

PKADVAN Package: Analytical Solutions in R

Australian Centre of Pharmacometrics
University of South Australia

Ahmad Abuhelwa Email: Ahmad.Abuhelwa@mymail.unisa.edu.au

Objective

- Perform simulations in R using ADVAN-style analytical solutions
- Simulations examples
 - Example 1: 2-comp first-order absorption
 - Example 2: 2-comp intravenous infusion
 - Example 3: 2-comp intravenous bolus
 - Example 4: 2-comp 2-transit with time-varying covariate

ADVAN-style analytical solutions?

- Analytical solutions of linear compartmental models
- Used to simulate the time-course of drug amounts in each compartment of a pharmacokinetic systems.
- Derived using Laplace transform and coded in R/C++ languages
- They calculate the change in drug amounts in each compartment of the model over a time interval (t; t = t₂-t₁) accounting for any dose or covariate events acting in the time interval.

Why ADVAN-style analytical solutions?

- Speed advantages
- · Capacity to handle arbitrary dosing
- Capacity to handle time-varying covariates

PKADVAN - package

- Analytical solutions of 26 different PK models were derived, coded in R/C++, and incorporated into an R package "PKADVAN" package.
- All pharmacokinetic models solutions incorporated into the "PKADVAN" package have been validated against NONMEM
- GitHub: https://github.com/abuhelwa/PKADVAN Rpackage

Processing simulations

- Set up a NONMEM-style data frame with time sequence, dosing events & individual PK parameters → InputDataFrame
 - Columns for ID, TIME, AMT
 - Individual PK parameters of the respective model (e.g. CL, Q, V, etc.)
 including any covariate effects on the PK parameters.
- Use the PKADVAN function with 'ddply' to process simulation for each ID.
 - Returns original InputDataFrame with additional columns for:
 - · Simulated drug amounts in each compartment
 - · IPREDs in the central compartment
- Add residual variability on IPREDs

Example 1: first-order absorption model

- · 2 compartment first-order absorption model
 - PPV on CL, central volume (V2) and KA
 - Proportional error model (with option for additive)
 - Gender, smoking & creatinine clearance effects on CL

Step 1: Define the PK model & Create a data frame with the individual PK parameters for *n* individuals.

- Define PK parameters which includes values for:
 - Population PK parameters (THETA's)
 - Covariates and between subject variability (ETA's) parameters

Step 1 cont'd

 Use random number generator to simulate residuals from a normal distribution

```
#Omegas (as SD)
#Omegas (as SD
```

The 'mvrnorm' function uses the OMEGA matrix to generate random correlated ETA values

Step 1, cont'd

 Define individual parameter values including any covariate effects on the PK parameters and collect into a data frame 'par.data'.

par.data

```
> # Collect the individual parameter values in a parameter dataframe
       par.data <- data.frame(
ID, CL, V2, Q, V3, KA, F1, #patient parameters
            WT, AGE, SECR, SEX, SMOK) #covariates
       head(par.data, 10)
   ID CL V2 Q V3 KA F1 WT /
1 8.598611 48.55601 10 100 0.5395161 1 70
2 6.666591 49.27283 10 100 0.4427415 1 70
                                          KA F1 WT AGE SECR SEX SMOK
                                                     60
                                                         100
                                                     60
                                                         100
   3 10.098613 55.35602 10 100 0.5802440
                                                         100
                                                                     0
                                              1 70
                                                     60
   4 6.801771 46.75425 10 100 0.4064813
                                              1 70
                                                     60
                                                         100
                                                                     0
   5 7.846087 55.05923 10 100 0.5773364 1 70
                                                     60 100
    6 4.863529 46.25984 10 100 0.4157334
                                              1 70
                                                         100
    7 6.655953 43.10783 10 100 0.4102701 1 70
   8 7.000716 44.98235 10 100 0.4655221
                                              1 70
                                                         100
   9 6.787724 45.63072 10 100 0.4759928 1 70 60
                                                         100
                                                                     0
10 10 6.838346 41.33173 10 100 0.4630459 1 70 60 100
```

Step 2: Create a NONME-style data frame with time sequence, dosing events and par.data

```
dose records
              dosetimes \leftarrow c(seq(from = 0, to = 72, by = 12)) \ \#Can be arbitrary \ [e,g: dosetimes \leftarrow c(0,6.5,12,48) \ ]
128
129
              #Make a time sequence (hours). This should include dosetimes. 
  \mathsf{TIME} \mathrel{<-} \mathsf{sort}(\mathsf{unique}(\mathsf{c}(\mathsf{seq}(\mathsf{from} = \mathsf{0}, \, \mathsf{to} = \mathsf{144}, \, \mathsf{by} = \mathsf{0.25}), \mathsf{dosetimes}))) 
130
132
              #generate df with the time sequence df <- expand.grid("ID"=ID,"TIME"=TIME,"AMT"=0,"MDV"=0)
133
                                                                                                                       Creates a data frame from all combinations
134
                                                                                                                       of the supplied vectors
135
              #Set up doses in AMT column
136
                                                                                #subset dose rows (records at dosetimes)
#Doses can be arbitrary
              doserows <- subset(df, TIME%in%dosetimes)
doserows $AMT <- 500
#doserows$AMT[doserows$TIME <= 24] <- 750
#doserows$AMT[doserows$TIME > 24] <- 500
137
139
141
              doserows$MDV <- 1
142
              #Add back dose information
143
                                                                                rbind: combines two data frames objects by rows
              df <- rbind(df,doserows)
144
146
147
       # Join par.data with the NONMEM-style data frame
inputDataFrame <- join(df, par.data,by="ID")</pre>
                                                                                                      'join' function from 'plyr' package: joins two data
                                                                                                      frames by a common variable name; ID
148
              # Arrange "inputDataFrame" df by ID, TIME (ascending) and by AMT (descending)
inputDataFrame <- inputDataFrame[order(inputDataFrame$ID,inputDataFrame$TIME,inputDataFrame$AMT),]
150
               # Remove extra row that has a TIME=0 and AMT=0
152
              inputDataFrame <- subset(inputDataFrame, (TIME==0 & AMT==0)==F)</pre>
              head(inputDataFrame, 10)
```


InputDataFrame

head(inputDataFrame, 10)

```
ID TIME AMT MDV
                           CL
                                       V2 Q V3
                                                           KA F1 WT AGE SECR SEX SMOK
 1 0.00 500 1 6.159954 42.15801 10 100 0.412882 1 70
                                                                            100
1\ 0.25 \quad 0 \quad 0\ 6.159954\ 42.15801\ 10\ 100\ 0.412882\ 1\ 70
                                                                       60
                                                                             100
                                                                                           0
1 0.50 0 0 6.159954 42.15801 10 100 0.412882 1 0.75 0 0 6.159954 42.15801 10 100 0.412882
                                                                        60
                                                                             100
                                                                1 70
                                                                             100
                                                                       60
                                                                                           0
1 1.00 0 0 6.159954 42.15801 10 100 0.412882
                                                                1 70
                                                                             100
1 1.25 0 0 6.159954 42.15801 10 100 0.412882
1 1.50 0 0 6.159954 42.15801 10 100 0.412882
1 1.75 0 0 6.159954 42.15801 10 100 0.412882
                                                                       60
                                                                1 70
                                                                             100
                                                                                           0
                                                                             100
                                                                1 70
                                                                       60
                                                                             100
                                                                                           0
 1 2.00 0 0 6.159954 42.15801 10 100 0.412882
                                                                1 70
                                                                             100
 1 2.25
          0 0 6.159954 42.15801 10 100 0.412882 1 70
                                                                            100
                                                                                           0
```


Step 3 & 4 : Apply 'PKADVAN' function & Add residual variability on IPRED

Simulated data

Examples 2 & 3: IV bolus/ infusion

- Using the same PK Model: 2-compartment model
- Run examples 2 and 3 from the R scripts for IV bolus/infusion
- Note the following:
 - 2 compartment IV models are parametrized using: CL, V1, Q, V2
 - For IV infusion: Infusion rate (RATE) must be added to the NONMEM-style data frame in addition to AMT.

Example 4: Time-varying covariates

- 2 compartment 2-transit absorption model
- Creatinine clearance (CLCR) as time-changing covariate on central clearance.
 - Simulate 100 mg oral dose
 - CLCR was deliberately changed from 100 ml/min (Time < 24h) to 30 ml/min (TIME >= 24 h)

Define PK model parameters

```
408
                                 # Define PK parameters
  409
  410
                                #Define between subject variability on PK parameters
                                                      #BSV (Omegas as SD)

ETAICL <- 0 #0.15

ETA2V2 <- 0 #0.12

ETA3Q <- 0 #0.14

ETA4V3 <- 0 #0.05
  411
 412
413
 414
415
  416
                                                      ETA5KTR <- 0 #0.30
  417
418 #Define residual error model (Epsilons as SD)
419 EPS1 <- 0 #Proportional residual error
                                                EPS1 <- 0
EPS2 <- 0
  420
                                                                                                                                                                             #Additive residual error
                          #Use random number generator to simulate residuals from a normal distribution
  422
                                                     e random number generator to simulate residuals from a name of the state of the sta
  424
  426
 427
428
                        #Set population PK parameters for 2-compartment 2-transit absorption model CLpop <- 0.5  #clearance
    V2pop <- 20  #central volume of distribution
    Qpop <- 1  #inter-compartmental clearance
    V3pop <- 25  #peripheral volume of distribution
    KTRpop <- 2.05  #first-order absorption rate constant
    Flpop <- 0.80  #Bioavailability
 429
430
 431
432
  433
```


Generate a NONMEM-style data frame

```
"
# Create a NONMEM-style data frame with dosing records
                                             #set number of subjects
381
382
383
384
                                              dosetimes <- c(0,12) # This can be arbitrary
                                              #Now define finer sample times for after a dose to capture C doseseq <- c(0,0.5,1,1.5,2,2.5,3,3.5,4,4.5,5,5.5,6,7,8,9,10)
 385
386
                                              #Use the outer product but with addition to expand this doseseq for all dosetimes PKtimes <- outer(dosetimes,doseseq, FUN="+")  
387
388
389
390
 391
                                                 df <- \ expand.grid("ID"=ID,"TIME"=sort(unique(c(seq(0,48,1),PKtimes))),"AMT"=0,"MDV"=0,"CLCR"=NA) \\ + (10.15 in the continuous c
392
393
394
395
                                              #Set time-varying creatinine clearance df$CLCR[df$ID ==1 & df$TIME < 24 ] < 100 df$CLCR[df$ID ==1 & df$TIME > 24 ] < 30
 396
397
398
399
                                              #Set Doserows. It can be any arbitrary do doserows <- subset(df, TIME%in%dosetimes) doserows $MDV <- 10 doserows $MDV <- 1
400
401
                                                #Add back dose information df <- rbind(df,doserows)
```


Calculate individual PK parameters

Limitations

 Solving for analytical solutions using Laplace transforms will increase in complexity as the number of states in the pharmacokinetic system increases.

To do list

- Implement steady-state functionality, as achieved with the SS and II data items in NONMEM.
- Implement analytical solutions for combined dosing regimens (e.g., IV bolus plus infusion).

More examples & info

• https://github.com/abuhelwa/PKADVAN_Rpackage