

Introduction to LLMs

≥ DEFINITIONS

Generative Al Al systems that can produce realistic content (text, image, etc.)

Large Language Models (LLMs)

Large neural networks trained at internet scale to estimate the probability of sequences of words

Ex: GPT, FLAN-T5, LLaMA, PaLM, BLOOM (transformers with billions of parameters)

Abilities (and computing resources needed) tend to rise with the number of parameters

USE CASES

- Standard NLP tasks (classification, summarization, etc.)
- Content generation
- Reasoning (Q&A, planning, coding, etc.)

In-context learning Specifying the task to perform directly in the prompt

One-Shot Label this review:

Label this review: **Amazing product!** Very high quality! Sentiment: Sentiment: Positive

Label this review: **Amazing product!** Sentiment:

Include only a few examples (typically five). Consider fine-tuning if many examples are needed.

Few-Shot

Label this review: Very high quality! Sentiment: Positive

Label this review: I don't really like it Sentiment: Negative

Label this review: **Amazing product!**

→ TRANSFORMERS

- Can scale efficiently to use multi-core GPUs
- Can process input data in parallel
- Pay attention to all other words when processing a word

Transformers' strength lies in understanding the **context** and **relevance** of all words in a sentence

Token Word or sub-word The basic unit processed by transformers

Encoder Processes input sequence to generate a vector representation (or embedding) for each token

Decoder Processes input tokens to produce new tokens

Embedding layer Maps each token to a trainable vector

Positional encoding vector

Added to the token embedding vector to keep track of the token's position

Self-Attention Computes the importance of each word in the input sequence to all other words in the sequence

> TYPES OF LLMS

Encoder only = Autoencoding model

Ex: BERT, RoBERTa

These are not generative models.

PRE-TRAINING OBJECTIVE To predict tokens masked in a sentence (= Masked Language Modeling)

OUTPUT Encoded representation of the text **USE CASE(S)** Sentence classification (e.g., NER)

Decoder only = Autoregressive model

Ex: GPT, BLOOM

PRE-TRAINING OBJECTIVE To predict the next token based on the previous sequence of tokens (= Causal Language Modeling)

оитрит Next token

USE CASES Text generation

Encoder-Decoder = Seq-to-seq model

Ex: T5, BART

Consecutive span of corrupted tokens added to the vocabulary

PRE-TRAINING OBJECTIVE Vary from model to model (e.g., Span corruption like T5)

OUTPUT Sentinel token + predicted tokens **USE CASES** Translation, Q&A, summarization

CONFIGURATION SETTINGS

Parameters to set at **inference time**

Max new tokens Maximum number of tokens generated during completion

Decoding strategy

1 Greedy Decoding The word/token with the highest probability is selected from the final probability distribution (prone to repetition)

2 Random Sampling The model chooses an output word at random using the probability distribution to weigh the selection (could be too creative)

TECHNIQUES TO CONTROL RANDOM SAMPLING

- **Top K** The next token is drawn from the **k** tokens with the highest probabilities
- **Top P** The next token is drawn from the tokens with the highest probabilities, whose combined probabilities exceed **p**

Temperature Influence the shape of the probability distribution through a scaling factor in the softmax layer

