Flight Price Prediction

Al Project

Team

Shreyas Palod RA1911003010793

Kritika Agarwal RA1911003010808

Shubham Kumar RA1911003010794

Akash Roy Choudhary RA191003010795

```
In [1]:
```

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
sns.set()
```

```
In [2]:
```

```
train_data = pd.read_csv("Data_Train.csv")
```

```
In [3]:
```

```
pd.set_option('display.max_columns', None)
```

In [4]:

train_data.head()

Out[4]:

	Airline	Date_of_Journey	Source	Destination	Route	Dep_Time	Arrival_Time	Duration	Т
0	IndiGo	24-03-2019	Banglore	New Delhi	BLR ? DEL	22:20	22-03-2022 01:10	2h 50m	
1	Air India	01-05-2019	Kolkata	Banglore	CCU ? IXR ? BBI ? BLR	05:50	13:15	7h 25m	
2	Jet Airways	09-06-2019	Delhi	Cochin	DEL ? LKO ? BOM ? COK	09:25	10-06-2022 04:25	19h	
3	IndiGo	12-05-2019	Kolkata	Banglore	CCU ? NAG ? BLR	18:05	23:30	5h 25m	
4	IndiGo	01-03-2019	Banglore	New Delhi	BLR ? NAG ? DEL	16:50	21:35	4h 45m	
4								1	•

In [5]:

train_data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10683 entries, 0 to 10682
Data columns (total 11 columns):

Data	corumns (cocar r	i coiumis).	
#	Column	Non-Null Count	Dtype
0	Airline	10683 non-null	object
1	Date_of_Journey	10683 non-null	object
2	Source	10683 non-null	object
3	Destination	10683 non-null	object
4	Route	10682 non-null	object
5	Dep_Time	10683 non-null	object
6	Arrival_Time	10683 non-null	object
7	Duration	10683 non-null	object
8	Total_Stops	10682 non-null	object
9	Additional_Info	10683 non-null	object
10	Price	10683 non-null	int64

dtypes: int64(1), object(10)
memory usage: 918.2+ KB

```
In [6]:
```

```
train_data["Duration"].value_counts()
Out[6]:
2h 50m
           550
1h 30m
           386
2h 45m
           337
2h 55m
           337
2h 35m
           329
13h 35m
             1
29h 10m
             1
29h 40m
             1
30h 15m
             1
33h 20m
             1
Name: Duration, Length: 368, dtype: int64
In [7]:
train_data.dropna(inplace = True)
In [8]:
train_data.isnull().sum()
Out[8]:
Airline
                    0
Date_of_Journey
Source
                    0
Destination
                    0
                    0
Route
Dep_Time
Arrival_Time
                    0
Duration
                    0
Total_Stops
                    0
Additional_Info
                    0
                    0
Price
dtype: int64
```

EDA

From description we can see that Date_of_Journey is a object data type,

Therefore, we have to convert this datatype into timestamp so as to use this column properly for prediction

```
In [9]:
```

```
train_data["Journey_day"] = pd.to_datetime(train_data.Date_of_Journey, format="%d-%m-%Y").d
```

In [10]:

train_data["Journey_month"] = pd.to_datetime(train_data["Date_of_Journey"], format = "%d-%m

In [11]:

train_data.head()

Out[11]:

	Airline	Date_of_Journey	Source	Destination	Route	Dep_Time	Arrival_Time	Duration	T
0	IndiGo	24-03-2019	Banglore	New Delhi	BLR ? DEL	22:20	22-03-2022 01:10	2h 50m	
1	Air India	01-05-2019	Kolkata	Banglore	CCU ? IXR ? BBI ? BLR	05:50	13:15	7h 25m	
2	Jet Airways	09-06-2019	Delhi	Cochin	DEL ? LKO ? BOM ? COK	09:25	10-06-2022 04:25	19h	
3	IndiGo	12-05-2019	Kolkata	Banglore	CCU ? NAG ? BLR	18:05	23:30	5h 25m	
4	IndiGo	01-03-2019	Banglore	New Delhi	BLR ? NAG ? DEL	16:50	21:35	4h 45m	
4)	>

In [12]:

Since we have converted Date_of_Journey column into integers, Now we can drop as it is of train_data.drop(["Date_of_Journey"], axis = 1, inplace = True)

In [13]:

```
# Departure time is when a plane leaves the gate.
# Similar to Date_of_Journey we can extract values from Dep_Time

# Extracting Hours
train_data["Dep_hour"] = pd.to_datetime(train_data["Dep_Time"]).dt.hour

# Extracting Minutes
train_data["Dep_min"] = pd.to_datetime(train_data["Dep_Time"]).dt.minute

# Now we can drop Dep_Time as it is of no use
train_data.drop(["Dep_Time"], axis = 1, inplace = True)
```

In [14]:

train_data.head()

Out[14]:

	Airline	Source	Destination	Route	Arrival_Time	Duration	Total_Stops	Additional_Info
0	IndiGo	Banglore	New Delhi	BLR ? DEL	22-03-2022 01:10	2h 50m	non-stop	No info
1	Air India	Kolkata	Banglore	CCU ? IXR ? BBI ? BLR	13:15	7h 25m	2 stops	No info
2	Jet Airways	Delhi	Cochin	DEL ? LKO ? BOM ? COK	10-06-2022 04:25	19h	2 stops	No info 1
3	IndiGo	Kolkata	Banglore	CCU ? NAG ? BLR	23:30	5h 25m	1 stop	No info
4	IndiGo	Banglore	New Delhi	BLR ? NAG ? DEL	21:35	4h 45m	1 stop	No info 1
4								>

In [15]:

```
# Arrival time is when the plane pulls up to the gate.
# Similar to Date_of_Journey we can extract values from Arrival_Time

# Extracting Hours
train_data["Arrival_hour"] = pd.to_datetime(train_data.Arrival_Time).dt.hour

# Extracting Minutes
train_data["Arrival_min"] = pd.to_datetime(train_data.Arrival_Time).dt.minute

# Now we can drop Arrival_Time as it is of no use
train_data.drop(["Arrival_Time"], axis = 1, inplace = True)
```

In [16]:

```
train_data.head()
```

Out[16]:

	Airline	Source	Destination	Route	Duration	Total_Stops	Additional_Info	Price	Journey
0	IndiGo	Banglore	New Delhi	BLR ? DEL	2h 50m	non-stop	No info	3897	
1	Air India	Kolkata	Banglore	CCU ? IXR ? BBI ? BLR	7h 25m	2 stops	No info	7662	
2	Jet Airways	Delhi	Cochin	DEL ? LKO ? BOM ? COK	19h	2 stops	No info	13882	
3	IndiGo	Kolkata	Banglore	CCU ? NAG ? BLR	5h 25m	1 stop	No info	6218	
4	IndiGo	Banglore	New Delhi	BLR ? NAG ? DEL	4h 45m	1 stop	No info	13302	

In [17]:

```
# Time taken by plane to reach destination is called Duration
# It is the differnce betwwen Departure Time and Arrival time
# Assigning and converting Duration column into list
duration = list(train_data["Duration"])
for i in range(len(duration)):
    if len(duration[i].split()) != 2: # Check if duration contains only hour or mins
        if "h" in duration[i]:
            duration[i] = duration[i].strip() + " 0m" # Adds 0 minute
            duration[i] = "Oh " + duration[i]
                                                       # Adds 0 hour
duration_hours = []
duration_mins = []
for i in range(len(duration)):
    duration_hours.append(int(duration[i].split(sep = "h")[0]))  # Extract hours from dur
    duration_mins.append(int(duration[i].split(sep = "m")[0].split()[-1]))
                                                                           # Extracts onl
```

In [18]:

```
# Adding duration_hours and duration_mins list to train_data dataframe
train_data["Duration_hours"] = duration_hours
train_data["Duration_mins"] = duration_mins
```

In [19]:

```
train_data.drop(["Duration"], axis = 1, inplace = True)
```

In [20]:

```
train_data.head()
```

Out[20]:

	Airline	Source	Destination	Route	Total_Stops	Additional_Info	Price	Journey_day	Jοι
0	IndiGo	Banglore	New Delhi	BLR ? DEL	non-stop	No info	3897	24	
1	Air India	Kolkata	Banglore	CCU ? IXR ? BBI ? BLR	2 stops	No info	7662	1	
2	Jet Airways	Delhi	Cochin	DEL ? LKO ? BOM ? COK	2 stops	No info	13882	9	
3	IndiGo	Kolkata	Banglore	CCU ? NAG ? BLR	1 stop	No info	6218	12	
4	IndiGo	Banglore	New Delhi	BLR ? NAG ? DEL	1 stop	No info	13302	1	
4									•

Handling Categorical Data

One can find many ways to handle categorical data. Some of them categorical data are,

- 1. Nominal data --> data are not in any order --> OneHotEncoder is used in this case
- 2. Ordinal data --> data are in order --> LabelEncoder is used in this case

In [21]:

```
train_data["Airline"].value_counts()
```

Out[21]:

3849
2053
1751
1196
818
479
319
194
13
6
3
1

In [22]:

```
# From graph we can see that Jet Airways Business have the highest Price.
# Apart from the first Airline almost all are having similar median

# Airline vs Price
sns.catplot(y = "Price", x = "Airline", data = train_data.sort_values("Price", ascending = plt.show()
```


In [23]:

```
# As Airline is Nominal Categorical data we will perform OneHotEncoding
Airline = train_data[["Airline"]]
Airline = pd.get_dummies(Airline, drop_first= True)
Airline.head()
```

Out[23]:

	Airline_Air India	Airline_GoAir	Airline_IndiGo	Airline_Jet Airways	Airline_Jet Airways Business	Airline_Multiple carriers	Airline_Mul car Pren econ
0	0	0	1	0	0	0	
1	1	0	0	0	0	0	
2	0	0	0	1	0	0	
3	0	0	1	0	0	0	
4	0	0	1	0	0	0	

→

In [24]:

train_data["Source"].value_counts()

Out[24]:

Delhi 4536 Kolkata 2871 Banglore 2197 Mumbai 697 Chennai 381

Name: Source, dtype: int64

In [25]:

```
# Source vs Price
sns.catplot(y = "Price", x = "Source", data = train_data.sort_values("Price", ascending = F
plt.show()
```


In [26]:

```
# As Source is Nominal Categorical data we will perform OneHotEncoding
Source = train_data[["Source"]]
Source = pd.get_dummies(Source, drop_first= True)
Source.head()
```

Out[26]:

	Source_Chennai	Source_Delhi	Source_Kolkata	Source_Mumbai
0	0	0	0	0
1	0	0	1	0
2	0	1	0	0
3	0	0	1	0
4	0	0	0	0

In [27]:

```
train_data["Destination"].value_counts()
```

Out[27]:

Cochin 4536
Banglore 2871
Delhi 1265
New Delhi 932
Hyderabad 697
Kolkata 381

Name: Destination, dtype: int64

```
In [28]:
```

```
# As Destination is Nominal Categorical data we will perform OneHotEncoding

Destination = train_data[["Destination"]]

Destination = pd.get_dummies(Destination, drop_first = True)

Destination.head()
```

Out[28]:

	Destination_Cochin	Destination_Delhi	Destination_Hyderabad	Destination_Kolkata	Destinatio
0	0	0	0	0	
1	0	0	0	0	
2	1	0	0	0	
3	0	0	0	0	
4	0	0	0	0	
4					

In [29]:

```
train_data["Route"]
```

Out[29]:

```
0
                     BLR ? DEL
1
         CCU ? IXR ? BBI ? BLR
         DEL ? LKO ? BOM ? COK
2
3
               CCU ? NAG ? BLR
4
               BLR ? NAG ? DEL
                     CCU ? BLR
10678
10679
                     CCU ? BLR
10680
                     BLR ? DEL
10681
                     BLR ? DEL
         DEL ? GOI ? BOM ? COK
10682
Name: Route, Length: 10682, dtype: object
```

In [30]:

```
# Additional_Info contains almost 80% no_info
# Route and Total_Stops are related to each other
train_data.drop(["Route", "Additional_Info"], axis = 1, inplace = True)
```

```
In [31]:
```

```
train_data["Total_Stops"].value_counts()
```

Out[31]:

1 stop 5625 non-stop 3491 2 stops 1520 3 stops 45 4 stops 1

Name: Total_Stops, dtype: int64

In [32]:

```
# As this is case of Ordinal Categorical type we perform LabelEncoder
# Here Values are assigned with corresponding keys
train_data.replace({"non-stop": 0, "1 stop": 1, "2 stops": 2, "3 stops": 3, "4 stops": 4},
```

In [33]:

```
train_data.head()
```

Out[33]:

	Airline	Source	Destination	Total_Stops	Price	Journey_day	Journey_month	Dep_hour
0	IndiGo	Banglore	New Delhi	0	3897	24	3	22
1	Air India	Kolkata	Banglore	2	7662	1	5	5
2	Jet Airways	Delhi	Cochin	2	13882	9	6	9
3	IndiGo	Kolkata	Banglore	1	6218	12	5	18
4	IndiGo	Banglore	New Delhi	1	13302	1	3	16
4								•

In [34]:

```
# Concatenate dataframe --> train_data + Airline + Source + Destination
data_train = pd.concat([train_data, Airline, Source, Destination], axis = 1)
```

In [35]:

```
data_train.head()
```

Out[35]:

	Airline	Source	Destination	Total_Stops	Price	Journey_day	Journey_month	Dep_hour
0	IndiGo	Banglore	New Delhi	0	3897	24	3	22
1	Air India	Kolkata	Banglore	2	7662	1	5	5
2	Jet Airways	Delhi	Cochin	2	13882	9	6	9
3	IndiGo	Kolkata	Banglore	1	6218	12	5	18
4	IndiGo	Banglore	New Delhi	1	13302	1	3	16

←

In [36]:

data_train.drop(["Airline", "Source", "Destination"], axis = 1, inplace = True)

In [37]:

data_train.head()

Out[37]:

	Total_Stops	Price	Journey_day	Journey_month	Dep_hour	Dep_min	Arrival_hour	Arrival _.
0	0	3897	24	3	22	20	1	
1	2	7662	1	5	5	50	13	
2	2	13882	9	6	9	25	4	
3	1	6218	12	5	18	5	23	
4	1	13302	1	3	16	50	21	
4								

In [38]:

data_train.shape

Out[38]:

(10682, 30)

Test set

In [39]:

```
test_data = pd.read_csv("Test_set.csv")
```

In [40]:

test_data.head()

Out[40]:

	Airline	Date_of_Journey	Source	Destination	Route	Dep_Time	Arrival_Time	Duration	T
0	Jet Airways	6/06/2019	Delhi	Cochin	DEL ? BOM ? COK	17:30	04:25 07 Jun	10h 55m	
1	IndiGo	12/05/2019	Kolkata	Banglore	CCU ? MAA ? BLR	06:20	10:20	4h	
2	Jet Airways	21/05/2019	Delhi	Cochin	DEL ? BOM ? COK	19:15	19:00 22 May	23h 45m	
3	Multiple carriers	21/05/2019	Delhi	Cochin	DEL ? BOM ? COK	08:00	21:00	13h	
4	Air Asia	24/06/2019	Banglore	Delhi	BLR ? DEL	23:55	02:45 25 Jun	2h 50m	
4								•	

In [41]:

```
# Preprocessing
print("Test data Info")
print("-"*75)
print(test_data.info())
print()
print()
print("Null values :")
print("-"*75)
test_data.dropna(inplace = True)
print(test_data.isnull().sum())
# EDA
# Date_of_Journey
test_data["Journey_day"] = pd.to_datetime(test_data.Date_of_Journey, format="%d/%m/%Y").dt.
test_data["Journey_month"] = pd.to_datetime(test_data["Date_of_Journey"], format = "%d/%m/%
test_data.drop(["Date_of_Journey"], axis = 1, inplace = True)
# Dep_Time
test_data["Dep_hour"] = pd.to_datetime(test_data["Dep_Time"]).dt.hour
test_data["Dep_min"] = pd.to_datetime(test_data["Dep_Time"]).dt.minute
test_data.drop(["Dep_Time"], axis = 1, inplace = True)
# Arrival Time
test_data["Arrival_hour"] = pd.to_datetime(test_data.Arrival_Time).dt.hour
test_data["Arrival_min"] = pd.to_datetime(test_data.Arrival_Time).dt.minute
test_data.drop(["Arrival_Time"], axis = 1, inplace = True)
# Duration
duration = list(test_data["Duration"])
for i in range(len(duration)):
    if len(duration[i].split()) != 2:
                                         # Check if duration contains only hour or mins
        if "h" in duration[i]:
            duration[i] = duration[i].strip() + " 0m" # Adds 0 minute
        else:
            duration[i] = "0h " + duration[i]
                                                       # Adds 0 hour
duration_hours = []
duration mins = []
for i in range(len(duration)):
    duration_hours.append(int(duration[i].split(sep = "h")[0])) # Extract hours from dur
   duration_mins.append(int(duration[i].split(sep = "m")[0].split()[-1]))
# Adding Duration column to test set
test_data["Duration_hours"] = duration_hours
test_data["Duration_mins"] = duration_mins
test_data.drop(["Duration"], axis = 1, inplace = True)
# Categorical data
print("Airline")
print("-"*75)
print(test data["Airline"].value counts())
Airline = pd.get_dummies(test_data["Airline"], drop_first= True)
```

```
print()
print("Source")
print("-"*75)
print(test_data["Source"].value_counts())
Source = pd.get_dummies(test_data["Source"], drop_first= True)
print()
print("Destination")
print("-"*75)
print(test_data["Destination"].value_counts())
Destination = pd.get_dummies(test_data["Destination"], drop_first = True)
# Additional_Info contains almost 80% no_info
# Route and Total_Stops are related to each other
test_data.drop(["Route", "Additional_Info"], axis = 1, inplace = True)
# Replacing Total_Stops
test_data.replace({"non-stop": 0, "1 stop": 1, "2 stops": 2, "3 stops": 3, "4 stops": 4}, i
# Concatenate dataframe --> test_data + Airline + Source + Destination
data_test = pd.concat([test_data, Airline, Source, Destination], axis = 1)
data_test.drop(["Airline", "Source", "Destination"], axis = 1, inplace = True)
print()
print()
print("Shape of test data : ", data_test.shape)
Test data Info
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2671 entries, 0 to 2670
Data columns (total 10 columns):
 #
                     Non-Null Count Dtype
    Column
    -----
---
                      -----
 0
     Airline
                     2671 non-null
                                     object
     Date_of_Journey 2671 non-null
 1
                                     object
 2
     Source
                     2671 non-null
                                     object
 3
     Destination
                    2671 non-null
                                     object
 4
     Route
                     2671 non-null
                                     object
 5
     Dep_Time
                     2671 non-null
                                     object
 6
     Arrival Time 2671 non-null
                                     object
 7
                     2671 non-null
                                     object
     Duration
```

```
Null values :
------Airline 0
Date_of_Journey 0
```

object

object

2671 non-null

Total_Stops

dtypes: object(10)
memory usage: 208.8+ KB

Additional_Info 2671 non-null

8

None

Source	0	
Destination	0	
Route	0	
Dep_Time	0	
Arrival Time	0	
Duration	0	
Total_Stops	0	
Additional_Info	0	
dtype: int64		
Airline		
Jet Airways		897
IndiGo		511
Air India		440
Multiple carriers		347
SpiceJet		208
, Vistara		129
Air Asia		86
GoAir		46
Multiple carriers	Premium economy	3
Vistara Premium ed	_	2
Jet Airways Busine	èss	2
Name: Airline, dty	/pe: int64	
Source		
Delhi 1145		
Kolkata 710		
Banglore 555		
Mumbai 186		
Chennai 75		
Name: Source, dtyp	e: int64	
Destination		
Cochin 1145	,	
Cochin 1145 Banglore 710		
Delhi 317		
New Delhi 238		
Hyderabad 186 Kolkata 75		
Kolkata 75		

Name: Destination, dtype: int64

Shape of test data: (2671, 28)

In [42]:

data_test.head()

Out[42]:

	Total_Stops	Journey_day	Journey_month	Dep_hour	Dep_min	Arrival_hour	Arrival_min	D
0	1	6	6	17	30	4	25	
1	1	12	5	6	20	10	20	
2	1	21	5	19	15	19	0	
3	1	21	5	8	0	21	0	
4	0	24	6	23	55	2	45	

Feature Selection

Finding out the best feature which will contribute and have good relation with target variable. Following are some of the feature selection methods,

- 1. heatmap
- 2. feature_importance_
- 3. SelectKBest

In [43]:

data_train.shape

Out[43]:

(10682, 30)

In [44]:

```
data train.columns
```

Out[44]:

In [45]:

Out[45]:

Total_S	tops 、	Journey_d	lay J	Journey_month	Dep_	hour	Dep_mi	in A	rrival_	_hour	Arrival	_min	D
---------	--------	-----------	-------	---------------	------	------	--------	------	---------	-------	---------	------	---

0	0	24	3	22	20	1	10
1	2	1	5	5	50	13	15
2	2	9	6	9	25	4	25
3	1	12	5	18	5	23	30
4	1	1	3	16	50	21	35
4							

In [46]:

```
y = data_train.iloc[:, 1]
y.head()
```

Out[46]:

0 3897 1 7662 2 13882 3 6218 4 13302

Name: Price, dtype: int64

In [47]:

```
# Finds correlation between Independent and dependent attributes

plt.figure(figsize = (18,18))
sns.heatmap(train_data.corr(), annot = True, cmap = "RdYlGn")

plt.show()
```


In [48]:

```
# Important feature using ExtraTreesRegressor

from sklearn.ensemble import ExtraTreesRegressor
selection = ExtraTreesRegressor()
selection.fit(X, y)
```

Out[48]:

ExtraTreesRegressor()

In [49]:

```
print(selection.feature_importances_)
```

```
[2.41001729e-01 1.42132136e-01 5.46805823e-02 2.36014299e-02 2.12523285e-02 2.82643793e-02 1.91978118e-02 1.09236940e-01 1.77896558e-02 9.13745435e-03 1.93484570e-03 1.70050697e-02 1.43061897e-01 6.73873570e-02 1.78506227e-02 8.82456771e-04 3.13228105e-03 1.03000131e-04 5.12590416e-03 8.11249931e-05 5.10834842e-04 1.26719805e-02 3.20225814e-03 5.56697231e-03 1.06136533e-02 1.25250515e-02 6.47943446e-03 4.47129085e-04 2.51236791e-02]
```

In [50]:

```
#plot graph of feature importances for better visualization

plt.figure(figsize = (12,8))
feat_importances = pd.Series(selection.feature_importances_, index=X.columns)
feat_importances.nlargest(20).plot(kind='barh')
plt.show()
```


Fitting model using Random Forest

- 1. Split dataset into train and test set in order to prediction w.r.t X_test
- 2. If needed do scaling of data
 - Scaling is not done in Random forest
- 3. Import model
- 4. Fit the data
- 5. Predict w.r.t X_test
- 6. In regression check RSME Score
- 7. Plot graph

```
In [51]:
```

```
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 4
```

```
In [52]:
```

```
from sklearn.ensemble import RandomForestRegressor
reg_rf = RandomForestRegressor()
reg_rf.fit(X_train, y_train)
```

Out[52]:

RandomForestRegressor()

```
In [53]:
```

```
y_pred = reg_rf.predict(X_test)
```

```
In [54]:
```

```
reg_rf.score(X_train, y_train)
```

Out[54]:

0.9525507165440114

```
In [55]:
```

```
reg_rf.score(X_test, y_test)
```

Out[55]:

0.7981962137917512

In [56]:

```
sns.distplot(y_test-y_pred)
plt.show()
```

C:\Users\LENOVO\anaconda3\lib\site-packages\seaborn\distributions.py:2557: F utureWarning: `distplot` is a deprecated function and will be removed in a f uture version. Please adapt your code to use either `displot` (a figure-leve l function with similar flexibility) or `histplot` (an axes-level function f or histograms).

warnings.warn(msg, FutureWarning)


```
In [57]:
```

```
plt.scatter(y_test, y_pred, alpha = 0.5)
plt.xlabel("y_test")
plt.ylabel("y_pred")
plt.show()
```


In [58]:

from sklearn import metrics

In [59]:

```
print('MAE:', metrics.mean_absolute_error(y_test, y_pred))
print('MSE:', metrics.mean_squared_error(y_test, y_pred))
print('RMSE:', np.sqrt(metrics.mean_squared_error(y_test, y_pred)))
```

MAE: 1178.386659050589 MSE: 4351304.604651364 RMSE: 2085.978093042054

In [60]:

```
# RMSE/(max(DV)-min(DV))
2090.5509/(max(y)-min(y))
```

Out[60]:

0.026887077025966846

In [61]:

```
metrics.r2_score(y_test, y_pred)
```

Out[61]:

0.7981962137917512

In []:

Hyperparameter Tuning

- Choose following method for hyperparameter tuning
 - 1. RandomizedSearchCV --> Fast
 - 2. GridSearchCV
- · Assign hyperparameters in form of dictionery
- · Fit the model
- · Check best paramters and best score

In [62]:

```
from sklearn.model_selection import RandomizedSearchCV
```

In [63]:

```
#Randomized Search CV

# Number of trees in random forest
n_estimators = [int(x) for x in np.linspace(start = 100, stop = 1200, num = 12)]
# Number of features to consider at every split
max_features = ['auto', 'sqrt']
# Maximum number of levels in tree
max_depth = [int(x) for x in np.linspace(5, 30, num = 6)]
# Minimum number of samples required to split a node
min_samples_split = [2, 5, 10, 15, 100]
# Minimum number of samples required at each leaf node
min_samples_leaf = [1, 2, 5, 10]
```

In [64]:

In [65]:

rf_random.fit(X_train,y_train)

```
Fitting 5 folds for each of 10 candidates, totalling 50 fits
[CV] END max_depth=10, max_features=sqrt, min_samples_leaf=5, min_samples_sp
lit=5, n_estimators=900; total time=
                                       3.1s
[CV] END max_depth=10, max_features=sqrt, min_samples_leaf=5, min_samples_sp
lit=5, n_estimators=900; total time=
                                       3.1s
[CV] END max_depth=10, max_features=sqrt, min_samples_leaf=5, min_samples_sp
lit=5, n_estimators=900; total time=
                                       3.1s
[CV] END max_depth=10, max_features=sqrt, min_samples_leaf=5, min_samples_sp
lit=5, n_estimators=900; total time=
                                       3.1s
[CV] END max_depth=10, max_features=sqrt, min_samples_leaf=5, min_samples_sp
lit=5, n_estimators=900; total time=
                                      3.1s
[CV] END max_depth=15, max_features=sqrt, min_samples_leaf=2, min_samples_sp
lit=10, n_estimators=1100; total time=
                                        4.9s
[CV] END max_depth=15, max_features=sqrt, min_samples_leaf=2, min_samples_sp
lit=10, n_estimators=1100; total time=
                                         5.2s
[CV] END max_depth=15, max_features=sqrt, min_samples_leaf=2, min_samples_sp
lit=10, n_estimators=1100; total time=
                                        4.9s
[CV] END max_depth=15, max_features=sqrt, min_samples_leaf=2, min_samples_sp
lit=10, n_estimators=1100; total time=
                                         4.8s
[CV] END max_depth=15, max_features=sqrt, min_samples_leaf=2, min_samples_sp
lit=10, n_estimators=1100; total time=
                                         5.0s
[CV] END max_depth=15, max_features=auto, min_samples_leaf=5, min_samples_sp
lit=100, n_estimators=300; total time=
[CV] END max_depth=15, max_features=auto, min_samples_leaf=5, min_samples_sp
lit=100, n_estimators=300; total time=
                                         3.1s
[CV] END max_depth=15, max_features=auto, min_samples_leaf=5, min_samples_sp
lit=100, n_estimators=300; total time=
                                         3.0s
[CV] END max_depth=15, max_features=auto, min_samples_leaf=5, min_samples_sp
lit=100, n_estimators=300; total time=
                                         2.9s
[CV] END max_depth=15, max_features=auto, min_samples_leaf=5, min_samples_sp
                                         3.0s
lit=100, n_estimators=300; total time=
[CV] END max depth=15, max features=auto, min samples leaf=5, min samples sp
lit=5, n_estimators=400; total time=
                                       5.4s
[CV] END max_depth=15, max_features=auto, min_samples_leaf=5, min_samples_sp
lit=5, n_estimators=400; total time=
                                       5.3s
[CV] END max_depth=15, max_features=auto, min_samples_leaf=5, min_samples_sp
lit=5, n_estimators=400; total time=
                                       5.3s
[CV] END max_depth=15, max_features=auto, min_samples_leaf=5, min_samples_sp
lit=5, n estimators=400; total time=
                                       5.3s
[CV] END max_depth=15, max_features=auto, min_samples_leaf=5, min_samples_sp
lit=5, n estimators=400; total time=
                                       5.2s
[CV] END max_depth=20, max_features=auto, min_samples_leaf=10, min_samples_s
plit=5, n_estimators=700; total time=
                                        8.3s
[CV] END max depth=20, max features=auto, min samples leaf=10, min samples s
plit=5, n estimators=700; total time=
                                        8.2s
[CV] END max_depth=20, max_features=auto, min_samples_leaf=10, min_samples_s
plit=5, n_estimators=700; total time=
                                        8.4s
[CV] END max_depth=20, max_features=auto, min_samples_leaf=10, min_samples_s
plit=5, n_estimators=700; total time=
                                        8.3s
[CV] END max depth=20, max features=auto, min samples leaf=10, min samples s
plit=5, n_estimators=700; total time=
                                        8.1s
[CV] END max_depth=25, max_features=sqrt, min_samples_leaf=1, min_samples_sp
lit=2, n_estimators=1000; total time=
                                        7.4s
[CV] END max_depth=25, max_features=sqrt, min_samples_leaf=1, min_samples_sp
lit=2, n_estimators=1000; total time=
                                        7.5s
[CV] END max_depth=25, max_features=sqrt, min_samples_leaf=1, min_samples_sp
lit=2, n estimators=1000; total time=
                                        7.2s
```

```
[CV] END max_depth=25, max_features=sqrt, min_samples_leaf=1, min_samples_sp
lit=2, n_estimators=1000; total time=
                                        7.2s
[CV] END max depth=25, max features=sqrt, min samples leaf=1, min samples sp
lit=2, n_estimators=1000; total time=
                                        7.4s
[CV] END max_depth=5, max_features=sqrt, min_samples_leaf=10, min_samples_sp
lit=15, n_estimators=1100; total time=
                                         2.5s
[CV] END max_depth=5, max_features=sqrt, min_samples_leaf=10, min_samples_sp
lit=15, n_estimators=1100; total time=
                                         2.7s
[CV] END max_depth=5, max_features=sqrt, min_samples_leaf=10, min_samples_sp
lit=15, n_estimators=1100; total time=
                                         2.7s
[CV] END max_depth=5, max_features=sqrt, min_samples_leaf=10, min_samples_sp
                                         2.6s
lit=15, n_estimators=1100; total time=
[CV] END max_depth=5, max_features=sqrt, min_samples_leaf=10, min_samples_sp
lit=15, n_estimators=1100; total time=
                                         2.6s
[CV] END max_depth=15, max_features=sqrt, min_samples_leaf=1, min_samples_sp
lit=15, n estimators=300; total time=
                                        1.3s
[CV] END max_depth=15, max_features=sqrt, min_samples_leaf=1, min_samples_sp
lit=15, n_estimators=300; total time=
                                        1.2s
[CV] END max_depth=15, max_features=sqrt, min_samples_leaf=1, min_samples_sp
lit=15, n_estimators=300; total time=
                                        1.2s
[CV] END max_depth=15, max_features=sqrt, min_samples_leaf=1, min_samples_sp
lit=15, n_estimators=300; total time=
                                        1.2s
[CV] END max_depth=15, max_features=sqrt, min_samples_leaf=1, min_samples_sp
lit=15, n_estimators=300; total time=
                                        1.2s
[CV] END max_depth=5, max_features=sqrt, min_samples_leaf=2, min_samples_spl
it=10, n_estimators=700; total time=
                                       1.6s
[CV] END max_depth=5, max_features=sqrt, min_samples_leaf=2, min_samples_spl
it=10, n_estimators=700; total time=
                                       1.5s
[CV] END max_depth=5, max_features=sqrt, min_samples_leaf=2, min_samples_spl
it=10, n_estimators=700; total time=
                                       1.5s
[CV] END max_depth=5, max_features=sqrt, min_samples_leaf=2, min_samples_spl
it=10, n_estimators=700; total time=
                                       1.5s
[CV] END max_depth=5, max_features=sqrt, min_samples_leaf=2, min_samples_spl
it=10, n_estimators=700; total time=
                                       1.5s
[CV] END max_depth=20, max_features=auto, min_samples_leaf=1, min_samples_sp
lit=15, n_estimators=700; total time=
                                        9.8s
[CV] END max_depth=20, max_features=auto, min_samples_leaf=1, min_samples_sp
lit=15, n_estimators=700; total time=
                                        9.5s
[CV] END max_depth=20, max_features=auto, min_samples_leaf=1, min_samples_sp
lit=15, n estimators=700; total time= 10.1s
[CV] END max_depth=20, max_features=auto, min_samples_leaf=1, min_samples_sp
lit=15, n_estimators=700; total time=
                                        9.8s
[CV] END max_depth=20, max_features=auto, min_samples_leaf=1, min_samples_sp
lit=15, n_estimators=700; total time= 10.0s
Out[66]:
RandomizedSearchCV(cv=5, estimator=RandomForestRegressor(), n jobs=1,
                   param_distributions={'max_depth': [5, 10, 15, 20, 25, 3
0],
                                        'max_features': ['auto', 'sqrt'],
                                        'min_samples_leaf': [1, 2, 5, 10],
                                        'min_samples_split': [2, 5, 10, 15,
                                                              100],
                                        'n estimators': [100, 200, 300, 400,
                                                         500, 600, 700, 800,
                                                         900, 1000, 1100,
                                                         1200]},
                   random_state=42, scoring='neg_mean_squared_error',
```

verbose=2)

In [67]:

```
rf_random.best_params_
```

Out[67]:

```
{'n_estimators': 700,
  'min_samples_split': 15,
  'min_samples_leaf': 1,
  'max_features': 'auto',
  'max_depth': 20}
```

In [68]:

```
prediction = rf_random.predict(X_test)
```

In [69]:

```
plt.figure(figsize = (8,8))
sns.distplot(y_test-prediction)
plt.show()
```

C:\Users\LENOVO\anaconda3\lib\site-packages\seaborn\distributions.py:2557: F utureWarning: `distplot` is a deprecated function and will be removed in a f uture version. Please adapt your code to use either `displot` (a figure-leve l function with similar flexibility) or `histplot` (an axes-level function f or histograms).

warnings.warn(msg, FutureWarning)

In [70]:

```
plt.figure(figsize = (8,8))
plt.scatter(y_test, prediction, alpha = 0.5)
plt.xlabel("y_test")
plt.ylabel("y_pred")
plt.show()
```


In [71]:

```
print('MAE:', metrics.mean_absolute_error(y_test, prediction))
print('MSE:', metrics.mean_squared_error(y_test, prediction))
print('RMSE:', np.sqrt(metrics.mean_squared_error(y_test, prediction)))
```

MAE: 1162.5465497521143 MSE: 4033404.726960512 RMSE: 2008.3338186069846

In [75]: