Claims:

1. Dye of formula

R₁ is hydrogen; C₁-C₁₄alkyl; hydroxy- C₁-C₁₄alkyl; C₂-C₁₄alkenyl; a radical of formula

(1a) -(CH₂)_{n1}-O-(CH₂)_{n2}-CH₃; a radical of formula (1b) -(CH₂)_{n3}-C-(CH₂)_{n4} N
$$R_{10}$$
; C₆-

C₁₀aryl; or C₆-C₁₀aryl-C₁-C₆alkyl;

 R_3 is hydrogen; C_1 - C_{14} alkyl; C_2 - C_{14} alkenyl; C_6 - C_{10} aryl; C_6 - C_{10} aryl- C_1 - C_6 alkyl; or CO- R_6 ;

R₄ is CO-R₆;

 R_5 is C_1 - C_{14} alkyl; C_2 - C_{14} alkenyl; C_6 - C_{10} aryl; or C_6 - C_{10} aryl- C_1 - C_6 alkyl;

R₆ is hydrogen; C₁-C₁₄alkyl; C₂-C₁₄alkenyl; or C₆-C₁₀aryl;

 R_7 , R_8 , R_9 and R_{10} , independently from each other are hydrogen; or C_1 - C_5 alkyl;

m is 1; or 2;

An is an anion;

If m = 1,

 R_2 is hydrogen; C_1 - C_{14} alkyl; C_2 - C_{14} alkenyl; a radical of formula (1a); a radical of formula (1b) ; C_6 - C_{10} aryl; or C_6 - C_{10} aryl- C_1 - C_6 alkyl;

If m = 2,

R₂ is the direct bond; or C₁-C₁₄alkylene, which is optionally substituted by one or more C₁-C₄alkyl, or which is optionally interrupted by C₅-C₁₀arylene, -O- or -NR₉R₁₀-; R₉ and R₁₀, independently from each other are hydrogen; or C₁-C₅alkyl; and n₁, n₂, n₃ and n₄, independently from each other are a number from 0 to 5.

2. Dye according to claim 1, wherein

the anion is is selected from a halide, sulfate, hydrogen sulfate, phosphate, boron tetrafluoride, carbonate, bicarbonate, oxalate or C₁-C₈alkyl sulfate, lactate, formate, acetate, propionate and a complex anion.

3. Dye according to claim 1 or 2, wherein

R₁ is hydrogen; or C₁-C₁₄alkyl;

R₃ is hydrogen; or C₁-C₁₄alkyl;

R₄ is CO-R₆;

R₅ is C₁-C₁₄alkyl;

R₆ is hydrogen; C₁-C₁₄alkyl; or C₆-C₁₀aryl;

m is 1; or 2;

An is an anion;

If m = 1,

R₂ is hydrogen; C₁-C₁₄alkyl; hydroxy-C₁-C₁₄alkyl a radical of formula (1a); or a radical of formula (1b);

if m = 2,

 R_2 is the direct bond; or C_1 - C_{12} alkylene, which is optionally substituted by one or more C_1 - C_4 alkyl or interrupted by -O-, or NR_9R_{10} ; and

R₉ and R₁₀ independetly from each other are hydrogen; or C₁-C₅alkyl.

4. Dye according to any of claims 1 to 3, which correspond to formula

(2)
$$\begin{array}{c} An^{-} \\ N \\ N \\ R_{5} \end{array}$$
 $\begin{array}{c} R_{1} \\ N \\ N \\ R_{3} \end{array}$, wherein

R₁ is hydrogen; or C₁-C₁₄alkyl;

R₂ is hydrogen; C₁-C₁₄alkyl; a radical of formula (1a); or a radical of formula (1b);

R₃ is hydrogen; or C₁-C₁₄alkyl;

R₄ is CO-R₆;

R₅ is C₁-C₁₄alkyl;

R₆ is hydrogen; C₁-C₁₄alkyl; or C₆-C₁₀aryl; and

An⁻ is an anion.

5. Dye according to claim 4, wherein

R₁ is hydrogen; or C₁-C₄alkyl;

R₂ is C₁-C₁₄alkyl; a radical of formula (1a); or a radical of formula (1b);

An is an anion;

R₃ is hydrogen; or C₁-C₄alkyl;

R₄ is CO-R₆;

R₅ and R₆ independently from each other are is C₁-C₄alkyl.

6. Dye according to claim 4 or 5, wherein

R₁ is hydrogen; or C₁-C₄alkyl;

R₂ is C₁-C₁₂alkyl; a radical of formula (1a); or a radical of formula (1b);

An is an anion;

R₃ is hydrogen; C₁-C₄alkyl; o

R₄ is CO-CH₃; and

R₅ is C₁-C₄alkyl.

7. Dye according to any of claims 1 to 3 which correspond to formula

R₁ is hydrogen; or C₁-C₁₄alkyl;

R₂ is the direct bond; or C₁-C₁₂alkylene, which is optionally substituted by one or more C₁-C₄alkyl or interrupted by -O-, or NR₉R₁₀;

R₃ is hydrogen; or C₁-C₁₄alkyl;

R₄ is CO-R₆;

R₅ is C₁-C₁₄alkyl;

R₆ is hydrogen; C₁-C₁₄alkyl; or C₆-C₁₀aryl; and

An is an anion.

8. Dye according to claim 7, wherein

R₁ is hydrogen; or C₁-C₄alkyl;

R₂ is the direct bond; or C₁-C₈-alkylene, which is optionally substituted by one or more C₁-C₄alkyl or interrupted by -O-, or NR₉R₁₀;

R₃ is hydrogen; or C₁-C₄alkyl;

R₄ is CO-R₆;

R₅ is C₁-C₄alkyl;

R₆ is C₁-C₄alkyl;

R₉ and R₁₀ independently from each other are hydrogen; or C₁-C₅alkyl; and

An is an anion.

9, Dye according to claim 7 or 8, wherein

R₁ is hydrogen; or C₁-C₄alkyl;

 R_2 is is the direct bond; or C_1 - C_8 -alkylene, which is optionally substituted by one or more C_1 - C_4 alkyl or interrupted by $-O_7$, or NR_9R_{10} ;

R₃ is hydrogen; or C₁-C₄alkyl;

R₄ is CO-CH₃;

R₅ is C₁-C₄alkyl;

R₉ and R₁₀ independently from each other are hydrogen; or C₁-C₅alkyl; and

An⁻ is an anion.

10. Dye according to any of claims 1 to 9 of formula

(6) An-
$$N_{CH_3}$$
 N_{CH_3} N

An is an anion.

11. A dye of formula

(2a)
$$\begin{array}{c|c}
N & R_5 \\
R_5 \\
An & R_3
\end{array}$$

$$\begin{array}{c|c}
R_2 & R_4 \\
R_3 & R_4
\end{array}$$

wherein

R₁ and R₂ are each independently of the other hydrogen; or unsubstituted or substituted C₁-C₁₄alkyl, allyl, aralkyl, preference is given to C₁-C₈alkyl, more preference to C₁-C₄alkyl, and most preference is given to methyl and ethyl, and especially most preference is given to methyl; or

R₁ is hydrogen, or unsubstituted or substituted C₁-C₁₄alkyl, allyl, aralkyl, preference is given to C₁-C₈alkyl, more preference to C₁-C₄alkyl, and most preference is given to methyl and ethyl, and especially most preference is givento methyl, and

R₂ is substituent of formula

(2b)
$$\begin{array}{c} An-R_5, \\ N^{+} \\ R_{6}N-R_{1}N \\ N \\ R_{5} \end{array}, \text{ wherein}$$

R₆ is unsubstituted or substituted C₁-C₁₄alkylen; and

R₃ is hydrogen or an unsubstituted or substituted C₁-C₁₄alkyl, allyl, aralkyl or CO-R₁;

R₄ is CO-R₉;

R₅ is unsubstituted or substituted C₁-C₁₄alkyl, allyl or aralkyl;

R₉ is hydrogen; or unsubstituted or substituted C₁-C₁₄alkyl, allyl or aralkyl, preference is given to unsubstituted C₁-C₁₄alkyl, and more preference to methyl;

and

An is an anion.

12. A process for the preparation of dyes of formula (1) as defined in claim 1, comprising reacting a dye of formula (17) with an amine of formula (18) to give a compond of formula (1) according to the following reaction scheme:

(17) An
$$\stackrel{-}{\stackrel{N}{\longrightarrow}} \stackrel{R_5}{\stackrel{N}{\longrightarrow}} \stackrel{F}{\stackrel{N}{\longrightarrow}} \stackrel{+}{\stackrel{R_1}{\longrightarrow}} \stackrel{N}{\stackrel{N}{\longrightarrow}} \stackrel{R_2}{\stackrel{(18)}{\longrightarrow}} \stackrel{(1)}{\stackrel{N}{\longrightarrow}} \stackrel{R_5}{\stackrel{N}{\longrightarrow}} \stackrel{R_1}{\stackrel{N}{\longrightarrow}} \stackrel{R_2}{\stackrel{N}{\longrightarrow}} \stackrel{R_2}{\stackrel{N}{\longrightarrow}} \stackrel{R_3}{\stackrel{N}{\longrightarrow}} \stackrel{R_4}{\stackrel{M}{\longrightarrow}} \stackrel{R_4}{\stackrel{M}{\longrightarrow}} \stackrel{R_4}{\stackrel{M}{\longrightarrow}} \stackrel{R_4}{\stackrel{M}{\longrightarrow}} \stackrel{R_5}{\stackrel{N}{\longrightarrow}} \stackrel{R_4}{\stackrel{M}{\longrightarrow}} \stackrel{R_4}{\stackrel{M}{\longrightarrow}} \stackrel{R_5}{\stackrel{N}{\longrightarrow}} \stackrel{R_5}{\longrightarrow} \stackrel{R_5}{\longrightarrow}$$

wherein

R₁, R₂, R₃, R₄, R₅, m and An are defined as in claim 1.

13. Process for the preparation of dye of formula

(19)
$$R_{5} \qquad R_{5} \qquad R_{5} \qquad R_{4}$$
, wherein

R₃ is hydrogen; an

R₄ is CO-R₆, which is characterized by

- (a) acylating a 4-fluoro-3-nitroanil. of formula (19a) with an acylating agent of formula (20)
- (b) reducing the nitro group in formula (19b) to the amino group to give the compound of formula (19c),
- (c) diazotizing the compound of formula (19c) to give the compund of formula (19d),
- (d) coupling the diazotized compund of formula (17d) with imidazole to give the compund of formula (17e), and
- (e) alkylating the compund of formula (17e) with an alkylating agent to give the compound of formula (17), according to the following reaction scheme:

wherein

 R_1 , R_2 R_3 , R_4 , R_5 and R_6 are deined as in claim 1; and X_1 and X_2 are halogen.

WO 2005/095522 PCT/EP2005/051323

- 14. A composition comprising at least one dye of formula (1) as defined in claim 1.
- 15. A composition according to claim 14 comprising in addition at least one single further direct dye and/or an oxidative agent.
- 16. A composition according to claim 14 comprising in addition at least one single oxidative dye and/or; at least one single oxidative dye and an oxidative agent.
- 17. A composition according to any one of claims 14, 15 or 16 in form of a shampoo, a conditioner, a get or an emulsion.
- 18. A method of dyeing organic material, which comprises treating the organic material with at least one dye of formula (1) according to claim1, or a composition according to any of claims 14 to 17.
- 19. A method according to claim 18, which comprises treating the organic material with at least one dye of formula (1) as defined in claim 1 and an oxidative agent and, optionally, a further direct dye.
- 20. A method according to claim 18 and 19, which comprises treating the organic material with at least one compound of formula (1) as defined in claim 1 and at least one single oxidative dye, or treating the the organic material with a dye of formula (1) as defined in claim 1 and at least one single oxidative dye and an oxidative agent.
- 21. A method according to any of claims 18 to 20 wherein the organic material is selected from keratin-containing fibers.
- 22. A method according to claim 21 wherein the keratin-containing fiber is human hair.