Awkward Number Series

Will Dengler

May 3, 2021

1 Notation and Assumed Knowledge

Notation

- \mathbb{Z} is defined to be the set of integers.
- $\mathbb{N} \subset \mathbb{Z}$ is defined to be the set of natural numbers, including 0.
- $\mathbb{N}^+ \subset \mathbb{N}$ is defined to be the set of positive integers.
- For any $x \in \mathbb{N}^+$, $[x] = \{ j \in \mathbb{N} \mid j < x \}$.
- \mathbb{Q} is defined to be the set of rational numbers.
- For any $q \in \mathbb{Q}$, the ceiling function $\lceil q \rceil = z$, where z is the integer such that $z 1 < q \le z$.
- For any $x, y \in \mathbb{N}$, the function gcd(x, y) is defined to be the greatest common divisor of x and y.

Definition

For any natural number x, for any positive integer y, the remainder function $\rho: (\mathbb{N} \times \mathbb{N}^+) \to \mathbb{N}$, $\rho(x, y)$ is defined to be the remainder of x when divided by y.

Assumed Knowledge

For any natural number x, for any positive integer y, there exists a unique integer $z \in \mathbb{N}$ such that $x = zy + \rho(x, y)$.

Definition

For any natural number x, for any positive integer y, if $\rho(x,y) = 0$, then we say that x is divisible by y.

Assumed Knowledge

The prime numbers can be recursively defined as the series:

- $p_0 = 2$ is the first element in the series.
- For all $k \in \mathbb{N}^+$, p_k is the least greatest integer such that $p_k > p_{k-1}$, and for all j < k, p_k is not divisible by p_j .

2 Awkward Number Series

Definition

For any positive integers a, n, the awkward number series, $S_{a,n}$ is defined as:

- An initial element $s_0 = a + n$
- For any i > 0, s_i is defined to be the least greatest integer such that $s_i > s_{i-1}$ and $\rho(s_i, s_k) \ge a$ so all k < i.

We say that the awkward number series $S_{a,n}$ has a activators, and n initial non-activators.

Lemma

The awkward number series $S_{1,1}$ is equal to the set of prime numbers.

Proof TODO

Awkward Infinity Theorem

Every awkward number series contains an infinite number of elements.

Proof

Let $S_{a,n}$ be any awkward number series.

Assume that $S_{a,n}$ contains a finite number of elements.

Let s_i be the greatest element within $S_{a,n}$.

Let m be any positive common multiple of the elements of $S_{a,n}$.

Notice that $m > s_i$ since m is a multiple of s_i , but s_i is not a multiple of any s_j such that j < i.

Consider the value m + a.

Since $S_{a,n}$ is finite, there must exist some element, $s_j \in S_{a,n}$ such that $\rho(m+a,s_j) < a$. Otherwise, there is some element smaller than m+a that has not been accounted for, or m+a would be an element of $S_{a,n}$ that has not been accounted for.

Let
$$\rho(m+a,s_i)=b$$
.

There exists some integer x such that $m + a = xs_j + b$.

Since m is a common multiple of all the elements of $S_{a,n}$, then $\frac{m}{s_i} \in \mathbb{N}$.

Let
$$y = \frac{m}{s_j}$$
. Then $m = ys_j$.

Consider the equation a = (m + a) - m.

Substituting $xs_j + b$ for m + a yields $a = xs_j + b - m$.

Substituting ys_i for m yields $a = xs_i + b - ys_i$.

Applying the distributive property yields $a = (x - y)s_j + b$.

If x < y, then $(x - y)s_j \le -s_j$.

Since $0 \le b < a < s_i$, then $(x - y)s_i + b < 0$ if x < y.

However, a > 0, as such, x < y cannot be the case.

If x > y, then $(x - y)s_i \ge s_i$.

Since $0 \le b$ and $a < s_i$, then $(x - y)s_i + b \ge s_i$ if x > y.

However, $a < s_j$, as such, x > y cannot be the case.

As such, x = y must be the case.

Substituting x for y yields $a = (x - x)s_i + b = b$.

By assumption, b < a, as such we have reached a contradiction.

Therefore, it must be the case that either m+a is an element of $S_{a,n}$, or there exists some other element in $S_{a,n}$ less than m+a that was not accounted for. In either case, $S_{a,n}$ cannot be finite.

Corollary

There are an infinite number of prime numbers.

Proof

The prime numbers are an awkward number series and every awkward number series contains an infinite number of elements.

Lemma

For any awkward number series $S_{a,n}$, the first $\lceil \frac{n}{a} \rceil + 1$ elements are given by $s_i = a(i+1) + n$.

Proof

Let $S_{a,n}$ be any awkward number series. We shall complete this proof via induction on the index of the first $\lceil \frac{n}{a} \rceil + 1$ elements.

Base Case

By definition, the initial element is $s_0 = a + n = a(0+1) + n$.

Inductive Hypothesis

Assume for the first $0 \le j < \lceil \frac{n}{a} \rceil$, that $s_j = a(j+1) + n$.

Inductive Step

For all $x \in [a]$, $\rho(s_j + x, s_j) = x < a$. As such, $s_{j+1} \ge s_j + a$.

If we can show that $\rho(s_j + a, s_k) \ge a$ for all k < j, then $s_{j+1} = s_j + a$.

Furthermore, $s_j + a = a(j+1) + n + a = a(j+2) + n$, thus we will completed our proof.

Let $0 \le k < j$. Then $s_j + a = s_k + a(j - k + 1)$ according to the inductive hypothesis.

As such, $\rho(s_j + a, s_k) = a(j - k + 1)$ as long as $a(j - k + 1) < s_k$.

Since $j < \lceil \frac{n}{a} \rceil$ and $j \in \mathbb{N}$, then $j \leq \lceil \frac{n}{a} \rceil - 1$.

As such, $a(j-k+1) \le a(\lceil \frac{n}{a} \rceil - 1 - k + 1) = a(\lceil \frac{n}{a} \rceil - k) = a\lceil \frac{n}{a} \rceil - ak$.

First, let us consider the case where $a \mid n$.

We will then have $a\lceil \frac{n}{a} \rceil = n$.

As such, $a(j - k + 1) \le n - ak < s_k$.

Now let us consider the case where $\rho(n, a) \geq 1$.

Then $a \lceil \frac{n}{a} \rceil = a \frac{n + a - \rho(n, a)}{a} = n + a - \rho(n, a) = s_0 - \rho(n, a) < s_0 \le s_k$.

As such, $a(j - k + 1) < s_k - ak \le s_k$.

Therefore, $\rho(s_j + a, s_k) = a(j - k + 1)$ does in fact hold.

As such, we now need to show that $a(j - k + 1) \ge a$.

We chose k < j, as such, $a(j - k + 1) \ge a(j - j + 1) = a$.

We have shown that $s_j + a = a(j+2) + n$ is the least greatest integer greater than s_j such that $\rho(s_j + a, s_k) \ge a$ for all $k \le j$. Therefore, $s_{j+1} = a(j+2) + n$.

Definition

For any awkward number series $S_{a,n}$, the value $\lceil \frac{n}{a} \rceil + 1$ is called the dimension of the series.

Awkward Uniqueness Theorem

For any two awkward number series $S_{a,b}$ and $S_{c,d}$, $S_{a,b} = S_{c,d}$ if and only if a = c and b = d.

In other words, no two awkward series contain the same set of elements.

Proof TODO

Definition

An awkward number series, $S_{a,n}$ is called *simple* if the gcd(a,n) = 1. Otherwise the awkward number series is said to be *redundant*.

Definition

Any two awkward number series $S_{a,b}$ and $S_{c,d}$ are called similar whenever $\frac{a}{\gcd(a,b)} = \frac{c}{\gcd(c,d)}$ and $\frac{b}{\gcd(a,b)} = \frac{d}{\gcd(c,d)}$. Otherwise the series are said to be dissimilar.

Awkward Similarity Theorem

For any simple awkward number series $S_{a,n}$, for any positive integer x, the elements of the awkward number series $S_{xa,xn} = \{ xs_i \mid s_i \in S_{a,n} \}$.

Proof			
TODO			