S.V. National Institute of Technology, Surat Computer Engineering Department Mid Semester Examination: M.Sc -III-Mathematics (6th Semester), March -2018 Subject: System Software, Code: CO304

Max Marks: 30

Time: 14:00 to15:30

Date: 9th march, 2018.

Instructions:

- 1. Write your B. Tech Admission No/Roll No and other details clearly on the answer books while write your B. Tech Admission No on the question paper, too.
- 2. Assume any necessary data but give proper justifications.
- 3. Be precise and clear in answering the questions.

Q1. Answer the following

[12]

Generate the variant-I of given assembly language.

[04]

LOOP2 LOOPI	START MOVER ADD MOVEM PRINT MOVER DIV COMP BC LTORG	733 CREG, A CREG,=15 CREG,B B AREG,='4' AREG, C AREG,D GE,NXT ='15' ='4'
	ORIGIN ADD LTORG	LOOP1+10 DREG,='15'
NXT	MOVEM PRINT EQU STOP	='15' DREG,RES ANS- RES LOOPI
A B C D RES	DC DS DC DC DS END	'20' 1 '5' '2' 1

OPCODES:

ADD - 01, SUB-02, MULT - 03, MOVER - 04, MOVEM - 05, COMP-06, BC-07, DIV-08, READ - 09, PRINT - 10, STOP - 00. DS -02 DC-01 START-01,END-02,ORIGIN-03,EQU-04,LTORG-05.

CCE - 05

Page 1 of 2

		[02]
2.	(i) LC Processing	[03]
3.	(ii) Back patching Describe following data structures with suitable example: OPTAB, SYMTAB, LITTAB and POOLTAB. OR	,
	How Error handling is performed in Assembly language	
4.		[03]
Q2		[18]
1.	Discuss the phases of a compiler.	[04]
2.	Discuss lexical analyzer in brief.	[02]
3.	Eliminate left recursion from the following grammar: $S \rightarrow Aa \mid b$ $A \rightarrow Ac \mid Sd \mid \epsilon$	[02]
4.	Make the following Grammar Left Factored: $S \rightarrow iEtS \mid iEtSeS \mid a$ $E \rightarrow b$	[02]
5.	Consider the following grammar: $E \rightarrow TE'$ $E' \rightarrow +TE' \mid \epsilon$ $T \rightarrow FT'$ $T' \rightarrow *FT' \mid \epsilon$ $F \rightarrow (E) \mid id$	[06]
	 Construct predictive parsing table for the given grammar. Show the moves made by predictive parser on input: id+id*id. Comment on whether the given grammar is LL (1) or not. Justify you 	
	Define Recursive Descent Parser and design the algorithm for the following $E \rightarrow iE'$	r g [02]

by concating two strings in reverse of

Computer Engineering Department, S.V.N.I.T, Surat. Supplementary Exam – Jan-2018 B.Tech. IIIrd year - VIth Semester Systems Software (CO304)

Seat No -Total Marks: 50 Date: 30/01/2018 Time: 10:00 to 1:00 Instructions: 1. Write your B.Tech Admission No and other details clearly on the answer book and on the question paper. 2. Assume any necessary data but give proper justifications. 3. Be precise and clear in answering the questions. Q-1 ANSWER THE FOLLOWING 25 1. Explain Left recursion and Left factoring top down parsing. 5 i.Eliminate left recursion from following grammar. S -> A A -> Ad | Ae | aB | aC B-> bBC | f C -> g ii. Solve below example by left factoring. S -> if E then S | if E then S else S | a E -> b 2. Develop an LL(1) parser table for the following grammar and 5 Parse the string using the parsing table: (id*id) + (id*id) E-> TA A->+TA | € T-> VB B-> *VB | € V-> id | (E) 3. Construct NFA and DFA for following regular expression: 5 (0 | 1)*001# OR Construct a DFA without constructing NFA for the following regular expression. What is peephole optimization? Enlist and explain techniques applied in peephole 4. 5 optimization.

Construct LR(0) parsing table for the below grammar

5.

S-> AA A-> aA/b 5

5

5

5

ANSWER THE FOLLOWING Q-2

Consider following assembly language program: 1. Show (i) Contents of Symbol Table (ii) Intermediate codes using Variant 1

START	101
READ	N
MOVER	BREG, ONE
MOVEM	BREG, TERM
MULT	BREG, TERM
MOVER	CREG, TERM
ADD	CREG, ONE
MOVEM	CREG. TERM
	CREG, N
77.73	LE, AGAIN
	BREG, AGAIN
	RESULT
	LESOLI
	1
_	l i
	1,
DS.	1
	READ MOVER MOVEM MULT MOVER ADD

Instruction opcode: STOP – 00, ADD – 01, MULT – 03, MOVER – 04, MOVEM – 05, COMP - 06, BC - 07, READ - 09, PRINT - 10, LE - 02 Assembler directives:

- Register code: BREG 02, CREG 03 2. 3.
- Define two macros of your choice to illustrate nested calls to these macros. Also show their corresponding expansion. Define forward references. How it can be solved using back-patching? Explain 4.
- Explain use and field of following tables of macro. KPDTAB, MDT, EVTAB, SSTAB.
- 5.
- Define self-relocating program and write an algorithm of program relocation. 5 5

What is an overlay? Explain overlay structured program and its execution

Sardar Vallabhbhai National Institute of Technology, Surat Computer Engineering Department d Semester Examination: M.Sc. - III-Mathematics (6th Semeste

End Semester Examination: M.Sc –III-Mathematics (6th Semester) Subject: Systems Software, Code: CO304

		Marks: 50		Time: 12:00 to15:00	Date: 7th m	ay, 2018.		
	2. 3. 1 (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Write you Admission Assume ar Be precise Answer the	ny necessary data by and clear in answer following	t paper, too. It give proper justification ing the questions.	learly on the answer boo	ks while write	e your	[30] [08]
4	6	a) Constri	ct the collection of	sets of LR(0) items for	this grammar.		[03]	
	(b			using the SLR algorith			[03]	
	(c			d by the parsing table o			[02]	
2	5-	onstruct the → S →CC →cC d	canonical parsing	table for the following	grammar:			[04]
	SL	> S >aAd bBd >c	following gramma	r is not LALR(1) gram	mar.	.		[04]
)	(a)		operator grammar or not with valid re		the given grammar	is operator	[02]	[05]
		string: id	iven grammar ger +id+id ►E+E E*E id	nerate operator-precede	ence relations and pars	e the input	[03]	
SAB	om		and Fallow Con the	following grammar:				[02]

6.	Defin	e: handle and	handle pruning	ş.		102
7.	(a)	Giving a vali parsing.	id reason justify	that the following grammar is not suitable for LL (1)	[02]	105
	(b)	After making	g it suitable for	LL(1) parsing, generate paring table.	[03]	9
	$S \rightarrow A$ $A \rightarrow C$ $B \rightarrow B$ $C \rightarrow C$	Ca ε BaAC c				
Q2.	Answ	er The Follow	ving Questions	s. (Any Two)		ro.
1.	Defin	e Cross Assen	ıbler, Meta Ass	embler and Micro Assembler.		[04]
2.	IRP S	tatement With	Suitable Exam	ple.	11	[02]
3.					l	02]
Q3.	Answ	er The Follow	ing Questions.	odule? List out all the components of object module.	[02]
1.	Differe	entiate Non R	clocatable pro-	7.00	[()6]
2.				grams, Relocatable programs and Self-relocating program.	[0	3] 🛕
3,	What is an overlay? Explain overlay structured program and its execution. Explain following advanced macro facilities with example:					3]
		Autibutes of	formal	du ing expansion	[03]
1.	Write	a rough	ing Questions.			
2.	calcula created What a	les A=A/B+C	h takes A, B a D in AREG.	as Positional Parameter, C, D as Keyword parameters and Also, Generate Data Structures of Macro which you have f the given assembled.	[10]	
	Genera	ite the advanta ite Machine Le	ges of assembly wel Language o	Also, Generate Data Structures of Macro which you have language over machine level language? ADD - 01, SUB 02	[05]	1
	u	START MOVER MOVEM MOVER ORIGIN LTORG	AREG, ='5' AREG, X BREG, *'2'	ADD - 01, SUB-02, MULT - 03, MOLT	[05]	
	NEXT	ADD SUB BC LTORG	AREG,='1' BREG,='2' LT, BACK	START-01, END-02, ORIGIN-03, EQU-04, LTORG-05.		
	X BACK	EQU ORIGIN	-1 -2 L1 NEXT+5 CREG,='4'			

End Semester Examination, May 2018 B Tech (CO) -IIIrd Year semester-VI Course: Systems Software (CO304) Dated: 2nd May 2018 Time: 12:00 to 15:00 Max Marks: 50 Instructions: 1. Write your B Tech Admission No/Roll No and other details clearly on the answer books while write your BTech Admission No on the question paper, too. 2. Assume any necessary data but give proper justifications. 3. Be precise and clear in answering the questions. Q-1 Explain various phases of a compiler. Describe the output for the following statement, after each [04] phase of a compiler. a = a + b * c * 2. [08]Q-2 Answer The Followings: 1. Describe the languages denoted by the following regular expressions: [02] 1) (aa+ab+ba+bb)* 2) b*+a*+(ba)* ,3) a*bba* 4) ((ε|a)b*)* 2. How do the parser and scanner communicate? Explain with block diagram. Also discuss how [02]lexical errors are recovered? [02] What is handle and handle pruning? Explain with example. [02] 4. Eliminate Left recursion for following: A -> ABd | Aa | a B -> Be | b [12] Answer The Followings: (Any Four) Is the following grammar suitable for LL(1) parsing? If not, make it suitable for it. Compute first [03] and follow. Generate LL(1) parsing table. S -> AB A -> Ca | ε B -> BaAC | c C-> b | E 1031 Check whether the grammar is LR(0), SLR(1)? $S \rightarrow dA / aB$ A -> bA/c Write down functions for non-terminals of the given grammar to implement Recursive decent [03] parser. S -> ABC $A -> 0A1 | ^$ B -> 1B | ^ Consider the following grammar and parse the input string "id+id*id" using operator precedence [03] parser. E->E+E|E*E|id

Computer Engineering Department, S.V.N.I.T. Surat.

-		THE RESERVE	No. of Lot, House, etc., in such that the such			102
6.	Define	: handle an	d handle prunii	ng.	[02]	
7.	(a)	Giving a va parsing.	lid reason justi	ng. fy that the following grammar is not suitable for LL (1)		[05]
	(b)	After makin	g it suitable for	LL(1) parsing, generate paring table.	[03]	
	$S \rightarrow A$ $A \rightarrow CC$ $B \rightarrow BC$ $C \rightarrow b$	a ε αΑC c				1
Q2.			wing Question	is. (Any Two)		100
1.				sembler and Micro Assembler.		[04] [02]
2.	IRP Sta	tement With	h Suitable Exam	nple.		
3.					I	02]
Q3.	Answer	The Follow	wing Questions	module? List out all the components of object module.	[(02]
1.	Differen	itiate Non I	Relocatella	- ([0	06]
2.	Write ar What is	algorithm an overlay?	of program link Explain overla	ograms, Relocatable programs and Self-relocating program. ing. y structured program and its execution.	[0	3] 🛕
3.		TOHOWING M	[Vancod		[03	
	2. A	Attributes of	formal according	during expansion	[03	11
Q4.	Answer	The Follow	ing Opertion	···		
	117 1					
2.	calculate created. What are	s A=A/B+(C-D in AREG.	as Positional Parameter, C, D as Keyword parameters and Also, Generate Data Structures of Macro which you have of the given associated level language.	[10]	
	Generate	Machine Le	ges of assembly	Vlanguage over Vlanguage over	[05]	1
	u	START MOVER MOVEM	200 AREG, ='5'	ADD	[05]	
		ORIGIN	BREG, ='2'	STOP - 00. BC-07, DIV-08, READ OF - 04, MOVER		
	NEXT	ADD SUB RC LTORG	-5 AREG,='1', BREG,='2', LT, BACK	O5, COMP-06, BC-07, DIV-08, READ - 09, PRINT - 10, START-01, END-02, ORIGIN-03, EQU-04, LTORG-05.		
	BACK		-1			
	*	EQU ORIGIN MULT STOP	L1 NEXT+5 CREG,='4'			
		END	1			

Write Program Relocation Algorithm and Explain Address in Work Area with suitable example. [04]Whether Assembler Need to Produce Program List and Error Reports in PASS-I or Delay This [04]Actions Until PASS-II? Justify your answer with Proper Illustration.

Answer The Following Questions:

[10]

What is main purpose of Object module? Here in this code Three Programs are given in sequence say, Program P, Program Q and Program R. Generate Object module for each program. While linking program P, Q and R with Link_Origin=799. Display the Content of NTAB.

[05]

NOTE: Do not generate machine language program.

Program P	Program Q	Program R
START 121 ENTRYFIRST EXTERN SECOND READA MOVER AREG,A ADD AREG,SECOND SUB AREG, SECOND MOVEM AREG,A A DS 1 FIRST DS 1	START 212 ENTRY SECOND EXTERN THIRD,FIRST MOVER AREG,FIRST MULT AREG,THIRD ADD AREG,THIRD MOVEM AREG,X1 X1 DS 1 SECOND DS 1 END	START 616 ENTRY THIRD EXTERN FIRST, SECOND MOVER AREG, FIRST MULT AREG, SECOND MOVEM AREG, X2 X2 DS 1 THIRD DS 1 END
END		the Data Structure of the

List out The Task Involved in Macro Expansion and Generate the Data Structure of the [05] following Macro.

.....

- MACRO- -SS2018 &P,&R=DREG,&S=CREG,&U=,&Z= LCL &V1 LCL &V2 &V1 SET 0 1 &V2 SET MOVER AREG,&V2 ADD AREG,&P MOVEM AREG,&U AIF (&U EQ 10) .L1 MOVER &S,&Z MOVER &R,&U MULT &R,&Z MOVEM &R,&Z MOVEM AREG,&P .11 MEND

Scanned with CamScanner

Computer Engineering Department, SVNIT, Surat. Supplementary Examinations, July 2019 B Tech – III (CO) – 6th semester Course: (CO-304) Systems Software

Dat	Time: 10:00 to 13:00 Max Marks: 100	
2.	ructions: Write your B Tech Admission No/Roll No and other details clearly on the answer books and write your BTech Admission No on the question paper, too. Assume any necessary data but give proper justifications. Be precise and clear in answering the questions.	
Q١	Answer the following questions.	0
1:	What is left recursion? Eliminate the left recursion from the following grammar. $E \rightarrow E + T \mid T$	1
	$T \rightarrow T \cdot F \mid F$ $F \rightarrow (E) \mid id$	
2.	Translate the expression $-(a+b)^*(c+d)+(a+b+c)$ into	
	Quadruples 2. Triples 3. Indirect triples	
3.	Define lexeme, token and pattern. Identify the lexemes that make up the tokens in the following program segment. Indicate corresponding token and pattern.	
	void swap (int a, int b) { int k; $k = a$; $a = b$; $b = k$; }	
	OR	
	Construct SLR Parsing Table for the following grammar.	
	S→ 0S011S1110	
4.		
	Construct predictive parsing table for following. If grammar is LL(1) then parse any appropriate string.	
	S → A	
	$A \rightarrow aB \mid Ad$	
	B → bBC f	
	$C \rightarrow g$	
5.	Check whether the following grammar is CLR or not.	
	S → Aa bAc Bc bBa	
	$A \rightarrow d$	
	$B \rightarrow d$	
6.	Explain Peephole Optimization in detail.	
	detail.	

- What are Different Error Recovery Strategies in Compiler? Explain any one with
- What is the difference between parse tree and syntax tree? Write appropriate 8. grammar and draw parse as well as syntax tree for a+(b*c).

Q2. Answer the followings: [Any five]

- 1. Write a program to allocate sequential block of memory containing first five [40] fibonacci value using explicit expansion time loops facility.
- 2. Differentiate Non relocatable programs, Relocatable Programs, Self-Relocating
- Write an algorithm of program linking.
- 4. Create two macro of your choice to illustrate the nested call to these macro and
- 5. Define the following terms with suitable example: a) Cross Assembler

 - b) Meta Assembler
 - c) Micro Assembler
 - d) AIF statement
- 6. Generate OPTAB, SYMTAB, LITTAB and POOLTAB for the following code.

AGAIN	START READ MOVER MOVEM MULT MOVER ADD MOVEM COMP BC	BREG, BREG, BREG, CREG, CREG, CREG, CREG,	TERM TERM TERM TERM TERM '= ' TERM N	ADD MULT MOVER MOVEM COMP BC	owing code. NICS CODE 00 01 03 04 05 06 07
N RESULT ONE TERM	MOVEM PRINT STOP DS DS DC DS END	LE, BREG, RESULT	AGAIN RESULT	READ PRINT LE START END	09 10 02 01 02

Examination Examination

Computer Engineering Department, SVNIT, Surat. Supplementary Examination, February 2019

B.Tech (CO) -IIIrd Year semester-VI Course: Systems Software (CO304)

Dated: 5th FEB 2019 Time: 10:00 to 01:00 Max Marks: 50 Instructions: 1. Write your B Tech Admission No/Roll No and other details clearly on the answer books while write your B.Tech Admission No on the question paper, too. 2. Assume any necessary data but give proper justifications. 3. Be precise and clear in answering the questions. Q1 Answer The Following Questions. 10 Write a LEX program to count white spaces, tabs and new line. 1. 3 Define lexeme, token and pattern. Identify the lexemes that make up the tokens 2. 3 in the following program segment. Indicate corresponding token and pattern. void mult(int i, int j) int temp; temp = i * j;Test whether the grammar is LL (1) or not, and construct a predictive parsing table for following grammar: A8 - AcB | cD | D B & - bB | id D \$ → Dab | BbB | B OR Find out operator precedence relation of the following grammar. $E \rightarrow E + T \mid T$ $T \rightarrow T^{\bullet} X / X$ $X \rightarrow (E) \mid id$ Q2 Answer The Following Questions. Eliminate Left Recursion from following grammar? 10 $E \rightarrow E + T \mid T$ 3 $T \rightarrow T^{\bullet} V / V$ $F \rightarrow id$. Generate Null NFA ($\varepsilon - NFA$) of following Regular Expression 2. 3 Construct SLR parsing table for the following grammar: $S \rightarrow E$

Draw a transition diagram for relational operator (<,<=,=,>,>=.<>).

 $E \rightarrow 1E$ $E \rightarrow 1$

Q3	Answer The Following Questions.				10	
1.	es the diagram of phas	es of a compile	r and indicate the main functions		3	
2.	of each phase with an *example.(*take only single example) Explain Application domain and Execution domain, and how to bridge the gap					
	between two domains? What is shift reduce parser? Consider the following grammar:					
3.	What is shift reduce parser? $E \rightarrow E + E, E \rightarrow E * E, E \rightarrow$	onsider the folic	owing grammar.		4	
	Show the shift-reduce parser a	ction for the stri	ing id*(id+id).			
	St. Commission State Commission	OR				
3.	What is code optimization? Ex	plain various te	chniques of code optimization.			
Q4	Answer The Following Questio					
1.	By giving example explain the fo 1)OPTAB	llowing term.			5	
	2)SYMTAB					
	3)LITTAB					
2.	4)POOLTAB What is the role of Assamble-	4:				
			in any two advanced assembler		5	
Q5	Answer The Following Question	ns				
1.	Differentiate Variant-I and Variant-I and Variant-Intermediate and as	riant-II and			5	
	Generate Intermediate codes us	sing Variant I re	presentation.		3	
		READ	101 N			
		MOVER MOVEM	BREG, ONE			
	AGAIN	MULT	BREG, TERM BREG, TERM			
		MOVER ADD	CREG. TERM			
		MOVEM	CREG, ONE CREG, TERM			
		COMP BC	CREG, N	2.7		
		MOVEM	LE, AGAIN	Σ^{-1}		
		PRINT	BREG, AGAIN RESULT	4		
	N	STOP DS				
	RESULT ONE	DS	1			
	TERM	DC DS	·i _P			
		P20	1			
	05 COA or opcode: STOP - 00	Abs	ULT – 03, MOVER – 04, MOVEM - 10, LE – 02			
	Assembler di ASSEMBLE - 07, REA	, ADD - 01, MI	ULT - 03. MOVED			
	05, COMP – 06, BC – 07, REA Assembler directives: START – Declaration statements: DC – 0 Register code: BREG – 02, CR	-01 EMD 65	- 10, LE - 02 MOVEM	-		
,	Register code: DD = 0	I. DS 02				
2,	Register code: BREG – 02, CR Enlist and explain task in	EG - 03				
	mvolved	in man				
	In which condition	OP	sion			
	example. overlay play	's an important		5	,	
		Portant re	ole? Explain overlay with			
			sion ole? Explain overlay with suitable			