Exercise 3.2.1

A general single qubit state $|\psi\rangle$ corresponds one point on the Bloch sphere with parameter (θ,φ) , and the relation is given by

$$|\psi\rangle = \cos\frac{\theta}{2}|0\rangle + \sin\frac{\theta}{2}e^{i\varphi}|1\rangle$$
 (1)

We can use the relation to find the (θ, φ) for a single qubit state.

• For $|+\rangle$, we have

$$|+\rangle = \frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle = \cos\left(\frac{1}{2} \cdot \frac{\pi}{2}\right)|0\rangle + \sin\left(\frac{1}{2} \cdot \frac{\pi}{2}\right)e^{i0}|1\rangle$$
 (2)

Thus, the corresponding parameter for $|+\rangle$ is $(\pi/2,0)$.

ullet For $|-\rangle$, we have

$$|-\rangle = \frac{1}{\sqrt{2}}|0\rangle - \frac{1}{\sqrt{2}}|1\rangle = \cos\left(\frac{1}{2} \cdot \frac{\pi}{2}\right)|0\rangle + \sin\left(\frac{1}{2} \cdot \frac{\pi}{2}\right)e^{i\pi}|1\rangle$$
 (3)

where $e^{i\pi}+1=0.$ Thus, the corresponding parameter for |angle is $(\pi/2,\pi).$