

Отчет по Лабораторной работе №5 по курсу "Вычислительная математика"

Вариант №3

Выполнил: Студент группы р32082 Дробыш Дмитрий Александрович

> Преподаватель: Машина Екатерина Алексеевна

Санкт-Петербург, 2023

Лабораторная работа №5 «Интерполяция функции».

Цель лабораторной работы: решить задачу интерполяции, найти значения функции при заданных значениях аргумента, отличных от узловых точек.

Лабораторная работа состоит из двух частей: вычислительной и программной. № варианта задания лабораторной работы определяется как номер в списке группы согласно ИСУ.

Для исследования использовать:

- многочлен Лагранжа;
- многочлен Ньютона;
- многочлен Гаусса.

Обязательное задание (до 80 баллов)

Вычислительная реализация задачи:

- 1. Выбрать из табл. 1 заданную по варианту таблицу y = f(x) (таблица 1.1 таблица 1.5);
- 2. Построить таблицу конечных разностей для заданной таблицы. Таблицу отразить в отчете;
- 3. Вычислить значения функции для аргумента X_1 (см. табл.1), используя первую или вторую интерполяционную формулу Ньютона. Обратить внимание какой конкретно формулой необходимо воспользоваться;
- 4. Вычислить значения функции для аргумента X_2 (см. табл. 1), используя первую или вторую интерполяционную формулу Гаусса. Обратить внимание какой конкретно формулой необходимо воспользоваться;
- 5. Подробные вычисления привести в отчете.

Программная реализация задачи:

- 1. Исходные данные задаются тремя способами:
- а) в виде набора данных (таблицы х,у), пользователь вводит значения с клавиатуры;
- b) в виде сформированных в файле данных (подготовить не менее трех тестовых вариантов);
- с) на основе выбранной функции, из тех, которые предлагает программа, например, $\sin x$. Пользователь выбирает уравнение, исследуемый интервал и количество точек на интервале (не менее двух функций).
- 2. Сформировать и вывести таблицу конечных разностей;
- 3. Вычислить приближенное значение функции для заданного значения аргумента, введенного с клавиатуры, указанными методами (см. табл. 5.2). Сравнить полученные значения;
- 4. Построить графики заданной функции с отмеченными узлами интерполяции и интерполяционного многочлена Ньютона/Гаусса (разными цветами);

- 5. Программа должна быть протестирована на различных наборах данных, в том числе и некорректных.
- 6. Проанализировать результаты работы программы.

Необязательное задание (до 20 баллов)

- 1. Реализовать в программе вычисление значения функции для заданного значения аргумента, введенного с клавиатуры, используя схемы Стирлинга;
- 2. Реализовать в программе вычисление значения функции для заданного значения аргумента, введенного с клавиатуры, используя схемы Бесселя.

Оформить отчет, который должен содержать:

- Титульный лист.
- Цель лабораторной работы.
- Порядок выполнения работы.
- Рабочие формулы.
- Вычисление значений функции п.2.
- Листинг программы.
- Результаты выполнения программы.
- Выводы

Варианты заданий для вычислительной части Таблица 1

	X	у	№ варианта	X_1	X_2	
	0,25	1,2557	1	0,251	0,402	
	0,30	2,1764	6	0,512	0,372	
a 1.1	0,35	3,1218	11	0,255	0,405	
іица	0,40	4,0482	16	0,534	0,384	
Габлица 1.1	0,45	5,9875	21	0,272	0,445	
I	0,50	6,9195	26	0,551	0,351	
	0,55	7,8359	31	0,294	0,437	
	X	у	№ варианта	X_1	X_2	
	x 0,50	y 1,5320		X ₁ 0,502	X ₂ 0,645	
2		-	варианта			
a 1.2	0,50	1,5320	варианта 2	0,502	0,645	
ица 1.2	0,50 0,55	1,5320 2,5356	варианта 2 7	0,502 0,751	0,645 0,651	
Габлица 1.2	0,50 0,55 0,60	1,5320 2,5356 3,5406	варианта 2 7 12	0,502 0,751 0,523	0,645 0,651 0,639	
Таблица 1.2	0,50 0,55 0,60 0,65	1,5320 2,5356 3,5406 4,5462	варианта 2 7 12 17	0,502 0,751 0,523 0,761	0,645 0,651 0,639 0,661	
Таблица 1.2	0,50 0,55 0,60 0,65 0,70	1,5320 2,5356 3,5406 4,5462 5,5504	варианта 2 7 12 17 22	0,502 0,751 0,523 0,761 0,545	0,645 0,651 0,639 0,661 0,627	

	X	у	№ варианта	X_1	X_2
	1,10	0,2234	3	1,121	1,482
~	1,25	1,2438	8	1,852	1,652
Габлица 1.3	1,40	2,2644	13	1,168	1,463
ШЩ	1,55	3,2984	18	1,875	1,575
a6J	1,70	4,3222	23	1,189	1,491
L	1,85	5,3516	28	1,891	1,671
	2,00	6,3867	33	1,217	1,473
	X	у	№ варианта	X_1	X_2
	1,05	0,1213	4	1,051	1,277
4	1,15	1,1316	9	1,562	1,362
a 1.	1,25	2,1459	14	1,112	1,319
ІИЦ	1,35	3,1565	19	1,573	1,375
Габлица 1.4	1,45	4,1571	24	1,146	1,289
	1,55	5,1819	29	1,614	1,414
	1,65	6,1969	34	1,154	1,328
	X	у	№ варианта	X_1	X_2
	2,10	3,7587	5	2,112	2,205
S.	2,15	4,1861	10	2,355	2,254
a 1.	2,20	4,9218	15	2,114	2,216
Таблица 1.5	2,25	5,3487	20	2,359	2,259
aOr	2,30	5,9275	25	2,128	2,232
	2,35	6,4193	30	2,352	2,284
	2,40	7,0839	35	2,147	2,247

Методы для реализации в программе:

- 1 Многочлен Лагранжа,
- 2 Многочлен Ньютона с конечными разностями,
- 3 Многочлен Гаусса.

Таблица 2

<u>№</u>	Метод	№	Метод
варианта		варианта	
1	1, 2	19	1, 3
2	1, 3	20	1, 2
3	1, 2	21	1, 2
4	1, 2	22	1, 3
5	1, 3	23	1, 2
6	1, 2	24	1, 3
7	1, 3	25	1, 2
8	1, 2	26	1, 3
9	1, 2	27	1, 2

10	1, 3	28	1, 3
11	1, 2	29	1, 2
12	1, 2	30	1, 2
13	1, 3	31	1, 3
14	1, 3	32	1, 3
15	1, 2	33	1, 2
16	1, 2	34	1, 2
17	1, 3	35	1, 3
18	1, 2	36	1, 3

КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Когда возникает необходимость в использовании интерполяционных методов?
 - 2. Чем отличается аппроксимация от интерполяции?
 - 3. В чём сущность задачи интерполирования?
 - 4. Поясните смысл терминов: интерполяция, экстраполяция.
 - 5. Как найти приближенное значение функции при линейной интерполяции?
- 6. Как найти приближенное значение функции при квадратичной интерполяции?
 - 7. Как строится интерполяционный многочлен Лагранжа?
- 8. Дайте определение понятий разделенной разности нулевого и первого порядков.
 - 9. Объясните принцип построения интерполяционного полинома Ньютона.
 - 10. Покажите графическую интерпретацию интерполяции.
 - 11. В каких случаях используются конечные разности, в каких разделенные?
- 12. В каких случаях используют формулу Ньютона для интерполирования вперед и для интерполирования назад?
- 13. В каких случаях используют формулу Гаусса для интерполирования вперед и для интерполирования назад?
 - 14. В каких случаях используют формулу Стирлинга?
 - 15. В каких случаях используют формулу Бесселя?
- 16. В чем разница между глобальной и локальной разновидностями интерполяции?
 - 17. В чем заключается интерполяция кубическими сплайнами.

x	у	X1	X2
1,10	0,2234	1,121	1,482
1,25	1,2438	1,852	1,652
1,40	2,2644	1,168	1,463
1,55	3,2984	1,875	1,575
1,70	4,3222	1,189	1,491
1,85	5,3516	1,891	1,671
2,00	6,3867	1,217	1,473

X	Yi	DYi	D2Yi	D3Yi	D4Yi	D5Yi	D6Yi	
1,10	0,2234	1,0204	0,0002	0,0132	-0,0368	0,0762	-0,1313	
1,25	1,2438	1,0206	0,0134	-0,0236	0,0394	-0,0551		
1,40	2,2644	1,034	-0,0102	0,0158	-0,0157			
1,55	3,2984	1,0238	0,0056	0,0001				
1,70	4,3222	1,0294	0,0057					
1,85	5,3516	1,0351						
2,00	6,3867							

Newton

	Н									N(X)
1,482	0,764	0,2234	0,77958	-0,00001	0,000490	0,000764	0,001023	0,00124	->	1,00649
1,652	0,552	0,2234	0,563260	-0,00002	0,000787	0,001344	0,001919	0,00245	->	0,793138
1,463	0,363	0,2234	0,37040	-0,00002	0,000832	0,001530	0,00230	0,003069	->	0,601520
1,575	0,475	0,2234	0,48469	-0,00002	0,000836	0,001472	0,002149	0,002793	->	0,715316
1,491	0,391	0,2234	0,398976	-0,00002	0,000842	0,001532	0,002290	0,003032	->	0,63005
1,671	0,571	0,2234	0,582648	-0,00002	0,000770	0,001303	0,00185	0,002354	->	0,812303
1,473	0,373	0,2234	0,380609	-0,00002	0,000837	0,001532	0,002302	0,003059	->	0,611717

Gauss

	Н									N(X)
1,482	0,764	0,2234	0,77958	0,000919	0,000586	0,00032	-0,00074	0,00124	->	1,005320
1,652	0,552	0,2234	0,563260	-0,00165	-0,00140	-0,00143	-0,00138	0,00245	->	0,783220
1,463	0,363	0,2234	0,37040	-0,00002	0,000832	0,001530	0,00230	0,003069	->	0,601520
1,575	0,475	0,2234	0,48469	-0,00069	0,000006	0,001472	0,002149	0,002793	->	0,713813
1,491	0,391	0,2234	0,398976	-0,00002	0,000842	0,001532	0,002290	0,003032	->	0,63005
1,671	0,571	0,2234	0,582648	-0,00002	0,000770	0,001303	0,00185	0,002354	->	0,812300
1,473	0,373	0,2234	0,380609	-0,00002	0,000837	0,001532	0,002302	0,003059	->	0,611717