

What is claimed is:

1 1. A sensor including:
2 (1) a resistive element having a top surface electrode and a bottom
3 surface electrode;
4 (2) a sensing element for sensing energy from outside and generating
5 an electrical signal;
6 (3) a field effect transistor element in which a gate electrode is
7 formed on the rear surface of the chip; and
8 (4) a substrate having a first electrode, a second electrode, and a third
9 electrode on the top surface of said substrate;
10 wherein
11 the bottom surface electrode of said resistive element is electrically
12 connected with the first electrode of said substrate;
13 the gate electrode of said field effect transistor element is electrically
14 connected to a portion of the top surface electrode of said resistive element in such
15 a way that the gate electrode and a portion of the top surface electrode of said
16 resistive element coincides;
17 one of the electrodes of said sensor element is electrically connected
18 with a portion of the top surface electrode of said resistive element;
19 a source electrode and a drain electrode of said field effect transistor
20 element are respectively electrically connected with the second electrode and the
21 third electrode on said substrate; and
22 the other electrode of said sensing element is electrically connected
23 with the first electrode on said substrate.

1 2. The sensor of claim 1 wherein said resistive element is formed with
2 one of a ceramic material, glass material, and ferrite material.

1 3. The sensor of claim 1 wherein the top surface electrode and the
2 bottom surface electrode of said resistive element contain at lease one of chromium,
3 tin, and indium.

1 4. A method of manufacturing a sensor, said sensor including:
2 (1) a resistive element having a top surface electrode and a bottom
3 surface electrode;
4 (2) a sensing element for sensing energy from outside and generating
5 an electrical signal;
6 (3) a field effect transistor element on which a gate electrode is
7 formed on the rear surface of the chip; and
8 (4) a substrate having a first electrode, a second electrode, and a third
9 electrode on the top surface of said substrate;
10 said method comprising the steps of:
11 electrically connecting the bottom surface electrode of said resistive
12 element with the first electrode of said substrate;
13 electrically connecting the gate electrode of said field effect transistor
14 element to a portion of the top surface electrode of said resistive element in such a
15 way that the gate electrode and a portion of the top surface electrode of said
16 resistive element coincides;

17 electrically connecting one of the electrodes of said sensing element
18 with a portion of the top surface electrode of said resistive element;
19 electrically connecting a source electrode and a drain electrode of said
20 field effect transistor element with the second electrode and the third electrode on
21 said substrate, respectively; and
22 electrically connecting the other electrode of said sensing element
23 with the first electrode on said substrate.

1 5. The method of manufacturing a sensor of claim 4 wherein the
2 method of manufacturing said resistive element comprises the steps of:
3 forming an electrode over the entire top and bottom surfaces of a
4 large-area flat resistor body in advance;
5 measuring its resistance value; and
6 cutting to predetermined dimensions based on the measured
7 resistance value to obtain a predetermined resistance value.

1 6. The method of manufacturing a resistive element of claim 5
2 wherein said resistor body is formed by sintering at a temperature at which the
3 water absorption rate becomes 1% or below.

1 7. The method of manufacturing a sensor of claim 4 wherein the step
2 of electrically connecting the bottom surface electrode of said resistive element
3 with the first electrode of said substrate further comprising:
4 obtaining a predetermined resistance value by electrically connecting
5 the bottom surface electrode of said resistive element with the first electrode of said

6 substrate by using a conductive material and controlling the amount of the
7 conductive material, thereby controlling the amount of resin that rises on the sides
8 of said resistive element.

1 8. The method of manufacturing a sensor of claim 4, further
2 comprising the step of:

3 obtaining a predetermined resistance value by controlling the
4 resistance value and forming a resistive element having a predetermined value by
5 performing at least one of heat treatment in a vacuum, heat treatment in a reducing
6 gas atmosphere, and heat treatment in an inactive gas atmosphere, after forming the
7 top surface electrode and the bottom surface electrode of said resistive element.

1 9. The method of manufacturing a sensor of claim 8, further
2 comprising the step of:

3 performing heat treatment in the atmosphere or in an oxygen
4 atmosphere after performing heat treatment in one of a vacuum, a reducing gas
5 atmosphere, and an inactive gas atmosphere.