QUIZ4

1. Neural Network and Deep Learning

A fully connected Neural Network has L=2; $d^{(0)}=5$, $d^{(1)}=3$, $d^{(2)}=1$. If only products of the form $w_{ij}^{(\ell)}x_i^{(\ell-1)}$, $w_{ij}^{(\ell+1)}\delta_j^{(\ell+1)}$, and $x_i^{(\ell-1)}\delta_j^{(\ell)}$ count as operations (even for $x_0^{(\ell-1)}=1$), without counting anything else, which of the following is the total number of operations required in a single iteration of backpropagation (using SGD on one data point)?

- A. 47
- B. 43
- C. 53
- D. 59
- E. none of the other choices
- 2. Consider a Neural Network without any bias terms $x_0^{(\ell)}$. Assume that the network contains $d^{(0)} = 10$ input units, 1 output unit, and 36 hidden units. The hidden units can be arranged in any number of layers $\ell = 1, \dots, L-1$, and each layer is fully connected to the layer above it. What is the minimum possible number of weights that such a network can have?
 - A. 46
 - B. 44
 - C. none of the other choices
 - D. 43
 - E. 45
- 3. Following Question 2, what is the maximum possible number of weights that such a network can have?
 - A. 510
 - B. 520
 - C. none of the other choices
 - D. 500
 - E. 490

4. Autoencoder

Assume an autoencoder with $\tilde{d} = 1$. That is, the $d \times \tilde{d}$ weight matrix W becomes a $d \times 1$ weight vector **w**, and the linear autoencoder tries to minimize

$$E_{in}(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} \|\mathbf{x}_n - \mathbf{w}\mathbf{w}^T\mathbf{x}_n\|^2.$$

We can solve this problem with stochastic gradient descent by defining

$$\operatorname{err}_n(\mathbf{w}) = \|\mathbf{x}_n - \mathbf{w}\mathbf{w}^T\mathbf{x}_n\|^2$$

and calculate $\nabla_{\mathbf{w}} \operatorname{err}_n(\mathbf{w})$. What is $\nabla_{\mathbf{w}} \operatorname{err}_n(\mathbf{w})$?

A.
$$(4\mathbf{x}_n - 4)(\mathbf{w}^T\mathbf{w})$$

B. none of the other choices

C.
$$(4\mathbf{w} - 4)(\mathbf{x}_n^T \mathbf{x}_n)$$

D.
$$2(\mathbf{x}_n^T \mathbf{w})^2 \mathbf{w} + 2(\mathbf{x}_n^T \mathbf{w})(\mathbf{w}^T \mathbf{w})$$

E.
$$2(\mathbf{x}_n^T \mathbf{w})^2 \mathbf{x}_n + 2(\mathbf{x}_n^T \mathbf{w})(\mathbf{w}^T \mathbf{w}) \mathbf{w} - 4(\mathbf{x}_n^T \mathbf{w}) \mathbf{w}$$

5. Following Question 4, assume that noise vectors $\boldsymbol{\epsilon}_n$ are generated i.i.d. from a zero-mean, unit variance Gaussian distribution and added to \mathbf{x}_n to make $\tilde{\mathbf{x}}_n = \mathbf{x}_n + \boldsymbol{\epsilon}_n$, a noisy version of \mathbf{x}_n . Then, the linear denoising autoencoder tries to minimize

$$E_{in}(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} \|\mathbf{x}_n - \mathbf{w}\mathbf{w}^T(\mathbf{x}_n + \boldsymbol{\epsilon}_n)\|^2$$

For any fixed \mathbf{w} , what is $\mathcal{E}(E_{in}(\mathbf{w}))$, where the expectation \mathcal{E} is taken over the noise generation process?

A.
$$\frac{1}{N} \sum_{n=1}^{N} \|\mathbf{x}_n - \mathbf{w}\mathbf{w}^{T^2}\mathbf{x}_n\|^2$$

B.
$$\frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_n - \mathbf{w} \mathbf{w}^T \mathbf{x}_n^2 + d(\mathbf{w}^T \mathbf{w})^2$$

C. none of the other choices

D.
$$\frac{1}{N} \sum_{n=1}^{N} \|\mathbf{x}_n - \mathbf{w} \mathbf{w}^T \mathbf{x}_n\|^2 + (\mathbf{w}^T \mathbf{w})^2$$

E.
$$\frac{1}{N} \sum_{n=1}^{N} \|\mathbf{x}_n - \mathbf{w}\mathbf{w}^T\mathbf{x}_n\|^2 + \frac{1}{d}(\mathbf{w}^T\mathbf{w})^2$$

6. Nearest Neighbor and RBF Network

Consider getting the 1 Nearest Neighbor hypothesis from a data set of two examples $(\mathbf{x}_+, +1)$ and $(\mathbf{x}_-, -1)$. Which of the following linear hypothesis $g_{LIN}(\mathbf{x}) = \text{sign}(\mathbf{w}^T\mathbf{x} + b)$ (where \mathbf{w} does not include $b = w_0$) is equivalent to the hypothesis?

A. none of the other choices

B.
$$\mathbf{w} = 2(\mathbf{x}_{+} - \mathbf{x}_{-}), b = +\mathbf{x}_{+}^{T}\mathbf{x}_{-}$$

C.
$$\mathbf{w} = 2(\mathbf{x}_{-} - \mathbf{x}_{+}), b = +\|\mathbf{x}_{+}\|^{2} - \|\mathbf{x}_{-}\|^{2}$$

D.
$$\mathbf{w} = 2(\mathbf{x}_{-} - \mathbf{x}_{+}), b = -\mathbf{x}_{+}^{T}\mathbf{x}_{-}$$

E.
$$\mathbf{w} = 2(\mathbf{x}_{+} - \mathbf{x}_{-}), b = -\|\mathbf{x}_{+}\|^{2} + \|\mathbf{x}_{-}\|^{2}$$

7. Consider an RBF Network hypothesis for binary classification

$$g_{RBFNET}(\mathbf{x}) = \text{sign} \left(\beta_{+} \exp(-\|\mathbf{x} - \boldsymbol{\mu}_{+}\|^{2}) + \beta_{-} \exp(-\|\mathbf{x} - \boldsymbol{\mu}_{-}\|^{2}) \right)$$

and assume that $\beta_+ > 0 > \beta_-$. Which of the following linear hypothesis $g_{LIN}(\mathbf{x}) = \text{sign}(\mathbf{w}^T\mathbf{x} + b)$ (where \mathbf{w} does not include $b = w_0$) is equivalent to $g_{RBFNET}(\mathbf{x})$?

A.
$$\mathbf{w} = 2(\boldsymbol{\mu}_{+} - \boldsymbol{\mu}_{-}), \ b = \ln \left| \frac{\beta_{+}}{\beta_{-}} \right| - \|\boldsymbol{\mu}_{+}\|^{2} + \|\boldsymbol{\mu}_{-}\|^{2}$$

B.
$$\mathbf{w} = 2(\boldsymbol{\mu}_{-} - \boldsymbol{\mu}_{+}), b = \ln \left| \frac{\beta_{-}}{\beta_{+}} \right| + \|\boldsymbol{\mu}_{+}\|^{2} - \|\boldsymbol{\mu}_{-}\|^{2}$$

C.
$$\mathbf{w} = 2(\beta_{+}\boldsymbol{\mu}_{+} + \beta_{-}\boldsymbol{\mu}_{-}), b = -\beta_{+}\|\boldsymbol{\mu}_{+}\|^{2} + \beta_{-}\|\boldsymbol{\mu}_{-}\|^{2}$$

D.
$$\mathbf{w} = 2(\beta_{+}\boldsymbol{\mu}_{+} + \beta_{-}\boldsymbol{\mu}_{-}), b = +\beta_{+}\|\boldsymbol{\mu}_{+}\|^{2} - \beta_{-}\|\boldsymbol{\mu}_{-}\|^{2}$$

E. none of the other choices

8. Assume that a full RBF network (page 9 of class 214) using RBF($\mathbf{x}, \boldsymbol{\mu}$) = [[$\mathbf{x} = \boldsymbol{\mu}$]] is solved for squared error regression on a data set where all inputs \mathbf{x}_n are different. What are the optimal coefficients β_n for each RBF(\mathbf{x}, \mathbf{x}_n)?

- **A.** y_n
- B. $\|\mathbf{x}_n\|^2 y_n^2$
- C. none of the other choices
- D. $\|\mathbf{x}_n\|y_n$
- E. y_n^2

9. Matrix Factorization

Consider matrix factorization of $\tilde{d}=1$ with alternating least squares. Assume that the $\tilde{d}\times N$ user factor matrix V is initialized to a constant matrix of 1. After step 2.1 of alternating least squares (page 10 of lecture 215), what is the optimal w_m , the $\tilde{d}\times 1$ movie 'vector' for the m-th movie?

- A. the average rating of the *m*-th movie
- B. the total rating of the m-th movie
- C. the maximum rating of the m-th movie
- D. the minimum rating of the m-th movie
- E. none of the other choices
- 10. Assume that for a full rating matrix R, we have obtained a perfect matrix factorization $R = V^T W$. That is, $r_{nm} = \mathbf{v}_n^T \mathbf{w}_m$ for all n,m. Then, a new user (N+1) comes. Because we do not have any information for the type of the movie she likes, we initialize her feature vector \mathbf{v}_{N+1} to $\frac{1}{N} \sum_{n=1}^{N} \mathbf{v}_n$, the average user feature vector. Now, our system decides to recommend her a movie m with the maximum predicted score $\mathbf{v}_{N+1}^T \mathbf{w}_m$. What would the movie be?
 - A. the movie with the largest maximum rating
 - B. none of the other choices
 - C. the movie with the smallest rating variance
 - D. the movie with the largest minimum rating
 - E. the movie with the largest average rating

11. Experiment with Backprop neural Network

Implement the backpropagation algorithm (page 16 of lecture 212) for d-M-1 neural network with tanh-type neurons, **including the output neuron**. Use the squared error measure between the output $g_{NNET}(\mathbf{x}_n)$ and the desired y_n and backprop to calculate the per-example gradient. Because of the different output neuron, your $\delta_1^{(L)}$ would be different from the course slides! Run the algorithm on the following set for training (each row represents a pair of (\mathbf{x}_n, y_n) ; the first column is $(\mathbf{x}_n)_1$; the second one is $(\mathbf{x}_n)_2$; the third one is y_n):

hw4_nnet_train.dat

and the following set for testing:

 $hw4_nnet_test.dat$

Fix T = 50000 and consider the combinations of the following parameters:

- \bullet the number of hidden neurons M
- the elements of $w_{ij}^{(\ell)}$ chosen independently and uniformly from the range (-r,r)
- the learning rate η

Fix $\eta = 0.1$ and r = 0.1. Then, consider $M \in \{1, 6, 11, 16, 21\}$ and repeat the experiment for 500 times. Which M results in the lowest average E_{out} over 500 experiments?

- A. 11
- B. 16
- C. 1

- D. 21
- E. 6
- 12. Following Question 11, fix $\eta = 0.1$ and M = 3. Then, consider $r \in \{0, 0.001, 0.1, 10, 1000\}$ and repeat the experiment for 500 times. Which r results in the lowest average E_{out} over 500 experiments?
 - A. 0
 - B. 0.1
 - C. 0.001
 - D. 10
 - E. 1000
- 13. Following Question 11, fix r = 0.1 and M = 3. Then, consider $\eta \in \{0.001, 0.01, 0.1, 1, 10\}$ and repeat the experiment for 500 times. Which η results in the lowest average E_{out} over 500 experiments?
 - A. 0.01
 - B. 0.001
 - C. 10
 - D. 0.1
 - E. 1
- 14. Following Question 11, deepen your algorithm by making it capable of training a d-8-3-1 neural network with tanh-type neurons. Do not use any pre-training. Let r = 0.1 and $\eta = 0.01$ and repeat the experiment for 500 times. Which of the following is true about E_{out} over 500 experiments?
 - **A.** $0.02 \le E_{out} < 0.04$
 - B. none of the other choices
 - C. $0.04 \le E_{out} < 0.06$
 - D. $0.06 \le E_{out} < 0.08$
 - E. $0.00 \le E_{out} < 0.02$
- 15. Experiment with 1 Nearest Neighbor

Implement any algorithm that 'returns' the 1 Nearest Neighbor hypothesis discussed in page 8 of lecture 214.

$$g_{\text{nbor}}(\mathbf{x}) = y_m$$
 such that \mathbf{x} closest to \mathbf{x}_m

Run the algorithm on the following set for training:

hw4_knn_train.dat

and the following set for testing:

 $hw4_knn_test.dat$

Which of the following is closest to $E_{in}(g_{nbor})$?

- A. 0.2
- B. 0.3
- C. 0.0
- D. 0.1
- E. 0.4
- 16. Following Question 15, which of the following is closest to $E_{out}(g_{nbor})$?
 - A. 0.30
 - B. 0.28

- C. 0.34
- D. 0.32
- E. 0.26
- 17. Now, implement any algorithm for the k Nearest Neighbor with k = 5 to get $g_{5\text{-nbor}}(\mathbf{x})$. Run the algorithm on the same sets in Question 15 for training/testing. Which of the following is closest to $E_{in}(g_{5\text{-nbor}})$?
 - A. 0.1
 - B. 0.2
 - C. 0.3
 - D. 0.4
 - E. 0.0
- 18. Following Question 17, Which of the following is closest to $E_{out}(g_{5\text{-nbor}})$
 - A. 0.28
 - B. 0.26
 - C. 0.34
 - D. 0.32
 - E. 0.30
- 19. Experiment with k-Means Implement the k-Means algorithm (page 16 of lecture 214). Randomly select k instances from $\{\mathbf{x}_n\}$ to initialize your $\boldsymbol{\mu}_m$ Run the algorithm on the following set for training: hw4_kmeans_train.dat

and repeat the experiment for 500 times. Calculate the clustering E_{in} by $\frac{1}{N} \sum_{n=1}^{N} \sum_{m=1}^{M} [[\mathbf{x}_n \in S_m]] \|\mathbf{x}_n - \boldsymbol{\mu}_m\|^2$

as described on page 13 of lecture 214 for M = k.

For k = 2, which of the following is closest to the average E_{in} of k-Means over 500 experiments?

- A. 0.5
- B. 1.0
- C. 2.5
- D. 1.5
- E. 2.0
- 20. For k = 10, which of the following is closest to the average E_{in} of k-Means over 500 experiments?
 - A. 1.0
 - B. 1.5
 - C. 2.0
 - D. 0.5
 - E. 2.5