Intervals and Predictive Distributions

Professor Laura Baracaldo

Announcements

• Reading: Chapters 8.1 (intervals) and 8.3 (posterior prediction) Bayes Rules

•

Reminder: Frequentist confidence interval

- Frequentist interval: $Pr(l(Y) < \theta < u(Y) \mid \theta) = 0.95$
 - Probability that the interval will cover the true value *before* the data are observed.
 - Interval is random since Y is random

Reminder: Frequentist confidence interval

We expect $0.05 \times 50 = 2.5$ will *not* cover the true parameter 0.6

Posterior Credible Intervals

- Frequentist interval: $Pr(l(Y) < \theta < u(Y) \mid \theta) = 0.95$
 - Probability that the interval will cover the true value *before* the data are observed.
 - Interval is random since Y is random

Posterior Credible Intervals

- Frequentist interval: $Pr(l(Y) < \theta < u(Y) \mid \theta) = 0.95$
 - Probability that the interval will cover the true value *before* the data are observed.
 - Interval is random since Y is random
- Bayesian Interval: $Pr(l(y) < \theta < u(y) \mid Y = y) = 0.95$
 - \circ Information about the true value of θ after observeing Y = y.
 - \circ θ is random (because we include a prior), y is observed so interval is non-random.

Posterior Credible Intervals (Quantile-based)

• The easiest way to obtain a confidence interval is to use the quantiles of the posterior distribution.

If we want $100 \times (1 - \alpha)$ interval, we find numbers $\theta_{\alpha/2}$ and $\theta_{1-\alpha/2}$ such that:

1.
$$p(heta < heta_{lpha/2} \mid Y = y) = lpha/2$$

$$2.\ p(heta> heta_{1-lpha/2}\mid Y=y)=lpha/2$$

$$p(heta \in [heta_{lpha/2}, heta_{1-lpha/2}] \mid Y=y) = 1-lpha$$

• Use quantile functions in R, e.g. qbeta, qpois, qnorm etc.

Example: interval for shooting skill in basketball

• The posterior distribution for Covington's shooting percentage is a

$$Beta(49 + 478, 50 + 873) = Beta(528, 924)$$

- For a 95% *credible* interval, $\alpha = 0.05$
 - Lower endpoint: qbeta(0.025, 528, 924)
 - Upper endpoint: qbeta(0.975, 528, 924)
 - $\circ [\theta_{\alpha/2}, \theta_{1-\alpha/2}] = [0.34, 0.39]$

Example: interval for shooting skill in basketball

• The posterior distribution for Covington's shooting percentage is a

$$Beta(49 + 478, 50 + 873) = Beta(528, 924)$$

- For a 95% *credible* interval, $\alpha = 0.05$
 - Lower endpoint: qbeta(0.025, 528, 924)
 - Upper endpoint: qbeta(0.975, 528, 924)
 - $\circ \ [\theta_{\alpha/2}, \theta_{1-\alpha/2}] = [0.34, 0.39]$
- Compared to frequentist *confidence* interval without prior information: [0.39, 0.59]
- End-of-season percentage was 0.37
- Credible intervals and confidence intervals have different meanings!

Definition: (HPD region) A $100 \times (1 - \alpha)$ HPD region consists of a subset of the parameter space, $R(y) \in \Theta$ such that

1.
$$\Pr(\theta \in R(y)|Y=y) = 1 - \alpha$$

 \circ The probability that θ is in the HPD region is $1-\alpha$

Definition: (HPD region) A $100 \times (1 - \alpha)$ HPD region consists of a subset of the parameter space, $R(y) \in \Theta$ such that

1.
$$\Pr(\theta \in R(y)|Y=y) = 1 - \alpha$$

 \circ The probability that θ is in the HPD region is $1-\alpha$

2. If
$$\theta_a \in R(y)$$
, and $\theta_b \notin R(y)$, then $p(\theta_a|Y=y) > p(\theta_b|Y=y)$

• All points in an HPD region have a higher posterior density than points out- side the region.

The HPD region can be discontinuous (hence "region")

1.
$$p(\theta \in s(y) | Y = y) = 1 - \alpha$$

- 2. If $\theta_a \in s(y)$, and $\theta_b \notin s(y)$, then $p(\theta_a \mid Y = y) > p(\theta_b \mid Y = y)$.
 - All points in an HPD region have a higher posterior density than points out- side the region.

The HPD region is the *smallest* region with probability $(1 - \alpha)$ %

Warning: package 'HDInterval' was built under R version 4.2.3

Calibration: Frequentist Behavior of Bayesian Intervals

- A credible interval is calibrated if it has the right frequentist coverage
- Bayesian credible intervals usually won't have correct coverage
- If our prior was well-calibrated and the sampling model was correct, we'd have well-calibrated credible intervals
- Specifying *nearly* calibrated prior distributions is hard!

Calibration of MLB predictions

Indeed, single predictions are hard to judge on their own. So let's group every MLB game prediction (not just those from September 2018) into bins — for example, we'll throw every prediction that gave a team between a 37.5 percent and 42.5 percent chance of winning into the same "40 percent" group — and then plot the averages of each bin's forecasted chances of winning against their actual win percentage. If our forecast is well-calibrated — that is, if events happened roughly as often as we predicted over the long run — then all the bins on the calibration plot will be close to the 45-degree line; if our forecast was poorly calibrated, the bins will be further away.

source: https://projects.fivethirtyeight.com/checking-our-work/

Calibration of MLB predictions

source: https://projects.fivethirtyeight.com/checking-our-work/

Calibrated probability intervals

- Calibration is important but only part of the story!
- Want well calibrated but *small* intervals (big intervals tell us nothing)

Calibrated probability intervals

- Calibration is important but only part of the story!
- Want well calibrated but *small* intervals (big intervals tell us nothing)
- Domain expertise helps us develop smaller prior distributions (calibration?)
 - Usually at the cost of calibration
 - My experience: people tend to be overconfident
 - Alternatives to domain expertise?

Subjective Bayesianism

- So far we have focused on defining priors using domain expertise
- "Subjective" Bayes
 - Essentially what we have discussed so far
 - Priors usually represent subjective judgements can't always be rigorously justified
- Alternative: "objective" Bayes

Objective Bayesianism

- Is there a way to define "objective" prior distributions?
 - Good default prior distributions for some problems?
 - "Non-informative" prior distributions?
- Also called "reference" or "default" priors

Objective Bayesianism

- Is there a way to define "objective" prior distributions?
 - Good default prior distributions for some problems?
 - "Non-informative" prior distributions?
- Also called "reference" or "default" priors
- Can we find prior distributions that lead to (approximately) correct frequentist calibration?
- Can we find prior distributions which minimize the amount of information contained in the distribution?
 - Principle of maximum entropy (MAXENT).

Difficulties with non-informative priors

Uniform distribution for p

```
p <- runif(100)
tibble(p=p) %>% ggplot() +
  geom_histogram(aes(x=p), bins=30) +
  theme_bw(base_size=24)
```


Difficulties with non-informative priors

Implied distribution for odds = p/(1-p)

```
odds <- p/(1-p)
tibble(odds=odds) %>% ggplot() +
  geom_histogram(aes(x=odds)) +
  theme_bw(base_size=24)
```


Improper prior distributions

• For the Beta distribution we chose a uniform prior - e.g. $p(\theta) \propto \text{const.}$ This was ok because

$$\phi \circ \int_0^1 p(heta) d heta = \mathrm{const} < \infty$$

- We say this prior distribution is *proper* because it is integrable
- For the Poisson distribution, try the same thing: $p(\lambda) \propto \text{const}$

$$\circ \int_0^\infty p(\lambda)d\lambda = \infty$$

 \circ In this case we say $p(\lambda)$ is an *improper* prior

Improper prior distributions

• In the Poisson case, let us pretend the prior for λ is proper...

$$p(\lambda \mid y) \propto$$

Improper prior distributions

- Sometimes there is an absence of precise prior information
- The prior distribution does not have to be proper but the posterior does!
 - A proper distribution is one with an integrable density
 - If you use an improper prior distribution, you need to check that the posterior distribution is also proper

Posterior Predictive Distributions

Posterior predictive distribution

- An important feature of Bayesian inference is the existence of a predictive distribution for new observations.
 - Let \tilde{y} be a new (unseen) observation, and $y_1, \dots y_n$ the observed data.
 - \circ The posterior predictive distribution is $p(\tilde{y} \mid y_1, \dots y_n)$

Posterior predictive distribution

- An important feature of Bayesian inference is the existence of a predictive distribution for new observations.
 - Let \tilde{y} be a new (unseen) observation, and $y_1, \dots y_n$ the observed data.
 - \circ The posterior predictive distribution is $p(\tilde{y} \mid y_1, \dots y_n)$
- The predictive distribution does not depend on unknown parameters
- The predictive distribution only depends on observed data
- Asks: what is the probability distribution for new data given observations of old data?

Another Basketball Example

- I take free throw shots and make 1 out of 2. How many do you think I will make if I take 10 more?
- If my true "skill" was 50%, then $ilde{Y} \sim \mathrm{Bin}(10, 0.50)$
- Is this the correct way to calculate the predictive distribution?

Posterior Prediction

If you know θ , then we know the distribution over future attempts:

$$ilde{Y} \sim ext{Bin}(10, heta)$$

Posterior Prediction

- We already observed 1 make out of 2 tries.
- Assume a Beta(1, 3) prior distribution
 - e.g. a priori you think I'm more likely to make 25% of my shots
- Then $p(\theta \mid Y = 1, n = 2)$ is a Beta(2, 4)
- Intuition: weight $ilde{Y} \sim \mathrm{Bin}(10, \theta)$ by $p(\theta \mid Y = 1, n = 2)$

Posterior Prediction

If I take 10 more shots how many will I make?

Posterior Predictive Distribution

$$p(\theta) = \mathrm{Beta}(1,3), p(\theta \mid y) = \mathrm{Beta}(2,4)$$

The predictive density, $p(\tilde{y} \mid y)$, answers the question "if I take 10 more shots how many will I make, given that I already made 1 of 2".

The posterior predictive distribution

$$egin{aligned} p(ilde{y} \mid y_1, \ldots y_n) &= \int p(ilde{y}, heta \mid y_1, \ldots y_n) d heta \ &= \int p(ilde{y} \mid heta) p(heta \mid y_1, \ldots y_n) d heta \end{aligned}$$

- The posterior predictive distribution describes our uncertainty about a new observation after seeing *n* observations
- It incorporates uncertainty due to the sampling in a model $p(\tilde{y} \mid \theta)$ and our posterior uncertainty about the data generating parameter, $p(\theta \mid y_1, \dots y_n)$

Posterior Predictive Density

The prior predictive distribution

$$egin{aligned} p(ilde{y}) &= \int p(ilde{y}, heta) d heta \ &= \int p(ilde{y} \mid heta) p(heta) d heta \end{aligned}$$

• The prior predictive distribution describes our uncertainty about a new observation before seeing data

The prior predictive distribution

$$egin{aligned} p(ilde{y}) &= \int p(ilde{y}, heta) d heta \ &= \int p(ilde{y} \mid heta) p(heta) d heta \end{aligned}$$

- The prior predictive distribution describes our uncertainty about a new observation before seeing data
- It incorporates uncertainty due to the sampling in a model $p(\tilde{y} \mid \theta)$ and our prior uncertainty about the data generating parameter, $p(\theta)$

Homework 1

- $\lambda \sim \text{Gamma}(\alpha, \beta)$
- $ilde{Y} \sim ext{Pois}(\lambda)$
- $p(\tilde{y}) = \int p(\tilde{y} \mid \lambda) p(\lambda) d\lambda$ is a prior predictive distribution!
- "A Gamma-Poisson mixture is a Negative-Binomial Distribution"

Homework 1

$$egin{aligned} p(ilde{y}) &= \int p(ilde{y} \mid \lambda) p(\lambda) d\lambda \ &= \int (rac{\lambda^{ ilde{y}}}{y!} e^{-\lambda}) (rac{eta^{lpha}}{\Gamma(lpha)} \lambda^{(lpha-1)} e^{-eta\lambda}) d\lambda \ &= rac{eta^{lpha}}{\Gamma(lpha) y!} \int (\lambda^{(lpha+y-1)} e^{-(eta+1)\lambda}) d\lambda \end{aligned}$$

 $\int (\lambda^{(\alpha+y-1)}e^{-(\beta+1)\lambda})d\lambda$ looks like an unormalized Gamma $(\alpha+y,\beta+1)$

Summary

- Bayesian credible intervals
 - Posterior probability that the value falls in the interval
 - Still strive for well-calibrated intervals (in the frequentist sense)
- Non-informative prior distributions
- Posterior predictive distributions
 - Estimated distribution for new data our uncertainty about the parameters