第9章 回归分析

9.1 内容提要

9.1.1 一元线性回归

1. 一元线性回归模型

在模型 $\begin{cases} y = \mu(x) + \varepsilon \\ E(\varepsilon) = 0 \end{cases}$ 中,如果 $\mu(x)$ 是 x 的线性函数, ε 服从正态分布,则称该模型为一元线性回归模型,它具有如下的形式

$$\begin{cases} y = ax + b + \varepsilon \\ \varepsilon \sim N(0, \sigma^2) \end{cases}$$

其中 a,b,σ^2 是与 x 无关的未知参数, a,b 称为回归系数. 称 $\hat{y} = ax + b$ 为一元线性理论回归模型, 或称 $\mu(x) = E(y) = ax + b$ 为 y 关于 x 的回归函数.

2. 未知参数的估计及统计性质

(1) 最小二乘法

构造如下的偏差平方和 $Q(a,b)=\sum_{i=1}^n(y_i-(a+bx_i))^2$,最小二乘法就是选择 a,b 的估计 \hat{a} , \hat{b} 使得 $Q(\hat{a},\hat{b})=\min_{a,b}Q(a,b)$.

分别求Q(a,b)关于a,b的偏导数,并令它们等于零,计算得到a,b的估计值:

$$\begin{cases} \hat{b} = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^{n} (x_i - \overline{x})^2} = \frac{\sum_{i=1}^{n} x_i y_i - n\overline{x} \cdot \overline{y}}{\sum_{i=1}^{n} x_i^2 - n\overline{x}^2}, \\ \hat{a} = \overline{y} - \hat{b}\overline{x}, \end{cases}$$

其中 $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$, $\overline{y} = \frac{1}{n} \sum_{i=1}^{n} \overline{y}_i$. 由上式所确定的估计 \hat{a} , \hat{b} 称为回归系数a,b 的最小二乘估计,该估计方法称为最小二乘法. 若记

$$L_{xx} = \sum_{i=1}^{n} (x_i - \overline{x})^2 = \sum_{i=1}^{n} x_i^2 - n\overline{x}^2,$$

$$L_{yy} = \sum_{i=1}^{n} (y_i - \overline{y})^2 = \sum_{i=1}^{n} y_i^2 - n\overline{y}^2,$$

$$L_{xy} = \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y}) = \sum_{i=1}^{n} x_i y_i - n\overline{x} \cdot \overline{y},$$

(2) 最小二乘估计的性质

$$\hat{b} \sim N(b, \frac{\sigma^2}{l_{rr}})$$
,

 $Cov(\overline{y}, \hat{b}) = 0$ 且 \overline{y} 与 \hat{b} 相互独立,

$$\hat{a} \sim N(a, (\frac{1}{n} + \frac{\overline{x}^2}{l_{xx}})\sigma^2),$$

$$Cov(\hat{a}, \hat{b}) = -\frac{\overline{x}}{l_{yy}}\sigma^2$$
.

(3) σ^2 的无偏估计

平方和
$$S_e = \sum (y_i - \hat{y}_i^2)^2 = \sum (y_i - a - \hat{b}x_i)^2$$
 称为残差平方和或剩余平方和. $E(S_e) = (n-2)\sigma^2$,

$$\frac{S_e}{\sigma^2} \sim \chi^2(n-2)$$
, 且 $S_e 与 \overline{y}$, \hat{b} 相互独立.

由此可以得到 σ^2 的一个无偏估计量: $\hat{\sigma}^2 = \frac{S_e}{n-2}$.

3. 回归效果的显著性检验

(1) 平方和分解公式

称
$$S_T = \sum (y_i - \overline{y})^2$$
 为总偏差平方和, 称 $S_R = \sum (\hat{y}_i - \overline{y})^2$ 为回归平方和, 称 $S_e = \sum (y_i - \hat{y}_i)^2$ 为残差平方和,

且有平方和分解公式 $S_T = S_e + S_R$.

(2) 回归效果的显著性检验

F 检验法:

当原假设
$$H_0$$
为真时, $\frac{S_R}{\sigma^2} \sim \chi^2(1)$, $\frac{S_e}{\sigma^2} \sim \chi^2(n-2)$,且 S_R 与 S_e 相互独立,从而
$$F = \frac{S_R}{S_+/(n-2)} \sim F(1,n-2)$$
,

对于给定的显著性水平 α , 拒绝域为 $F = \frac{S_R}{S_a/(n-2)} \ge F_\alpha(1, n-2)$.

t 检验法:

由
$$\hat{b} \sim N(b, \frac{\sigma^2}{l_{xx}})$$
知, $\frac{\hat{b}-b}{\sigma}\sqrt{l_{xx}} \sim N(0,1)$. 又由 $\frac{S_e}{\sigma^2} \sim \chi^2(n-2)$,且 \hat{b} 与 S_e 相互独立,因此得到 $\frac{\hat{b}-b}{\sqrt{S_e/(n-2)}}\sqrt{l_{xx}} \sim t(n-2)$.

取检验统计量 $t=\frac{b}{\sqrt{S_e/(n-2)}}\sqrt{l_{xx}}$, 当原假设 H_0 为真时, $t\sim t(n-2)$. 对于给定的显著性水平 α , 拒绝域为 $|t|\geq t_{\frac{\alpha}{2}}(n-2)$.

r 检验法:

$$x$$
与 y 的相关系数 $r = \frac{l_{xy}}{\sqrt{l_{xx}l_{yy}}} = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum (x_i - \overline{x})^2 \sum (y_i - \overline{y})^2}}$,

由于 $r^2 = \frac{S_R}{S_T}$,则

$$F = \frac{S_R}{S/(n-2)} = \frac{r^2(n-2)}{1-r^2},$$

因此 F 检验的拒绝域 $F \ge F_{\alpha}(1, n-2)$ 等价于 $|r| \ge \left(\frac{n-2}{F_{\alpha}(1, n-2)} + 1\right)^{-\frac{1}{2}}$.

(3) 回归系数的置信区间

当 σ^2 未知时,回归系数 α 的置信度为 $1-\alpha$ 的置信区间为:

$$(\hat{a}\hat{-}t_{\frac{\alpha}{2}}(n-2)\sqrt{\frac{1}{n}+\frac{\overline{x}^2}{l_{xx}}}\sqrt{\frac{S_e}{n-2}},a+t_{\frac{\alpha}{2}}(n-2)\sqrt{\frac{1}{n}+\frac{\overline{x}^2}{l_{xx}}}\sqrt{\frac{S_e}{n-2}})\,.$$

当 σ^2 未知时,回归系数b的置信度为 $1-\alpha$ 的置信区间为:

$$(\hat{b} - t_{\frac{\alpha}{2}}(n-2)\frac{1}{\sqrt{l_{xx}}}\sqrt{\frac{S_e}{n-2}}, b + t_{\frac{\alpha}{2}}(n-2)\frac{1}{\sqrt{l_{xx}}}\sqrt{\frac{S_e}{n-2}}).$$

(4) 预测

对于给定的 x_0 , y_0 的置信度为 $1-\alpha$ 的置信区间为 $(\hat{y_0}-\delta(x_0),y_0+\delta(x_0))$,其中

$$\delta(x_0) = t_{\frac{\alpha}{2}}(n-2)S\sqrt{1 + \frac{1}{n} + \frac{(x_0 - \overline{x})^2}{l_{xx}}}.$$

(5) 控制

控制是预测的反问题, 即要求观察值 y 在某一区间 (y_1, y_2) 内取值时, 问应将 x 控制在什么范围内. 上述问题实际上就是要确定下列方程组的解:

$$\begin{cases} \hat{a} + \hat{b}x_1 - \delta(x_1) = y_1 \\ \hat{a} + \hat{b}x_1 + \delta(x_2) = y_2 \end{cases}.$$

9.1.2 多元线性回归

1. 多元线性回归模型

设随机变量 y 与 m $(m \ge 2)$ 个自变量 x_1, x_2, \cdots, x_m 之间存在相关关系,且有

$$\begin{cases} y = a + b_1 x_1 + b_2 x_2 + \dots + b_m x_m + \varepsilon \\ \varepsilon \sim N(0, \sigma^2) \end{cases}$$

其中 $a,b_1,b_2,\cdots,b_m,\sigma^2$ 是与 x_1,x_2,\cdots,x_m 无关的未知参数, ε 是不可观测的随机变量. 称上式为m元线性回归模型.

设有n组不同的样本观测值 $(x_{i1}, x_{i2}, \dots, x_{im}; y_i)(i = 1, 2, \dots, n)$, 令

$$\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}, \ \mathbf{X} = \begin{pmatrix} 1 & x_{11} & x_{12} & \cdots & x_{1m} \\ 1 & x_{21} & x_{22} & \cdots & x_{2m} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & x_{n2} & \cdots & x_{nm} \end{pmatrix}, \ \boldsymbol{\beta} = \begin{pmatrix} a \\ b_1 \\ \vdots \\ b_m \end{pmatrix}, \ \boldsymbol{\varepsilon} = \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{pmatrix}.$$

则回归模型可以写成矩阵形式 $\begin{cases} \mathbf{y} = \mathbf{K} \mathbf{\epsilon} \\ \mathbf{\epsilon} \mathbf{0} \cdot N \mathbf{E}, \sigma^2 \end{cases}$ n.

2. 未知参数的估计及统计性质

可以证明 β 的最小二乘估计为 $\hat{\beta}=(XX)^{-1}Xy$.

参数**β**的最小二乘估计具有如下性质 $\hat{\mathbf{\beta}}\mathbf{\beta}(\mathbf{X}\mathbf{Y}), \sigma^2$ ' ·¹).

3. 回归效果的显著性检验

(1) 检验 y 与 x_1, x_2, \dots, x_m 之间是否有线性关系, 就是要检验假设:

$$H_0: b_1 = b_2 = \cdots = b_m = 0, \iff H_1: b_i (i = 1, 2, \dots, m) \, \text{Theorem } 0.$$

(2) 在多元线性回归模型下有下列结论:

$$E(S_{e}) = (n-m-1)\sigma^{2},$$

$$\frac{S_e}{\sigma^2} \sim \chi^2(n-m-1)$$
, 且 $S_e 与 \hat{b_1}, \hat{b_2}, \dots, b_m$ 相互独立,

当原假设 H_0 为真时, $\frac{S_R}{\sigma^2} \sim \chi^2(m)$,且 S_R 与 S_e 相互独立.

(3) F 检验法

取检验统计量 $F=\frac{S_R/m}{S_e/(n-m-1)}$,当 H_0 为真时, $F\sim F(m,n-m-1)$. 因此,对于给定的显著性水平 α ,拒绝域为 $F\geq F_\alpha(m,n-m-1)$.

9.1.3 可化为线性回归的曲线回归

1. 变量替换法

许多非线性模型可通过变量替换实现线性化,常见的变换如下所示:

原模型	变换函数	变换后模型
$y = \frac{1}{a + bx}$	$u = \frac{1}{y}, \ v = x$	u = a + bv
$y = \sqrt{a + bx}$	$u=y^2, v=x$	u = a + bv
$y = a + b_1 x + \dots + b_m x^m$	$u = y$, $v_i = x^i$	$u = a + b_1 v_1 + \dots + b_m v_m$
$y = a + b \ln x$	$u = y$, $v = \ln x$	u = a + bv
$y = cx^b$	$u = \ln y$, $v = \ln x$, $a = \ln c$	u = a + bv
$y = ce^{bx}$	$u = \ln y$, $v = x$, $a = \ln c$	u = a + bv

2. 判定系数

设 $(x_i, y_i)(i=1,2,\cdots,n)$ 为一组样本,通过回归分析后建立的曲线回归方程为 $\hat{y} = f(x)$,

 $\hat{y_1}, \hat{y_2}, \dots, \hat{y_n}$ 为曲线回归方程用原始数据 x_1, x_2, \dots, x_n 算得回归值,则可以用判定系数 R^2 评价回归方程的拟合优劣程度, R^2 越接近于1,表明曲线拟合程度越好,其中判定系数为

$$R^{2} = 1 - \frac{S_{e}}{S_{T}} = 1 - \frac{\sum (y_{i} - \hat{y}_{i})^{2}}{\sum (y_{i} - \overline{y})^{2}}.$$

9.2 习题详解

1. 设 $(x_i, y_i)(i=1,2,\dots,n)$ 是一组样本, $\hat{y}_i = a + \hat{b}x_i$ 是相应的线性回归方程, 其中

$$\hat{b} = \frac{l_{xy}}{l_{xy}}$$
, $\hat{a} = \overline{y} - \hat{b}\overline{x}$, 试证下列恒等式:

(1)
$$\sum_{i=1}^{n} (y_i - \hat{y}_i) = 0;$$

(2)
$$\sum_{i=1}^{n} (y_i - \hat{y}_i) x_i = 0$$
;

(3)
$$\sum_{i=1}^{n} (y_i - \hat{y}_i)(y_i - \overline{y}) = 0$$
;

(4)
$$S_e = \sum_{i=1}^n (y_i - \hat{a} - \hat{b} \hat{x}_i)^2 = \sum_{i=1}^n y_i^2 - a \sum_{i=1}^n y_i - b \sum_{i=1}^n x_i y_i$$
.

$$\mathbf{R} \quad (1) \quad \sum_{i=1}^{n} (y_i - \hat{y}_i^2) = \sum_{i=1}^{n} (y_i - a - \hat{b}x_i) = \sum_{i=1}^{n} (y_i - \overline{y} + \hat{b}\overline{x} - bx_i)$$
$$= \sum_{i=1}^{n} y_i - n\overline{y} + \hat{b}\sum_{i=1}^{n} (\overline{x} - x_i) = 0 \; ;$$

(2)
$$\sum_{i=1}^{n} (y_{i} - \hat{y}_{i}) x_{i} = \sum_{i=1}^{n} (y_{i} - a - b\hat{x}_{i}) x_{i} = \sum_{i=1}^{n} (y_{i} - \overline{y} + b\overline{x} - bx_{i}) x_{i}$$
$$= \sum_{i=1}^{n} x_{i} y_{i} - \overline{y} \sum_{i=1}^{n} x_{i} - b \sum_{i=1}^{n} (x_{i} - \overline{x}) x_{i}$$
$$= \sum_{i=1}^{n} x_{i} y_{i} - \overline{y} \sum_{i=1}^{n} x_{i} - b \sum_{i=1}^{n} (x_{i} - \overline{x}) (x_{i} - \overline{x} + \overline{x})$$

$$= \sum_{i=1}^{n} x_{i} y_{i} - \overline{y} \sum_{i=1}^{n} x_{i} - \hat{b} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} - b^{-} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

$$= \sum_{i=1}^{n} x_{i}(y_{i} - \overline{y}) - \sum_{i=1}^{n} (x_{i} - \overline{x})(y_{i} - \overline{y}) = \overline{x} \sum_{i=1}^{n} (y_{i} - \overline{y}) = 0;$$

(3)
$$\sum_{i=1}^{n} (y_i - \hat{y}_i) (\hat{y}_i - \overline{y}) = \sum_{i=1}^{n} (y_i - y_i) y_i - \overline{y} \sum_{i=1}^{n} (y_i - y_i) = \sum_{i=1}^{n} (y_i - \hat{y}_i) (a + \hat{b}x_i)$$
$$= \hat{a} \sum_{i=1}^{n} (y_i - y_i) + \hat{b} \sum_{i=1}^{n} (y_i - y_i) x_i = 0 ;$$

(4)
$$S_e = \sum_{i=1}^n (y_i - \hat{y}_i)^2 = \sum_{i=1}^n (y_i - a - \hat{b}x_i)^2 = \sum_{i=1}^n (y_i^2 - 2\hat{a}\hat{y}_i - 2\hat{b}\hat{x}_iy_i + (a + bx_i)^2)$$

$$\begin{split} &= \sum_{i=1}^{n} y_{i}^{2} - 2\hat{a} \sum_{i=1}^{n} y_{i} - 2\hat{b} \sum_{i=1}^{n} x_{i} y_{i} + \sum_{i=1}^{n} (\overline{y} - b\overline{x} + bx_{i})^{2} \\ &= \sum_{i=1}^{n} y_{i}^{2} - 2\hat{a} \sum_{i=1}^{n} y_{i} - 2\hat{b} \sum_{i=1}^{n} x_{i} y_{i} + \sum_{i=1}^{n} \overline{y}^{2} + 2b \sum_{i=1}^{n} (x_{i} - \overline{x}) + b^{2} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} \\ &= \sum_{i=1}^{n} y_{i}^{2} - 2\hat{a} \sum_{i=1}^{n} y_{i} - 2\hat{b} \sum_{i=1}^{n} x_{i} y_{i} + \sum_{i=1}^{n} \overline{y}^{2} + b \sum_{i=1}^{n} (x_{i} - \overline{x})(y_{i} - \overline{y}) \\ &= \sum_{i=1}^{n} y_{i}^{2} - 2\hat{a} \sum_{i=1}^{n} y_{i} - \hat{b} \sum_{i=1}^{n} x_{i} y_{i} + \sum_{i=1}^{n} \overline{y}^{2} - b\overline{x} \sum_{i=1}^{n} y_{i} - b\overline{y} \sum_{i=1}^{n} x_{i} + nb\overline{x}\overline{y} \\ &= \sum_{i=1}^{n} y_{i}^{2} - \hat{a} \sum_{i=1}^{n} y_{i} - \hat{b} \sum_{i=1}^{n} x_{i} y_{i} + n\overline{y}^{2} - (a + b\overline{x}) \sum_{i=1}^{n} y_{i} - b\overline{y} \sum_{i=1}^{n} x_{i} + nb\overline{x}\overline{y} \\ &= \sum_{i=1}^{n} y_{i}^{2} - \hat{a} \sum_{i=1}^{n} y_{i} - \hat{b} \sum_{i=1}^{n} x_{i} y_{i} + n\overline{y}^{2} - \overline{y} \sum_{i=1}^{n} y_{i} + b\overline{y}(n\overline{x} - \sum_{i=1}^{n} x_{i}) \\ &= \sum_{i=1}^{n} y_{i}^{2} - \hat{a} \sum_{i=1}^{n} y_{i} - \hat{b} \sum_{i=1}^{n} x_{i} y_{i}. \end{split}$$

2. 假设回归直线过原点, 即一元线性回归模型为

$$y_i = bx_i + \varepsilon_i, i = 1, 2, \dots, n$$

 $E(\varepsilon_i) = 0, D(\varepsilon_i) = \sigma^2$, 各观测值相互独立.

- (1) 写出b的最小二乘估计,并给出 σ^2 的无偏估计;
- (2) 对给定的 x_0 ,其对应的因变量均值的估计为 \hat{y}_0 ,求 $D(\hat{y}_0)$.

$$\text{ (1)} \quad Q(b) = \sum_{i=1}^{n} (y_i - bx_i)^2, \frac{\partial Q}{\partial b} = -2\sum_{i=1}^{n} (y_i - bx_i)x_i = 0,$$

$$\Rightarrow \sum_{i=1}^{n} x_i y_i - b\sum_{i=1}^{n} x_i^2 = 0 \quad \Rightarrow \hat{b} = \frac{\sum_{i=1}^{n} x_i y_i}{\sum_{i=1}^{n} x_i^2}.$$

$$S_e = \sum_{i=1}^n (y_i - \hat{y}_i)^2, E(S_e) = (n-1)\sigma^2, \Rightarrow \hat{\sigma}^2 = \frac{S_e}{n-1} = \frac{1}{n-1} \sum_{i=1}^n (y_i - y_i)^2.$$

(2)
$$D(\hat{y}_0) = D(\hat{b} \cdot x) = x_0^2 D(b) = x_0^2 D(\frac{\sum_{i=1}^n x_i y_i}{\sum_{i=1}^n x_i^2})$$

$$= x_0^2 D(\sum_{i=1}^n \frac{x_i}{\sum_{i=1}^n x_i^2} y_i) = x_0^2 \frac{\sum_{i=1}^n x_i^2}{(\sum_{i=1}^n x_i^2)^2} D(y_i) = \frac{x_0^2 \sigma^2}{\sum_{i=1}^n x_i^2}.$$

3. 某建材实验室在做陶粒混凝土强度试验中, 考察每立方米混凝土的水泥用量 x(kg) 对 28 天后的混凝土抗压强度 y(kg/cm) 的影响, 则得如下数据

х	150	160	170	180	190	200	210	220	230	240	250	260
У	56.9	58.3	61.6	64.6	68.1	71.3	74.1	77.4	80.2	82.6	86.4	89.7

- (1) 求y对x的线性回归方程,并问:每立方米混凝土中每增加1kg水泥时,可提高的抗压强度是多少?
 - (2) 检验回归效果的显著性 ($\alpha = 0.05$);
 - (3) 求相关系数r, 并求回归系数b 的 95% 的置信区间;
 - (4) 求 $x_0 = 225(kg)$ 时, y_0 的预测值及 95% 的预测区间.

解 (1)
$$\overline{x} = 205$$
, $\overline{y} = 72.6$, $l_{xx} = 14300$, $l_{yy} = 1323.82$, $l_{xy} = 4347$. 则

$$\hat{b} = \frac{l_{xy}}{l_{xy}} = 0.304, \hat{a} = \overline{y} - b\overline{x} = 10.28, y = 10.28 + 0.304x.$$

因此,每立方米混凝土中每增加1kg水泥时,抗压强度可提高约 $0.304kg/cm^2$.

(2) F 检验法: H_0 :没有线性相关性,即b=0, H_1 :具有线性相关性,即 $b\neq 0$.

在
$$H_0$$
下, $F = \frac{(n-2)S_R}{S_a} \sim F(1,n-2)$, 取显著性水平 $\alpha = 0.05$ 时,

拒绝域为: $F \ge F_{0.05}(1, n-2)$, n=12.

计算得 $S_R = \hat{b}^2 l_{xx} = 1321.4272, S_e = l_{yy} - b^2 l_{xx} = 2.3928, F = 5522.514, F_{0.05}(1,10) = 4.96$. $F \geq F_{0.05}(1,10)$, 拒绝原假设, 即回归效果显著.

(3)
$$r = \frac{l_{xy}}{\sqrt{l_{xx}l_{yy}}} = 0.999$$
, $\hat{b} \sim N(b, \frac{\sigma^2}{l_{xx}}) \Rightarrow \frac{\hat{b} - b}{\sigma} \sqrt{l_{xx}} \sim N(0, 1)$,

$$\frac{S_e}{\sigma^2} \sim \chi^2(n-2), \Rightarrow \frac{\frac{\hat{b}-b}{\sigma}\sqrt{l_{xx}}}{\sqrt{\frac{S_e/\sigma^2}{n-2}}} = \frac{\hat{b}-b}{\sqrt{\frac{S_e}{n-2}}}\sqrt{l_{xx}} \sim t(n-2),$$

可得回归系数 b 的置信度为0.95的置信区间为:

$$(\hat{b} - t_{0.025}(10) \frac{1}{\sqrt{l_{xx}}} \sqrt{\frac{S_e}{10}}, b + t_{0.025}(10) \frac{1}{\sqrt{l_{xx}}} \sqrt{\frac{S_e}{10}}).$$

代入数值计算得回归系数b的置信度为0.95的置信区间为: (0.2949, 0.3131).

(4)
$$x_0 = 225kg$$
, $\hat{y}_0 = a + \hat{b}x_0 = 78.68$,
$$t = \frac{\hat{y}_0 - y_0}{S\sqrt{1 + \frac{1}{n} + \frac{(x_0 - \overline{x})^2}{l}}} \sim t(n - 2)$$
, $S = \sqrt{\frac{S_e}{n - 2}}$.

可得 y_0 的置信度为 95% 的置信区间为 $(\hat{y}_0 - \delta(x_0), y_0 + \delta(x_0))$,

其中
$$\delta(x_0) = t_{0.025}(n-2)\sqrt{\frac{S_e}{n-2}}\sqrt{1+\frac{1}{n}+\frac{(x_0-\overline{x})^2}{l_{xx}}}$$
.

则 y_0 的置信度为 95% 的置信区间为 (77.47,79.89).

4. 假设x是一可控变量,y是一随机变量且服从正态分布,现在不同的x值下,分别对y进行观测,得数据如下:

х	0. 25	0.37	0.44	0.55	0.60	0.62	0.68	0.70	0.73
У	2. 57	2.31	2. 12	1.92	1.75	1.71	1.60	1.51	1.53
х	0.75	0.82	0.84	0.87	0.88	0.90	0.95	1.00	
у	1.41	1.33	1.31	1. 25	1. 20	1. 19	1. 15	1.00	

- (1) 求 y 对 x 的线性回归方程, 并求 $\sigma^2 = D(y)$ 的无偏估计;
- (2) 求回归系数 a,b 的置信度为 95% 的置信区间;
- (3) 检验线性回归效果的显著性($\alpha = 0.05$);
- (4) 求 y 的置信度为 95% 的置信区间.
- (5) 为了把观测值 y 限制在区间 (1.08,1.68), 需要把 x 的值限制在什么范围之内?

$$\mathbf{\hat{R}} \quad (1) \ \hat{b} = \frac{l_{xy}}{l_{xx}}, \ \hat{a} = \overline{y} - \hat{b}\overline{x}, \Rightarrow \hat{y} = 3.0332 - 2.0698x, \ \hat{\sigma}^2 = \frac{S_e}{n-2} = 0.0019.$$

回归系数 a 的置信度为95% 的置信区间为:

$$(\hat{a} - t_{0.025}(n-2)\sqrt{\frac{1}{n} + \frac{\overline{x}^2}{l_{xx}}}\sqrt{\frac{S_e}{n-2}}, a + t_{0.025}(n-2)\sqrt{\frac{1}{n} + \frac{\overline{x}^2}{l_{xx}}}\sqrt{\frac{S_e}{n-2}}),$$

代入数值计算得(2.9671,3.1117).

由于
$$t = \frac{\hat{b} - b}{\sqrt{\frac{S_e}{n-2}}} \sqrt{l_{xx}} \sim t(n-2)$$
,回归系数 b 的置信度为 95% 的置信区间为:

$$(\hat{b} - t_{0.025}(n-2) \frac{1}{\sqrt{l_{xx}}} \sqrt{\frac{S_e}{n-2}}, b + t_{0.025}(n-2) \frac{1}{\sqrt{l_{xx}}} \sqrt{\frac{S_e}{n-2}}),$$

代入数值计算得(-2.1711, -1.9625).

(3)
$$\frac{S_e}{\sigma^2} \sim \chi^2(n-2)$$
, 当原假设为真时, 有 $\frac{S_R}{\sigma^2} \sim \chi^2(1)$, 因此有

$$F = \frac{S_R}{S_e/(n-2)} \sim F(1, n-2)$$
,

拒绝域为 $F \ge F_{0.05}(1,n-2)$, 因为 $F_{0.05}(1,15) = 4.54$, $F \ge F_{0.05}(1,n-2)$, 所以线性效果显著.

(4)
$$t = \frac{\hat{y} - y}{S\sqrt{1 + \frac{1}{n} + \frac{(x - \overline{x})^2}{l_{xx}}}} \sim t(n - 2), \ S = \sqrt{\frac{S_e}{n - 2}},$$

对于给定的自变量x,可得因变量v的置信度为95%的置信区间为:

$$(\hat{y} - \delta(x), y + \delta(x)),$$

其中

$$\hat{y} = a + \hat{b}x$$
, $\delta(x) = t_{0.025}(n-2)\sqrt{\frac{S_e}{n-2}}\sqrt{1 + \frac{1}{n} + \frac{(x-\overline{x})^2}{l_{xx}}}$,

代入数值计算得

$$\delta(x) = 0.1073\sqrt{0.7506 + (x - 0.7029)^2}$$

(5) 该问题本质上就是要确定下列方程组的解
$$\begin{cases} \hat{a} + \hat{b}x_1 - \delta(x_1) = y_1 \\ \hat{a} + \hat{b}x_2 + \delta(x_2) = y_2 \end{cases},$$

因为
$$t_{0.025}(n-2) \approx u_{0.025}$$
, $\sqrt{1 + \frac{1}{n} + \frac{(x-\overline{x})^2}{l_{xx}}} \approx 1$, 所以方程组变为

$$\begin{cases} \hat{a} + \hat{b}x_1 - u_{0.025}S = y_1 \\ \hat{a} + \hat{b}x_2 + u_{0.025}S = y_2 \end{cases}, \not\text{ \mathbb{R}^2} \begin{cases} x_1 = \frac{1}{\hat{b}}(y_1 + u_{0.025}S - \hat{a}) \\ x_2 = \frac{1}{\hat{b}}(y_2 - u_{0.025}S - \hat{a}) \end{cases},$$

代入计算得x的值应该限制在(0.7,0.9)内.

5. 在回归分析中, 常对数据进行变换:

$$\tilde{y}_i = \frac{y_i - c_1}{d_1}, \ \tilde{x}_i = \frac{x_i - c_2}{d_2}, \ i = 1, 2, \dots, n$$

其中 c_1 , c_2 , $d_1 > 0$, $d_2 > 0$ 是适当选取的常数.

- (1) 试建立由原始数据和变换后数据的最小二乘估计, 总平方和, 回归平方和以及残差平方和之间的关系;
 - (2) 证明:由原始数据和变换后数据得到的 F 检验统计量的值保持不变.

解 (1)
$$\tilde{y}_i = \frac{y_i - c_1}{d_1} \Rightarrow y_i = c_1 + d_1 \tilde{y}_i$$
, $\tilde{x}_i = \frac{x_i - c_2}{d_2} \Rightarrow x_i = c_2 + d_2 \tilde{x}_i$,
$$\tilde{y}_i - \overline{\tilde{y}} = \tilde{y}_i - \frac{1}{n} \sum_{i=1}^n \tilde{y}_i = \tilde{y}_i - \frac{1}{n} \sum_{i=1}^n \frac{y_i - c_1}{d_1} = \tilde{y}_i - \frac{1}{d_1} \left(\frac{1}{n} \sum_{i=1}^n y_i - c_1 \right) = \tilde{y}_i + \frac{c_1}{d_1} - \frac{\overline{y}}{d_1} = \frac{y_i - \overline{y}}{d_1}$$
, 同理 $\tilde{x}_i - \overline{\tilde{x}} = \frac{x_i - \overline{x}}{d}$, 则 $l_{xy} = \sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y}) = \sum_{i=1}^n d_2(\tilde{x}_i - \overline{\tilde{x}})d_1(\tilde{y}_i - \overline{\tilde{y}}) = d_1 d_2 l_{\tilde{x}\tilde{y}}$,

同理得 $l_{xx}={d_2}^2l_{\tilde{x}\tilde{x}}$, $l_{yy}={d_1}^2l_{\tilde{y}\tilde{y}}$,变换后的方程为 $\tilde{y}_i=\tilde{a}+\tilde{b}\tilde{x}_i+\varepsilon_i$,

进行最小二乘估计后
$$\hat{b} = \frac{l_{\bar{x}\bar{y}}}{l_{\bar{x}\bar{x}}} = \frac{\frac{1}{d_1 d_2} l_{xy}}{\frac{1}{d_2}^2 l_{xx}} = \frac{d_2}{d_1} l_{xx}} = \frac{d_2}{d_1} \hat{b}$$
,
$$\hat{a} = \overline{\bar{y}} - \tilde{b}\overline{\bar{x}} = \frac{1}{n} \sum_{i=1}^n \tilde{y}_i - \hat{b} \frac{1}{n} \sum_{i=1}^n \tilde{x}_i = \frac{1}{n} \sum_{i=1}^n \frac{y_i - c_1}{d_1} - \frac{d_2 \hat{b}}{d_1} \frac{1}{n} \sum_{i=1}^n \frac{x_i - c_2}{d_2}$$

$$= \frac{1}{d_1} (\overline{y} - \hat{b}\overline{x} - c_1 + \hat{b}c_2) = \frac{1}{d_1} (\hat{a} - c_1 + \hat{b}c_2) = \frac{1}{d_1} \hat{a} - \frac{1}{d_1} (c_1 - \hat{b}c_2)$$
,
$$S_R = \hat{b}^2 l_{xx} = \hat{b}^2 d_2^2 l_{\bar{x}\bar{x}} = \frac{d_1^2}{d_2^2} \hat{b}^2 d_2^2 l_{\bar{x}\bar{x}} = d_1^2 \hat{b}^2 l_{\bar{x}\bar{x}} = d_1^2 \tilde{S}_R$$
,
$$S_e = l_{yy} - \hat{b}^2 l_{xx} = d_1^2 l_{\bar{y}\bar{y}} - \hat{b}^2 d_2^2 l_{\bar{x}\bar{x}} = d_1^2 l_{\bar{y}\bar{y}} - \frac{d_1^2}{d_2^2} \hat{b}^2 d_2^2 l_{\bar{x}\bar{x}} = d_1^2 (l_{\bar{y}\bar{y}} - \hat{b}^2 l_{\bar{x}\bar{x}}) = d_1^2 \tilde{S}_e$$
,
$$S_T = S_R + S_e = d_1^2 \tilde{S}_R + d_1^2 \tilde{S}_e = d_1^2 (\tilde{S}_R + \tilde{S}_e) = d_1^2 \tilde{S}_T$$
.
$$(3) \quad \text{证明: } :: F = \frac{(n-2)S_R}{S_e} \sim F(1, n-2)$$
,

$$\therefore \tilde{F} = \frac{(n-2)\tilde{S}_R}{\tilde{S}_e} = \frac{(n-2)\frac{1}{d_1^2}S_R}{\frac{1}{d_1^2}S_e} = \frac{(n-2)S_R}{S_e} = F,$$

F 检验统计量的值保持不变.

6. 测得一组弹簧形变 x(cm) 和相应的外力 y(N) 数据如下:

х	1	1.2	1.4	1.6	1.8	2.0	2. 2	2. 4	2.8	3.0
у	3. 08	3. 76	4. 31	5. 02	5. 51	6. 25	6.74	7.40	8. 54	9. 24

由胡克定理知 y = kx,若假定 $y = kx + \varepsilon$, $\varepsilon \sim N(0, \sigma^2)$,试估计 k,并在 x = 2.6cm 处给出相应的外力 y 的 95% 预测区间.

解 由第 2 题结论得
$$\hat{k} = \frac{\sum_{i=1}^{10} x_i y_i}{\sum_{i=1}^{10} x_i^2} = 0.3245$$
, y_0 的置信度为 95% 的置信区间为:

$$(\hat{y}_0 - \delta(x_0), y_0 + \delta(x_0)),$$

其中
$$x_0 = 2.6$$
, $\hat{y}_0 = 0.8437$, $\delta(x_0) = t_{0.025}(n-2)\sqrt{\frac{S_e}{n-2}}\sqrt{1 + \frac{1}{n} + \frac{(x_0 - \overline{x})^2}{l_{xx}}} = 0.0431$,

代入计算得到 y_0 的预测区间为(0.8006,0.8868).

7. 我们知道营业税税收总额 y 与社会商品零售总额 x 有关,为能从社会商品零售总额去预测税收总额,需要了解两者之间的关系. 现收集了如下九组数据(单位:亿元)

序号	社会商品零售总额 x	营业税税收总额
1	142. 08	3. 93
2	177. 30	5. 96
3	204. 68	7. 85
4	242. 68	9. 82
5	316. 24	12. 50
6	341. 99	15. 55
7	332. 69	15. 79
8	389. 29	16. 39
9	453. 40	18. 45

- (1) 画出散点图;
- (2) 建立一元线性回归方程,并作显著性检验($\alpha = 0.05$),列出方差分析表;
- (3) 若已知某年社会商品零售额为300亿元,试给出营业税税收总额的概率为0.95的预测区间:
 - (4) 若已知回归直线过原点, 试求回归方程, 并在显著性水平 0.05 下作显著性检验.

解 (1) 图略.

(2)

回归统计	
Multiple R	0. 981069208
R Square	0. 96249679
Adjusted R Square	0. 957139189
标准误差	1. 06405519
观测值	9

	df	SS	MS	F	Significance F
回 归 分析	1	203. 4029	203. 4029	179. 6507	3. 01722E-06
残差	7	7. 925494	1. 132213		
总计	8	211. 3284			

	Coefficients	标准误差	t Stat	P-value	Lower 95%
Intercept	-2. 25822	1. 107518	-2.03899	0. 080833	-4.877080404
X Variable 1	0.048672	0.003631	13. 40338	3. 02E-06	0.040085199

$$\hat{b} = \frac{l_{xy}}{l_{xx}} = 0.0487$$
, $\hat{a} = \overline{y} - \hat{b}\overline{x} = -2.26$, $\Rightarrow \hat{y} = -2.26 + 0.0487x$,

$$F = \frac{S_R}{S_a/(n-2)} \sim F(1,n-2)$$
,拒绝域 $F \geq F_{0.05}(1,n-2)$, $F = 179.65$, $F_{0.05}(1,7) = 5.59$,

即表明回归效果显著.

(3) 给出预测区间: $(\hat{y}_0 - \delta(x_0), y_0 + \delta(x_0))$, 其中 $\hat{y}_0 = 12.35$,

$$\delta(x_0) = t_{0.025}(n-2)\sqrt{\frac{S_e}{n-2}}\sqrt{1 + \frac{1}{n} + \frac{(x_0 - \overline{x})^2}{l_{xx}}} = 2.6555,$$

则预测区间(9.688,14.999).

(4)

Multiple F	?	0. 99568
R Square		0.99138
Adjusted Square	R	0.86638
标准误差		1. 256615
观测值		9

	df	SS	MS	F	Significance F
回归分析	1	1452.8	1452.8	920.029	1. 09201E-08
残差	8	12.63265	1.579081		
总计	9	1465. 433			

	Coefficients	标准误差	t Stat	P-value	Lower 95%
Intercept	0	#N/A	#N/A	#N/A	#N/A
X Variable 1	0.041658	0. 001373	30. 33198	1. 52E-09	0. 038490601

Upper 95%	下限 95.0%	上限 95.0%
#N/A	#N/A	#N/A
0.04482469	0. 0384906	0. 04482469

$$\hat{b} = \frac{\sum\limits_{i=1}^{n} x_i y_i}{\sum\limits_{i=1}^{n} x_i^2} = 0.0417$$
,回归方程为 $\hat{y} = 0.0417x$,由上表格得知回归性显著.

8. 在林业工程中,需要知道树干的体积 y 与树干直径 x_1 和树干高度 x_2 之间的关系,下表给出了一组树干的体积,直径和高度的观测值:

序号	直径	树高	体积
1	8. 4	71	10.4
2	8. 7	66	10.4
3	8. 9	64	10.3
4	10.6	73	16.5
5	10.8	82	18.9
6	10. 9	84	19.8
7	11. 1	67	15. 7
8	11. 1	76	18.3
9	11. 2	81	22.7
10	11. 3	76	20
11	11.4	80	24.3
12	11.5	77	21.1
13	11.5	77	21.5
14	11.8	70	21.4
15	12. 1	76	19. 2
16	13	75	22.3
17	13	86	33.9
18	13. 4	87	27.5
19	13.8	72	25.8

20	13. 9	65	25	
21	14. 1	79	34. 6	
22	14. 3	81	31.8	
23	14. 6	75	36. 7	
24	16. 1	73	38. 4	
25	16. 4	78	42. 7	
26	17. 4	82	55. 5	
27	17. 6	83	55.8	
28	18	81	58. 4	
29	18. 1	81	51.6	
30	17. 1	1 81 51.1		
31	20. 7	88	77. 1	

试求 y 对 x_1 和 x_2 的回归方程,并作显著性检验.

解 设
$$y = a + b_1 x_1 + b_2 x_2 + \varepsilon$$
, 则要使 $Q(a, b_1, b_2) = \sum_{i=1}^{n} (y_i - a - b_1 x_{1i} - b_2 x_{2i})^2$ 最小, 则

$$\frac{\partial Q(a,b_1,b_2)}{\partial a} = -2\sum_{i=1}^n (y_i - a - b_1 x_{1i} - b_2 x_{2i}) = 0,$$

$$\frac{\partial Q(a,b_1,b_2)}{\partial b_1} = -2\sum_{i=1}^n (y_i - a - b_1 x_{1i} - b_2 x_{2i}) x_{1i} = 0,$$

$$\frac{\partial Q(a,b_1,b_2)}{\partial b_2} = -2\sum_{i=1}^n (y_i - a - b_1 x_{1i} - b_2 x_{2i}) x_{2i} = 0,$$

计算可得 $\hat{a}=-52.83$, $\hat{b_1}=4.48$, $\hat{b_2}=0.298$, 则 $\hat{y}=-52.83+4.48x_1+0.298x_2$,

取检验统计量
$$F = \frac{S_R/m}{S_e/(n-m-1)}$$
,

当
$$H_0$$
为真时 $F = \frac{S_R/m}{S_e/(n-m-1)} = \frac{S_R/2}{S_e/28} = \frac{14S_R}{S_e} \sim F_{0.05}(2,28)$,

拒绝域为 $F \geq F_{0.05}(2,28)$,因为 $F_{0.05}(2,28) = 3.34$, $F \geq 3.34$.即表明回归性显著.

9. 对于如下一组数据

х	2	3	4	5	6	7	8	9
у	6. 42	8. 20	9. 58	9. 50	9. 70	10.00	9. 93	9. 99
х	10	11	12	13	14	15	16	
у	10.49	10. 59	10.60	10.80	10.60	10.90	10. 76	

试分别按(1) $y = a + \frac{b}{x}$, (2) $y = ae^{\frac{b}{x}}$ 来建立 y 对 x 的回归方程, 并用判定系数 R^2 指出哪一种相关较好.

解 (1)
$$y = a + \frac{b}{x}$$
, \diamondsuit $y = u$, $\frac{1}{x} = v$, 则 $u = a + bv$, 则 $\hat{a} = 0.0823$, $\hat{b} = 0.1312$,
 $\Rightarrow \hat{y} = 0.0823 + \frac{0.1312}{x}$, $\Rightarrow R_1^2 = 1 - \frac{\sum (y_i - \hat{y}_i)^2}{\sum (y_i - \overline{y})^2}$.

(2)
$$y = ae^{\frac{b}{x}}$$
, $\Rightarrow u = \ln y$, $v = x$, $c = \ln a$, $\text{M} \hat{b} = -1.1107$, $\hat{c} = 2.4578$, $\Rightarrow \hat{a} = 11.6791$, $\Rightarrow \hat{y} = 11.6791e^{-\frac{1.1107}{x}}$, $R_2^2 = 1 - \frac{\sum (y_i - \hat{y}_i)^2}{\sum (y_i - \overline{y})^2}$.

因为 $R_1^2 < R_2^2$,所以方程(2)比方程(1)好.

10. 某研究机构对 200 北京鸭进行试验, 得到鸭的周龄 x 与平均日增重 v 的数据如下

х	1	2	3	4	5	6	7	8	9
У	21.9	47.1	61.9	70.8	72.8	66. 4	50. 3	25. 3	3.2

试求回归方程 $y = a + b_1 x + b_2 x^2$, 并检验回归效果的显著性.

解 $y=a+b_1x+b_2x^2$,令u=y, $v_1=x$, $v_2=x^2$,原方程可化为 $u=a+b_1v_1+b_2v_2$,代入数据可得 $\hat{a}=-8.3515$, $\hat{b_1}=34.8267$, $b_2=-3.7623$,则回归方程为 $\hat{v}=-8.3515+34.8267x-3.7623x^2$.

计算得到
$$R^2 = 1 - \frac{\sum (y_i - \hat{y}_i)^2}{\sum (y_i - \overline{y})^2} = 0.993743525$$
, 表明回归效果显著.