Whizlabs - ML Specialty Exam Course - Data Engineering

https://www.whizlabs.com/learn/course/aws-mls-practice-tests

1. **DATA ENGINEERING**

Loading data from scikit learn data repository in Jupiter

8 features, 20,640 features

AWS Machine Learning - Data Engineering

Handle Missing Data

- □ Null value replacement Several approaches to the problem of handling missing data
 - Do nothing
 - Remove the entire record
 - Mode/median/average value replacement
 - Most frequent value
 - Model-based imputation
 - K-Nearest Neighbors
 - Regression
 - Deep Learning
 - Interpolation / Extrapolation
 - Forward filling / Backward filling
 - Hot deck imputation

Case		Decision		
	Temperature	Headache	Nausea	Flu
1	high	?	yes	yes
2	very_high	yes	no	yes
3	?	no	no	no
4	normal	yes	?	no
5	?	yes	yes	yes

XGboost can impute missing values

AWS Machine Learning - Handling Missing Data

Null Value Replacement - Which Method Should You Use

- □ Do nothing and let your algorithm either replace them through imputation (XGBoost) or just ignore them as LightGBM does with its use_missing=false parameter
 - ☐ Some algorithms will throw an error if they find missing values (LinearRegression)
- Or, replace all missing values

Case			Decision	
	Temperature	Headache	Nausea	Flu
1	high	?	yes	yes
2	very_high	yes	no	yes
3	?	no	no	no
4	normal	yes	?	no
5	?	yes	yes	yes

Using Pandas to REMOVE ROWS or Observations that don't have Values:

40% Randomly of 1st feature now had NaN value

Out [21]: zero one two three four five six seven target 0 NaN 41.0 6.984127 1.023810 322.0 2.555556 37.88 -122.23 4.526 1 8.3014 21.0 6.238137 0.971880 2401.0 2.109842 37.86 -122.22 3.585 2 NaN 52.0 8.288136 1.073059 558.0 2.547945 37.85 -122.25 3.413 4 NaN 52.0 6.281853 1.081081 565.0 2.181467 37.85 -122.25 3.422 5 4.0368 52.0 4.761658 1.103627 413.0 2.138996 37.85 -122.25 2.697 6 3.6591 52.0 4.931907 0.951362 1094.0 2.128405 37.84 -122.25 2.697 7 NaN 52.0 4.797527 1.061824 1157.0 1.788253 37.84 -122.25 2.267			rain	-								
1 8.3014 21.0 6.238137 0.971880 2401.0 2.109842 37.86 -122.22 3.585 2 NaN 52.0 8.288136 1.073446 496.0 2.802260 37.85 -122.24 3.521 3 5.6431 52.0 5.817352 1.073059 558.0 2.547945 37.85 -122.25 3.413 4 NaN 52.0 6.281853 1.081081 565.0 2.181467 37.85 -122.25 3.422 5 4.0368 52.0 4.761658 1.103627 413.0 2.139896 37.85 -122.25 2.697 6 3.6591 52.0 4.931907 0.951362 1094.0 2.128405 37.84 -122.25 2.992 7 NaN 52.0 4.797527 1.061824 1157.0 1.788253 37.84 -122.25 2.414 8 NaN 42.0 4.294118 1.117647 1206.0 2.026891 37.84 -122.26 2.267 9 3.6912 52.0 4.970588 0.990196 1551.0 2.172	Out [21]]:		zero	one	two	three	four	five	six	seven	target
2 NaN 52.0 8.288136 1.073446 496.0 2.802260 37.85 -122.24 3.521 3 5.6431 52.0 5.817352 1.073059 558.0 2.547945 37.85 -122.25 3.413 4 NaN 52.0 6.281853 1.081081 565.0 2.181467 37.85 -122.25 3.422 5 4.0368 52.0 4.761658 1.103627 413.0 2.139896 37.85 -122.25 2.697 6 3.6591 52.0 4.931907 0.951362 1094.0 2.128405 37.84 -122.25 2.992 7 NaN 52.0 4.797527 1.061824 1157.0 1.788253 37.84 -122.25 2.414 8 NaN 42.0 4.294118 1.117647 1206.0 2.026891 37.84 -122.25 2.667 9 3.6912 52.0 4.970588 0.990196 1551.0 2.172269 37.84 -122.25 2.611 10 3.2031 52.0 5.477612 1.079602 910.0 2.263682 37.85 -122.26 2.815 11 3.2705 52.0 4.772480 1.024523 1504.0 2.049046 37.85 -122.26 2.418 12 NaN 52.0 5.322650 1.012821 1098.0 2.346154 37.85 -122.26 2.135 13 NaN 52.0 4.000000 1.097701 345.0 1.982759 37.84 -122.26 1.913 14 NaN 52.0 4.262903 1.009677 1212.0 1.954839 37.85 -122.26 1.592			0	NaN	41.0	6.984127	1.023810	322.0	2.555556	37.88	-122.23	4.526
3 5.6431 52.0 5.817352 1.073059 558.0 2.547945 37.85 -122.25 3.413 4 NaN 52.0 6.281853 1.081081 565.0 2.181467 37.85 -122.25 3.422 5 4.0368 52.0 4.761658 1.103627 413.0 2.139896 37.85 -122.25 2.697 6 3.6591 52.0 4.931907 0.951362 1094.0 2.128405 37.84 -122.25 2.992 7 NaN 52.0 4.797527 1.061824 1157.0 1.788253 37.84 -122.25 2.414 8 NaN 42.0 4.294118 1.117647 1206.0 2.026891 37.84 -122.25 2.267 9 3.6912 52.0 4.970588 0.990196 1551.0 2.172269 37.84 -122.25 2.611 10 3.2031 52.0 5.477612 1.079602 910.0 2.263682 37.85 -122.26 2.815 11 3.2705 52.0 4.772480 1.024523 1504.0 2.049046 37.85 -122.26 2.418 12 NaN 52.0 5.322650 1.012821 1098.0 2.346154 37.85 -122.26 2.135 13 NaN 52.0 4.000000 1.097701 345.0 1.982759 37.84 -122.26 1.913 14 NaN 52.0 4.262903 1.009677 1212.0 1.954839 37.85 -122.26 1.592			1	8.3014	21.0	6.238137	0.971880	2401.0	2.109842	37.86	-122.22	3.585
4 NaN 52.0 6.281853 1.081081 565.0 2.181467 37.85 -122.25 3.422 5 4.0368 52.0 4.761658 1.103627 413.0 2.139896 37.85 -122.25 2.697 6 3.6591 52.0 4.931907 0.951362 1094.0 2.128405 37.84 -122.25 2.992 7 NaN 52.0 4.797527 1.061824 1157.0 1.788253 37.84 -122.25 2.414 8 NaN 42.0 4.294118 1.117647 1206.0 2.026891 37.84 -122.26 2.267 9 3.6912 52.0 4.970588 0.990196 1551.0 2.172269 37.84 -122.25 2.611 10 3.2705 52.0 4.772480 1.024523 1504.0 2.049046 37.85 -122.26 2.418 12 NaN 52.0 5.322650 1.012821 1098.0 2.346154 37.85 -122.26 2.135 13 NaN 52.0 4.262903 1.009677 1212.0 1.9			2	NaN	52.0	8.288136	1.073446	496.0	2.802260	37.85	-122.24	3.521
5 4.0368 52.0 4.761658 1.103627 413.0 2.139896 37.85 -122.25 2.697 6 3.6591 52.0 4.931907 0.951362 1094.0 2.128405 37.84 -122.25 2.992 7 NaN 52.0 4.797527 1.061824 1157.0 1.788253 37.84 -122.25 2.414 8 NaN 42.0 4.294118 1.117647 1206.0 2.026891 37.84 -122.26 2.267 9 3.6912 52.0 4.970588 0.990196 1551.0 2.172269 37.84 -122.25 2.611 10 3.2031 52.0 5.477612 1.079602 910.0 2.263682 37.85 -122.26 2.815 11 3.2705 52.0 4.772480 1.024523 1504.0 2.049046 37.85 -122.26 2.418 12 NaN 52.0 5.322650 1.012821 1098.0 2.346154 37.85 -122.26 2.135 13 NaN 52.0 4.262903 1.009677 1212.0			3	5.6431	52.0	5.817352	1.073059	558.0	2.547945	37.85	-122.25	3.413
6 3.6591 52.0 4.931907 0.951362 1094.0 2.128405 37.84 -122.25 2.992 7 NaN 52.0 4.797527 1.061824 1157.0 1.788253 37.84 -122.25 2.414 8 NaN 42.0 4.294118 1.117647 1206.0 2.026891 37.84 -122.26 2.267 9 3.6912 52.0 4.970588 0.990196 1551.0 2.172269 37.84 -122.25 2.611 10 3.2031 52.0 5.477612 1.079602 910.0 2.263682 37.85 -122.26 2.815 11 3.2705 52.0 4.772480 1.024523 1504.0 2.049046 37.85 -122.26 2.418 12 NaN 52.0 5.322650 1.012821 1098.0 2.346154 37.85 -122.26 2.135 13 NaN 52.0 4.000000 1.097701 345.0 1.982759 37.84 -122.26 1.913 14 NaN 52.0 4.262903 1.009677 1212.0 1.954839 37.85 -122.26 1.592			4	NaN	52.0	6.281853	1.081081	565.0	2.181467	37.85	-122.25	3.422
7 NaN 52.0 4.797527 1.061824 1157.0 1.788253 37.84 -122.25 2.414 8 NaN 42.0 4.294118 1.117647 1206.0 2.026891 37.84 -122.26 2.267 9 3.6912 52.0 4.970588 0.990196 1551.0 2.172269 37.84 -122.25 2.611 10 3.2031 52.0 5.477612 1.079602 910.0 2.263682 37.85 -122.26 2.815 11 3.2705 52.0 4.772480 1.024523 1504.0 2.049046 37.85 -122.26 2.418 12 NaN 52.0 5.322650 1.012821 1098.0 2.346154 37.85 -122.26 2.135 13 NaN 52.0 4.000000 1.097701 345.0 1.982759 37.84 -122.26 1.592 14 NaN 52.0 4.262903 1.009677 1212.0 1.954839 37.85 -122.26 1.592			5	4.0368	52.0	4.761658	1.103627	413.0	2.139896	37.85	-122.25	2.697
8 NaN 42.0 4.294118 1.117647 1206.0 2.026891 37.84 -122.26 2.267 9 3.6912 52.0 4.970588 0.990196 1551.0 2.172269 37.84 -122.25 2.611 10 3.2031 52.0 5.477612 1.079602 910.0 2.263682 37.85 -122.26 2.815 11 3.2705 52.0 4.772480 1.024523 1504.0 2.049046 37.85 -122.26 2.418 12 NaN 52.0 5.322650 1.012821 1098.0 2.346154 37.85 -122.26 2.135 13 NaN 52.0 4.000000 1.097701 345.0 1.982759 37.84 -122.26 1.913 14 NaN 52.0 4.262903 1.009677 1212.0 1.954839 37.85 -122.26 1.592			6	3.6591	52.0	4.931907	0.951362	1094.0	2.128405	37.84	-122.25	2.992
9 3.6912 52.0 4.970588 0.990196 1551.0 2.172269 37.84 -122.25 2.611 10 3.2031 52.0 5.477612 1.079602 910.0 2.263682 37.85 -122.26 2.815 11 3.2705 52.0 4.772480 1.024523 1504.0 2.049046 37.85 -122.26 2.418 12 NaN 52.0 5.322650 1.012821 1098.0 2.346154 37.85 -122.26 2.135 13 NaN 52.0 4.000000 1.097701 345.0 1.982759 37.84 -122.26 1.913 14 NaN 52.0 4.262903 1.009677 1212.0 1.954839 37.85 -122.26 1.592			7	NaN	52.0	4.797527	1.061824	1157.0	1.788253	37.84	-122.25	2.414
10 3.2031 52.0 5.477612 1.079602 910.0 2.263682 37.85 -122.26 2.815 11 3.2705 52.0 4.772480 1.024523 1504.0 2.049046 37.85 -122.26 2.418 12 NaN 52.0 5.322650 1.012821 1098.0 2.346154 37.85 -122.26 2.135 13 NaN 52.0 4.000000 1.097701 345.0 1.982759 37.84 -122.26 1.592 14 NaN 52.0 4.262903 1.009677 1212.0 1.954839 37.85 -122.26 1.592			8	NaN	42.0	4.294118	1.117647	1206.0	2.026891	37.84	-122.26	2.267
11 3.2705 52.0 4.772480 1.024523 1504.0 2.049046 37.85 -122.26 2.418 12 NaN 52.0 5.322650 1.012821 1098.0 2.346154 37.85 -122.26 2.135 13 NaN 52.0 4.000000 1.097701 345.0 1.982759 37.84 -122.26 1.913 14 NaN 52.0 4.262903 1.009677 1212.0 1.954839 37.85 -122.26 1.592			9	3.6912	52.0	4.970588	0.990196	1551.0	2.172269	37.84	-122.25	2.611
12 NaN 52.0 5.322650 1.012821 1098.0 2.346154 37.85 -122.26 2.135 13 NaN 52.0 4.000000 1.097701 345.0 1.982759 37.84 -122.26 1.913 14 NaN 52.0 4.262903 1.009677 1212.0 1.954839 37.85 -122.26 1.592			10	3.2031	52.0	5.477612	1.079602	910.0	2.263682	37.85	-122.26	2.815
13 NaN 52.0 4.000000 1.097701 345.0 1.982759 37.84 -122.26 1.913 14 NaN 52.0 4.262903 1.009677 1212.0 1.954839 37.85 -122.26 1.592			11	3.2705	52.0	4.772480	1.024523	1504.0	2.049046	37.85	-122.26	2.418
14 NaN 52.0 4.262903 1.009677 1212.0 1.954839 37.85 -122.26 1.592			12	NaN	52.0	5.322650	1.012821	1098.0	2.346154	37.85	-122.26	2.135
			13	NaN	52.0	4.000000	1.097701	345.0	1.982759	37.84	-122.26	1.913
15 2.1250 50.0 4.242424 1.071970 697.0 2.640152 37.85 -122.26 1.400			14	NaN	52.0	4.262903	1.009677	1212.0	1.954839	37.85	-122.26	1.592
			15	2.1250	50.0	4.242424	1.071970	697.0	2.640152	37.85	-122.26	1.400

We want to drop the rows that have a NaN => use dropna() method

Now only have 13k feature from the 20k

Other Imputations Techniques

AWS Machine Learning - Handling Missing Data

Median/Average Value Replacement

- Replace the missing values with a simple median, or mean
 - Reflection of the other values in the feature
 - Doesn't factor correlation between features
 - Can't use on categorical features

Case		Attributes					
	Temperature	Headache	Temperature	Flu			
1	high	?	99.9	yes			
2	very_high	yes	100.3	yes			
3	?	no	98.6	no			
4	normal	yes	?	no			
5	?	yes	101,0	yes			

Example via Code

train

Out[3]:

	zero	one	two	three	four	five	six	seven	target
0	NaN	41.0	6.984127	1.023810	322.0	2.555556	37.88	-122.23	4.526
1	8.3014	21.0	6.238137	0.971880	2401.0	2.109842	37.86	-122.22	3.585
2	NaN	52.0	8.288136	1.073446	496.0	2.802260	37.85	-122.24	3.521
3	5.6431	52.0	5.817352	1.073059	558.0	2.547945	37.85	-122.25	3.413
4	NaN	52.0	6.281853	1.081081	565.0	2.181467	37.85	-122.25	3.422
5	4.0368	52.0	4.761658	1.103627	413.0	2.139896	37.85	-122.25	2.697
6	3.6591	52.0	4.931907	0.951362	1094.0	2.128405	37.84	-122.25	2.992
7	NaN	52.0	4.797527	1.061824	1157.0	1.788253	37.84	-122.25	2.414
8	NaN	42.0	4.294118	1.117647	1206.0	2.026891	37.84	-122.26	2.267
9	3.6912	52.0	4.970588	0.990196	1551.0	2.172269	37.84	-122.25	2.611
10	3.2031	52.0	5.477612	1.079602	910.0	2.263682	37.85	-122.26	2.815
11	3.2705	52.0	4.772480	1.024523	1504.0	2.049046	37.85	-122.26	2.418

Now impute values with **SimpleImputer()** from Scikitlearn Can call it with "mean", "median",...

ravel() method is to unravel into a vector that we can use to replace the train[zero] features

Now the missing values are replaced by the **mean**: 3.87

```
In [4]: #Impute the values using scikit-learn SimpleImpute Class
          from sklearn.impute import SimpleImputer
imputer = SimpleImputer(missing_values=np.nan, strategy='mean') #for options other than mean imputation replace
imputer = imputer.fit(train[['zero']])
          train['zero'] = imputer.transform(train[['zero']]).ravel()
          train
Out[4]:
                    zero one
                                          three
                                                  four
                                                            five
                                   two
                                                                   six
                                                                       seven target
              0 3.8779) 41.0 6.984127 1.023810 322.0 2.555556 37.88 -122.23 4.526
               1 8.30140 21.0 6.238137 0.971880 2401.0 2.109842 37.86 -122.22 3.585
              2 3.87794 52.0 8.288136 1.073446 496.0 2.802260 37.85 -122.24 3.521
               3 5.64310 52.0 5.817352 1.073059 558.0 2.547945 37.85 -122.25 3.413
              4 3.87794 52.0 6.281853 1.081081 565.0 2.181467 37.85 -122.25 3.422
               5 4.03680 52.0 4.761658 1.103627 413.0 2.139896 37.85 -122.25 2.697
               6 3.65910 52.0 4.931907 0.951362 1094.0 2.128405 37.84 -122.25 2.992
               7 3.87794 52.0 4.797527 1.061824 1157.0 1.788253 37.84 -122.25 2.414
               8 3.87794 42.0 4.294118 1.117647 1206.0 2.026891 37.84 -122.26 2.267
               9 3.69120 52.0 4.970588 0.990196 1551.0 2.172269 37.84 -122.25 2.611
```

Now using the **median** => 3.5497

```
In [6]: #Impute the values using scikit-learn SimpleImpute Class
    from sklearn.impute import SimpleImputer
    imputer = SimpleImputer(missing_values=np.nan, strategy='median') #for options other th
    imputer = imputer.fit(train[['zero']])
    train['zero'] = imputer.transform(train[['zero']]).ravel()
    train
```

Out [6]:

	z∉ro	one	two	three	four	five	six	seven	target
0	3.5497	41.0	6.984127	1.023810	322.0	2.555556	37.88	-122.23	4.526
1	8.3014	21.0	6.238137	0.971880	2401.0	2.109842	37.86	-122.22	3.585
2	3.5497	52.0	8.288136	1.073446	496.0	2.802260	37.85	-122.24	3.521
3	5.6431	52.0	5.817352	1.073059	558.0	2.547945	37.85	-122.25	3.413
4	3.5497	52.0	6.281853	1.081081	565.0	2.181467	37.85	-122.25	3.422
5	4.0368	52.0	4.761658	1.103627	413.0	2.139896	37.85	-122.25	2.697
6	3.6591	52.0	4.931907	0.951362	1094.0	2.128405	37.84	-122.25	2.992
7	3.5497	52.0	4.797527	1.061824	1157.0	1.788253	37.84	-122.25	2.414
8	3.5497	42.0	4.294118	1.117647	1206.0	2.026891	37.84	-122.26	2.267
9	3.6912	52.0	4.970588	0.990196	1551.0	2.172269	37.84	-122.25	2.611
10	3.2031	52.0	5.477612	1.079602	910.0	2.263682	37.85	-122.26	2.815

Now using the **most_frequent** => 3.1250

```
In [10]: #Impute the values using scikit-learn SimpleImpute Class
from sklearn.impute import SimpleImputer
inputer = SimpleImputer(missing_values=np.nan, strategy='most_frequent') #for options other than mean imputation
imputer = imputer.fit(train[['zero']])
train['zero'] = imputer.transform(train[['zero']]).ravel()

Out[10]:

| vero | one | two | three | four | five | six | seven | target |
| 0 3.1250 | 41.0 | 6.984127 | 1.023810 | 322.0 | 2.555556 | 37.88 | -122.23 | 4.526
| 1 8.3014 | 21.0 | 6.238137 | 0.971880 | 2401.0 | 2.109842 | 37.86 | -122.22 | 3.585
| 2 3.1250 | 52.0 | 8.288136 | 1.073446 | 496.0 | 2.802260 | 37.85 | -122.24 | 3.521
| 3 5.6431 | 52.0 | 5.817352 | 1.073059 | 558.0 | 2.547945 | 37.85 | -122.25 | 3.413
| 4 3.1250 | 52.0 | 6.281853 | 1.081081 | 665.0 | 2.181467 | 37.85 | -122.25 | 3.422
| 5 4.0368 | 52.0 | 4.761658 | 1.103627 | 413.0 | 2.139896 | 37.85 | -122.25 | 2.697
| 6 3.6591 | 52.0 | 4.931907 | 0.951362 | 1094.0 | 2.128405 | 37.84 | -122.25 | 2.992
| 7 3.1250 | 52.0 | 4.797527 | 1.061824 | 1157.0 | 1.788253 | 37.84 | -122.25 | 2.414
| 8 3.1250 | 42.0 | 4.294118 | 1.117647 | 1206.0 | 2.026891 | 37.84 | -122.26 | 2.267
```

AWS Machine Learning - Handling Missing Data

Most Frequent Value

- Replace missing values with the most frequently occurring value in the feature
 - Doesn't factor correlation between features
 - Works with categorical features
 - ☐ Can introduce bias into your model

Case		Attributes		Decision
	Temperature	Headache	Temperature	Flu
1	high	?	99.9	yes
2	very_high	yes	100.3	yes
3	?	no	98.6	no
4	normal	yes	?	no
5	?	yes	101.0	yes

Now using Model Based imputation

AWS Machine Learning - Handling Missing Data

Model-Based Imputation

- ☐ Use a machine learning algorithm to impute the missing values
 - K-Nearest Neighbors
 - Uses 'feature similarity' to predict missing values
 - Regression
 - Predictors of the variable with missing values identified via correlation matrix
 - Best predictors are selected and used as independent variables in a regression equation
 - Variable with missing data is used as the target variable
 - Deep Learning
 - Works very well with categorical and non-numerical features

Now let's see model based imputation in code: Same dataset to start with:

```
In [1]: from sklearn.datasets import fetch_california_housing
    from sklearn.linear_model import LinearRegression
    from sklearn.model_selection import StratifiedKFold
            from sklearn.metrics import mean_squared_error
             from math import sqrt
            import random
            import numpy as no
            random.seed(0)
            import pandas as pd
dataset = fetch_california_housing()
            train, target = pd.DataFrame(dataset.data), pd.DataFrame(dataset.target)
train.columns = ['zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven']
train.insert(loc=len(train.columns), column='target', value=target)
            #Randomly replace 40% of the first column with NaN values I
            column = train['zero']
missing_pct = int(column.size * 0.4)
i = [random.choice(range(column.shape[0])) for _ in range(missing_pct)]
            column[i] = np.NaN
            train
Out[1]:
                                       two three four
                                                                     five six seven target
                      zero one
             0 NaN 41.0 6.984127 1.023810 322.0 2.555556 37.88 -122.23 4.526
                 1 8.3014 21.0 6.238137 0.971880 2401.0 2.109842 37.86 -122.22 3.585
               2 NaN 52.0 8.288136 1.073446 496.0 2.802260 37.85 -122.24 3.521
                 3 5.6431 52.0 5.817352 1.073059 558.0 2.547945 37.85 -122.25 3.413
                 4 NaN 52.0 6.281853 1.081081 565.0 2.181467 37.85 -122.25 3.422
                 5 4.0368 52.0 4.761658 1.103627 413.0 2.139896 37.85 -122.25 2.697
```

Now we use the \mathbf{KNN} algorithm to impute the missing values In this case, using 2 neighbors

```
In [2]: #Impute the values using scikit-learn KNNImputer Class
          #Install the KNNImputer pip package in the current Jupyter kernel
          !{sys.executable} -m pip install --upgrade pip
!{sys.executable} -m pip install missingpy
          from missingpy import KNNImputer
#Replace missing feature values using K-Nearest Neighbors
          imputer = KNNImputer(n_neighbors=2, weights="uniform")
imputer.fit_transform(train[['zero']])
          train['zero'] = imputer.transform(train[['zero']]).ravel()
               5 4.03680 52.0 4.761658 1.103627 413.0 2.139896 37.85 -122.25 2.697
          6 3.65910 52.0 4.931907 0.951362 1094.0 2.128405 37.84 -122.25 2.992
              7 3.87794 52.0 4.797527 1.061824 1157.0 1.788253 37.84 -122.25 2.414
            8 3.87794 42.0 4.294118 1.117647 1206.0 2.026891 37.84 -122.26 2.267
            9 3.69120 52.0 4.970588 0.990196 1551.0 2.172269 37.84 -122.25 2.611
             10 3.20310 52.0 5.477612 1.079602 910.0 2.263682 37.85 -122.26 2.815
              11 3.27050 52.0 4.772480 1.024523 1504.0 2.049046 37.85 -122.26 2.418
             12 3.87794 52.0 5.322650 1.012821 1098.0 2.346154 37.85 -122.26 2.135
              13 3.87794 52.0 4.000000 1.097701 345.0 1.982759 37.84 -122.26 1.913
          14 3.87794 52.0 4.262903 1.009677 1212.0 1.954839 37.85 -122.26 1.592
```

Notes: KNN only works with numerical values

Till now, we discussed missing value treatment using kNNImputer for continuous variables. Below, we create a data frame with missing values in categorical variables. For imputing missing values in categorical variables, we have to encode the categorical values into numeric values as kNNImputer works only for numeric variables. We can perform this using a mapping of categories to numeric variables.

Other methods for Imputation

AWS Machine Learning - Handling Missing Data

Other Methods

- Interpolation / Extrapolation
 - Estimate values from other observations within the range of a discrete set of known data points
- Forward filling / Backward filling
 - Fill the missing value by filling it from the preceding value or the succeeding value
- Hot deck imputation
 - Randomly choosing the missing value from a set of related and similar variables