11. Übung zur Vorlesung

Differential- und Integralrechnung für Informatiker

(A 46)

Man bestimme alle lokalen Extremstellen, deren Art (Minimal- oder Maximalstelle) sowie die entsprechenden lokalen Extremwerte der folgenden Funktionen:

- a) $f: \mathbb{R}^3 \to \mathbb{R}, f(x, y, z) = x^3 3x + y^2 + z^2,$
- b) $f: \mathbb{R}^3 \to \mathbb{R}, f(x, y, z) = z^2(1 + xy) + xy,$
- c) $f: \mathbb{R}^2 \to \mathbb{R}, f(x,y) = x^3 + 3xy^2 15x 12y,$
- d) $f: (-1, \infty) \times (1, \infty) \to \mathbb{R}, f(x, y) = (x + 1)(y 1) + \frac{1}{x+1} + \frac{1}{y-1}$.

(A 47)

Sei $f: \mathbb{R}^3 \to \mathbb{R}$ definiert durch $f(x, y, z) = x^3 + y^2 + z^2 + 12xy + 2z$. Man bestimme

- a) $H_f(x, y, z)$ für einen beliebigen Punkt $(x, y, z) \in \mathbb{R}^3$,
- b) alle Vektoren $(x, y, z) \in \mathbb{R}^3$ mit der Eigenschaft, dass $H_f(x, y, z)$ negativ definit ist.
- c) Hat f globale Extremstellen?

(A 48) (Gemischte partielle Ableitungen zweiter Ordnung)

Sei $f \colon \mathbb{R}^2 \to \mathbb{R}$ definiert durch

$$f(x,y) = \begin{cases} \frac{xy^3}{x^2 + y^2}, & (x,y) \neq 0_2 \\ 0, & (x,y) = 0_2. \end{cases}$$

a) Man zeige, dass f auf \mathbb{R}^2 zweimal partiell differenzierbar sowohl nach (x,y) als auch nach (y,x) ist, und bestimme die partiellen Ableitungen zweiter Ordnung $\frac{\partial^2 f}{\partial y \partial x}$ and $\frac{\partial^2 f}{\partial x \partial y}$. Man beachte, dass

$$\frac{\partial^2 f}{\partial u \partial x}(0_2) \neq \frac{\partial^2 f}{\partial x \partial y}(0_2)$$

ist.

b) Man zeige, dass die Funktionen $\frac{\partial^2 f}{\partial y \partial x}$ und $\frac{\partial^2 f}{\partial x \partial y}$ in 0_2 nicht stetig sind.