hydrogen peroxide and the lignin, which must be largely deconstructed to be extracted. However, the solid loading variable has a significant positive influence on the solid yield, which should be considered since the solid contains fermentable sugars. Temperature influence depends on the solid loading; it slightly affects the lowest solid loading. The optimum temperature found within the operation range can be interpreted as a compromise relationship between the severity factor and the thermal decomposition reaction of hydrogen peroxide, which competes with lignin oxidation. The hydrolysis time did not significantly modify the results; however, the surface response suggested that 60 min hydrolysis would provide better delignification.

Table 3: ANOVA of the RSM analysis for the solid fraction yield.

Response Surface Regression	
SF Yield (%) vs time (min), Temperature (°C) and Solid loading (g/mI	(ر

		0					
Analysis of Variance							
Source	DF	Adj SS	Adj MS	F-Value	P-Value		
Model	9	0.0795	0.0088	3.46	0.092		
Linear	3	0.0619	0.0206	8.09	0.023 - S		
time (min)	1	0.0075	0.0075	2.95	0.146		
Temperature (°C)	1	0.0199	0.0199	7.79	0.038 - S		
Solid loading (g/mL)	1	0.0345	0.0345	13.52	0.014 - S		
Square	3	0.0127	0.0042	1.66	0.289		
time (min)*time (min)	1	0.0042	0.0042	1.66	0.253		
Temperature (°C)×Temperature (°C)	1	0.0001	0.0001	0.06	0.820		
Solid load (g/mL)×Solid load (g/mL)	1	0.0088	0.0088	3.44	0.123		
2-Way Interaction	3	0.0049	0.0016	0.64	0.619		
time (min)*Temperature (°C)	1	0.00023	0.00023	0.09	0.777		
time (min)*Solid loading (g/mL)	1	0.00004	0.00004	0.01	0.911		
Temperature (°C)×Solid load (g/mL)	1	0.00467	0.00467	1.83	0.234		
Error	5	0.01276	0.00255				
Lack-of-Fit	3	0.00662	0.00220	0.72	0.627		
Pure Error	2	0.006140	0.003070				
Total	14	0.092289					
Model Summary: S = 0.0505086 R-sq = 86.18%							

Given these results, the effect of decreasing the temperature to analyze the effect on delignification and solid fraction yield was studied further. A different experiment was carried out at 60°C, which provided a good yield (70%) and a good degree of delignification (71%). Under these conditions, the decrease in solid yield is occasioned mostly by lignin removal, optimal for recovering the fermentable sugars from the solid.