SOFT400127: Computer Organization & Architecture 2022-Fall Homework-4 Solutions

软件 2101 杨豪 学号: 2206213297

2022年10月14日

Honor Code: I promise that I finished the homework solutions on my own without copying other people's work.

1.

SRAM	DRAM				
Power needed to preserve data					
use transistors to store information.	use capacitors store information.				
no refreshing is required.	capacitors need to be refreshed periodically				
(No capacitors)	to store data for a long time.				
faster	slower access speeds.				
no refreshing unit, smaller memory unit	need refreshing unit, bigger memory unit.				
more expensive	cheaper				
low-density devices	high-density devices				
In this bits are stored in voltage form.	In this bits are stored in the form of electric energy.				
used in cache memories	used in main memories				
less power	more power				

2.

Idea: Use memory hierarchy between main memory and cache ——multi-level caches. Hardware Technology:

- Enhanced DRAM: Contains small SRAM as well SRAM holds last line read.
- Cache DRAM: Larger SRAM component and used as cache or serial buffer.
- Synchronous DRAM (SDRAM): Access is synchronized with an external clock, so CPU knows when data will be ready. Also, data can be loaded with burst mode. As a result, CPU does not have to wait but can do something else.
 - DDR SDRAM: Double-data-rate SDRAM can send data twice instead once per clock cycle using both rising edge and falling edge.

3.

3.1

Answer:
$$2^{22} \times \frac{32 \text{ bits}}{8 \text{ bits per byte}} = 4 \text{ M} \times 4 \text{ B} = \textbf{16 MB}$$

3.2

Answer:
$$\frac{16 \text{ MB}}{512 \times 2^{10} \times 16/8 \text{ bytes}} = 16 \text{ pieces.}$$

3.3

4.

Step 1&2: Memory Capacity and Chip Section

$$\frac{8~\mathrm{KB}}{4~\mathrm{K}\times8/8~\mathrm{B}} = 2,\,\mathrm{so~choose~two}~~4~\mathrm{K}\times8~\mathrm{chips}.$$

Step 3: Allocate CPU address lines

 A_0-A_{11} to choose word inside a chip. Left high bits and MREQ are used for chip selection.

	Input	A15	A14-A12			A11	•••••	A0
Chip1	a000	1	0	1	0	0	•••••	0
	aFFF	1	0	1	0	1	•••••	1
Chip2	b000	1	0	1	1	0	•••••	0
Cmpz	bFFF	1	0	1	1	1	•••••	1

Step 4: Draw the picture

Other things

- $\bullet~\text{\ \ LAT}_{E\!X}$ code refer to these things and was complied on texlive 2020.
 - UCB-CS70's given homework template.
 - A free website useful to edit \LaTeX formula code.
- refer to Professor Li.'s PPT.

Thanks for your correcting and grading:).