Por reducción a integrales iteradas, tenemos

$$\iiint_{W} \frac{\partial R}{\partial z} dV = \iint_{D} \left(\int_{z=g_{1}(x,y)}^{z=g_{2}(x,y)} \frac{\partial R}{\partial z} dz \right) dx dy,$$

y por tanto, por el teorema fundamental del cálculo,

$$\iiint_W \frac{\partial R}{\partial z} dV = \iint_D [R(x, y, g_2(x, y)) - R(x, y, g_1(x, y))] dx dy.$$
 (4)

La frontera de W es una superficie cerrada cuya parte superior S_2 es la gráfica de $z=g_2(x,y)$, donde $(x,y)\in D$, y cuya parte inferior S_1 es la gráfica de $z=g_1(x,y), (x,y)\in D$. Las otras cuatro caras de ∂W son las superficies S_3, S_4, S_5 y S_6 , cuyas normales son siempre perpendiculares al eje z (véase la Figura 8.4.4. Obsérvese que alguna de las otras cuatro caras puede faltar; por ejemplo, si W es una bola sólida y ∂W es una esfera). Por definición,

$$\iint_{\partial W} R\mathbf{k} \cdot \mathbf{n} \, dS = \iint_{S_1} R\mathbf{k} \cdot \mathbf{n}_1 \, dS + \iint_{S_2} R\mathbf{k} \cdot \mathbf{n}_2 \, dS + \sum_{i=3}^6 \iint_{S_i} R\mathbf{k} \cdot \mathbf{n}_i \, dS.$$

Dado que la normal \mathbf{n}_i es perpendicular a \mathbf{k} en cada una de las superficies S_3, S_4, S_5, S_6 , tenemos que $\mathbf{k} \cdot \mathbf{n} = 0$ en estas caras, y por tanto la integral se reduce a

$$\iint_{\partial W} R\mathbf{k} \cdot \mathbf{n} \, ds = \iint_{S_1} R\mathbf{k} \cdot d\mathbf{S}_1 + \iint_{S_2} R\mathbf{k} \cdot d\mathbf{S}_2. \tag{5}$$

La superficie S_1 está definida por $z = g_1(x, y)$, y

$$d\mathbf{S}_1 = \left(\frac{\partial g_1}{\partial x}\mathbf{i} + \frac{\partial g_1}{\partial y}\mathbf{j} - \mathbf{k}\right) dx \, dy$$

Figura 8.4.4 Una regi on simétrica elemental W para la que $\iint_{\partial W} R\mathbf{k} \cdot dS = \iiint_{W} (\partial R/\partial z) \ dV$. Las cuatro caras de ∂W , que son S_3 , S_4 , S_5 , S_6 tienen normales perpendiculares al eje z.