Day 3, Session 2: Advanced Pandas & Funnel Analysis

Three-Day Data Analysis with Python Course

Session Overview

- 1. Merging and Joining Datasets
- 2. Advanced Grouping and Pivoting
- 3. Time Series Basics
- 4. Punchline: Funnel Analysis

Part 1: Merging and Joining Datasets

Why Merge Datasets?

Real-world data is often split across multiple tables:

- Customers table (id, name, email, signup_date)
- Orders table (order_id, customer_id, order_date, amount)
- Products table (product_id, name, category, price)

To answer business questions, you need to combine them!

Example: "Which customers spend the most on electronics?"

→ Requires joining Customers + Orders + Products

Sound familiar? It's like SQL JOINs!

Pandas Merge: Like SQL JOIN

Join types (same as SQL):

- inner: Only matching rows from both tables
- left: All from left, matching from right
- right : All from right, matching from left
- outer : All rows from both tables

Merge Example

```
# Customers table
customers = pd.DataFrame({
    'customer_id': [1, 2, 3],
    'name': ['Alice', 'Bob', 'Carol'],
    'city': ['NYC', 'LA', 'Chicago']
})
# Orders table
orders = pd.DataFrame({
    'order_id': [101, 102, 103, 104],
    'customer_id': [1, 1, 2, 4], # Note: customer 4 doesn't exist!
    'amount': [100, 150, 200, 250]
})
# Inner join (only matching customers)
merged = pd.merge(customers, orders, on='customer_id', how='inner')
```

Albert Result: 13trows: (Alice thas 22 orders, Bob has 1, Carol has none, customer 4

Different Join Types

```
# Left join (all customers, matching orders)
left_merged = pd.merge(customers, orders, on='customer_id', how='left')
# Result: Carol appears with NaN order_id and amount

# Right join (all orders, matching customers)
right_merged = pd.merge(customers, orders, on='customer_id', how='right')
# Result: order from customer 4 appears with NaN name and city

# Outer join (all customers AND all orders)
outer_merged = pd.merge(customers, orders, on='customer_id', how='outer')
# Result: Carol AND customer 4 both appear
```

Choose based on your analysis needs!

Merging on Different Column Names

```
# When join keys have different names
     customers = pd.DataFrame({
         'id': [1, 2, 3],
         'name': ['Alice', 'Bob', 'Carol']
     })
     orders = pd.DataFrame({
         'order_id': [101, 102],
          'cust_id': [1, 1], # Different name!
          'amount': [100, 150]
     })
     # Specify left_on and right_on
     merged = pd.merge(
         customers,
         orders,
         left_on='id',
         right_on='cust_id',
         how='inner'
Alberto Dámara - Data Analysis with Python - 2025-10-29
```

Merging on Multiple Columns

```
# Join on multiple keys
sales = pd.DataFrame({
    'date': ['2024-01-01', '2024-01-01', '2024-01-02'],
    'region': ['East', 'West', 'East'],
    'sales': [1000, 1500, 1200]
})
targets = pd.DataFrame({
    'date': ['2024-01-01', '2024-01-02'],
    'region': ['East', 'East'],
    'target': [1100, 1300]
})
# Merge on both date AND region
merged = pd.merge(sales, targets, on=['date', 'region'], how='left')
```

Useful when composite keys uniquely identify rows

Concatenating DataFrames

Concatenation: Stacking DataFrames vertically or horizontally

```
# Stack DataFrames vertically (append rows)
df1 = pd.DataFrame({'A': [1, 2], 'B': [3, 4]})
df2 = pd.DataFrame({'A': [5, 6], 'B': [7, 8]})

result = pd.concat([df1, df2], ignore_index=True)
# Result: 4 rows, columns A and B

# Stack horizontally (add columns)
result = pd.concat([df1, df2], axis=1)
# Result: 2 rows, columns A, B, A, B (duplicates!)
```

Use concat when columns match and you want to combine datasets from same source

Merge vs Concat vs Join

Operation	Use Case	Example
merge()	Combine based on key column(s)	Join customers and orders
concat()	Stack same-structure DataFrames	Combine monthly exports
<pre>join()</pre>	Merge on index	Quick index-based joins

Most common: merge() for relational data

Part 2: Advanced Grouping and Pivoting

Pivot Tables

Pivot table: Reshape data to show relationships between categories

Like Excel pivot tables but more powerful!

```
# From long format to wide format
sales = pd.DataFrame({
    'date': ['2024-01', '2024-01', '2024-02', '2024-02'],
    'region': ['East', 'West', 'East', 'West'],
    'sales': [1000, 1500, 1200, 1800]
})
pivot = sales.pivot(index='date', columns='region', values='sales')
```

Result:

```
region East West
date
<sup>Alberto</sup> 2024-01<sup>ta An</sup> 1000<sup>th</sup> 1500<sup>- 2025-10-29</sup>
```

Pivot Table with Aggregation

```
# When you have duplicate combinations, use pivot_table with aggregation
data = pd.DataFrame({
    'date': ['2024-01', '2024-01', '2024-01', '2024-02'],
    'region': ['East', 'West', 'East', 'East'],
    'sales': [1000, 1500, 800, 1200]
})
# Aggregate with mean (or sum, count, etc.)
pivot table = data.pivot table(
    index='date',
    columns='region',
    values='sales',
    aggfunc='sum', # or 'mean', 'count', etc.
    fill_value=0 # Replace NaN with 0
```

Result: East column shows 1800 for 2024-01 (sum of 1000 + 800)

Practical Pivot Table Example

```
# Sales by region and product category
sales_data = pd.DataFrame({
    'region': ['East', 'West', 'East', 'West', 'East'],
    'category': ['Electronics', 'Clothing', 'Electronics', 'Clothing', 'Home'],
    'revenue': [5000, 3000, 4500, 3500, 2000]
})
pivot = sales_data.pivot_table(
    index='region',
    columns='category',
    values='revenue',
    aggfunc='sum',
    fill value=0
```

Business question answered: "What categories perform best in each region?"

Crosstabs

Crosstab: Like pivot table but for counting frequencies

```
# Count occurrences of category combinations
orders = pd.DataFrame({
    'customer_tier': ['Gold', 'Silver', 'Gold', 'Bronze', 'Silver'],
    'product_category': ['Electronics', 'Clothing', 'Electronics', 'Home', 'Clothing']
})

crosstab = pd.crosstab(
    orders['customer_tier'],
    orders['product_category']
)
```

Result: Table showing count of each tier-category combination

Add percentages:

```
pd.crosstab(df['tier'], df['category'], normalize='index') # Row percentages
```

Multi-Index DataFrames

Multi-index: Multiple levels in row or column index

```
# GroupBy with multiple columns creates multi-index
grouped = df.groupby(['region', 'product'])['sales'].sum()

# Result has two-level index
# region product
# East A 1000
# B 1500
# West A 1200
# B 1800
```

Accessing multi-index data:

```
grouped.loc['East']  # All products in East
grouped.loc['East', 'A'] # Specific combination
```

Resetting Multi-Index

Flatten multi-index to regular columns:

```
# Multi-index from groupby
grouped = df.groupby(['region', 'product'])['sales'].sum()

# Reset index to regular DataFrame
flat = grouped.reset_index()

# Now you have columns: region, product, sales
```

Use this when:

- You want to merge with other DataFrames
- You need to filter or sort by the index columns
- You want to export to CSV/Excel

Window Functions

Window functions: Calculate rolling statistics

```
# Rolling average (moving average)
df['rolling_avg'] = df['sales'].rolling(window=7).mean()

# Rolling sum
df['rolling_sum'] = df['sales'].rolling(window=30).sum()

# Expanding window (cumulative)
df['cumulative_sum'] = df['sales'].expanding().sum()
```

Use cases:

- Smooth out noise in time series
- Calculate moving averages (7-day, 30-day)

Window Function Example

```
# Daily sales with 7-day moving average
sales = pd.DataFrame({
    'date': pd.date_range('2024-01-01', periods=30, freq='D'),
    'sales': [1000, 1100, 950, 1200, 1150, 1300, ...] # 30 days
})

# Calculate 7-day moving average
sales['7day_avg'] = sales['sales'].rolling(window=7).mean()

# First 6 rows will be NaN (not enough data for window)
# Row 7 onward: average of current + previous 6 days
```

Great for smoothing noisy data and identifying trends!

Part 3: Time Series Basics

Working with Datetime Data

Remember from Day 2: pd.to_datetime() converts strings to datetime

```
df['date'] = pd.to_datetime(df['date_string'])
```

Now you can use the .dt accessor:

```
df['year'] = df['date'].dt.year
df['month'] = df['date'].dt.month
df['day'] = df['date'].dt.day
df['day_of_week'] = df['date'].dt.day_name()
df['quarter'] = df['date'].dt.quarter
df['hour'] = df['date'].dt.hour # If datetime includes time
```

Datetime Filtering

```
# Filter by date range
jan_sales = df[(df['date'] >= '2024-01-01') &
               (df['date'] < '2024-02-01')]
# Filter by year
sales_2024 = df[df['date'].dt.year == 2024]
# Filter by month
january = df[df['date'].dt.month == 1]
# Filter by day of week (0=Monday, 6=Sunday)
weekends = df[df['date'].dt.dayofweek >= 5]
```

Pandas understands date comparisons!

Resampling Time Series

Resampling: Aggregate data by time period

```
# Daily sales → Monthly sales
daily_sales = pd.DataFrame({
    'date': pd.date_range('2024-01-01', periods=365, freq='D'),
    'sales': np.random.randint(800, 1500, 365)
})
# Set date as index (required for resample)
daily_sales = daily_sales.set_index('date')
# Resample to monthly totals
monthly = daily_sales.resample('M').sum()
# Resample to weekly averages
weekly = daily_sales.resample('W').mean()
```

Time-based Aggregations

```
# Group by month
monthly_revenue = df.groupby(df['date'].dt.to_period('M'))['revenue'].sum()

# Group by year and quarter
quarterly = df.groupby([
    df['date'].dt.year,
    df['date'].dt.quarter
])['sales'].sum()

# Group by day of week
by_weekday = df.groupby(df['date'].dt.day_name())['sales'].mean()
```

Business insights:

- Which months have highest revenue?
- Is there a weekly pattern (weekends vs weekdays)?

Part 4: Funnel Analysis

The Punchline!

What is a Funnel?

Funnel: Sequential stages that users/customers go through

Example: E-commerce funnel

- 1. **Visit website** → 10,000 visitors
- 2. **View product** → 3,000 viewers (30%)
- 3. Add to cart \rightarrow 1,200 carts (40% of viewers)
- 4. **Purchase** → 600 purchases (50% of carts)

Conversion rate: Percentage moving from one stage to the next

Why it matters: Identify where customers drop off!

Business Value of Funnels

Questions funnels answer:

- Where do we lose customers?
- Which stage has the lowest conversion?
- Which user segment converts best?
- Is our checkout process broken?

Actions you can take:

- Improve low-performing stages
- A/B test changes, allocate resources
- Measure impact of improvements

Building a Funnel with Pandas

Example: Customer lifecycle funnel

```
# Customer data with activity flags
    customers = pd.DataFrame({
         'customer_id': range(1, 1001),
         'registered': True,
         'first_purchase': [True] * 600 + [False] * 400,
         'repeat_purchase': [True] * 300 + [False] * 700,
         'loyal_customer': [True] * 150 + [False] * 850
    })
      Count customers at each stage
    funnel = {
         'Registered': customers['registered'].sum(),
         'First Purchase': customers['first_purchase'].sum(),
         'Repeat Purchase': customers['repeat_purchase'].sum(),
         'Loyal Customer': customers['loyal_customer'].sum()
Alberto Cámara - Data Analysis with Python - 2025-10-29
```

Calculating Conversion Rates

```
# Funnel stages
funnel_data = pd.DataFrame({
    'stage': ['Registered', 'First Purchase', 'Repeat', 'Loyal'],
    'count': [1000, 600, 300, 150]
})
# Calculate conversion rates (% from previous stage)
funnel_data['conversion_rate'] = (
    funnel_data['count'] / funnel_data['count'].shift(1) * 100
# Overall conversion (from first to last stage)
overall_conversion = (150 / 1000) * 100 # 15%
```

Insights:

• Registration → First purchase: 60%

Alberto Cámara - Data Analysis with Python - 2025-10-29

• First → Repeat: 50%

Visualizing Funnels with Plotly

```
import plotly.graph_objects as go

fig = go.Figure(go.Funnel(
    y=['Registered', 'First Purchase', 'Repeat Purchase', 'Loyal'],
    x=[1000, 600, 300, 150],
    textinfo='value+percent previous'
))

fig.update_layout(title='Customer Lifecycle Funnel')
fig.show()
```

Result: Beautiful funnel chart showing drop-offs at each stage!

Segmented Funnel Analysis

Compare funnels across segments:

```
# Funnel by customer segment
segments = ['Premium', 'Standard']
for segment in segments:
    segment_data = customers[customers['tier'] == segment]
    funnel = {
        'Registered': len(segment_data),
        'First Purchase': segment_data['first_purchase'].sum(),
        'Repeat': segment_data['repeat_purchase'].sum(),
        'Loyal': segment_data['loyal_customer'].sum()
    print(f"{segment} funnel:", funnel)
```

Real-World Funnel Example

E-commerce checkout funnel:

```
# Event-based data
events = pd.DataFrame({
    'user_id': [1, 1, 1, 2, 2, 3, 3, 4],
    'event': ['view', 'cart', 'purchase', 'view', 'cart', 'view', 'cart', 'purchase', 'view']
})

# Count unique users at each stage
funnel = {
    'Viewed Product': events[events['event'] == 'view']['user_id'].nunique(),
    'Added to Cart': events[events['event'] == 'cart']['user_id'].nunique(),
    'Purchased': events[events['event'] == 'purchase']['user_id'].nunique()
}

# Result: 4 viewed, 3 added to cart, 2 purchased
```

Combining Everything

Funnel analysis uses all the skills we've learned:

- 1. **Data Cleaning** Handle missing events, deduplicate
- 2. **Merging** Join user properties with event data
- 3. **Grouping** Count users at each stage
- 4. **Time Series** Track funnel changes over time
- 5. **Visualization** Communicate findings

This is how you do real data analysis!

Session 2 Summary

- ✓ Merging: Combine datasets like SQL JOINs
- ✓ Pivot Tables: Reshape data for analysis
- ✓ Time Series: Extract datetime features, resample
- ✓ Funnel Analysis: Measure conversion through stages

Key Takeaways

- 1. Merge datasets to enrich your analysis (inner, left, right, outer)
- 2. **Pivot tables** reshape data for easy comparison
- 3. .dt accessor unlocks datetime analysis
- 4. Funnels measure conversion and identify drop-offs
- 5. **Combine techniques** to answer complex business questions

These are the advanced tools that separate analysts from experts!

Questions?

Break time!

Then: Practical Session - E-commerce Analytics Capstone Project

Put everything together in a real-world analysis!