CORSO DI LAUREA TRIENNALE IN INFORMATICA PROVA SCRITTA DI ALGEBRA (GRUPPI I E II) 20 GIUGNO 2018

Svolgere i seguenti esercizi,

Sui fogli consegnati vanno indicati: **nome**, **cognome**, **matricola**, **gruppo di appartenenza** e eventuale superamento della **prova in itinere**. **Chi ha superato quest'ultima è esentato dai primi due esercizi.**

Non è necessario consegnare la traccia.

solo per chi non ha superato la prova in itinere **Esercizio 1.** Si considerino le applicazioni $f: x \in \mathbb{Z} \to \frac{x+1}{3} \in \mathbb{Q}$ e $g: x \in \mathbb{Q} \to \frac{x+1}{3} \in \mathbb{Q}$. Di ciascuna di esse si dica se è iniettiva, se è suriettiva, se è biettiva e si scriva esplicitamente l'inversa, se questa esiste.

Esercizio 2. In $S = \mathbb{Z}_8 \times \mathbb{Z}_8$ si definisca l'operazione binaria * ponendo, per ogni $(a, b), (c, d) \in S$, $(a, b) * (c, d) = (a + c + \bar{2}, bd)$. Sapendo che * è associativa e commutativa,

- (i) decidere se * ammette elemento neutro e, nel caso, quali elementi di S siano simmetrizzabili e quali cancellabili rispetto a *. Che tipo di struttura è (S, *)?
- (ii) Posto $P = \{\bar{a} \in \mathbb{Z}_8 \mid a \text{ è pari}\}\ e\ D = \{\bar{a} \in \mathbb{Z}_8 \mid a \text{ è dispari}\}\$, quali tra $P \times P$, $\mathbb{Z}_8 \times D$, $D \times P$, $D \times \mathbb{Z}_8$, sono e quali non sono parti chiuse in (S,*)? Qualcuna di queste, munita dell'operazione indotta da *, è un gruppo?

Esercizio 3. Enunciare il teorema sulla divisione con resto sia in \mathbb{Z} che nell'anello dei polinomi su un campo.

Esercizio 4. Siano $B = \{n \in \mathbb{N} \mid n < 10\}$ e $A = \mathcal{P}(B) \setminus \{\emptyset\}$. Consideriamo in A la relazione di equivalenza \sim e la relazione d'ordine ρ definite da: $\forall X, Y \in A$

$$X \sim Y \iff |X| = |Y|;$$
 e $X \rho Y \iff (X = Y \vee |X| < |Y|).$

- (i) Quanto vale $|A/\sim|$? Se $X \in A$ e |X| = n, quanto vale $|[X]_{\sim}|$?
- (ii) Determinare gli eventuali elementi minimali, massimali, minimo, massimo in (A, ρ) . (A, ρ) è un reticolo? Nel caso, decidere se è complementato, distributivo, booleano.
- (iii) Dire, per un arbitrario $X \in A$, quali elementi di A non sono confrontabili con X rispetto a ρ . Quanti sono?
- (iv) Rispetto a ρ , costruire un sottoinsieme totalmente ordinato C di A tale che |C|=10 e decidere se esiste $D\subseteq A$ tale che $C\subset D$ e D sia totalmente ordinato.
- (v) Costruire, se possibile, sottoinsiemi U e V di A che, ordinati da ρ , abbiano diagrammi di Hasse

e stabilire, per ciascuno di essi, se è un reticolo e, nel caso, se è distributivo, complementato, booleano.

Esercizio 5. Dato un insieme P di 17 caratteri, sia W l'insieme delle stringhe di caratteri in P di lunghezza 10. Esprimere (senza calcolare!), |W|, il numero λ_1 delle stringhe in W prive di ripetizioni ed il numero λ_2 delle stringhe in W prive di occorrenze consecutive di uno stesso carattere.

Esercizio 6. Sia $f = x^3 + \bar{2}x^2 - \bar{2} \in \mathbb{Z}_7[x]$. Dopo aver calcolato $f(\bar{1})$ e $f(\bar{2})$ si scriva f come prodotto di polinomi monici irriducibili in $\mathbb{Z}_7[x]$.

- (i) A quali tra $\bar{3}x^3 + x^2 \bar{1}$ e $\bar{3}x^3 x^2 + \bar{1}$ è associato f in $\mathbb{Z}_7[x]$?
- (ii) Quanti sono i polinomi monici di grado 4 in $\mathbb{Z}_7[x]$ che hanno sia $\bar{1}$ che $\bar{2}$ come radici?

Esercizio 7. Si trovino tutte le soluzioni (in \mathbb{Z}) dell'equazione congruenziale $30x \equiv_{74} 4$.