The Feasibility of Implementing Maximum Flow and Minimum-Cost Flow in Almost-Linear Time with an IPM Exam presentation

Adrian Borup, Albert Rise Nielsen

Research Project IT University of Copenhagen

December 18, 2024

Preamble

- Chen, Kyng, Liu, Peng, Gutenberg, and Sachdeva presented a breakthrough in 2022
- Solves minimum-cost flow and maximum flow in $m^{1+o(1)}$ time
- Two key components:
 - 1 Interior-point method (IPM) solving $m^{1+o(1)}$ subproblems.
 - 2 A dynamic graph data structure to solve subproblems efficiently.
- No known implementation.
- Is the algorithm feasible in practice?

Table of Contents

- 1 Background: Minimum-cost flow
- 2 Interior-point method
 - Min-cost flow as a linear program
 - An IPM for min-cost flow
 - Min-ratio cycle subproblem
 - Combining everything
- 3 Data structure
- 4 Results and discussion
- 5 Conclusion and scope for masters thesis

Table of Contents

- 1 Background: Minimum-cost flow
- 2 Interior-point method
 - Min-cost flow as a linear program
 - An IPM for min-cost flow
 - Min-ratio cycle subproblem
 - Combining everything
- 3 Data structure
- 4 Results and discussion
- 5 Conclusion and scope for masters thesis

Background: Minimum-cost flow

"the cheapest possible way of sending flow, within some capacities, through a flow network"

Background: Minimum-cost flow

- Directed graph
- Lower and upper capacities
- Cost to use: $c \cdot f$
- Vertex demands
- Minimise cost while respecting capacities and demands

 $\xrightarrow{\text{Cost} \cdot \text{flow}} \xrightarrow{\text{Lower/Upper Capacity}}$

Table of Contents

- 1 Background: Minimum-cost flow
- 2 Interior-point method
 - Min-cost flow as a linear program
 - An IPM for min-cost flow
 - Min-ratio cycle subproblem
 - Combining everything
- 3 Data structure
- 4 Results and discussion
- 5 Conclusion and scope for masters thesis

Min-cost flow as a linear program

Define:

```
m{f} \in \mathbb{R}^E the flow in each edge m{c} \in \mathbb{R}^E the cost of each edge m{u}_e^-, m{u}_e^+ \in \mathbb{R}^E the lower/upper capacity of each edge m{d} \in \mathbb{R}^V the demand of each vertex m{B} \in \mathbb{R}^{E \times V} edge-vertex incidence matrix
```

minimize
$$m{c}^{ op} m{f}$$
 (minimum cost) subject to $m{B}^{ op} m{f} = m{d}$ (vertex demand constraints) and $m{u}_e^- \leq m{f}_e \leq m{u}_e^+$ (edge capacity constraints)

Min-cost flow as a linear program

Optimising a linear program: the interior-point method

└An IPM for min-cost flow

A potential-reduction IPM for min-cost flow

$$\Phi(\mathbf{f}) = m \log(\mathbf{c}^{\top} \mathbf{f} - F^*) - \sum_{e \in E} \left(\log(\mathbf{u}_e^+ - \mathbf{f}_e) + \log(\mathbf{f}_e - \mathbf{u}_e^-) \right)$$
Objective
Barrier

A potential-reduction IPM for min-cost flow

$$\Phi(\mathbf{f}) = m \log(\mathbf{c}^{\top} \mathbf{f} - F^*) - \sum_{e \in E} \left(\log(\mathbf{u}_e^+ - \mathbf{f}_e) + \log(\mathbf{f}_e - \mathbf{u}_e^-) \right)$$
Objective
Barrier

LAn IPM for min-cost flow

What do we need?

- 1 An initial point: some feasible flow
- 2 A step function: find some flow that decreases the potential

LAn IPM for min-cost flow

Dropping the potential

Question: How do we find which direction decreases $\Phi(\mathbf{f})$?

LAn IPM for min-cost flow

Dropping the potential

Question: How do we find which direction decreases $\Phi(\mathbf{f})$?

Answer: $\nabla \Phi(\mathbf{f})$, the gradient of $\Phi(\mathbf{f})$

LAn IPM for min-cost flow

Dropping the potential

Question: How do we find a valid flow that decreases $\Phi(f)$?

Dropping the potential

Question: How do we find a valid flow that decreases $\Phi(f)$?

Idea:

- lacksquare We have the constraint $\mathbf{B}^{ op} m{f} = m{d}$
- Find a circulation Δ such that $\mathbf{B}^{\top}\Delta = \mathbf{0}$ Augmenting Δ gives $\mathbf{B}^{\top}(\mathbf{f} + \Delta) = \mathbf{d}$, still respecting demands
- Goal: find a Δ that steps in the direction of the gradient.

Min-ratio cycle subproblem

Minimum-ratio cycles (in general)

Define:

C a cycle consisting of a set of edges

c(e) the cost of an edge

t(e) the time of an edge

Minimum-ratio cycles (in general)

Define:

C a cycle consisting of a set of edges

c(e) the cost of an edge

t(e) the time of an edge

Find the cycle that minimises:

$$\sum_{e \in C} c(e) / \sum_{e \in C} t(e)$$

The min-ratio cycle subproblem in the IPM

$$\begin{split} & \mathbf{g} \in \mathbb{R}^{\textit{E}} \ \, \text{edge gradients, } \mathbf{g} = \nabla \Phi(\textit{\textbf{f}}) \\ & \boldsymbol{\ell} \in \mathbb{R}^{\textit{E}}_{>0} \ \, \text{edge lengths, } \boldsymbol{\ell}_e = 1/\left(\min\left(\textit{\textbf{u}}_e^+ - \textit{\textbf{f}}_e, \textit{\textbf{f}}_e - \textit{\textbf{u}}_e^-\right)\right) \\ & \mathbf{L} \in \mathbb{R}^{\textit{E} \times \textit{E}} \ \, \mathbf{L} = \text{diag}(\boldsymbol{\ell}) \end{split}$$

$$\min_{\mathbf{B}^{\top}\Delta=0}\frac{\mathbf{g}^{\top}\Delta}{\|\mathbf{L}\Delta\|_{1}}$$

In simpler terms:

Find a circulation
$$\Delta$$
 that minimises $\frac{\sum_{e} \mathbf{g}_{e} \cdot \Delta_{e}}{\sum_{e} |\ell_{e} \cdot \Delta_{e}|}$

Examples

$$\min_{\mathbf{B}^{\top}\Delta=0} \frac{\mathbf{g}^{\top}\Delta}{\|\mathbf{L}\Delta\|_{1}}$$

$$\mathbf{g}^{\top} \Delta = 1 + (-2) + (-3) = -4$$

 $\|\mathbf{L}\Delta\|_1 = 2 + 1 + 2 = 5$

Examples

$$\min_{\mathbf{B}^{\top}\Delta=0} \frac{\mathbf{g}^{\top}\Delta}{\|\mathbf{L}\Delta\|_{1}}$$

$$\mathbf{g}_{(1,2)} = -1$$
 $\mathbf{e}_{(1,2)} = 2$
 $\mathbf{e}_{(2,4)} = -2$
 $\mathbf{e}_{(2,4)} = 1$
 $\mathbf{g}_{(2,4)} = 1$
 $\mathbf{g}_{(2,4)} = 1$
 $\mathbf{g}_{(3,2)} = -3$
 $\mathbf{e}_{(3,2)} = 2$
 $\mathbf{e}_{(3,2)} = 3$
 $\mathbf{e}_{(3,4)} = 3$
 $\mathbf{e}_{(3,4)} = 4$

$$\mathbf{g}^{\top} \Delta = -1 + 2 + 3 = 4$$

 $\|\mathbf{L}\Delta\|_1 = 2 + 1 + 2 = 5$

Why min-ratio cycles?

What are the benefits of using min-ratio cycles?

- Gradients ensure good step directions for IPM
- Outputs simple cycles
- **3** [CKLPGS22] can compute *approximate* min-ratio cycles very efficiently

Combining everything

Combining everything

Given some initial flow $f^{(0)}$, perform iterations:

lacktriangledown Compute $\mathbf{g}(\mathbf{f}^{(t)})$ and $\ell(\mathbf{f}^{(t)})$

Given some initial flow $f^{(0)}$, perform iterations:

- lacktriangledown Compute $\mathbf{g}(\mathbf{f}^{(t)})$ and $\ell(\mathbf{f}^{(t)})$
- 2 Find min-ratio cycle Δ with min $_{\mathbf{B}^{\top}\Delta=0}$ $\frac{\mathbf{g}^{\top}\Delta}{\|\mathbf{L}\Delta\|_1}$

Given some initial flow $f^{(0)}$, perform iterations:

- lacktriangledown Compute $\mathbf{g}(\mathbf{f}^{(t)})$ and $\ell(\mathbf{f}^{(t)})$
- 2 Find min-ratio cycle Δ with $\min_{\mathbf{B}^{\top}\Delta=0}\frac{\mathbf{g}^{\top}\Delta}{\|\mathbf{L}\Delta\|_{1}}$
- **3** Compute scaling factor $\eta = -\kappa^2/(50 \cdot \mathbf{g}^{\top} \Delta)$

Given some initial flow $f^{(0)}$, perform iterations:

- lacktriangledown Compute $\mathbf{g}(\mathbf{f}^{(t)})$ and $\ell(\mathbf{f}^{(t)})$
- 2 Find min-ratio cycle Δ with $\min_{\mathbf{B}^{\top}\Delta=0}\frac{\mathbf{g}^{\top}\Delta}{\|\mathbf{L}\Delta\|_{1}}$
- **3** Compute scaling factor $\eta = -\kappa^2/(50 \cdot \mathbf{g}^{\top} \Delta)$
- 4 Update the flow, $m{f}^{(t+1)} \leftarrow m{f}^{(t)} + \eta \Delta$

Given some initial flow $f^{(0)}$, perform iterations:

- lacktriangledown Compute $\mathbf{g}(\mathbf{f}^{(t)})$ and $\ell(\mathbf{f}^{(t)})$
- 2 Find min-ratio cycle Δ with min $_{\mathbf{B}^{\top}\Delta=0}$ $\frac{\mathbf{g}^{\top}\Delta}{\|\mathbf{L}\Delta\|_1}$
- **3** Compute scaling factor $\eta = -\kappa^2/(50 \cdot \mathbf{g}^{\top} \Delta)$
- 4 Update the flow, $extbf{ extit{f}}^{(t+1)} \leftarrow extbf{ extit{f}}^{(t)} + \eta \Delta$

Run $m^{1+o(1)}$ iterations, then round the result.

Combining everything

Running time

Problem: exact \mathbf{g} , ℓ , and min-ratio cycles are expensive to compute.

Solution: use *approximations*.

Running time

Problem: exact \mathbf{g} , ℓ , and min-ratio cycles are expensive to compute.

Solution: use approximations.

Claims by [CKLPGS22]:

- 1 IPM can terminate in $m^{1+o(1)}$ iterations
- 2 An $m^{o(1)}$ -approximate solution for min-ratio cycle suffices
- **3** Can compute $m^{o(1)}$ -approximate solution in amortized $m^{o(1)}$ time
- 4 At most $m^{1+o(1)}$ changes to ${f g}$ and ${m \ell}$

Running time

Problem: exact \mathbf{g} , ℓ , and min-ratio cycles are expensive to compute.

Solution: use approximations.

Claims by [CKLPGS22]:

- 1 IPM can terminate in $m^{1+o(1)}$ iterations
- 2 An $m^{o(1)}$ -approximate solution for min-ratio cycle suffices
- 3 Can compute $m^{o(1)}$ -approximate solution in amortized $m^{o(1)}$ time
- 4 At most $m^{1+o(1)}$ changes to ${f g}$ and ℓ

 $m^{1+o(1)}$ iterations, each running in amortized $m^{o(1)}$ time. Total $m^{1+o(1)}$ time.

Combining everything

Extras

- How do we find an initial feasible flow? O(m) time algorithm described in report.
- IPM assumes that optimal cost is known. When unknown, binary search can be applied. Described in report.

Table of Contents

- 1 Background: Minimum-cost flow
- 2 Interior-point method
 - Min-cost flow as a linear program
 - An IPM for min-cost flow
 - Min-ratio cycle subproblem
 - Combining everything
- 3 Data structure
- 4 Results and discussion
- 5 Conclusion and scope for masters thesis

Dynamic min-ratio cycle

The fundamental idea of the data structure is to reduce the number of vertices and edges as much as possible while supporting rebuilds, slowly-changing \mathbf{g} , ℓ , and graph updates.

"core graph"

"sparsified core graph"

Dynamic min-ratio cycle

The goal is to approximately solve $\mathsf{min}_{B^\top\Delta=0}\,\frac{\mathbf{g}^\top\Delta}{\|L\Delta\|_1}$ with the help of a specialized data structure

Algorithm:

- 1 Sample a random "low-stretch spanning tree" T
- **2** Return the best "tree cycle" in T (cycle $_T(e)$)
- \blacksquare Repeat $O(\log n)$ times

$$G = G_0$$
 $\approx m \text{ edges}$
 $\approx m \text{ vertices}$

$$C(G_0, F)$$

 $\approx m$ edges $\approx m/K$ vertices

$$S(C(G_0, F)) = G_1$$

$$\approx m/K \text{ edges}$$

 $\approx m/K$ edges $\approx m/K$ vertices

"sparsified core graph"

Table of Contents

- 1 Background: Minimum-cost flow
- 2 Interior-point method
 - Min-cost flow as a linear program
 - An IPM for min-cost flow
 - Min-ratio cycle subproblem
 - Combining everything
- 3 Data structure
- 4 Results and discussion
- 5 Conclusion and scope for masters thesis

Implementation

We implement a partial, static algorithm:

- Focus on IPM
- Ignore dynamic data structure

Still allows us to evaluate claims about running time via the number of iterations.

Implementation

We implement a partial, static algorithm:

- Focus on IPM
- Ignore dynamic data structure

Still allows us to evaluate claims about running time via the number of iterations.

Differences from [CKLPGS22]:

- We use an *inefficient*, *exact* oracle for minimum-ratio cycles.
- We take larger steps than suggested
- We devise our own binary search
- ... see more in report

Correctness

Test suite:

- Focus on maximum flow. Tests from various sources.
- Almost all test cases yield correct maximum flow value.
- Some tests fail flow conservation checks.
- Some crash due to overflow.

Problems: fractional flows

Other problems

- Numeric overflows
- Floating point numbers and precision
- Off-by-one error in binary-search

Results and discussion

Experimental results

Grows almost linearly in m, but the constants are huge.

Figure: All graphs are directed acyclic graphs

Figure: All graphs are fully connected graphs

Experimental results

[CKLPGS22] claims running time of $m^{1+o(1)} \log U$ for max flow.

The impact of U on the running time when binary-searching:

Figure: The total number of IPM iterations for each scaling factor, shown with a logarithmic *x*-scale.

Figure: The number of IPM iterations, normalised by dividing by $log_2(F_{max})$ where F_{max} is the upper limit for the binary search.

Experimental results

Edge updates compared to other flow algorithms.

Table of Contents

- 1 Background: Minimum-cost flow
- 2 Interior-point method
 - Min-cost flow as a linear program
 - An IPM for min-cost flow
 - Min-ratio cycle subproblem
 - Combining everything
- 3 Data structure
- 4 Results and discussion
- 5 Conclusion and scope for masters thesis

Conclusion and scope for masters thesis

- We give a high-level overview of the theory behind [CKLPGS22]
- We provide a static algorithm for the IPM
- We evaluate the algorithm on its usefulness in practice

Conclusion and scope for masters thesis

- We give a high-level overview of the theory behind [CKLPGS22]
- We provide a static algorithm for the IPM
- We evaluate the algorithm on its usefulness in practice
- We suggest that [CKLPGS22] is not very practical.
 - Continuous optimisation is problematic in practice
 - High number of iterations
 - Precision issues
 - Complex
- Scope for master's thesis
 - We could attempt to implement the data structure.
 - Work by Bernstein, Blikstad, Saranurak, and Tu ([BBST24]) seems promising and implementable.

Questions

It's time for questions.

References

[BBST24]

[LC22]

	Ta-Wei Tu. Maximum Flow by Augmenting Paths in \$n^{2+o(1)}\$ Time. arXiv:2406.03648. June 2024. DOI: 10.48550/arXiv.2406.03648. URL: http://arxiv.org/abs/2406.03648 (visited on 11/13/2024).
[CKLPGS22]	Li Chen, Rasmus Kyng, Yang P. Liu, Richard Peng, Maximilian Probst Gutenberg, and Sushant Sachdeva. <i>Maximum Flow and Minimum-Cost Flow in Almost-Linear Time</i> . arXiv:2203.00671. Apr. 2022. DOI: 10.48550/arXiv.2203.00671. URL: http://arxiv.org/abs/2203.00671 (visited on 11/13/2024).
[Kar84]	Narendra Karmarkar. "A New Polynomial-Time Algorithm for Linear Programming-II". In: <i>Combinatorica</i> 4 (Dec. 1984), pp. 302–311. DOI: 10.1007/BF02579150.

in Almost Linear Time. Stanford, Mar. 2022. URL: https://yangpliu.github.io/pdf/Flows_Stanford.pdf.

Aaron Bernstein, Joakim Blikstad, Thatchaphol Saranurak, and

Yang P. Liu and Li Chen. Maximum Flow and Minimum-Cost Flow