Project Proposal [Music Genre Classification]

Group 96

So Hee Yoon	1004327604
Ho Seok (David) Lee	1004112177
Myeong Hun (David) Song	1004815961
Ting Wei (Sherman) Lin	1004835413

Word count: 1317

Penalty: 0%

Introduction

Music genre classification, unlike song recognition, is often thought of as a subjective decision. Although a human may be able to tell the difference between a blues song and a classical piece, writing an objective criteria on what defines a particular genre can be difficult. For example, metal and rock involve the same instruments and similar timbres, but a child would be able to tell that they are two distinct genres. Due to these characteristic subtleties, machine learning would be appropriate.

A solution to this problem can also be understood as the grouping of similar sounding songs. A "genre" is nothing more than a label for these groupings. Expanding upon this model, music streaming services such as Spotify and Apple Music would be able to apply this model to a much larger music dataset and improve their artist and song recommendations to users.

Illustration

[1] [2]

Figure 1. Basic Idea of our project

Background & Related work

Analyzing lyrics and chords to classify music genre by Timothy Greer and Shrikanth Narayanan [3]

This research uses natural language processing to classify music from the Billboard charts and to represent the relationship between chord progression and lyric sequence in predicting genre of the music.

Music genre classification by Derek A. Huang [4]

Convolutional Neural Network used to predict genres of the music, out of 10 distinct music genres. The model inputs two different data; raw amplitude data and their transformed mel-spectrograms to determine which input resulted in higher accuracy.

Data processing

Source of Data

Our dataset consists of 10 genres with 100 30-second music clips in each category, for a total of 1,000 songs. This dataset is also known as the GTZAN dataset [5].

Preprocessing

Step 1) Normalizing Data

- We will resample the data to a sample rate, fixed for consistency, to reduce a continuous signal into many discrete values. The sampling rate decides the number of samples taken over a period [6]. We will use a sampling rate of 20050Hz, as it is popular for audio files [2].
- Using PyTorch library torchaudio:
 - 1) Open audio files (data sets)
 - 2) Use torchaudio.transforms.Resample() to resample data

Step 2) Create a Mono Audio Signal using torch.mean() [2].

Step 3) Transforming Audio Signal to Mel Spectrogram Image

- A spectrogram is a visual representation of the frequencies of a signal over time. A
 mel-spectrogram is a spectogram mapped to the mel scale, which converts the
 frequencies to a linear scale within the average human hearing range [2].
 - 1) Plot waveform
 - 2) Transform the waveform into mel spectrogram using torchaudio.transform.melSpectrogram()

Figure 2. Data processing procedure

Architecture

Since each audio input will be processed into a mel-spectrogram frequency graph [8], the required solution has now changed from an audio classification model to an image classification model. We will use a convolutional neural network (CNN).

Following the concept from the Visual Geometry Group (VGG) architecture, we will almost exclusively use 3×3 convolution kernels, but increase the depth of the network [7].

Although the input spectrogram is a single image, it still represents a sequence of sounds and frequencies over time. A long short-term memory (LSTM) module, a type of recurrent neural network (RNN), can help optimize sequential data, including audio and speech [8]. These LSTM modules adapt to the sequential nature of information in the audio, avoiding vanishing gradients. We will implement the LSTM module using Keras [9].

Our final convolutional neural network will consist of 5 convolutional layers and 3 max pooling layers, an LSTM module, and a final set of fully-connected layers for output classification. Similar architectures have been used for speech recognition and audio processing, and we believe its function can extend to genre classification.

Figure 3. CNN architecture

Baseline model

To compare the effectiveness of our model, we will compare the accuracy with a few rudimentary supervised baseline models. The two baseline models that we will be using are the k-nearest neighbours algorithm (k-NN) and a support-vector machine (SVM). Both of these models will be implemented in the scikit-learn Python library [10][11].

k-Nearest Neighbours Algorithm

The k-nearest neighbours algorithm is a classification algorithm that processes labeled data [12]. Given an unlabeled data point, the algorithm finds the closest labeled data point within the parameter vector space.

Each mel-spectrogram from the labeled training data will be converted into 20 mel-frequency cepstral coefficients (MFCC) to populate the vector space. For each unobserved datum, using the Minkowski distance

$$dist(x, z) = \left(\sum_{r=1}^{d} \left| x_r - z_r \right|^p \right)^{1/p},$$

the algorithm will find 5 nearest neighbours (i.e. closest sounding clips). The predicted label will be the most commonly occurring label from the 5 neighbours, weighted by their distance.

Support Vector Machine

A support vector machine attempts to maximize the separation between clusters of labeled vectors [13]. Since we do not know the general shape and behaviour of our data, we can blindly assume that the classes are not linearly separable. Changing the SVM kernel from a linear function to the Gaussian radial basis function (RBF)

$$rbf(x, z) = exp(-\gamma ||x - z||^2),$$

allows the vector space to be mapped to an infinite dimensional feature space for the SVM to create non-linear decision boundaries. Once trained, the SVM can begin predicting the labels of unobserved data.

Ethical Considerations

Music is a form of artistic and creative expression. There isn't a definite description of how a certain genre of music has to sound like. A song can be very dynamic, composed of elements from many genres of music. By trying to give a definite answer and classifying a song to be only one genre of music, we are restricting its artistic expression. This puts a preconceived notion on a song that may go against the ideas of its creator. For example, our model may classify a song to be Rock music, but its author may claim otherwise.

Most music streaming platforms have playlists of different music genres. If a song is classified as only one genre and is only placed in one of the many genre-specific playlists, it will lose many potential listeners who don't listen to other playlists because of its labeled genre. As a result, an artist may lose profits on music royalties or the reach of a bigger audience. Furthermore, there is a potential for our project to replace jobs in the music industry that involves music classification, like playlist curators on music streaming platforms.

Project plan

Meeting Time	There's no fixed time for meeting, due to different time zones we are at Team members select their available time When2Meet and meetings held when all members are available. At Available Stories
	Figure 4. Example of when2meet usage for team meeting date and time selection
Team communication	 Facebook Messenger group chat Zoom for online meetings Discord for working sessions
Communication with TA	 Asking questions during lab session Email Private Piazza post
Document Writing	 Deliverables - Google Docs/Slides Storage - Shared Google Drive Folder
Programming	Google Colab will be used: can track the contribution of each team member enables us to create multiple code sections Code overwriting can be prevented
Timeline and Task Division	 Ultimate goal: finish work in week 10 (week before final presentation and report due) Project is divided into multiple milestones with internal deadlines assigned with numbers representing team member To be determined (to increase flexibility) Refer to the Gantt Chart for detailed outline

Figure 5. Gantt chart, rotated

gı	u	re	e	5		G	<u>a</u>	n	tt +	cl	<u>12</u>	art	, 1	ro	ta	ite	d	 	_																				_				_					
Prepare speech	Prepare presentation slides	Propose proceed to dicion	Distribute presentation sections	Fino	Proofread and submit	Full draft	Rough draff	Distribute report sections		Enhance the model (training/tuning)	Compare with baseline model	Use test set to obtain accuracy		Proofread and submit	Full draff	Rough draff	Distribute report sections	Pro	Tune the chosen hyperparameter	Hyperparameter experimentation	Decide on which hyperparameters to tune	Hyperp	Train the network	Debug	Write training code	Write code for building neural network	Neural	Obtain baseline performance	Write code to build baseline model	Process data for baseline model		Split training, validation, test sets	Process audio files into MFC	Download the data	Data Colle	Proposal submission	Proposal proofread	Proposal full draft	Proposal rough draft	Project brainstorming	Team formation	Team formation		Task		Music Genre Classification Project	APS360S_2021 Team Project #96	
A A	A	Δ	ě	Final Presentation	All	A	A	ě	Final Report	4	. ω	2	Performance Evaluation	All	A	All	A	Progress Report	All	All	Ā	Hyperparameter Tuning	-	4	ω	2	Neural Network Training	_	4	ω	Baseline Model	2	ω	2	Data Collection and Cleaning	1	All	Ā	A	All	All	/ brainstorming / proposal		Assigned to		oject	96	
9 9	0%	OF S	980		0%	980	0%	0%	3	0%	98	980		0%	0%	0%	980		0%	0%	0%	19	0%	0%	0%	0%		0%	0%	0%		0%	0%	980	ning	0%	980	0%	100%	100%	100%	/ proposal		Progress				
Mar 28	Mor 28	Mor 28	Mor 28		Mar 30	Mar 28	Mar 26	Mar 26		Mario	Mar 10	Mar 9		Mar 4	Mar 2	Feb 28	Feb 28		Mar 5	Mar 3	Mar 3		Feb 25	Feb 25	Feb 22	Feb 19		Feb 21	Feb 19	Feb 18		Feb 16	Feb 14	Feb 13		Feb 12	Feb 11	Feb 10	Feb 9	Feb 8	Before Feb 7			Start		Milestone deadline	Due date	
Mor 30	Mor 30	UE ASIV	Mar 28		Apr 1	Mar 30	Mor 28	Mar 26	***	Mar 25	Mor 25	Mar 10		Mar 5	Mar 4	Mar 2	Feb 28		Mar 9	Mar 5	Mar 3		Feb 28	Feb 28	Feb 25	Feb 22		Feb 23	Feb 21	Feb 19		Feb 18	Feb 16	Feb 14		Feb 12	Feb 12	Feb 11	Feb 10	Feb 8	7 Before Feb 7			End				
																																											S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S	7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 1 2 3	Feb 14 Feb 21 Feb 28 Mar 7 Mar 14 Mar 21			

Risk Register

Risks	Solutions
Model takes too long to train	 Reduce time for the clip of each music results in reduced input size Reduce number of genres model will be trained to classify music into less labels Adjust hyperparameter number of epoch learning rate
Not enough data	 Data augmentation stretch 30 seconds of audio clip into a minute than making into 2 separate data, without changing the pitch Split one 30 seconds audio clip into: 6*5 seconds 3*10 seconds
Music can be classified into more than one genre	SoftMax activation function at the output layer of the model normalize the outputs and give a genre as output
High complexity of the code	Switch from CNN to ANN and extract MFCC feature from audio files, instead of MFC the model will take numbers as input rather than the image

Link to the project

Google Colab:

https://colab.research.google.com/drive/1g3ETP0yloTeWH1OKEKVu5EZ1Yuh1abzU?usp=sharing

References

- [1] Z. W. Engel, M. Kłaczyński, and W. Wszołek, "A Vibroacoustic Model of Selected Human Larynx Diseases," International Journal of Occupational Safety and Ergonomics, vol. 13, no. 4, pp. 367–379, 2007.
- [2] L. Roberts, "Understanding the Mel Spectrogram," Medium, 14-Mar-2020. [Online]. Available: https://medium.com/analytics-vidhya/understanding-the-mel-spectrogram-fca2afa2ce53. [Accessed: 12-Feb-2021].
- [3] T. Greer and S. Narayanan, "Using shared vector representations of words and chords in music for genre classification," SMM19, Workshop on Speech, Music and Mind 2019, 2019.
- [4] D. A. Huang, S. A. Arianna, and P. J. Eli, "Music Genre Classification," 2018.
- [5] Index of /sound/genres. [Online]. Available: http://opihi.cs.uvic.ca/sound/genres/. [Accessed: 12-Feb-2021].
- [6] N. S. Chauhan, "Audio Data Analysis Using Deep Learning with Python (Part 1)," KDnuggets, Feb-2020. [Online].
- [7] K. Simonyan and A. Zisserman, "Very Deep Convolutional Networks for Large-Scale Visual Recognition," Visual Geometry Group University of Oxford. [Online]. Available: https://www.robots.ox.ac.uk/~vgg/research/very_deep/. [Accessed: 12-Feb-2021].
- [8] B. N. Kaushik, "A Hybrid Technique using CNN+LSTM for Speech Emotion Recognition," International Journal of Engineering and Advanced Technology, vol. 9, no. 5, pp. 1126–1130, 2020.
- [9] J. Brownlee, "CNN Long Short-Term Memory Networks," Machine Learning Mastery, 14-Aug-2019. [Online]. Available: https://machinelearningmastery.com/cnn-long-short-term-memory-networks/. [Accessed: 12-Feb-2021].
- [10] "1.4. Support Vector Machines¶," scikit. [Online]. Available: https://scikit-learn.org/stable/modules/svm.html. [Accessed: 12-Feb-2021].
- [11] "sklearn.neighbors.NearestNeighbors¶," scikit. [Online]. Available: https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.NearestNeighbors.html#skle arn.neighbors.NearestNeighbors. [Accessed: 12-Feb-2021].
- [12] "Lecture 2: k-nearest neighbors / Curse of Dimensionality," Cornell Computer Science CS4780. [Online]. Available:

https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote02_kNN.html. [Accessed: 12-Feb-2021].

[13] R. Berwick, "An Idiot's guide to Support vector machines (SVMs)," in 6.034 Artificial Intelligence - MIT.