Практика 1 (решали 4.09).

COMB 1. Имеются пять видов конвертов без марок и четыре вида марок. Сколькими способами можно выбрать конверт с маркой для посылки письма?

COMB 2. Сколько существует целых чисел между 0 и 999, содержащих ровно одну цифру 7?

[COMB 3.] Сколькими способами можно выбрать на шахматной доске два поля, не лежащие на одной горизонтали или вертикали?

COMB 4. Сколько чисел в диапазоне от 0 до 999999 не содержат двух рядом стоящих одинаковых цифр?

COMB 5. Сколько целых чисел от 1 до 100 не делится ни на два, ни на три, ни на пять?

COMB 6. Переплётчик должен переплести 12 различных книг в красный, синий и коричневый цвета. Сколько имеется способов это сделать, если в каждый из трех цветов должна быть переплетена хотя бы одна книга?

COMB 7. В ящике лежат десять белых и двенадцать черных носков. Какое минимальное количество носков нужно вытащить, чтобы на выходе гарантированно получить пару носков одинакового цвета?

COMB 8. Какое максимальное количество королей можно поместить на шахматную доску (стандартного размера, 8×8) так, чтобы эти короли не били друг друга?

COMB 9. Сколько людей нужно выбрать из группы, состоящей из двадцати супружеских пар, чтобы в выборку гарантированно вошла хотя бы одна супружеская пара?

COMB 10. Сколько человек должно находиться в комнате, чтобы по крайней мере у троих из них день рождения гарантированно был в одном месяце?

СОМВ 11. Сколько чисел нужно выбрать из последовательности $\{1, 2, 3, \dots, 20\}$, чтобы среди них гарантированно нашлась хотя бы одна пара чисел, сумма которых была бы равна 21?

СОМВ 12. Докажите комбинаторно тождество Вандермонда: $\binom{n+m}{k} = \sum_{i=0}^{k} \binom{n}{i} \binom{m}{k-i}$.

СОМВ 13. Внутри единичного куба расположены 100 точек. Доказать, что найдётся 4 точки, таких, что порождённый ими тетраэдр имеет объём не больше 1/99.

COMB 14. Имеется произвольная последовательность a_1, \ldots, a_n целых чисел, не обязательно различных. Доказать, что в такой последовательности обязательно найдется отрезок $a_{k+1}, a_{k+2}, \ldots, a_l$, сумма элементов которого $\sum_{i=k+1}^l a_i$ делится на n.