Computer Networks COL 334/672

Multiple Access Control Protocols

Tarun Mangla

Sem 1, 2025-26

Quiz on Moodle

Password: ethernet

Link-layer services

- Encoding
- Framing
- Error detection
- Addressing, Medium **Access Control (MAC)**
 - algorithm that determines how nodes share channel, i.e., determine when node can transmit
 - Channel partitioning, Random access protocols

- 1) Efficiency 2). Faviness 3). Resilient 9). Simple

Slotted ALOHA

assumptions:

- all frames same size
- time divided into equal size slots (time to transmit 1 frame)
- nodes start to transmit only slot beginning
- nodes are synchronized
- if 2 or more nodes transmit in slot, all nodes detect collision

operation:

- when node obtains fresh frame, transmits in next slot
 - if no collision: node can send new frame in next slot
 - *if collision:* node retransmits frame in each subsequent slot with probability *p* until success

Slotted ALOHA: efficiency

efficiency: long-run fraction of successful slots (many nodes, all with many frames to send)

suppose: N nodes with many frames to send,
 each transmits in slot with probability p

Pure ALOHA

- unslotted Aloha: simpler, no synchronization
 - when frame first arrives: transmit immediately
- collision probability increases with no synchronization:
 - frame sent at t₀ collides with other frames sent in [t₀-1,t₀+1]

pure Aloha efficiency: 18%!

CSMA (carrier sense multiple access)

Simple CSMA: listen before transmit:

- if channel sensed idle: transmit entire frame
- if channel sensed busy: defer transmission
- Can collisions still occur on such a channel?

CSMA: collisions

- collisions can still occur with carrier sensing:
 - propagation delay means two nodes may not hear each other's juststarted transmission
- collision: entire packet transmission time wasted

What to do in case of collision?

T = time to detect collision mail
$$T \ge d/s$$
 $d = length of voire $s \ge s$ speed of signal$

CSMA with Collision Detection

- CSMA/CD reduces the amount of time wasted in collisions
 - Transmission aborted on collision detection
 - Send a jamming signal
- What happens after?
 - Backoff: Try after some random time!
- How to decide the backoff time?

Binary exponential backoff For mth attempt; pick a number K:30, ... 3m-13

wait = Kxinito

intuition:
wait longer if repeated collisions

Ethernet MAC Protocol

- Ethernet uses CSMA/CD
- Gap between two frames is 96-bit times Why?
- Uses a minimum frame size (e.g. 64 bytes on 10 Mbps Ethernet) Why?
 - what if the frame is smaller?
 - zero-pad for smaller packets

Ethernet MAC Protocol

- Ethernet uses CSMA/CD
- Gap between two frames is 96-bit times Why?
- Uses a minimum frame size (e.g. 64 bytes on 10 Mbps Ethernet) Why?
 - What if the frame is smaller?
 - Zero-pad for smaller packets
- Uses a maximum frame size Why?
 - Larger frames → higher probability of bit error
 - Others need to wait longer
 - Memory requirements on the network adapter

10 Mbps Ethernet: 2600m wire +4 repealer

gives time to the seceiver to process