Algorítmica

Curso 2023-2024

Grupo Viterbi

PRÁCTICA 1-ANÁLISIS DE EFICIENCIA DE ALGORITMOS

Integrantes:

Miguel Ángel De la Vega Rodríguez Alberto De la Vera Sánchez Joaquín Avilés De la Fuente Manuel Gomez Rubio Pablo Linari Perez miguevrod@correo.ugr.es joaquin724@correo.ugr.es adelaveras01@correo.ugr.es e.manuelgmez@go.ugr.es e.pablolinari@go.ugr.es

Facultad de Ciencias UGR Escuela Técnica Ingeniería Informática UGR Granada 2023-2024

Índice general

1	Participación							
2	2 Equipo de trabajo				4			
3	3 Objetivos				5			
4	4 Diseño del estudio				6			
	4.1 Algoritmos de ordenación de vectores				. 6			
	4.2 Otros algoritmos							
	4.3 Scripts usados para la ejecución				. 7			
5	5 Algoritmos				8			
	5.1 Estudio teórico				. 8			
	5.2 Estudio empírico				. 15			
	5.3 Ejecución en distintos ordenadores				. 22			
	5.4 Estudio híbrido							
	5.5 Ajustes incorrectos				. 29			
6	6 Estudio de las gráficas				31			
	6.1 Algoritmos $O(n^2)$. 31			
	6.2 Algoritmos $O(n \log(n))$							
	6.3 Algoritmos Hanoi , Floyd y Fibbonaci				. 34			
7	7 Conclusiones				35			

Participación

- Miguel Ángel De la Vega Rodríguez: 20%
 - Plantilla y estructura del documento LATEX
 - Cómputo de la eficiencia de los algoritmos de ordenación
 - Diseño de main para los ejecutables y scripts
- Joaquín Avilés De la Fuente: 20%
 - Diseño del estudio
 - Computo algoritmo individual
 - Eficiencia Teórica
- Alberto De la Vera Sánchez: 20%
 - Estudio híbrido
 - Conclusión
 - Computo algoritmo individual
- Manuel Gomez Rubio 20%
 - Diseño de main para ejecutables (especialmente string)
 - Computo algoritmo individual
 - Eficiencia teórica
- Pablo Linari Pérez: 20%
 - Estudio y comparación de las gráficas
 - Diseño del estudio y tablas

Equipo de trabajo

- Miguel Ángel De la Vega Rodríguez: (Ordenador donde se ha realizado el computo)
 - AMD Ryzen 7 2700X 8-Core
 - 16 GB RAM DDR4 3200 MHz
 - NVIDIA GeForce GTX 1660 Ti
 - 1 TB SSD NvMe

Objetivos

En esta práctica, se han implementado los siguientes algoritmos de ordenación: **quicksort, mergesort, inserción, burbuja,** y **selección**. Además, se han implementado los algoritmos de **Floyd**, que calcula el costo del camino mínimo entre cada par de nodos de un grafo dirigido, de **Fibonacci**, que calcula los números de la sucesión de Fibonacci, y de **Hanoi**, que resuelve el famoso problema de las torres de Hanoi. Se ha aplicado la siguiente metodología:

- En primer lugar, aunque tenemos la eficiencia teórica de estos algoritmos, se realizarán los calculos necesarios para demostrar como se obtiene dicha eficiencia utilizando los distintos métodos estudiados en teoría.
- En segundo lugar, se pasará al estudio empírico de los algoritmos de ordenación de vectores para distintos tipos de datos, es decir, para datos tipo **int**, **float**, **double** y **string**. Posteriormente, se creará las gráficas para cada algoritmo en las que visualizaremos el tiempo de ejecución en función del tamaño del vector y del tipo de dato. Finalmente para esta parte, se hara un calculo de **eficiencia híbrida** que se basa en ajustar la gráfica obtenida a la función de su eficiencia teórica por mínimos cuadrados, obteniendo por tanto los literales de dicha función que ajustan la gráfica.
- En tercer lugar, se hará el estudio de los otros tres algoritmos de forma similar, es decir, se estudiará la eficiencia de estos de modo empírica, cuyo estudio se mostrará en las gráficas, y se calculará la eficiencia híbrida de estos, a partir de la eficiencia teórica.

Diseño del estudio

Los estudios empíricos han sido realizados en el ordenador con las características mencionadas anteriormente. Además, hemos realizado el estudio empírico de forma aislada para el algoritmo de ordenación de vectores inserción en los distintos ordenadores de los participantes del grupo para ver como afectan las características hardware de cada ordenador en el tiempo de ejecución, cuyas gráficas se mostrarán en la sección de Algoritmos. En ambos casos se ha hecho uso del sistema operativo Linux, concretamente de Debian, y se ha utilizado el compilador gcc para la compilación de los programas con el flag -Og para la optimización.

4.1 Algoritmos de ordenación de vectores

Para los algoritmos de ordenación se han usado entradas de datos de tipo int, float, double y string mientras que para los algoritmos de Hanoi, Floyd y Fibonnaci solo se han usado entradas de tipo int ya que no tendría sentido usar entradas de otro tipo.

- En los algoritmos con eficiencia $O(n^2)$ como los de Burbuja, Selección e Inserción los saltos usados entre los tipos de datos int, float y double generados aleatoriamente son de 5000 en 5000 empezando con una muestra de 5000 datos y llegando a un máximo de 125000 datos.
- En los lagoritmos con eficiencia $O(n \log(n))$ como el mergesort o el quicksort los saltos usados entre los tipos de datos int, float y double generados aleatoriamente son de 50000 en 50000 empezando con una muestra de 50000 datos y llegando a un máximo de 1250000 datos.

4.2 Otros algoritmos

En los algoritmos restantes se han usado datos de tipo int generados aleatoriamente y proporcionados en la siguiente medida:

- Para el algoritmo de *Floyd* que es de orden $O(n^3)$ se han usado enteros aleatorios desde 50 hasta 1250 con saltos de 50 en 50.
- Para el algoritmo de *Fibonnaci* que es de orden $O((\frac{1+\sqrt{5}}{2})^n)$ se han usado enteros aleatorios desde 50 hasta 1250 con saltos de 50 en 50.
- Para el algoritmo de *Hanoi* que es de orden $O(2^n)$ se han usado enteros aleatorios desde 3 hasta 33 con saltos de 50 en 50.

Por último para el tipo de dato string se han extraido las muestras del archivo *quijote.txt* para simular una generación aleatoria de palabras, esta entrada de datos no ha sido totalmente aleatoria ya que al usar un lenguaje determinado para el texto, en este caso el español, se repiten con mas frecuencia algunas palabras por tanto esto se verá reflejado en el comportamiento de los algoritmos. En este caso el Quijote tiene un total de 202308 palabras por lo que se comenzará con una muestra de 12308 palabras con saltos de 10000 en 10000 hasta llegar a 202308 palabras.

4.3 Scripts usados para la ejecución

- [AutoCompile.sh] Este script se encarga de compilar todos los ficheros en una misma carpeta con las mismas opciones de compilación, para garantizar la máxima igualdad posible entre cada algoritmo y organizar la estructura de ficheros.
- [AutoFinal.sh] Este script es el encargado de ejecutar todos los algoritmos varias veces con las opciones respectivas para cada uno, el resultado se pasa por un programa AutoMedia.py que se encarga de realizar la media de las ejecuciones de los algoritmos, este resultado es guardado en una carpeta llamada Resultados de la que posteriormente el mismo script genera las graficas de cada algoritmo.
- [AutoIndividual.sh] Este script es como el descrito previamente pero unicamente ejecuta un script, esto ha sido útil para hacer pruebas sin la necesidad de esperar la gran cantidad de tiempo que requiere la ejecución de todos los algoritmos.
- [AutoHibrido.sh] Este script se encarga de generar las gráficas de los ajustes híbridos, así como de guardar en un fichero .log los resultados numéricos de ajustar las gráficas. De dicho fichero obtenemos las constantes ocultas como la varianza de residuos

Apartado 5

Algoritmos

Esta sección esta dedicada a mostrar los resultados obtenidos en el estudio de los algoritmos, la estructura seguida para mostrar los resultados consiste en mostrar, para cada algoritmo, los tiempos de ejecución, junto con las gráficas obtenidas y los ajustes correspondientes. Previo a ello, se analizará en cada caso teoricamente la eficiencia prevista para cada algoritmo.

5.1 Estudio teórico

En esta sección se calculará la eficiencia teórica de cada algoritmo, es decir, la eficiencia que se espera al hacer el estudio empírico de cada algoritmo. Para ello, se utilizarán los métodos estudiados en teoría.

Algoritmo de ordenación Burbuja

Utilizaremos el siguiente fragmento de código para estudiar su eficiencia, pues es el utilizado en la práctica

```
void burbuja(int T[], int inicial, int final)
{
    int i, j;
    int aux;
    for (i = inicial; i < final - 1; i++)
        for (j = final - 1; j > i; j--)
        if (T[j] < T[j - 1])
        {
            aux = T[j];
            T[j] = T[j - 1];
            T[j - 1] = aux;
    }
}</pre>
```

El trozo de código dentro del bucle interno, es decir, de la línea 7 a la 12 tiene eficiencia O(1) y por tanto tiene un tiempo de ejecución constante que anotaremos como a. Además, este trozo de código se ejecuta en concreto (final-1)-(i+1)+1 veces, es decir, final-i-1 veces. Es claro que la ejecución de la línea 3 y 4 y las comparaciones, inicializaciones y actualizaciones de los bucles tienen eficiencia O(1). Sabiendo esto y que el número de veces que se ejecute el bucle interno depende del externo tenemos entonces la siguiente fórmula

$$\sum_{i=inicial}^{final-2} \sum_{j=i+1}^{final-1} a$$

Tomaremos final = n e inicial = 1 para simplificar el cálculo y veamos que obtenemos ahora

$$\sum_{i=1}^{n-2} \sum_{j=i+1}^{n-1} a = a \cdot \sum_{i=1}^{n-2} \sum_{j=1}^{n-i-1} 1 = a \cdot \sum_{i=1}^{n-2} (n-i-1) = a \cdot (n \sum_{i=1}^{n-2} 1 - \sum_{i=1}^{n-2} i - \sum_{i=1}^{n-2} 1) =$$

$$= a \cdot (n(n-2) - \frac{(n-2)(n-1)}{2} - (n-2)) = a \cdot (n^2 - 2n - \frac{n^2 - 3n + 2}{2} - n + 2) =$$

$$= a \cdot \left(\frac{n^2}{2} - \frac{3}{2}n + 1\right) = \frac{n^2}{2}a - \frac{3}{2}na + a$$

Es claro que $\frac{n^2}{2}a - \frac{3}{2}na + a \in O(n^2)$ y por tanto la eficiencia teórica del algoritmo de burbuja es $O(n^2)$.

Algoritmo de ordenación Inserción

Utilizaremos el siguiente fragmento de código para estudiar su eficiencia, pues es el utilizado en la práctica

```
void insercion(int T[], int inicial, int final)
                  int i, j;
                   int aux;
                  for (i = inicial + 1; i < final; i++) {</pre>
6
                     while ((T[j] < T[j-1]) \&\& (j > 0)) {
                       aux = T[j];
                       T[j] = T[j-1];
9
                       T[j-1] = aux;
10
11
                     };
12
                  };
13
```

El trozo de código dentro del bucle interno, es decir, de la línea 8 a la 10 tiene eficiencia O(1) y por tanto tiene un tiempo de ejecución constante que anotaremos como a. Dicho trozo de código se ejecutará en el peor de los casos i - (0+1) + 1 = i veces, mientras que el bucle while se ejecutará (final - 1) - (inicial + 1) + 1 = final - inicial - 1 veces. Sabiendo que la ejecución de la línea 3 y 4 y las comparaciones, inicializaciones y actualizaciones de los bucles tienen eficiencia O(1), tenemos la siguiente fórmula

$$\sum_{i=inicial+1}^{final-1} \sum_{i=1}^{i} a$$

Tomaremos final = n e inicial = 1 para simplificar el cálculo y veamos que obtenemos ahora

$$\sum_{i=2}^{n-1} \sum_{j=1}^{i} a = a \cdot \sum_{i=2}^{n-1} \sum_{j=1}^{i} 1 = a \cdot \sum_{i=2}^{n-1} i = a \cdot \left(\sum_{i=1}^{n-1} i - 1\right) = a \cdot \left(\frac{(n-1)n}{2} - 1\right) = a \cdot \left(\frac{n^2 - n}{2} - 1\right)$$

Es claro que $\frac{n^2}{2}a - \frac{1}{2}na - a \in O(n^2)$ y por tanto la eficiencia teórica del algoritmo de inserción es $O(n^2)$.

Algoritmo de ordenación Selección

Utilizaremos el siguiente fragmento de código para estudiar su eficiencia, pues es el utilizado en la práctica

```
void selection(int T[], int initial, int final)
                {
                   int i, j, indice_menor;
                   int menor, aux;
                  for (i = inicial; i < final - 1; i++) {</pre>
                     indice_menor = i;
                     menor = T[i];
                     for (j = i; j < final; j++)</pre>
                       if (T[j] < menor) {</pre>
                          indice_menor = j;
                         menor = T[j];
11
                       }
                     aux = T[i];
13
                     T[i] = T[indice_menor];
14
15
                     T[indice_menor] = aux;
                  };
16
                }
```

El trozo de código dentro del bucle interno, es decir, de la línea 9 a la 14 tiene eficiencia O(1) y por tanto tiene un tiempo de ejecución constante que anotaremos como a. Este trozo de código se ejecutará en el peor de los casos (final-1)-i+1=final-i veces, mientras que el bucle for interno se ejecutará (final-1-1)-inicial+1=final-inicial-1 veces. Sabiendo que la ejecución de las líneas 3, 4, 6, 7 y las comparaciones, inicializaciones y actualizaciones de los bucles tienen eficiencia O(1), tenemos la siguien fórmula

$$\sum_{i=inicial}^{final-2} \sum_{j=i}^{final-1} a$$

Tomaremos final = n e inicial = 1 para simplificar el cálculo y veamos que obtenemos ahora

$$\begin{split} \sum_{i=1}^{n-2} \sum_{j=i}^{n-1} a &= a \cdot \sum_{i=1}^{n-2} \sum_{j=1}^{n-1-(i-1)} 1 = a \cdot \sum_{i=1}^{n-2} \sum_{j=1}^{n-i} 1 = a \cdot \sum_{i=1}^{n-2} n - i = a \cdot (n \sum_{i=1}^{n-2} 1 - \sum_{i=1}^{n-2} i) \\ &= a \cdot \left(n(n-2) - \frac{(n-2)(n-1)}{2} \right) = a \cdot \left(n^2 - 2n - \frac{n^2 - 3n + 2}{2} \right) = a \cdot \left(\frac{n^2}{2} - \frac{n}{2} - 1 \right) \\ &= \frac{n^2}{2} a - \frac{n}{2} a - a \end{split}$$

Es claro que $\frac{n^2}{2}a - \frac{n}{2}a - a \in O(n^2)$ y por tanto la eficiencia teórica del algoritmo de inserción es $O(n^2)$.

Algoritmo de ordenación Mergesort

Utilizaremos el siguiente fragmento de código para estudiar su eficiencia, pues es el utilizado en la práctica

```
void fusion(int T[], int inicial, int final, int U[], int V[])

int j = 0;
int k = 0;
for (int i = inicial; i < final; i++){
    if (U[j] < V[k]) {
        T[i] = U[j];
        j++;
}</pre>
```

```
} else{
10
                         T[i] = V[k];
11
                         k++;
12
                     };
13
                };
14
           }
16
            void mergesort(int T[], int inicial, int final)
17
18
                if (final - inicial < UMBRAL_MS){</pre>
19
                     insercion(T, inicial, final);
20
                } else {
21
                     int k = (final - inicial)/2;
                     int * U = new int [k - inicial + 1];
                     assert(U);
                     int 1, 12;
26
                     for (1 = 0, 12 = inicial; 1 < k - inicial; 1++, 12++)
                         U[1] = T[12];
28
                     U[1] = INT_MAX;
29
30
                     P * V = new P [final - k + 1];
31
                     assert(V);
                     for (1 = 0, 12 = k; 1 < final - k; 1++, 12++)
33
                         V[1] = T[12];
34
                     V[1] = INT_MAX;
35
36
                     mergesort_lims(U, 0, k - inicial);
37
                     mergesort_lims(V, 0, final - k);
38
                     fusion(T, inicial, final, U, V);
                     delete [] U;
                     delete [] V;
41
                };
42
           }
43
```

Destacar que tomaremos final = n e inicial = 0. Es claro que en el caso de $n = final - inicial < UMBRAL_MS$ la eficiencia del algoritmo en el peor caso es $O(UMBRAL_MS^2)$, es decir, constante, por tanto, nos centraremos en el caso en el que $n \ge UMBRAL_MS$. En este caso, el algoritmo se divide en dos partes, la primera parte es la creación de los vectores U y V y la segunda parte es la llamada recursiva a la función mergesort y el resto de código.

La primera parte la podemos dividir en dos: la creación del vector U tomando entonces de la línea 22 a la línea 29, donde podemos ver que el bucle for de la línea 27 se ejecuta $\frac{n}{2}$ veces; y la creación del vector V tomando entonces de la línea 31 a la línea 35, donde tenemos el mismo resultado. Tenemos entonces que ambas partes tienen eficiecia $O(\frac{n}{2})$, es decir, O(n) y aplicando la regla del máximo obtendríamos hasta la línea 35 un orden de O(n).

En la segunda parte, observamos que la llamada recursiva a la función mergesort se hace dos veces con vectores de tamaño $\frac{n}{2}$. Además, viendo la función **fusion** vemos que el bucle for de la línea 6 se ejecuta n veces, es decir, dicha función tiene eficiencia O(n).

Teniendo en cuenta el razonamiento hecho y aplicando la regla de la suma, obtenemos la siguiente ecuación

$$T(n) = 2T(\frac{n}{2}) + n$$

Pasemos ahora a resolver dicha ecuación de recurrencia. Aplicando el siguiente cambio de variable $n=2^m$ obtenemos

$$T(2^m) = 2T(2^{m-1}) + 2^m \Longrightarrow T(2^m) - 2T(2^{m-1}) = 2^m$$

Resolvamos la parte homógenea de la ecuación, es decir, la ecuación $T(2^m) - 2T(2^{m-1}) = 0$. Obtenemos el polinomio característico de la parte homógenea que es $p_H(x) = x - 2$ cuya raíz es x = 2. Obtengamos ahora la parte no homógenea

$$2^m = b_1^m q_1(m) \Longrightarrow b_1 = 2 \land q_1(m) = 1$$
 con grado $d_1 = 0$

Tenemos entonces el siguiente polinómio característico

$$p(x) = (x-2)(x-b_1)^{d_1+1} = (x-2)^2$$

Por tanto la solución general es

$$t_m = c_{10}2^m m^0 + c_{11}2^m m^1 \stackrel{*}{\Longrightarrow} t_n = c_{10}n + c_{11}n\log_2(n) \Longrightarrow T(n) = c_{10}n + c_{11}n\log_2(n)$$

donde en (*) hemos deshecho el cambio de variable Aplicando la regla del máximo tenemos $T(n) \in O(n \log(n))$

Algoritmo de ordenación quicksort

Para el estudio de eficiencia de este algoritmo hemos usado el siguiente código:

```
void quicksort(int T[], int inicial, int final){
              int k;
2
              if (final - inicial < UMBRAL_QS) {</pre>
                  insercion(T, inicial, final);
              } else {
                  dividir_qs(T, inicial, final, k); <--- 0(n)</pre>
                  //peor caso
                  O(n-1) ---> quicksort(T, inicial, k); <--- O(n/2)
                  O(1) ---> quicksort(T, k + 1, final); <--- O(n/2)
10
              }
11
          }
13
          void dividir_qs(int T[], int inicial, int final, int & pp){
14
              int pivote, aux;
15
              int k, l;
16
17
              pivote = T[inicial];
18
              k = inicial;
19
              1 = final;
20
              do {
22
              do {
25
                  1--;
              } while (T[1] > pivote);
26
              while (k < 1) {</pre>
                                          <--- 0(n)
27
                  aux = T[k];
                  T[k] = T[1];
29
```

```
T[1] = aux;
30
                      do k++; while (T[k] <= pivote);</pre>
31
                      do 1--; while (T[1] > pivote);
32
                 };
33
                 aux = T[inicial];
34
                 T[inicial] = T[1];
35
                 T[1] = aux;
36
                 pp = 1;
            };
```

Para el estudio de la eficiencia se ha ido estudiando cada método por separado. El método llamado inserción no se tiene en cuenta para la eficiencia ya que solo se usa cuando el problema es de un tamaño menor a UMBRAL_QS. A simple vista es fácil comprobar que el propósito del algoritmo es dividir la ordenación del vector de tamaño original en otros dos de un tamaño más reducido, en el mejor de los casos este será a la mitad si el pivote es justo la mediana. La parte de la llamada recursiva, es $O(\frac{n}{2})$, y la llamada a dividir_qs es O(n), por tanto obtenemos la siguiente expresión:

$$T(n) = 2T\left(\frac{n}{2}\right) + n$$

usando el cambio de variable $n = 2^k$ obtenemos:

$$t_k - 2t_{k-1} = 2^k$$

cuyo polinomio característico es:

$$p(x) = (x-2)^2 \Rightarrow t_k = c_1 2^k + c_2 2^k k$$

Finalmente, desacemos el cambio obteniendo:

$$t_n = c_1 n + c_2 n \log_2 n \in O(n \log_2 n)$$

Donde vemos que el algorimo es O(nlog n).

En el peor caso, lo que ocurre es que el algoritmo no puede establecer un buen pivote, lo que hace que se obtenga la siguiente ecuación:

$$T(n) = T(n-1) + n + 1 = T(n-2) + 2n + 2 = ... = T(n-k) + kn + k$$

tomando k = n - 1 para llegar al caso base tenemos que:

$$T(n) = T(n-n+1) + (n-1)n + n - 1 = T(1) + (n-1)n + n - 1 \in O(n^2)$$

Donde se ve que en el peor de los casos el algoritmo es $O(n^2)$ que es lo que ocurre con los string por tener un mayor coste de operación, o con los vectores de números ya ordenados o casi ordenados.

Algoritmo de Floyd

Para analizar la eficiencia de este algoritmo se ha usado este fragmento del código:

```
void Floyd(int **M, int dim){
for (int k = 0; k < dim; k++)

for (int i = 0; i < dim;i++)

for (int j = 0; j < dim;j++)

{
    int sum = M[i][k] + M[k][j];
    M[i][j] = (M[i][j] > sum) ? sum : M[i][j];
}
}
```

Para el estudio de la eficiencia de este algoritmo es bastante simple ya que a simple vista ya se puede comprobar que es $O(n^3)$ porque hay tres bucles for anidados y cada uno es O(n) por lo que el algoritmo es $O(n^3)$ como se había mencionado.

$$T(n) \in O(n^3)$$

Algoritmo de Fibonacci

Para el la estudio de la eficiencia de este algoritmo se ha usado el siguiente código:

```
int fibo(int n){
    if (n < 2)
        return 1;

else
    return fibo(n-1) + fibo(n-2);
}</pre>
```

Estudiando este código se pueden observar dos llamadas recursivas con n-1 y n-2 respectivamente, por lo que si obtenemos la ecuación de la eficiencia del algorimo, al ser la condición del if constante, tenemos que:

$$T(n) = T(n-1) + T(n-2) + 1$$

tomando $T(n) = x^n$ obtenemos:

$$x^{n} = x^{n-1} + x^{n-2} + 1 \Leftrightarrow x^{n} - x^{n-1} - x^{n-2} = 1 \Leftrightarrow x^{n-2}(x^{2} - x - 1) = 1 = 1^{n}n^{0}$$

como $x^{n-2} \neq 0$ tenemos que calcular las raíces del polinomio característico:

$$p(x) = (x - \frac{1 + \sqrt{5}}{2})(x - \frac{1 - \sqrt{5}}{2})(x - 1)$$

de donde obtenemos:

$$t(n) = c_1 \left(\frac{1 + \sqrt{5}}{2}\right)^n + c_2 \left(\frac{1 - \sqrt{5}}{2}\right)^n + c_3 1^n \Rightarrow T(n) \in O\left(\left(\frac{1 + \sqrt{5}}{2}\right)^n\right)$$

Por tanto se comprueba que el algoritmo es $O((\frac{1+\sqrt{5}}{2})^n)$

Algoritmo de Hanoi

Para el la estudio de la eficiencia de este algoritmo se ha usado el siguiente código:

Vemos que se llama recursivamente dos veces a la función hanoi con M-1, y sabiendo que la eficiencia del if es constante tenemos la siguiente ecuación de recurrencia:

$$T(n) = 2T(n-1) + 1 \wedge T(0) = 1$$

Destacar que hemos tomado n=M. Resolviendo la ecuación de recurrencia obtenemos:

$$T(n) = 2T(n-1) + 1 = 2(2T(n-2) + 1) + 1 = 2^{2}T(n-2) + 3 = 2(2^{2}T(n-3) + 3) + 1 = 2^{3}T(n-3) + 7 = 2^{2}T(n-k) + 2k - 1$$

Habiendo obtenido el caso general, veamos que obtenemos con k = n

$$T(n) = 2^{n}T(n-n) + 2n - 1 = 2^{n}T(0) + 2n - 1 = 2^{n} + 2n - 1 \Longrightarrow T(n) \in O(2^{n})$$

Por tanto se comprueba que el algoritmo es $O(2^n)$

5.2 Estudio empírico

A continuación pasamos a estudiar la eficiencia empírica de los algoritmos previamente vistos, el objetivo de este estudio es ver el comportamiento real de los algoritmos al ser ejecutados en un ordenador. Se presentaran los datos en dos formatos grafica y tabla para poder contrastar visualmente los algoritmos.

Burbuja

Como se puede observar, el algoritmo de burbuja es $O(n^2)$ y su eficiencia con datos numéricos es parecida en los tres tipos, mientras que con datos de tipo string se observa un mayor costo de tiempo de ejecución.

Figura 5.1: Ejecución algoritmo burbuja

Figura 5.2: Ejecución algoritmo burbuja con string

Seleccion

El algoritmo de seleccion es $O(n^2)$ y su eficiencia con datos numéricos es parecida en los tres tipos pero en este caso los datos de tipo int sacan mas ventaja que los tipo float, mientras que con datos de tipo string se observa un mayor costo de tiempo de ejecución.

Burbuja								
Tip	oo Int	Tipo	Float	Tipo Double		Tipo	String	
Tamaño	Tiempo	Tamaño	Tiempo	Tamaño	Tiempo	Tamaño	Tiempo	
5000	0,0349211	5000	0,0217027	5000	0,021847	12308	0,211221	
10000	0,120458	10000	0,102747	10000	0,101877	22308	0,615473	
15000	0,245185	15000	0,258293	15000	0,25446	32308	1,28107	
20000	0,441264	20000	0,492039	20000	0,49134	42308	2,1949	
25000	0,683406	25000	0,812521	25000	0,802523	52308	3,34899	
30000	1,04181	30000	1,20884	30000	1,22906	62308	4,76194	
35000	1,38162	35000	1,69518	35000	1,69937	72308	6,41449	
40000	1,84603	40000	2,27424	40000	2,25218	82308	8,29372	
45000	2,38588	45000	2,93436	45000	2,91507	92308	10,4296	
50000	2,98525	50000	3,69289	50000	3,66562	102308	12,827	
55000	3,69388	55000	4,53819	55000	4,58012	112308	15,4556	
60000	4,39556	60000	5,52096	60000	5,49872	122308	18,6297	
65000	5,17327	65000	6,56449	65000	6,50195	132308	21,4492	
70000	6,06058	70000	7,6747	70000	7,66039	142308	25,1843	
75000	7,0144	75000	8,89351	75000	8,79687	152308	28,8384	
80000	8,04692	80000	10,2096	80000	10,1098	162308	32,7271	
85000	9,15881	85000	11,6127	85000	11,5094	172308	36,8875	
90000	10,3159	90000	13,1071	90000	12,9876	182308	41,3668	
95000	11,6496	95000	14,6642	95000	14,7154	192308	46,0167	
100000	12,8843	100000	16,3917	100000	16,3819	202308	50,8681	
105000	14,2458	105000	18,1445	105000	18,1415			
110000	15,7108	110000	19,9994	110000	19,9348			
115000	17,2545	115000	21,9713	115000	21,8762			
120000	18,8423	120000	24,0176	120000	23,9177			
125000	20,5122	125000	26,1758	125000	26,0694			

Figura 5.3: Ejecución algoritmo seleccion

Figura 5.4: Ejecución algoritmo seleccion con string

Selección								
Ti	Tipo Int		Tipo Float		Tipo Double		Tipo String	
Tamaño	Tiempo	Tamaño	Tiempo	Tamaño	Tiempo	Tamaño	Tiempo	
5000	0,00742912	5000	0,00656798	5000	0,00592686	12308	0,183608	
10000	0,028543	10000	0,0255079	10000	0,021291	22308	0,60529	
15000	0,0552547	15000	0,0567478	15000	0,0473479	32308	1,26893	
20000	0,0576667	20000	0,1013	20000	0,079274	42308	2,17589	
25000	0,119985	25000	0,155952	25000	0,123864	52308	3,32206	
30000	0,136593	30000	0,22519	30000	0,17523	62308	4,71574	
35000	0,211097	35000	0,3326	35000	0,24262	72308	6,34248	
40000	0,266688	40000	0,399363	40000	0,318302	82308	8,21518	
45000	0,303022	45000	0,50144	45000	0,393314	92308	10,3325	
50000	0,365775	50000	0,622559	50000	0,488219	102308	12,6803	
55000	0,425585	55000	0,752239	55000	0,583393	112308	15,3029	
60000	0,481344	60000	0,902525	60000	0,696681	122308	18,1543	
65000	0,560598	65000	1,0589	65000	0,815409	132308	21,2342	
70000	0,648472	70000	1,23376	70000	0,951775	142308	24,7701	
75000	0,745198	75000	1,40422	75000	1,08181	152308	28,326	
80000	0,851962	80000	1,5725	80000	1,22849	162308	32,1693	
85000	0,970841	85000	1,77537	85000	1,39556	172308	36,2288	
90000	1,0899	90000	1,99127	90000	1,57202	182308	40,7869	
95000	1,18203	95000	2,21625	95000	1,74023	192308	45,8192	
100000	1,33268	100000	2,45637	100000	1,94182	202308	50,7106	
105000	1,44115	105000	2,70612	105000	2,14333			
110000	1,60109	110000	2,94571	110000	2,34173			
115000	1,73173	115000	3,19926	115000	2,55887			
120000	1,87346	120000	3,47832	120000	2,77209			
125000	2,07954	125000	3,77295	125000	3,03284			

Inserción

El algoritmo de insercion es $O(n^2)$ y su eficiencia con datos float y double es muy parecida mientras que los datos tipo int siguen sacando ventaja. Por parte de los datos de tipo string se puede observar que al haber repeticiones el algoritmo se ve beneficiado y reduce considerablemente su tiempo de ejecución.

Figura 5.5: Ejecución algoritmo insercion

Figura 5.6: Ejecución algoritmo inserción con string

	Inserción								
Tipo Int		Tipo	Float	Tipo	Tipo Double		o String		
Tamaño	Tiempo	Tamaño	Tiempo	Tamaño	Tiempo	Tamaño	Tiempo		
5000	0,0202083	5000	0,0231026	5000	0,0123225	12308	3,45E-05		
10000	0,0669288	10000	0,083436	10000	0,0489249	22308	6,10E-05		
15000	0,118554	15000	0,109163	15000	0,10909	32308	8,77E-05		
20000	0,171463	20000	0,194157	20000	0,194458	42308	0,000114708		
25000	0,290236	25000	0,303104	25000	0,303342	52308	0,000141829		
30000	0,4179	30000	0,474516	30000	0,437655	62308	0,000168388		
35000	0,546578	35000	0,611683	35000	0,591596	72308	0,000195308		
40000	0,664381	40000	0,788565	40000	0,772917	82308	0,000222477		
45000	0,844561	45000	0,967047	45000	0,97772	92308	0,000249857		
50000	1,03853	50000	1,1911	50000	1,20692	102308	0,000276907		
55000	1,25102	55000	1,43977	55000	1,45909	112308	0,000303237		
60000	1,51964	60000	1,71672	60000	1,73629	122308	0,000326027		
65000	1,7472	65000	2,00781	65000	2,03246	132308	0,000353216		
70000	2,03282	70000	2,32859	70000	2,35687	142308	0,000379146		
75000	2,32695	75000	2,67209	75000	2,70622	152308	0,000406996		
80000	2,64902	80000	3,04303	80000	3,0808	162308	0,000441945		
85000	2,99459	85000	3,43543	85000	3,47801	172308	0,000459225		
90000	3,35945	90000	3,8531	90000	3,90283	182308	0,000492385		
95000	3,74271	95000	4,28721	95000	4,34073	192308	0,000513575		
100000	4,14988	100000	4,75486	100000	4,81364	202308	0,000547894		
105000	4,56802	105000	5,23354	105000	5,30147				
110000	5,01684	110000	5,74715	110000	5,8236				
115000	5,48697	115000	6,3353	115000	6,36572				
120000	5,98221	120000	6,95729	120000	6,93946				
125000	6,51173	125000	7,53129	125000	7,54045				

Mergesort

El algoritmo mergesort es del tipo $O(n \log(n))$ por tanto su tiempo de ejecución se ve reducido en comparación a los algoritmos anteriormente vistos, lso datos numéricos se coimportan de forma parecida en los tres casos.

Figura 5.7: Ejecución algoritmo Mergesort

Figura 5.8: Ejecución algoritmo Mergesort con string

Mergesort							
Ti	po Int	Tip	o Float	Tipo Double		Tipo	String
Tamaño	Tiempo	Tamaño	Tiempo	Tamaño	Tiempo	Tamaño	Tiempo
50000	0,00885563	50000	0,00535974	50000	0,0109506	12308	0,00232464
100000	0,0197725	100000	0,0113207	100000	0,0229505	22308	0,00426666
150000	0,0256754	150000	0,0159655	150000	0,032702	32308	0,00570479
200000	0,0396519	200000	0,0238364	200000	0,0470055	42308	0,00839818
250000	0,0408458	250000	0,0263662	250000	0,0465912	52308	0,00923186
300000	0,0487663	300000	0,0338221	300000	0,045297	62308	0,0115959
350000	0,0550213	350000	0,0412734	350000	0,0516928	72308	0,0142777
400000	0,0522138	400000	0,0473443	400000	0,0576073	82308	0,0169875
450000	0,0539998	450000	0,0587599	450000	0,0581018	92308	0,0199003
500000	0,0567018	500000	0,0631239	500000	0,0668968	102308	0,0195291
550000	0,0649299	550000	0,0721455	550000	0,0680914	112308	0,0217157
600000	0,0730137	600000	0,078831	600000	0,0821479	122308	0,0240279
650000	0,0765446	650000	0,0864586	650000	0,0840685	132308	0,0269058
700000	0,0783553	700000	0,095748	700000	0,107731	142308	0,0295147
750000	0,0801539	750000	0,1006187	750000	0,110418	152308	0,0322954
800000	0,0898059	800000	0,105794	800000	0,113999	162308	0,0350564
850000	0,0904214	850000	0,11503	850000	0,115276	172308	0,0379305
900000	0,0957652	900000	0,115988	900000	0,118358	182308	0,040835
950000	0,102922	950000	0,119324	950000	0,125308	192308	0,041929
1000000	0,10751	1000000	0,126549	1000000	0,130252	202308	0,0454001
1050000	0,114045	1050000	0,133461	1050000	0,138512		
1100000	0,117457	1100000	0,140533	1100000	0,145543		
1150000	0,124595	1150000	0,147092	1150000	0,147466		
1200000	0,130175	1200000	0,155134	1200000	0,161852		
1250000	0,137581	1250000	0,160264	1250000	0,175689		

Quicksort

El algoritmo quicksort es el último de los algoritmos de ordenación vistos en esta práctica, tiene eficiencia $O(n \log(n))$ y se comporta de forma parecida con los 3 tipos de datos numericos pero a la hora de orenar strings aumenta su tiempo de ejecución debido a la existencia de datos repetidos en gran cantidad por tanto se comporta mas parecido a un algoritmo de eficiencia cuadrática que a uno de eficiencia logaritmica.

Figura 5.9: Ejecución algoritmo quicksort

Figura 5.10: Ejecución algoritmo quicksort con string

Hanoi

Este algoritmo es del orden $O(2^n)$, se puede observar que a partir de un tamaño superior a 30 el tiempo de ejecución se ve altamente afectado.

Figura 5.11: Ejecución algoritmo Hanoi

Hanoi								
Tamaño Tiempo		Tamaño	Tiempo					
3	3.3e-07	19	0.00283343					
4	3.7e-07	20	0.00583306					
5	6.4e-07	21	0.0113207					
6	9.1e-07	22	0.023259					
7	1.31e-06	23	0.04468322					
8	2.13e-06	24	0.0678575					
9	0,003659	25	0.115696					
10	0,006809	26	0.205652					
11	9.15e-06	27	0.387235					
12	0,02484	28	0.757241					
13	0,43039	29	1.45715					
14	0,91049	30	2.91489					
15	0.000180597	31	5.73008					
16	0.000370175	32	11.5402					
17	0.000728411	33	22.9485					
18	0.00143246							

	Quicksort								
Ti	Tipo Int		Tipo Float		Tipo Double		Tipo String		
Tamaño	Tiempo	Tamaño	Tiempo	Tamaño	Tiempo	Tamaño	Tiempo		
50000	0,005404063	50000	0,00656497	50000	0,006872607	12308	0,331982		
100000	0,011849567	100000	0,013940933	100000	0,014531567	22308	0,433525		
150000	0,017589967	150000	0,021820767	150000	0,022618533	32308	0,810498		
200000	0,0238955	200000	0,0290163	200000	0,030920433	42308	1,16745		
250000	0,030245667	250000	0,036930167	250000	0,036553033	52308	1,97952		
300000	0,035111167	300000	0,0380422	300000	0,039921433	62308	2,74097		
350000	0,038264933	350000	0,038178767	350000	0,0424273	72308	3,55831		
400000	0,0422403	400000	0,0424919	400000	0,043377433	82308	4,67599		
450000	0,043866967	450000	0,0473254	450000	0,046259633	92308	5,73606		
500000	0,04426	500000	0,048482467	500000	0,048961533	102308	7,04456		
550000	0,048515033	550000	0,054502367	550000	0,052008133	112308	8,1903		
600000	0,053473367	600000	0,0560969	600000	0,054563333	122308	10,0859		
650000	0,058109467	650000	0,059735933	650000	0,055753933	132308	11,609		
700000	0,061405633	700000	0,063045867	700000	0,058111633	142308	13,1231		
750000	0,063922067	750000	0,0668639	750000	0,062652933	152308	15,4072		
800000	0,065804867	800000	0,067741133	800000	0,066167833	162308	17,1388		
850000	0,069073833	850000	0,073830267	850000	0,072807833	172308	19,0906		
900000	0,073182433	900000	0,077997333	900000	0,0773843				
950000	0,0761217	950000	0,081192567	950000	0,0808991				
1000000	0,079173767	1000000	0,085758067	1000000	0,087570933				
1050000	0,082858733	1050000	0,0920956	1050000	0,095611733				
1100000	0,0841312	1100000	0,097475333	1100000	0,098788367				
1150000	0,0922743	1150000	0,100609	1150000	0,100115767				
1200000	0,095589967	1200000	0,104688333	1200000	0,103156333				
1250000	0,096988633	1250000	0,109222	1250000	0,10996				

Fibonacci

El algoritmo de Fibonnaci es del orden $O((\frac{1+\sqrt{5}}{2})^n)$ y por tanto su compiortamiento es parecido al del algoritmo Hanoi ya que se puede observar que a partir de cierto tamaño de entrada, en este caso 42 el tiempo de ejecución comienza a aumentar.

Fibonacci							
Tamaño	Tiempo	Tamaño	Tiempo				
2	1,90E-07	28	0,00269092				
4	2,50E-07	30	0,00702187				
6	3,10E-07	32	0,0188891				
8	6,20E-07	34	0,0493608				
10	1,13E-06	36	0,101751				
12	2,11E-06	38	0,173823				
14	4,42E-06	40	0,466558				
16	9,70E-06	42	1,23353				
18	2,34E-05	44	3,14718				
20	5,86E-05	46	8,09745				
22	0,000155419	48	21,4575				
24	0,000392447	50	55,7656				
26	0,00103918						

Figura 5.12: Ejecución algoritmo Fibonacci

Floyd

El último algoritmo es del orden $O(n^3)$ y su ejecución es parecida a los de orden $O(n^2)$ viendo que a partir de una entrada mayor a 600 empieza a aumentar el tiempo de manera considerable.

Floyd							
Tamaño	Tiempo	Tamaño	Tiempo				
50	0,000317337	700	0,824563				
100	0,00221242	750	0,956399				
150	0,006823	800	1,19819				
200	0,0089683	850	1,4429				
250	0,0301016	900	1,71932				
300	0,0513097	950	1,99518				
350	0,133839	1000	2,31279				
400	0,174386	1050	2,67816				
450	0,207949	1100	3,11671				
500	0,297192	1150	3,51038				
550	0,399401	1200	4,01139				
600	0,509953	1250	4,50535				
650	0,667422						

Figura 5.13: Ejecución algoritmo Floyd

5.3 Ejecución en distintos ordenadores

Finalmente, acabamos mostrando una comparación entre distintos ordenadores para el mismo algoritmo, para mostrar que cuando el algoritmo es el mismo, la diferencia entre los tiempos de ejecución en distintos ordenadores será puramente de una constate, y el orden de eficiencia se mantendrá. En este caso, ejecutamos el algoritmo de inserción para los tipos de datos int y double, estos fueron los resultados:

Figura 5.14: Ejecución algoritmo Inserción con Int Figura 5.15: Ejecución algoritmo Insercion con Double

5.4 Estudio híbrido

En esta sección, a partir del estudio híbrido, podremos observar como los datos obtenidos de forma empírica, concuerdan con los resultados que deberiamos obtener de forma teorica.

Burbuja

Figura 5.16: Ajuste híbrido algoritmo burbuja Figura 5.17: Ajuste híbrido algoritmo burbuja con string

Tras la interpretación de los datos empíricos en gnuplot y de la formula teorica del método, obtenemos que las constantes ocultas son:

$$T_{burbujaInt}(n) = 1.41315 \cdot 10^{-9} x^2 - 1.3691 \cdot 10^{-5} x + 0.127228$$

$$T_{burbujaFloat}(n) = 1.82299 \cdot 10^{-9} x^2 - 1.98111 \cdot 10^{-5} x + 0.134867$$

$$T_{burbujaDouble}(n) = 1.82075 \cdot 10^{-9} x^2 - 2.20296 \cdot 10^{-5} x + 0.144178$$

$$T_{burbujaString}(n) = 1.26281 \cdot 10^{-9} x^2 - 4.03916 \cdot 10^{-5} x + 0.0834222$$

También podemos ver la varianza en la calidad del ajuste.

$$V_{burbujaInt} = 0.000944698$$

 $V_{burbujaFloat} = 0.000528375$
 $V_{burbujaDouble} = 0.00199636$
 $V_{burbujaString} = 0.00645483$

Selección

Figura 5.18: Ajuste híbrido algoritmo selección

Figura 5.19: Ajuste híbrido algoritmo seleccion con string

Tras la interpretación de los datos empíricos en gnuplot y de la formula teorica del métoco, obtenemos que las constantes ocultas son:

$$\begin{split} T_{\text{SelecciónInt}}(n) &= 1.2734 \cdot 10^{-10} x^2 + 3.1274 \cdot 10^{-7} x + 0.018826 \\ T_{\text{SelecciónFloat}}(n) &= 2.31309 \cdot 10^{-9} x^2 + 1.4781 \cdot 10^{-6} x - 0.0183413 \\ T_{\text{SelecciónDouble}}(n) &= 1.94045 \cdot 10^{-10} x^2 - 1.00224 \cdot 10^{-7} x + 0.00447121 \\ T_{\text{SelecciónString}}(n) &= 1.27216 \cdot 10^{-9} x^2 - 8.8078 \cdot 10^{-6} x + 0.233527 \end{split}$$

También podemos ver la varianza en la calidad del ajuste.

$$\begin{aligned} V_{seleccionInt} &= 0.00026937 \\ V_{seleccionFloat} &= 0.000114947 \\ V_{seleccionDouble} &= 3.49475 \cdot 10^{-5} \\ V_{seleccionString} &= 0.0160175 \end{aligned}$$

Inserción

Figura 5.20: Ajuste híbrido algoritmo inserción

Figura 5.21: Ajuste híbrido algoritmo inserción con string

Tras la interpretación de los datos empíricos en gnuplot y de la formula teorica del métoco, obtenemos que las constantes ocultas son:

$$\begin{split} T_{insercinInt}(n) &= 4.19645 \cdot 10^{-10} x^2 - 8.0708 \cdot 10^{-7} x + 0.0346585 \\ T_{insercinFloat}(n) &= 4.91154 \cdot 10^{-10} x^2 - 1.81363 \cdot 10^{-6} x - 0.0478225 \\ T_{insercinDouble}(n) &= 4.82763 \cdot 10^{-10} x^2 - 1.65187 \cdot 10^{-7} x + 0.00477564 \\ T_{insercinString}(n) &= 1.56549 \cdot 10^{-16} x^2 + 2.64624 \cdot 10^{-9} x + 2.52872 \cdot 10^{-6} \end{split}$$

También podemos ver la varianza en la calidad del ajuste.

$$\begin{split} V_{\rm Inserci\'onInt} &= 0.000177503 \\ V_{\rm Inserci\'onFloat} &= 0.0000614231 \\ V_{\rm Inserci\'onDouble} &= 1.92651 \cdot 10^{-5} \\ V_{\rm Inserci\'onString} &= 6.94094 \cdot 10^{-12} \end{split}$$

Mergesort

Figura 5.22: Ajuste híbrido algoritmo mergesort

Figura 5.23: Ajuste híbrido algoritmo mergesort con string

Tras la interpretación de los datos empíricos en gnuplot y de la formula teorica del métoco, obtenemos que las constantes ocultas son:

$$T_{mergesortInt} = 8.0872 \cdot 10^{-9} x log(x)$$

$$T_{mergesortFloat} = 9.38225 \cdot 10^{-9} x log(x)$$

$$T_{mergesortDouble} = 9.88488 \cdot 10^{-9} x log(x)$$

$$T_{mergesortTouble} = 2.72414 \cdot 10^{-13} x^2 + 1.67908 \cdot 10^{-7} x + 0.000330868$$

También podemos ver la varianza en la calidad del ajuste.

$$V_{mergesortInt} = 8.73646 \cdot 10^{-5}$$

$$V_{mergesortFloat} = 1.2413 \cdot 10^{-5}$$

$$V_{mergesortDouble} = 8.32396 \cdot 10^{-5}$$

$$V_{mergesortrString} = 5.46779 \cdot 10^{-7}$$

Aquí, podemos observar como las gráficas para los datos numéricos concuerdan tanto su estudio teórico como empírico. Sin embargo, en el caso de la gráfica del tipo string la función que mejor se ajusta a los datos obtenidos de forma empírica es la funcion

$$f(x) = a_0 \cdot x^2 + a_1 x + a_0$$

Quicksort

Figura 5.24: Ajuste híbrido algoritmo quicksort

Figura 5.25: Ajuste híbrido algoritmo quicksort con string

Tras la interpretación de los datos empíricos en gnuplot y de la formula teorica del métoco, obtenemos que las constantes ocultas son:

$$\begin{split} T_{quicksortInt}(n) &= 5.98183 \cdot 10^{-9} x log(x) \\ T_{quicksortFloat}(n) &= 6.50446 \cdot 10^{-9} x log(x) \\ T_{quicksortDouble}(n) &= 6.47155 \cdot 10^{-9} x log(x) \\ T_{quicksortTstring}(n) &= 6.21508 \cdot 10^{-10} x^2 + 4.51207 \cdot 10^{-6} x + 0.0387326 \end{split}$$

También podemos ver la varianza en la calidad del ajuste.

$$V_{quicksortInt} = 4.76198 \cdot 10^{-5}$$

$$V_{quicksortFloat} = 5.29642 \cdot 10^{-5}$$

$$V_{quicksortDouble} = 6.13293 \cdot 10^{-5}$$

$$V_{quicksortrString} = 0.0191243$$

Como podemos ver, con este método ocurre lo mismo que con el mergesort. De este modo, tenemos que el ajuste híbrido para las graficas de tipo numérico, se realiza con la formula obtenida en su estudio teórico. Mientras que en el tipo string la fórmula que mejor se ajusta a los datos obtenidos empíricamente es

$$f(x) = a_0 \cdot x^2 + a_1 x + a_0$$

Floyd, Fibonacci y Hanoi

Figura 5.26: Ajuste híbrido floyd

Figura 5.27: Ajuste híbrido fibonacci

Figura 5.28: Ajuste híbrido hanoi

Tras la interpretación de los datos empíricos en gnuplot y de la formula teorica del métoco, obtenemos que las constantes ocultas son:

$$T_{Floyd}(n) = 2.32043 \cdot 10^{-9} x^3$$

$$T_{Fibonacci}(n) = 1.98321 \cdot 10^{-9} \left(\frac{1 + \sqrt{5}}{2}\right)^x$$

$$T_{Hanoi}(n) = 2.67509 \cdot 10^{-9} \cdot 2^x$$

También podemos ver la varianza en la calidad del ajuste.

$$V_{Floyd} = 0.000328165$$

$$V_{Fibonacci} = 0.00121339$$

$$V_{Hanoi} = 0.000361913$$

5.5 Ajustes incorrectos

Figura 5.29: Ajuste incorrecto algoritmo floyd

Figura 5.30: Ajuste correcto algoritmo floyd

En la primera gráfica hemos utilizado la funcion $f(x) = a_0 \cdot x \log(x)$ para ajustar el método de Floyd. Como se puede observar, la función que mejor se ajusta al método de Floyd es la obtenida en el estudio teórico. Además, si comparamos sus varianzas podemos encontrar una diferencia de gran importancia

$$V_{FloydIncorrecto} = 0.438352$$

$$V_{FloydCorrecto} = 0.000328165$$

Figura 5.31: Ajuste incorrecto algoritmo fibonacci

Figura 5.32: Ajuste correcto algoritmo fibonacci

En la primera gráfica hemos utilizado la funcion $f(x) = a_0 \cdot x^2$ para ajustar el método de Fibonacci. Como se puede observar, la función que mejor se ajusta al método de Fibonacci es la obtenida en el estudio teórico. Además, si comparamos sus varianzas podemos encontrar una gran diferencia

$$V_{FibonacciIncorrecto} = 95.8388$$

$$V_{FibonacciCorrecto} = 0.00121339$$

Estudio de las gráficas

En esta sección se mostrarán las gráficas obtenidas en el estudio empírico de los algoritmos.

6.1 Algoritmos $O(n^2)$

Comenzaremos comparando las gráficas obtenidas para los algoritmos de ordenación con eficiencia $O(n^2)$

Figura 6.1: Ejecución algoritmo burbuja

Figura 6.2: Ejecución algoritmo burbuja con string

Figura 6.3: Ejecución algoritmo seleccion

Figura 6.4: Ejecución algoritmo seleccion con string

Figura 6.5: Ejecución algoritmo insercion

Figura 6.6: Ejecución algoritmo inserción con string

Comenzaremos analizando primero los casos con tipos de datos int, float y double. Si nos fijamos en los tiempos de ejecución de cada algoritmo podemos ver que el algoritmo de burbuja es el que peor se comporta en todos los casos, seguido del algoritmo de Inserción y finalmente el algoritmo de selección. Dejando asi el algoritmo de burbuja como el peor de los tres y el de Inserción como el mejor. En el algoritmo de burbuja y de insercion se puede ver que el tiempo de ejecución es muy similar en todos los casos llegando a ser practicamente el mismo en los casos con datos double y float . mientras que el algoritmo de seleccion si se ve mas afectado por el tipo de dato que se le pasa siendo los datos int los mas rápidos y los datos float los mas lentos.

si nos fijamos en las graficas de los algoritmos con string podemos ver que los algoritmos de burbuja y seleccion son los que peor se comportan ya que se usa com entrada el libro del quijote en español lo cual hace que haya muchas palabras repetidas y por tanto el algoritmo de burbuja y seleccion tengan que hacer mas comparaciones y por tanto mas tiempo de ejecución. En el caso del algoritmo de inserción vemos que esto le favorece y su tiempo de ejecución se reduce drasticamente en comparación con los datos int, float y double.

6.2 Algoritmos $O(n \log(n))$

Figura 6.7: Ejecución algoritmo quicksort

Figura 6.8: Ejecución algoritmo quicksort con string

Figura 6.9: Ejecución algoritmo mergesort

Figura 6.10: Ejecución algoritmo mergesort con string

Pasamos ahora a estudiar los algoritmos con eficiencia $O(n \log(n))$ los cuales veremos que son mas eficientes que los $O(n^2)$ Si nos fijamos em la gráfica del quicksort veos que no hay casi diferencia entre los datos tipo float y double mientras que los datos tipo int son mas rapidos, en el mergesort pasa justamente lo contrario , los tipos de datos double y float tardan menos en ser ordenados que los datos tipo int . pero ambos son mas eficientes que los anteriormente vistos .

Si nos fijamos en las graficas de los algoritmos cuando los ejecutamos con datos de tipo string vemos que el mergesort gana en tiempo de ejecución al quicksort ya que en los casos donde hay datos repetidos el mergesort se comporta mejor que el quicksort debido a su implementacion.

6.3 Algoritmos Hanoi, Floyd y Fibbonaci

Figura 6.11: Ejecución algoritmo Floyd

Figura 6.12: Ejecución algoritmo Hanoi

Figura 6.13: Ejecución algoritmo Fibonacci

Por último pasamos a estudiar los algoritmos de Hanoi, Floyd y Fibonacci. Si nos fijamos en las gráficas de estos algoritmos vemos que el algoritmo de Floyd es el mas rapido ya que se trata de una algoritmo del orden $O(n^3)$ por tanto supera en velocidad a el algoritmo de Hanoi que es del orden $O((\frac{1+\sqrt{5}}{2})^n)$ siendo este ultimo el mas lento de todos.

Como conclusion a este apartado hemos podido observar que los algoritmos de ordenación con eficiencia $O(n^2)$ son mas lentos que los de eficiencia $O(n \log(n))$ y que dependiendo del tipo de dato con el que se trabaje y de si hay datos repetidos o no habrá algoritmos a los que les afecte de manera positiva como al mergesort o el de Inserción que pasa a ser practicamente logaritmico y otros como el de burbuja o seleccion que se vean perjudicados por estos datos.

Conclusiones

Como conclusión de la realización de esta memoria sobre el estudio de la eficiencia de difrentes algoritmos, podemos decir:

- 1. En los algoritmos de ordenación pertenecientes a $O(n^2)$, su eficiencia teórica es muy fiel a los resultados obtenidos empíricamente. Es decir, son algorítmos que nos proporcionan una gran fiabilidad a la hora de tener que suponer un tiempo acorde a su fórmula teórica. Dentro de los cuales, el que mejor se comporta es el algoritmo de inserción y el que lo hace peor el algorítmo de burbuja. De este último, podemos decir que a la hora de ordenar vecotores con muchos datos repetidos, sea el caso del tipo string donde hay palabras que son más usadas, el algoritmo de inserción toma especial relevancia debido a que su gráfica parece por momentos del tipo f(x) = x. En cuanto a los algoritmos de eficiencia O(nlogn) vemos que son más eficientes que los mencionados anteriormente. Sin embargo, no presentan una gráfica tan regular como los de eficiencia $O(n^2)$. Por lo cual podrían ser menos fiables a la hora de ofrece un resultado más preciso. Por la parte de los algoritmos de Hanoi, Floyd y Fibonacci, al tener una eficiencia exponencial, puede ocurrir que haya grandes diferencias al introducir un nuevo elemento y aumentar en una unidad el tamaño del vector.
- 2. Por lo que respecta a la parte del estudio híbrido, hemos observado que es una buena forma corroborar los resultados obtenidos en el estudio teórico. De aquí, podemos decir que el estudio teórico de los algoritmos, es una parte de gran relevancia a la hora del desarrollo de un proyecto ya que sus resultados son realmente cercanos a la realidad.
- 3. Finalmente, como se puede observar en el apartado en el que comparamos un mismo método en diferentes ordenadores, vemos que el hardware donde se ejecute el algoritmo tiene relevancia. Sin embargo, podemos afirmar que el estudio de la eficiencia de los algoritmos nos puede llevar más lejos a la hora de reducir el tiempo de ejecución, siendo lo idóneo combinar esto junto a un buen hardware.