Question 1	1 / 1 point
Divide and Conquer always yields a more efficient solution than Brute Force.	
True	
✓ ● False	
Question 2	1 / 1 point
Thor is a brute force kind of dude. He always uses linear search to find items in arrays. But ever since his friend Athena told binary search he has been using it for everything! He even uses it on unsorted arrays!	nim about
What he does is something like this:	
<pre>// Let A[0n] be an unsorted array // Let K be a search key // 1. sort the array using his favorite sort (bubble sort) // 2. use binary search to find the target in the new sorted array</pre>	
Question: what is the worst case efficency class (best big-oh class) of Thor's 2-step approach?	
O(n ³ logn)	
O(n)	
\checkmark \bigcirc $O(n^2)$	
O(1)	
O(n ² logn)	
O(nlogn)	
$O(n^3)$	
O(logn)	
Question 3	1 / 1 point
Consider the array H=[7,6,6,1,2,3].	
Which one of the following statements is correct?	
✓ ● This array represents a valid heap.	
This array does not represent a valid heap.	
Question 4	0 / 1 point
Algorithms that make use of the idea of "presorting" are:	
Input Enhancement Algorithms	
⇒ Transform and Conquer Algorithms	
Brute Force Algorithms	
Decrease and Conquer Algorithms	
★	
Question 5	1 / 1 point
The <i>merge</i> procedure used by MergeSort can merge two sorted arrays in O(n) time.	
✓ ● True	
False	