Homotophy theory sooms more and more combinatorial

Cohomology of  $X_1$ ,  $X_{\text{ris}}$  fiber in  $X_1 \longrightarrow K(\mathbb{Z},n) \longrightarrow K(\mathbb{Z}/2,n+2)$  Assume that n is large and the only non-trivial differentials in the relevant range are the transgressions. We have the true maps  $H^{n+2}(K(\mathbb{Z}/2,n+2)) \longrightarrow H^{n+2}(K(\mathbb{Z},n)) \longrightarrow H^{n+2}(K(\mathbb{Z}/2,n+2)) \longrightarrow H^{n+2}(K(\mathbb{Z}/2,n+2))$ 

|                                                     | ė̇ <sub>n+2</sub> ⊢—≕                                 |                                                  | in                                   | <b>→</b> 6      | -         |  |  |  |  |
|-----------------------------------------------------|-------------------------------------------------------|--------------------------------------------------|--------------------------------------|-----------------|-----------|--|--|--|--|
| It is now a matter of repeating this till one dies. |                                                       |                                                  |                                      |                 |           |  |  |  |  |
| H (X <sub>1</sub> )                                 | H*(K(Z/2,n                                            | +2)) S <sub>9</sub>                              | H*(K(Z, n))                          | н <u>,</u> (х') | *         |  |  |  |  |
|                                                     | _                                                     | _                                                | in                                   | 6               | n         |  |  |  |  |
|                                                     | (n+2                                                  | Sq² in                                           | Sg² in                               | _               | n+2       |  |  |  |  |
|                                                     | Sgl in+2                                              | Sq <sup>1</sup> Sq <sup>2</sup> =Sq <sup>3</sup> | $Sq^3$ in                            | -               | n+3       |  |  |  |  |
|                                                     | -                                                     | _                                                | Sq in                                | 64              |           |  |  |  |  |
| $\gamma_2$                                          | Sq2 into                                              | Sq2Sq2=Sq3Sq1                                    |                                      |                 |           |  |  |  |  |
| $\gamma_{\underline{s}}$                            | Sq <sup>3</sup>                                       | 59 <sup>3</sup> 59 <sup>2</sup> = 0              | _                                    | -               | n+5       |  |  |  |  |
|                                                     | Sq²Sq¹                                                | $S_q^2 S_q^1 S_q^2 = S_q^5 + (4.1)$              | Sq <sup>5</sup> in                   | _               |           |  |  |  |  |
|                                                     | Sg⁴                                                   | Sq"Sq2                                           | Sq <sup>4</sup> Sq <sup>2</sup> in   | <del>-</del>    | <b>+6</b> |  |  |  |  |
| ارچ                                                 | Sq 3Sq'                                               | Sq3Sq'Sq2 = Sq5Sq                                | , ·<br>-                             |                 |           |  |  |  |  |
|                                                     |                                                       | •                                                | Sq <sup>6</sup> in                   | <u>~</u>        |           |  |  |  |  |
| 7 <sub>5/4,1</sub>                                  | Sq. <sup>5</sup><br>Sq. <sup>5</sup> Sq. <sup>1</sup> | Sq <sup>5</sup> Sq <sup>2</sup>                  | } Sq <sup>5</sup> Sq <sup>2</sup> in |                 | + 7       |  |  |  |  |
| 3/4,1                                               | Sq <sup>4</sup> Sq <sup>1</sup>                       | $(4,1,2) = {2-2 \choose 4-4} (5,2)$              | 1 -1 -1 -1                           |                 |           |  |  |  |  |
|                                                     |                                                       | (+ y                                             | Sg <sup>7</sup> in                   | 67              |           |  |  |  |  |
|                                                     | Sq                                                    | Sq <sup>6</sup> Sq <sup>2</sup>                  | Sq. Sq. in                           |                 | +8        |  |  |  |  |
| √ <sub>511</sub>                                    | Sq <sup>5</sup> Sq <sup>1</sup>                       | (5,1,2)= 0                                       |                                      |                 |           |  |  |  |  |
| 74,2                                                | Sq <sup>q</sup> Sq <sup>2</sup>                       | (4,2,2) = (5,1)                                  |                                      |                 |           |  |  |  |  |
|                                                     |                                                       |                                                  | Sg <sup>®</sup> in                   | 68              |           |  |  |  |  |
|                                                     | Sq <sup>7</sup>                                       | Sq <sup>7</sup> Sg <sup>2</sup>                  | Sq <sup>7</sup> Sq <sup>2</sup> in   |                 | +9        |  |  |  |  |
|                                                     |                                                       | (6,1,2) = (6,3)                                  | Sq Sq in                             |                 |           |  |  |  |  |
| 7 <sub>52</sub>                                     | Sq 5 Sq 2                                             | (5,2,2)= (5,3,1)                                 |                                      |                 |           |  |  |  |  |
|                                                     | Sq <sup>4</sup> Sq <sup>2</sup> Sq                    | (4,2,1,2)= (9)+(,,1)                             | Sq <sup>9</sup> in                   |                 |           |  |  |  |  |
|                                                     |                                                       |                                                  |                                      |                 |           |  |  |  |  |

| H (X <sub>1</sub> )    | н <sup>*</sup> (к( <u>г/<sub>2</sub>,</u> п | +2))   59           | H*(K(Z, n))                                                          | н <sub>*</sub> (х') | *    |
|------------------------|---------------------------------------------|---------------------|----------------------------------------------------------------------|---------------------|------|
|                        |                                             | ,                   |                                                                      |                     |      |
|                        | 8                                           | (&\ <sub>J</sub> )  | Sg <sup>8</sup> Sg <sup>2</sup>                                      |                     | † 10 |
|                        | 7,1                                         | (7,3)               | Sq <sup>7</sup> Sq <sup>3</sup>                                      | •                   |      |
| √6,2                   | 6,2                                         | (6,2,2) = (6,3,1)   | Sq.10                                                                | 6,0                 |      |
| ₹ <sub>5,2,1</sub>     | 5,2,1                                       | (5,2,1,2) = (,1)    |                                                                      |                     |      |
|                        | 9                                           | (9,2)               | Sq <sup>9</sup> Sq <sup>2</sup><br>Sq <sup>8</sup> Sq <sup>3</sup>   |                     | + 11 |
|                        | 8,1                                         | (8,3)               | Sq.8Sq.3                                                             |                     |      |
| 7 <sub>7,2</sub>       | 7,2                                         | (7,3,1)             |                                                                      |                     |      |
| Y6,3                   | 6,3                                         | (6,3,2) = 0         | 3g <sup>11</sup>                                                     | 611                 |      |
| 76,2,1                 | 6,2,1                                       | (6,2,3)=(9,2)+(8,3) | Sq Sq2 + Sq8Sq3                                                      |                     |      |
|                        | 10                                          | (10,2)              | Sq <sup>1</sup> ° Sq <sup>2</sup><br>Sq <sup>3</sup> Sq <sup>3</sup> |                     | +12  |
|                        | <b>ી</b> , \                                | 3,3                 | Sq <sup>9</sup> Sq <sup>3</sup>                                      |                     |      |
| 7 8 <sub>1</sub> 2     | 8,2_                                        | (8,3,1)             |                                                                      |                     |      |
| Y <sub>₹,</sub> 3      | 7,3                                         | ٥                   |                                                                      |                     |      |
| 7 <sub>7,2,1/9,1</sub> | 7,2,1                                       | (7,2,1) = (9,3)     |                                                                      |                     |      |
| 76,3,1                 | 6,3,1                                       | (6,3,3) = (6,5,1)   |                                                                      |                     |      |
|                        |                                             |                     |                                                                      |                     |      |

Spending hours trying to figure this out has but me in a philosophical limbo

A dot of these 8's are related by steeneod squares just like the 6's are. We make a choice for the 8's as we are allowed to add any element which transgresses to 0.



Cohomology of X2:

We look at the SS for the dibration:

 $X_2 \longrightarrow X_1 \xrightarrow{Y_2} K(Z_3 n+3)$  We also the same abill again only this time we do not  $Y_2 \longrightarrow Y_{n+3}$  know how the  $Y_3$  and  $Y_3$  are connected.



$$d_1 Sq^2 Sq^1 = Sq^3 Sq^1 \longrightarrow Y_{3,1} \qquad Sq$$

$$\Rightarrow \left[ d_2 \in_{4}^{2} = Y_{3,1} \right], \quad \left[ d_1 Y_{3,1} = 0 \right]$$

. 
$$S_q^5i_{n+1} \longmapsto S_q^5S_q^2i_n$$

$$d_1S_q^5 = S_q^5 \mapsto 0 \qquad nothin$$

$$d_1S_q^5 = S_q \mapsto 0$$
 nothing

$$S_{q}^{4}S_{q}^{2}S_{q}^{1} \stackrel{\longleftarrow}{\iota}_{n+1} \longrightarrow S_{q}^{5} \stackrel{\longleftarrow}{\iota}_{n}$$

$$d_{1}S_{q}^{4}S_{q}^{2}S_{q}^{1} \stackrel{\longleftarrow}{\longleftarrow} V_{n-1} \qquad \qquad \stackrel{\longleftarrow}{\downarrow}_{r} \stackrel{\longleftarrow}{\downarrow}_{r} \stackrel{\longleftarrow}{\downarrow}_{r}$$

$$d_{1}S_{9}^{4}S_{9}^{2}S_{7}^{1} \leftarrow r_{g_{2,1}} \qquad \begin{cases} s_{3}^{2} & d_{1} \\ s_{2}^{4} & d_{2} \end{cases} \xrightarrow{S_{3}^{3}} in$$

$$\Rightarrow d_{2} \xrightarrow{s_{3}} = r_{g_{2,1}} \qquad d_{3}r_{g_{2,1}} = 0$$

Let us look at the Serre SS for 
$$K(\mathbb{Z}_{/8}, n+3) \longrightarrow X_3 \longrightarrow X_2$$

H

H

$$(K(\mathbb{Z}_8, n+3))$$
 $S_9$ 

H

 $(X_2)$ 
 $X_3$ 
 $X_4$ 
 $X_5$ 
 $X_5$