Deep Neural Network - Backpropagation with ReLU

user1157751

I'm having some difficulty in deriving back propagation with ReLU, and I did some work, but I'm not sure if I'm on the right track.

Cost Function: $\frac{1}{2}(y-\hat{y})^2$ where y is the real value, and \hat{y} is a predicted value.

Also assume that x > 0 always.

1 Layer ReLU, where the weight at the 1st layer is w_1

$$\frac{dC}{dw_1} = \frac{dC}{dR} \frac{dR}{dw_1}$$

$$\frac{dC}{w_1} = (y - ReLU(w_1x))(x)$$

ReLU についての誤差逆伝搬法を微分するのに私 は少し手間取っている。多少やってみたのだが、正 しい方法でできているのか不安だ。

y を実数とし、 \hat{y} を予測された値として、 $\frac{1}{2}(y-\hat{y})^2$ がコスト関数だ。

また、常にx > 0だと前提している。

1層の ReLU。その第1層の重みは w_1 である。

Neil Slater

Working definitions of ReLU function and its derivative:

$$ReLU(x) = \begin{cases} 0, & \text{if } x < 0 \\ x, & \text{otherwise} \end{cases}$$

$$\frac{d}{dx}ReLU(x) = \begin{cases} 0, & \text{if } x < 0\\ 1, & \text{otherwise} \end{cases}$$

The derivative is the unit step function.

This does ignore a problem at x = 0, where the gradient is not strictly defined, but that is not a

ReLu 関数とその導関数の動作する定義は次のものだ:

この導関数は、単位階段関数だ。

これは、x=0で勾配が厳密に定義されていないという問題を無視する。しかし、ニューラルネット

practical concern for neural networks.

With the above formula, the derivative at 0 is 1, but you could equally treat it as 0, or 0.5 with no real impact to neural network performance.

ワークにおいてはそれは実際上は問題ではない。

上の公式によると、0 における微分係数は1 だ。しかし0 や0.5 としても、ニューラルネットワークのパフォーマンスにはどうという影響はなく同じだ。

Simplified network 単純化されたネットワーク

With those definitions, let's take a look at your example networks.

You are running regression with cost function $C = \tfrac{1}{2} (y - \hat{y})^2.$

You have defined R as the output of the artificial neuron, but you have not defined an input value.

I'll add that for completeness - call it z, add some indexing by layer, and I prefer lower-case for the vectors and uppercase for matrices, so $r^{(1)}$ output of the first layer, $z^{(1)}$ for its input and $W^{(0)}$ for the weight connecting the neuron to its input x (in a larger network, that might connect to a deeper r value instead).

I have also adjusted the index number for the weight matrix – why that is will become clearer for the larger network.

NB I am ignoring having more than newuron in each layer for now.

これらの定義に則り、あなたが例示したネットワークらを見ていこう。

あなたは、 $C=\frac{1}{2}(y-\hat{y})^2$ を費用関数として回帰を行っている。

あなたはRを、人工的ニューロンの出力として定義した。しかしまだ入力値を定義していない。

完全にするために私はそれを追加し、z と呼ぼう。層によって添字をつけよう。また私は、ベクトルについて小文字を、行列について大文字を使いたいから、 第 1 層の出力を $r^{(1)}$ と呼び、それへの入力を $z^{(1)}$ と呼び、