Resumen Lineal Algebra Done Right + Apuntes de yapa

el fabri quién más si no

algún día de invierno, mientras robo flores del cementerio

1. Espacios Vectoriales

1.1. 1.B - Definición de Espacio Vectorial.

Definición 1. • Una suma sobre un conjunto V es una función que asigna un elemento $u + v \in V$ a cada par de elementos $u, v \in V$.

■ Una multiplicación por escalar sobre un conjunto V es una función que asigna un elemento $\lambda v \in V$ a cada $\lambda \in \mathbb{F}$ y cada $v \in V$.

Definición 2. Un espacio vectorial es un conjunto V junto con la suma sobre V y multiplicación por escalar sobre V tal que se verifican las siguientes propiedades:

- Conmutatividad: $u + v = v + u \ \forall u, v \in V$.
- Asociatividad: (u+v)+w=u+(v+w) y (ab)v=a(bv) para cada $u,v,w\in V$ y todo $a,b\in \mathbb{F}$.
- Identidad de la suma: existe un elemento $0 \in V$ tal que $v + 0 = v \ \forall v \in V$.
- Inverso aditivo: para cada $v \in V$, existe un elemento $w \in V$ tal que v + w = 0.
- Identidad del producto por escalar: $1v = v \ \forall v \in V$.
- Distributiva: $a(u+v) = au + av \ y \ (a+b)v = av + bv \ para \ todo \ a,b \in \mathbb{F} \ y \ todo \ u,v \in V.$

Definición 3. Los elementos de un espacio vectorial se llaman vectores o puntos.

Definición 4. • Un espacio vectorial sobre \mathbb{R} se llama espacio vectorial real.

lacktriangledown Un espacio vectorial sobre $\mathbb C$ se llama espacio vectorial complejo.

Nota 1. \blacksquare Si S es un conjunto, entonces \mathbb{F}^S denota el conjunto de funciones $g: S \to \mathbb{F}$

■ La suma y producto por escalar se definen como en análisis.

Proposición 1. Un espacio vectorial tiene una única identidad de la suma.

Proposición 2. • Todo elemento en un espacio vectorial tiene un único inverso aditivo de v.

• w-v se define como w+(-v).

Nota 2. V denota el espacio vectorial sobre \mathbb{F} .

Proposición 3. 0v = 0 para todo $v \in V$.

Proposición 4. a0 = 0 para todo $a \in \mathbb{F}$.

Proposición 5. (-1)v = -v para todo $v \in V$.

1.2. 1.C - Subespacios.

Definición 5. Un subconjunto U de V se llama un subespacio de V si U es también un espacio vectorial (usando la misma suma y producto por escalar que en V).

Proposición 6. Un subconjunto U de V es un subespacio de V si y solo si U satisface las siguientes tres condiciones:

- Identidad de la suma: $0 \in U$.
- Cerrado bajo la suma: $u, w \in U \implies u + w \in U$.
- Cerrado bajo producto por escalar: $a \in \mathbb{F}$, $u \in U \implies au \in U$.

Definición 6. Supongamos que U_1, \ldots, U_m son subconjuntos de V. La suma de U_1, \ldots, U_m , denota $U_1 + \cdots + U_m$, es el conjunto de todas las sumas posibles de U_1, \ldots, U_m . En símbolos:

$$U_1 + \dots + U_m = \{u_1 + \dots + u_m : u_1 \in U_1, \dots, u_m \in U_m\}.$$

Proposición 7. Supongamos que U_1, \ldots, U_m son subespacios de V. Entonces $U_1 + \cdots + U_m$ es el menor espacio vectorial de V que contiene a U_1, \ldots, U_m .

Definición 7. Supongamos que U_1, \ldots, U_m son subespacios de V.

- La suma $U_1 + \ldots + U_m$ se llama suma directa si cada elemento de $U_1 + \cdots + U_m$ se puede escribir de una única manera como suma $u_1 + \cdots + u_m$, donde cada $u_j \in U_j$.
- $Si\ U_1 + \cdots + U_m$ es una suma directa, entonces $U_1 \oplus \ldots \oplus U_m$ denota $U_1 + \cdots + U_m$, con \oplus indicando que es una suma directa.

Proposición 8. Supongamos que U_1, \ldots, U_m son subespacios de V. Entonces $U_1 + \cdots + U_m$ es una suma directa si y solo si la única manera de escribir 0 como una suma $u_1 + \cdots + u_m$, donde cada $u_j \in U_j$, es tomando $u_j = 0$.

Proposición 9. Supongamos que U y W son subespacios de V. Entonces U+W es una suma directa si y solo si $U \cap W = \{0\}$.

2. Espacios Vectoriales de Dimensión Finita

2.1. 2.A - Generación e Independencia Lineal

Definición 8. Una combinación lineal de una lista v_1, \ldots, v_m de vectores en V es un vector de la forma

$$a_1v_1 + \cdots + a_mv_m$$

donde $a_1, \ldots, a_m \in \mathbb{F}$.

Definición 9. El conjunto de todas las combinaciones lineales de una lista de vectores v_1, \ldots, v_m en V se llama span de v_1, \ldots, v_m , denotamos $span(v_1, \ldots, v_m)$. En símbolos:

$$span(v_1, ..., v_m) = \{a_1v_1 + \cdots + a_mv_m : a_1, ..., a_m \in \mathbb{F}\}\$$

Proposición 10. El span de una lista de vectores en V es el menor subespacio de V que contiene todos los vectores en la lista.

Definición 10. Si $span(v_1, ..., v_m) = V$, decimos que $v_1, ..., v_m$ genera a V.

Definición 11. Un espacio vectorial se llama de dimensión finita si alguna lista de vectores en él genera al espacio.

Nota 3. Por definición, toda lista tiene longitud finita.

Definición 12. • Una función $p: \mathbb{F} \to \mathbb{F}$ se llama polinomio con coeficientes en \mathbb{F} si existen $a_0, \dots, a_m \in \mathbb{F}$ tal que

$$p(z) = a_0 + a_1 z + a_2 z^2 + \dots + a_m z^m$$

para todo $z \in \mathbb{F}$.

 $\blacksquare \mathcal{P}(\mathbb{F})$ es el conjunto de todos los polinomios con coeficientes en \mathbb{F} .

Definición 13. • Un polinomio $p \in \mathcal{P}(\mathbb{F})$ se dice que tiene grado m si existen escalares $a_0, a_1, \ldots, a_m \in \mathbb{F}$ con $a_m \neq 0$ tal que

$$p(z) = a_0 + a_1 z + \dots + a_m z^m$$

para todo $z \in \mathbb{F}$. Si p tiene grado m, notamos grad(p) = m.

■ El polinomio que es identicamente 0 por convención tiene grado $-\infty$.

Definición 14. Para m entero no negativo, $\mathcal{P}_m(\mathbb{F})$ denota el conjunto de todos los polinomios con coeficientes en \mathbb{F} y grado a lo sumo m.

Definición 15. Un espacio vectorial se dice de dimensión finita si no es de dimensión finita.

Definición 16. • Una lista v_1, \ldots, v_m de vectores en V se dice linealmente independiente si la única selección de $a_1, \ldots, a_m \in \mathbb{F}$ que hace $a_1v_1 + \cdots + a_mv_m$ igual a 0 es $a_1 = \ldots = a_m = 0$.

■ La lista vacía () se dice que es linealmente independiente.

Definición 17.Una lista de vectores en V se dice linealmente dependiente si no es linealmente independiente.

■ En otras palabras, una lista v_1, \ldots, v_m de vectores en V es linealmente dependiente si existen $a_1, \ldots, a_m \in \mathbb{F}$, no todos 0, tal que $a_1v_1 + \cdots + a_mv_m = 0$.

Proposición 11. Supongamos que v_1, \ldots, v_m es una lista linealmente dependiente en V. Entonces existe $j \in \{1, \ldots, m\}$ tal que verifica:

- $a) v_j \in span(v_1, ..., v_{j-1})$
- b) si el j-ésimo es removido de v_1, \ldots, v_m , el span de la lista restante es igual al $span(v_1, \ldots, v_m)$.

Proposición 12. En un espacio vectorial de dimensión finita, la longitud de cada lista linealmente independiente de vectores es menor o igual al largo de cada lista generadora de vectores.

Proposición 13. Todo subespacio de un espacio vectorial de dimensión finita tiene dimensión finita.

2.2. 2.B - Bases

Definición 18. Una base de V es una lista de vectores en V que es linealmente independiente y genera a V.

Proposición 14. Una lista v_1, \ldots, v_n de vectores en V es una base de V si y solo si cada vector $v \in V$ se puede escribir de una única manera

$$v = a_1 v_1 + \dots + a_n v_n$$

donde $a_1, \ldots, a_n \in \mathbb{F}$.

Proposición 15. Toda lista generadora en un espacio vectorial se puede reducir a una base del espacio vectorial.

Proposición 16. Todo espacio vectorial de dimensión finita tiene una base.

Proposición 17. Toda lista linealmente independiente de vectores es un espacio vectorial finito se puede extender a una base del espacio vectorial.

Proposición 18. Supngamos que V es un espacio vectorial de dimensión finita y U un subespacio de V. Entonces existe un subespacio W de V tal que $V = U \oplus W$.

2.3. 2.C - Dimensión

Proposición 19. Cualesquiera dos bases de un espacio vectorial de dimensión finita tienen la misma longitud.

Definición 19. • La dimensión de un espacio vectorial de dimensión finia es el largo de cualquier base del espacio vectorial.

■ La dimensión de V (si V es de dimensión finita) se denota por dim V.

Definición 20. Si V es un espacio vectorial de dimensión finita y U un subespacio de V, entonces $\dim U \leq \dim V$.

Proposición 20. Supongamos que V es de dimensión finita. Entonces toda lista linealmente independiente de vectores en V con longitud dim V es una base de V.

Proposición 21. Si U_1 y U_2 son subespacios de un espacio vectorial de dimensión finita, entonces

$$\dim(U_1 + U_2) = \dim(U_1) + \dim(U_2) - \dim(U_1 \cap U_2).$$

3. Transformaciones Lineales

3.1. 3.A - El Espacio Vectorial de las Transformaciones Lineales

Definición 21. Una transformación lineal de V en W es una función $T:V\to W$ con las siquientes propiedades:

- Suma: T(u+v) = T(u) + T(v) para todo $u, v \in V$.
- Homogeneidad: $T(\lambda v) = \lambda(Tv)$ para todo $\lambda \in \mathbb{F}$ y todo $v \in V$.

Nota 4. El conjunto de todas las transformaciones lineales de V en W se nota $\mathcal{L}(V,W)$.

Proposición 22. Supongamos que v_1, \ldots, v_n es una base de V y $w_1, \ldots, w_n \in W$. Entonces existe una única transformación lineal $T: V \to W$ tal que

$$Tv_i = w_i$$

para cada $j = 1, \ldots, n$.

Definición 22. Supongamos que $S,T \in \mathcal{L}(V,W)$ y $\lambda \in \mathbb{F}$. Entonces la suma S+T y el producto λT son transformaciones lineales de V en W definidas por

$$(S+T)(v) = Sv + Tv$$
 y $(\lambda T)(v) = \lambda (Tv)$

para cada $v \in V$.

Proposición 23. Con las operaciones de suma y producto por escalar definidas anteriormente, $\mathcal{L}(V,W)$ es un espacio vectorial.

Definición 23. Si $T \in \mathcal{L}(U,V)$ y $S \in \mathcal{L}(V,W)$, entonces el producto $ST \in \mathcal{L}(U,W)$ se define por

$$(ST)(u) = S(Tu)$$

para todo $u \in U$.

Proposición 24. • asociatividad: $(T_1T_2)T_3 = T_1(T_2T_3)$ cuando $T_1, T_2 \ y \ T_3$ son transformaciones lineales tal que el producto tenga sentido.

- neutro: TI = IT = T cuando $T \in \mathcal{L}(V, W)$ (la primera I es la identidad en V y la segunda la identidad en W).
- distributivas: $(S_1 + S_2)T = S_1T + S_2T$ y $S(T_1 + T_2) = ST_1 + ST_2$ cuando $T, T_1, T_2 \in \mathcal{L}(U, V)$ $y \in S, S_1, S_2 \in \mathcal{L}(V, W)$.

Proposición 25. Supongamos que T es una transformación lineal de V en W. Entonces T(0) = 0.

3.2. 3.B - Espacio Nulo y Rango

Definición 24. Para $T \in \mathcal{L}(V, W)$, el espacio nulo de T, denotado por null T, es el subconjunto de V que consiste de los vectores que T lleva a 0:

$$\text{null } T = \{ v \in V : Tv = 0 \}.$$

Proposición 26. Supongamos que $T \in \mathcal{L}(V, W)$. Entonces null T es un subespacio de V.

Definición 25. Una función $T: V \to W$ se dice inyectiva si Tu = Tv implica u = v.

Proposición 27. Sea $T \in \mathcal{L}(V, W)$. Entonces T es invectiva si y solo si null $T = \{0\}$.

Definición 26. Sea T una función de V en W, el rango de T es el subconjunto de W que consiste de los vectores que son de la forma Tv para algún $v \in V$:

rango
$$T = \{Tv : v \in V\}.$$

Proposición 28. Si $T \in \mathcal{L}(V, W)$, entonces rango T es un subespacio de W.

Definición 27. Una función $T: V \to W$ se dice sobreyectiva si rango T = W.

Teorema 1 (Teorema Fundamental de las Transformaciones Lineales). Supongamos que V es un espacio vectorial de dimensión finita $y \ T \in \mathcal{L}(V, W)$. Entonces rango T es de dimensión finita y

$$\dim V = \dim \operatorname{null} T + \dim \operatorname{rango} T.$$

Proposición 29. Supongamos que V y W son espacios vectoriales de dimensión finita tal que $\dim V > \dim W$. Entonces no existe una transformación lineal de V en W inyectiva.

Proposición 30. Supongamos que V y W son espacios vectoriales de dimensión finita tal que $\dim V < \dim W$. Entonces no existe una transformación lineal de V en W sobreyectiva.

Proposición 31. Un sistema homogéneo de ecuaciones lineales con más variables que ecuaciones tiene soluciones distinta de cero.

Proposición 32. Un sistema no homogéneo de ecuaciones lineales con más ecuaciones que variables no tiene solución para alguna selección de términos constantes.

3.3. 3.C - Matrices

Definición 28. Sean m y n enteros positivos. Una matriz de m por n A es un arreglo de elementos de \mathbb{F} con m filas y n columnas. La notación $A_{j,k}$ denota la entrada en la fila j, columna k de A.

Definición 29. Supongamos que $T \in \mathcal{L}(V, W)$ y v_1, \ldots, v_n es una base de V y w_1, \ldots, w_m es una base de W. La matriz de T con respecto a estas bases es la matriz de m por n $\mathcal{M}(T)$ cuyas entradas $A_{i,k}$ se definen por

$$Tv_k = A_{1,k}w_1 + \dots + A_{m,k}w_m.$$

Si las bases no están claras en el contexto, se usa la notación $\mathcal{M}(T,(v_1,\ldots,v_n),(w_1,\ldots,w_m))$ es utilizada.

Nota 5. La k-ésima columna de $\mathcal{M}(T)$ consiste de los escalares necesarios para escribir Tv_k como combinación lineal de (w_1, \ldots, w_m) : $Tv_k = \sum_{j=1}^m A_{j,k} w_j$.

Nota 6. Si T va de un espacio vectorial de dimensión n a otro de dimensión m, entonces $\mathcal{M}(T)$ es de $m \times n$.

Definición 30. La suma de dos matrices es la usual.

Proposición 33. Supongamos que $S, T \in \mathcal{L}(V, W)$. Entonces $\mathcal{M}(S + T) = \mathcal{M}(S) + \mathcal{M}(T)$.

Definición 31. Producto por escalar de una matriz es la usual.

Proposición 34. Supongamos que $\lambda \in \mathbb{F}$ y $T \in \mathcal{L}(V, W)$. Entonces $\mathcal{M}(\lambda T) = \lambda \mathcal{M}(T)$.

Nota 7. El conjunto de todas las matrices $m \times n$ en \mathbb{F} se denota por $\mathbb{F}^{m,n}$.

Proposición 35. Supongamos que m y n son enteros positivos. Con la adición y producto por escalar definido anteriormente, $\mathbb{F}^{m,n}$ es un espacio vectorial de dimensión mn.

Definición 32. La multiplicación de matrices es la usual.

Proposición 36. Si $T \in \mathcal{L}(U,V)$ y $S \in \mathcal{L}(V,W)$, entonces $\mathcal{M}(ST) = \mathcal{M}(S)\mathcal{M}(T)$.

Nota 8. Supongamos que A es una matriz de $m \times n$.

- $Si \ 1 \le j \le m$, entonces $A_{j,.}$ denota la matriz de $1 \times n$ que consiste de la fila j de A.
- Si $1 \le k \le n$, entonces A_k , denote la matriz de $m \times 1$ que consiste de la columna k de A.

Proposición 37. Supongamos que A es una matriz de $m \times n$ y C una matriz de $n \times p$. Entonces

$$(AC)_{j,k} = A_{j,\cdot}C_{\cdot,k}$$

para $1 \le j \le m \ y \ 1 \le k \le p$.

Proposición 38. Supongamos que A es una matriz de $m \times n$ y C es una matriz de $n \times p$. Entonces

$$(AC)_{.,k} = AC_{.,k}$$

para $1 \le k \le p$.

Proposición 39. Supongamos que A es una matriz de $m \times n$ y $c = \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix}$ es una matriz de $n \times 1$. Entonces

$$Ac = c_1 A_{\cdot,1} + \dots + c_n A_{\cdot,n}.$$

En otras palabras, Ac es una combinación lineal de las columnas de A, con los escalares que multiplican a las columnas provenientes de c.

3.4. 3.D - Invertibilidad y Espacios Vectoriales Isomorfos

Definición 33. • Una transformación lineal $T \in \mathcal{L}(V, W)$ se dice invertible si existe una transformación lineal $S \in \mathcal{L}(W, V)$ tal que ST = I (identidad en V) y TS = I (identidad en W).

■ Una transformación lineal $S \in \mathcal{L}(W, V)$ que satisface ST = I y TS = I se llama inversa de T.

Proposición 40. La inversa de una transformación lineal es unica.

Nota 9. Si T es invertible, entones su inversa se nota por T^{-1} . En otras palabras, si $T \in \mathcal{L}(V, W)$ es invertible, entonces T^{-1} es el único elemento de $\mathcal{L}(W, V)$ tal que $T^{-1}T = I$ y $TT^{-1} = I$.

Proposición 41. Una transformación lineal es invertible si y solo si es inyectiva y sobreyectiva.

Definición 34. • Un isomorfismo es una transformación lineal invertible.

■ Dos espacios vectoriales son isomorfos si existe un isomorfismo desde un espacio vectorial en el otro.

Proposición 42. Dos espacios vectoriales de dimensión finita sobre \mathbb{F} son isomorfos si y solo si tienen la misma dimensión.

Proposición 43. Supongamos que v_1, \ldots, v_n es una base de V y w_1, \ldots, w_m es una base de W. Entonces \mathcal{M} es un isomorfismo entre $\mathcal{L}(V,W)$ y $\mathbb{F}^{m,n}$.

Proposición 44. Supongamos que V y W son de dimensión finita. Entonces $\mathcal{L}(V,W)$ es de dimensión finita y

$$\dim \mathcal{L}(V, W) = (\dim V)(\dim W).$$

Definición 35. Supongamos que $v \in V$ y v_1, \ldots, v_n es una base de V. La matriz de v con respecto a esta base es la matriz $n \times 1$:

$$\mathcal{M}(v) = \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix}$$

donde c_1, \ldots, c_n son los escalares tal que

$$v = c_1 v_1 + \dots + c_n v_n.$$

Proposición 45. Supongamos que $T \in \mathcal{L}(V, W)$ y v_1, \ldots, v_n es una base de V y w_1, \ldots, w_m es una base de W. Sea $1 \le k \le n$. Entonces la k-ésima columna de $\mathcal{M}(T)$, la cual se denota por $\mathcal{M}(T)$. k es igual a $\mathcal{M}(v_k)$.

Proposición 46. Supongamos que $T \in \mathcal{L}(V, W)$ y $v \in V$. Supongamos también que v_1, \ldots, v_n es una base de V y w_1, \ldots, w_m una base de W. Entonces

$$\mathcal{M}(Tv) = \mathcal{M}(T)\mathcal{M}(v).$$

Definición 36. • Una transformación lineal de un espacio vectorial en sí mismo se llama operador.

■ La notación $\mathcal{L}(V)$ denota al conjunto de todos los operadores sobre V. En otras palabras, $\mathcal{L}(V) = \mathcal{L}(V,V)$.

Proposición 47. Supongamos que V es un espacio vectorial de dimensión finita $y \ T \in \mathcal{L}(V)$. Entonces son equivalentes:

- a) T es invertible.
- b) T es inyectiva.
- c) T es sobreyectiva.

3.5. 3.E - Productos y Cocientes de Espacios Vectoriales

Definición 37. Supongamos que V_1, \ldots, V_m son espacios vectoriales sobre \mathbb{F} .

■ El producto $V_1 \times ... \times V_m$ se define por

$$V_1 \times \ldots \times V_m = \{(v_1, \ldots, v_m) : v_1 \in V_1, \ldots, v_m \in V_m\}.$$

■ La suma sobre $V_1 \times ... \times V_m$ se define por

$$(u_1,\ldots,u_m)+(v_1,\ldots,v_m)=(u_1+v_1,\ldots,u_m+v_m).$$

■ El producto por escalar sobre $V_1 \times ... \times V_m$ se define por

$$\lambda(v_1,\ldots,v_m)=(\lambda v_1,\ldots,\lambda v_m).$$

Proposición 48. Supongamos que V_1, \ldots, V_m son espacios vectoriales sobre \mathbb{F} . Entonces $V_1 \times \ldots \times V_m$ es un espacio vectorial sobre \mathbb{F} .

Proposición 49. Supongamos que V_1, \ldots, V_m son espacios vectoriales finitos. Entonces $V_1 \times \ldots \times V_m$ es de dimensión finita y

$$\dim(V_1, \times \ldots \times, V_m) = \dim V_1 + \cdots + \dim V_m.$$

Proposición 50. Supongamos que U_1, \ldots, U_m son subespacios de V. Definimos la transformación lineal $\Gamma: U_1 \times \ldots \times U_m \to U_1 + \cdots + U_m$ por

$$\Gamma(u_1,\ldots,u_m)=u_1+\cdots+u_m.$$

Entonces $U_1 + \cdots + U_m$ es una suma directa si y solo si Γ es inyectiva.

Proposición 51. Supongamos que V es un espacio vectorial de dimensión finita $y U_1, \ldots, U_m$ son subespacios de V. Entonces $U_1 + \cdots + U_m$ es una suma directa si y solo si

$$\dim(U_1 + \dots + U_m) = \dim U_1 + \dots + \dim U_m$$

Definición 38. Supongamos que $v \in V$ y U es un subespacio de V. Entonces v + U es el subconjunto de V definido por

$$v + U = \{v + u : u \in U\}.$$

Definición 39. • Un subconjunto afín de V es un subconjunto de V de la forma v + U para algún $v \in V$ y algún subespacio U de V.

■ Para $v \in V$ y U un subespacio de V, el subconjunto afín v + U se dice que es paralelo a U.

Definición 40. Supongamos que U es un subespacio de V. Entonces el espacio cociente V/U es el conjunto de todos los subconjuntos afines de V paralelos a U. En otras palabras, $V/U = \{v + U : v \in V\}$.

Proposición 52. Supongamos que U es un subespacio de V y $v, w \in V$. Entonces las siguientes condiciones son equivalentes:

- \bullet a) $v w \in U$
- **b**) v + U = w + U
- $c)(v+U)\cap(w+U)\neq\varnothing$

Definición 41. Supongamos que U es un subespacio de V. Entonces la suma y producto por escalar se define sobre V/U por

$$(v+U) + (w+U) = (v+w) + U$$
$$\lambda(v+U) = (\lambda v) + U$$

para $v, w \in V \ y \ \lambda \in \mathbb{F}$.

Proposición 53. Supongamos que U es un subespacio de V. Entonces V/U, con las operaciones de suma y producto por escalar definidas anteriormente, es un espacio vectorial.

Definición 42. Supongamos que U es un subespacio de V. La aplicación cociente π es la transformación lineal $\pi:V\to V/U$ definida por

$$\pi(v) = v + U$$

para $v \in V$.

Proposición 54. Supongamos que V es un espacio vectorial de dimensión finita y U es un subespacio de V. Entonces

$$\dim V/U = \dim V - \dim U.$$

Definición 43. Supongamos que $T \in \mathcal{L}(V, W)$. Definimos $\tilde{T}: V/(\text{null } T) \to W$ por

$$\tilde{T}(v + \text{null } T) = Tv.$$

Proposición 55. Supongamos que $T \in \mathcal{L}(V, W)$. Entonces

- \blacksquare \tilde{T} es una transformación lineal de V/(null T) en W.
- \bullet \tilde{T} es inyectiva.
- \blacksquare rango $\tilde{T} = \operatorname{rango} T$.
- V/(null T) es isomorfo a rango T.

3.6. 3.F - Dualidad

Definición 44. un funcional lineal sobre V es una transformación lineal de V en \mathbb{F} . En otras palabras, un funcional lineal es un elemento de $\mathcal{L}(V,\mathbb{F})$.

Definición 45. El espacio dual de V, denotado V', es el espacio vectorial de todas los funcionales lineales sobre V. En otras palabras, $V' = \mathcal{L}(V, \mathbb{F})$.

Proposición 56. Supongamos que V es un espacio vectorial de dimensión finita. Entonces V' es también de dimensión finita $y \dim V' = \dim V$.

Si v_1, \ldots, v_n es una base de V, entonces la base dual de v_1, \ldots, v_n es la lista ϕ_1, \ldots, ϕ_n de elementos de V', donde cada ϕ_i es la función lineal sobre V tal que

$$\phi_j(v_k) = \begin{cases} 1 & \text{si } k = j \\ 0 & \text{si } k \neq j \end{cases}$$

Proposición 57. Supongamos que V es un espacio vectorial de dimensión finita. Entonces la base dual de una base de V es una base de V'.

Definición 46. Si $T \in \mathcal{L}(V, W)$, entonces la transformación lineal dual de T es la transformación lineal $T' \in \mathcal{L}(W', V')$ definida por $T'(\phi) = \phi \circ T$ para $\phi \in W'$.

Proposición 58. • (S+T)' = S' + T' para todo $S, T \in \mathcal{L}(V, W)$.

- $(\lambda T)' = \lambda T'$ para todo $\lambda \in \mathbb{F}$ y todo $T \in \mathcal{L}(V, W)$.
- (ST)' = T'S' para todo $T \in \mathcal{L}(U, V)$ y toda $S \in \mathcal{L}(V, W)$.

Definición 47. Para $U \subset V$, el aniquilador de U, denotado U^0 , está definido por

$$U^0 = \{ \phi \in V' : \phi(u) = 0 \text{ para todo } u \in U \}.$$

Proposición 59. Supongamos que $U \subset V$. Entonces U^0 es un subespacio de V'.

Proposición 60. Supongamos que V es un espacio vectorial de dimensión finita y U un subespacio de V. Entonces

$$\dim U + \dim U^0 = \dim V.$$

Proposición 61. Supongamos que V y W son espacios vectoriales de dimensión finita y $T \in \mathcal{L}(V, W)$. Entonces

- \blacksquare null $T' = (\operatorname{rango} T)^0$
- $dim \operatorname{null} T' = \dim \operatorname{null} T + \dim W \dim V.$

Proposición 62. Supongamos que V y W son de dimensión finita y $T \in \mathcal{L}(V, W)$. Entonces T es sobreyectiva si y solo si T' es inyectiva.

Proposición 63. Supongamos que V y W son de dimensión finita y $T \in \mathcal{L}(V, W)$. Entonces

- a) dim rango T' = dim rango T
- b) range $T' = (\text{null } T)^0$.

Proposición 64. Supongamos que V y W son de dimensión finita y $T \in \mathcal{L}(V, W)$. Entonces T es inyectiva si y solo si T' es sobreyectiva.

Definición 48. Matriz transpuesta. $(A^t)_{k,j} = A_{j,k}$.

Proposición 65. Si A es una matriz $m \times n$ y C es una matriz $n \times p$, entonces

$$(AC)^t = C^t A^t.$$

Proposición 66. Supongamos que $T \in \mathcal{L}(V, W)$. Entonces $\mathcal{M}(T') = (\mathcal{M}(T))^t$

Definición 49. Supongamos que A es una matriz $m \times n$ con entradas en \mathbb{F} .

- El rango por filas de A es la dimensión del conjunto generador de las filas de A en $\mathbb{F}^{1,n}$.
- El rango por columnas de A es la dimensión del conjunto generador de las columnas de A en $\mathbb{F}^{m,1}$.

Proposición 67. Supongamos que V y W son de dimensión finita y $T \in \mathcal{L}(V, W)$. Entonces dim rango T es igual al rango por columnas de $\mathcal{M}(T)$.

Proposición 68. Supongamos que $A \in \mathbb{F}^{m,n}$. Entonces el rango por filas de A es igual al rango por columnas de A.

Definición 50. El rango de una matriz $A \in \mathbb{F}^{m,n}$ es el rango por columnas de A.

4. Polinomios

Definición 51. Supongamos z = a + bi, donde a y b son números reales.

- La parte de real de z, denotada $\operatorname{Re} z$, se define como $\operatorname{Re} z = a$.
- La parte imaginaria de z, denotada $\operatorname{Im} z$, se define como $\operatorname{Im} z = b$.

Definición 52. Supongamos que $z \in \mathbb{C}$.

■ El conjugado de $z \in \mathbb{C}$, denotado \overline{z} , se define por

$$\overline{z} = \operatorname{Re} z - (\operatorname{Im} z)i$$

.

lacktriangledown El valor absoluto de un número complejo, denotado |z|, se define por

$$|z| = \sqrt{(\operatorname{Re} z)^2 + (\operatorname{Im} z)^2}.$$

Proposición 69. Supongamos que $w, z \in \mathbb{C}$. Entonces:

- $z + \overline{z} = 2 \operatorname{Re} z$
- $z \overline{z} = 2(\operatorname{Im} z)i$
- $z\overline{z} = |z|^2$
- $\overline{w+z} = \overline{w} + \overline{z} \ y \ \overline{wz} = \overline{w} \ \overline{z}$
- $\overline{\overline{z}} = z$
- $\blacksquare |\operatorname{Re} z| \le |z| \ y \ |\operatorname{Im} z| \le |z|$
- $\blacksquare |\overline{z}| = |z|$
- |wz| = |w||z|
- $|w+z| \le |w| + |z|$

Proposición 70. Supongamos que $a_0, \ldots, a_m \in \mathbb{F}$. Si

$$a_0 + a_1 z + \dots + a_m z^m = 0$$

para cada $z \in \mathbb{F}$. Entonces $a_0 = \ldots = a_m = 0$.

Proposición 71. Supongamos que $p, s \in \mathcal{P}(\mathbb{F})$, con $s \neq 0$. Entonces existen únicos polinomios $q, r \in \mathcal{P}(\mathbb{F})$ tal que

$$p=sq+r$$

 $y \deg r < \deg s$.

Definición 53. Un número $\lambda \in \mathbb{F}$ se llama cero (o raíz) de un polinomio $p \in \mathcal{P}(\mathbb{F})$ si $p(\lambda) = 0$.

Definición 54. Un polinomio $s \in \mathcal{P}(\mathbb{F})$ se llama factor de $p \in \mathcal{P}(\mathbb{F})$ si existe un polinomio $q \in \mathcal{P}(\mathbb{F})$ tal que p = sq.

Proposición 72. Supongamos que $p \in \mathcal{P}(\mathbb{F})$ y $\lambda \in \mathbb{F}$. Entonces $p(\lambda) = 0$ si y solo si existe un polinomio $q \in \mathcal{P}(\mathbb{F})$ tal que

$$p(z) = (z - \lambda)q(z)$$

para cada $z \in \mathbb{F}$.

Proposición 73. Supongamos que $p \in \mathcal{P}(\mathbb{F})$ es un polinomio de grado $m \geq 0$. Entonces p tiene a lo sumo m raíces distintas en \mathbb{F}

Proposición 74 (Teorema Fundamental del Álgebra). Todo polinomio no constante a coeficientes complejos tiene una raíz.

Proposición 75. Si $p \in \mathcal{P}(\mathbb{C})$ es un polinomio no constante, entonces p tiene una única factorización (excepto para el orden de los factores) de la forma

$$p(z) = c(z - \lambda_1) \cdots (z - \lambda_m)$$

donde $c, \lambda_1, \ldots, \lambda_m \in \mathbb{C}$.

Proposición 76. Supongamos que $p \in \mathcal{P}(\mathbb{C})$ es un polinomio a coeficientes reales. Si $\lambda \in \mathbb{C}$ es una raíz de p, entonces también lo es $\overline{\lambda}$.

Proposición 77. Supongamos que $b, c \in \mathbb{R}$. Entonces existe una factorización del polinomio de la forma

$$x^2 + bx + c = (x - \lambda_1)(x - \lambda_2)$$

 $con \lambda_1, \lambda_2 \in \mathbb{R} \ si \ y \ solo \ si \ b^2 \ge 4c.$

Proposición 78. Supongamos que $p \in \mathcal{P}(\mathbb{R})$ es un polinomio no constante. Entonces p tiene una única factorización (excepto por el orden de los factores) de la forma

$$p(x) = c(x - \lambda_1) \cdots (x - \lambda_m)(x^2 + b_1 x + c_1) \cdots (x^2 + b_M x + c_M),$$

donde $c, \lambda_1, \ldots, \lambda_m, b_1, \ldots, b_M, c_1, \ldots, c_M \in \mathbb{R}$, con $b_i^2 < 4c_j$ para cada j.

5. Autovalores, Autovectores, y Subespacios Invariantes.

5.1. 5.A - Subespacios Invariantes.

Definición 55. Supongamos que $T \in \mathcal{L}(V)$. Un subespacio U de V se llama invariante bajo T si $u \in U$ implica $Tu \in U$.

Nota 10. En otras palabras, U es invariante bajo T si $T|_{U}$ es un operador sobre U.

Definición 56. Supongamos que $T \in \mathcal{L}(V)$. Un número $\lambda \in \mathbb{F}$ se dice que es un autovalor de T si existe $v \in V$ tal que $v \neq 0$ y $Tv = \lambda v$.

Proposición 79. Supongamos que V es un espacio vectorial de dimensión finita, $T \in \mathcal{L}(V)$, $y \lambda \in \mathbb{F}$. Entonces las siguientes condiciones son equivalentes:

- \bullet λ es un autovalor de T.
- $T \lambda I$ no es inyectiva.
- $\blacksquare T \lambda I$ no es sobreyectiva.
- $T \lambda I$ no es invariante.

Nota 11. Recordemos que $I \in \mathcal{L}(V)$ es el operador identidad definida por Iv = v para todo $v \in V$.

Definición 57. Supongamos que $T \in \mathcal{L}(V)$ y $\lambda \in \mathbb{F}$ es un autovalor de T. Un vector $v \in V$ es un autovector de T correspondiente a λ si $v \neq 0$ y $Tv = \lambda v$.

Proposición 80. Sea $T \in \mathcal{L}(V)$. Supongamos que $\lambda_1, \ldots, \lambda_m$ son autovalores distintos de T y v_1, \ldots, v_m los autovectores correspondientes. Entonces v_1, \ldots, v_m son linealmente independientes.

Proposición 81. Supongamos que V es de dimensión finita. Entonces cada operador sobre V tiene a lo sumo $\dim V$ de autovalores distintos.

Definición 58. Supongamos que $T \in \mathcal{L}(V)$ y U es un subespacio de V invariante bajo T.

• El operador restricción $T|_U \in \mathcal{L}(U)$ se define por

$$T|_{U}(u) = Tu$$

para $u \in U$.

■ El operador cociente $T/U \in \mathcal{L}(V/U)$ se define por

$$(T/U)(v+U) = Tv + U$$

para $v \in V$.

5.2. 5.B - Autovectores y Matrices Triangulares Superiores

Definición 59. Supongamos que $T \in \mathcal{L}(V)$ y m un entero positivo.

 \blacksquare T^m se define por

$$T^m = \underbrace{T \cdots T}_{m \ veces}.$$

- lacksquare T^0 se define como el operador identidad I sobre V.
- Si T es invertible con inversa T^{-1} , entonces T^{-m} se define por

$$T^{-m} = (T^{-1})^m$$
.

Definición 60. Supongamos que $T \in \mathcal{L}(V)$ y $p \in \mathcal{P}(\mathbb{F})$ es un polinomio dado por

$$p(z) = a_0 + a_1 z + a_2 z^2 + \dots + a_m z^m$$

para $z \in \mathbb{F}$. Entonces p(T) es un operador definido por

$$p(T) = a_0 I + a_1 T + a_2 T^2 + \dots + a_m T^m.$$

Definición 61. Si $p, q \in \mathcal{P}(\mathbb{F})$, entonces $pq \in \mathcal{P}(\mathbb{F})$ es el polinomio definido por

$$(pq)(z) = p(z)q(z)$$

para $z \in \mathbb{F}$.

Proposición 82. Supongamos que $p, q \in \mathcal{P}(\mathbb{F})$ y $T \in \mathcal{L}(V)$. Entonces

- a) (pq)(T) = p(T)q(T)
- b) p(T)q(T) = q(T)p(T)

Proposición 83. Todo operador sobre un espacio vectorial de dimensión finita, que no sea cero y complejo tiene un autovalor.

Definición 62. Supongamos que $T \in \mathcal{L}(V)$ y v_1, \ldots, v_n es una base de V. La matriz de T con respecto a esta base es la matriz $n \times n$

$$\mathcal{M}(T) = \begin{pmatrix} A_{1,1} & \dots & A_{1,n} \\ \vdots & & \vdots \\ A_{n,1} & \dots & A_{n,n} \end{pmatrix}$$

Nota 12. La k-ésima columna de la matriz $\mathcal{M}(T)$ está formada por los coeficientes usados para escribir Tv_k como combinación lineal de v_1, \ldots, v_n .

Definición 63. La diagonal de una matriz cuadrada consiste de las entradas a lo largo de la linea que va desde la esquina superior izquierda hasta la esquina inferior derecha.

Definición 64. Una matriz es triangular superior si todas las entradas debajo de la diagonal son iguales a 0.

Proposición 84. Supongamos que $T \in \mathcal{L}(V)$ y v_1, \ldots, v_n es una base de V. Entonces las siguientes condiciones son equivalentes:

- a) La matriz de T con respecto a v_1, \ldots, v_n es triangular superior.
- b) $Tv_j \in span(v_1, \ldots, v_j)$ para cada $j = 1, \ldots, n$.
- c) $span(v_1, \ldots, v_j)$ es invariante bajo T para cada $j = 1, \ldots, n$.

Nota 13. El siguiente resultado no vale en espacios vectoriales reales, porque el primer vector en una base con respecto a un operador que tiene una matriz triangular superior es un autovector del operador. Entonces, si un operador sobre un espacio real no tiene autovalores, entonces no hay base respecto a la cual el operador tiene una matriz triangular superior. Ver ejemplo 5.8(a).

Proposición 85. Supongamos que V es un espacio vectorial sobre \mathbb{C} de dimensión finita y $T \in \mathcal{L}(V)$. Entonces T tiene una matriz triangular superior con respecto a alguna base de V.

Proposición 86. Supongamos que $T \in \mathcal{L}(V)$ tiene una matriz triangular superior con respecto a alguna base de V. Entonces, T es invertible si y solo si todas las entradas en la diagonal de esa matriz tirangular superior son no nulas.

Proposición 87. Supongamos que $T \in \mathcal{L}(V)$ tiene una matriz triangular superior con respecto a alguna base de V. Entonces los autovalores de T son precisamente las entradas en la digonal de esa matriz triangular superior.

5.3. 5.C - Autoespacios y Matrices Diagonales

Definición 65. Una matriz diagonal es una matriz cuadrada tal que es 0 en todas sus entradas excepto posiblemente en la diagonal.

Definición 66. Supongamos que $T \in \mathcal{L}(V)$ y $\lambda \in \mathbb{F}$. El autoespacio de T correspondiente a λ , denotado $E(\lambda, T)$, se define por

$$E(\lambda, T) = \text{null}(T - \lambda I).$$

En otras palabras, $E(\lambda, T)$ es el conjunto de todos los autovectores de T correspondientes a λ , junto con el vector nulo.

Proposición 88. Supongamos que V es de dimensión finita y $T \in \mathcal{L}(V)$. Supongamos además que $\lambda_1, \ldots, \lambda_m$ son autovalores distintos de T. Entonces

$$E(\lambda_1, T) + \cdots + E(\lambda_m, T)$$

es una suma directa. Además,

$$\dim E(\lambda_1, T) + \cdots + \dim E(\lambda_m, T) \leq \dim V.$$

Definición 67. Un operador $T \in \mathcal{L}(V)$ es diagonalizable si el operador tiene una matriz diagonal con respecto a alguna base de V.

Proposición 89. Supongamos que V es de dimensión finita $y \ T \in \mathcal{L}(V)$. Sea $\lambda_1, \ldots, \lambda_m$ denota a los distintos autovalores de T. Entonces las siguientes condiciones son equivalentes:

- a) T es diagonalizable.
- b) V tiene una base que consiste de los autovectores de T.
- c) Existen subespacios 1-dimensionales U_1, \ldots, U_n de V, cada una invariante bajo T, tal que

$$V = U_1 \oplus \cdots \oplus U_n$$
.

- $d) V = E(\lambda_1, T) \oplus \cdots \oplus E(\lambda_m, T).$
- e) dim $V = \dim E(\lambda_1, T) + \cdots + \dim E(\lambda_m, T)$.

Proposición 90. Si $T \in \mathcal{L}(V)$ tiene dim V distintos autovalores, entonces T es diagonalizable.

6. Espacios con Producto Interno

6.1. 6.A - Productos Internos y Normas

Definición 68. Para $x, y \in \mathbb{R}^n$, el producto punto (escalar) entre x e y se define por

$$x \cdot y = x_1 y_1 + \dots + x_n y_n.$$

donde $x = (x_1, ..., x_n) \ y \ y = (y_1, ..., y_n).$

Definición 69. Un producto interno sobre V es una función que toma cada par ordenado (u, v) de elementos de V al número $\langle u, v \rangle \in \mathbb{F}$ y tiene las siguientes propiedades:

- $\langle v, v \rangle \geq 0$ para todo $v \in V$.
- \bullet $\langle v, v \rangle = 0 \iff v = 0.$
- $\langle u+v,w\rangle = \langle u,w\rangle + \langle v,w\rangle$ para todo $u,v,w\in V.$
- $\langle \lambda u, v \rangle = \lambda \langle u, v \rangle$ para todo $\lambda \in \mathbb{F}$ y todo $u, v \in V$.
- $\blacksquare \langle u, v \rangle = \overline{\langle v, u \rangle}$ para todo $u, v \in V$.

Definición 70. Un espacio con producto interno es un espacio vectorial V junto con un producto interno sobre V.

Nota 14. V denota un espacio con producto interno sobre \mathbb{F} .

Proposición 91. • Para cada $u \in V$ fijo, la función que lleva v a $\langle v, u \rangle$ es una transformación lineal de V en \mathbb{F} .

- $\langle 0, u \rangle = 0$ para cada $u \in V$.
- \bullet $\langle u, 0 \rangle = 0$ para todo $u \in V$.
- $\langle u, v + w \rangle = \langle u, v \rangle + \langle u, w \rangle$ para todo $u, v, w \in V$.

Definición 71. Para cada $v \in V$, la norma de v, denotada ||v||, se define por

$$||v|| = \sqrt{\langle v, v \rangle}.$$

Proposición 92. Supongamos que $v \in V$.

- a) ||v|| = 0 si y solo si v = 0.
- b) $||\lambda v|| = |\lambda|||v||$ para todo $\lambda \in \mathbb{F}$.

Definición 72. Dos vectores $u, v \in V$ se dicen ortogonales si $\langle u, v \rangle = 0$.

Proposición 93. • a) 0 es ortogonal a cada vector de V.

■ b) 0 es el único vector en V que es ortogonal a sí mismo.

Proposición 94 (Teorema de Pitágoras). Supongamos que u, v son vectores ortogonales en V. Entonces

$$||u + v||^2 = ||u||^2 + ||v||^2.$$

Proposición 95 (Una descomposición ortogonal). Supongamos que $u, v \in V$, con $v \neq 0$. Sea $c = \frac{\langle u, v \rangle}{||v||^2}$ $w = u - \frac{\langle u, v \rangle}{||v||^2}$. Entonces

$$\langle w, v \rangle = 0 \ y \ u = cv + w.$$

Proposición 96. Supongamos que $u, v \in V$. Entonces

$$|\langle u, v \rangle| \le ||u|| ||v||$$

Proposición 97. Supongamos que $u, v \in V$. Entonces

$$||u + v|| \le ||u|| + ||v||$$

Esta desigualdad es la igualdad si y solo si alguno de u, v es un múltiplo no negativo del otro.

Proposición 98 (Igualdad del Paralelogramo). Supongamos que $u, v \in V$. Entonces

$$||u + v||^2 + ||u - v||^2 = 2(||u||^2 + ||v||^2).$$

6.2. 6.B - Bases Ortonormales

Definición 73. • Una lista de vectores se dice ortonormal si cada vector de la lista tiene norma 1 y es ortogonal a los otros vectores en la lista.

■ En otras palabras, una lista e_1, \ldots, e_m de vectores en V es ortonormal si

$$\langle e_j, e_k \rangle = \begin{cases} 1 & \text{si } j = k \\ 0 & \text{si } j \neq k \end{cases}$$

Una lista de vectores se dice ortonormal si cada vector de la lista tiene norma 1 y es ortogonal a los otros vectores en la lista.

Proposición 99. Si e_1, \ldots, e_m es una lista ortonormal de vectores en V, entonces

$$||a_1e_1 + \dots + a_me_m||^2 = |a_1|^2 + \dots + |a_m|^2$$

para todo $a_1, \ldots, a_m \in \mathbb{F}$.

Proposición 100. Toda lista ortonormal de vectores es linealmente independiente.

Definición 74. Una base ortonormal de V es una lista ortonormal de vectores en V que es una base de V.

Proposición 101. Toda lista ortonormal de vectores en V con longitud dim V es una base ortonormal de V.

Proposición 102. Supongamos que e_1, \ldots, e_n es una base ortonormal de V y $v \in V$. Entonces

$$v = \langle v, e_1 \rangle e_1 + \dots + \langle v, e_n \rangle e_n$$

y

$$||v||^2 = |\langle v, e_1 \rangle|^2 + \dots + |\langle v, e_n \rangle|^2.$$

Proposición 103 (Proceso de Gram-Schimdt). Supongamos que v_1, \ldots, v_m es una lista linealmente independiente de vectores en V. Sea $e_1 = v_1/||v_1||$. Para $j = 2, \ldots, m$, definimos e_j inductivamente por

$$e_j = \frac{v_j - \langle v_j, e_1 \rangle e_1 - \dots - \langle v_j, e_{j-1} \rangle e_{j-1}}{||v_j - \langle v_j, e_1 \rangle e_1 - \dots - \langle v_j, e_{j-1} \rangle e_{j-1}||}$$

Entonces e_1, \ldots, e_m es una lista ortonormal de vectores en V tal que

$$span(v_1, \ldots, v_j) = span(e_1, \ldots, e_j)$$

 $para j = 1, \ldots, m.$

Proposición 104. Todo espacio con producto interno de dimensión finita tiene una base ortonormal.

Proposición 105. Supongamos que V es de dimensión finita. Entonces toda lista ortonormal de vectores en V se puede extender a una base ortonormal de V.

Proposición 106. Supongamos que $T \in \mathcal{L}(V)$. Si T tiene una matriz triangular superior con respecto a alguna base de V, entonces T tiene una matriz triangular superior con respecto a alguna base ortonormal de V.

Proposición 107. Supongamos que V es de dimensión finita sobre \mathbb{C} y $T \in \mathcal{L}(V)$. Entonces T tiene una matriz triangular superior con respecto a alguna base ortonormal de V.

Definición 75. un funcional lineal sobre V es una transformación lineal de V en \mathbb{F} . En otras palabras, un funcional lineal es un elemento de $\mathcal{L}(V,\mathbb{F})$.

Proposición 108 (Teorema de Representación de Riesz). Supongamos que V es de dimensión finita $y \phi$ es un funcional lineal sobre V. Entonces existe un único vector $u \in V$ tal que

$$\phi(v) = \langle v, u \rangle$$

para cada $v \in V$.

6.3. 6.C - Complementos Ortogonales y Problemas de Minimización

Definición 76. Si U es un subconjunto de V, entonces el complemento ortogonal de U, denotado U^{\perp} , es el conjunto de todos los vectores en V que son ortogonales a cada vector en U:

$$U^{\perp} = \{ v \in V : \langle v, u \rangle = 0 \text{ para cada } u \in U \}.$$

Proposición 109. • a) Si U es un subconjunto de V, entonces U^{\perp} es un subespacio de V.

- b b $\{0\}^{\perp} = V$.
- $c) V^{\perp} = \{0\}.$
- d) Si U es un subconjunto de V, entonces $U \cap U^{\perp} \subset \{0\}$.
- e) Si U y W son subconjuntos de V y $U \subset W$, entonces $W^{\perp} \subset U^{\perp}$.

Proposición 110. Supongamos que U es un subespacio de V de dimensión finita. Entonces

$$V = U \oplus U^{\perp}$$
.

Proposición 111. Supongamos que V es de dimensión finita y U es un subespacio de V. Entonces

$$\dim U^{\perp} = \dim V - \dim U.$$

Proposición 112. Supongamos que U es un subespacio de dimensión finita de V. Entonces

$$U = (U^{\perp})^{\perp}$$
.

Definición 77. Supongamos que U es un subespacio de dimensión finita de V. La proyección ortogonal de V en U es el operador $P_U \in \mathcal{L}(V)$ definido de la siguiente manera: Para $v \in V$, escribimos v = u + w, donde $u \in U$ y $w \in U^{\perp}$. Entonces $P_U v = u$.

Proposición 113. Supongamos que U es un subespacio de dimensión finita de V y $v \in V$. Entonces

- \bullet a) $P_U \in \mathcal{L}(V)$.
- b) $P_U u = u$ para cada $u \in U$.
- c) $P_U w = 0$ para todo $w \in U^{\perp}$.
- d) rango $P_U = U$.
- e) null $P_U = U^{\perp}$.
- $f) v P_U v \in U^{\perp}.$
- $g) P_U^2 = P_U.$
- $h) ||P_U v|| \le ||v||.$
- \bullet i) Para cada base ortonormal e_1, \ldots, e_m de U,

$$P_U v = \langle v, e_1 \rangle e_1 + \dots + \langle v, e_m \rangle e_m.$$

Proposición 114 (Minimizando la distancia a un subespacio.). Supongamos que U es un subespacio de dimensión finita de $V, v \in V$ $y \in U$. Entonces

$$||v - P_U v|| \le ||v - u||.$$

Además, la desigualdad arriba es una igualdad si y solo si $u = P_U v$.

7. Operadores sobre Espacios con Producto Interno (Opcional)

7.1. 7.A - Operadores Autoadjuntos y Normales

Definición 78. Supongamos que $T \in \mathcal{L}(V,W)$. La adjunta de T es la función $T^*: W \to V$ tal que

$$\langle Tv, w \rangle = \langle v, T^*w \rangle$$

para cada $v \in V$ y cada $w \in W$.

Proposición 115. Si $T \in \mathcal{L}(V, W)$, entonces $T^* \in \mathcal{L}(W, V)$.

Proposición 116. • a) $(S+T)^* = S^* + T^*$ para todo $S, T \in \mathcal{L}(V, W)$.

- $b) (\lambda T)^* = \overline{\lambda} T^* para \lambda \in \mathbb{F} y T \in \mathcal{L}(V, W).$
- c) $(T^*)^* = T$ para todo $T \in \mathcal{L}(V, W)$.
- d) $I^* = I$, donde I es el operador identidad sobre V.
- e) $(ST)^* = T^*S^*$ para todo $T \in \mathcal{L}(V, W)$ $y \in \mathcal{L}(W, U)$ (acá U es un espacio con producto interno sobre \mathbb{F}).

Proposición 117. Supongamos que $T \in \mathcal{L}(V, W)$. Entonces

- a) null $T^* = (\operatorname{rango} T)^{\perp}$.
- b) rango $T^* = (\text{null } T)^{\perp}$.
- c) null $T = (\operatorname{rango} T^*)^{\perp}$.
- d) rango $T = (\text{null } T^*)^{\perp}$.

Definición 79. La transpuesta conjugada de la matriz $m \times n$ es la matriz $n \times m$ que se obtiene intercambiando las filas y columnas y luego tomando el conjugado complejo de cada entrada.

Proposición 118. Sea $T \in \mathcal{L}(V, W)$. Supongamos que e_1, \ldots, e_n es una base ortonormal de V y f_1, \ldots, f_m es una base ortonormal de W. Entonces

$$\mathcal{M}(T^*,(f_1,\ldots,f_m),(e_1,\ldots,e_n))$$

es la transpuesta conjugada de

$$\mathcal{M}(T,(e_1,\ldots,e_n),(f_1,\ldots,f_m)).$$

Definición 80. Un operador $T \in \mathcal{L}(V)$ se llama autoadjunto si $T = T^*$. En otras palabras, $T \in \mathcal{L}(V)$ es autoadjunto si y solo si

$$\langle Tv, w \rangle = \langle v, Tw \rangle$$

para todo $v, w \in V$.

Nota 15. Hermitiana para lxs mortales.

Proposición 119. Todo autovalor de un operador autoadjunto es real.

Proposición 120. Supongamos que V es un espacio vectorial sobre \mathbb{C} con producto interno y $T \in \mathcal{L}(V)$. Supongamos que

$$\langle Tv, v \rangle = 0$$

para todo $v \in V$. Entonces T = 0.

Proposición 121. Supongamos que V es un espacio vectorial sobre $\mathbb C$ con producto interno y $T \in \mathcal L(V)$. Entonces T es autoadjunto si y solo si

$$\langle Tv, v \rangle \in \mathbb{R}$$

para cada $v \in V$.

Definición 81. • Un operador sobre un espacio con producto interno es normal si conmuta con su adjunto.

■ En otras palabras, $T \in \mathcal{L}(V)$ es normal si

$$TT^* = T^*T.$$

Nota 16. El siguiente resultado implica que null T = null T* para todo operador normal T.

Proposición 122. Un operador $T \in \mathcal{L}(V)$ es normal si y solo si

$$||Tv|| = ||T^*v||$$

para todo $v \in V$.

Proposición 123. Supongamos que $T \in \mathcal{L}(V)$ es normal $y \ v \in V$ es un autovector de T con autovalor λ . Entonces v también es un autovector de T^* con autovalor $\overline{\lambda}$.

Proposición 124. Supongamos que $T \in \mathcal{L}(V)$ es normal. Entonces los autovectores de T correspondientes a distintos autovalores son ortogonales.

7.2. 7.B - El Teorema Espectral

Proposición 125 (Teorema Espectral Complejo). Supongamos que $\mathbb{F} = \mathbb{C}$ y $T \in \mathcal{L}(V)$. Entonces las siguientes condiciones son equivalentes:

- a) T es normal.
- ullet b) V tiene una base ortonormal que consiste de los autovectores de T.
- c) T tiene una matriz diagonal con respecto a alguna base ortonormal de V.

Proposición 126. Supongamos que $T \in \mathcal{L}(V)$ es autoadjunto y $b, c \in \mathbb{R}$ son tal que $b^2 < 4c$. Entonces

$$T^2 + bT + cI$$

es invertible.

Proposición 127. Supongamos $V \neq \{0\}$ y $T \in \mathcal{L}(V)$ es un operador autoadjunto. Entonces T tiene un autovalor.

Proposición 128. Supongamos que $T \in \mathcal{L}(V)$ es autoadjunto y U un subespacio de V que es invariante bajo T. Entonces

- \blacksquare a) U^{\perp} es invariante bajo T.
- b) $T|_U \in \mathcal{L}(U)$ es autoadjunto.
- c) $T|_{U^{\perp}} \in \mathcal{L}(U^{\perp})$ es autoadjunto.

Proposición 129 (Teorema Espectral Real). Supongamos que $\mathbb{F} = \mathbb{R}$ y $T \in \mathcal{L}(\mathcal{V})$. Entonces las siguientes condiciones son equivalentes:

- a) T es autoadjunto.
- b) V es una base ortonormal que consiste de autovectores de T.
- ullet c) T tiene una matriz diagonal con respecto a alguna base ortonormal de V.

7.3. 7.C - Operadores Positivos e Isometrías.

Definición 82. Un operador $T \in \mathcal{L}(V)$ es positivo si T es autoadjunta y

$$\langle Tv, v \rangle > 0$$

para todo $v \in V$.

Definición 83. Un operador R se llama una raíz cuadrada de un operador T si $R^2 = T$.

Proposición 130. Sea $T \in \mathcal{L}(V)$. Entonces las siguientes condiciones son equivalentes:

- a) T es positiva.
- b) T es autoadjunto y todos los autovalores de T son no negativos.
- c) T tiene una raíz cuadrada positiva.
- d) T tiene una raíz cuadrada autoadjunta.
- e) Existe un operador $R \in \mathcal{L}(V)$ tal que $T = R^*R$.

Todo operador positivo sobre V tiene una única raíz cuadrada positiva.

Proposición 131. • Un operador $S \in \mathcal{L}(V)$ se llama isometría si

$$||Sv|| = ||v||$$

para todo $v \in v$.

■ En otras palabras, un operador es una isometría si preserva normas.

Proposición 132. Supongamos que $S \in \mathcal{L}(V)$. Entonces las siguientes son equivalentes:

- a) S es una isometría.
- b) $\langle Su, Sv \rangle = \langle u, v \rangle$ para todo $u, v \in V$.
- c) Se_1, \ldots, Se_n es ortonormal para cada lista ortonormal de vectores e_1, \ldots, e_n en V.
- d) Existe una base ortonormal e_1, \ldots, e_n de V tal que Se_1, \ldots, Se_n es ortonormal.
- \bullet e) $S^*S = I$.
- $f) SS^* = I.$
- \blacksquare g) S^* es una isometría.
- h) S es invertible y $S^{-1} = S^*$.

Proposición 133. Supongamos que V es un espacio vectorial sobre \mathbb{C} con producto interno $y \in \mathcal{L}(V)$. Entonces las siguientes condiciones son equivalentes:

- S es una isometría.
- Existe una base ortonormal de V que consiste de los autovectores de S cuyos correspondientes autovalores tiene todos valor absoluto 1.

7.4. 7.D - Descomposición Polar y Descomposición del Valor Singular

Nota 17. Si T es un operador positivo, entonces \sqrt{T} denota la única raíz cuadrada positiva de T.

Proposición 134 (Descomposición Polar). Supongamos que $T \in \mathcal{L}(V)$. Entonces existe una isometría $S \in \mathcal{L}(V)$ tal que

$$T = S\sqrt{T*T}$$
.

Definición 84. Supongamos que $T \in \mathcal{L}(V)$. Los valores singulares de T son los autovalores de $\sqrt{T^*T}$, con cada autovalor λ repetido dim $E(\lambda, \sqrt{T^*T})$ veces.

Proposición 135 (Descomposición del Valor Singular). Supongamos que $T \in \mathcal{L}(V)$ tiene valores singulares s_1, \ldots, s_n . Entonces existen bases ortonormales e_1, \ldots, e_n y f_1, \ldots, f_n de V tal que

$$Tv = s_1 \langle v, e_1 \rangle f_1 + \dots + s_n \langle v, e_n \rangle f_n$$

para cada $v \in V$.

Proposición 136. Supongamos que $T \in \mathcal{L}(V)$. Entonces los valores singulares de T son las raíces no negativos de los autovalores de T^*T , con cada autovalor λ repetido dim $E(\lambda, T^*T)$ veces.

8. Operadores sobre Espacios Vectoriales Complejos (opcional)

8.1. 8.A - Autovectores Generalizados y Operadores Nilpotentes

Proposición 137. Supongamos que $T \in \mathcal{L}(V)$. Entonces

$$\{0\} = \operatorname{null} T^0 \subset \operatorname{null} T^1 \subset \dots \subset \operatorname{null} T^k \subset \operatorname{null} T^{k+1} \subset \dots.$$

Proposición 138. Supongamos que $T \in \mathcal{L}(V)$. Supongamos que m es un entero no negativo tal que null $T^m =$ null T^{m+1} . Entonces

$$\operatorname{null} T^m = \operatorname{null} T^{m+1} = \operatorname{null} T^{m+2} = \operatorname{null} T^{m+3} = \cdots$$

Proposición 139. Supongamos que $T \in \mathcal{L}(V)$. Sea $n = \dim V$. Entonces

$$\operatorname{null} T^n = \operatorname{null} T^{n+1} = \operatorname{null} T^{n+2} = \cdots$$

Proposición 140. Supongamos que $T \in \mathcal{L}(V)$. Sea $n = \dim V$. Entonces

$$V = \operatorname{null} T^n \oplus \operatorname{rango} T^n$$
.

Definición 85. Supongamos que $T \in \mathcal{L}(V)$ y λ es un autovalor de T. Un vector $v \in V$ se dice autovector generalizado de T correspondiente a λ si $v \neq 0$ y

$$(T - \lambda I)^j v = 0$$

para algún entero positivo j.

Definición 86. Supongamos que $T \in \mathcal{L}(V)$ y $\lambda \in \mathbb{F}$. El autoespacio generalizado de T correspondiente a λ , denotado $G(\lambda, T)$, se define como el conjunto de todos los autovectores generalizados de T correspondientes a λ , junto con el vector nulo.

Proposición 141. Supongamos que $T \in \mathcal{L}(V)$ y $\lambda \in \mathbb{F}$. Entonces $G(\lambda, T) = \text{null}(T - \lambda I)^{\dim V}$.

Proposición 142. Sea $T \in \mathcal{L}(V)$. Supongamos $\lambda_1, \ldots, \lambda_m$ son distintos autovalores de T y v_1, \ldots, v_m son los correspondientes autovectores generalizados. Entonces v_1, \ldots, v_m son linealmente independientes.

Definición 87. Un operador se llama nilpotente si alguna de sus potencias es igual a 0.

Proposición 143. Supongamos que $N \in \mathcal{L}(V)$ es nilpotente. Entonces $N^{\dim V} = 0$.

Proposición 144. Supongamos que N es un operador nilpotente sobre V. Entonces existe una base de V con respecto a la cual la matriz de N tiene la forma

$$\begin{pmatrix} 0 & & * \\ & \ddots & \\ 0 & & 0 \end{pmatrix}$$

acá todas las entradas sobre y debajo de la diagonal son ceros.

8.2. 8.B - Descomposición de un Operador.

Proposición 145. Supongamos que $T \in \mathcal{L}(V)$ y $p \in \mathcal{P}(\mathbb{F})$. Entonces p(T) y rango p(T) son invariantes por T.

Proposición 146. Supongamos que V es un espacio vectorial complejo $y \ T \in \mathcal{L}(V)$. Sean $\lambda_1, \ldots, \lambda_m$ los distintos autovalores de T. Entonces

- (a) $V = G(\lambda_1, T) \oplus \cdots \oplus G(\lambda_m, T);$
- (b) Cada $G(\lambda_i, T)$ es invariante por T;
- (c) cada $(T \lambda_j I)|_{G(\lambda_j, T)}$ es nilpotente.

Proposición 147. Supongamos que V es un campo vectorial complejo y $T \in \mathcal{L}(V)$. Entonces existe una base de V correspondiente a los autovectores generalizados de T.

Definición 88. • Supongamos que $T \in \mathcal{L}(V)$. La multiplicidad de un autovalor λ de T se define como la dimensión del autoespacio generalizado correspondiente $G(\lambda, T)$.

lacksquare En otras palabras, la multiplicidad de un autovalor de T es igual a $\dim \mathrm{null}(T-\lambda I)^{\dim V}$.

Nota 18. • multiplicidad algebraica de $\lambda = \dim \operatorname{null}(T - \lambda I)^{\dim V} = \dim G(\lambda, T)$.

• $multiplicidad\ geom\'etrica\ de\ \lambda = \dim null(T - \lambda I) = dim E(\lambda, T).$

Proposición 148. Supongamos que V es un campo vectorial complejo y $T \in \mathcal{L}(V)$. Entonces la suma de las multiplicidades de todos los autovalores de T es igual a dim V.

Definición 89. Una matriz diagonal por bloques es una matriz cuadrada de la forma

$$\begin{pmatrix} A_1 & & 0 \\ & \ddots & \\ 0 & & A_m \end{pmatrix}$$

donde A_1, \ldots, A_m son matrices cuadradas a lo largo de la diagonal y todas las otras entradas de la matriz igual a 0.

Proposición 149. Supongamos que V es un espacio vectorial complejo y $T \in \mathcal{L}(V)$. Sean $\lambda_1, \ldots, \lambda_m$ los distintos autovalores de T, con multiplicidades d_1, \ldots, d_m . Entonces hay una base de V con respecto a la cual T tiene una matriz diagonal por bloques de la forma

$$\begin{pmatrix} A_1 & & 0 \\ & \ddots & \\ 0 & & A_m \end{pmatrix}$$

donde cada A_i es una matriz triangular superior de $d_i \times d_i$ de la forma

$$A_j = \begin{pmatrix} \lambda_j & & * \\ & \ddots & \\ 0 & & \lambda_j \end{pmatrix}.$$

Proposición 150. Supongamos que $N \in \mathcal{L}(V)$ es nilpotente. Entonces I + N tiene una raíz cuadrada.

Proposición 151. Supongamos que V es un espacio vectorial complejo y $T \in \mathcal{L}(V)$ es invertible. Entonces T tiene una raíz cuadrada.

8.3. 8.C - Polinomio Característico y Polinomio Minimal.

Supongamos que V es un espacio vectorial complejo y $T \in \mathcal{L}(V)$. Sean $\lambda_1, \ldots, \lambda_m$ denota a los distintos autovalores de T, con multiplicidades d_1, \ldots, d_m . El polinomio

$$(z-\lambda_1)^{d_1}\cdots(z-\lambda_m)^{d_m}$$

se llama polinomio característico de T.

Proposición 152. Supongamos que V es un campo vectorial complejo y $T \in \mathcal{L}(V)$. Entonces

• (a) El polinomio característico de T tienen grado dim V.

• (b) Los ceros del polinomio característico de T son los autovalores de T.

Proposición 153 (Teorema de Cayley-Hamilton). Supongamos que V es un espacio vectorial complejo $y T \in \mathcal{L}(V)$. Sea q el polinomio característico de T. Entonces q(T) = 0.

Definición 90. Un polinomio mónico es un polinomio cuyo coeficiente de mayor grado es 1.

Definición 91. Supongamos que $T \in \mathcal{L}(V)$. Entonces el polinomio minimal de T es el único polinomio mónico p de grado más pequeño tal que p(T) = 0.

Proposición 154. Supongamos que $T \in \mathcal{L}(V)$ y $q \in \mathcal{P}(\mathbb{F})$. Entonces q(T) = 0 si y solo si q es un polinomio múltiplo del polinomio minimal de T.

Proposición 155. Supongamos que $\mathbb{F} = \mathbb{C}$ y $T \in \mathcal{L}(V)$. Entonces el polinomio característico de T es un polinomio múltiplo del polinomio minimal de T.

Proposición 156. Sea $T \in \mathcal{L}(V)$. Entonces los ceros del polinomiominimal de T son precisamente los autovalores de T.

8.4. 8.D - Forma de Jordan.

Proposición 157. Supongamos que $N \in \mathcal{L}(V)$ es nilpotente. Entonces existen vectores $v_1, \ldots, v_n \in V$ y enteros no negativos m_1, \ldots, m_n tal que

- \bullet (a) $N^{m_1}v_1,\ldots,Nv_1,\ldots,N^{m_n}v_n,\ldots,Nv_n,v_n$ es una base de V.
- $\bullet (b) N^{m_1+1}v_1 = \dots = N^{m_n+1}v_n = 0.$

Definición 92. Supongamos que $T \in \mathcal{L}(V)$. Una base de V se llama base de Jordan para T si con respecto a esta base, T tiene una matriz diagonal por bloques

$$\begin{pmatrix} A_1 & & 0 \\ & \ddots & \\ 0 & & A_p \end{pmatrix}$$

donde cada A_j es una matriz triangular superior de la forma

$$A_j = \begin{pmatrix} \lambda_j & 1 & & 0 \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ 0 & & & \lambda_j \end{pmatrix}$$

9. Apunte de Espacios con Producto Interno

9.1. Producto Interno

Definición 93. Un espacio con producto interno sobre V es un mapa

$$\langle \cdot, \cdot \rangle : V \times V \to \mathbb{F}$$

 $(u, v) \mapsto \langle u, v \rangle$

con las siguientes propiedades:

- 1) Linealidad en el primer lugar: $\langle u+v,w\rangle=\langle u,w\rangle+\langle v,w\rangle$ y $\langle au,v\rangle=a\langle u,v\rangle$ para $u,v,w\in V$ y $a\in\mathbb{F}$.
- 2) Positividad: $\langle v, v \rangle \geq 0$ para todo $v \in V$.
- 3) Definición positiva: $\langle v, v \rangle = 0$ si y solo si v = 0.
- 4) Simetría con su conjugado: $\langle u, v \rangle = \langle v, u \rangle$.

Definición 94. Un espacio con producto interno es un espacio vectorial sobre \mathbb{F} junto con un producto interno $\langle \cdot, \cdot \rangle$.

Lema 1. El producto interno es anti-lineal en el segundo lugar, es decir, $\langle u, v + w \rangle = \langle u, v \rangle + \langle u, w \rangle$ $y \langle u, av \rangle = \overline{a} \langle u, v \rangle$ para todo $u, v, w \in V$ $y \in V$ $y \in V$.

9.2. Normas

Definición 95. Sea V un espacio vectorial sobre \mathbb{F} . Una aplicación

$$||\cdot||:V\to\mathbb{R}$$

$$v \mapsto ||v||$$

es una norma si se verifican las siguientes tres condiciones:

- $| 1 \rangle ||v|| = 0 \iff v = 0.$
- 2) ||av|| = |a|||v|| para todo $a \in \mathbb{F}$ $y \ v \in V$.
- 3) $||v+w|| \le ||v|| + ||w||$ para todo $v, w \in V$.

9.3. Ortogonalidad

Definición 96. Dos vectores $u, v \in V$ son ortogonales (denotado $u \perp v$) si $\langle u, v \rangle = 0$.

Teorema 2 (Teorema de Pitágoras). Si $u, v \in V$, V espacio con producto interno, con $u \perp v$, entonces $||\cdot||$ definido por $||v|| := \sqrt{\langle v, v \rangle}$ obedece

$$||u + v||^2 = ||u||^2 + ||v||^2.$$

Nota 19. El Teorema de Pitágoras vale para espacios vectoriales sobre \mathbb{R} ya que, en ese caso, $\langle u, v \rangle + \langle v, u \rangle = 2 \operatorname{Re} \langle u, v \rangle$.

Definición 97. Dados dos vectores $u, v \in V$ con $v \neq 0$, podemos descomponer de manera única u en dos partes. una parte paralela a v y otra parte ortogonal a v. Esto se llama descomposición ortogonal. Más precisamente:

$$u = u_1 + u_2$$

donde $u_1 = av \ y \ u_2 \perp v$ para algún escalar $a \in \mathbb{F}$. Para obtener tal descomposición, escribimos $u_2 = u - u_1 = u - av$. Entonces, para que u_2 sea ortogonal av, necesitamos

$$0 = \langle u - av, v \rangle = \langle u, v \rangle - a||v||^2.$$

Resolviendo para a vale $a = \frac{\langle u, v \rangle}{||v||^2}$ tal que

$$u = \frac{\langle u, v \rangle}{||v||^2} v + \left(u - \frac{\langle u, v \rangle}{||v||^2} v \right).$$

Teorema 3 (Desigualdad de Cauchy-Schwarz). $Dados\ u, v \in V\ cualesquiera,\ tenemos$

$$|\langle u, v \rangle| \le ||u|| ||v||.$$

Además, la iqualdad vale si y solo si u y v son linealmente dependientes, i.e., uno es múltiplo del otro.

Teorema 4 (Designaldad Triangular). Para todos $u, v \in V$ tenemos

$$||u + v|| \le ||u|| + ||v||.$$

Teorema 5 (Ley del Paralelogramo). Dados $u, v \in V$ cualesquiera, tenemos

$$||u+v||^2 + ||u-v||^2 = 2(||u||^2 + ||v||^2).$$

9.4. Bases Ortonormales

Definición 98. Sea V un espacio vectorial con producto interno $\langle \cdot, \cdot \rangle$. Una lista de vectores no nulos (e_1, \dots, e_m) en V se dice ortogonal si

$$\langle e_i, e_j \rangle = 0$$
, para todo $1 \leq i \neq j \leq m$.

La lista (e_1, \ldots, e_m) se dice ortonormal si

$$\langle e_i, e_j \rangle = \delta_{ij}, \quad para \ todos \ i, j = 1, \dots, m,$$

donde δ_{ij} es la delta de Kronecker $(\delta_{ij} = 1 \iff i = j)$.

Proposición 158. Toda lista ortogonal de vectores no nulos en V es linealmente independiente.

Definición 99. Una base ortonormal de un espacio V de dimensión finita con producto interno es una lista ortonormal de vectores que es una base para V.

Teorema 6. Sea (e_1, \ldots, e_n) una base ortonormal para V. Entonces, para todo $v \in V$, tenemos

$$v = \langle v, e_1 \rangle e_1 + \dots + \langle v, e_n \rangle e_n$$

y

$$||v||^2 = \sum_{k=1}^n |\langle v, e_k \rangle|^2.$$

9.5. El Procedimiento de Ortogonalización de Gram-Schmidt

Teorema 7. Si (v_1, \ldots, v_m) es una lista de vectores linealmente independientes en un espacio con producto interno V, entonces existe una lista ortonormal (e_1, \ldots, e_m) tal que

$$span(v_1, \ldots, v_k) = span(e_1, \ldots, e_k), \quad para \ todo \ k = 1, \ldots, m.$$

Corolario 1. Todo espacio vectorial de dimensión finita con producto interno tiene una base ortonormal.

Corolario 2. Toda lista ortonormal de vectores en V se puede extender a una base ortonormal de V.

Corolario 3. Sea V un espacio vectorial con producto interno sobre \mathbb{F} y $T \in \mathcal{L}(V,V)$. Si T es triangular superior con respecto a alguna base, entonces T es triangular superior con respecto a alguna base ortonormal.

9.6. Proyecciones Ortogonales y Problemas de Minimización

Definición 100. Sea V un espacio vectorial de dimensión finita con producto interno $y \ U \subset V$ un subconjunto (no necesariamente un subespacio) de V. Entonces el complemento ortogonal de U se define como el conjunto

$$U^{\perp} = \{ v \in V : \langle u, v \rangle = 0 \text{ para todo } u \in U \}.$$

Nota 20. U^{\perp} siempre es un subespacio de V y

$$\{0\}^{\perp} = V \ y \ V^{\perp} = \{0\}.$$

Teorema 8. Si $U \subset V$ es un subespacio de V, entonces $V = U \oplus U^{\perp}$.

Teorema 9. Si $U \subset V$ es un subespacio de V, entonces $U = (U^{\perp})^{\perp}$.

Definición 101. Sea $U \subset V$ un subespacio de un espacio de dimensión finita con producto interno. Entonces cada $v \in V$ puede ser escrito de manera única como v = u + w donde $u \in U$ y $w \in U^{\perp}$. Definimos

$$P_U: V \to V$$

 $v \mapsto u$.

Proposición 159. Sea $U \subset V$ un subespacio de V y $v \in V$. Entonces

$$||v - P_{U}v|| < ||v - u||$$
 para todo $u \in U$

Además, la iqualdad vale si y solo si $u = P_{U}v$.

10. Apunte de Formas de Jordan - Formas Canónicas de Jordan

10.1. Invariancia

Definición 102. Sea $T: V \to V$ una transformación lineal. Un subespacio W de V se dice invariante por T si T aplica a W en si mismo, i.e., si $v \in W$ entonces $T(v) \in W$. En este caso T restringido a W define un operador lineal,

$$\tilde{T}: W \to W$$

 $w \mapsto \tilde{T}(w) = T(w).$

Teorema 10. Sean $T: V \to V$ y p(t) un polinomio cualquiera. Entonces null(p(T)) es invariante por T.

Teorema 11. Sean W un subespacio invariante de $T:V\to V$, espacio vectorial sobre $\mathbb K$ de dimensión finita. Entonces T tiene una representación matricial por bloques

$$\begin{pmatrix} A & B \\ 0 & C \end{pmatrix}$$

 $donde\ A\ es\ una\ representación\ matricial\ de\ la\ restricción\ de\ T\ a\ W.$

10.2. Descomposición en Suma Directa de Invariantes

Definición 103. Se dice que un espacio vectorial V es la suma directa de sus subespacios W_1, \ldots, W_r , si todo vector $v \in V$ puede escribirse de manera única como

$$v = w_1 + \dots + w_r, \ w_i \in W_i, \ i = 1, \dots, r.$$

tal que $W_i \cap W_j = \{0\}$. Se nota $V = W_1 \oplus \cdots \oplus W_r$.

Teorema 12. Sean W_1, \ldots, W_r subseque W_1, \ldots, W_r subseque W_1, \ldots, W_n supergraphs W_1, \ldots, W_n supergraphs W_1, \ldots, W_n subseque W_1, \ldots, W_n respectivements.

Entonces V es la suma directa de los W_i si y solo si $B = \{w_1^1, \dots, w_{n_1}^1, \dots, w_{n_r}^r, \dots, w_{n_r}^r\}$ es una base de V.

Definición 104. Sean $T: V \to V$ un operador lineal sobre un espacio vectorial $V = W_1 \oplus \cdots \oplus W_r$, con W_i subespacios invariantes bajo $T(T(W_i) \subset W_i, i = 1, ..., r)$. Sea T_i la restricción de T a W_i . Se dice que T descompone en los operadores T_i o que T es suma directa de los T_i , y se escribe $T = T_1 \oplus \cdots \oplus T_r$. También se dice que los subespacios W_1, \ldots, W_r reducen a T, o que forman una descomposición de V en una suma directa invariante por T.

Teorema 13. Supongamos que $T: V \to T$ es lineal y V es la suma directa de subespacios invariantes por T, W_1, \ldots, W_r . Si A_i es la representación matricial de la restricción de T a W_i relativa a bases ordenadas dadas de W_i , entonces T tiene asociada la matriz diagonal por bloques

$$M = \begin{pmatrix} A_1 & 0 & \cdots & 0 \\ 0 & A_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & A_r \end{pmatrix}$$

10.3. Descomposición Primaria

Teorema 14. Sea $T: V \to V$ lineal, $y \ f(t) = g(t)h(t)$ polinomios tales que f(T) = 0 $y \ g(t)$ $y \ h(t)$ son primos relativos. Entonces V es la suma directa de los subespacios de U y W invariantes por T, donde U = null(g(T)) $y \ W = \text{null}(h(T))$.

Teorema 15. En el Teorema 6.5, si f(t) es el polinomio minimal de T y (g(t) y h(t) son mónicos), entonces g(t) y h(t) son los polinomios minimales de las restricciones de T a U y W respectivamente.

Teorema 16 (Teorema de Descomposición Primaria). Sea $T:V\to V$ un operador lineal con polinomio minimal

$$m(t) = f_1(t)^{m_1} \cdots f_r(t)^{m_r},$$

donde $f_i(t)$ son polinomios mónicos irreducibles diferentes. Entonces V es la suma directa de los subespacios invariantes por T, W_1, \ldots, W_r , donde W_i es el espacio nulo de $f_i(T)^{m_i}$. Además, $f_i(t)^{m_i}$ es el polinomio minimal de la restricción de T a W_i .

Teorema 17. Un operador lineal $T: V \to V$ tiene una representación matricial diagonal si y solo si su polinomio minimal m(t) es un producto de polinomios lineales diferentes.

10.4. Forma Canónica de Jordan

Teorema 18. Sea $T:V \to V$ un operador lineal cuyos polinomios minimal y característico son respectivamente

$$p(t) = \det(T - tI) = (t - \lambda_1)^{n_1} \cdots (t - \lambda_r)^{n_r}$$
$$m(t) = (t - \lambda_1)^{m_1} \cdots (t - \lambda_r)^{m_r},$$

donde los λ_i son escalares distintos. Entonces T tiene una representación matricial diagonal por bloques J cuyos elementos diagonales son de la forma

$$J_{ij} = \begin{pmatrix} \lambda_i & 1 & 0 & \cdots & 0 & 0 \\ 0 & \lambda_i & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \lambda_i & 1 \\ 0 & 0 & 0 & \cdots & 0 & \lambda_i \end{pmatrix}$$

Para cada λ_i los bloques corespondientes J_{ij} tienen las siguientes propiedades:

- i) Existe al menos un J_{ij} de orden m_i , los demás J_{ij} son de orden $\leq m_i$.
- lacksquare ii) La suma de los órdenes de los J_{ij} es n_i .
- lacktriangleq iii) La cantidad de J_{ij} es igual a la multiplicidad geométrica de λ_i (es decir la dimensión de su autoespacio).
- lacktriangledown iv) La cantidad de J_{ij} de cada orden posible está determinado únicamente por T.

A la matriz J se la llama forma canónica de Jordan.