Examenul național de bacalaureat 2024 Proba E. c) Matematică *M_şt-nat*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 3

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

4	_	
I.	$2 - 5i + i(5 - 3i) = 2 - 5i + 5i - 3i^2 =$	3 p
	=2+3=5	2p
2.	f(2)=12+m, deci $12+m=15$	3 p
	m=3	2p
3.	$7^{2x+1} = 7^{x+2}$, de unde obținem $2x+1 = x+2$	3 p
	x=1	2p
4.	Mulțimea numerelor naturale de două cifre are 90 de elemente, deci sunt 90 de cazuri posibile	2p
	În mulțimea numerelor naturale de două cifre sunt 18 numere care au cel puțin una dintre cifre	
	egală cu 1, deci sunt 18 cazuri favorabile, de unde obținem $p = \frac{18}{90} = \frac{1}{5}$	3 p
	90 5	
5.	M(2,1) este mijlocul segmentului OB	3 p
	AM = 4	2p
6.	$\sin C = \frac{AB}{BC} = \frac{5}{5\sqrt{5}} =$	3p
	BC 5V3	
	$1 \sqrt{5}$	
	$=\frac{1}{\sqrt{5}}=\frac{1}{5}$	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\det A = \begin{vmatrix} 2 & -1 \\ 1 & 0 \end{vmatrix} = 2 \cdot 0 - (-1) \cdot 1 =$	3 p
	=0+1=1	2p
b)	$B(4) = \begin{pmatrix} 4 & 1 \\ -1 & 0 \end{pmatrix}, \ B(4) \cdot B(4) = \begin{pmatrix} 15 & 4 \\ -4 & -1 \end{pmatrix}$	3p
	$B(4) \cdot B(4) + I_2 = \begin{pmatrix} 16 & 4 \\ -4 & 0 \end{pmatrix} = 4B(4)$, deci $4B(4) = aB(4)$, de unde obținem $a = 4$	2p
c)	$A \cdot B(x) = \begin{pmatrix} 3x - 3 & x - 2 \\ x & x - 3 \end{pmatrix}, \ B(x) \cdot A = \begin{pmatrix} 3x - 3 & -x \\ -x + 2 & x - 3 \end{pmatrix}, \text{ pentru orice număr real } x$	3 p
	$\operatorname{Cum} \begin{pmatrix} 3x-3 & x-2 \\ x & x-3 \end{pmatrix} = \begin{pmatrix} 3x-3 & -x \\ -x+2 & x-3 \end{pmatrix}, \text{ obținem } x=1$	2p
2.a)	0*3=(0+3)(4-0-3)=	3p
	=3.1=3	2p
b)	x*1=(x+1)(3-x), pentru orice număr real x	2p
	(x+1)(3-x)=0, de unde obținem $x=-1$ sau $x=3$	3 p

c)	(n+5)*(n-5) = 4n(2-n), pentru orice număr natural n	2p	
	Cum n şi $N = 4n(2-n)$ sunt numere naturale, obţinem $n = 0$, $n = 1$ şi $n = 2$	3 p	

SUBIECTUL al III-lea (30 de puncte)

1.a)	$f'(x) = 2x - 1 - \frac{2}{x+1} =$	3p
	$= \frac{2x^2 + 2x - x - 1 - 2}{x + 1} = \frac{2x^2 + x - 3}{x + 1}, \ x \in (-1, +\infty)$	2p
b)	f(0) = 0, f'(0) = -3	2p
	Ecuația tangentei este $y - f(0) = f'(0)(x-0)$, adică $y = -3x$	3 p
c)	$f'(x) = 0 \Rightarrow x = 1$; pentru orice $x \in (-1,1]$, $f'(x) \le 0$, deci f este descrescătoare pe $(-1,1]$ și, pentru orice $x \in [1,+\infty)$, $f'(x) \ge 0$, deci f este crescătoare pe $[1,+\infty)$	2p
	Pentru orice $x \in (-1, +\infty)$, $f(x) \ge f(1)$ și, cum $f(1) = -2\ln 2$, obținem $x^2 - x \ge 2\ln \frac{x+1}{2}$, pentru orice $x \in (-1, +\infty)$	3 p
2.a)	$\int_{0}^{3} (f(x) - 3x) dx = \int_{0}^{3} (x^{2} + 1) dx = \left(\frac{x^{3}}{3} + x\right) \Big _{0}^{3} =$	3 p
	$=\frac{27}{3}+3=12$	2p
b)	$\int_{0}^{1} \frac{1}{\left(f(x) - x^{2}\right)^{2}} dx = \int_{0}^{1} \frac{1}{\left(3x + 1\right)^{2}} dx = \frac{1}{3} \int_{0}^{1} \frac{\left(3x + 1\right)'}{\left(3x + 1\right)^{2}} dx = -\frac{1}{3\left(3x + 1\right)} \bigg _{0}^{1} =$	3p
	$=-\frac{1}{12}+\frac{1}{3}=\frac{1}{4}$	2p
c)	$g(x) = 3xe^{-x}, x \in \mathbb{R}, \text{ deci } \mathcal{A} = \int_{0}^{1} g(x) dx = \int_{0}^{1} 3x(-e^{-x})' dx =$	2p
	$= -3e^{-x}(x+1) \begin{vmatrix} 1 \\ 0 \end{vmatrix} = 3\left(1 - \frac{2}{e}\right)$	3 p