Lineare Algebra 1 - WS 2024/25

Übungsblatt 7 – 11.12.2024

Aufgabe 1

Für $a \in \mathbb{R}$ setzen wir

$$u_1 = \begin{pmatrix} 1 \\ 1 \\ 2 \\ 1 \end{pmatrix}, \quad u_2 = \begin{pmatrix} 3-a \\ 0 \\ 3 \\ a \end{pmatrix}, \quad u_3 = \begin{pmatrix} -1 \\ a \\ -1 \\ 0 \end{pmatrix} \quad \text{und} \quad u_4 = \begin{pmatrix} 1 \\ a \\ 1+a \\ 0 \end{pmatrix}.$$

Bestimmen Sie eine Basis und die Dimension von $U = \mathcal{L}(\{u_1, u_2, u_3, u_4\}) \subset \mathbb{R}^4$. Für die Fälle, in denen dim U < 4 ist, ergänzen Sie die gefundene Basis von U zu einer Basis des \mathbb{R}^4 .

Aufgabe 2

Es seien V ein Vektorraum über \mathbb{R} , und $v_1, v_2, v_3 \in V$. Zeigen Sie, dass v_1, v_2, v_3 genau dann linear unabhängig sind, wenn $v_1 + v_2, v_2 + v_3, v_1 + v_3$ linear unabhängig sind. Stimmt diese Aussage auch, wenn wir \mathbb{R} durch einen beliebigen Körper ersetzen?

Aufgabe 3

Es seien V ein Vektorraum, mit $\dim(V) < \infty$, und U, W Unterräume von V mit $\dim(U+W) = \dim(U \cap W) + 1$. Zeigen Sie, dass genau eine der Bedingungen $U \subseteq W$ und $W \subseteq U$ erfüllt ist.

Aufgabe 4

Bestimmen Sie, welche der folgenden Abbildungen $\varphi: X \to Y$ linear sind:

- (a) $X = Y = \mathbb{R}, \varphi(x) = ax + b, a, b \in \mathbb{R},$
- (b) $X = \mathbb{R}^3, Y = \mathbb{R}^2, \varphi(x, y, z) = (2x y + z, -x + 2z),$
- (c) $X = Y = \mathbb{R}^2$, $\varphi(x, y) = (|x|, 2y)$.