EML 2019

EXERCICE 1

Dans ce problème, toutes les variables aléatoires sont supposées définies sur un même espace probabilisé noté $(\Omega, \mathscr{A}, \mathbb{P})$.

PARTIE A : Des résultats préliminaires

Soient U et V deux variables aléatoires à densité indépendantes, de densités respectives f_U et f_V et de fonctions de répartition respectives F_U et F_V .

On suppose que les fonctions f_U et f_V sont nulles sur $]-\infty,0[$ et continues sur $[0,+\infty[$.

- 1. a) Justifier: $\forall t \in [0, +\infty[, 0 \leqslant F_U(t) f_V(t) \leqslant f_V(t).$
 - b) En déduire que l'intégrale $\int_0^{+\infty} F_U(t) f_V(t) dt$ converge.

On admet le résultat suivant :

$$\int_0^{+\infty} F_U(t) f_V(t) dt = \mathbb{P}([U \leqslant V])$$

- 2. En déduire : $\mathbb{P}([U > V]) = \int_{0}^{+\infty} (1 F_{U}(t)) f_{V}(t) dt$.
- 3. Exemple : Soient $\lambda, \mu \in \mathbb{R}^2$. On suppose dans cette question que U suit la loi exponentielle de paramètre λ et que V suit la loi exponentielle de paramètre μ .
 - a) Rappeler, pour tout t de \mathbb{R}_+ , une expression de $F_U(t)$ et de $f_V(t)$.
 - **b)** En déduire : $\mathbb{P}([U > V]) = \frac{\mu}{\lambda + \mu}$.

PARTIE B: Une application

Soit $\lambda \in \mathbb{R}_+^*$. On considère une suite $(T_n)_{n \in \mathbb{N}}$ de variables aléatoires indépendantes, suivant toutes la loi exponentielle de paramètre λ .

On définit ensuite la variable aléatoire N égale au plus petit entier k de \mathbb{N}^* tel que $T_k \leqslant T_0$ si un tel entier existe et égale à 0 sinon.

- 4. Soit $n \in \mathbb{N}^*$. On définit la variable aléatoire M_n par : $M_n = \min(T_1, \dots, T_n)$.
 - a) Calculer, pour tout $t ext{ de } \mathbb{R}_+, \mathbb{P}([M_n > t]).$
 - b) En déduire la fonction de répartition de M_n sur \mathbb{R} . Reconnaître la loi de M_n et préciser son (ses) paramètre(s).
- **5.** a) Montrer: $\mathbb{P}([N=1]) = \mathbb{P}([T_1 \leqslant T_0]) = \frac{1}{2}$
 - **b)** Justifier: $\forall n \in \mathbb{N}^*$, $[N > n] \cup [N = 0] = [M_n > T_0]$. En déduire, pour tout n de \mathbb{N}^* , une expression de $\mathbb{P}([N > n] \cup [N = 0])$ en fonction de n.
 - c) Montrer alors : $\forall n \in \mathbb{N} \setminus \{0,1\}, \mathbb{P}([N=n]) = \frac{1}{n(n+1)}$.
 - d) En déduire la valeur de $\mathbb{P}([N=0])$.
- 6. La variable aléatoire N admet-elle une espérance?

Exercice 2

On rappelle que deux matrices A et B de $\mathcal{M}_3(\mathbb{R})$ sont dites semblables lorsqu'il existe P de $\mathcal{M}_3(\mathbb{R})$ inversible telle que :

$$B = P^{-1}AP$$

L'objectif de cet exercice est d'étudier des exemples de matrices inversibles qui sont semblables à leur inverse. Les trois parties de cet exercice sont indépendantes entre elles.

PARTIE A: Premier exemple

On considère la matrice A de $\mathcal{M}_3(\mathbb{R})$ définie par : $A = \begin{pmatrix} 1 & -1 & 1 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & 2 \end{pmatrix}$.

- Déterminer les valeurs propres de A.
 Justifier que A est inversible et diagonalisable.
- 2. Déterminer une matrice D de $\mathcal{M}_3(\mathbb{R})$ diagonale où les coefficients diagonaux sont rangés dans l'ordre croissant, et une matrice P de $\mathcal{M}_3(\mathbb{R})$ inversible telles que : $A = PDP^{-1}$. Expliciter la matrice D^{-1} .
- 3. On note $Q = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$. Calculer Q^2 et Q D Q.
- 4. En déduire que les matrices A et A^{-1} sont semblables.

PARTIE B : Deuxième exemple

On considère f l'endomorphisme de \mathbb{R}^3 défini par :

$$\forall (x, y, z) \in \mathbb{R}^3, \quad f(x, y, z) = (x, -z, y + 2z)$$

On note M la matrice de f dans la base canonique de \mathbb{R}^3 .

On considère également les vecteurs u_1 et u_2 de \mathbb{R}^3 définis par : $u_1=(1,0,0)$ et $u_2=(0,1,-1)$.

- 5. Expliciter la matrice M et montrer que M est inversible.
- 6. a. Vérifier que 1 est valeur propre de f et (u_1, u_2) est une base du sous-espace propre associée.
 - **b.** Déterminer un vecteur u_3 de \mathbb{R}^3 tel que : $f(u_3) u_3 = u_2$.
 - c. Montrer que la famille $\mathscr{B}_1 = (u_1, u_2, u_3)$ est une base de \mathbb{R}^3 .

On admet que $\mathscr{B}_2 = (u_1, -u_2, u_3)$ est également une base de \mathbb{R}^3 .

- 7. a. Écrire la matrice M_1 de f dans la base \mathscr{B}_1 et la matrice M_2 de f dans la base \mathscr{B}_2 .
 - **b.** Justifier que les matrices M_1 et M_2 sont semblables, et calculer M_1M_2 .
- 8. En déduire que les matrices M et M^{-1} sont semblables.

PARTIE C : Troisième exemple

On considère la matrice T de $\mathcal{M}_3(\mathbb{R})$ définie par : $T = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$.

On note I_3 la matrice identité de $\mathcal{M}_3(\mathbb{R})$ et on pose : $N = T - I_3$.

- 9. Justifier que la matrice T est inversible. Est-elle diagonalisable?
- **10.** a. Calculer N^3 puis $(I_3 + N)(I_3 N + N^2)$.
 - **b.** En déduire une expression de T^{-1} en fonction de I_3 , N et N^2 .
- 11. On note g l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est N.
 - **a.** Justifier qu'il existe un vecteur u de \mathbb{R}^3 tel que : $g \circ g(u) \neq 0_{\mathbb{R}^3}$ et $g \circ g \circ g(u) = 0_{\mathbb{R}^3}$.
 - **b.** Montrer que la famille $\mathscr{B}_3 = (g \circ g(u), g(u), u)$ est une base de \mathbb{R}^3 .
 - c. Écrire la matrice de g dans la base \mathcal{B}_3 .
 - d. Calculer $N^2 N$ et en déduire que les matrices N et $N^2 N$ sont semblables.
- 12. Montrer que les matrices T et T^{-1} sont semblables.

EXERCICE 3

On considère la fonction f définie sur $]0, +\infty[$ par :

$$\forall t \in]0, +\infty[, \ f(t) = t + \frac{1}{t}$$

PARTIE A: Étude d'une fonction d'une variable

- 1. Étudier les variations de la fonction f sur $]0, +\infty[$. Dresser le tableau de variations de f en précisant les limites en 0 et $+\infty$.
- 2. Montrer que f réalise une bijection de $[1, +\infty[$ vers $[2, +\infty[$.

On note $g:[2,+\infty[\to [1,+\infty[$ la bijection réciproque de la restriction de f à $[1,+\infty[$.

- 3. a) Dresser le tableau de variations de g.
 - b) Justifier que la fonction g est dérivable sur $]2, +\infty[$.
 - c) Soit $y \in [2, +\infty[$. En se ramenant à une équation du second degré, résoudre l'équation f(t) = y d'inconnue $t \in]0, +\infty[$. En déduire une expression de g(y) en fonction de y.

PARTIE B : Étude d'une fonction de deux variables

On considère la fonction h de classe \mathcal{C}^2 sur l'ouvert $U =]0, +\infty[\times]0, +\infty[$ définie par :

$$\forall (x,y) \in U, \ h(x,y) = \left(\frac{1}{x} + \frac{1}{y}\right)(1+x)(1+y)$$

- 4. Calculer les dérivées partielles d'ordre 1 de h en tout (x,y) de U.
- 5. Soit $(x,y) \in U$. Montrer:

$$(x,y)$$
 est un point critique de $h \Leftrightarrow \begin{cases} y = x^2 \\ x = y^2 \end{cases}$

6. En déduire que h admet un unique point critique sur U dont on précisera les coordonnées (a,b).

7. a) Vérifier:
$$\forall (x,y) \in U, h(x,y) = 2 + f(x) + f(y) + f(\frac{x}{y}).$$

b) En déduire que h admet en (a,b) un minimum global sur U.

PARTIE C: Étude d'une suite

On introduit la suite $(u_n)_{n\in\mathbb{N}^*}$ définie par :

$$u_1 = 1$$
 et $\forall n \in \mathbb{N}^*, \ u_{n+1} = u_n + \frac{1}{n^2 u_n} = \frac{1}{n} f(n u_n)$

- 8. Montrer que, pour tout n de \mathbb{N}^* , u_n existe et $u_n \geqslant 1$.
- 9. Recopier et compléter les lignes 3 et 4 de la fonction Scilab suivante afin que, prenant en argument un entier n de \mathbb{N}^* , elle renvoie la valeur de u_n .

- 10. On pose, pour tout n de \mathbb{N}^* , $v_n = u_{n+1} u_n$.
 - a) Montrer: $\forall n \in \mathbb{N}^*, \ 0 \leqslant v_n \leqslant \frac{1}{n^2}$.
 - **b)** En déduire la nature de la série $\sum_{n\geqslant 1}v_n$.
 - c) Calculer, pour tout n supérieur ou égal à 2, $\sum_{k=1}^{n-1} v_k$. En déduire que la suite $(u_n)_{n\in\mathbb{N}^*}$ converge vers un réel ℓ , que l'on ne cherchera pas à déterminer.
- 11. a) Montrer que, pour tout entier k supérieur ou égal à 2, on a : $\frac{1}{k^2} \leqslant \int_{k-1}^k \frac{1}{t^2} dt$.
 - **b)** Pour tous entiers n et p tels que $2 \le p < n$, calculer $\sum_{k=p}^{n-1} v_k$ et en déduire :

$$0 \leqslant u_n - u_p \leqslant \int_{p-1}^{n-1} \frac{1}{t^2} dt$$

- c) En déduire, pour tout entier n supérieur ou égal à $3: u_2 \le u_n \le 1 + u_2$. Montrer alors que ℓ appartient à l'intervalle [2,3].
- d) Montrer, pour tout entier p supérieur ou égal à 2 :

$$0 \leqslant \ell - u_p \leqslant \frac{1}{p-1}$$

e) En déduire une fonction **Scilab** qui renvoie une valeur approchée de ℓ à 10^{-4} près.