

Al Academy Vietnam

Nội dung bài 7

- 1. Xóa cột/hàng trong Dataframe
- 2. Xử lý hàng trùng lặp (Duplicate rows)
- 3. Sắp xếp trong DataFrame (Sort)
- 4. Nhóm các hàng trong DataFrame dựa vào giá trị
- 5. Áp dụng hàm cho các phần tử trong DataFrame (Apply)
- 6. Trộn các DataFrame (Merging)
- 7. Ghép nối các DataFrame (Concatenating)
- 8. Phát hiện và xử lý giá trị khuyết thiếu (Missing)
- 9. Phát hiện và xử lý giá trị ngoại biên (Outliers)
- 10. Phân tích dữ liệu bán hàng (Tiếp cận từ bài toán thực tế)

1. Xóa cột/hàng trong DataFrame

1.1 Xóa cột

 df.drop([column_name], axis=1|'columns', inplace=True|Flase): Để xóa 1 cột hoặc nhiều cột trong một DataFrame.

Lưu ý khi sử dụng tham số inplace = True -> Áp dụng thay đổi cho chính DataFrame

hiện tại


```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 163987 entries, 0 to 163986
Data columns (total 9 columns):
     Column
                     Non-Null Count
                                     Dtype
                    163987 non-null
     loan amnt
                                     int64
     term
                    163987 non-null
                                     obiect
                    163987 non-null float64
     int rate
    emp length
                    158183 non-null float64
    home ownership 163987 non-null object
                    163987 non-null
                                     object
     purpose
    addr state
                    163987 non-null
                                     object
    total acc
                    163958 non-null float64
     bad loan
                    163987 non-null int64
dtypes: float64(3), int64(2), object(4)
memory usage: 11.3+ MB
```

1.1 Xóa cột

 df.drop(df.columns[index], axis=1|columns): Để xóa 1 cột hoặc nhiều cột trong một DataFrame trong trường hợp DataFrame không có tên cột, sử

dụng chỉ số cột.

```
#Xóa cột trong một DataFrame sử dụng chỉ số cột

df_loan2 = df_loan.drop(df_loan.columns[[5,8,9,10,13,14]],

axis='columns')

df_loan2.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 163987 entries, 0 to 163986
Data columns (total 9 columns):
    Column
                   Non-Null Count
                                   Dtype
                   163987 non-null int64
    loan_amnt
                   163987 non-null object
    term
    int_rate
                   163987 non-null float64
    emp length
                   158183 non-null float64
    home ownership 163987 non-null object
    purpose
                   163987 non-null object
                                   object
    addr state
                   163987 non-null
    total_acc
                   163958 non-null float64
    bad loan
                   163987 non-null int64
dtypes: float64(3), int64(2), object(4)
memory usage: 11.3+ MB
```

1.2 Xóa hàng

Xóa hàng theo index:

- **df.drop([index rows], axis=0):** Để xóa 1 hàng hoặc nhiều hàng trong một DataFrame theo index của hàng.
- Tham số axis = 0 (Default)
- 1 #Xóa hàng trong một DataFrame
 2 #Xóa hàng có index: 3,9
- 3 df_loan2.drop([3,9],inplace=True)
- 4 df_loan2.head(10)

	loan_amnt	term	int_rate	emp_length	home_ownership	purpose	addr_state	total_acc	bad_loan
0	5000	36 months	10.65	10.0	RENT	credit_card	AZ	9.0	0
1	2500	60 months	15.27	0.0	RENT	car	GA	4.0	1
2	2400	36 months	15.96	10.0	RENT	small_business	IL	10.0	0
4	5000	36 months	7.90	3.0	RENT	wedding	AZ	12.0	0
5	3000	36 months	18.64	9.0	RENT	car	CA	4.0	0
6	5600	60 months	21.28	4.0	OWN	small_business	CA	13.0	1
7	5375	60 months	12.69	0.0	RENT	other	TX	3.0	1
8	6500	60 months	14.65	5.0	OWN	debt_consolidation	AZ	23.0	0
10	9000	36 months	13.49	0.0	RENT	debt_consolidation	VA	9.0	1
11	3000	36 months	9.91	3.0	RENT	credit_card	IL	11.0	0

1.2 Xóa hàng

Xóa hàng theo điều kiện (filter data):

```
#Loại bỏ tất cả các dòng dữ liệu có addr_state = CA
df_loan3 = df_loan1[df_loan1.addr_state!='CA']
df_loan3
```

	loan_amnt	term	int_rate	emp_length	home_ownership	purpose	addr_state	total_acc	bad_loan
0	5000	36 months	10.65	10.0	RENT	credit_card	AZ	9.0	0
1	2500	60 months	15.27	0.0	RENT	car	GA	4.0	1
2	2400	36 months	15.96	10.0	RENT	small_business	IL	10.0	0
4	5000	36 months	7.90	3.0	RENT	wedding	AZ	12.0	0
7	5375	60 months	12.69	0.0	RENT	other	TX	3.0	1
163982	15000	60 months	12.39	3.0	MORTGAGE	credit_card	OK	34.0	0
163983	20000	36 months	14.99	10.0	OWN	home_improvement	VA	18.0	0
163984	12825	36 months	17.14	6.0	MORTGAGE	debt_consolidation	TX	24.0	0
163985	27650	60 months	21.99	0.0	RENT	credit_card	NY	20.0	0
163986	17000	60 months	15.99	10.0	MORTGAGE	debt_consolidation	PA	28.0	0

135285 rows × 9 columns

Drop Duplicate Pandas

Drop duplicates

df.duplicated(): để tìm kiếm các hàng trùng lặp

- df.drop_duplicates(): với các tham số mặc định sẽ thực hiện
 - Xóa hết các hàng dữ liệu trùng lặp nhau ở tất cả các cột
 - Giữ lại hàng đầu tiên trùng lặp

	Name	Age	Score	
0	Alisa	26	85.0	3
1	raghu	23	31.0	2
2	jodha	23	55.0	1
3	jodha	23	55.0	
4	raghu	23	31.0	2
5	Cathrine	24	77.0	
6	Alisa	26	85.0	3
7	Bobby	24	63.0	
8	Bobby	22	42.0	
9	Alisa	26	85.0	3
10	raghu	23	31.0	2
11	Cathrine	24	NaN	

```
1 #Trường hợp 1:
2 #Sử dụng df.drop_duplicates() với các tham số mặc định
3 #--> giữ lại hàng trùng lặp đầu tiên
4 df1 = df.drop_duplicates()
5 df1
```

	Name	Age	Score
0	Alisa	26	85.0
1	raghu	23	31.0
2	jodha	23	55.0
5	Cathrine	24	77.0
7	Bobby	24	63.0
8	Bobby	22	42.0
11	Cathrine	24	NaN

- df.drop_duplicates(keep='last'):
 - Xóa hết các hàng dữ liệu trùng lặp nhau ở tất cả các cột
 - Giữ lại hàng trùng lặp cuối cùng

	Name	Age	Score	
0	Alisa	26	85.0	3
1	raghu	23	31.0	2
2	jodha	23	55.0	
3	jodha	23	55.0	
4	raghu	23	31.0	2
5	Cathrine	24	77.0	
6	Alisa	26	85.0	3
7	Bobby	24	63.0	
8	Bobby	22	42.0	
9	Alisa	26	85.0	3
10	raghu	23	31.0	2
11	Cathrine	24	NaN	

1	#Trường hợp 2:
2	#Sử dụng df.drop_duplicates()
3	#với các tham số keep='last'
4	#Giữ lại các hàng trùng lặp cuối cùng
5	<pre>df2=df.drop_duplicates(keep='last')</pre>
6	df2

	Name	Age	Score
3	jodha	23	55.0
5	Cathrine	24	77.0
7	Bobby	24	63.0
8	Bobby	22	42.0
9	Alisa	26	85.0
10	raghu	23	31.0
11	Cathrine	24	NaN

- df.drop_duplicates(keep=False):
 - Xóa hết các hàng dữ liệu trùng lặp nhau ở tất cả các cột, chỉ giữ lại các hàng dữ liệu không trùng lặp

	Name	Age	Score
0	Alisa	26	85.0 3
1	raghu	23	31.0 2
2	jodha	23	55.0
3	jodha	23	55.0
4	raghu	23	31.0 2
5	Cathrine	24	77.0
6	Alisa	26	85.0 3
7	Bobby	24	63.0
8	Bobby	22	42.0
9	Alisa	26	85.0 3
10	raghu	23	31.0 2
11	Cathrine	24	NaN

2	#Trường hợp 3: #Sử dụng df.drop_duplicates()
3	#với các tham số keep=False
4	#Xóa hết các hàng trùng lặp khỏi df
5	<pre>df3=df.drop_duplicates(keep=False)</pre>
6	df3

	Name	Age	Score
5	Cathrine	24	77.0
7	Bobby	24	63.0
8	Bobby	22	42.0
11	Cathrine	24	NaN

- df.drop_duplicates([name columns], keep='first'| 'last' | False):
 - Xóa các hàng dữ liệu trùng lặp nhau ở các cột được chỉ định

	Name	Age	Score
0	Alisa	26	85.0 3
1	raghu	23	31.0 2
2	jodha	23	55.0
3	jodha	23	55.0
4	raghu	23	31.0 2
5	Cathrine	24	77.0
6	Alisa	26	85.0 3
7	Bobby	24	63.0
8	Bobby	22	42.0
9	Alisa	26	85.0 3
10	raghu	23	31.0 2
11	Cathrine	24	NaN

```
1 #Trường hợp 4:
2 #Sử dụng df.drop_duplicates()
3 #Loại bỏ các hàng trùng nhau theo cột Name
4 df4=df.drop_duplicates(['Name'],keep='first')
5 df4
```

	Name	Age	Score
0	Alisa	26	85.0
1	raghu	23	31.0
2	jodha	23	55.0
5	Cathrine	24	77.0
7	Bobby	24	63.0

Age
A

	Name	Age	Score
0	Alisa	26	85.0
1	raghu	23	31.0
2	jodha	23	55.0
5	Cathrine	24	77.0
7	Bobby	24	63.0
8	Bobby	22	42.0

3. Sắp xếp dữ liệu trong DataFrame

- df.sort_values(): sắp xếp dữ liệu trong DataFrame theo giá trị của các cột, tăng dần (ascending = True)-default hoặc giảm dần (ascending=False)
- Lưu ý khi sử dụng tham số inplace = True

• df.sort_index(): sắp xếp dữ liệu trong DataFrame theo index

• Ví dụ:

	Name	Age	Score
0	Alisa	26	89
1	Bobby	27	87
2	Cathrine	25	67
3	Madonna	24	55
4	Rocky	31	47
5	Sebastian	27	72
6	Jaqluine	25	76
7	Rahul	33	79
8	David	42	44
9	Andrew	32	92
10	Ajay	51	99
11	Teresa	47	69
12	Madonna	38	73

1	#Trường hợp 1:
2	#Sắp xếp dữ liệu Dataframe theo cột Score
3	#Mặc định Là sắp xếp tăng dần
4	<pre>df.sort_values(by='Name')</pre>

	Name	Age	Score
10	Ajay	51	99
0	Alisa	26	89
9	Andrew	32	92
1	Bobby	27	87
2	Cathrine	25	67
8	David	42	44
6	Jaqluine	25	76
3	Madonna	24	55
12	Madonna	38	73

• Ví dụ:

	Name	Age	Score
0	Alisa	26	89
1	Bobby	27	87
2	Cathrine	25	67
3	Madonna	24	55
4	Rocky	31	47
5	Sebastian	27	72
6	Jaqluine	25	76
7	Rahul	33	79
8	David	42	44
9	Andrew	32	92
10	Ajay	51	99
11	Teresa	47	69
12	Madonna	38	73

1	#Trường hợp 2:
2	#Sắp xếp dữ Liệu Dataframe theo cột Score
3	#Giá trị giảm dần
4	<pre>df.sort_values(by='Score',ascending=False)</pre>

	Name	Age	Score
10	Ajay	51	99
9	Andrew	32	92
0	Alisa	26	89
1	Bobby	27	87
7	Rahul	33	79
6	Jaqluine	25	76
12	Madonna	38	73
5	Sebastian	27	72

 Trường hợp sắp xếp nhiều cột, sẽ thực hiện sắp xếp theo thứ tự các cột từ trái sang phải:

	Name	Age	Score
0	Alisa	26	89
1	Bobby	27	87
2	Cathrine	25	67
3	Madonna	24	55
4	Rocky	31	47
5	Sebastian	27	72
6	Jaqluine	25	76
7	Rahul	33	79
8	David	42	44
9	Andrew	32	92
10	Ajay	51	99
11	Teresa	47	69
12	Madonna	38	73

	#Trường hợp 3: #Sắp xếp dữ Liệu Dataframe theo cột Name, Score
3	#Giá trị tăng dần
4	df.sort_values(by=['Name','Score'])

	Name	Age	Score
10	Ajay	51	99
0	Alisa	26	89
9	Andrew	32	92
1	Bobby	27	87
2	Cathrine	25	67
8	David	42	44
6	Jaqluine	25	76
3	Madonna	24	55
12	Madonna	38	73

• Ví dụ:

	Name	Age	Score
0	Alisa	26	89
1	Bobby	27	87
2	Cathrine	25	67
3	Madonna	24	55
4	Rocky	31	47
5	Sebastian	27	72
6	Jaqluine	25	76
7	Rahul	33	79
8	David	42	44
9	Andrew	32	92
10	Ajay	51	99
11	Teresa	47	69
12	Madonna	38	73

10 Ajay 51 99 0 Alisa 26 89 9 Andrew 32 92 1 Bobby 27 87 2 Cathrine 25 67 8 David 42 44 6 Jaqluine 25 76 12 Madonna 38 73 3 Madonna 24 55 7 Rahul 33 79 4 Rocky 31 47		Name	Age	Score
9 Andrew 32 92 1 Bobby 27 87 2 Cathrine 25 67 8 David 42 44 6 Jaqluine 25 76 12 Madonna 38 73 3 Madonna 24 55 7 Rahul 33 79	10	Ajay	51	99
1 Bobby 27 87 2 Cathrine 25 67 8 David 42 44 6 Jaqluine 25 76 12 Madonna 38 73 3 Madonna 24 55 7 Rahul 33 79	0	Alisa	26	89
2 Cathrine 25 67 8 David 42 44 6 Jaqluine 25 76 12 Madonna 38 73 3 Madonna 24 55 7 Rahul 33 79	9	Andrew	32	92
8 David 42 44 6 Jaqluine 25 76 12 Madonna 38 73 3 Madonna 24 55 7 Rahul 33 79	1	Bobby	27	87
6 Jaqluine 25 76 12 Madonna 38 73 3 Madonna 24 55 7 Rahul 33 79	2	Cathrine	25	67
12 Madonna 38 73 3 Madonna 24 55 7 Rahul 33 79	8	David	42	44
3 Madonna 24 55 7 Rahul 33 79	6	Jaqluine	25	76
7 Rahul 33 79	12	Madonna	38	73
	3	Madonna	24	55
4 Rocky 31 47	7	Rahul	33	79
	4	Rocky	31	47

4. Nhóm dữ liệu (groupby)

Groupby values

- df.groupby(): Gom nhóm các giá trị trong một DataFrame bởi các cột được chỉ định.
- Kết hợp với sum(), mean(), max(), min() để xác định các thông số theo từng nhóm.

ID	Value		
1	50.30		
1	123.30		
1	132.90		
2	50.30	ID	Value
2	123.30	1	306.50
2	132.90	 2	395.40
2	88.90	 3	173.60
3	50.30		
3	123.30		

Groupby values

Sử dụng phương thức groupby():

	Name	Exam	Subject	Score
0	Alisa	Semester 1	Mathematics	62
1	Bobby	Semester 1	Mathematics	47
2	Cathrine	Semester 1	Mathematics	55
3	Alisa	Semester 1	Science	74
4	Bobby	Semester 1	Science	31
5	Cathrine	Semester 1	Science	77
6	Alisa	Semester 2	Mathematics	85
7	Bobby	Semester 2	Mathematics	63
8	Cathrine	Semester 2	Mathematics	42
9	Alisa	Semester 2	Science	67
10	Bobby	Semester 2	Science	89
11	Cathrine	Semester 2	Science	81

```
#Trường hợp 1:
#Nhóm theo tên sinh viên (Name)
#Thực hiện tính điểm trung bình Score
df['Score'].groupby([df['Name']]).mean()
```

Name

Alisa 72.00 Bobby 57.50 Cathrine 63.75

Name: Score, dtype: float64


```
Exam
Name
Alisa
          Semester 1
                        136
          Semester 2
                        152
Bobby
          Semester 1
                         78
          Semester 2
                        152
Cathrine Semester 1
                        132
                        123
          Semester 2
Name: Score, dtype: int64
```


Thực hành 1

5. apply(function)

df.apply(func): Thực hiện thao tác func áp dụng cho từng cột riêng lẻ trong DataFrame,
 hoặc cho nhiều cột

• Áp dụng hàm cho các phần tử trong một cột dữ liệu của DataFrame: Viết hoa các giá trị

1 . 0	•	
trong cột Name	e (3 Cách thực	: hiện)

	Name	Score_Math	Score_Science
0	william	66	89
1	Mason	57	87
2	ella	75	67
3	jackson	44	55
4	lincoln	31	47
5	aubrey	67	72
6	Hudson	85	76
7	christian	33	79
8	Sawyer	42	44
9	silas	62	92
10	Bennett	51	93
11	kingston	47	69

1	#Thực hiện: Viết hoa tên học sinh
2	#Cách 1:
3	<pre>def upcase(x):</pre>
4	<pre>return x.upper()</pre>
5	
6	<pre>df['Name'] = df['Name'].apply(upcas</pre>
7	df UL

	Name	Score_Math	Score_Science
0	WILLIAM	66	89
1	MASON	57	87
2	ELLA	75	67

```
#Cách 2:
df['Name'] = df['Name'].apply(lambda x:x.upper())
df
```

	Name	Score_Math	Score_Science
0	WILLIAM	66	89
1	MASON	57	87
2	ELLA	75	67

1	#Cách 3:
2	<pre>df['Name'] = df['Name'].str.upper()</pre>
3	df

	Name	Score_Math	Score_Science
0	WILLIAM	66	89
1	MASON	57	87
2	ELLA	75	67

- Áp dụng hàm cho các phần tử trong nhiều cột cột dữ liệu của DataFrame:
- Thực hiện tính điểm cho từng học sinh theo công thức:
 - Point = (Score_Math*2 + Score_Science)/3

0 william 66 89 1 Mason 57 87 2 ella 75 67 3 jackson 44 55 4 lincoln 31 47 5 aubrey 67 72 6 Hudson 85 76 7 christian 33 79 8 Sawyer 42 44 9 silas 62 92 10 Bennett 51 93 11 kingston 47 69		Name	Score_Math	Score_Science
2 ella 75 67 3 jackson 44 55 4 lincoln 31 47 5 aubrey 67 72 6 Hudson 85 76 7 christian 33 79 8 Sawyer 42 44 9 silas 62 92 10 Bennett 51 93	0	william	66	89
3 jackson 44 55 4 lincoln 31 47 5 aubrey 67 72 6 Hudson 85 76 7 christian 33 79 8 Sawyer 42 44 9 silas 62 92 10 Bennett 51 93	1	Mason	57	87
4 lincoln 31 47 5 aubrey 67 72 6 Hudson 85 76 7 christian 33 79 8 Sawyer 42 44 9 silas 62 92 10 Bennett 51 93	2	ella	75	67
5 aubrey 67 72 6 Hudson 85 76 7 christian 33 79 8 Sawyer 42 44 9 silas 62 92 10 Bennett 51 93	3	jackson	44	55
6 Hudson 85 76 7 christian 33 79 8 Sawyer 42 44 9 silas 62 92 10 Bennett 51 93	4	lincoln	31	47
7 christian 33 79 8 Sawyer 42 44 9 silas 62 92 10 Bennett 51 93	5	aubrey	67	72
8 Sawyer 42 44 9 silas 62 92 10 Bennett 51 93	6	Hudson	85	76
9 silas 62 92 10 Bennett 51 93	7	christian	33	79
10 Bennett 51 93	8	Sawyer	42	44
	9	silas	62	92
11 kingston 47 69	10	Bennett	51	93
	11	kingston	47	69

	Name	Score_Math	Score_Science	Point
0	WILLIAM	66	89	73.7
1	MASON	57	87	67.0
2	ELLA	75	67	72.3
3	JACKSON	44	55	47.7
4	LINCOLN	31	47	36.3

 Áp dụng viết các hàm để tính chỉ số BMI, và phân loại dựa theo chỉ số tính được trên tập dữ liệu csv_Data_BMI.csv

	Gender	Height_cm	Weight_kg	ВМІ
Personal				
P1	Male	174	96	31.7
P2	Male	189	87	24.4
P 3	Female	185	110	32.1
P4	Female	195	104	27.4
P 5	Male	149	61	27.5

6. Trộn các DataFrame (Merge)

Trộn các DataFrame

- pd.merge(left_df,right_df, on='key', how='left' | 'right' | 'inner' | 'outer'): Thực hiện trộn 2 DataFrame lại với nhau.
 - Left_df: DataFrame 1
 - Right_df: DataFrame2
 - On: Tên cột dùng để nối dữ liệu giữa 2 DataFrame (tên cột phải có ở trong cả 2 DataFrame 1, 2)
 - How: Cách thức trộn dữ liệu [left, right, outer, inner (default)]

Trộn các DataFrame

Trộn các DataFrame (inner)

	Customer_id	Product	
0	1	Oven	
1	2	Oven	
2	3	Oven	
3	4	Television	
4	5	Television	
5	6	Television	

State	Customer_id	
California	2	0
California	4	1
Texas	6	2
New York	7	3
Indiana	8	4

Inner Join

	Customer_id	Product	State
0	2	Oven	California
1	4	Television	California
2	6	Television	Texas

Trộn các DataFrame (outer)

	Customer_id	Product	_
0	1	Oven	
1	2	Oven	
2	3	Oven	df
3	4	Television	W.
4	5	Television	
5	6	Television	

	Customer_id	State	
0	2	California	
1	4	California	
2	6	Texas	
3	7	New York	
4	8	Indiana	

Outer Join

1	#Trường hợp 2:
2	#Outer join DataFrame
3	<pre>inner_join_df= pd.merge(df1, df2,</pre>
4	on='Customer_id',
5	how='outer')
6	inner_join_df

	Customer_id	Product	State
0	1	Oven	NaN
1	2	Oven	California
2	3	Oven	NaN
3	4	Television	California
4	5	Television	NaN
5	6	Television	Texas
6	7	NaN	New York
7	8	NaN	Indiana

Trộn các DataFrame (left)

	Customer_id	Product	
0	1	Oven	
1	2	Oven	
2	3	Oven	df1
3	4	Television	WI I
4	5	Television	
5	6	Television	

	Customer_id	State
0	2	California
1	4	California
2	6	Texas
3	7	New York
4	8	Indiana

Left join

```
#Trường hợp 3:
#Left join DataFrame
inner_join_df= pd.merge(df1, df2,
                        on='Customer_id',
                        how='left')
inner_join_df
```

	Customer_id	Product	State
0	1	Oven	NaN
1	2	Oven	California
2	3	Oven	NaN
3	4	Television	California
4	5	Television	NaN
5	6	Television	Texas

Trộn các DataFrame (right)

	Customer_id	Product	
0	1	Oven	
1	2	Oven	
2	3	Oven	
3	4	Television	
4	5	Television	
5	6	Television	

Right Join

	Customer_id	Product	State
0	2	Oven	California
1	4	Television	California
2	6	Television	Texas
3	7	NaN	New York
4	8	NaN	Indiana

7. Nối các DataFrame (concat, append)

Nối các DataFrame theo cột

pd.concat([df1,df2], axis=1, join='inner'|'outer'): Thực hiện ghép nối các
 DataFrame lại với nhau theo cột

Nối các DataFrame theo cột

	Name	Score1	Score2
0	Alisa	62	89
1	Bobby	47	87
2	Cathrine	55	67
3	Madonna	74	55
4	Rocky	31	47
5	Sebastian	77	72
6	Jaqluine	85	76
7	Rahul	63	79
8	David	42	44

FIII	1	OU	TER	.IC	IN
IOL	`	-		J	,,,,,

	Hame	000,00	
0	Alisa	56	
1	Bobby	86	
2	Cathrine	77	
3	Madonna	45	
4	Rocky	73	
5	Sebastian	62	
6	Jaqluine	74	

Name Score3

 pd.concat([df1,df2], axis=1): sử dụng các tham số mặc định

2	<pre>#Trường hợp 1: #Mặc định join='outer' df_concat1 = pd.concat([df1, df2], axis=1) df_concat1</pre>
	df_concat1

	Name	Score1	Score2	Name	Score3
0	Alisa	62	89	Alisa	56.0
1	Bobby	47	87	Bobby	86.0
2	Cathrine	55	67	Cathrine	77.0
3	Madonna	74	55	Madonna	45.0
4	Rocky	31	47	Rocky	73.0
5	Sebastian	77	72	Sebastian	62.0
6	Jaqluine	85	76	Jaqluine	74.0
7	Rahul	63	79	NaN	NaN
8	David	42	44	NaN	NaN

Nối các DataFrame theo cột

	Name	Score1	Score2
0	Alisa	62	89
1	Bobby	47	87
2	Cathrine	55	67
3	Madonna	74	55
4	Rocky	31	47
5	Sebastian	77	72
6	Jaqluine	85	76
7	Rahul	63	79
8	David	42	44
	Nam	. S.o.r	03

	Name	Score3
0	Alisa	56
1	Bobby	86
2	Cathrine	77
3	Madonna	45
4	Rocky	73
5	Sebastian	62
6	Jadluine	74

INNER JOIN

02

pd.concat([df1,df2], axis=1, join='inner'):
 Sử dụng tham số join

	Name	Score1	Score2	Name	Score3
0	Alisa	62	89	Alisa	56
1	Bobby	47	87	Bobby	86
2	Cathrine	55	67	Cathrine	77
3	Madonna	74	55	Madonna	45
4	Rocky	31	47	Rocky	73
5	Sebastian	77	72	Sebastian	62
6	Jaqluine	85	76	Jaqluine	74
5	Sebastian	77	72	Sebastian	62

Nối các DataFrame theo hàng

pd.concat([df1,df2], axis=0, join='inner'|'outer', ignore_index=True|False) hoặc
 df1.append(df2): Thực hiện ghép nối các DataFrame lại với nhau theo hàng

Nối các DataFrame theo hàng

	Name	Score1	Score2	Score3
0	Alisa	62	89	56
1	Bobby	47	87	86
2	Cathrine	55	67	77
3	Madonna	74	55	45
4	Rocky	31	47	73

pd.concat([df1,df2]):

1	#Trường hợp 1: sử dụng concat
2	<pre>df_row = pd.concat([df1,df2])</pre>
3	df_row

	Name	Score1	Score2	Score3
0	Alisa	62	89	56
1	Bobby	47	87	86
2	Cathrine	55	67	77
3	Madonna	74	55	45
4	Rocky	31	47	73
0	Andrew	32	92	67
1	Ajay	71	99	97
2	Teresa	57	69	68

Trường hợp các cột cùng tên:

	Name	Score1	Score2	Score3
0	Andrew	32	92	67
1	Ajay	71	99	97
2	Teresa	57	69	68

df1.append(df2):

#Trường hợp 1: Sử dụng append() df row2 = df1.append(df2))
df_row2	

	Name	Score1	Score2	Score3
0	Alisa	62	89	56
1	Bobby	47	87	86
2	Cathrine	55	67	77
3	Madonna	74	55	45
4	Rocky	31	47	73
0	Andrew	32	92	67
1	Ajay	71	99	97
2	Teresa	57	69	68

Nối các DataFrame theo hàng

	Name	Score	Scorez	Scores
0	Alisa	62	89	56
1	Bobby	47	87	86
2	Cathrine	55	67	77
3	Madonna	74	55	45
4	Rocky	31	47	73

Trường hợp các cột khác tên:

	Name	Score1	Score4	Score5
0	Jack	32	72	57
1	danny	71	91	72
2	vishwa	70	89	78

pd.concat([df1,df3]) | df1.append(df3):

1 #Trường hợp các cột khác tên
2 pd.concat([df1,df3])

	Name	Score1	Score2	Score3	Score4	Score5
0	Alisa	62	89.0	56.0	NaN	NaN
1	Bobby	47	87.0	86.0	NaN	NaN
2	Cathrine	55	67.0	77.0	NaN	NaN
3	Madonna	74	55.0	45.0	NaN	NaN
4	Rocky	31	47.0	73.0	NaN	NaN
0	Jack	32	NaN	NaN	72.0	57.0
1	danny	71	NaN	NaN	91.0	72.0
2	vishwa	70	NaN	NaN	89.0	78.0

1	#sử dụng tham số join='inner'
2	<pre>pd.concat([df1,df3], join ='inner')</pre>

	Name	Score1
0	Alisa	62
1	Bobby	47
2	Cathrine	55
3	Madonna	74
4	Rocky	31
0	Jack	32
1	danny	71
2	vishwa	70

Phát hiện và xử lý missing data

- Vì nhiều lý do, dữ liệu có thể bị lỗi hoặc bị thiếu ở một số vị trí của một số feature.
- Hầu hết các thuật toán học máy không xử lý với dữ liệu bị thiếu, do đó cần phải được xử lý ở bước tiền xử lý dữ liệu.

Các nguyên nhân dẫn đến missing data:

- Khuyết ngẫu nhiên (Missing at Random MAR):
- Khuyết hoàn toàn ngẫu nhiên (Missing Completely at Random MCAR):
- Khuyết không ngẫu nhiên (Missing not at Random MNAR):

⊿ A	В	C	D	E	F	G
1 time	Ha Noi	Vinh	Da Nang	Nha Trang	Ho Chi Minh	Ca Mau
2 00 15-9-2019	25.65	24.79	24.01	25.06	25.48	24.97
3 01 15-9-2019		24.21	24.02	24.93	25.16	24.83
4 02 15-9-2019	25.05	23.73	23.89	24.79	24.8	24.55
5 03 15-9-2019	24.79	23.36	23.83		24.74	24.48
6 04 15-9-2019	24.59	23.05	23.69	24.82	24.8	24.38
7 05 15-9-2019	24.4		23.52	24.79	24.87	24.4
8 06 15-9-2019	24.38	22.79	23.68	25.1	24.71	24.41
9 07 15-9-2019	26.72	25.61	24.92	26.56	25.03	24.91
10 08 15-9-2019	28.84	26.93	26.51	26.53	25.75	25.85
11 09 15-9-2019	30.29	28.72	27.48	26.95	26.64	26.79
12 10 15-9-2019		29.97			27.68	27.53
13 11 15-9-2019	32.05	28.93	26.86	27.38	28.43	28.98
14 12 15-9-2019	31.31	28.94	26.65	27.47	28.29	29.24
15 13 15-9-2019	30.95		27.83	27.44	28	30.66
16 14 15-9-2019	30.56	30.62	26.49	27.16	27.67	30.97
17 15 15-9-2019	31.13	30.58	26.29	26.68	27.29	30.59
18 16 15-9-2019	30.8	30.2		26.45	27.29	29.13
19 17 15-9-2019	29.94	29.36	25.8	26.67	26.69	28.72
20 18 15-9-2019	28.53	27.48	24.82	25.92	25.81	27.46
21 19 15-9-2019	28.89	27.03	24.93	25.88	25.93	27.07
22 20 15-9-2019	28.06	26.41	24.7		25.97	26.75
23 21 15-9-2019	27.43	26.2	24.41	25.62	25.94	26.32
24 22 15-9-2019	26.98	25.79	24.17	25.6	25.9	26.29
25 23 15-9-2019	26.68	25.31	23.81	25.53	25.8	26.36
26						
27						
→ Data_	Temp_Missing	①		1		
leady				#	■ 🏻	+ 120

a.Phát hiện missing data

- Thống kê dữ liệu missing trong dataframe:
 - df.isnull().sum()

dtype: int64

```
#Thống kê số liệu missing trong Data frame
#Theo từng cột
print('Số lượng missing data trong file dữ liệu:')
print(data_temp.isnull().sum())

Số lượng missing data trong file dữ liệu:
time 0
Ha Noi 2
Vinh 2
Da Nang 2
Nha Trang 3
Ho Chi Minh 0
Ca Mau 0
```

Xây dựng hàm thống kê missing_values()

```
#Xây dựng hàm thống kê dữ liệu missing trong dataframe:
   #Đầu vào của hàm là 1 biến Dataframe
   #Đầu ra bao gồm các thông số:
   #Tổng số cột của file dữ liêu
   #Tổng số côt có chứa dữ liêu missing
   #Danh sách các cột chứa dữ liệu missing với 2 thống số:
   #Tổng số giá tri missing tương ứng với cột đó
   #Tỷ lệ % dữ liệu missing trên tổng số dữ liệu của cột
   def missing values(df):
11
           mis val = df.isnull().sum()
           mis val percent = 100 * df.isnull().sum() / len(df)
12
            mis val table = pd.concat([mis val, mis val percent], axis=1)
13
            mis val table ren columns = mis val table.rename(
14
            columns = {0 : 'Số giá trị Missing', 1 : 'Tỷ lệ % missing'})
15
            mis val table ren columns = mis val table ren columns[
16
                mis val table ren columns.iloc[:,1] != 0].sort values(
17
            'Tỷ lệ % missing', ascending=False).round(1)
18
            print ("File dữ liệu bao gồm có: " + str(df.shape[1]) + " cột.\n"
19
                "Có " + str(mis val table ren columns.shape[0]) +
20
                  " côt chứa missing values.")
21
            return mis val table ren columns
22
```

a.Phát hiện missing data

Xây dựng hàm thống kê missing_values()

1 missing_values(data_temp)

File dữ liệu bao gồm có: 7 cột. Có 4 cột chứa missing values.

	Số giá trị Missing	Tỷ lệ % missing
Nha Trang	3	12.5
Ha Noi	2	8.3
Vinh	2	8.3
Da Nang	2	8.3

a.Phát hiện missing data

Liệt kê các hàng chứa missing trong Dataframe:

```
#Liệt kê các dòng dữ liệu missing
#1. Liệt kê theo từng features:
data_temp[pd.isnull(data_temp['Ha Noi'])]
```

	time	Ha Noi	Vinh	Da Nang	Nha Trang	Ho Chi Minh	Ca Mau
1	01 15-9-2019	NaN	24.21	24.02	24.93	25.16	24.83
10	10 15-9-2019	NaN	29.97	NaN	NaN	27.68	27.53
1	data_temp	[pd.isn	ull(da	ata_temp	['Nha Tran	ng'])]	

	time	Ha Noi	Vinh	Da Nang	Nha Trang	Ho Chi Minh	Ca Mau
3	03 15-9-2019	24.79	23.36	23.83	NaN	24.74	24.48
10	10 15-9-2019	NaN	29.97	NaN	NaN	27.68	27.53
20	20 15-9-2019	28.06	26.41	24.70	NaN	25.97	26.75

1	#2. Liệt kê các dòng missing của tất cả các features:
2	<pre>data temp[data temp.isnull().any(axis=1)]</pre>

	time	Ha Noi	Vinh	Da Nang	Nha Trang	Ho Chi Minh	Ca Mau
1	01 15-9-2019	NaN	24.21	24.02	24.93	25.16	24.83
3	03 15-9-2019	24.79	23.36	23.83	NaN	24.74	24.48
5	05 15-9-2019	24.40	NaN	23.52	24.79	24.87	24.40
10	10 15-9-2019	NaN	29.97	NaN	NaN	27.68	27.53
13	13 15-9-2019	30.95	NaN	27.83	27.44	28.00	30.66
16	16 15-9-2019	30.80	30.20	NaN	26.45	27.29	29.13
20	20 15-9-2019	28.06	26.41	24.70	NaN	25.97	26.75

49

Để xử lý dữ liệu missing cần phải hiểu sâu sắc tập dữ liệu, việc lựa chọn phương pháp nào phụ thuộc vào từng bài toán cụ thể, một số phương pháp xử lý dữ liệu

missing cơ bản:

1) Loại bỏ các missing (Deletion)

2) Thay thể các missing(Imputation)


```
df.dropna(axis=0) → loại bỏ hàng
```

```
#1) Phương pháp 1:Loại bỏ các dữ liệu missing (Deletion)
    #Xóa toàn bộ các hàng chứa missing data: axis=0 -> xóa hàng
    data new = data temp.dropna(axis=0,how='any')
    #Kết quả sau khi loại bỏ các row chứa missing
    print(data new)
                                                      Ho Chi Minh
                            Vinh
                                           Nha Trang
            time
                  Ha Noi
                                  Da Nang
                                                                    Ca Mau
    00 15-9-2019
                   25.65
                          24.79
                                    24.01
                                               25.06
                                                             25.48
                                                                     24.97
    02 15-9-2019
                   25.05
                                               24.79
                                                                     24.55
                          23.73
                                    23.89
                                                             24.80
    04 15-9-2019
                          23.05
                   24.59
                                    23.69
                                               24.82
                                                             24.80
                                                                     24.38
4
    06 15-9-2019
                   24.38
                                    23.68
                                               25.10
                                                             24.71
                                                                     24.41
                          22.79
    07 15-9-2019
                   26.72
                          25.61
                                    24.92
                                               26.56
                                                             25.03
                                                                     24.91
    08 15-9-2019
                                                                     25.85
                   28.84
                          26.93
                                    26.51
                                                26.53
                                                             25.75
    09 15-9-2019
                   30.29
                          28.72
                                    27.48
                                                26.95
                                                             26.64
                                                                     26.79
11
    11 15-9-2019
                   32.05
                          28.93
                                    26.86
                                               27.38
                                                             28.43
                                                                     28.98
                                                                     29.24
12
    12 15-9-2019
                   31.31
                          28.94
                                    26.65
                                               27.47
                                                             28.29
    14 15-9-2019
                   30.56
                                                27.16
                                                                     30.97
14
                          30.62
                                    26.49
                                                             27.67
15
    15 15-9-2019
                   31.13
                           30.58
                                    26,29
                                                26.68
                                                             27.29
                                                                      30.59
                                                                     28.72
17
    17 15-9-2019
                   29.94
                          29.36
                                    25.80
                                                26.67
                                                             26.69
    18 15-9-2019
                   28.53
                                    24.82
                                               25.92
                                                             25.81
                                                                     27.46
18
                          27.48
                                               25.88
19
    19 15-9-2019
                   28.89
                          27.03
                                    24.93
                                                             25.93
                                                                     27.07
    21 15-9-2019
                   27.43
                          26.20
                                    24.41
                                               25.62
                                                                     26.32
                                                             25.94
    22 15-9-2019
                   26.98
                          25.79
                                    24.17
                                               25.60
                                                             25.90
                                                                     26.29
    23 15-9-2019
                                                                     26.36
23
                   26.68
                          25.31
                                    23.81
                                                25.53
                                                             25.80
```



```
df.dropna(axis=1) → loại bỏ cột
```

```
#1 #1) Phương pháp 1:Loại bỏ các dữ liệu missing (Deletion)

#2

#2

#3 #Xóa toàn bộ các cột chứa missing data: axis=1 -> xóa cột

#4 data_new = data_temp.dropna(axis=1,how='any')

#6 #Kết quả sau khi loại bỏ các cột chứa missing

print(data_new)
```

```
time
             Ho Chi Minh
                            Ca Mau
00 15-9-2019
                     25.48
                             24.97
01 15-9-2019
                     25.16
                             24.83
02 15-9-2019
                             24.55
                     24.80
03 15-9-2019
                     24.74
                             24.48
04 15-9-2019
                     24.80
                             24.38
05 15-9-2019
                     24.87
                             24.40
06 15-9-2019
                     24.71
                             24.41
07 15-9-2019
                             24.91
                     25.03
08 15-9-2019
                     25.75
                             25.85
09 15-9-2019
                     26.64
                             26.79
10 15-9-2019
                     27.68
                             27.53
11 15-9-2019
                     28.43
                             28.98
12 15-9-2019
                             29.24
                     28.29
13 15-9-2019
                     28.00
                             30.66
14 15-9-2019
                             30.97
                     27.67
15 15-9-2019
                     27.29
                             30.59
16 15-9-2019
                     27.29
                             29.13
17 15-9-2019
                     26.69
                             28.72
```

Các cột **Hà Nội, Vinh, Đà Nẵng, Nha Trang** có chữa dữ liệu missing đã bị loại bỏ

df.fillna(value) → thay thế bằng một giá trị cố định

```
#PHƯƠNG PHÁP 2: Thay thế (Imputation)
#2.1) Thay thế các dữ liệu mất mát bằng một hằng số cố định
value = 25.0
#thay thế các giá trị missing bằng một giá trị cố định Value
data_new = data_temp.fillna(value)
print(data_new)
```

		time	Ha Noi	Vinh	Da Nang	Nha Trang	Ho Chi Minh	Ca Mau
0	00	15-9-2019	25.65	24.79	24.01	25.06	25.48	24.97
1	01	15-9-2019	25.00	24.21	24.02	24.93	25.16	24.83
2	02	15-9-2019	25.05	23.73	23.89	24.79	24.80	24.55
3	03	15-9-2019	24.79	23.36	23.83	25.00	24.74	24.48
4	04	15-9-2019	24.59	23.05	23.69	24.82	24.80	24.38
5	05	15-9-2019	24.40	25.00	23.52	24.79	24.87	24.40
6	06	15-9-2019	24.38	22.79	23.68	25.10	24.71	24.41
7	07	15-9-2019	26.72	25.61	24.92	26.56	25.03	24.91
8	98	15-9-2019	28.84	26.93	26.51	26.53	25.75	25.85
9	09	15-9-2019	30.29	28.72	27.48	26.95	26.64	26.79
10	10	15-9-2019	25.00	29.97	25.00	25.00	27.68	27.53
11	11	15-9-2019	32.05	28.93	26.86	27.38	28.43	28.98
12	12	15-9-2019	31.31	28.94	26.65	27.47	28.29	29.24
13	13	15-9-2019	30.95	25.00	27.83	27.44	28.00	30.66
14	14	15-9-2019	30.56	30.62	26.49	27.16	27.67	30.97
15	15	15-9-2019	31.13	30.58	26.29	26.68	27.29	30.59
16	16	15-9-2019	30.80	30.20	25.00	26.45	27.29	29.13


```
df.fillna(method='pad') → thay thế bằng giá trị liền trước
```

#PHƯƠNG PHÁP 2: Thay thế (Imputation)
#2.2)Thay thế các dữ liệu mất mát bằng giá trị liền trước của nó
data_new2 = data_temp.fillna(method='pad')
print(data_new2)

		time	Ha Noi	Vinh	Da Nang	Nha Trang	Ho Chi Minh	Ca Mau
0	00	15-9-2019	25.65	24.79	24.01	25.06	25.48	24.97
1	01	15-9-2019	25.65	24.21	24.02	24.93	25.16	24.83
2	02	15-9-2019	25.05	23.73	23.89	24.79	24.80	24.55
3	03	15-9-2019	24.79	23.36	23.83	24.79	24.74	24.48
4	04	15-9-2019	24.59	23.05	23.69	24.82	24.80	24.38
5	05	15-9-2019	24.40	23.05	23.52	24.79	24.87	24.40
6	06	15-9-2019	24.38	22.79	23.68	25.10	24.71	24.41
7	07	15-9-2019	26.72	25.61	24.92	26.56	25.03	24.91
8	98	15-9-2019	28.84	26.93	26.51	26.53	25.75	25.85
9	09	15-9-2019	30.29	28.72	27.48	26.95	26.64	26.79
10	10	15-9-2019	30.29	29.97	27.48	26.95	27.68	27.53
11	11	15-9-2019	32.05	28.93	26.86	27.38	28.43	28.98
12	12	15-9-2019	31.31	28.94	26.65	27.47	28.29	29.24
13	13	15-9-2019	30.95	28.94	27.83	27.44	28.00	30.66
14	14	15-9-2019	30.56	30.62	26.49	27.16	27.67	30.97
15	15	15-9-2019	31.13	30.58	26.29	26.68	27.29	30.59
16	16	15-9-2019	30.80	30.20	26.29	26.45	27.29	29.13
								Ea

df.fillna(method='bfill')

→ thay thế bằng giá trị liền sau

```
#PHƯƠNG PHÁP 2: Thay thế (Imputation)
#2.3)Thay thế các dữ liệu mất mát bằng giá trị liền sau của nó
data_new3 = data_temp.fillna(method='bfill')
print(data_new3)
```

	time	Ha Noi	Vinh	Da Nang	Nha Trang	Ho Chi Minh	Ca Mau
0	00 15-9-2019	25.65	24.79	24.01	25.06	25.48	24.97
1	01 15-9-2019	25.05	24.21	24.02	24.93	25.16	24.83
2	02 15-9-2019	25.05	23.73	23.89	24.79	24.80	24.55
3	03 15-9-2019	24.79	23.36	23.83	24.82	24.74	24.48
4	04 15-9-2019	24.59	23.05	23.69	24.82	24.80	24.38
5	05 15-9-2019	24.40	22.79	23.52	24.79	24.87	24.40
6	06 15-9-2019	24.38	22.79	23.68	25.10	24.71	24.41
7	07 15-9-2019	26.72	25.61	24.92	26.56	25.03	24.91
8	08 15-9-2019	28.84	26.93	26.51	26.53	25.75	25.85
9	09 15-9-2019	30.29	28.72	27.48	26.95	26.64	26.79
10	10 15-9-2019	32.05	29.97	26.86	27.38	27.68	27.53
11	11 15-9-2019	32.05	28.93	26.86	27.38	28.43	28.98
12	12 15-9-2019	31.31	28.94	26.65	27.47	28.29	29.24
13	13 15-9-2019	30.95	30.62	27.83	27.44	28.00	30.66
14	14 15-9-2019	30.56	30.62	26.49	27.16	27.67	30.97
15	15 15-9-2019	31.13	30.58	26.29	26.68	27.29	30.59
16	16 15-9-2019	30.80	30.20	25.80	26.45	27.29	29.13

df.interpolate()
thay
thế giá trị bằng giá trị
trung bình của giá trị liền
trước và liền sau

```
#PHƯƠNG PHÁP 2: Thay thế (Imputation)
#2.4)Xử lý các giá trị missing theo phương pháp nội suy
#Sử dụng hàm interpolate để thay thế giá trị missing với tham số:
#Thuật toán nội suy: Tuyến tính (linear)
#Hướng nội suy: Tiến lên (forward)
data_new4 = data_temp.interpolate(method='linear', limit_direction ='forward')
print(data_new4)
```

		time	Ha Noi	Vinh	Da Nang	Nha Trang	Ho Chi Minh	Ca Mau
0	00 15-9	-2019	25.65	24.79	24.010	25.060	25.48	24.97
1	01 15-9	-2019	25.35	24.21	24.020	24.930	25.16	24.83
2	02 15-9	-2019	25.05	23.73	23.890	24.790	24.80	24.55
3	03 15-9	-2019	24.79	23.36	23.830	24.805	24.74	24.48
4	04 15-9	-2019	24.59	23.05	23.690	24.820	24.80	24.38
5	05 15-9	-2019	24.40	22.92	23.520	24.790	24.87	24.40
6	06 15-9	-2019	24.38	22.79	23.680	25.100	24.71	24.41
7	07 15-9	-2019	26.72	25.61	24.920	26.560	25.03	24.91
8	08 15-9	-2019	28.84	26.93	26.510	26.530	25.75	25.85
9	09 15-9	-2019	30.29	28.72	27.480	26.950	26.64	26.79
10	10 15-9	-2019	31.17	29.97	27.170	27.165	27.68	27.53
11	11 15-9	-2019	32.05	28.93	26.860	27.380	28.43	28.98
12	12 15-9	-2019	31.31	28.94	26.650	27.470	28.29	29.24
13	13 15-9	-2019	30.95	29.78	27.830	27.440	28.00	30.66
14	14 15-9	-2019	30.56	30.62	26.490	27.160	27.67	30.97
15	15 15-9	-2019	31.13	30.58	26.290	26.680	27.29	30.59
16	16 15-9	-2019	30.80	30.20	26.045	26.450	27.29	29.13

9. Phát hiện và xử lý ngoại lai

Giá trị ngoại lai (Outliers)

Một điểm ngoại lai là một điểm dữ liệu khác biệt đáng kể so với phần còn lại của tập dữ liệu. Ta thường xem các giá trị ngoại lai như là các mẫu dữ liệu đặc biệt, cách xa khỏi phần lớn dữ liệu khác trong tập dữ liệu

- Hệ thống phát hiện xâm nhập (Intrusion detection systems)
- Phát hiện gian lận tín dụng (Credit card fraud)
- Trong chuẩn đoán y tế (Medical diagnosis)
- Trong thực thi pháp luật (Law enforcement)
- Trong khoa học trái đất (Earth science)

Giá trị ngoại lai (Outliers)

Giá trị ngoại lai (Outliers)

Phát hiện Outliers

Biểu đồ Box-plot được sử dụng để đo khuynh hướng phân tán và xác định các giá trị ngoại lai của tập dữ liệu

- Giá trị bé nhất (Minimum) của tập dữ liệu được xác định bằng Q1 1.5 * IQR;
- Tứ phân vị thứ nhất (Q1) của tập dữ liệu
- Tứ phân vị thứ hai (Q2) chính là giá trị trung vị (Median) của tập dữ liệu
- Tứ phân vị thứ ba (Q3) của tập dữ liệu
- Giá trị lớn nhất (Maximum) của tập dữ liệu có giá trị bằng Q3 + 1.5* IQR

Phát hiện Outliers

Sử dụng biểu đồ histogram; Hoặc scatter (nhiều hơn 2 biến).

Xử lý Outliers

Không có một phương pháp, cách thức xử lý ngoại lai chung nào áp dụng cho tất cả các bài toán, các kiểu dữ liệu khác nhau.

- Loại bỏ dòng dữ liệu chứa ngoại lai.
- Thay thế bằng một giá trị khác
- Thay thế giá trị ngoại lai về NAN (null) coi như là một điểm dữ liệu missing và xử lý như với dữ liệu missing

Để lựa chọn được phương pháp phù hợp cần có những hiểu biết sâu sắc về tập dữ liệu, về bài toán đang giải quyết, có thể sử dụng chỉ một phương pháp xử lý ngoại lai và/hoặc kết hợp cả 3 nhóm phương pháp đã chỉ ra ở trên để xử lý ngoại lai cho cùng một tập dữ liệu.

Xử lý Outliers


```
#Với giá trị ngoại lai trạm Nha trang
#Xử lý bằng cách thay thế giá trị: 2.51 --> 25.1

x = np.arange(0,24)
plt.rcParams["figure.figsize"] = (10,3)
data_handling_outlier.loc[6,'Nha Trang'] = 25.10
data_handling_outlier[['Nha Trang']].plot(style='-*', color='red')
plt.xticks(x)
plt.xlabel('Thời gian (h)')
plt.ylabel('Nhiệt độ (oC)')
plt.grid(True)
plt.show()
```



```
#Với giá trị ngoại lai trạm Hồ Chí Minh
#Xử lý bằng cách chuyển về giá trị Null - Coi như giá trị missing
data_handling_outlier.loc[13,'Ho Chi Minh'] = np.NaN
data_handling_outlier[['Ho Chi Minh']].plot(style='-*', color='red')
plt.xticks(x)
plt.xlabel('Thời gian (h)')
plt.ylabel('Nhiệt độ (oC)')
plt.grid(True)
plt.show()
```


Thực hành 3

10. Phân tích dữ liệu bán hàng (Tiếp cận từ bài toán thực tế)

Phân tích dữ liệu bán hàng

Dữ liệu bao gồm 12 file của một chuỗi cửa hàng kinh doanh thiết bị điện tử; Mỗi file dữ liệu lưu lại toàn bộ các đơn hàng đã bán được theo từng tháng tương ứng của năm 2019.

- * Dữ liệu tháng 1: Sales_January_2019.csv
- * Dữ liệu tháng 2: Sales_February_2019.csv
- * Dữ liệu tháng 3: Sales_March_2019.csv
- * Dữ liệu tháng 4: Sales_April_2019.csv
- * Dữ liệu tháng 5: Sales_May_2019.csv
- * Dữ liệu tháng 6: Sales_June_2019.csv
- * Dữ liệu tháng 7: Sales_July_2019.csv
- * Dữ liệu tháng 8: Sales_August_2019.csv
- * Dữ liệu tháng 9: Sales_September_2019.csv
- * Dữ liệu tháng 10: Sales_October_2019.csv
- * Dữ liệu tháng 11: Sales_November_2019.csv
- * Dữ liệu tháng 12: Sales_December_2019.csv

Phân tích dữ liệu bán hàng

Mỗi file dữ liệu bao gồm 6 thông tin:

1. Order ID: Mã đơn hàng

2. Product: Tên sản phẩm đã bán theo từng đơn hàng

3. Quantity Ordered: Số lượng sản phẩm bán

4. Price Each: Giá của mỗi sản phẩm

5. Order Date: Thời gian bán hàng

6. Purchase Address: Địa chỉ mua hàng

Order ID	Product	Quantity Ordered	Price Each	Order Date	Purchase Address
141234	iPhone	1	700	01/22/19 21:25	944 Walnut St, Boston, MA 02215
141235	Lightning Charging Cable	1	14.95	01/28/19 14:15	185 Maple St, Portland, OR 97035
141236	Wired Headphones	2	11.99	01/17/19 13:33	538 Adams St, San Francisco, CA 94016
141237	27in FHD Monitor	1	149.99	01/05/19 20:33	738 10th St, Los Angeles, CA 90001
141238	Wired Headphones	1	11.99	01/25/19 11:59	387 10th St, Austin, TX 73301

Phân tích dữ liệu bán hàng

Mục tiêu:

- Đọc dữ liệu từ nhiều file, Sử dụng các kỹ thuật làm sạch và chuẩn bị dữ liệu để phân tích
- Thực hiện phân tích tìm ra các thông tin có ích (insights) từ dữ liệu

Tập dữ liệu sau khi được tiền chuẩn hóa và làm sạch:

Order ID	Product	Quantity (Price Each	Order Date	Purchase Address	Month	Hour	City	Sales
141234	iPhone	1	700	2019-01-22 21:25	944 Walnut St, Boston, MA 02215	1	21	Boston (MA)	700
141235	Lightning Charging Cable	1	14.95	2019-01-28 14:15	185 Maple St, Portland, OR 97035	1	14	Portland (OR)	14.95
141236	Wired Headphones	2	11.99	2019-01-17 13:33	538 Adams St, San Francisco, CA 94016	1	. 13	San Francisco (CA)	23.98
141237	27in FHD Monitor	1	149.99	2019-01-05 20:33	738 10th St, Los Angeles, CA 90001	1	20	Los Angeles (CA)	149.99
141238	Wired Headphones	1	11.99	2019-01-25 11:59	387 10th St, Austin, TX 73301	1	11	Austin (TX)	11.99
141239	AAA Batteries (4-pack)	1	2.99	2019-01-29 20:22	775 Willow St, San Francisco, CA 94016	1	20	San Francisco (CA)	2.99
141240	27in 4K Gaming Monitor	1	389.99	2019-01-26 12:16	979 Park St, Los Angeles, CA 90001	1	. 12	Los Angeles (CA)	389.99
141241	USB-C Charging Cable	1	11.95	2019-01-05 12:04	181 6th St, San Francisco, CA 94016	1	. 12	San Francisco (CA)	11.95
141242	Bose SoundSport Headphones	1	99.99	2019-01-01 10:30	867 Willow St, Los Angeles, CA 90001	1	10	Los Angeles (CA)	99.99
141243	Apple Airpods Headphones	1	150	2019-01-22 21:20	657 Johnson St, San Francisco, CA 94016	1	21	San Francisco (CA)	150
141244	Apple Airpods Headphones	1	150	2019-01-07 11:29	492 Walnut St, San Francisco, CA 94016	1	11	San Francisco (CA)	150
141245	Macbook Pro Laptop	1	1700	2019-01-31 10:12	322 6th St, San Francisco, CA 94016	1	10	San Francisco (CA)	1700
141246	AAA Batteries (4-pack)	3	2.99	2019-01-09 18:57	618 7th St, Los Angeles, CA 90001	1	18	Los Angeles (CA)	8.97
141247	27in FHD Monitor	1	149.99	2019-01-25 19:19	512 Wilson St, San Francisco, CA 94016	1	. 19	San Francisco (CA)	149.99
141248	Flatscreen TV	1	300	2019-01-03 21:54	363 Spruce St, Austin, TX 73301	1	21	Austin (TX)	300
141249	27in FHD Monitor	1	149.99	2019-01-05 17:20	440 Cedar St, Portland, OR 97035	1	17	Portland (OR)	149.99
141250	Vareebadd Phone	1	400	2019-01-10 11:20	471 Center St, Los Angeles, CA 90001	1	. 11	Los Angeles (CA)	400
141251	Apple Airpods Headphones	1	150	2019-01-24 8:13	414 Walnut St, Boston, MA 02215	1	. 8	Boston (MA)	150
141252	USB-C Charging Cable	1	11.95	2019-01-30 9:28	220 9th St, Los Angeles, CA 90001	1	. 9	Los Angeles (CA)	11.95
141253	AA Batteries (4-pack)	1	3.84	2019-01-17 0:09	385 11th St, Atlanta, GA 30301	1	. 0	Atlanta (GA)	3.84
141254	AAA Batteries (4-pack)	1	2.99	2019-01-08 11:51	238 Sunset St, Seattle, WA 98101	1	. 11	Seattle (WA)	2.99
141255	USB-C Charging Cable	1	11.95	2019-01-09 20:55	764 11th St, Los Angeles, CA 90001	1	. 20	Los Angeles (CA)	11.95
141256	Google Phone	1	600	2019-01-29 10:40	675 Washington St, Portland, OR 97035	1	. 10	Portland (OR)	600
141257	Apple Airpods Headphones	1			338 Highland St, San Francisco, CA 94016	1	. 18	San Francisco (CA)	150

Câu hỏi 1: Tháng nào trong năm có doanh số bán hàng cao nhất - thấp nhất?

Câu hỏi 2: Cửa hàng ở thành phố nào bán được hàng nhiều nhất?

Sales

•	:	4	
u	ı	τv	

Portland (ME)	4.497583e+05			
Austin (TX)	1.819582e+06			

Portland (OR) 1.870732e+06

Seattle (WA) 2.747755e+06

Dallas (TX) 2.767975e+06

Atlanta (GA) 2.795499e+06

Câu hỏi 3: Khách hàng mua sản phẩm thường tập trung vào khung giờ nào trong ngày?

Câu hỏi 4: Trong các hóa đơn của Khách hàng, Sản phẩm nào thường được mua cùng với nhau?


```
('iPhone', 'Lightning Charging Cable') 1005
('Google Phone', 'USB-C Charging Cable') 987
('iPhone', 'Wired Headphones') 447
('Google Phone', 'Wired Headphones') 414
('Vareebadd Phone', 'USB-C Charging Cable') 361
('iPhone', 'Apple Airpods Headphones') 360
('Google Phone', 'Bose SoundSport Headphones') 220
('USB-C Charging Cable', 'Wired Headphones') 160
('Vareebadd Phone', 'Wired Headphones') 143
('Lightning Charging Cable', 'Wired Headphones') 92
('Lightning Charging Cable', 'Apple Airpods Headphones') 81
('Vareebadd Phone', 'Bose SoundSport Headphones') 80
('USB-C Charging Cable', 'Bose SoundSport Headphones') 77
('Apple Airpods Headphones', 'Wired Headphones') 69
('Lightning Charging Cable', 'USB-C Charging Cable') 58
```


Câu hỏi 5: Sản phẩm nào của chuỗi cửa hàng bán được số lượng nhiều nhất?

Tại sao?

Q&A Thank you!