International IOR Rectifier

Applications

 Dual Common Drain Control MOSFETs for Multiphase DC-DC Converters

Features

- Replaces Two Discrete MOSFETs
- Optimized for High Frequency Switching
- Low Profile (<0.7 mm)
- Dual Sided Cooling Compatible
- Ultra Low Package Inductance
- Compatible with existing Surface Mount **Techniques**
- RoHS Compliant and Halogen Free
- 100% Rg tested

IRF6723M2DTRPbF IRF6723M2DTR1PbF

DirectFET™ Power MOSFET ②

Typical values (unless otherwise specified)

V _{DSS}	V _G	V _{GS}		R _{DS(on)}		OS(on)
30V ma	x ±20V	max	5.2	5.2mΩ@ 10V		Ω@ 4.5V
Q _{g tot}	\mathbf{Q}_{gd}	Q	gs2	Q_{rr}	Q _{oss}	$V_{gs(th)}$
9.4nC	3.3nC	1.2	nC	17nC	6.3nC	1.8V

Applicable DirectFET Outline and Substrate Outline ①

S1	S2	SB	M2	M4	MA	L4	L6	L8	

Description

The IRF6723M2DPbF combines two MOSFET switches optimized for high side applications into a single medium can DirectFET package. The switches have low gate resistance and low charge along with ultra low package inductance providing significant reduction in switching losses. The reduced losses make this product ideal for high efficiency multiphase DC-DC converters that power the latest generation of processors operating at higher frequencies.

The IRF6723M2DPbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFET™ packaging to achieve the highest power density for two MOSFETs in a package that has the footprint of a SO-8 and only 0.7 mm profile. The DirectFET package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by

Absolute Maximum Ratings (each die operating consecutively)

	Parameter	Max.	Units
V _{DS}	Drain-to-Source Voltage	30	V
V_{GS}	Gate-to-Source Voltage	±20	
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V ③	15	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 10V ③	13	Α
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V @	47	
I _{DM}	Pulsed Drain Current ®	130	
E _{AS}	Single Pulse Avalanche Energy ®	71	mJ
I _{AR}	Avalanche Current ©	12	A

Fig 1. Typical On-Resistance vs. Gate Voltage

Notes:

- ① Click on this section to link to the appropriate technical paper.
- ② Click on this section to link to the DirectFET Website.
- 3 Surface mounted on 1 in. square Cu board, steady state.

Fig 2. Typical Total Gate Charge vs Gate-to-Source Voltage

- ④ T_C measured with thermocouple mounted to top (Drain) of part.
- S Repetitive rating; pulse width limited by max. junction temperature.
- © Starting $T_{.1} = 25$ °C, L = 0.99mH, $R_{G} = 25Ω$, $I_{AS} = 12$ A.

Static @ T_J = 25°C (each die unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
BV _{DSS}	Drain-to-Source Breakdown Voltage	30			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		20		mV/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		5.2	6.6	mΩ	V _{GS} = 10V, I _D = 15A ⑦
			8.6	11.3		V _{GS} = 4.5V, I _D = 12A ⑦
V _{GS(th)}	Gate Threshold Voltage	1.35	1.8	2.35	V	$V_{DS} = V_{GS}$, $I_D = 25\mu A$
$\Delta V_{GS(th)}/\Delta T_{J}$	Gate Threshold Voltage Coefficient		-7.2		mV/°C	
I _{DSS}	Drain-to-Source Leakage Current			1.0	μΑ	$V_{DS} = 24V, V_{GS} = 0V$
				150		$V_{DS} = 24V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			100	nA	$V_{GS} = 20V$
	Gate-to-Source Reverse Leakage			-100		V _{GS} = -20V
gfs	Forward Transconductance	34			S	$V_{DS} = 15V, I_{D} = 12A$
Q_g	Total Gate Charge		9.4	14		
Q _{gs1}	Pre-Vth Gate-to-Source Charge		2.2			$V_{DS} = 15V$
Q _{gs2}	Post-Vth Gate-to-Source Charge		1.2		nC	$V_{GS} = 4.5V$
Q _{gd}	Gate-to-Drain Charge		3.3			I _D = 12A
Q _{godr}	Gate Charge Overdrive		2.7			See Fig. 2
Q _{sw}	Switch Charge (Q _{gs2} + Q _{gd})		4.5			
Q _{oss}	Output Charge		6.3		nC	$V_{DS} = 16V, V_{GS} = 0V$
R_G	Gate Resistance		0.4		Ω	
t _{d(on)}	Turn-On Delay Time		14			V _{DD} = 15V, V _{GS} = 4.5V ⑦
t _r	Rise Time		41			I _D = 12A
t _{d(off)}	Turn-Off Delay Time		15		ns	$R_G = 6.8\Omega$
t _f	Fall Time		20			
C _{iss}	Input Capacitance		1380			$V_{GS} = 0V$
C _{oss}	Output Capacitance	_	290		pF	V _{DS} = 15V
C _{rss}	Reverse Transfer Capacitance		120			f = 1.0MHz

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			32		MOSFET symbol
	(Body Diode)				Α	showing the
I _{SM}	Pulsed Source Current			130		integral reverse
	(Body Diode) ⑤					p-n junction diode.
V_{SD}	Diode Forward Voltage			1.0	٧	$T_J = 25^{\circ}C$, $I_S = 12A$, $V_{GS} = 0V$?
t _{rr}	Reverse Recovery Time		16	24	ns	$T_J = 25^{\circ}C, I_F = 12A$
Q _{rr}	Reverse Recovery Charge		17	26	nC	di/dt = 370A/µs ⑦

Notes:

⑤ Repetitive rating; pulse width limited by max. junction temperature.

Pulse width $\leq 400 \mu s;$ duty cycle $\leq 2\%.$

Absolute Maximum Ratings (each die operating consecutively)

	Parameter	Max.	Units
P _D @T _A = 25°C	Power Dissipation ③	2.7	W
P _D @T _A = 70°C	Power Dissipation ③	1.9	
P _D @T _C = 25°C	Power Dissipation ®	25	
T _P	Peak Soldering Temperature	270	°C
T_J	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range		

Thermal Resistance (each die operating consecutively)

	Parameter	Тур.	Max.	Units
$R_{\theta JA}$	Junction-to-Ambient 3®		56	
$R_{\theta JA}$	Junction-to-Ambient ®®	12.5		
$R_{\theta JA}$	Junction-to-Ambient	20		°C/W
$R_{\theta JC}$	Junction-to-Case ⊕ ⑩		5.9	
$R_{\theta J\text{-PCB}}$	Junction-to-PCB Mounted	1.0		
	Linear Derating Factor ③	0.0	018	W/°C

Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient ①

Notes:

- ③ Surface mounted on 1 in. square Cu board, steady state.
- ④ T_C measured with thermocouple incontact with top (Drain) of part.
- ® Used double sided cooling, mounting pad with large heatsink.
- Mounted on minimum footprint full size board with metalized back and with small clip heatsink.
- $^{\textcircled{1}}$ R_{θ} is measured at T_J of approximately 90°C.

3 Surface mounted on 1 in. square Cu board (still air).

 Mounted on minimum footprint full size board with metalized back and with small clip heatsink. (still air)

Fig 4. Typical Output Characteristics

Fig 6. Typical Transfer Characteristics

Fig 8. Typical Capacitance vs.Drain-to-Source Voltage

Fig 5. Typical Output Characteristics

Fig 7. Normalized On-Resistance vs. Temperature

Fig 9. Typical On-Resistance vs. Drain Current and Gate Voltage

International

IOR Rectifier

Fig 10. Typical Source-Drain Diode Forward Voltage

Fig 12. Maximum Drain Current vs. Case Temperature

www.irf.com

IRF6723M2DTR/TR1PbF

Fig 11. Maximum Safe Operating Area

Fig 13. Typical Threshold Voltage vs. Junction Temperature

Fig 14. Typ. Forward Transconductance vs. Drain Current Fig 15. Maximum Avalanche Energy vs. Drain Current

Fig 16. Typical Avalanche Current vs. Pulsewidth

Fig 17. Maximum Avalanche Energy vs. Temperature

Notes on Repetitive Avalanche Curves, Figures 16, 17: (For further info, see AN-1005 at www.irf.com)

- 1. Avalanche failures assumption:
 - Purely a thermal phenomenon and failure occurs at a temperature far in excess of T_{jmax} . This is validated for every part type.
- 2. Safe operation in Avalanche is allowed as long asT_{jmax} is not exceeded.
- Equation below based on circuit and waveforms shown in Figures 19a, 19b.
- 4. P_{D (ave)} = Average power dissipation per single avalanche pulse.
- 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche).
- 6. I_{av} = Allowable avalanche current.
- 7. ΔT = Allowable rise in junction temperature, not to exceed T_{imax} (assumed as 25°C in Figure 16, 17).

 t_{av} = Average time in avalanche.

D = Duty cycle in avalanche = tav ·f

 $Z_{th,JC}(D, t_{av})$ = Transient thermal resistance, see figure 11)

$$\begin{split} P_{D \; (ave)} = 1/2 \; (\; 1.3 \cdot BV \cdot I_{aV}) = \triangle T/ \; Z_{thJC} \\ I_{av} = 2\triangle T/ \; [1.3 \cdot BV \cdot Z_{th}] \\ E_{AS \; (AR)} = P_{D \; (ave)} \cdot t_{av} \end{split}$$

6 www.irf.com

Fig 18a. Gate Charge Test Circuit

Fig 18b. Gate Charge Waveform

Fig 19a. Unclamped Inductive Test Circuit

Fig 19b. Unclamped Inductive Waveforms

Fig 20a. Switching Time Test Circuit

Fig 20b. Switching Time Waveforms

Fig 19. Diode Reverse Recovery Test Circuit for N-Channel HEXFET® Power MOSFETs

DirectFET™ Board Footprint, MA Outline (Medium Size Can).

Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs.

8 www.irf.com

DirectFET™ Outline Dimension, MA Outline (Medium Size Can).

Please see AN-1035 for DirectFET assembly details and stencil and substrate design recommendations

DirectFET™ Part Marking

www.irf.com 9

DirectFET™ Tape & Reel Dimension (Showing component orientation).

NOTE: Controlling dimensions in mm Std reel quantity is 4800 parts. IRF6723M2D

REEL DIMENSIONS									
S.	STANDARD OPTION (QTY 4800)								
	METRIC IMPERIAL								
CODE	MIN	MAX	MIN	MAX					
Α	330.0	N.C	12.992	N.C					
В	20.2	N.C	0.795	N.C					
С	12.8	13.2	0.504	0.520					
D	1.5	N.C	0.059	N.C					
Е	100.0	N.C	3.937	N.C					
F	N.C	18.4	N.C	0.724					
G	12.4	14.4	0.488	0.567					
Н	11.9	15.4	0.469	0.606					

LOADED TAPE FEED DIRECTION

NOTE: CONTROLLING DIMENSIONS IN MM

DIMENSIONS							
	ME	TRIC	IMPERIAL				
CODE	MIN	MAX	MIN	MAX			
Α	7.90	8.10	0.311	0.319			
В	3.90	4.10	0.154	0.161			
С	11.90	12.30	0.469	0.484			
D	5.45	5.55	0.215	0.219			
E	5.10	5.30	0.201	0.209			
F	6.50	6.70	0.256	0.264			
G	1.50	N.C	0.059	N.C			
Н	1.50	1.60	0.059	0.063			

Data and specifications subject to change without notice.

This product has been designed and qualified to MSL1 rating for the Consumer market.

Additional storage requirement details for DirectFET products can be found in application note AN1035 on IR's Web site.

Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903