Hybrid Deep Learning Approach for Monthly Rainfall Prediction Using Endogenous property

Mandala Venkata Surendra 17CE33003

Under Supervision of **prof** . Rajib Maity

Department of Civil Engineering IIT Kharagpur

Introduction

- Rainfall prediction
 - Rainfall prediction is clearly of great importance for India
 - The spatio-temporal distribution of precipitation is getting modified as an impact of changing climate
- One would like to make
 - long term prediction, i.e. predict rainfall a few weeks or months in advance
 - > short term prediction, i.e. predict rainfall over different locations a few days in advance

Problem Statement

- Among various spatio-temporal scales, seasonal or monthly prediction of rainfall over a subdivision prediction is one of the most important tasks
- How to capture its endogenous properties of hydrological time series with respect to their temporal evolution?
- Is the variation of rainfall solved using advanced algorithms better than the existing prediction methods?

Objective

Specific objective

- Capture the endogenous properties of sub-divisional monthly rainfall series.
- > Extract the hidden sequential information in the sub-divisional monthly rainfall series.
- Develop monthly rainfall prediction model with a goal for improved prediction performance.

General objective

Implementing of rainfall prediction system using hybrid DL, a combination of one-dimensional Convolutional Neural Network (Conv1D) and Multi-Layer Perceptron (MLP) for monthly rainfall prediction of different subdivisions of India.

Methodology

- The methodologies used in this study are:
 - Literature survey
 - Propose the system
 - Design and Implement
 - > Testing

Contribution of this study

- To enhance the prediction mechanisms in different subdivisions of India by considering an appropriate model.
- To help for selecting and implementing of appropriate prediction algorithms for spatio-temporal distribution of precipitation in India.

Literature Review

- Artificial Neural Network based forecasting of consecutive rainfalls.
 - ➤ In 2018, Lee et al.: "Application of artificial neural networks to rainfall forecasting in the geum river basin, korea"
- DL based deep network algorithm for forecasting next day precipitation using environmental factors.
 - ➤ In June 2017, Zhang et al.: "A deep-learning based precipitation forecasting approach using multiple environmental factors"

Data Description

- The dataset consists of the monthly rainfall for the period
 1901-2015 for each state in India
- The dataset contains 19 attributes (individual months, annual, and combinations of three consecutive months)
- The data from 1951–2000 were used to train the models, and the data from 2001–2015 were used for testing
- Previous months rainfall data is used as input to predict the consecutive month rainfall

Data description.....

- Three different lags, i.e., 3, 6 and 9 months are considered
- Lag indicates the gap (number of months) between input i.e. past data and the starting month of prediction.

Data preprocessing

Figure 1: Block diagram of pre processing phase

preprocessing....

Correlation among the variables

-1.0

- 0.8

- 0.6

0.4

0.2

- 0.0

Figure 3. Heat map showing the correlation coefficients between rainfall in different seasons and the same with annual rainfall

Model Architecture

Figure 4: A sample 1D CNN configuration with 3 CNN and 2 MLP layers

Algorithm: CNN Training Procedure

Table 1: Configurations of proposed hybrid Conv1D-MLP model

Layer n	o. Layer	Туре	Parameters of layers			
			Activation func.	Kernel Size	No.of filters	Neurons
1	Conv1D	Convolution Layer	ReLU	1	64	-
2	Conv1D	Convolution Layer	ReLU	2	128	-
3	Flatten	Flatten Layer	<u>-</u>	-	-	-
4	dense	Fully connected Layer	ReLU	-	-	128
5	dense	Fully connected Layer	ReLU	-	-	64
6	dense	Fully connected Layer	ReLU	-	-	32
7	dense	Fully connected Layer (output layer)	Linear	-	-	1

Results and Discussion

- ☐ Trained model with the aforementioned architecture is tested on three subdivisions of India, observed the predicted rainfall for all the months from 2001-2015
- 3 months Lag

Figure 5. Comparison plots between actual and predicted monthly using inputs from 3 previous months for 3 different subdivisions. X-axis shows the months from the year 2001 to 2015.

6 months lag

Figure 6. Comparison plots between actual and predicted monthly using inputs from 6 previous months for 3 different subdivisions. X-axis shows the months from the year 2001 to 2015.

9 months lag

Figure 7 Comparison plots between actual and predicted monthly using inputs from 9 previous months for 3 different subdivisions. X-axis shows the months from the year 2001 to 2015.

TABLE 2: Performance statistics viz. r, RMSE and NSE for different lag periods at different subdivisions.

Subdivision	No.of inputs/		Performance Statistics			
Jubulvision	Lag months	RMSE	Correlation coefficient(r)	NSE coefficient		
	3	74.25	0.686	0.445		
Telangana	6	74.10	0.708	0.399		
	9	73.36	0.728	0.459		
Orissa	3 6 9	100.74 95.68 92.2	0.747 0.770 0.773	0.545 0.590 0.597		
Jharkhand	3 6 9	71.87 68.8 67.65	0.803 0.824 0.806	0.642 0.670 0.676		

- Increase in the performance with the increase in no. of inputs.
- Coefficients of correlation considering all the tested subdivisions lie between 0.6 - 0.8, NSE coefficient is greater than which indicates the model with different input sets gives good performance
- But with 9-month lag input best results are obtained
- Model yields better results for some of the subdivisions that is reflected through the above performance statistics table

Conclusion

- Hybrid Conv1D-MLP model has potential for monthly rainfall prediction of daily rainfall using past data as the input variables
- From performance it is concluded that deep learning has the potential to capture the non-linear relationship between the past data and monthly rainfall variability
- So the predictions obtained from the proposed hybrid DL model can be helpful in agriculture, flooding due to heavy rainfall etc..

Future Work

- Application to other Subdivisions
- Month-wise analysis of predictability
- Comparison with other machine learning models, such as support vector regression(SVR)
- Spatial variation in long-lead predictability of monthly rainfall using global climatic indices

THANK YOU!