a), why can you neglect the effect of the force of the road on the car and truck?
- (c) What is the increase in internal energy of the car and truck (thermal energy and deformation)?
- (d) Is this collision elastic or inelastic?
- (2) [11.P.50] A small rock passes a massive star, following the path shown in red on the diagram. When the rock is a distance 4.5×10^{13} m (indicated as d_1 in the figure below) from the center of the star, the magnitude p_1 of its momentum is 1.35×10^{17} kg·m/s,and the angle is 126° . At a later time, when the rock is a distance $d_2 = 1.3 \times 10^{13}$ m from the center of the star, it isheading in the -y direction. There are no other massive objects nearby. What is the magnitude p_2 of the final momentum?

(3) [11.P.36] A stick of length L and mass M hangs from a low-friction axle (see the figure below). A bullet of mass m traveling at a high speedv strikes near the bottom of the stick and quickly buries itself in the stick.

- (a) During the brief impact, is the *linear* momentum of the stick + bullet system constant? Explain why or why not.Include in your explanation a sketch of how the stick shifts on the axle during the impact.
- (b) During the brief impact, around what point does the *angular* momentum of the stick + bullet system remainconstant?
- (c) Just after the impact, what is the angular speed ω of the stick (with the bullet embedded in it)? (*Hint*: the centerof mass of the stick has a speed $\omega L/2$. The moment of inertia of a uniform rod about its center of mass is $\frac{1}{12}ML^2$.)
- (d) Calculate the change in kinetic energy from just before to just after the impact. Where has this energy gone?

第七周作业

(1) (a) 小车、卡车系统中,由动量守恒原理。

P和=P末即加姆V海+加姆V按=(加姆+加姆)设 代入数据得: V其=(2-82,0,17.59)加多

(b) 道路对系统中小车和卡车支持力与重力抵消,摩擦力 四楼就时间短色恐略. (c) 由能量守恒定律有,

篇= 株+F增

門 E:南 = | (本 - | 松 = 立(m) + m) | (大) | 一立m村 | V | (大) | 一立m村 | V | (人) | (d) 非弹性碰撞,因为 E:迪スカロ

(2) 国为下川产、所以下X产品

又 $\frac{d\vec{l}_A}{dt} = \vec{l}_A = 0$ 则 $\vec{l}_{A,2} - \vec{l}_{A,1} = 0$ 即 $\vec{l}_{A,2} = \vec{l}_{A,1}$ 所以 $\vec{r}_{A,2} \times \vec{p}_2 = \vec{r}_{A,1} \times \vec{p}_1$ 在 - Z 分量上, $d_2 \cdot p_2 = d_1 \cdot p_1 \cdot Snd$

所以P= di. Pissna·代入数据,断很 P==3.8×10 kg·m/s

(3) (a) 提十子弹系统动量不足常数. △P=F. △t. 当子弹击中杆时, 杆向存给动, 击中车轴, 轴上有偶式的 在提出, 大多数系统动量被转给到轴上, 所以不提常数.

(6)在木根中心作置,木棍十分弹和免角的量保持不变.

(c) 由 LA:= LA: 得: m|Vi|L=(I根+I3項)·|Wi|

 $|\vec{w_f}| \cdot 1 = \frac{1}{2} \cdot M \cdot \omega = \frac{1}{2} \cdot M \cdot$