第1章

まとめと今後の展望

本研究では 12 C(n, n') 12 CHoyle 反応の断面積測定のための MAIKo TPC の検出ガスの選定を行った. 測定では 12 CHoyle から放出される 3 つの $^{\alpha}$ 粒子を検出しなければならない. $^{\alpha}$ 粒子のエネルギーの決定は MAIKo TPC で取得されたトラックの長さから行うため, $^{\alpha}$ 粒子が MAIKo TPC の有感領域で停止すると が必要となる. また,トラックが短くなるとトラックを識別できなくなるため,物質厚が大きすぎないことが 必要となる. トラックが太いと複数のトラックを識別できなくなるため,電子の拡散効果が小さいガスが必要となる. このような要求を満たす検出ガスを決定した.

 α 粒子が適当な飛距離で効率的に停止する観点から, $\mathrm{CH_4}$ (50 hPa), $\mathrm{CH_4}$ (3) + $\mathrm{H_2}$ (7) (100 hPa), $\mathrm{CH_4}$ (4) + He (6) (100 hPa),iso- $\mathrm{C_4H_{10}}$ (1) + $\mathrm{H_2}$ (9) (100 hPa),iso- $\mathrm{C_4H_{10}}$ (1) + He (9) (100 hPa) の 5 種類が検出ガスの候補として選出された。MAIKo TPC がタイムウィンドウは $\mathrm{10\,\mu s}$,ドリフト方向の長さが $\mathrm{140\,mm}$ であるため,ドリフトスピードが $\mathrm{0.014\,mm\,ns^{-1}}$ となる必要がある。このドリフトスピードを実現するドリフト電場で測定を行う。

 α 線源を用いてトラックを測定し、そのトラックを再現するようなシミュレーションを作成した。シミュレーションで 12 C(n, n') 12 C Hoyle 反応のトラックを生成し、eye-scan による解析を行った。解析の結果より、検出効率、エネルギー分解能などの観点で CH_4 (3) $+H_2$ (7) と iso- C_4H_{10} (1) $+H_2$ (9) が適していることが分かった。 CH_4 (3) $+H_2$ (7) と iso- C_4H_{10} (1) $+H_2$ (9) を比較すると 12 C の含まれる量が iso- C_4H_{10} (1) $+H_2$ (9) の方が 4/3 多い。そのため、検出ガスは iso- C_4H_{10} (1) $+H_2$ (9) に決定した。

2/25-2/28 の 4 日間で OKTAVIAN で $14\,\mathrm{MeV}$ の中性子を用いた測定を行う予定である。本研究で決定した検出ガスを用いて測定を行う。