Step-1

Given statement is that if v_1, v_2, v_3, v_4 is a basis for the vector space \mathbf{R}^4 , and if \mathbf{W} is a subspace, then some subset of the v's is a basis for \mathbf{W} . We have to give a counter example for this statement.

Step-2

Consider $\beta = \{(1,0,0,0,), (0,1,0,0)(0,0,1,0)(0,0,0,1)\}_{a \text{ basis for } R^4}$

Because $(x_1, x_2, x_3, x_4) = x_1(1, 0, 0, 0) + x_2(0, 1, 0, 0) + x_3(0, 0, 1, 0) + x_4(0, 0, 0, 1)$ and vectors are linearly independent.

Let W be the subspace spanned by the vector (1,2,3,4).

But no vector (1,0,0,0),(0,1,0,0) (0,0,1,0),(0,0,0,1) is in the subspace \mathbf{W} .

Therefore no subset of the v's form a basis for W.