EXERCISE SESSION 6A FOR THE COURSE "GÉOMÉTRIE EUCLIDIENNE, NON EUCLIDIENNE ET PROJECTIVE"

MATTEO TOMMASINI

Solutions for the test of May 6, 2014

Exercises done during the lecture of May 14, 2014

Exercise 1

- (i) Give a definition of the isometry group of the Euclidean plane.
- (ii) Find all isometries of the Euclidean plane $\mathbb{E}^2 \to \mathbb{E}^2$ which, in some affine coordinates, send the point $(0, \sqrt{2})$ to the point (2, 3).
- (i) The group of isometries of \mathbb{E}^2 is the set of all bijective maps $T: \mathbb{E}^2 \to \mathbb{E}^2$, such that d(T(p), T(q)) = d(p, q) for every pair of points $p, q \in \mathbb{E}^2$. Such a set is equipped with a structure of group with multiplication given by composition of maps, identity element given by the identity of \mathbb{E}^2 and inverse of any T given by the (set theoretical) inverse T^{-1} . Having fixed a coordinate system on \mathbb{E}^2 (i.e. a bijection $\phi: \mathbb{E}^2 \to \mathbb{R}^2$ preserving distances), the group of isometries of \mathbb{E}^2 can be identified with the group of isometries of \mathbb{R}^2 . This last group is given by the group of all applications $F: \mathbb{R}^2 \to \mathbb{R}^2$ of the form

$$F(X) := A \cdot X + B \quad \forall X \in \mathbb{R}^2$$

for some vector $B = (b_1, b_2) \in \mathbb{R}^2$ and for some matrix $A \in O(2)$, i.e. of the form

(0.1)
$$R(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

or of the form

(0.2)
$$S(\theta) := \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix} = R(\theta) \cdot \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

for some $\theta \in [0, 2\pi[$ (see Exercise 4.2.4 in Lecture Notes Part I).

NOTE: The solution of (ii) below is similar to the solution of Exercise 6 in Exercise Sheet 1-2 (see Exercise solutions 1B)

(ii) Let us fix any affine coordinate $\phi: \mathbb{E}^2 \to \mathbb{R}^2$ and let us set

$$\overline{T} := \phi \circ T \circ \phi^{-1} : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

We are trying to find an isometry T such that \overline{T} sends the point $(0, \sqrt{2})$ to (2, 3).

By Theorem 5.4 in Lecture Notes Part I, we get that \overline{T} has the form $X \mapsto A \cdot X + B$ for some matrix $A \in O(2)$ and some vector $B = (b_1, b_2) \in \mathbb{R}^2$. Since \overline{T} must send $(0, \sqrt{2})$ to (2,3), we get that

$$A \cdot \begin{pmatrix} 0 \\ \sqrt{2} \end{pmatrix} + \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$

so we must have:

$$(0.3) A \cdot \begin{pmatrix} 0 \\ \sqrt{2} \end{pmatrix} = \begin{pmatrix} 2 - b_1 \\ 3 - b_2 \end{pmatrix}.$$

If A is a matrix of the form (0.1), then from (0.3) we get:

$$\begin{pmatrix} -\sqrt{2}\sin\theta\\ \sqrt{2}\cos\theta \end{pmatrix} = \begin{pmatrix} 2-b_1\\ 3-b_2 \end{pmatrix}.$$

This implies that

(0.4)
$$\sin \theta = \frac{b_1 - 2}{\sqrt{2}} \quad \text{and} \quad \cos \theta = \frac{3 - b_2}{\sqrt{2}}.$$

Since we want to find a θ such that (0.4) holds, we have necessarily that

$$1 = (\sin \theta)^2 + (\cos \theta)^2 = \frac{1}{2}(b_1^2 + 4 - 4b_1 + 9 + b_2^2 - 6b_2).$$

This is equivalent to imposing that

$$(0.5) b_1^2 + b_2^2 - 4b_1 - 6b_2 + 11 = 0.$$

Under this condition, the point

$$\left(\frac{b_1-2}{\sqrt{2}}, \frac{3-b_2}{\sqrt{2}}\right) \in \mathbb{R}^2$$

is a point on S^1 , hence there is a unique $\theta \in [0, 2\pi[$, such that (0.4) holds. So if A is of the form (0.1), then \overline{T} sends the point $(0, \sqrt{2})$ to (2, 3) if and only if (0.5) holds. In this case, θ is uniquely determined by (0.4).

If A is a matrix of the form (0.2), then from (0.3) we get:

$$\begin{pmatrix} \sqrt{2}\sin\theta \\ -\sqrt{2}\cos\theta \end{pmatrix} = \begin{pmatrix} 2-b_1 \\ 3-b_2 \end{pmatrix}.$$

This implies that

(0.6)
$$\sin \theta = \frac{2 - b_1}{\sqrt{2}} \quad \text{and} \quad \cos \theta = \frac{b_2 - 3}{\sqrt{2}}.$$

Proceeding as before, we get that (0.6) holds if and only if (0.5) holds. In this case, θ is uniquely determined by (0.6). Now if θ is the solution of (0.4) for a fixed pair (b_1, b_2) , then the solution of (0.6) (for the same pair (b_1, b_2)) is simply given by $-\theta$.

So we conclude that the only isometries \overline{T} of \mathbb{R}^2 sending $(0,\sqrt{2})$ to (2,3) are exactly all those of the form

(0.7)
$$\overline{T}(X) = R(\theta) \cdot X + \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} \qquad \forall X \in \mathbb{R}^2$$

and those of the form

(0.8)
$$\overline{T}(X) = S(\theta) \cdot X + \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} \qquad \forall X \in \mathbb{R}^2$$

for all those values of $(b_1, b_2) \in \mathbb{R}^2$ such that

$$b_1^2 + b_2^2 - 4b_1 - 6b_2 + 11 = 0.$$

For any fixed value of (b_1, b_2) satisfying this condition, the value of θ above is completely determined by (0.4) in case (0.7) and as $-\theta$ in case (0.8).

Exercise 5

Let p, q and p', q' be any two pairs of points of S^2 such that d(p, q) = d(p', q'). Show that there is a spherical isometry $T: S^2 \to S^2$ such that T(p) = p' and T(q) = q'.

NOTE: this Exercise coincides with Exercise 5 in Exercise Sheet 5-6 (see Exercise Solutions 3B).

For simplicity, we set $\rho := d(\mathbf{p}, \mathbf{q}) = d(\mathbf{p}', \mathbf{q}')$.

Using Exercise 2 in Exercise Sheet 5 – 6, there is an isometry A of S^2 , such that

(0.9)
$$A(\mathbf{p}) = (0, 0, 1)$$
 and $A(\mathbf{q}) = (a, 0, c)$

for a suitable pair of scalars a, c.

Moreover, using again Exercise 2 in Exercise Sheet 5-6 (applied to the pair $(\mathbf{p}', \mathbf{q}')$ instead of the pair (\mathbf{p}, \mathbf{q})), there is an isometry B of S^2 , such that

(0.10)
$$B(\mathbf{p}') = (0, 0, 1)$$
 and $B(\mathbf{q}') = (a', 0, c')$

for a suitable pair of scalars a', c'.

Since both A and B are isometries, we get:

$$d((0,0,1),(a,0,c)) = d(A(\mathbf{p}),A(\mathbf{q})) = d(\mathbf{p},\mathbf{q}) = \rho =$$

= $d(\mathbf{p}',\mathbf{q}') = d(A(\mathbf{p}'),A(\mathbf{q}')) = d((0,0,1),(a',0,c')).$

Now since $d((0,0,1),(a,0,c)) = \rho$ and since the distance used here is the spherical distance, this means that

$$\begin{pmatrix} a \\ 0 \\ c \end{pmatrix} = \cos \rho \cdot \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} + \sin \rho \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} \sin \rho \\ 0 \\ \cos \rho \end{pmatrix}$$

or

$$\begin{pmatrix} a \\ 0 \\ c \end{pmatrix} = \begin{pmatrix} -\sin \rho \\ 0 \\ \cos \rho \end{pmatrix}$$

(see § 1.3 in Lecture Notes Part II). In the same way we get also that

$$\begin{pmatrix} a' \\ 0 \\ c' \end{pmatrix} = \begin{pmatrix} \sin \rho \\ 0 \\ \cos \rho \end{pmatrix}$$

or

$$\begin{pmatrix} a' \\ 0 \\ c' \end{pmatrix} = \begin{pmatrix} -\sin \rho \\ 0 \\ \cos \rho \end{pmatrix}.$$

So we consider 2 cases as follows

(a) If the signs of $\sin \rho$ are the same for (a,0,c) and (a',0,c') (i.e. both positive or both negative), then we define

$$T := B^{-1} \cdot A : S^2 \longrightarrow S^2$$

and we have:

$$T(\mathbf{p}) \stackrel{(0.9)}{=} B^{-1} \cdot \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \stackrel{(0.10)}{=} \mathbf{p}'$$

and

$$T(\mathbf{q}) \stackrel{(0.9)}{=} B^{-1} \cdot \begin{pmatrix} a \\ 0 \\ c \end{pmatrix} = B^{-1} \cdot \begin{pmatrix} a' \\ 0 \\ c' \end{pmatrix} \stackrel{(0.10)}{=} \mathbf{q}'.$$

(b) If the signs of $\sin \rho$ are the different for (a, 0, c) and (a', 0, c') (i.e. one positive and the other one negative, or conversely), then we have a = -a' and c = c'. So we define

$$I := \left(\begin{array}{ccc} -1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{array}\right) \in O(3)$$

and we have

$$(0.11) I \cdot \begin{pmatrix} a \\ 0 \\ c \end{pmatrix} = \begin{pmatrix} -a \\ 0 \\ c \end{pmatrix} = \begin{pmatrix} a' \\ 0 \\ c' \end{pmatrix}.$$

Then we define

$$T := B^{-1} \cdot I \cdot A : S^2 \longrightarrow S^2$$

and we have:

$$T(\mathbf{p}) \stackrel{(0.9)}{=} B^{-1} \cdot I \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = B^{-1} \cdot \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \stackrel{(0.10)}{=} \mathbf{p}'$$

and

$$T(\mathbf{q}) \stackrel{(0.9)}{=} B^{-1} \cdot I \cdot \begin{pmatrix} a \\ 0 \\ c \end{pmatrix} \stackrel{(0.11)}{=} B^{-1} \cdot \begin{pmatrix} a' \\ 0 \\ c' \end{pmatrix} \stackrel{(0.10)}{=} \mathbf{q}'.$$

So we have found T as in the claim. In both cases, T is obtained as composition of matrices in O(3), so it belongs to O(3), hence it is an isometry of S^2 as required.

Exercise 7

Show that any two distinct spherical lines intersect in a pair of antipodal points.

By definition, a spherical line is the intersection of S^2 with a plane of \mathbb{R}^3 , passing through the origin of \mathbb{R}^3 . Now let us fix any 2 such distinct spherical lines L_1 and L_2 . So there are 2 planes Π_1 , Π_2 passing through the origin of \mathbb{R}^3 , such that

$$L_1 = \Pi_1 \cap S^2 \quad \text{and} \quad L_2 = \Pi_2 \cap S^2.$$

Since $L_1 \neq L_2$, then $\Pi_1 \neq \Pi_2$. Therefore, $\Pi_1 \cap \Pi_2$ is a (straight) line R passing through the origin of \mathbb{R}^3 . As such, R intersects S^2 in a pair of antipodal points P and -P. Therefore,

$$L_1 \cap L_2 = (\Pi_1 \cap S^2) \cap (\Pi_2 \cap S^2) = (\Pi_1 \cap \Pi_2) \cap S^2 = R \cap S^2 = \{P, -P\}.$$

EXERCISE 10

Prove that there is a unique hyperbolic line through any two different points in \mathcal{H}^2 .

NOTE: this is an extended proof of Lemma 3.1.1 in Lecture Notes Part III.

Let us fix any pair of distinct points P, Q in \mathcal{H}^2 . Let us denote by $\mathbf{v} = (t_1, x_1, y_1)$ the vector joining P and 0. Such a vector is non-zero (otherwise, P would coincide with 0, but this is impossible because $t_1 > 0$ by definition of \mathcal{H}^2). Analogously, let us denote by $\mathbf{u} = (t_2, x_2, y_2)$ the non-zero vector joining Q and 0. If there is $\lambda \in \mathbb{R}$ such that $\mathbf{u} = \lambda \cdot \mathbf{v}$, then we have

$$-1 = -t_2^2 + x_2^2 + y_2^2 = -(\lambda t_1)^2 + (\lambda x_1)^2 + (\lambda y_1)^2 = \lambda^2 (-t_1^2 + x_1^2 + y_1^2) = -\lambda^2.$$

So we get that $\lambda = +1$ or $\lambda = -1$. The first case is impossible because \mathbf{v} and \mathbf{u} are different (because P and Q are distinct). Also the second case is impossible because it would imply that one between t_1 and t_2 is non-positive (but this contradicts the fact that both t_1 and t_2 are positive by definition of \mathcal{H}^2).

So we conclude that there is not any $\lambda \in \mathbb{R}$ such that $\mathbf{u} = \lambda \cdot \mathbf{v}$. Since $\mathbf{v} \neq (0,0,0)$, this implies that \mathbf{u} and \mathbf{v} are linearly independent. So it makes sense to consider the plane Π generated by \mathbf{u} and \mathbf{v} . This plane passes through 0, P and Q and it is the only plane with such a property. Therefore, there is a unique hyperbolic line (namely $\mathcal{H}^2 \cap \Pi$) passing through P and Q.

E-mail address: matteo.tommasini2@gmail.com, matteo.tommasini@uni.lu

MATHEMATICS RESEARCH UNIT UNIVERSITY OF LUXEMBOURG 6, RUE RICHARD COUDENHOVE-KALERGI L-1359 LUXEMBOURG