Seminarul 6 de Algebră II

Grupele 103 și 104 - 2020-2021

1 Rezultate utile din curs

Teorema 1.1: (de corespondență a idealelor)

Fie R, S inele și $f: R \to S$ un morfism surjectiv de inele.

Atunci există o corespondență bijectivă între idealele lui S și idealele lui R care conțin Ker f i.e. funcțiile

$$\varphi: \{I \leq R \mid I \supset \operatorname{Ker} f\} \to \{J \leq S\}, \ \varphi(I) = f(I),$$

$$\psi: \{J \leq S\} \to \{I \leq R \mid I \supset \operatorname{Ker} f\}, \ \psi(J) = f^{-1}(J).$$

sunt mutual inverse: $\varphi \circ \psi = id$, $\psi \circ \varphi = id$.

Teorema 1.2: (fundamentală de izomorfism)

Fie R, S inele comutative și $f: R \to S$ un morfism de inele.

Atunci

$$R_{\text{Ker }f} \simeq \text{Im }f.$$

În plus, acest izomorfism este dat de $R_{\text{Ker } f} \xrightarrow{\overline{f}} \operatorname{Im} f$, $\overline{f}(\hat{h}) = f(x)$.

Teorema 1.3: (Lema chineză a resturilor)

Fie R inel comutativ și $I_1, ..., I_n \subseteq R$ ideale astfel încât $I_i + I_j = R$, pentru orice $i \neq j$ (două câte două comaximale).

Atunci $I_1 \cdot I_2 \cdot \ldots \cdot I_n = I_1 \cap I_2 \cap \ldots \cap I_n$ şi

$$R/_{I_1 \, \cap \, I_2 \, \cap \, \ldots \, \cap \, I_n} = R/_{I_1 \, \cdot \, I_2 \, \cdot \, \ldots \, \cdot \, I_n} \simeq R/_{I_1} \times R/_{I_2} \times \ldots \times R/_{I_n}.$$

2 Inele de polinoame & Inelul factor (cont.)

Exercițiul 2.1: (Teorema I de izomorfism) Folosiți Teorema Fundamentală de Izomorfism pentru a demonstra:

Fie R un inel și $I \subset J$ ideale ale lui R. Atunci

$$\frac{R_{/I}}{J_{/I}} \simeq R_{/J}.$$

Observația 2.2: Dacă $\varphi: R \to S$ este un izomorfism de inele, $I \subseteq R, J \subseteq S$ astfel încât $\varphi(I) = J$, atunci $R/I \simeq S/I$.

Exercițiul 2.3: Calculați:

a)
$$\mathbb{Z}[X]/(2,X)$$

b)
$$\mathbb{Z}[X]/(7, X-2)$$

c)
$$\mathbb{Z}[X]/(X+5, X-2)$$

d)
$$\mathbb{Z}[X]/(X^2 + X + 1)$$

e)
$$\mathbb{Z}[X]/(7, X^2 + X + 1)$$

f)
$$\mathbb{Z}[i]/(7+i)$$

g)
$$\mathbb{Z}[i]/(1+2i)$$

Pentru fiecare subpunct, precizați dacă idealul la care care s-a factorizat este maximal.

Exercițiul 2.4: Considerăm idealul $I=(2,X^2+1) \leq \mathbb{Z}[X]$. Arătați că:

- a) I nu este ideal principal.
- b) $\mathbb{Z}[X]/I$ este inel cu 4 elemente, care nu este izomorf cu $\mathbb{Z}_2 \times \mathbb{Z}_2$.

Exercițiul 2.5:

- a) Pentru p,q prime, demonstrați că $\mathbb{Z}[X]/(X^2-p) \cong \mathbb{Z}[X]/(X^2-q)$ dacă și numai dacă p=q.
- b) Demonstrați că $\mathbb{Z}[\sqrt{7}]$ este un corp cu 29 elemente.

Exercițiul 2.6: Fie $f=X^2$ și g=2X în $\mathbb{Z}[X]$. Arătați că nu există $q,r\in\mathbb{Z}[X]$ cu $\deg r<\deg g$ astfel încât f=gq+r.

Exercițiul 2.7: Fie a,b,c numere reale nenule astfel încât $a+b+c\neq 0$ și

$$\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = \frac{1}{a+b+c}.$$

Demonstrați că pentru orice număr întreg impar n,

$$\frac{1}{a^n} + \frac{1}{b^n} + \frac{1}{c^n} = \frac{1}{a^n + b^n + c^n}.$$

Exercițiul 2.8: Fie $P \in \mathbb{R}[X]$ de grad n astfel încât $P(k) = \frac{k}{k+1}, \ \forall k = 0, 1, ..., n$. Calculați P(n+1).

Exercițiul 2.9: Fie p prim. Să se arate că:

a) Mulțimea $\mathbb{Z}_p \setminus \{\hat{0}\}$ este grup cu înmulțirea din \mathbb{Z}_p . Deduceți că $a^{p-1} = \hat{1}$ pentru orice $a \in \mathbb{Z}_p \setminus \{\hat{0}\}$.

2

b) Polinomul $f = X^{p-1} - \hat{1} \in \mathbb{Z}_p[X]$ are rădăcinile simple $\hat{1}, ... \hat{p-1}$.

c) Folosind relațiile lui Viète, deduceți Teorema lui Wilson:

$$(p-1)! \equiv -1 \pmod{p}$$
.

d) Deduceţi că -1 este rest pătratic modulo $p \iff p = 2$ sau $p \equiv 1 \pmod{4}$.

Exercițiul 2.10: Fie idealul $I = (3, X^3 - X^2 + 2X + 1) \unlhd \mathbb{Z}[X]$. Arătați că I nu este ideal principal și că $\mathbb{Z}[X]$ /I nu este corp.

Exercitial 2.11: Fie $P \in \mathbb{Z}[X_1, X_2, X_3]$,

$$P = 3X_1^2 X_2^2 X_3 + 7X_1^3 X_2^2 X_3 + 5X_1^6 - 3X_1 X_2 X_3 - 25X_3^3 + 1.$$

Scrieți P ca polinom în $\mathbb{Z}[X_2, X_3][X_1]$, ca polinom în $\mathbb{Z}[X_1, X_3][X_2]$ și ca suma de componente omogene (*i.e.* de același grad).

Exercițiul 2.12: Fie R un inel comutativ. Demonstrați că

$$R[X,Y]/(X-Y) \simeq R[X].$$

Generalizați.

Exercițiul 2.13: Demonstrați că $K[X,Y]/(Y^2-X)$ și $K[X,Y]/(Y^2-X^2)$ nu sunt izomorfe, pentru orice corp K.

Exercitiul 2.14:

a) Fie K un corp și $a_1, ..., a_n \in K$. Demonstrați că idealul

$$(X_1 - a_1, X_2 - a_2, ..., X_n - a_n) \triangleleft K[X_1, ..., X_n]$$

este maximal.

b) Daţi exemplu de corp K pentru care $K[X_1,...,X_n]$ are şi alte ideale maximale.

Exercițiul 2.15: Fie K un corp. Când este polinomul

$$P = (X_1 - X_2)(X_1 - X_3)(X_2 - X_3) \in K[X_1, X_2, X_3]$$

simetric?

Exercițiul 2.16: Fie R un domeniu de integritate infinit și $f \in R[X_1, ..., X_n]$. Presupunem că există o submulțime $A = A_1 \times ... \times A_n \subset R^n$ cu A_i infinite pentru orice $1 \le i \le n$ astfel încât f(x) = 0 pentru orice $x \in A$. Demonstrați că f = 0.

Mai rămâne adevărată afirmația dacă știm doar că f(x) = 0 pentru orice x dintr-o submulțime infinită a lui \mathbb{R}^n ?