TeV Emission from the Plerion formed by the Massive Black Hole at the Galactic Center

Chuck Dermer (US Naval Research Laboratory)

dermer@gamma.nrl.navy.mil

&

Armen Atoyan (Université de Montréal)

ApJ Letters, Dec. 20 (2004)

NASA/Goddard Space Flight Center March 1, 2005 dermer@gamma.nrl.navy.mil

Galactic Center Region at 90 cm (330 MHz)

Nonthermal radioemitting filaments features

Large scale magnetic fields and relativistic electrons

SNRs, HII regions

Poloidal magnetic field within ~100 pc of nucleus

Sgr A*: compact radio sources at nucleus of Milky Way

LaRosa et al. (2000)

Inner Sagittarius region (4 \times 3 \mathbb{I} , or 9.3 \times 7 pc)

Sgr A East (blue): extremely energetic ($\approx 10^{52}$ ergs) region occurring $\approx 50,000$ yrs ago from chain of SNRs, a GRB, or star swallowed by BH. Diffuse X-ray emission.

Sgr A West (red): Gas and dust streamers ionized by stars and spiraling around the Galactic center, possibly feeding the nucleus.

Sgr A*: A bright compact radio source at intersection of the arms of the Sgr A West

6 cm VLA radio of Sgr A East and Sgr A West

(Yusef-Zadeh, Melia, & Wandle 2000)

Inner few parsecs

- Molecular dusty ring (circumnuclear disk: ČND)
- Three-arm spiral of ionized gas and dust streamers (Sgr A West) 2.
- Evolved and young star 3. clusters

Diffuse hot gas cm Sgr A 5. 6. (Wright et al. 1993) 4 pc \times

pc)

2 cm VLA radio of Sgr A

Massive Black Hole at the Center of the Milky Way Galaxy

IR (K-band) observations of stellar radial velocities

1 arcsec =
$$0.04$$
 pc = 46 lt-days (d_{GC} = 8 kpc)

NIR speckle imaging techniques

Mass within 0.015 pc_{M_{BH}} $4 \times 10^6 \text{ M}_{\odot}$ $r_S = \frac{2GM}{c^2} = 1.2 \times 10^2 (\frac{4 \times 10^6 M_{\odot}}{4 \times 10^6 M_{\odot}}) cm$

R. Genzel, et al. Eddington luminosity:

$$L_{Edd} = \frac{4\pi GM \eta_{H}}{\sigma_{T}} = 1$$

$$5 \times 10^{44} (\frac{M_{BH}}{3 \times 10^6 M_o}) ergss^{-1}$$

Massive Black Hole at the Center of the Milky Way Galaxy

IR (K-band) observations of stellar radial velocities

1 arcsec = 0.04 pc = 46 lt-days (
$$d_{GC}$$
 = 8 kpc)

NIR speckle imaging techniques

Mass within 0.015 pc M_{BH} 4×10⁶ M_{II} $r_S = \frac{2CM}{c^2} = 1.2 \times 10^2 (\frac{1}{4 \times 10^6} M_{O}) cm$

$$L_{\scriptscriptstyle Edd} = rac{4\pi G M m_{\!\scriptscriptstyle H}}{\sigma_{\scriptscriptstyle T}} = 1$$

$$5 \! imes \! 10^{\! 44} \! (\frac{M_{BH}}{4 \! imes \! 10^{\! 6} M_o}) \, ergs \! \! \! ^{\! -1}$$

Quiescent X-ray Emission from Sgr A*

 $(3.5 pc \times 3)$

X-rays exhibit two different states:

1. Weak quiescent X-ray emission from an extended region \Rightarrow size of 0.6 arcseconds, or 7×10^{16} cm $\approx 10^5$ r_s

0.5-7 keV Chandra X-ray image overlaid on 6 cm radio image (Baganoff et al. 2003)

2. X-ray flares with a period of about one per day, rising by factors up to 100 during several tens of minutes. A distinctive point source

Baganoff et al. (2001)

Flaring X-ray Emission from Sgr A*

The short rise-and-decay times of the flares suggest that the radiation must origin from a region within less than tens of $r_{\rm s}$

Flaring Hard X-ray Emission from the Direction of Sgr A*

INTEGRAL observations of flaring 20-40 keV emission within

Flare lasts < 40 minutes

$$1r_{S} = 40lt - s$$

Bélanger et al. (2004)

Radio Emission from Sgr A*

Radio emission of Sgr A* varies slowly on time scales of several days to a few hundred days and generally with an amplitude <10%. 10¹ ++++++++++ 10^0 $S_{\nu} \propto \nu^{1/3}$ 10^{-2} 10^{10} 10^{11} 10^{12} 10^{13} 10^{14} v[Hz]

Zylka et al. 1995, Zhao et al. 2001

Falcke et al. 2003

Radio image blurred $\propto \lambda^2$ by ionized medium, but becomes less at high frequencies (images at 5, 8, 15, 32, and 43GHz).

Major Axis ✓ Minor Axis 2σ Upper Limit Jet Length Jet Width 0.1 Wavelength (cm)

Bower et al. (2004)

Intrinsic size of Sgr A* measured using VLBA $24\pm2~r_{\rm S}$ at 7 mm (43 GHz)

Resolving Sgr A*

Theoretical simulations of 1.3 cm images of Sgr A*

Falcke, Melia, & Agol (2000)

HESS:

High Energy Stereoscopic System 4 Telescope Array completed Dec 2003

23° 16' South Latitude

GC: -29 $^{\circ}$ 0 $^{\circ}$

HESS Observations of TeV Emission from Sgr A*

Two observing campaigns:

June/July 2003 (4.7 hrs on-source)

July/August 2003 (11.8 hrs on-source)

PSF $\approx 0.1^{\circ}$ Angular distribution of γ rays in 3° field

Point Source consistent with Sgr A*

6.1 σ in June/July

 9.2σ in July/Aug

No evidence for variability between the two pointings

Galactic Plane feature

Aharonian et al. (2004)

HESS Measurements of TeV Angular Distribution

Center of gravity of γ rays (triangle), 68% and 95% confidence regions for source position (solid ellipses), and 95% confidence of rms source size (dashed ellipse), superimposed over 8.5'×8.5' Chandra X-ray map.

(2004)
Angular distribution of γ rays
Upper limit to source size = 3' \leftrightarrow 7 pc

HESS Measurements of TeV Spectrum of Galactic

E²dN/dE spectrum for June/July, July/August campaigns

 $dN/dE \propto E^{-2.21\pm0.21} \times 10^{-8} \text{ m}^{-2} \text{ s}^{-1} \text{TeV}^{-1}$ ($\approx 5\%$ of the Crab)

In agreement with Whipple (Kosack et al. 2004); disagrees with Cangaroo-II (Tsuchiya et al. 2004)

Multiwavelength Observations of Galactic Center Region

EGRET emission displaced from direction to GCBH

Previously Proposed Models for TeV Emission

- γ rays from π⁰ production from secondary nuclear production of cosmic rays (possible accelerated by Sgr A West SNR)
- Annihilation of supersymmetric dark matter particles (Requires neutralinos of mass > 4-10 TeV)
- 3. Jet-ADAF model (acceleration in the inner jet from shocks; would expect significant variability)
- 4. Proton curvature radiation
- 5. TeV jet models (where is the jet?)

TeV Radiation from the Galactic Center Black-Hole Plerion

Accretion Physics in the ADAF/ADIOS Regime

Advection-dominated accretion flow (ADAF) model for compact objects accreting at Eddington accretion rate $\dot{m} \equiv \eta_{BH} Mc^2 / L_{Edd}$

Radiant luminosity at the level
$$rad = mL_{Edd}$$
 (m/m,),

$$\dot{m} \approx 0.1$$

 (\dot{m}/\dot{m}_*)

fraction of accretion power that is advected into black hole or convectively escapes $L_{th} = L_{rad} = 10^{\circ} ergs$ = $\dot{m}_{GCBH} \approx 1.5 \times 10^{5}$

$$\dot{m}_{GCBH} \approx 1.5 \times 10^{5}$$

Esin, McClintock, & Narayan (1997)

Second-order Fermi Acceleration in the ADAF

No optically thick accretion disk

Second-order stochastic Fermi acceleration for radio-sub mm emission $(\frac{\eta_{BH}\dot{M}c^2}{4\pi R^2c}) \Rightarrow B(G) \approx 30\epsilon_{_B}^{1/2}L_{36}$

for a region of size 20 r_s

Equating acceleration rate of electrons by Whistler₁turbutence to two particles of the state of the state

Dermer, Miller & Li 1996; Liu, Petrosian, & Me 2004

Steady Mare Electer Pape of the min:

Stochastic acceleration model for radio/sub-mm emission

The Black Hole Plerion

Particle escape by convective outflow in advection-dominated inflow-outflow source (ADIOS) extension (Blandford & Begelman 1999) of ADAF model.

Assume a wind power
$$L_{wind} = 10^{\circ} L_{37} ergs^{-1}$$

With speed $v_{\rm wind}{\approx}c/2$ directed into solid angle $\Omega\approx 1~sr$

Wind terminates of the subtractivistic shockers.

found by equating thermal gas pressure with energy density of wind Electrons and protons accelerated by first-order (shock) Fermi acceleration.

Electrons emit X-ray synchrotron radiation to form quiescent X-ray emission

and Compton scatter

ADAF emission

10¹³ Hz emission from cold dust **Neutron Star Plerion: Crab** Nebula

Flaring Emissions from Inner Region

Flares from instabilities in accretion flow that form shocks at few r_s First-order Fermi shock acceleration injects electrons with $\gamma < 10^6$, -2.2 injection index

Explains X-ray/NIR flares and short variability timescales from cooling and expansion

Galactic Center Black Hole Emission: Sgr A* ADAF + Black-Hole Plerion + Sgr A West, a black-hole remnant

log(E/eV)

Predict GLAST detection of quasistationary Compton and bremsstrahlung fluxes from pcscale plerion.

Propagation of GeV electrons power Sgr A West

EGRET emission from young pulsar

-28° 59' 45" Chandra Obs. of Sgr Multiwavelength **Observations of Sgr A*** 15" 30" 10-8 00' 45" Sgr A 3) 10^{-9} 00" $E^2f(E), erg/cm^2s$ 10^{-10} -29° 01' 15" NIR 39^S17^h 45^m 38^S 42^S 41^S 40^S INTEGRAL Tiare Right Ascension (2000) ++ 10^{-11} 10^{-12} H.B.S.S 10^{-13} 10^{-14} 5 10 -5 0 15 Log E (eV)

Baganoff et al. 2003

Multiwavelength **Observations of Sgr A***

Hard band (4.5-8 keV)

40

20

Galactic Center Region

0.50

0.25

EGRET emission displaced from direction to GCBH
Dingus and Hooper 2002;
Pohl 2005

Summary

- 1. TeV radiation from Galactic Center Region: Important Discovery from next generation Imaging Air Cherenkov Telescopes
- 2. Observations imply two emission regions:
 - (i) Inner region near black hole
 - (ii) Black hole plerion at the termination shock
- 3. New insights into black-hole accretion in the extreme ADAF regime for GCBH; advection and convective outflow from central accretion flow
- 4. X-ray flares are synchrotron emission within $\sim 10 r_s$ of GCBH
- 5. Quasi-stationary TeV emission (southern hemisphere Crab)
- 6. TeV γ rays made by black-hole plerion, first of a new class of nonthermal emitters

Unidentified EGRET/TeV Sources

Plerions from Binary Compact objects accreting << $L_{\rm edd}$ Isolated accreting black holes Winds and plerions associated with blazars?

Black Hole Archaeology

$$M_{BH}$$
, z , $L_{rad} \Rightarrow \ell = L_{rad} / L_{Edd}$

Measure $M_{\rm BH}$ from γ -ray variability Stellar velocity Light crossing time-scale: $10^4~M_9^{dispersion}$

sec

 $L_{\rm iso}$ from γ -ray and multiwavelength observations

Reverberation mapping

Bulge/BH relation

Jet opening angle: variability analysis, multiwavelength modeling

The life history of massive and supermassive BHs

