数学 I 第 5 章 データの分析

■ 1 データの分析

■ 第1節 データの分析

■ データの分析 I

I. 度数分布表とヒストグラム

<u>階級</u>:区切られた区間 階級の幅:区間の幅

度数:階級に含まれる値の個数

階級値: 各階級の中央の値

度数分布表を柱状グラフに表したものが<u>ヒストグラム</u>である。左下の度数分布表をヒストグラムに表すと右下の図のようになる。

身長調べ

階級(cm)	度数(人)			
155以上160未満	2			
$160 \sim 165$	4			
165 ~ 170	10			
$170 \sim 175$	16			
$175 \sim 180$	7			
$180 \sim 185$	1			
計	40			

II. データの分析

範囲R

データの最大値Mから最小値mを引いたものを範囲Rという。

$$R = M - m$$

② 代表值

(1) 平均值 x

変量xのデータの値が、 x_1, x_2, \cdots, x_n であるとき、このデータの平均値 \overline{x} は

$$\overline{x} = \frac{1}{n}(x_1 + x_2 + \dots + x_n)$$

(2) 中央値 (メジアン)

データを値の大きさの順に並べたとき、中央の位置にくる値のこと。 データの個数が偶数のときは、中央に2つの値が並ぶが、その場合は2つの値の 平均をとって中央値とする。

(3) 最頻値(モード)

データにおいて、最も個数の多い値のこと。

■ 第1節 データの分析

■ データの分析 I

III. 四分位数

データを値の小さい順に並べたとき、4 等分する位置にくる値を四分位数という。四分位数は、小さい方から $\underline{第1}$ 四分位数 Q_1 、 $\underline{第2}$ 四分位数 Q_2 、 $\underline{第3}$ 四分位数 Q_3 という。

第1四分位数Q1 … 下位のデータの中央値

第2四分位数Q2 … 中央值

第3四分位数03 … 上位のデータの中央値

四分位範囲と四分位偏差を以下のように定める。

四分位範囲 =
$$Q_3 - Q_1$$

四分位偏差 = $\frac{Q_3 - Q_1}{2}$

〈データの個数が奇数〉

小←値の大きさ→大

〈データの個数が偶数〉

小←値の大きさ→大

最大値

IV. 箱ひげ図

最小値、最大値、中央値、第 1 四分位数、 第 3 四分位数を表したものを<u>箱ひげ図</u>とい

- う。作成手順は次のようになる。
- ① 横軸にデータの値の目盛りをとる。
- ② Q_1 を左端、 Q_3 を右端とする箱をかき、 箱の中に中央値 Q_2 を示す縦線をかく。
- ③ 箱の左端から最小値まで、箱の右端から最大値まで線分を引く。 (また、平均値を+の記号で記入することもある)

(第1四分位数-1.5×四分位範囲)以下の値と、

(第3四分位数+1.5×四分位範囲)以上の値のことを外れ値という。

最小值

 Q_1

平均值

中央値 Q2

■ 第1節 データの分析

■ データの分析 I

例題 5.1

右のヒストグラムは、ある喫茶店を利用した30組について、各組の人数を調べた結果である。

- (1) 最頻値,中央値を求めよ。
- (2) 平均値を求めよ。

■ 第1節 データの分析

■ データの分析 I

例題 5.2

右の表は、**25** 人の生徒のテストの得点のデータから作った度数分布表である。このデータの平均値のとり得る範囲を求めよ。

得点の階級(点)	度数			
40 以上 49 以下	2			
50 ~ 59	5			
60 ~ 69	8			
70 ~ 79	7			
80 ~ 89	3			
計	25			

■ 第1節 データの分析 I

例題 5.3

右の図は、ある高校1年生240人に行った期末テストの得点のデータの箱ひげ図である。

この箱ひげ図から読み取れることとして正しいものを、次の①~③から1つ選べ。

- ① 30点台の生徒は60人である。
- ② 50 点以上の生徒は 180 人以上いる。
- ③ 60 点未満の生徒は半数以上いる。

■ 第1節 データの分析

■ データの分析 I

例題 5.4

右の表は、10 人の生徒について行った数学と 英語のテストの得点のデータを、度数分布表 にまとめたものである。また、下の表は、10人の生徒それぞれについて、テストの得点の データをまとめたものである。ただし、a < b、c < d とする。次の問いに答えよ。

階級 (点)	数学	英語		
以上 以下	(人)	(人)		
30~39	0	2		
40~49	3	3		
50~59	4	3		
60~69	3	2		
合計	10	10		

生徒の番号	1	2	3	4	5	6	7	8	9	10	平均値
数学(点)	41	a	61	57	63	43	b	59	54	50	54
英語(点)	39	47	35	с	67	d	53	65	55	48	51

- (1) 数学の得点のデータの範囲が25点であるとき,a,bの値を求めよ。
- (2) 英語の得点のデータの中央値を求めよ。

■ 第1節 データの分析

■ データの分析 II

I. 分散と標準偏差

① 変量xのデータ x_1, x_2, \dots, x_n の平均値exとするとき、 $x_1 - \overline{x}, x_2 - \overline{x}, \dots, x_n - \overline{x}$ をそれぞれ、 x_1, x_2, \dots, x_n の平均値からの<u>偏差</u>という。また、偏差の2乗の平均値を<u>分散</u>という。 さらに、分散の正の平方根を標準偏差といい、xで表す。

分散
$$s^2 = \frac{1}{n} \{ (x_1 - \overline{x})^2 + (x_2 - \overline{x})^2 + \dots + (x_n - \overline{x})^2 \}$$

標準偏差
$$s = \sqrt{\frac{1}{n}}\{(x_1 - \overline{x})^2 + (x_2 - \overline{x})^2 + \dots + (x_n - \overline{x})^2\}$$

② 変量xの平均値 $e^{\overline{x}}$ 、 x^2 の平均値 $e^{\overline{x^2}}$ とするとき、分散 $e^{\overline{x^2}}$ と標準偏差 $e^{\overline{x^2}}$

$$s^2 = \overline{x^2} - (\overline{x})^2$$
 , $s = \sqrt{\overline{x^2} - (\overline{x})^2}$

③ x = au + bで、uの標準偏差がs'のとき、xの標準偏差sは

2乗の平均-平均の2乗

$$s = |a|s'$$

II. 仮平均

xのデータ x_1, x_2, \cdots, x_n の仮平均を x_0 とするとき、xの平均値 \overline{x} は

$$\overline{x} = x_0 + \frac{1}{n} \{ (x_1 - x_0) + (x_2 - x_0) + \dots + (x_n - x_0) \}$$

III. 共分散

変量x,yのn個の値 x_1,x_2,\cdots,x_n および、 y_1,y_2,\cdots,y_n の平均値をそれぞれ $\overline{x},\overline{y}$ とするとき、xの偏差とyの偏差の積 $(x_i-\overline{x})(y_i-\overline{y})$ の平均値

$$\frac{1}{n}\{(x_1-\overline{x})(y_1-\overline{y})+(x_2-\overline{x})(y_2-\overline{y})+\cdots+(x_n-\overline{x})(y_n-\overline{y})\}$$

 $\epsilon_x \epsilon_y$ の共分散といい、 s_{xy} で表す。

■ 第1節 データの分析

■ データの分析 II

IV. 相関係数

xとyの間の関係を図示するために、x,yの値の組を座標とする点を、平面上にとった図を<u>散</u> 布図という。

相関関係の強弱をみるために、共分散 s_{xy} をx,yの標準偏差 s_x , s_y の積で割った量を<u>相関係数</u>といい、rで表す。

<相関係数の性質>

- ① rの値が1に近いとき、強い正の相関がある。このとき、散布図の点は右上がりの直線にそって分布する傾向が強くなる。
- ② rの値が-1に近いとき、強い<u>負の相関</u>がある。このとき、散布図の点は右下がりの直線 にそって分布する傾向が強くなる。
- ③ rの値が0に近いとき、直線的な相関関係はない(無相関)。

■ 第1節 データの分析

■ データの分析 Ⅱ

例題 5.5

次のデータは、あるパズルに挑戦した 10 人について、完成するまでにかかった時間 x(分)をまとめたものである。ただし、xのデータの平均値を \overline{x} で表し、20 分を超えた人はいなかったものとする。次の問いに答えよ。

番号	1	2	3	4	5	6	7	8	9	10
х	13	a	7	3	11	18	7	b	16	3
$(x-\overline{x})^2$	4	с	16	64	0	d	16	1	25	64

- (1) $\frac{1}{x}$ の値を求めよ。
- (2) *a を b* の式で表せ。
- (3) a, b, c, d の値を求めよ。
- (4) χの分散と標準偏差を求めよ。ただし、小数第1位を四捨五入せよ。

■ 第1節 データの分析

┃ データの分析Ⅱ

例題 5.6

20 個の値からなるデータがあり、そのうちの 8 個の値の平均値は 3、分散は 4、残りの 12 個の値の平均値は 8、分散は 9 である。

- (1) このデータの平均値を求めよ。
- (2) このデータの分散を求めよ。

■ 第1節 データの分析

■ データの分析 Ⅱ

例題 5.7

変量xの次のデータについて、各問いに答えよ。

672, 693, 644, 665, 630, 644

- (1) 仮平均 x_0 を 630 として,変量 x のデータの平均値 \overline{x} を求めよ。ただし,x のデータ の各値と仮平均 x_0 との差の合計を y とすると,求める平均値 \overline{x} は, $\overline{x} = x_0 + \frac{y}{6}$ で与えられることを用いよ。
- (2) 変量 x のデータの分散,標準偏差を求めよ。ただし,正の数 c を用いて, $u=\frac{x-x_0}{c}$ とおいて得られる新しい変量 u のデータの標準偏差の c 倍が,変量 x のデータの標準 偏差になることを用いよ。

■ 第1節 データの分析

■ データの分析 Ⅱ

例題 5.8

右の①、②、③ はある 2つの変量 x、yのデータについての散布図である。データ①、②、③ 0 x b y の相関係数は、0.87、0.04, -0.71 のいずれかである。各データの相関係数を答えよ。

