TELECOM Nancy (ESIAL)

Maths Numériques

feuille 3 : sur la convergence des H-means

L'algorithme H-means peut s'écrire :

 $\Pi^{(0)}$ étant donnée

pour m = 1, 2,

 $C^{(m)} =$ barycentres des classes $\Pi^{(m-1)}$

 $\Pi^{(m)}$ = partition obtenue après la phase de réaffectation

On considère alors la suite des inerties suivantes :

$$I_1 = I(\mathcal{C}^{(1)}, \Pi^{(0)}), I_2 = I(\mathcal{C}^{(1)}, \Pi^{(1)}), I_3 = I(\mathcal{C}^{(2)}, \Pi^{(1)}), I_4 = I(\mathcal{C}^{(2)}, \Pi^{(2)}), \dots$$

où les inerties successives, $I_{2m-1} = I(\mathcal{C}^{(m)}, \Pi^{(m-1)})$ et $I_{2m} = I(\mathcal{C}^{(m)}, \Pi^{(m)})$ sont obtenues lors de l'itération m, suite, respectivement, au barycentrage puis à la réaffectation. Les deux exercices de cette feuille ont pour but de montrer que cette suite est décroissante.

Exercice 1 H-means phase de réaffectation

Montrer que, lors de la phase de réaffectation, l'inertie diminue strictement si au moins un point change de classe. En déduire que :

$$I(\mathcal{C}^{(m)}, \Pi^{(m)}) \le I(\mathcal{C}^{(m)}, \Pi^{(m-1)})$$

Exercice 2 Théorème de Huyghens

Soient n vecteurs de \mathbb{R}^p notés x_i , $i=1,\cdots,n$. On désigne par $g=\frac{1}{n}\sum_{i=1}^n x_i$ le barycentre de ces points et on note $I(y)=\sum_{i=1}^n\|x_i-y\|^2$ l'inertie de ces points par rapport à un point $y\in\mathbb{R}^p$ donné.

1. Montrer que :

$$I(y) = I(g) + n||y - g||^2$$
, pour tout $y \in \mathbb{R}^p$.

Aide, compléments, rappels:

- (a) $||x|| := \sqrt{\sum_{i=1}^{p} x_i^2}$ est la norme euclidienne du vecteur x;
- (b) ||x y|| est la distance euclidienne entre x et y;
- (c) $(x|y) := \sum_{i=1}^{p} x_i y_i$ est le produit scalaire usuel entre les vecteurs x et y. Il possède les propriétés suivantes :
 - i. (x|y) = (y|x)
 - ii. $(\alpha x + \beta y|z) = \alpha(x|z) + \beta(y|z)$
 - iii. $(x|x) = ||x||^2$
 - iv. $(x|y) = ||x|| ||y|| \cos(\widehat{x,y})$
- (d) Dans I(y) on peut développer les termes $||x_i y||^2$ en utilisant $||x_i y||^2 = ||(x_i g) (y g)||^2$ puis en développant cette norme au carré comme un produit scalaire.
- 2. En déduire que l'inertie diminue dans la phase de barycentrage, c'est à dire que :

$$I(\mathcal{C}^{(m+1)}, \Pi^{(m)}) \le I(\mathcal{C}^{(m)}, \Pi^{(m)})$$

1