CS738: Advanced Compiler Optimizations

Foundations of Data Flow Analysis

Amey Karkare

karkare@cse.iitk.ac.in

http://www.cse.iitk.ac.in/~karkare/cs738 Department of CSE, IIT Kanpur

Agenda

- Intraprocedural Data Flow Analysis
 - ► We looked at 4 classic examples
 - ► Today: Mathematical foundations

Taxonomy of Dataflow Problems

- Categorized along several dimensions
 - the information they are designed to provide
 - the direction of flow
 - confluence operator
- ► Four kinds of dataflow problems, distinguished by
 - ▶ the operator used for confluence or divergence
 - data flows backward or forward

Taxonomy of Dataflow Problems

	U	\bigcap
Direction ↓		
Forward	RD	Av E
Backward	LV	VBE

Why Data Flow Analysis Works?

- Suitable initial values and boundary conditions
- Suitable domain of values
 - ▶ Bounded, Finite
- Suitable meet operator
- Suitable flow functions
 - monotonic, closed under composition
- ▶ But what is **SUITABLE** ?

Lattice Theory

Partially Ordered Sets

Posets

S: a set

<: a relation

 (S, \leq) is a **poset** if for $x, y, z \in S$

- \rightarrow $x \le x$ (reflexive)
- \blacktriangleright $x \le y$ and $y \le x \Rightarrow x = y$ (antisymmetric)
- ▶ $x \le y$ and $y \le z \Rightarrow x \le z$ (transitive)

Chain

- ▶ Linear Ordering
- ▶ Poset where every pair of elements is comparable
- ▶ $x_1 \le x_2 \le ... \le x_k$ is a chain of length k
- ▶ We are interested in chains of finite length

Observation

- Any finite nonempty subset of a poset has minimal and maximal elements
- Any finite nonempty chain has unique minimum and maximum elements

Semilattice

- ► Set S and meet ∧
- \triangleright $x, y, z \in S$
 - $ightharpoonup x \land x = x \text{ (idempotent)}$
 - \triangleright $x \land y = y \land x$ (commutative)
 - \blacktriangleright $x \land (y \land z) = (x \land y) \land z$ (associative)
- Partial order for semilattice
 - $ightharpoonup x \le y$ if and only if $x \land y = x$
 - ► Reflexive, antisymmetric, transitive

Border Elements

- ► Top Element (⊤)
 - $\blacktriangleright \ \forall x \in \mathcal{S}, x \land \top = \top \land x = x$
- ► (Optional) Bottom Element (⊥)
 - $\forall x \in S, x \land \bot = \bot \land x = \bot$

Familiar (Semi)Lattices

- ► Powerset for a set *S*, 2^S
- ► Meet ∧ is ∩
- ▶ Partial Order is
- ► Top element is *S*
- ► Bottom element is ∅

Familiar (Semi)Lattices Greatest Lower Bound (glb) ► Powerset for a set *S*, 2^S \triangleright $x, y, z \in S$ ► Meet ∧ is ∪ glb of x and y is an element g such that ▶ Partial Order is ⊇ ▶ $g \le x$ ▶ $g \le y$ ► Top element is ∅ ightharpoonup if $z \le x$ and $z \le y$ then $z \le g$ ▶ Bottom element is *S* Semi(?)-Lattice QQ ► We can define symmetric concepts \triangleright $x, y \in S$ ► ≥ order $ightharpoonup (S, \wedge)$ is a semilattice ► Join operation (V) ▶ Prove that $x \land y$ is glb of x and y. Least upper bound (lub)

Lattice

- ► (S, \(\lambda\), \(\forall\) is a lattice
 iff for each non-empty finite subset Y of S
 both \(\lambda\) Y and \(\forall\) Y are in S.
- ► (S, \land, \lor) is a complete lattice iff for each subset Y of S both $\land Y$ and $\lor Y$ are in S.

Lattice

- ightharpoonup Complete lattice (S, \land, \lor)
 - For every pair of elements x and y, both $x \land y$ and $x \lor y$ should be in S
 - ► Example : Powerset lattice
- ▶ We will talk about **meet** semi-lattices only
 - except for some proofs

Lattice Diagram

- Graphical view of posets
- ► Elements = the nodes in the graph
- ▶ If x < y then x is depicted lower than y in the diagram
- An edge between x and y (x lower than y) implies x < y and no other element z exists s.t. x < z < y (i.e. transitivity is excluded)

Lattice Diagram

Lattice Diagram for $(\{a, b, c\}, \cap)$

 $x \land y$ = the highest z for which there are paths downward from both x and y.

What if there is a large number of elements?

- ► Combine simple lattices to build a complex one
- Superset lattices for singletons

Combine to form superset lattice for multi-element sets

Product Lattice

- ▶ (S, \bigwedge) is product lattice of (S_1, \bigwedge_1) and (S_2, \bigwedge_2) when $S = S_1 \times S_2$ (domain)
 For (a_1, a_2) and $(b_1, b_2) \in S$ $(a_1, a_2) \bigwedge (b_1, b_2) = (a_1 \bigwedge_1 b_1, a_2 \bigwedge_2 b_2)$ $(a_1, a_2) \leq (b_1, b_2) \text{ iff } a_1 \leq_1 b_1 \text{ and } a_2 \leq_2 b_2$ $\leq \text{ relation follows from } \bigwedge$
- Product of lattices is associative
- ▶ Can be generalized to product of N > 2 lattices
- \triangleright $(S_1, \bigwedge_1), (S_2, \bigwedge_2), \dots$ are called component lattices

Product Lattice: Example

Height of a Semilattice

- ▶ Length of a chain $x_1 \le x_2 \le ... \le x_k$ is k
- Let $K = \max$ over lengths of all the chains in a semilattice
- ▶ Height of the semilattice = K 1

Data Flow Analysis Framework

- \triangleright (D, S, \land, F)
- ▶ D: direction Forward or Backward
- \triangleright (S, \land): Semilattice Domain and meet
- ightharpoonup F: family of transfer functions of type S o S (see next slide)

Transfer Functions

- ▶ F: family of functions $S \rightarrow S$. Must Include
 - functions suitable for the boundary conditions (constant transfer functions for Entry and Exit nodes)
 - ▶ Identity function *I*:

$$I(x) = x \quad \forall x \in S$$

► Closed under composition:

$$f,g\in F, f\circ g \Rightarrow h\in F$$

Monotonic Functions

- \triangleright (S, \leq): a poset
- ▶ $f: S \rightarrow S$ is monotonic iff

$$\forall x, y \in S \quad x \leq y \Rightarrow f(x) \leq f(y)$$

- Composition preserves monotonicity
 - ▶ If f and g are monotonic, $h = f \circ g$, then h is also monotonic

Monotone Frameworks

 $ightharpoonup (D, S, \bigwedge, F)$ is monotone if the family F consists of monotonic functions only

$$f \in F$$
, $\forall x, y \in S$ $x \leq y \Rightarrow f(x) \leq f(y)$

Equivalently

$$f \in F$$
, $\forall x, y \in S$ $f(x \land y) \leq f(x) \land f(y)$

► Proof? : QQ in class

Knaster-Tarski Fixed Point Theorem

- Let f be a monotonic function on a complete lattice (S, \land, \lor) . Define
 - ▶ $red(f) = \{v \mid v \in S, f(v) \le v\}$, pre fix-points
 - ightharpoonup ext $(f) = \{v \mid v \in S, f(v) \ge v\}$, post fix-points
 - $fix(f) = \{v \mid v \in S, f(v) = v\}$, fix-points

Then,

- ▶ $\land \operatorname{red}(f) \in \operatorname{fix}(f)$. Further, $\land \operatorname{red}(f) = \land \operatorname{fix}(f)$
- $\bigvee \operatorname{ext}(f) \in \operatorname{fix}(f)$. Further, $\bigvee \operatorname{ext}(f) = \bigvee \operatorname{fix}(f)$
- ► fix(f) is a complete lattice

Application of Fixed Point Theorem

- ightharpoonup f: S
 ightharpoonup S is a **monotonic** function
- $ightharpoonup (S, \wedge)$ is a **finite height** semilattice
- ightharpoonup T is the top element of (S, \land)
- ► Notation: $f^0(x) = x, f^{i+1}(x) = f(f^i(x)), \forall i \ge 0$
- ► The greatest fixed point of *f* is

$$f^k(\top)$$
, where $f^{k+1}(\top) = f^k(\top)$

Fixed Point Algorithm

```
// monotonic function f on a meet semilattice x := T; while (x \neq f(x)) x := f(x); return x;
```