Final Project proposal for ELE: 581

Name: Muhammad Enayetur Rahman

Student ID: 100635221

Data set: Airfoil Self-Noise Data Set

Total 6 attributes are:

- 1. Frequency, in Hertz
- 2. Angle of arrack, in degrees
- 3. Chord length in meters
- 4. Free-stream velocity, in meters per second
- 5. Suction side displacement thickness, in meters

And the final output is:

6. Scaled sound pressure level, in meters

Here is the basic statistical summary for each attribute. Attribute 'Sound level' would be my final output regression attribute.

Summary of each attribute:

frequency		
Min.	:	200
1st Qu	. :	800
Median	:	1600
Mean	:	2886
3rd Qu	. :	4000
Max.	:	20000

chord_length		
Min. :	0.0254	
1st Qu.:	0.0508	
Median :	0.1016	
Mean :	0.1365	
3rd Qu.:	0.2286	
Max. :	0.3048	

displacement_thickness		
Min. :	0.0004007	
1st Qu.:		
Median :	0.0049574	
Mean :	0.0111399	
3rd Qu.:		
Max. :	0.0584113	

angle_of_attack		
Min.	:0.000	
	.:2.000	
Median	:5.400	
Mean	:6.782	
3rd Qu	.:9.900	
Max.	:22.200	

free_stream_velocity		
Min. :	: 31.70	
1st Qu.:		
Median :	: 39.60	
Mean :	: 50.86	
3rd Qu.:	: 71.30	
Max. :	: 71.30	

sound_level		
Min. :	103.4	
1st Qu.:	120.2	
Median :	125.7	
Mean :	124.8	
3rd Qu.:	130.0	
Max. :	141.0	

Histogram of each independent variable:

Histogram of airfoilNoise.df\$frequency

Figure 1: Histogram of Attribute Frequency

Histogram of airfoilNoise.df\$chord_length

Figure 3: Histogram of Attribute Chord Length

Histogram of airfoilNoise.df\$displacement_thickness

Figure 5: Histogram of Attribute Displacement Thickness

Histogram of airfoilNoise.df\$angle_of_attack

Figure 2: Histogram of Attribute Angle of Attack

Histogram of airfoilNoise.df\$free_stream_velocity

Figure 4: Histogram of Attribute Free stream velocity

Histogram of airfoilNoise.df\$sound_level

Figure 6: Histogram of Attribute Sound Level

Graphs of each independent variable:

Why using this data set?

In the final project, I will choose option 1 that is, to build and evaluate support vector machine regression models. For this reason, I chose Airfoil Self-Noise Data Set.

This data set provides the airfoil self-noise which is an important component of the total airframe noise, which is due to the interaction between an airfoil blade and the turbulence produced in its own boundary layer and near wake. This data set provides different size NACA 0012 airfoils at various wind tunnel speeds and angles of attack. In this data set total instances are (rows) are 1503 and total attributes are (columns) are 6.

From the histograms it is seen that, most of the data set contains low frequencies and the target or, output variable has well distributed histogram.