

PY-APPLE DYNAMICS 开源四定控制软件

二次开发手册

PPT VER: 2020 7 11 针对 V4.0 版本 PY-APPLE DYNAMICS 控制软件

- 完全开源
- 开发简易
- 教程完善
- 更新频繁

做国内最好的四足机器人开源软件、教程和控制器

目求

- •**第一章** 主控介绍
- •**第二章** 开发工具
- ■第三章 Py-Apple Dynamics 程序结构
- 第四章 二次开发程序架构形式
- •**第五章** 库函数调用说明和例程
- •**第六章** 不同硬件的移植

第一章 主控介绍 - 概述

- 简介

菠萝万能控制器(Py-apple Controller),是一个由灯哥开源的,基于Apache开源协议和ESP32主控芯片的低成本四足机器人控制器,控制器集成了全部四足机器人的必须硬件

•官方开源硬件

开源的版本主要有两个,一个是左图的全集成主控板,一个是右边的分立式元器件主控板。分别照顾不同的DIY需求

第一章主控介绍-硬件配置

功能项	■ 一 数
处理器	Xtensa® LX6 32-bit 双核处理器 7级流水线架构,支持高达 240 MHz 的时钟频率 448 KB 的 ROM,全集成主控板8MB RAM,分立512HB RAM
WIFI	 802.11n MCS0-7 支持 20 MHz 和 40 MHz 带宽 802.11n MCS32 (RX) 802.11n 0.4 μs 保护间隔 数据率高达 150 Mbps 接收 STBC 2×1 发射功率高达 20.5 dBm 可调节的发射功率 天线分集
蓝牙	• Class-1、Class-2 和 Class-3 发射输出功率,动态控制范围 高达 24 dB • π/4 DQPSK 和 8 DPSK 调制
陀螺仪	MPU6050 六 轴 陀 螺 仪 , 集 成 加 速 度 和 角 度 输 出 角 速 度 全 格 感 测 范 围 为 ±250 、 ±500 、 ±1000 与 ±2000°/sec (dps) 加 速 器 全 格 感 测 范 围 为 ±2g、 ±4g ±8g 与 ±16g
舵机支持	宽电压支持,支持5v-8v模拟/数字 舵机(基于PWM控制)即插即用

第二章开发工具


```
File Edit Tools Help
                      padog.py 	imes oxdot web_c.py 	imes oxdot cal.html 	imes oxdot PA_STABLIZE.py 	imes
sd
                             ort socket
                             rt machine
  ▶ = 2020707备份带原...
                      5 padog.stand()
                      6 user_leg_num="1
                     9 thr=0;L=0;R=0;Pitch=0;Roll=0;Hgt=100 #中间更量符
                    12 addr = (padog.selfadd,80)
                    13 s = socket.socket()
                    14 s.bind(addr)
   PA_STABLIZE.py
                             e True:
   PA_TROT.py
                             cl, addr = s.accept()
                             req=str(cl.recv(1024))
                             req=req.split('\\r\\n')
                             req_data=req[0].lstrip().rstrip().replace(' ','').lower()
                             if req_data.find('favicon.ico')>-1:
                                 cl.close()
```

uPyCraft

uPyCraft是一个可运行在Windows平台的MicroPython编程IDE,其界面简洁,操作便利,适合新手的学习和使用。uPyCraft IDE内置了调试、程序烧录、MicroPython固件烧录于一体,用来二次开发再好不过

uPyCraft中文操作文档:

https://dfrobot.gitbooks.io/upycraft_cn/

第三章 PY-APPLE DYNAMICS --介绍


```
padog.py
PA_ATTITUDE.py
PA_AVGFILT.py
PA_IK.py
PA_IMU.py
PA_SERVO.py
PA_STABLIZE.py
PA_TROT.py
```

Py-Apple Dynamics V4.0 版本四足机器人开发库

- 介绍

灯哥开源的菠萝动力万能控程序(Py-Apple Dynamics),集成了开发四足机器人所需要必须基础库,是一套完整的四足机器人控制软件程序。涵盖了从步态、运动学、陀螺仪、姿态控制等和四足机器人控制相关的方方面面。并且库文件全部开源,可以直接学习/移植代码

第三章 PY-APPLE DYNAMICS --库文件的作用

padog.py
PA_ATTITUDE.py
PA_AVGFILT.py
□ PA_IK.py
PA_IMU.py
PA_SERVO.py
■ PA_STABLIZE.py
□ PA_TROT.py

Py-Apple Dynamics V4.0 版本四足机器人开源开发库

库文件名	作用
padog.py	主库、功能接口
PA_ATTITUDE.py	姿态控制核心库
PA_AVGFILY.py	滤波算法库
PA_IK.py	运动学逆解库
PA_IMU.py	陀螺仪控制库
PA_SERVO.py	舵机控制库
PA_STABLIZE.py	自稳控制库
PA_TROT.py	小跑步态控制库

^{*}核心库均已PA_开头

第三章 PY-APPLE DYNAMICS 一程序架构

第四章二次开发程序结构形式


```
import _thread
   import padog
   import time
 4
 5 -def app_1():
      exec(open('web_c.py').read())
 9 -def loop():
     while True:
11
        padog.mainloop()
12
   _thread.start_new_thread(app_1, ())
   loop()
```

1. 对于需要并发运行的程序:

采取线程挂载的形式运行,如左图中的app_1()函数,采用_thread开启一个新的线程专门运行。

2. 主程序循环:

处理不需要并发的事件,并且要做为 Py-Apple Dynamics 程序的运算心跳触发即调用 padog.mainloop(),如图中的loop()函数所示

函数名称	功能	所属文件
padog.mainloop()	产生Py-Apple Dynamics 程序的运算心跳,必须包含在主循环之中	padog.py
padog.move(spd_,L_,R_)	控制狗子的运动,其中 spd_是狗的步幅,范围0-5,数字越大, 步幅越大,速度越快。 L_和R_分别可以取0,1和-1,分别控制 狗的运动方向,和是否踏步	padog.py
padog. stand()	狗子所有舵机上电并站立	padog.py
padog. e_stop()	狗子所有舵机断电	padog.py

函数名称	功能	所属文件
padog.do_connect(essi d, password)	连接wifi,其中essid是wifi名称, password是wifi密码	padog.py
padog. recover(mode)	狗子倾倒后的自恢复,mode指定恢复 方向,mode取1是向左倾倒时用, mode取2是向右倾倒时用	padog.py
padog. height(h)	设定狗子的站立高度值,h是高度,单位mm	padog.py
padog.gesture(PIT,ROL)	设定狗子俯仰角度PIT,横滚角度ROL, 用于控制姿态	padog.py

函数名称	功能	所属文件
padog.stable(key)	是否开启自稳模式,key=True开启,key=false关闭	padog.py
padog.servo_output(ca se,init,ham1,ham2,ham 3,ham4,shank1,shank2, shank3,shank4)	舵机输出函数, case是机器人构型(0是串联腿,1是并连腿), init是是否处于舵机校准模式(0不处于,1处于), ham是四条腿的大腿舵机转角, shank是四条腿的小腿舵机转角	padog.py
padog. servo_init(key)	是否开启舵机校准模式,key=0是关闭, key=1是关闭	padog.py

函数名称	功能	所属文件
PA_ATTITUDE.cal_ges(P IT,ROL,l,b,w,Hc)	姿态控制运算库,运算完成后返回足端坐标值。PIT:俯仰角,ROL:滚转角,I:机器人长度,b:机器人宽度,w:机器人脚间距。Hc:机器人当前高度	PA_ATTITUD E.py
PA_IK.ik(case,l1,l2,x1,x2,x3,x4,y1,y2,y3,y4)	运动学逆解运算库,运算完成后返回每个舵机的转动角度。case为0代表串联腿,为1代表并连腿。l1,l2是机器人大小腿长度,用于运动学计算,x1-x4,y1-y4是用于逆解的足端坐标	PA_IK.py
PA_TROT.cal_t(t,xs,xf,h,r 1,r4,r2,r3)	小跑步态足端坐标运算库, t为当前时间, xs为起始足端坐标, xf为终点足端坐标, h为抬腿高度, r1,r2,r3,r4取值可以为1或者-1, 代表曲线生成的正逆	PA_TROT.py

函数名称	功能	所属文件
PA_IMU.stab()	产生自稳IMU数据读取和运算心跳,调用默认跟随在mainloop()	PA_IMU.py
PA_SERVO.angle(pin_n um,degrees)	<mark>舵机驱动控制库。</mark> Pin_n为舵机输出引 脚号(0-15),degress为舵机输出角 度	PA_SERVO.p y

第六章不同硬件的移植

Py-Apple Dynamics V4.0 , <u>移植参考路线</u>

1. 对于支持MicroPython 的主控(如STM32、K210、Pyboard等)

几乎无需移植, Py-Apple Dynamics 核心库直接运行即可,因为主程序就是用MicroPython写的

2. 对于只支持Python的其他主控(如树莓派等)

重新对PA_SERVO.py舵机控制库的硬件控制部分,和PA_IMU.py陀螺仪的硬件控制部分,根据平台特性重写驱动,函数封装不变,即可无缝对接程序

