

Intro Homework 4

- Programming assignment, due Oct 11.
- GradeScope submission guideline
 - Homework 4 report
 - This should include your answers/discussion to each question, and all the plots generated in the programming part
 - Homework 4 notebook
 - Notebook file (ipynb file)
 - Exported PDF version of your notebook with all cell outputs.
 - hw4_utils.py

• Q1 – MLP for polygon classification

Q1 – MLP for polygon classification

(a) Implement the "AND gate" and "OR gate" and the "unit step function" to predict all points within the 2 polygons as the positive class. Use the predict_output_v1() to test your implementations.

Modify the code in predict_output_v2() to predict only the points in the first polygon as the positive class. Attach the visualization to your report.

Q1 – MLP for polygon classification

(b) Build an **MLP** using sigmoid activation functions to replace the AND/OR gates. Implement the function **preprocess_data**. Implement the **training** function with <u>mini-batch support</u>. Implement visualization functions for your results.

Q1 – MLP for polygon classification

Notes:

- preprocess_data:
 - Try figure out what preprocessing is needed for the dataset (or check out the discussions on piazza).
 - This has HUGE impact on your training results
- train():
 - Note that seed_value should be used
- Results:
 - Train 5 different models under the five seeds. Calculate the mean/stdev of the results from the 5 runs
 - provide a polygon visualization figure for each of the trained models

Q1 – MLP for polygon classification

(c) Build an MLP with a larger capacity (increase the depth and width). You may increase the epoch number if you observe that your model does not converge by 500 epochs due to the additional parameters.

Notes:

- You only need to design one new architecture with increased depth AND width. And run it for 5 runs. No other hyperparameters should be changed
- The result should be at least as good as 1(b)

Q1 – MLP for polygon classification

(c) Build an MLP with a larger capacity (increase the depth and width). You may increase the epoch number if you observe that your model does not converge by 500 epochs due to the additional parameters.

Notes:

- You only need to design one new architecture with increased depth AND width. And run it for 5 runs. No other hyperparameters should be changed
- The result should be at least as good as 1(b)

Q2 – FashionMNIST

In this problem, we will explore convolutional neural networks (CNNs). We will be working with the FashionMNIST dataset. This dataset only has a train-test split, therefore we will be using the last 10000 training instances as the validation set.

- Design a small CNN (e.g. 3-4 hidden layers) using (1) convolution and pooling layers (2) activation functions (other than sigmoid)
- Try to improve your model's performance by including additional architecture elements. (1) dropout (2) batch normalization (3) data augmentation (4) different optimizers

Data!

Ping-Cheng Ku

Imbalanced Data

https://developers.google.com/machine-learning/data-prep/construct/sampling-splitting/imbalanced-data

Imbalanced Data

https://developers.google.com/machine-learning/data-prep/construct/sampling-splitting/imbalanced-data

Visualize the data through histogram

https://developers.google.com/machine-learning/data-prep/transform/normalization

Visualize the data through histogram

https://developers.google.com/machine-learning/data-prep/transform/normalization

Platform!

Ping-Cheng Ku

Deep Learning tools

Deep Learning tools

- Training time comparison (2021)

https://link.springer.com/content/pdf/10.1007/s10586-021-03240-4.pdf

Tools? Resources?

Ping-Cheng Ku

DL developer platform – WandB

Weight and Bias

- https://wandb.ai/site
- Track and visualize various aspects of model during training process in real-time
- Dataset versioning and model versioning
- Automate hyperparameter search
- Integration with both Pytorch and Tensorflow

DL developer platform – Neptune Al

Neptune Al

- https://neptune.ai/
- Experiment tracking
- Dataset versioning and model versioning
- Integration with both Pytorch and Tensorflow
- Lightweight
- Better pricing for team projects
- Full comparison with WandB: https://neptune.ai/vs/wandb

DL developer platform – Tensorboard

TensorBoard

- Visualization toolkit for TensorFlow.
- Monitor model training metrics.
- Visualize computational graphs.
- View histograms of weights, biases, and activations.
- Project embeddings to lower-dimensional spaces.
- Integrates with many other ML tools.

DL resource – Papers with code

Papers with code

- https://paperswithcode.com/
- Keep track of the state-of-the-art architectures for various tasks
- Provide a wide range of dataset resources that are standardized for benchmarking (CIFAR, COCO, MNIST, Cityscapes) and corresponding research papers / codes.

DL platform – Hugging Face

Hugging Face

- https://huggingface.co/
- Leading platform for NLP models.
- Transformers library: state-of-the-art architectures.
- Model hub for sharing and discovering models.
- Datasets library (mostly for NLP tasks)
- Active community contributions.

DL platform – Kaggle

Kaggle

- Data science competition platform.
- Kernels/Notebooks for code sharing.
- Diverse datasets for exploration and research.
- Courses for learning data science.
- Online hosted Jupyter Notebook service

- We will use a dataset from HuggingFace and use their API to process the data
- We will show how **Tensorflow** training works
- We will show how Tensorboard and WandB can be used to monitor training and compare between runs
- Colab Link: https://tinyurl.com/2jm8pfzp

EN.601.482/682 Deep Learning 30

Q & A Session

Ping-Cheng Ku

Q: Calculating the number of parameters of a certain layer

- Conv2D
- Fully Connected Layers

 $y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv BN_{\gamma,\beta}(x_i)$

// scale and shift

- Batch Norm
- Activation functions
- Dropout
- Pooling

Figure 6: Pictorial representation of convolution process [9]

Q: Calculating the number of parameters of a certain layer

kernel size

- Conv2D: (k * k * D_in + 1) * D_out
- Fully Connected Layers: (n_in + 1) * n_out
- Batch Norm: usually (2 * D_in)
- Activation functions: 0
- Dropout: 0
- Pooling: 0

A Neural Network with Fully Connected Layers

Q: Transpose Convolution/Upsampling

Q:

Transpose Convolution/Upsampling

The model learns this!

Q: Transpose Convolution/Upsampling

Overlapping receptive field

https://distill.pub/2016/deconv-checkerboard/

Q: Transpose Convolution/Upsampling

- Overlapping receptive field
 - How to mitigate: Ensure that the kernel size is divisible by the stride

https://distill.pub/2016/deconv-checkerboard/

Q: What data preprocessing strategies are recommended for MLP?

Please elaborate on how we design a neural network architecture, choosing number of convolutions layers, what kinda pooling (max pooling) ...

Q: Any suggestion on possible practice material other than homework?

Q: When will the final projection session be? (when does the class end)

Week 14 - Nov 27- Midterm / Dec 13 - Final project report Due / Dec 20 - Project presentation