Shivan Ajay Iyer be22b048

ODE Solving and Gene Networks

Assignment 4

PS1: Dynamic Modelling

Code Overview & Methodology

The code implements a modified Lotka-Volterra framework with metabolite-mediated interactions, organised into:

- Main script: Parameter initialisation, ODE solving (ode15s), and visualisation.
- ODE functions: Modular implementation of species interactions.

Key Assumptions:

- Well-mixed system (no spatial gradients)
- Constant interaction parameters (no adaptation)
- Metabolite X as a sole growth-limiting factor for B
- Immediate metabolite utilisation (no diffusion delays)

System Equations and Biological Significance

$$egin{aligned} rac{dA}{dt} &= \underbrace{g_A A}_{ ext{Growth}} - \underbrace{d_A A}_{ ext{Death}} + \underbrace{\delta A B}_{ ext{Mutualism}} - \underbrace{\epsilon A C}_{ ext{Parasitism}} \ rac{dB}{dt} &= g_B B - d_B B + \underbrace{\eta eta B X}_{ ext{Cross-feeding}} \ rac{dC}{dt} &= g_C C - d_C C + \epsilon A C \ rac{dX}{dt} &= \underbrace{lpha A}_{ ext{Production}} - eta B X \end{aligned}$$

Parameters:

- α (0.6): A's metabolite production
- β (0.85): B's metabolite utilization
- δ (0.8): A-B mutualism strength
- ε (0.3): C's parasitic efficiency
- η (0.6): Metabolic efficiency

Comparison Behaviour for Different Initial Conditions

Case 1 (Mild coexistence \rightarrow A dies out, C dominates):

- Balanced growth & death for all three (g≈dg\approx dg≈d), so none blows up purely by itself.
- Mutualism (δAB) gives A and B a little boost, and cross-feeding via XXX lets B grow steadily.

• Parasitism (εAC) steadily siphons A into C.

Result:

- A peaks early (around 0.5 h) but is driven extinct by C's parasitism.
- B grows roughly linearly (driven by its net growth plus a gently rising XXX).
- C enjoys both its modest net growth and the parasitic harvest of A → smooth rise to dominance.

Case 2 (Latent blooms):

- High net growth of A and B so that they would explode unchecked, but at first, C is minor.
- C has a small intrinsic net, so it drifts upward slowly until it can "feed" on occasional bumps in A.
- Once A has grown enough, the εAC term suddenly injects large biomass into C, producing the two big step-like "blooms" you see around 3 h and again near five h.
- A itself barely rises above zero except at those exact times, because each time it tries to grow, it immediately fuels a C bloom that knocks it back down.
- B continues its steady climb (powered by cross-feeding via XXX), largely unaffected by the on-off parasitism.

Case 3: Predator-prey oscillations

• C now has zero intrinsic growth (gC=0g_C=0gC=0) and very high death (dC=5d_C=5dC=5), so without parasitism it would vanish instantly.

- The parasitic term gives C a short-lived pulse every time A builds up (through its modest net growth and mutualism with B).
- But C's enormous death rate then quickly drives it back to (near) zero.
- That on-off coupling turns A–C into a classic predator-prey oscillator:
 - \circ A spikes, \to C surges, \to A is cut back, \to C dies, \to A regrows, etc.
- Meanwhile, B again rises almost monotonically since cross-feeding has a gentler, one-way effect.

In Summary

Case 1 is a stable coexistence scenario in which C's parasitism eventually drives A extinct but allows C itself to flourish.

Case 2 shows threshold-driven blooms, where C accumulates slowly until a mutualism-parasitism feedback kicks in, giving C discrete jumps (and suppressing A).

Case 3 is a proper oscillatory regime, essentially a predator–prey cycle between A (the "prey") and C (the "predator"), with B growing steadily throughout all cases.

Species D Impact

Introducing D (80% C inhibition):

- By multiplying the change in C's concentration by 0.2, D slashes C's intrinsic net growth (and parasitic boost) by 80 %. Thus, C can no longer race up as quickly once A is available.
- Due to C's weakened parasitic effect, A can keep growing longer before the next crash. That gives A a massive pulse (~4× larger first spike), which means C still eventually spikes (via εAC), but from a much larger A pool.
- The weakened "predator" (C) takes longer to bring prey (A) down and then takes longer yet to recover itself, so each cycle stretches out by about 25 %.
- Every time A surges higher, it pumps out more X (via α A), which fuels B's cross-feeding term. Hence, B ends up ~65 % higher at five h.

PS2: Boolean Modelling

Method Summary and Key Assumptions

Core Methodology

- Binary States: Genes/proteins exist in either active (1) or inactive (0) states
- Synchronous Updates: All nodes update simultaneously per time step
- Biological Constraints:
 - Mutual inhibition between MYC/RB creates a toggle switch behaviour
 - P53 activation requires MYC presence and MDM2 absence

<u>Implementation Structure</u>

Purpose	File
State transition logic	boolean_update.m
Network visualisation	plot_regulatorym
Feasible state identification	main_script.mlx
Stability/oscillation analysis	main_script.mlx
	State transition logic Network visualisation Feasible state identification

Network Diagram

Boolean Update Rule

P53	new_P53 = MYC ∧ ¬MDM2	Activated by MYC, inhibited by MDM2
MDM2	new_MDM2 = MDM2	Self Activation
MYC	new_MYC = ¬RB	Inhibited by the RB protein
RB	new_RB = ¬MYC	Inhibited by MYC oncoprotein

Cell Fate Determination

apoptosis = P53 && ~MDM2; % A: P53 active without MDM2 inhibition proliferation = MYC && ~RB; % P: MYC active without RB constraint

State Selection & Biological Interpretation

```
states = dec2bin(0:15,4) - '0'; % All 4-node combinations
The states are taken as [P53, MDM2, MYC, RB]
```

State	Biological Meaning	Molecular mechanism (from code)	Biological Feasibility	
A	Apoptosis (programmed cell death)	P53 ∧ ¬MDM2	TP53-mediated apoptosis in DNA damage response	
Р	Proliferation	MYC∧ ¬RB	MYC oncogene driving cell cycle progression	
AP	Concurrent apoptosis/proliferation	Both conditions met	Observed in tumour heterogeneity	
None	Cellular quiescence/senescence	Neither condition met	RB-mediated cell cycle arrest	

Key findings

• 8/16 feasible states due to the MYC-RB mutual exclusion constraint

```
State 0: 0 0 0 \rightarrow 0 0 1 1 | Fate: None | Infeasible
State 1: 0 0 0 1 → 0 0
                        0 1 | Fate: None | Feasible
State 2: 0 0 1 0 → 1
                     0
                        1 0 | Fate: P
                                         Feasible
State 3: 0 0 1 1 → 1
                        0 0 | Fate: None |
                     0
State 4: 0 1 0 0 → 0 1 1 1 | Fate: None | Infeasible
State 5: 0 1 0 1 → 0 1 0 1 | Fate: None | Feasible
                                       | Feasible
State 6: 0 1 1 0 → 0 1 1 0 | Fate: P
State 7: 0 1 1 1 → 0 1 0 0 | Fate: None | Infeasible
State 8: 1 0 0 0 → 0 0 1 1 | Fate: A
                                         Infeasible
State 9: 1 0 0 1 → 0 0
                        0 1 | Fate: A
                                       | Feasible
State 10: 1 0 1 0 → 1
                     0
                        1 0 | Fate: AP
                                       | Feasible
State 11: 1 0 1 1 → 1 0 0 0 | Fate: A
                                       | Infeasible
State 12: 1 1 0 0 → 0 1 1 1 | Fate: None | Infeasible
State 14: 1 1 1 0 → 0 1 1 0 | Fate: P
State 15: 1 1 1 1 → 0 1 0 0 | Fate: None | Infeasible
```

Oscillation and Limit Cycle Analysis

States Analysed

The printed examples demonstrate:

- Basal state (0000)
- Hyperactivated oncogenic state (1111)
- Intermediate state (0101)

Biological Underpinnings:

- Stable States: Represent terminal differentiation (apoptosis/proliferation)
- Oscillations: Mirror tumour cell plasticity during therapy resistance
- Feasible States: Align with observed cancer phenotypes in TCGA data

For initial state [0 0 0 0]

Oscillation detected between:

```
0 0 1 1
1 0 0 0
```

For initial state [1 1 1 1]

Oscillation detected between:

For state [0 1 0 1]

Stable state: 0 1 0 1

Drug Simulations

Drug Type	Target Action	Network Impact	Code Manifestation
MDM2 Inhibitor	Block MDM2 activation	Removes MDM2's inhibition on P53/Apoptosis	~MDM2 becomes true → boosts P53
MYC Inhibitor	Suppress MYC	Disables P53 activation & Proliferation	MYC forced false → P53 drops
RB Activator	Enhance RB	Inhibits MYC & Proliferation	RB stays true → MYC blocked

Clinical Implications

1. MDM2 Inhibitors (e.g., Idasanutlin)

Code-Based Mechanism: Prevents MDM2 from blocking P53, allowing apoptosis when MYC is active.

It may be helpful in cancers with:

- Functional P53 (MYC present)
- Overactive MDM2
- 2. MYC Inhibitors (e.g., Omomyc)

Dual effect:

- Reduces P53 activation → paradoxically limits apoptosis
- Suppresses Proliferation via RB pathway

Clinical balance:

It requires precise dosing to avoid a complete MYC shutdown.

3. CDK4/6 Inhibitors (RB Activators)

Network action:

Mimics RB activation → blocks MYC/Proliferation