1516 AUTOMATON

5.217 length_last_sequence

DESCRIPTION LINKS AUTOMATON

Origin Inspired by stretch_path

Constraint length_last_sequence(LEN, VARIABLES)

Arguments LEN : dvar

VARIABLES : collection(var-dvar)

Restrictions LEN ≥ 0

 $\mathtt{LEN} \leq |\mathtt{VARIABLES}|$

required(VARIABLES, var)

Purpose

LEN is the length of the maximum sequence of variables that take the same value that contains the last variable of the collection VARIABLES (or 0 if the collection is empty).

Example

```
 \begin{array}{c} (1, \langle 4, 4, 4, 5, 5, 4 \rangle) \\ (6, \langle 4, 4, 4, 4, 4, 4 \rangle) \\ (5, \langle 2, 4, 4, 4, 4, 4 \rangle) \end{array}
```

The first length_last_sequence constraint holds since the sequence associated with the last value of the collection VARIABLES $=\langle 4,4,4,5,5,4\rangle$ spans over a single variable.

Typical

```
\begin{array}{l} \mathtt{LEN} < |\mathtt{VARIABLES}| \\ |\mathtt{VARIABLES}| > 1 \end{array}
```

Symmetry

All occurrences of two distinct values of VARIABLES.var can be swapped; all occurrences of a value of VARIABLES.var can be renamed to any unused value.

Arg. properties

Functional dependency: LEN determined by VARIABLES.

Reformulation

Without loss of generality let assume that the collection VARIABLES = $\langle V_1, V_2, \dots, V_n \rangle$ has more than one variable. By introducing $2 \cdot n - 1$ 0-1 variables, the length_last_sequence(LEN, VARIABLES) constraint can be expressed in term of $2 \cdot n - 1$ reified constraints and one arithmetic constraint (i.e., a sum_ctr constraint). We first introduce n-1 variables that are respectively set to 1 if and only if two given consecutive variables of the collection VARIABLES are equal:

We then introduce n variables $A_n, A_{n-1}, \ldots, A_1$ that are respectively associated to the different sliding sequences ending on the last variable of the sequence $V_1 \ V_2 \ \ldots \ V_n$. Variable A_i is set to 1 if and only if $V_n = V_{n-1} = \cdots = V_i$:

20081123 1517

$$\begin{split} A_n &= 1, \\ A_{n-1} &\Leftrightarrow B_{n-1,n} \quad \wedge A_n, \\ A_{n-2} &\Leftrightarrow B_{n-2,n-1} \wedge A_{n-1}, \\ & \dots \\ A_1 &\Leftrightarrow B_{1,2} \quad \wedge A_2. \end{split}$$
 Finally we state the following arithmetic constraint: LEN $= A_n + A_{n-1} + \dots + A_1.$

Counting

Length (n)	2	3	4	5	6	7	8
Solutions	9	64	625	7776	117649	2097152	43046721

Number of solutions for length_last_sequence: domains 0..n

Solution density for length_last_sequence

1518 AUTOMATON

Length

Length (n)		2	3	4	5	6	7	8		
Total		9	64	625	7776	117649	2097152	43046721		
Parameter value	1	6	48	500	6480	100842	1835008	38263752		
	2	3	12	100	1080	14406	229376	4251528		
	3	-	4	20	180	2058	28672	472392		
	4	-	-	5	30	294	3584	52488		
	5	-	-	-	6	42	448	5832		
	6	-	-	-	-	7	56	648		
	7	-	-	-	-	-	8	72		
	8	-	-	-	-	-	-	9		
Solution count for length least gaggier as domains 0 m										

Solution count for length_last_sequence: domains 0..n

20081123 1519

Solution density for length_last_sequence

Parameter value as fraction of length

Solution density for length_last_sequence

Parameter value as fraction of length

See also

common keyword: length_first_sequence(counting constraint, sequence).

Keywords

characteristic of a constraint: automaton, automaton with counters.

1520 AUTOMATON

```
combinatorial object: sequence.
constraint arguments: reverse of a constraint, pure functional dependency.
constraint network structure: sliding cyclic(1) constraint network(2).
constraint type: value constraint, counting constraint.
filtering: glue matrix.
modelling: functional dependency.
```

20081123 1521

Automaton

Figure 5.491 depicts the automaton associated with the length_last_sequence constraint. To each pair of consecutive variables (VAR $_i$, VAR $_{i+1}$) of the collection VARIABLES corresponds a signature variable S_i . The following signature constraint links VAR $_i$, VAR $_{i+1}$ and S_i : VAR $_i$ = VAR $_{i+1} \Leftrightarrow S_i$.

Figure 5.491: Automaton of the length_last_sequence constraint when $|{\tt VARIABLES}| \geq 2$

Figure 5.492: Hypergraph of the reformulation corresponding to the automaton of the length_last_sequence constraint

Figure 5.493: Automaton of the reverse of the length_last_sequence constraint (i.e., the length_first_sequence constraint) when $|{\tt VARIABLES}| \geq 2$ and corresponding glue matrix between length_last_sequence and its reverse length_first_sequence