$\ensuremath{\mathsf{EE}} 201$ - Signals and Systems

Indian Institute of Technology Ropar September 6, 2020

Contents

1	Ana	dysis of Signa	$_{ m ds}$ and $_{ m Sy}$	$_{ m stems}$											
	1.1	Energy and Pe	ower						 						
	1.2	Periodic Signa	ls						 						
	1.3	Exponential S	ignals						 						
		1.3.1 Contin	uous Time	Expone	ential S	Signa	als		 						
		1.3.2 Discret	e Time Ex	ponenti	al Sigr	nals			 						
		1.3.3 Period	icity						 						
		1.3.4 Harmo	nics						 						
	1.4	Unit Impulse	and Step F	unctions	S				 						
		1.4.1 Discret	e-Time Ca	ase					 						
		1.4.2 Contin	uous-Time	Case .					 						
	1.5	Systems							 						
		1.5.1 Interco													
		1.5.2 Basic I	Properties						 						

Chapter 1

Analysis of Signals and Systems

1.1 Energy and Power

	Continuous Time Signal, $x(t)$	Discrete Time Signal, $x[n]$
Energy	$E_x = \int_{t_1}^{t_2} x(t) ^2 dt$	$E_x = \sum_{n=N_1}^{N_2} x[n] ^2$
Power	$E_x = \frac{E_x}{t_2 - t_1}$	$P_x = \frac{E_x}{N_2 - N_1 + 1}$

In infinite duration signals $(-\infty < t < +\infty, -\infty < n < +\infty)$

	Continuous Time Signal, $x(t)$	Discrete Time Signal, $x[n]$
Energy	$E_{\infty} = \lim_{T \to \infty} \int_{-T}^{T} x(t) ^2 dt$	$E_{\infty} = \lim_{N \to \infty} \sum_{n=-N}^{N} x[n] ^2$
Power	$E_{\infty} = \lim_{T \to \infty} \frac{E_{\infty}}{2T}$	$P_{\infty} = \lim_{N \to \infty} \frac{E_{\infty}}{2N + 1}$

1.2 Periodic Signals

A periodic signal repeats itself after sometime.

Continuous signals

If $x(t) = x(t+T) \ \forall t, T > 0$ then the signal is periodic. The minimum value of T that satisfies the condition is calle the *fundamental period*.

Discrete signals

If $x[n] = x[n+N] \ \forall n, N > 0, N \in \mathbb{Z}$ then the signal is periodic. The minimum value of N that satisfies the condition is calle the *fundamental period*.

1.3 Exponential Signals

1.3.1 Continuous Time Exponential Signals

A continuous time exponential signal can be represented as

$$x(t) = Ce^{at} (1.1)$$

where $C, a \in \mathbb{C}$.

[1] Consider the general case where $C = |C|e^{j\theta}$ and $a = \sigma + j\omega$. The signal becomes

$$x(t) = |C|e^{\sigma t}e^{j(wt+\theta)}$$

- ω is angular frequency. If $\omega \neq 0$, the signal is sinusoidal, with $f = \frac{\omega}{2\pi}$.
- σ is the attenuation factor. If $\sigma \neq 0$, the signal decays/grows and is bounded by the envelope $|C|e^{\sigma t}$.
- θ is the initial phase.

1.3.2 Discrete Time Exponential Signals

A discrete time exponential signal can be represented as

$$x[n] = Ce^{an} (1.2)$$

where $C, a \in \mathbb{C}$.

Consider the general case where $C = |C|e^{j\theta}$ and $a = \sigma + j\omega$. The signal becomes

$$x[n] = |C|e^{\sigma n}e^{j(wn+\theta)}$$

• ω is **related to** angular frequency. If $\omega \neq 2n\pi, n \in \mathbb{Z}$, the signal is periodic. Unlike continuous-time signals, the angular frequency cannot take all values. The range is $[0, 2\pi)$ or $[-\pi, \pi)$ because

$$e^{\mathrm{j}(\omega+2\pi)n} = e^{\mathrm{j}\omega n}e^{\mathrm{j}2n\pi} = e^{\mathrm{j}\omega n}$$

Rate of oscillation is small for $\omega \sim 2n\pi$, and high for $\omega \sim (2n+1)\pi$, $n \in \mathbb{Z}$.

- σ is the attenuation factor. If $\sigma \neq 0$, the signal decays/grows and is bounded by the envelope $|C|e^{\sigma n}$.
- θ is the initial phase.

1.3.3 Periodicity

Continuous-time exponential signals

For a continuous-time exponential signal to be periodic

$$e^{j\omega(t+T)} = e^{j\omega t}$$

$$\Rightarrow e^{j\omega T} = 1$$

$$\Rightarrow \omega T = 2m\pi, m \in \mathbb{Z}$$

Therefore, continuous-time exponential signal is periodic for all $\omega > 0$ and their fundamental time period is

$$T = \frac{2\pi}{\omega}$$

Discrete-time exponential signals

For a discrete-time exponential signal to be periodic

$$\begin{split} e^{\mathrm{j}\omega(n+N)} &= e^{\mathrm{j}\omega n} \\ \Rightarrow e^{\mathrm{j}\omega N} &= 1 \\ \Rightarrow \omega N &= 2m\pi, m \in \mathbb{Z} \end{split}$$

Therefore, discrete-time exponential signal is periodic only if $\frac{\omega}{2\pi} = \frac{m}{N}$ i.e. $\frac{w}{2\pi}$ is a rational number. The fundamental period is

$$N=m\frac{2\pi}{\omega}$$

where m is smallest positive integer such that N evaluates to an integer.

1.3.4 Harmonics

Continuous-time exponential signals

$$\phi_k(t) = e^{jk\left[\frac{2\pi}{T}\right]t} = e^{jk\omega t}$$

Discrete-time exponential signals

$$\phi_k[n] = e^{jk\left[\frac{2\pi}{N}\right]n} = e^{jk\frac{\omega}{m}n}$$

1.4 Unit Impulse and Step Functions

1.4.1 Discrete-Time Case

Unit Impulse

$$\delta[n] = \begin{cases} 0 & n \neq 0 \\ 1 & n = 0 \end{cases}$$

Figure 1.1: Unit impulse function in discrete-time

Unit Step

$$u[n] = \begin{cases} 0 & n < 0 \\ 1 & n \ge 0 \end{cases}$$

Figure 1.2: Unit step function in discrete-time

Properties

1.
$$\delta[n] = u[n] - u[n-1]$$

2.
$$u[n] = \sum_{m=-\infty}^{n} \delta[n] = \sum_{k=0}^{\infty} \delta[n-k]$$

3. Sampling Property of unit impulse function

$$x[n] \cdot \delta[n] = x[0] \cdot \delta[n]$$

$$x[n] \cdot \delta[n - n_0] = x[n_0] \cdot \delta[n - n_0]$$

1.4.2 Continuous-Time Case

Unit Step

$$u(t) = \begin{cases} 0 & t < 0 \\ 1 & t > 0 \end{cases}$$

This function is discontinuous at t = 0. It is modified a little bit to make it continuous.

Figure 1.3: Unit step function in continuous-time

$$U_{\Delta}(t) = \begin{cases} 0 & t < 0\\ \frac{t}{\Delta} & 0 \le t \le \Delta\\ 1 & t > \Delta \end{cases}$$

Figure 1.4: Continuous unit step function in continuous-time

Unit Impulse

$$u(t) = \int_{-\infty}^{t} \delta(\tau)d\tau$$
$$\delta(t) = \frac{du(t)}{dt}$$

Since, u(t) is not differentiable.

$$\delta(t) = \lim_{\Delta \to 0} \frac{dU_{\Delta}(t)}{dt}$$
$$\delta(t) = \begin{cases} 0 & t < 0\\ \frac{1}{\Delta} & 0 \le t \le \Delta\\ 0 & t > \Delta \end{cases}$$

Figure 1.5: Unit impulse function in continuous-time

Properties

$$1. \int_{-\infty}^{+\infty} \delta(\tau) d\tau = 1$$

2. Sampling Property of unit impulse function

$$x(t) \cdot \delta(t) = x(0) \cdot \delta(t)$$

$$x(t) \cdot \delta(t - t_0) = x(t_0) \cdot \delta(t - t_0)$$

1.5 Systems

System is the interconnection of components/devices/subsystems. A continuous-time system is represented by differential equation and a discrete-time system is represented by difference equation.

1.5.1 Interconnection of Systems

1. Series (Cascade) Connection

$$Input \longrightarrow \boxed{System \ 1} \longrightarrow \boxed{System \ 2} \longrightarrow Output$$

Figure 1.6: Example of series interconnection

2. Parallel Connection

Figure 1.7: Example of parallel interconnection

3. Series-Parallel Connection

It is combination of series and parallel connections.

4. Feedback Interconnection

In this kind of interconnection, some part of output is again fed as input to the system.

Figure 1.8: Example of feedback interconnection

1.5.2 Basic Properties

Some basic properties of a system are

- 1. Memory
- 2. Invertibility
- 3. Causality
- 4. Stability
- 5. Time-invariance
- 6. Linearity

Bibliography

[1] Continuous Time Complex Exponential Signal - College. http://pilot.cnxproject.org/content/collection/col10064/latest/module/m10060/latest. Accessed: 2020-09-03.