

Tópicos

- Leis de Newton
- Forças de contacto e ligação.
- Tensões e outras ligações
- Forças de atrito
- Força elástica

Movimento (cinemática)

Dinâmica

<u>Aristóteles</u>

Para mover um objeto

é preciso aplicar força.

Newton

Para um objeto <u>mudar</u> o seu estado de movimento é preciso aplicar *força*

Lei da Inércia – 1ª Lei de Newton

Uma partícula **livre move-se com velocidade constante**: movimento em linha reta com velocidade constante ou repouso

6

2ª Lei de Newton: Lei fundamental

"Nothing yet....How about you, Newton?"

$$\sum \vec{F} = \frac{d\vec{p}}{dt}$$

A soma vetorial de todas as forças que atuam num corpo

2ª Lei de Newton: Lei fundamental

Considerando uma partícula, de massa inercial m:

Momento Linear

$$\vec{p} = m \ \vec{v}$$

$$\sum \vec{F} = \frac{d\vec{p}}{dt} = m\frac{d\vec{v}}{dt} = m\vec{a}$$

Massa constante

2º Lei de Newton

$\Sigma \vec{F} = m\vec{a}$

$$\vec{F} = F_x \hat{\imath} + F_y \hat{\jmath} + F_z \hat{k}$$

$$\vec{a} = a_x \hat{\imath} + a_y \hat{\jmath} + a_z \hat{k}$$

Para cada componente dos vetores

$$\Sigma F_x = ma_x$$
 $\Sigma F_y = ma_y$
 $\Sigma F_z = ma_z$

$$\Sigma F_v = ma_v$$

$$\Sigma F_z = ma_z$$

Exemplo 2ª Lei de Newton: Movimento retilíneo

Se encostarmos m₁ and m₂ e aplicarmos a mesma força F qual será a aceleração do conjunto ?

Qual a força que m₁ exerce em m₂?

$$F_2 = 1/3 F$$

10

Exemplo: 2ª Lei de Newton: Movimento circular uniforme

A resultante das forças que atuam no carro comportar-se-á como uma força centrípeta permitindo-lhe efetuar a curva $F_c = mv^2/r$

3 ^a Lei de Newton

Forças surgem aos pares

Para cada ação há uma reação de igual intensidade mas oposta.

A força exercida no corpo 1 pelo corpo 2 é simétrica da força exercida no corpo 2 pelo corpo 1

$$\vec{F}_{12} = -\vec{F}_{21}$$

Par ação-reação

12

3 ^a Lei de Newton

Forças surgem aos pares

Os pares ação-reação:

Atuam SEMPRE em corpos DIFERENTES

Forças de contacto e ligação

Tensões e outras ligações

O corpo está sujeito a uma força, a tensão, devida à corda esticada.

Que forças estão aplicadas na corda? E na mão? São par A-R?

Tensões e outras ligações

Um candeeiro está suspenso do teto por um cabo (suposto sem peso).

16

Tensões e outras ligações

O módulo de todas as forças é igual ao do peso

Pêndulo simples (movimento no plano vertical)

Trajetória circular

Forças: \vec{P} \vec{T}

Em qualquer posição:

$$\vec{T} + \vec{P} = m\vec{a}$$

$$\vec{a} = \vec{a}_t + \vec{a}_n$$

http://www.phy.ntnu.edu.tw/java/Pendulum/Pendulum.html

Posição extrema (v=0)

$$\vec{T} + \vec{P} = m\vec{a} \qquad \vec{a} = \vec{a}_t + \vec{a}_n$$

$$\vec{a} = \vec{a}_t + \vec{a}_n$$

$$\begin{aligned} \left| \vec{T} \right| - \left| \vec{P} \right| \cos \theta &= m |\vec{a}_n| \quad \left| \vec{T} \right| - \left| \vec{P} \right| \cos \theta &= m \frac{v^2}{L} = 0 \\ \left| \vec{P} \right| \sin \theta &= m |\vec{a}_t| \quad \left| \vec{P} \right| \sin \theta &= m |\vec{a}_t| \end{aligned}$$

Posição de equilíbrio (θ =0)

$$|\vec{T}| - |\vec{P}| = m \frac{v^2}{L}$$
 Máxima tensão!

Um homem de pé sobre uma balança:

Se a = 0==> $\left| \vec{R} \right| = \left| \vec{P} \right|$ 'peso' normal

Na subida ==> $|\vec{R}| = |\vec{P}| + m|\vec{a}|$ 'peso' maior

Na descida $\Longrightarrow |\vec{R}| = |\vec{P}| - m|\vec{a}|$ 'peso' menor

Balança dinamómetro

Força de atrito (sólido)

Superfícies de dois materiais em contato

A força de atrito tende a impedir o movimento relativo das superfícies

Microscopicamente a força tem origem elétrica Lubrificação separa as superfícies

22

Força de atrito (estático)

Consideremos um corpo sobre uma superfície plana, horizontal, com atrito e ao qual se aplica uma força F, horizontal, para o tentar pôr em movimento, sem sucesso

À medida que F aumenta a força de atrito também aumenta, até uma situação limite, em que o corpo inicia o movimento.

Força de atrito (estático)

Na situação limite, em que a força de atrito estático atinge o valor máximo, verifica-se que:

a força de atrito estático máxima é proporcional à normal exercida entre as superfícies

$$f_{a.e.max} = \mu_E N$$

 μ_{E} é o coeficiente de atrito estático, para as duas superfícies

Em geral, temos:

$$f_{a.e.} \le \mu_E N$$

Normalmente, a força de atrito não depende da área de contato

24

Força de atrito (cinético)

Quando o corpo entra em movimento, temos uma situação com atrito cinético e verifica-se que:

$$f_{a.c.} = \mu_C N$$

 μ_{C} é o coeficiente de atrito cinético, para as duas superfícies

Normalmente, a força de atrito não depende da área de contato

Como varia a força de atrito com F

26

Que força empurra o carro?

O atrito permite o movimento da bicicleta!

Apenas estão representadas forças na direção do movimento!

28

Travagem segura.....

aceleração máxima quando f_a é máximo $f_{a,max} = \mu_E N = \mu_E mg$

$$\Sigma F = ma ~ \mbox{\longrightarrow} ~ -f_{a,max} = -\mu_E mg = ~ ma_{max}$$

$$\rightarrow$$
 $a_{max} = - \mu_E g$

Distância de travagem (até v=0) num M.R.U.R.

$$d_{v=0} = \frac{v_0^2}{2|a|}$$
 d=1/2 at²; a=v/t; t²=v²/a²

$$d=1/2 at^2$$
; $a=v/t$; $t^2=v^2/a^2$

Vem então:
$$d_{min} = \frac{{v_0}^2}{2|a_{max}|}$$
 $d_{min} = \frac{{v_0}^2}{2\mu_E g}$

$$d_{\min} = \frac{v_0^2}{2\mu_E g}$$

d_{min} depende de v².

Muito sensível a v!!

Se $v_0 = 90 \text{ kmh}^{-1} (25 \text{ m s}^{-1})$

Para que serve o ABS?

 $e \mu = 0.6 ==> d \approx 50 m!!$

Curvar numa superfície plana

$$F_n = \frac{mv^2}{r}$$

O atrito atua como F_n

Se não houver derrapagem o atrito é estático

$$F_n = f_{ae} \le \mu_E N$$

$$\frac{mv^2}{r} \le \mu_E N$$

$$\frac{mv^2}{r} \le \mu_E N \qquad \frac{mv^2}{r} \le \mu_E mg$$

$$v_{max}^2 = \mu_E gr$$

A velocidade máxima não depende de m!

$$v_{max}^2 = \mu_E gr$$

Para um dado μ_{E} (que traduz a qualidade do pneu) e r, há uma velocidade máxima de segurança.

Esta margem de segurança é muito sensível a \mathbf{v} pois a expressão vem com \mathbf{v}^2

Exemplo: μ_E =0,8 e r=20m v_{max} =38 km/h

3

Curva inclinada sem atrito

A inclinação da curva permite ao carro curvar sem necessidade de recorrer às forças de laterais de atrito

34

Lombas e valetas...

 Σ **F** = m**a** = mv²/R

 $mg- N = mv^2/R$

 $N = mg - mv^2/R$

 $\Sigma \mathbf{F} = m\mathbf{a} = mv^2/R$

 $N - mg = mv^2/R$

 $N = mg + mv^2/R$

Força elástica: proporcional ao alongamento

$$\vec{F}_{el.} = -k(\vec{x} - \vec{x}_o) \Leftrightarrow$$

Lei de Hooke

$$F_{el.} = -k(x - x_o)$$

k – constante elástica da mola x_0 – posição do extremo da mola quando esta está no seu tamanho natural

Se consideramos x_0 =0 $F_{el.}=-k x$

$$F_{el.} = -kx$$

Força elástica: proporcional ao alongamento

Tamanho natural x=0 relaxada Tamanho natural x=0 elongada Tamanho natural x=0

comprimida