AD-A135 773 COEFFICIENTS FOR USE IN THE U.S. ARMY CORPS OF ENGINEERS RESERVOIR MODEL C...(U) ARMY ENGINEER WATERWAYS EXPERIMENT STATION VICKESBURG MS ENVIR...
UNCLASSIFIED C.D. COLLINS ET AL. OGT 83 WES/TR/E-83-15 F/G 13/2 1/2 -AD-A135 773 NL

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS - 963 44

į

AD-A135-773

DEC 14-83

83 12 13 299

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER Technical Report E-83-15	ECIPAT'S CATALOG NUMBER
4. TITLE (and Subtitle)	5. TYPE OF REPORT & PERIOD COVERED
COEFFICIENTS FOR USE IN THE U. S. ARMY CORPS OF ENGINEERS RESERVOIR MODEL,	Final report
CE-QUAL-R1	6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(e)	8. CONTRACT OR GRANT NUMBER(#)
Carol D. Collins and Joseph H. Wlosinski	
9. PERFORMING ORGANIZATION NAME AND ADDRESS U. S. Army Engineer Waterways Experiment	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Station, Environmental Laboratory, P. O. Box 631, Vicksburg, Miss. 39180	EWQOS Work Unit IB.l
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
Office, Chief of Engineers, U. S. Army	October 1983
Washington, D. C. 20314	13. NUMBER OF PAGES
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)	15. SECURITY CLASS. (of this report)
	Unclassified
	15a. DECLASSIFICATION DOWNGRADING SCHEDULE
IS DISTRIBUTION STATEMENT (of this Report)	

16. DISTRIBUTION STATEMENT (at this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report)

18. SUPPLEMENTARY NOTES

Available from National Technical Information Service, 5285 Port Royal Road, Springfield, Va. 22151.

19. KEY WORDS (Continue on reverse side if necessary and identity by Lock number)

Algorithms

CE-QUAL-R1 (Computer program)

Computer programs

Reservoirs

Water quality

29. ABSTRACT (Continue on reverse side if necessary and identity by block number)

This report supplies information about, and literature values for, many of the coefficients needed for the U. S. Army Corps of Engineers Reservoir Model, CE-QUAL-Rl. Most of the information presented concerns biological processes of gross production, ingestion, respiration, mortality, and decomposition. Coefficients specified are suitable for the algorithms described in the

(Continued)

DD 1 AM 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

Unclassified SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)
20. ABSTRACT (Continued).
Instruction Report E-82-1 entitled "CE-QUAL-R1: A Numerical One-Dimensional Model of Reservoir Water Quality; User's Manual," available from the Environmental Laboratory, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.
· · · · · · · · · · · · · · · · · · ·

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE/When Date Entered)

PREFACE

1

This report was sponsored by the Office, Chief of Engineers (OCE), U. S. Army, as part of the Environmental Water Quality and Operational Studies (EWQOS) Work Unit IB.l entitled Improved Description of Reservoir Ecological and Water Quality Processes. OCE Technical Monitors for EWQOS were Mr. John Bushman, Mr. Earl Eiker, and Mr. James L. Gottesman.

Work for this report was conducted during the period January 1982-September 1982 by Dr. Carol D. Collins and Dr. Joseph H. Wlosinski, Water Quality Modeling Group (WQMG) of the Environmental Laboratory (EL), U. S. Army Engineer Waterways Experiment Station (WES). The draft report was reviewed by Mr. Jack Waide and Drs. Allan Lessem and John Barko, all of EL.

The study was conducted under the direct supervision of Mr. Aaron Stein, Acting Chief, WQMG, and under the general supervision of Mr. Donald L. Robey, Chief, Ecosystem Research and Simulation Division, and Dr. John Harrison, Chief, EL, WES. Program Manager of EWQOS was Dr. Jerome L. Mahloch, EL.

Commander and Director of WES during this study and the preparation of this report was Col. Tilford C. Creel, CE. Technical director was Mr. F. R. Brown.

This report should be cited as follows:

Collins, C. D., and Wlosinski, J. H. 1983. "Coefficients for the U. S. Army Corps of Engineers Reservoir Model, CE-QUAL-R1," Technical Report E-83-15, U. S. Army Engineer Waterways Experiment Station, Vicksburg, Miss.

CONTENTS

	Page
PREFACE	1
LIST OF TABLES	4
PART I: INTRODUCTION	6
Background	6
Purpose	6
PART II: COEFFICIENTS	10
Coefficient Types	10
Physiological Processes	11
Light Extinction	12
EXCO	13
EXTINS and EXTINP	15
Phytoplankton	18
TPRESP	18
TPMAX	20
TSETL	28
PS2PO4	32
PS2N	34
PS2CO2	38
PS2L	40
ALGT1, ALGT2, ALGT3, ALGT4	42
Zooplankton	44
TZMAX	44
TZMORT	46
ZEFFIC	47
PREF1, PREF2, PREF3	49
TZRESP	51
ZS2P	53
ZOOT1, ZOOT2, ZOOT3, ZOOT4	53
Benthos	56
TBMAX	56
TBMORT	59
BEFFIC	59
BS2SED	60
TBRESP	60
BENT1, BENT2, BENT3, BENT4	62
Fish	62
TFMAX	63
FS2BEN, FS2ZOO, FS2FSH	63
F2ALG, F2DET, F2ZOO, F3BEN, F3SED	64
FSHT1, FSHT2, FSHT3, FSHT4	66
FEFFIC	69
TFMORT	69
TFRESP	70

Other Coefficients	71
TDSETL	71
DETT1, DETT2	72
TDOMDK	73
TNH3DK	75
TNO2DK	77
TDETDK	77
TCOLDK	80
TSEDDK	84
DOMT1, DOMT2	84
NH3T1, NH3T2	85
NO2T1, NO2T2	86
TSSETL	86
QlocoL	86
PART III: RECOMMENDAT	ions 87
REFERENCES	88

LIST OF TABLES

1

No.		Page
1	Alphabetical listing of the coefficients in this report	8
2	Extinction coefficients for water (1/m)	14
3	Self-shading coefficients due to particulate matter $(1/m*mg/L)$	17
4	Phytoplankton dark respiration rates (1/day)	20
5	Gross production rates of phytoplankton (1/day)	25
6	Phytoplankton settling rates (m/day)	30
7	Phytoplankton half-saturation coefficients for P limitation (mg/L)	33
8	Phytoplankton half-saturation coefficients for N limitation (mg/L)	36
9	Phytoplankton half-saturation coefficients for CO2 limitation (mg/L)	39
10	Phytoplankton half-saturation coefficients for light limitation (kcal/m²/hr)	41
11	Temperature coefficients for phytoplankton (°C)	43
12	Maximum ingestion rates for zooplankton (1/day)	45
13	Zooplankton mortality rates (1/day)	46
14	Zooplankton assimilation efficiency coefficients (dimensionless)	48
15	Food preference factors of zooplankton (dimensionless)	50
16	Zooplankton maximum respiration rates (1/day)	52
17	Zooplankton half-saturation coefficients (mg/L)	53
18	Zooplankton temperature coefficients (°C)	54
19	Acclimation temperature, upper and lower lethal temperature, and the temperature range for a constant maximum grazing rate for zooplankton exposed to rapid temperature stress (°C)	55
20	Daily ration of benthic organisms (1/day)	57
21	Benthos maximum ingestion rates (1/day)	58
22	Benthos assimilation efficiencies (dimensionless)	59

No.		Page
23	Maximum respiration rates for benthos (1/day)	61
24	Temperature coefficients for benthos metabolism (°C)	62
25	Estimated half-saturation coefficients for fish growth (mg/L)	64
26	Fish food expressed as a fraction of the diet	65
27	Temperature coefficients for fish ingestion (°C)	67
28	Assimilation efficiencies of fish (dimensionless)	69
29	Fish nonpredatory mortality rates (1/day)	70
30	Fish maximum respiration rates (1/day)	71
31	Detritus settling velocities (m/day)	72
32	Temperature coefficients for decomposition (°C)	73
33	DON decay rates (1/day)	75
34	Ammonia oxidation rates (1/day)	76
35	Detritus decay rates (1/day)	80
36	Colliform and fecal streptococcus decay rates (1/day)	82
37	Freshwater die-off rates of coliform bacteria measured in situ (1/day)	83
38	Temperature coefficients for DOM decay (°C)	85
39	Temperature coefficients for ammonia oxidation	85

1,

COEFFICIENTS FOR USE IN THE U. S. ARMY CORPS OF ENGINEERS RESERVOIR MODEL, CE-QUAL-R1

PART I: INTRODUCTION

Background

1. A numerical one-dimensional model (CE-QUAL-R1) of reservoir water quality is being developed as part of the Environmental and Water Quality Operational Studies (EWQOS). A User's Manual (Environmental Laboratory 1982), which describes the model and lists the data required, is available from the U. S. Army Engineer Waterways Experiment Station (WES). One of the major types of input to the model is a set of coefficients used in equations which describe rates of change for various water quality variables. Although a description of the coefficients is included in the User's Manual, no values are supplied for many of them. Most of these deal with biological processes which are extremely difficult, and very costly, to measure; in fact, for a pre-impoundment study, many coefficients cannot be measured. For these reasons, users of CE-QUAL-Rl will have to use coefficient estimates found in the literature.

Purpose

2. The purpose of this report is to aid the users of CE-QUAL-Rl by supplying information about, and values for, many of the coefficients needed for use of the model. Table 1 lists those coefficients for which information is supplied in this report. The coefficients presented are

suitable for the version of the model described in the User's Manual (Environmental Laboratory 1982). Neither the information concerning coefficient measurements nor the coefficient values listed should be considered to represent an exhaustive search of the literature. In many cases, the parameter values found in the literature were inappropriate to use in the model because of (a) the lack of information necessary to convert the value to the proper units or (b) improper experimental design. Therefore, this report includes literature values for experiments that were already in appropriate form for use in CE-QUAL-R1 or received in the responsibility of the company of the com

3. Although parameter values for a given coeffict nt may range over several orders of magnitude, it was for inappropriate to recommend a single value for a parameter. Instead, experimentally determined values are presented to provide the user with a range of values.

Table 1
Alphabetical listing of coefficients in this report

	PAGE N	UMBERS*	
COEFFICIENT	THIS REPORT	USER'S MANUAL	
ALGT1	42	193,194	
ALGT2	42	193,194	
ALGT3	42	193,194	
ALGT4	42	193,194	
BEFFIC	59	197	
BENT1	62	198	
BENT2	62	198	
BENT3	62	198	
BENT4	62	198	
BS2SED	60	197	
DETT1	72	199	
DETT2	72	199	
DOMT1	84	209	
DONT'2	84	209	
EXCO	13	182	
EXTINP	15	187	
EXTINS	15	182	
FEFFIC	69	203,204,205	
FSHT1	66	203,204,205	
FSHT2	66	203,204,205	
FSHT3	66	203,201,205	
FSHT4	66	203,204,205	
FS2BUL	63	201	
FS2FSt	63	201	
F\$2700	6.3	201	
F2A10	6.4	202	
P. 1477		202	
F. 27 a)	6.4	202	
E HE N	64	202	
Maria A	64	202	
	64	210	
1.1: ·	85	210	
MEAS.	85	211	
	36	211	
• • •	ΩG	195	
-1	40	195	
	.1 (1.27.5	

The Parison of the Community of the Comm

Table 1 (Concluded)

PAGE NUMBERS*

COEFFICIENT	THIS REPORT	USER'S MANUAL
PREF3	49	195
PS2CO2	38	191,192
PS2L	40	131,192
PS2N	34	190,192
PS2PO4	32	190,192
Qlocol	86	213
TBMAX	56	197
TBMORT	59	197
TBRESP	60	197
TCOLDK	80	207
TDETDK	77	207
TDOMDK	73	207
TDSETL	71	199
TFMAX	63	201
TFMORT	69	203,204,205
TFRESP	70	203,204,205
TNH 3DK	75	207
TNO2DK	77	207
TPMAX	20	189,192
TPRESP	18	187
TSEDDK	84	207
TSETL	28	212
TSSETL	86	189,192
TZMAX	44	195
TZMORT	46	195
TZRESP	51	195
ZLFF1C	47	195
ZOOTl	5 3	196
ZOOT2	53	196
ZOOT 3	53	196
ZOOT4	53	196
ZS2P	53	196

PART II: COEFFICIENTS

Coeff cient Types

4. For those coefficients that are involved in equations as rates of change, the user <u>must</u> supply values that are appropriate to continuous exponential functions. These values should be appropriate for the equation:

$$X(t) = X_{O} \exp(K_{C} * t)$$
 (1)

where

X(t) = final condition

 X_{o} = initial condition

 $K_{C} = \begin{array}{c} \text{coefficient in units of 1/day in continuous} \\ \text{form} \end{array}$

t = time in days

5. For those coefficients that are negative (e.g., mortality rate), the negative sign is introduced internally by the model. If values are reported in the discrete form suitable for the equation

$$X(t) = X_{O} (1+K_{d}) **n$$
 (2)

where

K_d = coefficient in units of 1/day in discrete form
 n = the number of time steps in days
the coefficient must be transformed. If the user has
coefficients in the discrete form in units of 1/day, they
can be transformed to the proper continuous form by using
the following relationship:

$$K_{C} = \ln (1+K_{C}) \tag{3}$$

For a detailed explanation of the type of coefficients used by CE-QUAL-R1, please refer to the User's Manual, pages 41 through 47 (Environmental Laboratory 1982). Values included in this report are in the continuous form. This entailed transforming values for those citations that

were reported in the discrete form; transformations of units to the form used by the model were also necessary.

Physiological Processes

- 6. For zooplankton, fish, and benthos, the physiological processes modeled are ingestion, respiration, and assimilation efficiency. The units for ingestion are 1/day. Assimilation efficiency is dimensionless and is multiplied by ingestion to account for the assimilation rate. In the literature, ingestion (I) or consumption is equal to assimilation (A) + egestion (E). The amount assimilated may be separated into (a) that amount respired (R) and (b) growth (G). The products of growth may be separated into excretion (X), predatory mortality (PM), nonpredatory mortality (NM), exuviae (V), secretion (S), eggs or young (Y), harvest (H), and the change in weight (WT).
- 7. In CE-QUAL-Rl predictions are made regarding WT. In the literature it usually equals

$$WT = I - E - R - X - PM - NM - V - S - Y - H$$
 (4)

Ingestion, respiration, predatory mortality, nonpredatory mortality, and harvest are explicitly modeled. Egestion is calculated using ingestion and the assimilation efficiency. Eggs or young are not considered lost in the model and are not included in the equation. Excretion, exuviae, and secretion are considered as part of the nonpredatory mortality term. Values for growth should be used with caution. Model users must know exactly what is included in the growth term so that correct coefficient estimates can be made.

8. The rates used in the model represent the maximum rate for each process under conditions normally

found in reservoirs. These maximum rates are scaled down in the model due to predicted conditions such as temperature, nutrient, or food concentrations. Values found in the literature for rates are often measured at a set of specific conditions and may not represent a true maximum rate. Values found in this report may not necessarily be maximum rates, but the authors felt that the information may s'ill be of use in setting coefficients. The ingestion rate must be greater than the combined mortality and respiration rates divided by the assimilation efficiency.

9. Data input and coefficient selection are discussed in detail. Guidance will be given with respect to how the data item is used in the model and how the data item can be calculated or determined. Values for the coefficients are also given in tables based upon results from laboratory and in situ experimental results. With careful specification of coefficient values, calibration efforts can be held to a minimum.

Light Extinction

10. Solar radiation is distributed vertically in the water column in subroutine HEAT (which is called from subroutine MIXING). The distribution is due in part to the absorption of light by water, including dissolved substances, and by absorption by particulate organic and inorganic materials. Care must be taken when estimating or measuring extinction coefficients, for the same coefficient may have a different meaning depending on whether it is used in CE-QUAL-Rl or CE-THERM-Rl. Two extinction coefficients are used in CE-THERM-Rl: EXCO and EXTINS; EXTINP is used only in CE-QUAL-Rl.

EXCO

11. EXCO is the extinction coefficient for water, including dissolved substances (1/m). It can be estimated from the equation (Williams et al. 1981)

$$EXCO = 1.1*Z**(-0.73)$$
 (5)

given the Secchi depth (2) in meters, or it can be measured directly with a photometer using the Beers-Lambert Law

$$EXCO = (ln I-ln I_z)/Z$$
 (6)

where

I = irradiance at water surface

I_z = irradiance at depth z

However, <u>in situ</u> measurements for EXCO are likely to overestimate the extinction coefficient because it includes extinction due to detritus, phytoplankton, zooplankton, and inorganic suspended solids. Thus, the manual carefully states on p. 182 that the calculated value of EXCO should reflect the maximum light penetration (i.e., the maximum Secchi depth). This should minimize the overestimation problem. In CE-QUAL-R1 and CE-THERM-R1, self-shading due to these components is handled separately.

12. The light extinction coefficient for an ultra-oligotrophic to oligotrophic lake ranges from 0.03 to 1.0/m; for mesotrophic lakes the figures are from 0.1 to 2.0/m; for eutrophic lakes, from 0.5 to 4.0/m; and for dystrophic lakes, from 1.0 to 4.0/m (Likens 1975). The extinction coefficient of monochromatic light by a 1-m coturn of distilled water ranges from 0.0255 at 380 nm, 0.0654 at 400 nm, 0.078 at 580 nm, 0.455 at 680 nm, to 2.42 at 400 nm accelination 1957). Other values are given in a constant the temperature radiation (PAR) and the water lights.

Table 2
Extinction coefficients for Water (1/m)

SITE	DESCRIPTION	EXCO	REFERENCE
Lake Tahoe, California	oligotrophic	0.2	Wetzel 1975
Wintergreen Lake, Michigan	eutrophic	0.46-1.68	Wetzel 1975
Crystal Lake, Wisconsin Crater Lake, Oregon	oligotrophic oligotrophic,	0.2	Wetzel 1975
•	almost pure, blue	0.18	Spence 1981
Loch Borralie, Scotland	calcareous water,		
	blue green	0.34	Spence 1981
Neusiedlersee, Austria	turbid water,		
	sediment colored	3.31	Spence 1981
Loch Unagan, Scotland Black Loch, Scotland	yellow substances brown substances	0.93	Spence 1981
brack Boen, Sederand	(peaty)	1.53	Spence 1981
Loch Leven, Scotland	turbid, dense	2.33	opened 1701
	phytoplankton	2.58	Spence 1981
Lake Paajarvi, Finland	brown-stained	0.7	Verduin 1982
Highly stained lakes	average	4.0	Wetzel 1975

EXTINS and EXTINP

- 13. EXTINS is the self-shading coefficient due to particulate inorganic material in both CE-QUAL-Rl and CE-THERM-Rl. In CE-THERM-Rl, because organic particulate materials are not explicitly modeled, the light attenuation due to these materials must be handled through either EXTINS or EXCO. If the suspended solids (SS) compartment has been incremented in value to include organic as well as inorganic particulates suspended in the water column, then EXTINS (l/m*mg/L) represents the extinction coefficient for all suspended solids, including inorganic matter, phytoplankton, zooplankton, and suspended detritus. However, if the SS compartment in CE-THERM-R1 does not include organic particulates -i.e., if the magnitude of SS is identical in CE-QUAL-Rl and CE-THERM-R1--then light attenuation by organic matter suspended in the water column cannot be handled by EXTINS. Rather, the value of EXCO must be increased to handle the "extra" attenuation due to phytoplankton, zooplankton, and detritus. In either case, the magnitude of EXTINS should be the same in both models. It should typically be of the same order of magnitude as EXTINP.
- 14. EXTINP is the self-shading coefficient due to organic particulate matter in CE-QUAL-Rl (l/m*mg/L). The self-shading coefficient represents the decreased light penetration or increased light extinction resulting from phytoplankton, zooplankton, and detritus suspended in the water column. The light extinction coefficient in subroutine HEAT is modified as a function of the concentrations of these three constituents. Most measurements of EXTINP refer only to algal biomass; it is assumed in CE-QUAL-Rl that light extinction due to

zooplankton and detritus is numerically equivalent to that due to phytoplankton. Megard et al. (1980) and Smith and Baker (1978) determined that each microgram per liter of chlorophyll increased the light extinction coefficient by about 0.022 and 0.016/m, respectively. Assuming a ratio of carbon to algal biomass of 0.45 and a carbon/chlorophyll (C/chl) ratio of 50, then algebraically each milligram per liter of algal biomass should increase the light extinction coefficient by about 0.20 to 0.14/m, respectively. The range of C/chl ratios, however, varies from 25-150, resulting in a range of self-shading coefficients from 0.40/m*mg/L to 0.047/m*, g/L. Values near 0.10 have previously produced reasonable results (Environmental Laboratory 1982).

15. Light extinction by algae is computed from in situ light intensity measurements at depth intervals and in situ determinations of chlorophyll a using the modified Lambert-Bouquer Law (Megard et al. 1980). Bannister (1979) extracted chlorophyll from cell suspensions and measured the absorption spectrum to obtain the mean extinction coefficient. Theoretical estimates for attenuation of photosynthetically active radiation by chlorophyll a in algae range between 0.06 and 0.018, depending on the size and chlorophyll content of cells and colonies (Kirk 1975). The extinction coefficient was determined to range between 0.0066 and 0.0205 l, m*mq, m3 in laboratory analysis (Bannister 1979). Values for self-shading coefficients are given in Table 3. Values shown in this table were originally reported in units of 1 m*.srehl a L, and have been converted to units used in CH-QUAL-RI assuming a C, chl ratio of 50 and a C bromass ratio of 0.4%.

Table 3 Self-shading coefficients due to particulate matter $\frac{(1/m*mg/L)}{}$

TYPE	COMMENT	VALUE	REFERENCE
Suspensoids	average	0.12	Verduin 1982
Suspensoids	Lake Paajarvi,		
	Finland	0.24	Verduin 1982
Organic matter	Pacific Ocean	0.047	Verduin 1982
Phytoplankton	Pacific Ocean	0.033	Verduin 1982
Phytoplankton -	C/Chl ratio = 120		
diatoms	<pre>dry wt/C ratio = 4</pre>	0.058	Verduin 1982
Phytoplankton -	C/Chl ratio = 30		
diatoms	<pre>dry wt/C ratio = 4</pre>	0.014	Verduin 1982
Phytoplankton -	C/Chl ratio = 100		
greens	<pre>dry wt/C ratio = 2</pre>	0.024	Verduin 1982
Phytoplankton -	C/Chl ratio = 30		
greens	dry wt/C ratio = 2	0.007	Verduin 1982
Phytoplankton	Shagawa Lake,		
•	Minnesota	0.03	Megard et al. 1980

Phytoplankton

TPRESP

- 16. TPRESP is the maximum phytoplankton respiration rate (1/day). Although two compartments are available to simulate phytoplankton, a single respiration rate coefficient is used and should reflect the composite nature of the species assemblages. TPRESP should include dark respiration and photorespiration. Endogenous or dark respiration (mitochondrial) refers to the oxygen consumption associated primarily with oxidative phosphorylation and which produces carbon dioxide. Photorespiration, commonly refered to as excretion, is the release of dissolved organic matter (glycolate) and carbon dioxide that occurs during light periods; it is the oxygen-sensitive loss of carbon dioxide during photosynthesis, stimulated by an increase in temperature or oxygen concentration (Birmingham et al. 1982).
- 17. Measurement of dark respiration in the light is hampered by the presence of photosynthetic oxygen production and photorespiratory oxygen consumption; this precludes direct measurement in the light using a pO2 electrode. Oxygen consumption in the dark depends on the previous light history in several ways. The duration, spectrum and magnitude of light, as well as other factors, determine the type and amount of photosynthate produced. Subsequent respiration in the dark will be affected by the metabolism of the photosynthate and by certain diel rhythms. The previous light history thus may affect the dark respiration for many hours after a light-dark transition. Transient phenomena in oxygen exchange also are noted for approximately 10 min after the light-dark

transition. Therefore, determination of oxygen consumption should be made after a 5- to 10-min acclimation to a dark environment. It can be measured polarographically using an oxygen electrode, manometrically, or chemically.

- 18. Respiration rates, in many instances, are expressed as milliters of oxygen consumed per milligram of organism dry weight per hour. Since the model formulation requires units of 1/day, these values must be converted. For values in this report, the method outlined on page 188 of the User's Manual (Environmental Laboratory 1982) was used. In addition, respiration values in Table 4 are in continuous form.
- phytoplankton is commonly expressed as a percent of photoassimilated carbon. It is measured using ¹⁴C as a tracer in photosynthetic uptake rate studies. After incubation and filtration of the algae, the filtrate is then acidified and either (a) bubbled with air for 2 hr or (b) allowed to stand overnight in a dessicator of sodium hydroxide pellets. Rates of carbon dioxide release in the light are lower than rates of dark respiration (Birmingham et al. 1982). Percent extracellular release (PER) values reported in the literature range from 7 to 50 for natural phytoplankton populations (Nalewajko 1966). Berman (1976) reported PER values of 3 to 32 for natural phytoplankton populations in Lake Kinneret.
- 20. The values given in Table 4 for dark respiration rates are usually determined for a 1-hr time period.

Table 4
Phytoplankton dark respiration rates (1/day)

SPECIES	TPRESP	REFERENCE
Mesodinium rubrum Thalassiosira allenii-	0.05	Smith 1979
small cells Thalassiosira allenii-	0.14-0.59	Laws and Wong 1978
large cells	0.05-0.42 0.15-0.32	Laws and Wong 1978
Monochrysis lutheri Dunaliella teriolecta	0.12-0.46	Laws and Wong 1978 Laws and Wong 1978
Anabaena variabilis	0.10-0.92	Collins and Boylen 1982a
Coscinodiscus excentricus	0.075-0.11	Riley and von Aux 1949
Chlorella pyrenoidosa	0.01-0.03	Myers and Graham
Phytoplankton	0.05-0.10	Ryther 1954

TPMAX

- 21. TPMAX is the maximum gross photosynthetic rate (1/day). CE-QUAL-Rl uses gross production rates to simulate the rate of change of algal biomass through time.
- 22. The physiological processes of phytoplankton that are being modeled are gross production and respiration. Gross production is the total rate of photosynthesis, which includes the storage rate of organic matter by the phytoplankton (net production) plus the organic matter used by phytoplankton in respiration. That is,

gross production = net production + respiration (7)

23. Net production is the organic matter used for other processes such as zooplankton grazing, sinking, excretion, and nonpredatory mortality. Extreme care must be used in estimating these rates because the rates are

often dependent on the experimental design. For example, the maximum growth rate is often used in modeling studies (see, for example, the Preliminary Generalized Computer Program, Water Quality for River-Reservoir Systems, Oct. 1978, U. S. Army Engineer Hydrologic Engineering Center, Davis, Calif.). The respiration rate is subtracted from the maximum growth rate in order to predict a new mass. However, the values of growth found in the literature are most equivalent to net production in the above equation and have already accounted for respiration; in other words, the model may predict low phytoplankton values because respiration is being accounted for twice. If growth is measured as the difference in mass between two points in time, it must be realized that algae may have been lost to grazing, sinking, etc. Also, the true growth figure is actually higher than reported.

- 24. Values are often reported as "production" without mention as to whether the figures represent gross or net production, and the reader may have to evaluate the experimental design to determine the correct value.
- 25. There are four general methods used to measure phytoplankton primary productivity (Janik et al. 1981). These involve the measurement of (a) changes in the oxygen content of water, (b) changes in the carbon dioxide content of water, (c) incorporation of ¹⁴ carbon tracers into the organic matter of phytoplankton, and (d) measures of chlorophyll. Readers should refer to Janik et al. (1981) to gain insight into the problems associated with the four methods. For example, the ¹⁴ carbon technique gives a measurement which is between net and gross production, depending on the length of the experiment (Whittaker 1975).
- 26. The most frequently used method for measuring primary production by phytoplankton has been photosynthetic

oxygen evolution and ^{14}C uptake. The light- and dark-bottle ^{14}C technique of Steemann-Nielsen (1952) requires the lowering of pairs of bottles injected with $\text{H}^{14}\text{CO3}$ to fixed depths in the water column for time periods of 1-5 hrs or by incubating the bottles under known conditions of light and temperature.

27. Under optimal conditions, a culture grows so that the rate of addition of cells is proportional to the number present (i.e., exponential growth). Cells divide in a characteristic time called the division, generation, or doubling time. Population growth follows the solution to the equation

$$dN/dt = k*N$$
 (8)

where

N % the number of concentration of cells in the culture

t = the time

k = the growth constant - (1 t)

The solution to this equation is

$$k = \ln(N/N_o)/(t-t_o)$$
 (9)

Subscripts denote values at a known initial time, and In indicates natural logarithms.

28. The growth constant k is the number of the logarithm-to-the-base-e units of increase per day. Growth rate is sometimes expressed as logarithm-to-base-10 units of increase per day, \mathbf{k}_{10} ; or as logarithm-to-base-2 units per day, \mathbf{k}_{2} , where

$$k_{10} = \log(N/N_0)/(t-t_0)$$
 (10)

$$k_2 = \log_2 \left(N/N_o \right) / (t - t_o) \tag{11}$$

Conversions among the expressions are as follows: let

k = growth rate measured in ln units

 k_{10} - growth rate measured in \log_{10} units

 \mathbf{k}_2 = growth rate measured in \log_2 units Now let an algal population of interest double in one day. Then

$$N = 2$$

$$N_{O} = 1$$

$$t - t_{O} = 1$$

and

$$k = 0.693 = \ln 2$$
 (12)

$$k_{10} = 0.301 = \log_{10} 2, k = 2.3026 k_{10}$$
 (13)

$$k_2 = 1.0 = \log_2 2, k = 0.6931 k_2$$
 (14)

Or, let the algal population quadruple in one day. Then

$$\begin{array}{ccc}
N & = & 4 \\
N_O & = & 1 \\
t - t_O & = & 1
\end{array}$$

and

$$k = 1.386 \le \ln 4$$
 (15)

$$k_{10} = 0.002 + \log_{10} 4, k = 2.3026 k_{10}$$
 (16)

$$k_2 = 2.0 = \log_2 4$$
, $k = 0.6931 k_2$ (17)

Similarity, let the algal population halve in one day. Then

$$N = 0.5$$

$$N_{\odot} = 1$$

$$t - t_{\odot} = 1$$

and let

$$k = -0.693$$
 (18)

$$k_{10} = -0.301, k = 2.3026 k_{10}$$
 (19)

$$k_2 = -1.0, k = 0.6931 k_2$$
 (20)

Thus, the relation between the various growth rates is given by

$$k = 2.3026 k_{10}$$
 (21)

$$k = 0.6931 k_2$$
 (22)

The composite gross production rate for this compartment should also represent a weighted contribution for the dominant species, or the dominant functional groups, to be simulated by this compartment.

29. Literature values for TPMAX are given in Table 5.

Table 5
Gross production rates of phytoplankton (1/day)

ODDATES.	TPMAX	TEMP °C	REFERENCE
SPECIES	LEMA	I LIMIT	NDI I,MBRCI
DIATOMS			
Asterionella formosa	0.81	20	Holm and Armstrong 1981
Asterionella formosa	0.69	10	Hutchinson 1957
Asterionella formosa	1.38	20	Hutchinson 1957
Asterionella formosa	1.66	25	Hutchinson 1957
Asterionella formosa	1.71	20	Fogg 1969
Asterionella formosa	0.28	4	Talling 1955
Asterionella formosa	0.69	10	Talling 1955
Asterionella formosa	1.38	20	Talling 1955
Asterionella formosa	2.2	20	Hoogenhout and Amesz 1965
Asterionella formosa	1.9	18.5	Hoogenhout and Amesz 1965
Asterionella japonica	1.19	22	Fogg 1969
Asterionella japonica	1.3	18	Hoogenhout and Amesz 1965
Asterionella japonica	1.7	25	Hoogenhout and Amesz 1965
Biddulphia sp.	1.5	11	Castenholz 1964
coscinodiscus sp.	0.55	18	Fogg 1969
Cyclotella meneghiniana	0.34	16	Hoogenhout and Amesz 1965
Cyclotella nana	3.4	20	Hoogenhout and Amesz 1965
Detonula confervacea	0.62	2	Smayda 1969
detonula confervacea	1.4	10	Hoogenhout and Amesz 1965
Ditylum brightwellii	2.1	20	Paasche 1968
Fragilaria sp.	0.85	20	Rhee and Gotham 1981b
Fragilaria sp.	1.7	11	Castenholz 1964
Melosira sp.	0.7	11	Castenholz 1964
Navicula minima	1.4	25	Hoogenhout and Amesz 1965
Navicula pelliculosa	2.0	20	Hoogenhout and Amesz 1965
Nitzschia closterium	1.66	27	Harvey 1937
Nitzschia palea	2.1	25	Hoogenhout and Amesz 1965
Nitzschia turgidula	2.5	20	Paasche 1968
Phaeodactylum tricornutum	1.66	25	Fogg 1969
Phaeodactylum tricornutum	2.7	19	Hoogenhout and Amesz 1965
Rhizosolenia fragillissima	1.20	21	Ignatiades & Smayda 1970
Skeletonema costatum	1.26	18	Fogg 1969
Skeletonema costatum	2.30	20	Jorgensen 1968
Skeletonema costatum	1.52	20	Steemann-Nielsen and Jorgensen 1968
Skeletonema costatum	1.23	20	Jitts et al. 1964
Synedra sp.	1.2	11	Castenholz 1964
Thalassiosira			
nordenskioldii	0.77	13	Jitts et al. 1964
natural diatom community	3.10	20	Verduin 1952
GREENS			
Ankistrodesmus braunii	2.33	25	Hoogenhout and Amesz 1965
Chlamydomonas moewusii		4.2	Hoogenhout and Amesz 1965
Chlorella pyrenoidosa	2.22	28	Shelef 1968
Cnlorella ellipsoidea	3.6	25	Hoogenhout and Amesz 1965
Chlorella luteoviridis	0.56	22.4	Hoogenhout and Amesz 1965
Chlorella miniata	0.87	25	hoogenhout and Amesz 1965
chlorella pyrenoidosa	2.14	25	Fogg 1969
• •			

Table 5 (continued)

SPECIES	TPMAX	TEMP °C	REFERENCE
Chlorella pyrenoidosa	1.95	25.5	Sorokin and Myers 1953
Chlorella pyrenoidosa	9.00	39	Castenholz 1969
Chlorella pyrenoidosa	9.2	39	Hoogenhout and Amesz 1965
Chlorella seccharophilia	1.2	25	Hoogenhout and Amesz 1965
Chlorella variegata	0.86	25	Hoogenhout and Amesz 1965
Cnlorella vulgaris	2.9	25	Hoogenhout and Amesz 1965
Chiorella vulgaris	1.59	20	Goldman and Graham 1981
Dunaliella tertiolecta	1.0	16	Hoogenhout and Amesz 1965
Dunaliella tertiolecta	0.77	36	Jitts et al. 1964
Haematococcus pluvialis	1.2	23	Hoogenhout and Amesz 1965
Nanochloris atomus	1.0	20	Hoogenhout and Amesz 1965
Platymonas subcordiformia	1.5	16	Hoogenhout and Amesz 1965
Scenedesmus sp.	1.34	20	Rhee and Gotham 1981b
Scenedesmus costulatus	2.0	24.5	Hoogenhout and Amesz 1965
Scenedesmus obliquus	2.11	20	Goldman and Graham 1981
Scenedesmus obliquus	2.2	25	Hoogenhout and Amesz 1965
Scenedesmus quadricauda	4.1	25	Hoogenhout and Amesz 1965
Scenedesmus quadricauda	2.29	27	Goldman et al. 1972
Selenastrum capricornutum	2.45	27	Goldman et al. 1972
Selenastrum westii	1.0	25	Hoogenhout and Amesz 1965
Stichococcus sp.	0.70	20	Hoogenhout and Amesz 1965
GOLDEN-BROWN			1065
Botrydiopsis intercedens	1.5	25	Hoogenhout and Amesz 1965
Bumilleriopsis brevis	2.9	25	Hoogenhout and Amesz 1965
Cricosphaera carterae	0.82	18	Fogg 1969
Isochrysis galbana	0.55	20	Fogg 1969
Isochrysis galbana	0.80	25	Hoogenhout and Amesz 1965
Monochrysis lutheri	1.5	15	Hoogenhout and Amesz 1965
Monochrysis lutheri	0.39	24	Jitts et al. 1964
Monodus subterraneus	0.93	25	Hoogenhout and Amesz 1965
Monodus subterraneus	0.39	30	Fogg 1969
Tribonema aequale	0.70	25	Hoogenhout and Amesz 1965
Tribonema minus	1.00	25	Hoogenhout and Amesz 1965
Vischeria stellata	0.70	25	Hoogenhout and Amesz 1965
Euglena gracilis	2.2	25	Hoogenhout and Amesz 1965
Euglena gracilis	0.00	36	Marre 1962
DINOFLAGGELATE			2011
Amphidinium carteri	1.88	18	Fogg 1969
Amphidinium carteri	0.32	32	Jitts et al. 1964
Ceratium tripos	0.20	20	Fogg 1969
Gonyaulax polyedra	2.1	21.5	Hoogenhout and Amesz 1965
Gymnodinium splendens	0.92	20	Hoogenhout and Amesz 1965
Peridinium sp.	0.90	18	Hoogenhout and Amesz 1965
Prorocentrium gracile	0.83	18	Hoogenhout and Amesz 1965
Prorocentrium micans	0.71	25	Hoogenhout and Amesz 1965
Prorocentrium micans	0.30	20	Fogg 1969

Table 5 (concluded)

SPECIES	TPMAX	TEMP °C	REFERENCE
BLUEGREENS			
Agmenellum quadriplaticum	8.0	39	Hoogenhout and Amesz 1965
Anabaena cylindrica	0.96	25	Hoogenhout and Amesz 1965
Anabaena variabilis	3.9	34.5	Hoogenhout and Amesz 1965
Anacystis nidulans	2.9	25	Hoogenhout and Amesz 1965
Anacystis nidulans	8.28	38	Marre 1962
Anacystis nidulans	11.00	40	Castenholz 1969
Chloropseudomonas			
ethylicum	3.3	30	Hoogenhout and Amesz 1965
Cyanidium caldarium	2.4	40	Hoogenhout and Amesz 1965
Cylindrospermum sphaerica	0.17	25	Hoogenhout and Amesz 1965
Gloeotrichia echinulata	0.20	26.5	Hoogenhout and Amesz 1965
Microcystis aeruginosa	0.25	20	Holm and Armstrong 1981
Microcystis aeruginosa	1.6	23	Hoogenhout and Amesz 1965
Microcystis luminmosis	1.50	40	Castenholz 1969
Nostoc muscorum	2.9	32.5	Hoogenhout and Amesz 1965
Oscillatoria princips	0.50	40	Castenholz 1969
Oscillatoria subbrevis	5.52	38	Marre 1962
Oscillatoria terebriformis	3.36	40	Castenholz 1969
Oscillatoria rubescens	5.04	30	Zimmerman 1969
Rhodopseudomonas			
sphaeroides	10.8	34	Hoogenhout and Amesz 1965
Rhodospirllum rubrum	4.85	25	Hoogenhout and Amesz 1965
Schizothrix calcicola	3.4	30	Hoogenhout and Amesz 1965
Synechococcus lividus	4.98	40	Castenholz 1969
Synechococcus sp.	8.0	37	Hoogenhout and Amesz 1965
Tolypothrix tenuis	4.0	38	Hoogenhout and Amesz 1965
Leptocylindrus danicus	0.67-	10-	
	2.0	20	Verity 1981
Anabaena variabilis	0.07-	10-	-
	2.0	35	Collins and Boylen 1982a

TSETL

- 30. TSETL is the phytoplankton settling rate (m/day). Mechanisms of suspension can influence the settling or sinking rate of algae. Morphological mechanisms include cell size, colony formation, cyclomorphosis, protuberances, and flagella. Physiological mechanisms include fat accumulation; regulation of ionic composition of cell sap; and the response of an organism to light, photoperiod, and nutrient concentration. Physical mechanisms include water viscosity and the role of water movements.
- 31. Two methods used to measure sinking rates experimentally are (a) the settling chamber method with or without the use of a microscope, and (b) the photometric technique. In the settling chamber, the descent time is determined (a) by following with a microscope or, in the case of large particles, with the naked eye, the cell trajectory between two marks at a known distance apart; (b) by measuring the time a cell takes to fall to the bottom of a settling chamber of known height placed on the stage of an inverted scope; or (c) using a l-mm-deep Sedgwick Rafter counting chamber with a compound microscope. Estimation of relative sinking rate has been obtained by placing a well-mixed suspension of phytoplankton into a graduated cylinder and determining the concentration in various layers after a given time.
- 32. Photometric determination of sinking rate measures changes in optical density of a phytoplankton suspension measured at 750 nm after introducing the phytoplankton suspension into a cuvette.
- 33. These techniques are influenced by the "wall-effect," that is, the effect of the settling chamber wall and convection current on the sinking velocity. To provide adequate fall for attainment of terminal velocity and to

minimize overcrowding, the selection of chamber size is important.

- 34. The sinking rates of natural populations have also been determined by comparing changes in population density with depth and calculating a mean rate of descent. However, determination of sinking rate in situ is complicated by water movements and losses due to grazing. Mathematical expressions may also be used to determine sinking rates (Riley et al. 1949).
- 35. The application of experimentally determined sinking rates to natural populations or ecosystem models must be qualified and used with caution. In lakes and reservoirs, vertical gradients of light, temperature, and nutrient concentration contrast with the constancy of the settling chamber and photometer cuvette environments in sinking experiments. The influence of light and nutrients on sinking rates together with the turbulent motion of the natural environment suggest that <u>in vitro</u> sinking results may not be particularly representative of natural populations. Values for settling rates are given in Table 6.

Table 6
Phytoplankton settling rates (m/day)

SPECIES	TSETL	REFERENCE	
DIATOMS			
EXPERIMENTAL STUDIES			
Asterionella formosa	0.26-0.76	Smayda 1974	
Asterionella formosa	0.4	Margalef 1961	
Bacteriastrum hyalinum	0.39-1.27	Smayda & Boleyn 1966	
Chaetoceros didymus	0.85	Eppley et al. 1967b	
Chaetoceros lauderi	0.46-1.54	Smayda & Boleyn 1966	
Chaetoceros lauderi	0.46-1.54	Smayda & Boleyn 1966	
Chaetoceros spp.	0.25	Margalef 1961	
Chaetoceros spp.	5.0	Sverdrup et al. 1942	
Chaetoceros spp.	4.0	Allen 1932	
Coscinodiscus wailesii	7.0-30.2	Eppley et al. 1967b	
Coscinodiscus sp.	1.95-6.83	Eppley et al. 1967b	
Coscinodiscus sp.	14.7	Eppley et al. 1967b	
Cyclotella meneghiniana	0.08-0.24	Titman and Kilham 197	
Cyclotella nana	0.16-0.76	Eppley et al. 1967b	
Ditylum brightwellii	0.60-3.09	Eppley et al. 1967b	
Ditylum prightwellii	2.	Eppley et al. 1967b	
Ditylum brightwellii	5.8-8.6	Gross & Zeuthen 1948	
Fragilaria crotonensis	0.27	Burns and Ross 1980	
Leptocylindrus danicus	0.08-0.42	Margalef 1961	
Melosira agassizii	0.67-1.87	Titman and Kilham 197	
Nitzschia closterium	0.52	Margalef 1961	
Nitzschia seriata	4.0	Allen 1932	
Nitzschia seriata	0.35-0.50	Smayda & Boleyn 1965	
Phaeodactylum tricornutum	0.05-0.06	Riley 1943	
Phaeodactylum tricornutum	0.02-0.04	Riley 1943	
Rhizosolenia hebetata	0.02	<u>1</u>	
f. semispina	0.22	Eppley et al. 1967b	
Rhizosolenia setigera	0.11-2.23	Smayda & Boleyn 1966	
Rhizosolenia setigera	0.10-6.30	Smayda & Boleyn 1966	
Rhizosolenia stolterfothii	1.0-1.9	Eppley et al. 1967b	
Rhizosolenia spp.	0-0.72	Margalef 1961	
Skeletonema costatum	0.30-1.35	Smayda & Boleyn 1966	
Stephanopyxis turris	1.1	Eppley et al. 1967b	
Stephanopyxis turris	2.1	Eppley et al. 1967b	
Thalassionema nitzschiodes	0.35-0.78	Smayda (unpubl.)	
Thalassiosira fluviatilis	0.60-1.10	Eppley et al. 1967b	
Thalassiosira cf. nana	0.10-0.28	Smayda & Boleyn 1965	
Thalassiosira rotula	1.15	Eppley et al. 1967b	
Thalassiosira rotula	0.39-2.10	Smayda & Boleyn 1965	
Thalassiosira sop.	0-0.16	Margalef 1961	
THEORETICAL		Bramlette 1961	
	0.3		

Table 6 (concluded)

SPECIES	TSETL	REFERENCE
DINOFLAGELLATES		
EXPERIMENTAL STUDIES		
Gonyaulux polyedra	2.8-6.0	Eppley et al. 1967b
		-11 - 27
COCCOLITHOPHORIDS		
EXPERIMENTAL STUDIES		
Coccolithus huxleyi	0.28	Eppley et al. 1967b
Coccolithus huxleyi	1.20	Eppley et al. 1967b
Cricosphaera carterae	1.70	Eppley et al. 1967b
Cricosphaera elongata	0.25	Eppley et al. 1967b
Cyclococcolithus fracilis	13.2	Bernard 1963
Cyclococcolithus fragilis	13.6	Bernard 1963
Cyclococcolithus fragilis	10.3	Bernard 1963
THEORETICAL		
Coccoliths	1.5	Bramlette 1961
MICROFLAGELLATES EXPERIMENTAL STUDIES		
Cryptomonas erosa	0.31	Burns and Rosa 1980
Cryptomonas marsonii	0.32	Burns and Rosa 1980
Rhodomonas minuta	0.07	Burns and Rosa 1980
Dunaliella tertiolecta	0.18	Eppley et al. 1967b
Monochrysis lutheri	0.39	Eppley et al. 1967b
Monochrysis lutheri	0.39	Apstein 1910
7	•••	
GREENS EXPERIMENTAL		
Closterium parvulum	0.18	Burns and Rosa 1980
Dunaliella tertiolecta	0.18	Eppley et al. 1967b
Lagerhaemia quadriseta	0.08	Burns and Rosa 1980
Scenedesmus acutiformis	0.10	Burns and Rosa 1980
Selenastrum minutum	0.15	Burns and Rosa 1980
BLUEGREENS EXPERIMENTAL		
Anabaena spiroides	0.10	Burns and Rosa 1980
Gomphosphaeria lacustris	0.11	Burns and Rosa 1980
-		

PS2P04

- 36. PS2P04 is the phosphorus half-saturation coefficient (HSC) (mg/L). In practical terms, the HSC of a nutrient approximately marks the upper nutrient concentration at which growth ceases to be proportional to that nutrient. The modeled uptake of phosphorus by algae follows Monod kinetics. The value of the HSC can be calculated for the hyperbola using the Monod equation. PS2P04 is defined as the concentration of phosphorus at which the rate of uptake is one-half the maximum.
- 37. Half-saturation coefficients generally increase with nutrient concentrations (Hendrey and Welch 1973, Carpenter and Guillard 1971, and Toetz et al. 1973). This fact reflects both the change in species composition of the phytoplankton assemblage and the adaptation of the plankton to higher nutrient levels. A reservoir characterized by low nutrient concentrations is generally also characterized by low half-saturation coefficients. Phosphorus is commonly the nutrient that limits the growth of algae in lakes and reservoirs.
- 38. The procedure of measuring a phosphorus half-saturation coefficient involves the measurement of the net rate of loss of dissolved orthophosphate from the medium in which the experimental population is suspended.
- 39. Units of measurement must be expressed in terms of the chemical element and not the compound; i.e., the half-saturation constant for phosphorus should be specified as mg/L of phosphorus and not mg/L of orthophosphate. Micromoles per liter or microgram-atom values may be converted by multiplying by the molecular weight of the element times 10^{-3} . Values for the HSC are given in Table 7.

Table 7

Phytoplankton half-saturation coefficients for P limitation (mg/L)

SPECIES	PS2PO4	REFERENCE
Asterionella formosa	0.002	Holm and Armstrong 1981
Asterionella japonica	0.014	Thomas and Dodson 1968
Biddulphia sinensis	0.016	Quasim et al. 1973
Cerataulina bergonii	0.003	Finenko and Krupatikina 1974
Chaetoceros curvisetus	0.074105	Finenko and Krupatikina 1974
Chaetoceros socialis	0.001	Finenko and Krupatikina 1974
Chlorella pyrenoidosa	0.38475	Jeanjean 1969
Cyclotella nana	0.055	Fuhs et al. 1972
Cyclotella nana	0.001	Fogg 1973
Dinobryon cylindricum	0.076	Lehman (unpubl. data)
Dinobryon sociale		•
var. americanum	0.047	Lehman (unpubl. data)
Euglena gracilis	1.52	Blum 1966
Freshwater phytoplankton	0.02075	Halmann and Stiller 1974
Microcystis aeruginosa	0.006	Holm and Armstrong 1981
Nitzschia actinastreoides	0.095	von Muller 1972
Pediastrum duplex	0,105	Lehman (unpubl. data)
Pithophora oedogonia	0.098	Spencer and Lembi 1981
Scenedesmus obliquus	0.002	Fogg 1973
Scenedesmus sp.	0.00205	Rhee 1973
Thalassiosira fluviatilis	0.163	Fogg 1973

PS2N

- 40. PS2N is the nitrogen (N) half-saturation coefficient (mg/L). Uptake rates of nitrate (NO3) or ammonium (NH4) by algae give hyperbolas when graphed against NO3 or NH4 concentration in the environment. Half-saturation coefficients (i.e., the concentration of N at which the rate of production is one-half the maximum) can be calculated for the hyperbolas using the Monod equation. This constant reflects the relative ability of phytoplankton to use low levels of nitrogen.
- 41. The role of N as a growth-limiting factor has been relatively neglected when compared with phosphorus, presumably because the latter is the growth-limiting factor in most natural fresh waters. However, it has been found that nitrogen becomes the limiting nutrient where phosphorus is abundant because of its release from geological deposits or from external loadings.
- There are several methods for measuring halfsaturation constants for N limitation. The chemostat method requires the measurement of the remaining nitrogen concentration at a number of fixed dilution rates (i.e., growth rates) in nitrogen-limited chemostat cultures. Culture media are prepared with nitrate or ammonium as the nitrogen source, with one-fifth or less than the usual amount of NO3 or NH4 added to the culture media to ensure that during growth, nitrogen will be depleted before other nutrients. A second, less desirable, method is to use nitrogen-starved cells as an innoculum for cultures containing known concentrations of nitrogen and then (a) measure the concentration of nitrogen in the extracellular fluid at some later time to determine the rate of nitrogen uptake and (b) measure the increasing cell concentration to determine growth kinetics. The problems associated

with this method are that the organisms are poorly adapted to their subsequent growth environment, so growth can occur only after uptake of a substantial amount of nitrogen.

- 43. Some trends can be seen in the data for half-saturation coefficients: (a) organisms with a high HSC for nitrate usually have a high HSC for ammonium uptake as well, (b) large-celled species tend to show higher HSC's (c) fast-growing species tend to have lower HSC's than slow growers.
- 44. The nitrogen HSC as used in CE-QUAL-Rl should reflect the uptake of both NO3 and NH4. Both compounds are taken up for use in production in proportion to their concentration in the layer.
- 45. A factor that will lead to selection for a particular functional group or species is the availability of combined nitrogen. In situations where the level of combined nitrogen is relatively low compared with other essential elements like phosphorus, those bluegreen species that can fix nitrogen will be at a selective advantage. Nitrogen fixation is not explicitly included in the model formulation for phytoplankton; however, if bluegreen algae are an important component in one of the compartments, the nitrogen half-saturation coefficient may have to be reduced to a low value to reflect nitrogen fixation. Values for the SC for nitrogen are given in Table 8.

Table 8

Phytoplankton half-saturation coefficients for N limitation (mg/L)

SPECIES	PS2N	N SOURCE	REFERENCE
DIATOMS	<u> </u>	DOUNCE	TEL BILBITOD
	0.056197	NO2	Undoubill 1077
Biddulphia aurita	0.012	NO3	Underhill 1977
Chaetoceros gracilis Chaetoceros gracilis	0.012	NO3	Eppley et al. 1969
Coscinodiscus lineatus		NO4	Eppley et al. 1969
Coscinodiscus lineatus	0.161 0.036	NO3	Eppley et al. 1969
		NH4	Eppley et al. 1969
Cyclotella nana	0.025117 0.111	NO3	Carpenter & Guillard 197
Cyclotella nana	0.027		MacIssac and Dugdale 196
Cyclotella nana Cyclotella nana			Caperon and Meyer 1972
-	0.031	N111 A	Eppley et al. 1969
Cyclotella nana Ditylum brightwellii	0.007	NH 4	Eppley et al. 1969
Ditylum brightwellii	0.037	NO3	Eppley et al. 1.69
Dunaliella teriolecta	0.020 0.013	NH4	Eppley et al. 1969
Dunaliella teriolecta	0.013	NO3	Caperon and Meyer 1972
Dunaliella teriolecta	0.003	NH4	Caperon and Meyer 1972
		NO3	Eppley et al. 1969
Fragilaria pinnata	0.037100	NO3	Carpenter & Guillard 197
Leptocylindrous danicus	0.078 0.013	NO3	Eppley et al. 1969
Leptocylindrous danicus		NH4	Eppley et al. 1969
Navicula pelliculosa Phaeodactylum tricornutum	0.923	NO3 NO3	Wallen and Cartier 1975
Rhizosolenia robusta	0.186		Ketchum 1939
Rhizosolenia robusta	0.186	NO3	Eppley et al. 1969
Rhizosolenia robusta Rhizosolenia	0.135	NH 4	Eppley et al. 1969
stolterfothii	0.105	NO 3	Employ of all 1060
Rhizosolenia	0.103	NO3	Eppley et al. 1969
stolterfothii	0.009	NH4	Englass of all 1060
Skeletonema costatum	0.009	NO3	Eppley et al. 1969
Skeletonema costatum	0.014	NH 4	Eppley et al. 1969
skeletonema costatum	0.014	ND 4	Eppley et al. 1969
BLUEGREENS			
Anabaena cylindrica	4.34	NO3	Hattori 1962
Anabaena cylindrica	2.48	NO2	Hattori 1962
Asterionella formosa	0.074093	NO3	Eppley and Thomas 1969
Asterionella formosa	0.062	NH 4	Eppley and Thomas 1969
Microcystis aeruginosa	0.56207	NH4	Kappers 1980
Oscillatoria agarthii	0.22	NO3	van Liere et al. 1975
MICROFLAGELLATES			
Bellochia sp.	0.001016	NO3	Carpenter & Guill d 1971
Monochrysis lutheri	0.026	NO3	Caperon and Meyer 1972
Monochrysis lutheri	0.052	NH4	Caperon and Meyer 1972
Monochrysis lutheri	0.037	NO3	Eppley et al. 1969
Monochrysis lutheri	0.007	NH 4	Eppley et al. 1969
COCCOLITHOPHORIDS			
Coccolithus huxleyi	0.006	NO3	Eppley et al. 1969
Coccolithus huxleyi	0.002	NH 4	Eppley et al. 1969
Coccochloris stagnina	0.019	NO3	Caperon and Meyer 1972

(continued)

Table 8 (concluded)

		N	
SPECIES	PS2N	SOURCE	REFERENCE
GREENS			
Chlorella pyrendoidosa	0.006014		Pickett 1975
Chlorella pyrendoidosa	1.15	NO2	Knudsen 1965
Pithophora oedogonia	1.236	NO3	Spencer and Lembi 1981
DINOFLAGELLATES			
Gonyaulax polyedra	0.589	NO3	Eppley et al. 1969
Gonyaulax polyedra	0.099	NH4	Eppley et al. 1969
Gymnodinium splendens	0.235	NO3	Eppley et al. 1969
Gymnodinium splendens	0.019	NH4	Eppley et al. 1969
Gymnodinium wailesii	0.223	NO3	Eppley et al. 1969
Gymnodinium wailesii	0.088	NH4	Eppley et al. 1969
CHRYSOPHYTES			
Isochrysis galbana	0.006	NO3	Eppley et al. 1969

PS2C02

- 46. PS2CO2 is the half-saturation coefficient for carbon dioxide (mg/L). The coefficient is used in the Monod equation to determine the rate factor for CO2 limitation. PS2CO2 is defined as the concentration of CO2 at which the rate of production is one-half the maximum. In practical terms, the HSC approximately marks the upper nutrient concentation at which growth ceases to be proportional to that nutrient.
- 47. There is a diversity of opinions as to whether inorganic carbon (C) limits photosynthesis in phytoplankton. Goldman et al. (1974) have around that increanic carbon almost never limits growth in natural algal populations. In contrast, Kind (1970) has shown that CO2 availability limits the growth of aquatic populations. Johnson et al. (1970) demonstrated CO2 limitation in lakes contaminated by acid mine wastes, and Schindler and Fee (1973) demonstrated C limitation in a lake during the sammer when nitrogen and phosphorus were available. Carbon dioxide limitation is clearly pH dependent. For example, the HSC for carbon dioxide given in Table 9 for Scenedesmus capricornutum increases with increasing pH. This is related to the effect of pil on the relative proportions of the inorganic carbon species of carbon dioxide, bicarbonate ion, and carbonate ion in solution. Half-saturation coefficient values for carbon dioxide are given in Table 9.

Table 9 Phytoplankton hulf-saturation coefficients for CO2 limitation (mg/L)

		pH_RANGE	REFERENCE
SPECIES Chlorella vulgaris Chlorella emersonii Mixed bluegreen algae Mixed bluegreen algae Mixed bluegreen algae Scenedesmus quadricauda Scenedesmus quadricauda Scenedesmus quadricauda	PS2CO2 0.20 0.068411 0.088 0.031 0.057 0.14 0.36 0.5471	7.1-7.2 7.1-7.2 7.25-7.39 7.44-7.61	Goldman and Graham 1981 Beardall and Raven 1981 Golterman 1975 Forester 1971 Shamieh 1968 Goldman et al. 1974 Goldman et al. 1974 Goldman et al. 1974
scenedesmus capricornutum	0.4041	7.05-7.2	Goldman et al. 1974
scenedesmus capricornutum	0.63-1.0	7.25-7.39	Goldman et al. 1974
scenedesmus capricornutum scenedesmus obliquus	1.2-1.5	7.43-7.59 7.1-7.2	Goldman et al. 1974 Goldman and Graham 198

- 48. PS2L is the light half-saturation coefficient expressed as $kcal/m^2/hr$. It is the light intensity at which the rate of production is at one-half the maximum rate.
- 49. The shape of the curve relating light and production has been studied extensively. It is generally known that (a) at lower light intensities, production proceeds linearly with increasing light intensity and (b) as intensity is increased further, the production rate tends towards a maximum value. The simplest representation of this response is the Monod function.
- of certain algal species is inhibited at high light intensities. This phenomenon cannot be simulated by the Monod function used in CE-VCAL-Rl. Other formulations have been developed to represent this effect (Steele 1962). Photoinhibition at high light intensities may be more important in oligotrophic waters than in eutrophic waters.
- 51. The value of this parameter can be obtained by running a set of experiments to determine the production rate at various light intensities ranging from light-limiting to light-saturating conditions. The value can be determined for net photosynthetic rate by measuring lacerbon, fixed or oxygen evolved, at different light levels. The light half-saturation constant for growth rate can be determined by measuring growth rate (i.e., by measuring either dry weight, cell volume, chlorophyll concentration, or optical density) at various light intensities. Values for the HSC for light intensity are given in Table 10.

Table 10 Phytoplankton half-saturation coefficients for light limitation $\frac{(kcal/m^2/hr)}{}$

SPECIES	PS2L	PROCESS	REFERENCE
Amphidinium carteri	5.75		Dunstan 1973
Amphiprora sp.	6.42	growth	Admiraal 1977
Chlorella pyrenoidosa	12.7-38.0	photosyn	Myers and Graham 1961
Chlorophyte	1.2-4.2		Bates 1976
Chroomonas salina	6.25	growth	Hobson 1974
Coccolithus huxleyi	1.2		Parsons & Takahashi 1973
Coccolithus huxleyi	5.75		Dunstan 1973
Cryptomonas ovata	16.0	growth	Cloern 1977
Cyclotella mana	5.15	growth	Dunstan 1973
Ditylum brightwelli	5.4		Bates 1976
Fragilaria sp.	9.4	growth	Rhee and Gotham 1981b
Gonyaulax polyedra	15.4-18.9	growth	Prezelin and Sweeney 1977
Gonyaulax polyedra	15.4-19.1	photosyn	Prezelin and Sweeney 1977
Isochrysis galbana	6.18		Dunstan 1973
Isochrysis sp.	5.0	growth	Hobson 1974
dixed population	16.0	growth	Gargas 1975
Navicula arenaria	6.42	growth	Admiraal 1977
Nitzschia dissipata	6.64	growth	Admiraal 1977
Oscillatoria agardhii	0.8	growth	van Lierre et al. 1978
Phaeodactylum			
tricornutum	51.0-71.4	photosyn	Li and Morris 1982
Prorocentrum micans	5.66		Dunstan 1973
Scenedesmus protuberans	2.57	growth	van Lierre et al. 1978
Scenedesmus sp.	6.0	growth	Rhee and Gotham 1981b
Scenedesmus sp.	6.8	photosyn	Rhee and Gotham 1981b
Skeletonema costatum	0.18-4.2		Bates 1976
Thalassiosira			
fluvatilis	6.25	growth	Hobson 1974
Thalassiosira			
nordenskioldii	12.0	growth	Durbin 1974

ALGT1, ALGT2, ALGT3, ALGT4

- 52. All temperature coefficients are in degrees Celsius.
 - <u>a.</u> ALGT1 is the lower temperature bound at which phytoplankton metabolism continues.
 - b. ALGT2 is the lowest temperature at which processes are occurring near the maximum rate.
 - c. ALGT3 is the upper temperature at which processes are occurring at the maximum rate.
 - d. ALGT4 is the upper lethal temperature.

 Biological temperature curves are generally asymmetrical, with the maximum rates occurri. nearer the upper lethal temperatures than the lower temperatures.
- 53. Temperature acclimation. The temperature coefficients for algal production are dependent upon the acclimation temperature and the length of time the alga has been exposed to this temperature (Collins and Boylen 1962b) since algae are exposed to seasonal temperature changes in various regions of the United States. For example, algae growing in a northern reserving will have a lower optimum temperature (ALGT2 and Morror or algae growing in a northern reserving will have a lower optimum temperature (ALGT2 and Morror or algae growing in a specification of the page to be acclimated to a lower or acceptance of the page to be a lower or acceptance of the page to be a lower or acceptance of the page to be a lower or acceptance of the page to be a lower or acceptance of the page to be a lower or acceptance of the page to be a lower or acceptance of the page to be a lower or acceptance of the page to be a lower or acceptance of the page to be a lower or acceptance of the page to be a lower or acceptance of the page to be a lower or acceptance of the page to be a lower or acceptance of the page to be a lower or acceptance of the page to be a lower or acceptance of the page to be a lower or acceptance or acceptance of the page to be a lower or acceptance of the page to be a lower or acceptance of the page to be a lower or acceptance of the page to be acceptance or acceptance of the page to be acceptance or acceptan
- A. The state of th

temperature, and day length have been varied simultaneously. Often the algae were preconditioned at a specific combination of these factors, which may help in parameter estimation for a particular site. Values for the temperature coefficients are given in Table 11.

Table 11
Temperature coefficients for phytoplankton (°C)

SPECIES	ALGTI	ALGT2	ALGT3	ALGT4	REFERENCE
Amphidinium carteri	18	24		35	Jitts et al. 1964
Anacystis midulans		38	40		Castenholz 1969
Asterionella formosa		25	25		Rhee and Gotham 1981a
Asterionella formosa		25	29		Hutchinson 1967
Asterionella formosa	4	20	25		Talling 1955
Chlorella pyrenoidosa	1	28	38	40	Clendenning et al. 1956
Chlorella pyrenoidosa	7	38	40	42	Sorokin & Krauss 1962
Chlorella sp.		20	25		Tamiya et al. 1965
Detonula confervacea	O.	10	12	16	Guillard & Ryther 1962
Detonula confervacea	ì	10	13	15	Smayda 1969
Ditylum brishtwellii	5	23	26	30	Paasche 1968
Dunaliella teriolecta	S	31	33	36	Eppley and Sloan 1966
Dunaliella teriolecta	12	26	28	36	Jitts et al. 1964
Aicrocystis aeruginosa		38	40	30	Castenholz 1969
Monochiysis lutheri	Q	19	22		Jitts et al. 1964
Sitzschia closterium		27	30		Harvey 1955
Nestoc museerum	1	31	33	36	Clendenning et al. 1956
scillatoria		_			erendenning et dr. 1750
terebriformis		38	40		Castenholz 1969
Fhaeodaetylum					14500
trisornu+um	· j	20	21	30	Li and Morris 1982
Rhizosolenii				, ,	11 (11d 1101113 1)02
fr: 111188(F)	÷	21			Ignatiades and Smayda 1970
The factor as the second		1 3	20	2 !	Rhee and Gotham 1981a
Committee to the committee of the committee of	1	26	2.,	4.	Jorgensen 1968
e letinomak i takur		20			Steemann-Nielsen and Urmnsen 1968
	4		1.4	16	- 111449 64 64 61. 1464

.

.....

•

Zooplankton

TZMAX

- 55. TZMAX is the maximum ingestion rate for zooplankton (1/day). The zooplankton compartment includes the groups Cladocera, Copepoda, and Rotatoria which are classified as either herbivores or as carnivores.
- 56. Two types of feeding behavior exist: filter feeding and grasping feeding. Daphnia and some copepods are filter feeders. They collect particulate matter, including algae and detritus, by sieving lake water through the fine meshes of their filtering apparatus (Jorgensen 1975). Algae are swept into the feeding appendages to the mouth region where they are ingested as boluses containing many cells. Filter-feeding zooplankton make up the greater proportion of the zooplankton community and have been studied in greater detail.
- 57. The filtering rate per animal decreases as food concentration increases; above a critical concentration of food, the feeding rate is independent of food concentration.
- 58. Factors that influence food consumption by filter-feeding zooplankton include (a) animal density, size, sex, reproductive state, nutritional or physiological state as well as (b) the type, quality, concentration, and particle size of food. Other factors include water quality and temperature.
- 59. A second type of feeding behavior, raptorial or grasping feeding, is exhibited by most copepods and some cladocerans. They pursue prey and grasp large particles, including algae and detritus. Apparently, some copepods can switch feeding modes.

- 60. Several experiments have been able to demonstrate a maximum grazing rate allowing for long-term acclimation to food concentration above the incipient limiting level. Values for TZMAX range from 0.045 to 3.44 1/day.
- 61. Dissolved organic matter (DON) is another potential source of food for zooplankters, although this feeding transfer is not modeled in CE-QUAL-R1. Values for maximum ingestion rates for zooplankton are given in Table 12.

Table 12
Maximum ingestion rates for zooplankton (1/day)

PREDATOR	VALUE	FOOD SOURCE	REFERENCE
Bosmina	0.01	detritus	Bogdan and McNaught 1975
Bracnionus rubens	3.438	Chlorella	
		vulgaris	Pilarska 1977
Cladocerans	0.15	detritus	Bogdan and McNaught 1975
Copepods	0.10	detritus	Bogdan and McNaught 1975
Daphnia	0.01	detritus	Bogdan and McNaught 1975
Daphnia magna	0.251	Saccharomyces	
		cervisiae	McMahon and Rigler 1965
Dapnnia magna	0.452	Tetrahymena	
		pyriformis	McMahon and Rigler 1965
Daphnia magna	0.301	Chlorella	
		vulgaris	McMahon and Rigler 1965
Daphnia magna	0.045	Escherichia	
		coli	McMahon and Rigler 1965
Daphnia magna	0.760	Chlorella	
		vulgaris	Kersting and Van De
			Leeuw-Leegwater 1976
Daphnia magna	0.350	Saccharomyces	
		cerivisiae	Rigler 1961
Daphnia magna	1.9	Chlorella	
		vulgaris	Ryther 1954
Daphnia magna	2.2	Navicula	
		pelliculosa	Ryther 1954
Daphnia magna	2.3	Scenedesmus	
		quadricauda	Ryther 1954
Daphnia pulex	0.120	Chlorococcum	
		sp.	Monokov and Sorokin 1961
Daphnia rosea	0.900	Rhodotorula	
		glutinis	Burns and Rigler 1967
Diaptomus	0.47	detritus	Bogdan and McNaught 1975
IN SITU EXPERIMENTS			
Heart Lake, Canada	0.801	Various	Haney 1973
Lake Vechten, The			
Netnerlands	0.24	Various	Gulati 1978
Lake Krasnoye, USSR	1.20	Various	Andronikova 1978

TZMORT

62. TZMORT is the maximum nonpredatory mortality rate for zooplankton (1/day). Nonpredatory mortality rate may be obtained by measuring total mortality and predatory mortality and subtracting to obtain the difference (a direct approach is to measure mortality rate and eliminate predators altogether). Nonpredatory mortality may be influenced by oxygen concentration, temperature, diet, age, and population density. Nonpredatory mortality rates are normally less than 1 percent per day. Values for maximum nonpredatory mortality rate are given in Table 13.

Table 13
Zooplankton mortality rates (1/day)

SPECIES	TZMORT	REFERENCE
Calanus nelgolandicus	0.003-0.048	Paffenhoffer 1976
Cilanus nelgolandicus	0.024	Mullin and Brooks 1970
Carnivorous zooplankton	0.002-0.013	Petipa et al. 1970
Ceriodaphnia reticulata	0.0016	Clark and Carter 1974
Copepod nauplii	0.006-0.017	Petipa et al. 1970
Laphnia daleata	0.017	Hall 1964
Daphnia pulex	0.012	Craddock 1976
Daphnii pulex	0.018-0.027	Frank et al. 1957
Daphnia retrocurva	0.001	Clark and Carter 1974
Daphnia rosea	0.001-0.007	Dodson 1972
Daphila rosea	0.001	Clark and Carter 1974
paphnia spp.	0.002	Wright 1965
Diagromus clavipes	0.004-0.155	Gehrs and Robertson 1975
Diaphanosoma Teuchtenbergiana	0.001	Clark and Carter 1974
	0.010-0.013	Petipa et al. 1970
Omnivorous zooplankton	0.003-0.006	Petipa et al. 1970
Piracilanus sp.	0.006-0.015	Mullin and Brooks 1970
Rhincalanus nasutus	0.003	Hall et al. 1970
Simocephalus serrulatus	0.003	nair et al. 1970

SEFFIC

- 63. ZEFFIC, the zooplankton assimilation efficiency (A/G) (dimensionless), is the proportion of tood consumed (G) to food assimilated (A), i.e., food actually absorbed from an individual's digestive system. The assimilation efficiency is used to modify consumption and to determine the quantity of energy entering an individual or population.
- 64. Of the factors affecting assimilation efficiency, the most significant is food type. For herbivores-detrivores, the range in ZEFFIC is wide because these animals often consume foods of varying energy content and digestibility. Among the carnivores, for which food type varies little, A/G ranges between 0.80 and 0.95. Values for zooplankton assimilation efficiency are given in Table 14.

4

Table 14

Zooplankton assimilation efficiency coefficients (dimensionless)

SPECIES	ZEFFIC	REFERENCE
Acartia clausi	0.66-0.73	Penchen'-Finenko 1977
Bosmina coregoni	0.09-0.77	Semenova 1974
Bosmina longirostris	0.32-0.31	Gutel'mackher 1977
Calanus firmarchicus	0.48-0.96	Marshall and Orr 1956
Calamoecia lucase	0.63-0.67	Green 1975
Ceriodaphnia reticulata	0.106	Czeczuga & Bobiatynska-Ksok 1970
Ceriodaphnia reticulata	0.47-0.73	Czeczuga & Bobiatynska-Ksok 1970
Cyclops strennus	0.50	Schindler 1971
Cyclops vicimus	0.80	Monakov 1972
Daphnia longispina	0.10-0.25	Monakov & Sorokin 1961
Daphnia longispina	0.42	Monakov 1972
Daphnia magna	0.60-0.84	Schindler 1968
Daphnia pulex	0.14-0.31	Richman 1958
Daphnia schodleri	0.60-0.90	Hayward & Gallup 1976
Daphnia sp.	0.08-0.25	Cohn 1958
Diaptomus graciloides	0.81	Penchen'-Finenko 1977
Diaptomus graciloides	0.45-0.50	Klekowski & Shushkina 1966
Diaptomus siciloides	0.40-0.83	Comita 1972
Diaptomus oregonensis	0.77	Richman 1964
Eurycercus lamellatic	0.07-0.32	
Holopedium gibberrum	0.10-0.47	Gutel'mackher 1977
Leptodora kindtii	0.40	Cummins et al. 1969
Leptodora kindtii	0.87	Hillbricht-Ilkowska & Karabin 1970
Macrocyclops albidus	0.45-0.50	Klekowski & Shushkina 1966
Mesocyclops albidus	0.20-0.75	Klekowski & Shushkina 1966
Polyphemus pediculus	0.42	Monokov 1972
Sida crystallima	0.17-0.99	Monakov 1972
Simocephalus espinosus	0.46	Sorokin 1969
Simocephalus vetulus	0.31-0.72	Klekowski 1970
Simocephalus vetulus	0.31-0.72	Ivanova & Klekowski 1972
10 herbivores	0.476	Comita 1972

PREF1, PREF2, PREF3

- 65. All zooplankters are selective feeders resulting from a combination of (a) an organism's mechanical limitations in capturing and processing food items of varying size and configuation, (b) the chemical composition of the food items, and (c) feeding behavior. Food preference is demonstrated it an organism consumes a food item in a proportion different from the food item's relative contribution to the total of all available foods in the environment. If all foods occur at the same concentration, then the preference factors equal the fractions of ingestion contributed by each food compartment. Seasonal abundance of phytoplankton, bacteria, and detritus may be the main factor determining the percent composition of these components in the diets of many zooplankters.
- 66. Filamentous bluegreen algae are generally not considered to be as assimilable as are other algal species. They are seldom found in the guts of zooplankton, because they either are not eaten or are actively rejected. Most species of green algae and diatoms are filtered at about the same rate and digested. However, it is not necessarily the taxonomic position of the alga that makes it suitable or unsuitable as food, but rather the attributes of each algal species such as size, shape, and toxicity.
- 67. Although ample evidence exists to show that detritus is consumed by zooplankton, no evidence exists to show that it is consumed preferentially; rather, detritus is ingested in proportion to its composition in the environment. When detritus is included as a food source in a grazing formulation, it should be given equal ranking with other suitable foods. It should be noted that bacteria that colonize detritus constitute an important source of protein in the diet.

69. Eaptorial feeders can sleze large prey and tear it apart before eating (Ambler and Frost 1974, Brandl and Fernando $1^{9.75}$), but there are limits to the size of prey they capture.

70. PREMI is the preference factor of zooplankton for the ALGARI compartment, PREF2 is the preference factor of zooplankton for the ALGARI compartment, and PREF3 is the preference factor of zooplankton for the detritus compartment. The food preference factors are dimensionless; the total of the three factors must equal 1. Values for these preference factors are given in Table 15.

Table 15

For 1 preference factors of 2 optimates dimensionless)

EPI ATOR	7.67 E	BBEZ	REPUREMON
1 000 100 1	*	mann y laget of	Footan and McNaggat 1975
, W , *** 1		Portpillans to h	Burnand McNautht 1977
States of March	$\{X_{i,j},X_{i,j}\}$	mann of time to the	Bowlan and McNaught 1975
11 (4)4 (16)1 (1)		nethlankton	r system and McNatchit 1975
The first section of	1	. I wear need the first	Radian and McNaught 1975
of the fire days	` , . :	hating lankton	and the first and Material and Tables
1 * 1 + 1 +	• ` '	das tyrasid Autoria	- word in and McNigabit 1975
	*	A Transfer to AT 1999	r come and McTrammt 19
1		a marketike e	The Francisco Mark Hart 1986
14 14		media Lankino	Committee of McNavade Care E.
4 1 1 1 1	.41	met of at which	Control of the Control of the Control of the Control
12.7	0.17	the type Architecture	The second of the second of the second

PURESP

71. TERESP is the maximum zooplankton respiration rate (1/diy). Respiration is the sum of all physical and chemical processes by which organisms exidize organic matter to produce energy. Respiration rates of aquatic invertebrates usually are estimated directly by monitoring oxygen consumption. By multiplying oxygen consumed times an oxygaloric coefficient (i.e., 4.83 cal/ml 02 (Winberg et al. 1934)) and the energy-to-carbon relation for aquatic invertebrates (i.e., 10.98 cal/marc (Salonen et al. 1976)), the amount of carbon metabolized can be determined and converted to bromass.

72. Conover (1960) has indicated that carnivores have higher respiration rates than herbivores. Values for maximum popularkton respiration rates are given in Table 16.

Table 16
Zooplankton maximum respiration rates (1/day)

SPECIES	TZRESP	REPERENCE
Bosmina coregoni	0.170	Manuilova 1958
Bosmina longirostris	0.185	Sushchenya 1958
Ceriodaphnia reticulata	0.1850	Gophen 1976
Copepoda	0.075204	Bishop, 1968
Copepod adults	0.043131	Williams 1982
Copepod copepodites	0.054171	Williams 1982
Copepod nauplii	0.165695	W:11:ams 1982
Copepod total	0.056183	Williams 1982
Daphnia ashlandii	0.447~.74	Duval and Geen 1976
Daphnia clavipes	0.117165	Comita 1968
Daphnia cuculata	0.161	Mandilova 1950
Daphnia galeata	0.13772	LaRow et al. 1975
Daphnia hyalina	0.179	Blazka 1966
Daphnia longispina	0.121135	Tezuka 1971
Daphnia longispina	0.16	Manuilova 1958
Daphnia longispina	0.146	Shushkina and Pecen' 1964
Daphnia magna	0.085175	Kersting and
•		Van De Leeuw-Leegwater 1976
Daphnia magna	0.014	Sushchenya 1958
Daphnia oregonesis	0.194	Richman 1964
Daphnia pulex	0.582	Buikema 1972
Daphnia pulex	0.1819	Tezuka 1971
Daphnia septopus	0.00818	Comita 1968
Daphnia siciloides	0.00652	Comita 1968
Diaphanosoma brachyurum	0.272	Sushchenya 1958
Diaptomus kenai	0.272448	Duval and Geen 1976
Leptodora kindtii	0.471	Moshiri et al. 1969
Leptodora kindtii	0.125	Hillbricht-Ilkowska and Karabin 1970
Simocephalus vetulus	0.131	Sushchenya 1958
-	0.154	Manuilova 1958
	0.096201	
	0.063210	

- 73. ZS2P is the zooplankton half-saturation coefficient for grazing on algae and detritus (mg/L). It has been found that zooplankton exhibit reduced feeding rates at high food concentrations; the relationship between feeding rate and food concentration has been reported to be curvilinear by a number of investigators (Burns and Rigler 1967, Parsons et al. 1967, McQueen 1970, Frost 1972, Monakov 1972, Gaudy 1974, and Chisholm et al. 1975).
- 74. The most realistic calculation of zooplankton arazing rate is based on their rate of removal of biomass of food (Mullin 1963); therefore, it is important that investigators report results in terms of biovolume or biomass instead of cell number. The method most used to determine injestion rate is to count prey in controls and experimental chargers after feeding rosplankton. Values for zoog lankton måd are given in Table 17.

11.1 placet to alterative the electronical (mg/L)

 	BEFERENCE
	Tranța and Padre 1976 Princand Ladie 1976 Princand Ladie 1976 Princand Ladie 1976

The second of the second temperature coefficients

> of the first two temperature bound at which note and the transfer court list denor-

- . To the lowest temperature at which pro-
- The appear temperature bounding the range of partitions rates (°C).

Table 13 Looplankton temperature coefficients (°C)

SPECTES	20071	20012	$z = \frac{1}{2 \cos 23}$	ZOOT4	REFERENCE
Calabagaia lusasi	NA*	20	24	NA	Green 1975
Ceriodaphnia reticulata	NA	24	27	NΑ	Gophen 1976
Dajhmia daleata	NA	20	24	NA	Burns 1969
Saphhia longispina	NA	1 t	18	AV:	Nauwerck 1959
Naphhia magna	NA	2.4	26	35	McMahon 1965
Dajinnia madna	NA	25	NA	NA	Burns 1969
Daphnia midlenderffiana	NA	24	25	NA	Kryutchkova and
					Kondratyuk 1966
Daphnia pulex	ΝA	20	24	NA	Burns 1969
Daphnia pulex	NA	20	24	NA	Geller 1975
Laphnia pulex	NA	NA	25	NA	Geller 1975
Daphnia rosea	NA	20	24	NA	Burns & Rigler 1967
Daphnia rosea	NA	14	15	NA	Kibby 1971
Daphnia schedleri	NA	20	22	NA	Burns 1969
Daphnia schedleri	NΑ	20	24	NA	Hayward & Gallup 1976
Diaptomus sp.	NA	16	13	NA	Nauwerck 1959

^{*} NA = not available.

76. As with the phytoplankton, zooplankton are able to adapt to the assient temperature with time. This is demonstrable throughout the different regions of the United States and at different times of the year. Zooplankton found in temperate regions of the United States are exposed to lower average temperatures throughout the year and consequently have lower temperature factors (i.e., ZOOT), LOCAL, ZOOT, and ZOOT, than those found in more southern regions. Again, these values are unavailable from the literature but have been estimated by Leidy and Ploskey (1980) based upon addimation temperatures (Table 19).

Acclimation temperature, upper and lawer fethal temperature, and the temperature range to a temperature maximum trazing rate for zooplankton exposed to raild temperature stress (°C) (from Leidy and Plaskey 1980)

Ac di				
Termi.	ZOQT1	5007[2]	Z(0)(27] 3	ZOOT4
• •	0	5	6	25
200	()	10	1.2	30
1 ,	2	1.5	1.8	33
.10	5	20	24	33
2.7	7	25	30	3.4
29	1 0	29	3. 4	34
354	10	30	; 4	3.4
* * * *	1	3.1.	3 4	34
1-1) .	3.4	3.4	3.4
		Lethal		

SPECIES	FOOD	RATION	REFERENCE
NEMATODA			
Aphelenchus avenae	fungal mycelia	0.26	Soyza 1973
Plectus	rungur mycciru	0.20	50y2a 1773
palustris	Acinetobacter	6.50	Duncan et al. 1974
	sp.	0.50	Duncan et al. 1974
MOLLUSCA Dreissena			
polymorpha	bacteria	0.0112	Sorokin 1966
Goniobais	- v. £ . v l	0 01 24	Malone and Nales 1000
clavaeformis	aufwucks	0.0124	Malone and Nelson 1969
ARTHROPODA			
Hyalella azteca	sediments	0.17-1.03	Hargrave 1970
Pontogammarus	01 1 1		
robustoides Pontogammarus	Cladophora sp.	0.00798	Kititsyna 1975
robustoides	Tubifex sp.	0.187-1.63	Kititsyna 1975
PODOCOPA			
Chaoborus			
flavicans	natural phyto- plankton		
	population	0.036114	Kajak and Dusoge 1970
Herpetocypris reptans	Spirogyra sp.	1.28	Yakovleva 1969
Herpetocypris			
reptans Herpetocypris	Zygnema sp.	0.93	Yakovleva 1969
reptans	Mougeotia sp.	0.93	Yakovleva 1969
Herpetocypris reptans	Chironomus		
reptans	plumosus	0.66	Yakovleva 1969
Herpetocypris	Asellus aquaticus	0.66	Yakovleva 1969
reptans nerpetocypris	Asellus aquaticus	0.00	iakovieva 1969
reptans Procladius	fish fry	1.09	Yakovleva 1969
choreus	Chironomidae	0.00711	Kajak and Dusoge 1970
EPHEMEROPTERA			
Stenonema			
pulchellum	Navicula minima	0.234	Trama 1972
PLECOPTERA			
Acroneuria californica	Hydropsyche sp.	0.002087	Heiman and Knight 1975
carrornica	matopayene sp.	0.002 ,007	neiman and milght 1979

Benthos

TBMAX

- 77. TBMAX is the maximum ingestion rate for benthos (1/day) and is measured at food densities above the incipient limiting food concentration. The food source for this compartment is organic sediment; its dominant members for most reservoir benthic communities are the aquatic oligochaetes and Chironomidae. Filter feeders, predators, deposit feeders, and surface grazers are all represented in most benthic communities.
- 78. Daily rations (an approximation of the daily grazing rate) of some benthic species compiled by Leidy and Ploskey (1980) are listed in Table 20. Other values for maximum indestion rate are given in Table 21.

Table 21
Benthos_maximum ingestion rates (1/day)

SPECIES	TBMAX	REFERENCE
Acroneuria californica	0.00209	Heiman and Knight 1975
Asellus aquaticus	0.25	Prus 1972
Carnivores	0.0282	Bigelow et al 1977
Chaoborus flavicans	0.036114	Kajak and Dusoge 1970
Deposit feeder	0.111	Gordon 1966
Hyalella azteca	0.17-1.3	Hargrave 1970
Omnivores	0.043	Bigelow et al. 1977
Pontagammarus robustiodes	0.07498	Kititsyna 1975
Procladius choreus	0.0711	Kajak and Dusoge 1970
Selective deposit feeder	0.05	Bigelow et al. 1977
Stenonema pulchellum	0.2123	Trama 1972

TBMORT

79. TBMORT is the nonpredatory mortality rate for benthos (1/day). Leidy and Ploskey (1980), in their review of the literature, show most benthos nonpredatory mortality rates to be between 0.001 and 0.02/day.

BEFFIC

80. DEFFIC is the assimilation efficiency for benthos (dimensionless). The assimilation officiency is multiplied by the indestion rate to obtain a assimilation rate. Values for enthos assimilation, officiency are given in Table 20.

Table 22
Benthos assimulation efficiencies (dimensionless)

SPECIES	VALUE	REFERENCE
Anatopina dijari	0.30	Teal 1957
Asellus aquaticus	0.30	Klekowski 1970
Aselius aquaticus	0.26-0.44	Prus 1971
	0.31-0.40	Winterbourn 1974
Calopsectra dives	0.20	Teal 1957
Carnivores	0.20-0.97	Lawton 1970
Jammarus pseudolimnaeus	0.10-0.20	Barlocher and Kendrick 1975
Jammarus pseudolimnaeus	0.42-0.75	Barlocher and Kendrick 1979
Jammarus pseudolimnaeus	0.10	Marchant and Hynes 1981
Jammarus pulex	0.30-0.40	Nilsson 1974
Jossosoma nigrior	0.17-0.32	Cummins 1973
ledriodiscus	0.59	Stockner 1971
lyalella azeteca	0.05-0.80	Hargrave 1970
Hydrophilus triangularis	0.55	Hallmark and Ward 1972
Lépidostoma	0.07-0.12	Grafius 1973
estes sponsa	0.36	Klekowski et al. 1970
	0.07	Guthrie and Brust 1969
Limmodrilus noffmeisteri	0.5	Teal 1957
Most invertebrates	0.5	
Potamopyrares Senkinsi	0.04	Heywood and Edwards 1962
Potomophylax cingulatus	0.10-0.30	
Pterenarcys scotti	0.11	McDiffett 1970
	0.77-0.91	Lawton 1970
•	0.57	McCullough 1975
	0.52	•
Fricorythodes winutus		
Publifex tubifex	0.5	Ivlev 1939

BS2SED

81. BS2SED is the half-saturation coefficient for benthos feeding on organic sediment (g/m^2) . Leidy and Ploskey (1980), after a thorough review of the literature, wrote that they were unable to find a single reference that documented, in units convertible to carbon, the change in benthic grazing as a function of food concentration. In addition, the value of the coefficient depends on the depth of the sediment being modeled, which is itself a variable. The authors of the present report recommend using values slightly smaller than half the initial condition for the sediment, which is reported in g/m^2 .

TBRESP

82. TBRESP is the maximum respiration rate for benthos (1/day). Respiration rates are estimated directly by monitoring benthic oxygen consumption by manometric, chemical, or polarographic methods. Values for the respiration rate for benthos are given in Table 23.

Table 23
Maximum respiration rates for benthos (1/day)

SPECIES	TBRESP	TEMP_°C	REFERENCE
Acartia	0.129215	NA*	Williams 1982
Ancylus fluviatilis	0.035049	16	Berg 1952
maetes sp.	0.4772	10	Fox et al. 1937
Bithynia tentaculata	0.020	1.3	Berg & Ockelmann 1959
Bithynia leachi	0.031	13	Berg & Ockelmann 1959
Chirchomus anthracinus	0.005	11	Berg et al. 1962
Chironomus strenzkei	0.1214	30	Plpatzer-Schultz 1970
Chloeon dipterum	0.1646	10-16	Fox and Simmonds 1933
Coemis sp.	0.075	10	Fox et al. 1935
Corethra flavicans	0.002	11	Berg et al. 1962
Corycaeus	0.051270	NA	Williams 1982
Echyonurus venosus	0.1734	10	Fox et al. 1935
Ephemera simulans	0.063	20	Olson and Rueger 1968
Ebhemera vulgata	0.07219	10	Fox et al. 1935
Ephemera damica	0.09521	10	Fox et al. 1935
Ephemerella ignita	0.24	10	Fox et al. 1935
Erpobdella oculata	0.034	20	Mann 1956
Erpobdella testacea	0.052	20	Mann 1956
Gammarus pulex	0.1012	NA	Fox and Simmonds 1933
Gastropoda, Veliger	0.107	NA	Williams 1982
Glossiphonia complanata	0.044	20	Mann 1956
Helobdella stagnalis	0.052	20	Mann 1956
Ilyodrilus hammoniensis	0.0009	11	Berg et al. 1962
Larvaceans	0.014043	NA	Williams 1982
Lumbricillus rivalis	0.006	11	Berg et al. 1962
Lymnaea aricularia	0.016	13	Berg & Ockelmann 1959
Lymnaea palustris	0.027	13	Berg & Ockelmann 1959
Symnaea pereger	0.023	13	Berg & Ockelmann 1959
Many groups	0.000104	NA	Olson and Rueger 1968
Myxas glutinosa	0.026	13	Berg & Ockelmann 1959
Oligotrichs	0.257	NA	Williams 1982
Physa fontinalis	0.041	13	Berg & Ockelmann 1959
Piscicola geometra	0.088	20	Mann 1956
Procladius sp.	0.002	11	Berg et al. 1962
Tintinnids	0.245	NA	Williams 1982
Tubifex barbatus	0.005	11	Berg et al. 1962
Tubifex tubifex	0.001	11	Berg et al. 1962
Valvata piscinalis	0.041	13	Berg & Ockelmann 1959

^{*} NA = not available.

BENT1, BENT2, BENT3, BENT4

- 83. Values for benthos temperature coefficients are given in Table 24.
 - a. BENT1 is the lower temperature bound of which metabolism continues to occur; it is usual: 0 °c.
 - <u>b.</u> BENT2 is the lowest temperature at which processes are occurring near the maximum rate.
 - e. BENT3 is the upper temperature bounding the range of maximum rates.
 - d. BENT4 is the upper lethal temperature.

Table 24
Temperature coefficients for benthos metapolism (°C)

SPECIES	BENT1	DIINT2		BENT4	RUPERBINCE
Asellus aquaticus Cammarus pulex Cammarus	0 0	15 18	NA* NA	50 5 20 4 20 4 20 4	Moore 1975 Moore 1975
pseudolimnaeus	U	20	NA	X1 = 1 1 x / X	Marchant & Hynes 1981

^{*} NA = not available.

Fish

- 84. CH-QUAL-RI has three fish compartments for simulating piserverous, planktiverous, and benthic-feeding assemblades in a reserveir. Since many fish species are omnivorous, however, the weighting procedure for computing composite compartment rates is different from other compartments. A report by heldy and Jenkins (1977) provides all the information necessary to compute the required composite rate coefficients.
- 39. In the model, the piservarian fish (compartment) feed only on the other two fish day attacht. Fish a time second appropriate the two algorithms to the second and the two algorithms to the second and the two algorithms.

sediment and benthos.

TTMAX

- 86. TFMAX, I is the maximum ingestion rate of the for the pisciverous fish compartment. The composite rate for the compartment should be computed based on the real annual standing crop estimate. Injection rated vary has function not only of species, but also on other rate in all reduced these factors by using, for example, we are a class estimates.
- e7. TEMAX,2 is the maximum indestion rate parameter rate rate and rate rate rate rate z = z = z planktion, alone, and detritus.
- ### TFDAX, I is the maximum indestion for the nation for the first tish of day). Benthic-feeding fish indest but because and or make sediment.
- 89. In general, a TFMAN coefficient of 9.31 represents maintenance without arowth; 9.04 to 9.16 represents optimize growth efficiency (ready and Jenkins 197.9).

PSZERO, POLO -, ESZESH

the standard the insection rate of find due to the available to happly, the fishery model uses half-saturation denoted in the appear the assume of fish present that be mult. In fish insection at half the national and with rate. If has been such sted that the half-saturation constant be considered to be 5 percent of fish wet body weight considered per day at 20 TC (heldy and denkins 1977). Pive percent of the body weight consumed per day corresponds thisely with the food intake rate for optimum efficiency in growth 4 to 5 percent for many species). Eser's of CH-CAL-Fr should refer to heldy and Jonkins (1977) because

- a. FS2BEN is the benthic-feeding fishes' (FISH3) half-saturation coefficient for benthos and sediment arazing (mg/L).
- <u>b</u>. FS2Z00 is the planktivorous fishes' (FISH2) half-saturation coefficient for zooplankton, detritus, and aloae (mg/L).
- c. FS2FSH is the piscivorous fishes' (FISH1) half-saturation coefficient for feeding on FISH3 and FISH2 (ma/L).

Table 25

Estimated halt-saturation coefficients for fish growth (mg/L)

(from Leidy and Jenkins 1977)

SEECTES	FOOD TYPE	VALUE	REFERENCE
for for ith wass	minnows	4.6	Thompson 1941
Stallneith Lass	mannows	7.2	Williams 1959
sluske i Lande	minnows	5.6	Gammon 1963
retirilate sculpin-	midge larvae	4.4	Davis and Warren 1965
Lockeye salmon	mixed diet	9.7.9 د	Brett et al. 1969
Shamed Satiish	mixed diet	3.1	Andrews and Stickney 1972

F2ALG, F2DET, F2ZOO, F3BEN, F3SED

- 91. Preference factors for fish compartments 2 and 3 are as follows:
 - \underline{a} . F2ALG is the preference of FISH2 for algae (dimensionless).
 - <u>b.</u> F2DET is the preference of FISH2 for detritus (dimensionless).
 - <u>c</u>. F2ZOO is the preference of FISH2 for zooplankton (dimensionless).
 - d. F3BEN is the preference of FISH3 for benthos (dimensionless).
 - e. F3SED is the preference of FISH3 for sediment (dimensionless).

intermation relating to fish preference factors is supplied in Lordy and Jenkins (1977) and is reprinted here in Table 26 : I w. Unfortunately, the different fish foods are expressed as tractions of the total diet rather than as quantities (1.0. grams) consumed, making preference factors difficult to estimate from this information.

Table 26 iish food expressed as a fraction of the diet (from Leidy and Jenkins 1977)

SPROTES	PLANT	DETKITUS	ZOOPL	BLNTHOS	FISH
	0.10	0.80	0.05	0.05	
readrin shad (yound) -Inreadfin shad	1.30	0.50	0.10	0.10	
1.14)	1.30	0.05	0.15	0.55	0.10
ordino.wothent	U.05		0.60 0.90	0.15 0.05	
11:00 H. C. 15:00 1:11:00 H. C. 15:00 H. C.	0.30	0.40	0.20	0.10	
11. 11. W.S	0.20		0.20	0.60	
Table Machine For	0.15	J.65	0.05	0.15	
1. 1. The 1.7	a.15	0.65	0.05	0.15	
and the water that		0.89	0.05	0.15	
ittal talah	. 0 1	U j	0.35	0.15	
			1.00		
1.1.1.6.1	. 1 .1		ú, 5ú		0.15
	• • • •	J . 1			0.80
Mark by					0.18
Control Programme			ti i	J. 80	
The District of the Control of the C				0.10	0.70
			. 1		0.05
La la Sel da California			. 15		0.86
1.41.1.4	V		1.2	U.15	0.55
16.3			1. J.	0.20	0.60
The Chwater Hall		1. * 12. ***	, . bb		0.34

92. An example is given for calculating preference factors for the third fish compartment when actual quantities consumed are known. Suppose a particular species of fish consumes 2 g out of an available 16.0 g of benthos and 0.26 g out of an available 120.0 g of sediment. The preference factor (P) for the ith food category equals

$$P_{i} = (E_{i}/A_{i})/SUM_{i}(E_{i}/A_{i}))$$
 (22)

where

 E_i = the amount of the ith food consumed

 $A_{\dot{1}}$ = the amount of the ith food available For the above examples the preference factors would be

P(benthos) = (2.0/16.0)/0.127166 = 0.983

P(sediment) = (0.26/120.0)/0.127166 = 0.017

FSHT1, FSHT2, FSHT3, FSHT4

- 93. Upper and lower temperature tolerances for fish ingestion are presented as follows:
 - a. FSHTl is the lower temperature boundary, usually 0 °C, at which metabolism continues.
 - <u>b</u>. FSHT2 is the lowest temperature at which processes are occurring at the maximum rates.
 - <u>c</u>. FSHT3 is the upper temperature bounding the range of maximum rates.
 - d. FSHT4 is the upper lethal temperature.
- 94. For most warmwater species, upper and lower temperature tolerances are similar, the lower limit being reached at 0°C and the upper limit between 33 and 37 °C; the optimum temperature is about 27°C. Coldwater species such as salmonids reach a lower temperature limit at 0°C, but the upper limit is near 25°C; the optimum temperature is about 14°C. Temperature tolerance values and the various acclimation temperatures (ACCL), where available, are given in Table 27.

Table 27

Temperature coefficients for fish ingestion (°C)
(from Leidy and Jenkins 1977)

SPECIES	ACCL	FSHT1	FSHT2	FSHT3	FSHT4	REFERENCE
Pickerals		0		24	34.4	Leidy and Jenkins 1977
Minnows		0	27		33.4	Leidy and Jenkins 1977
Catfish		0	30		37.1	Leidy and Jenkins 1977
Sunfish		2.5	27.5		35.7	Leidy and Jenkins 1977
Black bass		1.6	27		36.5	Leidy and Jenkins 1977
Crappie			23		32.5	Leidy and Jenkins 1977
Yellow perch		0	24.2		30.9	Leidy and Jenkins 1977
Yellow perch				29		Schneider 1973
Fingerling salmon			15			Brett et al. 1969
Bluntnose minnow	5				26.0	Hart 1947
Bluntnose minnow	10				28.3	Hart 1947
Bluntnose minnow	15	1.0			30.6	Hart 1947
Bluntnose minnow	20	4.2			31.7	Hart 1947
Bluntnose minnow	25	7.5			33.3	Hart 1947
Flathead minnow	10				28.2	Hart 1947
Flathead minnow	20	1.5			31.7	Hart 1952
Flathead minnow	30	10.5			33.2	Hart 1952
Creek chub	5				24.7	Hart 1952
Creek chub	10				27.3	Hart 1952
Creek chub	15				29.3	Hart 1952
Creek chub	20	0.7			30.3	Hart 1952
Creek chub	25	4.5			30.3	Hart 1952
Chub	14				27.1	Black 1953
Finescaled sucker	14				26.9	=
White sucker	25				31.2	Brett 1944
White sucker	5				26.3	
White sucker	10				27.7	Hart 1947
White sucker	15				29.3	Hart 1947
White sucker	20	2.5			29.3	
White sucker	25	6.0			29.3	
White sucker	• -	0.0	27			McCormick and Mischuk 1973
Brown bullhead	5				27.8	Hart 1952
Brown bullhead	10				29.0	Hart 1952
Brown bullhead	15				31.0	Hart 1952
Brown bullhead	20				32.5	Hart 1952
Brown bullhead	25				33.8	Hart 1952
Brown bullhead	30				34.8	Hart 1952
Brown bullhead	34				34.8	Hart 1952
Black bullhead	23				35	Black 1953
Channel catfish	25				35.5	Allen and Strawn 1968
Channel catfish	35				38	Allen and Strawn 1968
Channel catfish	3)		18		20	Andrews and Stickney 1972
	1.5	0.0	10		30.3	
Channel catfish	15	2.5			32.8	
Channel catfish	20				33.5	
Channel catfish	25	6.0				
	1 5	י כ				
Bluegill	15	2.5			30.7	
	15 20 25	2.5 5.0 7.5			31.5	Hart 1952 Hart 1952 Hart 1952

Table 27 (concluded)

SPECIES	ACCL	FSHT1	FSHT2	FSHT3	FSHT4	REFFRENCE
Bluegill	30	11.1			33.8	Hart 1952
Bluegill			22		33.8	McComish 1971
Longear sunfish	25				35.6	Neill et al. 1966
Longear sunfish	30				36.8	Neill et al. 1966
Longear sunfish	35				37.5	Neill et al. 1966
Pumkinseed	25				24.5	Brett 1944
Smallmouth bass	35	1.6	26.3		35.0	Horning and Pearson 1973
Smallmouth bass			28.3			Peck 1965
Largemouth bass			27.5	30		Strawn 1961
Largemouth bass			25			Niimi and Beamish 1974
Largemouth bass	20	5.5			32.5	Hart 1952
Largemouth bass	25				34.5	Hart 1952
Largemouth bass	30	11.8			36.4	Hart 1952
Yellow perch	5				21.3	Hart 1947
Yellow perch	10	1.1			25.0	Hart 1947
Yellow perch	15				27.7	Hart 1947
Yellow perch	25	3.7			29.7	Hart 1947
Yellow perch-						
juvenile	24		20	23.3		McCauley and Read 1973
Yellow perch-						
adult	24		17.6	20.1		McCauley and Read 1973
Yellow perch	8		18.6			Ferguson 1958
Yellow perch	10		19.3			Ferguson 1958
Yellow perch	15		23.0			Ferguson 1958
Yellow perch	20		23.1			Ferguson 1958
Yellow perch	25		24.5			Ferguson 1958
Yellow perch	30		26.7			Ferguson 1958
Sockeye salmon-fry	5	0			22.2	Brett 1952
Sockeye salmon-fry	10	3.1			23.4	Brett 1952
Sockeye salmon-fry	15	4.1			24.4	Brett 1952
Sockeye salmon-fry	20	4.7			24.8	Brett 1952
Sockeye salmon-						
juvenile	15		15	17		Brett et al. 1969
Coho salmon	5	0.2			20.9	Brett 1952
Coho salmon	10	1.7			23.7	Brett 1952
Coho salmon	15	3.5			24.3	Brett 1952
Coho salmon	20	4.5			25.0	Brett 1952
Chinook salmon			18.4			Olson and Foster 1955
Northern pike	25				32	Scott 1964
Lake trout			11.7			McCauley and Tait 1970
Lake trout	1.0		. 8	10.9		Rawson 1961
Rainbow trout	18		17	20		McCauley and Pond 1971
Brook trout	5				23.7	Fry et al. 1946
Brook trout	10				24.4	Fry et al. 1946
Brook trout	15				25.0	Fry et al. 1946
Brook trout	20	0.5			25.3	Fry et al. 1946
Brook trout	25	0.5	14	19	25.3	Fry et al. 1946 Graham 1949
Brook trout						

FEFFIC

95. FEFFIC, the assimilation efficien / for tish (dimensionless), ranges from 0.66 to 0.98; a value of 0.80 is realistic for most fish (Leidy and Jenkins 1977). The assimilation efficiency is multiplied by the ingestion rate to obtain an assimilation rate. Values for fish assimilation efficiency are given in Table 28.

Table 28
Assimilation efficiencies of fish (dimensionless)

SPECIES	FEFFIC	REFERENCE
Bleak	0.80	Mann 1965
Blueback herring	0.80	Burbridge 1974
"	0.80	Pierce and Wissing 1974
Bluegill	0.97	Gerking 1955
	0.80	Wingerg 1956
Carp	0.74	Ivlev 1939a
Carp	0.95	Kobashi and Deguchi 1971
Cichlasoma bimaculatum	0.69-0.89	Warren and Davis 1967
Cutthroat trout	0.84-0.86	Krokhin 1959
Ctenopharyngodon	0.14	Fisher 1970
Dace	0.79	Mann 1965
Goldfish	0.71-0.86	Davies 1964
Green sunfish	0.94	Gerking 1952a
Longear sunfish	0.94-0.97	Gerking 1952a
Northern pike	0.72	Johnson 1966
Perca fluvatilis	0.35	Klekowski et al. 1970
Perch	0.79	Mann 1965
Reticulate sculpin	0.74-0.84	Davis and Warren 1965
Roach	0.78	Mann 1965
White bass	0.66-0.69	Wissing 1974

TFMORT

96. TFMORT is the nonpredatory mortality rate for fish (!/day). Mortality rate is that fraction of fish biomass that is converted to detritus by death. Nonpredatory mortality rates can be highly variable depending on species, age, exploitation rate, and numerous environmental variables.

The average rate calculated by Leidy and Jenkins (1977) is $\sigma_{\rm cool}$ for exploited populations.

12. Ricker (1945) has reviewed techniques for calculating various mortality rates (total, instantaneous, conditional, natural, and fishing). Values for nonpredatory containty are given in Table 29.

Table 29
Fish nonpredatory mortality rates (1/day)

SPECIES	TFMORT	REFERENCE
American shad	0.002	Walburg 1961
Bluegill	0.002	Patriarche 1968
Bluedill	0.0002	Gerking 1952b
sluegill	0.001	Ricker 1945
Brook trout	0.001	Latta 1962
Brook trout	0.003004	Alexander and Shetter 1961
Brook trout	0.56-1.34	Hatch and Webster 1961
Brown bullhead	0.001	McCammon and Seeley 1961
Brown bullhead	0.001	
Channel catfish	0.001	Ricker 1958
Jutthroat trout	0.001002	Hansen 1971
Sutthroat trout	0.001	Ball and Cope 1961
reshwater drum	0.001	Butler 1965
Largemouth bass	0.00037	Mraz and Threinen 1955
Longnose sucker	0.002	Geen et al. 1966
Worthern pike	0.002	Groebner 1960
Northern pike	0.002	Johnson and Peterson 1955
Rock bass	0.002	Ricker 1947
Valleye	0.001	olson 1957
White catfish	0.001	McCammon and Seeley 1961

TERESP

98. TERESP is the fish respiration rate (1/day). There are three types of respiration that can be defined:
(a) standard respiration—exygen consumed in the absence of measurable movement (i.e., nonactive respiration, basal of resting metabolism), (b) routine respiration—rate of

exygen consumption of fish showing normal activity, and (c) active respiration—maximum rate of oxygen consumption under continuous forced active respiration. It would appear that the best estimates of the rate of respiration for normal active fish are values for routine metabolism (i.e., type 2 above) (Winberg 1956). Values for fish respiration rate are given in Table 30.

Table 30 Fish maximum respiration rates (1 day)

SPECIES	TFRESP	$\underline{\mathrm{TYPE}}$	REFERENCE
Brown bullhead	0.001	routine	Beamish 1964
Brook trout	0.003	routine	Beamish 1964
Carp	0.001	routine	Beamish 1964
Lake trout	0.001	standard	Gibson and Fry 1954
Rainbow trout	0.002	standard	Florke et al. 1954
Salvelinus			
fontinalis	0.006024	standard	Madsen et al. 1977
Salvelinus			
fontinalis	0.019101	active	Madsen et al. 1977
Sockeye salmon	0.002	standard	Brett 1944
White sucker	0.002	routine	Beamish 1964

Other Coefficients

TDSETL

99. TDSETE is the detrital settling velocity (m/day). Detrital settling velocities vary from 0.001 to over 200 m/day depending on the detrital characteristics and reservoir hydrodynamics. Settling rates should be obtained from quiescent settling chamber studies because advective and turbulent forces in the mixed layer that can reduce settling in a reservoir are modeled separately. For most studies, settling velocities are in the range of 0.05 to 1.0 m/day.

Much higher values are often reported for fecal pellets, as shown in Table 20; however, such high settling coefficients may be questionable because they produce unrealistically low detritus values in the modeling studies. Values for detritus settling velocities are given in Table 31.

Table 31
Detritus settling velocities (m/day)

SOURCE	TDSETI.	REFERENCE
Ceratium balticum	9.0	Apstein 1910
Chaetoceros borealis	5.0	Apstein 1910
Chaetoceros didymus	0.85	Eppley et al. 1967b
Cricosphaera carterae	1.70	Eppley et al. 1967b
Ditylum brightwellii	2.0	Apstein 1910
Fecal pellets: Acartia clausii	116.0	Smayda 1971
Fecal pellets:		
Euphausia krohnii	240.0	Fowler and Small 1972
Fecal pellets:		
Euphausia pacifica	43.0	Osterberg et al. 1963
Fecal pellets:		
Pontella meadii	54.0-88.0	Turner 1977
Phaeodactylum tricornutu	m 0.0204	Riley 1943
Rhizosolenia herbetata	0.22	Eppley et al. 1967b
Stephanopyxis tunis	2.1	Eppley et al. 1967b
Tabellaria flocculosa	0.46-1.5	Smayda 1971
Thalassiosira psuedonana	0.85	Hecky and Kilham 1974

DETT1, DETT2

100. DETT1 is the lower temperature boundary at which decomposition continues to occur. It is usually 0 $^{\circ}\text{C}$.

101. DETT2 is the temperature at which decomposition occurs near the maximum rate. Temperature coefficients for decomposition are given in Table 32.

SUBSTRATE OR SITE	DETT1	DETT2	REFERENCE
Pseudomonas fluorescens: natural substrate E. coli: natural	0	25-30	Tison and Pope 1980
substrate	0	37	Tison and Pope 1980
Glucose: Lake George, New York	0	25	Tison et al. 1980
Glucose	Ö	20-30	Bott 1975
Glucose: Lake Wingra, Wis.		25-30	Boylen and Brock 1973

TDOMDK

- 102. TDOMDK is the dissolved organic matter (DOM) decay rate (1/day). DOM in natural waters is the organic substrate for heterotrophic metabolism. The composition of natural DOM is highly variable and little understood, but its sources are generally grouped into (a) excretion from phytoplankton and macrophytes, (b) decomposition of phytoplankton and macrophytes, (c) excretion by animals, and (d) allochthonous drainage (e.g., humic compounds from upstream sources).
- 103. Aquatic bacteria appear to be chiefly responsible for the removal of DOM compounds from the water; they are the major agents for bacterial mineralization of organic solutes in fresh water (Wright 1975), using organic matter as an energy source. Various methods have been tested to determine the decay rate of DOM in water. Modification of the basic Parson and Strickland (1963) technique have been developed to quantify the kinetics.
- 104. DOM decomposition rates have also been represented by filtered carbonaceous biochemical oxygen demand (BOD) decay rates. If sufficient oxygen is available, the

aerobic biological decomposition of organics will continue until all the DOM is consumed. In the standard test for BOD, a sample is diluted with water containing a known amount of oxygen. The loss of oxygen after the sample has been incubated for 5 days at 20 °C is known as the 5-day BOD. The value of the first-order decay rate is generally about 0.05 to 0.20 per day.

105. The BOD test suffers from several serious deficiencies. The test has no stoichiometric validity, for example: the arbitrary 5-day period usually doesn't correspond to the point where all the organic matter is consumed.

decay rates of DOM is the extensive variability in the composition and stage of decomposition of DOM. Allochthonous inputs of DOM are likely to be more refractory than autochthonous inputs, and as a result, decomposition rates will be slower and decay may be incomplete; therefore, the length of time the organic matter is available for decomposition is important. In addition, as particles sink out of the euphotic zone, both dissolved and detrital organic substrates may be limited to more resistant fractions thereby arresting attached microbial growth. Therefore, the rate of DOM decomposition may be lower in the hypolimnion of a stratified reservoir.

107. Oxygen consumption rate (mg $0_2/L/hr$) can be transformed into a mineralization rate of organic carbon (mg C/L/hr) by application of a conversion factor of 0.29 (Seepers 1981). Values for DOM decay rate are given in Table 33.

Table 33

DOM decay rates (1/day)

COMPOUND	TDOMDK	REFERENCE
Acetate	0.2	Wright 1975
Amino acids	0.64	Williams et al. 1976
Glucose	0.24	Williams et al. 1976
Glucose	0.3250	Toerien and Cavari 1982
Glucose	0.111	Wright 1975
Glutamate	0.11625	Carney and Colwell 1976
Glycine	0.31245	Vaccaro 1969
Glycine	0.048	Vaccaro 1969
Glycolate	0.024432	Wright 1975
Glycolate	0.01225	Wright 1975
Glycolic acid	0.004	Tanaka et al. 1974

TNH3DK

108. TNH3DK is the ammonia decay rate (i.e., the rate at which ammonia is oxidized to nitrite) (1/day). Ammonia is generated by heterotrophic bacteria as the primary end product of decomposition of organic matter, either directly from proteins or from other nitrogenous organic compounds. Although ammonia is a major excretion product, this nitrogen source is minor in comparison to decomposition.

109. Nitrification is the biological conversion of organic and inorganic N compounds from a reduced state to a more oxidized state (Alexander 1965). The nitrifying bacter:a capable of oxidation of NH4+ to NO2- are largely confined to the species Nitrosomonas, bacteria which are mesophilic (1-37 °C).

110. Nitrification rate can be determined by a number of different techniques. Courchaine (1968) has plotted nitremenous BOD on a logarithmic scale and determined the decay rate from the slope of the line. Thomann et al. (1971) used a finite-difference approximation to solve a

set of simultaneous linear equations.

- Ill. Laboratory measurements for the ammonia decay rate can produce results that differ from what might be measured in situ. Several environmental factors influence the rate of nitrification, including pH, temperature, suspended particulate concentration, hydraulic parameters and benthos.
- 112. Nitrification can be measured as a one- or two-step process. In the one-step method, only the end product of the entire reaction, nitrate, is measured. In the two-step method, (a) nitrite accumulation is measured as ammonia is oxidized to nitrite and (b) nitrate accumulation is measured as nitrite is oxidized to nitrate. Oxidation of ammonia to nitrite is the rate-limiting step in the total reaction; therefore, experiments that measure the rate of the total reaction (i.e., the one-step method) can be used to estimate this parameter. Ammonia oxidation rates are given in Table 34.

Table 34
Ammonia oxidation rates (1/day)

SITE	TNH3DK	REFERENCE
Wastewater treatment plant Grand River, Ill. Grasmere Lake, U.K. Truckee River, Nev. Upper Mohawk River, N.Y. Middle Mohawk River Lower Mohawk River Ohio River Big Blue River, Neb. Flint River, Mich.	0.05-0.30 0.80 0.001013 0.09-1.30 0.23-0.40 0.30 0.30 0.25 0.17-0.25 0.76-0.95	Wild et al. 1971 Bansal 1976 Hall 1982 Bansal 1976

TNO2DK

113. TNO2DK is the decay rate of nitrite to nitrate (1/day).

TDETDK

- 114. TDETDK is the detritus decay rate (1/day). Detritus as defined by Wetzel et al. (1972) consists of organic carbon lost from an organism by nonpredatory means (including egestion, excretion, secretion, etc.) from any trophic level component, or input from sources external to the ecosystem that enter and cycle in the system (i.e., allochthonous organic carbon). For CE-QUAL-Rl, this should be considered to be particulate material only.
- 115. The rate of detritus decay can be determined by measuring the use of oxygen during decomposition, with results expressed as a first-order decay coefficient (k base e = mg oxygen used/mg/day). Many workers have measured rates of oxygen uptake by detritus, suggesting that oxygen uptake is related to the organic matter available for decomposition. Odum and de la Cruz (1967) and Fenchal (1970), for example, demonstrated an inverse relation between detritus particle size and oxygen consumption. Oxygen uptake is an integrative measure of all oxidative processes occurring in the sample, both chemical and biological: reducing substances are usually rapidly oxidized; respiration of the organisms associated with detritus is primarily bacterial, although algae, protozea, and fungi may also contribute. Measurement of the oxygen uptake reflects the metabolism of communities of microorganisms involved in the decomposition of natural substances.
- 116. As a detrital particle decomposes with time, there is a decline in oxygen uptake accompanied by succession of communities of microorganisms; this decline occurs

as the matter changes from labile to refractory; refractory matter often accumulates in the sediment. Rates of decre are denotably high initially and slow down as the material becomes retructory; the rate is influenced by temperature, detrital composition, and use of the detrites. Macrophyte communities are the primary source of detritus in most systems. Submersed and floating macrophytes denerally decay more rapidly than the highly lightfred emergent species. Particulate organic matter of dead bluearcen aldge decomposes much faster than that derived from freen algae diatoms and desmids. Particulate organic matter (F. X. is especially resistant (Gunnison and Alexander 1975). Act detritus decays, there is a decrease in the C:N ratio as a result of a buildup of microbial protein (Mann 1972). A 1-3 sample of detritus at 20 °C consumes about 1 m; oxy en. hr (Hardrave 1972).

117. Plant litter consists of a variety of compounds (i.e., sucars, hearcellulose, lighth, waxes) which decay at different rates. The decay curves initially tend to follow the exponential decay functions of the more readily degradable inactions, particularly aquatic macrophytes, which account to a large proportion of the weight of plant litter; therefore, the majority of the litter's weight less occars in the first year. Over the long term, the decay rates change, especially for deciduous leaf litter which has a larger proportion of decay-resist and material than do aquatic macrophytes and therefore decays at a mach slower rate.

118. Decay rates can also be measured by suspending anylon mean bar of detrited raterial in situ or under continuity less and less with time. This actually measures weacht less are so emphatic decompositions y butterial marginary, a large of soluble and -

of some symmetric form of the amendation that containing periods.

1

The first approximation from free determination and matrices to the content of matrices of various, introduce, and promptions to the description of details as morated to the first decomposition of details as senerated to the first decomposition of darker water occurs at high on the order of 10 percent per day (Saundors 1972), these apparential sactive earlier tracer studies.

120. Includeration should be given to the primary or espective desireds of detritus. Decomposition rates for all enthaneus detrital nources are generally lower than for was entropied sources to reflect the more retractory nature it allocation as material after it. Transport through the green restriction to the resorroir. While a me-dimensional to be, also disposite a matter that a time has dispossed of and a world of them, a make of the above position in the prototype was in a system of a set to an electer area. The range traction is altowing to a settlet as produced in the pelasar which is the lower of errors will be applied more repeating the the water of the contract of the contract of the mer decomthe fitting of the first constraints of the state of the lphaunterstande en en de mente de la companya del companya del companya de la company and a contract with the first process of the contract of the c

1.11. The end of the e

Table 35
Detritus decay rates (1/day)

DETRITUS SOURCE	TDETDK	REFERENCE
Beech Cladophera glomerata Dead green algae Dead mixed algae Dead mixed algae	0.001004 0.007 0.016076 0.007111 0.00706	Hanlon 1982 Piecznska 1972 Otsuki and Hanya 1972 Jewell and McCarty 1971 Fitzgerald 1964
Gloeotrichia echinulata Isoetes lancustris Leaf packs Osier Potamogeton crispus Potomogeton perfoliatus	0.001007 0.003015 0.005017 0.001005 0.002004	Piecznska 1972 Hanlon 1982 Sedell et al. 1975 Hanlon 1982 Rogers and Breen 1982 Hanlon 1982

TCOLDK

122. TCOLDK is the coliform decay rate (1/day). Estimates of colliform die-off rates may be obtained in the Laboratory or in situ. In situ, where there are no flow regime data, or where flows are of a transient nature, a commonly used method is to add a slug of a conservative tracer substance (a dye, rare element, or radioisotope) to steady-state discharge. The discharge plume is sampled, dilution is estimated from the concentration of tracer, and the decay rate is estimated from the dilution-corrected coliform counts. This technique gives misleading results in cases where the tracer is diluted by water heavily contaminated with the same discharge. Since the tracer was introduced as a slug, there is no way to know how many of the surviving coliforms originated in the tracer-dosed effluent and how many came from pre- or post-dosing effluent. This problem is reduced where the flow regime is sufficiently stable (Zison et al. 1978).

- 123. There are two approaches to estimating die-off rates. Frost and Streeter (1924) were able to estimate the die-off rate using seasonal averages of coliform counts from a downstream station, by assuming plug flow in the river. Errors in the rates determined by this approach are attributable to (a) dilution and to longitudinal mixing that produced overestimates and (b) unconsidered sources of coliforms that produced underestimates.
- 124. In a second approach, a mathematical model of the flow and mixing in the system is used to correct the measurements for the effects of dilution. In this manner Marais (1974) analyzed coliform die-off in wastewater maturation ponds as a first-order decay reaction in a series of completely mixed steady-state reactors. Errors in the decay rates determined in this way are primarily attributable to the reliability of the system model.
- 125. Table 36 gives decay rates for coliform and fecal streptococcus. In Table 37 from Mitchell and Chamberlain (1978), the median die-off value was 0.040 hr for freshwater coliform. In general, the die-off follows first-order decay kinetics, although a significant increase in coliform levels is commonly observed in the first several miles downstream from the outfall.
- 126. Factors affecting coliform decay rate include sedimentation, solar radiation, nutrient deficiencies, predation, algae, bacterial toxins, and physiochemical factors.

Table 36
Coliform and fecal streptococcus decay rates (1/day)

SPECIES	TCOLDK	REFERENCE
Fecal coliform Fecal streptococci Fecal streptococci Total coliform	0.048096 0.063 0.004013 4.48-5.52 0.199696 1.99 0.168-1.56 0.009028 0.021038 0.045049 0.024105 0.48-2.04	Evans et al. 1968 Evans et al. 1968 Geldreich et al. 1968 Kittrell and Furfari 1963 Klock 1971 Marais 1974 Geldreich et al. 1968 Klock 1971 Lvans et al. 1968 Prost and Streeter 1924 Hoskins et al. 1927 Mitchell and Chamberlain 1978

Table 37
Freshwater die-off rates of coliform bacteria measured in situ (1/day)
(from Mitchell and Chamberlain 1978)

SITE	TEMP/SEASON	RATE	REFERENCE
Ohio River	Summer 20°C	1.175	Frost and Streeter 1924
Ohio River		1.08	
Upper Illinois River		2.04	Hoskins et al. 1927
Upper Illinois River	OctMay	2.52	Hoskins et al. 1927
Upper Illinois River	Dec. Mar.	0.576	Hoskins et al. 1927
Upper Illinois River	AprNov.	1.032	Hoskins et al. 1927
Lower Illinois River	June-Sept.	2.04	Hoskins et al. 1927
Lower Illinois River	OctMay	0.888	Hoskins et al. 1927
Lower Illinois River	DecMar.	0.624	Hoskins et al. 1927
Lower Illinois River	AprNov.	0.696	Hoskins et al. 1927
Shallow turbulent			
stream	Summer	15.12	Kittrell and
			Koschtitzky 1947
Missouri River	Winter	0.48	Kittrell and Furfari 1963
Tennessee River			
(Knoxville)	Summer	1.03	Kittrell and Furfari 1963
Tennessee River			
(Chattanooga)		1.32	
Sacramento River, Calif.	Summer	1.752	Kittrell and Furfari 1963
Cumberland River, Md.		5.52	Kittrell and Furfari 1963
Groundwater stream		0.504	
Leaf River, Miss.		0.408	
Wastewater lagoon		0.199696	
Maturation ponds		1.99	
Maturation ponds		1.68	
Oxidation ponds	20°C	2.59	Marais 1974

TSEDDK

127. TSEDDK is the organic sediment decomposition rate (1/day). While sediment consists primarily of settled organic detritus, the decomposition rate should reflect the changing nature of the detritus as it reaches the sediment; i.e., it becomes more refractory since the labile portion of the organic detritus decomposes as it settles through the water column. In addition, since the initial value for sediment is in g/m^2 the thickness of the sediment layer, along with TSEDDK, will affect the amount of predicted decomposition. Thus, if high initial values are used for sediment, TSEDDK may have to be lowered since only the top few centimeters of sediment are usually involved in aerobic decomposition. Hargrave (1969) found the following relationship between the rate of oxygen comsumption by sediments (m1 $02/m^2/hr$) and the temperature (T, °C):

In $(O_2$ consumption rate) = 1.74*ln(T)-1.30 (23) At 6° C this would be 214.3 mg $02/m^2/day$, assuming a constant rate for the day and the conversion formula found in the CE-QUAL-Rl User's Manual (Environmental Laboratory 1982, p. 188). At 25° C the rate would be 2567 mg/m²/day. The amount of sediment (in mg/m²) times the value for TSEDDK times 1.4 (i.e., the stoichiometric equivalent of oxygen uptake to sediment decay) should be near the 6-25 °C range.

DOMT1, DOMT2

128. DOMT1, the critical low temperature for DOM decay, is usually 0 $^{\circ}\text{C.}$

129. DOMT2 is the optimum temperature for DOM decay (°C). Temperature coefficients for DOM decay are given in Table 38.

Table 38
Temperature coefficients for DOM decay (°C)

SUBSTRATE	DOMTI	DOMT2	REFERENCE	
Glucose Glucose: Lake	5.0	35.5	Toerien and Cavari 1982	
Jeorge, N.Y.	0	25	Tison et al. 1980	
Glucose: Lake	()	20-30	Bott 1975	
Wingra, Wis.	0	25-30	Boylen and Brock 1973	

NH3T1, NH3T2

- 130. Researchers have generally found temperature to affect nitrification rates, especially in the range of 10 to 35 °C.
 - a. NH3Tl is the lower temperature boundary at which ammonium nitrification continues. It is generally 0 °C.
 - b. NH3T2 is the optimum temperature for oxidation of NH3-N. The optimum temperature for nitrification is generally accepted to be between 25 and 30 °C.

Temperature factors for ammonia oxidation are given in Table 39.

Table 39
Temperature coefficients for ammonia oxidation (°C)

SPECIES OR SITE	NH3T1	МИЗТ2	REFERENCE
Nitrosomonas Wastewäter treatment	5	30	Knowles et al. 1965
plant	5	25	Wild et al. 1971
Ann Arbor, Michigan	2	20	Borchardt 1966

1, 201, N=272

- 131. NO2T1 is the lower temperature boundary at which attract mitrification occurs (°C).
- 132. No2T2 is the lowest temperature (°C) at which the accurs near the maximum and a

TOSETE is the suspended solids settline velocity to as a settline rate is dependent on the type of carriels, main size, density, temperature, viscosity, and tarriels. Most of the larger particles entering a receivant settle very quickly and should not be included in the include. Lane (1938) gives figures of 0.86 to 860.0 a far for particle diameters of 0.002 to 0.1 mm. Furticles to and in the main body of a reservoir are usually at the lawer one of this scale.

Whocol.

134. CE-MAL-RI uses a Q10 formulation to modify the coliforth die-off rate as a function of temperature. All other rates are modified by temperature through the RMULT function in Ch-QUAL-RI. The Q10 coefficient is usually 1.04.

PART III: RECOMMENDATIONS

- 135. This report provides information about, and values for, many of the excitivitients needed for use of the version of the model CE-QUAL-R1 described in the User's Manual (Environmental Lai or itary 1982).
- 136. Research on processes described in this report is likely to provide more information needed to refine the equations used in the model. Future versions of the model may therefore require additional coefficients.
- 137. This report may be updated to provide intermation about, and values for, any additional coefficients needed for use of future versions of the model.
- 138. Application, challeration, and verification of the model to a variety of sites is likely to identify coefficient values that are best suited to the model. These values may be included in updates to this report.

REFERENCES

- Admiraal, W. 1977. Influence of light and temperature on growth rate of estuarine benthic diatoms in culture.

 Mar. Biol. 39:1-9.
- Alexander, G. R., and D. S. Shetter. 1961. Seasonal mortality and growth of hatchery-reared brook and rainbow trout in East Fish Lake, Montmorency County, Michigan, 1958-59. Pap. Mich. Acad. Sci., Arts Lett. 46:317-328.
- Alexander, M. 1965. <u>Microbial Ecology</u>. John Wiley and Sons, N. Y. 511 pp.
- Allen, K. O., and K. Strawn. 1968. Heat tolerance of channel cat:ish <u>Ictalurus punctatus</u>. Proc. Ann. Conf. Southeast Assoc. Game Fish Comm. 21:399-411.
- Allen, W. E. 1932. Marine plankton diator of Lower California in 1931. Bot. Gaz. 95:485-493.
- Ambler, J. W., and B. W. Frost. 1974. The feeding behavior of a predatory planktonic copepod, <u>Tortanus</u> discaudatus. Elmnol. Oceanogr. 19:446-451.
- Andrews, J. W., and R. R. Stickney. 1972. Interaction of reeding rates and environmental temperature on growin, food conversion, and body composition of channel cattish. Trans. Am. Fish. Soc. 101(1):94-99
- Andronikova, I. N. 1978. Estimation of the role of zoorlankten in the processes of colf-purification. Int. Ver. Theoret. Angew. Dismol. Veri. 20:1022-1025.
- Apstein, C. 1910. But an arrangement in der Tiefe delekt, in der er eine ihr ast. Internet. Rev. Ges. Hydrebied. 1940. dast., :17-7.
- Ball, O. F., and C. B. Cope. 1901. Mortality studies on thirteat trout in Yellow tone Lake. U. S. Fish Wildl. Serv. Res. Rev. 55:62 pp.
- Bandister, T. T. 1979. Quantitative description of steady state, nutrient-saturated algal growth, including adaptation. Limnol. Oceanogr. 24:76-96.

- Bansal, M. K. 1976. Nitrification in natural streams. Wat. Poll. Cont. Fed. J. 48:2380-2393.
- Barlocher, F., and B. Kendrick. 1975. Assimilation efficiency of Gammarus pseudolimnaeus (Amphipoda) feeding on fungal mycelium or autumn-shed leaves. Oikos 26:55-59.
- Bates, S. S. 1976. Effects of light and ammonium on nitrate up take by two species of estaurine phytoplankton. Limnol. Oceanogr. 21(2):212-218.
- Beamish, F. W. H. 1964. Respiration of fishes with special emphasis on standard oxygen consumption. II. Influence of weight and temperature on respiration of several species. Can. J. Zool. 42:177-188.
- Beardall, J., and J. A. Raven. 1981. Transport of increased carbon and the 'CO2 concentrating mechanism' in Chlorella emersonii (Chlorophycaea). J. Phycol. 17: 134-141.
- Berg, K. 1952. On the oxygen consumption of Ancylidae (Gastropoda) from an ecological point of view. Hydrobiologia 4:225-267.
- Berg, K., P. M. Jonosson, and K. W. Ockelmann. 1962. The resouration of some animals from the profundal zone of a lake. Hydrobiologia 19:1-39.
- Berg, K., and K. W. Ockelmann. 1959. The respiration of freshwater snails. J. Exp. Biol. 36:690-708.
- Berman, T. 1976. Release of dissolved organic matter by photosynthesizing algae in Lake Kinneret, Israel. Freshwater Biol. 6:13-18.
- Bernard, F. 1963. Vitesses de chute chez <u>Cyclococcolithus</u> <u>tragilis</u> Lohm. . Consequences pour le cycle vital des mers chaudes.
- Bernard, F., and B. Elkaim. 1962. C. R. Hebd. Seanc. Acad. Sci., Paris 254:4208-4210.

- Birmingham, B. C., J. R. Coleman, and B. Colman. 1982. Measurements of photorespiration in algae. Plant Physiol. 69:259-262.
- Bisho; J. W. 1968. Respiratory rates of migrating zooplankton in the natural habitat. Limnol. Oceanogr. 13:58-62.
- Black, E. C. 1953. Upper lethal temperatures of some Britis Columbia freshwater fishes. J. Fish. Res. Board. can. 10:196-210.
- Blazka, P. 1966. Metabolism of natural and cultured populations of Daphnia related to secondary production. Int. Ver. Theoret. Angew. Limnol. Verh. 16:380-385.
- Blum, J. J. 1966. Phosphate uptake by phosphate-starved Euglena. J. Gen. Physicl. 49:1125-1137.
- Bogdan, K. G., and D. C. McNaught. 1975. Selective feeding by Diaptomus and Daphnia. Verh. Int. Verh. Limnol. 19.
- Borchardt, J. A. 1966. Nitrification in the activated sludge process. In: The activated sludge process. Div. of Sanitary and Water Resources End., Univ. Mich., Ann Arbor.
- Bott, T. L. 1975. Bacterial growth rates and temperature optima in a stream with a fluctuating thermal regime. Limnol. Leanuage. 20:191-197.
- Boylen, J. W. and Brock, T. D. 1973. Bacterial decomposition processes in Lake Wingra sediments during winter. Timnal. Oceanogr. 18:628-634.
- Brandste, M. N. 1901. In: Oceanography, M. Frenk (ed.), Am. A. Fr. Arvert, Pri., Mislandton, D. C. Ko. e7:345-366.

- Brandl, Z., and C. H. Fernando. 1975. Food consumption and utilization in two freshwater cyclopoid copepods (Mesocyclops edax and Cyclops vicinus). Int. Rev. Ges. Hydrobiol. 60:471-494.
- Brett, J. R. 1944. Some lethal temperature relations of Algonquin Park fishes. Publ. Ont. Fish. Res. Lab. 63: 1-49.
- Brett, J. R. 1952. Temperature tolerance of young Pacific salmon, genus Oncorhynchus. J. Fish. Res. Board. Can. 9:265-323.
- Brett, J. R., J. E. Shelbourn, and C. T. Shoop. 1969.
 Growth rate and body composition of fingerling sockeye salmon, Oncorhynchus nerka, in relation to temperature and ration size. J. Fish. Res. Bd. Can. 26:2363-2394.
- Buikema, A. L., Jr. 1972. Oxygen consumption of the cladoceran, <u>Daphnia pulex</u>, as a function of body size, light and light acclimation. Comp. Biochem. Physiol. 42:877-888.
- Burbridge, R. G. 1974. Distribution, growth, selective feeding, and energy transformations of young-of-the-year blueback herring, Alosa aestivalis (Mitchell), in the James River, Virginia. Trans. Am. Fish. Soc. 103(2):297-311.
- Burns, C. W. 19, 9. Relations between filtering rate, temperat , and body size in four species of <u>Daphnia</u>. Limnol. reanogr. 14:693-700.
- Burns, C. W., and F. H. Rigler. 1967. Comparison of filtering rates of <u>Daphnia rosea</u> in take water and in sustensions of peast. Limnol. Oceanour. 12:492-732.
- Turbs, N. M., and F. Rosa. 1980. In <u>situ</u> beasurement of settling velocity of ordanic carbon particles assuments of the test of phytoplankton. bimnel. Oceanogr. 25:858-864.
- Burris, J. E., R. Wedde, and A. Lane. 1981. Carbon in Kine-limitation at photographesis of freshwater plut plusk-tot. J. Preshwater Ecol. 1:81-96.

- Butler, R. L. 1965. Freshwater drum, <u>Apldinotus grunniens</u>, in the navigational impoundments of the upper Mississippi River. Trans. Am. Fish. Soc. 94(4):339-349.
- Calvert, S. E. 1966. Accumulation of diatomaceous silica in the sediments of the Gulf of California. Geol. Scc. of Am. Bull. 77:569-596.
- Caperon, J., and J. Meyer. 1972. Nitrogen-limited growth of marine phytoplankton -- I. Changes in population characteristics with steady-state growth rate. Deer-Sea Res. 19:601-618.
- Carney, J. F., and R. R. Colwell. 1976. Heterotrophic utilization of glucose and glutamate in an estuary: Effect of season and nutrient load. Appl. Environ. Microbiol. 31:227-233.
- Curpenter, E. J., and R. R. L. Guillard. 1971. Intraspectific differences in nitrate half-saturation constants for three species of marine phytoplankton. Ecology 52:183-185.
- Castenholz, R. W. 1964. The effect of daylength and light intensity on the growth of littoral marine diatoms in culture. Physiol. Plant. 17:951-963.
- Castenholz, R. W. 1969. The thermophilic cyanophytes of Ideland and the upper temperature limit. J. Phycology 5:360-368.
- Chisholm, S. W., R. G. Stross, and P. A. Nobbs. 1975. Environmental and intrinsic control of filtering and feeding rates in Artic <u>Daphnia</u>. J. Fish. Res. Ed. Can. 32:219-226
- Clark, A. S., and J. C. H. Carter. 1974. Population dynamics of cladocerans in Sunfish Lake, Ontario. Can. J. 2001. 52:1235-1242.
- Clendenning, K. A., T. E. Brown, and H. C. Fyster. 1956. Can. J. Bot. 34:943-966.
- Cloern, J. E. 1977. Fifects of light intensity and temperature on <u>Cryptomonas ovata</u> (Cryptorhyceae) growth and nutrient uptake rates. J. Phycol. 18:339-395.

 $-\ell_i$

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS - 1963 - A

- Calor Brands

- responses of Anabaena variabilis (Cyanophyceae) to instantaneous exposure to various combinations of light intensity and temperature. J. Phycol. 18:206-21L
- Collins, C. D., and C. W. Boylen. 1982b. Ecological consequences of long-term exposure of <u>Anabaena</u> variabilis to shifts in environmental conditions. <u>Appl. Environ. Microbiol.</u> 44:141-148.
- Cohen, M. F. 1958. Experimental study of ingestion and assimilation in <u>Daphnia</u> (Cladocera). Ph.D. Thesis, Yale University, New Haven, Conn. 56 p.
- Comita, G. W. 1968. Oxygen consumption in <u>Diaptomus</u>. Limnol. Oceanogr. 13:51-57.
- Comita, G. W. 1972. The seasonal zooplankton cycles, production and transformations of energy in Severson Lake, Minn. Arch. Hydrobiol. 70:14-66.
- Cooper, W. E. 1965. Dynamics and production of a natural population of fresh-water amphipod, <u>Hyalella azteca</u>. Ecol. Mono. 35:377-394.
- Courchaine, R. J. 1968. Significance of nitrification in stream analysis -- effects on the oxygen balance. J. Water Poll. Cont. Fed. 40:835.
- Craddock, D. R. 1976. Effects of increased water temperatures on <u>Daphnia pulex</u>. U. S. Fish and Wildl. Serv. Fish. Bull. 74:403-408.
- Cummins, K. W. 1973. Trophic relations of aquatic insects. Ann. Rev. Entolmo. 18:183-206.
- Cummins, K. W., R. R. Costa, R. E. Rowe, G. A. Moshire, R. M. Scanlon, and R. K. Zajdel. 1969. Ecological energetics of a natural population of the predaceous zooplankton <u>Leptodora</u> <u>kindtii</u> Flocke (Cladocera). Oikos 20:189-223.
- Czeczuga, B., and E. Bobiatynska-Ksok. 1970. The extent of consumption of the energy contained in the food suspension by <u>Ceriodaphnia reticulata</u>. In: Z. Kajak and A. Hillbricht-Illkowska (eds.), <u>Productivity Problems of Freshwater</u>, <u>PWN Polish Scientific Publ. Warsaw</u>, pp. 739-748.

- Davies, P. M. C. 1964. The energy relations of <u>Carassius</u> auratus L. I. Food input energy extraction <u>efficiency</u> at two experimental temperatures. Comp. Biochem. 12:67-79.
- Davis, G. E., and C. E. Warren. 1965. Trophic relations of a sculpin in laboratory stream communities. J. Wildl. Mgmt. 29:846-871.
- Dodson, S. I. 1972. Mortality in a population of <u>Daphnia</u> rosea. Ecology 53:1011-1023.
- Duncan, A., F. Schiemer, and R. A. Klekowski. 1974. A preliminary study of feeding rates on bacterial food by adult females of a benthic nematode, Plectus palustris de Man 1880. Polskie Archiwum Hydrobiologii 21:249-258.
- Dunstan, W. M. 1973. A comparison of the photosynthesislight intensity relationship in phylogenetically different marine microalgae. J. Exp. Mar. Biol. Ecol. 13:181-187.
- Durbin, E. G. 1974. Studies on the autecology of the marine diatom <u>Thalassiosira nordenskioldii</u> Cleve. I. The influence of daylength, light intensity, and temperature on growth. J. Phycol. 10:220-225.
- Duval, W. S., and G. H. Geen. 1976. Diel feeding and respiration rhythmsin zooplankton. Limnol. Oceanogr. 21:823-829.
- Environmental Laboratory. 1982. "CE-QUAL-R1: A Numerical One-Dimensional Model of Reservoir Water Quality; User's Manual," Instruction Report E-82-1, U.S. Army Engineer Waterways Experiment Station, C.E., Vicksburg, Miss.
- Eppley, R. W., and P. R. Sloan. 1966. Growth rates of marine phytoplankton: correlation with light adsorption by cell chlorophyll a. Physiol. Plant. 19:47-59.
- Eppley, R. W., and W. H. Thomas. 1969. Comparison of half-saturation constants for growth and nitrate uptake of marine phytoplankton. J. Phycol. 5:375-379.

- Eppley, R. W., R. W. Holmes, and E. Paasche. 1967a.
 Periodicity in cell division and physiological
 behavior of <u>Ditylum brightwellii</u>, a marine planktonic
 diatom, during growth in light-dark cycles. Arch.
 Microbiol. 56:305-23.
- Eppley, R. W., R. W. Holmes, and J. D. H. Strickland. 1967b. Sinking rates of marine phytoplankton measured with a fluorometer. J. Exp. Mar. Biol. Ecol. 1:191-208.
- Eppley, R. W., J. N. Rogers, and J. J. McCarthy. 1969. Half-saturation constants for uptake of nitrate and ammonia by marine phytoplankton. Limnol. Oceanogr. 14:912-920.
- Evans, F. C., E. E. Goldreich, S. R. Weibel, and G. G. Robeck. 1968. Treatment of urban stormwater runoff. J. Water Poll. Contr. Fed. 40:R162-170.
- Fenchel, T. 1970. Studies on the decomposition of organic detritus derived from turtle grass <u>Thalassia</u> testudinum. Limnol. Oceanogr. 15:14-20
- Ferguson, R. G. 1958. The preferred temperature of fish and their midsummer distribution in temperate lakes and streams. J. Fish Res. Bd. Can. 15(4):607-624.
- Finenko, Z. Z., and D. K. Krupatkina-Aki-Nina. 1974. Effect of inorganic phosphorus on the growth rate of diatoms. Mar. Biol. 26:193-201.
- Fisher, Z. 1970. Elements of energy balance in grass carp.

 Ctenopharyngodon idella Val. Pol. Arch. Hydrobiol.

 17:421-434.
- Fitzgerald, G. P. 1964. The effect of algae on BOD measurements. Nat. Poll. Con. Fed. J. 36:1524-1542.
- Florke, M., G. Keiz, and G. Wangorsch. 1954. Uber die temperature temperatur-stoffwechsel-relation und die warmresistenz einiger susswasserfische und des flusskrebses. Z. Fischerei u. Hilfswiss 3:241-301.
- Fogg, G. E. 1969. The physiology of an algal nuisance. Proc. R. Soc. B 173:175-189.

- Fogg, G. E. 1973. Phosphorus in primary aquatic plants. Water Res. 7:77-91.
- Forester, T. H. 1971. Carbon limitation of algal photosynthesis. Unpubl. MS Thesis, Univer. of Missouri, Columbia.
- Fowler, S. W., and L. F. Small. 1972. Limnol. Oceanogr. 17:293-296.
- Fox, H. H., and B. G. Simmonds. 1933. Metabolic rates of aquatic arthropods from different habitats. J. Exp. Biol. 10:67-74.
- Fox, H. M., B. G. Simmonds, and R. Washbourn. 1935.

 Metabo ic rates of ephemerid nymphs from swiftly
 flowing and from still waters. J. Exp. Biol. 12:179184.
- Fox, H. M. C. A. Wingfield, and B. G. Simmonds. 1937. The oxygen consumetion of empherid nymphs from flowing and from still waters in relation to the concentration of oxygen in the water. J. Exp. Biol. 14:210-218.
- Frank, P. W., C. D. Boll, and P. W. Kelly. 1957. Vital statistics of laboratory cultures of <u>Daphnia pulex</u> DeGeer as related to density. Physiol. Zool. 30:287-305.
- Frost, B. W. 1972. Effects of size and concentration of food particles on the feeding behavior of marine plankton copepod <u>Calanus pacificus</u>. Limnol. Oceanogr. 17:805-815.
- Frost, W. H., and H. W. Streeter. 1924. Bacteriological studies. Public Health Bulletin 143, U. S. Public Health Service, Washington, D. C.
- Fry, F. E. J., J. S. Hart, and K. F. Walter. 1946. Lethal temperature relations for a sample of young speckled trout, Savelinus fontinalis. Univ. Toronto Biol. Ser. No. 54. Univ. Toronto Press, Toronto:9:35.
- Fuhs, G. W., S. D. Demmerle, E. Canelli, and M. Chen. 1972. Characterization of phosphorus-limited plankton algae. Limnol. Oceanogr. Special Symposia Vol 1:113-133.

- Gammon, J. R. 1963. Conversion of food in young muskellunge. Trans. Am. Fish. Soc. 92(2):183-184.
- Gargas, E. 1975. A manual for phytoplankton primary production studies in the Baltic Sea. The Baltic Marine Biologists in cooperation with the Danish Agency of Environmental Protection.
- Gaudy, R. 1974. Feeding four species of pelagic copepods under experimental conditions. Mar. Biol. 25:125-141.
- Gavis, J. and J. F. Ferguson. 1975. Kinetics of carbon dioxide uptake by phytoplankton at high pH. Limnol. Oceanogr. 20:211-221.
- Geen, G. H., T. G. Northcote, G. F. Hartman, and C.C. Lindsey. 1966. Life histories of two species of catostomid fishes in Sixteenmile Lake, British Columbia, with particular reference to inlet stream spawing. J. Fish. Res. Bd. Can. 23(1):1761-1788.
- Gehrs, C. W., and A. Robertson. 1975. Use of life tables in analyzing the dynamics of copepod populations. Ecology 56:665-671.
- Geldreich, E. E., L. C. Best, B. A. Kenner, and D. J. Van Donsel. 1968. The bacteriological aspects of stormwater pollution. J. Water Poll. Contr. Fed. 40: 1861.
- Geller, W. 1975. Die Nahrungsaufnahme von <u>Daphnia pulex</u> in Abhangigkeit von der Futterhonzentration, der Temperatur, der Korpergroesse und dem Hungerzustand der Tiere (The food uptake of <u>Daphnia pulex</u> as a function of food concentration, temperature, animals body length, and starvation). Arch. Hydrobiol. Supplementband 48:47-107 (Fish. Mar. Serv. Can. Trans. Ser. No. 4017, 1977, 96 p.).
- Gerking, S. D. 1952a. The protein metabolism of sunfishes of different ages. Physiol. Zool. 25(4):358-372.
- Gerking, S. D. 1952b. Vital statistics of the fish population of Gordy Lake, Indiana. Trans. Am. Fish. Soc. 82:48-67.
- Gerking, S. D. 1955. Influence of rate of feeding on body compositions and protein metabolism of bluegill sunfish. Physiol. Zool. 28(4):267-292.

- Gibson, E. S., and F. E. J. Fry. 1954. The performance of the lake trout, <u>Salvelinus namaycush</u>, at various levels of temperature and oxygen pressure. Can. J. Zool. 32: 252-260.
- Goldman, J. C., D. B. Porcella, E. J. Middlebrooks, and D. F. Toerien. 1972. The effects of carbon on algal growth -- its relationship to eutrophication. Water Res. 6: 637-679.
- Goldman, J. C., W. J. Oswald, and D. Jenkins. 1974. The kinetics of inorganic carbon-limited algal growth. J. Wat. Poll. Contr. Fed. 46:554-574.
- Goldman, J. C., and S. J. Graham. 1981. Inorganic carbon limitation and chemical composition of two freshwater green cicroalgae. Appl. Environ. Microbiol. 41:60-70.
- Golterman, H. L. 1975. <u>Physiological Limnology</u>. Elsevier, Amsterdam.
- Gophen, M. 1976. Temperature dependence of food intake, ammonia excretion and respiration in Ceriodaphnia reticulata (Jurine) (Lake Kinneret, Israel).

 Freshwater Biol. 6:451-455.
- Gordon, D. C. 1966. The effects of the deposit feeding polychaete <u>Pectinaria gouldii</u> on the intertidal sediments of Barnstable Harbor. Limnol. Oceanogr. 11:327-332.
- Grafius, E. 1973. Food consumption and utilization by five species of stream detritivores. Ann. Progress Report 1972, Coniferous Forest Biome, International Biol. Program.
- Graham, J. M. 1949. Some effects of temperature and oxygen pressure on the metabolism and activity of the speckled trout Salvelinus fontinalis. Can. J. Res. 27:270-288.
- Green, J. D. 1975. Feeding and respiration in the New Zealand copepod <u>Calamoecia</u> <u>lucasi</u> Brady. Oecologia (Berlin) 21:345-358.
- Groebner, J. F. 1960. Appraisal of the sport fishery catch in a bass-panfish lake of southern Minnesota, Lake Francis, LeSueur County, 1952-1957. Minn. Dept. Conserv. Invest. Rept. 225:17 pp.

Gruendling, C. K. 1971. Ecology of the epipelic algal communities in Marion Lake, British Columbia. J. Phycol. 7:239-249.

1

- Gulati, R. D. 1978. Vertical changes in filtering, feeding and assimilation rates of dominant zooplankters in a stratified lake. Int. Ver. Theoret. Angew. Limnol. Verh. 20:950-956.
- Guillard, R. R. L., and J. H. Ryther. 1962. Studies on the marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detorula confervacea (Cleve) Gran. Can. J. Microbiol. 8:229-239.
- Gunninson, D., and M. Alexander. 1975. Resistance and susceptibility of algae to decomposition by natural microbial communities. Limnol. Oceanogr. 20:64-70.
- Gutel'mackher, B. L. 1977. Quantitative evaluation of phyto- and bactenoplankton in the feed ration of planktonic crustaceans. Hydrobiological J. 9:15-20.
- Guthrie, J. E., and R. A. Brust. 1969. Elimination of radiocesium by an aquatic Hemipteran Lethocerus americanus (Belostomatidae). Can. Entomol. 101:856-861.
- Hall, D. J. 1964. An experimental approach to the dynamics of a natural population of <u>Daphnia galeata mendotae</u>. Ecology 45:94-112.
- Hall, D. J., W. E. Cooper, and E. E. Werner. 1970. An experimental approach to the production dynamics and structure of freshwater animal communities. Limnol. Oceanogr. 15:839-928.
- Hall, G. H. 1982. Apparent and measured rates of nitrification in the hypolimnion of a mesotrophic lake. Appl. Environ. Microbiol. 43:542-547.
- Hallmark, M. D., and C. R. Ward. 1972. The life history and life process studies of the water scavenger beetle, Hydrophilus triangularis Say. Desert Biome Res. Memo. 49-72, Utah State Univ., Logan, 24 pp.
- Halmann, M., and M. Stiller. 1974. Turnover and uptake of dissolved phosphate in freshwater. A study in Lake Kinneret. Limnol. Oceanogr. 19:774-783.

- Haney, J. F. 1973. An in <u>situ</u> examination of the grazing activities of natural zooplankton communities. Arch. Hydrobiol. 72:87-132.
- Hanlon, R. D. G. 1982. The breakdown and decomposition of allochthonous and autochthonous plant litter in an oligotrophic lake (Llyn Frongoch). Hydrobiologia 88: 281-288.
- Hansen, D. J. 1971. Evaluation of stocking cutthroat trout, Salmo clarki, in Munsel Lake, Oregon. Trans. Am. Fish. Soc. 100(1):55-60.
- Hargrave, B. T. 1969. Similarity of oxygen uptake by benthic communities. Limnol. Oceanogr. 14:801-805.
- Hargrave, B. T. 1970. The utilization of benthic microflora by <u>Hyalella azteca</u> (Amphipoda). Arch. Hydrobiol. 72: 427-437.
- Hargrave, B. T. 1972. Aerobic decomposition of sediment and detritus as a function of particle surface area and organic content. Limnol. Oceanogr. 17:582-597.
- Hart, J. S. 1947. Lethal temperature relations of certain fish in the Toronto region. Trans. Royal Soc. Can. Sec. 5; 41;57-71.
- Hart, J. S. 1952. Geographical variations of some physiological and morphological characters in certain freshwater fish. Univ. Toronto Biol. Ser. No. 60. Univ. Toronto. 79 pp.
- Harvey, H. W. 1937. Note on selective feeding by <u>Calanus</u>. J. Mar. Biol. Assoc. UK 22:97-100.
- Hatch, R. W., and D. A. Webster. 1961. Trout production in four central Adirondack Mountain Lakes. Cornell Univ. Agric. Exp. Sta. Mem. 272:82 pp.
- Hattori, A. 1962. Light-induced reduction of nitrate, nitrite and hydroxylamine in a blue-green alga, Anabaena cylindrica. Plant Cell Physiol. 3:355-369.
- Hayward, R. S., and D. N. Gallup. 1976. Feeding, filtering and assimilation in <u>Daphnia schoedleri</u> Sars as affected by environmental conditions. Arch. Hydrobiol. 77:139-163.

- Hecky, R. E., and P. Kilham. 1974. Environmental control of phytoplankton cell size. Limnol. Oceanogr. 19(2): 361-365.
- Heiman, D. R., and A. W. Knight. 1975. The influence of temperature on the bioenergetics of the carnivorous stonefly nymph, <u>Acroneuria californica</u> Banks (Pleocoptera: Perlidae). Ecology 56:105-116.
- Hendry, G. R., and E. Welch. 1973. The effects of nutrient availability and light intensity on the growth kinetics of natural phytoplankton communities. Presentation, Am. Soc. Limnol. Oceanogr. 36th Annual Meeting, Salt Lake City, Utah.
- Heywood, J., and R. W. Edwards. 1962. Some aspects of the ecology of Potamopyrgus jenkinsi Smith. J. Animal Ecology 31:239-250.
- Hillbricht-Ilkowska, A., and A. Karabin. 1970. An attempt to estimate consumption, respiration and production of Leptodora kindtii (Focke) in field and laboratory experiments. Polskie Archiwum Hydrobiologii 17:81-86.
- Hobson, L. A. 1974. Effects of interaction of irradiance, daylength, and temperature on division rates of three species of marine unicellular algae. Can. Fish. Res. Bd. J. 31:391-395.
- Holm, N. P., and D. E. Armstrong. 1981. Role of nutrient limitation and competition in controlling the populations of Asterionella formosa and Microcystis aeruginosa in semicontinuous culture. Limnol. Oceanogr. 26:622-634.
- Hoogenhout, H., and J. Amesz. 1965. Growth rates of photosynthetic microorganisms in laboratory studies. Arch. Mikrobiol. 50:10-24.
- horning, W. B., II, and R. E. Pearson. 1973. Growth temperature requirements and lower lethal temperatures for juvenile smallmouth bass (Micropterus dolomieui).

 J. Fish. Res. Bd. Cap. 30(1):1226-1220.
- Hoskins, J. K., J. C. Puchhoft, and L. G. Williams. 1927. A stud of the pollution and natural purification of the Illinois River. I -- Surveys and Laboratory Studies. Public Health Bulletin No. 171.

- Hutchinson, G. E. 1957. A Treatise on Limnology. I. Geography, Physics and Chemistry. John Wiley and Sons, NY.
- Ignatiades, L., and T. J. Smayda. 1970. Autecological studies on the marine diatom Rhizosolenia fragilissima Bergon. I. The influence of light, temperature, and salinity. J. Phycology 6:332-339.
- Ivanova, M. B., and R. Z. Klekowski. 1972. Respiratory and filtration rates in <u>Simocephalus</u> vetulus (O. F. Muller) (Cladocera) at different pH. Polskie Archiwum Hydrobiologii 19:303-318.
- Ivlev, V. 1939a. Balance of energy carps. Zool. J. 18:303-318.
- Ivlev, V. 1939b. Transformation of energy by aquatic animals. Int. Rev. G. Hydrobiol. Hydrogr. 38:449-458.
- Janik, J. J., W. D., Taylor, and V. W. Lambou. 1981. Estimating phytoplankton biomass and productivity. Miscellaneous Paper E-81-2, U. S. Army Engineer Waterways Experiment Station, Vicksburg, Miss.
- Jeanjean, R. 1969. Influence de la carence en phosphoric sur les vitesses d'absorption du phosphate par les Chlorelles. Bull. Soc. Fr. Physiol. Veg. 15:159-171.
- Jewell, W. J., and P. L. McCarty. 1971. Aerobic decomposition of algae. Env. Sci. Tech. 5:1023-1031.
- Jitts, H. R., C. D. McAllister, K. Stephens, and J. D. H. Strickland. 1964. The cell division rates of some marine phytoplankton as a function of light and temperature. J. Fish. Res. Bd. Can. 21:139-157.
- Johnson, F. H., and A. R. Peterson. 1955. Comparative harvest of northern pike by summer angling and winter darkhouse spearing from Ball Club Lake, Itasco County, Minn. Minn. Div. Game Fish Invest. Rept. 164: 1-11.
- Johnson, L. 1966. Experimental determination of food consumption of pike, Esox lucius, for growth and maintenance. J. Fish. Res. Bd. Can. 23:1495-1505.

Johnson, M. G., M. F. P. Michalski, and A. E. Christie. 1979. Effects of acid mine wastes on phytoplankton communities of two northern Ontario Lakes. J. Fish. Res. Bd. Can. 27:425-444.

1

- Jorgensen, E. G. 1968. The adaptation of plankton algae. II. Aspects of the temperature and the temperature adaptation of Skeletonema costatum. Physiol. Plant. 21:423-427.
- Jorgenson, C. B. 1975. Comparative physiology of suspension-feeding. Ann. Rev. Phys. 37:57-79.
- Kajak, Z., and K. Dusoge. 1970. Production efficiency of Procladius choreus Mg(Chironomidae, Diptera) and its dependence on the trophic conditions. Polskie Arc' Hydrobiol. 17:217-224.
- Kersting, K., and C. Van De Leeuw-Leegwater. 1976. Ef. of food concentration on the respiration of Daphr magna. Hydrobiol. 49:137-142.
- Ketchum, B. H. 1939. The absorption of phosphate and respective by illuminated cultures of <u>Nitzschia closterium</u>.

 Am. J. Bot. 26:399-407.
- Kibby, H. V. 1971. Effect of temperature on the feeding behavior of <u>Daphnia rosea</u>. Limnol. Oceanogr. 16:580-581.
- Kilambi, R. V., J. Noble, and C. E. Hoffman. 1970. Influence of temperature and photoperiod on growth, food consumption, and food conversion efficiency of channel catfish. Proc. Annu. Conf. Southeast Game Fish. Comm. 24:519-531.
- King, D. L. 1970. The role of carbon in eutrophication, J. Water Poll. Con. Fed. 42:2035-2051.
- Kirk, J. T. O. 1975. A theoretical analysis of the contribution of algal cells to the attenuation of light within natural waters. I. General treatment of suspensions of pigmented cells. New Phytol. 75:11-20.
- Kittrell, F. W., and S. A. Furfari. 1963. Observations of coliform bacteria in streams. J. Water Poll. Contr. Fed. 35:1361.
- Kittrell, F. W., and O. W. Kochtitzky, Jr. 1947. Natural purification characteristics of a shallow turbulent stream. Sewage Works J. 19:1032.

- Klekowski, R. Z. 1970. Bioenergetic budgets and their application for estimation of production efficiency. Pol. Arch. Hydrobiol. 17:55-80.
- Klekowski, R. A., and E. A. Shushkina. 1966b. Ernahrung, atmung, wachstum and energie umformung in Macrocyclops albidus (Jurine). Verh. Int. Ver. Limnol. 16:399-418.
- Klekowski, R. Z., E. Fischer, Z. Fischer, M. B. Ivanova, T. Prus, E. A. Shushkina, T. Stachurska, Z. Stepien, and H. Zzromska-Rduzka. 1970. Energy budgets and energy transformation efficiencies of several animal species of different feeding types. In: Z. Kajak and A. Hillbricht-Ilkowska (eds.), Productivity Problems of Freshwater, PWN Pol. Scient. Publ., Warsaw, 749-763.
- Klock, J. W. 1971. Survival of coliform bacteria in wastewater treatment lagoons. J. Water Poll. Contr. Fed. 43:2071.
- Knowles, G., A. L. Downing, and M. J. Barrett. 1965. Determination of kinetic constants for nitrifying bacteria in mixed culture, with the aid of an electronic computer. J. Gen. Microbiol. 38:263-278.
- Knudsen, G. 1965. Induction of nitrate reductase in synchronized cultures of <u>Chlorella pipenoidosa</u>. Biochim. Biophys. Acta 103:495-502.
- Kobashi, T., and Y. Deguchi. 1971. Studies on the excrements of the fish. Bull. Coll. Agric. Vet. Med. Nihon Univ., 28: 92-99.
- Kolbe, R. W. 1957. Freshwater diatoms from Atlantic deep-sea sediments. Science 126:1053-1056.
- Kormondy, E. J. 1968. Weight loss of cellulose and aquatic macrophytes in a Carolina Bay. Limnol. Oceanogr. 13: 522-526.
- Krokhin, E. M. 1959. Determination of daily food ration of young sockeye and three-spined stickleback by the respiration method. Fish. Res. Bd. Can. Translation Series No. 209.

- Kryutchkova, N. M., and V. G. Kondratyuk. 1966. The dependence of the feeding filtration rate of some types of Cladocera on temperature. Doklady Akademii Nauk Belorusskii SSR, 10:120-123. (in Russian).
- Lane, E. W. 1938. Notes on formation of sand. Trans. Am. Geophys. Union 18:505-508.
- LaRow, E. J., J. W. Wilkinson, and K. D. Kumar. 1975. The effect of food concentration and temperature on respiration and excretion of herbivorous zooplankton. Int. Ver. Theoret. Angew. Limnol. Verh. 19:966-973.
- Latta, W. C. 1962. Periodicity of mortality of brook trout during first summer of life. Trans. Am. Fish. Soc. 91:409-411.
- Laws, E. A., and D. C. Wong. 1978. Studies of carbon and nitroger metabolism by three marine phytoplankton species in nitrate-limited continuous culture. J. Phycol. 14:406-416.
- Lawton, J. H. 1970. Feeding and food energy assimilation in larvae of the damselfly <u>Pyrrohosoma nymphula</u> (Sulzer) (Odonata:Zygoptera). J. Animal Ecology 39:669-689.
- Leidy, G. R., and R. M. Jenkins. 1977. The development of fishery compartments and population rate coefficients for use in reservoir ecosystem modeling. Contract Rept. CR-Y-77-1, U. S. Army Engineer Waterways Experiment, Station, Vicksburg, Miss.
- Leidy, G. R., and G. R. Ploskey. 1980. Simulation modeling of zooplankton and benthos in reservoirs:Documentation and development of model constructs. Tech. Report E-80-4. U.S. Army Engineer Waterways Experiment Station, Vicksburg, Miss.
- Levinton, J. 1977. Feedback and structure in deposit-feeding benthic communities. In: <u>Biology of Benthic Organisms</u>, B. F. Keegan, P. P. Ceidigh, and P. J. S. Boaden (eds.) Pergamon Press, NY. 409-449.
- Li, W. K. W., and I. Morris. 1982. Temperature adaptation in Phaeodactylum tricornutum Bohlin: Photosynthetic rate compensation and capacity. J. Exp. Mar. Biol. Ecol. 58:135-150.

- Lisitsyn, A. P., Y. I. Belyayev, Y. A. Bogdanov, and A. N. Bogoyavlenskiy. 1967. Distribution relationships and forms of silicon suspended in waters of the world ocean. Int. Geol. Rev. 9:253-274.
- Lohmann, K. E. 1942. Geology and biology of North Atlantic deep-sea cores between Newfoundland and Ireland. Prof. Pap. U. S. Geol. Surv. 196-B:55-94.
- Lombardo, P. S. 1973. <u>Mathematical Model of Quality in Rivers and Impoundments</u>. Hydrocomp, Inc. Palo Alto, Calif.
- MacIsaac, J. H., and R. C. Dugdale. 1969. The kinetics of nitrate and ammonia uptake by natural populations of marine phytoplankton. Deep-Sea Res. 16:16-27.
- Madsen, B. L., P. N. Markmann, and G. Rasmussen. 1977. Vand 8:4-8.
- Mahloch, J. L. 1974. Comparative analysis of modeling techniques for coliform organisms in streams. Appl. Microbiol. 27:340.
- Malone, C. R., and D. J. Nelson. 1969. Feeding rates of freshwater snails (Goniobasis clavaeformis) determined with cobalt 60. Ecology 50:728-730.
- Mann, K. H. 1956. A study of the oxygen consumption of five species of leech. J. Exp. Biol. 33:615-626.
- Mann, K. H. 1965. Energy transformations by a population of fish in the River Thames. J. Anim. Ecol. 34:253-275.
- Mann, K. H. 1972. Ecological energetics of the seaweed zone in a marine bay on the Atlantic Coast of Canada. I. Zonation and biomass of seaweeds. Mar. Biol. (Berlin) 12:1-10.
- Manuilova, E. F. 1958. The question of the role of bacterial numbers in the development of Cladocera in natural conditions. Doklady Akademii Nauk SSSR Biological Science Section 120:438-441.

- Marais, G. V. R. 1974. Faecal bacterial kinetics in stabilzation ponds. J. San. Eng. Div. ASCE 100(EEI):119.
- Marchant, R., and H. B. N. Hynes. 1981. Field estimates of feeding rates for <u>Gammarus pseudolimnaeus</u> (Crustacea: Amphipoda) in the <u>Credit River</u>, Ontario. Freshwat. Biol. 11:27-36.
- Margalef, R. 1961. Velocidad de sedimentación de organismos pasivos del fitoplancton. Investigación Pesq. 18:3-8.
- Marra, J. 1978. Phytoplankton photosynthetic response to vertical movement in a mixed layer. Mar. Biol. 46: 203-208.
- Marshall, S. M., and A. P. Orr. 1956. On the biology of Calanus finmarchicus. IX. Feeding and digestion in the young stages. J. Mar. Biol. Assoc. UK 35:587-603.
- McCammon, G. W., and C. M. Seeley. 1961. Survival, mortality and movements of white catfish and brown bullheads in Clear Lake, California, Calif. Fish and Game 47(3): 237-255.
- McCauley, R. W., and J. S. Tait. 1970. Preferred temperature of yearling lake trout, <u>Salvelinus namaycush</u>. J. Fish. Res. Bd. Can. 27(10):1729-1733.
- McCauley, R. W., and L. A. A. Read. 1973. Temperature selection by juvenile and adult yellow perch (Perca flavescens) acclimated to 24 degrees Can. J. Fish. Res. Bd. Can. 30(8):1253-1255.
- McComish, T. S. 1971. Laboratory experiments on growth and food conversion by the bluegill. Ph.D. Dissertation, Univ. of Missouri, Columbia, Mo.
- McCormick, H. H., and M. Mischuk. 1973. Effects of temperature on growth and survival of young-of-the-year emerald shiner (Notropis atherinoides). Unpublished manuscript.
- McCullough, D. A. 1975. The bioenergetics of three aquatic insects determined by radioisotopic analyses. M.S. Thesis, Idaho State Univ., Moscow.

- McDiffett, W. F. 1970. The transformation of energy by a stream detritivore, <u>Pteronalcys</u> scotti (<u>Plecoptera</u>). Ecology 51:975-988.
- McMahon, J. W. 1965. Some physical factors influencing the feeding behavior of <u>Daphnia magna</u> Straus. Can. J. Zool. 43:603-611.
- McMahon, J. W., and F. H. Rigler. 1965. Feeding rate of <u>Daphnia magna</u> Straus in different foods labeled with radioactive phosphorus. Limnol. Oceanogr. 10:105-113.
- McNeill, S., and J. H. Lawton. 1970. Annual production and respiration in animal populations. Nature 225:472-474.
- McQueen, D. J. 1970. Grazing rates and food selection of Diaptomus oregonensis (Copepoda) from Marion Lake, British Columbia. J. Fish. Res. Bd. Can. 27:13-20.
- Megard, R. O., W. S. Comles, P. D. Smith, and A. S. Knoll. 1980. Attenuation of light and daily integral rates of photosynthesis attained by planktonic algae. Limnol. Oceanogr. 24:1038-1050.
- Mitchell, R., and C., Chamberlain. 1978. Survival of indicator organisms. In: Berg, G. (ed.); <u>Indicators of Enteric Contamination in Natural Waters</u>. Ann Arbor Science Publ. Inc., Ann Arbor, pp 15-38.
- Monokov, A. V. 1972. Review of studies on feeding of aquatic invertebrates conducted at the Institute of Biology of Inland Waters, Academy of Science, USSR. J. Fish. Res. Bd. Can. 29:363-383.
- Monokov, A. V., and Y. I. Sorokin. 1961. Quantitative data on the feeding of daphnids. Trudy Instituta Biologii Vodokhranilishcha Akademii Nauk SSSR, 4:251-261 (in Russian).
- Moore, J. W. 1975. The role of algae in the diet of Asellus aquaticus L. and Gammarus pulex L. Anim. Ecol. $1\overline{44:719-730}$.
- Moshiri, G. A., K. W. Cummins, and R. R. Costa. 1969.
 Respiratory energy expenditures by the predaceous zooplankter Leptodora kindtii (Focke) (Crustacea: Cladocera). Limnol. Oceanogr. 14:475-484.

- Mraz, D., and C. W. Threinen. 1955. Angler's harvest, growth rate and population estimate of the largemouth bass of Browns Lake, Wisconsin. Trans. Am. Fish. Soc. 85:241-256.
- Mullin, M. M. 1963. Some factors affecting the feeding of marine copepods of the genus <u>Calanus</u>. Limnol. Oceanogr. 8:239-250.
- Mullin, M. M., and E. R. Brooks. 1970. Growth and metabolism of two planktonic marine copepods as influenced by temperature and type of food. In: Marine Food Chains, J. H. Steele (ed.), Univ. of Calif. Press, Berkeley, pp. 74-95.
- Myers, J., and J. Graham. 1961. On the mass culture of algae. III. Light diffusers: high vs low temperature Chlorellas. Plant Physiol. 36:342-346.
- Nalewajko, C. 1966. Photosynthesis and excretion in various planktonic algae. Limnol. Oceanogr. 11:1-10.
- Nauwerck, A. 1959. Zur Bestimmung der filtrierrate limnischer Planktontiere. Arch. Hydrobiol. Supplementband 25:83-101.
- Neill, W. H., Jr., K. Strawn, and J. E. Dunn. 1966. Heat resistance experiments with the longear sunfish (Lepomis megalotis). Ark. Acad. Sci. Proc. 20:39-49.
- Niimi, A. J., and F. W. H. Beamish. 1974. Bioenergetics and growth of largemouth bass (Micropterus salmoides) in relation to body weight and temperature. Can. J. Zool. 52(4):447-456.
- Nilsson, L. M. 1974. Energy budget of a laboratory population of <u>Gammarus pulex</u> (Amphipoda). Oikos 25:35-42.
- Nyholm, N. 1978. A simulation model for phytoplankton growth and nutrient cycling in eutrophic, shallow lakies. Ecol. Modelling 4:279-310.
- Odum, E. P., and A. A. de la Cruz. 1967. Particulate organic detritus in a Georgia salt marsh-estuarine ecosystem. In: G. H. Lauff (ed.), Estuaries. Am Assoc. Adv. Sci. Wash., D.C., pp. 383-388.

- Olson, D. E. 1957. Statistics of a walleye sport fishery in a Minnesota Lake. Trans. Am. Fish. Soc. 87:52-72.
- Olson, P. A., and R. F. Foster. 1955. Temperature tolerance of eggs and young of Columbia River chinook slamon. Trans. Am. Fish. Soc. 85:203-207.
- Olson, P. A., and M. E. Rueger. 1968. Relationship of oxygen requirements to index organism classification of immature aquatic insects. J. Water Poll. Contr. Fed. (Research Supplement) 40:R188-R202.
- Otsuki, A., and T. Hanya. 1972. Production of dissolved organic matter from dead green algal cells. I. Aerobic microbial decomposition. Limnol. Oceanogr. 17:248-257.
- Otto, C. 1974. Growth and energetics in a larval population of Potamorphylax cingulatsu (Steph.) (Tricoptera) in a south Swedish stream. J. Animal Ecology 43:339-361.
- Paasche, E. 1968. Marine plankton algae grown with light-dark cycles. II. <u>Ditylum brightwellii</u> and <u>Nitzschia turgidula</u>. Physiol. Plant. 21:66-77.
- Paffenhoffer, G. A. 1976. Feeding, growth, and food conversion of the marine planktonic copepod <u>Calanus</u> helgolandicus. Limnol. Oceanogr. 21:39-50.
- Parson, T. R., and J. D. H. Strickland. 1963. On the production of particulate organic carbon by heterotrophic processes in sea water. Deep-Sea Res. 8:211-222.
- Parsons, T. R., R. J. LeBrasseur, and J. D. Fulton. 1967. Some observations on the dependence of zooplankton grazing on the cell size and concentration of phytoplankton blooms. J. Oceanogr. Soc. (Japan) 23:10-17.
- Parsons, T. R., and M. Takahashi. 1973. Limnol. Oceanogr. 18(4):511-515.
- Patriarche, M. H. 1968. Production and theoretical equilibrium yield for the bluegill (Lepomis macrochirus) in two Michigan Lakes. Trans. Am. Fish. Soc. 97(3):242-251.

- Peck, F. W. 1965. Growth studies of laboratory and wild population samples of smallmouth bass (Micropterus dolomieu Lacepede) with applications to mass marking of fishes. M.S. Thesis, Univ. of Ark., Fayetteville.
- Penchen'-Finenko, G. A. 1977. Efficiency of food assimilation by planktonic crustaceans in different tropic conditions. Zoologicheskii Zhurnal 56:1458-1465. (English translation available as Fisheries and Marine Service of Canada Translation Series No. 4188, 1978, 13 p.)
- Petipa, T. S., E. V. Pavlova, and G. N. Mironov. 1970. The food structure, utilization and transport of energy by trophic levels in the planktonic communities. In:

 Marine Food Chains, J. H. Steele (ed.), Univ. Calif.,
 Berkeley, pp. 142-167.
- Pickett, J. M. 1975. Growth of <u>Chlorella</u> in a nitratelimited chemostat. Plant <u>Physiol</u>. 55:223-225.
- Piecznska. 1972. Wiadomosci Ekologiczne 18:131-140.
- Pierce, R. J., and T. Wissing. 1974. Energy cost of food utilization in the bluegill (Lepomis macrochirus). Trans. Am. Fish. Soc. 103(1):38-45.
- Pilarska, J. 1977. Eco-physiological studies of <u>Brachionis</u> rubens Ehrbg. (Rotatoria). II. Production and respiration. Polskie Archiwum Hydrobiologii 24:329-341.
- Plfatzer-Schultz, I. 1970. On respiration of various lifestages of <u>Chironomus</u> strenzkei Fittfau (Diptera). Z. Vergl. Physio. 67:179-185.
- Prezelin, B. B., and B. M. Sweeney. 1977. Characterization of photosynthetic rhythms in marine dinoflagellates. II. Photosynthesis-irradiance curves and in vivo chlorophyll a fluorescence. Plant Physiol. 60:388-392.
- Prus, T. 1971. The assimilation efficiency of Asellus aquaticus L. (Crustacea, Isopoda). Freshwater Biol. 1:281-305.

- Quasim, S. Z., P. M. A. Bhattathiri, and V. P. Dovassoy. 1973. Mar. Biol. 21:299-304.
- Rawson, D. S. 1961. The lake trout of Lac la Range, Saskatchewan. J. Fish. Res. Board Can. 18:423-462.
- Rawstron, R. R. 1967. Harvest mortality, and movement of selected warm-water fishes in Folsom Lake, California. Calif. Fish and Game 53(1):40-48.
- Rhee, G-Yull. 1973. A continuous culture study of phosphate uptake, growth rate and polyphosphate in <u>Scenedesmus</u> sp. J. Phycol. 9:495-506.
- Rhee, G-Yull, and I. C. Gotham. 1981a. The effects of environmental factors on phytoplankton growth:

 Temperature and the interaction of temperature with nutrient limitation. Limnol. Oceanogr. 26:635-648.
- Rhee, G-Yull, and I. J. Gotham. 1981b. The effects of environmental factors on phytoplankton growth: Light and the interaction of light with nitrate limitation. Limnol. Oceanogr. 26:649-659.
- Richman, S. 1958. The transformation energy of <u>Daphnia</u> pulex. Ecol. Monogr. 28:273-291.
- Richman, S. 1964. Energy transformation studies on Diaptomus oregonensis. Int. Ver. Theoret. Angew. Limnol. Verh. 15:654-659.
- Ricker, W. E. 1945. Natural mortality among Indian bluegill sunfish. Ecology 26:111-121.
- Ricker, W. E. 1947. Mortality rates in some littleexploited populations of fresh-water fishes. Trans. Am. Fish. Soc. 77:114-128.
- Ricker, W. E. 1958. Handbook of computations for biological statistics of fish populations. Fish Res. Board Can. Bull. 119, 300 pp.
- Rigler, F. H. 1961. The relation between concentration of food and feeding rate of <u>Daphnia magna</u> Straus. Can. J. Zool. 39:857-768.
- Riley, G. A. 1943. Bull. Bingham Oceanogr. Coll. 8, Art. 4, 53 pp.

- Riley, G. A., H. Stommel, and D. F. Bumpus. 1949.

 Quantitative ecology of the plankton of the western
 North Atlantic. Bull. Bingham Oceanogr. Coll. 12:1169.
- Riley, G. A., and R. von Aux. 1949. J. Mar. Res. 8(11):60-72.
- Rogers, K. H., and C. M. Breen. 1982. Decomposition of <u>Potamogeton cuspus</u> I. Effects of drying on the <u>pattern of mass and nutrient loss</u>. Aquatic Bot. 12: 1-12.
- Ryther, J. H. 1954. Inhibitory effects of phytoplankton upon the teeding of <u>Daphnia magna</u> with reference to growth, reproduction, and survival. Ecology 35:522-533.
- Salonen, K., J. Sarvala, I. Hakala, and M.-L. Viljanen. 1976. Limnol. Oceanogr. 21(5)724-730.
- Saunders, G. W. 1972. The transformation of artificial detritus in lake water. Mem. Ist. Ital. Idrobiol. Dott Marco de Marchi, Pallanza, Italy 29 (Suppl): 261-288.
- Scavia, D., and B. J. Eadie. 1976. The use of measurable coefficients in process formulations: Zooplankton grazing. Ecol. Modell. 2:315-319.
- Schindler, J. E. 1968. Feeding, assimilation and respiration rates of <u>Daphnia magna</u> under various environmental conditions and their relation to production estimates. J. Anim. Ecol. 37:369-385.
- Schindler, J. E. 1971. Food quality and zooplankton nutrition. J. Anim. Ecol. 40:589-595.
- Schindler, D. W., and E. J. Fee. 1973. Diurnal variation of dissolved inorganic carbon and its use in estimating primary production and CO2 invasion in Lake 227. J. Fish. Res. Bd. Can. 30:1501-1510.
- Schneider, J. C. 1973. Influence of diet and temperature on food consumption and growth by yellow perch, with supplemental observations on the bluegill. Mich. Dept. Nat. Res. Fish Res. Rept. No. 1802. 25 pp.

- Scott, D. P. 1964. Thermal resistance of pike (\underline{Esox} lucius L.), muskellunge (\underline{E} . $\underline{masquinongy}$), and their Fl hybrid. J. Fish. Res. Board Can. 21(5):1043-1049.
- Sedell, J. R., F. J. Triska, and N. S. Triska. 1975. The processing of conifer and hardwood leaves in two coniferous forest streams: I. Weight loss and associated invertebrates. Verh. Internat. Verein. Limnol. 19:1617-1627.
- Semenova, L. M. 1974. The feeding habits of Bosmina coregoni Baird (Cladocera). Hydrobiological J. 10: $\overline{28-34}$.
- Sepers, A. B. J. 1981. The aerobic mineralization of amino acids in the saline Lake Grevelingen and the freshwater Haringvliet basin (The Netherlands). Arch. Hydrobiol. 92:114-129.
- Shamieh, E. H. 1968. The role of alkalinity in lagoons. MS Thesis, Univ. of Missouri, Columbia (unpubl.).
- Shelef, G. 1968. Kinetics of algal systems in waste treatment. Light intensity and nitrogen concentration as growth-limiting factors. Ph.D. Thesis, Univ. Calif., Berkely.
- Shushkina, E. A., and G. A. Pecen'. 1964. Food rations and its assimilation by carnivorous <u>Cyclops</u> and <u>Daphnia longispina</u>; determination with the radiocarbon method. In: Trudy 10 Nauk Konf. po Vnutrennyh Vodoemah Pribaltiki, Minsk, pp. 312-322 (in Russian).
- Smayda, T. J. 1969. Experimental observations on the influence of temperature, light, and salinity on cell division of the marine diatom <u>Detonula</u> confervacea (Cleve) Gran. J. Phycol. 5:150-157.
- Smayda, T. J. 1971. Normal and accelerated sinking of phytoplankton in the sea. Mar. Geol. 11:105-122.
- Smayda, T. J. 1974. Some experiments on the sinking characteristics of two freshwater diatoms. Limnol. Oceanogr. 19(4):628-635.
- Smayda, T. J., and B. J. Boleyn. 1965. Experimental observations on the floatation of marine diatoms.

 I. Thalassiosira cf. nana, Thalassiosira rotula and Nitzschia seriata. Limnol. Oceanogr. 10:499-509.

- Smayda, T. J., and B. J. Boleyn. 1966. Experimental observations on the floatation of marine diatoms. III. Bacteriastrum hyalinum and Chaetoceros lauderi. Limnol. Oceanogr. 11:35-43.
- Smirnov, N. N. 1962. <u>Eurycercus</u> lamellatus (O. F. Muller) (Chydoridae, Cladocera): Field observations and nutrition. Hydrobiologia 20:280-295.
- Smith, W. O. 1979. A carbon budget for the autotrophic ciliate Mesodinium rubrum. J. Phycol. 15:27-33.
- Smith, R. C., and K. S. Baker. 1978. The bio-optical state of ocean waters and remote sensing. Limnol. Oceanogr. 23:247-259.
- Sorokin, C., and R. W. Krauss. 1962. Effects of temperature and illumination on <u>Chlorella</u> growth uncoupled from cell division. Plant <u>Physiology</u> 37:37-42.
- Sorokin, C., and J. Myers. 1953. A high temperature strain of Chlorella. Science, Washington, D. C. 117:330-331.
- Sorokin, Y. I. 1966. Carbon-14 method in the study of nutrition of aquatic animals. Int. Rev. Ges. Hydrobiol. 51:209-224.
- Sorokin, Y. I. 1969. The seasonal dynamics of the productivity of the plankton of the shore area and the open part of the Volga arm of the Rybinsk Reservoir. Biologiya Vnutrennykh Vod Informatsionii Byulleten 3:7-10 (in Russian).
- Soyza, K. 1973. Energetics of <u>Aphelenchus avenae</u> in monoazenic culture. Proceedings of the <u>Helminthological</u> Society of Washington 40:1-10.
- Spence, D. H. N. 1981. Light quality and plant responses underwater. In: H. Smith (ed). Plants and the Daylight Spectrum, pp. 245-276. Academic Press, NY.
- Spencer, D. F., and C. A. Lembi. 1981. Factors regulating the spatial distribution of the filamentous alga Pithophora oedogonia (Chlorophyceae) in an Indiana Lake. J. Phycol. 17:168-173.
- Steele, J. H. 1962. Environmental control of photosynthesis in the sea. Limnol. Oceanogr. 7:137-150.

- Steemann-Nielsen, E. 1952. On detrimental effects of high light intensities on the photosynthetic mechanism. Physiol. Plant. 5:334-344.
- Steemann-Nielsen, E., and E. G. Jorgensen. 1968. The adaptation of plankton algae I. General part. Physiol. Plant. 21:401-413.
- Stockner, J. G. 1971. Ecological energetics and natural history of <u>Hedriodiscus truquii</u> (diptera) in two thermal spring communities. J. Fish. Res. Bd. Can. 28:/3-94.
- Strawn, K. 1961. Growth of largemouth bass fry at various temperatures. Trans. Am. Fish. Soc. 90:334-335.
- Sushchenya, L. M. 1958. Quantitative data on the filtration feeding of planktonic Crustacea. Doklady Wish. Shkoli Biol Sci. 1:16-20. (in Russian)
- Talling, J. F. 1955. The relative growth rates of three plankton diatoms in relation to underwater radiation and temperature. Ann. Bot. N.S. 19:329-341.
- Tamiya, H. T., T. Sasa, T. Nikei, and S. Ishibashi. 1965. Effects of variation of daylength, day and night temperatures, and intensity of daylight on the growth of Chlorella. J. Gen. Appl. Microbiol. 4:298-307.
- Tanaka, N., M. Nakanishi, and H. Kadota. 1974. Nutritional interrelation between bacteria and phytoplankton in a pelagic ecosystem. In: R. R. Colwell and R. V. Mouta (eds.), Effects of the Ocean Environment on Microbial Activities. Univ. Park Press, Baltimore, pp. 495-509.
- Teal, J. M. 1957. Community metabolism in a temperate cold spring. Ecol. Monograph. 27:283-302.
- Tezuka, Y. 1971. Feeding of <u>Daphnia</u> on planktonic bacteria. Japan. J. Ecol. (Nippon Seitai Gakkaishi) 21:127-134.
- Thomann, R. V. et al. 1971. The effect of nitrification on the dissolved oxygen of streams and estuaries. Env. Eng. and Sci. Prog. Manhattan College, Bronx, NY.

- Thomas, W. H., and A. N. Dodson. 1968. Effects of phosphate concentration on cell division rates and yield of a tropical oceanic diatom. Biol. Bull. 134: 199-208.
- Thompson, D. H. 1941. The fish production of inland streams and lakes, pp. 206-217. In: J. G. Needham (ed.), Symposium on Hydrobiology, Univ. Wisc. Press, Madison.
- Tison, D. L., and D. H. Pope. 1980. Effect of temperature on mineralization by heterotrophic bacteria. Appl. Environ. Microbiol. 39:584-587.
- Tison, D. L., D. P. Pope, and C. W. Boyten. 1980. Influence of seasonal temperature on the temperature optima of bacteria in sediments of Lake George, New York, Appl. Environ. Microbiol. 39:675-677.
- Titman, D., and P. Kilham. 1976. Sinking in freshwater phytoplankton: Some ecological implications of cell nutrient status and physical mixing processes. Limnol. Oceanogr. 21(3):109-117.
- Toerien, D. F., and B. Cavari. 1982. Effect of temperature on heterotrophic glucose uptake, mineralization, and turnover rates in lake sediments. Appl. Environ. Microbiol. 43:1-5.
- Toetz, D., L. Varga, and D. Loughran. 1973. Half-saturation constants for uptake of nitrate and ammonia by reservoir plankton. Ecology 54:903-908.
- Turner, J. T. 1977. Sinking rates of fecal pellets from the marine copepod <u>Pontella meadii</u>. Mar. Biol. 40(3): 249-259.
- Underhill, P. A. 1977. Nitrate uptake kinetics and clonal variability in the neritic diatom <u>Biddulphia aurita</u>. J. Phycol. 13:170-176.
- Vaccaro, R. F. 1969. The response of natural microbial populations in seawater to organic enrichment. Limnol. Oceanogr. 14:726-735.
- van Lierre, L., W. Zevenboom, and L. R. Mur. 1977. Nitrogen as a limiting factor for the growth of the blue green alga Oscillatoria agardhii. Prog. Water Tech. 8:301-312.

- Verduin, J. 1952. Photosynthesis and growth rates of live diatom communities in western Lake Erie. Ecology 33: 163-169.
- Verduin, J. 1982. Components contributing to light extinction in natural waters: Methods of isolation. Arch. Hydrobiol. 93:303-312.
- Verity, P. G. 1981. Effects of temperature, irradiance and daylength on the marine diatom <u>Leptocylindrus</u> danicus Cleve. I. Photosynthesis and cellular composition. J. Exp. Mar. Biol. Ecol. 55:79-91.
- Vinogradov, M. Y. 1961. Food sources of the deep water fauna. Speed of decomposition of dead pteropoda. Dokl. Akad. Nauk SSSR, Oceanology 138:1439-1442; translated in American Geophysical Union 136/141: 39-42.
- Von Muller, H. 1972. Wachstum und phosphatbedarf von Nitzschia octinastroides (Lemm.) V. Goor in statischer und homokontinuierlicher Kulter unter Phosphatlimitierung. Arch. Hydrobiol. Suppl. 38: 399-484.
- Walburg, C. H. 1961. Natural mortality of American shad. Trans. Am. Fish. Soc. 90(2):228-229.
- Wallen, D. G., and L. D. Cartier. 1975. Molybdenum dependence, nitrate uptake and photosynthesis of freshwater plankton algae. J. Phycol. 11:345-349.
- Warren, C. E., and G. E. Davis. 1967. Laboratory studies on the feeding, bioenergetics and growth of fish, pp. 175-214. In: S. D. Gerking (ed.), Biological Basis of Freshwater Fish Production. Blackwell, Oxford and Edinburgh, London.
- Wetzel, R. G. 1975. Limnology. W. B. Saunders. Philadelphia.
- Wetzel, R. G., P. H. Rich, M. C. Miller, and H. L. Allen. 1972. Metabolism of dissolved particulate detrital carbon in a temperate hardwater lake. Mem. Ist Ital. Idrobiol. Suppl. 29:185-243.
- Whittaker, R. H. 1975. Communities and Ecosystems, MacMillan Publishing Co., Inc., NY.

- Wild, H. E., C. N. Sawyer, and T. C. McMahon. 1971. Factors affecting nitrification kinetics. J. Water Poll. Contr. Fed. 43:1845-1854.
- Williams, D. T. 1980. Determination of light extinction coefficients in Takes and reservoirs. In: H. G. Stefan (ed.), Surface Water Impoundments, Proceedings of the Symposium on Surface Water Impoundments, ASCE, Minn.
- Williams, W. E. 1959. Food conversion and growth rates for largemouth and smallmouth bass in laboratory aquaria. Trans. Am. Fish. Soc. 88:125-127.
- Williams, P. J. LeB. 1982. Microbial contribution to overall plankton community respiration--Studies in enclosures, In: G. D. Grice and M. R. Reeve (eds.), Marine Mesocosms: Biological and Chemical Research in Experimental Ecosystems, Springer-Verlag, NY. pp. 305-321.
- Williams, P. J., L. B. Yentsch, and C. S. Yentsch. 1976. An examination of photosynthetic production, excretion of photosynthetic products and hetertrophic utilization of dissolved organic compounds with reference to results from a coastal subtropical sea. Mar. Biol. 35:31-40.
- Winberg, G. G. 1956. Rate of metabolism and food requirement of fishes. Trans. from Russian by Fish Res. Board Can. Transl. Ser. No. 194:251.
- Winberg, G. G., V. S. Ivlev, T. P. Platoria, and L. L. Rossolimno. 1934. Procedures for determining organic matter. Experiment on a calorific evaluation of food supplies in a body of water. Trudy Limnologicheskogo Sta. Kosiono 18:25-40 (in Russian).
- Winterbourn, M. J. 1974. The life histories, trophic relations and production of <u>Stenoperla prasina</u> (Plecoptera) and <u>Deleatidium sp.</u> (Ephereroptera) in a New Zealand river. Freshwater Biol. 4:507-524.
- Wissing, T. E. 1974. Energy transformation by young-of-theyear white bass <u>Morone chrysops</u> (Rafinesque) in Lake Mendota, Wisconsin. Trans. Am. Pish. Soc. 103(1):32-37.

- Wright, R. T. 1975. Studies on glycolic acid metabolism by freshwater bacteria. Limnol. Oceanogr. 20:626-633.
- Wuhrmann, K. 1972. Stream purification. In: Water Pollution Microbiology, R. Mitchell(ed.), Interscience, NY.
- Yakovleva, N. A. 1969. The nutrition of the ostracod <u>Herpetocypris reptans</u> (Baird) (Fam. Cypridae). <u>Hydrobiological Journal 5:15-18.</u>
- Zimmerman, U. 1969. Okologische and physiologische Untersuchungen an der planktonischen Blauagle Oscillatoria rubescens, D. C., unter besonderer Beruchischtigung von Licht und Temperatur. Schweiz. Z. Hydrol. 31:1-58.
- Zison, S. W., W. B. Mills, B. Deimer, and C. W. Chen. 1978. Rates, constants and kinetics formulations in surface water quality modeling. EPA-600/3-78-105.

