Probubilidede

Ljericia	1
U	
	/

Probabilidades

Sabiendo que $P(A \cap B) = 0.6$ y que $P(A \cap B^C) = 0.2$, se pide calcular la probabilidad de A.

Teorena de la Probabilidal Total.

$$P(A) = P(A \cap B) + P(A \cap B^{c})$$

$$P(A) = 0.6 + 0.2 = 0.8$$

$$P(A) = 0.6 + 0.2 = 0.8$$

 $P(A) = P(A \cap B) + P(A \cap B^c) - P(A \cap B \cap A \cap B^c)$ $P(A) = P(A \cap B) + P(A \cap B^c) - P(A \cap B \cap A \cap B^c)$ $P(A) = P(A \cap B) + P(A \cap B^c) - P(A \cap B \cap A \cap B^c)$ $P(A) = P(A \cap B) + P(A \cap B^c) - P(A \cap B \cap A \cap B^c)$ $P(A) = P(A \cap B) + P(A \cap B^c) - P(A \cap B \cap A \cap B^c)$ $P(A) = P(A \cap B) + P(A \cap B^c) - P(A \cap B \cap A \cap B^c)$ $P(A) = P(A \cap B) + P(A \cap B^c) - P(A \cap B \cap A \cap B^c)$ $P(A) = P(A \cap B) + P(A \cap B^c) - P(A \cap B \cap A \cap B^c)$ $P(A) = P(A \cap B) + P(A \cap B^c) - P(A \cap B \cap A \cap B^c)$ $P(A) = P(A \cap B) + P(A \cap B^c) - P(A \cap B \cap A \cap B^c)$

ANBMANB° ANBMB°

