Lecture 12 - Earthquake Response of Inelastic Systems

CE 225

Prof DeJong

UC Berkeley

October 7, 2025

IDEALIZED INELASTIC RESPONSE

ELASTIC - PLASTIC RESPONSE

EQUATION OF MOTION

Define: z(t) = "elastic portion" of u(t)

$$U(x) = \text{heaviside function:} \qquad \begin{cases} x > 0 \to u(x) = 1 \\ x < 0 \to u(x) = 0 \end{cases}$$

$$\longrightarrow \begin{cases} \dot{u} > 0 \text{ and } (z - u_y) > 0 \rightarrow \dot{z}(t) = 0 \\ \dot{u} < 0 \text{ and } (-z - u_y) > 0 \rightarrow \dot{z}(t) = 0 \\ \text{Otherwise } \dot{z}(t) = \dot{u}(t) = \text{elastic deformation.} \end{cases}$$

ELASTIC - PLASTIC RESPONSE

EXAMPLE RESULT #1

ELASTIC - PLASTIC RESPONSE

EXAMPLE RESULT #2

Figure 7.4.2 Response of elastoplastic system with $T_n = 0.5$ sec, $\zeta = 0$, and $\overline{f_y} = 0.125$ to El Centro ground motion: (a) deformation; (b) resisting force and acceleration; (c) time intervals of yielding; (d) force–deformation relation.

All structures are designed for damage in the Maximum Considered Earthquake (MCE) event!
How much can we reduce the design yield strength f_y based on the ductility μ ?

Define "Normalized yield strength":

Also, define "yield strength reduction factor":

For design: Take
$$f_{So}$$
 and divide by $R_y \to \left[f_y = \frac{f_{So}}{R_y} \right] =$ "design strength" \to Then find $u_m \to$ Is it ok?

EXAMPLE RESPONSE

Figure 7.4.3 Deformation response and yielding of four systems due to El Centro ground motion; $T_n = 0.5 \sec, \zeta = 5\%$; and $\overline{f_y} = 1, 0.5, 0.25, \text{ and } 0.125$.

EXAMPLE RESPONSE

Figure 7.4.5 Ductility demand for elastoplastic system due to El Centro ground motion; $\zeta = 5\%$ and $\overline{f_y} = 1, 0.5, 0.25$, and 0.125, or $R_y = 1, 2, 4$, and 8.

ALTERNATIVELY

Specify ductility, $\mu \to {
m find}$ required design strength, f_y

Figure 7.7.1 Normalized strength $\overline{f_y}$ of elastoplastic systems as a function of natural vibration period T_n for $\mu=1,1.5,2,4$, and 8; $\zeta=5\%$; El Centro ground motion.

AITERNATIVELY

Can also plot yield acceleration response spectra for different values of ductility:

Define: $A_y = \omega_n^2 D_y$

Figure 7.5.2 Constant-ductility response spectrum for elastoplastic systems and El Centro ground motion; $\mu = 1, 1.5, 2, 4$, and 8; $\zeta = 5\%$.

Figure 7.5.3 Constant-ductility response spectrum for elastoplastic systems and El Centro ground motion; $\mu = 1, 1.5, 2, 4$, and 8; $\zeta = 5\%$.

ENERGY DISSIPATION BY YIELDING

DERIVATION

At time t:

Kinetic Energy
$$=E_k(t)=rac{1}{2}m(\dot{u}(t))^2$$
 Strain Energy $=E_S(t)=rac{1}{2}k(z(t))^2=rac{1}{2}k\left(rac{f_S(t)}{k}
ight)^2=rac{1}{2k}(f_S(t))^2$

Up to time t:

Cumulative Viscous Dissipated Energy =

Cumulative Yield Dissipated Energy =

ENERGY DISSIPATION BY YIELDING

EXAMPLE RESPONSE

Figure 7.9.1 Time variation of energy dissipated by viscous damping and yielding, and of kinetic plus strain energy; (a) linear system, $T_n=0.5$ sec, $\zeta=5\%$; (b) elastoplastic system, $T_n=0.5$ sec, $\zeta=5\%$, $\overline{f}_y=0.25$.