University of Wrocław: Algorithms for Big Data (Fall'19)

02/12/2019

Lecture 8: Sparse FFT

Lecturer: Przemysław Uznański

Scribe: -

1 Sparse FFT - no noise

Assume wlog n is power of two.

Plan of solution: Define $p_{d,\ell}(x) = \sum_{i:i \text{ mod } 2^\ell = d} \hat{a}_i x^i$, and for short $p(x) = p_{0,0}(x) = \sum_i \hat{a}_i x^i$. and for a polynomial f(x) we write for any polynomial $||f||_2^2 = \sum_i f_i^2$.

1. Define $S_{\ell} = \{i : ||p_{i,\ell}||^2 > 0\}$

2. Given S_{ℓ} , compute $S_{\ell+1}$: for each $d \in S_{\ell}$, test for $e \in \{d, d+2^{\ell}\}$ whether $||p_{e,\ell+1}||^2 > 0$ and if so, add e to $S_{\ell+1}$.

3. $p_{i,\log n}(1) = \hat{a}_i$

The idea is to start at level 0 and proceed. The size of each S_{ℓ} is bounded by k, thus the total number of steps (2) done is $\mathcal{O}(k \log n)$.

A few identities:

By inverse Fourier transform

$$p(\omega^t)/\sqrt{n} = \frac{1}{\sqrt{n}} \sum_i \hat{a}_i \omega^{it} = a_{-t}$$

By Parseval's theorem

$$||p||_2^2 = \sum_i \hat{a}_i^2 = \sum_i a_i^2 = \frac{1}{n} \sum_i |p(\omega^i)|^2$$

SO

$$||p_{d,\ell}||_2^2 = \frac{1}{n} \sum_{i=0}^{n-1} |p_{d,\ell}(\omega^i)|^2$$

Additionally

$$\frac{1}{2^{\ell}} \sum_{i=0}^{2^{\ell}-1} a_{-t-i\frac{n}{2^{\ell}}} \omega^{-di\frac{n}{2^{\ell}}} = \frac{1}{2^{\ell}} \sum_{i=0}^{2^{\ell}-1} p(\omega^{t+i\frac{n}{2^{\ell}}}) \omega^{-di\frac{n}{2^{\ell}}}$$

$$= \frac{1}{2^{\ell}} \sum_{i=0}^{2^{\ell}-1} \sum_{j=0}^{n-1} \hat{a}_{j} (\omega^{t+i\frac{n}{2^{\ell}}})^{j} \omega^{-di\frac{n}{2^{\ell}}}$$

$$= \sum_{j=0}^{n-1} \hat{a}_{j} \omega^{tj} \frac{1}{2^{\ell}} \sum_{i=0}^{2^{\ell}-1} \omega^{i(j-d)\frac{n}{2^{\ell}}}$$

$$= \sum_{j=0}^{n-1} \hat{a}_{j} \omega^{tj} [j - d = 0 \mod 2^{\ell}]$$

$$= p_{d,\ell}(\omega^{t})$$

Estimating sum via sampling: Lets say we have a_1, \ldots, a_n such that $|a_i| \leq H$. We can use $\mathcal{O}(H^2/\varepsilon^2)$ $\log n$) samples to obtain $\pm \varepsilon$ estimate of $\frac{1}{n} \sum_i a_i$, or equivalently $\pm n\varepsilon$ estimate of $\sum_i a_i$, with proof via Hoeffding bound.

First solution: Denote $L = \max |\hat{a}_i|$ and $H = \max |p(\omega^t)|$. Observe that $p_{d,\ell}(\omega^t) \leq H$. Since $p(\omega^t) =$ $\sum_{j} \hat{a}_{j} \omega^{-tj}$, we have $H \leq kL$.

- 1. Estimate $A_{d,\ell,t} \approx p_{d,\ell}(\omega^t)$ using $\mathcal{O}(H^4 \log n)$ samples of $a_{-t-i\frac{n}{2\ell}}\omega^{-di\frac{n}{2\ell}}$, up to error $\pm \frac{1}{16H}$.
- 2. $|A_{d,\ell,t}|^2 |p_{d,\ell}(\omega^t)|^2 \le (|A_{d,\ell,t}| |p_{d,\ell}(\omega^t)|)(|A_{d,\ell,t}| + |p_{d,\ell}(\omega^t)|) \le \frac{1}{16H} \cdot 2H \le \frac{1}{4}$
- 3. $\|p_{d,\ell}\|_2^2 = \frac{1}{n} \sum_{t=0}^{n-1} |p_{d,\ell}(\omega^t)|^2 = \frac{1}{n} \sum_{t=0}^{n-1} (|A_{d,\ell,t}|^2 \pm \frac{1}{4}) = (\sum_{t=0}^{n-1} |A_{d,\ell,t}|^2) \pm 1/4$
- 4. We have $|A_{d \ell t}|^2 = \mathcal{O}(H^2)$.
- 5. We sample $\mathcal{O}(H^4 \log n)$ of $|A_{d,\ell,t}|^2$ to estimate $||p_{d,\ell}||_2^2$ up to $\pm \frac{1}{2}$.
- 6. In total $\mathcal{O}(H^8 \log^2 n) = \mathcal{O}(k^8 L^8 \log^2 n)$ samples to compute such estimate.

Applying to our tree-traversal, we get $\mathcal{O}(k^9L^8\log^3 n)$ complexity. Once we have the indices of non-zero coefficients, we extract the exact values:

$$\hat{a}_d = p_{d,\log n}(\omega^0) = \frac{1}{n} \sum_{i=0}^{n-1} a_i \omega^{di}$$

via sampling.

Second solution: Let T be a support of \hat{a}_i , that is $i \in T$ iff $\hat{a}_i \neq 0$. Using $\mathcal{O}(k^8 \log^2 n)$ samples we

estimate $||p_{d,\ell}||_2^2$ up to $\pm \frac{L^2}{16}$. Using $\mathcal{O}(k^9 \log^3 n)$ samples we find $T' \subseteq T$ such that if $|\hat{a}_i| \ge L/4$ then $i \in T'$, and $\hat{a}_i' = \hat{a}_i \pm L/4$, where \hat{a}'_i is defined only over T'.

Recurse on $(\hat{a}'_i - \hat{a}_i)$. Specifically, this sequence is also k-sparse, and max-value is L/2.

This makes it so the total complexity is $\mathcal{O}(k^9 \log^3 n \cdot \log_2 L)$.

2 Another algorithm, noisy case

2.1 k = 1

There is some heavy \hat{a}_u such that $\sum_{u'\neq u} |\hat{a}_{u'}|^2 \leq \varepsilon |\hat{a}_u|^2$, for some small constant ε . Idea: extract u bit-by-bit.

No noise: If $u = 2v + b_0$ for $b_0 \in \{0,1\}$, then $a_{n/2} = \frac{1}{\sqrt{n}} \hat{a}_u \omega^{un/2} = \frac{1}{\sqrt{n}} \hat{a}_u \omega^{vn + b_0 n/2} = \frac{1}{\sqrt{n}} \hat{a}_u \omega^{b_0 n/2} = \frac{1}{\sqrt{n}} \hat{a}_u (-1)^{b_0}$. Then, $a_0 = \frac{1}{\sqrt{n}} \hat{a}_u$. Thus we can use following test:

$$b_0 = 0$$
 iff $|a_0 - a_{n/2}| \le |a_0 + a_{n/2}|$

How to test for older bits? Assume wlog that $b_0 = 0$, since if $b_0 = 1$, we can always consider signal a' defined as $a'_j = a_j \cdot \omega^j$, where $\hat{a}'_j = \hat{a}_{j-1}$. So $u = 4v' + 2b_1$, where $b_1 \in \{0, 1\}$. We then observe that $a_{n/4} = \frac{1}{\sqrt{n}} \hat{a}_u (-1)^{b_1}$, so the test is then

$$b_1 = 0$$
 iff $|a_0 - a_{n/4}| \le |a_0 + a_{n/4}|$

So we can proceed with all the bits in this manner.

Noisy case: Consider test for bit 0. If the noise is concentrated around a_0 and $a_{n/2}$, then such test fails. But we know that on average the noise is small. Thus we replace the test with a randomized one: pick $0 \le r < n$ at random, and test:

$$b_0 = 0$$
 iff $|a_r - a_{r+n/2}| \le |a_r + a_{r+n/2}|$

(we can do many tests and pick majority vote) and in general

$$b_{i-1} = 0$$
 iff $|a_r - a_{r+n/2^i}| \le |a_r + a_{r+n/2^i}|$

of course assuming $b_0 = b_1 = ... = b_{i-2} = 0$, and changing the signal accordingly.

Why does it work?

Let \hat{a}' be the output. We show that with ppb at least 3/4 there is $\|\hat{a} - \hat{a}'\|_2 \le \varepsilon \|\hat{a} - \hat{a}^{(1)}\|_2$, where $\hat{a}^{(1)}$ is the top coefficient, so $\hat{a} - \hat{a}^{(1)}$ is the noise.

We rewrite

$$a_j = \frac{1}{\sqrt{n}} \hat{a}_u \omega^{uj} + \frac{1}{\sqrt{n}} \sum_{u' \neq u} \hat{a}_{u'} \omega^{u'j} = \frac{1}{\sqrt{n}} \hat{a}_u \omega^{uj} + \mu_j$$

SO

$$a = F^{-1}\hat{a}^{(1)} + \mu$$

Looking at the error

$$\sum_{j=0}^{n-1} |\mu_j|^2 = \|\mu\|_2^2 = \|F^{-1}(\hat{a} - \hat{a}^{(1)})\|_2^2 = \|\hat{a} - \hat{a}^{(1)}\|_2^2 = \sum_{u' \neq u} |\hat{a}_{u'}|^2$$

Algorithm at single step compares $|a_k - a_\ell|$ vs $|a_k + a_\ell|$. We have

$$a_k - a_\ell = \frac{1}{\sqrt{n}} \hat{a}_u (\omega^{uk} - \omega^{u\ell}) + (\mu_k - \mu_\ell)$$

$$a_k + a_\ell = \frac{1}{\sqrt{n}}\hat{a}_u(\omega^{uk} + \omega^{u\ell}) + (\mu_k + \mu_\ell)$$

We know that $|\omega^{uk} \pm \omega^{u\ell}| \in \{0,2\}$ so for the comparison to be done correctly, it is enough that $|\mu_k|$ $|\mu_{\ell}| + |\mu_k + \mu_{\ell}| \le 2\frac{1}{\sqrt{n}}\hat{a}_u$, so $|\mu_k| + |\mu_{\ell}| \le \frac{1}{\sqrt{n}}\hat{a}_u$. We now have, since each index is picked with a random shift,

$$\mathbb{E}[|\mu_k|^2] = \frac{1}{n} \sum_{j=0}^{n-1} |\mu_j|^2 = \frac{1}{n} \sum_{u' \neq u} |\hat{a}_{u'}|^2 \le \frac{1}{n} \varepsilon |\hat{a}_u|^2$$

so

$$\Pr[|\mu_k| \le \frac{1}{2\sqrt{n}}|\hat{a}_u|] \le \frac{\frac{1}{n}\varepsilon|\hat{a}_u|^2}{\frac{1}{4n}|\hat{a}_u|^2} = \frac{\varepsilon}{4}$$

So picking $\varepsilon = 1/2$ gives us by union bound 1/4 ppb of success.

Now the trick is to amplify the ppb by repeating each test $\mathcal{O}(\log \log n)$ times and do the majority vote. This amplifies the ppb to $1/(4 \log n)$, so by union bound the whole procedure is ok with 3/4 ppb.

TODO: how to extract the value of \hat{a}_u .