Bài tập về nhà - Thuật toán Phân tán

Thành viên:

- 1. Hà Xuân Thiện 24520031
- 2. Trần Quang Trường 24521901

Ngày 30 tháng 10 năm 2025

Mục lục

1	\mathbf{Sub}	$task 1 (n, q \le 1000)$	2
	1.1	Mô tả Thuật Toán	2
	1.2	Cài Đặt Thuật Toán	4
	1.3	Phân Tích Độ Phức Tạp	4
		1.3.1 Độ phức tạp thời gian	4
		1.3.2 Độ phức tạp không gian	5
2	Sub	$\mathbf{ptask} \ 2 \ (n, q \le 10^5)$	6
2	Sub 2.1		
2	2.1		6
2	2.1 2.2	Mô tả Thuật Toán	6
2	2.1 2.2	Mô tả Thuật Toán	6 6 8

1 Subtask 1 $(n, q \le 1000)$

1.1 Mô tả Thuật Toán

Quan sát 1: Ta có thể biến đổi bài toán thành bài toán đồ thị.

Cụ thể: Ta coi mỗi máy tính là một đỉnh của đồ thị. Nếu có thể truyền dữ liệu trực tiếp giữa hai máy tính u và v thì tồn tại một cạnh (u,v) có trọng số |u-v|. Lúc này, bài toán trở thành tìm kiếm đường đi có tổng trọng số nhỏ nhất (đường đi tối ưu) đi từ s đến t.

Định nghĩa:

- Độ dài đường đi là số lượng cạnh đi qua của đường đi đó.
- Gọi E là tập cạnh của đồ thị. Nếu cạnh (u, v) thuộc đồ thị ta nói $(u, v) \in E$, ngược lại $(u, v) \notin E$.

Nhận xét 1: Nếu $s \neq t$ và $(s,t) \in E$ thì độ dài đường đi tối ưu bằng 1.

Chứng minh:

- 1. Xét đường đi trực tiếp đi từ s đến t, chi phí bằng |s-t|.
- 2. Xét đường đi thông qua một đỉnh trung gian u $((s,u), (u,t) \in E)$, thì chi phí bằng |s-u|+|u-t|.

Đặt a = s - u, b = u - t. Theo bất đẳng thức tam giác:

$$|a+b| \le |a| + |b| \Rightarrow |s-u+u-t| \le |s-u| + |u-t| \Rightarrow |s-t| \le |s-u| + |u-t|$$

3. Xét đường đi thông qua hai đỉnh trung gian u, v $((s, u), (u, v), (v, t) \in E)$, chi phí bằng |s - u| + |u - v| + |v - t|. Theo bất đẳng thức tam giác:

$$|s-t| \le |s-u| + |u-v| + |v-t|$$

4. Tương tự, với mọi đường đi qua k đỉnh trung gian u_1, \ldots, u_k :

$$|s-t| \le |s-u_1| + \sum_{i=1}^{k-1} |u_i - u_{i+1}| + |u_k - t|$$

Kết luận: đường đi tối ưu là đường đi đi trực tiếp từ s đến t với chi phí |s-t|. Độ dài đường đi tối ưu bằng 1.

Nhận xét 2: Độ dài đường đi tối ưu đi từ s đến t không quá 2.

Chứng minh:

Trường hợp 1. Nếu s=t: Đường đi tối ưu có chi phí |s-t|=0. Độ dài đường đi tối ưu bằng 0.

Trường hợp 2. Nếu $s \neq t$ và $(s,t) \in E$: Theo nhận xét 1, độ dài đường đi tối ưu bằng 1.

Trường hợp 3. Nếu $s \neq t$ và $(s,t) \notin E$:

- Gọi tập giao thức là $\mathcal{P} = \{B, G, R, Y\}.$
- Mỗi đỉnh chứa một tập giao thức $|\mathcal{P}_i| = 2, \, \mathcal{P}_i \in \mathcal{P}$.
- Nếu $(u,v) \in E$ thì $\mathcal{P}_u \cap \mathcal{P}_v \neq \emptyset$, ngược lại $\mathcal{P}_u \cap \mathcal{P}_v = \emptyset$.
- Từ nhận xét 1, ta có chứng minh đường đi tối ưu luôn có dạng:

$$\{u_1, u_2, \ldots, u_k\}$$

với $k > 2, s = u_1, t = u_k$ và $|\mathcal{P}_i \cap \mathcal{P}_{i+1}| = 1, \forall i < k$ - thỏa mãn điều kiện:

– Với mọi $i < k, j \in [i+2, k]$ thì $(u_i, u_j) \notin E$, hay $\mathcal{P}_i \cap \mathcal{P}_j = \emptyset$.

Xét đường đi tối ưu $\{s=u_1,u_2,u_3=t\}$:

– Để tồn tại, cần có u_2 sao cho:

$$|\mathcal{P}_s \cap \mathcal{P}_{u_2}| = 1, \quad |\mathcal{P}_{u_2} \cap \mathcal{P}_t| = 1$$

– Suy ra: $\mathcal{P}_{u_2} = \{a, b\}$ với $a \in \mathcal{P}_s, b \in \mathcal{P}_t$.

 \Rightarrow Do đó, tồn tại đường đi tối ưu có độ dài bằng 2 **khi và chỉ khi** tồn tại $u_2 = \{a, b\}$ sao cho $a \in \mathcal{P}_s, b \in \mathcal{P}_t$.

Xét đường đi $\{s = u_1, u_2, u_3, u_4 = t\}$:

- Để tồn tại đường đi thỏa mãn, cần tồn tại u_2 , u_3 sao cho:

$$\begin{aligned} |\mathcal{P}_s \cap \mathcal{P}_{u_2}| &= 1, \\ |\mathcal{P}_{u_2} \cap \mathcal{P}_{u_3}| &= 1, \\ |\mathcal{P}_{u_3} \cap \mathcal{P}_t| &= 1, \\ |\mathcal{P}_s \cap \mathcal{P}_{u_3} &= \varnothing, \\ \mathcal{P}_s \cap \mathcal{P}_t &= \varnothing, \\ \mathcal{P}_{u_2} \cap \mathcal{P}_t &= \varnothing. \end{aligned}$$

- Xét
$$\mathcal{P}_s = \{a, b\}$$
.
⇒ $\mathcal{P}_{u_3} = \{c, d\}$ (do $\mathcal{P}_s \cap \mathcal{P}_{u_3} = \varnothing$).
⇒ $\mathcal{P}_t = \{c, d\}$ (do $\mathcal{P}_s \cap \mathcal{P}_t = \varnothing$).
⇒ $\mathcal{P}_{u_3} \cup \mathcal{P}_t = \{c, d\}$, hay $|\mathcal{P}_{u_3} \cup \mathcal{P}_t| = 2$, mâu thuẫn với điều kiện $|\mathcal{P}_{u_3} \cap \mathcal{P}_t| = 1$.
⇒ Do đó, không tồn tại đường đi tối ưu độ dài bằng 3 thỏa mãn điều kiện.

Chứng minh tương tự, không tồn tại đường đi tối ưu có mọi độ dài lớn hơn 3.

 \Rightarrow Do đó, nếu tồn tại đường đi từ s đến t, thì độ dài tối ưu =2.

1.2 Cài Đặt Thuật Toán

Ta biểu diễn \mathcal{P}_u dưới dạng một mask 4 bit ms_u .

Nếu $\mathcal{P}_u \cap \mathcal{P}_v = \emptyset$ thì $ms_u \& ms_v = 0$. Ngược lại, $ms_u \& ms_v \neq 0$.

```
code_str = "BGRY"
idx = {c: 1 << i for i, c in enumerate(code_str)}
def get_idx(c):
    return idx[c]
sms = [get_idx(s[i][0]) | get_idx(s[i][1]) for i in range(n)]</pre>
```

Với mỗi truy vấn (u, v):

- Nếu u = v: đáp án = 0.
- Nếu $ms_u \& ms_v \neq 0$: đáp án = |u v|.
- Ngược lại: đáp án = $\min_k |k-u| + |k-v|$ với điều kiện $ms_u \& ms_k \neq 0$ và $ms_v \& ms_k \neq 0$. Nếu không tồn tại k thỏa: in -1.

```
INF = 1000000000
  for i in range(q):
       u, v = map(int, input().split())
       u = u - 1
4
       v = v - 1
5
       ans = INF
6
       if u == v:
7
            ans = 0
       elif ms[u] & ms[v]:
9
           ans = abs(u-v)
10
       else:
11
           for k in range(n):
12
                if ms[k] & ms[u] and ms[k] & ms[v]:
13
                    ans = min(ans, abs(u - k), abs(k - v))
14
       print(ans)
15
```

1.3 Phân Tích Độ Phức Tạp

1.3.1 Độ phức tạp thời gian.

Ở bước **tiền xử lý**, ta cần xây dựng mảng ms_u với số phép thao tác là $2 \cdot n$. Do đó, độ phức tạp là $\Theta(n)$.

Ở mỗi truy vấn, hai trường hợp đầu chỉ mất một thao tác thực hiện, nhưng với trường hợp thứ ba, ta mất n thao tác để duyệt mọi phần tử trong mảng, do đó mất độ phức tạp $\Theta(n)$.

Tổng độ phức tạp xử lý các truy vấn là $\Theta(q \cdot n)$.

Do đó, độ phức tạp thời gian của bài toán là

$$\langle \Theta(n), \Theta(q \cdot n) \rangle$$
 hay $\Theta(n + q \cdot n)$.

1.3.2 Độ phức tạp không gian.

Ở bước **tiền xử lý**, ta cần tạo một mảng ms_u , do đó mất độ phức tạp không gian là $\Theta(n)$.

 \mathring{O} bước **xử lý truy vấn**, ta không tạo thêm gì, nên độ phức tạp không gian là $\Theta(1)$.

Vì vậy, độ phức tạp không gian của bài toán là

$$\langle \Theta(n), \Theta(1) \rangle$$
 hay $\Theta(n)$.

2 Subtask 2 $(n, q \le 10^5)$

2.1 Mô tả Thuật Toán

Không mất tính tổng quát, giả sử $s \leq t$.

Nhận xét 4: Nếu $(s,t) \notin E$ và tồn tại đường đi tối ưu, thì đường đi tối ưu $\{s,u,t\}$ có u là đỉnh gần s nhất hoặc gần t nhất về bên trái hoặc phải.

Goi:

$$L[x] = \max\{i < s \mid |\mathcal{P}_i \cap \mathcal{P}_s| = 1\}, \quad R[x] = \min\{i > s \mid |\mathcal{P}_i \cap \mathcal{P}_s| = 1\}$$

Khi đó $u \in \{L[s], R[s], L[t], R[t]\}.$

Chúng minh:

Xét 3 trường hợp của u:

• Nếu $u \leq s$ thì:

$$s - L[s] \le s - i \quad \forall i \le s, \ |\mathcal{P}_i \cap \mathcal{P}_s| = 1.$$

Do đó,

$$\Rightarrow u = L[s].$$

• Nếu $s \le u \le t$ thì:

Mọi u thỏa mãn đều tạo ra đường đi tối ưu.

$$\Rightarrow u = R[s]$$
 hoặc $u = L[t]$ đều thỏa mãn.

• Nếu $t \leq u$ thì:

$$R[t] - t \le i - t \quad \forall t \le i, \ |\mathcal{P}_t \cap \mathcal{P}_i| = 1.$$

Do đó,

$$\Rightarrow u = R[t].$$

Suy ra,

$$u \in \{L[s], R[s], L[t], R[t]\}.$$

2.2 Cài Đặt Thuật Toán

Để xây dựng L[x], R[x], ta duy trì mảng last[4] lưu hai vị trí cuối cùng có bit thứ b bật và mask của hai vị trí là khác nhau.

Ban đầu $L[x] = -1, R[x] = n, \forall x.$

```
last = [(-1, -1) for i in range(4)]
L = [-1 for i in range(n)]
R = [n for i in range(n)]
```

Tại vị trí i, nếu bit b bật thì:

p = last[b] sao cho $ms_p \neq ms_i$

Sau đó:

$$L[i] = \max(L[i], p), \quad R[p] = \min(R[p], i)$$

và cập nhật i vào vị trí cuối cùng có bit thứ b hay last[b].

```
for i in range(n):
1
       for b in range(4):
2
           if ms[i] >> b & 1:
               p = last[b][last[b][0] != -1
                             and ms[i] == ms[last[b][0]]]
5
               if p != -1:
6
                    L[i] = \max(L[i], p)
                    R[p] = \min(R[p], i)
8
               if last[b][0] == -1 or ms[last[b][0]] == ms[i]:
10
                    last[b] = (i, last[b][1])
11
                else:
12
                    last[b] = (i, last[b][0])
13
```

Khi đã có L[x], R[x], mỗi truy vấn:

- Nếu s = t hoặc $(s, t) \in E$: xử lý như Subtask 1.
- Ngược lại: duyệt $u \in \{L[s], R[s], L[t], R[t]\}$ và lấy min |u s| + |u t| nếu thỏa mãn điều kiện $ms_u\&ms_s \neq 0$ và $ms_u\&ms_t \neq 0$. Nếu không tìm được u thỏa mãn, in -1.

```
INF = 1000000000
  for i in range(q):
2
       u, v = map(int, input().split())
3
       u = u - 1
4
       v = v - 1
       ans = -1
6
       if ms[u] & ms[v]:
7
           ans = abs(u-v)
8
       else:
9
           ans = INF
10
           if L[u] != -1:
11
                ans = min(ans, abs(u - L[u]) + abs(L[u] - v))
12
           if R[u] != n:
13
                ans = min(ans, abs(u - R[u]) + abs(R[u] - v))
14
           if L[v] != -1:
15
                ans = min(ans, abs(v - L[v]) + abs(L[v] - u))
16
           if R[v] != n:
17
                ans = min(ans, abs(v - R[v]) + abs(R[v] - u))
18
           if ans == INF:
19
                ans = -1
20
       print(ans)
21
```

2.3 Phân Tích Độ Phức Tạp

2.3.1 Độ phức tạp thời gian.

Ở bước tiền xử lý:

- Đầu tiên, ta cần xây dựng mảng ms_u với số phép thao tác là $2 \cdot n$.
- Tiếp theo, để khởi tạo mảng L[x] và R[x], ta duyệt qua n phần tử. Với mỗi phần tử, ta kiểm tra tại 2 bit bật (số phép thao tác là 4), và tại mỗi bit bật ta kiểm tra tối đa 2 vị trí trong last[b] để tìm p thỏa mãn (số thao tác tại mỗi bit bật là 2).

Do đó, tổng số phép thao tác để khởi tạo mảng L[x], R[x] là

$$(4+2\cdot 2)\times n=8n.$$

Suy ra, tổng độ phức tạp thời gian để tiền xử lý là $\Theta(n)$.

Ở bước xử lý truy vấn:

- Với mỗi truy vấn, hai trường hợp đầu chỉ mất 1 thao tác thực hiện.
- Với trường hợp thứ ba, ta chỉ duyệt 4 phần tử và kiểm tra điều kiện thỏa mãn.

Do đó, số phép thao tác là 4 cho mỗi truy vấn, hay độ phức tạp thời gian để thực hiện mỗi truy vấn là $\Theta(1)$.

Suy ra, độ phức tạp để thực hiện toàn bộ q truy vấn là $\Theta(q)$.

Độ phức tạp thời gian của bài toán là

$$\langle \Theta(n), \Theta(q) \rangle$$
 hay $\Theta(n+q)$.

2.3.2 Độ phức tạp không gian.

Ở bước tiền xử lý:

- Ta cần tạo mảng ms_u , L[x], R[x] nên mất độ phức tạp không gian là $\Theta(n)$.
- Mảng last[4] với mỗi phần tử lưu 2 vị trí nên mất độ phức tạp không gian là $\Theta(1)$.

Do đó, độ phức tạp không gian ở bước tiền xử lý là $\Theta(n)$.

 $\mathring{\mathbf{O}}$ bước xử lý truy vấn: Ta không tạo thêm gì nên độ phức tạp không gian là $\Theta(1)$.

Độ phức tạp không gian của bài toán là

$$\langle \Theta(n), \Theta(1) \rangle$$
 hay $\Theta(n)$.

Lưu ý

Phần này note một số chỗ mình chưa giải thích trong phần mục đích.

- 1. Tại sao lại là $|\mathcal{P}_i \cap \mathcal{P}_{i+1}| = 1, \forall i < k$ mà không phải là $\mathcal{P}_i \cap \mathcal{P}_{i+1} \neq \varnothing, \forall i < k$
 - Bởi vì nếu chỉ cần điều kiện kia thì độ dài đường đi tối ưu không nhất thiết bằng 2.
 - $\{s, u_2, u_3, t\}$ vẫn thỏa mãn nếu chỉ cần với điều kiện $\mathcal{P}_i \cap \mathcal{P}_{i+1} \neq \emptyset, \forall i < k$.
 - \bullet Một cách chứng minh khác. Mục đí
ch ở đây là tìm knhỏ nhất mà vẫn thỏa mãn đường đi tối
ưu.
 - Ta ưu tiên xét $\{s, u_3, t\}$ và bỏ qua $\{s, u_2, u_3, t\}$ nếu $|\mathcal{P}_s \cap \mathcal{P}_{u_2}| = 2$ vì lúc này s có thể đến u_3 vẫn đạt tối ưu mà không cần qua u_2 (Theo nhận xét 1).
- 2. Tại sao phải lưu 2 vị trí cuối cùng có bit b bật thay vì một vị trí
 - Tại vị trí i bất kì, ta cần tìm p = last[b] sao cho ms_p ≠ ms_i nếu bit b bật.
 Nếu như chỉ lưu 1 vị trí cuối cùng, thì p có thể rơi vào trường hợp ms_p = ms_i.
 Do đó, ta cần lưu 2 vị trí để đảm bảo có thể tồn tại một vị trí trong đó ms_p ≠ ms_i.