HIGHLY SENSITIVE H₂S GAS SENSOR BASED ON Ag AND Pt DECORATED SnO₂ THIN FILM

NGHIÊN CỚU CHẾ TẠO CẨM BIẾN KHÍ H2S TRÊN CƠ SỞ MÀNG MỎNG OXIT THIẾC BIẾN TÍNH VỚI CÁC HẠT NANO BẠC VÀ PLATIN

Vo Thanh Duoc¹, Duong Thi Thuy Trang¹, Nguyen Van Toan¹, Lam Thi Hang², Bui Tien Trinh², Nguyen Si Hai², Vu Ngoc Phan^{3,4}, Phung Thi Hong Van^{2*}, Nguyen Van Duy^{1*}

¹International Training Institute for Materials Science, Hanoi University of Science and Technology

²Hanoi University of Natural Resources and Environment

³Phenikaa University Nano Institute, Phenikaa University

⁴Faculty of Biotechnology, Chemistry and Environmental, Phenikaa University

Đến Tòa soạn ngày 28/10/2021, chấp nhận đăng ngày 15/11/2021

Abstract:

In this paper, we present the decoration of the SnO_2 film-based sensor with silver or platinum nanoparticles to enhance gas sensitivity to hydrogen sulfide gas (H_2S). Gas-sensitive properties and structure of fabricated sensors are investigated. It shows that the presence of Ag or Pt nanoparticles significantly improves the sensor sensitivity to H_2S . Among tested samples, the sensors decorated with nanoparticle layers of Ag (1 mm thick) or Pt (4 mm thick) have the best gas sensitivity at $250^{\circ}C$ with H_2S gas concentration of 0.25 ppm.

Keywords: H₂S, gas sensor, SnO₂, thin film, nano.

Tóm tắt:

Trong bài báo này, chúng tôi trình bày về việc biến tính cảm biến trên cơ sở màng SnO_2 với các hạt nano bạc hoặc platin nhằm tăng cường khả năng nhạy khí với khí hydro sulfua (H_2S). Các cảm biến chế tạo được được khảo sát tính chất nhạy khí, cấu trúc hình thái học. Kết quả nghiên cứu cho thấy sự có mặt của các hạt nano Ag hoặc Pt đều cải thiện đáng kể khả năng nhạy khí của cảm biến với $Ptarable H_2S$. Trong đó các mẫu cảm biến biến tính với lớp hạt nano $Ptarable H_2S$ (dày 1 mm) hay Pt (dày 4 mm) có khả năng nhạy khí tốt nhất ở 250 $Ptarable Ptarable H_2S$ là 1000,25 ppm.

Từ khóa: Cảm biến khí, SnO₂, H₂S, màng mỏng, nano.

1. INTRODUCTION

Hydrogen sulfide (H_2S) is a very toxic and flammable gas. Low concentrations of H_2S have a characteristic smell of rotten eggs [1]. The unpleasant odor is strong at low concentrations of about 5 ppm. At concentrations above 100 ppm, the gas quickly paralyzes the olfactory nerves. At low concentrations (50 ppm), H_2S irritates the eyes and entire respiratory tract. Prolonged

exposure to 250 ppm causes alveolar membranes to secrete fluids that interfere with normal gas exchange. This causes the main symptom to suffocate and can lead to suffocation. Inhalation of high concentrations (1000 ppm) of H₂S will paralyze the respiratory nerve center, which can lead to suffocation. In addition to the effects of H₂S on the human body, the compounds of the fluid in the fuel gas will form SO₂ causing air pollution and human health problems [2].

Therefore, detection of H_2S gas at low, fast, and accurate concentration is very important.

Recently, studies focusing on developing sensitive, simple, inexpensive, and compact gas sensors to detect various gases have attracted significant attention. In which thin-film semiconductor metal oxide gas sensors have been researched, manufactured, and applied in many areas of life, they have many advantages such as high sensitivity, compact size, design. Simple, fast response time, low cost, and low power consumption. In many semiconductor metal oxides such as SnO₂, ZnO, TiO₂, WO₃... have been investigated as gas sensing materials [3]. SnO₂ materials have been extensively studied their unique properties outstanding functions, which are widely applied in devices optoelectronic, biosensors, gas sensors, solar cells, etc. However, sensors based on SnO₂ membranes have poor selectivity, low sensitivity and operate at high temperatures [4]. Therefore, improving the gas sensor characteristics for a practical application requires high requirements. The denaturation of precious metals such as Pd, Pt, Ag, Au... including thin films, catalytic inversion positively affects the air-sensitive characteristics of the sensor. Studies have shown that Pt is a good catalyst that significantly enhances sensor performance [5–7]. S. Kolhe et al. [8] prepared Ag doped SnO₂ films were fabricated by using advanced chemical spray pyrolysis technique, showed the moderate response to H₂S gas and quick response time $0(\sim 46 \text{ s})$ at 450 ppm. Wu et al. [9] reported that Ag-doped SnO₂ sensors measuring ethanol gas had a gas response of 2.24 and a short recovery-response time of 34 seconds and 68 seconds, respectively. Eom et al.[10] developed Pt/SnO₂ thin films by facile

tilted sputtering process with hierarchical nanostructure enhanced H_2S gas response by a factor of 2 and the detection limit as low as 10 ppm compared to the thorough Pt loaded metal oxide at 150°C.

In the present work, the sensing SnO_2 thin film and the sensitizing SnO_2 thin film sensor activated with (Pt, Ag) are sequentially deposited by reactive sputtering without vacuum break and then patterned by photolithography. We describe the advanced response characteristics of Ag or Pt nanoparticles modified SnO_2 -based sensors for H_2S gas.

Figure 1. Process of realization of sensors by optical lithography and sputtering deposition.

(A) SiO₂/Si/SiO₂ substrate; (B) Photolithography with the first mask and Cr/Pt metals sputtering; (C) Lift-off; (D) Photolithography with the second mask creates a window; (E) After sputtering the gas sensitivity material; (F) lift-off successful

2. EXPERIMENTAL

A pair of microheater and Pt electrodes composed of Cr (5nm) / Pt (100nm) layers were fabricated through the first mask coating and parallel sputtering deposition on SiO_2 / Si substrates. The thin-film structure of Pt / Ag /

SnO₂ was then deposited on the electrode by the sputtering method after the second mask alignment. The SnO₂ material was prepared by sputtering with Ar / O_2 flow rate (2: 1), sputtering capacity is 30 W. Electrodes and other catalyst materials were prepared at 80 W dc and Ar gas flow. The manufacturing process is shown in Figure 1. In this article, the film thickness was about 75 nm. There are seven fabricated sensors including a pure SnO₂, three Pt nanoparticle decorated SnO₂ thin-films (denoted as P2, P4 and P8); and Ag nanoparticle decorated SnO₂ thin-film (denoted as A1, A2 and A4). The manufacturing parameters of these sensors are given in Table 1. All the samples were heat treated at 500 °C to stabilize the nanomaterial and improve its sensor performance. Morphology, structure, and composition of the thin films were investigated through scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersion spectroscopy (EDS).

Table 1. Prepared sensor samples, the name of which reflects the materials used and their thickness

No.	Material/ Catalyst	Sputtering time (s)	Thic kness (nm)	Sample name
1	SnO_2	420	50	SnO_2
2	Pt	30	2	P2
3	Pt	60	4	P4
4	Pt	120	8	P8
5	Ag	20	1	A1
6	Ag	40	2	A2
7	Ag	80	4	A4

3. RESULTS AND DISCUSSION

The gas sensing characteristics of bare SnO_2 and A1-A2-A4, P2-P4-P8 were measured to explain the effectiveness of SnO_2 / Ag / Pt membrane sensitivity. First, we evaluated the

H₂S gas sensor performance of the SnO₂ sensor. The gas sensing properties of bare nanofilm sensors SnO_2 at temperatures (200, 250, 300 and 350 °C) and concentration of H₂S gas (0.25, 0.5, 1, 2.5 ppm) are shown in Figure 2 (A). The SnO₂ sensor shows almost 100 % resilience at all measured temperatures (Figure 2), showing the reversible adsorption of H₂S molecules on the sensor surface. In Figure 2 (B) shows that at 300 °C, the optimal temperature of Ag modified SnO₂ sensors at the concentration of 2.5 ppm H₂S gas, in which the thicker the Ag sensor, the more sensitive the sensor. The A4 sensor is more sensitive than the rest of the sensors. However, the recovery response time also increased with the thickness of Ag layer (shown in Table 1), so for the best results we chose Ag investigation conditions at thickness A1. As for the Pt transducer SnO2 sensor in Figure 2 (C), the results show that the P4 sensor is a more sensitive sensor than the other 2 sensors at a temperature of 250°C, at 2.5 ppm H_2S .

Figure 2. (A) Dynamic resistance of the pure-SnO₂ sensor at different temperatures, in response to the injection of different concentrations of hydrogen sulfide; (B) Comparison graph of modified SnO₂ sensors Ag at different temperatures at the concentration of 2.5 ppm; (C) Comparison graph of modified SnO₂ sensors Pt at different temperatures at the concentration of 2.5 ppm

The thin-film sensors were observed through the SEM image from Figure 3 (A-D). The SnO₂ surface was made of nanoparticles a size of approximately 30 nm (Figure 3A). The SnO₂ film thickness was fixed in samples of about 75 nm (Figure 3B). The modified P4 sample was evenly distributed on the surface of SnO₂ (Figure 3C). Ag nanoparticles are unevenly distributed on the SnO₂ membrane (Figure 3D). We suggest that the P4 model will exhibit good gas sensing properties because the particles are evenly distributed.

Figure 3. SEM images of thin films used as sensors.

A) and B) pure SnO₂ (top view and cross section); C)

P4 sample, D) A1 samples.

The structure of the films has been studied through XRD, whose patterns are shown in Fig. 3A. At the bottom, the black pattern is relative to pure SnO₂ and shows 2 peaks at angles of 34.0 and 51.9°, corresponding to the planes (101) and (211) of the rutile structure of SnO₂, respectively. In the pattern at the top (sample P4), two additional peaks at 39.7 and 46.2° can be seen, indexed in green as (111) and (200) planes of Pt, respectively, according to the JCPDS card 65-2868. Conversely, the presence of Ag in the second (red) pattern from sample A1 is not evident, probably because of the small amount of the decorating

silver. The composition of SnO₂, P4, A1 sensor films analyzed by EDX showed the existence of Sn, Pt, Ag and O (Figure 4B-C). According to the spectrum, the ratio of Pt atoms in the sample P4 was approximately 2.6 %, the ratio of Ag in samples (A1) was approximately 2.9 %. The composition and content of Ag and Pt in films are difficult to determine due to the highly dispersed SiO₂ / Si substrate.

Figure 4. (A) XRD patterns of the SnO₂, A1, P4 sensing films and (B, C) EDS spectrum from the A1 and P4 sensor

4. CONCLUSION

Gas sensors based on SnO2 semiconductor metal oxide thin films decorated with Pt or Ag metal particles have been studied and compared with pure SnO₂ sensors. Decorating with metal catalysts always improves the performance of the sensor. Both decorative Pt and Ag on the SnO₂ film have the effect increasing the sensor's performance compared to the pure SnO₂ sensor. The best performance is obtained with sensors based on SnO2 membranes decorated with either Ag (1 nm) or Pt (4 nm) working at 250°C. The sensor has a good response at low concentrations of 0.25 ppm H₂S gas. These results make it an ideal candidate for practical applications.

ACKNOWLEDGEMENTS

This work was financially supported by the Ministry of Natural Resourses and Environment under the Grant No. TNMT.2018.04.14.

REFERENCES

- [1] A. Mirzaei, S.S. Kim, H.W. Kim, "Resistance-based H₂S gas sensors using metal oxide nanostructures: A review of recent advances", J. Hazard. Mater. 357 (2018) 314–331.
- [2] G. Huang, E. He, Z. Wang, H. Fan, J. Shangguan, E. Croiset, Z. Chen, "Synthesis and Characterization of γ-Fe₂O₃ for H₂S Removal at Low Temperature", Ind. Eng. Chem. Res. 54 (2015) 8469–8478.
- [3] A. Ghosh, C. Zhang, S. Shi, H. Zhang, "High temperature CO₂ sensing and its cross-sensitivity towards H₂ and CO gas using calcium doped ZnO thin film coated langasite SAW sensor", Sensors Actuators, B Chem. 301 (2019) 126958.
- [4] A. Staerz, T. Suzuki, U. Weimar, N. Barsan, "SnO₂: The most important base material for semiconducting metal oxide-based materials", Elsevier Inc., 2020.
- [5] N.X. Thai, N. Van Duy, N. Van Toan, C.M. Hung, N. Van Hieu, N.D. Hoa, "Effective monitoring and classification of hydrogen and ammonia gases with a bilayer Pt/SnO₂ thin film sensor", Int. J. Hydrogen Energy. 45 (2020) 2418–2428.
- [6] M. Shahabuddin, A. Sharma, J. Kumar, M. Tomar, A. Umar, V. Gupta, "Metal clusters activated SnO₂ thin film for low level detection of NH₃ gas", Sensors Actuators, B Chem. 194 (2014) 410–418.
- [7] S. Das, V. Jayaraman, "SnO₂: A comprehensive review on structures and gas sensors", Prog. Mater. Sci. 66 (2014) 112–255.
- [8] P.S. Kolhe, P.M. Koinkar, N. Maiti, K.M. Sonawane, "Synthesis of Ag doped SnO₂ thin films for the evaluation of H₂S gas sensing properties", Phys. B Condens. Matter. 524 (2017) 90–96.
- [9] Z. Zhu, C.T. Kao, R.J. Wu, "A highly sensitive ethanol sensor based on Ag@TiO2 nanoparticles at room temperature", Appl. Surf. Sci. 320 (2014) 348–355.
- [10] N.S.A. Eom, H. Cho, H. Lim, B.S. Kim, Y. Choa, "Facile tilted sputtering process (TSP) for enhanced H₂S gas response over selectively loading Pt nanoparticles on SnO₂ thin Films", Sensors Actuators B. Chem. (2019) 127009.

Thông tin liên hệ: Phùng Thị Hồng Vân

Điện thoại: 0983168699 - Email: pthvan@hunre.edu.vn Khoa Khoa học cơ bản, Trường Đại học Tài nguyên và Môi trường Hà Nội

Nguyễn Văn Duy

Điện thoại: 0985897027 - Email: duy.nguyenvan@hust.edu.vn Viện Đào tạo Quốc tế về Khoa học vật liệu, Trường Đại học Bách khoa Hà Nội.