Abstractive Summarization

李昌群

2022-9-30

目录

- Hallucinations(幻觉), Unfaithful
 - Common Problems Faced by Abstractive Summarization Models

Prompt-based Domain Adaptation for Abstractive Summarization

Abstractive Summarization

- **Task**: Generating concise, fluent, salient and *faithful* to the source document summary;
- **Problem1**: intrinsic and extrinsic hallucinations (unfaithful)

Source: He was re-elected for a second term by the UN General Assembly, unopposed and unanimously, on 21 June 2011, with effect from 1 January 2012. Mr. Ban describes his priorities as mobilising world leaders to deal with climate change, economic upheaval, pandemics and increasing pressures involving food, energy and water...

Unfaithful Summary: The United Nations Secretary-General Ban Ki-moon was elected for a second term in **2007**.

Our Summary: The United Nations Secretary-General Ban Ki-moon was elected for a second term in 21 June 2011.

这篇文章描述了前联合国秘书长潘基文连任的事件。 该模型产生幻觉"2007",它从未出现在源文档中,导 致与所呈现事件的正确日期不一致。

Existing approaches

- Post-processing models
 - Training additional correction or selection models by using external resources
- Filtering nonfactual training data
 - Learning factuality directly during fine-tuning by filtering nonfactual training data
- FACTPEGASUS
 - Addressing the problem of factuality during pre-training and fine-tuning

Improving Faithfulness with Contrast Candidate Generation and Selection

方法/步骤:

1. Contrast candidate generation 将摘要中的实体替换为源文档存在的实体,创建候选摘要的变体。

Type	%	Ent. %	Num. %
Faithful	23.1	-	-
Ex. Hallucination	73.1	35.9	18.2
In. Hallucination	7.4	1.9	0.5

2. Selection

使用训练的discriminative model对候选 摘要进行排序,选择得分最高的作为最终的 摘要。

Table 2: Frequency of extrinsic and intrinsic hallucinations in 500 ground truth summary of the XSum corpus.

A large fraction of extrinsic hallucinations happen on **named entities and quantities**

Xsum:

Changed Summary 13.3% Non-existent hallucinated entity 38.4% Keep the original summary 48.3

评测指标: Rouge, BERTScore 评测生成摘要的fluency, salience

Faithfulness Evaluation: **FEQA**, a QA-based metric

	Full XSum	Test Set	
Method	$Rouge_L$	BERT	FEQA (%)
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	36.95	91.57	-
+ correct	36.70	91.50	_
Chang	ged Summar	y <i>Only</i> (1.	3.3%)
$\overline{{ t BART}_{large}}$	38.63	91.61	22.50
+ correct	36.62	91.10	25.62

Table 3: Evaluation with automatic metrics on the summaries generated by the baseline $BART_{large}$ model, plus our post-processing correction method. We report

Entity-level Factual Consistency

- Problem
 - 30% of the summaries generated suffer from fact fabrication
 - ROUGE score is inadequate to quantify factual consistency
- Method
 - 1. New metrics: 量化生成摘要的实体级事实一致性
 - 2. Data filtering, multi-task learning and joint sequence generation

Method

New Metric

Precision-source (**prec**_s): $N(h \mid s) / N(h)$

表明在源文档中找到摘要中出现的命名实体的百分 比。越低说明幻觉越严重

	N	ewsroo	m	C	CNNDN	1	XSUM			
	train	val	test	train	val	test	train	val	test	
avg. $\mathcal{N}(t)$	2.08	2.10	2.09	4.36	5.09	4.87	2.08	2.06	2.08	
avg. $\mathcal{N}(t \cap s)$	1.88	1.90	1.90	4.21	4.92	4.70	1.64	1.64	1.64	
$\operatorname{\mathbf{prec}}_{s}\left(\% ight)$	90.6	90.6	90.5	96.5	96.7	96.6	79.0	79.5	79.3	

Table 1: Average number of named-entities and the \mathbf{prec}_s scores (%) in the ground truth summary.

在Xsum数据集中指标分数较低,说明在Xsum数据中幻觉较严重

N (t): number of entities in the gold summary

N (h): number of entities in the generated summary

 $N(h \setminus s)$: number of entities in gold and generated summary

Entity-based data filtering

- 1. NER识别实体 2. 不存在匹配项,丢弃

		Newsroom			CNNDM			XSUM	
	train	val	test	train	val	test	train	val	test
original	922,500 (1.58)	100,968 (1.60)	100,933 (1.59)	287,112 (3.90)	13,368 (4.13)	11,490 (3.92)	203,540 (1.0)	11,301 (1.0)	11,299 (1.0)
after filtering	855,975 (1.62)	93,678 (1.64)	93,486 (1.64)	286,791 (3.77)	13,350 (3.99)	11,483 (3.77)	135,155 (1.0)	7,639 (1.0)	7,574 (1.0)

Table 2: Number of examples in three datasets together with the average number of sentences in the ground truth summary (in parentheses) before and after entity-based filtering.

过滤前后的数据统计

	training data	Rouge1	Rouge2	RougeL	$egin{array}{c} { m macro} \\ { m {f prec}}_s \end{array}$	$\begin{matrix} \text{micro} \\ \mathbf{prec}_s \end{matrix}$	$egin{array}{c} { m macro} \\ { m {f prec}}_t \end{array}$	$\begin{matrix} \text{micro} \\ \mathbf{prec}_t \end{matrix}$	$egin{array}{c} macro \\ \mathbf{recall}_t \end{array}$	$egin{array}{c} micro \\ \mathbf{recall}_t \end{array}$	macro $F1_t$	micro $F1_t$
	original	47.7±0.2	35.0±0.3	44.1±0.2	97.2 ± 0.1	97.0±0.1	65.4±0.3	62.9±0.4	70.8±0.3	$68.5_{\pm 0.2}$	68.0±0.2	65.6±0.3
Newsroom	+ filtering	47.7 ± 0.1	35.1±0.1	$44.1{\scriptstyle~\pm 0.1}$	$98.1{\scriptstyle\pm0.1}$	$98.0{\scriptstyle\pm0.0}$	$66.5{\scriptstyle\pm0.1}$	63.8±0.1	$70.2{\scriptstyle~\pm 0.2}$	67.7±0.3	68.3±0.1	65.7 ± 0.1
Newsfootii	+ classification	$47.7{\scriptstyle\pm0.2}$	35.1±0.1	$44.2{\scriptstyle\pm0.2}$	$98.1{\scriptstyle\pm0.1}$	$98.0{\scriptstyle\pm0.0}$	$67.2{\scriptstyle\pm0.4}$	64.2±0.4	$70.3_{\pm 0.2}$	67.8±0.4	68.7±0.3	$65.9_{\pm 0.4}$
	JAENS	46.6 ± 0.5	34.3±0.3	$43.2{\scriptstyle\pm0.3}$	98.3 ±0.1	98.3 ±0.1	69.5 ±1.6	67.3 ±1.2	$68.9_{\pm 1.5}$	66.8±1.6	69.2 ±0.1	67.0 ±0.2
CNNDM	original	43.7±0.1	21.1 ±0.1	40.6±0.1	99.5±0.1	99.4±0.1	66.0 ± 0.4	66.5±0.4	74.7±0.7	75.4±0.6	70.0±0.2	70.7±0.3
	+ filtering	$43.4{\scriptstyle\pm0.2}$	20.8±0.1	$40.3{\scriptstyle\pm0.2}$	99.9 ±0.0	99.9 ±0.0	66.2 ± 0.4	66.6±0.3	74.1 ± 0.6	$74.9_{\pm 0.6}$	$69.9_{\pm 0.2}$	$70.5_{\pm 0.2}$
CINIDM	+ classification	$43.5{\scriptstyle\pm0.2}$	20.8±0.2	$40.4{\scriptstyle\pm0.2}$	99.9 ± 0.0	99.9 ±0.0	67.0 \pm 0.6	67.5 ±0.5	$74.7_{\pm 0.2}$	$75.5_{\pm 0.1}$	70.6±0.3	71.3±0.3
	JAENS	$42.4_{\pm 0.6}$	20.2±0.2	$39.5{\scriptstyle\pm0.5}$	99.9 ±0.0	99.9 _{±0.0}	67.9 ±0.7	68.4 ±0.6	75.1 ±0.7	76.4 ±0.7	71.3 ±0.2	72.2 ±0.2
	original	45.6±0.1	22.5 ±0.1	37.2 ±0.1	$93.9_{\pm 0.1}$	93.6±0.2	74.1 ± 0.2	73.3 ± 0.2	80.1±0.1	80.3±0.3	77.0±0.1	76.6 ± 0.2
XSUM	+ filtering	$45.4_{\pm 0.1}$	22.2±0.1	$36.9{\scriptstyle\pm0.1}$	$98.2_{\pm 0.0}$	$98.2_{\pm 0.1}$	$77.9{\scriptstyle\pm0.2}$	77.3 ± 0.2	$79.4_{\pm 0.2}$	$79.6_{\pm 0.2}$	78.6±0.1	$78.4_{\pm 0.2}$
ASUM	+ classification	45.3±0.1	22.1±0.0	$36.9{\scriptstyle\pm0.1}$	$98.3{\scriptstyle\pm0.1}$	98.2±0.1	$78.6{\scriptstyle\pm0.3}$	78.0 ±0.3	$79.5_{\pm 0.3}$	$79.8_{\pm 0.4}$	79.1 ±0.1	78.9 ±0.1
	JAENS	43.4±0.7	21.0±0.3	35.5 ± 0.4	99.0 ±0.1	99.0±0,1	$77.6{\scriptstyle\pm0.9}$	77.1±0.6	$79.5_{\pm 0.6}$	80.0±0.5	78.5±0.2	$78.5_{\pm 0.1}$

Main result

Factuality-Aware Pre-training and Fine-tuning

- Pre-training stage
 - Incorporating factuality into the pre-training objective of PEGASUS
- Fine-tuning stage
 - Corrector: removes hallucinations existing in reference summaries;
 - **Contrastor:** differentiate factual summaries from nonfactual contrastive learning;
 - Connector: bridges the gap between the pre-training and finetuning for better transfer of knowledge.

模型架构

目的: 使模型学会生成涵盖输入文档中最重要信息的句子, 并对其保持事实一致性

将mask token插入到数据集的输入中,从而模拟模型在预训练时的模式,插入的position在验证集进行确定

Factuality Evaluation:

1. FactCC;

2. DEP-Entail: token error

and sentence error

Dataset	Model	RL	tok err↓	sent err↓	FactCC
	BART-base	33.78	12.38	60.70	23.99
	PEGASUS*	33.17	12.33	60.01	24.14
XS	DAE	31.78	4.79*	35.52*	25.43
	CLIFF	31.40	10.36	53.14	23.77
	FACTPEGASUS	31.17	6.07	38.66	34.32
	BART-base	31.81	8.99	45.77	99.09
WH	PEGASUS*	30.30	9.77	47.28	98.83
	DAE	31.66	4.91*	34.45*	98.87
	CLIFF	33.82	13.74	57.42	99.18
	FACTPEGASUS	29.33	7.86	42.40	99.41
	BART-base	35.11	2.29	19.68	55.66
	PEGASUS*	34.74	2.84	22.66	56.43
GW	DAE	35.57	0.58*	7.54*	59.61
	CLIFF	34.89	1.72	18.45	58.53
	FACTPEGASUS	34.23	2.30	19.32	60.02

Fine-tuning results

Model	RL	tok err↓	sent err↓	FactCC
factGSG	32.99	12.31	59.30	24.94
+ corrector replace + corrector remove + corrector combined	32.48 30.37 31.19	10.57 6.44 6.10	55.05 39.89 38.96	25.06 35.77 33.79
+ contrastor intrinsic + contrastor extrinsic	32.14 32.54	11.46 11.95	57.61 59.10	25.26 25.07
+ contrastor + corrector	31.17	6.08	38.92	34.17
FACTPEGASUS	31.17	6.07	38.66	34.32

Fine-tuning ablation on XSum

Prompt-based Domain Adaptation

• 问题:

- 在特定的领域,可利用的标注数据较少
- In-domain数据和out-of-domain数据结合将导致域外数据过拟合
- 当对话摘要模型应用到新领域时泛化能力较差

 Domain Adaptation研究的是如何利用通用域的大量的标注数据, 来提升目标域的性能。

Domain Adaptation

- The key point
 - how to effectively transfer learned knowledge from source domain
- Two aspects
 - Domain-Invariant Information (shared knowledge)
 - Domain-Specific Information (domain-related features)

Soft Prompt Transfer for Model Adaptation

Soft Prompt Transfer

任务之间的相似度是一个重要的影响因素

retrieval approach

计算流程:

- (i)计算一个任务embeddings,
- (ii)检索一个最优source prompt,
- (iii)将检索到的source prompt用来初始化target prompt。

Prompt Transfer Meets Knowledge Distillation for Efficient Model Adaptation

问题:

- 1. be **sensitive** to the similarity between source and target tasks
- 2. catastrophic forgetting

模型架构图

损失

$$\mathcal{L}_{all}(u_r,f) = \mathcal{L}_{ce}(u_r,f)$$
 $\qquad (1)$ The classification loss

Prompt-based Knowledge Distillation

$$\mathcal{L}_{ ext{all }}(u_r,f)=\mathcal{L}_{ce}(u_r,f)+\lambda\cdot\mathcal{L}_{kd}(u_r,f)$$
 (2) The classification loss + KD loss KD: Knowledge Distillation

损失

$$\mathcal{L}_{ ext{all }}(u_r,f) = \mathcal{L}_{ce}(u_r,f) + \lambda \underbrace{\sin \left(\hat{h}_s,\hat{h}_t
ight)} \mathcal{L}_{kd}(u_r,f)$$
 (3)

Metric: to measure the prompt similarity

$$\mathcal{D} \xrightarrow{\mathcal{M}} h_{cls}^m, \ e(\mathcal{D}) \xrightarrow{\overline{\mathcal{M}}, u} h_{cls}^p; \quad \hat{h} = h_{cls}^p - h_{cls}^m; \quad sim(\hat{h}_s, \hat{h}_t) = \left(\frac{\hat{h}_s \cdot \hat{h}_t}{\|\hat{h}_s\| \|\hat{h}_t\|}\right).$$

计算流程:

- 1. 随机选取部分样本作为代表数据;
- 2. 输入原始PLM 和经过训练的prompt, 得到隐向量;
- 3. 将两个向量相减作为基于prompt的任务嵌入;
- 4. 相似性比较

实验结果

Method	CB	COPA	WSC	RTE	WIC	CoLA	MRPC	STSB	Conll ₀₄	AVG.			
model-tuning	94.6	69.0	68.3	75.8	74.9	60.6	88.0	90.0	85.6	78.5			
prompt-tuning	87.5	76.0	64.4	76.2	66.9	63.8	86.8	90.5	85.5	77.5			
	(a) Transfer with Vanilla Prompt Transfer approach												
MNLI	96.4	71.0	67.3	80.9	66.5	58.9	88.2	91.0	83.0	78.1			
QNLI	89.3	76.0	65.4	76.2	70.4	63.7	88.5	90.7	83.5	78.2			
Record	78.6	63.0	65.4	53.8	51.7	0.0	77.7	85.0	82.7	62.0			
SQuAD	87.5	74.0	66.3	71.8	51.7	6.0	87.3	89.3	82.5	68.5			
CoNLL03	73.2	64.0	63.5	60.3	51.9	0.0	71.3	16.4	84.8	53.9			
Ontonotes	78.6	65.0	66.3	56.7	54.1	59.3	82.4	84.5	86.1	70.3			
CoNLL05	87.5	65.0	64.4	69.3	68.3	61.3	88.7	88.4	83.8	75.2			
CoNLL12	89.3	62.0	67.3	63.2	67.4	58.7	90.4	88.5	83.6	74.5			
SST2	92.9	74.0	64.4	71.8	66.8	60.1	87.0	89.6	84.3	76.8			
			(b) Tran	sfer wit	h Our P	ANDA ap	proach						
MNLI	92.9	77.0	67.3	78.0	68.8	66.3	88.5	90.6	85.4	79.4 _{1.3}			
QNLI	92.9	77.0	66.3	77.3	70.8	63.9	87.5	90.8	86.6	79.21.0			
Record	87.5	76.0	66.3	77.3	68.5	62.4	87.5	90.7	84.9	77.9 _{15.9}			
SQuAD	89.3	75.0	66.3	75.5	69.3	63.1	87.3	88.9	85.7	$77.8_{9.3}$			
CoNLL03	91.1	72.0	68.3	76.9	67.4	63.6	86.5	90.6	85.6	$78.0_{24.1}$			
Ontonotes	89.3	74.0	66.3	76.2	69.1	64.2	88.0	90.8	85.7	78.27.8			
CoNLL05	87.5	79.0	65.4	77.6	69.6	63.7	87.5	90.8	84.8	78.4 _{3.2}			
CoNLL12	87.5	76.0	66.3	74.4	68.5	63.7	87.5	90.8	85.0	77.73.3			
SST2	92.9	77.0	68.3	76.5	70.1	64.8	88.5	90.7	86.3	79.5 _{2.7}			

Main Results

实验结论:

- 1. Prompt-tuning via PANDA approach consistently outperforms model-tuning;
- 2. Knowledge Distillation helps bridge the gap between different types of tasks

Method	BERT-medium	BERT-tiny
prompt-tuning	70.5	59.1
vanilla PoT	69.16	57.09
PANDA		
-w constant (ones)	71.21	60.18
-w Eavg metric	71.08	60.10
-w ON metric	71.06	60.03
-w Our metric	71.70	60.36

Scores with different metrics

Domain-Oriented Prefix-Tuning

• 模型架构

1. Utilizing a domain word initialized prefix module

2. Adopting discrete prompts to guide the model

对话数据集

Domains	Size	Dialog.len	Summ.len	DS.len
Train	345	120.67	24.93	18.29
Taxi	435	80.24	29.04	15.80
Restaurant	1,311	105.42	23.04	14.30
Hotel	636	145.16	30.06	21.38
Attraction	150	95.48	22.27	7.92
All	2,877	111.71	25.68	16.24

TODSum

Domains	Size	Dialog.len	Summ.len	QR.len
Academic	312	1,155.78	46.48	8.56
Committee	Committee 417		76.00	14.54
Product	847	971.65	63.96	13.36
All	1,576	951.49	63.68	12.73

QMSum

	Train				Taxi		R	estaura	nt		Hotel		A	ttractio	n
Models	2,33	2 / 200 /	345	2,24	2 / 200 /	435	1,366	5/200/	1,311	2,04	1/200/	636	2,52	7 / 200 /	150
	R-1	R-2	R-L	R-1	R-2	R-L	R-1	R-2	R-L	R-1	R-2	R-L	R-1	R-2	R-L
Lead-3	20.36	2.78	16.07	24.20	7.34	20.75	28.27	6.10	23.49	23.86	4.58	18.80	22.76	5.28	19.66
Oracle	39.06	10.04	32.87	38.96	14.06	33.43	45.79	15.57	38.42	39.65	11.28	32.56	41.90	14.18	38.79
BertExt	39.19	9.71	33.24	38.49	13.57	33.36	40.64	12.34	34.43	35.96	9.71	30.10	36.25	11.19	31.41
PGN	32.50	10.47	29.33	32.48	7.79	29.82	33.63	10.78	31.47	32.18	9.36	30.93	32.66	9.95	30.29
Transformer	33.47	10.98	30.28	33.35	8.71	30.57	34.49	11.43	31.99	33.05	10.62	31.63	33.18	10.74	30.91
BertAbs	42.89	16.57	37.32	36.43	14.69	32.15	42.10	18.61	38.87	38.03	13.34	33.22	36.21	14.81	34.67
BART	46.82	18.42	42.06	39.98	15.79	34.41	47.02	22.62	44.93	40.84	14.20	36.83	43.67	20.23	41.44
BART w. DS	49.02	23.80	44.59	43.59	19.56	38.65	49.25	23.57	45.23	43.97	17.02	39.31	47.55	22.62	45.16
Prefix-tuning	45.92	22.70	41.06	41.89	19.47	39.62	47.19	24.20	42.99	43.41	18.75	36.75	44.48	22.43	40.94
DOP (ours)	52.51	25.45	47.78	47.14	24.37	42.75	51.28	32.68	47.44	48.44	24.58	41.45	52.90	30.51	49.48

Zero-Shot Experiments Results

Model	R-1	R-2	R-L
DOP (ours)	52.51	25.45	47.78
w/o DW	48.87	23.81	44.52
w/o DS	47.59	23.25	43.41
w/o DW & DS	45.92	22.70	41.06

Ablation study

Table 5: F1 scores of ablation study on *train* domain of TODSum dataset. "DW" denotes domain words and "DS" denotes dialogue states.

Adversarial Prompt-based Domain Adaptation

设计的三个prompt取代了随 机初始化, 编码了一些特定的信 息, 从而引出预训练模型中相关 的知识。

2. Domain-specific prompt

Domain-related features

ADPL: Adversarial Prompt-based Domain Adaptation for Dialogue Summarization with Knowledge Disentanglement SIGIR 2022

		Train			Taxi		R	estaura	nt		Hotel		A	ttractio	n
Models	2,332 / 200 / 345		2,242 / 200 / 435		1,366 / 200 / 1,311		2,041 / 200 / 636		2,527 / 200 / 150						
	R-1	R-2	R-L	R-1	R-2	R-L	R-1	R-2	R-L	R-1	R-2	R-L	R-1	R-2	R-L
Lead-3	20.36	2.78	16.07	24.20	7.34	20.75	28.27	6.10	23.49	23.86	4.58	18.80	22.76	5.28	19.66
Oracle	39.06	10.04	32.87	38.96	14.06	33.43	45.79	15.57	38.42	39.65	11.28	32.56	41.90	14.18	38.79
BertExt	39.19	9.71	33.24	38.49	13.57	33.36	40.64	12.34	34.43	35.96	9.71	30.10	36.25	11.19	31.41
PGN	32.50	10.47	29.33	32.48	7.79	29.82	33.63	10.78	31.47	32.18	9.36	30.93	32.66	9.95	30.29
Transformer	33.47	10.98	30.28	33.35	8.71	30.57	34.49	11.43	31.99	33.05	10.62	31.63	33.18	10.74	30.91
BertAbs	42.89	16.57	37.32	36.43	14.69	32.15	42.10	18.61	38.87	38.03	13.34	33.22	36.21	14.81	34.67
BART	46.82	18.42	42.06	39.98	15.79	34.41	47.02	22.62	44.93	40.84	14.20	36.83	43.67	20.23	41.44
M-BART	48.62	22.92	43.90	40.37	17.48	36.03	49.23	26.37	45.00	42.47	18.07	38.23	53.65	31.40	50.46
BART w. DS	49.02	23.80	44.59	43.59	19.56	38.65	49.25	23.57	45.23	43.97	17.02	39.31	47.55	22.62	45.16
Prefix-tuning (BART)	45.92	22.70	41.06	41.89	19.47	39.62	47.19	24.20	42.99	43.41	18.75	36.75	44.48	22.43	40.94
Pegasus	52.14	27.19	47.67	48.99	21.94	43.34	54.81	26.00	50.18	48.31	21,11	42,17	53.90	28.12	50.96
Prefix-tuning (Pegasus)	49.77	24.40	45.56	44.62	21.65	40.71	54.93	32.43	50.56	49.11	23.35	41.75	51.94	27.47	47.63
ADPL (ours)	55.18	28.03	52.36	49.87	23.86	45.62	60.01	35.97	56.37	53.45	26.78	45.16	57.28	31.69	51.49

Table 3: Results in terms of ROUGE-1, ROUGE-2, and ROUGE-L on TODSum in the zero-shot setting. All ROUGE scores are reported by averaging three random runs. Here, "DS" denotes the dialogue states. Values in the second row denote the size of train/valid/test set. (p < 0.01 under t-test)

Zero-Shot Experiments Results

Model	R-1	R-2	R-L
ADPL (ours)	55.18	28.03	52.36
w/o AL	52.37	26.13	48.43
w/o DW	51.63	25.00	46.87
w/o DIP	47.73	21.94	42.12
w/o DSP	49.81	23.80	44.71
w/o DIP & DSP	47.53	21.91	42.32
w/o TOP	50.09	23.65	45.07

Table 5: F1 scores of ablation study on *train* domain of TODSum dataset. "AL" denotes adversarial learning and "DW" denotes domain words. "w/o DIP & DSP" means the removal of encoder prompt.

Ablation study

Thanks

Parameter-efficient Transfer Learning

Adapter:

$$Adapter(\mathbf{x}) = \mathbf{W}_u(ReLU(\mathbf{W}_d\mathbf{x} + \mathbf{b}_d)) + \mathbf{b}_u$$

Prefix-tuning:

$$K'_{l} = [P_{l,K}; K_{l}], V'_{l} = [P_{l,V}; V_{l}]$$

LoRA:

$$\boldsymbol{h} \leftarrow \boldsymbol{h} + s \cdot \boldsymbol{x} \boldsymbol{W}_{\text{down}} \boldsymbol{W}_{\text{up}},$$

• 这些方法里面关键部分是什么? 这些方法之间是否有什么联系?

Prefix Tuning:

$$h \leftarrow (1 - \lambda(x))h + \lambda(x)f(xW_{\text{down}})W_{\text{up}}$$

Adapters:

$$oldsymbol{h} \leftarrow oldsymbol{h} + f(oldsymbol{h} W_{ ext{down}}) oldsymbol{W}_{ ext{up}}$$
 知乎 @ 金琴

Prefix-tuning是另一种形式的adapter

计算流程图

现有方法和提出的变体的图形说明

四个维度:

1. Functional Form

- 2. Insertion Form
- 3. Modified Representation 4. Composition Function

实验结论

Insertion Form: Parallel > Sequential

 Modified Representation: FFN > attn (generally), but multi-head attn is superior with very small parameter budget (0.1% of original parameters)

Composition: $h \leftarrow h + s \cdot \Delta h$

(Scaled addition is a good tradeoff between performance and simplicity)

Towards Low-Resource Domain Adaptation for Abstractive Summarization

- A second phase of pre-training under three settings
 - source domain pre-training (SDPT) based on a labeled source domain summarization dataset;
 - domain-adaptive pre-training (DAPT) based on an unlabeled substantial domain-related corpus;
 - task-adaptive pre-training (TAPT) based on an unlabeled smallscale task-related corpus.

Models	Dialog	Email	Movie R.	Debate	Social M.	Science	Average
BART Fine-tuning	39.95	24.71	25.13	24.48	21.76	72.76	34.80
SDPT	42.84	25.16	25.45	25.61	22.43	73.09	35.76
w/ RecAdam	45.23	26.97	26.06	25.17	23.25	72.60	36.55
DAPT	41.22	26.50	24.25	26.71	22.95	71.88	35.59
w/ RecAdam	40.05	25.66	25.78	25.01	21.51	72.23	35.04
TAPT	40.15	25.30	25.27	24.59	22.81	73.08	35.20
w/ RecAdam	41.34	25.73	25.65	24.70	23.01	72.80	35.54

Table 2: ROUGE-1 scores on different pre-training methods compared to the baseline BART over all domains.

Domain	Unlabeled	Corpus	Labeled data				
Domain	# Tokens	Size	Train	Valid	Test		
Dialog	44.96M	212MB	300	818	819		
Email	117.54M	705MB	300	1960	1906		
Movie R.	11.36M	62MB	300	500	2931		
Debate	122.99M	693MB	300	956	1003		
Social M.	153.30M	786MB	300	1000	1000		
Science	41.73M	291MB	100	350	497		

实验发现:

- 1. 预训练的有效性与预训练数据与目标域任务的相似度相关。
- 2. 继续进行预训练可能会导致预训练模型的灾难性遗忘

Domain-Agnostic Multi-Source Pretraining

Three procedures:

- 1. the pretraining of **encoder**
- 2. the pretraining of **decoder**
- 3. the pretraining of the **combined encoder-decoder**

Figure 1: The overall architecture of DAMS. The multi-source pretraining includes: (i) encoder pretraining using dialogues (green); (ii) decoder pretraining using short texts (yellow); (iii) Joint pretraining using general articles with corresponding summaries (orange).

$$\mathcal{L} = \mathcal{L}_{rec} + \mathcal{L}_{gen} + \mathcal{L}_{summ} + \alpha (\mathcal{L}_e^D + \mathcal{L}_g^D).$$
 (8)

Figure 2: Model performance in low-resource settings.

Few-shot setting

Model	+News	RG-1	RG-2	RG-L
Longest-3	-	32.46	10.27	29.92
Seq2Seq+Att	-	29.35	15.90	28.16
Transformer	-	37.27	18.44	32.73
PGNet	-	40.08	15.28	36.63
FastRL	-	40.96	17.18	39.05
FastRL Enhanced	-	41.95	18.06	39.23
D-HGN	-	42.03	18.07	39.56
TGDGA	-	43.11	19.15	40.49
BERT+TRF	-	39.90	17.01	39.12
LightConv	✓	40.29	17.28	36.81
DynamicConv	✓	41.07	17.11	37.27
Transformer	✓	42.37	18.44	39.27
PGNet	✓	37.27	14.42	34.36
FastRL	✓	41.03	16.93	39.05
FastRL Enhanced	✓	41.87	17.47	39.53
BERT+TRF	✓	42.37	17.59	40.73
DAMS (w/o pretrain)	-	39.07	14.59	38.06
DAMS	✓	44.38	19.98	43.40

Table 2: Results of ROUGE-1/2/L on the SAMSum corpus. +News means whether the approach exploits external news summary data or not.