

[SWE2015-41] Introduction to Data Structures (자료구조개론)

AVL Trees

Department of Computer Science and Engineering

Instructor: Hankook Lee (이한국)

(Recap) What is Tree?

- Tree is a hierarchical structure with a set of connected nodes
 - Each node is composed with a parent-children relationship
 - There is no cycle (or loop) in the tree

(Recap) Terminology (Basic)

- Node represents an object
- Edge represents a connection between two nodes
 - If X → Y, say X is the **parent** of Y and Y is a **child** of X

Degree of a node is the number of children of the node

It is equal to the number of outgoing edges

- Examples
 - B is the parent of E and F
 - H is a child of D
 - degree(D) = 2
 - degree(J) = 0

(Recap) Terminology (Tree-Level)

- Root is the top node in a tree
- Internal (or non-terminal) node: degree ≥ 1
- Leaf (or terminal) node: degree = 0
- Height is # of nodes on the longest path from root
- Examples
 - A is the root of the tree
 - Internal nodes are A, B, C, D, E, H
 - Leaf nodes are F, G, I, J, K, L
 - The height of the tree is 4

(Recap) Terminology (Node-Level)

For a **node X**,

- Level or depth is the distance between root and X
- Ancestor is a predecessor on the path from root to X
- Descendant is a successor on any path from X to a leaf
- Sibling is another node with the same parent
- Examples
 - A's level/depth is 0
 - **F**'s level/depth is 2
 - A and B are ancestors of E
 - E, F, J, and K are descendants of B
 - B and D are siblings of C

(Recap) Terminology (Node-Level)

Subtree rooted at a **node** X

- Any node can be treated as the root node of its own subtree
- The subtree includes X and all descendants of X

Subtree rooted at node B

- Binary Tree is a tree in which each node has at most two children
 - degree(X) ≤ 2 for any node X in a binary tree

- Binary Tree is a tree in which each node has at most two children
 - degree(X) ≤ 2 for any node X in a binary tree
 - Each node has **left** & **right** children

- Binary Tree is a tree in which each node has at most two children
 - degree(X) ≤ 2 for any node X in a binary tree
 - Each node has **left** & **right** children

- Binary Tree is a tree in which each node has at most two children
 - degree(X) ≤ 2 for any node X in a binary tree
 - Each node has **left** & **right** children

- Binary Tree is a tree in which each node has at most two children
 - degree(X) ≤ 2 for any node X in a binary tree
 - Each node has **left** & **right** children

(Recap) Binary Search Trees (BSTs)

- Binary Search Tree (BST) satisfies the following conditions:
 - 1. Any two nodes **A** and **B** are comparable: A < B, A > B, or A == B
 - E.g., you can compare numbers numerically or strings in the alphabetical/dictionary order
 - Such a comparable value of a node is called **KEY** value

(Recap) Binary Search Trees (BSTs)

- Binary Search Tree (BST) satisfies the following conditions:
 - 2. For any node **X**, all nodes in its **left subtree** are less than **X**
 - 3. For any node **X**, all nodes in its **right subtree** are greater than **X**

(Recap) Binary Search Trees (BSTs)

- Binary Search Tree (BST) satisfies the following conditions:
 - 2. For any node **X**, all nodes in its **left subtree** are less than **X**
 - 3. For any node **X**, all nodes in its **right subtree** are greater than **X**

- Validity check whether a binary tree is a binary search tree?
- Search find the node of the target KEY
- Insertion/Deletion insert/delete the node using KEY

- Validity check whether a binary tree is a binary search tree?
- Search find the node of the target KEY
- Insertion/Deletion insert/delete the node using KEY

- Validity check whether a binary tree is a binary search tree?
- Search find the node of the target KEY
- Insertion/Deletion insert/delete the node using KEY

- Validity check whether a binary tree is a binary search tree?
- Search find the node of the target KEY
- Insertion/Deletion insert/delete the node using KEY

- Validity check whether a binary tree is a binary search tree?
- Search find the node of the target KEY
- Insertion/Deletion insert/delete the node using KEY

- Validity check whether a binary tree is a binary search tree?
- Search find the node of the target KEY
- Insertion/Deletion insert/delete the node using KEY

(Recap) BST Operations - Time Complexity

- The time complexities for search, insertion, and deletion are O(H)
 - *H* is the tree height
 - $\log_2 N \le H \le N$ where N is the number of nodes in a binary tree

Operation	Balanced Tree	Skewed Tree
Search	$O(\log N)$	O(N)
Insertion	$O(\log N)$	O(N)
Deletion	$O(\log N)$	O(N)

- Skewed Tree: each internal node has only one child
- Balanced Tree: the left and the right subtrees have similar sizes

The balance factor of a node X in a binary tree is defined by

```
balance(X) = height(left subtree) - height(right subtree)
```


The balance factor of a node X in a binary tree is defined by

```
balance(X) = height(left subtree) - height(right subtree)
```


The balance factor of a node X in a binary tree is defined by

```
balance(X) = height(left subtree) - height(right subtree)
```


- The balance factor of a node X in a binary tree is defined by balance(X) = height(left subtree) - height(right subtree)
- A binary tree T is **balanced** if $|balance(X)| \le 1$ for any node X

- The balance factor of a node X in a binary tree is defined by
 balance(X) = height(left subtree) height(right subtree)
- A binary tree T is **balanced** if $|balance(X)| \le 1$ for any node X

- The balance factor of a node X in a binary tree is defined by balance(X) = height(left subtree) - height(right subtree)
- A binary tree T is **balanced** if $|balance(X)| \le 1$ for any node X
 - If a balanced tree T has N nodes, the height of the tree is $O(\log_2 N)$
 - A balanced BST has $O(\log_2 N)$ time complexity for search!
- (Q) How does the balance factors change after insertion or deletion?
 - After the operations on a balanced BT, will the updated tree still be balanced?
 - If not, how to re-balance the tree?

- (Q) How does the balance factors change after insertion?
 - Insert a node **7** into the below tree ...

- (Q) How does the balance factors change after insertion?
 - Insert a node **7** into the below tree ...

- (Q) How does the balance factors change after insertion?
 - Insert a node 7 into the below tree ...
 - The nodes on the search trajectory might be changed, other subtrees are not

- (Q) How does the balance factors change after **deletion**?
 - Delete a node 12 from the below tree ...

- (Q) How does the balance factors change after **deletion**?
 - Delete a node 12 from the below tree ...

- (Q) How does the balance factors change after **deletion**?
 - Delete a node 12 from the below tree ...
 - The nodes on the search trajectory might be changed, other subtrees are not

(Q) After the operations on a balanced BT, is the updated tree still balanced?

(Q) How to re-balance this tree?

(Q) How to re-balance this tree?

(A) Rotate subtrees!

Balanced Binary Trees

(Q) How to re-balance this tree?

(A) Rotate subtrees!

This **self-balancing** BST is called **AVL tree**!

AVL Trees

- AVL tree is a self-balancing BST invented by G.M. Adelson-Velsky and E.M. Landis in 1962
 - AVL tree is always balanced \rightarrow Its height is $O(\log_2 N)$
 - AVL tree requires $O(\log_2 N)$ time complexity for search, insertion, and deletion
 - AVL tree updates its structure to remain balanced after insertion or deletion
 - (Q) How to update?

- (Q) How to re-balance the tree after insertion?
 - Note. After insertion, the balance factors change by 0, +1

- (Q) How to re-balance the tree after insertion?
 - Note. After insertion, the balance factors change by 0, +1

- (Q) How to re-balance the tree after insertion?
 - Note. After insertion, the balance factors change by 0, +1

Right-Right Case

- (Q) How to re-balance the tree after insertion?
 - Note. After insertion, the balance factors change by 0, +1

- (Q) How to re-balance the tree after insertion?
 - Note. After insertion, the balance factors change by 0, +1

Left-Right Case

- (Q) How to re-balance the tree after insertion?
 - Note. After insertion, the balance factors change by 0, +1

Left-Right Case

- (Q) How to re-balance the tree after insertion?
 - Note. After insertion, the balance factors change by 0, +1

- (Q) How to re-balance the tree after insertion?
 - Note. After insertion, the balance factors change by 0, +1

Right-Left Case

- (Q) How to re-balance the tree after insertion?
 - Note. After insertion, the balance factors change by 0, +1

Right-Left Case

- (Q) How to re-balance the tree after insertion?
 - Note. After insertion, the balance factors change by 0, +1

AVL Trees - Rotations for Deletion

- (Q) How to re-balance the tree after deletion?
 - Note. After deletion, the balance factors change by 0, -1
 - Use LL/LR/RR/RL rotation operations

node balanced subtrees

AVL Trees - Rotations for Deletion

- (Q) How to re-balance the tree after deletion?
 - Note. After deletion, the balance factors change by 0, -1
 - Use LL/LR/RR/RL rotation operations

node balanced subtrees

RR Rotation

RL Rotation

AVL Trees - Summary

- AVL tree is a self-balancing BST
 - AVL tree is always balanced \rightarrow Its height is $O(\log_2 N)$
 - AVL tree requires $O(\log_2 N)$ time complexity for search, insertion, and deletion
 - AVL tree uses rotation operations to remain balanced after insertion or deletion

Any Questions?

