

Generative AI for Risk and Reliability

Lect 2: How GPT works and how to improve its performance

Zhiguo Zeng, Professor,

Chaire on Risk and Resilience of Complex Systems,

CentraleSupélec, Université Paris-Saclay

zhiguo.zeng@centralesupelec.fr

06/December/2024

- GPT: Generative Pre-trained Transformer
- The basic task: Next token prediction
 - Recursively
 - Basis for designing AI assistant like ChatGPT

Generative AI for risk and reliability is

- GPT: Generative Pre-trained Transformer
- The basic task: Next token prediction
 - Recursively
 - Basis for designing AI assistant like ChatGPT

Generative AI for risk and reliability is an

- GPT: Generative Pre-trained Transformer
- The basic task: Next token prediction
 - Recursively
 - Basis for designing AI assistant like ChatGPT

Generative AI for risk and reliability is an awesome

- GPT: Generative Pre-trained Transformer
- The basic task: Next token prediction
 - Recursively
 - Basis for designing AI assistant like ChatGPT

Generative AI for risk and reliability is an awesome course

- GPT: Generative Pre-trained Transformer
- The basic task: Next token prediction
 - Recursively
 - Basis for designing AI assistant like ChatGPT

Generative AI for risk and reliability is an awesome course.

- GPT: Generative Pre-trained Transformer
- The basic task: Next token prediction
 - Recursively
 - Basis for designing Al assistant like ChatGPT
- But what's inside the block "GPT"?

Generative AI for risk and reliability is an awesome.

How GPT works: The global picture

- GPT is transformer architecture that uses only decoder.
 - Transformer: A deep learning architecture that uses attention mechanism to catch the relations among input tokens.
 - Input: A vector of tokens
 - Context size of GPT 3: 2048 tokens
 - Output: The same length of vector. But each element is a prediction of next token.
 - Only the last element on the output vector is taken as the prediction.
 - Each token will be predicted, and, in this way, the information of the entire sequence is compressed in the last token.

https://dugas.ch/artificial_curiosity/GPT_architecture.html

How GPT works: The global picture

- GPT is a complex model but built on simple modules:
 - Embedding: Tokens (50257 for GPT 3) -> high-dimensional space (12,288 for GPT3)
 - Attention (<u>is all you need</u>): Learns the contexts
 - Feed-forward (MLP): Simple neural network to create nonlinear mappings
 - Unembedding: Transfer back to tokens
 - SoftMax: Generate a probability distribution from the neuron activations.

https://dugas.ch/artificial_curiosity/GPT_architecture.html

Embeddings and unembedding

- Map between the tokens (words) to a high-dimensional space of real numbers.
- In GPT 3, each token is represented by a vector of 12,288. Each element is a real number between (0, 1).
- The total amount of token is 50,257.
- Embedding matrix: 12,288*50,257.
- The parameters in this matrix are learnt from data. (We call all the parameters to be learnt as weights in general).

The secret of embedding

- After training, usually, the embeddings of tokens can represent semantic meanings.
- Close in the embedding space ⇔ close semantic meanings
 - http://projector.tensorflow.org/
- Difference in the vector space Difference in semantic meanings
 - E('king')-E('queen') ~ E('man')-E('woman')
 - Try to verify that: <u>https://colab.research.google.com/drive/1QSCr5myTwgVLLuIIhEXVA0TV2_9Y</u> OE2i?usp=sharing

Attention is all you need

- Motivation:
 - The meaning of a token depends on the context:
 - "The royal family, including Prince Harry, gathered to celebrate the annual Christmas festivities at Sandringham."
 - "The young wizard, Harry Potter, embarked on a daring quest to uncover the secrets of the Chamber of Secrets hidden within Hogwarts."
 - The embedding of "Harry" is the same, but the semantic meaning is different.
- Attention mechanism:
 - Modify the embeddings, so that it can be closer to the correct semantic meanings.
 - $E(X_i) = E(X_i) + \Delta E(X_i)$.
 - How to decide $\Delta E(X_i)$?
 - Let context helps!

Attention is all vou need

Attention is all you need

- $\Delta E(X_i) = \sum_{j=1}^{i} Attention_i$
- Attention_i = $softmax\left(\frac{Q_i K_i^T}{\sqrt{d_k}}\right) V$
 - Q Query
 - K Key
 - V Value
 - Query and Key determines the weights (relevance) of a given token
 - Value represent the amount of change we need for the adjustment.
 - V has the same dimension as $E(X_i)$. (GPT3: 12,228)
 - While Q and K usually has lower dimension (GPT3: 128).
- How to calculate Q, K and V?
 - Matrix operation:
 - $Q = W_Q \cdot E(X_i), K = W_K E(X_i), V = W_V E(X_i)$
 - Parameters in W_O , W_K and W_V needs to be estimated from data

Multi-head attention

- The same attention block is repeated 96 times in GPT3 and the results are concatenated and weighted.
- Each head has its own weight matrices and can learn different dependencies.
- This is a way for the model to "see different patterns"

Predicting the output token

- Softmax with temperature:
 - Softmax: $p_i = \frac{e^{x_i}}{\sum_{i=1}^n e^{x_i}}$.
 - Normalize the output to get a pdf.
 - Softmax with temperature: $p_i = \frac{e^{x_i/T}}{\sum_{i=1}^n e^{x_i/T}}$
 - T: temperature
 - T large -> The pdf is more uniform -> The output is more random.
 - T small -> The pdf is more concentrated -> The output is more deterministic.
- To think: When do we need high temperature, and when do we need low temperature?

Not just the architecture, the scale matters!

Total weights: 175,181,291,520 Organized into 27,938 matrices

Embedding	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Key	$d_{query} * d_{embed} * n_{heads} * n_{layers} = 14,495,514,624$
Query	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Value	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Output	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	57,982,058,496
Unembedding	$50,257$ $12,288$ $n_vocab * d_embed = 617,558,016$

How to improve a pre-trained model on downstream tasks?

What we have discussed last lecture

every ~year

Stage 1: Pretraining

- 1. Download ~10TB of text.
- 2. Get a cluster of ~6,000 GPUs.
- 3. Compress the text into a neural network, pay ~\$2M, wait ~12 days.
- 4. Obtain base model.

Can you write a short introduction about the relevance of the term "moropsony" in economics? Please use examples related to potential monopsonies in the labour market and cite relevant research. ">Amonopsony" refers to a market structure where there is only

every ~week

Stage 2: Finetuning

- 1. Write labeling instructions
- 2. Hire people (or use <u>scale.ai</u>!), collect 100K high quality ideal Q&A responses, and/or comparisons.
- 3. Finetune base model on this data, wait ~1 day.
- 4. Obtain assistant model.
- 5. Run a lot of evaluations.
- 6. Deploy.
- 7. Monitor, collect misbehaviors, go to step 1.

Source: Andrej Karpathy, Introduction to LLM, https://www.youtube.com/watch?v=zjkBMFhNj g

How to improve a pre-trained model on downstream tasks?

If you want to improve further?

https://platform.openai.com/docs/guides/optimizing-llm-accuracy#understanding-the-tools

Thank you! Questions?