```
In [1]: import pandas as pd
       import numpy as np
In [2]: df=pd.read csv(r"C:\Users\lenovo\Downloads\train v9rqX0R.csv")
       df.head()
Out[2]:
          FDA15
                           9.30
                                      Low Fat
                                                                 249.8092
                                                                               OUT049
                                                                                                     1999
        0
                                                            Dairy
                                                 0.016047
                                                                                                            Medium
               DRC01
                                                0.019278 Soft Drinks
                                                                               OUT018
                                                                                                     2009
        1
                           5.92
                                       Regular
                                                                  48.2692
                                                                                                            Medium
        2
                FDN15
                          17.50
                                       Low Fat
                                                 0.016760
                                                            Meat
                                                                  141.6180
                                                                               OUT049
                                                                                                     1999
                                                                                                            Medium
                                                         Fruits and
                FDX07
                                       Regular
                                                0.000000
                                                                 182.0950
                                                                               OUT010
        3
                          19.20
                                                                                                     1998
                                                                                                              NaN
                                                        Vegetables
                           8.93
                                                0.000000
                                                                                                              High
        4
               NCD19
                                       Low Fat
                                                        Household
                                                                  53.8614
                                                                               OUT013
                                                                                                     1987
In [3]:
       df.isnull().sum().nlargest()
Out[3]: Outlet Size
                          2410
       Item Weight
                          1463
       Item Identifier
                            0
       Item Fat Content
                            0
```

Item_Visibility

dtype: int64

0

```
In [4]: df.dtypes
Out[4]: Item_Identifier
                                      object
        Item Weight
                                     float64
        Item Fat Content
                                      object
        Item Visibility
                                     float64
                                      object
        Item_Type
        Item MRP
                                     float64
        Outlet Identifier
                                      object
        Outlet_Establishment_Year
                                       int64
        Outlet Size
                                      object
        Outlet Location Type
                                      object
        Outlet Type
                                      object
        Item Outlet Sales
                                     float64
        dtype: object
In [5]: mode=df["Outlet_Size"].mode()
        mode[0]
        df["Outlet_Size"].replace(np.nan,mode[0],inplace=True)
In [6]: mean1=df["Item_Weight"].mean()
        df["Item Weight"].replace(np.nan,mean1,inplace=True)
In [7]: df.shape
```

Out[7]: (8523, 12)

```
In [8]: df.isnull().sum()
 Out[8]: Item_Identifier
                                      0
         Item_Weight
                                      0
         Item Fat Content
         Item Visibility
         Item_Type
         Item MRP
         Outlet Identifier
         Outlet Establishment Year
         Outlet Size
         Outlet Location Type
         Outlet Type
         Item_Outlet_Sales
                                      0
         dtype: int64
 In [9]: print(df["Item_Fat_Content"].unique())
         ['Low Fat' 'Regular' 'low fat' 'LF' 'reg']
In [10]: df["Item_Fat_Content"].replace(("low Fat","LF"),"Low Fat",inplace=True)
In [11]: df["Item_Fat_Content"].replace("reg","Regular",inplace=True)
```

Out[12]: Item Identifier Item Weight Item Fat Content Item Visibility Item Type Item MRP Outlet Establishment Year Outlet Size Outlet **Outlet Identifier OUT010 OUT013 OUT017 OUT018 OUT019 OUT027 OUT035 OUT045 OUT046 OUT049** In [13]: df.groupby("Outlet Location Type").count() Out[13]: Item Identifier Item Weight Item Fat Content Item Visibility Item Type Item MRP Outlet Identifier Outlet Establishment Yea Outlet_Location_Type Tier 1 Tier 2 Tier 3

In [12]: df.groupby("Outlet Identifier").count()

```
Out[14]:
                   Item_Weight
                                         4
                                                    4
                                                            4
                                                                     4
                                                                                                     4
              4.555
                            4
                                                                                 4
                                                                                                              4
              4.590
                            5
                                         5
                                                    5
                                                            5
                                                                     5
                                                                                 5
                                                                                                     5
                                                                                                              5
              4.610
                            7
                                         7
                                                    7
                                                            7
                                                                     7
                                                                                                     7
                                                                                                              7
              4.615
                            4
                                         4
                                                                                                              4
                                                    5
              4.635
                            5
                                         5
                                                            5
                                                                     5
                                                                                                     5
                                                                                                              5
                ...
             21.000
                            6
                                         6
                                                    6
                                                            6
                                                                     6
                                                                                                     6
                                                                                                              6
                                                                                 6
             21.100
                           17
                                        17
                                                   17
                                                            17
                                                                    17
                                                                                17
                                                                                                    17
                                                                                                             17
             21.200
                            5
                                         5
                                                    5
                                                            5
                                                                     5
                                                                                 5
                                                                                                     5
                                                                                                              5
             21.250
                                                                    24
                                                                                24
                           24
                                        24
                                                   24
                                                            24
                                                                                                    24
                                                                                                             24
             21.350
                            7
                                         7
                                                    7
                                                            7
                                                                                 7
                                                                                                     7
                                                                                                              7
                                                                    7
        416 rows × 11 columns
In [15]: a=0
        b=0
        for i in range (len(df["Item_Fat_Content"])):
            if (df["Item_Fat_Content"][i]=="Low Fat"):
               a=a+(df["Item_Weight"][i])
            else:
               b=b+(df["Item_Weight"][i])
        print("low fat",a)
        print("regular fat",b)
        low fat 69884.34150495697
        regular fat 39701.368399433115
```

In [14]: | df.groupby("Item_Weight").count()

```
In [16]: df.groupby("Item_Fat_Content")["Item_Weight"].sum()
```

Out[16]: Item_Fat_Content

Low Fat 69884.341505 Regular 38285.979334 low fat 1415.389065

Name: Item_Weight, dtype: float64

In [17]: df.describe()

Out[17]:

	Item_Weight	Item_Visibility	Item_MRP	Outlet_Establishment_Year	Item_Outlet_Sales
count	8523.000000	8523.000000	8523.000000	8523.000000	8523.000000
mean	12.857645	0.066132	140.992782	1997.831867	2181.288914
std	4.226124	0.051598	62.275067	8.371760	1706.499616
min	4.555000	0.000000	31.290000	1985.000000	33.290000
25%	9.310000	0.026989	93.826500	1987.000000	834.247400
50%	12.857645	0.053931	143.012800	1999.000000	1794.331000
75%	16.000000	0.094585	185.643700	2004.000000	3101.296400
max	21.350000	0.328391	266.888400	2009.000000	13086.964800

In [18]: obj=df.groupby("Outlet_Location_Type")
obj

Out[18]: <pandas.core.groupby.generic.DataFrameGroupBy object at 0x000001B9CCC83FD0>

```
In [19]: | obj.groups
Out[19]: {'Tier 1': [0, 2, 10, 11, 12, 13, 15, 17, 23, 24, 29, 34, 35, 40, 42, 48, 49, 50, 57, 58, 59, 63, 69, 70, 74, 75, 76, 7
         7, 80, 81, 83, 88, 89, 91, 95, 96, 99, 102, 108, 110, 112, 115, 126, 131, 135, 143, 145, 154, 163, 164, 178, 182, 186,
         187, 189, 190, 191, 195, 196, 197, 204, 206, 208, 220, 222, 225, 227, 234, 236, 248, 250, 252, 255, 270, 274, 284, 289,
         295, 297, 299, 301, 308, 311, 312, 321, 324, 334, 336, 344, 345, 346, 347, 348, 353, 354, 355, 356, 358, 361, 363,
         ...], 'Tier 2': [8, 9, 19, 22, 25, 26, 33, 46, 47, 53, 54, 56, 61, 66, 67, 68, 72, 73, 78, 79, 85, 86, 92, 93, 94, 97,
         100, 107, 111, 114, 116, 117, 118, 120, 121, 123, 124, 125, 127, 129, 137, 138, 140, 141, 142, 144, 146, 147, 148, 149,
         150, 157, 158, 165, 166, 170, 171, 176, 179, 181, 188, 192, 200, 201, 202, 207, 210, 211, 212, 213, 219, 221, 223, 228,
         232, 233, 240, 241, 242, 243, 244, 245, 247, 249, 254, 256, 258, 259, 261, 262, 263, 264, 268, 273, 277, 281, 283, 285,
         288, 290, ...], 'Tier 3': [1, 3, 4, 5, 6, 7, 14, 16, 18, 20, 21, 27, 28, 30, 31, 32, 36, 37, 38, 39, 41, 43, 44, 45, 5
         1, 52, 55, 60, 62, 64, 65, 71, 82, 84, 87, 90, 98, 101, 103, 104, 105, 106, 109, 113, 119, 122, 128, 130, 132, 133, 13
         4, 136, 139, 151, 152, 153, 155, 156, 159, 160, 161, 162, 167, 168, 169, 172, 173, 174, 175, 177, 180, 183, 184, 185, 1
         93, 194, 198, 199, 203, 205, 209, 214, 215, 216, 217, 218, 224, 226, 229, 230, 231, 235, 237, 238, 239, 246, 251, 253,
         257, 260, ...]}
In [20]: for name ,group in obj:
             print(name, "contains", group.shape[0], "rows")
         Tier 1 contains 2388 rows
         Tier 2 contains 2785 rows
         Tier 3 contains 3350 rows
         obj.get group("Tier 1")["Item Weight"].sum()
```

Out[21]: 30768.186657223905

In [22]: obj.agg([np.mean,np.median,np.sum])

C:\Users\lenovo\AppData\Local\Temp\ipykernel_103352\2897686275.py:1: FutureWarning: ['Item_Identifier', 'Item_Fat_Conte nt', 'Item_Type', 'Outlet_Identifier', 'Outlet_Size', 'Outlet_Type'] did not aggregate successfully. If any error is ra ised this will raise in a future version of pandas. Drop these columns/ops to avoid this warning.

obj.agg([np.mean,np.median,np.sum])

Out[22]:

	Item_Weight		Item_Visibility		Item_MRP		Outlet_Establishment_				
	mean	median	sum	mean	median	sum	mean	median	sum	mean	median
Outlet_Location_Type											
Tier 1	12.884500	12.857645	30768.186657	0.071205	0.056450	170.038072	140.870106	143.2641	336397.8120	1995.125628	1997.0
Tier 2	12.768628	12.500000	35560.630000	0.061038	0.051766	169.990299	141.167196	143.2812	393150.6416	2004.330341	2004.0
Tier 3	12.912505	12.857645	43256.893247	0.066751	0.053906	223.614910	140.935232	142.2483	472133.0272	1994.358507	1987.0

In [23]: obj.agg(max)

Out[23]:

	Item_Identifier	Item_Weight	Item_Fat_Content	Item_Visibility	Item_Type	Item_MRP	Outlet_Identifier	Outlet_Establishment_Yea
Outlet_Location_Type								
Tier 1	NCZ54	21.35	low fat	0.328391	Starchy Foods	266.8884	OUT049	199
Tier 2	NCZ54	21.35	low fat	0.188620	Starchy Foods	266.8884	OUT045	200
Tier 3	NCZ54	21.35	low fat	0.311090	Starchy Foods	266.6884	OUT027	200
4								

```
In [24]: obj.agg(min)
Out[24]:
                                Item Identifier Item Weight Item Fat Content Item Visibility Item Type Item MRP Outlet Identifier Outlet Establishment Yea
            Outlet_Location_Type
                                                                                               Baking
                                                                     Low Fat
                                                                                       0.0
                          Tier 1
                                       DRA24
                                                      4.555
                                                                                                         32.4558
                                                                                                                        OUT019
                                                                                                                                                    198
                                                                                               Goods
                                                                                               Baking
                          Tier 2
                                       DRA12
                                                      4.555
                                                                     Low Fat
                                                                                       0.0
                                                                                                         32.0558
                                                                                                                        OUT017
                                                                                                                                                    200
                                                                                               Goods
                                                                                               Baking
                                                                                       0.0
                                                                                                         31.2900
                          Tier 3
                                       DRA12
                                                      4.555
                                                                     Low Fat
                                                                                                                        OUT010
                                                                                                                                                    198
                                                                                               Goods
                                                                                                                                                     •
In [25]: | ff=df.groupby(["Outlet Location Type", "Outlet Establishment Year"])
In [26]: ff.agg({"Outlet Size":pd.Series.mode, "Item Outlet Sales":np.mean})
Out[26]:
                                                          Outlet Size Item Outlet Sales
            Outlet_Location_Type Outlet_Establishment_Year
                          Tier 1
                                                    1985
                                                                Small
                                                                             340.329723
                                                    1997
                                                                Small
                                                                           2277.844267
                                                    1999
                                                              Medium
                                                                           2348.354635
                          Tier 2
                                                    2002
                                                              Medium
                                                                           2192.384798
                                                    2004
                                                                Small
                                                                           2438.841866
                                                    2007
                                                              Medium
                                                                           2340.675263
                          Tier 3
                                                              Medium
                                                    1985
                                                                           3694.038558
                                                    1987
                                                                High
                                                                           2298.995256
                                                             Medium
                                                    1998
                                                                             339.351662
                                                    2009
                                                              Medium
                                                                           1995.498739
```

Outlet_Location_Type	Outlet_Establishment_Year		
Tier 1	1985	139.787088	340.329723
	1997	142.057387	2277.844267
	1999	140.297699	2348.354635
Tier 2	2002	140.950246	2192.384798
	2004	143.122481	2438.841866
	2007	139.421119	2340.675263
Tier 3	1985	139.801791	3694.038558
	1987	141.425982	2298.995256
	1998	140.777594	339.351662
	2009	141.678634	1995.498739

```
In [28]: ff.get_group(("Tier 2",2002))["Outlet_Size"]
```

```
Out[28]: 8
                 Medium
         33
                 Medium
                 Medium
         46
         47
                 Medium
         56
                 Medium
                  . . .
         8483
                 Medium
         8502
                 Medium
         8508
                 Medium
         8514
                 Medium
         8519
                 Medium
         Name: Outlet_Size, Length: 929, dtype: object
```

```
In [29]: df.groupby(["Outlet_Type","Item_Type"]).agg(mean_MRP=("Item_MRP",np.mean),mean_sales=("Item_Outlet_Sales",np.mean))
```

mean_MRP mean_sales

Out[29]:

		_	_
Outlet_Type	Item_Type		
Grocery Store	Baking Goods	126.438068	292.082544
	Breads	146.452873	381.967442
	Breakfast	147.026989	412.831042
	Canned	138.080808	352.864879
	Dairy	147.166715	341.866589
Supermarket Type3	Others	106.779053	2700.928667
	Seafood	124.028286	2687.073686
	Snack Foods	144.574508	3745.168739
	Soft Drinks	123.313587	3284.938836
	Starchy Foods	143.078386	3512.190114

64 rows × 2 columns

```
In [30]: df["Item_Weight"]=df.groupby(["Item_Fat_Content","Item_Type"])["Item_Weight"].transform(lambda x:x.fillna(x.mean()))
In [31]: def filter_fun(x):
    return x["Item_Weight"].std()<3
    df_filter=df.groupby(["Item_Weight"]).filter(filter_fun)
    df_filter.shape</pre>
Out[31]: (8519, 12)
```