Binary Subtractor

(Multipler)

Binary Subtractor: Principle

Binary Subtractor: Principle

$$A - B = A + 2$$
's comp. of B

Minus

Adder

Read the Lecture about complements

Binary Subtractor: Principle

$$A - B = A + 2$$
's comp. of B
$$= A + \{ (1\text{'s comp. of B}) + 1 \}$$
Adder

Read the Lecture about complements

Binary Subtractor: 2's

$$A - B = A + \{ (1's comp. of B) + 1 \}$$

Therefore,

- 1's complement can be implemented with an Inverter.
- The +1 can be implemented by adding 1, or making the Carry-in equal to 1.

4-Bit Subtractor

4-bit binary subtraction: A-B

4-bit Binary Subtractor

$$A - B = A + \{ (1's comp. of B) + 1 \}$$

If C4 = 1; S3S2S1S0

Subtractors

10

Answer = $0100_2 = 4_{10}$

Remember!

```
0111
+1101
-----
10100
Discard carry
```

Numerical Example-2

$$\bullet$$
 3 - 7 = ?

Numerical example-1: 3 (0011) - 7 (0111)

Answer = 1100_2

Subtractors

17

3(0011) - 7(0111)

- In our example, the result of the 2's complement binary subtraction is in 2's complement form: (1100)₂
- $(0011 + 1)_2 = (0100)_2 = 4_{10}$
- Since there is no carry out, the final result: -4₁₀

Why do we prefer 2's complement?

- For subtraction, the 2's complement is used over the 1's complement
- 2's complement magnitude representation has only one zero for representing negative numbers and it is used in today's computing technology.

4-bit (2's Complement uses one zero

Decimal	S.Mag	1's Mag.	2's Mag.
7	0111	0111	0111
6	0110	0110	0110
5	0101	0101	0101
4	0100	0100	0100
3	0011	0011	0011
2	0010	0010	0010
1	0001	0001	0001
0	0000	0000	0000
-0	1000	1111	1
-1	1001	1110	1111
-2	1010	1101	1110
-3	1011	1100	1101
-4	1100	1011	1100
-5	1101	1010	1011
-6	1110	1001	1010
-7	1111	1000	1001
-8	_	_	1000

Combined (Subtractor/Adder)

Combined (Subtractor/Adder)

A trick with the input: Bi (i = 0,...,n)

Bi
$$\oplus$$
 1 = ?
Bi \oplus 0 = ?

Prove it ... 5 min

Logic Circuit?

Bi
$$\oplus$$
 1 = $\overline{B}i$
Bi \oplus 0 = Bi

Just a XOR gate

Bi
$$\oplus$$
 1 = $\overline{B}i$
Bi \oplus 0 = Bi

If 1 (Subtration); then the Bi = Negated as should be If 0 (Addition); then the Bi is the same as should be

Combined 2's(Subtractor/Adder)

Combined 2's(Subtractor/Adder)

Live proof! (LogiSim freeware)

Combined 2's(Subtractor/Adder)

Combined 2's(Subtractor/Adder)

Design a 2-bit Multiplier

 B_1 B_0

 A_1 A_0

2-bit Multiplication

 $C_0 = A_0B_0$

 $C_1 = A_1B_0 + A_0B_1$ (carry)

 $C_2 = A_1B_1$ (carry)

 $C_3 = carry$

Design a 2-bit Multiplier using Adders and gates

2-bit Multiplier using: Adders+Gates

$$C_3$$
 C_2 C_1 C_0

 $C_0 = A_0 B_0$ [AND gate]

 $C_1 = A_1B_0 + A_0B_1$ (carry) [HALF ADDER] and AND gates

 $C_2 = A_1B_1$ (carry) [HALF ADDER] and AND gate

 $C_3 = carry$

Only use Half-Adders and AND gates

Divider (Division Operation)

Division

 Division is the fourth mathematical operation. The binary division operation consists of multiplications and subtractions. Circuits that perform binary division are more complex than adders. Division and multiplication algorithms is an important subject of computer organization.

http://www.wikihow.com/Divide-Binary-Numbers

David Patterson and John L. Hennessy, "Computer Organization and Design: the Hardware/Software Interface", Morgan Kaufmann Publishers, 2017.