Make a forward pass before the backward pass

Backpropagation: Understanding the implications of the chain rule

Jonathon Hare

Vision, Learning and Control University of Southampton

A lot of the ideas in this lecture come from Andrej Karpathy's blog post on backprop (https://medium.com/@karpathy/yes-you-should-understand-backprop-e2f06eab496b) and his CS231n Lecture Notes (http://cs231n.github.io/optimization-2/)

Topics

- A quick look at an MLP again
- The chain rule (again)
- A closer look at basic stochastic gradient descent algorithms

Backpropagation

The unbiased Multilayer Perceptron (again)...

Without loss of generality, we can write the above as:

$$\hat{\mathbf{y}} = g(f(\mathbf{x}; \mathbf{W}^{(1)}); \mathbf{W}^{(2)}) = g(\mathbf{W}^{(2)}f(\mathbf{W}^{(1)}\mathbf{x}))$$

where f and g are activation functions.

Let's assume MSE Loss

$$\ell_{MSE}(\boldsymbol{\hat{y}},\boldsymbol{y}) = \|\boldsymbol{\hat{y}} - \boldsymbol{y}\|_2^2$$

Let's assume MSE Loss

$$\ell_{MSE}(\hat{\boldsymbol{y}}, \boldsymbol{y}) = \|\hat{\boldsymbol{y}} - \boldsymbol{y}\|_2^2$$

• What are the gradients?

$$\nabla_{\boldsymbol{W}^*}\ell_{MSE}(g(\boldsymbol{W}^{(2)}f(\boldsymbol{W}^{(1)}\boldsymbol{x})),\boldsymbol{y})$$

Let's assume MSE Loss

$$\ell_{MSE}(\hat{\boldsymbol{y}}, \boldsymbol{y}) = \|\hat{\boldsymbol{y}} - \boldsymbol{y}\|_2^2$$

• What are the gradients?

$$\nabla_{\boldsymbol{W}^*}\ell_{MSE}(g(\boldsymbol{W}^{(2)}f(\boldsymbol{W}^{(1)}\boldsymbol{x})),\boldsymbol{y})$$

Clearly we need to apply the chain rule (vector form) multiple times

Let's assume MSE Loss

$$\ell_{MSE}(\hat{\boldsymbol{y}}, \boldsymbol{y}) = \|\hat{\boldsymbol{y}} - \boldsymbol{y}\|_2^2$$

• What are the gradients?

$$\nabla_{\boldsymbol{W}^*}\ell_{MSE}(g(\boldsymbol{W}^{(2)}f(\boldsymbol{W}^{(1)}\boldsymbol{x})),\boldsymbol{y})$$

- Clearly we need to apply the chain rule (vector form) multiple times
- We could do this by hand

Let's assume MSE Loss

$$\ell_{MSE}(\hat{\boldsymbol{y}}, \boldsymbol{y}) = \|\hat{\boldsymbol{y}} - \boldsymbol{y}\|_2^2$$

• What are the gradients?

$$\nabla_{\boldsymbol{W}^*}\ell_{MSE}(g(\boldsymbol{W}^{(2)}f(\boldsymbol{W}^{(1)}\boldsymbol{x})),\boldsymbol{y})$$

- Clearly we need to apply the chain rule (vector form) multiple times
- We could do this by hand
- (But we're not that crazy!)

$$f(x, y, z) = (x + y)z$$

 $\equiv qz \text{ where } q = (x + y)$

$$f(x, y, z) = (x + y)z$$

 $\equiv qz \text{ where } q = (x + y)$

Clearly the partial derivatives of the subexpressions are trivial:

$$\partial f/\partial z = q$$
 $\partial f/\partial q = z$ $\partial q/\partial x = 1$ $\partial q/\partial y = 1$

$$f(x, y, z) = (x + y)z$$

 $\equiv qz \text{ where } q = (x + y)$

Clearly the partial derivatives of the subexpressions are trivial:

$$\partial f/\partial z = q$$
 $\partial f/\partial q = z$ $\partial q/\partial x = 1$ $\partial q/\partial y = 1$

and the chain rule tells us how to combine these:

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial q} \cdot \frac{\partial q}{\partial x} = z$$
$$\frac{\partial f}{\partial y} = \frac{\partial f}{\partial q} \cdot \frac{\partial q}{\partial y} = z$$

$$f(x, y, z) = (x + y)z$$

 $\equiv qz \text{ where } q = (x + y)$

Clearly the partial derivatives of the subexpressions are trivial:

$$\partial f/\partial z = q$$
 $\partial f/\partial q = z$ $\partial q/\partial x = 1$ $\partial q/\partial y = 1$

and the chain rule tells us how to combine these:

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial q} \cdot \frac{\partial q}{\partial x} = z$$
$$\frac{\partial f}{\partial y} = \frac{\partial f}{\partial q} \cdot \frac{\partial q}{\partial y} = z$$

so
$$\nabla_{[x,y,z]}f = [z,z,q]$$

Jonathon Hare Backpropagation 6 / 7

A computational graph