

AUTOMATED TICKECT CLASSIFICATIO N

GROUP 2

BUSINESS UNDERSTANDING

Financial institutions receive thousands of customer complaints daily.

Manual complaint classification is slow and inefficient.

Customer complaints are submitted as unstructured text, requiring automation for faster processing.

Solution: Implement Natural Language Processing (NLP) to classify complaints automatically.

Objective: Automate complaint categorization using NLP & ML.

Business Objective

- Develop an aoutomated ticket classification model for customer complaints.
- Categorize complaints into 5 key service areas using Topic Modeling:
 - 1. Credit Card / Prepaid Card
 - 2. Bank Account Services
 - 3. Theft / Dispute Reporting
 - 4. Mortages / Loans
 - 5. Others
- Train a supervised learning learning model(e.g.LSTM,)
- ❖Key Benefits:
 - 1. Faster complaint resolution.
 - 2. Improved customer experience
 - 3. Better resource allocation

DATA PREPARATION

❖ Handling Missing Data:

> Removed or imputed missing values to maintain data integrity.

❖Text Cleaning:

- >Removed stopwords, punctuation, and special characters.
- ➤ Converted text to lowercase for consistency.

Tokenization & Vectorization:

➤ Applied **TF-IDF** and **Word2Vec** to transform text into numerical representations.

❖Feature Engineering:

Extracted key terms and phrases for better model performance.

Observations

- The histogram shows a right-skewed distribution, with most complaints resolved within a few days (0-1) days. A small number of cases take significantly longer, faster complaints resolution.

Observations:

Most complaints originate from CA, NY, FL. These are the three states with most complains

Frequency Distribution of Products

Observation on Distribution of product

Mortgage-related complaints are the highest, exceeding 20,000 cases.

Checking/savings accounts, credit cards, and prepaid cards also have a significant number of complaints, each around 10,000.

Bank account services, credit reporting, and debt collection have fewer complaints in comparison.

The distribution is uneven, with mortgage-related issues being the most frequent concern.

MODELING APPROACH

- **❖** Data Preprocessing:
 - Ocleaned text data.
 - Tokenized text and TF-IDF vectorization for feature selection.
- Unsupervised Learning: Topic Modeling (LDA & NMF)
- **❖** Supervised Learning: (LSTM)

Topic Modeling with NMF.

Topic 1: Bank Account Services **Topic 2:** Credit Card / Prepaid Card

Topic 3: Mortgages/Loans

Topic 4:Theft/Dispute
Reporting

Topic 5: Others

3	Word 1	Word 2	Word 3	Word 4	Word 5	Word 6	Word 7	Word 8	Word 9	Word 10
Topic 1	account	bank	check	money	fund	chase	wa	deposit	branch	day
Topic 2	credit	card	report	inquiry	chase	account	score	company	limit	bureau
Topic 3	loan	mortgage	home	chase	modification	property	year	wa	rate	letter
Topic 4	charge	card	chase	transaction	dispute	wa	fraud	claim	merchant	purchase
Topic 5	payment	balance	fee	month	statement	wa	day	time	date	auto

Topic Modeling with LDA

LDA Topics Identified:

- Similar to NMF with slight variations
- Main Difference: "Others" category was less defined

Comparison: NMF had better topic separability

	Word 1	Word 2	Word 3	Word 4	Word 5	Word 6	Word 7	Word 8	Word 9	Word 10
Topic 1	card	chase	charge	wa	credit	fraud	transaction	account	claim	number
Topic 2	loan	chase	mortgage	payment	wa	home	bank	time	year	property
Topic 3	account	bank	chase	wa	check	money	fund	day	branch	time
Topic 4	credit	card	account	chase	payment	balance	report	wa	month	time
Topic 5	chase	wa	dispute	fee	time	charge	car	day	merchant	company

DISTRIBUTION OF COMPAINTS BY LDA & NMF

Observations on Topic Consistencies Between NMF and LDA

From the two distribution plots, we can observe some consistencies despite the differences in the topic modeling approaches:

- Bank Account Services This topic is the most dominant in both NMF and LDA, suggesting strong clustering around banking-related complaints.
- Credit Card / Prepaid Card This category also appears as a significant topic in both models, showing consistent identification of credit card-related issues.

- Mortgages/Loans Both models assign a comparable number of complaints to this topic, reflecting a shared pattern in complaint distribution.
- Theft/Dispute Reporting While there is some variation in frequency, this category is clearly identified in both models.
- Other Category The "Other" category differs in size between the models, but it still represents a smaller portion of the dataset in both cases.

Topic Consistency Observations

Similarities:

- Bank Account Services & Credit Cards were strong topics in both models
- Mortgages/Loans & Theft/Dispute categories were consistent

Differences:

 "Others" category was more ambiguous in LDA

Model perfomance Metrics

LSTM Classification Results:

NMF-Based Model: 90% Accuracy

LDA-Based Model: 88% Accuracy

Key Observations:

NMF-based model performed better due to clearer topic clusters

"Others" category had the lowest performance in both models

Model Evaluation

Precision: How many predicted complaints were correct

Overall Accuracy: 90%

Recall: How many actual complaints were identified correctly

F1-score: Balance between Precision &

Recall

CONCLUSION

- **Best Approach:** NMF + LSTM for automated classification
- Key Takeaways:
 - NMF produced clearer topic separation, leading to better classification
 - LDA struggled with overlapping categories

RECOMENDATION

Use NMF for Topic Extraction (Better coherence, clearer clusters)

Improve "Others" Category
Labeling (Refine definitions for better classification)

Deploy NMF-based BiLSTM Model (Automate complaint classification)

Implement Continuous Learning (Retrain model periodically for accuracy improvement)

Next Steps

Implementation
Plan: Integrate the model into customer service workflows

Monitor
Performance:
Regular evaluation & retraining

Q&A: Open for discussion