MA1100 AY24/25 Sem 2 Final

Solution by Malcolm Tan Jun Xi Audited by Ryan Loh Wei Xuan

Question 1: In each part, determine whether the statement is true or false. Write **True** or **False** as your answer in the box next to the statement. No justification is needed.

- a) Let P,Q and R be statements. Then $(P\Longrightarrow Q)\Longrightarrow R$ and $P\Longrightarrow (Q\Longrightarrow R)$ are logically equivalent
- b) Let P(x) and Q(x) be predicates with free variable x and universe \mathcal{U} . Then $(\forall x \in \mathcal{U})[P(x) \land Q(x)]$ and $\{(\forall x \in \mathcal{U})P(x)\} \land \{(\forall x \in \mathcal{U})Q(x)\}$ are logically equivalent
- c) For any sets A, B and C, if $A \subseteq B \cup C$, then $A \subseteq B$ or $A \subseteq C$.
- d) If $f: X \to Y$ is a function and Z is a proper subset of Y such that for all $x \in X$, $f(x) \in Z$, then Z is the range of f.
- e) For any sets X,Y,Z and any functions $f:X\to Y$ and $g:Y\to Z$, if $g\circ f$ is surjective, then f is surjective
- f) If $f: X \to Y$ is a function, then for all $A \subseteq X$, we have $f^{-1}[f[A]] = A$
- g) If $a, b \in \mathbb{Z}$ with a not zero, then gcd(a, b) = gcd(a, a + b)
- h) If X and Y are uncountable sets, then there exists a bijection $f: X \to Y$
- i) There does not exist a surjection $g: \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$
- j) There are exactly 720 surjective functions with domain \mathbb{N}_6 and codomain \mathbb{N}_6

Solution:

(a) By truth table, we have

P	Q	R	$P \Longrightarrow Q$	$Q \Longrightarrow R$	$(P \Longrightarrow Q) \Longrightarrow R$	$P \Longrightarrow (Q \Longrightarrow R)$
T	T	T	T	T	T	Т
T	T	F	T	F	F	F
T	F	T	F	T	T	T
T	F	F	F	T	T	T
F	T	T	T	T	T	T
F	T	F	T	T	F	T
F	F	T	Т	T	T	T
F	F	F	T	T	F	T

Therefore the statement is **False**.

(b) For the forward direction, suppose for all $x \in \mathcal{U}$, we have P(x) and Q(x) to be true. As such $\{(\forall x \in \mathcal{U})P(x)\} \land \{(\forall x \in \mathcal{U})Q(x)\}$ is also true.

For the reverse direction, suppose for all $x \in \mathcal{U}$, P(x) is true and for all $x \in \mathcal{U}$, Q(x) is true. Therefore $(\forall x \in \mathcal{U})[P(x) \land Q(x)]$ is also true. Hence the statement is **True**

(c) Consider $A = \{1,2\}$, $B = \{1\}$ and $C = \{2\}$. In this case $B \cup C = \{1,2\}$ which implies that $A \subseteq B \cup C$ but neither $A \subseteq B$ or $A \subseteq C$. Thus the statement is **False**.

(d) Since $Z \subseteq Y$ and for all $x \in X$, we have $f(x) \in Z$, then by definition $R_f = \{f(x) \mid x \in X\}$ which implies that $Z = R_f$. Therefore, the statement is **True**.

(e) Consider $X = \{1\}$, $Y = \{a, b\}$ and $Z = \{\gamma\}$, then we can define the followings

•
$$f(1) = a$$

•
$$g(a) = \gamma$$
 and $g(b) = \gamma$

This implies that $g \circ f(1) = \gamma$ is surjective, but f is not surjective onto Y. Therefore the statement is **False**.

(f) Consider $A = \{1\}$ and $f(x) = x^2$, then we have

•
$$f(1) = 1$$

This shows that $f[A] = \{1\}$. However, $f^{-1}[f[A]] = \{1, -1\} \neq A$. Therefore the statement is **False**. \square

(g) Suppose we have gcd(a, a+b), by Bezout Lemma, we have $x, y \in \mathbb{Z}$ such that

$$gcd(a, a + b) = ax + (a + b)y = ax + ay + by = a(x + y) + by$$

Since x + y is the sum of integers, by Bezout Lemma, we have

$$a(x+y) + by = \gcd(a,b)$$

Therefore

$$gcd(a, a+b) = gcd(a, b)$$

The statement is **True**.

- (h) Consider $X = \mathbb{R}$ and $Y = \mathcal{P}(\mathbb{R})$. Both are uncountable but they do not have the same cardinality. hence there do not exist a bijection $f : \mathbb{R} \to \mathcal{P}(\mathbb{R})$. The statement is **False**
- (i) Consider Cantor's Tuple Bijection. Bijection exists Hence there exist a surjection. The statement is **False**.
- (j) Since $|\mathbb{N}_6| = 6$, then the number of surjective functions is give by

$$6! = 720$$

Therefore the statement is **True**.

Question 2: Let $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ be defined by, for all $(m, n) \in \mathbb{Z} \times \mathbb{Z}$,

$$f(m,n) = (2m-5n, m-2n)$$

- i) Prove that f is injective
- ii) Determine whether f is invertible and find its inverse function if it exists. Justify your answers.

Solution:

(i) Let $(m_1, n_1), (m_2, n_2) \in \mathbb{Z} \times \mathbb{Z}$ such that we have

$$f(m_1, n_1) = f(m_2, n_2)$$

$$(2m_1 - 5n_1, m_1 - 2n_1) = (2m_2 - 5n_2, m_2 - 2n_2)$$

By equality of ordered pairs, we have

$$2m_1 - 5n_1 = 2m_2 - 5n_2$$
 and $m_1 - 2n_1 = m_2 - 2n_2$

From the first equation, we have

$$2(m_1 - m_2) = 5(n_1 - n_2)$$

From the second equation, we have

$$m_1 - m_2 = 2(n_1 - n_2)$$

Substituting the second equation to the first equation yields

$$4(n_1 - n_2) = 5(n_1 - n_2)$$
$$n_1 - n_2 = 0$$
$$n_1 = n_2$$

Similarly from the second equation, we have

$$m_1 - m_2 = 0 \implies m_1 = m_2$$

This shows that $(m_1, n_1) = (m_2, n_2)$ as such f is injective.

(ii) For f to be invertible, f has to be a bijection. Since we have proven that f is injective, we will determine whether f is surjective. f is surjective if for all $(a,b) \in Z \times \mathbb{Z}$, there exist $(m,n) \in \mathbb{Z} \times \mathbb{Z}$ such that

$$f(m,n) = (a,b)$$

We can choose (m,n) = (5b-2a, 2b-a) such that we have

$$f(m,n) = (2(5b-2a) - 5(2b-a), 5b - 2a - 2(2b-a)) = (10b-4a - 10b + 5a, 5b - 2a - 4b + 2a) = (a,b)$$

Therefore f is surjective. Since f is both injective and surjective, f is bijective as such f is invertible with the inverse function to be

$$f^{-1}(m,n) = (5n-2m,2n-m)$$

Question 3: Prove that if *X* and *Y* are nonempty finite sets and |X| < |Y|, then there does not exist a surjection $f: X \to Y$

Solution: Define |X| = m and |Y| = n where $m, n \in \mathbb{Z}$ and m < n. Since |X| = m implies that X has only m elements, then set $R_f = \{f(x) \mid x \in X\}$ can have at most m elements. Therefore $|f[X]| \le m$. Suppose for the sake of contradiction that there exist a surjection $f: X \to Y$, then $R_f = Y$ which implies $|R_f| = n$. Therefore m = n which is a contradiction.

Question 4: Let *R* be an equivalence relation on the set $\mathbb{N}_7 = \{1, 2, 3, 4, 5, 6, 7\}$ such that

- R has exactly 4 distinct equivalence classes;
- |[1]| = |[2]| = 1
- $(3,4) \in \mathbb{R}$ and $(3,5) \notin R$
- $[4] \neq [6]$ and $[6] \cap [7] \neq \emptyset$

- i) List all the elements in each equivalence class of R
- ii) List all the elements of R

Solution:

- (i) We have
 - $[1] = \{1\}$
 - $[2] = \{2\}$
 - $[3] = [4] = \{3,4\}$
 - $[5] = [6] = [7] = \{5, 6, 7\}$

(ii) We have

$$R = \{(1,1), (2,2), (3,3), (3,4), (4,3), (4,4), (5,5), (5,6), (5,7), (6,5), (6,6), (6,7), (7,5), (7,6), (7,7)\}$$

Question 5: Let \sim be the relation on \mathbb{R}^2 defined by, for all $(a,b),(c,d)\in\mathbb{R}^2$,

$$(a,b) \sim (c,d) \iff |a|+|b|=|c|+|d|$$

- i) Prove that \sim is an equivalence relation.
- ii) Give a geometrical description of the equivalence class [(1,0)] as a subset of \mathbb{R}^2
- iii) Find a bijection $g: \mathbb{R}^2/\sim \to [0, \infty)$.

Solution:

(i) Consider

$$(a,b) \sim (a,b) \iff |a|+|b|=|a|+|b|$$

which is trivially true. Hence \sim is reflexive

Next Consider

$$(a,b) \sim (c,d) \iff |a|+|b|=|c|+|d| \iff |c|+|d|=|a|+|b| \iff (c,d) \sim (a,b)$$

Therefore \sim is symmetric

Lastly, we can consider $(a,b) \sim (c,d)$ and $(c,d) \sim (e,f)$ then we have

$$(a,b) \sim (c,d) \iff |a|+|b|=|c|+|d|$$
 and $(c,d) \sim (e,f) \iff |c|+|d|=|e|+|f|$

Note that

$$|a| + |b| = |e| + |f| \iff (a,b) \sim (e,f)$$

Therefore \sim is transitive

In conclusion, since \sim is reflexive, symmetric and transitive, \sim is an equivalence relation \Box

(ii) We have

$$[(1,0)] = \{(x,y) \in \mathbb{R}^2 \mid |x| + |y| = 1\}$$

This is the set of all points in \mathbb{R}^2 whose Manhattan norm(magnitude) is 1. This describes a diamond centered at the origin with vertices at (1,0),(0,1),(-1,0),(0,-1) which are the boundaries of the unit ball.

(iii) We have

$$[(a,b)] = \{(x,y) \in \mathbb{R}^2 \mid |x| + |y| = |a| + |b|\}$$

As such we can define

$$g([(a,b)]) = |a| + |b|$$

If $(a,b) \sim (c,d)$, then |a|+|b|=|c|+|d| which implies that g([a,b])=g([c,d]). As such the function is well defined.

Suppose g([a,b]) = g([c,d]), then |a| + |b| = |c| + |d| which implies $(a,b) \sim (c,d)$ thus [a,b] = [c,d]. Hence g is injective

For any $r \in [0, \infty)$, we can choose [(a,b)] = [(r,0)] such that g([(r,0)]) = |r| + |0| = r. As such g is surjective.

In conclusion,

$$g([(a,b)]) = |a| + |b|$$

is the bijection $g:\mathbb{R}^2/\sim \to [0,\infty)$

Question 6: Let $c, m \in \mathbb{Z}^+$, and let $d = \gcd(c, m)$, $r = \frac{c}{d}$ and $s = \frac{m}{d}$

- i) Prove that r and s are relatively prime
- ii) Prove that if $a, b \in \mathbb{Z}$ and $ca \equiv cb \mod m$, then $a \equiv b \mod s$

Solution:

(i) By Bezout Lemma, we can consider

$$gcd(r,s) = rx + sy$$

where $x, y \in \mathbb{Z}$. Then we have

$$\gcd(r,s) = rx + sy = \frac{cx}{d} + \frac{my}{d} = \frac{cx + my}{d} = \frac{d}{d} = 1$$

Hence *r* and *s* are relatively prime.

(ii) Since we have $ca \equiv cb \mod m$, then $m \mid ca - cb$. As such there exist $k \in \mathbb{Z}$ such that

$$ca - cb = mk$$

 $rd(a - b) = sdk$
 $r(a - b) = sk \implies s \mid r(a - b)$

Since s and r are relatively prime, then $s \mid (a-b)$ which implies that $a \equiv b \mod s$

Question 7: Let $\mathbb{N} = \{1, 2, 3, ...\}$ denote the set of all positive integers and let $\mathcal{P}(\mathbb{N})$ be the power set of \mathbb{N} . Let

$$X = \{S \in \mathcal{P}(\mathbb{N}) \mid S \text{ is finite}\}$$

that is, X is the set of all finite subsets of \mathbb{N} . Prove that X is denumerable.

Solution: Since S is finite, then we can let |S| = n where $n \in \mathbb{N}$. X_n will then be the set of all subsets of \mathbb{N} of size exactly n. Since it is known that \mathbb{N} is countable and $X_n \subseteq \mathbb{N}$, then X_n is also countable. Now define

$$X = \bigcup_{n=0}^{\infty} X_n$$

As such *X* is a union of countable sets with implies that *X* is countable. Since $n \in \mathbb{N}$ is infinite, then *X* is countable infinite which implies that *X* is denumerable.

Question 8: Let \mathbb{R}^+ denote the set of all positive real numbers.

i) For each $n \in \mathbb{Z}^+$, let

$$A_n = \left(\frac{1}{n}, \infty\right) = \left\{x \in \mathbb{R} \mid x > \frac{1}{n}\right\}$$

Prove that

$$\bigcup_{n=1}^{\infty} A_n = \mathbb{R}^+$$

ii) Prove that if *B* is a subset of \mathbb{R}^+ and *B* is uncountable, then there exists $t \in \mathbb{R}^+$ such that the set

$$\{x \in B \mid x > t\}$$

is uncountable.

Solution:

(i) For the forward inclusion, we can let $x \in \bigcup_{n=1}^{\infty} A_n$, then there exist $n \in \mathbb{Z}^+$ such that $x \in A_n$. Hence

$$x > \frac{1}{n} > 0 \implies x \in \mathbb{R}^+$$

Therefore

$$\bigcup_{n=1}^{\infty} A_n \subseteq \mathbb{R}^+$$

For the reverse inclusion, we can let $x \in \mathbb{R}^+$, then x > 0. Note that since $\lim_{n \to \infty} \frac{1}{n} = 0$, there exist $n \in \mathbb{Z}^+$ such that

$$x > \frac{1}{n} > 0 \implies x \in A_n$$
 for some $n \in \mathbb{Z}^+$

Therefore

$$x \in \bigcup_{n=1}^{\infty} A_n \implies \mathbb{R}^+ \subseteq \bigcup_{n=1}^{\infty} A_n$$

In conclusion, we have proven

$$\bigcup_{n=1}^{\infty} A_n = \mathbb{R}^+$$

untable and

(ii) Suppose for the sake of contradiction that for all $t \in \mathbb{R}^+$, the set $\{x \in B \mid x > t\}$ is countable and since $B \subseteq \mathbb{R}^+$, then

$$B = B \cap \mathbb{R}^+ = B \cap \left(\bigcup_{n=1}^{\infty} A_n\right) = \bigcup_{n=1}^{\infty} (B \cap A_n)$$

Let $t = \frac{1}{n}$ and $n \in \mathbb{Z}^+$ such that

$$B \cap A_n = \left\{ x \in B \mid x > \frac{1}{n} \right\}$$

From our assumption, $B \cap A_n$ is countable. Note that the union of all countable sets is countable, Hence $\bigcup_{n=1}^{\infty} (B \cap A_n)$ is countable. However, the equality suggest that B is also countable which is a contradiction. Therefore there exists $t \in \mathbb{R}^+$ such that the set is uncountable.