1. Let p: It rains

q: the crops will grow. The converse of "If it rains then the crops will grow" is

- A. If the crops grow, then there has been rain
- B. If the crops do not grow then it will not rain
- C. If it does not rain then the crops will not grow
- D. The crops will grow if and only if it rains

ANSWER: A

2. $p \leftrightarrow q$ is logically equivalent to

A.
$$(p \to q) \lor (q \to p)$$

B.
$$(p \to q) \land (q \to p)$$

$$C. p \rightarrow q$$

D.
$$q \rightarrow p$$

ANSWER: B

- 3. The proposition $p \wedge (q \wedge \neg p)$ is a
 - A. tautology
 - B. tautological implication
 - C. contradiction
 - D. biconditional statement

ANSWER: C

- 4. For every positive integer $n, n^3 + n$ is
 - A. a prime number
 - B. odd number
 - C. neither odd nor even number
 - D. even number

ANSWER: D

- 5. $((p \lor q) \land (p \to r) \land (q \to r)) \to r$ is a
 - A. tautology
 - B. contradiction
 - C. universal quantifier
 - D. existential quantifier

ANSWER: A

- 6. The proposition $p \rightarrow (q \rightarrow r) \equiv$
 - A. $p \wedge q$
 - $\mathbf{B.}\ (p \wedge q) \to r$
 - **C**. *r*
 - **D**. *T*

ANSWER: B

- 7. The conclusion from the set of premises $p \to q, q \to r$ and p is
 - **A**. *p*
 - **B**. *q*
 - **C**. *r*
 - D. $p \wedge q$

ANSWER: C

- 8. The set of premises $a \to (b \to c), d \to (b \land \neg c)$ and $a \land d$ are
 - A. homogeneous
 - B. dependable
 - C. consistent
 - D. inconsistent

ANSWER: D

- 9. The symbolic form of the statement "All men are mortal" is
 - A. $\forall x (M(x) \to H(x))$
 - B. $\exists x (M(x) \to H(x))$
 - C. $\forall x (M(x) \land H(x))$
 - D. $\exists x (M(x) \lor H(x))$

ANSWER: A

- 10. The negation of the statement "Some students live in hostel" is
 - A. some students do not live in hostel
 - B. all students do not live in hostel
 - C. all students live in hostel
 - D. some students may or may not live in hostel

ANSWER: B

- 11. Symbolize the following premise "A student in this class has not read discrete mathematics text book"
 - A. $\forall x (C(x) \lor \neg D(x))$
 - B. $\forall x (C(x) \land \neg D(x))$
 - C. $\exists x (C(x) \land \neg D(x))$
 - D. $\exists x (C(x) \lor \neg D(x))$

ANSWER: C

- 12. For all $n \ge 1, n^5 n$ is divisible by
 - A. 11
 - B. 7
 - C. 23
 - D. 5

ANSWER: D