name:	Vince Rothenberg
course:	csci 10
assignment:	lab 1
prepared:	Wed, Jan 29, 2020 // 5:51 pm

1. Present the following base-10/decimal value using the notation $x*10^n + x*10^n-1 + x*10^n-2...$: 1234567

1*10^6+2*10^5+3*10^4+4*10^3+5*10^2+6*10^1+7*10^0

2. Present the following base-2/binary value using the notation $x*2^n + x*2^n-1 + x*2^n-2...$: 0b0011_0011_0011

 $0*2^15+0*2^14+1*2^13+1*2^12 + 0*2^11+0*2^10+1*2^9+1*2^8 + 0*2^7+0*2^6+1*2^5+1*2^4 + 0*2^3+0*2^2+1*2^1+1*2^0$

3. Present the following base-16/hexadecimal value using the notation $x*16^n + x*16^n-1 + x*16^n-2...$: 0xABC

11*16^2 + 12*16^1 + 13*16^0

- 4. Convert the following base-10/decimal value to base-2/binary representation: 43
 0b0010_1011
- 5. Convert the following base-10/decimal value to base-2/binary representation: 1492

0b0101_1101_0100

- 6. Convert the following base-10/decimal value to base-16/hexadecimal representation: 1963

 0x7AB
- 7. Convert the following base-10/decimal value to base-16/hexadecimal representation: 18 $$0{\rm x}12$$
- 8. Convert the following base-2/binary value to base-16/hexadecimal representation: 0b0001_0001_0001

 0x1111
- 9. Convert the following base-16/hexadecimal value to base-2/binary representation: 0x321a 0b0011_0010_0001_1010
- 10. What is true about all following data representations: 1337 (base-10), 0x0539 (base-16), $0b0000_0101_0011_1001$ (base-2)

They are equivalent representations of the same quantity in different bases.