Notes on the book: $James\ R.\ Munkres,\ Elements\ of$ $Algebraic\ Topology$

Meng-Gen Tsai plover@gmail.com

August 26, 2021

Contents

Chapter 1: Homology Groups of a Simplicial Complex	2
§1. Simplices	2
Exercise 1.1.	2

Chapter 1: Homology Groups of a Simplicial Complex

§1. Simplices

Exercise 1.1.

Verify properties (1)-(3) of simplices:

(1) The barycentric coordinates $t_i(x)$ of x with respect to a_0, \ldots, a_n are continuous functions of x.

(2)

(3) σ is compact, convex set in \mathbb{R}^N , which equals the intersection of all convex sets in \mathbb{R}^N containing a_0, \ldots, a_n .

Proof of property (1).

- (1) Let σ be the *n*-simplex spanned by a_0, \ldots, a_n . It suffices to show that $t_i(x)$ is linear. Therefore $t_i(x)$ is automatically continuous (Theorem 9.7 in the textbook: *Rudin, Principles of Mathematical Analysis, 3rd edition*).
- (2) Let

$$E = \left\{ x = \sum_{i=1}^{n} \widetilde{t}_{i}(x) a_{i} : \widetilde{t}_{i}(x) \in \mathbb{R} \right\} \supseteq \sigma$$

be the plane spanned by a_0, \ldots, a_n . $\widetilde{t}_i(x)$ is well-defined on E and thus $\widetilde{t}_i|_{\sigma} = t_i$ (since $\{a_0, \ldots, a_n\}$ is geometrically independent in \mathbb{R}^N). So it suffices to show that \widetilde{t}_i is linear.

(3) Suppose $x = \sum_{i=1}^{n} \widetilde{t_i}(x) a_i \in E$ and $y = \sum_{i=1}^{n} \widetilde{t_i}(y) a_i \in E$. Then

$$x + y = \sum_{i=1}^{n} (\widetilde{t}_i(x) + \widetilde{t}_i(y)) a_i.$$

Note that the coefficient of a_i is uniquely determined by x+y. Thus $\widetilde{t}_i(x+y)=\widetilde{t}_i(x)+\widetilde{t}_i(y)$. Similarly, $\widetilde{t}_i(rx)=r\widetilde{t}_i(x)$ for $r\in\mathbb{R}$. Hence \widetilde{t}_i is linear.

Proof of property (2).

(1)

Proof of property (3).

- (1) Show that σ is compact.
- (2) Show that σ is convex. Given any $x = \sum_i t_i a_i \in \sigma$ (with $\sum_i t_i = 1$), $y = \sum_i s_i a_i \in \sigma$ (with $\sum_i s_i = 1$) and $0 < \lambda < 1$, it suffices to show that

$$\lambda x + (1 - \lambda)y \in \sigma.$$

In fact,

$$\lambda x + (1 - \lambda)y = \lambda \sum_{i} t_i a_i \in \sigma + (1 - \lambda) \sum_{i} s_i a_i$$
$$= \sum_{i} (\lambda t_i + (1 - \lambda)s_i)a_i,$$

where each $\lambda t_i + (1 - \lambda)s_i \ge 0$ and

$$\sum_{i} (\lambda t_{i} + (1 - \lambda)s_{i}) = \lambda \sum_{i} t_{i} + (1 - \lambda) \sum_{i} s_{i} = \lambda + (1 - \lambda) = 1.$$

So $\lambda x + (1 - \lambda)y \in \sigma$.

(3) Let \mathscr{C} be the collection of all convex sets in \mathbb{R}^N containing a_0, \ldots, a_n . Show that $\sigma = \bigcap_{E \in \mathscr{C}} E$. By (2), $\sigma \in \mathscr{C}$ and thus $\sigma \supseteq \bigcap_{E \in \mathscr{C}} E$. Conversely, suppose $E \in \mathscr{C}$. The convexity of E implies that $\sum_i t_i a_i \in E$ whenever $\sum_i t_i = 1$ and $t_i \ge 0$. Hence $\sigma \subseteq E$ and thus $\sigma \subseteq \bigcap_{E \in \mathscr{C}} E$.