

END OF STUDIES INTERNSHIP DEFENSE

Visual tasks representation for remote perception and guidance using a wearable device

Gouneau Joceran, supervised by Ng Lai Xing

7th of September 2023

- Introduction Context
- - 2.1. Problem
 - 2.2. Current Solutions
 - 2.2.1. Baseline
 - 2.2.2. InternVideo
 - 2.3. Transformers for Detection
- Method
- **Experiments**
 - Jupyter Notebook Quickstart
 - 4.2. Scaling Up to the Full Dataset
 - 4.2.1. Building the Codebase
 - 4.2.2. Accessing and Preprocessing the Data
 - 4.2.3. Establishing Our Baseline
 - 4.3. Using SlowFast as a Backbone
 - 4.4. Using VideoMAE as a Backbone
- Discussion
 - 5.1. Comparison
 - Areas of Improvement
- Conclusion

- 2. Context
 - 2.1. Problem

- 2.2. Current Solutions
 - 2.2.1. Baseline
 - 2.2.2. InternVideo
- 2.3. Transformers for Detection
- Method
- 4. Experiments
 - 4.1. Jupyter Notebook Quickstart
 - 4.2. Scaling Up to the Full Dataset
 - 4.2.1. Building the Codebase
 - 4.2.2. Accessing and Preprocessing the Data
 - 4.2.3. Establishing Our Baseline
 - 4.3. Using SlowFast as a Backbone
 - 4.4. Using VideoMAE as a Backbone
- 5. Discussion
 - 5.1. Comparison
 - 5.2. Areas of Improvement
- 6. Conclusion

Context Problem 2.1.

- 2.2. Current Solutions
 - 2.2.1. Baseline
 - 2.2.2. InternVideo
- 2.3. Transformers for Detection
- Method
- **Experiments**
 - Jupyter Notebook Quickstart
 - 4.2. Scaling Up to the Full Dataset
 - 4.2.1. Building the Codebase
 - 4.2.2. Accessing and Preprocessing the Data
 - 4.2.3. Establishing Our Baseline
 - 4.3. Using SlowFast as a Backbone
 - 4.4. Using VideoMAE as a Backbone
- Discussion
 - 5.1. Comparison
 - Areas of Improvement
- Conclusion

2.1. Problem

Introduction

Context

- 2.2. Current Solutions
 - 2.2.1. Baseline
 - 2.2.2. InternVideo
- 2.3. Transformers for Detection
- Method
- **Experiments**
 - Jupyter Notebook Quickstart
 - 4.2. Scaling Up to the Full Dataset
 - 4.2.1. Building the Codebase
 - 4.2.2. Accessing and Preprocessing the Data
 - 4.2.3. Establishing Our Baseline
 - 4.3. Using SlowFast as a Backbone
 - 4.4. Using VideoMAE as a Backbone
- Discussion
 - 5.1. Comparison
 - Areas of Improvement
- Conclusion

Problem

source: https://ego4d-data.org/

- Episodic Memory
- Hand-Object Interactions
- Audio-Visual Diarization
- Social Interactions
- Forecasting

Problem

Given a video V and a timestamp t, the model should be able, given V up to t, to predict the next active objects:

$$\{(\hat{b}_i, \hat{n}_i, \hat{v}_i, \hat{\delta}_i, \hat{s}_i)\}_{i=1}^N$$

Where:

 \hat{b}_i is the bounding box at t.

 \hat{n}_i is a name.

 \hat{v}_i is a verb.

 $\hat{\delta}_i$ is the time to contact from t.

 \hat{S}_i is a confidence score.

F. Ragusa et al. Stillfast: An end-to-end approach for short-term object interaction anticipation, 2023.

Context 2.1. Problem

- 2.2. Current Solutions
 - 2.2.1. Baseline
 - 2.2.2. InternVideo
- 2.3. Transformers for Detection
- Method
- **Experiments**
 - Jupyter Notebook Quickstart
 - 4.2. Scaling Up to the Full Dataset
 - 4.2.1. Building the Codebase
 - 4.2.2. Accessing and Preprocessing the Data
 - 4.2.3. Establishing Our Baseline
 - 4.3. Using SlowFast as a Backbone
 - 4.4. Using VideoMAE as a Backbone
- Discussion
 - 5.1. Comparison
 - Areas of Improvement
- Conclusion

Current Solutions

Model Name	Object Detector	Video Backbone	Dataset Version	$\mathbf{mAP}_{\mathrm{Overall}}$
Baseline V1	Faster RCNN	SlowFast	V1	2.45
InternVideo	DINO DETR	VideoMAE	V1	3.40
Baseline V2	Faster RCNN	SlowFast	V2	3.61

Context Problem 2.1.

- 2.2. Current Solutions
 - 2.2.1. Baseline
 - 2.2.2. InternVideo
- 2.3. Transformers for Detection
- 3. Method
- **Experiments**
 - **Jupyter Notebook Quickstart**
 - 4.2. Scaling Up to the Full Dataset
 - 4.2.1. Building the Codebase
 - 4.2.2. Accessing and Preprocessing the Data
 - 4.2.3. Establishing Our Baseline
 - 4.3. Using SlowFast as a Backbone
 - 4.4. Using VideoMAE as a Backbone
- Discussion
 - 5.1. Comparison
 - Areas of Improvement
- Conclusion

Baseline

- 2. Context
- 2.1 Droblen
 - 2.1. Problem

- 2.2. Current Solutions
 - 2.2.1. Baseline
 - 2.2.2. InternVideo
- 2.3. Transformers for Detection
- Method
- 4. Experiments
 - 4.1. Jupyter Notebook Quickstart
 - 4.2. Scaling Up to the Full Dataset
 - 4.2.1. Building the Codebase
 - 4.2.2. Accessing and Preprocessing the Data
 - 4.2.3. Establishing Our Baseline
 - 4.3. Using SlowFast as a Backbone
 - 4.4. Using VideoMAE as a Backbone
- 5. Discussion
 - 5.1. Comparison
 - 5.2. Areas of Improvement
- 6. Conclusion

InternVideo

Problem 2.1.

Introduction

- 2.2. Current Solutions
 - 2.2.1. Baseline
 - 2.2.2. InternVideo

2.3. Transformers for Detection

- 3. Method
- **Experiments**
 - Jupyter Notebook Quickstart
 - 4.2. Scaling Up to the Full Dataset
 - 4.2.1. Building the Codebase
 - 4.2.2. Accessing and Preprocessing the Data
 - 4.2.3. Establishing Our Baseline
 - 4.3. Using SlowFast as a Backbone
 - 4.4. Using VideoMAE as a Backbone
- Discussion
 - 5.1. Comparison
 - Areas of Improvement
- Conclusion

Transformers for Detection

Faster RCNN

- Context
 - 2.1. Problem

- 2.2. Current Solutions
 - 2.2.1. Baseline
 - 2.2.2. InternVideo
- 2.3. Transformers for Detection
- Method
- **Experiments**
 - Jupyter Notebook Quickstart
 - 4.2. Scaling Up to the Full Dataset
 - 4.2.1. Building the Codebase
 - 4.2.2. Accessing and Preprocessing the Data
 - 4.2.3. Establishing Our Baseline
 - 4.3. Using SlowFast as a Backbone
 - 4.4. Using VideoMAE as a Backbone
- Discussion
 - 5.1. Comparison
 - Areas of Improvement
- Conclusion

- Introduction
- Context
 - 2.1. Problem
 - 2.2. Current Solutions
 - 2.2.1. Baseline
 - 2.2.2. InternVideo
 - 2.3. Transformers for Detection
- 3. Method
- **Experiments**
 - Jupyter Notebook Quickstart
 - 4.2. Scaling Up to the Full Dataset
 - 4.2.1. Building the Codebase
 - 4.2.2. Accessing and Preprocessing the Data
 - 4.2.3. Establishing Our Baseline
 - 4.3. Using SlowFast as a Backbone
 - 4.4. Using VideoMAE as a Backbone
- Discussion
 - 5.1. Comparison
 - Areas of Improvement
- Conclusion

2.1. Problem

Context

- 2.2. Current Solutions
 - 2.2.1. Baseline
 - 2.2.2. InternVideo
- 2.3. Transformers for Detection
- 3. Method
- **Experiments**
 - **Jupyter Notebook Quickstart**
 - 4.2. Scaling Up to the Full Dataset
 - 4.2.1. Building the Codebase
 - 4.2.2. Accessing and Preprocessing the Data
 - 4.2.3. Establishing Our Baseline
 - 4.3. Using SlowFast as a Backbone
 - 4.4. Using VideoMAE as a Backbone
- Discussion
 - 5.1. Comparison
 - Areas of Improvement
- Conclusion

Jupyter Notebook Quickstart

- pre-extracted video features by Omnivore:
 - o frozen
 - time only dependent

Model Name	mAP _{Box, Noun}	${ m mAP}_{ m Box,\ Noun,\ Verb}$	${ m mAP}_{ m Box,\ Noun,\ TTC}$	$mAP_{Overall}$
Notebook Baseline		10.08	7.16	2.61
Concat Concatenate	20.11	10.00	6.57	2.38
Add Concatenate	29.11	9.81	5.92	2.21
Add Interleaved		10.38	6.68	2.69

2.1. Problem

Context

- 2.2. Current Solutions
 - 2.2.1. Baseline
 - 2.2.2. InternVideo
- 2.3. Transformers for Detection
- 3. Method
- **Experiments**
 - Jupyter Notebook Quickstart
 - 4.2. Scaling Up to the Full Dataset
 - 4.2.1. Building the Codebase
 - 4.2.2. Accessing and Preprocessing the Data
 - 4.2.3. Establishing Our Baseline
 - 4.3. Using SlowFast as a Backbone
 - 4.4. Using VideoMAE as a Backbone
- Discussion
 - 5.1. Comparison
 - Areas of Improvement
- Conclusion

- Context
 - Problem 2.1.

- 2.2. Current Solutions
 - 2.2.1. Baseline
 - 2.2.2. InternVideo
- 2.3. Transformers for Detection
- 3. Method
- **Experiments**
 - Jupyter Notebook Quickstart
 - 4.2. Scaling Up to the Full Dataset
 - 4.2.1. Building the Codebase
 - 4.2.2. Accessing and Preprocessing the Data
 - 4.2.3. Establishing Our Baseline
 - 4.3. Using SlowFast as a Backbone
 - 4.4. Using VideoMAE as a Backbone
- Discussion
 - 5.1. Comparison
 - Areas of Improvement
- Conclusion

Building the Codebase

- Ego4D Forecasting:
 - Official Training / Evaluation scripts;
 - SlowFast definition (pre-trained on Kinetics-400);
 - Baseline definition; 0
- InternVideo:
 - Modified Training Pipeline using DeepSpeed;
 - VideoMAE definition (pre-trained on Ego4D V1); 0

Context 2.1. Problem

- 2.2. Current Solutions
 - 2.2.1. Baseline
 - 2.2.2. InternVideo
- 2.3. Transformers for Detection
- Method
- **Experiments**
 - Jupyter Notebook Quickstart
 - 4.2. Scaling Up to the Full Dataset
 - 4.2.1. Building the Codebase
 - 4.2.2. Accessing and Preprocessing the Data
 - 4.2.3. Establishing Our Baseline
 - 4.3. Using SlowFast as a Backbone
 - 4.4. Using VideoMAE as a Backbone
- Discussion
 - 5.1. Comparison
 - Areas of Improvement
- Conclusion

Accessing and Preprocessing the Data

Context 2.1. Problem

- 2.2. Current Solutions
 - 2.2.1. Baseline
 - 2.2.2. InternVideo
- 2.3. Transformers for Detection
- 3. Method
- **Experiments**
 - Jupyter Notebook Quickstart
 - 4.2. Scaling Up to the Full Dataset
 - 4.2.1. Building the Codebase
 - 4.2.2. Accessing and Preprocessing the Data
 - 4.2.3. Establishing Our Baseline
 - 4.3. Using SlowFast as a Backbone
 - 4.4. Using VideoMAE as a Backbone
- Discussion
 - 5.1. Comparison
 - Areas of Improvement
- Conclusion

Establishing Our Baseline

Subset	mAP _{Box, Noun}	${ m mAP}_{ m Box,\ Noun,\ Verb}$	${ m mAP}_{ m Box,\ Noun,\ TTC}$	$mAP_{Overall}$
validation	24.79	8.86	7.58	2.66
test	26.15	9.48	8.11	3.36

- 1. Introduction
- 2. Context
 - 2.1. Problem
 - 2.2. Current Solutions
 - 2.2.1. Baseline
 - 2.2.2. InternVideo
 - 2.3. Transformers for Detection
- 3. Method
- 4. Experiments
 - 4.1. Jupyter Notebook Quickstart
 - 4.2. Scaling Up to the Full Dataset
 - 4.2.1. Building the Codebase
 - 4.2.2. Accessing and Preprocessing the Data
 - 4.2.3. Establishing Our Baseline
 - 4.3. Using SlowFast as a Backbone
 - 4.4. Using VideoMAE as a Backbone
- 5. Discussion
 - 5.1. Comparison
 - 5.2. Areas of Improvement
- 6. Conclusion

Using SlowFast as a Backbone

Subset	$mAP_{Box, Noun}$	${ m mAP}_{ m Box,\ Noun,\ Verb}$	${ m mAP}_{ m Box,\ Noun,\ TTC}$	$\mathbf{mAP}_{\mathrm{Overall}}$
validation	24.79	8.83	7.21	3.24
test	26.15	9.90	7.62	3.28

- Context
 - 2.1. Problem

- 2.2. Current Solutions
 - 2.2.1. Baseline
 - 2.2.2. InternVideo
- 2.3. Transformers for Detection
- 3. Method
- **Experiments**
 - Jupyter Notebook Quickstart
 - 4.2. Scaling Up to the Full Dataset
 - 4.2.1. Building the Codebase
 - 4.2.2. Accessing and Preprocessing the Data
 - 4.2.3. Establishing Our Baseline
 - 4.3. Using SlowFast as a Backbone
 - Using VideoMAE as a Backbone
- Discussion
 - 5.1. Comparison
 - Areas of Improvement
- Conclusion

Using VideoMAE as a Backbone

Subset	$mAP_{Box, Noun}$	${ m mAP}_{ m Box,\ Noun,\ Verb}$	$\mathrm{mAP}_{\mathrm{Box,\ Noun,\ TTC}}$	$\mathbf{mAP}_{\mathrm{Overall}}$
validation	24.79	10.48	8.70	3.92
test	26.15	11.25	9.22	4.75

2.1. Problem

Context

- 2.2. Current Solutions
 - 2.2.1. Baseline
 - 2.2.2. InternVideo
- 2.3. Transformers for Detection
- Method
- 4. Experiments
 - 4.1. Jupyter Notebook Quickstart
 - 4.2. Scaling Up to the Full Dataset
 - 4.2.1. Building the Codebase
 - 4.2.2. Accessing and Preprocessing the Data
 - 4.2.3. Establishing Our Baseline
 - 4.3. Using SlowFast as a Backbone
 - 4.4. Using VideoMAE as a Backbone
- 5. Discussion
 - 5.1. Comparison
 - 5.2. Areas of Improvement
- 6. Conclusion

2.1. Problem

Context

- 2.2. Current Solutions
 - 2.2.1. Baseline
 - 2.2.2. InternVideo
- 2.3. Transformers for Detection
- 3. Method
- **Experiments**
 - Jupyter Notebook Quickstart
 - 4.2. Scaling Up to the Full Dataset
 - 4.2.1. Building the Codebase
 - 4.2.2. Accessing and Preprocessing the Data
 - 4.2.3. Establishing Our Baseline
 - 4.3. Using SlowFast as a Backbone
 - 4.4. Using VideoMAE as a Backbone
- Discussion
 - 5.1. Comparison
 - Areas of Improvement
- Conclusion

Comparison

Model	$\mathbf{mAP}_{\mathrm{B, N}}$	$\mathbf{mAP}_{\mathrm{B,\ N,\ V}}$	${ m mAP}_{ m B, \ N, \ TTC}$	$\mathbf{mAP}_{\mathrm{Overall}}$
Baseline V1	20.45	6.78	6.17	2.45
InternVideo	24.60	9.19	7.64	3.40
Using SlowFast		9.90	7.62	3.28
Our Baseline	26.15	9.48	8.11	3.36
Baseline V2		9.45	8.69	3.61
Using VideoMAE		11.25	$\boldsymbol{9.22}$	4.75
StillFast	25.06	13.29	9.14	5.12
GANO	25.67	13.60	9.02	5.16

Context 2.1. Problem

- 2.2. Current Solutions
 - 2.2.1. Baseline
 - 2.2.2. InternVideo
- 2.3. Transformers for Detection
- 3. Method
- **Experiments**
 - Jupyter Notebook Quickstart
 - 4.2. Scaling Up to the Full Dataset
 - 4.2.1. Building the Codebase
 - 4.2.2. Accessing and Preprocessing the Data
 - 4.2.3. Establishing Our Baseline
 - 4.3. Using SlowFast as a Backbone
 - 4.4. Using VideoMAE as a Backbone
- Discussion
 - 5.1. Comparison
 - **Areas of Improvement**
- Conclusion

(101U)10101 (010)

Areas of Improvement

Epoch	Subset	$\mathbf{Loss}_{\mathrm{Total}}$	$\mathbf{Loss}_{\mathrm{Verb}}$	$\mathbf{Loss}_{\mathrm{TTC}}$	${ m mAP}_{ m Overall}$
20	train	0.82	0.27	0.05	
20	validation	5.61	3.61	0.20	3.92
2	train	3.59	1.82	0.17	
	validation	4.02	2.13	0.19	2.70

Subset	Training		Validation	
Detections	GT	Pred		Pred
mAP _{Box, Noun} mAP _{Box, Noun, Verb} /mAP _{Box, Noun} mAP _{Box, Noun, TTC} /mAP _{Box, Noun}	100	46.01	100	24.79
${ m mAP_{Box,\ Noun,\ Verb}}/{ m mAP_{Box,\ Noun}}$	84.15	77.14	42.41	42.28
${ m mAP_{Box,\ Noun,\ TTC}}/{ m mAP_{Box,\ Noun}}$	45.31	41.80	38.30	35.09
${ m mAP_{Overall}/mAP_{Box,\ Noun}}$	39.02	33.71	18.52	15.81

- 1. Introduction
- 2. Context
 - 2.1. Problem
 - 2.2. Current Solutions
 - 2.2.1. Baseline
 - 2.2.2. InternVideo
 - 2.3. Transformers for Detection
- Method
- 4. Experiments
 - 4.1. Jupyter Notebook Quickstart
 - 4.2. Scaling Up to the Full Dataset
 - 4.2.1. Building the Codebase
 - 4.2.2. Accessing and Preprocessing the Data
 - 4.2.3. Establishing Our Baseline
 - 4.3. Using SlowFast as a Backbone
 - 4.4. Using VideoMAE as a Backbone
- 5. Discussion
 - 5.1. Comparison
 - 5.2. Areas of Improvement
- 6. Conclusion

END OF STUDIES INTERNSHIP DEFENSE

Visual tasks representation for remote perception and guidance using a wearable device

Gouneau Joceran, supervised by Ng Lai Xing

7th of September 2023

Training - Using VideoMae

Training - Using VideoMae

Validation - Using VideoMAE

Validation - Using SlowFast

SlowFast

VideoMAE

Z. Tong et al. Videomae: Masked autoencoders are data-efficient learners for self-supervised video pre-training, 2022

Transformer

ROI Pooling

Faster RCNN

Ground Truth Attribution

Packing and Un-packing Data

