

CHAPTER 1

1.1 OVERVIEW

The project (Intelligent Admission: The future of university decision making with machine learning) to build a machine learning model that can predict In recent years, the use of machine learning in the admissions process for universities has become an increasingly popular topic. With the vast amounts of data that universities collect on applicants, machine learning algorithms have the potential to analyse this data and make more informed decisions about which students to admit. This approach, known as intelligent admissions, has the potential to improve the fairness, efficiency, and effectiveness of the admissions process.

By using machine learning algorithms, universities can identify patterns and trends in data that might not be immediately apparent to human admissions officers. This can help to eliminate biases that might exist in the current admissions process and allow universities to consider a wider range of factors when making decisions about which applicants to admit.

1.2 PURPOSE

The purpose of this project is to develop a machine learning model the purpose of the "Intelligent Admissions: The Future of University Decision Making with Machine Learning" project is to explore thepotential benefits of using machine learning algorithms in the admissions process for universities. The project aims to build a machine learning model that can analyze the vast amounts of data collected by universities on applicants and make more informed decisions about which students to admit.

The project seeks to address some of the limitations of the current admissions process by eliminating biases that might exist and allowing universities to consider a wider range of factors when making decisions. about admissions. Additionally, the project aims to improve the efficiency and effectiveness of the admissions process by automating certain aspects of the process, reducing the time and resources needed to make admissions decisions.

- Import needed tools
- · All needed tools added successfully

Result 2

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 400 entries, 0 to 399
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype			
0	Serial No.	400 non-null	int64			
1	GRE Score	400 non-null	int64			
2	TOEFL Score	400 non-null	int64			
3	University Rating	400 non-null	int64			
4	SOP	400 non-null	float64			
5	LOR	400 non-null	float64			
6	CGPA	400 non-null	float64			
7	Research	400 non-null	int64			
8	Chance of Admit	400 non-null	float64			
dtypes: $float64(4)$, $int64(5)$						

dtypes: float64(4), int64(5) memory usage: 28.2 KB

Result 3

Serial No. False
GRE Score False
TOEFL Score False
University Rating False
SOP False
LOR False
CGPA False
Research False
Chance of Admit False
dtype: bool

Result 4

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 400 entries, 0 to 399
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Serial No.	400 non-null	int64
1	GRE Score	400 non-null	int64
2	TOEFL Score	400 non-null	int64
3	University Rating	400 non-null	int64
4	SOP	400 non-null	float64
5	LOR	400 non-null	float64
6	CGPA	400 non-null	float64
7	Research	400 non-null	int64
8	Chance of Admit	400 non-null	float64

dtypes: float64(4), int64(5)

memory usage: 28.2 KB

	Serial No.	GRE Score	TOEFL Score	Universit y Rating	SOP	LOR	CGPA	Research	Chance of Admit
coun t	400.0000 00	400.0000 00	400.0000 00	400.0000 00	400.0000 00	400.0000 00	400.0000	400.0000 00	400.0000
mea n	200.5000	316.8075 00	107.4100 00	3.087500	3.400000	3.452500	8.598925	0.547500	0.724350
std	115.6143 01	11.47364 6	6.069514	1.143728	1.006869	0.898478	0.596317	0.498362	0.142609
min	1.000000	290.0000	92.00000	1.000000	1.000000	1.000000	6.800000	0.000000	0.340000
25%	100.7500 00	308.0000 00	103.0000	2.000000	2.500000	3.000000	8.170000	0.000000	0.640000
50%	200.5000	317.0000 00	107.0000	3.000000	3.500000	3.500000	8.610000	1.000000	0.730000
75%	300.2500 00	325.0000 00	112.0000 00	4.000000	4.000000	4.000000	9.062500	1.000000	0.830000
max	400.0000 00	340.0000 00	120.0000	5.000000	5.000000	5.000000	9.920000	1.000000	0.970000

<Axes: xlabel='GRE Score', ylabel='Density'>

<seaborn.axisgrid.PairGrid at 0x1394b9b94b0>

Result10

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 400 entries, 0 to 399
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Serial No.	400 non-null	int64
1	GRE Score	400 non-null	int64
2	TOEFL Score	400 non-null	int64
3	University Rating	400 non-null	int64
4	SOP	400 non-null	float64
5	LOR	400 non-null	float64
6	CGPA	400 non-null	float64
7	Research	400 non-null	int64
8	Chance of Admit	400 non-null	float64

dtypes: float64(4), int64(5)

memory usage: 28.2 KB

Result 12

```
, 118.
array([[ 1. , 337.
                                        4.5 ,
                                                4.5 ,
                                                         9.651,
                               , ...,
       [ 2.
              , 324.
                      , 107.
                                        4.
                                                 4.5 ,
                                                         8.87],
              , 316.
          3.
                      , 104.
                                        3.
                                                 3.5 ,
       [
                                                         8. ],
       [398.
              , 330.
                     , 116.
                                        5.
                                                 4.5 ,
                                                         9.451,
                               , ...,
                                        3.5 ,
              , 312.
                     , 103.
                                                 4.,
       [399.
                                                         8.781,
                               , ...,
       [400.
             , 333. , 117.
                                        5. ,
                                                 4. ,
                                                         9.66]])
                               , ...,
```

```
array([False,
                True,
                        True,
                                True,
                                        True,
                                                True,
                                                        True,
                                                                True,
                                                                        True,
         True,
                True,
                        True,
                                True,
                                        True,
                                                True,
                                                        True,
                                                                True,
                                                                        True,
                True,
                                                True,
       False,
                        True,
                                True,
                                        True,
                                                        True,
                                                                True,
                                                                        True,
         True,
                True,
                        True,
                                        True, False,
                                                        True,
                                                                True, False,
                                True,
         True, False,
                        True,
                                True,
                                        True,
                                                True,
                                                        True,
                                                                True,
                        True,
                                        True,
                                                True,
                                                                True,
         True,
                True,
                                True,
                                                        True,
                                                                        True,
         True,
                                        True,
                                                True,
                True,
                        True,
                                True,
                                                        True,
                                                                True,
                                                                        True,
                                                                True,
         True,
                True,
                        True,
                                True,
                                        True,
                                                True,
                                                        True,
                                                                        True,
         True,
                True,
                        True,
                                True,
                                        True,
                                                True,
                                                        True,
                                                                True,
                                                                        True,
         True, False,
                        True,
                                True,
                                        True,
                                                True,
                                                        True,
                                                                True,
                                                                        True,
                                                        True,
                                                                        True,
         True,
                True,
                        True,
                                True,
                                        True,
                                                True,
                                                                True,
                True,
         True,
                        True,
                                True,
                                        True,
                                                True,
                                                        True,
                                                                True,
                                                                        True,
         True,
                True,
                        True,
                                True,
                                        True,
                                                True,
                                                        True,
                                                                True,
                                                                        True,
         True,
                True,
                        True])
```

Result 15

Model: "sequential"

Layer (type)	Output Shape	Param #
dense (Dense)	(None, 7)	56
dense_1 (Dense)	(None, 7)	56
dense_2 (Dense)	(None, 1)	8
======================================		

Total params: 120 Trainable params: 120 Non-trainable params: 0

Result 16

```
Epoch 1/100
accuracy: 0.0821
Epoch 2/100
accuracy: 0.0821
Epoch 3/100
14/14 [=======
     accuracy: 0.0821
Epoch 4/100
accuracy: 0.0821
Epoch 5/100
accuracy: 0.0821
Epoch 6/100
accuracy: 0.0821
Epoch 7/100
accuracy: 0.0821
Epoch 8/100
accuracy: 0.0821
Epoch 9/100
accuracy: 0.0821
```

```
9/9 [=======] - 1s 6ms/step
[[-98.857574]
[-107.67336]
 [ -94.33377 ]
 [ -79.77212 ]
 [ -71.00769 ]
 [ -72.63707 ]
 [-113.770065]
 [ -76.36096 ]
 [-104.20984]
 [ -95.82141 ]
 [ -74.685486]
 [ -92.32373 ]
 [-105.89253]
 [ -72.50631 ]
 [-112.265015]
 [-118.16605]
```

Accuracy score: 88.333333 Recall score: 96.296296 ROC score: 56.481481

[[2 10] [4 104]]

Result 19

CLASSIFICATION REPORT

	precision	recall	f1-score	support
False True	0.33 0.91	0.17 0.96	0.22 0.94	12 108
accuracy macro avg weighted avg	0.62 0.85	0.56 0.88	0.88 0.58 0.87	120 120 120

