Санкт-Петербургский политехнический университет Петра Великого Институт машиностроения, материалов и транспорта Высшая школа автоматизации и робототехники

ОТЧЁТ

по лабораторной работе №2

Дисциплина: Программирование микро	оконтроллеров дл	я управления
роботами		
Тема: Вторичный источник питания		
Студент гр. 3331506/70401	<подпись>	Я. А. Шкабара
Преподаватель	<подпись>	Д. А. Капустин
	<pre></pre> <pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><p< td=""><td> 2021 г.</td></p<></pre>	2021 г.

Санкт-Петербург 2021

СОДЕРЖАНИЕ

Задание на лабораторную работу	3
1 Микросхема LMR64010	4
1.1 Описание микросхемы LMR64010	4
1.2 Расчет параметров и элементов обвязки LMR64010	6
2 Микросхема TPS26600	10
2.1 Описание микросхемы TPS26600	10
2.2 Расчет параметров и элементов обвязки TPS26600	13
3 Иные компоненты	15
3.1 Разъемы	15
3.2 Диодная сборка	15
3.3 Светодиод	15
СПИСОК ЛИТЕРАТУРЫ	16

Задание на лабораторную работу

Разработать DC/DC повышающий преобразователь напряжения LMR64010. 12B/24B c Мощность использованием микросхемы преобразователя 10 Вт. Преобразователь должен обеспечивать работу в диапазоне входных напряжений от 9 В до 15 В, а также должен быть защищен от перенапряжения на входе. В устройстве должна присутствовать индикация напряжения питания на выходе. Устройство должно быть защищено от КЗ на выходе источника.

1 Микросхема LMR64010

1.1 Описание микросхемы LMR64010

LMR64010 [1] — это повышающий преобразователь напряжения, работающий на фиксированной частоте 1.6 МГц в токовом режиме. Характеристики микросхемы представлены в таблице 1.

Таблица 1 – Характеристики микросхемы LMR64010

Параметр		Значение
V_{IN}	Входное напряжение, В	От 2.7 до 14
V_{OUT}	Выходное напряжение, В	До 40
I_{SW}	Максимальный коммутируемый ток, А	1*
F_{SW}	Частота переключения, МГц	1.6
D_{MAX}	Максимальный рабочий цикл, %	93

^{*} Максимальный коммутируемый ток зависит от рабочего цикла ([1], рисунок 20)

На рисунке 1 представлена схема микросхемы LMR64010 в корпусе SOT-23 с указанием выводов.

Рисунок 1 – Расположение выводов микросхемы LMR64010

Назначение каждого из выводов описано в таблице 2.

Таблица 2 – Описание выводов микросхемы LMR64010

Вывод	Название	Описание	
1	SW	Сток внутреннего полевого транзистора. Выход микросхемы.	
2	GND	Аналоговая и цифровая земля.	
3	FB	Обратная связь по выходному напряжению. Подключается к внешнему резистивному делителю напряжения.	
4	SHDN	Вывод для выключения микросхемы. При подаче напряжения больше 1.5 В микросхема включена. При подаче напряжения меньше 0.5 В микросхема выключена.	
5	V _{IN}	Аналоговый и цифровой вход	

На рисунке 2 изображена микросхема LMR64010 с элементами обвязки.

Рисунок 2 – Элементы обвязки микросхемы LMR64010

Далее эти обозначения элементов обвязки будут использоваться при их расчете.

1.2 Расчет параметров и элементов обвязки LMR64010

Ток нагрузки I_{LOAD} , А определяется по формуле

$$I_{LOAD} = \frac{P}{V_{OUT}},\tag{1}$$

где P — мощность преобразователя, B_{T} .

По заданию P = 10 Вт, $V_{OUT} = 24$ В. По формуле (1) получаем

$$I_{LOAD} = \frac{P}{V_{OUT}} = \frac{10}{24} = 0.417 \text{ A}.$$

Рабочий цикл определяется [2] из выражения

$$D = 1 - \frac{V_{IN(min)} \cdot \eta}{V_{OUT}},\tag{2}$$

где $V_{IN(min)}$ – минимальное входное напряжение, В;

 η – КПД микросхемы.

Интерполируя график зависимости максимального тока нагрузки $I_{LOAD(max)}$ от входного напряжения ([1], рисунок 21), можно заметить, что при V_{IN} меньше 11 В, максимальный ток нагрузки будет меньше требуемого.

Поэтому возникает необходимость ограничить снизу входное напряжение до 11 В, для чего будет использована микросхема TPS26600 [3], которая описана в разделе 2.1.

Коэффициент полезного действия (КПД) микросхемы определяется с помощью интерполяции графика зависимости КПД от тока нагрузки ([1], рисунок 11).

Принимая $V_{IN(min)} = 11~{\rm B}$ и $\eta = 0.88$ по формуле (2) получаем

$$D = 1 - \frac{11 \cdot 0.88}{24} = 0.597$$

Средний ток через катушку индуктивности $I_{IND(avg)}$, А можно найти из выражения

$$I_{LOAD} = I_{IND(ava)} \cdot (1 - D) \tag{3}$$

Отсюда

$$I_{IND(avg)} = \frac{I_{LOAD}}{(1-D)} = \frac{0.417}{(1-0.597)} = 1.033 \text{ A}$$

Максимальный ток на стоке транзистора определяется по формуле

$$I_{SW} = I_{IND(avg)} + \frac{1}{2} \cdot I_{RIPPLE} , \qquad (4)$$

где I_{RIPPLE} — разница между наибольшим и наименьшим значениями тока через индуктивность, А.

Согласно графику зависимости максимального тока на стоке транзистора $I_{SW(max)}$ от D ([1], рисунок 20), $I_{SW(max)}$ должно быть не больше 1.25 A.

Тогда из формулы (4) можно вычислить

$$I_{RIPPLE} < 2 \cdot (I_{SW(max)} - I_{IND(avg)});$$

 $I_{RIPPLE} < 2 \cdot (1.25 - 1.033);$
 $I_{RIPPLE} < 0.434 \text{ A}$

 I_{RIPPLE} может быть найдено по формуле (5)

$$I_{RIPPLE} = \frac{D \cdot (V_{IN} - V_{SW})}{F_{SW} \cdot L1},\tag{5}$$

где V_{SW} – напряжение на стоке транзистора, В;

L1 – индуктивность катушки, Гн.

 V_{SW} можно аппроксимировать как произведение $I_{IND(avg)}$ и сопротивления транзистора $R_{DS(ON)}$, Ом

$$V_{SW} = I_{IND(avg)} \cdot R_{DS(ON)} \tag{6}$$

По графику зависимости $R_{DS(ON)}$ от V_{IN} ([1], рисунок 8) определяем сопротивление транзистора: $R_{DS(ON)} = 0.44$ Ом.

По формуле (6) получаем

$$V_{SW} = 1.033 \cdot 0.44 = 0.45 \text{ B}$$

Выразим из формулы (5) L и подставим численные значения

$$\frac{D \cdot (V_{IN} - V_{SW})}{F_{SW} \cdot L} < 0.434;$$

$$L > \frac{D \cdot (V_{IN} - V_{SW})}{F_{SW} \cdot 0.434};$$

$$L > \frac{0.597 \cdot (12 - 0.45)}{1.6 \cdot 10^6 \cdot 0.434};$$

$$L > 9.92 \cdot 10^{-6} \text{ FH}$$

Для запаса и с учетом точности изготовления выбираем индуктивность DEM8045Z-150M на 15 мкГн.

Выходное напряжение устанавливается при помощи резистивного делителя напряжения, состоящего из резисторов R1 и R2. Производитель рекомендует выбрать резистор R2 номиналом 13.3 кОм. Выбираем резистор с номинальным сопротивлением 13 кОм - RC0603FR-0713KL.

Сопротивление резистора R1 можно вычислить по следующей формуле

$$R1 = R2 \cdot \left(\frac{V_{OUT}}{V_{FB}} - 1\right),\tag{7}$$

где V_{FB} — напряжение на выводе FB, В.

Согласно руководству к микросхеме, $V_{FB}=1.23~\mathrm{B}$. Подставим числовые значения в формулу (7)

$$R1 = 13 \cdot \left(\frac{24}{1.23} - 1\right) = 240.7 \text{ кОм}$$

Выбираем резистор RC0603FR-07240KL с номинальным сопротивлением 240 кОм.

По рекомендации производителя для входного конденсатора C1 выбираем керамический конденсатор емкости 2.2 мкФ CC0603KRX5R7BB225.

Емкость конденсатора в цепи обратной связи можно рассчитать по следующей формуле

$$CF = \frac{1}{2\pi \cdot R1 \cdot fz},\tag{8}$$

где fz = 8 к Γ ц.

Подставим численные значения в формулу (8)

$$CF = \frac{1}{2\pi \cdot 240 \cdot 10^3 \cdot 8 \cdot 10^3} = 82.9 \cdot 10^{-12} \,\Phi$$

Выберем конденсатор CC0603JRNPO7BN820 с номинальной емкостью 82 пФ.

Выходной конденсатор C2 по рекомендации производителя микросхемы выбираем керамический емкостью 4.7 мкФ - CC0805KRX5R9BB475.

Для диапазона выходных напряжений от 15 В до 25 В, производитель рекомендует использовать диод Шоттки MBR0530T1G с импульсным обратным напряжением 30 В.

Согласно руководству, выключение устройства осуществляется путем подачи на вывод \overline{SHDN} напряжения ниже 0.5 B, а сам вывод \overline{SHDN} подтягивается к выводу V_{IN} через резистор сопротивлением 50-100 кОм.

Выбираем резистор R3 номиналом 56 кОм RC0603FR-0756KL, а для подачи низкого напряжения соединяем вывод SHDN с землей с помощью 2-х позиционного переключателя SDA01H1SBD. Параллельно переключателю установим конденсатор CC0402KRX5R8BB104 емкостью 0.1 мкФ.

2 Микросхема TPS26600

2.1 Описание микросхемы TPS26600

TPS26600 — многофункциональный электронный предохранитель, обеспечивающий защиту от напряжения обратной полярности, перегрузки по току, подачи повышенного и пониженного напряжений, короткого замыкания. Кроме того, есть функция блокировки обратного тока и возможность контролировать скорость нарастания выходного напряжения.

Основные характеристики микросхемы TPS26600 представлены в таблице 3.

Таблица 3 – Характеристики мик	росхемы TPS26600
--------------------------------	------------------

Параметр	Значение
Входное напряжение, В	4.2 60
Максимальное напряжение обратной полярности, В	-60
Номинальный ток, А	0.1 2.23
Рабочая температура, °С	-40 125

На рисунке 3 представлена схема микросхемы TPS26600 в корпусе HTSSOP-16 с указанием выводов.

Рисунок 3 – Расположение выводов микросхемы TPS26600

Назначение каждого из выводов описано в таблице 4.

Таблица 4 – Описание выводов микросхемы TPS26600

Вывод	Название	Описание		
1, 2	IN	Подключается к источнику питания. Все IN выводы должны быть соединены вместе.		
3	UVLO	Вход для установки порога пониженного напряжения. Если напряжение на IN падает ниже заданного порога, внутренний полевой транзистор выключается, и сигнал об ошибке поступает на вывод FLT. Подключается к резистивному делителю напряжений между RTN и IN.		
4, 13	NC	Выводы ни к чему не подключаются.		
5	OVP	Вход для установки порога повышенного напряжения. Если на IN подается напряжение выше заданного порога, внутренний полевой транзистор выключается, и сигнал об ошибке поступает на вывод FLT. Подключается к резистивному делителю напряжений между RTN и IN.		
6	MODE	Вход для выбора реакции микросхемы на перегрузку.		
7	SHDN	Вход для выключения и перезагрузки микросхемы. Подача напряжения ниже 0.76 В выключает устройство. При подаче напряжения не меньше 1 В устройство будет включено.		
8	RTN	Базовый сигнал для внутренних цепей микросхемы.		
9	GND	Земля.		
10	IMON	Напряжение на этом выводе можно использовать для контроля тока, протекающего через микросхему.		
11	ILIM	Резистор между этим выводом и RTN устанавливает предел тока перегрузки и короткого замыкания.		

Продолжение таблицы 4

		Конденсатор между этим выводом и RTN
12 dVdT		устанавливает скорость нарастания выходного
		напряжения.
14 FLT		Сигнализирует о неисправностях в системе путем
14	LTI	установки низкого уровня напряжения.
15, 16 OUT		Все ОUТ выводы должны быть соединены между
		собой и подключены к нагрузке.
- PowerPAD		Должен быть подключен к RTN с использованием
		нескольких переходных отверстий для улучшения
		теплоотдачи.

Схема типового применения микросхемы TPS26600 для защиты устройств изображена на рисунке 4.

Рисунок 4 – Схема типового применения TPS26600

Обозначения, используемые на рисунке 4, будут использоваться при расчете компонентов обвязки микросхемы.

2.2 Расчет параметров и элементов обвязки TPS26600

Исходные параметры для расчета представлены в таблице 5.

Параметр	Значение	Описание
V_{IN}	12 B	Номинальное входное напряжение
V_{UV}	11 B	Нижний порог допустимого напряжения
V_{OV}	14 B	Верхний порог допустимого напряжения
I_{LIM}	0.417 A	Номинальная сила тока
C_{OUT}	2.2 мФ	Емкость нагрузки

Значение сопротивления резистора R_{ILIM} в кОм можно рассчитать по следующей формуле

$$R_{ILIM} = \frac{12}{I_{LIM}} \tag{9}$$

Подставим численные значения в формулу (9)

$$R_{ILIM} = \frac{12}{0.417} = 28.78 \text{ кОм}$$

Выберем резистор RC0603FR-0728K7L с номинальным сопротивлением 28.7 кОм.

Для определения резисторов в делителе напряжений воспользуемся следующими соотношениями

$$V_{OVPR} = \frac{R3}{R1 + R2 + R3} \cdot V_{OV} \,, \tag{10}$$

$$V_{UVLOR} = \frac{R2 + R3}{R1 + R2 + R3} \cdot V_{UV} , \qquad (11)$$

где V_{OVPR} — верхнее пороговое значение блокировки повышенного напряжения, В;

 V_{UVLOR} — верхнее пороговое значение блокировки пониженного напряжения, В;

Согласно руководству $V_{OVPR} = V_{UVLOR} = 1.19$ В.

Ток, протекающий через делитель напряжения, можно определить по следующей формуле

$$I_{R123} = \frac{V_{IN}}{R1 + R2 + R3} \tag{12}$$

Кроме того, в руководстве указано, что ток I_{R123} должен быть в 20 раз больше, чем ток утечки на выводах UVLO и OVP I_{LC} , максимальное значение которого составляет 100 нА.

Вычислим ток через делитель напряжения

$$I_{R123} = I_{LC} \cdot 20 = 100 \cdot 10^{-9} \cdot 20 = 2 \cdot 10^{-6} \text{ A}$$

Решая систему из трех уравнений (10), (11) и (12) с тремя неизвестными R1, R2, R3 получаем

$$R1 = 5350$$
 кОм,
 $R2 = 139$ кОм,
 $R3 = 510$ кОм

Выбираем резисторы RC0603FR-075M36L (R1) номиналом 5.36 Мом, RC0603FR-07140KL (R2) номиналом 140 кОм, RC0603FR-07510KL (R3) номиналом 510 кОм.

Согласно документации, в качестве входного конденсатора рекомендуется использовать полярный конденсатор емкостью от 0.1 до 1 мкФ. Выбираем конденсатор 293D105X9025A2TE3 емкостью 1 мкФ.

Для управления выводом SHDN используется тактовая кнопка поверхностного монтажа, параллельно которой ставится конденсатор CC0402KRX5R8BB104 емкостью 0.1 мкФ.

Также на выходе устанавливается диод Шоттки MBR0530T1G с импульсным обратным напряжением.

3 Иные компоненты

3.1 Разъемы

В качестве входного и выходного разъемов выбраны клеммные колодки от Molex 395021002 и 395021004 соответственно. Их параметры представлены в таблице 6.

Таблица 6 – Характеристики разъемов

Разъем Параметр	395021002	395021004
Число контактов	2	4
Максимальный ток на контакт, А	8.0	
Максимальное напряжение, В	300	
Диапазон рабочих температур, °С	-40 105	

3.2 Диодная сборка

Для защиты от повышенного напряжения при переходных процессах, а также от электростатического разряда, на входе устанавливаем двунаправленную диодную сборку 8.0SMDJ45CA с напряжением стабилизации 45 В.

3.3 Светодиод

Для индикации напряжения питания на выходе установим светлооранжевый светодиод TLMO1000-GS08, последовательно которому подключаем резистор RC0603FR-07270RL сопротивлением 270 Ом.

СПИСОК ЛИТЕРАТУРЫ

1. LMR64010 SIMPLE SWITCHER® 40Vout, 1A Step-Up Voltage Regulator in SOT-23 datasheet, URL:

 $\underline{https://www.ti.com/lit/ds/symlink/lmr64010.pdf}$

2. Basic Calculation of a Boost Converter's Power Stage, URL:

https://www.ti.com/lit/an/slva372c/slva372c.pdf

3. TPS2660x 60-V, 2-A Industrial eFuse With Integrated Reverse Input Polarity Protection datasheet, URL:

https://www.ti.com/lit/ds/symlink/tps2660.pdf