Discovery of electrons

By J.J Thomson Charge to Mass ratio of electrons= 1.758820×10^{11} C kg⁻¹ Charge on electron = 1.6022×10^{-17} C Mass of Electron = 9.1094×10^{-21} Kg

Discovery of Neutron

By James Rutherford

Charge on Neutron = 0

Mass of Neutron = 1.675 x 10⁻²⁷ kg

Rutherford's Nuclear Model of Atom

Postulates:

- Positive charge and most of the mass of atoms was densely concentrated in extremely small region i.e nucleus.
- Nucleus is surrounded by electrons that move around the nucleus with high speed in circular path caled arbits.
- Electrons and nucleus are held together by electrostatic forces of attraction.

Drawbacks:

- · It connot explain the stability of an atom
- It does not say anything about the electronic structure of atoms

1	
Isotopes	Isobar
ion innera	ISHIDA

Atoms of different elements having same atomic number but different mass number. (Isotopes of Hydrogen) Protium ¹H₁, Deuterium ²D₁ and Tritium ³D₁

Atoms of different elements with different atomic number but same mass number. (Ca and Ar)

Quantum Mechanical Model of Atom

Postulates

- Electron in H atoms can move around the nucleus in a circular path of fixed radius and energy called as orbits.
 these orbits are arranged concentrically around the nucleus.
- Each of these orbits has a definite energy known as energy levels or stationary states.
- When an electron jumps from a lower energy level to higher one, some energy is absorbed.

Angular momentum of electrons: $m_e v_r = n \frac{h}{2\pi}$ n=1,2,3....

Limitations:

- Unable to account for finer details of H atom. Spectrum observed by sophisticated spectroscopic techniques.
- Could not explian the ability of atoms to form molecules by chemical bonds.

Schradinger

Fundamental Equation was developed by Schrödinger as $\hat{A}_W = E_W = \text{where } \hat{H} = \text{Hamiltonian}$

Duantum Number

- (i) Principal Quantum number (n): n=1,2,3,4..... Shell=K,L,M,N... (ii)Azimuthal Qunatum number: For given value of n, i=0 to n-1
- (iii) Magnetic Quantum number(m): For Subshel with T value m_₹ 2I + 1
- (iii) Spin Qunatum Number (m.): +1/2(),-1/2()

Electronic Configuration of Atom

- (i) s*p*d*..... notation (ii)Orbital diagram
- ف المسلمة

Energy of Orbitals

Lower the value of (n+1) for an orbital, lower is its energy.

Discovery of Protons

By Ernest Rutherford

Nur

Nun

Charge on Proton = 1.6022 × 10-19 C Mass of Proton = 1.672 × 10-17 kg

Thomsons Model of Atom

Atoms posses a spherical shape in which the positive charge is uniformly distributed

Atomic	Mass	
Number	Number	
mber of protons in (Z) +	Number of protons in nucleus	
mber of neutrons (n)	of an atom or Number of	
	electrons in a neutral atom	

Bohr's Nuclear Model of Atom

- Electrons revolve around the nucleus in certain definite orbits called stationary states having fixed energies.
- Electrons revolve only in those orbits for which the angular momentum is an integral multiple of $\frac{h}{2\pi}$.
- Radii of stationary states, r_n = ^{40n²}/₂
- Energies of different stationary states, $E_n = \frac{-1312}{c^2} Z^2 \text{ k/mol}^{-1}$
- Velocity of electrons in n^{th} orbit, $v_n = 2.188 \times 10^8 \times \frac{Z}{n}$ cm s⁻¹
 - No. of spectral lines = $\frac{(n_2 n_1)(n_2 n_1 + 1)}{2}$

Photoelectric effect

It was found by H.Hertz

It is the phenomenon of ejection of electrons from the surface of a metal when light of suitable frequency strikes on it.

Atomic Spectra

- Spectrum of radiation emitted by a substance Emission Spectra: that has absorbed energy.
- It is like photographic negative of an Absorption Spectra: emission spectra.
- Emission Spectra which do not show a Line / Atomic Spectra: continuous spread of wavelength from red to violet, rather they emit light only at specific wavelength with dark space between them.

$$V = 109677 \left(\frac{1}{n_z^2} + \frac{1}{n_z^2} \right) \text{ cm}^{-1} \text{ where}$$

n=1,2____n=n+1, n+2____

Series	ni	nz	Spectral Region
Lyman	1	2,3	Ultravoilet
Balmar	2	3,4	Visible
Paschen	3	4,5	Infrared
Brackett	4	5,6	Infrared
Pfund	5	6.7	Infrared

Filling of orbitals in atoms

- Aufbau Principle: In the ground state of atoms, the orbital's are filled according to increasing energies.
- Pauli Exclusion Principle: No 2 electrons in an atom can have same set of four quantum numbers.
- Hund's Rule: Pairing of electrons in the orbitals belonging to same subshell does not take place until each electron bolonging to the subshell in singly occupied.

Shape of Orbitals

