

Lab Introduction

Assignment: ROS Robot Motion Control

Maximilian Krämer, Katharina Bartsch, apl. Prof. Dr. rer. nat. Frank Hoffmann

Univ.-Prof. Dr.-Ing. Prof. h.c. Dr. h.c. Torsten Bertram Institute of Control Theory and Systems Engineering

Take-Home Assignment

- Inverse Kinematics
- Trajectory Following

ROS Action Server & Client

UR Package

- UR visualization only (Rviz)
 - Pure display of the robot in a certain configuration
 - Relies on external publisher of joint states (e.g. GUI, Matlab)

- UR robot simulation (Rviz + Gazebo)
 - Gazebo simulates robot dynamics according to commanded joint torques
 - default joint_trajectory_controller is launched and ready to receive target joint configurations

- Real UR robot (Rviz + driver)
 - ur_modern_driver package
 - Same control interface as in simulation

Organization

- Mandatory for A&R students to gain 5+1 CP
- Present and defend your solution in a breakout session
- Time slots for presentations (groups of 3 students)
 - 10.2.2021, 10:00 13:30, 2 x 14 slots
 - 11.2.2021, 10:00 13:30, 2 x 14 slots
 - 12.2.2021, 10:00 13:30, 2 x 14 slots
 - 15min per group, 2 groups in parallel
- Please join the Zoom session in time (5min ahead)
- Prepare beforehand (Microphone, Camera, Matlab, VM, UR Package)

Thank you for your kind attention!

