# $\mathcal{P} \neq \mathcal{NP}$ и физическая реальность

An Exploration of Complexity

## Андрей Ширай

School of Sciences,
Miskatonic University
shiray.and@gmail.com

Заседание  $\sqrt[9]{2}$ , 12-ого октября 2013, в комнате 401 Института математики (ул. Терещенковская, 3) в 14.00



#### Аннотация

Доказательство того, что  $\mathcal{P} \neq \mathcal{NP}$  является одной из ключевых проблем современной Теоретической Информатики и Математики. Сомнений в том, что  $\mathcal{P} \neq \mathcal{NP}$  (почти) нет, и этому есть не только интуитивно-исторические(ну раз так долго не смогли доказать, что равны, то значит неравны) и интуитивно-математические(схлопывание иерархий классов сложности выгледит подозрительно маловероятным), но и объективные физические сведетельства. Мы можем поставить вопрос равности классов  $\mathcal{P}$  и  $\mathcal{NP}$  в физической формулировке и свести это злополучное неравенство к физическим постулатам(конечность с, второе начало  $\tau/д$ ), которые многократно проверены эксперементально и вполне надежны. Вот такая эксперементальная математика.

## План

- 1. Физика это процессы, Информатика это процессы
- 2. Расширенный тезис Тьюринга-Черча
- 3. Термодинамика алгоритмических процессов
- 4. Алгоритм Гровера
- 5. Оптимальность алгоритма Гровера
- 6. Нелинейные теории КМ
- 7. Неподвижные точки и путешествия во времени
- 8. Физика и Информатика с позиции Теории Категорий

## 1 Физика – это процессы, Информатика – это процессы

## 1.1 Физика и Информатика с позиции Теории Категорий

| Теория категорий       | Физика                       | Теория вычислений  |
|------------------------|------------------------------|--------------------|
| Объект $X$             | Гильбертово пространство $X$ | Тип данных $X$     |
| Морфизм                | Оператор                     | Программа          |
| $f \colon X \to Y$     | $f \colon X \to Y$           | $f \colon X \to Y$ |
| Тензорное произведение | Гильбертово пространство     | Произведение       |
| объектов:              | объединённой системы:        | типов данных:      |
| $X \otimes Y$          | $X \otimes Y$                | $X \otimes Y$      |

Таблица 1: The Rosetta Stone

# 1.2 Расширенный тезис Тьюринга-Черча

**Утверждение 1.1.** Любая эффективно вычислимая функция может быть эффективно вычислена Машинй Тьюринга

**Утверждение 1.2.** Любая эффективно вычислимая функция может быть эффективно вычислена Вероятносной MT

**Утверждение 1.3.** Любая эффективно вычислимая функция может быть эффективно вычислена Квантовой MT

Какой вариант правильный — мы не знаем. Важным для нас есть тот момент, что эффективно вычислимая функция — это чисто физическое понятие, точно так же, как и вычислимая функция в Тезиче Тьюринга-Черча. Поэтому их можно эксперементально проверить! Есть физическая система и есть алгоритм для расчета ее эволюции? Ок, Тезис Тьюринга-Черча верен. Есть физическая система(квантовая) и мы не можем ее проверить на классическом компьюторе? Значит утверждение 1.1 неверно. И т.д.

## 1.3 Термодинамика алгоритмических процессов

Исторически теория информации пошла из термодинамики и статфизики. Непосредственный перенос термодинамических соображений на алгоритмы возможен:

$$p = \frac{1}{Z}e^{-\beta E(x) - \gamma V(x) - \delta N(x)}$$

Распределение Гибса со статсуммой:  $Z = \sum_{x \in X} e^{-\beta E(x) - \gamma V(x) - \delta N(x)}$  Но! Полученная "термодинамика" будет нефизична, так как статсумма невычислима!  $^1$ 

## 2 Алгоритм Гровера

## 2.1 Квантовая информатика одной табличной

Стохастика 
$$\begin{pmatrix} s_{11} & \dots & s_{1n} \\ \vdots & \ddots & \vdots \\ s_{n1} & \dots & s_{nn} \end{pmatrix} \begin{pmatrix} p_1 \\ \vdots \\ p_n \end{pmatrix} = \begin{pmatrix} q_1 \\ \vdots \\ q_n \end{pmatrix} \begin{pmatrix} u_{11} & \dots & u_{1n} \\ \vdots & \ddots & \vdots \\ u_{n1} & \dots & u_{nn} \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} = \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_n \end{pmatrix}$$
 $p_i \geq 0, \sum_{i=1}^n p_i = 1$   $\alpha \in \mathbb{C}, \sum_{i=1}^n \|\alpha_i\|^2 = 1$ 

## 2.2 Алгоритм Гровера



Сначала формируют равномерне суперпозицию всех состояний:  $\mathbf{H}^{\otimes n} | \mathbf{0} \rangle = \frac{1}{\sqrt{N}} \sum_{x} | x \rangle$ . Чуть дальше будет обозначать для краткости равномерную суперпозицию как  $| \psi \rangle$  Потом последовательно применяется оператор Гровера:

- 1. К входу применяется оракул  $O: |x\rangle \to (-1)^{f(x)}|x\rangle$  Т.е. это единичная матрица, где на месте ответов стоят -1.  $^2$
- 2. Опять преобразование Адамара  $\mathbf{H}^{\otimes n}$
- 3. Условный сдвиг фазы:  $|x\rangle \to -(-1)^{\delta_{0x}|x\rangle}$ , этой операции соответствует унитарный оператор  $|0\rangle\langle 0|-I$ .
- 4. Опять преобразование Адамара  $\mathbf{H}^{\otimes n}$

$$G = (|\psi\rangle\langle\psi| - I)O$$

Физический смысл оператора G довольно простост – это вращение в двухмерном пространстве, порождаемом вектором  $|\psi\rangle$  и ветором-решением. Мы можем переписать  $|\psi\rangle$ , как:

$$|\psi\rangle = \sqrt{\frac{N-M}{N}}|\alpha\rangle + \sqrt{\frac{M}{N}}|\beta\rangle = \cos\frac{\theta}{2}|\alpha\rangle + \sin\frac{\theta}{2}|\beta\rangle$$

,где 
$$|\alpha\rangle = \frac{1}{\sqrt{N-M}} \sum_{\neg f(x)} |x\rangle$$
 и  $|\beta\rangle = \frac{1}{\sqrt{M}} \sum_{f(x)} |x\rangle$ 



Рис. 1: Геометрическая интерпритация алгоритма Гровера

$$G|\psi\rangle = \cos\frac{3\theta}{2}|\alpha\rangle + \sin\frac{3\theta}{2}|\beta\rangle$$

$$G^{k}|\psi\rangle = \cos\frac{(2k+1)\theta}{2}|\alpha\rangle + \sin\frac{(2k+1)\theta}{2}|\beta\rangle$$

И необходимое количество итераций:

$$R = \lfloor \arccos \frac{\sqrt{M/N}}{\theta} \rfloor \stackrel{M \leq N/2}{=} \lfloor \frac{\pi}{4} \sqrt{\frac{N}{M}} \rfloor$$

## 2.3 Оптимальность алгоритма Гровера

**Теорема 2.1.** Алгоритм Гровера – оптимальный

Идея доказательства состоит в оценке  $D_k$  – меры отклонения оракулом после k вызовов. Она растет не быстрее, чем  $O(k^2)$  и имеет порядок  $\Omega(N)$ , откуда будет следовать, что необходимо не меньше  $\Omega(\sqrt{N})$  обращений к оракулу.

$$O(\sqrt{N}) \wedge \Omega(\sqrt{N}) \Rightarrow \Theta(\sqrt{N})$$

## 2.4 Нелинейные теории КМ и прочее фричество

- 1. Линейность квантовой механики  $\to$  Предел Гровера  $\sqrt{N}$
- 2. Нелинейная КМ передает сигналы быстрее с и решает  $\#\mathcal{P}$ -полные проблемы за полиномиальное время! Ура!
- 3. ... попутно экспоненциально размножая ошибку.  $\#\$\%\&^*!$
- 4. Скрытые параметры? Предел Гровера улучшается с  $N^{\frac{1}{2}}$  до  $N^{\frac{1}{3}}$  поиск по "историям" траекторий частичек
- 5. Зеноновские вычисления и всякие прочие супертьюринговые вычисления накрываются по достижении планковской длины.

 $<sup>^{1}</sup>$ В часности, при  $\beta=0,\ \gamma=\ln 2,\ \delta=0$ :  $Z=\Omega$  –константа Хатина  $^{2}$ Очевидно, что  $O^{2}=I$ , так что унитарность сохраняется.

# Неподвижные точки и путешествия во времени

#### Неподвижные точки

Определение 3.1. Henodeu женой mo чкой некоторой функции f называется значение xтакое, что f(x) = x.

Определение 3.2. Комбинатор неподвиженой точки — функция высшего порядка, которая вычисляет неподвижную точку заданной функции:

$$f(FIX(f)) = FIX(f)$$

Пример 3.1.

$$Y := \lambda \ f(\lambda \ x.f \ (x \ x))(\lambda \ x.f \ (x \ x))$$

$$Yf = (\lambda f.(\lambda x.f (x x))(\lambda x.f (x x)))f =$$

$$= (\lambda x.f (x x))(\lambda x.f (x x)) =$$

$$= f((\lambda x.f (x x))(\lambda x.f (x x))) =$$

$$= f(Yf)$$

Пример 3.2. Факториал, "функциональный" вариант:

$$F = \lambda f \ n.if \ n = 0 \ then \ 1 \ else \ n * f(n-1)$$

$$fact = YF$$

 $\Phi$ ункция F соответствует одному шагу рекурсии, комбинатор неподвижной точки реализует (рекурсивное) вычисление

#### Time travel for fun and profit

Для начала рассмотрим упрощенную стохастическую, а не квантовую систему

• Убил дедушку: 
$$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
• Не убил деда:  $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ 

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \vec{v} = \vec{v}$$

$$\vec{v} = \frac{1}{2} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

• Неподвижная точка:

$$\vec{v} = \frac{1}{2} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

А теперь переходим от стохастических матриц к матрицам плотности:

$$\rho_{CTC} = S(\rho_{CTC}) \tag{1}$$

S — некий супероператор:  $\rho \xrightarrow{S} \sum_i E_i \rho E_i^\dagger, \sum_i E_i^\dagger E_i = I$ . Супероператор S не является произвольным. Для того, что бы уравнение 1 имело смысл результатом его применения должна быть матрица плотности.

Основной результат Дойча состоит в том, что:

**Теорема 3.1.** Уравнение  $\rho_{CTC} = S(\rho_{CTC})$  имеет неподвижную точку (т.е. оно всегда разрешимо)

Идея времяпутешественных вычислений состоит в использовани временной петли аналогично оракулу.



Рис. 2: Time travel for fun and profit

## Список литературы

- [1] Scott Aaronson.  $\mathcal{NP}$ -complete problems and physical reality. arXiv:quant-ph/0502072.
- [2] Mike Stay John C. Baez. Physics, topology, logic and computation: A rosetta stone. arXiv:0903.0340 [quant-ph].

### Благодарности

Я благодарен Николаю Вовчанскому и Василию Кузнецову за живительный пинок и идею организации семинара.