7.
$$\begin{pmatrix} 3 & 0 & 1 \\ 1 & 0 & -1 \\ 1 & 1 & 1 \end{pmatrix}$$

8.
$$\begin{pmatrix} 2 & -1 & 0 \\ 4 & 1 & 6 \\ 1 & 5 & 3 \end{pmatrix}$$

$$\mathbf{9.} \begin{pmatrix}
1 & 0 & 1 & 0 \\
2 & -1 & 0 & 2 \\
-1 & 0 & 0 & 1 \\
4 & 1 & -1 & 0
\end{pmatrix}$$

10.
$$\begin{pmatrix} 4 & 5 & -1 \\ 2 & 0 & -1 \\ 5 & 3 & -2 \end{pmatrix}$$

De los problemas 11 al 15 dibuje las circunferencias de Gershgorin para la matriz dada A y encuentre una cota para $|\lambda|$ si λ es un valor característico de A.

11.
$$\begin{pmatrix} 2 & 1 & 0 \\ \frac{1}{2} & 5 & \frac{1}{2} \\ 1 & 0 & 6 \end{pmatrix}$$

11.
$$\begin{pmatrix} 2 & 1 & 0 \\ \frac{1}{2} & 5 & \frac{1}{2} \\ 1 & 0 & 6 \end{pmatrix}$$
 12. $\begin{pmatrix} -3i & 3-5i & 5-2i & -5 \\ -5-5i & 4+3i & -4-2i & 3i \\ -3-5i & 4-i & -5+4i & 0 \\ -5-4i & -2-2i & 5+3i & -3-i \end{pmatrix}$ 13. $\begin{pmatrix} i & 3 & 2 & 8 \\ 5 & 2 & -6 & 1 \\ 1 & 1 & 3 & 4 \\ 3 & 6 & 4 & -i \end{pmatrix}$

13.
$$\begin{pmatrix} i & 3 & 2 & 8 \\ 5 & 2 & -6 & 1 \\ 1 & 1 & 3 & 4 \\ 3 & 6 & 4 & -i \end{pmatrix}$$

14.
$$\begin{pmatrix} 0 & -2 & 4 & 0 & 5 & 0 \\ 2 & 2 & -3 & -2 & 3 & -1 \\ -4 & -2 & 3 & -1 & -1 & -4 \\ 1 & -1 & -4 & 2 & -2 & 5 \\ -2 & -4 & -4 & 4 & 0 & 3 \\ -3 & -5 & -2 & 2 & -4 & -4 \end{pmatrix}$$

14.
$$\begin{pmatrix}
0 & -2 & 4 & 0 & 5 & 0 \\
2 & 2 & -3 & -2 & 3 & -1 \\
-4 & -2 & 3 & -1 & -1 & -4 \\
1 & -1 & -4 & 2 & -2 & 5 \\
-2 & -4 & -4 & 4 & 0 & 3 \\
-3 & -5 & -2 & 2 & -4 & -4
\end{pmatrix}$$
15.
$$\begin{pmatrix}
3 & 0 & -\frac{1}{3} & \frac{2}{3} & 0 & \frac{1}{3} \\
\frac{1}{2} & 5 & -\frac{1}{2} & 0 & 1 & 0 \\
\frac{1}{10} & -\frac{1}{5} & 4 & \frac{3}{5} & -\frac{1}{5} & \frac{1}{10} \\
-1 & 0 & 0 & -3 & 0 & 0 \\
\frac{1}{2} & 0 & -\frac{1}{2} & 0 & 2 & \frac{1}{2} \\
-\frac{1}{4} & \frac{1}{4} & \frac{1}{4} & 0 & -\frac{1}{4} & 0
\end{pmatrix}$$

16. Sea
$$A = \begin{pmatrix} 2 & \frac{1}{2} & -\frac{1}{3} & \frac{1}{4} \\ \frac{1}{2} & 3 & \frac{1}{2} & 1 \\ -\frac{1}{3} & \frac{1}{2} & 5 & 2 \\ \frac{1}{4} & 1 & 2 & 4 \end{pmatrix}$$
. Demuestre que los valores característicos de A son números

reales positivos.

17. Sea
$$A = \begin{pmatrix} -4 & 1 & 1 & 1 \\ 1 & -6 & 2 & 1 \\ 1 & 2 & -5 & 1 \\ 1 & 1 & 1 & -4 \end{pmatrix}$$
. Demuestre que los valores característicos de A son reales y

negativos.

- **18.** Sea $P(\lambda) = B_0 + B_1 \lambda$ y $Q(\lambda) = C_0 + C_1 \lambda$, donde B_0 , B_1 , C_0 y C_1 son matrices de $n \times n$.
 - a) Calcule $F(\lambda) = P(\lambda)Q(\lambda)$.
 - b) Sea A una matriz de $n \times n$. Demuestre que F(A) = P(A)Q(A) si y sólo si A conmuta tanto con C_0 como con C_1 .
- **19.** Sea A una matriz de $n \times n$ con valores característicos $\lambda_1, \lambda_2, \ldots, \lambda_n$ y sea $r(A) = \max\{|\lambda_i|\}$. Si |A| es la norma de la máxima suma por renglones definida en la sección 8.6, demuestre que $r(A) \leq |A|$.