Reasoning, Games, Action and Rationality

Lecture 2

ESSLLI'08, Hamburg

Eric Pacuit

Olivier Roy

Stanford University ai.stanford.edu/~epacuit

University of Groningen

philos.rug.nl/~epacuit

August 11, 2008

Plan for Today

- ▶ Logic for Knowledge, beliefs and preferences in games.
- ▶ Expectation 1: Common knowledge of rationality

Logics, logic and logic

- ► Logic
- ▶ is
- great.

break

Expectation 1: Rationality and common belief of rationality

▶ What happens if all players are rational, believe that all players are rational, believe that all players believe that (...)?

Expectation 1: Rationality and common belief of rationality

▶ What happens if all players are rational, believe that all players are rational, believe that all players believe that (...)?

 "Classical" assumption about game-theoretic analysis. See e.g. Myerson (1991).

	Α	В
а	1, 2	0, 1
b	0, 1	1, 0

	Α	В
а	1, 2	0, 1
b	0, 1	1, 0

▶ B is a bad strategy for Bob.

	Α	В
а	1, 2	0, 1
b	0, 1	1, 0

- ▶ B is a bad strategy for Bob.
- ▶ It is *never* rational for him to choose B.

	Α	В
а	1, 2	0, 1
b	0, 1	1, 0

	Α	В
а	1, 2	0, 1
b	0, 1	1, 0

	Α	В
а	1, 2	0, 1
b	0, 1	1, 0

ightharpoonup A type t_B of Bob would be rational in choosing B iff:

$$EV_{t_B}(B) \geq EV_{t_B}(A)$$

	Α	В
а	1, 2	0, 1
b	0, 1	1, 0

$$egin{aligned} v_{Bob}(aB)\lambda_{Bob}(t_{Bob})(a) + v_{Bob}(bB)\lambda_{Bob}(t_{Bob})(b) &\geq \ v_{Bob}(aA)\lambda_{Bob}(t_{Bob})(a) + v_{Bob}(bA)\lambda_{Bob}(t_{Bob})(b) \end{aligned}$$

	Α	В
а	1, 2	0, 1
b	0, 1	1, 0

$$1\lambda_{Bob}(t_{Bob})(a) + 0\lambda_{Bob}(t_{Bob})(b) \geq 2\lambda_{Bob}(t_{Bob})(a) + 1\lambda_{Bob}(t_{Bob})(b)$$

	Α	В
а	1, 2	0, 1
b	0, 1	1, 0

$$\lambda_{Bob}(t_{Bob})(a) \geq 2\lambda_{Bob}(t_b)(a) + \lambda_{Bob}(t_{Bob})(b)$$

	Α	В
а	1, 2	0, 1
b	0, 1	1, 0

 \blacktriangleright A type t_B of Bob would be rational in choosing B iff:

$$0 \ge \lambda_{Bob}(t_{Bob})(a) + \lambda_{Bob}(t_{Bob})(b)$$

	Α	В
а	1, 2	0, 1
b	0, 1	1, 0

 \blacktriangleright A type t_B of Bob would be rational in choosing B iff:

$$0 \ge \lambda_{Bob}(t_{Bob})(a) + \lambda_{Bob}(t_{Bob})(b)$$

But
$$\lambda_{Bob}(t_{Bob})(a) + \lambda_{Bob}(t_{Bob})(b) = 0!$$

	Α	В
а	1, 2	0, 1
b	0, 1	1, 0

▶ Bob never plays **B** at state (σ, t) if he is rational at that state.

	Α	В
а	1, 2	0, 1
b	0, 1	1, 0

- ▶ Bob never plays **B** at state (σ, t) if he is rational at that state.
- But then if Ann's type at that state believes that Bob is rational,

	Α	В
а	1, 2	0, 1
b	0, 1	1, 0

- ▶ Bob never plays **B** at state (σ, t) if he is rational at that state.
- But then if Ann's type at that state believes that Bob is rational, that type must assign probability 1 to Bob playing A.

	Α	В
а	1, 2	0, 1
b	0, 1	1, 0

- ▶ Bob never plays **B** at state (σ, t) if he is rational at that state.
- But then if Ann's type at that state believes that Bob is rational, that type must assign probability 1 to Bob playing A.
- ► Given this belief, **a** is her only rational strategy.

	Α	В
а	1, 2	0, 1
b	0, 1	1, 0

▶ If Ann and Bob are rational, and Ann believes that Bob is rational at state (σ, t) ,

	Α	В
а	1, 2	0, 1
b	0, 1	1, 0

▶ If Ann and Bob are rational, and Ann believes that Bob is rational at state (σ, t) , then $\sigma = aA$.

	Α	В
а	1, 2	0, 1
b	0, 1	1, 0

- ▶ If Ann and Bob are rational, and Ann believes that Bob is rational at state (σ, t) , then $\sigma = aA$.
- ► This strategy profile is the only one that survives *iterated elimination of strictly dominated strategies*.

Strictly dominated strategies

Definition

A strategy s_i is *strictly dominated* by another strategy s_i' iff for all combinations of choices of the other players σ_{-i} :

$$v_i(s_i, \sigma_{-i}) < v_i(s'_i, \sigma_{-i})$$

1. Start with a game;

- 1. Start with a game;
- 2. Eliminate all strictly dominated strategies;

- 1. Start with a game;
- 2. Eliminate all strictly dominated strategies;
- 3. Look at the reduced game;

- 1. Start with a game;
- 2. Eliminate all strictly dominated strategies;
- 3. Look at the reduced game;
- 4. Eliminate all strictly dominated strategies here;

- 1. Start with a game;
- 2. Eliminate all strictly dominated strategies;
- 3. Look at the reduced game;
- 4. Eliminate all strictly dominated strategies here;
- 5. Repeat 3 and 4 until you don't eliminate anything.

- 1. Start with a game;
- 2. Eliminate all strictly dominated strategies;
- 3. Look at the reduced game;
- 4. Eliminate all strictly dominated strategies here;
- 5. Repeat 3 and 4 until you don't eliminate anything.

	Α	В
а	1, 2	0, 1
b	0, 1	1, 0

- 1. Start with a game;
- 2. Eliminate all strictly dominated strategies;
- 3. Look at the reduced game;
- 4. Eliminate all strictly dominated strategies here;
- 5. Repeat 3 and 4 until you don't eliminate anything.

	Α
а	1, 2
b	0, 1

- 1. Start with a game;
- 2. Eliminate all strictly dominated strategies;
- 3. Look at the reduced game;
- 4. Eliminate all strictly dominated strategies here;
- 5. Repeat 3 and 4 until you don't eliminate anything.

	Α
а	1, 2

Common knowledge of rational and elimination of strictly dominated strategies

▶ If Ann and Bob are rational, and Ann believes that Bob is rational at state (σ, t) , then $\sigma = aA$.

Common knowledge of rational and elimination of strictly dominated strategies

- ▶ If Ann and Bob are rational, and Ann believes that Bob is rational at state (σ, t) , then $\sigma = aA$.
- ► For this game we need rationality and only one level of higher-order information to conclude that aA will be played.

Common knowledge of rational and elimination of strictly dominated strategies

- ▶ If Ann and Bob are rational, and Ann believes that Bob is rational at state (σ, t) , then $\sigma = aA$.
- ► For this game we need rationality and only one level of higher-order information to conclude that aA will be played. But in the general case:

Theorem

For any state (σ, t) of a type structure for an arbitrary finite game \mathbb{G} , if all players are rational and it is common belief that all players are rational at (σ, t) , then σ is a iteratively non-dominated strategy profile.

A. Brandenburger and E. Denkel. *Rationalizability and correlated equilibria. Econometrica*, 55:13911402, 1987.

▶ If [such and such expectations] at state (σ, t) , then [such and such *solution concept*] is played at that state.

- ▶ If [such and such expectations] at state (σ, t) , then [such and such *solution concept*] is played at that state.
- Solution concepts: proposal as to what is rational in a game. (traditionally)

- ▶ If [such and such expectations] at state (σ, t) , then [such and such *solution concept*] is played at that state.
- Solution concepts: proposal as to what is rational in a game. (traditionally)
- ▶ What about the converse?

- ▶ If [such and such expectations] at state (σ, t) , then [such and such *solution concept*] is played at that state.
- Solution concepts: proposal as to what is rational in a game. (traditionally)
- What about the converse?
 - If [such and such *solution concept*] then one can build a state in a model such that [such and such expectations] hold.

J. van Benthem. Rational. Rational dynamic and epistemic logic in games. In S. Vannucci, editor, Logic, Game Theory and Social Choice III, 1923. University of Siena, department of political economy, 2003...

- J. van Benthem. Rational. *Rational dynamic and epistemic logic in games*. In S. Vannucci, editor, Logic, *Game Theory and Social Choice III*, 1923. University of Siena, department of political economy, 2003..
 - ► Recover the *dynamic* aspect of elimination of strictly dominated strategies.
 - ▶ Understand how common knowledge of rationality arises.

► Some restrictions:

- Some restrictions:
 - 1. Consider only hard information (knowledge).

- Some restrictions:
 - 1. Consider only hard information (knowledge).
 - 2. Work with full models:
 - ▶ 1 to 1 correspondence between the profiles and the states.

- Some restrictions:
 - 1. Consider only hard information (knowledge).
 - 2. Work with full models:
 - ▶ 1 to 1 correspondence between the profiles and the states.
 - $ightharpoonup \sigma_i(w) = \sigma_i(w')$ if and only if $w \sim_i w'$.

Full model: an example

	Α	В
а	1, 2	0, 1
b	0, 1	1, 0

Full model: an example

	Α	В
а	1, 2	0, 1
b	0, 1	1, 0

▶ van Benthem's proposal: look at what happens when the players start to publicly announce that they are rational.

van Benthem's proposal: look at what happens when the players start to publicly announce that they are rational.

van Benthem's proposal: look at what happens when the players start to publicly announce that they are rational.

After announcing that everybody is rational

van Benthem's proposal: look at what happens when the players start to publicly announce that they are rational.

aA

After announcing once more that everybody is rational.

► Again, here we only needed two announcements to reach the state where aA is played.

► Again, here we only needed two announcements to reach the state where aA is played. In general:

Theorem

- 1. $\sigma_i(w)$ is a iteratively non-dominated strategy for all i.
- 2. w is in the submodel which remains after any number of successive announcement of rationality.

Theorem

- 1. $\sigma_i(w)$ is a iteratively non-dominated strategy for all i.
- 2. w is in the submodel which remains after any number of successive announcement of rationality.
- How to reach common knowledge.

Theorem

- 1. $\sigma_i(w)$ is a iteratively non-dominated strategy for all i.
- 2. w is in the submodel which remains after any number of successive announcement of rationality.
- How to reach common knowledge.
- This is an if and only if.

Theorem

- 1. $\sigma_i(w)$ is a iteratively non-dominated strategy for all i.
- 2. w is in the submodel which remains after any number of successive announcement of rationality.
- How to reach common knowledge.
- ► This is an *if and only if*. Why?
 - Full models?

Theorem

- 1. $\sigma_i(w)$ is a iteratively non-dominated strategy for all i.
- 2. w is in the submodel which remains after any number of successive announcement of rationality.
- How to reach common knowledge.
- ► This is an *if and only if*. Why?
 - Full models?
- ▶ What happens in general?

Tomorrow

- ► Hard knowledge and Nash equilibrium.
- ▶ Prior beliefs, correlated beliefs and Nash equilibrium.