Matière : ADD

Niveau: Master 1

CLASSIFICATION ASCENDANTE HIÉRARCHIQUE (CAH)

Cours 4

Introduction (CAH)

- Elle consiste à regrouper progressivement les individus dans un groupe
- il faut d'abord mettre les individus les plus proches ensemble
- Opérer des regroupements en classes homogènes d'un ensemble d'individus.
- L'état de rapprochement ou d'éloignement entre les individus est mesuré souvent par le biais de la distance euclidienne

Introduction (CAH)

- •L'idée de l'algorithme de classification ascendante hiérarchique (CAH) est de créer, à chaque étape, une partition en regroupant les deux éléments les plus proches.
- . Le terme "élément" désigne aussi bien un individu qu'un groupe d'individus.

Arbre de classification ou dendrogramme

Description de l'algorithme

- On choisit un écart. On construit le tableau des écarts pour la partition initiale des n individus
- On parcours le tableau des écarts pour identifier le couple d'individus ayant l'écart le plus petit. Le regroupement de ces deux individus forme un groupe A. On a donc une partition de n-1 éléments : A et les n-2 individus restants.
- On calcule le tableau des écarts entre les n-1 éléments obtenus à l'étape précédente et on regroupe les deux éléments ayant l'écart le plus petit, On a donc une partition de n-2 éléments
- On itère la procédure précédente jusqu'à ce qu'il ne reste qu'un seul élément.

Exemple graphique

Distance

On peut aborder le problème de la ressemblance entre individus par le biais de la notion de distance.

•Exemple : distance euclidienne :

On appelle distance euclidienne entre x et y la distance : CAP

$$d(x,y) = \sqrt{\sum_{i=1}^{m} (x_i - y_i)^2}.$$

Tableau des distances

•Soit **d** une distance. On appelle tableau des distances associées aux individus (w₁,, w_n) le tableau :

		ω_1	ω_2	 ω_{n-1}	ω_n
$\mathbf{D} =$	ω_1	0	$d_{1,2}$	 $d_{1,n-1}$	$d_{1,n}$
	ω_2	$d_{2,1}$	0	 	
	ω_{n-1}	$d_{n-1,1}$		 0	$d_{n-1,n}$
	ω_n	$d_{n,1}$		 $d_{n,n-1}$	0

Écarts (ressemblance entre groupes d'individus)

On appelle écart toute application définie à partir d'une distance et évaluant la ressemblance entre deux groupes d'individus.

Plus l'écart entre deux éléments est petit, plus ils se ressemblent.

Écart simple / Méthode du plus proche voisin

•L'écart entre deux groupes A et B est caractérisé par la distance la plus faible(petite) entre un point de A et un point de B:

Écart complet /Méthode du voisin le plus éloigné

L'écart entre deux groupes A et B est caractérisé par la distance la plus forte(grande) entre un point de A et un point de B :

Écart moyen /Méthode de la distance moyenne

 L'écart entre deux groupes A et B est caractérisé par la distance moyenne entre les points de A et B :

$$e(A,B) = \frac{1}{n_A n_B} \sum_{\omega \in A} \sum_{\omega_* \in B} d(\omega, \omega_*),$$

où n_A est le nombre d'individus dans A, et n_B le nombre d'individus dans B.

Écart de Ward

Soit d la distance euclidienne. La méthode de Ward considère l'écart :

$$e(A,B) = \frac{n_A n_B}{n_A + n_B} d^2(g_A, g_B),$$

où ga est le centre de gravité de A, et ga celui de B

•Cette méthode prend en compte à la fois la dispersion à l'intérieur d'un groupe et la dispersion entre les groupes. Elle est utilisée par défaut dans la plupart des programmes informatiques

Tableau des écarts

•Soit e un écart défini par une des méthodes précédentes. On appelle tableau des écarts associé aux groupes d'individus (A₁,, A_n) le tableau :

$\mathbf{E} =$		A_1	A_2	 A_{n-1}	A_n
	A_1	0	$e_{1,2}$	 $e_{1,n-1}$	$e_{1,n}$
	A_2	$e_{2,1}$	0	 	
	A_{n-1}	$e_{n-1,1}$		 0	$e_{n-1,n}$
	A_n	$e_{n,1}$		 $e_{n,n-1}$	0

Dendrogramme

- Les partitions faites à chaque étape de l'algorithme de la CAH peuvent se visualiser via un arbre appelé dendrogramme.
- Sur un axe apparait les individus à regrouper et sur l'autre axe sont indiqués les écarts correspondants aux différents niveaux de regroupement.
- Cela se fait graphiquement par le biais de branches et de noeuds.
- •Une partition naturelle se fait en coupant l'arbre au niveau du plus grand saut de noeuds.

Exemple (en présentiel)

Nous considérons ici 8 points :A,B,C,D,E,F,G,H