B750

SERVICE ANLEITUNG SERVICE MANUAL INSTRUCTIONS DE SERVICE

REVOX

B 750 · INTEGRATED STEREO AMPLIFIER

KOMPAKTVERSTÄRKER B750 (MK | + ||) Serviceanleitung

COMPACT AMPLIFIER B750 (MK | + ||) Service Manual

AMPLIFICATEUR COMPACT B750 (MK | + II) Instructions de service

Bezeichnung Seite Description Page Désignation 1. Généralités Allgemeines 1-1 General 1-1 1 - 1Mise sous tension/volume/fonctions 1-1 Einschalten/Lautstärke/Funktionen 1 - 1Switching on/volume/selector switches 1-1 1-1 1-1 1-1 Klangregelung/Filter Tone control/filters Réglages de tonalité/filtres Ausgänge auf Frontplatte/ 1 - 2Outputs on the front panel/ 1 - 2Sorties sur le panneau frontal/ 1 - 2Tape Monitor und Kopie/ Tape monitoring and copying/ Tape Monitor et copie/ Sekundärbedienungselemente Organes de commande secondaires Secondary operating controls 1-3 Rückwandanschlüsse 1-3 Connectors on rear panel 1-3 Prises de raccordement du panneau arrière Technische Daten 1-5 Technical specifications 1-7 Caractéristiques techniques 1-9 1-11 1-11 Dimensions 1-11 Abmessungen Dimensions 2. 2. 2. 2 - 1Ausbau 2-1 Dismantling 2-1 Démontage Entfernen des oberen Deckbleches 2-1 Removal of top cover 2-1Dépose de la plaque supérieure 2-12-1 Entfernen des unteren Deckbleches 2 - 1Removal of bottom cover 2-1Dépose de la plaque du fond 2-1 Bedienungseinheit ausbauen 2-1Removal of operating section 2-1Dépose de l'unité de commande Frontplatte ausbauen 2 - 1Removal of front panel Dépose de la plaque frontale 2 - 12 - 1Endstufe ausbauen 2-2 Removal of power stage 2-2 Dépose de l'étage de puissance 2-2 2-2 2-2 2-2 Netzsicherung auswechseln Replacement of main fuse Remplacement du fusible secteur Netzteilsicherung auswechseln 2-2 Replacement of power supply fuses 2-2 Remplacement du fusible d'alimentation 2-2 3. Funktionsbeschreibung 3-1 Circuit description 3 - 13-1 Description des fonctions Abgleichanleitung 4-1 **Electrical adjustments** 4-1 Procédure de réglage 4-1 Messgeräte 4-1 Test equipment 4-1 Appareils de mesure

CONTENTS

REPERTOIRE

INHALTSVERZEICHNIS

Bezeichnung	Seite	Description	Page	Désignation	Page
Kontrolle der Speisespannungen	4-1	Checking the supply voltages	4-1	Contrôle des tensions d'alimentation	4-1
Ruhestrom-Einstellung (unbelastet)	4—1	Adjustment of quiescent current (no load)	4—1	Réglage du courant de repos (sans charge)	4-1
Kontrolle der Endstufen-Schutz- schaltung	4-2	Checking the protection circuit	4-2	Contrôle du circuit de protection de l'étage de puissance	4-2
Pegelkontrollen	4–3	Level checks	4–3	Contrôle des niveaux	4-3
5. Anleitung zur Messung der wichtigsten technischen Daten	5–1	5. Instructions for measuring the essential performance characteristics	5–1	5. Notice pour la mesure des principales caractéristiques techniques	5–1
Frequenzgangkontrolle	5–1	Frequency response	5—1	Contrôle de la courbe de réponse	5-1
Klirrfaktor	5-3	Harmonic distortion	5-3	Taux de distorsion	5-3
Fremdspannungs-Abstand	5–4	Signal to noise ratio (unweighted)	5-4	Recul du bruit de fond	5-4
Übersprechdämpfung	5–4	Channel separation	5-4	Affaiblissement de la diaphonie	5–4
6. Schaltungssammlung	6–1	6. Set of schematics	6–1	6. Recueil des schémas	6-1
7. Ersatzteilliste	7–1	7. Parts list	7–1	7. Liste des pièces détachées	7–1

Änderungen vorbehalten.

Printed in Switzerland by WILLI STUDER 18.182.778 ED1 Copyright by Willi Studer CH-8105 Regensdorf-Zurich

Subject to change.

Sous réserve de modification.

otizen	Notes	Notes	

			+
			ш

1.	Allgemeines	1.	General	1.	Généralités
	Einschalten/Lautstärke/Funktionen		Switching on/volume/selector switches		Mise sous tension/volume/fonctions
1)	Netzschalter POWER, ON/OFF (Ein/Aus)	1	Mains switch POWER, ON/OFF	1	Interrupteur secteur POWER, ON/OFF (enclenché/déclenché)
	Betriebsanzeige POWER ON	2	Pilot light POWER ON	2	Indicateur de mise sous tension POWER ON
3	Lautstärkeabsenkung LEVEL –20 dB	3	Fixed attenuation LEVEL -20 dB	3	Réduction du volume LEVEL -20 dB
9	Lautstärkeregler VOLUME	4	VOLUME control	4	Réglage du VOLUME
	BALANCE-Regler	5	BALANCE control	5	Réglage de BALANCE
9	Betriebsartenschalter MODE SELECTOR	6	MODE SELECTOR	6	Sélecteur du mode de reproduction MODE SELECTOR
7)	Eingangswahlschalter INPUT SELECTOR	7	INPUT SELECTOR	7	Sélecteur d'entrée INPUT SELECTOR
8)	Lautsprecherwahlschalter SPEAKERS	8	Selector switch SPEAKERS	(8)	Sélecteur de sorties haut-pa <mark>rleur</mark> SPEAKERS
8		8		(8)	SPEAKERS
8)	Lautsprecherwahlschalter SPEAKERS Klangregelung/Filter	8	Selector switch SPEAKERS Tone control/filters	(8)	
		9		9	SPEAKERS
<u> </u>	Klangregelung/Filter Schalter FILTER LOW, ON/OFF		Tone control/filters		Réglages de tonalité/filtres Commutateur FILTER LOW, ON/OFF (enclenché/déclenché)
9)	Klangregelung/Filter Schalter FILTER LOW, ON/OFF (Ein/Aus) Schalter FILTER HIGH, ON/OFF	9	Tone control/filters Switch FILTER LOW, ON/OFF	9	Réglages de tonalité/filtres Commutateur FILTER LOW, ON/OFF (enclenché/déclenché) Commutateur FILTER HIGH, ON/OFF
10	Klangregelung/Filter Schalter FILTER LOW, ON/OFF (Ein/Aus) Schalter FILTER HIGH, ON/OFF (Ein/Aus)	9 10	Tone control/filters Switch FILTER LOW, ON/OFF Switch FILTER HIGH, ON/OFF	9	Réglages de tonalité/filtres Commutateur FILTER LOW, ON/OFF (enclenché/déclenché) Commutateur FILTER HIGH, ON/OFF (enclenché/déclenché)
99 10 10 11 12 13	Klangregelung/Filter Schalter FILTER LOW, ON/OFF (Ein/Aus) Schalter FILTER HIGH, ON/OFF (Ein/Aus) Taste TONE DEFEAT (Lineartaste) Schalter LOUDNESS ON/OFF	9 10 11	Tone control/filters Switch FILTER LOW, ON/OFF Switch FILTER HIGH, ON/OFF Push button TONE DEFEAT	9 (1)	Réglages de tonalité/filtres Commutateur FILTER LOW, ON/OFF (enclenché/déclenché) Commutateur FILTER HIGH, ON/OFF (enclenché/déclenché) Bouton poussoir TONE DEFEAT Commutateur LOUDNESS ON/OFF
9) 10 11) 12	Klangregelung/Filter Schalter FILTER LOW, ON/OFF (Ein/Aus) Schalter FILTER HIGH, ON/OFF (Ein/Aus) Taste TONE DEFEAT (Lineartaste) Schalter LOUDNESS ON/OFF (Ein/Aus)	9 10 11 12	Tone control/filters Switch FILTER LOW, ON/OFF Switch FILTER HIGH, ON/OFF Push button TONE DEFEAT Switch LOUDNESS ON/OFF	9 (1) (12)	Réglages de tonalité/filtres Commutateur FILTER LOW, ON/OFF (enclenché/déclenché) Commutateur FILTER HIGH, ON/OFF (enclenché/déclenché) Bouton poussoir TONE DEFEAT Commutateur LOUDNESS ON/OFF (enclenché/déclenché)

	Ausgänge auf Frontplatte/ Tape Monitor und Kopie/ Sekundärbedienungselemente		Outputs on the front panel/ tape monitoring and copying/ secondary operating controls		Sorties sur le panneau frontal/ Tape Monitor et copie/ Organes de commande secondaires
16	Buchsen PHONES (Kopfhörer)	16)	Phones jacks	16)	Prises PHONES (casque)
17)	Ausgang TAPE 2 OUTPUT (Tonband 2)	17)	Output TAPE 2 OUTPUT	17)	Sortie TAPE 2 OUTPUT (magnétophone 2)
18)	Taste TAPE 1 (Monitor Tonband 1)	18	Push button TAPE 1	18)	Bouton poussoir TAPE 1 (moniteur pour magnétophone 1)
19	Taste TAPE 2 (Monitor Tonband 2)	19	Push button TAPE 2	19)	Bouton poussoir TAPE 2 (moniteur pour magnétophone 2)
20	Taste TAPE COPY (Tonbandkopie)	20	Push button TAPE COPY	20	Bouton poussoir TAPE COPY (copie de bande)
21)	Schiebeschalter PHONO 1 IMPEDANCE	21)	Sliding switch PHONO 1 IMPEDANCE	21)	Commutateur à glissière PHONO 1 IMPEDANCE
22	Regler PHONO SENSITIVITY	22	Control PHONO SENSITIVITY	22	Réglage PHONO SENSITIVITY
23)	Schiebeschalter PRE-PWR AMP MODE NORMAL/SEPARATED (Normal/Getrennt)	23)	Sliding switch PRE-PWR AMP MODE NORMAL/SEPARATED	23)	Commutateur à glissière PRE-PWR AMP MODE NORMAL/SEPARATED (normal/séparé)

gültig für Geräte ab Serie-Nummer 5001 valid for amplifiers starting with serial nr. 5001 valable pour appareils à partir du no. de fabrication 5001

gültig für Geräte bis Serie-Nummer 5000 valid for amplifiers up to serial nr. 5000 valable pour appareils jusqu'au no, de fabrication 5000

	Rückwandanschlüsse		Connectors on rear panel		Prises de raccordement du panneau arrière
30)	÷ Erdklemme	30	± Earthing terminal	30	÷ Prise de terre
	Cinch-Anschlüsse INPUTS (Eingänge)		Phono sockets INPUTS		Prises Cinch INPUT (entrées)
31)	TUNER (UKW-Empfänger)	31)	TUNER	31)	TUNER (récepteur OUC)
32)	AUX 1 (AUX, Auxiliary, Divers)	32)	AUXiliary 1 (AUX)	32)	AUX 1 (AUX, auxiliaire)
33)	PHONO 1 (Plattenspieler 1)	33	PHONO 1	(33)	PHONO 1 (table de lecture 1)
34)	PHONO 2/AUX 2 (PHONO 2)	34)	PHONO 2/AUX 2 (PHONO 2)	34)	PHONO 2/AUX 2 (PHONO 2)
	Cinch-Anschlüsse TAPE 1 (Tonband 1)		Phono sockets TAPE 1		Prises Cinch TAPE 1 (magnétophone 1
35)	INPUT (Eingang)	35)	INPUT	35)	INPUT (entrée)
36)	OUTPUT (Ausgang)	36)	OUTPUT	36)	OUTPUT (sortie)
	Cinch-Anschlüsse TAPE 2-(Tonband 2)		Phone sockets TAPE 2		Prises Cinch TAPE 2 (magnétophone 2
37)	INPUT (Eingang)	37)	INPUT	37)	INPUT (entrée)
38)	OUTPUT (Ausgang)	38)	OUTPUT	38)	OUTPUT (sortie)
39	DIN-Anschluss IN/OUT (Eingang/Ausgang)	39	DIN socket IN/OUT	39	Prise 5 pôles DIN IN/OUT (entrée/sortie)
	Cinch-Anschlüsse EQUALIZER (Entzerrer)		Phono sockets EQUALIZER		Prises Cinch EQUALIZER (égaliseur)
40	PRE AMP OUT (Vorverstärker Ausgang)	40	PRE AMP OUT (preamplifier output)	40	PRE AMP OUT (sortie du préamplificateur)
41)	PWR AMP IN (Eingang Endstufe)	41)	PWR AMP IN (input to power amplifier)	41)	PWR AMP IN (entrée des étages finals)
	SPEAKERS (Lautsprecheranschlüsse)		SPEAKERS (Ioudspeaker connectors)		SPEAKERS (prises haut-parleur)
42)	Gruppe B	42	Group B	42	Groupe B
43)	Gruppe A	43)	Group A	43)	Groupe A
	NETZANSCHLUSS		AC POWER CONNECTION		Raccordement secteur
44)	Netzanschluss AC POWER	44)	AC POWER inlet	44	Prise secteur AC POWER
45)	Netzsicherung FUSE	45)	FUSE	45)	Fusible secteur FUSE
46)	Spannungswähler LINE VOLTAGE SELECTOR	46)	LINE VOLTAGE SELECTOR	46	Sélecteur de tension LINE VOLTAGE SELECTOR

(47) Sekundärsicherungen

(47) Internal (secondary) fuses

47 Fusibles secondaires

B750 Technische Daten

(gültig für Geräte bis Serie-Nummer 5000)

B750 Technische Daten

(gültig für Geräte mit

Serie-Nummern 5001 bis 8500)

B750 Technische Daten

(gültig für Geräte ab Serie-Nummer 8501, MK II)

Musikleistung:

100 W pro Kanal (4 Ohm)

beide Kanäle gleichzeitig ausgesteuert

Ausgangsleistung:

(nach DIN 45500) 75 W pro Kanal (4 Ohm) 50 W pro Kanal (8 Ohm)

beide Kanäle gleichzeitig ausgesteuert

Harmonische Verzerrungen:

(20 Hz ... 20 kHz)

kleiner als 0,2 % bei jedem Leistungspegel bis

60 W (4 Ohm)

Frequenzgang:

± 0,5 dB, 20 Hz ... 20 kHz

Dämpfungsfaktor:

grösser als 75 bei 1 kHz (8 Ohm)

Eingänge:

Empfindlichkeit für 60 W (4 Ohm) / Impedanz

TUNER, AUX, TAPE 1 + 2:

200 mV/100 kOhm

PHONO 1:

1,5 ... 7 mV;

nominal 5 mV/25-50-100 kOhm

(umschaltbar) PHONO 2:

1,5 ... 7 mV; nominal 5 mV/50 kOhm

PWR AMP IN:

1 V/20 kOhm

Übersteuerungsgrenze:

TUNER, AUX, TAPE 1 + 2:

9 V

PHONO 1 + 2:

400 mV

Ausgänge:

DIN-Anschluss TAPE 2/OUT:

6,5 mV/R₁ 10 kOhm

SPEAKERS A, B:

15,5 V/R_L min. 4 Ohm

TAPE 1 + 2 (Cinch):

200 mV/R_L min. 50 kOhm

TAPE 2 (Jack):

200 mV/RL min. 50 kOhm

PRE AMP OUT:

1 V/R_L min. 10 kOhm

PHONES (2 x):

15,5 V/R; 100 Ohm

Fremdspannungsabstand:

Effektivwert, unbewertet;

20 Hz ... 20 kHz, bezogen auf 60 W (4 Ohm)

TUNER, AUX, TAPE 1 + 2:

grösser als 90 dB

(Eingänge mit 10 kOhm abgeschlossen)

PHONO 1 + 2:

grösser als 70 dB

(Eingänge mit 2,2 kOhm abgeschlossen)

Musikleistung:

100 W pro Kanal (4 Ohm)

beide Kanäle gleichzeitig ausgesteuert

Ausgangsleistung:

(nach DIN 45500)

75 W pro Kanal (4 Ohm)

50 W pro Kanal (8 Ohm)

beide Kanäle gleichzeitig ausgesteuert

Harmonische Verzerrungen:

(20 Hz ... 20 kHz)

kleiner als 0,2 % bei jedem Leistungspegel bis

60 W (4 Ohm)

Frequenzgang:

± 0,5 dB, 20 Hz ... 20 kHz

Dämpfungsfaktor:

grösser als 75 bei 1 kHz (8 Ohm)

Eingänge:

Empfindlichkeit für 60 W (4 Ohm) / Impedanz

TUNER, AUX, TAPE 1 + 2:

200 mV/100 kOhm

PHONO 1:

1,5 ... 7 mV;

nominal 5 mV/25-50-100 kOhm

(umschaltbar) PHONO 2:

5 mV/50 kOhm

festeingestellt

PWR AMP IN:

1 V/20 kOhm

Übersteuerungsgrenze:

TUNER, AUX, TAPE 1 + 2:

9 V PHONO 1:

400 mV

PHONO 2:

250 mV

Ausgänge:

DIN-Anschluss TAPE 2/OUT:

6,5 mV/R₁ 10 kOhm

SPEAKERS A, B:

15,5 V/R_L min. 4 Ohm

TAPE 1 + 2 (Cinch):

200 mV/R_I min. 50 kOhm

TAPE 2 (Jack):

200 mV/R_L min. 50 kOhm

PRE AMP OUT:

1 V/R_I min. 10 kOhm PHONES (2 x):

15,5 V/R; 100 Ohm

Fremdspannungsabstand:

Effektivwert, unbewertet; 20 Hz ... 20 kHz, bezogen auf 60 W (4 Ohm)

TUNER, AUX, TAPE 1 + 2:

grösser als 90 dB

(Eingänge mit 10 kOhm abgeschlossen)

PHONO 1 + 2:

grösser als 70 dB

(Eingänge mit 2,2 kOhm abgeschlossen)

Musikleistung:

140 W pro Kanal (4 Ohm)

beide Kanäle gleichzeitig ausgesteuert

Ausgangsleistung:

(nach DIN 45500)

110 W pro Kanal (4 Ohm)

85 W pro Kanal (8 Ohm)

beide Kanäle gleichzeitig ausgesteuert

Harmonische Verzerrungen:

(20 Hz ... 20 kHz)

kleiner als 0,1 % bei jedem Leistungspegel bis

75 W (8 Ohm)

Frequenzgang:

± 0,5 dB, 20 Hz ... 20 kHz

Dämpfungsfaktor:

grösser als 80 bei 1 kHz (8 Ohm)

Eingänge:

Empfindlichkeit für 75 W (8 Ohm) / Impedanz

TUNER, AUX 1 + 2, TAPE 1 + 2:

200 mV/100 kOhm

PHONO 1:

1,5 ... 7 mV;

nominal 5 mV/25-50-100 kOhm

(umschaltbar)

PHONO 2: (nachrüstbar, anstelle von AUX 2)

5 mV/50 kOhm

festeingestellt PWR AMP IN:

1 V/20 kOhm

Übersteuerungsgrenze:

TUNER, AUX 1 + 2, TAPE 1 + 2:

PHONO 1:

400 mV

PHONO 2:

300 mV

Ausgänge:

DIN-Anschluss TAPE 2/OUT:

6,5 mV/R₁ 10 kOhm

SPEAKERS A, B:

24,5 V (8 Ohm)

TAPE 1 + 2 (Cinch): 200 mV/R₁ min, 50 kOhm

TAPE 2 (Jack):

200 mV/R₁ min. 50 kOhm PRE AMP OUT:

1 V/R_I min. 10 kOhm

PHONES (2 x): 24,5 V/R; 100 Ohm

Fremdspannungsabstand:

Effektivwert, unbewertet;

20 Hz ... 20 kHz, bezogen auf 75 W (8 Ohm)

TUNER, AUX 1 + 2, TAPE 1 + 2: grösser als 90 dB

(Eingänge mit 10 kOhm abgeschlossen)

PHONO 1 + 2:

grösser als 70 dB

(Eingänge mit 2,2 kOhm abgeschlossen)

1 - 5

Übersprechdämpfung:

bei 1 kHz

TUNER, AUX, TAPE 1 + 2:

grösser als 66 dB PHONO 1 + 2: grösser als 60 dB

Phono-Entzerrung:

nach IEC 98, MOD 4 1976: ± 0,5 dB, 20 Hz ... 20 kHz

Klangregler:

in 2 dB-Stufen

BASS:

± 8 dB bei 120 Hz

TREBLE:

±8dB bei 8 kHz

PRESENCE:

±8dBbei3kHz

Filter:

LOW:

50 Hz, -3 dB (12 dB/Oktave)

8 kHz, -3 dB (12 dB/Oktave)

Loudness:

Volume -30 dB: 100 Hz + 6 dB

10 kHz + 4 dB

Bestückung:

4 IC (Spannungsregler), 99 Transistoren, 4 Brückengleichrichter, 48 Dioden

Stromversorgung:

umschaltbar: 100, 120, 140, 200, 220, 240 V

50 ... 60 Hz Netzsicherung:

100 ... 140 V: 4 AT 200 ... 240 V: 2 AT

Leistungsaufnahme:

50 ... 350 W

Gewicht: (Masse)

13 kg

Abmessungen:

 $B \times H \times T = 452 \times 151 \times 348 \text{ mm}$

Übersprechdämpfung:

bei 1 kHz

TUNER, AUX, TAPE 1 + 2:

grösser als 66 dB PHONO 1 + 2: grösser als 60 dB

Phono-Entzerrung:

nach IEC 98, MOD 4 1976: ± 0,5 dB, 20 Hz ... 20 kHz

Klangregler:

in 2 dB-Stufen

BASS:

± 8 dB bei 120 Hz

TREBLE:

±8 dB bei 8 kHz

PRESENCE:

±8dBbei3kHz

Filter:

LOW:

50 Hz, -3 dB (12 dB/Oktave)

HIGH:

8 kHz, -3 dB (12 dB/Oktave)

Loudness:

Volume -30 dB: 100 Hz + 6 dB 10 kHz + 4 dB

Bestückung:

4 IC (Spannungsregler), 107 Transistoren, 4 Brückengleichrichter, 52 Dioden

Stromversorgung:

umschaltbar: 100, 120, 140, 200, 220, 240 V

50 ... 60 Hz Netzsicherung: 100 ... 140 V: 4 AT

200 ... 240 V: 2 AT

Leistungsaufnahme:

50 ... 350 W

Gewicht: (Masse)

13 kg

Abmessungen:

 $B \times H \times T = 452 \times 151 \times 348 \text{ mm}$

Übersprechdämpfung:

bei 1 kHz alle Eingänge: grösser als 66 dB

Phono-Entzerrung:

nach IEC 98, MOD 4 1976: ± 0,5 dB, 20 Hz ... 20 kHz

Klangregler:

in 2 dB-Stufen

BASS:

± 8 dB bei 120 Hz

TREBLE:

±8dBbei8kHz

PRESENCE: ±8dBbei3kHz

Filter:

LOW:

50 Hz, -3 dB (12 dB/Oktave)

HIGH:

8 kHz, -3 dB (12 dB/Oktave)

Loudness:

Volume -30 dB: 100 Hz + 6 dB

10 kHz + 4 dB

Bestückung:

4 IC (Spannungsregler), 99 Transistoren,

4 Brückengleichrichter, 48 Dioden

Stromversorgung:

umschaltbar: 100, 120, 140, 200, 220, 240 V

50 ... 60 Hz Netzsicherung:

100 ... 140 V: 5 AT

200 ... 240 V: 2,5 AT

Leistungsaufnahme:

50 ... 550 W

Gewicht: (Masse)

13 kg

Abmessungen:

 $B \times H \times T = 452 \times 151 \times 348 \text{ mm}$

B750 Technical Data

(Valid for amplifiers up to serial nr. 5000)

B750 Technical Data

(Valid for amplifiers with serial nr. 5001 to 8500)

B750 Technical Data

(Valid for amplifiers with serial nr. 8501 and up, MKII)

Power output:

60 watts into 4 ohms 40 watts into 8 ohms

continuous average sine wave power at rated

distortion.

Total harmonic distortion:

less than 0.2 % at any level up to rated output.

Frequency response:

20 Hz ... 20 kHz ± 0.5 dB

Damping factor:

better than 75 at 8 ohms

Sensitivity for 60 watts (4 ohms) / input impedance

TUNER, AUX, TAPE 1 + 2:

200 mV/100 kohms

PHONO 1

1.5 ... 7 mV/25, 50, 100 kohms

(selectable) PHONO 2:

1.5 ... 7 mV; nominal 5 mV/50 kohms

PWR AMP IN:

1 V/20 kohms

Overload levels:

TUNER, AUX, TAPE 1 + 2:

9 V

PHONO 1 + 2:

400 mV

Outputs:

DIN connector TAPE 2/OUT: 6.5 mV/R_L 10 kohms

SPEAKERS A, B: 15.5 V/R_I min. 4 ohms TAPE 1 + 2 (phono sockets):

200 mV/R_L min. 50 kohms TAPE 2 (Jack):

200 mV/RL min. 50 kohms

PRE AMP OUT:

1 V/R_I min. 10 kohms

PHONES (2 x):

15.5 V/R; 100 ohms

Signal to noise ratio:

(with reference to 60 watts / 4 ohms)

TUNER, AUX, TAPE 1 + 2: better than 90 dB, unweighted input termination 10 kohms

PHONO 1 + 2:

better than 70 dB, unweighted

input termination 2.2 kohms

Channel separation:

(at 1000 Hz)

better than 60 dB

Phono equalization:

(as per IEC 98 MOD 4 1976) 20 Hz ... 20 kHz ± 0.5 dB

Power output:

60 watts into 4 ohms 40 watts into 8 ohms

continuous average sine wave power at rated

distortion.

Total harmonic distortion:

less than 0.2 % at any level up to rated output.

Frequency response:

20 Hz ... 20 kHz ± 0.5 dB

Damping factor:

better than 75 at 8 ohms

Inputs:

Sensitivity for 60 watts (4 ohms) / input im-

pedance

TUNER, AUX, TAPE 1 + 2:

200 mV/100 kohms

PHONO 1:

1.5 ... 7 mV/25, 50, 100 kohms

(selectable) PHONO 2: 5 mV/50 kohms

fixed

PWR AMP IN:

1 V/20 kohms

Overload levels:

TUNER, AUX, TAPE 1 + 2:

PHONO 1 + 2:

400 mV

PHONO 2:

250 mV

Outputs:

DIN connector TAPE 2/OUT:

6.5 mV/R_L 10 kohms SPEAKERS A, B: 15.5 V/R_I min. 4 ohms TAPE 1 + 2 (phono sockets):

200 mV/R_I min. 50 kohms TAPE 2 (Jack):

200 mV/RL min. 50 kohms

PRE AMP OUT: 1 V/R_L min. 10 kohms PHONES (2 x): 15.5 V/R; 100 ohms

Signal to noise ratio:

(with reference to 60 watts / 4 ohms)

TUNER, AUX, TAPE 1 + 2: better than 90 dB, unweighted input termination 10 kohms PHONO 1 + 2:

better than 70 dB, unweighted input termination 2.2 kohms

Channel separation:

(at 1000 Hz) better than 60 dB

Phono equalization:

(as per IEC 98 MOD 4 1976) 20 Hz ... 20 kHz ± 0.5 dB

Power output:

75 watts into 8 ohms

continuous average sine wave power at rated

distortion.

Total harmonic distortion:

less than 0.1 % at any level up to rated output.

Frequency response:

20 Hz ... 20 kHz ± 0.5 dB

Damping factor:

better than 80 at 8 ohms

Inputs:

Sensitivity for 75 watts (8 ohms) / input im-

pedance

TUNER, AUX 1 + 2, TAPE 1 + 2:

200 mV/100 kohms

PHONO 1

1.5 ... 7 mV/25, 50, 100 kohms

(selectable)

PHONO 2 (optional, in place of AUX 2):

5 mV/50 kohms

fixed

PWR AMP IN:

1 V/20 kohms

Overload levels:

TUNER, AUX 1 + 2, TAPE 1 + 2:

9 V PHONO 1:

400 mV PHONO 2:

300 mV

Outputs: DIN connector TAPE 2/OUT:

6.5 mV/R_L 10 kohms SPEAKERS A, B: 24,5 V (8 ohms)

TAPE 1 + 2 (phono sockets):

200 mV/R₁ min. 50 kohms

TAPE 2 (Jack):

200 mV/RL min. 50 kohms

PRE AMP OUT: 1 V/R_L min. 10 kohms PHONES (2 x): 24.5 V/R; 100 ohms

Signal to noise ratio:

(with reference to 75 watts / 8 ohms) TUNER, AUX 1 + 2, TAPE 1 + 2: better than 90 dB, unweighted input termination 10 kohms

PHONO 1 + 2:

better than 70 dB, unweighted input termination 2.2 kohms

Channel separation:

(at 1000 Hz) better than 66 dB on all inputs

Phono equalization:

(as per IEC 98 MOD 4 1976) 20 Hz ... 20 kHz ± 0.5 dB

Tone controls:

BASS:

±8 dB in 2 dB steps at 120 Hz

TREBLE:

±8 dB in 2 dB steps at 8 kHz

PRESENCE:

±8 dB in 2 dB steps at 3 kHz

Filter:

LOW:

50 Hz, -3 dB (12 dB/octave)

HIGH:

8 kHz, -3 dB (12 dB/octave)

Loudness:

Volume -30 dB 100 Hz + 6 dB 10 kHz + 4 dB

Semiconductor complement:

4 IC (voltage regulation), 99 transistors, 4 bridge rectifiers, 48 diodes

Current supply:

Voltage selector for: 100, 120, 140, 200, 220,

240 V 50 ... 60 Hz Main Fuse:

100 ... 140 V: 4 amp slow-blow 200 ... 240 V: 2 amp slow-blow

Power consumption:

50 ... 350 watts

Weight:

13 kg (28 lbs 10 ozs)

Dimensions:

 $W \times H \times D = 452 \times 151 \times 348 \text{ mm}$ (17.8 × 6 × 13.7 inches)

Tone controls:

BASS:

±8 dB in 2 d3 steps at 120 Hz

TREBLE:

± 8 dB in 2 d3 steps at 8 kHz

PRESENCE:

±8 dB in 2 dB steps at 3 kHz

Filter:

LOW:

50 Hz, -3 dB (12 dB/octave)

HIGH:

8 kHz, -3 dB (12 dB/octave)

Loudness:

Volume -30 dB 100 Hz + 6 dB 10 kHz + 4 dB

Semiconductor complement:

4 IC (voltage regulation), 107 transistors,

4 bridge rectifiers, 52 diodes

Current supply:

Voltage selector for: 100, 120, 140, 200, 220,

240 V 50 ... 60 Hz Main Fuse:

100 ... 140 V: 4 amp slow-blow 200 ... 240 V: 2 amp slow-blow

Power consumption:

50 ... 350 watts

Weight:

13 kg (28 lbs 10 ozs)

Dimensions:

 $W \times H \times D = 452 \times 151 \times 348 \text{ mm}$

 $(17.8 \times 6 \times 13.7 \text{ inches})$

Tone controls:

BASS:

±8 dB in 2 dB steps at 120 Hz

TREBLE:

±8 dB in 2 dB steps at 8 kHz

PRESENCE:

±8 dB in 2 dB steps at 3 kHz

Filter:

LOW:

50 Hz, -3 dB (12 dB/octave)

HIGH:

8 kHz, -3 dB (12 dB/octave)

Loudness:

Volume -30 dB 100 Hz + 6 d3 10 kHz + 4 dB

Semiconductor complement:

4 IC (voltage regulation), 99 transistors,

4 bridge rectifiers, 48 diodes

Current supply:

Voltage selector for: 100, 120, 140, 200, 220,

240 V 50 ... 60 Hz Main Fuse:

100 ... 140 V: 5 amp slow-blow

200 ... 240 V: 2.5 amp slow-blow

Power consumption:

50 ... 550 watts

Weight:

13 kg (28 lbs 10 ozs)

Dimensions:

 $W \times H \times D = 452 \times 151 \times 348 \text{ mm}$

 $(17.8 \times 6 \times 13.7 \text{ inches})$

Caractéristiques techniques B750

(valable pour appareils jusqu'au

no. de fabrication 5000)

Puissance musicale:

100 watts par canal (4 ohms)

les deux canaux simultanément en service.

Puissance de sortie:

(d'après DIN 45500)

75 watts par canal (4 ohms)

50 watts par canal (8 ohms)

les deux canaux simultanément en service.

Distorsion harmonique:

(20 Hz ... 20 kHz)

inférieure à 0,2 % à n'importe quel niveau

jusqu'à 60 watts (4 ohms).

Réponse en fréquence:

± 0,5 dB, 20 Hz ... 20 kHz

Facteur d'amortissement:

meilleur que 75 à 1 kHz (8 ohms)

Entrées:

Sensibilité pour 60 watts (4 ohms) / impédance

TUNER, AUX, TAPE 1 + 2:

200 mV/100 kohms

PHONO 1:

1,5 ... 7 mV

nominal 5 mV/25-50-100 kohms

(commutable)

PHONO 2:

1,5 ... 7 mV

nominal 5 mV/50 kohms

PWR AMP IN:

1 V/20 kohms

Limite de saturation:

TUNER, AUX, TAPE 1 + 2:

9 V

PHONO 1 + 2:

400 mV

Sorties:

Prise DIN TAPE 2/OUT:

6,5 mV/R_L 10 kohms

SPEAKERS A, B:

15,5 V/R_L 4 ohms min.

TAPE 1 + 2 (CINCH):

200 mV/R_L 50 kohms min.

TAPE 2 (Jack):

200 mV/R_L L 50 kohms min.

PRE AMP OUT:

1 V/R_L 10 kohms min.

PHONES (2 x):

15,5 V/R_i 100 ohms

Recul du bruit de fond:

Valeur effective, non pondérée;

20 Hz ... 20 kHz, par rapport à 60 watts

(4 ohms)

TUNER, AUX, TAPE 1 + 2:

supérieur à 90 dB

(entrées bouclées avec 10 kohms)

PHONO 1 + 2:

supérieur à 70 dB

(entrées bouclées avec 2,2 kohms)

Caractéristiques techniques B750

(valable pour les appareils avec un

no. de fabrication allant de 5001 jusqu'à 8500)

Puissance musicale:

100 watts par canal (4 ohms)

les deux canaux simultanément en service.

Puissance de sortie:

(d'après DIN 45500)

75 watts par canal (4 ohms)

50 watts par canal (8 ohms)

les deux canaux simultanément en service.

Distorsion harmonique:

(20 Hz ... 20 kHz)

inférieure à 0,2 % à n'importe quel niveau

jusqu'à 60 watts (4 ohms).

Réponse en fréquence:

± 0,5 dB, 20 Hz ... 20 kHz

Facteur d'amortissement:

meilleur que 75 à 1 kHz (8 ohms)

Entrées:

Sensibilité pour 60 watts (4 ohms) / impédance

TUNER, AUX, TAPE 1 + 2:

200 mV/100 kohms

PHONO 1:

1,5 ... 7 mV

nominal 5 mV/25-50-100 kohms

(commutable)

PHONO 2:

5 mV/50 kohms

fixe

PWR AMP IN:

1 V/20 kohms

Limite de saturation:

TUNER, AUX, TAPE 1 + 2:

9 V

PHONO 1:

400 mV PHONO 2:

PHONU Z

250 mV

Sorties:

Prise DIN TAPE 2/OUT:

6,5 mV/R_L 10 kohms

SPEAKERS A, B:

15,5 V/R_L 4 ohms min.

TAPE 1 + 2 (CINCH):

200 mV/R_L 50 kohms min. TAPE 2 (Jack):

200 mV/R₁ L 50 kohms min.

PRE AMP OUT:

1 V/R_L 10 kohms min.

PHONES (2 x):

15,5 V/R_{i} 100 ohms

Recul du bruit de fond: Valeur effective, non pondérée;

20 Hz ... 20 kHz, par rapport à 60 watts

(4 ohms)

TUNER, AUX, TAPE 1 + 2:

supérieur à 90 dB

(entrées bouclées avec 10 kohms)

PHONO 1 + 2:

supérieur à 70 dB

(entrées bouclées avec 2,2 kohms)

Caractéristiques techniques B750

(valable pour les appareils à partir du

no. de fabrication 8501, MK II)

Puissance musicale:

140 watts par canal (4 ohms)

les deux canaux simultanément en service.

Puissance de sortie:

(d'après DIN 45500)

110 watts par canal (4 ohms)

85 watts par canal (8 ohms)

les deux canaux simultanément en service.

Distorsion harmonique:

(20 Hz ... 20 kHz)

inférieure à 0,1 % à n'importe quel niveau

jusqu'à 75 watts (8 ohms).

Réponse en fréquence:

± 0,5 dB, 20 Hz ... 20 kHz

Facteur d'amortissement:

meilleur que 80 à 1 kHz (8 ohms)

Entrées.

Sensibilité pour 75 watts (8 ohms) / impédance

TUNER, AUX 1 + 2, TAPE 1 + 2:

200 mV/100 kohms

PHONO 1:

1,5 ... 7 mV

nominal 5 mV/25-50-100 kohms

(commutable)

PHONO 2 (en option, à la place de AUX 2):

5 mV/50 kohms

fixe

PWR AMP IN:

1 V/20 kohms

Limite de saturation:

TUNER, AUX 1 + 2, TAPE 1 + 2:

9 V PHONO 1 + 2:

400 mV

PHONO 2:

300 mV

Sorties:

Prise DIN TAPE 2/OUT:

6,5 mV/R₁ 10 kohms

SPEAKERS A, B:

24,5 V (8 ohms) TAPE 1 + 2 (CINCH):

200 mV/R₁ 50 kohms min.

TAPE 2 (Jack): 200 mV/R₁ L 50 kohms min.

PRE AMP OUT:

1 V/R $_{L}$ 10 kohms min. PHONES (2 x):

24,5 V/R_i 100 ohms

Recul du bruit de fond: Valeur effective, non pondérée;

20 Hz ... 20 kHz, par rapport à 75 watts

(8 ohms)

TUNER, AUX 1 + 2, TAPE 1 + 2:

supérieur à 90 dB (entrées bouclées avec 10 kohms)

PHONO 1 + 2: supérieur à 70 dB

(entrées bouclées avec 2,2 kohms)

Amortissement de la diaphonie:

à 1 kHz

TUNER, AUX, TAPE 1 + 2:

supérieur à 66 dB PHONO 1 + 2: supérieur à 60 dB

Corrections phono:

d'après IEC 98, MOD 4 1976: ± 0,5 dB, 20 Hz ... 20 kHz

Correcteurs de tonalité:

par pas de 2 dB BASS: ± 8 dB à 120 Hz TREBLE: ± 8 dB à 8 kHz PRESENCE: ± 8 dB à 3 kHz

Filtres:

LOW:

50 Hz, -3 dB (12 dB/octave)

HIGH:

8 kHz, -3 dB (12 dB/octave)

Loudness:

Volume -30 dB: 100 Hz + 6 dB 10 kHz + 4 dB

Composants:

4 IC (régulateurs de tension), 99 transistors, 4 redresseurs en pont et 48 diodes.

Alimentation:

commutable: 100, 120, 140, 200, 220 et 240 V

50 ... 60 Hz Fusible secteur: 100 ... 140 V: 4 AT 200 ... 240 V: 2 AT

Consommation:

50 ... 350 watts

Poids:

13 kg

Dimensions:

 $L \times H \times P = 452 \times 151 \times 348 \text{ mm}$

Amortissement de la diaphonie:

à 1 kHz

TUNER, AUX, TAPE 1 + 2:

supérieur à 66 dB PHONO 1 + 2: supérieur à 60 dB

Corrections phono:

d'après IEC 98, MOD 4 1976: ± 0,5 dB, 20 Hz ... 20 kHz

Correcteurs de tonalité:

par pas de 2 dB BASS: ± 8 dB à 120 Hz TREBLE: ± 8 dB à 8 kHz PRESENCE: ± 8 dB à 3 kHz

Filtres:

LOW:

50 Hz, -3 dB (12 dB/octave)

HIGH:

8 kHz, -3 dB (12 dB/octave)

Loudness:

Volume -30 dB: 100 Hz + 6 dB 10 kHz + 4 dB

Composants:

4 IC (régulateurs de tension), 107 transistors, 4 redresseurs en pont et 52 diodes.

Alimentation:

commutable: 100, 120, 140, 200, 220 et 240 V 50 ... 60 Hz

Fusible secteur: 100 ... 140 V: 4 AT 200 ... 240 V: 2 AT

Consommation:

50 ... 350 watts

Poids:

13 kg

Dimensions:

 $L \times H \times P = 452 \times 151 \times 348 \text{ mm}$

Amortissement de la diaphonie:

à 1 kHz

pour toutes les entrées: supérieur à 66 dB

Corrections phono:

d'après IEC 98, MOD 4 1976: ± 0,5 dB, 20 Hz ... 20 kHz

Correcteurs de tonalité:

par pas de 2 dB BASS: ± 8 dB à 120 Hz TREBLE: ± 8 dB à 8 kHz PRESENCE: ± 8 dB à 3 kHz

Filtres:

LOW:

50 Hz, -3 dB (12 dB/octave)

HIGH:

8 kHz, -3 dB (12 dB/octave)

Loudness:

Volume -30 dB: 100 Hz + 6 dB 10 kHz + 4 dB

Composants:

4 IC (régulateurs de tension), 99 transistors, 4 redresseurs en pont et 48 diodes.

Alimentation:

commutable: 100, 120, 140, 200, 220 et 240 V 50 ... 60 Hz Fusible secteur:

100 ... 140 V: 5 AT 200 ... 240 V: 2,5 AT

Consommation:

50 ... 550 watts

Poids:

13 kg

Dimensions:

 $L \times H \times P = 452 \times 151 \times 348 \text{ mm}$

Abmessungen

Dimensions

Dimensions

Normale Version

Standard Version

Version normale

Rack-Version

Rack Version

Version rack

Notizen	Notes	Notes
- <mark> </mark>		
┍╛┍┊┾ ╃╃┵╃┰╃┰╃╁╃┇╃╒┩╒┩╞╅┊┨╧╏╧┩┾╢╌		
┍╬┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸┸ ╒╌╅╇┸┸╒┪╒┦╒╫╤╫╤╫╤╫╤╫╒╫╫┸┸		
	▗▗▗ [▗] ▗▗ [▗] ▗▗ ▗▗ [▗] ▗▗	
	▀ ▗▘ ▘ ▘▘▘▘▘▘▘▘▘▘▘▘▘▘▘▘▘▘▘	
▔ ▗ ▗▗ ▗ ▗ ▗ ▗ ▗ 		
▗ ▘ ▗ ▘▐▜▗▘▘▘▐▜▜▜▜▜▜	╸┾╸┾╸┼╸╴╹┍┦╓╸╸╻╷┟┆╌╸╌┰┟╁┼╸ ┾┪┾╅┶┆┷┆┷┆┷╁╴	
	▕ ▔ ▐ ▗▐▗▗▃ ▗ ▔ ▐▜▗▜▗▗▃ ▗▃ ▗▃ ▗▃ ▗▃ ▗▃ ▗▃ ▗▃ ▗▃ ▗▃ ▗▃ ▗▃ ▗▃	
	7.5-4-7.7.7.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	
	1 · · · · · · · · · · · · · · · · · · ·	
	# 	
	;	

Fig. 2.-1

Ausbau

2. Dismantling

2. Démontage

2.1. Entfernen des oberen Deckbleches

- 2 Schrauben A an der Rückseite lösen.
- Deckblech hinten anheben und ausfahren.

2.1. Removal of top cover

- Remove two screws (A) from the back of the unit.
- Lift cover plate at the back and remove it towards the rear.

2.1. Dépose de la plaque supérieure

- Dévissez les 2 vis A du panneau arrière.
- Soulevez la plaque à l'arrière et sortez-la.

2.2. Entfernen des unteren Deckbleches

- An der Unterseite 6 Schrauben B
- An der Rückseite 1 Schraube (C) lösen.
- Unteres Deckblech abheben.

2.2. Removal of bottom plate

- Place the unit upside down onto a soft padding.
- Remove six screws B from the bot-
 - Remove screw (C) from the back side.
 - Lift off bottom cover plate.

2.2. Dépose de la plaque du fond

- Sur le fond dévissez 6 vis B
 - Dévissez une vis (C) à l'arrière.
 - Enlevez la plaque du fond.

2.3. Bedienungseinheit ausbauen

- Oberes und unteres Deckbiech ausbauen (Kap. 2.1. und 2.2.).
- Bedienungsknopf vom Eingangswahlschalter INPUT SELECTOR (7) abziehen.
- Von oben (links und rechts aussen)
 2 Befestigungsschrauben lösen.
- Kabelverbindungen von der Bedienungseinheit zum Verstärker lösen (5 Steckverbindungen und 4 AMP-Stecker am Netzschalter).
- Die Bedienungseinheit kann nun nach vorne ausgebaut werden.

2.3. Removal of operating section

- Remove top and bottom covers (see section 2.1, and 2.2.).
- Pull knob INPUT SELECTOR (7) from its shaft.
- From the top side, remove two screws on the left- and right-hand sides.
- Disconnect the cable connections from the operating section to the amplifier (five plug connections and four AMP push-on connections on the power switch).
- The operating section may now be removed towards the front.

2.3. Dépose de l'unité de commande

- Déposez les plaques supérieure et inférieure (voir 2.1. et 2.2.).
- Retirez le bouton du sélecteur d'entrée
 INPUT SELECTOR (7).
- Dévissez par le haut (à l'extrémité gauche et droite) les 2 vis de fixation.
- Déconnectez les liaisons entre l'unité de commande et l'amplificateur (5 raccords enfichables, et 4 fiches AMP sur l'interrupteur secteur).
- L'unité de commande peut être retirée par l'avant.

2.4. Frontplatte ausbauen

- Bedienungseinheit ausbauen (Kap. 2.3.).
- 7 Bedienungsknöpfe auf der Bedienungseinheit abziehen.
- An den seitlichen Zierleisten je
 2 Schrauben lösen. Zierleisten und Abdeckklappe entfernen.
- Frontplatte vorsichtig über die Kippschalter und Drucktasten abheben.

2.4. Removal of front panel

- Remove operating section as per 2.3.
- On the operating section, pull seven control knobs from their shafts.
- Loosen two screws on the left-hand and right-hand style strips and remove style strips together with the flap.
- Carefully lift the front panel away from the toggle switches and push buttons.

2.4. Dépose de la plaque frontale

- Déposez l'unité de commande (voir 2.3.).
- Retirez les 7 boutons de l'unité de commande.
- Dévissez les 2 vis de chaque montant.
 Déposez les montants et le cache escamotable.
- Déposez la plaque frontale en prenant soin des commutateurs à bascule et des touches.

2.5. Endstufe ausbauen

- Oberes und unteres Deckblech ausbauen (Kap. 2.1. und 2.2.).
- Von der Unterseite 2 Befestigungsschrauben lösen
- Auf dem Endstufenprint 4 Schraubklemmen (MK II, 3 AMP-Stecker) lösen, 2 AMP-Stecker und 1 Steckverbindung ausziehen.
- Die Endstufe nach oben ausfahren.

2.5. Removal of power stage

- Remove top and bottom covers as per section 2.1, and 2.2.
- Remove two mounting screws from the underside.
- Undo four screw clamps (3 AMP terminals in MK II version) on the power amplifier board, disconnect two AMP push-on terminals and one plug connection.
- Take out the power stage towards the top.

2.5. Dépose de l'étage de puissance

- Déposez les plaques supérieure et inférieure (voir 2.1. et 2.2.).
- D'en bas, dévissez les 2 vis de fixation.
- Desserrez les 4 éléments de blocage de l'étage de puissance (MK II: 3 fiches AMP), retirez les 2 fiches AMP et 1 raccord enfichable.
- Sortez l'étage de puissance par le haut.

2.6. / Netzsicherung auswechseln

- Netzstecker ziehen.
- Bajonettverschluss an der Rückseite öffnen.
- Defekte Sicherung auswechseln.

2.6. Replacement of main fuse

- Disconnect amplifier from the electric current supply.
- Remove twist-lock cap from the fuse holder.
- Replace defective fuse.

2.6. Remplacement du fusible secteur

- Retirez la fiche secteur.
- Ouvrez le raccord à baïonnette, à l'arrière.
- Remplacez le fusible défectueux.

2.7. Netzteilsicherung auswechseln

- Netzstecker ziehen.
- Auf dem unteren Deckblech 2 Schrauben am kleinen rechteckigen Deckel lösen.
- Defekte Netzteilsicherung auswechseln.

2.7. Replacement of power supply fuses

- Disconnect amplifier from the electric current supply.
- Remove two screws from the small rectangular cover on the bottom plate.
- Locate and replace defective fuse.

2.7. Remplacement du fusible d'alimentation

- Retirez la fiche secteur.
- Dévissez les 2 vis du petit couvercle rectangulaire se trouvant sur la plaque inférieure.
- Remplacez le fusible d'alimentation défectueux.

J To the second

3. Funktionsbeschreibung

(Siehe Blockschaltbild, Seite 6-3)

Mit dem Eingangswahl-Schalter können die Eingänge AUX 1, TUNER, PHONO 1, PHONO 2/AUX 2 angewählt werden. Die fixen Tonband-Eingänge TAPE 1 und TAPE 2 (CINCH und DIN) sind mit den Monitor-Tasten anschaltbar. Der Eingang PHONO 1 wird mit einer umschaltbaren Abschlussimpedanz optimal an das angeschlossene Tonabnehmersystem angepasst (25/50/100 kOhm). Der Eingang PHONO 2/AUX 2 ist fest mit 50 kOhm abgeschlossen.

Hinweis

Umbau Eingang PHONO 2 in AUX 2. (Gültig für Geräte Nr. 5001 ... 8500.) Print Preamp. PHONO 2, 1.178.125 austauschen gegen Blindprint 1.178.126.

Hinweis:

Umbau Eingang AUX 2 in PHONO 2. (Gültig ab Geräte Nr. 8501, MK II.) Blindprint 1.178.126 austauschen gegen Print Preamp. PHONO 2, 1.178.125.

In den anderen Eingangspfaden (AUX 1, TUNER, TAPE 1, TAPE 2) garantieren Impedanzwandler für richtige Anpassung.

Die Tonband-Kopiertaste ermöglicht das Überspielen in beiden Richtungen ohne Beeinflussung der Verstärker-Funktion. Mit den Monitortasten ist gleichzeitig die Kontrollmöglichkeit des Überspielvorganges gegeben.

Der Abschwächer senkt den Lautstärkepegel um 20 dB bei aktivierter Leise-Taste. Die Lautstärkeregelung erfolgt mit dem Regler VOLUME CONTROL. Der LOUDNESS-Schalter ermöglicht die gehörrichtige Korrektur der Lautstärkeregelung. Der Betriebsarten-Schalter gibt die gewünschte Wiedergabeart an den Vorverstärker- und Endstufen-Ausgang. Mit dem Balance-Regler ist eine Balance-Korrektur von —9 dB ... + 3 dB möglich.

Die Höhen- und Tiefenfilter mit den Grenzfrequenzen 8 kHz bzw. 50 Hz sind mit den Schaltern HIGH und LOW schaltbar. Die Klangregel-Netzwerke für Tiefen, Höhen und Präsenz beeinflussen das Klangbild der Wiedergabe in 2 dB-Schritten (Bereich ± 8 dB). Die Überbrückung der Klangregel-Netzwerke und somit eine Wiedergabe mit linearem Frequenzgang ergibt sich bei gedrückter Lineartaste.

Circuit description

(See blockdiagram, page 6-3)

The INPUT SELECTOR permits the selection of the following inputs: AUX 1, TUNER, PHONO 1 and PHONO 2/AUX 2. The inputs TAPE 1 and TAPE 2 (phono or DIN sockets) are selected by means of the monitor buttons. For the input PHONO 1 three different input impedances (25/50/100 kohms) may be selected for optimum matching of pick-up cartridges. The input PHONO 2/AUX 2 presents a 50 kohms terminating impedance.

Note:

To change input PHONO 2 into AUX 2 (valid for serial numbers 5001 ... 8500) replace preamplifier PHONO 2 1.178.125 with dummy insert 1.178.126.

Note:

To change input AUX 2 into PHONO 2 (valid from serial number 8501 onward) replace dummy insert 1.178.126 with preamplifier PHONO 2 1.178.125.

Correct matching for the other inputs (AUX, TUNER, TAPE 1, TAPE 2) is ensured by separate impedance transforming stages in each signal path.

The push button TAPE COPY makes transfer operations in either direction possible without interfering with any of the other amplifier functions. While in progress, a transfer operation may be checked by operating the respective monitor button.

A fixed attenuator lowers the volume by 20 dB when pressing the button LEVEL –20 dB. The switch LOUDNESS activates a frequency discriminating RC-network, which effects automatic loudness compensation by altering the amplifier's frequency response depending on the setting of the VOLUME CONTROL. The mode selector determines the manner in which the signal will be passed on to the preamplifier and power stages. The BAL-ANCE CONTROL permits corrections in the stereo balance from $-9 \text{ dB} \dots + 3 \text{ dB}$.

The high and low frequency filters, with their cut-off points at 8 kHz and 50 Hz respectively, may be brought into circuit by means of the switches HIGH and LOW. The tone control networks for bass, treble and presence correction operate in 2 dB steps over a total range of

3. Description des fonctions

(Voir schéma bloc, page 6-3)

Le sélecteur d'entrée permet de sélectionner l'une des entrées AUX 1, TUNER, PHONO 1, PHONO 2/AUX 2. Les entrées magnétophone fixes TAPE 1 et TAPE 2 (CINCH et DIN) sont commutables par les touches moniteur. L'entrée PHONO 1 s'adapte de façon optimale au phonocapteur grâce à une impédance terminale commutable (25/50/100 kohms). L'entrée PHONO 2/AUX 2 est chargée par une impédance fixe de 50 kohms.

Remarque:

Transformation entrée PHONO 2 en AUX 2. (Valable pour les appareils allant du numéro 5001 ... 8500.) Remplacez la plaquette préampli PHONO 2, 1.178.125 par la plaquette de substitution 1.178.126.

Remarque:

Transformation entrée AUX 2 en PHONO 2. (Valable pour les appareils à partir du numéro 8501, MK II.) Remplacez la plaquette de substitution 1.178.126 par une plaquette préampli PHONO 2, 1.178.125.

Des adaptateurs d'impédance garantissent l'adaptation optimale aux autres circuits d'entrée (AUX 1, TUNER, TAPE 1, TAPE 2).

La touche de duplication de bande permet de copier un enregistrement dans les deux sens sans influencer la fonction d'amplification. La touche moniteur permet également de contrôler la procédure de copie d'un enregistrement.

L'atténuateur abaisse le niveau du volume de 20 dB lorsqu'on presse sur la touche d'atténuation. Le réglage de la puissance sonore s'effectue au moyen du potentiomètre VOL-UME CONTROL. Le commutateur LOUDNESS permet une correction physiologique du réglage de la puissance sonore. Le sélecteur de mode d'opération transmet le genre de reproduction désiré à la sortie préamplificateur et étage de puissance. Le régulateur de balance permet de corriger la balance entre —9 ... + 3 dB.

Les filtres aigus et graves avec les fréquences limites de 8 kHz et de 50 kHz sont commutables au moyen des commutateurs HIGH et LOW. Les circuits pour le réglage de tonalité des graves, des aigus et de présence influencent la reproduction par pas de 2 dB (plage $\pm\,8$ dB). En appuyant sur la touche "linéarité", l'on court-circuite les circuits pour le réglage de

Der Schiebeschalter PRE-PWR AMP MODE trennt auf Stellung SEPARATED die Vorverstärker und die Endstufe. Damit besteht die Möglichkeit, einen Entzerrer einzuschlaufen. Auf Stellung NORMAL gelangt das Vorverstärker-Signal direkt auf die Endstufe. Diese besitzt eine festeingestellte Verstärkung von 25 dB. Eine aufwendige Begrenzerschaltung verhindert den Betrieb der Endtransistoren ausserhalb des erlaubten Bereiches der Verlustleistungshyperbel. Das Ausgangssignal der Endstufe steht an den rückseitigen Lautsprecheranschlüssen sowie an den Jack-Buchsen auf der Frontseite zur Verfügung.

Der Endstufenteil wird durch zusätzliche Schutzschaltungen überwacht:

The performance of the power stages is

Protection thermique:

Les températures de service des transistors de sortie sont mesurées. En cas d'échauffement excessif (95°C), la logique de surveillance excite les relais de coupure, supprimant ainsi la tension aux bornes de sortie. Ces relais réenclenchent les sorties lorsque la température redescend à env.

Protection des haut-parleurs:

S'il se produit une tension > 5 V (de fréquence < 5 Hz) à la sortie de l'étage de puissance, les relais de coupure entrent en action. Les hautparleurs sont donc protégés contre toute sur-

Temperatuschutz:

Die Betriebstemperaturen der Endstransitoren werden gemessen. Bei übermässiger Erwärmung (ca. 95°C) steuert die Überwachungs-Logik die Trenn-Relais, welche die Ausgänge spannungsfrei schalten. Bei Abkühlung der Endstufen auf ca. 80 ° C schalten die Trenn-Relais wieder ein.

Lautsprecherschutz:

Tritt am Verstärker-Ausgang eine Spannung von >5 V (Frequenz: <5 Hz) auf, so werden ebenfalls die Trenn-Relais aktiviert. Die angeschlossenen Lautsprechersysteme sind somit gegen Überlastung geschützt.

±8 dB. By pressing the button LINEAR, the tone control networks are bypassed and the amplifier operates with a linear frequency

In position SEPARATED the slide switch PRE-PWR AMP MODE breakes the signal path between preamplifier and power amplifier, thereby making it possible to loop an equalizer or other auxiliary equipment into the circuit. In position NORMAL, the signal is fed directly into the power amplifier, which has a fixed gain of 25 dB. An elaborate control circuit protects the output transistors from being operated beyond their maximum power dissipation rating. The output signal is available at the speaker terminals on the amplifier's back and at the phone jacks on the front panel.

continuously monitored by additional protection circuits.

Thermal protection:

If the temperature of the power transistors rises beyond approximately 95° C, the control circuits will activate the cut-off relays, thereby disconnecting the outputs. After having cooled off to 80° C, the relays will reconnect the outputs again.

Loudspeaker protection:

If a voltage or signal condition develops across the speaker outputs which exceeds the limits of > 5 V and < 5 Hz, the cut-off relays become activated as well. Connected 'loudspeaker systems are protected from dangerous overloads in this manner.

tonalité et l'on obtient une reproduction à courbe de réponse linéaire.

En position SEPARATED, le commutateur PRE-PWR AMP MODE sépare le préamplificateur de l'étage de puissance. D'où la possibilité d'y intercaler un circuit correcteur. En position NORMAL, le signal de sortie du préampli est envoyé directement à l'étage de puissance. Celui-ci a un gain fixe de 25 dB. Un montage limiteur complexe empêche tout fonctionnnement des transistors de puissance en dehors de la zone de dissipation maximum de puissance. Le signal de sortie de l'étage de puissance se trouve aux bornes arrière haut-parleur ainsi qu'aux prises Jack sur la plaque frontale.

L'étage de puissance est protégé par les circuits suivants:

The second second

4. Abgleichanleitung

4. Electrical adjustments

Procédure de réglage

4.1. Messgeräte

Für fachgerechte Abgleich- und Kontrollarbeiten sind folgende Messgeräte erforderlich:

- VF-Generator
- Oszilloskop
- VF-Voltmeter
- Universalinstrument
- Regel-Transformator (Variac)
- Wattmeter (min. 2 x 100 W)
- Klirrfaktor-Messgerät

4.1. Test equipment

The following test equipment is required for accurate alignment of the amplifier:

- Audio generator
- Oscilloscope
- Audio voltmeter
- Multimeter
- Variable mains transformer (Variac)
- Audio wattmeter (min. 2 x 100 W)
- Distortionmeter

4.1. Appareils de mesure

Liste des appareils de mesure indispensables pour les travaux de réglage et de contrôle:

- Générateur BF
- Oscilloscope
- Voltmètre BF
- Multimètre
- Transformateur variable (Variac)
 - Wattmètre (min. 2 x 100 W)
- Distorsiomètre

4.2. Kontrolle der Speisespannungen

- Gerät einschalten.
- Mit Universal-Instrument auf dem Sicherungsprint 1.178.130 die stabilisierten Speisespannungen kontrollieren.

MKI	MKII	
± 20 V	± 20 V	±5%
± 40 V	± 48 V	± 5 %

 Auf dem Endverstärkerprint 1.178.100
 (101) die unstabilisierten Speisespannungen kontrollieren.

MKI	MKII
± 38 V	± 56 \

Dieser Spannungswert ist nur dann verbindlich, wenn die vorhandene Netzspannung mit der Angabe des Spannungswählers auf der Rückseite des Gerätes übereinstimmt.

4.2. Checking the supply voltages

- Connect power cord to the electrical current supply and switch the amplifier on.
- Using the multimeter, check the following stabilized voltages on the fuse board 1.178,130.

MKI	MKII	
± 20 V	± 20 V	±5%
± 40 V	± 48 V	± 5 %

 Check the unregulated supply voltage on the power amplifier board 1.178.100(101).

MKI	MKII
+ 38 V	+ 56 \

This voltage will be obtained only if the actual mains voltage corresponds with the nominal value as selected by the voltage selector.

4.2. Contrôle des tensions d'alimentation

- Mettez l'appareil sous tension.
- A l'aide du multimètre, contrôlez les tensions d'alimentation stabilisées sur la plaquette fusible 1.178.130.

MKI	MKII	
± 20 V	± 20 V	±5%
± 40 V	± 48 V	± 5 %

Contrôlez les tensions d'alimentation non stabilisées sur la plaquette étage de puissance 1.178.100(101).

> MK I MK II ± 38 V ± 56 V

Ces indications ne sont valables que si la tension secteur appliquée coïncide avec celle du sélecteur de tension se trouvant à l'arrière de l'appareil.

4.3. Ruhestrom-Einstellung (unbelastet)

- Gerät einschalten, kein Eingangssignal (warten bis Gerät betriebswarm ist).
- Voltmeter über R3 auf dem Endverstärkerprint 1.178.100(101) anschliessen.
- Mit Potentiometer R28 eine Spannung von 7 mV einstellen.

4.3. Adjustment of quiescent current (no load)

- Amplifier switched on, no input signal.
- Connect voltmeter across R3 on the power amplifier board 1.178.100(101).
- After the amplifier has reached operating temperature, adjust trimpot R28 to obtain a voltage reading of 7 mV.

4.3. Réglage du courant de repos (sans charge)

- Mettez l'appareil sous tension, n'appliquez aucun signal à l'entrée. (Attendez que l'appareil ait atteint sa température de service.)
- Branchez le voltmètre sur R3 de l'étage de puissance 1.178.100(101).
 - Réglez le potentiomètre R28 de façon à

Fig. 4.4.-1

Die Spannung über dem Widerstand R6 messen. Diese Spannung soll innerhalb 7 mV ± 20 % liegen.

Abgleich der Offset-Spannung:

(Gerät betriebswarm)

- Voltmeter am Ausgang des Endverstärkerprints 1.178.100(101) anschliessen.
- Mit Potentiometer R26 eine Spannung von 0 V ± 10 mV einstellen.

Primärstrom-Messung:

Stromaufnahme bei unbelasteten Ausgängen und 220 V Netzspannung: 180 ...
 190 mA.

Measure voltage across R6.

Fig. 4.4.-2

A value of 7 mV ± 20 % should again be read.

Adjustment of offset voltage

(Amplifier at operating temperature)

- Connect voltmeter to the output of the power amplifier board 1.178.100(101).
- Adjust trimpot R26 to obtain a voltage reading of 0 V \pm 10 mV.

Current consumption

— The current through the mains transformer's primary at 220 V AC and with no load connected to the amplifier's outputs should read: 180 ... 190 mA.

obtenir une tension de 7 mV.

- Mesurez la tension aux bornes de la résistance R6. Elle doit être de 7 mV \pm 20 %.

Réglage de la tension Offset:

(Appareil à la température de service)

- Branchez le voltmètre à la sortie de l'étage de puissance 1.178.100(101).
- Réglez le potentiomètre R26 de façon à obtenir une tension de 0 V \pm 10 mV.

Mesure du courant primaire:

 $-\,$ Pour des sorties non chargées et une tension de secteur de 220 V, le courant consommé doit être compris entre 180 ... 190 mV.

4.4. Kontrolle der Endstufen-Schutzschaltung

Hinweis:

Zur Messung muss ein erdfreies Oszilloskop benutzt werden.

- Oszilloskop auf X-Y Betrieb schalten.
- Strahl in Bildschirmmitte positionieren.
 Die Messung muss pro Kanal an <u>beiden</u> Endstufentransistoren durchgeführt werden. Die Angaben in Klammern () beziehen sich auf die NPN-Transistoren.
- Gemeinsame Masse des Oszilloskop am Emitter des PNP (NPN) Leistungstransistors Punkt (A) anschliessen (Fig. 4.4.—1).
- X-Sonde (Horizontalablenkung) ar
 -56 V (+ 56 V), Punkt (B) anschliessen.
- Y-Sonde (Vertikalablenkung) an Punkt C anschliessen (gemeinsamer Punkt der Emitterwiderstände; gilt für beide Messungen).
- Endstufe mit ca. 2000 μ F belasten und eine Frequenz von 10 ... 15 Hz einspeisen. Bei Messung mit STUDER STEREO POWER METER: Stellung SOAR.

Vorsicht:

Leistung von Null aus langsam erhöhen.

Die Schutzkennlinie muss innerhalb des entsprechenden Toleranzbandes (MKI, MKII), gemäss Fig. 4.4.—2 liegen.

4.4. Checking the protection circuit

Note

The oscilloscope required for this test must have a floating input.

- Set oscilloscope to X—Y operation.
- Position trace in the center of the screen. This test must be performed on <u>both</u> output transistors of each channel. The values in parenthesis () refer to the NPN devices.
- Connect the common of the oscilloscope to the emitter of the PNP (NPN) power transistor (point (A), fig. 4.4.-1).
- Connect X-probe (horizontal deflection)
 to -56 V (+ 56 V), point (B).
- Connect Y-probe (vertical deflection) to point (C) (common point of emitter resistors; applies to both measurements).
- Connect a load of approx. 2000 μF to the output and apply a signal of 10 ... 15 Hz to input. When using a STUDER STEREO POWER METER, select position SOAR.

Attention:

Slowly raise power output starting from nil.

The protection characteristic must fall within the respective tolerance limits (MKI, MKII) as shown in fig. 4.4.—2.

1.4. Contrôle du circuit de protection de l'étage de puissance

Remarque:

Pour la mesure, il faut un oscilloscope non mis à la terre.

- Commutez l'oscilloscope sur service X-Y.
- Centrez le faisceau au milieu de l'écran.
 La mesure doit s'effectuer pour chaque canal aux <u>deux</u> transistors de puissance. Les chiffres entre parenthèses () sont valables pour les transistors NPN.
- Branchez la masse commune de l'oscilloscope à l'émetteur du transistor de puissance PNP (NPN), point (A) (fig. 4.4.—1).
- Branchez la sonde X (balayage horizontal) à -56 V (+ 56 V), point (B).
- Branchez la sonde Y (balayage vertical) au point (c) (point commun des résistances d'émetteur; ceci vaut pour les 2 mesures).
- Chargez l'étage de puissance avec un condensateur de 2000 μF env. et injectez un signal d'une fréquence de 10 ... 15 Hz. Si pour la mesure vous utilisez un STUDER STEREO POWER METER: prenez la position SOAR.

Attention:

En partant de zéro, augmenter doucement la puissance.

La caractéristique de protection doit se situer à l'intérieur de la bande de tolérance correspondante (MK I, MK II) selon fig. 4.4.—2.

Fig. 4.5.-1

4.5. Pegelkontrollen

Ausgang belastet mit 4 Ohm (MK II, 8 Ohm)

— Bedienungselemente gemäss Fig. 4.5.—1 einstellen.

Kontrolle Lautstärkeabsenkung -20 dB:

- Voltmeter an Lautsprecher-Ausgang A (43) oder B (42) anschliessen.

- NF-Generator an Eingang PHONO 1 (33) anschliessen.

Pegel: 5 mV

Frequenz: 1 kHz

- Mit Regler PHONO SENSITIVITY (22) auf eine Ausgangsspannung von 15,5 + 1/-0 V (MK II, 24,5 + 1/-0 V) einstellen (0 dB).

- Taste LEVEL $-20~\mathrm{dB}$ 3 drücken. Anzeige am Ausgang muss $-20~\mathrm{dB} \pm 0.5~\mathrm{dB}$ betragen.

PHONO-Frequenzgang-Abgleich:

(nur gültig bis Gerät Nr. 5000)

Generatorfrequenz auf 20 Hz einstellen.

Auf Eingangsverstärkerprint 1.178.115
 Abgleich vornehmen: Ausgangspegel auf –3,8 dB einstellen.

R61 für rechten Kanal R69 für linken Kanal

Eingang PHONO 2/AUX 2 auf analoge
 Weise kontrollieren.

Taste LEVEL −20 dB (3) lösen.

4.5. Level checks

Output loaded with 4 ohms (MK II, 8 ohms) — All operating controls adjusted as per fig. 4.5.—1.

Checking the -20 dB level attenuation

- Connect voltmeter to output SPEAK-ERS A (43) or B (42).

- Connect audio generator to input PHONO 1 (33).

Input level: 5 mV Frequency: 1 kHz

Adjust level control PHONO SENSITIVITY (22) to obtain an output voltage of 15.5 V + 1 V/-0 V (MK II, 24.5 V + 1 V/-0 V). Take this as a 0 dB reference.

- Press button LEVEL $-20~{\rm dB}$ (3). Voltage reading at the amplifier's output must drop by 20 dB \pm 0.5 dB.

Alignment of PHONO frequency response:

(applies to serial numbers up to 5000)

Set generator frequency to 20 Hz.

— Make the following adjustments on the input amplifier 1.178.115:

Adjust R61 for the right channel Adjust R69 for the left channel to obtain an output level of -3.8 dB.

 Check input PHONO 2/AUX 2 in the same manner.

Disengage button LEVEL -20 dB (3)

4.5. Contrôle des niveaux

Sortie chargée par une résistance de 4 ohms (MKII, 8 ohms).

 Réglez les éléments de commande selon fig. 4.5.–1.

Contrôle de l'atténuation volume -20 dB:

- Branchez le voltmètre à la sortie hautparleur A (43) ou B (42).

- Branchez le générateur BF à l'entrée PHONO 1 33.

Niveau: 5 mV

Fréquence: 1 kHz

- Ajustez la tension de sortie à 15,5 \pm 1/-0 V (MK II: 24,5 \pm 1/-0 V) (0 dB) au moyen du réglage PHONO SENSITIVITY $\boxed{22}$.

- Pressez la touche LEVEL -20 dB 3. La valeur lue à la sortie doit être de $-20 \pm 0.5 \text{ dB}$.

Réglage de la courbe de fréquence PHONO:

(Valable seulement pour appareils jusqu'au numéro 5000)

 Placez le générateur de fréquence sur 20 Hz.

 Procédez au réglage sur la plaquette de l'amplificateur d'entrée 1.178.115:

Réglez le niveau de sortie à -3,8 dB R61 pour le canal droit

R69 pour le canal gauche

 Contrôlez de façon analogue l'entrée PHONO 2/AUX 2.

Libérez la touche LEVEL –20 dB (3)

Pegelverhältnisse

Nominal levels

Rapports de niveau

INPUT SELECTOR (7)	TAPE 1 (18)	TAPE 2	INPUT 1 kHz	LEVEL mV	SPEAKERS A 43 SPEAKERS B 42 PHONES 16	PUT PRE AMP OUT 40
AUX 1 TUNER PHONO 1 PHONO 2/AUX 2	OFF LOFF LOFF LOFF LOFF LOFF LOFF LOFF	OFF ILL OFF IL	AUX 1 32 TUNER 31 TAPE 1 35 TAPE 2 37 DIN 39 PHONO 1 33 PHONO 2/AUX 2 34 PWR AMP IN 41	200 200 200 200 200 200 5 5	MK I: 15,5 + 1 V MK II: 24,5 + 1 V 24,5 + 1 V	1 \

gültig für Geräte ab Serie-Nummer 5001 valid for amplifiers starting with serial nr. 5001 valable pour appareils à partir du no. de fabrication 5001 00 [00] 00 00 00 00 00

gültig für Geräte bis Serie-Nummer 5000 Valid for amplifiers up to serial nr. 5000 valable pour appareils jusqu'au no, de fabrication 5000

Mit dem Regler PHONO SENSITIVITY den Regelbereich von PHONO 1 (33) kontrollieren (1,5 ... 7 mV).

Check sensitivity range with potentiometer PHONO SENSITIVITY (22) (1.5 ... 7 mV

Contrôlez la plage de réglage PHONO 1 (33), 1,5 ... 7 mV) à l'aide du réglage PHONO SENSITIVITY (22)

Kontrolle der übrigen Ausgänge:

NF-Generator an Eingang AUX 1 (32) anschliessen.

Pegel: 200 mV Frequenz: 1 kHz

- Schalter INPUT SELECTOR (7) auf Position AUX 1.
- An nachstehenden Ausgängen muss folgende Spannung gemessen werden:

(Tasten TAPE 1 (18) und TAPE 2 (19) gelöst)

TAPE 1 (36) 200 mV TAPE 2 (38) 200 mV TAPE 2 OUTPUT (17) 200 mV DIN OUT* (39) 6,5 mV

* 10 kOhm Abschlusswiderstand

Checking the remaining outputs

Connect audio generator to input AUX 1 (32).,

Level: 200 mV

Frequency: 1 kHz

- Turn INPUT SELECTOR (7) to position AUX 1.
- At the outputs listed below the following voltages must be available:

(Buttons TAPE 1 (18) and TAPE 2 (19) disengaged)

> TAPE 1 (36) 200 mV TAPE 2 (38) 200 mV TAPE 2 OUTPUT (17) 200 mV DIN OUT* (39) 6.5 mV

*Terminating resistance 10 kohms

Contrôle des autres sorties:

Branchez le générateur BF sur l'entrée AUX 1 (32)

> Niveau: 200 mV Fréquence: 1 kHz

- Branchez le sélecteur INPUT SELEC-TOR(7) sur la position AUX 1.
- Vous devez obtenir les tensions suivantes aux différentes sorties:

(Touches TAPE 1 (18) et TAPE 2 (19) libérées)

TAPE 1 (36) 200 mV 200 mV TAPE 2 (38) TAPE 2 OUTPUT (17) 200 mV DIN OUT* (39) 6,5 mV *résistance terminale: 10 kohms

Kontrolle TAPE COPY-Funktion:

Voltmeter an Ausgang OUTPUT TAPE 2 (38) anschliessen (L + R).

NF-Generator an Eingang INPUT TAPE 1 (35) anschliessen (L + R).

Pegel: 200 mV Frequenz: 1 kHz

- Taste TAPE COPY (20) drücken.
- Das Voltmeter muss 200 mV anzeigen.
- Inverse Kontrolle analog vornehmen. NF-Generator an INPUT TAPE 2 (37), Voltmeter an OUTPUT TAPE 1 (36).

Checking the TAPE COPY functions:

Connect audio voltmeter to OUTPUT TAPE 2 (38) (L+R).

Connect audio generator to INPUT TAPE 1 (35) (L+R).

Level: 200 mV

Frequency: 1 kHz

- Press button TAPE COPY (20)
- The audio voltmeter must indicate 200 mV.
- Check the opposite transfer path analog to the above. Audio generator connected to IN-PUT TAPE 2 (37). Audio voltmeter connected to OUTPUT TAPE 1 (36)

Contrôle de la fonction TAPE COPY:

- Branchez le voltmètre à la sortie OUT-PUT TAPE 2 (38) (L+R).
- Branchez le générateur BF à l'entrée INPUT TAPE 1 (35) (L+R).

Niveau: 200 mV

Fréquence: 1 kHz

- Pressez la touche TAPE COPY (20).
 - Le voltmètre doit indiquer 200 mV.
- Contrôlez de façon analogue dans le sens inverse. Générateur BF à INPUT TAPE 2 (37) Voltmètre sur OUTPUT TAPE 1 (36).

Fig. 5.1.-1

- 5. Anleitung zur Messung der wichtigsten technischen Daten
- 5. Instructions for measuring the essential performance characteristics
- Notice pour la mesure des principales caractéristiques techniques

5.1. Frequenzgangkontrolle

Ausgang belastet mit 4 Ohm (MK II 8 Ohm), Referenz 1 kHz

- Bedienungselemente gemäss Fig. 5.1.—1 einstellen.
- 5.1. Frequency response

Output loaded with 4 ohms (MKII, 8 ohms), reference 1 kHz

- Operating controls adjusted as per fig.
 5.1.-1.
- 5.1. Contrôle de la courbe de réponse

5.

Sortie chargée par une résistance de 4 ohms (MKII: 8 ohms), référence 1 kHz

 Réglez les éléments de commande selon fig. 5.1.-1.

Hochpegel-Eingänge:

High level inputs:

Entrées à haut niveau:

INPUT SELECTOR (7)	TAPE 1	TAPE 2	INPUT	LEVEL mV	OUTPUT SPEAKERS A (43) SPEAKERS B (42)
AUX 1 TUNER - -	OFF	OFF ILL	AUX 1 32 TUNER 31 TAPE 1 35 TAPE 2 37	200 200 200 200	20 20 000 Hz $\Delta U = \pm 0.5 \text{ dB}$

- Frequenzgang-Kontrolle für linken und rechten Kanal vornehmen.
- Check frequency response of both channels.
- Contrôlez la courbe de réponse des canaux gauche et droit.

PHONO-Eingänge:

- Frequenzgang-Kontrolle der Eingänge PHONO 1 33 und PHONO 2/AUX 2 34 für linken und rechten Kanal vornehmen.
- Schalter INPUT SELECTOR 7 auf entsprechende Position schalten.
- NF-Generator auf 0,5 mV/1 kHz einstellen.
- Voltmeter am Ausgang SPEAKERS A (43) oder B (42) auf 0 dB eichen.
- Frequenzgang bei folgenden Frequenzen kontrollieren:

PHONO inputs:

- Check frequency response of left and right channel through input PHONO 1 33 and input PHONO 2/AUX 2 34.
- Turn INPUT SELECTOR (7) to the corresponding position.
- Adjust audio generator to 0.5 mV/
 1 kHz.
- Check frequency response at the following frequencies:

Entrées PHONO:

- Contrôlez la courbe de réponse des entrées PHONO 1 33 et PHONO 2/AUX 2
 pour le canal gauche et droit.
- Placez le sélecteur INPUT SELECTOR

 7 sur la position correspondante.
- Réglez le générateur BF sur 0,5 mV/ 1 kHz.
- Etalonnez le voltmètre à la sortie SPEAKERS A 43 ou B 42 sur 0 dB.
- Contrôlez la courbe de réponse pour les valeurs suivantes:

Frequency	Relative Output Level	Tolerance
Hz	dB	dB
20 500 1 000 5 000 10 000 20 000	+ 16,3 + 2,6 0 - 8,2 -13,7 -19,6	\right\} \pm 0,5

Fig. 5.1.-2

gültig für Geräte ab Serie-Nummer 5001 valid for amplifiers starting with serial nr. 5001 valable pour appareils à partir du no. de fabrication 5001

gültig für Geräte bis Serie-Nummer 5000 valid for amplifiers up to serial nr. 5000 valable pour appareils jusqu'au no, de fabrication 5000

Klangregler-Kontrolle:

Voltmeter an Ausgang SPEAKERS A oder B (42) anschliessen.

NF-Generator an Eingang AUX 1 (32) anschliessen.

Pegel: 200 mV Frequenz: 1 kHz

Schalter INPUT SELECTOR (7) auf Position AUX 1 schalten. Taste LEVEL -20 dB (3) gedrückt. Ausgang auf 0 dB eichen.

Mit jedem einzelnen Klangregler die Klangcharakteristik in 2 dB-Stufen kontrollieren. Toleranz pro dB-Stufe: ± 0,2 dB.

> Kontrolle BASS (13) bei 120 Hz Kontrolle PRESENCE (14) bei 3000 Hz Kontrolle TREBLE (15) bei 8000 Hz Kontrolle für linken und rechten Kanal

vornehmen.

Filter-Kontrolle:

Alle Klangregler auf Position "O" schalten.

Taste LEVEL -20 dB (3) gedrückt las-

NF-Generator auf 8 kHz/200 mV einstellen, an Eingang AUX 1 (32) anschliessen.

Kippschalter HIGH (10) auf ON. Pegelabsenkung am Ausgang muss 3 dB ± 0,5 dB betragen.

NF-Generator auf 50 Hz/200 mV ein-

Kippschalter LOW (9) auf ON. Pegelabsenkung am Ausgang muss 3 dB ± 0,5 dB be-

Kontrolle für linken und rechten Kanal vornehmen.

LOUDNESS-Kontrolle:

Kippschalter LOW (9) und HIGH (10) auf Position OFF stellen.

Taste LEVEL -20 dB (3) lösen.

NF-Generator auf 1 kHz/200 mV einstellen, an Eingang AUX 1 (32) anschliessen.

Ausgang auf 0 dB eichen (Referenz).

Mit Regler VOLUME (4) den Ausgangspegel um 30 dB absenken.

NF-Generator auf 100 Hz einstellen.

Kippschalter LOUDNESS (12) auf ON stellen (Klangregler auf "0").

Pegel am Ausgang muss auf 6,5 dB, ± 1 dB ansteigen.

Checking the tone controls:

Connect _audio voltmeter to output SPEAKERS A (43) or B (42).

Connect audio generator to input AUX 1 (32)

Level: 200 mV

Frequency: 1 kHz

Turn INPUT SELECTOR (7) to position AUX 1. Press button LEVEL -20 dB (3). Calibrate again to obtain a 0 dB reference deflection on the voltmeter.

Check the 2 dB steps of each tone control at the following frequencies (tolerance per step ± 0.2 dB):

BASS (13) at 120 Hz PRESENCE (14) at 3000 Hz TREBLE (15) at 8000 Hz

Perform the same test on the other channel as well.

Filter response

Switch all tone controls to their "0" position.

Push button LEVEL -20 dB (3) remains depressed.

Set audio generator to 8 kHz/200 mV feeding the AUX 1 input (32)

Move toggle switch HIGH (10) to position ON. Output level must drop by 3dB ± 0.5 dB.

Set audio generator to 50 Hz/200 mV. Move toggle switch LOW (9) to position ON. Output level must drop by 3dB

Perform the same test on the other channel as well.

LOUDNESS filter:

Move the toggle switches LOW (9) and HIGH (10) to their OFF position.

Disengage the push button LEVEL -20 dB (3).

Connect audio generator to AUX 1 (32) and have it set to 1 kHz/200 mV.

Adjust input level to obtain a 0 dB reference deflection on the voltmeter which is connected to read the output level.

Reduce the setting of the VOLUME control (4) to obtain a level reduction of 30 dB.

Set audio generator to 100 Hz.

Contrôle du réglage de tonalité:

Branchez le voltmètre à la sortie SPEAKERS A (43) ou B (42).

Branchez le générateur BF à l'entrée AUX 1 32 .

Niveau: 200 mV

Fréquence: 1 kHz

Commutez le sélecteur INPUT SELEC-TOR (7) en position AUX 1. La touche LEVEL -20 dB (3) doit être pressée. Etalonnez la sortie sur 0 dB.

Contrôlez la tonalité au moyen de chaque régulateur de tonalité par pas de 2 dB. To érance par pas ± 0,2 dB.

Contrôle BASS (13) à 120 Hz Contrôle PRESENCE (14) à 3000 Hz Contrôle TREBLE (15) à 8000 Hz

Procédez au contrôle pour les canaux gauche et droit.

Contrôle des filtres:

Placez tous les régulateurs de tonalité en position "0".

Ne libérez pas la touche LEVEL -20 dB

Réglez le générateur BF sur 8 kHz/ 200 mV, et branchez-le à l'entrée AUX 1 (32)

Placez le commutateur à bascule HIGH (10) sur ON. L'atténuation de niveau à la sortie doit être de 3 ± 0,5 dB.

Réglez le générateur BF sur 50 Hz/ 200 mV.

Placez le commutateur à bascule LOW (9) sur ON. L'atténuation de niveau à la sortie doit être de 3 ± 0,5 dB.

Procédez au contrôle pour les canaux gauche et droit.

Contrôle LOUDNESS:

Placez les commutateurs à bascule LOW (9) et HIGH (10) sur OFF.

Libérez la touche LEVEL -20 dB (3)

Réglez le générateur BF sur 1 kHz/ 200 mV et branchez-le à l'entrée AUX 1 (32)

Etalonnez la sortie sur 0 dB (référence).

Abaissez le niveau de sortie de 30 dB à l'aide du réglage de VOLUME (4).

Réglez le générateur BF sur 100 Hz.

Placez le commutateur à bascule LOUD-NESS (12) sur ON (réglages de tonalité sur "0").

Fig. 5.2.-1

- NF-Generator auf 10 kHz einstellen.
- Pegel am Ausgang muss + 4 dB, ± 1 dB anzeigen.
- Kontrolle für linken und rechten Kanal vornehmen.
- Move toggle switch LOUDNESS (12) to
 ON (tone controls set to "0").
- Output level must increase by $6.5\,\mathrm{dB}$ $\pm\,1\,\mathrm{dB}$.
- Set audio generator to 10 kHz.
- Output level must read + 4 dB ± 1 dB.
- Perform the same test on the other channel as well.
- Le niveau de sortie doit s'élever à 6,5
- Réglez le générateur BF sur 10 kHz.
- Le niveau de sortie doit être de 4 ± 1 dB.
- Procédez au contrôle pour les canaux gauche et droit.

5.2. Klirrfaktor

Ausgang belastet mit 4 Ohm (MKII, 8 Ohm)

- Bedienungselemente gemäss Fig. 5.2.–1 einstellen.
- Klirrfaktor-Messgerät an Ausgang SPEAKERS A 43 oder B 42 anschliessen. - NF-Generator an Eingang AUX 1 32 anschliessen.

Pegel: 200 mV

Frequenz: 20 Hz/1 kHz/20 kHz

- Klirrfaktor bei den drei erwähnten Frequenzen messen (MKI: $\leq 0.2 \%$ MKII: $\leq 0.1 \%$).
- Mit Regler VOLUME 4 den Ausgangspegel um 30 dB absenken und den Klirrfaktor messen.
- Oszilloskop an den Ausgang des Klirrfaktor-Messgerätes anschliessen. Auf dem Schirm dürfen keine Übernahme-Verzerrungen sichtbar sein. Bei vorhandenen Verzerrungen sind die Ruheströme der Leistungstransistoren zu klein. Die Ruhestrom-Einstellung (Kap. 4.3.) ist zu überprüfen.

5.2. Harmonic distortion

Output loaded with 4 ohms (MKII, 8 ohms)

- Adjust all operating controls as per fig. 5.2.—1.
- Connect distortion meter to output SPEAKER A (43) or B (42).
- Connect audio generator to input
 AUX 1 (32).

Level: 200 mV

Frequencies: 20 Hz/1 kHz/20 kHz

- Measure total harmonic distortion at the three above-mentioned frequencies (MK I: $\leq 0.2 \% MK II: \leq 0.1 \%$).
- Reduce the setting of the VOLUME CONTROL $\stackrel{\frown}{4}$ to obtain an output level reduction of 30 dB. Measure distortion at the reduced level.
- Connect oscilloscope to the output of the distortion meter. There must be no sign of crossover distortion visible on the scope trace. If crossover distortion is visible, the quiescent currents in the power transistors are too low. Check and if necessary, readjust the quiescent current as per section 4.3.

5.2. Taux de distorsion

Sortie chargée par une résistance de 4 ohms (MK II, 8 ohms)

- Réglez les éléments de commande selon fig. 5.2.-1.
- Branchez le distorsiomètre à la sortie SPEAKERS A (43) ou B (42).
- Branchez le générateur BF à l'entrée AUX 1 (32).

Niveau: 200 mV

Fréquences: 20 Hz/1 kHz/20 kHz

- Mesurez le taux de distorsion pour les trois fréquences précédentes (MKI: $\leq 0.2\%$; MKII: $\leq 0.1\%$).
- Abaissez le niveau de sortie de 30 dB à l'aide du réglage de VOLUME 4 et mesurez le taux de distorsion.
- Branchez l'oscilloscope à la sortie du distorsiomètre. Aucune distorsion de transfert ne doit apparaître sur l'écran. Si tel était le cas, les courants de repos des transistors de puissance seraient trop faibles. Revoyez alors le réglage du courant de repos (voir 4.3.).

Fig. 5.3.—1

gültig für Geräte ab Serie-Nummer 5001 valid for amplifiers starting with serial nr. 5001 valable pour appareils à partir du no. de fabrication 5001

gültig für Geräte bis Serie-Nummer 5000 valid for amplifiers up to serial nr. 5000 valable pour appareils jusqu'au no, de fabrication 5000

5.3. Fremdspannungs-Abstand

- Bedienungselemente gemäss Fig. 5.2.–1 einstellen.
- Voltmeter an Ausgang SPEAKERS A
 (43) oder B (42) anschliessen.
- NF-Generator an Eingang AUX 1 (32) anschliessen,

Pegel: 200 mV Frequenz: 1 kHz

- Ausgang auf 0 dB eichen.
- Alle Hochpegel-Eingänge mit 10 kOhm abschliessen. NF-Generator abschalten.
- Der Fremdspannungs-Abstand (20 Hz ...
 20 kHz) muss grösser als 90 dB sein.
- Messungen für alle Eingänge sowie linken und rechten Kanal vornehmen. Der Fremdspannungs-Abstand der PHONO-Eingänge muss grösser als 70 dB sein.

5.3. Signal to noise ratio (unweighted)

- Adjust all operating controls as per fig.
 5.2.–1.
- Connect audio voltmeter to output SPEAKERS A (43) or B (42).
- Connect audio generator to input AUX 1, (32).

Level: 200 mV

Frequency: 1 kHz

- Adjust input level to obtain a 0 dB reference on the voltmeter.
- Terminate all high level inputs with 10 kohms. Switch off the audio generator.
- $-\,$ The unweighted signal to noise ratio in the band from 20 ... 20 000 Hz must read 90 dB at least.
- Repeat this measurement on all inputs and on both channels. The signal to noise ratio of the PHONO inputs must exceed 70 dB.

5.3. Recul du bruit de fond

- $-\,$ Reglez les éléments de commande selon fig. 5.2.-1.
- Branchez le voltmètre à la sortie SPEAKERS A (43) ou B (42).
- Branchez le générateur à l'entrée AUX 1
 32).

Niveau: 200 mV

Fréquence: 1 kHz

- Etalonnez la sortie sur 0 dB.
- Chargez toutes les entrées à haut niveau par 10 kohms. Débranchez le générateur BF.
- Le recul du bruit de fond (20 Hz ...
 20 kHz) doit dépasser 90 dB.
- Effectuez les mesures à toutes les entrées pour les canaux gauche et droit. Le recul du bruit de fond des entrées PHONO doit dépasser 70 dB.

5.4. Übersprechdämpfung

- Bedienungselemente gemäss Fig. 5.2.–1 einstellen.
- Voltmeter an <u>linken</u> Ausgang SPEAK-ERS A 43)oder B 42) anschliessen.

NF-Generator an <u>linken</u> Eingang AUX 1 (32) anschliessen.

Pegel: 200 mV

Frequenz: 1 kHz
Ausgang auf 0 dB eichen.

- NF-Generator auf rechten Eingang
 AUX 1 32 umstecken. Linken Eingang
 AUX 1 32 mit 10 kOhm abschliessen.
- Übersprechdämpfung bei 1 kHz messen
 66 dB).
- Analog die Übersprechdämpfung LEFT
 → RIGHT messen.
- Übersprechdämpfung der PHONO-Eingänge messen. Am zu messenden Kanal muss der Eingang mit 2,2 kOhm abgeschlossen werden. Übersprechdämpfung > 60 dB.
- Eventuell Übersprechdämpfung auch bei 40 Hz und 10 kHz messen.

5.4. Channel separation

- Adjust all operating controls as per fig.
- Connect audio voltmeter to the <u>left</u> channel output SPEAKERS A (43) or B (42).
- Connect audio generator to the <u>left</u> channel input AUX 1 (32).

Level: 200 mV

Frequency: 1 kHz

- Adjust input level to obtain a 0 dB reference on the voltmeter.
- Move the connection of the audio generator to the right channel input AUX 1 (32) and terminate left channel input AUX 1 (32) with 10 kohms.
- $\,$ Measure channel separation (crosstalk) at 1 kHz. The reading obtained must exceed 66 dB.
- Analog to the above, measure crosstalk from LEFT to RIGHT.
- $-\,$ Measure the channel separation of the PHONO INPUTS. The input of the "no signal" channel must be terminated with 2.2 kohms. Crosstalk $>60~\mathrm{dB}.$
- $-\,$ $\,$ If of interest, repeat the above measurements at the frequencies of 40 Hz and 10 kHz.

5.4. Affaiblissement de la diaphonie

- Réglez les éléments de commande selon fig. 5.2.-1.
- Branchez le voltmètre à la sortie gauche SPEAKERS A (43) ou B (42).
- Branchez le générateur à l'entrée gauche AUX 1 (32).

Niveau: 200 mV

Fréquence: 1 kHz

- Etalonnez la sortie sur 0 dB.
- Branchez maintenant le générateur BF à l'entrée droite AUX 1 (32). Chargez l'entrée gauche AUX 1 (32) par 10 kohms.
- Mesurez l'affaiblissement de la diaphonie à 1 kHz (> 66 dB).
- Mesurez de façon analogue l'affaiblissement de la diaphonie LEFT → RIGHT.
- Mesurez l'affaiblissement de la diaphonie des entrées PHONO. L'entrée du canal à mesurer doit être chargée par 2,2 kohms.
 Affaiblissement de la diaphonie > 60 dB.
- Mesurez év. l'affaiblissement de la diaphonie à 40 Hz et 10 kHz.

INHALTSVERZEICHNIS SCHALTUNGSSAMMLUNG CONTENTS SET OF SCHEMATICS REPERTOIRE RECUEIL DE SCHEMAS

Bezeichnung	Seite	Description	Page	Désignation	Page
Blockdiagramm B750	6–3	Block diagram B750	6–3	Schéma bloc B750	6-3
Stromversorgungseinheit MK	6–5	Power supply unit MK I	6–5	Unité d'alimentation MK I	6-5
Netztransformator 1,178,140		Mains transformer 1.178.140		Transformateur secteur 1.178.140	
Sicherungsplatine (A) 1.178.130		Fuse board (A) 1.178.130		Plaquette des fusibles (A) 1.178.130	
Stromversorgung 1.178.135		Power supply 1.178.135		Alimentation 1.178.135	
Stromversorgungseinheit MK II	6-7	Power supply unit MK II	6-7	Unité d'alimentation MK II	6—7
Netztransformator 1.178.145		Mains transformer 1.178.145		Transformateur secteur 1.178.145	
Sicherungsplatine (A) 1.178.130		Fuse board (A) 1.178.130		Plaquette des fusibles (A) 1.178.130	
Stromversorgung 1.178.136		Power supply 1.178.136		Alimentation 1.178.136	
Eingangseinheit ED 1	6–9	Input unit ED 1	6-9	Unité d'entrée ED 1	6-9
Eingangsplatine (B) 1.178.120		Input board (B) 1.178.120		Plaquette d'entrée (B) 1.178.120	
Eingangsverstärker 1.178.115		Input amplifier 1.178.115		Amplificateur d'entrée 1.178.115	
Impedanzplatine (C) 1.178.226		Impedance board (C) 1.178.226		Plaquette d'impédance (C) 1.178.226	
Eingangseinheit ED 2	6–13	Input unit ED 2	6–13	Unité d'entrée ED 2	6-13
Eingangsplatine (B) 1.178.122		Input board (B) 1.178.122		Plaquette d'entrée (B) 1.178.122	
Eingangsverstärker 1.178.117		Input amplifier 1.178.117		Amplificateur d'entrée 1.178.117	

Impedanzplatine (C) 1.178.226		Impedance board (C) 1.178.226		Plaquette d'impédance 1.178.226	
Phono Verstärker ED 2 (D) 1.178.125	6-17	Phono amplifier ED 2 (D) 1.178.125	6–17	Amplificateur phono ED 2 (D) 1.178.125	6-17
Verbindungsplatine AUX 1.178.126		Dummy board AUX 1.178.126		Plaquette de connexion AUX 1.178.126	
Filter und Balance Verstärker-Einheit	6-22	Filter and balance amplifier unit	6–22	Amplificateurs filtre et balance	6–22
Filter Platine (F) 1.178.201		Filter board (F) 1.178.201		Plaquette des filtres (F) 1.178.201	
Klangregler Platine 1.178.200		Tone control board 1.178.200		Plaque du rég age de tonalité 1.178.200	
Filter Verstärker 1.178.206		Filter amplifier 1.178.206		Amplificateur filtres 1.178.206	
Balance Verstärker 1.178.210		Bal ance amplifier 1.178.210		Amplificateur balance 1.178.210	
Klangregler Einheit	6-23	Tone control unit	6–23	Réglage de tonalité	6-23
Klangregler Platine (G) 1.178.200		Tone control board (G) 1.178.200		Plaquette du réglage de tonalité (G) 1.178.200	
Klangregler Verstärker 1,178.216		Tone control amplifier 1.178.216		Amplificateur du réglage de tonalité 1.178.216	
Tape monitor Platine (E) 1.178.221	6–27	Tape monitor board (E) 1.178.221	6—27	Plaquette tape monitor (E) 1.178.221	6-27
Schutzschaltung (H) 1.178.110	6–29	Protection circuit (H) 1.178.110	6–29	Circuit de protection (H) 1.178.110	6–29
Leistungsverstärker Einheit MK I 1.178.100	6–31	Power amplifier unit	6–31	Unité amplificatrice de puissance MK 1 1.178.100	6–31
Leistungsverstärker Platine (I) 1.178.105		Power amplifier board (I) 1.178.105		Amplificateur de puissance (I) 1.178.105	
Leistungsverstärker Einheit MK II 1.178.101	6–35	Power amplifier unit	6–35	Unité amplificatrice de puissance MK II 1.178.101	6–35
Leistungsverstärker Platine (I) 1.178.106		Power amplifier board (I) 1.178.106		Amplificateur de puissance (I) 1.178.106	

Notizen	Notes	Notes	
	<u> </u>		
	. ,,,,,		

STUDER REVOX	B 750
BLOCK DIAGRAM ED 1	

gültig für Geräte ab Serie-Nummer 5001 valid for amplifiers starting with serial nr. 5001 valable pour appareils à partir du no. de fabrication 5001

gültig für Geräte bis Serie-Nummer 5000 valid for amplifiers up to serial nr. 5000 valable pour appareils jusqu'au no. de fabrication 5000

STUDER REVOX	B 750
BLOCK DIAGRAM ED 2	

STUDER REVOX	B 750
WIRING DIAGRAM	

gültig für Geräte bis Serie-Nummer 8500 valid for amplifiers up to serial nr. 8500 valable pour appareils jusqu'au no. de fabrication 8500

STUDER REVOX	B 750
POWER SUPPLY UNIT	MK I

MAINS TRANSFORMER 1

1.178.130

1.178.135

IND	POS NO	PART NO	VA	LUE	SPECIFICATIONS/EQUIVALENT	MFR
	F Ol	51.01.0115	0,6	3 AT		
	F 02	51.01.0115	0,6	3 AT		
	F 03	51.01.0115	0,6	3 AT		
	F 04	51.01.0115	0,6	3 AT		
					·	
	FH Ol	53.03.0144	5 *	20	Sockel PRINT	
	FH 02	53.03.0144	5 *	20		
	FH 03	53.03.0144	5 *	20		
	FH 04	53.03.0144	5 *	20		
	J OLA)	54.01.0241	4 -	Pole		
	J 02(B)	54.01.0218	7 -	Pole		
	J 03(C)	54.01.0241	4 -	- Pole		
	J 04(D)	54.01.0218	7 -	- Pole		
IND	DAT	E NAM	E			
4						and the same of th
3						
2						
1						
0						
	STUD	FT	JSE BOARD		1.178.130	PAGE 1 OF 1
					1.170.100	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

ND F	POS NO	PART NO	VALUE	SP	ECIFICATIONS/EQUIVALENT	MFR
	c 01	59.25.5222	22000 µF	40V		
	C 02	59.30.6339	3,3 µF	35V		
	03	59.25.5222	22000 μF	40V		
	C 04	59.31.1104	0,1 μF	100V	20%	
I	D Ol	70.01.0223	В 250	C 800	SI	
I	D 02	50.04.0105	ln 4004			
I	D 03	50.04.0105	ln 4004			
	IC Ol	50.05.0254	79M2OC	_20V	0,5A	
	IC 02	50.05.0242	78M2O	20V		
_						
_						
VD	DAT	E NAME	1			

IND	DATE	NAME			
4					
3					
2					
1					
0	22.9.77	Balidis/gv			
2	STUDER	POWER SU	PPLY BOARD	1.178.135	PAGE 1 OF 1

gültig für Geräte ab Serie-Nummer 8501 valid for amplifiers starting with serial nr. 8501 valable pour appareils à partir du no. de fabrication 8501

STUDER REVOX B 7						
POWER SUPPLY UNIT	MK II					

IND	POS NO		PART NO	VALUE	SPECIF	ICATIONS/EQUIVALENT		MFR
	F Ol	51.0	1.0115	0,63 AT				
	F 02	51.0	1.0115	0,63 AT	<u></u>			
	F 03	51.0	1.0115	0,63 AT				
	F 04	51.0	1.0115	0,63 AT				
	FH Ol	53.0	3.0144	5 * 20	Sockel	PRINT		
	FH 02	53.0	3.0144	5 * 20				
	FH 03	53.0	3.0144	5 * 20				
	FH 04	53.0	3.0144	5 * 20				
	J 01(A)	54.0	1.0241	4 - Pole				
	J 02(B)	***	1.0218	7 - Pole				
	J 03(c)		1.0241	4 - Pole			A	
	J 04(D)		1.0218	7 - Pole				
-								
\vdash								
IND	DAT	E	NAME					
4				_				
3			house bit - gr					,
2								
1				-				
0								
9	STUD	ER	FUSE	BOARD		1.178.130	PAGE 1	OF 1

ND POS NO	PART NO	VALUE	SPECIFICATIONS/EQUIVALENT	MFR
C1-4	59.25.5222	2200 μF	_20% 40V EL	
C5_8	59.30.6339	3,3 μF	_20% 35V TA	
D1,D2	70.01.0223	B250C800	250V 800mA	GI
D3 -6	50.04.0105	ln 4004	Min. 50V 1A 1N 4001	
IC 1	50.05.0266	78MGC Ul	Voltageregulator .5A	F
IC 2	50.05.0254	79 M 20UC	volume galaga and a volume	F,T
IC 3	50.05.0242	78M2OUC		F,T
IC 4	50.05.0242	79MGC U1		F
10 4	50.05.0207	/9MGC 01		-
R Ol	57.39.2612	26,1 k	1% .25W MF	
R 02	57.39.5621	5,62 k		
R 03	57.39.2612	26,1 k		
R 04	57.39.2261	2,26 k		

. .

i i

IND	DATE	NAME			
4			MF = Metallfilm	F = Fairchild	
3			TA = Tantal El = Electrolytic	Gi= General I TI= Texas Ins	
2			1		
1					
0	11.5.78	Ha /gv			
STUDER POWER SUE		POWER SU	PPLY	1.178.136	PAGE 1 OF 1

gültig für Geräte bis Serie-Nummer 5000 valid for amplifiers up to serial nr. 5000 valable pour appareils jusqu'au no. de fabrication 5000

STUDER REVOX	В 750
INPUT UNIT ED 1	

1.178.115

1.178.120

IND POS NO	PART NO	VALUE		SPECIFICATION	S/EQUIVALENT	MFR
J Ol	54.01.0305	5 - Pole	Recep	tical CIS	PARLEL	
R Ol	57.41.4333	33 k	5%	.25W	CSCH	
R 02	57.41.4473	47 k	5%	.25W	CSCH	
R 03	57.41.4105	1 M	5%	.25W	CSCH	
R 04	57.41.4333	33 k	5%	.25W	CSCH	
R 05	57.41.4473	47 k	5%	.25W	CSCH	
R 06	57.41.4105	1 M	5%	.25W	CSCH	
ND DAT	E NAME	1				

IND	DATE	NAME			
4			CSCH = Carbonfilm		
3					
2					
1					
0	22.9.77	Balidis/gv			
STUDER IMPEDANCE		IMPEDANCI	E BOARD	1.178.226	PAGE 1 OF 1

IND POS NO	PART NO	VALUE		SPECIFICATIONS/EQUIVALENT	MFR
C 01	59.32.1151	150 pF	10%	500V	
C 02	59.32.1151	150 pF			
C 03	59.32.1151	150 pF			
C 04	59.32.1151	150 pF			
C 05	59.32.1151	150 pF			
C 06	59.32.1151	150 pF			
C 07	59.32.1151	150 pF			
C 08	59.32.1151	150 pF			
C 09	59.32.1151	150 pF			
C 10	59.32.0101	100 pF	20%	500V	
C 11	59.32.1151	150 pF	10%		
C 12	59.32.0101	100 pF	20%		
R Ol	57.41.4222	2,2 k	5%	.25W CSCH	
R 02	57.41.4102	1 k			
R 03	57.41.4222	2,2 k			
R 04	57.41.4222	2,2 k			
R 05	57.41.4102	l k			
R 06	57.41.4102	l k			
R 07	57.41.4222	2,2 k			
R 08	57.41.4102	l k			
R 09	57.41.4102	1 k			
R 10	57.41.4222	2,2 k			
R 11	57.41.4102	1 k			
R 12	57.41.4102	1 k			
R 13	57.41.4222	2,2 k			
R 14	57.41.4102	1 k			
R 15	57.41.4102	1 k			
R 16	57.41.4102	l k			
R 17	57.41.4823	82 k			

IND	DATE	NAME			
4			CSCH = Carbonfilm		
3					
2					
1					
0	22.9.77	Balidis/gv			
STUDER INPUT BO		INPUT BO	OARD	1.178.120	PAGE 1 OF 2

ND POS	s NO	PART NO	VALUE	S	PECIFICATION	IS/EQUIVALENT	MFR
R	18	57.41.4222	2,2 k	5%	.25W	CSCH	
R	19	57.41.4102	l k				
R	20	57.41.4222	2,2 k				
R	21	57.41.4102	1 k				
R	22	57.41.4823	82 k				
		-					
	-						
					···		
ND	DA	TE NAME	1				

IND	DATE	NAME			
4			CSCH = Carbonfilm		
3					·
2					
1					
0	22.9.77	Balidis/gv			
STUDER INPUT BOA		INPUT BO	ARD	1.178.120	PAGE 2 OF 2

IND POS NO	PART NO	VALUE		SPECIFICATIONS	/EQUIVALENT	MFR
C 01	59.32.3103	10000 pF	+80%	40V=	CER	
C 02	59.30.7100	10 μΕ	_20%	25V	TA	
C 03	59.30.7100	10 μΕ				
C 04	59.30.7100	10 µF				
C 05	59.30.7100	10 μF				
C 06	59.32.3103	10000 pF	+80%	40V=	CER	
C 07	59.30.7100	10 μF	_20%	25V	TA	
C 08	59.32.3103	10000 pF	+80%	40V=	CER	
C 09	59.30.7100	10 μΕ	_20%	25V	TA	
C 10	59.30.7100	10 μΕ	1			
C 11	59.32.3103	10000 pF	+80%	40V=	CER	
C 12	59.32.3103	10000 pF	1	,		
C 13	59.30.7100	10 μΕ	_20%	25V	TA	
C 14	59.32.3103	10000 pH	+80%	40V=	CER	
C 15	59.30.7100	10 μΕ	_20%	25V	TA	
C 16	59.30.7100	10 μΕ	1			
C 17	59.32.3103	10000 pH	+80%	40V=	CER	
C 18	59.32.3103	10000 pH	1			
C 19	59.32.4102	1000 pH	20%	63V	CER	
C 20	59.22.2221	220 μΕ	-10%	6,3V	EL	
C 21	59.34.2330	33 pI	5%	N150	CER	
C 22	59.30.7100	10 μΕ	-20%	25V	TA	
C 23	59.32.4102	1000 pH	20%	63V	CER	
C 24	59.22.2221	220 µE	_10%	6,3V	EL	
C 25	59.34.2330	33 pI	5%	N150	CER	
C 26	59.30.7100	10 μΕ	-20%	25V	TA	
C 27	59.30.7100	10 μΕ	7			
C 28	59.30.7100	10 μΙ	יק			
C 29	59.30.7100	10 μΕ	י			
C 30	59.30.7100	10 μΙ	יק			

IND	DATE	NAME		 	
4					
3					
2					
1					
0	29.9.77	Balidis/gv			
_	STUDER INPUT AMPL		IFIER	1.178.115	PAGE 1 OF 6

ID POS NO	PART NO	VALUE	SPE	CIFICATIO	NS/EQUIVALENT	MFR
C 31	59.11.3682	6800 pF	5%	160V	PC	
C 32	59.12.4183	0,018 µF	5%	250V	MPETP	
C 33	59.36.4229	2,2 µF	20%	25V	TA	
C 34	59.32.3103	10000 pF	+80%	40V=	CER	
C 35	59.32.3103	10000 pF				
C 36	59.32.3103	10000 pF				
C 37	59.11.3682	6800 pF	5%	160V	PC	
C 38	59.12.4183	0,018 µF	5%	250V	MPETP	
C 39	59.36.4229	2,2 μF	20%	25V	TA	
C 40	59.32.3103	10000 pF	+80%	40V=	CER	
C 41	59.32.3103	10000 pF				
C 42	59.32.3103	10000 pF				
C 43	59.32.3103	10000 pF				
C 44	59.32.3103	10000 pF				
D Ol	50.04.0109	ln 4448	aequiv.		SI	
D 02	50.04.0109	ln 4448				
D 03	50.04.0109	ln 4448				
D 04	50.04.0109	ln 4448				
J Ol	54.01.0263	7 - Pole				
J 02	54.01.0238	6 - Pole				
J 03	54.01.0246	5 - Pole				
J 04	54.01.0235	9 - Pole				
Q 01	50.03.0436	BC 237 B				47 B
Q 02	50.03.0436	BC 237 B			BC 5	47 B
Q 03	50.03.0436	BC 237 B			BC 5	47 B
Q 04	50.03.0436	BC 237 B			BC 5	47 B
Q 05	50.03.0436	BC 237 B			BC 5	47 B
ND DA	TE NAME					

IND	DATE	NAME			
4					
3					
2					
1					
	29.9.77	Balidis/gv		,	
STUDER INP		INPUT AMPLIFI	ER	1.178.115	PAGE 2 OF 6

]

IND POS NO	PART NO	VALUE	SPECIFICATIONS/EQUIVALENT	MFR
Q 06	50.03.0436	BC 237 B	BC 547 B	
Q 07	50.03.0436	BC 237 B	BC 547 B	
Q 08	50.03.0436	BC 237 B	BC 547 B	
Q 09	50.03.0478	2SC 496_0		
Q 10	50.03.0305	BC 179 B	TO18	
Q 11	50.03.0407	BC 109 C	TO18	
Q 12	50.03.0436	BC 237 B	BC 547 B	
Q 13	50.03.0305	BC 179 B	T018	
Q 14	50.03.0407	BC 109 C	TO18	
Q 15	50.03.0436	BC 237 B	BC 547 B	
Q 16	50.03.0436	BC 237 B	BC 547 B	
Q 17	50.03.0436	BC 237 B	BC 547 B	
Q 18	50.03.0436	вс 237 в	BC 547 B	
Q 19	50.03.0436	BC 237 B	BC 547 B	,
Q 20	50.03.0436	вс 237 в	BC 547 B	
Q 21	50.03.0436	вс 237 в	BC 547 B	
Q 22	50.03.0479	2SA 496-0		
R O1	57.41.4224	220 k	5% .25W CSCH	
R 02	57.41.4104	100 k		
R 03	57.41.4222	2,2 k		
R 04	57.41.4224	220 k		
R 05	57.41.4224	220 k		
R 06	57.41.4104	100 k		
R 07	57.41.4222	2,2 k		
R 08	57.41.4224	220 k		
R 09	57.41.4224	220 k		
R 10	57.41.4104	100 k		
R 11	57.41.4222	2,2 k		
R 12	57.41.4223	22 k		

IND	DATE	NAME			
4					
3					
2					
1					
0	29.9.77	Balidis/gv			1
STUDER		INPUT AM	PLIFIER	1.178.115	PAGE 3 OF 6

D POS NO	PART NO	VALUE	SF	PECIFICATION	IS/EQUIVALENT	MFR
R 13	57.41.4224	220 k	5%	.25W	CSCH	
R 14	57.41.4224	220 k				
R 15	57.41.4104	100 k				
R 16	57.41.4222	2,2 k				
R 17	57.41.4224	220 k				
R 18	57.41.4102	1 k				
R 19	57.41.4102	1 k				
R 20	57.41.4223	22 k				
R 21	57.41.4102	l k				
R 22	57.41.4102	1 k				
R 23	57.41.4223	22 k				
R 24	57.41.4102	l k				
R 25	57.41.4102	1 k				
R 26	57.41.4102	1 k				
R 27	57.41.4102	1 k				
R 28	57.41.4223	22 k				
R 29	57.41.4331	330				
R 30	57.41.4224	220 k				
R 31	57.41.4224	220 k				
R 32	57.41.4222	2,2 k				
R 33	57.41.4224	220 k				
R 34	57.41.4224	220 k				
R 35	57.41.4102	1 k		,		
R 36	57.41.4154	150 k				
R 37	57.41.4332	3,3 k				
R 38	57.41.4103	10 k				
R 39	57.41.4332	3,3 k				
R 40	57.41.4102	1 k				
R 41	57.41.4154	150 k				
R 42	57.41.4332	3,3 k				
D DAT	E NAME	1				

IND	DATE	NAME			
4					
3					
2					
1					
0	29.9.77	Balidis/gv			
STUDER I		INPUT AM	MPLIFIER	1.178.115	PAGE 4 OF 6

IND POS NO	PART NO	VALUE	SF	PECIFICATION	S/EQUIVALENT	MFR
R 43	57.41.4103	10 k	5%	.25W	CSCH	
R 44	57.41.4332	3,3 k				
R 45	57.41.4224	220 k		1787		
R 46	57.41.4224	220 k				
R 47	57.41.4104	100 k				
R 48	57.41.4223	22 k				
R 49	57.41.4224	220 k				
R 50	57.41.4224	220 k				
R 51	57.41.4104	100 k				
R 52	57.41.4223	22 k				
R 53	57.41.4222	2,2 k				
R 54	57.41.4153	15 k				
R 55	57.41.4224	220 k				
R 56	57.41.4101	100				
R 57	57.41.4101	100				
R 58	57.41.4123	12 k				
R 59	57.41.4683	68 k				
R 60	57.41.4101	100				
R 61	58.02.5103	10 k	20%	.1 W	PSCH	
R 62	57.41.4224	220 k	5%	.25W	CSCH	
R 63	57.41.4101	100				
R 64	57.41.4101	100				
R 65	57.41.4153	15 k				
R 66	57.41.4123	12 k				
R 67	57.41.4683	68 k				
R 68	57.41.4101	100				
R 69	58.02.5103	10 k	20%	.1 W	PSCH	
R 70	57.41.4102	1 k	5%	.25W	CSCH	
R 71	57.41.4102	1 k				
R 72	57.41.4222	2,2 k				
ND DATE	NAME	1				

lime

.

1

:

11	IND	DATE	NAME			
	4					
	3					
-	2					
	1					
		29.9.77	Balidis/gv			
	STUDER IN		INPUT	AMPLIFIER	1.178.115	PAGE 5 OF 6

IND POS NO	PART NO	VALUE	S	PECIFICATION	S/EQUIVALENT	MFR
R 73	57.41.410	2 1 k	5%	.25W	CSCH	
R 74	57.41.410					
R 75	57.41.422					
R 76	57.41.433					
INDI DAT	E NAM	E				
A DAT	L IVAIV	L				
3						
3 2						
1						
25.5.						2.05 (55 (
STUD	ER IN	PUT AMPLIFIER		1.1	178.115	PAGE 6 OF 6

]

gültig für Geräte ab Serie-Nummer 5001 valid for amplifiers starting with serial nr. 5001 valable pour appareils à partir du no. de fabrication 5001

STUDER R	B 750	
INPUT UNIT	ED 2	

IND POS NO	PART NO	VALUE		SPECIFICATION	S/EQUIVALENT	MFR
C1_10	59.32.1151	150 pF	10%	500V	CER	
J1-3	54.01.0216	6 - Pole			CIS	AMP
J 04	54.01.0245	15 - Pole			CIS	AMP
R1_8	57.41.4222	2,2 k	5%	.25W		
R9_16	57.41.4102	l k	5%	.25W		

IND	DATE	NAME			
4			CER = Ceramic		
3					
2					
1					
01	4.4.78	Ha /gv			
S	TUDER	INPUT BO	DARD	1.178.122	PAGE 1 OF 1

13.046.578

ND POS NO	PART NO	VALUE	1	SPECIFICATION	IS/EQUIVALENT	MFR
J 01	54.01.0305	5 - Pole	Recept	cical CIS	PARLEL	
R Ol	57.41.4333	33 k	5%	.25W	CSCH	
R 02	57.41.4473	47 k	5%	.25W	CSCH	
R 03	57.41.4105	1 M	5%	.25W	CSCH	
R 04	57.41.4333	33 k	5%	.25W	CSCH	
R 05	57.41.4473	47 k	5%	.25W	CSCH	
R 06	57.41.4105	1 M	5%	.25W	CSCH	

IND	DATE	NAME			
4			CSCH = Carbonfilm		
3					
2					
1					
	22.9.77	Balidis/gv			
_	STUDER	IMPEDANCI	E BOARD	1.178.226	PAGE 1 OF 1

IND POS NO	PART NO	VALUE		SPECIFICATIONS	S/EQUIVALENT	MFR
C Ol	59.32.3103	10 nF	80%	50V	CER	
C 02	59.32.0101	100 pF	20%	500V	CER	
C 03	59.32.0101	100 pF				
C 04	59.30.7100	10 µF	_20%	25V	TA	
C 05	59.32.3103	10 nF	80%	50V	CER	
C 06	59.30.7100	10 µF	-20%	25V	TA	
C 07	59.30.7100	10 μF				
C 08	59.32.3103	10 nF	80%	50V	CER	
C 09	59.30.7100	10 μF	-20%	25V	TA	
C 10	59.32.3103	10 nF	80%	50V	CER	
C 11	59.30.7100	10 µF	-20%	25V	ТА	
C 12	59.32.3103	10 nF	80%	50V	CER	
C 13	59.32.3103	lo nF				
C 14	59.32.0101	100 pF	20%	500V	CER	
C 15	59.32.3103	10 nF	80%	50V	CER	
C 16	59.32.3103	10 nF		***		
C 17	59.32.0101	100 pF	20%	500V	CER	
C 18	59.32.3103	10 nF	80%	50V	CER	
C 19	59.32.3103	10 nF				
C 20	59.30.7100	10 μF	-20%	25V	TA	
C 21	59.30.7100	10 μF				
C 22	59.32.3103	10 nF	80%	50V	CER	
C 23	59.30.7100	10 μF	-20%	25V	TA	
C 24	59.30.7100	10 µF				
C 25	59.32.3103	10 nF	80%	50V	CER	
C 26	59.30.7100	10 µF	_20%	25V	TA	
C 27	59.32.3103	10 nF	80%	50V	CER	
C 28	59.30.7100	10 μF	_20%	25V	TA	
C 29	59.32.3103	10 nF	80%	50V	CER	
C 30	59.30.7100	10 μF	_20%	25V	TA	

IND	DATE	NAME					
4			CER	=	Ceramic		
3			TA	=	Tantal		
2							
1							
0	17.4.78	Ha /gv					
9	STUDER	INPUT AMI	PLIFI	ER		1.178.117	PAGE 1 OF 4

IND	POS NO	PART NO	VALUE		SPECIFICATION	NS/EQUIV	ALEN	ĮT.	MFR
	C 31	59.30.7100	10 µF	_20%	25V	TA			
	C 32	59.32.3103	10 nF	80%	5 0V	CER			
	C 33	59.30.7100	10 µF	_20%	25V	TA			
	Jl A	54.01.0263	7-Pole			CIS			AMP
	J2 B	54.01.0246	5-Pole			CIS			AMP
	J3 C	54.01.0238	6-Pole			CIS			AMP
	J4 D	54.01.0263	7-Pole			CIS			AMP
	J5 E	54.01.0216	6_Pole			CIS			AMP
	J6 F	54.01.0238	6-Pole			CIS			AMP
	J7 G	54.01.0288	5-Pole			CIS			AMP
	J8 H	54.01.0289	8-Pole			CIS			AMP
	J9 I	54.01.0246	5-Pole			CIS			AMP
	Jlok	54.01.0289	8-Pole			CIS			AMP
	JllL	54.01.0287	3-Pole			CIS			AMP
	Q1-Q4	50.03.0497	BC 550 C	low	noise 45V	NPN			
	Q 05	50.03.0478	2SC 496_0	12W	45V	NPN	BD	139_16	
	Q6 <u>-</u> Q13	50.03.0497	BC 550 C	low	noise 45V	NPN			
	Q 14	50.03.0479	2SA 496-0	12W	45V	PNP	BD	140_16	
	R Ol	57.41.4471	470	5%	.25W	CSCH			
	R 02	57.41.4823	82 k						
	R 03	57.41.4102	l k						
	R 04	57.41.4102	l k						
	R 05	57.41.4224	220 k						
	R 06	57.41.4224	220 k						
	R 07	57.41.4102	l k						
	R 08	57.41.4104	100 k						
	R 09	57.41.4102	1 k						

And the last of th

The state of the s

IND	DATE	NAME			
4			CSCH = Carbon Film		
3					
2					
1					
0	17.4.78	Ha / gv			
9	STUDER	INPUT A	AMPLIFIER	1.178.117	PAGE 2 OF 4

ND POS NO	PART NO	VALUE	SPI	ECIFICATION	IS/EQUIVALENT	MFR
R 10	57.41.4222	2,2 k	5%	.25W	CSCH	
R 11	57.41.4223	22 k				
R 12	57.41.4224	220 k				
R 13	57.41.4224	220 k				
R 14	57.41.4102	1 k				
R 15	57.41.4104	100 k				
R 16	57.41.4102	1 k				
R 17	57.41.4222	2,2 k				
R 18	57.41.4223	22 k				
R 19	57.41.4331	330				
R 20	57.41.4471	470				
R 21	57.41.4823	82 k				
R 22	57.41.4102	l k				
R 23	57.41.4102	1 k				
R 24	57.41.4102	l k				
R 25	57.41.4102	1 k				
R 26	57.41.4224	220 k				
R 27	57.41.4224	220 k				
R 28	57.41.4104	100 k				
R 29	57.41.4222	2,2 k				
R 30	57.41.4223	22 k				
R 31	57.41.4102	1 k				
R 32	57.41.4224	220 k				
R 33	57.41.4224	220 k				
R 34	57.41.4102	l k				
R 35	57.41.4104	100 k				
R 36	57.41.4222	2,2 k				
R 37	57.41.4223	22 k				
R 38	57.41.4102	1 k				
R 39	57.41.4102	1 k				
NDI DA	<u> </u>	1				

IND	DATE	NAME			
4			CSCH = Carbon Film		
3					
2					
1					
0	17.4.78	Ha / gv			
9	STUDER	INPUT	AMPLIFIER	1.178.117	PAGE 3 OF 4

D POS NO	PART NO	VALUE	SPECIFICATIONS/EQUIVALENT	MFR
R 40	57.41.4224	220 k	5% .25W CSCH	
R 41	57.41.4224	220 k		
R 42	57.41.4104	100 k		
R 43	57.41.4222	2,2 k		
R 44	57.41.4223	22 k		
R 45	57.41.4102	1 k		
R 46	57.41.4224	220 k		
R 47	57.41.4224	2.20 k		
R 48	57.41.4102	l k		
R 49	57.41.4104	100 k		
R 50	57.41.4222	2,2 k		
R 51	57.41.4223	22 k		
R 52	57.41.4222	2,2 k		
R 53	57.41.4331	330		
R 54	57.41.4222	2,2 k		

IND	DATE	NAME			
4			CSCH = Carbon Film		
3					
2					
1					
	17.4.78	Ha/gv			
5	STUDER	INPUT A	AMPLIFIER	1.178.117	PAGE 4 OF 4

STUDER REVOX	B 750
PHONO AMPLIFIER	
1.178.125	

STUDER REVOX	B 750
DUMMY BOARD (AUX)	
1.178.126	

IND	POS NO	PART NO	VALUE	SPECIFICATIONS/EQUIVALENT	MFR
	c ol	59.11.3682	6,8 nF	5% 160V PC	
	C 02	59.12.4183	18 nF	250V MPETP	
	C 03	59.32.4102	l nF	20% 50V CER	
	C 04	59.30.7100	10 µF	_20% 25V TA	
	C 05	59.34.2330	33 pF	5% 50V CER	
	C 06	59.31.6105	1 μF	10% 100V MPETP	
	C 07	59.22.2221	220 µF	_10% 6,3V EL	
	C 08	59.11.3682	6,8 nF	5% 160V PC	
	C 09	59.12.4183	18 nF	250V MPETP	
	C 10	59.32.4102	l nF	20% 50V CER	
	C 11	59.30.7100	10 µF	_20% 25V TA	
	C 12	59.34.2330	33 pF	5% 50V CER	
	C 13	59.31.6105	1 μF	10% 100V MPETP	
	C 14	59.22.2221	220 µF	_10% 6,3V EL	
	D Ol	50.04.0109	ln 4448	100mA 75V aequiv.	
	D 02	50.04.0109	ln 4448		
	D 03	50.04.0109	ln 4448		
	D 04	50.04.0109	ln 4448		
	Q 01	50.03.0497	BC 550 C	low noise 45V NPN BC 107	В
	Q 02	50.03.0332	BC 560 B	25V PNP BC 179	В
	Q 03	50.03.0497	BC 550 C	45V NPN BC 109	С
	Q 04	50.03.0497	BC 550 C	45V NPN BC 107	В
	Q 05	50.03.0497	BC 550 C	45V NPN BC 107	В
	Q 06	50.03.0332	BC 560 B	25V PNP BC 179	В
	Q 07	50.03.0497	BC 550 C	45V NPN BC 109	С
	Q 08	50.03.0497	BC 550 C	45V NPN BC 107	В
	R Ol	57.41.4101	100	5% .25W CSCH	
IND	DA	TE NAME	1		

IND	DATE	NAME				
4321	20.4.78		PC = Poly TA = Tant EL = Elec	allized E carbonat		
9	STUDER PHONO A		MPLIFIER		1.178.125	PAGE 1 OF 2

D POS NO	PART NO	VALUE	S	PECIFICATION	IS/EQUIVALENT	MFR
R 02	57.41.4123	12 k	5%	.25W	CSCH	
R 03	57.41.4683	68 k				
R 04	57.41.4101	100			<u> </u>	
R 05	57.41.4224	220 k				
R 06	57.41.4154	150 k				
R 07	57.41.4102	1 k				
R 08	57.41.4224	220 k				
R 09	57.41.4224	220 k				
R 10	57.41.4153	15 k				
R 11	57.41.4102	1 k			and the second s	
R 12	57.41.4101	100				
R 13	57.41.4103	10 k				
R 14	57.41.4154	150 k				
R 15	57.41.4101	100				
R 16	57.41.4123	12 k				
R 17	57.41.4683	68 k				
R 18	57.41.4101	100				
R 19	57.41.4224	220 k				
R 20	57.41.4154	150 k				
R 21	57.41.4102	1 k				
R 22	57.41.4224	220 k				
R 23	57.41.4224	220 k				
R 24	57.41.4153	15 k				
R 25	57.41.4102	1 k				
R 26	57.41.4101	100				
R 27	57.41.4103	10 k				
R 28	57.41.4154	150 k				

. .

IND	DATE	NAME			
4		·	CSCH = Carbon Film		
3					
2					
1					
0	20.4.78	Ha/gv			
5	STUDER	PHONO AMP	LIFIER	1.178.125	PAGE 2 OF 2

STUDER REVOX

B 750

FILTER AND BALANCE AMPLIFIER UNIT

ND POS NO	PART NO	VALUE		SPECIFICAT	IONS/EQUIVALENT	MFR
C 01	59.12.4473	0,047 μF	5%	250V	MPETP	
C 02	59.12.4473	0,047 μF				
C 03	59.30.6109	1 μF		35V	TA	
C 04	59.30.6109	lμF				
C 05	59.34.2270	27 pF	5%	N150	KER	of the same day of the same
C 06	59.34.5471	470 pF	5%	N1500	KER	
C 07	59.31.6224	0,22 μF	10%	100V		
C 08	59.31.6224	0,22 μF				
C 09	59.11.6102	1000 pF	5%	400V	PC	
C 10	59.11.6102	1000 pF				
C 11	59.34.2270	27 pF	5%	N150	KER	
C 12	59.34.5471	470 pF	5%	N1500	KER	
C 13	59.32.3103	10000 pF	+80%		KER	
C 14	59.34.4151	150 pF	5%	N750	KER	
C 15	59.12.4473	0,047 μF	5%	250V	MPETP	
C 16	59.30.6109	lμF		35V	TA	
C 17	59.30.6109	1 μF				
C 18	59.12.4473	0,047 μF	5%	250V	MPETP	
C 19	59.11.6102	1000 pF	5%	400V	PC	
C 20	59.11.6102	1000 pF				
C 21	59.34.4151	150 pF	5%	N750	KER	
C 22	59.31.6224	0,22 μF	10%	100V		
C 23	59.31.6224	0,22 μF				
J Ol	54.01.0289	8-Pol	Auf	st.		
J 02	54.01.0262	8_Pol				
J 03	54.01.0219	15-Pol				
J 04	54.01.0262	8-Pol				
R Ol	57.41.4394	390 k	5%	.25W	CSCH	
ID DAT	E NAME					
4)						
3						
2)						
D						
28.9.7	7 Balidis/gv					

PAGE 1 OF 2

1.178.201

STUDER

FILTER BOARD

PART NO	VALUE		SPECIFICATI	ONS/EQUIVALENT	MFR
57.39.1503	150 k	1%	.25W	MF	
57.39.2802	28 k			.,	
57.39.2802	28 k				
57.41.4105	1 M	5%	.25W	CSCH	
57.39.4872	48,7 k	1%	D2.5	MF	
57.41.4332	3,3 k	5%	.25W	CSCH	
57.41.4822	8,2 k				
57.41.4105	1 M				
57.41.4105	1 M				
57.41.4394	390 k				
57.39.1503	150 k	1%	.25W	MF	
57.41.4562	5,6 k	5%	.25W	CSCH	
57.41.4102	1 k				
57.41.4563	56 k				
57.41.4822	8,2 k				
57.39.2802	28 k	1%	.25W	MF	
57.41.4105	1 M	5%	.25W	CSCH	
57.41.4563	56 k				
57.41.4102	l k				
57.41.4332	3,3 k				
57.41.4105	1 M				
57.39.4872	48,7 k	1%	D2.5	MF	
57.39.2802	28 k	1%	.25W	MF	
57.41.4105	1 M	5%	.25W	СЅСН	
57.41.4562	5,6 k				
1.011.121.00					
1.011.121.00					
1.011.121.00					
	57.39.1503 57.39.2802 57.39.2802 57.41.4105 57.39.4872 57.41.4332 57.41.4105 57.41.4105 57.41.4394 57.39.1503 57.41.4562 57.41.4563 57.41.4563 57.41.4563 57.41.4563 57.41.4563 57.41.4563 57.41.4563 57.41.4563 57.41.4563 57.41.4563 57.41.4563 57.41.4563 57.41.4563	57.39.1503 150 k 57.39.2802 28 k 57.39.2802 28 k 57.41.4105 1 M 57.39.4872 48,7 k 57.41.4332 3,3 k 57.41.4822 8,2 k 57.41.4105 1 M 57.41.4394 390 k 57.39.1503 150 k 57.41.4562 5,6 k 57.41.4563 56 k 57.41.4563 56 k 57.41.4105 1 M 57.41.4563 56 k 57.41.4105 1 M 57.41.4563 56 k 57.41.4563 1 M 57.41.4563 3,3 k 57.41.4563 1 M 57.41.4563 3,3 k 57.41.4105 1 M 57.39.2802 28 k 57.41.4105 1 M 57.41.4562 5,6 k 1.011.121.00 1.011.121.00 1.011.121.00 <td>57.39.1503 150 k 1% 57.39.2802 28 k </td> <td>57.39.1503 150 k 1% .25W 57.39.2802 28 k 57.39.2802 28 k 57.41.4105 1 M 5% .25W 57.39.4872 48,7 k 1% D2.5 57.41.4332 3,3 k 5% .25W 57.41.4322 8,2 k .25W 57.41.4105 1 M .25W 57.41.4394 390 k .25W 57.41.4394 390 k .25W 57.41.4562 5,6 k 5% .25W 57.41.4563 56 k .25W 57.41.492 8,2 k .25W 57.41.4105 1 M 5% .25W 57.41.4105 1 M 5% .25W 57.41.4332 3,3 k 57.39.4872 48,7 k 1% D2.5 57.39.2802 28 k 1% .25W 57.41.4105 1 M 5% .25W 57.41.4105 1 M 5% .25W 57.41.4562 5,6 k 57.41.4562 5,6</td> <td>57.39.1503 150 k 1% .25W MF 57.39.2802 28 k .25W CSCH 57.39.2802 28 k .25W CSCH 57.41.4105 1 M 5% .25W CSCH 57.41.4332 3,3 k 5% .25W CSCH 57.41.4822 8,2 k .25W CSCH 57.41.4405 1 M .25W MF 57.41.4394 390 k .25W MF 57.41.4562 5,6 k 5% .25W CSCH 57.41.4563 56 k .25W MF 57.41.4402 1 k .25W MF 57.41.4563 56 k .25W CSCH 57.41.4563 56 k .25W CSCH 57.41.4105 1 M 5% .25W CSCH 57.41.4105 1 M .25W MF 57.39.2802 28 k 1% .25W MF 57.39.2802 28 k 1% .25W MF 57.41.4105 1 M .25W MF 57.41.4562</td>	57.39.1503 150 k 1% 57.39.2802 28 k	57.39.1503 150 k 1% .25W 57.39.2802 28 k 57.39.2802 28 k 57.41.4105 1 M 5% .25W 57.39.4872 48,7 k 1% D2.5 57.41.4332 3,3 k 5% .25W 57.41.4322 8,2 k .25W 57.41.4105 1 M .25W 57.41.4394 390 k .25W 57.41.4394 390 k .25W 57.41.4562 5,6 k 5% .25W 57.41.4563 56 k .25W 57.41.492 8,2 k .25W 57.41.4105 1 M 5% .25W 57.41.4105 1 M 5% .25W 57.41.4332 3,3 k 57.39.4872 48,7 k 1% D2.5 57.39.2802 28 k 1% .25W 57.41.4105 1 M 5% .25W 57.41.4105 1 M 5% .25W 57.41.4562 5,6 k 57.41.4562 5,6	57.39.1503 150 k 1% .25W MF 57.39.2802 28 k .25W CSCH 57.39.2802 28 k .25W CSCH 57.41.4105 1 M 5% .25W CSCH 57.41.4332 3,3 k 5% .25W CSCH 57.41.4822 8,2 k .25W CSCH 57.41.4405 1 M .25W MF 57.41.4394 390 k .25W MF 57.41.4562 5,6 k 5% .25W CSCH 57.41.4563 56 k .25W MF 57.41.4402 1 k .25W MF 57.41.4563 56 k .25W CSCH 57.41.4563 56 k .25W CSCH 57.41.4105 1 M 5% .25W CSCH 57.41.4105 1 M .25W MF 57.39.2802 28 k 1% .25W MF 57.39.2802 28 k 1% .25W MF 57.41.4105 1 M .25W MF 57.41.4562

IND	DATE	NAME			
4					
3					
2			·		
1					
0	22.9.77	Balidis/gv			
5	STUDER	FILTER	BOARD	1.178.201	PAGE 2 OF 2

IND POS NO	PART NO	VALUE		SPECIFICATI	ONS/EQUIVA	ALENT			MFR
C 01	59.22.5470	47 μF		25V	EL				
C 02	59.30.6109	1 μF		35V	TA				
C 03	59.30.4220	22 µF		16V	TA				
C 04	59.30.6109	1 μF		35V	TA				
C 05	59.22.5470	47 2F		25V	EL				
C 06	59.34.2220	22 pF	5%	N150	KER				
C 07	59.34.2220	22 pF							
C 08	59.30.4220	22 µF		16V	TA				
D Ol	50.04.0109	ln 4448	aequ	iv.	SI				
D 02	50.04.0109	ln 4448							
D 03	50.04.0109	ln 4448							
D 04	50.04.0109	ln 4448							
Q 01	50.03.0319	BC 309 B			-	BC	559	В	
Q 02	50.03.0319	BC 309 B				ВС	559	В	
Q 03	50.03.0346	BC 237 B				BC	547	В	
Q 04	50.03.0346	BC 237 B				ВС	547	В	
Q 05	50.03.0346	BC 237 B				ВС	547	В	
Q 06	50.03.0346	BC 237 B				BC	547	В	
R Ol	57.41.4272	2,7 k	5%	.25W	CSCH				
R 02	57.41.4222	2,2 k							
R 03	57.41.4224	220 k							
R 04	57.41.4224	220 k							
R 05	57.41.4224	220 k							
R 06	57.41.4152	1,5 k							
R 07	57.41.4222	2,2 k							
R 08	57.41.4272	2,7 k							
R 09	57.41.4224	220 k							
INDI DA	TE NAME	1							

U

1

IND	DATE	NAME			
4					
3			*		
2					
1					
0	27.9.77	Balidis/gv			
5	STUDER	BALANCE	AMPLIFIER	1.178.210	PAGE 1 OF 2

ND POS NO	PART NO	VALUI	E	SPECIFICATI	ONS/EQUIVALENT	MFR
R 10	57.41.4683	68]	s 5%	.25W	CSCH	
R 11	57.41.4822	8,2	ζ.			
R 12	57.41.4683	68]	<			
R 13	57.41.4822	8,2]	k			
R 14	57.41.4152	1,5	k			
R 15	57.41.4183	18	K			
R 16	57.41.4183	18]	k			
R 17	57.41.4101	100				
R 18	57.41.4470	47				
R 19	57.41.4101	100				
R 20	57.41.4470	47				
ND DATI	E NAME	1				

! leases

Total

IND	DATE	NAME			
4					
3					
2					
1					
0	27.9.77	Balidis/gv			
9	STUDER	BALANCE	AMPLIFIER	1.178.210	PAGE 2 OF 2

IND	POS NO	PART NO	VALUE		SPECIFICATI	ONS/EQUIVA	ALENT		MFR
	C Ol	59.30.6109	1,0 μF		35V	TA			
	C 02	59.30.6109	1,0 μF						
	C 03	59.34.2330	33 pF	5%	N150	KER			
	C 04	59.30.4220	22 µF		16V	TA			
	C 05	59.34.2330	33 pF	5%	N150	KER			
	C 06	59.30.4220	22 µF		16V	TA			
	D Ol	50.04.0109	ln 4448	aequ	iv.	SI			
	D 02	50.04.0109	ln 4448						
	D 03	50.04.0109	ln 4448						
	D 04	50.04.0109	ln 4448						
	Q 01	50.03.0319	BC 309 B				BC 559	9 в	
	Q 02	50.03.0319	вс 309 в				BC 559	9 в	
	Q 03	50.03.0436	BC 237 B				BC 547	7 В	
	Q 04	50.03.0436	BC 237 B				BC 54	7 B	
	Q 05	50.03.0436	BC 237 B				BC 547	7 B	
	Q 06	50.03.0436	BC 237 B				BC 547	7 B	
	R Ol	57.41.4105	1 M	5%	.25W	CSCH			
	R 02	57.41.4103	10 k						
	R 03	57.41.4103	10 k						
	R 04	57.41.4105	1 M						
	R 05	57.41.4683	68 k						
	R 06	57.41.4102	1 k						
	R 07	57.41.4183	18 k						
	R 08	57.41.4183	18 k						
	R 09	57.41.4102	l k						
	R 10	57.41.4183	18 k						

y

IND	DATE	NAME			
4					a de la companya de l
3					
2					
1					B. C. C.
0	27.9.77	Balidis/gv			
5	STUDER	FILTER AM	PLIFIER	1.178.206	PAGE 1 OF 2

IND	POS NO	PART N	0	VALUE	S	PECIFICATIO	NS/EQUIVALENT	MFR
	R 11	57.41.4	101	100	5%	.25W	СЅСН	
	R 12	57.41.4	470	47				
	R 13	57.41.4	101	100				
	R 14	57.41.4	470	47				
					,			
		300						
IND	DAT	E N	AME					
4								
3								

STUDER	FILTER AMPLIFIER	1.178.206	PAGE 2 OF 2
27.9.77	Balidis/gv		
1			
2			and the second s
3			

1.178.201

FILTER AND BALANCE AMPLIFIER UNIT

STUDER REVOX	B 750
TONE CONTROL UNIT	

IND POS NO	PART NO	VALUE		SPECIFICAT	IONS/EQUIVALENT	MFR
C 01	59.11.3103	10000 pF	5%	160V	PC	
C 02	59.11.2154	0,15 μF	5%		MPETP	
C 03	59.11.2154	0,15 μF				
C 04	59.11.2154	0,15 μF				
C 05	59.11.6472	4700 pF	5%	400V	PC	
C 06	59.34.4271	270 pF	5%	N750	KER	
C 07	59.12.2154	0,15 μF	5%		MPETP	
C 08	59.34.4271	270 pF	5%	N750	KER	
C 09	59.11.6472	4700 pF	5%	400V	PC	
C 10	59.12.2123	0,012 µF	5%	100V	MPETP	
C 11	59.32.3103	10000 pF	+80%		KER	
C 12	59.12.2123	0,012 μF	5%	100V	MPETP	
C 13	59.32.3103	10000 pF	+80%		KER	
C 14	59.32.3103	10000 pF				
C 15	59.11.3103	10000 pF	5%	160V	PC .	
C 16	59.32.3103	10000 pF	+80%_		KER	
C 17	59.32.3103	10000 pF				
JOl	54.01.0290	10-Pol	J_Le	eiste		
J 02	54.01.0215	12_Pol				
J 03	54.01.0218	7_Pol				
J 04	54.01.0290	10-Pol				
J 05	54.01.0290	10-Pol				
J 06	54.01.0263	7 Pol				
R Ol	1.010.006.57		Wied	derstands	enetzwerk 006	
R 02	1.010.006.57					
R 03	57.39.6811	6,81 k	1%	.25W	MF	
R 04	57.41.4105	1 M	5%	.25W	CSCH	
R 05	1.010.009.57		Wied	derstands	netzwerk 009	
LINDI DAT		1				

IND	DATE	NAME			
4					
3					
2					
1					
0	21.9.77	Balidis/gv			
5	STUDER	TONE CONTRO	L BOARD	1.178.200	PAGE 1 OF 2

IND	POS NO	PART NO	VALUE	SPECIFICATIONS/EQUIVALENT	MFR
	R 06	1.010.009.57		Wiederstandsnetzwerk 009	
	R 07	57.39.8871	8,87 k	1% .25W MF	
	R 08	1.010.005.57		Wiederstandsnetzwerk 005	
	R 09	1.010.005.57			
	R 10	57.39.1651	1,65 k	1% D2.5 MF	
	R 11	57.39.8871	8,87 k	1% .25W MF	
	R 12	57.39.8451	8,45 k	1% D2.5 MF	
	R 13	57.39.5231	5,23 k	1% D2.5 MF	
	R 14	57.39.6811	6,81 k	1% .25W MF	
	R 15	57.41.4331	330	5% .25W CSCH	
	R 16	57.41.4105	1 M		
	R 17	57.39.8451	8,45 k	1% D2.5 MF	
	R 18	57.39.1651	1,65 k		
	R 19	57.39.4531	4,53 k		
	R 20	57.41.4331	330	5% .25W CSCH	
	R 21	57.39.6811	6,81 k	1% MF	
	R 22	57.39.6811	6,81 k	,	
	R 23	57.41.4331	330	5% CSCH	
	R 24	57.39.4531	4,53 k	1% D2.5 MF	
	R 25	57.39.5231	5,23 k		
	R 26	57.41.4331	330	5% .25W CSCH	
	s ol	1.011.303		2 Kont. 9-Stellg.	
	S 02	1.011.303			
	S 03	1.011.303			
	S 04	1.011.304		2 Kor.t. 4-Stellg.	
	S 05	1.011.305		3 Kont. 5-Stellg.	

IND	DATE	NAME			
4					,
3	1				:
2					
1					
0	27.9.77	Balidis/gv			
9	STUDER	TONE CONT	ROL BOARD	1.178.200	PAGE 2 OF 2

IND POS NO	PART NO	VALUE	SPECII	FICATIONS/EQUIVA	ALENT	MFR
C Ol	59.30.6478	Ο,47 μF	35	V TA		
C 02	59.30.4220	22 µF	16	V TA		
C 03	59.30.6478	0,47 μF	35	V TA		
C 04	59.30.4220	22 µF	16	V TA		
C 05	59.34.2470	47 pF	5% N1	50 KER		
C 06	59.34.2470	47 pF				
D Ol	50.04.0109	1N 4448	aequiv.	SI		
D 02	50.04.0109	ln 4448				
D 03	50.04.0109	ln 4448				
D 04	50.04.0109	ln 4448				
Q 01	50.03.0319	BC 309 B			BC 559	В
Q 02	50.03.0319	BC 309 B			BC 559	В
Q 03	50.03.0319	BC 309 B			BC 559	В
Q 04	50.03.0319	BC 309 B			BC 559	В
Q 05	50.03.0436	BC 237 B			BC 547	В
Q 06	50.03.0436	BC 237 B			BC 547	В
Q 07	50.03.0436	BC 237 B			BC 547	В
Q 08	50.03.0436	BC 237 B			BC 547	В
R Ol	57.41.4470	47	5% . 2	5W CSCH		
R 02	57.41.4470	47				
R 03	57.41.4105	1 M				
R 04	57.41.4103	10 k				
R 05	57.41.4470	47				
R 06	57.41.4103	10 k				
R 07	57.41.4223	22 k				
R 08	57.41.4470	47				
R 09	57.41.4223	22 k				
IND DA	TE NAME					

IND	DATE	NAME			
4					
3					
2					
1					
0	27.9.77	Balidis/gv			
STUDER TONE CONT		TONE CONT	ROL AMPLIFIER	1.178.216	PAGE 1 OF 2

ND POS NO	PART NO	VALUE	SPECIFICATIONS/EQUIVALENT	MFR
R 10	57.41.4105	1 M	5% .25W CSCH	
R 11	57.41.4683	68 k		
R 12	57.41.4182	1,8 k		
R 13	57.41.4683	68 k		
R 14	57.41.4182	1,8 k		
R 15	57.41.4101	100		
R 16	57.41.4470	47		
R 17	57.41.4101	100		
R 18	57.41.4470	47		

IND	DATE	NAME			
4					
3					
2					
1					
	27.9.77	Balidis/gv			
5	STUDER TONE CONT		ROL AMPLIFIER	1.178.216	PAGE 2 OF 2

ND POS NO	PART NO	VALU	E		SPECIFICATION	S/EQUIVALEN	JT	MFR
c ol	59.32.3103	10000	рF	80%	50V	CER	CER	
D 01	50.04.2114	MV 515	52			CM	4-482B	
J 01	54.01.0214	6 _ I	Pole			CIS		AMP
J 02	54.01.0309	13 - I	Pole			CIS		AMP
R Ol	57.56.4101	100 0	2	10%	5W		***************************************	
R 02	57.56.4101	100 0	2					
R 03	57.56.4101	100 0	Ω					
R 04	57.56.4101	100 0	2					
R 05	57.43.4821	820 9	Ω	5%	0,5W			
R 06	57.41.4222	2,2 }	<	5%	. 25W			
R 07	57.41.4222	2,2 }	<					
R 08	57.39.2052	20,5 }	<	1%	.25W	MF		
R 09	57.39.2052	20,5 }	<					
R 10	57.39.2611	2,61 1	<					
R 11	57.39.2611	2,61 }	<				·	
						-1		
S Ol	1.178.221.01			Push	button swit	ten		

IND	DATE	NAME			
4			CER = Ceramic	·	
3			MF = Metallfilm		
2					
1					
0	12.4.78	Ha /gv			
5	STUDER TAPE MONI		TOR BOARD	1.178.221	PAGE 1 OF 1

STUDER REVOX	B 750
PROTECTION CIRCUIT	
1.178.110	

ID POS NO	PART NO	VALUE		SPECIFICATIO	NS/EQUIVA	LEN.	T	MF
C 01	59.30.7100	10 µF	_20%	25V	TA			
C 02	59.30.7100	10 µF						
C 03	59.30.7100	10 µF						
C 04	59.36.4689	6,8 µF	20%	25V	TA			
C 05	59.30.7100	10 µF	-20%	25V	TA			
C 06	59.30.7100	10 μF						
D Ol	50.04.0109	ln 4448	aequi	V •	SI			
D 02	50.04.0109	ln 4448						
D 03	50.04.0109	ln 4448						
D 04	50.04.0109	ln 4448						
D 05	50.04.0109	ln 4448						
D 06	50.04.0109	1N 4448						
D 07	50.04.0109	ln 4448						
D 09	50.04.0109	ln 4448						
D 10	50.04.0109	ln 4448						
D 11	50.04.0109	ln 4448						
D 12	50.04.0109	ln 4448						
D 13	50.04.0109	ln 4448						
J Ol	54.01.0215	12-Pole						
K Ol	56.04.0140	2 * U	12V	(220V/2	A) PRINT			
к о2	56.04.0118	2 * A	24V	4A	Relais			
к оз	56.04.0118	2 * A						
Q 01	50.03.0436	BC 237 B			NPN	ВС	547	В
Q 02	50.03.0436	BC 237 B			NPN	ВС	547	В
Q 03	50.03.0494	BC 307 B			PNP	вс	251	В
Q 04	50.03.0436	BC 237 B			NPN	ВС	547	В
ID DAT	E NAME							

IND	DATE	NAME			
4					
3					
2					
1					
0	27.9.77	Balidis/gv			
9	STUDER	PROTECTIO	ON CIRCUIT	1.178.110	PAGE 1 OF 3

	PART NO	VALUE		PECIFICATION	S/EUUIVALE	IN I		MFR
Q 05	50.03.0436	вс 237 в			NPN B	C 547	В	
Q 06	50.03.0436	BC 237 B			NPN B	C 547	В	
Q 07	50.03.0436	BC 237 B			NPN B	C 547	В	
Q 08	50.03.0494	вс 307 в			PNP B	C 251	В	
Q 09	50.03.0436	BC 237 B			NPN B	C 547	В	
R Ol	57.41.4152	1500	5%	.25W	CSCH			
R 02								
R 03	.57.41.4472	4,7 k	5%	.25W	CSCH			
R 04	57.41.4562	5,6 k						
R 05	57.41.4154	150 k						
R 06	57.41.4222	2,2 k						
R 07	57.41.4154	150 k						
R 08	57.41.4563	56 k						
R 09	57.41.4183	18 k						
R 10	57.41.4391	390						
R 11	57.41.4101	100						
R 12	57.41.4183	18 k						
R 13	57.41.4101	100						
R 14	57.41.4183	18 k						
R 15	57.41.4102	1 k						
R 16	57.41.4332	3,3 k						
R 17	57.41.4684	680 k						
R 18	57.41.4183	18 k						
R 19	57.41.4391	390						
R 20	57.41.4223	22 k						
R 21	57.41.4103	10 k						
R 22	57.41.4103	10 k						
R 23	57.41.4104	100 k						

IND	DATE	NAME			
4					
3					
2					
1					
0	27.9.77	Balidis/gv			
STUDER		PROTECT	ION CIRCUIT	1.178.110	PAGE 2 OF 3

IND POS NO	PART NO	VAL	.UE	SI	PECIFICATION	S/EQUIVALENT	MFR
R 24	57.41.418	3 18	k	5%	.25W	CSCH	
R 25	57.41.415	150	k				
R 26	57.41.415	150	k				
R 27	57.41.415	150	k				
R 28	57.41.410)2 1	k				
R 29	57.41.422	220)				
R 30	57.41.418	3 18	k				
R 31	57.41.433	3 33	k				
R 32	57.41.433	3 33	k				
				L			
IND DAT	E NAM	1E !					
4							

טאון	DATE	NAME			
4					
3					
2					
1					
0	27.9.77	Balidis/gv			
5	STUDER PRO		CTION CIRCUIT	1.178.110	PAGE 3 OF 3

D5,6,8,9,10,11 = 1N4448

gültig für Geräte bis Serie-Nummer 8500 valid for amplifiers up to serial nr. 8500 valable pour appareils jusqu'au no. de fabrication 8500

STUDER REVOX	B 750
POWER AMPLIFIER UNIT MKI	
1.178.100	

IND POS	NO	PART NO	VALUE		SPECIFICATION	NS/EQUIVALENT	MFR
C	Ol	59.99.0453	0,1 μF	10%	250V	MP	
С	02	59.31.1224	0,22 μF	20%	100V	MPETP	
С	03	59.31.1224	0,22 μF				
С	04	59.32.1152	1500 pF	10%	500V	CER	
С	05	59.30.4220	22 µF	20%	16V	TA	
С	06	59.31.1224	0,22 μF	20%	100V	MPETP	
С	07	59.34.4221	220 pF	5%	50V	CER	
C	08	59.31.2103	0,01 µF	20%	250V	MPETP	
С	09	59.30.6478	0,47 μF	20%	35V	TA	
С	10	59.22.4221	220 µF	20%	16V	EL	
C	11	59.31.1474	0,47 μF	20%	100V	MPETP	
С	12	59.34.1100	10 pF	5%	50V	CER	
С	13	59.34.1100	10 pF				
С	14	59.30.4220	22 µF	20%	16V	TA	
C	15	59.34.4331	330 pF	5%	50V	CER	
C	16	59.31.1224	0,22 µF	20%	100V	MPETP	
C	17	59.31.2103	0,01 µF	20%	250V	MPETP	
C	18	59.30.6478	0,47 μF	20%	35V	TA	
С	19	59.31.1224	0,22 μF	20%	100V	MPETP	
C	20	59.34.4221	220 pF	5%	50V	CER	
С	21.	59.32.3103	10000 pF	80%	40V=	CER	
С	22	59.32.3103	10000 pF				
С	23	59.32.1152	1500 pF	10%	500V	CER	
С	24	59.30.4220	22 µF	20%	16V	TA	
С	25	59.35.4472	4700 μF	20%	40V	EL	
С	26	59.35.4472	4700 μF				
D	ol	70.01.0211	B80C3200	80V	3,2A		
D	02	50.04.0105	ln 4004	200V	1 A		
D	03	50.04.0105	ln 4004				

IND	DATE	NAME				
4321			CER EL MP MPETP TA	= Ceramic = Electrolytic = Metallized : = Metallized : = Tantal	Paper	
0	3.10.77	Balidis/gv				
5	STUDER POWER A		LIFIER		1.178.105	PAGE 1 OF 5

IND PO	S NO		PART NO	VALUE		SPECIFI	CATI	ONS/EQUIVALENT	MFR
I	0 04	50	0.04.1117	Z 12 V	5%		L2V	400mW	
I	05	50	.04.0109	ln 4448	aeqı	iiv.		SI	
I	06	50	.04.0109	ln 4448					
I	07	50	.04.0105	ln 4004	200V]	L A		
I	80 0	50	.04.0109	ln 4448	aequi	Lv.		SI	
I	09	50	.04.0109	ln 4448					
I	10	50	.04.0109	ln 4448					
I) 11	50	.04.0109	ln 4448					
I	12	50	.04.0105	ln 4004	200V]	A		
I	13	5C	.04.1117	Z 12 V	5%]	2V	400mW	
-	ol	54	.01.0239	3-Pole				CIS	AMP
ū	г 02	54	.01.0239	3-Pole					
J	г оз	54	.01.0239	3-Pole					
J	04	54	.01.0239	3-Pole					
J	05	54	.01.0239	3-Pole					
J	г 06	54	.01.0239	3-Pole					
J	г 07	54	.01.0290	10-Pole					
Ü	08	53	.05.0113	4-Pole	20mm	screw	red (contact	
ļ									
I	01	1.	068.614.00	2,2 μΗ					
Q	01	50	.03.0436	BC177B				PNP	
Q	02	50	.03.0494	BC107B				NPN	
Q	03	50	.03.0436	BC177B				PNP	
Q	04	50	.03.0315	BC160-16	_			PNP	
Q	05	50	.03.0436	BC177B				PNP	
Q	06	50	.03.0494	BC107B				NPN	
Q	07	50	.03.0494	BC107B				NPN	
Q	08	50	.03.0315	BC160-16				PNP	
IND	DAT	E	NAME						

i

· ·

-

Treasol .

IND	DATE	NAME			
4					
3					
2					
1					
0	3.10.77	Balidis/gv			
STUDER		POWER A	AMPLIFIER	1.178.105	PAGE 2 OF 5

IND	POS NO	PART NO	VALUE		SPECIFICATION	IS/EQUIVALENT	MFR
	Q 09	50.03.0316	BC140-16			NPN	
	Q 10	50.03.0494	ВС107В			NPN	
	Q 11	50.03.0436	вс177в			PNP	
	Q 12	50.03.0436	вс177в			PNP	
	Q 13	50.03.0494	ВС107В			NPN	
	R Ol	57.43.4332	3,3 k	5%	.5W	CSCH	
	R 02	57.99.0185	10	10%	5 W	WR	
	R 03	57.99.0192	0,22				
	R 04	57.43.4332	3,3 k	5%	5W	CSCH	
	R 05	57.99.0184	3,3 k	10%	5 W	WR	
	R 06	57.99.0192	0,22				
	R 07	57.43.4152	1,5 k	5%	. 5W	CSCH	
	R 08	57.41.4561	560	5%	.25W	CSCH	
	R 09	57.41.4271	270				
	R 10	57.41.4683	68 k				
	R 11	57.41.4472	4,7 k				
	R 12	57.41.4121	120				
	R 13	57.42.4560	56	5%_	.3W	CSCH	
	R 14	57.41.4682	6,8 k	5%	.25W	CSCH	
	R 15	57.41.4223	22 k				
	R 16	57.41.4222	2,2 k				
	R 17	57.41.4223	22 k				
	R 18	57.41.4103	10 k				
	R 19	57.41.4272	2,7 k				
	R 20	57.41.4822	8,2 k				
	R 21	57.41.4223	22 k				
	R 22	57.41.4823	82 k				
	R 23	57.41.4472	4,7 k				
	R 24	57.41.4183	18 k				
IND	DA	TE NAME	1				

IND	DATE	NAME				
4			CSCH	= Carbon Film		
3			WR	= Wirewound		
2						
1						
	3.10.77	Balidis/gv				
5	STUDER	POWER AME	LIFIER		1.178.105	PAGE 3 OF 5

IND	POS NO	PART NO	VALUE	SF	PECIFICATIONS/EQUIVALENT	MFR
	R 25	57.41.4560	56	5%	.25W CSCH	
	R 26	58.02.4473	47 k	20%	.1 W PCF	
-	R 27	57.42.4330	33	5%	.3 W CSCH	
	R 28	58.19.2101	100	20%	1 W CER	
	R 29	57.41.4103	10 k	5%	.25W CSCH	
	R 30	57.41.4181	180			
	R 31	57.41.4561	560			
	R 32	57.41.4223	22 k			
	R 33	57.41.4104	100 k			
	R 34	57.41.4332	3,3 k			
	R 35	57.41.4180	18			
	R 36	57.41.4561	560			
	R 37	57.41.4181	180			
	R 38	57.41.4103	10 k			
	R 39	57.41.4471	470			
	R 40	57.41.4183	18 k			
	R 41	57.41.4223	22 k			
	R 42	57.41.4223	22 k			
	R 43	57.41.4103	10 k			
-	R 44	57.41.4222	2,2 k			
	R 45	57.41.4151	150			
	R 46	57.41.4121	120			
	R 47	57.41.4272	2,7 k			
	R 48	57.41.4822	8,2 k			
	R 49	57.41.4223	22 k			
	R 50	57.43.4152	1,5 k	5%	.5W CSCH	
	R 51	57.41.4683	68 k	5%	.25W CSCH	
	R 52	57.41.4561	560			
	R 53	57.41.4271	270			
	R 54	57.41.4472	4,7 k			

	IND	DATE	NAME			
	4			PCF = Pot. Carbon	Film	
Citizana	3			CER = Ceramic CSCH = Carbon Film		
	2			CDCII CAIDON TIIM		
Impo	1					
)	0	3.10.77	Balidis/gv			
_	_	STUDER	POWER AI	MPLIFIER	1.178.105	PAGE 4 OF 5

ND POS NO	PART NO	VALUE	SPE	CIFICATIO	NS/EQUIVA	LENT	MFR
R 55	57.42.4560	56	5%	.3W	CSCH		
R 56	57.41.4104	100 k	5%	.25W	CSCH		
R 57	57.41.4682	6,8 k					
R 58	57.41.4472	4,7 k					
R 59	57.41.4151	150					
	mounted on heat	sink:					
Q 14	50.03.0344	2N 6474			NPN	2N 6473	RCA
Q 15	50.03.0344	2N 6474			NPN	2N 6473	RCA
Q 16	50.03.0345	2N 6476	,		PNP	2N 6475	RCA
Q 17	50.03.0345	2N 6476			PNP	2N 6475	RCA
Q 18	50.03.0339	2N 6029			PNP		M
Q 19	50.03.0338	2N 5629			NPN		M
Q 20	50.03.0478	BD 139	BD 135		NPN	2SC 496	
		1.6 71-	70/		NTC		P
R 60	57.99.0208	16,7k	7%		NIC		E

IND	DATE	NAME			
4			M = Motorola		
3			P = Philips		
2					
1					
	3.10.77	Balidis/gv			
STUDER POWER		POWER AM	IPLIFIER	1.178.105	PAGE 5 OF 5

gültig für Geräte ab Serie-Nummer 8501 valid for amplifiers starting with serial nr. 8501 valable pour appareils à partir du no. de fabrication 8501

STUDER REVOX	B 750
POWER AMPLIFIER UNIT MK II	
1.178.101	

IND POS NO	PART NO	VALUE		SPECIFICAT	IONS/EQUIVALENT	MFR
C Ol	59.99.0453	0,1 μF	10%	250V	MP	
C 02	59.31.1224	O,22 μF	20%	100V	MPETP	
C 03	59.31.1224	0,22 μF				
C 04	59.32.1332	3,3 nF	10%	500V	CER	
C 05	59.30.4220	22 µF	20%	16V	TA	
C 06	59.31.1224	0,22 μF		100V	MPETP	
C 07	59.34.5471	470 pF	5%	50V	CER	
C 08	59.31.2103	O,Ol μF	20%	250V	MPETP	
C 09	59.30.6478	0,47 μF		35V	TA	
C 10	59.22.2471	470 µF		16V	EL	
C 11	59.31.1474	0,47 µF		100V	MPETP	
C 12	59.34.2330	33 pF	5%	50V	CER	
C 13	59.34.1100	10 pF				
C 14	59.30.4220	22 μF	20%	16V	TA	
C 15	59.34.5471	470 pF	5%	50V	CER	
C 16	59.31.1224	0,22 μF	20%	100V	MPETP	
C 17	59.31.2103	0,01 µF		250V		
C 18	59.30.6478	0,47 μF		35V	TA	
C 19	59.31.1224	0,22 μF		100V	MPETP	
C 20	59.34.5471	470 pF	5%	50V	CER	
C 21	59.30.7100	10 μF	20%	25V	TA	
C 22	59.30.7100	10 µF				
C 23	59.32.1332	3,3 nF	10%	500V	CER	
C 24	59.30.4220	22 µF	20%	16V	TA	
C 25	59.35.6472	4,7 mF	20%	63V	EL	
C 26	59.35.6472	4,7 mF				
D Ol	70.01.0211	B80C3200	80V	3,2A		
D 02	50.04.0105	ln 4004	200V	1A		
D 03	50.04.0105	ln 4004				

IND	DATE	NAME					
4			EL = Electrolytic	2			
3			CER = Ceramic MP = Metallized Paper MPETP= Metallized Polyester				
2							
1			TA = Tantal				
0	13.4.78	Hartwig/gv					
STUDER POWER		POWER AM	PLIFIER	1.178.106	PAGE 1 OF 5		

IND	POS NO	PART NO	VALUE		SPECIFICAT	IONS/EQUIV	ALENT	MFR
	D 04	50.04.1117	Z 12 V	5%	12V	400mW		
	D 05				-			
	D 06	50.04.0109	ln 4448					
	D 07	50.04.0105	ln 4004	200V	1 A			
	D 08	50.04.0109	ln 4448					
	D 09	50.04.0109	ln 4448					
	D 10							
	D 11	50.04.0109	ln 4448					
	D 12	50.04.0105	lN 4004	200V	l A			
	D 13	50.04.1117	Z 12 V	5%	12V	400mW		
	J Ol	54.01.0239	3-Pole			CIS		AMP
	J 02	54.01.0239	3-Pole			CIS		AMP
	J 03	54.01.0239	3-Pole			CIS		AMP
	J 04	54.01.0239	3-Pole			CIS		AMP
	J 05	54.01.0239	3-Pole			CIS		AMP
	J 06	54.01.0239	3-Pole			CIS		AMP
	J 07	54.01.0290	10-Pole			CIS		AMP
	L Ol	1.068.614.00	2,2 μΗ					
	Q Ol	50.03.0492	BC256B	63V	300mW	PNP	вс266В	
	Q 02	50.03.0491	BC174B			NPN	вс190в	
	Q 03	50.03.0492	вс256в			PNP	вс266в	
	Q 04	50.03.0315	BC160 16	40V	750mW	PNP		
	Q 05	50.03.0492	вс256в	63V	300mW	PNP	вс266в	
	Q 06	50.03.0491	BC174B			NPN	вс190В	
	Q 07	50.03.0491	BC174B			NPN	вс190в	
	Q 08	50.03.0315	BC160_16	40V	750mW	PNP		
	Q 09	50.03.0316	BC140_16	·		NPN		
IND	DAT	E NAME						

IND	DATE	NAME			
4					
3					
2					
1					
0	13.4.78	Hartwig/gv			
5	STUDER	POWER AMP	LIFIER	1.178.106	PAGE 2 OF 5

IND	POS NO	PART NO	VALUE		SPECIFICAT	IONS/EQUI	VALENT	MFR
	Q 10	50.03.0491	BC174B	63V	300mW	NPN	BC190B	
	Q 11	50.03.0492	ВС256В			PNP	вс266в	
	Q 12	50.03.0492	ВС256В			PNP	вс266в	
	Q 13	50.03.0491	BC174B			NPN	вс190в	
	R Ol	57.43.4472	4,7 k	5%	.5 W	CSCH		
	R 02	57.99.0185	10	10%	5 W	WR		
	R 03	57.99.0192	0,22					
	R 04	57.43.4472	4,7 k	5%_	. 5W	CSCH		
	R 05	57.99.0184	3,3	10%	5 W	WR	MARIANCE - TOTAL	
	R 06	57.99.0192	0,22					
	R 07	57.43.4152	1,5 k	5%	. 5W	CSCH		
	R 08	57.41.4561	560	5%	.25W	CSCH		
	R 09	57.41.4271	270					
	R 10							
	R 11	57.41.4562	5,6 k					
	R 12	57.41.4121	120					
	R 13	57.42.4330	33	5%	.3W	CSCH		
	R 14	57.41.4562	5,6 k	5%	.25W	CSCH		
	R 15	57.41.4333	33 k					
	R 16	57.41.4222	2,2 k					
	R 17	57.41.4223	22 k					
	R 18	57.41.4103	10 k					
	R 19	57.41.4272	2,7 k					
	R 20	57.41.4103	10 k					
	R 21	57.41.4223	22 k					
	R 22	57.41.4124	120 k					
	R 23	57.41.4563	56 k					
	R 24	57.41.4103	10 k					
	R 25	57.41.4560	56					

IND	DATE	NAME			
4			WR = Wire Wound		Manual Property of the Control of th
3			CER = Ceramic CSCH= Carbon Film		
2			CSCII— Calbon Film		
1					
	13.4.78	Hartwig/gv			
STUDER		POWER A	MPLIFIER	1.178.106	PAGE 3 OF 5

IND	POS NO	PART NO	VALUE	SPECIFICATIONS/EQUIVALENT			MFR
-	R 26	58.02.4473	47 k	20%	.1 W	PCF	
	R 27	57.42.4330	33	5%	.3 W	CSCH	
	R 28	58.19.2101	100	20%	1 W	CER	
	R 29	57.39.6191	6,19 k	1%	.25W	MF	
	R 30	57.11.4181	180	5%	.25W	CSCH	
	R 31	57.41.4221	220	5%	.25W	CSCH	
	R 32	57.41.4223	22 k				
	R 33	57.41.4104	100 k				
	R 34	57.41.4332	3,3 k				
	R 35	57.41.4180	18				
	R 36	57.41.4221	220				
	R 37	57.41.4181	180				
	R 38	57.39.6191	6,19 k	1%	.25W	MF	
	R 39	57.41.4471	470	5%	.25W	CSCH	
	R 40	57.41.4103	10 k				
_	R 41	57.41.4333	33 k				
	R 42	57.41.4223	22 k				
-	R 43	57.41.4103	10 k				
	R 44	57.41.4222	2,2 k				
_	R 45	57.41.4151	150				
	R 46	57.41.4121	120				
_	R 47	57.41.4272	2,7 k				
	R 48	57.41.4103	10 k				
	R 49	57.41.4223	22 k				
	R 50	57.43.4152	1,5 k	5%	.5 W	CSCH	
	R 51						
	R 52	57.41.4561	560	5%	.25W	CSCH	
	R 53	57.41.4271	270				
	R 54	57.41.4562	5,6 k				
	R 55	57.42.4330	33	5%	.3 W	CSCH	
IND) DA	TE NAME					

- 1	IND	DATE	NAME				
	432			CER = Ceramic CSCH = Carbon Film MF = Metallized Film PCF = Pot'm. Carbon Film			
-	1						
132	0	13.4.78	Hartwig/gv				
~	9	TUDER	POWER AMPL	IFIER	1.178.106	PAGE 4 OF 5	

ND	POS	NO	PART NO	VALUE	SPE	CIFICAT	IONS/EQUIV	ALENT	MFR
	R	56	57.41.4154	150 k	5%	.25W	CSCH		
	R	57	57.41.4562	5,6 k					
	R	58	57.41.4563	56 k					
	R	59	57.41.4151	150					
			mounted on h	eatsink:					
	Q	14	50.03.0498	BD711	TO220		NPN	2N6473	SGS/RCA
	Q	15	50.03.0503	2SD743 A	TO220		NPN	2N6474	NEC/RCA
	Q	16	50.03.0499	BD712	TO220		PNP	2N6475	SGS/RCA
	Q	17	50.03.0501	2SD703A	TO220		PNP	2N6476	NEC/RCA
	Q	18	50.03.0500	2 SB600	то 3		PNP	2N6O31	NEC/ M
	Q	19	50.03.0502	2SD555	то 3		NPN	2N5631	NEC/ M
-	Q	20	50.03.0478	BD139	BD135		NPN	2SC496	
	R	60	57.99.0208	16,7 k	7%	80 ⁰ C	NTC		P

IND	DATE	NAME			
43			CSCH = Carbon Film	P = Philips M = Motorol	
2					
1					
	13.4.78	Hartwig/gv			
S	TUDER	POWER AMP	LIFIER	1.178.106	PAGE 5 OF 5

Index Index Index	Anzahl Quantity Quantité	Bezeichnung Description Désignation	Artikel Nr. Article nr. No. d'article	Bestell Nr. Order nr. No. de command
		Bedienungseinheit Operating section Unité de commande		
01	1	Klappe kompl. Flap cplt. Clapet compl.	1.178.270 ab/from/dès 8501(MKII): 1.178.271	74175 74194
02	1	Abschlussleiste Cover strip Cornière	1.178.010.03	74143
	1	Abschlussschild Phono Impedanz Escutcheon phono impedance Indication adaptation d'entrée	1.178.010.05	74145
03	3	Klinker-Buchse Jack socket Prise Jack	54.02.0104	73541
04	1	Potentiometer Potmeter Potentiomètre	1.178.090.01	74146
05	1	Schiebeschalter Sliding switch Commutateur à glissière	55.99.0147	70574
06	1	Drehknopf Knob Bouton tournant	1.166.010.07	72101
07	2	Zugfeder Tension spring Ressort de traction	1.010.026.37	74597
08	1	Potentiometer Potmeter Potentiomètre	1.178.300.04	74178
09	1	Schiebeschalter Sliding switch Commutateur à glissière	55.99.0145	70573
10	3	Print-Drehschalter 2-Kontakt PC rotary switch 2-contacts Rotateur 2-contacts	1.011.303	74243
11	1	Buchsenabdeckung Cover for sockets Recouvrement de socles	1.178.010.02 ab/from/dès 5001: 1.178.010.06	74142 74190

Index Index Index	Anzahl Quantity Quantité	Bezeichnung Description Désignation	Artikel Nr. Article nr. No. d'article	Bestell Nr. Order nr. No. de commande
12	1	Rückwand Rear panel Paroi arrière	1.178.010.04 ab/from/dès 8501(MKII): 1.178.010.07	74144 74193
13	1	Deckblech Cover plate Plaque inférieure	1.178.010.01	74141
14	1	Seitenteil rechts Side part right Montant droit	1.177.100.06	74510
15	2	Seitenabdeckung Side panel Garniture latérale	1.166.010.09	72103
16	4	Linsenzylinderschraube M4 x 10 Oval head screw M4 x 10 Vis goutte de suif M4 x 10	1.010.001.21	73701
17	1	Seitenteil links Side part left Montant gauche	1.177.100.05	74509
18	1	Tastenschalter Push-button switch Commutateur	1.178.221.01	74171
	3	Druckknopf Push-button Bouton poussoir	1.166.090.09	72105
19	1	Netzschalter kompl. Mains switch cplt. Interrupteur secteur compl.	1.011.100 ab/from/dès 8501(MKII): 1.011.102	74200 74202
20	3	Kippschalter Toggle switch Commutateur à bascule	1.011.121	74204
21	4	Drehknopf Knob Bouton tournant	1.177.100.10	74513
22	4	Drehknopf Knob Bouton tournant	1.068.700.23	74111
23	1	Tastenschalter Push-button switch Commutateur	1.178.300.03	74177

Index Index Index	Anzahl Quantity Quantité	Bezeichnung Description Désignation	Artikel Nr. Article nr. No. d'article	Bestell Nr. Order nr. No. de commar
	2	Druckknopf Push-button Bouton poussoir	1.166.090.09	72105
24	1	Doppel-Potentiometer Twin potmeter Potentiomètre double	1.178.090.02	74147
25	1	Bedienungsplatte kompl. Operating panel cplt. Plaque de commande compl.	1.178.265	74174
26	1	Print-Drehschalter 3-Kontakt PC rotary switch 3-contacts Rotateur 3-contacts	1.011.305	74238
27	1	Print-Drehschalter 4-Kontakt PC rotary switch 4-contacts Rotateur 4-contacts	1.011.306	74241
28	1	Print-Drehschalter 2-Kontakt PC rotary switch 2-contacts Rotateur 2-contacts	1.011.304	74244
29	1	Fussleiste kompl. Toe rail cplt. Garniture de pied compl.	1.068.711	74112
30	1	Boden kompl. Bottom cplt. Fond compl.	1.178.275	74176
31	2	Fuss hinten Foot rear Pied arrière	1.166.010.04	72100
	2	Fusseinlage Foot insert Pied caoutchouc enfichable	1.067.010.08	73832
32	2	Schraube M4 x 8 Screw M4 x 8 Vis M4 x 8	21.26.0455	73417
33	9	Schraube M4 x 6 Screw M4 x 6 Vis M4 x 6	1.010.003.21	74049
34	2	Schraube M4 x 12 Screw M4 x 12 Vis M4 x 12	21.13.0457	73429
		7		

Index Index Index	Anzahl Quantity Quantité	Bezeichnung Description Désignation	Artikel Nr. Article nr. No. d'article	Bestell Nr. Order nr. No. de commande
35	8	Schraube M4 × 6 Screw M4 × 6 Vis M4 × 6	21.26.0454	73416
	7 11.			

U

Index Index Index	Anzahl Quantity Quantité	Bezeichnung Description Désignation	Artikel Nr. Article nr. No. d'article	Bestell Nr. Order nr. No. de commande
35	8	Schraube M4 × 6 Screw M4 × 6 Vis M4 × 6	21.26.0454	73416
	-			
				*

Hersteller/Manufacturer/Fabricant

WILLI STUDER CH-8105 Regensdorf, Switzerland Althardstrasse 30

WILLI STUDER GmbH D-7827 Löffingen, Germany Talstrasse 7

Worldwide Distribution REVOX ELA AG CH-8105 Regensdorf, Switzerland Althardstrasse 146

