Máster en Ingeniería y Tecnología de Sistemas Software

Curso académico 2024/2025

Ingeniería del Software Experimental

Tema 2: Experimentos Controlados

Depto de Sistemas Informáticos y Computación Universitat Politècnica de València, España email: sabrahao@dsic.upv.es

Objetivos

- Presentar los conceptos relacionados con experimentos en Ingeniería del Software
- Presentar un proceso experimental para guiar el diseño y ejecución de experimentos
- Discutir la relevancia de las **replicaciones** de experimentos
- Proporcionar recomendaciones sobre cómo realizar experimentos en el ámbito de la Ingeniería del Software

Contenido

- Experimentos
 - Conceptos generales
- Proceso experimental
 - □ Fases del proceso
- Ejemplo de experimento
- Réplicas
- Agregación de resultados
- Recomendaciones
- Conclusiones
- Literatura relevante

Experimentos

- Un experimento es una investigación empírica que investiga las relaciones de causa-efecto.
- Los experimentos se llevan a cabo cuando el investigador quiere el control de la situación, con la manipulación directa, precisa y sistemática del comportamiento del fenómeno a estudiar.
- Objetivo principal: probar hipótesis o relaciones entre variables
- Ventaja: permiten investigar las situaciones en las que las hipótesis son verdaderas y proporcionan el contexto en el que se recomiendan normas, métodos y herramientas para su uso.

Tipos de experimentos

Orientados a personas:

Un experimento en el cual los individuos o los equipos llevan a cabo una o más tareas de ingeniería de software para comparar diferentes poblaciones, procesos, métodos, técnicas, lenguajes o herramientas.

• Por ejemplo, se quiere comparar el desarrollo "tradicional vs. ágil" del software

Orientados a la tecnología:

Generalmente se aplican diferentes herramientas a diferentes objetos.

 Por ejemplo, al mismo programa se le aplican dos técnicas de generación de casos de prueba diferentes.

Experimentos

Contenido

- Experimentos
 - Conceptos generales
- Proceso experimental
 - □ Fases del proceso
- Ejemplo de experimento
- Réplicas
- Agregación de resultados
- Recomendaciones
- Conclusiones
- Literatura relevante

Proceso Experimental

(Wohlin et al., 2000-2012)

Proceso Experimental: Definición

¿Por qué se realiza el experimento?

Plantilla GQM para definición de objetivos:

Analizar

Método orientado a objetos y estructurado

(¿qué es lo que se estudia?)

con el propósito de

Evaluar

(¿cuál es la intención?)

con respecto a

Productividad

(¿cuál es el efecto estudiado?)

desde el punto de vista del

Investigador

(¿a la vista de quién?)

en el contexto de

Estudiantes de grado

(¿dónde se lleva a cabo el estudio?)

Proceso Experimental: Definición

Ejemplos de definición de objetivos

Objeto de		Enfoque de		
estudio	Propósito	calidad	Perspectiva	Contexto
Producto	Caracterizar	Efectividad	Desarrollador	Sujetos
Proceso	Supervisar	Coste	Mantenedor	Objetos
Modelo	Evaluar	Fiabilidad	Gestor de proyectos	
Métrica	Predecir	Mantenibilidad	Cliente	
Teoría	Controlar	Portabilidad	Usuario	
	Cambiar		Investigador	

Problemas de jueguete
vs. Problemas reales

Reduce costes y tiempo
¿Generalizacón?

Reduce costes y tiempo
¿Generalización?

Formulación de la hipótesis

Se deriva del objetivo: una o más hipótesis:

Plantilla GQM

- Analizar métodos OO y estructurados
- Con el propósito de Evaluar con respecto a su productividad
- Desde el punto de vista del investigador
- En el contexto de estudiantes de grado

H₀: Productividad OO = Productividad EST

(hipótesis nula - conservadora, no existe efecto del tratamiento)

H₁: Productividad OO ≠ Productividad EST

(hipótesis alternativa - existencia de efectos debido al factor estudiado)

Selección de Participantes

- ¿Cómo seleccionar los Participantes?
 - Muestras probabilísticas o no probabilísticas
 - Muestreo simple aleatorio, sistemático, estratificado aleatorio
 - Muestreo por conveniencia, por cuota
- ¿Y el tamaño de la muestra?
 - Si hay gran variabilidad en la población se necesita un muestra de mayor tamaño
 - La técnica de análisis puede influenciar la elección del tamaño de la muestra

La muestra debe ser representativa de la población

Diseño del Experimento

- Describe cómo se organizan los tests
- Relacionado con el análisis, interpretación y conclusiones del experimento
- Preguntas Relevantes:
 - ¿Cuántas variables independientes?
 - Sólo una → Experimentos simples
 - Más de una → Experimentos factoriales
 - ¿Cuántos tratamientos por sujeto?

Medidas Repetidas

¿Cómo controlar los factores extraños?

Bloqueo / Aleatorización

 Estas respuestas dependen de las amenazas a la validez que queramos controlar

Diseño del Experimento: Taxonomía

Único Tratamiento por Sujeto

Simples

(1 Variable Indirecta)

Se asignan todos los Tratamientos por Sujeto

Factoriales

(>= 2 Variables Indirectas)

Inter-sujetos (IES)

Intra-sujetos (IAS)

· Grupos aleatorios

Grupos aleatorios con bloques

Aleatorización

Reequilibrado

••

Completos (2 factores)

Fraccionales Parciales

Factorial		Factor A	
		M1	M2
Factor B	Herr	a1 b1	a1 b2
	NHerr	a2 b1	a2 b2

DE VALENCIA

Evaluación de la Validez

- Validez interna: ¿El tratamiento causa "realmente" el efecto?
- Validez de externa: ¿Pueden generalizarse los resultados obtenidos?
- Validez de constructo: ¿Hasta qué punto las medidas seleccionadas miden las variables que aparecen en la hipótesis?
- Validez de las conclusiones: ¿Hasta qué punto las conclusiones son estadísticamente válidas?

Amenazas a la validez interna

Historia	Tratamientos diferentes aplicados sobre el mismo objeto en momentos diferentes ¿las circunstancias son las mismas?
Maduración	Los sujetos reaccionan cuando el tiempo pasa (cansancio, aburrimiento, aprendizaje)
Selección	¿La muestra de la población es representativa para toda la población?
Instrumentación	¿Se han diseñado correctamente los artefactos utilizados en el experimento? Documentos que van a ser inspeccionados
Mortalidad	Personas que abandonan el experimento
Orden de presentación	¿Cuánto conoce el sujeto sobre el tratamiento? Se altera para disminuir efectos de aprendizaje.

Amenazas a la validez externa

- Interacción entre selección y tratamiento
 - La muestra no es representativa de la población
- Interacción entre el material y el tratamiento
 - Material no representativo
 - Problemas de juguete, métodos obsoletos
- Interacción entre la historia y el tratamiento
 - El experimento se lleva a cabo en un momento especial que afecta a los resultados

Amenazas a la validez de conclusiones

- Bajo poder estadístico, violación suposición tests
- Buscar o "pescar" un determinado resultado
-

Proceso Experimental: Operación

Proceso Experimental: Operación

Proceso Experimental: Análisis e interpretación

Proceso Experimental: Análisis e interpretación

Contraste de Hipótesis

Diseño	Paramétrico	No paramétrico
Un factor, un tratamiento		Chi-2 Test binomial
Un factor, dos tratamientos	Test t Test F Test t emp	Mann-Whitney Chi-2 Wilcoxon Test de los signos
Un factor, más de dos tratamientos	ANOVA	Kruskal-Wallis Chi-2
Más de un factor	ANOVA	

Otras Técnicas (IA):

Árboles de clasificación, Clustering, Redes neuronales, "Machine Learning

Proceso Experimental: Análisis e interpretación

Relación entre variables

Sección	Sub-Sección	Alcance
Título		<titulo>+"-Un experimento controlado"</titulo>
Autoría		¿Incluye información de contacto?
Resumen	Background	¿Por qué es importante esta investigación?
	Objetivo	¿Cuál es la pregunta tratada en esta investigación?
	Métodos	¿Cuál es el contexto estadístico y los métodos aplicados?
	Resultados	¿Cuáles son los resultados principales? Implicaciones prácticas?
	Limitaciones	¿Cuáles son las debilidades de esta investigación?
	Conclusiones	¿Cuál es la conclusión?
Palabras clave		Äreas de investigación, las variables dependientes, y el tipo del estudio
Introducción	Planteamiento del problema	¿Cuál es el problema? ¿Cuándo ocurre? ¿Quién lo ha observado? ¿Por qué es importante resolverlo?
	Objetivos de la investigación	Analizar <objeto(s) de="" estudio=""> con el propósito de <pre></pre></objeto(s)>
	Contexto	¿Cuáles son los factores ambientales que influyen en la generalización?

Trabajo relacionado		¿Cómo se puede colocar esta investigación dentro de otra ya existente? Cómo se relaciona con la práctica?	
Planificación del experimento	Objetivos	Formalización de los objetivos, definir los constructores importantes (e.g., el foco en la calidad) de los objetivos del experimento.	
	Unidades experimentales	¿De qué población deberá ser la muestra mostrada? ¿Cómo se formarán los grupos (asignación de tratamientos)? Cualquiera que sea la clase de aleatorización debe ser descrita.	
	Material Experimental	¿Qué objetos son seleccionados y por qué?	
	Tareas	¿Qué tareas serán realizadas por los sujetos?	
	Hipótesis y variables	¿Formalización de hipótesis y variables?	
	Diseño	¿Qué tipo de diseño experimentas ha sido elegido?	
	Procedimiento	¿Cómo se realizará (i.e., recolección de datos) el experimento? ¿Qué instrumentos, materiales, y herramientas se utilizarán y cómo?	
	Procedimiento de Análisis	¿Cómo se analizarán los datos?	
Ejecución		El propósito principal es describir cualquier desviación del plan. En caso de un número ilimitado de páginas la instanciación del plan (evitando redundancias) debe describirse, e.g., como se ve o describe la muestra (los participantes)?	
	Preparación	¿Qué se ha hecho para preparar la ejecución del experimento (i.e, agenda, entrenamiento)	
	Desviaciones	Describir cualquier desviación del plan, e.g, ¿Cómo fue realizada realmente la recolección de datos?	

Análisis	Estadísticas descriptivas	¿Cuáles son los resultados de la estadística descriptiva?
	Reducción del conjunto de datos	¿Fue necesario reducir el conjunto de datos, por qué y cómo?
	Contraste de las hipótesis	¿Cómo fueron evaluados los datos y fue validado el modelo de análisis?
Interpretación	Evaluación de los resultados e Implicaciones	Explicar los resultados y su relación con los resultados de la investigación anterior, especialmente aquellos mencionados en la sección de <i>Trabajo Relacionado</i>
	Amenazas a la validez	¿Cómo se asegura la validez de los resultados experimentales? ¿Cómo fueron validados los datos realmente? Amenazas que pudieran tener un impacto en los resultados (amenazas a la validez interna, variables confusas, prejuicios), y además, el grado en el cual la hipótesis captura los objetivos y la generalización de los resultados (amenazas a la validez externa, e.g, participantes, materiales) deben ser discutidos.
	Inferencias	Las inferencias deducidas de los datos a condiciones más generales
	Lecciones aprendidas	¿Qué experiencia fue recogida durante el curso del experimento?

Conclusiones y trabajo futuro	Resumen	El propósito de esta sección es proveer un resumen conciso de la investigación y sus resultados según lo presentado en secciones anteriores.
	Impacto	Descripción de los impactos con respecto al coste, planificación, y calidad, circunstancias bajo las cuales la aproximación presumiblemente no producirá el beneficio esperado.
	Trabajo Futuro	¿Qué otros experimentos podrían emprenderse para investigar más profundamente los resultados obtenidos o para desarrollar el cuerpo del conocimiento?
Reconocimientos		Patrocinadores, participantes y colaboradores que no satisfagan los requisitos para la autoría deben ser mencionados
Referencias		Toda la literatura citada debe ser presentada en el formato propuesto por el editor
Apéndices		Materiales, datos originales, y análisis detallados, que pueden ser de ayuda para otros deben ser proporcionada

Trabajo académico: Diseño de experimento (sesión 1)

- Consultar los temas de trabajo propuestos en PoliformaT
- Cada grupo deberá elegir un tema (entre los propuestos o proponer uno nuevo
- Introducir el tema e integrantes del grupo aquí:
 - https://docs.google.com/document/d/15YxaDxUgbjZtQh9fC6pBdKjS9k_5_bxMj K-Zsj39I4s/edit?usp=sharing
- Definir los objetivos del experimento usando la plantilla del GQM (goal-question-metric)

Contenido

- Experimentos
 - Conceptos generales
- Proceso experimental
 - □ Fases del proceso
- Ejemplo de experimento
- Réplicas
- Agregación de resultados
- Recomendaciones
- Conclusiones
- Literatura relevante

Ejemplos de experimentos

- Temas sobre experimentos relacionados con UML:
 - Impacto de variantes en la notación sobre la comprensión y modificación
 - Impacto de la la calidad de los modelos UML en la comprensión y la modificación
 - Comparación de UML y ER sobre la comprensión y modificación
 - Validación de medidas como indicadores de la comprensión y modificación de los modelos UML
 - Beneficios de usar UML en el ciclo de vida del desarrollo de software

- Assessing the influence of stereotypes on the comprehension of UML sequence diagrams: A controlled experiment
 - Genero, M., Cruz-Lemus, J.A., Caivano, D., Abrahão, S., Insfran, E., Carsí, J.A.
 - 11th international conference on Model Driven Engineering Languages and Systems MoDELS'08 (LNCS 5301 pp. 280-294).

Material available at: http://alarcos.esi.uclm.es/ExpStereotypes

Motivation

- The influence of the use stereotypes in the comprehension of class diagrams has been studied
 - F. Ricca, M. Di Penta, M. Torchiano, P. Tonella, M. Ceccato, Developers' experience and ability influence web application comprehension tasks supported by UML stereotypes: a series of four experiments, IEEE TSE 36 (1) (2010) 96-118.
 - M. Staron, L. Kuzniarz, C. Wohlin, Empirical assessment of using stereotypes to improve comprehension of UML models: a set of experiments, The Journal of Systems and Software 79 (2006) 727-742

The influence of stereotypes on the comprehension of sequence diagrams has not been investigated yet

Motivation

- UML sequence diagrams → widely used technique for reasoning about object interactions
- UML sequence diagram comprehension → essential in the validation of requirements specifications among developers and stakeholders
- A set of stereotypes for UML sequence diagrams → proposed to enrich the semantics of interaction messages in the context of a Requirements Engineering approach for model-driven development (signal, service, query, connect)

Stereotypes defined for Sequence Diagrams

- «signal» a message between an actor and the system.
- «service» a message that updates the state of an object. The properties new/destroy/update can be used if the object is to be created, destroyed or modified.
- "query" a message to query the state of a specific object or set of objects.
- «connect» a message which is used to indicate that an object from the sender object type needs to be connected (or related) to an object from the receiver object type.

- We believe that the benefit of using these stereotypes is twofold:
 - Provide specific information about how to deal with each individual source element in the automatic transformation of UML sequence diagrams into class diagrams, in the MDD process.
 - Improve the comprehension of UML sequence diagrams ???

Goal → to assess whether the use of stereotypes improves the understanding of UML sequence diagrams

Other independent variables (controlled)
(task complexity, experience)

- Using GQM template our goal is:
 - Analyze the use of stereotypes
 - for the purpose of evaluating them
 - with respect to the comprehension of UML sequence diagrams
 - from the point of view of the researcher
 - in the context of fourth year undergraduate students in Computer Science from the University of Bari.

- Selection of subjects. (students vs. professionals, probabilistic and non-probabilistic samples)
 - 77 fourth year Computer Science students
 - Selection by convenience
- Selection of variables:
 - Independent ("factor"):
 - The diagram type
 - Treatments: S (stereotyped) and N (non-stereotyped)
 - Dependent ("outcome", "effect"):
 - **Semantic comprehension:** the ability to comprehend the semantics of the models.

How to measure the dependent variable?

SCEffec: # correct answers / # questions

SCEffic: SCEffec / Time

Hypotheses formulation

- Null Hypotheses (to be rejected):
 - *H1,0*: stereotypes do not improve the subjects' SCEffec when attempting to comprehend a UML sequence diagram.
 - *H2,0*: stereotypes do not improve the subjects' SCEffic when attempting to comprehend an UML sequence diagram

Alternative Hypotheses:

- H1,1: stereotypes improve the subjects' SCEffec when attempting to comprehend a UML sequence diagram.
- H2,1: stereotypes improve the subjects' SCEffic when attempting to comprehend an UML sequence diagram

Variables and Experimental hypothesis

Relevant questions

- How many independent variables (factors)?
 - One factor → Simple design
 - More than one factor → Factorial design
- How many subjects per treatment?
 - Between subjects: each subject receives only one treatment.
 - Within subjects: each subject receives all the treatments.

Independent variables → Diagram type + Domain Domain (A-extras car rental, B-book hotel room)

		DIAGR	AM TYPE
RUN 1		S	N
	Α	G1	G2
DOMAIN	В	G4	G3

		DIAGRAM TYPE		
RUN 2		S	N	
DOMAIN	Α	G3	G4	
	В	G2	G1	

A factorial within subjects design

- Experiments objects can be obtained through:
 - Make yourself
 - Make by students
 - Find in internet
 - Ask a company
 - Find in a repository (ReMoDD)
- Experiment objects. 4 diagrams corresponding to the four treatments prepared by the experimenters:
 - DA-S: stereotyped diagram, domain A (extras car rental)
 - DA-N: non-stereotyped diagram, domain A
 - DB-S: stereotyped diagram, domain B (book hotel room)
 - DB-N: non-stereotyped diagram, domain B

Experimental Tasks:

- Answer a test with 10 Yes/No questions concerning the semantics of the diagrams (SCEffec and SCEffic).
- Write down the start/end time.
- Manual tasks.

Planning (Validity Evaluation)

- Internal validity: Is it the treatment that really causes the effect?
 - Subjects with similar experiences
 - Fatigue effect was avoided (time duration)
 - Learning effect was avoided (material distributed in different order)
 - Random assignment of subjects into groups
- External validity: Can the results be generalised?
 - Selection of objects and subjects
- Construct validity: Do the experimental settings actually reflect the construct under study?
 - Select well known domains
 - Sequence diagrams with similar size
 - Select appropriate measures
 - Take care with evaluation apprehension
- Conclusion validity: Are the results statistically valid?
 - Select the appropriate statistical tests according the design
- UNIVERSID Check assumptions of the statistical tests

Pilot study

- Why? Check the experimental material, the experiment duration.
- When? Two months before the experiment execution.
- Who? 4 PhD students of the Alarcos research group at UCLM (Spain).

Operation (Preparation)

Training session

- A training session of three hours took place the day before the experiment was carried out.
- The session included various tasks:
 - To introduce the students the stereotypes defined for UML sequence diagrams.
 - To **show** the students an **example**, similar to the material used in the experiment, in order to assure that the students had understood the experimental material and tasks.
 - We solved the tasks in the example with the students.

- The day after the training session, the experiment took place:
 - 30 minutes → explanation on how to perform the experiment
 - Randomly assignment of the subjects to the balanced groups
 - Experiment execution in two runs
- The experiment was conducted in a classroom, where the students were supervised and no communication among them was allowed.
- The groups were located in the same room.

<u>Data analysis and interpretation</u> (<u>Descriptive statistics</u>)

• The subjects obtained better global results in the stereotyped diagrams.

• To some extent, the stereotyped diagrams were more comprehensible, less error prone and required less time to understand than non-stereotyped diagrams.

Data analysis and interpretation (Hypothesis testing)

- Check normality of data
- Apply ANOVA test
- Results

Stereotypes

- There are no significant values.
- The power of the tests, i.e. the ability to detect an effect if there is one, are low.
- We cannot reject the null hypotheses investigated in this work and accepting the alternative hypotheses could be risky and misleading.

Domain

- In most cases, the domain affects the comprehension of the diagrams.
- The subjects performed worse with the diagrams of domain A (extras car rental). This could imply that the subjects found the extras car rental domain more difficult.

<u>Data analysis and interpretation</u> (Threats to validity)

After experiment execution threats must be analyzed

- Internal validity: We assumed a subjects' homogenous background, but this was not evaluated before the experiment was carried out.
- Construct validity: The extras car rental diagram was found to be much more difficult than that of the book hotel room.
- External validity: for generalising the results further replication is needed.

- Unfortunately the obtained results cannot be assumed to be final.
- The *p-values* observed in the hypotheses tests are non-significant and thus the null-hypotheses cannot be rejected.
- Nonetheless, descriptive statistics show a slight tendency in favor of the use of stereotypes.
- Further replication is needed.

Contenido

- Experimentos
 - Conceptos generales
- Proceso experimental
 - □ Fases del proceso
- Ejemplo de experimento
- Réplicas
- Agregación de resultados
- Recomendaciones
- Conclusiones
- Literatura relevante

Réplicas

- "El uso de experimentos precisos y repetible es el signo de una disciplina madura o de ingeniería"
- Es importante replicar los experimentos (corroborar/refutar resultados):
 - <u>Internas</u>: réplicas realizadas por los investigadores que realizaron el experimento original.
 - <u>Externas</u>: réplicas realizadas por experimentadores que no tuvieron nada que ver con el experimento original.
- Es importante construir "paquetes de laboratorio": descripción del proceso experimental, decisiones tomadas, etc.
 - Favorecen las réplicas externas
- Para lograr réplicas externas efectivas es necesario:
 - Comunicación efectiva entre el experimentador original y lo experimentadores eternos.
 - Transmitir el conocimiento tácito

Réplicas

- Las réplicas pueden ser:
 - □ Exactas: mismo protocolo de investigación y materiales. Es útil para comprender el rango de variabilidad de los resultados.
 - □ <u>Diferenciadas:</u> varia los elementos de la configuración del experimento base (original). Por ejemplo, variables, objetos experimentales.
- Para construir un cuerpo de conocimiento en SE, es necesario ejecutar varios tipos de replicación.
- Al realizar de manera sistemática diferentes tipos de replicación, los resultados experimentales se pueden verificar gradualmente

Contenido

- Experimentos
 - Conceptos generales
- Proceso experimental
 - □ Fases del proceso
- Ejemplo de experimento
- Réplicas
- Agregación de resultados
- Recomendaciones
- Conclusiones
- Literatura relevante

Agregación de resultados

- Objetivo

 Agregar la evidencia empírica de experimentos que persiguen la misma hipótesis para construir un cuerpo de conocimiento sobre el tema investigado.
- Técnicas para agregar resultados:
 - Mapeos y Revisiones sistemáticas de la literatura
 - Meta-análisis
- Beneficio del meta-análisis:
 - Agregación de datos que conduce a un poder estadístico más alto y una estimación más robusta de lo que es posible obtener a partir del análisis de cualquier estudio individual.

Una familia de experimentos

- Cruz-Lemus, J.A., Genero, M., Caivano, D., Abrahão, S. Insfrán, E., Carsí, J.A.. Assessing the influence of stereotypes on the comprehension of UML sequence diagrams: A family of experiments. Information and Software Technology 53 (2011) 1391-1403
 - **UBari:** 77 students (Computer Science 4th year) (Italy)
 - UCLM: 29 students (Computer Science 3rd year) (Spain)
 - UCLM: 36 students (Computer Science 5th year) (Spain)

The set of stereotypes presented in this work seem to be helpful for a better comprehension of UML sequence diagrams, especially with <u>not well-known domains</u> in the context of <u>novice analysts</u>.

Contenido

- Experimentos
 - Conceptos generales
- Proceso experimental
 - □ Fases del proceso
- Ejemplo de experimento
- Réplicas
- Agregación de resultados
- Recomendaciones
- Conclusiones
- Literatura relevante

Recomendaciones

Kitchenham et al. (2002) proponen una serie de recomendaciones para la investigación empírica en la Ingeniería de Software.

 Jedlitschka et al. (2008) proponen recomendaciones sobre cómo reportar experimentos

Planificación

- Seleccionar objetos de tamaño y complejidad similar
- Asignar las mismas tareas a cada tratamiento
- Tratar de aliviar tanto como sea posible las amenzas a la validez
- Preparar pre-cuestionarios para recopilar la experiencia de los participantes
- Preparar post-cuestionarios para recopilar el feedback (opinion) de los participantes
- Preparar el material en el lenguaje nativo de los participantes

Operación

- Realizar un estudio piloto para chequear el material
- Hacer una estimación precisa del tiempo de duración
- Estimular a los participantes para que participen
- Capacitar a los participantes en el tema bajo estudio
- Antes de la ejecución del experimento realizar un ejemplo con los participantes
- Formar grupos balanceados por la experiencia
- Explicar claramente el procedimiento a seguir para la ejecución del experimento

Análisis de datos e interpretación

- Tener suficiente conocimiento estadístico o contactar a un experto
- Chequear las suposiciones de los test estadísticos
- Contextualizar los resultados

Presentación y difusión

- Seguir las directrices disponibles para reportar experimentos
- Reportar las amenzas que no se pudieron evitar
- Reportar la justificación de cada decisión tomada a lo largo del proceso experimental
- Preparar un "paquete de laboratorio" (material experimental, datos recolectados, etc.) y ponerlo disponible en la web.

Realizar réplicas

Qué NO hacer?

• No trate de validar "demasiadas cosas" en un único experimento

Planificación

- No desvele la hipótesis que se está investigando a los participantes antes de la realización del experimento
- No desvele cual es el tratamiento que estás tratando de probar que es mejor

Contenido

- Experimentos
 - Conceptos generales
- Proceso experimental
 - □ Fases del proceso
- Ejemplo de experimento
- Réplicas
- Agregación de resultados
- Recomendaciones
- Conclusiones
- Literatura relevante

Conclusiones

- La Ingeniería del Software Empirica promueve la toma de decisiones en la Ingeniería del Software basándonos en la evidencia.
- La Ingeniería del Software Empírica proporciona los mecanismos para recopilar la evidencia empírica → estudios empíricos
- Los experimentos permiten evaluar metodos/técnicas en la práctica:
 - El feedback sobre las técnicas/métodos lleva a mejorar
- Es importante realizar una buena planificación del experimento
- El resultado de un experimento es un evento aislado. Es importante replicar los experimentos para confirmar/refutar sus resultados.
- Hay mucha bibliografía y ejemplos, tanto en contextos académicos como profesionales.

Contenido

- Experimentos
 - Conceptos generales
- Proceso experimental
 - □ Fases del proceso
- Ejemplo de experimento
- Réplicas
- Agregación de resultados
- Recomendaciones
- Conclusiones
- Literatura relevante

<u>Literatura relevante</u> Directrices

- Kitchenham B., Pfleeger S., Pickard L., Jones P., Hoaglin D., El-Emam K. and Rosenberg J. (2002). Preliminary Guidelines for Empirical Research in Software Engineering. IEEE TSE, 28(8) 721-734.
- Jedlitschka, A., Ciolkowski, M. and Pfahl D. (2008). Reporting experiments in Software Engineering. Chapter 8, Guide to Advanced Empirical Software Engineering. Springer.
- Carver, J.. (2010). Towards Reporting Guidelines for Experimental Replications: A Proposal. 1st International Workshop on Replication in Empirical Software Engineering Research (RESER) [Held during ICSE 2010]. Cape Town, South Africa.
- Runeson, P., Höst, M. Guidelines for conducting and reporting case study research in software engineering. Empirical Software Engineering (2009) 14:131-164.
- Kitchenham, B. Pfleeger, S. Principles of survey research. ACM SIGSOFT Software Engineering Notes. Part 1 26(6): 16-18 (2001), Part 2 27(1): 18-20 (2002), Part 3 27(2): 20-24 (2002), Part 4 27(3): 20-23 (2002), Part 5 27(5): 17-20 (2002), Part 6 28(2): 24-27 (2003).

Literatura relevante

Ejemplos de experimentos

- Dzidek, W. J., Arisholm, E., Briand, L. C. (2008). A realistic empirical evaluation of the costs and benefits of UML in software maintenance. IEEE Transactions on Software Engineering, 34(3), 407-432.
- Arisholm, E., Briand, L. C., Hove, S. E., & Labiche, Y. (2006). The impact of UML documentation on software maintenance: An experimental evaluation. IEEE Transactions on Software Engineering, 32(6), 365-381.
- Jeffrey C. Carver, Nachi Nagappan, Alan Page. The Impact of Educational Background on the Effectiveness of Requirements Inspections: An Empirical Study. IEEE Trans. Software Eng. 34(6): 800-812 (2008)
- Erik Arisholm, Hans Gallis, Tore Dybå, Dag I. K. Sjøberg. Evaluating Pair Programming with Respect to System Complexity and Programmer Expertise. IEEE Trans. Software Eng. 33(2): 65-86 (2007)
- Lionel C. Briand, Yvan Labiche, Massimiliano Di Penta, Han (Daphne) Yan-Bondoc. An Experimental Investigation of Formality in UML-Based Development. IEEE Trans. Software Eng. 31(10): 833-849 (2005)

Literatura relevante

Ejemplos de experimentos

- Silvia Teresita Acuña, Marta Gómez, Natalia Juristo Juzgado. How do personality, team processes and task characteristics relate to job satisfaction and software quality? Information & Software Technology 51(3): 627-639 (2009)
- Scaniello, G., Gravino, C., Genero, M., Cruz-Lemus, J.A., Tortora, G. The Impact of UML Models Produced in the Requirements Analysis Process on Source Code Comprehensibility and Modifiability: Results from a Family of Four Experiments. ACM TOSEM (2013).
- Carmine Gravino, Emilio Insfrán, Giuseppe Scanniello, Genoveffa Tortora: Assessing the Effectiveness of Sequence Diagrams in the Comprehension of Functional Requirements: Results from a Family of Five Experiments. IEEE Trans. Software Eng. 39(3): 327-342 (2013)
- Julio Sandobalin, Emilio Insfrán, Silvia Abrahão: On the Effectiveness of Tools to Support Infrastructure as Code: Model-Driven Versus Code-Centric. IEEE Access 8: 17734-17761 (2020)

<u>Literatura relevante</u> Réplicas

- Basili V., Shull F. and Lanubile F. (1999). Building knowledge through families of experiments, IEEE TSE, 25(4) 435-437.
- Brooks, A., Roper, M., Wood, M., Daly, J., Miller, J. (2008). Replication's role in Software Engineering. Chapter 14, Guide to Advanced Empirical Software Engineering. Springer.
- Shull, F., Carver, J., Vegas, S., Juristo, N. (2008). The role of replications in Empirical Software Engineering. Empirical Software Engineering 13(2), 211-218.
- Santos A., Vegas S., Oivo M., Juristo N.: Comparing the results of replications in software engineering. Empir. Softw. Eng. 26(1): 13 (2021)
- Santos A., Vegas S., Oivo M., Juristo N.: A Procedure and Guidelines for Analyzing Groups of Software Engineering Replications. IEEE Trans. Software Eng. 47(9): 1742-1763 (2021)

