Math 134, Spring 2022

Lecture #7: Bifurcations.

Monday April 11th

Learning objectives

Today we will discuss:

- What it means to say a value of a parameter is a bifurcation point.
- Saddle-node bifurcations.
 - How to draw a bifurcation diagram.
 - Transcritical bifurcations.

Bifurcations

External parameters

Consider the ODE

$$\dot{x} = f(x, r)$$

where r is a parameter of the model.

• Question: How do the dynamics vary as we vary r?

Definition!

Consider the following autonomous system

$$\dot{x} = f(x, \lambda)$$

where $x \in \mathbb{R}$ and $\lambda \in \mathbb{R}$. A **bifurcation** occurs at parameter $\lambda = \lambda_0$ if there are parameter values λ_1 arbitrarily close to λ_0 with dynamics topologically inequivalent from those at λ_0 .

An example

Consider the equation

$$\dot{x} = r - x^2$$

Which of the following is the correct bifurcation diagram?

Identifying bifurcations

If the system

$$\dot{x} = f(x, r)$$

has a bifurcation at $(x, r) = (x^*, r^*)$ then

$$f(x^*, r^*) = 0$$
 and $\frac{\partial f}{\partial x}(x^*, r^*) = 0$

Warning! The converse is not necessarily true. You will find a counter example in the next homework.

Proof: (sketch)
$$M = x - x^{+}$$
 $M = \frac{1}{2} + (x^{+}, c^{+}) M = \frac{1}{2} = \frac{1}{2} + \frac{1}{2}$

An example

$$\dot{x} = r + x - \ln(1+x)$$

$$\dot{x} = r + x - \ln(1 + x)$$

$$\dot{x} = r + x - \ln(1 + x)$$

An example

Consider the equation

$$\dot{x} = r + \frac{1}{4}x - \frac{x}{1+x}$$

At what value of r do we have a saddle-node bifurcation?

A)
$$r = \frac{9}{4}$$

B)
$$r = 1$$

C)
$$r = \frac{1}{4}$$

D)
$$r = 0$$

Answer $r = \frac{9}{4}$ and $r = \frac{1}{4}$.

Homework: Find the bifurcation diagram.

See you next time!

Image credits: