

Pares adyacentes

Llamemos al arreglo b_1, b_2, \ldots, b_m bueno, si $b_i \neq b_{i+1}$ para todo i with $1 \leq i \leq m-1$.

Te dan un arreglo **bueno** de n enteros positivos $a_1, a_2, a_3, \ldots, a_n$.

Puedes realizar las siguientes operaciones en el arreglo:

• Elige un índice i $(1 \le i \le n)$ y un número x $(1 \le x \le 10^9)$. Luego, cambia el valor de a_i a x. Luego de esta operación, el arreglo debe continuar siendo **bueno**.

Quieres realizar varias operaciones de manera que el arreglo resultante contenga exactamente dos valores distintos. Determina el mínimo número de operaciones necesarias para lograrlo.

Entrada

La primera línea de la entrada contiene el entero t $(1 \le t \le 10^5)$, el número de casos de prueba. Luego siguen los casos de prueba.

La primera línea de cada caso de prueba contiene un único entero $n~(2 \le n \le 2 \cdot 10^5)$ - el tamaño del arreglo.

La segunda línea de cada caso prueba contiene n enteros a_1,a_2,\ldots,a_n $(1 \le a_i \le n)$ - los elementos del arreglo. Está garantizado que $a_i \ne a_{i+1}$ for $1 \le i \le n-1$ (o sea, el arreglo es **bueno**).

Está garantizado que la suma de n de todos los casos de prueba no excede a $2\cdot 10^5$.

Salida

Para cada caso de prueba, imprime un único entero - el menor número de operaciones necesarias para convertir el arreglo en uno que contenta exactamente dos valores distintos.

Ejemplo

Entrada:

```
2
5
4 5 2 4 5
2
1 2
```

Salida:

```
3
0
```

Notas

En el primer caso, una de las secuencias óptimas de transformación es:

$$(4,5,2,4,5) o (2,5,2,4,5) o (2,5,2,4,2) o (2,5,2,5,2).$$

En el segundo caso, el arreglo contiene sólo dos valores distintos, así que la respuesta es 0.

Puntuación

- 1. (20 puntos): La suma de n de todos los casos no excede a $100\,$
- 2. (10 puntos): La suma de n de todos los casos no excede a $500\,$
- 3. (25 puntos): La suma de n de todos los casos no excede a $4000\,$
- 4. (45 puntos): Sin restricciones adicionales