Homogeneous Linear Systems:

Real and Complex Roots

Prob. Find the general solution of Di = Ai, where

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & -1 \\ 0 & 0 & -3 \end{bmatrix}.$$

Last time: If A has eigenvalue λ with eigenvector \vec{v} , then $\vec{x} = e^{\lambda t} \vec{v}$ is a sol with initial vector \vec{v} .

Recall. $\vec{h}_1(t)$, $\vec{h}_2(t)$, $\vec{h}_3(t)$ generate the general solution

of a 3×3 system

iff W[h, h, h] (to) # 0 for any to.

iff Let [Ti(to) Ti2(to) Ti3(to] +0 "

iff hi(to), hi(to), hi(to) are linearly independent

for any to.

Fact. The eigenvectors corresponding to distinct eigenvalues

are lin. indep.

Fact. Suppose &, B are distinct eigenvalue.

Vi, Vz ate lin indep eigenvectors for d, \vec{v}_3 , \vec{v}_4 , \vec{v}_5 " \vec{v}_5 .

then $\vec{V}_1, \vec{V}_2, \vec{V}_3, \vec{V}_4, \vec{V}_5$ are lin. indep.

Ex. The eigenvalues of
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & -1 \\ 0 & 3 \end{bmatrix}$$
 are $1, 2, -3$ s

with eigenvectors

 $V_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $V_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$, $V_3 = \begin{bmatrix} -32 \\ 2 \\ 0 \end{bmatrix}$,

They are Lin indep because they correspond to distinct eigenvalues.

General solution in vector form:

$$V(t) = c_1 e^{t} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} + c_2 e^{t} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + c_3 e^{-3t} \begin{bmatrix} -32 \\ 2 \\ 10 \end{bmatrix}.$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} c_1 e^{t} + c_2 e^{2t} - 3c_3 e^{-3t} \\ c_2 e^{t} + 2c_3 e^{-3t} \\ c_3 e^{-3t} \end{bmatrix}$$

General solution in terms of x_1, x_2, x_3 :

$$x_1 = c_1 e^{t} + c_2 e^{2t} - 3c_3 e^{-3t},$$

$$x_2 = c_2 e^{t} + 2c_3 e^{-3t},$$

$$x_3 = c_3 e^{-3t}$$

Coal: For each eigenvalue, find as many lim indep, eigenvectors

as you can.

Complex Eigenvalue of a Real Matrix

- The complex roots of a real polynomial come in conjugate pairs.
- · The complex eigenvalues of a real matrix A come in conjugate pair.
 - $\cdot \quad \overline{3} \overline{w} = \overline{3} \overline{w}$
 - 1) If λ is a complex eigenvalue w/ eigenvector v, then $\overline{\lambda}$ is an eigenvalue w/ e.vector \overline{v} .

Reason:
$$AV = \lambda V \Rightarrow \overline{AV} = \overline{\lambda V}$$

 $\Rightarrow \overline{AV} = \overline{\lambda V}$
 $\Rightarrow A\overline{V} = \overline{\lambda V}$ (A is real)

So \overline{V} is an eigenvector corresp. to $\overline{\lambda}$.

2) If
$$x$$
 is a sol of $Dx = Ax$, then so \overline{x} .

Reason. Let
$$x = a + ib$$
.

$$\overline{Dx} = \overline{a + ib}' = \overline{a' + ib'}$$

$$= a' - ib' = (a - ib)' = \overline{Dx}.$$

$$\overline{Dx} = \overline{Ax} \Rightarrow \overline{Dx} = \overline{Ax} = A\overline{x} \quad (A \text{ is real})$$

$$\Rightarrow \ \ \, \text{is a sol of } \ \, \text{Dx} = Ax$$

$$x = a + ib$$

$$\overline{x} = a - ib$$

Add:
$$x + \overline{x} = 2a$$
 Subtract: $x - \overline{x} = 2ib$
So $a = \frac{x + \overline{x}}{2}$ So $b = \frac{x - \overline{x}}{2i}$

Since Re # = a and Im * = b are lin comb of sol, they are also sol.

- 4) If $x = e^{\lambda t} v$ and λ not real, then v and \overline{v} are lin. indep. (because they are eigenvectors corresponding to distinct eigenvalues λ and $\overline{\lambda}$.)
- 5) If x is complex solutions, then Rex and Im x are line indep. real solutions. (next chapter)

From Complex Solutions to Real Solutions Dx = Ax, A real

Suppose solutions are

Then the real solutions are

Example. Sake
$$Dx = Ax$$
, $A = \begin{bmatrix} -1 & -1 & 0 \\ 2 & -1 & 1 \end{bmatrix}$.

Eigenvalues: -1 , $-1 \pm i$

Eigenvalues: $\begin{bmatrix} -1 & -1 & -1 \\ 2 & -1 & 1 \end{bmatrix}$.

Eigenvalues: $\begin{bmatrix} -1 & -1 & -1 \\ 2 & -1 & 1 \end{bmatrix}$.

Eigenvalues: $\begin{bmatrix} -1 & -1 & -1 \\ 2 & -1 & 1 \end{bmatrix}$.

Eigenvalues: $\begin{bmatrix} -1 & -1 & -1 \\ 2 & -1 & 1 \end{bmatrix}$.

Eigenvalues: $\begin{bmatrix} -1 & -1 & -1 \\ 2 & -1 & 1 \end{bmatrix}$.

Eigenvalues: $\begin{bmatrix} -1 & -1 & -1 \\ 2 & -1 & 1 \end{bmatrix}$.

Eigenvalues: $\begin{bmatrix} -1 & -1 & -1 \\ 2 & -1 & 1 \end{bmatrix}$.

Eigenvalues: $\begin{bmatrix} -1 & -1 & -1 \\ 2 & -1 & 1 \end{bmatrix}$.

Eigenvalues: $\begin{bmatrix} -1 & -1 & -1 \\ 2 & -1 & 1 \end{bmatrix}$.

Eigenvalues: $\begin{bmatrix} -1 & -1 & -1 \\ 2 & -1 & 1 \end{bmatrix}$.

Eigenvalues: $\begin{bmatrix} -1 & -1 & -1 \\ 2 & -1 & 1 \end{bmatrix}$.

Eigenvalues: $\begin{bmatrix} -1 & -1 & -1 \\ 2 & -1 & 1 \end{bmatrix}$.

Eigenvalues: $\begin{bmatrix} -1 & -1 & -1 \\ 2 & -1 & 1 \end{bmatrix}$.

Eigenvalues: $\begin{bmatrix} -1 & -1 & -1 \\ 2 & -1 & 1 \end{bmatrix}$.

Eigenvalues: $\begin{bmatrix} -1 & -1 & -1 \\ 2 & -1 & 1 \end{bmatrix}$.

Eigenvalues: $\begin{bmatrix} -1 & -1 & -1 \\ 2 & -1 & 1 \end{bmatrix}$.

Eigenvalues: $\begin{bmatrix} -1 & -1 & -1 \\ 2 & -1 & 1 \end{bmatrix}$.

Eigenvalues: $\begin{bmatrix} -1 & -1 & -1 \\ 2 & -1 & 1 \end{bmatrix}$.

Eigenvalues: $\begin{bmatrix} -1 & -1 & -1 \\ 2 & -1 & 1 \end{bmatrix}$.

Eigenvalues: $\begin{bmatrix} -1 & -1 & -1 \\ 2 & -1 & -1 \end{bmatrix}$.

Eigenvalues: $\begin{bmatrix} -1 & -1 & -1 \\ 2 & -1 & -1 \end{bmatrix}$.

Eigenvalues: $\begin{bmatrix} -1 & -1 & -1 \\ 2 & -1 & -1 \end{bmatrix}$.

Eigenvalues: $\begin{bmatrix} -1 & -1 & -1 \\ 2 & -1 & -1 \end{bmatrix}$.

Eigenvalues: $\begin{bmatrix} -1 & -1 & -1 \\ 2 & -1 & -1 \end{bmatrix}$.

Eigenvalues: $\begin{bmatrix} -1 & -1 & -1 \\ 2 & -1 & -1 \end{bmatrix}$.

Eigenvalues: $\begin{bmatrix} -1 & -1 & -1 \\ 2 & -1 & -1 \end{bmatrix}$.

Eigenvalues: $\begin{bmatrix} -1 & -1 & -1 \\ 2 & -1 & -1 \end{bmatrix}$.

Eigenvalues: $\begin{bmatrix} -1 & -1 & -1 \\ 2 & -1 & -1 \end{bmatrix}$.

Eigenvalues: $\begin{bmatrix} -1 & -1 & -1 \\ 2 & -1 & -1 \end{bmatrix}$.

Eigenvalues: $\begin{bmatrix} -1 & -1 & -1 \\ 2 & -1 & -1 \end{bmatrix}$.

Eigenvalues: $\begin{bmatrix} -1 & -1 & -1 \\ 2 & -1 & -1 \end{bmatrix}$.

Eigenvalues: $\begin{bmatrix} -1 & -1 & -1 \\ 2 & -1 & -1 \end{bmatrix}$.

Eigenvalues: $\begin{bmatrix} -1 & -1 & -1 \\ 2 & -1 & -1 \end{bmatrix}$.

Eigenvalues: $\begin{bmatrix} -1 & -1 & -1 \\ 2 & -1 & -1 \end{bmatrix}$.

Eigenvalues: $\begin{bmatrix} -1 & -1 & -1 \\ 2 & -1 & -1 \end{bmatrix}$.

Eigenvalues: $\begin{bmatrix} -1 & -1 & -1 \\ 2 & -1 & -1 \end{bmatrix}$.

Eigenvalues: $\begin{bmatrix} -1 & -1 & -1 \\ 2 & -1 & -1 \end{bmatrix}$.

Eigenvalues: $\begin{bmatrix} -1 & -1 & -1 \\ 2 & -1 & -1 \end{bmatrix}$.

Eigenvalues: $\begin{bmatrix} -1 & -1 & -1 \\ 2 & -1 & -1 \end{bmatrix}$.

Eigenvalues: $\begin{bmatrix} -1 & -1 & -1 \\ 2 & -1 & -1 \end{bmatrix}$.

Eigenvalues: $\begin{bmatrix} -1 & -1 & -1 \\ 2 & -1 & -1 \end{bmatrix}$.

Eigen