Smart Delivering Robot AUCTUS

Dr. Omar Shalash Eng. Mohamed El-Sayed

Presented by:

Ahmad Muhammad El-Sayed Pavli Bahaa Botrus Yousef Ali Abdallah Amr Ashraf Fawzy Abdelrahman Ahmed Mohamed Ahmed Saad El-Menawy

Introduction

O1
Problem
Statement

O2
Objectives

Challenges

Literature Review

O5
Proposed Model

Achievements

Any Questions

AUCTUS

"AUCTUS"? It is a Latin word which means "Growth".

- Our project presents an autonomous delivering robot.
- Our goal is to adapt and extend its capabilities for outdoor applications.
- This process is orchestrated through a user-friendly mobile application.

Problem statement

Traditional logistics rely heavily on manual labor, leading to inefficiencies such as slow delivery times, potential for human error, and high operational costs. The Smart Trolley project seeks to address these challenges by developing an autonomous goods transportation system for accurate navigation within dynamic environments.

Objectives

Eco-Friendly

Zero carbon emissions

Autonomous Navigation and Obstacle Avoidance

Intelligent obstacle avoidance, running more smoothly

Energy-Efficient

Uses a battery system optimized for long durations and quick recharging.

User Authentication and Security

Incorporates QR-based user authentication to access and control AUCUS.

Real-time Tracking and Monitoring

Provides real-time tracking of the AUCTUS'S location and status via web interface.

Interactive User Interface

Features an easy-to-use interface for setting up deliveries, monitoring status, and receiving notifications.

1. Navigation

2. Cost Efficiency

3. Security

4. Integration

5. Power Management

:: Literature Review

Starship

- Manufacturer: Starship Technologies
- Inception: 2015
- Speed: 4 mph
- Over 5 million autonomous deliveries now completed

:: Literature Review

Amazon Scout

- Manufacturer: Amazon Company
- Inception: 2019
- Goal: net zero carbon emissions by2040
- Available as amazon shipping option for prime members

::Literature Review

Postmates X

- Manufacturer: Nvidia with Uber Eats
- Inception: 2026
- Unlocking: phone or passcode
- 50 pounds of goods for 25 miles on a single charge

Services

Express Delivery

Supermarkets

Documents

Food/Drinks Delivery

• •

Robot Description

Z Sveta

System Operational Process

3

3D Model Design

4

Hardware Implementation

5

Software Implementation & Simulation

6

Web Interface

Robot Description

	Project	**	Parameter
	Machine Siz	е	Width 49 * L 62 * H41.5(cm)
	Storage Size	e	36*24*13 (cm)
N	Maximum Carry Capacity	ying	6Kg
	Velocity		2 km/h
	Network		Wifi
	Climbing		≤ 25°
	Batteries Capa	city	18Ah
P	erformance Pe	eriod	Continuous run for 1.5 hours
	Charging Inter	val	30 Mins

(Authentication)

Full robot view

Side view

Overhead view

Bottom view

LiDAR for autonomous navigation and mapping

4 Motorized custom wheels with encoders

AUCTUS

Touch screen for interaction and authentication

Front lights for low light adaption

Hardware Implementation

Auto lock basket with high security

Back lights for stop warning

Charger Plug and On/Off switch

Name	Company	Price
LattePanda Delta 3	lattepanda	17,000 L.E

Name	Company	Price
Lidar A1M8	Slamtes	9,500 L.E

3. Hardware Implementation

Name	Company	Price
Adafruit 9-DOF Absolute Orientation IMU	Adafruit	4,000 L.E

3. Hardware Implementation

Name	Company	Price
Arduino mage	Arduino	1,300 L.E

3. Hardware Implementation

Name	Company	Price
HW-039	Original	4,000 L.E

Name	Company	Price
Motor 12V 32RPM 40Kg.cm with Encoder	Generic	1,100 L.E

3. Hardware Implementation

Name	Company	Price
FT5835M 35.5kg Metal Gear Digital Servo	FeeTech	3,000 L.E

3. Hardware Implementation

Name	Company	Price
batter 12v 9A	Ultracell	1,100 L.E

3. Hardware Implementation

Name	Company	Price
DC-DC Buck Converter	Generic	200 L.E

Name	Company	Price
Fabricated Body (Fiber)	custom made	8,000L.E

Proposed model : Hardware Implementation

Components

Name	Company	Price
wheel	custom made	1,000 L.E

- ROS Melodic
- SLAM Algorithm
- Obstacle Avoidance
- Communication with Arduino

Software Implementation

- Path Planning (Global, Local)
- Mapping and Localization

Proposed model : Software Implementation

SLAM (Simultaneous Localization and Mapping) Algorithm

- Unknown environments
- Integrates sensor data
- Estimating location (Using sensor fusion)

Proposed model:

Software Implementation

Obstacle Avoidance

- Sensor Fusion
- Obstacle Mapping

Proposed model : Software Implementation

Communicating with Arduino

- Serial Communication through UART
- Data Exchange and Control

Proposed model: Simulation

Proposed model: Simulation

Proposed model: Simulation

Proposed model: Simulation

Proposed model: Web Interface

http://www.cai.aast.edu/auctus

Achievements

The robot received a grant of 60,000 L.E. from the Academy of Scientific Research and Technology (ASRT).

Our team

Thank you!

