Math 55b: Honors Advanced Calculus and Linear Algebra

Practice Problems (May 2, 2003)

As was true last term, these problems are <u>not</u> required homework, but are meant to help you review the material for the final exam. Good luck!

Fourier/Hilbert stuff:

- 1. (Baire's theorem) Prove that if a complete metric space X is the countable union $\bigcup_{n=1}^{\infty} S_n$ with each $S_n \subset X$ closed then at least one S_n contains a nonempty open set. [This involves the same argument we used to show that a weakly convergent sequence of operators is bounded.]
- 2. Prove that the roots of consecutive orthogonal polynomials are interlaced, i.e., that if u_j are orthogonal polynomials with respect to some weight function w(x) on (a, b), and the roots of u_n and u_{n+1} are $x_1 < x_2 < x_3 < \cdots < x_n$ and $x'_1 < x'_2 < \cdots < x'_{n+1}$ respectively, then

$$x_1' < x_1 < x_2' < x_2 < x_3' < \dots < x_n' < x_n < x_{n+1}'.$$

[It suffices to prove that, for each k, $u_{n+1}(x_k)$ is a nonzero real number of sign $(-1)^{n+1-k}$ (why?). Use induction and "Theorem 40.9".] Show more generally that if m > n then there is at least one zero of u_m between each pair of zeros of u_n . Check directly that this holds for the Tchebychev polynomials using the explicit values of x_k and x'_k . What can you say about the zeros of a linear combination $u_n + cu_{n-1}$?

3. Give a proof using convolutions of Parseval for functions on \mathbf{T} and/or $\mathbf{Z}/N\mathbf{Z}$.

The matrix exponential and logarithm:

4. Let \mathcal{M} be the n^2 -dimensional vector space of $n \times n$ matrices. Define a map $\exp : \mathcal{M} \to \mathcal{M}$ (the matrix exponential) by

$$\exp(A) = \sum_{n=0}^{\infty} A^n / n! = 1 + A + \frac{1}{2}A^2 + \frac{1}{6}A^3 + \cdots$$

[Here 1 is the identity matrix in \mathcal{M} . To show that the sum converges absolutely and uniformly in compact subsets of \mathcal{M} , note that each of the n^2 coordinates is dominated by $\sum_{n=0}^{\infty} \|A\|^n/n!$ where $\|A\| = \sup_{|\mathbf{x}| \le 1} |A\mathbf{x}|$ is the norm of A.] Prove that exp is continuously differentiable near the origin $\mathbf{0}$ of \mathcal{M} , and find its differential at $\mathbf{0}$. Conclude that exp has a local inverse near $\mathbf{1} = \exp \mathbf{0}$. Note that exp is not globally invertible: give examples showing that it is

neither surjective (prove that $\exp(A) \exp(-A) = 1$ for all $A \in \mathcal{M}$) nor injective (consider $A = t(\begin{smallmatrix} 0 & 1 \\ -1 & 0 \end{smallmatrix})$ for suitable t). What is $\det(\exp A)$? If $B \in \operatorname{GL}_n(\mathbf{R})$, must there exist $A \in \mathcal{M}$ such that $B = \exp A$?

It should not surprise you that the inverse function of exp is called the "matrix logarithm" and is given near 1 by the power series $\log(1+E) = E - E^2/2 + E^3/3 - + \cdots$ for E in a neighborhood of 0.

Some miscellaneous calculus problems follow; there are plenty more in Rudin to choose from:

5. (Euler's original evaluation of $\zeta(2)$, etc.) Recall from an earlier problem set the infinite product

$$\sin x = x \prod_{n=1}^{\infty} \left[1 - \left(\frac{x}{n\pi} \right)^2 \right]$$

for x in some neighborhood of 0. Taking logarithms of both sides yields

$$\log \frac{\sin x}{x} = \sum_{n=1}^{\infty} \log \left[1 - \left(\frac{x}{n\pi} \right)^2 \right],$$

Now carefully expand the logarithms on the right-hand side in power series about x = 0, and compare the leading (x^2) coefficient with that of

$$\log(\sin x/x) = \log(1 - x^2/6 + x^4/120 - + \cdots)$$

to recover Euler's identity. What do the further coefficients of the Taylor expansion tell you?

6. Suppose f is a harmonic function on the neighborhood of a closed ball $\bar{B}_r(x)$ in \mathbf{R}^n . Prove that f(x) is the average of f(y) over $y \in \bar{B}_r(x)$, and also the average of f(y) over the sphere |y-x|=r. Prove that conversely if f is a \mathcal{C}^2 function from $\bar{B}_r(x)$ to \mathbf{R} whose average over $B_s(x)$ equals f(x) for each positive s < r then $\Delta f(x) = 0$. (This generalizes the familiar characterization f(x+r)+f(x-r)=2f(x) for affine-linear functions of one variable $f:[x-r,x+r]\to\mathbf{R}$. An important application is that a gravitational or electrostatic field cannot have points of stable equilibrium!)