

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA

DEPARTAMENTO DE MATEMÁTICA Profesor: Rodrigo Vargas

Ayudantes: Mateo de la Cuadra y Mathías Luengo

Introducción al Cálculo - MAT1107 Ayudantía 7 27 de Abril 2023

Pregunta 1

Clasifique las siguientes funciones según su monotonía:

a.) Figura 1: Gráfico función constante.

b.) Figura 2: Gráfico oscilador armónico amortiguado.

c.) Figura 3: Gráfico de una exponencial con potencia negativa.

d.) Figura 4: Gráfico de función cúbica.

Pregunta 2

Demuestre que todo polinomio $p \colon \mathbb{R}^+ \to \mathbb{R}$ de la forma $p(x) = \sum_{i=1}^n x^i$ es una función inyectiva.

Pregunta 3

Sean $f(x) = 2x^2 + 3$, g(x) = x + 1. Grafique

- a) $g \circ f$
- b) $f \circ g$
- c) $\frac{g}{f} + \frac{1}{g}$
- d) $f \circ \frac{g^{-1}}{g}$

Repaso I4:

Pregunta 4

Considere la función racional $\mathbf{r}(\mathbf{x}) = \frac{x^3 + 6x^2 + 11x + 6}{x^2 + 2x - 3} + ax + b$

- a.) Determine las asíntotas verticales de r.
- b.) Cuales deben ser los valores de a y b para que r tenga una asíntota horizontal en y = 3.

Pregunta 5

Resuelva los siguientes problemas utilizando funciones cuadráticas:

- a.) Sea la ecuación $8x^2 + kx + 2$. Determine el valor de k a modo de que las raíces sean iguales.
- b.) Para llenar una piscina se tienen dos tuberias A y B, se sabe que juntas tardan 2 horas en llenar una piscina, además, sabemos que A demora 3 horas menos que B en llenar la misma piscina por si sola. ¿Cuantas horas tarda cada una separadamente?

Pregunta 6

Considere las parábolas $f(x) = ax^2 + bx + c$, $g(x) = px^2 + qx + r$ tales que $p, q \neq 0$.

- a) Halle condiciones sobre los coeficientes para que las parábolas se intersecten solo una vez.
- b) Suponga que a > 0 > p y que $f(-\frac{b}{2a}) = g(-\frac{q}{2p})$. Demuestre que al menos una de las parábolas se intersecta con el eje x.
- c) Suponga que sucede lo expuesto en los incisos anteriores. Demuestre que las parábolas se intersectan en sus vértices. (**Hint:** Considere que si máx(f) y mín(f) son el máximo y mínimo de una función respectivamente, -máx(f) = mín(-f)).