Mathematical Statistics Assignment 3

BY YUEJIAN MO

May 17, 2018

Q3.1 Let $X_1, ..., X_n \stackrel{\text{iid}}{\sim} U[\theta_1, \theta_2]$. Find the MLEs of θ_1 and θ_2 .

Sovle: The joint desity of $\boldsymbol{x} = (X_1, ..., X_n)^T$ is

$$f(\boldsymbol{x}; \theta_1, \theta_2) = \begin{cases} \frac{1}{(\theta_2 - \theta_1)^n} & \text{, if } \theta_1 \leqslant x_i \leqslant \theta_2, i = 1, ..., n, \\ 0 & \text{, elsewhere.} \end{cases}$$

Then the likehood function is

$$L(\theta_1, \theta_2) = \prod_{i=1}^n f(x_i; \theta_1, \theta_2) = \begin{cases} \prod_{i=1}^n \frac{1}{(\theta_2 - \theta_1)} = \frac{1}{(\theta_2 - \theta_1)^n} &, \theta_1 \leqslant x_{(1)} \text{ and } \theta_2 \geqslant x_{(n)} \\ 0 &, \text{elsewhere.} \end{cases}$$

Because $\theta_2 - \theta_1 \geqslant x_{(n)} - x_{(1)}$, and $L(\theta_1, \theta_2)$ is a monotone and decreasing function of $\theta_2 - \theta_1$ when $\theta_2 - \theta_1 \in [x_{(n)} - x_{(1)}, \infty)$. Thus $\hat{\boldsymbol{\theta}} = \widehat{(\theta_2 - \theta_1)} = x_{(n)} - x_{(1)}$ is the MLE of θ_1 and θ_2 .

Q3.2 A sample of size n_1 is drawn from $N(\mu_1, \sigma_1^2)$. A second sample of size n_2 is drawn from $N(\mu_2, \sigma_2^2)$. Assume that the two samples are independent.

a) What is the MLE of $\theta = \mu_1 - \mu_2$?

Solve:

b) If we assume that the total sample size $n = n_1 + n_2$ is fixed, how should the n observations be approximately divided between the two populations in order to minimize the variance of the $\hat{\theta}$?

Solve:

Q3.10 Let $X_1, ..., X_n \stackrel{\text{iid}}{\sim} N(\mu_0, \theta)$, where μ_0 is known and $\theta > 0$.

a) Find the MLE $\hat{\theta}$ of θ ?

Solve:

The joint pmf of $\boldsymbol{x} = (X_1, ..., X_n)^T$ is

$$f(\boldsymbol{x};\theta) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\theta}} \text{Exp}\left(-\frac{(x_i - \mu_0)^2}{2\theta}\right)$$

Then the likehood function is

$$L(\theta) = \prod_{i=1}^{n} f(x_i, \theta) = \left(\frac{1}{\sqrt{2\pi\theta}}\right)^n e^{-n/2\theta} \operatorname{Exp}\left(\sum_{i=1}^{n} (x_i - \mu_0)^2\right)$$

The log likehood function is

$$l(\theta) = -\frac{n}{2}\log(2\pi\theta) - \frac{n}{2\theta} + \sum_{i=1}^{n} (x_i - \mu_0)^2 = -\frac{n}{2}\log(\theta) - \frac{n}{2\theta} - \frac{n}{2}\log(2\pi) + \sum_{i=1}^{n} (x_i - \mu_0)^2$$

b) What is the asymptotic distribution of $\sqrt{n}(\hat{\theta} - \theta)$?

Q3.15 Let $X_1, ..., X_n \stackrel{\text{iid}}{\sim} \text{Bernoulli}(\theta)$. Define $\tau(\theta) = \text{Var}(X) = \theta(1 - \theta)$.

- a) Find the Cramer-Rao lower bound fro the unbiased estimator of $\tau(\theta)$.
- b) Find the unique UMVUE of $\tau(\theta)$ if such exists.

Q3.17. Suppose that X follows a geometeric distribution,

$$Pr(X = k) = p(1 - p)^{k-1}, k = 1, 2, ...$$

where $0 \le p \le 1$, and assume an i.i.d. sample fo size n.

- a) Find the moment of estimator of p
- b) Find the MLE of p.
- c) Let p have a uniform prior distribution on [0, 1]. What is the posterior distribution of p? What is the posterior mean?

Q3.18. Let $(X_1,...,X_n)$ be a random sample from the Pareto distribution with Lebesgus density $\theta a^{\theta} x^{-(\theta+1)I_{(a,\infty)}(x)}$, where $\theta > 0$ and a > 0.

- i. Find the UMVUE of θ when a is known.
- ii. Find the UMVUE of a when θ is known.
- iii. Find the UMVUE's of a and θ .

Solution:

i. The joint Lebesgue density of $X_1, ..., X_n$ is

$$f(x_1, ..., x_n) = \theta^n a^{n\theta} \exp \left\{ -(\theta + 1) \sum_{i=1}^n \log x_i \right\} I_{(a,\infty)}(x_{(1)}),$$

where $x_{(1)} = \min_{1 \le i \le n} x_i$. When a is known, $T = \sum_{i=1}^n \log X_i$ is complete and sufficient for θ and $T - n \log a$ has a has he gamma distribution with shape parameter n and scale parameter θ^{-1} . Hence, $ET^{-1} = \theta/(n-1)$ and, thus, (n-1)/T is the UMVUE of θ .

ii. When θ is known, $X_{(1)}$ is complete and sufficient for a. Since $X_{(1)}$ has the Lebesgue density $n\theta a^{n\theta}x^{-(n\theta+1)}I_{(a,\infty)}(x)$, $EX_{(1)}=n\theta a/(n\theta-1)$. Therefore, $(1-n\theta)X_{(1)}/(n\theta)$ is the UMVUE of a.

2

iii. When both a and θ are unknoen, $(Y, X_{(1)})$ is complete and sufficient for (a, θ) , where $Y = \sum_i (\log X_i - \log X_{(1)})$. Also, Y has the gamma distribution with shape parameter n-1 and scale parameter θ^{-1} and $X_{(1)}$ and Y are independent. Since $EY^{-1} = \theta / (n-2)$, (n-2)/Y is the UMVUE of θ . Since

$$\begin{split} E\bigg\{\bigg[1-\frac{Y}{n(n-1)}\bigg]X_{(1)}\bigg\} &= \bigg[1-\frac{EY}{n(n-1)}\bigg]EX_{(1)} \\ &= \bigg(1-\frac{1}{n\theta}\bigg)\frac{n\theta a}{n\theta-1} \\ &= a, \end{split}$$

 $\left[1 - \frac{Y}{n(n-1)}\right] X_{(1)}$ is the UMVUE of a.