

嵌入式系统复习

杨光华

物联网与物流工程研究院 / 电气信息学院

办公室: 行政楼 631

电邮: ghyang@jnu.edu.cn 电话: 8505687

声明:课件中的部分文字、图片、视频等源于网络,相应版权属于原创作人

第1章 绪论

- 嵌入式系统一般定义:以应用为中心、以计算机技术为基础、软件硬件可裁剪、 适应应用系统对功能、可靠性、成本、体积、功耗严格要求的专用计算机系统
- 嵌入到对象体系中的专用计算机系统(对象系统是指嵌入式系统所嵌入的宿主系统)
- 嵌入式系统组成
- 通用计算机与嵌入式系统对比
- 嵌入式系统与单片机对比
- 嵌入式系统的特点
- 嵌入式系统的分类
 - 按系统响应时间分类
 - 按确定性来分类

第2章 嵌入式系统设计与开发方法

- •什么是嵌入式处理器、主要特点
- •嵌入式处理器分类:MPU、MCU、DSP、SoC
- 存储器系统的层次结构
- 主流易失性存储器与非易失性存储器

第3章 嵌入式微处理器

- •冯•诺依曼 结构 与 哈佛 结构
- •复杂指令集系统CISC 与 精简指令集系统

RISC

类别	CISC	RISC
指令系统	指令数量很多	较少,通常少于100
执行时间	有些指令执行时间很长,如整块的存储器内容复制;或将多个寄存器的内容复制到存储器	没有较长执行时间的指令
编码长度	编码长度可变,1~15字节	编码长度固定,通常为4个字节
寻址方式	寻址方式多样	简单寻址
操作	可以对存储器和寄存器进行算术 和逻辑操作	只能对寄存器进行算术和逻辑操作,Load / Store体系结构
编译	难以用优化编译器生成高效的目 标代码程序	采用优化编译技术,生成高效的目 标代码程序

第3章 嵌入式微处理器

- •流水线技术(概念、核心思想)
- •数据存储格式
 - •小端 (little endian) 模式
 - •大端 (big endian) 模式

第3章 嵌入式微处理器

- •嵌入式微处理器的特点
 - 体积小、重量轻、成本低、可靠性高
 - •功耗低
 - •工作温度、抗电磁干扰、可靠性等方面增强
- •主流嵌入式微处理器

第4章 ARM基础

- •ARM含义、ARM处理器特点
- •Cortex处理器的分类与应用领域
- •ARM内核后缀命名含义与扩展支持
- •ARM处理器的工作模式:7种工作模式、异常模式、特权模式
- •ARM的两种工作状态:ARM vs. Thumb

第4章 ARM基础

•ARM的寄存器组织

- •通用寄存器
 - 数量
 - 未分组寄存器R0~R7
 - 分组寄存器R8~R14
 - R13、R14
 - R15
- •程序状态寄存器
 - 数量
 - CPSR
 - SPSR
 - 各状态位含义与作用

第4章 ARM基础

•异常:

- •概念、异常处理过程
- 异常中断类型与中断向量地址
- •中断向量表
- •异常中断的优先级

第5章 S3C2410处理器概述与嵌入式系统架构

- •S3C2410的概况
- •设备控制器
 - •概念
 - •组成结构
 - •寄存器

- •线性稳压器 vs 开关稳压器
- •多功能监控电路的功能
- •JTAG测试技术概念、用途、接口信号
- •4种电源管理模式

- •主存 vs 外存
- •ROM的分类与特点
 - 掩模ROM
 - PROM
 - EPROM
 - EEPROM
 - Flash
 - NOR Flash vs NAND
 Flash
 - · S3c2410的自动导入模式

•DMA的优点:可以不通过CPU的中断来实

现数据的传输

•DMA的工作过程

- •利用ADC测量电阻式触摸屏按压点的方法
- •中断仲裁:名词解释
- PWM: 概念、应用
- UART
 - •工作原理、组成部分、帧格式
 - 奇偶校验: 概念、应用、局限性
 - •信号电平
- RS232
 - •接口标准
 - •信号电平

•SPI系统组成、工作原理

•I2C系统组成、工作原理

特性	UART	SPI	I2C
名称	Universal Asynchronous Receiver Transmitter 通用异步收发器	Serial Peripheral Interface 串行外设接口	Inter-Integrated Circuit
接口	TxD、RxD	SCLK、MOSI、MISO、CS	SDA、 SCL
通信方式	异步、全双工	同步、全双工	同步、半双工
数据率	低:<115200bps,提前商定	高:10Mbps-20Mbps	中:100Kbps, 400Kbps, 3.4Mbps
主设备数量	不适用、对等总线	唯一(非对等主从总线)	一个或多个(非对等主从总线)
从设备选择	不适用、对等总线	通过片选线来区分	通过地址来区分
硬件复杂度	低	较高	低
协议复杂度	低	较低	较高
特性	常用于处理器与其他外设进行 通信;外接不同的电平转换IC 可以组建RS232 485等通信接口	一般用于同一板卡上芯片 之间的通信,较少用于远 距离通信	一般用于同一板卡上芯片间通信,较少用于远距离通信;开漏输出,必须外接上拉电阻

- •RTC:应用、结构、为何多选用32.768KHz 晶振
- •USB:拓扑结构(树状结构)、USB接口逻辑组成、USB总线特点
- •看门狗:定义、用途、原理

第7章 嵌入式软件系统基础

- •软件:定义、组成
- •嵌入式软件分类
- •嵌入式软件系统
 - ·体系结构:4层结构、各层的主要功能
 - •主要运行流程

第7章 嵌入式软件系统基础

- •嵌入式操作系统
 - •特点
 - •组成
 - 内核:主要功能
 - 任务管理:主要功能、基于静态优先级的可抢占调度

第7章 嵌入式软件系统基础

- •交叉开发环境:定义、主要工具、组成(宿主机、目标机)
- •嵌入式软件实现阶段的开发过程
 - 软件的生成:编写、编译(交叉编译)、链接三过程
 - •调试:交叉调试、常见的调试方法
 - •固化运行

第8章 嵌入式系统开发

- •嵌入式系统开发流程
- 嵌入式系统设计要解决的主要问题
- •系统需求分析
 - •目的
 - •产出物
 - •需求的种类

第8章 嵌入式系统开发

- 系统总体设计
 - 作用
 - 内容
- 软硬件划分
 - 决策依据
 - 双重性是划分决策的前提
 - 通常由软件实现的功能
 - 具有双重性的功能
- 处理器的选择依据
- 操作系统选定的选择依据

第8章 嵌入式系统开发

- •硬件设计制作 流程
- •Gerber文件的作用
- •原材料清单BOM
- •软硬件协同设计
 - •软硬件协同设计目的
 - 软硬件协同设计过程

