

Módulo 4: Estatística e Modelagem de Dados

Aula 17: Regressão Logística

Instrutora

Cristiane Rodrigues

- Bacharel em Matemática UNESP Rio Claro.
- Mestre em Estatística USP Piracicaba
- Experiências Profissionais:
 - Modelagem de Credito para PF e PJ Banco Bradesco
 - Experiência com Segmentação e Análise de Series temporais Atento
 - Consultora Analítica no SAS Institute Brasil
 - Professora do curso SAS Academy for Data Science

Índice

- Revisão Regressão Logística
- Motivação
- Forma Funcional do Modelo de Regressão Logística
- Aplicações
- Superfície de Ajuste e Interpretação
- Odds Ratio
- Ponto de Corte e Estimação
- Tratamento das variáveis
- Seleção de Variáveis
- Matriz de Confusão
- Curva ROC

Revisão: Supervised X Unsupervised Learning

 Cenário 1: Você é uma criança e vê diferentes tipos de animais, seu pai lhe diz que esse animal é um cão ... depois dele, dando algumas dicas, você vê um novo tipo de cachorro, que você nunca viu antes, mas você o identifica como um cão e não como gato ou macaco ou batata.

Este cenário é um exemplo de classificação supervisionada, onde você tem alguém para orientá-lo e aprender conceitos, de modo que, quando uma nova amostra chega ao seu caminho, mesmo que você não tenha visto antes, você ainda pode identificá-la.

 Cenário2: Você vai fazer uma viagem para um novo país, o qual você não conhece muito sobre sua comida, cultura, idioma, etc. No entanto, a partir do primeiro dia, você começa a caminhar por lá, aprendendo o que comer e o que não comer, encontrar uma caminho para a praia ou para o hotel, etc.

Este cenário é um exemplo de classificação não supervisionada, onde você tem muitas informações, mas não sabe o que fazer inicialmente. Uma distinção importante é que, não há ninguém para guiá-lo e você tem que encontrar uma saída por conta própria. Então, com base em alguns critérios, você começa a gerar essas informações em grupos que fazem sentido para você.

Revisão: Supervised Learning

- Usam dados com marcação da variável resposta
- Variáveis preditoras + variável target
- Objetivo: prever a variável target, usando as variáveis preditoras
 - Regressão: variável target é contínua
 - Classificação: variável target é composta de categorias
- Nomenclaturas para as variáveis
 - Independentes = Preditoras = Características = Input
 - Target = Dependente = Resposta

- $y = \beta_0 + \beta_1 x + e$
 - -y = target
 - -x = variável preditora contínua
 - β_0 , $\beta_1 = parâmetros do modelo$
- Como escolher β_0 e β_1 ?

Os valores de β_0 e β_1 podem ser estimados pelo método dos mínimos quadrados, minimizando a soma dos erros quadráticos

$$\sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2$$

 Na regressão linear o objetivo é escolher a reta que minimiza a função de erro, ou seja, que diminui a distância entre o ajuste e os dados

- Na regressão linear o objetivo é escolher a reta que minimiza a função de erro, ou seja, que diminui a distância entre o ajuste e os dados
- Na regressão linear múltipla temos a inserção de mais variáveis preditoras e podemos escrever o modelo da seguinte forma:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k$$

Comparação

Ajustando modelos de regressão linear para dois tipos de dados diferentes

 Probabilidade variando entre 0,15 e 0,85 substituição

A equação linear **é suficiente** para modelar bem os dados

 Probabilidade menor que 0,15 ou maior que 0,85

A equação linear **não é suficiente** para modelar bem os dados

Motivação

- As equações apresentadas no tópico anterior são equações do tipo linear.
- Nem sempre as variáveis se comportam como uma reta, portanto nem sempre uma equação linear será uma equação adequada para descrever o comportamento de uma variável em relação à outra. Isso é especialmente verdade quando temos uma variável binária: 0 ou 1.

Por exemplo: queremos saber os valores de pressão arterial entre pessoas que tiveram ou não um AVC. Se classificarmos "presença de AVC" igual a 1 e "ausência de AVC" igual a 0, teremos um gráfico tipo o abaixo, o qual não parece se ajustar bem com uma reta

- só tem dois valores: 0 ou 1
- os pontos estão mais concentrados próximos:
 - ao valor 0, em que os valores de pressão arterial são mais baixos
 - ao valor 1, em que os valores de pressão arterial são mais altos
 - significa que: provavelmente à medida que aumenta a pressão arterial, aumenta a incidência de AVC.

Mas em quanto?

Forma Funcional

 Quando transformamos uma variável com valores 1 e 0 em proporções, acontece um fenômeno que o gráfico fica mais ou menos assim:

 Algum estatístico percebeu que essa curva poderia ser escrita em forma de função, porém ela não é linear, mas sim bem mais complexa, e pode ser descrita assim:

$$p_i = \frac{1}{1 + e^{-n}}$$

em que p_i é a proporção de eventos para cada x_i e

$$n = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \dots + \beta_k x_{ki}$$

Função de ligação logit

- Essa probabilidade em forma de S é muito difícil de interpretar pois o y aumenta em velocidades diferentes ao longo do eixo x.
- A ideia é tornar a equação uma reta novamente para ficar mais fácil de interpretar o resultado
- Para fazer isso, vamos utilizar a transformação Logit, a qual é composta por duas transformações
- 1. Transformar o p em uma chance: $\frac{p}{1-p}$
- 2. Aplicando o logaritmo a chance

$$logit(p_i) = ln\left(\frac{p_i}{1 - p_i}\right) = ln\left(\frac{\frac{1}{1 + e^{-n}}}{1 - \frac{1}{1 + e^{-n}}}\right) = ln\left(\frac{\frac{1}{1 + e^{-n}}}{\frac{e^{-n}}{1 + e^{-n}}}\right) = ln\left(\frac{1}{e^{-n}}\right) = ln(e^n) = n$$

$$= \beta_o + \beta_1 x_{1i} + \beta_2 x_{2i} + \dots + \beta_k x_{ki}$$

Desta forma voltamos para uma relação linear entre o logit de p_i e as variáveis input.

Transformação

 Usando a transformação Logito podemos sair de um problema não linear e voltar para a modelagem de um problemas linear.

Aplicações da Regressão Logística - Classificação

• Marketing:

Objetivo: Encontrar segmentos de clientes mais prováveis a aderir a uma promoção

Target: Se o cliente aderiu ou não a alguma promoção passada

Inputs: Histórico de compras, Localidade, Salário,...

• RH – Pedido de demissão de funcionários:

Objetivo: Verificar a probabilidade do funcionário deixar a empresa

Target: Se o funcionário saiu ou não da empresa no mês anterior

Inputs: Tempo de servico, nível de satisfação, salário, cargo,...

• Credit Scoring:

Objetivo: Verificar a probabilidade do cliente entrar em default

Target: Se o funcionário entrou ou não e default nos últimos 90 dias

Inputs: Saldo médio em cc, se recebe em conta, saldo máximo, quantidade de meses em risco

• Detecção de Fraude:

Target: Se o cliente cometeu ou não fraude na transação com cartão de crédito pela internet

Inputs: Valor médio de pagamento por sessão, número de sessões abertas, ...

Superfície de Ajuste e Interpretação

Interpretação: Mudar uma unidade em x2

 β_2 muda na <u>logit</u>

 $100(\exp(\beta_2)-1)\%$ muda na <u>odds</u>

Odds Ratio

• $Odds = \frac{p}{1-p} = e^n$, chance do evento ocorrer. Em que $n = \beta_o + \beta_1 x_{1i} + \beta_2 x_{2i} + \dots + \beta_k x_{ki}$.

•
$$Odds_{Ratio} = \frac{odds_{grupo_A}}{odds_{grupo_B}} = \frac{e_{grupo_A}^n}{e_{grupo_B}^n}$$
, chance do evento ocorrer se for do Grupo_A com relação ao Grupo_B

Odds Ratio ϵ $(0, \infty)$

- Odds Ratio = 1 $\Rightarrow \frac{Odds \ Grupo1}{Odds \ Grupo2} = 1 \Rightarrow$ p1=p2, ou seja, não há associação entre a variável preditora e a resposta
- Odds Ratio > 1 $\Rightarrow \frac{Odds \ Grupo1}{Odds \ Grupo2} > 1 \Rightarrow Odds \ Grupo1 > Odds \ Grupo2$, ou seja, o grupo no numerador tem maior chance do evento ocorrer que o grupo no denominador
- Odds Ratio < 1 $\rightarrow \frac{odds \ Grupo1}{odds \ Grupo2}$ < 1 $\rightarrow Odds \ Grupo1$ < $Odds \ Grupo2$, ou seja, o grupo no numerador tem menor chance do evento ocorrer que o grupo no denominador

Odds Ratio em um Modelo de Regressão Logística

• Considere o seguinte modelo de regressão logística estimado

$$logit(p) = -.7567 + .4373*(sexo)$$

em que feminino é codificado com 1 e masculino com 0

• Razão de chances estimada (Femino para Masculino) é:

odds ratio =
$$\frac{\text{odds feminino}}{\text{odds masculino}} = \frac{e^{n1}}{e^{no}} = \frac{e^{-0.7567 + 0.4373*(1)}}{e^{-0.7567 + 0.4373*(0)}} = \frac{e^{-0.7567 + 0.4373*(1)}}{e^{-0.7567}} = e^{0.4373} = 1.55$$

 Interpretação: A chance de ocorer o sexo feminino é 1,55 vezes a chance de ocorrer o sexo masculino

Discriminação e Estimação

above

below

*X*₁

 X_2

Discriminação

Estimação

Tratamento das variáveis - Missing

1. Complete case analysis

2. Imputação + Variáveis indicadoras de missing

Métodos para substituir o missing na imputação:

 Média, Mediana, Moda, Zero, Criação de nova categoria, regressão,...

Criando a indicadora de missing:

• Indicadora de Missing =
$$\begin{cases} 1, se \ a \ obs \ \acute{e} \ missing \\ 0, \quad caso \ contrario \end{cases}$$

Tratamento das variáveis - Categoricas

Problemas causados por variável input categórica

- 1. <u>Variáveis com muitos níveis</u>: se expandir em dummys
 - aumenta a dimensão
 - produzirá inputs redundantes e irrelevantes
- 2. Quase completa separação: Quando um nível da categoria tem taxa de evento target igual a 0 ou a 100% das observações
 - afeta a convergência dos parâmetros
 - Pode levar a escolha errada das variáveis

<u> </u>	classe			 	D_B	D_0
1 B			1	0	1	
2 A			2	1	0	
B			3	0	1	
С			4	0	0	
i A			5	1	0	
A			6	1	0	
,			7	0	0	

Criando dummys da variável classe

Tratamento das variáveis - Categoricas

Soluções para os problemas causados por variável input categórica

1. Thresholding: Juntar categorias baseado no número de observações

- 2. <u>Clusterização</u>: Juntar as categorias das variáveis considerando
 - menor redução da estatística de χ^2
 - Taxas de respostas semelhante
 - número de observações na categoria

Tratamento das variáveis - Categoricas

Soluções para os problemas causados por variável input categórica

3. Weight of Evidence (WOE): substitui o valor da categoria pelo log(odds) do evento

	0	1	р	WOE		
Α	28	7	0,200	0,25] -]
В	16	0	0	0]	
С	94	11	0,105	0,117		
D	23	21	0,477	0,912		

Estudo de Caso Ajustando um modelo de Regressão Logística no Python

Fonte da dados: kaggle

Link: https://www.kaggle.com/kost13/us-income-logistic-regression/data

Resumo: Dados do Censo Adulto Americano referentes a renda para fatores sociais como Idade, Educação, raça, etc.

Objetivo: Ajustar um modelo de regressão logística, em uma base de treinamento, para uma resposta binária, fazer a previsão desta resposta e avaliar a qualidade de ajuste do modelo em uma base de teste.

Ī

Estudo de Caso Ajustando um modelo de Regressão Logística no Python

- Parte 1: Tratando as Variáveis do modelo
 - Missing
 - Variáveis categóricas

Tratamento das variáveis - Redundância

Redundância: Variáveis input altamente correlacionadas

- 1. Problemas das variáveis redundantes:
 - desestabiliza a estimação dos parâmetros
 - aumenta o risco de overfitting
 - pode confundir a interpretação
 - aumenta o tempo computacional para a estimação dos parâmetros
 - aumenta o custo da coleção dos dados
- 2. Como verificar se as variáveis são redundantes:
 - Matriz de correlação entre as variáveis input
- 3. Como resolver o problema da redundância
- Excluir da análise as variáveis que são altamente correlacionadas entre si e destas a que tem menor correlação com a variável resposta

Tratamento das variáveis - Irrelevância

Irrelevância: Variáveis inputs pouco correlacionadas com a variável resposta

- 1. Problemas das variáveis irrelevantes:
 - ao utilizar algum método de seleção de variáveis pode-se selecionar a variável incorreta
- 2. Como verificar se as variáveis são irrelevantes:
 - Matriz de correlação das variáveis input com a variável target
- 3. Como resolver o problema da redundância
- Excluir da análise as variáveis que tem baixa correlação com a variável resposta, mas antes verificar se a interação entre as variáveis com baixa correlação aumenta o poder de predição do modelo.

Estudo de Caso Ajustando um modelo de Regressão Logística no Python

Parte 2 : Correlação

- Entre as variáveis input
- Entre cada input e a target

Seleção de Variáveis

- Para diminuir a dimensão com conjunto de dados e assim facilitar a análise, podemos utilizar métodos de seleção de variáveis que testam todos os possíveis modelos e retornam o que melhor ficou ajustado.
 - Dependendo do número de variáveis estes métodos se tornam muito caros computacionalmente
- Métodos sequenciais

Seleção de Variáveis - Forward

Seleção de Variáveis - Forward

Seleção de Variáveis - Forward

Ī

T

Estudo de Caso Ajustando um modelo de Regressão Logística no Python

Parte_3: Método de seleção de variáveis – Forward

Ajuste do Modelo – Matriz de Confusão

TN: True Negative

TP: True Positve

FN: False Negative

FP: False Positive

• Métricas para avaliar a qualidade do ajuste do modelo

- Missclassification =
$$\frac{FP+FN}{Total\ de\ casos}$$

- Acurácia =
$$\frac{TP+TN}{Total\ de\ casos}$$

- Precision =
$$P = \frac{TP}{TP + FP}$$

- Altos valores de precision estão relacionados a baixa taxa de FP

- Recall =
$$R = \frac{TP}{TP + FN}$$

- Altos valores de recall estão relacionados a baixa taxa de FN

• Conclusões:

- Alto recall e Baixo precision -> prejudica o cliente, pois o cliente era bom (0) e foi classificado como ruim (1).
- Baixo recall e Alto precision -> beneficia o cliente, pois o cliente era ruim (1) e foi classificado como bom (0).
- Altos valores de precision e recall são indicativos de um modelo bem ajustado

Ajuste do Modelo - Curva ROC

A curva ROC, mede, fração a fração, quantos 1's foram capturados (taxa de true positive) vs quantos 0's foram capturados (taxa de false positive).

• <u>Métricas</u>

-
$$Sensibilidade = Recall = \frac{TP}{TP+FN}$$

-
$$Especificidade = \frac{TN}{TN+FP}$$

Ajuste do Modelo - Curva ROC

Quanto maior a área sob a curva melhor é o modelo ajustado

^{*} Regras de bolso sempre são perigosas, o modelo ideal depende sempre do problema modelado.

T

Estudo de Caso Ajustando um modelo de Regressão Logística no Python

Parte_4.1: Ajustar um modelo de regressão Logística na base de treinamento usando sklearn

Parte_4.2: Validar o modelo na base de teste usando: AUC, precision, recall

T

Estudo de Caso Ajustando um modelo de Regressão Logística no Python

Parte_5.1: Ajustar um modelo de regressão Logística na base de treinamento usando statsmodel

Parte_5.2: Validar o modelo na base de teste usando: AUC, precision, recall

Desafio Ajustar um modelo de Regressão Logística no Python

- 1. Tratar as Variáveis da base de dados: Missing e Categoricas
- 2. Verificar a correlação entre as variáveis
- 3. Dividir a base em treinamento e teste
- 4. Seleção de variáveis
- 4. Ajustar um modelo de regressão Logística
- 5. Prever na base de teste
- 6. Avaliar a qualidade do ajuste do modelo: acurácia, precision, recall

DÚVIDAS?!

Referências

- 1. https://ebmacademy.wordpress.com/2015/08/17/o-fantasma-da-regressao-logistica/
- 2. https://www.kaggle.com/kost13/us-income-logistic-regression
- 3. http://planspace.org/20150423-forward_selection_with_statsmodels/

Obrigada

Cristiane Rodrigues

crisrodrigues_27@hotmail.com

