Intelligent Food Intake Monitoring System

By: Aswin Natesh (111582677)

Aishwarya Gandhi (111424452)

Agenda

- ☐ Introduction
- ☐ System Design
 - ☐ Sensing Module
 - ☐ Hardware Module
 - ☐ Web Application
- ☐ Recognition Algorithm
 - ☐ Peak Detection Sliding Window
 - Level Crossing Quantization

- □ Classification
 - ☐ Food Type Classification
 - ☐ Chewing Frequency Detection
- ☐ Experimental Setup & Results
 - ☐ Short Video Demonstration
- ☐ Project Conclusion
- ☐ Learning Outcomes

Introduction

DIABETES IS ON THE RISE AND THE

3.7 MILLION
deaths due to diabetes
and high blood glucose

1.5 MILLION
deaths caused
by diabetes

THAT'S 1 PERSON IN 11

The Food Guide Pyramid

A Guide to Daily Food Choices

KEY
Fat (naturally occurring and added)

Sugars (added)

These symbols show fat and added sugars in foods.

Source: Based on information from the International Diabetes Federation

Existing Solutions

- They infer eating indirectly from, for example, hand movements or capturing food images.
- They are non-pervasive requiring manual data entry or user involvement in capturing data.
- They are non-wearable, bulky, invasive, or semi-invasive.
- They exhibit low accuracy in detecting swallows and distinguishing food types.

Proposed Solution

- Piezoelectric sensor based detection of Chews and Swallow
- A light weight non-intrusive earmuff with sensors affixed
- Detects facial muscle contractions
- Recognizes type of food being consumed in Real Time (4ms Latency)
- User Friendly Web Application based Feedback Reports (Updates every 5 mins)

System Block Diagram

Sensing Module

- Consists of a pair of piezoelectric sensor, also known as a vibration sensor affixed to an earmuff.
- Produce a voltage when subjected to physical strain and contact vibrations
- Positioned firmly on the user's upper cheeks to capture muscular contraction
- Sampled at frequencies at 9 GHz

Hardware Module

Consists of Atmega328 Microcontroller and ESP8266 (aka Node MCU)

The sensed data is passed through a 8-bit Analog to Digital Converter

Runs a light-weight real-time classifier algorithm

Food Type Recognition (Feedback)

Type of food consumed

Chewing frequency

Last food intake time

Excessive snacking alert

Interval of food intake

Classifier Algorithm - Stage 1

- Peak Detection using Sliding Window
 - The sensed data is buffered locally until a sufficient number of samples have been acquired.
 - Smoothened using convolution filter
 - Rising peaks within windows are detected

Classifier Algorithm - Stage 2

- Level Crossing Quantization
 - Number of peaks that crosses each of the threshold q+ and q- are detected
 - These values are then used for food type and hardness classification

Chewing Rate/Frequency is calculated by finding the difference in time between peaks.

Bit Stream & Food Type Classification

Handshake (MSB)	No Activity	Ext. Soft	Soft	Hard	Ext. Soft (LSB)
B[0]	B[1]	B[2]	B[3]	B[4]	B[5]

Category	Food Subset
Extremely Soft	Yogurt, Pudding and Soup
Soft	Rice, Bread, Corn Flakes, Soft Fruits
Hard	Tortilla, Biscuits and Hard Fruits
Extremely Hard	Potato Chips, Tortilla Chips

Web Application

- Performs two major roles
 - Serves as a Data Manager
 - Keeps track of food intake activity and provides feedback after analysing data.
 - http://aswinnatesh.com/CPS-Project/

Experimental Results & Future Scope

- The system was tested and data are collected from 2 different subjects.
- The system was trained over 10 trials to fix quantization parameters.
- We observed that it is challenging to distinguish between solid food types.
- False positives were approximately 4.06%
- Liquid food activity was not attempted in this project as the system was designed to detect solid foods in particular.
- Future work would include classifying solid food from liquid food with no addition of resources

THANK YOU!

Any Questions?