B.CSE, 2ND YR. 1ST SEMS EXAM, 2016

Mathematics

(Paper-IV)

Full Marks:100

Time: Three Hours

Answer Question number 1. and any six from the rest.

1. Find a particular integral of the differential equation

(4)

(6)

$$\frac{d^2y}{dx^2} - 9y = e^{3x}\cos x$$

2. (a) Find the series for log(1+x) by integration and use Abel's Theorem to prove that

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots = \log 2$$

(b) Find a power series solution of the initial value problem

(10)

$$(x^{2} - 1)\frac{d^{2}y}{dx^{2}} + 3x\frac{dy}{dx} + xy = 0, y(0) = 4, y'(0) = 6$$

Write atleast first five terms of the series.

3. (a) Find Frobenius series solution about the regular singular point of the following differential equation (10)

 $x^{2}\frac{d^{2}y}{dx^{2}} - x\frac{dy}{dx} + 8(x^{2} - 1)y = 0$

Write atleast first three terms of each series.

(b) State the orthogonality property of Chebyshev ploynomials of first kind. Use that property to find the expansion of $f(x) = x^3 + x, -1 \le x \le 1$ in terms of the Chebyshev polynomials of first kind. (6)

4. (a) Prove that (10)

$$\int_{-1}^{1} P_m(x) P_n(x) dx = \begin{cases} 0, & m \neq n \\ \frac{2}{2n+1}, & m = n \end{cases}$$

where $P_n(x)$ is the Legendra polynomial of degree n.

(b) Write generating function of Legendre ploynomials. Use that function to prove (6)

i.
$$P_n(1) = 1$$

ii.
$$P_{2n}(0) = (-1)^n \frac{1 \cdot 3 \cdot 5 \cdot \dots (2n-1)}{2^n n!}$$

5. (a) Use the method of variation of parameters to find general solution of the equation (8)

$$\frac{d^2y}{dx^2} + y = \tan x$$

- (b) Solve $x^{2} \frac{d^{2}y}{dx^{2}} + x \frac{dy}{dx} + 4y = 2x \ln x$ (8)
- 6. (a) If $f(z) = e^z$, describe the image under f(z) of horizontal and vertical lines i.e. find the sets f(a+it) and f(t+ib), where a,b are constants and t runs through all real numbers.
 - (b) If the function $\frac{\bar{z}}{z}$ analytic in its domain of definition? (3)
 - (c) Suppose $f(z) = az^2 + bz\bar{z} + c\bar{z}^2$, where a, b, c are fixed complex numbers. By differentiating f(z), show that f(z) is complex differentiable at z iff $bz + 2c\bar{z} = 0$.
 - (d) Derive the polar form of the Cauchy-Riemann equations for u and v: $\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}$, (4) $\frac{\partial u}{\partial \theta} = -r \frac{\partial v}{\partial r}$
- 7. (a) Use Liouville's theorem to prove that every polynomial in z of degree $n(\geq 1)$ has a zero. (6)
 - (b) Find harmonic conjugate of $xy + 3x^2y y^3$. (4)
 - (c) Define $u(z) = Im(\frac{1}{z^2})$ for $z \neq 0$ and set u(0) = 0, then show that i. $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$.
 - ii. u is not harmonic on C.
 - iii. $\frac{\partial^2 u}{\partial x \partial y}$ does not exists at (0,0).
- 8. (a) Find $\int_{\nu} f(z)dz \tag{6}$

where $\nu = 3e^{it}$ for $t \in [0, 2\pi]$ and $f(z) = \bar{z}$.

- (b) Show that if z_0 is an isolated singularity of f(z) that is not removable, then z_0 is an essential singularity of $e^{f(z)}$.
- (c) By estimating the coefficient of the Laurent series, prove that if z_0 is an isolated singularity of f, and if $(z z_0)f(z) \to 0$ as $z \to z_0$, then z_0 is removable.
- 9. (a) Define Fourier series of a function f(x). Find the Fourier series generated by a periodic function $f(x) = x^2$ in $-\pi \le x \le \pi$ and deduce that
 - i. $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots = \frac{\pi^2}{6}$.
 - ii. $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}$.
 - (b) Find the Fourier series for $f(x) = |x|, -\pi < x < \pi$ (8)