

Astronómico Nacional

Computational Astrophysics

14. Convolution

Eduard Larrañaga
Observatorio Astronómico Nacional
Universidad Nacional de Colombia

What is convolution?

What is convolution?

- Convolution is a general purpose filter effect for images.
- It is implemented as a matrix applied to an image and a mathematical operation comprised of integers.
- It works by determining the value of a central pixel by adding the weighted values of all its neighbors together.
- The output is a new modified (filtered) image.

Spatial Frequencies

Convolution filtering modifies the spatial frequency of an image

Why convolution?

- Smooth
- Sharpen
- Intensify
- Enhance

The Process of Image Convolution

Kernel: is a (usually) small matrix of numbers that is used in image convolution.

The size of a kernel is arbitrary but 3x3 is often used.

Differently sized kernels containing different patterns of numbers produce different results under convolution.

0	1	0
1	1	1
0	1	0

Color values

Divided by the sum of the kernel $932\5 = \text{new}$ pixel color

Kernel

Original Image

Smoothed modified image

Convolution

$$g = \frac{\sum_{i=1}^{q} \sum_{j=1}^{q} w_{ij} d_{ij}}{\sum_{i=1}^{q} \sum_{j=1}^{q} w_{ij}}$$

- d_{ij} : Data value of the pixel [i,j]
- Wij: Coefficient (weight) in the Kernel
- q: dimension of the Kernel (usually 3)

Operation	Kernel ω	Image result g(x,y)
Identity	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	
	$egin{bmatrix} -1 & -1 & -1 \ -1 & 4 & -1 \ -1 & -1 & -1 \end{bmatrix}$	
Ridge detection	$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$	
Sharpen	$\left[egin{array}{cccc} 0 & -1 & 0 \ -1 & 5 & -1 \ 0 & -1 & 0 \end{array} ight]$	
Box blur (normalized)	$\frac{1}{9} \left[\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array} \right]$	
Gaussian blur 3 x 3 (approximation)	$\frac{1}{16} \left[\begin{array}{ccc} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{array} \right]$	

A Convolutional Neural Network

Conv2D

Conv2D

2D convolution layer.

How many filters to apply to the image?

Kernel size

To obtain filtered images with the same size of the original:

padding = "same"
strides = 1

If the size is changing with the convolution, you must be aware of the size I order to put other hidden layers!

```
tf.keras.layers.Conv2D(
   filters,
   kernel_size,
   strides=(1, 1),
   padding='valid',
   data_format=None,
   dilation_rate=(1, 1),
   groups=1,
   activation=None,
   use_bias=True,
   kernel_initializer='glorot_uniform',
   bias_initializer='zeros',
   kernel_regularizer=None,
   bias_regularizer=None,
   activity_regularizer=None,
   kernel_constraint=None,
   bias_constraint=None,
   **kwargs
```

MaxPooling2D

MaxPooling2D

Downsamples the input along its spatial dimensions by taking the maximum value over an input window (poolsize) for each channel of the input.

12	20	30	0			
8	12	2	0	2×2 Max-Pool	20	30
34	70	37	4		112	37
112	100	25	12			

Dropout

Dropout

The Dropout layer randomly sets input units to 0 with a frequency of rate at each step during training time, which helps prevent overfitting. Inputs not set to 0 are scaled up by 1/(1 - rate) such that the sum over all inputs is unchanged.

@astronomia OAN

AstronomiaOAN

@astronomia OAN