- 1. Пусть (W_j) последовательность независимых случайных величин, имеющих стандартное показательное распределение. Докажите, что последовательность $M_n := n \min_{j \le n} W_j$ сходится по распределению, но не сходится почти наверное.
- 2. Докажите, что случайная величина X имеет стандартное нормальное распределение в том и только в том случае, когда для всех непрерывно дифференцируемых функций с компактным носителем g верно $\mathbb{E}[Xg(X)] = \mathbb{E}g'(X)$.
- 3. Пусть X_n случайный вектор в \mathbb{R}^n , имеющий стандартное гауссовское распределение. Обозначим через B(r) замкнутый шар радиуса r с центром в нуле. Доказать, что для любого $\varepsilon>0$ при $n\to\infty$

$$P\left\{\frac{X_n}{\sqrt{n}} \in B(1+\varepsilon) \setminus B(1-\varepsilon)\right\} \to 1.$$

4. Пусть (X_n) – последовательность случайных величин. Вероятностное свойство Коши заключается в том, что

$$\forall \varepsilon > 0 \ \exists n : \ \forall m_1, m_2 > n \qquad \mathbb{P}(|X_{m_1} - X_{m_2}| > \varepsilon) < \varepsilon.$$

Докажите, что если $X_n \stackrel{\mathbb{P}}{\to} X$, то (X_n) имеет свойство Коши. Верно ли обратное, т.е. если (X_n) имеет свойство Коши, то $\exists X: X_n \stackrel{\mathbb{P}}{\to} X$?

5. Доказать, что случайная величина X и σ -алгебра \mathcal{M} независимы тогда и только тогда, когда для любой борелевской функции f, удовлетворяющей условию $\mathbb{E}|f(X)| < \infty$, выполнено равенство

$$\mathbb{E}\{f(X) \mid \mathcal{M}\} = \mathbb{E}f(X).$$

- 6. Пусть (\mathcal{M}_n) последовательность σ -алгебр, $\mathcal{M} = \cap_1^{\infty} \mathcal{M}_n$, а X, Y такие случайные величины с конечными математическими ожиданиями, что $\mathbb{E}\{X \mid \mathcal{M}_n\} \xrightarrow{\text{п.н.}} Y$ при $n \to \infty$. Доказать, что $\mathbb{E}\{X \mid \mathcal{M}\} = \mathbb{E}\{Y \mid \mathcal{M}\}$ п.н.
- 7.* Пусть f(t) чётная 2π -периодическая функция, причём на отрезке $[0,2\pi]$ она совпадает с некоторым квадратным трёхчленом. Определить, при каких $f(\pi)$ функция f является характеристической функцией некоторого распределения, и найти это распределение.
- $8.^*$ С.в. X неотрицательна и не зависит от величины Y, имеющей распределение $P_Y=N(0,1),$ а их произведение имеет плотность $e^{-|x|}/2$. Найти плотность распределения X.

¹³вёздочкой помечены задачи повышенной трудности.