WHAT IS CLAIMED IS:

1. A compound of Formula IA:

Formula IA

or a pharmaceutically acceptable salt thereof, wherein

A is oxygen, sulfur or NR;

R is C₁-C₇alkyl, C₂-C₇alkenyl, C₂-C₇alkynyl, C₁-C₆haloalkyl, (C₃-C₁₀carbocycle)C₁-C₄alkyl or (4- to 7-membered heterocycloalkyl)C₁-C₄alkyl, each of which is substituted with from 0 to 3 substituents independently chosen from hydroxy, halogen, amino, cyano, oxo, C₁-C₄alkyl, C₁-C₄alkoxy and C₁-C₂alkoxycarbonyl;

x is 0, 1 or 2;

5

10

20

25

30

J, K and each occurrence of L are chosen from oxygen, sulfur, NH and CH₂; such that no more than one of J, K and L is chosen from oxygen, sulfur and NH;

15 R_1 is chosen from:

- i) hydrogen, hydroxy, halogen, amino, cyano, nitro, -CHO, -CONH₂, C₁-C₆haloalkyl and C₁-C₆haloalkoxy;
- ii) C₁-C₆alkyl, C₂-C₇alkenyl, C₂-C₇alkynyl, C₂-C₆alkanoyl, C₁-C₆alkoxy, (C₃-C₇cycloalkyl)C₀-C₄alkyl, (4- to 10-membered heterocycloalkyl)C₀-C₄alkyl, monoand di-(C₁-C₆alkyl)aminoC₀-C₆alkyl, mono- and di-(C₁-C₆alkyl)carboxamide, C₁-C₆alkoxycarbonyl, -SO_n(C₁-C₆alkyl), -NHSO_nC₁-C₆alkyl, -(C₀-C₆alkyl)SO_n(C₁-C₆alkyl), -SO_nN(C₁-C₆alkyl)(C₁-C₆alkyl), and -SO_n-phenyl, wherein each n is independently 0, 1 or 2, and each of which is substituted with from 0 to 3 substituents independently chosen from hydroxy, halogen, amino, cyano, oxo, C₁-C₄alkyl, C₁-C₄alkoxy and C₁-C₂alkoxycarbonyl; and
- iii) naphthyl, phenyl and 5- to 10-membered heteroaryl, each of which is substituted with from 0 to 3 substituents independently chosen from R₁₁;

R₂ and R₃ are independently hydrogen or C₁-C₆alkyl;

R₄ represents 1 substituent chosen from:

i) C₁-C₆alkyl, C₂-C₆alkenyl, C₂-C₆alkynyl, C₁-C₆alkoxycarbonyl, (C₃-C₇cycloalkyl)C₀-C₄alkyl and hexahydro-1,3-benzodioxolyl;

- ii) aryl having 1 ring or 2 fused or pendant rings;
- iii) (4- to 10-membered heterocycloalkyl)C₀-C₄alkyl;
- iv) phenyl fused to a 5- to 7-membered saturated or partially unsaturated ring that (a) has 0, 1 or 2 ring atoms independently chosen from N, O and S, with remaining ring atoms being carbon, and (b) is substituted with from 0 to 3 substituents independently chosen from halogen, C₁-C₈alkyl, C₁-C₈alkoxy, C₁-C₈haloalkyl, C₁-C₈haloalkoxy;
- v) (5- to 10-membered heteroaryl)C₀-C₄alkyl, having 1 ring or 2 fused or pendant rings, from 5 to 7 members in each ring, and in at least one ring from 1 to 3 heteroatoms independently selected from N, O, and S, wherein R₄ is not pyrimidyl; and
- vi) groups that are taken together with an R₅ moiety to form a fused phenyl or pyridyl ring;

wherein each of i), ii), iii), iv), v) and vi) is substituted with from 0 to 3 substituents independently chosen from R_{11} ;

R₅ represents from 0 to 3 substituents independently chosen from hydroxy, halogen, amino, cyano, nitro, -CHO, -CONH₂, C₁-C₂haloalkyl, C₁-C₂haloalkoxy, C₁-C₆alkyl, C₁-C₆alkoxy, C₃-C₇cycloalkylC₀-C₄alkyl, mono- and di-(C₁-C₆alkyl)aminoC₀-C₆alkyl, optionally substituted phenyl, and groups that are taken together with R₄ to form a fused, optionally substituted phenyl or pyridyl ring; and

Ar₁ represents

5

10

15

20

25

- i) phenyl or naphthyl, each of which is substituted with from 0 to 3 substituents independently chosen from amino, cyano, C₁-C₄alkyl, C₁-C₄alkoxy, C₁-C₂haloalkyl, C₁-C₂haloalkoxy, -COOH, -CONH₂, mono- and di-(C₁-C₄alkyl)amino, C₂-C₄alkanoyl, C₁-C₄sulfonate, C₁-C₄alkylsulfonyl, C₁-C₄alkylsulfinyl, C₁-C₄alkylthio, C₃-C₆alkanone, C₂-C₄alkyl ether, C₂-C₄alkanoyloxy, C₁-C₄alkoxycarbonyl and C₁-C₆alkylcarboxamide;
 - ii) phenyl fused to a 5- to 7-membered saturated or partially unsaturated ring that (a) has 0, 1 or 2 ring atoms independently chosen from N, O and S, with remaining ring atoms being carbon, and (b) is substituted with from 0 to 3 substituents independently chosen from halogen, C₁-C₄alkyl, C₁-C₄alkoxy, C₁-C₂haloalkyl and C₁-C₂haloalkoxy; or
 - iii) heteroaryl, having 1 ring or 2 fused or pendant rings, from 5 to 7 members in each ring, and in at least one ring from 1 to 3 heteroatoms independently selected from N, O, and S;

wherein each of ii) and iii) is substituted with from 0 to 3 substituents independently chosen from R_{11} ; and

R₁₁ is independently chosen at each occurrence from hydroxy, halogen, amino, cyano, C₁-C₆alkyl, C₁-C₆alkoxy, C₁-C₆haloalkyl, C₁-C₆haloalkoxy, -COOH, -CONH₂, -SO₂NH₂, mono- and di-(C₁-C₆alkyl)amino, C₂-C₆alkanoyl, C₁-C₆sulfonate, C₁-C₆alkylsulfonyl, C₁-C₆alkylsulfinyl, C₁-C₆alkylthio, C₃-C₆alkanone, C₂-C₆alkyl ether, C₂-C₆alkanoyloxy, C₁-C₆alkoxycarbonyl and C₁-C₆alkylcarboxamide.

2. A compound or salt according to claim 1, wherein:

R is chosen from C₁-C₇alkyl, C₂-C₇alkenyl, C₂-C₇alkynyl, (C₃-C₇cycloalkyl)C₁-C₄alkyl and (4- to 7-membered heterocycloalkyl)C₁-C₄alkyl, each of which is substituted with from 0 to 3 substituents independently chosen from hydroxy, halogen, amino, cyano, oxo, C₁-C₄alkyl, C₁-C₄alkoxy and C₁-C₂alkoxycarbonyl;

R₁ is chosen from:

5

15

20

25

- i) hydrogen, hydroxy, halogen, amino, cyano, nitro, -CHO, -CONH₂, C₁-C₆haloalkyl and C₁-C₆haloalkoxy;
 - ii) C₁-C₆alkyl, C₁-C₆alkenyl, C₁-C₆alkynyl, C₁-C₆alkoxy, (C₃-C₇cycloalkyl)C₀-C₂alkyl, (4- to 10-membered heterocycloalkyl)C₀-C₂alkyl, and mono- and di-(C₁-C₆alkyl)carboxamide, each of which is substituted with from 0 to 3 substituents independently chosen from hydroxy, halogen, amino, cyano, oxo, C₁-C₄alkyl and C₁-C₄alkoxy, and
 - iii) naphthyl, phenyl, pyridyl, thiazolyl, pyrimidinyl and thienyl, each of which is substituted with from 0 to 3 substituents independently chosen from hydroxy, halogen, amino, cyano, -COOH, -CONH₂, -SO₂NH₂, C₁-C₆haloalkyl, C₁-C₆haloalkoxy, C₁-C₆alkyl, C₁-C₆alkoxy, C₂-C₆alkanoyl, C₁-C₆alkylsulfonyl, C₁-C₆alkylsulfinyl, C₁-C₆alkylthio, C₃-C₆alkanone, C₂-C₆alkylether, C₂-C₆alkanoyloxy, C₁-C₆alkoxycarbonyl and C₁-C₆alkylcarboxamide;

 R_4 :

i) represents C₁-C₆alkyl, C₂-C₇alkenyl, C₂-C₇alkynyl, C₁-C₆alkoxycarbonyl, (C₃-C₇cycloalkyl)C₀-C₄alkyl, hexahydro-1,3-benzodioxolyl, phenyl, naphthyl or (4- to 7-membered heterocycloalkyl)C₀-C₄alkyl, each of which is substituted with from 0 to 3 substituents independently chosen from hydroxy, halogen, amino, cyano, C₁-C₄alkyl, C₁-C₄alkoxy, C₁-C₂haloalkyl, C₁-C₂haloalkoxy, -COOH, -CONH₂, mono- and di-(C₁-C₄alkyl)amino, C₂-C₄alkanoyl, C₁-C₄sulfonate, C₁-C₄alkylsulfonyl, C₁-C₄

5

10

15

20

- C_4 alkylsulfinyl, C_1 - C_4 alkylthio, C_3 - C_6 alkanone, C_2 - C_4 alkyl ether, C_2 - C_4 alkanoyloxy, C_1 - C_4 alkoxycarbonyl, and C_1 - C_6 alkylcarboxamide; or
- ii) is phenyl fused to a 5- to 7-membered saturated or partially unsaturated ring that (a) has 0, 1 or 2 ring atoms independently chosen from N, O and S, with remaining ring atoms being carbon, and (b) is substituted with from 0 to 3 substituents independently chosen from halogen, C₁-C₄alkyl, C₁-C₄alkoxy, C₁-C₂haloalkyl and C₁-C₂haloalkoxy; or
- iii) is taken together with an R₅ moiety to form a fused phenyl or pyridyl ring that is substituted with from 0 to 3 substituents independently chosen from hydroxy, halogen, amino, cyano, C₁-C₄alkyl, C₁-C₄alkoxy, C₁-C₂haloalkyl, C₁-C₂haloalkoxy, COOH, -CONH₂, and mono- and di-(C₁-C₄alkyl)amino;
- R₅ represents from 0 to 3 substituents independently chosen from hydroxy, halogen, amino, cyano, C₁-C₄alkyl, C₁-C₄alkoxy, C₁-C₂haloalkyl, C₁-C₂haloalkoxy, -COOH, -CONH₂, mono- and di-(C₁-C₄alkyl)amino, and groups that are taken together with R₄ to form a fused, optionally substituted phenyl or pyridyl ring; and
- Ar₁ represents phenyl, naphthyl, pyridyl, pyrimidinyl, pyridizinyl, pyrazinyl, pyrazolyl, imidazolyl, thiazolyl, isothiazolyl, pyrrolyl, oxazolyl, furanyl, indazolyl or thienyl, each of which is substituted with from 0 to 3 substituents independently chosen from amino, cyano, C₁-C₄alkyl, C₁-C₄alkoxy, C₁-C₂haloalkyl, C₁-C₂haloalkoxy, -COOH, -CONH₂, mono- and di-(C₁-C₄alkyl)amino, C₂-C₄alkanoyl, C₁-C₄sulfonate, C₁-C₄alkylsulfonyl, C₁-C₄alkylsulfinyl, C₁-C₄alkylthio, C₃-C₆alkanone, C₂-C₄alkyl ether, C₂-C₄alkanoyloxy, C₁-C₄alkoxycarbonyl and C₁-C₆alkylcarboxamide.
 - 3. A compound or salt according to claim 1 or claim 2, wherein A is oxygen.
 - 4. A compound or salt according to claim 1 or claim 2, wherein A is sulfur.
 - 5. A compound or salt according to claim 1 or claim 2, wherein A is NR.
- 6. A compound or salt according to claim 1 or claim 2, wherein the compound satisfies Formula II:

$$R_1$$
 R_2
 R_3
 R_4

Formula II.

7. A compound or salt according to claim 1 or claim 2, wherein the compound satisfies Formula III:

Formula III.

8. A compound or salt according to claim 1 or claim 2, wherein the compound satisfies Formula IV:

$$R_1$$
 R_2
 R_3
 R_4

Formula IV.

10

5

9. A compound or salt according to claim 1 or claim 2, wherein the compound satisfies Formula V:

$$Ar_1 \xrightarrow{N} \begin{array}{c} R_1 \\ N \\ R_2 \\ R_3 \\ R_4 \end{array}$$

Formula V.

15 10. A compound or salt according to claim 1 or claim 2, wherein the compound satisfies Formula VI:

$$R_1$$
 R_2
 R_3
 R_4

Formula VI.

11. A compound or salt according to claim 1 or claim 2, wherein the compound satisfies Formula VII:

$$Ar_1 = \begin{pmatrix} R_1 & R_5 & R_4 \\ N & R_2 & R_3 \end{pmatrix}$$

Formula VII.

12. A compound or salt according to claim 1 or claim 2, wherein the compound satisfies Formula VIII:

$$Ar_1 \xrightarrow{R_1} \xrightarrow{R_5} \xrightarrow{$$

Formula VIII

wherein:

5

15

K is CH2 or NH; and

- 10 R₆ represents from 0 to 3 substituents independently chosen from hydroxy, halogen, amino, cyano, C₁C₄alkyl, C₁-C₄alkoxy, C₁-C₂haloalkyl, C₁-C₂haloalkoxy, -COOH, -CONH₂ and mono- and di-(C₁-C₄alkyl)amino.
 - 13. A compound or salt according to claim 12, wherein A is NR and K is CH₂.
 - 14. A compound or salt according to claim 1 or claim 2, wherein the compound satisfies Formula IX:

$$Ar_1$$
 Ar_1
 Ar_2
 R_3
 R_3

Formula IX.

20 . 15. A compound or salt according to claim 1 or claim 2, wherein the compound satisfies Formula X:

16. A compound or salt according to claim 1 or claim 2, wherein the compound satisfies Formula XI:

$$R_1$$
 R_2
 R_3
 R_4
Formula XI.

17. A compound or salt according to claim 1 or claim 2, wherein the compound

5

satisfies Formula XII:

$$R_1$$
 R_2
 R_3
 R_4
 R_4
 R_5
 R_6
 R_6

Formula XII

- wherein R₆ represents from 0 to 3 substituents independently chosen from hydroxy, halogen, amino, cyano, C₁C₄alkyl, C₁-C₄alkoxy, C₁-C₂haloalkyl, C₁-C₂haloalkoxy, -COOH, -CONH₂ and mono- and di-(C₁-C₄alkyl)amino.
 - 18. A compound or salt according to any one of claims 1 to 17, wherein R_2 and R_3 are both hydrogen.
- 19. A compound or salt according to any one of claims 1 to 18, wherein Ar₁ is phenyl, pyridyl, indazolyl or thienyl, each of which is substituted with 0 to 3 substituents independently chosen from C₁-C₄alkyl, C₁-C₄alkoxy, C₁-C₂haloalkyl, C₁-C₂haloalkoxy and mono- and di-(C₁-C₂alkyl)amino.
- 20. A compound or salt according to claim 19, wherein Ar₁ is phenyl or mono- or disubstituted phenyl.
 - 21. A compound or salt according to claim 20, wherein Ar₁ is phenyl substituted with one or two substituents independently chosen from ethyl and methyl.

22. A compound or salt according to claim 21, wherein Ar₁ is 2,6-disubstituted phenyl.

- 23. A compound or salt according to any one of claims 2 through 22, wherein R₁ is:
- i) halogen;

5

10

20

25

- ii) C₁-C₆alkyl, C₂-C₆alkenyl, C₁-C₆alkoxy, (C₃-C₇cycloalkyl)C₀-C₄alkyl, pyrrolidinylC₀-C₂alkyl, morpholinylC₀-C₂alkyl, piperinylC₀-C₂alkyl or piperazinylC₀-C₂alkyl, each of which is substituted with from 0 to 3 substituents independently chosen from hydroxy, halogen, amino, cyano, oxo, C₁-C₄alkyl and C₁-C₄alkoxy; or
- iii) phenyl or pyridyl, each of which is substituted with from 0 to 3 substituents independently chosen from hydroxy, halogen, amino, cyano, -COOH, -CONH₂, -SO₂NH₂, C₁-C₂haloalkyl, C₁-C₂haloalkoxy, C₁-C₆alkyl, C₁-C₆alkoxy, and mono- and di-(C₁-C₄alkyl)amino.
- 24. A compound or salt according to claim 23, wherein R_1 is halogen, C_1 - C_2 alkyl, C_1 - C_2 alkoxy, or pyrrolidinyl C_1 - C_2 alkyl.
- 25. A compound or salt according to claim 23, wherein R₁ is phenyl or pyridyl, each of which is substituted with from 0 to 3 substituents independently chosen from hydroxy, halogen, amino, cyano, -COOH, -CONH₂, -SO₂NH₂, C₁-C₂haloalkyl, C₁-C₂haloalkoxy, C₁-C₆alkyl, C₁-C₆alkoxy, and mono- and di-C₁-C₄alkylamino.
 - 26. A compound or salt according to any one of claims 5 through 25, wherein R is C₁-C₇alkyl, C₂-C₇alkenyl, (C₃-C₇cycloalkyl)C₁-C₄alkyl or (1,3-dioxylan-2-yl)C₁-C₄alkyl, each of which is substituted with from 0 to 3 substituents independently chosen from hydroxy, halogen, amino, cyano, oxo, C₁-C₄alkyl and C₁-C₄alkoxy.
 - 27. A compound or salt according to claim 26 wherein R is C_1 - C_5 alkyl, C_2 - C_4 alkenyl or (1,3-dioxylan-2-yl) C_1 - C_4 alkyl, each of which is substituted with from 0 to 3 substituents independently chosen from hydroxy, halogen, amino, C_1 - C_4 alkyl and C_1 - C_4 alkoxy.
 - 28. A compound or salt according to any one of claims 3 to 27, wherein R₄ is C₁-C₆alkyl, C₁-C₆alkoxycarbonyl or C₃-C₇ cycloalkyl, each of which is substituted with from 0 to 3 substituents independently chosen from hydroxy, halogen, amino, cyano, C₁-C₂alkyl, C₁-C₂alkoxy, C₁-C₂haloalkyl, C₁-C₂haloalkoxy, -COOH, -CONH₂, and mono- and di-(C₁-C₄alkyl)amino.

29. A compound or salt according to any one of claims 3 to 27, wherein R_4 is phenyl C_0 - C_1 alkyl, pyridyl C_0 - C_1 alkyl, pyrimidyl C_0 - C_1 alkyl, thienyl C_0 - C_1 alkyl, naphthyl C_0 - C_1 alkyl, indolyl C_0 - C_1 alkyl, benzoxadiazolyl C_0 - C_1 alkyl, benzoxazolyl C_0 - C_1 alkyl, quinazolinyl C_0 - C_1 alkyl, benzothiazolyl C_0 - C_1 alkyl or benzimidazolyl C_0 - C_1 alkyl, each of which is substituted with from 0 to 2 substituents independently chosen from hydroxy, halogen, amino, cyano, C_1 - C_2 alkyl, C_1 - C_2 alkoxy, C_1 - C_2 haloalkyl, C_1 - C_2 haloalkoxy and mono- and di- $(C_1$ - C_2 alkyl)amino.

5

10

15

20

25

- 30. A compound or salt according to any one of claims 3 to 27, wherein R₄ is phenyl or pyridyl, each of which is substituted with from 0 to 3 substituents independently chosen from hydroxy, halogen, amino, cyano, C₁-C₄alkyl, C₁-C₄alkoxy, C₁-C₂haloalkyl, C₁-C₂haloalkoxy, -COOH, -CONH₂, mono- and di-(C₁-C₄alkyl)amino, C₂-C₄alkanoyl, C₁-C₄sulfonate, C₁-C₄alkylsulfonyl, C₁-C₄alkylsulfinyl, C₁-C₄alkylsulfinyl, C₁-C₄alkylsulfinyl, C₁-C₆alkylcarboxamide.
- 31. A compound or salt according to claim 30, wherein R₄ is phenyl or pyridyl, each of which is substituted with from 0 to 3 substituents independently chosen from hydroxy, halogen, amino, cyano, C₁-C₄alkyl, C₁-C₂alkoxy, C₁-C₂haloalkyl, C₁-C₂haloalkoxy, -COOH, -CONH₂, mono- and di-(C₁-C₂alkyl)amino, C₁-C₂alkoxycarbonyl and C₁-C₂alkylcarboxamide.
- 32. A compound or salt according to any one of claims 3 to 27, wherein R₄ is phenyl fused to a 5- to 7-membered saturated or partially unsaturated ring that (a) has 0, 1 or 2 ring atoms independently chosen from N, O and S, with remaining ring atoms being carbon, and (b) is substituted with from 0 to 3 substituents independently chosen from halogen, C₁-C₄alkyl, C₁-C₄alkoxy, C₁-C₂haloalkyl, and C₁-C₂haloalkoxy.
- 33. A compound or salt according to claim 32, wherein R₄ represents 1,3-benzodioxol-5-yl, 2,3-dihydro-1-benzofuran-6-yl, 2,3-dihydro-1-benzofuran-5-yl, 2,3-dihydro-1,4-benzodioxin-6-yl, chroman-7-yl, 1,3-benzothiazolyl or 2,3-dihydroindol-5-yl, each of which is substituted with from 0 to 2 substituents independently selected from hydroxy, halogen, amino, cyano, oxo, C₁-C₂haloalkyl, C₁-C₂haloalkoxy, C₁-C₂alkyl, C₁-C₂alkoxy and mono- and di-(C₁-C₂alkyl)amino.
- 34. A compound or salt according to claim 33, wherein R₄ is benzo[1,3]dioxol-5-yl or 2,3-dihydro-benzo[1,4]dioxin-6-yl, each of which is substituted with from 0 to 3

PCT/US2004/021191

WO 2005/007087

5

10

substituents independently chosen from halogen, C_1 - C_2 alkyl, C_1 - C_2 alkoxy, C_1 - C_2 haloalkyl and C_1 - C_2 haloalkoxy.

- 35. A compound or salt according to any one of claims 3 to 27, wherein R₄ is taken together with R₅ to form a fused phenyl or pyridyl ring that is substituted with from 0 to 3 substituents independently chosen from hydroxy, halogen, amino, cyano, C₁-C₄alkyl, C₁-C₄alkoxy, C₁-C₂haloalkyl, C₁-C₂haloalkoxy, -COOH, -CONH₂ and mono- and di-(C₁-C₄)alkylamino.
- 36. A compound or salt according to any one of claims 3 to 33, wherein R_5 represents from 0 to 3 substituents independently chosen from hydroxy, halogen, C_1 - C_2 alkyl, and C_1 - C_2 alkoxy.
- 37. A compound or salt according to any one of claims 1-35, wherein the compound exhibits an IC_{50} of 500 nM or less in a standard *in vitro* C5a receptor-mediated chemotaxis or calcium mobilization assay.
- 38. A compound or salt according to any one of claims 1-35, wherein the compound exhibits an IC₅₀ of 25 nM or less in a standard *in vitro* C5a receptor-mediated chemotaxis or calcium mobilization assay.
 - 39. A compound or salt according to any one of claims 1-35, wherein the compound exhibits less than 5% agonist activity in a GTP binding assay.
- 40. A pharmaceutical composition comprising at least one compound or salt according to any one of claims 1-35, in combination with a physiologically acceptable carrier or excipient.
 - 41. A pharmaceutical composition according claim 40, wherein the pharmaceutical composition is formulated as an injectible fluid, an aerosol, a cream, a gel, a pill, a capsule, a syrup, or a transdermal patch.
- 42. A method for inhibiting signal-transducing activity of a cellular C5a receptor, comprising contacting a cell expressing C5a receptor with at least one compound or salt according to any one of claims 1-35, and thereby reducing signal transduction by the C5a receptor.

43. A method according to claim 42, wherein the cell is contacted *in vivo* in an animal.

- 44. A method according to claim 43, wherein the animal is a human.
- 45. A method for inhibiting binding of C5a to C5a receptor *in vitro*, the method comprising contacting C5a receptor with at least one compound or salt according to any one of claims 1-35, under conditions and in an amount sufficient to detectably inhibit C5a binding to C5a receptor.
 - 46. A method for inhibiting binding of C5a to C5a receptor in a human patient, comprising contacting cells expressing C5a receptor with at least one compound or salt according to any one of claims 1-35, in an amount sufficient to detectably inhibit C5a binding to cells expressing a cloned C5a receptor *in vitro*, and thereby inhibiting binding of C5a to the C5a receptor in the patient.

10

15

- 47. A method for treating a patient suffering from rheumatoid arthritis, psoriasis, cardiovascular disease, reperfusion injury, or bronchial asthma comprising administering to the patient a C5a receptor modulatory amount of a compound or salt according to any one of claims 1-35.
- 48. A method for treating a patient suffering from stroke, myocardial infarction, atherosclerosis, ischemic heart disease, or ischemia-reperfusion injury comprising administering to the patient a C5a receptor modulatory amount of a compound or salt according to any one of claims 1-35.
- 49. A method for treating a patient suffering from cystic fibrosis or sepsis, comprising administering to a patient in need of such treatment a C5a receptor modulatory amount of a compound or salt according to any one of claims 1-35.
- 50. A method for inhibiting C5a receptor-mediated cellular chemotaxis, comprising contacting mammalian white blood cells with a C5a receptor modulatory amount of a compound or salt according to any one of claims 1-35.

51. A method for localizing C5a receptor in a tissue sample, comprising:

- (a) contacting the tissue sample containing C5a receptor with a detectably labeled compound or salt according to any one of claims 1-35 under conditions that permit binding of the compound or salt to C5a receptors; and
- (b) detecting the bound compound or salt.
 - 52. A method according to claim 51, wherein the compound is radiolabeled.
 - 53. A packaged pharmaceutical preparation, comprising:
- (a) a pharmaceutical composition according to claim 40 in a container; and
- (b) instructions for using the composition to treat a patient suffering from rheumatoid arthritis, psoriasis, cardiovascular disease, reperfusion injury, or bronchial asthma.
 - 54. A packaged pharmaceutical preparation, comprising:
- (a) a pharmaceutical composition according to claim 40 in a container; and
- (b) instructions for using the composition to treat stroke, myocardial infarction, atherosclerosis, ischemic heart disease, or ischemia-reperfusion injury.
 - 55. A packaged pharmaceutical preparation, comprising:
- (a) a pharmaceutical composition according to claim 40 in a container; and
- (b) instructions for using the composition to treat a patient suffering from cystic fibrosis or sepsis.

20

15

5