

GSM LightMOS Application Note

GSM/GPRS Module Series

Rev. GSM_LightMOS_Application_Note_V1.0

Date: 2013-04-10

Our aim is to provide customers with timely and comprehensive service. For any assistance, please contact our company headquarter:

Quectel Wireless Solutions Co., Ltd.

Room 501, Building 13, No.99, Tianzhou Road, Shanghai, China, 200233

Tel: +86 21 5108 6236 Mail: <u>info@quectel.com</u>

Or our local office, for more information, please visit:

http://www.quectel.com/quectel_sales_office.html

For technical support, to report documentation errors, please visit:

http://www.quectel.com/tecsupport.aspx

GENERAL NOTES

QUECTEL OFFERS THIS INFORMATION AS A SERVICE TO ITS CUSTOMERS. THE INFORMATION PROVIDED IS BASED UPON CUSTOMERS' REQUIREMENTS. QUECTEL MAKES EVERY EFFORT TO ENSURE THE QUALITY OF THE INFORMATION IT MAKES AVAILABLE. QUECTEL DOES NOT MAKE ANY WARRANTY AS TO THE INFORMATION CONTAINED HEREIN, AND DOES NOT ACCEPT ANY LIABILITY FOR ANY INJURY, LOSS OR DAMAGE OF ANY KIND INCURRED BY USE OF OR RELIANCE UPON THE INFORMATION. ALL INFORMATION SUPPLIED HEREIN ARE SUBJECT TO CHANGE WITHOUT PRIOR NOTICE.

COPYRIGHT

THIS INFORMATION CONTAINED HERE IS PROPRIETARY TECHNICAL INFORMATION OF QUECTEL CO., LTD. TRANSMITTABLE, REPRODUCTION, DISSEMINATION AND EDITING OF THIS DOCUMENT AS WELL AS UTILIZATION OF THIS CONTENTS ARE FORBIDDEN WITHOUT PERMISSION. OFFENDERS WILL BE HELD LIABLE FOR PAYMENT OF DAMAGES. ALL RIGHTS ARE RESERVED IN THE EVENT OF A PATENT GRANT OR REGISTRATION OF A UTILITY MODEL OR DESIGN.

Copyright © Quectel Wireless Solutions Co., Ltd. 2013. All rights reserved.

About the document

History

Revision	Date	Author	Description
1.0	2013-03-28	Alan ZHU	Initial

Contents

Ab	bout the document	2
Со	ontents	3
Та	able Index	4
	igure Index	
	Introduction	
2	Hardware Connection	7
	2.1. Reference Design	7
	2.2. Test Procedure	8
	2.2.1. Commands to be Used during the Test	8
3	LightMOS Command Description	9
	3.1. AT+QLMOS Adjust PWM output or MOS Density Parameters	
4	Appendix A Reference	12

Table Index

TABLE 1: CLK AND CLK_DIV VALUE	. 11
TABLE 2: RELATED DOCUMENTS	12
TABLE 2: TEDMS AND ADDREVIATIONS	10

Figure Index

FIGURE 1: REFERENCE CIRCUIT OF LIGHT_	_MOS DRIVES LED BY PWM/CURRENT SOURCE	7
FIGURE 2: REFERENCE CIRCUIT OF LIGHT	MOS DRIVES LED BY GPIO	2

1 Introduction

This document describes how to use the LIGHT_MOS pin of Quectel module M12 (R2.0) to output PWM (Pulse-Width Modulation) waveform or current source to drive LED.

2 Hardware Connection

Two connection methods can be used as PWM or adjustable current source for the LIGHT_MOS pin to drive the outside LED.

2.1. Reference Design

When the LIGHT_MOS is used to drive the LED by PWM signal or adjustable current source, refer to the reference circuit in Figure 1.

Figure 1: Reference Circuit of LIGHT_MOS Drives LED by PWM/Current Source

When the LIGHT_MOS is used as a GPIO to output PWM signal or adjustable current source, LIGHT MOS should be pulled up to VDD EXT. Figure 2 below shows the reference design.

Figure 2: Reference Circuit of LIGHT_MOS Drives LED by GPIO

NOTE

The value range of VDD_EXT is from 2.7V to 2.9V. By default, the value is 2.8V.

2.2. Test Procedure

2.2.1. Commands to be Used during the Test

AT commands maybe used including:

```
AT+QLMOS=0 // Close PWM/MOS density output
AT+QLMOS=1,2,1800,320 // Select 3.25MHz base clock and adjust PWM output parameter
AT+QLMOS=1,6,5800,1280 // Select 8KHz base clock and adjust PWM output parameter
AT+QLMOS=2,5 // Adjust KPLED current to level 6
```


3 LightMOS Command Description

3.1. AT+QLMOS Adjust PWM Output or MOS Density Parameters

AT+QLMOS Adjust PWM Output or MOS Density Parameters	
Test Command AT+QLMOS=?	Response +QLMOS:(<output_format>),(<clk_num>),(<count>), (<threshold>),(<mos_density>) OK</mos_density></threshold></count></clk_num></output_format>
Read Command AT+QLMOS?	Response +QLMOS: <output_format>,<clk_num>,<count>,<threshold>, <mos_density> OK</mos_density></threshold></count></clk_num></output_format>
Write Command AT+QLMOS= <output_format>,<clk _num="">,<count>,<threshold>,<mos _density=""></mos></threshold></count></clk></output_format>	Response OK ERROR Set output format and parameters
Reference	

Parameter

<output_format> Output Format

- 0 Close PWM/MOS density output. When <output_format>=0, The other parameters <clk_num>, <count>, <threshold> and <mos_density> need not to be set
- 1 Only enable PWM output. When **<output_format>=**1, **<mos_density>** can be ignored. The other four parameters should be set.
- 2 Only enable MOS density output. When **<output_format>=**2, **<clk_num>**. **<count>** and **<threshold>** can be ignored. Only need to set **<mos_density>**.

<clk_num>> Select PWM Base Clock

- 0 13MHz
- 1 6.5MHz
- 2 3.25MHz
- 3 1.625MHz
- 4 32KHz
- 5 16KHz
- 6 8KHz
- 7 4KHz

<count> Set Count for PWM Output

0 ~ 8191

<threshold> Set Threshold for PWM Output

 $0 \sim 8191$

<mos_density> Set Density Level for Light MOS Output

- 0 Level 1
- 1 Level 2
- 2 Level 3
- 3 Level 4
- 4 Level 5
- 5 Level 6
- 6 Level 7
- 7 Level 8

NOTES

- 1. The default value of **<output_format>** is 0.
- 2. This command cannot be saved by AT&W.
- 3. <threshold> should be less than <count>. If not, the output pulse of the PWM will be always high.
- 4. PWM output frequency = CLK / [clk_div*(**<count>**+ 1)], Duty = **<threshold>**/ (**<count>** + 1), CLK and and clk_div values can be got from Table 1 below.

Table 1: CLK and clk_div Value

<clk_num></clk_num>	clk_div	CLK
0	1	
1	2	1200000
2	4	13000000
3	8	
4	1	
5	2	20000
6	4	32000
7	8	

Example

AT+QLMOS=0 OK	// Close PWM/MOS density output
AT+QLMOS=1,2,1800,320 OK	// Select 3.25MHz base clock and adjust PWM output parameter
AT+QLMOS=1,6,5800,1280 OK	// Select 8KHz base clock and adjust PWM output parameter
AT+QLMOS=2,5 OK	// Adjust KPLED current to level 6
AT+QLMOS? +QLMOS: 2,5	// Read the current setup
ОК	

4 Appendix A Reference

Table 2: Related Documents

SN	Document name	Remark
[3]	GSM 07.07	Digital cellular telecommunications (Phase 2+); AT command set for GSM Mobile Equipment (ME)
[4]	GSM 07.10	Support GSM 07.10 multiplexing protocol

Table 3: Terms and Abbreviations

Abbreviation	Description
PWM	Pulse Width Modulation
ME	Mobile Equipment
TA	Terminal Adapter
MS	Mobile Station)