

National University of Computer & Emerging Sciences, Karachi Spring-2020 CS-Department Final Examination

29th June 2020, 9:00 am - 12:30 pm

Course Code: MT 224	Course Name: Differential Equations (Cal II)
Instructor Name /Ms. Fareeha Sultan, Ms. Amber Shaikh, and Ms. Javeria	
Iftikhar	
Student Roll No:	Section No:

Instructions:

- Solve all questions by your own handwriting and then scan and save as pdf.
- Read each question completely before answering it. There are 8 questions and 3 pages.
- All the answers must be solved according to the sequence given in the question paper.

Time: 180 minutes. Total Marks: 100

**Important: Use the last non zero digit of your id, where ever "a" is given in the equations.

For example:

- If your id is 19k-2036, use 6 in place of a.
- If your id is 19k-2030, use 3
- If your id is 19k-2300, use 3
- If the id is 19k-2000, use 2

Q1.

a) Use the substitution u = xy and take its derivative to solve the given differential equation for "y" {HINT: Use Product Rule for differentiation of 'u'}. [5]

$$y + x \frac{dy}{dx} = e^{x(1+y)}$$

- b) A body at a temperature of 50° F is placed outdoors where the temperature is 100° F. If after 5 minutes the temperature of the body is 60° F, find [5]
 - i. How long it will take the body to reach a temperature of 75^0F and
 - ii. The temperature of the body after 20 minutes.

Q2.

a) Solve:

$$y' - \frac{3}{x}y = x^4y^{1/3}$$
 ; $y(1) = 0$ [6]

b) Solve:

$$(x \cos x)dx - (1 - 6y^5)dy = 0$$
 [4]

Q3.

a) Find Laplace transform of

$$f(t) = e^{-t}Sin(\mathbf{a}t + t)$$
 [8]

b) Find Inverse Laplace Transform of

$$\frac{6s+3}{s^4+4s^2+3}$$
 [7]

Q4.

a) Solve the given differential equation by method of undetermined coefficients.

[10]

$$4y''' - 4y'' - 3y' = 2t + 5 - e^{at},$$

$$y(0) = y'(0) = y''(0) = 0$$

b) Solve the given differential equations by Variation of parameters method.

[10]

$$y'' + 4y' + 3y = \frac{9x^2}{e^{ax}}$$

Q5.

a) Solve the following differential equation by any method.

[10]

$$x^2y'' - 5xy' + 8y = x^6 + x^a, \ y\left(\frac{1}{2}\right) = 0, y'\left(\frac{1}{2}\right) = 0;$$

"a" cannot be equal to 2. Please use a= 3 if you are getting a=2 only for this question

b) Find a second solution y_2 of given differential equation by formula derived from reduction of order method.

[5]

$$3x^2y'' + 6xy' + y = 0;$$
 $y_1 = x^{-1/2} Cos(\frac{\sqrt{3}}{6}lnx)$

Q6. Use sigma notation to write the Taylor series.

[5]

$$f(x) = e^{ax}; \quad x_0 = \ln 3$$

Q7.

a) Find all the possible second order partial derivatives of f(x, y) at $P(\mathbf{a}, 1)$. [5]

$$f(x,y) = x^3 e^y + y^3 \cos\sqrt{x}$$

b) Let $r = ax^2y + y^2 + yz^2$, $x = \rho sin\varphi cos\theta$, $y = \rho sin\varphi sin\theta$, $z = \rho cos\varphi$, use appropriate chain rule to find $\frac{\partial r}{\partial \rho}$, $\frac{\partial r}{\partial \theta}$, and $\frac{\partial r}{\partial \varphi}$. [6]

Q8.

a) Locate all relative maxima, minima, and saddle points, if any. [7]

$$f(x,y) = 3x^2y + y^3 - 3x^2 - 3y^2 + 2$$

b) Evaluate the iterated integrals. [7]

$$\int_{\mathbf{a}}^{3} \int_{0}^{2} axy e^{x^{2}y} dx dy$$

GOOD LUCK