Вопросы. Теория вероятностей и статистика.

1. (YA) Элементы теории вероятностей: пространство элементарных исходов, вероятностная мера. Свойства вероятностной меры. Условная вероятность. Классическая вероятностная схема. Формулы полной вероятности и Байеса.

Пусть в результате испытания наступает одно и только одно из событий ω_i (i=1,...,n). События ω_i называют элементарными событиями (элементарными исходами). Множество всех элементарных событий, которые могут появится в испытании, называют пространством элементарных событий (исходов) Ω , а сами элементарные события — точками пространства Ω .

Определение: Пусть $\Omega = \{\omega_1, ..., \omega_n\}$ — пространство элементарных событий, тогда некоторое его подмножество $A \subset \Omega$ называется событием.

Определение: События A, B называются *несовместными*, если появление A исключает появление B и наоборот. Более формально, $A \cap B = \emptyset$.

Вероятностное пространство. Пусть $\Omega = \{\omega_1, ..., \omega_n\}$ — пространство элементарных событий. Припишем каждому элементарному исходу некоторое число $p_i \geq 0$ так, чтобы $p_1 + p_2 + ... + p_n = 1$. Тогда вероятностью события A назовем сумму

$$P(A) = \sum_{k:\omega_k \in A} p_k.$$

Полученная конструкция обладает следующими свойствами:

- 1. $P(\emptyset) = 0, P(\Omega) = 1;$
- 2. $0 \le P(A) \le 1$;
- 3. $A \cap B = \emptyset \Rightarrow P(A \cup B) = P(A) + P(B)$;
- 4. $P(A \cup B) = P(A) + P(B) P(A \cap B)$;
- 5. $P(A \cup B) \le P(A) + P(B)$;
- 6. $P(\overline{A}) = 1 P(A)$.

Аксиоматическое определение вероятности. Предполагается, что задано некоторое пространство элементарных событий X. Вероятностью (вероятностной мерой) называется мера (числовая функция) P, заданная на множестве событий, обладающая следующими свойствами:

- 1. Неотрицательность: $\forall A \subset X : P(A) \geq 0$;
- 2. $A\partial dumueнocmb$: вероятность наступления хотя бы одного из попарно несовместных событий равна сумме вероятностей этих событий. Другими словами, если $A_i \cap A_j = \emptyset$, то

$$P\left(\sum_{i} A_{i}\right) = \sum_{i} P(A_{i}).$$

3. Конечность (ограниченность единицей): P(X) = 1.

Примечание: *Мера* — это некоторая числовая функция, ставящая в соответствие каждому множеству (из некоторого семейства множеств) некоторое неотрицательное число. Кроме неотрицательности мера как функция должна также обладать свойством аддитивности — мера объединения непересекающихся множеств должна равняться сумме их мер.

Свойства вероятности (исходя из аксиоматического определения):

- 1. $P(\emptyset) = 0$:
- 2. $A \subset B \Rightarrow P(A) \leq P(B)$;
- 3. $0 \le P(A) \le 1$;
- 4. $A \subset B \Rightarrow P(B \setminus A) = P(B) P(A);$
- 5. $P(A) = 1 P(\overline{A});$
- 6. P(A+B) = P(A) + P(B) P(AB).
- 7. $P(\bigcup_{k=1}^{n} A_k) \le \sum_{k=1}^{n} P(A_k);$
- 8. Формула включений-исключений для вероятностей:

$$P(\bigcup_{k=1}^{n} A_k) = \sum_{k=1}^{n} P(A_k) - \sum_{i < k} P(A_i \cap A_k) + \dots (-1)^n P(A_1 \cap \dots \cap A_n).$$

Классическая вероятностная схема. Если каждое элементарное событие из пространства элементарных событий равновероятно, то есть для любых двух $\omega_i, \omega_j \in \Omega$ выполняется равенство $P(\{\omega_i\}) = P(\{\omega_j\})$, и в результате эксперимента какое-то из них точно произойдет, то $p_i = P(\{\omega_i\}) = \frac{1}{|\Omega|}$. Следовательно, вероятность события A считается по формуле

$$P(A) = \frac{|A|}{|\Omega|}.$$

Условная вероятность.

Определение: Условной вероятностью события B при условии события A с P(A)>0 называется величина

$$P(B|A) = \frac{P(AB)}{P(A)}.$$

В случае классической схемы:

$$P(B|A) = \frac{|A \cap B|}{|A|}.$$

Формула полной вероятности.

Рассмотрим разбиение $\mathcal{D} = \{A_1,...,A_n\}$ пространства элементарных исходов. Причем $P(A_i) > 0$. Такое разбиение называют полной группой несовместных событий. Тогда $B = BA_1 + ... + BA_n$. Значит,

$$P(B) = \sum_{i=1}^{n} P(BA_i).$$

Используя формулу условной вероятности, получаем формулу полной вероятности

$$P(B) = \sum_{i=1}^{n} P(B|A_i)P(A_i).$$

Формула Байеса.

По определению условной вероятности P(B|A) = P(AB)/P(A), тогда P(AB) = P(B|A)P(A). Аналогично P(AB) = P(A|B)P(B). Тогда имеется равенство

$$P(B|A)P(A) = P(A|B)P(B).$$

Из него можно получить формулу Байеса:

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}.$$

Заменим A на часть разбиения A_i и распишем числитель по формуле полной вероятности. Получим утверждение $meope_{mbi}$ Baŭeca:

$$P(A_i|B) = \frac{P(B|A_i)P(A_i)}{\sum_{j=1}^{n} P(B|A_j)P(A_j)}.$$

2. (SE) Вероятностное пространство. Независимые события. Теорема сложения. Условная вероятность. Полная система событий. Формула полной вероятности. Формула Байеса.

Вероятностное пространство — это тройка $(\Omega, \mathfrak{A}, \mathbb{P})$, где

- 1. Ω произвольное непустое множество, элементы которого называются элементарными событиями, исходами или точками;
- 2. \mathfrak{A} сигма-алгебра подмножеств Ω , называемых (случайными) событиями;
- 3. \mathbb{P} вероятностная мера или вероятность, то есть сигма-аддитивная конечная мера, такая что $\mathbb{P}(\Omega)=1$.

Примечание. Семейство $\mathfrak S$ подмножеств множества X называется σ (сигма)-алгеброй, если оно удовлетворяет следующим условиям:

- 1. $\mathfrak S$ содержит множество X и пустое множество \varnothing .
- $2. E \in \mathfrak{S} \Rightarrow X \setminus E \in \mathfrak{S}.$
- 3. Объединение счетного подсемейства из $\mathfrak S$ принадлежит $\mathfrak S$.

Для **классической** вероятностной схемы $\mathfrak{S}=2^{\Omega}$.

Геометрические вероятности.

Пусть Ω — ограниченное множество n-мерного евклидова пространства, обладающее объемом. Пусть \mathfrak{S} — система подмножеств Ω , имеющих объем. Тогда для любого события $A \in \mathfrak{S}$ положим

$$\mathbb{P} = \frac{\mu(A)}{\mu(\mathfrak{S})},$$

где $\mu(C)$ — объем множества.

Определение. Два события A и B называются *независимыми*, если $P(A \cap B) = P(A) \cdot P(B)$.

Некоторые свойства независимых событий.

- 1. Если P(B) > 0, то независимость A и B эквивалентна равенству P(A|B) = P(A).
 - **◄** $P(A|B) = P(A \cap B)/P(B)$. По определению независимых событий: $P(A \cap B) = P(A) \cdot P(B)$, при $P(B) \neq 0$ поделим обе части на P(B), получим требуемое равенство. ▶

Это свойство означает, что события A, B независимы \Leftrightarrow наступление события B не меняет вроятность наступления события A.

- 2. Если события A и B независимы, то \overline{A} , B тоже независимы.
 - **◄** $P(\overline{A} \cap B) = P(B A \cap B)$. $P(B) = P(B \cap A) + P(B B \cap A)$, так как последние события несовместны. Значит $P(B B \cap A) = P(B) P(B \cap A)$. Тогда $P(\overline{A} \cap B) = P(B) P(B \cap A)$. Воспользуемся независимостью B и A, получим: $P(\overline{A} \cap B) = P(B) P(A)P(B) = P(B)(1 P(A)) = P(B)P(\overline{A})$. ▶

Определение. События $B_1,...,B_n$ независимы в совокупности, если для любых $1 \le i_1 < i_2 < ... < i_r \le n, r = 2,3,...,n,$

$$P\left(\bigcap_{k=1}^{r} B_{i_k}\right) = \prod_{k=1}^{r} P(B_{i_k}).$$

Попарной независимости событий недостаточно для независимости в совокупности. Пример: тетраэдр, три грани которого покрашены в цвета K,3,C, а четвертая во все три. Тогда вероятность выпадения грани, содержащей два цвета $P(\text{грань с тремя цветами}) = \frac{1}{4} = P(K)P(3) = \frac{1}{2} \cdot \frac{1}{2}$. Вероятность выпадения грани со всеми цветами есть $P(\text{грань с тремя цветами}) = \frac{1}{4} \neq P(K)P(3)P(C) = \frac{1}{8}$.

Теорема сложения вероятностей. Если A, B — события с вероятностями P(A) и P(B), то вероятность наступления хотя бы одного из них P(A+B) = P(A) + P(B) - P(AB).

◀ Разобьем событие A+B (или аналогично $A\cup B$) на несовместные события: A-AB, AB, B-AB. По определению вероятности P(A+B)=P(A-AB)+P(AB)+P(B-AB). При этом P(A)=P(A-AB)+P(AB)+P(AB), тогда P(A+B)=(P(A)-P(AB))+P(AB)+(P(B)-P(AB))=P(A)+P(B)-P(AB). ▶

Определение. Пусть $(\Omega, \mathfrak{A}, \mathbb{P})$ есть вероятностное пространство. Любое разбиение множества Ω элементами сигма алгебры \mathfrak{A} называется *полной группой событий*.

Другими словами, это система случайных событий такая, что в результате произведенного эксперимента непременно произойдет ровно одно из них.

Формулу полной вероятности и формулу Байеса см. в билете 1.

(SE) Случайная величина и ее функция распределения. Совместное распределение случайных величин. Распределение суммы независимых случайных величин.

Пусть $\langle \Omega, \mathfrak{A}, P \rangle$ — произвольное вероятностное пространство.

Определение. Случайной величиной ξ называется измеримая функция $\xi(\omega)$, отображающая Ω в множество действительных чисел \mathbb{R} .

Функция $\xi(x)$ называется измеримой, если $\forall x \in \mathbb{R}$ выполняется

$$\{\omega \in \Omega : \xi(\omega) \le x\} \in \mathfrak{A}.$$

Определение. Вероятность $P_{\xi}(B) = P(\xi \in B)$ называется *pacnpede*лением случайной величины ξ .

Определение. Функцией распределения с.в. ξ называется функция

$$F_{\xi} := P(\xi \le x).$$

Свойства функции распределения:

- 1. $F_{\xi}: \mathbb{R} \to [0,1];$
- 2. F_{ξ} монотонная неубывающая функция;
- 3. F_{ξ} непрерывна справа. Рассмотрим последовательность $x_0 \leftarrow \{x_n\}$. Тогда $\{\xi \leq x_i\} \subset \{\xi \leq x_{i-1}\}$, при этом

$$\{\xi \le x_0\} = \bigcap_{n=1}^{\infty} \{\xi \le x_n\},\,$$

Рис. 1: Функция распределения непрерывна справа

следовательно $P(\xi \le x_0) = \lim_{n\to\infty} P(\xi \le x_n)$, а это в точности определение непрерывности функции F_{ξ} :

$$\lim_{n\to\infty} F_{\xi}(x_n) = F_{\xi}(x_0).$$

- 4. $\lim_{x \to +\infty} F_{\xi}(x) = 1$, $\lim_{x \to -\infty} F_{\xi}(x) = 0$.
- 5. Существует $\lim_{x\to x_0-0}F_\xi(x)=:F_\xi(x_0-0)$. Для доказательства рассмотрим последовательность $\{x_n\}\to x_0,\,\{x_n\}$ не убывает. Имеем

$$\{\xi \le x_n\} \supset \{\xi \le x_{n-1}\} \supset \dots,$$

значит $\{\xi < x_0\} = \bigcup_{n=1}^{\infty} \{\xi \le x_n\}$, поэтому

$$F_{\xi}(x-0) = P(\xi < x_0) = P(\bigcup_{n=1}^{\infty} \{\xi \le x_n\}) = \lim_{x \to x_0 = 0} F_{\xi}(x).$$

- 6. $P(\xi = x_0) = F_{\xi}(x_0) F_{\xi}(x_0 0)$.
- 7. $P(a < \xi \le b) = F_{\xi}(b) F_{\xi}(a)$.
- 8. $P(\xi > a) = 1 F_{\xi}(a)$.

Многомерные случайные величины.

Пусть $\xi_1,...,\xi_n$ — случайные величины, заданные на вероятностном пространстве $\langle \Omega, \mathfrak{A}, P \rangle$. Каждому $\omega \in \Omega$ эти случайные величины ставят в соответствие вектор $\xi(\omega) = (\xi_1(\omega),...,\xi_n(\omega))$.

Определение. Отображение $\Omega \to \mathbb{R}^n$, задаваемое случайными величинами $\xi_1, ..., \xi_n$ называется случайным вектором или многомерной случайной величиной.

Определение. Функция

$$F_{\xi_1,...,\xi_n}(x_1,...,x_n) = F_{\bar{\xi}}(x_1,...,x_n) = P(\xi_1 \le x_1,...,\xi_n \le x_n)$$

называется функцией распределения вектора $(\xi_1, ..., \xi_n)$ или функцией совместного распределения случайных величин.

Свойства функции совместного распределения:

- 1. $F_{\vec{\xi}}: \mathbb{R}^n \to [0,1].$
- 2. $F_{\vec{\xi}}$ монотонно не убывает по каждому аргументу.
- 3. $F_{\vec{\xi}}$ непрерывна справа по каждому аргументу.
- 4. $F_{\vec{\xi}}(x_1,...,x_n) \to 1$ при $x_1,...,x_n \to +\infty$.
- 5. $F_{\vec{\epsilon}}(x_1,...,x_n) \to 0$ при $x_l \to -\infty$.
- 6. $\lim_{x_l \to +\infty} F_{\vec{\xi}}(x_1,...,x_n) = F_{\vec{\eta}}(x_1,...,x_{l-1},x_{l+1},...,x_n)$, где $\vec{\eta} = (\xi_1,...,\xi_{l-1},\xi_{l+1},...,\xi_n)$.
- 7. $F_{\vec{\xi}}(a_1,...,a_n) \leq F_{\vec{\xi}}(b_1,...,b_n)$ при $a_i \leq b_i.$

Независимые случайные величины.

Определение. Случайные величины $\xi_1, ..., \xi_n$ — независимы, если

$$P(\xi_1 \le x_1, ..., \xi_n \le x_n) = P(\xi_1 \le x_1) \cdot ... \cdot P(\xi_n \le x_n).$$

Определение можно переписать через функцию совместного распределения:

$$F_{\vec{\xi}}(x_1, ..., x_n) = F_{\xi_1}(x_1) \cdot ... \cdot F_{\xi_n}(x_n).$$

Важное свойство. Если I_i — промежуток (отрезок, интервал и т.д) или луч, то для независимых случайных величин выполняется равенство

$$P(\xi_1 \in I_1, ..., \xi_n \in I_n) = P(\xi_1 \in I_1) \cdot ... \cdot P(\xi_n \in I_n).$$