3.6. ESERCIZI 75

3.6 Esercizi

Esercizio 3.1 Dire quali dei seguenti insiemi *H* sono sottogruppi del gruppo *G* indicato:

1.
$$G = (\mathbb{R}, +), H = \{\ln a \mid a \in \mathbb{Q}, a > 0\};$$

2.
$$G = (\mathbb{R}, +), H = \{\ln n \mid n \in \mathbb{Z}, n > 0\};$$

3.
$$G = (\mathbb{R}, +), H = \{x \in \mathbb{R} \mid \tan x \in \mathbb{Q}\};$$

4.
$$G = (\mathbb{R}^*, \cdot), H = \{2^n 3^m \mid m, n \in \mathbb{Z}\};$$

5.
$$G = (\mathbb{R} \times \mathbb{R}, +), H = \{(x, y) \mid y = 2x\}.$$

Esercizio 3.2 Si consideri l'insieme $G = \{(a, b) \mid a, b \in \mathbb{Q}, a \neq 0\}$ con l'operazione binaria definita da

$$(a,b)\cdot(c,d)=(ac,ad+b).$$

Dopo aver verificato che (G, \cdot) é un gruppo, si verifichi che $H = \{(a, b) \mid a \in \mathbb{Q}^*\} < G$.

Esercizio 3.3 Sia X un insieme e sia Δ_X la differenza simmetrica, cioé l'operazione su $\mathcal{P}(X)$ definita da:

$$A, B \in \mathcal{P}(X), A\Delta_X B = (A \setminus B) \cup (B \setminus A).$$

Si dimostri che $(\mathcal{P}(X), \Delta_X)$ é un gruppo abeliano. Sia $Y \subseteq X$. Si dimostri che $(\mathcal{P}(Y), \Delta_Y) \leq (\mathcal{P}(X), \Delta_X)$.

Esercizio 3.4 Si dimostri che l'insieme G delle funzioni da $\mathbb R$ in $\mathbb R$ con l'operazione definita da

$$(f+g)(x) = f(x) + g(x).$$

é un gruppo abeliano e che i seguenti sottoinsiemi sono sottogruppi di G.

- 1. $C(\mathbb{R}) = \{ \text{funzioni continue } f : \mathbb{R} \to \mathbb{R} \};$
- 2. $D(\mathbb{R}) = \{ \text{funzioni derivabili } f : \mathbb{R} \to \mathbb{R} \};$
- 3. $I(\mathbb{R}) = \{\text{funzioni integrabili } f : \mathbb{R} \to \mathbb{R} \}.$

Esercizio 3.5 In ognuno dei casi seguenti mostrare che H é un sottogruppo di S_X .

1.
$$X = \{x \in \mathbb{R} \mid x \neq 0, 1\}, H = \{id, f, g\}, \text{ dove } f(x) = \frac{1}{1-x}, g(x) = \frac{x-1}{x};$$

2.
$$X = \{x \in \mathbb{R} \mid x \neq 0\}, H = \{id, f, g, h\}, \text{ dove } f(x) = \frac{1}{x}, g(x) = -x h(x) = -\frac{1}{x};$$

3.
$$X = \{x \in \mathbb{R} \mid x \neq 0, 1\}, H = \{id, f, g, h, j, k\}, \text{ dove } f(x) = 1 - x, g(x) = \frac{1}{x}, h(x) = -\frac{1}{1-x}, j(x) = -\frac{x-1}{x} \text{ e } k(x) = -\frac{x}{x-1}.$$

Esercizio 3.6 Per ogni coppia di numeri reali $a, b, a \neq 0$, si definisca la funzione $f_{a,b} : \mathbb{R} \to \mathbb{R}$. Si dimostri che:

- 1. $f_{a,b}$ ∈ S_ℝ;
- 2. $f_{a,b} \circ f_{c,d} = f_{ac,ad+b}$;
- 3. $f_{a.b}^{-1} = f_{a^{-1}, -ba^{-1}};$
- 4. $H = \{ f_{a,b} \mid a \in \mathbb{R}, b \in \mathbb{R}^* \} < S_{\mathbb{R}}.$

Esercizio 3.7 Sia $G = D_n$, $n \ge 3$, il gruppo diedrale. Dimostrare che G ha esattemente n elementi di ordine 2 se e solo se n é dispari. Nel caso che n sia dispari dimostrare che gli n elementi di G che non hanno ordine 2 formano un sottogruppo abeliano di G.

Esercizio 3.8 Sia X un insieme finito e A un sottoinsieme di X. Sia H il sottoinsieme di S_X che consiste di tutte le permutazioni $f \in S_X$ tale che $f(x) \in A$, per ogni $x \in A$.

- 1. Dimostrare che $H < S_X$;
- 2. Fornire un esempio dove la conclusione del punto precedente non vale se *X* é un insieme infinito.

Esercizio 3.9

- (1) Dimostrare che l'insieme delle trasposizioni di S_n genera S_n ;
- (2) Dimostrare che l'insieme $\{(12), (13), \dots, (1n)\}$ genera S_n ;
- (3) Dimostrare che i cicli di lunghezza 3 generano A_n , for $n \ge 3$;
- (4) Dimostrare che l'insieme $\{(123), (124), \dots, (12n)\}$ genera A_n ;
- (5) Dimostrare che S_n é generato da $\{(12), (12...n)\}$.

3.6. ESERCIZI 77

(Suggerimento: per (3) usare (13)(12) = (123) e (12)(34) = (321)(134); per (4) usare (abc) = (1ca)(1ab), (1ab) = (1b2)(12a)(12b) e $(1b2) = (12b)^2$; per (5) usare $(1...n)(12)(1...n)^{-1} = (23)$ e (12)(23)(12) = (13)).

Esercizio 3.10 Siano H e K sottogruppi di un gruppo finito G tali che $H \le K \le G$. Si dimostri che [G:H] = [G:K][K:H].