Amendments to the Claims

This listing of claims will replace all prior versions, and listings of claims in the application.

1. (Currently amended) A composition comprising a synergistically effective amount of an anthranilamide of the formula (I-1) (I)

- R² represents hydrogen or C₁-C₆-alkyl,
- R^3 represents C_1 - C_6 -alkyl which is optionally substituted by a radical R^6 ,
- R⁴ represents C₁-C₄-alkyl, C₁-C₂-haloalkyl, C₁-C₂-haloalkoxy or halogen,
- R^5 represents hydrogen, C_1 - C_4 -alkyl, C_1 - C_2 -haloalkyl, C_1 - C_2 -haloalkoxy or halogen,
- represents $-C(=E^2)R^{19}$, $-LC(=E^2)R^{19}$, $-C(=E^2)LR^{19}$ or $-LC(=E^2)LR^{19}$, where each E^2 independently of the others represents O, S, N-R¹⁵, N-OR¹⁵, N-N(R¹⁵)₂, and each L independently of the others represents O or NR¹⁸,
- R⁷ represents C₁-C₄-haloalkyl or halogen,
- $\frac{R^9}{\text{represents }C_1\text{-}C_2\text{-haloalkyl, }C_1\text{-}C_2\text{-haloalkoxy, }S(O)_pC_1\text{-}C_2\text{-haloalkyl or }\frac{halogen,}{C_1}$
- in each case independently of one another represent hydrogen or represent in each case optionally substituted C_1 - C_6 -haloalkyl or C_1 - C_6 -alkyl, where the substituents independently of one another may be selected from the group consisting of cyano, C_1 - C_4 -alkoxy, C_1 - C_4 -haloalkoxy, C_1 - C_4 -alkyl-thio, C_1 - C_4 -alkylsulfinyl, C_1 - C_4 -alkylsulfonyl, C_1 - C_4 -haloalkylsulfinyl or C_1 - C_4 -haloalkylsulfonyl,

- R¹⁸ in each case represents hydrogen or C₁-C₄-alkyl,
- \underline{R}^{19} in each case independently of one another represent hydrogen or \underline{C}_1 - \underline{C}_6 alkyl,
- p independently of one another represents 0, 1, 2.

$$\begin{array}{c|c}
R^3 & R^2 \\
\hline
R^5 & A^2 & R^8 \\
\hline
R^4 & A^1 & R^7 \\
\hline
R^9 & (I)
\end{array}$$

in which

A¹-and A² independently of one another represent oxygen or sulfur,

X¹ represents N or CR¹⁰,

represents hydrogen or represents in each case optionally mono or polysubstituted C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl or C_3 - C_6 -eycloalkyl, where the substituents independently of one another may be selected from the group consisting of R^6 , halogen, eyano, nitro, hydroxyl, C_1 - C_4 -alkoxy, C_1 - C_4 -alkylthio, C_1 - C_4 -alkylsulfinyl, C_1 - C_4 -alkylsulfonyl, C_2 - C_4 -alkoxycarbonyl, C_1 - C_4 -alkylamino, C_2 - C_8 -dialkylamino, C_3 - C_6 -eycloalkylamino, C_4 - C_4 -alkyl) C_3 - C_6 -eycloalkylamino and R^{11} ,

R² represents hydrogen, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, C₃-C₆-cycloalkyl, C₁-C₄-alkoxy, C₁-C₄-alkylamino, C₂-C₈-dialkylamino, C₃-C₆-cycloalkylamino, C₂-C₆-alkoxycarbonyl or C₂-C₆-alkylcarbonyl,

R³ represents hydrogen, R¹¹ or represents in each case optionally mono- or polysubstituted C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, C₃-C₆-eycloalkyl, where the substituents independently of one another may be selected from the group consisting of R⁶, halogen, cyano, nitro, hydroxyl, C₁-C₄-alkoxy, C₁-C₄-haloalkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulfinyl, C₁-C₄-alkylsulfonyl, C₂-C₆-alkoxycarbonyl, C₂-C₆-alkylcarbonyl, C₃-C₆-

trialkylsilyl, R¹¹, phenyl, phenoxy and a 5- or 6-membered heteroaromatic ring, where each phenyl, phenoxy and 5- or 6-membered heteroaromatic ring may optionally be substituted and where the substituents independently of one another may be selected from one to three radicals W or one or more radicals R¹², or

R²-and R³-may be attached to one another and form the ring M,

 \mathbb{R}^4 represents hydrogen, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, C₃-C₆cycloalkyl, C₁-C₆-haloalkyl, C₂-C₆-haloalkenyl, C₂-C₆-haloalkynyl, C₃-C₆-halocycloalkyl, halogen, cyano, nitro, hydroxyl, C₁-C₄-alkoxy, C₁-C₄haloalkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulfinyl, C₁-C₄-alkylsulfonyl, C₁- C_4 -haloalkylthio, C_1 - C_4 -haloalkylsulfinyl, C_1 - C_4 -haloalkylsulfonyl, C_1 - C_4 alkylamino, C₂-C₈-dialkylamino, C₃-C₆-cycloalkylamino, --C₃-C₆trialkylsilyl or represents in each case optionally mono- or polysubstituted phenyl, benzyl or phenoxy, where the substituents independently of one another may be selected from the group consisting of C₁-C₄-alkyl, C₂-C₄alkenyl, C2-C4-alkynyl, C3-C6-cycloalkyl, C4-C4-haloalkyl, C2-C4haloalkenyl, C2-C4-haloalkynyl, C3-C6-halocycloalkyl, halogen, evano, nitro, C₁-C₄-alkoxy, C₁-C₄-haloalkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulfinyl, C₁-C₄-alkylsulfonyl, C₁-C₄-alkylamino, C₂-C₈-dialkylamino, C₃-C₆-cycloalkylamino, C₃-C₆-(alkyl)cycloalkylamino, C₂-C₄-alkylcarbonyl, C2-C6-alkoxycarbonyl, C2-C6-alkyl-aminocarbonyl, C3-C8-dialkylaminocarbonyl and C3-C6-trialkylsilyl,

 alkoxy, C_1 - C_4 -haloalkoxy, C_1 - C_4 -alkylthio, C_1 - C_4 -alkylsulfinyl, C_1 - C_4 -alkyl-sulfonyl, C_1 - C_4 -haloalkylsulfonyl, C_1 - C_4 -haloalkylsulfonyl, C_1 - C_4 -haloalkylsulfonyl, C_1 - C_4 -alkylamino, C_2 - C_8 -dialkylamino, C_3 - C_6 -trialkylsilyl, phenyl and phenoxy, where each phenyl or phenoxy ring may optionally be substituted and where the substituents independently of one another may be selected from one to three radicals W or one or more radicals R^{12} .

- in each case independently of one another represent a 5 or 6 membered nonaromatic carbocyclic or heterocyclic ring which optionally contains one or two ring members from the group consisting of C(=O), SO and S(=O)₂—and which may optionally be substituted by one to four substituents independently of one another selected from the group consisting of C₁-C₂-alkyl, halogen, cyano, nitro and C₁-C₂-alkoxy, or independently of one another represent C₂-C₆-alkenyl, C₂-C₆-alkynyl, C₃-C₇-cycloalkyl, (C₁-C₄-alkyl)C₃-C₆-cycloalkyl, (C₃-C₆-cycloalkyl)C₁-C₄-alkyl, where each cycloalkyl, (alkyl)cycloalkyl and (cycloalkyl)alkyl may optionally be substituted by one or more halogen atoms,
- J in each case independently of one another represent an optionally substituted 5 or 6 membered heteroaromatic ring, where the substituents independently of one another may be selected from one to three radicals W or one or more radicals R¹²,
- R⁶ independently of one another represent $C(=E^1)R^{19}$, $LC(=E^1)R^{19}$, $-C(=E^1)LR^{19}$, $LC(=E^1)LR^{19}$, $-OP(=Q)(OR^{19})_2$, SO_2LR^{18} or LSO_2LR^{19} , where each E^1 independently of the others represents O, S, $N \cdot R^{15}$, $N \cdot OR^{15}$, $N \cdot N(R^{15})_2$, $N \cdot S = O$, $N \cdot CN$ or $N \cdot NO_2$;
- $R^{7} \text{represents hydrogen, } C_{1}\text{-}C_{4}\text{-}\text{alkyl, } C_{1}\text{-}C_{4}\text{-}\text{haloalkyl, halogen, } C_{1}\text{-}C_{4}\text{-}\text{alkylsulfinyl, } C_{1}\text{-}C_{4}\text{-}\text{alkylsulfinyl, } C_{1}\text{-}C_{4}\text{-}\text{alkylsulfinyl, } C_{1}\text{-}C_{4}\text{-}\text{haloalkylsulfinyl, } C_{1}\text{-}C_{4}\text{-}\text{haloalkylsulfonyl, } C_{1}\text{-}C_{4}\text{-}\text{-}\text{haloalkylsulfonyl, } C_{1}\text{-}C_{4}\text{-}\text{haloalkylsulfonyl, } C_{1}\text{-}C_{4}\text{-}\text{haloalkylsulfonyl, } C_{1}\text{-}C_{4}\text{-}\text{-$

- R⁹—represents C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, C₁-C₄-haloalkylsulfinyl or halogen,
- R¹⁰—represents hydrogen, C₁-C₄-alkyl, C₁-C₄-haloalkyl, halogen, cyano or C₁-C₄-haloalkoxy,
- R^{11} in each case independently of one another represent in each case optionally monoto trisubstituted C_1 - C_6 -alkylthio, C_1 - C_6 -alkylsulfenyl, C_1 - C_6 -haloalkythio, C_1 - C_6 -haloalkylsulfenyl, phenylthio or phenylsulfenyl, where the substituents independently of one another may be selected from the list consisting of W, $S(O)_nN(R^{16})_2$, $C(=O)R^{13}$, $L(C=O)R^{14}$, $S(C=O)LR^{14}$, $C(=O)LR^{13}$, $S(O)_nNR^{13}C(=O)LR^{14}$, and $S(O)_nNR^{13}S(O)_2LR^{14}$,
- L in each case independently of one another represent O, NR¹⁸ or S,
- R¹² in each case independently of one another represent $-B(OR^{17})_2$, amino, SH, thiocyanato, C_3 - C_8 -trialkylsilyloxy, C_1 - C_4 -alkyl disulfide, SF₅, $-C(=E)R^{19}$, $-LC(=E)R^{19}$, $-C(=E)LR^{19}$, $-LC(=E)LR^{19}$, $-OP(=Q)(OR^{19})_2$, $-SO_2LR^{19}$ or $-LSO_2LR^{19}$;
- O represents O or S,
- in each case independently of one another represent hydrogen or represent in each case optionally mono or polysubstituted C_1 - C_6 -alkyl, C_2 - C_6 -alkynyl or C_3 - C_6 -cycloalkyl, where the substituents independently of one another may be selected from the group consisting of R^6 , halogen, cyano, nitro, hydroxyl, C_1 - C_4 -alkoxy, C_1 - C_4 -alkylsulfinyl, C_1 - C_4 -alkylsulfonyl, C_1 - C_4 -alkylamino, C_2 - C_8 -dialkylamino, C_3 - C_6 -cycloalkylamino and $(C_1$ - C_4 -alkyl) C_3 - C_6 -cycloalkylamino,

- phenyl, where the substituents independently of one another may be selected from one to three radicals W or one or more radicals R¹²,
- in each case independently of one another represent hydrogen or represent in each case mono- or polysubstituted C_1 - C_6 -haloalkyl- or C_1 - C_6 -alkyl, where the substituents independently of one another may be selected from the group consisting of cyano, nitro, hydroxyl, C_1 - C_4 -alkoxy, C_1 - C_4 -haloalkoxy, C_1 - C_4 -alkylthio, C_1 - C_4 -alkylsulfinyl, C_1 - C_4 -alkylsulfonyl, C_1 - C_4 -haloalkylthio, C_1 - C_4 -haloalkylsulfinyl, C_1 - C_4 -haloalkylsulfonyl, C_1 - C_4 -alkylamino, C_2 - C_6 -alkoxycarbonyl, C_3 - C_6 -trialkylsilyl and optionally substituted phenyl, where the substituents independently of one another may be selected from one to three radicals W or one or more radicals R^{12} , or $N(R^{15})_2$ represents a cycle which forms the ring M,
- R¹⁶ represents C₁-C₁₂-alkyl-or C₁-C₁₂-haloalkyl, or N(R¹⁶)₂ represents a cycle which forms the ring M,
- R¹⁷ in each case independently of one another represent hydrogen or C₁-C₄-alkyl, or B(OR¹⁷)₂ represents a ring, where the two oxygen atoms are attached via a chain to two or three carbon atoms which are optionally substituted by one or two substituents independently of one another selected from the group consisting of methyl and C₂-C₆-alkoxycarbonyl,
- R¹⁸ in each case independently of one another represent hydrogen, C₁-C₆-alkyl or C₁-C₆-haloalkyl, or N(R¹³)(R¹⁸) represents a cycle which forms the ring M.
- R¹⁹— in each case independently of one another represent hydrogen or represent in each case optionally mono- or polysubstituted C₁-C₆-alkyl, where the substituents independently of one another may be selected from the group consisting of cyano, nitro, hydroxyl, C₁-C₄-alkoxy, C₁-C₄-haloalkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulfinyl, C₁-C₄-alkylsulfonyl, C₁-C₄-haloalkylsulfinyl, C₁-C₄-haloalkylsulfonyl, C₁-C₄-alkylamino, C₂-C₆-alkoxycarbonyl, C₂-C₆-alkylcarbonyl, C₃-C₆-trialkylsilyl and optionally substituted phenyl,

where the substituents independently of one another may be selected from one to three radicals W, C₁-C₆-haloalkyl, C₃-C₆-cycloalkyl or phenyl or pyridyl, each of which is optionally mono- to trisubstituted by W,

- in each case represents an optionally mono—to tetrasubstituted ring which, in addition to the nitrogen atom which is attached to the substituent pair R¹³—and R¹⁸, (R¹⁵)₂—or (R¹⁶)₂, contains two to six carbon atoms—and optionally additionally—a further nitrogen, sulfur or oxygen atom, and where the substituents independently of one another may be selected from the group consisting of C₁-C₂-alkyl, halogen, cyano, nitro and C₁-C₂-alkoxy,
- in each case independently of one another represent C₁-C₄-alkyl, C₂-C₄-alkynyl, C₃-C₆-cycloalkyl, C₁-C₄-haloalkyl, C₂-C₄-haloalkynyl, C₃-C₆-halocycloalkyl, halogen, cyano, nitro, C₁-C₄-alkoxy, C₁-C₄-haloalkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulfinyl, C₁-C₄-alkylsulfonyl, C₁-C₄-alkylamino, C₂-C₈-dialkylamino, C₃-C₆-cycloalkylamino, (C₁-C₄-alkyl)C₃-C₆-cycloalkylamino, C₂-C₄-alkylamino-carbonyl, C₂-C₆-alkylamino-carbonyl, C₃-C₆-trialkylsilyl,
- n in each case independently of one another represent-0 or 1,
- p in each case independently of one another represent 0, 1 or 2,

where in the case that (a) R⁵ represents hydrogen, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₂-C₆-haloalkynyl, C₁-C₄-haloalkoxy, C₁-C₄-haloalkylthio or halogen and (b) R⁸ represents hydrogen, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₂-C₆-haloalkynyl, C₁-C₄-haloalkoxy, C₁-C₄-haloalkylthio, halogen, C₂-C₄-alkylcarbonyl, C₂-C₆-alkoxycarbonyl, C₂-C₆-alkylaminocarbonyl or C₃-C₈ dialkylaminocarbonyl, (c) at least one substituent selected from the group consisting of R⁶, R¹¹ and R¹² is present and (d), if R¹² is not present, at least one R⁶ or R¹¹ is different from C₂-C₆-alkylcarbonyl, C₂-C₆-alkoxycarbonyl, C₂-C₆-alkylaminocarbonyl and C₃-C₈-dialkylaminocarbonyl, and the compounds of the general formula (I) also include N-oxides and salts,

and at least one pyrethroid compound selected from the group consisting of

(2-1) acrinathrin

$$F_3C$$
 CF_3
 CH_3
 CN
 CN

(2-3) betacyfluthrin

(2-5) cypermethrin

(2-6) deltamethrin

(2-12) lambda-cyhalothrin

(2-14) taufluvalinate

Reply to Office Action of April 28, 2009

$$F_3C$$
 H_3C CH_3 , and

(2-24) gamma-cyhalothrin

wherein said anthranilamide of formula (I) and said at least one pyrethroid compound are in a ratio of from 50:1 to 1:5, and a synergistically effective amount wherein said composition is suitable for controlling animal pests.

- 2. (Cancelled)
- 3. (Cancelled)
- 4. (Cancelled)
- 5. (Currently amended) A method for controlling animal pests comprising contacting animal pests with a synergistically effective mixture comprising a compound of the formula (I) and said at least one pyrethroid compound composition according to claim 1.
- 6. (Currently amended) A process for preparing pesticides, comprising mixing the composition according to claim 1 or 2 with extenders or surfactants or a mixture thereof.
- 7. (Cancelled)