597

Fur Seal Investigations, 1967

Marine Biological Laboratory
LIBRARY
AUG 1 0 1971

WOODS HOLE, MASS.

UNITED STATES DEPARTMENT OF THE INTERIOR

BUREAU OF COMMERCIAL FISHERIES

SPECIAL SCIENTIFIC REPORT--FISHERIES

Leslie W. Scattergood, Editor

Mary Fukuyama, Associate Editor

PUBLICATION BOARD

John M. Patton, Jr.

John A. Guinan Edward A. Schaefers

John I. Hodges Parker S. Trefethen

Harvey Hutchings Robert C. Wilson

Leslie W. Scattergood, Chairman

Special Scientific Report—Fisheries are preliminary or progress reports and reports on scientific investigations of restricted scope. Established as Special Scientific Reports in 1940, nos. I to 67 were issued from that date to 1949, when the new series, Special Scientific Report—Fisheries, with new serial numbering, was started.

Special Scientific Report--Fisheries are distributed free to libraries, research institutions, State agencies, and scientists.

UNITED STATES DEPARTMENT OF THE INTERIOR

Walter J. Hickel, Secretary
Russell E. Train, Under Secretary
Leslie L. Glasgow, Assistant Secretary
for Fish and Wildlife, Parks, and Marine Resources
Charles H. Meacham, Commissioner, U.S. FISH AND WILDLIFE SERVICE
Philip M. Roedel, Acting Director, Bureau of Commercial Fisheries

Fur Seal Investigations, 1967

by

MARINE MAMMAL BIOLOGICAL LABORATORY

U.S. Fish and Wildlife Service Special Scientific Report--Fisheries No. 597

Washington, D.C.
March 1970

CONTENTS

	Page
Introduction	1
Part I. Fur seal investigations, Pribilof Islands, Alaska	2
Age classification and number of seals killed, by sex	2
Males	2
Females	6
Survey data	7
Mortality	7
Counts of living adult male seals	10
Reproductive condition of female seals	10
Weights of pups	11
Marking	11
Application of marks	11
Recoveries of marked seals	12
Population estimates	16
Number of pups born	16
Number of yearling male seals	17
Forecast of the kill of male seals in 1968	18
Forecast of the kill of 4-year-old male seals on St. Paul Island	19
Combined estimates of the kill of 4-year-old male seals on St. Paul Island	21
Forecast of the kill of 3-year-old male seals on St. Paul Island	22
Combined estimates of the kill of 3-year-old male seals on St. Paul Island	22
Forecast of the total kill on the Pribilof Islands	23
Special study: Nutrition of pups	23
Summary	25
	26
Acknowledgments	27
Glossary	21
Part II. Pelagic fur seal investigations	28
Equipment, methods, and personnel	28
Distribution	28
Distribution off Washington in January and February 1967	28
Distribution off Washington, Oregon, and northern California in August and	20
September 1967	33
Distribution in the Bering Sea and near the eastern Aleutian Islands in	33
November and December 1965-66	33
	38
Tag recoveries	38
Size	38
Reproduction	41
Attached organisms (commensals)	41
Food	41
Stomach contents of fur seals taken our washington	44
Ingestion of marine organisms by pups	45
Relation of fur seals to commercial fisheries	47
Observations of Japanese pelagic fur seal research	- •
Summary	54
Literature cited	54
Appendix A	56
Appendix B	84
Appendix C	85

FIGURES

No.		Page
1.	Location of rookeries and hauling grounds, St. Paul Island	3
2.	Location of rookeries and hauling grounds, St. George Island	4
3.	Kill of 3- and 4-year-old male seals, by 5-day periods, St. Paul Island, 27 June to 5	
	August 1967	5
4.	Kill of 3- and 4-year-old male seals, by 5-day periods, St. George Island, 26 June	
	to 4 August 1967	5 7
	Pup mortality, study areas 1 and 2, Reef Rookery, St. Paul Island, mid-July 1967	
	Pup mortality, study area 3, Northeast Point Rookery, St. Paul Island, mid-July 1967	8
	Pup mortality, study area 1, Reef Rookery, St. Paul Island, 1964, 1966, and 1967	10
	Examples of mark locations that have been used on fur seals, Pribilof Islands, Alaska.	12
	Freeze-branded pup, Zapadni Reef Rookery, St. Paul Island, 11 October 1967	13
10.	Relation between birthweights and subsequent weights of three pups fed formula with-	
	out added selenium, vitamin E, methionine, and glycerin, St. Paul Island, 9 July	2.4
1.1	to 13 August 1967. The letters identify the individuals	24
11.	Relation between birthweights and subsequent weights of three pups fed formula	
	with selenium, vitamin E, methionine, and glycerin added, St. Paul Island, 9 July	2.4
1.2	to 13 August 1967. The letters identify the individuals	24
12.	Number of seals seen per hour of effort, in each square (areal unit) occupied by a	
	research vessel in January 1967, off Washington. The sides of each square measure 18.5 km. (10 nautical miles). Squares occupied for less than 0.5 hour are	
	marked "X." See table A-2 for detailed data	30
13.	Number of seals seen per hour of effort, in each square (areal unit) occupied by	30
	a research vessel in February 1967, off Washington. The sides of each square	
	measure 18,5 km. (10 nautical miles). Squares occupied for less than 0.5 hour are	
	marked "X." See table A-3 for detailed data	31
14.	Left: Trackline of M/V John N. Cobb during cruise for observation of fur seals,	
	22 August to 6 September 1967. Right: Trackline of M/V Yaquina during observa-	
	tions of 25-29 August and 15-22 September 1967. Fur seal sightings (two) are	
	shown by 🛭	34
15.	The four major food items in stomachs of fur seals collected off Washington, by	
	percentage of total food volume, 1958-67. (Figures in parentheses indicate number	
1/	of stomachs collected.)	41
16.	Locations where fur seal stomachs collected off Washington in 1967 contained	
	Thaleichthys pacificus (5 occurrences); Alosa sapidissima (7 occurrences);	43
17	and Clupea harengus pallasi (15 occurrences)	- 10
11.	Engraulis mordax (8 occurrences); Salmonidae (18 occurrences); and Sebastodes	
	spp. (5 occurrences)	43
18.	Locations where fur seal stomachs collected off Washington in 1967 contained	
	Loligo opalescens (47 occurrences)	44
19.	Area of operation and fishing villages visited by the Tenyu Maru off northern Japan,	
	14 April to 10 May 1967	47
20.	Tenyu Maru, Japanese vessel used for pelagic fur seal research in 1967	48
21.	Helmsman at tiller of the Tenyu Maru	49
	Hunter giving arm signals to helmsman as the Tenyu Maru quietly approaches a	
	resting seal	49
23.	Vessel approaching sleeping seals	50
24.	Fur seal being weighed with graduated beam scale	51
25.	Skinning fur seal aboard the Tenyu Maru	51 52
	Washing and cooling fur seal skin	52
	Pressing brine water from sealskin before salting	52
	Sealskins being salted and folded before packaging in plastic and burlap bags Bundled sealskins ready for shipping to processing plant	53
	Removal of blubber from sealskins. (Note buckshot damage to skin.)	53
	Sealskin with blubber removed	53
•		
	TABLES	
,	V 1 4 1 1 1 4 11 11 6 1 1 1 1 1 1 1 1 1 1	3
	Unadjusted and adjusted kill of male seals, Pribilof Islands, Alaska, 1967	2 5
4.	Mill of male seals, by year class, Prionol Islands, Alaska, 1747-00	2

3.	Kill of female seals on the Pribilof Islands, Alaska, and at sea from year classes,	,
4.	1943-66	6
	29 June to 15 August 1967	8
	Causes of pup mortality on study area 1, Reef Rookery, St. Paul Island, 28 June to 15 August 1966 and 1967	9
6.	Mortality of pups on study area 1 of Reef Rookery, on Reef Rookery, and on St. Paul Island, 1964-67	10
	Counts of dead adult male and female seals, Pribilof Islands, Alaska, 1965-67	10
8.	Reproductive condition of female seals sampled from the kill, by age, St. Paul Island, 1-15 August 1967	11
	Variances and means of weights of pups, St. Paul Island, 31 August 1967	11
10.	Tagged, lost-tag, and marked seals recovered, by age and sex, Pribilof Islands, Alaska, 26 June to 17 August 1967	14
11.	Tag recoveries from male seals that had been selected and tagged as yearlings and	
	at age 2 or older in previous years, Pribilof Islands, Alaska, 26 June to 5 August 1967	15
12.	Tag loss observed, Pribilof Islands, Alaska, 1967	15
13.		
	September of 1963 and 1964 on St. Paul Island	16
14.	Estimates of the pup population at time of tagging, based on tag recoveries from male	
	seals killed 26 June to 5 August 1967 from year classes 1962-65, Pribilof	1.4
15	Islands, Alaska	16
15.	dead pups, year classes 1960-65, Pribilof Islands, Alaska	17
16.	Estimates of the pup population on Reef and Tolstoi Rookeries, based on shearing	- '
•	and sampling, year class 1967, Pribilof Islands, Alaska	17
17.	Complete counts of live pups on selected rookeries in early August, St. Paul	1.7
1 2	Island, 1963-67	17
10.	classes 1961, 1962, 1964, and 1965, Pribilof Islands, Alaska	18
19.	Data for regression of the kill of 4-year-old male seals based on the kill of 3-year-old	
	male seals and mean round of the kill of 3-year-old male seals, year classes 1953-	
	63, St. Paul Island	19
20.	The kill of 3- and 4-year-old male seals, mean air temperature, and weights of pups,	3.0
21	years classes 1950-63, St. Paul Island	20
21.	at ages 3 and 4, years classes 1950-63, St. Paul Island	21
22.	Estimates of the yearling male seal populations, year classes 1961-62 and	
	1964-65, St. Paul Island	22
23.	Forecast of the kill of male seals in 1968, by age, Pribilof Islands, Alaska	23
	Comparison of forecasted and actual kill of male seals, Pribilof Islands, Alaska, 1967.	23
25.	Formula for artificial milk fed to captive pups, St. Paul Island, 9 July to 13 August	24
26	Age and sex, by month, of fur seals collected pelagically by the United States off	5.1
20.	Washington in 1967	32
27.	Age and sex, by month, of fur seals collected pelagically by the United States off	
	Washington [combined data for 1958-59, 1961, 1964-65, and 1967]	32
28.	Observations of fur seals in waters adjacent to the eastern Aleutian Islands,	35
30	18 November to 3 December 1965	20
49.	20 November to 4 December 1966	36
30.		
•	Washington in 1967	38
31.	Missed pregnancies in nonpregnant female seals collected in 1967	39
32.	Number of female seals collected pelagically by the United States in the eastern	39-40
2.2	i actife and (in pareneneses) percentage programm, 1700-0	37-40
33.	Stomach contents of fur seals collected pelagically by the United States off Washington in 1967	42
34.		
	November 1966	46
35.	Total seals sighted, collected, killed and lost, and wounded and lost by Tenyu	F.0
	Maru, 23 April to 9 May 1967	50

Appendix A Tables

	Age classification of male seals killed on St. Paul Island, 27 June to 5 August 1967 Cumulative age classification of male seals killed on St. Paul Island, 27 June to 5	56
3.	August 1967	57
4.	1967	58
5.	4 August 1967	59
6.	1967	60
	15 August 1967	61 62
	Cumulative age classification of female seals killed on St. George Island, 7-17 August 1967	62
	Dead pups counted, by rookery, Pribilof Islands, Alaska, 1941 and 1948-67	63
	Dead pups counted, by rookery sections, St. Paul Island, 1967	64
	Lesions and circumstances associated with cases of liver damage-multiple hemorrhage-perinatal complex, St. Paul Island, 1964, 1966, and 1967	65
	Number of pups that died of different causes, study areas 1, 2, and 3, St. Paul Island, 29 June to 15 August 1967	66
13.	Harem and idle male seals counted in mid-July, by island, Pribilof Islands, Alaska, 1911-41 and 1943-67	67
14.	Adult male seals counted, by class and rookery section, St. Paul Island, 22-24 June 1967	68
15.	Adult male seals counted on Reef, Lukanin, Kitovi, Tolstoi, and Zapadni Reef Rookeries, St. Paul Island, 9-14 July 1963-67	70
16.	Adult male seals counted, by class, St. George Island, June and July 1967	71
17	Pups tagged and marked, Pribilof Islands, Alaska, 1941, 1945, 1947-49, and 1951-67.	72
18.	Record of tags applied to male seals selected as yearlings and as 2-, 3-, and 4-year-olds on the basis of body length or size, St. Paul Island, 1961-63 and	
	1965-67	73
	Pups tagged and checkmarked, St. Paul Island, 21-27 September 1967	74
	Pups tagged and checkmarked, St. George Island, 1-2 September 1967	75
	Record of 835 yearling male seals tagged, St. Paul Island, 1967	75
22.	Record of tag identification numbers for 48 male seals tagged or marked as pups	
	and tagged again as yearlings, St. Paul Island, 28 September to 10 October 1967	76
23.	Record of 1,220 male seals tagged at age ≥ 2 years, St. Paul Island, 28 September	
	to 10 October 1967	77
24.	Record of tag identification numbers for 144 male seals tagged or marked as pups and tagged again at age ≥ 2 years, St. Paul Island, 28 September to 10 October	70
25.	Soviet tags recovered in the United States kill of fur seals, Pribilof Islands,	78
26.	Alaska, 26 June to 17 August 1967	80
27.	Alaska, 26 June to 5 August 1967	81
	Islands, Alaska, 26 June to 17 August 1967	82
	endix C Tables	
	Observations of seals in the eastern Aleutian Islands from M/V Pribilof, November to December 1966	85
2.	List of chart squares occupied by research vessels off Washington in January 1967, showing hours in square, seals seen per hour, and number of seals seen and	0/
3.	List of chart squares occupied by research vessels off Washington in February 1967, showing hours in square, seals seen per hour, and number of seals seen	86
4.	and collected	93
	off Washington, 6 January to 12 February 1967	94

No.		Page
5.	Number of seals collected, and number collected per boat-hunting day, by 10-day	
6.	periods, off Washington, 6 January to 12 February 1967	94
_	12 February 1967	95
	Total seals sighted, collected, wounded and lost, and killed and lost, 1958-67 Number and percentage of seals shot at sea that were collected, wounded and lost,	96
- •	and killed and lost, 1958-67	97
9.	Monthly mean lengths of pregnant fur seals collected pelagically by the United	
	States off Washington in 1967	98
10.	Monthly mean weights of pregnant fur seals collected pelagically by the United	00
	States off Washington in 1967	99
11.	Monthly mean lengths of nonpregnant female seals collected pelagically by the United States off Washington in 1967	100
12.	Monthly mean weights of nonpregnant female seals collected pelagically by the	
	United States off Washington in 1967	101
13.	Monthly mean lengths of male seals collected pelagically by the United States off	
1.4	Washington in 1967	102
14.	Monthly mean weights of male seals collected pelagically by the United States off Washington in 1967	102
15.	Monthly mean lengths and weights of fur seal fetuses collected pelagically by the	102
	United States off Washington in 1967	102
16.	Reproductive condition of female seals collected pelagically by the United States	
	off Washington in 1967	103
17.	Pregnancy rates of female seals collected pelagically by the United States off	
	Washington, by month, in 1967	104

Fur Seal Investigations, 1967

by

Bureau of Commercial Fisheries
MARINE MAMMAL BIOLOGICAL LABORATORY
Sand Point Naval Air Station
Seattle, Wash. 98115

ABSTRACT

Totals of 55,720 male northern fur seals (<u>Callorhinus ursinus</u>) and 10,471 females were killed on the Pribilof Islands in 1967. The predicted kill of males was 56,200. Counts of dead seals on the rookeries included 17,426 pups, 155 adult males, and 185 adult females. Counts of live adult males were 8,876 harem and 5,707 idle.

Major causes of death among 232 pups were malnutrition, liver damage-multiple hemorrhage-perinatal complex, hookworm disease, and infections.

Thirty-four percent of 1,255 females age 4 and older had given birth to pups.

The mean weights of pups from four rookeries differed significantly.

Seals tagged included 12,472 pups, 835 yearlings, and 1,200 of ages 2 to 4; 115 pups were marked by freeze branding. A total of 5,435 seals tagged on the Pribilof Islands were recovered there in 1967 as were 31 seals tagged by the U.S.S.R. on the Commander Islands or on Robben Island.

An estimated 377,000 pups were born on the Pribilof Islands in 1965 and 385,000 in 1967. The estimate of yearling males in 1963 from the 1962 year class was 79,000; in 1965 the estimate of yearlings from the 1964 year class was 129,000. The predicted kill of 2- to 5-year-old males on the Pribilof Islands in 1968 is 49,500.

An artificial formula supplemented with selenium, vitamin E, methionine, and glycerin, was superior to an unsupplemented formula for maintaining fur seal pups in captivity.

During pelagic fur seal investigations, seals were most commonly seen within 111 km. (60 nautical miles) of land in January and February, and most were collected off Cape Flattery and westward to La Perouse Bank. Of 835 fur seals sighted off Washington, 131 were collected 27 were wounded and lost, and 21 were killed and lost. Of 118 female seals collected, 57 percent were gravid; the youngest were three primiparous and one multiparous 5-year-olds.

Salmonidae (Oncorhynchus spp.) and Pacific herring (Clupea harengus pallasi) were the principal species eaten by seals off Washington. Shrimp were found for the first time in fur seal stomachs.

We saw 32 seals and collected 1 during studies of distribution in the Bering Sea and in waters near the eastern Aleutian Islands from 20 November to 4 December 1966.

One of us observed Japanese pelagic fur seal research in April and May 1967. We saw two fur seals off northern California in September and none off Washington and Oregon in August and September 1967.

On the basis of gastrointestinal contents and parasites, 9 of 20 pups had fed on marine organisms while still on the Pribilof Islands.

INTRODUCTION

The problems of managing an international resource have collectively been the strongest influence in establishing and maintaining a sustained research program for the northern fur seal (Callorhinus ursinus). Investigations

intended to supply information needed by the North Pacific Fur Seal Commission for management of fur seals have continued since 1956 on the Pribilof Islands and since 1958 at sea.

With international cooperation the northern fur seal population lends itself far better than most other animal populations to studies of population dynamics and to management. The continuing investigations have provided much of the information needed to manipulate the seal population. Much less progress has been made on the more difficult problem of understanding the relationship of factors affecting the population and the effect of population density.

This report describes research done by the United States in 1967 on land and at sea, as

approved by the North Pacific Fur Seal Commission at its 10th annual meeting in February 1967

Part I, on land investigations, was contributed by the following: Raymond E. Anas, Douglas G. Chapman (Laboratory of Statistical Research, University of Washington), Ancel M. Johnson, Mark C. Keyes, Alton Y. Roppel, and Ford Wilke.

Part II, on pelagic investigations, is a summary of work done by Clifford H. Fiscus, Hiroshi Kajimura, and Richard K. Stroud.

Part I. FUR SEAL INVESTIGATIONS, PRIBILOF ISLANDS, ALASKA

The objectives of fur seal research on the Pribilof Islands are to (1) collect the data needed to determine the reaction of the herd to an artificially low population level created to provide a basis for determining the level of maximum sustained yield, (2) determine the causes of mortality, and (3) find a way to accurately predict survival of the young to ages 3 and 4. This report summarizes the information

collected in 1967 and describes the progress made toward the achievement of these objectives.

Terms having special meanings in fur seal research are described in the Glossary. Figures 1 and 2 show the location of rookeries and hauling grounds on St. Paul and St. George Islands.

AGE CLASSIFICATION AND NUMBER OF SEALS KILLED, BY SEX

The kill of seals on St. Paul and St. George Islands in 1967 was 54,891 males (ages 2 to 6) and 10,096 females (age 2 and older).

MALES

A kill of 54,891 males in ages 2 to 6 included 42,359 taken on St. Paul Island and 12,532 taken on St. George Island (tables A-1 to A-4). An additional 829 young males of unknown ages were inadvertently taken during the kill of females 7-17 August.

The kill of males in 1967 was adjusted according to methods described previously (U.S. Fish and Wildlife Service, Bureau of Commercial Fisheries, 1969) to show the magnitude of possible error in determining ages from canine teeth (table 1). We did not use the corrected ages in calculations involving the age classification of the kill in 1967 because we have not tested possible errors in determining ages both between days within years and between years. In any case, errors in determining age are small and would have little effect on the numbers of seals in each age except for those taken at age 2.

All available subadult males 107 cm. (42 inches) long or longer from tip of nose to tip of tail, but without manes, were taken. Three-year-olds dominated the kill throughout the season on St. Paul Island (fig. 3) and after 6 July on St. George Island (fig. 4). Efforts were continued to increase the utilization of

males by killing as many as practical of the large 4-year-olds and by using firecrackers to frighten seals away from inaccessible reefs and from under cliffs.

The lower length limit of 107 cm. (42 inches) was removed on St. Paul Island during the kill on Northeast Point Rookery 22 July and on Zapadni Rookery 24 July so that all available 2-year-old males could be killed for our study of the relation of abundance on land at age 2 to the number available for killing at age 3. We determined age and body length for 20 percent of all males killed on these 2 days.

Male seals were killed Monday through Saturday of each week on St. Paul Island, and on Mondays, Wednesdays, and Fridays on St.

Table 1.--Unadjusted and adjusted kill of male seals, Pribilof Islands, Alaska, 1967

Unadjusted Adjusted Difference kill kill Age Number Number Number 2 2,940 2,473 + 18.89 3 35,263 - 1.84 34,613 15,523 15,366 + 1.02 1,679 1,653 + 1.57 54,755 54,755 Total

Figure 1.-- Location of rookeries and hauling grounds, St. Paul Island.

Figure 2, -- Location of rookeries and hauling grounds, St. George Island.

Figure 3.--Kill of 3- and 4-year-old male seals, by 5-day periods, St. Paul Island, 27 June to 5 August 1967.

Figure 4.--Kill of 3- and 4-year-old male seals, by 5-day periods, St. George Island, 26 June to 4 August 1967.

Table 2.--Kill of male seals, $\frac{1}{2}$ by year class, Pribilof Islands, Alaska, 1947-65

		St. Pa	ul Island				St. Ge	orge Island	1		
Year	Age when killed							when killed			Grand
class	2	3	4	5	Total	2	3	- Number -	5	Total	total
1947	-	30, 110	Number - 23, 697	854	54,661	-	7,043	3, 731	123	10,897	65, 558
1948	486	25,714	19, 995	103	46,298	114	5, 546	3, 926	22	9, 608	55, 906
1949	-	29,697	12, 326	249	42, 272	303	7,116	2,570	280	10, 269	52, 541
1950	855	40,656	15, 365	332	57,208	1, 104	8, 475	4,793	147	14, 519	71,727
1951	1,384	32, 350	18,083	3, 057	54, 874	288	7,907	5,310	681	14, 186	69,060
1952	1,735	30,733	31,410	675	64, 553	545	8,998	8, 459	506	18,508	83,061
1953	839	38, 312	8,855	54	48,060	295	10,611	3, 330	100	14, 336	62,396
1954	2,918	23, 473	5, 599	554	32,544	535	6,651	2,779	162	10, 127	42,671
1955	1,015	27,863	10, 555	115	39, 548	555	7,246	2,825	260	10,886	50, 434
1956	885	10,671	2,762	532	14,850	171	2,251	1,387	218	4, 027	18,877
1957	2,590	24, 283	15, 344	773	42,990	242	5,098	4, 492	244	10,076	53,066
1958	1,977	48, 458	14, 149	1, 587	66, 171	431	9, 413	3,707	540	14,091	80, 262
1959	2,820	26, 456	14, 184	1,764	45, 224	891	5,890	4,690	492	11, 963	57, 187
1960	1,619	14, 310	10, 533	1,240	27, 702	636	4,332	2,579	178	7,725	35, 427
1961	1,098	22,468	12,046	1,270	36,882	921	6,948	2,592	502	10, 963	47,845
1962	2,539	19,009	12,156	1,287	34,991	1, 139	3,736	3,881	392	9, 148	44,139
19632/	1,264	25,535	11, 785	-	38,584	167	5, 586	3,738	-	9, 491	48,075
19642/	3,143	26, 991	-	-	30,134	391	7,622	-	-	8,013	38,147
19652/	2,200	-	-	-	2,200	740	-	-	-	740	2,940
Mean	1,727	27,616	14,050	903	$\frac{3}{4}$ 3,707	526	6,693	3,811	303	4/11, 362	$\frac{3}{5}$ 55, 147

^{1/} Includes only 2- to 5-year-old seals taken during the kill of males on the Pribilof Islands. From 1956 to 1965, 131 1-year-olds and 493 6-year-olds were taken on St. Paul Island and 20 1-year-olds and 164 6-year-olds were taken on St. George Island. In addition, age was not determined for 3,862 males taken on St. Paul Island, and 1,246 taken on St. George Island.

^{2/} Incomplete returns.

^{3/1947, 1949, 1963, 1964,} and 1965 year classes not included.

^{4/ 1947, 1963, 1964,} and 1965 year classes not included.

George Island. Killing began about 6 a.m. each day on St. Paul Island and about 9 a.m. on St. George Island. We determined the age composition of the kill from collections of right upper canine teeth from 20 percent of the males killed each day.

Table 2 gives the kills of male seals on the Pribilof Islands from year classes 1947-65.

FEMALES

A total of 10,096 female seals were killed on the Pribilof Islands in 1967 as excess to the number needed to maintain the population at the present level. Of 7,502 females killed on St. Paul Island, 2,724 were taken during the kill of

males from 27 June to 5 August, and 4,778 were killed 8-15 August. On St. George Island, 202 females were killed from 26 June to 4 August, and 2,392 were taken 7-17 August. The kill began about 9 a.m. each day on both islands.

We calculated the age composition of the kills from right upper canine teeth collected from 30 percent of the females taken (tables A-5 to A-8).

All females driven were killed regardless of age or size. The kill on St. Paul Island was restricted to animals on the hauling ground. On St. George Island, females were taken from hauling grounds and from rookery fringes.

Table 3 shows the kills of females from year classes 1943-66.

Table 3.--Kill of female seals on the Pribilof Islands, Alaska, and at seal from year classes 1943-66

			ii year clas.			
Year			A	ge in years		
class	1	2	3	4	5	6
				•		
			N	lumber		
1943		~	-		_	12
1944	-	-	-		3	11
1945	-	-	_	4	4	8
1946	-	_	_	4	4	60
1947	-	1	-	î	37	84
1948	-	_	_	84	75	94
1949	_	_	30	34	161	118
1950	-	10	17	92	210	2,949
1951	4	_	8	85	4,618	6,343
1952	-	-	16	6,422	11,465	3,408
1953	-	1	2, 132	5,806	4,056	2,958
1954	_	132	1,150	8, 493	3,771	683
1955	-	11	11,468	7,285	1,047	4,810
1956	-	601	2,072	614	4,520	3,444
1957	150	281	352	6,912	6,303	4,080
1958	76	79	4,651	8,683	8,697	1,914
1959	27	508	4,563	8,044	3,626	621
1960	120	431	2,979	3,409	1, 121	46
1961	37	724	3,434	2,629	85	1, 193
1962	7	390	1,384	93	1,571	
1963	26	172	45	1,597	•	
1964	12	13	963			
1965	58	33				
1966	10					

¹ Female seals taken at sea were part of the pelagic research kill of the United States and Canada during the calendar years 1958-67. Not included in the table are 131,628 female seals classified as age 7 and older and 7,029 female seals killed on the Pribilof Islands from the indicated year classes.

Data collected in 1967 to follow the response of the population to changes in its size included: (1) Counts of dead pups and adults; (2) counts of living adult males; (3) major causes of mortality of pups; (4) reproductive condition of females; and (5) weights of live pups.

MORTALITY

This section includes data on pups that died on the Pribilof Islands during most years since 1941, and adults that died on St. Paul Island in 1965-67 and on St. George Island in 1966-67.

Pups

Biologists have counted dead pups on the Pribilof Islands about mid-August nearly every year since 1948 (table A-9). In 1966 and 1967 we also recorded the number of pups that died within sections established on each of the St. Paul Island rookeries. Table A-10 shows the counts obtained by section in 1967.

In 1967 we recorded the causes of death among pups on three rookery areas selected for sampling.

Counts of dead pups.--The count of dead pups on the Pribilof Islands in 1967 was 17,426; 14,780 were on St. Paul Island and 2,646 were on St. George Island (table A-9).

Causes of pup mortality.--From 29 June to 15 August, 232 dead pups were necropsied. The pups were gaffed from catwalks in two areas on Reef Rookery and one on Northeast Point

Rookery (figs. 5 and 6). Collections from the two rookeries were alternated daily. Table 4 gives the distribution of the five primary causes of death, of the miscellaneous causes, and of the undetermined causes.

1. Malnutrition. Mortality from malnutrition on area 1, though of about the same magnitude as in 1966 (table 5), was about 15 percent higher than the average loss from this cause on areas 2 and 3 (table 4).

2. Liver damage-multiple hemorrhageperinatal complex. This condition is characterized by one or all of the following lesions: interruption of the liver capsule and corresponding separation of the liver parenchyma; subcapsular hemorrhage of the liver causing separation of capsule and parenchyma to form blood blisters 3 to 50 mm. in diameter; foci of hepatic necrosis which form stellate areas of increasing size as the post mortem period lengthens; subpleural hemorrhage of other organs such as the lung and kidney; free blood in the anterior chamber of both eyes; and free blood in the peritoneal cavity. The condition is perinatal; it is usually found in pups with attached placentas or fresh umbilical cords, and frequently in stillborn pups. Thirty-eight percent of pups with rupture of the liver showed no evidence of bite wounds or contusions.

We believed that the total of 11 dead (4 percent) among 273 pups in 1964 and 1966 was caused by simple trauma (physical injuries). The 40 cases from 232 dead pups in 1967 is a fourfold increase. The multiple necrotic foci and subcapsular hemorrhages observed on 12.5 and 22.5 percent, respectively, of the livers of these 40 pups, are lesions we have never seen in fur seals before. One of the most striking features revealed by post mortem examinations

Figure 5.-- Pup mortality, study areas 1 and 2, Reef Rookery, St. Paul Island, mid-July 1967.

Figure 6.-- Pup mortality, study area 3, Northeast Point Rookery, St. Paul Island, mid-July 1967.

Table 4. --Primary causes of death among pups, three mortality study areas, St. Paul Island, 29 June to 15 August 1967

			Study	areas				
		Reef Ro			Northeas			
Causes of death	Are	a l	Area		Area			
	Old ca	twalk	New car	twalk	Hutchins	on Hill		
	Dead	pups	Dead	pups	Dead 1	pups	То	tal
	Number	Percent	Number	Percent	Number	Percent		Percent
Malnutrition	32	40.0	13	24.1	27	27.5	72	31.0
Liver damage-multiple								
hemorrhage-perinatal								
complex	10	12.5	10	18.5	13	13.3	33	14.2
Hookworm disease	4	5.0	1	1.9	32	32.7	37	16.0
Infection	6	7.5	5	9.3	9	9.2	20	8.6
Navel	(3)	(3.8)	(1)	(1.9)	(1)	(1.0)	(5)	(2.2)
Peritonitis	(1)	(1.2)	(0)	(0.0)	(2)	(2.0)	(3)	(1.2)
Pleuritis	(1)	(1.2)	(1)	(1.9)	(3)	(3.1)	(5)	(2.2)
Enteritis	(1)	(1.2)	(1)	(1.9)	(3)	(3.1)	(5)	(2.2)
Cellulitis	(0)	(0.0)	(1)	(1.9)	(0)	(0.0)	(1)	(0.4)
Abscess	(0)	(0.0)	(1)	(1.9)	(0)	(0,0)	(1)	(0.4)
Trauma	6	7.5	4	7.3	6	6.1	16	6.9
Bite wounds	(3)	(3,8)	(4)	(7.3)	(4)	(4.1)	(11)	(4.7)
Skull fracture	(1)	(1.2)	(0)	(0.0)	(1)	(1.0)	(2)	(0.8)
Contusion	(2)	(2.5)	(0)	(0.0)	(1)	(1.0)	(3)	(1.2)
Miscellaneous	4	5. 0	5	9. 3	6	6.1	15	6.5
Stillborn	(1)	(1.2)	(1)	(1.9)	(4)	(4.1)	(6)	(2.6)
Nonhookworm anemia	(2)	(2.5)	(1)	(1,9)	(1)	(1.0)	(4)	(1.8)
Meconium impaction	(0)	(0.0)	(1)	(1.9)	(0)	(0.0)	(1)	(0.4)
Hernia (and eventration)	(0)	(0.0)	(1)	(1.9)	(0)	(0.0)	(1)	(0.4)
Premature	(1)	(1,2)	(0)	(0.0)	(0)	(0.0)	(1)	(0.4)
Hydrocephalus	(0)	(0.0)	(1)	(1.9)	(0)	(0.0)	(1)	(0.4)
Milk inhalation	(0)	(0.0)	(0)	(0.0)	(1)	(1.0)	(1)	(0.4)
Undetermined	8	10.0	6	11.1	3	3. 1	17	7.3
Unsuitable for examination	10	12.5	10	18.5	2	2.0	22	9.5
Totals	80	100.0	54	100.0	98	100.0	232	100.0

Table 5.--Causes of pup mortality on study area 1, Reef Rookery, St. Paul Island, 28 June to 15 August 1966 and 1967

Primary cause of death	1966	1967	1966	1967
	Num	ber	Per	cent
Malnutrition	67	32	44.1	40.0
Liver damage-multiple hemor- rhage-perinatal complex Hookworm disease Trauma Infection Miscellaneous Undetermined	4 24 18 15 4	10 4 6 6 4 8	2.6 15.8 11.8 9.9 2.6 6.6	12.5 5.0 7.5 7.5 5.0 10.0
Subtotal	142	7 0	93.4	87.5
Unsuitable for examination	10	10	6.6	12.5
Total	152	80	100.0	100.0

on fur seals since 1962 has been a lack of lesions in the liver. The associated bilateral ocular hemorrhage (20 percent of the cases) is also new in fur seal pathology. Simple trauma does not account for the sudden increase in the number of cases and the unique syndrome associated with this disease. The likelihood of a predisposition to liver rupture and hemorrhage seems strong. Microbiological and histological studies of liver and other tissues are underway.

This disease of fur seals may be new but is more likely a sudden increase in a condition that occurred at such a low level in the past that it was not recognized. There was not sufficient opportunity for recognition because early pup mortality from late June to mid-July has been studied in only 3 years--1958, 1966, and 1967. 1

Table A-11 shows the lesions and circumstances associated with the cases observed in 1964, 1966, and 1967.²

3. Hookworm disease. Investigators have long believed, without quantitative evidence, that the death rate from hookworm disease varied from rookery to rookery. Table 4 shows a striking difference between area 3, with a death rate of 32.7 percent from hookworm disease, and areas 1 and 2, with rates of 5.0 and 1.9 percent. We cannot explain this variation. The death rate from hookworm disease on area 1 was 8.1 percent in 1964, 17.7 percent in 1966, and 5.0 percent in 1967.²

4. Enteritis. In previous years necrohemorrhagic enteritis has been seen mostly as a

¹ Studies of pup mortality in 1964 were begun on 9 July.
² Includes deaths to 22 August in 1964 and 1966, and to 15 August In 1967.

terminal condition in emaciated pups; there were 27 such cases in 1967. We assumed that enteritis developed as a result of gut stasis and lower resistance to infection brought about by malnutrition. In most cases this explanation is still the most logical; however, in 1967 enteritis was the only important lesion in four pups whose body condition was otherwise good. One other pup, with severe enteritis, had a generalized systemic infection. We isolated two species of bacteria, Proteus mirabilis and Escherichia coli, from the small intestines of this pup and two of the other four cases of enteritis. The same organisms were isolated from one of several artifically reared pups that had died of enteritis. Proteus mirabilis had been isolated from captive pups,3 from a rookery pup that died of malnutrition and secondary necrohemorrhagic enteritis (Keyes, 1965), and from flipper abscesses of a rookery pup (U.S. Fish and Wildlife Service, Bureau of Commercial Fisheries, 1969). The Proteus organism had not been isolated previously from cases in which enteritis, or complications of an enteric infection, was a primary cause of death.

5. Stillbirths. Of the 232 pups examined, 17, or 7.3 percent, were stillborn (had never breathed). Eleven of these were included among those classified as liver damagemultiple hemorrhage-perinatal complex. An occasional pup drowns in embryonal fluid when the fetal membranes over the head fail to break. In other cases, the pups are dead before parturition.

6. Undetermined causes and pups unsuitable for examination. In 1967, we picked up dead pups for autopsy every 2d or 3d day instead of daily, as in 1964 and 1966. The percentage of pups classified as unsuitable for determining cause of death in 1967 was nearly double that of 1966 (table 5); 26 percent of the 232 pups examined had advanced post mortem degeneration (table A-12).

Seasonal and annual trends in pup mortality.--Figure 7 compares total numbers of pup deaths throughout each season in 1964, 1966, and 1967. Peaks of mortality occurred at about the same time in each of the 3 years. The peaks coincide with the peak of births, the early deaths from injury, and the lag necessary for deaths from malnutrition, hookworm disease, and infection to occur (table A-12).

³ Mark C. Keyes. 1964. Research in fur seal mortality, St. Paul Island, Alaska, 8 July to 24 September 1963. Bureau of Commercial Fisheries Marine Mammal Biological Laboratory, Seattle, Wash. [Processed, 140 pp.]

Figure 7.-- Pup mortality, study area 1, Reef Rookery, St. Paul Island, 1964, 1966, and 1967.

The number of pups that died on area 1 of Reef Rookery in 1964-67 is compared in table 6 with the total number of dead pups counted on Reef Rookery and on St. Paul Island during the same period. If we assume the population of pups during this period has been constant at 280,000 [based on shearing and sampling--see U.S. Fish and Wildlife Service, Bureau of Commercial Fisheries (1969, table 19)] the annual mortality for St. Paul Island was 7.7 percent in 1964, 14.0 in 1965, 7.6 in 1966, and 5.3 percent in 1967.

Table 6.--Mortality of pups on study area 1 of Reef Rookery, on Reef Rookery, and on St. Paul Island, 1964-67

	Year classes						
	1964	1965	1966	1967			
Dead pups cleared from	<u>Number</u>						
area 1	161	337	164	80			
Dead pups counted on Reef Rookery	3,000	7,664	3,562	2,008			
Dead pups counted on St. Paul Island	21,572	39,124	21,414	14,780			

Adults

Table 7 shows the numbers of dead adult males and females counted on the Pribilof Islands in 1965-67.

Table 7.--Counts of dead adult male and female sears, Pribilof Islands, Alaska, 1965-67

	St. Paul	Island	St. Geor	ge Island	Total		
Year	Males	Females	Males	Females	Males	Females	
			Number				
1965	158	No count	No coun	t No coun	t 158	No count	
1966	181	172	41	55	222	227	
1967	108	157	41	28	149	185	

COUNTS ON LIVING ADULT MALE SEALS

Adult males approximately age 7 and older have been counted on the Pribilof Islands in mid-July nearly every year since 1911 and classified as harem (with one or more females) or idle (without females) (table A-13). The counts on St. Paul Island in 1967 were obtained on Reef, Lukanin, Kitovi, Tolstoi, and Zapadni Reef Rookeries only, then extrapolated to produce an estimate representing all the rookeries. On the basis of proportional change observed on the five sample rookeries between 1966 and 1967, the estimated totals for St. Paul Island in 1967 were 7,230 harem and 4,439 idle males—a reduction from 1966 of 9 percent in harem males and 24 percent in idle males.

Since 1966, adult males have been classified as shoreline (class 1), territorial without females (class 2), territorial with one or more females (class 3), back fringe (class 4), or hauling ground (class 5). Class 3 males were formerly classified as harem males; classes 1, 2, 4, and 5 were counted as idle males.

In 1967, we counted the five classes of adult males on St. Paul Island on all rookeries in June (table A-14) and on Reef, Lukanin, Kitovi, Tolstoi, and Zapadni Reef Rookeries in July (table A-15). We kept records of the number of adult males of each class counted within sections established on the rookeries in 1966.

We counted the five classes of adult males on St. George Island on all rookeries in June and July 1967 (table A-16).

REPRODUCTIVE CONDITION OF FEMALE SEALS

We examined the genital tracts and ovaries of 1,362 females killed 1-15 August on St. Paul Island for evidence of parturition in 1967. The

Table 8.--Reproductive condition of female seals sampled from the kill, by age, St. Paul Island: 1-15 August 1967

	Age							
Reproductive condition	2	3	4	5	6	7 and older	Total	
Nonpost partum (number)	2	104	192	160	103	373	934	
Post partum (number)	-	1	5	65	72	285	428	
Pregnancy rate (percent)	-	1	2	29	41	43	31	
		Preg	nancy	rate				
		(Percen	it)				
Age 3 and	older	,	31					
Age 4 and	older	•	34					

pregnancy rates (table 8) are not representative of the total population of females because the animals killed were taken from hauling grounds. As a group, females on hauling grounds in 1967 had a pregnancy rate of about one-third that of females on the rookeries in other years, and about half that of females collected at sea during pelagic research.

39

Age 5 and older

WEIGHTS OF PUPS

Data collected annually since 1957 on St. Paul Island to determine if the body weight of unmarked and untagged pups is related to the kill of males at age 3 have been inconclusive. The data for 1967 are discussed in the section on forecasts. In addition to the data on survival.

information on weights shows that tagging, checkmarking, or handling (individually or combined) retards the growth of pups.

In 1967 we tested the variances and means (table 9) of the weights of untagged and unmarked pups from four rookeries. The variances and means for sexes and rookeries combined were significantly different (P<0.001). The variances were still significantly different when the sexes were tested separately (P<0.05). A test of the means with heterogeneous variances indicated that the mean weights differed significantly between rookeries for each sex (P<0.001).

Table 9.--Variances and means of weights of pups, St. Paul Island, 31 August 1967

Sex and rookery	Sample size	Variance	Mean
	Number		Kg.
Males			
Zapadni Reef	100	4.4817	10.225
Polovina	100	3.8082	9.930
Morjovi	100	2.6043	10.435
Reef	100	2.6289	10.320
Females			
Zapadni Reef	100	2.6197	8.945
Polovina	100	3.1156	8.945
Morjovi	100	2.3759	9.230
Reef	100	1.6276	8.965

MARKING

Fur seals of various ages have been given permanent marks to provide data for estimating the size of the population and for studying age and growth, mortality, distribution at sea, homing tendency, and commercial value of the skins. Application and recovery of marks are discussed in this section.

APPLICATION OF MARKS

Monel cattle-ear tags have been used on the Pribilof Islands to mark fur seal pups since 1941 (table A-17) and older seals since 1961 (table A-18). Cryogenic branding is being tested as a way to permanently mark seals without injuring them.

Marking in 1967

We marked pups of both sexes, yearling males, and 2- to 4-year-old males with Monel cattle-ear tags on the Pribilof Islands in 1967.

Pups.--Single T-series tags were attached to 9,980 pups on St. Paul Island (table A-19) and to 2,492 pups on St. George Island (table A-20). We attached the tags to the rear edge of the right front flipper at the hairline and removed the tip of the same flipper as a checkmark (fig. 8). Seals that lose their tags can be identified as to the year of birth by this checkmark.

Yearling male seals.—Males ≤ 98 cm. long (38 inches) or males marked or tagged as pups were double tagged or given an additional tag (1T-series) during late September and early October. A total of 835 males tagged as yearlings in 1967 (table A-21) included 48 that had been tagged or marked as pups in 1966 (table A-22). The mean length of 787 males selected as yearlings was 93.9 cm. (36.9 inches) and that of 48 males known to be yearlings was 92.6 cm. (36.4 inches). Nearly three-fourths of the males tagged were hauled out at English Bay. No females were tagged as yearlings.

FRONT FLIPPER
TAGS CLINCHED AT THE HAIRLINE AND BETWEEN THE FOURTH
AND THE FIFTH DIGIT.
MARKS MADE BY CUTTING A V-NOTCH AND REMOVING THE TIP.

HIND FLIPPER
MARK MADE BY REMOVING THE TIP OF THE FIRST DIGIT.

Figure 8,--Examples of mark locations that have been used on fur seals, Pribilof Islands, Alaska.

Male seals ages 2 to 4.--During the yearling tagging, 1,220 small males, larger and presumably older than yearlings, were double tagged with 2T-series tags (tables A-23 and A-24). Of the 1,220 males tagged, 140 had been tagged or marked as pups; 46 had R-series tags, 17 had lost their R-series tag, 48 had the first digit on the right hind flipper cut off, 26 had a V-notch mark on the right front flipper, and 3 had been tagged by the U.S.S.R. on the Commander Islands (tag numbers T-19559, T-22757, and T-19571). We did not record length for these animals.

We first tagged males in ages 2 to 4 in 1966. Recovery of the animals in the kill will provide information on mortality from one age to the next.

Cryogenic marking.--We described the process of cryogenic or "freeze" branding and trials on fur seals in 1966 in the 1966 (U.S. Fish and Wildlife Service, Bureau of Commercial Fisheries, 1969) report. We made additional tests in 1967.

In 1966, the shortest exposure to the supercooled branding instrument was 15 seconds. This treatment produced a legible mark composed of white hairs, but these were guard hairs only, which were growing primarily from the edges of the treated area. The underfur failed to grow back in. An application of 15 seconds was an overexposure that destroyed not only the pigment cells of the hair follicles

but many of the hair follicles as well, particularly those producing underfur.

In 1967, we tried exposures of 5, 10, and 15 seconds at -680 C. on 12 artificially reared pups that were observed for up to 3 months. The 10-second application gave good depigmentation without skin damage. Five seconds of exposure produced insufficient white hairs, and 15 seconds caused skin damage. On 7 August we branded about 115 pups on both forearms for 10 seconds at -68° C. with a copper instrument in the shape of the letter "T," 1-inch (2.5-cm.) high and 3/8-inch (9.5-mm.) wide. Figure 9 is a photograph taken on 11 October when the new fur and guard hair were white on the treated area. Further testing is required to determine the proper mass-to-surface-area ratio for the head of a branding instrument to be used on fur seals.

We freeze-branded 16 adult females from Kitovi Rookery with 2- (5-cm.) and 3-inch (7.6-cm.) copper letter "U" "S" instruments, four each on the forearm, shoulder, chest, and rump. Exposures of 5, 10, 15, and 20 seconds will be identifiable by the position and direction of the brands. Odd-exposure (5- and 15-second) brands were put on the left side; even-exposure (10- and 20-second) brands were put on the right. Low-exposure (5- and 10-second) brands were placed parallel to the spinal column, and high-exposure (15- and 20-second) brands were placed perpendicular to the spinal column. We used 2-inch (5-cm.) brands on the forearm and rump, and 3-inch (7.6-cm.) brands on the shoulders and chest.

None of the freeze-branded females have been recognized since they were treated on 12 August.

RECOVERIES OF MARKED SEALS

Tagged and marked seals taken on the Pribilof Islands in 1967 were within the length limits prescribed for killing untagged seals. This section deals with the recovery of these tags and marks.

Recovery of Tags, Checkmarks, and Marks in 1967

A total of 5,466 marked seals recovered included 2,408 males and 356 females that had been tagged as pups (table 10), 1,228 males and 140 females that had lost their pup tags and were identified from checkmarks (table 10), 172 males and 3 females that had been marked as pups but not tagged (table 10), 361 males and 3 females selected and tagged as yearlings (table 11), 764 males tagged at age 2 and older (table 11), and 28 males and 3 females tagged as pups by the U.S.S.R. (table A-25). We recovered an additional 261 males that had lost two tags.

Figure 9.--Freeze-branded pup, Zapadni Reef Rookery, St. Paul Island, 11 October 1967.

Tables A-26 and A-27 show the recovery locations of males and females given tags or other marks as pups.

Probability of Tag Loss

We calculated the rate or probability of tag loss from tags recovered and from checkmarks identified in 1967 (table 12). The rate of tag loss observed on St. George Island was somewhat less than that for St. Paul Island for Q-, P-, and O-series tags. Observers recovering tags on St. George Island believed that the checkmarks were less clear there than on St. Paul Island. Uniformity of checkmarks should be achieved in the future by using at least part of the same tagging crew on both islands. On St. Paul Island the rate of loss for R-series tags was about twice that for Q- and P-series tags. There is no apparent reason for this difference, but it may be a sampling error.

The probability of loss observed for tags applied to animals older than pups was 0.25

during the first year following application for 1S-series tags and 0.39 in 2 years after application for 1R-series tags. The 2S-series tags had a loss of 0.30 in 1 year.

Effects of Time of Tagging

In 1963 and 1964, half the tags used on pups were applied 12-21 August and half 20-25 September to determine if time of application was related to rate of recovery. Recoveries from the 1963 experiment are nearly complete; the recoveries through age 4 for tags applied in September show a significantly higher rate of recovery (P<0.01) than for tags applied in August (table 13). The recoveries for the 1964 year class, though incomplete, show the same trend. We attached the tags applied in 1963 and in August 1964 at the hairline of the front flipper, and those applied in September 1964 between the fourth and fifth digits. The difference in site of application may affect the results of the experiment.

Table 10. --Tagged, lost-tag, and marked seals recovered, by age and sex, Pribilof Islands, Alaska, 26 June to 17 August 1967

					·						
Date,		St.	gged se	als	Lost St.	-tag sea	als 1/	Mar St.	ked seal	s	
sex, and		1	George		Paul	George		Paul	George		Grand
mark or tag series	Age	Island	Island	Total	Island	Island Numbe:		Island	Island	Total	total
26 June to 5 August	Years					Numbe					
Males											
Front flipper mark 2/	2	-	-	-	-	_	_	82	12	94	94
Hind flipper mark Z/	2		-	-	-	-	-	56	16	72	72
R Q	2 3	36 1,225	2 338	38 1,563	56 558	6 89	62 647	_	_	_	100 2,210
P	4	490	166	656	313	48	361	-	-	-	1,017
Ø	5	79	39	118	92	22	114	-	-	-	232
N M	6 7	5 1	1	6 1	32	5	37		_	-	43 1
	·										
Total		1,836	546	2,382	1,051	170	1,221	138	28	166	3,769
Females											
R	2	-	-	-	1	-	1	-	-	-	1
Q	3	1	-	1	1	-	1	-	-	-	2
P Ø	4 5	4 24	1	4 25	- 6	-	- 6	_	_	-	4 31
N	6	23	-	23	1	-	1	-	-	-	24
M	7	8	•	8	-	-	-	-	-	-	8
L K	8 9	4 7	1	4 8	-	-		_	_		4 8
J	10	2	-	2	-	-	-	-	-	-	2
I H	11 12	1 5	-	1 5	-	-	-		Ī	-	1 5
G	13	4	-	4		_	_	_	_	_	4
E	15	3	-	3	-	-	-	-	-	-	3
CS	18	3	-	3	-	-	-	-	-	-	3
Total		89	2	91	9	-	9	-	-	-	100
8 to 17 August											
Males											
Front flipper mark 2/	2	_		_	_	_	_	2	1	3	3
Hind flipper mark $\frac{2}{2}$	2	-	-	-	-	-		3	-	3	3
R	2	1	1	2	-	1	1	-	~	-	3
Q P	3 4	6 2	14 1	20 3	2	3	5 1	_	_	-	25 4
ø	5	1	-	1		<u>-</u>	· · ·				1
Total		10	16	26	3	4	7	5	1	6	39
Females											
Front flipper mark 2/	2							2		2	* ₂
Hind flipper mark 2/	2		-		-	:		2	-	2 1	1
R	2	4		4	1	-	1	-	-	-	5
Q P Ø	3 4	19 34	13 13	32 47	24 27	8 2	32 29			-	64 76
Ø	5	64	28	92	43	3	46	_	-	-	138
N	6	36	11	47	22	-	22	-	-	-	69
M L	7 8	13 5	4	17 6	-	-		-	-	-	17 6
K	9	8	-	8	-	-	-	-	-	-	6 8
J	10	3	1 2	4	-	-	-	-	-	-	4
I H	11 12	3 1	-	5 1	-	-	-	-	-	_	5 1
G	13	1	-	1	-	-	-	-	-	-	1
E	15	1		1	1	-	1			-	2
Total		192	73	265	118	13	131	3	-	3	399

^{1/} Seals that had lost their tags were identified from checkmarks at the time of tagging. In addition to those seals listed, 23 males and 1 female recovered on St. Paul Island had lost their tag but did not have a checkmark.

^{2/} Seals marked but not tagged -- V-notch right front flipper and tip of 1st digit right hind flipper sliced off.

Table 11.--Tag recoveries from male seals that had been selected and tagged as yearlings and at age 2 or older in previous years, Pribilof Islands, Alaska, 26 June to 5 August 1967

Age group,	Age	when:	C+ David	S+		
year tagged, and tag series	Tagged	Recovered	St. Paul Island	St. George Island	Total	Adjusted total ²
	Years	Years	Number	Number	Number	Number
Yearlings						
1965						
Rl Rl	1	3 4	175 4	36 1	211 5	274 6
R1	1 2 (³)	+	11	-	11	-
Total.			190	37	227	280
1966						
S1 S1	1	2	63 39	20 4	83	108
S1	1 2 (³)	,	8	-	43 8	57 -
Total.			110	24	134	165
Age 2 and Older					· - ····	
1966						
S2 S2	1 2 3 (³)	2	8 478	- 69	8 547	12 706
S2	3	4	149	24	173	223
S2	(3)		35	1	36	-
Total			670	94	764	941

¹ In addition to the seals listed, 215 males on St. Paul Island and 46 males on St. George Island that had lost two tags were taken, and 2 females with R1series tags (one tagged at age 1 and one tagged at age 2) and 1 female with S1series tag (tagged at age 1) were recovered.

Table 12.-- Tag loss observed, Pribilof Islands, Alaska, 1967

			T	ags appli	ed to pu	ups		Tags a	pplied to seal	s older th	an pups <u>l</u>
		St. P	aul Isla	nd	St. G	eorge	Island		St. Paul	[sland	
			Lost	Ratio		Lost	Ratio	ļ			Ratio
Tag		Tags	tags	(b)	Tags	tags	(ъ)	Tag	Both tags	One tag	(ъ)
series	Age	(a)	(b)	(a)+(b)	(a)	(b)	(a)+(b)	series	recovered	lost <u>2</u> /	(a)+(b)
	Years	No.	No.		No.	No.			No.	No.	
R	2	36	56	0.61	2	6	0.75	15	77	51	3/0.25
Q	3	1,225	558	0.31	338	89	0.21	1R	105	135	3/0.39
P	4	490	313	0.39	166	48	0.22	2S	399	336	<u>3</u> / 0.30
0	5	80	92	0.53	39	22	0.36				

² Adjusted to include animals of unknown age and 261 that had lost both tags. Animals of unknown age were allocated on the basis of the proportion observed in each age within each series and those that had lost both tags on the basis of the number observed in each age and tag series.

³ The tags were recovered, but age could not be determined because either the flippers or the heads were separated from the carcasses during the skin-stripping process.

 $[\]frac{1}{2}$ / Tags are applied to seals older than pups on St. Paul Island only. $\frac{1}{2}$ / Includes some seals that had been single tagged as pups and given another tag at age 1 or older. The animal had lost one of the tags before it was killed.

^{3/} Incidence of tag loss (p), from double-tagged animals was calculated from the following formula: $p=n_1/(n_1+2n_2)$; where n_1 is number that lost one tag and n_2 is number that had lost a tag.

Table 13.--Tag recoveries, 26 June to 17 August 1967, from seals tagged as pups in August and September of 1963 and 1964¹ on St. Paul Island

Year	Age at		Time of tagging					
class	recovery	12-21 A			eptember	Total		
	Years	Number	Percent	Number	Percent	Number		
1963	2	13	28	34	72	47		
	3	354	38	568	62	922		
	4	180	_37	312	63	492		
Year	class total	547	37	914	63	1,461		
1964	2	49	47	56	53	105		
	3	527	47	<u>596</u>	_53	1,123		
Year	class total	576	47	652	53	1,228		

^{1/} Numbers of pups tagged: 12-21 August 1963 - 9,993;

POPULATION ESTIMATES

Estimates of the number of pups and yearling males are presented in this section. Estimates of the pup population are based on three sources of data, tag or mark recoveries, shearing and sampling, and complete counts. Estimates of the yearling male population are based on tag recoveries.

NUMBER OF PUPS BORN

Estimates of the number of pups at the time of tagging were made by combining the tag recovery data for St. Paul and St. George Islands (table 14). We derived an estimate of the total number of pups born by adding the count of dead pups on land to the estimate of the number of pups at the time of tagging (table 15). Estimates based on recoveries from males at ages 3 and 4, believed to be the most accurate, show a continuous but expected decline since 1960. The estimate of 416,000 in 1964 (table 15), however, is still about 40,000 greater than the estimate from shearing and sampling in that year--even with 20,000 pups added to the latter as a result of shearing and sampling on Sea Lion Rock. Estimates from the

Table 14.--Estimates of the pup population at time of tagging, based on tag recoveries from male seals killed 26 June to 5 August 1967 from year classes 1962-65, Pribilof Islands, Alaska

Year class	Age	Killed	Tagged	Tag recoveries	Population estimate at time of tagging
	Years	Number	Number	Number	Number
1962	5	1,679	49,908	233	358,321
1963	4	15,523	24,971	1,017	380,786
1964	3	34,613	24,991	2,210	391,247
1965	1 2 2 2	2,940	10,000 30,087	100 266	291,217 331,419

Recoveries from males tagged as pups.

two sources (tag recoveries, and shearing and sampling) should become more nearly equal because of improvements in tagging. Shearing and sampling now produces the most accurate estimate. The error caused by additional mortality that results from the tagging of pups has not been completely eliminated.

We restricted shearing and sampling as a basis for estimating the pup population to two

²⁰⁻²⁵ September 1963 - 9,985; 12-21 August 1964 - 10,000;

²⁰⁻²⁵ September 1964 - 9,998.

² Recoveries from males tagged or marked as pups.

Table 15.--Estimates of the number of pups born, based on tag recoveries and the count of dead pups, year classes 1960-65, Probling Islands, Alaska

Year class	Pups alive at time of tagging 1/	Count of dead pups	Total pups born
	Number	Number	Number
1960	568,000	75,000	643,000
1961	489,000	71,000	560,000
1962	430,000	54,000	484,000
1963	407,000	39,000	446,000
1964	391,000	25,000	416,000
1965	331,000	46,000	377,000

1/ Estimates are based on tag recoveries from males of the year class killed at ages 3 and 4 for year classes 1960-63; at age 3 for year class 1964; and at age 2 for year class 1965.

rookeries (Tolstoi and Reef) in 1967 to eliminate one of the major causes of disturbance on the rookeries. Although we have no data to show conclusively that disturbance has a lasting detrimental effect, it is likely that it does. Compared to 1966, the mean estimate of the pup population increased from 27,000 to 33,500 on Tolstoi and decreased from 34,900 to 31,500 on Reef Rookery (table 16). We concluded from these data that the population did not change substantially from 1966 to 1967.

We made total counts of pups on Lukanin, Kitovi, Zapadni Reef, and Little Polovina Rookeries in 1967 (table 17). The 1967 counts were the first on Lukanin and Kitovi Rookeries, whereas the counts on Zapadni Reef and Little Polovina have been made each year since 1964. For the latter two rookeries, the number of pups counted in 1967 was 15 to 20 percent less than the number counted in 1966. The decrease indicated by the counts may be real or may have been caused by counting about I week later than usual--18 August compared to about 10 August. Counts made later in the season are inaccurate because the pups spend increasing amounts of time in the water as the season progresses. Counts made later than about 10

Table 17.--Complete counts of live pups on selected rookeries in early August, St. Paul Island, 1963-67

Rookery	1963	1964	1965	1966	1967
			Number -		
Little Polovina	7,230	7,180	7,314	7,071	6,030
Morjovi ¹	-	17,530	18,384	17,388	-
Zapadni Reef	-	5,700	5,383	5,729	4,665
Lukanin	-	-	-	_	3,244
K1tovi	-	-	-	-	10,307

¹ Excluding point south of Ses Lion Neck.

August would be likely to exclude pups and therefore be low.

There is no reason to suspect that the number of pups born has changed appreciably since 1966, the last year in which all the rookeries on St. Paul Island were sampled. Hence, the number of pups born in 1967 was about 385,000; that is, the estimated number (360,000) at time of shearing in 1966, plus about 25,000 pups that died before shearing.

NUMBER OF YEARLING MALE SEALS

The number of yearling males has been estimated from the recovery of tags applied to yearling males from the 1961, 1962, 1964, and 1965 year classes (table 18). The data for the 1961 and 1962 year classes are practically complete, as very few additional recoveries will be made. The 1964 and 1965 year classes will yield additional recoveries. The estimated number of males in the 1964 year class (129,000) is considerably higher than the estimates for the 1961 and 1962 year classes (80,000). On the basis of the male kill from the 1964 year class at ages 2 and 3, the total number of males that will be killed from the year class may be about 14,000 greater than that from the 1962 year class. A difference of this magnitude indicates that the 1964 year class was stronger than the 1962 year class. Additional years of data are necessary to evaluate the estimates derived from this method.

The number of males that were actually yearlings when tagged was determined from

Table 16.--Estimates of the pup population on Reef and Tolstoi Rookeries, based on shearing and sampling, year class 1967, Pribilof Islands, Alaska

		First	First sampling, 14 August			Second sampling, 18 August				
Rookery	Pups sheared	Samples	Total	Sheared	Estimated pup population at time of shearing		Total	Sheared	Estimated pup population at time of shearing	Mean estimate
					Niam	ber				
Reef Tolstoi	4,677 3,962	135 101	3,375 2,525	464 277	34,019 36,116	151 133	3,775 3,325	611 427	28,896 30,852	31,458 33,484

Table 18.--Estimates of the number of yearling male seals, based on tag recoveries, year classes 1961, 1962, 1964, and 1965, Pribilof Islands, Alaska

Year class and tag series	Year when killed	Age when killed	Killed	Tags applied	Tags recovered ¹	Estimate of yearling males (N) ²
	Year	Years	Number	Number	Number	Number
1961						
(N)	1963 1964	2 3	2,019	³ 609	28	43,913
	1965	4	28,827 14,638		226 85	77,680 105,877
	1966	5	1,770		14	76,995
		All ages	47,254		353	81,523
1962				³ 523		
(0)	1964	2 3	2,726		41	34,773
	1965		22,745		138	86,200
	1966 1967	4 5	16,030 1,679		98 8	85,549
	1907	All ages	43,180		285	109,765 79,239
			,		200	1-10-
1964				4 825		
(IR)	1966 1967	2 3	3,533 34,613		40	72,868
	1907	ر	ر ۱۵۰,۰۵۵		222	128,629
1965 (1S)	1967	2	2,940	4 1,415	88	47,274

¹ Tags from animals of unknown age were divided on the basis of the proportion observed among animals of known ages.

the right upper canine teeth of those taken in the kill. For the 1961 and 1962 year classes the error in classification by age at the time of tagging was 3.2 and 5.9

percent, respectively. The data for the 1964 and 1965 year classes are incomplete; we assumed an error of 5.9 percent for these year classes.

FORECAST OF THE KILL OF MALE SEALS IN 1968

A comprehensive review of the prediction methods that have been used over the past several years has been reported (U.S. Fish and Wildlife Service, Bureau of Commercial Fisheries, 1969). The most reliable method of forecasting the kill of 4-year-olds has been based on the kill of 3-year-olds from the year class, together with some measure of the timing of their return to the islands at age 3. The estimate of timing depends upon the kill per round (5-day period), which is affected by the behavior of the animals and by the management schedule. Management changes begun in 1967 have cast doubt on the validity of the measure of timing for the 1968 forecast. There is some uncertainity concerning the prediction of the kill of 4-year-olds, especially because the estimate of the number of yearlings from the 1964 year class suggests a higher kill.

Earlier reports referred to the use of estimates of the yearling population as a basis for forecasting, under the theory that most of the compensatory and variable mortality occurs during the first year of life. In other words, the survival rate after age 1 should be reasonably constant. Therefore, if good estimates can be obtained of the yearling survivors and of this constant survival rate from age 1 to ages 3 or 4, the problem of forecasting would be minimal.

Tagging of yearlings provides a marked cohort of known size in the 1-year-old group but this does not yield a population estimate until a random sample of this group has been subsequently obtained. The first such sample becomes available when these seals are killed at age 2, but so far the estimates from tag recoveries of 2-year-old males have been

 $^{^2\ \}text{N=(MC)/R}$ where M is number tagged, C is the kill, and R is the number of tags recovered.

³ We assume an error of 0.032 in classifying seals by age during tagging. ⁴ We assume an error of 0.059 in classifying seals by age during tagging.

unreasonably low compared to estimates from recoveries at ages 3 and 4. If the source of this bias was known, perhaps we could determine whether it is additive or multiplicative, and hence correct for it, or determine that it is variable and cannot be corrected. Without a complete understanding of the situation, we must proceed empirically. Thus, a reliable estimate through this method will be achieved, if at all, only after several more years of data are available.

FORECAST OF THE KILL OF 4-YEAR OLD MALE SEALS ON ST. PAUL ISLAND

Four methods currently used to forecast the kill of 4-year-old males are: (1) Regression of the kill of 4-year-old males on the kill of 3-year-old males and the mean round 4 of the

kill of 3-year-old males; (2) regression of returns at ages 3 and 4 on mean air temperature and on weights of live pups in autumn; (3) regression of the kill on the count of dead pups and the estimate of the pup population; and (4) estimate of returns based on estimates of the yearling population.

Regression of the Kill of 4-Year-Old Male Seals on the Kill of 3-Year-Old Male Seals and the Mean Round of the Kill of 3-Year-Old Male Seals

In this regression the data from the 1953 and subsequent year classes are used, with 5 August considered the terminal date for the male kill and with adjustments made where necessary. Table 19 shows the data.

The resulting regression is:

$$\hat{Y} = 0.375X_1 + 14.19X_2 - 48.31$$

Table 19.--Data for regression of the kill of 4-year-old male seals based on the kill of 3-year-old male seals and mean round of the kill of 3-year-old male seals, year classes 1953-63, St. Paul Island

Kill of 3-year-old	Mean round of the	Adjusted kill of
males before	kill of 3-year-old	4-year-old males
5 August	males $\frac{1}{2}$	before 5 August2/
(X_1)	(X ₂)	(Y)
	2	
Number		Number
31,700	3.5	13,500
19,800	3.4	8,700
$\frac{3}{1}$, 31, 200	3.2	8,100
<u>4</u> /11,700	3.3	1,900
21,600	4.0	16,200
38,900	3.8	21,000
25,100	3.6	14,900
14,000	3.7	10,800
22,200	3.8	11,300
15,200	4.0	15,100
25,500	3.7	11,800
	Males before 5 August (X ₁) Number 31,700 19,800 3/31,200 4/11,700 21,600 38,900 25,100 14,000 22,200 15,200	Mumber 31,700 3.5 19,800 3.4 4/11,700 3.3 21,600 4.0 38,900 3.8 25,100 3.6 14,000 3.7 22,200 3.8 15,200 4.0

1/ The mean round of the kill of 3-year-old males through 5 August; kills before 7 July were pooled into the round of 7-11 July, and this period was considered as round 1.

2/ The kill of 4-year-old males before 5 August adjusted according to termination of the kill of 3-year-old males the previous year. If killing ended after 5 August, this figure was increased by 80 percent of the number of 3-year-old males taken after 5 August. If killing ended before 5 August, this figure was decreased by 80 percent of the estimated number of 3-year-old males that could have been taken from the actual termination date through 5 August.

3/ The killing of males in 1958 ended 31 July; an estimated 4,000 3-year-old males could have been taken 1-5 August.

4/ The killing of males in 1959 ended 31 July; an estimated 1,500 3-year-old males could have been killed 1-5 August.

⁴Mean round = mean of rounds weighted by number taken by round. See glossary.

The coefficient of multiple correlation is R = 0.946 ($R^2 = 0.895$). For the 1964 year class:

 X_1 =kill of 3-year-old males in 1965=27,000

 X_2 =mean round of the kill of 3-year-oldmales in 1967=3.43

so that

 \hat{Y} =estimated kill of 4-year-old males in 1968=10,500.

The standard error (1,800) of $\hat{Y}=$ is based on the assumption that X_2 is measured without error. Insofar as the round system was substantially modified in 1967, however, the value calculated for X_2 must be regarded as doubtful and, despite the small standard error, less weight should be attached to this forecast than to the others.

Regression of Returns at Ages 3 and 4 on Mean Air Temperature and on Weights of Live Pups in Autumn

Table 20 shows the basic data for these regressions.

Because of the unequal lengths of the two series of data, we calculated two regressions. These are:

K = 15.8 + 1.03TK = 8.33W - 39.56 For the 1964 year class: T=15 and W=9.1; the two estimates are:

	Temperature regression	Pup weight regression
Estimated kill at ages 3 and 4		
(combined)	31,000	36,200
Actual kill at age 3.	27,000	27,000
Estimated kill at age 4	4,300	9,200

The standard errors of these estimates are 9,600 and 10,300, respectively.

Regression of Kill on Count of Dead Pups and Estimate of the Pup Population

In 1966, we developed a method for fore-casting based on the count of dead pups and accumulative estimates of the pup population. We hoped that, when available, the estimates from shearing and sampling in the year of birth (fall sampling estimate) could be inserted into this procedure; however; the method involved calculation of the percentage of returns and the percentage of deaths on the islands. These percentages are extremely sensitive to sampling error in the total population estimate, which appears in the denominator. Thus it

Table 20. -- The kill of 3- and 4-year-old male seals, mean air temperature, and weights of pups, year classes 1950-63, St. Paul Island

	Temperature (in	Weights of	
	tenths of a degree	live pups	Kill at ages
Year	above 32°)	in autumn	3 and 4
class	(T)	(W)	(K)
	°F.	Kg.	Number
1950	35	-	56,000
1951	36	-	50,000
1952	37	-	62,000
1953	16	-	47,000
1954	10	-	29,000
1955	17	-	38,000
1956	1	-	13,000
1957	23	8.7	40,000
1958	34	11.4	63,000
1959	33	9.4	41,000
1960	26	9.8	25,000
1961	18	8.5	35,000
1962	21	9.2	31,000
1963	28	8.9	37,000

Table 21.--Estimated number of pups born, count of dead pups, and number of male seals killed at ages 3 and 4, year classes 1950-63, St. Paul Island

	Estimated pups	Count of	Kill from year class
Year	born <u>1</u> /	dead pups	at ages 3 and 4
class	(B)	(D)	(K)
	Number	Number	Number
1950	450,000	56,000	56,000
1951	450,000	74,000	50,000
1952	450,000	45,000	62,000
1953	450,000	82,000	47,000
1954	450,000	101,000	29,000
1955	450,000	79,000	38,000
1956	450,000	104,000	13,000
1957	420,000	65,000	40,000
1958	387,000	33,000	63,000
1959	341,000	42,000	41,000
1960	320,000	66,000	25,000
1961	329,000	61,000	35,000
1962	317,000	48,000	31,000
1963	300,000	34,000	37,000

1/ Cumulative estimates. K=0.09+0.21B-0.69D

1/ Cumulative estimates. The multiple regression is:

seems desirable to use a method that does not possess this disadvantage. A regression has therefore been calculated based directly on the counts and estimates (the data of table 21).

For the 1964 year class, the estimated number of pups born (the count of dead pups plus the estimate from shearing and sampling) was 285,000; substituting B=285, D=23 yields K=44.8. Since the kill at age 3 has been 27,000, the number remaining for the kill at age 4 is 17,800. The standard error (assuming no error in the estimate of the 1964 pup population) is 6,400.

Estimate of Returns Based on Estimates of the Yearling Male Seal Population

Estimates of the yearling population based on recoveries of tagged seals at different ages and the recent kills are shown in tables 18 and 22. The kill through age 4 represented 45.8 percent of the estimate of yearlings of the 1961 year class, based on recoveries at age 3; for the 1962 year class the corresponding figure was 39.1 percent. The average of these is 42.4 percent (standard error 4.8 percent). Application of this percentage to the estimate of yearlings from recoveries of seals at age 3 from the 1964 year class yields an estimated total kill (ages 2 to 4) of 54,500, and hence, a balance to be taken at age 4 of 24,400. The standard error is 7,200.

COMBINED ESTIMATES OF THE KILL OF 4-YEAR-OLD MALE SEALS ON ST. PAUL ISLAND

The several estimates and their standard errors are:

Method	Estimate	Standard error
Regression of the kill of 4-		
year-old males on the kill		
of 3-year-old males and the mean round of the kill of 3-		
year-old males	10,500	>1,800
Regression of returns at ages 3	3	
and 4 on mean air tempera- ture	4,300	9,600
Regression of returns at ages 3	•	,,000
and 4 on weights of pups		10,300
Regression of the kill on the		
count of dead pups and the		
estimate of the pup population.	17,800	>6,400
Estimate of returns based on		
estimate of the yearling popu		7 200
lation	24,400	7,200

The weighted average of these estimates is 12,700, if the standard error of the first estimate is accepted at face value--which gives this estimate most of the weight (44 percent). The unweighted average of the five estimates is 13,200. We therefore estimate that 13,000

Table 22.--Estimates of the yearling male seal populations, year classes 1961-62 and 1964-65, St. Paul Island

	Estimate of yearling population from tag				
Year		recoverie		Kill at ages	Kill at ages
class	Age 2	Age 3	Age 4	2 and 3	2, 3, and 4
	Number	Number	Number	Number	Number
1961	43,900	77,700	105,900	23,600	35,600
1962	34,800	86,200	85,500	21,500	33,700
1963	-	None	-	26,800	38,600
1964	72,900	104,200	-	30,100	-
1965	38,500	-	-	-	-

4-year-old males will be available in 1968. The several estimates are obviously rather widely divergent, and hence we need not emphasize that the estimate of the kill of 4-year-olds in 1968 is less reliable than in past years.

FORECAST OF THE KILL OF 3-YEAR-OLD MALE SEALS ON ST. PAUL ISLAND

Three regressions used to forecast the kill of 4-year-old males have also been used to predict the kill of 3-year-old males. The regressions are:

(1) Temperature regression: K=15.8+1.03T. For the 1965 year class, T=12, so estimated kill at ages 3 and 4=28,200 with a standard error of 9,800.

(2) Pup weight regression: K=8.33W-39.56. For the 1965 year class: W=9.5 so estimated kill at ages 3 and 4=39,600 with a standard error of 10,600.

(3) Count of dead pups and pup estimate regression:

K=0.9+0.21B-0.69D For the 1965 year class: B=267 and D=41 so estimated kill at ages 3 and 4=28,700 with a standard error of at least 6,500.

The estimate of the pup population in 1965 seems low in comparison with the estimates of the number of pups born in 1964 and 1966.

The use of the factor 0.67 to estimate the kill at age 3 from estimates at ages 3 and 4 combined yields the estimates 18,900, 26,500, and 19,200, respectively.

Estimates of the number of yearlings are shown in table 22. Estimates based on recoveries at age 2 have been low in all years when checking has been possible. The relation between the estimated number of yearling

males based on recoveries at age 2 and the kill in thousands of the same year class at ages 2 and 3 is:

$$K_{(2+3)} = 22.4 + 0.23 Y$$

where Y yearling estmate based on recoveries at age 2.

For the 1965 year class:

$$Y = 38.5$$
, so $K_{(2+3)} = 31.3$.

Since the kill at age 2 has been 2,200, the estimated kill at age 3 by this method for St. Paul Island is 29,100. The standard error of this estimate is near zero.

COMBINED ESTIMATES OF THE KILL OF 3-YEAR-OLD MALE SEALS ON ST. PAUL ISLAND

The estimates and their standard errors are:

	Estimate	Standard error
Temperature regression	18,900	9,800
Pup weight regression	26,500	10,600
Regression on count of dead pups and estimate of pup		
population	19,200	>6,500
Yearling estimate	29,100	0 (?)

Since these estimates are reasonably similar and we are in doubt about the standard errors of two of the estimates, it is simplest and not inaccurate to use an unweighted average. This average is 23,000, rounded to the nearest thousand.

FORECAST OF THE TOTAL KILL ON THE PRIBILOF ISLANDS

Table 23 shows the forecast of the total kill of males on the Pribilof Islands in 1968. We have rounded the number of males in ages 2 and 5 to the nearest five hundred. The forecasted kill for both islands was determined by the usual method, that of extrapolating the estimates for St. Paul Island to St. George Island by a factor of 1.25. Because

we believed the estimates were low, they were rounded upward.

The forecasted and actual kills of males in 1967 are compred in table 24.

The absolute error between the forecasted and actual total kill of slightly under 1,500 was almost identical with that obtained for the forecasted and actual total kill in 1966.

In 1967, the kill on St. George Island was 22.8 percent of the total, slightly higher than the long-term average of 20.0 percent.

Table 23.--Forecast of the kill of male seals in 1968, by age, Pribilof Islands, Alaska

	Age			
Island	2+5	3	4	Total
	Number	Number	Number	Number
St. Paul	3,500	23,000	13,000	39,500
St. George	1,000	6,000	4,000	11,000
Total	4,500	29,000	17,000	50,500

Table 24.--Comparison of forecasted and actual kill of male seals, Pribilof Islands, Alaska, 1967

		Age		
Island	2+5	3	4	Total
	Num ber	Number	Number	Number
St. Paul				
Actual	3,487	26,991	11,785	42,263
Forecast	3,000	27,500	14,300	44,800
St. George				
Actual	1,132	7,622	3,738	12,492
Forecast	1,000	6,800	3,600	11,400
Combined				
Actual	4,619	34,613	15,523	54,755
Forecast	4,000	34,300	17,900	56,200

SPECIAL STUDY: NUTRITION OF PUPS

The nutritional requirements of newborn fur seals have been studied since 1963 by analyzing fur seal milk and by feeding various formulas. The primary purpose of these efforts has been to make newborn fur seals available for studies in a controlled environment.

In 1967, a feeding trial was conducted to: (1) test the theory that the addition of selenium, vitamin E, methionine, and glycerin to the diet enhances the utilization of fatty acids, and (2)

provide subjects for experiments in freezebranding and disease susceptibility. Three pups were fed formula (table 25) with selenium, vitamin E, methionine, and glycerin added; and three were fed formula without this supplement.

The pups were captured when 1 to 3 days old and had presumably nursed. On the first day they were weighed and bathed, had their

Table 25 .-- Formula for artificial milk fed to captive pups, St. Paul Island, 9 July to 13 August 1967

Total Island, your, to is nagast	, 1701
Component	Percent
Protein	
Fish flour (fine grind for animal use,	
73 percent protein) $\frac{1}{2}$	9.1
Casein (85 percent protein) $\frac{2}{}$	4.5
Fat	
Whale oil (baleen, bleached triglyceride) $\frac{3}{}$.	36,0
Water	49.5
Supplement	
BO-SE (R) $\frac{4}{}$ selenium, and	0.00001
d-alpha tocopherol	.0075
DL methionine $\underline{2}$ /Glycerin $\underline{5}$ /	. 4
Glycerin 27 · · · · · · · · · · · · · · · · · ·	4
Antioxidant	
Ethoxyquin (Santoquin (R)) 6/	.01
Emulsifier	
Lecithin (soybean, oil not removed) $\frac{2}{\ldots}$. 1
 1/ VioBin Corp., Monticello, Ill. (Reference in this publication do not imply endorsement of corp.) 2/ Nutritional Biochemicals Corp., Clevel 3/ Del Monte Fishing Co., San Francisco, 	nmercial products.) and, Ohio

BCF Technology Laboratory, Seattle, Wash. 4/ Haver Lockhart, Kansas City, Mo.

5/ Colgate-Palmolive Co., New York, N.Y.

Monsanto Chemical Co., St. Louis, Mo.

Figure 10 .-- Relation between birthweights and subsequent weights of three pups fed formula without added selenium, vitamin E, methionine, and glycerin, St. Paul lsland, 9 July to 13 August 1967. The letters identify the individuals.

Figure 11.--Relation between birthweights and subsequent weights of three pups fed formula with selenium, vitamin E, methionine, and glycerin added, St. Paul Island, 9 July to 13 August 1967. The letters identify the individuals.

umbilical cords disinfected, and were freezebranded for identification. Eight days later they were dipped in a solution of lindane to remove lice, and on the 16th day were given oral thiabendazole for hookworms. The pups had access to a sea-water pool after the 12th day.

Feeding was by stomach tube and a plastic syringe of 230 ml. capacity. Starting with 60 ml., we increased the amount of formula 10 ml. per feeding until each pup was getting 120 ml. twice daily. On the 14th day we increased the amount of formula per feeding to 130 ml., and by the 25th day to a maximum of 150 ml. twice a day.

The results were evaluated by comparing longevity and rates of gain or loss in weight during a 35-day period (figs. 10 and 11). The three pups fed formula without the supplement

lost weight steadily and rapidly. One died in 14 days and one in 16 days; the third began a dramatic recovery when the supplement was added to his diet on the 21st day. Except for an undersized male that lost weight from the beginning and died in 15 days, the pups fed formula containing the supplement gained weight steadily after the usual small loss following birth. One of these pups contracted a bacterial enteritis and began to lose weight after the 28th day; however, a female reached 120.4 percent of her birthweight in 35 days, the best weight gain yet obtained for any artificially reared, newborn fur seal.

We conclude that one or more of the components of the supplement was essential for the survival and growth of newborn fur seal pups fed the artificial diet.

SUMMARY

AGE CLASSIFICATION AND NUMBER OF SEALS KILLED, BY SEX

Males

A kill of 54, 891 males in ages 2 to 6 included 42,359 taken on St. Paul Island and 12,532 taken on St. George Island. The limits for killing males in 1967 were from 107 cm. (42 inches), tip of nose to tip of tail, up to but not including those having manes. An additional 829 young males of unknown ages were taken during the kill of females.

Females

The kill of females in 1967 was 10,096, of which 7,502 were taken on St. Paul Island and 2,594 were taken on St. George Island. Most (7,170) of the females were taken during a special season 7-17 August; 2,926 were taken during the kill of males from 26 June to 5 August.

SURVEY DATA

Mortality

Pups.--The count of dead pups on the Pribilof Islands in 1967, including an addition of 5 percent for pups overlooked during the counts, was 17,426--St. Paul Island contributed 14,780, and St. George Island, 2,646.

The major causes of death among 232 pups autopsied from 29 June to 15 August were malnutrition (31 percent), liver damage-multiple hemorrhage-perinatal complex (14 percent), hookworm disease (16 percent), and infections (9 percent). Trauma and miscellaneous causes of death accounted for 13 percent; 10 percent of the pups were unsuitable for examination, and the cause of death could not be determined for 7 percent.

Adults.--The number of dead adult males counted on St. Paul Island was 158 in 1965, 181 in 1966, and 108 in 1967; 41 were counted on St. George Island in 1966 and again in 1967. The number of dead adult females counted on St. Paul Island was 172 in 1966 and 157 in 1967; 55 were counted on St. George Island in 1966 and 28 in 1967.

Counts of Living Adult Male Seals

On the basis of the proportional change observed on five sample rookeries between 1966 and 1967, we estimated totals of 7,230 harem and 4,439 idle males on St. Paul Island in 1967-a reduction from 1966 of 9 percent for harem males and 24 percent for idle males.

On St. George Island the number of harem males counted in 1967 (1,646) was 17 percent less than the number counted in 1966 (1,974), whereas the number of idle males in 1967 (1,268) was 20 percent higher than in 1966 (1,017).

Reproductive Condition of Female Seals

Thirty-four percent of 1,255 females age 4 and older taken from hauling grounds had given birth to pups. These females had a pregnancy rate of about one-third that of females found on the rookeries in other years and about half that of females collected at sea.

Weights of Pups

One hundred untagged and unmarked pups of each sex were weighed on each of four rookeries in 1967. The mean weights differed significantly between rookeries for each sex (P<0.001).

MARKING

Pups

Single T-series tags were attached to the right front flippers of 9,980 pups on St. Paul Island and 2,492 pups on St. George Island. The tip of the same flipper was removed as a checkmark.

One hundred fifteen pups on St. Paul Island were experimentally marked by freeze-branding the letter "T" on their forearms. An exposure of 10 seconds gave good results.

Yearling Male Seals

Double 1T-series tags were attached to the front flippers of 835 males selected as yearlings on St. Paul Island.

Male Seals Ages 2 to 4

Double 2T-series tags were attached to the front flippers of 1,220 males in ages 2 to 4 on St. Paul Island.

RECOVERIES

Tags, Checkmarks, and Marks

Recoveries of seals marked as pups on the Pribilof Islands included 2,764 with tags, 1,368 with checkmarks, and 175 that had been marked but not tagged. Thirty-one seals tagged as pups by the U.S.S.R. were killed on the Pribilof Islands in 1967, and 364 seals tagged as yearlings and 764 tagged at ages 2 to 4 on St. Paul Island were recovered. An additional 261 seals that had lost two tags were taken.

Tag Loss

Among seals tagged as pups, the rate of tag loss observed on St. George Island was less than that for St. Paul Island for Q-, P-, and O-series tags. The rate of loss for R-series tags was about twice that for Q- and P-series tags.

The probability of loss for tags applied to seals at age 1 was 0.25 during the first year following application for 1S-series tags and

0.39 in 2 years for 1R-series tags. There was a loss of 0.30 in 1 year for 2S-series tags.

Time of Tagging

Tags applied to pups in September of 1963 and 1964 have since been recovered at a significantly higher rate than tags applied to pups in August of the same years.

POPULATION ESTIMATES

Number of Pups Born

On the basis of tag recoveries, the estimated number of pups born on the Pribilof Islands has steadily decreased from 643,000 in 1960 to 377,000 in 1965.

On the basis of shearing and sampling live pups on Reef and Tolstoi Rookeries for markedto-unmarked ratios, the number of pups born on the Pribilof Islands in 1967 was about equal to the estimated 385,000 pups born in 1966.

Number of Yearling Male Seals

On the basis of recoveries of male seals tagged as yearlings, the Pribilof Islands had an estimated 79,000 yearling males in 1963, and 129,000 in 1965.

FORECAST OF THE KILL OF MALE SEALS

The predicted kill of males on the Pribilof Islands by 5 August 1967 was 4,000 of ages 2 and 5, 34,300 of age 3, and 17,900 of age 4. Actual kills were 4,619 of ages 2 and 5, 34,613 of age 3, and 15,523 of age 4.

The predicted kill of males on the Pribilof Islands by 5 August in 1968 is 4,500 of ages 2 and 5, 28,000 of age 3, and 17,000 of age 4.

SPECIAL STUDY: NUTRITION OF PUPS

Pups fed a formula without supplemental selenium, vitamin E, methionine, and glycerin lost weight and died within about 2 weeks; pups fed the supplement gained weight and were considered suitable for use in a disease susceptibility experiment.

ACKNOWLEDGMENTS

The research program in 1967 was completed with the cooperation of C. Howard Baltzo, Program Director; Bertel W. Johnson, Management Staff Officer; Richard A. Hajny, Wildlife Management Biologist; Harold Thayer, Program Construction Supervisor; Victor Misiken,

Sealer III Foreman; Alex Melovidov, Sealer I Foreman; Lee Paola, Superintendent, Oregon-Alaska Marine Products; and Iliodor Merculief, President, St. Paul Island Community Council.

GLOSSARY

The following terms used in fur seal research and management on the Pribilof Islands have special meanings or are not readily found in standard dictionaries.

- Checkmark A notch, slit, hole, or other mark made on a seal flipper when a tag is applied, to ensure later recognition of an animal that has lost its tag. See marked and lost tag.
- Drive The act of surrounding and moving groups of seals on land from one location to another.
- Escapement Seals that were not killed because they were too old, too large, or were not available.
- Female kill That part of the annual harvest devoted principally to the kill of female seals, usually in August. See male kill.
- Hauling ground An area, usually near a rookery, on which nonbreeding seals congregate. See rookery.
- Haul out The act of seals moving from the sea to a rookery or hauling ground on shore.
- Homing tendency The inclination of seals to return to the rookery where they were born.
- Known-age Applied to seals for which age is definitely known because they bear an inscribed tag or have a certain combination of tag-scar and checkmark.
- Lost-tag Applied to a seal known to have been tagged because it bears a checkmark.
- Lost-tag-to-tag ratio The number of seals that have lost tags as compared with the number retaining tags.
- Male kill That part of the annual harvest devoted principally to the kill of male seals, usually in late June, in July, and in early August. See female kill.
- Males, adult Class 1 Shoreline Full-grown males about age 10 and older without females but apparently with established territories at the high tide mark.
 - Class 2 Territorial without females Fullgrown males about age 10 and older without females but with established territories on the rookery.
 - Class 3 Territorial with females Fullgrown males about age 10 and older with females and established territories on the rookery.
 - Class 4 Back fringe Full-grown and partly grown males about age 7 and older, without females and without territories, that

- are found along the inland fringe of the rookery.
- Class 5 Hauling ground Full-grown and partly grown males about age 7 and older, without females, that are found on traditional hauling grounds.
- Mane Long, silver-colored guard hairs on the shoulders and on back of the neck--a secondary sex characteristic of males. The mane appears on some males at age 5, on most at age 6, and on all at age 7 or older.
- Marked Seals that have been tagged or sheared so that they can be identified. Removing a digit from a hind flipper, cutting a V-notch in the leading edge of a front flipper near the tip, or slicing off the tip of a front flipper are also examples of marking. These marks, when applied to seals in conjunction with tags, are considered checkmarks. See checkmark and lost-tag.
- Marked-to-unmarked ratio The number of marked seals compared with the number of unmarked seals.
- Pregnancy rate Percentage of females that were carrying or had borne pups in the year of examination.
- Rookery An area on which breeding seals congregate.
- Round The sequence in which hauling grounds on St. Paul Island are visited to harvest seals. When used, a circuit or round of the hauling grounds is completed in 5 days and the procedure is repeated throughout the kill of males. The mean round of the kill is calculated by multiplying the round number by the number killed in that round and dividing the cumulative product by the cumulative kill.
- Roundup The act of surrounding and collecting seals to be driven for harvesting, tagging, or other purposes.
- Tagged Describes a seal having an inscribed metal tag or tags attached to one or more of its flippers.
- Tag recoveries Includes tags recovered, marked seals recovered, and seals identified from checkmarks as having lost their tags. See checkmark, marked, and lost-tag.

Part II. PELAGIC FUR SEAL INVESTIGATIONS

The objectives of pelagic research in 1967 were to collect information on the food habits of fur seal pups as they began to leave the Pribilof Islands in November and December, and to study the distribution and food of fur seals of all ages off Washington in January and February. One biologist (as part of the exchange of scientific personnel between Conven-

tion members) was sent to Japan to observe the methods used in pelagic fur seal research and in caring for sealskins. Biologists also worked aboard two research vessels off the coasts of Washington, Oregon, and northern California in late August and September to observe the distribution of fur seals.

EQUIPMENT, METHODS, AND PERSONNEL

Two vessels were used in January and February 1967 for pelagic investigations off the Washington coast. The M/V Pribilof was used principally for surveying offshore waters, and a smaller vessel, the M/V Tonquin, was chartered for collecting seals. Transects were run at 28-km. (15-mile) intervals to determine the distribution of seals between lat. 46°00'N. and 49° 00' N. Distances of 635, 769, 596, 685, and 519 km. (343, 415, 322, 370, and 280 nautical miles, respectively) from shore were reached on five of the transects. Whenever transects were run, the crew on the bridge assisted the biologist watch for fur seals. Data recorded on seals included total number sighted, time each was sighted, number of animals in group, estimated distance from the vessel when abeam, and behavior of the animals (e.g., sleeping, resting, swimming, feeding). We calculated the location of each seal observed from the position of the vessel, which we plotted on a chart at hourly intervals.

⁵ Bureau of Commercial Fisheries Pribilof Islands supply vessel; registered length 64 m. (210 feet), 1,200 gross tons, 14,000 horsepower, cruising speed 22.2 km. per hour (12 knots).

⁶Privately owned vessel; registered length 30 m. (99 feet), 200 net tons, 350 horsepower, cruising speed 16.7 km. per hour (9 knots).

The bridge of the <u>Pribilof</u> at eye level is 8.1 m. (26.5 feet) above the waterline, or about double that of the <u>Tonquin</u>. The greater height permitted observers to see about four times the area that could be seen from the <u>Tonquin</u>. The angle of vison from the <u>Pribilof</u> improved observation in disturbed seas, and her large size permitted the investigators to remain far offshore during storms. The <u>Tonquin</u> was used for survey and collection of seals over the Continental Shelf.

Fiscus, Baines, and Wilke (1964) and Fiscus and Kajimura (1967) have described the equipment and methods used to collect seals. Seals were shot with 12-gauge shotguns loaded with 00 buckshot. They were weighed, measured, and examined for tags, checkmarks, scars, general physical condition, barnacles, and algae. Stomachs, reproductive tracts, and all canine teeth were taken to the BCF MMBL (Marine Mammal Biological Laboratory) in Seattle where they were used in studies of food, reproduction, and age.

Most yearling seals were weighed, measured, frozen, and later examined in our laboratory for general body condition and parasites.

Appendix B gives the itinerary for the 1967 pelagic investigations.

DISTRIBUTION

Research at sea comprised several phases. The primary program was a study of distribution, food, age, and reproductive condition of fur seals collected off Washington from 6 January through 12 February. Secondary programs included distribution of fur seals in the Bering Sea and in waters near the eastern Aleutian Islands in November and December of 1965 and 1966; observation of Japanese fur seal research at sea and at the field station in Ozuchi, Iwate Prefecture, Japan, during April and May 1967; distribution of fur seals off

Washington, Oregon, and northern California in August and September 1967; and a study of marine organisms ingested by nursing fur seal pups.

DISTRIBUTION OFF WASHINGTON IN JANUARY AND FEBRUARY 1967

Before 1967 the Bureau of Commercial Fisheries had done little research on fur seals off Washington in January and February. K. W. Kenyon and V. B. Scheffer (field notes

on file at MMBL)⁷ sighted 10 seals on 18 December 1948 about 37 km. (20 nautical miles) west of Cape Flattery. On 10 February 1950 they sighted 69 seals during a flightfrom Cape Flattery south along the 183-m. (100-fathom) depth contour to the Columbia River (unpublished map on file MMBL). The largest concentrations of fur seals were seen off Grays Harbor.

Observations made more recently from vessels en route to the wintering grounds of fur seals off California follow: February 1958--2 days, 22 seals sighted, 1 collected; January 1959--3 days, 18 seals sighted, 1 collected; January 1966--1 day, 7 seals sighted; February 1966--1 day, 14 seals sighted.

Fur seal distribution off Washington from 6 January to 12 February 1967 is shown by month in figures 12 and 13.

Tables C-2 and C-3 show by month the length of time vessels occupied a square, the total number of seals seen and collected, and the number seen per hour.

Except for 24 seals seen during a cruise to 519 km. (280 miles) offshore on 26 January, very few seals were seen along offshore transects. Seals were most commonly seen within 111 km. (60 miles) of land. Generally, seals in offshore waters were more active than those observed along the Continental Shelf and inside the 183-m. (100-fathom) depth contour.

The time of arrival of the first seals off the coast of Washington to California (December) suggests that seals travel eastward or southeastward from the eastern Aleutian passes at a fairly regular rate and probably do not linger en route. They migrate slowly through waters near the Continental Slope and Shelf, where food is abundant.

We found seals numerous along, and on, the Continental Shelffrom Grays Harbor northward towards Umatilla Reef in early February. In January and February, we usually saw seals off Cape Flattery, Wash., and westward to La Perouse Bank.

Surface water temperatures in the area surveyed off Washington varied from 6° to 10° C.; the temperature was usually 8° or 9° C.

Two observers at sea for 31 days off northern California, Oregon, and Washington during August and September 1967 saw two fur seals.

Tables C-4 and C-5 show the number of seals seen and collected off Washington from 6 January through 12 February 1967. The number seen and collected by 10-day periods in January and early February was less than that for 10-day periods in April 1965 (Fiscus and Kajimura, 1967). Storms made observations more difficult in January and February 1967.

Seals were still migrating south through the area in January.

Table C-6 shows grouping of seals. Group size did not differ greatly from that of previous years.

Of 835 seals sighted off Washington in 1967, 131 were collected, 27 were wounded and lost, and 21 sank after they were killed. Tables C-7 and C-8 show numbers and percentages of all seals sighted, collected, wounded and lost, and killed and lost from 1958 to 1967. There has been a small increase in the percentage of seals wounded and lost, and killed and lost in the past 2 years when compared with 1958 to 1965. The use of larger, less maneuverable vessels with high bows in 1966 and 1967 may

have caused the increase.

Table 26 shows by month the age and sex of seals collected in 1967. We expected the yearling seals in the collection, because beachcombers in past years have reported the stranding of several 1-year-old tagged seals along the coasts of Oregon, Washington, and British Columbia during January and February.

Seals collected off Washington in January and February 1967 were younger than seals collected during the same period in 1966 (U.S. Fish and Wildlife Service, Bureau of Commercial Fisheries, 1969) off California. The percentage of the catch in different age categories in the respective areas was:

	Ages	1 to 3	Ages 4 to 22 Male ¹ and
	Male	Female	female
	Percent	Percent	Percent
Washington	6.7	32.1	61.8
California	3.0	4.4	92.6

¹One male, age 4, in the sample.

Some seals from the Pribilof Islands migrate into the western North Pacific Ocean in late autumn, but recoveries of tags from the Pribilof Islands suggest that most move into the eastern North Pacific.

There is some segregation of fur seals at sea by age and sex. Females of all year classes and young males of ages 1 to 4 are found in the Gulf of Alaska and the eastern North Pacific Ocean during winter and spring. Males more than 5 years old are not regularly found south of Dixon Entrance (lat. 54°30' N.). We found more females age 5 and older off California than off Washington in January and February.

The age and sex of fur seals collected by the United States off Washington by month

⁷K. W. Kenyon, Wildlife Research Biologist, Bureau of Sport Fisheries and Wildlife; and V. B. Scheffer, Wildlife Research Biologish, Bureau of Commercial Fisheries.

⁸ Many seals sighted during this period were not hunted because sea conditions made hunting impractical, vessels were running observation transects, and it was impossible to hunt all seals sighted in large concentrations.

ington. The sides of each square measure 18.5 km. (10 nautical miles). Squares occupied for less than 0.5 hour are marked "X." See Figure 12,--Number of seals seen per hour of effort, in each square (areal unit) occupied by a research vessel in January 1967, off Washtable A-2 for detailed data.

Figure 13,.--Number of seals seen per hour of effort, in each square, (areal unit) occupied by a research vessel in February 1967, off Washington. The sides of each square measure 18.5 km, (10 nautical miles). Squares occupied for less than 0.5 hour are marked "X," See table A-3 for detailed data.

Table 26.--Age and sex, by month, of fur seals collected pelagically by the United States off Washington in 1967

	1	Ja	anua r y			Feb	ruary			To	tal	
Age	Ma	le	Fen	nale	Mal	е	Femal	.e	Mal	e	Fem	ale
Years	Number	Percent	Number	Percent	Number	Percent	Number	Percent	Number	Percent	Number	Percent
1	2	28.6	3	4. l	4	66.7	3	6.7	6	46.1	6	5.1
2	3	42.8	2	2.7	2	33.3	1	2.2	5	38.5	3	2.5
3	1	14.3	4	5.5	-	-	6	13.4	1	7.7	0.1	8.6
4	1	14.3	5	6.9	-	-	4	8.9	1	7.7	9	7.6
5	-	-	6	8.2	-	-	3	6.7	-	-	9	7.6
6	-	-	14	19.2	-	-	6	13.4	-	-	20	17.0
7	-	-	3	4. l	-	-	4	8.9	-	-	7	5.9
8	-	-	4	5.5	-	-	3	6.7	-	-	7	5.9
9	-	_	10	13.7	-	_	2	4.4	-	-	12	10.3
10	-	-	6	8.2	- 1	-	5	11.1	-	_	11	9.4
11	-	-	3	4. 1	-	-	1	2.2	-	_	4	3.4
12	_	_	2	2.7	_	_	1	2.2	_	_	3	2.5
13	-	-	2	2.7		-	1	2.2	-	-	3	2.5
14	-	_	1	1.4	_	-	-	_	-	-	1	0.8
15	-	-	1	1.4	-	-	2	4.4	-	-	3	2.5
16	-	-	5	6.9	-	-	1	2.2	-	-	6	5.1
17	_	_	2	2.7	-	-	-	-	-	-	2	1.7
20	-	-	_	-	_	_	1	2.2	-	_	1	0.8
22	-	-	_	-	_	_	1	2.2	_	_	1	0.8
Total	7		73		6		45		13		118	

Table 27.--Age and sex, by month, of fur seals collected pelagically by the United States off Washington¹
[Combined data for 1958-59, 1961, 1964-65, and 1967.]

	Seals							Females	
Month	collected	Mal	.es ²	Fem	ales	Ages	1-4	Ages 5	-20+
	Number	Number	Percent	Number	Percent	Number	Percent	Number	Percent
Ψ.	0.1	0	0.0	7.0	00.1	1.4	10.2	50	00.0
Jan.	81	8	9. 9	73	90. 1	14	19.2	59	80.8
Feb.	52	7	13.5	45	86.5	14	31.1	31	68.9
Mar.	58	11	19.0	47	81.0	11	23.4	36	76.6
Apr.	799	86	10.8	713	89.2	216	30.3	497	69.7
May	5	0	0.0	5	100.0	4	80.0	1	20.0
June	4	2	50.0	2	50.0	2	100.0	0	0.0

¹ Data for 1958 taken from Ford Wilke, Karl Niggol, and Clifford H. Fiscus. 1958. Pelagic fur seal investigations, California, Oregon, Washington, and Alaska, 1958. Bureau of Commercial Fisheries, Marine Mammal Biological Laboratory, Seattle, Wash. [Processed, 96 pp.]

Data for 1959 from Karl Niggol, Clifford H. Fiscus, Jr., and Ford Wilke. 1959. Pelagic fur seal investigations, California, Oregon, and Washington, 1959. Bureau of Commercial Fisheries, Marine Mammal Biological Laboratory, Seattle, Wash. [Processed, 92 pp.]

Data for 1961 from Clifford H. Fiscus, Karl Niggol, and Ford Wilke. 1961. Pelagic fur seal investigations, California to British Columbia, 1961. Bureau of Commercial Fisheries, Marine Mammal Biological Laboratory, Seattle, Wash. [Processed, 87 pp.]

Data for 1964 from Fiscus and Kajimura (1965); data for 1965 from Fiscus and Kajimura (1967).

² All males are age 5 or younger, except one 8-year-old.

since 1958 are shown in table 27. Generally, the age and sex composition of the population off Washington is similar to that of the population off California (U.S. Fish and Wildlife Service, Bureau of Commercial Fisheries, 1969). The proportion of females ages 1 to

4 years increases as summer approaches. This increase may be explained in part by the northward migration of gravid females and probably by a gradual increase in the number of young animals that are still appearing from seaward and moving south.

DISTRIBUTION OFF WASHINGTON, OREGON, AND NORTHERN CALIFORNIA IN AUGUST AND SEPTEMBER 1967

The Marine Mammal Biological Laboratory has studied fur seals off the coasts of Washington, Oregon, and California at various times since 1958. The studies were made from late November through mid-June, when the animals are abundant in these waters. We have done little work in coastal waters from July through November because we do not normally expect fur seals there at that time. Several people, however, have seen fur seals off the coastal states during the summer and early autumn. For example, D. W. Rice, a whale biologist for the Bureau of Commercial Fisheries, saw a fur seal 30 August 1961 south of San Francisco (approximate lat. 36°58' N. and long. 122°58'W.) while aboard a whaling vessel (field notes on file at MMBL). According to Orr and Poulter (1965), James H. Miller (affiliation unknown) saw a fur seal 27 July 1965 on Año Nuevo Island, Calif., that apparently hauled out and left several times during the day. Peterson and Gentry9 saw two adult males on Año Nuevo Island in 1967, one on 29 July and another for about a week beginning 1 October. Through the cooperation of the Bureau of Commercial Fisheries, Exploratory Fishing and Gear Research Base, Seattle, Wash., and the Department of Oceanography, Oregon State University, we placed observers aboard their vessels during three cruises in August and September 1967 to determine if fur seals are present then in appreciable numbers in coastal waters.

No fur seals were sighted 22 August through 6 September from the M/V John N. Cobb¹⁰ (cruise 89) during 148.5 hours of observations along courses totaling 2,335 km. (1,260 nautical miles) off Washington and Oregon when weather and visibility were good (fig. 14).

We made observations 25-29 August and again 15-22 September from the M/V Yaquina¹¹ (fig. 14). Weather and visibility were excellent in August and from 15 to 17 September, but poor from 18 to 22 September. No fur seals were seen in August during 44.5 hours of observation along 700.9 km. (378.3 nautical miles) of water between the city of Newport and the Columbia River in Oregon. Two fur

seals were seen in September along 1,389.2 km. (749.7 nautical miles) during 87 hours of observations between Newport, Oreg., and San Francisco, Calif. One of these was over Bodega Canyon (lat. 38°08' N., long. 123°40' W.) and the other 113 km. (61 nautical miles) west of Point St. George (lat. 41°48' N., long. 125°36' W.). Both seals were sleeping when seen and were identified as females with white vibrissae.

DISTRIBUTION IN THE BERING SEA AND NEAR THE EASTERN ALEUTIAN ISLANDS IN NOVEMBER AND DECEMBER 1965-66

The distribution of fur seals in the eastern Bering Sea and in waters near the eastern Aleutian Islands has been recorded at various times between mid-May and early October. In 1955, 12 1958 and 1960 (North Pacific Fur Seal Commission, 1965); 1962 (Fiscus et al., 1964), 1963 (Fiscus et al., 1965), and 1964 (Fiscus and Kajimura, 1965), halibut schooners and purse seiners, 21 to 24 m. (70-80 feet) long, were used for fur seal investigations in this area during spring and summer.

Two cruises by Scheffer 13 and Kenyon 14 on the M/V Black Douglas, 45 m. (148 feet) long, from 27 October to 17 November 1947 between Unalaska and Attu, and 26 November to 6 December 1948 (Kenyon and Wilke, 1953; Wilke and Kenyon, 1954) from Unalaska to San Francisco were the only surveys made near the Aleutian Islands in late autumn or winter before 1965.

In 1965, the Fisheries Research Board of Canada sent the research vessel M/V G. B. Reed, 54 m. (177 feet) long, to determine if weather would permit sampling of fur seals in autumn and winter. Is Ian B. MacAskie (FRBC, Biological Station, Nanaimo, British Columbia) supervised the cruise. C. H. Fiscus (Bureau of Commercial Fisheries Marine Mammal Biological Laboratory), accompanied the expedition. The G. B. Reed left Nanaimo on 10 November and returned 12 December 1965, working from 18 November to 3 December in waters adjacent to the eastern

⁹ R. S. Peterson and R. L. Gentry. 1967. Biological investigations in Ano Nuevo State Reserve, Annual Report 1966-67. Division of Natural Sciences, University of California, Santa Cruz. 20 pp. + 7 appendixes. [Processed.]

¹⁰ Bureau of Commercial Fisheries Exploratory Fishing and Gear Research vessel; registered length 28 m. (93 feet), 345 horsepower, cruising speed 17 km. per hour (9 knots).

¹¹ Oregon State University research vessel; registered length 55 m. (180 feet), twin 500-horsepower engines, maximum speed 22 km. per hour (12 knots), height of bridge above waterline at eye level - 8 m. (26 feet).

¹² Ford Wilke. 1955. Alaska fur seal investigations, Pribilof Islands, Alaska, 1955. Bureau of Commercial Fisheries Marine Mammal Biological Laboratory, Seattle, Wash., 46 pp. [Processed.]

¹³ Victor B. Scheffer. 1947. Research on fur seals and other marine mammals in 1947; a progress report on Project 80. Bureau of Commercial Fisheries Marine Mammal Biological Laboratory, Seattle, Wash., 20 pp. [Manuscript.]

¹⁴ Karl W. Kenyon. 1948. Migration of the Alaska fur seal (Callorhinus ursinus). Bureau of Commercial Fisheries Marine Mammal Biological Laboratory, Seattle, Wash., 49 pp. + maps. [Manuscript.]

¹⁵ G. C. Pike, I. B. MacAskie, and A. Craig. 1966. Report on Canadian pelagic fur seal research in 1965. Fisheries Research Board of Canada, Nanaimo, British Columbia, 7 pp., tables and appendix. [Processed.]

Figure 14.--Left: Trackline of M/V John N, Cobb during cruise for observation of fur seals, 22 August to 6 September 1967. Right: Trackline of M/V Yaquina during observations of 25-29 August and 15-22 September 1967. Fur seal sightings (two) are shown by &.

Table 28.--Observations of fur seals in waters adjacent to the eastern Aleutian Islands, 18 November to 3 December 1965²

_		Seals
Date	Locality	seen
		Number
18 Nov.	Off Cape Cheerful, Unalaska Island	4
20 Nov.	Off Cape Cheerful, Unalaska Island	5
26 Nov.	Unalaska, Akutan Pass to Avatanik Strait, Unimak Pass, and south side	
	Ugamak Island	25
28 Nov.	Unalaska off the waterfall	1
1 Dec.	Off north side of Akutan Island	4
2 Dec.	Akutan Pass	2
3 Dec.	Unalga Pass to Unimak Pass	6

 $^{\rm 1}$ From Fisheries Research Board of Canada vessel M/V G. B. Reed.

² G. C. Pike, I. B. MacAskie, and A. Craig. 1966. Report on Canadian pelagic fur seal research in 1965. Fisheries Research Board of Canada, Nanaimo, B.C., 7 pp., tables and appendix. [Processed.]

Aleutian Islands. Table 28 gives results of this survey.

Storms in the Bering Sea in November and December made hunting extremely difficult during the cruise of the G. B. Reed in 1965 and of the Pribilof in 1966. Operations were usually restricted to the vicinity of the eastern Aleutian Islands, where vessels could work in somewhat sheltered waters. Daylight is about 8 hours in November and December. Observations or attempts to collect fur seals were made from the Pribilof during parts of 10 days; the vessel was stormbound for 5 days. The G. B. Reed was in the eastern Aleutian or Pribilof Islands areas for 17 days. Her crew made observations or attempts to collect fur seals during parts of 10 days. The G. B. Reed was stormbound or confined to making invertebrate surveys in sheltered waters for 7 days.

The Bureau of Commercial Fisheries vessel M/V <u>Pribilof</u> was used on a cruise in the Bering Sea from 20 November to 4 December 1966. The objectives were to study the autumn distribution, migration, and food of fur seals, with emphasis on pups as they leave the Pribilof Islands. Sixty-two seals were sighted: 37 in waters adjacent to the eastern Aleutian Islands (table 29); 22 on 20 November from 161 km. (87 nautical miles) SE. of

St. George Island to 57 km. (31 nautical miles) NNE. of Cape Cheerful on Unalaska Island (a distance of 120 km. [65 nautical miles]); and 3 on 4 December from 41 km. (22 nautical miles) SSE. of St. George Island to the village of St. George and then to St. Paul Island. Storms prevented the collection of seals on 20 November; two of the three animals seen on 4 December were hunted without success. Except for a few animals that may have been sea lions in the water near East Reef Rookery, we saw no other seals ashore or in water near St. George Island.

According to Walter Dyakanoff (personal communication, 21 November 1966), a resident of Unalaska, both young and old seals were plentiful off Unalaska about 8 November, about 2 weeks before we arrived in the eastern Aleutian Islands.

C. H. Fiscus, resident biologist Richard A. Hajny, and biological technician Lavrenty Stepetin collected 20 fur seal pups on St. Paul Island in November. On 14 November they collected 4 from Zapadni Reef Rookery and 10 from Northeast Point Rookery. On 15 November they collected six from Zapadni Reef Rookery. The pups were collected primarily to determine if these small seals feed on invertebrates and fish before they leave the Pribilof

Table 29.--Observations and collections of fur seals around the eastern Aleutian Islands, 20 November to 4 December 1966

}	Hours		
D 4	of	T 114	C -1 2/
Date	observation	Locality	Seals seen 2/
N7. 1			Number
November 22	7 7	Off Handacks Cons Changel	5
22	(Off Unalaska, Cape Cheerful to Akutan Island	5
23	7	Unalaska to Akun Bay, Akun I.,	8
	·	north of Akutan Island	
25	6+	West side of Unimak Pass	2
26	4	West side of Unimak Pass,	0
		Avatanik Strait	
28	8	West side of Unimak Pass, north	8
		side of Akun Island	
29	8	North side of Akun I., northwest	7
		side of Unimak Pass	
30	6	North side of Akutan and Akun Is.	5
Decembe			
1	7	Akutan Bay, north side of Akutan	2
		Island to Unalaska	

^{1/} From Bureau of Commercial Fisheries vessel M/V Pribilof.

Islands on their first southward migration. They were weighed, measured, frozen, and shipped to the Marine Mammal Biological Laboratory, Seattle. Mark C. Keyes and Hiroshi Kajimura examined the seals for parasites and food remains. Few seals were seen on St. Paul Island during a survey of all rookeries and hauling grounds 5 to 8 December.

To supplement surveys made near the Aleutian Islands from the Black Douglas (1947-48), G. B. Reed (1965), and the Pribilof (1966), we summarize the reports from other sources of strandings, sightings, and land migrations of fur seals in the Bering Sea and the Aleutian Islands during autumn and early winter.

Richard S. Peterson's 16, 17 studies of the behavior of fur seals on St. Paul Island from 1961 through 1963 provide the most recent information on the departures of seals from the Pribilof Islands. Peterson defined a period

17 Richard S. Peterson. 1965. Behavior of the northern fur seal. Johns Hopkins University, D.Sc. Thesis,

12 + 214 pp.

^{2/} Three seals were shot during the cruise. One was collected on 23 November. It was a 12-year-old, unmarked and untagged female (field number US 66-388) taken at 1:15 p.m. at lat. 54°27' N., long. 165°38' W.; body length 131 cm. and weight 36 kg.; two seals in group; surface water temperature 5° C.; stomach with traces of two squid (Gonatidae) and one unidentified fish; multiparous with embryo in left uterine horn and recently (summer, 1966) post partum in right uterine horn; clean nipple crypts; milk in mammaries. One seal was killed and lost on 28 November, and one was wounded and lost on 29 November.

¹⁶ Richard S. Peterson. 1962. Behavior of fur-seal pups; report of a preliminary study, 1961. Bureau of Commercial Fisheries, Marine Mammal Biological Laboratory, Seattle, and Johns Hopkins University, 59 pp. [Manuscript.]

of late nursing lasting from about 15 September to 20 October and a period of weaning from about 25 October to 25 November, followed by the departure of seals of all age classes. A few stragglers, especially older males, may stay. In 1961 the number of pups dropped sharply after 12 November, and none were seen after 27 November. The mean departure date for pups in 1962 was 8 November, Kenyon18 stated that Wilke and Banner observed a decrease in fur seal pups from a count of 2,190 on 6 November to only 1 on 3 December at Kitovi Rookery in 1941. J. B. Crowley (In Jordan, 1898, part II.) observed a noticeable decrease of seals on St. Paul Island after

19 November 1886.
Peterson¹⁹ stated that violent storms in November appeared to have more effect in causing the seals to leave than did low temperatures. His observations on St. Paul Island fit with those of Walter Dyakanoff (personal communication, 21 November 1966), who said that fur seal pups usually first appeared in the vicinity of Unalaska after periods of

northeasterly gales. Kenyon, ²⁰ quoting Admiral Zeusler from Captain Hooper's report of 21 November 1892, reported that "A record kept at Unalaska for the past twelve years [1880-92?] shows the average date of the first appearance of seals in the bay [Unalaska Bay?] to be Oct. 24th and the average date of the last appearance to be Jan. 1st, the earliest and last dates being respectively Oct. 18 and Jan. 4th."

Fiscus et al. (1964) reported adult males in the vicinity of the eastern Aleutian Islands in August and immature females were abundant north of Unimak Pass in early October.

Scheffer²¹ and Kenyon observed one or two seals daily along the north side of the Aleutian Islands, between Unalaska and Attu Islands, from 27 October through 17 November 1947.

In early November 1956, P. Hansen, affiliation unknown (letter, 1 November 1956), found a dead, tagged pup and "considerable numbers" of dead, untagged pups on the beach between Port Heiden and Port Moller on the north side of the Alaska Peninsula.

In November 1957, a Mr. Deigh, affiliation unknown (letter, 20 December 1957), of Egegik in Bristol Bay, mistakenly shot a fur seal pup for a land otter 16 km. (10 statute miles) upstream from the mouth of the Egegik River. The animal had been tagged in August of that year on the Pribilof Islands.

On 28 November 1957, A. H. Johnson, affiliation unknown (letter, 28 November 1957), found a dead tagged pup on the beach at Herendeen Bay on the north side of the Alaska Peninsula.

On 22 November 1960, V. Berns, Refuge Manager, Bureau of Sport Fisheries and Wildlife (letter, 22 November 1960), found a female fur seal pup crossing overland from Izembek Bay on the north side of the Alaska Peninsula to Cold Bay on the south side.

R. D. Jones (1963) reported on several overland migrations across the Alaska Peninsula from north to south in the late fall and early

J. P. Cook, affiliation unknown (letter, 16 December 1963), found a dead, tagged pup on 16 December 1963 on a beach at the south end of Umnak Island.

In summary, a few fur seals of both sexes and of various year classes are in the eastern Bering Sea, on the Pribilof Islands, and near the eastern Aleutian Islands in all seasons; however, most of the animals leave in autumn or early winter and do not begin to return until May and June of the following year. Some adult males leave the Pribilof Islands in August or early September. Nursing females and pups begin to leave the vicinity of the Pribilof Islands in mid-October; the mean departure date is in the first or second week of November. By early or mid-December, depending in part on weather conditions, most have departed.

The pups apparently scatter on leaving the islands. We assume that they travel in a southerly direction since pups have never been reported in the Bering Sea north of the Pribilof Islands. Some wander along the north side of the Alaska Peninsula and into Bristol Bay. Pups begin to appear from Bristol Bay west through the eastern Aleutian Islands in late October and early November, and most have moved into the North Pacific by early December. Pups were present off the Washington coast in January 1967 (table 26). Only two tagged pups (both males) of Pribilof Islands origin have been taken off the coast of Japan since 1958, one on 7 May 1960²² and one on 12 March 1965.²³

Immature males, females, and adult nonnursing females probably leave the Pribilof Islands about the same time as the nursing females and pups. Some of the immature seals are dispersed across the North Pacific Ocean throughout the year.

23 Tokai Regional Fisheries Research Laboratory. 1965. Japanese pelagic investigations on fur seals, 1965.

74 pp. [Processed.]

¹⁸ See footnote 14.

¹⁹ See footnote 16.

²⁰ See footnote 14.

²¹ See footnote 13.

²² F. Nagasaki, M. Tsuboi, and K. Matsumoto. 1960. Report of Japanese fur seal research in 1960. Tokai Regional Fisheries Research Laboratory, Tokyo, 50 pp.+ figs. [Processed.]

TAG RECOVERIES

In 1967, four tagged females and two males and two females that had lost their tags were collected (table 30). Seals that lose their tags are identified from checkmarks applied at the time of tagging.

Table 30.--Tag recoveries from fur seals collected pelagically by the United States off Washington in 1967

[Figures in parentheses indicate animals that had lost] tags; they are included in the totals.

	Year			Ta	_		collected in
Age	of	Tag	Seals	recov	/ery	ea c h a	ge group 1/
	tagging	series	tagged	ਂ ਂ	\$	o [*]	9
Years			Number	Number	Number	Number	Number
2	1965	R	30,087	2		5	3
4	1963	Р	24, 971	-	1	1	9
5	1962	0	49, 908	-	(2)	0	9
6	1961	N	49, 921	-	2	0	20
10	1957	J	49, 842	-	1	0	11

1/ Table does not include seals born in years when no tagging was done, or year classes from which no tagged seals were taken.

SIZE

Mean lengths and weights are given for pregnant and nonpregnant females collected in 1967 in tables C-9 to C-12, and for males in tables C-13 and C-14. Standard deviations

are shown for samples greater than five. Mean lengths and weights of male and female fetuses collected in 1967 are shown by 10-day periods in table C-15.

REPRODUCTION

Data on the reproductive condition of females collected at sea (table C-16) are used to relate distribution by reproductive condition to geographic areas, by time, and to determine pregnancy rates.

The youngest pregnant females taken in 1967 were one multiparous and three primiparous 5-year-old seals.

The Standing Scientific Committee of the North Pacific Fur Seal Commission (1963) has defined the term "missed pregnancy" to mean: "A female may miss pregnancy through failure to ovulate, through failure to be impregnated, or through loss of the blastocyst before implantation."

We define a missed pregnancy as one in which the animal ovulated but did not become pregnant. Animals that have no gross evidence of ovulation are classified as nonpregnant animals. The presence of a degenerating corpus luteum in an ovary of a nonpregnant animal indicates ovulation without pregnancy. Pregnancies that are terminated before implantation may not be detectable several months later. In defining reproductive condition we have no estimate of the amount of error from this cause.

An increase in the proportion of missed pregnancies would suggest that the population was subjected to increasing stress from some cause. Table 31 shows missed pregnancies in females collected in 1967.

Table 32 shows the number of female seals (and percentage pregnant) taken in the eastern Pacific Ocean from 1958 to 1967 and table C-17 those taken off Washington in 1967. Pregnancy

Table 31.--Missed pregnancies in nonpregnant female seals collected in 1967

	Total	Pregnant		
Age	females	females		egnant females
	collected	collected	Total	Missed pregnancy $\frac{1}{2}$
Years	Number	Number	Number	Number
1	6	-	6	-
2	3	-	3	-
3	10	-	10	-
4	9	-	9	-
5	9	4	5	2
6	20	12	8	6
7	7	5	2	l
8	7	6	1	l
9	12	12	-	-
10	11	10	1	1
11	4	4	-	-
12	3	2	1	1
13	3	3	-	-
14	1	1	-	-
15	3	2	1	1
16	6	6	-	-
17	2	-	2	1
20	1	-	1	-
22	1	-	1	1
Total	118	67	51	15

 $[\]underline{1}$ / Determined by the presence of a corpus luteum in one ovary.

Table 32,--Number of female seals collected pelagically by the United States in the eastern Pacific and (in parentheses) percentage pregnant, 1958-67

			 		Year						1958-67
Age	1958	1959	1960	1961	1962	1963	1964	1965	1966	1967	combined
Years					<u>Numb</u>	er					
3	39	43	18	84	93	53	74	51	30	10	495
	(2.6)	(0.0)	(0.0)	(0.0)	(1. 1)	(0.0)	(0.0)	(0.0)	(0.0)	(0.0)	(0.4)
4	42	93	36	96	140	113	62	73	68	9	732
	(2.4)	(6.4)	(2.8)	(1.0)	(2.9)	(7.1)	(1.6)	(0.0)	(1.5)	(0. 0)	(3, 1)
5	70	114	55	68	123	162	84	23	66	9	774
	(45.7)	(56. 1)	(49. 1)	(20.6)	(26. 0)	(43.8)	(35. 7)	(26. 1)	(27. 3)	(44. 4)	(38. 5)
6	99	118	45	62	72	90	81	37	35	20	659
	(80. 8)	(77.1)	(80.0)	(75.8)	(54. 2)	(74. 4)	(75.3)	(56.8)	(71.4)	(60.0)	(72.7)
7	103	143	66	95	93	77	44	24	46	7	698
	(89. 3)	(76.2)	(78.8)	(75.8)	(84. 9)	(88. 3)	(77. 3)	(79.2)	(78. 3)	(71.4)	(81.1)
8	102	164	105	107	98	87	46	33	43	7	792
	(89. 2)	(86.6)	(85.7)	(79. 4)	(89. 8)	(97.7)	(84. 8)	(84. 8)	(79. 1)	(85. 7)	(86. 9)
9	81	108	144	114	73	60	30	17	20	12	659
	(96. 3)	(88. 9)	(92.4)	(93. 9)	(83. 6)	(85. 0)	(83. 3)	(70.6)	(100.0)	(100. 0)	(90. 3)
10	97	96	129	112	100	72	49	10	13	11	689
	(87. 6)	(85.4)	(91.5)	(93.8)	(89.0)	(93. 1)	(87. 8)	(90. 0)	(84. 6)	(90. 9)	(89.8)

Table 32.--Number of female seals collected pelagically by the United States in the eastern Pacific and (in parentheses) percentage pregnant, 1958-67--Continued.

	T-				V						1050 (5
Age	1958	1959	1960	1961	Year 1962	1963	1964	1965	1966	1967	1958-67 combined
Years					Number						
11	113 (92.0)	98 (89. 8)	136 (91.2)	82 (89. 0)	91 (89. 0)	88 (94. 3)	42 (85.7)	18 (83.3)	23 (78. 3)	4 (100.0)	695 (90. 1)
12	134 (82.0)	76 (88. 2)	106 (90.6)	71 (93.0)	97 (89. 7)	92 (92.4)	51 (84. 3)	15 (73.3)	16 (100.0)	3 (66. 7)	661 (88.2)
13	110 (82.7)	56 (89. 3)	120 (87.5)	76 (82.9)	58 (94.8)	76 (90.8)	33 (84. 8)	8 (100. 0)	12 (100.0)	3 (100.0)	552 (87.7)
14	92 (81. 5)	70 (84. 3)	107 (80.4)	67 (92.5)	65 (87. 7)	57 (80. 7)	38 (76. 3)	10 (80.0)	14 (85.7)	1 (100.0)	521 (83.5)
15	71 (78. 9)	87 (88. 5)	67 (83. 6)	68 (79. 4)	53 (81. 1)	75 (85. 3)	41 (65. 9)	14 (78.6)	15 (93.3)	3 (66. 7)	494 (81.8)
16	56 (78. 6)	69 (75. 4)	53 (71.7)	55 (85. 5)	50 (82.0)	45 (82. 2)	22 (72. 7)	12 (83.3)	5 (80. 0)	6 (100. 0)	373 (79. 1)
17	36 (55. 6)	36 (80.6)	46 (67. 4)	24 (62.5)	44 (72.7)	28 (71.4)	21 (61. 9)	10 (80.0)	5 (40. 0)	2 (0. 0)	252 (67. 5)
18	22 (59. 1)	27 (85, 2)	23 (82.6)	25 (64.0)	25 (72.0)	12 (58. 3)	20 (60.0)	8 (37. 5)	-	-	162 (68. 5)
19	14 (28. 6)	16 (81.3)	19 (57. 9)	10 (50.0)	15 (60.0)	5 (60.0)	7 (57. 1)	2 (0. 0)	3 (33. 3)	-	91 (54. 9)
20	3 (33, 3)	5 (40.0)	6 (16. 7)	7 (100.0)	11 (72. 7)	11 (45.5)	10 (20.0)	2 (0.0)	(0.0)	1 (0.0)	57 (45. 6)
21	(100.0)	7 (85.7)	6 (50. 0)	2 (50. 0)	3 (100. 0)	4 (50.0)	-	1 (0. 0)	1 (0.0)	-	25 (64.0)
22	(0.0)	5 (40.0)	-	-	3 (66. 7)	-	-	-	-	1 (0.0)	10 (40.0)
23	1	(0.0)	(0.0)	1 (0.0)	-	2 (0. 0)	1 (100.0)	1 (0.0)	-	-	7 (14.3)
24	-	1 (0.0)	1 (0.0)	1 (0.0)	1 (0.0)	-	-	-	-	-	4 (0.0)
26		1 (0.0)	-	-	-	-	-	-	-	-	(0.0)
Total			1,289 1 (79.7)								
6-26 years	1, 135 (83. 3)	1, 184 (83.4)	1, 180 (84. 4)	979 (84.3)	952 (83. 2)	881 (86.0)	536 (77.0)	222 (73. 4)	252 (81.3)	81 (77. 8)	7, 402 (83. 1)

rates of seals collected off Washington, and those of the combined pelagic collections, vary in the different year classes. The sample sizes are small, however, and the differences are probably not significant.

Pregnancy occurs in the left and right uterine horn with about equal frequency. Of 67 pregnant females collected in 1967, 33

were pregnant in the left uterine horn and 34 in the right.

The sex ratio among fetuses is about equal in data combined for all years (1958-66) (U.S. Fish and Wildlife Service, Bureau of Commercial Fisheries, 1969). In 1967, the 66 fetuses taken included 28 males and 38 females.

ATTACHED ORGANISMS (COMMENSALS)

All seals collected since 1965 have been examined for gooseneck barnacles and algae. Records through 1966 are summarized in "Fur seal investigations, 1966" (U.S. Fish and Wildlife Service, Bureau of Commercial

Fisheries, 1969). No gooseneck barnacles or algae were found attached to the fur of 131 seals collected off Washington in 1967 (80 in January and 51 in February).

FOOD

Fur seals feed on a variety of fish and cephalopods in the eastern and western North Pacific Ocean, Bering Sea, Sea of Okhotsk, and Sea of Japan (Lucas, 1899; Scheffer, 1950; Taylor, Fujinaga, and Wilke, 1955; Wilke and Kenyon, 1957; Fiscus et al., 1964; North Pacific Fur Seal Commission, 1965; Fiscus et al., 1965; and Fiscus and Kajimura, 1965; 1967).

Fur seals are usually found offshore on or near the edge of the Continental Shelf, where they feed on the most readily available schooling fishes and squids. Fur seals feed principally between dusk and dawn; however, they

may also feed during the day.

Food items found in fur seal stomachs were identified by comparing them with reference collection specimens and by using identification keys prepared by Berry (1912; 1914); Sasaki (1929); Schultz (1936); Clothier (1950); Clemens and Wilby (1961); Clarke (1962); and Akimushkin (1963).

STOMACH CONTENTS OF FUR SEALS TAKEN OFF WASHINGTON

The number of fur seal stomachs examined from Washington waters since 1958 is 1,001. Yearly totals were:

1958	1959	<u>1961</u>	1964	1965	<u>1967</u>
83	230	382	28	147	131

During these years 80 percent (799) of the fur seals collected off Washington were taken in April; 57 percent (about 570) of the stomachs contained food. Figure 15 shows the four food

species eaten in greatest volume.

Table 33 gives the stomach contents of fur seals collected off Washington in 1967. Sixty-eight percent of the stomachs contained food. Salmonidae, herring, rockfish, shad, and anchovy made up 96.6 percent of the total food volume. Salmonidae contributed 32.3 percent and herring 24.2 percent. The remains of shrimp were found for the first time in two stomachs.

Where applicable, the common and scientific names of fish are from a list published by the American Fisheries Society (1960), and names of cephalopods are those used by Berry (1912; 1914) and Sasaki (1929).

The following fishes and cephalopods were identified:

Alosa sapidissima. A minor food of fur seals off Washington, American shad ranked fourth in total food volume in 1967 (fig. 16) and were found in seven stomachs. Previous occurrences were: one in 1959; eight in 1961 (contributed 5.1 percent of total food volume); and one in 1964.

Table 33.--Stomach contents of fur seals collected pelagically by the United States off Washington in 1967 $\frac{1}{2}$

		Winter	
		January-Feb	ruary
Food	Vol	lume	Frequency
	Cc.	Percent	Number
Fish			
Alosa sapidissima	3, 728	11.5	7
Clupea harengus pallasi	7,806	24.2	15
Engraulis mordax	3, 550	11.0	8
Salmonidae	10, 437	32.3	18
Mallotus villosus	5	0.0	3
Thaleichthys pacificus	62	0.2	5
Merluccius productus	99	0.3	2
Sebastodes spp.	5, 675	17.6	5
Anoplopoma fimbria	140	0.4	1
Unidentified	T	0.0	20
Squid			
Loligo opalescens	750	2.3	47
Onychoteuthis sp.	Ť	0.0	3
Gonatidae	75	0.2	14
Gonatus fabricii	T	0.0	2
Pebbles	Ť	0.0	6
Îsopoda	Т	0.0	1
Crustacea	10	0.0	3
Total	32, 337		
Stomachs with food Stomachs empty	89 42		

1/ T=trace (<5 cc.). Trace counts are included in frequency
counts.</pre>

Clubea harengus pallasi. Pacific herring have been one of four leading food species in 5 of the 6 years that collections were made off Washington. They were second in importance in 1967 (15 occurrences - see fig. 16), and contributed 24,2 percent of the total food volume.

Engrauls mordax. Northern anchovies were eaten by fur seals collected during 5 of the 5 years off the Washington coast since 1958. They ranked fifth in total food volume in 1967, and first in 1961 and 1965. Northern anchovies were found in the same general locality in 1961, 1965, and 1967 (fig. 17).

Salmonidae. Salmon occur with greater frequency in the stomache of fur seals taken off

Washington than in those from other areas. Collectively, the five Pacific salmon have been among the four leading kinds of fish eaten by fur seals in 5 of the 6 years that collections have been made off Washington. Salmonids ranked fifth in total frequency of occurrence in 1958-67.

The proportion of food volume contributed by salmon has remained nearly constant since 1958, occurring in 138 (1.5 percent) of 9,364 stomachs examined from all areas. Off Washington, salmon were found in 61 (6.1 percent) of 1,001 stomachs examined and in 10.7 percent of stomachs containing food.

in 1967, salmon ranked first in total food volume (fig. 15) and were found in 18 of 131 stomachs (fig. 17). All five species of Pacific

Figure 16.--Locations where fur seal stomachs collected off Washington in 1967 contained Thaleichthys pacificus (5 occurrences), Alosa sapidissima (7 occurrences), and Clupea harengus pallasi (15 occurrences).

salmon (Oncorhynchus gorbuscha, O. keta, O. kisutch, O. nerka, and O. tshawytscha) and steelhead trout, Salmo gairdneri, were identified.²⁴ One stomach contained the remains of O. gorbuscha, O. kisutch, O. tshawytscha, and Salmo gairdneri. All species except O. gorbuscha were immature, their scales showing 1, 2, and 3 years of ocean growth. The O. gorbuscha were 2 years of age and would be mature.

Mallotus villosus. Capelin are a minor food of seals off Washington, although important in Alaskan waters. Capelin were in the stomachs of three seals collected in 1967, the first since 1961 when six seals taken off Grays Harbor contained capelin.

Thaleichthys pacificus. Eulachon were a minor food in 1967. Three of five occurrences were from seals taken 18.5 km. (10 miles) off Cape Flattery, Wash. (fig. 16). Eulachon ranked second in food volume in 1964 and 1965.

Merluccius productus. Pacific hake have also been a minor food off Washington. Remains of this fish were found in the stomachs of two seals, one taken at lat. 48°29' N., long. 124°56' W. and another at lat. 48°13' N., long. 124°57' W. In the small sample taken off Washington in 1964, however, this species ranked first in food volume.

<u>Sebastodes</u> spp. Rockfishes have been one of the four leading food items eaten by fur seals in 5 of the 6 years when samples were collected. They ranked first in total food volume

Figure 17.--Locations where fur seal stomachs collected off Washington in 1967 contained Engraulis mordax (8 occurrences), Salmonidae (18 occurrences), and Sebastodes spp. (5 occurrences).

in 1959 and third in 1967. In 1967, rockfishes were found in the stomachs of two seals taken off the Columbia River and of three seals taken west of Cape Flattery (fig. 17). Rockfishes were also the major food of seals collected off Washington by Canadian investigators in 1958²⁵ and 1960.²⁶

Anoplopoma fimbria. Sablefishes, often called "blackcod" by commercial fishermen, are a minor food of fur seals off Washington, although in 1959 they ranked second in total volume. They were found in only one stomach in 1967, which was collected about 19 km. (10 nautical miles) off Cape Flattery, Wash. (lat. 48°29' N., long. 124°56' W.).

²⁴ Salmon scales were identified by Kenneth H. Mosher and Gunnar Safsten, BCF Biological Laboratory, Seattle, Wash.

²⁵ G. C. Pike, D. J. Spalding, I. B. MacAskie, and F. P. J. Velsen. 1958. Preliminary report on Canadlan pelsgic fur seal research in 1958. Pisheries Research Board of Canada, Nanaimo, B.C., 76 pp. + appendixes. [Processed.]

²⁶ G. C. Pike, D. J. Spalding, I. B. MacAskie, and A. Craig. 1960. Report on Canadian pelagic fur seal research in 1960. Fisheries Research Board of Canada, Nanaimo, B.C., 67 pp. + appendixes. [Processed.]

Squids. Squids are one of the major foods of the fur seal throughout its range. Loligo opalescens, Onychoteuthis sp., and Gonatus fabricii, together, were the main food of fur seals off Washington by frequency of occurrence during January and February 1967. (Onychoteuthis banksii and O. boreali japonicus were until recently considered synonymous. Evidence now indicates that both may be valid species. Until this question is resolved specimens of Onychoteuthis can be identified to genus only.) Squid bodies are quickly digested, frequently leaving only the beaks and pens. Therefore, squids usually rank high in frequency of occurrence and low in percentage of total volume.

Loligo opalescens. These squids are the major species eaten by fur seals off the Washington coast. In 1967, most were in stomachs of seals taken in less than 183 m. (100 fathoms) of water mainly near La Perouse Bank and off Cape Flattery, Wash. (fig. 18). One seal taken at lat. 48°32' N., long. 125°39' W. contained the remains of 62 L. opalescens. The stomachs of four seals collected more than 315 km. (170 nautical miles) from the nearest land (between lat. 49°00' N., long. 131°50' W., and lat. 49°00' N., long. 132°25' W.) contained beaks of L. opalescens.

Onychoteuthis sp. These squids were found in the stomachs of three fur seals from lat. 48°29' N., long. 124°56' W.; lat. 47°40' N., long. 125°03' W.; and lat. 47°15' N., long. 124°46' W. They are a minor food species in Washington waters.

Gonatus fabricii. These squids are also a minor food of fur seals off Washington. Two occurrences in 1967 were from a seal taken in less than 183 m. (100 fathoms) of water, at lat. 48°28' N., long. 124°53' W., and another in water of over 2,743 m. (1,500 fathoms), at lat. 49°00' N., long. 131°50' W.

Squids in 14 stomachs were identified as gonatids (Gonatidae), species undetermined. The stomachs of two seals, collected in deep water at lat. 49°00' N. and long. 131°50' W. and 132°17' W., contained 66 and 73 squids of the family Gonatidae.

Miscellaneous objects found in fur seal stomachs in 1967 were: pebbles in five stomachs, one of which contained 354 (largest size 1.7 X 2.6 cm.); one parasitic isopod Rocinela belliceps; and three occurrences of other Crustacea (two shrimp and one crab). One seal taken at lat. 47°17' N., long. 124°47' W. had the remains of 12 shrimp and another taken at lat. 49°00' N., long. 132°17' W. had remains of one shrimp. These are the first records of shrimp in fur seal stomachs.

Figure 18.--Locations where fur seal stomachs collected off Washington in 1967 contained Loligo opalescens (47 occurrences).

INGESTION OF MARINE ORGANISMS BY PUPS

The food and feeding habits of adult and subadult fur seals are generally well known from extensive pelagic research conducted from 1958 through 1967 by Canada, Japan, the U.S.S.R., and the United States under terms of the Interim Convention on Conservation of North Pacific Fur Seals. The food of pups immediately before and after their departure from the Pribilof Islands, however, has been studied little. This section summarizes the information available on the latter subject and presents a study of the food of 20 pups collected on St. Paul Island in 1966.

Several investigators have suggested that the pups are wholly dependent on milk until they leave the islands in autumn. According to Lucas (1899), 13 of 22 stomachs examined by Clark on St. Paul Island from 29 August to 20 October 1896 contained milk, 7 were empty, and 2 contained crustaceans. Lucas concluded that the pups feed exclusively on milk before migrating south. Scheffer (1950) stated that the pups are less likely to learn to catch fish before weaning and that they change abruptly

from a milk to a fish diet. Peterson²⁷ observed that about 50 percent of the females and their young departed from the rookery on the same day, and that 10 percent of the pups left before and 40 percent after the females. C. H. Fiscus examined the stomach contents of two pups collected by E. T. Lyons on 6 October 1961 from Polovina Rookery, St. Paul Island. The stomach of a large female pup contained two Pacific sandfish, <u>Trichodon trichodon</u>; vertebrae from three unidentified fish; one otolith from a walleye pollock. Theragra chalcogrammus; the remains of an invertebrate; shell fragments from a mollusk; a trace of seaweed; and 20 pebbles up to 6 by 10 mm. in size. An acanthocephalan was found in the ileocaecal junction of this animal. The stomach of the other pup contained two gammarid amphipods. According to Abegglen, Roppel, Johnson, and Wilke, 28 the stomach of a male pup taken 13 October 1961 from Polovina Rookery contained about 30 gammarid amphipods and the stomach of another collected on Little Polovina Rookery 27 October 1961 contained smelt (Osmeridae). Since milk was not found in the stomachs examined by Fiscus and by Abegglen et al., these pups had been weaned or were feeding on marine animals between nursings.

The food of 20 pups (10 each from Zapadni Reef and Northeast Point Rookeries) collected on St. Paul Island 14-15 November 1966 was identified in the stomach contents and l-g. fecal samples from the small intestine of each (table 34). The gastrointestinal tracts of nine contained either marine organisms or parasites transmittable only by fish. The stomach of one animal contained a fish otolith, the apparent remains of the intestinal lining of fish were found in four, nine contained milk, and six were empty. Nine of the 20 fecal samples contained marine organisms, indicating that the pups had fed at sea before leaving St. Paul Island (a similar ratio was noted among 15 pups collected off the coast of Washington in January and February 1967). Fecal samples from three pups contained ascarids; one sample also contained acanthocephalans.29 Because ascarids and acanthocephalans require fish as an intermediate host, these three pups had obviously fed on fish.

The theory that northern fur seal pups change their diet abruptly from milk to fish and feed on fish for the first time upon leaving the rookery islands in autumn has never been investigated. A comparison of fecal material and stomach contents from the same animal has shown that the latter are not completely reliable in establishing whether a pup has or has not begun to feed on fish or squid (field number 110, table 34). A fecal sample negative for marine organisms is also unreliable because food passes through the animal rather quickly. For example, nearly half the pups taken off the coast of Washington in January and February of 1967 had no remains of marine organisms in their stomachs. The stomachs of 9 of the 20 pups collected on St. Paul Island in November of 1966 contained 62 to 1,290 ml. of milk. Pups that are nursing or digesting a large meal of milk probably do not forage.

It is not possible to judge from this sample of 20 stomachs how important to survival is the feeding by nursing pups on marine organisms.

RELATION OF FUR SEALS TO COMMERCIAL FISHERIES

Although the fur seal feeds on a variety of commercially important species of fish and cephalopods throughout its range, its effect on commercially important species is impossible to assess with present knowledge of ocean ecology.

Fur seals are occasionally caught in drift gill nets used by the Bureau of Commercial Fisheries in research on salmon; however, they seldom damage the nets. Seals have been observed taking salmon out of gill nets (D. Craddock, Fishery Research Biologist, BCF Biological Laboratory, Seattle, personal communication, 28 September 1967). The experience of Japanese high-seas salmon fishermen is assumed to be similar to that of U.S. research vessels fishing gill nets.

Salmon have occurred in 6 percent of 1,001 stomachs collected off Washington since 1958, and in 11 percent of the 570 stomachs containing food. Since 1958, 1.5 percent (138) of 9,364 stomachs from all areas contained salmon.

Damage to fishing gear and stocks of Pacific halibut, Hippoglossus stenolepsis, is almost nil. The damage reported by halibut fishermen has been done by Steller sea lions Eumetopias jubata (E. Best, Fishery Biologist, International Halibut Commission, Seattle, Wash., personal communication, 28 September 1967). Pacific halibut have been found in only two fur seal stomachs from thousands examined. Halibut weighing 5 pounds (2.2 kg.) or more (legal size) are plentiful around the Pribilof Islands.

²⁷See footnote 17.

²⁸Carl E. Abegglen, Alton Y. Roppel, Ancel M. Johnson, and Ford Wilke. 1961. Fur seal investigations, Pribilof Islands, Alaska. Report of field activities June-November 1961. BCF Marine Mammal Biological Laboratory, Seattle, Wash., 149 pp. [Processed.]

²⁹Acanthocephalans identified by M. C. Keyes.

Table 34..-Stomach and intestinal contents of pups collected on St. Paul Island, 14-15 November 1966

116

8.0 Z

.

> 1 1 1 1

																				ı
Field number	0660	1030	1040	101	108	109	110	112	114	1115	102	103	104	105	106	107	111	113	115	1
Sex	[24	í#4	í±,	[#4	í±4	ſ.	í±4	(Tre	ĺΨ	Z	Z	Z	×	Σ	Σ	Σ	Σ	Z	Z	
Length (cm.)	78.5	78.5 78.0	81.5	78.7	79.3	8.62	80.0	80.2	74.3	72.4	83.0	16.0	79.5	80.5	0.92	82.0	87.3	80.08	82.5	78
Weight (kg.)	15.0	15.0 14.5	13.7	14.5	15.0	13, 5	15.0	13.5	11.0	9.0	15.0	12.5	14.0	13.0	12.0	17.0	14.0	12.5	15.0	10
Stomach contents Fish remains 1/	1	1		1	spr#	ı	ı				ı		1			r pad	0	1		
Milk (cc.) ² /	!	1,240	800	1	845	270	155 1	1, 135	830	1	1	62	•	1	ı		•	- 1,	290	
Pebbles	×	r	×	•	×	×	×	ŧ	•	1	×	×	1	•	-	×	×		×	
Organic matter 3/	×		•	٠	•	•	,	•	•	•	×	,	,	t	1	ı	×		×	
Barnacle fragments	,	1	*	,	•	×	•	•	1	•	•	•		1	•	•	•	ı	1	
Gastropoda shell fragments	ı	ı	1	ı	•	×	•	•		1	1			,	,	×		1	ı	
Euphausiids	×		٠	٠			ı	1	•	•	•	•		•		ı			ı	
Unknown	×	1	ı		1	×	-		1				_/,	-/ "	•	•	1	1	t	
Empty	1	•	•	*/*	,		•	•		1	ı		×,×	¥/∓/	×	1	•	×	ı	
Intestinal contents																				
Fish remains	e	•	•	•	•		>		•	1	e	ŧ	e, o	S, V	>	e e	e, 0, v	,	,	
Milk	ı	•		•	•	5		ı	•		•	1		×	1	•	r	1	•	
Pebbles	ı	ı	t	t	•		•	٠	r		-	•	×	•	•	×	1	1	ı	
Euphausiids	×	1	1	•			•	-	•	1	1	1	ı	1	1	×	×	1	ı	
Empty	1	×	×	×	×	×	•	×	×	×	t	×	ı	ſ	ι	ı	ı	×	×	

1/ Fish remains include following: v=vertebrae and spines; s=skull; o=otolith; e=eye lens; i=intestinal lining of fish?
 2/ Stomachs containing milk represent 100 percent of contents, other items in stomachs represent trace amounts only.
 3/ Organic matter includes kelp and wood.
 4/ Round worms present in stomach.
 5/ One gram of intestinal matter examined from each pup.

OBSERVATIONS OF JAPANESE PELAGIC FUR SEAL RESEARCH

The provisions under "Article II, Paragraph 5, of the Interim Convention on Conservation of North Pacific Fur Seals" encourage the exchange of scientific personnel between member Parties subject to mutual consent of the Parties directly concerned. Under this provision, a U.S. biologist, Hiroshi Kajimura, went to Japan in April and May 1967, to observe Japanese pelagic sealing methods. Trial methods seen were: (1) Attempted selection of animals by size and sex; (2) use of .30 caliber rifles instead of shotguns to collect seals; (3) attempted improvement of information on loss among seals shot at sea; and (4) changes in preliminary handling of skins aboard the vessel and on shore before the skins are shipped to the processor.

The headquarters of biologists studying fur seals are at the Tokai Regional Fisheries Research Laboratory, Tokyo. (It was moved to Shimizu in 1967.) Pelagic fur seal research data are analyzed at a field station in Ozuchi (Akahama), a small fishing village in Iwate Prefecture (fig. 19).

VESSELS

Two harpoon vessels, the No. 3 <u>Hachiman</u> Maru, ³⁰ and No. 5 <u>Tenyu</u> Maru, ³¹ (fig. 20), were chartered by the Japanese Government in 1967 for pelagic fur seal research from 8 January to 31 May 1967. Austin and Wilke (1950), Tanonaka (1958), ³² and Kajimura (1967) have described these vessels, or "tsukimbosen."

The two ships were nearly identical except that the Hachiman Maru had a pilothouse with wheel amidships and a wooden tiller attached directly to the rudder; the Tenyu Maru had a pilothouse aft but only a wooden tiller (fig. 21). These wooden tillers on both vessels were used for steering while sealing. Vessels respond to such a tiller more quickly than to a tiller moved by a conventional steering wheel located amidships—a distinct advantage when following an animal that changes direction rapidly.

The 12-man crew on each vessel included a captain (who is usually the chief hunter), engineer, boatswain, radio operator, cook, and seven others who are both fishermen and

4900

Figure 19.--Area of operation and fishing villages visited by the Tenyu Maru off northern Japan, 14 April to 10 May 1967.

deckhands. A field investigator was also aboard the vessel to collect and record biological data.

AREA OF OPERATIONS

Japan carried out fur seal research off Iwate and Aomori Prefectures, north of Ozuchi between lat. 39°20' N. and 40°50' N. and offshore to long. 143°50' E. (fig. 19) from 15 April to 9 May.

OBSERVATIONS

The range of these relatively small harpoon vessels is limited to about 185 km. (100 nautical miles) per day. Seals were usually hunted 19 to 93 km. (10-50 nautical miles) offshore. The vessels left port each morning between 1:00 a.m. and 4:00 a.m., depending on the area to be covered, and entered a harbor each night. They drifted offshore only when the sea was calm.

To watch for seals, the hunters and lookouts stood on the harpooning and shooting platform supported by the bowsprit. The captains guided their vessels into water with surface temperatures of 7° to 10° C., because it is here that fur seals are usually most abundant off the northern coast of Honshu Island during April and May. Water temperatures were read directly from a dial-type gauge mounted in the pilothouse.

The vessel approached a seal at full speed if the animal was moving away from the vessel. A resting or sleeping seal was approached slowly and quietly (fig. 22). Two hunters stationed on the shooting platform used either single- or double-barrelled 12-

No. 3 <u>Hachiman Maru</u>; length 18.3 m. (60.1 ft.), 34.14 metric tons, 180 hp., cruising speed 15 km. per hour (8 knots).

³¹No. 5 <u>Tenyu</u> <u>Maru</u>; length 18.1 m. (59.3 ft.), 29.95 metric tons, 120 hp., cruising speed 15 km. per hour (8 knots).

³²George K. Tanonaka. 1958. A report on Japanese Pelagic Sealing Research Methods and Techniques in 1958. BCF Marine Mammal Biological Laboratory, Seattle, Wash., 53 pp. [Processed.]

Figure 20.--Tenyu Maru, Japanese vessel used for pelagic fur seal research in 1967.

gauge shotguns loaded with 00 buckshot. The chief hunter stood forwardmost on the bow platform; the second hunter stood behind him on the side nearest the seal.

Arm signals to the helmsman (usually by the lookout standing behind the gunners) directed the movement of the vessel during the hunting (fig. 23). The helmsman in turn signaled the engineroom for changes in speed and in the forward-reverse movement of the vessel. The hunters had to be surefooted, since the shin-high railing on the bow platform offered little protection for anyone who lost his balance. In addition, vibration of the engine shook the bow platform moderately to violently and made shooting very difficult.

A 5.5-m. (18-foot) bamboo pole with a 4-prong gaff on one end and a line attached to the other was used to recover seals at sea. The retrieving pole was first thrown over the seal and then dragged over it to hook into the skin. The speed of the vessel was usually reduced during recovery of a seal.

The long experience of the crew working as a unit has contributed much to the successful use of these vessels for pelagic sealing. Except in 1966, the <u>Hachiman Maru</u> has been chartered for fur seal research each year

since 1960. The <u>Tenyu Maru</u> has been chartered each year since 1961.

While the U.S. biologist was aboard the Tenyu Maru from 23 April to 9 May, 599 seals were sighted, 123 were collected, 11 were killed and lost, and I was wounded and lost (table 35). The largest number of seals sighted from this vessel in a day was 260 on 4 May (219 were sighted between 9:00 a.m. and 1:00 p.m.) between lat. 40°46' N., long. 143°09' E. and lat. 40°33' N., long. 142°34' E. No attempt was made to collect seals during this period. Four seals were collected before 9:00 a.m. and eight seals were taken after 3:20 p.m. Because seals feed at night or at dusk, they were usually collected early or late in the day to increase the probability of finding food in the stomachs.

The largest collection observed was on 9 May when 43 seals were taken. Most were collected by midday from Hachinohe east to lat. 40°35' N., long. 142°39' E. As many seals as possible were collected because the vessel was scheduled to return to Ozuchi that night. Seal carcasses could be sold in Ozuchi for experimental medicinal and cosmetic products.

One hundred and seven seals were taken with 12-gauge shotguns loaded with 00 buckshot

Figure 21.--Helmsman at tiller of the Tenyu Maru.

and 16 were shot with a .30-caliber rifle (table 35). The rifle was used primarily to compare the relative effectiveness of high-velocity bullets and low-velocity 00 buckshot. Injury to a seal hit by a rifle bullet was severe enough to slow its movement. It could then be pursued and collected more easily. Generally, a seal shot with buckshot had many small holes in its skin. An entrance hole made by one rifle bullet was comparable to that made by one 00 buckshot. The exit hole made by a rifle bullet, however, was as large as 7.5 cm. (3 inches) in diameter, whereas that made by one 00 buckshot was about equal to its entrance hole.

The proportion of seals that have been shot from these ships and killed and lost (sunk) has been relatively low because (1) harpoon vessels can be turned quickly to pick up dead seals, (2) seals are hunted only during favorable weather, and (3) the crew is very efficient because it has worked as a unit for many years. Seals killed and lost were usually those that sank immediately after being shot, before the vessel could be brought within gaffing distance of the seals.

Figure 22.--Hunter giving arm signals to helmsman as the Tenyu Maru quietly approaches a resting seal,

FIELD DATA

Data taken for each fur seal collected included the time the seal was sighted and brought aboard the vessel; number of seals in the group; behavior (swimming or sleeping); and air and surface water temperatures.

The seals were weighed (fig. 24) and measured, and the sex of each was recorded. Stomachs were cut out after removal of the skin, and an identifying number was attached to each before it was preserved in a solution of 10 percent formalin. (The stomachs were not injected with formalin to stop digestive actions as they are treated aboard United States research vessels.) Upper and lower canine teeth were preserved, either by collecting the whole skull or by cutting off the upper and lower jaws. The genital tracts of females were preserved in a solution of 10-percent formalin for examination in the laboratory.

SKIN HANDLING

The seals were skinned completely with a knife rather than stripped (fig. 25). A longitudinal cut was made from the tip of the

Figure 23.--Vessel approaching sleeping seals.

lower jaw to the tail, and another was made around each flipper. The skin was then removed, and an identifying number was attached. Workers left only a small amount of blubber or flesh on each skin and were careful to avoid making cuts or flay marks.

The seamen washed and cooled the skins by towing them alongside the vessel (fig. 26). Standard procedure has been to tie a line through the eye and armholes and tow the skins anterior end forward for a short period of time. In 1967, some of the skins were towed posterior end forward (a line was tied through the eye hole as a safety precaution) to determine if this method improved the initial handling of rawskins aboard the vessels. The Japanese biologist reasoned that the skins would be washed and cooled better from the furred side if towed so the water ran against rather than with the lay of the fur. The results of the experiment are unknown to us.

When thoroughly washed and cooled in sea water, the skins were placed in a saturated solution of salt for 12 hours or longer (usually until the following morning). The "waterlogged" skins were removed from the brine, and each was placed on a fleshing beam where the water (brine solution) was pressed out (fig. 27). The skins were then salted.

Skins unloaded at the home port of Ozuchi were shipped immediately to the processing plant in Tokyo. All skins in the hold were removed and placed on the dock. Agents from the processing firm salted, folded, and packaged the skins, five to a plastic bag that in turn was put in a burlap bag (figs. 28 and 29).

Table 35. --Total seals sighted, collected, killed and lost, and wounded and lost by Tenyu Maru, 23 April to 9 May 1967

			Seal	s	Seals k	illed	Seals
		Seals	collec	cted	and lo	st	wounded
Date	Area of operation	sighted	Shotgun	Rifle	Shotgun	Rifle	and lost
		Number	Number	Number	Number	Number	Number
April							
23	39°32' N., 142°23' E.	1	-	-	-	-	-
25	(39°42' N., 142°30' E.	76	35		3	-	-
	(39°50' N., 142°50' E.						
27	39°45' N., 142°35' E.	47	6	10	2	-	-
29	39°45' N., 142°25' E.	13	3	-	1	-	-
May							
$\frac{\text{May}}{3}$	(39°51' N., 142°51' E.	94	11	_	1	-	_
	(40°25' N., 143°48' E.						
4	(40°36' N., 143°30' E.	260	15	_	1	-	-
	(40°34' N., 142°07' E.						
9	(40°34' N., 142°34' E.	108	37	6	2	1	1
·	(40°35' N., 142°39' E.					_	
	(40°15' N., 142°19' E.						
	(11 10 111, 111 1) 11.						
Total		599	107	16	10	1	1

Figure 24.--Fur seal being weighed with graduated beam scale.

Figure 25.--Skinning fur seal aboard the $\underline{\text{Tenyu}}$ $\underline{\text{Maru}}.$

Each bundle was tied, labeled, and otherwise prepared for the 2-day journey by unrefrigerated truck. Blubber and flesh still on the skins

were removed in the processing plant (figs. 30 and 31).

Figure 26.--Washing and cooling fur seal skin.

Figure 27.--Pressing brine water from sealskin before salting.

Figure 28.--Sealskins being salted and folded before packaging in plastic and burlap bags.

Figure 29.--Bundled sealskins ready for shipping to processing plant.

Figure 30.--Removal of blubberfrom sealskin at processing plant. (Note buckshot damage to skin.)

Flgure 31.--Sealskin with blubber removed.

The 10th year of pelagic fur seal research required by the Interim Convention on Conservation of North Pacific Fur Seals was conducted off Washington from 6 January through 12 February 1967.

The Bureau of Commercial Fisheries Pribilof Islands supply vessel, M/V Pribilof, and the chartered vessel, M/V Tonquin, were used in the research. The Pribilof was used to survey offshore Washington waters extending seaward 769 km. (415 nautical miles), and the Tonquin was used to collect seals close to shore.

Most seals were within 111 km. (60 nautical miles) of land. Seals were collected off Cape Flattery and westward to La Perouse Bank in January and February. They were common on the Continental Shelf from Grays Harbor northward towards Umatilla Reef in early February.

Of 835 seals sighted off Washington, 131 were collected, 27 were wounded and lost, and 21 were killed and lost.

More young seals were taken off Washington during January and February 1967 than off California during the same period in 1966.

Two fur seals were seen off northern California during three cruises covering a distance of 4,425 km. (2,388 nautical miles) and 280 hours of observations off northern California in September and off Washington and Oregon in August and September 1967.

A research cruise in the Bering Sea off the Pribilof Islands to Unalaska and Unimak Pass

continued from 20 November to 4 December 1966. Of 32 seals sighted, I was collected, 1 was wounded and lost, and 1 was killed and lost.

Four tagged seals, two that had lost tags, and two that were marked as pups by removing part of a flipper, were taken in 1967.

The youngest gravid females taken were one multiparous and three primiparous 5-yearold seals. Fifty-seven percent of the female seals were gravid.

Of 66 fetuses taken in 1967, 38 were females and 28 were males.

No gooseneck barnacles or algae were attached to the fur of seals taken in 1967.

Salmonidae (32.3 percent) and herring (24.2 percent) contributed over half the total food volume. The remains of shrimp were found for the first time by the United States in two fur seal stomachs.

Gastrointestinal contents and parasites showed that 45 percent of a collection of 20 pups from St. Paul Island had fed on marine organisms in November while still nursing.

No satisfactory assessment of the effect of fur seals on commercially important marine species is possible.

A United States observer spent April and May at the Japanese fur seal research base in Iwate Prefecture. During this period research workers saw 599 fur seals, collected 123, and lost 11 that sank and 1 that was wounded.

LITERATURE CITED

AKIMUSHKIN, I. I.

1963. Golovonogie mollyuski morei SSR (Cephalopods of the seas of the U.S.S.F.). Izdatel'stvo Akademii Nauk SSR, Moskva. (Translated by A. Mercado, Israel Program for Scientific Translations, 223 pp., 1965.)

AMERICAN FISHERIES SOCIETY.

1960. A list of common and scientific names of fishes from the United States and Canada. 2d ed. Its Spec. Publ. 2, 102 pp.

AUSTIN, O. L., and FORD WILKE.

1950. Japanese fur sealing. General Headquarters, Supreme Commander for the Allied Powers, Natural Resources Section, Rep. 129, 91 pp. [Reproduced as Fish Wildl. Serv., Spec. Sci. Rep. Wildl. 6, 1950.]

BERRY, S. S.

1912. A review of the cephalopods of western North America. Bull. U.S. Bur. Fish. 30: 267-336.

1914. The cephalopods of the Hawaiian Islands. U.S. Bur. Fish., Bull. 32: 257-362.

CLARKE, MALCOLM R.

1962. The identification of cephalopod "beaks" and the relationship between beak size and total body weight. Bull. Brit. Mus. (Natur. Hist.) Zool. 8: 422-480, 10 pls.

CLEMENS, W. A., and G. V. WILBY.

1961. Fishes of the Pacific Coast of Canada. Fish. Res. Bd. Can., Bull. 69 (2d ed.), 368 pp.

CLOTHIER, CHARLES R.

1950. A key to some southern California fishes based on vertebral characters. Calif. Div. Fish Game, Fish. Bull. 79, 83 pp.

FISCUS, CLIFFORD H., GARY A. BAINES, and HIROSHI KAJIMURA.

1965. Pelagic fur seal investigations, Alaska, 1963. U.S. Fish Wildl. Serv., Spec. Sci. Rep. Fish. 489, iv + 33 pp.

FISCUS, CLIFFORD H., GARY A. BAINES, and FORD WILKE.

1964. Pelagic fur seal investigations, Alaskan waters, 1962. U.S. Fish Wildl. Serv., Spec. Sci. Rep. Fish. 475, iii + 59 pp. FISCUS, CLIFFORD H., and HIROSHI KAJI-MURA.

1965. Pelagic fur seal investigations, 1964. U.S. Fish Wildl. Serv., Spec. Sci. Rep. Fish. 522, v + 47 pp.

1967. Pelagic fur seal investigations, 1965. U.S. Fish Wildl. Serv., Spec. Sci. Rep. Fish. 537, iv +42 pp.

JONES, ROBERT D., JR.

1963. An overland migration of fur seals. J. Mammal. 44: 122.

JORDAN, DAVID STARR.

1898. Notes by Treasury Agent Crowley. In The fur seals and fur seal islands of the North Pacific Ocean. U.S. Treas. Dep. Doc. 2017(2): 515-516.

KAJIMURA, HIROSHI.

1967. Observation of Japanese pelagic fur seal research, 1965. In Fiscus, C. H., and H. Kajimura, Pelagic fur seal investigations, 1965, pp. 33-39. U.S. Fish Wildl. Serv., Spec. Sci. Rep. Fish. 537.

KENYON, KARL W., and FORD WILKE.

1953. Migration of the northern fur seal, Callorhinus ursinus. J. Mammal. 34: 86-98.

KEYES, MARK C.

1965. Pathology of the northern fur seal. J. Amer. Vet. Med. Ass. 147: 1090-1095.

LUCAS, FREDERIC A.

1899. The food of the northern fur seals. In The fur seals and fur seal islands of the North Pacific Ocean, U.S. Treas. Dep. Doc. 2017(3): 59-68, pls. 12-15.

NORTH PACIFIC FUR SEAL COMMISSION. 1963. Glossary of terms used in fur seal research and management. U.S. Fish Wildl. Serv., Fish. Leafl. 546, 9 pp.

1965. North Pacific Fur Seal Commission report on investigations from 1958 to 1961. Kenkyusha Co., Tokyo, 183 pp.

ORR, ROBERT T., and THOMASC. POULTER. 1965. The pinniped population of Año Nuevo Island, California. Proc. Calif. Acad. Sci. 4th Series. G Dallas Hanna Anniv. Vol. 32(13): 377-404.

SASAKI, MADOKA.

1929. A monograph of the dibranchiate cephalopods of the Japanese and adjacent waters. J. Fac. Agr., Hokkaido Imp. Univ., Sapporo, 20, Suppl., 367 pp., 30 pls.

SCHEFFER, VICTOR B.

1950. The food of the Alaska fur seal. Trans. 15th N. Amer. Wildl. Conf., pp. 410-421.

SCHULTZ, L. P.

1936. Keys to the fishes of Washington, Oregon, and closely adjoining regions. Univ. Wash. Publ. Biol. 2: 103-228.

TAYLOR, F. H. C., M. FUJINAGA, and FORD WILKE.

1955. Distribution and food habits of the fur seals of the North Pacific Ocean. U.S. Dep. Interior, Fish. Wildl. Serv., Washington, D.C., 86 pp.

U.S. FISH AND WILDLIFE SERVICE.

1969. Fur seal investigations, 1966. U.S. Fish. Wildl. Serv., Spec. Sci. Rep. Fish. 584, vii + 123 pp.

WILKE, FORD, and KARL W. KENYON.

1954. Migration and food of the northern fur seal. Trans. 19th N. Amer. Wildl. Conf., pp. 430-440.

1957. The food of fur seals in the eastern Bering Sea. J. Wildl. Manage. 21: 237-238.

APPENDIX A

Table A-1.--Age classification of male seals killed on St. Paul Island, 27 June to 5 August 1967

Name							in each			T		seals kill		
Number N	Date	Rookery1/	Males	Tooth	2			-	4	2				
TZR 828 122 0.7 42.1 51.3 5.2 0.7 6 348 425 42 62 62 62 62 62 62 62	Date	100Kery =	•			-1-3-							J 2	
28							- Perce	<u>nt</u>				- Number -		
REFE														
NPP(exst) 767 151 3.3 48.5 49.7 1.3 0.7 25 348 382 10 5														
NPP(west) 405														
July														
L.K	July	, í								_		/		
5					2.2				1.1	10	235	195	25	5
6 POL 448 85 1.2 60.0 35.3 3.5 - 5 269 158 16 - 7 NEP(east) 1,103 210 3.8 57.2 37.6 1.4 - 42 631 415 15 7 NEP(ewet) 302 56 - 58.9 35.7 5.4 178 108 16 - 8 REEF 366 71 1.4 57.8 35.2 5.6 - 5 223 136 22 8 L-K 516 103 2.9 63.1 31.1 1.9 1.0 15 326 160 10 5 10 ZAP 1,428 276 2.9 65.6 30.1 1.4 - 41 937 430 20 11 TZR 280 56 3.6 55.3 3.9 31.1 1.4 - 41 937 430 20 11 TZR 280 56 3.6 55.3 3.9 3 1.8 - 10 155 326 160 10 5 11 POL 575 110 2.7 52.8 40.9 3.6 - 15 304 235 21 2 NEP(east) 798 145 3.4 73.8 19.4 3.4 - 27 589 155 27 - 12 NEP(east) 548 108 6.5 68.6 23.1 1.8 - 13 304 235 21 12 NEP(east) 548 108 6.5 68.6 23.1 1.8 - 36 376 126 10 14 ZAP 1,021 206 3.4 52.4 40.8 2.9 0.5 35 535 416 30 31 28 - 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15														-
6 POL 448 85 1.2 60.0 35.3 3.5 - 5 269 158 16 - 7 NEP(east) 1,03 210 3.8 57.2 37.6 1.4 - 42 631 415 15 - 5 NEP(west) 302 56 - 58.9 35.7 5.4 - 178 108 108 16 - 8 REEF 386 71 1.4 57.8 35.7 5.6 - 5 223 136 22 - 5 8 L-K 516 103 2.9 65.6 3.6 35.2 5.6 - 5 223 136 22 - 18 L-K 516 103 2.9 63.1 31,1 1.9 1.0 15 326 160 10 5 10 ZAP 1,428 276 6 3.6 55.3 39.3 1.8 - 10 155 110 5 - 11 TZR 280 56 3.6 55.3 39.3 1.8 - 10 155 110 5 - 11 POL 575 110 2.7 52.8 34.9 3.8 1.8 - 10 155 110 5 - 12 NEP(east) 798 145 3.4 73.8 149.4 3.1 8 - 27 589 155 27 - 12 NEP(east) 798 145 3.4 73.8 149.4 3.1 8 - 27 589 155 27 - 13 REEF 1,019 180 1.7 65.0 30.5 2.8 - 17 663 311 28 - 14 ZAP 1,021 206 3.4 52.4 30.3 4.2 - 57 427 224 51 - 14 ZAP 1,021 206 3.4 52.4 30.3 4.2 - 57 427 224 51 - 15 10 10 10 10 10 10 10 10 10 10 10 10 10														-
7 NEP(east) 1,103 210 3.8 57.2 37.6 1.4 - 42 631 415 15 - 7 NEP(east) 302 56 - 58.6 - 58.6 30.1 1.4 - 41 937 430 20 - 61 12														-
7 NEP[west] 302 56 - 58,9 35,7 5,4 - 178 108 16 - 8 REFF 336 71 1,4 57,8 35,2 5,6 - 5 223 136 22 - 5 10 ZAP 1,428 276 6 3.6 30.1 1,1 1,9 1,0 15 326 160 10 5 11 ZAR 280 76 6 3.6 55,3 39,3 1.8 - 10 155 110 5 - 111 POL 575 110 2.7 52,8 40.9 3,3 1.8 - 10 155 110 5 - 112 NEP[west] 798 145 3.4 73.8 19,4 3.4 - 27 589 155 27 - 12 NEP[west] 798 145 3.4 73.8 19,4 3.4 - 27 589 155 27 - 13 REFF 1,019 180 1.7 65,0 30.5 2.8 - 17 663 311 28 - 13 12 REFF 1,019 180 1.7 65,0 30.5 2.8 - 17 663 311 28 - 15 12 REFF 1,019 180 1.7 57.8 30.3 4.2 - 57 427 224 51 - 15 12 REFF 1,019 180 1.7 57.8 30.3 4.2 - 57 427 224 51 - 15 12 REFF 1,019 180 1.7 57.8 30.3 4.2 - 57 427 224 51 - 17 NEP[west] 1,271 238 8.4 65,1 24.0 2,5 - 107 827 305 32 - 17 NEP[west] 1,271 238 8.4 65,1 24.0 2,5 - 107 827 305 32 - 18 REFF 835 154 0.6 59,8 36,0 0.6 5 5.2 - 107 827 305 32 - 18 REFF 835 154 0.6 59,8 36,0 0.6 59,8 36,0 0.6 5 54 99 304 22 5 8 18 L-K 1,049 219 5.0 60.7 31,1 3.2 - 145 1,759 901 93 - 20 TOL 375 82 1.2 67.1 28.1 1.7 6.0 6.5 6.8 2.8 0.6 6.5 6.6 6.7 24.0 2.5 5 12 REFF 835 154 0.6 59,8 36,0 0.6 5.2 8 0.6 5 54 99 304 22 5 8 18 L-K 1,049 219 5.0 66.5 59,8 36,0 0.5 2.8 - 107 827 305 96 17 - 20 TOL 375 82 1.2 67.1 28.1 1.7 6.0 6.6 59 10 10 10 10 10 10 10 10 10 10 10 10 10														
8 L-K 516 103 2.9 63.1 31.1 1.9 1.0 15 326 160 100 5 10 ZAP 1,428 276 2.9 65.6 3.0 1.1 4.4 - 41 937 430 20 - 11 TZR 280 56 3.6 55.3 39.3 1.8 - 10 155 110 5 - 111 TZR 280 56 3.6 55.3 39.3 1.8 - 10 155 110 5 - 111 PDL 575 110 2.7 52.8 40.9 3.6 - 15 304 235 21 - 12 NEP(east) 798 145 3.4 73.8 19.4 3.4 - 27 7589 155 27 - 112 NEP(east) 548 108 6.5 68.6 23.1 1.8 - 36 376 126 10 - 112 NEP(east) 548 108 1.7 65.0 30.5 2.8 - 117 663 311 28 - 114 ZAP 1,019 180 1.7 65.0 30.5 2.8 - 17 663 311 28 - 114 ZAP 1,021 206 3.4 52.4 40.8 2.9 0.5 35 535 416 30 5 5 15 17 78 14 ZAP 1,021 206 3.4 52.4 40.8 2.9 0.5 35 535 416 30 5 5 15 TZR 739 142 7.7 57.8 30.3 4.2 - 57 427 224 51 - 15 POL 318 60 3.3 53.4 40.0 3.3 5.1 10 170 128 10 - 117 NEP(east) 1,271 238 8.4 65.1 24.0 2.5 - 107 827 305 32 - 17 NEP(west) 329 58 3.4 62.1 29.3 5.2 - 117 205 96 17 - 25 18 L-K 1,049 219 5.0 66.3 26.0 2.7 - 52 695 274 28 - 27 4 28 L-K 1,049 219 5.0 66.3 26.0 2.7 - 52 695 274 28 - 27 20 12 20 TZR 78 17 - 35.3 47.1 17.6 - 28 37 13 - 20 POL 375 88 11 183 3.3 74.4 20.2 1.6 0.5 2.7 603 164 13 4 - 22 2 106 4 9 21 NEP(east) 811 183 3.3 74.4 20.2 1.6 0.5 27 603 164 13 4 - 22 2 106 4 9 21 NEP(east) 811 183 3.3 74.4 20.2 1.6 0.5 27 603 164 13 4 - 22 2 10 1 13 4 - 22 2 1 1 1 NEP(east) 1,115 304 51.2 4.0 6 48.8 28.9 1.2 67.1 28.1 1.2 2.4 4 4 252 106 4 9 2 1 NEP(east) 811 183 3.3 74.4 20.2 1.6 0.5 27 603 164 13 4 - 22 2 1 1 NEP(east) 811 183 3.3 74.4 20.2 1.6 0.5 27 603 164 13 4 - 22 2 1 1 NEP(east) 811 183 3.3 74.4 20.2 1.6 0.5 27 603 164 13 4 - 22 2 1 1 NEP(east) 811 183 3.3 74.4 20.2 1.6 0.5 27 603 164 13 4 - 22 2 1 1 1 NEP(east) 811 183 3.3 74.4 20.2 1.6 0.5 27 603 164 13 4 - 22 2 1 1 1 NEP(east) 811 183 3.3 74.4 20.2 1.6 0.5 27 603 164 13 4 - 22 2 1 1 1 NEP(east) 811 183 3.3 74.4 20.2 1.6 0.5 27 603 164 13 4 - 22 2 1 1 1 NEP(east) 811 183 3.3 74.4 20.2 1.6 0.5 27 603 164 13 4 - 22 2 1 1 1 NEP(east) 811 184 184 185 185 185 185 185 185 185 185 185 185	7													_
10									-	5		136		
11														5
11														
12														_
12														
14 ZAP 1,021 206 3,4 52,4 40.8 2.9 0.5 35 535 416 30 5 15 TZR 739 142 7.7 57.8 30.3 4.2 - 57 427 224 51 - 15 POL 318 60 3.3 53.4 40.0 3.3 - 10 170 128 10 - 17 NEP(west) 1,271 238 8.4 65.1 24.0 2.5 - 110 205 96 17 - 18 REEF 835 154 0.6 59.8 36.4 2.2 60 5 499 304 22 5 18 L.K 1,049 219 5.0 66.3 26.0 2.7 - 52 695 274 28 - 23 7 128 17 - 26 695 274 28 37 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>														
15	13	REEF	1,019	180	1.7	65.0	30.5						28	_
15														5
17														-
17														-
18 REEF 835 154 0.6 59.8 36.4 2.6 0.6 5 499 304 22 5 18 L-K 1,049 219 5.0 66.7 326.0 2.7 - 52 695 274 28 - 19 ZAP 2,898 501 5.0 60.7 31.1 3.2 - 145 1,759 901 93 - 20 TZR 78 17 - 35.3 47.1 17.6 - - 28 37 13 - 20 POL 375 82 1.2 61.1 12.1 11.6 0.5 27 603 164 13 4 21 NEP(east) 564 12.5 4.0 64.8 28.0 3.2 2 23 365 18.8 8 6 22 REEF 734 12.2 2.0 64.7 29.4 3.9														
18 L-K 1,049 219 5.0 66.3 26.0 2.7 - 52 695 274 28 - 19 ZAP 2,898 501 5.0 60.7 31.1 3.2 - 145 1,759 901 93 - 20 POL 375 82 1.2 67.1 28.1 11.2 2.4 4 252 106 4 9 21 NEP(east) 811 183 3.3 74.4 20.2 1.6 0.5 27 603 164 13 4 21 NEP(west) 564 125 4.0 64.8 28.0 3.2 - 23 365 158 18 - 22 REEF 734 128 5.5 61.7 25.8 6.2 0.8 40 453 189 46 6 22 REEF 734 128 5.7 29.4 3.9 - </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.6</td> <td></td> <td></td> <td></td> <td></td> <td></td>									0.6					
20 TZR 78 17 - 35.3 47.1 17.6 - 2 28 37 13 -20 POL 375 82 1.2 67.1 28.1 1.2 2.4 4 252 106 4 9 21 NEP(east) 811 183 3.3 74.4 20.2 1.6 0.5 27 603 164 13 4 21 NEP(ewest) 564 125 4.0 64.8 28.0 3.2 - 23 365 158 18 - 22 REEF 734 128 5.5 61.7 25.8 6.2 0.8 40 453 189 46 6 22 L-K 343 102 2.0 64.7 29.4 3.9 - 7 222 101 13 - 24 ZAP 1.515 304 5.3 70.4 21.7 2.6 - 80 1.067 329 39 - 25 TZR 426 71 1.4 73.3 23.9 1.4 - 6 312 102 6 - 25 POL 914 154 2.6 61.7 33.8 1.9 - 24 564 309 17 - 26 NEP(east) 1,715 343 15.2 63.8 19.9 3 1.7 - 261 1.094 330 30 - 26 NEP(west) 517 108 4.6 64.8 28.7 1.9 - 24 335 148 10 - 27 REEF 1,243 250 3.2 70.8 22.4 2.8 0.8 40 880 278 35 10 27 L-K 444 91 7.7 72.5 18.7 1.1 - 34 322 83 5 - 28 2AP 1,439 442 5.9 67.4 23.3 3.2 0.2 85 970 335 46 3 29 POL 766 196 5.6 72.0 20.9 1.0 0.5 43 551 160 8 4 31 NEP(east) 961 263 14.1 68.0 17.5 0.4 - 136 653 168 4 - 31 NEP(east) 961 263 14.1 68.0 17.5 0.4 - 136 653 168 4 - 31 NEP(east) 961 263 14.1 68.0 17.5 0.4 - 136 653 168 4 - 31 NEP(east) 961 263 14.1 68.0 17.5 0.4 - 136 653 168 4 - 31 NEP(east) 961 263 14.1 68.0 17.5 0.4 - 136 653 168 4 - 31 NEP(east) 961 263 14.1 68.0 17.5 0.4 - 136 653 168 4 - 31 NEP(east) 961 263 14.1 68.0 17.5 0.4 - 136 653 168 4 - 31 NEP(east) 961 263 14.1 68.0 17.5 0.4 - 136 653 168 4 - 31 NEP(east) 31 7.8 7.8 73.6 15.1 3.5 - 95 895 184 42 - 12 2 ZAP 902 269 5.6 76.2 14.1 3.0 1.1 51 687 127 27 10 3 TZR 382 73 - 68.5 26.0 4.1 1.4 - 262 99 16 5 3 POL 322 114 7.0 70.2 20.2 2.6 - 23 226 65 8 - 4 NEP(east) 433 140 15.7 70.7 12.9 0.7 - 68 306 55 4 - 262 99 16 5 3 POL 322 114 7.0 70.2 20.2 2.6 - 23 226 65 8 - 4 NEP(east) 433 140 15.7 70.7 12.9 0.7 - 68 306 55 4 - 262 99 16 5 5 4 NEP(east) 433 140 15.7 70.7 12.9 0.7 - 68 306 55 4 - 262 99 16 5 5 5 6 76.2 14.1 3.0 1.1 151 687 127 27 10 5 3 22 14 14 7.0 70.2 20.2 2.6 - 23 226 65 8 - 24 14 NEP(east) 433 140 15.7 70.7 12.9 0.7 - 68 306 55 4 - 262 99 16 5 5 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	18	L-K		219									28	
20 POL 375 82 1.2 67.1 28.1 1.2 2.4 4 252 106 4 9 21 NEP(east) 811 1183 3.3 74.4 20.2 1.6 0.5 27 603 164 13 4 21 NEP(west) 564 125 4.0 64.8 28.0 3.2 - 23 365 158 18 - 22 REEF 734 128 5.5 61.7 25.8 6.2 0.8 40 453 189 46 6 22 L-K 343 102 2.0 64.7 29.4 3.9 - 7 222 101 13 - 24 ZAP 1,515 304 5.3 70.4 21.7 2.6 - 80 1,067 329 39 - 25 TZR 426 71 1.4 73.3 23.9 1.4 - 6 312 102 6 - 25 POL 914 154 2.6 61.7 33.8 1.9 - 24 564 309 17 - 26 NEP(west) 517 108 4.6 64.8 28.7 1.9 - 24 335 148 10 - 27 REEF 1,243 250 3.2 70.8 22.4 2.8 0.8 40 880 278 35 10 27 L-K 444 91 7.7 72.5 18.7 1.1 - 34 322 83 5 10 27 L-K 444 91 7.7 72.5 18.7 1.1 - 34 322 83 5 2 28 ZAP 1,439 442 5.9 67.4 23.3 3.2 0.2 85 970 335 46 3 29 TZR 775 168 4.2 61.9 29.2 4.7 - 33 480 226 36 - 29 POL 766 196 5.6 72.0 20.9 1.0 0.5 43 551 160 8 4 31 NEP(east) 961 263 14.1 68.0 17.5 0.4 - 136 653 168 4 - 31 NEP(east) 961 263 14.1 68.0 17.5 0.4 - 136 653 168 4 - 31 NEP(east) 322 114 7.0 71.9 12.3 1.8 - 34 174 30 4 - 31 NEP(east) 322 114 7.0 71.9 12.3 1.8 - 34 174 30 4 - 31 NEP(east) 322 114 7.0 71.9 12.3 1.8 - 34 174 30 4 - 31 NEP(east) 322 114 7.0 71.9 12.3 1.8 - 34 174 30 4 - 31 NEP(east) 322 114 7.0 71.9 12.3 1.8 - 34 174 30 4 - 31 NEP(east) 322 114 7.0 71.9 12.3 1.8 - 34 174 30 4 - 31 NEP(east) 322 114 7.0 71.9 12.3 1.8 - 34 174 30 4 - 31 NEP(east) 322 114 7.0 71.9 12.3 1.8 - 34 174 30 4 - 31 NEP(east) 322 114 7.0 71.9 12.7 1.8 3.5 - 95 895 184 42 - 1 L-K 521 82 11.0 71.9 14.7 2.4 - 57 375 77 12 - 2 ZAP 902 269 5.6 76.2 14.1 3.0 1.1 51 687 127 27 10 3 TZR 382 73 - 68.5 26.0 4.1 1.4 - 262 99 16 5 14 - 262 99 16 5 15 15 15 15 15 15 15 15 15 15 15 15 1					5.0				-	145				-
21 NEP(east) 811 183 3.3 74.4 20.2 1.6 0.5 27 603 164 13 4 21 NEP(west) 564 125 4.0 64.8 28.0 3.2 - 23 365 158 18 - 22 REEF 734 128 5.5 61.7 25.8 6.2 0.8 40 453 189 46 6 22 L-K 343 102 2.0 64.7 29.4 3.9 - 7 222 101 13 - 24 ZAP 1,515 304 5.3 70.4 21.7 2.6 - 80 1,067 329 39 - 25 TZR 426 71 1.4 73.3 23.9 1.4 - 6 312 102 6 - 25 POL 914 154 2.6 61.7 33.8 1.9 - 24 564 309 17 - 26 NEP(east) 1,715 343 15.2 63.8 19.3 1.7 - 261 1,094 330 30 - 27 REEF 1,243 250 3.2 70.8 22.4 2.8 0.8 40 880 278 35 148 10 - 27 REEF 1,243 250 3.2 70.8 22.4 2.8 0.8 40 880 278 35 10 27 L-K 444 91 7.7 72.5 18.7 1.1 - 34 322 83 5 1 28 ZAP 1,439 442 5.9 67.4 23.3 3.2 0.2 85 970 335 46 3 29 TZR 775 168 4.2 61.9 29.2 4.7 - 33 480 226 36 - 29 POL 766 196 5.6 72.0 20.9 1.0 0.5 43 551 160 8 4 31 NEP(east) 961 263 14.1 68.0 17.5 0.4 - 136 653 168 4 - 31 NEP(east) 961 263 14.1 68.0 17.5 0.4 - 136 653 168 4 - 31 NEP(east) 322 114 7.0 71.9 12.3 1.8 - 34 174 30 4 - 31 REEF 1,216 371 7.8 73.6 15.1 3.5 - 95 895 184 42 - 31 REEF 1,216 371 7.8 73.6 15.1 3.5 - 95 895 184 42 - 31 REEF 1,216 371 7.8 73.6 15.1 3.5 - 95 895 184 42 - 31 REEF 1,216 371 7.8 73.6 15.1 3.5 - 95 895 184 42 - 31 REEF 1,216 371 7.8 73.6 15.1 3.5 - 95 895 184 42 - 31 REEF 1,216 371 7.8 73.6 15.1 3.5 - 95 895 184 42 - 31 REEF 1,216 371 7.8 73.6 15.1 3.5 - 95 895 184 42 - 31 REEF 3,226 36 73 - 68.5 26.0 4.1 1.4 - 262 99 16 5 3 POL 322 114 7.0 70.7 12.9 0.7 - 68 306 55 4 - 4 NEP(east) 433 140 15.7 70.7 12.9 0.7 - 68 306 55 4 - 4 NEP(east) 433 140 15.7 70.7 12.9 0.7 - 68 306 55 4 - 4 NEP(east) 433 140 15.7 70.7 12.9 0.7 - 68 306 55 4 - 4 NEP(east) 433 140 15.7 70.7 12.9 0.7 - 68 306 55 4 - 5 REEF 853 218 10.1 78.5 6.9 4.1 0.4 86 670 59 35 35 5														
21 NEP(west) 564 125 4.0 64.8 28.0 3.2 - 23 365 158 18 - 22 REEF 734 128 5.5 61.7 25.8 6.2 0.8 40 453 189 46 6 6 2														
22 REEF 734 128 5.5 61.7 25.8 6.2 0.8 40 453 189 46 6 22 L-K 343 102 2.0 64.7 29.4 3.9 - 7 222 101 13 - 24 ZAP 1,515 304 5.3 70.4 21.7 2.6 - 80 1,067 329 39 - 25 TZR 426 71 1.4 73.3 23.9 1.4 - 6 312 102 6 - 25 POL 914 154 2.6 61.7 33.8 1.9 - 24 564 309 17 - 26 NEP(east) 1,715 343 15.2 63.8 19.3 1.7 - 261 1,094 330 30 - 26 NEP(east) 517 108 4.6 64.8 28.7 1.9 <td></td>														
22 L-K 343 102 2.0 64.7 29.4 3.9 - 7 222 101 13 -24 2AP 1,515 304 5.3 70.4 21.7 2.6 - 80 1,067 329 39 - 25 TZR 426 71 1.4 73.3 23.9 1.4 - 6 312 102 6 - 25 POL 914 154 2.6 61.7 33.8 1.9 - 24 564 309 17 - 26 NEP(east) 1,715 343 15.2 63.8 19.3 1.7 - 261 1,094 330 30 30 - 26 NEP(west) 517 108 4.6 64.8 28.7 1.9 - 24 3355 148 10 - 27 REEF 1,243 250 3.2 70.8 22.4 2.8 0.8 40 880 278 35 10 27 L-K 444 91 7.7 72.5 18.7 1.1 - 34 322 83 5 - 28 ZAP 1,439 442 5.9 67.4 23.3 3.2 0.2 85 970 335 46 3 29 TZR 775 168 4.2 61.9 29.2 4.7 - 33 480 226 36 - 29 POL 766 196 5.6 72.0 20.9 1.0 0.5 43 551 160 8 4 31 NEP(east) 961 263 14.1 68.0 17.5 0.4 - 136 653 168 4 - 31 NEP(west) 242 57 14.0 71.9 12.3 1.8 - 34 174 30 4 - Aug. 1 REEF 1,216 371 7.8 73.6 15.1 3.5 - 95 895 184 42 - Aug. 1 REEF 1,216 371 7.8 73.6 15.1 3.5 - 95 895 184 42 - 27 10 3 TZR 382 73 - 68.5 26.0 4.1 1.4 - 262 99 16 5 3 POL 322 114 7.0 70.2 20.2 2.6 - 23 226 65 8 - 23 2AP 90L 322 114 7.0 70.2 20.2 2.6 - 23 226 65 8 - 24 NEP(east) 433 140 15.7 70.7 12.9 0.7 - 68 306 55 4 - 262 99 16 5 5 4 - 24 NEP(east) 433 140 15.7 70.7 12.9 0.7 - 68 306 55 4 - 262 99 16 5 5 4 - 24 NEP(east) 433 140 15.7 70.7 12.9 0.7 - 68 306 55 4 - 262 99 16 5 5 5 4 - 262 99 16 5 5 4 - 26														
25	22		343	102	2.0	64.7		3.9		7			13	_
25 POL 914 154 2.6 61.7 33.8 1.9 - 24 564 309 17 - 26 NEP(east) 1,715 343 15.2 63.8 19.3 1.7 - 261 1,094 330 30 - 26 NEP(west) 517 108 4.6 64.8 28.7 1.9 - 24 335 148 10 - 27 REEF 1,243 250 3.2 70.8 22.4 2.8 0.8 40 880 278 35 10 27 L-K 444 91 7.7 72.5 18.7 1.1 - 34 322 83 5 10 28 ZAP 1,439 442 5.9 67.4 23.3 3.2 0.2 85 970 335 46 3 29 TZR 775 168 4.2 61.9 29.2 4.7 - 33 480 226 36 - 29 POL 766 196 5.6 72.0 20.9 1.0 0.5 43 551 160 8 4 31 NEP(east) 961 263 14.1 68.0 17.5 0.4 - 136 653 168 4 - 31 NEP(west) 242 57 14.0 71.9 12.3 1.8 - 34 174 30 4 - 24 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2									-					-
26 NEP(east) 1,715 343 15.2 63.8 19.3 1.7 - 261 1,094 330 30 - 26 NEP(west) 517 108 4.6 64.8 28.7 1.9 - 24 335 148 10 - 27 REEF 1,243 250 3.2 70.8 22.4 2.8 0.8 40 880 278 35 10 27 L-K 444 91 7.7 72.5 18.7 1.1 - 34 322 83 5 28 ZAP 1,439 442 5.9 67.4 23.3 3.2 0.2 85 970 335 46 3 29 TZR 775 168 4.2 61.9 29.2 4.7 - 33 480 226 36 - 29 POL 766 196 5.6 72.0 20.9 1.0 0.5 43 551 160 8 4 2														-
26 NEP(west) 517 108 4.6 64.8 28.7 1.9 - 24 335 148 10 - 27 REEF 1,243 250 3.2 70.8 22.4 2.8 0.8 40 880 278 35 10 27 L-K 444 91 7.7 72.5 18.7 1.1 - 34 322 83 5 28 2AP 1,439 442 5.9 67.4 23.3 3.2 0.2 85 970 335 46 3 29 TZR 775 168 4.2 61.9 29.2 4.7 - 33 480 226 36 - 29 POL 766 196 5.6 72.0 20.9 1.0 0.5 43 551 160 8 4 31 NEP(east) 961 263 14.1 68.0 17.5 0.4 - 136 653 168 4 - 131 NEP(west) 242 57 14.0 71.9 12.3 1.8 - 34 174 30 4 - 242 242 57 14.0 71.9 12.3 1.8 - 34 174 30 4 - 242 242 242 257 14.0 71.9 14.7 2.4 - 57 375 77 12 - 2 2AP 902 269 5.6 76.2 14.1 3.0 1.1 51 687 127 27 10 3 TZR 382 73 - 68.5 26.0 4.1 1.4 - 262 99 16 5 3 POL 322 114 7.0 70.2 20.2 2.6 - 23 226 65 8 - 14 NEP(west) 433 140 15.7 70.7 12.9 0.7 - 68 306 55 4 NEP(west) 350 92 9.8 68.5 18.4 3.3 - 34 240 65 11 - 25 REEF 853 218 10.1 78.5 6.9 4.1 0.4 86 670 59 35 3 5 1 10 10 1.2 - 57 REEF 853 218 10.1 78.5 6.9 4.1 0.4 86 670 59 35 3 5 1 10 10 1.2 - 57 2AP 435 91 7 - 5 REEF 853 218 10.1 78.5 6.9 4.1 0.4 86 670 59 35 3 5 1 10 10 1.2 - 57 2AP 435 91 7 - 25 2AP 435 432 480 17.5 71.3 10.0 1.2 - 57 231 32 4 - 24 25 2AP 658 131 10.0 75.6 10.6 3.8 - 666 497 70 25 - 25 2AP 5 2AP 658 131 10.0 75.6 10.6 3.8 - 666 497 70 25 - 25 2AP 5 2AP 658 131 10.0 75.6 10.6 3.8 - 666 497 70 25 - 25 2AP 5 2AP 658 131 10.0 75.6 10.6 3.8 - 666 497 70 25 - 25 2AP 5 2AP 658 131 10.0 75.6 10.6 3.8 - 666 497 70 25 - 25 2AP 5 2AP 658 131 10.0 75.6 10.6 3.8 - 666 497 70 25 - 25 2AP 5 2AP 658 131 10.0 75.6 10.6 3.8 - 666 497 70 25 - 25 2AP 658 131 10.0 75.6 10.6 3.8 - 666 497 70 25 - 25 2AP 658 131 10.0 75.6 10.6 3.8 - 666 497 70 25 - 25 2AP 658 131 10.0 75.6 10.6 3.8 - 666 497 70 25 - 25 2AP 658 131 10.0 75.6 10.6 3.8 - 666 497 70 25 - 25 2AP 658 131 10.0 75.6 10.6 3.8 - 666 497 70 25 - 25 2AP 658 131 10.0 75.6 10.6 3.8 - 666 497 70 25 - 25 2AP 658 131 10.0 75.6 10.6 3.8 - 666 497 70 25 - 25 2AP 658 131 10.0 75.6 10.6 3.8 - 666 497 70 25 - 25 24 24 24 24 25 24 24 25 24 24 25 24 24 25 24 24 25 24 24 25 24 24 25 24 24 25 24 24 24 24 24 24 24 24 24 24 24 24 24									-					-
27 REEF 1,243 250 3.2 70.8 22.4 2.8 0.8 40 880 278 35 10 27 L-K 444 91 7.7 72.5 18.7 1.1 - 34 322 83 5 28 ZAP 1,439 442 5.9 67.4 23.3 3.2 0.2 85 970 335 46 3 29 TZR 775 168 4.2 61.9 29.2 4.7 - 33 480 226 36 - 29 POL 766 196 5.6 72.0 20.9 1.0 0.5 43 551 160 8 4 31 NEP(east) 961 263 14.1 68.0 17.5 0.4 - 136 653 168 4 - 31 NEP(west) 242 57 14.0 71.9 12.3 1.8 - 34 174 30 4 - Aug. 1 REEF 1,216 371 7.8 73.6 15.1 3.5 - 95 895 184 42 - 1 L-K 521 82 11.0 71.9 14.7 2.4 - 57 375 77 12 - 2 ZAP 902 269 5.6 76.2 14.1 3.0 1.1 51 687 127 27 10 3 TZR 382 73 - 68.5 26.0 4.1 1.4 - 262 99 16 5 3 POL 322 114 7.0 70.2 20.2 2.6 - 23 226 65 8 - 4 NEP(east) 433 140 15.7 70.7 12.9 0.7 - 68 306 55 4 - 4 NEP(west) 350 92 9.8 68.5 18.4 3.3 - 34 240 65 11 - 5 REEF 853 218 10.1 78.5 6.9 4.1 0.4 86 670 59 35 3 5 L-K 324 80 17.5 71.3 10.0 1.2 - 57 231 32 4 - 5 ZAP 658 131 10.0 75.6 10.6 3.8 - 66 497 70 25 -														
27 L-K 444 91 7.7 72.5 18.7 1.1 - 34 322 83 5 - 28 ZAP 1,439 442 5.9 67.4 23.3 3.2 0.2 85 970 335 46 3 29 TZR 775 168 4.2 61.9 29.2 4.7 - 33 480 226 36 - 34 29 POL 766 196 5.6 72.0 20.9 1.0 0.5 43 551 160 8 4 31 NEP(east) 961 263 14.1 68.0 17.5 0.4 - 136 653 168 4 - 31 NEP(west) 242 57 14.0 71.9 12.3 1.8 - 34 174 30 4 - 34 31 NEP(west) 242 57 14.0 71.9 12.3 1.8 - 34 174 30 4 - 34 32 32 33 34 34 35 34 35 34 35 34 35 34 35 34 35 34 35 34 35 34 35 35 34 35 34 35 35 35 35 35 35 35 35 35 35 35 35 35														
29 TZR 775 168 4.2 61.9 29.2 4.7 - 33 480 226 36 - 29 POL 766 196 5.6 72.0 20.9 1.0 0.5 43 551 160 8 4 31 NEP(east) 961 263 14.1 68.0 17.5 0.4 - 136 653 168 168 4 - 136 653 168 4 - 136 653 168 4 - 136 653 168 4 - 136 653 168 4 - 136 653 168 4 - 136 653 168 4 - 136 653 168 4 - 136 653 168 4 - 136 653 168 4 - 136 653 168 4 - 136 653 168 168 168 168 168 168 168 168 168 168	27	L-K		91	7.7	72.5	18.7	1.1	~	34	322	83	5	-
29 POL 766 196 5.6 72.0 20.9 1.0 0.5 43 551 160 8 4 31 NEP(east) 961 263 14.1 68.0 17.5 0.4 - 136 653 168 4 - 31 NEP(west) 242 57 14.0 71.9 12.3 1.8 - 34 174 30 4 - REEF 1,216 371 7.8 73.6 15.1 3.5 - 95 895 184 42 - 1 L-K 521 82 11.0 71.9 14.7 2.4 - 57 375 77 12 - 2 ZAP 902 269 5.6 76.2 14.1 3.0 1.1 51 687 127 27 10 3 TZR 382 73 - 68.5 26.0 4.1 1.4 - 262 99 16 5 3 POL 322 114 7.0 70.2 20.2 2.6 - 23 226 65 8 - 4 NEP(east) 433 140 15.7 70.7 12.9 0.7 - 68 306 55 4 - NEP(west) 350 92 9.8 68.5 18.4 3.3 - 34 240 65 11 - 5 REEF 853 218 10.1 78.5 6.9 4.1 0.4 86 670 59 35 3 5 L-K 324 80 17.5 71.3 10.0 1.2 - 57 231 32 4 - 5 ZAP 658 131 10.0 75.6 10.6 3.8 - 66 497 70 25 -														3
31 NEP(east) 961 263 14.1 68.0 17.5 0.4 - 136 653 168 4 - 31 NEP(west) 242 57 14.0 71.9 12.3 1.8 - 34 174 30 4 - 30 Aug. 1 REEF 1,216 371 7.8 73.6 15.1 3.5 - 95 895 184 42 - 12 CAP 902 269 5.6 76.2 14.1 3.0 1.1 51 687 127 27 10 3 TZR 382 73 - 68.5 26.0 4.1 1.4 - 262 99 16 5 Aug. 3 TZR 382 73 - 68.5 26.0 4.1 1.4 - 262 99 16 5 Aug. 3 POL 322 114 7.0 70.2 20.2 2.6 - 23 226 65 8 - 24 NEP(east) 433 140 15.7 70.7 12.9 0.7 - 68 306 55 4 - 24 NEP(west) 350 92 9.8 68.5 18.4 3.3 - 34 240 65 11 - 4 POL 582 166 8.4 74.7 15.7 1.2 - 49 435 91 7 - 5 REEF 853 218 10.1 78.5 6.9 4.1 0.4 86 670 59 35 3 5 L-K 324 80 17.5 71.3 10.0 1.2 - 57 231 32 4 - 25 2AP 658 131 10.0 75.6 10.6 3.8 - 66 497 70 25 -														
31 NEP(west) 242 57 14.0 71.9 12.3 1.8 - 34 174 30 4 - Aug. 1 REEF 1,216 371 7.8 73.6 15.1 3.5 - 95 895 184 42 - 1														
Aug. 1 REEF 1,216 371 7.8 73.6 15.1 3.5 - 95 895 184 42 - 1 L-K 521 82 11.0 71.9 14.7 2.4 - 57 375 77 12 - 2 ZAP 902 269 5.6 76.2 14.1 3.0 1.1 51 687 127 27 10 3 TZR 382 73 - 68.5 26.0 4.1 1.4 - 262 99 16 5 3 POL 322 114 7.0 70.2 20.2 2.6 - 23 226 65 8 - 4 NEP(east) 433 140 15.7 70.7 12.9 0.7 - 68 306 55 4 - 4 NEP(west) 350 92 9.8 68.5 18.4 3.3 - 34 240 65 11 - 4 POL 582 166 8.4 74.7 15.7 1.2 - 49 435 91 7 - 5 REEF 853 218 10.1 78.5 6.9 4.1 0.4 86 670 59 35 3 5 L-K 324 80 17.5 71.3 10.0 1.2 - 57 231 32 4 - 5 ZAP 658 131 10.0 75.6 10.6 3.8 - 66 497 70 25 -														
1 REEF 1, 216 371 7.8 73.6 15.1 3.5 - 95 895 184 42 - L-K 521 82 11.0 71.9 14.7 2.4 - 57 375 77 12 - 2 ZAP 902 269 5.6 76.2 14.1 3.0 1.1 51 687 127 27 10 3 TZR 382 73 - 68.5 26.0 4.1 1.4 - 262 99 16 5 3 POL 322 114 7.0 70.2 20.2 2.6 - 23 226 65 8 - NEP(east) 433 140 15.7 70.7 12.9 0.7 - 68 306 55 4 NEP(west) 350 92 9.8 68.5 18.4 3.3 - 34 240 65 11 - 4 POL 582 166 8.4 74.7 15.7 1.2 - 49 435 91 7 - 5 REEF 853 218 10.1 78.5 6.9 4.1 0.4 86 670 59 35 3 5 L-K 324 80 17.5 71.3 10.0 1.2 - 57 231 32 4 - 2AP 658 131 10.0 75.6 10.6 3.8 - 66 497 70 25 -		11-1 (11-001)		,		,								
2 ZAP 902 269 5.6 76.2 14.1 3.0 1.1 51 687 127 27 10 3 TZR 382 73 - 68.5 26.0 4.1 1.4 - 262 99 16 5 3 POL 322 114 7.0 70.2 20.2 2.6 - 23 226 65 8 - 4 NEP(east) 433 140 15.7 70.7 12.9 0.7 - 68 306 55 4 - 4 NEP(west) 350 92 9.8 68.5 18.4 3.3 - 34 240 65 11 - 4 POL 582 166 8.4 74.7 15.7 1.2 - 49 435 91 7 - 5 REEF 853 218 10.1 78.5 6.9 4.1 0.4 86 670 59 35 3 5 L-K 324		REEF	1,216	371	7.8	73.6	15.1	3.5	-	95	895	184	42	-
3 TZR 382 73 - 68.5 26.0 4.1 1.4 - 262 99 16 5 3 POL 322 114 7.0 70.2 20.2 2.6 - 23 226 65 8 - 4 NEP(east) 433 140 15.7 70.7 12.9 0.7 - 68 306 55 4 - 4 NEP(west) 350 92 9.8 68.5 18.4 3.3 - 34 240 65 11 - 4 POL 582 166 8.4 74.7 15.7 1.2 - 49 435 91 7 - 5 REEF 853 218 10.1 78.5 6.9 4.1 0.4 86 670 59 35 3 5 L-K 324 80 17.5 71.3 10.0 1.2 - 57 231 32 4 - 5 ZAP 658 131 10.0 75.6 10.6 3.8 - 66 497 70 25 -														
3 POL 322 114 7.0 70.2 20.2 2.6 - 23 226 65 8 - 4 NEP(east) 433 140 15.7 70.7 12.9 0.7 - 68 306 55 4 - 4 NEP(west) 350 92 9.8 68.5 18.4 3.3 - 34 240 65 11 - 4 POL 582 166 8.4 74.7 15.7 1.2 - 49 435 91 7 - 5 REEF 853 218 10.1 78.5 6.9 4.1 0.4 86 670 59 35 3 5 L-K 324 80 17.5 71.3 10.0 1.2 - 57 231 32 4 - 2 ZAP 658 131 10.0 75.6 10.6 3.8 - 66 497 70 25 -					5.6					51				
4 NEP(east) 433 140 15.7 70.7 12.9 0.7 - 68 306 55 4 - NEP(west) 350 92 9.8 68.5 18.4 3.3 - 34 240 65 11 - 4 POL 582 166 8.4 74.7 15.7 1.2 - 49 435 91 7 - 5 REEF 853 218 10.1 78.5 6.9 4.1 0.4 86 670 59 35 3 5 L-K 324 80 17.5 71.3 10.0 1.2 - 57 231 32 4 - 2AP 658 131 10.0 75.6 10.6 3.8 - 66 497 70 25 -														5
4 NEP(west) 350 92 9.8 68.5 18.4 3.3 - 34 240 65 11 - 4 POL 582 166 8.4 74.7 15.7 1.2 - 49 435 91 7 - 5 REEF 853 218 10.1 78.5 6.9 4.1 0.4 86 670 59 35 3 5 L-K 324 80 17.5 71.3 10.0 1.2 - 57 231 32 4 - 5 ZAP 658 131 10.0 75.6 10.6 3.8 - 66 497 70 25 -														
4 POL 582 166 8.4 74.7 15.7 1.2 - 49 435 91 7 - 5 REEF 853 218 10.1 78.5 6.9 4.1 0.4 86 670 59 35 3 5 L-K 324 80 17.5 71.3 10.0 1.2 - 57 231 32 4 - 5 ZAP 658 131 10.0 75.6 10.6 3.8 - 66 497 70 25 -														
5 L-K 324 80 17.5 71.3 10.0 1.2 - 57 231 32 4 - 5 ZAP 658 131 10.0 75.6 10.6 3.8 - 66 497 70 25 -														
5 ZAP 658 131 10.0 75.6 10.6 3.8 - 66 497 70 25 -														3
														-
Season total 2/42, 359 8, 944 2, 200 26, 991 11, 785 1, 287 96	5	ZAP	658	131	10.0	75.6	10.6	3.8	-	66	497	70	25	-
	Season	total	2/42, 359	8, 944						2,200	26, 991	11,785	1, 287	96

^{1/} NEP(east)=east or Morjovi side of Northeast Point; NEP(west)=west or Vostochni side of Northeast Point; TZR=Toistoi, Zapadni Reef, and Little Zapadni; POL=Polovina and Little Polovina; ZAP=Zapadni; REEF=Reef, Gorbatch, and Ardiguen; L-K=Lukanin and Kitovi.

^{2/} Does not include 368 males taken during the kill of females, 8-15 August.

Table A-2.--Cumulative age classification of male seals killed on St. Paul Island, 27 June to 5 August 1967

				d seals ki			Total			ls in each		
Date	Rookery-1/	2	3	4	5	6	kill	2	3	4	5	6
Date	ROOKETy			Number						- Percent		
June									42 1			0.7
27	TZR	6	348	425	43	6	828	0.7 0.7	42. I 47. 4	51.3 43.7	5. 2 7. 5	0.7 0.7
28	ZAP	11	794	732	125 167	12 17	1,674 2,473	1. 1	45.0	46.4	6.8	0.7
29	REEF	27	1, 114	1, 148 1, 530	177	22	3, 240	1.6	45.0	47.2	5.5	0.7
30	NEP(east)	52 57	1,459 1,624	1, 749	193	22	3, 645	1.6	44.6	47.9	5.3	0.6
30 July	NEP(west)	31	1,024	1, (1)	* / / /		0,010					
I	POL	67	1,859	1, 944	218	27	4, 115	1.6	45.2	47.2	5.3	0.7
1	L-K	67	1,980	2, 100	247	27	4,421	1.5	44.8	47.5	5.6	0.6
5	ZAP	78	2,840	2,448	268	27	5,661	1.4	50.2	43.2	4.7	0.5
6	TZR	78	3,074	2,616	296	27	6,091	1.3	50.5	42.9	4.9	0.4
6	POL	83	3, 343	2,774	312	27	6, 539	1.3	51. I 52. 0	42.4 41.7	4.8	0.4
7	NEP(east)	125	3, 974	3, 189	327 343	27 27	7,642 7,944	1.6	52.3	41.7	4.3	0.3
7	NEP(west)	125	4, 152 4, 375	3, 297 3, 433	365	27	8, 330	1.6	52.5	41.2	4.4	0. 3
8	REEF L-K	130 145	4, 701	3, 593	375	32	8,846	1.6	53.2	40.6	4.2	0,4
8 10	ZAP	186	5, 638	4,023	395	32	10, 274	1.8	54.9	39.2	3.8	0.3
11	TZR	196	5, 793	4, 133	400	32	10,554	1.8	54.9	39.2	3.8	0.3
11	POL	211	6,097	4, 368	421	32	11, 129	1.9	54.8	39.2	3.8	0.3
12	NEP(east)	238	6,686	4, 523	448	32	11,927	2.0	56.0	37.9	3.8	0.3
12	NEP(west)	274	7,062	4,649	458	32	12, 475	2.2	56.6	37.3	3.7 3.6	0, 2 0, 2
13	REEF	291	7,725	4, 960	486	32	13, 494	2.2	57.2 56.9	36.8 37.0	3.6	0. 2
14	ZAP	326	8, 260	5, 376	516	37 37	14, 515 15, 254	2.2	57.0	36.7	3.6	0.2
15	TZR	383	8,687	5, 600 5, 728	547 557	37	15, 254	2.5	56.9	36.8	3.6	0.2
15	POL	393 500	8,857 9,684	6, 033	589	37	16, 843	3.0	57.5	35.8	3.5	0.2
17 17	NEP(east) NEP(west)	511	9, 889	6, 129	606	37	17, 172	3.0	57.6	35.7	3.5	0.2
18	REEF	516	10,388	6, 433	628	42	18,007	2.9	57.7	35.7	3.5	0.2
18	L-K	568	11,083	6,707	656	42	19,056	3.0	58.2	35.2	3.4	0.2
19	ZAP	713	12,842	7,608	749	42	21,954	3.2	58.5	34.7	3.4	0.2
20	TZR	713	12,870	7,645	762	42	22,032	3.2	58.4	34.7	3.5	0.2
20	POL	717	13, 122	7, 751	766	51	22,407	3.2	58.6	34.6	3. 4 3. 4	0.2
21	NEP(east)	744	13,725	7,915	779	55	23, 218 23, 782	3. 2 3. 2	59. 1 59. 3	34. l 33. 9	3.4	0.2
21	NEP(west)	767	14, 090	8,073 8,262	797 843	55 61	24, 516	3. 3	59.4	33.7	3.4	0.2
22	REEF	807 814	14, 543 14, 765	8, 363	856	61	24, 859	3.3	59.4	33.7	3.4	0.2
22	L-K ZAP	894	15, 832	8, 692	895	61	26, 374	3.4	60.0	33.0	3.4	0.2
24 25	TZR	900	16, 144	8,794	901	61	26,800	3.4	60.2	32.8	3.4	0.2
25	POL	924	16,708	9, 103	918	61	27,714	3.4	60.3	32.8	3,3	0.2
26	NEP(east)	1, 185	17,802	9, 433	948	61	29, 429	4.0	60.5	32.1	3.2	0.2
26	NEP(west)	1,209	18, 137	9, 581	958	61	29, 946	4.0	60.6	32.0	3.2	0.2
27	REEF	1,249	19,017	9,859	993	71	31, 189	4.0	61.0	31.6	3. 2 3. 2	0.2
27	L-K	1, 283	19, 339	9, 942	998	71	31, 633 33, 072	4. l 4. l	61.1 61.4	31.4 31.1	3. 2	0.2
28	ZAP	1, 368	20, 309	10, 277	1,044 1,080	74 74	33, 847	4.1	61.4	31.0	3. 2	0.2
29	TZR	1,401	20.789 21,340	10, 503 10, 663	1,088	78	34, 613	4.2	61.7	30.7	3.2	0.2
29 31	POL NEP(east)	1,444 1,580	21, 993	10, 831	1,092	78	35, 574	4.4	61.8	30.5	3.1	0.2
31	NEP(west)	1,614	22, 167	10,861	1,096	78	35, 816	4.5	61.9	30.3	3.1	0.2
Aug.	TIDI (West)	1,011	22, -0.	,			·					
I	REEF	1,709	23,062	11,045	1, 138	78	37,032	4.6	62.3	29.8	3.1	0.2
1	L-K	1,766	23, 437	11, 122	1, 150	78	37,553	4.7	62.4	29.6	3. 1	0.2
2	ZAP	1,817	24, 124	11, 249	1, 177	88	38, 455	4.7	62.7	29.3	3. I	0.2
3	TZR	1,817	24, 386	11, 348	1, 193	93	38, 837	4.7	62.8	29.2	3. 1 3. I	0.2 0.2
3	POL	1,840	24, 612	11, 413	1,201	93	39, 159 39, 592	4.7	62.9 63.0	29.1 29.0	3. 0	0.2
4	NEP(east)	1,908	24, 918	11,468	1,205	93 93	39, 592	4. 9	63.0	28.9	3.0	0.2
4	NEP(west)	1,942	25, 158 25, 593	11,533 11,624	1,216 1,223	93	40, 524	4.9	63.2	28.7	3.0	0.2
4	POL REEF	1,991 2,077	26, 263	11,683	1, 258	96	41, 377	5.0	63.5	28.3	3.0	0.2
5 5	L-K	2, 134	26, 203	11,715	1, 262	96	41.701	5. 1	63.6	28.1	3.0	0.2
5	ZAP	2,200	26, 991	11, 785	1, 287	96	$\frac{2}{42}$, 359	5.2	63.7	27.9	3.0	0.2

^{1/} NEP(east)=east or Morjovi side of Northeast Point; NEP(west)=west or Vostochni side of Northeast Point; TZR=Tolstoi, Zapadni Reef, and Little Zapadni; POL=Polovina and Little Polovina; ZAP=Zapadni; REEF=Reef, Gorbatch, and Ardiguen; L-K=Lukanin and Kitovi.

^{2/} Does not include 368 males taken during the kill of females, 8-15 August.

Table A-3.--Age classification of male seals killed on St. George Island, 26 June to 4 August 1967

		Males	Tooth			in each					seals killed age group	3	
Date	Rookery 1	killed	sample	2	3	4	5	6	2	3	4	5	6
		Number	Number			Perce	nt			Nu	mber		
June							_						
26	ZAP	419	86	1.2	22.1	59.3	15.1	2.3	5	93	248	63	10
26	NOR	351	69	-	36.2	58.0	5.8	-	-	127	204	20	-
28	EAST	324	63	-	44, 4	52.4	3.2	-	-	144	170	10	-
30	NOR	428	86	1.2	39.5	43.0	14.0	2.3	5	169	184	60	10
30	ZAP	118	24	-	33.3	58.3	8.4	-	-	39	69	10	-
July													
5	EAST	497	102	2.0	52.9	42.1	2.0	1.0	10	263	209	10	5
5	NOR	150	30	-	30.0	56.7	13.3	-	-	45	85	20	-
5	STAR	176	37	-	45.9	51.4	2.7	-	-	81	90	5	-
7	NOR	406	80	2.5	57.5	37.5	2.5	-	10	234	152	10	-
7	ZAP	140	28	-	42.8	35.7	17.9	3.6	-	60	50	25	5
10	EAST	465	96	1.0	56.3	35.4	6.3	1.0	5	262	164	29	5
10	NOR	316	62	-	54. 9	41.9	3. 2	-	-	174	132	10	-
12	NOR	537	108	-	63.9	32.4	3.7	-	-	343	174	20	_
14	EAST	295	60	-	63.3	35.0	1.7	_	-	187	103	5	-
14	ZAP	308	64	1.6	59. 4	39.0	-	-	5	183	120	-	-
17	NOR	680	132	4.5	65.2	28.8	1.5	-	31	443	196	10	_
19	EAST	762	149	5.3	63.1	30.9	0.7	-	40	481	236	5	_
19	NOR	182	34	_	47.0	50.0	3.0	-	_	86	91	5	_
21	NOR	267	53	3.8	79.2	17.0	_	_	10	212	45	_	_
21	ZAP	261	52	5.8	69.2	21.2	3.8	-	15	181	55	10	_
24	EAST	380	73	2.7	69.9	20.5	5.5	1.4	10	266	78	21	5
24	STAR	277	64	4.7	59.4	35.9	-		13	165	99		
26	NOR	1,033	208	9.6	70.2	20.2	_	_	99	725	209	_	-
28	ZAP	380	79	6.3	69.6	21.5	2.6	_	24	264	82	10	_
28	NOR	609	120	9.2	63.3	26.7	0.8	_	56	385	163	5	-
31	EAST	551	105	14.3	76.2	8.6	0.9	_	79	420	47	5	_
31	NOR	293	55	9. 1	72.7	18.2	_	_	27	213	53	-	
Aug.				• • •									
2	ZAP	131	29	13.8	65.5	17.2	3.5	_	18	86	22	5	
2	NOR	610	123	16.2	72.4	10.6	0.8	_	99	441	65	5	-
4	EAST	306	65	10.8	75.4	12.3	1.5	_	33	231	38	4	-
4	NOR	880	175	16.6	70.3	12.0	1. 1	-	146	619	105	10	-
Seasor	total	$\frac{2}{12}$, 532	2, 511						740	7,622	3,738	392	40

 $[\]underline{l/} \ \text{ZAP-Zapadni and South; EAST-East Reef and East Cliffs; NOR-North; STAR-Staraya Artil.}$

^{2/} Does not include 461 males taken during the kill of females, 7-17 August.

Table A-4.--Cumulative age classification of male seals killed on St. George Island, 26 June to 4 August 1967

									,		8	,
				d seals kil						s killed		
			from ea	ich age grou	ıp.		Total		eac	h age gro	up	
Date	Rookery1/	2	3_	4	5	6	kill	2	3	4	5	6
				Number -						-Percent		
June				- Italiioci						- rercent		
26	ZAP	5	93	248	63	10	419	1.2	22.1	59.3	15.1	2.3
26	NOR	5	220	452	83	10	770	0.7	28.6	58.7	10.8	1.2
28	EAST	5	364	622	93	10	1,094	0.5	33.2	56.9	8.5	0.9
30	NOR	10	533	806	153	20	1,522	0.6	35.0	53.0	10.1	1.3
30	ZAP	10	572	875	163	20	1,640	0.6	34.9	53.4	9.9	1. 2
July												
5	EAST	20	835	1,084	173	25	2, 137	0.9	39.1	50.7	8.1	1.2
5	NOR	20	880	1, 169	193	25	2,287	0.9	38.5	51.1	8.4	1.1
5	STAR	20	961	1,259	198	25	2,463	0.8	39.0	51.1	8.1	1.0
7	NOR	30	1, 195	1,411	208	25	2,869	1.0	41.7	49.2	7.2	0.9
7	ZAP	30	1,255	1,461	233	30	3,009	1.0	41.7	48.6	7.7	1.0
10	EAST	35	1,517	1,625	262	35	3, 474	1.0	43.7	46.8	7.5	1.0
10	NOR	35	1,691	1,757	272	35	3,790	0.9	44.6	46.4	7.2	0.9
12	NOR	35	2,034	1,931	292	35	4, 327	0.8	47.0	44.6	6.8	0.8
14	EAST	35	2,221	2,034	297	35	4,622	0.8	48.1	44.0	6.4	0.7
14	ZAP	40	2,404	2, 154	297	35	4,930	0.8	48.8	43.7	6.0	0.7
17	NOR	71	2,847	2,350	307	35	5,610	1.3	50.7	41.9	5.5	0.6
19	EAST	111	3, 328	2,586	312	35	6, 372	1.7	52.2	40.6	4.9	0.6
19	NOR	111	3,414	2,677	317	35	6,554	1.7	52.1	40.9	4.8	0.5
21	NOR	121	3,626	2,722	317	35	6,821	1.8	53.2	39.9	4.6	0.5
21	ZAP	136	3,807	2,777	327	35	7,082	1.9	53.8	39.2	4.6	0.5
24	EAST	146	4,073	2,855	348	40	7,462	1.9	54.6	38.3	4.7	0.5
24	STAR	159	4,238	2,954	348	40	7,739	2.0	54.8	38.2	4.5	0.5
26	NOR	258	4, 963	3, 163	348	40	8,772	2.9	56.6	36.0	4.0	0.5
28	ZAP	282	5, 227	3, 245	358	40	9, 152	3.1	57.1	35.5	3.9	0.4
28	NOR	338	5,612	3, 408	363	40	9,761	3.5	57.5	34.9	3.7	0.4
31	EAST	417	6,032	3,455	368	40	10, 312	4.0	58.5	33.5	3.6	0.4
31	NOR	444	6,245	3, 508	368	40	10,605	4.2	58.9	33.1	3.4	0.4
Aug.												
2	ZAP	462	6,331	3,530	373	40	10,736	4.3	59.0	32.9	3.5	0.3
2	NOR	561	6,772	3, 595	378	40	11, 346	4.9	59.7	31.7	3.3	0.4
4	EAST	594	7,003	3,633	382	40	11,652	5.1	60.1	31.2	3.3	0.3
4	NOR	740	7,622	3, 738	392	40	$\frac{2}{12}$, 532	5.9	60.8	29.8	3.2	0.3
							·					

^{1/} ZAP=Zapadni and South; EAST=East Reef and East Cliffs; NOR=North; STAR=Staraya Artil.

^{2/} Does not include 461 males taken during the kill of females, 7-17 August.

Table A-5. -- Age classification of female seals killed on St. Paul Island, 28 July to 15 August 1967

		+2	1	95	43	170	7.5		263	41	103	31	127	126	167	46	271	16	47	109	519	556	176	447	305	39	223	113	3, 559	
Led	-	9	1	11	•	28	t		59	٠	12	7	39	32	14	17	69	4	13	61	94	84	114	72	74	23	102	39	933	
	age group	2	Num ber -	4	10	35	14		39	9	22	4	28	24	24	27	69	3	3	34	117	73	86	509	132	19	136	46	1, 176	
Estimated se		4	Ź	ı	4	9	ı		39	3	24	,	30	47	22	31	64	3	6	48	104	92	25	163	142	31	162	18	1, 083	
Bti	I LC	3		١	1	9	1		5	•	7	•	6	∞	2	14	18	,	3	27	20	69	12	7.1	142	16	91	10	558	
		2	1 1	١	•	t	1		•	1	ı	ı	1	ı	1	1	•	1	١	•	•	1	•	4	3	1	4	7	18	
		7+		85.7	75.0	69.5	83.3		70.3	82.4	63.2	85.0	54.4	53.0	71.9	33.8	55.2	63.2	62.5	39.0	43.4	45.8	38.4	46.3	38.0	30.3	31.1	48.5		
		9		10.7	•	11.5	٠		7.8	•	7.4	5.0	16.8	13.7	6.2	12.3	14.1	15.8	16.6	21.9	14.6	15.0	25.0	7.4	9.5	18.2	14.2	16.7		
ch age	sample	2	Percent -	3.6	18.8	14.1	16.7		10.3	11.7	13.2	10.0	11.9	10.2	10.4	20.0	14.1	10.5	4.2	12.2	18.1	13, 1	21.4	21.6	16.6	15.2	19.0	19.7		
	group of sa	4	<u>P</u> e	1	6.2	5.6	•		10.3	5.9	14.7		12.9	19.7	9.4	23.1	13.0	10.5	12.5	17.1	16.1	13.7	12.5	16.9	17.9	24.2				
Seg	1	3		ı	ı	5.6	1		1.3	,	1.5	,	4.0	3.4	2.1	10.8	3.6	•	4.2	9.8	7.8	12.4	2.7	7.4	17.9	12.1	12.6	4.5		
		2	1	1	1	ı	,		•	1	1	١	,	1	٠	١	1	1	1	ı	ı	١	1	0.4	0.4	•	0.5	3.0		
	Tooth	sample	Number	28	16	78	9		155	17	89	20	101	117	96	9	192	19	24	41	205	153	112	255	529	33	190	99	2, 286	, , , , , ()
	Females	killed	Number	107	57	245	86		375	50	163	37	233	237	232	135	491	56	7.5	279	644	558	457	996	795	128	718	233	$\frac{2}{4}$, 327	
		Rookery-		ZAP	POL	NEP(east)	NEP(west)		REEF	L-K	ZAP	TZR	POL	NEP(east)	NEP(west)	POL	REEF	L-K	ZAP	NEP(east)	NEP(west)	REEF	POL	ZAP	TZR	NEP(west)	POL	POL		
		Date	Tuli	28 28	29	31	31	Aug.	1	7	2	3	3	4	4	4	5	5	5	80	80	6	6	10	11	14	14	15	Season total	

1/ NEP(east)=east or Morjovi side of Northeast Point; NEP(west)=west or Vostochni side of Northeast Point; TZR=Tolstoi, Zapadni Reef, and Little Zapadni; POL=Polovina and Little Polovina; ZAP=Zapadni; REEF=Reef, Gorbatch, and Ardiguen; L-K=Lukanin and Kitovi.

2/ Does not include 144 females killed 27 June to 27 July, nor 31 killed 29 July.

Table A-6.--Cumulative age classification of female seals killed on St. Paul Island, 28 July to 15 August 1967

Rookery 2 3 4 5 6 74 Kill 2 3				To + 1	Tao 2 00 1	المالير ه					S	Seals killed from	ed from		
Rookery 2 3 4 5 6 7+ Kill 2 3 4 5 6				fro	meach age	group			Total			each age	group		
ZAP - 4 11 92 107 - - 3.7 10.3 POL - 4 11 135 164 - - 3.7 10.3 NEP(east) - 4 11 135 164 - - 2.5 8.5 6.7 NEP(east) - 6 10 49 39 305 409 - - 2.5 8.5 6.7 NEP(east) - 11 49 10 68 640 870 - 1.2 2.5 8.5 6.7 L-K - 11 49 102 68 640 870 - 1.2 2.4 12.0 9.5 L-K - 11 49 10 80 784 1,083 - 1.2 7.9 9.6 NEP(west) - 13 76 134 82 81 1,120 - 1.2 <	Date	Rookery	2	3	4	5	9	1+	kill	2	3	4	5	9	1+
ZAP - 4 11 92 107 - - 3.7 10.3 POL - - 4 11 135 164 - - 2.5 8.5 6.7 NEP(west) - 6 10 49 39 305 409 - 1.5 2.4 12.0 9.5 NEP(west) - 6 10 49 39 305 409 - 1.5 2.4 12.0 9.5 L-K - 11 49 102 68 640 870 - 1.2 2.4 12.0 9.5 L-K - 11 52 108 68 681 108 1.22 2.0 12.7 7.9 L-K - 11 52 108 68 681 1,083 - 1.2 2.0 12.7 7.9 AP 13 76 13 88 1,133 <t< td=""><td></td><td></td><td></td><td></td><td>Mimber</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>troop.</td><td></td><td></td></t<>					Mimber								troop.		
APP - - 4 11 92 107 - - 3.7 10.3 POL - - 4 11 135 164 - - 3.7 10.3 NEP(east) - 6 10 49 30 30 - - - 3.7 10.3 NEP(east) - 6 10 49 30 409 - 1.2 2.5 8.5 6.7 NEP(east) - 11 52 108 68 641 920 - 1.2 2.5 8.5 6.7 L-K - 11 49 102 68 641 920 - 1.2 2.4 1.7 L-K - 11 49 102 68 641 920 - 1.2 2.4 1.7 POL - 13 76 13 108 1.8 1.1 2.0 1.1	July				Indiliber								יו כפוור		
POL - 4 14 11 135 164 - 2.5 8.5 6.7 NEP(east) - 6 10 49 39 305 409 - 1.5 2.4 12.0 9.5 NEP(west) - 6 10 63 39 377 495 - 1.5 2.4 12.0 9.5 L-K - 11 52 108 68 640 870 - 1.2 2.4 12.0 9.5 L-K - 11 52 108 68 640 870 - 1.2 2.4 12.0 9.5 L-K - 11 52 108 1.82 1.12 1.12 7.0 12.0 7.3 POL 22 106 15.3 1.068 1.590 - 1.2 6.7 1.7 7.4 NEP(west) - 30 1.535 1.535 -	28	ZAP	1	1	1	4	11	26	107		í	1	3.7		86.0
NEP(east) - 6 10 49 39 305 409 - 1.5 2.4 12.0 9.5 NEP(west) - 6 10 63 39 377 495 - 1.5 2.4 12.0 9.5 REEF - 11 49 102 68 640 870 - 1.3 5.6 11.7 7.8 L-K - 11 52 108 68 681 920 - 1.2 5.7 11.7 7.8 L-K - 13 76 130 80 784 1,083 - 1.2 5.7 11.7 7.8 DOL - 13 76 134 80 784 1,580 - 1.2 5.7 11.7 7.8 NEP(west) - 35 1,68 1,535 - 1.2 6.7 11.7 7.8 NEP(west) - 35	29	POL	1	1	4	14	11	135	164	•	ı		8.5		82.3
REEF - 6 10 63 37 495 - 1.2 2.0 12.7 7.9 REEF - 11 49 102 68 640 870 - 1.2 2.0 12.7 7.8 L-K 11 52 108 68 681 920 - 1.2 5.0 11.7 7.8 ZAP 1 13 80 784 1,083 - 1.2 5.7 11.7 7.8 TZR 1 3 76 130 80 784 1,083 - 1.2 5.7 11.7 7.8 DOL 13 76 134 82 815 1,280 - 1.2 6.7 11.7 7.8 NEP(west) 2 35 175 210 167 1,235 1,482 - 1.9 9.6 11.7 7.8 NEP(west) 2 22 184 1,231	31	NEP(east)	1	9	10	49	39	305	409	1	1.5	2.4	12.0		74.6
REEF - 11 49 102 68 640 870 - 1.3 5.6 11.7 7.8 7.4 L-K - 11 52 108 68 681 920 - 1.2 5.7 11.7 7.4 74. ZAP - 13 76 134 82 815 1,120 - 1.2 5.7 11.7 7.4 74. POL - 22 106 162 121 94 12.0 7.8 17. 7.4 7.7 NEP(west) - 22 106 167 1,235 1,822 - 1.9 9.6 11.7 7.4 72. NEP(west) - 35 175 210 167 1,235 1,822 - 1.9 9.6 17. 7.7 17. 7.7 17. 7.7 17. 7.7 17. 17. 7.7 17. 17. 17. 17.	31	NEP(west)	1	9	10	63	39	377	495	•	1.2		12.7		76.2
REEF - 11 49 102 68 640 870 - 1.3 5.6 11.7 7.8 73. L-K - 11 52 108 68 681 920 - 1.2 5.7 11.7 7.4 74 ZAP - 13 76 134 82 815 1,120 - 1.2 5.7 11.7 7.4 74 TZAP - 22 106 162 121 942 1,235 1.2 6.8 12.0 7.3 7.4 7.4 7.2 NEP(east) - 22 106 162 121 942 1,235 1,835 - 1.9 9.6 11.7 7.4 7.7 NEP(west) - 30 153 1,68 1,590 - 1.9 9.6 11.7 7.4 7.7 NEP(west) - 31 1,68 1,530 - 1.9 <td< td=""><td>Aug.</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Aug.														
L-K - 11 52 108 68 681 920 - 1.2 5.7 11.7 7.4 74. 74. 74. 74. 74. 74. 74. 74. 7		REEF	1	11	49	102	89	640	870	1	1.3			7.8	73.6
ZAP - 13 76 130 80 784 1,083 - 1.2 7.0 12.0 7.4 72. POL - 13 76 134 82 815 1,120 - 1.2 6.8 12.0 7.3 72. POL - 22 106 162 121 942 1,353 - 1.6 7.8 12.0 7.3 72 NEP(west) - 35 155 1,068 1,590 - 1.6 9.6 11.7 9.6 67. NEP(west) - 49 206 237 1,812 - 2.5 10.9 9.6 11.7 9.6 67. POL - 49 206 237 1,812 - 2.5 10.4 65. REEF - 67 270 306 253 1,549 - 2.7 11.0 12.5 10.4 65. L	1	L-K	1	11	52	108	89	681	920	1	1.2	5.7	11.7	7.4	74.0
TZR - 13 76 134 82 815 1,120 - 1.2 6.8 12.0 7.3 72. POL NEP(east) - 22 106 162 121 942 1,353 - 1.6 7.8 12.0 8.9 69. NEP(east) - 35 175 210 167 1,235 1,822 - 1.9 9.6 11.7 9.6 67. POL REEF - 67 270 306 253 1,552 2,448 - 2.7 11.0 12.5 10.4 63. L-K ZAP NEP(west) - 37 330 346 31 1,724 2,828 - 2.7 11.0 12.2 10.6 63. NEP(west) - 216 510 550 2,748 - 2.7 11.0 12.5 10.4 63. NEP(west) - 47 330 346 31 1,724 2,828 - 3.4 11.7 12.2 10.6 63. NEP(west) - 147 434 463 425 2,003 3,472 - 5.4 11.7 12.2 10.6 63. REEF - 216 510 536 509 2,259 4,030 - 5.4 12.7 11.1 12.2 10.6 63. NEP(west) - 228 567 634 623 2,435 4,487 - 5.4 12.7 13.3 12.3 57. ZAP - 228 567 634 623 2,435 4,487 - 5.4 12.7 13.3 12.3 57. NEP(west) - 429 77 30 843 695 2,882 5,453 0.1 7.0 14.0 15.6 12.1 39.9 54. NEP(west) 7 441 872 974 792 3,223 6,748 0.1 7.0 14.0 15.6 12.1 35. NEP(west) 1 548 1,065 1,130 894 3,446 7,094 0.2 7.7 15.0 15.0 15.9 12.6 48. POL 18 558 1,083 1,176 933 3,559 2,737 0.2 7.7 15.0 15.0 15.9 12.7 48.	2	ZAP	1	13	92	130	80	784	1,083	1	1.2	7.0	12.0	-	72.4
POL - 22 106 162 121 942 1,353 - 1.6 7.8 12.0 8.9 69. NEP(east) - 30 153 186 153 1,068 1,590 - 1.9 9.6 11.7 9.6 67. NEP(west) - 49 206 237 184 1,235 1,822 - 1.9 9.6 11.7 9.6 67. POL - 49 206 237 184 1,235 1,822 - 1.9 9.6 11.7 9.6 67. POL - 49 206 237 1,84 1,235 2,448 - 2.5 10.4 65. L-K - 67 273 306 257 1,448 - 2.7 11.0 12.1 10.4 63. ZAP - 70 1,618 2,549 - 2.7 11.0 12.1 10.4 <td>3</td> <td>TZR</td> <td>1</td> <td>13</td> <td>92</td> <td>134</td> <td>82</td> <td>815</td> <td>1, 120</td> <td>ı</td> <td>1.2</td> <td></td> <td>12.0</td> <td></td> <td>72.7</td>	3	TZR	1	13	92	134	82	815	1, 120	ı	1.2		12.0		72.7
NEP(east) - 30 153 186 153 1,068 1,590 - 1.9 9.6 11.7 9.6 57 NEP(west) - 35 175 210 167 1,235 1,822 - 1.9 9.6 11.7 9.6 67 POL - 49 206 237 184 1,281 1,957 - 2.5 10.5 11.1 9.6 11.5 9.2 67 REFF - 67 273 306 253 1,552 2,448 - 2.7 11.0 12.5 10.4 65. L-K - 67 273 309 257 1,568 2,474 - 2.7 11.0 12.5 10.4 65. ZAP - 70 282 312 27 1,10 12.5 10.4 63. NEP(west) - 147 443 463 425 2,59 4,030 <	. (*)	POL	1	22	106	162	121	945	1,353	1	1.6		12.0		69.7
NEP(west) - 35 175 210 167 1,235 1,822 - 1:9 9.6 11:5 9.2 67 POL - 49 206 237 184 1,281 1,957 - 2:5 10:5 12:1 9.4 65. POL - 67 270 306 253 1,552 2,448 - 2.7 11:0 12:5 10:4 65. L-K - 67 273 309 257 1,568 2,474 - 2.7 11:0 12:5 10:4 63. ZAP - 70 282 312 270 1,615 2,549 - 2.7 11:0 12:5 10:4 63. NEP(west) - 147 443 445 2,589 - 3,472 - 2.7 11:1 12:2 10:4 63. POL - 259 4,030 - 24. 12	4	NEP(east)	1	30	153	186	153	1,068	1,590	1	1.9		11.7		67.2
POL - 49 206 237 184 1,281 1,957 - 2.5 10.5 12.1 9.4 65. REEF - 67 270 306 253 1,552 2,448 - 2.7 11.0 12.5 10.4 63. L-K - 67 273 309 257 1,568 2,474 - 2.7 11.0 12.5 10.4 63. ZAP - 70 282 312 270 1,615 2,549 - 2.7 11.0 12.5 10.4 63. NEP(west) - 97 330 346 31 1,724 2,828 - 2.7 11.1 12.2 10.4 63. NEP(west) - 216 510 4,63 425 2,003 3,472 - 4.2 12.5 11.7 12.2 11.7 12.2 11.7 12.2 12.5 13.3 12.3 12.5 </td <td>4</td> <td>NEP(west)</td> <td>1</td> <td>35</td> <td>175</td> <td>210</td> <td>167</td> <td>1,235</td> <td>1,822</td> <td>1</td> <td>1.9</td> <td></td> <td>11.5</td> <td></td> <td>8.29</td>	4	NEP(west)	1	35	175	210	167	1,235	1,822	1	1.9		11.5		8.29
REEF - 67 270 306 253 1,552 2,448 - 2.7 11.0 12.5 10.4 63. L-K - 67 273 309 257 1,568 2,474 - 2.7 11.0 12.5 10.4 63. ZAP - 70 282 312 270 1,615 2,549 - 2.7 11.1 12.2 10.4 63. NEP(west) - 97 330 346 331 1,724 2,828 - 2.7 11.1 12.2 10.4 63. NEP(west) - 147 443 463 425 2,003 3,472 - 4.2 12.2 11.7 61. REEF - 218 623 2,435 4,487 - 5.4 12.7 13.3 12.3 57. ZAP 4 299 730 2,882 5,483 0.1 7.0 14.0	4	POL	1	49	902	237	184	1,281	1,957	1	2.5		12.1		65.5
L-K ZAP - 70 282 312 270 1,615 2,549 - 2.7 11.0 12.5 10.4 63. NEP(east) - 97 330 346 331 1,724 2,828 - 3.4 11.7 12.2 10.6 63. NEP(west) - 147 434 463 425 2,003 3,472 - 2.7 11.1 12.2 10.6 63. NEP(west) - 216 510 536 509 2,259 4,030 - 5.4 12.5 13.3 12.3 57. POL ZAP - 228 567 634 623 2,435 4,487 - 5.1 12.6 14.1 13.9 54. TZR TZR TZR TZR TAB1 872 975 769 3,184 6,248 0.1 7.0 14.0 15.6 12.7 52. NEP(west) TZR	140	REEF	1	29	270	306	253	1,552	2,448	1	2.7		12.5		63.4
ZAP - 70 282 312 270 1,615 2,549 - 2.7 11.1 12.2 10.6 63. NEP(east) - 97 330 346 331 1,724 2,828 - 3.4 11.7 12.2 11.7 61. NEP(west) - 147 434 463 425 2,003 3,472 - 4.2 12.5 13.3 12.3 51. 61. REEF - 216 510 536 509 2,259 4,030 - 5.4 12.7 13.3 12.3 57. POL - 228 567 634 623 2,435 4,487 - 5.1 12.7 13.3 12.6 56. ZAP 4 299 730 843 695 2,882 5,453 0.1 7.0 14.1 13.9 54. TZR 7 441 872 769 3,184 6,248 0.1 7.0 14.0 15.4 15.0 15.0 12.4 12	· 1/2	L-K	1	29	273	309	257	1,568	2,474	1	2.7		12.5		63.4
NEP(east) - 97 330 346 331 1,724 2,828 - 3.4 11.7 12.2 11.7 61. NEP(west) - 147 434 463 425 2,003 3,472 - 4.2 12.5 13.3 12.3 57. REEF - 216 510 536 509 2,259 4,030 - 5.4 12.7 13.3 12.6 56. POL - 228 567 634 623 2,435 4,487 - 5.1 12.6 14.1 13.9 54. ZAP 4 299 730 843 695 2,882 5,453 0.1 5.5 13.4 15.5 12.7 52. TZR 7 441 872 975 769 3,184 6,248 0.1 7.0 14.0 15.6 12.7 52. NEP(west) 7 457 903 994 792 3,223 6,376 0.1 7.2 14.2 15.6 12.3 51. POL 11 548 1,065 1,130 894 3,446 7,094 0.2 7.7 15.0 15.9 12.6 48. POL 18 558 1,083 1,176 933 3,559 2,737 0.2 7.6 14.8 16.1 12.7 48.	150	ZAP	,	20	282	312	270	1,615	2,549	1	2.7	11.1			63.4
NEP(west) - 147 434 463 425 2,003 3,472 - 4.2 12.5 13.3 12.3 57 REEF - 216 510 536 509 2,259 4,030 - 5.4 12.7 13.3 12.6 56. POL - 228 567 634 623 2,435 4,487 - 5.1 12.7 13.3 12.6 56. ZAP 4 299 730 843 695 2,882 5,453 0.1 5.5 13.4 15.5 12.7 52. TZR 7 441 872 975 769 3,184 6,248 0.1 7.0 14.0 15.5 12.7 52. NEP(west) 7 457 903 994 792 3,223 6,376 0.1 7.2 14.2 15.6 12.4 50. POL 11 548 1,065 1,130 894 3,446 7,094 0.2 7.7 15.0 15.0 15.9 12.6	00	NEP(east)	1	76	330	346	331	1,724	2,828	1	3.4	11.7			61.0
REEF - 216 510 536 509 2,259 4,030 - 5.4 12.7 13.3 12.6 56. POL - 228 567 634 623 2,435 4,487 - 5.1 12.6 14.1 13.9 54. ZAP 4 299 730 843 695 2,882 5,453 0.1 5.5 13.4 15.5 12.7 52. TZR 7 441 872 975 769 3,184 6,248 0.1 7.0 14.0 15.5 12.7 52. NEF(west) 7 457 903 994 792 3,223 6,376 0.1 7.2 14.2 15.6 12.3 51. POL 11 548 1,065 1,130 894 3,446 7,094 0.2 7.7 15.0 15.9 12.6 48. POL 18 558 1,083 1,176 <th< td=""><td>00</td><td>NEP(west)</td><td>ı</td><td>147</td><td>434</td><td>463</td><td>425</td><td>2,003</td><td>3, 472</td><td>1</td><td></td><td>12.5</td><td></td><td>12.3</td><td>57.7</td></th<>	00	NEP(west)	ı	147	434	463	425	2,003	3, 472	1		12.5		12.3	57.7
POL - 228 567 634 623 2,435 4,487 - 5.1 12.6 14.1 13.9 54. ZAP 4 299 730 843 695 2,882 5,453 0.1 5.5 13.4 15.5 12.7 52. TZR 7 441 872 975 769 3,184 6,248 0.1 7.0 14.0 15.6 12.3 51. NEP(west) 7 457 903 994 792 3,223 6,376 0.1 7.2 14.2 15.6 12.3 51. POL 11 548 1,065 1,130 894 3,446 7,094 0.2 7.7 15.0 15.9 12.6 48. POL 18 558 1,083 1,176 933 3,559 2/4,327 0.2 7.6 14.8 16.1 12.7 48.	6	REEF	1	216	510	536	609	2,259	4,030	1		12.7			56.0
ZAP 4 299 730 843 695 2,882 5,453 0.1 5.5 13.4 15.5 12.7 52. TZR 7 441 872 975 769 3,184 6,248 0.1 7.0 14.0 15.6 12.3 51. NEP(west) 7 457 903 994 792 3,223 6,376 0.1 7.2 14.2 15.6 12.4 50. POL 11 548 1,065 1,130 894 3,446 7,094 0.2 7.7 15.0 15.9 12.6 48. POL 18 558 1,083 1,176 933 3,559 2/4,327 0.2 7.6 14.8 16.1 12.7 48.	6	POL	1	228	567	634	623	2,435	4,487	1	5.1		14.1		54.3
TZR 7 441 872 975 769 3,184 6,248 0.1 7.0 14.0 15.6 12.3 51. NEP(west) 7 457 903 994 792 3,223 6,376 0.1 7.2 14.2 15.6 12.4 50. POL 11 548 1,065 1,130 894 3,446 7,094 0.2 7.7 15.0 15.9 12.6 48. POL 18 558 1,083 1,176 933 3,559 \(\frac{2}{2}\rha^2\rho^2 377 \) 0.2 7.6 14.8 16.1 12.7 48.	10	ZAP	4	599	730	843	695	2,882	5, 453	0.1				12.7	52.8
NEP(west) 7 457 903 994 792 3,223 6,376 0.1 7.2 14.2 15.6 12.4 50. POL 11 548 1,065 1,130 894 3,446 7,094 0.2 7.7 15.0 15.9 12.6 48. POL 18 558 1,083 1,176 933 3,559 $\frac{2}{2}$ f ,327 0.2 7.6 14.8 16.1 12.7 48.	11	TZR	7	441	872	975	692	3, 184	6,248	0.1				12.3	
11 548 1,065 1,130 894 3,446 7,094 0.2 7.7 15.0 15.9 12.6 48. 18 558 1,083 1,176 933 3,559 $\frac{2}{2}h$,327 0.2 7.6 14.8 16.1 12.7 48.	14	NEP(west)	7	457	903	994	792	3, 223	6, 376	0.1		14.2			
18 558 1,083 1,176 933 3,559 $\frac{2}{7}$ 4,327 0.2 7.6 14.8 16.1 12.7 48.	14	POL	11	548	1,065		894	3, 446	·	0.2	7.7				48.6
	15	POL	18	558	1,083		933	3, 559	٠,	0.2	9.2			12.7	

1/ NEP(east)=east or Morjovi side of Northeast Point; NEP(west)=west or Vostochni side of Northeast Point; TZR=Tolstoi, Zapadni Reef, and Little Zapadni; POL=Polovina and Little Polovina; ZAP=Zapadni; REEF=Reef, Gorbatch, and Ardiguen; L-K=Lukanin and Kitovi.

2/ Does not include 144 females killed 27 June to 27 July, nor 31 killed 29 July.

Table A-7.--Age classification of female seals killed on St. George Island, 7-17 August 1967

	+2			113	288	210	962	206
ed tp	9			39	54	88	55	233
als kill ige grou	5		H	45	86	126	110	376
Estimated seals killed from each age group	4		Number	59	7.1	82	284	496
Estir fror	3			87	36	95	218	377
	2			ı		,	3	3
	7+				52.7			
	4	,		14.0	8.6	14.7	5.4	
h	ı			15.0	18.0	20.9	11.4	
Seals in each	-	۲	- Percent	21.0	13.0	13.6	29.5	
Se age of	2 2			10 0	7 4	מיני	22.6	
	ſ	٥		•		1 1	0.3	
5	1 001	sample	Number	001	100	104	315	977
	Females	killed	Number	100	107	547	963	$\frac{2}{2}$, 392
	1/1	Rookery-			STAR	ZAP	NOK	
		Date		Aug.	7	6	15	Season total

I/ ZAP=Zapadni and South; NOR=North; STAR=Staraya Artil.
 I/ Does not include 202 females killed 26 June to 4 August.

Table A-8.--Cumulative age classification of female seals killed on St. George Island, 7-17 August 1967

		7.	-	1 1		40.2	40 6	40.0	47.8	38 0	
		,	0			13.9		11.2	12.7	0 7	
Had from	each age group		C	t		14.9		10.9	18.6	16.7	13. 1
	sears KII	1	4	Percent		21.0		15.7	14.8	7 0 7	7 .07
			3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0 01	7.0	7.7	11.1		15.8
			2	1 1				ı	•		0.1
	T 0+0 1	Total	kill			100	197	878	1 42.9	2/2, 27,	=72, 392
			+ 2					401			
	llled	dno	9			0	39	93	181	101	233
	seals ki	age gr	5		ا ا	(74	140	776	2007	376
	Estimated seals killed	rom each age group	4	Number -	The state of the s		59	130	212	717	496
	Est	IL(3			1	28	64	, ,	159	377
			2				ı	١		ţ	3
			Rookerv-	(STAR	7 A D	1117	NOK	STAR
			Date	Date		Aug.	7	. 0		15	17

1/ and 2/ See footnotes for table A-7.

Table A-9. -- bead pups counted, by rookery, Pribilof Islands, Alasks, 1941 and 1948-67

1961		1, 072 1, 969	233 825 319	90 874 008	522	2, 251	1, 098 380 2, 195	14,076	704	971 578 201 770	, 520	126 2, 646	17, 426
			449 809 312	2,					85 14,	1, 561 1, 196 764 1, 152	573 2,	234	
1966	1	1,686		, I.				21, 414	1, 071		4,673	4,	8 27, 392
5961		2,649	1, 132 2, 856 1, 176	459 3, 123 7, 664	2, 202 1, 126	3, 955	2, 461 723 5, 384	39, 124	1,956	1,854 1,263 676 1,186	4, 979	249	46, 308
1964		1,830 3,454	631 1,097 783	102 1, 549 3, 000	462	2,614	1, 101 425 4, 172	21, 572	1,079	792 446 272 767	2,277	2, 391	25,042
1963		2, 348 5, 057	923 2, 160 1, 237	141 2, 431 5, 688	881 546	3,274	2,580 718 4,614	32, 598	1,630	2, 525 704 502 1, 041	4, 772	239 5, 011	39, 239
1962		4,881	2, 121 2, 957 1, 880	225 1, 373 7, 897	2,081	3, 004	2,399 598 6,627	45, 268	2, 263	2, 242 1, 740 504 1, 435	5, 921	296	53, 748
1961		5, 259 10, 173	2, 415 4, 576 2, 499	411 3,550 10,047	2,215	4, 761	3, 047 1, 291 6, 329	57,867	2, 893	3,883 2,019 1,347 2,514	9,763	488 10, 251	71,011
1960		6, 825 11, 333	2, 427 3, 462 5, 268	331 3, 168 9, 664	2,006 1,037	5, 237	4, 148 1, 472 6, 450	62, 828	2, 946	3, 489 1, 902 1, 112 2, 000	8, 503	425 8, 928	74,702
6561		4,560	1, 597 2, 586 3, 311	141 2, 100 6, 052	882 631	3, 691	1,691 608 5,009	39, 964	1, 998	2, 653 1, 633 664 1, 987	6, 937	347	49, 246
1958		2,290	975 1,826 2,184	102 1,655 5,550	608	2,823	1, 312 246 4, 045	31, 187	1, 559	1, 626 962 616 1, 552	4, 756	238	37,740
1957		4, 253	1, 695 4, 425 5, 432	249 3,801 11,301	1,588	659 '5	2, 325 917 6, 415	61,662	3, 083	3, 942 1, 569 1, 064 2, 729	9, 304	465	74, 514
1956	1	278	4,443 8,637 7,463	364 6, 291 14, 399	2,892	6, 789	4, 611 1, 674 8, 650	98, 707	4, 935	6, 357 2, 742 2, 203 3, 806	15, 108	755 15, 863	119, 505
1955	Number	5, 571 1 14, 473 2	2, 782 5, 964 4, 660	387 4,789 15,145	2,610	6,489	3, 555 1, 383 6, 607	75, 544	3, 777				
		8, 049 25, 233 1	3, 852 6, 413 6, 459	282 4,900 12,959	1,669	7, 552	4, 979 2, 278 10, 424	96, 178	4,809	3, 776 1, 453 1, 524 2, 903	9,656	483 10, 139	111, 126
19521/ 1953 1954		3, 764 19, 503 2	2, 211 5, 451 5, 036	3, 679 13, 661	1,695	6, 154	2, 446 1, 116 12, 221	78, 212	3, 911	3, 197 1, 272 846 3, 353	8, 668	433	91, 224
1952 1/		_	2, 954	_					~				
1961		3, 592 18, 450	2, 208 5, 580 6, 402	242 3, 559 11, 007	1, 517	6, 033	2,804 353 8,204	70, 663	3, 533 74, 196				
1950		3,000 13,120 1	1, 740 3, 800 5, 660	170 2,810 9,520 1	1, 160	4, 230	2, 120 660 4, 660	•					
19491		2,600 12,966 1	1, 600		800		575	4.					
19481/	-	20, 600 2,	i i										
1941		933 20,	292 356	42 896 2, 269	404	1, 623	372 171 1 284	18 350	918				77
61		7.7		2.2	,	1,6	rant		61	pus		200	
Rookery		St. Paul Island Morjovi Vostochni	Little Polovina Polovina Cliffs Polovina	Ardiguen Gorbatch	Kitovi Lukanin	Tolstoi	Little Zapadni Zapadni Reef	Capadini	Counted total Estimated oversight 5% Total	St. George Island North Zapadni East	Stardya Atun	Estimated oversight 5%	2/

1/ Partial counts. No counts made in 1942-47. The count in 1948 is the total for Morjovi and Vostochni Rockeries. 2/ Not included in the total are 2, 228 dead pups counted on Sea Lion Rock (Sivutch Rockery) in 1966.

Table A-10.--Dead pups counted, by rookery sections, St. Paul Island, 22-25 August 1967

						Secti	ion 1/							
Rookery	1	2	3	4	5	6	7	8	9	10	11	12	13&14	Total
Morjovi	391	117	34	235	119	176	<u>N</u>	umber						1,072
Vostochni	88	41	40	104	144	448	148	215	190	97	101	122	231	1,969
Little Polovina	87	146												233
Polovina Cliffs	94	88	96	135	135	152	125							825
Polovina	255	64												319
Ardiguen 2/														90
Gorbatch	223	186	160	64	241									874
Reef	187	178	200	247	145	190	389	199	105	107	61			2,008
Kitovi	<u>3</u> / 93	16	134	134	145									522
Lukanin	90	150												240
Tolstoi	137	154	141	137	327	379	322	654						2,251
Little Zapadni	84	172	200	303	166	173								1,098
Zapadni Reef	274	106												380
Zapadni	144	347	337	462	269	227	262	147						2,195
Total														14,076

^{1/} Where possible, each rookery was divided into sections containing about 100 Class 3 males in mid-July and the sections were numbered consecutively.

^{2/} No numbered sections.

^{3/} Includes 35 dead pups counted in Amphitheater.

Table A-11, --Lesions and circumstances associated with cases of liver damage-multiple hemorrhage-perinatal complex, St. Paul Island, 1964, 1966, and 1967

			מ	raul Islan	of. Faul Islailu, 1704, 1700, alla 1701	, and 1701			
					Placenta	No bite	Subcapsular	Focal	
					or	spunom	hemorrhage	necrosis	
Date and	Pups				fresh cord	or	of liver and	of the	Intraocular
study area	examined	Pups a	Pups affected	Stillborn	attached	contusions	other organs	liver	hemorrhage
	Number	Num be r	Percent	Number	Number	Number	Number	Num ber	Num be r
9 July to 22 Aug. 1964 Reef Rookery Old catwalk	109	9	5,5	1	m	-			-
28 June to 22 Aug. 1966 Reef Rookery Old catwalk	164	ۍ	3,0	-	2	m			
29 June to 15 Aug. 1967									
Reef Rookery Old catwalk	80	14		ю	10	2	æ	1	8
New catwalk	54	10		2	∞	5	m	2	-
Northeast Point Rookery	86	16		9	14	∞	3	2	4
Total	232	$\frac{1}{40}$	17.2	11	32	15	6	S.	∞
Percent				27.5	80.0	37.5	22.5	12.5	20.0

1/ Includes 33 pups affected as the primary cause and 7 as the secondary cause of death.

Table A-12.--Number of pups that died of different causes, study areas 1, 2, and 3, St. Paul Island, 29 June to 15 August 1967

Cause of death	29 June to 4 July	5-11 July	12-18 July	19 - 25 July	26 July to 1 Aug.	2-8 Aug.	9-15 Aug.	Totals
				Numb	e r			
Malnutrition	3	13	8	24	15	3	6	72
Perinatal complex	5	8	13	7	0	0	0	33
Hookworm disease	0	0	1	13	13	5	5	37
Trauma	2	7	5	1	0	1	0	16
Infection	0	2	3	7	5	0	3	20
Miscellaneous	1	6	3	5	0	0	0	15
Undetermined	0	3	4	3	4	2	1	17
Total	11	39	37	60	37	11	15	210
Unsuitable for examination	2	4	6	4	3	2	1	22
Total	13	43	43	64	40	13	16	232
Advanced postmortem degeneration	3	12	9	14	16	4	3	61

Table A-13.--Harem and idle male seals counted in mid-July, by island, Pribilof Islands, Alaska, 1911-41 and 1943-67

	St. P	aul Island	St. George		Both isla	
Year	Harem	Idle	Harem	Idle	Harem	Idle
			<u>Num</u>			
1911	1,090	2 58	266	71	1,356	329
1912	1,077	93	281	20	1,358	113
1913	1, 142	77	261	28	1,403	105
1914	1,316	159	243	13	1,559	172
1915	1,789	546	362	127	2, 151	673
1916	2,948	2,278	552	354	3, 500	2,632
1917	4, 166	2,341	684	365	4,850	2,706
1918	4,610	2,245	734	199	5,344	2,444
1919	4,573	2,158	585	81	5, 158	2,239
1920	3,542	1,078	524	83	4,066	1, 161
1921	3, 443	711	466	36	3, 909	747
1922	3, 184	493	378	15	3, 562	508
1923	3,051	303	361	9	3,412	312
1924	3, 127	375	389	15	3, 516	3 90
1925	3,103	283	423	28	3, 526	311
1926	3,478	368	556	55	4,034	423
1927	3,916	846	727	126	4,643	972
1928	5,059	1,208	991	241	6,050	1,449
1929	5, 998	1,339	1, 189	294	7, 187	1,663
1930	6,823	1,555	1,489	344	8,312	1,899
1931	7,557	1,519	1,676	369	9, 233	1,888
1932	8,268	1,940	1,820	409	10,088	2,349
1933	8,334	1, 933	1,879	408	10,213	2,341
1934	8,841	1,860	1,929	422	10,770	2,282
1935	9, 444	2,082	2, 103	453	11,547	2,535
1936	10,055	2,253	-	-	-	-
1937	10,689	2,516	2,411	515	13, 100	3,031
1938	10,720	1,787	-	-	-	-
1939	9, 122	2,616	1,858	357	10,980	2,973
1940	9, 662	3, 968	1, 988	571	11,650	4,539
1941	10,089	5,059	1, 942	396	12,031	5, 455
1943	10, 948	3, 523	2, 107	330	13,055	3,853
1944	11,080	2,539	2,294	450	13,374	2,989
1945	10,750	4,055	2,434	750	13, 184	4,805
1946	10,566	3,605	2,430	611	12,996	4,216
1947	10, 160	3, 331	1,808	479	11, 968	3,810
1948	10, 386	3, 400	1,814	563	12,200	3, 963
1949	9, 554	2,976	1,746	552	11,300	3, 528
1950	9, 442	3, 152	1, 959	574	11,401	3,726
1951	9, 434	3, 581	1,825	549	11,259	4, 130
1952	9, 318	4,717	1, 983	605	11,301	5, 322
1953	9, 848	5, 912	2, 285	826	12, 133	6,738
1954	9, 906	6,847	2, 228	1,311	12, 134	8, 158
1955	9,034	8,650	2, 130	1, 902	11, 164	10,552
1956	9, 384	9,016	2,150	1, 702		
1957	9, 562	10,060	2, 423	2,693	11, 985	12,753
1958	9, 970	9, 510	2,619	3,030	12, 589	12,540
1959	10,003	11, 485	2,527	2,699	12,530	14, 184
1960	10,003	10,407	2, 552	2,630	12,799	13,037
1961	11, 163	11,791	2,843	2,489	14,006	14, 280
1962	10, 332	9, 109	2,342	2,650	12,674	11,759
	9, 212	7,650	2,071	1,890	11, 283	9,540
1963	9, 212	7,095	1, 989	1,489	11,074	8,584
1964		5,616	1, 969	1, 113	10, 470	6,729
1965	8,553	•		1, 113	9, 948	6, 856
1966 1967 <u>1</u> /	7,974	5, 839	1, 974 1, 646	1, 268	8,876	
140/*/	7,230	4,439	1,040	1, 200	0,010	5,707

^{1/} Harem and idle males on St. Paul Island were counted on Reef, Lukanin, Kitovi, Tolstoi, and Zapadni Reef Rookeries only, then extrapolated to produce counts representing all the rookeries.

Table A-14.--Adult male seals counted, by class $\frac{1}{2}$ and rookery section, $\frac{2}{5}$ t. Paul Island, 22-24 June 1967

	lass of adult							ection								
1	male	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Total
T. orbina in fin	,															
Lukanin	1 2	3 45	9 48	-	-	-	-	-	-	-	-	-	-	-	-	12
	3	21	32	_	_	-	_	-	-		-	-		-	-	93
	4	-	4	_	_	_	_		-		_	_	-		-	53 4
	5	51	-	-	-	-	_	-	_	-	_	_	_	_	_	51
Kitovi ^{3/}	1	(3) 3	2	4	4	1										
KITOVI—	2	(22) 41	15	46	50	37	-	-	-	-	-	-	-	-	-	17 211
	3	(14) 36	8	23	36	27	_	_	_	_ [_	_	_	-	144
	4	(0) 2	-	ì	-	1	-	-	_	_	-	_	_	_	_	4
	5	(0) -	-	-	-	91	-	-	-	-	-	-	-	-	-	91
Reef	1	18	11	2	3	7	8	_	14	2	5	2		_	_	72
	2	63	91	83	43	67	51	146	71	48	46	43	_	_	_	752
	3	28	30	25	22	23	39	7	39	23	22	14	_	_	_	272
	4	3	3	1	-	-	-	-	-	-	-	11	-	-	-	18
	5	-	-	-	-	200	-	-	-	-	-	41	-	-	-	241
Gorbatch	1	12	4	3	4	12	8	-	-	-	-	_	_	-	-	43
	2	77	51	60	53	62	104	-	-	-	-	-	-	-	-	407
	3	33	27	27	16	32	24	-	-	-	-	-	-	-	~	159
	4	9	1	1	4	10	-	~	-	-	-	-	-	-	-	25
	5	206	-	-	30	-	-	-	-	-	-	-	-	-	-	236
Ardiguen4/	1															6
	2															49
	3															39
	4															-
	5															58
Morjovi ^{5/}	1	(2) 5	10	3	7	5	9	_	_		_	_	_	_		41
v	2	(27) 51	45	41	66	66	98	-	_	-	-	_	_	-	-	394
	3	(9) 24	28	14	39	33	42	-	-	-	-	_	-	-	-	189
	4	(0) 16	11	7	12	9	18	-	-	-	-	-	-	-	-	73
	5	(0)249	-	-	-	-	-	-	-	-	-	-	-		-	249
Vostochni	1	7	4	8	3	2	9	9	12	15	7	10	11	9	3	109
	2	59	58	30	47	52	104	59	76	101	62	89	81	83	39	940
	3	24	19	17	16	17	30	24	37	27	17	23	37	31	14	333
	4 5	10 108	6	4	8 68	6	12	10	24	20	6	13	15	7	6	147
	5	106	-	-	00	_	-	146	-	-	-	-	155	25	55	557
Little Polovina		2	5	-	-	-	-	-	-	-	-	-	-	-	-	7
	2	59 24	84	-	-	-	-	-	-	-	-	-	-	-	-	143
	4	24 10	27 17	-	-	-	-	-	-	-	-	-	-	-	-	51 27
	5	-	150	-	-	-	-	-	_	_	-	-		-	_	1.50
Polovina	1	10	17						_							27
1 Clovina	2	95	55	_	_	-	_	-	-	-	-		_		_	150
	3	25	18	-	_	_	_	_	_	_		_	-			43
	4	15	10	-	-	-	-	_	_	-	-	-	-	-	-	25
	5	185	-	-	-	-	-	-	-	_	-	_	-	-	-	185

See footnotes at end of table.

Table A-14. --Adult males counted, by class \(\frac{1}{2} \) and rookery section, \(\frac{2}{2} \) St. Paul Island, 22-24 June 1967--Continued

lass of															
adult							ction								j
male	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Total
								<u>r</u>							
1	2	1	1	5	11	3	15	-	-	-	-	-	-	-	38
2	58	43	48	42	77	51	89	-	-	-	-	-	-	-	408
3	16	17	30	35	29	22	43	-	-	-	-	-	-	-	192
4	7	16	10	12	3	13	7	-	-	-	-	-	-	-	68
5	-	-	-	-	-	47	-	-	-	-	-	-	-	-	47
,	0	_	1.2	1.4		10		_							0.0
											-		-		80
												-	-		455
	26	27	32	25					-	-	-	-	-	-	251
	-	-	-	-	6	15		-	-	-	-	-	-	-	24
5	-	-	-	-	-	-	-	472	-	-	-	-	-	-	472
1	10	3	_	_	_	_	_	-	_	_	_	_	_	_	13
	82	43	-	_	-	~	~	_	_	_	_	-	-	_	12.5
	30	22	_	_	-	_	_	-	-	_	_	_	_	_	52
4	10	3	_	_	-	_	-	_	_	_	_	_	_	_	13
5	15	49	~	-	-	-	-	-	-	-	-	-	-	-	64
,	_	_	1.2	1.2	2	,									43
											-		-		42
								-	-		-		-		328
	19			-		22	-	-	-	-	-	-	-	-	184
	-	7	6	13	2	-	-	-	-	-	-	-	-	-	28
5	28	-	-	-	-	92	-	-	-	-	-	-	-	-	120
1	8	14	10	8	6	15	12	1	_	_	_	_	_	_	74
	61		81	96	80	82	81	38	_	-	-	_	-	_	611
									-	_	_	_	_	_	277
	-								_	_	_	_	_	_	82
5 5	5/(93)	-	-	-	-	_	-	260	-	-	-	-	-	_	353
	1 2 3 4 5 1 2 3 4 4 5 1 2 4 4 5 1 2 4 4 5 1 2 4 4 5 1 2 4 4 5 1 2 4 4 5 1 2 4 4 5 1 2 4 4 5 1 2 4 4 5 1 2 4 4 5 1 2 4 4 5 1 2 4 4 5 1 2 4 4 5 1 4 4 5 1 4 4 4 5 1 4 4 4 4 4 4 4	1 2 2 58 3 16 4 7 5 - 1 8 2 38 3 26 4 - 5 - 1 10 2 82 3 30 4 10 5 15 15 1 7 2 8 3 19 4 - 5 28 1 8 2 6 1 3 20 4	1 2 1 2 58 43 3 16 17 4 7 16 5 1 8 9 2 38 46 3 26 27 4 5 1 10 3 2 82 43 3 30 22 4 10 3 5 15 49 1 7 5 2 28 39 3 19 30 4 - 7 5 28 - 1 8 14 2 61 92 3 20 48 4 - 13	1	1	1	1	1	1	1	1	1	1	1	1

1/ Class 1 Shoreline - Full-grown males approximately age 10 and older without females but apparently with established territories at the high tide mark.

Class 2 Territorial without females - Full-grown males approximately age 10 and older without females but with established territories on the rookery.

Class 3 Territorial with females - Full-grown males approximately age 10 and older with females and established territories on the rookery.

Class 4 Back fringe - Full-grown and partly grown males approximately age 7 and older without females and territories that are found along the inland fringe of the rookery.

Class 5 Hauling ground - Full-grown and partly grown males approximately age 7 and older without females that are found on traditional hauling grounds.

Class 3 males were formerly called harem bulls, and classes 1, 2, 4, and 5 were collectively called idle bulls.

2/ In 1966, each rookery was divided into sections that contained spproximately 100 Class 3 males in mid-July and the sections were numbered consecutively throughout the rookery.

- 3/ Numbers in parentheses are the adult males counted in Kitovi Amphitheater.
- 4/ No numbered sections.
- 5/ Numbers in parentheses are the adult males counted on Zapadni Point reef.
- 6/ Numbers in parentheses are the adult males counted on the second point south of sea lion neck.

Table A-15.--Adult male seals counted on Reef, Lukanin, Kitovi, Tolstoi, and Zapadni Reef Rookeries, St. Paul Island, 9-14 July 1963-67

	C1 1/ c			V		
D 1	Class $\frac{1}{2}$ of	1963	1964	Year 1965	1966	1967
Rookery	adult male	1903	1904		1900	1907
				Number		
Reef	2				1 050	03.5
	3	1,310	1,301	1,179	1,070	927
	1,2,4,5	1,000	756	670	678	616
Total		2,310	2,057	1,849	1,748	1,543
Lukanin	2	221	221	204	152	127
	3	221	221	204	152	137
m	1,2,4,5	225	94	147	108	77
Total		446	315	351	260	214
721.						
Kitovi	2	5.45	403	407	412	274
	3	547	492	486	413	374
PP 4 1	1,2,4,5	147	$\frac{152}{644}$	205 691	194 607	118
Total		694	044	091	007	492
m-1-4-:						
Tolstoi	3	893	920	876	819	791
	1,2,4,5	728	508	394	441	283
Total	1,2,4,5	1,621	1,428	$\frac{394}{1,270}$	1,260	$\frac{283}{1,074}$
Iotal		1,021	1,420	1,270	1,200	1,074
Zapadni Reef						
Zapadili Keel	3	248	212	221	203	180
	1,2,4,5	237	170	195	210	146
Total	1,2,4,5	485	382	416	413	326
I Otal		405	302	410	413	320

 $[\]underline{l}/$ For description of classes, see footnote 1 of table A-14, or the glossary.

Table A-16.--Adult male seals counted by class, St. George Island, June and July 1967

			С	$lass \frac{1}{}$			
Rookery	Date	1	2	3	4	5	Total
				Number			
Zapadni	22 June	33	243	46	14	173	509
South	22 ''	85	191	100	-	106	482
Staraya Artil	22 "	10	183	34	-	137	364
East Reef	22 ''	3	73	28	9	141	254
East Cliffs	22 ''	29	115	79	-	10	233
North	22 "	46	373	194	40	312	965
Total		206	1,178	481	63	879	2,807
East Reef	11 July	8	9	114	3	145	279
East Cliffs	11 "	44	23	225	2	_	294
Staraya Artil	11 "	5	9	235	68	97	414
North	13 ''	78	53	608	34	198	971
Zapadni	18 "	12	14	227	20	336	609
South	18 "	34	_	237	-	76	347
Total		181	108	1,646	127	852	2,914

^{1/} For description of classes, see footnote 1 of table A-14, or the glossary.

Table A-17, -- Pups tagged and marked, Pribilof Islands, Alaska 1941, 1945, 1947-49, and 1951-67

		St. Paul	St. George		
Year	Series	Island	lsland	Location of tag	Checkmarks or marks
1941	USA 1-10000; USA 1-1000 and USA 5001-6000	10,000 1,000 1,000		Front flipper of right front and hind flippers; 99 left front and hind flippers	Branded, nape of neck Double tagged, branded nape of neck
1945	10001-11000 (no letter prefix)	973		Left front flipper	None
1947	A 1-20000	19, 183		Left front flipper	1/4" hole between 1st (big toe) and 2d digits left hind flipper
1948	B 1-19673	19, 532		Left front flipper	None
1949	CS 1-20000	19, 963		Left hind flipper	None
1951	D 1-1000	1,000		Right hind flipper	1/2 left ear on 100 tagged pups removed
1952	E 1-20000	19, 979		Right front flipper	Tip of 1st digit (big toe) on right hind flipper sliced off
1953	F 1-10000 G 7001-7400	9, 990 398		Left front flipper	Tip of left front flipper sliced off Do.
1954	G 1-7000 G 7401-10400	7,000 3,000		Right front flipper	"V" notch near tip right front flipper Do.
1955	H 1-10000 10001-50000 (no letter prefix)	49,870		Left front flipper	Tip of 1st digit (big toe) on left hind flipper sliced off
1956	I 1-10000 I 10001-50000	39, 900	9, 894	Right front flipper	Tip of right front flipper sliced off Do.
1957	J 1-10000 J 10001-50000	39, 870	9, 972	Left front flipper	"V" notch near tip left front flipper Do.
1958	K 1-10000 K 10001-50000 K 10001-15000	39, 923 5, 000	9, 994	Right front flipperdo Right and left front	"V" notch near tip right front flipper Do. Double tagged plus checkmark
	1, 10001-13000	3, 000		flippers	Double tagged plus checkhaik
1959	L 1-10000 L 10001-50000	39, 901	9, 980	Left front flipper	Tip of left front flipper sliced off Do.
1960	M 1-12000 M 12001-60000	47, 989	11, 992	Right front flipper	Tip of right front flipper sliced off Do.
1961	N 1-10000 N 10001-50000	39, 933	9, 988	Left front flipper	"V" notch near tip left front flipper Do.
1962	O 1-10000 O 10001-50000	39, 928	9, 980	Right front flipper	"V" notch near tip right front flipper Do.
1963	P 1-5000 P 5001-25000	19, 978	4, 993	Left front flipper	Tip of left front flipper sliced off Do.
1964	Q 1-5000 Q 5001-25000	19, 998	4, 993	Right front flipper	Tip of right front flipper sliced off Do.
1965	R 1-10000 Marked Marked	10,000 10,007 10,080		Left front flipper Not tagged do	"V" notch near tip left front flipper "V" notch near tip right front flipper Tip of 1st digit (big toe) on right hind flipper sliced off
1966	S 1-2500 S 2501-12500 Marked Marked	10,000 9,578	2, 499	Left front flipper Right front flipper Not tagged do	Tip of left front flipper sliced off Tip of 2d digit on right hind flipper sliced off Tip of 3d digit on right hind flipper sliced off Tip of 2d dight on left hind flipper sliced off
1967	T 9-2500 T 5001-15000	9, 980	2, 492	Right front flipper	Tip of right front flipper sliced off Do.

Table A-18.--Record of tags applied $\frac{1}{2}$ to male seals selected as yearlings and as 2-, 3-, and 4-year-olds on the basis of body length or size, St. Paul Island, 1961-63 and 1965-67

Age category and year	-	Tag numbers	Seals tagged 2/ Number
Yearlings 3/			
1961	М	1-2,000	754
1962	N	50,001-51,000	929
1963	Ø	50,001-51,000	799
1965	lR	1-1,000	991
1966	1S	20,001-21,500	1,495
1967	lT	1-1,500	835
Ages 2-4			
1966	2S	30,001-31,500	1,483
1967	2T	1-1,500	1,220

<u>1</u>/ Each seal was double tagged; one tag was attached to each front flipper at the hairline. Some seals with tags that had been attached when they were pups were given another tag.

^{2/} Total number of seals tagged within the series.

^{3/} Male and female seals were intentionally tagged in 1961, 1962, 1963, and 1965. Only males were intentionally tagged in 1966 and 1967.

Table A-19. --Pups tagged and checkmarked, St. Paul Island, 21-27 September 1967 $\frac{1}{2}$

	Tag numbers	Tags	_
Rookery	(T-series)	discarded	Pups marked
		Number	Number
Zapadni	5001-6100	6	1,094
Zapadni Reef	6101-6400	3	297
Little Zapadni	6401-7050	-	650
Reef	7051-8550 8701-9300	5	2,095
Gorbatch	8551-8700	1	149
Polovina	9301-9600	-	300
Polovina Cliffs	9601-10300	-	700
Little Polovina	10301-10700	-	400
Morjovi	10701-11500	-	800
Vostochni	11501-13200	5	1,695
Tolstoi	13201-14200	-	1,000
Lukanin	14201-14450	-	250
Kitovi	14451-15000		550
Total		20	9,980

^{1/} Tags were attached to the rear edge of the right front flipper at the hairline; as a checkmark, 1/2-inch of the tip of the same flipper was removed.

Table A-20.--Pups tagged and checkmarked, St. George Island, 1-2 September 1967¹

	Tag		
	numbers	Tags	
Rookery	(T-series)	discarded	Pups marked
		Number	Number
	2/		
Zapadni	$\frac{2}{9}$ 9-700	-	692
Staraya Artil	701-1000	-	300
D	1001 1500		F.0.0
East	1001-1500	•	500
North	1501-2500		1,000
North	1501-2500		1,000
Total		_	2,492
10001			-, -, -

¹/ Tags were attached to the rear edge of the right front flipper at the hairline; as a checkmark, 1/2-inch of the tip of the same flipper was removed.

Table A-21.--Record of 835 yearling male seals tagged, St. Paul Island, 1967

Rookery or	Tag numbers	
hauling ground	(lT-series) <u>l</u> /	Effective tags
		Number
Polovina	1 - 1 00	100
Reef	201-236	36
English Bay Sands	401-1000	590
Northeast Point	1001-1109	108
	2T-205	1
Total		835

¹/ One tag was not in the 1T series (no. 2T-205).

^{2/} Tags with numbers 1-8 were used to double tag four young male seals on North Rookery on 13 July for telemetry studies.

[Numbers in parentheses indicate pup tags.]

Tagged or m	Tagged or marked as pups by the United States											
and tagged a	gain as yearlings by the United States	Tagged as pups by the U.S.S.R.										
Pup tag		and tagged again as yearlings										
retained	Pup tag lost, marked as indicated $\frac{1}{2}$											

Yearling tag number (1T-series) 2/

		DII	1 77.0	D LI2	T T.T.2		
3/	1////1/21	RHZ	LFS	<u>RH3</u>	LH2	11	(10 /1 (0 (0)
<u>3</u> /	16 (4162)	203	94	34	2T-205	<u>4</u> /	•
	28 (8153)	543		54			770 (13426)
	35 (6949)	973		208			783 (22637)
	46 (7050)	1074		219			944 (28552)
	216 (5362)			222			1040 (28797)
	402 (11719)			408			
	439 (3784)			412			
	698 (7258)			534			
	737 (9610)			614			
	760 (4226)			656			
	809 (4966)			720			
	829 (9660)			728			
	882 (771)			806			
]	001 (9740)			838			
]	013 (10315)			856			
1	1103 (3273)			864			
				877			
				894			
				1032			
				1036			
				1084			

^{1/} RH2=right hind flipper, tip of number 2 digit sliced off; LFS= left front flipper, tip sliced off; RH3=right hind flipper, tip of number 3 digit sliced off; and LH2=left hind flipper, tip of number 2 digit sliced off.

^{2/} The single exception was tag no. 205, which was in the 2T-series.

^{3/} S-series pup tags.

^{4/} Y-series pup tags.

Table A-23. --Record of 1,220 male seals tagged at age ≥ 2 years, St. Paul Island, 28 September to 10 October 1967

Rookery or	Tag numbers	
hauling ground	(2T-series)	Effective tags
		Number
Northeast Point	1	1
	149-265	116
	609-732	124
	1101-1165	65
English Bay Sands	$\frac{1}{2}$ 2-148	146
	266, 267	2
	328-608	279
	733-1100	364
Polovina	268-327	60
	1166-1228	63
Total		1,220

^{1/} Tags 95 and 96 were attached to the same seal and the matching tags were discarded.

Table A-24.--Record of tag identification numbers for 144 male seals tagged or marked as pups and tagged again at age \geq 2 years, St. Paul Island, 28 September to 10 October 1967

[Numbers in parentheses indicate pup tags.]

Tagged or marked as pups by the United States										
and tagged a	gain at ≥ 2 years by the Un	ited States	Tagged as pups by the U.S.S.R.							
Pup tag	,	Double	and tagged again at \geq 2 years							
retained $\frac{1}{2}$	Marked as indicated $\frac{2}{}$	tag loss	by the United States							

Age ≥ 2 years tag number (2T-series)

		RHl	LFV	RF	`V					
167 (70	95) _	10	4		35	526	<u>5</u> /	506	(19559)	
170 (70	38)	41	71	16	ó5	560		855	(22757)	
171 (52	98)	73	130	2	15	633		1219	(19571)	
185 (33)	97	191	28	36					
190 (95	95)	114	280	28	39					
192 (81	11)	126	366	33	35					
210 (50	79)	128	429	34	43					
236 (70	67)	144	773	39	90					
256 (37	35)	189	796	42	23					
266 (88	14)	225	946	44	40					
293 (96	43)	227	1000	48	34					
326 (51	56)	333	1022	56	63					
339 (68	343)	349	1075	58	39					
352 (72	05)	373	1076	70	03					
380 (12	64)	420	1098	73	33					
417 (55	17)	451	1190	73	35					
455 (17	07)	453	1220		50					
458 (85	77)	469	4	4/ 76	62-TL	_				
460 (21	53)	480			85					
488 (97	10)	485			18					
503 (15		490			44					
606 (27	*	543			82					
607 (18	41)	566		99	92					
608 (93		575		104						
714 (63	-	583		118						
725 (46	•	590		118	83					
754 (1		639								
760 (79	•	663								
787 (9		675								
801 (99	03)	683								

See footnotes at end of table.

Table A-24.--Record of tag identification numbers for 144 male seals tagged or marked as pups and tagged again at age ≥ 2 years, St. Paul Island, 28 September to 10 October 1967--Continued

[Numbers in parentheses indicate pup tags.]

Tagged or marked as pups by the United States										
and tagged a	gain at \geq 2 years by the Ui	Tagged as pups by the U.S.S.R.								
Pup tag	_ ,	Double	and tagged again at \geq 2 years							
retained 1/	Marked as indicated $\frac{2}{}$	tag loss	by the United States							

Age ≥ 2 years tag number (2T-series)

	RHI	LFV	RFV
929 (8294)	687		
965 (3529)	708		
970 (1910)	711		
977 (6509)	755		
987 (3063)	761		
1027 (7367)	781		
1042 (1247)	3/ 792-D	TL	
1053 (4436)	821		
1058 (7113)	983		
1079 (7913)	1044		
1082 (7346)	1051		
1101 (289)	1149		
1107 (1521)	1164		
1137 (8047)	1168		
1138 (6847)	1181		
1172 (5195)	1187		
1216 (4423)	1197		
	1213		

- 1/ R-series pup tags, except 3063 which was a rivet-type tag.
- Z/ RH1=right hind flipper, tip of number 1 digit sliced off; LFV=left front flipper, V-notch cut into leading edge near tip; RFV=right front flipper, V-notch cut into leading edge near tip.
 - 3/ Double tags lost tagged at age 1 or older.
 - 4/ Single tag lost tagged as a pup.
 - 5/ T-series pup tags.

Table A-25.--Soviet tags recovered in the United States kill of fur seals, Pribilof Islands, Alaska, 26 June to 17 August 1967

Island				Island	Rookery
and date	Tag number	Age	Sex	of tagging	of recovery 1/
		Years			
St. Paul Island					
19 July	T-16701	2	М	Medny	ZAP
5 August	T-17889	2	M	11	L-K
19 July	T-20138	2	M	11	ZAP
19 "	T-20438	2	M	Ш	ZAP
26 "	T-21618	2	M	11	NEP
29 ''	T-21718	2	M	**	TZR
6 July	P-19477	3	М	Bering	POL
10 "	P-22502	3	M	11	ZAP
10 "	P-22595	3	M	11	ZAP
12 "	P-22951 & 22983	3	M	11	NEP
21 "	P-24133	3	M	Medny	NEP
4 August	P-24585	3	M	11	NEP
28 July 17 "	P-25001	3	M M	0	ZAP NEP
7 "	P-25889 P-26536	3	M	11	NEP
4 August	P-27136	3	M	11	NEP
31 July	P-27940	3	M	u u	NEP
15 "	P-27947	3	M	11	TZR
26 "	P-28293	3	M	11	NEP
20 "	P-31060 & 31091	3	M	11	TZR
15 "	P-31990	3	M	"	TZR
15 "	P-31999	3	M	"	TZR
17 July	H- 9923	4	М	Robben	NEP
25 "	H-15071	4	M	Bering	POL
25 "	H-15085	4	M	11	POL
26 "	H-16950	4	M	10	NEP
26 "	H-16963	4	M	11	NEP
ll August	H-18146	4	M	11	TZR
8 July	H-22937	4	M	Medny	REEF
12 '' 27 ''	H-24346	4 4	M	71	NEP REEF
28 "	H-26784 H-29004	4	M M	0	ZAP
27 June	H-29158	4	M	11	TZR
14 July	H-29974	4	M	11	ZAP
ĺ					
14 July	M-14506	5	M	Medny	ZAP
19 "	M-16720	5	M	11	ZAP
5 August	M-19867	5 5	M		ZAP
29 July	K-15528	5	M	Bering	POL
14 August	P-23063	3	F	Bering	POL
14 "	K-18150	5	F	II.	NEP
11 "	M-16596	5	F	Medny	TZR
St. George Islan	d				
10 7-1-	D 24970	3	14	Mades	EAST
19 July 24 "	P-24878 P-24915	3	M M	Medny	EAST
17 "	P-27490	3	M	ti	NORTH
28 "	P-29193 & 29109	3	M	D	NORTH
26 11	P-30650 & 30677	3	M	II.	NORTH
4 August	H-15067 &15091	4	M	Bering	NORTH
2 "	H-18969 H-28258 & 28286	4	M M	Medny	NORTH EAST
4 '' 12 July	H-28258 & 28286 H-29660	4	M M	Meany	NORTH
. D dury	11 27000	•	141		
9 August	E-18847	6	F	Medny	ZAP
15 "	E-21377	6	F	19	NORTH
		7	F	,,	NORTH

^{1/} ZAP=Zapadni; L-K=Lukanin-Kotovi; NEP=Northeast Point (Vostochni and Morjovi); TZR=Tolstoi-Zapadni Reef; POL=Polovina-Polovina Cliffs-Little Polovina; REEF=Reef-Gorbatch-Ardiguen; EAST=East Reef-East Cliffs; ZAP of St. George Island=Zapadni-South.

Table A-26.--Recovery location of tagged male seals killed, by age and rookery, Pribilof Islands, Alasks, 26 June to 5 August 1967

Tag series, age	.1				Rook	erv of	recovery	. 1/					
and rookery of	'		St. P	aul Island	11001	(01) 01 .			St.	George I	sland 4/		Grand
tagging1/	ZAP-1	TOL	L-K	REEF	POL	NEP	Total	ZAP-2	NOR	EAST	STAR	Total	total
R-series - a	ge 2			Number -						Numb	er		
ZAP-1	5	-	-	-	-	2	7	-	-	-	-	-	7
TOL	3	1	-	1	-	1	6	-	-	-	-	-	6
L-K	-	-	2		-	2	4	-	-	-	-	-	4
REEF	4	-	-	3	-	-	7 5	-	-	-	1	-	7
POL NEP	-	1	1		4 2	5	8	-	1	1	1	2	7 9
Front flipper		-	1	-	2	3	a	-	•	1	-	1	7
mark3/	26	8	5	13	8	24	84	9	2	_	2	13	97
Hind flipper	-0				_		• •	'	_		_	••	
mark3/	15	6	4	3	6	25	59	14	1	1	_	16	75
Tags lost	14	3	8	10	6	15	56		3	2	2	7	63
Total	67	19	20	30	26	74	236	23	7	4	5	39	275
Q-series - a	ge 3												
ZAP-1	164	23	9	10	10	25	241	3	11	2	_	16	257
TOL	39	54	2	8	3	11	117	5	2	2	2	11	128
L-K	12	9	41	11	12	13	98	2	6	3	_	11	109
REEF	58	24	17	131	17	41	288	3	13	6	2	24	312
POL	16	5	13	8	62	14	118	2	4	2	-	8	126
NEP	17	6	8	8	20	220	279	2	8	14	-	24	305
NOR	11	3	4	7	1	7	33	6	93	11	3	113	146
EAST	3	1	1	3	1	4	13	-	11	49	1	61	74
STAR	4	2	2	6		3	17	1	18	12	14	45	62
ZAP-2	7	2	4	6	2	6	27	16	14	9	-	39	66
Tags lost	135	49	39	93	59	185	560	13	45	29	5	92	652
Total	466	178	140	291	187	529	1,791	53	225	139	27	444	2,235
P-series - ap	ge 4												
ZAP-1	53	14	-	7	2	4	80	-	3	2	-	5	85
TOL	9	15	2	1	3	2	32	-	-	1	-	1	33
L-K	3	2	18	3	6	8	40	-	2	-	-	2	42
REEF	23	14	5	43	8	6	99	-	2	4	-	6	105
POL	5	4	3	4	54	12	82	-	7	1	-	1	83
NEP	1	2	2	2	5	118	130	-	3	2	I	6	136
NOR EAST	1 4	1	2 1	1	-	3	8	3	53	7	2	65	73
STAR	1	-	-	1	1	3	8 6	1	6 5	26	5	33	41
ZAP-2	2	2	_	1	1	1	7	- 24	8	1 4	1	11 37	17 44
Tags lost	68	27	39	52	38	90	314	10	21	15	2	48	362
Total	170	81	72	115	118	250	806	38	103	63	11	215	1, 021
				***	•••	230	000	50	103	05	**	213	1,021
O-series - ag							2.2						
ZAP-1	20	2	-	-	-	-	22	-	-	-	-	-	22
TOL	1	1	-	-	-	-	2	•	-	-	-	-	2
L-K REEF	4	2	2 -	16	-	_	22	1	- 1	-	-	- 2	2
POL	2	1	1	- 10	7	1	12	1	-	1	-	1	24 13
NEP	2	1	_	_	-	16	17	-	1	1	-	1	18
NOR		_	_		_	2	2		12	2		14	16
EAST		_	_	_	_	-	-		-	10		10	10
STAR	_	_	_	_	_	_	_	-	2	1	1	4	4
ZAP-2	_	-	-	_	1	_	1	7	-		_	7	8
Tags lost	. 20	10	22	8	13	19	92	5	7	10	_	22	114
Total	47	17	25	24	21	38	172	13	23	24	1	61	233
N-series - ag													
ZAP-I	2	-	-	-	-	-	2	-	-	-	-	-	2
TOL	-	1	-	-	-	-	1	-	-	-	-	-	1
NEP	-	-	-	-	-	2	2	-	-	-	-	-	2
STAR	-	-	-	-	-	-	-		-	-	1	1	1
Tags lost	9	8	-	8	2	5	32	2	3	-		5	37
Total	11	9	-	8	2	7	37	2	3	-	1	6	43
M-series - a	ge 7												
TOL	ge /	1	_	_	-	_	1		_				1
100		1					1						

^{1/} ZAP-1=Zapadni of St. Paul Island; TOL=Tolstoi; L-K=Lukanin-Kitovi; REEF=Reef, Gorbatch, and Ardiguen; POL=Polovina, Polovina Cliffs, and Little Polovina; NEP=Northeast Point (Vostochni-Morjovi); NOR=North; EAST= East Cliffs and East Reef; STAR=Staraya Artil; ZAP-2=Zapadni of St. George Island.

2/ Pups were not tagged on St. George Island in 1965 (R-series tags).

3/ Seals marked but not tagged--V-notch right front flipper and tip of 1st digit right hind flipper sliced off.

							1		17				
Tag series, age and rookery of										C3			
tagging 1/	ZAP-1	TOL			POL	NEP	Total	ZAP-2	NOR	EAST	STAR	Total	Grand total
				Number			10141	D	1101	Number -		Total	total
R-series - a	ge 2									Number -			
ZAP-1	1	-	-	-	-	-	1	-	-	-	-	-	1
L-K	1	-	-	-	-	-	1	-	-	-	-	_	1
POL	-	-	-	-	2	-	2	-	-	-	-	-	2
Front flipper													
mark3/	-	-	1	-	1	-	2	-	-	-	-	-	2
Hind flipper													
mark3/	-	-	-	-	1	-	1	-	-	-	-	-	1
Tags lost	-	-	-	-	-	2	2	-	-	-	-	-	2
Total	2	-	1	-	4	2	9	-	-	-	-	-	9
Q-series - a	.ge 3												
ZAP-I	1	2	-	-	-	-	3	-	-	-	-	-	3
TOL	2	-	-	-	-	-	2	-	-	-	-	-	2
REEF	-	1	-	4	1	-	6	-	-	-	-	-	6
POL	-	-	-	-	1	-	1	-	-	~	-	-	1
NEP	1	-	1	-	1	2	5	-	1	-	-	1	6
NOR	-	-	-	-	1	-	1	-	-	-	1	1	2
EAST	-	1	-	•	-	-	1	•	-	-	-	-	1
STAR	-	-	-	-	-	1	1	-	-	-	10	10	11
ZAP-2	-	-	-	-		-	-	1	-	-		1	1
Tags lost	3	. 3	-	5	10	4	25	5	-	-	3	8	33
Total	7	7	1	9	14	7	45	6	1	-	14	21	66
ъ.													
P-series - a							_						
ZAP-1	1	1	-	1	-	-	3	-	-	-	-	-	3
TOL	-	1			-	-	1	-	-	-	-	-	1
REEF	-	-	1	9	1	-	11	-	-	-	-	-	11
POL	1	-	-	-	12		13	-	-	-	-	-	13
NEP	1	1	1	-	-	5	8	-		-	-	•	8
NOR	-	-	-	-	-	-		-	2	-	2	4	4
STAR	:	•	•	-	•	1	1	-	-	-	9	9	10
ZAP-2	1	-	-	Ī.	-	-	1	-		-		-	1
Tags lost	4	6		. 5	- 8	4	27		1		1	22	29
Total	8	9	2	15	21	10	65	-	3	-	12	15	80
O-series - a	~ · · ·												
ZAP-1	17	7			1		2.5						25
TOL	17	í	-	-	1	-		-	-	-	-	•	1
L-K	1		-		-	-	1	-	-	-	•	-	1
REEF	1	-	-	21	2	-	23	-	1	-	1	2	25
POL	•	-	-	-	20	3	23	-	-	-	1	-	23
NEP	•	ī	•	-	1	11	13	•	-	-	-	-	13
NOR	-	-	-	-	•	1	1	1	2	-		3	4
EAST						-	_	_	-	-	1	1	ī
STAR	_		Ī	Ī				Ī		Ī	13	13	13
ZAP-2	-	-	-	_	1	_	1	10	-	-	-	10	11
Tags lost	7	7	2	5	13	15	49	-	1		2	3	52
Total	25	16	2	26	38	30	137	11	4		17	32	169
		-0							•		- /		/
N-series - a	ge 6												
ZAP-1	6	2	1	-		-	9		-			-	9
TOL	1	2	_	-	-	-	á	-	-	-	-	_	3
REEF	1	2	-	10	-	-	13		1	-	-	1	14
POL	-	-	-	-	18	_	18			-	-	-	18
NEP	1	_	-	_	_	14	15		-	-	-	_	15
NOR	-	-	-	-	1	-	1		-	-	1	1	2
EAST	-	-	-	-	_	-	-	_	1	-	-	1	1
STAR	-	-	-	-	-	-	-	-	-	-	6	6	6
ZAP-2	-	-	-	-	_	-	-	2	-	-	-	2	2
Tags lost	1	2	-	5	10	5	23	-	-	-	-	-	23
Total	10	8	1	15	29	19	82	2	2	-	7	11	93
M-series - a	age 7												
ZAP-1	1	2	-	1	-	-	4	-	-	-	-	-	4
REEF	-	-	-	8	-	-	8	-	-	-	-	-	8
POL	-	-	-	-	3	1	4	-	-	-	-	-	4
NEP	-	-	-	-	-	5	5	-	-	-	-	-	5
NOR	-	-	-	-	-	~	-	-	2	-	1	3	3
ZAP-2		-	-	-	-	-	-	11		-		1	1
Total	1	2	-	9	3	6	21	1	2	-	1	4	25

Table A-27.--Recovery location of tagged female seals killed, by age and rookery, Pribilof Islands, Alaska, 26 June to 17 August 1967--Continued

nd rookery of aggingl	ZAP-1		. Paul	Island									
-	ZAP-1									orge Isla			Gran
Legeries - 200		TOL	L-K	REEF	POL	NEP	Total	ZAP-2	NOR	EAST	STAR	Total	total
Leseries - age]	Number -						- Numbe	r		
_ oction age	8										_		
ZAP-1	1	-	-	-	-	-	1	-	-	-	-	-	1
REEF	1	l	-	4	-	-	6	-	-	-	-	-	6
POL	-	-	-	-	1	1	2	_	_	-	-	-	2
STAR	-	-	_	-	_	-	_	_	-	_	1	1	1
Total	2	1	-	4	1	1	9	-	-	-	1	1	10
							· ·						
K-series - ag	e 9												
L-K					_	2	2	_	_	_		_	2
REEF		_	_	2	_	_	2		_	_		_	2
POL	2	-	_	-	2	1	5	_	_	_	_	_	5
NEP		_	_		-	6	6	_	_	_	-	-	
	•	-	-	-				-	-	1	-	-	_6
EAST	-		-	-	2	-	15					1	1
Total	2	•	-	2	2	9	15	-	-	1	-	1	16
	10												
J-series - age													
TOL	2	1	-	-	•	-	3	-	-	-	•	-	3
REEF	-	-	-	1	-	-	1	-	-	-	-	-	1
POL	-	-	-	-	1	-	1	-	-	-	-	-	1
EAST	-	-	-	-	-	-	-	1	-	-	-	1	1
Total	2	1	-	1	1	-	5	1	-	-	-	1	6
I-series - age	- 11												
ZAP-1	2	1	_	_	_	_	3	_	_	_	_	_	3
NEP	-	•	_	_	_	1	i	_	_	_	_	_	1
STAR		-	-	-	-	-		-	-	-	1	1	1
	-	-	•	-	•	-	-	-	-	-	1		
ZAP-2	2		~	-				1				1	1
Total	2	1	-	-	-	1	4	1	-	-	1	2	6
H-series - ag													
ZAP-1	1	1	-	-	-	-	2	-	-	-	-	-	2
TOL	-	-	-	1	-	-	1	-	-	-	-	-	1
L-K	-	-	1	-	-	-	1	-	-	-	-	-	1
REEF	-	-	-	1	-	-	1	-	-	-	-	-	1
NEP	-	-	-	-	-	1	1	-	-	-	-	-	1
Total	1	1	1	2	-	1	6	-	-	_	-	-	6
G-series - ag	e 13												
ZAP-1	1	_	_	-		-	1	-		_	-	_	1
REEF	_	_	_	2	_	-	2	-	_	_	_	_	2
NEP	_	_	_	-		2	2			_	_	_	2
Total -	1		<u> </u>	2		2	5						5
Iotai	1	•	-	2	-	2	5	-	-	-	-	-	,
D 1	1.5												
E-series - age							,						
REEF	1	-	-	-	-	~	1	-	-	-	-	•	1
NEP	-	-			-	3	3	-	-				3
Total	1	-	•	-	-	3	4	-	-	-	-	-	4
CS-series - a	ge 18												
REEF	-	-	-	1	-	-	1	-	-	-	-	-	1
NEP	-	-	-	-	-	2	2	-	-	-	-	-	2
_				1	-	2	3	-	-			-	3
Total													

^{1/} ZAP-1=Zapadni of St. Paul Island; TOL=Tolstoi; L-K=Lukanin-Kitovi; REEF=Reef, Gorbatch, and Ardiguen; POL=Polovina, Polovina Cliffs, and Little Polovina; NEP=Northeast Point (Vostochni-Morjovi); NOR=North; EAST= East Cliffs and East Reef; STAR=Staraya Artil; ZAP-2=Zapadni of St. George Island.

2/ Pups were not tagged on St. George Island in 1965 (R-series tags).

3/ Seals marked but not tagged--V-notch right front flipper and tip of 1st digit right hind flipper sliced off.

APPENDIX B

PERSONS ENGAGED IN FUR SEAL RESEARCH IN 1967

Pribilof Islands

Name	Arrival	Departure	Affiliation	Work
- Name		Dopar our o	111111111111111111111111111111111111111	HOLL
Patrick Kozloff	24 May	5 Sept.	Student, U. of Alaska	Seal research, general
Lavrenty Stepetin	24 May	10 Oct.	St. Paul Island resident	Do.
Raymond Anas	14 June	17 Aug.	Bureau of Commercial Fisheries	Do.
Daniel Odell	14 June	5 Sept.	Graduate, Cornell U.	Do.
Alton Roppel	21 June	10 Aug.	Bureau of Commercial Fisheries	Do.
Gilbert Moore	21 June	17 Aug.	Science teacher, Redmond Junior High School	Do.
Dionsey Bourdukofsky	27 June	5 Sept.	St. Paul Island resident	Do.
Mark Keyes	28 June	17 Aug.	Bureau of Commercial Fisheries	Seal research, mortality
Donald Bosman	28 June	17 Aug.	Student, Wash. State U.	Do.
Agafon Krukoff, Jr.	5 July	5 Sept.	St. Paul Island resident	Seal research, general
Ronald Pletnikoff	5 July	24 Aug.	do	Do.
David Galaktionoff	20 July	31 Aug.	do	Do.
Ford Wilke	26 July	24 Aug.	Bureau of Commercial Fisheries	Do.
Ancel Johnson	20 Sept.	11 Oct.	do	Do.
Clifford Fiscus	20 Sept.	11 Oct.	do	Do.

Pelagic Investigations

Name	Vessel	Area or place of work	Period
C. H. Fiscus	M/V Pribilof	Bering Sea Washington	11 Nov. to 8 Dec. 1966 6 Jan. to 13 Feb. 1967
H. Kajimura	M/V Tenyu Maru	Off northern Honshu Island, Japan	10 Apr. to 22 May 1967
H. Kajimura	M/V John N. Cobb	Washington-Oregon	21 Aug. to 8 Sept. 1967
R. K. Stroud	M/V Tonquin M/V Yaquina	Washington Oregon Oregon-California	5 Jan. to 17 Feb. 1967 25-29 Aug. 1967 16-22 Sept. 1967
P. Iwanaga (temporary employee)	M/V Tonquin Marine Mammal	Washington Biological Laboratory	5 Jan. to 17 Feb. 3-4 Jan. and 18 Feb- 19 May 1967

APPENDIX C

Table C-1.--Observations of seals in the eastern Aleutian Islands from $\mbox{M/V}$ Pribilof, November to December 1966

Date	Hours of observation	Locality	Seals seen, collected, wounded, or killed
	Number		Number
22 Nov.	7	Off Unalaska, Cape Cheerful to Akutan Island	5
23 Nov.	7	Unalaska to Akun Bay, Akun Island, north of Akutan Island	8 (1 collected)
25 Nov.	6+	West side of Unimak Pass	2
26 Nov.	4	West side of Unimak Pass, Avatanik Strait	0
28 Nov.	8	West side of Unimak Pass, north side of Akun Island	8 (1 killed, lost)
29 Nov.	8	North side of Akun Island, northwest side of Unimak Pass	7 (1 wounded, lost)
30 Nov.	6	North side of Akutan and Akun Islands	5
1 Dec.	7	Akutan Bay, north side of Akutan Island to Unalaska	2

Table C-2.--List of chart squares occupied by research vessels off Washington in January 1967, showing hours in square, seals seen per hour, and number of seals seen and collected 1

	_			
	Hours	Seals		
Square	per	seen per		Seals
	square	hour	Seen	Collected
Number	Number	Number	Number	Number
V25-H9	1.0	0.0	0	0
V25-H10	1.0	1.0	1	0
V25-H11	0.9	2.2	2	0
V25-H12	1.0	0.0	0	0
V25-H13	0.1	0.0	0	0
V25-H21	0.7	0.0	0	0
V25-H22	0.8	0.0	0	0
V25-H23	1.0	0.0	0	0
V25-H24	0.9	1.1	1	0
V25-H25	1.0	0.0	0	0
V25-H26	1.0	1.0	1	0
V25-H27	0.9	0.0	0	0
V25-H28	0.9	0.0	0	0
V25-H29	0.8	0.0	0	0
V25-H30	0.9	1.1	1	0
V25-H31	0.2	0.0	0	0
V25-H42	0.3	0.0	0	0
V25-H43	1.0	0.0	0	0
V25-H44	1.0	0.0	0	0
V25-H45	1.0	0.0	0	0
V25-H46	1.0	0.0	0	0
V25-H47	1.0	0.0	0	0
V25-H48	1.0	0.0	0	0
V25-H49	0.6	1.7	1	0
V25-H50	1.1	0.0	0	0
V25-H51	0.8	0.0	0	0
V26-H9	0.8	0.0	0	0
V26-H10	2.8	0.0	0	0
V26-H11	4.6	2.4	11	3
V26-H12	1.2	0.8	1	0
V26-H13	1.2	2.5	3	0
V27-H11	2.0	2.5	5	2

¹ See footnote at end of table.

Table C-2.--List of chart squares occupied by research vessels off Washington in January 1967, showing hours in square, seals seen per hour, and number of seals seen and collected ---Continued

	Hours	Seals		
Square	per	seen per		Seals
	square	hour	Seen	Collected
Number	Number	Number	Number	Number
*****			_	
V28-H11	1.0	0.0	0	0
V28-H12	2.0	0.5	I	0
V28-H13	1.0	0.0	0	0
V28-H14	1.3	1.5	2	0
V28-H15	1.6	2.5	4	1
V28-H16	1.0	0.0	0	0
V28-H17	1.0	0.0	0	0
V28-H18	0.8	1.2	1	0
V28-H19	0.9	0.0	0	0
V28-H20	0.4	0.0	0	0
V29-H11	0.8	0.0	0	0
V29-H12	0.5	16.0	8	0
V29-H13	1.0	0.0	0	0
V29-H14	1.0	0.0	0	0
V29-H15	1.1	3.6	4	0
V29-H16	1.4	0.7	1	0
V29-H17	1.0	2.0	2	0
V29-H18	1.1	0.9	1	0
V29-H19	0.9	0.0	0	0
V29-H20	0.8	1.2	I	0
V29-H21	0.7	0.0	0	0
V29-H36	0.5	0.0	0	0
V29-H37	0.7	0.0	0	0
V29-H38	1.3	0.0	0	0
V29-H39	1.0	0.0	0	0
V29-H40	1.2	0.0	0	0
V29-H41	1.0	0.0	0	0
V29-H42	0.8	0.0	0	0
V29-H43	1.5	0.0	0	0
V29-H44	1.0	0.0	0	0
V29-H45	0.2	0.0	0	0
V30-H10	2.0	4.5	9	4
V30-H11	7.5	4.3	32	12
V37-H12	2.0	0.5	1	0
V37-H13	2.4	3.3	8	0

¹ See footnote at end of table.

Table C-2.--List of chart squares occupied by research vessels off Washington in January 1967, showing hours in square, seals seen per hour, and number of seals seen and collected --Continued

	Hours	Seals		
Square	per	seen per		als
	square	hour	Seen	Collected
Number	Number	Number	Number	Number
V37-H14	4.4	4.3	19	6
V37-H15	1.1	0.0	0	0
V37-H16	2.5	0.4	1	0
V37-H17	2.8	1.1	3	0
V37-H18	1.7	0.6	1	0
V37-H19	1.0	0.0	0	0
V37-H20	0.3	0.0	0	0
V37-H25	0.3	0.0	0	0
V37-H26	1.0	0.0	0	0
V37-H27	0.9	0.0	0	0
V37-H28	1.1	0.0	0	0
V37-H29	0.9	2.2	2	0
V37-H30	1.0	0.0	0	0
V37-H31	0.9	0.0	0	0
V37-H32	0.8	2.5	2	0
V37-H33	1.2	0.0	0	0
V37-H34	1.0	0.0	0	0
V37-H35	0.1	0.0	0	0
V37-H41	0.3	0.0	0	0
V37-H42	1.1	0.0	0	0
V37-H43	1.1	0.0	0	0
V37-H44	1.0	0.0	0	0
V37-H45	0.9	0.0	0	0
V37-H46	0.8	1.2	1	0
V37-H47	1.1	0.9	1	0
V37-H48	0.9	0.0	0	0
V37-H49	0.9	0.0	0	0
V37-H50	0.9	0.0	. 0	0
V38-H12	3.9	0.0	0	0
V38-H13	4.6	3.9	18	5
V38-H14	7.6	6.3	48	2

¹ See footnote at end of table.

Table C-2.--List of chart squares occupied by research vessels off Washington in January 1967, showing hours in square, seals seen per hour, and number of seals seen and collected --- Continued

	Hours	Seals		
Square	per	seen per	Sea	als
•	square	hour	Seen	Collected
Number	Number	Number	Number	Number
V38-H15	1.8	4.4	8	0
V38-H16	1.2	2.5	3	0
V38-H18	1.2	1.7	2	0
V38-H19	0.2	5.0	1	0
V39-H11	3.9	0.0	0	0
V39-H12	19.9	1.8	37	3
V39-H13	15.0	4.8	72	17
V39-H14	3.0	1.0	3	0
V39-H15	1.5	4.7	7	1
V39-H16	1.6	0.6	1	0
V40-H12	2.8	2.8	8	2
V40-H13	9.0	2.2	20	7
V40-H14	4.3	0.9	4	1
V40-H15	5.9	2.0	12	1
V40-H16	8.0	6.5	52	7
V40-H17	4.7	1.7	8	1
V40-H18	1.0	1.0	1	0
V40-H19	1.0	0.0	0	0
V40-H20	1.0	0.0	0	0
V40-H21	1.0	0.0	0	0
V40-H22	1.4	0.0	0	0
V40-H23	1.2	0.8	1	0
V40-H24	11	0.0	0	0
V41-H15	0.8	2.5	2	0
V41-H16	1.6	0.0	0	0
V41-H17	3.0	0.0	0	0
V41-H18	0.9	0.0	0	0
V42-H18	1.1	0.0	0	0
V43-H19	1.0	1.0	1	0
V43-H20	0.9	3.3	3	0
V43-H21	0.7	2.8	2	0

¹ See footnote at end of table.

Table C-2.--List of chart squares occupied by research vessels off Washington in January 1967, showing hours in square, seals seen per hour, and number of seals seen and collected 1-- Continued

	Hours	Seals		
Square	per	seen per	L	Seals
	square	hour	Seen	Collected
Number	Number	Number	Number	Number
V43-H22	0.7	0.0	0	0
V43-H23	0.8	0.0	0	0
V43-H24	1.0	2.0	2	0
V43-H25	1.0	1.0	1	0
V43-H26	0.9	2.2	2	0
V43-H27	1.0	1.0	1	0
V43-H28	1.0	0.0	0	0
V43-H29	0.2	0.0	0	0
V43-H39	1.0	0.0	0	0
V43-H40	1.4	3.6	5	0
V43-H41	0.6	5.0	3	0
V43-H42	1.1	0.9	1	1
V43-H43	2.0	1.5	3	0
V43-H44	1.5	2.7	4	3
V43-H45	1.9	4.2	8	1

^{1/} The base chart is U.S.C.G.S. no. 5002. A chart square forms an area of 343 square kilometers (100 square nautical miles). The side of each measures 18.52 kilometers (10 nautical miles). Squares are located by a system of vertical and horizontal numbers. Horizontal numbering begins at the lower right corner of each chart and vertical numbering at the lower left corner.

Table C-3.--List of chart squares occupied by research vessels off Washington in February 1967, showing hours in square, seals seen per hour, and number of seals seen and collected 1

			,	
	Hours	Seals		
Square	per	seen per		eals
	square	hour	Seen	Collected
Number	Number	Number	Number	Number
V30-H11	2.0	4.0	8	1
V31-H11	2.7	10.0	27	6
V31-H12	1.3	5.4	7	3
V31-H16	1.1	0.9	1	0
V31-H17	0.8	0.0	0	0
V31-H18	1.4	1.4	2	0
V31-H19	0.7	1.4	1	0
V32-H11	0.8	7.5	6	2
V32-H12	5.7	6.1	35	4
V32-H13	1.0	2.0	2	0
V32-H15	0.5	4.0	2	0
V32-H16	0.5	0.0	0	0
V33-H12	3.2	9.4	30	0
V33-H13	1.6	0.6	1	0
V33-H14	1.1	0.0	0	0
V33-H15	0.6	0.0	0	0
V34-H12	0.8	6.2	5	0
V34-H13	2.1	4.3	9	0
V34-H14	0.6	3.3	2	0
V34-H16	0.2	0.0	0	0
V34-H17	1.2	0.0	0	0
V34-H18	0.8	1.2	1	0
V34-H19	1.0	0.0	0	0
V34-H20	0.8	0.0	0	0
V34-H21	0.8	0.0	0	0
V34-H22	1.0	1.0	1	0
V34-H23	1.0	0.0	0	0
V34-H24	1.2	0.0	0	0
V34-H25	1.0	0.0	0	0
V34-H26	0.3	0.0	0	0
V34-H34	0.6	1.7	1	0

¹ See footnote at end of table.

Table C-3.--List of chart squares occupied by research vessels off Washington in February 1967, showing hours in square, seals seen per hour, and number of seals seen and collected --Continued

	Hours	Seals		
Square	per	seen per	8	Seals
•	square	hour	Seen	Collected
Number	Number	Number	Number	Number
				
V34-H35	1.0	1.0	1	0
V34-H36	0.9	1.1	1	0
V34-H37	1.0	0.0	0	0
V34-H38	0.9	2.2	2	0
V34-H39	1.0	0.0	0	0
V34-H40	1.0	2.0	2	0
V34-H41	0.8	1.2	1	0
V34-H42	1.0	0.0	0	0
V34-H43	1.3	0.0	0	0
V35-H12	l'. 7	1.8	3	0
V35-H13	3.4	12.0	41	2
V35-H14	1.8	0.6	l	0
V36-H13	2.2	4.1	9	3
V36-H14	1.3	2.3	3	0
V37-H12	0.5	0.0	0	0
V37-H13	4.1	3.9	16	1
V37-H14	1.1	0.0	0	0
V38-H12	2.9	0.3	l	0
V38-H13	5.8	2.2	13	0
V38-H14	1.0	1.0	1	0
V38-H15	0.2	0.0	0	0
V38-H16	2.3	0.4	1	0
V38-H17	1.5	0.7	1	0
V39-H11	3.4	0.0	0	0
V39-H12	6.9	0.0	0	0
V39-H13	4.8	0.8	4	1
V39-H14	5.7	1.4	8	3
V39-H15	9.6	6.1	59	9
V39-H16	9.6	5.2	50	14
V39-H17	1.6	0.6	1	0

¹ See footnote at end of table.

Table C-3.--List of chart squares occupied by research vessels off Washington in February 1967, showing hours in square, seals seen per hour, and number of seals seen and collected -- Continued

	Hours	Seals		
Square	per	seen per	Se	eals
	square	hour	Seen	Collected
Number	Number	Number	Number	Number
V39-H18	1.3	0.8	1	0
V39-H19	0.2	5.0	1	0
V40-H13	1.2	0.0	0	0
V40-H15	0.2	10.0	2	1
V40-H16	1.1	1.8	2	1
V40-H27	1.8	0.0	0	0
V40-H28	1.5	0.0	0	0
V40-H29	1.5	0.0	0	0
V40-H30	1.2	0.0	0	0
V40-H31	1.3	0.0	0	0
V40-H32	1.3	2.3	3	0
V40-H33	1.1	0.0	0	0

^{1/} The base chart is U.S.C.G.S. no. 5002. A chart square forms an area of 343 square kilometers (100 square nautical miles). The side of each measures 18.52 kilometers (10 nautical miles). Squares are located by a system of vertical and horizontal numbers. Horizontal numbering begins at the lower right corner of each chart and vertical numbering at the lower left corner.

Table C-4.--Number of seals seen, and number seen per boat-hunting day, by 10-day periods, off Washington, 6 January to 12 February 1967

			Seals	Seals
	Boat-	Total	seen per	seen per
Period	hunting,	seals	boat-hunting	10-day
	days 1/	seen	day	interval
	Number	Number	Number	Percent
1-10 Jan.	6.00	102	17.0	12.2
11-20 "	12.25	219	17.9	26.2
21-31 "	8.75	155	17.7	18.6
1-10 Feb.	11.50	291	25.3	34.9
11-20 "	2.00	68	34.0	8.1
Total	40.50	835	20.6	100.0

 $[\]frac{1}{A}$ boat-hunting day is a day in which a vessel is used for 8 hours or more; units of boat-hunting days are 0.25, 0.50, 0.75, and 1.00.

Table C-5.--Number of seals collected, and number collected per boat-hunting day, by 10-day periods, off Washington, 6 January to 12 February 1967

	Boat				Seals collected		
Period	hunting,	Se	als collect	per b	oat-		
	days 1/	Males	Females	Total	hunting	day	
	Number	Number	Number	Number	Number	Percent	
1-10 Jan.	6.00	0	10	10	1.7	7.6	
11-20 ''	12.25	4	37	41	3.4	31.3	
21-31 ''	8.75	3	26	29	3.3	22.1	
1-10 Feb.	11.50	6	44	50	4.4	38.2	
11-20 "	2.00	0	1	1	0.5	0.8	
Total	40.50	13	118	131	3.2	100.0	

 $[\]frac{1}{A}$ boat-hunting day is a day in which a vessel is used for 8 hours or more; units of boat-hunting days are 0.25, 0.50, 0.75, and 1.00.

Table C-6.--Number of seals per group among 835 seals sighted off Washington, 6 January to 12 February 1967

Number of seals in			
seals in			
group	Groups	Seals	Seals
	Number	Number	Percent
1	361	361	43.3
2	106	212	25.4
3	39	117	14.0
4	19	76	9.1
5	8	40	4.8
6	1	6	0.7
7	1	7	0.8
8	2	<u>16</u>	1.9
Total	537	835	100.0

Table C-7.--Total seals sighted, collected, wounded and lost, and killed and lost, 1958-67

	Total			C: 14-1	1 .			
Voom	seals	Coll	ected	Sighted so	and lost	Killed :	Killed and lost1/	
Year	sighted Number	<u> </u>	Percent		Percent		Percent	
	Mulliber	<u>Iddiliber</u>	1 CI CCIII	<u>Ivaniber</u>	Tercent	Tulliber	1 creent	
1958	7,024	1, 503	21.4	302	4.3	255	3.6	
1959	5, 919	1,548	26.2	316	5.3	286	4.8	
1960	6, 287	1, 495	23.8	271	4.3	241	3.8	
1961	3, 415	1, 352	40.0	176	5.2	124	3.6	
1962	6,111	1, 483	24.3	178	2.9	133	2.2	
1963	5, 790	1, 355	23.4	202	3.5	143	2:5	
1964	2,864	883	30.8	97	3.4	68	2.4	
1965	1, 627	419	27.8	50	3.1	45	2.8	
1966	2,704	444	16.4	78	2.9	67	2.5	
1967 <u>-</u>	897	132	14.7	27	3.0	22	2.5	
Total	42,638	10,614	24.9	1,697	4.0	1, 384	3,2	

^{1/} Killed seals that sank before they could be retrieved.

^{2/} Includes 16 days during November and December 1966.

Table C-8.--Number and percentage of seals shot at sea that were collected, wounded and lost, and killed and lost, 1958-67

Total								
seals		Seals shot						
shot	Colle	cted	Wounded	and lost	Killed a	nd $lost \frac{1}{}$		
Number	Number	Percent	Number	Percent	Number	Percent		
2,060	1,503	73.0	302	14.6	255	12.4		
2, 150	1,548	72.0	316	14.7	286	13.3		
2,007	1, 495	74.5	271	13.5	241	12.0		
1,652	1, 352	81.8	176	10.7	124	7.5		
1,794	1, 483	82.7	178	9.9	133	7.4		
1,700	1,355	79.7	202	11.9	143	8.4		
1,048	883	84.3	97	9.3	68	6.4		
514	419	81.5	50	9.7	45	8.8		
589	444	75.4	78	13.2	67	11.4		
181	132	72.9	27	14.9	22	12.2		
1 13, 695	10,614	77.5	1,697	12.4	1, 384	10.1		
	shot Number 2,060 2,150 2,007 1,652 1,794 1,700 1,048 514 589 181	seals shot Colled Number Number Number 2,060 1,503 2,150 1,548 2,007 1,495 1,652 1,352 1,794 1,483 1,700 1,355 1,048 883 514 419 589 444 181 132	seals shot Collected Number Number Percent 2,060 1,503 73.0 2,150 1,548 72.0 2,007 1,495 74.5 1,652 1,352 81.8 1,794 1,483 82.7 1,700 1,355 79.7 1,048 883 84.3 514 419 81.5 589 444 75.4 181 132 72.9	seals shot Collected Wounded Number Number Percent Number 2,060 1,503 73.0 302 2,150 1,548 72.0 316 2,007 1,495 74.5 271 1,652 1,352 81.8 176 1,794 1,483 82.7 178 1,700 1,355 79.7 202 1,048 883 84.3 97 514 419 81.5 50 589 444 75.4 78 181 132 72.9 27	seals shot Collected Wounded and lost Number Number Percent Number Percent 2,060 1,503 73.0 302 14.6 2,150 1,548 72.0 316 14.7 2,007 1,495 74.5 271 13.5 1,652 1,352 81.8 176 10.7 1,794 1,483 82.7 178 9.9 1,700 1,355 79.7 202 11.9 1,048 883 84.3 97 9.3 514 419 81.5 50 9.7 589 444 75.4 78 13.2 181 132 72.9 27 14.9	Seals shot shot Collected Wounded and lost Killed a Number Number Percent Number Percent Number 2,060 1,503 73.0 302 14.6 255 2,150 1,548 72.0 316 14.7 286 2,007 1,495 74.5 271 13.5 241 1,652 1,352 81.8 176 10.7 124 1,794 1,483 82.7 178 9.9 133 1,700 1,355 79.7 202 11.9 143 1,048 883 84.3 97 9.3 68 514 419 81.5 50 9.7 45 589 444 75.4 78 13.2 67		

 $[\]underline{1}$ / Killed seals that sank before they could be retrieved.

^{2/} Includes 16 days during November and December 1966.

Table C-9.--Monthly mean lengths of pregnant fur seals collected pelagically by the United States off Washington in 1967

	Jan	uary	Feb	ruary	Janı	uary-Fe	bruary
Age		Mean		Mean		Mean	Standard
		length	Seals	length	Seals	length	deviation
Years	Numbe	r Cm.	Numbe	er Cm.	Number	Cm.	Cm.
5	2	115.5	2	112.5	4	114.0	
6	8	120.5	4	120.7	12	120.6	3.0
7	1	125.0	4	123.7	5	124.0	7.8
8	3	121.3	3	128.7	6	125.0	5.9
9	10	122.9	2	130.0	12	124.1	7.2
10	5	126.2	5	129.2	10	127.7	4.0
11	3	124.3	1	132.0	4	126.2	
12	1	121.0	1	134.0	2	127.5	
13	2	125.0	1	123.0	3	124.3	
14	1	118.0	-	-	1	118.0	
15	-	-	2	124.5	2	124.5	
16	5	128.0	1	126.0	6	127.7	5.9
Total	41		26		67		

Table C-10.--Monthly mean weights of pregnant fur seals collected pelagically by the United States off Washington in 1967

	Jan	uary	F	ebruary	Janu	uary-Feb	ruary
Age		Mean		Mean		Mean	Standard
	Seals	weight	Seals		Seals	weight	deviation
Years	Number	Kg.	Numbe	r Kg.	Number	Kg.	Kg.
5	2	26.5	2	27.5	4	27.0	
6	8	30.2	4	29.7	12	30.1	3.2
7	1	37.0	4	34.7	5	35.2	4.5
8	3	33.0	3	36.3	6	34.7	3.0
9	10	35.7	2	37.5	12	36.0	4.6
10	5	37.2	5	36.6	10	36.9	2.9
11	3	35.3	1	39.0	4	36.2	
12	1	37.0	1	45.0	2	41.0	
13	2	41.0	1	40.0	3	40.7	
14	1	34.0	-	-	1	34.0	
15	-	-	2	37.0	2	37.0	
16	5	42.4	1	39.0	6	41.8	4.6
Total	41		26		67		

Table C-ll.--Monthly mean lengths of nonpregnant female seals collected pelagically by the United States off Washington in 1967

	Jan	uary	Fe	bruary	January-February			
Age		Mean		Mean		Mean	Standard	
	Seals	length	Seals	length	Seals	length	deviation	
Years	Number	Cm.	Numbe	r Cm.	Number	Cm.	Cm.	
1	3	72.7	3	71.7	6	72.2	3.4	
2	2	82.5	1	79.0	3	81.3		
3	4	99.5	6	97.0	10	98.0	4.4	
4	5	110.4	4	112.0	9	111.1	5.4	
5	4	114.7	1	118.0	5	115.4	2.7	
6	6	117.2	2	123.0	8	118.6	5.7	
7	2	121.0	-	-	2	121.0		
8	1	120.0	-	-	l	120.0		
10	1	131.0	-	-	1	131.0		
12	l	129.0	-	-	1	129.0		
15	l	132.0	-	-	1	132.0		
17	2	127.0	-	-	2	127.0		
20	-	-	1	133.0	I	133.0		
22		-	1	130.0	1	130.0		
Total	32		19		51		_	

Table C-12.--Monthly mean weights of nonpregnant female seals collected pelagically by the United States off Washington in 1967

	Janı	ary	Feb	ruary	Janua	ary-Febr	ruary
Age		Mean		Mean		Mean	Standard
	Seals	weight	Seals	weight		weight	deviation
Years	Number	Kg.	Number	Kg.	Numbe	r Kg.	Kg.
1	3	6.8	3	7.0	6	6.9	0.2
2	2	10.2	1	10.5	3	10.3	
3	4	17.0	6	16.0	10	16.4	2.7
4	5	22.4	4	25.0	9	23.6	2.1
5	4	27.2	1	28.0	5	27.4	3.3
6	6	28.3	2	31.0	8	29.0	3.7
7	2	28.5	-	-	2	28.5	
8	1	30.0	-	-	1	30.0	
10	1	40.0	-	-	1	40.0	
12	1	38.0	-	-	1	38.0	
15	1	36.0	-	-	1	36.0	
17	2	39.5	-	-	2	39.5	
20	-	-	1	53.0	1	53.0	
22		-	1	47.0	1	47.0	
Total	32		19		51		

Table C-13.--Monthly mean lengths of male seals collected pelagically by the United States off Washington in 1967

	Janu	ıary	Februa	ry	Janu	ary-Feb	ruary
Age		Mean		Mean		Mean	Standard
	Seals	length	Seals	length	Seals	length	deviation
Years	Number	Cm.	Number	Cm.	Numbe	r Cm.	Cm.
1	2	74.0	4	77.7	6	76.5	5.2
2	3	96.3	2	93.5	5	95.2	1.9
3	1	105.0	-	-	1	105.0	
4	1	110.0		-	_1	110.0	
Total	7		6		13		

Table C-14.--Monthly mean weights of male seals collected pelagically by the United States off Washington in 1967

	Janı	uary	Febru	ary	January-February		
Age		Mean		Mean		Mean	Standard
	Seals	weight	Seals	weight	Seals	weight	deviation
Years	Number	Kg.	Number	Kg.	Numbe	r Kg.	Kg.
1	2	8.5	4	8.6	6	8.6	1.6
2	3	16.2	2	14.5	5	15.5	1.3
3	1	22.0	-	-	1	22.0	
4	1	19.0		-	1	19.0	
Total	7		6		13		

Table C-15.--Monthly mean lengths and weights of fur seal fetuses collected pelagically by the United States off Washington in 1967

-		Male		Fe	male	
		Mean	Mean		Mean	Mean
Period	Fetuses	length	weight	Fetuses	length	weight
	Number	Cm.	Kg.	Number	Cm.	Kg.
1-10 Jan.	4	13.1	0.1	1	17.0	0.1
11-20 "	10	15.7	0.1	11	16.0	0.1
21-30 "	6	22.2	0.3	9	21.4	0.3
1-10 Feb.	8	24.3	0.4	16	23.8	0.4
11-20 "		-	-	1	27.5	0.6
Total	28			38		

Table C-16.--Reproductive condition of female seals collected pelagically by the United States off Washington in 1967

		Primiparous Multiparous						
Age	Nulliparous	Nonpregnant	Preg		Nonpregnant Pregnant			Total
Years	Number	Number	Number	Percent	Number	Number	Percent	Number
10010	1141111111111	114411001			Tturrbor	- Italii bel	1 01 0 0 110	110311501
				Jan	uary			
1	3	_	-		-		_	3
2	2	_	_	_	_	_	_	2
3	4	_	_	_	_	_	_	4
4	5	_	_	_	_	_	_	5
5	4	-	1	100.0	_	1	100.0	6
6	6	_	2	100.0	_	6	100.0	14
7	_	1	_	-	1	1	50.0	3
8	_	1	_	_	-	3	100.0	4
9	_	_	_	_	_	10	100.0	10
10	_	_	_	_	1	5	83.3	6
11	_	_	_	_	_	3	100.0	3
12	_	_	_	_	1	1	50.0	2
13	_	_	_	_	_	2	100.0	2
14	_	_	_	_	_	1	100.0	1
15	_	_	_	_	1	_	-	1
16	_	_	_	_	_	5	100.0	5
17	_	_	_	_	2	_	-	2
Total	24	2	3		6	38		73
Percent				60.0			86.4	
				Feb	ruary			
1	3	-	-	-	-	-	-	3
2	1	-	•		-	-	-	1
3	6	-	-	-	-	-	-	6
4	4	-	-	-	-	-	-	4
5	1	•	2	100.0	-	-	-	3
6	1	1	-	-	-	4	100.0	6
7	-	-	-	-	-	4	100.0	4
8	-	-	-	-	-	3	100.0	3
9	-	-	-	-	-	2	100.0	2
10	-	-	-	-	-	5	100.0	5
11	-	-	-	-	-	1	100.0	1
12	-	-	-	-	-	1	100.0	1
13	-	-	-	-	-	1	100.0	1
15	-	-	-	-		2	100.0	2
16	-	-	-	-	-	1	100.0	1
20	-	-	-	-	1	-	-	1
22	-	-	-	-	1	-	-	1
Total	16	1	2		2	24		45
Percent				66.7			92.3	

Table C-17.--Pregnancy rates of female seals collected pelagically by the United States off Washington, by month, in 1967

							Combined data	
Age	January			February			Wash. 1967	1958-67 pelagic collections
	Seals	als Pregnant		Seals	Pregnant		Pregnant	Pregnant
	Number	Number	Percent	Number	Number	Percent	Percent	Percent
3	4	0	0	6	0	0	0	0.4
4	5	0	0	4	0	0	0	3.1
5	6	2	33.3	3	2	66.7	44.4	38.5
6	14	8	57.1	6	4	66.7	60.0	72.7
7	3	1	33.3	4	4	100.0	71.4	81.1
8	4	3	75.0	3	3	100.0	85.7	86.9
9	10	10	100.0	2 5	2	100.0	100.0	90.3
10	6	5	83.3	5	5	100.0	90.9	89.8
11	3	3	100.0	1	1	100.0	100.0	90.1
12	2	1	50.0	1	1	100.0	66.7	88.2
13	2	2	100.0	1	1	100.0	100.0	87.7
14	1	1	100.0	-	-	-	100.0	83.5
15	1	0	0	2	2	100.0	66.7	81.8
16	5	5	100.0	1	1	100.0	100.0	79.1
17	2	0	0	-	-	-	_	67.5
18	-	-	-	-		_	_	68.5
19	_	_	-		-	-	-	54.9
20	-	-	-	1	0	0	0	45.6
21	-	-	-	-	-	-	-	64.0
22	-	-	-	1	0 -	0	0	40.0

MS #1942

As the Nation's principal conservation agency, the Department of the Interior has basic responsibilities for water, fish, wildlife, mineral, land, park, and recreational resources. Indian and Territorial affairs are other major concerns of America's "Department of Natural Resources."

The Department works to assure the wisest choice in managing all our resources so each will make its full contribution to a better United States -- now and in the future.

UNITED STATES
DEPARTMENT OF THE INTERIOR
U.S. FISH AND WILDLIFE SERVICE
BUREAU OF COMMERCIAL FISHERIES
WASHINGTON, D.C. 20240

OFFICIAL BUSINESS

Return this sheet to above address, if you do NOT wish to receive this material ____, or if change of address is needed ____ (indicate change including ZIP Code).

POSTAGE AND FEES PAID U.S. DEPARTMENT OF THE INTERIOR