Ferienkurs: Mechanik

Ferienkurs

Theoretische Physik: Mechanik

Sommer 2013

Übung 4 - Angabe

1 Trägheitstensor

Ferienkurs: Mechanik

- 1. Ein starrer Körper besteht aus den drei Massenpunkten mit den Koordinaten $\vec{r}_1 = (a, 0, 0)^T$, $\vec{r}_2 = (-\frac{a}{2}, \frac{\sqrt{3}}{2}a, 0)^T$, und $\vec{r}_3 = (-\frac{a}{2}, -\frac{\sqrt{3}}{2}a, 0)^T$. Bestimmen Sie den Trägheitstensor des Körpers in Matrixdarstellung.
- 2. Berechnen Sie den Trägheitstensor einer Kugelschale (Hohlkugel) der Masse M und mit dem Radius R.
- 3. Berechnen Sie das Trägheitsmoment eines Zylinders für die Rotationen um die Zylinderachse. Der Zylinder hat die Länge L, die Masse M und der Radius.
 - (i) im Falle eines homogenen Vollzylinders
 - (ii) im Falle eines Hohlzylinders ohne Deckflächen mit extradünnem Mantel. Hinweis: Wählen Sie die Zylinderachse als die z-Achse und berechnen Sie Θ_{33} .

2 Physikalisches Pendel

Ein starrer Körper der Masse M wird im homogenen Schwerefeld $\vec{g} = g\vec{e}_z$ im Punkt A aufgehängt, sodass die Bewegung nur in der x-z-Ebene stattfinden kann. Der Abstand zwischen dem Aufhängepunkt und dem Schwerpunkt des Körpers S sei s. Das Trägheitsmoment für die Rotationen um die y-Achse, die durch den Schwerpunkt läuft, sei Θ_v .

- 1. Bestimmen Sie mit Hilfe des Satzes von Steiner das Trägheitsmoment Θ_y^A für die Rotationen um die y-Achse, die durch den Aufhängepunkt läuft.
- 2. Betrachten Sie den Auslenkungswinkel φ zwischen der z-Achse und der Linie AS als generalisierte Koordinate. Stellen Sie die Lagrange-Funktion des Pendels $L(\varphi, \dot{\varphi})$ auf und formulieren Sie die Euler-Lagrange Gleichung für $\varphi(t)$.
- 3. Bestimmen Sie die Lösung der Bewegungsgleichung im Falle kleiner Auslenkungen $\varphi \ll 1$.

3 Rotationsparaboloid

Ein Massenpunkt m bewege sich unter dem Einfluss der Schwerkraft $\vec{F} = -mg\vec{e}_z$ reibungslos auf der Innenseite des Rotationsparaboloids:

$$x^2 + y^2 = 2bz \tag{1}$$

- 1. Stellen Sie die Lagrange-Funktion des Systems in Zylinderkoordinaten (ρ, φ, z) auf und eliminieren Sie die Variable z mittels der Zwangsbedingung (1).
- 2. Formulieren Sie die Euler-Lagrange-Gleichung für $\varphi(t)$ und $\rho(t)$.
- 3. Berechnen Sie die z-Komponente des Drehimpulses $L_z = m(x\dot{y} y\dot{x})$ in Zylinderkoordinaten und zeigen Sie, dass L_z eine Erhaltungsgröße ist.

- Ferienkurs: Mechanik
 - 4. Bestimmen Sie die Winkelgeschwindigkeit $\dot{\varphi} = \dot{\varphi}_K = const.$, für die eine horizontale Kreisbahn mit $\rho(t) = \rho_0 = const.$ möglich ist. Zeigen Sie, dass $\dot{\varphi}_K$ von der Größe der Bahn unabhängig ist.
 - 5. Im Falle kleiner Auslenkungen:

$$\rho(t) = \rho_0 + \delta \rho(t) \qquad (\delta \rho \ll \rho_0) \tag{2}$$

oszilliert $\rho(t)$ harmonisch um ρ_0 . Bestimmen Sie die Oszillatorfrequenz ω und vergleichen Sie ω mit $\dot{\varphi}_K$.

4 Gekoppelte Oszillatoren

Zwei Teilchen der Masse m sind über drei identische Federn mit Federkonstanten $k = m\omega_0^2$ miteinander und mit den Wänden verbunden. Die Bewegung der Teilchen ist auf die Achse eingeschränkt (longitudinale Schwingung). Die Auslenkung der Teilchen aus der Ruhelage wird mit x_1 und x_2 bezeichnet.

1. Zeigen Sie, dass die Bewegungsgleichungen im Falle kleiner Auslenkungen lauten:

$$\ddot{x}_1 + 2\omega_0^2 x_1 - \omega_0^2 x_2 = 0 \qquad \ddot{x}_2 + 2\omega_0^2 x_2 - \omega_0^2 x_1 = 0$$
 (3)

2. Durch die Einführung des Auslenkvektors $\vec{x} = (x_1, x_2)^T$ erhält man die Bewegungsgleichungen in Matrixform:

$$\ddot{\vec{x}} + \hat{A}\vec{x} = 0 \tag{4}$$

mit $\hat{A} = \begin{pmatrix} 2\omega_0^2 & -\omega_0^2 \\ -\omega_0^2 & 2\omega_0^2 \end{pmatrix}$. Durch den Ansatz:

$$\vec{x} = a\cos(\omega t + \alpha)\vec{u} \tag{5}$$

reduziert sich das Problem auf das Eigenwertproblem:

$$\hat{A}\vec{u} = \omega^2 \vec{u} \tag{6}$$

- i) Bestimmen Sie die zwei Eigenfrequenzen ω_1 und ω_2 , bei denen die Gleichung (6) nichttriviale Lösungen $\vec{u} \neq \vec{0}$ hat.
- ii) Finden Sie dazugehörige, normierte Eigenvektoren $\vec{u}^{(1)}$ und $\vec{u}^{(2)}$.

iii) Diskutieren Sie die Art der kollektiven Bewegung der Teilchen, falls die Mode ω_1

Hinweis: Die Gleichung (6) hat nicht-triviale Lösungen bei $\omega = \omega_l$, wenn ω_l die Lösung der Gleichung:

$$det(\hat{A} - \omega_l^2 \,\hat{\mathbb{1}}) = 0 \tag{7}$$

ist. Die Eigenvektoren erhält man dann aus der Gleichung:

$$\hat{A}\vec{u}^{(l)} = \omega_l^2 \vec{u}^{(l)} \tag{8}$$

3. Die allgemeine Lösung der Bewegungsgleichungen lautet:

$$\vec{x} = a_1 \cos(\omega_1 t + \alpha_1) \vec{u}^{(1)} + a_2 \cos(\omega_2 t + \alpha_2) \vec{u}^{(2)}$$
(9)

Bestimmen Sie die spezielle Lösung mit folgenden Anfangsbedingungen:

$$\vec{x}(0) = \vec{0}$$
 $\dot{\vec{x}}(0) = (v_1^{(0)}, 0)^T$ (10)

und skizzieren Sie $x_2(t)$.

Hinweis: Verwenden Sie die Orthogonalität der Eigenvektoren.

5 Doppelpendel

Ferienkurs: Mechanik

bzw. ω_2 angeregt ist.

Betrachten Sie ein ebenes Doppelpendel, dessen Punktmassen m_1 und m_2 dem homogenen Schwerefeld ausgesetzt sind. Betrachten Sie die Auslenkungswinkel φ_1 und φ_2 als generalisierte Koordinaten. Stellen Sie die Lagrange-Funktion des Systems auf. Betrachten Sie nun den Fall kleiner Auslenkungen $|\varphi_1|, |\varphi_2| \ll 1$.

1. Zeigen Sie, dass sich die Lagrange-Funktion auf die Form:

$$L = \frac{1}{2}(m_1 + m_2)l_1^2 \dot{\varphi}_1^2 + \frac{1}{2}m_2 l_2^2 \dot{\varphi}_2^2 + m_2 l_1 l_2 \dot{\varphi}_1 \dot{\varphi}_2 - \frac{1}{2}(m_1 + m_2)g l_1 \varphi_1^2 - \frac{1}{2}m_2 g l_2 \varphi_2^2 + (m_1 + m_2)g l_1 + m_2 g l_2$$

$$(11)$$

reduziert.

Ferienkurs: Mechanik

Hinweis: Für $|x| \ll 1$ gilt $cosx \approx 1 - \frac{x^2}{2}$.

- 2. Formulieren Sie die Euler-Lagrange-Gleichungen für die Winkel φ_1 und φ_2 .
- 3. Mit dem Auslenkungsvektor $\vec{\varphi} = (\varphi_1, \varphi_2)^T$ erhält man die Bewegungsgleichungen in Matrixform:

$$\hat{M}\ddot{\vec{\varphi}} + \hat{A}\vec{\varphi} = 0 \tag{12}$$

Bestimmen Sie die Matrizen \hat{M} und \hat{A} .

4. Durch den Ansatz:

$$\vec{\varphi} = a\cos(\omega t + \alpha)vecu \tag{13}$$

reduziert sich das Problem auf das generalisierte Eigenwertproblem:

$$\hat{A}\vec{u} = \omega^2 \hat{M}\vec{u} \tag{14}$$

Bestimmen Sie die zwei Eigenfrequenzen ω_1 und ω_2 , bei denen (14) nicht-triviale Lösungen ($\vec{u} \neq 0$) hat.

Hinweis: Gleichung (14) hat nicht-trivivale Lösungen bei $\omega = \omega_l$, wenn ω_l die Gleichung:

$$det(\hat{A} - \omega_L^2 \hat{M}) = 0 \tag{15}$$

erfüllt. Die Eigenvektoren erhält man dann aus $\hat{A}\vec{u}^{(l)} = \omega_l^2 \hat{M}\vec{u}^{(l)}$. Im zweidimensionalen Fall gilt:

$$det(\hat{A} - \omega^2 \hat{M}) = \omega^4 det(\hat{M}) - \omega^2 c + det(\hat{A})$$
(16)

wobei $c = A_{11}M_{22} + A_{22}M_{11} - A_{12}M_{21} - A_{21}M_{12}$ ist. Damit folgt:

$$\omega_{1,2}^2 = \frac{c \pm \sqrt{c^2 - 4det(\hat{M})det(\hat{A})}}{2det(\hat{M})}$$
(17)