ST2334

AY22/23 Sem 1

github.com/jasonqiu212

01. Basic Concepts of Probability

Event Operations

- Mututally Exclusive $-A \cap B = \emptyset$
- Contained $A \subset B$
- Equivalence $-A \subset B$ and $A \supset B \to A = B$
- Distributive $-A \cap (B \cup C) = (A \cup B) \cup (A \cup C)$
- **DeMorgan's** $(A \cup B)' = A' \cap B'$
- $\bullet \ A = (A \cap B) \cup (A \cap B')$

Counting Methods

- Multiplication Principle and each has n_1, n_2, \cdots, n_r outcomes. After r experiments, there are $n_1 n_2 \cdots n_r$ outcomes.
- Addition Principle Given experiment can be done in k different ways and each has n_1, n_2, \cdots, n_r ways. There are $n_1 + n_2 + \cdots + n_k$ total ways.
- Permutation $_nP_r = \frac{n!}{(n-r)!}$
- Combination $-\binom{n}{r} = \frac{n!}{(n-r)!r!}$

Probability

Axioms of Probability

- 1. For any event A, $0 \le P(A) \le 1$
- 2. P(S) = 1
- 3. If $A \cap B = \emptyset$, then $P(A \cup B) = P(A) + P(B)$
- P(A') = 1 P(A)
- $\bullet \ P(A) = P(A \cap B) + P(A \cap B')$
- $\bullet \ P(A \cup B) = P(A) + P(B) P(A \cap B)$
- If $A \subset B$, then P(A) < P(B)

Finite Sample Space with Equally Likely Outcomes

Given sample space $S=\{a_1,\cdots,a_k\}$ and all outcomes are **equally likely**, i.e. $P(a_1)=\cdots=P(a_k)$:

For any event $A \subset S, P(A) = \frac{\text{No. of sample points in A}}{\text{No. of sample points in S}}$

Conditional Probability

$$P(B|A) = \frac{P(B \cap A)}{P(A)} = \frac{P(A|B)P(B)}{P(A)}$$

Independence

- $A \perp B \leftrightarrow P(A \cap B) = P(A)P(B)$
- $A \perp B \leftrightarrow P(A|B) = P(A)$

Law of Total Probability

- Partition If A_1, \dots, A_n are mutually exclusive events and $\bigcup_{i=1}^n A_i = S$, then A_1, \dots, A_n are partitions
- ullet If A_1,\cdots,A_n are partitions of S, then for any event B:

$$P(B) = \sum_{i=1}^{n} P(B \cap A_i) = \sum_{i=1}^{n} P(B|A_i)P(A_i)$$

Bayes' Theorem

Let A_1, \dots, A_n be partitions of S. For any event B:

$$P(A_k|B) = \frac{P(B|A_k)P(A_k)}{\sum_{i=1}^{n} P(B|A_k)P(A_i)}$$

02. Random Variables

- Motivation: Assign value to outcome of experiment
- \bullet Random Variable $\:$ Let S be sample space. Function X which maps $\mathbb R$ to every $s \in S$

Probability Distribution

- ullet Probability assigned to each possible X
- Given RV X with range of R_x :

Discrete - Numbers in R_x are finite or countable **Continuous** - R_x is interval

Discrete Probability Distribution

• Probability Function - Given $R_x = \{x_1, \dots\}$. For each x_i , there's some probability that $X = x_i$:

$$f(x) = P(X = x)$$

- p.f. must satisfy:
 - 1. $f(x_i) = P(X = x_i)$ for $x_i \in R_x$
 - 2. $f(x_i) = 0$ for $x_i \notin R_x$
 - 3. $\sum_{i=1}^{\infty} f(x_i) = 1$
 - 4. $\forall B \subseteq \mathbb{R}, P(X \in B) = \sum_{x_i \in B \cap R_x} f(x_i)$
- Probability Distribution Collection of pairs $(x_i, f(x_i))$

Continuous Probability Distribution

- Probability Function

 Given R_x is interval. Quantifies probability that X is in some range.
- p. f. must satisfy:
 - 1. f(x) > 0
 - 2. f(x) = 0 for $x \notin R_x$
 - $3. \int_{R_x} f(x) dx = 1$
 - 4. $\forall a, b \text{ s.t. } a \leq b, P(a \leq X \leq b) = \int_a^b f(x) dx$
- Note: $P(X = x_0) = \int_{x_0}^{x_0} f(x) dx = 0$

Cumulative Distributive Function

Given RV X, which can be discrete or continuous:

$$F(x) = P(X \le x)$$

- \bullet F(x) is non-decreasing and $0 \le F(x) \le 1$
- For discrete RV: Step function

$$F(x) = \sum_{t \in R_x; t \le x} f(t)$$

- $P(a \le X \le b) = F(b) \lim_{x \to a^-} F(x)$
- $\bullet \ 0 \le f(x) \le 1$
- For continuous RV:

$$F(x) = \int_{-\infty}^{x} f(t)dt$$
$$f(x) = \frac{d(F(x))}{dx}$$

- $P(a \le X \le b) = P(a < X < b) = F(b) F(a)$
- ullet $0 \le f(x)$ e.g. $f(x) = 3x^2$ is a valid p.f. since $\int_{R_x} f(x) dx = 1$

Expectation of Random Variable

• Mean of discrete RV:

$$\mu = E(X) = \sum_{x \in R_x} x_i f(x_i) = \sum_{i=1}^{\infty} P(X \ge i)$$

- Let g be some function. $E(g(x)) = \sum_{x \in R_x} g(x) f(x)$
- Mean of continuous RV:

$$\mu = E(X) = \int_{x \in R_x} x f(x) dx$$

- Let g be some function. $E(g(x)) = \int_{x \in R_x} g(x) f(x) dx$
- $\bullet \ E(aX+b) = aE(X) + b$
- Linearity of expectation: E(X+Y)=E(X)+E(Y)

Variance of Random Variable

$$\sigma_X^2 = V(X) = E((X - \mu_X)^2)$$

Variance of discrete RV:

$$V(X) = \sum_{x \in R_x} (x - \mu_X)^2 f(x)$$

Variance of continuous RV:

$$V(X) = \int_{x \in R_{\alpha}} (x - \mu_X)^2 f(x) dx$$

- V(X) = 0 when X is a constant
- $\bullet \ V(aX+b) = a^2V(X)$
- $V(X) = E(X^2) (E(X))^2$
- Standard Deviation $\sigma_X = \sqrt{V(X)}$

03. Joint Distributions

- Motivation: What if interested in more than 1 RV simultaneously?
- Given sample space S. Let X and Y be functions mapping $s \in S \to \mathbb{R}$:

$$(X,Y)$$
is 2D random vector

Range space:
$$R_{X,Y} = \{(x,y)|x=X(s), y=Y(s), s \in S\}$$

- Discrete 2D RV If no. of possible values of (X(s),Y(s)) are finite or countable
- Continuous 2D RV If no. of possible values of (X(s),Y(s)) can be any value in Euclidean space \mathbb{R}^2
- ullet If both X and Y are discrete/continuous, then (X,Y) is discrete/countinuous.

Joint Probability Function

• For discrete:

$$f_{X,Y}(x,y) = P(X = x, Y = y)$$

- ullet $f_{X,Y}(x,y) \geq 0$ for any $(x,y) \in R_{X,Y}$
- ullet $f_{X,Y}(x,y)=0$ for any $(x,y)\notin R_{X,Y}$
- $\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} P(X = x_i, Y = y_i) = 1$
- Let $A \subseteq R_{X,Y}$. $P((X,Y) \in A) = \sum \sum_{(x,y) \in A} f_{X,Y}(x,y)$
- For continuous:

$$P(a \le X \le b, c \le Y \le d) = \int_a^b \int_c^d f_{X,Y}(x,y) dy dx$$

- $f_{X,Y}(x,y) \ge 0$ for any $(x,y) \in R_{X,Y}$
- $f_{X,Y}(x,y) = 0$ for any $(x,y) \notin R_{X,Y}$
- $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx dy = 1$

Marginal Probability Function

Let (X,Y) be a 2D RV with joint probability function $f_{X,Y}(x,y)$:

If
$$Y$$
 is discrete, $f_X(x) = \sum_y f_{X,Y}(x,y)$

If
$$Y$$
 is continuous, $f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy$

- $f_Y(y)$ defined similarly
- Intuition: Marginal distribution for X ignores presence of Y
- $f_X(x)$ is a p.f.

Conditional Distribution

Let (X,Y) be a 2D RV with joint probability function $f_{X,Y}(x,y)$. Then $\forall x$ s.t. $f_X(x)>0$:

$$f_{Y|X}(y|x) = \frac{f_{X,Y}(x,y)}{f_{X}(x)}$$

- Intuition: Distribution of Y given X = x
- Only defined for x s.t. $f_X(x) > 0$
- $f_{Y|X}(y|x)$ is a p.f. if we fix x
- But, $f_{Y|X}(y|x)$ is not a p.f. for x
- $P(Y \le y|X = x) = \int_{-\infty}^{y} f_{Y|X}(y|x)dy$
- $E(Y|X=x) = \int_{-\infty}^{\infty} y f_{Y|X}(y|x) dy$

Independent Random Variables

$$X \perp Y \leftrightarrow \forall x, y, f_{X,Y}(x, y) = f_X(x) f_Y(y)$$

ullet Necessary condition: $R_{X,Y}$ must be a product space. Else, dependent.

Properties

Suppose X, Y are independent RV:

• If $A, B \subseteq \mathbb{R}$, then events $X \in A$ and $Y \in B$ are independent:

$$P(X \in A; Y \in B) = P(X \in A)P(Y \in B)$$

- $q_1(X)$ and $q_2(Y)$ are independent
- Independence is related with conditional distribution:

$$f_X(x) > 0 \to f_{Y|X}(y|x) = f_Y(y)$$

$$f_Y(y) > 0 \to f_{X|Y}(x|y) = f_X(x)$$

Quick way to check independence

- 1. $R_{X,Y}$ is a product space. i.e. R_X does not depend on Y and vice versa.
- 2. $f_{X,Y}(x,y)$ can be written as $cg_1(x)g_2(y)$ where g_1 depends on x only and g_2 depends on y only.
- 3. For discrete: $f_X(x) = \frac{g_1(x)}{\sum_{t \in R_X} g_1(t)}$
- 4. For continuous: $f_X(x) = \frac{g_1(x)}{\int_{t \in R_X} g_1(t)dt}$

Expectation

Given 2 variable function g(x, y):

If
$$(X,Y)$$
 is discrete, $E(g(X,Y)) = \sum_{x} \sum_{y} g(x,y) f_{X,Y}(x,y)$

If (X,Y) is continuous, $E(g(X,Y)) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{X,Y}(x,y) dy dx$

• E(XY) = E(X)E(Y) if $X \perp Y$

Covariance

$$cov(X,Y) = E((X-E(X))(Y-E(Y)))$$
 If (X,Y) is discrete,
$$cov(X,Y) = \sum \sum (x-\mu_X)(y-\mu_Y)f_{X,Y}(x,y)$$

If (X,Y) is cont., $cov(X,Y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x-\mu_X)(y-\mu_Y) f_{X,Y}(x,y) dxdy$

- cov(X,Y) = E(XY) E(X)E(Y)
- $X \perp Y \rightarrow cov(X,Y) = 0$. But converse is not always true.
- \bullet cov(aX + b, cY + d) = (ac)cov(X, Y)
- $\bullet \ V(aX + bY) = a^2V(X) + b^2V(Y) + 2abcov(X, Y)$
- $\bullet X \perp Y \rightarrow V(X+Y) = V(X) + V(Y)$

04. Special Probability Distributions

Discrete Uniform Distribution

- If X has values x_1, x_2, \cdots, x_k with equal probability
- p.f.: $f_X(x) = \frac{1}{k}$ where $x = x_1, \cdots, x_k$ and 0 otherwise
- Expectation: $\mu_X = E(X) = \sum_{i=1}^k x_i f_X(x_i) = \frac{1}{k} \sum_{i=1}^k x_i$
- \bullet Variance: $\sigma_X^2 = V(X) = E(X^2) (E(X))^2 = \frac{1}{k} \sum_{i=1}^k x_i^2 \mu_X^2$

Bernoulli

 Bernoulli Trial - Random experiment with 2 possible outcomes (success and failure)

Bernoulli Random Variable

- Number of successes in Bernoulli trial (Either 1 or 0)
- Let $0 \le p \le 1$ be the probability of success in Bernoulli trial

$$f_X(x) = P(X = x) = \begin{cases} p & x = 1\\ 1 - p & x = 0\\ 0 & otherwise \end{cases}$$

- $f_X(x) = p^x(1-p)^{1-x}$ for x = 0 or 1
- Notation: $X \sim Ber(p)$ and q = 1 p
- ullet $\mu_X=E(X)=p$ and $\sigma_X^2=V(X)=p(1-p)$

Bernoulli Process

- Sequence of repeatedly performed independent and identical Ber. trials
- ullet Generates sequence of independet and identically distributed (i.i.d.) Ber. RVs: X_1, X_2, \cdots

Binomial Distribution

- Binomial RV Counts the number of successes in n trials in a Ber. process
- Given n trials with each trial having probability p of success:

$$P(X = x) = \binom{n}{x} p^x (1-p)^{n-x}$$

- Notation: $X \sim B(n, p)$
- \bullet E(X) = np and V(X) = np(1-p)

Negative Binomial Distribution

• Let X = Number of i.i.d. Bernoulli(p) trials until kth success occurs

$$P(X = x) = {x - 1 \choose k - 1} p^k (1 - p)^{x - k}$$

- Notation: $X \sim NB(k, p)$
- \bullet $E(X) = \frac{k}{p}$ and $V(X) = \frac{(1-p)k}{p^2}$

Geometric Distribution

• Let X = Number of i.i.d. Bernoulli(p) trials until 1st success occurs

$$P(X = x) = p(1 - p)^{x - 1}$$

- Notation: $X \sim G(p)$
- \bullet $E(X) = \frac{1}{p}$ and $V(X) = \frac{1-p}{p^2}$

Poisson Distribution

 Poisson RV - Denotes number of events happening in fixed period of time or fixed region

$$P(X = k) = \frac{e^{-\lambda} \lambda^k}{k!}$$

- Notation: $X \sim Poisson(\lambda)$ where $\lambda > 0$ is expected number of occurrences during given period/region
- $E(X) = \lambda$ and $V(X) = \lambda$

Poisson Process

- Continuous time process, where we count number of occurrences within some interval of time
- Given Poisson process with rate parameter α :
- Expected number of occurrences in interval of length T is αT
- No simultaneous occurrences
- Number of occurrences in disjoint intervals are independent
- ullet Number of occurrences in any interval T of Poisson process follows $Poisson(\alpha T)$ distribution

Poisson Approximation of Binomial Distribution

Let $X \sim B(n,p)$. Suppose $n \to \infty$ and $p \to 0$ s.t. $\lambda = np$ remains constant. Then $X \sim Poisson(\lambda)$ approximately.

$$\lim_{p \to 0; n \to \infty} P(X = x) = \frac{e^{-np}(np)^x}{x!}$$

• Approximation is good when $n \ge 20$ and $p \le 0.05$, or $n \ge 100$ and $np \le 10$

Continuous Uniform Distribution

X follows uniform distribution over interval (a, b) if p.f. is given by:

$$f_X(x) = \begin{cases} \frac{1}{b-a} & a \le x \le b\\ 0 & otherwise \end{cases}$$

- Notation: $X \sim U(a, b)$
- $E(X) = \frac{a+b}{2}$ and $V(X) = \frac{(b-a)^2}{12}$
- c.d.f. is given by:

$$F_X(x) = \begin{cases} 0 & x < a \\ \frac{x-a}{b-a} & a \le x \le b \\ 1 & x > b \end{cases}$$

Exponential Distribution

X follows exponential distribution with parameter $\lambda > 0$ if p.f. is given by:

$$f_x(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0\\ 0 & x < 0 \end{cases}$$

- Notation: $X \sim Exp(\lambda)$
- $E(X) = \frac{1}{\lambda}$ and $V(X) = \frac{1}{\lambda^2}$
- c.d.f. is given by:

$$F_X(x) = \begin{cases} 1 - e^{-\lambda x} & x > 0\\ 0 & x \le 0 \end{cases}$$

• Suppose X has exponential distribution with parameter $\lambda > 0$. Then for any positive numbers s and t, we have:

$$P(X > s + t | X > s) = P(X > t)$$

Normal Distribution

X follows normal distribution with mean μ and variance σ^2 if p.f. is given by:

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/(2\sigma^2)}$$

- Notation: $X \sim N(\mu, \sigma^2)$
- $E(X) = \mu$ and $V(X) = \sigma^2$
- \bullet p.f. is bell-shaped curve and symmetric about $x=\mu$
- Total area under curve is 1
- 2 normal curves are identical in shape if they have same σ^2 . They differ in location by $\mu_1 \mu_2$.
- As σ increases, curve becomes more spread out
- ullet If $X\sigma N(\mu,\sigma^2)$ and let $Z=\frac{X-\mu}{\sigma}$

Standardized Normal Distribution

If $X \sim N(\mu, \sigma^2)$ and let

$$Z = \frac{X - \mu}{\sigma}$$

then $Z \sim N(0,1)$

- \bullet E(Z) = 0 and V(Z) = 1
- p.f. is given by:

$$f_Z(z) = \frac{1}{\sqrt{2\pi}} e^{-z^2/2}$$

- Importance of standardizing normal distribution is that it allows us to use tables to find probabilities
- Let $X \sim N(\mu, \sigma^2)$. We can compute $P(x_1 < X < x_2)$ by standadization:

$$x_1 < X < x_2 \leftrightarrow \frac{x_1 - \mu}{\sigma} < \frac{X - \mu}{\sigma} < \frac{x_2 - \mu}{\sigma}$$

• c.d.f. is given by:

$$\phi(z) = F_Z(z) = \int_{-\infty}^{z} f_Z(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-t^2/2} dt$$

- $P(Z \ge 0) = P(Z \le 0) = \phi(0) = 0.5$
- For any z, $\phi(z) = P(Z \le z) = P(Z \ge -z) = 1 \phi(-z)$
- \bullet $-Z \sim N(0,1)$
- If $Z \sim N(0,1)$, then $\sigma Z + \mu \sim N(\mu, \sigma^2)$
- Upper Quantile Given α is upper-tail percentage. The α th upper quantile is x_{α} that satisfies:

$$P(X \ge x_{\alpha}) = \alpha$$

e.g. The 0.05th (upper) quantile of $Z \sim N(0,1)$ is 1.645, i.e. $z_{0.05} = 1.645$

- $P(Z \ge z_{\alpha}) = P(Z \le -z_{\alpha}) = \alpha$
- Upper $z_{\alpha} = \text{Lower } z_{1-\alpha}$

Normal Approximation to Binomial Distribution

Let $X \sim B(n,p)$, then as $n \to \infty$:

$$Z = \frac{X - E(X)}{\sqrt{V(X)}} = \frac{X - np}{\sqrt{np(1-p)}} \sim N(0,1)$$

ullet Approximation is good when np>5 and n(1-p)>5

05. Sampling Distributions

Population and Sample

- Motivation: Infer something about population using sample
- Population All possible observations of survey
- Sample Subset of population
- Every observation can be numerical or categorical
- Finite population vs. Infinite population

Random Sampling

- Motivation: We usually know what distribution the population belongs to, but we don't know the parameters of the distribution. We can use sample to estimate the parameters.
- Simple Random Sample Given sample of size n, each sample has equal chance of being selected

SRS for Infinite Population

Let X be RV with p.f. $f_X(x)$. Let X_1, X_2, \cdots, X_n be independent random variables with same distribution as X. Then X_1, X_2, \cdots, X_n is a simple random sample of size n. Joint probability function of X_1, \cdots, X_n :

$$f_{X_1,\dots,X_n}(x_1,\dots,x_n) = f_X(x_1)f_X(x_2)\dots f_X(x_n)$$

Sampling with Replacement

- Sampling with replacement from finite population is considered as sampling from infinite population
- Sample is random if:
- Every element in population has same probability
- Successive draws are independent

Sample Distribution of Sample Mean

- Statistic Suppose random sample of n observations is X_1, X_2, \cdots, X_n . A statistic is a function of X_1, \cdots, X_n
- Sample Mean -

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

Sample Variance -

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

- Statistics are random variables. We can look at distribution of statistics.
- Sample Distribution Distribution of a statistic
- ullet Mean and variance of $ar{X}$:

$$E(\bar{X}) = \mu$$
 and $V(\bar{X}) = \frac{\sigma_X^2}{n}$

Intuition: μ_X is some unknown constant. \bar{X} guesses that. As n increases, accuracy of \bar{X} increases.

- Standard Error Standard deviation of sampling distribution (e.g. $\sigma_{\bar{X}}$)
- Law of Large Numbers As n increases, \bar{X} converges to μ_X . i.e. For any $\epsilon \in \mathbb{R}$:

$$P(|\bar{X} - \mu| > \epsilon) \to 0 \text{ as } n \to \infty$$

Central Limit Theorem

If \bar{X} is mean of random sample of size n from population with mean μ and variance σ^2 , then as $n \to \infty$:

$$\bar{X} \sim N(\mu, \frac{\sigma^2}{m})$$
 approximately

- Intuition: For a large n, \bar{X} is approximately normally distributed.
- \bullet If random sample is from normal population, \bar{X} is normally distributed no matter value of n
- If very skewed, CLT may not hold even with large n

Other Sampling Distributions

χ^2 Distribution

- Let Z_1, \cdots, Z_n be n independent and identically distributed standard normal RVs. A χ^2 RV with n degrees of freedom is defined as a RV with same distribution as $Z_1^2 + \cdots + Z_n^2$
- Notation: $\chi^2(n)$ with n degrees of freedom
- If $Y \sim \chi^2(n)$, then E(Y) = n and V(Y) = 2n
- ullet For large n, $\chi^2(n)$ is approximately N(n,2n)
- If Y_1 and Y_2 are independent χ^2 RVs with m and n degrees of freedom respectively, then Y_1+Y_2 is $\chi^2(m+n)$
- ullet χ^2 is family of curves. All density functions have long right tail.

Sampling Distribution of S^2

 $\bullet \ E(S^2) = \sigma^2$

Sampling Distribution of $\frac{(n-1)S^2}{\sigma^2}$

If S^2 is variance of random sample of size n from normal population of variance σ^2 , then:

$$\frac{(n-1)S^2}{\sigma^2} = \frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{\sigma^2}$$

has $\chi^2(n-1)$ distribution

t-Distribution

Suppose $Z \sim N(0,1)$ and $U \sim \chi^2(n)$. If Z and U are independent, then:

$$T = \frac{Z}{\sqrt{U/n}} \sim t(n)$$

where t(n) is called t-distribution with n degrees of freedom

- t-Distribution approaches N(0,1) as $n \to \infty$
- When n > 30, t-distribution is approximately normal
- If $T \sim t(n)$, then E(T) = 0 and $V(T) = \frac{n}{n-2}$ for n > 2
- Symmetric about vertical axis and resembles standard normal distribution
- If X_1, \dots, X_n are independent and identically distributed normal RVs with mean μ and variance σ^2 , then:

$$\frac{X-\mu}{S/\sqrt{n}} \sim t(n-1)$$

F-Distribution

Suppose $U \sim \chi^2(m)$ and $V \sim \chi^2(n)$. If U_1 and U_2 are independent, then:

$$F = \frac{U/m}{V/m} \sim F(m, n)$$

is called F-distribution with (m,n) degrees of freedom

• If $X \sim F(m, n)$, then

$$E(X) = \frac{n}{n-2} \text{ for } n > 2$$

and

$$V(X) = \frac{2n^2(m+n-2)}{m(n-2)^2(n-4)} \text{ for } n > 4$$

• If $F \sim F(m,n)$, then $1/F \sim F(n,m)$

06. Estimation

Point Estimation for Mean

- Single number to estimate population parameter
- Point Estimator Formula that describes this calculation
- Point Estimate Result of point estimator
- Notation: θ represents parameter of interest. θ can be p, μ , σ , etc.

Unbiased Estimator

Let $\hat{\theta}$ be an estimator of θ . Then $\hat{\theta}$ is unbiased if:

$$E(\hat{\theta}) = \theta$$

Maximum Error of Estimate

- \bullet Motivation: Usually $\bar{X} \neq \mu.$ So $\bar{X} \mu$ measures difference between estimator and parameter
- \bullet Let z_α be $\alpha {\rm th}$ upper quantile of standard normal distribution Z. i.e. $P(Z>z_\alpha)=\alpha$

$$P(-z_{\alpha/2} \le \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \le z_{\alpha/2}) = P(|\bar{X} - \mu| \le z_{\alpha/2} \frac{\sigma}{\sqrt{n}}) = 1 - \alpha$$

• Maximum Error of Estimate - Given probability $1 - \alpha$:

$$E = z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

Determination of Sample Size

Given probability $1-\alpha$ and maximum error E, what is the minimum sample size n?

 $n \geq (\frac{z_{\alpha/2}\sigma}{E})^2$

Different Cases

	Population	σ	n	Statistic	Е	n for desired E_0 and α
I	Normal	known	any	$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}}$	$z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$	$\left(\frac{z_{\alpha/2}\cdot\boldsymbol{\sigma}}{E_0}\right)^2$
П	any	known	large	$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}}$	$z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$	$\left(\frac{z_{\alpha/2} \cdot \sigma}{E_0}\right)^2$
Ш	Normal	unknown	small	$T = \frac{\overline{X} - \mu}{S / \sqrt{n}}$	$t_{n-1;\alpha/2} \cdot \frac{s}{\sqrt{n}}$	$\left(\frac{t_{n-1;\alpha/2}\cdot s}{E_0}\right)^2$
IV	any	unknown	large	$Z = \frac{\overline{X} - \mu}{S / \sqrt{n}}$	$z_{\alpha/2} \cdot \frac{s}{\sqrt{n}}$	$\left(\frac{z_{\alpha/2} \cdot s}{E_0}\right)^2$

Confidence Interval for Mean

- ullet Interval Estimator Rule for calculating an interval (a,b) in which we are fairly certain the parameter lies
- Confidence Level Probability that interval contains parameter. i.e. $1-\alpha$ $P(a<\mu< b)=1-\alpha$
- Confidence Interval Interval calculated by interval estimator. i.e. (a, b)

Case 1: σ known, data normal

Previously:

$$P(-z_{\alpha/2} \le \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \le z_{a/2}) = 1 - \alpha$$

By rearranging, the $1-\alpha$ confidence interval is:

$$(\bar{X} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \bar{X} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}})$$

Other Cases

Case	Population	σ	n	Confidence Interval
I	Normal	known	any	$\bar{x} \pm z_{\alpha/2} \cdot \sigma/\sqrt{n}$
II	any	known	large	$\bar{x} \pm z_{\alpha/2} \cdot \sigma/\sqrt{n}$
III	Normal	unknown	small	$\bar{x} \pm t_{n-1;\alpha/2} \cdot s / \sqrt{n}$
IV	any	unknown	large	$\bar{x} \pm z_{\alpha/2} \cdot s/\sqrt{n}$

• n is considered large when $n \ge 30$

Comparing 2 Populations

• Goal: Make inference on $\mu_1 - \mu_2$

Experimental Design

- Independent Samples Completely randomized
- Matched Pairs Samples Randomization between matches pairs

Independent Samples: Known and Unequal Variance

Assumptions:

- 1. Given: Random sample of size n_1 from population 1 with μ_1 and σ^2 and random sample of size n_2 from population 2 with μ_2 and σ^2
- 2. 2 samples are independent
- 3. Population variances are known and $\sigma_1^2 \neq \sigma_2^2$
- 4. Both populations are normal OR $n_1 \geq 30$ and $n_2 \geq 30$

Let X_1, \dots, X_{n_1} and Y_1, \dots, Y_{n_2} be random samples:

$$E(\bar{X})=\mu_1$$
 , $V(\bar{X})=\frac{\sigma_1^2}{n_1}$, $E(\bar{Y})=\mu_2$, $V(\bar{Y})=\frac{\sigma_2^2}{n_2}$

$$E(\bar{X} - \bar{Y}) = \mu_1 - \mu_2$$
 , $V(\bar{X} - \bar{Y}) = \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}$

Thus, by normalizing RV $\bar{X} - \bar{Y}$ and using assumption 4:

$$Z = \frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0, 1)$$

Thus, the $100(1-\alpha)\%$ confidence interval for $\mu_1 - \mu_2$ is:

$$(\bar{X} - \bar{Y}) \pm z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$$

Independent Samples: Unknown and Unequal Variance

Assumptions:

- 1. Given: Random sample of size n_1 from population 1 with μ_1 and σ^2 and random sample of size n_2 from population 2 with μ_2 and σ^2
- 2. 2 samples are independent
- 3. Population variances are unknown and $\sigma_1^2 \neq \sigma_2^2$
- 4. $n_1 > 30$ and $n_2 > 30$

Since σ_1 and σ_2 are unknown, we use the standard error instead:

$$S_1^2 = \frac{1}{n_1 - 1} \sum_{i=1}^{n_1} (X_i - \bar{X})^2$$
, $S_2^2 = \frac{1}{n_2 - 1} \sum_{i=1}^{n_2} (Y_i - \bar{Y})^2$

Thus, by normalizing RV $\bar{X} - \bar{Y}$ and using assumption 4:

$$Z = \frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}} \sim N(0, 1)$$

Thus, the $100(1-\alpha)\%$ confidence interval for $\mu_1 - \mu_2$ is:

$$(\bar{X} - \bar{Y}) \pm z_{\alpha/2} \sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}$$

Independent Samples: Small n, Unknown and Equal Variance

Assumptions:

- 1. Given: Random sample of size n_1 from population 1 with μ_1 and σ^2 and random sample of size n_2 from population 2 with μ_2 and σ^2
- 2. 2 samples are independent
- 3. Population variances are unknown and $\sigma_1^2=\sigma_2^2$
- 4. $n_1 < 30$ and $n_2 < 30$
- 5. Both populations are normally distributed

Thus, by normalizing RV $\bar{X} - \bar{Y}$ and using assumptions 3 and 4:

$$Z = \frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t_{n_1 + n_2 - 2}$$

where S_p is the pooled sample variance, which estimates σ^2

$$S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$$

Thus, the $100(1-\alpha)\%$ confidence interval for $\mu_1-\mu_2$ is:

$$(\bar{X} - \bar{Y}) \pm t_{n_1 + n_2 - 2; \alpha/2} S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

Independent Samples: Large n, Unknown and Equal Variance

Assumptions:

- 1. Given: Random sample of size n_1 from population 1 with μ_1 and σ^2 and random sample of size n_2 from population 2 with μ_2 and σ^2
- 2. 2 samples are independent
- 3. Population variances are unknown and $\sigma_1^2 = \sigma_2^2$
- 4. $n_1 \ge 30 \text{ and } n_2 \ge 30$

By applying CLT on assumption 4, we can replace $t_{n_1+n_2-2;\alpha/2}$ with $z_{\alpha/2}$. Thus, the $100(1-\alpha)\%$ confidence interval for $\mu_1-\mu_2$ is:

$$(\bar{X} - \bar{Y}) \pm z_{\alpha/2} S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

Paired Data

Assumptions:

- 1. Given: $(X_1,Y_1),\cdots,(X_n,Y_n)$ are matched pairs, where X_1,\cdots,X_n is random sample from population 1 and Y_1,\cdots,Y_n is random sample from population 2
- 2. X_i and Y_i are dependent
- 3. (X_i, Y_i) and (X_i, Y_i) are independent for any $i \neq j$

Define $D_i=X_i-Y_i$, $\mu_D=\mu_1-\mu_2$. We can treat D_1,\cdots,D_n as random sample from single population with μ_D and σ_D^2 . Consider the statistic:

$$T=\frac{\bar{D}-\mu_D}{S_D/\sqrt{n}}\text{, where }\bar{D}=\frac{\sum_{i=1}^nD_i}{n}\text{ and }S_D^2=\frac{\sum_{i=1}^n(D_i-\bar{D})^2}{n-1}$$

If n < 30 and population is normally distributed:

$$T \sim t_{n-1}$$

Thus, if n<30 and the population is normally distributed, the $100(1-\alpha)\%$ confidence interval for μ_D is:

$$\bar{d} \pm t_{n-1;\alpha/2} \frac{S_D}{\sqrt{n}}$$

If $n \geq 30$:

$$T \sim N(0,1)$$

Thus, if $n \ge 30$, the $100(1-\alpha)\%$ confidence interval for μ_D is:

$$\bar{d} \pm z_{\alpha/2} \frac{S_D}{\sqrt{n}}$$

07. Hypothesis Testing08. Miscellaneous

Integration by Parts

$$\int u dv = uv - \int v du$$

• How to choose u? LIPET