Compiling Uncertainty Away:

Solving Conformant Planning Problems Using a Classical Planner (Sometimes)

Héctor Palacios

Héctor Geffner

UPF

ICREA/UPF

Outline

- Conformant and Classical Planning
- Intuitions
- Proposed Translation
- Experiments
- Discussion

Incomplete Information makes Planning Harder

Problem: A robot must move from an **uncertain** I into G with **certainty**, one cell at a time, in a grid $n \times n$

- ullet Conformant and classical planning look similar except for uncertain I
- Yet plans may be quite different: best conformant plan above must move the robot to a corner first!

Model for Conformant Planning

- a **set** of possible initial states $b_0 \subseteq S$
- a set $b_F \subseteq S$ of goal states
- ullet actions $A(s)\subseteq A$ applicable in each $s\in S$
- ullet a **non-deterministic** function F s.t. F(a,s) is the **set** of next states

Model for Conformant Planning

- a **set** of possible initial states $b_0 \subseteq S$
- a set $b_F \subseteq S$ of goal states
- ullet actions $A(s)\subseteq A$ applicable in each $s\in S$
- ullet a **non-deterministic** function F s.t. F(a,s) is the **set** of next states

- call a set of possible states, a belief state
- ${\color{blue}-}$ actions then map a belief state b into a belief state b_a

$$b_a \stackrel{\text{\tiny def}}{=} \{ s' \mid s' \in F(a, s) \& s \in b \}$$

- task is to find action sequence that maps b_0 into target b_F

Computing Conformant Plans

- ullet Search in **belief space** using an heuristic h(bel) [Bonet and Geffner; AIPS2000]
- Variations in both the heuristic and the representation of bel states (formulas, OBDDs, . . .)
- Problem: not easy to come up with good h for search in bel space ..

Complexity of Conformant Planning and Restricted Versions

Conformant planning harder than classical planning as belief space
 exponentially larger than state space

Complexity of Conformant Planning and Restricted Versions

- Conformant planning harder than classical planning as belief space
 exponentially larger than state space
- From a theoretical point of view, the difficulty is that while
 - the verification of classical plans is polynomial in the plan size
 - the verification of conformant plans is exponential

Complexity of Conformant Planning and Restricted Versions

- Conformant planning harder than classical planning as belief space
 exponentially larger than state space
- From a theoretical point of view, the difficulty is that while
 - the verification of classical plans is polynomial in the plan size
 - the verification of conformant plans is exponential
- This however also means that
 - Computing conformant plans that can be verified in poly-time
 - is not more complex than computing classical plans

Goal

In this paper we propose

- \bullet Translation of a class 'easy to verify' conformant problems P into classical problems K(P)
- Which can then be solved by an off-the-shelf classical planner
- $\bullet\,$ Classical plans of K(P) will be conformant plans for P

How?

Two forms of inference accounted for in the translation:

Limited form of 'disjunctive reasoning':

Limited form of 'epistemic reasoning'

How?

Two forms of inference accounted for in the translation:

Limited form of 'disjunctive reasoning':

Introduction of **fluents** L/X that are true in K(P)

when the conditionals 'if X then L' are true in P after a given plan

• Limited form of 'epistemic reasoning'

How?

Two forms of inference accounted for in the translation:

Limited form of 'disjunctive reasoning':

Introduction of **fluents** L/X that are true in K(P)

when the conditionals 'if X then L' are true in P after a given plan

• Limited form of 'epistemic reasoning'

Introduction of **literals** KL that are true in K(P)

when L is true in the belief states that results in P after a given plan

Results

	cf2cs(ff)		CFF	
Problem P	K(P)		P	
	Secs	Length	Secs	Length
Logistics-4-10-10	5.91	125	11.74	121
Bomb-100-60	9.64	140	23.53	140
Sqr-8-Ctr	0.03	22	140.5	50
Sqr-12-Ctr	0.04	32	_	
Sqr-240-Ctr	858.0	716	_	

Translation from P into K(P) takes a few seconds at most

Pick example

Conformant Problem P

Goal: hold

Actions:

pick(pos):

$$at(pos) \rightarrow hold$$

Classical Problem K(P)

Pick example

Conformant Problem P

Goal: hold

Actions:

pick(*pos***)**:

$$at(pos) \rightarrow hold$$

Classical Problem K(P)

Pick example

Conformant Problem *P*

Goal: hold

Actions:

pick(*pos***)**:

$$at(pos) \rightarrow hold$$

Classical Problem K(P)

Goal: $K \, hold$

Pick example

Conformant Problem P

Goal: hold

Actions:

pick(*pos***)**:

$$at(pos) \rightarrow hold$$

Classical Problem K(P)

Goal: $K \, hold$

Actions:

pick(*pos***)**:

 $\mathsf{true} \to hold/at(pos)$

Pick example

Conformant Problem P

Goal: hold

Actions:

pick(*pos***)**:

$$at(pos) \rightarrow hold$$

Classical Problem K(P)

Goal: $K \, hold$

Actions:

```
pick(pos):
```

true $\rightarrow hold/at(pos)$

 $merge_{hold}$ ():

 $hold/at(p1) \wedge$

 $hold/at(p2) \wedge$

 $hold/at(p2) \rightarrow Khold$

Pick example

Conformant Problem P

Goal: hold

Actions:

pick(*pos***)**:

$$at(pos) \rightarrow hold$$

Classical Problem K(P)

Goal: $K \, hold$

Actions:

pick(pos):

true $\rightarrow hold/at(pos)$

 $merge_{hold}$ ():

 $hold/at(p1) \wedge$

 $hold/at(p2) \wedge$

 $hold/at(p2) \rightarrow Khold$

Line example

1 2 3 4 5

Init:

 $X_1 \vee X_2 \vee X_3 \vee X_4 \vee X_5$

Goal:

 X_3

Actions: left:...

 $right (\rightarrow): X_i \rightarrow \neg X_i \wedge X_{i+1}$

Plan:

Line example

 $1 \quad 2 \quad 3 \quad 4 \quad 5$

Init:

 $X_1 \vee X_2 \vee X_3 \vee X_4 \vee X_5$

Goal:

$$X_3$$

Actions: left:...

$$right (\rightarrow): X_i \rightarrow \neg X_i \land X_{i+1}$$

Plan:

◆ After →, know that not in first cell:

$$K \neg X_1$$

Line example

1 2 3 4 5

Init:

 $X_1 \vee X_2 \vee X_3 \vee X_4 \vee X_5$

Goal:

$$X_3$$

Actions: left:...

$$right (\rightarrow): X_i \rightarrow \neg X_i \land X_{i+1}$$

Plan:

• After →, know that not in first cell:

$$K \neg X_1$$

After →, → also that:

$$K \neg X_2$$

Line example

 $1 \quad 2 \quad 3 \quad 4 \quad 5$

Init:

$$X_1 \vee X_2 \vee X_3 \vee X_4 \vee X_5$$

Goal:

$$X_3$$

Actions: left:...

$$right (\rightarrow): X_i \rightarrow \neg X_i \land X_{i+1}$$

Plan:

• After →, know that not in first cell:

$$K \neg X_1$$

After →, → also that:

$$K \neg X_2$$

After →, →, →, also that:

$$K \neg X_3 \wedge K \neg X_4$$

Line example

1 2 3 4 5

Disjunction

Init:

 $X_1 \vee X_2 \vee X_3 \vee X_4 \vee X_5$

Goal:

 X_3

Actions: left:...

 $right (\rightarrow): X_i \rightarrow \neg X_i \land X_{i+1}$

Plan:

◆ After →, know that not in first cell:

$$K \neg X_1$$

After →, → also that:

$$K \neg X_2$$

After →, →, →, also that:

$$K \neg X_3 \wedge K \neg X_4$$

• We also know the **disjunction**

Line example

1 2 3 4 5

Disjunction

Init:

 $X_1 \vee X_2 \vee X_3 \vee X_4 \vee X_5$

Goal:

 X_3

Actions: left:...

 $right (\rightarrow): X_i \rightarrow \neg X_i \land X_{i+1}$

Plan:

• After →, know that not in first cell:

$$K \neg X_1$$

After →, → also that:

$$K \neg X_2$$

After →, →, →, also that:

$$K \neg X_3 \wedge K \neg X_4$$

- We also know the **disjunction**
- Thus, KX_5 follows and reaching goal KX_3 is easy

Line example

Conformant
$$P \Rightarrow \operatorname{Classical} K(P)$$

$$Init X_1 \vee X_2 \vee X_3 \vee X_4 \vee X_5 \quad \Rightarrow \quad \emptyset$$

Conformant
$$P \Rightarrow \operatorname{Classical} K(P)$$

$$Init X_1 \vee X_2 \vee X_3 \vee X_4 \vee X_5 \quad \Rightarrow \quad \emptyset$$

Goal
$$X_3 \Rightarrow KX_3$$

$$\begin{array}{ccc} \operatorname{Conformant} P & \Rightarrow & \operatorname{Classical} K(P) \\ \operatorname{Init} X_1 \vee X_2 \vee X_3 \vee X_4 \vee X_5 & \Rightarrow & \emptyset \\ & \operatorname{Goal} X_3 & \Rightarrow & KX_3 \\ \operatorname{Action \ right} (-\!\!\!\! \bullet) : & \\ X_i \to \neg X_i \wedge X_{i+1} & \Rightarrow & \operatorname{right} (-\!\!\!\! \bullet) : \begin{cases} \operatorname{true} \to K \neg X_1 \\ K \neg X_i \to K \neg X_{i+1} \end{cases} \end{array}$$

$$Init X_1 \vee X_2 \vee X_3 \vee X_4 \vee X_5 \quad \Rightarrow \quad \emptyset$$

Goal
$$X_3 \Rightarrow KX_3$$

$$X_i \to \neg X_i \wedge X_{i+1}$$

$$\begin{array}{ccc} \operatorname{Goal} X_3 & \Rightarrow & KX_3 \\ \operatorname{Action \ right} (-\!\!\!\! \bullet) : & & \\ X_i \to \neg X_i \wedge X_{i+1} & \Rightarrow & \operatorname{right} (-\!\!\!\! \bullet) : \begin{cases} \operatorname{true} \to K \neg X_1 \\ K \neg X_i \to K \neg X_{i+1} \end{cases} \end{array}$$

$$\mathrm{merge}_{X_5} \colon \begin{cases} K \neg X_1 \wedge K \neg X_2 \wedge \\ K \neg X_3 \wedge K \neg X_4 \rightarrow K X_5 \end{cases}$$

Line example

$$Init X_1 \vee X_2 \vee X_3 \vee X_4 \vee X_5 \quad \Rightarrow \quad \emptyset$$

Goal
$$X_3 \Rightarrow KX_3$$

$$X_i \to \neg X_i \wedge X_{i+1}$$

$$\begin{array}{ccc} \operatorname{Goal} X_3 & \Rightarrow & KX_3 \\ \operatorname{Action \ right} (-\!\!\!\!) : & & \\ X_i \to \neg X_i \wedge X_{i+1} & \Rightarrow & \operatorname{right} (-\!\!\!\!) : \begin{cases} \operatorname{true} \to K \neg X_1 \\ K \neg X_i \to K \neg X_{i+1} \end{cases} \end{array}$$

$$\mathrm{merge}_{X_5} \colon \begin{cases} K \neg X_1 \wedge K \neg X_2 \wedge \\ K \neg X_3 \wedge K \neg X_4 \rightarrow K X_5 \end{cases}$$

Plan for both P and $K(P): \rightarrow, \rightarrow, \rightarrow$, merge X_5 , \leftarrow , \leftarrow

Fluent $L \Rightarrow KL, K\neg L$ (two fluents)

Conformant $P \Rightarrow \operatorname{Classical} K(P)$

Fluent $L \Rightarrow KL, K\neg L$ (two fluents)

Init Known lit $L \Rightarrow KL \wedge \neg K \neg L$

Init Unknown lit $L \Rightarrow \neg KL \land \neg K\neg L$ (both false)

Conformant $P \Rightarrow \text{Classical } K(P)$

Fluent $L \Rightarrow KL, K\neg L$ (two fluents)

Init Known lit $L \Rightarrow KL \wedge \neg K \neg L$

Init Unknown lit $L \Rightarrow \neg KL \land \neg K\neg L$ (both false)

Goal wff over lits $L \implies \text{wff over lits } KL$

Basic Translation: from P into K(P)

Basic Translation: from P into K(P)

Basic Translation: from P into K(P)

Weak (yet): works when uncertainty is not relevant

Action Compilation: For a with one cond effect

$$a: C \wedge L \rightarrow \neg L \Rightarrow a: KC \rightarrow K \neg L$$

Action Compilation: For a with one cond effect

$$a: C \wedge L \rightarrow \neg L \Rightarrow a: KC \rightarrow K \neg L$$

For every $X_1 \vee \cdots \vee X_n \in Init(P)$:

Split:
$$a: C \wedge X_i \to L \Rightarrow a: KC \to L/X_i$$

Action Compilation: For a with one cond effect

$$a: C \wedge L \rightarrow \neg L \Rightarrow a: KC \rightarrow K \neg L$$

For every $X_1 \vee \cdots \vee X_n \in Init(P)$:

Split:
$$a: C \wedge X_i \to L \Rightarrow a: KC \to L/X_i$$

Merge: add new action $merge_{X,L}$ with cond effect

$$a: (K \neg X_1 \lor L/X_1) \land \cdots \land (K \neg X_n \lor L/X_n) \land Flag_{X,L} \rightarrow KL$$

Action Compilation: For a with one cond effect

$$a: C \wedge L \rightarrow \neg L \Rightarrow a: KC \rightarrow K \neg L$$

For every $X_1 \vee \cdots \vee X_n \in Init(P)$:

Split:
$$a: C \wedge X_i \to L \Rightarrow a: KC \to L/X_i$$

Merge: add new action $merge_{X,L}$ with cond effect

$$a: (K \neg X_1 \lor L/X_1) \land \cdots \land (K \neg X_n \lor L/X_n) \land Flag_{X,L} \rightarrow KL$$

 \Rightarrow Invariant required for achieve KL: $X_1 \lor \cdots \lor X_n \lor L$

 $Flag_{X,L}$ is deleted when the invariant is **not preserved**.

Action Compilation: For a with one cond effect

$$a: C \wedge L \rightarrow \neg L \Rightarrow a: KC \rightarrow K \neg L$$

For every $X_1 \vee \cdots \vee X_n \in Init(P)$:

Split:
$$a: C \wedge X_i \to L \Rightarrow a: KC \to L/X_i$$

Merge: add new action $merge_{X,L}$ with cond effect

$$a: (K \neg X_1 \lor L/X_1) \land \cdots \land (K \neg X_n \lor L/X_n) \land Flag_{X,L} \rightarrow KL$$

 \Rightarrow Invariant required for achieve KL: $X_1 \lor \cdots \lor X_n \lor L$ $Flag_{X,L}$ is deleted when the invariant is **not preserved**.

Theorem:

Classical plans of ${\cal K}(P)$ are Conformant Plans of P

Results

- Linear translation: a few seconds
- Deals with most used benchmarks
- Solves 3 of 6 domains on IPC-2006
- Not (yet) ring, sortnet, blocks

	cf2cs(ff)		CFF	
Problem P	K(P)		P	
	Secs	Length	Secs	Length
Bomb-100-1	0.84	199	96.2	199
Bomb-100-60	9.64	140	23.53	140
Cube-7-Ctr	0.02	24	38.2	39
Cube-9-Ctr	0.05	33	_	
Cube-75-Ctr	484.0	330	_	
Sqr-8-Ctr	0.03	22	140.5	50
Sqr-12-Ctr	0.04	32	_	
Sqr-240-Ctr	858.0	716	_	
Safe-50	0.05	50	134.4	50
Safe-70	0.08	70	561.8	70
Safe-100	0.28	100	_	_
Logistics-4-10-10	5.91	125	11.74	121

Belief States:

Represented by KL's, conditionals L/X_i and invariants. (Incomplete)

• Belief States:

Represented by KL's, conditionals L/X_i and invariants. (Incomplete)

• **Scope** of the

approach: plans

whose verification

requires at most

one-step non-nested

subproofs

Belief States:

Represented by KL's, conditionals L/X_i and invariants. (Incomplete)

• **Scope** of the

approach: plans

whose **verification**

requires at most

one-step non-nested

subproofs

Classical:

1
$$p \xrightarrow{a} q$$

$$2 \qquad q \xrightarrow{b} g$$

$$\mid p \mid$$

$$g \pmod{4,2}$$

- Belief States:
 - Represented by KL's, conditionals L/X_i and invariants. (Incomplete)
- Scope of the approach: plans whose verification requires at most one-step non-nested subproofs

Classical:

1
$$p \xrightarrow{a} q$$

$$q = \frac{1}{q}$$
 (MP 3

$$g \pmod{4,2}$$

Conformant:

1
$$p \xrightarrow{a} g$$

$$2 \quad \mid q \xrightarrow{b} g$$

$$y \lor q$$

$$g$$
 (MP 4,1)

$$\begin{array}{c|c}
6 & q \\
\hline
7 & g & \text{MP 6,2}
\end{array}$$

8
$$g \qquad (\lor \text{ elim: 3,5,7})$$

Discussion(2)

We transform

verifications

requiring at most

one-step

non-nested

subproofs into

linear verifications

• Future work:

extend the

scope/type of

proofs

accommodated.

Conformant P:

1 |
$$p \xrightarrow{a} g$$

$$q \xrightarrow{b} g$$

$$y \vee q$$

4

5

6

$$\frac{|f|}{g}$$
 (MP 4,1)

$$g$$
 (MP 6,2)

8
$$g$$
 (\vee elim: 3,5,7

Classical K(P):

1 | true
$$\stackrel{a}{\rightarrow} g/p$$

2 true
$$\xrightarrow{b} g/q$$

$$g/p \wedge g/q \stackrel{merge}{\rightarrow} Kg$$

4
$$g/p$$
 (MP 2)

$$5 \mid g/q \pmod{3}$$

$$egin{array}{c|cccc} g/q & (ext{MP 3}) \ & Kg & (ext{MP 5,6,4}) \end{array}$$

Summary

- Mapping from conformant planning into classical planning that solves efficiently a wide range of non-trivial conformant problems
- Idea: to capture conformant plans requiring polynomial verification
- Done by accommodating in the translation a limited form of 'disjunctive reasoning' and 'epistemic reasoning'
- Clear semantic with many possible further extensions

Future Work

- Can be made complete
 - without:
 - Explicit enumerate all s_0 ?
 - Nested subproofs?
- Relevant concepts:
 - Decomposition
 - Asymptotically Complete

- ullet $a:C\wedge X \to L$ translated to $a:KC \to L/X$
- $\bullet \ L/X \equiv \text{If } X \text{ then } L \equiv X \supset L \equiv \neg X \vee L$
- we want to avoid:

$$X \wedge \neg L \equiv$$

X is true but L is not

