Study Guide: Data Visualization with Python

Afshine Amidi and Shervine Amidi

August 21, 2020

General structure

□ Overview – The general structure of the code that is used to plot figures is as follows:

```
# Plot
f, ax = plt.subplots(...)
ax = sns...
# Legend
plt.title()
plt.xlabel()
plt.ylabel()
```

We note that the plt.subplots() command enables to specify the figure size.

☐ Basic plots – The main basic plots are summarized in the table below:

Type	Command	Illustration
Scatter plot	<pre>sns.scatterplot(x, y, params)</pre>	10 08 > 06 04 02 00 02 04 06 08 10
Line plot	<pre>sns.lineplot(x, y, params)</pre>	10 0.8 0.6 > 0.4 0.2 0.0 0.0 0.0 0.0 0.0 0.4 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6
Bar chart	<pre>sns.barplot(x, y, params)</pre>	10 08 06 04 02 00 00 00 00 05 05 05 07 05

where the meaning of parameters are summarized in the table below:

Command	Description	Use case
hue	Color of a line / point / border	'red'
fill	Color of an area	'red'
size	Size of a line / point	4
linetype	Shape of a line	'dashed'
alpha	Transparency, between 0 and 1	0.3

Advanced features

☐ Text annotation – Plots can have text annotations with the following commands:

Type	Command	Illustration
Text	<pre>ax.text(x, y, s, color)</pre>	10 08 > 06 04 02 00 02 04 06 08 10

□ Additional elements – We can add objects on the plot with the following commands:

Type	Command	Illustration
Line	<pre>ax.axvline(x, ymin, ymax, color, linewidth, linestyle)</pre>	10 08 > 06 04 02 00 02 04 06 08 10
	<pre>ax.axhline(y, xmin, xmax, color, linewidth, linestyle)</pre>	10 0.8 > 0.6 0.4 0.2 0.0 0'2 0'4 0'6 0'8 1'0
Rectangle	<pre>ax.axvspan(xmin, xmax, ymin, ymax, color, fill, alpha)</pre>	10 08 > 06 04 02 00 02 04 06 08 10

Last touch

 $\hfill \Box$ Legend – The title of legends can be customized to the plot with the commands summarized below:

Element	Command
	<pre>ax.set_title('text', loc, pad)</pre>
Title / subtitle of the plot	<pre>plt.suptitle('text', x, y, size, ha)</pre>
Title of the x / y axis	<pre>ax.set_xlabel('text') / ax.set_ylabel('text')</pre>
Title of the size / color	ax.get_legend_handles_labels()
Caption of the plot	<pre>ax.text('text', x, y, fontsize)</pre>

This results in the following plot:

 \square **Double axes** – A plot can have more than one axis with the plt.twinx() command. It is done as follows:

```
Python

ax2 = plt.twinx()
```

- ☐ Figure saving There are two main steps to save a plot:
 - Specifying the width and height of the plot when declaring the figure:

```
Python
f, ax = plt.subplots(1, figsize=(width, height))
```

• Saving the figure itself:

```
Python
f.savefig(fname)
```