Group & Subgroups:

Unary operation - of set all 2321 variable forther operation of

Binary operation > 35 variable 30 set all fater operation site रुउटा value दिन्द त्यहि set मा पर्ने /.

A binary operation on a set 5 18 simply represented by symbol * (astHk) or o (circle) etc.

Example 1: Consider the set Z/+= {1,2,3,...}

@ under operation '+'.

B under subtraction -.

@ Clearly, addition (sum) of two positive integers is again a positive integer.
i.e., ta, b & Z/t, a+b & Z/t.

Hence , + 48 a binary operation on zit.

Clearly, there exist 1,2 EZI+ such that 1-2=-1 \ ZI+. operation. Hence - 18 not a binary operation on ZIT.

Note: द कोनर देखाउन पर for all (म) हुनुपर्द देन कोर

Some Properties:

9) Closure property -> Any operation * defined on a non-empty set S 18 said to satisfy closure property of tables, a*b &S. For example the set 2/of integers is closed under addition.

Associative property -> An operation * defined on set S 18 said to satisfy associative property if traib, c ES, a*(b*c) = (a*b)*c.

For example: The operation it satisfies associative property

Commutative property: An operation * on a set = 48 said to satisfy communative property of Halbes, a*b=b*a. My Existence of identity: Let * be a binary operation on S. We say existence of identity holds on 5 under * of J an element e ES such that $\forall a \in S$ $a \neq e = a = e \neq a$. Example. Consider the set 2 of integers under the operation +, We see that fe=0 & 21 such that the 62/3 i. Existence of identity holds. V) Existence of inverse: Let > be a binary operation on S with identity element e. We say existence of inverse holds on S under * if ta ES, Ja = ES such that Then e=0 is identify element.

Almo $a^* \bar{a}^1 = e = a^1 * a$. Now, $\forall a \in \mathbb{Z}_{5}$ $\exists a^{-1} = -a \in \mathbb{Z}_{.}$ such that a+(-a)=0=-a+i. ... Existence of inverse holds.

IN -> represents set of natural numbers.

2+ -> represents set of positive integers.

Z -> set of negative integers.

Z/ -> Set of all integers.

Q = 2/9: p,q EZ/39 +0} set of rational numbers.

(R-> Set of all real numbers. (=> {a+b1: a,b & R} Set of all complex numbers.

Example 1: Determine whether a*b = ab+1 defined for all @ Commutative

(b) Associative.

Consider the set Q of rational numbers under operation a* b = ab+1 on Q. @. We see that, + a,b & Q, = ba+1 (: multiplication +8 commutative on a) . . * 18 commutative on Q. 1 We see that, I 1,2,3 EQ such that 1* (2*1)=1*(2.3+1)=1*7=1.7+1=8 and (1*2)*3 = (1.2+1)*3 = 3*3 = 3.3+1=10. Example 2: Determine whether * +8 binary operation on given sets. Solm of Consider a*b = a-b on Zi Heres We see that $\forall a,b \in \mathbb{Z}_3$ $a * b = a - b \in \mathbb{Z}_3$. Closure property hold. Hence * ("difference of two integers)

98 binary operation \mathbb{Z}_3 . 11/ Consider a*b = ab on Z/+ Here, We see that $+a_1b_1b_2t_1$ [: Positive integer power of a*b=ab EZ_1 [positive integer 18 also tre integer). . . * 98 binary operation on Z_1 . Soft We see that, tab fir, a*b = a-b & IR. ("difference of two real numbers is also an real number eix Considerate = c where c 48 at least 5 more than a+b, defined on 2+ The operation 98 not well defined since 1*2 = 1 + 2 + 5 Not unique value and also, 12 may be 1+2+6 Not unique value. It is not binary operation. V) Consider a*b=c, where c 18 smallest integer greater than a dib, defined on 2/t

Sol Here,

Scanned with CamScanner

Consider Z/+= \ 1,2,3,4,...? under given operation. We see that it alb. EZI+, a*b= (smallest integer)= 2+ Side work 1*2=smallest [a*b=max {a1b3+1 62+ ent greater than 1/2 Similarly . . * 18 a binary operation on 21+ 1*1=2 2*10=11. Example 3: Determine whether given binary operation * 18 Commutative or associative on given sets.

O. Given a*b=a-b on Z. For commutative
We see that J 1,2 & Z such that 1*2=1-2=-17
and 2+1=2-1=15 ity.1*2 \ \ 2*1.

* Is not commutative on Z! For associative We see that J1,2,3 & Z/ such that, 1*(2*3)=1*(2-3)=1-(+2-3) Sidework and (1*2)*3=(1-2)*3=1*3=-1-3= a-(b-c)=a-b+c 1.5 1* (2*3)+(1*2)*3 (a-b)-c=a-b-c.'. * 18 not associative on Z1. Given a*b = ab on set Q. Sol For commutative Side work We see that ta, b & Q, a*b=ab a*b=ab? regual b*a = <u>ba</u> di p*a = ba - since multiplication of rational |
numbers 18 commutative i. * 98 commutative on Q

Scanned with CamScanner

For associative We see that + app, c & a, $a*(b*c) = a*(\frac{bc}{2})$ and (a *b)*c = (3b)*c = abc4.e, a* (b*c) = (a*b)*c .'. * 18 associative on Q.

$$a*(b*c) = a*bc$$

$$= a(bc)$$

$$= abc$$

$$(a*b)*c = (ab)*c$$

$$= abc$$

$$= abc$$

$$= abc$$

(c). Given a*b = 2ab on Z/+

For commutative We see that, ta, beZ'ts a*b = 2ab? equal. b*a = 2ba? equal.

4.6 a*b=b*a.

(:multiplication is)
commutative on ZI+)

. * is commutative on 21t.

for associative We see that, 71,2,3 & Z/+ such that 1*(2*3)=1*22.3=1*64 =21.64

and $(1*2)*3 = (2^{1/2})*3 = 4*3$

4.es 1*(2*3) +(1*2)*3. * # 98 not associative on Z1+

62=2ba

side work

a*b=20b

Exam AT a,b,c fatalt story ATT ATTER.

So, a,b,c fatalt story ATT ATTER.

So, a,b,c seperate question

So, a,b,c seperate question

Example 4: For a, b & Z', define a*b = ab that Z +8 not closed under *. Also show that set E of even integers +3 closed under *.

Soln

1st part > Consider the operation a*b = ab on Z!

Ne see that II 2000 11 We see that, 7+1367 such that 1*3=1.3 .'. Z1 18 not dosed under *. 2nd part -> Consider axb=ab on set, F= \ 0, ±2, ±4, ±6,...} "a=2m & b=2n being even We see that ta, b & E, a* b=ab & E

i. Set E of even integers #8 closed

under to. even. Sq ab = (2m)(2n) main are integer so on multiplying integers by 2 we get even Example 5. Show $S=Q-SO_f$ is commutative, associative or not under $x * y = x_y$. Soln For commutative we see that J 4,56 S. such that, 4*5= 45? Not equal. and 5*4=5/4 XXY = Try y*x = y/x. vieg 4*5 \$ 5*4 . . * is not commutative on S.

For associative

We see that $f_1, 2,3 \in S$.

Such that $1*(2*3)=1*(2_3)=\frac{1}{(2_3)}=\frac{3}{2}$ Not a*(b*c)=a*bc and $(1*2)*3=(\frac{1}{2})*3=\frac{1}{2}3=\frac{1}{2}$ Sequal.

Yies $1*(2*3) \neq (1*2)*3$. =a*bc =a*b

Example 6: Consider set Q of rationals under 1 x *y = 344 For commutative
We see that +x, y + Q and $y*x = \frac{x+y}{3}$ equal [: Addition is commutative] rie, x*y = y*x i', * 18 commutative on Q.

For associative
We see that 7 21213 & Q such that and $(1*2)*3 = 1* (2\frac{13}{3}) = (1+\frac{1}{3}) = \frac{1}{3}) = \frac{1}{3} \\ \frac{1}{3} = \frac{1}{3} = \frac{1}{3} = \frac{1}{3} = \frac{1}{3} \\ \frac{1}{3} = \frac{1}{3} = \frac{1}{3} = \frac{1}{3} \\ \frac{1}{3} = \frac{1}{$... * is not associative on Q.

x*(y*2)=x* (42) =X+(\frac{43+2}{3+2}) =3x+y+2(2*y)*z = (3+4)*z $=\frac{344}{30}+2$ $= \frac{2+y+3z}{9}$

(A) Algebraic Structure:

A non-empty set S together with one or more binary operations on it is called an algebraic structure. If S is algebraic structure with * we denote it by (S, *). If S is algebraic structure with * and , we denote it by (S, *, .)

Definition of Group: A non-empty set Gr together with binary operation *
18 said to form a group of the following four properties are satisfied.

18 Closure property: * A a 16 & Gr, a * 66. property: traibic & a* (b*c)=(a*b)*c erry Existence of identity: I an element e & G such that a*e = a = e*a + a & G. gry Excistence of inverse: Ha EG, Fa-1 EG such that $a * a^{-1} = 1 = a^{-1} * a$.

Example: Show that the set Z/18 a group under usual addition operation.

Solution: Consider set Z/= \{0, \pm 1, \pm 2, \pm 3, \ldots \} of all integers under addition +? Closure property. We see that Haib &Z, a+b & Z. (:: Sum of two) integers is also . '. Clasure property holds. · . Clasure property holds. 1P) Associative property: We see that + a,b, C \(Z'\). a + (b + c) = (a + b) + C.iv) Existence of inverse: We see that, ta EZ's Fa=-a EZ', such that, a+(-a)=0=-a+ai. -a is inverse of a, ta EZ! All the four properties are hold. Hence (Z/3+) -18 a group. Coyley's table: It is a table that contains all possible results of an operation on a finite set. More precisely, we the following example.

Example: - Construct Cayley's table for addition on \$-1,0,1}. Consider S={-1,0,1} under addition. Cayley's table

Important One Additional Question: - G= {1 3-13-93-9} 48 a group of order 4. Solve 9t. [Kec publication book, example, no. 25, page no 238].