Übung

Physik realer Systeme: Von Differenzialgleichungen zum Experiment

Aufgabe 1 (Elektromagnetische Schwingungen und Wellen)

Elektromagnetische Felder gehorchen den sogenannten Maxwell-Gleichungen, die wir hier für den 3D-Fall angeben wollen. In dieser Aufgabe wollen wir diese relativ komplizierten Gleichung auf eine einfachere *skalare* Wellengleichung überführen. Sei

$$\vec{B}(x, y, z, t) = (B_x(x, y, z, t), B_y(x, y, z, t), B_z(x, y, z, t))$$

die magnetische Flussdichte (Einheit [B] = 1T) und

$$\vec{E}(x, y, z, t) = (E_x(x, y, z, t), E_y(x, y, z, t), E_z(x, y, z, t))$$

die elektrische Feldstärke (Einheit [E] = 1V/m).

• Änderung der magnetischen Flussdichte führen zu einem Wirbelfeld:

$$\frac{\partial \vec{B}}{\partial t}(x, y, z, t) = - \begin{pmatrix}
\frac{\partial E_z}{\partial y}(x, y, z, t) - \frac{\partial E_y}{\partial z}(x, y, z, t) \\
\frac{\partial E_z}{\partial z}(x, y, z, t) - \frac{\partial E_z}{\partial x}(x, y, z, t) \\
\frac{\partial E_y}{\partial x}(x, y, z, t) - \frac{\partial E_x}{\partial y}(x, y, z, t)
\end{pmatrix}$$
(1)

• Elektrische Ströme – d.h. externe Ströme und Änderungen der elektrischen Feldstärke – führen zu einem magnetischen Wirbelfeld:

$$\mu \vec{j} + \mu \varepsilon \frac{\partial \vec{E}}{\partial t}(x, y, z, t) = \begin{pmatrix} \frac{\partial B_z}{\partial y}(x, y, z, t) - \frac{\partial B_y}{\partial z}(x, y, z, t) \\ \frac{\partial B_x}{\partial z}(x, y, z, t) - \frac{\partial B_z}{\partial x}(x, y, z, t) \\ \frac{\partial B_y}{\partial x}(x, y, z, t) - \frac{\partial B_z}{\partial y}(x, y, z, t) \end{pmatrix}$$
(2)

- Hierbei ist
 - \vec{j} der Vektor der elektrischen Stromdichte (im folgenden 0)
 - $-\mu = \mu_0 \mu_r$ die Permittivität (μ_r , relative Permittivität, ein Materialparameter)

- $-\varepsilon = \varepsilon_0 \varepsilon_r$ (ε_r , relative Dielektrizitätszahl, ein Materialparameter)
- $-\mu\varepsilon = \frac{1}{c^2}$ wobei c die Lichtgeschwindigkeit im Material ist. Für $\mu_0\varepsilon_0 = \frac{1}{c_0^2}$ ist c_0 die Lichtgeschwindigkeit im Vakuum.
- (a) Wir nehmen an, dass \vec{E} und \vec{B} unabhängig von der z-Koordinate sind, die magnetische Flussdichte in der x-y-Ebene liegt und das elektrische Feld in z-Richtung zeigt, d.h.

$$\vec{B}(x,y,z,t) = \begin{pmatrix} B_x(x,y,t) \\ B_y(x,y,t) \\ 0 \end{pmatrix}, \qquad \vec{E}(x,y,z,t) = \begin{pmatrix} 0 \\ 0 \\ E_z(x,y,t) \end{pmatrix}. \tag{3}$$

Leiten Sie hieraus eine skalare Wellengleichung für $E_z(x, y, t)$ her. **Hinweis:**

- Setzen Sie (3) in (1) und (2) ein und leiten sie (2) nach t ab.
- Es gilt

$$\frac{\partial \frac{\partial E_z(x,y,t)}{\partial x}}{\partial t} = \frac{\partial^2 E_z(x,y,t)}{\partial x \partial t} = \frac{\partial^2 E_z(x,y,t)}{\partial t \partial x} = \frac{\partial \frac{\partial E_z(x,y,t)}{\partial t}}{\partial x}$$

(b) Wir betrachten die skalare Wellengleichung (in 2D)

$$\frac{1}{c^2} \frac{\partial^2 u}{\partial t^2}(x, y, t) = \Delta u(x, y, t) \tag{4}$$

wobei c die Ausbreitungsgeschwindigkeit der Welle (z.B. Lichtgeschwindigkeit oder Schallgeschwindigkeit) ist. Wenn sich Randbedingungen und Quellen (z.B. \vec{j}) in der Zeit nicht ändern, so kann die Lösung zerlegt werden in folgende Anteile:

$$u(x,y,t) = \sum_{n=0}^{\infty} \underbrace{\left(c_n \sin(2\pi nt) + d_n \cos(2\pi nt)\right)}_{\phi_n(t)} \cdot \hat{u}_n(x,y)$$

Wenn Wellen nur für eine spezielle Frequenz angeregt werden, so sind fast alle Koeffizienten d_n und c_n gleich Null und es verbleibt lediglich

$$u(x, y, t) = \underbrace{\left(c_n \sin(\omega t) + d_n \cos(\omega t)\right)}_{\phi_n(t)} \cdot \hat{u}_n(x, y), \quad \omega = 2\pi n.$$

Wir definieren zusätzlich die Wellenzahl $k = \omega/c$ (Einheit [k] = 1/m). Setzen Sie diesen Ansatz in (4) ein. Welcher Differentialgleichung gehorcht $\hat{u}_n(x,y)$?

(c) Es sollen die Wellengleichungen für Mikrowellen der Wellenlänge 28mm berechnet werden. Da die Wellenlänge bekannt ist, kann der obige Ansatz verwendet werden. Welchen Wert erhalten Sie in diesem Fall für k?

Aufgabe 2 (Vorbereitung: Mikrowellen)

Wir betrachten nun 1D Mikrowellen. Am Ort x=0 sei ein Mikrowellensender angebracht, der eine Welle der Modulation $u(0,t)=\cos(\omega t)$ von links nach rechts aussendet. Im Interval [0,a] liegt ein Material vor in dem die Lichtgeschwindigkeit c_1 ist, während im Interval [a,b] ein Material mit Lichtgeschwindigkeit c_2 vorliegt. Wir wollen nun die Funktion u(x,t) rekonstruieren, die die Wellengleichung unter diesen Bedingungen löst. Dazu wagen wir folgenden Ansatz:

$$u(x,t) = \begin{cases} \cos(\omega t - k_1 x + \varphi_1) & \text{wenn } x \le a, \\ \cos(\omega t - k_2 x + \varphi_2) & \text{sonst,} \end{cases}$$
 (5)

wobei $k_1 = \omega/c_1$ und $k_2 = \omega/c_2$. Diesem Ansatz liegt die Annahme zugrunde, dass es sich nur um eine von links nach rechts laufende Welle handelt, d.h. es gibt keine Reflexion.

- (a) Zeigen Sie dass u(x,t) aus (5) der Wellengleichung $\frac{\partial^2 u}{\partial t^2}(x,t) = c^2 \frac{\partial^2 u}{\partial x^2}(x,t)$ gehorcht.
- (b) Bestimmen Sie nun die Koeffizienten φ_1 , φ_2 , sodass u(x,t) die folgenden zusätzlichen Bedingungen erfüllt:
 - Die Welle am Eingang entspricht der eingeprägten Modulation:

$$u(0,t) = \cos(\omega t)$$

• Die Welle ist stetig am Übergang, d.h.:

$$\cos(\omega t - k_1 a + \varphi_1) = \cos(\omega t - k_2 a + \varphi_2)$$

- (c) Zeichnen Sie die Lösung für $t=0,\,t=\pi/4,\,t=\pi/2$ für zwei Fälle:
 - $a = 2\pi$, $b = 4\pi$, $c_1 = c_2 = \omega = 1$
 - $a = 2\pi$, $b = 4\pi$, $c_1 = \omega = 1$, aber $c_2 = \frac{2}{3}$.
- (d) Zeigen Sie, dass die beiden letzten Fälle sich bei $b=4\pi$ auslöschen.