# Disclosing to informed investors

Snehal Banerjee

UC San Diego

Iván Marinovic

Stanford University

**Kevin Smith** 

Stanford University

October 2021

### Prices reflect information from multiple sources

Private information dispersed across investors

Strategic public disclosures by firms

Previous analysis focuses on one or the other, but misses the interaction

- How do strategic disclosures depend on investor information?
- How well do prices reflect fundamentals?

Especially important for empirical and policy analysis

#### What do we do?

Model of voluntary disclosure with risk averse, privately informed investors

- Manager may be uninformed / disclosure may be costly

#### Key questions:

- How do disclosure strategy and informed trading depend on each other?
- How well do prices aggregate and reflect information?
- What is the impact of exogenous public signals on disclosures / trading?

Challenge: Voluntary disclosure breaks "linearity" of equilibrium

#### What do we find?

Characterize conditions under which there exists a threshold equilibrium

- Firm discloses if and only if they have sufficiently good news

Firm is "mis-valued" relative to expected cash flows

- Firm is **undervalued** when disclosure is costly
- Firm is **overvalued** when manager may not be informed

Public information can **crowd in** more disclosure, contrary to common wisdom

- Important for regulatory policy

#### **Related Literature**

Voluntary disclosure: Jovanovic (1982), Verrecchia (1983), and Dye (1985)

- Investors are uninformed, risk neutral, or both
- Risk-averse and uninformed: Verrecchia (1983), Cheynel (2013), Jorgensen and Kirschenheiter (2015), and Dye and Hughes (2018)
- Risk neutral and informed: Bertomeu, Beyer, and Dye (2011), Petrov (2016); Einhorn (2018) Kyle model

**Dispersed information models:** Disclosure is either exogenous or nondiscretionary i.e.,

firm commits to disclosure policy

- Rational expectations: Hellwig (1980), Admati (1985)
- Commitment to disclosure: Goldstein and Yang (2019), Yang (2020), Schneemeier (2019), Cianciaruso, Marinovic, and Smith (2020)

#### Non-linear noisy REE techniques: Breon-Drish (2015)

- Banerjee Green (2015), Albagli Hellwig Tsyvinski (2015), Chabakauri Yuan Zachariadis (2017), Glebkin (2015), Smith (2019)...

# **Model Setup**

# Payoffs, Preferences, Signals

"standard noisy RE setup" (e.g., Hellwig)

Risk-free asset is numeraire

Risky asset pays off terminal cash flows  $v \sim N(m, \sigma_v^2)$ , where m = 0 WLOG

Aggregate supply is  $\kappa \geq 0$ 

Noise traders demand  $z \sim N(0, \sigma_z^2)$  shares

Continuum of CARA investors, with risk tolerance  $\tau$ 

Investor  $i \in [0,1]$  observes "truth plus noise" signal:

$$s_i = v + \varepsilon_i$$
, where  $\varepsilon_i \sim N(0, \sigma_{\varepsilon}^2)$ 

#### **Disclosure frictions**

Manager observes v with probability  $p \in [0,1]$  and can disclose it at a cost  $c \ge 0$ At least one of p < 1 or c > 0 must hold, else unravelling (all firms disclose)

#### "Costly Disclosure Benchmark" (c > 0, p = 1)

Verrecchia (1983)

- Information is useful to competitors
- e.g., Redactions in IPO filings, discussions of strategic plans in conf. calls

#### "Probabilistic Information Benchmark" (c = 0 p < 1) Dye (1985)

- Information arrival is stochastic
- e.g., Clinical trial / R&D outcomes, disputes with contracting parties

#### **Timeline**



t = 1

 $\begin{array}{l} \text{Manager observes } v \\ \text{with probability } p \\ \text{chooses } d \in \{D, ND\} \end{array}$ 

t = 2

 $egin{aligned} ext{Investor} \ i \ ext{observes} \ s_i \ ext{submits demand} \ D(s_i, s_p, P) \ ext{market clears at} \ P \in \{P_D, P_{ND}\} \end{aligned}$ 

t = 3

Firm pays v

# **Analysis**

# Threshold Equilibrium

#### Equilibrium characterized by:

- Disclosure strategy is optimal i.e,. disclose iff  $P_D c \ge \mathbb{E}[P_{ND} | v]$
- Investor demand maximizes expected utility, given information  $\{s_i, P, d\}$
- The equilibrium price clears the market i.e.,

$$\int_i D(s_i,P,d)di + z = \kappa$$

Search for a **threshold equilibrium**: disclose iff  $v \ge T$  for a threshold T

- if disclosed,  $P = P_D = v$
- if not disclosed, either (i) manager is uninformed,
  - (ii) manager is informed and v < T

## Generalized linear equilibrium

Given non-disclosure, v is the mixture of a normal and truncated normal

- Standard equilibrium (price is a linear signal of payoff) is not possible!

We solve for the **generalized linear equilibrium** (Breon-Drish, 2015):

$$P_{ND}(v, z; T) = G(v + \beta z)$$

for an increasing function G() and constant  $\beta$ 

- $\Rightarrow$  Price can be inverted to get a **linear signal**  $s_p = v + \beta z$
- ⇒ Tractable for investor updating

## Result 0: Non-disclosure price is a weighted average

In a threshold equilibrium with threshold T, the non-disclosure price is

$$P_{ND}(v, z; T) = \omega(s_p) \times P_U(v, z) + (1 - \omega(s_p)) \times P_I(v, z; T)$$

#### Weighted average of:

- Uninformed price  $P_U(v,z) = \int_i \mathbb{E}[v \, | \, s_i, s_p] di + \frac{\mathbb{V}[v \, | \, s_i, s_p]}{\tau} (z \kappa)$ Price if manager is known to be uninformed (standard, Hellwig price)
- Informed price  $P_I(v,z;T) = \mathbb{E}[v\,|\,v < T, s_i = s_p\,, s_p]$ Price if manager is known to be informed, reflects truncation at threshold T
- Weights reflect aggregate information,  $\omega(s_p)$  increases in  $s_p$

$$\omega(s_p) \equiv ext{Pr}( ext{not informed}) = \ rac{1-p}{1-p+p \ ext{Pr}(v < T \, | \, s_i \, = s_p, s_p)}$$

## Result 1: Threshold disclosure equilibrium

Suppose either p=1 or investors' information precision  $1/\sigma_{\varepsilon}^2+1/\sigma_p^2$  is sufficiently low. Then, there exists a unique threshold equilibrium in which the manager discloses if and only if  $v \geq T$ . The threshold satisfies:

$$T - c = \mathbb{E}[P_{ND}(T, z; T)]$$

Existence / uniqueness of threshold equilibrium trickier than usual:

- Non-disclosure price partially reflects cash flows, unlike standard models
- Need to ensure that  $\mathbb{E}[P_{ND} | v]$  doesn't increase too quickly otherwise, high cash flow managers may not want to disclose

### (Non) Existence of Threshold equilibria

Need net benefit of disclosure  $v - c - \mathbb{E}[P_{ND}(v, z; T | v)]$  to be increasing

- Guaranteed for costly disclosure benchmark (i.e., p = 1)
- When p < 1 and info. precision is high, a lot of uncertainty is resolved when  $v \approx T$   $\Rightarrow$  non-disclosure price can increase very quickly

Figure: Existence and non-existence of a threshold equilibrium. Solid line (p = 1); Dashed line (p < 1)





(a) Low Private Information ( $\sigma_{\varepsilon} = 0.75$ )

(b) High Private Information ( $\sigma_{\varepsilon} = 0.2$ )

# **Implications**

### Question: How well do prices reflect information?

Focus on the case where aggregate supply is zero, i.e.,  $\kappa = 0$ 

- Implies investors do not bear "systematic risk"
- Equivalent to focusing on disclosures of firm-specific information

Standard Intuition: Prices reflect (risk-adjusted) expected cash flows

- Standard noisy RE models without aggregate risk
- Standard voluntary disclosure models, since  $P_{ND} = \mathbb{E}[v | ND]$

Mispricing is interpreted as evidence of behavioral biases / frictions

#### Result 2: Overvaluation and Undervaluation

Conditional on no disclosure, the average price differs from expected cash flows

(i) In the costly disclosure benchmark (c > 0, p = 1), the firm is undervalued:

$$\mathbb{E}[P_{ND}] \le \mathbb{E}[v \,|\, ND]$$

(ii) In the **probabilistic info. benchmark** (c = 0, p < 1), when investor's private information is not too precise, the firm is **overvalued**:

$$\mathbb{E}[P_{ND}] \ge \mathbb{E}[v | ND]$$

This translates into unconditional mis-valuation, since the firm is correctly valued when there is a disclosure.

# Intuition: Asymmetric response to liquidity trades

Non-disclosure changes the conditional distribution of cash flows

⇒ Investors require different compensation for liquidity sells vs. buys

#### Costly disclosure case: $ND \equiv \{v < T\}$

i.e., payoffs are bounded above

- ⇒ Upside limited relative to downside
- ⇒ Buying from noise traders is riskier
- ⇒ Price is **concave** in noise trades
- ⇒ Expected price is **lower** than expected cash flows

#### Curvature of the Price (Costly Disclosure



## Intuition: Asymmetric response to liquidity trades

#### Probabilistic disclosure case:

$$ND \equiv \{v < T, ext{manager informed}\} \cup \{v, ext{manager uninformed}\}$$

i.e., non disclosure has some possibility of good news

- ⇒ When signals are noisy, there is "upside risk": low price but high cash flows
- ⇒ Short-selling to liquidity traders is risky
- ⇒ Prices pushed up on average
- ⇒ Expected price is **higher** than expected cash flows

Curvature of the Price (Probabilistic Info



# Implications of Misvaluation

Non-disclosure can generate over- / under- valuation without behavioral biases

Firm can have higher valuation when it **does not** disclose e.g., pharma / biotech firms delay or don't disclose clinical trial failures

Negative relation between average returns and idiosyncratic skewness

- Usually attributed to investors having non-standard preferences
- Arises naturally due to non-disclosure
  - Costly disclosure benchmark: payoffs are negatively skewed + firm is undervalued
  - Probabilistic info benchmark: payoffs are positively skewed + firm is overvalued

### Question: Does public information decrease disclosure?

Standard Intuition: Public information crowds out voluntary disclosure

More ex-ante public information

- ⇒ investors are less pessimistic about no-disclosure
- ⇒ firm has less incentive to disclose, especially if costly

Important for policy:

- Regulators propose mandatory disclosures to reduce investor uncertainty
- But firms / critics argue "crowding out" makes this counterproductive

Empirical evidence of the relation between public info and voluntary disclosure is mixed:

- **Negative:** Balakrishnan, Billings, Kelly, and Ljungqvist (2014), Guay, Samuels, and Taylor (2016), and Barth, Landsman, and Taylor (2017))
- **Positive:** Francis, Nanda, and Olsson (2008), Ball, Jayaraman, and Shivakumar

## **Ex-ante public signal**

Introduce an ex-ante public signal before disclosure / trading

$$y = v + \eta ~~ ext{where}~ \eta \sim Nig(0, \sigma_\eta^2ig)$$

Now the disclosure threshold depends on the public signal, so analogous equilibrium exists where the public signal shifts all participant's priors i.e.,

$$\mathbb{E}[v] o \mathbb{E}[v \,|\, y] \quad ext{and} \ \mathbb{V}[v] o \mathbb{V}[v \,|\, y]$$

**Lemma:** The equilibrium threshold depends linearly on the public signal i.e.,

$$T(y) = T(0) + \mathbb{E}[v \mid y]$$

and so the probability of disclosure does not depend on the realization of the public signal, but does depend on the precision of the public signal i.e.,  $1/\sigma_n^2$ 

#### Result 3: Public info can **crowd in** disclosure

#### Crowding in more likely when

(i) disclosure costs are high or (ii) public signal is relatively more precise



(a) Costly Disclosure Benchmark 
$$(p = 1, \sigma_{\varepsilon} = 0.75, \sigma_{z} = 1)$$



In addition to standard effect of public signal (which decreases incentives to disclose), two new channels:

**Valuation channel**: More precise public information reduces over-/under-valuation

- In the limit, if public signal were perfect, there would be no mis-valuation
- Reduces under-valuation in costly disclosure benchmark  $\Rightarrow$  less voluntary disclosure
- Reduces over-valuation in probabilistic info benchmark ⇒ more voluntary disclosure

Substitution channel: More precise public information

- ⇒ Less weight on private signals
- ⇒ Price is less informative if public signal is relatively noisy
- ⇒ Disclosure is more attractive for firm
- Costly disclosure benchmark: Substitution channel dominates valuation channel when disclosure is sufficiently costly ⇒ public signal crowds in voluntary disclosure
- **Probabilistic info benchmark:** Valuation channel ⇒ public signal crowds in voluntary disclosure

### Implications: Mandatory disclosure and overall informativeness

**Crowding out:** Mandatory disclosure can **reduce** overall informativeness when disclosure costs are low and manager is known to be informed

**Crowding in:** Mandatory disclosure **improves** overall informativeness when disclosure costs are high OR manager may not be informed - helps firms who need it!





# **Conclusions**

### Voluntary disclosure to informed investors

We develop a model to study how diverse, private information across investors affects voluntary disclosure by firms

- Prices can exhibit under- or over-valuation relative to expected cash flows
- Negative relation between expected returns and idiosyncratic skewness
- Public information can crowd in additional voluntary disclosure

Analysis emphasizes that identifying underlying reason for non-disclosure is key to understand empirical evidence / policy impact

Future work: Incentives for manager / investors to acquire information, endogenous investment decisions, other frictions that generate non-disclosure