1. Easy Mode

Problem 1.1. What is the smallest r such that three disks of radius r can completely cover up a unit disk?

Problem 1.2. If $\frac{\log_b 9}{\log_c 9} = 2023$, compute $\frac{b}{c} \mod 17$.

Problem 1.3. Let x and y be two-digit integers such that y is obtained by reversing the digit of x. Suppose that $x^2 - y^2 = m^2$ where m is some integer, find x + y.

Problem 1.4. Calculate the exact value of the angle expressed in the form with arctan between 2C - H bonds in CH_4 (methane) and give out the process of calculation.

Problem 1.5. Given that $N = (20^{23} + 2^{915})^2 - (20^{23} - 2^{915})^2$, how many consecutive "0" are there at the end of N? (For example, 2480900 has 2 "0"s at the end.)

Problem 1.6. Positive integers a and b satisfy the condition

$$\log_2(\log_{2^a}(\log_{2^b}(2^{1000}))) = 0.$$

Find the sum of all possible values of a + b.

2. Intermediate Mode

Problem 2.1. In rectangle ABCD, AB = 12 and BC = 10. Points E and F lie inside rectangle ABCD so that BE = 9, DF = 8, $\overline{BE} \parallel \overline{DF}$, $\overline{EF} \parallel \overline{AB}$, and line BE intersects segment \overline{AD} . What is the length of EF?

Problem 2.2. Triangle ABC has a right angle at C, and D is the foot of the altitude from C to AB. Points L, M and N are the midpoints of segments AD, DC and CA, respectively. If CL = 9 and BM = 15, compute BN^2 .

Problem 2.3. Alice is thinking of a positive real number x, and Bob is thinking of a positive real number y. Given that $x^{\sqrt{y}} = 27$ and $(\sqrt{x})^y = 9$, compute xy.

Problem 2.4. Find the smallest integer n such that

$$\sqrt{n+99} - \sqrt{n} < 1$$

Problem 2.5. Which number among the set $\{0, 1, 2, 3, 4\}$ stands for the imaginary number $i \mod 5$? [mod n stands for modulo arithmetic, which gives out the residue when divided by n. For example, $9 \equiv 1 \pmod 4$ means that 9's residue is 1 when divided by 4.]

Problem 2.6. Points A(6,13) and B(12,11) lie on circle ω in the plane. Suppose that the tangent lines to ω at A and B intersect at a point on the x-axis. What is the area of ω ?

3. Difficult Mode

Problem 3.1. Let (a, b, c) be the real solution of the system of equations $x^3 - xyz = 2$, $y^3 - xyz = 6$, $z^3 - xyz = 20$. The greatest possible value of $a^3 + b^3 + c^3$ can be written in the form $\frac{m}{n}$, where m and n are relatively prime positive integers. Find m + n.

Problem 3.2. How many digits are in the base two representation of 10! (factorial)?

Problem 3.3. If $a_1 = 1$, $a_2 = 0$, and $2a_{n+1} = 2a_n + a_{n+2}$ for all $n \ge 1$, compute $log_2(-a_{2024})$

Problem 3.4. Given that $\log_{10} \sin x + \log_{10} \cos x = -1$ and that $\log_{10} (\sin x + \cos x) = \frac{1}{2} (\log_{10} n - 1)$, find n.

Problem 3.5. What is

$$\sum_{n=1}^{2023} \frac{\left\lfloor \sqrt{n} + \sqrt{n+1} \right\rfloor}{\left\lceil \sqrt{4n+2} \right\rceil}$$

and prove it.

Problem 3.6. If a DP1 student chooses 5 HL (high level) courses out of 6 and needs to take 6 classes each week for each HL course, what is the probability that he has 2 2-period classes for different HL courses in a day?