### Quantised Random Embeddings for Dimensionality Reduction



V. Cambareri (joint work w. Prof. L. Jacques), ISP Group, ICTEAM/ELEN

### **Quantised Random Embeddings**

$$y = A(x) := Q_{\delta}(\Phi x + \boldsymbol{\xi})$$

#### where:

- Dataset:  $\mathbf{x} \in \mathcal{K} \subset \mathbb{R}^n \longrightarrow \mathsf{Signatures}$ :  $\mathbf{y} \in \mathsf{A}(\mathcal{K}) \subset \delta \mathbb{Z}^m$
- Uniform Scalar Quantiser:  $Q_{\delta} := \delta \lfloor \frac{\cdot}{\delta} \rfloor$
- Gaussian (not necessary!) Random Projections:  $\Phi \sim \mathcal{N}^{m \times n}(0, 1)$
- Uniform Dithering:  $\boldsymbol{\xi} \sim \mathcal{U}^{m \times n}([-\frac{\delta}{2}, \frac{\delta}{2}])$

#### **Quasi-Isometry Property**

If  $\Phi$  is a  $\varepsilon$ -stable embedding ( $\ell_2/\ell_1$  sense) w.r.t.  $\mathcal{K}$ ,

$$(1-\varepsilon)\|x'-x''\|_2 - \Delta \le \frac{1}{m}\|y'-y''\|_1 \le (1+\varepsilon)\|x'-x''\|_2 + \Delta$$

w.h.p. for  $\Delta, \varepsilon > 0$  that decay with  $m(\uparrow)$ , Complexity( $\mathcal{K}$ ) ( $\downarrow$ ),  $\delta$  ( $\downarrow$ ).

#### "Rare Eclipses" and Class Separability

If  $\mathbf{x}' \in \mathcal{C}' \subset \mathcal{K}, \mathbf{x}'' \in \mathcal{C}''\mathcal{K}, \mathcal{C}' \cap \mathcal{C}'' = \emptyset$  disjoint convex sets, then

$$p_{\delta} := \mathbb{P}[\mathsf{A}(\mathcal{C}') \cap \mathsf{A}(\mathcal{C}') = \emptyset] \geq 1 - \eta$$

with  $\eta$  that decays with m ( $\uparrow$ ), Complexity( $\mathcal{K}$ ) ( $\downarrow$ ),  $\delta (\downarrow)$ .





## **Linear Compressed Sensing**







### **Linear Compressed Sensing**







# Linear Compressed Sensing





or, in fact, a convexification of  $\mathcal{X}\Rightarrow\mathsf{Convex}$  problem!