NPSmart Tool

Qualidade de dados

09/2017

Carlos Eduardo Covas Costa

Contents

Collecting

Database

Intelligence

Interface

Tool for
automatic data
Collecting
Easy adaptaion for
G/U/L

Database
customized for
Huawei
Engineering /
Easy data-mining,
analytics

Procedures Scripts
calculate KPIs
and correlate
Information;
Business
Model;
Machine Learning

Rich user interface focusing on Presentation and easy use / Customization

NPSmart tool - Designed Architecture

NPSmart tool - Prospect Technologies

Motivação

- Dificuldade maior para realização de tarefas de monitoramento e detecção de falhas.
- Necessidade de bases de dados confiáveis, com dados consistentes e sem dados faltantes.
 - •Sistema de monitoramento de qualidade de dados
- Aproveitar um sistema de monitoramento de qualidade dos dados para apresentar alertas de degradações.

Objetivo

- Utilizar Redes neurais para modelagem de séries temporais no contexto de indicadores de redes móveis.
- Comparar o desempenho da rede neural com o método estatísticos de análise de séries temporais ARIMA.
- Propor corredores de validação que apresentem níveis de credibilidade da amostra.
- Utilizar tais corredores para detectar intrusos, bem como gerar alertas de possíveis degradações na rede.

Introdução

- O processo de ETL, principalmente nas partes aquisição de dados, transformação de dados, cálculo de KPIs e agregação de KPIs, gera erros que comprometem a qualidade de dados. E.g.
 - dados faltantes oriundos de falha na aquisição dos dados ou erros na transformação devido a mudanças no formato.
 - agregações com menos amostras produzem valores errados por só considerarem parte da infomação
- Portanto, faz-se necessário a utilização de técnicas de modelagem de sistemas dinâmicos afim de introduzir um processo de monitoramento da qualidade de dados, que seja capaz de
 - •substituir amostras faltantes pelo valor previsto.
 - •detectar anomalias, infomando-as a um engenheiro para análise.

Introdução

Exemplos de gráficos retirados de bases com qualidade de dados ruim.

Introdução

Introdução - Qualidade de dados em Séries temporais[4]

Introdução - Análise de ST

- •Normalmente, os procedimentos de análise estatística de séries temporais supõe que estas sejam estacionárias.
- Desta forma, é necessário verificar a estacionariedade das séries temporais que se deseja modelar, assim como definir um procedimento para tornar estacionárias as que não o sejam previamente.
- Podemos considerar que cada série temporal é uma realização de um processo estocástico, afim de estender, para estas, o conceito de estacionariedade.

Definição: Um processo estocástico $Z = \{z(t), t \text{ pertencente } T\}$ é dito estacionário quando seus momentos estatísticos não variam no tempo[4]:

$$i \quad E\{z(t)\} = \mu(t) = \mu$$
 $ii \quad Var\{z(t)\} = \sigma^2(t) = \sigma^2$
 $iii \quad \gamma(t_1, t_2) = Cov\{z(t_1), z(t_2)\}$ é função somente de $|t_1 - t_2|$

Introdução - Análise de ST

- **Tendência** comportamento de longo prazo.
 - •Ex.: crescimento populational mostra uma tendência de aumento.
- **Ciclos** flutuações nos valores da variável que se repetem com certa periodicidade.
 - •Variações cíclicas de da economia como prosperidade, declínio, depressão e recuperação.
- Sazonalidade Comportamento sistemático e relacionado ao calendário. Pode ser identificado por intervalos regularmente espaçados de picos ou vales que ocorrem com a mesma magnitude, aproximadamente todo ano.
 - Ex.: acréscimo nas vendas de varejo em decorrência do natal
- Componente irregular Variações aleatórias causadas por fatores imprevisíveis.

Metodologia

- Neste trabalho a seguinte metodogia foi adotada para análise, tratamento e modelagem da séries temporais usadas.
 - Análise visual do comportamento da série, afim de notar variação dos momentos estatísticos.
 - Realização de teste ADF (Augmented Dickey-Fuller) para verificação de probabilidade de existência de raiz unitária.
 - Estimação da tendência determínistica
 - Utilização de FFT para detecção de sazonalidade.
 - Decomposição da série em Tendência, sazonalidade, ciclos senoidais e resíduo.
 - Visualização das funções de autocorrelação e correlação parcial.
 - Determinação da medida AIC para determinação do modelo ARIMA.
 - Teste de diferentes topologias de redes neurais perceptron de múltiplas camadas com uma camada intermediária.
 - Análise do histograma do erro
 - Determinação de corredores de validação para detecção de outliers.

Todo o trabalho foi feito utilizando a linguagem Python, principalmente as bibliotecas Numpy, Scipy, Pandas, Matplotlib e Keras.

Metodologia – Procedimento para estacionarização [4]

Metodologia

O modelo ARIMA de Box & Jenkins é um dos métodos mais utilizados na análise de séries temporais. Este possui restrições para séries lineares e estacionárias e assume que a série siga uma distribuição estatística conhecida (e.g. distribuição normal). Ele possui, como casos particulares, os métodos Autoregressivo (AR) e Médias móveis (MA), sendo o valor futuro de uma série univariada uma função linear de observações passadas e erros aleatórios.

No processo estocástico AR(p), o valor futuro de uma variável assumido como sendo uma combinação linear de p observações passadas e um erro aleatório juntamente com um termo constante

$$x(t) = C + \sum_{i=1}^{p} \alpha_i * x_{t-1} + \epsilon_t$$

onde alphai, alphap são os parâmetros e p a ordem do modelo, C uma constante e o erro aleatório e epsilon(t) um ruído branco.

No processo MA(q) os erros de previsões passados da equação de previsão são usados como a variável explicativa conforme fórmula abaixo:

onde theta i, thetaq sçao os parâmetros do modelo, q a ordem, a média das séries e epsilon(t), epsilont(t-1) os erros aleatórios.

$$x(t) = \mu + \epsilon_t + \sum_{i=1}^q \theta_i * \epsilon_{t-1}$$

Metodologia

A arquitetura mais tradicional no uso de RNAs na modelagem de séries temporais é a estrutura que propaga o sinal de entrada (feedforward, FF) através de camadas de neurônios e retropropaga o erro de saída (backpropagation, BP) para proceder o ajuste de pesos sinápticos.

O modelo Perceptron de múltiplas camadas é caracterizado por uma rede de duas ou mais camadas, sendo uma de entrada (input layer), uma ou mais camadas escondidas (hidden layer) e uma saída (output layer), conectada por links. Em previsão de séries, os dados de entrada consistem nos atrasos de tempo, ou os valores da séries nos instantes anteriores. [4]

Dataset

Conjunto de dados é composto por 1 célula de rede escolhida por apresentar comportamento crescente durante os meses e refere-se ao período de 1 de janeiro a 20 de abril.

Conjunto: 1278

Treinamento: 851 registros

Validação: 427

Dataset

ARIMA - Teste de estacionariedade

ARIMA - Diferenciação

$$\mathbf{M} = \begin{bmatrix} \dots 1 & -1 & 0 & 0 & 0 & 0 & 0 & \dots \\ \dots 0 & 1 & -1 & 0 & 0 & 0 & 0 & \dots \\ \dots 0 & 0 & 1 & -1 & 0 & 0 & 0 & \dots \\ \dots 0 & 0 & 0 & 1 & -1 & 0 & 0 & \dots \\ \dots 0 & 0 & 0 & 0 & 1 & -1 & 0 & \dots \\ \dots 0 & 0 & 0 & 0 & 0 & 1 & 1 & \dots \\ & & \vdots & & & \vdots & & & \end{bmatrix}$$

ARIMA - Correlograma

ARIMA - AIC

Akaike Information Critera (AIC) é uma medida de um modelo estatístico amplamente utilizada. O menor valor de AIC dentre os modelos indica o melhor modelo, qualitativamente, de acordo com:

- 1) o quão bom é o ajuste da curva
- 2) a simplicidade / parcimônia (menos é melhor)

Considerando as funções de autocorrelação e correlação parcial anteriores e o valor de menor AIC, o modelo ARIMA(1,0,1) foi escolhido.

ARIMA(p,q)	p em AR(P)					
		1	2	3	4	5
	1	-1211.727	-1254.398	-1253.182	-1223.842	-1259.822
q em AR(Q)	2	-1238.993	-1253.597	-	-1259.717	-1259.290
q em Ak(Q)	3	-1244.571	-1256.229	-1256.818	-1264.865	-1272.758
	4	-1254.216	-1257.647	-1266.030	-1289.770	-1253.271
	5	-1259.650	-1310.505	-1266.839	-1288.593	-1288.886

ARIMA – Previsão da séries

Fase	Algoritmo	MSE	RMSE	MAE	MAPE[%]
Treinamento	ARIMA(1,0,1)	40.26	6.34	4.19	7.53
Teste	ARIMA(1,0,1)	52.82	7.26	5.82	7.61

PMCs – FFT: Análise de sazonalidade

PMCs – Decomposição da ST

PMCs – Parâmetros e topogias

Parâmetros	Valores		
Treinamento	Batch		
Normalização	Média 0,desvio padrão 1		
Epochs	15,200,400		
Camada de Entrada	[1,2,3,4]		
Camada de Intermediária	[4,8,12,24]		
Camada de saída	1		
Ativação Camada intermediária	Tanh		
Ativação Camada de saída	Linear		
Taxa de aprendizado	0.01		
Momento	Não		
Otimizador	SGD,Adam		
Função Objetivo	MSE		

Fase	Entrada	Camada Escondida	MSE	MAE	t(s)	
Train	4	24	0.66443064	0.633254529	49.26199985	
Train	4	8	0.66959015	0.633496375	52.16599989	
Train	4	12	0.668339526	0.634134868	49.31599998	
Train	4	24	0.689114527	0.641279221	13.78499985	
Train	4	4	0.684734273	0.643728727	48.8039999	
Train	3	4	0.69310642	0.645602808	50.12599993	
Train	3	8	0.693184518	0.646302925	55.98100019	
Train	3	24	0.702653597	0.646564	13.61300015	
Train	3	24	0.693573354	0.646725996	51.95200014	
Train	3	12	0.695044533	0.647048557	52.6960001	
Train	4	8	0.693317068	0.647388133	13.35299993	
Train	3	8	0.70556116	0.649542769	13.96500015	
Train	1	5	0.71641991	0.650716314	194.6859999	
Train	1	10	0.715563813	0.651798362	202.7120001	
Train	2	12	0.704371876	0.65181259	55.28499985	
Train	1	11	0.716102922	0.652049625	202.503	
Train	1	8	0.715838921	0.652101496	57.31100011	
Train	1	12	0.71580209	0.652152277	198.494	
Train	1	7	0.715776916	0.65264086	199.9980001	
Train	1	8	0.715578771	0.652828903	197.3710001	
Train	2	24	0.710322411	0.652888051	13.59599996	
Train	1	4	0.718290273	0.652956188	197.7509999	
Train	2	24	0.705747139	0.652971368	52.65100002	
Train	2	12	0.707794618	0.653268885	13.01499987	
Train	2	4	0.704041132	0.653401503	53.5769999	
Train	1	9	0.716143363	0.653456879	199.118	
Train	2	8	0.708533925	0.653514268	53.26800013	
Train	1	6	0.716273368	0.653975421	201.8380001	
Train	1	8	0.723091909	0.654676064	12.87199998	
Train	1	4	0.718556904	0.654676774	52.57300019	
Train	3	12	0.71127453	0.654719657	16.73599982	
Train	1	24	0.72788125	0.654836471	12.4230001	
Train	2	8	0.712739858	0.654904667	13.74699998	
Train	1	24	0.717632553	0.654949523	60.60599995	
Train	1	3	0.717719095	0.654962245	198.5680001	

PMCs – Validação cruzada 10fold

PMCs - Validação cruzada 10fold

PMCs – Previsão da série

PMCs – Previsão da série

PMCs – Histograma do erro

PMCs – Corredores de validação

Para gerar os corredores validação, partiu-se do princípio de que os outliers podem ser identificados através da análise do erro de previsão $e(T) = x(T) - x^{-}(T)$, onde $x^{-}(T)$ é o valor predito pelo modelo para o instante T e x(T) é o valor coletado pelo sistema nesse instante.

Intuitivamente, sabe-se que, se este <u>erro é grande o suficiente, podemos concluir que a observação x(T) contém erro ou foi gerada</u> <u>por um processo diferente</u>. Dessa forma, o teste de verificação de outliers assume forma:

$$\left|\frac{e(T)}{\hat{\sigma}_e}\right| > k$$

Onde tipicamente 4 < k < 5, tendo seu valor ajustado de acordo com a série e com o modelo desenvolvido. O valor sigma é correspondende ao valor RMS da distribuição dos valores do erro e(T) acumulados até o instante (t-1). [4] Assim, a largura total do corredor vale 2k*sigmae, e os limites são:

$$xI(T) = x^{\sim}(T) - k*sigmae$$

 $xS(T) = x^{\sim}(T) + k*sigmae$

PMCs – Corredores de validação

2 Outliers foram adicionados à série para verificação dos corredores.

PMCs – Corredores de validação

Corredores de validação utilizando k=2 e k=3.

Os pontos da série abaixo correspondem ao valor real medido, presente no dataset de teste.

Avaliação

MSE - Mean Squared Error

RMSE - Root Mean Squared Error

MAE - Mean Absolute Error

MAPE - Mean Absolute Percentage Error

Fase	Algoritmo	MSE	RMSE	MAE	MAPE[%]
Treinamento	ARIMA(1,0,1)	40.26	6.34	4.19	7.53
Teste	ARIMA(1,0,1)	52.82	7.26	5.82	7.61
Treinamento	MLP(4,24,1)	11.96	3.45	2.6	3.95
Teste	MLP(4,24,1)	12.19	3.49	2.55	3.35

Conclusão

- Este trabalho apresentou um estudo sobre modelagem e previsão de séries temporais no contexto de modelagem de séries de indicadores (KPIs) de um rede de telefonia móvel.
- Foi proposto uma metodologia de qualidade de dados para o contexto de bases de dados de indicadores de rede móvel.
- A rede PMCs apresentou desempenho superior à modelagem clássica ARIMA.
- Para criação de corredores de validação foi utilizado o valor RMS da distribuição dos valores do erro e(T) acumulados até o instante (t-1).
- Em trabalho futuros
 - datasets maiores devem ser utilizados;
 - prever valores futuros de longo prazo;
 - testar diferentes arquiteturas de redes, como redes recorrentes.
 - Utilizar séries adicionais que apresentem correlação cruzada na modelagem das séries alvo.
 - Testar diferentes metodologias de corredores de validação em séries que contenham intrusos conhecidos.

Referências

- [1] Calôba L. P. Introdução ao Uso de Redes Neurais na Modelagem de Sistemas Dinâmicos e Séries Temporais, Livro de Minicursos do XIV Congresso Brasileiro de Automática, Natal, 2002.
- [2] Uso de um processo ETL em um modelo Data Warehouse para a geração de dashboards de indicadores de redes de telefonia celular
- [3] 3GPP "Specification". 2015. Disponível em: https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2026
- [3] Dantas A. C. H. Sistema de Monitoração de Qualidade de Dados, Tese de Doutorado.
- [4] Almeida, D.M., Daniel C. Cunha, D.C., Neto, P. S. G. M., A Proposal of an Intelligent Forecasting System for Automotive Diagnostics using Time Series Analysis. UFPE.
- [5] Guedes, E. B., Lima, P. M., Oliveira, M. B. L.. Neural Networks for Time Series Rainfall Forecasting: A Case Study in Manaus, Amazonas. Universidade Estadual do Amazonas.
- [6] Dong, X., Fan, W., Gu, J. Predicting LTE Throughput Using Traffic Time Series. Beijing University of Posts and Telecommunications
- [7] Adhikari, R., Agrawal, R.K., An Introductory Study on Time Series Modeling and Forecasting.

Obrigado

<u>Carlos Eduardo Covas Costa</u> <u>kaducovas@gmail.com</u> <u>https://github.com/kaducovas/timeSeries</u>