U.S.N.					

BMS College of Engineering, Bangalore-560019

(Autonomous Institute, Affiliated to VTU, Belgaum)

December 2016 Semester End Main Examinations

		IELDS AND WAVES ode: 15ES3GCFAW Duration: 3 hrs Max Marks: 100						
- ,		Date: 22.12.2016						
Instru	ictic	ons: Answer 5 full questions.						
		UNIT 1						
1	a	Point charges 1mC and -2mC are located at (3, 2, -1) and (-1, -1, 4) respectively. Calculate the electric force on a 10nc charge located at (0, 3, 1) and the electric field intensity at that point.	6					
	b	Define EFI, also derive an expression for EFI at a general point due to point charge in vector form.	10					
	c	Given that $D = z\rho\cos^2\phi \ a_z \ C/m^2$, calculate the charge density at $(1, \pi/4, 3)$ and the total charge enclosed by the cylinder of radius 1m with $-2 \le z \le 2m$.	4					
2	0	OR Two point charges -4 μ C and 5 μ C are located at (2,-1, 3) and (0, 4,-2) respectively.	5					
2	а	Find the potential at $(1, 0, 1)$ assuming zero potential at infinity.	3					
	b	Given the potential $V = \frac{10}{r^2} \sin\theta \cos\phi$, (a) Find the electric flux density D at $(2, \pi/$	5					
		2,0) and (b) Calculate the work done in moving a 10 μ C charge from point A(1,30 ⁰ ,120 ⁰) to B (4,90 ⁰ ,60 ⁰).						
		Discuss the boundary conditions of a dielectric to dielectric interface.	6					
	d	Determine the capacitance of a coaxial capacitor.	4					
3	0	UNIT 2 A circular loop located on $x^2 + y^2 = 9$, $z = 0$ carries a direct current of 10A	5					
3	a	along a_{ϕ} . Determine H at $(0,0,4)$ and $(0,0,-4)$.	3					
	b	Determine the magnetic field intensity of an infinite sheet of current using Ampere circuit law.	7					
	c	Given the magnetic vector potential $A=-\frac{\rho^2}{4} a_z$ Wb/m, calculate the total magnetic	3					
		flux crossing the surface $\phi = \frac{\pi}{2}$, $1 \le \rho \le 2m$, $0 \le z \le 5m$.						
	d	Determine the force exerted on a charged particle.	5					
		UNIT 3						
4	a	A parallel plate capacitor with plate area of 5cm^2 and plate separation of 3mm has a voltage $50\sin 10^3$ t volts applied to its plates. Calculate the displacement current assuming $\varepsilon = 2\varepsilon_0$.	4					
	b	Explain the concept of displacement current density and show that for time varying fields, $\nabla \times H = J + \frac{\partial D}{\partial t}$	8					

c Write the Maxwell's equations in integral form and differential form for time 4 varying fields. d In a medium characterized by $\sigma = 0$, $\mu = \mu_0$, ϵ_0 , and E= $20\sin(10^8 t-\beta z)a_y$ V/m. 4 Calculate H. **UNIT 4** 5 a Discuss the wave propagation in good conductors. 8 b A uniform plane wave propagating in a medium has $E=2e^{-\alpha z}\sin(10^8t-\beta z)a_v$ 7 V/m. If the medium is characterized by $\mu_r = 20$, $\epsilon_r = 1$ and $\sigma = 3$ mhos/m, find α , β and H. ^c State the poynting theorem and prove that $P_{avg}(z) = \frac{1}{2} Re(E X H^*)$ 5 a Given a uniform plane wave in air as $E_i = 40 \cos(\omega t - \beta z) \hat{a}_x + 30 \sin(\omega t - \beta z)$ 6 10 $\beta z)\hat{a}_y$ V/m. (a) Find H_i (b) If the wave encounters a perfectly conducting plate normal to the z axis at z=0, find the reflected wave E_r and H_r . (c) What are the total E and H fields for $z \le 0$ (d) Calculate the time average pointing vectors for $z \le 0$ and $z \ge 0$. b Explain the terms reflection coefficient and transmission coefficient and obtain the 4 relationship between them. c In free space $(z \le 0)$, a plane wave with $H = 10\cos(10^8 t - \beta z) \hat{a}_x \text{mA/m}$ is 6 incident normally on a lossless medium ($\mu = 8\mu_0$, $\epsilon = 2\epsilon_0$) in region $z \ge 0$. Determine the reflected wave H_r and E_r. 7 a A uniform plane wave in air with $E = 8\cos(\omega t - 4x - 3z) \hat{a}_v \text{ V/m}$ is incident on a 10 dielectric slab $z \ge 0$ with $\mu_r = 10$, $\epsilon_r = 2.5$ and $\sigma = 0$. Find (a) The polarization of the wave (b) The angle of incidence (c) The reflected E field (d) The transmitted H field b Discuss the reflection of a plane wave at oblique incidence angles. 10