MAF309

General Principles of Transport Phenomena

输运现象原理

Associate Professor: Peng Yu (余鵬)
Department of Mechanics and Aerospace Engineering
Southern University of Science and Technology

- Office Hour
 - > Thursday 7-9 pm
- Venue
 - ▶ TAs: 第二科研楼322
 - ➤ Teacher: 1教313

Room 505 Level 5, N15

- What can we discuss during office hour
 - > Questions on lecture notes and references
 - ➤ Homework problems
 - Discussions on related transport topics (in your other projects, research ideas ...)

Transport Phenomena

Definition of 'transport' in dictionary

Transport (传输、输运):

To carry someone (people) or something (goods) from one place to another

In this class, the 'people or goods' which we are going to move are: momentum, energy, and mass

- What are the transport phenomena?
 - > The subject of transport phenomena includes three closely related topics: fluid dynamics, heat transfer, and mass transfer.

Fluid Dynamics	Heat Transfer	Mass Transfer
transport of momentum	transport of energy	transport of mass of various species
O Salada	Convection Radiation	

- Three levels at which transport phenomena can be studied
 - > Macroscopic level: length scales centimeter or meters
 - > Microscopic level: length scales micron to centimeter
 - Molecular level: length scales 1 to 1000 nanometers

- Why should these three transports be studied together:
 - > They frequently occur simultaneously.
 - The basic governing equations that describe the three transports are closely related.
 - The mathematical tools needed for describing these phenomena are very similar.
 - The molecular mechanisms underlying the various transport phenomena are very closely related.

- Mechanics and Aerospace Engineering
 - Turbine Combustion
 - Airflow intake (momentum transfer).
 - Mixing of air and fuel (mass transfer).
 - Combustion process (heat transfer).
 - Exhausting gases (momentum, heat, and mass transfers).

10

- Mechanics and Aerospace Engineering
 - ➤ In-flight aircraft icing
 - ✓ Airflow with supercooled droplets (momentum and mass transfer).
 - ✓ Formation of water ice on the surfaces of an aircraft (heat transfer).
 - **√**

- Materiel Science and Engineering
 - Ceramic Processing
 - ✓ Mixing clay powder with dispersing agent (momentum and mass transfers).
 - ✓ Filling mold (momentum and mass transfers).
 - ✓ Drying: removing the water or binder from the formed material (momentum, heat, and mass transfers).
 - **√**

- Materiel Science and Engineering
 - Plastic Processing
 - Heating plastic pellets until they are molten (momentum, heat, and mass transfers).
 - Flow of the molten plastic (momentum transfer).
 - Cooling of the products (heat transfer).

- Environmental Science and Engineering
 - Volcano Eruption
 - ✓ Flow of hot lava (momentum transfer)
 - ✓ Transport of volcano ash (mass transfer)
 - ✓ Heat transfer from hot lava (heat transfer)
 - ✓ Natural convection (momentum transfer and heat transfer)
 - **√** ...

- Environmental Science and Engineering
 - Waste Water Treatment
 - ✓ Flow of waste water (momentum and mass transfer).
 - ✓ Chemical and biological treatments (heat, momentum, and mass transfer).
 - ✓ Sediment process (momentum and mass transfer).
 - **√** ...

- Mechanical and Energy Engineering
 - > Fuel Cell
 - ✓ Hydrogen and oxygen flow (momentum transfer).
 - ✓ Heat generation due to reaction (heat transfer).
 - ✓ Air and water flow from outlet (momentum and mass transfer).
 - **√** ...

• Chemical Engineering

- Refining of crude oil
 - ✓ Flow of crude oil (momentum transfer).
 - ✓ Distills the incoming crude oil into various fractions for further processing (heat and mass transfer).
 - ✓ Adds or removes chemicals from the various fractions (momentum and mass transfer).
 - **√** ...

- Summary of Important Examples
 - Aerospace engineering: turbine engine, in-flight icing, space shutter ...
 - Materials processing and production: metal, ceramic, polymer ...
 - Environment science and engineering: volcano, water treatment, underground water pollution ...
 - > Chemical engineering: petroleum refinery ...
 - > Energy engineering: fuel cell, chemical batteries ...
 - ➤ Bioengineering: artificial organ, blood system, drug delivery ...

Technical Disciplines

- Mechanics and Aerospace Engineering
- ➤ Materials Science and Engineering
- > Environmental Science and Engineering
- Mechanical and Energy Engineering
- Biomedical Engineering
- ➤ Marine Science and Ocean Engineering
- Chemical Engineering
- **>**

- Similar Governing Equations
 - > Conservation law can apply to three transports
 - ✓ A particular measurable property of an isolated physical system does not change as the system evolves over time.
 - ✓ Conservation of momentum: Navier-Stokes equation in fluid dynamics
 - ✓ Conservation of energy: heat transfer equation
 - ✓ Conservation of species: mass transfer equation

• Similar Molecular Mechanisms

Comparison of diffusion phenomena

Transported quantity	Physical phenomenon	Equation
Momentum	Shear Stress (Newtonian fluid)	$\tau = \mu \frac{\partial u}{\partial x}$
Energy	Heat conduction (Fourier's law)	$q = k \frac{\partial T}{\partial x}$
Mass	Molecular diffusion (Fick's law)	$J = D \frac{\partial C}{\partial x}$

- Pre-requisites
 - Math such as vector, calculus, ordinary and partial differential equation.
 - ✓ GE101
 - ✓ GE102
 - > Physics such as thermodynamics.
 - ✓ PHY101
 - **✓** PHY102

• Objectives

- Provide students with basic principles of the three transfers encountered in engineering, momentum, heat and mass transfers. (Success in your exam)
- ➤ Help students to develop critical thinking skills by solving transport phenomena problems taken from the fields of engineering, using analytical methods. (Success in your future career)

• Learning Outcomes

- > Students can understand the basic concepts on transport phenomena.
- > Students can identify the mechanism of an engineering transport phenomenon and construct the proper model for it.
- > Students can apply the knowledge from pre-requisite as a tool to solve the model defined above.
- 1. Good marks in your exam (Level 1).
- 2. Apply the knowledge of transport phenomena to solve the related problems in your job (Level 2).
- 3. Apply the skills developed in this course to solve other challenge problems in your future career (Level 3).

• Syllabus

- > Introduction
- ➤ Basic Concepts on Fluid Mechanics
- > Fluid Statics
- > Conservation Law
- Bernoulli Equation
- Laminar and Turbulent Flow
- ➤ Heat Conduction
- Forced Convection
- Natural Convection
- Radiation
- ➤ Heat Transfer with Phase Change
- Diffusion
- > Mass Convection
- ➤ Multiphase Flow

- Textbook and References
 - No Textbook.
 - A lot of references:
 - ✓ R. Byron Bird, Warren E. Stewart, Edwin N. Lightfoot, Daniel J. Klingenberg, Introductory Transport Phenomena, Wiley, 2014.
 - ✓ Pijush K. Kundu, Ira M. Cohen, David R Dowling, Fluid Mechanics, Elsevier, 2012
 - ✓ Joseph Katz, Introductory Fluid Mechanics, Cambridge University Press, 2013
 - ✓ Adrian Bejan, **Heat Transfer**, Wiley, 1993
 - ✓ Hans Dieter Baehr, Karl Stephan, Heat and Mass Transfer, Springer 2006
 - ✓ Many others
 - Many other materials online

- Tutorials
 - > Fluid Mechanics
 - > Heat Transfer
 - > Mass Transfer
- Three groups
 - There are more than 100 students from three departments MAE, MSE, ESE.
 - > Divided into three or four groups.
 - > Each TA will teach tutorials in one group.

MOOC Course: Basics of Transport Phenomena from Delft University of Technology

Course starts on October 21, 2016

- Evaluation
 - > Attendance 10%
 - > Projects (term paper) 20%
 - ➤ Homework 10%
 - > Midterm exam 20%
 - > Final exam 40%
- You pass this course, if you attend all the classes, finish all project and homework.
- You fail this course, if you cheat in exam, plagiarize homework, directly copy materials online for your project.

- How to succeed in this course
 - > Preview lecture notes before the class.
 - Come to all lectures and listen attentively in class - do not play your mobile please!
 - > Review lecture notes and read reference books.
 - > Work on all homework problems.
 - > Discuss with peers and attend the office hours when have questions.
 - Connect what you have learned to the phenomena occur in the applications related to your own major and in everyday life.

- How to write a good term paper
 - > Find a topic which you are interested in
 - ✓ Related to transport phenomena
 - ✓ Related to your discipline or everyday life
 - ✓ Make it as creative as possible
 - > Do your research
 - ✓ Understand the background to the topic
 - ✓ Find out what future research is
 - ✓ Search what are the possible solution
 - > Final Write-up
 - ✓ Develop an outline
 - ✓ Introduce your own opinion in the term paper
 - ✓ Prove your opinion
 - ✓ Strength your conclusion

- Term Paper
 - Discuss transport phenomena related to your discipline or your everyday life.
 - At least include one of the three transport phenomena (fluid dynamics, heat transfer or mass transfer).
 - > Decide the title yourself.
 - \triangleright 10-20 pages (A4 paper).
 - ➤ Please <u>DO NOT</u> Plagiarize!!!