# $12a_{0718} \ (K12a_{0718})$



Ideals for irreducible components<sup>2</sup> of  $X_{par}$ 

$$I_1^u = \langle u^{69} - 2u^{68} + \dots + 2u^2 - 1 \rangle$$
  
 $I_2^u = \langle u + 1 \rangle$ 

\* 2 irreducible components of  $\dim_{\mathbb{C}} = 0$ , with total 70 representations.

<sup>&</sup>lt;sup>1</sup>The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

<sup>&</sup>lt;sup>2</sup> All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I. 
$$I_1^u = \langle u^{69} - 2u^{68} + \dots + 2u^2 - 1 \rangle$$

(i) Arc colorings

$$a_{7} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{2} + 1 \\ -u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{5} - 2u^{3} + u \\ u^{7} - 3u^{5} + 2u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{3} - 2u \\ -u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{10} - 5u^{8} + 8u^{6} - 3u^{4} - 3u^{2} + 1 \\ -u^{10} + 4u^{8} - 5u^{6} + 3u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{17} + 8u^{15} - 25u^{13} + 36u^{11} - 17u^{9} - 12u^{7} + 12u^{5} + 2u^{3} - 3u \\ u^{17} - 7u^{15} + 19u^{13} - 22u^{11} + 3u^{9} + 14u^{7} - 6u^{5} - 4u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{24} + 11u^{22} + \dots - 6u^{2} + 1 \\ u^{24} - 10u^{22} + \dots - 2u^{4} + 4u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{55} + 24u^{53} + \dots - 28u^{5} + 12u^{3} \\ u^{55} - 23u^{53} + \dots - 2u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{29} + 12u^{27} + \dots - 2u^{3} - 3u \\ -u^{31} + 13u^{29} + \dots - 8u^{3} + u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes =  $4u^{68} 116u^{66} + \cdots 8u + 10$

### (iv) u-Polynomials at the component

| Crossings          | u-Polynomials at each crossing        |
|--------------------|---------------------------------------|
| $c_1$              | $u^{69} + 30u^{68} + \dots + 4u + 1$  |
| $c_2, c_7$         | $u^{69} + 2u^{68} + \dots - 2u^2 + 1$ |
| $c_3, c_4, c_9$    | $u^{69} - 35u^{67} + \dots + 16u + 1$ |
| $c_5, c_6, c_{11}$ | $u^{69} + 2u^{68} + \dots - 2u^2 + 1$ |
| c <sub>8</sub>     | $u^{69} + 3u^{68} + \dots - 8u - 1$   |
| $c_{10}, c_{12}$   | $u^{69} - 3u^{68} + \dots + 4u - 1$   |

## (v) Riley Polynomials at the component

| Crossings          | Riley Polynomials at each crossing     |
|--------------------|----------------------------------------|
| $c_1$              | $y^{69} + 18y^{68} + \dots - 28y - 1$  |
| $c_2, c_7$         | $y^{69} - 30y^{68} + \dots + 4y - 1$   |
| $c_3, c_4, c_9$    | $y^{69} - 70y^{68} + \dots + 100y - 1$ |
| $c_5, c_6, c_{11}$ | $y^{69} - 58y^{68} + \dots + 4y - 1$   |
| c <sub>8</sub>     | $y^{69} - 3y^{68} + \dots + 4y - 1$    |
| $c_{10}, c_{12}$   | $y^{69} + 33y^{68} + \dots - 12y - 1$  |

## (vi) Complex Volumes and Cusp Shapes

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape          |
|---------------------------|---------------------------------------|---------------------|
| u = -0.957601 + 0.300766I | 5.05918 + 6.89076I                    | 6.00000 - 4.16482I  |
| u = -0.957601 - 0.300766I | 5.05918 - 6.89076I                    | 6.00000 + 4.16482I  |
| u = -0.970924 + 0.140812I | 1.64199 + 0.00698I                    | 6.00000 + 0.I       |
| u = -0.970924 - 0.140812I | 1.64199 - 0.00698I                    | 6.00000 + 0.I       |
| u = 0.933707 + 0.288136I  | 6.89512 - 1.63728I                    | 11.63888 + 0.I      |
| u = 0.933707 - 0.288136I  | 6.89512 + 1.63728I                    | 11.63888 + 0.I      |
| u = 0.857602 + 0.279930I  | 7.01858 + 1.34841I                    | 12.02587 - 1.24080I |
| u = 0.857602 - 0.279930I  | 7.01858 - 1.34841I                    | 12.02587 + 1.24080I |
| u = -0.825401 + 0.288872I | 5.28751 - 6.59810I                    | 9.41471 + 6.14577I  |
| u = -0.825401 - 0.288872I | 5.28751 + 6.59810I                    | 9.41471 - 6.14577I  |
| u = -0.189683 + 0.774659I | 2.65904 - 10.93250I                   | 5.56084 + 8.27245I  |
| u = -0.189683 - 0.774659I | 2.65904 + 10.93250I                   | 5.56084 - 8.27245I  |
| u = 0.193338 + 0.767498I  | 4.55534 + 5.62792I                    | 8.38609 - 3.88248I  |
| u = 0.193338 - 0.767498I  | 4.55534 - 5.62792I                    | 8.38609 + 3.88248I  |
| u = 1.184060 + 0.293256I  | -1.37585 - 2.62316I                   | 0                   |
| u = 1.184060 - 0.293256I  | -1.37585 + 2.62316I                   | 0                   |
| u = 0.205061 + 0.747895I  | 4.87077 + 2.53274I                    | 8.88434 - 3.60320I  |
| u = 0.205061 - 0.747895I  | 4.87077 - 2.53274I                    | 8.88434 + 3.60320I  |
| u = -0.177328 + 0.752440I | -0.80018 - 3.75250I                   | 2.22528 + 3.72594I  |
| u = -0.177328 - 0.752440I | -0.80018 + 3.75250I                   | 2.22528 - 3.72594I  |
| u = -0.211423 + 0.738250I | 3.23850 + 2.75221I                    | 6.50930 - 1.22477I  |
| u = -0.211423 - 0.738250I | 3.23850 - 2.75221I                    | 6.50930 + 1.22477I  |
| u = 0.080892 + 0.759659I  | -4.71738 + 6.46211I                   | 0.26695 - 7.64034I  |
| u = 0.080892 - 0.759659I  | -4.71738 - 6.46211I                   | 0.26695 + 7.64034I  |
| u = -1.211110 + 0.265826I | 1.02259 - 1.39020I                    | 0                   |
| u = -1.211110 - 0.265826I | 1.02259 + 1.39020I                    | 0                   |
| u = 0.037081 + 0.752751I  | -5.81603 - 0.56590I                   | -2.61211 + 0.31548I |
| u = 0.037081 - 0.752751I  | -5.81603 + 0.56590I                   | -2.61211 - 0.31548I |
| u = -0.075375 + 0.730057I | -2.40624 - 2.22308I                   | 3.89696 + 3.92721I  |
| u = -0.075375 - 0.730057I | -2.40624 + 2.22308I                   | 3.89696 - 3.92721I  |

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape         |
|---------------------------|---------------------------------------|--------------------|
| u = 1.229420 + 0.304406I  | -2.15788 + 4.39261I                   | 0                  |
| u = 1.229420 - 0.304406I  | -2.15788 - 4.39261I                   | 0                  |
| u = 1.310820 + 0.046148I  | 5.92654 + 0.72025I                    | 0                  |
| u = 1.310820 - 0.046148I  | 5.92654 - 0.72025I                    | 0                  |
| u = -1.286920 + 0.315645I | -1.69307 - 3.29241I                   | 0                  |
| u = -1.286920 - 0.315645I | -1.69307 + 3.29241I                   | 0                  |
| u = -1.322760 + 0.090992I | 4.47049 - 5.27183I                    | 0                  |
| u = -1.322760 - 0.090992I | 4.47049 + 5.27183I                    | 0                  |
| u = -1.307600 + 0.227331I | 3.03142 - 0.82065I                    | 0                  |
| u = -1.307600 - 0.227331I | 3.03142 + 0.82065I                    | 0                  |
| u = 1.319690 + 0.261661I  | 3.51103 + 5.18896I                    | 0                  |
| u = 1.319690 - 0.261661I  | 3.51103 - 5.18896I                    | 0                  |
| u = 1.312500 + 0.307397I  | 1.94259 + 5.98180I                    | 0                  |
| u = 1.312500 - 0.307397I  | 1.94259 - 5.98180I                    | 0                  |
| u = -1.314070 + 0.323446I | -0.34941 - 10.37660I                  | 0                  |
| u = -1.314070 - 0.323446I | -0.34941 + 10.37660I                  | 0                  |
| u = -0.088647 + 0.610634I | -0.91571 - 1.95235I                   | 6.00572 + 4.84634I |
| u = -0.088647 - 0.610634I | -0.91571 + 1.95235I                   | 6.00572 - 4.84634I |
| u = 1.367020 + 0.315964I  | 4.07913 + 7.62771I                    | 0                  |
| u = 1.367020 - 0.315964I  | 4.07913 - 7.62771I                    | 0                  |
| u = 1.378610 + 0.304843I  | 8.26841 + 1.03300I                    | 0                  |
| u = 1.378610 - 0.304843I  | 8.26841 - 1.03300I                    | 0                  |
| u = -1.377770 + 0.309975I | 9.87821 - 6.36933I                    | 0                  |
| u = -1.377770 - 0.309975I | 9.87821 + 6.36933I                    | 0                  |
| u = -1.375830 + 0.320526I | 9.51830 - 9.56822I                    | 0                  |
| u = -1.375830 - 0.320526I | 9.51830 + 9.56822I                    | 0                  |
| u = 1.375220 + 0.324354I  | 7.6078 + 14.9103I                     | 0                  |
| u = 1.375220 - 0.324354I  | 7.6078 - 14.9103I                     | 0                  |
| u = 1.41865               | 8.31659                               | 0                  |
| u = -1.43187 + 0.00706I   | 13.96300 - 1.63595I                   | 0                  |

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape          |
|---------------------------|---------------------------------------|---------------------|
| u = -1.43187 - 0.00706I   | 13.96300 + 1.63595I                   | 0                   |
| u = 1.43193 + 0.01291I    | 12.19380 + 7.00395I                   | 0                   |
| u = 1.43193 - 0.01291I    | 12.19380 - 7.00395I                   | 0                   |
| u = 0.399202 + 0.279360I  | -0.70238 + 4.07184I                   | 6.74606 - 8.81132I  |
| u = 0.399202 - 0.279360I  | -0.70238 - 4.07184I                   | 6.74606 + 8.81132I  |
| u = 0.198393 + 0.391221I  | -1.31494 - 1.68072I                   | 3.43317 - 0.28369I  |
| u = 0.198393 - 0.391221I  | -1.31494 + 1.68072I                   | 3.43317 + 0.28369I  |
| u = -0.399566 + 0.111347I | 0.839509 - 0.175599I                  | 12.54321 + 2.20743I |
| u = -0.399566 - 0.111347I | 0.839509 + 0.175599I                  | 12.54321 - 2.20743I |

II. 
$$I_2^u = \langle u+1 \rangle$$

(i) Arc colorings

$$a_7 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} -1\\1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = 6

### (iv) u-Polynomials at the component

| Crossings                                     | u-Polynomials at each crossing |
|-----------------------------------------------|--------------------------------|
| $c_1$                                         | u+1                            |
| $c_2, c_3, c_4$ $c_5, c_6, c_7$ $c_9, c_{11}$ | u-1                            |
| $c_8, c_{10}, c_{12}$                         | u                              |

## (v) Riley Polynomials at the component

| Crossings                                          | Riley Polynomials at each crossing |
|----------------------------------------------------|------------------------------------|
| $c_1, c_2, c_3$ $c_4, c_5, c_6$ $c_7, c_9, c_{11}$ | y-1                                |
| $c_8, c_{10}, c_{12}$                              | y                                  |

## (vi) Complex Volumes and Cusp Shapes

| Solutions to $I_2^u$ | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape |
|----------------------|---------------------------------------|------------|
| u = -1.00000         | 1.64493                               | 6.00000    |

III. u-Polynomials

| Crossings          | u-Polynomials at each crossing               |
|--------------------|----------------------------------------------|
| $c_1$              | $(u+1)(u^{69}+30u^{68}+\cdots+4u+1)$         |
| $c_2, c_7$         | $(u-1)(u^{69} + 2u^{68} + \dots - 2u^2 + 1)$ |
| $c_3, c_4, c_9$    | $(u-1)(u^{69} - 35u^{67} + \dots + 16u + 1)$ |
| $c_5, c_6, c_{11}$ | $(u-1)(u^{69} + 2u^{68} + \dots - 2u^2 + 1)$ |
| c <sub>8</sub>     | $u(u^{69} + 3u^{68} + \dots - 8u - 1)$       |
| $c_{10}, c_{12}$   | $u(u^{69} - 3u^{68} + \dots + 4u - 1)$       |

IV. Riley Polynomials

| Crossings          | Riley Polynomials at each crossing          |
|--------------------|---------------------------------------------|
| $c_1$              | $(y-1)(y^{69}+18y^{68}+\cdots-28y-1)$       |
| $c_2, c_7$         | $(y-1)(y^{69}-30y^{68}+\cdots+4y-1)$        |
| $c_3, c_4, c_9$    | $(y-1)(y^{69}-70y^{68}+\cdots+100y-1)$      |
| $c_5, c_6, c_{11}$ | $(y-1)(y^{69} - 58y^{68} + \dots + 4y - 1)$ |
| c <sub>8</sub>     | $y(y^{69} - 3y^{68} + \dots + 4y - 1)$      |
| $c_{10}, c_{12}$   | $y(y^{69} + 33y^{68} + \dots - 12y - 1)$    |