Distribution of EV Charging Stations

Modeling & Simulation

Group WG_21

Diogo Silva (202004288) Henrique Silva (202007242) Tiago Branquinho (202005567)

Simulation Problem

Description

Challenge:

- Growing adoption of electric vehicles (EVs)
- Recharging infrastructure efficiency in **Porto**
- Waiting times and peak demand

Problem scope:

- **Optimal placement -** location of charging stations within a city
- Adequate capacity charging points per station

Key objectives:

- Minimize waiting times especially during rush hours
- Balance demand/supply across regions
- Optimize infrastructure varying traffic flows and user behavior

Simulation Model

Variables

- Charging station capacity charging points per region
- **Vehicle battery levels** to determine charging needs
- Traffic patterns influenced by time of day (rush hour, lunch, etc.).
- Region vehicles based on population, income, EV adoption
- Vehicle speed average speed of all vehicles traveling

Simulation Components:

- **Regions (nodes)** city areas with charging stations
- Roads (edges) distances between regions
- Clock/time simulates daily traffic flow dynamics

Simulation Model

Performance Metrics

- Average waiting time time EVs wait for a charging point
- Regional imbalance standard deviation regarding charger utilization across regions
- Stress level demand per region available chargers

stress_level = (available_chargers / chargers) + a * (queue / chargers)

Objectives

- Evaluate system efficiency and understand how to:
 - reduce waiting times
 - prevent station overcrowding
 - ensure reliable access

Simulation Model

Scenarios

Scenario 1 - Current Infrastructure:

- baseline simulation
- existing station locations and capacities

Scenario 2 - Increased EV Demand:

- future growth in the EV market
- detect infrastructure bottlenecks

Scenario 3 - Varying Station Capacities:

- adjusting the capacity of region stations
- based on previous scenario needs

Goal:

- explore diverse conditions and strategies
- identify optimal station placement and capacity
- ensure **charger availability** at all times:
 - while minimizing the investment needed

Implementation Details

Computing Data Estimates

Region Traffic

- Traffic **intensities** for each region
- City graph to calculate region values:
 - edges roads/connections with different traffic weights

Car Seeding

- EV generation for each region pre-simulation
- Based on regional income distribution and affordability
- **Car tier** filtering:
 - o percentage of income willing to be spent

Implementation Details

Simulation Flow

Simulation Logic

- Day divided into segments (rush hour, lunch, ...)
- Step execution:
 - o 1 step = 1 minute
 - car/region updates
- Visualization refreshed at each step:
 - vehicle locations
 - region metrics

Car Logic

- States idle, traveling, charging, in-queue, etc.
- Actions based on **day time**:
 - likelihood of traveling
- Movement:
 - average velocity
 - battery depletion
- Region selection:
 - for traveling
 - for charging
- Home charging:
 - option to leave halfway

Region Logic

- Charging system:
 - cars either charge or wait - availability
- Metric calculation and updates, tracking:
 - wait time for queued cars
 - o average car autonomy
 - charger utilization
 - cars currently in region

Results and Discussion - Scenario 1

Average Queue Size

Home charging (Aldoar vs Paranhos)

Stress levels

Results and Discussion - Scenario 2

Average Queue Wait Time

Regional Imbalance (charger utilization)

Stress levels

Results and Discussion - Scenario 3

Outer-focused investment

Inner-focused investment

Balanced investment

