Homework6

Astro 715 Elijah Bernstein-Cooper

1a

The distribution of stars in our model cluster can be determined by integrating the

$$N = A \int_{0.5}^{40} \phi(m) \, dm$$

where $\phi(m)$ is the IMF, i.e., the number of stars born with mass m. We assume a salpeter IMF

$$\phi(m) = A m^{-(\Gamma - 1)} dm \Gamma = 1.3$$

And we solve for A

$$A = N / \int_{0.5}^{40} \phi(m) \, dm$$

$$A = N / \int_{0.5}^{40} m^{-(1.3-1)} \, dm$$

$$A = 5.3 \times 10^3$$

Mass	N_m
$[M_{\odot}]$	
0.5	26085
0.6	15347
8.0	9029
1.0	5312
1.3	3125
1.6	1839
2.0	1082
2.5	636
3.2	374
4.0	220
5.0	130
6.3	76
8.0	45
10.0	26
12.6	16
15.9	9
20.0	5
25.2	3
31.8	2

calculations for A below:

40.0 1

```
N_{\text{stars}} = 10^4;
\tau_{MS}[m_{]} := m^{-2.5} * 10^{10};
\phi [m] := m<sup>-(1.3+1)</sup>;
A = N_{stars} / Integrate[\phi[m], {m, 0.5, 40}];
StringForm["A = ``", A]
A = 5297.425330249122
```

1b

The half-mass luminosity is 24.80 M_{\odot} given $L_{\rm bol} = 7 \times 10^6 L_{\odot}$.

1c

To determine the color of cluster, we need to weight each color from a given mass bin by the number of stars and the luminosity of the stars in the bin.

$$\frac{F_2}{F_1} = 2.512^{\Delta m}$$

where Δm is the difference in magnitudes, B - V. Given the number of stars per mass, N(M) and the luminosity as a function of mass L(M), and the color as a function of mass [B-V](M) we can calculate the color of the cluster by

$$[B-V](M) = \frac{F_2}{F_1} \frac{L(M)}{L_{TOT}} \frac{N(M)}{N_{TOT}}$$

$$[B-V](M) = 2.512^{[B-V](M)} \frac{L(M)}{L_{TOT}} \frac{N(M)}{N_{TOT}}$$

$$[B-V]_{cluster} = \int_{0.5}^{40} 2.512^{[B-V](M)} \frac{L(M)}{L_{TOT}} \frac{N(M)}{N_{TOT}} dM$$

$$[B-V]_{cluster} = 6 \times 10^{-4} \text{ mag}$$

1d

Above shows the log of the luminosity vs. the effective temperature for EZweb models. The contours represent the number of stars in the bin, spaced logarithmically from 0.