INDEX

Abraham, R., 57, 70	Connecting orbits, detecting, 139-40
Advanced Composition Explorer	hat algorithm, 140–1
(ACE), 203	Lorenz system, 143–5
Albedo, 14	numerical examples, 141–3
Andoyer elements, 23	Controlled systems, extension to, 145
Arnold, V.I., 57, 60	application for mission to Venus, 148–51
Artificial three-body equilibria:	controlled three-body problem, 145–6
ideal solar sail, 199–202	coupling controlled three-body
realistic solar sail, 202-203	problems, 146
Atmospheric density models, 7–12	implementation, 148
•	patched controlled three-body systems,
Ballistic capture transfers, 111–16	147–8
method of determining, 116–20	reachable sets, 146-7
properties, 116–20	Convector Mapping Principle (CMP), 175-6
Barker, 6	and convergence, 176–7
Battin, R.H., 2, 55, 66	feedback guidance/control, 178
Bekey, I., 212, 213	linking theory, practice, computation,
Belbruno, E., 125	177–8
Beletsky, V.V., 218-19, 220, 221	Coronal mass ejections (CME), 203
Betts, J.T., 171, 175, 177	Cosmo, M.L., 213
Boundary value problem (BVP),	Crandall, 174
174–5, 180	
Brouwer, 2	Davis, D., 123
Brumberg, V.A.L.S., 42, 43	Delaunay elements, 23, 34, 37-9
Bryson, A.E., 54, 174, 179	DIDO software package, 180–1
	Distributed space system (DSS), 181-5
Calculus, 25–6	Drag, 7–12
Cameron, A., 123	Dynamical systems, 127–8
Canonical perturbation, 32–4	circular restricted three body problem,
Capture problem, 108–10	128–9
Cartmell, M.P., 209, 213, 217, 228, 230	patching three-body problems, 129–30
Cell mapping approach, 130	
Chaos, 120–3	Earth Centered Inertial (ECI), 239
Clarke, F.H., 163	EEO, 230–2
Clemence, 2	Efroimsky, M., 36
Clohessy–Wiltshire equations, 241–2	Euler angles, 23, 25
Co-elliptic restricted four-body	Euler–Lagrange equation, 175–6
problem, 108	European Space Agency (ESA), 117-18,
Colombo, G., 48, 208, 212	148, 190

Formation flying:	Gauss Variational Equations (GVEs),
analysis of controller performance,	238, 242
256–8	Gaussian VOP (nonconservative forces),
background, 237–9	18–19
control/model predictive control	Genesis discovery mission, 128
formulation, 243–9	Geostorm mission, 199, 203–205
distributed coordination through virtual center, 249–60	Global Analysis of Invariant Objects (GAIO), 127
dynamics, 239–43	Goldreich, P., 42, 43, 44–5, 48
extensions to representations, 242–3	Gott III, J.R., 124, 125
leader-follower, 249, 251-2	GRACE satellite, 14
open loop robust control/replan frequency,	Gravity, 4
260–5	earth gravitational models, 5–8
reference orbit, 250–1	Grossi, M.D., 208
reference point coordination, 250-5	
simulations results, 255-60	Hager, W.W., 175, 177
total fuel cost analysis, 259-60	Hamiltonian Minimization Condition (HMC),
using closed-loop robust MPC, 265–73	170–3, 180
virtual center, 252-5	HMC on HJB, 173–4
Fuel, 155–6	HMC on Minimum Principle, 174–5
consumption, 160–1	Hamiltonian variation, 32, 34, 39
expenditures measured by L^1 norms, 162	Hamilton–Jacobi equation, at higher orders,
global optimality, 164	99–102
L^1 cost and l^p geometry, 163	Hamilton–Jacobi equation, local solutions, 77, 99
minimum-fuel orbit transfer problem, 155,	combined algorithm, 83
179–81	convergence/existence, 83–7
penalty for not using L^1 cost, 163–4	curse of dimensionality, 82–3
quadratic cost is not $p = 2$, 161–2	direct approach, 82
	direct solution for generating function,
Gaposchkin, 8	78–81
Gauge freedom:	direct/indirect comparison, 82-3
benefits/advantages, 48–9	error in approximation, 88–90
comparison of calculations, 47–8	examples, 87–90
disturbing function in frame co-precessing	indirect approach, 81, 82
with equator of date, 41–2	practical considerations, 85–7
freedom of frame Choice, 40–1	singularity avoidance, 80-1
gauge-invariant planetary equations of	theoretical considerations, 84-5
Lagrange/Delaunay types, 37–9	Hamilton-Jacobi theory, 56-60
geometrical meaning of arbitrary gauge	Hamilton-Jacobi-Bellman (HJB) equation,
function, 34–6	170, 173–4
planetary equations in precessing frame,	Hamilton's principal function, 74–5
written in terms of contact elements,	calculus of variations, 76–7
42–5	existence of, 75–6
planetary equations in precessing frame,	fixed initial time, 77
written in terms of osculating	and generating functions, 76
elements, 45–7	Hartmann, W., 123
simple example, 26–8	Hill three-body problem, 102–104
under variation of Lagrangian, 28–32	Hill's Equations of Motion, 239, 241–2, 271

Hiten spacecraft, 107, 117 Ho, Y.C., 54, 174, 179	Low-energy transfers, 107–108 ballistic capture regions/transfers, 112–20
Hohmann, W., 110	ballistic capture transfers, 111–12
Hohmann transfers, 110–11	capture problem, 108–10
	chaos and weak capture, 120–3
Instantaneous capture, 109–10	Hohmann transfers, 110–11
Interstellar Heliopause Probe (IHP), 191	origin of Moon, 123–5
Invariant manifolds computation, 135–6	Lunar-tether orbit (LTO), 230–2
continuation algorithm, 136	Lyapunov orbits, 129–30
convergence result/error estimate, 136–8	Lyapunov orons, 125–50
Isaaks, J.D., 208	Mars, 194, 207
Isaaks, J.D., 200	Marsden, J.E., 57, 70, 107
Jupiter, 128	
Jupiter, 128	MATLAB, 178, 181, 255
Vanlan 2	Mercury, 192, 194, 197 Minimum Principle, 162, 165, 168, 170, 174
Kaplan, 2	Minimum Principle, 163, 165, 168, 170, 174,
Karush–Kuhn–Tucker (KKT) conditions,	176–7, 181
172–3, 177	Model predictive control (MPC), 243, 244,
Kaula, 2	260–5
Kelly, W.D., 212	closed-loop robust MPC, 265–73
Kelso, 9, 11	Moon, 194, 208, 230
Kepler elements, 24	origin of, 123–5
Kinoshita, T., 43	Moravec, H., 208
Kramden, R., 210	Mordukhovich, B.S., 175
Kreyszig, 1	Moritz, 2
Kumar, K., 213	Motorised Momentum Exchange Tethers (MMETs), 209
Lagrangian VOP (conservative forces), 17, 23,	Moulton, F.R., 72
24, 28–32, 37–9	Moyer, H.G., 179
Lainey, V., 49	Mueller, 2
Lambeck, 2	
Lanczos, C., 75, 77	NASA, 190
Lawden's equations, 242	Newton, Isaac, 24, 163
Lennert, S., 209	Nonlinear L^1 -optimal control problems:
Levin, E.M., 218-19, 220, 221	issues in solving, 170–5
Linear parameter-varying (LPV) model, 245	solving, 175–8
Linear Programming (LP), 237, 244, 247,	Nonlinear problems (NLPs), 177
249, 255	Non-linear systems theory, 69–70, 99
Linear systems theory, 63, 98–9	Lagrangian submanifolds and study of
Hamilton–Jacobi equation, 64–5	caustics, 70–4
initial conditions, 65–6	Norton, E., 210
perturbation matrices, 66–7	- · · · · · · · · · · · · · · · · · · ·
singularities of generating functions/	Orbital dynamics, 23–4
relation to state transition	gauge freedom, 34–49
matrix, 67–9	historical background, 24–6
Linear time variant (LTV), 245	normal form of Cauchy, 49–50
Lions, 174	precession of equator of date relative to
Lorenzini, E.C., 212, 213	equator of epoch, 50–1
Low Earth orbit (LEO), 178, 190, 209, 212,	Osculating ellipse, 110
217, 231–2	Osculating empse, 170

Penzo, P.A., 212	Ralph, 210
Perturbation:	Ratiu, T.S., 57
acceleration, 1-2	Relativistic effects, 15
Albedo, 14	Robust MPC, 265
analytical, 15	bounding the process noise, 268
comparative force model effects, 20-2	controller implementation, 268–9
definition, 1	demonstration results, 269–73
disturbing function/disturbing force, 2	overview, 266–7
drag, 7–12	Roy, 2
effect on orbits, 19	Runge-Kutta methods, 177–8
fast/slow variables, 3	
forces, 3–4	Satellite thrusting, 15
Gaussian VOP, 18–19	Set oriented numerics, 130–1
general relativistic effects, 15	convergence, 133
general techniques, 16	implementation, 133
gradients, 1–2	multilevel subdivision algorithm, 131
gravity, 4–8	realization of intersection test, 133–5
J_2 , 19	subdivision algorithm, 131–2
Lagrangian VOP, 17	Sky-hook, 208
numerical, 15–17	Small Expendable Deployer System
osculating ellipse, 3	(SEDS), 209
osculating/mean elements, 3	<i>SMART-1</i> mission, 117–18, 148
potential function, 1–2	Solar Polar Orbiter (SPO), 191
propagating the orbit, 15	Solar radiation pressure (SRP), 12–13, 20
satellite thrusting, 15	Solar sail orbital mechanics:
secular change, 2	
semianalytical, 16	background, 195–6
short/long periodic effects, 2-3	conic section orbits, 196
solar radiation pressure, 12-13	logarithmic spiral trajectories, 196
special techniques, 15–16	minimum-time trajectories, 196–8
three-body, 12	Solar sails:
tides, 13–15	artificial three-body equilibria, 199–203
variation of parameters, 16	background, 190–1
Phase flow, 60–3	mission applications, 203–207
solving two-point boundary value problems	non-Keplerian orbits, 198–9
with generating functions, 63	performance, 193–5
Pinkham, G., 179	sizing, 191–3
Planar circular restricted three-body problem	Space trajectory optimization, 155–7, 185–6
(PCR3BP), 108–109, 128–9	cost functions/Lebesgue norms, 160-4
Planar elliptic restricted four-body	double integrator example, 164–9
problem, 108	geometry/mass flow equations, 158-60
Polar Observer mission, 206–207	Hamiltonian Minimization Condition,
Pontryagin, L.S., 161, 168	170–8
Precision Orbit Ephemerides (POEs), 10	simple extension to distributed space
Propellant see Fuel	system, 181–5
Propellantless propulsion systems, 189–90	Spectra 2000, 219
solar sailing, 190–207	Spin dynamics, 24
tethers in orbit, 217–32	Sub-Earth-orbit (SEO), 230–2
tethers in space 208–17	Sussmann, H.J., 163