F.M.B

Chapter 5: IDENTITY, INVERSE & WELL DEFINED MAPPINGS

Mphako-Banda

SCHOOL OF MATHEMATICS

LEARNING OUTCOMES FOR THE LECTURE

By the end of this lecture, students will be able to:

- define a function or mapping
- A determine whether a given rule defines a function or mapping
- define the domain, codomain and range of a function
- determine the domain, codomain and range of a given function
- determine whether a given rule is a well defined function or mapping

F.M.B

DOMAIN, CODOMAIN RANGE AND GRAPHS OF MAPPINGS

Definition (5.1.1 (1))

Let A and B be non empty sets. $\alpha: A \to B$ is a function or mapping if it is a rule that assigns each element of A with exactly one element of B. i.e.

$$\forall a \in A \quad \exists b \in B \quad | \quad \alpha(a) = b.$$

Examples:

 $\alpha: \mathbb{R} \to \mathbb{R}$; $\alpha(x) = x^2$ is a mapping.

 $\alpha: \mathbb{R} \to \mathbb{R}$; $\alpha(x) = \pm \sqrt{x}$ is not a mapping.

eg. x=4; α(4)=2 and α(4)=-2. x=4 has been mapped to two values in B.

point not mapped to any point in B

Definition (5.1.1 (2))

A is called the Domain of α denoted by $D(\alpha)$.

Definition (5.1.1 (3))

B is called the codomain of α denoted by $CoD(\alpha)$.

Definition (5.1.1 (4))

 $\alpha(A) = \{\alpha(a) \mid a \in A\}$ is called the range or image of α denoted by $Im(\alpha)$.

 $\alpha(a)$ is the image of a under α .

ordered pairs, a value in an A and its image in B

Graph of
$$\alpha$$
, $G(\alpha) = \{(a, \alpha(a)) \mid a \in A\}$.

Defining a well defined mapping

- (i) specify domain and codomain
- (ii) specify the rule that assigns exactly one element $\alpha(a)$ for each $a \in A$

That is, we must specify the domain, the co-domain and the well defined action. In algebra we usually use Greek lower case letters, to represent mappings (functions).

5.1.2. Test for a mapping or a function

Test for well defined i.e Let $\alpha : A \to B$. Show that $a = b \Rightarrow \alpha(a) = \alpha(b)$. This is equivalent to the vertical line test in \mathbb{R}^2 .

E.M.E

Example (5.1.3 (a))

$$lpha:\mathbb{Z}
ightarrow \mathbb{Z} \;\; ; \;\; lpha(x) = 2x; \; x \; ext{integer.} \ D(lpha) = \mathbb{Z}, \;\;\; CoD(lpha) = \mathbb{Z} \ Range \; lpha = Im(lpha) = lpha(\mathbb{Z}) = 2\mathbb{Z} \; even \; integers.$$

Testing for well defined:

Show that
$$x_1 = x_2 \Rightarrow \alpha(x_1) = \alpha(x_2)$$
.
Let $x_1, x_2 \in \mathbb{Z} \mid x_1 = x_2$
 $\Rightarrow 2x_1 = 2x_2$
 $\Rightarrow \alpha(x_1) = \alpha(x_2)$
Thus α is well defined

Example (5.1.3 (b))

$$\alpha: \mathbb{R} \to \mathbb{R}$$
 ; $\alpha(x) = x^2$.
 $D(\alpha) - \mathbb{R}$ $CoD(\alpha) - \mathbb{R}$

Is α well defined?

$$x_1 = x_2$$
 \Rightarrow $x_1^2 = x_2^2$ \Rightarrow $\alpha(x_1) = \alpha(x_2)$. Thus α is well defined.

Definition (5.1.1 (6))

If $A = S \times S$, B = S then a mapping $\alpha : S \times S \rightarrow S$ or $\alpha: A \to B$ is a binary operation on the set S.

rule combining two values in A to create a new value in B

Example

$$lpha: T imes T o T$$
; $lpha(t_1,t_2)=t_1$. Tule how to combine two elements in the domain $D(lpha)=T imes T$ $CoD(lpha)=T$ Range $lpha=Im(lpha)=lpha(T imes T)=T$.

TEST for well defined

Let
$$(t_1, t_2), (s_1, s_2) \in T \times T$$
.
 $(t_1, t_2) = (s_1, s_2) \Rightarrow t_1 = s_1, t_2 = s_2$.
Thus $\alpha(t_1, t_2) = \alpha(s_1, s_2)$ since $t_1 = s_1$. Thus α is well defined.

 α is called a projection of $T \times T$ onto T. α is a binary operation.

Example

Let
$$S = T \times T$$
.
 $\alpha_1 : S \to T$; $\alpha_1(t_1, t_2) = t_1 + t_2$.
 $\alpha_2 : S \to T$; $\alpha_2(t_1, t_2) = t_1 t_2$.
 α_1 and α_2 are binary operations. $D(\alpha_1) = D(\alpha_2) = S$ and $CoD(\alpha_1) = CoD(\alpha_2) = T$
Range $\alpha_1 = Im(\alpha_1) = T = Range \alpha_2 = Im(\alpha_2)$.

Testing for well defined:

$$\begin{array}{lll} (t_1,t_2) = (s_1,s_2) & \Rightarrow & t_1 = s_1, & t_2 = s_2. \\ \Rightarrow & t_1 + t_2 = s_1 + s_2 & \Rightarrow & \alpha_1(t_1,t_2) = \alpha_1(s_1,s_2). \\ \text{Similarly, } (t_1,t_2) = (s_1,s_2) & \Rightarrow & t_1 = s_1, & t_2 = s_2. \\ \Rightarrow & t_1t_2 = s_1s_2 & \Rightarrow & \alpha_2(t_1,t_2) = \alpha_2(s_1,s_2). \\ \text{Thus } \alpha_1 \text{ and } \alpha_2 \text{ are well defined.} \end{array}$$

Example

$$\alpha: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \quad ; \quad \alpha(t_1, t_2) = \frac{t_1}{t_2}.$$

 $lpha: \mathbb{Z} imes \mathbb{Z} o \mathbb{Z} \quad ; \quad lpha(t_1,t_2) = rac{t_1}{t_2}.$ lpha is not well defined, since $rac{t_1}{t_2}
otin \mathbb{Z}$. also, points like (t,0) do not have an image in \mathbb{Z} .

Example

$$\alpha: \mathbb{Q} \times \mathbb{Q} \to \mathbb{Q}$$
 ; $\alpha(t_1, t_2) = \frac{t_1}{t_2}$

 $lpha:\mathbb{Q} imes\mathbb{Q} o\mathbb{Q}$; $lpha(t_1,t_2)=rac{t_1}{t_2}$ lpha is not well defined, since $rac{t_1}{t_2}$ not defined if $t_2=0$.

Example

on
$$\mathbb{Z}_n$$
, define $\oplus : \mathbb{Z}_n \times \mathbb{Z}_n \to \mathbb{Z}_n$; $\oplus (\overline{a}, \overline{b}) = \overline{a + b}$.

$$\odot: \mathbb{Z}_n \times \mathbb{Z}_n \to \mathbb{Z}_n \quad ; \quad \odot(\overline{a}, \overline{b}) = \overline{ab}.$$

E.M.B

Is \odot well defined? If $\overline{a} = \overline{b}$ and $\overline{c} = \overline{d}$ then (*We need to show that* $\overline{ac} = \overline{bd}$.)

$$a \equiv b \pmod{n}$$
 and $c \equiv d \pmod{n}$

$$\Rightarrow$$
 $a-b=t_1n$ and $c-d=t_2n$ where $t_1,t_2\in\mathbb{Z}$

$$\Rightarrow$$
 $a = t_1 n + b$ and $c = t_2 n + d$

$$\Rightarrow$$
 $ac = (t_1n + b)(t_2n + d) = bd + (bt_2 + dt_1 + t_1t_2n)n$

$$\Rightarrow \quad ac - bd = (bt_2 + dt_1 + t_1t_2n)n$$

$$\Rightarrow$$
 $ac \equiv bd \pmod{n}$

$$\Rightarrow \overline{ac} = \overline{bd}$$
.

Is

well defined? Exercise for students

Please do this exercise.