# Natural Deduction for Predicate Logic

Bow-Yaw Wang

Institute of Information Science Academia Sinica, Taiwan

October 28, 2020

### Outline

- Predicate logic as a formal language
  - Terms
  - Formulae
  - Free and bound variables
  - Substitution
- 2 Proof theory of predicate logic
- Quantifier equivalences

# Syntax

- In our examples, there are two sorts of things:
  - ▶ B(x), M(x,y),  $B(x) \land \neg F(x)$  are formulae. They denote truth values;
  - y, paul, m(x) are terms. They denote objects.
- Hence a predicate vocabulary has three sets.
- $\mathcal{P}$  is a set of predicate symbols (B(x), M(x, y)) etc).
- $\mathcal{F}$  is a set of function symbols (m(x)) etc).
- C is a set of constant symbols (andy, paul etc).
- A function symbol  $f \in \mathcal{F}$  with arity n (or n-arity) takes n arguments.
- Observe that a 0-arity (or <u>nullary</u>) function is in fact a constant.
- Hence  $C \subseteq \mathcal{F}$ . We can ignore C for convenience.

### Outline

- Predicate logic as a formal language
  - Terms
  - Formulae
  - Free and bound variables
  - Substitution
- Proof theory of predicate logic
- Quantifier equivalences

### **Terms**

#### **Definition**

Terms are defined as follows.

- Any variable is a term;
- If  $c \in \mathcal{F}$  is a nullary function symbol, c is a term;
- If  $t_1, t_2, ..., t_n$  are terms and  $f \in \mathcal{F}$  has arity n > 0, then  $f(t_1, t_2, ..., t_n)$  is a term;
- Nothing else is a term.
- In Backus Naur form, we have

$$t := x \mid c \mid f(t, \ldots, t)$$

where  $x \in \text{var}$  is a variable,  $c \in \mathcal{F}$  a nullary function symbol, and  $f \in \mathcal{F}$  a function symbol with arity > 0.



#### **Terms**

- Let  $n, f, g \in \mathcal{F}$  be function symbols with arity 0, 1, and 2 respectively.
- g(f(n), n), f(f(n)), f(g(n, g(f(n), n))) are terms.
- g(n), f(n,n), n(g) are not terms.
- Let 0,1,... be nullary function symbols, and  $+,-,\times$  binary function symbols.
- $+(\times(3,x),1)$ ,  $+(\times(x,x),+(\times(2,\times(x,y))),\times(y,y))$  are terms.
- In infix notation, they are  $(3 \times x) + 1$ ,  $(x \times x) + ((2 \times (x \times y)) + (y \times y))$ .

### Outline

- Predicate logic as a formal language
  - Terms
  - Formulae
  - Free and bound variables
  - Substitution
- Proof theory of predicate logic
- Quantifier equivalences

#### Formulae

#### Definition

Formulae are defined as follows.

- If  $P \in \mathcal{P}$  is a predicate symbol with arity  $n \geq 1$ , and  $t_1, t_2, \ldots t_n$  are terms over  $\mathcal{F}$ , then  $P(t_1, t_2, \dots, t_n)$  is a formula;
- If  $\phi$  is a formula, so is  $(\neg \phi)$ ;
- If  $\phi$  and  $\psi$  are formulae, so are  $(\phi \land \psi)$ ,  $(\phi \lor \psi)$ , and  $(\phi \Longrightarrow \psi)$ .
- If  $\phi$  is a formula and x is a variable, then  $(\forall x \phi)$  and  $(\exists x \phi)$  are formulae:
- Nothing else is a formula.
- In Backus Naur form, we have

$$\phi \coloneqq P(t_1, \dots, t_n) \,|\, (\neg \phi) \,|\, (\phi \land \phi) \,|\, (\phi \lor \phi) \,|\, (\phi \Longrightarrow \phi) \,|\, (\forall x \phi) \,|\, (\exists x \phi)$$

where  $P \in \mathcal{P}$  is a predicate symbol of arity  $n, t_1, \ldots, t_n$  terms over  $\mathcal{F}$ , and  $x \in \text{var}$  a variable.

#### Convention

- It is very tedious to write parentheses.
- We will assume the following binding priorities.
  - $\rightarrow$  ¬,  $\forall x$  and  $\exists x$  (tightest)
  - ▶ ∨, ∧
  - ▶ ⇒ (right-associative and loosest)

#### Parse Tree



- A predicate logic formula can be represented as a parse tree.
  - $\forall x, \exists y \text{ are nodes};$
  - arguments of function symbols are also nodes.
- The above figure gives the parse tree of  $\forall x ((P(x) \Longrightarrow Q(x)) \land S(x,y)).$



## Example

### Example

Write "every son of my father is my brother" in predicate logic.

#### Proof.

Let *me* denote 'me', S(x,y) (x is a son of y), F(x,y) (x is the father of y), and B(x,y) (x is a brother of y) be predicate symbols of arity 2. Consider

$$\forall x \forall y (F(x, me) \land S(y, x) \implies B(y, me)).$$

Alternatively, let f(f(x)) is the father of x) be a unary function symbol. Consider

$$\forall x(S(x, f(me)) \Longrightarrow B(x, me)).$$

- Translating an English sentence into predicate logic can be tricky.
- Can you identify problem(s) in the example?



### Outline

- Predicate logic as a formal language
  - Terms
  - Formulae
  - Free and bound variables
  - Substitution
- Proof theory of predicate logic
- Quantifier equivalences

### Constants and Variables

- Let c, d be constants (nullary functions).
- Consider  $\forall x (P(x) \Longrightarrow Q(x)) \land P(c) \Longrightarrow Q(c)$ .
  - If P(x) implies Q(x) for all x and P(c) is true, then Q(c) is true.
- Intuitively,  $\forall y (P(y) \Longrightarrow Q(y)) \land P(c) \Longrightarrow Q(c)$  should have the same meaning.
- $\forall y (P(y) \Longrightarrow Q(y)) \land P(d) \Longrightarrow Q(d)$  is different.
  - We do not know if Q(c) is true.
- Things can get very complicated when there are several variables.
  - $\rightarrow \forall x((P(x) \Longrightarrow Q(x)) \land S(x,y))$
  - $\forall z ((P(z) \Longrightarrow Q(z)) \land S(z,y))$
  - $\forall y((P(y) \Longrightarrow Q(y)) \land S(y,x))$

#### Free and Bound Variables

#### Definition

Let  $\phi$  be a predicate logic formula. An occurrence of x in  $\phi$  is  $\underline{\text{free}}$  in  $\phi$  if it is a leaf node without ancestor nodes  $\forall x$  or  $\exists x$  in the parse tree of  $\phi$ . Otherwise, the occurrence of x is  $\underline{\text{bound}}$ . The  $\underline{\text{scope}}$  of  $\forall x$  in  $\forall x \phi$  is the formula  $\phi$  minus any subformula in  $\phi$  of the form  $\forall x \psi$  or  $\exists x \psi$ .



### Outline

- Predicate logic as a formal language
  - Terms
  - Formulae
  - Free and bound variables
  - Substitution
- Proof theory of predicate logic
- Quantifier equivalences

### Subsitution

- Variables denote objects in predicate logic.
- Hence variables can be replaced by terms (but not formulae).
  - Replace x in  $x \neq x + 1$  by 2 to get  $2 \neq 2 + 1$ .
  - What if we replace x by 2 = 2?
- However, bound variables should not be replaced.
- The variables x and y in  $\forall x\phi$  and  $\exists y\psi$  denote <u>all</u> or <u>some</u> objects respectively.
  - ▶ What if we replace x in  $\exists x(x=0)$  by 1?

#### Definition

Given a variable x, a term t and a formula  $\phi$ , define  $\phi[t/x]$  to be the formula obtained by replacing each free occurrence of x in  $\phi$  with t.

### Example

• Let  $\phi = (\forall x (P(x) \land Q(x))) \implies (\neg P(x) \lor Q(y))$ . Consider  $\phi[f(x,y)/x]$ .



$$(\forall x (P(x) \land Q(x))) \implies (\neg P(x) \lor Q(y))[f(x,y)/x]$$

# Variable Capture in Substitution

- Let  $\phi = \exists y (y < x)$  and  $\psi = \exists z (z < x)$ .
  - ${\bf \triangleright}$  Since  $\phi$  and  $\psi$  only differ in bound variables, they should have the same meaning.
- Consider  $\phi[(y-1)/x] = \exists y(y < y-1).$
- The variable y in y-1 is caught by the bound variable in  $\phi$ .
- Consider  $\psi[(y-1)/x] = \exists z(z < y-1).$
- The variable y in y-1 is not caught in the substitution  $\psi[(y-1)/x]$ .

#### **Definition**

Let t be a term, x a variable, and  $\phi$  a formula. t is  $\underline{\text{free for }} x$  in  $\phi$  if no free x leaf in  $\phi$  occurs in the scope of  $\forall y$  or  $\exists y$  for any variable y occurring in t.

• Examples: y - 1 is free for x in  $\exists z(z < x)$ ; y - 1 is not free for x in  $\exists y(y < x)$ .

### Example



- Consider  $\phi = S(x) \land \forall y (P(x) \implies Q(y))$  and t = f(y, y).
- $\bullet$  The two occurrences of x in  $\phi$  are free.
- The right occurrence of x in  $\phi$  is in the scope of  $\forall y$  and y occurs in t.
- t is not free for x in  $\phi$ .



# Substitution and Variable Capture

- When t is not free for x in  $\phi$ , the substitution  $\phi[t/x]$  is not desirable.
- However, we can always rename bound variables for substitution.
- When we write  $\phi[t/x]$ , we mean all bound variables in  $\phi$  are renamed so that t is free for x in  $\phi$ .
- Examples.
  - $\phi = \exists y (y < x)$  and t = y 1. t is not free for x in  $\phi$ . Rename the bound variable y to z and obtain  $\psi = \exists z (z < x)$ . t is free for x in  $\psi$ .
  - $\phi = S(x) \land \forall y (P(x) \Longrightarrow Q(y))$  and t = f(y,y). t is not free for x in  $\phi$ . Rename the bound variable y to z and obtain  $\psi = S(x) \land \forall z (P(x) \Longrightarrow Q(z))$ . t is free for x in  $\psi$ .

### Outline

- Predicate logic as a formal language
- 2 Proof theory of predicate logic
- Quantifier equivalences

# Natural Deduction for Predicate Logic

- Similar to propositional logic, predicate logic has its natural deduction proof system.
- Naturally, the natural deduction proof rules for contradiction (⊥), negation (¬), and Boolean connectives (∨, ∧, ⇒) are the same as those in propositional logic.
- Additionally, there are proof rules for equality (=) and quantification ( $\forall$  and  $\exists$ ).
- Again, these additional rules have two types: introduction and elimination rules.

## Equality

- Let s and t be terms.
- What do we mean by s = t?
- Shall we say 2 + 1 = 2 + 1?
- What about  $2^{61} 1 = 2305843009213693951$ ?
- Apparently, if two terms are syntactically equal, they are equal.
  - This is called intensional equality.
- In practice, if two terms denote the same object, they are equal.
  - This is called <u>extensional equality</u>.

# Natural Deduction Proof Rules for Equality

The introduction rule for equality is as follows.

$$\frac{1}{t=t}=i$$

The elimination rule for equality is as follows.

$$\frac{t_1 = t_2 \quad \phi[t_1/x]}{\phi[t_2/x]} = e$$

 $(t_1 \text{ and } t_2 \text{ are free for } x \text{ in } \phi).$ 

- ▶ The requirement " $t_1$  and  $t_2$  are free for x in  $\phi$ " is called the side condition of the proof rule.
- By convention, we assume the side condition holds in all substitutions.

# Example

#### Example

Show

$$x + 1 = 1 + x, (x + 1) > 1 \implies (x + 1) > 0 \vdash (1 + x) > 1 \implies (1 + x) > 0.$$

#### Proof.

1 
$$x + 1 = 1 + x$$
 premise

2 
$$(x+1) > 1 \implies (x+1) > 0$$
 premise

$$3 (1+x) > 1 \implies (1+x) > 0 = 1, 2$$

In step 3, take 
$$\phi = x > 1 \Longrightarrow x > 0$$
,  $t_1 = x + 1$ , and  $t_2 = 1 + x$ . Then  $\phi[t_1/x] = (x+1) > 1 \Longrightarrow (x+1) > 0$ ,  $\phi[t_2/x] = (1+x) > 0 \Longrightarrow (1+x) > 0$ .



# Symmetry of Equality

#### Example

Show  $t_1 = t_2 \vdash t_2 = t_1$ .

#### Proof.

- 1  $t_1 = t_2$  premise
- $2 \quad t_1 = t_1 \quad = \mathsf{i}$
- 3  $t_2 = t_1 = e, 1, 2$

Take 
$$\phi = (x = t_1)$$
.  $\phi[t_1/x] = (t_1 = t_1)$  and  $\phi[t_2/x] = (t_2 = t_1)$ .



# Transitivity of Equality

### Example

Show  $t_1 = t_2, t_2 = t_3 \vdash t_1 = t_3$ .

#### Proof.

1 
$$t_2 = t_3$$
 premise

2 
$$t_1 = t_2$$
 premise

3 
$$t_1 = t_3 = e, 1, 2$$

Take 
$$\phi = (t_1 = x)$$
.  $\phi[t_2/x] = (t_1 = t_2)$  and  $\phi[t_3/x] = (t_1 = t_3)$ .

 Thus, the rules =i and =e give us the reflexity, symmetry, and transitivity of equality.

## Natural Deduction Proof Rules for Universal Quantification

• The elimination rule for universal quantification is the following:

$$\frac{\forall x \phi}{\phi[t/x]} \ \forall x e$$

when t is free for x in  $\phi$ .

- To see why t must be free for x in  $\phi$ , let  $\phi$  be  $\exists y(x < y)$ . For natural numbers,  $\forall x \exists y(x < y)$  is clearly true ("for any number, there is a larger number"). But if we take t = y,  $\phi[t/x] = \exists y(y < y)$ . This is wrong. Hence t must be free for x in  $\phi$ .
  - If we really need to replace x by y in this case, we should rewrite  $\exists y(x < y)$  to  $\exists z(x < z)$  and obtain  $\exists z(x < z)[x/y] = \exists z(y < z)$ .

## Natural Deduction Proof Rules for Universal Quantification

• The introduction rule for universal quantification opens a new box for a fresh variable  $x_0$ :



(By "fresh," we mean  $x_0$  does not occur outside of the box.)

- Informally, the rule  $\forall x$  is says "if we can establish  $\phi[x_0/x]$  for a fresh  $x_0$ , then we can derive  $\forall x \phi$ ."
  - Intuitively,  $x_0$  can be an arbitrary term since it is fresh and assumes nothing. If we can show  $\phi[x_0/x]$ , we have  $\forall x \phi$ .
  - Another way to see this is to replace  $x_0$  by a term t in the box. We would have a proof for  $\phi[t/x]$ . That is, we have shown  $\forall x \phi$ .

# Example

#### Example

Show  $\forall x (P(x) \implies Q(x)), \forall x P(x) \vdash \forall x Q(x).$ 

#### Proof.



# Example

### Example

Show  $P(t), \forall x (P(x) \Longrightarrow \neg Q(x)) \vdash \neg Q(t)$  for any term t.

#### Proof.

- P(t) premise
- 2  $\forall x (P(x) \Longrightarrow \neg Q(x))$  premise
- $P(t) \Longrightarrow \neg Q(t) \quad \forall xe 2$
- 4  $\neg Q(t)$   $\Longrightarrow$  e 1, 3
  - In step 3, we apply  $\forall x$ e by replacing x with t. We could apply the same rule with a different term, say, a. Hence the rule  $\forall x$ e is in fact a scheme of rules; one for each term t (free of x in  $\phi$ ).
  - Also, we have different introduction and elimination rule. for different variables. That is, we have ∀xi, ∀xe, ∀yi, ∀ye, and so on. We will simply write ∀i and ∀ e when bound variables are clear.

# Universal Quantification and Conjunction

- It is helpful to compare proof rules for universal quantification and conjunction.
- Introduction rules:
  - ▶ To establish  $\forall x \phi$ , we need to show  $\phi[t/x]$  for any term t. This is accomplished by proving  $\phi[x_0/x]$  with the box for a fresh variable  $x_0$ ;
  - To establish  $\phi \wedge \psi$ , we need to show  $\phi$  and  $\psi$ .
- Elimination rules:
  - ▶ To eliminate  $\forall x \phi$ , we pick a term (free for x in  $\phi$ ) and deduce  $\phi[t/x]$ ;
  - ▶ To eliminate  $\phi \wedge \psi$ , we deduce  $\phi$  (or  $\psi$ ).

### Natural Deduction Proof Rule for Existential Quantification

• The introduction rule for existential quantification is as follows.

$$\frac{\phi[t/x]}{\exists x \phi} \ \exists x i$$

when t is free for x in  $\phi$ .

- To see why t must be free for x in  $\phi$ , consider  $\exists x \forall y (x = y)$ . This is clearly wrong for, say, natural numbers. Let  $\phi = \forall y (x = y)$  and t = y. Since  $\phi[t/x] = \forall y (y = y)$  is deducible (=i,  $\forall y$ i), we would have  $\exists x \forall y (x = y)$ .
- Recall the elimination rule for universal quantification:

$$\frac{\forall x \phi}{\phi[t/x]} \ \forall x e$$

when t is free for x in  $\phi$ .

- $\forall x e$  is the "dual" of  $\exists x i$ .
  - Recall the duality of ∧e and ∨i.



## Natural Deduction Proof Rule for Existential Quantification

The elimination rule for existential quantification is as follows.



- Informally, the rule  $\exists x$ e says: to show  $\chi$  from  $\exists x \phi$ , we show  $\chi$  by assuming  $\phi[x_0/x]$  for a fresh variable  $x_0$ .
  - Intuitively,  $x_0$  stands for an unknown term t such that  $\phi[t/x]$  holds. If we can deduce  $\chi$  by assuming  $\phi[t/x]$ , then  $\chi$  is deducible from  $\exists x \phi$ .
- Note that  $x_0$  must not occur in  $\chi$ .

# Existential Quantification and Disjunction

- It is helpful to compare the elimination rules for existential quantification and disjunction.
- Recall



- To eliminate  $\phi \lor \psi$ , we show that  $\chi$  is deducible by assuming  $\phi$  or assuming  $\psi$ .
- To eliminate  $\exists x \phi$ , we show that  $\chi$  is deducible by assuming  $\phi[x_0/x]$ .

# Subformula Property I

- An elimination rule has <u>subformula property</u> if it must conclude with a subformula of the eliminated formula.
- For example, both  $\wedge e_1$  and  $\neg e$  have the subformula property.

$$\frac{\phi \wedge \psi}{\phi} \wedge e_1 \quad \frac{\neg \neg \phi}{\phi} \neg \neg e$$

• Since the conclusion of  $\forall xe$  has the same logical structure as the eliminated formula, we also say  $\forall xe$  has the subformula property.

$$\frac{\forall x \phi}{\phi[t/x]} \ \forall xe$$

• Strictly speaking,  $\phi[t/x]$  may not be a subformula of  $\forall x \phi$ .



# Subformula Property II

- The subformula property helps proof search.
  - We need not invent a formula for rules with the property.
  - Such rules are good for automated proof search.
- $\vee$ e and  $\exists x$ e however do not have the subformula property.



• The conclusion  $\chi$  must be chosen carefully.

# Examples I

### Example

Show  $\forall x \phi \vdash \exists x \phi$ .

### Proof.

```
\begin{array}{ccc} 1 & \forall x \phi & \text{premise} \\ 2 & \phi[x/x] & \forall x \in 1 \\ 3 & \exists x \phi & \exists x \text{i} \ 2 \\ \text{(Is } x \text{ free for } x \text{ in } \phi[x/x]?) \end{array}
```

Is it correct?



# Examples II

#### Example

Show 
$$\forall x (P(x) \Longrightarrow Q(x)), \exists x P(x) \vdash \exists x Q(x).$$

#### Proof.

```
\forall x (P(x) \Longrightarrow Q(x))
                                    premise
        \exists x P(x)
                                  premise
3
  x_0 P(x_0)
                               assumption
4
  P(x_0) \Longrightarrow Q(x_0) \quad \forall x \in 1
5 Q(x_0)
                    ⇒ e 3, 4
6
  \exists x Q(x)
                                ∃xi 5
         \exists x Q(x)
                                   \exists xe 2, 3-6
```

(Can we close the box at line 5 instead of 6? Why not?)

# Examples III

### Example

Show  $\exists x P(x), \forall x \forall y (P(x) \implies Q(y)) \vdash \forall y Q(y).$ 

### Proof.

```
\exists x P(x)
                                                premise
           \forall x \forall y (P(x) \implies Q(y))
                                                premise
3
   y<sub>0</sub>
    x_0 P(x_0)
                                                assumption
5
           \forall y (P(x_0) \implies Q(y))
                                             ∀xe 2
6
           P(x_0) \Longrightarrow Q(y_0)
                                            ∀ve 5
           Q(y_0)
                                                \implies e 4. 6
8
           Q(y_0)
                                                \exists xe 1, 4-7
9
           \forall y Q(y)
                                                ∀vi 3–8
```

### Box Box Box I

- Fresh variables in box must not appear outside!
- If not, we could show  $\exists x P(x), \forall x (P(x) \Longrightarrow Q(x)) \vdash \forall y Q(y)!$

```
\exists x P(x)
                  premise
        \forall x (P(x) \Longrightarrow Q(x)) premise
3
   x_0
   x_0 P(x_0)
                                 assumption ]
        P(x_0) \Longrightarrow Q(x_0) \quad \forall x \in 2
5
6
                     ⇒ e 4, 5 |
   Q(x_0)
      Q(x_0)
                              ∃xe 1, 4–6
        \forall y Q(y)
8
                                 ∀yi 3–7
```

### Outline

- Predicate logic as a formal language
- Proof theory of predicate logic
- Quantifier equivalences

# Equivalent Predicate Logic Formulae I

- Let  $\phi$  and  $\psi$  be predicate logic formulae.
- $\phi \dashv \vdash \psi$  denotes tha  $\phi \vdash \psi$  and  $\psi \vdash \phi$ .

# Equivalent Predicate Logic Formulae II

#### **Theorem**

Let  $\phi$  and  $\psi$  be predicate logic formulae. We have

- **2** When x is not free in  $\psi$ :
  - (a)  $\forall x \phi \land \psi \dashv \vdash \forall x (\phi \land \psi);$  (b)  $\forall x \phi \lor \psi \dashv \vdash \forall x (\phi \lor \psi);$
  - (c)  $\exists x \phi \land \psi \dashv \vdash \exists x (\phi \land \psi);$  (d)  $\exists x \phi \lor \psi \dashv \vdash \exists x (\phi \lor \psi);$
  - (e)  $\forall x(\psi \Longrightarrow \phi) \dashv \psi \Longrightarrow \forall x\phi;$
  - (f)  $\exists x(\phi \Longrightarrow \psi) \dashv \vdash \forall x\phi \Longrightarrow \psi;$
  - (g)  $\forall x(\phi \Longrightarrow \psi) \dashv \vdash \exists x\phi \Longrightarrow \psi;$
  - $(h) \quad \exists x(\psi \Longrightarrow \phi) \dashv \vdash \psi \Longrightarrow \exists x \phi$

# $\exists x \neg \phi \vdash \neg \forall x \phi$

| 1 |       | $\exists x \neg \phi$ | premise             |   |   |
|---|-------|-----------------------|---------------------|---|---|
| 2 |       | $\forall x \phi$      | assumption          |   | 1 |
| 3 | $x_0$ | $\neg \phi[x_0/x]$    | assumption          | ] |   |
| 4 |       | $\phi[x_0/x]$         | ∀e 2                |   |   |
| 5 |       | $\perp$               | ¬e 4, 3             |   |   |
| 6 |       | $\perp$               | ∃ <i>x</i> e 1, 3–5 |   |   |
| 7 |       | $\neg \forall x \phi$ | ¬i 2 <b>−</b> 6     |   |   |

### $\neg \forall x \phi \vdash \exists x \neg \phi$

• The proof structure is similar to  $\neg(p_1 \land p_2) \vdash \neg p_1 \lor \neg p_2$ .



# $\neg(p_1 \land p_2) \vdash \neg p_1 \lor \neg p_2$

### $\forall x \phi \land \psi \vdash \forall x (\phi \land \psi)$ and $\forall x (\phi \land \psi) \vdash \forall x \phi \land \psi$ (x not free in $\psi$ )

| 1                |                       | $(\forall x \phi) \wedge \psi$                                     | premise                                                              |   |
|------------------|-----------------------|--------------------------------------------------------------------|----------------------------------------------------------------------|---|
| 2                |                       | $\forall x \phi$                                                   | ∧e <sub>1</sub> 1                                                    |   |
| 3                |                       | $\psi$                                                             | ∧e <sub>2</sub> 2                                                    |   |
| 4                | <i>x</i> <sub>0</sub> |                                                                    |                                                                      | ] |
| 5                |                       | $\phi[x_0/x]$                                                      | ∀ <i>x</i> e 2                                                       | ĺ |
| 6                |                       | $\phi[x_0/x] \wedge \psi$                                          | ∧i 5, 3                                                              |   |
| 7                |                       | $(\phi \wedge \psi)[x_0/x]$                                        | ${\it x}$ not free in $\psi$                                         |   |
| 8                |                       | $\forall x (\phi \wedge \psi)$                                     | ∀ <i>x</i> i 4–7                                                     |   |
|                  |                       |                                                                    |                                                                      |   |
| 1                |                       | $\forall x (\phi \wedge \psi)$                                     | premise                                                              |   |
| 1 2              | <i>x</i> <sub>0</sub> | $\forall x (\phi \wedge \psi)$                                     | premise                                                              | 1 |
|                  | <i>x</i> <sub>0</sub> | $\forall x (\phi \wedge \psi)$ $(\phi \wedge \psi)[x_0/x]$         | premise<br>∀xe 1                                                     | ] |
| 2                | <i>x</i> <sub>0</sub> |                                                                    |                                                                      | ] |
| 2                | <i>x</i> <sub>0</sub> | $(\phi \wedge \psi)[x_0/x]$                                        | ∀ <i>x</i> e 1                                                       | ] |
| 2<br>3<br>4      | <i>x</i> <sub>0</sub> | $(\phi \wedge \psi)[x_0/x]$ $\phi[x_0/x] \wedge \psi$              | $\forall x \in 1$ $x \text{ not free in } \psi$                      | ] |
| 2<br>3<br>4<br>5 | <i>x</i> <sub>0</sub> | $(\phi \wedge \psi)[x_0/x]$<br>$\phi[x_0/x] \wedge \psi$<br>$\psi$ | $\forall x \in 1$ $x \text{ not free in } \psi$ $\land e_2 \notin 4$ | ] |

# $(\exists x \phi) \lor (\exists x \psi) \vdash \exists x (\phi \lor \psi)$

| 1  |                       | $(\exists x \phi) \lor (\exists x \psi)$ | premise            |   |   |
|----|-----------------------|------------------------------------------|--------------------|---|---|
| 2  |                       | $\exists x \phi$                         | assumption         |   | ] |
| 3  | <i>x</i> <sub>0</sub> | $\phi[x_0/x]$                            | assumption         | ] |   |
| 4  |                       | $\phi[x_0/x] \vee \psi[x_0/x]$           | ∨i <sub>1</sub> 3  |   |   |
| 5  |                       | $(\phi \lor \psi)[x_0/x]$                | same as 4          |   |   |
| 6  |                       | $\exists x (\phi \lor \psi)$             | ∃ <i>x</i> i 5     |   |   |
| 7  |                       | $\exists x (\phi \lor \psi)$             | ∃xe 2, 3–6         |   |   |
| 2' |                       | $\exists x \psi$                         | assumption         |   | ] |
| 3' | <i>y</i> 0            | $\psi[y_0/x]$                            | assumption         | ] |   |
| 4' |                       | $\phi[y_0/x] \vee \psi[y_0/x]$           | √i <sub>2</sub> 3′ |   |   |
| 5' |                       | $(\phi \lor \psi)[y_0/x]$                | same as 4'         |   |   |
| 6' |                       | $\exists x (\phi \lor \psi)$             | ∃ <i>x</i> i 5'    |   |   |
| 7' |                       | $\exists x (\phi \lor \psi)$             | ∃xe 2', 3'-6'      |   |   |
| 8  |                       | $\exists x (\phi \lor \psi)$             | ∨e 1, 2–7, 2'–7'   |   |   |

### $\exists x \exists y \phi \vdash \exists y \exists x \phi$

```
\exists x \exists y \phi
                                      premise
     x_0 \quad (\exists y \phi)[x_0/x]
                                      assumption
        \exists y(\phi[x_0/x])
                                      x and y different
     y_0 \quad \phi[x_0/x][y_0/y]
                                     assumption
5
            \phi[y_0/y][x_0/x]
                                     x, y, x_0, y_0 different
6
             \exists x \phi [y_0/y]
                                      ∃xi 5
             \exists y \exists x \phi
                                      ∃yi 6
8
             \exists y \exists x \phi
                                     ∃ye 3, 4–7
9
             \exists y \exists x \phi
                                      \exists xe 1, 2-8
```