```
In [1]: # NAME:M VENKATA SAI

In [2]: #ASSIGNMENT-2

In [3]: import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns

In [4]: df=sns.load_dataset("car_crashes")

In [5]: df
```

Out[5]:

	total	speeding	alcohol	not_distracted	no_previous	ins_premium	ins_losses	abbrev
0	18.8	7.332	5.640	18.048	15.040	784.55	145.08	AL
1	18.1	7.421	4.525	16.290	17.014	1053.48	133.93	AK
2	18.6	6.510	5.208	15.624	17.856	899.47	110.35	AZ
3	22.4	4.032	5.824	21.056	21.280	827.34	142.39	AR
4	12.0	4.200	3.360	10.920	10.680	878.41	165.63	CA
5	13.6	5.032	3.808	10.744	12.920	835.50	139.91	СО
6	10.8	4.968	3.888	9.396	8.856	1068.73	167.02	СТ
7	16.2	6.156	4.860	14.094	16.038	1137.87	151.48	DE
8	5.9	2.006	1.593	5.900	5.900	1273.89	136.05	DC
9	17.9	3.759	5.191	16.468	16.826	1160.13	144.18	FL
10	15.6	2.964	3.900	14.820	14.508	913.15	142.80	GA
11	17.5	9.450	7.175	14.350	15.225	861.18	120.92	HI
12	15.3	5.508	4.437	13.005	14.994	641.96	82.75	ID
13	12.8	4.608	4.352	12.032	12.288	803.11	139.15	IL
14	14.5	3.625	4.205	13.775	13.775	710.46	108.92	IN
15	15.7	2.669	3.925	15.229	13.659	649.06	114.47	IA
16	17.8	4.806	4.272	13.706	15.130	780.45	133.80	KS
17	21.4	4.066	4.922	16.692	16.264	872.51	137.13	KY
18	20.5	7.175	6.765	14.965	20.090	1281.55	194.78	LA
19	15.1	5.738	4.530	13.137	12.684	661.88	96.57	ME
20	12.5	4.250	4.000	8.875	12.375	1048.78	192.70	MD
21	8.2	1.886	2.870	7.134	6.560	1011.14	135.63	MA
22	14.1	3.384	3.948	13.395	10.857	1110.61	152.26	MI
23	9.6	2.208	2.784	8.448	8.448	777.18	133.35	MN
24	17.6	2.640	5.456	1.760	17.600	896.07	155.77	MS
25	16.1	6.923	5.474	14.812	13.524	790.32	144.45	МО
26	21.4	8.346	9.416	17.976	18.190	816.21	85.15	MT
27	14.9	1.937	5.215	13.857	13.410	732.28	114.82	NE
28	14.7	5.439	4.704	13.965	14.553	1029.87	138.71	NV
29	11.6	4.060	3.480	10.092	9.628	746.54	120.21	NH
30	11.2	1.792	3.136	9.632	8.736	1301.52	159.85	NJ
31	18.4	3.496	4.968	12.328	18.032	869.85	120.75	NM
32	12.3	3.936	3.567	10.824	9.840	1234.31	150.01	NY
33	16.8	6.552	5.208	15.792	13.608	708.24	127.82	NC
34	23.9	5.497	10.038	23.661	20.554	688.75	109.72	ND
35	14.1	3.948	4.794	13.959	11.562	697.73	133.52	ОН

	total	speeding	alcohol	not_distracted	no_previous	ins_premium	ins_losses	abbrev
36	19.9	6.368	5.771	18.308	18.706	881.51	178.86	OK
37	12.8	4.224	3.328	8.576	11.520	804.71	104.61	OR
38	18.2	9.100	5.642	17.472	16.016	905.99	153.86	PA
39	11.1	3.774	4.218	10.212	8.769	1148.99	148.58	RI
40	23.9	9.082	9.799	22.944	19.359	858.97	116.29	SC
41	19.4	6.014	6.402	19.012	16.684	669.31	96.87	SD
42	19.5	4.095	5.655	15.990	15.795	767.91	155.57	TN
43	19.4	7.760	7.372	17.654	16.878	1004.75	156.83	TX
44	11.3	4.859	1.808	9.944	10.848	809.38	109.48	UT
45	13.6	4.080	4.080	13.056	12.920	716.20	109.61	VT
46	12.7	2.413	3.429	11.049	11.176	768.95	153.72	VA
47	10.6	4.452	3.498	8.692	9.116	890.03	111.62	WA
48	23.8	8.092	6.664	23.086	20.706	992.61	152.56	WV
49	13.8	4.968	4.554	5.382	11.592	670.31	106.62	WI
50	17.4	7.308	5.568	14.094	15.660	791.14	122.04	WY

In [6]: df.info

J.ZT AIVI					7,0001	OIVINLIVI-2			
Out[6]:			od DataFra _premium		total	speeding	alcohol	not_distracted	no_p
	0	18.8	7.332	5.640	18.04	18 1	5.040	784.55	
	1	18.1	7.421	4.525			7.014	1053.48	
	2	18.6	6.510	5.208	15.62		7.856	899.47	
	3	22.4	4.032	5.824	21.0		1.280	827.34	
	4	12.0	4.200	3.360	10.92		0.680	878.41	
	5	13.6	5.032	3.808	10.74		2.920	835.50	
	6	10.8	4.968	3.888	9.39		8.856	1068.73	
	7	16.2	6.156	4.860	14.09		6.038	1137.87	
	8	5.9	2.006	1.593	5.90		5.900	1273.89	
	9	17.9	3.759	5.191	16.46		6.826	1160.13	
	10	15.6	2.964	3.900	14.82		4.508	913.15	
	11	17.5	9.450	7.175	14.3		5.225	861.18	
	12	15.3	5.508	4.437	13.00		4.994	641.96	
	13	12.8	4.608	4.352	12.03		2.288	803.11	
	14	14.5	3.625	4.205	13.7		3.775	710.46	
	15	15.7	2.669	3.925	15.22		3.659	649.06	
	16	17.8	4.806	4.272	13.70		5.130	780.45	
	17	21.4	4.066	4.922	16.69		6.264	872.51	
	18	20.5	7.175	6.765	14.9		0.090	1281.55	
	19	15.1	5.738	4.530	13.13		2.684	661.88	
	20	12.5	4.250	4.000	8.8		2.375	1048.78	
	21	8.2	1.886	2.870	7.13		6.560	1011.14	
	22	14.1	3.384	3.948	13.39		0.857	1110.61	
	23	9.6	2.208	2.784	8.44		8.448	777.18	
	24	17.6	2.640	5.456	1.76		7.600	896.07	
	25	16.1	6.923	5.474	14.83		3.524	790.32	
	26	21.4	8.346	9.416	17.9		8.190	816.21	
	27	14.9	1.937	5.215	13.8		3.410	732.28	
	28	14.7	5.439	4.704	13.9	55 1	4.553	1029.87	
	29	11.6	4.060	3.480	10.09	92	9.628	746.54	
	30	11.2	1.792	3.136	9.63	32	8.736	1301.52	
	31	18.4	3.496	4.968	12.3	28 1	8.032	869.85	
	32	12.3	3.936	3.567	10.82	24	9.840	1234.31	
	33	16.8	6.552	5.208	15.79	92 1	3.608	708.24	
	34	23.9	5.497	10.038	23.60	51 2	0.554	688.75	
	35	14.1	3.948	4.794	13.9	59 1	1.562	697.73	
	36	19.9	6.368	5.771	18.30	98 1	8.706	881.51	
	37	12.8	4.224	3.328	8.5	76 1	1.520	804.71	
	38	18.2	9.100	5.642	17.47	72 1	6.016	905.99	
	39	11.1	3.774	4.218	10.23	12	8.769	1148.99	
	40	23.9	9.082	9.799	22.94	14 1	9.359	858.97	
	41	19.4	6.014	6.402	19.03	12 1	6.684	669.31	
	42	19.5	4.095	5.655	15.99	90 1	5.795	767.91	
	43	19.4	7.760	7.372	17.6	54 1	6.878	1004.75	
	44	11.3	4.859	1.808	9.94	14 1	0.848	809.38	
	45	13.6	4.080	4.080	13.0	56 1	2.920	716.20	
	46	12.7	2.413	3.429	11.04		1.176	768.95	
	47	10.6	4.452	3.498	8.69	92	9.116	890.03	
	48	23.8	8.092	6.664	23.08	36 2	0.706	992.61	
	49	13.8	4.968	4.554	5.38	32 1	1.592	670.31	
	50	17.4	7.308	5.568	14.09	94 1	5.660	791.14	
		_	ses abbrev						
	0	145.							
	1	133.							
	2	110.							
	3	142.							
	4	165.							
	5	139.							
	6	167.							
	7	151	/0 DE						

 $localhost: 8888/nbconvert/html/Downloads/ml\ smart/ASSSIGNMENT-2. ipynb? download=false$

DE

DC

151.48

136.05

7

```
9
        144.18
                    FL
10
        142.80
                    GΑ
11
        120.92
                    ΗI
12
         82.75
                    ID
13
        139.15
                    ΙL
14
        108.92
                    IN
15
        114.47
                    IΑ
16
        133.80
                    KS
17
        137.13
                    ΚY
18
        194.78
                    LA
19
         96.57
                    ME
20
        192.70
                    MD
21
        135.63
                    MA
22
        152.26
                    ΜI
23
        133.35
                    MN
24
        155.77
                    MS
25
        144.45
                    MO
26
         85.15
                    MT
27
        114.82
                    NE
28
        138.71
                    NV
29
        120.21
                    NH
30
        159.85
                    NJ
31
        120.75
                    NM
32
        150.01
                    NY
33
        127.82
                    NC
34
        109.72
                    ND
35
        133.52
                    ОН
36
        178.86
                    OK
37
        104.61
                    OR
38
                    PΑ
        153.86
39
        148.58
                    RΙ
40
        116.29
                    SC
41
         96.87
                    SD
42
        155.57
                    TN
43
        156.83
                    TX
44
        109.48
                    UT
45
        109.61
                    VT
46
        153.72
                    VA
47
        111.62
                    WA
48
        152.56
                    WV
49
        106.62
                    WI
50
        122.04
                    WY >
```

df.head() In [7]:

Out[7]:		total	speeding	alcohol	not_distracted	no_previous	ins_premium	ins_losses	abbrev
	0	18.8	7.332	5.640	18.048	15.040	784.55	145.08	AL
	1	18.1	7.421	4.525	16.290	17.014	1053.48	133.93	AK
	2	18.6	6.510	5.208	15.624	17.856	899.47	110.35	AZ
	3	22.4	4.032	5.824	21.056	21.280	827.34	142.39	AR
	4	12.0	4.200	3.360	10.920	10.680	878.41	165.63	CA

In [8]: df.tail()

Out[8]: total speeding alcohol not_distracted no_previous ins_premium ins_losses abbrev 46 12.7 2.413 3.429 11.049 11.176 768.95 153.72 VA 47 10.6 4.452 3.498 8.692 9.116 890.03 111.62 WA 48 23.8 8.092 6.664 23.086 20.706 992.61 152.56 WV 49 13.8 4.968 4.554 5.382 11.592 670.31 106.62 WI 50 17.4 7.308 5.568 14.094 15.660 791.14 122.04 WY

In [9]: #correlation
 cor=df.corr()

C:\Users\venka\AppData\Local\Temp\ipykernel_54328\1101708189.py:2: FutureWarning:
The default value of numeric_only in DataFrame.corr is deprecated. In a future ver
sion, it will default to False. Select only valid columns or specify the value of
numeric_only to silence this warning.
 cor=df.corr()

In [10]: cor

Out[10]:

	total	speeding	alcohol	not_distracted	no_previous	ins_premium	ins_losse
total	1.000000	0.611548	0.852613	0.827560	0.956179	-0.199702	-0.03601
speeding	0.611548	1.000000	0.669719	0.588010	0.571976	-0.077675	-0.06592
alcohol	0.852613	0.669719	1.000000	0.732816	0.783520	-0.170612	-0.11254
not_distracted	0.827560	0.588010	0.732816	1.000000	0.747307	-0.174856	-0.07597
no_previous	0.956179	0.571976	0.783520	0.747307	1.000000	-0.156895	-0.00635
ins_premium	-0.199702	-0.077675	-0.170612	-0.174856	-0.156895	1.000000	0.62311
ins_losses	-0.036011	-0.065928	-0.112547	-0.075970	-0.006359	0.623116	1.00000

In [11]: #correlation 2D-matrix
 plt.figure(figsize=(10,10))
 sns.heatmap(cor,annot=True)

Out[11]: <Axes: >

Inference from the above graph: from the above graph some are highly correlated (value >0.5) and some are less correlated (less than <0.5) ex: here both the features total and speeding are highly correlated because the value is greater than 0.61 which is greater than 0.5. if we take the features total and ins_losses they are negatively correlated or we can say they are less correlated because the value is -0.036 which is less than 0.5

```
In [12]: plt.figure(figsize=(8,8))
    sns.scatterplot(x="total",y="speeding",data=df)
Out[12]: <Axes: xlabel='total', ylabel='speeding'>
```


INFERENCE: It appears that there is a linear relationship between the total number of drivers involved in fatal collisions and the percentage of those drivers who were speeding. As the percentage of speeding drivers increases, the total number of drivers in fatal collisions also tends to increase in a proportional manner.

```
In [13]: sns.scatterplot(x="total",y="alcohol",data=df,color="r")
Out[13]: <Axes: xlabel='total', ylabel='alcohol'>
```


INFERENCE: It is evident that there exists a linear relationship between the total number of drivers involved in fatal collisions and the percentage of those drivers who were distracted. As the percentage of distracted drivers increases, the total number of drivers in fatal collisions also tends to increase in a proportional manner.

```
In [16]: #BARPLOT :
    plt.figure(figsize=(13,14))
    sns.barplot(x="abbrev",y="total",data=df)
    plt.show()
```


INFERENCE: Among all state ND has total no.of highest collisions

```
In [15]: sns.lineplot(x="total",y="no_previous",data=df)
Out[15]: <Axes: xlabel='total', ylabel='no_previous'>
```


INFERENCE: It appears that there is a linear relationship between the total number of drivers involved in fatal collisions and the percentage of those drivers who do not have previous accidents on their record. As the percentage of drivers without previous accidents increases, the total number of drivers involved in fatal collisions tends to increase in a proportional manner.

```
In [17]: sns.displot(df["ins_losses"])
Out[17]: <seaborn.axisgrid.FacetGrid at 0x237b4d82050>
```


INFERENCE: It is apparent that insurance losses predominantly fall within the range of 100 to 160, with the highest concentration of losses occurring around 140.

```
In [18]: sns.relplot(x="alcohol",y="speeding",data=df,hue="abbrev")
Out[18]: 
cseaborn.axisgrid.FacetGrid at 0x237b4f52510>
```



```
WV
WI
WY
```

INFERENCE: It appears that there may be a correlation between higher levels of alcohol consumption and an increase in speeding incidents, as suggested by the graph. However, it's important to note that correlation does not imply causation, and further analysis would be needed to establish a causal relationship between these variables.

```
plt.figure(figsize=(15,17))
In [20]:
         sns.boxplot(x=df["total"],y=df["alcohol"],data=df)
         <Axes: xlabel='total', ylabel='alcohol'>
Out[20]:
           10
```

INFERENCE: It seems that there are no data points that significantly deviate from the overall trend or distribution, indicating the absence of outliers in the dataset.

```
In [21]: sns.jointplot(x="ins_premium",y="ins_losses",data=df)
```

Out[21]: <seaborn.axisgrid.JointGrid at 0x237b95f6f90>

INFERENCE: There appears to be a direct proportionality between "ins_premium" and "ins_losses" based on the data presented in the graph.

In []: