EXAMEN

PROTOCOALE DE COMUNICATII IDEI PRINCIPALE

1. Nivelurile OSI (Open Systems Interconnection)

- ☐ Nivelul **fizic** se ocupă de transmiterea biţilor printr-un canal de comunicaţie.
 - ☐ Cati volti reprezinta un bit de 1, cati reprezinta un bit de 0.
 - ☐ E important ca un bit de 1 trimis sa fie primit ca un bit de 1.
- ☐ Nivelul **legaturii de date** trateaza erorile de transmisie produse la nivelul fizic, realizand o comunicare corecta intre doua noduri adiacente.
 - ☐ Impartirea sirului de biti in cadre, carora li se adauga informatii de control.
 - ☐ Detectia si corectia erorilor.
 - ☐ Cadrele se trimit individual si pot fi confirmate de catre receptor.
 - ☐ Controlul fluxului de date: sa nu se transmita date mai repede decat receptorul poate sa primeasca.
 - ☐ Gestiunea legaturii
 - Stabilirea legaturii
 - Controlul schimbului de date
 - ☐ Intreruperea legaturii

	Nivelu	l retea asigura dirijarea unitatilor de date intre nodurile sursa si destinatar,
	trecan	d eventual prin noduri intermediare.
		Interconectarea retelelor cu arhitecturi diferite.
		Se incearca sa se evite congestionarea retelei, facand sa nu fie legaturi
		supraincarcate si legaturi neutilizate.
	Nivelu	l transport realizeaza o comunicare sigura intre doua calculatoare gazda,
	detect	and si corectand erorile pe care nivelul retea nu le trateaza.
		Furnizeaza nivelelor superioare o interfata independenta de arhitectura
		utilizata
	Nivelu	l sesiune ofera toate serviciile pentru gestiunea jetoanelor, lasand la
	latitud	linea utilizatorilor semnificatiile asociate acestora.
	Nivelu	l prezentare realizeaza transformari ale reprezentarii datelor, astfel incat sa
	se pas	treze semnificatia lor, rezolvandu-se totodata diferentele de sintaxa.
	Nivelu	l aplicatie , cel mai inalt nivel al arhitecturii, are rolul de fereastra de
	comur	nicare prin care se fac toate schimburile de date intre utilizatori.
7	Mix	volul Logatura do Dato
		velul Legatura de Date
		iu neconfirmat fără conexiune.
		mașina sursă trimite cadre independente către mașina destinație, fără ca
		mașina destinație să trebuiască să confirme primirea lor.
		Utilizat cand rata de erori este foarte scăzută, iar recuperarea este lăsată în
	_	sarcina nivelurilor superioare
		adecvat pentru traficul de timp real
		Utilizata de majoritatea LANurilor
	_	iu confirmat fără conexiune.
	_	fiecare cadru trimis este confirmat individual.
		Ar putea fi rezolvata pierderea la nivelul retea, dar e mai putin costisitor sa
		retrimiti cadre (relativ mici) decat pachete mari (cum sunt la nivel retea)
		Aplicabil pe canale fara fir (nesigure), neaplicabil la fibra optica (canal sigur)
	Servic	iu confirmat orientat-conexiune.
	_	mașinile sursă și destinație stabilesc o conexiune înainte de a transfera date
		Cadrele sunt numerotate
		Fiecare cadru trimis este sigur receptionat o singura data

- ☐ Cadrele sunt receptionate in ordine
- □ 3 faze:
 - ☐ Stabilirea conexiunii + initializare contoare & variabile
 - ☐ Transmiterea cadrelor
 - Desfiintarea conexiunii

3. Incadrarea la nivelul legatura de date

■ Numărarea caracterelor.

- utilizează un câmp din antet pentru a specifica numărul de caractere din cadru.
- ☐ Problema: contorul poate fi alterat de erori de transmisie => nu stie unde incepe urmatorul cadru

☐ Indicatori cu inserare de octeți.

- ☐ fiecare cadru începe și se termină cu o secvența specială de octeți.
- octet indicator, atât ca indicator de început, cât și de sfârșit.
- ☐ Problema: trimiterea datelor binare sau numere in virgula mobila
- ☐ *Rezolvare*: se insereaza caracterul ESC in fata fiecarei aparitii a indicatorului in date (byte stuffing)
- ☐ Dezavantaj: limiteaza la utilizarea caracterelor de 8 biti

☐ Indicatori de început și de sfârșit, cu inserare de biți.

- fiecare cadru începe și se termină cu un șablon special pe biți, 01111110, numit octet indicator (flag)
- ☐ In date, dupa oricare 5 biti de 1 se insereaza un 0 (care se scoate la primire)
- complet transparentă pentru nivelul rețea

Figure 11.3 A frame in a bit-oriented protocol

4. Coduri corectoare de erori

- pe lângă fiecare bloc de date trimis să se includă suficientă informație redundantă pentru ca receptorul să poată deduce care a fost caracterul transmis
- ☐ forward error correction
- □ n-bit codeword = m biti de date + r biti de informatie redundanta
- \Box distanță Hamming $d \le$ sunt necesare d erori de un singur bit pentru a converti un cuvant de cod in celalalt
- \Box Corectare *d* erori -> necesar cod cu distanta 2*d* + 1

Hamming distance = 3

\boldsymbol{A}	1	0	1	1	0	0	1	0	0	1
			\$				\$		\$	
В	1	0	0	1	0	0	0	0	1	1

Distanta Hamming = numărul de poziții binare în care două cuvinte de cod diferă; aplicăm operatorul XOR între cele două cuvinte de cod și numărăm biții 1 din rezultat.

METODA HAMMING

- ☐ Biţii cuvântului de cod sunt numerotaţi consecutiv, începând cu bitul 1 de la marginea din stânga.
- ☐ Biţii care sunt puteri ale lui 2 (1, 2, 4, 8, 16 etc.) sunt **biţi de control**.
- Restul (3, 5, 6, 7, 9 etc.) sunt completați cu cei m **biți de date**.
- ☐ Fiecare bit de control forțează ca paritatea unui grup de biți, inclusiv el însuși, să fie pară (sau impară).
- ☐ Codurile Hamming pot corecta numai **erori singulare**.

ERORI IN RAFALA

- secvență de k cuvinte de cod consecutive este aranjată ca o **matrice**, având câte un cuvânt de cod pe fiecare linie.
- la receptor, matricea este reconstruită, coloană cu coloană

5. Coduri detectoare de erori

- ☐ Folosite in cazul firelor de cupru sau a fibrei optice, unde rata de erori e atat de mica incat retransmisia e mai eficienta
- \Box detectare *d* erori -> necesar cod cu distanta Hamming *d* + 1

BIT DE PARITATE

- **Problema:** daca se adauga un singur bit de paritate si blocul este afectat de o eroare in rafala, probabilitatea ca acea eroare sa fie detectata este de 0.5
- **Solutie:** fiecare bloc este privit ca o **matrice**; se calculeaza bitul de paritate pentru fiecare coloana si se adauga ulterior ca linie la sfarsitul blocului. Se transmite ulterior blocul linie cu linie
- ☐ Daca oricare din bitii de paritate este gresit, se cere *retransmiterea intregului bloc*
- ☐ Se pot cere **retransmiteri succesive** pana cand blocul este receptionat corect
- ☐ Probabilitatea ca un bloc eronat să fie acceptat atunci când nu ar trebui este 2⁻ⁿ, unde n = lungimea rafalei

CODUL POLINOMIAL

- Des utilizata in practica
- ☐ A.k.a cod de redundanta ciclica = CRC
- ☐ Tratarea șirurilor de biți ca reprezentări de polinoame cu coeficienți 0 și 1
- ☐ Bitul cel mai semnificativ (cel mai din stânga) este coeficientul lui x^{k-1}
- \Box **Ex:** 110001 = $x^5 + x^4 + x^0$
- ☐ Adunările și scăderile sunt identice cu XOR
- \Box emițătorul și receptorul se pun de acord în avans asupra unui polinom generator G(x)
- ☐ cadrul trebuie să fie mai lung decât polinomul generator

- ☐ Ideea este de a adăuga o sumă de control la sfârșitul cadrului, astfel încât polinomul reprezentat de cadrul cu sumă de control să fie **divizibil** prin G(x).
- \Box Acele erori care se întâmplă să corespundă unor polinoame care îl au ca factor pe G(x) vor scăpa; toate celelalte vor fi detectate.
- ☐ Algoritmul pentru calculul sumei de control
 - ☐ Fie r gradul lui G(x). Se adaugă r biţi 0 la capătul mai puţin semnificativ al cadrului
 - ☐ Se împarte șirul de biți ce corespund lui G(x) într-un șir de biți corespunzând lui xrM(x), utilizând împărțirea modulo 2.
 - ☐ Se scade restul. Rezultatul este cadrul cu sumă de control ce va fi transmis.

Fig. 3-7. Calculation of the polynomial code checksum.

6. Protocoalele elementare ale legaturii de date

START-STOP

□ transmițătorul trimite un nou cadru numai după recepția confirmării pozitive a cadrulului precedent.

PROTOCOLUL SIMPLEX FARA RESTRICTII

- ☐ A transmite catre B
- ☐ A are o sursa inepuizabila de date
- ☐ B este un consumator ideal
- ☐ Canal fizic de comunicatie lipsit de erori

```
// entitatea din sistemul transmitatorului

void transmit1() {
    cadru s;
    do {
        s.info = DeLaRetea(); //preia pachet
        LaFizic(s); //transmite cadru
    } while(1);
}
```

```
// entitatea din sistemul receptorului

void recept1() {
    cadru r;
    TipEven even;
    do {
        even = wait(); //asteapta cadru
        r = DeLaFizic(); //primeste cadru
        LaRetea(r.info); //preda pachet
    } while(1);
}
```

PROTOCOLUL SIMPLEX START-STOP

- ☐ canalul fără erori
- utilizatorul B nu poate accepta date în orice ritm.
- Necesar controlul fluxului
- ☐ B transmite un cadru fictiv (reactia receptorului catre transmitator)


```
// entitatea din sistemul transmitatorului

void transmit2() {
    cadru s;
    TipEven even;
    do {
        s.info = DeLaRetea(); //preia pachet
        LaFizic(s); //transmite cadru
        even = wait(); //asteapta permisiunea
    } while(1);
}
```

```
// entitatea din sistemul receptorului

void recept2() {
    cadru r, s;
    TipEven even;
    do {
        even = wait(); //asteapta cadru
        r = DeLaFizic(); //primeste cadru
        LaRetea(r.info); //preda pachet
        LaFizic(s); // deblocheaza
    } while(1);
}
```

PROTOCOLUL SIMPLEX PENTRU UN CANAL CU ERORI

- Receptorul trimite un cadru de confirmare doar pentru cadrele primite corect
- ☐ Daca transmitatorul nu primeste confirmarea dupa un anumit **timp**, retrimite pachetul
- ☐ **Problema:** duplicate daca se pierde confirmarea mesajului
- Solutie: se include numarul de secventa in cadru; este suficient sa fie un bit (0/ 1) (PROTOCOL CU BIT ALTERNAT)

```
// entitatea din sistemul transmitatorului
void transmit3() {
     NrSecv CadruUrmator=0;
     cadru s;
     TipEven even;
     s.info = DeLaRetea();
     do {
           s.secv=CadruUrmator; //adauga nr secventa
           LaFizic(s);
           StartCeas(s.secv);
           even=wait(); // SosireCadru, TimeOut sau Eroarecontrol
           if(even==SosireCadru) { //confirmare intacta
                StopCeas(s.secv);
                s.info=DeLaRetea();
                inc(CadruUrmator);
     } while(1);
```

PROTOCOL CU FEREASTRA GLISANTA

- u nu așteaptă confirmarea cadrelor precedente pentru a transmite cadre noi.
- ☐ Pentru o transmisie duplex putem utiliza cadrele de confirmare pentru transmiterea datelor în sens opus.
- ☐ multe feluri de cadre, diferențiabile printr-un cîmp din antet
- ☐ Protocol cu numar de secventa de un bit
 - ☐ (seq, ack, message)
 - ☐ Caz anormal: A si B transmit in acelasi timp

// comun pentru transmitator si receptor void protocol4() { NrSecv CadruUrmator = 0; // 0 sau 1 NrSecv CadruAsteptat = 0; // 0 sau 1 cadru r, s; TipEven even; // SosireCadru, TimeOut sau EroareControl // pregateste cadru initial s.info = DeLaRetea(); s.secv = CadruUrmator; s.conf = 1 - CadruAsteptat;

```
LaFizic(s); //transmite cadrul
       StartCeas(s.secv);
       do{
              even = wait();
              if(even == SosireCadru) {
                     r = DeLaFizic();
                     //cand este cadrul asteptat, livreaza-l entitatii retea
                     if (r.secv == CadruAsteptat) {
                            LaRetea(r.info);
                            inc(CadruAsteptat);
                     }
                     //cand cadrul transmis este confirmat, pregateste urmatorul
                     cadru
                     If (r.conf == CadruUrmator) {
                            StopCeas(r.conf);
                            s.info=DeLaRetea();
                            inc(CadruUrmator);
                     }
              }
              //construiteste si transmite un nou cadru
              s.secv = CadruUrmator;
              s.conf = 1 - CadruAsteptat;
              LaFizic(s);
              StartCeas(s.secv);
       } forever; //reia de la asteptarea unui cadru
}
```

☐ FEREASTRA GLISANTA

- ☐ Integreaza controlul erorilor si controlul fluxului intr-un mod convenabil
- fereastra este un sub-şir de numere de secvenţă
- pe parcursul transmiterii cadrelor, fereastra glisează
- ☐ la transmitator, fereastra contine numerele cadrelor transmise si ne-confirmate
- ☐ dimensiunea ferestrei **transmitatorului** este **variabila**
 - creste cand se trimite un nou cadru;
 - scade cand se primeste o confirmare;
- ☐ la **receptor**, fereastra specifica numerele cadrelor ce pot fi acceptate

			dimensiunea ferestrei receptorului este constanta
			fereastra gliseaza cand unul sau mai multe cadre din stanga ferestrei sunt livrate utilizatorului
PRO1	TOCOL	CU TR	RANSMITERE NESELECTIVA "GO BACK N"
	Fereast	tra ma	ximă a transmițătorului poate fi de MaxSecv cadre, deși există
	MaxSe	cv+1 nı	umere de secvență distincte; daca ar fi MaxSecv + 1 si s-ar pierde toate
	cadrele	e, la ret	transmitere, dupa timeout, receptorul ar accepta duplicatele
	Functii	:	
		ReteaP	Pregatita: cand utilizatorul are un pachet de trimis
		Dezact	tivRetea: MaxSecv cadre neconfirmate
		ActivRe	etea: dupa ce se mai confirma din cadre
	Confirr	narea (cadrului n provoacă automat confirmarea cadrelor n-1, n-2,
	anterio	are (co	ompenseaza cu pierderea confirmarilor)
	se utiliz	zează c	ceasuri separate pentru diferitele cadre
	La Time	eout, to	oate cadrele din buffer sunt retransmise
	Se utili:	zeaza k	banda de asamblare
	Carte:	recept	orul elimina cadrele care urmeaza, netrimitand confirmari pentru
	cadrele	e elimir	nate. El refuza sa accepte orice cadru exceptandu-l pe urmatorul care
	trebuie	livrat	catre nivelul retea. Asteapta astfel pana la timeoutul din fereastra
	emitato	orului d	ca sa isi primeasca cadrul dorit si cadrele care urmeaza dupa acesta.
RETRA	ANSMI [*]	TERE S	SELECTIVA (Selective repeat) :
	Fereast	tra rece	eptorului nu poate fi egală cu cea a transmițătorului (ferestrele
	succesi	ive ale	receptorului au numere de secvență comune)
	fereast	ra rece	eptorului trebuie să fie cel mult jumătate din gama numerelor de
	secven	ţă.	
	un cad	ru inco	rect este respins, dar toate cadrele corecte care il urmeaza sunt
	memoi	rate.	
	La time	eout, ce	el mai vechi cadru neconfirmat este transmis
	Uneori	se pot	transmite confirmari negative (NAK) - simuleaza retransmisia inainte
	de exp	irarea 1	timeoutului

☐ Daca fereastra e mare, poate necesita un **spatiu mare de memorie**

7. HDLC

- ☐ orientate pe biţi
- ☐ Folosesc inserarea de biti pentru transparenta datelor
- ☐ folosește o fereastră glisantă, cu un număr de secvență reprezentat pe 3 biți.

□ ADRESA

- pentru liniile cu terminale multiple, folosit pentru a **identifica terminalul**
- ☐ Pentru liniile punct-la-punct, este folosit pentru a **deosebi comenzile de**raspunsuri

□ CONTROL

☐ Folosit pentru numere de secventa, confirmari, etc

☐ Informatie (a)

- ☐ Secventa: numarul de secventa al cadrului
- ☐ Urmator: numarul cadrului asteptat (uneori se foloseste ultimul cadru receptionat corect)
- □ P/F (Poll/ Final): folosit la interogarea unui grup de terminale;
 - ☐ in *comenzi*, P = invitatie la transmisie

			in <i>raspunsuri</i> toate cadrele au P, ultimul are F
		Super	vizor (b)
			Tipul 0 - cadru de confirmare (RECEIVE READY); folosit atunci când nu
			există flux invers
			Tipul 1 - confirmare negativă (REJECT); indica detecția unei erori de
			transmisie
			Tipul 2 - RECEIVE NOT READY; spune transmiţătorului să oprească
			transmisia.
			Tipul 3 - SELECTIVE REJECT; cere retransmiterea doar pentru cadrul
			specificat
		Nenu	merotat (c)
			folosit uneori în scopuri de control
			poate fi folosit și pentru transportul datelor atunci când se recurge la
			un serviciu nesigur, neorientat pe conexiune
	DATE		
			ne informatii arbitrare de lungimi arbitrare
			ita sumei de control scade cu cresterea lungimii
		DE CO	
			ta a CRC
			DICATOR 01111110
ч	Come		
			DISConnect) - masina anunta ca se va opri
	_		(Set Normal Response Mode) - masina se reconecteaza, reseteaza la 0
	_		secventa; asincron
			(Set Asynchronous Balanced Mode) - reseteaza numetele de secventa
			ara ambii parteneri ca fiind egali
	_		E și SNRME - identice cu cele de mai sus; format extins pentru cadru (nr.venta pe 7 biti)
	110 (11)		ered Acknowledgement) - cadru special de control pentru confirmarea
_		or de c	·
			ered Information) - cadru de control care contine informatii arbitrare
	-		ontrol nu sunt livrate nivelului rețea, ci sunt destinate a fi primite chiar
			ătură de date.
	ac mv	ciai icg	atara de date.

PPP - Point to Point Protocol

- ☐ Trafic ruter ruter / trafic utilizator ISP
- ☐ Principalul protocol al legaturii de date pe liniile de tip punct-la-punct
- ☐ Face **detectia** erorilor
- ☐ Termite negocierea adreselor IP in momentul conectarii
- Permite autentificarea
- ☐ Permite incadrarea fara ambiguitati
- ☐ Control al legaturii pentru a obtine liniile: LCP; suporta circuite sincrone si asincrone
- □ Negocierea optiunilor nivelului retea in mod independent de protocolul nivelului retea: **NCP**
- ☐ Fara de HDLC, este, mai degraba, orientat pe caractere decat pe biti
- ☐ Cadrele PPP pot fi transmise atat pe linii telefonice comutate, cat si pe linii HDLC sau SONET

8. Servicii furnizate de nivelul retea nivelului transport

- 1. Serviciile trebuie să fie **independente de tehnologia ruterului**.
- 2. Nivelul transport trebuie să fie **independent** de **numărul, tipul și topologia ruterelor** existente.
- 3. **Adresele de rețea** disponibile la nivelul transport trebuie să folosească o **schemă de numerotare uniformă**, chiar în cadrul rețelelor LAN și WAN.
 - □ 2 tabere:
 - ☐ Internet: nivelul retea trebuie doar sa transfere pachete (SEND PACKET, RECV PACKET + alte chestii minore); reteaua se presupune inerent nesigura si calculatoarele gazda trebuie sa faca controlul erorilor ele insele; neorientat pe conexiune
 - ☐ Companiile de telefoane: propun un serviciu orientat pe conexiune, in care nivelul retea sa realizeze controlul erorilor; se pune accent pe calitatea serviciilor

9. Subretea datagrama si subretea cu circuite virtuale

1) Serviciu neorientat conexiune ⇔ datagrame

Pachetele sunt trimise individual in retea si dirijate independent unul de celalalt. Nu este necesara nicio initializare prealabila. Daca un mesaj este mai mare decat dimensiunea maxima a unui pachet, el este spart in mai multe pachete care sunt transmise individual.

Fiecare router are o tabela interna care ii spune unde sa trimita pachete pentru fiecare destinatie posibila. Cand pachetele ajung la un router, sunt memorate temporar pentru a se verifica suma de control si sunt transmise mai departe. Pachetele in care e spart mesajul pot urma cai diferite. Algoritmul care administreaza tabelele de rutare se numeste algoritm de rutare.

2) Serviciu orientat conexiune ⇔ circuite virtuale

Se utilizeaza o retea de circuite virtuale (prin analogie cu liniile de telefonie). Toate pachetele in care este spart un mesaj urmeaza aceeasi cale (acelasi circuit virtual). Initial se alege o cale intre sursa si destinatie si este memorata in tabelele ruterelor. Cand conexiunea este eliberata, se inchide si circuitul virtual. Fiecare pachet poarta un identificator care determina carui circuit virtual ii apartine. Se asociaza un identificator de conexiune pe care ruterele trebuie sa fie capabile sa il modifice.

Problemă	Subretea datagramă	Subretea cu circuite virtuale (CV)
Stabilirea circuitului	Nu este necesară	Obligatorie
Adresare	Fiecare pachet conține adresa completă pentru sursă și destinație	Fiecare pachet conține un număr mic de CV
Informații de stare	Ruterele nu păstrează informații despre conexiuni	Fiecare CV necesită spațiu pentru tabela ruterului per conexiune
Dirijare	Fiecare pachet este dirijat indepen- dent	Calea este stabilită la inițierea CV; toate pachetele o urmează
Efectul defectării ruterului	Nici unul, cu excepția pachetelor pierdute în timpul defectării	Toate circuitele virtuale care trec prin ruterul defect sunt terminate
Calitatea serviciului	Dificil	Simplu, dacă pentru fiecare CV pot fi alo- cate în avans suficiente resurse
Controlul congestiei	Dificil	Simplu, dacă pentru fiecare CV pot fi alo- cate în avans suficiente resurse

10. Algoritmi de dirijare

Principala functie a nivelului retea este dirijarea pachetelor.

Algoritm de dirijare = alegerea liniei de iesire pe care trebuie trimis un pachet receptionat

Dirijare = completarea si actualizarea tabelei de dirijare

Retransmitere = preia un pachet, cauta in tabela de dirijare si il transmite mai departe conform acesteia

Proprietati:

- 1) Corectitudine
- 2) Simplitate

- 3) Robustete e necesar sa functioneze chiar daca se defecteaza o parte componenta (ex. Un router din retea) si sa nu fie necesara reinitializarea retelei la fiecare schimbare de topologie.
- 4) Stabilitate algoritmii trebuie sa convearga catre o stare de echilibru
- 5) Echitate toate cererile sa fie tratate la fel
- 6) Optimalitate dirijarea sa se desfasoare optim

Compormis intre echitate si optimalitate: se cauta minimizarea numarului de salturi.

Principiul optimalitatii: Daca ruterul J este pe calea cea mai buna de la I la K, atunci calea optima de la J la K este pe aceeasi ruta.

Multimea rutelor de la o anumita sursa la toate destinatiile formeaza un arbore (sink tree).

ALGORITMI NEADAPTIVI (STATICI)

_	Dirijai	rea pe calea cea mai scurta (shortest path routing)
		Metrici:
		☐ Numarul de salturi
		Distanta minima in km
		Valori medii de asteptare in coada
		Intarzieri de transmisie
		☐ Latime de banda
		Algoritmi:
		Dijkstra + everything about it, inclusiv pseudocod
	Inund	area (flooding)
		Fiecare pachet este transmis mai departe pe toate liniile, mai putin pe cea de
		pe care tocmai a venit
		PROBLEMA: numar mare de pachete duplicate, chiar infinit
		SOLUTII:
		Pastrarea unui contor de salturi - un pachet este distrus cand
		contorul ajunge la 0; contorul trebuie initializat cu lungimea drumului
		de la sursa la destinatie sau, daca acesta nu este cunoscut, cu
		diametrul retelei

	Identificarea pachetelor care au fost deja inundate pentru a nu mai fi
	retransmise (numar de secventa)
•	Selective flooding: daca tu vrei ca pachetul tau sa ajunga in est, nu-l trimite
	si pe drumurile care merg spre vest
	Inundarea alege intotdeauna calea cea mai scurta, pentru ca incearca in
	paralel toate caile
•	Se genereaza o supraincarcare a retelei
ALGORITMI	ADAPTIVI (DINAMICI)
🗅 Dirija	re cu vectori de distanta
	Fiecare ruter mentine un vector cu cea mai buna distanta cunoscuta catre
	toate destinatiile si linia care trebuie urmata pentru a ajunge acolo
	Algoritmi:
	□ Bellman-Ford
	☐ Ford-Fulkerson
	Se presupune ca fiecare ruter cunoaste distanta catre vecinii sai
	Metrica salturilor: distanta catre fiecare vecin este 1
	Metrica intarzierii (ms) : se masoara prin transmiterea de pachete ECHO
	Fiecare ruter primeste aproximari de la celelalte rutere si isi contruieste
	propriile aproximari pe baza acelora
•	Problema numararii la infinit
	Vestile bune circula repede (intr-o retea in care calea cea mai lunga
	are N noduri, va dura N schimburi pana cand informatiile sunt
	actualizate)
	Vestile proaste circula greu (atunci cand un router este scos in
	functiune, routerele conectate direct la acesta (notate B) vor considera
	ca nu stiu cale catre el. Totusi, routerele mai indepartate vor afirma ca
	ele cunosc o cale catre routerul scos din functiune si o trimit catre B;
	aceasta cale trece de fapt prin B). Pana cand toate ruterele isi vor da
	seama ca nu mai exista cale catre ruterul scos din functiune for trece
	INF pasi; astfel, este recomandat ca INF sa fie codificat ca lungimea
	celei mai mari cai + 1

	ū	actual	plit horizon : noile distante nu se trimit vecinului prin care trec ele rute – B are ruta de distanta 2 catre E prin A – B nu include
		noua	distanta catre E in actualizarea trimisa lui A
		SOL: s	plit horizon with poison reverse: trimite o valoare f. mare – B
		trimite	e distanta ∞ catre A – A nu va mai alege o cale prin B
Dirija	rea fol	osind s	tarea legaturilor
	Fata d	e algori	itmul anterior, in care metrica cel mai frecvent utilizata era
	numa	rul de p	achete aflate in coada de asteptare, acum se ia in calcul si
	latime	a de ba	inda
	Fiecar	e route	r trebuie sa faca urmatoarele:
		Sa des	copere care sunt vecinii sai si sa afle adresele de retea ale
		acesto	ra
			Se transmite un pachet special HELLO pe toate liniile;
			routerele raspund cu un pachet in care isi anunta identitatea;
			Identitatea trebuie sa fie unica global
		Sa ma	soare intarzierea sau costul pana la fiecare vecin
			Se transmite un pachet special ECHO pe toate liniile conectate
			Routerele care il primesc il transmit imediat inapoi
			Se poate considera sau nu incarcarea retelei (numarul de
			pachete aflate in coada)
			Daca se tine cont, atunci reteaua oscileaza puternic
		Constr	ruirea pachetelor cu starea legaturilor
			Pachetul contine identitatea expeditorului, varsta si lista
			vecinilor, cu intarzierile catre acestia
			Ele pot fi create si transmise periodic sau atunci cand se
			produce o schimbare majora in retea
		Distrib	ouirea pachetelor cu starea legaturilor
			Se utilizeaza inundarea
			Fiecare pachet contine un numar de secventa care este
			incrementat la fiecare pachet transmis; el e cautat in lista

		pache	telor deja vazute si, daca este nou, este transmis mai
		depar	te
		PROB	LEME:
			Daca un router se defecteaza, pierde numarul de
			secventa
			Daca numerele ajung la valoarea maxima acceptata si
			sunt reluate de la 0, pot aparea confuzii
			Pot aparea erori de transmisie care sa modifice un bit ir
			numarul de secventa
		SOLU	ги :
			Includerea varstei si decrementarea acesteia la fiecare
			salt
	Calcul	area no	oilor rute
		Cand	un ruter acumuleaza un set complet de pachete cu
		starea	legaturlor, el poate construi graful intregii subretele
		Se apl	ica local Dijkstra
Dirija	rea iera	arhica	
	Retea	ua se in	nparte in regiuni, regiunile pot fi grupate in clustere si tot
	asa;		
	Pentru	ı o rete	a de N routere, numarul optim de niveluri este de ln N
Dirija	rea pri	n difuz	are (broadcasting)
	Folosi	ta atun	ci cand calculatarele au nevoie sa transmita mesaje catr
	mai m	ulte sa	u catre toate celelalte calculatoare gazda (gen rapoarte
	meter	ologice	
	Metoc	le posik	pile:
		Trimit	erea cate unui pachet diferit catre fiecare destinatie;
		consu	ma multa latime de banda si cere ca sursa sa detina o
		lista a	tuturor destinatiilor
		Inund	area; are ca dezavantaj faptul ca genereaza foarte multe
		pache	te si consuma latime de banda prea mare
		Dirijar	ea multidestinatie;
			O linie de iesire este selectata doar daca reprezinta cea
			mai buna cale catre cel putin o destinatie

	atunci cand mai multe pachete trebuie sa urmeze
	aceeasi cale, unul dintre ele plateste tot drumul si
	celelalte calatoresc gratis
	Arbore de acoperire: daca un ruter cunoaste care dintre liniile
	sale fac parte din arborele de acoperire, este suficient sa
	transmita mesajul doar pe liniile respective
	☐ Transmiterea pe cale inversa: daca un pachet a ajuns acolo pe
	calea pe care ajung de obicei pachete de la sursa difuzarii,
	atunci probabil drumul este minim si acesta este primul
	exemplar, asa ca il transmite mai departe; altfel, il elimina;
	algoritmul e eficient si usor de implementat
Dirija	rea cu trimitere multipla (multicast)
	Atunci cand vrei sa transmiti la grupuri
	Nu se poate folosi inundarea deoarece e super ineficient sa transmiti
	la toti si informatiile pot fi senzitive
	Necesita managementul grupului: fiecare proces se ataseaza unui
	grup si el trebuie sa informeze gazda.
	Ruterele trebuie sa stie caror grupuri le apartim calculatoarele gazda
	asociate
	El calculeaza arbori de acoperire pentru fiecare astfel de grup si se
	foloseste de pruning pentru a taia ramurile ce nu sunt necesare, deci
	m arbori retezati => n * m arbori
	Consuma foarte multa memorie pentru retinerea arborilor
	Solutie: core trees retin un singur arbore pentru fiecare grup, cu
	radacina langa mjlocul grupului; drumul nu e optim, dar e un
	compromis bun
Dirija	rea pentru calculatoare gazda mobile
	Pentru a dirija un pachet catre un calculator mobil, reteaua trebuie sa
	il localizeze
	Calculatoare:
	☐ Stationare
	☐ Migratoare
	☐ Calatoare

			■ Gazda mobile = migratoare + calatoare
			Toate calculatoarele gazda au o locatie de domiciliu
			Fiecare domeniu are un agent local si un agent pentru straini
			Fiecare agent pentru strani difuzeaza un pachet anuntandu-si
			existenta si adresa; gazdele mobile pot si sa ceara asta.
			Calculatorul mobil se inregistreaza la agentul pentru straini
			Acesta ia legatura cu agentul local al domeniului din care provine
			calculatorul mobil si, dupa verificari de securitate, agentul local ii ofera
			confirmarea agentului pentru straini care poate acum sa inregistreze
			calculatorul mobil
			Cand se transmite un pachet catre o gazda mobila, acesta este trimis la
			domiciliu; ulterior, agentul local cauta noua locatie temporara, il trimite acolo
			si anunta expeditorul unde sa transmita mesaje de acum inainte
	Diri	jaı	ea in retele AD-HOC
			Retele de noduri de intamplator se afla aproape unul de celalalt se numesc
			ad-hoc sau MANET
			Algoritm de dirijare: AODV (Ad hoc On demand Distance Vector)
			Este un algoritm la cerere, aplicat doar atunci cand cineva doreste sa
			transmita un pachet
			Doua noduri ale unei retele ad-hoc sunt conectate daca pot comunica direct
			folosind radioul
			Descoperirea rutei: se cauta prin difuzari catre nodurile unde se poate
			ajunge; se retine si drumul
			Algoritmul poate genera multe difuzari, asa ca poate fi modificat;
			Se trimit pachete cu durata de viata 1, apoi cu 2, apoi cu 3 etc.
			In AODV, spre deosebire de Bellman Ford, nodurile nu difuzeaza periodic
			intreaga lor tabela de dirijare, economising latime de banda
RIP	-	R	outing Information Protocol
	fieca	are	legatura are cost 1
	folo	se	ste distante la retele (nu la noduri) – ruterul C are distanta 0 la reteaua 2 si 2
	la re	ete	aua 4

- ☐ transmit vectorii distantelor la fiecare 30 secunde
- distante maxime de 15 hop-uri (**16 inseamna infinit**) rețele de mici dimensiuni

15. Protocolul IP

Principala sarcina a nivelului retea este aceea de a transfera datagrame de la sursa la destinatie in cel mai bun mod posibil, fara a tine cont daca fac sau nu parte din aceeasi retea sau daca intre ele exisa sau nu alte retele.

O **datagramă IP** constă dintr-o parte de **antet** și o parte de **text**. Antetul are o parte fixă de 20 de octeți și o parte opțională cu lungime variabilă. Transmis în ordinea big endian .

Versiune memorează cărei versiuni de protocol îi aparține datagrama (IPv4 / IPv6)					
IHL - lungimea antetului					
Tip serviciu - sunt posibile diferite combinatii intre fiabilitate si viteza (ex: pentru					
voce digitalizata, e mult mai important sa fie livrat rapid decat corect; pentru					
transfer de fisiere, trebuie transmise fara erori, in detrimentul vitezei)					
Lungime totala - lugimea totata a datagramei					
Identificare - din ce datagrama face parte					
DF / MF - don't fragment / more fragments					
Deplasamentul fragmentului - indica pozitia fragmentului in cadrul datagramei					
Timp de viata - limiteaza durata de viata a pachetelor					
Protocol - UDP, TCP si altele					
Suma de control a antetului - utilizata pentru a evita erorile generate de locatii de					
memorie proaste din interiorul unui ruter					
Adresa sursa/ adresa destinatie - numarul de retea si numarul de gazda					
Optiuni - permite versiunilor urmatoare sa includa optiuni ce nu sunt prevazute in					
versiunea curenta					
□ Securitate					
Dirijare stricta de la sursa - indica o anumtia cale					
☐ Dirijare aproximativa de la sursa					
☐ Inregistreaza calea					
Amprenta de timp					

16. Adrese IP

Fiecare gazdă și ruter din Internet are o adresă IP, care codifică a**dresa sa de rețea** și de **gazdă**. Toate adresele IP sunt de 32 de biți lungime și sunt folosite în câmpurile Adresă sursă și Adresă destinație ale pachetelor IP. Adresele IP erau împărțite în cinci categorii:

Valoarea **0** înseamnă rețeaua curentă sau gazda curentă. Valoarea **-1 (127)** este folosită ca o adresă de difuzare pentru a desemna toate gazdele din rețeaua indicată.

CIDR (Classless InterDomain Routing - Dirijarea fără clase între domenii)

- ☐ Rezolva problema insuficientei adreselor IP.
- □ aloca adresele IP rămase, în blocuri de dimensiune variabilă, **fără a se ține cont de** clase
- ☐ Renunțarea la clase face rutarea mai complicată.
- ☐ Fiecare intrare din tabela de rutare este extinsa cu o **masca** de 32 de biti.
- ☐ Cand soseste un pachet, se extrage adresa si, folosind masca (SI logic), se compara cu intrarea din tabela; daca exista mai multe potriviri, se alege masca cea mai lunga

17. NAT – Translatarea adreselor de retea

- ☐ Legata tot de faptul caa adresele IP sunt insuficiente
- ☐ Reprezinta o rezolvare rapida pe termen scurt
- ☐ Ideea de bază a NAT-ului este de a aloca fiecărei companii o singură adresă IP
- ☐ În interiorul companiei, fiecare calculator primește o adresă IP unică, care este folosită pentru traficul intern.
- adresa IP internă la adresa IP reală a companiei.

- ☐ Se foloseste de campul Port in antetul IP-ului, pe care in inlocuieste cu un numar din tabela de intrari a NAT-ului
- ☐ Cand un pachet doreste sa ajunga in companie, NAT-ul transforma adresa companiei in adresa IP interna si reface portul initial
- ☐ Multi oameni sunt impotriva NAT-ului deoarece
 - ☐ Mai multe persoane folosesc aceeasi adresa IP
 - ☐ Transforma o retea fara conexiuni intr-o retea cu conexiuni
 - ☐ Nivelurile nu mai sunt independente
 - ☐ Procesele sunt constranse sa foloseasca TCP sau UDP (pentru a putea schimba portul cu o intrare din tabela NAT)

18. ICMP - Protocolul mesajelor de control din Internet

Atunci când se întâmplă ceva neobișnuit in internet, evenimentul este **raportat prin ICMP**, care este folosit și pentru **testarea** Internet-ului. Fiecare tip de mesaj ICMP este **încapsulat** într-un pachet IP.

Tipul mesajului	Descriere
Destinație inaccesibilă	Pachetul nu poate fi livrat
Timp depășit	Câmpul timp de viață a ajuns la 0
Problemă de parametru	Câmp invalid în antet
Oprire sursă	Pachet de șoc
Redirectare	Învață un ruter despre geografie
Cerere de ecou	Întreabă o mașină dacă este activă
Răspuns ecou	Da, sunt activă
Cerere de amprentă de timp	La fel ca cererea de ecou, dar cu amprentă de timp
Răspuns cu amprentă de timp	La fel ca răspunsul ecou, dar cu amprentă de timp

- Mesajul **DESTINAȚIE INACCESIBILĂ** (DESTINATION UNREACHABLE) este folosit atunci când subrețeaua sau un ruter **nu pot localiza destinația**, sau un pachet cu bitul DF nu poate fi livrat deoarece o rețea cu "pachete mici" îi stă în cale.
- ☐ Mesajul TIMP DEPĂŞIT (TIME EXCEEDED) este trimis când un pachet este eliminat datorită ajungerii contorului său la zero. Acest mesaj este un simptom al buclării

- pachetelor, al unei enorme congestii sau al stabilirii unor valori prea mici pentru ceas.
- Mesajul PROBLEMĂ DE PARAMETRU (PARAMETER PROBLEM) indică detectarea unei valori nepermise într-un câmp din antet. Această problemă indică o eroare în programele IP ale gazdei emiţătoare sau eventual în programele unui ruter tranzitat.
- ☐ Mesajul OPRIRE SURSĂ (SOURCE QUENCH) a fost folosit pe vremuri pentru a limita traficul gazdelor care trimiteau prea multe pachete. Când o gazdă primea acest mesaj, era de așteptat să încetinească ritmul de transmisie. Este folosit arareori, deoarece când apare congestie, aceste pachete au tendința de a turna mai mult gaz pe foc.
- Mesajul **REDIRECTARE** (REDIRECT) este folosit atunci când un ruter observă că un **pachet pare a fi dirijat greșit**. Este folosit de ruter pentru a spune gazdei emiţătoare despre eroarea probabilă.
- Mesajele **CERERE ECOU** (ECHO REQUEST) și **RĂSPUNS ECOU** (ECHO REPLY) sunt folosite pentru a **vedea dacă o anumită destinație este accesibilă și activă**. Este de așteptat ca la recepția mesajului ECOU, destinația să răspundă printr-un mesaj RĂSPUNS ECOU.
- Mesajele CERERE AMPRENTĂ DE TIMP (TIMESTAMP REQUEST) și RĂSPUNS AMPRENTĂ DE TIMP (TIMESTAMP REPLY) sunt similare, cu excepția faptului că în răspuns sunt înregistrate timpul de sosire a mesajului și de plecare a răspunsului. Această facilitate este folosită pentru a măsura performanțele rețelei.

19. Protocolul de rezoluție a adresei: ARP

Deși fiecare mașină din Internet are una sau mai multe adrese IP, acestea nu pot fi folosite de fapt pentru trimiterea pachetelor deoarece hardware-ul **nivelului legăturii de date nu înțelege adresele Internet**. Fiecare placă Ethernet fabricată până acum vine cu o adresă Ethernet de **48 biți.** Nu există două plăci cu aceeași adresă.

In momentul in care un pachet ajunge in retea prin IP, reteaua are nevoie sa afle adresa Ethernet a destinatarului. Gazda trimite un pachet de difuzare în rețeaua Ethernet întrebând: "Cine este proprietarul adresei IP 192.31.65.5?".

Protocolul folosit pentru a pune astfel de întrebări și a primi răspunsul se numește ARP.

Este preferat ARP-ul in defavoarea fisierelor de configurare, deoarece acestea pot ajunge foarte mari.

Optimizari ale ARP-ului:

- ☐ la fiecare execuție a ARP, mașina păstrează rezultatul pentru cazul în care are nevoie să contacteze din nou aceeași mașină în scurt timp
- ☐ gazda 1 să includă în pachetul ARP corespondența dintre adresa sa IP și adresa Ethernet.
- ifiecare mașină să difuzeze corespondența sa de adrese la pornirea mașinii.

 Difuzarea este realizata printr-un pachet ARP de cautare a propriei adrese IP

20. DHCP

Ca şi RARP şi BOOTP, DHCP este bazat pe ideea unui server special care atribuie adrese IP gazdelor care cer una. Acest server **nu** trebuie să se afle în **același LAN** cu gazda care face cererea. Deoarece serverul DHCP s-ar putea să nu fie accesibil prin difuzare, este nevoie ca **în fiecare LAN să existe un agent de legătură DHCP** (DHCP relay agent)

Pentru a-și **afla adresa IP**, o mașină tocmai pornită difuzează un pachet **DHCP DISCOVER**. Agentul de legătură DHCP din LAN interceptează toate difuzările DHCP.

Problema: cat de mult trebuie alocata o adresa IP?

- Dacă o gazdă părăsește rețeaua și nu returnează adresa sa IP serverului DHCP, acea adresă va fi pierdută permanent.
- ☐ atribuirea adresei IP va fi pentru o perioadă fixă de timp (închiriere)
- ☐ Inainte de expirare, gazda trebuie sa ceara innoire daca vrea sa continue sa foloseasca respectiva adresa IP

21. Protocolul de dirijare folosit de porţile interioare: OSPF

Internet-ul este construit dintr-un număr mare de sisteme autonome(AS).		
Fiecare AS este administrat de o organizație diferită și poate folosi propriul		
algoritm de dirijare în interior.		
Chiar si asa, exista standarde pentru a face mai usoara comunicarea la granitele		
AS-urilor.		
OSPF suportă trei tipuri de conexiuni și rețele:		
1. Linii punct-la-punct între exact două rutere.		
2. Rețele multiacces cu difuzare (de exemplu, cele mai multe LAN-uri).		
3. Rețele multiacces fără difuzare (de exemplu, cele mai multe WAN-uri cu		
comutare de pachete).		
funcționează prin abstractizarea colecției de rețele, rutere și linii reale intr-un graf		
orientat		
OSPF permite AS-urilor să fie divizate în zone numerotate, unde o zonă este o		
rețea sau o mulțime de rețele învecinate.		
Orice AS are o zonă de coloană vertebrală , numită zona 0.		
pot fi necesare trei tipuri de căi:		
☐ Intrazonale		
☐ Interzonale		
□ interASuri.		
OSPF funcționează prin schimb de informații între rutere adiacente		

Tip mesaj	Descriere
Hello	Folosit pentru descoperirea vecinilor
Actualizare stare legatura	Emitatorul furnizeaza vecinilor costurile sale
Confirmare stare legatura	Confirma actualizarea starii
Descriere baza de date	Anunta ce actualizari are emitatorul
Cerere stare legatura	Cere informatii de la partener

22. Protocolul de dirijare pentru porți externe: BGP

În cadrul unui singur AS, protocolul de dirijare recomandat este OSPF (deși, desigur, nu este singurul folosit). **Între AS-uri** se folosește un protocol diferit, **BGP** (Border Gateway Protocol – Protocolul porților de graniță).

Ruterele ce folosesc protocolul de porți exterioare trebuie să țină cont întro mare măsură de **politică**.

Protocoalele pentru porți externe, în general și BGP în particular, au fost proiectate pentru a permite forțarea multor tipuri de politici de dirijare pentru traficul între AS-uri. Politicile tipice implică considerații **politice**, **de securitate sau economice**. Câteva exemple de constrângeri de dirijare sunt:

- 1. Nu se tranzitează traficul prin anumite AS-uri.
- 2. Nu se plasează Irak-ul pe o rută care pornește din Pentagon.
- 3. Nu se folosesc Statele Unite pentru a ajunge din Columbia Britanică în Ontario.
- 4. Albania este tranzitată numai dacă nu există altă alternativă către destinatie.
- 5. Traficul care pleacă sau ajunge la IBM nu trebuie să tranziteze Microsoft.

Politicile sunt configurate manual în fiecare ruter BGP, nu fac parte din protocolul insusi.

HDLC	High-level Data Link Control	
SDLC	Synchronous Data Link Control	
ADCCP	Advanced Data Communication Control Procedure	
LAP	Link Access Procedure	
CRC	Cyclic Redundancy Code	
PPP	Point to Point Protocol	
LCP	Link Control Protocol	
NCP	Network Control Protocol	
ТСР	Transmission Control Protocol	
UDP	User Datagram Protocol	
ICMP	Internet Control Message Protocol	
IGMP	Internet Group Management Protocol	
OSPF	Open Shortest Path First	
BGP	Border Gateway Protocol	
DNS	Domain Name System	
ISP	Internet Service Provider	
SONET	Syncronous Optical NETwork	

IMP	Interface Message Processor	
STDM	Synchronous Time Division Multiplexing	
FDM	Frequency Division Multiplexing	
MTU	Maximum Transmission Unit	
API	Application Programming Interface	
TPDU	Transaction Protocol Data Unit	
RTP	Real-Time Transport Protocol	
RIP	Routing Information Protocol	
MANET	Mobile Ad-hoc NETwork	
AODV	Ad-hoc On demand Distance Vector	
CIDR	Classless InterDomain Routing	
NAT	Network Address Translation	
ARP	Address Resolution Protocol	
URL	Uniform Resource Locator	
DHCP	Dynamic Host Configuration Protocol	
RARP	Reverse Address Resolution Protocol	
OSPF	Open Shortest Path First	
AS	Autonom System	
BGP	Border Gateway Protocol	
RR	Resource Record	
MIME	Multi-Purpose Internet Mail Extensions	

23. IPv6

- **Ex:** 105.220.136.100.255.255.255.0.0.18.128.140.10.255.255
- □ Ex: 69DC:8864:FFFF:FFFF:0:1280:8C0A:FFFF
- **□ Compresie zerouri :** FF0C:0:0:0:0:0:0:B1 = FF0C::B1
- ☐ Mai bun decat IPv4:
 - □ 32 biti -> 128 biti
 - ☐ Antet mai simplu (7 campuri in loc de 13) ruterele lucreaza mai rapid

	•	r e compati IP, OSPF, B	•	pale Internet:
•		—— 32 d	e biţi ————	-
L			Limin	
Versiune	Tip de trafic		Eticheta fluxului	
Lu	ıngime informație util	ă	Următorul antet	Limita de salturi
		Adresă (16 o		_
_		Adresă d (16 o	The state of the s	

Fig. 5-68. Antetul fix IPv6 (obligatoriu).

Camp	uri:
	Versiune: 6 (4 pt IPv4)
	Tip de trafic: distingerea pachetelor cu cerinte de livrare in timp real
	Eticheta fluxului (experimental):
	☐ Pseudo-conexiune intre sursa si destinatie cu proprietati si cerinte
	particulare

- ☐ Asociaza datagramele unui flux
- ☐ Adresa sursa, destinatie, numar de flux => pot exista mai multe fluxuri active in acelasi timp (chiar si doua fluxuri venind de la gazde diferite cu acelasi numar de flux vor fi separate in ruter)
- ☐ Numerele de flux sunt alese aleator si nu secvential de la 1 deoarece vor fi folosite in tabele de dispersie
- ☐ Lungime informatie utila: cati octeti urmeaza dupa antet
- Antetul urmator:
 - ☐ Spune carui tip de protocol (ex TCP, UPD) i se va transmite pachetul
 - ☐ Defineste tipul antetului de extensie

Base Header NEXT=ROUTE	TCP Data	
	(b)	

- ☐ Limita salturilor: impiedica pachetele sa "traiasca" vesnic (scade la fiecare salt dintr-o retea in alta)
- Antete extensie:
 - **□ Hop-by-hop** header:
 - ☐ Suport datagrame > 64K (jumbograme)
 - Specifica lungimea
 - ☐ Campul de lungime din antetul de baza = 0
 - **□ Destination** header:
 - ☐ Info aditionale pentru destinatie
 - **Routing**: lista rutere de vizitat
 - ☐ **Fragmentation:** identificare fragmente
 - ☐ Authentication: verificare identitate transmitator
 - ☐ Encrypted security payload: info despre continut criptat

□ Fragmentarea:

- ☐ Caracter dinamic: Calea se poate schimba
- ☐ Eficienta: Antetul nu are spatiu pierdut
- ☐ Flexibilitate: Noi antete pentru caracteristici
- ☐ Dezvoltare incrementala: rutele care trateaza anumite antete coexista cu altele care le ignora
- ☐ La sursa care:
 - ☐ Fragmenteaza pachetele
 - ☐ Descopera path MTU
- ☐ Ruterele ignora datagramele mai lungi decat MTU

24. Comunicarea intre aplicatii

- ☐ Identificare unica a unui punct de acces prin <adresa_retea, port>
 - ☐ Transferul intre gazde foloseste adresa_retea
 - Comunicarea intre procese foloseste portul

☐ Servicii ale nivelului Transport:
Transfer de date intre procese de aplicatie, folosind retele de
diverse tipuri
Interfata uniforma cu utilizatorii
Doua tipuri:
Orientate pe conexiune: TCP
☐ Fara conexiune: UDP
Disponibile ca API:
☐ API descrie cum sunt apelate functiile
☐ Socket API:
Disponibil pe Windows/Solaris etc.
☐ Socket = punctul in care procesul de aplicatie se
atasaza la retea (identificat prin descriptor - numar, ca
la fisiere)
Creare socket
int socket(int family, int type, int protocol)
socket_descr = socket (protocol_family, comm_type, protocol)
Deschide un socket
Intoarce socket_descr folosit in apelurile urmatoare
Protocol_family selecteaza familia de protocoale
PF_INET - protocoale Internet
☐ PF_APPLETALK - protocoale AppleTalk etc.
☐ Comm_type selecteaza tipul de comunicare
SOCK_DGRAM - fara conexiune (datagrama)
SOCK_STREAM - orientat pe conexiune (flux de octeti)
Protocol specifica protocolul
☐ IPPROTO_TCP - TCP
☐ IPPROTO_UPD - UDP

Creaza socket si aloca-i resurse de sistem:

int s = socket (AF_INET, SOCK_DGRAM, IPPROTO_UDP);
Asociaza un socket cu <port, adresa IP>:

int bind (int socket_descriptor, struct sockaddr* local_address,
int

address_length)

bind(s, &addr, sizeof(addr)); // addr locala - vezi slide urmator! Primeste mesaje de la un socket aflat la distanță:

int recvfrom (int socket_descriptor, char* buffer_address, int buffer_length, int flags, struct sockaddr* sender_address, unsigned Int sendaddress_length)

recvfrom(s, buf, BUFLEN, 0, NULL, NULL);

Oprește trimitere sau/și recepție de date

shutdown (s, SHUT_RD / SHUT_RDWR / SHUT_WR)

Inchide socket - termina utilizarea socket si elibereaza resurse alocate

close (s)

Setare adresa

Format TCP/IP:

struct sockaddr_in { u_char sin_len; /* total length of address */

u_char sin_family; /* family of the address */

u_short sin_port; /* protocol port number */

struct in_addr sin_addr; /* IP address */

char sin_zero[8] /* unused */ }

struct sockaddr_in serv_addr

memset ((char *) &serv_addr, 0, sizeof(serv_addr));

serv_addr.sin_family = AF_INET; // adrese pentru Internet

serv_addr.sin_addr.s_addr = INADDR_ANY; // foloseste adresa IP a masinii

serv_addr.sin_port = htons(portno); // converteste de la host la network byte order

Serviciu fara conexiune - server

Setare adresa


```
Format TCP/IP:
struct sockaddr_in { u_char sin_len;
                                      /* total length of address */
                                      /* family of the address */
  u char sin family;
                                      /* protocol port number */
  u short sin port;
                                      /* IP address
  struct in addrsin addr;
                                      /* unused
                                                           */
  char sin zero[8]
}
struct sockaddr_in serv_addr
memset ((char *) &serv addr, 0, sizeof(serv addr));
serv addr.sin family = AF INET;
                                              // adrese pentru Internet
serv_addr.sin_addr.s_addr = INADDR_ANY;
                                      // foloseste adresa IP a masinii
serv_addr.sin_port = htons(portno);
                       // converteste de la host la network byte order
```

Serviciu fara conexiune - client

Serviciu orientat pe conexiune

Serviciu orientat pe conexiune - client

1.Creaza socket:

2. Conecteaza un socket client (specificat prin descriptor) cu un socket server (precizat prin adresa):

int connect (int client_socket_descriptor, struct sockaddr* server_socket_address, int server_sockaddress_length)

connect(s, &addr, sizeof(addr));

3. repetat - Trimite / primeste etc.

Transmisia de date cu TCP

send (s, buf, len)

int send(int socket, const char* buf, int len, int flags);

- Intoarce numarul de octeti trimisi
- Poate fi mai mic decat len!

recv (s, buf, max_len)

int recv(int socket, char* buf, int len, int flags);

- Intoarce numarul de octeti primiti
- Poate fi mai mic decat max len!

flags indica optiuni speciale:

MSG OOB - trimite/primeste date out-of-band

MSG PEEK - livreaza date primite, dar trateaza ca necitite

Inchiderea conexiunii TCP

- ☐ Elibereaza resursele asociate conexiunii
- ☐ Informeaza capatul celalalt de inchiderea conexiunii
- □ API
 - □ shutdown (s,SHUT_RD/SHUT_RDWR/SHUT_WR)
 - ☐ int shutdown (int socket, int how)
 - opreste primirea rejecteaza datele care sosesc
 - opreste transmiterea ignora datele inca netrimise
 - Ambele
 - □ close (s)
 - ☐ int close (int socket);

inchide socket (elibereaza structurile de date din kernel)

UDP - User Datagram Protocol UDP livreaza datagrame utilizator - user datagrams ☐ Livrare "Best effort" – datagramele pot fi pierdute, primite in alta ordine etc. ☐ Sume de control pentru integritate • Puncte de capat UDP = protocol ports sau ports • UDP identifica adresa Internet si numar port pentru sursa si destinatie • Destination port si source port pot diferi. ☐ Puncte de capat UDP = protocol ports sau ports ☐ UDP identifica adresa Internet si numar port pentru sursa si destinatie ☐ **Destination port** si **source port** pot diferi. **Antet UDP** destination port source port length checksum data - 32 Biti -Port sursă Port destinatie Lungime UDP Sumă de control UDP Fig. 6-23. Antetul UDP. • checksum (calculat la fel ca la TCP) dar nefolosit ■ Nu control flux ■ Nu control erori ■ Nu retransmisie ☐ Aplicatii care folosesc UDP: □ DNS ■ Voice over IP Online games ☐ Se foloseste atunci cand:

- ☐ Latenta este foarte importanta
- ☐ Livrarea tuturor datelor nu e necesara
- ☐ Retransmisiile sunt implementate de aplicatii cand e nevoie (DNS)

TCP - Transmission Control Protocol

Livrare sigura pe retea nesigura (datagrame)

- Cel mai folosit protocol de transport
 - Web
 - Email
 - □ SSH
 - ☐ Chat
 - Video Streaming
 - □ Peer-to-peer
 - ☐ TCP este orientat pe flux de octeti (nu de mesaje):

- ☐ Aplicația transmițătoare scrie octeți în conexiunea TCP
- ☐ TCP la sursă memorează octeții într-un buffer și transmite segmente
- ☐ TCP la destinație memorează segmentele într-un buffer
- Aplicația receptoare citește octeți (câți vrea!) din conexiunea TCP
- □ Caracteristici:
 - Orientat pe conexiune
 - ☐ Interfata flux (stream)
 - ☐ Transmisie si receptie pe siruri de octeti
 - □ Datele pot fi expediate imediat sau pot fi retinute intr-un tampon (pentru a colecta multa informatie trimisa in acelasi timp)
 - ☐ Face **controlul congestiei** adaptand viteza de transmisie la conditiile retelei
 - ☐ Garanteaza **transmisie in ordine si sigura** a datelor pe o conexiune

□ Full duplex □ Stabilirea sigura a conexiunii: t □ Server: □ LISTEN □ ACCEPT □ Client: □ CONNECT - adres □ Eliberare lina a conexiunii: fara	sa IP si port
Anter	t TCP
4 32 E	Bits
Source port	Destination port
Sequence	e number
Acknowledge	ment number
TCP	Window size
Checksum	Urgent pointer
Options (0 or mo	ore 32-bit words)
Data (o	ptional)
Sequence number – numarul primului octet de Acknowledgement number – numarul urmate Window size - numărul de octeți care pot fi tre Pointer – deplasamentul, față de Sequence ne Port sursa si port destinatie - punctele finale adresa IP a masinii + port) Camp de 6 biti neutilizat - dovada ca TCP a foracei biti pentru erori) Checksum - aduna toate cuvintele de 16 biti (Receptorul face suma de control pe tot, inclusoptions Adaugarea unor facilitati suplimentare Cea mai importanta e aceea care perioderica pe tot.	orului octet asteptat rimiși, începând cu octetul confirmat Urgent umber, ptr. info. Urgentă ale conexiunii (end-point de 48 de biti = st bine proiectat (altfel ar fi avut nevoie de XOR) si apoi XOR pe cei 16 biti finali. siv Checksum si trebuie sa dea 0.

eficienta (mai put	ini octeti folositi pe ant	
Dimensiur	nea maxima nu trebuie	sa fie aceeasi in ambele directii
☐ Indicatori:		
P(U)SH - for efficienta)	orteaza expedierea (de	fapt ii spune sa nu intarzie din ratiuni de
☐ URG(ENŤ)	•	arii si transmisia imediata a intregii
	disponibile arul de confirmare est	e valid / invalid
RST - desfi	inteaza o conexiune de	evenita inutilizabila; refuza un segment
	ı o incercare de deschi	dere a unei conexiuni YN = 1. ACK = 0 => cerere de conexiune,
	acceptare de conexiui	
•		e; emitatorul nu mai are informatii de
transmis (ordinea co		, la fel ca SYN, pentru a putea fi preluate in
	,	nta de dimensiuni variabile
	Pseudo-a	entet
	i scuuo-t	
4	32 Biţi	-
	Adresă su	ırsă
	Adresă dest	iinaţie
0000000	Protocol = 6	Lungime segment TCP
Fig. 6-3	0. Pseudo-antetul inclus	s în suma de control TCP.
Б		

RTP - Real-Time Transport Protocol
 Protocol de transport implementat la nivelul aplicatie (Ciudat, dar asa e) Folosit pentru: Aplicatii multimedia in timp real Radio pe internet Telefonie pe internet

□ Muzica la cerere □ Video-conferintele □ Video la cerere Ruleaza peste UDP Se afla in spatiul utilizator impreuna cu aplicatia Multiplexeaza mai multe fluxuri de date intr-un singur flux UDP Siecare pachet are un numar cu 1 mai mare decat cel precedent (se poate afla	
laca dispar anumite pachete => se aproximeaza valoarea prin interpolare; nu s	se
etransmite pentru ca fiind REAL-TIME va ajunge probabil prea tarziu)	
0 31	
V P X CC M PT Sequence number	
Timestamp	
Synchronisation source (SSRC) identifier	
Contributing source (CSRC) identifiers (optional)	
Extension header (optional)	
V = Version CC = CSRC count P = Padding M = Marker X = Extension PT = Payload type	
(indica prezenta unui antet extins CC arata cate surse contribuabile sunt prezente de la 0 la 15 Il este un bit de marcare specific aplicatiei (inceputul unui cadru video sau al uranal audio de exemplu)	ınui
Sequence number este un contor incrementat pe fiecare pachet RTP trimis;	
letecteaza pachete pierdute 'imestamp ajuta la reducerea bruiajului din receptor; ne arata carui flux ii apartine pachetul; se foloseste la multiplexare/demultiplexare intr-un singur flu JDP	ux

25. TCP Tranzactional

- ☐ Exista vreo posibilitate de a combina eficienta RPC-ului folosind UDP (doar doua mesaje) cu fiabilitatea TCP? Aproape ca da!
- ☐ T/TCP = Transactional TCP
- ☐ Transferul de date se realizeaza in timpul initializarii

Fig. 6-40. (a) RPC folosind TCP clasic; (b) RPC folosind T/TCP

26. Three-way handshake

Fig. 6-11. Trei scenarii posibile de stabilire a conexiunii pentru un protocol cu înțelegere în trei pași. CR reprezintă CONNECTION REQUEST. (a) Cazul normal, (b) Un duplicat vechi al unui mesaj CONNECTION REQUEST apare când nu trebuie, (c) Sunt duplicate atât CONNECTION REQUEST cât și CONNECTION ACCEPTED.

☐ **CR** = Connection Request

- ☐ Acest protocol nu necesita ca ambele parti sa inceapa sa trimita acelasi numar de secventa, deci poate fi utilizat si impreuna cu alte metode de sincronizare decat ceasul global. (figura (a) reprezinta conectarea)

 Eliberarea unei conexiuni e mai usoara decat conectarea:
- - ☐ Eliberare asimetrica:
 - Brusca si poate genera pierderi

Fig. 6-12. Deconectare bruscă cu pierdere de date. CR = CONNECTION REQUE ACK=CONNECTION ACCEPTED, DR=DISCONNECT REQUEST.

Se foloseste la apelurile telefonice

- ☐ Eliberare simetrica:
 - ☐ Fiecare directie este eliberata independent de cealalta
 - ☐ Un calculator gazda poate continua sa primeasca date chiar si dupa ce a trimis TPDU de eliberare a conexiunii
 - Utila atunci cand fiecare proces are o cantitate fixa de date de trimis si stie bine cand trebuie sa transmita si cand a terminat

Fig. 6-14. Patru cazuri posibile la eliberarea conexiunii: (a)Cazul normal cu confirmare în trei timpi.

(b)Ultima confirmare este pierdută. (c) Răspunsul este pierdut.

(d) Răspunsul și următoarele cereri de deconectare sunt pierdute.

(DR=DISCONNECT REQUEST).

Fig. 6-31. (a) Stabilirea unei conexiuni TCP în cazul normal. (b) Coliziunea apelurilor.

27. DNS

- ☐ **Motivatie**: Adresele IP sunt mai greu de tinut minte!
- ☐ Se folosesc **adrese simbolice (nume de domeniu)** a caror translatare in adrese IP se face prin **DNS**
- ☐ Continute in URL: (adresele)
 - ☐ Schema = protocol (http, ftp etc.)
 - ☐ Host = nume / adresa IP a serverului Web
 - □ port# = numar port server Web (80 pt HTTP)
 - ☐ Path = calea de la radacina serverului la resursa

Schema	Utilizat pentru	Exemple
http	Hipertext (HTML)	http://www.cs.vu.nl/~ast
ftp	FTP	ftp://ftp.cs.vu.nl/pub/minix/ README
mailto	Trimitere de pos ta electronică	mailto:JohnUser@acm.org
telnet	Conectare la distanță	telnet://www.w3.org:80

Descarcarea unei pagini Web
☐ Browser
Determina URL http://www.w3.org/TheProject.html
Cere unui server DNS adresa IP pentru http://www.w3.org/
Server DNS raspunde cu: 18.23.0.23
Deschide o conexiune TCP la port 80 pe 18.23.0.23
Trimite o comanda la server Web:
GET TheProject.html HTTP/1.1 Host: www.w3.org
Server Web www.w3.org trimite fisierul TheProject.html
Conexiunea TCP este inchisa
Afiseaza continutul TheProject.html
Peste 200 de domenii de nivel superior
Impartite in subdomenii s.a.m.d => arbore
Fiecare are mai multe sisteme gazda (frunze)
☐ Tipuri:
☐ Generice (de nivel inalt):
☐ Com (comercial)
☐ Edu (educational)
☐ Gov (guvernul federal SUA)
☐ Int (org internationale)
☐ Mil (fortele militare SUA)
☐ Net (furnizori Internet)
Org (org nonprofit)
☐ De tari:
O intrare pentru fiecare tara
☐ Sunt separate prin 'dot' (.)
□ Nu se face distinctie intre litere mici si mari
Componentele au cel mult 63 de caractere, iar in total nu depaseste
255 de caracatere
"example.com" e diferit de "example.mil"

☐ Tip (A - adresa)

Tip	Semnificație	Valoare
SOA	Start autoritate	Parametrii pentru această zonă
Α	Adresa IP a unui sistem gazdă	Întreg pe 32 de biți
MX	Schimb de poștă	Prioritate, domeniu dispus să accepte poștă electronică
NS	Server de Nume	Numele serverului pentru acest domeniu
CNAME	Nume canonic	Numele domeniului
PTR	Pointer	Pseudonim pentru adresa IP
HINFO	Descriere sistem gazdă	Unitate centrală și sistem de operare în ASCII
TXT	Text	Text ASCII neinterpretat

Fig. 7-2. Principalele tipuri de înregistrări de resurse DNS.

□ Valoare (157.60.221.205)

□ Server de nume

- ☐ Informatia **primara** este pastrata in fisiere **master** aflate in sistemul de fisiere local al **DNS**
- ☐ Server de nume **primar**:
 - ☐ Foloseste **master files** pentru a actualiza BD
 - ☐ Raspunde intrebarilor resolverilor
- ☐ Translatarea de la **nume domeniu** la **adresa IP**

	Se apeleaza un rezolver local
	□ Formatul mesajelor user ⇔ resolver este specific sistemului gazda
	(ex UNIX: gethostbyname)
	Apeleaza la randul sau un server DNS local (ii cunoaste adresa IP) cu un mesaj denumit DNS request => DNS reply din partea serverului
	□ Formatul mesajelor resolver ⇔ name server este standard (protocol DNS)
	 Poate pastra in cache numele si adresele IP recent rezolvate Perioada este data de time-to-live din inregistrari DNS
	Format mesaje DNS
	++ Header ++
	Question the question for the name server
	Answer RRs answering the question
	Authority RRs pointing toward an authority
	Additional RRs holding additional information
	RR = Resource Record
	Header contine info despre:
	Ce sectiuni sunt prezente in mesaj
	Mesajul este intrebare sau raspuns
	Alta operatie
	Question - intrebarea
	Tuplu Nume_domeniu, Tip, Clasa
	Singurul camp inclus in intrebare
	Answer - raspunsul
	☐ Include RRs care corespund intrebarii
	Restul - colectie de RRs reprezentand autoritatea si info aditionale
	Un server DNS este server autoritate pentru numele gestionate
	 Daca cererea conține un nume gestionat de serverul apelat, acesta răspunde direct (ai.cs.yale.edu este sub cs.yale.edu)
	☐ Altfel, cererea trebuie sa ajunga la serverul autoritate pentru acel nume
	Aitiel, cererea trebale sa ajunga la serverar autoritate pentra acermanie
<u> </u>	O posibila ierarhie de servere DNS

- adresele ptr nume de **top** (nl, com) sunt stiute de **root**
- exista mai multe servere root, adresele lor IP fiind copiate, din fisiere de config in cache DNS, la pornirea serverului DNS

□ Rezolvare recursiva

- ☐ Cererea este pasata de la un server DNS la altul pana ajunge la serverul DNS care rezolva numele din cerere
- ☐ Raspunsul este trimis pe calea inversa
- ☐ Cand resursele ajung inapoi ele vor fi puse in **memoria ascunsa** pentru a putea fi folosite ulterior (neautorizat deoarece orice schimbare facuta la un domeniu se va propaga la toate serverele care l-au folosit) => campul Timp_de_viata din RRs

■ Rezolvare iterativa

- daca serverul DNS nu poate rezolva intregul nume, el trimite clientului partea nerezolvata si adresa serverului DNS care o poate rezolva
- ☐ clientul trimite o noua cerere acestui server DNS

Cereri inverse

- Cauta nume pentru adresa IP 157.54.200.2
- Organizare un domeniu special in-addr.arpa
 in care podurile sunt numite duna n

in care nodurile sunt numite dupa numerele din adresa IP

- In in-addr.arpa se creaza inregistrari PTR, in care numele sunt adrese IP
- Clientul face o cerere PTR pentru numele 2.200.54.157.in-addr.arpa
- Cautarea se face in inregistrari PTR si intoarce numele resursei care corespunde adresei IP 157.54.200.2, de ex. mail.alfa.com.
- Aplicatie: in tracert pentru afisare nume rutere

Replicarea serverelor DNS

SHIME

- Fiecare zona trebuie sa aiba mai multe servere DNS
- Server Primar pe el se fac toate modificarile inregistrarilor, folosind Master files
- Secundar preia info de la servere primare
 - pentru asta, foloseste acelasi format de mesaje DNS

Facilitati - transfer toata zona

- Server secundar
 - (periodic) Cerere SOA (Start Of Authority)
 - Primeste raspuns si verifica daca "serial number" este mai mare decat cel local
 - Daca da, cere toata zona (cerere AXFR Authoritative transfer)
 - Primeste info toata zona

Transfer incremental (Incremental Zone Transfer)

Notificari

28. Posta electronica (Mail)

☐ Arhitectura sistemului de e-mail

- Agent utilizator
 - ☐ permite citirea si scrierea mesajelor
 - ☐ interfata utilizatorului cu sistemul de e-mail
- Agentul de transfer mesaje
 - ☐ suporta transmiterea mesajelor de la sursa la destinatie

- agentul client preia un mesai, stabileste o conexiune cu agentul server si ii transmite mesajul agentul server primeste mesajul si il plaseaza in cutia postala ☐ agenti = demoni de sistem care ruleaza in fundal ■ Mesaje si plicuri:

■ Adrese e-mail:

- ☐ nume_utilizator@nume_server_mail
- Nume server mail
 - este numele de domeniu
 - ☐ folosit de clientul de e-mail care:
 - rezolva numele destinatarului folosind DNS (MX, daca se poate)
 - ☐ contacteaza serverul de e-mail de la destinatie
 - ☐ transmite mesajul la server
- Nume utilizator
 - are un specific local; ex: droms, Ralph_E._Droms, 578.4309
 - ☐ folosit de serverul de mail care:
 - primeste mesajul de la client
 - ☐ interpreteaza nume_utilizator conform cu adresele locale
 - plaseaza mesajul in cutia postala corespunzatoare
- ☐ Continutul unei cutii postale:

#	Flags	Bytes	Sender	Subject
1	K	1030	asw	Changes to MINIX
2	KA	6348	trudy	Not all Trudys are nasty
3	KF	4519	Amy N. Wong	Request for information
4		1236	bal	Bioinformatics
5		104110	kaashoek	Material on peer-to-peer
6		1223	Frank	Re: Will you review a grant proposal
7		3110	guido	Our paper has been accepted
8		1204	dmr	Re: My student's visit

- ☐ **K** Kept mesaj pastrat in cutia postala (mesajul nu este nou)
- ☐ A Answered mesaj la care s-a raspuns
- ☐ **F** Forwarded mesaj retransmis altui utilizator
- ☐ Formatul mesajelor:

Antet	Conţinut				
То:	Adresa(ele) de e-mail a(le) receptorului(ilor) primar(i)				
Cc:	Adresa(ele) de e-mail a(le) receptorului(ilor) secundar(i)				
Bcc:	Adresa(ele) de e-mail pentru "blind carbon copy"				
From:	Persoana sau persoanele care au creat mesajul				
Sender:	Adresa de e-mail a transmiţătorului curent				
Received:	Linie adăugată de fiecare agent de transfer de-a lungul traseului				
Return-Path:	Poate fi folosită pentru a identifica o cale de întoarcere la transmiţător				

Campuri din antet care se refera la transportul mesajului.

Unele campuri sunt folosite de agentul de transfer pentru a alcatui plicul.

- Formatul mesajelor este descries in RFC 5322
- ☐ Campuri folosite de **agentul utilizator** sau de **utilizator**

Antet	Conţinut				
Date:	Data şi momentul de timp la care a fost trimis mesajul				
Reply-To:	Adresa de e-mail la care ar trebui trimise răspunsurile				
Message-Id:	Număr unic, utilizat ulterior ca referință pentru acest mesaj (identificator)				
In-Reply-To:	Identificatorul mesajului al cărui răspuns este mesajul curent				
References:	Alţi identificatori de mesaje ale caror raspunsuri sunt mesajul current, mesajul precedent etc.				
Keywords:	Cuvinte cheie alese de utilizator				
Subject:	Scurt cuprins al mesajului, afişabil pe o singură linie				

☐ Antete adaugate de MIME - Multi-Purpose Internet Mail Extensions

Antet	Conţinut	
MIME-Version:	Identifică versiunea de MIME	
Content-Description:	Descrierea a ce este în mesaj (similar subiectului)	
Content-Id:	Identificator unic al continutului	
Content-Transfer-Encoding:	Cum este codificat cotinutul pentru transmisie	
Content-Type:	Tipul datelor continute in mesaj	

Name of the last

MIME

Mesaj cu mai multe componente From: elinor@abcd.com To: carolyn@xyz.com MIME-Version: 1.0

Message-Id: <0704760941.AA00747@abcd.com>

Content-Type: multipart/alternative; boundary=qwertyuiopasdfghjklzxcvbnm Subject: Earth orbits sun integral number of times

This is the preamble. The user agent ignores it. Have a nice day.

--qwertyuiopasdfghjklzxcvbnml Content-Type: text/enriched

> Happy birthday to you Happy birthday to you

Happy birthday dear <bold> Carolyn </bold>

Happy birthday to you

--qwertyuiopasdfghjklzxcvbnm

Content-Type: message/external-body; access-type="anon-ftp";

site="bicycle.abcd.com"; directory="pub"; name="birthday.snd"

content-type: audio/basic

content-transfer-encoding: base64 -- qwertyuiopasdfghjklzxcvbnm--

64