Assignment-3

Trishan Mondal, Soumya Dasgupta, Aaratrick Basu

Problem 3.1. (UAG 5.1) A rgular function on \mathbb{P}^1 is constant. Deduce that there are no non-constant morphisms $\mathbb{P}^1 \to \mathbb{A}^m$ for $m \geq 1$.

Solution. Suppose $f \in k(\mathbb{P}^1)$ be a rational function, which is regular everywhere. If we restrict it to the affine piece $\mathbb{A}_{(0)}$, we get $f(x,1) = p(x) \in k[x]$ (as for the case of affine variety dom f = V iff $f \in k[V]$). Similarly, we can restrict f to another affine piece \mathbb{A}_{∞} . We get, $f(1,y) = f(1/y,1) = p(1/y) \in k[y]$. It is possible iff p is constant.

Any morphisms $\mathbb{P}^1 \to \mathbb{A}^m$ can be given by (f_1, \dots, f_m) where f_i are regular on \mathbb{P}^1 . Thus the function f is constant by the previous part.

Problem 3.2. Problem 5.3

Solution.

(a) The given map is a rational map. This is because it is well-defined for all $[x, y, z] \in \mathbb{P}^2 \setminus \{[0, 0, 1]\}$ and is a rational function in each coordinate of the image. We therefore have

$$\operatorname{dom} \varphi = [x, y, z] \in \mathbb{P}^2 \setminus \{[0, 0, 1]\}.$$

Further, this is a birational map, as it has the rational inverse given by the map in (c), $[x, y] \mapsto [x, y, 0]$.

(b) The given map is not a rational map. This is because

$$\varphi([1,0]) = [1,0,1] \neq [2,0,1] = \varphi([2,0]),$$

but $[1,0] \neq [2,0]$.

(c) The given map is a rational map. This is because it is well-defined for all $[z,y] \in \mathbb{P}^1$ and is a rational function in each coordinate of the image. We therefore have

$$\operatorname{dom}\varphi=\mathbb{P}^1.$$

Further, this is a birational map, as it has the rational inverse given by the map in (a), $[x, y, z] \mapsto [x, y]$.

(d) The given map is a rational map. This is because it is well-defined for all $[x, y, z] \in \mathbb{P}^2$ with $xyz \neq 0$, and is a rational function in each coordinate of the image. We therefore have,

Ι

$$\operatorname{dom}\varphi=\{[x,y,z]\mid xyz\neq 0\}.$$

Further, φ^2 is the identity map on $\operatorname{dom} \varphi$, and so it is a birational map.

(e) The given map is a rational map. This is because it is well-defined for all $[x, y, z] \in \mathbb{P}^2$ with $z \neq 0$, and is a rational function in each coordinate of the image. We therefore have,

$$\operatorname{dom} \varphi = \{ [x, y, z] \mid z \neq 0 \}.$$

The map is not birational as the function fields of the domain and image are not isomorphic.

(f) The given map is a rational map. This is because it is well-defined for all $[x,y,z] \in \mathbb{P}^2$ with one of x,y non-zero, and is a rational function in each coordinate of the image. We therefore have,

2

$$\operatorname{dom}\varphi = \mathbb{P}^2 \setminus \{[0,0,1]\}.$$

The map is not birational as there is no rational inverse.

Problem 3.3. Problem 5.6

Solution.

(a) The affine pieces are:

(i)
$$(x = 1): y^2z = 1 + az^2 + bz^3$$

(ii)
$$(y=1): z=x^3+axz^2+bz^3$$

(iii)
$$(z=1): y^2 = x^3 + ax + b$$

The intersections with the coordinate axes are:

(i)
$$(x = 0) : z(y^2 - bz^2) = 0$$

(ii)
$$(y=0): x^3 + axz^2 + bz^3 = 0$$

(iii)
$$(z=0): x^3=0$$

(b) The affine pieces are:

(i)
$$(x = 1): (y - z)^2 - 2yz(y + z) = 0$$

(ii)
$$(y = 1) : (z - x)^2 - 2zx(z + x) = 0$$

(iii)
$$(z=1):(x-y)^2-2xy(x+y)=0$$

The intersections with the coordinate axes are:

(i)
$$(x=0): y^2z^2=0$$

(ii)
$$(y=0): z^2x^2=0$$

(iii)
$$(z=0): x^2y^2=0$$

(c) The affine pieces are:

(i)
$$(x = 1) : z^3 = (1 + z^2)y^2$$

(ii)
$$(y=1): xz^3 = x^2 + z^2$$

(iii)
$$(z=1): x = (x^2+1)y^2$$

The intersections with the coordinate axes are:

(i) $(x=0): z^2y^2=0$

(ii) $(y=0): xz^3=0$

(iii)
$$(z=0): x^2y^2=0$$

Problem 3.4. (UAG 5.7) Let $\varphi: \mathbb{P}^1 \to \mathbb{P}^1$ be an isomorphism; identify graph of φ as subvariety of $\mathbb{P}^1 \times \mathbb{P}^1 \subset \mathbb{P}^3$. Now do the same if $\varphi: \mathbb{P}^1 \to \mathbb{P}^1$ is given by map $(X,Y) \mapsto (X^2,Y^2)$.

Solution. Consider the identity map $\mathrm{Id}:\mathbb{P}^1\to\mathbb{P}^1$ and the given isomorphism, it will give us a map $\mathrm{Id}\times\varphi:\mathbb{P}^1\times\mathbb{P}^1\to\mathbb{P}^1\times\mathbb{P}^1$ by $(x,y)\mapsto(x,\varphi(x))$. Under the identification of $\mathbb{P}^1\times\mathbb{P}^1=\mathbb{P}^3$ we can say, $\mathrm{Id}\times\varphi$ is also a morphism of variety. In the variety $\mathbb{P}^1\times\mathbb{P}^1$, the diagonal $\Delta=\{(x,x):x\in\mathbb{P}^1\}$ is closed (simply because it is given by the vanishing of x_0-x_2 and x_1-x_3 where $[x_0:x_1]$ and $[x_2:x_3]$ are co-ordinates of two copies of \mathbb{P}^1). It's not hard to see the graph of φ is given by the inverse image of Δ under $\mathrm{Id}\times\varphi$.

$$\Gamma(\varphi) = (\operatorname{Id} \times \varphi)^{-1}(\Delta)$$

Since the graph is closed it's inverse image will also be closed. Thus the graph is a closed set and under zariski topology any closed set is given by vanishing of some set of polynomials. This will help us to identify $\Gamma(\varphi)$ as a subvariety of $\mathbb{P}^1 \times \mathbb{P}^1$. If φ is given by $[x:y] \to [f(x,y):g(x,y)]$ then the graph can be given by the image of following vanishing set under segre embedding

$$\{[x_0: x_1: x_2: x_3]: x_2 = f(x_0, x_1), x_3 = g(x_0, x_1)\}$$

If, φ given by $[x,y] \mapsto [x^2:y^2]$ the image of $([x:y],[x^2,y^2])$ is $[x^3:xy^2:yx^2:y^3]$ (image under segre embedding). Which is rational curve $\mathbb{P}^1 \to \mathbb{P}^3$, a sub-variety of \mathbb{P}^3 .

$$\Gamma(\varphi) \simeq \text{Rational curve in } \mathbb{P}^3$$

Problem 3.5. Problem 5.12

Solution. The given curve is $C: (Y^2Z = X^3 + aXZ^2 + bZ^3) \subset \mathbb{P}^2$. The affine pieces are

$$C_{(0)}: y^2 = x^3 + ax + b, \quad C_{(\infty)}: z' = x'^3 + ax'z'^2 + bz'^3$$

Let f be a regular function on C. Then, $\operatorname{dom} f \supset C_{(0)}$, and so, $f \in k[C_{(0)}] = k[x,y]/(y^2 - x^3 - ax - b)$. Hence, there is $q, r \in k[x]$ such that $f(x,y) \equiv q(x) + yr(x)$ in $k[C_{(0)}]$. Now, as $\operatorname{dom} f \supset C_{(\infty)}$, we get that

$$q\left(\frac{x'}{z'}\right) + \frac{1}{z'}r\left(\frac{x'}{z'}\right) \equiv p(x', z'),$$

for some polynomial p. Therefore, we can multiply out the denominators to get an expression

$$\widetilde{q}(x', z') + \widetilde{r}(x', z') = p(x', z')z'^m + A(x', z')g,$$

in k[x', z'], where \widetilde{q} is homogeneous of degree m, \widetilde{r} is homogeneous of degree m-1, $g=x'^3+ax'z'^2+bz'^3-z'$. We now write $p=p_1+p_2$ and $A=A_1+A_2$, where p_1 , A_1 consist of the odd degree terms and p_2 , A_2 consist of the even degree terms. Then, assuming m is odd, we get

$$\widetilde{q} = p_2 z'^m + A_1 g, \quad \widetilde{r} = p_1 z_1^m + A_2 g.$$

A similar expression holds in case m is even, by switching p_1 with p_2 and A_1 with A_2 . Now, \widetilde{q} is homogeneous of degree m, and hence, A_1g must have degree at least m. Therefore, we get (as g has the term z') that $z' \mid \widetilde{q}$. Similarly, $z' \mid \widetilde{r}$. Hence, we can divide the entire expression by z', and get \widetilde{q} homogeneous of degree m-1 and \widetilde{r} homogeneous of degree m-2. Hence, assuming that m is the least possible we get m=0, and so, $f\equiv c$ for some constant c. This shows that f must in fact be constant, as was required.

Problem 3.6. (UAG 5.13) Study the embedding $\varphi: \mathbb{P}^2 \to \mathbb{P}^5$ given by $[x:y:z] \mapsto [x^2:xy:xz:y^2:yz:z^2]$ and prove that φ is an isomorphism. Prove that the lines of \mathbb{P}^2 go over the conics of \mathbb{P}^5 and the conics go over the twisted quartics of \mathbb{P}^5 .

For any line $\ell \subset \mathbb{P}^2$, write $\pi(\ell) \subseteq \mathbb{P}^5$ for the projective plane spanned by the conics $\varphi(\ell)$. Prove that union of $\pi(\ell)$ taken over all $\ell \subset \mathbb{P}^2$ is a cubic hypersurface $\Sigma \subseteq \mathbb{P}^5$.

Solution. Consider the following vanishing set on \mathbb{P}^5 ,

$$S = V(t_0t_3 - t_1^2, t_3t_5 - t_4^2, t_0t_5 - t_2^2, t_1t_2 - t_0t_4, t_1t_4 - t_3t_2, t_2t_4 - t_5t_1)$$

It's not hard to see $\operatorname{Im} \varphi \subset S$. Now note that the map φ gives us a surjective map between the following vector spaces,

{homogeneous quadratic polynomials in t_0, \dots, t_5 } \rightarrow {homogeneous quartics in x, y, z}

The first V.S is of dimension 21 and the later one has dimension 15. Thus the kernal has dimension 6. Now note that the polynomials defining S are linearly independent. So, $\operatorname{Im} \varphi = S$. Thus the image of φ is given by the variety S. Now take the map $\psi: S \to \mathbb{P}^3$ that maps $[t_0: \dots: t_5] \to [t_0: t_1: t_2]$ works as the inverse map of φ (it is defined except for [0: 0: 0: 0: 0: 0: 1]). So, φ is an isomorphism. Any line in \mathbb{P}^2 can be given by the set $\{[x: y: ax + by]\}$, image of this in S is intersection of conics which will be again a conic (it can be degenerate). Any conic in \mathbb{P}^2 can be re-parametrized so that it is given by $[u^2: uv: v^2]$. It's image in S is twisted quardics.

To do the last part we can also identify S as the following set,

$$S = \left\{ [t_0 : t_1 : \dots : t_5] \in \mathbb{P}^5 : \operatorname{rank} \begin{pmatrix} t_0 & t_1 & t_2 \\ t_1 & t_3 & t_4 \\ t_2 & t_4 & t_5 \end{pmatrix} \le 1 \right\}$$

From the above identification of S we can say, $\bigcup_{\ell \subset \mathbb{P}^2} \pi(\ell)$ is given by $\det \begin{pmatrix} t_0 & t_1 & t_2 \\ t_1 & t_3 & t_4 \\ t_2 & t_4 & t_5 \end{pmatrix} = 0$. This clearly determines a hyper-surface in \mathbb{P}^5 .