Because γ_1, γ_2 , and γ_3 are unit vectors, one can represent γ_1 and γ_2 in spherical coordinate system:

$$\gamma_1 = (\sin \alpha \cos \eta, \sin \alpha \sin \eta, \cos \alpha)^T$$

$$\gamma_2 = (\sin \psi \cos \delta, \sin \psi \sin \delta, \cos \psi)^T$$

So γ_1 is uniquely defined using co-latitude α and longitude η . γ_2 is uniquely defined using co-latitude ψ and longitude δ . However, because γ_1 is perpendicular to γ_2 , their dot product is zero and this results in a dependent variable. If α, η, ψ are independent variables, then δ is given as follows:

$$\gamma_1^T \gamma_2 = \sin \alpha \sin \psi \cos(\delta - \eta) + \cos \alpha \cos \psi = 0$$

Therefore,
$$\cos(\delta - \eta) = -\cot\alpha\cot\psi$$

The above equation imposes a constraint on the range of values δ can take. More importantly,

$$|\cot \alpha \cot \psi| \le 1 \tag{0.1}$$

 γ_1, γ_2 require three parameters to be uniquely identified. γ_3 is computed because it is orthogonal to both γ_1 and γ_2 . In the event the inequality 0.1 is not satisfied, the program crashes because $\cos(\delta - \eta)$ will be greater than 1.

Problem with dlib: From my understanding, the library cannot support constraints of this kind (0.1). So if I simply run an unconstrained optimization, in the course of optimizing the objective function, there are cases where 0.1 (using the intermediate solution) does not hold and this creates a problem. In certain instances, the program runs through smoothly but there are quite a number of cases where the program fails.

So if there is a library which can facilitate the programming of such kind of constraints, that would potentially solve the problem.