Kellie J. Archer, Ph.D. BIOS 567 Statistical Methods for High-Throughput Genomic Data

Example 1: Suppose you are given the data below in a two by two table.

(0) iteration: Start with the raw data in a two-way table, I represents the row effect, J represent the column effect.

I	J				
	1	2	3		
1	14	11	14		
2	7	4	7		
3	8	5	8		
4	12	9	12		
5	0	-3	0		

(1) iteration, step a: The previous row $a_i^{(0)}$, column $b_j^{(0)}$, and main effect $m^{(0)}$ are initialized to 0. Then, find the median of each row.

				Row median	Previous row effect
I	J			$\Delta a_{ m i}^{(1)}$	$\mathbf{a}_{\mathrm{i}}^{(0)}$
	1	2	3		
1	14	11	14	<mark>14</mark>	0
2	7	4	7	<mark>7</mark>	0
3	8	5	8	8	0
4	12	9	12	12	0
5	0	-3	0	0	0
Prev	0	0	0		$m^{(0)} = 0$
Column					111 0
Effect					
$b_j^{(0)}$					

Kellie J. Archer, Ph.D. BIOS 567 Statistical Methods for High-Throughput Genomic Data

(1) iteration, step b: Row polish by subtracting the row median values from the corresponding row observations. Find the column medians after the row polish.

I		J		Row median $\Delta a_i^{(1)}$	Previous row effect $a_i^{(0)}$
	1	2	3		
1	0	-3	0	14	0
2	0	-3	0	7	0
3	0	-3	0	8	0
4	0	-3	0	12	0
5	0	-3	0	0	0
Column median $\Delta b_j^{(1)}$	0	-3	0	8	
Prev Column Effect $b_{j}^{(0)}$	0	0	0	0	m ⁽⁰⁾ =0

(1) iteration, step c: Column polish by subtracting the column median values from the corresponding column observations.

	_			Row median	Previous row effect
I		J		$\Delta a_{ m i}^{(1)}$	$\mathbf{a}_{\mathrm{i}}^{(0)}$
	1	2	3		
1	0	0	0	14	0
2	0	0	0	7	0
3	0	0	0	8	0
4	0	0	0	12	0
5	0	0	0	0	0
Column median $\Delta b_{j}^{(1)}$	0	-3	0		
Prev Column Effect	0	0	0		$m^{(0)} = 0$
$b_j^{(0)}$					

Kellie J. Archer, Ph.D. **BIOS 567** Statistical Methods for High-Throughput Genomic Data

(1) iteration, step d: Estimate the effects by

$$\Delta m_a^{(1)} = median(a_i^{(0)} + \Delta a_i^{(1)}) = 8$$

$$\Delta m_b^{(1)} = median(b_j^{(0)}) = 0$$

$$m^{(1)} = m^{(0)} + \Delta m_a^{(1)} + \Delta m_b^{(1)} = 0 + 8 + 0 = 8$$

$$a_i^{(1)} = a_i^{(0)} + \Delta a_i^{(1)} - \Delta m_a^{(1)} = (6, -1, 0, 2, 8)$$

$$b_j^{(1)} = b_j^{(0)} + \Delta b_j^{(1)} - \Delta m_b^{(1)} = (0, -3, 0)$$

I	J			$\begin{array}{c} \text{Row median} \\ \Delta a_i^{(1)} \end{array}$	Previous row effect $a_i^{(0)}$	$a_{i}^{(0)} + \Delta a_{i}^{(1)}$	$a_i^{(1)} = a_i^{(0)} + \Delta a_i^{(1)} - \Delta m_a^{(1)}$
	1	2	3				
1	0	0	0	14	0	14	<mark>6</mark>
2	0	0	0	7	0	7	<mark>-1</mark>
3	0	0	0	8	0	8	0
4	0	0	0	12	0	12	2
5	0	0	0	0	0	0	8
Column median $\Delta b_{j}^{(1)}$	0	-3	0				
Prev Column Effect $b_{j}^{(0)}$	0	0	0		m ⁽⁰⁾ =0		
$b_{j}^{(1)} = b_{j}^{(0)} + \Delta b_{j}^{(1)} - \Delta m_{b}^{(1)}$	0	<mark>-3</mark>	0				