CLAIMS

We claim:

1. A compound of formula I

$$X$$
 $(CH_2)_m$
 $(CH_2)_n$
 $(CH_2)_n$
 $(CH_2)_n$
 $(CH_2)_n$
 $(CH_2)_n$
 $(CH_2)_n$
 $(CH_2)_n$
 $(CH_2)_n$

5

I

or a pharmaceutically acceptable salt thereof wherein

Y is

- a) $-NHC(=W)R^{1}$,
- b) -O-het, -S-het, or -NH-het;

10 X is

a) $-NR^3$ -,

W is

- a) O, or
- b) S;

 $15 R^1$ is

- a) H,
- b) C_{1-8} alkyl,
- c) C₃₋₆cycloalkyl,
- d) OC_{1-4} alkyl,
- e) SC_{1-4} alkyl,
 - f) NH_2 ,
 - g) NHC₁₋₆ alkyl, or
 - h) $N(C_{1-6} \text{ alkyl})_2$;

 R^2 is

25 a) H,

- b) halo, or
- c) C_{1-4} alkyl;

R³ is

a) H,

30 b) C_{1-8} alkyl,

c) aryl,

00118.US1 DV1

- d) het,
- e) $C(=W)R^5$,
- f) $C(=O)OR^6$, or
- g) $S(=O)_iR^7$;
- $5 R^4 is$
- a) H, or
- b) C_{1-8} alkyl;

R⁵ is

- a) H,
- 10 b) aryl,
 - c) het,
 - d) NR^8R^9 , or
 - e) C₁₋₈alkyl;

R⁶ is

- 15 a) C_{1-8} alkyl,
 - b) aryl, or
 - c) het;

R⁷ is

- a) aryl,
- 20 b) het,
 - c) NR^8R^9 , or
 - d) C_{1-8} alkyl;

R⁸ and R⁹ are independently

- a) H,
- 25 b) C₁₋₈alkyl, or
 - c) aryl;

wherein >G-E is >C=C- and Q is a nitrogen atom;

aryl is a phenyl radical or an ortho-fused bicyclic carbocyclic radical wherein at least one ring is aromatic;

het is a C-linked five- (5) or six- (6) membered saturated or unsaturated heterocyclic ring having 1, 2, or 3 heteroatoms selected from the group consisting of oxygen, sulfur, and nitrogen, which is optionally fused to a benzene ring; at each occurrence, alkyl or cycloalkyl is optionally substituted with one or more OR⁸, halo, aryl, S(=O)_iR⁷, C(=W)R⁸, OC(=O)C₁₋₆alkyl, or NR⁸R⁹;

00118.US1 DV1

at each occurrence, aryl is optionally substituted with one or more halo, OH, CF₃, OC₁₋₆alkyl, CN, C₁₋₆ alkyl, $S(=O)_iR^7$, $C(=W)R^8$, OC(=O)R⁸, NHC(=O)R⁸, or NR⁸R⁹; at each occurrence, het is optionally substituted with one or more halo, OH, CF₃, OC₁₋₆alkyl, CN, C₁₋₆ alkyl, $S(=O)_iR^7$, $C(=W)R^8$, OC(=O)R⁸, NHC(=O)R⁸, or NR⁸R⁹, oxo, or oxime;

m is 0, 1, 3, or 4;

n is 0, 1, 3, or 4; with the proviso that m and n taken together are 3 or 4; if m is 2 n is not 2, and if n is 2 m is not 2; and i is 0, 1, or 2.

10

5

2. A compound of claim 1 which is a compound of formula IA:

$$X$$
 $(CH_2)_m$
 $(CH_2)_n$
 $(CH_2$

IA.

- 15 3. A compound of claim 2 wherein R^2 is H.
 - 4. A compound of claim 2 wherein R^1 is C_{1-6} alkyl.
 - 5. A compound of claim 2 wherein R^1 is methyl.

20

- 6. A compound of claim 4 wherein R^3 is $C(=O)R^5$, or $C(=O)OR^5$.
- 7. A compound of claim 4 wherein R^3 is $C(=O)CH_2OH$.
- 25 8. A compound of claim 4 wherein R^3 is CHO.
 - 9. A compound of claim 4 wherein R^5 is C_{1-4} alkyl, optionally substituted with $C(=O)C_{1-4}$ alkyl, $OC(=O)C_{1-4}$ alkyl, C(=O)phenyl, or phenyl, wherein said phenyl is optionally substituted with I, or CF_3 .

30

10. A compound of claim 4 wherein R^5 is phenyl.

10

25

- 11. A compound of claim 4 wherein R^3 is $C(=S)R^5$, wherein R^5 is aryl, alkyl or NR^8R^9 , wherein R^8 and R^9 are independently H, C_{1-4} alkyl or aryl.
- 5 12. A compound of claim 4 wherein R^3 is $S(=O)_iC_{1-4}$ alkyl,
 - 13. A compound of claim 4 wherein R³ is H, C₁₋₈alkyl, or aryl, .
 - 14. A compound of claim 4 or 6 wherein m is 1 and n is 3.
 - 15. A compound of claim 4 or 6 wherein m is 0 and n is 4.
 - 16. A compound of claim 4 or 6 wherein m is 1 and n is 2.
- 15 17. A compound of claim 4 or 6 wherein m is 2 and n is 1.
 - 18. A compound of claim 1 which is a compound of formula IB:

$$X$$
 $(CH_2)_m$
 A
het

 $\mathbf{I}\mathbf{B}$

- wherein A is O, S or NH and het is isoxazol-3-yl, isoxazol-5-yl, 1,2,4-oxadiazol-3-yl, isothiazol-3-yl, 1,2,4-thiadiazol-3-yl or 1,2,5-thiadiazol-3-yl.
 - 19. A compound of claim 1 which is a compound of formula IC:

$$X$$
 $(CH_2)_m$
 $(CH_2)_n$
 N
 R^1

IC.

20. A compound of claim 1 which is a compound of formula ID

$$X$$
 $(CH_2)_m$
 $(CH_2)_n$
 A
het

ID

wherein A is O, S or NH and het is isoxazol-3-yl, isoxazol-5-yl, 1,2,4-oxadiazol-3-yl, isothiazol-3-yl, 1,2,4-thiadiazol-3-yl or 1,2,5-thiadiazol-3-yl.

5

- 21. A method for treating microbial infections comprising: administering to a mammal in need thereof an effective amount of a compound of claim 1.
- 22. The method of claim 21 wherein said compound is administered orally, parenterally, transdermally, or topically.
 - 23. The method of claim 21 wherein said compound is administered in an amount of from about 0.1 to about 150 mg/kg of body weight/day.
- 15 24. The method of claim 21 wherein said compound is administered in an amount of from about 3 to about 100 mg/kg of body weight/day.
 - 25. The method of claim 21 wherein said infection is skin infection.
- 20 26. The method of claim 21 wherein the infection is eye infection.
 - 27. A pharmaceutical composition comprising the compound of claim 1 and a pharmaceutically acceptable carrier.
- 25 28. The method of claim 21 wherein said compound is administered in an amount of 600mg per day by IV or by oral.
 - 29. The method of claim 21 wherein said mammal is human.

30