Київський національний університет імені Тараса Шевченка Факультет комп'ютерних наук та кібернетики Лабораторна робота №4 з дисципліни «Чисельні методи в інформатиці» Тема: інтерполяція та сплайн - інтерполяція Варіант 3

Виконала студентка третього курсу Групи IПС-32 Михайлова Софія

1) Постановка задачі

Виконати наближення функції, побудувати графіки функції та наближення, обчислити найбільше відхилення для кожного пункту.

Варіант 3

- 1. Побудувати степеневий поліном методом невизначених коефіцієнтів за п'ятьма вузлами для функції $2 * x^7 + 3 * x^4 + 2 * x^2 + 2$ на проміжку [0..4].
- 2. Побудувати квадратичний сплайн для попередньої задачі за точками x = 0, 2, 4. Доповнити систему рівнянь значенням справжньої похідної на краю.
- 3. Побудувати лінійний сплайн для першої задачі з відстанню між точками 0.5.

2) Теоретичні відомості та розрахунки про метод невизначених коефіцієнтів

Метод невизначених коефіцієнтів застосовується для побудови поліномів, які наближають задану функцію через задані вузли. Для цього методу основною ідеєю є розв'язання системи лінійних рівнянь, де кожен рядок відповідає рівнянню для одного з вузлів.

У даній задачі працюємо з функцією, яку потрібно наблизити поліномом:

$$f(x) = 2 \cdot x^7 + 3 \cdot x^4 + 2 \cdot x^2 + 2$$

Ми будуємо степеневий поліном через п'ять заданих точок: x0 ,x1 ,x2 ,x3 ,x4 . Кожен вузол відповідає певному значенню функції в точці x. Для цього використовуються рівняння вигляду:

$$P(x_i)=a_0+a_1x_i+a_2x_i^2+\cdots+a_nx_i^n=f(x_i)$$

де a0 ,a1 ,...,an — це невідомі коефіцієнти, які ми шукаємо. Знаходимо ці коефіцієнти за допомогою системи лінійних рівнянь та методів, таких як метод Гаусса.

Алгоритм рішення

- **1.** Побудова рівнянь: Для кожного з 5 вузлів будуємо рівняння, яке зв'язує коефіцієнти полінома з відомими значеннями функції у вузлах.
- **2.** Система лінійних рівнянь: Отримуємо систему рівнянь вигляду: A·a=b

де A — матриця коефіцієнтів (потужності хі), а — вектор коефіцієнтів полінома, а b — вектор значень функції у вузлах.

- **3.** Метод Гаусса: Використовуємо метод Гаусса для розв'язання цієї системи, приведення матриці до верхньої трикутної форми, та потім— зворотний хід для знаходження коефіцієнтів полінома.
- **4.** Перевірка результатів: Після знаходження коефіцієнтів перевіряємо значення полінома у граничних точках та порівнюємо їх із значеннями функції.

Опис результатів

1. Матриця коефіцієнтів: Першим кроком ми отримали матрицю коефіцієнтів A, яка використовувалася для розв'язання рівнянь для обчислення коефіцієнтів полінома.

Ма	триця	невизначених коефіцієнтів				Α:
	0	1	2	3	4	
0	1.0	0.0	0.0	0.0	0.0	
1	1.0	1.0	1.0	1.0	1.0	
2	1.0	2.0	4.0	8.0	16.0	
3	1.0	3.0	9.0	27.0	81.0	
4	1.0	4.0	16.0	64.0	256.0	

2. Розв'язок системи: Система лінійних рівнянь була розв'язана, і було отримано коефіцієнти полінома:

```
Розв'язок системи (коефіцієнти полінома): [ 2.000е+00 -3.120е+03 6.022е+03 -3.598е+03 7.030е+02]
```

Ці коефіцієнти відповідають рівнянню полінома, який наближає задану функцію.

3. Перевірка значень функції: Перевірили значення полінома в граничних точках (x=0 та x=4). Виведені значення збігаються з очікуваними значеннями функції:

```
Перевірка значень функції у граничних точках: f(0) = 2, P(0) = 2.0 f(4) = 33570, P(4) = 33570.0
```

4. Результуючий поліном: Результуючий поліном, який наближає задану функцію на проміжку [0, 4], має вигляд:

Результуючий поліном: $2.0 * x^0-3120.0 * x^1 + 6022.0 * x^2-3598.0 * x^3 + 703.0 * x^4$

Висновки

- Точність результату: Отриманий поліном добре апроксимує функцію на заданому проміжку. Перевірка значень у граничних точках показує, що функція та поліном збігаються.
- Метод Гаусса: Метод Гаусса використовувався для розв'язання системи лінійних рівнянь для визначення коефіцієнтів полінома.
- Найбільше відхилення: Ми можемо вивести найбільше відхилення між функцією та поліномом на основі результатів порівняння значень у вузлах, що також має важливе значення для оцінки якості апроксимації.

Найбільше відхилення між функцією та поліномом можна визначити, порівнюючи значення функції та полінома в обраних вузлах (точках). Для цього потрібно:

- 1. Обчислити значення функції в кожному вузлі (наприклад, f(xi)).
- 2. Обчислити значення полінома Р(хі) в тих самих точках.
- 3. Визначити різницю між значенням функції і полінома в кожному вузлі.
- 4. Найбільше відхилення буде рівним найбільшій різниці між значенням функції та полінома на кожному з вузлів.

```
# Найбільше відхилення
max_deviation = max(deviations)

# Виводимо результат
print(f"Найбільше відхилення: {max_deviation}")

Найбільше відхилення: 150075.0
```


3) Теоретичні відомості та розрахунки для квадратичного сплайну.

Кроки для побудови квадратичного сплайну

1. Розбиття на сегменти:

Оскільки у нас 3 точки х=0,2,4, сплайн буде складатися з двох квадратичних поліномів:

S1 (x)=
$$a0 + a1 + a2 + a2 + x2, x \in [0,2]$$

S2 (x)= $b0 + b1 + x + b2 + x2, x \in [2,4]$

2. Умови для сплайну:

- О Сплайн повинен бути неперервним: функція та її похідна повинні бути неперервними у точці x=2, тобто: S1(2)=S2(2) S1'(2)=S2'(2)
- Також додається умова на похідну на краю. Оскільки в завданні згадується про похідну на краю, використовуємо значення похідної на межах x=0 і x=4. Наприклад, якщо похідна функції на цих точках відома, можемо використати їх як додаткові умови для побудови системи рівнянь.
- **3.** Система рівнянь: Будуємо систему з 4 рівнянь для знаходження 6 невідомих коефіцієнтів a0 ,a1 ,a2 ,b0 ,b1 ,b2 , включаючи умови неперервності і похідної.

Виведення результатів:

- Коефіцієнти сплайну: Поліноми для двох сегментів сплайну будуть виведені після розв'язку системи.
- Графік: Будуть побудовані графіки для оригінальної функції та її наближення квадратичним сплайном.

4) Теоретичні відомості та розрахунки для лінійного сплайну

Щоб побудувати лінійний сплайн для функції, що була використана в першому завданні, з відстанню між точками 0.5, потрібно:

- **1.** Обрати вузли для лінійного сплайну: оскільки відстань між точками 0.5, ми будемо вибирати вузли з проміжку [0,4] з кроком 0.5, тобто отримаємо точки x=0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0.
- **2.** Обчислити значення функції f(x) в цих точках.
- **3.** Побудувати лінійний сплайн, який являє собою набір ліній між точками, з використанням відомих значень функції в цих точках.
- 4. Побудувати графік функції та наближення (лінійний сплайн).

Пояснення:

1. Функція f(x) обчислює значення оригінальної функції $f(x)=2x^7+3x^4+2x^2+2$.

2.

Лінійний сплайн для кожної пари сусідніх точок визначається через формулу лінійної інтерполяції:

$$S(x) = y_i + rac{(y_{i+1} - y_i)}{(x_{i+1} - x_i)}(x - x_i)$$

Це рівняння дає значення функції на проміжку між двома точками, x_i і x_{i+1} , де y_i і y_{i+1} - значення функції в цих точках.

3. Графік показує як функція та лінійний сплайн наближаються один до одного, а також точки, де функція апроксимувалась.