אלגברה ב' (104168) — אביב 2020-2021 תרגול 8 — מכפלות פנימיות, ניצבות ותהליך גרם־שמידט

אלעד צורני

2021 במאי 31

1 מכפלות פנימיות

1.1 חזרה

נרצה הרבה פעמים לדון במושג של זווית בין וקטורים. לשם כך לא מספיקה ההגדרה של מרחב וקטורי, וצריך להסתכל על מבנה נוסף של מכפלה פנימית על מרחב וקטורי.

$$\langle \cdot, \cdot \rangle : V \times V \to \mathbb{F}$$

המקיימת את התכונות הבאות.

מתקיים $lpha \in \mathbb{F}$ ולכל $u,v,w \in V$ מתקיים לינאריות ברכיב הראשון:

$$.\langle \alpha u + v, w \rangle = \alpha \langle u, w \rangle + \langle v, w \rangle$$

הרמיטיות: לכל $u,v \in V$ מתקיים

$$.\langle u, v \rangle = \overline{\langle v, u \rangle}$$

מתקיים $v \in V \setminus \{0\}$ מתקיים

$$.\langle v, v \rangle > 0$$

נרצה פעמים לדון במושג של אורך של וקטורים במרחב וקטורי. לשם כך צריך מבנה נוסף על המרחב הוקטורי, בשם נורמה.

 $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$ נניח בדיון על מכפלות פנימיות כי אנו עובדים מעל

1.2 תרגילים

תרגיל 1. יהי V מרחב מכפלה פנימית.

- v=0 אז $w\in V$ לכל לכל $\langle v,w\rangle=0$ אז 1.
- v=u אז א $v\in V$ לכל $\langle v,w\rangle=\langle u,w\rangle$ אז ביחו כי אם .2
- T=S אז $u,v\in V$ לכל $\langle Tu,v\rangle=\langle Su,v\rangle$ דו $T,S\in \mathrm{End}_{\mathbb{F}}(V)$ אז 3.

פתרון. 1. ניקח w = v ונקבל

$$\langle v, v \rangle = 0$$

v = 0 ולכן

2. נעביר אגף ונקבל

$$\langle v - u, w \rangle = 0$$

v=u ולכן v-u=0 הקודם ההסעיף מהסעיף ולכן $w\in V$

3. נעביר אגף ונקבל

$$.\left\langle \left(T-S\right)\left(u\right),v\right\rangle =0$$

 $T\left(u
ight)=S\left(u
ight)$ ולכן, ולכן $T-S\left(u
ight)=0$ מתקיים $u\in V$ אז עבור כל $u,v\in V$

2 ניצבות

2.1 חזרה

הגדרה 2.1 (וקטורים ניצבים). יהי V מרחב מכפלה פנימית ויהיו $u,v\in V$. נגיד ש $u,v\in V$ יהי $u\perp v$ ונכתוב $u,v\in V$ יהי $u\perp v$ מרחב $u\perp v$ יהי $u\perp v$ החברה $u\perp v$ וונכתוב $u,v\in V$

Sהניצב ל־מרחב ניצב). יהי V מרחב מכפלה פנימית ותהי המרחב $S\subseteq V$ תת־קבוצה. נגדיר את המרחב הניצב ל־V על ידי

$$.S^{\perp} := \{ v \in V \mid \forall u \in S : v \perp u \}$$

יט $\alpha v + w \perp u$ גם $\alpha \in \mathbb{F}^-$ גם ע $\alpha v + w \perp u$ כי $\alpha v + w \perp u$ גם אין איז מרחב וקטורי. אם S^\perp

$$\langle \alpha v + w, u \rangle = \alpha \langle v, u \rangle + \langle w, u \rangle = 0$$

 $W \leq V$ יהיי מרחב מכפלה פנימית ויהי ע ההי V אז

$$. \dim(V) = \dim(W) + \dim(W^{\perp})$$

2.2 תרגילים

עבור W^\perp עבור מצאו את W^\perp

$$W := \operatorname{Span}(e_1 + e_2) \leq \mathbb{R}^2$$

 $v_1 = -v_2$ אם ורק אם $v_1 + v_2 = 0$ אם ורק אם ורק אם אם ורק אם ורק אם אם ורק אם ורק אם אם ורק אם פתרון.

$$.W^{\perp} = \operatorname{Span}\left(e_1 - e_2\right)$$

 $(W^{\perp})^{\perp}=W$ יהי $W\leq V$ יהי מכפלה פנימית ויהי מכפלה פנימית יהי ע

 $.W\subseteq (W^\perp)^\perp$ ולכן $w\in (W^\perp)^\perp$ ולכן $w\in (W^\perp)^\perp$ מתקיים $w\in W^\perp$. מהגדרת $w\in W^\perp$ ולכן $w\in W^\perp$ מתקיים

$$\dim\left(\left(W^{\perp}\right)^{\perp}\right) = \dim\left(V\right) - \dim\left(W^{\perp}\right) = \dim\left(W\right)$$

ולכן בעצם יש שוויון.

תרקבוצות במרחב מכפלה פנימית אז $S \subseteq T$ תת־קבוצות במרחב מכפלה פנימית אז

$$T^{\perp} \subseteq S^{\perp}$$

2. הסיקו כי

$$.\left(S^{\perp}\right)^{\perp} = \operatorname{Span}\left(S\right)$$

 $v \in S^{\perp}$ אז $u \in S$ לכל $v \perp u$ לכל $u \in S$ לכל $v \perp u$ לכל $v \perp u$ אז $v \in T^{\perp}$.1 .1

ולכן $S \subseteq \operatorname{Span}(S)$ ולכן.

$$\operatorname{Span}(S)^{\perp} \subseteq S^{\perp}$$

וגם

$$. \left(S^{\perp}\right)^{\perp} \subseteq \left(\operatorname{Span}\left(S\right)^{\perp}\right)^{p} erp$$

אבל, $\operatorname{Span}(S)$ מרחב וקטורי ולכן

$$.\left(\operatorname{Span}\left(S\right)^{\perp}\right)^{p}erp=\operatorname{Span}\left(S\right)$$

ונקבל כי

$$.\left(S^{\perp}\right)^{\perp}\subseteq \mathrm{Span}\left(S\right)$$

כעת, S ומוכל ב־S כמו בתרגיל הקודם, ולכן $(S^\perp)^\perp$ מרחב וקטורי שמכיל את S ומוכל ב־S כמו בתרגיל הקודם, ולכן S ממינימליות Span (S) מרחב נקבל כי

$$,\left(S^{\perp}\right)^{\perp}=\operatorname{Span}\left(S\right)$$

כנדרש.

3 הטלות אורתוגונליות ותהליך גרם־שמידט

3.1

 (v_1, \ldots, v_n) יהי V הוא בסיס אורתוגונלי של בסיס אורתוגונלי של V הוא בסיס יהי V יהי יהי עבורו

$$\langle v_i, v_j \rangle = 0$$

לכל $i, j \in [n]$ לכל

. אם גם לכל שזה בסיס אורתונורמלי, $\left\langle v_i,v_j \right
angle = \delta_{i,j}$ או באופן שקול אם אורתונורמלי, נאמר או לכל ו $\|v_i\| = 1$

 (w_1, \dots, w_m) יהי V מרחב מכפלה פנימית ויהי $W \le V$ עם בסיס אורתונורמלי יהי V יהי V מרחב מכפלה פנימית ויהי האורתונונלית על W היא

$$P_W \colon V \to V$$

. $v \mapsto \sum_{i \in [m]} \langle v, w \rangle w$

 (w_1,\ldots,w_n) ים בסיס של V. קיים בסיס של V. קיים בסיס של V. הייV מחב מכפלה פנימית ויהי (v_1,\ldots,v_n) בסיס של V. היים בסיס של V. הייV אורתונורמלי של V עבורו V עבורו V עבורו V עבורו אורתונורמלי של V עבורו אורתונורמלי של V

3.2 תרגילים

תרגיל 5. יהי

$$.W = \operatorname{Span} \left\{ \begin{pmatrix} 3 \\ 4 \\ 2 \end{pmatrix} \right\} \le \mathbb{R}^3$$

- $[P_W]_E$ מצאו את 1
 - $.W^{\perp}$ מצאו את 2

$$(w)$$
 עבורו $w = \frac{1}{5} \begin{pmatrix} 3 \\ 4 \\ 0 \end{pmatrix}$ ונקבל ונקבל $\begin{pmatrix} 3 \\ 4 \\ 0 \end{pmatrix}$ ונקבל W עבורו W עבורו W נחפש בסיס אורתונורמלי עבור W נחפש בסיס אורתונורמלי עבור W

בסיס אורתונורמלי של W. אז

$$.P_{W}(v) = \langle v, w \rangle w$$

נקבל כי

$$P_{W}(e_{1}) = \frac{1}{25} \left\langle e_{1}, \begin{pmatrix} 3 \\ 4 \\ 0 \end{pmatrix} \right\rangle \begin{pmatrix} 3 \\ 4 \\ 0 \end{pmatrix} = \frac{3}{25} \begin{pmatrix} 3 \\ 4 \\ 0 \end{pmatrix}$$

$$P_{W}(e_{2}) = \frac{1}{25} \left\langle e_{2}, \begin{pmatrix} 3 \\ 4 \\ 0 \end{pmatrix} \right\rangle \begin{pmatrix} 3 \\ 4 \\ 0 \end{pmatrix} = \frac{4}{25} \begin{pmatrix} 3 \\ 4 \\ 0 \end{pmatrix}$$

$$P_{W}(e_{3}) = \frac{1}{25} \left\langle e_{3}, \begin{pmatrix} 3 \\ 4 \\ 0 \end{pmatrix} \right\rangle \begin{pmatrix} 3 \\ 4 \\ 0 \end{pmatrix} = 0$$

ולכן

$$. [P_W]_E = \frac{1}{25} \begin{pmatrix} 9 & 12 & 0 \\ 12 & 16 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

. נשלים את נשלים את נשלים את נשלים את \mathbb{R}^3 ונבצע את תהליך גרם־שמידט כדי לקבל בסיס אורתונורמלי. W^\perp נשלים את W^\perp

יהי
$$w_1 := w$$
 בסיס ל-3. ננרמל את הוקטור הראשון ונקבל $B = \begin{pmatrix} 3 \\ 4 \\ 0 \end{pmatrix}, e_2, e_3$ יהי

$$\hat{w}_2 := e_2 - \langle e_2, w_1 \rangle w_1$$

$$= e_2 - \frac{1}{25} \left\langle e_2, \begin{pmatrix} 3 \\ 4 \\ 0 \end{pmatrix} \right\rangle \begin{pmatrix} 3 \\ 4 \\ 0 \end{pmatrix}$$

$$= e_2 - \frac{4}{25} \begin{pmatrix} 3 \\ 4 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} \frac{12}{25} \\ \frac{9}{25} \\ 0 \end{pmatrix}$$

 $\|\hat{w}_2\| = \frac{1}{25}\sqrt{12^2 + 9^2} = \frac{15}{25} = \frac{3}{5}$

ונקבל

ואז

$$.w_2 = \frac{\hat{w}_2}{\|\hat{w}_2\|} = \frac{5}{3} \cdot \frac{1}{25} \begin{pmatrix} 12\\9\\0 \end{pmatrix} = \frac{1}{15} \begin{pmatrix} 12\\9\\0 \end{pmatrix}$$

נגדיר

$$\hat{w}_3 := e_3 - \langle e_3, w_2 \rangle w_2 - \langle e_3, w_1 \rangle w_1$$

$$= e_3$$

الاتا .
$$w_3 = \frac{\hat{w}_3}{\|\hat{w}_3\|} = \frac{e_3}{1} = e_3$$

אז

$$.W^{\perp} = \operatorname{Span}(w_2, w_3) = \operatorname{Span}(\hat{w}_2, \hat{w}_3) = \operatorname{Span}\left(\frac{1}{15} \begin{pmatrix} 12\\9\\0 \end{pmatrix}, e_3 \right)$$

נמצא קודם נקודה $P_W(p)$ כמתואר. ידוע כי נקודה זאת היא $q \in W$ מתקיים

$$.P_{W}(p) = \frac{1}{25} \begin{pmatrix} 9 & 6 & 0 \\ 6 & 4 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 5 \\ 5 \\ 5 \end{pmatrix} = \frac{1}{25} \begin{pmatrix} 75 \\ 50 \\ 0 \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \\ 0 \end{pmatrix}$$

אז המרחק הוא

$$\begin{vmatrix} 5 \\ 5 \\ 5 \end{vmatrix} - \begin{vmatrix} 3 \\ 2 \\ 0 \end{vmatrix} = \sqrt{(5-3)^2 + (5-2)^2 + 5^2}$$

$$= \sqrt{4+9+25}$$

$$= \sqrt{38}$$

4 האופרטור הצמוד ומשפט ריס

4.1

T של האופרטור הצמוד). $T \in \operatorname{End}_{\mathbb{F}}(V)$ ותהי ותהי מכפלה פנימית יהי T מרחב מרחב מרחב מרחב האופרטור יהחיד $T^* \in \operatorname{End}_{\mathbb{F}}(V)$ עבורו T^* הוא האופרטור היחיד

$$\langle Tu, v \rangle = \langle u, T^*v \rangle$$

 $u, v \in V$ לכל

 $u \in V$ לכל $f(u) = \langle u, v \rangle$ עבורו $v \in V$ קיים $f \in V^*$ לכל **4.2 משפט**

4.2 תרגילים

 \mathbf{n} עם המכפלה הפנימית . $V=M_2\left(\mathbb{R}\right)$ יהי

$$.\langle A,B\rangle=\mathrm{tr}\left(B^tA\right)$$

נגדיר

$$.T\begin{pmatrix} a & b \\ c & c \end{pmatrix} = \begin{pmatrix} 3d & 2c \\ -b & 4a \end{pmatrix}$$

חשבו את T^* בשתי דרכים שונות.

פתרון. דרך 1: נמצא את התנאים על מקדמי T^* בעזרת המכפלה הפנימית. מתקיים

$$\left\langle T \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \begin{pmatrix} e & f \\ g & h \end{pmatrix} \right\rangle = \left\langle \begin{pmatrix} 3d & 2c \\ -b & 4a \end{pmatrix}, \begin{pmatrix} e & f \\ g & h \end{pmatrix} \right\rangle$$

$$= 3de + 2cf - bg + 4ah$$

$$= \left\langle \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \begin{pmatrix} 4h & -g \\ 2f & 3e \end{pmatrix} \right\rangle$$

ולכן

$$.T^* \begin{pmatrix} e & f \\ g & h \end{pmatrix} = \begin{pmatrix} 4h & -g \\ 2f & 3e \end{pmatrix}$$

דרך 2: נשים לב כי

$$E = \left(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right)$$

:בסיס אורתונורמלי ל $M_{2}\left(\mathbb{R}
ight)$. נחשב

$$[T]_E = \begin{pmatrix} 0 & 0 & 0 & 3 \\ 0 & 0 & 2 & 0 \\ 0 & -1 & 0 & 0 \\ 4 & 0 & 0 & 0 \end{pmatrix}$$

כיוון ש־E אורתונורמלי, מתקיים

$$[T^*]_E = [T]_E^* := \overline{[T]_E}^t$$

ולכן

$$.[T^*]_E = [T]_E^* = \begin{pmatrix} 0 & 0 & 0 & 4 \\ 0 & 0 & -1 & 0 \\ 0 & 2 & 0 & 0 \\ 3 & 0 & 0 & 0 \end{pmatrix}$$

לכן

$$.T^* \begin{pmatrix} e & f \\ g & h \end{pmatrix} = \begin{pmatrix} 4h & -g \\ 2f & 3e \end{pmatrix}$$

מתקיים $p\in\mathbb{R}_n\left[x\right]$ כך שלכל C>0 קיים $n\in\mathbb{N}$ מתקיים .1 ...

$$|p(0)| \le C \left(\int_{-1}^{1} p(x)^{2} dx \right)^{\frac{1}{2}}$$

n=2 חשבו את המינימלי עבור C

פתרון. 1. נשים לב כי

$$\langle f, g \rangle = \int_{-1}^{1} f(x) g(x) dx$$

מכפלה פנימית. אז

$$. \left(\int_{-1}^{1} p\left(x\right)^{2} \mathrm{d}x \right)^{\frac{1}{2}} = \left(\langle p, p \rangle \right)^{\frac{1}{2}} = ||p||$$

כלומר, עלינו להוכיח

$$|p(0)| \le C ||p||$$

ההצבה

$$\operatorname{ev}_0 \colon \mathbb{R}_n [x] \to \mathbb{R}$$

$$f \mapsto f(0)$$

עבורו $g \in \mathbb{R}_n\left[x\right]$ עבורו איז פונקציונל לינארי, ולכן ממשפט ריס יש

$$.p(0) = ev_0(p) = \langle p, g \rangle$$

עכשיו, מקושי־שוורץ

$$.\left| p\left(0\right) \right| =\left| \left\langle p,g\right\rangle \right| \leq \left\| p\right\| \left\| g\right\|$$

C = ||g|| לכן ניקח

נשים אוורץ ואז p = g יש שוויון בקושי־שוורץ ואז . $g(x) = ax^2 + bx + c$ נסמן .2

$$|p(0)| = ||p|| ||g|| \le C ||p||$$

גורר $\|g\|$ את את מקיים את הנדרש, ולכן נותר למצוא את $\|g\|$. כעת $C = \|g\|$ גורר גורר אינו כי

$$1 = 1(0) = \langle g(x), 1 \rangle = \int_{-1}^{1} g(x) \, dx = \frac{ax^3}{3} + \frac{bx^2}{2} + cx \Big|_{x=-1}^{1} = \frac{2a}{3} + 2c$$

$$0 = x(0) = \langle g(x), x \rangle = \int_{-1}^{1} g(x) x \, dx = \frac{ax^4}{4} + \frac{bx^3}{3} + \frac{cx^2}{2} \Big|_{x=-1}^{1} = \frac{2b}{3}$$

$$.0 = x^2(0) = \langle g(x), x^2 \rangle = \int_{-1}^{1} g(x) x^2 \, dx = \frac{ax^5}{5} + \frac{bx^4}{4} + \frac{cx^3}{3} \Big|_{x=-1}^{1} = \frac{2a}{5} + \frac{2c}{3}$$

מהמשוואה השנייה נקבל .b=0 מהמשוואה השנייה מהמשוואה השנייה נקבל

$$1 = \frac{2a}{3} - 3 \cdot \frac{2a}{5} + 0 = \frac{10a - 18a}{15}$$

ולכן $a = -\frac{15}{8}$ ולכן . $a = -\frac{15}{8}$

$$c = -\frac{3a}{5} = -\frac{9}{8}$$

ולכן
$$g(x) = -\frac{15}{8}x^2 - \frac{9}{8}$$

אז
$$C = ||g|| = \int_{-1}^{1} -\frac{15}{8}x^2 - \frac{9}{8} dx = -\frac{7}{2}$$