Fuzzy Systems - Classification

Nikolaos Giakoumoglou 9043

03/10/2020

Abstract

The aim of this assignment is to investigate the ability of TSK models in solving classification problems. Specifically, two datasets are selected from the UCI repository for classification in their respective classes, using fuzzy neural models. The work consists of two parts, the first of which is intended for a simple investigation of the training and evaluation process of TSK models, while the second includes a more systematic approach to the problem of data learning, combined with preprocessing steps such as feature selection and model optimization methods through cross-validation.

Contents

1	App	olication to a Simple Dataset	3
	1.1	Preparation (script TSK models dependent.m & TSK models.m)	3
	1.2	TSK Model #1 (Class Independent)	5
	1.3	TSK Model #2 (Class Independent)	8
	1.4	TSK Model #3 (Class Independent) \dots	11
	1.5	TSK Model #4 (Class Independent)	14
	1.6	TSK Model #5 (Class Independent)	17
	1.7	TSK Model #6 (Class Dependent)	20
	1.8	TSK Model #7 (Class Dependent)	23
	1.9	Conclusion	26
2	App	olication to a dataset with high dimensionality	28
	2.1	Preparation	28
	2.2	Find Optimal Model using Grid Search as Independent (script	
		grid_search.m)	29
	2.3	Optimal Model as Independent (script opt_model.m)	31
	2.4	Find Optimal Model using Grid Search as Dependent (script	
		<pre>grid_search_dependent.m)</pre>	34
	2.5	Optimal Model as Dependent (script opt_model_dependent.m)	36
	2.6	Conclusion	39

1 Application to a Simple Dataset

1.1 Preparation (script TSK _ models _ dependent.m & TSK _ models.m)

For this part of the assignment, we have a dataset from UCI repository called Haberman's Survival which contains 306 instances and 4 features. 7 TSK models are trained according to the following matrices, where the first 5 are class independent and the next 2 are class dependent:

	Number of Rules	Radius	Squash Factor	Output
TSK Model #1	4	0.94	0.7	Singleton
TSK Model #2	6	0.90	0.5	Singleton
TSK Model #3	8	0.76	0.5	Singleton
TSK Model #4	10	0.66	0.5	Singleton
TSK Model #5	12	0.50	0.5	Singleton

Table 1: Class Independent TSK models

	Number of Rules	Radius	Output
TSK Model #6	2	0.94	Singleton
TSK Model #7	6	0.58	Singleton

Table 2: Class Dependent TSK Models

The number of rules can be chosen by setting the radius and squash factor. The metrics we use to evaluate the models are the following:

- Overall Accuracy (OA)
- Producer's Accuracy (PA)
- User's Accuracy (*UA*)
- K̂
- Error (confusion matrix)

The procedure is the following:

- 1. Clear workspace
- 2. Load Habermans dataset
- 3. Preprocess the dataset (MATLAB: preproc): shuffle and split into 3 non-overlapping sets: training, validation and check with equivelent proportion of output (same percentage). We can verify that with the table displayed at the beginning of the script (see Table 3). This function also normalizes the data in the unit hypercube

4. Initialize arrays for the metrics and the radius and squash factor we will use in each of the 5 models.

Then for each model

- 1. Generate FIS with substractive clustering options, specific radius of the cluster and squash factor (Squash factor for scaling the range of influence of cluster centers, specified as the comma-separated pair consisting of 'SquashFactor' and a positive scalar. A smaller squash factor reduces the potential for outlying points to be considered as part of a cluster, which usually creates more and smaller data clusters. This option is only for class independent FIS) as given the the arrays initialized before. Also plot the MFs. Note than in the case of class dependent TSK Models, we built the FIS from scratch with the help of MATLAB: subclust according to the example uploaded in e learning.
- 2. Set the MF of the output to constant
- 3. Tune the FIS (MATLAB: anfis)
- 4. Plot results: learning curve, prediction error and the 5 metrics using the tuned FIS for which the validation error is minimum (MATLAB: chkFIS). Also plot the MFs after tuning

After repeating this procedure for each model, we can plot some of the metrics and compare the results.

In the following subsections we present the initial configuration of the membership functions, the membership functions after the tuning, and the metrics we mentioned before.

	Class	Initial Set	Training set	Validation Set	Check Set
ĺ	1	73.5294%	73.3696%	73.7705%	73.7705%
Ì	2	26.4706%	26.6304%	26.2295%	26.2295%

Table 3: Proportiong of classes for each set

Note that we trained 5 instead of 2 TSK Models for the class independent case.

1.2 TSK Model #1 (Class Independent)

TSK model 1 - Input MFs before training

Figure 1: MF before training

TSK model 1 - Input MF after training

Figure 2: MF after training

Figure 3: Learning curve (overfitting at epoch ~25)

Figure 4: Confusion Matrix

Figure 5: Confusion Matrix - Frequencies

Class Number	1	2	Value
PA	0.7288	0	-
UA	0.9555	0	-
OA	-	-	0.7049
\hat{K}	_	-	0.6849

Table 4: Metrics

1.3 TSK Model #2 (Class Independent)

TSK model 2 - Input MFs before training

Figure 6: MF before training

TSK model 2 - Input MF after training

Figure 7: MF after training

Figure 8: Learning curve (overfitting at epoch $^{\sim}2)$

Figure 9: Confusion Matrix

Figure 10: Confusion Matrix - Frequencies

Class Number	1	2	Value
PA	0.7414	0.333	-
UA	0.9555	0.0625	-
OA	-	-	0.7213
\hat{K}	-	-	0.6926

Table 5: Metrics

1.4 TSK Model #3 (Class Independent)

TSK model 3 - Input MFs before training

Figure 11: MF before training

TSK model 3 - Input MF after training

Figure 12: MF after training

Figure 13: Learning curve (overfitting at epoch ~10)

Figure 14: Confusion Matrix

Figure 15: Confusion Matrix - Frequencies

Class Number	1	2	Value
PA	0.733	0	-
UA	0.9778	0	-
OA	-	-	0.7213
\hat{K}	-	-	0.7120

Table 6: Metrics

1.5 TSK Model #4 (Class Independent)

TSK model 4 - Input MFs before training

Figure 16: MF before training

TSK model 4 - Input MF after training

Figure 17: MF after training

Figure 18: Learning curve (overfitting at epoch ~10)

Figure 19: Confusion Matrix

Figure 20: Confusion Matrix - Frequencies

Class Number	1	2	Value
PA	0.7333	0	-
UA	1	0	-
OA	-	-	0.7377
\hat{K}	-	_	0.7377

Table 7: Metrics

1.6 TSK Model #5 (Class Independent)

TSK model 5 - Input MFs before training

Figure 21: MF before training

TSK model 5 - Input MF after training

Figure 22: MF after training

Figure 23: Learning curve (overfitting at epoch ~10)

Figure 24: Confusion Matrix

Figure 25: Confusion Matrix - Frequencies

Class Number	1	2	Value
PA	0.7333	0	-
UA	0.9778	0	-
OA	-	-	0.7213
\hat{K}	-	-	0.7120

Table 8: Metrics

1.7 TSK Model #6 (Class Dependent)

TSK model 6 - Input MFs before training

Figure 26: MF before training

TSK model 6 - Input MF after training

Figure 27: MF after training

Figure 28: Learning curve (overfitting at epoch $^{\sim}20$)

Figure 29: Confusion Matrix

Figure 30: Confusion Matrix - Frequencies

Class Number	1	2	Value
PA	0.7458	0.500	-
UA	0.9778	0.0625	-
OA	-	-	0.7377
\hat{K}	-	_	0.7199

Table 9: Metrics

1.8 TSK Model #7 (Class Dependent)

TSK model 7 - Input MFs before training

Figure 31: MF before training

TSK model 7 - Input MF after training

Figure 32: MF after training

Figure 33: Learning curve (overfitting at epoch $^\sim 20)$

Figure 34: Confusion Matrix

Figure 35: Confusion Matrix - Frequencies

Class Number	1	2	Value
PA	0.7500	0.2759	-
UA	0.5333	0.500	-
OA	-	-	0.5246
\hat{K}	-	-	0.0515

Table 10: Metrics

1.9 Conclusion

First, we present some overall results for the class independed TSK models.

Figure 36: \hat{K} vs number of rules

Figure 37: Overall Accuracy vs number of rules

	Number of Rules	Ŕ	OA
TSK Model #1	4	0.6849	70.49 %
TSK Model #2	6	0.6926	72.13 %
TSK Model #3	8	0.7120	72.13 %
TSK Model #4	10	0.7377	73.77 %
TSK Model #5	12	0.7120	72.13 %
TSK Model #6	2	0.7199	73.77 %
TSK Model #7	6	0.0515	52.46 %

Table 11: Metrics for all 7 models

We observe that all of the models, no matter the number of rules, have similar behaviour, except for Model #7. They all predict the 1st class but fail to predict the second class, except for Model #7 which predicts both classes with 50 % accuracy. That is because we only have a few instances of the 2nd class, so the ANFIS fails to find the appropriate weights. In case we have to choose the best model, we choose model #4.

2 Application to a dataset with high dimensionality

2.1 Preparation

For this part of the assignment, we have a dataset from UCI repository called Epileptic Seizure Recognition which contains 11500 instances and 179 features. Applying a conventional TSK model is quite difficult due to the high number of rules that occur. We will use a different approach with the grid search algorithm. The procedure is the following

- 1. Clear workspace
- 2. Load Epileptic Seizure Recognition dataset
- 3. Preprocess the dataset (MATLAB: preproc): shuffle and split into 3 non-overlapping sets: training, validation and check with equivelent proportion of output (same percentage). We can verify that with the table displayed at the beginning of the script (see Table 8). This function also normalizes the data in the unit hypercube
- 4. Feature selection with 100 nearest neighbours using Relief algorithm (MATLAB: relieff) for the shuffled data
- 5. Arbitrarily define values for the optimal number of features and radius of cluster center's range of influence in each of the data dimensions, assuming the data falls within a unit hyperbox
- 6. For each pair of feature and radius (the two variables form a grid which we search for the optimal model) we generate the FIS (MATLAB: genfis2 or build from scratch), perform 5-Fold Cross Validation (MATLAB: cvpartition: by default training set is 80% and check set is 20% as given by the indexes) by tuning the FIS (MATLAB: anfis) for each fold. Each fold represents a secondary model which we use to find an error using the validation set. The mean of all 5 errors of the folds represent the error of the initial model (specific value for rules and features). This procedure is called Grid Search
- 7. Plot the errors of the models in 2D and 3D
- 8. Find the optimal model; the one with the minimum MSE

Class	Initial Set	Training set	Validation Set	Check Set
1	20%	20%	20%	20%
2	20%	20%	20%	20%
3	20%	20%	20%	20%
4	20%	20%	20%	20%
5	20%	20%	20%	20%

Table 12: Proportion of classes for each set

2.2 Find Optimal Model using Grid Search as Independent (script grid_search.m)

In this case we use 3, 9, 15, 21 features with radius from the set [0.15, 0.25, 0.35, 0.45, 0.55, 0.65, 0.75, 0.85, 0.95], Each cell is based on the following table

Features		Radius							
3 Features	0.15	0.25	0.35	0.45	0.55	0.65	0.75	0.85	0.95
9 Features	0.15	0.25	0.35	0.45	0.55	0.65	0.75	0.85	0.95
15 Features	0.15	0.25	0.35	0.45	0.55	0.65	0.75	0.85	0.95
21 Features	0.15	0.25	0.35	0.45	0.55	0.65	0.75	0.85	0.95

Table 13: Values of features and radiuses used

We will now present the results of the rule grid that occured and the MSE in 3 different forms (table, 2D and 3D figures).

Features	Radius Set								
3 Features	5	5	5	3	3	3	2	1	1
9 Features	4	4	4	3	3	3	2	1	1
15 Features	4	4	4	3	3	3	2	1	1
21 Features	4	4	4	3	3	2	2	1	1

Table 14: Rule Grid

Features		Radius Set								
3 Features	1.3941	1.4190	1.4184	1.4201	1.4196	1.4912	1.4156	_	_	
9 Features	1.3067	1.3618	1.3648	1.3637	1.3749	1.4065	1.3834	_	_	
15 Features	1.2756	1.3360	1.3545	1.3533	1.3538	1.3544	1.3633	_	_	
21 Features	1.2171	1.2898	1.3074	1.3123	1.3111	1.3080	1.3129	_	_	

Table 15: MSE in table form

Figure 38: MSE in 2D

Figure 39: MSE in 3D

The minimum MSE is 1.2171 for 21 features and radius 0.15, which we save in opt_model.mat. We observe that no matter the radius and number of features we use, the MSE stays the same. Small improvement exists for higher number of features. Lower radius which means higher number of rules seems to decrease the MSE.

2.3 Optimal Model as Independent (script opt model.m)

The optimal model is the one with

- MSE equals 1.2171
- 21 features
- cluster's radius 0.15
- 4 rules

We load the model which we already saved in opt_model.mat and train the ANFIS. Results are the following

Figure 40: MF before training

Figure 41: MF after training

Figure 42: Learning curve (overfitting at epoch ~50)

Figure 43: Confusion Matrix

Figure 44: Confusion Matrix - Frequencies

Class Number	1	2	3	4	5	Value
PA	0.9404	0.1786	0.2609	0.2283	NaN	_
UA	0.7543	0.0543	0.4022	0.5370	0	_
OA	_	_	_	_	_	0.3496
\hat{K}	_	_	_	_	_	0.2224

Table 16: Metrics

2.4 Find Optimal Model using Grid Search as Dependent (script grid search dependent.m)

In this case we use 3, 9, 15, 21 features with radius from the set [0.15, 0.25, 0.35, 0.45, 0.55, 0.65, 0.75, 0.85, 0.95], Each cell is based on the following table

Features		Radius							
3 Features	0.15	0.25	0.35	0.45	0.55	0.65	0.75	0.85	0.95
9 Features	0.15	0.25	0.35	0.45	0.55	0.65	0.75	0.85	0.95
15 Features	0.15	0.25	0.35	0.45	0.55	0.65	0.75	0.85	0.95
21 Features	0.15	0.25	0.35	0.45	0.55	0.65	0.75	0.85	0.95

Table 17: Values of features and radiuses used

We will now present the the MSE in 3 different forms (table, 2D and 3D figures).

Features		Radius Set							
3 Features	1.3576	1.3510	1.3667	1.3740	1.3723	1.3841	1.3746	1.3704	1.3741
9 Features	_	1.1480	1.1374	1.1280	1.1357	1.1024	1.1957	1.2454	1.2430
15 Features	_	1.1354	1.1084	1.1367	1.1058	1.1092	1.1290	1.1464	1.2279
21 Features	_	_	1.0933	1.0797	1.0943	1.0709	1.0666	1.0624	1.1537

Table 18: MSE in table form

Figure 45: MSE in 2D

Figure 46: MSE in 3D

The minimum MSE is 1.0624 for 21 features and radius 0.85, which we save in opt_model_dependent.mat. We observe that no matter the radius and number of features we use, the MSE stays the same. Small improvement exists for higher number of features. Lower radius which means higher number of rules seems to decrease the MSE.

2.5 Optimal Model as Dependent (script opt model dependent.m)

The optimal model is the one with

- MSE equals 1.2171
- 21 features
- cluster's radius 0.85
- 8 rules

We load the model which we already saved in opt_model.mat and train the ANFIS. Results are the following

Figure 47: MF before training

Figure 48: MF after training

Figure 49: Learning curve (overfitting at epoch $^{\sim}50$)

Figure 50: Confusion Matrix

Figure 51: Confusion Matrix - Frequencies

Class Number	1	2	3	4	5	Value
PA	0.9497	0.1722	0.3243	0.3411	0.2571	_
UA	0.7391	0.0674	0.6783	0.5413	0.0391	_
OA	_	_	_	_	_	0.4130
\hat{K}	_	_	_	_	_	0.2900

Table 19: Metrics

2.6 Conclusion

For the class independent, we observe that the model fails to predict the class with high accuracy. Most of the correct guesses are for class 1 then 4 and 3. The models fails to identify class 5 at all. **Overall accuraccy is 35** %. Despite the fact that we have 21 features in our model, the number of rules is just 4! For the class dependent, the models appear to be better. The **overall accuracy** is 41 %. The model predicts class 1 most of the times but it fails to predict class 5 and 2.

List of Figures

1	-	MF before training	5
2	2	MF after training	5
3	3	Learning curve (overfitting at epoch ~25)	6
4	Į.	Confusion Matrix	6
5	Ó	Confusion Matrix - Frequencies	7
6	;	MF before training	8
7	7	MF after training	8
8	3	Learning curve (overfitting at epoch ~2)	9
9)	Confusion Matrix	9
1	0	Confusion Matrix - Frequencies	10
1	.1	MF before training	11
1	2	MF after training	11
1	.3	Learning curve (overfitting at epoch ~10)	12
1	4	Confusion Matrix	12
1	5	Confusion Matrix - Frequencies	13
1	6	MF before training	14
1	7	MF after training	14
1	8	Learning curve (overfitting at epoch ~10)	15
1	9	Confusion Matrix	15
2	20	Confusion Matrix - Frequencies	16
2	21	MF before training	17
2	22	MF after training	17
2	23	Learning curve (overfitting at epoch ~10)	18
2	24	Confusion Matrix	18
2	25	Confusion Matrix - Frequencies	19
	26	MF before training	20
	27	MF after training	20
2	28	Learning curve (overfitting at epoch ~20)	21
	29	Confusion Matrix	21
	3 0	Confusion Matrix - Frequencies	22
	31	MF before training	$^{-2}$
	32	MF after training	23
	33	Learning curve (overfitting at epoch ~20)	24
	34	Confusion Matrix	24
	85	Confusion Matrix - Frequencies	$\overline{25}$
	36	\hat{K} vs number of rules	26
	37	Overall Accuracy vs number of rules	26
	88	MSE in 2D	30
	39	MSE in 3D	31
	10	MF before training	32
	11	MF after training	32
	12	Learning curve (overfitting at epoch ~50)	33
	13	Confusion Matrix	33
	14	Confusion Matrix - Frequencies	34
-		1	

45	MSE in 2D	5
46	MSE in 3D	6
47	MF before training	7
48	MF after training	7
49	Learning curve (overfitting at epoch ~50)	8
50	Confusion Matrix	8
51	Confusion Matrix - Frequencies	9
List	of Tables	
1	Class Independent TSK models	3
2		3
3		4
4	Metrics	7
5	Metrics	0
6	Metrics	3
7	Metrics	6
8	Metrics	9
9	Metrics	2
10	Metrics	5
11	Metrics for all 7 models	7
12	Proportion of classes for each set	8
13	Values of features and radiuses used	9
14	Rule Grid	9
15	MSE in table form	9
16	Metrics	4
17	Values of features and radiuses used	4
18	MSE in table form	5
19	Metrics 3	g