Continuité d'une fonction numérique

I. Continuité d'une fonction numérique

Activité 0: Soutient des prérequis					
(Calculer les limites suivantes :				
	a. $\lim_{x \to +\infty} \frac{2x^2 + x + 3}{x - 1}$	b. $\lim_{x \to -\infty} \frac{x x - 4x + 3}{x^5 - 7x + 2}$	c. $\lim_{x \to -2} \frac{x^2 + 5x + 6}{x + 2}$		
	d. $\lim_{x \to -3} \frac{2x^2 + 3x - 9}{x^2 + x - 6}$	e. $\lim_{x \to 1} \frac{\sqrt{2x+7}-3}{x-1}$	f. $\lim_{x \to -2} \frac{\sqrt{2x^2+1}-3\sqrt{x+3}}{x+2}$		
	g. $\lim_{x \to 2^-} \frac{x^2 + 5x + 6}{2 - x}$	h. $\lim_{x \to -3^+} \frac{2x^2 + x - 2}{-x^2 - x + 6}$	i. $\lim_{x \to 1} \frac{\sin(\pi x)}{x - 1}$		

II. Continuité d'une fonction en un point

Activité 1

On donne ci-dessous la courbe représentative d'une fonction f.

- 1. Déterminer graphiquement f(-1) et $\lim_{x\to -1} f(x)$. Que peut-on déduire ?
- 2. Déterminer graphiquement f(1), $\lim_{x\to 1^+} f(x)$ et $\lim_{x\to 1^-} f(x)$. Que peut dire sur (C_f) au point $x_0=1$?

Définition

Soit f une fonction définie sur un intervalle ouvert I et a un point de I. On dit que f est **continue en a** si seulement si $\lim_{x\to a} f(x) = f(a)$.

- f est continue en a f est discontinue en a

Exemples

• La fonction définie par $\begin{cases} f(x) = \frac{x^2 - 9}{x - 3} & ; x \neq 3 \\ f(3) = 6 \end{cases}$ est continue en 3.

En effet : $\lim_{x \to 3} f(x) = \lim_{x \to 3} \frac{x^2 - 9}{x - 3} = \lim_{x \to 3} \frac{(x - 3)(x + 3)}{x - 3} = \lim_{x \to 3} (x + 3) = 6 = f(3).$

• La fonction définie par $\begin{cases} f(x) = \frac{\sin(3x)}{x} & ; x \neq 0 \\ f(0) = 1 \end{cases}$ est discontinue en 0.

En effet : $\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{\sin(3x)}{x} = \lim_{x \to 0} 3 \times \frac{\sin(3x)}{3x} = 3 \neq f(0).$

Application 1

Étudier la continuité des fonctions suivantes au point a.

1.
$$f(x) = \begin{cases} \frac{x^3 - 2x + 1}{x - 1} & ; x \neq 1 \\ f(1) = 1 \end{cases}$$
 et $a = 1$.

2.
$$g(x) = \begin{cases} \frac{x\sqrt{x+2}-4}{x-2} & ; x \in [-2; 2[\cup]2; +\infty[\\ g(2) = \frac{5}{2} \end{cases}$$
 et $a = 2$.

Exercice 1

Étudier la continuité des fonctions suivantes au point a.

1.
$$f(x) = \begin{cases} \frac{x^3 + 2x^2 + 3x + 2}{x^2 + 4x + 3} & ; x \neq -1 \\ f(-1) = 1 \end{cases} \text{ et } a = -1.$$
2.
$$g(x) = \begin{cases} \frac{\sin(x-2)}{x^2 - 2x} & ; x > 2 \\ g(2) = \frac{1}{2} \end{cases} \text{ et } a = 2.$$

2.
$$g(x) = \begin{cases} \frac{\sin(x-2)}{x^2 - 2x} & ; x > 2 \\ g(2) = \frac{1}{2} & \end{cases}$$
 et $a = 2$.

2. Continuité à droite - continuité à gauche

Définition

- Soit f une fonction définie sur un intervalle [a, a + r] avec r > 0. On dit que f est **continue à droite** de a si seulement si $\lim_{x\to a^+} f(x) = f(a)$.
- Soit f une fonction définie sur un intervalle |a-r,a| avec r>0. On dit que f est **continue à gauche** de a si seulement si $\lim_{x\to a^-} f(x) = f(a)$.

Exemple

La fonction définie par $\begin{cases} f(x)=\frac{x^2-1}{|x-1|} & ; x\neq 1\\ f(1)=2 \end{cases}$ est continue à droite en 1 et non

continue à gauche. En effet : $\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} \frac{x^2 - 1}{|x - 1|} = \lim_{x \to 1^+} \frac{x^2 - 1}{x - 1}$ (Du fait que |x - 1| = x - 1 si x > 1)

$$= \lim_{x \to 1^+} x + 1 = 2 = f(1).$$

Ainsi f est continue à droite en 1.

Et: $\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} \frac{x^{2}-1}{|x-1|} = \lim_{x \to 1^{-}} \frac{x^{2}-1}{-(x-1)}$ (Du fait que |x-1| = -(x-1) si x < 1)

$$= \lim_{x \to 1^{-}} -(x+1) = -2 \neq f(1).$$

Ainsi f est discontinue à gauche en 1.

Propriété

f est continue en a si seulement si f est continue à gauche et à droite de a. Autrement: f est continue en $a \iff \lim_{x \to a} f(x) = \lim_{x \to a} f(x) = f(a)$.

Application 2

On considère f la fonction définie par $\begin{cases} f(x) = \frac{x}{\sqrt{x+1}-1} & ; x > 0 \\ f(x) = \frac{\sin(2x)}{x} & ; x < 0. \end{cases}$

Exercice 2

- 1. Étudier la continuité de f à droite et à gauche en 0.
- 2. f est-elle continue en 0.
- 1. Soit f la fonction définie par: $f(x) = \begin{cases} \frac{\sqrt{x+2}-2}{x-2} & ; x > 2\\ \frac{x^2-4x+3}{x-3} & ; x \leq 2 \end{cases}$

Étudier la continuité de f à droite et à gauche en 0.

2. Soit g la fonction définie par $\begin{cases} g(x) = x^3 + ax & ; x > -1 \\ g(x) = -x + 1 & ; x \le -1 \end{cases}$

Déterminer la valeur de a pour que g soit continue en -1

3. Continuité d'une fonction sur un intervalle

Définition

- On dit que f est continue sur l'intervalle ouvert a; b si f est continue en tout point de a;b.
- On dit que f est continue sur l'intervalle [a, b] si f est continue en tout point de a; b et continue à droite de a et à gauche de b.

Remarque

On définit de même manière la continuité sur les intervalles $[a,b[,]a,b],[a,+\infty[$ et $]-\infty,b].$

Exemple: Fonction partie entière

La fonction partie entière est la fonction qui, à tout réel x, associe l'unique entier relatif n tel que $n \le x < n + 1$. On note la partie entière de x par E(x) ou [x].

Exemples

E(3,2)=3 parce que $3\leq 3,2<4$ et E(-1,2)=-2 parce que $-2\leq -1,2<-1$. La courbe de la fonction $x\mapsto E(x)$ sur l'intervalle [-1;3[est :

- ▶ La fonction $x \mapsto E(x)$ est continue sur l'intervalle [-1; 0[du fait qu'elle est continue en tout point de]-1; 0[et à droite en -1 car $\lim_{x\to -1^+} E(x) = -1 = E(-1)$.
- ▶ La fonction $x \mapsto E(x)$ n'est pas continue sur l'intervalle [1; 3[du fait qu'elle n'est pas continue en 1 car $\lim_{x\to 1^+} E(x) = 1 = E(1)$ et $\lim_{x\to 1^-} E(x) = 0 \neq E(1)$.

Propriété

- Toute fonction polynômiale est continue sur \mathbb{R} .
- Toute fonction rationnelle est continue sur un intervalle inclus dans son domaine de définition.
- Les fonctions $x \mapsto \sin(x)$ et $x \mapsto \cos(x)$ sont continues sur \mathbb{R} .
- La fonction $x \mapsto \tan(x)$ est continue sur $\mathbb{R} \{\frac{\pi}{2} + k\pi, k \in \mathbb{Z}\}.$
- La fonction $x \mapsto \sqrt{x}$ est continue \mathbb{R}^+ .
- La fonction $x \mapsto |x|$ est continue \mathbb{R} .

Exemples

- La fonction $f: x \mapsto x^3 + 2x^2 x + 1$ est continue sur $\mathbb R$ parce qu'elle est une fonction polynômiale.
- La fonction $g: x \mapsto \frac{5x^3 + 2x 1}{x^2 1}$ est continue sur $]1; +\infty[$ parce qu'elle est une fonction rationnelle et $]1; +\infty[\subset \mathbb{R} \setminus \{-1, 1\}.$

On considère f la fonction définie par $\begin{cases} f(x) = -x + 4 & ; x < 3 \\ f(x) = \frac{6-x}{x} & ; x \ge 3 \end{cases}$

Montrer que la fonction f est continue sur \mathbb{R} .

II. Image d'un intervalle par une fonction continue

1. Image d'un segment- Image d'un intervalle

Propriété

- L'image d'un segment par une fonction continue est un segment.
- L'image d'un intervalle par une fonction continue est un intervalle.

Remarque

Si f est continue sur un segment [a, b] et M et m sont respectivement le maximum et le minimum de f sur [a, b], alors f([a, b]) = [m, M].

Application

On donne ci-contre la courbe d'une fonction f définie sur [-2;4]. Déterminer l'image des intervalles suivants [-2,3],[0,1],[1,3] et]-1,1] par f.

2. Image d'un intervalle par une fonction continue et strictement monotone

Soit f une fonction continue et strictement monotone sur un intervalle I. Dans ce tableau suivant a et b sont deux nombres réels ou $+\infty$ ou $-\infty$.

On considère f la fonction définie par $\begin{cases} f(x) = -x + 4 & ; x < 3 \\ f(x) = \frac{6-x}{x} & ; x \ge 3 \end{cases}$

Montrer que la fonction f est continue sur \mathbb{R} .

II. Image d'un intervalle par une fonction continue

1. Image d'un segment- Image d'un intervalle

Propriété

- L'image d'un segment par une fonction continue est un segment.
- L'image d'un intervalle par une fonction continue est un intervalle.

Remarque

Si f est continue sur un segment [a, b] et M et m sont respectivement le maximum et le minimum de f sur [a, b], alors f([a, b]) = [m, M].

Application

On donne ci-contre la courbe d'une fonction f définie sur [-2; 4]. Déterminer l'image des intervalles suivants [-2, 3], [0, 1], [1, 3] et [-1, 1] par f.

2. Image d'un intervalle par une fonction continue et strictement monotone

Soit f une fonction continue et strictement monotone sur un intervalle I. Dans ce tableau suivant a et b sont deux nombres réels ou $+\infty$ ou $-\infty$.

L'intervalle I	f strictement croissante sur I	f strictement décroissante sur l
[a,b]	[f(a), f(b)]	[f(b), f(a)]
[a,b[$[f(a), \lim_{x \to b^{-}} f(x)]$	$]\lim_{x\to b^-} f(x), f(a)]$
]a,b]	$\lim_{x\to a^+} f(x), f(b)$	$[f(b), \lim_{x \to a^+} f(x)[$
]a,b[$\lim_{x\to a^+} f(x), \lim_{x\to b^-} f(x)[$	$\lim_{x\to b^-} f(x), \lim_{x\to a^+} f(x) [$

Exemple

On considère f la fonction définie par $f(x) = x^2 - 4x - 1$. La fonction f est strictement décroissante sur $]-\infty;2]$ et strictement croissante sur $[2;+\infty[$. On a :

- f([2;4]) = [f(2); f(4)] = [-5; -1]
- f([-1;1]) = [f(1); f(-1)] = [-4; 4]
- $f([2; +\infty[) = [f(2); \lim_{x \to +\infty} f(x)[= [-5; +\infty[$
- $f(]-\infty;2]) = [\lim_{x\to-\infty} f(x); f(2)] = [+\infty;-5]$

Soit f une fonction définie par $f(x) = \frac{3x+2}{x-4}$.

- 1. Déterminer D_f .
- 2. Etudier la monotonie de f.
- 3. Déterminer $f([0,1]), f([4,+\infty[)])$ et $f([-\infty,4])$.

Exercice

On considère f une fonction définie par $f(x) = 2x^3 - 3x^2$.

- 1. Dresser le tableau de variation de la fonction
- 2. Déterminer les images des intervalles suivants] -1;0], $[1;2], [-1;2], [1;+\infty[$ par f.

III. Opérations sur les fonctions continuités

Propriété

Soient f et g deux fonctions continues sur un intervalle I et $\lambda \in \mathbb{R}$. On a :

- Les fonctions f + g; $f \times g$; λf et |f| sont continues sur I.
- Pour tout $n \in \mathbb{N}^*$, la fonction f^n est continue sur I.
- Si $(\forall x \in I)$: $g(x) \neq 0$, alors $\frac{1}{g}$ et $\frac{f}{g}$ sont continues sur I.
- Si $(\forall x \in I) : f(x) \ge 0$, alors \sqrt{f} est continue sur I.

Exemples

- La fonction $f: x \mapsto 2x^2 x + \sqrt{x}$ est continue sur $[0, +\infty[$ en tant que somme de deux fonctions continues sur $[0, +\infty[$ qui sont $x \mapsto 2x^2 x$ et $x \mapsto \sqrt{x}$.
- On considère $g: x \mapsto \frac{\sqrt{x^2+1}}{x+1}$. On a :
 - La fonction $x \mapsto x^2 + 1$ est continue sur $] \infty; 1]$ puisqu'elle est une fonction polynomiale et on a $(\forall x \in] \infty; 1]): x^2 + 1 > 0$. Ainsi $x \mapsto \sqrt{x^2 + 1}$ est continue sur $] \infty; 1]$.
 - La fonction $x \mapsto x+1$ est continue sur $]-\infty;1[$ et on a $(\forall x \in]-\infty;1[): x+1 \neq 0$. Il en résulte que la fonction g est continue sur $]-\infty;1[$.

Montrer que f est continue sur I dans les cas suivants :

- 1. $f(x) = x^2 + 1 + \sin(x)$ et $I = \mathbb{R}$.
- 2. $f(x) = \cos(x) \times \sqrt{4x^2 + 5}$ et $I = \mathbb{R}$.
- 3. $f(x) = \frac{4\sqrt{x}}{x^2 + x 2}$ et $I =]2; +\infty[$.

Propriét<u>é</u>

Si f est continue sur un intervalle I et g continue sur un intervalle J tel que $f(I) \subset J$ alors la fonction $g \circ f$ est continue sur l'intervalle I.

Exemple

On considère la fonction $h: x \mapsto \frac{\sqrt{x}}{\sqrt{x+1}}$. On a $h = g \circ f$ avec $f: x \mapsto \sqrt{x}$ et $g: x \mapsto \frac{x}{x+1}$. Puisque f est continue sur $[0; +\infty[$ et g est continue sur $]-1; +\infty[$ et $f([0; +\infty[) \subset [0; +\infty[$, alors h est continue sur $[0; +\infty[$.

Application

On considère la fonction $h: x \mapsto \sin(x^2 - 4x + 1)$. Montrer que h est continue sur \mathbb{R} .

IV. Théorème des valeurs intermédiaires

Théorème

Soit f une fonction continue sur un intervalle [a;b]. Pour tout réel k compris entre f(a) et f(b) il existe au moins un réel c de l'intervalle [a,b] tel que f(c)=k. En d'autres termes : l'équation f(x)=k d'inconnue x admet au moins une solution dans [a,b] pour tout k compris entre f(a) et f(b).

Exemple

Montrons que l'équation $(E): x^2 - \sqrt{x+2} = 2$ admet au moins une solution sur [-2;0]. On considère f la fonction définie par $f(x) = x^2 - \sqrt{x+2}$. L'équation (E) est équivalente à l'équation f(x) = 2. La fonction f est continue sur [-2;0] comme somme de deux fonctions continues et on a f(-2) = 4 et $f(0) = -\sqrt{2}$. Puisque $f(0) \le 2 \le f(-2)$, alors d'après le théorème des valeurs intermédiaires l'équation (E) admet au moins une solution sur [-2;0].

Corollaire

Si la fonction f est continue sur [a,b] tel que $f(a) \times f(b) < 0$, alors l'équation f(x) = 0 admet au moins une solution dans l'intervalle [a,b]. Si de plus f est strictement monotone, alors cette solution est unique.

Exemple

Montrons que l'équation $(E): x^3+x^2+1=0$ admet une unique solution α telle que $-1<\alpha<0$. On considère f la fonction définie par $f(x)=x^3+x^2+1$. L'équation (E) est équivalente à f(x)=0. La fonction f est continue et strictement croissante sur [-1;0] et on a $f(-1)\times f(0)<0$. Donc d'après T.V.I l'équation (E) admet une solution unique α tel que $-1<\alpha<0$.

Donnons un encadrement de α **d'amplitude 0,25**. On a $-1 < \alpha < 0$, alors $\alpha \in]-1,-1/2]$ ou $\alpha \in]-1/2,0[$. Or f(-1/2)=7/8>0. Et puisque $f(-1)\times f(-1/2)<0$, alors $\alpha \in]-1,-1/2]$. L'amplitude est 0.5>0.25. On répète le procédé. Le centre de]-1,-1/2] est -3/4. On a $\alpha \in]-1,-3/4]$ ou $\alpha \in]-3/4,-1/2]$. Puisque $f(-3/4)\approx 0.15>0$, alors $f(-1)\times f(-3/4)<0$, donc $\alpha \in]-1,-3/4]$. L'amplitude est 0.25. Ce procédé est appelé **la dichotomie**.

Application

- 1. Montrer que l'équation $x^5 x^3 + 5x 4 = 0$ admet au moins une solution sur l'intervalle [0,1].
- 2. Montrer que l'équation $\sin(x) + \frac{1}{2} = -x$ admet une solution unique dans l'intervalle $[-\pi/6, 0]$.

Exercice

Soit f la fonction définie sur \mathbb{R} par $f(x) = 2x^3 - 3x^2 - 1$.

- 1. Montrer que l'équation f(x) = 0 admet une unique solution α sur $[1; +\infty[$ puis vérifier que $1 < \alpha < 2$.
- 2. Donner un encadrement de α d'amplitude 0.25.
- 3. Donner le signe de f dans l'intervalle $[1; +\infty]$

V. Fonction Réciproque d'une fonction continue et strictement monotone

On considère la fonction f définie sur $[0, +\infty[$ par :

$$f(x) = x^2$$

La fonction f est **continue** sur cet intervalle (fonction polynôme). Sa dérivée est f'(x) = 2x. Pour tout x > 0, on a f'(x) > 0. La fonction f est donc **strictement croissante** sur $[0, +\infty[$.

On a par exemple $f^{-1}(16) = 4$ car f(4) = 16. Déterminons l'expression de f(x)Soit $x \in [0, +\infty[= J \text{ et Soit } y \in I = [0, +\infty]$:

$$f^{-1}(x) = y \iff f(y) = x$$

$$\iff y^2 = x$$

$$\iff y = \sqrt{x} \quad \text{ou} \quad y = -\sqrt{x}$$

$$\iff y = \sqrt{x} \quad (\text{car } y \in [0, +\infty[)$$

Donc, pour tout $x \in [0, +\infty[$, on a $f^{-1}(x) = \sqrt{x}$.

Conséquences

- $(\forall x \in I) : (f^{-1} \circ f)(x) = x$.
- $(\forall x \in J) : (f \circ f^{-1})(x) = x$.

Exemple : Détermination d'une fonction réciproque

La fonction $f: x \mapsto \sqrt{x} + 2$ est continue et strictement croissante sur l'intervalle $[0, +\infty[$. Par conséquent, f admet une fonction réciproque f^{-1} qui est également continue et strictement croissante sur l'intervalle image $f([0, +\infty[) = [2, +\infty[$.

Déterminons l'expression de $f^{-1}(x)$:

Soient $y \in [0, +\infty[$ et $x \in [2, +\infty[$. On a la série d'équivalences suivante :

$$f^{-1}(x) = y \iff f(y) = x$$

$$\iff \sqrt{y} + 2 = x$$

$$\iff \sqrt{y} = x - 2$$

$$\iff y = (x - 2)^2$$

Il en résulte que l'expression de la fonction réciproque est :

$$\forall x \in [2, +\infty[, f^{-1}(x) = (x-2)^2].$$

On considère la fonction f définie sur $[1, +\infty[$ par $f(x) = \sqrt{2x-4}.$

- 1. Montrer que f admet une fonction réciproque f^{-1} définie sur un intervalle J à déterminer.
- 2. Déterminer l'expression de $f^{-1}(x)$ pour tout x de J.

Exercice

On considère la fonction f définie sur $]-\infty,-1]$ par $g(x)=\frac{2x+3}{x+1}$.

- 1. Montrer que f admet une fonction réciproque f^{-1} définie sur un intervalle J à déterminer.
- 2. Déterminer l'expression de $f^{-1}(x)$ pour tout x de J.

Propriété |

Si f est une fonction continue et strictement monotone sur un intervalle I, alors :

- La fonction réciproque f^{-1} est continue sur f(I) et a même sens de variations que la fonction f.
- Les courbes représentatives de f et de f^{-1} dans un repère orthonormé, sont symétriques par rapport à la droite d'équation y = x.

Application 2

On donne ci-contre la courbe représentative d'une fonction f définie sur $[-1; +\infty[$.

- 1. Montrer que f admet une fonction réciproque f^{-1} définie sur un intervalle J à déterminer.
- 2. Dresser le tableau de variations de f^{-1} .
- 3. Construire la courbe représentative de f^{-1} .

VI. Fonction Racine $n^{\text{ième}}$

Soit n un entier naturel tel que : $n \ge 1$ et Soit f une fonction définie sur \mathbb{R}^+ par $f(x) = x^n$.

- f est une fonction polynôme donc f est continue sur \mathbb{R} par suite sur \mathbb{R}^+ .
- f est strictement croissante sur \mathbb{R}^+ , du fait que $(\forall x \in \mathbb{R}^+): f'(x) = nx^{n-1} \ge 0$.

Alors f admet une fonction réciproque f^{-1} , appelée **fonction racine n-ième**, définie sur $f(\mathbb{R}^+) = \mathbb{R}^+$. L'image du nombre x de \mathbb{R}^+ par f^{-1} est noté $\sqrt[n]{x}$ et on a : $(\forall x \in \mathbb{R}^+)(\forall y \in \mathbb{R}^+)$: $x^n = y \iff x = \sqrt[n]{y}$

Remarques

Pour tout $x \in \mathbb{R}^+$ on a :

- $\bullet \quad \sqrt[1]{x} = x.$
- $\sqrt[2]{x} = \sqrt{x}$.
- $\sqrt[3]{x}$ est appelée la racine cubique de x.

Conséquences

- $(\forall x \in \mathbb{R}^+)(\forall y \in \mathbb{R}^+)x^n = y \iff x = \sqrt[n]{y}$.
- $(\forall x \in \mathbb{R}^+) \sqrt[n]{x^n} = (\sqrt[n]{x})^n = x.$
- $(\forall x \in \mathbb{R}^+)(\forall y \in \mathbb{R}^+)\sqrt[n]{x} = \sqrt[n]{y} \iff x = y.$
- $(\forall x \in \mathbb{R}^+)(\forall y \in \mathbb{R}^+)\sqrt[n]{x} < \sqrt[n]{y} \iff x < y.$
- La fonction $x \mapsto \sqrt[n]{x}$ est continue est strictement croissante sur \mathbb{R}^+ .
- $\lim_{x\to+\infty} \sqrt[n]{x} = +\infty$.

Exemples

- $\sqrt[4]{16} = \sqrt[4]{2} = 2$
- $\sqrt[5]{5} > \sqrt[3]{3}$ parce que 5 > 3
- $\lim_{x\to+\infty} \sqrt[5]{x} = +\infty$
- $(\forall x \in \mathbb{R}^+) x^5 = 32 \iff x = \sqrt[5]{32} = 2.$

Application 10

Propriété

Propriété

Soient a et b deux réels positifs, et n et p sont deux entiers naturels non nuls.

- $\sqrt[n]{a} \times \sqrt[n]{b} = \sqrt[n]{ab}$.
- Si $b \neq 0$, alors $\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$.
- $(\sqrt[n]{a})^p = \sqrt[n]{a^p}$.
- $\sqrt[n]{\sqrt[p]{a}} = \sqrt[np]{a}$.

Exemple

Simplifions le nombre : $A = \frac{\sqrt[4]{32} \times \sqrt[6]{27} \times \sqrt[3]{108}}{\sqrt[4]{144}}$

Application

- 1. Simplifier $A = \frac{\sqrt[3]{512}}{64}$; $B = \frac{\sqrt[3]{729}}{3}$ et $C = \frac{15}{\sqrt[3]{3}} \times \sqrt[9]{(5\sqrt{9})^3}$.
- 2. Mettre en ordre croissant les nombres $\sqrt[3]{3}$, $\sqrt[3]{2}$ et $\sqrt{5}$.

Exercice

Simplifier les nombres suivants : $A = \frac{\sqrt[3]{256} \times \sqrt[6]{64}}{24300000 \times \sqrt[3]{1024}}$ et $B = \frac{\sqrt[3]{3^x} \times \sqrt[5]{x\sqrt{9}}}{\sqrt[5]{729x} \times \sqrt[3]{3}}$.

Propriété

Soit f une fonction positive sur l'intervalle I et $x_0 \in I$.

- Si f est continue sur I alors $x \mapsto \sqrt[n]{f(x)}$ est continue sur I.
- Si $\lim_{x\to x_0} f(x) = l \ge 0$ alors $\lim_{x\to x_0} \sqrt[n]{f(x)} = \sqrt[n]{l}$.
- Si $\lim_{x\to x_0} f(x) = +\infty$ alors $\lim_{x\to x_0} \sqrt[n]{f(x)} = +\infty$.

(Les deux propriétés précédentes restent vraies au voisinage de $+\infty$ et $-\infty$)

Application

- 1. On considère f la fonction définie sur \mathbb{R} par $f(x) = \sqrt[3]{3x^2 + 4}$.
 - (a) Etudier la continuité de f sur \mathbb{R} .
 - (b) Calculer $\lim_{x\to+\infty} f(x)$ et $\lim_{x\to-\infty} f(x)$.
- 2. Calculer les limites suivantes :
 - (a) $\lim_{x\to 0} \frac{\sqrt[3]{x+1}-1}{x}$
 - (b) $\lim_{x \to +\infty} \sqrt[3]{x^3 + 1} 2x$
 - (c) $\lim_{x\to+\infty} \sqrt[3]{x^3+x+1} x$

Exercice

Calculer les limites suivantes :

- 1. $\lim_{x\to 2} \sqrt[5]{x^3+24}$
- 2. $\lim_{x\to +\infty} \sqrt[5]{x^5-3x^2+4}$
- 3. $\lim_{x\to +\infty} \sqrt[3]{x^3+x^2+2} 2x$
- 4. $\lim_{x\to 0} \frac{\sqrt{x+8}-2}{x}$
- 5. $\lim_{x\to 1} \frac{\sqrt{x}-\sqrt{x}}{x-1}$
- 6. $\lim_{x\to 2} \frac{\sqrt{x+25}-3}{x^2-3x+2}$

VII. Puissances rationnelles d'un nombre réel strictement positif

Définition

Soient $x \in \mathbb{R}^+$ et r un nombre rationnel tel que $r = \frac{p}{q}$ ($p \in \mathbb{Z}$, $q \in \mathbb{N}^*$). Le nombre a^r , appelé puissance rationnelle de base a et d'exposant r, est le nombre $\sqrt[q]{a^p}$. Autrement : $a^r = \sqrt[q]{a^p}$.

Exemples

$$3^2 = \sqrt[3]{2}$$
 $3^{\frac{5}{2}} = \sqrt[3]{5}$ $\sqrt{6} = 6^{\frac{1}{3}}$ $2^{-5/3} = 3^{\sqrt{2}^5} = 3^{\frac{1}{2^5}} = \frac{1}{3^{\sqrt{25}}}$

Propriété

Soient a et b deux réels strictement positifs et r et r' deux rationnels.

- $\bullet \quad a^r \times a^{r'} = a^{r+r'}.$
- $\bullet \ (a^r)^{r'} = a^{rr'}.$
- $\bullet \quad \frac{1}{a^r} = a^{-r}.$
- $\bullet \quad \frac{a^r}{a^{r'}} = a^{r-r'}.$
- $(ab)^r = a^r \times b^r$.
- $\bullet \quad (\frac{a}{b})^r = \frac{a^r}{b^r}.$

Application

Ecrire sous forme d'une puissance rationnelle les nombres $A = \frac{\sqrt[3]{4} \times 8^{\frac{1}{2}} \times \sqrt{2}}{\sqrt[3]{2} \times \sqrt[6]{4}}$ et $B = \frac{(\sqrt[3]{27})^2 \times (81)^{\frac{1}{4}}}{3^3}$.