Practice Problems 4

Office Hours: Tuesdays, Thursdays from 3:30 to 4:30 at SS 7218 (TA Preparation Room). E-mail: mpark88@wisc.edu

EXERCISES

1. Let

$$f_a(x) = \begin{cases} x^a & \text{if } x \ge 0\\ 0 & \text{if } x < 0 \end{cases}$$

(a) For which values of a is f continuous at zero?

Answer: From the left side of zero we have $\lim_{x\to 0^-} f(x) = 0$, so we need $\lim_{x\to 0^+} f(x) = 0$ as well. This occurs iff a > 0.

(b) For which values of a is f differentiable at zero? In this case, is the derivative function continuous?

Answer: From (a) we know $f_a(0) = 0$. For $f'_a(0)$ we again consider the limit from the left and see that

$$\lim_{x \to 0^{-}} \frac{f_a(x) - f_a(0)}{x} = \lim_{x \to 0^{-}} \frac{0}{x} = 0$$

so we need

$$\lim_{x \to 0^+} \frac{x^a}{x} = \lim_{x \to 0^+} x^{a-1} = 0$$

as well. This occurs iff a > 1. The derivative formula $(x^a)' = ax^{a-1}$ (which we have not justified for $a \notin \mathbb{N}$) shows that $f'_a(0)$ is continuous in this case.

(c) For which values of a is f twice-differentiable?

Answer: We still get zero when looking at the limit from the left of the second derivative, so for the second derivative to exist we must have

$$\lim_{x \to 0^+} \frac{ax^{a-1}}{x} = \lim_{x \to 0^+} ax^{a-2} = 0.$$

This occurs whenever a > 2.

2. * Let $f : \mathbb{R} \to \mathbb{R}$ be a function such that $|f(x)| \le |x|^2$. Show that f is differentiable at 0. **Answer:** For all $h \in \mathbb{R}^n$,

$$\frac{|f(h) - f(0)|}{|h|} = \frac{|f(h)|}{|h|} \le \frac{|h|^2}{|h|} = |h|$$

Hence, $f'(0) \leq \lim_{h\to 0} |h| = 0$. This is because limits preserve inequalities. Therefore, f is differentiable at 0, and in fact its derivative is 0 there.

3. For each of the following, prove that there is at least one $x \in \mathbb{R}$ that satisfies the equations.

(a)
$$* e^x = x^3$$

Answer: Let $g(x) = e^x - x^3$ note that g(0) > 0 and g(2) < 0 by the IVT g(x) has a root which is an x as we are looking for.

(b) $e^x = 2\cos x + 1$

Answer: Let $g(x) = e^x - 2\cos x - 1$ Note g(0) < 0 and $g(\pi) > 0$ so the solution exist by the IVT.

(c) $2^x = 2 - 3x$

Answer: Let $g(x) = 2^x - 2 + 3x$ the note that g(0) < 0 and g(1) > 0 the IVT ensures the existence of such x.

- 4. Use the definition of derivative to find the derivative of the following:
 - (a) * $f(x) = x^2$

Answer:

$$\frac{(x+h)^2 - x^2}{h} = \frac{2xh + h^2}{h} = 2x + h$$

so the limit when $h \to 0$ is 2x.

(b) $\alpha f(x) + \beta g(x)$ where $f(x) = x^n$ and g(x) = c for some constants c and $n \in \mathbb{N}$.

Answer:

$$\frac{\alpha(x+h)^n + \beta c - \alpha x^n - \beta c}{h} = \alpha \frac{(x+h)^n - x^n}{h}$$

So we can compute the limit of the RHS by induction guessing the solution to be $f'(x) = nx^{n-1}$ for n > 1, the previous case establishes the result for n = 2. the induction step goes as follows

$$\frac{(x+h)^n - x^n}{h} = \frac{(x+h)(x+h)^{n-1} - xx^{n-1}}{h}$$
$$= \frac{x((x+h)^{n-1} - x^{n-1}) + h(x+h)^{n-1}}{h} \to x(n-1)x^{n-2} + x^{n-1} \text{ as } h \to 0.$$

Thus we have the desired result.

5. Show that $e^x - 1$ deosn't have any fixed point for all x > 0.

Answer: Let $f(x) = e^x - x$. note that $f'(x) = e^x - 1 > 0$ for x > 0, so it is strictly increasing on $(0, \infty)$. Then f(x) > f(0) for all x > 0, but this implies $e^x - x > 1$.

6. * Prove that for all x > 0.

$$1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} < e^x$$

Answer: The LHS is the Taylor expansion of order n of the RHS, and the Taylor reminder $\frac{f^{(n+1)}(c)}{(n+1)!}(x-x_0)^{n+1}$ is always positive. We conclude the Taylor expansion must be underestimating e^x so the result follows.