Linear Regression

Machine Learning (AIM 5002-41)

Joon Hee Choi Sungkyunkwan University

Regression

Given:

- Data $\pmb{X} = \{\pmb{x}^{(1)}, ..., \pmb{x}^{(n)}\}$ where $\pmb{x}^{(i)} \in \mathbb{R}^d$
- Corresponding labels $oldsymbol{y} = \{y^{(1)}, ..., y^{(n)}\}$

Linear Regression

Hypothesis:

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_d x_d = \sum_{j=0}^{d} \theta_j x_j$$
Assume $x_0 = 1$

Fit model by minimizing sum of squared errors

Least Squares Linear Regression

Cost Function

$$J(\boldsymbol{\theta}) = \frac{1}{2n} \sum_{i=1}^{n} \left(h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)}) - y^{(i)} \right)^{2}$$

• Fit by solving $\min_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$

$$J(\boldsymbol{\theta}) = \frac{1}{2n} \sum_{i=1}^{n} \left(h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)}) - y^{(i)} \right)^{2}$$

For insight on J(), let's assume $y \in \mathbb{R}$ so $\theta = [\theta_0, \theta_1]$

$$J(\boldsymbol{\theta}) = \frac{1}{2n} \sum_{i=1}^{n} \left(h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)}) - y^{(i)} \right)^{2}$$

For insight on J(), let's assume $y \in \mathbb{R}$ so $\theta = [\theta_0, \theta_1]$

 $h_{\theta}(x)$ (for fixed θ_{1} , this is a function of x)

 $J(heta_1)$ (function of the parameter $heta_1$)

$$J(\boldsymbol{\theta}) = \frac{1}{2n} \sum_{i=1}^{n} \left(h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)}) - y^{(i)} \right)^{2}$$

For insight on J(), let's assume $y \in \mathbb{R}$ so $\theta = [\theta_0, \theta_1]$

$$J(\boldsymbol{\theta}) = \frac{1}{2n} \sum_{i=1}^{n} \left(h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)}) - y^{(i)} \right)^{2}$$

For insight on J(), let's assume $y \in \mathbb{R}$ so $\theta = [\theta_0, \theta_1]$

 $J(heta_1)$ (function of the parameter $heta_1$)

- Choose initial value for θ
- Until we reach a minimum:
 - Choose a new value for θ to reduce $J(\theta)$

- Choose initial value for θ
- Until we reach a minimum:
 - Choose a new value for θ to reduce $J(\theta)$

- Choose initial value for θ
- Until we reach a minimum:
 - Choose a new value for θ to reduce $J(\theta)$

- Choose initial value for θ
- Until we reach a minimum:
 - Choose a new value for θ to reduce $J(\theta)$

Since the least squares objective function is convex (concave), we don't need to worry about local minima

- Initialize $\boldsymbol{\theta}$
- Repeat until convergence

$$\theta_j \leftarrow \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\boldsymbol{\theta})$$

simultaneous update for $j = 0 \dots d$

learning rate (small) e.g., $\alpha = 0.05$

- Initialize $\boldsymbol{\theta}$
- Repeat until convergence

$$\theta_j \leftarrow \theta_j - \alpha \frac{\partial}{\partial \theta_i} J(\boldsymbol{\theta})$$

simultaneous update for $j = 0 \dots d$

For Linear Regression:

$$\frac{\partial}{\partial \theta_{j}} J(\boldsymbol{\theta}) = \frac{\partial}{\partial \theta_{j}} \frac{1}{2n} \sum_{i=1}^{n} \left(h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)}) - \boldsymbol{y}^{(i)} \right)^{2}$$

$$= \frac{\partial}{\partial \theta_{j}} \frac{1}{2n} \sum_{i=1}^{n} \left(\sum_{k=0}^{d} \theta_{k} \boldsymbol{x}_{k}^{(i)} - \boldsymbol{y}^{(i)} \right)^{2}$$

$$= \frac{1}{n} \sum_{i=1}^{n} \left(\sum_{k=0}^{d} \theta_{k} \boldsymbol{x}_{k}^{(i)} - \boldsymbol{y}^{(i)} \right) \times \frac{\partial}{\partial \theta_{j}} \left(\sum_{k=0}^{d} \theta_{k} \boldsymbol{x}_{k}^{(i)} - \boldsymbol{y}^{(i)} \right)$$

$$= \frac{1}{n} \sum_{i=1}^{n} \left(\sum_{k=0}^{d} \theta_{k} \boldsymbol{x}_{k}^{(i)} - \boldsymbol{y}^{(i)} \right) \times \boldsymbol{x}_{j}^{(i)}$$

- Initialize θ
- Repeat until convergence

$$\theta_j \leftarrow \theta_j - \alpha \frac{1}{n} \sum_{i=1}^n \left(h_{\theta}(\mathbf{x}^{(i)}) - y^{(i)} \right) x_j^{(i)}$$
 simultaneous update for $j = 0 \dots d$

- To achieve simultaneous update
 - At the start of each GD iteration, compute $h_{\theta}(x^{(i)})$
 - Use this stored value in the update step loop
- Assume convergence when $\|\theta_{new} \theta_{old}\|_2 < \epsilon$

L2 norm:
$$\|v\|_2 = \sqrt{\sum_i v_i^2} = \sqrt{v_1^2 + v_2^2 + \dots + v_{|v|}^2}$$

 $h_{ heta}(x)$ (for fixed $heta_1$, this is a function of x)

 $J(\theta_0,\theta_1)$ (function of the parameter (θ_0,θ_1))

 $h_{\theta}(x)$ (for fixed θ_{1} , this is a function of x)

 $J(\theta_0,\theta_1)$ (function of the parameter (θ_0,θ_1))

 $h_{ heta}(x)$ (for fixed $heta_1$, this is a function of x)

 $J(\theta_0,\theta_1)$ (function of the parameter (θ_0,θ_1))

 $h_{ heta}(x)$ (for fixed $heta_1$, this is a function of x)

 $J(\theta_0,\theta_1)$ (function of the parameter (θ_0,θ_1))

 $h_{ heta}(x)$ (for fixed $heta_1$, this is a function of x)

 $J(\theta_0,\theta_1)$ (function of the parameter (θ_0,θ_1))

 $h_{ heta}(x)$ (for fixed $heta_1$, this is a function of x)

 $J(\theta_0,\theta_1)$ (function of the parameter (θ_0,θ_1))

 $h_{ heta}(x)$ (for fixed $heta_1$, this is a function of x)

 $J(\theta_0,\theta_1)$ (function of the parameter (θ_0,θ_1))

 $h_{ heta}(x)$ (for fixed $heta_1$, this is a function of x)

 $J(\theta_0,\theta_1)$ (function of the parameter (θ_0,θ_1))

 $h_{ heta}(x)$ (for fixed $heta_1$, this is a function of x)

 $J(\theta_0,\theta_1)$ (function of the parameter (θ_0,θ_1))

Choosing α

 α too small

 α too large

- May overshoot the minimum
- May fail to converge
- May even diverge

Too see if gradient descent is working, print out $J(\theta)$ each iteration

- The value should decrease at each iteration
- \bullet If it doesn't, adjust α

Extending Linear Regression to More Complex Models

- The inputs X for linear regression can be:
 - Original quantitative inputs
 - Transformation of quantitative inputs
 - e.g. log, exp, square root, square, etc.
 - Polynomial transformation
 - example: $y = \beta_0 + \beta_1 \cdot x + \beta_2 \cdot x^2 + \beta_3 \cdot x^3$
 - Basis expansions
 - Dummy coding of categorical inputs
 - Interactions between variables
 - example: $x_3 = x_1 \cdot x_2$

This allows use of linear regression techniques to fit nonlinear datasets.

Generally,

$$h_{m{ heta}}(m{x}) = \sum_{j=0}^d heta_j \phi_j(m{x})$$

- Typically, $\phi_0(x) = 1$ so that θ_0 acts as a bias
- In the simplest case, we use linear basis functions:

$$\phi_i(\mathbf{x}) = x_i$$

Polynomial basis functions:

$$\phi_j(\mathbf{x}) = x_j$$

- These are global; a small change in x affects all basis functions
- Gaussian basis functions:

$$\phi_j(x) = \exp\left\{-\frac{\left(x - \mu_j\right)^2}{2s^2}\right\}$$

- These are local; a small change in x only affect nearby basis functions. μ_j and s control location and scale (width).

Sigmoidal basis functions:

$$\phi_j(x) = \sigma\left(\frac{x - \mu_j}{s}\right)$$

where

$$\sigma(a) = \frac{1}{1 + \exp(-a)}$$

- These are also local; a small change in x only affects nearby basis functions. μ_j and s control location and scale (slope).

Example of Fitting a Polynomial Curve with a Linear Model

$$y = \theta_0 + \theta_1 x + \theta_2 x^2 + \dots + \theta_p x^p = \sum_{j=0}^p \theta_j x^j$$

Basic Linear Model:

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = \sum_{\substack{j=0\\d}}^{d} \theta_{j} x_{j}$$

• Generalized Linear Model:

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = \sum_{j=0}^{\alpha} \theta_j \phi_j(\boldsymbol{x})$$

- Once we have replaced the data by the outputs of the basis functions, fitting the generalized model is exactly the same problem as fitting the basic model
 - Unless we use the kernel trick more on that when we cover support vector machines
 - Therefore, there is no point in cluttering the math with basis functions

• Vector in \mathbb{R}^d is an ordered set of d real numbers

• An m-by-n matrix is an object with m rows and n columns, where each entry is a real number:

$$\begin{bmatrix} 1 & 2 & 8 \\ 4 & 78 & 6 \\ 9 & 3 & 2 \end{bmatrix}$$

Transpose: reflect vector/matrix on line:

$$\begin{bmatrix} a \\ b \end{bmatrix}^T = \begin{bmatrix} a & b \end{bmatrix} \qquad \begin{bmatrix} a & b \\ c & d \end{bmatrix}^T = \begin{bmatrix} a & c \\ b & d \end{bmatrix}$$

- Note: $(Ax)^T = x^T A^T$ (We'll define multiplication soon.)

- Vector norms:
 - Norm of $\boldsymbol{v} = (v_1, ..., v_k)$ is $(\sum_i |v_i|^p)^{\frac{1}{p}}$
 - Common norms: L_1 , L_2
 - $L_{\text{infinity}} = \max_{i} |v_i|$
- Length of a vector \boldsymbol{v} is $L_2(v)$

• Vector dot product: $\mathbf{u} \cdot \mathbf{v} = (u_1 \quad u_2) \cdot (v_1 \quad v_2) = u_1 v_1 + u_2 v_2$

- Note: dot product of u with itself = length $(u)^2 = ||u||_2^2$

Matrix product:

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$
, $B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}$

$$AB = \begin{pmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\ a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} \end{pmatrix}$$

- Vector products:
 - Dot product:

$$\boldsymbol{u} \cdot \boldsymbol{v} = \boldsymbol{u}^T \boldsymbol{v} = (u_1 \quad u_2) \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = u_1 v_1 + u_2 v_2$$

- Outer product:

$$\boldsymbol{u}\boldsymbol{v}^{T} = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} (v_1 \quad v_2) = \begin{pmatrix} u_1v_1 & u_1v_2 \\ u_2v_1 & u_2v_2 \end{pmatrix}$$

Vectorization

- Benefits of vectorization
 - More compact equations
 - Faster code (using optimized matrix libraries)
- Consider our model:

$$h(\mathbf{x}) = \sum_{j=0}^{d} \theta_j x_j$$

Let

$$\boldsymbol{\theta} = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_d \end{bmatrix} \quad x^T = \begin{bmatrix} 1 & x_1 & \cdots & x_d \end{bmatrix}$$

• Can write the model in vectorized form as $h(x) = \theta^T x$

Vectorization

Consider our model for n instances:

$$h(\mathbf{x}^{(i)}) = \sum_{j=0}^{a} \theta_j x_j^{(i)}$$

Let

$$\boldsymbol{\theta} = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_d \end{bmatrix} \quad \boldsymbol{X} = \begin{bmatrix} 1 & x_1^{(1)} & \cdots & x_d^{(1)} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_1^{(i)} & \cdots & x_d^{(i)} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_1^{(n)} & \cdots & x_d^{(n)} \end{bmatrix}$$

$$\mathbb{R}^{(d+1)\times 1}$$

• Can write the model in vectorized form as $h_{\theta}(X) = X\theta$

Vectorization

For the linear regression cost function:

$$J(\boldsymbol{\theta}) = \frac{1}{2n} \sum_{i=1}^{n} (h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)}) - \boldsymbol{y}^{(i)})^{2}$$

$$= \frac{1}{2n} \sum_{i=1}^{n} (\boldsymbol{\theta}^{T} \boldsymbol{x}^{(i)} - \boldsymbol{y}^{(i)})^{2}$$

$$= \frac{1}{2n} \underbrace{(\boldsymbol{X}\boldsymbol{\theta} - \boldsymbol{y})^{T} (\boldsymbol{X}\boldsymbol{\theta} - \boldsymbol{y})}_{\mathbb{R}^{n \times (d+1)}}$$

Let:
$$y = \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(n)} \end{bmatrix}$$

Closed Form Solution

- Instead of using GD, solve for optimal $oldsymbol{ heta}$ analytically
 - Notice that the solution is when $\frac{\partial}{\partial \boldsymbol{\theta}} J(\boldsymbol{\theta}) = 0$
- Derivation:

$$J(\boldsymbol{\theta}) = \frac{1}{2n} (X\boldsymbol{\theta} - \boldsymbol{y})^T (X\boldsymbol{\theta} - \boldsymbol{y})$$

$$\propto \boldsymbol{\theta}^T X^T X \boldsymbol{\theta} - \boldsymbol{y}^T X \boldsymbol{\theta} - \boldsymbol{\theta}^T X^T \boldsymbol{y} + \boldsymbol{y}^T \boldsymbol{y}$$

$$\propto \boldsymbol{\theta}^T X^T X \boldsymbol{\theta} - 2 \boldsymbol{\theta}^T X^T \boldsymbol{y} + \boldsymbol{y}^T \boldsymbol{y}$$

Take derivative and set equal to 0, then solve for θ :

$$\frac{\partial}{\partial \boldsymbol{\theta}} (\boldsymbol{\theta}^T \boldsymbol{X}^T \boldsymbol{X} \boldsymbol{\theta} - 2\boldsymbol{\theta}^T \boldsymbol{X}^T \boldsymbol{y} + \boldsymbol{y}^T \boldsymbol{y}) = 0$$
$$(\boldsymbol{X}^T \boldsymbol{X}) \boldsymbol{\theta} - \boldsymbol{X}^T \boldsymbol{y} = 0$$
$$(\boldsymbol{X}^T \boldsymbol{X}) \boldsymbol{\theta} = \boldsymbol{X}^T \boldsymbol{y}$$

Closed Form Solution:

$$\boldsymbol{\theta} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y}$$

Closed Form Solution

• Can obtain $oldsymbol{ heta}$ by simply plugging $oldsymbol{X}$ and $oldsymbol{y}$ into

$$\boldsymbol{\theta} = (\boldsymbol{X}^{T}\boldsymbol{X})^{-1}\boldsymbol{X}^{T}\boldsymbol{y}$$

$$\boldsymbol{X} = \begin{bmatrix} 1 & x_{1}^{(1)} & \cdots & x_{d}^{(1)} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{1}^{(i)} & \cdots & x_{d}^{(i)} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{1}^{(n)} & \cdots & x_{d}^{(n)} \end{bmatrix}, \boldsymbol{y} = \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(n)} \end{bmatrix}$$

- If X^TX is not invertible (i.e., singular), may need to:
 - Use pseudo-inverse instead of the inverse
 - In python, numpy.linalg.pinv(a)
 - Remove redundant (not linearly independent) features
 - Remove extra features to ensure that $d \leq n$

Gradient Descent vs Closed Form

Gradient Descent

- Requires multiple iterations
- Need to choose α
- Works well when n is large
- Can support incremental learning

Closed Form Solution

- Non-iterative
- No need for α
- Slow if n is large
 - Computing $(X^TX)^{-1}$ is roughly $O(n^3)$

Improving Learning: Feature Scaling

Idea: Ensure that feature have similar scales

Makes gradient descent converge much faster

Feature Standardization

- Rescales features to have zero mean and unit variance
 - Let μ_j be the mean of feature j: $\mu_j = \frac{1}{n} \sum_{i=1}^{n} x_j^{(i)}$
 - Replace each value with:

$$x_j^{(i)} \leftarrow \frac{x_j^{(i)} - \mu_j}{s_j} \qquad \text{for } j = 1 \dots d$$

$$(\text{not } x_0!)$$

- s_i is the standard deviation of feature j
- Could also use the range of feature j (max_i min_i) for s_i
- Must apply the same transformation to instances for both training and prediction
- Outliers can cause problems

Quality of Fit

Overfitting:

- The learned hypothesis may fit the training set very well $(J(\theta) \approx 0)$
- ... but fails to generalize to new examples

Regularization

 A method for automatically controlling the complexity of the learned hypothesis

- Idea: penalize for large values of θ_i
 - Can incorporate into the cost function
 - Works well when we have a lot of features, each that contributes a bit to predicting the label

 Can also address overfitting by eliminating features (either manually or via model selection)

Regularization

Linear regression objective function

$$J(\boldsymbol{\theta}) = \frac{1}{2n} \sum_{i=1}^{n} \left(h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)}) - \boldsymbol{y}^{(i)} \right)^{2} + \frac{\lambda}{2} \sum_{j=1}^{d} \theta_{j}^{2}$$
model fit to data regularization

- λ is the regularization parameter ($\lambda \geq 0$)
- No regularization on θ_0 !

Understanding Regularization

$$J(\boldsymbol{\theta}) = \frac{1}{2n} \sum_{i=1}^{n} (h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)}) - y^{(i)})^{2} + \frac{\lambda}{2} \sum_{j=1}^{d} \theta_{j}^{2}$$

• Note that
$$\sum_{j=1}^{a} \theta_{j}^{2} = \| \boldsymbol{\theta}_{1:d} \|_{2}^{2}$$

- This is the magnitude of the feature coefficient vector!
- We can also think of this as:

$$\sum_{j=1}^{d} (\theta_j - 0)^2 = \left\| \boldsymbol{\theta}_{1:d} - \vec{\mathbf{0}} \right\|_2^2$$

• L_2 regularization pulls coefficients toward 0

Understanding Regularization

$$J(\boldsymbol{\theta}) = \frac{1}{2n} \sum_{i=1}^{n} (h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)}) - y^{(i)})^{2} + \frac{\lambda}{2} \sum_{j=1}^{d} \theta_{j}^{2}$$

• What happens as $\lambda \to \infty$?

$$\theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$$

Understanding Regularization

$$J(\boldsymbol{\theta}) = \frac{1}{2n} \sum_{i=1}^{n} (h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)}) - y^{(i)})^{2} + \frac{\lambda}{2} \sum_{j=1}^{d} \theta_{j}^{2}$$

• What happens as $\lambda \to \infty$? $\theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$

Cost Function

$$J(\boldsymbol{\theta}) = \frac{1}{2n} \sum_{i=1}^{n} (h_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}) - \mathbf{y}^{(i)})^{2} + \frac{\lambda}{2} \sum_{j=1}^{d} \theta_{j}^{2}$$

- Fit by solving $\min_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$
- Gradient update:

$$\frac{\partial}{\partial \theta_0} J(\theta) \qquad \theta_0 \leftarrow \theta_0 - \alpha \frac{1}{n} \sum_{i=1}^n \left(h_{\theta}(\mathbf{x}^{(i)}) - \mathbf{y}^{(i)} \right)$$

$$\frac{\partial}{\partial \theta_j} J(\theta) \qquad \theta_j \leftarrow \theta_j - \alpha \frac{1}{n} \sum_{i=1}^n \left(h_{\theta}(\mathbf{x}^{(i)}) - \mathbf{y}^{(i)} \right) \mathbf{x}_j^{(i)} - \alpha \lambda \theta_j$$
regularization

$$J(\boldsymbol{\theta}) = \frac{1}{2n} \sum_{i=1}^{n} (h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)}) - y^{(i)})^{2} + \frac{\lambda}{2} \sum_{j=1}^{d} \theta_{j}^{2}$$

$$\theta_0 \leftarrow \theta_0 - \alpha \frac{1}{n} \sum_{i=1}^n (h_{\theta}(\mathbf{x}^{(i)}) - \mathbf{y}^{(i)})$$

$$\theta_j \leftarrow \theta_j - \alpha \frac{1}{n} \sum_{i=1}^n (h_{\theta}(\mathbf{x}^{(i)}) - \mathbf{y}^{(i)}) x_j^{(i)} - \alpha \lambda \theta_j$$

We can rewrite the gradient step as:

$$\theta_j \leftarrow \theta_j (1 - \alpha \lambda) - \alpha \frac{1}{n} \sum_{i=1}^n (h_{\theta}(\mathbf{x}^{(i)}) - y^{(i)}) x_j^{(i)}$$

To incorporate regularization into the closed form solution:

$$oldsymbol{ heta} = \left(oldsymbol{X}^\intercal oldsymbol{X}
ight)^{-1} oldsymbol{X}^\intercal oldsymbol{y}$$

To incorporate regularization into the closed form solution:

$$oldsymbol{ heta} = \left(oldsymbol{X}^\intercal oldsymbol{X} + \lambda egin{bmatrix} 0 & 0 & 0 & \dots & 0 \ 0 & 1 & 0 & \dots & 0 \ 0 & 0 & 1 & \dots & 0 \ dots & dots & dots & dots & dots \ 0 & 0 & 0 & \dots & 1 \end{bmatrix}
ight)^{-1} oldsymbol{X}^\intercal oldsymbol{y}$$

- Can derive this the same way, by solving $\frac{\partial}{\partial {\bm{\theta}}} J({\bm{\theta}}) = 0$
- Can prove that for $\lambda > 0$, inverse exists in the equation above

Reference

https://www.seas.upenn.edu/~cis519