1a $2a$ $13a$ $3a$	a = 26a	13b	39a	26b	13c	39b	26c	13d	39c	26d	13e	39d	26e	13f	39e	26f	13g	39f	26g	13h	39g	26h	13i	39h	26i	13j	39i	26j	13k	39j	26k	13l	39k	26l	39 <i>l</i>
χ_1 1 1 1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
$ \chi_2 1 -1 1 1$	-1	1	1	-1	1	1	-1	1	1	-1	1	1	-1	1	1	-1	1	1	-1	1	1	-1	1	1	-1	1	1	-1	1	1	-1	1	1	-1	1
χ_3 1 -1 $E(13)^{12}$ 1	$-E(13)^{12}$	$E(13)^{11}$	$E(13)^{12}$	$-E(13)^{11}$	$E(13)^{10}$	$E(13)^{11}$	$-E(13)^{10}$	$E(13)^9$	$E(13)^{10}$	$-E(13)^9$	$E(13)^{8}$	$E(13)^9$	$-E(13)^8$	$E(13)^{7}$	$E(13)^{8}$	$-E(13)^{7}$	$E(13)^6$	$E(13)^{7}$	$-E(13)^6$	$E(13)^5$	$E(13)^{6}$	$-E(13)^5$	$E(13)^4$	$E(13)^5$	$-E(13)^4$	$E(13)^3$	$E(13)^4$	$-E(13)^3$	$E(13)^2$	$E(13)^{3}$	$-E(13)^2$	E(13)	$E(13)^2$	-E(13)	E(13)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$-E(13)^{11}$	$E(13)^9$	$E(13)^{11}$	$-E(13)^9$	$E(13)^{7}$	$E(13)^9$	$-E(13)^{7}$	$E(13)^{5}$	$E(13)^{7}$	$-E(13)^{5}$	$E(13)^3$	$E(13)^{5}$	$-E(13)^3$	E(13)	$E(13)^{3}$	$-\dot{E(13)}$	$E(13)^{12}$	E(13)	$-E(13)^{12}$	$E(13)^{10}$	$E(13)^{12}$	$-E(13)^{10}$	$E(13)^{8}$	$E(13)^{10}$	$-E(13)^{8}$	$E(13)^{6}$	$E(13)^{8}$	$-E(13)^{6}$	$E(13)^{4}$	$E(13)^{6}$	$-E(13)^4$	$E(13)^{2}$	$E(13)^{4}$	$-E(13)^{2}$	$E(13)^2$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$-E(13)^{10}$	\ /	\ /	$-E(13)^{7}$	$E(13)^4$	$E(13)^{7}$	$-E(13)^4$	E(13)	$E(13)^4$	-E(13)	$E(13)^{11}$	E(13)	$-E(13)^{11}$	\ /	$E(13)^{11}$	$-E(13)^{8}$	()	$E(13)^{8}$	$-E(13)^{5}$	$E(13)^2$	$E(13)^{5}$	$-E(13)^2$	$E(13)^{12}$	$E(13)^2$	$-E(13)^{12}$	$E(13)^9$	\ /	$-E(13)^9$	\ /	$E(13)^9$	$-E(13)^{6}$	$E(13)^3$	$E(13)^{6}$	$-E(13)^3$	$E(13)^3$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$-E(13)^9$	\ /	$E(13)^9$	$-E(13)^5$	E(13)	$E(13)^5$	-E(13)	$E(13)^{10}$	E(13)	$-E(13)^{10}$	$E(13)^{6}$	$E(13)^{10}$	$-E(13)^{6}$	$E(13)^2$	$E(13)^{6}$	$-E(13)^2$	\ /	$E(13)^2$	$-E(13)^{11}$	$E(13)^{7}$	$E(13)^{11}$	$-E(13)^{7}$	$E(13)^3$	$E(13)^7$	$-E(13)^3$	$E(13)^{12}$	$E(13)^3$	$-E(13)^{12}$	\ /	$E(13)^{12}$	$-E(13)^{8}$	$E(13)^4$	$E(13)^8$	$-E(13)^4$	$E(13)^4$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$-E(13)^{8}$	$E(13)^3$	$E(13)^8$	$-E(13)^3$	$E(13)^{11}$	$E(13)^3$	$-E(13)^{11}$	$E(13)^6$	$E(13)^{11}$	$-E(13)^6$	E(13)	$E(13)^6$	-E(13)	$E(13)^9$	E(13)	$-E(13)^9$	()	$E(13)^9$	$-E(13)^4$	$E(13)^{12}$	$E(13)^4$	$-E(13)^{12}$	$E(13)^7$	$E(13)^{12}$	$-E(13)^7$	$E(13)^2$	$E(13)^7$	$-E(13)^2$	\ /	$E(13)^2$	$-E(13)^{10}$	$E(13)^5$	$E(13)^{10}$	$-E(13)^5$	$E(13)^5$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$-E(13)^7$	E(13) $E(13)$	$E(19)^7$	-E(13)	$E(13)^8$	E(13)	$-E(13)^8$	$E(13)^2$	$E(13)^8$	$-E(13)^2$	$E(13)^9$	$E(13)^2$	$-E(13)^9$	$E(13)^3$	$E(13)^9$	$-E(13)^3$. /	$E(19)^3$	$-E(13)^{10}$	$E(13)^4$	$E(13)^{10}$	$-E(13)^4$	E(19)11	$E(13)^4$	$-E(13)^{11}$	$E(13)^5$	$E(13)^{11}$	$-E(13)^5$	\ / /	$E(13)^5$	$-E(13)^{12}$	$E(13)^6$	$E(13)^{12}$	$-E(13)^6$	$E(13)^{6}$
7.00	$-E(13)^{6}$	(-)	E(19)	$-E(13)^{12}$	$E(13)^5$	$E(13)^{12}$	$-E(13)^5$	E(19)11	$E(13)^5$	$-E(13)^{11}$	$E(13)^4$	$E(13)^{11}$	$-E(13)^4$	$E(13)^{10}$	$E(13)^4$	-E(19)	$E(13)$ $E(13)^3$	$E(13)^{10}$	-E(19)	E(19)	$E(13)^3$	$-E(13)^9$	$E(13)^2$	$E(13)^9$	$-E(13)^2$	$E(13)^8$	$E(13)^2$	$-E(13)^8$	E(19)	$E(13)^8$	-E(13) - E(13)	$E(13)^7$	E(19)	-E(19)	$\frac{E(13)}{E(12)7}$
700	\ /	\ /	E(13)	\ /	\ / _	$E(13)$ $E(13)^{10}$	$-E(13)^2$	E(13)	(/	` .	\ /	` ′ _	-E(13) $-E(13)^{12}$	$E(13)^4$	$E(13)^{12}$	-E(13)	. ,	E(13)	-E(13)	E(10)	` /	\ /	\ /	\ /	-E(13)	\ /	\ /	-E(13) $-E(13)^{11}$	E(10)	\ /	\ /	\ /	E(10)	-E(13)	$E(13)^{8}$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$-E(13)^5$	\ /	$E(13)^{\circ}$	$-E(13)^{10}$	$E(13)^2$	(-)	- ()	$E(13)^3$	$E(13)^2$	$-E(13)^{7}$	$E(13)^{12}$	$E(13)^{7}$	\ /	\ /	\ /	$-E(13)^4$		$E(13)^{-1}$	$-E(13)^{\circ}$	E(13)	$E(13)^9$	-E(13)	$E(13)^6$	E(13)	$-E(13)^{\circ}$	$E(13)^{11}$	$E(13)^6$	(-)	(-)	$E(13)^{11}$	$-E(13)^3$	$E(13)^8$	$E(13)^{\circ}$	$-E(13)^{\circ}$	\ /
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$-E(13)^4$		$E(13)^{4}$	$-E(13)^8$	$E(13)^{12}$	$E(13)^8$	$-E(13)^{12}$	- ()	$E(13)^{12}$	$-E(13)^3$	$E(13)^7$	$E(13)^3$	$-E(13)^7$	$E(13)^{11}$	$E(13)^7$	$-E(13)^{13}$	()	$E(13)^{11}$	$-E(13)^2$	$E(13)^6$	$E(13)^2$	$-E(13)^6$	$E(13)^{10}$	$E(13)^6$	$-E(13)^{10}$	E(13)	$E(13)^{10}$	-E(13)	$E(13)^5$	E(13)	$-E(13)^5$	$E(13)^9$	$E(13)^5$	$-E(13)^9$	$E(13)^9$
χ_{12} 1 -1 $E(13)^3$ 1	$-E(13)^3$	(/	$E(13)^3$	$-E(13)^6$	$E(13)^9$	$E(13)^6$	$-E(13)^9$	$E(13)^{12}$	$E(13)^9$	$-E(13)^{12}$	$E(13)^2$	$E(13)^{12}$	$-E(13)^2$	$E(13)^5$	$E(13)^2$	$-E(13)^5$	()	$E(13)^5$	$-E(13)^{8}$	$E(13)^{11}$	$E(13)^8$	$-E(13)^{11}$	E(13)	$E(13)^{11}$	-E(13)	$E(13)^4$	\ /	$-E(13)^4$	(/	$E(13)^4$	$-E(13)^{7}$	$E(13)^{10}$	E(13)'	\ /	$E(13)^{10}$
$\chi_{13} \mid 1 -1 E(13)^2 1$	$-E(13)^2$	()	$E(13)^{2}$	$-E(13)^4$	$E(13)^{6}$	$E(13)^4$	$-E(13)^{6}$	$E(13)^{8}$	$E(13)^{6}$	$-E(13)^{8}$	$E(13)^{10}$	$E(13)^{8}$	$-E(13)^{10}$	$E(13)^{12}$	$E(13)^{10}$	$-E(13)^{13}$	(/	$E(13)^{12}$	-E(13)	$E(13)^3$	E(13)	$-E(13)^3$	$E(13)^5$	$E(13)^3$	$-E(13)^5$	$E(13)^{7}$	\ /	$-E(13)^{7}$	$E(13)^9$	$E(13)^{7}$	$-E(13)^9$	$E(13)^{11}$	$E(13)^9$	()	$E(13)^{11}$
$ \chi_{14} 1 -1 E(13) 1$	-E(13)	$E(13)^2$	E(13)	$-E(13)^2$	$E(13)^3$	$E(13)^2$	$-E(13)^3$	$E(13)^4$	$E(13)^3$	$-E(13)^4$	$E(13)^{5}$	$E(13)^4$	$-E(13)^5$	$E(13)_{-}^{6}$	$E(13)^{5}$	$-E(13)^{6}$	\ /	$E(13)_{-}^{6}$	$-E(13)^{7}$	$E(13)^{8}$	$E(13)^{7}$	$-E(13)^{8}$	$E(13)^9$	$E(13)^{8}$	$-E(13)^9$	$E(13)^{10}$	\ /	$-E(13)^{10}$	$E(13)^{11}$	$E(13)^{10}$	$-E(13)^{11}$	$E(13)^{12}$	$E(13)^{11}$	$-E(13)^{12}$	$E(13)^{12}$
$\chi_{15} = 1 1 E(13)^{12} 1$	$E(13)^{12}$	$E(13)^{11}$	$E(13)^{12}$	$E(13)^{11}$	$E(13)^{10}$	$E(13)^{11}$	$E(13)^{10}$	$E(13)^9$	$E(13)^{10}$	$E(13)^9$	$E(13)^{8}$	$E(13)^9$	$E(13)^{8}$	$E(13)^{7}$	$E(13)^{8}$	$E(13)^{7}$	$E(13)^{6}$	$E(13)^{7}$	$E(13)^{6}$	$E(13)^{5}$	$E(13)^{6}$	$E(13)^{5}$	$E(13)^4$	$E(13)^{5}$	$E(13)^4$	$E(13)^{3}$	$E(13)^4$	$E(13)^{3}$	$E(13)^2$	$E(13)^{3}$	$E(13)^{2}$	E(13)	$E(13)^{2}$	E(13)	E(13)
$\chi_{16} \mid 1 1 E(13)^{11} 1$	$E(13)^{11}$	$E(13)^9$	$E(13)^{11}$	$E(13)^9$	$E(13)^{7}$	$E(13)^9$	$E(13)^{7}$	$E(13)^{5}$	$E(13)^{7}$	$E(13)^{5}$	$E(13)^{3}$	$E(13)^{5}$	$E(13)^{3}$	E(13)	$E(13)^{3}$	E(13)	$E(13)^{12}$	E(13)	$E(13)^{12}$	$E(13)^{10}$	$E(13)^{12}$	$E(13)^{10}$	$E(13)^{8}$	$E(13)^{10}$	$E(13)^{8}$	$E(13)^{6}$	$E(13)^{8}$	$E(13)^{6}$	$E(13)^4$	$E(13)^{6}$	$E(13)^4$	$E(13)^{2}$	$E(13)^4$	$E(13)^{2}$	$E(13)^2$
$\chi_{17} \mid 1 1 E(13)^{10} 1$	$E(13)^{10}$	$E(13)^{7}$	$E(13)^{10}$	$E(13)^{7}$	$E(13)^4$	$E(13)^{7}$	$E(13)^4$	E(13)	$E(13)^4$	E(13)	$E(13)^{11}$	E(13)	$E(13)^{11}$	$E(13)^{8}$	$E(13)^{11}$	$E(13)^{8}$	$E(13)^{5}$	$E(13)^{8}$	$E(13)^{5}$	$E(13)^2$	$E(13)^{5}$	$E(13)^{2}$	$E(13)^{12}$	$E(13)^2$	$E(13)^{12}$	$E(13)^9$	$E(13)^{12}$	$E(13)^9$	$E(13)^{6}$	$E(13)^9$	$E(13)^{6}$	$E(13)^{3}$	$E(13)^{6}$	$E(13)^{3}$	$E(13)^3$
$\chi_{18} \mid 1 1 E(13)^9 1$	$E(13)^9$	$E(13)^{5}$	$E(13)^9$	$E(13)^{5}$	E(13)	$E(13)^{5}$	E(13)	$E(13)^{10}$	E(13)	$E(13)^{10}$	$E(13)^{6}$	$E(13)^{10}$	$E(13)^{6}$	$E(13)^2$	$E(13)^{6}$	$E(13)^2$	$E(13)^{11}$	$E(13)^2$	$E(13)^{11}$	$E(13)^{7}$	$E(13)^{11}$	$E(13)^{7}$	$E(13)^3$	$E(13)^{7}$	$E(13)^3$	$E(13)^{12}$	$E(13)^3$	$E(13)^{12}$	$E(13)^{8}$	$E(13)^{12}$	$E(13)^{8}$	$E(13)^4$	$E(13)^{8}$	$E(13)^4$	$E(13)^4$
$\chi_{19} \mid 1 1 E(13)^8 1$	$E(13)^{8}$	$E(13)^3$	$E(13)^{8}$	$E(13)^3$	$E(13)^{11}$	$E(13)^3$	$E(13)^{11}$	$E(13)^{6}$	$E(13)^{11}$	$E(13)^{6}$	E(13)	$E(13)^{6}$	E(13)	$E(13)^9$	E(13)	$E(13)^{9}$	$E(13)^4$	$E(13)^{9}$	$E(13)^4$	$E(13)^{12}$	$E(13)^4$	$E(13)^{12}$	$E(13)^{7}$	$E(13)^{12}$	$E(13)^{7}$	$E(13)^2$	$E(13)^{7}$	$E(13)^2$	$E(13)^{10}$	$E(13)^2$	$E(13)^{10}$	$E(13)^{5}$	$E(13)^{10}$	$E(13)^{5}$	$E(13)^{5}$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$E(13)^{7}$	E(13)	$E(13)^{7}$	E(13)	$E(13)^{8}$	E(13)	$E(13)^{8}$	$E(13)^{2}$	$E(13)^{8}$	$E(13)^{2}$	$E(13)^{9}$	$E(13)^{2}$	$E(13)^{9}$	$E(13)^3$	$E(13)^{9}$	$E(13)^3$	$E(13)^{10}$	$E(13)^3$	$E(13)^{10}$	$E(13)^4$	$E(13)^{10}$	$E(13)^4$	$E(13)^{11}$	$E(13)^4$	$E(13)^{11}$	$E(13)^{5}$	$E(13)^{11}$	$E(13)^{5}$	$E(13)^{12}$	$E(13)^{5}$	$E(13)^{12}$	$E(13)^{6}$	$E(13)^{12}$	$E(13)^{6}$	$E(13)^{6}$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$E(13)^{6}$	$E(13)^{12}$	$E(13)^{6}$	$E(13)^{12}$	$E(13)^{5}$	$E(13)^{12}$	$E(13)^{5}$	$E(13)^{11}$	$E(13)^{5}$	$E(13)^{11}$	$E(13)^{4}$	$E(13)^{11}$	$E(13)^{4}$	$E(13)^{10}$	$E(13)^{4}$	$E(13)^{10}$	$E(13)^3$	$E(13)^{10}$	$E(13)^3$	$E(13)^{9}$	$E(13)^3$	$E(13)^{9}$	$E(13)^2$	$E(13)^{9}$	$E(13)^{2}$	$E(13)^{8}$	$E(13)^{2}$	$E(13)^{8}$	$\stackrel{ ightharpoonup}{E}(13)$	$E(13)^{8}$	E(13)	$E(13)^{7}$	$\stackrel{ ightharpoonup}{E}(13)$	$E(13)^{7}$	$E(13)^7$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$E(13)^{5}$	$E(13)^{10}$	$E(13)^{5}$	$E(13)^{10}$	$E(13)^{2}$	$E(13)^{10}$	$E(13)^2$	$E(13)^{7}$	$E(13)^{2}$	$E(13)^{7}$	$E(13)^{12}$	$E(13)^{7}$	$E(13)^{12}$	$E(13)^4$	$E(13)^{12}$	$E(13)^4$	$E(13)^{9}$	$E(13)^4$	$E(13)^9$	E(13)	$E(13)^9$	E(13)	$E(13)^{6}$	E(13)	$E(13)^{6}$	$E(13)^{11}$	$E(13)^{6}$	$E(13)^{11}$	$E(13)^3$	$E(13)^{11}$	$E(13)^3$	$E(13)^{8}$	$E(13)^3$	$E(13)^{8}$	$E(13)^{8}$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$E(13)^4$	$E(13)^8$	$E(13)^4$	$E(13)^8$	$E(13)^{12}$	$E(13)^8$	$E(13)^{12}$	$E(13)^3$	$E(13)^{12}$	$E(13)^3$	$E(13)^7$	$E(13)^3$	$E(13)^7$	$E(13)^{11}$	$E(13)^7$	$E(13)^{11}$	$E(13)^2$	$E(13)^{11}$	$E(13)^2$	$E(13)^6$	$E(13)^2$	$E(13)^6$	$E(13)^{10}$	$E(13)^6$	$E(13)^{10}$	E(13)	$E(13)^{10}$	E(13)	$E(13)^5$	E(13)	$E(13)^5$	$E(13)^9$	$E(13)^5$	$E(13)^9$	$E(13)^9$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$E(13)^3$	$E(13)^6$	$E(13)^3$	$E(13)^6$	$E(13)^9$	$E(13)^6$	$E(13)^9$	$E(13)^{12}$	$E(13)^9$	$E(13)^{12}$	$E(13)^2$	$E(13)^{12}$	$E(13)^2$	$E(13)^5$	$E(13)^2$	$E(13)^5$	$E(13)^8$	$E(13)^5$	$E(13)^8$	$E(13)^{11}$	$E(13)^8$	$E(13)^{11}$	E(13)	$E(13)^{11}$	E(13)	$E(13)^4$	E(13)	$E(13)^4$	$E(13)^7$	$E(13)^4$	$E(13)^7$	$E(13)^{10}$	$E(13)^7$	$E(13)^{10}$	$E(13)^{10}$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$E(13)^2$	$E(13)^4$	$E(13)^2$	$E(13)^4$	$E(13)^6$	$E(13)^4$	$E(13)^6$	$E(13)^8$	$E(13)^6$	$E(13)^8$	$E(13)^{10}$	$E(13)^8$	$E(13)^{10}$	$E(13)^{12}$	$E(13)^{10}$	$E(13)^{12}$	E(13)	$E(13)^{12}$	E(13)	$E(13)^3$	E(13)	$E(13)^3$	$E(13)^5$	$E(13)^3$	$E(13)^{5}$	$E(13)^7$	$E(13)^5$	$E(13)^7$	$E(13)^9$	$E(13)^7$	$E(13)^9$	$E(13)^{11}$	$E(13)^9$	$E(13)^{11}$	$E(13)^{11}$
,	E(13) $E(13)$	$E(13)^2$	E(13) $E(13)$	$E(13)^2$	$E(13)^3$	$E(13)^2$	$E(13)^3$	$E(13)^4$	$E(13)^3$	$E(13)^4$	$E(13)^5$	$E(13)^4$	$E(13)^5$	$E(13)^6$	$E(13)^5$	$E(13)^6$	$E(13)^7$	$E(13)^6$	E(19)	$E(13)^8$	$E(13)^7$	$E(13)^8$	$E(13)^9$	$E(13)^8$	$E(13)^9$	$E(13)^{10}$	$E(13)^9$	$E(13)^{10}$	$E(13)^{11}$	$E(13)^{10}$	$E(13)^{11}$	$E(13)^{12}$	$E(13)^{11}$	$E(13)^{12}$	$E(13)$ $E(13)^{12}$
1	$\frac{E(13)}{1}$	L(13)	$\frac{L(13)}{-1}$	E(13)	E(13)		L(13)	L(13)	E(13)	E(13)	E(13)	E(13)	E(13)	E(13)	, ,	E(13)	E(13)	E(13)	E(13)	E(13)	` _ ′	E(13)	E(13)	` . ′	E(13)	E(13)	E(13)	E(13)	L(13)	`	E(13)	E(13)	E(13)	E(13)	` '
X27 2 0 2 1		2 0 . E/19\12	-	0	2 0 . E/19\5	-1 E(19)12	0	2 0 . E/19\11	-1 E(19)5	0	2 0 . E(19)4	-1 E(19)11	0	2 0 . E/19\1(-1 E/19\4	0	2 0 . E/(19)3	-1 E(19)10	0	2 0 . E/(10)9	-1 E(19)3	0	2 0 . E(19)?	-1 E(19)9	0	2 0 . E(19)8	-1 E(19)2	0	2 0 · E/10)	-1 E(19)8	0	2 0 . E/19\7	-1 E(19)	0	-1
χ_{28} 2 0 2 * $E(13)^6$ -1	1 0	()	$-E(13)^6$	0	$2 * E(13)^5$	$-E(13)^{12}$	0	$2 * E(13)^{11}$			$2 * E(13)^4$	$-E(13)^{11}$	0	$2*E(13)^{10}$			$2 * E(13)^3$		0	$2 * E(13)^9$	$-E(13)^3$	0	$2 * E(13)^2$		0		$-E(13)^2$	0	2*E(13)		0	$2 * E(13)^7$	-E(13)	0	$-E(13)^{7}$
χ_{29} 2 0 2 * $E(13)^5$ -1	_	(/	$-E(13)^5$	0	$2 * E(13)^2$	$-E(13)^{10}$	0	$2 * E(13)^7$	(/	0	$2*E(13)^{12}$	$-E(13)^{7}$	0	$2*E(13)^4$	\ /	0	$2*E(13)^9$	\ /	0	2 * E(13)	$-E(13)^9$	0	$2*E(13)^6$	\ /	0	()	$-E(13)^6$	0	$2 * E(13)^3$	\ /	0	$2 * E(13)^8$	$-E(13)^3$		$-E(13)^{8}$
χ_{30} 2 0 2 * $E(13)^4$ -1		()	$-E(13)^4$	0	$2*E(13)^{12}$	\ /	0	$2*E(13)^3$	()	0	$2 * E(13)^7$	$-E(13)^3$	0	$2*E(13)^{11}$		0	$2 * E(13)^2$	\ /	0	\ /	$-E(13)^2$	0	$2*E(13)^{10}$	\ /	0	2 * E(13)	\ /	0	$2*E(13)^5$		0	$2*E(13)^9$	$-E(13)^{5}$	0	$-E(13)^9$
χ_{31} 2 0 2 * $E(13)^3$ -1	_	$2*E(13)^6$		0	$2 * E(13)^9$	$-E(13)^{6}$	0	$2*E(13)^{12}$	\ /	0	$2*E(13)^2$		0	$2*E(13)^5$			$2*E(13)^8$	\ /	0	$2*E(13)^{11}$		0	2 * E(13)	$-E(13)^{11}$	0	\ /.	-E(13)	0	$2*E(13)^7$			\ /		0	$-E(13)^{10}$
χ_{32} 2 0 2 * $E(13)^2$ -1	1 0	()	$-E(13)^2$		$2 * E(13)^6$	$-E(13)^4$	0	$2*E(13)^8$	(/	0	$2*E(13)^{10}$	\ /	0	$2*E(13)^{12}$	\ /	0	2 * E(13)	\ /	0	$2 * E(13)^3$	-E(13)	0	$2*E(13)^5$	\ /	0	\ /	$-E(13)^5$	0	$2*E(13)^9$			\ /	\ /		$-E(13)^{11}$
χ_{33} 2 0 2 * $E(13)$ -1	_	\ /	-E(13)		$2 * E(13)^3$	$-E(13)^2$	0	$2*E(13)^4$	\ /	0	$2 * E(13)^5$	$-E(13)^4$	0	$2 * E(13)^{6}$		0	$2*E(13)^7$	\ /	0	$2 * E(13)^{8}$		0	$2*E(13)^9$	\ /	0	\ /	$-E(13)^9$	0	$2*E(13)^{11}$		0	()	\ /		$-E(13)^{12}$
χ_{34} 2 0 2 * $E(13)^{12}$ -1		$2*E(13)^{11}$	\ /	0	$2*E(13)^{10}$	$-E(13)^{11}$	0	$2*E(13)^9$	\ /	0	$2*E(13)^8$	$-E(13)^9$	0	$2*E(13)^7$	\ /	0	$2*E(13)^6$	\ /	0	\ /	\ /	0	$2*E(13)^4$	\ /	0	$2*E(13)^3$	\ /	0	$2*E(13)^2$	\ /	0	\ /	\ /	0	-E(13)
χ_{35} 2 0 2 * $E(13)^{11}$ -1	1 0	$2*E(13)^9$	$-E(13)^{11}$	0	$2*E(13)^7$	$-E(13)^9$	0	$2*E(13)^5$	$-E(13)^7$	0	$2*E(13)^3$	$-E(13)^5$	0	2 * E(13)	$-E(13)^3$	0	$2*E(13)^{12}$	-E(13)	0	$2*E(13)^{10}$	$-E(13)^{12}$	0	$2*E(13)^8$	$-E(13)^{10}$	0	$2 * E(13)^6$	$-E(13)^8$	0	$2*E(13)^4$	$-E(13)^6$	0	$2*E(13)^2$	$-E(13)^4$	0	$-E(13)^2$
χ_{36} 2 0 2 * $E(13)^{10}$ -1	1 0	$2*E(13)^{7}$	$-E(13)^{10}$	0	$2*E(13)^4$	$-E(13)^{7}$	0	2 * E(13)	$-E(13)^4$	0	$2*E(13)^{11}$	-E(13)	0	$2*E(13)^8$	$-E(13)^{11}$	0	$2*E(13)^5$	$-E(13)^{8}$	0	$2*E(13)^2$	$-E(13)^{5}$	0	$2*E(13)^{12}$	$-E(13)^2$	0	$2*E(13)^9$	$-E(13)^{12}$	0	$2*E(13)^6$	$-E(13)^9$	0	$2*E(13)^3$	$-E(13)^{6}$	0	$-E(13)^3$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		\ /	$-E(13)^9$	0	2 * E(13)	$-E(13)^{5}$	0	$2*E(13)^{10}$	\ /	0	$2*E(13)^6$	\ /	0	$2*E(13)^2$		0	$2*E(13)^{11}$		0	$2*E(13)^7$		0	$2*E(13)^3$	\ /	0		$-E(13)^3$	0		$-E(13)^{12}$	0	$2*E(13)^4$	$-E(13)^{8}$	0	$-E(13)^4$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		\ /	$-E(13)^{8}$	0	$2*E(13)^{11}$	$-E(13)^3$	0	$2*E(13)^6$		0	2*E(13)	$-E(13)^{6}$	0	$2*E(13)^9$		0	$2*E(13)^4$	\ /	0	$2*E(13)^{12}$		0	$2*E(13)^7$	\ /	0	$2*E(13)^2$	\ /	0		$-E(13)^2$	0	$2*E(13)^5$	$-E(13)^{10}$		$-E(13)^{5}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		` /	$-E(13)^7$	0	$2*E(13)^8$	-E(13)	0	$2*E(13)^2$		0	$2*E(13)^9$	$-E(13)^2$	0	$2*E(13)^3$	\ /	0	$2*E(13)^{10}$	\ /	0	$2*E(13)^4$		0	$2*E(13)^{11}$	(/	Õ	$2*E(13)^5$	\ /	0		$E(13)^5$	0	$2*E(13)^6$	()		$-E(13)^{6}$
799 2 0 2 E (10) 1		2 · D(10)	<i>L</i> (10)	-	2 * L(10)	D(10)	0	2 2 (10)	L(10)	<u> </u>	2 * L(10)	L(10)	0	2 * 2 (10)	L(10)	0	2 * L(10)	L(10)	0	2 * L(10)	L(10)	0	2 · L(10)	L(10)	0	2 * D(10)	2(10)	0	2 2 (10)	L(10)	0	2 * L(10)	2 (10)	0	2 (10)

Trivial source character table of $G \cong C13 \times S3$ at p = 13:

Trivial source character table of $G = 0.15 \times 55$ at $p = 15$.		
Normalisers N_i	N_1	N_2
p-subgroups of G up to conjugacy in G	P_1	P_2
Representatives $n_j \in N_i$	$1a$ $2a$ 3ϵ	a 1a 2a 3a
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 1 \cdot \chi_{15} + 1 \cdot \chi_{16} + 1 \cdot \chi_{17} + 1 \cdot \chi_{21} + 1 \cdot \chi_{22} + 1 \cdot \chi_{23} + 1 \cdot \chi_{24} + 1 \cdot \chi_{25} + 1 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot \chi_{30} + 0 \cdot \chi_{31} + 0 \cdot $	13 13 15°	3 0 0 0
$ \left \begin{array}{cccccccccccccccccccccccccccccccccccc$	13 -13 1	3 0 0 0
$\left \ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} +$	26 0 -1	13 0 0 0
$ \left[1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{21} + $. 1 1 1
$\left \ 0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{22} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{22} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} +$	1 -1 1	1 1 -1 1
$\left \ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 1 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot \chi_{30} + 0 \cdot \chi_{31} +$	2 0 -	$1 \mid 2 0 -1$

 $P_1 = Group([()]) \cong 1$

 $P_2 = Group([(1,3,7,13,19,25,31,37,43,49,55,61,67)(2,5,10,16,22,28,34,40,46,52,58,64,70)(4,8,14,20,26,32,38,44,50,56,62,68,73)(6,11,17,23,29,35,41,47,53,59,65,71,75)(9,15,21,27,33,39,45,51,57,63,69,74,77)(12,18,24,30,36,42,48,54,60,66,72,76,78)]) \cong C13$

 $N_1 = Group([[1,2],3,5),(4,12),(5,2),(6,12),(5,12),(6,12$