

ANÁLISIS MATEMÁTICO II Examen Final 23/07/2024

APELLIDO DEL ALUMNO: NOMBRE:							••••••
CORRIGIÓ:			REVISÓ:				
	Т1	Т2	D1	D2	D2	D/1	CALIFICACIÓN

T1 T2 P1 P2 P3 P4 CALIFICACIÓN

Todas las respuestas deben ser justificadas adecuadamente para ser tenidas en cuenta. No resolver el examen en lápiz. Duración del examen: 2 horas

Condición de aprobación (6 puntos): tres ejercicios correctamente resueltos (uno de T1 o T2 y dos de P1, P2, P3 o P4).

- **T1**) Indique si cada una de las siguientes proposiciones es verdadera o falsa. Fundamente correctamente la respuesta.
 - **a.** El flujo del campo vectorial $\vec{F}(x, y, z) = (x + y, y + z, x + z)$ a través de la superficie S: $x^2 + y^2 + z^2 2z = 0$ con $z \ge 1$, orientada con la normal de componente z positiva, es igual a $\frac{\pi}{2}$.
 - **b.** La ecuación del plano tangente a la superficie de ecuación $z = f(x, y) + x^2$ en el punto en (1,2,4) es z = 2x + 2 sabiendo que, f es una función de clase $C^2(R^2)$ y admite un valor máximo local 3 en el punto (1,2).
- **T2)** a. Defina punto silla de un campo escalar $f: U \subset \mathbb{R}^2 \to \mathbb{R}$.
 - **b.** Muestre que $f(x,y) = x^2 \ln(y-5)$ admite en $(x_0,y_0) = (0,6)$ un punto silla.
- **P1**) Sea $f: R^2 \to R$ dada por $f(x,y) = \begin{cases} \frac{x.sen y}{y} & si \ y > 0 \\ xy & si \ y \le 0 \end{cases}$ Para cada $\check{v} \in R^2$ determine la existencia de las derivadas direccionales $f'((0,0),\check{v})$. Justifique la respuesta.
- **P2**) Plantee la integral triple (sin calcular) que permite hallar del volumen del cuerpo definido por $z \le 4 x y$, $2x + y \ge 4$ en el primer octante.
- **P3**) Sea $g: R^3 \to R$ una función de clase $C^2(R^3)$ y el campo vectorial $\vec{F}(x,y,z) = (yz + 2, g(x,y,z), z)$. Si se sabe que la circulación de \vec{F} a lo largo de la curva C parametrizada por $\vec{r}: [0,\pi] \to R^3 / \vec{r}(t) = (\cos t, sent, sent)$ es igual a 1, calcule el flujo del rotor de \vec{F} a través de la porción del plano S: y = z, contenida en $x^2 + y^2 \le 1$, $y \ge 0$ considerando la normal de componente z positiva. Grafique S y C.
- **P4**) Determine la solución de la ecuación diferencial $(2y 4x^2)dx + xdy = 0$ que pasa por el punto (1,1).