

Variable Suppression and Recoding

SDSS 2022

Statistical Data Privacy Techniques for Sharing Sensitive Data
Part 2

Assumptions about the Data for This Lesson

- Assume we have microdata on individuals
- Primarily concerned with categorical data
 - Assume continuous variables will be binned
- For example a survey of teachers:
 - Individual and school demographics
 - Experiences with curriculum/teaching methods
 - Attitudes towards school leadership

What Do We Mean by Suppression?

There are Multiple Types of Suppression for Microdata

Variable suppression:

ID	Age	Sex	Race
1			
2			
3			

Local (value/observation) suppression:

	Race	Sex	Age	ID
				2
				_

Recoding as an Alternative to Local Suppression

- Local suppression induces missingness not at random (MNAR)
- Instead of removing values, we recode categories to collapsed levels
 - E.g., rather than drop race/ethnicity for small minority groups \rightarrow collapse 7 reported Census race/ethnicity categories to 3 levels
- Recoding removes granularity but allows unbiased estimates*

Suppression for Tabular Data Will Not be Covered

Cell suppression:

Sex/Race	W	Non-W
М		
F		

Sex/Race	W	Non-W
М		
F		

Table suppression:

Sex/Race	W	Non-W
М		
F		

Sex/Race	W	Non-W
М		
F		

Why use Suppression to Protect Data?

- The released data values are unaltered
- Easy to communicate how the data were protected
- Does not require complex statistical models or computational capabilities*

What are Drawbacks to Data Suppression?

- Difficult to determine whether data have been sufficiently protected
- Can require high amount of suppression
- More likely to remove information about minority groups

Returning to the Example Survey of Teachers

- Variables collected include:
 - Individual and school demographics
 - Experiences with teaching approaches
 - Attitudes towards school leadership
- Question: what might we want to suppress?

Returning to the Example Survey of Teachers

- Variables collected include:
 - Individual and school demographics
 - Experiences with teaching approaches
 - Attitudes towards school leadership
- Question: what might we want to suppress?
 - Free text responses
 - Sensitive opinions (potentially)
 - Variables that uniquely identify teachers

We Need to Define Our Risk Scenario

- Before suppressing data, we need to know what constitutes risk
- Assumed attack scenario: data linkage

Define: risk is the probability of being matched based on quasi-identifiers

We Can Define Two Scenarios for This Risk

- Scenario 1: participation in the survey is known
 - Risk based on frequency of quasi-identifiers among those in the data
- Scenario 2: participation in the survey is not know
 - Risk based on frequency of quasi-identifiers among the population
- Additional necessary assumptions:
 - What data are available to the attacker
 - Knowledge about participation
 - Set of quasi-identifiers
 - Information about the population frequencies (for scenario 2)

Risk When Survey Participation is Known

- E.g., 3 individuals with the same age, sex, and race \rightarrow risk is $\frac{1}{3}$
- Risk can be calculated easily:
 - Compute frequencies for all quasi-identifier combinations
 - Compute individual risk as (1/survey combination, freq.)
- Common risk metrics:
 - Max risk
 - Mean risk
 - Total (sum) risk

Risk When Survey Participation is Not Known

- Previous steps are replicated
- Additionally, compute frequencies in the population
 - E.g., how many in the population with the same age, sex, and race
- Risk is now (1/pop. combination, freq.)
- Assume complete population frequencies are known
 - More complex methods exist if using only marginal totals or weights

Takeaways From This Lesson

- Knowledge about participation is a crucial assumption
 - Much easier to protect individuals if they are sampled from a population
- Sometimes it is necessary to suppress a lot of data
- Small groups get suppressed more often

Further Reading

- Hundepool, Anco, Josep Domingo-Ferrer, Luisa Franconi, Sarah Giessing, Eric Schulte Nordholt, Keith Spicer, and
 Peter-Paul De Wolf. Statistical disclosure control. Vol. 2. New York: Wiley, 2012.
- Willenborg, Leon, and Ton De Waal. *Statistical disclosure control in practice*. Vol. 111. Springer Science & Business Media, 1996.
- Skinner, C. J., and David J. Holmes. "Estimating the re-identification risk per record in microdata." *Journal of Official Statistics* 14, no. 4 (1998): 361.
- Templ, Matthias, Alexander Kowarik, and Bernhard Meindl. "Statistical disclosure control for micro-data using the R package sdcMicro." *Journal of Statistical Software* 67 (2015): 1-36.
- Benedetti, Roberto, A. Capobianchi, and L. Franconi. "Individual risk of disclosure using sampling design information."
 Contributi Istat 1412003 (1998).