《计算机组成原理》第九次作业

网络空间安全学院 信息安全 陆皓喆 2211044

5.12

多级cache是一项重要技术,它克服了 $L1\ cache$ 提供的空间有限的不足,同时仍然保持了速度。假设一个处理器的参数如下:

没有存储器阻塞的基本CPI	处理器速度	王存访问时间		12 个周期	包含直接映射的cache时的全局部	大路組織的二级 的速度 28个周期	6全人路组相联 cache时的全局部
囊的基本CPI		回时间	cache缺失率	cache的速度		∜二级cache 原	相联的L2 E局缺失率

注: L1 cache 缺失率是对于每条指令的。假设 L1 cache 的总缺失数量 (包含指令和数据) 为总指令数的 7%。

5.12.1

题目

计算表中处理器的CPI:

- 只有L1 cache;
- 一个直接映射的 $L2\ cache$;
- 一个八路组相联的 $L2\ cache$ 。如果主存访问时间加倍,CPI如何变化(CPI的绝对变化量以及百分比)?注意 $L2\ cache$ 能够隐藏慢速内存影响所能达到的程度。

解答

标准内存时间:在2ghz的机器上,每个周期需要0.5ps,因此,访问主内存需要100/0.5=200个周期。

- 只有 $L1\ cache$: $1.5 + 0.07 \times 200 = 15.5$
- 一个直接映射的 $L2\ cache$: $1.5 + 0.07 \times (12 + 0.035 \times 200) = 2.83$
- 一个八路组相联的 $L2\ cache$: $1.5 + 0.07 \times (28 + 0.015 \times 200) = 3.67$

如果内存访问时间翻倍,因此,一次主内存访问需要400个周期:

- 只有 $L1\ cache$: $1.5 + 0.07 * 400 = 29.5(90\%\ increase)$
- 一个直接映射的 $L2\ cache$: $1.5 + 0.07 \times (12 + 0.035 \times 400) = 3.32(17\%\ increase)$
- 一个八路组相联的 $L2\ cache$: $1.5 + 0.07 \times (28 + 0.015 \times 400) = 3.88(5\%\ increase)$

题目

拥有比两级cache更多的cache层次是可能的。已知上述的处理器拥有一个直接映射的L2 cache,一个设计者希望增加一个L3 cache,其访问时间为50个周期,并且缺失率为13%。这种设计能提供更好的性能吗?通常来说,增加一个L3 cache的优点和缺点分别是什么?

解答

$$1.5 = 0.07 \times (12 + 0.035 \times (50 + 0.13 \times 200)) = 1.03$$

增加L3缓存确实减少了总体内存访问时间,这是使用L3缓存的主要优势。但是也有一定的缺点。缺点是L3缓存占用了其他类型资源(如功能单元)的空间。

5.12.3

题目

在以前的处理器如 $Intel\ Pentium$ 或 $Alpha\ 21264$ 中, $L2\ cache$ 在远离主处理器和 $L1\ cache$ 的片外(放置在不同的芯片上)。这使得 $L2\ cache$ 很大,访问延迟也高得多,同时由于 $L2\ cache$ 以较低的频率运行,因此带宽通常较低。假设一个512KB的片外 $L2\ cache$ 的全局缺失率为4%。如果cache每增加512KB容量可以降低0.7%的全局缺失率,并且cache总的访问时间为50个周期,那么cache容量为多大时才能匹配表中直接映射的 $L2\ cache$ 的性能?

解答

我认为任何大小都不能达到性能目标。

我们希望带有外部L2缓存的CPU的CPI最多为2.83。设x为必要缺陷率,我们可以列出以下的方程:

$$1.5 + 0.07 \times (50 + x \times 200) < 2.83$$

我们解得: x < -0.155

这意味着,即使L2缓存的缺失率为0,50ns的访问时间也会产生 $1.5+0.07\times (50+0\times 200)=5$ 的CPI,这比片上L2缓存给出的2.83要大。因此,没有大小可以达到性能目标。

5.14

本练习题考察纠正一位错检测两位错(纠1检2, SEC/DED)的汉明码。

5.14.1

题目

如果要对128位字采用SEC/DED编码进行保护,最少需要多少位的奇偶位?

我认为最少需要9位的奇偶位

对于SEC,我们需要找到最小的p,使2p>=p+d+1,然后加1。得到p=8。然后我们需要为SEC/DED再添加一位。

5.14.2

题目

5.5节指出,现代服务器存储器模块(DIMM)采用 $SEC/DEC\ ECC$ 进行保护,每64位数据使用8位奇偶位。计算该编码的开销/性能比,并与练习题5.14.1进行比较。在这里开销是指所需的相对奇偶位,性能是指能够纠正的相对错误数量。哪种编码比较好?

解答

本章描述的(72,64)code需要8/64=12.5%的额外比特开销来容忍72位内任何单个比特的丢失,从而提供1.4%的保护率。来自a部分的(137,128)code需要9/128=7.0%的额外比特开销来容忍137位内任何单个比特的损失,提供0.73%的保护率。两种代码的成本/性能如下:

$$(72,64)code \rightarrow 12.5/1.4 = 8.9$$

 $(136,128)code \rightarrow 7.0/0.73 = 9.6$

从上面可以看出,(72,64) code 具有更好的成本/性能比。

5.14.3

题目

考虑一个采用4位奇偶位来保护8位字的SEC。如果读出值为0X375,是否有错?如果有错,对错误进行纠正。

解答

使用5.5节中的位编号,第8位错误,因此值将被更正为0x365。

5.16

如5.7节所述,虚拟存储器使用一个页表来追踪虚拟地址到物理地址之间的映射。本练习题说明了当地址被访问时页表如何更新。下表是在一个系统上可见的虚拟地址流。假设使用4KiB的页,一个4项的全相联TLB,并使用真正的LRU替换算法。如果必须从磁盘中取回页,那么增加下一个最大的页号:

十六进制	4669	2227	13916	34587	48870	12608	49225
十进制	0x123d	0x08b3	0x365c	0x871b	0xbee6	0x3140	0xc049

有效位	标记	物理页号	最后一次访问以来的时间
1	11	12	4
1	7	4	1
1	3	6	3
0	4	9	7

页表:

索引	有效位	物理页/磁盘中
0	1	5
1	0	磁盘
2	0	磁盘
3	1	6
4	1	9
5	1	11
6	0	磁盘
7	1	4
8	0	磁盘
9	0	磁盘
a	1	3
b	1	12

5.16.1

题目

于以上每次访问,请列出:

- 访问在TLB中命中还是缺失
- 访问在页表中命中还是缺失访问是否产生页面故障
- TLB更新后的状态

Address	Virtual Page	TLB H/M	TLB:Valid	TLB:Tag	TLB:Physical Page
4669 0x123d	1	TLB miss PT hit PF	1	b	12

Address	Virtual Page	TLB H/M	TLB:Valid	TLB:Tag	TLB:Physical Page
4669 0x123d	1	TLB miss PT hit PF	1	7	4
4669 0x123d	1	TLB miss PT hit PF	1	3	6
4669 0x123d	1	TLB miss PT hit PF	1 (last access 0)	1	13
2227 0x08b	0	TLB miss PT hit	1 (last access 1)	0	5
2227 0x08b	0	TLB miss PT hit	1	7	4
2227 0x08b	0	TLB miss PT hit	1	3	6
2227 0x08b	0	TLB miss PT hit	1 (last access 0)	1	13
13916 0x365c	3	TLB hit PT hit	1 (last access 1)	0	5
13916 0x365c	3	TLB hit PT hit	1	7	4
13916 0x365c	3	TLB hit PT hit	1 (last access 2)	3	6
13916 0x365c	3	TLB hit PT hit	1 (last access 0)	1	13
34587 0x871b	8	TLB miss PT hit PF	1 (last access 1)	0	5
34587 0x871b	8	TLB miss PT hit PF	1 (last access 3)	8	14
34587 0x871b	8	TLB miss PT hit PF	1 (last access 2)	3	6
34587 0x871b	8	TLB miss PT hit PF	1 (last access 0)	1	13
48870 0xbee6	b	TLB miss PT hit	1 (last access 1)	0	5
48870 0xbee6	b	TLB miss PT hit	1 (last access 3)	8	14
48870 0xbee6	b	TLB miss PT hit	1 (last access 2)	3	6

Address	Virtual Page	TLB H/M	TLB:Valid	TLB:Tag	TLB:Physical Page
48870 0xbee6	b	TLB miss PT hit	1 (last access 4)	11	12
12608 0x3140	3	TLB hit PT hit	1 (last access 1)	0	5
12608 0x3140	3	TLB hit PT hit	1 (last access 3)	8	14
12608 0x3140	3	TLB hit PT hit	1 (last access 5)	3	6
12608 0x3140	3	TLB hit PT hit	1 (last access 4)	b	12
49225 0xc040	С	TLB miss PT miss PF	1 (last access 6)	С	15
49225 0xc040	С	TLB miss PT miss PF	1 (last access 3)	8	14
49225 0xc040	С	TLB miss PT miss PF	1 (last access 5)	3	6
49225 0xc040	С	TLB miss PT miss PF	1 (last access 4)	b	12

5.16.2

题目

重做练习题5.16.1,但是这次使用16KiB的页来代替4KiB的页。使用更大的页有哪些好处?又有哪些缺点?

Address	Virtual Page	TLB H/M	TLB:Valid	TLB:Tag	TLB:Physical Page
4669 0x123d	1	TLB miss PT hit	1	11	12
4669 0x123d	1	TLB miss PT hit	1	7	4
4669 0x123d	1	TLB miss PT hit	1	3	6

Address	Virtual Page	TLB H/M	TLB:Valid	TLB:Tag	TLB:Physical Page
4669 0x123d	1	TLB miss PT hit	1 (last access 0)	0	5
2227 0x08b	0	TLB miss PT hit	1	11	12
2227 0x08b	0	TLB miss PT hit	1	7	4
2227 0x08b	0	TLB miss PT hit	1	3	6
2227 0x08b	0	TLB miss PT hit	1 (last access 1)	0	5
13916 0x365c	3	TLB hit PT hit	1	11	12
13916 0x365c	3	TLB hit PT hit	1	7	4
13916 0x365c	3	TLB hit PT 1		3	6
13916 0x365c	3	TLB hit PT hit	1 (last access 2)	0	5
34587 0x871b	8	TLB miss PT 1 (last hit PF access 3)		2	13
34587 0x871b	8	TLB miss PT hit PF	1	7	4
34587 0x871b	8	TLB miss PT hit PF	1	3	6
34587 0x871b	8	TLB miss PT hit PF	2	0	5
48870 0xbee6	11	TLB miss PT hit	1 (last access 4)	2	13
48870 0xbee6	11	TLB miss PT hit	1	7	4
48870 0xbee6	11	TLB miss PT hit	1	3	6
48870 0xbee6	11	TLB miss PT hit	1 (last access 2)	0	5
12608 0x3140	3	TLB hit PT hit	1 (last access 4)	2	13

Address	Virtual Page	TLB H/M	TLB:Valid	TLB:Tag	TLB:Physical Page
12608 0x3140	3	TLB hit PT hit	1	7	4
12608 0x3140	3	TLB hit PT hit	1	3	6
12608 0x3140	3	TLB hit PT hit	5	0	5
49225 0xc040	12	TLB miss PT hit	1 (last access 4)	2	13
49225 0xc040	12	TLB miss PT hit	1	7	4
49225 0xc040	12	TLB miss PT hit	1 (last access 6)	3	6
49225 0xc040	12	TLB miss PT hit	1 (last access 5)	0	5

较大的页面大小可以降低TLB缺失率,但可能导致更高的碎片和更低的物理内存利用率。

5.16.3

题目

重做练习题5.16.1,但是这次使用4KiB的页和一个两路组相联的TLB。

Address	Virtual Page	Tag	Index	TLB H/M	TLB:Valid	TLB:Tag	TLB:Physical Page	TLB:Index
4669 0x123d	1	0	1	TLB miss PT hit PF	1	b	12	0
4669 0x123d	1	0	1	TLB miss PT hit PF	1	7	4	1
4669 0x123d	1	0	1	TLB miss PT hit PF	1	3	6	0
4669 0x123d	1	0	1	TLB miss PT hit PF	1 (last access 0)	0	13	1

Address	Virtual Page	Tag	Index	TLB H/M	TLB:Valid	TLB:Tag	TLB:Physical Page	TLB:Index
2227 0x08b	0	0	0	TLB miss PT hit	1(last access 1)	0	5	0
2227 0x08b	0	0	0	TLB miss PT hit	1	7	4	1
2227 0x08b	0	0	0	TLB miss PT hit	1	3	6	0
2227 0x08b	0	0	0	TLB miss PT hit	1 (last access 0)	0	13	1
13916 0x365c	3	1	1	TLB miss PT hit	1 (last access 1)	0	5	0
13916 0x365c	3	1	1	TLB miss PT hit	1 (last access 2)	1	6	1
13916 0x365c	3	1	1	TLB miss PT hit	1	3	6	0
13916 0x365c	3	1	1	TLB miss PT hit	1 (last access 0)	1	13	1
34587 0x871b	8	4	0	TLB miss PT hit PF	1 (last access 1)	0	5	0
34587 0x871b	8	4	0	TLB miss PT hit PF	1 (last access 2)	1	6	1
34587 0x871b	8	4	0	TLB miss PT hit PF	1 (last access 3)	4	14	0
34587 0x871b	8	4	0	TLB miss PT hit PF	1 (last access 0)	1	13	1
48870 0xbee6	b	5	1	TLB miss PT hit	1 (last access 1)	0	5	0
48870 0xbee6	b	5	1	TLB miss PT hit	1 (last access 2)	1	6	1

Address	Virtual Page	Tag	Index	TLB H/M	TLB:Valid	TLB:Tag	TLB:Physical Page	TLB:Index
48870 0xbee6	b	5	1	TLB miss PT hit	1 (last access 3)	4	14	0
48870 0xbee6	b	5	1	TLB miss PT hit	1 (last access 4)	5	12	1
12608 0x3140	3	1	1	TLB hit PT hit	1 (last access 1)	0	5	0
12608 0x3140	3	1	1	TLB hit PT hit	1 (last access 5)	1	6	1
12608 0x3140	3	1	1	TLB hit PT hit	1 (last access 3)	4	14	0
12608 0x3140	3	1	1	TLB hit PT hit	1 (last access 4)	5	12	1
49225 0xc049	С	6	0	TLB miss PT miss PF	1 (last access 6)	6	15	0
49225 0xc049	C	6	0	TLB miss PT miss PF	1 (last access 5)	1	6	1
49225 0xc049	C	6	0	TLB miss PT miss PF	1 (last access 3)	4	14	0
49225 0xc049	С	6	0	TLB miss PT miss PF	1 (last access 4)	5	12	1

5.16.4

题目

重做练习题5.16.1,但是这次使用4KiB的页和一个直接映射的TLB。

Address	Virtual Page	Tag	Index	TLB H/M	TLB:Valid	TLB:Tag	TLB:Physical Page	TLB:Index
4669 0x123d	1	0	1	TLB miss PT hit PF	1	b	12	0
4669 0x123d	1	0	1	TLB miss PT hit PF	1	0	13	1
4669 0x123d	1	0	1	TLB miss PT hit PF	1	3	6	2
4669 0x123d	1	0	1	TLB miss PT hit PF	0	4	9	3
2227 0x08b3	0	0	0	TLB miss PT hit	1	0	5	0
2227 0x08b3	0	0	0	TLB miss PT hit	1	0	13	1
2227 0x08b3	0	0	0	TLB miss PT hit	1	3	6	2
2227 0x08b3	0	0	0	TLB miss PT hit	0	4	9	3
13916 0x365c	3	0	3	TLB miss PT hit	1	0	5	0
13916 0x365c	3	0	3	TLB miss PT hit	1	0	13	1
13916 0x365c	3	0	3	TLB miss PT hit	1	3	6	2
13916 0x365c	3	0	3	TLB miss PT hit	1	0	6	3
34587 0x871b	8	2	0	TLB miss PT hit PF	1	2	14	0

Address	Virtual Page	Tag	Index	TLB H/M	TLB:Valid	TLB:Tag	TLB:Physical Page	TLB:Index
34587 0x871b	8	2	0	TLB miss PT hit PF	1	0	13	1
34587 0x871b	8	2	0	TLB miss PT hit PF	1	3	6	2
34587 0x871b	8	2	0	TLB miss PT hit PF	1	0	6	3
48870 0xbee6	b	2	3	TLB miss PT hit	1	2	14	0
48870 0xbee6	b	2	3	TLB miss PT hit	1	0	13	1
48870 0xbee6	b	2	3	TLB miss PT hit	1	3	6	2
48870 0xbee6	b	2	3	TLB miss PT hit	1	2	6	3
12608 0x3140	3	0	3	TLB hit PT hit	1	2	14	0
12608 0x3140	3	0	3	TLB hit PT hit	1	0	13	1
12608 0x3140	3	0	3	TLB hit PT hit	1	3	6	2
12608 0x3140	3	0	3	TLB hit PT hit	1	0	6	3
49225 0xc049	С	3	0	TLB miss PT miss PF	1	3	15	0
49225 0xc049	C	3	0	TLB miss PT miss PF	1	0	13	1

Address	Virtual Page	Tag	Index	TLB H/M	TLB:Valid	TLB:Tag	TLB:Physical Page	TLB:Index
49225 0xc049	С	3	0	TLB miss PT miss PF	1	3	6	2
49225 0xc049	C	3	0	TLB miss PT miss PF	1	0	6	3

5.16.5

题目

讨论为什么CPU必须要使用TLB来获得高性能。如果没有TLB,如何处理虚拟存储器访问?

解答

如果没有TLB,几乎每次内存访问都需要对RAM进行两次访问——访问页表,然后访问所请求的数据。

5.17

有一些参数会对整个页表大小产生影响。下面列出一些关键的页表参数。

虚拟地址位数	页大小	页表项大小
32位	8KB	4字节

5.17.1

题目

根据上表中的参数,一个系统用了一半的内存来运行5个应用程序,计算该系统使用的总页表大小。

解答

标签大小为 $32-log_2^{8192}=32-13=19$ 位。所有5个页表都需要 $5 imes(2^{19} imes4)$ 字节=10MB。

题目

根据上表中的参数,一个系统用了一半的虚拟存储器来运行5个应用程序,假定使用一个两级页表,其中第一级有256项,计算该系统总的页表大小。假设主页表中每项是6字节,计算页表所需的最小和最大内存容量。

解答

在两级方法中, 2^{19} 页表条目被分成256个段,按需分配。每个二级表包含 $2^{(19-8)}$ =2048个表项,每个表项需要 $2048\times4=8kb$,覆盖 $2048\times8KB=16mb(2^{24})$ 的虚拟地址空间。

如果我们假设"一半内存"意味着 2^{31} 字节,那么第二级表所需的最小内存量将是 $5\times(2^{31}/2^{24})\times 8KB=5MB$ 。第一级表将需要额外的 $5\times128\times6$ 字节=3840字节。

如果所有第一级段都被激活,则需要在每个应用程序中使用所有256个段,则最大数量为。第二级表需要 $5\times256\times8KB=10MB$,第一级表需要7680字节。

5.17.3

题目

一名cache设计人员希望将一个4KiB的虚拟索引、物理标记的cache容量增大,对于以上页大小,假设块大小为2个64位字,那么能否构建一个16KiB的直接映射cache? 设计者如何增加cache的数据大小?

解答

页面索引是13位(地址位从12到0)。

一个16KB的直接映射缓存,每个块有两个64位字,将有16字节的块,因此16KB/16字节=1024块。因此,它将有10个索引位和4个偏移位,并且索引将扩展到页面索引之外。

设计者可以增加缓存的关联性。这将减少索引位的数量,以便缓存的索引完全适合页面索引

5.20

本练习题将研究替换策略如何影响缺失率。假设一个两路组相联cache,有4个块,每块1个字。考虑下面的字地址序列: 0,1,2,3,4,2,3,4,5,6,7,0,1,2,3,4,5,6,7,0。

5.20.1

题目

假定使用LRU替换策略,哪些访问命中?

应该是没有命中

5.20.2

题目

假定使用 MRU (最近最常使用) 替换策略,哪些访问命中?

解答

直接映射:

0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0
M	M	M	M	M	M	M	M	Н	Η	M	M	M	M	Η	Η	M

5.20.3

题目

通过掷硬币来模拟随机替换策略。例如,"正面"表示逐出组中第一块,"反面"表示逐出组中第二块。在这组地址序列中有多少次命中?

解答

有很多种答案,比如说上面的一题的答案也是可以的,可能是4次命中或者是6次命中

5.20.4

题目

描述该序列的一种最优替换策略,并说明使用该策略时哪些访问命中。

解答

MRU是最优策略。

5.20.5

题目

请说明为什么实现对所有地址序列来说都是最优的cache替换策略很难。

我们最好驱逐那些在未来造成最少失误的人。但是,缓存控制器无法预知未来,所以我们最好的选择是做出正确的预测。

5.20.6

题目

假设在每次主存引用时,可以决定被请求的地址是否要被缓存,这对缺失率有什么影响?

解答

如果知道一个地址具有有限的时间局部性,并且会与缓存中的另一个块发生冲突,那么选择不缓存它可以提高丢失率。另一方面,如果选择缓存的地址不合适,可能会导致丢失率恶化。

5.21

虚拟机广泛使用的最大障碍是运行虚拟机所产生的性能开销。下表列出了不同的性能参数和应用程序行为。

基本的CPI	每10 000条 指令中的特权 O/S访问次数	陷入客户 O/S的性能开销	陷入VMM 的性能开销	每10 000条 指令中的I/O 访问次数	I/O访问时间 (包括陷入客户 O/S的时间)
1.5	120	15个时钟周期	175个时钟周期	30	1100个时钟周期

5.21.1

题目

假设没有I/O访问,计算上述系统的CPI。如果VMM性能开销加倍,那么CPI是多少?如果减半呢?如果一个虚拟机软件公司希望将性能损失限制在10%以内,那么陷人VMM的最大开销可能是多少?

解答

$$CPI = 1.5 + 120/10000 \times (15 + 175) = 3.78$$

如果VMM开销翻倍:

$$CPI = 1.5 + 120/10000 \times (15 + 350) = 5.88$$

如果VMM开销减半:

$$CPI = 1.5 + 120/10000 \times (15 + 87.5) = 2.73$$

在本机硬件上运行的机器的CPI为 $1.5 + 120/10000 \times 15 = 1.68$ 。

为了将性能降低到10%, 我们需要满足:

$$1.5 + 120/10000 \times (15 + x) < 1.1 \times 1.68$$

解出该方程的解: x < 14

这表明, 到VMM的陷阱最多需要14个周期。

5.21.2

题目

I/O访问对系统整体性能有很大的影响。假设一台机器具有上面的性能特征值,并且是非虚拟化的系统,计算其CPI。如果使用虚拟化的系统,CPI又是多少?如果系统中I/O访问减半,那么这些CPI如何变化?

解答

- 非虚拟化 $CPI = 1.5 + 120/10000 \times 15 + 30/10000 \times 1100 = 4.98$
- 虚拟化 $CPI = 1.5 + 120/10000 \times (15 + 175) + 30/10000 \times (1100 + 175) = 7.60$
- 非虚拟化I/O为一半的 $CPI = 1.5 + 120/10000 \times 15 + 15/10000 \times 1100 = 3.33$
- 虚拟I/O为一半的 $CPI=1.5+120/10000\times(15+175)+15/10000\times(1100+175)=5.69$

5.29

为了支持多虚拟机,需要对两级存储器进行虚拟化。每个虚拟机依然控制从虚拟地址 (VA)到物理地址 (PA) 之间的映射,同时管理程序将每个虚拟机的物理地址 (PA) 映射到实际的机器地址 (MA)。为了加速映射过程,一种被称为 "影子分页" $(shadow\ paging)$ 的软件方法在管理程序中复制了每个虚拟机的页表,并且侦听从虚拟地址到物理地址的映射变化,以保证两个副本的一致性。为了消除影子页表 $(shadow\ page\ table)$ 的复杂性,一种被称为嵌套页表 $(Nested\ Page\ Table,NPT)$ 的硬件方法可以支持两种页表 $(VA\to PA\ n\ PA\to MA)$,并且完全依靠硬件来查找这些表。考虑下面的操作序列:

- 创建进程;
- TLB缺失;
- 缺页;
- 上下文切换。

5.29.1

题目

对于给定的操作序列,影子页表和嵌套页表分别会产生什么影响?

解答

影子页表:

- VM创建页表, hypervisor更新影子表;
- 管理程序拦截页面错误, 创建新的映射, 并使TLB中的旧映射无效;
- VM通知hypervisor使进程的TLB项无效。

嵌套页表:

- VM创建新的页表,hypervisor在PA表中添加新的映射到MA表。
- 硬件遍历两个页表, 将VA转换为MA;
- VM和hypervisor更新他们的页表,hypervisor使陈旧的TLB条目无效;
- 与影子页表相同。

5.29.2

题目

假设一个基于 x86 架构的4级页表同时存放在客户页表($guest\ page\ table$)和嵌套页表中,那么在处理本地页表($native\ page\ table$) TLB 缺失和嵌套页表TLB缺失时,分别需要多少次存储器访问?

解答

• *Native* : 4;

 $\bullet \ \ NPT: 24 (instructors can change the levels of page table)$

• Native: L;

• $NPT: L \times (L+2)$

5.29.3

题目

在TLB缺失率、TLB缺失延迟、缺页率、缺页处理延迟中, 对影子页表来说, 哪些度量标准更重要? 而对于嵌套页表来说, 哪些度量标准更重要?

假设影子分页系统的参数如下表所示:

每1000 的TLB制		NPT TLB缺失延迟	每1000条指令的 页面故障次数	影子页面故障代价
0.	2	200个时钟周期	0.001	30 000个时钟周期

解答

影子页表: 页错误率。

NPT: TLB漏报率。

5.29.4

题目

一个基准测试程序的本地执行CPI为1, 如果使用影子页表, CPI是多少? 如果使用嵌套页表 (假设只有页表虚拟化开销), CPI又是多少?

影子页表: 1.03

NPT: 1.04

5.29.5

题目

使用什么技术可以减少影子页表所带来的开销?

解答

合并多个页表更新。

5.29.6

题目

使用什么技术可以减少嵌套页表所带来的开销?

解答

NPT缓存(类似于TLB缓存)。