Universidad Nacional Autónoma de México

FACULTAD DE CIENCIAS

Computación Distribuida

Tarea 3

Johann Ramón Gordillo Guzmán 418046090

Tarea presentada como parte del curso de Computación Distribuida impartido por la profesora M.C Karla Rocío Vargas Godoy.

20 de Octubre del 2020

Link al código fuente: https://github.com/JohannGordillo/

Actividades

1. Ejecuta el algoritmo BFS de la figura 1.11 [libro de M. Raynal] en la siguiente gráfica:

Respuesta.

En la **ronda 0**, P_s recibe el mensaje START() y se envía GO(-1) a si mismo. Hacemos:

$$parent_s = P_s$$

$$children_s = \varnothing$$

$$level_s = -1 + 1 = 0$$

$$expected_msg_s = 2$$

Posteriormente, P_s envía GO(0) a sus vecinos, P_2 y P_3 .

En la **ronda 1**, P_3 recibe el mensaje GO(0) de P_s y el mensaje enviado a P_2 va a medio canal. P_3 actualiza sus valores:

$$\begin{aligned} parent_3 &= P_s \\ children_3 &= \varnothing \\ level_3 &= 0+1=1 \\ expected_msg_3 &= 3 \end{aligned}$$

Posteriormente, P_3 envía GO(1) a P_2 , P_4 y P_5 .

En la **ronda 2**, P_2 recibe el mensaje GO(0) de P_s y p_5 recibe el mensaje de P_3 . P_2 y P_5 actualizan sus valores:

$$\begin{aligned} parent_2 &= P_s \\ children_2 &= \varnothing \\ level_2 &= 0+1=1 \\ expected_msg_2 &= 1 \\ \\ parent_5 &= P_3 \\ children_5 &= \varnothing \\ level_5 &= 1+1=2 \\ expected_msg_5 &= 1 \\ \end{aligned}$$

Posteriormente, P_5 envía GO(2) a P_4 , y P_2 envía GO(1) a P_3 .

En la **ronda 3**, P_4 recibe el mensaje GO(2) de P_5 . P_4 actualiza sus valores:

$$parent_4 = P_5$$
 $children_4 = \varnothing$
 $level_4 = 2 + 1 = 3$
 $expected_msg_4 = 2$

Posteriormente, P_4 envía GO(3) a P_6 y a P_3 .

En la **ronda 4**, P_6 recibe el mensaje GO(3) de P_4 y P_6 actualiza sus valores:

$$parent_6 = P_4$$
 $children_6 = \varnothing$
 $level_6 = 3 + 1 = 4$
 $expected_msg_6 = 0$

Como $expected_msg_6=0,\,P_6$ envía un mensaje BACK(YES, 4) a $P_4.$

Por otro lado, P_2 recibe el mensaje GO(1) de P_3 y como $parent_2$ no es vacío y no se cumple $level_2 > d+1=2$, entonces P_2 no actualiza sus valores y envía BACK(NO, 2) a P_3 .

Mientras tanto, P_4 recibe el mensaje GO(1) de P_3 y como el padre de P_4 no es vacío, comprobamos que $level_4 = 3 > d + 1 = 2$, como esto se cumple, tendremos que actualizar los valores de P_4 :

$$parent_4 = P_3$$
 $children_4 = \emptyset$
 $level_4 = 1 + 1 = 2$
 $expected_msg_4 = 2$

Posteriormente, P_4 envía GO(2) a P_6 y a P_5 .

En la **ronda 5**, P_3 recibe GO(1) de P_2 y como no se cumple $level_3 > 2$, entonces P_3 envía BACK(NO, 2) a P_2 .

Al mismo tiempo P_5 recibe GO(2) de P_4 , y como no se cumple que $level_5 > 3$, entonces P_5 envía BACK(NO, 3) a P_4 .

También P_4 recibe BACK(YES, 4) de P_6 , pero no hacemos nada ya que no se cumple que $level_4 = 4$. Finalmente, P_6 recibe GO(2) de P_4 , por lo que actualiza sus valores:

$$parent_6 = P_4$$
 $children_6 = \varnothing$ $level_6 = 2 + 1 = 3$ $expected_msg_6 = 0$

Posteriormente, P_6 envía un mensaje BACK(YES, 3) de vuelta a P_4 .

En la **ronda 6**, P_4 recibe el mensaje BACK(YES, 3) de P_6 y como $level_4 + 1 = 3$, actualizamos los valores para P_4 :

$$parent_4 = P_3$$
 $children_4 = \{P_6\}$ $level_4 = 2$ $expected_msg_4 = 1$

Al mismo tiempo, P_4 recibe el mensaje BACK(NO, 3) de P_5 , y como $level_4 + 1 = 3$, actualizamos valores:

$$parent_4 = P_3$$
 $children_4 = \{P_6\}$
 $level_4 = 2$
 $expected_msg_4 = 0$

Ahora $expected_msg_4 = 0$, por lo que enviamos el mensaje BACK(YES, 2) a su padre P_3 . Mientras tanto, P_3 recibe el mensaje GO(3) de P_4 , pero no se cumple que $level_3 > d+1$, por lo que P_3 envía un mensaje BACK(NO, 4) a P_4 .

En la **ronda 7**, P_3 recibe el mensaje BACK(NO, 2) de P_2 , y como $level_3 = 1$ y d = 2, se cumple que $level_3 + 1 = d$, por lo que actualizamos valores:

$$\begin{aligned} parent_3 &= P_s \\ children_3 &= \varnothing \\ level_3 &= 1 \\ expected_msg_3 &= 2 \end{aligned}$$

Ahora estamos listos para pasar a la ronda 8.

En la **ronda 8**, P_2 recibe el mensaje BACK(NO, 2) de P_3 , y como $level_2 = 1$ y d = 2, se cumple que $level_2 + 1 = d$, por lo que actualizamos valores:

$$parent_2 = P_s$$
 $children_2 = \varnothing$
 $level_2 = 1$
 $expected_msg_2 = 0$

Como $expected_msg_2 = 0$, P_2 envía un mensaje BACK(YES, 1) a su padre P_s .

En la **ronda 9**, P_4 recibe el mensaje BACK(NO, 4) de P_3 , pero no hacemos nada ya que $d \neq level_4 + 1$. Por otra parte, P_3 recibe el mensaje BACK(YES, 2) de P_4 , y como $d = level_3 + 1$, actualizamos valores:

$$parent_3 = P_s$$
 $children_3 = \{P_4\}$ $level_3 = 1$ $expected_msg_3 = 1$

Ahora estamos listos para pasar a la siguiente ronda.

En la **ronda 10**, P_s recibe el mensaje BACK(YES, 1) de P_2 , y como d=1 y $level_s=0$, se cumple que $level_s+1=d$, por lo que actualizamos valores:

$$parent_s = P_s$$
 $children_s = \{P_2\}$ $level_s = 0$ $expected_msg_s = 1$

Sin embargo, notemos que P_3 nunca recibió el mensaje BACK() de P_5 , por lo que $expected_msg_3$ nunca llegará a ser 0 y no se podrá finalizar la construcción del árbol BFS. Se supone que P_5 recibiría BACK(NO, d) de P_4 , lo que haría que $expected_msg_5$ sea 0 y hará que P_5 envíe BACK(YES, d) a su padre P_3 . Esto se debe a un pequeño error en el Algoritmo del libro de M. Raynal.

Suponiendo que el algoritmo finaliza correctamente, llegaremos a que el árbol resultante es:

2. ¿Se puede obtener más de un árbol BFS en la gráfica anterior?

Respuesta.

No. Esto se debe a la distribución de los tiempos y las distancias en el sistema distribuido.

Es claro que P_2 y P_3 siempre serán hijos de P_s , y que P_6 siempre será hijo de P_4 , pero notemos que gracias a la distribución de los tiempos P_5 no podrá ser hijo de P_4 , y como la longitud de la trayectoria $P_5P_3P_5P_4$ siempre será mayor que la de la trayectoria $P_5P_3P_4$, se cumple que P_4 siempre será hijo de P_3 .

Al culminar la ejecución del algoritmo BFS sobre la gráfica anterior, siempre se eliminarán del árbol resultante las aristas P_2P_3 y P_5P_4 .

3. Ejecuta el algoritmo DFS de la figura 1.17 [libro de M. Raynal] en la siguiente gráfica:

Respuesta.

En la **ronda 0**, P_s recibe el mensaje START() y actualiza sus valores:

$$parent_s = P_s$$
$$children_s = \{P_2\}$$

Posteriormente, envía un mensaje $GO(\{P_s\})$ a uno de sus vecinos. Sin pérdida de generalidad, supongamos que a P_2 .

En la **ronda 1**, P_2 recibe el mensaje $GO(\{P_s\})$ de P_s .

Vemos que $neighbors_2 = \{P_s, P_3, P_5\} \not\subset visited = \{P_s\}$, por lo que P_2 envía el mensaje $GO(\{P_s, P_2\})$ a uno de sus vecinos no visitados. Sin pérdida de generalidad, supongamos que envía el mensaje a P_3 . Finalmente, actualizamos los valores de P_2 :

$$parent_2 = P_s$$

 $children_2 = \{P_3\}$

En la **ronda 2**, P_3 recibe el mensaje $Go(\{P_s, P_2\})$ de P_2 .

Como $neighbors_3 = \{P_s, P_2, P_4, P_5\} \not\subset visited = \{P_s, P_2\}$, entonces P_3 manda un mensaje $GO(\{P_s, P_2, P_3\})$ a uno de sus vecinos, supongamos sin pérdida de generalidad que manda el mensaje a P_4 . Posteriormente, actualizamos sus valores:

$$parent_3 = P_2$$

 $children_3 = \{P_4\}$

En la **ronda 3**, P_4 recibe el mensaje $Go(\{P_s, P_2, P_3\})$ de P_3 .

Como $neighbors_4 = \{P_3, P_5\} \not\subset visited = \{P_s, P_2, P_3\}$, entonces P_4 manda un mensaje $GO(\{P_s, P_2, P_3, P_4\})$ a su único vecino que no ha sido visitado: P_5 . Posteriormente, actualizamos sus valores:

$$parent_4 = P_3$$
$$children_4 = \{P_5\}$$

En la **ronda 4**, P_5 recibe el mensaje $GO(\{P_s, P_2, P_3, P_4\})$ de P_4 . Como $neighbors_5 = \{P_2, P_3, P_4\} \subset visited = \{P_s, P_2, P_3, P_4\}$, entonces P_5 envía un mensaje $BACK(\{P_s, P_2, P_3, P_4, P_5\})$ a P_4 . Posteriormente, actualizamos sus valores:

$$parent_5 = P_4$$
$$children_5 = \varnothing$$

En la **ronda 5**, P_4 recibe el mensaje BACK($\{P_s, P_2, P_3, P_4, P_5\}$) de P_5 . Como $neighbors_4 = \{P_3, P_5\} \subset visited = \{P_s, P_2, P_3, P_4, P_5\}$, verificamos si $parent_4 = P_4$. Como $parent_4 \neq P_4$, P_4 envía un mensaje BACK($\{P_s, P_2, P_3, P_4, P_5\}$) a su padre P_3 .

En la **ronda 6**, P_3 recibe el mensaje BACK($\{P_s, P_2, P_3, P_4, P_5\}$) de P_4 . Como $neighbors_3 = \{P_s, P_2, P_4, P_5\} \subset visited = \{P_s, P_2, P_3, P_4, P_5\}$, verificamos si $parent_3 = P_3$. Como $parent_3 \neq P_3$, P_3 envía un mensaje BACK($\{P_s, P_2, P_3, P_4, P_5\}$) a su padre P_2 .

En la **ronda 7**, P_2 recibe el mensaje BACK($\{P_s, P_2, P_3, P_4, P_5\}$) de P_3 . Como $neighbors_2 = \{P_s, P_3, P_5\} \subset visited = \{P_s, P_2, P_3, P_4, P_5\}$, verificamos si $parent_2 = P_2$. Como $parent_2 \neq P_2$, P_2 envía un mensaje BACK($\{P_s, P_2, P_3, P_4, P_5\}$) a su padre P_s .

En la **ronda 8**, P_s recibe el mensaje BACK($\{P_s, P_2, P_3, P_4, P_5\}$) de P_2 . Como $neighbors_s = \{P_2, P_3\} \subset visited = \{P_s, P_2, P_3, P_4, P_5\}$, verificamos si $parent_s = P_s$. Como $parent_s \neq P_s$, terminamos la ejecución del algoritmo.

Finalmente, el árbol resultante es:

4. Considera el algoritmo BFS que no detecta terminación en un sistema síncrono. Sea D la distancia más grande de la raíz a cualquier otro proceso.

Demuestra que para cada $1 \le t \le D$, después de t rondas, cada vértice p_i a distancia t ya ha recibido un mensaje con d = t - 1 de algún vecino p_j y por lo tanto $distance_i = t$ y $parent_i = j$ tal que $distance_j = t - 1$ (**Hint:** en la ronda 0 la raíz comienza su ejecución y envía su mensaje a sus vecinos y estos lo reciben en la ronda 1).

```
1 initially do
        if pid = initiator then
 \mathbf{2}
            distance \leftarrow 0
 3
            send distance to all neighbors
        else
 5
            distance \leftarrow \infty
 6
 7 upon receiving d from p do
        if d+1 < \text{distance then}
            \mathsf{distance} \leftarrow d + 1
            parent \leftarrow p
10
            send distance to all neighbors
11
```

Demostración.

Procedemos por inducción sobre t.

Caso Base.

Probemos que se cumple para t=1.

En la **ronda 0**, la raíz comienza su ejecución, asignándose una distancia $d_{init} = 0$ y envía esta distancia a sus vecinos, que están a distancia 1. Los demás nodos inicializan su distancia a ∞ .

En la **ronda 1**, los nodos a distancia 1 de la raíz reciben el mensaje de la raíz conteniéndo su distancia $d_{init} = 0$, y como $0 + 1 = 1 < \infty$, éstos nodos actualizan su distancia a $d_i = 1 = t$. Además, su padre es $parent_i = init$ y el mensaje que reciben es $d_{init} = 0 = 1 - 1 = t - 1$

 \therefore La afirmación se cumple para t=1.

• Hipótesis de Inducción.

Supongamos que la afirmación se cumple para $t \leq D - 1$.

Paso Inductivo.

Probemos que la afirmación se cumple para t = D.

Sea N un nodo a distancia D de la raíz y sea P un vecino de N a distancia D-1 de la raíz.

Luego, por Hipótesis de Inducción, después de D-1 rondas, el nodo P ya recibió un mensaje con d=D-2 de algún vecino p_j y por lo tanto $distance_P=D-1$ y $parent_P=j$ tal que $distance_j=D-2$.

De esta manera, como N es vecino de P, está a distancia 1, por lo que en la siguiente ronda, la **ronda D**, el nodo N recibirá un mensaje con d = D - 1 de P y por lo tanto actualizará su distancia a $distance_N = D$ y $parent_N = P$ tal que $distance_P = D - 1$.

 \therefore Se cumple la afirmación para t=D.

∴ Se cumple la afirmación.

Referencias

- [1] Raynal, M. Distributed Algorithms for Message-Passing Systems. Springer, 2013.
- [2] Aspnes, J. Notes on Theory of Distributed Systems. Yale University, 2017.