## Algorithm 2019

# HW 2 Solution

教授: 謝孫源 講座教授

助教: 姚凱勛 李昀 鄭力瑋 楊奕正

1.Sort the given list of numbers by radix sort with LSD to ascending order {9527, 8888, 9026, 2596, 2882, 4236, 4582}.

| 9527                     | 2882                     | 9026    | 9026    | 2596 |
|--------------------------|--------------------------|---------|---------|------|
| 888                      | 45 <mark>8</mark> 2      | 9527    | 4236    | 2882 |
| 902 <mark>6</mark>       | 90 <mark>2</mark> 6      | 4236    | 9527    | 4236 |
| 259 <mark>6 =&gt;</mark> | 25 <mark>96 =&gt;</mark> | 2882 => | 4582 => | 4582 |
| 2882                     | 42 <mark>3</mark> 6      | 4582    | 2596    | 8888 |
| 423 <mark>6</mark>       | 95 <mark>2</mark> 7      | 8888    | 2882    | 9026 |
| 4582                     | 8888                     | 2596    | 8888    | 9527 |

## 2. What situation is worst-case for quicksort? Why? Please also derive the time complexity of worst-case.

Occurs when the subarrays are completely unbalanced.(pivot is max/min) Have 0 elements in one subarray and n-1 elements in the other subarray. Get the recurrence

$$T(n) = T(n-1) + T(0) + \Theta(n)$$

$$= T(n-1) + \Theta(n)$$

$$= \Theta(n^2).$$

- 3.(a)What are the minimum numbers of elements if the height is h? Show your solution process.
- (b) What are the maximum numbers of elements if the height is h? Show your solution process.



| number | height |
|--------|--------|
|--------|--------|

$$2^2 = 4$$

2h

 $2^0 = 1$ 

### Min:

There is only one node at the lowest layer Total number is

$$=2^{0}+2^{1}+2^{2}+...+2^{h-1}+1$$
  
=  $2^{h}$ 

#### Max:

There are full nodes at the lowest layer Total number is  $=2^{0}+2^{1}+2^{2}+...+2^{h}$  $=2^{h+1}-1$ 

> If you define the height of root is 1:  $Min = 2^{h-1}$   $Max = 2^h - 1$

## 3.(c) Show that an n-element heap has height $\lfloor \log n \rfloor$ .

$$2^h \le n \le 2^{h+1} - 1 < 2^{h+1}$$
  
=>  $h \le \lg n < h+1$   
Because h is integer,  $h = \lfloor \lg n \rfloor$ 

If you define the height of root is 1:  $h = \lfloor \lg n \rfloor + 1$ 

4.(10pts) We know that it is important to how to choose a good pivot in Quick-Sort. Median-of-3 is one way to deal with this problem. Please understand the Median-of-3 by yourself and illustrate the operation of Median-of-3 on the array  $A(you just need to explain how you choose the pivot) = \{13, 19, 9, 5, 12, 8, 7, 4, 11, 2, 6, 21, 35, 8, 13, 2, 5, 6, 37, 12, 24, 26, 3, 8, 9, 10, 54, 56, 10\}.$ 

explain how you choose the first pivot

A[0],A[n-1],A[(n-1)/2] which mean the first, the last, and the middle of the array. choose the middle of them to be the pivot

or you can choose random 3 elements of array A, the choose the middle of them to be the pivot

## 5.(10pts) Please show how to sort n integers in the range 0 to n3-1 in O(n) time, but the space complexity is in O(n).

### use radix sort

- 1:所有數字%n 進行radix sort 分配跟合併各花O(n)
- 2:所有數字/n %n 進行radix sort 分配跟合併各花O(n)
- 3:所有數字/n/n %n 進行radix sort 分配跟合併各花O(n)

下次最好寫出為什麼是在O(n)時間複雜度跟空間複雜度內以及每個phase在幹嘛 盡量不要只說base n時有3個bits就結束

6. (10pts) Is the array with values [23, 17, 14, 6, 13, 10, 1, 5, 7, 12] a max-heap? Please answer "Yes" or "No" and explain your reason.

• No。在max-heap中,parent的值要大於child的值,6為7的parent,但6沒有大於7。

## 評分標準:

• No: 5分

• 原因(只要有圈出6、7): 5分



7.(10pts) There is an array which implements a heap.

[2, 5, 3, 11, 7, 13, 17, 19, 23, 29]

Please do the following steps and maintain the heap (you can either draw or explain) and give the min you extract.

- (a) Insert 1 to the heap
- (b) Extract min
- (c) Change 19 to 8
- (d) Extract min



## (a) Insert 1 to the heap



#### (b) Extract min Min = 1

## (c) Change 19 to 8



#### (d) Extract min Min = 2

- Should maintain after each step
- Extract: 是從最後面抓來跟root交換
- 上到下的heapify 會是跟比較小的child交換

8.(10pts) Please fill in the rest of the table and assume they will sort n things. For counting sort, the numbers to be sorted are between 0 to k. For radix sort, the digits are in range (0 to k) per pass, and there is d pass.

|               | Time complexity    |                    |               |                                   |               |
|---------------|--------------------|--------------------|---------------|-----------------------------------|---------------|
|               | Best case          | Avg. case          | Worst case    | Additional space complexity       | Is it stable? |
| Bubble sort   | $\theta(n)$        | $\theta(n^2)$      | $\theta(n^2)$ | $\theta(1)$                       | Υ             |
| Insert sort   | (1)                | $\theta(n^2)$      | (2)           | (3)                               | (4)           |
| Merge sort    | $\theta(n \log n)$ | $\theta(n \log n)$ | (5)           | (6)                               | Υ             |
| Quick sort    | $\theta(n \log n)$ | $\theta(n \log n)$ | (7)           | $\theta(\log n)$ $\sim \theta(n)$ | (8)           |
| Heap sort     | (9)                | $\theta(n \log n)$ | (10)          | (11)                              | (12)          |
| Counting sort |                    | (13)               |               | $\theta(n+k)$                     | Υ             |
| Radix sort    | (14)               |                    |               | O(kn)                             | (15)          |

|                | Time complexity          |                    |                                         |                                   |               |
|----------------|--------------------------|--------------------|-----------------------------------------|-----------------------------------|---------------|
|                | Best case                | Avg. case          | Worst case                              | Additional space complexity       | Is it stable? |
| Bubble<br>sort | $\theta(n)$              | $\theta(n^2)$      | $\theta(n^2)$                           | $oldsymbol{	heta}(1)$             | Υ             |
| Insert<br>sort | $\theta(n)$              | $\theta(n^2)$      | $\boldsymbol{\theta}(\boldsymbol{n}^2)$ | $\boldsymbol{\theta}(1)$          | Υ             |
| Merge<br>sort  | $\theta(n \log n)$       | $\theta(n \log n)$ | $\theta(n \log n)$                      | $\theta(n)$                       | Υ             |
| Quick sort     | $\theta(n \log n)$       | $\theta(n \log n)$ | $\boldsymbol{\theta}(\boldsymbol{n}^2)$ | $\theta(\log n)$ $\sim \theta(n)$ | N             |
| Heap sort      | $\theta(n \log n)$       | $\theta(n \log n)$ | $\theta(n \log n)$                      | $\boldsymbol{\theta}(1)$          | N             |
| Counting sort  | $\theta(n+k)$            |                    |                                         | $\theta(n+k)$                     | Υ             |
| Radix sort     | $\theta(d \times (n+k))$ |                    |                                         | O(kn)                             | Υ             |

- 9. (a) (5pts) Explain what is a stable sorting algorithm, that is, what does it mean for a sorting algorithm to be "stable"?
- (b) (5pts) Explain how come COUNTING-SORT is a stable sorting algorithm.
- (a) 如果鍵值相同之資料,在排序後相對位置與排序前相同時,即為stable sort algorithm。



• (b) 因C array中存放的是該數值的最後一個在B array中出現的位置,所以要從A的最後一個 element開始放入B,放入後將C陣列數值-1,下個有相同數值的element就會擺在前一位。

| Α | Index | 1 | 2  | 3   |  |
|---|-------|---|----|-----|--|
|   | Value | 1 | 2  | 1') |  |
|   |       |   |    |     |  |
| С | Index | 0 | 1  | 2   |  |
|   | Value | 0 | 2  | 3   |  |
|   |       |   |    |     |  |
| В | Index | 1 | 2  | 3   |  |
|   | Value |   | 1' |     |  |

### 評分標準:

- (a) 說明不完整 · +3分 ·
- (b) 有講到是因為最後的for loop, +5分。原因不充分或只說counting sort排序後順序不變,+3分。

## 9. (c) (10pts) Is the modified algorithm stable? Please answer "Yes" or "No" and explain your reason.

• (c) No, 承(b)的解釋, 若改為順向for loop會使相對位置相反, 因從A的頭開始拿,原本在前面的會被放到後面。



Value

### 評分標準:

- (c) 寫No, 因順序會相反, +10分。
  - 如果寫到c要變+1,卻沒有先處理c變成"各數值 開始的位置"(原本是"各數值結束的位置"),因為 會蓋到別人的位置,+8分

Prove that COUNTING-SORT is stable.

An informal argument will suffice.

Let's say that two elements at indices  $i_1 < i_2$  are equal to each other. In the sorted array, they take place at indices  $j_1 + 1 = j_2$ . Since the COUNTING-SORT processes the input array in reverse order,  $A[i_2]$  is put in  $B[j_2]$  first and the  $A[i_1]$  is put in  $A[j_2]$ . Since the two elements preserve their order, the algorithm is stable.

 $A[i_1]$  is put in  $B[j_1]$