SAMB for "graphene"

Generated on 2023-06-12 22:38 by MultiPie $1.1.7\,$

- Generation condition
 - model type: ${\tt tight_binding}$
 - time-reversal type: electric
 - irrep: [A1g]
 - spinful
- Unit cell:

$$a=1.0,\ b=1.0,\ c=1.0,\ \alpha=90.0,\ \beta=90.0,\ \gamma=120.0$$

• Lattice vectors:

$$\boldsymbol{a}_1 = \begin{pmatrix} 1.0 & 0 & 0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} -0.5 & 0.86602540378444 & 0 \end{pmatrix}$$

$$\mathbf{a}_3 = \begin{pmatrix} 0 & 0 & 1.0 \end{pmatrix}$$

Table 1: High-symmetry line: Γ -M-K- Γ -K'.

symbol	position	symbol	mbol position		position
Γ	$\begin{pmatrix} 0 & 0 & 0 \end{pmatrix}$	M	$\begin{pmatrix} \frac{1}{2} & 0 & 0 \end{pmatrix}$	K	$\begin{pmatrix} \frac{1}{3} & \frac{1}{3} & 0 \end{pmatrix}$
K'	$\left(-\frac{1}{3} -\frac{1}{3} 0\right)$				

• Kets: dimension = 4

Table 2: Hilbert space for full matrix.

No.	ket	No.	ket	No.	ket	No.	ket
1	(p_z,\uparrow) @A ₁	2	(p_z,\downarrow) @A ₁	3	(p_z,\uparrow) @A ₂	4	(p_z,\downarrow) @A ₂

• Sites in (primitive) unit cell:

Table 3: Site-clusters.

	site	position	1	mapping
S_1	A_1	$\left(\begin{array}{cc} \frac{1}{3} & \frac{2}{3} \end{array}\right)$	0)	$[1,\!6,\!7,\!8,\!9,\!10,\!14,\!15,\!16,\!17,\!23,\!24]$
	A_2	$\left(\begin{array}{cc} \frac{2}{3} & \frac{1}{3} \end{array}\right)$	0)	$[2,\!3,\!4,\!5,\!11,\!12,\!13,\!18,\!19,\!20,\!21,\!22]$

• Bonds in (primitive) unit cell:

Table 4: Bond-clusters.

	bond	tail	head	n	#	b@c	mapping
B_1	b_1	A_2	A_1	1	1	$\begin{pmatrix} \frac{1}{3} & \frac{2}{3} & 0 \end{pmatrix} @ \begin{pmatrix} \frac{1}{2} & 0 & 0 \end{pmatrix}$	[1,-2,-3,6,-13,14,17,-18]
	b_2	A_2	A_1	1	1	$ \left(\begin{array}{ccc} \frac{1}{3} & -\frac{1}{3} & 0 \end{array} \right) @ \left(\begin{array}{ccc} \frac{1}{2} & \frac{1}{2} & 0 \end{array} \right) $	[-4,7,10,-11,15,-19,-22,23]
	b_3	A_2	A_1	1	1	$ \left(\begin{array}{ccc} -\frac{2}{3} & -\frac{1}{3} & 0 \end{array} \right) @ \left(0 & \frac{1}{2} & 0 \right) $	[-5,8,9,-12,16,-20,-21,24]

• SAMB:

$$\hat{\mathbb{Z}}_1(\mathbf{k}) = \mathbb{X}_1[\mathbb{Q}_0^{(a,A_{1g})}] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_{1g})}]$$

No. 2
$$\hat{\mathbb{Q}}_0^{(A_{1g})}$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_2 = \mathbb{X}_1[\mathbb{Q}_0^{(a,A_{1g})}] \otimes \mathbb{Y}_2[\mathbb{Q}_0^{(b,A_{1g})}]$$

$$\hat{\mathbb{Z}}_{2}(\boldsymbol{k}) = \frac{\sqrt{2}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_{1g})}] \otimes \mathbb{U}_{2}[\mathbb{Q}_{0}^{(u,A_{1g})}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_{1g})}]}{2} - \frac{\sqrt{2}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_{1g})}] \otimes \mathbb{U}_{3}[\mathbb{T}_{3}^{(u,B_{1u})}] \otimes \mathbb{F}_{2}[\mathbb{T}_{3}^{(k,B_{1u})}]}{2}$$

Table 5: Atomic SAMB group.

group	bra	ket		
M_1	$(p_z,\uparrow),(p_z,\downarrow)$	$(p_z,\uparrow),(p_z,\downarrow)$		

Table 6: Atomic SAMB.

symbol	type	group	form		
\mathbb{X}_1	$\mathbb{Q}_0^{(a,A_{1g})}$	M_1	$ \begin{pmatrix} \frac{\sqrt{2}}{2} & 0 \\ 0 & \frac{\sqrt{2}}{2} \end{pmatrix} $		

Table 7: Cluster SAMB.

symbol	type	cluster	form			
\mathbb{Y}_1	$\mathbb{Q}_0^{(s,A_{1g})}$	S_1	$\begin{pmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix}$			
\mathbb{Y}_2	$\mathbb{Q}_0^{(b,A_{1g})}$	B_1	$ \left(\begin{array}{ccc} \sqrt{3} & \sqrt{3} & \sqrt{3} \\ 3 & 3 \end{array}\right) $			

Table 8: Uniform SAMB.

symbol	type	cluster	form
\mathbb{U}_1	$\mathbb{Q}_0^{(s,A_{1g})}$	S_1	$\begin{pmatrix} \frac{\sqrt{2}}{2} & 0\\ 0 & \frac{\sqrt{2}}{2} \end{pmatrix}$
\mathbb{U}_2	$\mathbb{Q}_0^{(u,A_{1g})}$	B_1	$\begin{pmatrix} 0 & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & 0 \end{pmatrix}$
\mathbb{U}_3	$\mathbb{T}_3^{(u,B_{1u})}$	B_1	$\begin{pmatrix} 0 & -\frac{\sqrt{2}i}{2} \\ \frac{\sqrt{2}i}{2} & 0 \end{pmatrix}$

Table 9: Structure SAMB.

symbol	type	cluster	form
\mathbb{F}_1	$\mathbb{Q}_0^{(k,A_{1g})}$	B_1	$\frac{\sqrt{6}c_{001}}{3} + \frac{\sqrt{6}c_{002}}{3} + \frac{\sqrt{6}c_{003}}{3}$
\mathbb{F}_2	$\mathbb{T}_3^{(k,B_{1u})}$	B_1	$\frac{\sqrt{6}s_{001}}{3} + \frac{\sqrt{6}s_{002}}{3} + \frac{\sqrt{6}s_{003}}{3}$

Table 10: Polar harmonics.

No.	symbol	rank	irrep.	mul.	comp.	form
1	$\mathbb{Q}_0^{(A_{1g})}$	0	A_{1g}	_	_	1
2	$\mathbb{Q}_3^{(B_{1u})}$	3	B_{1u}	_	_	$\frac{\sqrt{10}y(3x^2-y^2)}{4}$

 \bullet Group info.: Generator = $\{3^{+}_{\ 001}|0\},\ \{2_{001}|0\},\ \{2_{110}|0\},\ \{-1|0\}$

Table 11: Conjugacy class (point-group part).

rep. SO	symmetry operations
{1 0}	{1 0}
$\{2_{001} 0\}$	$\{2_{001} 0\}$
$\{2_{100} 0\}$	$\{2_{100} 0\}, \{2_{010} 0\}, \{2_{110} 0\}$
$\{2_{120} 0\}$	$\{2_{120} 0\}, \{2_{210} 0\}, \{2_{1-10} 0\}$
$\{3^{+}_{001} 0\}$	$\{3^{+}_{001} 0\}, \{3^{-}_{001} 0\}$
$\{6^{+}_{001} 0\}$	$\{6^{+}_{001} 0\}, \ \{6^{-}_{001} 0\}$
$\{-1 0\}$	$\{-1 0\}$
$\{m_{100} 0\}$	$\{m_{100} 0\}, \{m_{010} 0\}, \{m_{110} 0\}$
$\{m_{001} 0\}$	$\{m_{001} 0\}$
$\{m_{120} 0\}$	$\{m_{120} 0\}, \{m_{210} 0\}, \{m_{1-10} 0\}$
$\{-3^{+}_{001} 0\}$	$\{-3^{+}_{001} 0\}, \{-3^{-}_{001} 0\}$
$\{-6^{+}_{001} 0\}$	$\{-6^{+}_{001} 0\}, \{-6^{-}_{001} 0\}$

Table 12: Symmetry operations.

No.	SO	No.	SO	No.	SO	No.	SO	No.	SO
1	{1 0}	2	$\{2_{001} 0\}$	3	$\{2_{100} 0\}$	4	$\{2_{010} 0\}$	5	$\{2_{110} 0\}$
6	$\{2_{120} 0\}$	7	$\{2_{210} 0\}$	8	$\{2_{1-10} 0\}$	9	$\{3^{+}_{001} 0\}$	10	$\{3^{-}_{001} 0\}$
11	$\{6^{+}_{001} 0\}$	12	$\{6^{-}_{001} 0\}$	13	$\{-1 0\}$	14	$\{m_{100} 0\}$	15	$\{m_{010} 0\}$
16	$\{m_{110} 0\}$	17	$\{m_{001} 0\}$	18	$\{m_{120} 0\}$	19	$\{m_{210} 0\}$	20	$\{m_{1-10} 0\}$
21	$\{-3^{+}_{001} 0\}$	22	$\{-3^{-}_{001} 0\}$	23	$\{-6^{+}_{001} 0\}$	24	$\{-6^{-}_{001} 0\}$		

Table 13: Character table (point-group part).

	1	2001	2100	2120	3 ⁺ ₀₀₁	6 ⁺ ₀₀₁	-1	m ₁₀₀	m ₀₀₁	m_{120}	-3^{+}_{001}	-6^{+}_{001}
A_{1g}	1	1	1	1	1	1	1	1	1	1	1	1

 $continued \dots$

Table 13

	_											
	1	2_{001}	2_{100}	2_{120}	3^{+}_{001}	6^{+}_{001}	-1	m_{100}	m_{001}	m_{120}	-3^{+}_{001}	-6^{+}_{001}
A_{2g}	1	1	-1	-1	1	1	1	-1	1	-1	1	1
B_{1g}	1	-1	-1	1	1	-1	1	-1	-1	1	1	-1
B_{2g}	1	-1	1	-1	1	-1	1	1	-1	-1	1	-1
E_{1g}	2	-2	0	0	-1	1	2	0	-2	0	-1	1
E_{2g}	2	2	0	0	-1	-1	2	0	2	0	-1	-1
A_{1u}	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1
A_{2u}	1	1	-1	-1	1	1	-1	1	-1	1	-1	-1
B_{1u}	1	-1	-1	1	1	-1	-1	1	1	-1	-1	1
B_{2u}	1	-1	1	-1	1	-1	-1	-1	1	1	-1	1
E_{1u}	2	-2	0	0	-1	1	-2	0	2	0	1	-1
E_{2u}	2	2	0	0	-1	-1	-2	0	-2	0	1	1

Table 14: Parity conversion.

\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow
$A_{1g} (A_{1u})$	$A_{2g} (A_{2u})$	B_{1g} (B_{1u})	$B_{2g} (B_{2u})$	E_{1g} (E_{1u})
$E_{2g} (E_{2u})$	$A_{1u} (A_{1g})$	$A_{2u} (A_{2g})$	$B_{1u} (B_{1g})$	$B_{2u} (B_{2g})$
$E_{1u} (E_{1g})$	$E_{2u} (E_{2g})$			

Table 15: Symmetric product, $[\Gamma \otimes \Gamma']_+$.

	A_{1g}	A_{2g}	B_{1g}	B_{2g}	E_{1g}	E_{2g}	A_{1u}	A_{2u}	B_{1u}	B_{2u}	E_{1u}	E_{2u}
A_{1g}	A_{1g}	A_{2g}	B_{1g}	B_{2g}	E_{1g}	E_{2g}	A_{1u}	A_{2u}	B_{1u}	B_{2u}	E_{1u}	E_{2u}
A_{2g}		A_{1g}	B_{2g}	B_{1g}	E_{1g}	E_{2g}	A_{2u}	A_{1u}	B_{2u}	B_{1u}	E_{1u}	E_{2u}
B_{1g}			A_{1g}	A_{2g}	E_{2g}	E_{1g}	B_{1u}	B_{2u}	A_{1u}	A_{2u}	E_{2u}	E_{1u}
B_{2g}				A_{1g}	E_{2g}	E_{1g}	B_{2u}	B_{1u}	A_{2u}	A_{1u}	E_{2u}	E_{1u}
E_{1g}					$A_{1g} + E_{2g}$	$B_{1g} + B_{2g} + E_{1g}$	E_{1u}	E_{1u}	E_{2u}	E_{2u}	$A_{1u} + A_{2u} + E_{2u}$	$B_{1u} + B_{2u} + E_{1u}$
E_{2g}						$A_{1g} + E_{2g}$	E_{2u}	E_{2u}	E_{1u}	E_{1u}	$B_{1u} + B_{2u} + E_{1u}$	$A_{1u} + A_{2u} + E_{2u}$
A_{1u}							A_{1g}	A_{2g}	B_{1g}	B_{2g}	E_{1g}	E_{2g}
A_{2u}								A_{1g}	B_{2g}	B_{1g}	E_{1g}	E_{2g}
B_{1u}									A_{1g}	A_{2g}	E_{2g}	E_{1g}
B_{2u}										A_{1g}	E_{2g}	E_{1g}
E_{1u}											$A_{1g} + E_{2g}$	$B_{1g} + B_{2g} + E_{1g}$
E_{2u}												$A_{1g} + E_{2g}$

Table 16: Anti-symmetric product, $[\Gamma \otimes \Gamma]_-$.

A_{1g}	A_{2g}	B_{1g}	B_{2g}	E_{1g}	E_{2g}	A_{1u}	A_{2u}	B_{1u}	B_{2u}	E_{1u}	E_{2u}
	_	_	_	A_{2g}	A_{2g}	_	_	_	_	A_{2g}	A_{2g}

Table 17: Virtual-cluster sites.

No.	position	No.	position	No.	position	No.	position
1	$\begin{pmatrix} 1+\sqrt{3} & -1+\sqrt{3} & 1 \end{pmatrix}$	2	$\left(-\sqrt{3}-1 1-\sqrt{3} 1\right)$	3	$\begin{pmatrix} 2 & 1 - \sqrt{3} & -1 \end{pmatrix}$	4	$\left(-\sqrt{3}-1 -2 -1\right)$
5	$\begin{pmatrix} -1 + \sqrt{3} & 1 + \sqrt{3} & -1 \end{pmatrix}$	6	$\begin{pmatrix} -2 & -1 + \sqrt{3} & -1 \end{pmatrix}$	7	$\begin{pmatrix} 1+\sqrt{3} & 2 & -1 \end{pmatrix}$	8	$\begin{pmatrix} 1 - \sqrt{3} & -\sqrt{3} - 1 & -1 \end{pmatrix}$
9	$\begin{pmatrix} 1 - \sqrt{3} & 2 & 1 \end{pmatrix}$	10	$\begin{pmatrix} -2 & -\sqrt{3} - 1 & 1 \end{pmatrix}$	11	$\begin{pmatrix} 2 & 1 + \sqrt{3} & 1 \end{pmatrix}$	12	$\begin{pmatrix} -1 + \sqrt{3} & -2 & 1 \end{pmatrix}$
13	$\left(-\sqrt{3}-1 1-\sqrt{3} -1\right)$	14	$\begin{pmatrix} -2 & -1 + \sqrt{3} & 1 \end{pmatrix}$	15	$\begin{pmatrix} 1+\sqrt{3} & 2 & 1 \end{pmatrix}$	16	$\begin{pmatrix} 1 - \sqrt{3} & -\sqrt{3} - 1 & 1 \end{pmatrix}$
17	$\begin{pmatrix} 1+\sqrt{3} & -1+\sqrt{3} & -1 \end{pmatrix}$	18	$\begin{pmatrix} 2 & 1 - \sqrt{3} & 1 \end{pmatrix}$	19	$\left(-\sqrt{3}-1 -2 1\right)$	20	$\begin{pmatrix} -1 + \sqrt{3} & 1 + \sqrt{3} & 1 \end{pmatrix}$
21	$\begin{pmatrix} -1 + \sqrt{3} & -2 & -1 \end{pmatrix}$	22	$\begin{pmatrix} 2 & 1 + \sqrt{3} & -1 \end{pmatrix}$	23	$\begin{pmatrix} -2 & -\sqrt{3} - 1 & -1 \end{pmatrix}$	24	$\begin{pmatrix} 1 - \sqrt{3} & 2 & -1 \end{pmatrix}$

Table 18: Virtual-cluster basis.

symbol	1	2	3	4	5	6	7	8	9	10
$\mathbb{Q}_0^{(A_{1g})}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$							
	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$							
	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$						
$\mathbb{Q}_1^{(A_{2u})}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$
	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$
	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$						

 $continued\ \dots$

Table 18

symbol	1	2	3	4	5	6	7	8	9	10
$\mathbb{Q}_{1,0}^{(E_{1u})}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$
	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$
	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{6}}{12}$						
$\mathbb{Q}_{1,1}^{(E_{1u})}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$
	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$
	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$	$\frac{\sqrt{6}}{12}$						
$\mathbb{Q}_{2,0}^{(E_{1g})}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$
	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$
	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$\frac{\sqrt{6}}{12}$						
$\mathbb{Q}_{2,1}^{(E_{1g})}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$
	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$
	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{6}}{12}$						
$\mathbb{Q}_{2,0}^{(E_{2g})}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	0	$-\frac{1}{4}$	$\frac{1}{4}$	0	$-\frac{1}{4}$	0	$-\frac{1}{4}$
	$-\frac{1}{4}$	0	$\frac{1}{4}$	$\frac{1}{4}$	0	$-\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	0	$-\frac{1}{4}$
	0	$-\frac{1}{4}$	$-\frac{1}{4}$	0						
$\mathbb{Q}_{2,1}^{(E_{2g})}$	$-\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{6}$	$-\frac{\sqrt{3}}{12}$
	$-\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{6}$	$-\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{12}$
	$\frac{\sqrt{3}}{6}$	$-\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{6}$						
$\mathbb{Q}_{3}^{(B_{1u})}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$
	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$
	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$						
$\mathbb{Q}_3^{(B_{2u})}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$
	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$
	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$						
$\mathbb{Q}_{3,0}^{(E_{2u})}$	$\frac{1}{4}$	$\frac{1}{4}$	$-\frac{1}{4}$	0	$\frac{1}{4}$	$-\frac{1}{4}$	0	$\frac{1}{4}$	0	$-\frac{1}{4}$
	$-\frac{1}{4}$	0	$-\frac{1}{4}$	$\frac{1}{4}$	0	$-\frac{1}{4}$	$-\frac{1}{4}$	$\frac{1}{4}$	0	$-\frac{1}{4}$
	0	$\frac{1}{4}$	$\frac{1}{4}$	0						
$\mathbb{Q}_{3,1}^{(E_{2u})}$	$-\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{6}$	$-\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{6}$	$-\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{6}$	$-\frac{\sqrt{3}}{12}$
•	$-\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{12}$

 $continued\ \dots$

Table 18

Table 18										
symbol	1	2	3	4	5	6	7	8	9	10
	$-\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{6}$						
$\mathbb{Q}_4^{(B_{1g})}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$
	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$
	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$						
$\mathbb{Q}_4^{(B_{2g})}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$
	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$
	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$						
$\mathbb{Q}_{4,0}^{(E_{2g},1)}$	$\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{12}$
	$\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{12}$
	$-\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{6}$						
$\mathbb{Q}_{4,1}^{(E_{2g},1)}$	$\frac{1}{4}$	$\frac{1}{4}$	$-\frac{1}{4}$	0	$\frac{1}{4}$	$-\frac{1}{4}$	0	$\frac{1}{4}$	0	$-\frac{1}{4}$
	$-\frac{1}{4}$	0	$\frac{1}{4}$	$-\frac{1}{4}$	0	$\frac{1}{4}$	$\frac{1}{4}$	$-\frac{1}{4}$	0	$\frac{1}{4}$
	0	$-\frac{1}{4}$	$-\frac{1}{4}$	0						
$\mathbb{Q}_{5,0}^{(E_{1u},1)}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$
	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$
	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$	$\frac{\sqrt{6}}{12}$						
$\mathbb{Q}_{5,1}^{(E_{1u},1)}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$
	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$
	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$\frac{\sqrt{6}}{12}$						
$\mathbb{Q}_{5,0}^{(E_{2u},1)}$	$\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{6}$	$-\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{6}$	$-\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{12}$
	$\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{6}$	$-\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{12}$
	$\frac{\sqrt{3}}{6}$	$-\frac{\sqrt{3}}{12}$	$-\frac{\sqrt{3}}{12}$	$\frac{\sqrt{3}}{6}$						
$\mathbb{Q}_{5,1}^{(E_{2u},1)}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	0	$-\frac{1}{4}$	$\frac{1}{4}$	0	$-\frac{1}{4}$	0	$-\frac{1}{4}$
	$-\frac{1}{4}$	0	$-\frac{1}{4}$	$-\frac{1}{4}$	0	$\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$	0	$\frac{1}{4}$
	0	$\frac{1}{4}$	$\frac{1}{4}$	0						
$\mathbb{Q}_{6}^{(A_{2g})}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$
	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$
	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$						
$\mathbb{Q}_{6,0}^{(E_{1g},1)}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$

 $continued\ \dots$

Table 18

symbol	1	2	3	4	5	6	7	8	9	10
	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$
		$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{6}}{12}$						
$\mathbb{Q}_{6,1}^{(E_{1g},1)}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$
	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{2}}{8} - \frac{\sqrt{6}}{24}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$
	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{24} + \frac{\sqrt{2}}{8}$	$-\frac{\sqrt{2}}{8} + \frac{\sqrt{6}}{24}$	$-\frac{\sqrt{6}}{12}$						
$\mathbb{Q}_7^{(A_{1u})}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$							
	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$
	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$						