Projeto de IA 2018/19

Relatório da 1ª Entrega

№ do grupo: 48

Campus: Alameda

Realizado por:

João Vasco Estrela Martinho, nº 86454

• Miguel Cardoso Valério, nº 86483

1 - Resultados

Os testes efetuados para obter estes resultados foram realizados num computador com um processador Intel i5 3570 3.4GHz e 16GB de RAM.

Tabela 1 – Tabuleiros de 5x5 (linhas x colunas)

Procura	Tempo (s)	Nós Expandidos	Nós Gerados
Profundidade	0.0371	14	19
Greedy	0.0394	15	20
A*	0.0379	17	21

Tabela 2 – Tabuleiro de 4x4 (linhas x colunas)

Procura	Tempo (s)	Nós Expandidos	Nós Gerados
Profundidade	0.0673	549	573
Greedy	0.052	108	192
A*	0.0576	141	254

Tabela 3 – Tabuleiro 4x5 (linhas x colunas)

Procura	Tempo (s)	Nós Expandidos	Nós Gerados
Profundidade	0.6741	12589	12616
Greedy	0.3112	1314	3617
A *	0.33848	1330	3605

Tabela 4 – Tabuleiro 4x6 (linhas x colunas)

Procura	Tempo (s)	Nós Expandidos	Nós Gerados
Profundidade	60.7	7115146	7115206
Greedy	0.564	2058	5677
A *	0.4738	1464	3667

2 – Análise

Número de peças

O número de peças vai ditar o tamanho mínimo do caminho a percorrer para obter uma solução. Quanto maior o número de peças, maior o número de estados que se têm de percorrer, logo, mais complexo o problema.

Deste modo, o tamanho do tabuleiro está implicitamente ligado à complexidade do problema, uma vez que dita o número máximo de peças no tabuleiro.

Heurística

A função heurística é a função responsável pela orientação das procuras informadas (no exemplo deste relatório, procuras greedy e A*) e quanto melhor a função heurística, mais rapidamente estas procuras chegarão a um estado objetivo.

A função heurística por nós utilizada é "nº de peças + nº de movimentos possíveis no estado atual -1" uma vez que preferimos que os estados com menor número de peças e movimentos sejam explorados primeiro.

Eficiência

A eficiência dos algoritmos de procura é muito semelhante nos tabuleiros de menor dimensão. Por observação das tabelas, devido a haver pouca diferença entre os tempos registados percebemos que a heurística poderá não ser a mais indicada para tabuleiros menores (espaço de estados pequenos).

Na tabela 4, no entanto, as procuras informadas (greedy e A*) são muito mais eficientes que a procura cega (em profundidade) uma vez que as procuras informadas tomam decisões segundo a heurística fornecida. Isto deve-se ao facto de o espaço de estados ser muito grande e ao haver heurística, é possível chegar ao estado objetivo sem analisar estados desnecessários, pois os estados são escolhidos baseando-se no valor de h(n).