

《计算机系统结构》课程直播 2020.3.10

本次讲课: IEEE754 浮点数

- 1 形式
- 2 精度
- 3 运算与舍入
- 4 类型转换

IEEE754 浮点数标准

浮点数标准 IEEE754

■ 单精度 Single precision: 32位

■ 双精度 Double precision: 64 位

■ 扩展精度 Extended precision: 80 位 (Intel)

单精度浮点数标准 IEEE754....

■ 规格化数(Normal):

代表数值: (-1)^s×1.m×2^{e-bias}

- Bias:
 - Single precision (8bits): 127 (Exp: 1...254, E: -126...127)
 - Double precision (11-bits): 1023 (Exp: 1...2046, E: -1022...1023)
- 规格化数的最高数字位总是1, IEEE754标准将这个1缺省 存储(隐藏位), 使得尾数表示范围比实际存储多一位

Example

Final representation: (-1)^S x (1 + Fraction) x 2^(Exponent - Bias)

• Represent -0.75_{ten} in single and double-precision formats

Single: (1 + 8 + 23)

Double: (1 + 11 + 52)

•

Example

Final representation: (-1)^S x (1 + Fraction) x 2^(Exponent - Bias)

• Represent -0.75_{ten} in single and double-precision formats

```
Single: (1 + 8 + 23)
1 0111 1110 1000...000
```

Double: (1 + 11 + 52)

1 0111 1111 110 1000...000

IEEE754浮点数精度

Floating Point (FP) Numbers

- Floating point numbers: numbers in scientific notation
 - Two uses
- Use I: real numbers (numbers with non-zero fractions)
 - **3**.1415926···
 - **2.1878**···
 - 6.62 * 10⁻³⁴
- Use II: really big numbers
 - \bullet 6.02 * 10²³
- Aside: best not used for currency values
 - Floating Point is Inexact, e.g. 0.1 (decimal)
 - System.out.print("34.6-34.0=" + (34.6f-34.0f));
 - **•** 34.6-34.0=0.5999985

Floating Point is Inexact

- Accuracy problems sometimes get bad
 - FP arithmetic not associative: (A+B)+C not same as A+(B+C)
 - Addition of big and small numbers
 - summing many small numbers)
 - Subtraction of two big numbers
- Example: $(1*10^{30} + 1*10^{0}) 1*10^{30} = (1*10^{30} 1*10^{30}) = 0$
- In your code: never test for equality between FP numbers
 - Use something like: if (abs(a-b) < 0.00001) then ···

IEEE 754 Standard Precision/Range

- Single precision: float in C
 - 32-bit: 1-bit sign + 8-bit exponent + 23-bit significand
 - Range: 2.0 * 10⁻³⁸ < N < 2.0 * 10³⁸ (约为 2 ¹²⁷)
 - Precision: 7 significant (decimal) digits (对应24位尾数位)
 - Used when exact precision is less important (e.g., 3D games)
- Double precision: double in C
 - 64-bit: 1-bit sign + 11-bit exponent + 52-bit significand
 - Range: 2.0 * 10⁻³⁰⁸ < N < 2.0 * 10³⁰⁸ (约为 2 ¹⁰²³)
 - Precision: 15 significant (decimal) digits (对应53位尾数位)
 - Used for scientific computations
- Numbers >10³⁰⁸ don't come up in many calculations
 - 10⁸⁰ ~ number of atoms in universe

Exercise

• 设一个变量的值为4098,要求分别用32位补码整数和IEEE 754单精度浮点格式表示该变量(结果用十六进制表示),并说明哪段二进制序列在两种表示中完全相同,为什么会相同?

Exercise

• 设一个变量的值为-2147483647,要求分别用32位补码整数和IEEE754 单精度浮点格式表示该变量(结果用十六进制表示),并说明哪种表示其值完全精确,哪种表示的是近似值。

IEEE754浮点数运算与舍入

FP Addition – Binary Example

$$1.010 \times 2^{1} + 1.100 \times 2^{3}$$

Convert to the larger exponent:

$$0.0101 \times 2^3 + 1.1000 \times 2^3$$

Add

 1.1101×2^3

Normalize

 1.1101×2^3

Check for overflow/underflow

Round

Re-normalize

FP Multiplication

- Similar steps:
 - Compute exponent (careful!)
 - Multiply significands (set the binary point correctly)
 - Normalize
 - Round (potentially re-normalize)
 - Assign sign

讨论

对于IEEE754单精度浮点数加减运算,只要对阶时得到的两个价码之差的绝对值|△ E|大于等于(),就无须继续进行后续处理,此时运算结果直接取阶大的那个数

- **A.** 24
- B. 25
- **C.** 126
- **D.** 128

正确答案: В 你选对了

二进制数的最近舍入

- 二进制数的 Round-To-Even
 - 偶数 "Even": 最低有效位为 0
 - 数值处于中间 "Half way" 时,要舍弃的位数的形式 = 100...,

- 举例: Round to nearest 1/4 (2 bits right of binary point)

Value	Binary	Rounded	Action	Rounded Value
2 3/32	10.00 <u>011</u> 2	10.002	(<1/2—down)	2
2 3/16	10.00 <u>110</u> 2	10.012	(>1/2—up)	2 1/4
2 7/8	10.11 <u>100</u> 2	11.002	(1/2—up)	3
2 5/8	10.10 <u>100</u> 2	10.102	(1/2—down)	2 1/2

Exercise

- Given $A=2.6125\times10^{1}$, $B=4.150390625\times10^{-1}$,
- Calculate the sum of A and B by hand, assuming A and B are stored by the following format,
- Assume 1 guard(保护位), 1 round bit (舍入位), and 1 sticky bit (粘滞位) and round to the nearest even (首选"偶数"值舍入).
- IEEE754规定,浮点运算的中间结果的右边都必须额外多保留两位(**保护** 位、舍入位)为获得无限精度求出后的舍入效果,再加一个**粘滞位**。

```
-2.6125 \times 10^{1} + 4.150390625 \times 10^{-1}
  2.6125 \times 10^{1} = 26.125 = 11010.001 = 1.1010001000 \times 2^{4}
  4.150390625 \times 10^{-1} = .4150390625 = .011010100111
  =1.1010100111×2<sup>-2</sup> (对阶, 小阶往大阶对)
  Shift binary point 6 to the left to align exponents,
                  GR
  1.1010001000 00
  +.0000011010101011 (Guard = 1, Round = 0, Sticky = 1)
  1.1010100010 10 (尾数相加) and(尾数规格化检查)
the extra bits (G,R,S) are more than half of the least significant bit (0).
Thus, the value is rounded up. (舍入)
    1.10101000011 × 24 (检查,无溢出)
  = 11010.100011 \times 2^{0} = 26.546875 = 2.6546875 \times 10^{1}
```

Rounding

1. BBBGRXXX

Guard bit: 1st bit removed

Round bit: 2nd bit removed

Sticky bit:

OR of remaining bits

Round up conditions

Value	Fraction	GRS	Incr?	Rounded
128	1.0000000	000	N	1.000
15	1.1010000	000	N	1.101
17	1.0001000	100	N	1.000
19	1.0011000	100	Y	1.010
138	1.0001010	101	Y	1.001
63	1.1111100	110	Y	10.000

Postnormalize

- Issue
 - Rounding may have caused overflow
 - Handle by shifting right once & incrementing exponent

Value	Rounded	Exp	Adjusted	Result
128	1.000	7		128
15	1.101	3		15
17	1.000	4		16
19	1.010	4		20
138	1.001	7		134
63	10.000	5	1.000/6	64

Arithmetic Latencies

- Latency in cycles of common arithmetic operations
- Source: Agner Fog, https://www.agner.org/optimize/#manuals
 - AMD Ryzen core

	Int 32	Int 64	Fp 32	Fp 64
Add/Subtract	1	1	5	5
Multiply	3	3	5	5
Divide	14-30	14-46	8-15	8-15

- Divide is variable latency based on the size of the dividend
 - Detect number of leading zeros, then divide
- Why is FP divide faster than integer divide?

浮点数类型转换

练习

设int x=1,float y=2,则表达式x/y的值是: ()

A. 0

B. 1

C. 2

D. 以上都不是

Floating Point in C

- C Guarantees Two Levels
 - •float single precision
 - •double double precision
- Conversions/Casting
 - Casting between int, float, and double changes bit representation
 - double/float → int
 - Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range or NaN: Generally sets to TMin
 - int → double
 - Exact conversion, as long as **int** has ≤ 53 bit word size
 - int → float
 - Will round according to rounding mode

Floating Point Puzzles

- For each of the following C expressions, either:
 - Argue that it is true for all argument values
 - Explain why not true

```
int x = ...;
float f = ...;
double d = ...;
```

Assume neither **d** nor **f** is NaN

```
• x == (int)(float) x
 x == (int) (double) x
  f == (float)(double) f
 d == (double) (float) d
• f == -(-f);
• 2/3 == 2/3.0
• d < 0.0 \Rightarrow ((d*2) < 0.0)
• d > f \Rightarrow -f > -d
• d * d >= 0.0
• (d+f)-d == f
```

Interesting Numbers

• Double $\approx 1.8 \times 10^{308}$

{single,double}

Description	exp	frac	Numeric Value
Zero	0000	0000	0.0
 Smallest Pos. Denorm. Single ≈ 1.4 x 10⁻⁴⁵ Double ≈ 4.9 x 10⁻³²⁴ 	0000	00…01	$2^{-\{23,52\}} \times 2^{-\{126,1022\}}$
 Largest Denormalized Single ≈ 1.18 x 10⁻³⁸ Double ≈ 2.2 x 10⁻³⁰⁸ 	0000	1111	$(1.0 - \varepsilon) \times 2^{-\{126,1022\}}$
Smallest Pos. NormalizedJust larger than largest denormalized	00…01 ed	0000	$1.0 \times 2^{-\{126,1022\}}$
One	01…11	0000	1.0
 Largest Normalized Single ≈ 3.4 x 10³⁸ 	1110	11…11	$(2.0 - \varepsilon) \times 2^{\{127,1023\}}$

Special Properties of the IEEE Encoding

- FP Zero Same as Integer Zero
 - All bits = 0
- Can (Almost) Use Unsigned Integer Comparison
 - Must first compare sign bits
 - Must consider -0 = 0
 - NaNs problematic
 - Will be greater than any other values
 - What should comparison yield?
 - Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity

Summary

- IEEE Floating Point has clear mathematical properties
- Represents numbers of form M x 2^E
- One can reason about operations independent of implementation
 - As if computed with perfect precision and then rounded
- Not the same as real arithmetic
 - Violates associativity/distributivity
 - Makes life difficult for compilers & serious numerical applications programmers

下一节

- 周四 8: 00
- 存储系统
- ■请做好准备

再见

