Finding near-duplicates

Mining Massive Datasets

Deef Casles Castille

Prof. Carlos Castillo

Topic 08

Source for this deck

• Mining of Massive Datasets 2nd edition (2014) by Leskovec et al. (Chapter 3) [slides ch3]

Fast near-neighbor applications

- For documents
 - Find "legitimate" duplicates
 - Copies of the same press release or cable
 - Mirrors of the same documents, for efficiency
 - Find "illegitimate" duplicates
 - Plagiarism
- For baskets
 - Find customers who purchase similar items

Example: plagiarism detection

Fast near-neighbor challenges

- Too many documents to compare all pairs
 - OK to pay linear or log cost, but not quadratic
- Documents cannot fit in main memory
 - They are too large or too many
- Many small pieces of one document can appear out of order in another

Shingling (ngrams)

First step: shingling

Candidate pairs

those pairs of signatures that we need to test for similarity

The set of strings of length *k* that appear in the document

Signatures:

short integer vectors that represent the sets, and reflect their similarity

Naïve solution: feature selection over bag of words

- Document = set of terms
 - → Document = set of important terms
- Now, compute all pairs similarity
- Doesn't work for at least two reasons, why?

Naïve solution: feature selection over bag of words

- Document = set of terms
 - → Document = set of important terms
- Now, compute all pairs similarity
- Doesn't work for at least two reasons, why?
 - Doesn't preserve the ordering
 - Unimportant terms are also relevant (stylistic)

Shingles

- An ngram in a document is a sequence of n tokens that appears in the doc
- Shingles are either ngrams (word-level) or sequences of characters, depending on the application
- Character-level example: k=2; document D_1 = abcab Set of 2-shingles: $S(D_1)$ = {ab, bc, ca}
 - Option: Shingles as a bag (multiset), count ab twice:
 S'(D₁) = {ab, bc, ca, ab}

Example: 4-grams (shingle = 4 consecutive words)

```
E.g., 4-shingles of "My name is Inigo Montoya. You killed my father. Prepare to die":
```

- my name is inigo
 - name is inigo montoya
 - is inigo montoya you
 - inigo montoya you killed
 - montoya you killed my
 - you killed my father
 - killed my father prepare
 - my father prepare to
 - father prepare to die

Compressed representation of shingles

- To compress long shingles, we can hash them to (say) 4 bytes
- Represent a document by the set of hash values of its k-shingles
- Idea: Two documents could (rarely) appear to have shingles in common, when in fact only the hash-values were shared
- Example: k=2; document D_1 = abcab Set of 2-shingles: $S(D_1)$ = {ab, bc, ca} Hash the singles: $h(D_1)$ = {1, 5, 7}

Documents as sets of shingles

- A document is now a set of shingles
 - Dimensionality reduced from "words in a dictionary" to "number of distinct shingles"
 - Higher dimensionality but more sparse
- Working assumption
 - Documents that have lots of shingles in common have similar text, even if the text appears in different order
- Caveat: You must pick k large enough, or most documents will have most shingles
 - k = 5 is OK for short documents
 - k = 10 is better for long documents

Using shingles directly

- Suppose we need to find near-duplicate documents among million documents
- Naïvely, we would have to compute all pairwise
 Jaccard similarities ≈ 5*10¹¹ comparisons
- At 10⁵ secs/day and 10⁶ comparisons/sec, it would take 5 days
- For 10 million, it takes more than a year...

Min hashing

Next step: min hashing

Candidate pairs:

those pairs of signatures that we need to test for similarity

The set of strings of length *k* that appear in the document

Signatures:

short integer vectors that represent the sets, and reflect their similarity

Sets can be bit vectors

- Many similarity problems involve finding subsets with substantial intersection
- Remember we can encode sets using bit vectors
 - set intersection = bitwise AND
 - set union = bitwise OR

• Example:
$$C_1 = 10111$$
; $C_2 = 10011$

- Size of intersection = 3; size of union = 4,
- Jaccard similarity (not distance) = 3/4
- Distance: $d(C_1,C_2) = 1 (Jaccard similarity) = 1/4$

$$J(C_1, C_2) = \frac{|C_1 \cap C_2|}{|C_1 \cup C_2|}$$

From sets to boolean matrices

- Rows = items (shingles)
- Columns = sets (documents)
 - 1 in row e and column s if and only if e is a member of s
- Column similarity is the Jaccard similarity of the corresponding sets (rows with value 1)
- Typical matrix is very sparse!

Hashing set representations

- We don't want to compare c_1 , c_2 , they might be too large, slowing down the computation
- Instead, we compute signatures $h(c_1)$, $h(c_2)$ that are smaller in size than c_1 and c_2

Desired properties:

$$c_1 = c_2 \Rightarrow \text{Prob.}(h(c_1) = h(c_2)) \text{ is large}$$

 $c_1 \neq c_2 \Rightarrow \text{Prob.}(h(c_1) \neq h(c_2)) \text{ is large}$

Hashing set representations (cont.)

- Naïve approach (non-LSH-based):
 - 1) Compute signatures of columns: small summaries of columns
 - 2) Examine all pairs of signatures to find similar columns
 - Essential: Similarities of signatures and columns are related
 - 3) Optional: verify that columns with similar signatures are really similar

Warnings:

- Comparing all pairs may take too much time: Job for LSH
- These methods can produce false negatives, and even false positives (if the optional check is not made)

Hash function for Jaccard metric: min hashing

- Imagine the rows of the boolean matrix permuted under random but fixed permutation π
- Define a "hash" function $h_{\pi}(C)$ = the index of the first (in the permuted order π) row in which column C has value 1:
 - $-h_{\pi}(C)=\min_{\pi}\pi(C)$
- Use several (e.g., 100) independent hash functions (that is, permutations) to create a signature of a column

Minhash example

Exercise

Permutation π

Rows=Shingles, Columns=Documents

	_	D1	D2	D3	D4
3		1	О	1	O
2		1	0	O	1
1		0	1	O	1
4		О	1	O	1
7		0	1	О	1
5		1	0	1	0
6		1		1	

Signature matrix M

Index of the bit vector position where the first 1 occurs according to the ordering of the permutation

Answer in
Nearpod draw it
Code to be given in class

Minhash approximates Jaccard

- Choose a random permutation π
- Claim: $Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$
- Why?
 - Let X be a doc (set of shingles), $y \in X$ is a shingle
 - Then: $Pr[\pi(y) = min(\pi(X))] = 1/|X|$
 - It is equally likely that any $y \in X$ is mapped to the *min* element
 - Let **y** be s.t. $\pi(y) = \min(\pi(C_1 \cup C_2))$
 - Then either:

$$\pi(y) = \min(\pi(C_1))$$
 if $y \in C_1$ or $\pi(y) = \min(\pi(C_2))$ if $y \in C_2$

- So the prob. that **both** are true is the prob. $\mathbf{y} \in C_1 \cap C_2$
- $Pr[min(\pi(C_1))=min(\pi(C_2))]=|C_1 \cap C_2|/|C_1 \cup C_2|=sim(C_1, C_2)$

A single hash function is too coarse for our purposes

- We will use many permutations (say, 100)
- A signature is a collection of minhashes: one for each permutation
- Jaccard(c_1 , c_2) = E[minhashsim(c_1 , c_2)]
 - minhashsim(c1,c2) = #matches / #permutations

Example: three permutations

Permutation π			
2	4	3	
3	2	4	
7	1	7	
6	3	2	
1	6	6	
5	7	1	
/.	_	5	

Rows=	Shingle D2	es, Col D3	<mark>umns=</mark> D4	Documents
1	О	1	0	
1	0	0	1	
О	1	О	1	/
О	1	O	1	
0	1	О	1	Similar
1	0	1	0	Comple
1	0	1	0	Signatu

Signature matrix M

D1	D2	D3	D4
2	1	2	1
2	1	4	1
1	2	1	2

Similarities:

Complete **Signatures**

1-3	2-4	1-2	3-4
0.75	0.75 1.00	0	0
0.67	1.00	Ο	0

Minhash signatures

- Pick $\pi_1 \dots \pi_{100}$ random permutations of the rows (K=100)
- Think of sig(C) as a column vector
 - sig(C)[i] = according to the i-th permutation, the index of the first row that has a 1 in column C
 - $-sig(C)[i] = min(\pi_i(C))$
- The signature or "sketch" of document C has fixed size!
 - We achieved our goal: we "compressed" long bit vectors into short signatures

Implementation

- Permuting rows even once is prohibitive
- Create $\pi_1 \dots \pi_{100}$ by using K = 100 hash functions k_i
 - Ordering of $\{1,2,...,n\}$ under k_i (computing h(1), h(2), ..., h(n) and sorting in increasing order) gives a random permutation!
- One-pass implementation
 - For each column \boldsymbol{C} and hash function \boldsymbol{k}_i keep a variable for the min-hash value
 - Initialize all $sig(C)[i] = \infty$
 - Keep the min hash value in a row containing a 1:
 - Suppose row j has 1 in column C
 - Then for each k_i if $k_i(j) < sig(C)[i]$, then $sig(C)[i] \leftarrow k_i(j)$

Summary

Things to remember

- Shingling: Convert documents to sets
 - We used hashing to assign each shingle an ID
- Min-Hashing: Convert large sets to short signatures, while preserving similarity
 - We used similarity preserving hashing to generate signatures with property $Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$
 - We used hashing to get around generating random permutations

Exercises for TT08-TT09

- Mining of Massive Datasets 2nd edition (2014) by Leskovec et al.
 - Exercises 3.1.4 (Jaccard similarity)
 - Exercises 3.2.5 (Shingling)
 - Exercises 3.3.6 (Min hashing)
 - Exercises 3.4.4 (Locality-sensitive hashing)