Дискретная математика. Глава 1. Множества и отображения.

А.В.Пастор

Дискретная математика Глава 1. Множества и отображения

А. В. Пастор

05.09.2022

Дискретная математика. Глава 1. Множества и отображения.

А.В.Пастор

Слайды по дискретной математике будут публиковаться по адресу https://logic.pdmi.ras.ru/~pastor/ITMO/2022-23/

- Неформально, множество это произвольная совокупность объектов.
 - ▶ Объекты, из которых состоит множество, называются элементами.
 - Элементами множества могут быть любые рассматриваемые в математике объекты: числа, точки, фигуры, а также другие множества.
 - ightharpoonup Принадлежность элемента x множеству Y обозначается $x \in Y$.
 - ▶ Множество, не содержащее ни одного элемента, называется $\pi y c \tau b m$ и обозначается \varnothing .
- Можно дать математически строгое определение понятия множества, задав его аксиоматически. Но это сложно и находится за рамками данного курса.
 - Формально, элементами множества тоже являются множества.
 - ▶ Другие объекты нужно кодировать при помощи тех или иных множеств.

Задание множеств

• Перечисление элементов: элементы множества перечисляются через запятую в фигурных скобках.

Этот способ подходит для конечных множеств.

Пример

$$Y = \{1, 3, 7, 19, 2021\}.$$

• Задание подмножества при помощи условия:

$$Y = \{x \in X \mid \text{условие на } x\}$$
 — множество, состоящие из всех элементов X , удовлетворяющих данному условию.

Пример

$$Y = \{n \in \mathbb{Z} \mid n \ni 2\}$$
 — множество всех четных чисел.

- ▶ Если все элементы множества Y принадлежат множеству X, то Y называется *подмножеством* множества X. Обозначение: $Y \subset X$. $-\mathcal{P}(X)$ множество всех подмножеств множества X.
- ▶ Можно также писать $Y = \{x \mid \text{условие на } x\}$, но это не обязательно множество!
 - Такие совокупности множеств называют классами.

математика. Глава 1. Множества и отображения.

А.В.Пастор

Лискретная

- Попытки задать понятие множества неформально приводят к ряду вопросов, на которые трудно дать ответ.
 - 1. Может ли множество являться своим элементом? То есть, может ли хоть для какого-нибудь множества x быть верно утверждение $x \in x$?
 - 2. Парадокс Б. Рассела (1901). Рассмотрим множество $Y = \{x \mid x \notin x\}$ (т. е. Y состоит их всех множеств, которые не являются собственными элементами).
 - Вопрос: верно ли, что $Y \in Y$?
 - При любом ответе на этот вопрос возникает противоречие!
- В формальной теории множеств соотношение $x \in x$ запрещено (аксиома регулярности).
- ullet Класс Y, определенный в парадоксе Рассела, множеством не является.
- Также не является множеством класс всех множеств.

Операции над множествами Основные операции. Пусть A, B — множества.

- $A \cap B \stackrel{\text{def}}{=} \{x \in A \mid x \in B\} \text{пересечение};$
- $A \cup B \stackrel{\text{def}}{=} \{x \mid (x \in A \lor x \in B)\} \text{объединение};$
- это всегда множество!

 ▶ $A \setminus B \stackrel{\text{def}}{=} \{x \in A \mid x \notin B\}$ разность;
- $A \triangle B \stackrel{\text{def}}{=} (A \cup B) \setminus (A \cap B)$ симметрическая разность.
- ullet Дополнение множества. Пусть U- универсум (или объемлющее

множество), т. е. множество, которое содержит все рассматриваемые

- $A = \{x \in O \mid x \notin A\}$ результат этой операции зависит от выбора U!
- Упорядоченные пары.
 - ▶ $(x,y) \stackrel{\text{def}}{=} \{\{x\}, \{x,y\}\}$ упорядоченная пара элементов (множеств) x и y.
 - Очевидно, что (a,b)=(c,d) тогда и только тогда, когда a=c и b=d.

Глава 1. Множества и отображения.

Лискретная

- ▶ $A \times B \stackrel{\text{def}}{=} \{(x,y) \mid (x \in A \& y \in B)\}$ декартово произведение (или прямое произведение) множеств A и B.
- Аналогично понятию упорядоченной пары можно ввести понятия упорядоченной тройки, упорядоченной четверки, ..., упорядоченной п-ки.
 - ightharpoonup Это можно сделать по индукции: $(x_1, \dots, x_{n-1}, x_n) \stackrel{\mathrm{def}}{=} ((x_1, \dots, x_{n-1}), x_n).$
- Понятие декартова произведения также можно обобщить на случай n множеств.
 - ▶ $A_1 \times ... \times A_n \stackrel{\text{def}}{=} \{(x_1, ..., x_n) \mid (x_1 \in A_1 \& ... \& x_n \in A_n)\}.$
 - ▶ Если A множество и $n \in \mathbb{N}$, то

$$A^n \stackrel{\mathrm{def}}{=} \underbrace{A \times \ldots \times A}_{n}.$$

– Здесь мы формально считаем, что $A^1 = A$.

Определение

- Бинарным отношением между множествами X и Y называется произвольное подмножество их декартового произведения $R \subset X \times Y$.
- Если X = Y, то R бинарное отношение на X.
- Пара (x,y), где $x \in X$ и $y \in Y$, удовлетворяет отношению R, если $(x,y) \in R$. Обозначение: xRy.

Замечание

- Фактически, бинарное отношение это свойство, которое для каждой пары (x,y) может либо выполняться, либо не выполняться (R-) это множество тех пар, для которых данное свойство выполнено).
- Бинарное отношение R на множестве X можно рассматривать как орграф: элементы множества будут его вершинами, а стрелка из x в y проводится тогда и только тогда, когда выполнено xRy.

Аналогично можно ввести понятие отношения между n множествами, где $n\in\mathbb{N}.$

Определение

- *п-местным* (или *п-арным*) отношением между множествами X_1,\dots,X_n называется произвольное подмножество $R\subset X_1\times\dots\times X_n$.
- Если $X_1 = \ldots = X_n = X$, то R n-местное отношение на множестве X.

Примеры

- 1. Равенство (a = b) бинарное отношение на \mathbb{R} ;
- 2. делимость $(a \mid b)$ бинарное отношение на \mathbb{Z} ;
- 3. пусть G = (V, E) граф, тогда
 - смежность бинарное отношение на V,
 - инцидентность бинарное отношение между V и E;
- 4. точки *A*, *B*, *C* лежат на одной прямой трехместное отношение на плоскости.

Свойства отношений

Определение

Бинарное отношение $R\subset X^2$ называется

- peфлексивным, если xRx выполнено для всех $x \in X$;
- иррефлексивным (антирефлексивным), если xRx не выполнено ни для каких $x \in X$;
- антисимметричным, если из xRy и yRx следует, x=y;
- транзитивным, если из xRy и yRz следует xRz.

• симметричным, если из xRv следует vRx:

Определение

Бинарное отношение \sim на множестве X называется *отношением эквивалентности*, если оно рефлексивно, симметрично и транзитивно.

Замечание

Отношение эквивалентности разбивает множество на *классы эквивалентности* так, что любые два элемента из одного класса эквивалентны, а любые два элемента из разных классов — нет.

Дискретная математика. Глава 1. Множества и отображения.

Определение

- Бинарное отношение \prec на множестве X называется *отношением частичного порядка*, если оно антисимметрично и транзитивно.
- Если при этом отношение ≺ иррефлексивно, то оно называется *отношением строгого частичного порядка*.
- А если оно рефлексивно то отношением нестрогого частичного порядка.
 - ▶ Как правило, для отношения строгого частичного порядка используется знак \prec или \succ , а для нестрогого знак \preccurlyeq или \succcurlyeq .
- Множество, на котором задано отношение частичного порядка, называется частично упорядоченным.
 - ▶ Формально, частично упорядоченное множество это упорядоченная пара (X, \prec) , где X множество и \prec отношение частичного порядка на X.
 - ▶ В частично упорядоченном множестве некоторые пары элементов могут быть несравнимы. То есть могут существовать такие $a, b \in X$, что ни одно из утверждений $a = b, a \prec b, b \prec a$ не выполнено.

Определение

- Бинарное отношение \prec на множестве X называется *отношением (строгого) линейного порядка*, если оно является отношением частичного порядка и для любых $a,b\in X$ выполнено ровно одно из следующих трех утверждений: a=b, $a\prec b$ или $b\prec a$.
- В этом случае, пара (X, \prec) называется линейно упорядоченным множеством.

Примеры

- 1. a < b отношение линейного порядка на ℝ;
- 2. $a \mid b$ отношение частичного порядка на \mathbb{N} .
- 3. Пусть X множество. Тогда $A \subset B$ — отношение частичного порядка на $\mathcal{P}(X)$.

Отображения и функции

- Неформально, *отображение* (функция) из множества X в множество Y это такое правило f, которое каждому элементу $x \in X$ ставит в соответствие ровно один элемент $y \in Y$. Этот элемент обозначается f(x).
- Формально понятие отображения можно определить в терминах отношений.

Определение

- Бинарное отношение $f \subset X \times Y$ называется *отображением* из множества X в множество Y, если любой элемент $x \in X$ входит в качестве первого элемента ровно в одну пару $(x,y) \in f$.
- Обозначение: $f: X \to Y$.
- Второй элемент пары (x, y) обозначают f(x) и называют образом элемента x при отображении f.
- Если y = f(x), то x называют прообразом элемента y.
- В отличии от образа, прообраз элемента существует не всегда; также прообраз может быть не единственным.

Дискретная математика. Глава 1. Множества и отображения.

Определение

Отображение $f: X \to Y$ называется

- инъекцией, если $f(x) \neq f(y)$ при $x \neq y$;
- сюръекцией, если у каждого элемента множества Y есть хотя бы один прообраз в множестве X;
- $\mathit{биекцией}$, если f одновременно является инъекцией и сюръекцией.

Замечание

- Биекция это взаимно однозначное соответствие между множествами X и Y: каждому элементу множества X поставлен в соответствие единственный элемент множества Y, а каждому элементу множества Y единственный элемент множества X.
- В частности, если X и Y конечные множества и существует биекция $f: X \to Y$, то в множествах X и Y одинаковое число элементов.

Дискретная математика. Глава 1. Множества и отображения.

А.В.Пастор

Определение

Композицией отображений $f:X\to Y$ и $g:Y\to Z$ называется отображение $g\circ f:X\to Z$, задаваемое формулой $(g\circ f)(x)=g(f(x))$.

Определение

- Отображение $g: Y \to X$ называется *обратным* к отображению $f: X \to Y$, если обе композиции $f \circ g$ и $g \circ f$ являются тождественными отображениями.
- T. e. g(f(x)) = x, при всех $x \in X$, и f(g(y)) = y, при всех $y \in Y$.
- ullet Отображение f называется обратимым, если к нему есть обратное.
- Отображение, обратное к f, обычно обозначается f^{-1} .

Теорема

Отображение f:X o Y обратимо $\Longleftrightarrow f$ — биекция.

Доказательство.

" \Leftarrow ": Для каждого $y \in Y$ обозначим через $f^{-1}(y)$ единственный прообраз элемента y.

- Тогда $f^{-1}: Y \to X$ отображение, обратное к f.
- " \Rightarrow ": Пусть f^{-1} отображение, обратное к f.
- f инъекция, поскольку если f(x) = f(y), то $x = f^{-1}(f(x)) = f^{-1}(f(y)) = y$.
- f сюръекция, поскольку для любого $y \in Y$ имеем $y = f(f^{-1}(y))$.

Конечные множества: немного комбинаторики

- Пусть X конечное множество. Количество его элементов будем обозначать через |X|.
- Мы уже знаем, что |X| = |Y| тогда и только тогда, когда между X и Yможно установить биекцию.

Лемма (принцип произведения)

Eсли |X| = m и |Y| = n, то $|X \times Y| = mn$.

Доказательство. Каждый из m элементов множества Xвходит ровно в n пар с элементами множества Y.

Следствие

Если $|X_i| = m_i$, где $i \in [1..k]$, то $|X_1 \times ... \times X_k| = m_1 \cdot ... \cdot m_k$.

Доказательство. Индукция по k.

База (k = 2): см. предыдущую лемму.

Переход $(k \to k+1)$: $|X_1 \times \ldots \times X_k \times X_{k+1}| = |(X_1 \times \ldots \times X_k) \times X_{k+1}| =$ $=|X_1\times\ldots\times X_k|\cdot |X_{k+1}|=(m_1\cdot\ldots\cdot m_k)\cdot m_{k+1}=m_1\cdot\ldots\cdot m_k\cdot m_{k+1}.$

Глава 1. Множества и отображения.

Лискретная

Если
$$|X| = m$$
, то $|\mathcal{P}(X)| = 2^m$.

Доказательство. Пусть $X = \{x_1, \dots, x_m\}$.

- Для каждого из $i \in [1..m]$ есть два варианта: x_i можно либо включить в подмножество, либо не включать.
- Итого, есть 2^m способов выбрать подмножество.

Замечание

- Фактически, мы построили следующую биекцию между множествами $\mathcal{P}(X)$ и $\{0,1\}^m$.
 - lacktriangle Подмножеству $A\subset X$ ставится в соответствие последовательность $(a_1,\ldots,a_m)\in\{0,1\}^m$, где

$$a_i = \left\{egin{array}{ll} 1, & ext{если } x_i \in A \ 0, & ext{если } x_i
otin A. \end{array}
ight.$$

Дискретная математика. Глава 1. Множества и отображения.

Теорема

Пусть |X| = k и |Y| = n. Тогда

- 1. число отображений из X в Y равно n^k ;
- 2. число инъекций из X в Y равно n(n-1)...(n-k+1).

Доказательство. Пусть $X = \{x_1, ..., x_k\}$.

- 1. Для каждого элемента $x_i \in X$ можно n способами выбрать его образ.
- 2. Образ x_1 можно выбрать n способами. После этого останется n-1 способ выбрать образ $x_2, \ldots, n-k+1$ способ выбрать образ x_k .

Замечание

При
$$n \ge k$$
 имеем $n(n-1)\dots(n-k+1) = \frac{n!}{(n-k)!}$, где $n! = 1 \cdot 2 \cdot \dots \cdot n$ (и $0! = 1$).

Вопрос. А чему равно число сюръекций из X в Y? Об этом мы поговорим позже...

Конечные множества: перестановки и размещения

Лискретная MATEMATINES Глава 1. Множества и отображения.

А. В. Пастор

Определение

Перестановкой на множестве X называется произвольная биекция $\sigma\colon X\to X$.

Следствие

Eсли |X| = n, то число перестановок на множестве X равно n!.

Определение

- 1. Число инъекций $f:[1..k] \to [1..n]$ называется числом размещений из nэлементов по k и обозначается A_n^k .
- 2. Число отображений $f: [1..k] \to [1..n]$ называется числом размещений с повторениями из n элементов по k и обозначается \widetilde{A}_n^k .

Итого, мы доказали следующие формулы.

- 1. $A_n^k = n(n-1)\dots(n-k+1) = \frac{n!}{(n-k)!}$, при $n \ge k$;
- 2. $\widetilde{A}_{n}^{k} = n^{k}$.

Счётные множества

Определение

Множество X называется счётным, если существует биекция $f: X \to \mathbb{N}$.

Замечание

- Это означает, что элементы множества X можно занумеровать натуральными числами: для элемента $a \in X$ число f(a) будет его номером.
- Элементы счётного множества можно записать в виде последовательности: $X = \{x_1, x_2, x_3, \ldots\}$, где $x_k = f^{-1}(k)$.

Примеры

- $2\mathbb{N} = \{2n \mid n \in \mathbb{N}\}$ множество всех чётных чисел.
- Доказательство. f(x) = x/2 биекция из $2\mathbb{N}$ в \mathbb{N} .
- ullet \mathbb{Z} множество всех целых чисел.

Доказательство.

$$f(x) = \left\{ egin{array}{ll} 2x, & x > 0 \ 1 - 2x, & x \leq 0 \end{array}
ight. -$$
 биекция из $\mathbb Z$ в $\mathbb N$.

Дискретная математика. Глава 1. Множества и отображения.

Счётность произведения

Теорема

Mножество № № — счётно.

Доказательство.

Функция $f(x,y) = \frac{(x+y-1)(x+y-2)}{2} + y$ — биекция из $\mathbb{N} \times \mathbb{N}$ в \mathbb{N} .

Замечание

- Эта функция перечисляет клетки бесконечной таблицы "по диагоналям".
- Другой пример биекции из $\mathbb{N} \times \mathbb{N}$ в \mathbb{N} : $g(x,y) = 2^{x-1}(2y-1)$.

Следствие

 Π усть X_1, \ldots, X_n — счётные множества.

Тогда множество $X_1 \times \ldots \times X_n$ — также счётно.

Доказательство. Рассмотрим биекции $f_i: X_i \to \mathbb{N}$ (где $i \in [1..n]$) и $g: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$.

База (n = 2): отображение $h_2: X_1 \times X_2 \to \mathbb{N}$, задаваемое формулой

$$h_2(x_1,x_2) \stackrel{\text{def}}{=} g(f_1(x_1),f_2(x_2)),$$

является биекцией.

Лискретная MATEMATINES Глава 1 Множества и отображения.

Переход $(n-1 \rightarrow n)$:

- Множество $X_1 \times \ldots \times X_{n-1}$ счётно по индукционному предположению.
- Множество X_n счётно по условию.
- Тогда множество $X_1 \times \ldots \times X_{n-1} \times X_n = (X_1 \times \ldots \times X_{n-1}) \times X_n$ является декартовым произведением двух счётных множеств.
- По доказанному в базе, оно счётно.

Теорема

Бесконечное подмножество счётного множества — счётно.

Доказательство.

Пусть X — счётное множество и $A \subset X$ — его бесконечное подмножество.

- Рассмотрим биекцию $f: X \to \mathbb{N}$.
- Тогда $g(x) \stackrel{\mathrm{def}}{=} |\{a \in A \mid f(a) \leq f(x)\}|$ биекция из A в \mathbb{N} .

Лискретная

Определение

• Множество X — не более чем счётно, если X либо конечно, либо счётно.

• Множество X - несчётно, если X не является ни конечным, ни счётным.

Теорема

Пусть $X \neq \emptyset$. Тогда следующие условия равносильны:

- 1. множество X не более чем счётно:
- 2. cvшествует инъекция $f: X \to \mathbb{N}$:
- 3. существует сюръекция $g: \mathbb{N} \to X$.

Доказательство.

"1. \Rightarrow 3.": Пусть множество X не более чем счётно.

- Если X бесконечно, то оно счётно.
 - ▶ Тогда существует биекция $f: X \to \mathbb{N}$.
 - ▶ Следовательно, $f^{-1}: \mathbb{N} \to X$ сюръекция.

Не более чем счётные множества

- ullet Если X конечно, то обозначим |X|=n.
 - lacktriangle Тогда существует биекция f:X o [1..n].
- $\blacktriangleright \text{ Пусть } g(y) \stackrel{\text{def}}{=} \left\{ \begin{array}{ll} f^{-1}(y), & y \leq n \\ f^{-1}(n), & y > n. \end{array} \right.$
- ightharpoonup Легко видеть, что $g\colon \mathbb{N} o X$ сюръекция.
- "3. \Rightarrow 2.": Пусть $g: \mathbb{N} \to X$ сюръекция.
- Выберем из всех прообразов х наименьший.
- То есть положим $f(x) \stackrel{\text{def}}{=} \min\{y \in \mathbb{N} \mid g(y) = x\}.$ Легко видеть, что $f \colon X \to \mathbb{N}$ инъекция.
- "2. \Rightarrow 1.": Пусть $f:X \to \mathbb{N}$ инъекция.

• Тогда $f: X \to f(X)$ — биекция.

- Рассмотрим множество $f(X) \stackrel{\text{def}}{=} \{f(x) \mid x \in X\}.$
- Поскольку $f(X) \subset \mathbb{N}$, множество f(X) не более чем счётно.

• Тогда у каждого элемента $x \in X$ есть хотя бы один прообраз.

- Поскольку $f(X) \subset \mathbb{N}$, множество f(X) не более чем счетно • Если f(X) — конечно, то и X — конечно.
- Если f(X) счётно, то и X счётно.

Дискретная математика. Глава 1. Множества и отображения.

А.В.Пастор

В. Пастор

Следствие 1

Если $f: X \to Y$ — инъекция и множество Y — счётно, то множество X — не более чем счётно.

Доказательство.

- ullet Пусть $g\colon Y o \mathbb{N}$ биекция.
- ullet Тогда $g\circ f\colon X o \mathbb{N}$ инъекция.

Следствие 2

Если $g: Y \to X$ — сюръекция и множество Y — счётно, то множество X — не более чем счётно.

Доказательство.

- Пусть $f: \mathbb{N} \to Y$ биекция.
- ullet Тогда $g\circ f\colon \mathbb{N} o X$ инъекция.

Счётность множества рациональных чисел

Теорема

Множество *ℚ всех рациональных чисел* — счётно.

Доказательство. Рассмотрим отображение $g: \mathbb{Z} \times \mathbb{N} \to \mathbb{Q}$, задаваемое формулой $g(a,b) \stackrel{\mathrm{def}}{=} \frac{a}{b}$.

- ullet Очевидно, что g сюръекция.
- Следовательно, \mathbb{Q} не более, чем счётно.
- Но при этом множество Q бесконечно.
- Таким образом, Q счётно.

Теорема

Объединение не более, чем счётного множества не более, чем счётных множеств — не более чем счётно.

Замечание

То есть, если нам дана конечная или бесконечная последовательность множеств A_1,A_2,\ldots , каждое из которых не более чем счётно, то множество $B=\bigcup_i A_i$ также не более чем счётно.

Глава 1. Множества и отображения.

Лискретная

Объединение не более чем счётных множеств

Доказательство. Пусть $f_i\colon A_i o \mathbb{N}$ — инъекции.

- Для каждого $x \in B$ пусть $s(x) \stackrel{\mathrm{def}}{=} \min\{n \in \mathbb{N} \mid x \in A_n\}.$
- Рассмотрим отображение $h: B \to \mathbb{N} \times \mathbb{N}$, задаваемое формулой $h(x) \stackrel{\mathrm{def}}{=} (s(x), f_{s(x)}(x)).$
- Очевидно, что *h* инъекция.
- Следовательно, В не более, чем счётно.

Замечание

В частности, объединение любого конечного или счётного набора счётных множеств всегда счётно.

Определение

- Вещественное число α называется *алгебраическим*, если α корень ненулевого многочлена с рациональными коэффициентами.
- В противном случае, число α называется трансцендентным.

Теорема

Множество всех алгебраических чисел счётно. (Задача.)

Дискретная математика. Глава 1. Множества и отображения.

Пример несчётного множества

Теорема

Mножество [0,1) несчётно.

Доказательство. Пусть $f \colon \mathbb{N} \to [0,1)$ — биекция.

- ullet Тогда $[0,1)=\{lpha_1,lpha_2,\ldots\}$, где $lpha_i\stackrel{
 m def}{=}f(i)$.
- Запишем все α_i в виде бесконечных десятичных дробей: $\alpha_i = \sum\limits_{j=1}^{\infty} \frac{a_{ij}}{10^j}$, где $a_{ii} \in [0..9]$.
- Рассмотрим число $\beta = \sum_{i=1}^{\infty} \frac{b_i}{10^i}$, где $b_i = \left\{ \begin{array}{ll} 4, & a_{ii} = 7 \\ 7, & a_{ii} \neq 7. \end{array} \right.$
- Тогда $\beta \in [0,1)$, но при этом β не совпадает ни с одним из α_i (десятичные записи чисел β и α_i отличаются в i-м разряде). Противоречие.

Следствие

Существуют трансцендентные числа (т. е. вещественные числа, не являющиеся алгебраическими).

Дискретная математика. Глава 1. Множества и отображения.

Определение

Множества X и Y называются pавномощными (или эквивалентными), если существует биекция $f: X \to Y$. Обозначение: $X \sim Y$.

Замечание

- Легко видеть, что равномощность обладает всеми свойствами эквивалентности:
 - 1. $X \sim X$ (рефлексивность);
 - 2. если $X \sim Y$, то $Y \sim X$ (симметричность);
 - 3. если $X \sim Y$ и $Y \sim Z$, то $X \sim Z$ (транзитивность).
- Тем самым, все множества можно разбить на классы равномощных.
- Каждому классу ставится в соответствие некоторая специальная характеристика, называемая мощностью множеств этого класса.

- Конечные множества равномощны если и только если они содержат поровну элементов.
 - ▶ Мощностью конечного множества называется число его элементов.
- Все счётные множества равномощны.
 - ▶ Мощность счётного множества обозначается через a.
- ullet Множество X имеет мощность континуума, если $X\sim [0,1].$
 - ▶ Мощность континуума обозначается через с.
- ullet Есть разные варианты обозначений для мощности множества X:
 - $\blacktriangleright |X|$; #X; $\overline{\overline{X}}$; $\operatorname{card}(X)$.
 - $ightharpoonup \overline{\overline{X}}$ "двойное отвлечение" (от свойств элементов и от их порядка).
- Мы будем использовать обозначение |X|.

Счётное подмножество бесконечного множества

Теорема

В любом бесконечном множестве есть счётное подмножество.

Доказательство. Пусть $X = X_0$ — бесконечное множество.

- Будем последовательно выбирать из X_0 элементы счётного подмножества A.
- Пусть $a_1 \in X_0$ и $X_1 \stackrel{\mathrm{def}}{=} X_0 \setminus \{a_1\}$.
- lacktriangle Множество X_1 бесконечно, т. к. иначе $X = X_1 \cup \{a_1\}$ было бы конечно.
- На k-м шаге из бесконечного множества $X_{k-1} \subset X$ выбираем элемент a_k и полагаем $X_k \stackrel{\mathrm{def}}{=} X_{k-1} \setminus \{a_k\}$.
 - ightharpoonup Аналогично предыдущему, множество X_k бесконечно.
- Продолжая этот процесс, получим последовательность (a_i) элементов множества X.
- Тогда, множество $A = \{a_1, a_2, \ldots\}$, составленное из членов построенной последовательности, будет счётным подмножеством X.

Глава 1. Множества и отображения.

Лискретная

- В предыдущей теореме мы строили бесконечную последовательность непустых множеств и из каждого из них выбирали по элементу.
- На самом деле, нам нужно *одновременно* сделать такой выбор для всех рассматриваемых множеств.
- То, что можно одновременно выбрать по элементу из бесконечного набора непустых множеств *не является очевидным*.
- Формально, это свойство называется аксиомой выбора.
- Аксиома выбора. Пусть S множество непустых множеств, $\cup S$ объединение всех входящих в S множеств. Тогда существует функция $f\colon S\to \cup S$, такая, что $f(x)\in x$ для каждого $x\in S$.
- Фактически, мы уже использовали аксиому выбора в теореме о счётном объединении счётных множеств.
- Эти две теоремы (равно как и многие другие) невозможно доказать без аксиомы выбора.

Следствия теоремы о счётном подмножестве Следствие 1

Если X бесконечно и Y не более чем счётно, то $X \cup Y \sim X$.

Доказательство. Пусть $B\subset X$ — счётное множество;

- $A = X \setminus B$ u $C = Y \setminus X$.
- Тогда $X = A \cup B$ и $X \cup Y = A \cup B \cup C$;
- при этом $A \cap B = A \cap C = \emptyset$,
- множество C не более чем счётно и $B \cup C$ счётно.
- Рассмотрим биекцию $f: B \to B \cup C$.
- Тогда отображение $g: X \to X \cup Y$, задаваемое формулой $g(x) \stackrel{\mathrm{def}}{=} \left\{ \begin{array}{c} f(x), & x \in B \\ x, & x \in A \end{array} \right.$ биекция.

Следствие 2

Если X несчётно и Y не более чем счётно, то $X\setminus Y\sim X$.

Доказательство. Заметим, что $X = (X \setminus Y) \cup (X \cap Y);$

• множество $X \setminus Y$ бесконечно и $X \cap Y$ — счётно.

отображения. А.В.Пастор

Дискретная математика. Глава 1.

Множества и

В. Пастор

Утверждение

Пусть $a, b \in \mathbb{R}$ и a < b. Тогда множества [a, b], [a, b), (a, b] и (a, b) имеют мощность континуума.

Доказательство.

- ullet Функция f(x)=(b-a)x+a задает биекцию f:[0,1] o [a,b].
- Множества [a,b), (a,b] и (a,b) равномощны [a,b], поскольку получаются удалением конечного числа элементов.

Утверждение

Множество $\mathbb R$ имеет мощность континуума.

Доказательство.

Функция $\operatorname{tg} X$ задает биекцию из $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$ на $\mathbb{R}.$

Определение

Мощность множества X больше мощности множества Y, если эти множества неравномощны и в X есть подмножество, равномощное Y. Обозначение: |X|>|Y|.

Теорема (Г. Кантор, Ф. Бернштейн)

Если существуют подмножества $X_0\subset X$ и $Y_0\subset Y$, такие, что $X_0\sim Y$ и $Y_0\sim X$, то $X\sim Y$. (б/д)

- Тем самым, утверждения |X|>|Y| и |Y|>|X| не могут быть выполнены одновременно. То есть сравнение мощностей корректно.
- При помощи аксиомы выбора можно доказать, что любые две мощности сравнимы. То есть для любых X и Y выполнено ровно одно из следующих трех утверждений: либо |X|>|Y|, либо |Y|>|X|, либо $X\sim Y$.

- Мощность конечного множества тем больше, чем больше в нем элементов.
- Мощность счётного множества больше мощности любого конечного множества.
- Обратно, если $|X| < \mathfrak{a}$, то X конечно.
- Мощность континуума больше мощности счетного множества.
- Континуум-гипотеза. Не существует такого множества X, что $\mathfrak{a} < |X| < \mathfrak{c}$.
- К. Гёдель и П. Коэн доказали, что континуум-гипотезу невозможно ни доказать ни опровергнуть в рамках формальной теории множеств.

Мощность множества всех подмножеств

Теорема (Г. Кантор)

Для любого множества X выполнено $|\mathcal{P}(X)| > |X|$.

Доказательство. Пусть $Y = \{\{x\} \mid x \in X\}.$

- Очевидно, что $Y \sim X$ и $Y \subset \mathcal{P}(X)$.
- Пусть $f: X o \mathcal{P}(X)$ биекция.
- Рассмотрим множество $Z \stackrel{\mathrm{def}}{=} \{x \in X \mid x \notin f(x)\}.$
- Пусть $z \stackrel{\text{def}}{=} f^{-1}(Z)$. Верно ли, что $z \in Z$? • Если $z \in Z$, то $z \in f(z)$, откуда $z \notin Z$;
 - ▶ если $z \notin Z$, то $z \notin f(z)$, откуда $z \in Z$.
- D ===6----
- В любом случае получаем противоречие.

Замечание

- Из этой теоремы следует, что не существует множества наибольшей мощности. Следовательно, нет и множества всех множеств.
- Для конечных множеств это означает, что 2^n всегда больше n.

Глава 1. Множества и отображения.

Лискретная