#### Universidade Federal de São Carlos - UFSCar

Departamento de Computação - DC CEP 13565-905, Rod. Washington Luiz, s/n, São Carlos, SP

# Programação Dinâmica - Parte 2

Prof. Dr. Alan Demétrius Baria Valejo

CCO-00.2.01 - Projeto e Análise de Algoritmos (*Design And Analysis Of Algorithms*) 1001525 - Projeto e Análise de Algoritmos - Turma A



• Problema do troco



- Problema do troco ou *coin change problem* 
  - Dado o sistema monetário brasileiro S com um conjunto de moedas pré-definidas
  - Objetivo: qual é a menor quantidade de moedas para retornar um troco c?
    - Ou seja, consiste em **encontrar a combinação com menor número de moedas** cuja soma seja igual a uma quantia determinada, a partir de uma lista de moedas válidas que possuem disponibilidade infinita.

```
S = \{100, 50, 25, 10, 5, 1\} e c = 147
```

Restrição quanto ao número de moedas  $R = \{1, 1, 1, 1, 100, 100\}$  e c = 187

- Caso especial do Problema da Mochila
  - No caso da mochila, busca-se a alocação de objetos que maximiza o valor de uma mochila com uma restrição de peso, dados os pesos e valores de cada objeto
  - O problema do troco seria o da mochila "ao contrário": dado um valor fixo para a mochila, encontrar a combinação de objetos com menor peso que fornece esse valor.



A <u>solução gulosa</u> funciona para um conjunto de moedas específica, mas falha para moedas arbitrária.



A <u>solução gulosa</u> funciona para um conjunto de moedas específica, mas falha para moedas arbitrária.



O método guloso funciona bem quando estamos usando moedas dos EUA, mas suponha que sua empresa decide implantar suas máquinas de venda automática na Elbonia do Sul onde, além das habituais moedas de 1, 5, 10 e 25 centavos dos EUA, também tem uma moeda de 21 centavos. Neste exemplo, o nosso método guloso não consegue encontrar a solução ideal para o troco de 63 centavos. Com a adição da moeda de 21 centavos o método guloso ainda encontra a solução com seis moedas. No entanto, a resposta ótima seria três moedas de 21 centavos.



- Mas será que a versão gananciosa sempre é a melhor?
  - No caso da lista de moedas válidas no Brasil, ilustrada anteriormente, a versão gananciosa funciona
  - Mas em outros casos, por exemplo, um sistema fictício com apenas três tipos de moedas: 1 centavo, 7 centavos e 10 centavos e um troco de c=14
  - Outro caso, tendo apenas três tipos de moedas: 1 centavo, 3 centavos e 4 centavos e um troco de c=6

```
S = \{10, 7, 1\}

C = 14 - 10 \Rightarrow 4

C = 4 - 1 \Rightarrow 3

C = 3 - 1 \Rightarrow 2

C = 2 - 1 \Rightarrow 1

C = 1 - 1 \Rightarrow 0

T = \{10, 1, 1, 1, 1\}

Porém, a resposta ótimo é T = \{7, 7\}
```

```
S = \{4, 3, 1\}

C = 6 - 4 \Rightarrow 2

C = 2 - 1 \Rightarrow 1

C = 1 - 1 \Rightarrow 0

T = \{4, 1, 1\}

Porém, a resposta ótimo é T = \{3, 3\}
```



- Para resolver esse problema com programação dinâmica temos que transformar o problema em uma recorrência
- Em seguida, resolvemos utilizando uma estratégia
  - bottom-up, ou seja, sem recursão
  - top-down, ou seja, com recursão



- Para resolver esse problema com programação dinâmica temos que transformar o problema em uma recorrência
- Em seguida, resolvemos utilizando uma estratégia
  - bottom-up, ou seja, sem recursão
  - top-down, ou seja, com recursão
- Suponha um conjunto de moedas *M*

$$M = \{m_1, m_2, m_3, \dots, m_k\}, \forall m_i \in \mathbb{N}$$



- Para resolver esse problema com programação dinâmica temos que transformar o problema em uma recorrência
- Em seguida, resolvemos utilizando uma estratégia
  - bottom-up, ou seja, sem recursão
  - *top-down*, ou seja, com recursão
- Suponha um conjunto de moedas *M*

$$M = \{m_1, m_2, m_3, \dots, m_k\}, \forall \ m_i \in \mathbb{N}$$

- Suponha que t(n) seja o meu troco ótimo
- Suponha agora que  $m_i$  é uma moeda que compõe uma sub-solução ótima t(p)
- Logo,



- Para resolver esse problema com programação dinâmica temos que transformar o problema em uma recorrência
- Em seguida, resolvemos utilizando uma estratégia
  - bottom-up, ou seja, sem recursão
  - *top-down*, ou seja, com recursão
- Suponha um conjunto de moedas *M*

$$M=\{m_1,m_2,m_3,\dots,m_k\}, \forall \ m_i \in \mathbb{N}$$

- Suponha que t(n) seja o meu troco ótimo
- Suponha agora que  $m_i$  é uma moeda que compõe uma sub-solução ótima t(p)
- Logo,

$$t(p) = (1 + t(p - m_i), m_i)$$



$$t(p) = (1 + t(p - m_i), m_i)$$



$$t(p) = (1 + t(p - m_i), \mathbf{m_i})$$

1 moeda subproblema moeda selecionada



Então, t(p) é formado pela moeda  $m_i$ mais a solução do subproblema  $t(p-m_i)$ 

$$t(p) = (1 + t(p - m_i), \underline{m_i})$$

1 moeda

subproblema moeda selecionada



Então, t(p) é formado pela moeda  $m_i$ mais a solução do subproblema  $t(p-m_i)$ 

$$t(p) = (1 + t(p - m_i), m_i)$$

1 moeda

subproblema moeda selecionada

$$M = \{1, 2, 5\}$$
 $p = 10$ 
 $m_i = 5$ 
 $t(p) = 1 + t(10 - 5) = 1 + t(5)$ 
 $t(p) = (1 + t(5), m_i)$ 



Fórmula global

$$t(n) \begin{cases} 1 + \min_{i:m_i \le n} t(n - m_i) & \text{se } n > 0, \\ 0 & \text{caso contrário.} \end{cases}$$

Fórmula compacta para um troco *p* qualquer

$$t(p) = \min[(t(p), m_{i+1}), (1 + t(p - m_i), m_i)]$$

Não pegar a moeda  $m_i$  e passar para a próxima moeda  $m_{i+1}$ 

Pegar a moeda  $m_i$ 



$$M = \{1,2,3\}$$

$$n = 5$$



$$M = \{1,2,3\}$$

$$n = 5$$



$$M = \{1,2,3\}$$

$$n = 5$$





$$M = \{1,2,3\}$$

$$n = 5$$





$$M = \{1,2,3\}$$

$$n = 5$$





$$M = \{1,2,3\}$$

$$n = 5$$





$$M = \{1,2,3\}$$

$$n = 5$$





$$M = \{1,2,3\}$$

$$n = 5$$





$$M = \{1,2,3\}$$

$$n = 5$$























Alan D. B. Valejo - Projeto e Análise de Algoritmos





Alan D. B. Valejo - Projeto e Análise de Algoritmos





Alan D. B. Valejo - Projeto e Análise de Algoritmos





Alan D. B. Valejo - Projeto e Análise de Algoritmos





Alan D. B. Valejo - Projeto e Análise de Algoritmos





Alan D. B. Valejo - Projeto e Análise de Algoritmos





Alan D. B. Valejo - Projeto e Análise de Algoritmos





Alan D. B. Valejo - Projeto e Análise de Algoritmos





Alan D. B. Valejo - Projeto e Análise de Algoritmos





Alan D. B. Valejo - Projeto e Análise de Algoritmos





| Moedas       |                     | Troco |            |   |   |   |  |  |  |  |  |  |  |
|--------------|---------------------|-------|------------|---|---|---|--|--|--|--|--|--|--|
| Moedas       | 0                   | 1     | 2          | 3 | 4 | 5 |  |  |  |  |  |  |  |
| <b>{1</b> }  | 0                   | 1     | <u>^</u> 2 | 3 | 4 | 5 |  |  |  |  |  |  |  |
| <b>{1,2}</b> | <b>✓</b> 0 <b>←</b> | 1     | <b>-</b> 1 |   |   |   |  |  |  |  |  |  |  |
| {1, 2, 3}    | 0                   |       |            |   |   |   |  |  |  |  |  |  |  |





Alan D. B. Valejo - Projeto e Análise de Algoritmos





Nesse caso, se eu inserir a moeda de valor 2, eu ficaria com o troco de:

- $1+t(p-m_i)$
- 1+t(3-2)
- 1 + t(1)
- 1 + 1 = 2

| Joa     |   | Troco        |   |                     |   |   |  |  |  |  |  |  |  |
|---------|---|--------------|---|---------------------|---|---|--|--|--|--|--|--|--|
| das<br> | 0 | 1            | 2 | 3                   | 4 | 5 |  |  |  |  |  |  |  |
| }       | 0 | 1            | 2 | <b>↑</b> 3 <b>×</b> | 4 | 5 |  |  |  |  |  |  |  |
|         | 0 | <b>✓</b> 1 ← | 1 | _ 2                 |   |   |  |  |  |  |  |  |  |
| 3}      | 0 |              |   |                     |   |   |  |  |  |  |  |  |  |





Alan D. B. Valejo - Projeto e Análise de Algoritmos





Nesse caso, se eu inserir a moeda de valor 2, eu ficaria com o troco de:

- $1+t(p-m_i)$
- 1 + t(4-2)
- 1 + t(2)
- 1 + 1 = 2

| doa |   | Troco |              |   |                     |   |  |  |  |  |  |  |  |  |
|-----|---|-------|--------------|---|---------------------|---|--|--|--|--|--|--|--|--|
| das | 0 | 1     | 2            | 3 | 4                   | 5 |  |  |  |  |  |  |  |  |
| }   | 0 | 1     | 2            | 3 | <b>↑</b> 4 <b>×</b> | 5 |  |  |  |  |  |  |  |  |
|     | 0 | 1     | <b>✓</b> 1 ← | 2 | _ 2                 |   |  |  |  |  |  |  |  |  |
| 3}  | 0 |       |              |   |                     |   |  |  |  |  |  |  |  |  |





Alan D. B. Valejo - Projeto e Análise de Algoritmos





Nesse caso, se eu inserir a moeda de valor 2, eu ficaria com o troco de:

- $1+t(p-m_i)$
- 1+t(5-2)
- 1 + t(3)
- 1 + 2 = 3

|     |   | Troco |   |                     |   |                     |  |  |  |  |  |  |  |  |
|-----|---|-------|---|---------------------|---|---------------------|--|--|--|--|--|--|--|--|
| das | 0 | 1     | 2 | 3                   | 4 | 5                   |  |  |  |  |  |  |  |  |
| }   | 0 | 1     | 2 | 3                   | 4 | <b>↑</b> 5 <b>×</b> |  |  |  |  |  |  |  |  |
|     | 0 | 1     | 1 | <b>✓</b> 2 <b>←</b> | 2 | 3                   |  |  |  |  |  |  |  |  |
| 3}  | 0 |       |   |                     |   |                     |  |  |  |  |  |  |  |  |





Alan D. B. Valejo - Projeto e Análise de Algoritmos









Alan D. B. Valejo - Projeto e Análise de Algoritmos





Alan D. B. Valejo - Projeto e Análise de Algoritmos





Alan D. B. Valejo - Projeto e Análise de Algoritmos





Nesse caso, se eu inserir a moeda de valor 2, eu ficaria com o troco de:

- $1+t(p-m_i)$
- 1 + t(3 3)
- 1 + t(3)
- 1 + 0 = 1

| das | Troco               |   |   |            |   |   |  |  |  |  |  |  |  |  |
|-----|---------------------|---|---|------------|---|---|--|--|--|--|--|--|--|--|
|     | 0                   | 1 | 2 | 3          | 4 | 5 |  |  |  |  |  |  |  |  |
| }   | 0                   | 1 | 2 | 3          | 4 | 5 |  |  |  |  |  |  |  |  |
|     | 0                   | 1 | 1 | ↑ 2 ×      | 2 | 3 |  |  |  |  |  |  |  |  |
| 3}  | <b>✓</b> 0 <b>←</b> | 1 | 1 | <b>-</b> 1 |   |   |  |  |  |  |  |  |  |  |





Alan D. B. Valejo - Projeto e Análise de Algoritmos





Nesse caso, se eu inserir a moeda de valor 2, eu ficaria com o troco de:

- $1+t(p-m_i)$
- 1 + t(4 3)
- 1 + t(1)
- 1 + 1 = 2

| 1   |   | Troco        |   |   |              |   |  |  |  |  |  |  |  |  |
|-----|---|--------------|---|---|--------------|---|--|--|--|--|--|--|--|--|
| das | 0 | 1            | 2 | 3 | 4            | 5 |  |  |  |  |  |  |  |  |
| }   | 0 | 1            | 2 | 3 | 4            | 5 |  |  |  |  |  |  |  |  |
|     | 0 | 1            | 1 | 2 | ↑ 2 <b>✓</b> | 3 |  |  |  |  |  |  |  |  |
| 3}  | 0 | <b>×</b> 1 ← | 1 | 1 | 2            |   |  |  |  |  |  |  |  |  |





Alan D. B. Valejo - Projeto e Análise de Algoritmos





Nesse caso, se eu inserir a moeda de valor 2, eu ficaria com o troco de:

- $1+t(p-m_i)$
- 1 + t(5 3)
- 1 + t(2)
- 1 + 1 = 2

|     | The state of the s |       |              |   |   |                     |  |  |  |  |  |  |  |  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------|---|---|---------------------|--|--|--|--|--|--|--|--|
| doa |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Troco |              |   |   |                     |  |  |  |  |  |  |  |  |
| das | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1     | 2            | 3 | 4 | 5                   |  |  |  |  |  |  |  |  |
| }   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1     | 2            | 3 | 4 | 5                   |  |  |  |  |  |  |  |  |
|     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1     | 1            | 2 | 2 | <b>↑</b> 3 <b>×</b> |  |  |  |  |  |  |  |  |
| 3}  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1     | <b>✓</b> 1 ← | 1 | 2 | _ 2                 |  |  |  |  |  |  |  |  |





Alan D. B. Valejo - Projeto e Análise de Algoritmos



$$M = \{1,2,5\}$$

{1,2,5}

| M |   |   |   |   |   | Tro | осо |   |   |   |    |    |
|---|---|---|---|---|---|-----|-----|---|---|---|----|----|
| M | 0 | 1 | 2 | 3 | 4 | 5   | 6   | 7 | 8 | 9 | 10 | 11 |



$$M = \{1,2,5\}$$
 $n = 11$ 

|                        | 7.4         | Troco |   |   |   |   |   |   |   |   |   |    |    |
|------------------------|-------------|-------|---|---|---|---|---|---|---|---|---|----|----|
|                        | IVI         | 0     | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
| Vetor $dp \rightarrow$ | <b>{1</b> } |       |   |   |   |   |   |   |   |   |   |    |    |



$$M = \{1,2,5\}$$



| M           |   |   |   |   |   | Tre | осо |   |   |   |    |    |
|-------------|---|---|---|---|---|-----|-----|---|---|---|----|----|
| M           | 0 | 1 | 2 | 3 | 4 | 5   | 6   | 7 | 8 | 9 | 10 | 11 |
| <b>{1</b> } | 0 |   |   |   |   |     |     |   |   |   |    |    |



$$M = \{1,2,5\}$$



| M           | Troco |   |   |   |   |   |   |   |   |   |    |    |
|-------------|-------|---|---|---|---|---|---|---|---|---|----|----|
| M           | 0     | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
| <b>{1</b> } | 0     | 1 |   |   |   |   |   |   |   |   |    |    |

$$1 - 1 = 0$$

$$1 + dp[0] = 1 + 0 = 1$$



$$M = \{1,2,5\}$$



| M           |   |   |   |   |   | Tre | осо |   |   |   |    |    |
|-------------|---|---|---|---|---|-----|-----|---|---|---|----|----|
| M           | 0 | 1 | 2 | 3 | 4 | 5   | 6   | 7 | 8 | 9 | 10 | 11 |
| <b>{1</b> } | 0 | 1 | 2 |   |   |     |     |   |   |   |    |    |

$$1 - 1 = 0$$

$$1 + dp[0] = 1 + 0 = 1$$

$$2 - 1 = 1$$

$$1 + dp[1] = 1 + 1 = 2$$



$$M = \{1,2,5\}$$



| M           |   |   |   |   |   | Tre | осо |   |   |   |    |    |
|-------------|---|---|---|---|---|-----|-----|---|---|---|----|----|
| M           | 0 | 1 | 2 | 3 | 4 | 5   | 6   | 7 | 8 | 9 | 10 | 11 |
| <b>{1</b> } | 0 | 1 | 2 | 3 |   |     |     |   |   |   |    |    |

$$1 - 1 = 0$$

$$1 + dp[0] = 1 + 0 = 1$$

$$2 - 1 = 1$$

$$1 + dp[1] = 1 + 1 = 2$$

$$3 - 1 = 2$$

$$1 + dp[2] = 1 + 2 = 3$$



$$M = \{1,2,5\}$$



| M           |   |   |   |   |   | Tre | осо |   |   |   |    |    |
|-------------|---|---|---|---|---|-----|-----|---|---|---|----|----|
| M           | 0 | 1 | 2 | 3 | 4 | 5   | 6   | 7 | 8 | 9 | 10 | 11 |
| <b>{1</b> } | 0 | 1 | 2 | 3 | 4 |     |     |   |   |   |    |    |

$$1 - 1 = 0$$

$$1 + dp[0] = 1 + 0 = 1$$

$$4 - 1 = 3$$

$$1 + dp[3] = 1 + 3 = 4$$

$$2 - 1 = 1$$

$$1 + dp[1] = 1 + 1 = 2$$

$$3 - 1 = 2$$

$$1 + dp[2] = 1 + 2 = 3$$



$$M = \{1,2,5\}$$



| M           |   |   |   |   |   | Tro | осо |   |   |   |    |    |
|-------------|---|---|---|---|---|-----|-----|---|---|---|----|----|
| IVI         | 0 | 1 | 2 | 3 | 4 | 5   | 6   | 7 | 8 | 9 | 10 | 11 |
| <b>{1</b> } | 0 | 1 | 2 | 3 | 4 | 5   |     |   |   |   |    |    |

$$1 - 1 = 0$$

$$1 + dp[0] = 1 + 0 = 1$$

$$4 - 1 = 3$$

$$1 + dp[3] = 1 + 3 = 4$$

$$2 - 1 = 1$$

$$1 + dv[1] = 1 + 1 =$$

$$5 - 1 = 4$$

$$1 + dp[1] = 1 + 1 = 2$$
  $1 + dp[4] = 1 + 4 = 5$ 

$$3 - 1 = 2$$

$$1 + dp[2] = 1 + 2 = 3$$



$$M = \{1,2,5\}$$



| M           |   |   |   |   |   | Tre | осо |   |   |   |    |    |
|-------------|---|---|---|---|---|-----|-----|---|---|---|----|----|
| IVI         | 0 | 1 | 2 | 3 | 4 | 5   | 6   | 7 | 8 | 9 | 10 | 11 |
| <b>{1</b> } | 0 | 1 | 2 | 3 | 4 | 5   | 6   |   |   |   |    |    |

$$1 - 1 = 0$$

$$1 + dp[0] = 1 + 0 = 1$$

$$4 - 1 = 3$$

$$1 + dp[3] = 1 + 3 = 4$$

$$2 - 1 = 1$$

$$1 = 1$$
  $5 - 1 = 4$ 

$$1 + dp[1] = 1 + 1 = 2$$

$$1 + dp[1] = 1 + 1 = 2$$
  $1 + dp[4] = 1 + 4 = 5$ 

$$3 - 1 = 2$$

$$+ dv[2] = 1 + 2 = 3$$

$$6 - 1 = 5$$

$$1 + dp[2] = 1 + 2 = 3$$
  $1 + dp[5] = 1 + 5 = 6$ 



$$M = \{1,2,5\}$$



| M           |   |   |   |   |   | Tre | осо |   |   |   |    |    |
|-------------|---|---|---|---|---|-----|-----|---|---|---|----|----|
| IVI         | 0 | 1 | 2 | 3 | 4 | 5   | 6   | 7 | 8 | 9 | 10 | 11 |
| <b>{1</b> } | 0 | 1 | 2 | 3 | 4 | 5   | 6   | 7 |   |   |    |    |

$$1 - 1 = 0$$

$$1 + dp[0] = 1 + 0 = 1$$

$$4 - 1 = 3$$

$$1 + dp[3] = 1 + 3 = 4$$

$$7 - 1 = 6$$

$$1 + dp[3] = 1 + 3 = 4$$
  $1 + dp[6] = 1 + 6 = 7$ 

$$2 - 1 = 1$$

$$1 + dp[1] = 1 + 1 =$$

$$5 - 1 = 4$$

$$1 + dp[1] = 1 + 1 = 2$$
  $1 + dp[4] = 1 + 4 = 5$ 

$$3 - 1 = 2$$

$$1 + dp[2] = 1 + 2 = 3$$

$$6 - 1 = 5$$

$$1 + dp[2] = 1 + 2 = 3$$
  $1 + dp[5] = 1 + 5 = 6$ 



$$M = \{1,2,5\}$$



| 7.4         |   |   |   |   |   | Tre | осо |   |   |   |    |    |
|-------------|---|---|---|---|---|-----|-----|---|---|---|----|----|
| M           | 0 | 1 | 2 | 3 | 4 | 5   | 6   | 7 | 8 | 9 | 10 | 11 |
| <b>{1</b> } | 0 | 1 | 2 | 3 | 4 | 5   | 6   | 7 | 8 |   |    |    |

$$1 - 1 = 0$$

$$1 + dp[0] = 1 + 0 = 1$$

$$4 - 1 = 3$$

$$1 + dp[3] = 1 + 3 = 4$$

$$7 - 1 = 6$$

$$1 + dp[3] = 1 + 3 = 4$$
  $1 + dp[6] = 1 + 6 = 7$ 

$$2 - 1 = 1$$

$$1 + dv[1] = 1 + 1 = 2$$

$$5 - 1 = 4$$

$$1 + dp[4] = 1 + 4 = 5$$

$$5 - 1 = 4$$
  $8 - 1 = 7$ 

$$1 + dp[1] = 1 + 1 = 2$$
  $1 + dp[4] = 1 + 4 = 5$   $1 + dp[7] = 1 + 7 = 8$ 

$$3 - 1 = 2$$

$$1 + dv[2] = 1 + 2 = 3$$

$$6 - 1 = 5$$

$$1 + dp[2] = 1 + 2 = 3$$
  $1 + dp[5] = 1 + 5 = 6$ 



$$M = \{1,2,5\}$$



| M           |   |   |   |   |   | Tre | осо |   |   |   |    |    |
|-------------|---|---|---|---|---|-----|-----|---|---|---|----|----|
| IVI         | 0 | 1 | 2 | 3 | 4 | 5   | 6   | 7 | 8 | 9 | 10 | 11 |
| <b>{1</b> } | 0 | 1 | 2 | 3 | 4 | 5   | 6   | 7 | 8 | 9 |    |    |

$$1 - 1 = 0$$

$$1 + dp[0] = 1 + 0 = 1$$

$$4 - 1 = 3$$

$$1 + dp[3] = 1 + 3 = 4$$

$$7 - 1 = 6$$

$$1 + dp[3] = 1 + 3 = 4$$
  $1 + dp[6] = 1 + 6 = 7$ 

$$2 - 1 = 1$$

$$1 + dp[1] = 1 + 1 = 2$$

$$5 - 1 = 4$$

$$1 + dp[4] = 1 + 4 = 5$$

$$5 - 1 = 4$$
  $8 - 1 = 7$ 

$$1 + dp[1] = 1 + 1 = 2$$
  $1 + dp[4] = 1 + 4 = 5$   $1 + dp[7] = 1 + 7 = 8$ 

$$3 - 1 = 2$$

$$1 + dn[2] = 1 + 2 = 3$$

$$6 - 1 = 5$$

$$1 + dp[5] = 1 + 5 = 6$$

$$6 - 1 = 5$$
  $9 - 1 = 8$ 

$$1 + dp[2] = 1 + 2 = 3$$
  $1 + dp[5] = 1 + 5 = 6$   $1 + dp[8] = 1 + 8 = 9$ 



$$M = \{1,2,5\}$$



| M           |   |   |   |   |   | Tre | осо |   |   |   |    |    |
|-------------|---|---|---|---|---|-----|-----|---|---|---|----|----|
| IVI         | 0 | 1 | 2 | 3 | 4 | 5   | 6   | 7 | 8 | 9 | 10 | 11 |
| <b>{1</b> } | 0 | 1 | 2 | 3 | 4 | 5   | 6   | 7 | 8 | 9 | 10 |    |

$$1 - 1 = 0$$

$$1 + dp[0] = 1 + 0 = 1$$

$$4 - 1 = 3$$

$$1 + dp[3] = 1 + 3 = 4$$

$$7 - 1 = 6$$

$$1 + dp[3] = 1 + 3 = 4$$
  $1 + dp[6] = 1 + 6 = 7$ 

$$10 - 1 = 9$$

$$1 + dp[9] = 1 + 9 = 10$$

$$2 - 1 = 1$$

$$1 + dp[1] = 1 + 1 = 1$$

$$5 - 1 = 4$$

$$1 + dp[4] = 1 + 4 = 5$$

$$5 - 1 = 4$$
  $8 - 1 = 7$ 

$$1 + dp[1] = 1 + 1 = 2$$
  $1 + dp[4] = 1 + 4 = 5$   $1 + dp[7] = 1 + 7 = 8$ 

$$3 - 1 = 2$$

$$1 + dp[2] = 1 + 2 = 3$$

$$6 - 1 = 5$$

$$1 + dp[5] = 1 + 5 = 6$$

$$9 - 1 = 8$$

$$1 + dp[2] = 1 + 2 = 3$$
  $1 + dp[5] = 1 + 5 = 6$   $1 + dp[8] = 1 + 8 = 9$ 



$$M = \{1,2,5\}$$



| M           |   |   |   |   |   | Tre | осо |   |   |   |    |    |
|-------------|---|---|---|---|---|-----|-----|---|---|---|----|----|
| IVI         | 0 | 1 | 2 | 3 | 4 | 5   | 6   | 7 | 8 | 9 | 10 | 11 |
| <b>{1</b> } | 0 | 1 | 2 | 3 | 4 | 5   | 6   | 7 | 8 | 9 | 10 | 11 |

$$1 - 1 = 0$$

$$1 + dp[0] = 1 + 0 = 1$$

$$4 - 1 = 3$$

$$1 + dp[3] = 1 + 3 = 4$$
  $1 + dp[6] = 1 + 6 = 7$ 

$$7 - 1 = 6$$

$$1 + dp[6] = 1 + 6 = 7$$

$$10 - 1 = 9$$

$$1 + dp[9] = 1 + 9 = 10$$

$$2 - 1 = 1$$

$$1 + dp[1] = 1 + 1 = 2$$

$$5 - 1 = 4$$

$$1 + dp[4] = 1 + 4 = 5$$

$$8 - 1 = 7$$

$$1 + dp[7] = 1 + 7 = 8$$

$$8 - 1 = 7$$
  $11 - 1 = 10$ 

$$1 + dp[1] = 1 + 1 = 2$$
  $1 + dp[4] = 1 + 4 = 5$   $1 + dp[7] = 1 + 7 = 8$   $1 + dp[10] = 1 + 10 = 11$ 

$$3 - 1 = 2$$

$$1 + dn[2] = 1 + 2 = 1$$

$$6 - 1 = 5$$

$$1 + dp[5] = 1 + 5 = 6$$

$$9 - 1 = 8$$

$$1 + dp[2] = 1 + 2 = 3$$
  $1 + dp[5] = 1 + 5 = 6$   $1 + dp[8] = 1 + 8 = 9$ 



$$M = \{1,2,5\}$$



| М           |   |   |   |   |   | Tre | осо |   |   |   |    |    |
|-------------|---|---|---|---|---|-----|-----|---|---|---|----|----|
|             | 0 | 1 | 2 | 3 | 4 | 5   | 6   | 7 | 8 | 9 | 10 | 11 |
| <b>{1</b> } | 0 | 1 | 2 | 3 | 4 | 5   | 6   | 7 | 8 | 9 | 10 | 11 |



$$M = \{1,2,5\}$$



| М           |   |   |   |   |   | Tre | осо |   |   |   |    |    |
|-------------|---|---|---|---|---|-----|-----|---|---|---|----|----|
|             | 0 | 1 | 2 | 3 | 4 | 5   | 6   | 7 | 8 | 9 | 10 | 11 |
| <b>{2</b> } | 0 | 1 | 2 | 3 | 4 | 5   | 6   | 7 | 8 | 9 | 10 | 11 |



$$M = \{1,2,5\}$$

n = 11



| 7.4         |   |   |   |   |   | Tre | осо |   |   |   |    |    |
|-------------|---|---|---|---|---|-----|-----|---|---|---|----|----|
| M           | 0 | 1 | 2 | 3 | 4 | 5   | 6   | 7 | 8 | 9 | 10 | 11 |
| <b>{2</b> } | 0 | 1 | 2 | 3 | 4 | 5   | 6   | 7 | 8 | 9 | 10 | 11 |



$$M = \{1,2,5\}$$

n = 11



| 7.4         |   |   |   |   |   | Tre | осо |   |   |   |    |    |
|-------------|---|---|---|---|---|-----|-----|---|---|---|----|----|
| M           | 0 | 1 | 2 | 3 | 4 | 5   | 6   | 7 | 8 | 9 | 10 | 11 |
| <b>{2</b> } | 0 | 1 | 2 | 3 | 4 | 5   | 6   | 7 | 8 | 9 | 10 | 11 |



$$M = \{1,2,5\}$$

n = 11



| M           |   |                           |       |   |   | Tre | осо |   |   |   |    |    |
|-------------|---|---------------------------|-------|---|---|-----|-----|---|---|---|----|----|
| M           | 0 | 0 1 2 3 4 5 6 7 8 9 10 11 |       |   |   |     |     |   |   |   |    |    |
| <b>{2</b> } | 0 | 1                         | {2,1} | 3 | 4 | 5   | 6   | 7 | 8 | 9 | 10 | 11 |

Tenho que escolher entre o troco anterior que é 2 ou o novo troco considerando a utilização da moeda de 2

$$2-2=0$$
  
  $1+dp[0] = 1+0=1$ 



$$M = \{1,2,5\}$$



| M           |   |   |   |   |   | Tre | осо |   |   |   |    |    |
|-------------|---|---|---|---|---|-----|-----|---|---|---|----|----|
| M           | 0 | 1 | 2 | 3 | 4 | 5   | 6   | 7 | 8 | 9 | 10 | 11 |
| <b>{2</b> } | 0 | 1 | 1 | 3 | 4 | 5   | 6   | 7 | 8 | 9 | 10 | 11 |

$$2-2=0$$
  
  $1+dp[0] = 1+0=1$ 



$$M = \{1,2,5\}$$

n = 11



| M           |   |                           |   |       |   | Tre | осо |   |   |   |    |    |
|-------------|---|---------------------------|---|-------|---|-----|-----|---|---|---|----|----|
| M           | 0 | 0 1 2 3 4 5 6 7 8 9 10 11 |   |       |   |     |     |   |   |   |    |    |
| <b>{2</b> } | 0 | 1                         | 1 | {3,2} | 4 | 5   | 6   | 7 | 8 | 9 | 10 | 11 |

Tenho que escolher entre o troco anterior que é 3 ou o novo troco considerando a utilização da moeda de 2

$$2 - 2 = 0$$

$$1 + dp[0] = 1 + 0 = 1$$

$$3 - 2 = 1$$

$$1 + dp[1] = 1 + 1 = 2$$



$$M = \{1,2,5\}$$



| 7.4         |   |                           |   |   |   | Tre | осо |   |   |   |    |    |  |
|-------------|---|---------------------------|---|---|---|-----|-----|---|---|---|----|----|--|
| M           | 0 | 0 1 2 3 4 5 6 7 8 9 10 11 |   |   |   |     |     |   |   |   |    |    |  |
| <b>{2</b> } | 0 | 1                         | 1 | 2 | 4 | 5   | 6   | 7 | 8 | 9 | 10 | 11 |  |

$$2 - 2 = 0$$

$$1 + dp[0] = 1 + 0 = 1$$

$$3 - 2 = 1$$

$$1 + dp[1] = 1 + 1 = 2$$



$$M = \{1,2,5\}$$



| 7.4         |   |                           |   |   |       | Tre | осо |   |   |   |    |    |  |
|-------------|---|---------------------------|---|---|-------|-----|-----|---|---|---|----|----|--|
| M           | 0 | 0 1 2 3 4 5 6 7 8 9 10 11 |   |   |       |     |     |   |   |   |    |    |  |
| <b>{2</b> } | 0 | 1                         | 1 | 2 | {4,2} | 5   | 6   | 7 | 8 | 9 | 10 | 11 |  |

$$4 - 2 = 2$$

$$1 + dp[2] = 1 + 1 = 2$$

$$2 - 2 = 0$$

$$1 + dp[0] = 1 + 0 = 1$$

$$3 - 2 = 1$$

$$1 + dp[1] = 1 + 1 = 2$$



$$M = \{1,2,5\}$$



| M           |   |                           |   |   |   | Tre | осо |   |   |   |    |    |  |
|-------------|---|---------------------------|---|---|---|-----|-----|---|---|---|----|----|--|
| M           | 0 | 0 1 2 3 4 5 6 7 8 9 10 11 |   |   |   |     |     |   |   |   |    |    |  |
| <b>{2</b> } | 0 | 1                         | 1 | 2 | 2 | 5   | 6   | 7 | 8 | 9 | 10 | 11 |  |

$$4 - 2 = 2$$

$$1 + dp[2] = 1 + 1 = 2$$

$$2 - 2 = 0$$

$$1 + dp[0] = 1 + 0 = 1$$

$$3 - 2 = 1$$

$$1 + dp[1] = 1 + 1 = 2$$



$$M = \{1,2,5\}$$

n = 11



| M           |   |                           |   |   |   | Tre | осо |   |   |   |    |    |  |
|-------------|---|---------------------------|---|---|---|-----|-----|---|---|---|----|----|--|
| M           | 0 | 0 1 2 3 4 5 6 7 8 9 10 11 |   |   |   |     |     |   |   |   |    |    |  |
| <b>{2</b> } | 0 | 1                         | 1 | 2 | 2 | 5   | 6   | 7 | 8 | 9 | 10 | 11 |  |

$$4 - 2 = 2$$

$$1 + dp[2] = 1 + 1 = 2$$

$$2 - 2 = 0$$

$$1 + dp[0] = 1 + 0 = 1$$

$$3 - 2 = 1$$

$$1 + dp[1] = 1 + 1 = 2$$

#### Princípio de otimalidade de Bellman (Richard Bellman)

Não importa como a solução dp[2] foi composta, eu vou simplesmente usar, sem saber da onde veio essa solução.



$$M = \{1,2,5\}$$



| 7.4         |   |                           |   |   |   | Tro   | СО |   |   |   |    |    |  |
|-------------|---|---------------------------|---|---|---|-------|----|---|---|---|----|----|--|
| M           | 0 | 0 1 2 3 4 5 6 7 8 9 10 11 |   |   |   |       |    |   |   |   |    |    |  |
| <b>{2</b> } | 0 | 1                         | 1 | 2 | 2 | {5,3} | 6  | 7 | 8 | 9 | 10 | 11 |  |

$$4 - 2 = 2$$

$$1 + dp[2] = 1 + 1 = 2$$

$$2 - 2 = 0$$

$$1 + dn[0] = 1 + 0 = 1$$

$$5 - 2 = 3$$

$$1 + dp[0] = 1 + 0 = 1$$
  $1 + dp[3] = 1 + 2 = 3$ 

$$3 - 2 = 1$$

$$1 + dp[1] = 1 + 1 = 2$$



$$M = \{1,2,5\}$$



| M           |                           |   |   |   |   | Tre | осо |   |   |   |    |    |
|-------------|---------------------------|---|---|---|---|-----|-----|---|---|---|----|----|
| M           | 0 1 2 3 4 5 6 7 8 9 10 11 |   |   |   |   |     |     |   |   |   |    |    |
| <b>{2</b> } | 0                         | 1 | 1 | 2 | 2 | 3   | 6   | 7 | 8 | 9 | 10 | 11 |

$$4 - 2 = 2$$

$$1 + dp[2] = 1 + 1 = 2$$

$$2 - 2 = 0$$

$$1 \perp dn[0] - 1 \perp 0 - 1$$

$$5 - 2 = 3$$

$$1 + dp[0] = 1 + 0 = 1$$
  $1 + dp[3] = 1 + 2 = 3$ 

$$3 - 2 = 1$$

$$1 + dp[1] = 1 + 1 = 2$$



$$M = \{1,2,5\}$$



| M           |   |                           |   |   |   | Tre | осо   |   |   |   |    |    |  |
|-------------|---|---------------------------|---|---|---|-----|-------|---|---|---|----|----|--|
| M           | 0 | 0 1 2 3 4 5 6 7 8 9 10 11 |   |   |   |     |       |   |   |   |    |    |  |
| <b>{2</b> } | 0 | 1                         | 1 | 2 | 2 | 3   | {6,3} | 7 | 8 | 9 | 10 | 11 |  |

$$4 - 2 = 2$$

$$1 + dp[2] = 1 + 1 = 2$$

$$2 - 2 = 0$$

$$5 - 2 = 3$$

$$1 + dp[0] = 1 + 0 = 1$$

$$1 + dp[0] = 1 + 0 = 1$$
  $1 + dp[3] = 1 + 2 = 3$ 

$$3 - 2 = 1$$

$$6 - 2 = 4$$

$$1 + dp[1] = 1 + 1 = 2$$
  $1 + dp[4] = 1 + 2 = 3$ 

$$1 + dp[4] = 1 + 2 = 3$$



$$M = \{1,2,5\}$$



| M           |                           |   |   |   |   | Tre | осо |   |   |   |    |    |
|-------------|---------------------------|---|---|---|---|-----|-----|---|---|---|----|----|
| M           | 0 1 2 3 4 5 6 7 8 9 10 11 |   |   |   |   |     |     |   |   |   |    | 11 |
| <b>{2</b> } | 0                         | 1 | 1 | 2 | 2 | 3   | 3   | 7 | 8 | 9 | 10 | 11 |

$$4 - 2 = 2$$

$$1 + dp[2] = 1 + 1 = 2$$

$$2 - 2 = 0$$

$$5 - 2 = 3$$

$$1 + dp[0] = 1 + 0 = 1$$

$$1 + dp[0] = 1 + 0 = 1$$
  $1 + dp[3] = 1 + 2 = 3$ 

$$3 - 2 = 1$$

$$6 - 2 = 4$$

$$1 + dp[1] = 1 + 1 = 2$$
  $1 + dp[4] = 1 + 2 = 3$ 

$$1 + dp[4] = 1 + 2 = 3$$



$$M = \{1,2,5\}$$



| M           |   |   |   |   |   | Tre | осо |       |   |   |    |    |
|-------------|---|---|---|---|---|-----|-----|-------|---|---|----|----|
| M           | 0 | 1 | 2 | 3 | 4 | 5   | 6   | 7     | 8 | 9 | 10 | 11 |
| <b>{2</b> } | 0 | 1 | 1 | 2 | 2 | 3   | 3   | {7,4} | 8 | 9 | 10 | 11 |

$$4 - 2 = 2$$

$$1 + dp[2] = 1 + 1 = 2$$
  $1 + dp[5] = 1 + 3 = 4$ 

$$7 - 2 = 5$$

$$1 + dp[5] = 1 + 3 = 4$$

$$2 - 2 = 0$$

$$1 + dn[0] = 1 + 0 = 1$$

$$5 - 2 = 3$$

$$1 + dp[0] = 1 + 0 = 1$$
  $1 + dp[3] = 1 + 2 = 3$ 

$$3 - 2 = 1$$

$$+ dv[1] = 1 + 1 = 2$$

$$6 - 2 = 4$$

$$1 + dp[1] = 1 + 1 = 2$$
  $1 + dp[4] = 1 + 2 = 3$ 



$$M = \{1,2,5\}$$



| M           |   |   |   |   |   | Tre | осо |   |   |   |    |    |
|-------------|---|---|---|---|---|-----|-----|---|---|---|----|----|
| M           | 0 | 1 | 2 | 3 | 4 | 5   | 6   | 7 | 8 | 9 | 10 | 11 |
| <b>{2</b> } | 0 | 1 | 1 | 2 | 2 | 3   | 3   | 4 | 8 | 9 | 10 | 11 |

$$4 - 2 = 2$$

$$1 + dp[2] = 1 + 1 = 2$$
  $1 + dp[5] = 1 + 3 = 4$ 

$$7 - 2 = 5$$

$$1 + dp[5] = 1 + 3 = 4$$

$$2 - 2 = 0$$

$$1 + dp[0] = 1 + 0 = 1$$
  $1 + dp[3] = 1 + 2 = 3$ 

$$5 - 2 = 3$$

$$1 + ap[3] = 1 + 2 = 3$$

$$3 - 2 = 1$$

$$+ dv[1] = 1 + 1 = 2$$

$$6 - 2 = 4$$

$$1 + dp[1] = 1 + 1 = 2$$
  $1 + dp[4] = 1 + 2 = 3$ 



$$M = \{1,2,5\}$$



| M           |   |   |   |   |   | Tre | осо |   |       |   |    |    |
|-------------|---|---|---|---|---|-----|-----|---|-------|---|----|----|
| M           | 0 | 1 | 2 | 3 | 4 | 5   | 6   | 7 | 8     | 9 | 10 | 11 |
| <b>{2</b> } | 0 | 1 | 1 | 2 | 2 | 3   | 3   | 4 | {8,4} | 9 | 10 | 11 |

$$4 - 2 = 2$$

$$1 + dp[2] = 1 + 1 = 2$$

$$7 - 2 = 5$$

$$1 + dp[5] = 1 + 3 = 4$$

$$2 - 2 = 0$$

$$1 + dv[0] = 1 + 0 = 1$$

$$5 - 2 = 3$$

$$1 + dp[0] = 1 + 0 = 1$$
  $1 + dp[3] = 1 + 2 = 3$ 

$$8 - 2 = 6$$

$$1 + dp[6] = 1 + 3 = 4$$

$$3 - 2 = 1$$

$$1 + dp[1] = 1 + 1 = 2$$

$$6 - 2 = 4$$

$$1 + dp[1] = 1 + 1 = 2$$
  $1 + dp[4] = 1 + 2 = 3$ 



$$M = \{1,2,5\}$$



| M           |   |   |   |   |   | Tre | осо |   |   |   |    |    |
|-------------|---|---|---|---|---|-----|-----|---|---|---|----|----|
| M           | 0 | 1 | 2 | 3 | 4 | 5   | 6   | 7 | 8 | 9 | 10 | 11 |
| <b>{2</b> } | 0 | 1 | 1 | 2 | 2 | 3   | 3   | 4 | 4 | 9 | 10 | 11 |

$$4 - 2 = 2$$

$$1 + dp[2] = 1 + 1 = 2$$

$$7 - 2 = 5$$

$$1 + dp[5] = 1 + 3 = 4$$

$$2 - 2 = 0$$

$$1 + dv[0] = 1 + 0 = 1$$

$$5 - 2 = 3$$

$$1 + dp[0] = 1 + 0 = 1$$
  $1 + dp[3] = 1 + 2 = 3$ 

$$8 - 2 = 6$$

$$1 + dp[6] = 1 + 3 = 4$$

$$3 - 2 = 1$$

$$1 + dv[1] = 1 + 1 = 2$$

$$6 - 2 = 4$$

$$1 + dp[1] = 1 + 1 = 2$$
  $1 + dp[4] = 1 + 2 = 3$ 



$$M = \{1,2,5\}$$



| M           |   |   |   |   |   | Tre | осо |   |   |       |    |    |
|-------------|---|---|---|---|---|-----|-----|---|---|-------|----|----|
| M           | 0 | 1 | 2 | 3 | 4 | 5   | 6   | 7 | 8 | 9     | 10 | 11 |
| <b>{2</b> } | 0 | 1 | 1 | 2 | 2 | 3   | 3   | 4 | 4 | {9,5} | 10 | 11 |

$$4 - 2 = 2$$

$$1 + dp[2] = 1 + 1 = 2$$

$$7 - 2 = 5$$

$$1 + dp[5] = 1 + 3 = 4$$

$$2 - 2 = 0$$

$$1 + dv[0] = 1 + 0 = 1$$

$$5 - 2 = 3$$

$$1 + dp[0] = 1 + 0 = 1$$
  $1 + dp[3] = 1 + 2 = 3$ 

$$8 - 2 = 6$$

$$1 + dp[6] = 1 + 3 = 4$$

$$3 - 2 = 1$$

$$1 + dn[1] = 1 + 1 = 2$$

$$6 - 2 = 4$$

$$1 + dp[4] = 1 + 2 = 3$$

$$9 - 2 = 7$$

$$1 + dp[1] = 1 + 1 = 2$$
  $1 + dp[4] = 1 + 2 = 3$   $1 + dp[7] = 1 + 4 = 5$ 



$$M = \{1,2,5\}$$



| M           |   |   |   |   |   | Tre | осо |   |   |   |    |    |
|-------------|---|---|---|---|---|-----|-----|---|---|---|----|----|
| M           | 0 | 1 | 2 | 3 | 4 | 5   | 6   | 7 | 8 | 9 | 10 | 11 |
| <b>{2</b> } | 0 | 1 | 1 | 2 | 2 | 3   | 3   | 4 | 4 | 5 | 10 | 11 |

$$4 - 2 = 2$$

$$1 + dp[2] = 1 + 1 = 2$$

$$7 - 2 = 5$$

$$1 + dp[5] = 1 + 3 = 4$$

$$2 - 2 = 0$$

$$1 + dn[0] = 1 + 0 = 1$$

$$5 - 2 = 3$$

$$1 + dp[0] = 1 + 0 = 1$$
  $1 + dp[3] = 1 + 2 = 3$ 

$$8 - 2 = 6$$

$$1 + dp[6] = 1 + 3 = 4$$

$$3 - 2 = 1$$

$$1 + dn[1] = 1 + 1 = 2$$

$$6 - 2 = 4$$

$$1 + dp[4] = 1 + 2 = 3$$

$$9 - 2 = 7$$

$$1 + dp[1] = 1 + 1 = 2$$
  $1 + dp[4] = 1 + 2 = 3$   $1 + dp[7] = 1 + 4 = 5$ 



$$M = \{1,2,5\}$$



| M           |   |   |   |   |   | Tre | осо |   |   |   |    |    |
|-------------|---|---|---|---|---|-----|-----|---|---|---|----|----|
| M           | 0 | 1 | 2 | 3 | 4 | 5   | 6   | 7 | 8 | 9 | 10 | 11 |
| <b>{2</b> } | 0 | 1 | 1 | 2 | 2 | 3   | 3   | 4 | 4 | 5 | 5  | 11 |

$$4 - 2 = 2$$

$$1 + dp[2] = 1 + 1 = 2$$

$$7 - 2 = 5$$

$$1 + dp[5] = 1 + 3 = 4$$

$$10 - 2 = 8$$

$$1 + dp[8] = 1 + 4 = 5$$

$$2 - 2 = 0$$

$$1 + dp[0] = 1 + 0 = 1$$

$$5 - 2 = 3$$

$$1 + dp[0] = 1 + 0 = 1$$
  $1 + dp[3] = 1 + 2 = 3$ 

$$8 - 2 = 6$$

$$1 + dp[6] = 1 + 3 = 4$$

$$3 - 2 = 1$$

$$1 + dp[1] = 1 + 1 = 2$$

$$6 - 2 = 4$$

$$1 + dp[1] = 1 + 1 = 2$$
  $1 + dp[4] = 1 + 2 = 3$   $1 + dp[7] = 1 + 4 = 5$ 

$$9 - 2 = 7$$

$$1 + dp[7] = 1 + 4 = 5$$



$$M = \{1,2,5\}$$



| M           |   |   |   |   |   | Tre | осо |   |   |   |    |    |
|-------------|---|---|---|---|---|-----|-----|---|---|---|----|----|
| M           | 0 | 1 | 2 | 3 | 4 | 5   | 6   | 7 | 8 | 9 | 10 | 11 |
| <b>{2</b> } | 0 | 1 | 1 | 2 | 2 | 3   | 3   | 4 | 4 | 5 | 5  | 6  |

$$4 - 2 = 2$$

$$1 + dp[2] = 1 + 1 = 2$$

$$7 - 2 = 5$$

$$1 + dp[5] = 1 + 3 = 4$$

$$10 - 2 = 8$$

$$1 + dp[8] = 1 + 4 = 5$$

$$2 - 2 = 0$$

$$1 + dv[0] = 1 + 0 = 0$$

$$5 - 2 = 3$$

$$1 + dp[0] = 1 + 0 = 1$$
  $1 + dp[3] = 1 + 2 = 3$ 

$$8 - 2 = 6$$

$$1 + dp[6] = 1 + 3 = 4$$
  $1 + dp[9] = 1 + 5 = 6$ 

$$11 - 2 = 9$$

$$1 + dp[9] = 1 + 5 = 6$$

$$3 - 2 = 1$$

$$1 + dp[1] = 1 + 1 = 2$$

$$6 - 2 = 4$$

$$1 + dp[1] = 1 + 1 = 2$$
  $1 + dp[4] = 1 + 2 = 3$   $1 + dp[7] = 1 + 4 = 5$ 

$$9 - 2 = 7$$

$$1 + dp[7] = 1 + 4 = 5$$



$$M = \{1,2,5\}$$



| M           |   |   |   |   |   | Tre | осо |   |   |   |    |    |
|-------------|---|---|---|---|---|-----|-----|---|---|---|----|----|
| M           | 0 | 1 | 2 | 3 | 4 | 5   | 6   | 7 | 8 | 9 | 10 | 11 |
| <b>{5</b> } | 0 | 1 | 1 | 2 | 2 | 3   | 3   | 4 | 4 | 5 | 5  | 6  |



$$M = \{1,2,5\}$$

n = 11



| 7.4         |   |   |   |   |   | Tre | осо |   |   |   |    |    |
|-------------|---|---|---|---|---|-----|-----|---|---|---|----|----|
| M           | 0 | 1 | 2 | 3 | 4 | 5   | 6   | 7 | 8 | 9 | 10 | 11 |
| <b>{5</b> } | 0 | 1 | 1 | 2 | 2 | 3   | 3   | 4 | 4 | 5 | 5  | 6  |



$$M = \{1,2,5\}$$

n = 11



| M           |   |   |   |   |   | Tre | осо |   |   |   |    |    |
|-------------|---|---|---|---|---|-----|-----|---|---|---|----|----|
| M           | 0 | 1 | 2 | 3 | 4 | 5   | 6   | 7 | 8 | 9 | 10 | 11 |
| <b>{5</b> } | 0 | 1 | 1 | 2 | 2 | 3   | 3   | 4 | 4 | 5 | 5  | 6  |



$$M = \{1,2,5\}$$

n = 11



| M           |   |                           |   |   |   | Tre | осо |   |   |   |   |   |  |
|-------------|---|---------------------------|---|---|---|-----|-----|---|---|---|---|---|--|
| M           | 0 | 0 1 2 3 4 5 6 7 8 9 10 11 |   |   |   |     |     |   |   |   |   |   |  |
| <b>{5</b> } | 0 | 1                         | 1 | 2 | 2 | 3   | 3   | 4 | 4 | 5 | 5 | 6 |  |



$$M = \{1,2,5\}$$

n = 11



| M           |   |                           |   |   |   | Tre | осо |   |   |   |   |   |
|-------------|---|---------------------------|---|---|---|-----|-----|---|---|---|---|---|
| M           | 0 | 0 1 2 3 4 5 6 7 8 9 10 11 |   |   |   |     |     |   |   |   |   |   |
| <b>{5</b> } | 0 | 1                         | 1 | 2 | 2 | 3   | 3   | 4 | 4 | 5 | 5 | 6 |



$$M = \{1,2,5\}$$

n = 11



| M           |   |                           |   |   |   | Tre | осо |   |   |   |   |   |
|-------------|---|---------------------------|---|---|---|-----|-----|---|---|---|---|---|
| M           | 0 | 0 1 2 3 4 5 6 7 8 9 10 11 |   |   |   |     |     |   |   |   |   |   |
| <b>{5</b> } | 0 | 1                         | 1 | 2 | 2 | 3   | 3   | 4 | 4 | 5 | 5 | 6 |



$$M = \{1,2,5\}$$

n = 11



| M           |   |                           |   |   |   | Tro   | осо |   |   |   |   |   |
|-------------|---|---------------------------|---|---|---|-------|-----|---|---|---|---|---|
| IVI         | 0 | 0 1 2 3 4 5 6 7 8 9 10 11 |   |   |   |       |     |   |   |   |   |   |
| <b>{5</b> } | 0 | 1                         | 1 | 2 | 2 | {3,1} | 3   | 4 | 4 | 5 | 5 | 6 |

Tenho que escolher entre o troco anterior que é 3 ou o novo troco considerando a utilização da moeda de 5

$$5 - 5 = 0$$

$$1 + dp[0] = 1 + 0 = 1$$



$$M = \{1,2,5\}$$



| 7. //       |   |                           |   |   |   | Tro | осо |   |   |   |   |   |
|-------------|---|---------------------------|---|---|---|-----|-----|---|---|---|---|---|
| M           | 0 | 0 1 2 3 4 5 6 7 8 9 10 11 |   |   |   |     |     |   |   |   |   |   |
| <b>{5</b> } | 0 | 1                         | 1 | 2 | 2 | 1   | 3   | 4 | 4 | 5 | 5 | 6 |

$$5-5=0$$
  
  $1+dp[0] = 1+0=1$ 



$$M = \{1,2,5\}$$

n = 11



| M           |   |                           |   |   |   | Tre | осо   |   |   |   |   |   |  |
|-------------|---|---------------------------|---|---|---|-----|-------|---|---|---|---|---|--|
| M           | 0 | 0 1 2 3 4 5 6 7 8 9 10 11 |   |   |   |     |       |   |   |   |   |   |  |
| <b>{5</b> } | 0 | 1                         | 1 | 2 | 2 | 1   | {3,2} | 4 | 4 | 5 | 5 | 6 |  |

$$5 - 5 = 0$$

$$1 + dp[0] = 1 + 0 = 1$$

$$6 - 5 = 1$$

$$1 + dp[1] = 1 + 1 = 2$$

Tenho que escolher entre o troco anterior que é 3 ou o novo troco considerando a utilização da moeda de 5



$$M = \{1,2,5\}$$



| 7.4         |   |                           |   |   |   | Tre | осо |   |   |   |   |   |  |
|-------------|---|---------------------------|---|---|---|-----|-----|---|---|---|---|---|--|
| M           | 0 | 0 1 2 3 4 5 6 7 8 9 10 11 |   |   |   |     |     |   |   |   |   |   |  |
| <b>{5</b> } | 0 | 1                         | 1 | 2 | 2 | 1   | 2   | 4 | 4 | 5 | 5 | 6 |  |

$$5 - 5 = 0$$

$$1 + dp[0] = 1 + 0 = 1$$

$$6 - 5 = 1$$

$$1 + dp[1] = 1 + 1 = 2$$



$$M = \{1,2,5\}$$



| M           |   |                           |   |   |   | Tre | осо |       |   |   |   |   |
|-------------|---|---------------------------|---|---|---|-----|-----|-------|---|---|---|---|
| IVI         | 0 | 0 1 2 3 4 5 6 7 8 9 10 11 |   |   |   |     |     |       |   |   |   |   |
| <b>{5</b> } | 0 | 1                         | 1 | 2 | 2 | 1   | 2   | {4,2} | 4 | 5 | 5 | 6 |

$$7-5=2$$
  
  $1+dp[2]=1+1=2$ 

$$5-5=0$$
  
  $1+dp[0] = 1+0=1$ 

$$6-5=1$$
  
  $1+dp[1]=1+1=2$ 



$$M = \{1,2,5\}$$



| M           |   |                           |   |   |   | Tre | осо |   |   |   |   |   |
|-------------|---|---------------------------|---|---|---|-----|-----|---|---|---|---|---|
| IVI         | 0 | 0 1 2 3 4 5 6 7 8 9 10 11 |   |   |   |     |     |   |   |   |   |   |
| <b>{5</b> } | 0 | 1                         | 1 | 2 | 2 | 1   | 2   | 2 | 4 | 5 | 5 | 6 |

$$7-5=2$$
  
  $1+dp[2]=1+1=2$ 

$$5-5=0$$
  
  $1+dp[0] = 1+0=1$ 

$$6-5=1$$
  
  $1+dp[1]=1+1=2$ 



$$M = \{1,2,5\}$$



| M           |   |                           |   |   |   | Tre | осо |   |       |   |   |   |
|-------------|---|---------------------------|---|---|---|-----|-----|---|-------|---|---|---|
| M           | 0 | 0 1 2 3 4 5 6 7 8 9 10 11 |   |   |   |     |     |   |       |   |   |   |
| <b>{5</b> } | 0 | 1                         | 1 | 2 | 2 | 1   | 2   | 2 | {4,3} | 5 | 5 | 6 |

$$7 - 5 = 2$$

$$1 + dp[2] = 1 + 1 = 2$$

$$5 - 5 = 0$$

$$1 + dp[0] = 1 + 0 = 1$$

$$8 - 5 = 3$$

$$1 + dp[3] = 1 + 2 = 3$$

$$6 - 5 = 1$$

$$1 + dp[1] = 1 + 1 = 2$$



$$M = \{1,2,5\}$$



| M           |   |                           |   |   |   | Tre | осо |   |   |   |   |   |
|-------------|---|---------------------------|---|---|---|-----|-----|---|---|---|---|---|
| M           | 0 | 0 1 2 3 4 5 6 7 8 9 10 11 |   |   |   |     |     |   |   |   |   |   |
| <b>{5</b> } | 0 | 1                         | 1 | 2 | 2 | 1   | 2   | 2 | 3 | 5 | 5 | 6 |

$$7 - 5 = 2$$

$$1 + dp[2] = 1 + 1 = 2$$

$$5 - 5 = 0$$

$$1 + dp[0] = 1 + 0 = 1$$

$$8 - 5 = 3$$

$$1 + dp[3] = 1 + 2 = 3$$

$$6 - 5 = 1$$

$$1 + dp[1] = 1 + 1 = 2$$



$$M = \{1,2,5\}$$



| M           |   |                           |   |   |   | Tre | осо |   |   |       |   |   |
|-------------|---|---------------------------|---|---|---|-----|-----|---|---|-------|---|---|
| M           | 0 | 0 1 2 3 4 5 6 7 8 9 10 11 |   |   |   |     |     |   |   |       |   |   |
| <b>{5</b> } | 0 | 1                         | 1 | 2 | 2 | 1   | 2   | 2 | 3 | {5,3} | 5 | 6 |

$$7 - 5 = 2$$

$$1 + dp[2] = 1 + 1 = 2$$

$$5 - 5 = 0$$

$$1 + dp[0] = 1 + 0 = 1$$

$$8 - 5 = 3$$

$$1 + dp[3] = 1 + 2 = 3$$

$$6 - 5 = 1$$

$$1 + dp[1] = 1 + 1 = 2$$

$$9 - 5 = 4$$

$$1 + dp[1] = 1 + 1 = 2$$
  $1 + dp[4] = 1 + 2 = 3$ 



$$M = \{1,2,5\}$$



| М           |   | Troco |   |   |   |   |   |   |   |   |    |    |  |
|-------------|---|-------|---|---|---|---|---|---|---|---|----|----|--|
|             | 0 | 1     | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |  |
| <b>{5</b> } | 0 | 1     | 1 | 2 | 2 | 1 | 2 | 2 | 3 | 3 | 5  | 6  |  |

$$7 - 5 = 2$$

$$1 + dp[2] = 1 + 1 = 2$$

$$5 - 5 = 0$$

$$1 + dp[0] = 1 + 0 = 1$$

$$8 - 5 = 3$$

$$1 + dp[3] = 1 + 2 = 3$$

$$6 - 5 = 1$$

$$1 + dp[1] = 1 + 1 = 2$$

$$9 - 5 = 4$$

$$1 + dp[1] = 1 + 1 = 2$$
  $1 + dp[4] = 1 + 2 = 3$ 



$$M = \{1,2,5\}$$



| М           |   | Troco |   |   |   |   |   |   |   |   |    |    |  |
|-------------|---|-------|---|---|---|---|---|---|---|---|----|----|--|
|             | 0 | 1     | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |  |
| <b>{5</b> } | 0 | 1     | 1 | 2 | 2 | 1 | 2 | 2 | 3 | 3 | 2  | 6  |  |

$$7 - 5 = 2$$

$$1 + dp[2] = 1 + 1 = 2$$

$$10 - 5 = 5$$

$$1 + dp[5] = 1 + 1 = 2$$

$$5 - 5 = 0$$

$$1 + dp[0] = 1 + 0 = 1$$

$$8 - 5 = 3$$

$$1 + dp[3] = 1 + 2 = 3$$

$$6 - 5 = 1$$

$$1 + dp[1] = 1 + 1 = 2$$

$$9 - 5 = 4$$

$$1 + dp[1] = 1 + 1 = 2$$
  $1 + dp[4] = 1 + 2 = 3$ 



$$M = \{1,2,5\}$$



| М           |   | Troco |   |   |   |   |   |   |   |   |    |    |  |
|-------------|---|-------|---|---|---|---|---|---|---|---|----|----|--|
|             | 0 | 1     | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |  |
| <b>{5</b> } | 0 | 1     | 1 | 2 | 2 | 1 | 2 | 2 | 3 | 3 | 2  | 3  |  |

$$7 - 5 = 2$$

$$1 + dp[2] = 1 + 1 = 2$$

$$10 - 5 = 5$$

$$1 + dp[5] = 1 + 1 = 2$$

$$5 - 5 = 0$$

$$1 + dp[0] = 1 + 0 = 1$$

$$8 - 5 = 3$$

$$1 + dp[3] = 1 + 2 = 3$$

$$11 - 5 = 6$$

$$1 + dp[6] = 1 + 2 = 3$$

$$6 - 5 = 1$$

$$1 + dp[1] = 1 + 1 = 2$$
  $1 + dp[4] = 1 + 2 = 3$ 

$$9 - 5 = 4$$

$$1 + dp[4] = 1 + 2 = 3$$



$$M = \{1,2,5\}$$



| М           |   | Troco |   |   |   |   |   |   |   |   |    |    |  |  |
|-------------|---|-------|---|---|---|---|---|---|---|---|----|----|--|--|
|             | 0 | 1     | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |  |  |
| <b>{5</b> } | 0 | 1     | 1 | 2 | 2 | 1 | 2 | 2 | 3 | 3 | 2  | 3  |  |  |





Qual a complexidade?



Pensar em uma solução top-down!



```
dp = [0] * (amount + 1)
def coinChange(amount):
    if amount == 0:
        return(0);
    if dp[amount] != 0:
        return(dp[amount])
   best = float('inf')
   for i in coins:
        if i <= amount:</pre>
            best = min(best, 1 + coinChange(amount - i))
    dp[amount] = best
    return(dp[amount])
```



```
dp = [0] * (amount + 1)
def coinChange(amount):
    if amount == 0:
        return(0);
    if dp[amount] != 0:
                                     Cadê a iteração sobre o troco?
        return(dp[amount])
    best = float('inf')
   for i in coins:
        if i <= amount:</pre>
             best = min(best, 1 + coinChange(amount - i))
    dp[amount] = best
    return(dp[amount])
```



```
dp = [0] * (amount + 1)
def coinChange(amount):
                                   Essa iteração é realizada pela própria
                                        recursão (amount - i)
    if amount == 0:
        return(0);
    if dp[amount] != 0:
                                      Cadê a iteração sobre o troco?
        return(dp[amount])
    best = float('inf')
   for i in coins:
         if i <= amount:</pre>
             best = min(best, 1 + coinChange(amount - i))
    dp[amount] = best
    return(dp[amount])
```



• Programação Dinâmica – Parte 3

# Obrigado



## <u>Dúvidas</u>

Email: alanvalejo@ufscar.br

Acessar o fórum no Moodle