

Basic Electrical Technology

[ELE 1051]

SINGLE PHASE AC CIRCUITS

L19 – Power in AC circuits

Topics covered...

Impedance, phasor & Power Diagram

Concept of power factor and its significance

Need for power factor improvement

A THE REAL PROPERTY OF THE PARTY OF THE PART

Power associated in RL load

For RL load:

Impedance diagram

Phasor diagram

Power diagram

$$S = P + jQ$$

Where,

P = Active Power (W)

Q = Reactive Power (var)

$$S = VI$$

$$P = VI \cos \emptyset$$

$$Q = VI \sin \emptyset$$

No constitution of the second

Power associated in RL load

For RC load:

Impedance diagram

Phasor diagram

Power diagram

$$S = P - jQ$$

Where,

S = Apparent Power (VA)

P = Active Power (W)

Q = Reactive Power (var)

$$S = VI$$

$$P = VI \cos \emptyset$$

$$Q = VI \sin \emptyset$$

$Power Factor = \frac{Active Power P in watts}{Apparent Power S in voltamperes}$

$$\cos\theta = \frac{P}{S} = \frac{P}{VI}$$

For an impedance Z,

$$\cos \theta = \frac{IR}{V} = \frac{IR}{IZ} = \frac{resistance}{impedance}$$

- Power factor is lagging when the current lags the supply voltage
- Power factor is leading when the current leads the supply voltage
- For a resistive load, power factor is Unity

Disadvantages of Low Power Factor

- 1) Draws more reactive power
- 2) For supplying a certain amount of active power (consumed), the apparent power to be supplied increased
- 3) Cost of supply increases
- 4) Voltage drop occurs in the vicinity of consumer
- Increased transmission losses
- Hence bulk consumers are advised to maintain the power factor close to unity by power utilities.

Remedial Measures

- Most of the industrial loads are inductive in nature
- Reactive power demand of Inductive loads can be compensated with capacitive loads
- Hence it is possible to localise reactive power requirement by connecting parallel capacitors across the load

Power Triangle

- Practically, loads are in connected parallel
- Majority of the loads are inductive in nature

$$S_{total} = P_{total} + jQ_{total}$$

Power Factor Improvement

- Connect capacitor parallel to the load
- Energy stored by the capacitor provides the required reactive power by the load

Calculation of capacitor value

- Calculate Q_c needed to improve power factor to $cos \emptyset_{new}$
- Calculate $X_C = \frac{V^2}{Q_C}$ & $C = \frac{X_C}{2\pi f}$

Power Factor Improvement

Since most of the loads are inductive in nature, a capacitor connected in parallel to the inductive load improves the power factor

Determination of Capacitor Value:

- $\circ \phi_T$ is the over all power angle
- \circ ϕ_F is the final power angle after connecting the capacitor across the load

$$\circ$$
 $S_T = P_T/Cos\phi_T \& S_F = P_T/Cos\phi_F$

•
$$Q_T = (P_T/Cos\phi_T) * Sin \phi_T$$

•
$$Q_F = (P_T/Cos\phi_F) * Sin \phi_F$$

•
$$Q_C = (Q_T - Q_F) = P_T(Tan \phi_T - Tan \phi_F)$$

$$\circ$$
 $X_C = V^2/Q_C$

Illustration I

A single-phase motor takes 8.3 A at a power factor of 0.866 lagging when connected to a 230 V, 50 Hz supply. Capacitance bank is now connected in parallel with the motor to raise the power factor to unity. Determine the capacitance value

Ans: 57. 4 μF

Illustration 2

A single-phase load of 5 kW operates at a power factor of 0.6 lagging. It is proposed to improve this power factor to 0.95 lagging by connecting a capacitor across the load. Calculate the kvar rating of the capacitor

Ans: 5.02 kvar

Summary

Impedance diagram

Power diagram

- Power in AC circuit is given by, S = VI
- For any load with impedance Z,
 - Active Power (watt), $P = VI \cos \theta = I^2 Z \cos \theta = I^2 R$
 - Reactive Power (var), $Q = VI \sin \theta = I^2 Z \sin \theta = I^2 X$
 - Apparent Power (VA), $S = VI = I^2Z$
- Power Factor = $\frac{Active\ Power}{Apparent\ Power} = \frac{P}{S} = \frac{R}{Z} = \cos\theta$

A STATE OF THE STA

Summary

Low power factor loads must be avoided

- Capacitor bank connected parallel to the load serves as the source of reactive power for the load
 - Improves load power factor
 - Reduces transmission and distribution losses