Apply initial permutation on Plaintent (M)

IP 2 6 3 1 1 4 8 5 7

Bit#	1	0 0	3	4	5]	1 - 13	1	
P	1	0	0	1	1	0	1	1
TP(P)	0	0	O	1	1	Y		

Now divide it two half

	P	
1 1 3	3234	1
410		

Steps	() 1	2	14	5	6	1	8
Bits 1	0		1			Read .	1
EIP(R) 1	1	0	1	0	(1	0	1
K1 1	1	1	0	1	1	1	0
E/P(R)& 0	0	1	1	المه			
K1			and Market	FAT HELDER	16.5-17.	William Control	

1

Use K2 = 10100111 Again apply initial permitation on plaintext Bits 1 0 0 1 1 0 ! JP(P) 0 0 0 1 1 0 1 1 After swapping left or right value Stepa (6/8/8/8/6/6) Right = 0000 P 41232341 3 4 5 6 7 8 EIP(R) +k2 0 left value in 5 Box. 001010

Scanned by CamScanner

Row = @10 =
$$Q$$
 \ Q (two bit value is 00)

Right value in S Box 1

O101

Yow = 01 = 1 \ = 3 (two bit value is col = $110 = 3$)

SBox ($E[P(R) \oplus k_2$) @1 0 1@1

Py (5 Box ($E[P(R) \oplus k_2$) 0 1 1@ @1

Py (5 Box ($E[P(R) \oplus k_2$) 0 1 1@ @1

Now calculate f (N2) (L.R)

(1011) O111, 0000)

1100, 0000

-> Now we apply the IP-1

Bit 1 2 3 4 5 6 7 8

R.L 1 1 0 0 0 0 0 0

IP-1(R.L) 0 1 0 0 0 0 0 0

> The encryption tent is

Plaintert = 10011010

E (text) = 01000100