WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: WO 97/02362 (11) International Publication Number: C12Q 1/68, C12P 19/34, C07H 21/02, A1 (43) International Publication Date: 23 January 1997 (23.01.97) 21/04, A61K 39/395, C07K 14/00 PCT/US96/10823 (21) International Application Number: (81) Designated States: AU, CA, IL, JP, NZ, European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, (22) International Filing Date: 25 June 1996 (25.06.96) NL, PT, SE). **Published** (30) Priority Data: 30 June 1995 (30.06.95) US 08/491,357 With international search report. (71) Applicant: FOX CHASE CANCER CENTER [US/US]; 7701 Burholme Avenue, Philadelphia, PA 19001 (US). (72) Inventors: GOLEMIS, Erica, A.; 506 Burton Road, Oreland, PA 19075 (US). LAW, Susan, F.; Box 108, Route 42, Unionville, PA 19375 (US). ESTOJAK, Joanne; 320 Zane Avenue, Jenkintown, PA 19046 (US). (74) Agents: HAGAN, Patrick, J. et al.; Dann, Dorfman, Herrell and Skillman, Suite 720, 1601 Market Street, Philadelphia, PA 19103-2307 (US). (54) Title: NUCLEIC ACID ENCODING A SIGNAL MEDIATOR PROTEIN THAT INDUCES CELLULAR MORPHOLOGICAL ALTERATIONS (57) Abstract

An isolated nucleic acid melocule is provided which encodes a mammalian signal mediator protein involved in regulation of cellular morphological alterations. The encoded protein comprises an amino-terminal SH3 domain, an internal domain containing several SH2 binding motifs, and a carboxy-terminal effector domain that can induce pseudohyphal budding in yeast. The invention also provides the novel signal mediator protein, and antibodies thereto. These biological molecules are useful as research tools and as diagnostic and therapeutic agents for the identification, detection and regulation of complex signaling events leading to morphological, potentially neoplastic, cellular changes.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
ΑU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	JР	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgystan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	SE	Sweden ·
CG	Congo	KR	Republic of Korea	SG	Singapore
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	LI	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LR	Liberia	SZ	Swaziland
CS	Czechoslovakia	LT	Lithuania	TD	Chad
CZ	Czech Republic	LU	Luxembourg	TG	Togo
DE	Germany	LV	Latvia	TJ	Tajikistan
DK	Denmark	MC	Monaco	TT	Trinidad and Tobago
EE	Estonia	MD	Republic of Moldova	ÜA	Ukraine
ES	Spain	MG	Madagascar	UG	Uganda
FI	Finland	ML	Mali	US	United States of America
FR	France	MN	Mongolia	UZ.	Uzbekistan
GA	Gabon	MR	Mauritania	VN	Viet Nam

NUCLEIC ACID ENCODING A SIGNAL MEDIATOR PROTEIN THAT INDUCES CELLULAR MORPHOLOGICAL ALTERATIONS

Pursuant to 35 U.S.C. §202(c), it is hereby acknowledged that the U.S. Government has certain rights in the invention described herein, which was made in part with funds from the National Institutes of Health.

FIELD OF THE INVENTION

This invention relates to diagnosis and treatment of neoplastic diseases. More specifically, this invention provides novel nucleic acid molecules, proteins and antibodies useful for detection and/or regulation of complex signalling events leading to morphological and potentially neoplastic cellular changes.

15

20

25

30

10

5

BACKGROUND OF THE INVENTION

Cellular transformation during the development of cancer involves multiple alterations in the normal pattern of cell growth regulation. Primary events in the process of carcinogenesis involve the activation of oncogene function by some means (e.g., amplification, mutation, chromosomal rearrangement), and in many cases the removal of anti-oncogene function. In the most malignant and untreatable tumors, normal restraints on cell growth are completely lost as transformed cells escape from their primary sites and metastasize to other locations in the body. One reason for the enhanced growth and invasive properties of some tumors may be the acquisition of increasing numbers of mutations in oncogenes, with cumulative effect (Bear et al., Proc. Natl. Acad. Sci. USA 86:7495-7499, 1989). Alternatively, insofar as oncogenes function through the normal cellular signalling pathways required for organismal growth and

- 2 -

cellular function (reviewed in McCormick, Nature 363:15-16, 1993), additional events corresponding to mutations or deregulation in the oncogenic signalling pathways may also contribute to tumor malignancy (Gilks et al., Mol. Cell Biol. 13:1759-1768, 1993), even though mutations in the signalling pathways alone may not cause cancer.

Several discrete classes of proteins are known to be involved in conferring the different types of changes in cell division properties and morphology associated with transformation. These changes can be summarized as, first, the promotion of continuous cell cycling (immortalization); second, the loss of responsiveness to growth inhibitory signals and cell apoptotic signals; and third, the morphological restructuring of cells to enhance invasive properties.

10

15

Of these varied mechanisms of oncogene action, the role of control of cell morphology is one of the least understood. Work using non-transformed 20 mammalian cells in culture has demonstrated that simply altering the shape of a cell can profoundly alter its pattern of response to growth signals (DiPersio et al., Mol. Cell Biol. 11:4405-4414, 1991), implying that control of cell shape may actually be causative of, 25 rather than correlative to, cell transformation. For example, mutation of the antioncogene NF2 leads to development of nervous system tumors. Higher eucaryotic proteins involved in promoting aberrant morphological changes related to cancer may mediate 30 additional functions in normal cells that are not obviously related to the role they play in cancer progression, complicating their identification and characterization. Identification and characterization of such genes and their encoded proteins would be beneficial for the development of therapeutic 35 strategies in the treatment of malignancies.

Recent evidence suggests that certain key

- 3 -

proteins involved in control of cellular morphology contain conserved domains referred to as SH2 and SH3 domains. These domains consist of non-catalytic stretches of approximately 50 amino acids (SH3) and 100 . amino acids (SH2, also referred to as the "Src homology domain"). SH2/SH3 domains are found in cytoskeletal components, such as actin, and are also found in signalling proteins such as Abl. The interaction of these proteins may play a critical role in organizing cytoskeleton-membrane attachments.

10

15

20

25

Besides the numerous SH2/SH3 containing molecules with known catalytic or functional domains, there are several signalling molecules, called "adapter proteins," which are so small that no conserved domains seem to exist except SH2 and SH3 domains. Oncoproteins such as Nck, Grb2/Ash/SEM5 and Crk are representatives of this family. The SH2 regions of these oncoproteins bind specific phosphotyrosine-containing proteins by recognizing a phosphotyrosine in the context of several adjacent amino acids. Following recognition and binding, specific signals are transduced in a phosphorylation dependent manner.

As another example, P47v-Crk (CrK) is a transforming gene from avian sarcoma virus isolate This protein contains one SH2 and one SH3 domain, and induces an elevation of tyrosine phosphorylation on a variety of downstream targets. One of these targets, pl30cas, is tightly associated with v-Crk. The SH2 domain of v-Crk is required for this association and subsequent cellular 30 transformation. P130cas is also a substrate for Src mediated phosphorylation. Judging from its structure, pl30cas may function as a "signal assembler" of Src family kinases and several cellular SH2-containing 35 proteins. These proteins bind to the SH2 binding domain of p130cas, which is believed to induce a conformational change leading to the activation in

- 4 .

inactivation of downstream signals, modulated by multiple domains of the protein.

Another oncogene, Ras, is a member of a large evolutionarily conserved superfamily of small GTPbinding proteins responsible for coordinating specific 5 growth factor signals with specific changes in cell shape, including the development of stress fibers and membrane ruffles (Ridley and Hall, Cell 70:389-399, 1992; Ridley et al., Cell <u>70</u>:401-410,1992). A rapidly growing family of oncoproteins, including Vav, Bcr, 10 Ect-2, and Dbl, has been found to be involved in a variety of different tumors (Eva and Aaronson, Nature 316:273-275, 1985; Ron et al., EMBO J. 7:2465-2473, 1988; Adams et al., Oncogene 7:611-618, 1992; Miki et 15 al., Nature 362:462-465, 1993). Proteins of this family have been shown to interact with Ras/Rac/Rho family members, and possess sequence characteristics that suggest they too directly associate with and modulate organization of the cytoskeleton.

20 In view of the significant relationship between signalling or "adapter" proteins, altered cellular morphology and the development of cancer, it would be of clear benefit to identify and isolate such proteins (or genes encoding them) for the purpose of 25 developing diagnostic/therapeutic agents for the treatment of cancer. It is an object of the present invention to provide a purified nucleic acid molecule of mammalian origin that encodes a signal mediator protein (SMP) involved in the signalling cascade 30 related to morphological cellular changes, and therefrom provide isolated and purified protein. a gene, when expressed in model systems, such as yeast, will provide utility as a research tool for identifying genes encoding interacting proteins in the signalling 35 cascade, thereby facilitating the elucidation of the mechanistic action of other genes involved in regulating cellular morphology and cell division.

- 5 -

gene may also be used diagnostically to identify related genes, and therapeutically in gene augmentation or replacement treatments. It is a further object of the present invention to provide derivatives of the SMP-encoding nucleic acid, such as various oligonucleotides and nucleic acid fragments for use as probes or reagents to analyze the expression of genes encoding the proteins. It is a further object of the invention to provide the signal mediator protein in purified form, and to provide antibodies immunologically specific for the signal mediator protein for the purpose of identifying and quantitating this mediator in selected cells and tissues.

15 SUMMARY OF THE INVENTION

5

10

This invention provides novel biological molecules useful for identification, detection and/or regulation of complex signalling events that regulate cellular morphological changes. According to one aspect of the present invention, an isolated nucleic 20 acid molecule is provided that includes an open reading frame encoding a mammalian signal mediator protein of a size between about 795 and about 875 amino acids in length (preferably about 834 amino acids). The protein comprises an amino-terminal SH3 domain, an internal domain that includes a multiplicity of SH2 binding motifs, and a carboxy-terminal effector domain. When produced in Saccharomyces cerevisiae, the carboxyterminal effector domain is capable of inducing 30 pseudohyphal budding in the organism under predetermined culture conditions. In a preferred embodiment, an isolated nucleic acid molecule is provided that includes an open reading frame encoding a human mammalian signal mediator protein. In a particularly preferred embodiment, the human signal 35 mediator protein has an amino acid sequence substantially the same as Sequence I.D. No. 2.

- 6 -

exemplary nucleic acid molecule of the invention comprises Sequence I.D. No. 1.

5

10

15

According to another aspect of the present invention, an isolated nucleic acid molecule is provided, which has a sequence selected from the group consisting of: (1) Sequence I.D. No. 1; (2) a sequence hybridizing with part or all of the complementary strand of Sequence I.D. No. 1 and encoding a polypeptide substantially the same as part or all of a polypeptide encoded by Sequence I.D. No. 1; and (3) a sequence encoding part or all of a polypeptide having amino acid Sequence I.D. No. 2.

According to another aspect of the present invention, an isolated nucleic acid molecule is provided which has a sequence that encodes a carboxy-terminal effector domain of a mammalian signal mediator protein. This domain has an amino acid sequence of greater than 74% similarity to the portion of Sequence I.D. No. 2 comprising amino acids 626-834.

20 According to another aspect of the present invention, an isolated mammalian signal mediator protein is provided which has a deduced molecular weight of between about 100 kDa and 115 kDa (preferably about 108 kDa). The protein comprises an amino-25 terminal SH3 domain, an internal domain that includes a multiplicity of SH2 binding motifs, and a carboxyterminal effector domain, which is capable of inducing pseudohyphal budding in Saccharomyces cerevisiae under pre-determined culture conditions, as decribed in 30 greater detail hereinbelow. In a preferred embodiment of the invention, the protein is of human origin, and has an amino acid sequence substantially the same as Sequence I.D. No. 2.

According to another aspect of the present invention, an isolated mammalian signal mediator protein is provided, which comprises a carboxy-terminal effector domain having an amino acid sequence of

- 7 -

greater than 74% similarity to the portion of Sequence I.D. No. 2 comprising amino acids 626-834. In a preferred embodiment, the amino acid sequence of the carboxy-terminal effector domain is greater than about 50% identical to that portion of Sequence I.D. No. 2.

5

10

15

20

25

30

35

According to another aspect of the present invention, antibodies immunologically specific for the proteins described hereinabove are provided.

Various terms relating to the biological molecules of the present invention are used hereinabove and also throughout the specifications and claims. The terms "substantially the same," "percent similarity" and "percent identity (identical)" are defined in detail in the description set forth below.

With reference to nucleic acids of the invention, the term "isolated nucleic acid" is sometimes used. This term, when applied to DNA, refers to a DNA molecule that is separated from sequences with which it is immediately contiguous (in the 5' and 3' directions) in the naturally occurring genome of the organism from which it was derived. For example, the "isolated nucleic acid" may comprise a DNA molecule inserted into a vector, such as a plasmid or virus vector, or integrated into the genomic DNA of a procaryote or eucaryote.

With respect to RNA molecules of the invention, the term "isolated nucleic acid" primarily refers to an RNA molecule encoded by an isolated DNA molecule as defined above. Alternatively, the term may refer to an RNA molecule that has been sufficiently separated from RNA molecules with which it would be associated in its natural state (i.e., in cells or tissues), such that it exists in a "substantially pure" form (the term "substantially pure" is defined below).

With respect to protein, the term "isolated protein" or "isolated and purified protein" is sometimes used herein. This term refers primarily to a

- 8 -

protein produced by expression of an isolated nucleic acid molecule of the invention. Alternatively, this term may refer to a protein which has been sufficiently separated from other proteins with which it would naturally be associated, so as to exist in "substantially pure" form.

The term "substantially pure" refers to a preparation comprising at least 50-60% by weight the compound of interest (e.g., nucleic acid,

10 oligonucleotide, protein, etc.). More preferably, the preparation comprises at least 75% by weight, and most preferably 90-99% by weight, the compound of interest. Purity is measured by methods appropriate for the compound of interest (e.g. chromatographic methods,

15 agarose or polyacrylamide gel electrophoresis, HPLC analysis, and the like).

With respect to antibodies of the invention, the term "immunologically specific" refers to antibodies that bind to one or more epitopes of a protein of interest (e.g., SMP), but which do not substantially recognize and bind other molecules in a sample containing a mixed population of antigenic biological molecules.

20

25

30

35

With respect to oligonucleotides, the term "specifically hybridizing" refers to the association between two single-stranded nucleotide molecules of sufficiently complementary sequence to permit such hybridization under pre-determined conditions generally used in the art (sometimes termed "substantially complementary"). In particular, the term refers to hybridization of an oligonucleotide with a substantially complementary sequence contained within a single-stranded DNA or RNA molecule of the invention, to the substantial exclusion of hybridization of the oligonucleotide with single-stranded nucleic acids of non-complementary sequence.

The nucleic acids, proteins and antibodies of

- 9 -

the present invention are useful as research tools and will facilitate the elucidation of the mechanistic action of the novel genetic and protein interactions involved in the control of cellular morphology. They should also find broad utility as diagnostic and therapeutic agents for the detection and treatment of cancer and other proliferative diseases.

BRIEF DESCRIPTION OF THE DRAWINGS

15

20

25

30

35

10 FIGURE 1A-Figure 1D. Alignment of nucleotide sequence (Sequence I.D. No. 1) and deduced amino acid sequence (Sequence I.D. No. 2) of HEF1, a cDNA of human origin encoding an exemplary signal mediator protein of the invention.

FIGURE 2. Amino acid sequence alignment of the deduced amino acid sequence of HEF1 (Sequence I.D. No. 2) with homologous sequences of p130cas from rat (Sequence I.D. No. 3). Boxes represent regions of sequence identity between the two proteins. The closed circle marks the site of the initial methionine in the truncated clone of HEF1. The thick underline denotes the conserved SH3 domain. Tyrosines are marked with asterisks.

FIGURE 3. Amino acid sequence alignment of the carboxy-terminal regions of HEF1-encoded hSMP with p130cas and the mouse homolog of hSMP, mSMP encoded by MEF1 (Sequence I.D. No. 4).

DETAILED DESCRIPTION OF THE INVENTION

In accordance with the present invention, a novel gene has been isolated that encodes a protein involved in the signal transduction pathway that coordinates changes in cellular growth regulation.

This protein is sometimes referred to herein as "signal mediator protein or "SMP."

Using a screen to identify human genes that promote psuedohyphal conversion in the yeast Saccharomyces cerevisiae, a 900 bp partial cDNA clone

- 10 -

was obtained that causes strong pseudohyphal growth of S. cerevisiae on low nitrogen medium. This dimorphic shift from normal to "pseudohyphal" budding in yeast has been shown to involve the action of growth regulatory kinase cascades and cell cycle-related transcription factors (Gimeno & Fink, Mol. Cell Biol. 14: 2100-2112, 1994; Gimeno et al., Cell 68: 1077-1090, 1992; Blacketer et al., Mol. Cell Biol. 13: 5567-5581, 1993; Liu et al. Science 262: 1741-1744, 1993).

5

30

35

10 Using the 900 bp partial cDNA clone as a probe in a combination of screening approaches, a fulllength clone of approximately 3.7kb was isolated. clone encodes a single continuous open reading frame of about 834 amino acids, which constitutes the signal 15 mediator protein of the invention. SMP is characterized by an amino-terminal SH3 domain and an adjacent domain containing multiple SH2 binding motifs. The protein also contains a carboxy terminal "effector" domain that is capable of inducing the shift to pseudohyphal budding in yeast. A cDNA encoding a mouse 20 homolog of the carboxy-terminal "effector" region has also been identified (Figure 3). Homology searches of the Genbank data base revealed an approximately 64% similarity on the amino acid level between SMP from 25 human and the adapter protein, p130cas, recently cloned from rat (as disclosed by Sakai et al., EMBO J. 13: 3748-3756, 1994). However, p130cas is significantly larger than SMP (968 amino acids for rat p130cas versus 834 amino acids for human SMP), and differs with repect

The aforementioned human partial cDNA clone that enhanced pseudohyphal formation in yeast encodes only the carboxy-terminal portion of SMP, comprising about 182 amino acids. The enhancement of pseudohyphal formation by the carboxy-terminal fragment of SMP, in addition to the relatively high degree of homology with

to amino acid composition. A comparison of SMP with pl30cas is set forth in greater detail in Example 1.

5

10

15

20

25

30

35

pl30cas over this region, indicates that it is this domain that acts as an effector in regulating cellular morphology. Thus, this domain is sometimes referred to herein as a "C-terminal effector domain." It should be noted that, although the carboxy-terminal fragment of pl30cas was also found capable of enhancing pseudohyphal formation, it did not do so to the same extent as the C-terminal domain of SMP (on a scale of 1 to 10, the SMP C-terminal domain is a "10," while the pl30cas C-terminal domain is a "6"). The SMP C-terminal domain was also found to be involved in homodimerization and in heterodimerization with pl30cas and, like pl30cas, associates with Abl and appears to be phosphorylated by Abl.

Thus, SMP can be classified within a family of docking adapters, which includes p130cas, capable of multiple associations with signalling molecules and transduction of such signals to coordinate changes in cellular growth regulation. The SMP protein comprises, from amino- to carboxy-terminus, an SH3 domain, a polyproline domain several SH2 binding motifs, a serine rich region, and the carboxy-terminal effector domain.

A human clone that encodes an exemplary signal mediator protein of the invention is sometimes referred to herein as "HEF1" (human enhancer of filamentation) to reflect the screening method by which it was in part identified. The nucleotide sequence of HEF1 is set forth herein as Sequence I.D. No. 1. The signal mediator protein encoded by HEF1 is sometimes referred to herein as hSMP. The amino acid sequence deduced from Sequence I.D. No. 1 is set forth herein as Sequence I.D. No. 2. The characteristics of human SMP are described in greater detail in Example 1.

It is believed that Sequence I.D. No. 1 constitutes a full-length SMP-encoding clone as it contains a suitable methionine for initiation of translation. This cDNA is approximately 3.7 kb in

- 12 -

length. Northern analysis of a human multi-tissue RNA blot (Clontech MTNI) suggests a full-length transcript of approximately 3.4 kb. A second transcript of approximately 5.4 kb was also observed, which may represent an alternative splice or initiation site.

5

35

Although the human SMP-encoding gene, HEF1, is described and exemplified herein, this invention is intended to encompass nucleic acid sequences and proteins from other species that are sufficiently 10 similar to be used interchangeably with SMP-encoding nucleic acids and proteins for the research, diagnostic and therapeutic purposes described below. Because of the high degree of conservation of genes encoding specific signal transducers and related oncogenes, it 15 will be appreciated by those skilled in the art that, even if the interspecies SMP homology is low, SMPencoding nucleic acids and SMP proteins from a variety of mammalian species should possess a sufficient degree of homology with SMP so as to be interchangeably useful 20 with SMP in such diagnostic and therapeutic applications. Accordingly, the present invention is drawn to mammalian SMP-encoding nucleic acids and SMP proteins, preferably to SMP of primate origin, and most preferably to SMP of human origin. Accordingly, when 25 the terms "signal mediator protein" or "SMP" or "SMPencoding nucleic acid" are used herein, they are intended to encompass mammalian SMP-encoding nucleic acids and SMPs falling within the confines of homology set forth below, of which hSMP, preferably encoded by 30 HEF1, is an exemplary member.

Allelic variants and natural mutants of Sequence I.D. No. 1 are likely to exist within the human genome and within the genomes of other mammalian species. Because such variants are expected to possess certain differences in nucleotide and amino acid sequence, this invention provides an isolated nucleic acid molecule and an isolated SMP protein having at

- 13 -

least about 50-60% (preferably 60-80%, most preferably over 80%) sequence homology in the coding region with the nucleotide sequence set forth as Sequence I.D. No. 1 (and, preferably, specifically comprising the coding region of sequence I.D. No. 1), and the amino acid sequence of Sequence I.D. No. 2. Because of the natural sequence variation likely to exist among signal mediator proteins and nucleic acids encoding them, one skilled in the art would expect to find up to about 40-50% sequence variation, while still maintaining the 10 unique properties of the SMP of the present invention. Such an expectation is due in part to the degeneracy of the genetic code, as well as to the known evolutionary success of conservative amino acid sequence variations, 15 which do not appreciably alter the nature of the protein. Accordingly, such variants are considered substantially the same as one another and are included within the scope of the present invention.

For purposes of this invention, the term "substantially the same" refers to nucleic acid or 20 amino acid sequences having sequence variation that do not materially affect the nature of the protein (i.e. the structure and/or biological activity of the protein). With particular reference to nucleic acid 25 sequences, the term "substantially the same" is intended to refer to the coding region and to conserved sequences governing expression, and refers primarily to degenerate codons encoding the same amino acid, or alternate codons encoding conservative substitute amino acids in the encoded polypeptide. With reference to 30 amino acid sequences, the term "substantially the same" refers generally to conservative substitutions and/or variations in regions of the polypeptide not involved in determination of structure or function. 35 "percent identity" and "percent similarity" are also used herein in comparisons among amino acid sequences. These terms are intended to be defined as they are in

- 14 -

the UWGCG sequence analysis program (Devereaux et al., Nucl. Acids Res. <u>12</u>: 387-397, 1984), available from the Unversity of Wisconsin.

The following description sets forth the

general procedures involved in practicing the present invention. To the extent that specific materials are mentioned, it is merely for purposes of illustration and is not intended to limit the invention. Unless otherwise specified, general cloning procedures, such as those set forth in Sambrook et al., Molecular Cloning, Cold Spring Harbor Laboratory (1989) (hereinafter "Sambrook et al.") are used.

I. Preparation of SMP-Encoding Nucleic Acid Molecules, Signal Mediator Proteins and Antibodies Thereto

A. Nucleic Acid Molecules

15

20

Nucleic acid molecules encoding the SMPs of the invention may be prepared by two general methods: (1) They may be synthesized from appropriate nucleotide triphosphates, or (2) they may be isolated from biological sources. Both methods utilize protocols well known in the art.

The availability of nucleotide sequence 25 information, such as the full length cDNA having Sequence I.D. No. 1, enables preparation of an isolated nucleic acid molecule of the invention by oligonucleotide synthesis. Synthetic oligonucleotides may be prepared by the phosphoramadite method employed 30 in the Applied Biosystems 38A DNA Synthesizer or similar devices. The resultant construct may be purified according to methods known in the art, such as high performance liquid chromatography (HPLC). Long, double-stranded polynucleotides, such as a DNA molecule 35 of the present invention, must be synthesized in stages, due to the size limitations inherent in current oligonucleotide synthetic methods. Thus, for example,

- 15 -

a 3.7 kb double-stranded molecule may be synthesized as several smaller segments of appropriate complementarity. Complementary segments thus produced may be annealed such that each segment possesses appropriate cohesive termini for attachment of an adjacent segment. Adjacent segments may be ligated by annealing cohesive termini in the presence of DNA ligase to construct an entire 3.7 kb double-stranded molecule. A synthetic DNA molecule so constructed may then be cloned and amplified in an appropriate vector.

5

10

15

Nucleic acid sequences encoding SMP may be isolated from appropriate biological sources using methods known in the art. In a preferred embodiment, a cDNA clone is isolated from an expression library of human origin. In an alternative embodiment, human genomic clones encoding SMP may be isolated. Alternatively, cDNA or genomic clones encoding from other mammalian species may be obtained.

In accordance with the present invention, 20 nucleic acids having the appropriate level sequence homology with the protein coding region of Sequence I.D. No. 1 may be identified by using hybridization and washing conditions of appropriate stringency. For example, hybridizations may be performed, according to the method of Sambrook et al., using a hybridization 25 solution comprising: 5X SSC, 5X Denhardt's reagent, 1.0% SDS, 100 μ g/ml denatured, fragmented salmon sperm DNA, 0.05% sodium pyrophosphate and up to 50% formamide. Hybridization is carried out at 37-42°C for 30 at least six hours. Following hybridization, filters are washed as follows: (1) 5 minutes at room temperature in 2X SSC and 1% SDS; (2) 15 minutes at room temperature in 2X SSC and 0.1% SDS; (3) 30 minutes-1 hour at 37°C in 1X SSC and 1% SDS; (4) 2 35 hours at 42-65° in 1% SSC and 1% SDS, changing the solution every 30 minutes.

Nucleic acids of the present invention may be

5

25

30

35

maintained as DNA in any convenient cloning vector. In a preferred embodiment, clones are maintained in plasmid cloning/expression vector, such as pBluescript (Stratagene, La Jolla, CA), which is propagated in a suitable *E. coli* host cell.

SMP-encoding nucleic acid molecules of the invention include cDNA, genomic DNA, RNA, and fragments thereof which may be single- or double-stranded. Thus, this invention provides oligonucleotides (sense or antisense strands of DNA or RNA) having sequences capable of hybridizing with at least one sequence of a nucleic acid molecule of the present invention, such as selected segments of the cDNA having Sequence I.D. No.

1. Such oligonucleotides are useful as probes for detecting SMP genes in test samples of potentially malignant cells or tissues, e.g. by PCR amplification, or for the isolation of homologous regulators of morphological control.

20 B. Proteins

A full-length SMP of the present invention may be prepared in a variety of ways, according to known methods. The protein may be purified from appropriate sources, e.g., human or animal cultured cells or tissues, by immunoaffinity purification. However, this is not a preferred method due to the low amount of protein likely to be present in a given cell type at any time.

The availability of nucleic acids molecules encoding SMP enables production of the protein using in vitro expression methods known in the art. For example, a cDNA or gene may be cloned into an appropriate in vitro transcription vector, such a pSP64 or pSP65 for in vitro transcription, followed by cell-free translation in a suitable cell-free translation system, such as wheat germ or rabbit reticulocytes. In vitro transcription and translation systems are

- 17 -

commercially available, e.g., from Promega Biotech, Madison, Wisconsin or BRL, Rockville, Maryland.

5

10

15

20

25

30

35

Alternatively, according to a preferred embodiment, larger quantities of SMP may be produced by expression in a suitable procaryotic or eucaryotic system. For example, part or all of a DNA molecule, such as the cDNA having Sequence I.D. No. 1, may be inserted into a plasmid vector adapted for expression in a bacterial cell, such as *E. coli*, or into a baculovirus vector for expression in an insect cell. Such vectors comprise the regulatory elements necessary for expression of the DNA in the bacterial host cell, positioned in such a manner as to permit expression of the DNA in the host cell. Such regulatory elements required for expression include promoter sequences, transcription initiation sequences and, optionally, enhancer sequences.

The SMP produced by gene expression in a recombinant procaryotic or eucyarotic system may be purified according to methods known in the art. In a preferred embodiment, a commercially available expression/secretion system can be used, whereby the recombinant protein is expressed and thereafter secreted from the host cell, to be easily purified from the surrounding medium. If expression/secretion vectors are not used, an alternative approach involves purifying the recombinant protein by affinity separation, such as by immunological interaction with antibodies that bind specifically to the recombinant protein. Such methods are commonly used by skilled practitioners.

The signal mediator proteins of the invention, prepared by the aforementioned methods, may be analyzed according to standard procedures. For example, such proteins may be subjected to amino acid sequence analysis, according to known methods.

The present invention also provides

25

30

35

antibodies capable of immunospecifically binding to proteins of the invention. Polyclonal antibodies directed toward SMP may be prepared according to standard methods. In a preferred embodiment, 5 monoclonal antibodies are prepared, which react immunospecifically with various epitopes of SMP. Monoclonal antibodies may be prepared according to general methods of Köhler and Milstein, following standard protocols. Polyclonal or monoclonal 10 antibodies that immunospecifically interact with SMP can be utilized for identifying and purifying such proteins. For example, antibodies may be utilized for affinity separation of proteins with which they immunospecifically interact. Antibodies may also be 15 used to immunoprecipitate proteins from a sample containing a mixture of proteins and other biological molecules. Other uses of anti-SMP antibodies are described below.

20 II. Uses of SMP-Encoding Nucleic Acids, Signal Mediator Proteins and Antibodies Thereto

Cellular signalling molecules have received a great deal of attention as potential prognostic indicators of neoplastic disease and as therapeutic agents to be used for a variety of purposes in cancer chemotherapy. As a signalling molecule that induces profound morphological changes, SMP and related proteins from other mammalian species promise to be particularly useful research tools, as well as diagnostic and therapeutic agents.

A. SMP-Encoding Nucleic Acids

SMP-encoding nucleic acids may be used for a variety of purposes in accordance with the present invention. SMP-encoding DNA, RNA, or fragments thereof may be used as probes to detect the presence of and/or expression of genes encoding SMP. Methods in which

- 19 -

SMP-encoding nucleic acids may be utilized as probes for such assays include, but are not limited to: (1) in situ hybridization; (2) Southern hybridization (3) northern hybridization; and (4) assorted amplification reactions such as polymerase chain reactions (PCR).

5

10

15

20

25

30

35

The SMP-encoding nucleic acids of the invention may also be utilized as probes to identify related genes either from humans or from other species. As is well known in the art, hybridization stringencies may be adjusted to allow hybridization of nucleic acid probes with complementary sequences of varying degrees of homology. Thus, SMP-encoding nucleic acids may be used to advantage to identify and characterize other genes of varying degrees of relation to SMP, thereby enabling further characterization the signalling cascade involved in the morphological control of different cell types. Additionally, they may be used to identify genes encoding proteins that interact with SMP (e.g., by the "interaction trap" technique), which should further accelerate elucidation of these cellular signalling mechanisms.

Nucleic acid molecules, or fragments thereof, encoding SMP may also be utilized to control the expression of SMP, thereby regulating the amount of protein available to participate in oncogenic signalling pathways. Alterations in the physiological amount of "adapter protein" may act synergistically with chemotherapeutic agents used to treat cancer. In one embodiment, the nucleic acid molecules of the invention may be used to decrease expression of SMP in a population of malignant cells, In this embodiment, SMP proteins would be unable to serve as substrate acceptors for phosphorylation events mediated by oncogenes thereby effectively abrogating the activation signal. In this embodiment, antisense oligonucleotides are employed which are targeted to specific regions of SMP-encoding genes that are critical for gene

- 20 -

expression. The use of antisense oligonucleotides to decrease expression levels of a pre-determined gene is known in the art. In a preferred embodiment, such antisense oligonucleotides are modified in various ways to increase their stability and membrane permeability, so as to maximize their effective delivery to target cells in vitro and in vivo. Such modifications include the preparation of phosphorothicate or methylphosphonate derivatives, among many others, according to procedures known in the art.

5

10

25

30

In another embodiment, overexpression of SMP is induced in a target population of cells to generate an excess of signal adapter molecules. This excess allows SMP to serve as a phosphorylation "sink" for the kinase activity of transforming oncogenes.

Overexpression of SMP could lead to alterations in the cytoskeleton which could then be monitored with immunofluorescence or any other standard technique known in the art. Alternatively, overexpression of SMP by this method may facilitate the isolation and characterization of other components involved in the protein-protein complex formation that occurs via the SH2 homology domains during signal transduction.

As described above, SMP-encoding nucleic acids are also used to advantage to produce large quantities of substantially pure SMP protein, or selected portions thereof. In a preferred embodiment, the C-terminal "effector domain" of SMP is produced by expression of a nucleic acid encoding the domain. The full-length protein or selected domain is thereafter used for various research, diagnostic and therapeutic purposes, as described below.

- 21 -

B. Signal Mediator Protein and Antibodies

Purified SMP, or fragments thereof, may be used to produce polyclonal or monoclonal antibodies which also may serve as sensitive detection reagents for the presence and accumulation of SMP (or complexes containing SMP) in cultured cells or tissues from living patients (the term "patients" refers to both humans and animals). Recombinant techniques enable expression of fusion proteins containing part or all of the SMP protein. The full length protein or fragments of the protein may be used to advantage to generate an array of monoclonal antibodies specific for various epitopes of the protein, thereby providing even greater sensitivity for detection of the protein in cells or tissue.

10

15

20

25

30

35

Polyclonal or monoclonal antibodies immunologically specific for SMP may be used in a variety of assays designed to detect and quantitate the protein, which may be useful for rendering a prognosis as to a malignant disease. Such assays include, but are not limited to: (1) flow cytometric analysis; (2) immunochemical localization in SMP in cultured cells or tissues; and (3) immunoblot analysis (e.g., dot blot, Western blot) of extracts from various cells and tissues. Additionally, as described above, anti-SMP can be used for purification of SMP (e.g., affinity column purification, immunoprecipitation).

Anti-SMP antibodies may also be utilized as therapeutic agents to block the normal functionality of SMP in a target cell population, such as a tumor. Thus, similar to the antisense oligonucleotides described above, anti-SMP antibodies may be delivered to a target cell population by methods known in the art (i.e. through various lipophilic carriers that enable delivery of the compound of interest to the target cell cytoplasm) where the antibodies may interact with intrinsic SMP to render it nonfunctional.

35

From the foregoing discussion, it can be seen that SMP-encoding nucleic acids and SMP proteins of the invention can be used to detect SMP gene expression and protein accumulation for purposes of assessing the genetic and protein interactions involved in the regulation of morphological control pathways of a cell or tissue sample. Aberrant morphological changes are often correlatable with metastatic cellular proliferation in various cancers, such as breast cancer. It is expected that these tools will be 10 particularly useful for diagnosis and prognosis of human neoplastic disease. Potentially of greater significance, however, is the utility of SMP-encoding nucleic acids, proteins and antibodies as therapeutic 15 agents to disrupt the signal transduction pathways mediated by activated oncogenes that result in aberrant morphological cellular alterations.

Although the compositions of the invention have been described with respect to human diagnostics and therapeutics, it will be apparent to one skilled in 20 the art that these tools will also be useful in animal and cultured cell experimentation with respect to various malignancies and/or other conditions manifested by alterations in cellular morphology. As diagnostic 25 agents they can be used to monitor the effectiveness of potential anti-cancer agents on signal transduction pathways mediated by oncogenic proteins in vitro. and/or the development of neoplasms or malignant diseases in animal model systems. As therapeutics, 30 they can be used either alone or as adjuncts to other chemotherapeutic drugs in animal models and veterinary applications to improve the effectiveness of such anticancer agents.

The following Example is provided to describe the invention in further detail. This Example is intended to illustrate and not to limit the invention.

- 23 -

EXAMPLE 1

Isolation and Characterization of a Nucleic Acid Molecule Encoding Human SMP

In this Example, we describe the cloning of a cDNA molecule encoding human SMP. This cDNA is sometimes referred to herein as HEF1 for human enhancer of filamentation, because of its identification in the pseudohyphal screen. We also provide an analysis of the structure of the human SMP (hSMP) as predicted from the deduced amino acid sequence encoded by the cDNA. Additionally, we describe the antibodies immunospecific for the recombinant hSMP protein, and their use in immunological detection of phosphorylated SMP from normal and Abl transformed NIH3T3 cells.

15

20

25

30

35

10

Isolation of cDNA and cloning

A HeLa cDNA library constructed in the TRP1+vector JG4-4 (Gyuris et al., Cell 75:791-803), was translated with inserts expressed as native proteins under the control of the galactose-inducible GAL1 promoter, into CGx74 yeast (MATa/ α trp1/trp1; see Gimeno et al., 1992, supra). TRP+ transformants were plated to the nitrogen-restricted SLAGR medium (like SLAD, but with 2% galactose, 1% raffinose as a carbon source), and 120,000 colonies were visually screened using a Wild dissecting microscope at 50x amplification to identify colonies that produced pseudohyphae more extensively than background. cDNAs from these colonies were isolated and retransformed to naive CGx74; those that reproducibly generated enhanced pseudohyphae were sequenced. A 900 bp cDNA encoding a 182 amino acid open reading frame corresponding to the COOH-terminus of hSMP (HEF1-Cterm 182) possessed the most dramatic phenotype of cDNA obtained in this screen. Using the original 900 bp cDNA isolated in the pseudohyphal screen to probe a placental cDNA library cloned in lambda gtll, a larger clone (3.4 kb) was isolated. The longer clone obtained in this screen was used as a

5

10

15

20

25

basis for 5' RACE using a kit from Clontech containing RACE-ready cDNA prepared from human kidney. Three independent clones from the RACE approach yielded identical 5' end-points located 18 base pairs upstream of the ATG encoding the first methionine in the sequence shown in Figure 1. Repeated efforts with multiple primer sets showed no evidence for an N-terminally extended sequence. The full length clone, HEF1, is about 3.7 kb and encodes a protein about 835 amino acids in length.

Sequence Analysis

Both strands of the HEF1 clone were sequenced using oligonucleotide primers to the JG4-4 vector and to internal HEF1 sequences in combination with the Sequenase system (United States Biochemical) Database searching was performed using the BLAST algorithm (Altschul et al., J. Mol. Biol. 215:403-410, 1990) and sequence analysis was carried out using the package of programs from UWGCG (Devereux et al., Nucl. Acids Res. 12:387-397, 1984).

Northern Analysis

HEF1 cDNA was labelled with 32 P-dCTP by random priming, and used to probe a Northern blot containing 2 μ g/lane human mRNA from multiple tissues. The blot was stripped and reprobed with a 32 P-labelled oligonucleotide specific for actin as a control for equivalent loading.

30

35

Immunoprecipitation and Western Blotting

Immunoprecipitation of hSMP from normal and Abl transformed NIH 3T3 cells was accomplished using polyclonal antiserum raised against a peptide derived from the hSMP C-terminus. Immunoprecipitates were resolved by electrophoresis on a 12% SDS-polyacrylamide gel. Following electrophoresis, immunoprecipitates were

- 25 -

transferred to nitrocellulose, and reprobed with antiphosphotyrosine antibody (4G10).

Growth Profiles

Yeast were transformed with HEF1 or vector alone and grown to saturated overnight cultures in trpglucose defined minimal medium, and re-diluted to OD600 <0.05 in trpgalactose for growth curves. Growth curves were performed, with readings taken at 90 minute intervals for 12 hours, and at less frequent intervals up to 48 hours or longer.

Interaction Trap or Two Hybrid Analysis

EGY48 yeast (Gyuris et al., 1993, supra) were 15 transformed by standard methods with plasmids expressing LexA-fusions, activation-domain fusions, or both, together with the LexA operator-LacZ reporter SH18-34 (Gyuris et al., 1993, supra). For all fusion proteins, synthesis of a fusion protein of the correct 20 length in yeast was confirmed by Western blot assays of yeast extracts (Samson et al., Cell 57: 1045-1052, 1989) using polyclonal antiserum specific for LexA (Brent and Ptashne, Nature 312: 612-615, 1984) or for hemagglutinin (Babco, Inc), as appropriate. Activation 25 of the LacZ reporter was determined as previously described (Brent and Ptashne, Cell 43: 729-736, 1985). Beta-galactosidase assays were performed on three independent colonies, on three separate occasions, and values for particular plasmid combinations varied less 30 than 25%. Activation of the LEU2 reporter was determined by observing the colony forming ability of yeast plated on complete minimal medium lacking The LexA-PRD/HD expressing plasmid has been described (Golemis and Brent, Mol. Cell Biol. 12: 3006-3014, 1992). 35

RESULTS

Overexpression of the C-terminal domain of SMP influences Saccharomyces cerevisiae cell morphology. To identify proteins that regulate the .5 morphology and polarity of human cells, a human cDNA library was screened for genes which enhanced formation of pseudohyphae when expressed in S. cerevisiae. yeast undergoes a dimorphic shift in response to severe nitrogen limitation that involves changes in budding pattern, cell cycle control, cell elongation, and 10 invasive growth into agar (Gimeno et al., 1992, supra). A galactose-inducible HeLa cell cDNA library was used to transform a yeast strain that can form pseudohyphae on nitrogen-restricted media, and a number of human 15 genes which specifically enhanced pseudohyphal formation were identified. One of the cDNAs derived from this screen was found to cause the constitutive formation of pseudohyphae on rich and nitrogen This cDNA is sometimes referred to restricted media. as "HEF1-Cterm182" (because it encodes 182 amino acids 20 of the C-terminal domain of the human SMP). A fulllength clone containing the cDNA sequence was thereafter obtained. Analysis of the sequence of this cDNA (Sequence I.D. No. 1; Figure 1) revealed that it was a novel human gene with strong sequence similarity 25 to the rat pl30cas gene (as disclosed by Sakai et al. EMBO J. <u>13</u>: 3748-3756, 1994). This gene was designated HEF1, and its encoded protein was designated hSMP (Sequence I.D. No. 2). A comparison of the amino acid 30 compositions (% by weight) of the HEF1-encoded hSMP and the rat p130cas is shown in Table 1 below.

- 27 -

TABLE 1

5	Amino Acid	% Composition		
J	Alanine	<u>hSMP</u> 4.3	pl30cas	
	Arginine	6.1	6.2 7.5	
	Asparagine	4.1	1.8	
10	Aspartic acid	5.6	6.5	
	Cysteine	1.5	0.6	
	Glutamine	8.3	8.1	
	Glutamic acid	6.6	5.8	
	Glycine	3.5	4.5	
15	Histidine	4.0	3.1	
	Isoleucine	4.2	1.6	
	Leucine	8.7	9.6	
	Lysine	6.2	4.8	
	Methionine	2.8	1.0	
20	Phenylalanine	3.2	1.6	
	Proline	7.0	11.1	
	Serine	6.6	6.7	
	Threonine	4.8	4.9	
	Tryptophan	1.1	1.1	
25	Tyrosine	4.8	4.7	
	Valine	5.6	7.7	

The deduced length of HEF1-encoded hSMP is 834 amino acids and its deduced molecular weight is about 107,897 Da. The deduced length of the rat p130cas is 968 amino acids and its deduced molecular weight is about 121,421 Da.

production was assessed by Northern blot analysis.

HEF1 is expressed as two predominant transcripts of approximately 3.4 and 5.4 kb. Although present in all tissues examined (heart, brain, placenta, lung, liver, skeletal muscle, kidney and pancreas), these transcripts are present at significantly higher levels in kidney, lung, and placenta. In contrast, a more uniform distribution throughout the body has been reported for p130cas. Two other cross-hybridizing minor species were detected, migrating at 8.0 kb in lung and 1.2 kb in liver. These may represent

- 28 -

alternatively spliced HEF1 transcripts or other HEF1/pl30cas related genes. HEF1 represents a distinct gene from pl30cas rather than a human homolog, inasmuch as a screen of a murine genomic library with HEF1 cDNA led to identification of an exon that encoded a mouse C-terminal effector protein having a sequence essentially identical to hSMP-Cterm182 (Figure 3). Furthermore, probe of a zoo blot at high stringency with a HEF1 cDNA probe indicates this gene is highly conserved from humans to yeast.

5

10

15

20

hSMP does not induce constitutive
pseudohyphal budding by causing severe cell stress.
The possibility that the C-terminal domain of hSMP was enhancing pseudohyphae formation by causing severe cell stress was excluded by comparing the growth rates of yeast containing the HEF1-cterm182 cDNA to yeast containing the expression vector control on plates and in liquid culture, with galactose as a sugar source to induce expression of HEF1-cterm182. The growth rate data shows that SMP-encoding genes are not simply toxic to yeast.

SMP belongs to a class of "adapter proteins" 25 important in signalling cascades influencing morphological control. The HEF1 gene is approximately 3.7 kb and encodes a single continuous open reading frame of about 835 amino acids. The predicted hSMP protein notably contains an amino-terminal SH3 domain 30 and an adjacent domain containing multiple SH2 binding motifs. Homology search of the Genbank database revealed that hSMP is 64% similar at the amino acid level to the adapter protein p130cas, recently cloned from rat (Sakai et al., EMBO J. 13:3748-3756, 1994). 35 The amino acid alignment of hSMP and pl30cas is shown in Figure 2. Pl30cas was determined to be the predominant phosphorylated species in cells following

- 29 -

transformation by the oncoprotein Crk and also complexes with, and is a substrate for Abl and Src. As shown in Table 2 below, the homology between SMP and pl30cas is most pronounced over the SH3 domain (92% similarity, 74% identity) and in the region corresponding to the SMP-Cterm182 fragment (74% similarity, 57% identity). Although the domain containing SH2-binding motifs is more divergent from p130cas, SMP similarly possesses a large number of tyrosines in this region. The majority of SH2 binding sites in p130cas match the consensus for the SH2 domain of the oncoprotein Crk, while the amino acids flanking the tyrosine residues in SMP are more diverse, suggesting a broader range of associating proteins. Various SH2 binding motifs conserved between hSMP and p130cas are shown in Table 3.

5

10

15

5

30

TABLE 2

Domain Alignment: hSMP and p130cas

(Domains from amino to carboxyl terminus down the Table)

Domain	Size hSMP	(a.a.) p130cas	% Similarity/Identity (hSMP : p130cas)
SH3	50	50	92% similar, 74% indentical
Polyproline	10	38	(not compared)
SH2 binding motifs	290	410	55% similar, 36% identical
Serine-rich region	250	260	56% similar, 35% identical
C-terminal effector domain	210	210	74% similar, 57% identical

TABLE 3
Conserved SH2 Binding Motifs and Associating Proteins

SH2 Binding Motif	Associating Proteins		
YDIP			
YDVP	Crk		
YDFP			
	•		
YEYP	Vav or fps/fes		
YAIP	Abl		
YQNQ	Grb2		
YQVP	1		
YQKD			
YVYE	Novel		
YPSR			
YNCD			
	1		

5

10

15

20

- 31 -

The enhancement of pseudohyphal formation by hSMP-Cterm182 fragment in addition to the relatively high degree of homology to p130cas suggests that this domain acts as an effector in regulating cellular morphology. A test was performed to assay whether the homologous region of p130cas also enhanced pseudohyphal formation. The results show that the C-terminal fragment of p130cas did enhance psuedohyphal formation but not to the same extent as the C-terminal fragment of SMP. SMP was found to induce the strongest pseudohyphal phenotype of only cDNA fragment. By comparison, p130cas and another pseudohyphal inducer, RBP7 (subunit 7 of human RNA polymerase II, Golemis et al., Mol. Biol. of the Cell, 1995, in press) were only about 60% as effective as the hSMP-Cterm182 fragment.

The possible functions for the novel carboxy-terminal domains were investigated further using two-hybrid analysis. These experiments revealed that this domain mediated SMP homodimerization, and SMP/p130cas heterodimerization, yet failed to interact with non-specific control proteins.

SMP is a substrate for oncogene mediated

25 phosphorylation. SMP was immunoprecipitated from normal and v-Abl transformed NIH3T3 cells using polyclonal antisera raised against a MAP peptide derived from the hSMP C-terminal domain. Probe of these immunoprecipitates with antibody to phosphotyrosine 30 revealed a species migrating at approximately 130-140 kD that was specifically observed in Abl-transformed fibroblasts. This species may represent SMP phosphorylated by Abl, as SMP possesses a good match to SH2 binding domain recognized by Abl. The larger apparent molecular weight as compared with hSMP deduced 35 molecular weight may reflect glycosylation or may be a result of its phosphorylated state.

5

10

35

SMP dimerizes with other important cellular regulatory proteins. To assay whether SMP dimerizes with other cellular proteins, the interaction trap/two hybrid analysis system was used. Briefly, a LexA-fusion and an epitope-tagged, activation-domain fusion to SMP were synthesized. The expression of proteins of the predicted size in yeast was confirmed using antibodies specific for the fusion moieties. Using a LexA-operator reporter, it was observed that LexA-SMP fusion protein activates transcription extremely weakly. However, LexA-SMP is able to interact with co-expressed activation domain-fused SMP to activate transcription of the reporter, indicating that it is able to form dimers (or higher order multimers).

15 SMP joins pl30cas in defining a new family of docking adapters that, through multiple associations with signalling molecules via SH2 binding domains, is likely to coordinate changes in cellular growth regulation. interactions between SMP homodimers and SMP-p130cas 20 heterodimers may negatively regulate SMP and pl30cas proteins by making them inaccessible to their targets. Alternatively, SMP and pl30cas could work together to recruit new proteins to the signalling complex. The fact that the novel C-terminal domain shared between SMP and 25 pl30cas has the ability to cause pseudohyphal formation in yeast suggests that these proteins may directly alter cellular morphology by interacting with the cytoskeleton. In fact, previous yeast-morphology based screens for higher eucaryotic proteins have tended to isolate cytoskeletally related proteins. This invention 30 therefore provides reagents influencing the changes in cell morphology that accompany oncoprotein-mediated transformation in carcinogenesis.

The present invention is not limited to the embodiments specifically described above, but is capable of variation and modification without departure from the scope of the appended claims.

- 33 -

SEQUENCE LISTING

5	(1) GENERAL INFORMATION:	
5	(i) APPLICANT: Golemis, Erica A. Law, Susan F. Estojak, JoAnne	
10	(ii) TITLE OF INVENTION: NUCLEIC ACID MOLECULE ENCODING A SIGNAL MEDIATOR PROTEIN THAT INDUCES CELLULAR MORPHOLOGICAL ALTERATIONS	
L5	(iii) NUMBER OF SEQUENCES: 4	
20	 (iv) CORRESPONDENCE ADDRESS: (A) ADDRESSEE: Dann, Dorfman, Herrell and Skillman (B) STREET: 1601 Market Street Suite 720 (C) CITY: Philadelphia (D) STATE: PA (E) COUNTRY: USA 	
25	(F) ZIP: 19103-2307 (v) COMPUTER READABLE FORM: (A) MEDIUM TYPE: Floppy disk (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS (D) SOFTWARE: PatentIn Release #1.0, Version #1.30	
30	<pre>(vi) CURRENT APPLICATION DATA: (A) APPLICATION NUMBER: (B) FILING DATE: 30-June-1995 (C) CLASSIFICATION:</pre>	
35	<pre>(viii) ATTORNEY/AGENT INFORMATION: (A) NAME: Reed, Janet E. (B) REGISTRATION NUMBER: 36,252</pre>	
10	(ix) TELECOMMUNICATION INFORMATION: (A) TELEPHONE: (215) 563-4100 (B) TELEFAX: (215) 563-4044	
	(2) INFORMATION FOR SEQ ID NO:1:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 3672 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	
50	(D) TOPOLOGY: not relevant	
	(ii) MOLECULE TYPE: cDNA	
55	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: NO	
60	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:	
30	ACCCCCACGC TACCGAAATG AAGTATAAGA ATCTTATGGC AAGGGCCTTA TATGACAATG	60
	TCCCAGAGTG TGCCGAGGAA CTGGCCTTTC GCAAGGGAGA CATCCTGACC GTCATAGAGC 1	20
65	AGAACACAGG GGGACTGGAA GGATGGTGGC TGTGCTCGTT ACACGGTCGG CAAGGCATTG 1	80
	TCCCAGGCAA CCGGGTGAAG CTTCTGATTG GCCCCATGCA GGAGACTGCC TCCAGTCACG 2	4 ∩

- 34 -

5	CAAACCCACA AGGGAATTTA CACCATCAGT TAACCCCCGT ATGTCTATGA CAGCAAAAGG ACATCCCGCC GGCTTAGGGA	GGCTGCTCCC CCAAGTCCCC GCAGAGAAGC GAGGACAGGC TATCCCTCCT CCCTGTGTTT TACAAAAGGG	CGAGACACTA ACTGGCCACG ATTGGGGGAA CATGGCTACG TCTCATACCA TCAGTTCCAG	TCTACCAAGT GCACCCAAGA CCAGTGGGCC TATACGAGTA CTCAAGGGGT	GCCACCTTCC ACAAGAGGTA CCACGTGGGT CCCATCCAGA	AAAAAGGTGA TACCAAAAGG	300 360 420 480 540
	AGGGAATTTA CACCATCAGT TAACCCCCGT ATGTCTATGA CAGCAAAAGG ACATCCCGCC GGCTTAGGGA	CCAAGTCCCC GCAGAGAAGC GAGGACAGGC TATCCCTCCT CCCTGTGTTT TACAAAAGGG	ACTGGCCACG ATTGGGGGAA CATGGCTACG TCTCATACCA TCAGTTCCAG	GCACCCAAGA CCAGTGGGCC TATACGAGTA CTCAAGGGGT	ACAAGAGGTA CCACGTGGGT CCCATCCAGA	TATCAGGTGC AAAAAGGTGA TACCAAAAGG	420 480 540
	CACCATCAGT TAACCCCCGT ATGTCTATGA CAGCAAAAGG ACATCCCGCC GGCTTAGGGA	GCAGAGAAGC GAGGACAGGC TATCCCTCCT CCCTGTGTTT TACAAAAGGG	ATTGGGGGAA CATGGCTACG TCTCATACCA TCAGTTCCAG	CCAGTGGGCC TATACGAGTA CTCAAGGGGT	CCACGTGGGT CCCATCCAGA	AAAAAGGTGA TACCAAAAGG	480 540
10	TAACCCCCGT ATGTCTATGA CAGCAAAAGG ACATCCCGCC GGCTTAGGGA	GAGGACAGGC TATCCCTCCT CCCTGTGTTT TACAAAAGGG	CATGGCTACG TCTCATACCA TCAGTTCCAG	TATACGAGTA CTCAAGGGGT	CCCATCCAGA	TACCAAAAGG	540
10	ATGTCTATGA CAGCAAAAGG ACATCCCGCC GGCTTAGGGA	TATCCCTCCT CCCTGTGTTT TACAAAAGGG	TCTCATACCA TCAGTTCCAG	CTCAAGGGGT			
10	CAGCAAAAGG ACATCCCGCC GGCTTAGGGA	CCCTGTGTTT TACAAAAGGG	TCAGTTCCAG		ATACGACATC	CCTCCCTCAT	600
	ACATCCCGCC GGCTTAGGGA	TACAAAAGGG		TGGGAGAGAT			600
	GGCTTAGGGA		0m1 m1 mages	IGGGAGAGAI	AAAACCTCAA	GGGGTGTATG	660
15			GTATATGCCA	TTCCGCCCTC	TGCTTGCCGG	GATGAAGCAG	720
	TCAGACCGGA	AAAAGACTAT	GACTTCCCCC	CTCCCATGAG	ACAAGCTGGA	AGGCCGGACC	. 780
20	10.0.000	GGGGGTTTAT	GACATTCCTC	CAACCTGCAC	CAAGCCAGCA	GGGAAGGACC	840
20	TTCATGTAAA	ATACAACTGT	GACATTCCAG	GAGCTGCAGA	ACCGGTGGCT	CGAAGGCACC	900
	AGAGCCTGTC	CCCGAATCAC	CCACCCCCGC	AACTCGGACA	GTCAGTGGGC	TCTCAGAACG	960
25	ACGCATATGA	TGTCCCCCGA	GGCGTTCAGT	TTCTTGAGCC	ACCAGCAGAA	ACCAGTGAGA	1020
	AAGCAAACCC	CCAGGAAAGG	GATGGTGTTT	ATGATGTCCC	TCTGCATAAC	CCGCCAGATG	1080
30	CTAAAGGCTC	TCGGGACTTG	GTGGATGGGA	TCAACCGATT	GTCTTTCTCC	AGTACAGGCA	1140
	GCACCCGGAG	TAACATGTCC	ACGTCTTCCA	CCTCCTCCAA	GGAGTCCTCA	CTGTCAGCCT	1200
	CCCCAGCTCA	GGACAAAAGG	CTCTTCCTGG	ATCCAGACAC	AGCTATTGAG	AGACTTCAGC	1260
35	GGCTCCAGCA	GGCCCTTGAG	ATGGGTGTCT	CCAGCCTAAT	GGCACTGGTC	ACTACCGACT	1320
	GGCGGTGTTA	CGGATATATG	GAAAGACACA	TCAATGAAAT	ACGCACAGCA	GTGGACAAGG	1380
40	TGGAGCTGTT	CCTGAAGGAG	TACCTCCACT	TTGTCAAGGG	AGCTGTTGCA	AATGCTGCCT	1440
	GCCTCCCGGA	ACTCATCCTC	CACAACAAGA	TGAAGCGGGA	GCTGCAACGA	GTCGAAGACT	1500
	CCCACCAGAT	CCTGAGTCAA	ACCAGCCATG	ACTTAAATGA	GTGCAGCTGG	TCCCTGAATA	1560
45	TCTTGGCCAT	CAACAAGCCC	CAGAACAAGT	GTGACGATCT	GGACCGGTTT	GTGATGGTGG	1620
	CAAAGACGGT	GCCCGATGAC	GCCAAGCAGC	TCACCACAAC	CATCAACACC	AACGCAGAGĢ	1680
50	CCCTCTTCAG	ACCCGGCCCT	GGCAGCTTGC	ATCTGAAGAA	TGGGCCGGAG	AGCATCATGA	1740
	ACTCAACGGA	GTACCCACAC	GGTGGCTCCC	AGGGACAGCT	GCTGCATCCT	GGTGACCACA	1800
	AGGCCCAGGC	CCACAACAAG	GCACTGCCCC	CAGGCCTGAG	CAAGGAGCAG	GCCCCTGACT	1860
55	GTAGCAGCAG	TGATGGTTCT	GAGAGGAGCT	GGATGGATGA	CTACGATTAC	GTCCACCTAC	1920
	AGGGTAAGGA	GGAGTTTGAG	AGGCAACAGA	AAGAGCTATT	GGAAAAAGAG	AATATCATGA	1980
6.0	AACAGAACAA	GATGCAGCTG	GAACATCATC	AGCTGAGCCA	GTTCCAGCTG	TTGGAACAAG	2040
0.0	AGATTACAAA	GCCCGTGGAG	AATGACATCT	CGAAGTGGAA	GCCCTCTCAG	AGCCTACCCA	2100
	CCACAAACAG	TGGCGTGAGT	GCTCAGGATC	GGCAGTTGCT	GTGCTTCTAC	TATGACCAAT	2160
65	GTGAGACCCA	TTTCATTTCC	CTTCTCAACG	CCATTGACGC	ACTCTTCAGT	TGTGTCAGCT	2220
	CAGCCCAGCC	CCCGCGAATC	TTCGTGGCAC	ACAGCAAGTT	TGTCATCCTC	AGTGCACACA	2280

- 35 -

	AACTGGTGTT	CATTGGAGAC	ACGCTGACAC	GGCAGGTGAC	TGCCCAGGAC	ATTCGCAACA	2340
	AAGTCATGAA	CTCCAGCAAC	CAGCTCTGCG	AGCAGCTCAA	GACTATAGTC	ATGGCAACCA	2400
5	AGATGGCCGC	CCTCCATTAC	CCCAGCACCA	CGGCCCTGCA	GGAAATGGTG	CACCAAGTGA	2460
	CAGACCTTTC	TAGAAATGCC	CAGCTGTTCA	AGCGCTCTTT	GCTGGAGATG	GCAACGTTCT	2520
10	GAGAAGAAAA	AAAAGAGGAA	GGGGACTGCG	TTAACGGTTA	CTAAGGAAAA	CTGGAAATAC	2580
10	TGTCTGGTTT	TTGTAAATGT	TATCTATTTT	TGTAGATAAT	TTTATATAAA	AATGAAATAT	2640
	TTTAACATTT	TATGGGTCAG	ACAACTTTCA	GAAATTCAGG	GAGCTGGAGA	GGGAAATCTT	2700
15	TTTTTCCCCC	CTGAGTNGTT	CTTATGTATA	CACAGAAGTA	TCTGAGACAT	AAACTGTACA	2760
	GAAAACTTGT	CCACGTCCTT	TTGTATGCCC	ATGTATTCAT	GTTTTTGTTT	GTAGATGTTT	2820
20	GTCTGATGCA	TTTCATTAAA	AAAAAAACCA	TGAATTACGA	AGCACCTTAG	TAAGCACCTT	2880
20	CTAATGCTGC	ATTTTTTTG	TTGTTGTTAA	AAACATCCAG	CTGGTTATAA	TATTGTTCTC	2940
	CACGTCCTTG	TGATGATTCT	GAGCCTGGCA	CTGGGAATCT	GGGAAGCATA	GTTTATTTGC	3000
25	AAGTGTTCAC	CTTCCAAATC	ATGAGGCATA	GCATGACTTA	TTCTTGTTTT	GAAAACTCTT	3060
	TTCAAAACTG	ACCATCTTAA	ACACATGATG	GCCAAGTGCC	ACAAAGCCCT	CTTGCGGAGA	3120
30	CATTTACGAA	TATATATGTG	GATCCAAGTC	TCGATAGTTA	GGCGTTGGAG	GGAAGAGAGA	3180
50	CCAGAGAGTT	TAGAGGCCAG	GACCACAGTT	AGGATTGGGT	TGTTTCAATA	CTGAGAGACA	3240
	GCTACAATAA	AAGGAGAGCA	ATTGCCTCCC	TGGGGCTGTT	CAATCTTCTG	CATTTGTGAG	3300
35	TGGTTCAGTC	ATGAGGTTTT	CCAAAAGATG	TTTTTAGAGT	TGTAAAAACC	ATATTTGCAG	3360
	CAAAGATTTA	CAAAGGCGTA	TCAGACTATG	ATTGTTCACC	AAAATAGGGG	AATGGTTTGA	3420
10	TCCGCCAGTT	GCAAGTAGAG	GCCTTTCTGA	CTCTTAATAT	TCACTTTGGT	GCTACTACCC	3480
ŧ U	CCATTACCTG	AGGAACTGGC	CAGGTCCTTG	ATCATGGAAC	TATAGAGCTA	CCAGACATAT	3540
	CCTGCTCTCT	AAGGGAATTT	ATTGCTATCT	TGCACCTTCT	TTAAAACTCA	AAAAACATAT	3600
15	GCAGACCTGA	CACTCAAGAG	TGGCTAGCTA	CACAGAGTCC	ATCTAATTTT	TGCAACTTCC	3660
	CCCCCGAAT	TC					3672

(2) INFORMATION FOR SEQ ID NO:2:

55

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 834 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS: not relevant

(D) TOPOLOGY: not relevant

(ii) MOLECULE TYPE: protein

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

65

60

	(xi)	SEQ	JENC:	E DES	SCRI	PTIO	N: S1	EQ I	ON O	:2:						
5	Met 1	Lys	Tyr	Lys	Asn 5	Leu	Met	Ala	Arg	Ala 10	Leu	Tyr	Asp	Asn	Val 15	Pr
	Glu	Суѕ	Ala	Glu 20	Glu	Leu	Ala	Phe	Arg 25	Lys	Gly	Asp	Ile	Leu 30	Thr	Va:
10	Ile	Glu	Gln 35	Asn	Thr	Gly	Gly	Leu 40	Glu	Gly	Trp	Trp	Leu 45	Суѕ	Ser	Let
	His	Gly 50	Arg	Gln	Gly	Ile	Val 55	Pro	Gly	Asn	Arg	Val 60	Lys	Leu	Leu	Ile
15	Gly 65	Pro	Met	Gln	Glu	Thr 70	Ala	Ser	Ser	His	Glu 75	Gln	Pro	Ala	Ser	Gl ₃ 80
20	Leu	Met	Gln	Gln	Thr 85	Phe	Gly	Gln	Gln	Lys 90	Leu	Tyr	Gln	Val	Pro 95	Ası
	Pro	Gln	Ala	Ala 100	Pro	Arg	Asp	Thr	Ile 105	Tyr	Gln	Val	Pro	Pro 110	Ser	Туз
25	Gln	Asn	Gln 115	Gly	Ile	Tyr	Gln	Val 120		Thr	Gly	His	Gly 125	Thr	Gln	Glı
	Gln	Glu 130	Val	Tyr	Gln	Val	Pro 135	Pro	Ser	Val	Gln	Arg 140	Ser	Ile	Gly	Gly
30	Thr 145	Ser	Gly	Pro	His	Val 150	Gly	Lys	Lys	Val	Ile 155	Thr	Pro	Val	Arg	Th:
35	Gly	His	Gly	Tyr	Val 165	Tyr	Glu	Tyr	Pro	Ser 170	Arg	Tyr	Gln	Lys	Asp 175	Va]
	Tyr	Asp	Ile	Pro 180	Pro	Ser	His	Thr	Thr 185	Gln	Gly	Val	Tyr	Asp 190	Ile	Pro
40	Pro	Ser	Ser 195	Ala	Lys	Gly	Pro	Val 200	Phe	Ser	Val	Pro	Val 205	Gly	Glu	Ile
	Lys	Pro 210	Gln	Gly	Val	Tyr	Asp 215	Ile	Pro	Pro	Thr	Lys 220	Gly	Val	Tyr	Ala
45	Ile 225	Pro	Pro	Ser	Ala	Cys 230	Arg	Asp	Glu	Ala	Gly 235	Leu	Arg	Glu	Lys	Asp 240
50	Tyr	Asp	Phe	Pro	Pro 245	Pro	Met	Arg	Gln	Ala 250	Gly	Arg	Pro	Asp	Leu 255	Arg
	Pro	Glu	Gly	Val 260	Tyr	Asp	Ile	Pro	Pro 265	Thr	Cys	Thr	Lys	Pro 270	Ala	Gly
5 5	Lys	Asp	Leu 275	His	Val	Lys	Tyr	Asn 280	Cys	Asp	Ile	Pro	Gly 285	Ala	Ala	Glu
	Pro	Val 290	Ala	Arg	Arg	His	Gln 295	Ser	Leu	Ser	Pro	Asn 300	His	Pro	Pro	Pro
60	Gln 305	Leu	Gly	Gln	Ser	Val 310	Gly	Ser	Gln 	Asn	Asp 315	Ala	Tyr	qaA	Val	Pro 320
65	Arg	Gly	Val	Gln	Phe 325	Leu	Glu	Pro	Pro	Ala 330	Glu	Thr	Ser	Glu	Lys 335	Ala
	Asn	Pro	Gln	Glu 340	Arg	Asp	Gly	Val	Tyr 345	Asp	Val	Pro	Leu	His 350	Asn	Pro

- 37 -

	Pro	Asp	Ala 355	Lys	Gly	Ser	Arg	Asp 360	Leu	Val	Asp	Gly	Ile 365	Asn	Arg	Leu
5	Ser	Phe 370	Ser	Ser	Thr	Gly	Ser 375	Thr	Arg	Ser	Asn	Met 380	Ser	Thr	Ser	Ser
	Thr 385	Ser	Ser	Lys	Glu	Ser 390	Ser	Leu	Ser	Ala	Ser 395	Pro	Ala	Gln	Asp	Lys 400
10	Arg	Leu	Phe	Leu	Asp 405	Pro	Asp	Thr	Ala	Ile 410	Glu	Arg	Leu	Gln	Arg 415	Leu
15	Gln	Gln	Ala	Leu 420	Glu	Met	Gly	Val	Ser 425	Ser	Leu	Met	Ala	Leu 430	Val	Thr
13	Thr	Asp	Trp 435	Arg	Cys	Tyr	Gly	Tyr 440	Met	Glu	Arg	His	Ile 445	Asn	Glu	Ile
20	Arg	Thr 450	Ala	Val	Asp	Lys	Val 455	Glu	Leu	Phe	Leu	Lys 460	Glu	Tyr	Leu	His
	Phe 465	Val	Lys	Gly	Ala	Val 470	Ala	Asn	Ala	Ala	Cys 475	Leu	Pro	Glu	Leu	Ile 480
25	Leu	His	Asn	Lys	Met 485	Lys	Arg	Glu	Leu	Gln 490	Arg	Val	Glu	Asp	Ser 495	His
30	Gln	Ile	Leu	Ser 500	Gln	Thr	Ser	His	Asp 505	Leu	Asn	Glu	Cys	Ser 510	Trp	Ser
	Leu	Asn	Ile 515	Leu	Ala	Ile	Asn	Lys 520	Pro	Gln	Asn	Lys	Сув 525	qzA	Asp	Leu
35	Asp	Arg 530	Phe	Val	Met	Val	Ala 535	Lys	Thr	Val	Pro	Asp 540	Asp	Ala	Lys	Gln
	Leu 545	Thr	Thr	Thr	Ile	Asn 550	Thr	Asn	Ala	Glu	Ala 555	Leu	Phe	Arg	Pro	Gly 560
40	Pro	Gly	Ser	Leu	His 565	Leu	Lys	Asn	Gly	Pro 570	Glu	Ser	Ile	Met	Asn 575	Ser
45	Thr	Glu	Tyr	Pro 580	His	Gly	Gly	Ser	Gln 585	Gly	Gln	Leu	Leu	His 590	Pro	Gly
	Asp	His	Lys 595	Ala	Gln	Ala	His	Asn 600	Lys	Ala	Leu	Pro	Pro 605	Gly	Leu	Ser
50	Lys	Glu 610	Gln	Ala	Pro	Asp	Cys 615	Ser	Ser	Ser	Asp	Gly 620	Ser	Glu	Arg	Ser
-	Trp 625	Met	Asp	qaA	Tyr	Asp 630	Tyr	Val	His	Leu	Gln 635	Gly	Lys	Glu	Glu	Phe 640
55	Glu	Arg	Gln	Gln	Lys 645	Glu	Leu	Leu	Glu	Lys 650	Glu	Asn	Ile	Met	Lys 655	Gln
60	Asn	Lys	Met	Gln 660	Leu	Glu	His	His	Gln 665	Leu	Ser	Gln	Phe	Gln 670	Leu	Leu
J.	Glu	Gln	Glu 675	Ile	Thr	Lys	Pro	Val 680	Glu	Asn	Asp	Ile	Ser 685	Lys	Trp	Lys
65	Pro	Ser 690		Ser	Leu	Pro	Thr 695	Thr	Asn	Ser	Gly	Val 700	Ser	Ala	Gln	Asp

	Arg 705	Gln	Leu	Leu	Cys	Phe 710	Tyr	Tyr	Asp	Gln	Cys 715	Glu	Thr	His	Phe	Ile 720
5	Ser	Leu	Leu	Asn	Ala 725	Ile	Asp	Ala	Leu	Phe 730	Ser	Cys	Val	Ser	Ser 735	Ala
	Gln	Pro	Pro	Arg 740	Ile	Phe	Val	Ala	His 745	Ser	Lys	Phe	Val	Ile 750	Leu	Ser
10	Ala	His	Lys 755	Leu	Val	Phe	Ile	Gly 760	Asp	Thr	Leu	Thr	Arg 765	Gln	Val	Thr
15	Ala	Gln 770	Asp	Ile	Arg	Asn	Lys 775	Val	Met	Asn	Ser	Ser 780	Asn	Gln	Leu	Cys
	Glu 785	Gln	Leu	Lys	Thr	Ile 790	Val	Met	Ala	Thr	Lys 795	Met	Ala	Ala	Leu	His 800
20	Tyr	Pro	Ser	Thr	Thr 805	Ala	Leu	Gln	Glu	Met 810	Val	His	Gln	Val	Thr 815	Asp
•	Leu	Ser	Arg	Asn 820	Ala	Gln	Leu	Phe	Lys 825	Arg	Ser	Leu	Leu	Glu 830	Met	Ala
25	Thr	Phe														
30	(2) INFOR	RMATI SEQU						S:								
35		(A) (B) (C)	LEN TYI STI	NGTH: PE: & RANDE POLOC	872 mino EDNES	2 ami 3 aci 3S: r	ino a id not n	ecid: relev								
	(ii)	MOLE	CULI	E TYI	PE: p	prote	ein									
40	(iii)	HYPO	THE	ricai	.: NC)										
	(iv)	ANTI	-SEN	ISE:	NO											
45	(xi)	SEQU	JENCE	DES	CRIE	OIT	1: SE	EQ II	ONO:	3:						
	Met 1	Lys	Tyr	Leu	Asn 5	Val	Leu	Ala	Lys	Ala 10	Leu	Tyr	Asp	Asn	Val 15	Ala
50	Glu	Ser	Pro	Asp 20	Glu	Leu	Ser	Phe	Arg 25	Lys	Gly	Asp	Ile	Met 30	Thr	Val
	Glu	Arg	Asp 35	Thr	Gln	Gly	Leu	Asp 40	Gly	Trp	Trp	Leu	Cys 45	Ser	Leu	His
55	Gly	Arg 50	Gln	Gly	Ile	Val	Pro 55	Gly	Asn	Arg	Leu	Lys 60	Ile	Leu	Val	Gly
60	Met 65	Tyr	Asp	Lys	Lys	Pro 70	Ala	Ala	Pro	Gly	Pro 75	Gly	Pro	Pro	Ala	Thr 80
J.	Pro	Pro	Gln	Pro	Gln 85	Pro	Ser	Leu	Pro	Gln 90	Gly	Val	His	Thr	Pro 95	Val
65	Pro	Pro	Ala	Ser 100	Gln	Tyr	Ser	Pro	Met 105	Leu	Pro	Thr	Ala	Tyr 110	Gln	Pro

	GIII	PIO	115	Asn	vaı	lyr	Leu	Val 120	Pro	Thr	Pro	Ser	Lys 125	Thr	Gln	Glı
5	Gly	Leu 130	Tyr	Gln	Ala	Pro	Gly 135	Asn	Pro	Gln	Phe	Gln 140	Ser	Pro	Pro	Ala
	Lys 145	Gln	Thr	Ser	Thr	Phe 150	Ser	Lys	Gln	Thr	Pro 155	His	His	Ser	Phe	Pro 160
10	Ser	Pro	Ala	Thr	Asp 165	Leu	Tyr	Gln	Val	Pro 170	Pro	Gly	Pro	Gly	Ser 175	Pro
15	Ala	Gln	Asp	Ile 180	Tyr	Gln	Val	Pro	Pro 185	Ser	Ala	Gly	Thr	Gly 190	His	Asp
	Ile	Tyr	Gln 195	Val	Pro	Pro	Ser	Leu 200	Asp	Thr	Arg	Ser	Trp 205	Glu	Gly	Thi
20	Lys	Pro 210	Pro	Ala	Lys	Val	Val 215	Val	Pro	Thr	Arg	Val 220	Gly	Gln	Gly	Туз
	Val 225	Tyr	Glu	Ala	Ser	Gln 230	Ala	Glu	Gln	Asp	Glu 235	Tyr	Asp	Thr	Pro	Arg 240
25	His	Leu	Leu	Ala	Pro 245	Gly	Ser	Gln	Asp	Ile 250	Tyr	Asp	Val	Pro	Pro 255	Val
30	Arg	Gly	Leu	Leu 260	Pro	Asn	Gln	Tyr	Gly 265	Gln	Glu	Val	Tyr	Asp 270	Thr	Pro
	Pro	Met	Ala 275	Val	Lys	Gly	Pro	Asn 280	Gly	Arg	Asp	Pro	Leu 285	Leu	Asp	Val
35	Tyr	Asp 290	Val	Pro	Pro	Ser	Val 295	Glu	Lys	Gly	Leu	Pro 300	Pro	Ser	Asn	His
	His 305	Ser	Val	Tyr	Asp	Val 310	Pro	Pro	Ser	Val	Ser 315	Lys	Asp	Val	Pro	Asp 320
40	Gly	Pro	Leu	Leu	Arg 325	Glu	Glu	Thr	Tyr	Asp 330	Val	Pro	Pro	Ala	Phe 335	Ala
45	Lys	Pro	Lys	Pro 340	Phe	Asp	Pro	Thr	Arg 345	His	Pro	Leu	Ile	Leu 350	Ala	Ala
	Pro	Pro	Pro 355	Asp	Ser	Pro	Pro	Ala 360	Glu	Asp	Val	Tyr	Asp 365	Val	Pro	Pro
50	Pro	Ala 370	Pro	Asp	Leu		Asp 375	Val	Pro	Pro	Gly	Leu 380	Arg	Arg	Pro	Gly
	Pro 385	Gly	Thr	Leu	Tyr	Asp 390	Val	Pro	Arg	Glu	Arg 395	Val	Leu	Pro	Pro	Glu 400
55	Val	Ala	Asp	Gly	Ser 405	Val	Ile	Asp	Asp	Gly 410	Val	Tyr	Ala	Val	Pro 415	Pro
60	Pro	Ala	Glu	Arg 420	Glu	Ala	Pro	Thr	Asp 425	Gly	Lys	Arg	Leu	Ser 430	Ala	Ser
	Ser	Thr	Gly 435	Ser	Thr	Arg	Ser	Ser 440	Gln	Ser	Ala	Ser	Ser 445	Leu	Glu	Va]
65	Val	Val 450	Pro	Gly	Arg	Glu	Pro 455	Leu	Glu	Leu	Glu	Val 460	Ala	Val	Glu	Thi

- 40 -

	Leu 465	Ala	Arg	Leu	Gln	Gln 470	Gly	Val	Ser	Thr	Thr 475	Val	Ala	His	Leu	Leu 480
5	Asp	Leu	Val	Gly	Ser 485	Ala	Ser	Gly	Pro	Gly 490	Gly	Trp	Arg	Ser	Thr 495	Ser
	Glu	Pro	Gln	Glu 500	Pro	Pro	Val	Gln	Asp 505	Leu	Lys	Ala	Ala	Val 510	Ala	Ala
10	Val	His	Gly 515	Ala	Val	His	Glu	Leu 520	Leu	Glu	Phe	Ala	Arg 525	Ser	Ala	Val
15	Ser	Ser 530	Ala	Thr	His	Thr	Ser 535	Asp	Arg	Thr	Leu	His 540	Ala	Lys	Leu	Ser
	Arg 545	Gln	Leu	Gln	Lys	Met 550	Glu	Asp	Val	Tyr	Gln 555	Thr	Leu	Val	Val	His 560
20	Gly	Gln	Val	Leu	Asp 565	Ser	Gly	Arg	Gly	Gly 570	Pro	Gly	Phe	Thr	Leu 575	Asp
•	Asp	Leu	Asp	Thr 580	Leu	Val	Ala	Cys	Ser 585	Arg	Ala	Val	Pro	Glu 590	Asp	Ala
25		Gln	595					600					605			_
30	Arg	Thr 610	Lys	Ala	Pro	Gly	Pro 615	Gly	Pro	Glu	Gly	Ser 620	Ser	Ser	Leu	His
	Leu 625	Asn	Pro	Thr	Asp	Lys 630	Ala	Ser	Ser	Ile	Gln 635	Ser	Arg	Pro	Leu	Pro 640
35	Ser	Pro	Pro	Lys	Phe 645	Thr	Ser	Gln	Asp	Ser 650	Pro	Asp	Gly	Gln	Tyr 655	Glu
	Asn	Ser	Glu	Gly 660	Gly	Trp	Met	Glu	Asp 665	Tyr	Asp	Tyr	Val	His 670	Leu	Gln
40	Gly	Lys	Glu 675	Glu	Phe	Glu	Lys	Thr 680	Gln	Lys	Glu	Leu	Leu 685	Glu	Lys	Gly
45	Asn	Ile 690	Val	Arg	Gln	Gly	Lys 695	Gly	Gln	Leu	Glu	Leu 700	Gln	Gln	Leu	Lys
	Gln 705	Phe	Glu	Arg	Leu	Glu 710	Gln	Glu	Val	Ser	Arg 715	Pro	Ile	Asp	His	Asp 720
50	Leu	Ala	Asn	Trp	Thr 725	Pro	Ala	Gln	Pro	Leu 730	Val	Pro	Gly	Arg	Thr 735	Gly
	Gly	Leu	Gly	Pro 740	Ser	Asp	Arg	Gln	Leu 745	Leu	Leu	Phe	Tyr	Leu 750	Glu	Gln
55	Cys	Glu	Ala 755	Asn	Leu	Thr	Thr	Leu 760	Thr	Asp	Ala	Val	Asp 765	Ala	Phe	Phe
60	Thr	Ala 770	Val	Ala	Thr	Asn	Gln 775	Pro	Pro	Lys	Ile	Phe 780	Val	Ala	His	Ser
•	Lys 785	Phe	Val	Ile	Leu	Ser 790	Ala	His	Lys	Leu	Val 795	Phe	Ile	Gly	Asp	Thr 800
65	Leu	Ser	Arg	Gln	Ala 805	Lys	Ala	Ala	Asp	Val 810	Arg	Ser	Lys	Val	Thr 815	His

- 41 -

	Tyr	Ser	Asn	Leu 820	Leu	Cys	Asp	Leu	Leu 825	Arg	Gly	Ile	Val	Ala 830	Thr	Thṛ
5	Lys	Ala	Ala 835	Ala	Leu	Gln	Tyr	Pro 840	Ser	Pro	Ser	Ala	Ala 845	Gln	Asp	Met
	Val	Asp 850	Arg	Val	Lys	Glu	Leu 855	Gly	His	Ser	Thr	Gln 860	Gln	Phe	Arg	Arg
10	Val 865	Leu	Gly	Gln	Leu	Ala 870	Ala	Ala								
15	(2) INFO	TAMS	ON I	FOR S	SEQ I	ID NO	D:4:									
20	(i)	(B)	LEI TYI STI	NGTH PE: 8 RANDI	ARACT 78 mino EDNES Y: 1	amir aci SS: r	no ad id not i	cids celev	<i>r</i> ant							
25	(ii)	MOLE	ECULI	TYI	PE: 1	pept	ide									
	(iii)	HYPO	THE	ricai	7: NO)										
	(iv)	ANT	-SE	ISE:	NO											
30	(v)	FRAC	SMENT	TYI	PE: (C-tex	rmina	al								
	(xi)	SEQU	JENCI	E DES	SCRII	PTION	7: SI	EQ II	ONO:	4:						
35	Leu 1	Ser	Gln	Phe	Gln 5	Leu	Leu	Ġlu	Gln	Glu 10	Ile	Thr	Lys	Pro	Val 15	Glu
	Asn	Asp	Ile	Ser 20	Lys	Trp	Lys	Pro	Ser 25	Gln	Ser	Leu	Pro	Thr 30	Thr	Asn
40	Asn	Ser	Val 35	Gly	Ala	Gln	Asp	Arg 40	Gln	Leu	Leu	Cys	Phe 45	Tyr	Tyr	Asp
45	Gln	Cys 50	Glu	Thr	His	Phe	Ile 55	Ser	Leu	Leu	Asn	Ala 60	Ile	Asp	Ala	Leu
	Phe 65	Ser	Cys	Val	Ser	Ser 70	Ala	Gln	Pro	Pro	Arg 75	Ile	Phe	Val		

- 42 -

WHAT IS CLAIMED IS:

20

- 1. An isolated nucleic acid molecule that includes an open reading frame encoding a mammalian signal mediator protein between about 795 and about 875 amino acids in length, said protein comprising an aminoterminal SH3 domain, an internal domain that includes a multiplicity of SH2 binding motifs, and a carboxyterminal effector domain, said effector domain, when produced in Saccharomyces cerevisiae, being capable of inducing pseudohyphal budding in said Saccharomyces cerevisiae under pre-determined culture conditions.
- 2. The nucleic acid molecule of claim 1, which is DNA.
 - 3. The DNA molecule of claim 2, which is a cDNA comprising a sequence approximately 3.7 kilobase pairs in length that encodes said signal mediator protein.
 - 4. The DNA molecule of claim 2, which is a gene, the exons of which comprise said open reading frame encoding said signal mediator protein.
 - 5. The nucleic acid molecule of claim 1, which is RNA.
- 6. An oligonucleotide between about 10 and
 30 about 100 nucleotides in length, which specifically
 hybridizes with a portion of the nucleic acid molecule of
 claim 1.
- 7. The oligonucleotide of claim 6, wherein said portion includes a translation initiation site of said signal mediator protein.

- 43 -

- 8. The nucleic acid molecule of claim 1, wherein said open reading frame encodes a human signal mediator protein.
- 9. The nucleic acid molecule of claim 8, wherein said open reading frame encodes a human signal mediator protein having an amino acid sequence substantially the same as Sequence I.D. No. 2.
- 10. The nucleic acid molecule of claim 9, wherein said open reading frame encodes amino acid Sequence I.D. No. 2.
- 11. The nucleic acid molecule of claim 10,15 which comprises Sequence I.D. No. 1.
 - 12. An isolated protein, which is a product of expression of part or all of the open reading frame of claim 1.

20

- 13. An isolated nucleic acid molecule having a sequence selected from the group consisting of:
 - a) Sequence I.D. No. 1;
- b) a sequence hybridizing with part
 or all of the complementary strand of Sequence I.D. No. 1
 and encoding a polypeptide substantially the same as part
 or all of a polypeptide encoded by Sequence I.D. No. 1;
 and
- c) a sequence encoding part or all of a polypeptide having amino acid Sequence I.D. No. 2.
 - 14. An isolated nucleic acid molecule having a sequence that encodes a carboxy-terminal effector domain of a mammalian signal mediator protein, said domain having an amino acid sequence greater than 74% similar to a portion of Sequence I.D. No. 2 comprising amino acids 626-834.

- 44 -

15. The nucleic acid molecule of claim 14, wherein the amino acid sequence of said carboxy-terminal effector domain is greater than about 57% identical to a portion of Sequence I.D. No. 2 comprising amino acids 626-834.

16. The nucleic acid molecule of claim 14, having a sequence that encodes an amino acid sequence greater than 65% similar to Sequence I.D. No. 2.

10

5

17. An isolated mammalian signal mediator protein having a deduced molecular weight of between about 100 kDa and about 115 kDa; said protein comprising an amino-terminal SH3 domain, an internal domain that includes a multiplicity of SH2 binding motifs, and a carboxy-terminal effector domain, said effector domain, when produced in Saccharomyces cerevisiae, being capable of inducing pseudohyphal budding in said Saccharomyces cerevisiae under pre-determined culture conditions.

20

35

- 18. The protein of claim 17, of human origin.
- 19. The protein of claim 18, having an amino acid sequence substantially the same as Sequence I.D. No.25
 - 20. The protein of claim 19, having amino acid Sequence I.D. No. 2.
- 21. An antibody immunologically specific for part or all of the protein of claim 17.
 - 22. A polypeptide produced by expression of an isolated nucleic acid sequence selected from the group consisting of:
 - a) Sequence I.D. No. 1;
 - b) a sequence hybridizing with part

10

20

25

or all of the complementary strand of Sequence I.D. No. 1 and encoding a polypeptide substantially the same as part or all of a polypeptide encoded by Sequence I.D. No. 1; and

- 5 c) a sequence encoding part or all of a polypeptide having Sequence I.D. No. 2.
 - 23. An antibody immunologically specific for part or all of the polypeptide of claim 22.

24. An isolated mammalian signal mediator protein, which comprises a carboxy-terminal effector domain having an amino acid sequence greater than 74% similar to a portion of Sequence I.D. No. 2 comprising amino acids 626-834.

- 25. The protein of claim 24, wherein the amino acid sequence of said carboxy-terminal effector domain is greater than about 57% identical to a portion of Sequence I.D. No. 2 comprising amino acids 626-834.
- 26. The protein of claim 24, having an amino acid sequence greater than 65% similar to Sequence I.D. No. 2.

27. An antibody immunologically specific for part or all of the protein of claim 24.

1/3-1

 ${\tt accccacgctaccgaaATGAAGTATAAGAATCTTATGGCAAGGGCCTTATATGACAAT}$

M K Y K N L M A R A L Y D N GTCCCAGAGTGTGCCGAGGAACTGGCCTTTCGCAAGGGAGACATCCTGACCGTCATAGAG V P E C A E E L A F R K G D I L T V I E CAGAACACAGGGGACTGGAAGGATGGTGGCTGTTGCTCGTTACACGGTCGGCAAGGCATT Q N T G G L E G W W L C S L H G R O G I GTCCCAGGCAACCGGGTGAAGCTTCTGATTGGCCCCATGCAGGAGACTGCCTCCAGTCAC V P G N R V K L L I G P M Q E T A S S H GAGCAGCCTGCCTCTGGACTGATGCAGCAGACCTTTGGCCAACAGAAGCTCTATCAAGTG EQPASGLMQQTFGQQKLYQV CCAAACCCACAGGCTGCTCCCCGAGACACTATCTACCAAGTGCCACCTTCCTACCAAAAT P N P Q A A P R D T I Y Q V P P S Y Q N CAGGGAATTTACCAAGTCCCCACTGGCCACGGCACCCAAGAACAAGAGGTATATCAGGTG QGIYQVPTGHGTQEQEVYQV CCACCATCAGTGCAGAGAAGCATTGGGGGAACCAGTGGGCCCCACGTGGGTAAAAAGGTG P P S V Q R S I G G T S G P H V G K K V ATAACCCCGTGAGGACAGGCCATGGCTACGTATACGAGTACCCATCCAGATACCAAAAG ITPVRTGHGYVYEYPSRYQK DVYDIPPSHTTQGVYDIPPS TCAGCAAAAGGCCCTGTGTTTTCAGTTCCAGTGGGAGAGATAAAACCTCAAGGGGTGTAT SAKGPVFSVPVGEIKPQGVY GACATCCCGCCTACAAAAGGGGTATATGCCATTCCGCCCTCTGCTTGCCGGGATGAAGCA DIPPTKGVYAIPPSACRDEA GGGCTTAGGGAAAAAGACTATGACTTCCCCCCTCCCATGAGACAAGCTGGAAGGCCGGAC G L R E K D Y D F P P P M R Q A G R P D CTCAGACCGGAGGGGTTTATGACATTCCTCCAACCTGCACCAAGCCAGCAGGGAAGGAC LRPEGVYDIPPTCTKPAGKD CTTCATGTAAAATACAACTGTGACATTCCAGGAGCTGCAGAACCGGTGGCTCGAAGGCAC

Figure 1A

SUBSTITUTE SHEET (RULE 26)

 $\begin{smallmatrix} Q & S & L & S & P & N & H & P & P & P & Q & L & G & Q & S & V & G & S & Q & N \\ \end{smallmatrix}$ GACGCATATGATGTCCCCCGAGGCGTTCAGTTTCTTGAGCCACCAGCAGAAACCAGTGAG D A Y D V P R G V Q F L E P P A E T S E AAAGCAAACCCCCAGGAAAGGGATGGTGTTTATGATGTCCCTCTGCATAACCCGCCAGAT K A N P Q E R D G V Y D V P L H N P P D ${\tt GCTAAAGGCTCTCGGGACTTGGTGGATGGGATCAACCGATTGTCTTCTCCAGTACAGGC}$ A K G S R D L V D G I N R L S F S S T G AGCACCCGGAGTAACATGTCCACGTCTTCCACCTCCCAAGGAGTCCTCACTGTCAGCC S T R S N M S T S S T S S K E S S L S A TCCCCAGCTCAGGACAAAAGGCTCTTCCTGGATCCAGACACAGCTATTGAGAGACTTCAG S P A Q D K R L F L D P D T A I E R L Q ${\tt CGGCTCCAGCAGGCCCTTGAGATGGGTGTCTCCAGCCTAATGGCACTGGTCACTACCGAC}$ RLQQALEMGVSSLMALVTTD TGGCGGTGTTACGGATATATGGAAAGACACATCAATGAAATACGCACAGCAGTGGACAAG WRCYGYMERHINEIRTAVDK GTGGAGCTGTTCCTGAAGGAGTACCTCCACTTTGTCAAGGGAGCTGTTGCAAATGCTGCC V E L F L K E Y L H F V K G A V A N A A TGCCTCCCGGAACTCATCCTCCACAACAAGATGAAGCGGGAGCTGCAACGAGTCGAAGAC C L P E L I L H N K M K R E L Q R V E D TCCCACCAGATCCTGAGTCAAACCAGCCATGACTTAAATGAGTGCAGCTGGTCCCTGAAT SHQILSQTSHDLNECSWSLN ATCTTGGCCATCAACAAGCCCCAGAACAAGTGTGACGATCTGGACCGGTTTGTGATGGTG ILAINKPQNKCDDLDRFVMV AKTVPDDAKQLTTTINTNAE GCCCTCTTCAGACCCGGCCCTGGCAGCTTGCATCTGAAGAATGGGCCGGAGAGCATCATG ALFRPGPGSLHLKNGPESIM

Figure 1B

SUBSTITUTE SHEET (RULE 26)

AACTCAACGGAGTACCCACACGGTGGCTCCCAGGGACAGCTGCTGCATCCTGGTGACCAC N S T E Y P H G G S Q G Q L L H P G D H AAGGCCCAGGCCCACAACAAGGCACTGCCCCCAGGCCTGAGCAAGGAGCAGGCCCCTGAC K A Q A H N K A L P P G L S K E Q A P D TGTAGCAGCAGTGATGGTTCTGAGAGGAGCTGGATGACTACGATTACGTCCACCTA C S S S D G S E R S W M D D Y D Y V H L CAGGGTAAGGAGGAGTTTGAGAGGCAACAGAAAGAGCTATTGGAAAAAGAGAATATCATG QGKEEFERQQKELLEKENIM AAACAGAACAAGATGCAGCTGGAACATCATCAGCTGAGCCAGTTCCAGCTGTTGGAACAA K Q N K M Q L E H H Q L S Q F Q. L L E Q GAGATTACAAAGCCCGTGGAGAATGACATCTCGAAGTGGAAGCCCTCTCAGAGCCTACCC EITKPVENDISKWKPSQSLP ACCACAAACAGTGGCGTGAGTGCTCAGGATCGGCAGTTGCTGTGCTTCTACTATGACCAA TTNSGVSAQDRQLLCFYYDQ TGTGAGACCCATTTCATTTCCCTTCTCAACGCCATTGACGCACTCTTCAGTTGTCAGC CETHFISLLNAIDALFSCVS TCAGCCCAGCCCCGCGAATCTTCGTGGCACACAGCAAGTTTGTCATCCTCAGTGCACAC SAQPPRIFVAHSKFVILSAH AAACTGGTGTTCATTGGAGACACGCTGACACGGCAGGTGACTGCCCAGGACATTCGCAAC K L V F I G D T L T R Q V T A Q D I R N AAAGTCATGAACTCCAGCAACCAGCTCTGCGAGCAGCTCAAGACTATAGTCATGGCAACC K V M N S S N Q L C E Q L K T I V M A T AAGATGCCGCCTCCATTACCCCAGCACCACGCCCTGCAGGAAATGGTGCACCAAGTG KMAALHYPSTTALQEMVHQV ACAGACCTTTCTAGAAATGCCCAGCTGTTCAAGCGCTCTTTGCTGGAGATGGCAACGTTC T D L S R N A Q L F K R S L L E M A T F TGAGAAGAAAAAAAGAGGAAGGGGACTGCGTTAACGGTTACTAAGGAAAACTGGAAATA

Figure 1C

SUBSTITUTE SHEET (RULE 26)

Figure 1D

3/3

HEF1	LSQFQLLEQEITKPVENDISKWKPSQSL.PTTNSQVSAQDRQLLCFYYDQCETHFISL
MEF1	LSQFQLLEQEITKPVENDISKWKPSQSL.PTTNNSVSAQDRQLLCFYYDQCETHFISL
p130cas	LKQFERLEQEVSRPIDHDLANWTPAQPLVPGRTGGLGPSDRQLLLFYLEQCEANLTTL
HEF1	LNAIDALFSCVSSAQPPRIFV
MEF1	LNAIDALFSCVSSAQPPRIFV
p130cas	TDAVDAFFTAVATNOPPKIFV

Figure 3

INTERNATIONAL SEARCH REPORT

International application No. PCT/US96/10823

A. CLA	SSIFICATION OF SUBJECT MATTER										
	:C12Q 1/68; C12P 19/34; C07H 21/02, 21/04; A61F		ĺ								
According t	:435/6, 91.2; 536 23.1, 24.3; 424/138.1, 139.1, 141 o International Patent Classification (IPC) or to both	national classification and IPC									
	DS SEARCHED										
Minimum d	ocumentation searched (classification system followed	i by classification symbols)									
U.S. :	435/6, 91.2; 536 23.1, 24.3; 424/138.1, 139.1, 141.	1; 530/350									
Documentat	ion searched other than minimum documentation to the	extent that such documents are included	in the fields searched								
Electronic d	ata base consulted during the international search (na	me of data base and, where practicable	, search terms used)								
1	ee Extra Sheet.	•									
G P00	WARNES CONCINEDED TO BE BELLEVANT										
C. DOC	UMENTS CONSIDERED TO BE RELEVANT										
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.								
Υ	The EMBO Journal, Volume 13,	Number 16, issued 15	1-9, 12, 13, 17-								
	August 1994, R. Sakai et al, "A		19, 21-23								
A	p130, forms stable complexes in vi										
	a tyrosine phosphorylation-depend	ent manner," pages 3/48-	10, 11,								
	3756, see entire article.		14-16, 20, 24- 27								
Υ	Y E. MCCONKEY et al, "HUMAN GENETICS, THE MOLECULAR 1-9, 12, 13,										
	REVOLUTION", published 1993		17-19, 21-23								
	Publishers, Inc. (Boston, MA), p	pages 38-63, see entire									
	document.										
		<u> </u>									
Furth	er documents are listed in the continuation of Box C	. See patent family annex.									
•	ecial categories of cited documents:	"T" Inter document published after the interdate and not in conflict with the applic									
	cument defining the general state of the art which is not considered be of particular relevance	principle or theory underlying the inv	rention								
l	lier document published on or after the international filing date	X° document of particular relevance; the considered novel or cannot be considered.									
cite	cument which may throw doubts on priority claim(s) or which is ed to establish the publication date of another citation or other	"Y" document of particular relevance; the	e claimed invention cannot be								
1	cial reason (as specified) cument referring to an oral disclosure, use, exhibition or other	considered to involve an inventive combined with one or more other suc	step when the document is								
me	ans	being obvious to a person skilled in the	he art								
the	cument published prior to the international filing date but later than priority date claimed	*& document member of the same patent	<u> </u>								
Date of the	actual completion of the international search	Date of mailing of the international sec	arch report								
02 AUGU	ST 1996	21 AUG 1996									
Name and n	nailing address of the ISA/US	Authorized officer	/								
Commission Box PCT	ner of Patents and Trademarks	DIANNE REES) + /								
Washingtor Facsimile N	n, D.C. 20231 o. (703) 305-3230	Telephone No. (703) 308-0196	170								
	SA/210 (second sheet)(July 1992)*										

INTERNATIONAL SEARCH REPORT

International application No. PCT/US96/10823

B. FIELDS SEARCHED Electronic data bases consulted (Name of data base and where practicable terms used):										
APS, BIOSIS, CANCERLIT, CAPLUS, CJACS, IFIPAT, MEDLINE, PROMT, SCISEARCH, JAPIO, JICST-EPLUS, LIFESCI, EMBASE, TOXLINE, TOXLIT, USPATFULL, WPIDS search terms: SH-2, SH-3, tyrosine kinases, p130, Cas, Crk-associated substrate, pseudohyphal budding.										