Algorithms and Data Structures

Python Packages for Data Science

Agenda

- What are Python packages
- Packages specifically for Data Science
 - Numpy
 - Pandas
 - Matplotlib
 - Seaborn

What Is Pandas

- Pandas is a Python library, the name is derived from "panel data"
- Provides data structures and operations for manipulating tables and time series.
- Solves five tasks in data science:
 - Load
 - Prepare
 - Manipulate
 - Model
 - Analyze

Pandas Data Structures

- Pandas provides 3 data structures which all are built upon Numpy arrays:
 - Series (1 dimension)
 - Must contain same type of data; size immutable; value mutable
 - DataFrames (2 dimensions)
 - A container of series
 - May contain different types of data; size/value mutable
 - Panel (3 dimensions)
 - A container of DataFrames
 - May contain different types of data; size/value mutable

Series

- Creating Series:
 - From array object (one dimension only)
 - s1 = pd.Series(np.array())
 - From dictionary object
 - s2 = pd.Series({})
 - From a scalar value
 - $s_3 = pd.Series(x, index = [])$

Series

- Access data from Series:
 - $s = pd.Series(\{'a': 1, 'b': 2, 'c': 3\})$
 - By integer index:
 - $d_1 = s[o]$
 - By slicing:
 - $d_2 = s[:2]$
 - By label index:
 - $d_3 = s['c']$

DataFrame

- A DataFrame is a two dimensional data structure a tabular
 - Columns may contain different type of data
 - Size / Value are mutable
 - Rows / Columns are labeled
 - Can perform arithmetic operation (since it is based on Numpy)

DataFrame

- Create a DataFrame
 - From a list (default label for row / column will be np.arange(n))
 - df = pd.DataFrame([1, 2, 3, 4])
 - From a list of list
 - df = pd.DataFrame([['A', 1],['B', 2]])
 - df = pd.DataFrame([['A', 1, 101],['B', 2, 102]], columns = ['Char', 'Value1', 'Value2'])
 - From a dictionary
 - df = pd.DataFrame({'Char': ['A', 'B'], 'Value1': [1, 2], 'Value2':[101, 102]})

DataFrame

- Access value in a DataFrame
 - df = pd.DataFrame([['A', 1, 101],['B', 2, 102]], columns = ['Char', 'V1', 'V2'])
 - Column selection
 - df['Char']
 - Column addition
 - df['V3'] = df['V1'] + df['V2]
 - Column deletion

- del df['V3'] or df.pop('V3')
- Row selection
 - df.loc[o] or df.iloc[o]
- Row addition
 - df.append()
- Row deletion
 - df.drop()

Functionalities

- sum()
- mean(), median(), mode()
- count()
- std()
- min(), max()
- describe() and info()
- groupby()

Visualization

- plot()
- plot.bar()
- plot.hist()
- plot.box()
- plot.area()
- plot.scatter()
- plot.pie()

Practice

- Create a dataframe df that:
 - It has 6 columns: name, a01, a02, a03, a04, a05
 - It has 500 objects.
 - name is string data type, you can use student+a random id for it
 - a1 5 are numeric data type (float), should be in [0, 100], you can use a normal distribution np.random.normal(center, std, size)
- Print the stats of df
- Create a new column called: total= sum(a1, .. a5)
- Plot the stats of df

Thank you!