Department of Computer Science Faculty of Science, Kasetsart University Lab 7 Object Detection Asst.Prof. Dr. Pakaket Wattuya

Let's Find STARBUCKS!

PREPROCESSING : Convert RGB input images to grayscale images. I = rgb2gray(im_rgb);

STEP 1: Feature Detection

Each image is searched for locations that are likely to match well in other images.

MATLAB functions	Description	
<pre>points = detectHarrisFeatures(I)</pre>	Harris-Stephens algorithm to find corner points.	
<pre>points = detectSURFFeatures(I)</pre>	Speeded-Up Robust Features (SURF) algorithm to find blob features.	
<pre>points = detectMSERFeatures(I)</pre>	Maximally Stable Extremal Regions (MSER) algorithm to find regions.	

A reference image:

(reference_sm.jpg)

An input image:

STEP 2: Feature Description

Each region around detected keypoint locations is converted into a more compact and stable (invariant) descriptor that can be matched against other descriptors.

MATLAB functions	Description		
<pre>[features, validPoints] = extractFeatures(I,points)</pre>	Extracted feature vectors (aka. descriptors), and their corresponding locations, from a binary or intensity image.		

STEP 3: Feature Matching

Find candidate matches between features

3.1 Find matching features using two matching methods: Nearest Neighbor Ratio method (default) and Threshold method.

MATLAB functions	Input Arguments	Input Argument Value
<pre>indexPairs = matchFeatures(features_ref, feature s, Name, Value)</pre>	'Method'	Matching method: NearestNeighborRatio (default) Threshold
	'MatchThreshold'	Percent value in the range (0, 100), increase this value to return more matches.

Example

Find matched points

```
matchedPoints1 = validPoints_ref (indexPairs(:, 1));
matchedPoints2 = validPoints (indexPairs(:, 2));
```

3.2 Display corresponding feature points

MATLAB functions	Input Arguments	Input Argument Value
<pre>showMatchedFeatures(I_ref,I,matche dPoints1,matchedPoints2,method)</pre>	'method'	Display methods: falsecolor (default) blend montage

Example

showMatchedFeatures(I_ref,I, matchedPoints1, matchedPoints2,'montage');

Example Results:

MSER (NN Ratio) : 2 Putative point matches

50
100
150
200
250
300
100 200 300 400 500 600 700

Let's Find STARBUCKS!

Reference

[1] Harris, C., and M. Stephens, "A Combined Corner and Edge Detector," Proceedings of the 4th Alvey Vision Conference, August 1988, pp. 147-151.

[2] Herbert, B., A. Ess, T. Tuytelaars, and L. Van Gool, SURF: "Speeded Up Robust Features", Computer Vision and Image Understanding (CVIU), Vol. 110, No. 3, pp. 346--359, 2008.

[3] Matas, J., O. Chum, M. Urba, and T. Pajdla. "Robust wide baseline stereo from maximally stable extremal regions." Proceedings of British Machine Vision Conference, pages 384-396, 2002.