

3 T			
Name:			

- 1) If there must be at least one person at each table, in how many ways can five people be seated around two tables where the tables are indistinguishable?
- 2) (a) Let s(r,n) be the number of ways to arrange r distinct objects around n indistinguishable circles so that every circle has at least one object. The numbers s(r,n) are called the Stirling numbers of the first kind. Problem 1 is asking for s(5,2). For part (a) of this problem, compute s(4,n) for n=1,2,3,4 (we define s(4,0)=0).
- (b) Expand the polynomial x(x+1)(x+2)(x+3) as much as possible.
- 3) Given that s(6,1) = 120 and s(6,2) = 274, use the formula

$$s(r,n) = s(r-1, n-1) + (r-1)s(r-1, n)$$

to determine s(7,2)

- 4) Find the number of 4-combinations of $\{1, 2, \dots, 12\}$ that contain no consecutive integers.
- 5) Suppose that k and n are positive integers with $k \leq n$ and that $a_1, \ldots, a_n, b_1, \ldots, b_n$ are 2n distinct elements. Consider the n pairs $\{a_1, b_1\}, \ldots, \{a_n, b_n\}$. Find the number of subsets of $\{a_1, \ldots, a_n, b_1, \ldots, b_n\}$ of size k that do not contain two elements from the same pair.
- 6) Find the number of shortest paths from the bottom left corner to the top right corner in the grid below.

- 7) (a) Let $X = \{1, b, R\}$. Find all elements of $\mathcal{P}(X)$. Recall that this is the power set of X and it is the set of all possible subets of X.
- (b) Suppose X is a set with n elements. What is the cardinality of $\mathcal{P}(X)$?
- 8) Find the number of 12-digit binary sequences with eight 0's and four 1's such that no two 1's are adjacent.
- 9) (a) Let t_n be the number of ways to pave a $1 \times n$ rectangle using 1×1 and 1×2 blocks. Determine t_1 , t_2 , t_3 , t_4 , and t_5 .
- (b) Can you determine t_6 using what you know about t_5 and t_4 ?