Estudio del núcleo no ligado 10 Li con ACTAR TPC Este es el subtítulo

Daniel Vázquez Lago

10 de julio de 2025

2 Objetivos

3 Metodología: reacción con albo gaseoso

4 Simulacion

5 Resultados

6 Conclusiones

Introducción

Cerca de la dripline \rightarrow Núcleos exóticos.

- Reordenamiento de las capas.
- Núcleos halo

Introducción

Reordenamiento de las capas ightarrow Diferentes estados excitados, momentos angulares...

Introducción

El ¹¹Li se describe como una interacción entre ¹⁰Li y un neutrón:

$$|^{11}\operatorname{Li}_{g.s}\rangle = \alpha|^{10}\operatorname{Li}\otimes\nu(2\mathsf{s}_{1/2})\rangle + \beta|^{10}\operatorname{Li}\otimes\nu(1\mathsf{p}_{1/2})\rangle + \cdots \tag{1}$$

 α y β indican la contribución de cada componente al estado fundamental.

Objetivos

Experimento TRIUMF:

- Medir factores espectroscópicos para hallar $\alpha, \beta...$
- Medir todas las resonancias del ¹⁰Li.

Simulación del experimento:

- Resolver el espectro de energías de excitación.
- Identificar las principales fuentes de incertidumbre en el espectro.

Blanco gaseoso

Blanco sólido

Reacción propuesta para TRIUMF, Canadá

Reacción del Berkley, California

Ventajas blanco gaseoso:

- Permite conocer vértice de reacción.
- Posible recostrucción de trazas por recolección de electrones.
- Podemos maximizar la eficiencia controlando variables como presión, densidad...

ACTAR TPC

- Detector gaseoso (90 % D₂, 10 % CF₄).
- Seguimiento de partículas 3D → Conocemos vértice de interacción y dirección.
- Silicios en las paredes.
- Trigger L1 para detección de eventos con baja energía.

Flujo de la simulación

Resultados: sin incertidumbres

	σ (0.0) [keV]	σ (0.20) [keV]
σ_0	10.2(90)	2.8(25)

	$\Gamma(0.0)$ [keV]	Γ(0.20) [keV]	
Γ ₀	97.30(95)	177.10(81)	

Resultados: energy straggling

	σ (0.0) [keV]	σ (0.20) [keV]
$\sigma_0 \ \sigma_{str}$	10.2(90) 78.60(63)	2.8(25) 62.50(93)

	$\Gamma(0.0)$ [keV]	Γ(0.20) [keV]
Γ_0 Γ_{str}	97.30(95) 99.70(93)	177.10(81) 197.2(10)

25000	-	7	۲,	H	=1.00 NAV	
		7	Ц.	h.	~0.30 MeV	
		4	- 4	П·	piteda	
	٠,	_	L			1
20000	- 1		- 1			
			~]			
	- Г		ا ۲۲ ۲	4		
15000			_ 1_	L.		
15000	. 4	г		Ll		
	. 4			Lī.		
	٠ ٦	7		Ц		
10000	_	~~		լլ		
	لي محم لي.			٦	Ц.	
	J 77 7		ι,		ц.	
			ኒ		ъ.	
5000	. ,,		- 5		- "14	1
	<u>untilumin</u>	بليسلي	والسياس	udu		i
-0	3 -0.2 -0.1	0 0.1	0.2 0.3	0.4	0.5 0 E _x [MeV	.6
					E' line A	1

	σ (0.0) [keV]	σ (0.20) [keV]
σ_0 σ_{str} $\sigma_{ heta}$	10.2(90) 78.60(63) 202.40(91)	2.8(25) 62.50(93) 171.3(10)

	$\Gamma(0.0)$ [keV]	$\Gamma(0.20)$ [keV]
Γ_0 Γ_{str}	97.30(95) 99.70(93)	177.10(81) 197.2(10)
Γ_{θ}	98.0(13)	195.9(̀14)́

	σ (0.0) [keV]	σ (0.20) [keV]
σ_0	10.2(90)	2.8(25)
σ_{str}	78.60(63)	62.50(93)
$\sigma_{ heta}$	202.40(91)	171.3(10)
σ_{tot}	218.80(98)	182.2(10)

	Γ(0.0) [keV]	Γ(0.20) [keV]
Γ ₀	97.30(95)	177.10(81)
Γ_{str}	99.70(93)	197.2(10)
Γ_{θ}	98.0(13)	195.9(14)
Γ_{tot}	96.0(14)	194.2(14)

	σ (0.0)	σ (0.20)
σ_0/σ_{tot}	0.047	0.015
$\sigma_{\sf str}/\sigma_{\sf tot}$	0.359	0.343
$\sigma_{ heta}/\sigma_{tot}$	0.925	0.940

Podemos concluir que la fuente de incertidumbre más importante es σ_{θ} .

Recuperación de eventos a baja energía con trigger L1

Recuperación de eventos de baja energía sobre todos los que se paran ($L_{XY} > 20$ mm).

$E_{\scriptscriptstyle X}=0.0~{ m MeV}$	$E_{\scriptscriptstyle X}=0.20~{\rm MeV}$
36.50 %	64.23 %

Byu

Las conclusiones aquí obtenidas son:

- Se puede resolver el espectro de energía con los silicios.
- Resolución angular como mayor fuente de incertidumbre.
- Obtención de gran parte de los eventos de baja energía con *trigger L1*.
- \blacksquare Los valores σ que se pueden usar en TRIUMF.