Lecture 6: Sensorless Control

ELEC-E8402 Control of Electric Drives and Power Converters (5 ECTS)

Marko Hinkkanen

Aalto University School of Electrical Engineering

Spring 2016

Learning Outcomes

After this lecture and exercises you will be able to:

- Explain the voltage-model estimator
- Explain the basic principles of high-frequency signal-injection methods

Rotor-Position Estimation Methods

- Fundamental-excitation-based methods
 - Voltage model, reduced-order observer, or full-order observer
 - Rely on the mathematical model of the motor
 - Sensitive to parameter errors at low speeds
- Signal-injection methods
 - Pulsating excitation signal in estimated rotor coordinates (or rotating excitation signal in stator coordinates)
 - Dynamic performance may be poor
 - Cause additional losses and noise
- Combined methods

A PM-SyRM will be used as an example motor in this lecture, but methods are quite similar for other AC motors as well.

Outline

Fundamental-Excitation-Based Methods

Signal-Injection Method

Combined Method

Typical Sensorless Control System

- Fast current-control loop
- Position observer is often implemented in estimated rotor coordinates
- Dead-time effect and power-device voltage drops are compensated for in the PWM
- Torque and speed controllers are similar to those in sensored drives

The inverter nonlinearities can be approximately compensated for as $u'_{\text{a,ref}} = u_{\text{a,ref}} + \Delta u \operatorname{sign}(i_{\text{a}})$, where $u'_{\text{a,ref}}$ is the compensated voltage reference and Δu is the compensation magnitude (typically a few volts). The compensation is used for the b- and c-phases as well.

Voltage Model in Stator Coordinates

Stator flux estimator

$$\frac{d\hat{\psi}_{s}^{s}}{dt} = \underline{u}_{s}^{s} - \hat{R}_{s}\underline{i}_{s}^{s} \Rightarrow
\hat{\psi}_{s}^{s} = \int (\underline{u}_{s}^{s} - \hat{R}_{s}\underline{i}_{s}^{s})dt$$

Flux estimate

$$\underline{\hat{\psi}}_{\mathsf{s}}^{\mathsf{s}} = \hat{\psi}_{\alpha} + \mathsf{j}\hat{\psi}_{\beta} = \hat{\psi}_{\mathsf{s}}\mathsf{e}^{\mathsf{j}\hat{\vartheta}}$$

Flux angle estimate

$$\hat{artheta} = rctan\left(\hat{\psi}_eta/\hat{\psi}_lpha
ight)$$

Rotor speed in steady state

$$\hat{\omega}_{\mathsf{m}} = \frac{\mathsf{d}\hat{artheta}}{\mathsf{d}t}$$

► How to obtain the rotor angle $\hat{\vartheta}_{m}$?

Properties of the Voltage Model

- Estimation-error dynamics are marginally stable (pure integration)
- Flux estimate will drift away from the origin due to any offsets in measurements
- ▶ Very sensitive to \hat{R}_s and inverter nonlinearities at low speeds
- Good accuracy at higher speeds despite the parameter errors (but pure integration has been remedied)
- ► Can be improved with suitable feedback ⇒ observer
- Can be implemented in estimated rotor coordinates

Real-Time Simulation of Motor Equations

 State estimator in estimated rotor coordinates

$$\frac{\mathrm{d}\hat{\underline{\psi}}_{s}}{\mathrm{d}t} = \underline{u}_{s} - \hat{R}_{s}\hat{\underline{i}}_{s} - j\hat{\omega}_{m}\hat{\underline{\psi}}_{s}$$

Stator current components

$$egin{aligned} \hat{\emph{i}}_{\mathsf{d}} &= (\hat{\psi}_{\mathsf{d}} - \hat{\psi}_{\mathsf{f}})/\hat{\emph{L}}_{\mathsf{d}} \ \hat{\emph{i}}_{\mathsf{q}} &= \hat{\psi}_{\mathsf{q}}/\hat{\emph{L}}_{\mathsf{q}} \end{aligned}$$

Current vector

$$\hat{\underline{i}}_{s} = \hat{i}_{d} + j\hat{i}_{q}$$

Rotor position estimator

$$rac{\mathsf{d} \hat{artheta}_\mathsf{m}}{\mathsf{d} t} = \hat{\omega}_\mathsf{m}$$

- How to obtain the speed estimate?
- Could we improve this open-loop flux estimator?

Speed-Adaptive Observer

Adjustable model

$$\begin{split} \frac{\mathrm{d}\hat{\underline{\psi}}_{\mathrm{s}}}{\mathrm{d}t} &= \underline{u}_{\mathrm{s}} - \hat{R}_{\mathrm{s}}\hat{\underline{i}}_{\mathrm{s}} - \mathrm{j}\hat{\omega}_{\mathrm{m}}\hat{\underline{\psi}}_{\mathrm{s}} \\ &+ \underline{k}_{\mathrm{1}}(\hat{i}_{\mathrm{d}} - i_{\mathrm{d}}) + \underline{k}_{\mathrm{2}}(\hat{i}_{\mathrm{q}} - i_{\mathrm{q}}) \end{split}$$

Stator current components

$$egin{aligned} \hat{\emph{l}}_{d} &= (\hat{\psi}_{d} - \hat{\psi}_{f})/\hat{\emph{L}}_{d} \ \hat{\emph{l}}_{q} &= \hat{\psi}_{q}/\hat{\emph{L}}_{q} \end{aligned}$$

Stator current vector

$$\hat{\underline{i}}_{\mathsf{d}} = \hat{i}_{\mathsf{d}} + j\hat{i}_{\mathsf{q}}$$

Angle estimator

$$rac{\mathsf{d}\hat{ec{artheta}}_\mathsf{m}}{\mathsf{d}t}=\hat{\omega}_\mathsf{m}$$

Speed-adaptation law

$$\hat{\omega}_{\mathsf{m}} = k_{\mathsf{p}}(\hat{i}_{\mathsf{q}} - i_{\mathsf{q}}) + k_{\mathsf{i}} \int (\hat{i}_{\mathsf{q}} - i_{\mathsf{q}}) dt$$

drives $\hat{i}_{q} - i_{q}$ to zero

Also the d-component could be used in speed adaptation

Outline

Fundamental-Excitation-Based Methods

Signal-Injection Method

Combined Method

Currents in the d and q Directions

$$\underline{i}_{s}=i_{d}+j0$$

$$\underline{i}_{\mathrm{s}} = i_{\mathrm{d}} + \mathrm{j}0$$
 $\underline{\psi}_{\mathrm{s}} = L_{\mathrm{d}}i_{\mathrm{d}} + \psi_{\mathrm{f}}$

$$\underline{i}_s = 0 + ji_q$$

$$\underline{i}_{s} = 0 + ji_{q}$$

$$\underline{\psi}_{s} = jL_{q}i_{q} + \psi_{f}$$

Position Estimation Error

- Actual rotor coordinates are marked with the superscript r
- Controller operates in estimated rotor coordinates (no superscript)
- Some estimation error exists

$$\tilde{\vartheta}_{\mathsf{m}} = \hat{\vartheta}_{\mathsf{m}} - \vartheta_{\mathsf{m}}$$

This leads to control errors

$$\underline{\emph{i}}_{s}^{r} = \underline{\emph{i}}_{s} \, e^{j \widetilde{\vartheta}_{m}} \qquad \underline{\psi}_{s}^{r} = \underline{\psi}_{s} \, e^{j \widetilde{\vartheta}_{m}}$$

Signal Injection: Alternating Excitation Signal

- Subscript i refers to injected high-frequency components
- Excitation voltage

$$u_{\mathsf{di}} = u_{\mathsf{i}} \cos(\omega_{\mathsf{i}} t)$$

is injected in the d-axis

$$\underline{u}'_{\mathsf{s},\mathsf{ref}} = \underline{u}_{\mathsf{s},\mathsf{ref}} + u_{\mathsf{di}}$$

► Typical excitation frequencies $\omega_i/(2\pi) = 500...1000 \text{ Hz}$

 Injected flux-linkage components in estimated rotor coordinates

$$\psi_{\mathsf{di}} = rac{u_\mathsf{i}}{\omega_\mathsf{i}} \, \mathsf{sin}(\omega_\mathsf{i} t) \ \psi_{\mathsf{qi}} = 0$$

where $R_s = 0$ and $\omega_m = 0$ is assumed

 Injected flux components in actual rotor coordinates

$$egin{aligned} \psi_{\mathsf{di}}^{\mathsf{r}} &= rac{u_{\mathsf{i}}}{\omega_{\mathsf{i}}} \sin(\omega_{\mathsf{i}} t) \cos ilde{artheta}_{\mathsf{m}} \ \psi_{\mathsf{qi}}^{\mathsf{r}} &= rac{u_{\mathsf{i}}}{\omega_{\mathsf{i}}} \sin(\omega_{\mathsf{i}} t) \sin ilde{artheta}_{\mathsf{m}} \end{aligned}$$

 Resulting current components in actual rotor coordinates

$$egin{aligned} \emph{\emph{i}}_{ extsf{di}}^{ extsf{r}} &= \psi_{ extsf{di}}^{ extsf{r}} / \mathit{L}_{ extsf{d}} \ \emph{\emph{\emph{i}}}_{ extsf{qi}}^{ extsf{r}} &= \psi_{ extsf{qi}}^{ extsf{r}} / \mathit{L}_{ extsf{q}} \end{aligned}$$

 Component in the estimated q-direction

$$egin{aligned} i_{\mathsf{q}\mathsf{i}} &= -i_{\mathsf{d}\mathsf{i}}^{\mathsf{r}} \sin ilde{artheta}_{\mathsf{m}} + i_{\mathsf{q}\mathsf{i}}^{\mathsf{r}} \cos ilde{artheta}_{\mathsf{m}} \ &= rac{u_{\mathsf{i}}}{2\omega_{\mathsf{i}}} rac{L_{\mathsf{d}} - L_{\mathsf{q}}}{L_{\mathsf{d}} L_{\mathsf{q}}} \sin(2 ilde{artheta}_{\mathsf{m}}) \sin(\omega_{\mathsf{i}} t) \end{aligned}$$

• i_{qi} is an amplitude modulation of the carrier signal by the envelope $\sin(2\tilde{\vartheta}_m)$ Demodulation

$$egin{aligned} i_{\mathsf{q}\mathsf{i}} \sin(\omega_{\mathsf{i}} t) \ &= rac{u_{\mathsf{i}}}{4\omega_{\mathsf{i}}} rac{L_{\mathsf{d}} - L_{\mathsf{q}}}{L_{\mathsf{d}} L_{\mathsf{q}}} \sin(2 ilde{artheta}_{\mathsf{m}}) [1 - \sin(2\omega_{\mathsf{i}} t)] \end{aligned}$$

Low-pass filtering

$$egin{aligned} \epsilon &= \mathsf{LPF}\left\{i_{\mathsf{qi}}\sin(\omega_{\mathsf{i}}t)
ight\} \ &= rac{u_{\mathsf{i}}}{4\omega_{\mathsf{i}}}rac{L_{\mathsf{d}}-L_{\mathsf{q}}}{L_{\mathsf{d}}L_{\mathsf{q}}}\sin(2 ilde{artheta}_{\mathsf{m}}) \end{aligned}$$

▶ Error signal ϵ is roughly proportional to the position estimation error

Outline

Fundamental-Excitation-Based Methods

Signal-Injection Method

Combined Method

Sensorless Control System With Signal Injection

- Excitation voltage u_{di} is nonzero only at low speeds
- Speed-adaptive observer is augmented to exploit information from signal injection

Speed-Adaptive Observer Augmented With Signal Injection

Error signal calculation

Delay and cross-saturation compensations are omitted in the figure for simplicity

Adaptive observer (augmented with error signal)

Experimental Results: 6.7-kW SyRM

- SyRM drive is operated in the torque-control mode
- Torque reference is reversed
- Speed reference of the load machine is kept at 0

- SyRM drive is operated in the speed-control mode
- Speed reference is kept at 0
- ► Load-torque steps:

$$0 \to \textit{T}_N \to -\textit{T}_N \to \textit{T}_N \to 0$$

Sensorless Control: Problems and Properties

- Sources of errors in the position estimation
 - Parameter errors: Â_s is important at low speeds
 - Accuracy of the stator voltage (inverter nonlinearities)
- Sustained operation at zero stator frequency is not possible (under the load torque) unless signal injection is applied
- Most demanding applications still need a speed or position sensor

Other Control Challenges

- High saliency ratio and low PM flux
- High stator frequency, which increases sensitivity to
 - Time delays
 - Discretization
- Parameter variations
 - Magnetic saturation
 - Effect of temperature variations on the stator resistance and PM flux
 - Skin effect (in form-wounded stator windings)
- Identification of the motor parameters
 - Self-commissioning during the drive start-up
 - Finite-element analysis?

Further Reading

- ► F. Blaabjerg et al., "Improved modulation techniques for PWM-VSI drives," *IEEE Trans. Ind. Electron.*, vol. 44, 1997.
- M. Corley and R.D. Lorenz, "Rotor position and velocity estimation for a salient-pole permanent magnet synchronous machine at standstill and high speeds," *IEEE Trans. Ind. Applicat.*, vol. 43, 1998.
- M. Hinkkanen et al. "A combined position and stator-resistance observer for salient PMSM drives: design and stability analysis," *IEEE Trans. Pow. Electron.*, vol. 27, 2012.
- ► T. Tuovinen and M. Hinkkanen, "Adaptive full-order observer with high-frequency signal injection for synchronous reluctance motor drives," IEEE J. Emerg. Sel. Topics Power Electron., vol. 2, 2014.