Useful real analysis results

1 Leibniz's Integral Rule

Let μ be a probability distribution with support Ω , let $I \subset \mathbb{R}$ be a nontrivial open interval, also let $f: \Omega \times I \to \mathbb{R}$ be a map with the following properties:

- 1. For any $x \in I$, $\mathbb{E}_{w \sim \mu}[|f(w, x)|] < \infty$ (Uniformly finite moment)
- 2. For almost all $w \in \infty$, the map $x \mapsto f(w, x)$ is differentiable with derivative $\frac{\partial}{\partial x} f(w, x)$ (Differentiability)
- 3. There is a map $h: \Omega \to \mathbb{R}$ with the property that $\mathbb{E}_{w \sim \mu}[|h(w)|] < \infty$, such that $\left|\frac{\partial}{\partial x}f(\cdot,x)\right| \leq h$ (Derivative bound).

Then, for any $x \in I$, $E_{w \sim \mu} \left[\left| \frac{\partial}{\partial x} f(w, x) \right| \right] < \infty$ and the function $F: x \to \mathbb{E}_{w \sim \mu} [f(w, x)]$ is differentiable with derivative

$$F'(x) = \underset{w \sim \mu}{\mathbb{E}} \left[\frac{\partial}{\partial x} f(w, x) \right]$$
 (1.1)