MOWNIT

Laboratorium 4b – aproksymacja wielomianami trygonometrycznymi

Jakub Karbowski 10 maja 2022

Cel ćwiczenia

Dla zadanej funkcji

$$f(x) = e^{-2 \cdot \sin(x)} + 2 \cdot \cos(x)$$
$$x \in [-3\pi, 3\pi]$$

wyznaczyć funkcję aproksymującą wielomianami trygonometrycznymi. Sprawdzić wpływ liczby węzłów oraz układu funkcji bazowych na błąd aproksymacji.

1

Parametry doświadczenia

Język programowania:

· Julia

Typ zmiennoprzecinkowy:

· Float64

Obliczany błąd:

• sum err² =
$$\sum_{i=1}^{1000} [f(x_i) - g(x_i)]^2$$

Aproksymacja

Przyjęto funkcję aproksymującą postaci

$$g(x) = \frac{a_0}{2} + \sum_{k=1}^{m} \left[a_k \cos(kx) + b_k \sin(kx) \right]$$

Dla zadanych węzłów $x_i \in \{x_1, \dots, x_n\}$, współczynniki a_k oraz b_k obliczane są za pomocą wzorów¹

$$a_k = \frac{2}{n} \sum_{i=1}^n f(x_i) \cos(k z_i)$$

$$b_k = \frac{2}{n} \sum_{i=1}^n f(x_i) \sin(k z_i)$$

gdzie z_i to węzły przeskalowane do przedziału $[0,2\pi]$

$$Z_i = \frac{X_i}{3} + \pi \qquad X_i \in [-3\pi, 3\pi]$$

¹https:

^{//}eti.pg.edu.pl/documents/176593/26763380/Wykl_AlgorOblicz_3.pdf

Rysunek 1: n = 50, m = 1

Rysunek 2:
$$n = 50, m = 2$$

Rysunek 3: n = 50, m = 3

Aproksymacja zaczyna lepiej działać od m=3. Ma to prawdopodobnie związek z kształem funkcji (3 górki).

Widać, że dla takiego *m* przybliżenie jest o wiele lepsze od wielomianów algebraicznych.

Rysunek 4: n = 50, m = 5

Rysunek 5: n = 50, m = 6

Następny "skok" dokładności ma miejsce dopiero dla m=6. Jest to wielokrotność 3, co również sugeruje powiązanie z kształem funkcji.

Aproksymacja wielomianami algebraicznymi dalej słabo przybliża funkcję.

Rysunek 6: n = 50, m = 8

Rysunek 7:
$$n = 50, m = 9$$

Kolejny wzrost dokładności dla $m = 9 = 3 \cdot 3$.

Wielomiany algebraiczne dopiero teraz zaczynają przypominać trygonometryczne dla m=3.

Rysunek 8: n = 50, m = 12

Rysunek 9: n = 50, m = 15

Nawet dla m=15 wielomiany algebraiczne słabo przybliżają funkcję. Aproksymacja trygonometryczna robi to bardzo dobrze.

Zależność błędu od n i m

Rysunek 10: Zależność błędu od n i m

Zależność błędu od n i m

Zachowanie identyczne jak dla wielomianów algebraicznych.

Zwiększanie *n* powoduje zmniejszanie się błędu.

Błąd dąży do pewnej wartości minimalnej, charakterystycznej dla danego *m*.

Zależność błędu od n (algebraiczna vs. trygonometryczna)

Rysunek 11: Zależność błędu od n

Zależność błędu od n (algebraiczna vs. trygonometryczna)

Tabela 1: Błąd vs n, m = 5

n	Błąd (alg.)	Błąd (tryg.)
10	7033.59	1950.0
20	6854.63	1104.58
30	6815.69	1071.37
40	6794.89	1059.98
50	6782.74	1054.74
60	6775.1	1051.92
70	6770.02	1050.22
80	6766.48	1049.13
90	6763.93	1048.39
100	6762.03	1047.86

Zależność błędu od m (algebraiczna vs. trygonometryczna)

Rysunek 12: Zależność błędu od m

Zależność błędu od m (algebraiczna vs. trygonometryczna)

Tabela 2: Błąd vs m, n = 10000

m	Błąd (alg.)	Błąd (tryg.)
1	7796.52	8108.06
2	7762.93	8108.06
3	7274.56	1045.75
4	6768.27	1045.75
5	6753.77	1045.75
6	5949.73	95.7759
7	3179.21	95.776
8	2682.22	95.7761
9	1320.59	5.350 06
10	1089.35	5.350 12
11	989.207	5.350 18
12	730.957	0.198 476

Wnioski

- 1. Dla zadanej funkcji aproksymacja trygonometryczna sprawdza się znacznie lepiej niż algebraiczna.
- 2. Dla tej funkcji wartości *m* powinny być wielokrotnościami 3.
- Aproksymacja algebraiczna jest szybsza do obliczenia kiedy znamy współczynniki (wielomiany vs funkcje trygonometryczne).
- Łatwiej wyznaczyć współczynniki aproksymacji trygonometrycznej, ponieważ znamy gotowe wzory (brak układu równań).