Tutoriel: µVISION version 5

Etapes à suivre:

1. <u>Sous l'explorateur Windows</u>, créez un répertoire de travail dans le répertoire temporaire existant « C:\Temp » : par exemple on peut créer C:\Temp\TDm1.

N'oubliez pas de sauvegarder vos fichiers (usb, mail ...)

- 2. Lancez µVision version 5.
 - → Project → new µVision Project : pour créer un nouveau projet.
 - → En donnant un nom à votre projet : monProjet-1

Choisir dans quel répertoire vous vou ez placez le projet

En donnant un nom à projet : monProjet-1 (sous c:\temp par exemple)

Après enregistrement on obtient le menu suivant :

Dépliez ARM (en appuyant sur +ARM)

On obtient l'écran suivant :

Choisir ARM Cortex M3

On obtient l'écran suivant : Manage Run-Time Environment

Puis tapez **OK**

Création d'un fichier assembleur (.s)

Créer un fichier (File New) par exemple de nom exo1 et extension « s » : exo1.s et le sauvegarder (File Save) dans votre répertoire de travail.

Ecrire le code de votre programme suivant en langage assembleur ARM dans un fichier fichier **exo1.s** sous le répertoire Temp :

	AREA .text , CODE, READONLY
val	EQU 0x4455
Х	EQU 0x1122FFAA
	ENTRY
	EXPORTmain ; le mot main est précédé par <mark>02 soulignés</mark> (underscore)
main	
	MOV R1,#0x22 ; R1 = 0x22
	MOV R2,#0x2233 ; R2= 0x2233
	LDR R3,=val ; R3 reçoit la constante val
	LDR R4,=x ;; R3 reçoit la constante x
	NOP ; No OPeration
	END

Ajouter un nouveau Fichier de type assembleur(.s). clic droit sur « Source Group 1

Selectionnez: Add Existing Files to Source Group1.

Dépliez + source votre source .s (ici exo1.s) fait maintenant partie du projet

Aller dans le menu Project et ouvrir la fenêtre « Options for Target 'Target 1' »

Project > Options for Target 'Target 1'

Cocher l'option « Use MicroLIB » de Options for Target 'Target : onglet Target

. Traduire le code source du projet exo1 (on dit « assembler ») à l'aide de la commande « build target» (F7).

S'il n'y a aucun message d'erreur Le programme est assemblé.

Exécution du programme : Tapez CTRL F5

Tapez OK

On obtient l'écran suivant :

Déplacer et élargir la fenêtre « Registers Window » permettant de visualiser les contenus des registres internes du microprocesseur.

. Exécuter pas à pas (instruction par instruction) le programme à l'aide de la commande « Step Over » et observer le changement des contenus des registres, ainsi que l'état de chaque indicateur : C, V, Z et N.

Remarque:

Pour une exécution totale du programme, utiliser la commande « Run

