Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	18 /05 /2020	Client	LoremIpsum

1 Input Parameters

Grade *

Type *

Bolt hole type

Slip factor (μ_f)

Type of edges

Mod	dule			Fin Plate
MainN	Module			Shear Connection
Conne	Connectivity Shear(kN)*			Column flange-Beam web
Shear				200.0
		S	upporting Se	ection
	Supporti	Supporting Section		UC 356 x 406 x 393
	Mate	erial *		E 250 (Fe 410 W)A
т	Ultimate stre	ngth, fu (MPa)		410
,	Yield Streng	gth , fy (MPa)		250
α	Mass	393.0	Iz(cm4)	1466180000.0
ZZ D	Area(cm2) -	50060.0	Iy(cm4)	553650000.0
	D(mm)	419.0	rz(cm)	171.0
R ₁	B(mm)	407.0	ry(cm)	105.0
R ₂	t(mm)	30.6	Zz(cm3)	6998000.0
В	T(mm)	49.2	Zy(cm3)	2721000.0
	FlangeSlope	90	Zpz(cm3)	8222000.0
	R1(mm)	15.2	Zpy(cm3)	2721000.0
	R2(mm)	0.0		
		S	upported Se	ection
	Supporte	ed Section		NPB 600x220x122.4
	Mate	erial *	E 250 (Fe 410 W)A	
т ү	Ultimate stre	ngth, fu (MPa)		410
	Yield Streng	gth , fy (MPa)		250
α	Mass	122.45	Iz(cm4)	920834000.0
ZZ D	Area(cm2) - A	15600.0	Iy(cm4)	33828700.0
	D(mm)	600.0	rz(cm)	243.0
R ₁	B(mm)	220.0	ry(cm)	46.6
R ₂	t(mm)	12.0	Zz(cm3)	3069450.0
Y Y	T(mm)	19.0	Zy(cm3)	307530.0
1	FlangeSlope	90	Zpz(cm3)	3512400.0
	R1(mm)	2.4	Zpy(cm3)	307530.0
	R2(mm)	0.0		
			Bolt Detai	ils
Diamete	er (mm)*			[12.0]

 $[3.6,\,4.6,\,4.8,\,5.6,\,5.8,\,6.8,\,8.8,\,9.8,\,10.9,\,12.$

Friction Grip Bolt

Standard

0.3 a - Sheared or hand flame cut

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	18 /05 /2020	Client	LoremIpsum

Gap between beam and support (mm)	10.0
Are the members exposed to corrosive influences	False
	Plate Details
Thickness(mm)*	[3.0, 4.0, 5.0, 6.0, 8.0, 10.0, 12.0, 14.0, 16.0, 18.0, 20.0, 22.0, 24.0]
Material *	E 250 (Fe 410 W)A
Ultimate strength, fu (MPa)	410
Yield Strength , fy (MPa)	250
	Weld Details
Weld Type	Fillet
Type of weld fabrication	Shop Weld
Material grade overwrite (MPa) Fu	410.0

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	18 /05 /2020	Client	LoremIpsum

2 Design Checks

2.1 Bolt Design Checks

Check	Required	Provided	Remarks
Diameter (mm)*		12.0	
Grade *		10.9	
Slip Resistance		$V_{dsf} = \frac{\mu_f \ n_e \ K_h \ F_o}{\gamma_{mf}}$ $Where, F_o = 0.7 * f_{ub} A_{nb}$ $V_{dsf} = \frac{0.3 * 1 * 1.0 * 0.7 * 1000.0 * 84}{1.25}$ $= 14.16$.3
No of Bolts	$R_{u} = \sqrt{V_{u}^{2} + A_{u}^{2}}$ $n_{trial} = R_{u}/V_{bolt}$ $R_{u} = \frac{\sqrt{200.0^{2} + 300.0^{2}}}{14.16}$ $= 26$	32	
No of Columns		2	
No of Rows		16	
Min. Pitch (mm)	$p/g_{min} = 2.5 d$ $= 2.5 * 12.0 = 30.0$	30	Pass
Max. Pitch (mm)	$p/g_{max} = \min(32 \ t, \ 300 \ mm)$ = $\min(32 * 12.0, \ 300 \ mm)$ = 384.0) 30	Pass
Min. Gauge (mm)	$= 384.0$ $p/g_{min} = 2.5 d$ $= 2.5 * 12.0 = 30.0$	30	Pass
Max. Gauge (mm)	$p/g_{max} = \min(32 \ t, \ 300 \ mm)$ = $\min(32 * 12.0, \ 300 \ mm)$ = 384.0) 30	Pass
Min. End Distance (mm)	$e/e^{\circ}_{min} = [1.5 \text{ or } 1.7] * d_0$ = 1.7 * 13.0 = 22.1	25	Pass
Max. End Distance (mm)	$e/e'_{max} = 12 t \varepsilon$ $\varepsilon = \sqrt{\frac{250}{f_y}}$ $e/e'_{max} = 12 * 12.0 * \sqrt{\frac{250}{250}}$ $= 144.0$	25	Pass
Min. Edge Distance (mm)	$= 144.0$ $e/e'_{min} = [1.5 \text{ or } 1.7] * d_0$ $= 1.7 * 13.0 = 22.1$	25	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	18 /05 /2020	Client	LoremIpsum

Check	Required	Provided	Remarks
Max. Edge Distance (mm)	$e/e'_{max} = 12 \ t \ \varepsilon$ $\varepsilon = \sqrt{\frac{250}{f_y}}$ $e/e'_{max} = 12 \ *12.0 * \sqrt{\frac{250}{250}}$ $= 144.0$	25	Pass
Capacity (kN)	14.54	15.08	Pass

	Company Name	LoremIpsum	Project Title	Fossee
	Group/Team Name	LoremIpsum	Subtitle	
	Designer	LoremIpsum	Job Number	123
ĺ	Date	18 /05 /2020	Client	LoremIpsum

2.2 Plate Design Checks

Check	Required	Provided	Remarks
Min. Plate Height (mm)	$0.6 * d_b = 0.6 * 600.0 = 360.0$	500	Pass
Max. Plate Height (mm)	$d_b - 2(t_{bf} + r_{b1} + gap)$ $= 600.0 - 2 * (19.0 + 2.4 + 10)$ $= 557.2$	500	Pass
Min. Plate Length (mm)	$ 2 * e_{min} + (n \ c - 1) * p_{min}) $ $= 2 * 22.1 + (2 - 1) * 30.0 $ $= 84.2 $	90.0	Pass
Min.Plate Thickness (mm)	$t_w = 12.0$	12.0	Pass
Shear yielding Capacity (V_dy) (kN)		$V_{dg} = \frac{A_v * f_y}{\sqrt{3} * \gamma_{mo}}$ $= \frac{500 * 12.0 * 250}{\sqrt{3} * 1.1}$ $= 787.3$	
Shear Rupture Capacity (V_dn) (kN)		$= 787.3$ $V_{dn} = \frac{0.75 * A_{vn} * f_u}{\sqrt{3} * \gamma_{mo}}$ $= 1 * (500 - (16 * 13.0)) * 12.0 *$ $= 1077.48$	410
Block Shear Capacity in Shear (V_db) (kN)		709.36	
Shear Capacity (V_d) (kN)	200.0	$V_d = Min(V_{dy}, V_{dn}, V_{db})$ $= Min(787.3, 1077.48, 709.36)$ $= 709.36$	Pass
Tension Yielding Capacity (kN)		$T_{dg} = \frac{l * t_p * f_y}{\gamma_{mo}}$ $= \frac{500 * 12.0 * 250}{1.1}$ $= 1363.64$	
Tension Rupture Capacity (kN)		$T_{dn} = \frac{0.9 * A_n * f_u}{\gamma_{m1}}$ $= \frac{0.9 * (500 - 16 * 13.0) * 12.0 *}{1.25}$ $= 1679.1$	410
Block Shear Capacity in Tension (T_db) (kN)		872.66	
Tension Capacity (kN)	300.0	$T_d = Min(T_{dg}, T_{dn}, T_{db})$ $= Min(1363.64, 1679.1, 872.66)$ $= 872.66$	Pass
Moment Capacity (kN-m)	10.0	170.45	Pass
Interaction Ratio	≤1	$\frac{10.0}{170.45} + \frac{300.0}{872.66} = 0.4$	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	18 /05 /2020	Client	LoremIpsum

2.3 Weld Checks

Check	Required	Provided	Remarks
Min Weld Size (mm)	$Thickness of Thicker part \\ = max(49.2, 12.0) \\ = 49.2 \\ IS800: 2007 \ cl. 10.5.2.3 \ Table 21, \\ t_{w_{min}} = 10$	10	Pass
Max Weld Size (mm)	$Thickness of Thinner part$ $= Min(49.2, 12.0) = 12.0$ $t_{w_{max}} = 12.0$	10	Pass
Weld Strength (kN/mm)	$R_{w} = \sqrt{(T_{wh} + A_{wh})^{2} + (T_{wv} + V_{wv})^{2}}$ $T_{wh} = \frac{M * y_{max}}{Ipw} = \frac{100000000.0 * 240.0}{18432000.0}$ $T_{wv} = \frac{M * x_{max}}{Ipw} = \frac{100000000.0 * 0.0}{18432000.0}$ $V_{wv} = \frac{V}{l_{w}} = \frac{200000.0}{960}$ $A_{wh} = \frac{A}{l_{w}} = \frac{300000.0}{960}$ $R_{w} = \sqrt{(130.21 + 312.5)^{2} + (0.0 + 208.33)^{2}}$ $= 460.72$	$f_w = \frac{t_t * f_u}{\sqrt{3} * \gamma_{mw}}$ $= \frac{7.0 * 410}{\sqrt{3} * 1.25}$ $= 1325.6$	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	18 /05 /2020	Client	LoremIpsum

3 3D View

Figure 1: 3D View