_					
Roll No.					

ANNA UNIVERSITY (UNIVERSITY DEPARTMENTS)

B.E. / B. Tech / B. Arch (Full Time) - END SEMESTER EXAMINATIONS, NOV/DEC 2021

COMPUTER SCIENCE AND ENGINEERING

V Semester CS6301 & MACHINE LEARNING

(Regulation 2018-Rusa)

Time: 3hrs Max.Marks: 100

CO 1	To understand the need for machine learning for various types of problem solving
CO 2	To know the mathematics involved in various machine learning algorithms
CO 3	To study the various supervised, semi-supervised and unsupervised learning algorithms in
	machine learning
CO 4	To learn about probabilistic models in machine learning
CO 5	To have a glimpse of the latest developments in machine learning

BL - Bloom's Taxonomy Levels

(L1 - Remembering, L2 - Understanding, L3 - Applying, L4 - Analysing, L5 - Evaluating, L6 - Creating)

PART- A (10 x 2 = 20 Marks) (Answer all Questions)

BL
<u>L2</u>
<u>L2</u>
<u>L2</u>
<u>L3</u>
<u>L2</u>
<u>L1</u>
<u>L5</u>
<u>L4</u>
<u>L1</u>
<u>L4</u>

PART- B (8 x 8 = 64 Marks) (Answer any 8 questions)

Q. No	Questions	Marks	СО	BL
11	Compare and contrast the Supervised learning, Unsupervised	8	<u>CO3</u>	<u>L3</u>
	learning, Semi supervised learning and Reinforcement learning with			
	an example.			

12	Apply the Candidate elimination algorithm for the following seque	ence	8	<u>CO1</u>	<u>L3</u>
	of training data. Read the Instances. Find S and G after each ste	ep.			
	Table:1				
	Action Author Thread Length Where				
	Skips known new Long Home				
	Reads unknown new Short Work				
	Skips unknown Old Long Home				
	Skips Known Old Long Home				
	Reads Known new Short Home				
	Skips known Old Long Work				
13	Find the Action class using naïve bayes classifier for the following	g	8	<u>C04</u>	<u>L4</u>
	Test data. Training data given in Table:1				
	?? Known New Short Work				
14	Compare MLP and RBF. Create a MLP/RBF network that solves	the	8	CO2	<u>L6</u>
	XOR function.				
15	Briefly explain the concept of ISOMAP.		8	CO3	<u>L1</u>
16	Explain the Concept of PCA. Apply PCA to the following set of		8	<u>CO3</u>	<u>L3</u>
	points: (4, 1), (2, 3), (5, 4), (1, 0).		8		
17	Explain the concept of Expectation maximization algorithm.			<u>CO4</u>	<u>L1</u>
18	Construct the KD tree from the following data: Suppose that we	nad	8	<u>CO5</u>	<u>L6</u>
	seven two-dimensional points to make a tree from: (6, 5), (1, 6), (6, 1), (7, 5), (2, 7), (3, 3), (5, 8).				
	For the following test point find the nearest neighbour (4.5, 3).				
19	Consider the following training set. Apply k-means clustering to t	his	8	CO4	<u>L3</u>
	data set for k=2. Simulate the k-means algorithm for cluster			<u> </u>	<u>==</u>
	assignments until convergence.				
	(1,2), (2,3), (3,3), (5,4), (6,5), (2,4), (6,6) and (7,6)				
20	Consider the dataset below to learn a decision tree which predi	cts if	8	<u>C05</u>	<u>L4</u>
	students result based on the following features: Studied, S				
	Cheated. Table:2				
	Studied Slept Cheated Result				
	Student 1 Yes No No Passed Student 2 Yes No Yes Failed				
	Student 2 Yes No Yes Failed Student 3 No Yes No Failed				
	Student 4 Yes Yes Yes Failed				
	Student 5 Yes Yes No Passed				
	a. What is the entropy H (Result)?				
	b. What is the entropy H (Result /Slept)?				
	c. What is the entropy H Passed / Studied)?				
	d. Draw the full decision tree that would be learned for	r this			
	dataset.				
21	What are the components of Reinforcement Learning? How to use the components of Reinforcement Learning?	se	8	<u>C05</u>	<u>L2</u>
22	Sarsa-Learning algorithm to fix the policy.		0	COF	1.4
22	Give the architecture of CNN. Explain how it works.		8	<u>CO5</u>	<u>L4</u>

PART- C (2 x 8 = 16 Marks)

Q. No	Questions	Marks	CO	BL
23	Design an application of your choice using Machine learning which specifies the following: a. Details of the application including assumptions b. How a human being would tackle the application c. Type of machine learning that is needed. d. Type of representation of the learned information e. The input and the expected output f. Identify the features to be used g. Choose the evaluation strategy	8	<u>CO1</u>	<u>L6</u>
24	Consider the following single unit neural network that receives two binary inputs $x1, x2 \in \{0, 1\}$ and computes a linear combination followed by a threshold activation function, namely, $\sigma(z) = \begin{cases} 1, & z \ge 0, \\ 0 & \text{otherwise.} \end{cases}$ The unit is illustrated below. We have chosen a bias term $b = 5$. Provide values for the two weights w1 and w2 that allow you to compute the NAND function. NAND NAND NAND	8	<u>C02</u>	<u>L5</u>