

Sky High Savings: Predicting Indian Airfare Trends

By Lupe Covarrubias

The Problem

- Prices influenced by seasonality, demand, destinations, and competitor pricing.
- Overpaying due to unpredictable fare fluctuations.

What factors might affect airfare?

- Route
- Arrival time
- First Class
- Airline

- Duration
- Day of the week
- Planned vs Lastminute Booking

How can we help?

Objective: Build a predictive model to highlight costdriving factors and help raise customer satisfaction through saving money.

Empower millions of travelers and enhance travel platforms with accurate airfare prediction tools.

Data Overview

- Dataset sourced from Kaggle, containing ~445k rows and 13 columns.
- Initial cleaning included:

Splitting the Date_of_journey column into year, month, and day (year was dropped since data spanned only 3 months).

Removing
duplicates based
on flight_code,
Destination, Fare,
Arrival,
Duration_in_hours,
and other features.

Initial Observations

- Dataset was predominantly categorical with limited continuous features (e.g., Fare).
- Categorical features had 3-7 values each, critical for creating dummy variables later.

Aggregation by Fare revealed:

Ahmedabad as the most expensive destination.

The longest flights were also to Ahmedabad.

Preliminary Insights

- Outliers in airfare data were observed due to natural variability.
- Fare distribution showed bimodal behavior with a right skew (Figure 1).
- Median was chosen as the key metric for further analysis to handle skewness effectively.

Figure 1

Key Metrics and Initial Observations

- Median Fare = 13,362 rupees < mean = 22,920 rupees
- Median chosen as it is robust to outliers.
- No correlation between numerical features (e.g., Duration_in_hours, Day, Days_left) and airfare.
- Focus shifted to categorical features (e.g., Class, Airlines).

Initial Exploration

- Only Vistara and Air India offered premium classes (e.g., Business, First Class).
- Combined all noneconomy values into a single "Premium" category (Figure 2).

Frequency Patterns from EDA

- Mondays for most airlines
- Economy for most airlines; Vistara's frequent class is Premium.
- Arrivals After 6 PM, due to full-day travel.
- Departures Noon to midnight, aligning with travelers' schedules.

- Stops: One-stop flights dominate; nonstop flights are rare for smaller airlines.
- Ahmedabad to Mumbai Most expensive, ₹18,712.
- Bangalore to Delhi Cheapest ₹10,338, frequently operated by budget airline AirAsia.

Fare Trends

- Last-minute bookings Most expensive
- Planned bookings Cheapest
- Short-notice bookings Most frequent, driven by business travel or emergencies
- Sunday (most expensive), Thursday (cheapest).

- Departure Times: Before 6 AM (cheapest), 6 AM-Noon (most expensive).
- More stops = higher fares.
- End of Month Flights higher fares.

Visualized Patterns

Figure 3

Figure 4

Preprocessing

- Predominantly categorical with limited continuous features (e.g., Fare).
 - 3-7 values per feature, critical for creating dummy variables later.
- Methods used to reduce multicollinearity
 - 63 dimensions total
- All binary variables, no need for scaling

Preliminary Modeling

• Dummy Regressor: median = 13,379 rupees for baseline performance.

	Train set	Test set
R-squared	-0.2195	-0.2172
MAE	14289	
MSE	506460343	508088827
RMSE	22505	22541

- Similar metrics for train and test data suggest good generalization
- The dummy regressor highlights the data's complexity

Linear Regression Model

- Similar metrics for train and test data suggest good generalization
- Decent model but room for improvement
- best k = 68

	Train set	Test set
R-squared	0.56	0.56
MAE	9424	9431

Figure 5

Gradient Boosting Regressor Model

Advantages:

- Handles complex datasets and robust to outliers.
- Random Search CV used for efficient hyperparameter tuning due to large search space.

	Train set	Test set
R-squared	0.66	0.66
MAE	8151	8176

Figure 6

Histogram Gradient Boosting Regressor Model

Advantages:

• Chosen for its efficiency with high-dimensional categorical data and reduced computation time.

	Train set	Test set
R-squared	0.65	0.65
MAE	7514	7558

Figure 7

Model Selection

- Histogram Gradient Boosting Regressor (HGBR)
- Best predictive power for fare
- Scatter increases as fare values rise
- Underprediction for fares above 80,000 rupees
- Noticeable outliers due to data noise and model limitations

Figure 8

Conclusion

- Business Impact:
 - Helps optimize pricing strategies and target premium customers.
 - Empower millions of travelers and enhance travel platforms with accurate airfare prediction tools.

- Areas for Improvement:
 - Advanced feature engineering (e.g., OrdinalEncoder).
 - XGBoost, LightGBM
 - Log transforms to improve predictions for higher fare ranges.
 - Focusing strictly on economy

Conclusion:

HGBR provides a solid foundation for fare prediction but could benefit from further enhancements to increase accuracy and customer trust.

