```
6.1) CSE 250A - Homework 6
a) P(a,b|c,d) = P(a,b,c,d) Baye's Rule
       P(a, b, c, d) =
       p(d/a,b,c).P(c/a,b).P(b/a).P(a) = Chain Rule
       causal chain
       P(dlb,c).P(cla,b).P(bla).P(a)
       P(c,d)= \( \super \partial P(a,b,c,d) =
       EEP(dla, b, c). P(cla, b). P(bla). P(a) = Chain Rule
          causal chain
       EEP(dlb,c).P(cla,b).P(bla).P(a)
       P(a,b|c,d)=P(d|b,c).P(c|a,b).P(b|a).P(a)
                    SEP(d/b,c).P(c/a,b).P(bla).P(a)
     b) P(a/c,d) = \( \bar{P}(a,b/c,d) =
       EP(d|b,c). P(c|a,b). P(b|a). P(a)
       ΣΣ P(d) b', c). P(c [a, b'). P(b')a). P(a)
       P(b|c,d) = \sum_{\alpha} P(\alpha,b|c,d) =
       IP(d/b,c).P(c/a,b).P(b/a).P(a)
       E, E P(d | b, c) · P(c) a', b) · P(b | a') · P(a')
    c) P(C=c+, D=d+)=
       I EP(a, b, C=c+, D=d+) = From part a
       Σξρ(D=d+ |b, C=c+). P(C=c+ |a,b). P(b |a). P(a)
       C=至log(P(C=c+, D=d+))
```

L = [Log ([[P(D=d+ | b, C=c+) P(C=c+ | a, b) . P(b|a). P(a))

 $P(Y=y, X=x, Z_{2}=1) P(X_{2}=1, Z_{2}=1) = P(X=x, Z_{2}=1) P(Z_{2}=1)$ P(Y=y, X=x) P(X=x) P(Y=y, X=x) P(X=x) $P(X=x) P(X=y, X=x) P(X_{2}=1, Z_{2}=1) P(X=x) = P(X=x, Z_{2}=1) P(X=x)$

a)
$$P(Y=1|X) = \sum_{z \in S_{1}, y} P(Y=1, z|X)$$

Compute $P(Y=1, z|X) = P(Y=1|z) \cdot P(z|X)$

Note that
$$P(Y=1|Z) = \begin{cases} 1 & \text{if } Z_{2} = 1 & \text{for any } z \\ 0 & \text{if } Z_{2} = 0 & \text{for all } z \end{cases}$$

$$P(Y=1|Z) \cdot P(z|X) = \prod_{z=1}^{m} P(z_{2}|X_{2})$$
Substitute this back into $P(Y=1|X)$

$$P(Y=1|X) = \sum_{z \in S_{1}, y} P(Y=1, z|X) = \sum_{z \in S_{1}, y} P(Y=1, z|X) = \sum_{z \in S_{1}, y} P(Y=1, z|X) = \sum_{z \in S_{1}, y} P(Z_{2}|X_{2}) = 0$$
Note that
$$P(Z_{2}=1|X_{2}=0) = 0$$

$$P(Z_{2}=1|X_{2}=0) = P_{2}$$
This also implies that
$$P(Z_{2}=0|X_{2}=0) = 1$$

$$P(Z_{2}=1|X_{2}=1) = P_{2}$$

$$\sum_{z \in S_{1}, y} \prod_{z \in S_{1}} P(Z_{2}=1|X_{2})^{x_{2}} \cdot P(Z_{2}=0|X_{2})^{-x_{2}} = \sum_{z \in S_{1}, y} \prod_{z \in S_{1}} P(X_{2}-1|X_{2})^{-x_{2}} = \sum_{z \in S_{1}, y} \prod_{z \in S_{1}} P(X_{2}-1|X_{2})^{-x_{2}}$$
Note: for the cases where Z has Q then $Z_{2}=1$, the product term for each Z such that $Z_{2}=0$ becomes Z , since $Z_{2}=1$ is Z .

Thus, for the sum, we can simplify it to

only consider cases where Z has at least one Zi=1.

$$P(Y=1|X) = \sum_{\substack{z \in \{0,13^n \text{ at least one } z_1=1}}^{n} \frac{n}{1!} \left(\left(p_{2}^{x_2} \right) \cdot \left(1-p_{2} \right)^{1-x_2} \right) = \sum_{\substack{z \in \{0,13^n \text{ at least one } z_1=1}}^{n} \frac{n}{2!} \left(\left(p_{2}^{x_2} \right) \cdot \left(1-p_{2}^{x_2} \right)^{1-x_2} \right) = \sum_{\substack{z \in \{0,13^n \text{ at least one } z_1=1}}^{n} \frac{n}{2!} \left(\left(p_{2}^{x_2} \right) \cdot \left(1-p_{2}^{x_2} \right)^{1-x_2} \right) = \sum_{\substack{z \in \{0,13^n \text{ at least one } z_1=1}}^{n} \frac{n}{2!} \left(\left(p_{2}^{x_2} \right) \cdot \left(1-p_{2}^{x_2} \right)^{1-x_2} \right) = \sum_{\substack{z \in \{0,13^n \text{ at least one } z_1=1}}^{n} \frac{n}{2!} \left(\left(p_{2}^{x_2} \right) \cdot \left(1-p_{2}^{x_2} \right)^{1-x_2} \right) = \sum_{\substack{z \in \{0,13^n \text{ at least one } z_1=1}}^{n} \frac{n}{2!} \left(\left(p_{2}^{x_2} \right) \cdot \left(1-p_{2}^{x_2} \right)^{1-x_2} \right) = \sum_{\substack{z \in \{0,13^n \text{ at least one } z_1=1}}^{n} \frac{n}{2!} \left(\left(p_{2}^{x_2} \right) \cdot \left(1-p_{2}^{x_2} \right)^{1-x_2} \right) = \sum_{\substack{z \in \{0,13^n \text{ at least one } z_1=1}}^{n} \frac{n}{2!} \left(\left(p_{2}^{x_2} \right) \cdot \left(1-p_{2}^{x_2} \right)^{1-x_2} \right) = \sum_{\substack{z \in \{0,13^n \text{ at least one } z_1=1}}^{n} \frac{n}{2!} \left(\left(p_{2}^{x_2} \right) \cdot \left(1-p_{2}^{x_2} \right)^{1-x_2} \right) = \sum_{\substack{z \in \{0,13^n \text{ at least one } z_1=1}}^{n} \frac{n}{2!} \left(\left(p_{2}^{x_2} \right) \cdot \left(1-p_{2}^{x_2} \right)^{1-x_2} \right) = \sum_{\substack{z \in \{0,13^n \text{ at least one } z_1=1}}^{n} \frac{n}{2!} \left(\left(p_{2}^{x_2} \right) \cdot \left(1-p_{2}^{x_2} \right)^{1-x_2} \right) = \sum_{\substack{z \in \{0,13^n \text{ at least one } z_1=1}}^{n} \frac{n}{2!} \left(\left(p_{2}^{x_2} \right) \cdot \left(1-p_{2}^{x_2} \right)^{1-x_2} \right) = \sum_{\substack{z \in \{0,13^n \text{ at least one } z_1=1}}^{n} \frac{n}{2!} \left(\left(p_{2}^{x_2} \right) \cdot \left(1-p_{2}^{x_2} \right)^{1-x_2} \right) = \sum_{\substack{z \in \{0,13^n \text{ at least one } z_1=1}}^{n} \frac{n}{2!} \left(\left(p_{2}^{x_2} \right) \cdot \left(1-p_{2}^{x_2} \right)^{1-x_2} \right) = \sum_{\substack{z \in \{0,13^n \text{ at least one } z_1=1}}^{n} \frac{n}{2!} \left(\left(p_{2}^{x_2} \right) \cdot \left(1-p_{2}^{x_2} \right)^{1-x_2} \right) = \sum_{\substack{z \in \{0,13^n \text{ at least one } z_1=1}}^{n} \frac{n}{2!} \left(\left(p_{2}^{x_2} \right) \cdot \left(1-p_{2}^{x_2} \right)^{1-x_2} \right) = \sum_{\substack{z \in \{0,13^n \text{ at least one } z_1=1}}^{n} \frac{n}{2!} \left(\left(p_{2}^{x_2} \right) \cdot \left(1-p_{2}^{x_2} \right)^{1-x_2} \right) = \sum_{\substack{z \in \{0,13^n \text{ at least one } z_1=1}}^{n} \frac{n}{2!} \left(\left(p_{2}^{x_2} \right) \cdot \left(1-p_{2}^{x_2} \right)^{1-x_2} \right) = \sum_{\substack{z \in \{0,13^n \text{ at$$

This is effectively a noisy-OR implementation.

b) $P(Z_{i}=1, X_{i}=1|X=x, Y=y)=$ $P(X=x, Y=y|Z_{i}=1, X_{i}=1) \cdot P(Z_{i}=1|X_{i}=1) \leftarrow rule$ P(X=x, Y=y)

(ompute $P(X=x,Y=y|Z_2=1,X_2=1)$)

Recall from the extended belief network that Z_2 is the intermediary between X_2 and Y. Also recall that $P(Z_2=1|X_2=1)=P_2$. Thus, $Z_2=P$ implies that $(X_2=1,S_0)$ we can $S_1=1$ implies that $(X_2=1,S_0)$ in $(X_2=1,Y_2=1)=P(X=x,Y=y|Z_2=1,X_2=1)=P(X=x,Y=y|X_2=1)=P(Y=y|X=x)+noisy-OR$

For $P(Z_2=1|X_2=1)$, we are given that $P(Z_2=1|X_2=1)=P_2$

Regarding the de nominator (next page),

P(X=x, Y=y)= \(\sum_{z\in \text{p(z)}} \sin \text{P(X=x, Y=y | Z). P(Z)}

Recall from the extended belief network's structure and from part a that $P(X=x, Y=y|Z) = \frac{\pi}{2} P(Z_2|X_2)$

and

 $P(z) = \frac{1}{1-1} (p_2^{X_2} \cdot (1-p_2)^{1-X_2})$

Thus, $P(X=x,Y=y)=\frac{\sum_{z \in \{0,1\}^n} P(X=x,Y=y|Z) \cdot P(Z) =}{\sum_{z \in \{0,1\}^n} \frac{1}{\sum_{z \in \{0,1\}$

Putting these all together, we get $P(Z_2=1, X_2=1|X=x, Y=y)=$ $P(X=x, Y=y|Z_2=1, X_2=1) \cdot P(Z_2=1|X_2=1)=$ P(X=x, Y=y)

 $P(Y=y|X=x), P_2$ $1-\frac{2}{1-1}(1-P_2^{\times 2})$

Regarding P(Y=y|X=x), note that if $X_2=1$, it implies that Y=1 and $X_2=1$ based on the definitions given in this problem. Thus, the event that X=x and Y=y can only occur when $y \cdot x_2 = 1$.

This shows that $P(Z_2=1, X_2=1|X=x, Y=y) = \underbrace{y \cdot X_2 \cdot P_2}_{1-\frac{1}{2}} (1-P_2)^{X_2}$

c) From part a, recall that $Z_2=1$ implies that $X_2=1$. From the problem statement, $P(Z_2=1|X_2=1)=P_2$, but since $Z_2=1$ implies that $X_2=1$, we can simply compute that $P(X_2=1)=P_2$

The special case of the general formula from lecture is

Our data set is {X(t), y(t) 3,T.
Thus, we have

6.3)
$$a) f'(x) = \frac{d}{dx}$$

$$cosh(x) d$$

a)
$$f'(x) = \frac{1}{4x} \log(\cosh(x)) =$$

$$\frac{1}{\cosh(x)} \cdot \frac{1}{dx} (\cosh(x)) =$$

$$\frac{1}{\cosh(x)} \cdot \frac{1}{dx} (\cosh(x)) =$$

$$\frac{1}{\cosh(x)} \cdot \frac{1}{dx} (\cosh(x)) =$$

$$\frac{\sinh(x)}{\cosh(x)} = 0$$
 when $x = 0$ because

$$\frac{\sinh(x)}{\cosh(x)}|_{x=0} =$$

$$f''(x) = \frac{d}{dx} \left(\frac{\sinh(x)}{\cosh(x)} \right) =$$

$$\frac{\cosh^2(x) - \sinh^2(x)}{\cosh^2(x)} =$$

This implies that
$$f''(x) > 0$$
 for all values of x.

By the second derivative
$$f''(x) > 0$$
 and $f'(x) = 0$ when $x = 0$, this implies that $x = 0$ is the minimum

b) f''(x) = 1 from part a, $\cosh^2(x)$

Note that $cosh(x) \ge 1$ for all x. This means that $cosh^2(x) \ge 1$ for all x too.

Because $cosh^2(x)$ is in the denominator, this means that $f''(x) \le 1$ for all x. Thus, $f''(x) \le 1$ for all x.

c) $Q = (x, y) = log(cosh(y)) + \frac{sinh(y)}{cosh(y)}, (x-y) + \frac{1}{2}, (x-y)^2$

a)
i)
$$Q(x,x) = f(x)$$

$$Q(x,x) = f(x) + f'(x) \cdot (x-x) + \frac{1}{2} \cdot (x-x)^{2} = f(x) + f'(x) \cdot 0 + \frac{1}{2} \cdot 0^{2} = f(x) + 0 + 0 = f(x)$$
Thus $Q(x,x) = f(x)$.

Thus Q(X,X) = f(X).

iz) Q(x,y) = f(x)

First, let's solve parts of the integral: $f(x) = f(y) + \int_{y}^{x} du \cdot [f'(y) + \int_{y}^{u} dv \cdot f''(v)] =$ $f(y) + \int_{y}^{x} du \cdot f'(y) + \int_{y}^{x} \int_{y}^{u} dv \cdot f''(v) =$ $f(y) + [f'(y) \cdot u]_{u=y}^{u=x} + \int_{y}^{x} \int_{y}^{u} f''(v) \cdot dv =$ $f(y) + (x-y) \cdot f'(y) + \int_{y}^{x} \int_{y}^{u} f''(v) \cdot dv$

We'll come back to this in a bit.

Recall that $Q(x,y) = f(y) + f'(y) (x-y) + \frac{1}{2} (x-y)^2$

Notice that this is equal to the first 2 parts of the solution for f(x)

f(x) = f(y) + f'(y) · (x-y) + Symy" f"(v) · dv -> $f(x) - \int_{y}^{x} \int_{y}^{u} f''(v) \cdot dv = f(y) + f'(y) \cdot (x - y)$

Consider Q(x,y) ≥ f(x). Rewrite as Q(x,y) - f(x) 20

Solve for Q(x,y) - f(x) on the next page.

Q(x,y)-f(x)= $f(y)+f'(y)\cdot(x-y)+\frac{1}{2}\cdot(x-y)^{2}-f(x)=$ $f(x)-\int_{y}^{x}\int_{y}^{y}f''(v)\cdot dv+\frac{1}{2}\cdot(x-y)^{2}-f(x)=$ $\frac{1}{2}\cdot(x-y)^{2}-\int_{y}^{x}\int_{y}^{y}f'(v)\cdot dv$

Let's analyze this.

From part b, we know that f'(x) = 1 for all X. This implies that

 $S_y^{u}f''(v)\cdot dv \leq S_y^{u}\cdot dv = u-y \rightarrow$

 $\int_{y}^{y} \int_{y}^{u} f''(v) \cdot dv \leq \int_{y}^{y} \int_{y}^{u} \int_{y}^{u}$

So, plugging this back into Q(x,y)-f(x) Q(x,y)-f(x) = C Because this is $\leq \frac{1}{2}(x-y)^2$ $\frac{1}{2}(x-y)^2 - \frac{1}{2}(x-y)^2 = 0$

So, this implies that $Q(x,y)-f(x)\geq 0$ and that $Q(x,y)\geq f(x)$