

Scale Methyl-DNA Lib Prep Kit for Illumina

RK20220

www.abclonal.com.cn

Version: N16D26v4.0

目录

1.	产品概述	1
2.	试剂盒组成	2
3.	保存方式与运输条件	2
4.	其他自备材料	3
5.	注意事项	3
6.	工作流程	7
7.	操作步骤	8
8.	附录	15
9.	附表	20

1. 产品概述

Scale Methyl-DNA Lib Prep Kit for Illumina(CAT.NO.RK20220)是一款 通用型、快速、高效的 Illumina 测序文库构建的试剂盒。

Scale Methyl-DNA Lib Prep Kit for Illumina 是以 Bisulfite 处理后的 DNA为起始模板,适用于各种应用样本类型,包括 Bisulfite 处理的基因组 gDNA、FFPE DNA、cell free DNA、ChIP DNA等,也适用于其他酶法处理的研究甲基修饰的DNA 样本。Scale Methyl-DNA Lib Prep Kit 可以满足 Bisulfite 处理后的 5 ng~200 ng 样本 DNA 的高效文库制备。

Scale Methyl-DNA Lib Prep Kit 提供了简便快速的建库流程,一般在 2 小时左右可以完成正常建库,主要实验步骤包括:

- 1.1 预处理: 通过高温孵育将 Bisulfite Double Stranded DNA 变为 Single Stranded DNA,及保持单链 DNA 结构展开状态;
- 1.2 T7 Tailing & Ligation:可以快速高效地将 T7 Truncated Adapter 连接到 Single Stranded DNA的 3'端;
- 1.3 Second Strand Synthesis: 使用高保真 DNA 聚合酶完成 Single Stranded DNA 互补链的合成;
- 1.4 T5 Adapter Ligation:可以高效地将 T5 Truncated Adapter 连接到 Double Stranded DNA 的 5'端;
- 1.5 文库扩增:提供了高保真、低偏向性、高产量的 PCR 反应液以及高质量的 PCR Primers。ABclonal 提供各种类型的 DNA 建库接头,具体参照附表。 试剂盒内组分均经过严格的质量控制,保证产品稳定性和可重复性。

2. 试剂盒组成

表格 1. 试剂盒组分表

试剂盒模块		试剂管名称与颜色	8次	24 次	96 次
预处理	0	Low-EDTA TE	1 mL X 2	5 mL	25 mL
	•	T7 Buffer	32 µL	96 µL	384 µL
T7 Tailing &	•	T7 Adapter	20 µL	60 µL	240 µL
Ligation	•	Met T7 Enzyme Mix	20 μL	60 µL	240 µL
Second Strand	•	2X Synthesis Mix	544 μL	1.632 mL	6.528 mL
Synthesis and Amplification	•	Synthesis Reagent	24 µL	72 μL	288 µL
	_	T5 Buffer	32 µL	96 µL	384 µL
T5 Adapter	0	T5 Adapter	80 µL	240 µL	960 µL
Ligation	-	Ligase Mix	24 µL	72 µL	288 μL

3. 保存方式与运输条件

运输与保存:Scale Methyl-DNA Lib Prep Kit 建库试剂盒必须保存在 -25~-15℃条件下。如果保存条件合理的话,在有效期内试剂盒的试剂与酶组分能够保持完整活性。该试剂盒对温度比较敏感的,长途运输尽量采用干冰运输条件,或者干冰结合冰袋方式。请不要尝试采用冰袋运输条件进行长途运输。

4. 其他自备材料

PCR Index primer: 推荐使用 ABclonal 高质量 PCR Index Kit, 具体信息可以参考附表中的 Scale Methyl-DNA Lib Prep Kit for Illumina 试剂盒兼容接头类型汇总表。

Bisulfite 试剂盒: 推荐使用 ZYMO EZ DNA Methylation-Gold Kit (CAT.NO.D5005)。

DNA 纯化磁珠, ABclonal AFTMag NGS DNA Clean Beads (CAT.NO.RK20257)。

DNA 质控: Agilent 2100 Bioanalyzer, Qubit 试剂(CAT.NO.RK30140 & RK30141) 。

其他试剂:80%乙醇溶液(新鲜配置),超纯水等。

其他耗材: 低吸附 EP 管、移液吸头, 低吸附薄壁 PCR 管 (200 μL), 磁力架, 单道或多道移液器。

其他仪器: PCR 仪器、(漩涡)振荡器、桌面微型离心机。

5. 注意事项

5.1 关于 Input DNA 样本和片段化

- 5.1.1 试剂盒可以满足 Bisulfite 处理后 5 ng~200 ng 样本 DNA 的高效文库制备。Input DNA 的准确定量对于后续选择文库扩增循环数非常重要。建议使用 Invitrogen Qubit ssDNA 检测试剂盒(CAT.NO.Q10212)对 ssDNA 进行定量;使用 ABQubit dsDNA 检测试剂盒(CAT.NO.RK30140 & RK30141)对 dsDNA 进行定量。
- 5.1.2 试剂盒是以 Bisulfite 处理后的 DNA 为起始模板,如果 DNA 样本为碎片化严重的 DNA,如 ChIP DNA 和 cfDNA 等,则无需再进行片段化。
- 5.1.3 如 DNA 样本为完整性良好的基因组 DNA,推荐进行片段化;可选择 Scale Methyl-DNA Lib Prep Kit for Illumina

超声法或酶切法对基因组 DNA 进行片段化。当使用超声法进行片段化,请将 DNA 稀释在 0.1X TE Buffer (pH 8.0) 中进行片段化,请勿在灭菌 ddH_2O 中进行。 经甲基化转化的 DNA,确保洗脱液中不带入高浓度金属离子螯合剂或其他盐, 否则可能会影响 T7 Adapter 连接步骤的效率。如条件不满足,可先将产物纯化 后溶于 0.1X TE Buffer (pH 8.0) 中 ($\leq 31.0~\mu l$),再进行文库构建。

- 5.1.4 当样本 DNA 体积大于 15 μ L, 可以将 T7 Tailing & Ligation 反应体系的 16 μ L 的 Low-EDTA TE 去掉, 预变性体系由 15 μ L 增大到 31 μ L, 预变性条件参照附录 8.5 的操作步骤。
- 5.1.5 若投入 Bisulfite gDNA 模板量少于 10ng, 在 Second Strand Synthesis Reaction 反应结束后用磁珠纯化时,第一次建议用 50 µL Low-EDTA TE 洗脱,再使用 1.2X 磁珠(60 µL 磁珠)进行第二次纯化,使用 21 µL Low-EDTA TE 洗脱后进行后续的反应。此操作可以显著减少文库中的接头二聚体。

5.2 关于 Adapter

- 5.2.1 ABclonal 可提供单端 Index 试剂盒和双端 Index 试剂盒,详见附表,客户可以根据实验需求进行选择。
- 5.2.2 Adapter 的质量和使用浓度直接影响连接效率及文库产量。Adapter 用量过高可能会产生较多 Adapter Dimer; 用量较低可能会影响连接效率及文库产量。表 2 列举了使用本试剂盒,不同 Input DNA 量推荐的接头稀释。

Bisulfite gDNA T7 Adapter T7 Adapter (ssDNA Qubit 定量) Dilution Concentration >10 ng No fold 10 μM

表格 2. 接头稀释表

5.3 关于磁珠使用

- 5.3.1 磁珠使用前应先平衡至室温,否则会导致得率下降、分选效果不佳。
- 5.3.2 磁珠每次使用前都应充分振荡混匀。

- 5.3.3 转移上清时,请勿吸取磁珠,即使微量残留都将影响后续文库质量。
- 5.3.4 磁珠漂洗使用的 80%乙醇应现用现配,否则将影响回收效率。
- 5.3.5 产物洗脱前应将磁珠置于室温干燥。干燥不充分容易造成无水乙醇残留影响后续反应;过分干燥又会导致磁珠开裂进而降低纯化得率。通常情况下, 室温干燥 3-5 min 足以让磁珠充分干燥。

5.4 关于文库扩增

- 5.4.1 试剂盒的 T7 Adapter 和 T5 Adapter 为截短型接头, Index 和 P5/P7 序列需在后续的 PCR 步骤中通过引物扩增引入至文库分子中。
- 5.4.2 PCR 步骤需要严格控制扩增循环数。循环数不足,会导致文库产出不足;循环数过多,又会导致过度扩增、偏好性增加、重复度增加、嵌合产物增加、扩增突变积累等多种不良后果。扩增循环数可参考表 3。
- 5.4.3 过度扩增的文库进行长度分布检测时,常见高分子量位置出现拖带或 尾峰。对应产物多为非互补链交叉退火产物,对测序无显著影响。推荐的解决方 案为减少扩增循环数,避免过度扩增,不建议通过长度分选去除拖带或尾峰。

5.5 关于文库质量控制

- 5.5.1 文库长度分布检测:文库长度分布可通过 LabChip GX、GXll、GX Touch(Perkin Elmer);Bioanalyzer、Tapestation (Agilent Technologies);Fragment Analyzer (Advanced Analytical)电泳分离原理的设备进行检测。
- 5.5.2 如果质检结果显示纯化文库中 Adapter 或 Adapter Dimer 污染严重,可尝试对文库进行第二次磁珠纯化:使用灭菌超纯水将第一次纯化产物体积补至 50 µL,加入 50 µL 磁珠(1×)进行第二次纯化。
- 5.5.3 文库浓度检测:为了得到高质量的测序结果,建议对文库浓度进行精确测定,推荐使用基于 qPCR 的方法进行绝对定量。或使用基于特异性识别双链 DNA 的荧光染料法进行测定,如 Qubit 法,推荐使用 ABQubit dsDNA 检测试剂 盒 (CAT.NO.RK30140 & RK30141)。

5.6 关于 lambda DNA (未甲基化) 的样本文库构建

使用含有未甲基化的λDNA 样本进行文库构建时,需要在样本片段化前混入样品中以评估亚硫酸氢盐的转化效率。如果样本不需要进行片段化(例如 cfDNA) ,未甲基化的λDNA 需要片段化为与样本中的片段长度相近的长度。我们建议未甲基化λDNA 掺入水平为 0.1-0.5% w/w。

5.7 关于试剂准备

使用前,尽量保证 T7 Buffer、T7 Adapter、2X Synthesis Mix、Synthesis Reagent、T5 Buffer 和 T5 Adapter 试剂溶液完全融解充分无沉淀,瞬时离心至管底部。试剂盒溶液组分可以在室温下进行充分融解。使用时,试剂盒组分放置在冰上。产品组分使用完后,请尽快放置于-25~-15℃条件下进行保存。请尽量避光保存 T7 Buffer。

6. 工作流程

7. 操作步骤

7.1 DNA 变性

- 7.1.1 预热 PCR 仪,反应温度设定为 95℃,热盖温度 105℃。
- 7.1.2 取 Bisulfite 处理过的片段化 DNA (5 ng~200 ng)放在 0.2 mL 的 PCR 管中,加入 Low-EDTA TE 稀释到总体积为 15 µL。
- ,注: 若 Inuput DNA 总体积大于 15 μL,参照附录 8.5 操作步骤。
 - 7.1.3 95℃孵育 2 min, 立即置于冰上, 静置 2 min。
- ,注: DNA 变性后立即置于冰上,避免变性的单链 DNA 复性。

7.2 T7 Tailing & Ligation

- 7.2.1 预热 PCR 仪,反应温度设定为 37℃,热盖温度 105℃。
- 7.2.2 按照下面体系配制 T7 Tailing & Ligation 预混液,可以在 DNA 变性前配制好,冰上放置时间最好不要超过 20 min。

	试剂	体积
•	T7 Buffer	4 μL
•	T7 Adapter	2.5 µL
•	Met T7 Enzyme Mix	2.5 µL
0	Low-EDTA TE	16 µL
	总体积	25 μL

- 2. T7 Tailing & Ligation 预混液提配制好后可以放置在冰上,冰上放置至少3min,避免预混液温度过高,使得变性的单链 DNA 复性。
- 7.2.3 取 $25~\mu$ L T7 Tailing & Ligation 预混液加入到冰上放置的变性 DNA 样本 PCR 管中(步骤 7.1.3),使用移液器进行吹打混匀,然后瞬时离心使得反应液至管底。
- 7.2.4 将 PCR 管置于 PCR 仪 (热盖 105℃) 中, 进行 T7 Tailing & Ligation 反应:

温度	时间
37℃	15 min
95℃	2 min
4°C	Hold

7.2.5 待反应结束,将 PCR 管置于冰上,待加入 Second Strand Synthesis Reaction 预混液。

7.3 Second Strand Synthesis Reaction

- 7.3.1 预热 PCR 仪:反应温度设定 98℃,热盖温度 105℃。
- 7.3.2 按照下面体系配置 Second Strand Synthesis Reaction 预混液,冰上放置时间最好不要超过 20min。

	试剂	体积
•	2X Synthesis Mix	43 μL
	Synthesis Reagent	3 μL
	总体积	46 µL

7.3.3 取 46 μL Second Strand Synthesis Reaction 预混液加入到 T7 Tailing & Ligated DNA (步骤 7.2.5) 中,使用移液器进行吹打混匀,然后瞬时离心使得反应液至管底。

7.3.4 将 PCR 管置于 PCR 仪 (热盖 105℃) 中,进行二链合成反应:

温度	时间
98℃	1 min
60℃	2 min
68°C	5 min
4 ℃	Hold

- 7.3.5 提前将 ABclonal AFTMag NGS DNA Clean Beads 从 2-8℃取出, 静置平衡至室温,使用前涡旋或者振荡混匀。
- 7.3.6 待 Second Strand Synthesis Reaction 结束后,在产物中加入 105 μ L AFTMag NGS DNA Clean Beads (~1.22X), 吹打混匀。
- 7.3.7 室温静置 5 min, 然后转移至磁力架上~5 min, 直至溶液变澄清, 小心弃除上清。
- 7.3.8 将离心管保持在磁力架上,加入 200 µL 80%乙醇,静置 30 s,弃除全部上清。
- 7.3.9 重复 7.3.8, 将磁珠用 80% Z 醇再洗 1 次, 用 10 μ L 枪头将残留液体 彻底吸干。
- 7.3.10 干燥磁珠 2-3 min, 待酒精挥发完全后,将 PCR 管移出磁力架,加入 22.5 µL Low-EDTA TE,吹打混匀,然后室温静置 2 min。
- 7.3.11 将 PCR 管放置到磁力架上,室温静置直到溶液变澄清,小心吸取 20 µL 上清液至另一新的 PCR 管中备用。

7.4 T5 Adapter Ligation

7.4.1 按照下面表格配制 T5 Adapter Ligation 反应体系,依次加入如下组分,使用移液器进行吹打混匀,然后瞬时离心使得反应液至管底。

	试剂	体积
	Double Strand DNA(步骤 7.3.11)	20 µL
0	Low-EDTA TE	3 µL
•	T5 Buffer	4 µL
•	T5 Adapter	10 µL
•	Ligase Mix	3 µL

,注:可以提前配制 Low-EDTA TE、T5 Buffer 和 T5 Adapter 的预混液,切不可以将 Ligase Mix 加入到预混液中,以免出现接头自连反应。

7.4.2 将 PCR 管置于 PCR 仪(热盖加热功能关闭,或者热盖不要合上)中, 进行连接反应。

温度	时间
25℃	15 min
4℃	Hold

- 7.4.3 提前将 AFTMag NGS DNA Clean Beads 从 2-8℃取出,静置平衡至 室温,使用前涡旋或者振荡混匀;
- 7.4.4 连接反应结束后,加入 32 μ L AFTMag NGS DNA Clean Beads(0.8X)到连接产物中,吹打混匀。

,注:若投入样本为 bisulfite 处理的 cfDNA 样本或降解严重的 FFPE 样本,建议加入 40 μL AFTMag NGS DNA Clean Beads(1X)到连接产物中,吹打混匀,进行后续操作。

- 7.4.5 室温静置 5 min, 然后转移至磁力架上~5 min, 直至溶液变澄清, 小心弃除上清。
- 7.4.6 将离心管保持在磁力架上,加入 200 μ L 80%乙醇,静置 30 s,弃除全部上清。

- 7.4.7 重复 7.4.6, 将磁珠用 80% Z 醇再洗 1 次, 用 10 µL 枪头将残留液体 彻底吸干。
- 7.4.8 干燥磁珠 2-3 min, 将 PCR 管移出磁力架, 加入 22.5 μL Low-EDTA TE, 吹打混匀, 然后室温静置 2 min。
- 7.4.9 将 PCR 管放置到磁力架上, 室温静置直到溶液变澄清, 小心吸取 20 µ L 上清液至另一新的 PCR 管中备用。

7.5 Amplification

7.5.1 按照下表配制 PCR 反应体系:

	试剂	体积
	纯化后的连接产物(步骤 4.9)	20 μL
•	2X Synthesis Mix	25 μL
	UDI Primer*	5 μL
	总体积	50 μL

,注:不同的样本应使用不同的 PCR Index Primer 进行样本标记,在操作 PCR Index Primer 时,一定要小心操作,避免样本与 primer 之间的交叉污染。

7.5.2 使用移液器进行吹打混匀,然后瞬时离心使得反应液至管底,放置到 PCR 仪中。

7.5.3 按照如下程序进行 PCR 反应:

温度	时间	Cycles
98℃	45 s	1
98℃	15 s	
60℃	30 s	6-17*
68℃	30 s	
4℃	Hold	

,注: 样本起始量不同, PCR cycles 按照下表 (表 3) 推荐使用。

表 3 不同起始量 DNA 对	应的 PCR 循	环数推荐
-----------------	----------	------

Input Bisulfite gDNA	PCR Cycles	Input Bisulfite FFPE DNA*	PCR Cycles	Input Bisulfite cfDNA	PCR Cycles
200 ng	7-8	200 ng	8-9	10 ng	12-13
100 ng	8-9	100 ng	9-10		
50 ng	9-10	50 ng	10-11		
25 ng	11-12	25 ng	12-13		
10 ng	12-13	10 ng	13-14		
5 ng	14-15	5 ng	15-16		

- ,注: FFPE DNA 样本质量不同,在达到一定产量所需要的循环数也会有所不同, 特殊样本在进行建库时需要根据样本实际情况进行 PCR 循环数的调整。
- 7.5.4 提前将 AFTMag NGS DNA Clean Beads 从 2-8℃取出,静置平衡至 室温,使用前涡旋或者振荡混匀。
- 7.5.5 反应结束后,加入 42.5 µL AFTMag NGS DNA Clean Beads (0.85X) 到 PCR 反应产物,吹打混匀。
- 7.5.6 室温静置 5 min, 然后转移至磁力架上~5 min, 直至溶液变澄清, 小心弃除上清。
- 7.5.7 将离心管保持在磁力架上,加入 200 µL 80%乙醇,静置 30 s,弃除全部上清。
- 7.5.8 重复 7.5.7, 将磁珠用 80%乙醇再洗 1 次, 用 10 µL 枪头将残留液体 彻底吸干。
- 7.5.9 干燥磁珠 2-3 min, 待酒精挥发完全后, 将 PCR 管移除磁力架, 加入 22.5 µL Low-EDTA TE, 吹打混匀。

7.5.10 室温静置 2 min, 磁力架上 1 min, 直到溶液变澄清, 小心吸取 20 μ L文库至另一新的离心管中, -20℃留存备用。

8. 附录

8.1 PCR Index primer 序列信息

i5 Primer:

5'-AATGATACGGCGACCACCGAGATCTACAC[i5index]ACACTCTTTCCCTACACG ACGCTCTTCCGATCT-3'

i7 Primer:

5'-CAAGCAGAAGACGGCATACGAGAT[i7index]GTGACTGGAGTTCAGACGTGTG CTCTTCCGATCT-3'

,注:[i5index]/[i7index]:8 bp Index 序列。

8.2 文库结构

8.2.1 文库结构示意图:

图 1. 文库结构

8.2.2 文库序列展示:

5'-AATGATACGGCGACCACCGAGATCTACACXXXXXX(XX)ACACTCTTTCCCTAC ACGACGCTCTTCCGATCT-NNNNNNNNNNN-PolyC-AGATCGGAAGAGCACAC GTCTGAACTCCAGTCACXXXXXXX(XX)ATCTCGTATGCCGTCTTCTGCTTG-3'

,注: NNNNNNNNNN: 插入的 DNA 序列; Poly C: 4-10bp 的 dCTP; XXXXXX(XX): 8bp Index 序列。

8.3 文库测序说明

由于文库 3'端含有低复杂度的 Poly(C)结构,为了提高测序的质量,建议测序时加入不少于 25%的 PhiX 或者其他复杂度高的 Pooling 文库。

8.4 原始测序数据预处理

Scale Methyl-DNA Lib Prep Kit for Illumina(CAT.NO.RK20220)通过对bisulfite 处理过的 DNA的 3'末端添加碱基 dCTP,然后与 T7 Truncated Adapter 进行连接。通过延伸合成 dsDNA,接着在双链的另一末端连接 T5 Adapter,通过 PCR 富集后获得最终的 DNA 文库,文库结构如图 1 所示。

Read 2 序列的起始会有多聚碱基 dGTP, 如图 2 所示; 我们建议在序列比对前进行 reads trim 工作,以免影响 reads mapping 效果; 当测序仪器读长较长,或者插入片段较短(<150 bp)时, Read 1 序列的 3'端也可能会含有连续的 dCTP,建议将这部分序列也进行一次 trim 工作。一般地,针对 Read 1 的末端(3')和 Read 2 的起始端(5')使用 Trimmomatic 等工具进行 10 碱基的 trim;

图 2. FastQC per base sequence content for Read 2

8.5 关于预处理(操作步骤 7.1)操作

8.5.1. 当样本 DNA 体积大于 15 μ L,可以将 T7 Tailing & Ligation 反应体系的 16 μ L 的 Low-EDTA TE 去掉,预变性体系由 15 μ L 增大到 31 μ L, 预变性条件改为下表所示,再进行 T7 Tailing & Ligation 反应。

温度	时间
95℃	3 min
立即置于冰上	3 min

8.5.2. 当样本 DNA 体积大于 31 μ L,需要进行 2.2X 磁珠纯化处理,然后用 16 μ L 的 Low-EDTA TE 洗脱,再按照说明书进行单链 DNA 的建库。

8.6 常见问题

DNA 构建结果不理想,文库产出偏低,出现接头二聚体、大片段等问题。可以考虑优化的方面如下所示:

- 8.6.1 投入的模板 DNA:
- (1) 较高的 DNA 投入量能提高 DNA 连接效率,建议提高 Input DNA 量;
- (2) 起始 DNA 定量可能不准确,建议使用 Qubit 试剂重新进行定量;

- (3) 起始 DNA 可能含有酶抑制剂,建议使用 2.2X 磁珠进行纯化再回收; 8.6.2 接头二聚体:
- (1) 建议稀释 T7 接头用量,继续测试,可以减少接头二聚体与大片段。T7 接头稀释使用可参照下表进行:

Bisulfite gDNA (ssDNA Qubit 定量)	T7 Adapter Dilution	T7 Adapter Concentration
>10 ng	No fold	10 μΜ
5 ng-10 ng	10-fold	1 μΜ

,注:可以用 Low-EDTA TE 进行 T7 Adapter 稀释。

(2) 二次纯化: 可以对文库进行第二次磁珠纯化,使用灭菌超纯水将第一次纯化产物体积补至 50 μL,加入 50 μL 磁珠(1×)进行第二次纯化。减少文库接头二聚体。

8.7 案例展示

8.7.1 gDNA 样本建库示例

图 4. Human Bisulfite gDNA 文库 Agilent 2100 分析图。Human blood gDNA 样本, gDNA 使用 ZYMO EZ DNA Methylation-Gold Kit (Cat. NO. D5005) 甲基化处理, 200 ng Bisulfite ssDNA 建库, PCR 扩增 7 个循环, 得到文库 (47 ng x 20 ul)。

8.7.2 FFPE/cfDNA 样本建库示例

图 5. FFPE/cfDNA 样本 bisulfite DNA 建库 Agilent 2100 分析图。A: 200 ng FFPE DNA 使用 ZYMO EZ DNA Methylation-Gold Kit (Cat. NO. D5005) 甲基化处理,全部投入建库,PCR 扩增 12 个循环得到文库(31.8 ng/µL X 20 µL);B: 10 ng cfDNA 样本 使用 ZYMO EZ DNA Methylation-Gold Kit (Cat. NO. D5005) 甲基化处理,全部投入建库,PCR 扩增 17 个循环得到文库(65 ng/µL X 20 µL)。

9. 附表

表格 4. 试剂盒兼容 Index 类型汇总

Index 类型	产品名称	货号
	Unique Dual Index for Illumina MiniSet (8 indices)	RK21622
	Unique Dual Index for Illumina MidiSet (24 indices)	RK21623
双端唯一	Unique Dual Index for Illumina Set_A (48 indices)	RK21624
(8-base)	Unique Dual Index for Illumina Set_B (48 indices)	RK21625
	Unique Dual Index for Illumina Set_C (48 indices)	RK21626
	Unique Dual Index for Illumina Set_D (48 indices)	RK21627

,注: ABclonal Illumina 截短型接头试剂盒中的引物均适用本试剂盒。

中国

www.abclonal.com.cn

中国总部:湖北省武汉市江夏区东湖高新区高科园 3 路精准医疗产业基地项目 一期 5 号楼

上海分子研发中心: 上海市闵行区园美路 58 号紫竹新兴产业技术研究院 2 号楼 4 楼

美国研发中心: 86 Cummings Park Dr ,Woburn,MA 01801, United States

电话: 400-999-6126

邮箱: cn.market@abclonal.com