Métodos Computacionais

Departamento de Estatística e Matemática Aplicada

Ronald Targino, Rafael Braz, Juvêncio Nobre e Manoel Santos-Neto 2026-03-08

Índice

Prefácio					
1	Intro	odução	5		
2	Motivação				
	2.1	Da teoria à simulação	7		
	2.2	Um atalho analítico útil	7		
	2.3	O papel da simulação	8		
	2.4	Atividade: Problema do Aniversário (22 jogadores)	9		
3	Nún	neros Uniformes	11		
	3.1	Geração de sequências $U(0,1)$	11		
	3.2	Geradores Congruenciais Lineares	12		
		3.2.1 Exemplo	12		
		3.2.2 Implementação em R	12		
	3.3	Geradores Congruenciais Lineares Mistos	13		
		3.3.1 Questão de estouro e aritmética modular	14		
		3.3.2 Implementação em R (com segurança de overflow)	14		
	3.4	Geradores Congruenciais Lineares Multiplicativos	15		
		3.4.1 Características e restrições	15		
		3.4.2 Definição de raiz primitiva	15		
		3.4.3 Exemplo de implementação em R	16		
4	Nún	nero Pseudoaleatórios	17		
	4.1	Introdução	17		
	4.2	Métodos para Geração de Variáveil Aleatórias Discretas	17		
		4.2.1 Método da transformação inversa	17		
		4.2.2 Método da Aceitação-Rejeição	17		
		4.2.3 Método da Composição	17		
	4.3	Métodos para Geração de Variáveil Aleatórias Contínuas	17		
		4.3.1 Método da transformação inversa	17		
		4.3.2 Método da Aceitação-Rejeição	17		
5	Otin	nização Numérica	18		
	5.1	Método de Newton	18		
	5.2	Método de Newton-Raphson	18		

	5.3	Método Escore de Fisher	18		
	5.4	Método BFGS	18		
6	Mét	odos de Reamostragem	19		
	6.1	Bootstrap	19		
		6.1.1 Introdução	19		
		6.1.2 Acurária da média amostral	19		
		6.1.3 Estimativa bootstrap do erro padrão	19		
		6.1.4 Bootstrap Paramétrico	19		
		6.1.5 Bootstrap Não Paramétrico	19		
	6.2	Jackknife	19		
		6.2.1 Introdução	19		
		6.2.2 Estimador do víes	19		
		6.2.3 Estimado do erro padrão	19		
	6.3	Intervalos de Confiança	19		
		6.3.1 Intervalo de Confiança Normal e t-Student	19		
		6.3.2 Intervalo de Confiança bootstrap-t	19		
		6.3.3 Intervalos de Confiança bootstrap percentil	19		
		6.3.4 Intervalos de Confiança bootstrap - versões aprimoradas	19		
7	Mét	odos de Monte Carlo	20		
	7.1	Introdução	20		
	7.2	Integração de Monte Carlo	20		
	7.3	Erro de Monte Carlo	20		
	7.4	Monte Carlo via Função de Importância	20		
	7.5	Método de Máxima Verossimilhança	20		
8	Algo	pritmo EM	21		
9	Mét	odos Adicionais	22		
Re	References				

Prefácio

Este livro resulta de anos de experiência em sala de aula dos professores Ronald Targino, Rafael Braz, Juvêncio Nobre e Manoel Santos-Neto. Destina-se a apoiar os alunos da graduação em Estatística e do Programa de Pós-Graduação em Modelagem e Métodos Quantitativos (PPGMMQ) do Departamento de Estatística e Matemática Aplicada (DEMA) da Universidade Federal do Ceará (UFC).

Ao longo dos capítulos, abordamos a geração de números aleatórios (discretos e contínuos); métodos de suavização; simulação estocástica por inversão, rejeição e composição, bem como métodos de reamostragem; métodos de aproximação e integração; quadratura Gaussiana, integração de Monte Carlo e quadratura adaptativa; métodos de Monte Carlo em sentido amplo; amostradores MCMC, com ênfase em Gibbs e Metropolis—Hastings; otimização numérica via Newton—Raphson, Fisher scoring e quase-Newton, além do algoritmo EM; Bootstrap e Jackknife; diagnóstico de convergência; e aspectos computacionais em problemas práticos, com foco em implementação eficiente, estabilidade numérica e reprodutibilidade dos resultados.

Esperamos que este material sirva não apenas como texto-base para as disciplinas Estatística Computacional (graduação em Estatística) e Métodos Computacionais em Estatística (Mestrado-PPGMMQ), mas também como suporte para aqueles que desejam programar com qualidade na área de Estatística.

1 Introdução

A simulação tem um papel preponderante na estatística moderna, e suas vantagens no ensino de Estatística são conhecidas há muito tempo. Em um de seus primeiros números, o periódico Teaching Statistics publicou artigos que aludem precisamente a isso. Thomas e Moore (1980) afirmaram que "a introdução do computador na sala de aula escolar trouxe uma nova técnica para o ensino, a técnica da simulação". Zieffler e Garfield (2007) e Tintle et al. (2015) discutem o papel e a importância da aprendizagem baseada em simulação no currículo de graduação em Estatística. No entanto, outros autores (por exemplo, Hodgson e Burke 2000) discutem alguns problemas que podem surgir ao ensinar uma disciplina por meio de simulação, a saber, o desenvolvimento de certos equívocos na mente dos estudantes (Martins 2018).

2 Motivação

A Estatística, além de lidar com modelos matemáticos rigorosos, também é permeada por situações em que a intuição humana falha de maneira sistemática. Um exemplo clássico é o **problema do aniversário**, que há décadas desperta curiosidade entre estudantes e pesquisadores.

O enunciado é simples: em uma sala com r pessoas, qual a probabilidade de que pelo menos duas delas compartilhem o mesmo aniversário?

À primeira vista, a maioria das pessoas acredita que esse número deva ser próximo da metade de 365, isto é, cerca de 183 pessoas. A intuição ingênua parte de uma lógica equivocada: se existem 365 dias no ano, apenas quando o número de candidatos for próximo da metade dessas datas é que começariam a surgir coincidências significativas. Esse raciocínio é frequentemente reforçado pelo chamado princípio das gavetas de Dirichlet (ou princípio da casa dos pombos), que garante coincidências apenas quando o número de indivíduos ultrapassa o número de dias disponíveis.

No entanto, a análise probabilística mostra um resultado surpreendente: com apenas **23 pessoas** em uma sala, a probabilidade de que haja pelo menos uma coincidência de aniversários já é **superior a 50%**. Esse resultado contraintuitivo se deve ao crescimento rápido do número de possíveis pares: em um grupo de 23 pessoas existem

$$\binom{23}{2} = 253,$$

pares distintos, e cada par representa uma oportunidade de coincidência. A percepção equivocada da maioria dos alunos decorre de **subestimar o crescimento combinatório** envolvido no problema.

Esse fenômeno é tão interessante que se tornou uma porta de entrada natural para discutir a diferença entre probabilidade teórica e evidência empírica obtida por simulação.

2.1 Da teoria à simulação

Do ponto de vista teórico, a probabilidade de que todos os aniversários sejam distintos entre r pessoas é

$$\Pr(\text{todos distintos}) \ = \ \prod_{i=0}^{r-1} \frac{365-i}{365} \ = \ \left(1 - \frac{1}{365}\right) \left(1 - \frac{2}{365}\right) \cdots \left(1 - \frac{r-1}{365}\right).$$

Logo, a probabilidade de pelo menos uma coincidência é

$$p_r = 1 - \Pr(\text{todos distintos}).$$

Esse produto é conceitualmente claro, mas fica pouco manejável mentalmente para k moderados. É aqui que a **simulação computacional** pode entrar como aliada didática e científica.

2.2 Um atalho analítico útil

O produto acima admite uma **aproximação exponencial simples e acurada**, obtida tomando logaritmo e usando a expansão para argumentos pequenos:

$$ln(1-x) = -x + o(x), \quad (x \to 0).$$

Aplicando ao produto,

$$\begin{split} \ln(1-p_r) \; &= \; \sum_{i=1}^{r-1} \ln \Bigl(1 - \frac{i}{365} \Bigr) \\ &\approx \; - \sum_{i=1}^{r-1} \frac{i}{365} \; = \; - \, \frac{1+2+\cdots+(r-1)}{365} \; = \; - \, \frac{r(r-1)}{2 \cdot 365}. \end{split}$$

Exponentiando e isolando p_r , obtemos a aproximação

$$p_r \; \approx \; 1 - \exp\biggl\{ -\frac{r(r-1)}{730} \biggr\} \; . \label{eq:pr}$$

Essa fórmula tem três virtudes didáticas:

- 1) Clareza: exibe explicitamente o papel do número de pares $\binom{r}{2}$.
- 2) Rapidez: permite cálculos mentais aproximados para valores de r de interesse.

3) Boas aproximações já para r na casa de dezenas.

Exemplo rápido:

• Para 23 pessoas:

$$p_{23}^{(\text{aprox})} \; = \; 1 - \exp \left\{ -\frac{23 \cdot 22}{730} \right\} \; = \; 1 - \exp \{ -0.69315 \} \; \approx \; 0.500,$$

alinhando-se ao resultado clássico de que ${\bf 23}$ pessoas já superam 50% de chance de coincidência.

2.3 O papel da simulação

A simulação estatística permite reproduzir o experimento de forma empírica: sorteamos aleatoriamente dias de aniversário para os indivíduos e verificamos se há repetições. Repetindo o processo milhares de vezes, obtemos uma estimativa para a probabilidade de coincidência.

Por exemplo, em \mathbf{R} :

```
k <- 23
birthdays <- sample(1:365, k, replace = TRUE)
any(duplicated(birthdays))</pre>
```

[1] TRUE

Ao repetir esse procedimento muitas vezes (por exemplo, 10.000 simulações), podemos estimar a proporção de conjuntos com coincidência. Pela Lei dos Grandes Números, essa estimativa converge para o valor teórico de aproximadamente 0,507 quando k=23.

```
set.seed(123) #reprodutibilidade

k <- 23
B <- 10000

acertos <- OL
i <- OL

repeat {
   i <- i + 1L
   bdays <- sample(1:365, k, replace = TRUE)</pre>
```

```
acertos <- acertos + as.integer(any(duplicated(bdays)))
if (i >= B) break
}
p_hat <- acertos / B
p_hat</pre>
```

[1] 0.5073

2.4 Atividade: Problema do Aniversário (22 jogadores)

Nesta motivação consideramos um exemplo discutido em Martins (2018) que é o conhecido e amplamente divulgado problema do aniversário (ver, por exemplo, Falk 2014). Martins (2018) segue o exemplo de Matthews e Stones (1998), considerando duas equipes de futebol e, portanto, coincidências de aniversário entre 22 jogadores. Martins (2018) afirma que um resultado positivo importante dessa atividade é a discussão que surgirá naturalmente entre os estudantes, com o professor atuando como mediador. Além disso, os estudantes adoram jogos e a descoberta prática, e a simulação facilita o engajamento nessas atividades, ao mesmo tempo que ilustra resultados que podem ser não intuitivos, bem como teoria geral, como a Lei dos Grandes Números.

Agora iremos considerar o seguinte problema:

O problema: Em uma partida de futebol, qual é a probabilidade de que pelo menos dois dos 22 jogadores façam aniversário no mesmo dia?

Em um pais chamado de país do futebol, o contexto é proposital: o futebol é popular e as probabilidades resultantes são contraintuitivas. Antes de qualquer cálculo, considere as hipóteses: (i) todos os 365 dias do ano são igualmente prováveis para qualquer aniversário; (ii) as datas de aniversário dos jogadores são independentes entre si.

Objetivos

- Estimar, via simulação, a probabilidade de coincidência de aniversários.
- Relacionar frequência relativa, Lei dos Grandes Números e variação amostral.
- Comparar o resultado exato e aproximado.

Hipóteses

• 365 dias equiprováveis, datas independentes, ignorar bissexto/gêmeos.

Materiais

• R (ou Posit Cloud), roteiro com comandos sample(), table(), mean().

3 Números Uniformes

As simulações, de modo geral, requerem uma base inicial formada por números aleatórios. Diz-se que uma sequência R_1, R_2, \dots é composta por números aleatórios quando cada termo segue a distribuição uniforme U(0,1) e R_i é independente de R_j para todo $i \neq j$. Embora alguns autores utilizem o termo "números aleatórios" para se referir a variáveis amostradas de qualquer distribuição, aqui ele será usado exclusivamente para variáveis com distribuição U(0,1).

3.1 Geração de sequências U(0,1)

Uma abordagem é utilizar dispositivos físicos aleatorizadores, como máquinas que sorteiam números de loteria, roletas ou circuitos eletrônicos que produzem "ruído aleatório". Contudo, tais dispositivos apresentam desvantagens:

- 1. Baixa velocidade e dificuldade de integração direta com computadores.
- 2. Necessidade de reprodutibilidade da sequência. Por exemplo, para verificação de código ou comparação de políticas em um modelo de simulação, usando a mesma sequência para reduzir a variância da diferença entre resultados.

Uma forma simples de obter reprodutibilidade é armazenar a sequência em um dispositivo de memória (HD, CD-ROM, livro). De fato, a RAND Corporation publicou A Million Random Digits with 100 000 Random Normal Deviates (1955). Entretanto, acessar armazenamento externo milhares ou milhões de vezes torna a simulação lenta.

Assim, a abordagem preferida é **gerar números pseudoaleatórios em tempo de execução**, via recorrências determinísticas sobre inteiros. Isso permite:

- Geração rápida;
- Eliminação do problema de armazenamento;
- Reprodutibilidade controlada.

Entretanto, a escolha inadequada da recorrência pode gerar sequências com baixa qualidade estatística.

3.2 Geradores Congruenciais Lineares

Um Gerador Congruencial Linear (LGC) produz uma sequência de inteiros não negativos X_i , i = 1, 2, ..., por meio da relação de recorrência:

$$X_i=(aX_{i-1}+c) \bmod m, \quad i=1,2,\dots,$$

em que a>0 é o multiplicador, $X_0\geq 0$ é a semente (seed), $c\geq 0$ é o incremento e m>0 é o módulo.

Os valores a,c,X_0 estão no intervalo [0,m-1]. O número pseudoaleatório R_i é obtido por:

$$R_i = \frac{X_i}{m}, \quad R_i \in (0,1).$$

Se m for suficientemente grande, os valores discretos $0/m, 1/m, \dots, (m-1)/m$ são tão próximos que R_i pode ser tratado como variável contínua.

3.2.1 Exemplo

Seja o gerador:

$$X_i = (9X_{i-1} + 3) \bmod 24, \quad i \ge 1.$$

Escolhendo $X_0 = 3$:

$$X_1 = (9 \times 3 + 3) \mod 24 = 14$$

$$X_2 = (9 \times 14 + 3) \mod 24 = 1$$

e assim por diante.

A sequência $R_i = X_i/16$ gerada terá período $\ell = 16.$

3.2.2 Implementação em R

```
# Função LCG genérica
lcg <- function(a, c, m, seed, n) {
    x <- numeric(n)
    x[1] <- seed
    for (i in 2:n) {
        x[i] <- (a * x[i-1] + c) %% m
    }
    r <- x / m
    return(list(X = x, R = r))
}

# Exemplo com a = 9, c = 3, m = 24, seed = 3
resultado <- lcg(a = 9, c = 3, m = 24, seed = 3, n = 20)
resultado$X</pre>
```

[1] 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21 0 3 6 9 12

resultado\$R

```
[1] 0.125 0.250 0.375 0.500 0.625 0.750 0.875 0.000 0.125 0.250 0.375 0.500 [13] 0.625 0.750 0.875 0.000 0.125 0.250 0.375 0.500
```

3.3 Geradores Congruenciais Lineares Mistos

Nos LCGs **mistos** temos c > 0. Uma escolha prática é $m = 2^b$, onde b é o número de bits utilizável para inteiros positivos na arquitetura/linguagem. Em muitos ambientes, inteiros usam 32 bits (um para o sinal), implicando b = 31 e intervalo $[-2^{31}, 2^{31} - 1]$.

Quando $m=2^b$, obtemos **período completo** $(\ell=m)$ se:

- 1) $c \in \mathbf{impar}$ (garante $\gcd(c, m) = 1$);
- 2) a-1 é múltiplo de todos os fatores primos de m e também de 4 (como m é potência de 2).

Essa é a razão de geradores simples com $m=2^b$, c impar e $a\equiv 1\pmod 4$ atingirem $\ell=m$.

3.3.1 Questão de estouro e aritmética modular

Em linguagens com inteiros limitados, calcular $aX_{i-1}+c$ pode **transbordar**. Soluções comuns:

- usar precisão estendida (64 bits) ou bibliotecas de inteiros grandes;
- empregar truques de aritmética modular (como o método de Schrage) para evitar overflow;
- trabalhar com módulo $m=2^b$ e aproveitar o "wrap" de bits.

A seguir, implementamos LCG misto com $m=2^{31}$, a=906185749, c=1. Parâmetros com boas propriedades estatísticas relatadas na literatura.

3.3.2 Implementação em R (com segurança de overflow)

Para garantir a correção do módulo com inteiros grandes, usaremos bit64 (inteiros de 64 bits) e normalizaremos para (0,1).

```
#if (!requireNamespace("bit64", quietly = TRUE)) {
# install.packages("bit64")
#}
library(bit64)
lcg_misto <- function(n, seed = 3456L,</pre>
                       a = 906185749L
                       c = 1L
                       m = bit64::as.integer64(2)^31) {
  # Trabalha em integer64 para evitar perda de precisão
  x <- bit64::as.integer64(seed)
  outX <- bit64::integer64(n)
  outR <- numeric(n)</pre>
  outX[1] <- x
  outR[1] <- as.double(x) / as.double(m)</pre>
  for (i in 2:n) {
    x <- (bit64::as.integer64(a) * x + bit64::as.integer64(c)) %% m
    outX[i] <- x
    outR[i] <- as.double(x) / as.double(m)</pre>
  list(X = outX, R = outR)
}
```

```
# Exemplo: primeiros 5 números com seed = 3456
set.seed(NULL)
g1 <- lcg_misto(n = 5, seed = 3456L)
g1$X</pre>
```

integer64

[1] 3456 746789761 460230038 1591485775 1024426876

g1\$R

[1] 1.609325e-06 3.477511e-01 2.143113e-01 7.410933e-01 4.770359e-01

3.4 Geradores Congruenciais Lineares Multiplicativos

No caso **multiplicativo**, temos c = 0, e a recorrência fica:

$$X_i = (aX_{i-1}) \bmod m$$

3.4.1 Características e restrições

- Se $X_i = 0$ em algum passo, toda a sequência futura será zero portanto $X_0 \neq 0$.
- Se a = 1, a sequência é constante também deve ser evitado.
- O **período máximo** possível é m-1, e ele só é atingido quando:
 - 1. $m ext{ é primo}$;
 - 2. a é uma raiz primitiva módulo m.

3.4.2 Definição de raiz primitiva

Um número a é raiz primitiva módulo m se seus poderes geram todos os inteiros não nulos módulo m.

Matematicamente, a satisfaz:

$$m \nmid a^{(m-1)/q} - 1$$
, $\forall q$ primo que divide $m - 1$

Esse tipo de gerador é chamado Gerador de Módulo Primo e Período Máximo.

3.4.3 Exemplo de implementação em R

A seguir, implementamos um gerador multiplicativo com módulo primo $m=2^{31}-1$ (primo de Mersenne) e multiplicador a=630360016, conhecido por apresentar boas propriedades estatísticas.

```
if (!requireNamespace("gmp", quietly = TRUE)) {
  install.packages("gmp")
}
library(gmp)
lcg_mult_primo <- function(n, seed, a = 630360016, m = 2147483647) {
  A <- as.bigz(a); M <- as.bigz(m)
  x <- as.bigz(seed)</pre>
  X <- integer(n); R <- numeric(n)</pre>
  for (i in seq_len(n)) {
    X[i] <- as.integer(x)</pre>
    R[i] <- as.numeric(x) / m</pre>
    x \leftarrow (A * x) \% M
  }
  list(X = X, R = R)
# Exemplo: gerar 10 valores
g2 \leftarrow lcg_mult_primo(n = 10, seed = 12345L)
g2$X
```

- [1] 12345 1461144439 1646755962 423395703 2041926374 720397004
- [7] 140279311 597861375 629442282 759842328

```
g2$R
```

- [1] 5.748589e-06 6.803984e-01 7.668305e-01 1.971590e-01 9.508461e-01
- [6] 3.354610e-01 6.532264e-02 2.784009e-01 2.931069e-01 3.538292e-01

4 Número Pseudoaleatórios

- 4.1 Introdução
- 4.2 Métodos para Geração de Variáveil Aleatórias Discretas
- 4.2.1 Método da transformação inversa
- 4.2.2 Método da Aceitação-Rejeição
- 4.2.3 Método da Composição
- 4.3 Métodos para Geração de Variáveil Aleatórias Contínuas
- 4.3.1 Método da transformação inversa
- 4.3.2 Método da Aceitação-Rejeição

5 Otimização Numérica

- 5.1 Método de Newton
- 5.2 Método de Newton-Raphson
- 5.3 Método Escore de Fisher
- 5.4 Método BFGS

6 Métodos de Reamostragem

6.1 Bootstrap

- 6.1.1 Introdução
- 6.1.2 Acurária da média amostral
- 6.1.3 Estimativa bootstrap do erro padrão
- 6.1.4 Bootstrap Paramétrico
- 6.1.5 Bootstrap Não Paramétrico
- 6.2 Jackknife
- 6.2.1 Introdução
- 6.2.2 Estimador do víes
- 6.2.3 Estimado do erro padrão
- 6.3 Intervalos de Confiança
- 6.3.1 Intervalo de Confiança Normal e t-Student
- 6.3.2 Intervalo de Confiança bootstrap-t
- 6.3.3 Intervalos de Confiança bootstrap percentil
- 6.3.4 Intervalos de Confiança bootstrap versões aprimoradas

7 Métodos de Monte Carlo

- 7.1 Introdução
- 7.2 Integração de Monte Carlo
- 7.3 Erro de Monte Carlo
- 7.4 Monte Carlo via Função de Importância
- 7.5 Método de Máxima Verossimilhança

8 Algoritmo EM

9 Métodos Adicionais

References

- Falk, Ruma. 2014. "A Closer Look at the Notorious Birthday Coincidences". *Teaching Statistics* 36 (2): 41–46. https://doi.org/10.1111/test.12014.
- Hodgson, Ted, e Maurice Burke. 2000. "On Simulation and the Teaching of Statistics". Teaching Statistics 22 (3): 91–96. https://doi.org/10.1111/1467-9639.00033.
- Martins, Rui Manuel Da Costa. 2018. "Learning the Principles of Simulation Using the Birthday Problem". *Teaching Statistics* 40 (3): 108–11. https://doi.org/10.1111/test. 12164.
- Matthews, Robert, e Fiona Stones. 1998. "Coincidences: the truth is out there". Teaching Statistics 20 (1): 17–19. https://doi.org/https://doi.org/10.1111/j.1467-9639.1998.tb00752.x.
- Thomas, F. H., e J. L. Moore. 1980. "CUSUM: Computer Simulation for Statistics Teaching". Teaching Statistics 2 (1): 23–28. https://doi.org/10.1111/j.1467-9639.1980.tb00374.x.
- Tintle, Nathan, Beth Chance, George Cobb, Soma Roy, Todd Swanson, e Jill VanderStoep. 2015. "Combating Anti-Statistical Thinking Using Simulation-Based Methods Throughout the Undergraduate Curriculum". *The American Statistician* 69 (4): 362–70. https://doi.org/10.1080/00031305.2015.1081619.
- Zieffler, Andrew, e Joan B. Garfield. 2007. "Studying the Role of Simulation in Developing Students' Statistical Reasoning". Em *Proceedings of the 56th Session of the International Statistical Institute (ISI)*. International Statistical Institute.