# **Introduction to Decision Trees**

Nicole Donnelly

### **LEARNING OBJECTIVES**

- Define decision trees
- Determine when a decision tree is appropriate

#### DATA SCIENCE WORKFLOW



# DATA SCIENCE WORKFLOW

# DATA SCIENCE WORKFLOW



| Supervised | Non-parametric | Hierarchical |
|------------|----------------|--------------|
|            |                |              |
|            |                |              |
|            |                |              |





#### Supervised

We model our data with known target values.

#### Non-parametric

We start with no assumed parameters such as distribution or error. We do not have coefficients to tune.

#### Hierarchical

We are predicting a target value via recursive splits in a top-down fashion. This essentially acts like a series of if-then statements.



# IS THIS A SCIENTIST?



# IS THIS A SCIENTIST?



# IS THIS A SCIENTIST?

| NAME     | ZAPPED | PULL_AGAIN | SCIENTIST |
|----------|--------|------------|-----------|
| Nicole   | Yes    | Yes        | 1         |
| Cow Girl | Yes    | No         | 0         |
| Hugo     | Yes    | No         | 0         |
| Vince    | Yes    | Yes        | 1         |

**Decision Tree Terminology** 

**ROOT Node:** The entire population or sample, which is divided into two or more homogeneous sets

**Splitting:** Dividing a node into two or more subnodes

**Decision Node:** A node with further sub-nodes

Leaf/ Terminal Node: A node without a split

**Pruning:** Remove sub-nodes of a decision node, the opposite process of splitting

Branch / Sub-Tree: Sub-section of a tree

**Parent and Child Node:** Describes the relationship between two nodes

**Directed Acyclic Graph:** Another name for our tree



Note:- A is parent node of B and C.

From http://www.analyticsvidhya.com/blog/2015/01/decision-tree-simplified/

#### YOU DO: WORK IN PAIRS TO DRAW A DECISION TREE

- TAKE 5 MINUTES
- Some data ideas
  - Iris data
  - Titanic data
  - Will I (ride my bike | play tennis)- temperature, sun, wind, rain

- You may also hear Decision Trees referred to as CART
- CART stands for Classification and Regression Tree
- CART is one algorithm used to implement Decision Trees
- CART is the underlying algorithm used in scikit-learn
- Other Decision Tree algorithms include:
  - ID3 (Iterative Dichotomiser 3)
    - C4.5
    - o C5.0

# Some Advantages



#### Some Advantages

- Simple to understand, interpret and visualize
- Requires little data preparation
- We can mix numeric and categorical data and have multiple outputs
- White Box we can observe the model and explain it with boolean logic
- We can validate our model with statistical tests.

# Some Disadvantages

#### Some Advantages

- Simple to understand, interpret and visualize
- Requires little data preparation
- We can mix numeric and categorical data and have multiple outputs
- White Box we can observe the model and explain it with boolean logic
- We can validate our model with statistical tests.

# Some Disadvantages

- Overfitting we can have an overly complex tree that doesn't adequately generalize data
- Unstable small variations in data can produce different trees
- There are concepts that are too hard for Decision Trees to learn
- If one class is dominant, the Decision Tree can be biased
- Greedy
- Based on heuristic algorithms with locally optimal decisions made at the nodes

#### Why use Decision Trees?

Decision Trees are the foundation for ensemble methods, which mitigate many of their disadvantages (Bagging, Boosted Trees, Random Forest)

### How are they used?

BP's GasOIL system for separating gas and oil on offshore platforms - decision trees replaced a hand-designed rules system with 2500 rules. C4. 5-based system outperformed human experts and saved BP millions.

Try this <u>Decision Tree</u> <u>Visualization</u>