Lab Assignment 5 Prakhar Gupta B21Al027

Question 1:

Part 1-

- Made X,y using sklearn make_moons function(random_state=42, noise=0.3,n_samples=1000)
- Converted X,y to df and then used df.describe()
- Checked df.isnull().sum()
- Plotted X,y

- Used train_test_split to split train:test in 80:20
- Fitted Decision Tree Classifier

- Plotted DT boundary
- Finded best params for DT using GridSearchCV
- Trained a Bagging Classifier
- Plotted Decision boundary

- Trained a RandomForestClassifier
- Plotted Decision Boundary

- Best accuracy order of Train_data Random Forest > Bagging
 Classifier > Decision Tree
- Best accuracy order of Test_data Random Forest > Bagging
 Classifier > Decision Tree
- We can see Decision Tree has high bias, Bagging Tree is somewhat overfitting and Random Forest is the best
- Varied the number of estimators for the BaggingClassifier and RandomForestClassifier and plotted Decision Boundaries
- From The Accuracy we can clearly see that it sometimes up and down but on long run it clearly increases
- The best accuracy we get are:
- bst train randforest accuracy: 0.99375
- bst test randforest accuracy: 0.915
- bst_train_bag_tree_accuracy: 0.99375
- bst test bag tree accuracy: 0.91
- We can see the randomforest and bag_tree accuracy get equal at high estimators value in train set
- We can see the randomforest accuracy is greater than bag_tree accuracy at high estimators value in test set

 From plots of both bag_tree and random forest we can see that the boundary becomes more and more complex as n_estimators value increases

Part 2-

- Implemented Bagging algorithm from scratch
- Applied scratch bagging algorithm with n_estimators = 10
- Trained the Bagging algo got its accuracy 0.92
- Average accuracy on trees is 0.9
- The average accuracy of all the trees is 0.9 whereas for bagging it is 0.92
- Bagging accuracy > Average accuracy of all trees

Question 2:

Part 1-

Trained AdaBoostClassifier with n_estimators=100

Part 2-

• Trained a XGBClassifie with n estimators=100, and subsample=0.7

Part 3-

 Printed accuracy of both AdaBoostClassifier and XGBClassifie on train and test data

```
AdaBoost Classifier Accuracy on training set: 0.9475
AdaBoost Classifier Accuracy on test set: 0.91
XGBoost Classifier Accuracy on training set: 0.9925
XGBoost Classifier Accuracy on test set: 0.905
```

Part 4-

- Trained a LightGBM model
- Varied different values for num_leaves

Part 5-

- Analysed relation between max_depth when num_leaves is given to the LightGBM model
- Plotted accuracy for various num_leaves value

 Plotted heatmap where axis are max_depth and num_leaves and the y value is test/train accuracy

Test/Train Accuracy (train_scores, test_scores)								
2 -	0.983	0.999	0.999	0.999	0,999	0.999	0.999	0.999
	(0.905,0.890)	(0.931,0.930)	(0.931,0.930)	(0.931,0.930)	(0.931,0.930)	(0.931,0.930)	(0.931,0.930)	(0.931,0.930)
ru -	0.983	0.993	0.980	0.975	0.954	0.975	0.982	0.982
	(0.905,0.890)	(0.936,0.930)	(0.939,0.920)	(0.949,0.925)	(0.949,0.905)	(0.949,0.925)	(0.948,0.930)	(0.948,0.930)
∞ -	0.983	0.993	0.995	0.965	0.948	0.942	0.932	0.945
	(0.905,0.890)	(0.936,0.930)	(0.940,0.935)	(0.954,0.920)	(0.970,0.920)	(0.971,0.915)	(0.971,0.905)	(0.969,0.915)
eaves	0.983	0.993	0.995	0.965	0.942	0.922	0.915	0.925
11	(0.905,0.890)	(0.936,0.930)	(0.940,0.935)	(0.959,0.925)	(0.971,0.915)	(0.976,0.900)	(0.989,0.905)	(0.984,0.910)
Num Leaves	0.983	0.993	0.995	0.965	0.942	0.920	0.910	0.912
14 11	(0.905,0.890)	(0.936,0.930)	(0.940,0.935)	(0.959,0.925)	(0.971,0.915)	(0.984,0.905)	(0.989,0.900)	(0.993,0.905)
71	0.983	0.993	0.995	0.965	0.942	0.923	0.911	0.912
	(0.905,0.890)	(0.936,0.930)	(0.940,0.935)	(0.959,0.925)	(0.971,0.915)	(0.980,0.905)	(0.994,0.905)	(0.993,0.905)
70	0.983	0.993	0.995	0.965	0.942	0.923	0.907	0.907
	(0.905,0.890)	(0.936,0.930)	(0.940,0.935)	(0.959,0.925)	(0.971,0.915)	(0.980,0.905)	(0.993,0.900)	(0.993,0.900)
- 33	0.983	0.993	0.995	0.965	0.942	0.923	0.907	0.907
	(0.905,0.890)	(0.936,0.930)	(0.940,0.935)	(0.959,0.925)	(0.971,0.915)	(0.980,0.905)	(0.993,0.900)	(0.993,0.900)
'	2	Ś	8	11 Max (14 Depth	17	20	23

- From num_leaves vs Accuracy plot we can see the model starts overfitting after num_leaves=8 and max_depth=8
- From heatmap also we can see the same result

Part 6-

- num_leaves: This decides how many leaves will be in a tree. If we increase num_leaves, it can make the prediction better.
- max_depth: High depth can also lead to overfitting.But it will increase the accuracy
- min_data_in_leaf: This parameter sets the minimum number of samples required to be at a leaf node. If we increase this value, we will have less overfitting for each leaf, which can help to prevent overfitting.

- **feature_fraction**: This decides how many features we want to use in each tree. If we lower this value, we will have less overfitting, which can help us to prevent overfitting.
- lambda_l1 and lambda_l2: These parameters decide L1 and L2 regularization, respectively. If we set non-zero values for lambda_l1 and lambda_l2, it can help us to prevent overfitting.

Part 7-

 Plot the decision boundaries for all the 3 models and compared their performance

- AdaBoost Classifier Accuracy on training set: 0.9475 and on test set:
 0.91
- XGBoost Classifier Accuracy on training set: 0.9925 and on test set: 0.905
- LightGBM Classifier Accuracy on training set: 0.9375 and on test set: 0.93
- We can clearly see that accuracy/performance is LightGBM>AdaBoost>XGBoost

Question 3:

Part 1-

 Train a Bayes classification model and also tuned the hyperparameter(i.e. var smoothing)

```
Best parameters found: {'var_smoothing': 1e-19}
Gaussian Naive Bayes Classifier Accuracy on training set: 0.86
Gaussian Naive Bayes Classifier Accuracy on test set: 0.82
```

 The best models till now are RandomForestClassifier, LightGBM Classifier, AdaBoost Classifier

- Made a VotingClassifer from sklearn using (Bayes Classification model,RandomForestClassifier, LightGBM Classifier, AdaBoost Classifier)
- Trained VotingClassifier
- Voting Classifier Accuracy on training set: 0.95125 Voting Classifier Accuracy on test set: 0.915
- Voting Classifier Accuracy on training set: 0.9475 and on test set: 0.91
- Average Accuracy on training set by AdaBoost, Randomforst, LightGBM: 0.95833 and and on testing set: 0.91833
- AdaBoost Classifier Accuracy on training set: 0.9475 and on test set: 0.91
- Random Forest Accuracy on training set: 0.95125 and on test set: 0.915
- LightGBM Classifier Accuracy on training set: 0.9375 and on test set: 0.93
- In comparison to the three model Voting Classifier has both train_accuracy and test_accuracy good