Contents

1	Multivariable Calculus				
	1.1	Linear Algebra	3		
		Derivative			

Chapter 1

Multivariable Calculus

1.1 Linear Algebra

1.1.1 Vector Spaces

Definition (Normed vector space): Let V be a vector space. A **norm** is a real valued function $\|\cdot\|:V\to\mathbb{R}$ which has the following properties

- 1. $\forall x \in V, ||x|| > 0.$
- 2. $||x|| = 0 \implies x = 0$.
- 3. $\forall x \in V \ \forall \alpha \in \mathbb{F}, \ \|\alpha x\| = |\alpha| \ \|x\|.$
- 4. $\forall x, y \in V \|x + y\| \le \|x\| + \|y\|$.

Each normed vector space induces a metric space (V, d) where d(x, y) = ||y - x||.

Theorem 1.1. In every normed space $(V, \|\cdot\|)$ we have

$$|||v|| - ||w||| \le ||v - w||$$

Hence the norm is Lipschitz continuous.

Definition: Assume V is a vector space and let $\|\cdot\|_1$, $\|\cdot\|_2$ be two norms for V. They are said to be equivalent when

$$\exists c_1, c_2 > 0 \ \forall x: \qquad c_1 \|x\|_1 \le \|x\|_2 \le c_2 \|x\|$$

To check if the above definition is indeed an equivalence relation, we must show that following:

Reflexive $\|\cdot\|_1 \sim \|\cdot\|_1$.

 $\mathbf{Symmetric} \ \left\| \ \cdot \ \right\|_1 \sim \left\| \ \cdot \ \right\|_2 \implies \left\| \ \cdot \ \right\|_2 \sim \left\| \ \cdot \ \right\|_1.$

$$\textbf{Transitive} \ \|\cdot\|_1 \sim \|\cdot\|_2 \,, \ \|\cdot\|_2 \sim \|\cdot\|_3 \implies \|\cdot\|_1 \sim \|\cdot\|_3.$$

Remark 1. Equivalent norms induce equivalent metrics, hence they induce the same topology.

Theorem 1.2. All norms defined on a finite dimensional vector space V are equivalent.

Proof. Let $\|\cdot\|$ be an arbitrary norm on V and $\{e_1, e_2, \ldots, e_n\}$ be a basis of V. Let $\|\cdot\|_2$ be L_2 -norm (Euclidean norm). It will suffice to show $\|\cdot\| \sim \|\cdot\|_2$. Let

$$M = \max(\|e_1\|, \dots, \|e_n\|)$$

Take $x \in V$, writing $x = \sum_{i=1}^{n} \xi_i e_i$ we have:

$$||x|| = \left\| \sum_{i=1}^{n} \xi_i e_i \right\| \le \sum_{i=1}^{n} |\xi_i| \, ||e_i|| \le M\sqrt{n} \, ||x||_2$$

Taking $c_2 = M\sqrt{n}$ proves the right inequality. For the left inequality we need the following lemma

Lemma 1.3. If V is a normed vector space with $\|\cdot\|_2$, as defined above, is viewed as metric space $(V, \|\cdot\|_2)$ then $\|\cdot\| : V \to \mathbb{R}$ is continuous.

Proof. Let $x_0 \in V$ and M be defined as above. For any $\epsilon > 0$ consider $\delta = \frac{\epsilon}{M\sqrt{n}}$ then if $\|x - x_0\|_2 < \delta$

$$|||x|| - ||x_0||| \le ||x - x_0|| \le M\sqrt{n} \, ||x - x_0|| \le \epsilon$$

Now consider the sphere of radius r=1 centered at 0, $S_1(0)=S_1=\{x\in V:\|x\|_2=1\}$. One can show that S is compact. Therefore, $\|x\|$ assumes its minimum on S. Let $a=\|x_0\|$ be the minimum. Since $0\notin S$ then a>0. By letting $y=x/\|x\|_2$, we have $y\in S$ and thus $a\leq \|y\|$ which is

$$a \|x\|_2 \le \|x\|$$

Taking $c_1 = a$ proves the theorem.

Example 1.1. The closed unit ball in the infinite dimensional vector space $C([0,1], \mathbb{R})$ with $||f|| = \max f(x)$ is not compact. Take $f_n(x) = x^n$. Obviously $||f_n|| = 1$, however f_n doesn't uniformly converge and hence f_n doesn't have a limit in $C([0,1], \mathbb{R})$ with the max norm. Consider the following norm

$$||f||_I = \int_0^1 |f(x)| \, \mathrm{d} x$$

Note that $\|\cdot\|_I$ and $\|\cdot\|_{\max}$ are not equivalent. Let g(x)=0 for all $x\in[0,1]$. Then

$$||f_n - g||_I = \frac{1}{n+1} \to 0 \quad \text{as } n \to \infty.$$

Definition (Banach space): A normed vector space V that is complete is a **Banach space**. A **Hilbert Space** is a Banach space whose norm is induced by an inner product.

Corollary 1.4. Any finite dimensional normed vector space V over a normed complete field \mathbb{F} is a Banach space.

1.1.2 Linear Maps

Let V and W be a vector spaces over \mathbb{F} . A map $T:V\to W$ is **linear** if

$$T(x + \lambda y) = T(x) + \lambda T(y)$$

for all $x, y \in V$ and $\lambda \in \mathbb{F}$.

Definition: Let $(V, \|\cdot\|_V)$ and $(W, \|\cdot\|_W)$ be normed spaces then, a linear transformation $T: V \to W$ is **bounded** if there exists a constant C > 0 such that

$$||Tv||_W \le C \, ||v||_V$$

for all $v \in V$. We denote the set of all linear map from $V \to W$ as $\mathcal{L}(V, W)$ and the set of all bounded linear maps as $\mathcal{B}(V, W)$. If $T \in \mathcal{L}(V, W)$ is bijective such that $T^{-1} \in \mathcal{L}(V, W)$, then T is called an **isomorphism** and V, W are **isomorphic**. An operator $T \in \mathcal{L}(V, W)$ is called **isometric** if $||Tv||_W = ||v||_V$ for all $v \in V$.

Definition: If $(V, \|\cdot\|_V)$, $(W, \|\cdot\|_W)$ are normed spaces then the **operator norm** of a linear transformation $T: V \to W$ is

$$||T|| = \sup \left\{ \frac{||Tv||_W}{||v||_V} \middle| v \neq 0 \right\}$$

Proposition 1.5. Let $T: U \to V$ and $T': V \to W$ be two linear transformations.

$$||T' \circ T|| \le ||T|| \, ||T'||$$

Proof. for an arbitrary non-zero $x \in U$

$$||T' \circ T(x)||_W \le ||T'|| ||Tx||_V \le ||T'|| ||T|| ||x||_U$$

which implies

$$||T' \circ T|| \le ||T|| \, ||T'||$$

Theorem 1.6. Let $(V, \|\cdot\|_V)$ and $(W, \|\cdot\|_W)$ be normed spaces and $T: V \to W$ be a linear transformation. The following are equivalent

- 1. ||T|| is finite.
- 2. T is bounded.
- 3. T is Lipschitz continuous.
- 4. T is continuous at a point.
- 5. $\sup_{\|v\|_{V}=1} \|Tv\|_{W} < \infty$.

Proof. item $1 \Rightarrow$ item 2: Obviously

$$\frac{\|Tv\|_W}{\|v\|_V} \le \|T\|$$

$$\implies \|Tv\|_W \le \|T\| \|v\|_V$$

note that if v = 0 then Tv = 0 as well and thus the last inequality holds for all $v \in V$. item $2 \Rightarrow$ item 3:

$$||Tv - Tu||_W = ||T(u - v)||_W \le C ||u - v||_V$$

item $3 \Rightarrow \text{item } 4$: Trivial.

item $4 \Rightarrow$ item 5: Let T be continuous at $u \in V$. Then there is a $\delta > 0$ such that

$$||v - u|| < \delta \implies ||Tv - Tu||_W = ||T(v - u)||_W < 1$$

Now for an arbitrary non-zero v we have

$$\left\| \left(\frac{\delta v}{2 \left\| v \right\|_{V}} + u \right) - u \right\|_{V} < \delta$$

Therefore

$$\left\| T \left(\frac{\delta v}{2 \left\| v \right\|_{V}} \right) \right\|_{W} < 1$$

$$\left\| T \left(\frac{v}{\left\| v \right\|_{V}} \right) \right\|_{W} < \frac{2}{\delta}$$

item $5 \Rightarrow$ item 1: Let $v \in V$ be an arbitrary vector. Then

$$\sup \left\| T \left(\frac{v}{\|v\|_V} \right) \right\|_W < \infty$$

$$\implies \sup \frac{\|Tv\|_W}{\|v\|_W} < \infty$$

Theorem 1.7. If V is a finite dimensional normed vector space then any linear transformation $T: V \to W$ is continuous.

Proof. Since V is finite dimensional, according to Theorem 1.2, any two norms are equivalent. Hence, take $\|\cdot\|_2$ to be Euclidean norm over a basis $\{e_1, \ldots, e_n\}$. Let x be such that $\|x\|_2 < \delta$ for some $\delta > 0$. Therefore, $|\xi_i| < \delta^2$

$$||Tx||_W = \left\| \sum \xi_i T(e_i) \right\|_W \le \sum |\xi_i| \, ||T(e_i)||_W \le \delta^2 K$$

where $K = \max ||T(e_i)||_W$. By letting $\delta = \sqrt{\frac{\epsilon}{K}}$ we proved continuity at 0 and hence the continuity by Theorem 1.6.

Theorem 1.8. For two normed vector spaces $V, W, (\mathcal{B}(V, W), ||T||)$ is a normed vector space. Moreover, it is a Banach space when W is a Banach space.

Proof. Clearly $\mathcal{B}(V,W)$ is a vector space. For its norm ||T|| we have

- 1. $||T|| \ge 0$ by definition.
- 2. if $\alpha \in \mathbb{F}_W$ then

$$\|\alpha T\| = \sup\left\{\frac{\|(\alpha T)v\|_W}{\|v\|_V}\bigg|v \neq 0\right\} = |\alpha|\sup\left\{\frac{\|Tv\|_W}{\|v\|_V}\bigg|v \neq 0\right\} = |\alpha|\|T\|$$

3. for the triangle inequality

$$||T_1 + T_2|| = \sup \left\{ \frac{||(T_1 + T_2)v||_W}{||v||_V} \right\}$$

$$\leq \sup \left\{ \frac{||T_1v||_W + ||T_2v||_W}{||v||_V} \right\}$$

$$= \sup \left\{ \frac{||T_1v||_W}{||v||_V} \right\} + \sup \left\{ \frac{||T_2v||_W}{||v||_V} \right\}$$

$$= ||T_1|| + ||T_2||$$

Suppose W is a Banach space and $\{T_i\} \in \mathcal{B}(V,W)$ is a Cauchy sequence. Then for all $v \in V$

$$\forall \epsilon \exists N \text{ s.t. } m, n > N \implies ||T_m v - T_n v||_W \le ||T_m - T_n|| < \epsilon$$

 $\{T_iv\}$ is a Cauchy sequence. Since W is complete then $T_iv \to Tv$ for some function T. We claim that T is a bounded linear map and is the limit of $T_i \to T$.

$$T(v + cu) = \lim_{i \to \infty} T_i(v + cu) = \lim_{i \to \infty} T_i v + cT_i u$$
$$= Tv + cTu$$

Note that $||T_m| - ||T_n||| \le ||T_m - T_n||$ and hence $||T_i||$ is a Cauchy in sequence in \mathbb{R} that has a limit t. There exists a N such that $|||T_n| - t|| < 1$ for all $n \ge N$.

$$\frac{\|Tv\|_W}{\|v\|_V} = \lim_{i \to \infty} \frac{\|T_i v\|_W}{\|v\|_V} < t + 1$$

hence T is bounded and $T \in B(V, W)$. Finally, we show that $T_i \to T$. For an arbitrary $v \neq 0$ and $\epsilon > 0$ there exist N such that

$$n \geq N \implies \|T_i v - T v\|_W < \epsilon \|v\|_V$$

which means that

$$||T_i - T|| = \sup \frac{||T_i v - Tv||_W}{||v||_V} < \epsilon$$

Therefore $T_i \to T$ as desired.

Theorem 1.9. Let $(V, \|\cdot\|)$ be a normed space. Then any linear transformation $T : \mathbb{R}^n \to V$ is continuous. Furthermore, if T is a bijection, it is a homeomorphis.

Proof. Since \mathbb{R}^n is finite then by Theorem 1.7, T is continuous. Assuming T is bijective, we must show that its inverse T^{-1} is continuous as well. Since T is a bijection then T is a linear isomorphism and $\dim V = \dim \mathbb{R}^n = n$ hence T^{-1} is a continuous map.

Theorem 1.10. $T: \mathbb{R}^n \to \mathbb{R}^n$ linear transformation is invertible if and only if there exists a c such that:

$$c \|x\| \le \|Tx\|$$

Proof. If T is invertible then $T^{-1}: \mathbb{R}^n \to \mathbb{R}^n$ is bounded and thus

$$\left\|T^{-1}x\right\| \le c \left\|x\right\|$$

and since T is bijective then there exists y such that x = Ty which implies

$$||y|| \le c ||Ty||$$

If there exists such c then ||Tx|| > 0 for all non-zero x and hence $\ker T = 0$ which implies that T is a bijection and hence T is invertible.

Definition: Let V_1, V_2, \ldots, V_n be normed vector spaces. Then the function $\phi: V_1 \times \cdots \times V_n \to W$ is *n*-linear if by fixing any n-1 component, ϕ is linear relative to the remaining components.

Proposition 1.11. If V_1, V_2, \ldots, V_n are normed vector spaces and $\phi: V_1 \times \cdots \times V_n \to W$ is a n-linear then the followings are equivalent

- 1. ϕ is continuous.
- 2. ϕ is continuous at a point.
- 3. ϕ is bounded, that is there exists a constant C > 0 such that

$$\|\phi(v_1,\ldots,v_n)\|_W \le C \|v_1\|_{V_1} \ldots \|v_n\|_{V_n}$$

Proof. Item $1 \implies \text{Item } 2$: Trivial. Item $2 \implies \text{Item } 3$

Exercises

1. Show that for a linear transformation T, $||T|| = \sup_{\|v\|_{V} \le 1} ||Tv||_{W}$.

1.2 Derivative

1.2 Derivative

Let V, W be finite dimensional vector spaces and $f: U \subset V \to W$ where U is open. Then f is differentiable at x_0 when a linear transformation $T: V \to W$ such that

$$\lim_{\|h\| \to 0} \frac{\|f(x_0 + h) - f(x_0) - T(h)\|}{\|h\|} = 0$$

Or equivalently there exists a sublinear function R(h) such that

$$f(x_0 + h) - f(x_0) - Th = R(h)$$
 $\frac{R(h)}{\|h\|} \to 0$

T if it exists is unique, represented by $f'(x_0)$, D f, or d f(x) and called the **total derivative** or **Fréchet derivative**.

Example 1.2. Every linear function $f: V \to W$ with f(v) = Tv + b where $b \in W$ is differentiable and D f(v) = T. Since

$$\|h\|_{V} \delta \implies \|f(v+h) - f(v) - \mathrm{D}(h)\|_{W} = \|T(v+h) - Tv - Th\|_{W} = 0 < \epsilon \|h\|_{V}$$

Hence, the derivative of any linear function is constant. Consider $S: V \times V \to V$ with S(v, u) = v + u. S is differentiable because S is linear (why?). We claim that DS = S as

$$||S((v+h), (u+k)) - S(v, u) - S(h, k)|| = 0$$

Example 1.3. Let $\mu: \mathbb{R} \times V \to V$ with $\mu(r,x) = rx$. Then μ is differentiable and $(D \mu(r,x))(t,h) = rh + tx$ as

$$\|\mu((r+t),(x+h)) - \mu(r,x) - (\mathrm{D}\,\mu(r,x))(t,h)\| = \|rx + rh + tx + th - rx - rh - tx\| = |h| \, \|t\|$$

Proposition 1.12. Differentiability of f at x implies continuity at x.

Proposition 1.13. Assume $f:U\subset V\to W$ is differentiable at x_0 and let $u\in V$ be a non-zero vector then

$$\lim_{t \to 0} \frac{f(x_0 + tu) - f(x_0)}{t} = f'(x_0)(u)$$

Proof. Let h = tu then

$$R(tu) = f(x_0 + tu) - f(x_0) - T(tu)$$

$$= f(x_0 + tu) - f(x_0) - tT(u)$$

$$\implies \frac{R(tu)}{t} = \frac{f(x_0 + tu) - f(x_0)}{t} - T(u)$$

$$\implies \lim_{t \to 0} \frac{f(x_0 + tu) - f(x_0)}{t} = T(u)$$

Definition (Directional derivative): If we let ||u|| = 1 then the limit in Propostion 1.13 becomes the **directional derivative** of f in the direction of u and is denoted by $D_u f$.

Remark 2. The existence of all directional derivatives of f doesn't imply its differentiability or even its continuity.

Theorem 1.14. $f: U \subset \mathbb{R}^n \to \mathbb{R}^m$ has all of its partial derivative and they're continuous then f is differentiable.

Proposition 1.15. Let $f, g: V \to W$ be differentiable at x and $h: W \to U$ be differentiable at y = f(x). Furthermore, let c be an scalar then

- 1. D(f + cg) = D(f) + cD(g).
- 2. $h \circ f$ is differentiable at x and

$$\mathrm{D}(h\circ f)=(\mathrm{D}(h)\circ f)\circ \mathrm{D}(f)$$

Theorem 1.16 (Leibnitz rule). Let V_1, V_2, \ldots, V_n be finite dimensional vector spaces and $f: V_1 \times \cdots \times V_n \to W$ is a n-linear function. f is differentiable at $a = (a_1, \ldots, a_n)$ and

$$(D f(a))(h_1, \dots h_n) = f(h_1, a_2, \dots, a_n) + f(a_1, h_2, \dots, a_n) + \dots + f(a_1, a_2, \dots, h_n)$$

Proposition 1.17. $f: U \subset \mathbb{R}^n \to \mathbb{R}^m$ is differentiable at x_0 if and only if every component is differentiable at x_0 .