3 Estymacja punktowa

Niech $\textbf{\textit{X}}=(X_1,X_2,...,X_n)'$ $\textbf{\textit{X}}=(X_1,X_2,...,X_n)'$ będzie próbą z populacji o rozkładzie $P_\theta P_\theta$, gdzie $\theta \in \Theta \theta \in \Theta$ jest parametrem.

DEFINICJA

Estymatorem parametru $\theta\theta$ nazywamy statystykę T(X)T(X), o wartościach w zbiorze $\Theta\Theta$, której wartość, dla konkretnej realizacji xx próby XX, przyjmujemy za ocenę nieznanej wartości parametru $\theta\theta$ (ozn. $\hat{\theta}(X)\hat{\theta}(X)$ lub \$\$).

Popularne Metody wyznaczania estymatorów (punktowych):

- 1. metoda momentów,
- 2. metoda największej wiarogodności,
- 3. metoda najmniejszych kwadratów.

Metoda momentów

Niech $\mathbf{X} = (X_1, X_2, ..., X_n)' \mathbf{X} = (X_1, X_2, ..., X_n)'$ będzie próbą z populacji o rozkładzie $P_{\theta}P_{\theta}$, gdzie $\theta \in \Theta \subset \mathbf{R}^d \theta \in \Theta \subset \mathbf{R}^d$.

Ponadto, niech rozkłady $P_{\theta}P_{\theta}$ posiadają skończone momenty do rzędu dd włącznie.

Metoda momentów polega na przyrównaniu kolejnych dd momentów z próby $m_i = \frac{1}{n} \sum_{k=1}^n X_k^i$ $m_i = \frac{1}{n} \sum_{k=1}^n X_k^i$, i = 1, ..., di = 1, ..., d do odpowiednich momentów rozkładu populacji $\mathrm{E}(X^i)\mathrm{E}(X^i)$, i = 1, ..., di = 1, ..., d. Rozwiązują otrzymany w ten sposób układ równań uzyskujemy **estymatory metody momentów (EMM)**.

Uwaga: W metodzie momentów możemy zamiast momentów zwykłych, wykorzystać momenty centralne.

Metoda największej wiarogodności

Niech $\mathbf{X} = (X_1, X_2, ..., X_n)^{'} \mathbf{X} = (X_1, X_2, ..., X_n)^{'}$ będzie próbą z populacji o rozkładzie $P_{\theta}P_{\theta}$, gdzie $\theta \in \Theta \subset \mathbf{R}^d \theta \in \Theta \subset \mathbf{R}^d$.

Ponadto, niech rozkłady $P_{\theta}P_{\theta}$ opisane będą za pomocą funkcji prawdopodobieństwa (gęstości) $p_{\theta}p_{\theta}$.

DEFINICJA

$$L(\theta; \mathbf{x}) = p_{\theta}(\mathbf{x})$$

nazywamy funkcją wiarogodności.

Uwaga! Funkcją wiarogodności nazywamy czasem funkcję $\ln p_{\theta}(\mathbf{x}) \ln p_{\theta}(\mathbf{x})$.

DEFINICJA

Estymatorem największej wiarogodności (ENW) parametru $\theta\theta$ nazywamy statystykę $\hat{\theta}(X)$ $\hat{\theta}(X)$, której wartości $\hat{\theta}(x)\hat{\theta}(x)$ spełniają warunek:

$$\forall \mathbf{x} \in \mathbf{X} \colon L(\hat{\theta}(\mathbf{x}); \mathbf{x}) = \sup_{\theta \in \Theta} L(\theta; \mathbf{x}).$$

Uwagi!

- 1. Dla danego parametru $\theta\theta$, ENW może nie istnieć lub może być wyznaczony niejednoznacznie.
- 2. Zazwyczaj, podczas wyznaczanie ENW, wygodniej jest operować funkcją $\ln L \ln L$ niż funkcją LL.

Przykład 1. Estymacja parametru $\lambda\lambda$ w modelu wykładniczym

Estymatorem metody momentów (EMM) oraz estymatorem największej wiarogodności (ENW) parametru $\lambda\lambda$, w modelu jednej próby prostej z rozkładu wykładniczego, jest statystyka

$$\hat{\lambda} = \frac{1}{\bar{X}}.$$

Przykład 2. Estymacja parametrów $\mu\mu$ i $\sigma^2\sigma^2$ w modelu normalnym}

Estymatorami metody momentów (EMM) oraz estymatorami największej wiarogodności (ENW) parametrów $\mu\mu$ i $\sigma^2\sigma^2$, w modelu jednej próby prostej z rozkładu normalnego, są statystyki

$$\hat{\mu} = \bar{X}$$

oraz

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{k=1}^{n} (X_k - \bar{X})^2.$$

Estymatory nieobciążone

Niech $\theta \in \Theta \theta \in \Theta$ oznacza parametr modelu statystycznego.

DEFINICJA

Statystykę $\hat{\theta}\hat{\theta}$ nazywamy **estymatorem nieobciążonym** parametru $\theta\theta$, gdy dla każdego $\theta\in\Theta$:

$$E(\hat{\theta}) = \theta$$
.

Uwaga! Klasa estymatorów nieobciążonych danego parametru może być pusta. Zazwyczaj jednak, dla danego parametru istnieje wiele różnych estymatorów nieobciążonych. Najlepszym z nich jest ten, który ma minimalną wariancję - estymator nieobciążony o minimalnej wariancji (ENMW).

TWIERDZENIE

Jeżeli dla parametru $\theta\theta$ istnieje estymator nieobciążony o minimalnej wariancji, to jest on wyznaczony jednoznacznie (z dokładnością do zbioru miary zero).

Przykład 3.

W modelu jednej próby prostej z rozkładu wykładniczego, EMM i ENW parametru $\lambda\lambda$ postaci

$$\hat{\lambda} = \frac{1}{\bar{X}}$$

jest obciążonym estymatorem tego parametru.

Estymator nieobciążony (o minimalnej wariancji) parametru $\lambda\lambda$ ma postać:

$$\hat{\lambda} = \frac{n-1}{n\bar{X}}$$

Przykład 4.

W modelu jednej próby prostej z rozkładu normalnego, EMM i ENW parametru $\mu\mu$ postaci

$$\hat{\mu} = \bar{X}$$

jest nieobciążonym (o minimalnej wariancji) estymatorem tego parametru.

Ponadto, statystyka

$$\hat{\sigma}^2 = S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$$

jest nieobciążonym (o minimalnej wariancji) estymatorem parametru $\sigma^2\sigma^2$.

Rozkłady estymatorów

DEFINICJA

Niech $X_1, X_2, ..., X_n X_1, X_2, ..., X_n$ będą niezależnymi zmiennymi losowymi o jednakowym rozkładzie N(0,1)N(0,1).

Mówimy, że zmienna losowa

$$X_1^2 + X_2^2 + \dots + X_n^2$$

ma rozkład **chi-kwadrat** z nn stopniami swobody (ozn. $\chi^2(n)\chi^2(n)$).

FAKT

$$f(x) = \frac{1}{2^{n/2} \Gamma(n/2)} x^{(n/2) - 1} e^{-(x/2)}, \quad x > 0.$$

Model wykładniczy

Niech $\textbf{\textit{X}}=(X_1,X_2,...,X_n)^{'}\textbf{\textit{X}}=(X_1,X_2,...,X_n)^{'}$ będzie próbą z populacji o rozkładzie wykładniczym $Ex(\lambda)Ex(\lambda)$, gdzie $\lambda>0\lambda>0$ jest parametrem. Estymator nieobciążony (o minimalnej wariancji) parametru $\lambda\lambda$ ma postać:

$$\hat{\lambda} = \frac{n-1}{n\bar{X}}$$

Jaki rozkład ma estymator $\hat{\lambda}\hat{\lambda}$?

FAKT

W modelu jednej próby prostej z rozkładu wykładniczego, funkcja

$$2n\lambda \bar{X} \sim \chi^2(2n)$$
.

Model normalny

Niech $\textbf{\textit{X}}=(X_1,X_2,...,X_n)^{'}$, n>1 będzie próbą z populacji o rozkładzie normalnym $N(\mu,\sigma^2)$, gdzie μ i σ^2 są parametrami. Estymatory nieobciążone (o minimalnej wariancji) parametrów μ i σ^2 mają postać:

$$\hat{\mu} = \overline{X}, \quad \hat{\sigma}^2 = S^2.$$

Jakie rozkłady mają estymatory $\hat{\mu}$ i $\hat{\sigma}^2$?

TWIERDZENIE (Fishera)

W modelu jednej próby prostej z rozkładu normalnego

$$\bar{X} \sim N(\mu, \frac{\sigma^2}{n})$$
 i $\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$.

Ponadto estymatory

$$\bar{X}$$
 i S^2

są niezależnymi zmiennymi losowymi.

Metoda Monte Carlo

Niech $\textbf{\textit{X}}=(X_1,X_2,...,X_n)^{'}$ będzie próbą z populacji o rozkładzie P_{θ} , gdzie θ jest parametrem.

Ponadto niech

$$\hat{\theta} = T(X)$$

będzie estymatorem parametru θ .

Załóżmy, że dysponujemy k niezależnymi realizacjami próby $\textbf{\textit{X}}: \textbf{\textit{x}}_1, \textbf{\textit{x}}_2, ..., \textbf{\textit{x}}_k$ oraz że $\hat{\theta}_i = T(\textbf{\textit{x}}_i)$, i=1,2,...,k.

FAKT

Histogram wartości $\hat{\boldsymbol{\theta}}_1 = T(\boldsymbol{x}_1), \, \hat{\boldsymbol{\theta}}_2 = T(\boldsymbol{x}_2), \, ..., \, \hat{\boldsymbol{\theta}}_k = T(\boldsymbol{x}_k)$ jest dla dużych k, dobrym przybliżeniem rozkładu $\hat{\boldsymbol{\theta}}$.

Metoda bootstrapowa

Niech $X = (X_1, X_2, ..., X_n)'$ będzie próbą z populacji o rozkładzie P_{θ} , gdzie θ jest parametrem.

Ponadto niech

$$\hat{\theta} = T(X)$$

będzie estymatorem parametru θ oraz F oznacza dystrybuantę rozkładu P_{θ} .

Dystrybuantą empiryczną nazywamy statystykę:

$$\hat{F}(x) = \frac{\#\{k: X_k \le x\}}{n}.$$

TWIERDZENIE (Gliwenki-Cantelliego)

Niech $\textbf{\textit{X}}=(X_1,X_2,...,X_n)^{'}$ będzie próbą prostą z populacji o rozkładzie opisanym dystrybuantą F.

Wtedy

$$\sup_{-\infty < x < \infty} |\hat{F}(x) - F(x)| \to 0.$$

Próbą bootstrapową nazywamy próbę losową z rozkładu \hat{F} , ozn: $\boldsymbol{X}^{\star} = (X_{1}^{\star}, X_{2}^{\star}, ..., X_{n}^{\star})'$.

Uwaga: W celu otrzymania realizacji próby bootstrapowej dokonujemy *n*-krotnego losowania ze zwracaniem spośród wartości oryginalnej próby.

FAKT (Zasada bootstrap)

Rozkład statystyki $T(\boldsymbol{X}^{\star}) - \hat{\boldsymbol{\theta}}$, przy ustalonych wartościach $x_1, x_2, ..., x_n$ jest bliski rozkładowi $T(\boldsymbol{X}) - \boldsymbol{\theta}$.

Załóżmy, że dysponujemy k realizacjami próby bootstrapowej X^* : x_1^* , x_2^* , ..., x_k^* oraz że $\hat{\theta}_i^* = T(x_i^*)$, i = 1, 2, ..., k.

FAKT

Histogram wartości $\hat{\boldsymbol{\theta}}_1^* - \hat{\boldsymbol{\theta}}, \hat{\boldsymbol{\theta}}_2^* - \hat{\boldsymbol{\theta}}, ..., \hat{\boldsymbol{\theta}}_k^* - \hat{\boldsymbol{\theta}}$ jest dla dużych k, dobrym przybliżeniem rozkładu $\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}$.