Inleveropgave 2 Linalg

Boris van Boxtel en Brechtje Poppen

Oktober 2022

(a.) Stelling:

Laat U en V twee lineaire deelruimten zijn van \mathbf{R}^n . Dan geldt dat $U + V = \{\vec{u} + \vec{v} \mid \vec{u} \in U, \vec{v} \in V\}$ ook een lineaire deelruimte is van \mathbf{R}^n .

Bewijs:

Er moeten drie eigenschappen bewezen worden, namelijk:

- 1. $\vec{0} \in U + V$
- 2. Als \vec{x} , $\vec{y} \in U + V$, dan geldt ook $\vec{x} + \vec{y} \in U + V$.
- 3. Als $\vec{x} \in U + V$ en $\lambda \in \mathbf{R}$ dan $\lambda \cdot \vec{x} \in U + V$.

Belangrijk om op te merken is dat voor $\vec{a} \in U$ en $\vec{b} \in V$ en $\vec{a} + \vec{b} = \vec{c}$ geldt dat $\vec{c} \in U + V$.

We bewijzen eerst de eerste eigenschap.

Gegeven was dat U en V beide deelruimtes zijn van \mathbf{R}^n . Uit de definitie van een deelruimte volgt dan dat $\vec{0} \in U$ en $\vec{0} \in V$. Er geldt dat $\vec{0} = \vec{0} + \vec{0}$, dus als $\vec{0} \in U$ en $\vec{0} \in V$, dan geldt ook dat $\vec{0} \in U + V$.

Nu kijken we naar de tweede eigenschap.

Neem een $\vec{x} \in U + V$. Er geldt dan dat $\vec{x} = \vec{x_u} + \vec{x_v}$ met $\vec{x_u} \in U$ en $\vec{x_v} \in V$. Neem ook een $\vec{y} \in U + V$, waarvoor dan geldt dat $\vec{y} = \vec{y_u} + \vec{y_v}$ met $\vec{y_u} \in U$ en $\vec{y_v} \in V$. Additie van \vec{x} en \vec{y} geeft $\vec{x} + \vec{y} = (\vec{x_u} + \vec{x_v}) + (\vec{y_u} + \vec{y_v})$. Dit is ook te schrijven als $\vec{x} + \vec{y} = (\vec{x_u} + \vec{y_u}) + (\vec{u_v} + \vec{y_v})$. Hierbij geldt dat $\vec{x_u} \in U$ en $\vec{y_u} \in U$, en aangezien U een deelruimte van \mathbf{R}^n is geldt $\vec{x_u} + \vec{y_u} \in U$. Een soortgelijk argument leidt tot $\vec{x_v} + \vec{y_v} \in V$. Uit $\vec{x_u} + \vec{y_u} \in U$ en $\vec{x_v} + \vec{y_v} \in V$ volgt dat $(\vec{x_u} + \vec{y_u}) + (\vec{u_v} + \vec{y_v}) \in U + V$, dus als $\vec{x}, \vec{y} \in U + V$, dan geldt ook $\vec{x} + \vec{y} \in U + V$.

Ten slotte bewijzen we nog dat de laatste eigenschap geldig is.

Neem een $\vec{x} \in U + V$ en een $\lambda \in \mathbf{R}$. Er geldt voor \vec{x} dat $\vec{x} = \vec{x_u} + \vec{x_v}$ met $\vec{x_u} \in U$ en $\vec{x_v} \in V$. Als we bij de gelijkheid $\vec{x} = \vec{x_u} + \vec{x_v}$ een scalaire

vermenigvuldiging met λ uitvoeren krijgen we $\lambda \cdot \vec{x} = \lambda \cdot (\vec{x_u} + \vec{x_v})$. Dit is ook te schrijven als $\lambda \cdot \vec{x} = \lambda \cdot \vec{x_u} + \lambda \cdot \vec{x_v}$. Aangezien U een deelruimte is van \mathbf{R}^n en er geldt dat $\vec{x_u} \in U$, geldt ook dat $\lambda \cdot \vec{x_u} \in U$. Hetzelfde argument leidt tot $\lambda \cdot \vec{x_v} \in V$. Uit $\lambda \cdot \vec{x_u} \in U$ en $\lambda \cdot \vec{x_v} \in V$ volgt dat $\lambda \cdot \vec{x} \in U + V$, dus als $\vec{x} \in U + V$ en $\lambda \in \mathbf{R}$ dan geldt ook dat $\lambda \cdot \vec{x} \in U + V$.

Er is nu dus bewezen dat elk van de drie eigenschappen geldt, dus is U + V een lineaire deelruimte van \mathbb{R}^n .

(b.) Gegeven is de matrix $A = \begin{pmatrix} 1 & 1 & 1 & 2 & -1 \\ 0 & 2 & 0 & 0 & 4 \\ 0 & 0 & 0 & 2 & 2 \end{pmatrix}$. Laat U de lineaire deelruimte

van \mathbb{R}^3 zijn opgespannen door de eerste drie kolommen van A. Een basis B_U van U met $B_U \subseteq U$ is een basis van U als er geldt dat:

- 1. B_U onafhankelijk is, en
- 2. elke $\vec{u_i} \in U$ afhankelijk is van B_U .

We kunnen nu dus een basis B_U van U kiezen en als we kunnen aantonen dat voor B_U de bovenstaande eigenschappen gelden, dan is B_U een geldige basis van U.

Kies
$$B_U = \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} \right\}.$$

Deze basis voldoet aan de beschreven eigenschappen. B_U is namelijk onafhankelijk want er bestaat tussen de vectoren $(1,0,0)^t$ en $(1,2,0)^t$ geen lineaire relatie zodat $\lambda_1 \cdot (1,0,0)^t + \lambda_2 \cdot (1,2,0)^t = 0$ met $\lambda_r \in \mathbf{R}$.

Ook voldoet B_U aan de tweede eigenschap. Elke vector $\vec{u_i} \in U$ is afhankelijk van B_U . Neem namelijk $\vec{u_1} = (1,0,0)^t$ met $\vec{u_1} \in U$, $\vec{u_2} = (1,2,0)^t$ met $\vec{u_2} \in U$ en $\vec{u_3} = (1,0,0)^t$ met $\vec{u_3} \in U$ en neem $\vec{b_1} = (1,0,0)^t$ met $\vec{b_1} \in B_U$ en $\vec{b_2} = (1,2,0)^t$ met $\vec{b_2} \in B_U$. Dan gelden de lineaire relaties $\vec{u_1} - \vec{b_1} = 0$, $\vec{u_2} - \vec{b_2} = 0$ en $\vec{u_3} - \vec{b_1} = 0$ oftewel $\vec{u_1} = \vec{b_1}$, $\vec{u_2} = \vec{b_2}$ en $\vec{u_3} = \vec{b_1}$. Elke vector $\vec{u_i} \in U$ is dus afhankelijk van B_U .

De dimensie van U is 2. U bevat namelijk maximaal twee onafhankelijke vectoren, namelijk $\vec{u_1}$ en $\vec{u_2}$. of $\vec{u_2}$ en $\vec{u_3}$. (meer bewijs nodig????)

- (c.) Beschouw opnieuw de matrix A uit opdracht b. Laat V de lineaire deelruimte van \mathbb{R}^3 zijn opgespannen door de laatste twee kolommen van A. Net als bij opdracht b, is B_V met $B_V \subseteq V$ een basis van V als er geldt dat:
 - 1. B_V onafhankelijk is, en
 - 2. elke $\vec{v_i} \in V$ afhankelijk is van B_V .

Kies
$$B_V = \left\{ \begin{pmatrix} 2 \\ 0 \\ 2 \end{pmatrix}, \begin{pmatrix} -1 \\ 4 \\ 2 \end{pmatrix} \right\}.$$

Deze basis voldoet aan de beschreven eigenschappen. B_V is namelijk onafhankelijk want er bestaat tussen de vectoren $(2,0,2)^t$ en $(-1,4,2)^t$ geen lineaire relatie zodat $\lambda_1 \cdot (2,0,2)^t + \lambda_2 \cdot (-1,4,2)^t = 0 \text{ met } \lambda_r \in \mathbf{R}.$

Ook voldoet B_V aan de tweede eigenschap. Elke vector $\vec{v_i} \in V$ is afhankelijk van B_V . Neem namelijk $\vec{v_1} = (2,0,2)^t$ met $\vec{v_1} \in V$ en $\vec{v_2} = (-1,4,2)^t$ met $\vec{v_2} \in V$ en neem $\vec{b_1} = (2,0,2)^t$ met $\vec{b_1} \in B_V$ en $\vec{b_2} = (-1,4,2)^t$ met $\vec{b_2} \in B_V$. Dan gelden de lineaire relaties $\vec{v_1} - \vec{b_1} = 0$ en $\vec{v_2} - \vec{b_2} = 0$ oftewel $\vec{v_1} = \vec{b_1}$ en $\vec{v_2} = \vec{b_2}$. Elke vector $\vec{v_i} \in V$ is dus afhankelijk van B_V .

De dimensie van V is 2. V bevat namelijk maximaal twee onafhankelijke vectoren, namelijk $\vec{v_1}$ en $\vec{v_2}$. (meer bewijs nodig????)

- (d.) De maximale dimensie van $U \cap V$ is 2. Stel namelijk dat U en V gelijk zijn, dan zou de intersectie van U en V gelijk zijn aan U en ook gelijk aan V, dus dan zou de dimensie van de intersectie 2 zijn. Als U en V niet gelijk aan elkaar zijn, dan is er dus, zonder verlies van algemeenheid, ten minste 1 $\vec{u_i} \in U$ die niet afhangt van ten minste 1 $\vec{v_r} \in V$. Hieruit volgt dat de intersectie minder vectoren bevat dan de basis van U en dus ook een kleinere rang heeft dan de basis van U. Als U en V niet gelijk aan elkaar zijn, is de dimensie dus kleiner dan 2.
- (e.) Er geldt $U \cap V = \{\vec{w} \mid \vec{w} \in U \text{ en } \vec{w} \in V\}$. Aan matrix A is echter te zien dat er geen enkele \vec{w} is waarvoor geldt $\vec{w} \in U$ en $\vec{w} \in V$, dus $U \cap V = \{\vec{0}\}$. De basis van $U \cap V$ is dus ook $\{\vec{0}\}$.

De dimensie van $\{\vec{0}\}$ is 0, dus de dimensie van $U \cap V$ is ook 0.