Student Number: 1 eacher's Name:	Student Number:	Teacher's Name:
----------------------------------	-----------------	-----------------

North Sydney Boys High School

YEAR 12 Trial Higher School Certificate Examination

2002

Mathematics Extension 1

Time allowed -2 hours (plus 5 minutes reading time)

Attempt all questions on the writing paper supplied Write on one side of the paper only Start each question on a new page Write using black or blue pen Board approved calculators may be used A table of standard integrals is supplied All necessary working should be shown in every question

Total marks - 84

- Attempt Questions 1–7
- All questions are of equal value

Ouestion	Mark
1	
2	i.
3	
4	
5	
6	
7	
TOTAL	

Differentiate: (i) $\sin^2 x$ (a)

2

Marks

(ii) $\sin^{-1}(2x)$

- 2
- Find the coordinates of the point P which divides the interval AB internally in the (b) ratio 2:3 where A and B have coordinates (1, -3) and (6, 7) respectively.
- 2

Solve the inequality $\frac{2x+3}{x-4} > 1$ (c)

2

 $\int x\sqrt{x+1} dx$, using the substitution u = 1 + x(d)

3

(e)

1

Treatment and the search of th

PT is a tangent to the circle centre 0. (a) Find the sizes of the angles marked a and b giving reasons for your answers.

- (b) (i)
- Write down the expansion of $\tan (\alpha + \beta)$.

3

- Hence find the exact value of tan 75°. (ii)
- Consider the function (c)
- $f(x) = 3\cos^{-1}\left(\frac{x}{2}\right)$

1

(i) Evaluate f(2).

2

State the domain and range of y = f(x). (ii)

2

Draw the graph of y = f(x). (iii)

		100
 QUE	ESTION 3	Marks
(a)	Write $9 + 16 + 25 + \dots + n^2$ using \sum notation	1
(b)	Solve $\sin 2x = \cos x$ for $0 \le x \le 2\pi$	4
(c)	Find the indefinite integrals:	3
	(i) $\int \frac{dx}{x^2 + 4}$	
	(ii) $\int \sin^2 2x dx$	
(d)	Evaluate $\int_{0}^{\ln 3} \frac{e^{x} dx}{\sqrt{1+e^{x}}}$ using the substitution $u = e^{x}$.	4
QUE	ESTION 4	
(a)	The polynomial $P(x) = x^3 + ax^2 - 3ax$ has a factor $(x + 2)$. Find the value of a .	2
(b)	Express $\sqrt{3}\cos\theta + \sin\theta$ in the form $A\cos(\theta - \alpha)$. Hence solve the equation $\sqrt{3}\cos\theta + \sin\theta = 1$ for $-\pi \le \theta \le \pi$.	4
(c)	Differentiate $x \tan^{-1} x$ and hence evaluate $\int_{0}^{1} \tan^{-1} x dx.$	4

Sketch $y = \sin(\cos^{-1}x)$ showing clearly the domain and range.

(d)

2

- Marks
- (a) (i) Draw the graph of $y = e^{-x}$. By drawing another graph on the same set of axes, show that $f(x) = e^{-x} x + 1$ has exactly one root.
- 2
- (ii) Let x = 1 be a first approximation to the root. Apply Newton's method once to obtain another approximation. Answer to 3 significant figures.
- 3
- (b) Prove that $\frac{\cos ec \beta \cot \beta}{\cos ec \beta + \cot \beta} = \tan^2 \frac{\beta}{2}$. Hint: Let $\tan \frac{\beta}{2} = t$

(c) AB and CD are two intersecting chords of a circle and CD is parallel to the tangent to the circle at B.

Copy the diagram in your booklet.

Prove that AB bisects ∠CAD.

4

QUESTION 6

- (a) $P(4p,2p^2)$ is any point on the parabola $x^2 = 8y$. The tangent to the parabola meets the x-axis at M, and the y-axis at N.
 - (i) Show that the tangent at P is given by $y = px 2p^2$.

2

(ii) Find the co-ordinates of M and N.

2

(iii) Find the equation of the locus of the midpoint of MN as P varies.

2

(b) A spherical balloon leaks air such that the radius decreases at the rate of 5 mm/sec.

Calculate the rate of change of the volume of the balloon when the radius is 100mm.

3

(c) Evaluate $\sin^{-1}\left(\frac{1}{\sqrt{5}}\right) + \sin^{-1}\left(\frac{1}{\sqrt{10}}\right)$.

3

(a) (i) Given that $S_n = 1 \times 2 + 2 \times 3 + 3 \times 4 + \dots + n(n+1)$, show by mathematical induction,

$$S_n = \frac{n}{3}(n+1)(n+2)$$
, for all positive integers n.

(ii) Evaluate
$$\lim_{n\to\infty} \frac{1\times 2 + 2\times 3 + 3\times 4 + \dots + n(n+1)}{n^3}$$

- (b) $P(x) = x^3 6x^2 + ax 4$ where a > 0. Given that all the roots of P(x) = 0 are real and positive, and that one of the roots is the product of the other 2 roots, find the value of a.
- (c) Given $f(x) = 2\cos^{-1}\left(\frac{x}{\sqrt{2}}\right) \sin^{-1}\left(1 x^2\right)$. Show that f'(x) = 0.

End of paper

2) i)
$$\frac{d}{dx} \left(\sin^2 x \right) = 2 \sin x \cos x$$
 (2)

$$\frac{d}{dx} \sin^{-1} 2x = \frac{2}{\sqrt{1-4x^2}} \qquad (2)$$

b)
$$\frac{3}{P(1,-3)}$$
 $P(3,1)$ $P(3,1)$ $P(3,1)$ (2)

c)
$$\frac{2x+3}{x-4} > 1$$

Let
$$\frac{2x+3}{x-4} = 1$$

 $2x+3 = x-4$
 $x = -7$

Cusympton
$$x=4$$
Critical values $x=-7,4$

Critical values
$$z = 1/7$$

Critical values $z = 1/7$
 $z = 1/7$

d)
$$\int x \sqrt{x+1} dx$$
 Let $u = 1+x$ $du = 0+x$

$$= \int (u-1) \sqrt{u} du$$

$$= \int u^{3k} - u^{k} du$$

$$= \int u^{3k} - \frac{2}{3}u^{3k} + C$$

$$= \frac{2}{5}u^{k} - \frac{2}{3}u^{k} + C$$

$$= \frac{2}{5}(1+x)^{\frac{1}{2}} - \frac{2}{3}(1+x)^{\frac{1}{2}} + C \qquad (3)$$

$$= \frac{2}{5}(1+x)^{\frac{1}{2}} - \frac{2}{3}(1+x)^{\frac{1}{2}} + C \qquad (3)$$

$$\lim_{n \to \infty} \frac{2\sin^{\frac{2}{2}}}{2} = \lim_{n \to \infty} \frac{\sin^{\frac{2}{2}}}{\frac{2}{2}}$$

DUESTION 2

a)
$$40^{\circ} + a^{\circ} = 90^{\circ}$$
 (radius \perp tangent).
 $a^{\circ} = 50^{\circ}$
Reflex L at $0 = 208^{\circ}$
 $b^{\circ} = 104^{\circ}$ (L at centre $= 2 \times L$).
at circumference) (4)

b) i)
$$tan(\alpha + B) = \frac{tan \alpha + tan B}{1 - tan \alpha + tan B}$$

ii)
$$tun(45^{\circ}+30^{\circ}) = \frac{tun45^{\circ} + tun30^{\circ}}{1 - tun45^{\circ} tun30^{\circ}}$$

$$= \frac{1 + \sqrt{3}}{1 - \sqrt{3}}$$

$$= \frac{\sqrt{3}+1}{\sqrt{3}-1}$$
(3)

c)
$$f(x) = 3\cos^{-1} \frac{x}{2}$$

i) $f(2) = 3\cos^{-1} 1$
= 0.

Range
$$0 \le y \le 3\Pi$$
 (2)

DUESTION 3.

$$(a) 9 + 16 + 25 + ... + n^2 = \sum_{k=3}^{n} k^2$$
 (1)

: b) SIN QX = COSX

$$\cos x = 0$$
 $\sin x = \frac{1}{2}$

$$x = \frac{\pi}{2}, \frac{3\pi}{2}$$
 $x = \frac{\pi}{6}, \frac{5\pi}{6} \cdot \cdot \cdot$

(1)
$$\int \frac{dz}{z^2+4} = \frac{1}{2} \tan^{-1}(\frac{2z}{z}) + C$$

ii)
$$\int \sin^2 2x \, dx = \frac{1}{2} \int (1 - \cos 4x) \, dx$$
.

$$= \frac{1}{2} \left[x - \frac{\sin 4x}{4} \right] + c$$

$$= \frac{1}{2} x - \frac{1}{8} \sin 4x + c \qquad (2)$$

d)
$$\int_{0}^{\ln 3} \frac{e^{2} dx}{\sqrt{1+e^{2}}} = \int_{1}^{3} \frac{du}{\sqrt{1+u}} \qquad u = e^{2} dx$$

$$= \int_{1}^{3} (1+u)^{-1/2} dx \qquad u = e^{2} dx$$

$$= \int_{1}^{3} (1+u)^{-1/2} dx \qquad u = e^{2} dx$$

$$= 2 \left[(1+u)^{1/2} \right]_{1}^{3} \qquad z = \ln 3, u = 3$$

$$= 2 \left[(1+u)^{1/2} \right]_{1}^{3} \qquad (4)$$

$$= 4 - 2\sqrt{2} \qquad (4)$$

QUESTION 4

a)
$$P(x) = x^{3} + \alpha x^{2} - 3\alpha x$$

If $x+2$ is factor $P(-2) = 0$
 $\therefore -8 + 4\alpha + 6\alpha = 0$
 $10\alpha = 8$

b)
$$\sqrt{3}\cos\Theta + 3\ln\Theta = A\cos(\Theta - \alpha)$$

 $A\cos(\Theta - \alpha) = A\cos\Theta\cos\alpha + A\sin\Theta\sin\alpha$

$$A\cos x = \sqrt{3}$$

$$Asmax = 1$$

$$h^2 = 1+3$$

$$A = 2$$
 = 2.00s(0 - 1

$$A = 2$$

$$\therefore (3\cos \Theta + \sin \omega) = 2\cos(\Theta - \Pi)$$

Oly = 1.
$$tan^{-1}x + x \cdot \frac{1}{1+x^2}$$

$$\begin{bmatrix} x & \tan^{-1}x \end{bmatrix}_{0}^{2} = \int_{0}^{1} \tan^{-1}x & dx + \int_{0}^{1} \frac{x}{1+x^{2}} dx = \int_{0}^{1} \frac{x}{1+x^{2}} dx$$

$$\therefore \int_{0}^{1} \tan^{-1}x dx = \left[x \tan^{-1}x \right]_{0}^{1} - \int_{0}^{1} \frac{x}{1+x^{2}} dx$$

$$= \left[x \tan^{-1} \alpha - \frac{1}{2} \ln (1 + \alpha^2) \right]_0^{\alpha}$$

$$= \frac{11}{4} - \frac{1}{2} \ln 2$$

Guestion 5

(a) i)
$$f(x) = e^{-x} - x + 1 = 0$$

 $e^{-x} = x - 1$

(i)
$$f(x) = e^{-x} - x + 1$$
, $f(1) = e^{-1} = 0.3679$
 $f'(x) = -e^{-x} - 1$, $f'(1) = -e^{-1} - 1 = -1.3679$
 $f'(x) = -e^{-1} - 1 = -1.3679$

$$1 \tan \frac{R}{2} = t$$

$$L.H.S = \frac{\text{cosec } \beta - \text{cot } \beta}{\text{cosec } \beta + \text{cot } \beta}$$

$$= \frac{1+\frac{6}{26}}{1+\frac{6}{24}} + \frac{1-\frac{6}{24}}{1-\frac{6}{24}}$$

$$= \frac{1 + b^2 - 1 + b^2}{1 + b^2 + 1 - b^2}$$

$$1+6^{2}+1$$

$$= 26^{2}$$

(3)

$$x^{2} = 8y$$

$$y = x^{2}$$

$$dy = x^{2}$$

$$dy = x^{2}$$

$$\alpha_1$$
 α_2 α_3 α_4 α_4 α_5 α_6 α_6

$$y - 2p^{2} = p(x - 4p)$$

$$y - 2p^{2} = p(x - 4p)$$

$$y = px - 2p^{2}$$

$$(1)$$

) X-curs interapt:
$$y=0$$

$$px = 2p^2$$

$$x = 2p$$

y-axis intercept
$$n = 0$$

$$y = -2p^{2}$$

$$N(0, -2p^{2})$$

Midpoint of MN =
$$(2p\pm0, 0-2p^2)$$

$$x = P$$

(4)

when
$$1 = -200000 \text{ TT mm}^3/\text{sec}$$
.

 $\frac{dV}{dr} = -200000 \text{ TT mm}^3/\text{sec}$.

or decreasing at a rate of $200000 \text{ TT mm}^3/\text{sec}$.

(3)

c)
$$\sin^{-1}(\frac{1}{\sqrt{5}}) + \sin^{-1}(\frac{1}{\sqrt{10}}) = x$$

Let $\sin^{-1}(\frac{1}{\sqrt{5}}) = x$

$$SIN(\alpha+\beta) = SIN(\alpha)COS\beta + COSA SIN \beta$$

$$= \sqrt{5} \sqrt{10} + \sqrt{5} \sqrt{10}$$

$$= \sqrt{5} \sqrt{10} + \sqrt{5} \sqrt{10}$$

. SCHESTION 7

1 If n=1

L.4.S = 1x2 =2 $R.H.S = \frac{1}{3}(1+1)(1+2) = 2$

i. True for n=1

(2) assume true for n= K ie 1x2+2x3+ ... + k(k+1) = k(k+1)(k+2)

(3) If n= k+1 $S_{k+r} = 1 \times 2 + 2 \times 3 + \cdots + k(k+1) + (k+1)(k+2)$ = $\frac{k(k+1)(k+2)}{3} + (k+1)(k+2)$. $= \underbrace{\left(\frac{k+1}{3}\right)\left(\frac{k+2}{3}\right)\left(\frac{k+3}{3}\right)}_{3}$

i. True for n=k+1

(4) Since result is true for n=1, it is true for next integer, n=2 (ive n+1) and so it is true for n=3 and so on. True for all integers n.

 $lm / 2+2\times 3+ ... + n(n+1) = lm \frac{3}{3}(n+1)(n+2)$ $= \lim_{n\to\infty} \frac{\frac{1}{3}(1+\frac{1}{n})(1+\frac{2}{n})}{1+\frac{2}{n}}$

b) $P(x) = x^3 - 6x^2 + 0x - 4$ Let rook be d, B, dB

 $\alpha + \beta + \alpha \beta = 6$ -4) $4\beta + \alpha^2 \beta + \alpha \beta^2 = \alpha - (2)$ $\chi^2 \beta^2 = 4 - (3)$

2B = ± 2 $d\beta = 2$ (since roots are the).

: (1): d+B+2=6 2+B=4

(2): dB(1+ a+B)= a : 2 (1+ 4) = a : a=10

(4)

(1)

(3)

7c)
$$f(x) = 2 \cos^{-1}\left(\frac{x}{\sqrt{2}}\right) - \sin^{-1}(1-x^2)$$

$$f'(x) = -\frac{2}{\sqrt{2}} \frac{1}{\sqrt{1 - x^{2}}} - \frac{-2x}{\sqrt{1 - (1 - x^{2})^{2}}}$$

$$= \frac{-2}{\sqrt{2 - x^{2}}} + \frac{2x}{\sqrt{1 - (1 - 2x^{2} + x^{4})}}$$

$$= \frac{-2}{\sqrt{2 - x^{2}}} + \frac{2x}{\sqrt{2x^{2} - x^{4}}}$$

$$= \frac{-2}{\sqrt{2 - x^{2}}} + \frac{2}{\sqrt{2 - x^{2}}} \qquad y \quad x \neq 0, \sqrt{x^{2} = |x|}$$

$$= 0 \quad y \quad x \neq 0 \qquad (f'(x) = -4) \quad y \quad x \neq 0$$

If f'(x) = 0, f(x) is constant

Domain: $-1 \leq \frac{\pi}{\sqrt{2}} \leq 1$ \times $-1 \leq 1 - \pi^2 \leq 1$ $-\sqrt{2} \leq \pi \leq \sqrt{2}$ $-\sqrt{2} \leq \pi \leq \sqrt{2}$

 $f(0) = 2 \times \cos(0) - \sin^{-1}(1) = \frac{11}{2}$

. CORRECT DOMAIN GRAPH • f(x) = constant (x70)

 $f(x) = \frac{\pi}{2}$