

Zusammenfassung

Robotik I (Karlsruher Institut für Technologie)

	T		
Kinematik	Analysiert die Geometrie eines Manipulators oder Roboters. Das essentielle Konzept ist die Position.		
Dynamik	Analysiert die Kräfte und Momente, die durch Bewegung und Beschleunigung eines Mechanismus und einer zusätzlichen Last entstehen.		
Kinematische Kette	Beschreibt einen Satz von Gliedern (Kör	pern)) die durch Gelenke kinematisch verbunden sind.
Freiheitsgrade	Anzahl der unabhängigen Parameter, die zur kompletten Spezifikation der Position eines Mechanismus/Objekts benötigt werden. (degrees of freemd DoF)		
Rotationsmatrizen	$ \begin{pmatrix} \cos(\gamma) & -\sin(\gamma) & 0 \\ \sin(\gamma) & \cos(\gamma) & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos(\beta) & 0 & \sin(\beta) \\ 0 & 1 & 0 \\ -\sin(\beta) & 0 & \cos(\beta) \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(\alpha) & -\sin(\alpha) \\ 0 & \sin(\alpha) & \cos(\alpha) \end{pmatrix} $ $ R_z \qquad R_y \qquad R_x $ Rotation um lokale Achsen: $ ((R_{z,\alpha} * R_{y,\alpha}) * R_{x,\alpha}) * a $		
Verkettung von	Rotation um lokale Achsen: $((R_{z,\alpha} * R_{v,\alpha})$	γ) * F	, (R _{x,α}) * a
Rotationen	Rotation um globale Achsen: $R_{z,\alpha}(*R_{y,\alpha})$, * (F	$R_{x\alpha} * a$
	Pro		Contra
Bewertung	Redundanz: neun Werte für ei	ne Ro	otationsmatrix
Rotationmatrizen			rnen da Einträge voneinander abhängig sind
	Schwierige Interpolation		
Rotationsmatrix zu Eulerwinkel	$\mathbf{R} = R_z(\alpha) \cdot R_{x'}(\beta) \cdot R_{z''}(\gamma) = \text{Mult}$ $\boldsymbol{\alpha} = \arctan\left(-\frac{a_x}{a_y}\right)$	iplika $oldsymbol{eta}=$	ration der Rotationsmatrizen $= \begin{pmatrix} n_x & o_x & a_x \\ n_y & o_y & a_y \\ n_z & o_z & a_z \end{pmatrix}$ $= \arccos(\alpha_z)$ $\boldsymbol{\gamma} = \arctan\left(\frac{n_z}{o_z}\right)$
Rotationsmatrix zu RPY (XYZ) Winekl	$\boldsymbol{\alpha} = \arctan\left(-\frac{a_x}{a_y}\right) \qquad \boldsymbol{\beta} = \arccos(\alpha_z) \qquad \boldsymbol{\gamma} = \arctan\left(\frac{n_z}{o_z}\right) $ $\boldsymbol{R} = R_z(\gamma) \cdot R_y(\beta) \cdot R_x(\alpha) = \text{Multiplikation der Rotations matrizen} = \begin{pmatrix} n_x & o_x & a_x \\ n_y & o_y & a_y \\ n_z & o_z & a_z \end{pmatrix} $ $\boldsymbol{\alpha} = \arctan\left(\frac{o_z}{a_z}\right) \qquad \boldsymbol{\beta} = \arcsin(-n_z) \qquad \boldsymbol{\gamma} = \arctan\left(\frac{n_y}{n_x}\right)$		
	Bei bestimmten Winkeln werden Achsen voneinander abhängig und ein Freiheitsgrad geht verloren.		
Gimbal Lock	Bei bestimmten Winkeln werden Achsen vo	neina	ander abhängig und ein Freiheitsgrad geht verloren.
	Bei bestimmten Winkeln werden Achsen vo	neina	ander abhängig und ein Freiheitsgrad geht verloren. Contra
Roll Pitch Yaw	Pro Kompakter als Rotationsmatrizen	neina Ni	Contra licht eindeutig
	Bei bestimmten Winkeln werden Achsen vo	neina Ni n Ni	ander abhängig und ein Freiheitsgrad geht verloren. Contra
Roll Pitch Yaw und Eulerwinkel	Pro Kompakter als Rotationsmatrizen	neina Ni n Ni	Contra licht eindeutig licht kontinuierlich bei kontinuierlicher Rotation
Roll Pitch Yaw und Eulerwinkel	Pro Kompakter als Rotationsmatrizen Aussagekräftiger als Rotationsmatrizen Eulerwinkel	neina Ni n Ni	Contra licht eindeutig licht kontinuierlich bei kontinuierlicher Rotation limbal Lock
Roll Pitch Yaw und Eulerwinkel Bewertung	Pro Kompakter als Rotationsmatrizen Aussagekräftiger als Rotationsmatrizen	neina Ni n Ni	Contra licht eindeutig licht kontinuierlich bei kontinuierlicher Rotation imbal Lock Roll Pitch Yaw
Roll Pitch Yaw und Eulerwinkel Bewertung Eulerwinkel vs.	Pro Kompakter als Rotationsmatrizen Aussagekräftiger als Rotationsmatrizer Eulerwinkel Multiplikation von links nach rechts	Ni Ni Gi	Contra licht eindeutig licht kontinuierlich bei kontinuierlicher Rotation limbal Lock Roll Pitch Yaw Multiplikation von rechts nach links
Roll Pitch Yaw und Eulerwinkel Bewertung Eulerwinkel vs.	Pro Kompakter als Rotationsmatrizen Aussagekräftiger als Rotationsmatrizen Aussagekräftiger als Rotationsmatrizen Eulerwinkel Multiplikation von links nach rechts Jede Drehung in Bezug auf neues KS Drehung jeweils um veränderte Achse Rotationsachse (R - I) $x = 0 \rightarrow$ Ausmultiplizieren zu LGS u Rotationswinkel Methode 1: $\alpha = arcos\left(\frac{Spur(R)-1}{2}\right)$ Methode 2: Vektor v so, dass v · x = 0 \rightarrow Umwandlung in Quaternion $q = \left(cos\left(\frac{\alpha}{2}\right), x \cdot sin\left(\frac{\alpha}{2}\right)\right) \rightarrow 4$ Werte	neina Nin Ni Gi	Contra licht eindeutig licht kontinuierlich bei kontinuierlicher Rotation limbal Lock Roll Pitch Yaw Multiplikation von rechts nach links Jede Drehung in Bezug auf BKS Drehung um jeweils unveränderte Achsen lann lösen \rightarrow Rotationsachse x R \cdot v $\rightarrow \alpha = \arccos\left(\frac{v \cdot v'}{ v \cdot v' }\right)$
Roll Pitch Yaw und Eulerwinkel Bewertung Eulerwinkel vs. Roll Pitch Yaw Rotationsmatrix zu	Pro Kompakter als Rotationsmatrizen Aussagekräftiger als Rotationsmatrizen Aussagekräftiger als Rotationsmatrizen Eulerwinkel Multiplikation von links nach rechts Jede Drehung in Bezug auf neues KS Drehung jeweils um veränderte Achse Rotationsachse (R - I) $x = 0 \rightarrow$ Ausmultiplizieren zu LGS u Rotationswinkel Methode 1: $\alpha = arcos\left(\frac{Spur(R)-1}{2}\right)$ Methode 2: Vektor v so, dass v · x = 0 \rightarrow Umwandlung in Quaternion $q = \left(cos\left(\frac{\alpha}{2}\right), x \cdot sin\left(\frac{\alpha}{2}\right)\right) \rightarrow 4$ Werte	neina Nin Ni Gi	Contra licht eindeutig licht kontinuierlich bei kontinuierlicher Rotation limbal Lock Roll Pitch Yaw Multiplikation von rechts nach links Jede Drehung in Bezug auf BKS Drehung um jeweils unveränderte Achsen lann lösen \rightarrow Rotationsachse x R \cdot v $\rightarrow \alpha = \arccos\left(\frac{v \cdot v'}{ v \cdot v' }\right)$
Roll Pitch Yaw und Eulerwinkel Bewertung Eulerwinkel vs. Roll Pitch Yaw Rotationsmatrix zu Quaternion	Pro Kompakter als Rotationsmatrizen Aussagekräftiger als Rotationsmatrizen Aussagekräftiger als Rotationsmatrizen Eulerwinkel Multiplikation von links nach rechts Jede Drehung in Bezug auf neues KS Drehung jeweils um veränderte Achse Rotationsachse (R - I) $x = 0 \rightarrow$ Ausmultiplizieren zu LGS u Rotationswinkel Methode 1: $\alpha = arcos\left(\frac{Spur(R)-1}{2}\right)$ Methode 2: Vektor v so, dass v · x = 0 \rightarrow Umwandlung in Quaternion $q = \left(cos\left(\frac{\alpha}{2}\right), x \cdot sin\left(\frac{\alpha}{2}\right)\right) \rightarrow 4$ Werte	neina Nin Ni Gi	Contra licht eindeutig licht kontinuierlich bei kontinuierlicher Rotation limbal Lock Roll Pitch Yaw Multiplikation von rechts nach links Jede Drehung in Bezug auf BKS Drehung um jeweils unveränderte Achsen lann lösen \rightarrow Rotationsachse x R \cdot v $\rightarrow \alpha = \arccos\left(\frac{v \cdot v'}{ v \cdot v' }\right)$
Roll Pitch Yaw und Eulerwinkel Bewertung Eulerwinkel vs. Roll Pitch Yaw Rotationsmatrix zu Quaternion	Pro Kompakter als Rotationsmatrizen Aussagekräftiger als Rotationsmatrizen Aussagekräftiger als Rotationsmatrizen Eulerwinkel Multiplikation von links nach rechts Jede Drehung in Bezug auf neues KS Drehung jeweils um veränderte Achse Rotationsachse (R - I) $x = 0 \rightarrow$ Ausmultiplizieren zu LGS u Rotationswinkel Methode 1: $\alpha = arcos\left(\frac{Spur(R)-1}{2}\right)$ Methode 2: Vektor v so, dass v · x = 0 \rightarrow Umwandlung in Quaternion $q = \left(cos\left(\frac{\alpha}{2}\right), x \cdot sin\left(\frac{\alpha}{2}\right)\right) \rightarrow 4$ Werte	neina Nin Ni Gi	Contra licht eindeutig licht kontinuierlich bei kontinuierlicher Rotation limbal Lock Roll Pitch Yaw Multiplikation von rechts nach links Jede Drehung in Bezug auf BKS Drehung um jeweils unveränderte Achsen lann lösen \rightarrow Rotationsachse x R \cdot v $\rightarrow \alpha = \arccos\left(\frac{v \cdot v'}{ v \cdot v' }\right)$
Roll Pitch Yaw und Eulerwinkel Bewertung Eulerwinkel vs. Roll Pitch Yaw Rotationsmatrix zu Quaternion Transformation einer	Bei bestimmten Winkeln werden Achsen volume Pro Kompakter als Rotationsmatrizen Aussagekräftiger als Rotationsmatrizen Eulerwinkel Multiplikation von links nach rechts Jede Drehung in Bezug auf neues KS Drehung jeweils um veränderte Achse Rotationsachse (R - I) x = 0 \rightarrow Ausmultiplizieren zu LGS to Rotationswinkel Methode 1: $\alpha = arcos\left(\frac{Spur(R)-1}{2}\right)$ Methode 2: Vektor v so, dass v \cdot x = 0 \rightarrow Umwandlung in Quaternion $q = \left(cos\left(\frac{\alpha}{2}\right), x \cdot sin\left(\frac{\alpha}{2}\right)\right) \rightarrow 4$ Werte $T_{trans} = \begin{pmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{pmatrix} t_x, t_y & 8$	neina Ni Ni Ni Ni V' = I	Contra licht eindeutig licht kontinuierlich bei kontinuierlicher Rotation limbal Lock Roll Pitch Yaw Multiplikation von rechts nach links Jede Drehung in Bezug auf BKS Drehung um jeweils unveränderte Achsen lann lösen \rightarrow Rotationsachse x R · v $\rightarrow \alpha = \arccos\left(\frac{v \cdot v'}{ v \cdot v' }\right)$ eschreibt Translation um $\binom{t_x}{t_y}$ eines Punktes.
Roll Pitch Yaw und Eulerwinkel Bewertung Eulerwinkel vs. Roll Pitch Yaw Rotationsmatrix zu Quaternion Transformation einer Transformations-	Bei bestimmten Winkeln werden Achsen volume Pro Kompakter als Rotationsmatrizen Aussagekräftiger als Rotationsmatrizen Aussagekräftiger als Rotationsmatrizen Eulerwinkel Multiplikation von links nach rechts Jede Drehung in Bezug auf neues KS Drehung jeweils um veränderte Achse Rotationsachse (R - I) x = 0 \rightarrow Ausmultiplizieren zu LGS of Rotationswinkel Methode 1: $\alpha = arcos\left(\frac{Spur(R)-1}{2}\right)$ Methode 2: Vektor v so, dass v \cdot x = 0 \rightarrow Of the Proposition $\alpha = \left(\frac{\alpha}{2}\right)$, $\alpha \cdot \sin\left(\frac{\alpha}{2}\right) \rightarrow \alpha$ Werte $T_{trans} = \begin{pmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{pmatrix}$ Rotation lässt sich bestimmen durch die	neina Ni Ni Ni Si $V' = I$ $v' = I$	Contra licht eindeutig licht kontinuierlich bei kontinuierlicher Rotation limbal Lock Roll Pitch Yaw Multiplikation von rechts nach links Jede Drehung in Bezug auf BKS Drehung um jeweils unveränderte Achsen lann lösen \rightarrow Rotationsachse x R \cdot v $\rightarrow \alpha = \arccos\left(\frac{v \cdot v'}{ v \cdot v' }\right)$

	/n n	T	
Inverse	$T^{-1} = \begin{pmatrix} n_x & n_y & n_z & -n^t v \\ o_x & o_y & o_z & -o^T v \\ a_x & a_y & a_z & -a^T v \\ 0 & 0 & 0 & 1 \end{pmatrix}$		
Transformations-			
matrix			
Davashavas			
Berechnung von	<u>Transformation:</u> siehe Transformation eines Tra	ansformationsmatrix	
Transformations-	Rotation: Bestimme die Rotationsmatrix und se	tze diese in T ein	
matrizen Verkettung Transf.	T _ T Init T 1 T 2 T		
	$T_{\text{final}} = T_{\text{init}}^{\text{lnit}} T_1^{1} T_2^{2} T_3 \dots$	Contro	
Affine	Pro	Contra	
Transformation	Drehachse und -reihenfolge implizit	12 nichttriviale Kenngrößen	
Bewertung	enthalten	Redundanz wegen Orthogonalität	
Translations und	Translationsdifferenz: $\Delta t = t_{Goal} - t_{TCP} =$		
Translations- und	$\sqrt{\left(t_{G,1}-t_{T,1}\right)^2+\left(t_{G,2}-t_{T,2}\right)^2+\left(t_{G,3}-t_{T,3}\right)}$	2	
Rotationsdifferenz Transf.matr.			
iransi.matr.	Rotationsdifferenz: $\Delta \alpha = arccos\left(\frac{Spur(R_{TCP}^TR_{GO})}{2}\right)$	$\left(\frac{\log l}{l}\right)^{-1}$	
Quaternion allg.	$q = (a, u)^T = a + u_1 i + u_2 j + u_3 k \text{ mit } a \in \mathbb{R}, u$,	
Punkt zu	$q - (a, u) - a + u_{1}i + u_{2}j + u_{3}k$ fillt $a \in \mathbb{N}, u$	e m unu k — i * j	
Quaternion	Punkt p = $(u_1, u_2, u_3) \rightarrow \text{Quaternion (a,p)} = a +$	$u_1i + u_2j + u_3k$ (a=0 da keine Rotation)	
Rotations-	Quaternion q = $(\cos \frac{\phi}{2}, v \sin \frac{\phi}{2})$ wobei v die Ach	ise ist beschrieben durch $(v_1, v_2, v_3)^T$	
quaternion Winkel			
ϕ und Achse a	$\rightarrow \cos\frac{\phi}{2} + i \cdot v_1 \sin\frac{\phi}{2} + j \cdot v_2 \sin\frac{\phi}{2} + k \cdot v_3 \sin\frac{\phi}{2}$	1 - 2	
-	Konjugiertes Quaternion q* = (a, -u)		
Transformation			
eines Punktes	$v' = q \cdot v \cdot q^*$		
mittels Quaternion	-1-14	1)0 ::-(1)0	
SLERP	$\theta = \arccos(q_1 \cdot q_2) \rightarrow \operatorname{slerp}(q_1, q_2, t) = \frac{\sin(1-t)}{\sin(t-t)}$	$\frac{-i \partial \theta}{\theta} * q_1 + \frac{\sin(i)\theta}{\sin \theta} * q_2$	
Interpolation	D	0	
	Pro	Contra	
	Kompakte & Anschauliche Darstellung	Nur Rotation, keine Translation	
Quternion	Konkatenation möglich		
Bewertung	Kein Gimbal Lock		
	Berechnung der Inversen Kinematik		
	 		
	Repräsentation stetig		
Duale	Ermöglichen die bei Quaternionen fehlende Tra	•	
Duale Quaternionen	Ermöglichen die bei Quaternionen fehlende Tra Rotation). Allerdings schwer für Anwender und	komplexe Verarbeitung.	
	Ermöglichen die bei Quaternionen fehlende Tra Rotation). Allerdings schwer für Anwender und Der Arbeitsraum besteht aus den Punkten im 3	komplexe Verarbeitung. D Raum, die von der Roboterhand angefahren	
Quaternionen	Ermöglichen die bei Quaternionen fehlende Tra Rotation). Allerdings schwer für Anwender und Der Arbeitsraum besteht aus den Punkten im 3 werden können. Hierzu sind 3 DoF in der Beweg	komplexe Verarbeitung. D Raum, die von der Roboterhand angefahren gung, als mindestens 3 Gelenke erforderlich.	
Quaternionen	Ermöglichen die bei Quaternionen fehlende Tra Rotation). Allerdings schwer für Anwender und Der Arbeitsraum besteht aus den Punkten im 31 werden können. Hierzu sind 3 DoF in der Beweg Rotationsgelenk (R): Drehachse bildet rechten N	komplexe Verarbeitung. D Raum, die von der Roboterhand angefahren gung, als mindestens 3 Gelenke erforderlich. Winkel mit den Achsen der Glieder	
Quaternionen	Ermöglichen die bei Quaternionen fehlende Tra Rotation). Allerdings schwer für Anwender und Der Arbeitsraum besteht aus den Punkten im 3 werden können. Hierzu sind 3 DoF in der Beweg Rotationsgelenk (R): Drehachse bildet rechten V Torsionsgelenk (T): Drehachse parallel zu Achse	komplexe Verarbeitung. D Raum, die von der Roboterhand angefahren gung, als mindestens 3 Gelenke erforderlich. Winkel mit den Achsen der Glieder der beiden Glieder	
Quaternionen Arbeitsraum	Ermöglichen die bei Quaternionen fehlende Tra Rotation). Allerdings schwer für Anwender und Der Arbeitsraum besteht aus den Punkten im 31 werden können. Hierzu sind 3 DoF in der Beweg Rotationsgelenk (R): Drehachse bildet rechten V Torsionsgelenk (T): Drehachse parallel zu Achse Revolvergelenk (V): Eingangsglied parallel zu Dr	komplexe Verarbeitung. D Raum, die von der Roboterhand angefahren gung, als mindestens 3 Gelenke erforderlich. Winkel mit den Achsen der Glieder der beiden Glieder rehachse, Ausgangsglied 90° zu Drehachse	
Quaternionen	Ermöglichen die bei Quaternionen fehlende Tra Rotation). Allerdings schwer für Anwender und Der Arbeitsraum besteht aus den Punkten im 3 werden können. Hierzu sind 3 DoF in der Beweg Rotationsgelenk (R): Drehachse bildet rechten V Torsionsgelenk (T): Drehachse parallel zu Achse	komplexe Verarbeitung. D Raum, die von der Roboterhand angefahren gung, als mindestens 3 Gelenke erforderlich. Winkel mit den Achsen der Glieder der beiden Glieder rehachse, Ausgangsglied 90° zu Drehachse	
Quaternionen Arbeitsraum	Ermöglichen die bei Quaternionen fehlende Tra Rotation). Allerdings schwer für Anwender und Der Arbeitsraum besteht aus den Punkten im 31 werden können. Hierzu sind 3 DoF in der Beweg Rotationsgelenk (R): Drehachse bildet rechten V Torsionsgelenk (T): Drehachse parallel zu Achse Revolvergelenk (V): Eingangsglied parallel zu Dr	komplexe Verarbeitung. D Raum, die von der Roboterhand angefahren gung, als mindestens 3 Gelenke erforderlich. Winkel mit den Achsen der Glieder der beiden Glieder rehachse, Ausgangsglied 90° zu Drehachse	
Quaternionen Arbeitsraum	Ermöglichen die bei Quaternionen fehlende Tra Rotation). Allerdings schwer für Anwender und Der Arbeitsraum besteht aus den Punkten im 31 werden können. Hierzu sind 3 DoF in der Beweg Rotationsgelenk (R): Drehachse bildet rechten V Torsionsgelenk (T): Drehachse parallel zu Achse Revolvergelenk (V): Eingangsglied parallel zu Dr Linear(Translations-)gelenk (L): gleitende oder f	komplexe Verarbeitung. D Raum, die von der Roboterhand angefahren gung, als mindestens 3 Gelenke erforderlich. Winkel mit den Achsen der Glieder der beiden Glieder rehachse, Ausgangsglied 90° zu Drehachse	
Quaternionen Arbeitsraum Gelenktypen	Ermöglichen die bei Quaternionen fehlende Tra Rotation). Allerdings schwer für Anwender und Der Arbeitsraum besteht aus den Punkten im 31 werden können. Hierzu sind 3 DoF in der Beweg Rotationsgelenk (R): Drehachse bildet rechten V Torsionsgelenk (T): Drehachse parallel zu Achse Revolvergelenk (V): Eingangsglied parallel zu Dr Linear(Translations-)gelenk (L): gleitende oder f	komplexe Verarbeitung. D Raum, die von der Roboterhand angefahren gung, als mindestens 3 Gelenke erforderlich. Winkel mit den Achsen der Glieder eder beiden Glieder ehachse, Ausgangsglied 90° zu Drehachse fortschreitende Bewegung entlang Achse	
Quaternionen Arbeitsraum Gelenktypen Muskelartige	Ermöglichen die bei Quaternionen fehlende Tra Rotation). Allerdings schwer für Anwender und Der Arbeitsraum besteht aus den Punkten im 31 werden können. Hierzu sind 3 DoF in der Beweg Rotationsgelenk (R): Drehachse bildet rechten V Torsionsgelenk (T): Drehachse parallel zu Achse Revolvergelenk (V): Eingangsglied parallel zu Dr Linear (Translations-)gelenk (L): gleitende oder f	komplexe Verarbeitung. D Raum, die von der Roboterhand angefahren gung, als mindestens 3 Gelenke erforderlich. Winkel mit den Achsen der Glieder ehachse, Ausgangsglied 90° zu Drehachse fortschreitende Bewegung entlang Achse Vegt Kolben (Schnelle Zyklen mit wenig Kraft)	
Quaternionen Arbeitsraum Gelenktypen	Ermöglichen die bei Quaternionen fehlende Tra Rotation). Allerdings schwer für Anwender und Der Arbeitsraum besteht aus den Punkten im 31 werden können. Hierzu sind 3 DoF in der Beweg Rotationsgelenk (R): Drehachse bildet rechten V Torsionsgelenk (T): Drehachse parallel zu Achse Revolvergelenk (V): Eingangsglied parallel zu Dr Linear(Translations-)gelenk (L): gleitende oder for Ausgang Pneumatische Antriebe: Komprimierte Luft beweg Hydraulischer Antrieb: Öldruckpumpe und seine	komplexe Verarbeitung. D Raum, die von der Roboterhand angefahren gung, als mindestens 3 Gelenke erforderlich. Winkel mit den Achsen der Glieder ehachse, Ausgangsglied 90° zu Drehachse fortschreitende Bewegung entlang Achse Jegt Kolben (Schnelle Zyklen mit wenig Kraft) steuerbare Ventile. Große, starke Roboter.	
Quaternionen Arbeitsraum Gelenktypen Muskelartige Antriebe	Ermöglichen die bei Quaternionen fehlende Tra Rotation). Allerdings schwer für Anwender und Der Arbeitsraum besteht aus den Punkten im 31 werden können. Hierzu sind 3 DoF in der Beweg Rotationsgelenk (R): Drehachse bildet rechten V Torsionsgelenk (T): Drehachse parallel zu Achse Revolvergelenk (V): Eingangsglied parallel zu Dr Linear (Translations-)gelenk (L): gleitende oder for eingang Ausgang Pneumatische Antriebe: Komprimierte Luft beweg Hydraulischer Antrieb: Öldruckpumpe und stellektrische in mechanische Energie. Stromdurch	komplexe Verarbeitung. D Raum, die von der Roboterhand angefahren gung, als mindestens 3 Gelenke erforderlich. Winkel mit den Achsen der Glieder ehachse, Ausgangsglied 90° zu Drehachse fortschreitende Bewegung entlang Achse Gegt Kolben (Schnelle Zyklen mit wenig Kraft) steuerbare Ventile. Große, starke Roboter. Inflossener Leiter von Magnetfeld abgelenkt	
Quaternionen Arbeitsraum Gelenktypen Muskelartige	Ermöglichen die bei Quaternionen fehlende Tra Rotation). Allerdings schwer für Anwender und Der Arbeitsraum besteht aus den Punkten im 31 werden können. Hierzu sind 3 DoF in der Beweg Rotationsgelenk (R): Drehachse bildet rechten Varsionsgelenk (T): Drehachse parallel zu Achse Revolvergelenk (V): Eingangsglied parallel zu Dre Linear (Translations-)gelenk (L): gleitende oder für gelingang Ausgang Pneumatische Antriebe: Komprimierte Luft beweg Hydraulischer Antrieb: Öldruckpumpe und stellektrische in mechanische Energie. Stromdurch und durch Wechsel der Polarität Drehbewegung	komplexe Verarbeitung. D Raum, die von der Roboterhand angefahren gung, als mindestens 3 Gelenke erforderlich. Winkel mit den Achsen der Glieder ehachse, Ausgangsglied 90° zu Drehachse fortschreitende Bewegung entlang Achse Gegt Kolben (Schnelle Zyklen mit wenig Kraft) steuerbare Ventile. Große, starke Roboter. Inflossener Leiter von Magnetfeld abgelenkt	

	<u></u>		
	<u>Differentialantrieb:</u> Geradeaus- & Kurvenfahrten, Drehen auf Stelle, Vorwärts- und Rückwärtsfahren identisch → Einfache Mechanik vs. Radregelung in Echtzeit <u>Dreirad-Antrieb:</u> Geradeaus- & Kurvenfahrten, Vorwärts- & Rückwärts unterschiedlich		
Rad-	$\frac{Dreirad-Antrieb:}{(unterschiedliches \alpha) \rightarrow Einfache Mechanik vs. Eingeschränkte Manövrierfähigkeit$		
konfigurationen	Synchro-Antrieb: Geradeaus- & Kurvenfahrt	_	
	Plattform dreht nicht → einfache Regelung,	geradeaus garantiert vs. mechan. komplex	
	Mecanum-Antrieb: uneingeschränkte Bewe	eglichkeit in Richtung x, y und w vs.	
	mechanisch komplex, aufwendige Regelung		
	<u>Informationsfluss</u>		
	physikalische Größen Elementar- sensor Signal- aufbereitetes Signal- Signal- verarbeitung integrierter Sensor intelligenter Sensor	Steuer- Information	
	<u>Klassifizierung</u>		
	Interne Sensoren	Externe Sensoren	
Sensoren	- kein Kontakt zur Umwelt - Bestimmung von Lage und Position durch	- Information aus der Umwelt - Bestimmung von Position und Orientierung	
	Neigung, Orientierung, Drehrichtung,	und Bezug auf Umwelt, Beschaffenheit der	
	Beschleunigung, Lenkwinkel	Umwelt, Kommandos	
	Aufgabe: Stellung der Gelenke,	Aufgabe: Entfernung, Lage von	
	Geschwindigkeit der Bewegung der Gelenke, Kräfte und Momente auf Gelenke	Positionsmarken und Objekten, Kontur von	
	Krafte und Momente auf Gelenke	Objekten, Pixeibilder der Umweit	
		Objekten, Pixelbilder der Umwelt Passive Sensoren	
	Aktive Sensoren Simulation der Umwelt durch Eintrag von	Passive Sensoren Umwelt vorhandene Signale werden	
	Aktive Sensoren Simulation der Umwelt durch Eintrag von Energie, Messen & Auswerten der Antwort	Passive Sensoren Umwelt vorhandene Signale werden gemessen und ausgewertet	
Kinematisches	Aktive Sensoren Simulation der Umwelt durch Eintrag von Energie, Messen & Auswerten der Antwort Das kinematische Modell eines Roboters be	Passive Sensoren Umwelt vorhandene Signale werden gemessen und ausgewertet eschreibt die Zusammenhänge zwuschen	
Kinematisches Modell	Aktive Sensoren Simulation der Umwelt durch Eintrag von Energie, Messen & Auswerten der Antwort Das kinematische Modell eines Roboters bedem Raum der Gelenkwinkel und dem Raur	Passive Sensoren Umwelt vorhandene Signale werden gemessen und ausgewertet eschreibt die Zusammenhänge zwuschen	
Modell	Aktive Sensoren Simulation der Umwelt durch Eintrag von Energie, Messen & Auswerten der Antwort Das kinematische Modell eines Roboters be	Passive Sensoren Umwelt vorhandene Signale werden gemessen und ausgewertet eschreibt die Zusammenhänge zwuschen m der Lage des Endeffektors in	
Modell Vorwärtskinematik	Aktive Sensoren Simulation der Umwelt durch Eintrag von Energie, Messen & Auswerten der Antwort Das kinematische Modell eines Roboters be dem Raum der Gelenkwinkel und dem Raur Weltkoordinaten. <u>Direktes kinematische Problem:</u> Bestimmung de Gelenkwinkelstellungen des Roboters. (Wo ist respective der Stensoren)	Passive Sensoren Umwelt vorhandene Signale werden gemessen und ausgewertet eschreibt die Zusammenhänge zwuschen m der Lage des Endeffektors in er Lage des Endeffektors aus den meine Hand? Hier!) $f: \mathbb{R}^n \to \mathbb{R}^m, \ x = f(\theta)$	
Modell Vorwärtskinematik Rückwärts-	Aktive Sensoren Simulation der Umwelt durch Eintrag von Energie, Messen & Auswerten der Antwort Das kinematische Modell eines Roboters be dem Raum der Gelenkwinkel und dem Raum Weltkoordinaten. Direktes kinematische Problem: Bestimmung de Gelenkwinkelstellungen des Roboters. (Wo ist in Inverses kinematisches Problem: Bestimmung de	Passive Sensoren Umwelt vorhandene Signale werden gemessen und ausgewertet eschreibt die Zusammenhänge zwuschen m der Lage des Endeffektors in er Lage des Endeffektors aus den meine Hand? Hier!) $f: \mathbb{R}^n \to \mathbb{R}^m, \ x = f(\theta)$ der Gelenkwinkelstellungen zu einer	
Modell Vorwärtskinematik	Aktive Sensoren Simulation der Umwelt durch Eintrag von Energie, Messen & Auswerten der Antwort Das kinematische Modell eines Roboters be dem Raum der Gelenkwinkel und dem Raur Weltkoordinaten. <u>Direktes kinematische Problem:</u> Bestimmung de Gelenkwinkelstellungen des Roboters. (Wo ist respective der Stensoren)	Passive Sensoren Umwelt vorhandene Signale werden gemessen und ausgewertet eschreibt die Zusammenhänge zwuschen m der Lage des Endeffektors in er Lage des Endeffektors aus den meine Hand? Hier!) f: $\mathbb{R}^n \to \mathbb{R}^m$, $x = f(\theta)$ der Gelenkwinkelstellungen zu einer iche ich den Becher?) F: $\mathbb{R}^m \to \mathbb{R}^n$, $\theta = F(x)$ $\underline{z_{i-1}\text{-}Achse}$ liegt entlang der Bewegungsachse	
Modell Vorwärtskinematik Rückwärts-	Aktive Sensoren Simulation der Umwelt durch Eintrag von Energie, Messen & Auswerten der Antwort Das kinematische Modell eines Roboters bedem Raum der Gelenkwinkel und dem Raum Weltkoordinaten. Direktes kinematische Problem: Bestimmung der Gelenkwinkelstellungen des Roboters. (Wo ist min Inverses kinematisches Problem: Bestimmung der gewünschten Lage des Endeffektors. (Wie erreit Gelenk ist	Passive Sensoren Umwelt vorhandene Signale werden gemessen und ausgewertet eschreibt die Zusammenhänge zwuschen m der Lage des Endeffektors in er Lage des Endeffektors aus den meine Hand? Hier!) $f: \mathbb{R}^n \to \mathbb{R}^m, \ x = f(\theta)$ der Gelenkwinkelstellungen zu einer iche ich den Becher?) $F: \mathbb{R}^m \to \mathbb{R}^n, \ \theta = F(x)$ $\underline{z_{i-1}\text{-}Achse}$ liegt entlang der Bewegungsachse	
Modell Vorwärtskinematik Rückwärts-	Aktive Sensoren Simulation der Umwelt durch Eintrag von Energie, Messen & Auswerten der Antwort Das kinematische Modell eines Roboters bedem Raum der Gelenkwinkel und dem Raum Weltkoordinaten. Direktes kinematische Problem: Bestimmung de Gelenkwinkelstellungen des Roboters. (Wo ist min Inverses kinematisches Problem: Bestimmung de gewünschten Lage des Endeffektors. (Wie errei Gelenk in Gelenk in Inverse kinematisches Problem: Bestimmung de gewünschten Lage des Endeffektors. (Wie errei Gelenk in Inverse kinematisches Problem: Bestimmung de gewünschten Lage des Endeffektors. (Wie errei Gelenk in Inverse kinematisches Problem: Bestimmung de gewünschten Lage des Endeffektors. (Wie errei Gelenk in Inverse kinematisches Problem: Bestimmung de gewünschten Lage des Endeffektors.)	Passive Sensoren Umwelt vorhandene Signale werden gemessen und ausgewertet eschreibt die Zusammenhänge zwuschen m der Lage des Endeffektors in er Lage des Endeffektors aus den meine Hand? Hier!) $f: \mathbb{R}^n \to \mathbb{R}^m, \ x = f(\theta)$ der Gelenkwinkelstellungen zu einer iche ich den Becher?) $F: \mathbb{R}^m \to \mathbb{R}^n, \ \theta = F(x)$ $\underline{z_{i-1}\text{-}Achse}$ liegt entlang der Bewegungsachse des i-ten Gelenks $\underline{x_i\text{-}Achse}$ verläuft entlang der gemeinsamen	
Modell Vorwärtskinematik Rückwärts-	Aktive Sensoren Simulation der Umwelt durch Eintrag von Energie, Messen & Auswerten der Antwort Das kinematische Modell eines Roboters bedem Raum der Gelenkwinkel und dem Raum Weltkoordinaten. Direktes kinematische Problem: Bestimmung der Gelenkwinkelstellungen des Roboters. (Wo ist min Inverses kinematisches Problem: Bestimmung der gewünschten Lage des Endeffektors. (Wie errei Gelenk ist in Inverses kinematisches Problem: Bestimmung der gewünschten Lage des Endeffektors. (Wie errei Gelenk ist inversent inversent ist inversent ist inversent inversent inversent ist inversent invers	Passive Sensoren Umwelt vorhandene Signale werden gemessen und ausgewertet eschreibt die Zusammenhänge zwuschen m der Lage des Endeffektors in er Lage des Endeffektors aus den meine Hand? Hier!) $f: \mathbb{R}^n \to \mathbb{R}^m, \ x = f(\theta)$ der Gelenkwinkelstellungen zu einer iche ich den Becher?) $F: \mathbb{R}^m \to \mathbb{R}^n, \ \theta = F(x)$ $\underline{z_{i-1}\text{-}Achse} \text{ liegt entlang der Bewegungsachse des i-ten Gelenks}$ $\underline{x_i\text{-}Achse} \text{ verläuft entlang der gemeinsamen Normalen von z}_{i-1} \& z_i \& zeigt weg von z}_{i-1}$	
Modell Vorwärtskinematik Rückwärts- kinematik	Aktive Sensoren Simulation der Umwelt durch Eintrag von Energie, Messen & Auswerten der Antwort Das kinematische Modell eines Roboters bedem Raum der Gelenkwinkel und dem Raum Weltkoordinaten. Direktes kinematische Problem: Bestimmung de Gelenkwinkelstellungen des Roboters. (Wo ist min Inverses kinematisches Problem: Bestimmung de gewünschten Lage des Endeffektors. (Wie errei Gelenk in Gelenk in Inverse kinematisches Problem: Bestimmung de gewünschten Lage des Endeffektors. (Wie errei Gelenk in Inverse kinematisches Problem: Bestimmung de gewünschten Lage des Endeffektors. (Wie errei Gelenk in Inverse kinematisches Problem: Bestimmung de gewünschten Lage des Endeffektors. (Wie errei Gelenk in Inverse kinematisches Problem: Bestimmung de gewünschten Lage des Endeffektors.)	Passive Sensoren Umwelt vorhandene Signale werden gemessen und ausgewertet eschreibt die Zusammenhänge zwuschen m der Lage des Endeffektors in er Lage des Endeffektors aus den meine Hand? Hier!) $f: \mathbb{R}^n \to \mathbb{R}^m, \ x = f(\theta)$ der Gelenkwinkelstellungen zu einer iche ich den Becher?) $F: \mathbb{R}^m \to \mathbb{R}^n, \ \theta = F(x)$ $\underline{z_{i-1}\text{-}Achse}$ liegt entlang der Bewegungsachse des i-ten Gelenks $\underline{x_i\text{-}Achse}$ verläuft entlang der gemeinsamen	
Modell Vorwärtskinematik Rückwärts- kinematik Denavit- Hartenberg (DH)	Aktive Sensoren Simulation der Umwelt durch Eintrag von Energie, Messen & Auswerten der Antwort Das kinematische Modell eines Roboters bedem Raum der Gelenkwinkel und dem Raum Weltkoordinaten. Direktes kinematische Problem: Bestimmung de Gelenkwinkelstellungen des Roboters. (Wo ist min Inverses kinematisches Problem: Bestimmung de gewünschten Lage des Endeffektors. (Wie errei Gelenk in Gelenk in Inverse kinematisches Problem: Bestimmung de gewünschten Lage des Endeffektors. (Wie errei Gelenk in Inverse kinematisches Problem: Bestimmung de gewünschten Lage des Endeffektors. (Wie errei Gelenk in Inverse kinematisches Problem: Bestimmung de gewünschten Lage des Endeffektors. (Wie errei Gelenk in Inverse kinematisches Problem: Bestimmung de gewünschten Lage des Endeffektors.)	Passive Sensoren Umwelt vorhandene Signale werden gemessen und ausgewertet eschreibt die Zusammenhänge zwuschen m der Lage des Endeffektors in er Lage des Endeffektors aus den meine Hand? Hier!) $f: \mathbb{R}^n \to \mathbb{R}^m, \ x = f(\theta)$ der Gelenkwinkelstellungen zu einer iche ich den Becher?) $F: \mathbb{R}^m \to \mathbb{R}^n, \ \theta = F(x)$ $\underline{z_{i-1}}$ -Achse liegt entlang der Bewegungsachse des i-ten Gelenks $\underline{x_i}$ -Achse verläuft entlang der gemeinsamen Normalen von z_{i-1} & z_i & zeigt weg von z_{i-1} $\underline{Die y_i}$ -Achse vervollständigt KS entsprechend	
Modell Vorwärtskinematik Rückwärts- kinematik Denavit-	Aktive Sensoren Simulation der Umwelt durch Eintrag von Energie, Messen & Auswerten der Antwort Das kinematische Modell eines Roboters bedem Raum der Gelenkwinkel und dem Raum Weltkoordinaten. Direktes kinematische Problem: Bestimmung de Gelenkwinkelstellungen des Roboters. (Wo ist min Inverses kinematisches Problem: Bestimmung de gewünschten Lage des Endeffektors. (Wie errei Gelenk in Gelenk in Inverse kinematisches Problem: Bestimmung de gewünschten Lage des Endeffektors. (Wie errei Gelenk in Inverse kinematisches Problem: Bestimmung de gewünschten Lage des Endeffektors. (Wie errei Gelenk in Inverse kinematisches Problem: Bestimmung de gewünschten Lage des Endeffektors. (Wie errei Gelenk in Inverse kinematisches Problem: Bestimmung de gewünschten Lage des Endeffektors.)	Passive Sensoren Umwelt vorhandene Signale werden gemessen und ausgewertet eschreibt die Zusammenhänge zwuschen m der Lage des Endeffektors in er Lage des Endeffektors aus den meine Hand? Hier!) $f: \mathbb{R}^n \to \mathbb{R}^m, \ x = f(\theta)$ der Gelenkwinkelstellungen zu einer iche ich den Becher?) $f: \mathbb{R}^m \to \mathbb{R}^n, \ \theta = F(x)$ $\underline{z_{i-1}}$ -Achse liegt entlang der Bewegungsachse des i-ten Gelenks $\underline{x_i}$ -Achse verläuft entlang der gemeinsamen Normalen von z_{i-1} & z_i & zeigt weg von z_{i-1} $\underline{Die \ y_i}$ -Achse vervollständigt KS entsprechend der Rechte-Hand-Regel	
Modell Vorwärtskinematik Rückwärts- kinematik Denavit- Hartenberg (DH)	Aktive Sensoren Simulation der Umwelt durch Eintrag von Energie, Messen & Auswerten der Antwort Das kinematische Modell eines Roboters bedem Raum der Gelenkwinkel und dem Raum Weltkoordinaten. Direktes kinematische Problem: Bestimmung de Gelenkwinkelstellungen des Roboters. (Wo ist min Inverses kinematisches Problem: Bestimmung de gewünschten Lage des Endeffektors. (Wie errei Gelenk in Gelenk in Inverse kinematisches Problem: Bestimmung de gewünschten Lage des Endeffektors. (Wie errei Gelenk in Inverse kinematisches Problem: Bestimmung de gewünschten Lage des Endeffektors. (Wie errei Gelenk in Inverse kinematisches Problem: Bestimmung de gewünschten Lage des Endeffektors. (Wie errei Gelenk in Inverse kinematisches Problem: Bestimmung de gewünschten Lage des Endeffektors.)	Passive Sensoren Umwelt vorhandene Signale werden gemessen und ausgewertet eschreibt die Zusammenhänge zwuschen m der Lage des Endeffektors in er Lage des Endeffektors aus den meine Hand? Hier!) $f: \mathbb{R}^n \to \mathbb{R}^m, \ x = f(\theta)$ der Gelenkwinkelstellungen zu einer iche ich den Becher?) $F: \mathbb{R}^m \to \mathbb{R}^n, \ \theta = F(x)$ $\underline{z_{i-1}\text{-}Achse} \text{ liegt entlang der Bewegungsachse des i-ten Gelenks}$ $\underline{x_i\text{-}Achse} \text{ verläuft entlang der gemeinsamen Normalen von } z_{i-1} \& z_i \& zeigt weg von z_{i-1}$ $\underline{Die \ y_i\text{-}Achse} \text{ vervollständigt KS entsprechend der Rechte-Hand-Regel}$ $\underline{Armelement \ i} \text{ zwischen Gelenk i \& i+1}$ $z_i \text{ liegt entlang Gelenkachse i + 1}$	
Modell Vorwärtskinematik Rückwärts- kinematik Denavit- Hartenberg (DH)	Aktive Sensoren Simulation der Umwelt durch Eintrag von Energie, Messen & Auswerten der Antwort Das kinematische Modell eines Roboters bedem Raum der Gelenkwinkel und dem Raum Weltkoordinaten. Direktes kinematische Problem: Bestimmung der Gelenkwinkelstellungen des Roboters. (Wo ist min Inverses kinematisches Problem: Bestimmung der Gelenk in Gelenk i	Passive Sensoren Umwelt vorhandene Signale werden gemessen und ausgewertet eschreibt die Zusammenhänge zwuschen m der Lage des Endeffektors in er Lage des Endeffektors aus den meine Hand? Hier!) f: $\mathbb{R}^n \to \mathbb{R}^m$, $x = f(\theta)$ der Gelenkwinkelstellungen zu einer iche ich den Becher?) F: $\mathbb{R}^m \to \mathbb{R}^n$, $\theta = F(x)$ $\underline{z_{i-1}}$ -Achse liegt entlang der Bewegungsachse des i-ten Gelenks $\underline{x_i}$ -Achse verläuft entlang der gemeinsamen Normalen von z_{i-1} & z_i & zeigt weg von z_{i-1} $\underline{Die\ y_i}$ -Achse vervollständigt KS entsprechend der Rechte-Hand-Regel $\underline{Armelement\ i}$ zwischen Gelenk i & i+1 z_i liegt entlang Gelenkachse i + 1 and von z_{i-1} zu z_i	
Modell Vorwärtskinematik Rückwärts- kinematik Denavit- Hartenberg (DH)	Aktive Sensoren Simulation der Umwelt durch Eintrag von Energie, Messen & Auswerten der Antwort Das kinematische Modell eines Roboters bedem Raum der Gelenkwinkel und dem Raum Weltkoordinaten. Direktes kinematische Problem: Bestimmung der Gelenkwinkelstellungen des Roboters. (Wo ist min Inverses kinematisches Problem: Bestimmung der gewünschten Lage des Endeffektors. (Wie errei Gelenk ist auswerten der Antwort Armelement ist auswerten der Antwort Das kinematische Modell eines Roboters bedem Raum dem Raum Weltkoordinaten. Direktes kinematische Problem: Bestimmung der Gelenk ist auswerten der Antwort Armelement ist auswerten der Antwort Das kinematische Modell eines Roboters bedem Raum Weltkoordinaten. Direktes kinematische Problem: Bestimmung der Gelenk ist auswerten der Antwort Armelement ist auswerten der Antwort Das kinematische Modell eines Roboters bedem Raum Weltkoordinaten. Direktes kinematische Problem: Bestimmung der Gelenk in Inverses kinematisches Problem: Bestimmung der Gelenk ist auswerten der Antwort Armelement ist a	Passive Sensoren Umwelt vorhandene Signale werden gemessen und ausgewertet eschreibt die Zusammenhänge zwuschen m der Lage des Endeffektors in er Lage des Endeffektors aus den meine Hand? Hier!) $f: \mathbb{R}^n \to \mathbb{R}^m, \ x = f(\theta)$ der Gelenkwinkelstellungen zu einer iche ich den Becher?) $F: \mathbb{R}^m \to \mathbb{R}^n, \ \theta = F(x)$ $\underline{z_{i-1}}$ -Achse liegt entlang der Bewegungsachse des i-ten Gelenks $\underline{x_i}$ -Achse verläuft entlang der gemeinsamen Normalen von z_{i-1} & z_i & zeigt weg von z_{i-1} $\underline{Die \ y_i}$ -Achse vervollständigt KS entsprechend der Rechte-Hand-Regel $\underline{Armelement \ i}$ zwischen Gelenk i & i+1 z_i liegt entlang Gelenkachse i + 1 z_i liegt entlang Gelenkachse i + 1 z_i kel zwischen z_{i-1} zu z_i um z_i	

DH Transformations-	$A_{i-1,i} = R_{z_{i-1}}(\theta_i) \cdot T_{z_{i-1}}(d_i) \cdot T_{x_i}(a_i) \cdot R_{x_i}(a_i) = \begin{pmatrix} \cos \theta_i \\ \sin \theta_i \\ 0 \\ 0 \end{pmatrix}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
matrix OKS _{i-1} zu OKS _i	$A_{i,i-1} = \begin{array}{c} -a_i \\ -d_i \sin \alpha \\ -d_i \cos \alpha \end{array}$ $0 \qquad 0 \qquad 0 \qquad 1$	- · · · · · · · · · · · · · · · · · · ·	
Endeffektor- Geschwindigkeit	$\dot{\mathbf{x}}(t) = \mathbf{J}_{\mathbf{f}}(\boldsymbol{\theta}(t)) \cdot \dot{\boldsymbol{\theta}}(t)$		
Endeffektor Kraft	$\tau(t) = J_f^T(\theta(t)) \cdot F(t)$		
Berechnung der Jacobi Matrix		Rotationsgel.: $\frac{\partial f(\theta)}{\partial \theta_j} = \begin{bmatrix} v_j \times (f(\theta) - p_j) \\ v_j \end{bmatrix}$	
Singularitäten	Eine kinematische Kette ist in einer singulären Konfiguration wenn die zugehörige Jacobi Matrix nicht vollen Rang hat (zwei oder mehr Spalten in J _f linear abhängig). Dadurch dass die Jacobi Matrix dann nicht invertierbar ist sind bestimme Konfigurationen nicht möglich. Für quadratische Matrizen gilt dann, dass die Determinanten der Jacobi Matrix gleich null ist.		
Erreichbarkeit	Es existiert mindestens eine Gelenkwinkelkonfigu	uration, so dass der TCP in Gitterzelle liegt.	
Manipulierbarkeit	Maximaler Manipulierbarkeitswert einer Gitterze		
Geometrische Modelle	Verwendung: Kollisions- und Kontaktberechnung, Arten: Einhüllende Quader (Kollision), Polygonzüg	ge (Visualisierung), Volumenmodell (exakt)	
Inverse Kinematik	Anwendung von trigonometrischen Funktionen 8		
Geomet. Methode	Kosinussatz: $c^2 = a^2 + b^2 - 2ab \cdot \cos \gamma$ wobei γ Gleichsetzen von P_{TCP} und der Transformation		
Inverse Kinematik Algebraische Methode	$ ightarrow$ 16 (12 nicht triviale) Gleichungen die gelöst wer 1. Invertiere $A_{0,1}(\theta_1)$ und multipliziere beide Seit 2. Versuche aus dem neuen Gleichungssyste, eine Unbekannten und löse diese Gleichung nach der 3. Versuche Gleichung zu finden die durch Substit Lösung nach einer Unbekannten lösbar ist 4. Falls keine Lösung mehr gefunden wird, muss es 5. Wiederhole 1. bis 4. bis alle Gelenkwinkel ermi	erden müssen te mit $A_{0,1}^{-1}$ e Gleichung zu finden mit nur einer unbekannten. tution der im letzten Schritt gefundenen eine weitere Matrix invertiert werden.	
Inverse Kinematik Numerische Methode	Jumerische 4. Umkehrung: $\Delta\theta \approx J_f^{\#}(\theta)\Delta x$ Pseudoinverse: $A^{\#} = A^T(AA^T)^{-1}$ (nahe Singularitäte		
Inverse Kinematik Bewertung Dynamisches	Allgemeine Verfahren Numerische Verfahren Allg. Lösungsverfahren für Gleichungssysteme → hoher Aufwand → lange Zeitdauer Das dynamische Modell beschreibt den Zusamme Bewegungen, welche in einem mechanischen Me	-	
Modell	Bewegungsungleichung	, ,	

$\tau = M(q) \cdot \ddot{q} + c(\dot{q}, q) + g(q)$

 $n \times 1$ Vektor der generalisierten Kräfte

 $n \times n$ Massenträgheitsmatrix M(a): $c(\dot{q}, q)$: $n \times 1$ Vektor der Zentripetal- und Corioliskomponenten

 $n \times 1$ Vektor der Gravitationskomponenten g(q): q, \dot{q} , \ddot{q} : $n \times 1$ Vektor der generalisierten Koordinaten (Position, Geschwindigkeit, Beschleunigung)

Direkts dynamisches Problem (Anfangswertproblem der Mechanik): Aus äußeren Kräften und Momenten sowie Anfangszustand wird unter Verwendung des dynamischen Modells die sich ergebenden Bewegungsänderungen berechnet.

Inverses dynamisches Problem: Aus den gewünschten Bewegungsparametern sollen, unter Verwendung des dynamischen Modells, die dazu erforderlichen Stellkräfte und -momente ermittelt werden.

Methode nach Lagrange

Lagrange Funktion: $L(q, \dot{q}) = E_{kin}(q, \dot{q}) - E_{pot}(q)$

Bewegungsungleichung $\tau_i = \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i} \right) - \frac{\partial L}{\partial q_i}$

Algorithmus

- 1. Berechne Ekin und Epot
- 2. Drücke E_{kin} und E_{pot} in generalisierten Koordinaten aus $L(q,\dot{q})=E_{kin}(q,\dot{q})-E_{not}(q)$
- 3. Berechne die Ableitung

Methode nach Newton-Euler

Betrachtung der Massenschwerpunkte eines Armelements.

Kraft = Impuls abgeleitet nach der Zeit ($F_i = \frac{d}{dt} (m_i v_{s,i}) = m_i \cdot \dot{v}_{s,i}$

Drehmoment = Drehimpuls abgeleitet nach Zeit = $N_i = \frac{d}{dt} (I_i w_{s,i}) = I_i \dot{w}_{s,i}$

Modellierung der Dynamik

→ Beschleunigungen von der Basis/Greifer zum/zur Greifer/Basis berechnen Vorwärtsgleichung (von Basis zum Greifer)

Eingabe: q(t), $\dot{q}(t)$, $\ddot{q}(t)$ Startwerte: ω_0 , $\dot{\omega}_0$, \dot{v}_0 , \dot{v}_0

$$\begin{array}{ll} \omega_{i+1} = G_1(\omega_i, q_{i+1}, \dot{q}_{i+1}) & \dot{\omega}_{i+1} = G_2(\omega_i, \dot{\omega}_i, q_{i+1}, \dot{q}_{i+1}, \ddot{q}_{i+1}) \\ v_{i+1} = G_3(v_i, \omega_i, q_{i+1}) & \dot{v}_{i+1} = G_4(\dot{v}_i, \omega_i, \dot{\omega}_{i+1}, q_{i+1}) \\ v_{s,i+1} = G_5(v_{i+1}, \omega_{i+1}) & \dot{v}_{i+1} = G_3(\dot{v}_{i+1}, \omega_{i+1}, \dot{\omega}_{i+1}) \end{array}$$

$$v_{s,i+1} = G_5(v_{i+1}, \omega_{i+1})$$
 $v_{i+1} = G_3(\dot{v}_{i+1}, \omega_{i+1}, \dot{\omega}_{i+1})$

Rückwärtsgleichung (Greifer zur Basis)

Startwerte: $F_n = F_{ex}$ und $N_n = N_{ex}$

$$F_{i} = H_{1}(\dot{v}_{s,i})$$

$$N_{i} = H_{2}(\omega_{i}, \dot{\omega}_{i}, q_{i}, \dot{q}_{i})$$

$$f_{i} = H_{3}(f_{i+1}, F_{i}, q_{i+1})$$

$$n_{i} = H_{4}(n_{i+1}, f_{i+1}, F_{i}, N_{i}, q_{i+1})$$

$$\tau_{i} = H_{5}(n_{i}, q_{i})$$

Eigenschaften: Beliebige Anzahl von Gelenken, Belastungen der Armelemente werden berechnet, Aufwand O(n), Rekursion

Definition: Lehre von der selbsttätigen, gezielten Beeinflussung dynamischer Prozesse

während des Prozessablaufs. Der Ausgangsgröße eines dynamischen Systems soll mittels der Stellgröße ein Sollverhalten, d.h. ein gewünschtes Verhalten ausgeprägt werden, & zwar gegen den Einfluss einer Störgröße, die nur unvollständig bekannt ist.

w: Führungsgröße (Soll-Wert)

- y: Stellgröße
- r: Rückführgröße (Ist-Wert)
- x_d: Regeldifferenz
- x: Regelgröße
- z: Störgröße

<u>Regelungstechnische Grundsituation:</u> Forderung nach selbsttätiger, gezielter Beeinflussung bei unvollständiger Systemkenntnis, insbesondere bei Einwirkung von Störungen.

<u>Regelung:</u> Unter einer Regelung versteht man eine Anordnung, durch welche bei unvollständig bekannter Strecke, insbesondere unvollständiger Kenntnis der Störgröße, die Regelgröße, d.h. die Ausgangsgröße der Strecke, laufend erfasst und mit der Führungsgröße verglichen wird, um mittels der so gebildeten Differenz die Regelgröße an den Sollverlauf anzugleichen.

<u>Regelkreis:</u> Aus physikalischen Gesetzen ermittelt man Gleichungen zwischen zeitveränderlichen Größen des Systems.

<u>Übertragungsglied:</u> Ein Block ordnet jedem Zeitverlauf der Eingangsgröße eindeutig eine Zeitverlauf der Ausgangsgröße zu.

Regelungstechnik

Laplace-Transformation:

$$L\{f(t)\} = f(s) = \int_0^\infty f(t)e^{-st}dt$$
 und $s := \sigma + j\omega$; $f(t) = 0, t < 0$

- ⇒ Differential- & Integralausdrücke durch algebraische Ausdrücke ersten
- ⇒ Gleichungslösung im Frequenzbereich statt im Zeitbereich

$$\textit{Ableitungsfunkt.}: \mathcal{L}\big[\tilde{f}(t)\big] = s\int_0^\infty e^{-st}f(t)dt - f(0) = s\cdot f(s) - f(0) \ (\lim_{t\to\infty} e^{-st}f(t)\to 0)$$

Integral einer Funktion: $\mathcal{L}\left[\int_0^t f(\tau)d\tau\right] = \frac{1}{s}f(s)$

Impulsfunktion (Dirac-Impuls)

$$\partial(t) = \begin{cases} \infty & \text{, für } t = 0 \\ 0 & \text{, für } t \neq 0 \end{cases}$$

Laplace Transformation: $\mathcal{L}\left[\delta(t)\right] = \int_0^\infty \delta(t) \cdot e^{-st} dt = 1$

Einheitssprungfunktion

$$\sigma(t) = \begin{cases} 0 & \text{, für } t < 0 \\ 1 & \text{, für } t \ge 0 \end{cases}$$

Laplace Transformation: $\mathcal{L}\left[\sigma(t)\right] = \frac{1}{s}$

Lineares zeitinvariantes Übertragungsglied (LZI)	$Y(s) = G(s) \cdot U(s) \Leftrightarrow$ $y(t) = g(t) * u(t) =$ $\int_0^t g(t - \tau) * u(\tau) * d\tau$	$\xrightarrow{u(t)} G(t) \xrightarrow{y(t)}$
P-Glied (Proportionalglied	$y(t) = K \cdot u(t)$ $Y(s) = K \cdot U(S)$	u(t) K $y(t)$
I-Glied (Integrierglied)	$y(t) = K \cdot \int_0^t u(\tau)d\tau$ $Y(s) = K \cdot \frac{1}{s} \cdot U(s)$	u(t) K $y(t)$

D-Glied (Differenzierglied)	$y(t) = K \cdot \dot{u}(t)$ $Y(s) = K \cdot [sU(s) - u(0)]$	u(t) K $y(t)$
T _t -Glied (Totzeit-Glied)	$y(t) = K \cdot u(t - T_t)$ $Y(s) = K \cdot e^{-T_t s} \cdot U(s)$	$u(t)$ K T_t $y(t)$
S-Glied (Summenglied)	$y(t) = \pm u_1(t) \pm u_2(t)$ $Y(s) = \pm U_1(s) \pm U_2(s)$	$u_{I}(t) \longrightarrow v(t)$
KL-Glied (Kennlinienglied)	$y(t) = K \cdot F(u(t))$	$u(t)$ χ $\chi(t)$
M-Glied (Multiplizierglied)	$y(t) = K \cdot u_1(t)u_2(t)$ $Y(s) = K \cdot U_1(s) * U_2(s)$	$u(t) \longrightarrow V(t)$
	T _t -Glied (Totzeit-Glied) S-Glied (Summenglied) KL-Glied (Kennlinienglied)	D-Glied (Differenzierghed) $Y(s) = K \cdot [sU(s) - u(0)]$ $T_{t}\text{-Glied (Totzeit-Glied)} \qquad y(t) = K \cdot u(t - T_{t})$ $Y(s) = K \cdot e^{-T_{t}s} \cdot U(s)$ S-Glied (Summenglied) $y(t) = \pm u_{1}(t) \pm u_{2}(t)$ $Y(s) = \pm U_{1}(s) \pm U_{2}(s)$ KL-Glied (Kennlinienglied) $y(t) = K \cdot F(u(t))$ M. Glied (Multiplizierglied) $y(t) = K \cdot u_{1}(t)u_{2}(t)$

Proportional-Integral-Derivative Controller (PID Regelung)

$$\tau = K_p \theta_d + K_i \int \theta_d(t) dt + K_d \dot{\theta_d}$$
 P I D

K_p: virtuelle Feder die Positionsfehler senkt

K_d: virtueller Dämpfer der den

Geschwindigkeitsfehler reduziert

Ki: reduziert Regelabweichung

Stabilität: Regelabweichung geht gegen 0 mit einem PID Regler

$$\ddot{\theta}_e + 2\zeta\omega_n\dot{\theta_d} + \omega_n^2\theta_d = 0 \rightarrow s^2 + 2\zeta\omega_n s + \omega_n^2 = 0$$

- → Aperiodische Lösung: Zielwert ohne schwingen langsam über Exponentialfunktion erreicht
- → Aperiodischer Grenzfall: Zielwert schnell erreicht und System überschwingt gar nicht
- → Gedämpfte Schwingung: Das System überschwingt

<u>Testfunktionen:</u> Impulsfunktion, Sprungfunktion, Anstiegsfunktion, Harmonische Funktion

Zustandsregler: Verbessertes Regelverhalten (Mehrgrößensysteme)

Mehrgrößensystem in Matrix / Vektor-Darstellung

Kaskadenregler: Manipulator = Mehrgrößensystem (unabhängige Einzelregelkreise Gelenke)

Regler

Adaptive Regler: Lageabhängige & zeitveränderliche Systemteile als Parameterschwankungen

Formulierung der Trajektorie umständlicher

- Trajektorie nicht immer ausführbar

	<u>Teach-In:</u> Anfahren markanter Punkte der Bahn mit manueller Steuerung. Generierung des Programms durch Definition von Stützpunkten.	
		ener bewegt werden (Zero Force Control Mode) und
Programmieren	einzelne Schritte gespeichert werd	
durch Schlüsselpunkte	Pro Schnell für komplexe Bahnen	Schwere Roboter schwer zu bewegen
Schlusselpulikte	Intuitiv	Wenig Platz in engen Fertigungszellen für Bediener
	Incareiv	Schlechte Korrekturmöglichkeiten
		Optimierung & Kontrolle durch Interpolation schwer
Punkt zu Punkt Bewegung Vorteil: Berechnung der Gelenkwinkeltrajektorie einfach und keine Singular PTP mit Rampenprofil		→ x
Interpolations- arten	Direkter Anstieg mit konstanter Steigung und genau so auch bei Abbremsen. PTP mit Sinoidenprofil Weichere Bewegung durch Verwendung einer sinuiden Zeitfunktion Roboter wird weniger beansprucht Synchrone PTP-Bahnen Alle Gelenke beginnen und beenden ihre Bewegung gemeinsame	
	Asynchrone PTP-Bahnen - Jedes Gelenk wird sofort mit der maximalen Beschleunigung angesteuert - Jede Gelenkbewegung endet unabhängig von den anderen	
	Vollsynchrone PTP Bahn - Zusätzlich Beschleunigungs- und Bremszeit mit beachten <u>Linear Interpolation (CP Interpolation)</u> Die Robotersteuerung interpoliert die Bahn zwischen je zwei Trajektorien.	
		es Endeffektors findet auf einem Kreis statt
		kubische Splines zwischen Stützpunkten
	<u>Bahninterpolation:</u> Die ausgeführte Bahn verläuft durch alle Stützpunkte der Trajektorie <u>Bahnapproximation:</u> Kontrollpunkte beeinflussen den Bahnverlauf und werden approximiert	

Approximierte Bahnsteuerung

<u>Bézierkurven:</u> Stützpunkte werden nicht durchlaufen sonder beeinflussen nur die Bahn $P(t) = \sum_{i=0}^{n} B_{i,n}(t) \, P_i \quad 0 \le t \le 1$ $B_{i,n}(t) = \binom{n}{i} t^i (1-t)^{n-i}$

<u>De-Casteljau-Algorithmus</u>: Effiziente Näherungsdarstellung von Bézierkurven mit Polygonzug Gegeben: n Kontrollpunkte P_0, \dots, P_{n-1}

Start: $P_i^0 = P_i$ Iteration k: $P_i^{k+1} = (1-t_0)P_i^k + t_0P_{i+1}^k$

Erzeugen einer kollisionsfreien Trajektorie unter Berücksichtigung verschiedener Ziele und Einschränkungen.

Problemstellung

Gegeben: Konfigurationsraum C, Startkonfiguration q_{Start} und Zielkonfiguration q_{Ziel} Gesucht: Stetige Trajektorie τ : $[0,1] \to \mathcal{C}$ mit $\tau(0) = q_{start}$ und $\tau(1) = q_{Ziel}$ (Beachtung Gütekriterien, Neben- & Randbedingungen, Zwangsbedingungen)

<u>Konfiguration:</u> Eine Konfiguration q aus C beschreibt den Zustand eines Roboters (Lage & Orientierung im euklidischen Raum oder Gelenkwinkelvektoren)
 <u>Konfigurationsraum C:</u> Raum aller möglichen Konfigurationen eines Roboters R.
 <u>Arbeitsraumhindernis H:</u> Raum der von Objekten im Arbeitsraum eingenommen wird.
 <u>Konfigurationsraumhindernis:</u> Menge aller Punkte des Konfigurationsraums C, welche zu einer Kollision mit dem Hindernis H führen.

<u>Hindernisraum</u>: C_{obs} ist die Menge aller Konfigurationsraumhindernisse <u>Freiraum</u>: Menge aller Punkte aus C, welche nicht im Hindernisraum C_{obs} liegen $C_{free} = \{q \in C \mid q \notin C_{obs}\} = C \setminus C_{obs}$ (Zur Bestimmung werden approximative Verfahren verwendet)

<u>Umweltmodellierung:</u> Exakt bspw. durch constructed solid geometry in Form von algebraischen Beschreibungen oder approximiert durch Näherung (Boxen, ..) <u>Randbedingungen:</u> Globale Randbedingungen (Limitieren Konfigurationsraum), lokale Randbedingungen schränken Übergang zwischen Konfigurationen ein <u>Komplexität:</u> Allgemeine Planungsaufgaben sind PSAPCE complete.

<u>Vollständiger Algorithmus:</u> Findet mindestens eine Lösung oder erkennt nach endlicher Zeit, dass keine Lösung existiert.

<u>Randomisiert Algorithmus:</u> Verwenden Zufallsgrößen um den Ablauf zu steuern, wobei oft heuristische Annahmen genutzt werden, um die Berechnung zu beschleunigen. <u>Auflösungsvollständiger Algorithmus:</u> Approximativer Algorithmus der für eine diskrete Problemstellung vollständig ist, wird er auflösungsvollständig genannt.

<u>Probabilistischer-vollständiger Algorithmus:</u> Findet mindestens eine Lösung falls sie existiert, d.h. Wahrscheinlichkeit, dass eine Lösung gefunden wird, konvergiert mit fortlaufender Zeit gegen eins (kann nicht ermitteln ob keine Lösung existiert).

<u>Voronoi-Diagramme</u>

Zerlegung eines Raum in Regionen basierend auf vorgegebenen Punkten. Region ist definiert als Menge aller Punkte deren Abstand zum Zentrum geringer ist als zu allen anderen Zentren. Alle Punkte auf der Grenzen zwischen zwei Regionen haben den gleichen Abstand zum eigenen und benachbarten Zentrum.

- Teile Punktemenge P in zwei etwa gleich große Teilmengen P1 und P2
- Rekursive Unterteilung von zwei bzw. drei Punkten:
- Verschmelze Diagramme durch verbinden der nächsten Nachbarn entlang Trennungslinie

Konstruktion von Wegenetzen

Bewegungs-

planung

Vorteile	Nachteile
Maximale Abstand zu den Hindernissen	In der Regel ist der Weg nicht der kürzeste
Mit Abstandssensoren leicht prüfbar ob	Bei wenig Hindernissen werden nur wenige
der richtige Weg abgefahren wurde	Wege generiert

<u>Sichtgraphen</u>

Verbinde jedes Paar von Eckpunkten auf dem Rand von C_{free} durch ein gerade Liniensegment, wenn das Segment kein Hindernis schneidet. Verbinden dann Start und Ziel über diese Linien.

Vorteile	Nachteile
Methode exakt wenn nur 2 translatorische	Nicht zwingend kollisionsfrei, da Hindernis-
Freiheitsgrade existieren & alles als	kanten auch Wegesegmente sein können
konvexe Polygone dargestellt werden kann	Mögliche Problemlösung: Hindernisse um
Wenn Weg gefunden dann der kürzeste	Roboterform erweitern.

<u>Zellzerlegung</u>

- 1. Zerlege C_{free} in Zellen, so dass ein Weg zwischen zwei Konfigurationen innerhalb einer Zelle leicht zu finden ist
- 2. Stelle die Nachbarschaft (Adjazenz) in einem Graphen dar
- 3. Suche den optimalen Weg von q_{Start} nach q_{Ziel} in dem Graphen

Konstruktion von Wegenetzen

Exakte Zerlegung(Line Sweep)

Zellen überlappen nicht & Vereinigungsmenge ist Cfree

Approximative Zerlegung:

- 1. Zerlege den Freiraum Cfree im Zellen vordefinierter Form (z.B. rechteckig)
- 2. Wenn Zelle nicht vollständig in Cfree liegt, verringere Größe & zerlege die Zelle weiter
- 3. Wende diesen Schritt bis zu Minimalgröße der Zellen an

Vorteile	Nachteile
Einfache Zerlegung → einfache Wegsuche	Freiraum i.A. nur annähernd beschrieben

Baumsuche

- Konfigurationsraum wird als Quadtree dargestellt (rekursive Unterteilung in Kacheln)
- Kacheln sind entweder frei oder Hindernisse
- Freie Kacheln vom Start zum Ziel verbinden (Kollisionsfrei durch freie Kacheln)

A*-Algorithmus

Algorithmus zur Routenplanung für den kürzesten/besten Pfad von Start zu Ziel mit Optimalität in Bezug auf Pfadkosten. (Bestensuche \Leftrightarrow findet optimalen Pfad) Kostenfunktion: f(x) = g(x) + h(x) (g(x) Kosten von Start zu Knoten x)

(h(x) geschätzte Kosten von Knoten x nach Zielknoten

Open Set O: noch zu besuchende Knoten

Closed Set C: Bereits besuchte Knoten

Suche im Wegenetz

Solange *O* ≠/Ø

Bestimme den zu erweiternden Knoten

Finde $v_i \in O$ mit minimalem $f(v_i) = g(v_i) + h(v_i)$

Wenn $v_i = v_{ziel}$

Lösung gefunden: Traversiere Vorgänger von v_i bis v_{start} erreicht ist

O.remove(v_i)

C.add(v_i)

Update für alle Nachfolger v_i von v_i durchführen

- Wenn $v_i \in C$, dann überspringe v_i
- Wenn $v \not\in O$, dann $O.add(v_i)$
- Wenn $g(v_i) + cost(v_i, v_i) < g(v_i)$
 - $g(v_i) = g(v_i) + cost(v_i, v_i)$
 - $h(v_i) = heuristic(v_i, v_{Ziel})$
 - $pred(v_i) = v_i$

Vorteile	Nachteile
Findet optimale Lösung wenn Heuristik zulässig (d.h. Kosten nicht überschätzt)	
Optimal effizient für jede zulässige Heuristik h	

Potentialfelder

<u>Definition:</u> Ein Potentialfeld U ist eine Skalarfunktion über dem Freiraum. Die Kraft in einem Punkt q des Potentialfeldes ist der negative Gradient im Punkt: $F(q) = -\nabla U(q)$

Abstoßendes Potential: Hindernisse erzeugen ein abstoßendes Potential. In großen Abständen zu Hindernissen soll der Roboter nicht beeinflusst werden.

$$U_{ab}(q) = \frac{1}{2}v\left(\frac{1}{p(q,q_{obs})} - \frac{1}{p_0}\right)^2 f \ddot{u} r \ p(q,q_{obs}) \le p_0 \ \& \ 0 \ \text{sonst} \quad \text{mit} \ p(q,q_{obs}) \le p_0$$

	Anziehendes Potential: Es soll möglichst nur ein Minimum q _{Ziel} geben.
	Distanz zum Ziel (linear): $U_{an}(q) = k \cdot q - q_{Ziel} $
	Distanz zum Ziel (quadratisch): $U_{an}(q) = k \cdot \frac{1}{2} \left q - q_{Ziel} \right ^2$
Potentialfelder	Zielstellung: q_{Ziel} anziehendes Potent U_{an} Hindernisraum: C_{obs} abstoßendes Potent. U_{ab} Kräftefeld: $F(q) = F_{an}(q) + F_{ab}(q)$
	Lokale Minima: Durch Summation von U _{an} und U _{ab} kann U lokale Minima besitzen. Wenn der Roboter sich in Richtung des negativen Gradienten des Potentialfeldes bewegt, kann er in einem solchen lokalen Minimum "steckenbleiben" => sicherstellen, dass q _{Ziel} das einzige lokale Minimum ist.
	Probabilistic Roadmaps (PRM)
	Vorverarbeitung: Erzeuge kollisionsfreien Graphen durch Wahl zufälliger Punkte (sampling) die dann mit kollisionsfreien Pfaden verbunden werden
	Algorithmus (Lokale Planung) N: Anzahl der Knoten im Graphen R: PRM, Graph Erzeugen von N zufälligen Konfigurationen in C _{free} Einfügen der erzeugten Konfigurationen als Knoten in R Für jeden Knoten v _i in R Finde die k nächsten Nachbarn von vi aus R: N(vi) Für jeden Knoten v aus N(Vi) Wenn neuer kollisionsfreier Pfad von v nach vi, dann füge die Kante (v, vi) in R ein Ergebnis: R
	Zufällig: Konfiguration wird zufällig generiert und auf Kollisionen geprüft Grid: Konfigurationen mit diskreter Auflösung → Auflösung einzelner Zellen hierarchisch Halton: Menge von Punkten die Bereich besser abdeckt als Grid Zellenbasiert: Sampling in Zellen mit kleiner werdenden Maß, Zellgröße jeder Iteration kleiner
Bewegungs-	Anfrage: Verbinde qS _{tart} und q _{Ziel} mit dem Graphen Suche Weg zwischen q _{Start} & q _{Ziel} (z.B. A*)
planung	 Eigenschaften Einmalige Konstruktion des Graphen (multi-query mehrere Anfragen gleichzeitig) Randomisierter Ansatz zur Konstruktion (probabilistisch) Verfahren hängt stark vom verwendeten Sampling ab Nicht vollständig, da der Graph C_{free} nur approximiert
	$\frac{Dynamic\ Roadmpas\ (DRM)}{Vorverarbeitung} - \text{Approximation des Konfigurationsraum durch Roadmap(selbstkollisionsfrei, zufällige Punkte)} - \text{Approximation des Arbeitsraums durch Voxel (Würfel)} - \text{Abbildung}\ \phi_{WC}\ \text{von Voxel}\ \rightarrow \text{Roadmap}\ (\text{Knoten, Kanten})\ \text{\"{u}berpr\"{u}fe}\ \text{alle Kollisions zwischen}$
	Knoten/Kanten und allen Voxeln Anfrage - Ermittle Voxel mit Hindernis - Anpassen der Roadmap (Lösche alle zugehörigen Knoten und Kanten aus Roadmap) - Planen in der angepassten Roadmap (Verbinde q _{Start} & q _{Ziel} mit Graphen und suche Weg)

- Kanten die durch Voxel nahe an Objekten gehen höhres Gewicht zuordnen

- sucht kürzesten Weg → Bahn nah an Objekten → Voxel mit Sicherheitsabstand löschen

Eigenschaften

Rapidly-exploring Random Trees (RRT)

Initialisierung: Erzeuge leeren Baum T und füge q_{Start} in T ein & C_{obs} Form unbekannt

Iteration

- Erzeuge zufälligen Punkt qs
- bestimme den nächsten Nachbarn q_{nn} in T
- Füge Punkte auf der Verbindung zwischen q_s und q_{nn} in T ein (Schrittweite d, Prüfe jeden Teilpfad auf Kollision mit Cobs und stoppen wenn Kollision erkannt wurde
- Gehe zum Anfang

Prüfe in jedem k-ten Schritt, ob q_{Ziel} mit T verbunden werden kann.

Kollisionsprüfung

Im Arbeitsraum ausführen (jeder Punkt beschreibt Konfiguration. Continious Collision Detetection (langsam) vs. Sampling basiert (schnell aber nicht exakt mit Sampling Distanz)

Eigenschaften

- RRTs probabilistisch vollständig, d.h. sie breiten sich gleichmäßig im Konfigurationsraum aus
- Wahrscheinlichkeit, dass Knoten von T erweitert proportional zur Größe der Voronoi Region

Nachbearbeitung: wähle zufällig zwei Knoten im Lösungsweg → Verbindung frei → verbinde

Bewegungsplanung

Bidirektionale RRTs

Zwei Bäume (von q_{Start} bzw q_{Ziel}), zufälliger Punkt erweitert beide Punkte (Nächst Nachbar T1 und nächster Nachbar T2), Lösung gefunden wenn beide Bäume bei qs

Nebenbedingungen (Orientierung, etc.) → Random Gradient Descent/First Order Retraction

RRT*:

- Trajektorie i.d.R. nicht optimal → iterative Optimierung des Suchbaums
- Nachteil: Uni-direktionaler Ansatz & längere Laufzeiten
- Vorteil: Findet bessere Pfadkosten, niedrigere Varianz

Dynamic Domain RRT

Beschränkt in der Nähe von Hindernissen die Sampling Domäne eines Knotens auf dessen Dynamic Domain (DD = Approximation sichtbarer Voronoi-Regionen durch Radius r).

Bridge Sampling

Wähle zielgerichtet Punkte in engen Passagen für nächste Stichprobe

- 1. Wähle gleichverteilt einen zufälligen Punkt q₁ aus C_{obs}
- 2. Wähle nach geeigneter Wahrscheinlichkeitsverteilung q2 aus Cobs in der Nähe von q1
- 3. Wenn Mittelpunkt q_s zwischen q₁ und q₂ in C_{free}, dann wähle diesen als neue Stichprobe
- 4. Wiederhole
- → Erhöht die Stichprobendichte in interessanten Bereichen (für RRT und PRM geeignet)

Griffplanung

Menschliche Hand: 27 Knochen, 27 DoF

<u>Griff:</u> Menge von Kontaktpunkten auf der Oberfläche eines Objekts, die potentielle Bewegungen des Objekts unter dem Einfluss extern Kräfte einschränken/kompensieren <u>Greifanalyse:</u> Objekt & Griff → Stabilität des Griffs unter Nebenbedingungen? <u>Greifsynthese:</u> Objekt und Menge von Nebenbedingungen → Menge von Kontaktpunkten?

<u>Punktekontakt ohne Reibung:</u> Angreifende Kraft wirkt ausschließlich Normal zur Fläche <u>Starrer Punktekontakt mit Reibung:</u> Angreifende Kraft wirkt normal & tangential (verbunden durch Coulombsches Reibungsgesetz)

<u>Nicht starrer Punktkontakt mit Reibung:</u> Angreifende Kraft wirkt sowohl normal als auch tangential. Zusätzlich axiale Momente (verbunden durch Coulombsches Reibungsgesetz)

<u>Wrenchvektor</u>: Kontaktpunkte p_i wirkende Kräfte f_i und Momente τ_i zu einem Vektor

- Planarer Griff: $w = (f_x, f_y, f_z)^T$
- Räumlicher Griff: $w = (f_x, f_y, f_z, \tau_x, \tau_y, \tau_z)^T$

<u>Greifmatrix:</u> $G = [{}^{1}w_{n}, {}^{1}w_{t}, {}^{1}w_{\theta}, ... {}^{m}w_{n}, {}^{m}w_{t}, {}^{m}w_{\theta}]$ **n**ormale, **t**angentiale, axiale Moment $\boldsymbol{\theta}$ *Gleichgewichtsgriff:* Summe aller Kräfte und Moment die auf das gegriffene Objekt wirken null

<u>Kraftgeschlossener Griff:</u> Während Transferbwegung und Ausführung bleibt Gleichgewicht Ohne Reibung: Rotationssymmet. Objekt \rightarrow 4 Kontaktpunkte, Beliebig \rightarrow 12, Polyeder \rightarrow 7 Mit Reibung: Planares Objekt \rightarrow 3 Kontaktpunkte, räumlicher Fall \rightarrow 4 Kontaktpunkte

<u>Formgeschlossener Griff:</u> Unterliegt stärkeren Einschränkungen als ein kraftgeschlossener Griff, da für jeden Kontaktpunkt ausschließlich die Nichtdurchdrigungseigenschaften co-linear zum korrespondierenden externen Oberflächen-Normalenvektor berücksichtigt werden.

<u>Kraftschluss:</u> Kinematik kann aktiv Kräfte erzeugen, um einer exteren Störung zu widerstehen Formschluss: Die Kontakte an sich verhindern, dass sich das Objekt bewegen kann

Greifplanungssysteme

Kriterium 1: Typ des verwendeten Greifers

Kriterium 2: Typ der zugrunde liegenden Greifplanungsalgorithmen. Geometrisch basiert

Kriterium 3: Typ der zu greifenden Objekte

Kriterium 4: Typ der zu manipulierenden Szenen. Deterministisch oder nicht deterministisch

Kriterium 5: Einsatz von Sensorik (keine, taktil, visuell)

Objektklassen für das Greifen

Bekannte Objekte: Geometrie bekannt, Schwierig

Bekannte Objektklasse: konkrete Geometrie unbekannt (z.B. Typ "Flasche"), Schwieriger Unbekannte Objekte: Geomtrie & Klasse unbekant, Am Schwierigsten

Vorwärtsplanung

Vorteil: ähnlich zur realen Ausführung, Griffe die mit hoher Wahrscheinlichkeit funktionieren

Algorithmus

- 1. Lade Hand- & Objektmodell in Simulationsumgebung
- 2. Erzeuge Griffkandidaten
- 3. Evaluation der Griffkandidaten (Griffqualität mittels Kraftschluss Metrik)

Kraftschluss-Metrik: Wie gut kann Griff externen Kräften widerstehen (Grasp Wrench Space)

Zufallsbasierte Vorwärts-Griffplanung

- 1. Randomisierte Erzeugung von Greifhypothesen
- 2. Kontaktermittlung
- 3. Evaluation von Hypothesen

<u>Teilobjekte:</u> Formprimitven (Greifstrategien), Box-Dekompoistion, Superquadriken, Medial-Achse Transformation, Oberflächennormalen

Griffplanung

	<u>Griffhypothesen von Boxen:</u> Griffpunkt (Mittelpunkt Seitenfläche), Griffrichtung (Entalng der Normalen Seitenfläche), Handorientierung (Vier Möglichkeiten)		
	Griffplanung mit medialen Achsen		
Griffplanung	1. Abtasten der Objektoberfläche		
	2. Berechnen der medialen Achse3. Analyse der Querschnitte der medialen Achse (Minim Spanning Tree, Clustern, Konvexe)		
	4. Erzeuge Griffhypothese		
	5. Evaluiere Griffstabilität		
	Ein Bild ist ein 2D-Gitter von diskreten Punkten (Pixel). Bildkoordinaten sind definiert durch u (horizontal) und v (vertikal). Der Ursprung ist oben links und die Einheit ist Pixel.		
	Auflösung: Auflösung ist das kleinste erkennbare Detail in einem Bild.		
	Monochrombild: diskrete Funktion Img: [0 n - 1] x [0 m - 1] → [0, q] (i.d.R. [0, 255])		
	RGB Farbraum: Additive Farbmischung, i.d.R. 1 Byte/Farbe		
Bildrepräsentation	Img: $[0 n - 1] \times [0 m - 1] \rightarrow [0 R] \times [0 G] \times [0 B]$ HSV Farbraum: Hue, Saturation, Intensity/Value \rightarrow Farbe getrennt von Helligkeit und Sättigung		
bildreprasentation	→ unempfindlich gegen Beleuchtungsänderung		
	$H = \{\theta falls B < G \theta = \arccos \frac{2R - G - B}{2R}$		
	$H = \begin{cases} \theta & falls \ B < G \\ 360 - \theta & sonst \end{cases} \theta = \arccos \frac{2R - G - B}{2\sqrt{(R - G)^2 + (R - B)(G - B)}}$ $S = 1 - \frac{3}{R + G + B} \min(R, G, B) \qquad I = \frac{1}{3}(R + G + B) V = \max(R, G, B)$		
	$S = 1 - \frac{1}{R + G + B} \min(R, G, B)$ $I = \frac{1}{3} (R + G + B)$ $V = \max(R, G, B)$		
	Repräsentation Graustufenbild: zeilenweise linear von oben links nach unten rechts abgelegt		
	Repräsentation Farbbild: ablegen wie bei Graustufenbild aber 3 Einträge pro Pixel		
Kamera	BLATT 7 mal anschauen was wichtig ist		
	<u>Additiver linearer Filter:</u> $f(x + y) = f(x) + f(y)$ <u>Homogener linearer Filter:</u> $f(ax) = a f(x)$		
	Filter Ränder: Spiegeln(Mirror/Reflect), Wiederholen (Clamp/Replicate)		
	<u>Tiefpassfilter:</u> Gättung, Rauschelimination (Median, Mittelwert, Gauß)		
	Hochpassfilter: Kantendetektion (Prewitt, Sobel, Laplace)		
	Kombiniert: Laplacian of Gaussian		
	Medianfilter: Rauschunterdrücken → Größe (bsp. 3x3) → Sortiere Werte → Median (Max/Min)		
	<u>Mittelwertfilter:</u> Rauschunterdrücken $\rightarrow g(x,y) = \sum_{s=-1}^{1} \sum_{t=-1}^{1} f(x-s,y-t) \cdot w(i,j)$		
	$\underline{\underline{Gau\beta\text{-Filter:}}} \text{ Rausch.un./Glätten} \rightarrow \text{2D-Gauß } F_{Gauß} = \frac{1}{16} \begin{pmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{pmatrix} \sigma \text{ größer mehr Glättung}$		
Filteroperation			
	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		
	$ \begin{array}{c c} \hline \\ \hline \\ \hline \\ \hline \\ \end{array} $		
	Sobelt-X & Y Filter: $s_x = \begin{pmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \end{pmatrix}$ $s_y = \begin{pmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \end{pmatrix}$ $M \approx \begin{cases} s_x^2 + s_y^2 \text{ Formel?} \end{cases}$		
	\ 1 \ 0 \ 1/ \ \ 1 \ 2 \ 1 /		
	$\underline{Laplace:} \nabla^2 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{pmatrix} \rightarrow \text{Kanten dünner als bei Prewitt oder Sobel Formel?}$		
	/0 0 _1 0 0		
	$\begin{pmatrix} 0 & 0 & -1 & 0 & 0 \\ 0 & -1 & -2 & -1 & 0 \end{pmatrix}$		
	<u>Laplacian of Gaussian:</u> $\Delta F(x,y) = \begin{bmatrix} -1 & -2 & 16 & -2 & -1 \\ 0 & 1 & 0 & 1 \end{bmatrix}$ → Gauss glätten → Laplace		
	$ \underline{\text{Laplacian of Gaussian:}} \Delta F(x,y) = \begin{pmatrix} 0 & 0 & -1 & 0 & 0 \\ 0 & -1 & -2 & -1 & 0 \\ -1 & -2 & 16 & -2 & -1 \\ 0 & -1 & -2 & -1 & 0 \\ 0 & 0 & -1 & 0 & 0 \end{pmatrix} \rightarrow \text{Gauss gl\"{a}tten} \rightarrow \text{Laplace} $		
<u> </u>	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		

	Aufteilung eines Bildes in aussagekräftige	Segme	ente.	
	$\frac{Schwellwertfilterung:}{Schwellwertfilterung:} Img'(u,v) = \begin{cases} 255 & \text{falls } Img(u,v) > T \\ 0 & \text{sonst} \end{cases} \text{T ist der Schwellwert}$ $\frac{H_{\text{max}} \geq Img_{H}(u,v) \geq H_{min}}{V_{\text{max}} \geq Img_{S}(u,v) \geq S_{min}}$ $V_{\text{max}} \geq Img_{V}(u,v) \geq V_{min}$ $0 & \text{sonst}$			
C				
Segmentierung				
	$\frac{HSV-Schwellwert:}{V} Img'(u,v) = \begin{cases} 255 & \text{falls } S_{\text{max}} \ge Img_S(u,v) \ge S_{min} \\ V \ge Img_S(u,v) \ge V \end{cases}$			
		v _{ma}	$x \ge Im g_V(u, v) \ge v_{min}$	
	0 sonst Dilatation: Vergrößert Pixel zu größeren Bereichen. Algorithmus?			
Morphologische	<u>Erosion:</u> Entfernen vereinzelter Pixel und schwach zusammenhängender Pixelgruppen Algo? <u>Öffnen:</u> Erosion danach Dilatation → entferne dünne Stege/kleine außenliegende Objekte <u>Schließen:</u> Dilatation danach Erosion → Überbrückung kl. Distanzen & Schließen innerer Löcher			
Operatoren				
	 Geringe Fehlerrate: alle Kanten finden und so nahe wie möglich an realer Kante Kantenpunkte gut detektiert: Distanz zw. Kantenpunkte und Zentrum realer Kanten minimal 			
	- Eindeutigkeit: Detektor soll einen Punkt	, nicht	mehrere zu realem Kantenpunkt liefern	
Canny-	<u>Algorithmus</u>			
Kantendetektor	1. Rauschunterdrückung mittels Gauß Filte	er		
	2. Berechnung der Gradienten in horizont		•	
	-		ng) → Gradient muss lokales Maximum sein	
			ursive verfolgen mit low/high Schwellwert)	
	Passive Sensoren: Empfangen Energie, we		<u> </u>	
	Aktive Sensoren: Erzeugen und senden En	ergie a	aus, die von der Umgebung reflektiert wird	
	<u>Stereo Vision:</u> Disparitäten für nähere Obj	ekte h	aben geringe Varianz als weiter entfernte.	
	Pro		Contra	
	Einstellbare Brennweiten/Baseline		estens zwei Kameras	
	Keine explizite Lichtquelle erforderlich	Korre	orrespondenzprobleme bei homogenen Flächen	
	Time of Flight: Infrarot Impuls wird emittie	ert und	d dann die Zeit berechnet bis dieser zurück ist	
Tiefenkameras	Pro		Contra	
Tierenkameras	Keine explizite Tiefenberechnung notwendig		Niedrige Auflösung	
	Hohe Bildrate			
	Hohe Bildrate		Interferenz andert Lichtquellen/Reflektion	
	Hohe Bildrate Robust gegenüber der meisten Oberfläch	nen	Interferenz andert Lichtquellen/Reflektion	
	Robust gegenüber der meisten Oberfläch	nen	Interferenz andert Lichtquellen/Reflektion	
	Robust gegenüber der meisten Oberfläch <u>Structured Light</u>	nen	Interferenz andert Lichtquellen/Reflektion Contra	
	Robust gegenüber der meisten Oberfläch	nen	Contra	
	Robust gegenüber der meisten Oberfläch Structured Light Pro	nen		
	Robust gegenüber der meisten Oberfläch Structured Light Pro Preiswert	nen	Contra Eingeschränkte Reichweite	
	Robust gegenüber der meisten Oberfläch Structured Light Pro Preiswert Keine Korrespondezprobleme auf homohenen Flächen		Contra Eingeschränkte Reichweite Erfodert bestimmte Lichtverhältnisse (nur	
	Robust gegenüber der meisten Oberfläch Structured Light Pro Preiswert Keine Korrespondezprobleme auf homohenen Flächen Beschreibt Verfahren bei denen visuelle E eines Roboters zu steuern.	ingabe	Contra Eingeschränkte Reichweite Erfodert bestimmte Lichtverhältnisse (nur für Innenraum geeignet) edaten genutzt werden, um die Bewegung	
Visual Servoing	Robust gegenüber der meisten Oberfläch Structured Light Pro Preiswert Keine Korrespondezprobleme auf homohenen Flächen Beschreibt Verfahren bei denen visuelle E eines Roboters zu steuern. Kamera-in-Hand: Kamera an Manipulator,	ingabe	Contra Eingeschränkte Reichweite Erfodert bestimmte Lichtverhältnisse (nur für Innenraum geeignet) edaten genutzt werden, um die Bewegung egungen beeinflussen Pose der Kamera	
Visual Servoing	Robust gegenüber der meisten Oberfläch Structured Light Pro Preiswert Keine Korrespondezprobleme auf homohenen Flächen Beschreibt Verfahren bei denen visuelle E eines Roboters zu steuern. Kamera-in-Hand: Kamera an Manipulator, Externes Kamera System:	ingabe , Bewe ı wird	Contra Eingeschränkte Reichweite Erfodert bestimmte Lichtverhältnisse (nur für Innenraum geeignet) edaten genutzt werden, um die Bewegung egungen beeinflussen Pose der Kamera zur Beobachtung genutzt	
Visual Servoing	Robust gegenüber der meisten Oberfläch Structured Light Pro Preiswert Keine Korrespondezprobleme auf homohenen Flächen Beschreibt Verfahren bei denen visuelle E eines Roboters zu steuern. Kamera-in-Hand: Kamera an Manipulator, Externes Kamera System: Externes System Positionasbasiertes Virtual Servoing: Aktu	ingabe , Bewe n wird i	Contra Eingeschränkte Reichweite Erfodert bestimmte Lichtverhältnisse (nur für Innenraum geeignet) edaten genutzt werden, um die Bewegung egungen beeinflussen Pose der Kamera zur Beobachtung genutzt ese des Zielobjekts wird aus Bild extrahiert	
Visual Servoing	Robust gegenüber der meisten Oberfläch Structured Light Pro Preiswert Keine Korrespondezprobleme auf homohenen Flächen Beschreibt Verfahren bei denen visuelle E eines Roboters zu steuern. Kamera-in-Hand: Kamera an Manipulator, Externes Kamera System: Externes System Positionasbasiertes Virtual Servoing: Aktu Bildbasiertes Virtual Servoing: Bewegung	ingabe , Bewe n wird : elle Po ergibt	Contra Eingeschränkte Reichweite Erfodert bestimmte Lichtverhältnisse (nur für Innenraum geeignet) edaten genutzt werden, um die Bewegung egungen beeinflussen Pose der Kamera zur Beobachtung genutzt ese des Zielobjekts wird aus Bild extrahiert aus gewünschter Position der Bildmerkmale	
Visual Servoing	Robust gegenüber der meisten Oberfläch Structured Light Pro Preiswert Keine Korrespondezprobleme auf homohenen Flächen Beschreibt Verfahren bei denen visuelle E eines Roboters zu steuern. Kamera-in-Hand: Kamera an Manipulator, Externes Kamera System: Externes System Positionasbasiertes Virtual Servoing: Aktu Bildbasiertes Virtual Servoing: Bewegung Diskrete Menge von 3D-Punkten mit einer	ingabe , Bewe n wird elle Po ergibt m festo	Contra Eingeschränkte Reichweite Erfodert bestimmte Lichtverhältnisse (nur für Innenraum geeignet) edaten genutzt werden, um die Bewegung gungen beeinflussen Pose der Kamera zur Beobachtung genutzt bse des Zielobjekts wird aus Bild extrahiert aus gewünschter Position der Bildmerkmale en Koordinaten System.	
Visual Servoing	Robust gegenüber der meisten Oberfläch Structured Light Pro Preiswert Keine Korrespondezprobleme auf homohenen Flächen Beschreibt Verfahren bei denen visuelle E eines Roboters zu steuern. Kamera-in-Hand: Kamera an Manipulator, Externes Kamera System: Externes System Positionasbasiertes Virtual Servoing: Aktu Bildbasiertes Virtual Servoing: Bewegung Diskrete Menge von 3D-Punkten mit einer Pixel: Bild Elemente im 2D (Höhe, Tiefe)	ingabe , Bewe n wird elle Po ergibt m feste <u>Vox</u>	Contra Eingeschränkte Reichweite Erfodert bestimmte Lichtverhältnisse (nur für Innenraum geeignet) edaten genutzt werden, um die Bewegung gungen beeinflussen Pose der Kamera zur Beobachtung genutzt se des Zielobjekts wird aus Bild extrahiert aus gewünschter Position der Bildmerkmale en Koordinaten System. sel: Volumen Pixel 3D (Breite, Höhe, Tiefe)	
Visual Servoing	Robust gegenüber der meisten Oberfläch Structured Light Pro Preiswert Keine Korrespondezprobleme auf homohenen Flächen Beschreibt Verfahren bei denen visuelle E eines Roboters zu steuern. Kamera-in-Hand: Kamera an Manipulator, Externes Kamera System: Externes System Positionasbasiertes Virtual Servoing: Aktu Bildbasiertes Virtual Servoing: Bewegung Diskrete Menge von 3D-Punkten mit einer Pixel: Bild Elemente im 2D (Höhe, Tiefe) Punktwolke: P = {(X, C) X ∈ ℝ³, C ∈ [0 2)	ingabe , Bewe n wird elle Po ergibt m festo Vox 255] ³ }	Contra Eingeschränkte Reichweite Erfodert bestimmte Lichtverhältnisse (nur für Innenraum geeignet) edaten genutzt werden, um die Bewegung gungen beeinflussen Pose der Kamera zur Beobachtung genutzt se des Zielobjekts wird aus Bild extrahiert aus gewünschter Position der Bildmerkmale en Koordinaten System. (el: Volumen Pixel 3D (Breite, Höhe, Tiefe) X = (x, y, z) Ortsinformation, C = (r, g, b) Farbe	
Visual Servoing Punktwolken	Robust gegenüber der meisten Oberfläch Structured Light Pro Preiswert Keine Korrespondezprobleme auf homohenen Flächen Beschreibt Verfahren bei denen visuelle E eines Roboters zu steuern. Kamera-in-Hand: Kamera an Manipulator, Externes Kamera System: Externes System Positionasbasiertes Virtual Servoing: Aktu Bildbasiertes Virtual Servoing: Bewegung Diskrete Menge von 3D-Punkten mit einer Pixel: Bild Elemente im 2D (Höhe, Tiefe) Punktwolke: P = {(X, C) X ∈ ℝ³, C ∈ [0 2] Iterative Closest Point: Algorithmus für die	ingabe , Bewe n wird elle Po ergibt m festo Vox 255] ³ }	Contra Eingeschränkte Reichweite Erfodert bestimmte Lichtverhältnisse (nur für Innenraum geeignet) edaten genutzt werden, um die Bewegung gungen beeinflussen Pose der Kamera zur Beobachtung genutzt se des Zielobjekts wird aus Bild extrahiert aus gewünschter Position der Bildmerkmale en Koordinaten System. (el: Volumen Pixel 3D (Breite, Höhe, Tiefe) X = (x, y, z) Ortsinformation, C = (r, g, b) Farbe	
	Robust gegenüber der meisten Oberfläch Structured Light Pro Preiswert Keine Korrespondezprobleme auf homohenen Flächen Beschreibt Verfahren bei denen visuelle E eines Roboters zu steuern. Kamera-in-Hand: Kamera an Manipulator, Externes Kamera System: Externes System Positionasbasiertes Virtual Servoing: Aktu Bildbasiertes Virtual Servoing: Bewegung: Diskrete Menge von 3D-Punkten mit einer Pixel: Bild Elemente im 2D (Höhe, Tiefe) Punktwolke: P = {(X, C) X ∈ ℝ³, C ∈ [0 2] Iterative Closest Point: Algorithmus für die unbekannte Zuordnung)	ingabe , Bewe n wird elle Po ergibt m festo Vox 255] ³ }	Contra Eingeschränkte Reichweite Erfodert bestimmte Lichtverhältnisse (nur für Innenraum geeignet) edaten genutzt werden, um die Bewegung gungen beeinflussen Pose der Kamera zur Beobachtung genutzt se des Zielobjekts wird aus Bild extrahiert aus gewünschter Position der Bildmerkmale en Koordinaten System. sel: Volumen Pixel 3D (Breite, Höhe, Tiefe) X = (x, y, z) Ortsinformation, C = (r, g, b) Farbe etrierung zweier Menge A, B (a-priori	
	Robust gegenüber der meisten Oberfläch Structured Light Pro Preiswert Keine Korrespondezprobleme auf homohenen Flächen Beschreibt Verfahren bei denen visuelle E eines Roboters zu steuern. Kamera-in-Hand: Kamera an Manipulator, Externes Kamera System: Externes System Positionasbasiertes Virtual Servoing: Aktu Bildbasiertes Virtual Servoing: Bewegung Diskrete Menge von 3D-Punkten mit einer Pixel: Bild Elemente im 2D (Höhe, Tiefe) Punktwolke: P = {(X, C) X ∈ ℝ³, C ∈ [0 2] Iterative Closest Point: Algorithmus für die unbekannte Zuordnung) Pro	ingabe , Bewe n wird elle Po ergibt m feste Vox 255] ³ }	Contra Eingeschränkte Reichweite Erfodert bestimmte Lichtverhältnisse (nur für Innenraum geeignet) edaten genutzt werden, um die Bewegung gungen beeinflussen Pose der Kamera zur Beobachtung genutzt se des Zielobjekts wird aus Bild extrahiert aus gewünschter Position der Bildmerkmale en Koordinaten System. sel: Volumen Pixel 3D (Breite, Höhe, Tiefe) X = (x, y, z) Ortsinformation, C = (r, g, b) Farbe etrierung zweier Menge A, B (a-priori	
	Robust gegenüber der meisten Oberfläch Structured Light Pro Preiswert Keine Korrespondezprobleme auf homohenen Flächen Beschreibt Verfahren bei denen visuelle E eines Roboters zu steuern. Kamera-in-Hand: Kamera an Manipulator, Externes Kamera System: Externes System Positionasbasiertes Virtual Servoing: Aktu Bildbasiertes Virtual Servoing: Bewegung: Diskrete Menge von 3D-Punkten mit einer Pixel: Bild Elemente im 2D (Höhe, Tiefe) Punktwolke: P = {(X, C) X ∈ ℝ³, C ∈ [0 2] Iterative Closest Point: Algorithmus für die unbekannte Zuordnung)	ingabe , Bewe n wird : elle Poergibt m feste Vox 255] ³ } e Regis	Contra Eingeschränkte Reichweite Erfodert bestimmte Lichtverhältnisse (nur für Innenraum geeignet) edaten genutzt werden, um die Bewegung gungen beeinflussen Pose der Kamera zur Beobachtung genutzt se des Zielobjekts wird aus Bild extrahiert aus gewünschter Position der Bildmerkmale en Koordinaten System. sel: Volumen Pixel 3D (Breite, Höhe, Tiefe) X = (x, y, z) Ortsinformation, C = (r, g, b) Farbe etrierung zweier Menge A, B (a-priori	

	· ·				tzung von Modellpar		
	Datenpunkte (nicht deterministisch). Schätzung von Linien in 2D und Ebenen in 3D. **Algorithmus**			n in 3D.			
	_			_	sind um Modellpara	meter zu	
	deren Abstand zum Modell kleiner ist als ein vordefinierter Schwellwert)						
RANSAC				Datenpuntke			
4. Wiederhole 1 bis 3 bis das Modell mit den meiste			eisten Ini		de		
	C' l Alle	Pro		All also	Contra		
		n und einfach imple			deterministisch		
		chätzung wenn wer	ng Outlier		Parameter		
	Vielseitig Anwend	apar			uigkeit vs. Laufzeit	and White the state of	
	Ciarrilta a a a con la cas	l:	Dl.		venn Outlier/Inlier V		
					gleichzeitige Schätzu	ing der	
SLAM					n Szenefeatures als bewegt kann geprü	ft worden	
	inwiefern sich dies		iii sicii dei	Robotei	bewegt kailii gepru	iit werden	
			t Fynerten	ı (Teach i	Panel, Textuelle Prog	rammierung)	
		_			ung → Segmentierun		
	_	bstraktion & Simul			ang segmentier an	18/ III C P C C C C C C C C C C C C C C C C	
		n-line	initiation		Off-line		
		ekt			textuell	graphisch	
	Teach-In	S				3 ,	
	Punkte	Play-Back Bahn abfahren	Hybride Verfahren		Explizite	Bewegungs-	
	anfahren &		Verfa	hren	Programmierung	orientiert	
	anfahren & speichern	& speichern	Verfa	hren	Programmierung	orientiert	
Programmierung					Programmierung		
Programmierung	speichern Sensor- unterstützt	& speichern Master-Slave Einsatz kleiner	Pd	IV	Implizite	Aufgaben-	
Programmierung	speichern Sensor- unterstützt Werkstück-	& speichern Master-Slave Einsatz kleiner kinematischer	Pd (Intera	iv aktive			
Programmierung	speichern Sensor- unterstützt Werkstück- kontur erfassen	& speichern Master-Slave Einsatz kleiner kinematischer Modelle	Pd (Intera Verfal	IV aktive hren)	Implizite Programmierung	Aufgaben- orientiert	
Programmierung	speichern Sensor- unterstützt Werkstück- kontur erfassen On-Line (direkt): Di	& speichern Master-Slave Einsatz kleiner kinematischer Modelle ie Programmierung	Pd (Intera Verfal	IV aktive hren) irekt am I	Implizite Programmierung Roboter (an der Robo	Aufgaben- orientiert otersteuerung)	
Programmierung	speichern Sensor- unterstützt Werkstück- kontur erfassen On-Line (direkt): Di Off-Line (indirekt):	& speichern Master-Slave Einsatz kleiner kinematischer Modelle ie Programmierung Programmierung e	Pd (Intera Verfal	IV aktive hren) irekt am I	Implizite Programmierung	Aufgaben- orientiert otersteuerung)	
Programmierung	speichern Sensor- unterstützt Werkstück- kontur erfassen On-Line (direkt): Di Off-Line (indirekt): interaktiver metho	& speichern Master-Slave Einsatz kleiner kinematischer Modelle ie Programmierung Programmierung e	Pd (Intera Verfal serfolgt di	IV aktive hren) irekt am I ne den Ro	Implizite Programmierung Roboter (an der Robo	Aufgaben- orientiert otersteuerung) ueller graphischer,	
Programmierung	speichern Sensor- unterstützt Werkstück- kontur erfassen On-Line (direkt): Di Off-Line (indirekt): interaktiver metho Explizit/Roboterori	& speichern Master-Slave Einsatz kleiner kinematischer Modelle ie Programmierung Programmierung e de entiert Programmie	Pd (Intera Verfal serfolgt di	IV aktive hren) irekt am I ne den Ro	Implizite Programmierung Roboter (an der Robo	Aufgaben- orientiert otersteuerung) ueller graphischer,	
Programmierung	speichern Sensor- unterstützt Werkstück- kontur erfassen On-Line (direkt): Di Off-Line (indirekt): interaktiver metho Explizit/Roboterori Programmiersprac	& speichern Master-Slave Einsatz kleiner kinematischer Modelle ie Programmierung e programmierung e de ientiert Programmie he eingebunden	Pd (Intera Verfal erfolgt di erfolgt ohn	aktive hren) irekt am I ne den Ro perativ):	Implizite Programmierung Roboter (an der Robo boter mit Hilfe textu	Aufgaben- orientiert otersteuerung) ueller graphischer, befehle direkt in	
Programmierung	speichern Sensor- unterstützt Werkstück- kontur erfassen On-Line (direkt): Di Off-Line (indirekt): interaktiver metho Explizit/Roboterori Programmiersprac Implizite/Aufgaber	& speichern Master-Slave Einsatz kleiner kinematischer Modelle ie Programmierung Programmierung e ode ientiert Programmie he eingebunden	Pd (Intera Verfal erfolgt di erfolgt ohn erung (imp	IV aktive hren) irekt am I ne den Ro perativ): (deklarati	Implizite Programmierung Roboter (an der Robo boter mit Hilfe textu Bewegung und Greif	Aufgaben- orientiert otersteuerung) ueller graphischer, befehle direkt in	
Programmierung	speichern Sensor- unterstützt Werkstück- kontur erfassen On-Line (direkt): Di Off-Line (indirekt): interaktiver metho Explizit/Roboterori Programmiersprac Implizite/Aufgaber durchführen soll w	& speichern Master-Slave Einsatz kleiner kinematischer Modelle ie Programmierung e ode entiert Programmie he eingebunden norientiert Program	Pd (Intera Verfal erfolgt di erfolgt ohn erung (imp erung (aktive hren) irekt am I ne den Ro perativ): (deklarati m von Zu	Implizite Programmierung Roboter (an der Robo boter mit Hilfe textu Bewegung und Greif iv): Aufgabe die der I	Aufgaben- orientiert otersteuerung) ueller graphischer, befehle direkt in	
Programmierung	speichern Sensor- unterstützt Werkstück- kontur erfassen On-Line (direkt): Di Off-Line (indirekt): interaktiver metho Explizit/Roboterori Programmiersprac Implizite/Aufgaber durchführen soll w	& speichern Master-Slave Einsatz kleiner kinematischer Modelle ie Programmierung e ode entiert Programmie he eingebunden norientiert Program ird beschrieben bs	Pd (Intera Verfal erfolgt di erfolgt ohn erung (imp erung (aktive hren) irekt am I ne den Ro perativ): (deklarati m von Zu	Implizite Programmierung Roboter (an der Roboter mit Hilfe texture Bewegung und Greiffer): Aufgabe die der Inständen	Aufgaben- orientiert otersteuerung) ueller graphischer, befehle direkt in	
Programmierung	speichern Sensor- unterstützt Werkstück- kontur erfassen On-Line (direkt): Di Off-Line (indirekt): interaktiver metho Explizit/Roboterori Programmiersprac Implizite/Aufgaber durchführen soll w Klassisch: Jedes Ge	& speichern Master-Slave Einsatz kleiner kinematischer Modelle ie Programmierung e de ientiert Programmie he eingebunden norientiert Program ird beschrieben bs elenk fährt bis zum	Pd (Intera Verfal serfolgt di erfolgt ohn erung (imp mierung (pw. in For Anschlag -	IV aktive hren) irekt am I ne den Ro perativ): (deklarati m von Zu → nur we	Implizite Programmierung Roboter (an der Roboter mit Hilfe texture Bewegung und Greiffer): Aufgabe die der Inständen enig Anfahrpunkte Contra	Aufgaben- orientiert otersteuerung) ueller graphischer, befehle direkt in Roboter	
Programmierung	speichern Sensor- unterstützt Werkstück- kontur erfassen On-Line (direkt): Di Off-Line (indirekt): interaktiver metho Explizit/Roboterori Programmiersprac Implizite/Aufgaber durchführen soll w Klassisch: Jedes Ge	& speichern Master-Slave Einsatz kleiner kinematischer Modelle ie Programmierung e de entiert Programmie he eingebunden norientiert Program ird beschrieben bs elenk fährt bis zum hen Trajektorien	Pd (Intera Verfal serfolgt di erfolgt ohn erung (imp mierung (pw. in For Anschlag	aktive hren) irekt am I ne den Ro perativ): (deklarati m von Zu → nur we	Implizite Programmierung Roboter (an der Roboter mit Hilfe texture Bewegung und Greif iv): Aufgabe die der Inständen enig Anfahrpunkte Contra	Aufgaben- orientiert otersteuerung) ueller graphischer, befehle direkt in Roboter n Trajektorien	
	speichern Sensor- unterstützt Werkstück- kontur erfassen On-Line (direkt): Di Off-Line (indirekt): interaktiver metho Explizit/Roboterori Programmiersprac Implizite/Aufgaber durchführen soll w Klassisch: Jedes Ge Schnell bei einfac Sofort anwendbar	& speichern Master-Slave Einsatz kleiner kinematischer Modelle ie Programmierung e ode entiert Programmie he eingebunden norientiert Program ird beschrieben bs elenk fährt bis zum Pro hen Trajektorien	Pd (Intera Verfal gerfolgt di erfolgt ohn erung (imp mierung (pw. in For Anschlag -	aktive hren) irekt am f ne den Ro perativ): (deklaration m von Zu m von Zu nur we Hoher Auf	Implizite Programmierung Roboter (an der Roboter mit Hilfe texture Bewegung und Greiffer): Aufgabe die der Beständen enig Anfahrpunkte Contraffwand bei komplexend am Roboter mögl	Aufgaben- orientiert otersteuerung) deller graphischer, befehle direkt in Roboter n Trajektorien ich	
Programmierung Direkte Programmierung	speichern Sensor- unterstützt Werkstück- kontur erfassen On-Line (direkt): Di Off-Line (indirekt): interaktiver metho Explizit/Roboterori Programmiersprac Implizite/Aufgaber durchführen soll w Klassisch: Jedes Ge Schnell bei einfac Sofort anwendbat Geringe Fehleran	& speichern Master-Slave Einsatz kleiner kinematischer Modelle ie Programmierung e de ientiert Programmie he eingebunden norientiert Program ird beschrieben bs elenk fährt bis zum hen Trajektorien r fälligkeit	Pd (Intera Verfal serfolgt di erfolgt ohn erung (imp nmierung (pw. in For Anschlag -	aktive hren) irekt am I ne den Ro perativ): (deklarati m von Zu → nur we Hoher Auf	Implizite Programmierung Roboter (an der Roboter mit Hilfe texture Bewegung und Greiffer): Aufgabe die der Inständen enig Anfahrpunkte Contratemend am Roboter möglfür einen Roboterty	Aufgaben- orientiert otersteuerung) ueller graphischer, befehle direkt in Roboter n Trajektorien ich	
Direkte	speichern Sensor- unterstützt Werkstück- kontur erfassen On-Line (direkt): Di Off-Line (indirekt): interaktiver metho Explizit/Roboterori Programmiersprac Implizite/Aufgaber durchführen soll w Klassisch: Jedes Ge Schnell bei einfac Sofort anwendbar Geringe Fehleran	& speichern Master-Slave Einsatz kleiner kinematischer Modelle ie Programmierung e ode entiert Programmie he eingebunden norientiert Program ird beschrieben bs elenk fährt bis zum Pro hen Trajektorien	Pd (Intera Verfal gerfolgt di erfolgt ohn erung (imp mierung (pw. in For Anschlag - h	aktive hren) irekt am I ne den Ro perativ): (deklarati m von Zu → nur we Hoher Aut Nur mit un Spezifisch /erletzun	Implizite Programmierung Roboter (an der Roboter mit Hilfe texture Bewegung und Greif extenden enig Anfahrpunkte Contrativand bei komplexend am Roboter mögl für einen Robotertygsgefahr hoch durch	Aufgaben- orientiert otersteuerung) ueller graphischer, befehle direkt in Roboter n Trajektorien ich p Roboter	
Direkte	speichern Sensor- unterstützt Werkstück- kontur erfassen On-Line (direkt): Di Off-Line (indirekt): interaktiver metho Explizit/Roboterori Programmiersprac Implizite/Aufgaber durchführen soll w Klassisch: Jedes Ge Schnell bei einfac Sofort anwendbar Geringe Fehlerant keine Programmie	& speichern Master-Slave Einsatz kleiner kinematischer Modelle ie Programmierung e ode entiert Programmie he eingebunden norientiert Program ird beschrieben bs elenk fährt bis zum Pro hen Trajektorien r fälligkeit erkenntnisse notwe	Pd (Intera Verfal gerfolgt di erfolgt ohn erung (imp er	Aktive hren) irekt am I ne den Ro perativ): (deklaration m von Zu m von Zu m von Zu hoher Aut Nur mit ui Spezifisch /erletzun Keine Ada	Implizite Programmierung Roboter (an der Roboter mit Hilfe texture Bewegung und Greiffer): Aufgabe die der Inständen enig Anfahrpunkte Contratemend am Roboter möglfür einen Roboterty	Aufgaben- orientiert otersteuerung) Heller graphischer, Hoboter n Trajektorien ich P Roboter Roboter benheiten	
Direkte	speichern Sensor- unterstützt Werkstück- kontur erfassen On-Line (direkt): Di Off-Line (indirekt): interaktiver metho Explizit/Roboterori Programmiersprac Implizite/Aufgaber durchführen soll w Klassisch: Jedes Ge Schnell bei einfac Sofort anwendbal Geringe Fehleran keine Programmie Kein Modell der L Playback Bewertur	& speichern Master-Slave Einsatz kleiner kinematischer Modelle ie Programmierung e de ientiert Programmie he eingebunden norientiert Program ird beschrieben bs elenk fährt bis zum Pro hen Trajektorien r fälligkeit erkenntnisse notwe Jmwelt erforderlich	Pd (Intera Verfal gerfolgt di erfolgt ohn erung (imp erung (imp erung (pw. in For Anschlag - Anschlag - Endig V n K r schwer z	Aktive hren) irekt am I ne den Ro perativ): (deklarati m von Zu → nur we Nur mit ui Spezifisch /erletzun Keine Ada zu beweg	Implizite Programmierung Roboter (an der Roboter mit Hilfe texture Bewegung und Greif einen Anfahrpunkte Contrate wand bei komplexend am Roboter mögl für einen Robotertytesgefahr hoch durch ption an neue Gegel	Aufgaben- orientiert otersteuerung) ueller graphischer, befehle direkt in Roboter n Trajektorien ich p Roboter benheiten , Korrektur schwer	

	Pro		Contra	
	Programmierung unabhängig von Roboter	Benöti	gt Programmierkenntnisse	
Textuelle	Strukturierte, übersichtliche Logik	5001.	Br 1 o Br d 1 mile 1 ke 1 mile 1 ke 1	
Programmier-	Erstellung komplexer Programme			
verfahren				
Verrainen	<u>Verbindungsprogrammierte Steuerung:</u> Hardwaresteuerung, Änderung = Hardware ändern			
	<u>Speicherprogrammierte Steuerung:</u> Steuerungs-/Regelablauf programmiert (sehr flexibel) <u>Computerized Numerical Control:</u> Geometrische- & Technologische Beschreibungen			
Hybride Verfahren	weniger Programmkenntnis als textuell Sensorielle Erfassung ungenau			
	Einfache Programme & leichter Fehlererkennung Leistungsfahige Hardware notwendig			
	Schnelles Erstellen komplexer Programme		Komplexe Modell notwendig	
	Virtuelles Teach-In: Roboter in 3D Visualisieru	ing mar		
	Pro		Contra	
	Realer Roboter wird nicht benötigt	_	ungsfähige Hardware notwendig	
	Benötigt wenig Programmierkenntnisse	_	plexe Modelle für Simulation notwendig	
	Leichtere Fehlererkennung	Robo	ter & Umwelt muss modelliert werden	
Graphische	Schnelles Erstellen komplexer Programme			
Roboter-	Harel Statecharts: Graphischer Formalismus z	um Ent	wurf komplexer Systeme	
programmierung	- Hierarchie: Zustände die von anderen umge	eben sin	id, sind Überzustände	
	- Interlevel Transition: Transitionen können z	wische	n Hierarchien stattfinden	
	- Gestrichelte Linie: Markiert eine parallele Ausführung der Zustände			
	- Zustandsphasen: entry beim Betreten, throughout während Ausführung & vor Verlassen exit			
	- Erweiterung transitionsbasierter Datenfluss: beliebige Daten zwischen Zuständen übergeben			
	- Erweiterung mehrere Host PCs: Lastverteilung, Robustheit & Fehlertoleranz			
	- Erweiterung dynamische Struktur: Austausch von Unterzuständen zur Laufzeit			
	STRIPS (Stanford Research Institute Problem Solver): Funktionsfreie Sprache erster Ordnung			
	- Konstantesymbole: A, B, C, (Namen der Blöcke)			
	- Variablensymbole: u, v, x ₁ , x ₂			
	- Prädikate: handempty, ontable(bottle), on(
	- Operatorensymbole: pickup, putdown, stack, unstack, grasp, move,			
	- Zustand der Welt: $A \wedge on(A, B)$ (keine Variablen, negative Literale, Funktionen)			
	- Ziel: teilweise spezifizierter Zustand (alle Literale des Ziels müssen im Weltzustand sein)			
	- Aktion: Tripel bestehend aus Dekleration, Vorbedingungen & Effekten			
	- Deklaration: Name und Parameterlist (bspw. grasp(hand, object, location)			
C l l' l	- Vorbedingungen: V _A Literale die wahr sein müssen (bspw. clear(object) Λ handempty)			
Symbolische	- Effekte E _A : Auswirkung der Aktion auf den Weltzustand (Liste pos. & neg. Literale)			
Planung	- Ausführbarkeit: Aktion ausführbar wenn Vorbedingen im Zustand erfüllt sind			
	Pro Contra Einfache Beschreibungssprache Viele Restriktionen bei der Modellierung			
	Einfache Planung		chlossene Welt, nur pos. Literalse in	
	Lösbarkeitsbeweis einfach		inden, Keine Quantoren,)	
		Zuste	anden, keine Quantoren,)	
	Suche im Zustandsraum - Tiefensuche: Findet meistens nicht den kür	zoston [llan	
	- Breitensuche: Findet immer den kürzesten F			
	- Heuristik basierte Suche: Güte ausschlaggeb			
	_			
	- FastForward-Planner: Gierige Vorwärtssuche, Breitensuche um lokalen Minima entkommen - Planungsgraphen: Analyse der Prädikate und Aktionen um Heuristiken aufzustellen			

Programmieren Modell Verfeinerung durch Vormachen

Definition: Lernen aus Beobachtung des Menschen.

Phasen: Perzeption → Kognition → Aktion Vorteile: Komplexitätsreduktion des Suchraums beim Lernen, Implizites Trainieren von Robotern (händisches Programmieren reduziert/eliminiert), hilft beim Verständnis von Kopplung von Perzeption und Aktion. Fähigkeiten transferieren,

Beschleunigung des Lernprozesses, liefert Vorschläge für optimale Lösung.

Nachteile: nicht geeignet wenn Lösung des Lehrers keine gute Lösung für Nachahmer ist oder Demonstration des Lehrers stark verrauscht ist

Herausforderungen: Wer?, Wann? (Start/End/Kontext), Was? (Relevanz), Wie? (Reproduktion)

Teacher Execution \rightarrow Record Mapping \rightarrow Record Excution \rightarrow Embodiment Mapping \rightarrow Learner Record Mapping: Aktionen des Lehrers Aufnehmn

Embodiment Mapping: Aktionen auf den Roboter abbilden

		Embodiment Mapping		
		Direkt benutzt	Abgeleitet	
Desording	Direkt benutzt	Teleoperation (Steuerung)	Sensors on Teacher	
Recording	Abaalaitat	Shadowing (anderen	External Observation	
Mapping	Abgeleitet	Roboter beobachten)	(Mensch beobachten)	
		Demonstration	Imitation	

Perzeption

Teleoperation: Direkt steuern (Joystick) \rightarrow Sensoren zeichnen auf \rightarrow keine Nachbearbeitung <u>Kinästhetisch:</u> durch physikalische Interaktion bewegen \rightarrow Sicherheitsrisiko, nur vor Ort Shadowing: gleiches Embodiment, Nachahmung durch Aufnahme mit eigenen Sensoren Sensors on Teacher: Bewegungen direkt aufgenommen (sehr genau!) Abbildung nötig

Marker-basiert (aktiv LED & passiv) mit Erkennung durch Mehr-Kamera-Systeme → räumlich und zeitlich exakt aber teuer und hoher Aufwand/Anforderungen,

Codierte Kennung → vereinfachte Handhabung des Marker Labelings

Inertiale Messeinheiten (IMUs) → geringe Anforderung aber exakte Positionierung notwendig Mechanische Erfassung → geringe Anforderungen, Bewegungseinschränkung, techn. Komplex Magn./Akust. Erfassung → günstig & weniger Verdeckung vs. geringe Reichweite und ungenau

External Observation: Marker-lose Verfahren (direkt) → Aufnahme mit RGB/Tiefenkamera günstig & geringe Umgebungsanf. vs. komplexe Algos, hoher Error, niedrige zeitl. Auflösung Skeleton Tracking → Tiefen- & Skelettdaten mit 30fps aus Einzelbildern berechnet Segmentation & Tracking \rightarrow Tracking von Farb- & Tiefenregionen, Optischer Fluss zw. Frames

Beschreibt das Lernen und Repräsentieren von Fähigkeiten und Aufgaben.

Trajektorie: nicht lineare Zuordnung zwischen Sensoren- und Motorinformationen stellt eine Repräsentation auf niedriger Eben dar. Zur Generalisierung von Bewegungen.

Kognition

Pro	Contra
Allgemeine Repräsentation von Bewegungen, die es erlaubt	Kann komplexe Fertigkeiten
verschiedenste Arten von Signalen und Gesten zu kodieren.	nicht reproduzieren

Symbolisch: Eine Zerlegung in eine Folge von Aktionen stellt eine Repräsentation auf hohe Ebene dar. Ein üblicher Ansatz segmentiert und kodiert die Aufgabe anhand Folgen vordefinierter Aktionen, die symbolisch beschrieben sind. Beschreibt eine sequentielle Organisation von vordefinierten Bewegungselementen.

	Pro	Contra	
	Komplexe Fertigkeiten können effizient	Benötigt viel Wissen, um die wichtigen Kenn-	
	über interaktiven Prozess gelernt werden	zeichnungen zur Segmentierung zu erkennen	
	Ermöglich hierarchisches Lernen	Benötigt vordefiniert Menge von einfachen	
l		Controllern zur Reproduktion	

	Hierarchische Aufgabensegmentierung:
Kognition	Semantische Segmentierung: Basiert auf Objekt-Kontaktrelation, Bewegungstrajektorie (LVL 1) Bewegungssegmentierung: Charakteristiken von Trajektorien, semantische Merkmale (LVL 2)
Kogiitioii	Batch Lernen: Aktion wird gelernt, wenn ale Aktionen/Wiederholhen aufgenommen wurde
	<u>Inkrementelles Lernen</u> : Aktionsrepräsentation nach jeder Aktion/Wdh. gelernt/aktualisiert
	<u>Trajektorieausführung:</u> folgen mittels PD Regel oder direkten Kontrollsignal
	Online Anpassung: möglich durch Kopplungsterm in DMP, schwierig für GMM und HMM
Aktion	Komplexe Aufgaben: Aktionssequenzen in dynamischer Umgebung wobei Umgebung
	wahrgenommen werden muss (Hypothesen über Startzustand generieren) und
	Fehlerbehandlung (erkennen & lösen durch neu planen)

Rechte Hand Regel

