Country Environmental Factors correlated with Happiness

Ritesh Malaiya 2018-12-10

Contents

I Country-Level Environmental Measurements Dataset					
Introduction 1.1 Context 1.2 Content 1.3 Inspiration 1.4 Research Question (scope of this book)	9				
Single Table for Country Environment Dataset	13				
Principal Component Analysis 3.1 Description	15 16 17 28 30 31 35 39 43				
Multiple Component Analysis 4.1 Description 4.2 Density Plot 4.3 Binning 4.4 Spearman Correlation 4.5 Heatmap 4.6 Scree Plot 4.7 Factor Scores 4.8 Loadings 4.9 Loadings (correlation plot) 4.10 Most Contributing Variables (Inference) 4.11 Permutation Test 4.12 Parallet Test 4.13 Bootstrap Test	48 49 49 50 51 57 59 60 64 68				
	Introduction				

4 CONTENTS

II	ГΙ	Two / Multi Table Analysis for Country Environment Dataset	7 5
5	Bar	rycentric Discriminant Analysis	77
	5.1	Description	77
	5.2	Heatmap	78
	5.3	Scree Plot	78
	5.4	Factor Scores	80
	5.5	Loadings	82
	5.6	Most Contributing Variables	82
	5.7	Permutation Test	85
	5.8	Parallet Test	87
	5.9	Bootstrap Test	89
		Conclusion	90
	5.10	Conclusion	90
6	Disc	criminant Correspondence Analysis	91
	6.1	Description	91
	6.2	Density plot	91
	6.3	Binning	92
	6.4	Spearman Correlation	93
	6.5	Heatmap	93
	6.6	Scree Plot	94
	6.7	Factor Scores	96
	6.8	Loadings	98
	6.9	Loadings (correlation plot)	99
		Most Contributing Variables (Inference)	99
		Permutation Test	
		Parallet Test	
		Bootstrap Test	
		Conclusion	
	0.14	Conclusion	107
7	Par	1	L 0 9
	7.1	Description	109
	7.2	Correlation Plot	109
	7.3	PLS-C	110
	7.4	Scree Plot	111
	7.5	Latent Variables	111
	7.6	Salience for Rain	
	7.7	Salience for Temperature	
	7.8	Most Contributing Variables - PLS-C (with Inference)	
	7.9	Conclusion	
8		Itiple Factor Analyis Description	121
	8.1	•	
	8.2	MFA	
	8.3	Scree Plot	
	8.4	Factor Scores	
	8.5	Loadings	
	8.6	Correlation Circle	
	8.7	Conclusion	128
9	DiS	STATIS	129
,	9.1	Description	
	9.1	SCREE Plot - RV-MAT	
	9.2 9.3	Plotting Assessor Matrix	
	9.3	SCREE Plot - SV-MAT	
	J.4	DOI: 100 - D Y = 1/1/1	± 01

CONTENTS 5

9.5 9.6 9.7 9.8	I Set
10 Con	aclusion for all Methods 139
IV C	Other Datasets 141
11 Cor	respondence Analysis 143
11.1	Description
11.2	Dataset - Weekly earnings by Race
11.3	Heatmap
11.4	Scree Plot
11.5	Factor Scores
	Most Contributing Variables
11.7	Inference CA
12 DiS	TATIS 153
12.1	Description
12.2	Dataset - Pianists for Composers
12.3	SCREE Plot - RV-MAT
12.4	Plotting Assessor Matrix
12.5	SCREE Plot - SV-MAT
12.6	I Set
12.7	Cluster Analysis (K-Means)
	Cluster Analysis (hclust)
12.9	Cluster Analysis (Hartigan's Rule)

6 CONTENTS

Part I

Country-Level Environmental Measurements Dataset

Chapter 1

Introduction

1.1 Context

Assessing country-level social and economic statistics are often limited to socio-economic data. Not any more! This dataset will be maintained and updated with miscellaneous environmental data for countries across the globe.

1.2 Content

This data is all acquired through Google Earth Engine (https://earthengine.google.com/) where publicly available remote sensing datasets have been uploaded to the cloud to be manipulated by the average Joe like you and I. Most of the data is derived by calculating the mean for each country at a reduction scale of about 10km.

1.3 Inspiration

Can you use environmental statistics to predict social and economic data? Are people more happy in sunny countries? How do economies in forested countries compare with those dominated by grassland/desert?

1.4 Research Question (scope of this book)

Which of the variables correlate most with Happiness?

Chapter 2

Dataset

- Data: Measurements of environment conditions in Countries
- Rows: There are 137 observations, 1 for each country.
- Columns: Total 29 variables
- Qualitative: Country (nominal), Happiness (Ordinal).
- Quantitative: Aspect, Slope Crop Land, Tree Canopy Wind Cloud & Multiple variables for Temp & Rain

2.1 Structure of Data

```
137 obs. of 29 variables:
  'data.frame':
##
   $ Country
                             : Factor w/ 137 levels "Afghanistan",..: 1 2 3 4 5 6 7 8 9 10 ...
                             : Ord.factor w/ 3 levels "VH"<"H"<"U": 3 2 2 3 1 3 1 1 2 2 ...
   $ Happiness_Rank
   $ accessibility_to_cities: num
                                    317.7 73.8 1212.8 378.2 209.2 ...
##
   $ elevation
                             : num
                                    1832 652 557 1061 683 ...
##
   $ aspect
                                    201 192 185 174 145 ...
                             : num
   $ slope
                                    1.516 1.89 0.171 0.193 0.624 ...
##
                             : num
                                    9.51 23.35 3.69 2.79 21.96 ...
##
   $ cropland_cover
                             : num
##
   $ tree canopy cover
                             : num
                                    0.375 12.805 0.177 19.87 8.834 ...
##
   $ isothermality
                                    35.9 33.2 40.3 64.3 49.9 ...
                             : num
   $ rain coldestQuart
                             : num
                                    128.72 392.51 25.29 8.05 79.09 ...
                                    1.722 40.088 0.935 0.26 17.183 ...
##
   $ rain driestMonth
                             : num
##
   $ rain_driestQuart
                                    8.3 138.15 6.09 4.43 60.49 ...
                             : num
##
   $ rain_mean_annual
                             : num
                                    311.3 1151.1 79.5 1023.4 539.9 ...
##
   $ rain_seasonailty
                                    91.6 38.5 67.1 91.5 48.3 ...
                             : num
##
   $ rain_warmestQuart
                             : num
                                    12.69 138.33 9.51 318.54 183.14 ...
   $ rain_wettestMonth
##
                                    67.8 159 13.4 202.2 79.2 ...
                             : num
##
   $ rain_wettestQuart
                                    175.8 435.9 33.3 524.3 211.7
                             : num
##
   $ temp_annual_range
                             : num
                                    40.3 27.1 36.5 21.5 26.8 ...
##
   $ temp_coldestQuart
                                    -0.261 3.58 13.152 18.794 8.024 ...
                             : num
##
                                    14.72 9.11 14.87 13.85 13.46 ...
   $ temp_diurnal_range
                             : num
   $ temp driestQuart
                                    21.1 19.6 26.9 18.9 11.1 ...
                             : num
##
   $ temp_max_warmestMonth : num
                                    32 26.3 41.5 31 28.2 ...
                                    11.5 11.5 23 21.6 14.2 ...
##
   $ temp_mean_annual
                             : num
##
   $ temp_min_coldestMonth : num
                                    -8.312 -0.806 5.058 9.549 1.443 ...
                                    88.2 62.7 75.1 18.5 47.6 ...
   $ temp_seasonality
                             : num
                                    22.7 19.6 32.5 23.3 20.2 ...
   $ temp warmestQuart
                             : num
```

12 CHAPTER 2. DATASET

Country	Happiness_Rank	accessibility_to_cities	elevation	aspect	slope
Afghanistan	U	317.71575	1831.7444	201.4298	1.5156001
Albania	Н	73.83086	651.8155	192.1303	1.8900753
Algeria	Н	1212.79982	556.7583	184.9747	0.1708615
Angola	U	378.20239	1061.4790	174.2569	0.1926286
Argentina	VH	209.21958	682.7993	145.0314	0.6238553
Armenia	U	97.29452	1850.4830	183.5375	2.3188956

Table 2.1: Environment variables for 137 countries

\$ temp_wettestQuart : num 3.95 5.27 20.81 22.76 16.48 ... ## \$ wind : num 3.43 2.47 4.03 2.16 4.27 ... ## \$ cloudiness : num 114.2 181.1 90.7 187.5 159 ...

2.2 Datatable

Part II

Single Table for Country Environment Dataset

Chapter 3

Principal Component Analysis

3.1 Description

Principal component analysis (PCA), part of descriptive analytics, is used to analyze one table of quantitative data, specifically useful for *high dimensional data* and comparitively lesser data rows. PCA mixes the input variables to give new variables, called principal components. The first principal component is the line of best fit. It is the line that maximizes the inertia (similar to variance) of the cloud of data points. Subsequent components are defined as orthogonal to previous components, and maximize the remaining inertia.

PCA gives one map for the rows (called factor scores), and one map for the columns (called loadings). These 2 maps are related, because they both are described by the same components. However, these 2 maps project different kinds of information onto the components, and so they are *interpreted differently*. Factor scores are the coordinates of the row observations and Loadings describe the column variables. Both can be interpreted through their distance from origin. However, Factor scores are also interpreted by the distances between them and Loadings interpreted by the angle between them.

The distance from the origin is important in both maps, because squared distance from the mean is inertia (variance, information; see sum of squares as in ANOVA/regression). Because of the Pythagorean Theorem, the total information contributed by a data point (its squared distance to the origin) is also equal to the sum of its squared factor scores.

With both Factor and Loadings maps combined we can interpret which grouping criteria of rows of data is most impacted by which columns. This can interpreted visually by observing which a factors and loadings on a particular component and the distance on this component.

PCA also helps in *dimensionality reduction*. Using SVD, we get eigen values arranged in descending order in the diagonal matrix. We can simply ignore the lower eigen values to reduce dimensions. We can also take help of SCREE plot to visually analyze importance of eigen values.

There are multiple variables representing rain and Temp. Hence, for analysis purposes, lets choose annual mean for Rain and Temp.

3.2 Correlation Plot

Visually analyze multicollinearity in the system.

Now we have Factor scores and Loadings. * Factor Scores are the new Data points w.r.t. new Components achieved with help of SVD. * Loadings represent correlation between variables w.r.t the choosen Components. Can be interpreted in 3 ways + As slices of inertia of the contribution data table w.r.t. the choosen Components + As correlation between columns (features) of Original Data and Factor scores of each Components (latent features). + As coefficients of optimal linear combination i.e. Right Sigular Vectors (Q matrix of SVD)

3.3 Scree Plot

Gives amount of information explained by corresponding component. Gives an intuition to decide which components best represent data in order to answer the research question.

P.S. The most contribution component may not always be most useful for a given research question.

3.4 Factor Scores

Lets visualize happiness categories for components 1-10, to make a decision (visually) on the most important components.

Since, it's not very straightforward to decide which components may be best suited for the research question at hand, let's represent, in a tabular format, which component helps to differentiate between which design variable values (Unhappy, Normal, Very Happy)

P.S. here -1 represents -ve quadrant of the component and +1 represent +ve quadrant. 0 represents that component was not decisive enough to clearly separate happiness levels.

Looking at the table, it seems component 1, 2, 7, 9 may be able to best represent all 3 happiness levels. Although, SCREE Plot suggests that 3^{rd} and 4^{th} components might be useful, from our above analysis we know otherwise. Also, SCREE plot suggests that component 6^{th} and onwards might not be useful which is contradicting our findings above. Hence, let's plot components 1 vs 2 and 7 vs 9. Similarily, we will also plot Loading plots for these components.

• With Confidence Interval

Table 3.1: Identify Components best describing happiness levels

	Unhappy	Normal	VeryHappy
Component 1	-1	1	0
Component 2	-1	0	1
Component 3	1	0	-1
Component 4	0	0	0
Component 5	0	0	0
Component 6	0	0	0
Component 7	1	-1	0
Component 8	0	0	0
Component 9	0	-1	1
Component 10	0	0	0

27

3.5 Loadings

3.5. LOADINGS 29

3.6 Correlation Circle

3.7 Most Contributing Variables

Let's plot variable contributions against each chosen components i.e. 1, 7, 9.

• With Bootstrap Ratio

Permutation Test 3.8

PCA: Permutation Test for Eigenvalue 1

PCA: Permutation Test for Eigenvalue 7

PCA: Permutation Test for Eigenvalue 9

3.9. PARALLET TEST 39

Parallet Test 3.9

PCA: Monte Carlo (Parallel) Test for Eigenvalue 1

PCA: Monte Carlo (Parallel) Test for Eigenvalue 7

3.9. PARALLET TEST 41

PCA: Monte Carlo (Parallel) Test for Eigenvalue 9

Bootstrap Test 3.10

PCA: Bootstrapped distribution for Eigenvalue 1

PCA: Bootstrapped distribution for Eigenvalue 7

3.11. CONCLUSION 45

3.11 Conclusion

- Component 1:
 - Rows: Normal & Happy
 - Columns: Cloudiness & Rain vs Cropland, Aspect, Elevation
 - Interpret: People in countries with more Cloudiness, Trees and Rain tends to be happier.
- Component 7:
 - Rows: Happy & Unhappy
 - Columns: Temp and Rain vs Accessibility and Cropland
 - Interpret: Rain and Temp seems to be main reason for unhappiness and Cropland is important for Happiness.
- Component 9:
 - Rows: Happy & Very Happy
 - Columns: Temp vs Rain
 - Interpret: Rain and Temp seems to be main reason for Happiness. *This contradicts with Component 7 and 1.*

Chapter 4

Multiple Component Analysis

4.1 Description

Multiple correspondence analysis (MCA) is an extension of correspondence analysis (CA) which allows one to analyze the pattern of relationships of several categorical dependent variables. As such, it can also be seen as a generalization of principal component analysis when the variables to be analyzed are categorical instead of quantitative. Because MCA has been (re)discovered many times, equivalent methods are known under several different names such as optimal scaling, optimal or appropriate scoring, dual scaling, homogeneity analysis, scalogram analysis, and quantification method.

Interpreting MCA Multiple correspondence analysis locates all the categories in a Euclidean space.

- The first two dimensions of this space are plotted to examine the associations among the categories.
- The top-right quadrant of the plot shows the categories.
- The bottom-left quadrant shows the association.
- This interpretation is based on points found in approximately the same direction from the origin and in approximately the same region of the space. Distances between points do not have a straightforward interpretation.

4.2 Density Plot

Let's observe the distribution of each variables to get an intuition of how we can bin these variables. It's important to have nearly equal number of observations in the each bin and to try to cut the variables in a way to so that each new binned distribution is nearly Gaussian. We can also verify that our binning is appropriate by calculating Spearman Correlation for each of original variable and binned variable, the correlation coefficient should be close to 1.

4.3 Binning

Structure of Data after binning based on above observation.

```
##
   'data.frame':
                    137 obs. of 27 variables:
    $ accessibility_to_cities: Factor w/ 3 levels "1","2","3": 2 1 3 2 2 1 3 1 1 1 ...
                              : Factor w/ 3 levels "1", "2", "3": 3 2 2 3 2 3 2 3 2 1 ...
    $ elevation
##
##
    $ aspect
                              : Factor w/ 3 levels "1", "2", "3": 3 3 3 2 1 3 3 2 1 2 ...
                              : Factor w/ 3 levels "1", "2", "3": 3 3 1 1 1 3 1 2 2 1 ...
##
    $ slope
                              : Factor w/ 3 levels "1", "2", "3": 1 2 1 1 2 2 1 2 2 3 ...
##
    $ cropland_cover
    $ tree_canopy_cover
                              : Factor w/ 3 levels "1", "2", "3": 1 2 1 2 1 1 1 3 1 2 ...
##
                              : Factor w/ 3 levels "1", "2", "3": 1 1 2 2 2 1 2 1 1 2 ...
##
    $ isothermality
                              : Factor w/ 3 levels "1", "2", "3": 1 3 1 1 1 1 1 2 1 1 ...
##
    $ rain_coldestQuart
                              : Factor w/ 3 levels "1","2","3": 1 3 1 1 2 2 1 3 2 1 ...
##
    $ rain_driestMonth
                              : Factor w/ 3 levels "1", "2", "3": 1 2 1 1 1 1 3 1 1 ...
##
    $ rain_driestQuart
                              : Factor w/ 3 levels "1", "2", "3": 1 2 1 2 2 2 1 2 1 3 ...
##
    $ rain_mean_annual
                              : Factor w/ 3 levels "1", "2", "3": 3 1 2 3 1 1 2 1 1 3 ...
##
    $ rain_seasonailty
                              : Factor w/ 3 levels "1", "2", "3": 1 2 1 3 2 2 2 3 1 3 ...
##
    $ rain_warmestQuart
##
    $ rain_wettestMonth
                              : Factor w/ 3 levels "1", "2", "3": 1 2 1 2 1 1 1 2 1 3 ...
                              : Factor w/ 3 levels "1", "2", "3": 1 2 1 2 1 1 1 2 1 3 ...
##
    $ rain_wettestQuart
    $ temp_annual_range
                              : Factor w/ 3 levels "1", "2", "3": 3 2 3 2 2 3 2 2 3 2 ...
##
                              : Factor w/ 3 levels "1","2","3": 1 2 2 3 2 1 2 1 2 3 ...
##
    $ temp_coldestQuart
    $ temp_diurnal_range
                              : Factor w/ 3 levels "1", "2", "3": 3 1 3 2 2 2 2 1 1 1 ...
##
                              : Factor w/ 3 levels "1", "2", "3": 3 2 3 2 2 1 2 1 2 2 ...
##
    $ temp_driestQuart
    \ temp_max_warmestMonth : Factor w/ 3 levels "1","2","3": 2 2 3 2 2 1 3 1 2 2 ...
##
                              : Factor w/ 3 levels "1","2","3": 1 1 2 2 2 1 2 1 1 3 ...
    $ temp_mean_annual
##
```

```
$ temp_min_coldestMonth : Factor w/ 3 levels "1","2","3": 1 1 2 2 2 1 2 1 1 3 ...
##
                              : Factor w/ 3 levels "1", "2", "3": 3 2 3 1 2 3 2 2 3 2 ...
##
    $ temp_seasonality
                              : Factor w/ 3 levels "1","2","3": 2 1 3 2 2 1 3 1 2 3 \dots
    $ temp_warmestQuart
##
                              : Factor w/ 3 levels "1", "2", "3": 1 1
                                                                     2 2 2 1
                                                                             2 1 1 3
##
    $ temp_wettestQuart
                              : Factor w/ 4 levels "1", "2", "3", "4": 3 2 4 2 4 1 4 2 2 2
##
    $ wind
##
    $ cloudiness
                              : Factor w/ 3 levels "1", "2", "3": 1 2 1 2 2 2 1 3 2 2 ...
```

4.4 Spearman Correlation

Let's observe correlation between original data and binned data to make sure that neither the correlation coefficient is too low or perfect.

4.5 Heatmap

• For binned data

4.6 Scree Plot

Gives amount of information explained by corresponding component. Gives an intuition to decide which components best represent data in order to answer the research question.

P.S. The most contribution component may not always be most useful for a given research question.

4.7. FACTOR SCORES 51

4.7 Factor Scores

Lets visualize happiness categories for components 1-10, to make a decision (visually) on the most important components.

With Confidence Interval

4.7. FACTOR SCORES 53

4.7. FACTOR SCORES 55

4.8. LOADINGS 57

4.8 Loadings

4.9 Loadings (correlation plot)

4.10 Most Contributing Variables (Inference)

Let's plot variable contributions against each chosen components i.e. 1, 2, 7, 9.

With Bootstrap Ratio

4.11 Permutation Test

MCA: Permutation Test for Eigenvalue 1

Eigenvalue 1

MCA: Permutation Test for Eigenvalue 2

MCA: Permutation Test for Eigenvalue 7

MCA: Permutation Test for Eigenvalue 9

Parallet Test 4.12

MCA: Monte Carlo (Parallel) Test for Eigenvalue 1

MCA: Monte Carlo (Parallel) Test for Eigenvalue 7

MCA: Monte Carlo (Parallel) Test for Eigenvalue 9

4.12. PARALLET TEST

Bootstrap Test 4.13

MCA: Bootstrapped distribution for Eigenvalue 1

MCA: Bootstrapped distribution for Eigenvalue 7

MCA: Bootstrapped distribution for Eigenvalue 9

4.14 Conclusion

Methods	Unhappy	Normal	Very Happy	Reliability
MCA	warm summers, cold winters, high rain	N/A	Warm winter, cold summer, low rain	Components have significant contribu- tion but convex hull has overlap- ping areas

Part III

Two / Multi Table Analysis for Country Environment Dataset

Chapter 5

Barycentric Discriminant Analysis

5.1 Description

Barycentric discriminant analysis (BADA) is a robust version of discriminant analysis that is used to assign, top re-defined groups (also called categories), observations described by multiple variables. By contrast with traditional discriminant analysis, BADA can be used even when the number of observations is smaller than the number of variables. This makes BADA particularly suited for the analysis of Big Data.

5.2 Heatmap

5.3 Scree Plot

Gives amount of information explained by corresponding component. Gives an intuition to decide which components best represent data in order to answer the research question.

P.S. The most contribution component may not always be most useful for a given research question.

5.3. SCREE PLOT

5.4 Factor Scores

• With Tolerance Interval

5.4. FACTOR SCORES 81

5.5 Loadings

5.6 Most Contributing Variables

• With Bootstrap Ratio

5.7 Permutation Test

BADA: Permutation Test for Eigenvalue 1

Eigenvalue 1

BADA: Permutation Test for Eigenvalue 2

5.8. PARALLET TEST 87

Parallet Test **5.8**

Monte Carlo (Parallel) Test for Eigenvalue 1

Bootstrap Test **5.9**

Bootstrapped distribution for Eigenvalue 1

5.10 Conclusion

Methods	Unhappy	Normal	Very Happy	Reliability
BADA Temp	Temp	Rain	Rain	Components have significant contribu- tion but
				convex hull has overlap- ping areas

Chapter 6

Discriminant Correspondence Analysis

6.1 Description

As the name indicates, discriminant correspondence analysis (DCA) is an extension of discriminant analysis (DA) and correspondence analysis (CA). Like discriminant analysis, the goal of DCA is to categorize observations in pre-defined groups, and like correspondence analysis, it is used with nominal variables. The main idea behind DCA is to represent each group by the sum of its observations and to perform a simple CA on the groups by variables matrix. The original observations are then projected as supplementary elements and each observation is assigned to the closest group. The comparison between the a priori and the a posteriori classifications can be used to assess the quality of the discrimination. A similar procedure can be used to assign new observations to categories. The stability of the analysis can be evaluated using cross-validation techniques such as jack knifing or bootstrapping.

6.2 Density plot

Let's observe the distribution of each variables to get an intuition of how we can bin these variables. It's important to have nearly equal number of observations in the each bin and to try to cut the variables in a way to so that each new binned distribution is nearly Gaussian. We can also verify that our binning is appropriate by calculating Spearman Correlation for each of original variable and binned variable, the correlation coefficient should be close to 1.

6.3 Binning

Structure of Data after binning based on above observation.

```
##
   'data.frame':
                    137 obs. of 27 variables:
    $ accessibility_to_cities: int
                                     2 1 3 2 2 1 3 1 1 1 ...
                                     3 2 2 3 2 3 2 3 2 1 ...
    $ elevation
##
                              : int
##
    $ aspect
                              : int
                                     3 3 3 2 1 3 3 2 1 2 ...
                                     3 3 1 1 1 3 1 2 2 1 ...
##
    $ slope
                              : int
                              : int
##
    $ cropland_cover
                                     1 2 1 1 2 2 1 2 2 3 ...
    $ tree_canopy_cover
                                     1 2 1 2 1 1 1 3 1 2 ...
##
                               int
##
    $ isothermality
                              : int
                                     1 1 2 2 2 1 2 1 1 2 ...
##
    $ rain_coldestQuart
                              : int
                                     1 3 1 1 1 1 1 2 1 1 ...
##
    $ rain_driestMonth
                                     1 3 1 1 2 2 1 3 2 1 ...
                              : int
                                     1 2 1 1 1 1 1 3 1 1 ...
##
    $ rain_driestQuart
                               int
##
    $ rain_mean_annual
                              : int
                                     1 2 1 2 2 2 1 2 1 3 ...
##
    $ rain_seasonailty
                                     3 1 2 3 1 1 2 1 1 3 ...
                              : int
##
                                     1 2 1 3 2 2 2 3 1 3 ...
    $ rain_warmestQuart
                              : int
##
    $ rain_wettestMonth
                                     1 2 1 2 1 1 1 2 1 3 ...
                              : int
##
    $ rain_wettestQuart
                                     1 2 1 2 1 1 1 2 1 3 ...
                              : int
##
    $ temp_annual_range
                                     3 2 3 2 2 3 2 2 3 2 ...
                              : int
                                     1 2 2 3 2 1 2 1 2 3 ...
##
    $ temp_coldestQuart
                              : int
##
    $ temp_diurnal_range
                                     3 1 3 2 2 2 2 1 1 1 ...
                              : int
##
    $ temp_driestQuart
                              : int
                                     3 2 3 2 2 1 2 1 2 2 ...
    $ temp_max_warmestMonth : int
                                     2 2 3 2 2 1 3 1 2 2 ...
##
    $ temp_mean_annual
                                    1 1 2 2 2 1 2 1 1 3 ...
##
                              : int
```

```
##
   $ temp_min_coldestMonth : int
                                    1 1 2 2 2 1 2 1 1 3 ...
                                    3 2 3 1 2 3 2 2 3 2 ...
##
   $ temp_seasonality
                             : int
                                    2 1 3 2 2 1 3 1 2 3 ...
   $ temp_warmestQuart
   $ temp_wettestQuart
                                    1 1 2 2 2 1 2 1 1 3 ...
                                    3 2 4 2 4 1 4 2 2 2 ...
##
   $ wind
   $ cloudiness
                                    1 2 1 2 2 2 1 3 2 2 ...
```

6.4 Spearman Correlation

Let's observe correlation between original data and binned data to make sure that neither the correlation coefficient is too low or perfect.

6.5 Heatmap

• For binned data

Visually analyze multicollinearity in the system of the original data

6.6 Scree Plot

Gives amount of information explained by corresponding component. Gives an intuition to decide which components best represent data in order to answer the research question.

P.S. The most contribution component may not always be most useful for a given research question.

6.6. SCREE PLOT 95

6.7 Factor Scores

• With Confidence Interval

ullet With Tolerance Interval

6.7. FACTOR SCORES 97

6.8 Loadings

6.9 Loadings (correlation plot)

6.10 Most Contributing Variables (Inference)

Let's plot variable contributions against each chosen components i.e. 1, 2.

• With Bootstrap Ratio

6.11 Permutation Test

DiCA: Permutation Test for Eigenvalue 1

Eigenvalue 1

DiCA: Permutation Test for Eigenvalue 2

6.12 Parallet Test

DiCA - Monte Carlo (Parallel) Test for Eigenvalue 1

6.12. PARALLET TEST

6.13 Bootstrap Test

Bootstrapped distribution for Eigenvalue 1

Eigenvalue 1

Bootstrapped distribution for Eigenvalue 2

6.14. CONCLUSION 107

6.14 Conclusion

Methods	Unhappy	Normal	Very Happy	Reliability
DiCA	warm summers, cold winters, high rain	Higher variation in temperature is correlated with lower happiness	Warm winter, cold summer, low rain, windy	Convex hulls are separeted but second compo- nent only has temp variables as significant

Chapter 7

Partial Least Squares - Correlation

7.1 Description

PLS is used to find the fundamental relations between two matrices (X and Y), i.e. a latent variable approach to modeling the covariance structures in these two spaces. A PLS model will try to find the multidimensional direction in the X space that explains the maximum multidimensional variance direction in the Y space. PLS regression is particularly suited when the matrix of predictors has more variables than observations, and when there is multicollinearity among X values. PLS bears some relation to principal components regression; instead of finding hyperplanes of maximum variance between the response and independent variables, it finds a linear regression model by projecting the predicted variables and the observable variables to a new space. Because both the X and Y data are projected to new spaces, the PLS family of methods are known as bilinear factor models.

7.2 Correlation Plot

Visually analyze multicollinearity between all variables in Rain and Temperature tables.

7.3 PLS-C

7.4. SCREE PLOT 111

Now we have Latent Variables and Saliences. * Latent Variables are the new Data points w.r.t. correlation between both the tables. Latent Variables exists for each table. * Saliences represent correlation between variables of each table.

7.4 Scree Plot

Gives amount of information explained by corresponding component. Gives an intuition to decide which components best represent data in order to answer the research question.

P.S. The most contribution component may not always be most useful for a given research question.

7.5 Latent Variables

Lets visualize happiness categories for Components 1 of each table

7.5.1 Component 1 for both Tables: Rain and Temperature

7.5.2 Component 2 for both Tables: Rain and Temperature

7.6 Salience for Rain

7.6.1 Components 1

7.6.2 Component 2

7.7 Salience for Temperature

7.7.1 Component 1

7.7.2 Component 2

7.8 Most Contributing Variables - PLS-C (with Inference)

7.8.1 Bootstrap Test

• Rain - Component 1

 \bullet Temperature - Component 1

7.9 Conclusion

Here Component 2 seems to best seperate Happiness levels. Let's compare Component 2 for both tables.

- Table 1 & 2 Component 2
 - Latent Variables: Very Happy vs Unhappy (for Rain and Temperature both)
 - Salience:
 - $\ast\,$ Rain: It seems dryness and we tness at a montly scale have more effect than coldness or yearly patterns.
 - * Temperature: All temperature variations at a monthly and yearly scale seems to impact happiness.

Chapter 8

Multiple Factor Analyis

8.1 Description

Multiple factor analysis is an extension of PCA tailored to handle multiple datatables that measure sets of variables collected on the same observations. MFA proceeds in two steps 1. It computes a PCA of each data table and 'normalizes' each data table by dividing all its elements by the first singular value obtained from its PCA. 2. All the normalized data tables are aggregated into a grand data table that is analyzed via a (non-normalized) PCA that gives a set of factor scores for the observations and loadings for the variables.

In addition, MFA provides for each data table a set of partial factor scores for the observations that reflects the specific 'view-point' of this data table. Interestingly, the common factor scores could be obtained by replacing the original normalized data tables by the normalized factor scores obtained from the PCA of each of these tables.

8.2 MFA

We have divided the data into 3 tables, separate tables for rain and temperature related columns and 3rd table for rest of the columns.

```
## [1] "Preprocessed the Rows of the data matrix using: None"
## [1] "Preprocessed the Columns of the data matrix using: Center_1Norm"
## [1] "Preprocessed the Tables of the data matrix using: MFA_Normalization"
## [1] "Preprocessing Completed"
## [1] "Optimizing using: None"
## [1] "Processing Complete"
```

8.3 Scree Plot

Gives amount of information explained by corresponding component. Gives an intuition to decide which components best represent data in order to answer the research question.

P.S. The most contribution component may not always be most useful for a given research question.

SCREE Plot

8.4. FACTOR SCORES 123

8.4 Factor Scores

8.4. FACTOR SCORES 125

8.5 Loadings

8.5. LOADINGS 127

8.6 Correlation Circle

8.7 Conclusion

Methods	Unhappy	Normal	Very Happy	Reliability
MFA	Partial factors dominated by Temp, then rain and other variables	Neither of partial factors seems to have sufficient effect	Partial factors dominated by Temp and other variables, lesser effect of rain	Convex hull has overlap- ping areas

Chapter 9

DiSTATIS

9.1 Description

DISTATIS is a new method that can be used to compare algorithms when their outputs consist of distance matrices computed on the same set of objects. The method first evaluates the similarity between algorithms using a coefficient called the RV coefficient. From this analysis, a compromise matrix is computed which represents the best aggregate of the original matrices. In order to evaluate the differences between algorithms, the original distance matrices are then projected onto the compromise. The goal of DISTATIS is to analyze a set of distance matrices. In order to compare distance matrices, DISTATIS combines them into a common structure called a compromise and then projects the original distance matrices onto this compromise.

```
## [1] Bootstrap On Factor Scores. Iterations #:
## [2] 1000
```

130 CHAPTER 9. DISTATIS

9.2 SCREE Plot - RV-MAT

RV-mat: Explained Variance per Dimension

9.3 Plotting Assessor Matrix

9.3.1 ConvexHull

9.4 SCREE Plot - SV-MAT

132 CHAPTER 9. DISTATIS

9.5 I Set

9.6 Cluster Analysis (Hartigan's Rule)

##		Clusters	Hartigan	AddCluster
##	1	2	66.20137	TRUE
##	2	3	113.33226	TRUE
##	3	4	298.98109	TRUE

4 5 0.00000 FALSE

9.7 Cluster Analysis (K-Means)

9.7.1 Two centers

136 CHAPTER 9. DISTATIS

9.7.2 Four centers

9.8 Cluster Analysis (hclust)

9.8.1 Two Clusters

Beers. Ward's method

dist(Fi) hclust (*, "ward.D2") 138 CHAPTER 9. DISTATIS

9.8.2 Fours Clusters

Beers. Ward's method

dist(Fi) hclust (*, "ward.D2")

Chapter 10

Conclusion for all Methods

Methods	Unhappy	Normal	Very Happy	Reliability
PCA	Others	Temp & Rain	N/A	Components have significant contribu- tion but convex hull has overlap- ping areas and Com- ponent 2 & 7 contradicts
MCA	warm summers, cold winters, high rain	N/A	Warm winter, cold summer, low rain	Components have significant contribu- tion but convex hull has overlap- ping areas
BADA	Temp	Rain	Rain	Components have significant contribu- tion but convex hull has overlap- ping areas

Methods	Unhappy	Normal	Very Happy	Reliability
DiCA	warm summers, cold winters, high rain	Higher variation in temperature is correlated with lower happiness	Warm winter, cold summer, low rain, windy	Convex hulls are separeted but second compo- nent only has temp variables as significant
PLS-C	Rain	Temp	Temp	Second component has more rain variables as significant than temp variables
MFA	Partial factors dominated by Temp, then rain and other variables	Neither of partial factors seems to have sufficient effect	Partial factors dominated by Temp and other variables, lesser effect of rain	Convex hull has overlap- ping areas

• MCA and DiCA agrees:

- Warmer winter, colder summer, low rain, windy cities makes people happy
- Colder Winter, warmer summers, high rain, less windy makes people unhappy

However, even though **MCA** shows that most the variables has high contribution for the strongest signal in the data - **DiCA** shows that temp, rain and wind variables contributes significantly.

Hence,

- Happiness doesn't seem to be highly correlated to environmental conditions
- Temperature, rain and wind seem to be slightly correlated with happiness.
- Cluster Analysis doesn't seem to show any patterns in the data.

Part IV Other Datasets

Chapter 11

Correspondence Analysis

11.1 Description

Correspondence Analysis (CA) is a multivariate graphical technique designed to explore relationships among categorical variables. The outcome from correspondence analysis is a graphical display of the rows and columns of a contingency table that is designed to permit visualization of the salient relationships among the variable responses in a low-dimensional space. Such a representation reveals a more global picture of the relationships among row-column pairs which would otherwise not be detected through a pairwise analysis.

Calculate CA:

- Step 1: Compute row and column averages
- Step 2: Compute the expected values
- Step 3: Compute the residuals
- Step 4: Plotting labels with similar residuals close together
- Step 5: Interpreting the relationship between row and column labels

How to Interpret Correspondence Analysis Plots

Correspondence analysis does not show us which rows have the highest numbers, nor which columns have the highest numbers. It instead shows us the relativities.

- The further things are from the origin, the more discriminating they are.
- Look at the length of the line connecting the row label to the origin. Longer lines indicate that the row label is highly associated with some of the column labels (i.e., it has at least one high residual).
- Look at the length of the label connecting the column label to the origin. Longer lines again indicate a high association between the column label and one or more row labels.
- Look at the angle formed between these two lines. Really small angles indicate association. 90 degree angles indicate no relationship. Angles near 180 degrees indicate negative associations.

11.2 Dataset - Weekly earnings by Race

- Data: Measurements of Weekly Earnings per Race
- Rows: There are 6 observations representing Asian/White/Black, Men/Woman.
- Columns: Total 6 variables grouping people based on Decile and Quartile ranges of their weekly income.

##		White.men	White.women	Black.men	Black.Women
##	1st decile	412	374	361	331
##	1st quartile	594	506	483	423

	1stQ	2ndQ	3 rdQ
White.men	594	326	547
White.women	506	237	397
Black.men	483	197	366
Black.Women	423	192	320
Asian.Men	648	481	731
Asian.Women	551	326	534

Table 11.1: Measurements of Weekly Earnings per Race

##	2nd quartile		920	743	680	615
	3rd quartile		1467	1140	1046	935
	9th decile		2278	1726	1551	1453
##	Total people	(in thousands)	48746	36698	6445	7142
##			Asian.Men	Asian.Women	Hispanic.Men	
##	1st decile		420	385	358	
##	1st quartile		648	551	451	
##	2nd quartile		1129	877	631	
##	3rd quartile		1860	1411	979	
##	9th decile		2699	2024	1498	
##	Total people	(in thousands)	3684	2954	11142	
##			Hispanic.	Women		
##	1st decile			320		
##	1st quartile			404		
##	2nd quartile			566		
##	3rd quartile			830		
##	9th decile			1266		
##	Total people	(in thousands)		7168		

However, here we can see that it may not be advisable to include Quartile and Decile intervals in the same analysis. Hence, we go ahead with Quartile Ranges only.

• Research Question

- $-\,$ Does total earning of different races differ.
- Which race get less than median salary (2nd Quartile)

11.3. HEATMAP 145

11.3 Heatmap

11.4 Scree Plot

Gives amount of information explained by corresponding component. Gives an intuition to decide which components best represent data in order to answer the research question.

P.S. The most contribution component may not always be most useful for a given research question.

11.5 Factor Scores

11.5.1 Symmetric Plot

11.5. FACTOR SCORES

11.5.2 Asymmetric Plot

11.6 Most Contributing Variables

11.7 Inference CA

11.7. INFERENCE CA

Chapter 12

DiSTATIS

12.1 Description

DISTATIS is a new method that can be used to compare algorithms when their outputs consist of distance matrices computed on the same set of objects. The method first evaluates the similarity between algorithms using a coefficient called the RV coefficient. From this analysis, a compromise matrix is computed which represents the best aggregate of the original matrices. In order to evaluate the differences between algorithms, the original distance matrices are then projected onto the compromise. The goal of DISTATIS is to analyze a set of distance matrices. In order to compare distance matrices, DISTATIS combines them into a common structure called a compromise and then projects the original distance matrices onto this compromise.

12.2 Dataset - Pianists for Composers

```
## [1] Bootstrap On Factor Scores. Iterations #:
## [2] 1000
```

12.3 SCREE Plot - RV-MAT

RV-mat: Explained Variance per Dimension

12.4 Plotting Assessor Matrix

12.4.1 ConvexHull

12.5 SCREE Plot - SV-MAT

S-mat: Explained Variance per Dimension

12.6 I Set

12.6. I SET

12.7 Cluster Analysis (K-Means)

12.8 Cluster Analysis (hclust)

12.9 Cluster Analysis (Hartigan's Rule)

##		Clusters	Hartigan	${\tt AddCluster}$
##	1	2	25.830051	TRUE
##	2	3	23.429672	TRUE
##	3	4	14.998705	TRUE
##	4	5	7.042848	FALSE.

