Contents

Integrales
Antiderivada o primitiva
Sea
$F'(x) = f(x) \forall x \in \mathbb{I} \dots \dots \dots \dots$
Observaciones
Indefinidas
Definicion
Propiedades
Metodos
Definidas
Definicion
Propiedades
Teorema fundamental del calculo
Metodos
Integracion por fraciones simples
Sea
Caso 1: Factores lineales diferentes
Caso 2: Factores lineales repetidos
Caso 3: Factores lineales diferentes y con repeticiones
Caso 4: Factores lineales y cuadraticos que no se repiten
Caso 5: Factores lineales y cuadraticos con repeticiones
Area entre dos curvas
Sean
$A = \int_a^b f(x) - g(x) dx \dots \dots \dots \dots \dots \dots \dots \dots \dots$
Integrales impropias
Extendemos la definicion de integral para los casos en los que
Tipo 1
Tipo 2
Criterios de Comparacion
•
Sucesiones
Definicion
Limite
Propiedades
Notacion
Definicion formal
Convergencia y divergencia
Crecimiento y Decrecimiento
Crecientes
Decrecientes
Sucesion monotona
Acotaciones
Inferior
Superior

							0
General							8
Observacion: Pluralidad							8
Axioma de completitud de los reales							8
Supremo e infimo							9
Subsucesiones		•		 •			9
Una subsucesion de una sucesion							9
Teoremas							9
Relacion entre limite de funciones y sucesione							9
Sandwich para sucesiones							9
Convergencia a 0 y modulo							9
Composicion de limite y funcion							9
Sucesion convergente							10
Sucesion creciente y sup. acotada							10
Sucesion decreciente y inf. acotada							10
Observacion: Convergencia y crecimiento							10
Subsucesion de una sucesion convergente							10
Bolzano-Weierstrass	 						10
Series							10
Definicion							10
Suma parcial							11
Serie geometrica							11
Definicion							11
Teoremas							11
Propiedades de series convergentes							11
Criterios							11
Criterio de divergencia	 						11
Criterio de comparacion para series							11
Criterio de comparacion en el limite	 						12
Criterio de la integral para series							12
Criterio del cociente	 						12
Criterio de la raiz	 						12
Series alternantes	 						12
Definicion	 						12
Criterio para series alternantes	 						12
Tipos de convergencia	 						13
Absoluta	 						13
Condicional							13
Convergencia y convergencia absoluta							13
Sonias do notonaios							10
Series de potencias							13 13
Definicion							
Teoremas							13
Caracteristicas de las series de potencias							13
Observacion sobre R			•	 ٠	•	•	13
Criterio del cociente para series de potencias							14

Derivacion e integracion de una serie de potencias	.4
Radio de convergencia	4
Intervalo de convergencia	.5
Definicion	.5
Observaciones	.5
Representacion de funciones como series de potencias	5
Serie de Taylor	.5
Teorema	.5
Definicion	.5
Polinomio de Taylor	6
Sea	6
Definimos el polinomio de Taylor de f de orden n centrado en a	
como	6
Observaciones	6
Resto de Taylor	6
Definicion	6
Teorema	6
Formula de Lagrange para el resto	6
Formula de Taylor	6
Llamamos formula de Taylor a	6

Integrales

Antiderivada o primitiva

Sea

 $\mathbb{I} \in \mathbb{R}$ un intervalo

 $f:\mathbb{I}\to\mathbb{R}$

$$F'(x) = f(x) \quad \forall x \in \mathbb{I}$$

 \Rightarrow F(x) es una antiderivada de f(x)

Observaciones

No son unicas

Tienen la forma F(x) + c para alguna constante $c \in \mathbb{R}$

Indefinidas

Definicion

Sean $\mathbb{I} \in \mathbb{R}$ un intervalo $f: \mathbb{I} \to \mathbb{R}$

Se llama integral definida de f al conjunto de todas las primitivas de f

Se denota $\int f(x)dx$ \int Se llama integral dx Se llama diferencial de x

Propiedades

$$\int 0 \, dx = c$$

$$\int a \cdot x \, dx = a \cdot \int x \, dx \, \forall a \in \mathbb{R}$$

$$\int (f \pm g)(x) \, dx = \int f(x) \, dx \pm \int g(x) \, dx$$

Metodos

Integracion por Sustitucion $\int f(g(x))g'(x) dx = \int f(u)du dx u = g(x), du = g'(x) dx$

Integracion por partes $\int f(x)g'(x) dx = u \ v - \int v \ du \ dv = g'(x) \ v = \int g'(x) \ dx$ $u = f(x) \ du = f'(x)$ Para recordar Orden de como elegir u ILATE Inversa Logaritmica Algebraica Trigonometrica Exponencial La formula Una vaca sin cola vestida de uniforme Ver iniciales de cada palabra "Sin" hace referencia al menos "Cola" hace referencia a la integral

Definidas

Definicion

Sea $f:[a,b]\to\mathbb{R}$ continua $f(x)\geq 0 \ \forall x\in[a,b]$ O bien es acotada con un número finito de discontinuidades en el intervalo

La integral definida de f en [a,b] se denota $\int_a^b f(x) dx$ Está dada por el area debajo de la curva y = f(x) entre las rectas x=a e x=b Los extremos del intervalo se llaman limite inferior y superior de integracion

Propiedades

$$\int_{a}^{b} f(x) dx = A = \lim_{\Delta \to 0} \sum_{k=1}^{n} m_{k} \Delta_{k}$$

$$\int_{a}^{a} f(x) dx = 0$$

$$\int_{a}^{b} f(x)dt = -\int_{b}^{a} f(x)dt$$

$$f(x) \ge 0 \ \forall x \in [a,b] \Rightarrow \int_{a}^{b} f(x)dt \ge 0$$

$$\int_{a}^{b} k \cdot f(x)dt = k \cdot \int_{a}^{b} f(x)dx \ k \in \mathbb{R}$$

$$\int_{a}^{b} (f \pm g)(x) \ dt = \int_{a}^{b} f(x) \ dx \pm \int_{a}^{b} g(x) \ dx$$

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$

$$f(x) \le g(x) \ \forall x \in [a,b] \Rightarrow \int_{a}^{b} f(x) \ dx \le \int_{a}^{b} g(x) \ dx$$

Teorema fundamental del calculo

Sea una funcion continua $f:[a,b]\to\mathbb{R}$ $F(x)=\int_a^x f(t)\ dt\ \forall x\in[a,b]$

Primer teorema F(x) Es derivable $F'(x) = f(x) \ \forall x \in (a,b)$ F es una primitiva de f

Segundo teorema Sea G
 una primitiva de f en [a,b] $\Rightarrow \int_a^b f(x) dx = G(a) - G(b) = G(x) \Big|_a^b$ Regla de barrow

Metodos

Integracion por Sustitucion Sean f y g' continuas en sus dominios \Rightarrow $\int_a^b f(g(x)).g'(x) \ dx = \int_{g(a)}^{g(b)} f(u)du \ u = g(x) \ du = g'(x)$ Si F es primitiva de f $\int_a^b f(g(x)).g'(x) \ dx = F(g(b)) - F(g(a))$

Integracion por partes Sean f y g derivables en [a, b] f' y g' tienen a lo sumo un número finito de discontinuidades en [a, b] y son acotadas $\int_a^b f(x) \ g'(x) \ dx =$

$$f(x) g(x) \Big|_a^b - \int_a^b g(x) f'(x) dx$$

Integracion por fraciones simples

Sea

 $\frac{p(x)}{q(x)} \; gr(p) < gr(q)$ El coeficiente de la potencia de mayor grado de q(x) es 1

Caso 1: Factores lineales diferentes

$$q(x) = (x - r_1) \dots (x - r_k)$$

Hay que buscar constantes A_1, \cdots, A_k Tales que $\frac{p(x)}{q(x)} = \frac{A_1}{x-r_1} + \cdots + \frac{A_k}{x-r_k}$

Caso 2: Factores lineales repetidos

$$q(x) = (x - r)^k$$

Hay que buscar constantes Tales que $\frac{p(x)}{q(x)}=\frac{A_1}{x-r}+\frac{A_2}{(x-r)^2}+\cdots+\frac{A_k}{(x-r)^k}$ A_1,\cdots,A_k

Caso 3: Factores lineales diferentes y con repeticiones

$$q(x) = (x - r_1) \cdots (x - r_{i-1})(x - r_i)^{K_i} \cdots (x - r_n)^{k_n}$$

Se aplican los procedimientos de los casos anterioes

Ejemplo
$$\frac{x^3 - (x+1)}{x(x-2)(x-1)^2} = \frac{A_1}{x} + \frac{A_2}{x-2} + \frac{A_3}{x-1} + \frac{A_4}{(x-2)^2}$$

Caso 4: Factores lineales y cuadraticos que no se repiten

$$q(x) = (x - r_1)^{K_1} \cdots (x - r_n)^{K_n} \cdot (x^2 + \alpha_1 x + \beta_1) \cdots (x^2 + \alpha_m x + \beta_m)$$

Por cada factor lineal aparecen tantos terminos como indiquen los casos $1 \ y \ 2$

Por cada factor cuadratico aparecen terminos de la forma $\frac{Bx+C}{x^2+\alpha x+\beta}$ Para integrarlos debemos hallar constantes K_1,K_2

$$\frac{Bx+C}{x^2+\alpha x+\beta} = K_1 \frac{2x+\alpha}{x^2+\alpha x+\beta} + K_2 \frac{1}{x^2+\alpha x+\beta}$$

Tips de integracion $K_1 \frac{2x+\alpha}{x^2+\alpha x+\beta}$ Se puede integrar usando sustitucion $K_2 \frac{1}{x^2+\alpha x+\beta}$ Completar cuadrados y usar sustitucion para llegar a algo de la forma $\frac{1}{y^2+a^2}$ Tener en cuenta que $\int \frac{1}{y^2+a^2} \ dx = \frac{1}{a} \ arctg(\frac{y}{a}) + c$

Caso 5: Factores lineales y cuadraticos con repeticiones

No vamos a ver este caso en la materia (Por suerte)

Area entre dos curvas

Sean

 $f(x) \ge g(x)$ Funciones acotadas Tienen un número finito de discontinuidades $f(x) \ge g(x) \ \forall x \in \ [a,b]$

$$A = \int_a^b f(x) - g(x) dx$$

Es el area entre f y g y las rectas x=a y x=b

$$f(x) - g(x) \ge 0 \ \forall x \in [a, b]$$

Integrales impropias

Extendemos la definicion de integral para los casos en los que

$$a \lor b \not \in \mathbb{R}$$

f no sea acotada en [a, b]

Tipo 1

Características

Definicion

Tipo 2

Definicion

Criterios de Comparacion

Tipo 1

Tipo 2

Sucesiones

Definicion

Una sucesion infinita de numeros reales es una funcion cuyo dominio son los naturales y cuya imagen está incluida en ${\bf R}$

Limite

Propiedades

Sean $\{a_n\}$, $\{b_n\}$ Dos sucesiones convergentes y $c \in \mathbb{R}$

$$\lim_{n\to\infty} (a_n \pm b_n) = \lim_{n\to\infty} a_n \pm \lim_{n\to\infty} b_n$$

$$\lim_{n\to\infty} (c \cdot a_n) = c \cdot \lim_{n\to\infty} a_n$$

$$\lim_{n\to\infty} (a_n \cdot b_n) = \lim_{n\to\infty} a_n \cdot \lim_{n\to\infty} b_n$$

$$\lim_{n\to\infty} (b_n) \neq 0 \Rightarrow \lim_{n\to\infty} \frac{a_n}{b_n} = \frac{\lim_{n\to\infty} a_n}{\lim_{n\to\infty} b_n}$$

Notacion

Se escribe $\lim_{n\to\infty} a_n = \ell$

Si los terminos an se acercan a l
 tanto como queramos al hacer n suficientemente grande se escribe
 $a_n\to \ell$ $n\to\infty$

Definicion formal

$$\lim_{n\to\infty} a_n = \ell \iff \forall \epsilon > 0, \ \exists n_0 \in \mathbb{N}$$

tal que
$$|a_n - \ell| < \epsilon \ \forall n \ge n_0$$

Es decir la distancia entre an y el limite es menor a epsilon

En otras palabras a partir de cierto n0 la sucesion va a estar muy cerca del l

$$|a_n - \ell| < \epsilon \Leftrightarrow -\epsilon < a_n - \ell < \epsilon \Leftrightarrow \ell - \epsilon < a_n < \ell + \epsilon$$

Convergencia y divergencia

$$\exists \lim_{n \to \infty} = \ell$$

$$\ell \in \mathbb{R}$$

$$\Rightarrow \ell$$
 converge a $\overset{n \rightarrow \infty}{\ell}$

En los demas casos decimos que diverge

Crecimiento y Decrecimiento

Crecientes

 $a_n \leq a_{n+1} \Rightarrow \text{Es creciente}$

 $a_n < a_{n+1} \Rightarrow$ Es estrictamente creciente

Decrecientes

 $a_n \ge a_{n+1} \Rightarrow \text{Es decreciente}$

 $a_n > a_{n+1} \Rightarrow$ Es estrictamente decreciente

Sucesion monotona

Si la sucesion es creciente o decreciente decimos que es monotona

Acotaciones

Inferior

 $\exists m_i \in \mathbb{R} / m_i \le a_n \ \forall n \in \mathbb{N} \Rightarrow$

 m_i Es la cota inferior

 $\{a_n\}$ Es acotada inferiormente

Superior

 $\exists m_s \in \mathbb{R} / m_s \ge a_n \ \forall n \in \mathbb{N} \Rightarrow$

 m_s Es la cota superior

 $\{a_n\}$ Es acotada superiormente

General

 $\exists M \in \mathbb{R} / |a_n| < M \ \forall n \in \mathbb{N} \Rightarrow \{a_n\} \text{ Es acotada}$

Observacion: Pluralidad

Las cotas inferiores y superiores no son unicas

Axioma de completitud de los reales

Sea \mathbb{I}_s Un conjunto no vacio de numeros reales acotado superiormente

 $\Rightarrow \mathbb{I}_s$ Tiene una menor cota superior en $\mathbb R$

Sea \mathbb{I}_i Un conjunto no vacio de numeros reales acotado inferiormente

 $\Rightarrow \mathbb{I}_i$ Tiene una mayor cota inferior en \mathbb{R}

Supremo e infimo

Sea
$$A \in \mathbb{R}, A \neq 0$$

A es acotada superiormente \Rightarrow La menor cota superior se le llama supremo de A Se denota sup(A)

 $sup(A) \in A \Rightarrow$ Decimos que es el maximo de A

A es acotada inferiormente \Rightarrow La mayor cota inferior se le llama infimo de A Se denota inf(A)

 $inf(A) \in A \Rightarrow$ Decimos que es el minimo de A

Subsucesiones

Una subsucesion de una sucesion

Es una sucesion de la forma $\{a_{n1}, a_{n2}, a_{n3}, a_{n4}, ...\} = \{a_{nj}\}_{j=1}^{\infty}$ Con $nj \in \mathbb{N}$ y $n_1 < n_2 < n_3 < ...$

Teoremas

Relacion entre limite de funciones y sucesiones

Sea
$$a_n = f(n) \ \forall n \geq n_0$$
 para algun $n_0 \in \mathbb{N}$
$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} f(x)$$

Sandwich para sucesiones

Sea
$$a_n \leq b_n \leq c_n \ \forall n \geq n_0$$
 para algun $n_0 \in \mathbb{N}$
Sea $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = \ell$
 $\lim_{n \to \infty} b_n = \ell$

Convergencia a 0 y modulo

$$\lim_{n\to\infty} a_n = 0 \iff \lim_{n\to\infty} |a_n| = 0$$

Composicion de limite y funcion

$$\lim_{n\to\infty} a_n = a$$
 f continua en $x = a$

$$\Rightarrow \lim_{n\to\infty} f(a_n) = f(a) = f(\lim_{n\to\infty} a_n)$$

Sucesion convergente

es convergente $\{a_n\} \Rightarrow$ Es acotada

Sucesion creciente y sup. acotada

es creciente y acotada superiormente $\{a_n\}$

$$\Rightarrow$$
 converge $\{a_n\}$

$$\Rightarrow \lim_{n\to\infty} a_n = \ell_1 = \sup(\{a_n\})$$

Sucesion decreciente y inf. acotada

es decreciente y acotada inferiormente $\{a_n\}$

$$\Rightarrow$$
 converge $\{a_n\}$

$$\Rightarrow \lim_{n\to\infty} a_n = \ell_2 = inf(\{a_n\})$$

Observacion: Convergencia y crecimiento

es creciente $\{a_n\} \Rightarrow$ converge o el limite tiende a $+\infty$

es decreciente $\{a_n\}$ \Rightarrow converge o el limite tiende a $-\infty$

Subsucesion de una sucesion convergente

Toda subsucesion de una sucesion convergente es convergente y sus limites son iguales

Observacion Es util para demostrar que una sucesion no tiene limite. Basta con encontrar dos subsucesiones distintas que converjan a distintos limites

Bolzano-Weierstrass

Toda sucesion acotada tiene al menos una subsucesion convergente

Puede haber mas de una subsucesion convergente

Series

Definicion

Dada una sucesion de numeros reales

Llamaremos serie de terminos a_n a $\sum_{n=1}^{\infty} a_n$

Suma parcial

Para todo k en N definimos la k-esima suma parcial sk

$$s_k = a_1 + \dots + a_k = \sum_{n=1}^k a_n$$

 $\{s_k\}$ es una sucesion de números reales Si su limite existe y es finito decimos que la serie es convergente Si su limite no existe o es infinito decimos que la serie es divergente

Serie geometrica

Definicion

$$\sum_{n=0}^{\infty} r^n = 1 + r + r^2 + \cdots r \in \mathbb{R}$$

Teoremas

$$|r|<1\Rightarrow \sum_{n=0}^{\infty}r^n=\frac{1}{1-r}$$
 Es convergente

$$|r| \geq 1 \Rightarrow \sum_{n=0}^{\infty} r^n$$
 Es divergente

Propiedades de series convergentes

Sean $\sum_{n=1}^{\infty} a_n \sum_{n=1}^{\infty} b_n \ c \in \mathbb{R}$ Series convergentes

$$\sum_{n=1}^{\infty} (a_n \pm b_n)$$
 Converge

$$\sum_{n=1}^{\infty} ca_n$$
 Converge

$$\sum_{n=1}^{\infty} (a_n \pm b_n) = \sum_{n=1}^{\infty} a_n \pm \sum_{n=1}^{\infty} b_n$$

$$\sum_{n=1}^{\infty} c a_n = c \sum_{n=1}^{\infty} a_n$$

Criterios

Criterio de divergencia

Si la serie converge $\Rightarrow \lim_{n\to\infty} a_n = 0$

$$\lim_{n\to\infty} a_n \neq 0$$

$$\nexists \lim_{n\to\infty}$$

Criterio de comparacion para series

Sea $0 \le a_n \le b_n \quad \forall n \ge n_0$ para algun $n_0 \in \mathbb{N}$

$$\sum_{n=n_0}^{\infty} b_n \text{ conv.} \Rightarrow \sum_{n=n_0}^{\infty} a_n \text{ conv.}$$

$$\sum_{n=n_0}^{\infty} a_n$$
 diver. $\Rightarrow \sum_{n=n_0}^{\infty} b_n$ diver.

Criterio de comparacion en el limite

Sean $\sum_{n=n_0}^{\infty} a_n \sum_{n=n_0}^{\infty} b_n$ Series de terminos positivos

$$\lim_{n\to\infty} \frac{a_n}{b_n} > 0 \Rightarrow \sum_{n=n_0}^{\infty} a_n \text{ conv} \Leftrightarrow \sum_{n=n_0}^{\infty} b_n \text{ conv}$$

$$\lim_{n\to\infty} \frac{a_n}{b_n} = 0 \Rightarrow \sum_{n=n_0}^{\infty} b_n \text{ conv.} \Rightarrow \sum_{n=n_0}^{\infty} a_n \text{ conv.} \sum_{n=n_0}^{\infty} a_n \text{ diver.} \Rightarrow \sum_{n=n_0}^{\infty} b_n \text{ diver.}$$

$$\lim_{n\to\infty} \frac{a_n}{b_n} = \infty \Rightarrow \sum_{n=n_0}^{\infty} b_n \text{ diver.} \Rightarrow \sum_{n=n_0}^{\infty} a_n \text{ diver.} \sum_{n=n_0}^{\infty} a_n \text{ conv.} \Rightarrow \sum_{n=n_0}^{\infty} b_n \text{ conv.}$$

Criterio de la integral para series

Sea f Continua Positiva y decreciente en $[1, \infty)$

$$a_n = f(n) \Rightarrow \text{converge } \sum_{n=1}^{\infty} a_n \Leftrightarrow \text{converge } \int_1^{\infty} f(x) \ dx$$

Observaciones La serie y la integral en general no son iguales No es necesario iniciar la serie o la integral en n=1

Criterio del cociente

Sean
$$a_n \neq 0 \quad \forall n \geq n_0 \ r = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$$

$$r < 1 \Rightarrow \sum_{n=1}^{\infty} a_n$$
 conv. abs.

$$r > 1 \Rightarrow \sum_{n=1}^{\infty} a_n$$
 diver.

 $r=1 \Rightarrow$ No se puede asegurar nada

Criterio de la raiz

Sea
$$r = \lim_{n \to \infty} \sqrt[n]{|a_n|}$$

$$r < 1 \Rightarrow \sum_{n=1}^{\infty} a_n$$
 conv. abs.

$$r > 1 \Rightarrow \sum_{n=1}^{\infty} a_n$$
 diver.

 $r=1 \Rightarrow$ No se puede asegurar nada

Series alternantes

Definicion

Decimos que una serie es alternante si sus terminos son positivos y negativos alternantemente

Criterio para series alternantes

$$a_n \ge a_{n+1} > 0 \quad \forall n$$

$$\lim_{n\to\infty} a_n = 0$$

Tipos de convergencia

Absoluta

converge $\sum_{n=1}^{\infty} |a_n|$

Condicional

converge $\sum_{n=1}^{\infty} a_n$ no converge $\sum_{n=1}^{\infty} |a_n|$

Convergencia y convergencia absoluta

 $\sum_{n=1}^{\infty} a_n$ conv. abs. $\Rightarrow \sum_{n=1}^{\infty} a_n$ conv.

Series de potencias

Definicion

Sean $\{c_n\}_{n=0}^{\infty}$ Una sucesion de numeros reales y $a \in \mathbb{R}$

Llamamos serie de potencias centradas en a, a la serie

$$\sum_{n=0}^{\infty} C_n(x-a)^n = C_0 + C_1(x-a) + C_2(x-a)^2 + \cdots$$

Adoptamos la convencion de que $(x-a)^0 = 1$

Teoremas

Caracteristicas de las series de potencias

Sea $\sum_{n=0}^{\infty} C_n (x-a)^n$ Una serie de potencias

Se cumple exactamente una de las siguientes

La serie converge solo cuando x=a

La serie es absolutamente convergente $\forall x \in \mathbb{R}$

 $\exists~R>0$ tal que la serie conv. absolutamente $\forall x$ t
q|x-a| < R

y es divergente $\forall x$ tq |x-a| > R

Observacion sobre R

Si la serie de pot. converge para algun $x_0 \neq a \Rightarrow R \geq |x_0 - a|$ ademas la serie converge $\forall x$ tq $|x - a| < |x_0 - a|$

Es decir Sabiendo que la serie converge en x0, el radio de convergencia es mayor o igual a la distancia entre a y x0

Si la serie de pot. diverge en $x_1 \Rightarrow R \leq |x_1 - a|$

ademas la serie diverge $\forall x$ tq $|x-a| > |x_1-a|$

Es decir Sabiendo que la serie diverge en x1, el radio de convergencia es menor o igual a la distancia entre a y x1

Criterio del cociente para series de potencias

Dada una serie de potencias con $c_n \neq 0 \forall n \geq n_0$ y R como su radio de convergencia

$$L = \lim_{n \to \infty} \frac{|c_{n+1}|}{|c_n|}$$

$$0 < L < \infty \Rightarrow R = \frac{1}{L}$$

$$L=0 \Rightarrow R=\infty$$

$$L = \infty \implies R = 0$$

Derivacion e integracion de una serie de potencias

Sea R el radio de convergencia de una serie de potencias

$$R>0 \Rightarrow f(x)=\sum_{n=1}^{\infty}c_n(x-a)^n$$
 Es derivable y continue en el intervalo (a-R,a+R)

Ademas

$$f'(x) = \sum_{n=1}^{\infty} n \ c_n (x - a)^{n-1}$$
$$\int f(x) dx = C + \sum_{n=0}^{\infty} \frac{c_n}{n+1} (x - a)^{n+1}$$

Observaciones

Sus radios de convergencia son R

Puede suceder que sus intervalos de convergencia no sean iguales a la serie original

Otra forma de escribirlas

$$\frac{d}{dx} \left[\sum_{n=0}^{\infty} c_n (x-a)^n \right] = \sum_{n=0}^{\infty} \frac{d}{dx} \left[c_n (x-a)^n \right] \text{ (Se deriva termino a termino)}$$

$$\int \left[\sum_{n=0}^{\infty} c_n (x-a)^n \right] dx = \sum_{n=0}^{\infty} \int c_n (x-a)^n dx \text{ (Se integra termino a termino)}$$

Radio de convergencia

Decimos que la serie tiene radio de convergencia R=0 si solo converge en x=a

Decimos que la serie tiene radio de convergencia Si converge $\forall x \in \mathbb{R} \ R = \infty$

Si no cumple con los anteriores casos decimos que su radio de convergencia es un R>0 como en el teorema de las caracteristicas de las series de potencias

Intervalo de convergencia

Definicion

Llamamos intervalo de convergencia al conjunto

$$\mathbb{I} = \{ x \in \mathbb{R} / \sum_{n=0}^{\infty} C_n (x - a)^n \text{ converge} \}$$

Observaciones

$$R = 0 \Rightarrow \mathbb{I} = \{a\}$$

$$R = \infty \Rightarrow \mathbb{I} = (-\infty, \infty) = \mathbb{R}$$

$$0 < R < \infty \implies \mathbb{I}$$
 Puede ser

$$(a-R,a+R),$$

$$[a-R,a+R),$$

$$(a-R,a+R],$$

$$[a-R,a+R]$$

Representacion de funciones como series de potencias

Para cada x en el intervalo de convergencia de una serie de potencias, la serie define una funcion $f(x) = \sum_{n=1}^{\infty} c_n (x-a)^n$

Cuyo dominio es el intervalo de convergencia

Serie de Taylor

Teorema

Sea
$$f(x) = \sum_{n=0}^{\infty} c_n (x-a)^n \ \forall x \ \text{tq} \ |x-a| < R$$

$$\Rightarrow c_n = \frac{f^{(n)}(a)}{n!}$$

Definicion

Sea f una funcion que tiene derivadas de todos los ordenes en a

Se llama serie de Taylor de f
 centrada en a a la serie de potencias
$$\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!} (x-a)^2 + \cdots$$

Observaciones $a=0\Rightarrow\sum_{n=0}^{\infty}\frac{f^{(n)}(0)}{n!}x^n$ Se suele llamar serie de Maclaurin Si f se puede representar como una serie de potencias centrada en a, entonces esa serie es la serie de Taylor de f centrada en a Por lo tanto, f es igual a su serie de Taylor

Polinomio de Taylor

Sea

f una funcion que tiene derivadas de todos los ordenes en a

Definimos el polinomio de Taylor de f de orden n centrado en a como

$$T_{n,a}(x) = \sum_{n=0}^{n} \frac{f^{(j)}(a)}{j!} = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!} + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^{n}$$

Observaciones

La n-esima suma parcial de la serie de Taylor es justamente el polinomio de Taylor de orden n

 $T_{1,a}$ es la recta tangente al grafico de f en el punto (a,f(a))

f y su polinomio de Taylor de orden
n, Satisfacen $f^{(j)}(a) = T^{(j)}(a) T_{n,a}$

Resto de Taylor

Definicion

Se define al resto de Taylor de orden n centrando en a como $R_{n,a}(x) = f(x) - T_{n,a}(x)$ Por lo tanto $f(x) = T_{n,a}(x) + R_{n,a}(x)$

Teorema

Sea f una funcion tal que existe $f^{(n)}(a) \forall n \geq 0$

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n \quad \forall x \in (a-c, a+c) \Leftrightarrow \lim_{n \to \infty} R_{n,a}(x) = 0 \quad \forall x \in (a-c, a+c)$$

Formula de Lagrange para el resto

Sea f
 una funcion tal que existen $f',f'',\dots,f^{(n+1)}$ En un intervalo abierto
 I y $a\in I$

$$\Rightarrow \forall x \in I, \exists t \text{ entre x y a } (x < a \Rightarrow t \in (x, a) \lor x > a \Rightarrow t \in (a, x))$$
tal que $R_{n,a} = \frac{f^{(n+1)}(t)}{(n+1)!} (x-a)^{n+1}$

Formula de Taylor

Llamamos formula de Taylor a

$$f(x) = \sum_{n=0}^{n} \frac{f^{(j)}(a)}{j!} (x - a)^{j} + \frac{f^{(n+1)}(t)}{(n+1)!} (x - a)^{n+1} = T_{n,a}(x) + R_{n,a}(x)$$