⊢ Sistemas deductivos

Paradigmas de Lenguajes de Programación

Departamento de Ciencias de la Computación Universidad de Buenos Aires

17 de septiembre de 2024

Lógica proposicional

Valuaciones

Una valuación v satisface una proposición τ (y decimos que $v \models \tau$) cuando:

$$\begin{array}{llll} v \vDash P & & \mathrm{sii} & & v(P) = V \\ v \vDash \neg \tau & & \mathrm{sii} & & v \not\vDash \tau \\ v \vDash \tau \lor \sigma & & \mathrm{sii} & & v \vDash \tau & \mathrm{6} & v \vDash \sigma \\ v \vDash \tau \land \sigma & & \mathrm{sii} & & v \vDash \tau & y & v \vDash \sigma \\ v \vDash \tau \Rightarrow \sigma & & \mathrm{sii} & & v \not\vDash \tau & \mathrm{6} & v \vDash \sigma \end{array}$$

Equivalencia de fórmulas

 τ es lógicamente equivalente a σ cuando $v \models \tau$ sii $v \models \sigma$ para toda valuación v.

Eiercicio 2

Mostrar que cualquier fórmula de la lógica proposicional que utilice los conectivos \neg (negación), \wedge (conjunción), \vee (disyunción), \Rightarrow (implicación) puede reescribirse a otra fórmula equivalente que usa sólo los conectivos \neg y \vee .

Lógica proposicional

Sintaxis

$$\tau, \sigma ::= P \mid \neg \tau \mid \tau \wedge \sigma \mid \tau \vee \sigma \mid \tau \Rightarrow \sigma$$

Valuaciones

Una valuación es una función $v: \mathcal{V} \to \{V, F\}$.

Una valuación v satisface una proposición τ (y decimos que $v \models \tau$) cuando:

Sistemas deductivos

2 / 11

Sistemas deductivos

- Definidos por un conjunto de reglas
- * Las reglas son de la forma:

Por ejemplo,

 $\mathsf{Premisa}_1$ $\mathsf{Premisa}_2$... $\mathsf{Premisa}_n$ $\mathsf{Nombre\ de}$

Un sistema deductivo: deducción natural

Secuentes:

Fórmula₁,..., Fórmula_n \vdash Fórmula_{n+1}

Por ejemplo... $P,Q \vdash P \land Q$

Una regla de deducción

$$\frac{\mathsf{Premisa}_1 \quad \mathsf{Premisa}_2 \quad \dots \quad \mathsf{Premisa}_n}{\mathsf{Conclusión}} \quad \underset{\mathsf{la \ regla}}{\mathsf{Nombre \ de}} \; \mathsf{la}$$

$$\frac{\Gamma \vdash \tau \quad \Gamma \vdash \sigma}{\Gamma \vdash \tau \land \sigma} \land_i \quad \frac{}{\Gamma, \tau \vdash \tau} \text{ ax}$$

intuitivamente se puede pensar que expresa:

$$\left. \begin{array}{l} \mathsf{Premisa}_1 \\ \mathsf{Premisa}_2 \\ \vdots \\ \mathsf{Premisa}_n \end{array} \right\} \implies \mathsf{Conclusión}$$

$$\left. \begin{array}{c} \Gamma \vdash \tau \\ \Gamma \vdash \sigma \end{array} \right\} \implies \Gamma \vdash \tau \wedge \sigma$$

$$\mathsf{True} \implies \Gamma, \tau \vdash \tau$$

La demostración de un secuente es un árbol formado por reglas de deducción:

$$\frac{\overline{P,Q \vdash P} \text{ ax } \overline{P,Q \vdash Q} \text{ } \underset{\wedge_i}{\text{ax}}}{P,Q \vdash P \land Q} \ \wedge_i$$

Sistemas deductivos

5 / 11

Deducción natural

Reglas básicas

Deducción natural

Reglas derivadas

Reglas intuicionistas Reglas clásicas $\frac{\Gamma, \neg \tau \vdash \bot}{\Gamma \vdash \tau} \ \mathsf{PBC} \qquad \frac{\Gamma}{\Gamma \vdash \tau \lor \neg \tau} \ \mathsf{LEM}$

- → Veamos que las reglas ¬¬e, PBC y LEM son equivalentes.
- Todas las reglas derivadas, incluyendo las que hayan probado en la guía de ejercicios, pueden usarse para resolver otros ejercicios y los parciales.

Deducción natural en lógica intuicionista

Ejercicio 6

Demostrar en deducción natural que las siguientes fórmulas son teoremas sin usar principios de razonamiento clásicos salvo que se indique lo contrario:

- \Rightarrow Reducción al absurdo: $(P \Rightarrow \bot) \Rightarrow \neg P$
- \uparrow Introducción de la doble negación: $P \Rightarrow \neg \neg P$
- \Rightarrow Eliminación de la triple negación: $\neg\neg\neg P \Rightarrow \neg P$
- \rightarrow de Morgan (II): $\neg (P \land Q) \Leftrightarrow (\neg P \lor \neg Q)$ Para la dirección ⇒ es necesario usar principios de razonamiento clásicos.
- \rightarrow Conmutatividad (\vee): $(P \vee Q) \Rightarrow (Q \vee P)$

Sistemas deductivos 7 / 11 Sistemas deductivos 8 / 11

Deducción natural

Ejercicio 7

Demostrar en deducción natural que vale $\vdash \sigma$ para cada una de las siguientes fórmulas. Para estas fórmulas es imprescindible **usar lógica clásica**:

- \Rightarrow Absurdo clásico: $(\neg P \Rightarrow \bot) \Rightarrow P$
- \rightleftarrows Ley de Peirce: $((P \Rightarrow Q) \Rightarrow P) \Rightarrow P$
- \Rightarrow Análisis de casos: $(P \Rightarrow Q) \Rightarrow (\neg P \Rightarrow Q) \Rightarrow Q$

Debilitamiento o weakening

Ejercicio 8

Probar la siguiente propiedad:

Si $\Gamma \vdash \sigma$ es válido entonces $\Gamma, \tau \vdash \sigma$ es válido.

Tip: utilizar inducción sobre el tamaño de la derivación.

Por ejemplo,

$$\frac{\overline{P,Q \vdash P} \overset{\mathsf{ax}}{\xrightarrow{P,Q \vdash Q}} \overset{\mathsf{ax}}{\wedge_i}}{\frac{P,Q \vdash P \wedge Q}{P,Q \vdash (P \wedge Q) \vee R} \vee_{i_1}} \leadsto \frac{\overline{P,Q,S \vdash P} \overset{\mathsf{ax}}{\xrightarrow{P,Q,S \vdash P}} \overset{\mathsf{ax}}{\xrightarrow{P,Q,S \vdash P}} \overset{\mathsf{ax}}{\wedge_i}}{\frac{P,Q,S \vdash P \wedge Q}{P,Q,S \vdash (P \wedge Q) \vee R} \vee_{i_1}}$$

Para usar esta propiedad como regla en otras derivaciones:

$$\frac{\Gamma \vdash \sigma}{\Gamma, \tau \vdash \sigma} \ \mathsf{W}$$

10 / 11

Sistemas deductivos 9 / 11 Sistemas deductivos