

Con Income and a second of the second of the

NATIONAL BURFAU OF S

Department of the Army Belvoir Research and Development Center Ft. Belvoir, Virginia 22060-5606

Report 2428

EFFECT OF COMPOUNDING AND

MIXING VARIABLES ON THE

PHYSICAL PROPERTIES OF

ELASTOMERIC TANK PAD FORMULATION

Paul Touchet
Paul Gatza
Gumersindo Rodriguez
Alan Teets
and
Jacob Patt

Phase I Technical Report August 1982 to August 1983

January 1986

Approved for public release; distribution unlimited.

86 4 28 168

AD-A167 728

UTIC FILE COPP

Destroy this report when it is no longer needed. Do not return it to the originator.

The citation in this report of trade names of commercially available products does not constitute official endorsement or approval of the use of such products.

SAL STITUTE STREET WESSEL SEESSES STREET SERVINE SERVINE

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
2428 AD-ALGOVE ACCESSION NO.	7 2 STALOG NUMBER
4. TITLE (and Substitio) EFFECT OF COMPOUNDING AND MIXING VARIABLES ON THE PHYSICAL PROPERTIES OF ELASTOMER TANK PAD FORMULATION 7. AUTHOR(3)	5. TYPE OF REPORT & PERIOD COVERED August 1982 to August 1983 Phase I, Technical Report 6. PERFORMING ORG. REPORT NUMBER 8. CONTRACT OR GRANT NUMBER(*)
Paul Touchet, Alan Teets, Paul Gatza, Gumersindo Rodriguez, Jacob Patt*	
9. PERFORMING ORGANIZATION NAME AND ADDRESS Belvoir R&D Center; Materials, Fuels & Lubricatns Lab Rubber & Coated Fabrics Research Group Fort Belvoir, VA 22060-5606	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS PRON 1B-2-2B109-01EF, 1B-3-2B180-1BE
11. CONTROLLING OFFICE NAME AND ADDRESS Tank Automotive Command, ATTN: DRSTA-RCK Warren, MI 48090	January 1986 13. NUMBER OF PAGES 93
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)	15. SECURITY CLASS. (of this report) UNCLASSIFIED
16. DISTRIBUTION STATEMENT (of this Report)	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
Approved for public release; distribution unlimited.	
17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, If different from	m Report)
*US Army Tank Automotive Command Warren, MI 48090	
19. KEY WORDS (Continue on reverse side it necessary and identity by block number) Elastomers Banbury Mixing Dispersion Styrene-Butadiene Rubber Natural Rubber Compounding Ingredients	
Processing studies were conducted on styrene-butadier rubber (NR) compounds typical of those used in the fabrica effects of purposely-implemented alternations in formulating were ascertained through visual examination of ingredient of testing of vulcanized samples obtained for each variant/rubbanalyzed in terms of the ultimate positive or negative impact performance of the end items.	ation of tank track pads. The ng and mixing of the compounds tisperties and physical/mechanical ber combination. Results were

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

UNCLASSIFIED

PREFACE

The Rubber/Coated Fabrics Research Group; Materials, Fuels and Lubricants Laboratory of the Belvoir Research and Development Center; Fort Belvoir, Virginia; prepared all rubber compounds, performed all tests, and prepared this report, as tasked and assigned by the Tank Automotive Command (TACOM), Warren, Michigan.

Joseph O'Gurkis, Eric C. Vasey, and John B. Vollmer prepared test specimens and performed most of the laboratory testing, and Donovan Harris and Dennis Higgins conducted the Scanning Electron Microscope (SEM) studies and provided the photographs used in rating elastomeric compound dispersion.

200000

The state of the s

The second of th

STIC ELECTE MAY 2 1986

CONTENTS

Section	Title	Page
	PREFACE	iii
	ILLUSTRATIONS	v
	TABLES	vi
I	INTRODUCTION	_
	1. Subject	1
	2. Background	1
II	INVESTIGATION	
	3. Scope	2
	4. Compound Preparation and Tests Conducted	2
	5. Results	10
Ш	DISCUSSION	
	6. Rheology and Dispersion	64
	7. Tensile Strength and Elongation	68
	8. Abrastion Testing	68
	9. Tear Strength	69
	10. DeMattía Flex	70
	11. Goodrich Flexometer	70
	12. Compressibility	71
	13. Composite Data Analysis	
IV	CONCLUSIONS	72
	APPENDICES	
	A. SEM PHOTOGRAPHS	75
	R CONVERSION TARLE	84

ILLUSTRATIONS

Figure	Title	Page
1	Modified Trouser Tear Specimen	9
2	Dispersion Rating	11
3	Typical Monsanto Rheometer Curve	19
4	Tensile Strength and Elongation—SBR	49
5	Tensile Strength and Elongation—NR	50
6	Pico Abrasion Index—SBR and NR	51
7	Taber Abrasion Loss—SBR and NR	52
8	Die C Tear-SBR	53
9	Die C Tear-NR	54
10	Trouser Tear—SBR	55
11	Trouser Tear-NR	56
12	DeMattia Flex After 6000 Cyles	57
13	DeMattia Flex vs Scorch Rate—SBR	58
14	DeMattia Flex vs Scorch Rate-NR	59
15	Goodrich Flex -△T-SBR and NR	60
16	Goodrich Flex-Dynamic Compression-SBR and NR	61
17	Compressibility of SBR Compounds; 40: Compression	62
18	Compressibility of NR Compounds; 40: Compression	63
19	Monsanto Rheometer Curve—Compound 15SBR-2	65
20	Monsanto Rheometer Curve-Compound 15NAT-2	66
21	Monsanto Rheometer Curve—Compound 15SBR-6	67

TABLES

Table	Title	Page
1	SBR Formulations and Mixing Variables	3
2	Natural Rubber Formulations and Mixing Variables	4
3	Properties and Test Methods	8
4	Rheology and Dispersion Properties of SBR Rubber Compounds	12
5	Rheology and Dispersion Properties of Natural Rubber Compounds	15
6	Original Physical Properties of SBR Compounds	20
7	Original Properties of Natural Rubber Compounds	24
8	Tear Strength Properties of SBR Compounds	28
9	Tear Strength Properties of NR Compounds	31
10	Flex Fatigue Properties of SBR Rubber Compounds	34
11	Flex Fatigue of Natural Rubber Compounds	37
12	Compressibility Properties of SBR Compounds	40
13	Compressibility Properties of Natural Rubber Compounds	44
14	Effect of Processing and Compounding Variables on Properties-SBR	47
15	Effect of Processing and Compounding Variables on Properties_Natural Rubber	49

EFFECT OF COMPOUNDING AND MIXING VARIABLES ON THE PHYSICAL PROPERTIES

OF ELASTOMERIC TANK PAD FORMULATIONS

I. INTRODUCTION

- 1. Subject. This report details investigations conducted and results obtained in efforts to determine the extent to which the ultimate physical properties (static and dynamic) of typical tank pad formulations are affected by variations in mixing procedures, accuracy of weighing of ingredients, overloading and underloading of a Banbury mixer, substitution with different forms of certain chemicals, and other compounding and mixing variables.
- 2. Background. Historically, performance in the field of elastomeric components of track assemblies of vehicles such as the M-60 tank and M-1 tank has been poor, with service life expectancy for the M-60 tank limited to as high as 2000 to 3000 mi on pavement and as low as 300 to 400 mi in off-the-road service, whereupon replacement is necessary. The M-1 track has an average life ranging from 600 to 1000 mi. Since these vehicles must be capable of deployment and movement over all types of terrain and environmental conditions, the rubber track shoes are exposed to factors which significantly accelerate wear. The configuration of a typical track assembly is an obvious factor contributing to the accelerated degradation. Unlike tires, wherein a continuous band of rubber, theoretically, has line contact with the terrain (usually smooth), tank track pads are designed for total contact with the ground but actually encounter varying degrees of intermittent contact with terrains ranging from relatively smooth to broken and irregular, often containing rocks, hard and soft soil agglomerates, organic debris, and other penetrating objects. Therefore, performance characteristics for a tank track pad are significantly different from those of a tire. In the track pad, a high degree of resistance to abrasion, heat build-up, tearing, chunking, and chipping of rubber is requisite.

Optimization of the above dynamic properties as well as the usual basic properties (tensile strength, elongation, hardness, etc.) can only be achieved through the choice of the quantity and type of compounding ingredients used with the base polymer or polymers and must be closely adjusted and controlled. Likewise, processing (such as the mixing of the ingredients) must be monitored to insure compound uniformity and absence of any deterrent to proper vulcanization of the entire volume of rubber contained in the pads.

CONTRACTOR OF THE PROPERTY OF

Proceeded passiven respected Kosocian processor indicator of passace in the second in the second in the second of the second of

The results of TACOM-sponsored investigations conducted by Virginia Polytechnic Institute (VPI)¹ have suggested that dispersion of compounding ingredients in the Banbury mixing cycle may have a significant effect on the ultimate performance of typical tank pad vulcanizates. Examination of cross-sections of tank pads which had failed in the field using a Scanning Electron Microscope (SEM) and Energy Dispersive X-Ray Analysis (EDAX) revealed areas of agglomerates of zinc oxide and sulfur. Whether, and to what degree, these observed inequities in dispersion have any influence on vulcanizate properties and ultimate end item performance was not fully established. Likewise, no recommendations were furnished regarding corrective measures to be taken in future procurements. Therefore, TACOM desired to investigate all processing factors which may contribute to reducing the expected service life of tank pads with the eventual objective of improving end item quality assurance. They requested the assistance of the Rubber/Coated Fabrics Group; Materials, Fuels and Lubricants Laboratory; U.S. Army Belvoir Research and Development Center; Fort Belvoir, Virginia, where complete facilities for conducting bench-scale compounding, vulcanization, and physical testing are available.

Dwight, David W. and McGrath, James E., "Formation and Failure of Elastomer Networks Via Thermal, Mechanical and Surface Characterization" VPI, TACOM Report 12498, December 1979.

II. INVESTIGATION

3. Scope. Generally, the base formulations for compounds used to fabricate tank track pads employ styrene-butadiene rubber (SBR) or natural rubber (NR). Blends of these elastomers with polybutadiene rubber (PBD) are known to have been used. However, no blends were included in this work. An evaluation plan designed to study the effects of mixing procedures, i.e., accuracy of weighing of ingredients, overloading and underloading of a Banbury mixer, use of alternate forms of certain chemicals, and variation in mixing cycles, was established. Physical tests were conducted on the cured compounds. Visual observations were performed and correlated with the test results to provide an index of the effect of the variables on vulcanizate peformance.

4. Compound Preparation and Tests Conducted.

a. Compound Preparation. The formulations shown in Tables 1 and 2 selected for preparation of the SBR and NR compounds, while perhaps not totally typical of those used in current tank track pad production, had been studied earlier² and were considered sufficiently representative in terms of the type and quantity of ingredients used and mixing procedure employed. The standard mixing procedures adapted for the 15 SBR-1 and 15 NAT-1 compounds, and in cases where only ingredient changes were made, are detailed as follows:

STYRENE BUTADIENE RUBBER (SBR) STANDARD MIXING PROCEDURE

The rubber is mixed in a Banbury mixer followed by a final mill mix as follows:

1. Banbury mixing procedure:

- a. The Banbury mixer is run on low speed (77 c/m) with ambient cooling water turned on full.
- b. Mixing cycles:
- (1) Charge the mixing chamber with the rubber, lower the ram, and run the Banbury mixer for 1 min to masticate the rubber.
- (2) Raise the ram and add all the zinc oxide, sulfur, stearic acid, accelerators, and antioxidants which had been previously blended. Then, add carbon black, sweep the orifice, lower the ram, and allow the batch to mix for 2 min.
- 3) Stop the Banbury mixer, raise the ram, scrape, return all ingredients from ram to Banbury mixer, sweep, lower ram, and mix for 5 min before dumping the contents. Batch temperature should not exceed 220 degrees F during mixing.

Bergstrom, E., "Development of Wear-Resistant Elastomers for Track Pads," Weapons Command, Rock Island, H., October 1972.

Table 1 988 formulations and Mixing Variables

Ingradient 19	Ä	55 gg 2	5 8 3	•	55 SE SE	55 6-88.6-	15 986-7 15 986-8		15 398-9	15 984-9 15 994-11 15 994-11	15 588-11	15 9R-12	15 398-13	12.00 51	31-885 SI	31-981-SI	15 SR-17	15 98 -8
	X 0.0	100.0 100.0 100.0 100.0	0.00	_	100.0	0.00	0.00	0.004	0.00	0.00	100.0	X 00.0	0.001	200.0			0.00	
200 -10																		1.00.4
25 Per 15	9	4.0	4.0	9	6.0	0.4	9	0 ;			₩.0	€.0	9	9	3	3	3	3
Zinc Orde									4.0									
いい。										4.6								
Stauric Acid	2.0	5.0	5.0	2.0	5.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	5.0
**************************************	6 .0	€.0	€.0	6.0	€.0	6 .0	9	9.0	9.0	9 .0	46. 0	9.0	6 .0	9 .0	€.0		9 .0	€.0
25. 25. 26. 27.																€.0		
44 45 5 0	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	a.s
Actorite 2	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Sulfur - Abberneters	5.0	5.0	2.0	2.0	5.0	2.0	2.0	2.0	2.0	2.0			2.0	1.5	9.0	2.0	5.0	0.2
<u> </u>											2.0							
いと												7.7						
Sentacure	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5		1.0	1.5	1.5	1.5	1.5	1.5
- S 2000 S												1.875						
Mixing Vericoles	15																	
Serbicy Mains																		
ette Sie	-	1.2	0.8	-	-	-i	-	4	-:	=			-:	-	-	-:	-	-4
Matterton The Min	-	-	-	•	~	-	-	-	-	-	-	-	-	-	-	-	-	÷
E	,	~	1	~	•	s	স	~	-	•	^	•	~	~	~	1	w	~
Open Temperature	<u>"</u> §	8	8	8	8	8	8	0 2	8	8	83	8	8	8	8	8	8	8
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	•	•	•	•	•	•	•	•	•	•	v	w	•	•	•	•		•
																	•	
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	-	•

Table 2 Natural Rubber Formulations and Mixing Vertables

Ingredient	1-D# 51	15 HG-1 15 HG-2 15 HG-3 15 HG	15 MT-3	15 MT-4	15 MT-5	15 MT-6	15 IMT-7	15 MT-8	15 MT-9	15 NAT-10	15 MT-11	IS MIT-S IS MIT-S IS MIT-7 IS MIT-8 IS MIT-10 IS MIT-12 IS MIT-12	15 MT-13	15 MT-13 15 MT-14	15 MT-15 15 MT-16	15 MT-16	US MY-LJ	15 MT-18
Action 1955-1	100.0	0.00	0.00	0.0	100.0	0.00	100.0	100	0.00	0.00	0.03	100.0	0.00	100.0	100.0	0.00	100.0	100.0
1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A	4.0	6. 0	9	4.0	4.0	0.♣	4.0	4.0			4.0	6.0	9.	0.	6.0	4.0	9.	3
Zinc Oxide Acrodum									6. 0									
										4.6								
Steeric Actd	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	5.0	2.0	7.0	2.0
22 m 21 m 21 m 21 m 21 m 21 m 21 m 21 m	6.0	6 .0	6.0	6.0	€.0	6.0	6.0	6.0	9.0	6 .0	9.0	6.0	€.0	€.0	6.0		9.0	
ASS.																€.0		6.0
A Part of the Control	0.5	0.5	0.5	0.5	0.5	0.5	0.5	g.s	0.5	0.5	0.5	Q.S	o.s	0.5	0.5	0.5	Q.S	0.5
Antoxite 2	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	10	3.0	3.0	•	3.0	3.0	3.0
Sulfur - Rabbermids	2.5	2.5	5.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5			2.5	1.5	•	5.5	2.5	2.5
- 39											2.5							
· · · ·												23						
Santopure	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8		*	0.8	0.8	0.8	0.8	8
Polydor S												ij						
Mixing Variables	ă																	
Barbury Mxing	P																	
acto Sim	-i	1.2	0.8	- i	~i	-	-4	1	-:	-i				-1		- :	- i	-i
Metica to	-	-	-	•	~	-	-		-	-	-		-	-	-		-	-
The Ha	~	~	~	~	~	~	ব	•	~	~	~	~	~	~	~	~	1	~
	8	8	8	8	8	8	8	×	8	8	8	8	8	8	8	8	8	8
Market Ma	w	v	w	w	w	ď	w	w	•	w	w	w	•	v o	v	w	~	40
I	v	v.	w	vs	50	•	•	•	w	•	•	w	u	•	'n	•	~	•

2. Mill mixing procedure:

- a. The mill shall be at room temperature when first adding the rubber from the Banbury mixer.
- b. Pass the rubber through the mill at 0.020-in. opening once, then twice at 0.125-in. opening.
- c. Pass the rolled batch endwise through the mill six times at a roll separation of .032 in.
- d. Then, sheet off the compound at a setting of 0.085 to .100 in. after allowing the stock to band between the rolls for 30 s to obtain the effects of mill direction.

NATURAL RUBBER (NR) STANDARD MIXING PROCEDURE

The rubber is mixed in a Banbury mixer followed by a final mill mix as follows:

1. Banbury mixing procedure:

- a. The Banbury mixer is run on low speed (77 c/m) with ambient cooling water turned on full.
- b. Mixing cycles:
- (1) Charge the mixing chamber with the rubber, lower the ram, and run the Banbury mixer for 1 min to break down the rubber.
- (2) Raise the ram and add all the zinc oxide, stearic acid, antiozonants, and antioxidants which had been weighed and blended in a separate container. Then, add the carbon black, sweep the orifice, lower the ram, and mix for 2 min.
- (3) Stop the Banbury mixer, raise the ram, scrape, return all ingredients from pan to Banbury mixer, sweep, lower ram, and run for another 4 min and dump the contents. Do not allow the rubber to exceed 220 degrees F during mixing.

2. Mill mixing procedure:

- a. The mill shall be cold with ambient cooling water running and the nip set at 0.060 in.
- b. Cool the rubber by passing rubber stock from Banbury mixer through mill three times without allowing to band on the rolls.
 - c. Band the stock, add accelerators and sulfur.
 - d. Pass the rolled batch endwise through the mill five times at a roll separation of .032 in.
- e. Sheet off to desired thickness of 0.085 to 0.100 in. after allowing the stock to band between rolls for 30 s to obtain the effects of mill direction.

Variations in the standard mixing procedure, as noted in Tables 1 and 2, are detailed below. Each numbered procedure correlates with the last two digits of the compound number except for procedure 18 (15 SBR-26) where the polymer, rather than the black, is changed. Firestone had discontinued production of SBR-1500. Thus, the Copolymer Rubber Co. version of this elastomer was inserted in the program.

PROCESSING STUDY PROCEDURES

- 1. Control or standard mixing procedure is as detailed above. Three 1000-g batches were mixed for each formulation to provide sufficient cured compound for all testing and some degree of replication in both processing and testing.
- 2. Same as Procedure 1, except that the batch size shall be increased to 1200 g to simulate overloading the Banbury mixer.
- 3. Same as Procedure 1, except that the batch size shall be reduced to 800 g to simulate underloading the Banbury mixer.
- 4. Same as Procedure 1, except that the 1-min masticating or breakdown cycle in the Banbury mixer will be eliminated, and all the rubber and other ingredients will be added at the start.
 - 5. Same as Procedure 1, except that the masticating or breakdown cycle will be extended 3 min.
- 6. Same as Procedure 1, except that the final time for the Banbury mixing cycle shall be reduced to 5 min for SBR and 2½ min for NR.
- 7. Same as Procedure 1, except that the final mix time for the Banbury mixing cycles shall be increased to 15 min for SBR and 8 min for NR.
- 8. Same as Procedure 1, except that the temperature of the mix shall be permitted to rise uncontrolled over 220 degrees F.
 - 9. Same as Procedure 1, but use treated zinc oxide from Akrochem.
- 10. Same as Procedure 1, but use 85 percent zinc oxide dispersed in 15 percent SBR binder (Poly-Dispersion SZD-85).
 - 11. Same as Procedure 1, but use Spider brand sulfur in lieu of rubber makers.
- 12. Same as Procedure 1, but use sulfur-polymer S (SS-75) and Santocure-Polydox S (SA-75) in SBR binder in lieu of rubber makers' sulfur and Santocure.
- 13. Same as Procedure 1, except reduce the amount of Santocure to 1 for SBR and 0.4 for NR but use same cure conditions, time, and temperature as for Procedure 1.
- 14. Same as Procedure 1, except reduce the amount of sulfur to 1.5 for both SBR and NR and keep the cure conditions the same as Procedure 1.

- 15. Same as Procedure 1, except increase sulfur content to 5 and maintain same cure conditions as Procedure 1.
 - 16. Same as Procedure 1, except use ISAF (N220) black in lieu of N110.
 - 17. Same as Procedure 1, except change mill mixing to:
 - a. For SBR:
 - (1) In step 3, pass the rubber endwise through mill three times at a roll separation of 0.032.
 - (2) In step 4, allow to band for 5 s.
 - b. For NR:
 - (1) In step 4, pass the rubber endwise through the mill twice at a roll separation of 0.032 in.
 - (2) In step 5, allow to band for 5 s.
- 18. For NR, same as Procedure 1, except use N234 black in lieu of N110. For SBR (compounds 15SBR-26) Copolymer's SBR 1500 is to be substituted, using Procedure 1.
- b. Physical/Mechanical Testing. Table 3 gives all tests conducted on cured samples of all compounds prepared according to the processing study procedures. Current specifications, such as MIL-T-11891, for track shoe assemblies may still reference certain tests conducted according to Federal Test Method Standard 601. These have all been superseded by the ASTM methods in Table 3. As mentioned earlier, three batches were prepared and vulcanized for each compound. Thus, specimens used in each test contain duplicates, since several were taken from each batch to provide the required number and to give a representative cross-section relative to reproducibility of processing and test results. All compounds were cured under the same conditions of time and temperature as determined from rheometer curves for the standard compound No. 1, regardless of what alternatives might be interpreted from curves for compounds No. 2 through No. 18. Also, compression set buttons and flex specimens were cured 5 min longer than ASTM test slabs to compensate for increased thickness.

Three of the tests conducted—trouser tear, compressibility, and dispersion rating—have no direct ASTM or FTMS 601 equivalent. The typical tear test specimen is not designed to overcome two serious deficiencies—leg extension (modulus effect) during extension and development of knotty, irregular tears. The modified trouser tear, susing a specimen as shown in Figure 1, attempts to overcome these shortcomings through fabric reinforcement of the legs, thus providing a path of least resistance along the groove for tear propagation. The molded specimen groove dimensions in Figure 1 are slightly different than those cited in the reference to facilitate machining of the mold.

³ Hewitt, N. L., "Compounding With Silica for Tear Strength and Low Heat Build-Up," PPG Industries, Pittsburgh, Pennsylvania, Rubber World June 1982.

Table 3. Properties and Test Methods

Test	Test Method
1. Mooney viscosity and curve	ASTM D1646
2. Rheometer data and curve	ASTM D2084
3. Properties of cured rubber run at room temperature:	
a. Specific gravity	ASTM D297, Para 15
b. Tensile strength	ASTM D412
c. Elongation	ASTM D412
d. 100 and 200 percent modulus	ASTM D412
e. Hardness, IRHD	ASTM D1415
f. Resilience, Bashore Rebound	ASTM D2632
g. Tear strength, Die C	ASTM D624
h. Trouser tear with fabric insert	
i. Abrasion, Taber	ASTM D3389
j. Abrasion, Pico	ASTM D2228
k. Compressibility	
l. Dispersion rating as observed under a 60-power microscope	
4. Properties on cured material run at 250 °F and 300 °F:	
a. Tear strength, Die C	ASTM D624
b. Trouser tear with fabric insert	
c. Compressibility	
5. Flex fatigue tests:	
a. DeMattia cut growth unaged & after aging 70 h at 212 °F	ASTM D813
b. Goodrich flex at 122 °F	ASTM D623, Method A using a 0.175 in. stroke and 141.6 lb/in. ² for determining heat build-up

* 15° on a side (30° included angle)

Figure 1. Modified Trouser Tear Specimen

Compressibility, unaged, after 4 and 70 h at 250 degrees F, and after a combined 4 h at both 250 degrees F and 300 degrees F, was determined using ASTM D395, Method B compression set buttons (1.129 in. in diameter and 0.5 in. thick). The buttons, for initial testing or after aging, were compressed 10, 20, and 40 percent, using an Instron 1123 Universal Testing Machine. Aged specimens were compressed within the attached chamber with all determinations run at a fixed crosshead speed of 0.2 in./min.

The effectiveness of compound mixing procedures which can have an ultimate effect upon the strength and dynamic properties of end items were ascertained visually by rating ingredient dispersion within the rubber matrix with the aid of a stereo microscope at 60X magnification. ASTM Method D2663 details a similar procedure. For this determination, a sharp ½-in. cut was made in a 1 x 2 x 0.070-in. section of the uncured compound. By grasping each portion of the cut sheet in one hand between the thumb and index finger and pulling apart rapidly in a direction opposite the line of the cut, an even torn surface suitable for viewing was produced. This torn area was observed and rated according to a scale of 1 to 10 (poor to excellent), as shown in Figure 2.

5. Results. Rheological data, obtained by the Monsanto rheometer and by Mooney Viscometer methods and numerical equivalents of visual dispersion ratings, are located in Table 4 for SBR compounds and in Table 5 for NR compounds. A representative Monsanto rheometer curve (Figure 3) is included here to clarify interpretation of tabular data. Original physical properties for all SBR compounds—tensile strength, 100 percent and 200 percent modulus, elongation, IRHD hardness, Bashore Rebound, and both Taber and Pico abrasion—are shown in Table 6. Similar results for the NR compounds are contained in Table 7. Die C and modified trouser tear properties, both original and after 10 min aging at 250 degrees F for each rubber type, are contained in Tables 8 and 9, respectively. Tables 10 and 11 summarize flex fatigue results, according to the DeMattia and Goodrich procedures. The DeMattia flex results also include rate of crack growth for specimens that had been aged 70 h at 100 degrees C. All Goodrich flex data (i.e., change in temperature after 25 min initial rate of temperature change, static and dynamic compression, and permanent set) are included. Compressibility properties of the SBR and NR compounds, unaged and after each of three heat-aging periods, are compiled in Tables 12 and 13, respectively.

Tables 14 and 15 contain a summarization of the effects of procedural and chemical modifications on various properties of the SBR and NR compounds, respectively, the relative degree of any increment or decrement being indicated by positive or negative signs. Figures 4 through 18 comprise a series of bar graphs included to highlight property trends or contrasts between or within the two polymer types used in the program. Photographs taken from the SEM, depicting dispersion of compounding ingredients, appear in Appendix A of this report.

Figure 2. Dispersion Rating

TABLE 4
RHEOLOGY AND DISPERSION PROPERTIES OF SBR RUBBER COMPOUNDS

Marcoccol Exercecedis Provinces Chambers

				MONSANTO	MONSANTO RHEOMETER			MOONEY	MOONEY VISCOMETER	
01 punedron	TS 1	150	T ₉₀	£	Σ	CR.I	# - #	ML 1+4 (212°F)	T ₅ SCORCH 250°F	DISPERSION RATING
							T90-TS 1			
	Min.	Min.	Min.	Lbf. In	Lbf. In				Min	
1558R 1A 1558R 1B	4.0	6.3	12.5 12.0	7.5	37.0 37.0	11.8	3.5	64.3	10.1	~ «
1538R 1C Average	4.0	6.3	12.5	8.0	37.5	11.8 12.0	3.5	62.8	9.7	2 00 00
15 SBR 2A	3.0	ļ	8.0	21.0	33.5	20.0	2.5	>200	2	· ^
15 SBR 28 15 SBR 20	2.8		9.3	20.3 20.8	37.5 33.5	15.4 19.1	2.7	>200 >200 >200	(1)	. ~ ~
Average	2.7	;	8.3	20.7	34.8	18.2	2.5	200		
15 SBR 3A	4.4 3.5	7.3	14.5 12.8	6.8	36.0	10.0	2.9	65.4	13.3	~
	8.	20.7	12.8	7.3	37.0	12.5	3.7	65.6 65.6	13.8	
Assrage	e.	D.	13.4	7.1	36.6	11.4	3.4	65.5	13.7	ico,
15.53R -48		ທີ່ ສຸສ	11.5	7.3	36.5 36.5	12.5 12.5	3.7	66.3	10.3	∞ ∞
155BK-4C Average	3.5	5.8	11.5	7.3	36.5	12.5	3.7	65.9	10.8	& & &
15 SBR -5A	3.8	6.0	11.8	7.0	35.5	12.5	3.6	62.5	10.6	œ
15 SBR - 58 15 SBR - 5C	.0.4 .0.	6.5 6.0	11.8 11.8	7.3	36.0 37.0	11.8	4. 8.	63.4	11.1	· ~ «
Average	3.7	5.8	8.11	7.3	36.2	12.4	3.6	63.2	10.9	980
15 SBR-6A	4.0	6.5	12.3	7.3	36.0	12.1	3.5	64.5	11.8	9
15 SBR - 6C	4 4 0.0.	9.0	11.8 11.8	7.3	36.0 36.0	12.9 12.9	3.7	65.2	11.4	~ ~
Average.	4.0	6.2	12.0	7.3	36.0	12.6	3.6	64.9	11.7	

TABLE 4
RHEOLOGY AND DISPERSION PROPERTIES OF SBR RUBBER COMPOUNDS

STATE OF THE STATE

				MONSANTO	MONSANTO RHEOMETER			MOONEY	MOONEY VISCOMETER	
Compound ID	T _S 1	T ₅₀	T90	롼	W _H	CRI	MH - ML T90-TS 1	ML1+4 (212°F)	15 SCORCH 250°F	DISPERSION RATING
	Min.	Min.	Min.	Lbf. In	Lbf. in				Min	
1558R-7A 1558R-7B 1558R-7C	2.8 2.0 2.5	4.3 3.0 3.8	10.0	11.8 15.0 14.0	36.0 38.0 38.5	12.1 12.5 13.3	2.9 3.6 3.3	140.9 >200 117.9	2.8 3.5 6	7 6 (2) 8
Average	2.4	3.7	10.3	13.6	36.8	12.6	2.9	129.4	2.6	
1558R-88 1558R-86 1558R-8C	3.3	0.000	12.0	7.3	36.5	12.5		67.9 65.7 67.1	9.3 12.1 11.6	7 (2)
15 SBR - 9A 15 SBR - 9B 15 SBR - 9C		999	11.5	7.0	35.55 35.05 5.05	12.5		4.03	9.01	
Average	3.5	6.0	11.7	7.0	35.3	12.3	3.5	62.7	11.0	
15 SBR-10A 15 SBR-10B 15 SBR-10C Average	0.0.0	6.5	12.5 12.5 12.5 12.5	7.0 7.0 7.0 7.0	38.5 38.3 36.3	11.8 11.8 11.8		62.2 62.3 62.9 62.5	11.9	& & & &
15 SBR-11A 15 SBR-11B 15 SBR-11C Aver age		6.0	11.5 12.5 11.5	7.3 7.0 7.1	88 88 88 8 8 6 15 15 15 15 15 15 15 15 15 15 15 15 15	12.5 11.4 12.5 12.1	3.3.2 4.5.26	22.22 2.22.22 2.23.22.22	9.4 10.4 10.2	& & & & & & & & & & & & & & & & & & &
1558R-12A 1558R-12B 1558R-12C Average	4.0	6.5	13.0 13.0 13.5	7.0 7.0 7.0 7.0 7.0	34.5 34.0 34.0		3.1	65.0 65.0 65.3	9.9 9.9 9.2 5.5	∞ ∞ ∞

13

ONE EXECUTION RESERVED DESCRIPTION (CONTRACTOR PROPERTY OF THE PROPERTY OF THE

TABLE 4
RHEOLOGY AND DISPERSION PROPERTIES OF SBR RUBBER COMPOUNDS

					MONSANTO	MONSANTO RHEOMETER			MOONEY	MOONEY VISCOMETER	
. •	Oll (I)	rs 1	T ₅₀	190	£	ž.	CRI	MH - ML	ML1+4 (212°F)	T ₅ SCORCH 250°F	DISPERSION RATING
•		Min.	Min.	Min.	Lbf. In	Lbf. In				Min	
. •	1558R-13A 1558R-138	0.0	7.5	17.5 16.8	7.0	32.8 32.5	7.4	1.9	65.0	12.8 12.7	80 80
· · · · · ·	15SBR-13C Average		7.5	16.8	7.2	32.6	7.8	2.0	65.0	12.9	∞∞
	1553R-14A	4.4.4.0.2.0.2.0.2.0.2.0.0.0.0.0.0.0.0.0.		13.5	7.0	30.5	10.5	4.0.0	62.0	12.4	œ œ ¢
	1958K-14C	_i	6.6	13.5	6.7	30.2	10.9	2.5	61.5	12.4	æ æ
14	15.58R-158 15.58R-158	, y, y, o	ທີ່ຄຸດ	14.0	7.0	52.5 49.5	88.0 6.0	4. E. c.	63.8	6.0	90 90 0
_	Average	<u>.</u>	5.9	14.0	7.0	50.7	8.8	3.9	63.7	6.1	8
, •	1558R-16A 1558R-168 1558R-16C Average	ຕຸກ ຕຸກ ໝູ່ ຄຸກ ຄຸກ		11.0	6.5 6.8 6.8	34.5 33.8 35.0 4.4	13.3 13.3 12.5 13.0	3.5	64.7 65.5 65.4 65.2	ფ. ფ. ფ. ფ. ფ. ట. ♣. స.	& & & &
	1558R-17A 1558R-17B 1558R-17C Average		7.0 6.8 7.0	14.0 13.0 13.5		33.8 34.0 34.5 34.5	11.4	3.2	60.9 62.6 62.9 62.1	12.8 10.9 11.9	~ ~ ~ ~
3	15SBR-26	4.3	7.0	11.3	8.9	30.0	11.1	2.6	63.8	11.5	f6
		Notes.									

Notes:

Test could not be run because viscosity of the compound was greater than 200. Knotty appearance All three batches of this material were mixed together, hence only one curve was ran. 325

TABLE 5
RHEOLOGY AND DISPERSION PROPERTIES OF NATURAL RUBBER COMPOUNDS

				HONSANTO	HONSANTO RHEOMETER			MOONEY	MOONEY VISCOMETER	
Compound ID	T _S 1	T50	190	₹¹	₹	CRI	MH - ML T90-TS 1	ML3+4 (212°F)	T ₅ SCORCH 250°F	DISPERSION
	Min.	Min.	Min.	Lbf. In	Lbf. In				Min	
15NAT -1A 15NAT -1B	0 w i	7.5 8.0	13.8	7.5	37.5 36.0	11.4	4 4 ·	49.6	11.3	∞ ∞ ·
-	5.3	7.8	14.5	7.4	36.3	11:4	3.3	49.2	11.8	000
15NAT -2A 15NAT -2B 15NAT -2C	ი. 4 ი. ა. ა	& & & & & & & & & & & & & & & & & & &	10.0 9.5	8.0 7.0	38.0 35.5	20.0 20.0 19.1	6.0 5.7 4.6	50.1 49.6	10.8	7 7 7
-	6.7	6.5	9.8	9.3	36.8	19.7	5.4	49.3	10.3	
15NAT -3A 15NAT -3B 15NAT -3C		7.5	13.5 14.0 13.8	7.0	35.0 33.5	11.8	 	55.1 57.8 57.1	10.9 11.3 10.7	~~~
C 73	5.2	7.3	13.8	6.7	33.8	11.7	3.2	56.7	11.0	- 4
15NAT -4A 15NAT -4B 15NAT -4C	5.0 5.0	7.0 8.0 7.0	13.0 14.5 13.0	7.5 7.5 7.5	34.5 34.0 34.5	12.5 11.1 12.5	6.0.6. 4.0.4.	64.6 66.7 66.4	10.8 11.1 10.9	∞∞∞
Average	5.2	7.3	13.5	7.5	34.3	12.0	3.2	62.9	10.9	80
15NAT -5A 15NAT -5B 15NAT -5C Average	ນ. ພູກ. ພູກ.	7.5	13.5	6.8 7.5 7.0	33.5 35.0 35.0	10.8 12.5 12.1	0.0.0.c.	63.1 63.1	10.7	8 8 8 8 8 8 8
		2		•	•	?	;		2:	o
	NOTES: (A)-Knotty (B)-Voids	t S								

TABLE 5
RHEOLOGY AND DISPERSION PROPERTIES OF NATURAL RUBBER COMPOUNDS

				MONSANTO	MONSANTO RHEOMETER			MOONEY	MOONEY VISCOMETER	
Compound	T _S 1	T ₅₀	T90	£	₹	SR.	₩. - ₩.	ML3+4 (212°F)	T ₅ SCORCH 250°F	DISPERSION
							T90-TS 1	_		
	Min.	Min.	Min.	Lbf. In	Lbf. In				Min	
15NAT -6A	5.3	7.3	14.0	8.5	35.5	11.4	3.1	73.2	9.6	(A)
15NAT -68	ກຸຕ	9.K	13.5 13.5	. O	35.5 34.0	12.1 12.1	m en	6/.5 72.5	9.4 10.1	20 00
0.	5.3	7.1	13.7	8.3	35.0	11.9	3.2	71.1	7.6	a
15NAT -7A	5.8	8.0	14.0	6.3	35.0	12.1	3.5	56.3	13.5	Z (A)
15NAT -78		7.5	14.0 14.8	7.0	35.5 35.5	11.4 10.3	ლ თ. ა	- 59.0 63.1	12.8 12.2	
Average	5.4	7.6	14.3	6.8	35.3	11.3	3.2	59.5	12.8	_
	5.3	7.3	14.0	7.0	34.0	11.4	3.1	57.6	11.0	
15NAI -8B		 	13.5	8.8 8.8	34.5 34.5	11.8 11.8	3.0 3.0	65.7 82.2	11.0 10.6	(¥) 8 8
Average	5.3	7.3	13.8	7.8	34.2	11.7	3.1	68.5	10.9]
15NAT -9A	က လ ဆ ဆ	8. 8. 6. 0.	14.0 14.0	7.0	35.8 35.3	10.8	3.1	68.3 64.8	14.0	8 (B) 6
	5.5	8.1	14.8	7.2	35.3	10.8	3.0	67.9	13.8	55
15NAT-10A		0.8	14.0	8.9	36.5	11.4	4.6	63.2	15.3	(8) 8 (
15MAT-108 15MAT-10C	ນ ໝື່ອວ	2 0 0 0	14.0 14.8	7.3 7.8	36.5 35.8	12.1 11.1	3.0 3.1	68.4 66.7	14.7 15.2	(8) 6
Average		8.0 0.8	14.3	7.3	36.3	11.5	3.4	66.1	15.1	89
	NOTES (A) Knotty (B) Voids	S Knotty Voids								

TABLE 5
RHEOLOGY AND DISPERSION PROPERTIES OF NATURAL RUBBER COMPOUNDS

COROL COCCOSTA SECTIONS - COCCOSTS

				MONSANTO	MONSANTO RHEOMETER			MOONEY	MOONEY VISCOMETER	
Compound	T _S 1	150	190	£	풒	CRI	MH - ML	ML3+4 (212°F)	T ₅ SCORCH 250°F	DISPERSION RATING
							T90-TS 1			
	Min.	Min.	Min.	Lbf. In	Lbf. In				Min	
15NAT-11A		7.5	14.0	7.3	36.0	11.8	3.4	67.5	11.0	6
15NAT-118	ທີ່ເ	7.5	14.3	7.3	35.8	11.4	m m «	65.0	11.4	5 0
Average		7.5	14.1	7.3	35.9	11.7	3.4	65.8	11.0	6
15NAT-12A	6.3	9.3	16.0	6.0	35.5	10.3	3.0	61.0	15.9	6
15NAT-12B	 	တ တ ထ	15.5 15.3	6.0 6.3	34.5 35.0	10.8 11.1	 	65.8 66.4	15.6 15.6	თ თ ——
Average	6,3	0.6	15.6	6.1	35.0	10.7	3.1	64.4	15.7	6
15NAT-13A		10.5	20.8	5.6	31.0	6.9	1.8	62.9	19.6	6
15NAT-138 15NAT-13C	0.0	ص ص حو بر	20.3 19.8	6,3	31.0 32.0	7.1	9.1	65.7	18.7	თ «
Average	<u>i </u>	6.6	20.3	6.1	31.3	1:4	1.8	62.9	19.2	6
15NAT-14A		9.5	15.0	6.0	29.5	12.5	2.9	67.8	19.7	(A)
15KAT-14B 15KAT-14C	0.8.9	ه و د و	14.5 14.0	o e.	29.5 29.8	13.3 13.8	3.7 3.2	0.99 20.6	19.5 18.5	6 6 -
Average	<u> </u>	9.3	14.5	6.1	29.6	13.2	3.1	68.1	19.2	(A) 6
15NAT-15A		9.0	17.3	5.5	38.0	8.5	2.8	56.7	15.8	8 (A)
15NAT-15B	ກຸດ	ໝູ ໝູ ຕຸນ.	17.0 17.5	0.0	41.0 42.0	ຜິຜິ	00	28°2 28°2	13.7	თ თ
Average	L	8.6	17.3	5.8	40.3	8.4	2.9	67.9	14.4	6
	NOTES: (A) Knotty	otty								
-	-							_		-

TABLE 5
RHEOLOGY AND DISPERSION PROPERTIES OF NATURAL RUBBER COMPOUNDS

				MONSANTO	MONSANTO RHEOMETER	į	NOOM	MOONEY	MOONEY VISCOMETER	
Compound	Ts 1	T ₅₀	T ₉₀	ਛ	¥	CR.	MH - ML 190-TS 1	ML3+4 (212°F)	TS SCORCH 250°F	DISPERSION
	Min.	Min.	Min.	Lbf. In	lbf. In				Min	
15NAT-16A 15NAT-16B 15NAT-16C	5.5 5.5 5.5	8.5 9.0 8.3	15.0 15.5 15.0	5.6 6.0 6.0	35.3 34.5	10.5 10.5	3.1 3.1 3.0	64.8 65.7 64.1	15.5 15.2 15.2	യഗഗ
Average	2.7	8.6	15.2	5.9	34.9	10.5	3.1	64.9	15.3	6
15NAT-17A 15NAT-17B	0.60	ထွာ ထွာ ထ က ထ က	15.5	6.0	35.5 34.0	10.5	3.1	63.6	17.0	& & & & &
Average	6.1	8.6	15.4	6.2	34.5	10.7	3.0	65.5	16.9	0 80
15NAT-18A 15NAT-18B 15NAT-18C	5.5 5.5 5.5	8.0 8.0	15.5 15.0 15.0	5.5 6.0	35.0 35.3 35.8	10.0 10.5 10.5	3.0 3.1	58.5 59.6 59.0	13.6 13.5 12.8	88 88
Average	5.5	8.1	15.2	5.7	35.4	10.3	3.1	9.0	13.3	80
	MOTES: (A) Kno (B) Vol	S: Knotty Voids								

TIME - MIN

1. M - Minimum torque

SELECTION OF THE SECRETARY ASSESSMENT OF THE SECRETARY ASS

- 2. $M_{\mbox{\scriptsize H}}$ Maximum or equilibrium torque
- 3. ${\rm T_s}^1$ Time to 1 lbxIn., rise above ${\rm M}_L$
- 4. T(90) Time to 90% of maximum torque
- 5. $T_{(50)}$ Time to 50% of maximum torque
- 6. CRI Cure Rate Index = $\frac{100}{T(90)-T_{s}1}$

Figure 3. Typical Monsanto Rheometer Curve

TABLE 6

			Original P	hysical P	roperties	ginal Physical Properties of SBR Compounds	spunc				
QI Dunodice)	Cure	Specific Gravity	Tensile	Mod 200%	Mod 100%	Elong	Hardness IRHD	Bashore Rebound	Abrasion Taber	on Pico	1
	Min/°F		lb/in.²	lb/in.²	lb/in.²	34	Deg.	કર	gm/ 1000 cycles	Rating	
1500R-1A	30/310 30/310	1.1325	3810 3969	672 682	20 6 209	500 490	72 70	86 38	.1984	139 146	
15SBR-1C Average	30/310	1.1303 1.1319	3953	647	191	490	70 71	39	.1708	145	1
15588-28 1558-28 1558-20 Average	30/310 30/310 30/310	1.1183 1.1797 1.1210 1.1397	1990 1955 1685 1877	615 970 795 795	185 250 195 210	340 270 280 297	02 17 17	38 38 41 39	.0607 .0635 .0922 .0721	173 182 182 179	1
5 155/R-3/ 155/R-38 155/R-3C Average	30/310 30/310 30/310	1.1223 1.1188 1.1214 1.1208	4130 4158 3518 3935	748 667 665 665	249 238 246 244	520 520 470 503	73 71 72	35.53	. 1809 . 1848 . 1477 . 1711	156 154 160 157	1
1558R-4A 1558R-46 1558R-4C Accrage	30/310 30/310 30/310	1.1202 1.1198 1.1219 1.1206	3480 3985 3358 3608	692 780 780 735 735	222 221 233 225	460 490 440 463	05 17 17	36 36 36	.1684 .1631 .1609	141 141 149 144	
15:55R-5A 1:58R-5B 15:55R-5C Average	30/310 30/310 30/310	1.1160 1.1187 1.1202 1.1183	4131 3949 3571 3884	668 655 678 678	230 230 239 239	540 500 480 507	69 70 71 70	36 36 36	.1596 .2109 .1613	141 142 157 147	1

TABLE 6

	n Pico	Rating	143 134 147	141 170 172 168	170	147 137 153 146	141 129 133 134	132 150 134 139
	Abrasion Taber	gm/ 1000 cycles	.1657 .1222 .1454	. 1241 . 1271 . 1384	. 1298	.0900 .1015 .1088 .1001	.1437 .1577 .1394 .1499	.1598 .1658 .1600 .1618
	Bashore Rebound	*	38.88	£ & & & &	38	98 98 98 98	37 37 37	37 33
spu	Hardness IRHD	Deg.	71 72 72 72 72 72 72 72 72	2 2 2 2 3 3 3 3 3 4 4 5 5 7	72	73 72 72 72	20 21 20 20 20 20 20 20 20 20 20 20 20 20 20	1221
riginal Physical Properties of SBR Compounds	Elong	34	450 450 460	453 380 310 420	370	490 480 480 483	460 455 500 471	490 480 480 483
operties	Mod 100%	lb/in.²	200 191 219	203 221 274 281	529	266 267 243 253	233 218 198 216	185 202 198 195
ysical Pr	Mod 200%	lb/in.²	645 640 658	647 756 1032 1006	931	811 726 688 741	712 779 647 712	603 650 640 631
Original Pt	Tensile	lb/in.²	3052 3439 3637	3376 2956 2736 4250	3314	4103 3754 4031 3962	3451 3412 4026 3629	3966 3543 3699 3736
	Specific Gravity		1.1171 1.1198 1.1172	1.1180 1.1190 1.1202 1.1206	1.1199	1.1195 1.1202 1.1196 1.1198	1.1221 1.1212 1.1215 1.1216	1.1203 1.1280 1.1198 1.1193
	Cure	Min/°F	30/310 30/310 30/310	30/310 30/310 30/310		30/310 30/310 30/310	30/310 30/310 30/310	30/310 30/310 30/310
	Compound		1558R-6A 1558R-6B 1558R-6C	1558R-7A 1558R-7B 1558R-7B 1558R-7C	Average	1558R-8A 1558R-8B 1558R-8C Average	1558R-9A 1558R-9B 1558R-9C Average	1558R-10A 1558R-10B 1558R-10C Average

TABLE 6

SECTIONS SEEDERS IN ECOSORSE

			Original F	Physical P	roperties	Original Physical Properties of SBR Compounds	spunc				
Compound	Cure	Specific Gravity	Tensile	Mod 200%	Mod 100%	Elong	Hardness IRHD	Bashore Rebound	Abrasion Taber	on Pico	i
	Min/ºF		lb/in.²	lb/in.²	lb/in.²	34	Deg.	34	gm/ 1000 cycles	Rating	, 1
15SBR-11A	30/310	1.1125	3635	7117	224	470	73	37	. 1085	132	
15 SBR-11B	30/310	1.1200	3703	739	231	480	72	37	.0895	135	
15 SBR-11C	30/310	1.1206	3333	726	238	450	72	37	8660.	126	- 1
Average		1.11//	792/	87/	231	46/	72	3/	.0993	131	
15 SBR-12A	30/310	1,1187	3510	639	195	480	02	35	.1605	124	
15 SBR-12B	30/310	1.1175	2993	592	146	430	2	32	.1702	126	
15 SBR - 12C	30/310	1.1155	3597	673	198	490	77	32	.1650	120	
Average		1.1172	3367	635	179	466	70	35	.1662	123	İ
15 SBR-13A	30/310	1.1197	3565	496	192	520	69	37	.1566	121	
15 SBR-138	30/310	1.1205	3664	539	200	530	2	38	.1390	150	
15 SBR - 13C	30/310	1.1209	3511	592	506	510	20	38	.1380	125	
Average		1.1204	3580	542	199	520	70	38	.0946	132	1
15 SBR - 14A	30/310	1.1250	3795	425	137	280	99	37	.0946	133	
15SBR-14B	30/310	1.1219	3713	445	137	920	99	88	9920.	120	
15 SBR - 14C	30/310	1.1235	3418	452	153	220	89	37	.1267	126	
Average		1.1235	3642	440	142	999	29	37	.0993	126	1
15 SBR - 15A	30/310	1.1387	2521	1924	515	230	62	33	.0647	166	
15 SBR - 158	30/310	1.1389	2236	1853	203	500	78	32	.0885	192	
15SBR-15C	30/310	1.1390	2737	1957	546	250	78	Ħ	2690.	168	
Average		1.1389	2498	1161	525	233		34	.0743	175	1

TABLE 6

			Original P	Physical P	roperties	Physical Properties of SBR Compounds	Spunc				
Se or rund TO	Cure	Specific Gravity	Tensile	Mod 200%	Mod 100%	Elong	Harness IRHD	Bashore Rebound	Abrasion Taber Pi	on Pico	1
	Min/°F		lb/in.²	lb/in.²	lb/in.²	34	Deg.	×	gm/ 1000 cycles	Rating	1
1558R-16A	30/310	1,1261	3591	803	509	460	69		.1567		
1558R-16B	30/310	1.1259	3392	798	5 92	440	2	ස	.1630	130	
1553R-16C	30/310	1.1250	3213	822	260	430	2	40	.1179	122	
Average		1.1257	3398	807	245	443	92	39	. 1459	129	1
1553R-17A	30/310	1.1240	3332	989	200	480	89	88	.1510	126	
1553K-17B	30/310	1.1245	3432	719	191	470	89	æ	.1138	122	
15:3R-17C	30/310	1.1254	3804	725	213	510	69	æ	.1401	116	
Average		1.1246	3523	709	201	486	89	38	.1350	I2I	İ
1) 155BR-26	30/310	1.1210	3779	734	291	525	9	40	.0575	148	
	Notes:										

(1) All three batches of compound 15 SBR-26 were mixed together to form one batch.

TABLE 7

			Original P	roperties	of Natura	ginal Properties of Natural Rubber Compounds	spunod				- 1
Compound	Cure	Specific Gravity	Tensile	Mod 200%	Mod 100%	Elong	Hardness IRHD	Bashore Rebound	Abrasion Taber	on Pico	
	Min/°F		lb/in.²	lb/in.²	lb/in.²	36	Deg.	34	gm/ 1000 cycles	Rating	
15NAT 1-A 15NAT 1-B 15NAT 1-C	20/300	1.1076 1.1096 1.1108	3751 4010 3850	732 736 670	233 263 240	500 510 500	1,01	4 4 4 4 3 3	.3169 .3866 .3517	136 134 132	
~		1.1093	3870	712	245	503	77	44	.3517	134	ı
15NAT 2-A 15NAT 2-B	20/300	1.0949	3617 3894	792 792	231 231	450 500	71	45 45	.4025	161 151	
15NAT 2-C Average	20/300	1.0948 T.0936	3725 3745	883	288	480	72	45	4030	155 15 6	1
2 15NAT 3-A 15NAT 3-B	20/300	1.0962	3767 3882	817	216	490 500	88	47	.2187	133	
15NAT 3-C Average	20/300	1.0969 1.0966	3699	843	209	490	89	46	.2602	141	1
15NAT 4-A 15NAT 4-B 15NAT 4-C	20/300 20/300 20/300	1.0972 1.0940 1.0940	3666 3840 3679	780 672 817	247 205 270	490 530 470	5 5 5 5 6 6 6 6	44 47 47	. 2569 . 2934	133 150 141	
Average		1.0951	3728	756	240	497	69	46	7162.	141	1
15NAT 5-A 15NAT 5-B	20/300	1.0914	3861 3664	693 685	198 200	950 500	<i>6</i> 9	46 48	.2132	149 143	
15NAT 5-C Average		1.0953 1.0938	3684 3736	672	206	200 206	02 69	47	. 2629	148	l

TABLE 7

			Original P	roperties	of Natura	ginal Properties of Natural Rubber Compounds	spunodi			
Compound 10	Cure	Specific Gravity	Tensile	Mod 200%	Mod 100%	Elong	Hardness IRHD	Bashore Rebound	Abrasion Taber	on Pico
	Min/°F		lb/in.²	lb/in.²	lb/in.²	74	Deg.	34	gm/ 1000 cycles	Rating
15NAT 6-A	20/300	1.0948	3667	653	205	200	89	47	.2708	124
15NAT 6-B	20/300	1.0927	3645	682	503	200	8	4	.2761	159
Average	005/07	1.0932	3740	694	219	510	69	200	. 2847	140
158AT 7-A		1.0968	3315	813	275	490	71	45	2796	142
15NAT 7-B	20/300	1.0963	3107	793	273	450	יג	4	.2804	145
J-/ INNCI		1.0971	3138	791	566	450	71	4	.3113	155
Average		1.0967	3187	799	271	463	71	45	. 2904	147
15NAT 8-A	20/300	1.0935	3760	743	503	200	99	47	3010	135
2 15NAT 8-8		1.0929	3603	691	213	200	99	47	3080	137
15NAT 8-C		1.0943	3373	730	245	200	2	47	.2693	146
Average		1.0936	3578	721	222	200		47	. 2928	139
15NAT 9-A	20/300	1.0969	3168	819	526	460	71	45	.2558	157
15NAT 9-B	20/300	1.0961	3617	802	264	200	77	45	. 2350	162
15NAT 9-C	20/300	1.0958	3366	845	260	470	71	45	.2781	162
Average		1.0962	3384	823	260	477	71	45	.2563	160
15NAT 10-A	20/300	1.0985	3789	870	256	520	71	45	.2382	149
15NAT 10-B		1.0961	3423	806	311	470	73	45	.2782	160
15NA 1 10-0		1.0961		922	307	510	70	45	.2530	160
Average		1.0969		006	291	200	71	45	.2565	156

TABLE 7

			Original P	roperties	of Natura	Original Properties of Natural Rubber Compounds	spunodu				ı
Compound	Cure	Specific Gravity	Tensile	Mod 200%	Mod 100%	Elong	Hardness IRHD	Bashore Rebound	Abrasion Taber	on Pico	1
	Min/°F		lb/in.²	lb/in.²	lb/in.²	×	Deg.	>4	gm/ 1000 cycles	Rating	
15NAT-11A 15NAT-11B	20/300	1.1109	3386 3684 3606	842 778 919	275 278 313	470 500 500	27.2	2 4 4	.2727	136 144	
Average		1.1103	3559	846	289	490	72	£	.2701	139	1
15NAT-12A	20/300	1.0978	3857	732	267	500	22	46	.2899	149	
15NAT-12C Average		1.0962	3763	864	314	500 490	222	34	. 2850 . 2880	153	1
20 15NAT-13A	20/300	1.0971	3808	710	256	540	<i>(</i> 9	47	1879	152	
15NAT-13C 15NAT-13C Average		1.0967 1.0968	3689 3791	711	283 283	200 230 230	71 69	\$ %	. 2469 . 2121	141 150 147	1
15nAT-14A 15nAT-14B 15nAT-14C	20/300 20/300 20/300	1.1068 1.1068 1.1056	3359 3424 3219	620 570 629	165 134 184	510 540 490	67	47	.1763 .3336 .1954	146 169 154	1
15NAT-15A 15NAT-15B 15NAT-15C Average	20/300 20/300 20/300	1.0980 1.0966 1.0960 1.0969	3562 3562 3443 3482	984 1082 1080 1049	330 387 387	453 453	7 7 7 7 7 7 3 7 3 7 3 7 3 7 3 7 3 7 3 7	\$ 65 4 64 45 64 65 64 br>64 65 64 br>65 65 65 65 65 65 65 65 65 65 65 6	.5253 .5072 .4404 .4910	138 134 142 138	1

IABLE /

AND THE RECEDENCE AND PROPERTY.

			Original Pr	roperties	of Natura	ginal Properties of Natural Rubber Compounds	spunodi				
Compound	Cure	Specific Gravity	Tensile	Mod 200%	Mod 100%	Elong	Hardness IRHD	Bashore Rebound	Abrasion Taber	on Pico	
	Min/°F		lb/in.²	lb/in.²	lb/in.²	34	Deg.	×	gm/ 1000 cycles	Rating	
15NAT-16A	20/300	1.0980	3650	865	264	450	70	47	.5010	141	
15NAT-168	20/300 20/300	1.0966	3456	954	320	440	7.	47	.4437	132	
Average		1.0969	3476	1881	291	440	202	47	4722	134	
151AT-17A	20/300	1.0980	3104	768	256	440	02	47	.4844	144	
15NAT-178	20/300	1.0963	3603	755	282	200	69	47	.4417	139	
150AT-17C	20/300	1.0958	3471	791	279	480	70	48	. 4823	137	1
Average		1.096/	3393	77.1	272	473	02	47	.4695	140	
15NAT-18A	20/300	1.0940	3969	911	324	200	0/	47	.6330	138	
15NAT-18B	20/300	1.0954	3604	732	233	490	72	46	. 5206	143	
151MT-18C	20/300	1.0947	3861	952	297	490	11	47	. 5084	140	
Average		1.0947	3811	865	285	493	71	47	. 5540	140	
7											

Table 8. Tear Strength Properties of SBR Compounds

Tear	Strength	(lb/in.)
------	----------	---------	---

	ASTM	, Die C	Troi	ıser
Compound ID	Unaged	10 min at 250 °F	Unaged	10 min at 250 °F
15SBR-1A	319	181	67	90
15SBR-1B	296	157	103	90
15SBR-1C	297	158	84	(1)
Average	304	165	85	90
15SBR-2A	247	125	89	23
15SBR-2B	291	76		17
15SBR-2C	176	89	79	12
Average	238	97	84	17
15SBR-3A	286	176	73	(1)
15SBR-3B	287	161	95	(1)
15SBR-3C	299	175	67	56
Average	291	171	78	56
15SBR-4A	316	145	68	51
15SBR-4B	338	145	68	60
15SBR-4C	346	127	62	43
Average	333	139	66	51
15SBR-5A	325	171	67	57
15SBR-5B	321	118	63	63
15SBR-5C	313	128	71	48
Average	320	139	67	56
15SBR-6A	368	158	74	52
15SBR-6B	323	187	89	40
15SBR-6C	349	160	78	37
Average	347	168	80	43
15SBR-7A	295	118	63	34
15SBR-7B	231	128	90	17
15SBR-7C	312	167	98	28
Average	279	138	84	26
15SBR-8A	339	157	88	66
15SBR-8B	321	164	74	52
15SBR-8C	335	162	90	62
Average	332	161	84	60

Table 8. Tear Strength Properties of SBR Compounds (continued)

Теат	Strengtl	h /1	lh/	in ì	١
LCat	Duringu	. (1	11//	****	,

	ASTM	I, Die C	Trou	ıser
Compound ID	Unaged	10 min at 250 °F	Unaged	10 min at 250 °F
15SBR-9A	316	130	79	79
15SBR-9B	319	119	71	68
15SBR-9C	321	151	79	61
Average	319	133	76	69
15SBR-10A	340	142	66	47
15SBR-10B	330	147	66	46
15SBR-10C	340	159	83	89
Average	337	149	72	61
15SBR-11A	320	145	84	55
15SBR-11B	310	127	90	53
15SBR-11C	324	166	78	65
Average	318	146	84	58
15SBR-12A	337	145	97	43
15SBR-12B	324	154	67	48
15SBR-12C	330	154	80	66
Average	330	151	81	52
15SBR-13A	308	136	98	52
15SBR-13B	293	158	102	63
15SBR-13C	292	158	83	55
Average	298	151	94	57
15SBR-14A	325	151	129	55
15SBR-14B	303	147	123	58
15SBR-14C	317	153	119	61
Average	315	150	124	58
15SBR-15A	246	124	35	_
15SBR-15B	241	90	24	(2)
15SBR-15C	231	99	23	
Average	239	104	27	-
15SBR-16A	239	159	64	62
15SBR-16B	341	160	60	53
15SBR-16C	300	144	76	85
Average	293	154	67	67

CARACTER STATES

SANDOOD PARAMENTAL SILVENIAN OF KNEESE

Table 8. Tear Strength Properties of SBR Compounds (continued)

Tear Strength (lb/in.)

	ASTM,	Die C	Tro	user
Compound ID	Unaged	10 min at 250 °F	Unaged	10 min at 250 °F
15SBR-17A	276	164	55	65
15SBR-17B	308	135	85	66
15SBR-17C	303	143	52	85
Average	296	147	64	72
15SBR-26 (3)	315	141	96	79

Note: (1) Sample tore apart while in jaws.

⁽²⁾ Sample tore to the side and not along groove.

⁽³⁾ All three batches of compound 15SBR-26 were mixed into one batch.

Table 9. Tear Strength Properties of NR Compounds

Arr .	C.	. 1	/11 /*	١.
Lear	Streng	thi	iih/in.	۱

	ASTM	, Die C	Trou	iser
Compound ID	Unaged	10 min at 250 °F	Unaged	10 min at 250 °F
15NAT-1A	576	290	174	222
15NAT-1B	520	302	128	270
15NAT-1C	690	295	138	156
Average	595	296	147	216
15NAT-2A	489	281	275	256
15NAT-2B	549	258	207	267
15NAT-2C	476	290	176	211
Average	505	276	219	245
15NAT-3A	624	327	201	169
15NAT-3B	632	331	211	253
15NAT-3C	654	309	160	257
Average	637	322	191	226
15NAT-4A	576	259	261	203
15NAT-4B	563	286	250	178
15NAT-4C	558	284	151	153
Average	566	276	221	178
15NAT-5A	504	350	162	185
15NAT-5B	575	361	114	184
15NAT-5C	618	276	237	180
Average	566	329	171	183
15NAT-6A	639	295	199	236
15NAT-6B	566	273	202	232
15NAT-6C	555	253	178	243
Average	587	274	193	237
15NAT-7A	490	297	228	216
15NAT-7B	481	265	156	215
15NAT-7C	602	289	198	206
Average	524	284	194	212
15NAT-8A	604	276	280	195
15NAT-8B	621	288	226	193
15NAT-8C	531	308	147	215
Average	585	291	218	201

Table 9. Tear Strength Properties of NR Compounds (continued)

Tear	Strength	(lb/in.	ί.
------	----------	---------	----

	ASTM,	Die C	Trous	ser
Compound ID	Unaged	10 min at 250 °F	Unaged	10 min at 250 °F
15NAT-9A	533	268	162	196
15NAT-9B	510	284	88	189
15NAT-9C	505	284	116	252
Average	516	279	122	212
15NAT-10A	551	282	266	251
15NAT-10B	502	274	227	201
15NAT-10C	484	286	177	174
Average	512	281	223	209
15NAT-11A	594	297	232	208
15NAT-11B	602	308	207	224
15NAT-11C	478	262	164	163
Average	558	289	201	198
15NAT-12A	536	313	151	211
15NAT-12B	460	273	264	223
15NAT-12C	542	280	171	214
Average	513	289	195	216
15NAT-13A	534	331	172	254
15NAT-13B	631	313	156	224
15NAT-13C	713	313	240	223
Average	626	319	189	234
15NAT-14A	628	293	243	308
15NAT-14B	706	351	261	381
I5NAT-14C	703	273	184	268
Average	679	306	229	319
15NAT-15A	415	239	127	118
15NAT-15B	392	257	123	157
15NAT-15C	453	244	105	229
Average	420	247	118	168
15NAT-16A	452	284	216	135
15NAT-16B	461	255	165	232
I5NAT-16C	429	217	213	184
Average	447	252	198	184

Table 9. Tear Strength Properties of NR Compounds (continued)

Tear Sti	ength	(lb/in.)
----------	-------	----------

	ASTM,	Die C	Trou	iser
Compound ID	Unaged	10 min at 250 °F	Unaged	10 min at 250 °F
15NAT-17A	473	307	187	196
15NAT-17B	558	255	182	159
15NAT-17C	543	288	173	267
Average	525	283	181	207
15NAT-18A	500	305	189	114
15NAT-18B	490	258	192	294
15NAT-18C	546	304	204	222
Average	512	289	195	210

TABLE 10 FLEX FATIGUE PROPERTIES OF SBR RUBBER COMPOUNDS

	Demattia Flex, Crack	IX, LIGCK GLOWEN		200	odrich Flex—Co	Goodrich Flex-Conditioned at 5	50°C	
	Unaged, 6000	cycles	Aged 70 Hrs @ 100° C	∆ T after	Initial rate of	STATIC COMPRESSION	DYNAMIC COMPRESSION	PERMANENT
	Crack Length	Rate of Growth	Rate of Growth	25 minutes	TEMP CHANGE			SET
	1/64 In.	Mils/Min.	Mils/Min.	္စ္ပ	°C/min	×	×	×
1556K-1A	55 6	ç.;	217.4	33.5	4.0	15.8	7.4	2.9
15 SBR - 16 15 SBR - 1C	43	33.6	272.7	32.0 32.5	4.6	17.5	8.3 5.3	. c
Average	33	26.1	240.3	32.7	6.4	16.5	7.7	2.8
15SBR-2A	69	48.4	1000	28 5	· v	16.6	o o	4
1558R-2B		20.05	1363.6	20.5) -	17.0	0 0	
1558R-2C	· ^	20.0	1000.0	31.5	6.7	14.6		2 6
Average	> 63	49.5	1121.2	29.8	6.3	16.1	8.3	2.0
15SBR-3A	59	46.1	5.45.5	3 2	<u>ر</u>	15.7	0	0
15588-38		50.0	652.2	. 4	2.5	17.7	0 0	, ,
15SBR-3C	3	50.0	545.5	34.5	6.7	17.3	. 6	
Average	> 64	48.7	581.1	33.8	6.3	16.9	9.4	1.8
15 SBR - 4A	25	40.6	652.2	34.5	7.2	17.0	6	2,3
1558R-4B	8	46.9	0.009	34.5	7.0	16.4	80	2.0
15 SBR - 4C	49	38.3	0.009	33.0	6.4	16.4	7.8	2.2
Average	5	41.9	617.4	34.0	6.9	16.6	8.5	2.2
155LR-5A	47	36.7	625.0	34.0	6.7	17.9	4.6	2.6
15 SUR - 58	54	42.2	625.0	33.8	6.4	16.7	9.6	2.4
15 SBR - 5C	62	48.4	625.0	32.0	6.1	17.2	8.3	1.6
Average	*	42.4	625.0	33.3	6.4	17.3	8.8	2.2
15 SBR-6A	22	44.5	605.0	34.0	9.9	17.7	9.2	2.3
15 S8R - 68	23	41.4	615.2	33.5	6.2	17.1	8	2.0
30- MACCT	70	4/./	625.0	35.5	6.2	16.5	8.2	1.9
Average	۶	44.5	615.1	34.3	6.3	17.1	9.8	2.1

TABLE 10 FLEX FATIGUE PROPERTIES OF SBR RUBBER COMPOUNDS

	DeMattia Flex,	ex, Crack Growth	1	9	odrich Flex-Co	Goodrich Flex-Conditioned at 50°C	J ₀ 0€	
-	_	60 <u>00</u> cycles	Aged 70 Hrs @ 100° C	∆ T after	Initial rate of	STATIC COMPRESSION	DYNAMIC	PERMANENT
	Crack Length	Rate of Growth	Rate of Growth	25 minutes	TEMP CHANGE			SET
	1/64 In.	Mils/Min.	Mils/Min.	္စ	°C/min	×	74	**
1558R-7A 1558R-7B 1558R-7C	222	50.0 50.0 50.0	625 625 625	32.5 32.5 34.5	5.4 6.3	15.5 16.0 16.5	7.4 6.9 7.7	1.4 8.0
Average		50.0	625	33.2	5.9	16.0	7.3	
15 S&R -8A 15 S&R -8B 15 S&R -8C	51 53 53	39.8 4.8.4	625 625 625	33.5 34.5	6.2	16.3 16.7 17.0	8.68	02.6
Average	25	43.2	625	33.9	6.5	16.7	8.3	2.3
15 SBR - 9A 15 SBR - 9B 15 SBR - 9C	4 4 5 1 1 6 5 1 1 6	35.9 32.0	414.1	33.0 33.5		16.5 18.4 17.4	83 69 6 69 69 69	2.1
Average	44	34.4	432.3	33.7	9.9	17.4	9.3	2.0
15 SBR - 10A 15 SBR - 10B 15 SBR - 10C	4 4 4 9 6 4	38.3 33.6 34.4	484.4 359.4 437.5	34.0 35.0	5.8 6.1 6.0	17.4 18.0	დ დ ლ დ დ	3.2
Average	45	35.4	427.1	34.5	0.9	17.7	8.9	2.9
15 SBR-11A 15 SBR-11B 15 SBR-11C	444	36.7 32.0 32.8	414.1 398.4 429.7	32.0 33.5	6.6.6 4.7.8	16.3 16.6 18.1	2.6 8.6 9.6	% % % % & %
Average	43	33.8	414.1	33.2	5.6	17.0	8.9	2.5
15 SBR - 12 A 15 SBR - 12 B 15 SBR - 12 C	38 18 18	29.7 31,3 14.1	414.1 500.0 375.0	35.2 33.0 33.0	6.0°.	19.1 17.5 18.3	ထမထ	6.5.5
Av :rage	32	25.0	429.7	33.7	6.2	18.3	6.7	2.1

TABLE 10 FLEX FATIGUE PROPERTIES OF SBR RUBBER COMPOUNDS

	DeMattia Flex,	ex, Crack Growth		09	Goodrich Flex-Conditioned at		20°C	
	Unaged, 600	6000 cycles	Aged 70 Hrs @ 100° C	∆ I after	Initial rate of	STATIC COMPRESSION	DYNAMIC COMPRESSION	PERMANENT
		Rate of Growth	Rate of Growth	25 minutes	TEMP CHANGE			SET
	1/64 In.	Mils/Min.	Mils/Min.	ງ ູ	C/min	×	**	**
15 SBR-13A	24	18.8	250.0	37.0	6.7	17.9	11.0	6.4
15 SBR - 138 15 SBR - 13C	8 98 78 78	20.3	250.0 240.0	36.5 35.0	6.9	17.7	10.8 12.3	4. 4. r. u.
Average	26	20.3	247.0	36.2	6.8	17.7	11.4	5.1
15 SBR - 14A		14.8	44.5	39.0	6.2	19.3	12.8	3.8
15 SBR - 148 15 SBR - 14C	22	17.2	37.5	38.5	7.1	18.8	14.4	ب. د. ه
Average		13.3	35.1	38.5	6.9	19.7	14.0	3.8
1558R-15A	^		41.4	29.0	5.4	10.4	1.8	1.1
15 SBR - 158 15 SBR - 15C	3 3	200	39.8	25.0 27.0	5.6	10.0	1.6	
Average	^	> 50	40.6	27.0	5.1	10.0	1.4	1.3
155BR-16A		35.2	400.0	31.5	5.0	16.2	7.4	1.5
15 SBR - 168 15 SBR - 16C		35.2 33.6	400.0 400.0	30.5 32.0	ກິດ	15.9	7.1	1.4
Average	44	34.7	400.0	31.3	5.4	15.9	7.2	1.5
15 SBR-17A		23.4	400.0	33.5	6.3	17.5	8.9	2.2
1558R-178 1558R-17C	4 4	32.0 32.0	375.0 333.0	34.5 31.5	5.7	17.1	0 0	2.5
Average		29.1	369.0	33.2	6.2	17.2	9.1	2.4
1558R-26A	32	24.7	259.0	37.7	7.2	19.3	12.3	2.6
	4							

Notes:

(1) All three batches of compound 15SBR-26 were mixed together to form one batch.

TABLE 11 FLEX FATIGUE OF NATURAL RUBBER COMPOUNDS

	DeMattia Flex,	ex, Crack Growth	l t	90	Goodrich Flex-Conditioned	٦	ე₀05	
	Unaged, 600	6000 cycles	Aged 70 Hrs @ 100° C	∆ T after	Initial rate of	STATIC COMPRESSION	DYNAMIC COMPRESSION	PERMANENT
	Crack Length	Rate of Growth	Rate of Growth	25 minutes	TEMP CHANGE			SET
	1/64 In.	Mils/Min.	Mils/Min.	ĵ,	°C/min	×	×	×
15NAT-1A	24	18.8	21.1	22.0	3.9	17.2	13.0	3.2
15ttAT - 1B 15NAT - 1C	23	18.0	23.4	24.0	3.7	18.3	12.9	
Average	54	18.5	24.2	24.0	3.9	17.7	12.9	3.2
15NAT-2A 15NAT-2B	23	18.0	25.8	22.0 21.0	3.7	16.0	9.8	3.2
15NAT-2C Average	23	18.0	25.5	25.5	3.8	16.1	10.1 10.0	3.3
15NAT - 3A 15NAT - 3B 15NAT - 3C	222	16.4	25.0 21.1 23.4	20.5 21.3	8.8.8 8.6.8	17.2 17.3 16.7	10.8 10.8	2.7.3
Average	22	16.9	23.2	21.3	3.5	17.1	6.0I	3.1
15HAT-4A 15NAT-4B 15NAT-4C	20 19	15.6 14.8 7.8	23.4 21.9 28.1	20.3	2.2 4.0 9.0	17.8	11.0	2.2
Average	16 16	12.7	24.5	21.4	3.4	17.7	10.9	2.8
15847-5A 15841-58 15841-50	23	15.6 18.0 18.0	23.4	20.5 21.5		17.4	10.6	0.6.6
Average	22	17.2	23.2	21.3	3.7	17.4	16.9	3.2
15NAT-68	52 53 53	19.5	22.7	21.0	3.6	14.9	10.4	3.1.8
Average	23	17.7	22.9	21.3	3.7	16.0	10.6	2.9
		_	_	<u>-</u>		_	_	_

TABLE 11 FLEX FATIGUE OF NATURAL RUBBER COMPOUNDS

### Aged 70 Hrs		DeMattia Flex, Crack	ex, Crack Growth	1	9	Goodrich Flex-Conditioned	=	200€	
Crack Grate of Ecouth Rate of Growth Rate of Growth Rate of Growth 25 minutes TEMP CHANGE 1/64 In. Mils/Min. °C °C/min x x 1/64 In. Mils/Min. °C °C/min x x 1/64 In. Mils/Min. °C °C/min x x 22 17.2 27.3 22.3 3.8 16.1 11.3 22 17.2 27.3 22.3 3.8 16.1 11.1 21 16.4 22.7 22.5 3.2 18.0 11.2 22 17.2 22.7 22.4 3.6 18.0 12.7 22 17.2 22.7 22.5 3.7 16.5 11.3 22 17.2 22.9 3.5 18.0 12.2 23 15.1 22.1 22.3 3.6 16.7 10.9 24 18.8 25.0 22.3 4.3 16.7 10.9 25		Unaged, 600	00 cycles	Aged 70 Hrs @ 100° C	∆ T after	Initial rate of	STATIC COMPRESSION	DYNAMIC COMPRESSION	PERMANENT
1/64 In. MIS/Min. MIS/Min. "C "C/min x x 18 14.1 22.7 21.8 3.8 16.5 11.3 22 17.2 27.3 22.3 3.8 16.5 11.1 21 16.4 27.7 22.6 3.6 16.7 11.2 20 15.9 22.7 22.4 3.9 16.5 11.2 21 16.4 22.7 22.5 3.2 17.5 11.2 22 17.2 21.9 20.0 3.2 17.5 11.3 22 17.2 21.9 20.0 3.7 16.6 11.3 22 17.2 21.9 20.5 3.7 16.6 11.3 23 16.4 25.0 22.5 3.9 16.9 11.0 24 18.0 25.0 22.5 4.3 16.7 10.9 25 15.4 22.0 22.5 4.3 16.7 10.9 <		_	Rate of Growth	Rate of Growth	25 minutes	TEMP CHANGE			SET
18 14.1 22.7 21.8 3.8 15.5 11.3 22 17.2 27.3 22.3 3.8 16.5 11.1 20 15.9 27.1 22.7 22.3 3.8 16.1 11.1 21 16.4 22.7 22.5 3.8 18.5 12.7 15 11.7 19.5 20.0 3.2 17.9 11.2 22 11.7 21.9 22.7 22.5 3.7 16.6 10.9 22 11.7 21.4 21.0 3.6 16.7 10.9 22 11.7 21.4 21.0 3.6 16.7 10.9 22 11.7 22.0 22.3 3.9 16.7 10.9 24 18.8 25.0 22.3 3.9 16.7 10.9 25 15.4 21.5 22.3 4.1 16.7 10.9 25 17.5 25.0 22.3 4.1 16		1/64 In.	Mils/Min.	Mils/Min.	ິ	°C/min	×	*	×
22 17.2 27.3 22.3 3.8 16.1 11.1 20 15.9 21.1 22.4 3.9 16.5 11.2 20 15.9 21.1 22.4 3.9 16.5 11.2 21 16.4 22.7 22.5 3.8 18.5 12.7 22 17.2 21.9 20.0 3.7 17.5 11.3 22 17.2 21.4 21.0 3.6 10.8 12.7 21 16.4 25.0 21.5 3.7 16.6 10.8 22 17.2 21.4 21.0 3.6 11.0 12.2 24 18.8 25.0 22.5 4.1 16.7 10.9 25 15.4 21.9 22.3 4.1 16.7 10.9 26 25.0 22.5 4.1 16.7 10.9 27 15.6 22.3 4.3 16.1 10.9 28 20.3 <th>15NAT-7A</th> <th>18</th> <th>14.1</th> <th>22.7</th> <th>21.8</th> <th>3.8</th> <th>15.5</th> <th>11.3</th> <th>3.1</th>	15NAT-7A	18	14.1	22.7	21.8	3.8	15.5	11.3	3.1
20 15.9 23.7 22.4 3.9 16.5 11.2 21 16.4 22.7 22.5 3.8 18.5 12.7 15 11.7 19.5 20.0 3.2 17.5 11.3 22 17.2 21.9 20.0 3.7 18.6 10.8 21 15.1 21.9 20.0 3.6 18.0 12.7 21 15.1 21.0 21.5 3.7 16.7 10.9 22 17.2 21.1 22.5 3.9 16.7 10.9 20 15.4 21.0 22.5 3.9 16.7 10.9 20 15.4 21.9 22.3 4.1 16.7 10.9 20 15.4 22.3 4.3 16.1 11.0 21 22.5 22.3 4.3 16.1 11.0 22 17.5 25.5 22.3 4.2 16.3 10.9 22 16.4 <th>15NAT-78 15NAT-7C</th> <th>212</th> <th>17.2</th> <th>27.3</th> <th>22.3</th> <th>3.8</th> <th>16.1</th> <th>11.11</th> <th>2.5</th>	15NAT-78 15NAT-7C	212	17.2	27.3	22.3	3.8	16.1	11.11	2.5
21 16.4 22.7 22.5 3.8 18.5 12.7 15 11.7 19.5 20.0 3.2 17.9 12.7 22 17.2 21.9 20.0 3.2 17.9 12.7 21 15.1 21.4 21.0 3.7 16.6 10.8 22 17.2 19.5 21.5 3.7 16.6 10.8 22 17.2 19.5 22.5 3.6 16.9 11.0 20 15.4 21.9 22.3 3.7 16.7 10.9 20 15.4 21.9 22.3 3.6 16.9 11.0 21 16.4 25.0 22.3 4.3 16.4 10.9 22 17.5 25.0 22.3 4.3 16.1 10.9 24 18.7 25.0 22.3 4.3 16.4 10.9 25 17.5 25.0 22.3 4.3 16.4 10.9	Average	20	15.9	23.7	22.4	3.9	16.5	11.2	3.0
15 11.7 19.5 20.0 3.2 17.9 12.7 22 17.2 21.9 20.5 3.7 17.9 12.7 21 15.1 21.4 21.6 3.7 16.6 10.8 22 17.2 19.5 22.5 3.9 16.8 11.0 20 15.4 21.9 22.3 3.7 16.7 10.9 20 15.4 21.9 22.5 3.9 16.8 11.0 20 15.4 22.9 22.3 4.1 16.7 10.9 20 25.0 22.5 4.3 16.1 11.2 20 25.0 22.0 4.3 16.1 11.2 22 17.5 25.5 22.3 4.2 16.5 11.0 26 25.0 22.0 4.6 15.7 10.9 27 25.8 25.8 25.3 4.0 15.9 10.9 27 16.4 15.7 <th>15NAT-8A</th> <th>71</th> <th>16.4</th> <th>22.7</th> <th>22.5</th> <th>3.8</th> <th>18.5</th> <th>12.7</th> <th>3.5</th>	15NAT-8A	71	16.4	22.7	22.5	3.8	18.5	12.7	3.5
19 15.1 21.4 21.0 3.6 18.0 12.2 21 16.4 25.0 21.5 3.7 16.6 10.8 22 17.2 19.5 22.3 3.7 16.6 10.9 20 15.4 21.9 22.3 3.9 16.9 11.0 24 18.8 25.0 22.3 4.1 16.7 10.9 23 18.0 26.6 22.3 4.3 16.4 10.9 25 25.0 22.3 4.3 16.4 10.9 26 25.0 22.3 4.3 16.1 11.0 27 17.5 25.5 22.3 4.2 16.5 11.0 26 20.3 29.7 21.5 3.6 16.5 10.9 26 20.3 25.6 22.0 4.6 15.9 10.9 27 16.4 25.0 22.0 4.6 15.9 10.9 28 16.4 <th>15NAT-88 15NAT-8C</th> <th>22</th> <th>11.7</th> <th>19.5</th> <th>20.0</th> <th>3,2</th> <th>17.9</th> <th>12.7</th> <th>3.4</th>	15NAT-88 15NAT-8C	22	11.7	19.5	20.0	3,2	17.9	12.7	3.4
21 16.4 25.0 21.5 3.7 16.6 10.8 22 17.2 19.5 23.0 3.6 16.7 10.9 20 15.6 21.1 22.5 3.9 16.7 10.9 24 18.8 25.0 22.3 4.1 16.9 11.0 23 18.0 26.6 22.3 4.3 16.4 10.8 20 15.6 25.0 22.3 4.3 16.4 10.8 20 15.6 25.0 22.3 4.3 16.1 10.8 20 15.6 22.3 4.3 16.4 10.8 22 17.5 25.5 22.3 4.2 16.5 10.4 24 18.7 26.0 26.0 4.6 15.9 10.9 25 26.8 23.0 4.6 15.9 10.9 24 18.7 26.0 26.0 4.6 15.9 10.9 25 26.8 <th>Average</th> <th>61</th> <th>15.1</th> <th>21.4</th> <th>21.0</th> <th>3.6</th> <th>18.0</th> <th>12.2</th> <th>3.1</th>	Average	61	15.1	21.4	21.0	3.6	18.0	12.2	3.1
22 17.2 19.5 23.0 3.6 16.7 10.9 20 15.4 21.9 22.5 3.9 16.8 11.0 24 18.8 25.0 22.5 4.1 16.9 11.0 23 18.6 25.0 22.5 4.1 16.9 11.0 25 15.6 25.0 22.0 4.3 16.9 11.0 26 25.0 22.0 4.3 16.1 11.2 27 17.5 25.5 22.3 4.2 16.5 11.0 28 29.7 21.5 3.6 16.5 10.9 28 25.6 26.0 4.6 15.9 10.9 27 16.4 25.0 26.0 4.6 15.9 10.9 28 17.2 26.0 19.0 3.6 16.2 10.0 22 17.2 25.0 19.0 3.4 16.1 10.1 22 17.2 25.8 <th>15NAT-9A</th> <th>21</th> <th>16.4</th> <th>25.0</th> <th>21.5</th> <th>3.7</th> <th>16.6</th> <th>10.8</th> <th>3.0</th>	15NAT-9A	21	16.4	25.0	21.5	3.7	16.6	10.8	3.0
24 18.8 25.0 22.5 4.1 16.9 11.0 23 18.0 25.0 22.5 4.1 16.9 11.0 23 18.0 26.6 22.3 4.3 16.4 10.8 20 15.6 25.0 22.0 4.3 16.1 11.0 20 15.6 25.0 22.0 4.3 16.4 10.8 20 15.6 25.0 22.0 4.3 16.1 11.2 22 17.5 25.5 22.3 4.2 16.5 10.4 25 25.6 26.0 4.6 15.9 10.9 24 16.4 25.0 26.0 4.6 15.9 10.9 25 26.0 26.0 4.6 15.9 10.9 27 17.2 25.0 26.0 4.6 15.9 10.8 27 17.2 25.0 26.0 4.6 15.9 10.9 28 17.2 <th>15NAT -98</th> <th>22</th> <th>17.2</th> <th>19.5</th> <th>23.0</th> <th>3.6</th> <th>16.7</th> <th>10.9</th> <th>2.8</th>	15NAT -98	22	17.2	19.5	23.0	3.6	16.7	10.9	2.8
24 18.8 25.0 22.5 4.1 16.9 11.0 23 18.0 26.6 22.3 4.3 16.4 10.8 20 15.6 25.0 22.3 4.3 16.4 10.8 20 15.6 25.0 22.3 4.3 16.4 10.8 22 17.5 25.5 22.3 4.2 16.5 11.0 26 20.3 29.7 21.5 3.6 16.5 10.4 26 20.3 25.0 26.0 4.6 15.9 10.9 21 16.4 25.0 26.0 4.6 15.9 10.9 27 17.2 26.8 23.5 4.0 15.9 10.8 28 17.2 26.8 23.5 4.0 16.9 10.8 22 17.2 25.0 19.8 3.4 16.1 10.1 22 17.2 25.8 20.3 3.5 16.5 10.1 22 17.2 25.8 20.3 3.5 16.5 10.1 22 17.2 25.8 20.3 3.5 16.5 10.1 22 17.2 24.7 19.7 3.5 16.5	JANCI Augusta	076	17.5	21.1	22.5	3.9	16.8	11.0	3.2
24 18.8 25.0 22.5 4.1 16.9 11.0 23 18.0 26.6 22.3 4.3 16.4 10.8 20 15.6 22.3 4.3 16.4 10.8 20 15.6 22.3 4.2 16.1 11.2 21 22.3 4.2 16.5 11.0 22 20.3 29.7 21.5 3.6 16.5 10.9 25 19.5 25.0 26.0 4.6 15.9 10.9 24 18.7 26.8 23.5 4.0 15.9 10.9 27 17.2 25.0 19.0 3.6 16.2 10.0 22 17.2 25.0 19.8 3.4 16.1 10.1 22 17.2 25.8 20.3 3.5 16.5 10.1 22 17.2 25.8 20.3 3.5 16.3 10.1 22 17.2 24.7 19.7 <th>Aver age</th> <th>2</th> <th>15.4</th> <th>21.9</th> <th>22.3</th> <th>3.7</th> <th>16.7</th> <th>10.9</th> <th>3.0</th>	Aver age	2	15.4	21.9	22.3	3.7	16.7	10.9	3.0
23 18.0 26.6 22.3 4.3 16.4 10.8 20 15.6 25.0 22.0 4.3 16.1 11.2 22 17.5 25.5 22.3 4.2 16.5 11.0 26 20.3 29.7 21.5 3.6 16.2 10.4 25 19.5 25.8 23.0 3.8 15.9 10.9 21 16.4 25.0 26.0 4.6 15.7 10.1 24 18.7 26.8 23.5 4.0 15.9 10.9 22 17.2 25.0 19.0 3.6 16.2 10.0 22 17.2 25.8 20.3 3.4 16.1 10.1 22 17.2 25.8 20.3 3.5 16.1 10.1 22 17.2 24.7 19.7 3.5 16.3 10.1	15NAT-10A		18.8	25.0	22.5	4.1	16.9	11.0	2.3
26 20.3 29.7 21.5 3.6 16.5 11.0 26 20.3 29.7 21.5 3.6 16.2 10.4 25 19.5 25.0 26.0 4.6 15.9 10.9 21 16.4 25.0 26.0 4.6 15.7 11.1 24 18.7 26.8 23.5 4.0 15.9 10.8 22 17.2 25.0 19.0 3.6 16.2 10.0 22 17.2 25.8 20.3 3.4 16.1 10.1 22 17.2 25.8 20.3 3.5 16.5 10.1 22 17.2 24.7 19.7 3.5 16.3 10.1	154AT-108		15.6	25.0	22.3	4 4 6 6	16.4	10.8	2.8
26 20.3 29.7 21.5 3.6 16.2 10.4 25 19.5 25.8 23.0 3.8 15.9 10.9 21 16.4 25.0 26.0 4.6 15.7 11.1 24 18.7 26.8 23.5 4.0 15.9 10.8 22 17.2 25.0 19.0 3.6 16.2 10.0 22 17.2 23.4 19.8 3.4 16.1 10.1 22 17.2 25.8 20.3 3.5 16.5 10.1 22 17.2 25.8 20.3 3.5 16.5 10.1 22 17.2 24.7 19.7 3.5 16.3 10.1	Average		17.5	25.5	22.3	4.2	16.5	11.0	2.6
25 19.5 25.8 23.0 3.8 15.9 10.9 21 16.4 25.0 26.0 4.6 15.7 11.1 24 18.7 26.8 23.5 4.0 15.9 10.8 22 17.2 25.0 19.0 3.6 16.2 10.0 22 17.2 23.4 19.8 3.4 16.1 10.1 22 17.2 25.8 20.3 3.5 16.5 10.1 22 17.2 24.7 19.7 3.5 16.3 10.1	15NAT-11A	56	20.3	29.7	21.5	3.6	16.2	10.4	3.2
24 18.7 26.8 23.5 4.0 15.9 10.8 22 17.2 25.0 19.0 3.6 16.2 10.0 22 17.2 23.4 19.8 3.4 16.1 10.1 22 17.2 25.8 20.3 3.5 16.5 10.1 22 17.2 24.7 19.7 3.5 16.3 10.1	15 RAT - 118	52	19.5	25.8	23.0	8. 49.	15.9	10.9	o. €
22 17.2 25.0 19.0 3.6 16.2 10.0 22 17.2 23.4 19.8 3.4 16.1 10.1 22 17.2 25.8 20.3 3.5 16.5 10.1 22 17.2 24.7 19.7 3.5 16.3 10.1	A∵er'age	24	18.7	26.8	23.5	4.0	15.9	10.8	3.5
22 17.2 23.4 19.8 3.4 16.1 10.1 22 17.2 25.8 20.3 3.5 16.5 10.1 22 17.2 24.7 19.7 3.5 16.5 10.1	151.AT-12A		17.2	25.0	19.0	3.6	16.2	10.0	1.9
22 17.2 24.7 19.7 3.5 16.3 10.1	1 . ital - 128		17.2	25.8	19.8 20.3	. s.	16.1 16.5	10.1	2.5
	Average	22	17.2	24.7	19.7	3.5	16.3	10.1	2.2

FLEX FATIGUE OF NATURAL RUBBER COMPOUNDS

444440X , 3446404

BARRARA

Sastantian materials

THE TANK OF THE PERSON OF THE

Unaged, Crack Length					10 CIL - 111 FO	A DE 18 BEINGITINION YELL IN INCOME		
Crac		6000 cycles	Aged 70 Hrs @ 100° C	Δ T after	Initial rate of	STATIC COMPRESSION	DYNAMIC COMPRESSION	PERMANENT
	.	Rate of Growth	Rate of Growth	25 minutes	TEMP CHANGE			SET
1/64	<u>.</u>	Mils/Min.	Mils/Min.	ູນ	°C/min	×	×	**
1544-134 19 1584-138 21 1584-136 15	19.0 21.0	14.8 16.4 11.7	15.6 9.4 11.7	21.0 22.5 22.5	3.8	18.7 18.9	12.9 13.8	
<u> </u>	9.0	14.3	12.2	21.8	3.9	18.7	13.5	3.9
15647-14A 12 15647-14B 14	12.5	16.0	12.5 23.4	25.0	4 4 4 6 4 4	21.8	15.4	2.7
	0.	18.0	16.4	25.3	4.4	21.7	15.8	2.8
15RM - 15A 14 5 15RM - 15B 17 15RM - 15C 17	14.8	19.0 22.0 22.0	317.8 243.9 317.8	19.5 18.0 18.0	e.e. 6	15.6 14.9	8.7 7.8 7.6	2.2
	6.4	21.0	293.2	18.5	3.2	15.0	8.0	2.2
15WAY-16A 18 15WAY-16B 19 15WAY-16C 13	18.0 19.5 13.3	23.0 25.0 17.0	23.4 25.0 22.7	19.5 20.5 21.0		17.9 18.5 18.2	9.9	1.3
	6.9	22.0	23.7	20.3	3.6	18.2	10.6	1.3
15tat-17A 15 15tat-17B 17	15.6	20.0	25.0 25.0	22.0		17.4	10.5 11.6	2.1
	6.4	21.0	26.6	21.3	3.8	18.6	11.3	1.9
15.64-184 17	17.2	22.0 25.0	23.4	21.0 22.5	3.9	17.5	10.7 10.9	1.9
	0.0	23.0	20.3	23.0	3.8	17.2	10.4	2.7
_	8.5 	23.0	20.8	22.2	3. 8.	17.6		10.7

KKKIN PARAMANIN DEPOZOVI DESESTE IN PERSONE IN PERSONE IN PERSONAL IN PERSONAL PROPERTIES IN PERSONAL IN PARAM

TABLE 12
COMPRESSIBILITY PROPERTIES OF SBR COMPOUNDS

		UNAGED	0				×	AGED				
		COMPRESSED	EO	AFTEI	AFTER 4 Hrs @ 250°F, COMPRESSED	250°F, D	AF TER	AFTER 70 Hrs @ 250°F, COMPRESSED	.50°F,	AFTER 4 Hrs (AT 300°F,	4 Hrs @ 25	6 250°F + 4 Hrs COMPRESSED
Compound	10%	20%	40%	10%	20%	40%	10%	20%	40%	10%	20%	40%
10	lb/in.²	lb/in.²	lb/in.²	lb/in.²	lb/in.²	lb/in.²	lb/in.²	lb/in.²	lb/in.²	lb/in.²	lb/in.²	lb/in.²
15 SBR - 1A 15 SBR - 1B	140	268	685	121	247	537	161	309	718	114	225	532
15SBR-1C Average	143	272	753	111	223	482	130	287	676	70 10 10 10 10 10 10 10 10 10 10 10 10 10	210	497
1558R-2A 1558R-2B	115	238 268	627	78 91	146 204	346 497	91	207	514	104 81	209 160	497
15SBR-2C Average	106	234	631 666	59 76	161	408	95	209	533	87	168	406
15 SBR - 3A 15 SBR - 3B 15 SBR - 3C	102 143	231 272 269	619 732 715	104 99 92	213 210 205	504 505 500	140 123 141	281 265 284	657 632 671	111 63 102	215 166 213	508 422 508
Average	129	257	689	98	209	503	135	27.7	653	36	198	479
15 SBR -4A 15 SBR -4B 15 SBR -4C	132 142 141	262 274 275	702 735 738	8 8 8 8 8 8	192 198 198	464 467 469	101	237 274 247	571 632 599	114	220 200 200 210	510 474 433
Average	138	270	725	92	196	467	L L	253	109	108	210	472
1558R-5A 1558R-5B	133	255 240	671 628	93 86 93 86	190 199	464 476	121	24 <i>7</i> 231	577 560	110	213	495 485
15SBR-5C Average	134	261	999	98	179	444	143	253	650 596	97 105	209	475
_									_			

TABLE 12 COMPRESSIBILITY PROPERTIES OF SBR COMPOUNDS

		UNAGED	0				₹	AGED				
		COMPRESSED	ED	AFTER	AFTER 4 Hrs @ 250°F COMPRESSED	250°F,	AFTER	AFTER 70 Hrs @ 250°F COMPRESSED	250°F,	AFTER 4 Hrs	4 Hrs @ 250 00°F, COMPI	@ 250°F + 4 Hrs COMPRESSED
Compound	10%	20%	40%	10%	20%	40%	10%	20%	40%	10%	20%	40%
2	lb/in.²	lb/in.²	lb/in.²	lb/in.²	lb/in.²	lb/in.²	lb/in.²	lb/in.²	lb/in.²	lb/in.²	lb/in.²	lb/in.²
15.80-64	134	25.7	600	82	183	45.2	147	777	667	0	102	463
15 SBR-68	142	/67 072	726	92 78	183	4433	126	258	919	9.5	196 196	403
15 SBR - 6C	145	271	725	8 8	195	475	142	276	655	122	230	534
Average	140	266	717	83	186	459	138	270	647	103	506	489
15SBK-7A	117	254	694	82	194	477	147	292	669	101	509	497
155BR-78	131	258	716	5,5	183	464	136	281	699		221	518
Average	130	264	726	76	184	460	149	295	710	109	218	019
A 1558R-8A	143	270	723	115	224	230	135	273	647	108	217	203
	143	271	728	108	218	513	154	293	677	107	216	503
Average	144	273	733	106	215	512	147	286	699	105	214	504
155BR-9A	135	264	711	96	198	469	143	280	959	111	213	467
15 SBR - 98	127	249	658	6 6	190	438	124	255	596	108	207	474
Average	131	256	682	26	195	458	134	266	622	109	211	479
1558R-10A	135	257	673	87	198	468	136	268	624	105	210	488
15 SBR - 10 B 15 SBR - 10C	133	255 261	682	83 108	186 213	454 501	121	242 244	581	103	207	481 516
Average	134	258	688	93	199	474	126	251	969	108	211	495
							_		_			

TABLE 12
COMPRESSIBILITY PROPERTIES of SBR COMPOUNDS

AGED	AFTER 4 Hrs @ 250°F, AFTER 70 Hrs @ 250°F, AFTER 4 Hrs @ 250°F + 4 Hrs COMPRESSED AT 300°F, COMPRESSED	40% 10% 20% 40% 10% 20% 40%	1b/in. ² 1b/in. ² 1b/in. ² 1b/in. ² 1b/in. ² 1b/in. ² 1b/in. ² 1b/in. ²	134 272 652 122 232	457 139 276 644 110 212 489 503 153 291 678 119 224 504	142 280 658 117 223	126 253 603 113 212	442 132 257 613 106 204 472 475 133 247 590 101 197 455	463 130 252 602 107 204	119 236 562 103 201	472 114 231 552 104 201 452 422 118 246 586 103 195 448	437 117 238 567 103 199	112 215 497 100 190	117 222 509 99 182	405 114 218 503 99 185 416	363 912 194 420 1115(1) 172 354 872 323 863 221 440 1150(1) 184 366 973	880 187 409 1083(1) 169 348	882 201 426 1122(1) 175 353
UNAGED	COMPRESSED	20% 40% 10%	lb/in. ² lb/in. ² lb/in. ²		257 692	262 706		249 672 245 659			229 609 243 658			215 570		426 1257 169	1267	1,270
		Compound 10%	10 lb/in.²		1558R-118 132 1558R-11C 133			1558R-128 128 1558R-12C 126			1558R-138 118 1558R-13C 125			1558R-14B 111		15 SBR - 15 A 206		Average 204

Notes:

(1) Sample ruptured at sides during compression.

TABLE 12
COMPRESSIBILITY PROPERTIES of SBR COMPOUNDS

Contraction of the contraction o

			UNAGED	6				¥	AGED				
			COMPRESSED	ED	AFTE	AFTER 4 Hrs @ 250°F, COMPRESSED	250°F, D	AFTER	AFTER 70 Hrs @ 250°F COMPRESSED	250°F,	AFTER 4 Hrs AT 300°F,		@ 250°F + 4 Hrs COMPRESSED
	Compound	10%	20%	40%	10%	20%	40%	10%	20%	40%	10%	20%	40%
	10	lb/in.²	lb/in.²	lb/in.²	lb/in.²	lb/in.²	lb/in.²	lb/in.²	lb/in.²	lb/in.²	lb/in.²	lb/in.²	lb/in.²
	15SBR-16A		270	754	8	204	497	129	265	637	8	186	455
	15SBR-16B	133	264	732	8	194	471	116	247	622	104	207	484
	15SBR-16C		276	755	98	201	486	145	569	649	112	219	60 9
	Average	132	270	747	16	200	485	130	260	929	66	204	483
	15SBR-17A	95	214	584	102	198	457	118	241	583	78	173	418
	15SBR-17B	122	244	999	110	214	486	121	245	289	8	177	423
	15SBR-17C	112	232	646	66	199	471	110	238	575	102	203	465
	Average	109	230	631	104	204	471	116	241	285	87	184	435
3	15SBR-26	122	237	657	78	175	425	8	200	205	85	177	447
4				_									

Notes: (1) All three batches of compound 15SBR-26 were mixed together to form one batch.

TABLE 13 COMPRESSIBILITY PROPERTIES OF NATURAL RUBBER COMPOUNDS

<u> </u>		UNAGED	0				₹	AGED				
·		COMPRESSED	ED	AFTEI	AFTER 4 Hrs @ 250°F COMPRESSED	250°F, D	AF TER	AFTER 70 Hrs @ 250°F COMPRESSED	250°F,	AFTER AT 3	4 Hrs @ 250°F + 4	O°F + 4 Hrs RESSED
Compound	10%	20%	40%	10%	20%	40%	10%	20%	40%	10%	20%	40%
2	lb/in.²	lb/in.²	lb/in.²	lb/in.²	lb/in.²	lb/in.²	lb/in.²	lb/in.²	lb/in.²	lb/in.²	lb/in.²	lb/in.²
15NAT-1A	136	258	269	83	167	388	108	190	439	78	140	317
15NAT-1B	134	255	869	96	175	398	761	172	409	25	131	562
Average	139	292	710	89	172	392	104	183	429	72	133	303
15:IAT-2A	141	569	573	83	176	428	105	190	441	08	153	352
150AT-28	128	251 263	546	76	159	383	88 5	163	377	8 8	142	324
Average	135	797	599	76	164	400	66	180	420	80	149	342
15th F-3A	123	239	644	64	137	334	96	171	415	61	117	273
15th 1-35 15th 1-30	124	241	931 930	9 y	152 138	340 340 340	104	1/2 183	41b 446	68 69 68 69	121 124	582 782
Average	123	239	635	68	142	348	- 6	175	426	99	121	283
15th/ -4A	127	245	674	91	170	396	100	180	430	29	116	274
15thAT -48 15thAT -4C	122 127	236 248	626 689	83 64 33	160 143	365 348 5	103	168 184	412	69	127	296 291
Average	125	243	673	79	158	370	86	177	428	99	122	287
1534T-5A	117	228	632	80	156	364	95	168	410	99	117	274
15.14.1 - 58 15.14.1 - 50	129 126	249 246	690	<u>6</u> 8	172 158	383 369 369 369	8 8	160 166	380	63	119	282 271
Average	124	241	999	84	162	374	88	165	393	62		276
15HAT-6A	130	252	673	85	167	391	104	188	444	29	128	596
15NAT-68 15NAT-6C	129 124	249 242	658 643	74	153 149	357 353	100 97	179 179	419	2 69	127	289 281
Average	128	248	658	2/2	156	367	100	182	426	69	127	289
 -					٠							

PROGRAMME STATES OF THE STATES

والمحاجزة والمعموميون

TABLE 13
COMPRESSIBILITY PROPERTIES OF NATURAL RUBBER COMPOUNDS

		UNAGED					¥	AGED				
1		COMPRESSED	0.	AFTEI	AFTER 4 Hrs @ 250°F, COMPRESSED	250°F, 0	AFTER (AFTER 70 Hrs @ 250°F, COMPRESSED	:50°F,	AFTER AT 30	4 Hrs @ 25	@ 250°F + 4 Hrs COMPRESSED
Compound	10%	20%	40%	10%	20%	40%	10%	20%	40%	10%	20%	40%
2	lb/in.²	lb/in.²	lb/in.²	lb/in.²	lb/in.²	lb/in.²	lb/in.²	lb/in.²	lb/in.²	lb/in.²	lb/in.²	lb/in.²
15NAT-7A	125	239	611	68 22	148	354	103	188	451	17,	134	314
15NAT - 7C	125	236	579	27	156	364	£ 88	162	403	77	141	327
Average	126	239	230	73	152	320	 86	174	425	75	139	324
15tlAT -8A	122	240	629	17	150	357	88	174	425	65	121	279
15/141-86 15/141-80	122 129	242 255	6/9 720	2	15/ 153	3/1 364		165 167	404 405	₹ 8	118	£ £
Average	124	246	989	73	153	364	92	169	410	99	122	286
15NAT-9A	132	254	8/9	49	134	328	93	178	427	78	143	329
15NAT-98	130	249 261	638	46	131	322	 6 4	182	433	28 c	151	344
Average	132	251	645	53	138	336	95	180	431	8	147	338
15NAT-10A	127	243	612	95	171	379	102	189	445	8	142	327
15NAT-108	130	246	621	8	143	334	8 8	188	453	88	145	328
Average	126	241	614	84	166	375	100	186	450	88	146	333
15NAT-11A	160	295	840	100	188	421	95	190	455	8	159	356
15NAT-11B	170 156	305 205	880	63	146	350	88	170	430	\$ 3	152	344
Average	162	298	857	79	160	366	92	177	438	81	145	327
15NAT-12A	140	270	780	8	170	420	75	160	400	93	130	325
15NAT-12B	130 51	260 285	750	07 77	155 170	330	28	150	382	26	125	320
Average	140	272	782	75	165	403	32	157	395	62	128	325
_							_					

TABLE 13 COMPRESSIBILITY PROPERTIES OF NATURAL RUBBER COMPOUNDS

KARA KARACUMENNING BOXESE BESERVE BESERVES BOYSES WERESES OF 1777 BESERVES

		UNAGED	Q				N N	AGED				
		COMPRESSED	ED	AF TE	AFTER 4 Hrs @ 250°F, COMPRESSED	250°F, 0	AFTER	AFTER 70 Hrs @ 250°F COMPRESSED	250°F,	AFTER AT 3	AFTER 4 Hrs @ 250°F + 4 AT 300°F, COMPRESSED	0°F + 4 Hrs RESSED
Compound	10%	20%	40%	10%	20%	40%	10%	20%	40%	10%	20%	40%
10	lb/in.²	lb/in.²	lb/in.²	lb/in.²	lb/in.²	lb/in.²	lb/in.²	lb/in.²	lb/in.²	lb/in.²	lb/in.²	lb/in.²
15NAT-13A	130	250	700	70	145	450	75	145	355	25	110	280
15NAT-138	130	242 255	680	65	140	390	22	140 150	340	88	115	285 280
Average	131	249	703	29	142	343	72	145	348	23	112	282
15nAT-14A	125	235	0/9	99	140	350	99	130	320	9	130	320
15NAT-14B	123	235 240	650	88	130 135	320 335	88	130	310	5.8	130	320
Average	126	237	658	62	135	335	38	130	317	29	130	320
15rat-15A	148	295	880	8	185	455	96	190	490	8	150	365
15NAT-15B	163	329 347	990 1030	001	215	525 520	100	205 220	530		155 150	380 375
9 Average	161	324	296	93	207	200	100	205	523	75	152	373
15HAT-16A	148	290	870	88	180	445	88	175	430	9;	135	345
154AT-16C	140	280	840	888	180	440	388	170	400	65	130	335
	2	3	3	3	2	7	3	2	Ì	3	9) F
15ttaT-17A 15ttaT-17B	140 132	270 260	06/ 09/	82	170 1 6 0	420 400	88	160 155	395 385	<u>0</u> 0	130 125	335 315
15MAT-17C Average	132 135	270	780	70 73	160 163	400	82	158	418	62	130	333
15114T-18A	145	285	840	75	165	400	95	180	420	9	130	320
15MAT-188	150	295 295	855 860	8 %	170	415	88	170	415	59.2	135	335
Average	150	262	852	8	172	415	93	111	418	92	135	335
				_			_			_		

PROCESSORIES SESSIONE DESCRIPTION DESCRIPTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE CONTR

Table M

appeal inspected inspectable for instance of the foundation and property and the property inspected inspects.

						_	ffect of P	rocessin	If and Cc	Effect of Processing and Compounding Variables on Properties-SAR	Variabl	es on Pro	perties-S.	3				
Property	31 31	Property 15 48-1 15 48-2 15 58-3	C 98 21	15 gr.4	5 98 5	15 SBR 46	15 SEC.	15 SER-6	15 SER-4	15 gg-10	15 SER-11	77-MS 51	15 SER-13 15 SER-14	15 588-14	15 99R-15	15 SBR-16	15 980-17	15 SE 38
See See See See See See See See See See	•	1	•	•	•	•		•	•	ı			•	•	i	•		•
200K Nochlus	٥	•	0	•	0	•	•	•	0	0	0	0		•	‡	•	0	•
E langet tan	•	٠	•	0	•			•	0	0	0	0	0	•	1	•	•	•
Taber Abrasion	5	*	•	٠	0	٠	‡	‡	•	٠	‡	•	•	‡	*	•	•	‡
Pico Arreston	9	*	•	٥	0	0	*	•	0	0			0	ı	*		•	0
Tear Strength Die C	• 5	•	0	۰	•	•	•	•	0	•	0	0	0	0	•	0	0	0
Ter Starth	o fi	ı	•	•	•	0	•	•	•	•	ı	0	0	0	1	0	•	,
Tear Strength Trauser	5	•	•	,	•	•	•	•	0	;	0	0	•	‡	ı			0
Tear Strength Trauser + Etc.	5 <u>.</u> .	ı	•	•	,	•	1	•			ı		•		i	•	•	•
Deflect in Files	۰ ۲	i	1	•	•	•	ı		•		•	0	+	•	i	,	0	0
Detectio Flex Hot	٥ 1	1	•	•	•	•	•	•	•	ı	ı		0	+	•		•	0
Good Toh Flex	٥ ة	•	0	0	0	•	0	•	0	0	0	0	ı	•	•	0	0	
Good 1ch Flex Dyn. Com.	۰ ا	•	•	•	•	٠	0	0	•	•	•	•	‡	‡	ı	0	+	‡
Commers (b)11ty	ity o	•	۰	0	•	0	0	0	•	0	0	•	0	ı	‡	0		0
Service of	整		•	•	•	0	•	•	0		0			•	;	•	•	1
Veriging Mixing	Standard	E SE	Decreased State Name	d No] Hasticition P	Increased Mast Icitit	Pedced Serbery	Freed T	鼷	•	•		•		•		ب ا	Reduce Man	،
Corpound	Standard Standard	, P	•	1	•	<u>.</u>	<u>!</u> '	1	Printed Printe	Predistersed Zinc Oxide		Pedigorsed Sulfur Sentocure	Service Services	Sulfice Sulfice	Increase Sulfus	87 1		Polymer mother source

47

ŽODIE **prosessi propies**i popeleta propiesta propiesta propiesta propiesta da propiesta da propiesta

Tak IS

Mart of Processing and Compounding Variables on Properties-Matural Rubber

Property IS MILL IS MILL IS MILL IS MILL Struction 0 0 0 0	7 10 51	L SMELL D	7 12 9	15 MG-6	15 MT-6	15 166-7 1	15 MG-8 1	15 MG-0	15 pm-10 1	15 100-11	27-194 SI	15 MT-13	15 MG-14	S F C C	37-D# SI	12 M	¥
44																:	4
	•	•	•	9	•	1	•	•	0	•	•	•	•	•	•		
ADDE North Inc.	•	•	•	•	•	•	0	•	•	•	•	•		*	•	•	
Elongation 0	•	•	•	•	•	•	0	•	•	•	•	•	•	•	•	•	
later Atreston 0	•	•	•	•	٠	•	٠	‡	*	*	•	*	*	ı	,	ı	,
Pto Abrasion 0	*	•	•	٠	•	٠	0	:		•	•	٠	*	•	•	•	
Top: Strength O	ı	•	•	•	•		•	•	1	•	•	•	•	ı	ı	•	
0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	•	•	0	•	0	•	•	0	0	•	•	0	•	•	•	•	
Top Strength 0	*	•	‡	•	•	•	*	•	;	•	•	•	‡	1	٠	٠	
Test Strength Transaction	•	•	•		•	•	0	0	•	•	•	•	*	ı		•	
Detectio Flox 0	•	•	٠	•	•	٠	•	٠	•	0	•	٠	*	*	*	*	
Defect to Flex 0	•	•	•	•	•	•	•	٠	0	•	•	*	:	ı	•	•	
Control Flex 0	۰	•	•	•	•		•	0	0	•	•	٥	0		•	٠	
Condition Floriday.	•		ı		•	•	•	•	•	,	•	٠	*	ı	•	,	
Contrastante o	•	•	0	٥	•		•	•	•	*	•	0	•	:	*	٠	
。 新記號	•	•	•	0	•	0	. •	•	٥	•	•	1	ı	*	•	•	
Variotes Maring Standard	Parent Pa	Post of the second	d Seticition	Incresed ton Mathelities	Reduced Berbury	Increased Barbury	政	•	•	•	•	ı	•	•	•	•	
Corporate Standard	•	•	•	•	<u>,</u>	<u>.</u>	•	5~9 548 548	2000 1000 1000 1000 1000 1000 1000 1000	\$2 \$3	Predigorsed Serfoure	Reduce	Sedice Sulfer	Parties and the same of the sa	25 25 25		N-2

Figure 4. Tensile Strength and Elongation—SBR

TENSILE STRENGTH-PSI.

HISTOCOM A SECURIOR IN COLORODA IN PRESIDENCIA (SECURIOR ALIMENTAL MINESCOMINA PROPINTI

50

Figure 6. Pico Abrasion Index-SBR and NR

FICCO VBRASION INDEX

STATE STREET, STATES STATES STATES STATES STATES

52

SAM KCSSCSM POSSSSSS POSSSSSM POSSSSSM POSSSSSM

TEAR STRENGTH-LBS/INCH

TEAR STRENGTH-LBS/INCH

\$25,525,500 Ecologies (160,525)

Figure 11. Transer

LEVE SIKENCIH-LBS/INCH

Figure 12. DeMattia Flex After 6000 Cycles

30

16

œ

9

40

CKVCK TENCIH-INCHEZ/07

32

79

56

CRACK LENGTH-INCHES/64

1 VELER 32 WINDLES-OF

Figure 18. Compressibility of NR Compounds; 40% Compression

III. DISCUSSION

6. Rheology and Dispersion. Rheological data for the 18 SBR compounds, as summarized in Table 4, indicate that overloading of a Banbury mixer has the most significant effect on processability, while other formulation or procedural variables evidenced negligible to slight influences. Compound 2 (overloading) displayed a Mooney viscosity in excess of 200, the lowest T_{90} and highest M_L in the Monsanto rheometer and the poorest dispersion. Compound 7, wherein the mix cycle was extended to 15 min, showed a similar trend, but final dispersion was observed to be significantly better. When the Santocure level was reduced to 1 phr, as in compound 13, the T_{50} and T_{90} were somewhat higher than noted for the control. However, properties measured on the Mooney viscometer were normal, and dispersion was judged good. Increasing the sulfur content as in compound 15, or using an alternate ISAF carbon black (N220) in lieu of SAF-N110 as in compound 16, resulted in expected reductions in the Mooney scorch time.

Examination of the rheological data for the NR compounds (Table 5) reveals that processing is less subject to formulation and procedural variations than observed for the SBR compounds. While compound 2 again displayed low T₉₀ and high M_L readings, Mooney viscometer data was essentially equivalent to that for the control. Compounds 13-15, wherein curative content was changed, evidenced higher Mooney scorch values and, except for compound 14, T₉₀ (in minutes) was also greater than noted for others. Monsanto rheometer curves as depicted in Figures 19 through 21 more vividly highlight differences within batches of the same compound and among the compounding variables selected in this program than is evident from the data of Tables 4 and 5. When the three batches of compound 15SBR-2 were individually mixed (Figure 19), two cure curves (A & C) were practically superimposed while the third (B) displayed a slightly lower initiation rate but a higher profile. Curves for the NR equivalent—15NAT-2 (Figure 20) were noticeably different in all aspects. Here, the differences were not unexpected since the effect of overloading the Banbury mixer was being studied. Although the mix cycle was shortened for compound 15SBR-6, all three curves showed close agreement as demonstrated in Figure 21. The fact that all but one compound (15SBR-2) received a dispersion rating of six or better underscores the efficiency of Banbury mixing even under the poorest process control conditions.

To augment the evaluation and analysis of dispersion of compounding ingredients, photographs appearing in Appendix A were taken from the SEM with magnification being approximately the same as used in the stereo microscope; i.e., 60 X. Since the SEM provided better illumination and depth of field, a more critical study was possible. Photograph B in Group 5 clearly shows the difference between torn and cut surfaces for compound 15SBR-10. The left one-third of the view contains a portion of the hand-made cut, while the remainder highlights the torn surface.

CONTRACTOR OF THE PROPERTY OF

The photos of compound 15NAT-1, the control contained in Group 1, illustrate good distributive and dispersive mixing, the minor constituents are adequately randomized, and agglomerates have been broken down sufficiently to negate any tendency to concentrate in certain areas. Insufficient dispersive mixing is evident in Group 2 photos of compound 15SBR-2. Overloading of the Banbury mixer restricted breakdown resulting in a final mixture that evidenced widely varying properties. Increasing the mixing time as shown in Group 3 photos for compound 15SBR-7 produced a more even appearing torn surface area, but the presence of pinholes lowered the overall rating.

Figure 19. Monsanto Rheometer Curve—Compound 15SBR-2

Figure 20. Monsanto Rheometer Curve—Compound 15NAT-2

Figure 21. Monsanto Rheometer Curve—Compound 15\$BR-6

When allowing the mixing temperature to rise above 220 degrees F as in compound 15NAT-8 and shown in Group 4 photos, the critical shear rate/viscosity/temperature relationship is disrupted and dispersion is restricted. If curing ingredients are present in the mix, as was the case with all SBR compounds, partial cross-linking can occur, further inhibiting dispersion. Use of predispersed ingredients, such as zinc oxide in compound 15SBR-10 (Group 5 photos), does not substantially alter visual interpretation of dispersion; appearance was essentially similar to that of the control. Intentional inclusion of excess sulfur, as in compound 15SBR-15 (Group 6 photos, Appendix A), resulted in relatively good dispersion, but this is nullified by the large number of pinholes on the torn surface—more than any other compound.

Compounds 15SBR-16 and 15NAT-16, wherein ISAF black (N220) was substituted for the N110 used elsewhere, are depicted in the final two groups of SEM photos—7 and 8. Considering that the particle size is coarser, dispersion is good, but adjustment in the mixing cycle is advisable. The SEM photographs do not provide any readily distinguishable difference in dispersion between SBR and NR compounds. Visual observations must be correlated with physical data to obtain a meaningful interpretation of performance potential.

7. Tensile Strength and Elongation. Tensile strength and elongation data for the 18 SBR and NR compounds contained in Tables 6 and 7 are represented graphically in Figures 4 and 5. It is evident here that, particularly in the case of SBR compounds, these property values correlate with rheological profiles. Compounds 15SBR-2, -7, and -15 displayed significantly lower tensile strength and elongation, again demonstrating the effect of Banbury mixer overloading, extended mixing cycle, and increased sulfur content, respectively. Reduction of the mixing cycle (15SBR-6) resulted in a noticeable lowering of tensile strength, but elongation was only slightly reduced. Compound 15SBR-14 (lower sulfur content) produced the highest ultimate elongation—566 percent, as opposed to 493 percent for the control. Other variations in properties evident in Figure 4 are not sufficiently significant to correlate with real effects of the respective mixing or chemical factors.

Similar data for the equivalent NR compounds, depicted in Figure 5, clearly shows that the mixing and curing of this rubber is more consistent with ultimate properties less affected by the variables inserted in this program. Extended mixing of compound 15NAT-7 did produce a noticeable lessening in tensile strength, but elongation was only marginally affected. Even overloading of the Banbury mixer (15NAT-2) did not substantially influence these properties. Changing the sulfur or Santocure level as in compounds 15NAT-13 through -15 resulted in values which are perhaps statistically significant, but as stated earlier, optimum cure selection based on individual rheometer curves was not employed here.

8. Abrasion Testing. Data accumulated in abrasion testing using the Pico method are graphically displayed in Figure 6. The obviously more consistent index values for the NR compounds can be attributed primarily to the fact that curatives were added during final mill mixing and not during the Banbury mixer cycle, as was the case with the SBR formulations. Significantly higher indices as computed from lower abrasion losses were observed for 15SBR-2, 15SBR-7, and 15SBR-15, continuing the trend shown by these compounds in earlier comments on tensile strength and elongation. Other variations, such as substituting alternate ingredients and lesser amounts of curative and accelerator, resulted in lower ratings than obtained for the standard 15SBR-1. All Pico ratings for the NR variants equalled or exceeded that of the control, indicating that delayed addition of the curatives, combined with the inherent better mixing qualities of NR, minimized any ultimate impact on abrasion resistance.

The corresponding bar graph (Figure 7), depicting abrasion losses for SBR and NR according to the Taber procedure, highlights the across-the-board, better performance of the former series of compounds. All losses for the SBR compounds were equal to or lower than that of the control and particularly noticeable in the cases of 15SBR-2 (Banbury mixer overloading), 15SBR-8 (uncontrolled temperature rise), 15SBR-11 (spider sulfur), 15SBR-14 (reduced sulfur), and 15SBR-15 (increased sulfur). Effects noted in the last three instances tend to indicate that type and level of sulfur can influence abrasion properties, although the high-low sulfur comparison (15SBR-14 and -15) appears to be an unexplainable anomaly. Cessation of production of Firestone's SBR-1500 mandated establishment of another source. Further work with Copolymer's equivalent will be necessary to validate whether this material does produce lower abrasion losses (15SBR-1 vs. 15SBR-26). Cursory inspection of the NR data of Figure 7 would give the impression that the compounding and mixing factors relative to compounds 15NAT-3 through 15NAT-14 all contributed to an improvement in abrasion resistance of the respective compound. However, these changes have had no significant favorable impact on tensile properties, and data are inadequate for final judgment. Effects on other properties must also be considered. It is apparent that Banbury mixer overloading, high sulfur, and use of alternate blacks (15NAT-2, -15, -16, and -18, respectively) have a negative effect on abrasion resistance. In comparing the Taber procedure versus the Pico method, the former is more discriminating and to be favored but only as a comparative index of performance on relatively smooth surfaces. Agreement with susceptibility to cutting, chunking, and chipping is not possible, but recent field performance studies on tires have shown that correlation with Taber results obtained in the laboratory is more favorable than with Pico results.

9. Tear Strength. Good tear strength, a property considered important in tank pad compounds, has traditionally been measured according to the so-called ASTM Die C procedure. In this work, a modified trouser tear test as detailed earlier, was included to ascertain potential merit in establishing additional performance criteria. Data generated from the two tests as contained in Tables 8 and 9 are shown graphically in Figures 8 through 11 to emphasize observations. Room temperature or initial values and results after heat aging 10 min at 250 degrees F appear side-by-side for each rubber/test combination. When the Die C results for SBR and NR compounds are viewed simultaneously, ignoring the difference in magnitude of the initial values, it is quite apparent that the relative effect of heat aging is essentially and proportionately the same for both rubbers. Among the SBR formulations, compounds 15SBR-2, -7, and -15 displayed noticeably lower room temperature values, but only compounds 2 and 15 continued to show this tendency after the heat aging. Compounds 15NAT-3, -13, and -14 evidenced Die C room temperature values higher than the control, and those for 15NAT-2, -15, and -16 were significantly lower. However, after heat aging, all compounds displayed losses that were confined to a narrow range.

The inherently better tear resistance of NR is again evident when the modified trouser tear test results are compared side-by-side as in Figure 10 and 11. The test procedure not only highlights effects of previously referenced procedural or chemical variations, but also focuses on what could either be anomalies or real effects not previously encountered. Here, the most noticeable is the significantly higher retention of NR tear strength after heat aging for 10 min at 250 degrees F. Particularly, 15NAT-14 (reduced sulfur content) and problem compounds 2, 7, and 15 all performed as well as or better than their room-temperature counterparts. Low initial values for the NR control (15NAT-1) and the variant containing treated zinc oxide (15NAT-9) warrant further investigation. Among the SBR compounds, 15SBR-1, the control, appeared unaffected by the heat treatment, and the reduced sulfur variant, 15SBR-14, gave an unusually high initial value. Otherwise, the pattern displayed by the group SBR-2, -7, and -15 was as expected, while results for others were inconclusive.

Obviously, the future merit of the modified trouser tear test cannot be decided here. However, it is apparent that in order for Die C and trouser tear tests to be effective, they must be monitored closely and that further work is necessary to clarify cause/effect relationships when conducting studies of this nature. For example, three instances are cited in Table 8 where either due to the nature of the trouser tear specimen or the 250 degrees F test temperature, it was impossible to obtain all replicate results for certain SBR compounds. A future program to resolve these tear test issues is not planned.

10. DeMattia Flex. Data for the DeMattia flex test, wherein crack length growth after 6000 c (20 min running time) is plotted for SBR and NR in Figure 12 and clearly show the extreme contrast in performance between the two base polymers. The consistently low crack growth rate of the NR compounds appears relatively unaffected by procedural or chemical modifications, while the higher SBR values fluctuate significantly dependent upon the nature of the specific variant. Values for compounds 15SBR-2, -3, -7, and -15 increased and decreased batch size, increased mixing time and higher sulfur, respectively, reached the limit of the test. Those for 15SBR-12, -13, -14, and -26, predispersed curatives, reduced Santocure, reduced sulfur, and alternate Copolymer SBR 1500, respectively, were equal to or less than that of the control. To further illustrate the relationship between DeMattia flex and processing factors, Figures 13 and 14 compare this property with T_S 1 or the time to reach a 1-lb/in. rise in Monsanto rheometer torque—an indication of the scorch rate of a compound. Here, the known parallel relationship between the two measures of potential performance is quite distinguishable. In the case of SBR, high crack growth values correspond with faster scorch rates (particularly compounds 15SBR-2, -7, and -15), while all NR compounds evidenced favorable performance and processing safety characteristics.

Referring back to Tables 10 and 11, values for the rate of crack growth after heat-aging 70 h at 212 degrees F, underscore performance differences between compounds of the two elastomers. Slight increases displayed by the NR compounds were overshadowed by tremendously accelerated growth rates for the SBR compounds, none of which survived the normally-specified 6000 c. DeMattia flex and scorch tendency are obviously related to quantity and nature of the curative/accelerator system. It is apparent that NR compounds offer some inherent advantages in this regard and that stricter controls are necessary when working with SBR compounds.

11. Goodrich Flexometer. Two parameters derived from the Goodrich Flexometer test data of Tables 10 and 11, temperature rise after 25 min running time and dynamic compression, were compared for all compounds in Figures 15 and 16, respectively. As evident in Figure 15, the temperature rise of the NR compounds is noticeably less than that of the SBR compounds' counterparts. This correlates with the known better heat build-up resistance of the former. For both polymer types, temperature rise was the least in specimens of the excess sulfur-containing compounds 15SBR-15 and 15NAT-15, while greatest for low curative compounds 15SBR-13 and -14. Other variants displaying lower heat rise were the excess volume 15SBR-2 and 15NAT-2 containing predispersed curatives. Also, in the one case where the alternate Copolymer SBR 1500 was substituted for Firestone's equivalent, the change in temperature was noticeably greater than that of the control (15SBR-26 vs. 15SBR-1).

In general, differences in dynamic compression, as shown in Figure 16, were not as significant between polymer types as was temperature rise. Patterns relative to compound variants (high and low values) were almost identical to those cited from Figure 15, and no extreme values worthy of comment were observed. Field evaluation of tank pads has evolved documentation of heat build-up exceeding 250 degrees F. Thus, determination of blowout time, also derived from the Goodrich test, is proposed for inclusion in future work.

12. Compressibility. Examination of the compressibility data as contained in Tables 12 and 13 reveals some interesting and contrasting profiles for the SBR and NR compounds, particularly when determinations were made after the three heat-aging periods. Room temperature values and those obtained after 4-h aging at 250 degrees F are quite similar for both rubbers, with the slightly lower results for NR compounds after aging indicating a greater tendency toward softening and lowered resistance to compressive forces. Results after the 70-h exposure were higher than those after 4 h for both rubbers, the comparative rise in compressive force being significantly greater for all SBR compounds. This would imply that both series had encountered a post-curing effect which was somewhat inhibited in the case of the NR compounds. The forces required to reach 40 percent compression at room temperature and after 70 h at 250 degrees F are compared graphically in Figure 17 for SBR and in Figure 18 for NR. Initially and after heat aging, lower curative levels (compounds 13 and 14) produced generally lower values, and excess sulfur (compound 15) produced the highest values. Here, curative level had the most influential effect on compressibility. When the test was repeated after the short-term combined 250-degrees-F and 300-degrees-F aging (on new specimens), values for the SBR compounds were essentially comparable to those obtained after 4 h at 250 degrees F, while those for NR demonstrated a continuation of the effects of softening or reversion, more severe than was evident after the other two aging periods. Thermocouple measurements taken in the field have documented heat build-up in tank pads to even exceed the test temperature used here. If compressibility was the prime or only property being considered, SBR would be favored. Alternate curing systems, particularly for NR which could reduce reversion and negative effects on compressibility and improve abrasion resistance, are being considered for inclusion in future studies. It is possible, as has been the subject of other investigations, that blends combining the best features of both rubbers are to be preferred when optimum overall tank-pad performance is the obvious objective.

13. Composite Data Analysis. To facilitate interpretation and analysis of the large quantity of data generated in this program, Tables 14 and 15 for SBR and NR compounds, respectively, were prepared. Here, the improvement or decrement in each of 15 of the properties evaluated was rated and assigned a symbol defined in the legend accompanying each table. The positive and negative symbols do not necessarily correlate with an increase or decrease in property values. For example, noticeably lower abrasion losses in the Taber test would receive a positive rating. Thus, the effect of a chemical or procedural change is placed in proper perspective, relative to desired performance.

Analysis of Tables 14 and 15 confirms observations noted earlier; namely, that the factors having the most significant influence on final compound properties are: overloading the Banbury mixer, extended Banbury mix time, and raising or lowering of curative and accelerator levels (compounds 2, 7, and 13 through 15, respectively). The negative effect of Banbury mixer overloading and extended mix time is more apparent in the case of SBR. While increasing the sulfur content produces some favorable property improvements in both rubbers; these are offset by declines in other characteristics such as tear strength. Reduction of the Santocure content in either rubber effected mixed changes which appear slightly more detrimental to the performance of NR. Interestingly and particularly apparent in the case of NR, a reduction in sulfur content (15SBR-14 and 15NAT-14) produced enough positive changes to indicate that the sulfur/Santocure ratio chosen for this investigation was not necessarily an optimum in terms of cliciting the best overall performance from either elastomer. An investigation of the effectiveness of alternate curative/accelerator ratios appears warranted. Consideration of entirely different vulcanization systems is a separate phase of this program and is purposely excluded from this report.

The influence of incorporating alternate forms of certain compounding ingredients does not manifest itself as readily as the factors already discussed. However, NR compounds 15NAT-9 (treated zinc oxide) and 15NAT-10 (predispersed zinc oxide) displayed significantly improved Taber and Pico abrasion values, with the latter also evidencing higher trouser tear results. Although not conclusive, these trends are sufficient to justify further evaluation of predispersed or treated additives where deemed applicable and advantageous.

IV. CONCLUSIONS

It is concluded that:

- a. The performance characteristics of tank track pads can be significantly affected by extreme variations in mixing and processing as well as the type, quantity, and quality of compounding ingredients employed in their fabrication.
- b. The relative effect on final physical properties of procedural deviations or changes in quality or amounts of compounding ingredients is less for NR than for SBR. This is essentially a manifestation of the chemical structure and, inherently, better processing characteristics of the former and the more reactive copolymer structure of the latter.
- c. Compound mixing control variables and qualitative or quantitative formulation alternations may induce incremental or decremental changes in vulcanizate properties. True optimization of desired performance may necessitate a compromise and a trade-off of negative influences.
- d. Ultimate vulcanizate properties are most significantly affected by overloading of a Banbury mixer, shortened or extended mixing cycles, and excessive temperature rise during mastication and manifested as observable characteristic surface deficiencies.
- e. Use of excessive or inadequate amounts of curative and accelerator (sulfur and Santocure) results in mixed influence on specific ultimate properties of SBR and NR vulcanizates but, generally, a negative effect in terms of overall performance optimization.
- f. Evidence is sufficient to justify further investigation into inclusion of predispersed or treated compounding additives to facilitate dispersion for optimizing dynamic properties. This can be done under controlled conditions; i.e., using experimental design and computerized analysis techniques. Isolation of those additives offering the best potential performance enhancement would then be possible.
- g. Visual interpretation of ingredient dispersion and compound integrity, as ascertained from torn surface examination with a stereo microscope and recorded photographically by SEM techniques, correlates well with conclusions derived from physical testing of vulcanizates.

- h. Within the scope of this investigation, SBR compounds exhibited better abrasion resistance than those of NR. However, use of alternate filler systems could reduce or nullify this deficiency in the latter.
- i. Initial or room temperature Die C tear resistance is substantially better for NR compounds. Reduction in tear resistance at 250 degrees F is proportionately the same for both elastomers, relative to the initial values.
- j. Future merit of the modified trouser tear test, based on preliminary data, is inconclusive. The highly irregular pattern displayed by NR compounds at 250 degrees F warrants further investigation.
- k. SBR compounds display better tensile retention and stress relaxation properties at elevated temperatures. Further enhancement of these characteristics in both elastomers through use of alternate curing systems is possible.
- l. The sulfur/Santocure vulcanization system employed in this investigation may not be eliciting the best overall performance from either elastomer. The high temperatures evolved in tank pads during operation in the field necessitate an investigation of curing systems formulated specifically to preclude reversion and other tendencies toward chemical and physical breakdown and deterioration.
- m. The observed differences in properties (i.e., SBR compounds having better abrasion resistance, while NR counterparts displayed higher tear strength) justifies reconsideration of studies encompassing blends of the two elastomers or possibly so-called tri-blends with, perhaps, cis 1-4 polybutadiene as the third constituent. While it is probable that these blends would not draw out the best properties from each component, a highly acceptable compromise candidate is feasible.
- n. Further processing studies warrant the inclusion of additional variables such as vulcanization pressure and temperature and controlled overcuring and undercuring of compounds containing currently used and alternate vulcanization systems. The objective would be to define the limits of processing safety and optimize vulcanization efficiency.
- o. Additional studies could investigate more fully the use of compounding ingredients—zinc oxide, accelerators, antioxidants, and curatives, which when predispersed on an inert filler or binder are purported to facilitate mixing.
- p. A minimum of four batches of a typical tank pad formulation could be mixed under controlled factory conditions to give varying degrees of ingredient dispersion. Concurrent with fabrication and field evaluation of tank pads fabricated from these batches, laboratory inspection and testing of samples taken from the production lots could be conducted. Here, the objective would be to correlate production, field and laboratory evaluations of dispersion/performance factors.

- q. Other more meaningful and effective procedures for determining the degree and quality of ingredient dispersion in rubber compounds could be investigated. Possible alternates to the stereo microscope and SEM analyses would be electrical resistance measurements and a system employing a Dark Field Reflected Light Microscope in conjunction with a TV camera, waveform monitor, and an auxiliary automatic exposure photo camera. The latter system could overcome the subjectivity of existing methods through statistical analysis of resultant data.
- r. Compounding studies could be conducted to evaluate known alternate curing systems purported to reduce or eliminate the reversion tendencies of NR vulcanizates. Likewise, the observed deficiencies of SBR compounds could possibly be overcome through use of similar, more specific and exotic curing mechanisms.
- s. Alternate antioxidant/antiozonant systems could be evaluated relative to their potential to optimize the heat build-up and flex cracking resistance of SBR and NR compounds.
- t. Investigations of alternate filler systems could also include the non-black or silica types, perhaps with silane coupling agents. These systems are known to be used in off-the-road tire compounds. When incorporated at the proper level, they have demonstrated ability to enhance properties, such as heat build-up resistance, which are desired in optimum tank pad formulation.
- u. Ongoing studies directed toward compromise of the advantages of SBR, NR, and possibly polybutadiene through blending of two or all three of these elastomers could be continued. Individually, none possess all of the qualities desired in an optimum tank pad compound, Development of better, compatible, covulcanizing systems for such blends could reduce negative effects usually resulting from such compromise.

APPENDIX A SEM PHOTOGRAPHS

Olicon received for 1997 and the content of the content of the content received of the content o

ACCOUNTS AND THE PARTY OF THE P

15-NAT-1A

15-NAT-1B

15-NAT-1C

15-SBR-2A

15-SBR-2B

15-SBR-2C

15-SBR-7A

de externe possocial processa possocial mesesso a social a social de social describir de social de social de s

15-SBR-7B

TO CONTROL OF THE STATE OF THE

15-SBR-7C

esperandia perseversimos estes estamentes estes infra

15-NAT-8A

15-NAT-8B

15-NAT-8C

15-SBR-10A

15-3BR 10B

15-SBR-10C

15-SBR-15A

entrates mediantes properties increases

15-SBR-15B

15-SBR-15C

15-SBR-16A

15-SBR-16B

15-SBR-16C

15-NAT-16A

15-NAT-16B

15-NAT-16C

APPENDIX B

CONVERSION TABLE

U.S.	to	SI	
1 lb/in.2	=	6.894757 kPa	
lb (Avoir)	=	0.4536 kg	
°F	=	9/5(° + 32)	
sq in. (in.2)	=	6.4516 cm ²	
lb/in.	= ,	175.1268 N/m	
ìn.	=	25.4 millimeters	
mil	=	.0254 millimeters	

DISTRIBUTION FOR BRDC REPORT 2428

No. Copies	Addressee	No. Copies	Addressee
No. Copies	Aum casec	1	Commander
	Department of Defenses	•	US Army Aberdeen Proving Ground ATTN: STEAP-MT-U (GE Branch)
1	Director, Technical Information		Aberdeen Proving Ground, MD 21005
	Defense Advanced Research Projects Agency		v
	1400 Wilson Blvd	1	Director
	Arlington, VA 22209		US Army Materiel Systems Analysis Agency ATTN: DRXSY-CM
1	Director		Aberdeen Proving Ground, MD 21005
	Defense Nuclear Agency		
	ATTN: TITL	1	Director
	Washington, DC 20305		US Army Materiel Systems Analysis Agency ATTN: DRXSY-MP
12	Defense Technical Information Center		Aberdeen Proving Ground, MD 21005
	Cameron Station		
	Alexandria, VA 22314	1	Director
	Department of the Army		US Army Ballistic Research Laboratory ATTN: DRDAR-TSD-S (STINFO)
	•		Aberdeen Proving Ground, MD 21005
l	Commander, HQ TRADOC		· ·
	ATTN: ATEN-ME	1	Director
	Fort Monroe, VA 23651		US Army Engineer Waterways Experiment Station
1	HQDA (DAMA-AOA-M)		ATTN: Chief, Library Branch
	Washington, DC 20310		Technical Information Center
			Vicksburg, MS 39180
1	HQDA (DAEN-RDL)		
	Washington, DC 20314	1	Commander
			US Army Armament Research and
1	HQDA (DAEN-MPE-T)		Development Command
	Washington, DC 20314		ATTN: DRDAR-TSS, No. 59 Dover, NJ 07801
1	Commander		
	US Army Missile Research and Development Command	1	Commander
	ATTN: DRSMI-RR		US Army Troop Support and Aviation Materiel Readiness Command
	Redstone Arsenal, AL 35809		ATTN: DRSTS-MES (1)
	redovone Austrial, AL 00009		4300 Goodfellow Blvd
i	Director		St. Louis, MO 63120
	Army Materials and Mechanics Research		500 <u>Louis</u> , 1.25 55225
	Center	2	Director
	ATTN: DRXMR-PL, Technical Library		Petrol and Field Service Dept
	Watertown, MA 02172		US Army Quartermaster School Fort Lee, VA 23801
1	Technical Library		TOUR EACH AN MODUL
	Chemical Systems Laboratory	1	Commander
	Aberdeen Proving Ground, MD 21010	-	US Army Electronics Research and
10			Development Command
10	Commander		Technical Library Division
	TACOM		ATTN: DELSD-L
	ATTN: AMSTA-RTT (M. King) Warren, Ml 48397-5000		Fort Monmouth, NJ 07703

No. Copies	Addressee	No. Copies	Addressee
1	President	l	President
-	US Army Aviation Test Board		US Army Armor and Engineer Board
	ATTN: STEBG-PO	•	ATTN: ATZK-AE-PD-e
	Fort Rucker, AL 36360		Fort Knox, KY 40121
1	US Army Aviation School Library P. O. Drawer O		BRDC
	Fort Rucker, AL 36360	1	Commander, STRBE-Z
	• • • • • • • • • • • • • • • • • • • •		Deputy Commander, STRBE-ZD
2	HQ, 193D Infantry Brigade (Pan)		Technical Director, STRBE-ZT
	ATTN: AFZU-FE		Assoc Tech Dir (E&A), STRBE-ZTE
	APO Miami 34004		Assoc Tech Dir (R&D), STRBE-ZTR
	152 O Manualla Gavor		Executive Officer, STRBE-ZX
2	Special Forces Detachment, Europe		Sergeant Major, STRBE-ZM
2	ATTN: PBO		Advanced Systems Concept Dir, STRBE-H
			Program Planning Div, STRBE-HP
	APO New York 09050		Foreign Intelligence Div, STRBE-HF
_	en e en		
2	Engineer Representative		Systems and Concepts Div, STRBE-HC
	USA Research and Standardization Group		CIRCULATE
	(Europe)		- Di CORRE C
	Box 65	1	Dir, Resource Management Dir, STRBE-C
	FPO 09510		Dir, Information Management Dir, STRBE-B
			Dir, Facilities and Support Dir, STRBE-W
1	Commander		Dir, Product Assurance and Engineering
	Rock Island Arsenal		Dir, STRBE-T
	ATTN: SARRI-LPL		Dir, Combat Engineering Dir, STRBE-J
	Rock Island, IL 61201		Dir, Logistics Support Dir, STRBE-F
			Dir, Materials, Fuels and Lubricants
1	Plastics Technical Evaluation Center		Lab, STRBE-V
	ARRADCOM, Bldg 3401		CIRCULATE
	Dover, NJ 07801		
		30	Materials, Fuels and Lubricants
1	Commander		Lab, STRBE-V
	Frankford Arsenal	3	Tech Reports Ofc, STRBE-BPG
	ATTN: Library, K2400, B151-2	3	Security Ofc, STRBE-S
	Philadelphia, PA 19137	2	Tech Library, STRBE-BT
	•	1	Public Affairs Ofc, STRBE-I
1	Commandant	1	Ofc of Chief Counsel, STRBE-L
	US Army Engineer School		
	ATTN: ATZD-CDD		Department of the Navy
	Fort Belvoir, VA 2206		·
	,	1	Director, Physics Program (421)
1	President	_	Office of Naval Research
•	US Army Airborne, Communications and		Arlington, VA 22217
	Electronics		
	ATTN: STEBF-ABTD	2	Commander
	Fort Bragg, NC 28307	2	Naval Facilities Engineering Command
	run bragg, NC 2000?		Department of the Navy
•	Common los		ATTN: Code 032-B; 062
1	Commander		
	Headquarters, 39th Engineer Battalion (Cht)		200 Stovall Street
	Fort Devens, MA 01433		Alexandria, VA 22332

o. Copies	Addressee
1	US Naval Oceanographic Office Navy Library/NSTL Station Bay St. Louis, MS 39522
1	Library (Code LOSA) Civil Engineering Laboratory Naval Construction Battalion Center Port Hueneme, CA 93043
1	Director Earth Physics Program Code 464 Office Naval Research Arlington, VA 22217
1	Naval Training Equipment Center ATTN: Technical Library Orlando, FL 32813
	Department of the Air Force
1	HQ USAF/RDPT Washington, DC 20330
1	Chief, Utilities Branch Washington, Dc 20332
1	US Air Force HQ Air Force Engineering & Services Center Technical Library FL 7050 Tyndall AFB, FL 32403
1	Chief, Lubrication Branch Fuels & Lubrication Div ATTN: AFWAL/POSL Wright-Patterson AFB, OH 45433
1	Department of Transportation Library, FOB 10A, M494-6 800 Independence Ave, SW Washington, DC 20591
	Others
1	Professor Raymond R. Fox School of Engineering and Applied Science George Washington University Washington, DC 20052