Dorived Geometry & BV Journalism Rep Theory LG, offine Kacs-Moody Physics Algebras Geometry / Topology
Chiral Conformal FT Riamann Surfaces Main cx: Fact algebras airsing from Le algebras Goal: Exploin how to see conformal blocks via factorization methods Factorization Algebras: The Sheaves Σ - Smooth manifolds C*- symmetric monoidal category $\text{ Def}^*: \text{ of iprefactorization algebra } A \text{ on } \Xi \text{ with values in } C^{\otimes}, \\ \cdot \forall \ U \subseteq \{\text{apen sets in } \Xi\} \ , \ A(U) \in C$ · USV → A(U) → A(V) $U_1 \cup U_n \quad disjoint \Rightarrow A(U_1) \otimes \cdots \otimes A(U_n) \longrightarrow A(V)$ $U_1 \cup \cdots \cup U_n = V$. · natural associativity constraints Another way of soying this, is that there is a coloured operad open $(E)^{11}$ with colours the opens in E. A is our algebra in C^{\otimes} over opens $(E)^{11}$ eg: 1. A - associative algebra, A- factorization algebra $C^{\infty} = \text{Vect}^{\otimes}$, $\Sigma = \mathbb{R}$ $A(\cdot - \cdot) = A$ $A(\cdot - \cdot) \otimes A(\cdot - \cdot) \rightarrow A(\cdot - \cdot \cup \cdot - \cdot)$ is the multiplication map I (countable intervals) = infinite tensor product (?)

2. V → E vector bundle Yc(U)-Compactly supported sections on U

CE*: dg Lec Algebra \longrightarrow dg Vect $g \longmapsto (Sym(g[,]), dg+d_{[,]})$ Chevalley Elenberg Chains

Def: Enveloping Jachoviration Algebra $V(\mathcal{L})$ $U \longmapsto CE_{\mathbf{x}}(\mathcal{L}_{\mathbf{c}}(U))$

(in Chern Simons)

Def. The Weiss topology on Σ is generated by a Weiss cover. Weiss cover $\{U_i\}$ of an open V is a collection such that $\{x_1,\dots x_n\} \subseteq V$, $\exists U_i \text{ s.t. } U_i \supseteq \{x_i,\dots x_n\}$.

Def: A factorization algebra is a prefactorization alg A such that \cdot A is a costeaf for the Weiss topology \cdot for any pair of disjoint opens U,V $A(U)\otimes A(V) \stackrel{\sim}{=} A(U\sqcup V)$

Main Ex: Σ = Riemann Surface g = Lie algebra $G = \Omega_{\Sigma}^{\circ, *} \otimes \sigma_{J} - Local Lie algebra$

Claim: Enveloping fact algebra UG recovers the vector algebra for the loop algebra Loj = oj (t)

V = Ind g((+)) = Zaurant Series

V = Ind g[i+1] C ~ muid rep power series

Fat: For any disk D there's a natural dense inclusion V - H°(V G(D))

H'(g(D)) ~ O(D) * holomorphic

Modules Module M on A

 $\mathcal{M}(\omega) \in \mathcal{L}$

· ∀u,...un, V⊆W we have "compable" maps

 $A(u_1) \otimes \cdots \otimes A(u_n) \otimes \mathcal{M}(V) \longrightarrow \mathcal{M}(W)$

9: 1. MA, E= R for per, Mp(u) = { M of peu

2. p, q, EIR

· L= 2,*8 g

M = sheaf that is also a module for L