Моноид слов. Операции над языками

- Базовые определения:
 - Σ конечное множество (алфавит)
 - ullet Σ^* множество всех конечных последовательностей элементов Σ (слов, строк)
 - ullet |w| длина слова w, λ пустое слово (длины 0)
 - на Σ^* задана операция конкатенации (умножения) слов
 - ullet конкатенация ${\sf accoциативнa}$, т.е. Σ^* моноид относительно конкатенации
 - с единицей λ
 - Σ^* называют свободным моноидом или моноидом слов
 - $L \subseteq \Sigma^*$ язык (конечный или бесконечный)
- Булевы операции над языками:
 - ullet объединение $L_1 \cup L_2$
 - ullet пересечение $L_1 \cap L_2$
 - ullet дополнение $ar{L} = \{ w \in \Sigma^* \mid w \notin L \}$
 - разность $L_1 \setminus L_2 = L_1 \cap \bar{L}_2$
- Умножение языков:
 - $L_1L_2 = \{uv \mid u \in L_1, v \in L_2\}$

Пример: $\{ab, abc\}\{ba, cba\} = \{abba, abcba, abccba\}$

- ⋆ конкатенация ассоциативна ⇒ умножение языков ассоциативно
 - и некоммутативно, разумеется
- \star естественно определяются степени языка: $L^n=L^{n-1}L, L^0=\{\lambda\}$
- Итерация языка (Kleene star):
 - $L^* = \bigcup_{n=0}^{\infty} L^n$
 - * Σ^* это действительно результат применения итерации к языку Σ Пример: $\{a,ab\}^* = a\Sigma^* \setminus \Sigma^* bb\Sigma^*$

Операции над языками (2)

- ★ Умножение языков дистрибутивно относительно объединения и пересечения:
 - $L_1(L_2 \cup L_3) = L_1L_2 \cup L_1L_3$, $(L_1 \cup L_2)L_3 = L_1L_3 \cup L_2L_3$ • $L_1(L_2 \cap L_3) = L_1L_2 \cap L_1L_3$, $(L_1 \cap L_2)L_3 = L_1L_3 \cap L_2L_3$
- * Для итерации дистрибутивности нет, но верно следующее:
 - $(L_1 \cap L_2)^* \subseteq L_1^* \cap L_2^*$ • $L_1^* \cup L_2^* \subseteq (L_1 \cup L_2)^*$
 - $L^{**} = L^*$ (идемпотентность)
- Другие полезные операции над языками:
 - $Lw^{-1} = \{u \mid uw \in L\}$ (правое деление на слово w)
 - \bullet $w^{-1}L = \{u \mid wu \in L\}$ (левое деление на слово w)
 - \bullet pref $(L) = \{u \mid \exists w : uw \in L\}$ (префиксное замыкание)
 - $\mathsf{fact}(L) = \{u \mid \exists v, w : vuw \in L\}$ (подсловное замыкание)
 - $AD(L) = \{u \notin L \mid \text{ все собственные подслова } u \text{ принадлежат } L\}$ (антисловарь)
- Пусть ≼ отношение «быть подсловом» на Σ*
 - ★ ≼ отношение порядка

! докажите, что если $L={
m fact}(L)$, то язык ${
m AD}(L)$ равен множеству минимальных элементов ЧУМа $(\bar L,\preccurlyeq)$

- Функция $\phi: \Sigma^* \to \Gamma^*$ гомоморфизм, если $\phi(uv) = \phi(u)\phi(v)$ для любых $u,v \in \Sigma^*$
 - ullet $\phi(L) = \{\phi(u) \mid u \in L\}$ взятие гомоморфного образа

Регулярные языки

- Пусть $\Sigma = \{a_1, \ldots, a_n\}$
- Язык $L\subseteq \Sigma^*$ регулярный, если он может быть получен применением конечного числа операций объединения, умножения и итерации к языкам $\varnothing, \{\lambda\}, \{a_1\}, \dots, \{a_n\}$
 - операции $\cup, \cdot, ^*$ также называются регулярными
- Можно взять замыкание любого множества языков $\mathbf{L} \subseteq 2^{\Sigma^*}$ относительно регулярных операций
- \bigstar Множество $\mathbf{R}\subset 2^{\Sigma^*}$ всех регулярных языков над Σ совпадает с замыканием множества всех конечных языков над Σ относительно регулярных операций
 - Обычный способ записи регулярных языков регулярные выражения:
 - ullet символы $\varnothing, \lambda, a \in \Sigma$ являются регулярными выражениями
 - ullet r,s регулярные выражения \Rightarrow $(r)|(s), (r)\cdot(s), (r)^*$ регулярные выражения
 - других регулярных выражений нет
 - \star \mid стандартный символ для перечисления альтернатив (соответствует операции \cup)
 - ⋆ иногда вместо | пишут +
 - Для упрощения записи выражений договорились о приоритете операций:
 - * приоритетнее · , · приоритетнее
 - скобки, не меняющие порядок выполнения операций, опускаются
 - знак умножения также опускается
 - Пример: вместо $(((a) \mid (b)) \mid ((b) \cdot (c)))^*$ пишут $(a \mid b \mid bc)^*$

Теорема Клини

Теорема Клини

Язык регулярен тогда и только тогда, когда он распознается некоторым конечным автоматом.

Регулярные языки распознаются автоматами

Докажем, что любой регулярный язык распознается конечным автоматом

\star теорема Рабина-Скотта дает использовать ДКА и НКА вперемешку

План:

- ① построить автоматы, распознающие языки $\varnothing,\{\lambda\},\{a\}$! постройте самостоятельно
- $m{Q}$ по ДКА $\mathcal{A}_1=(Q_1,\Sigma,\delta_1,s_1,T_1)$ и $\mathcal{A}_2=(Q_2,\Sigma,\delta_2,s_2,T_2)$ построить автоматы, распознающие языки
 - $L(A_1) \cup L(A_2)$
 - $L(A_1) \cdot L(A_2)$
 - $(\hat{L}(A_1))^*$

$$\mathcal{A}_{\cup} = (Q_1 \cup Q_2, \Sigma, \delta_1 \cup \delta_2, \{s_1, s_2\}, T_1 \cup T_2)$$

$$L(\mathcal{A}_{\cup}) = L(\mathcal{A}_1) \cup L(\mathcal{A}_2)$$

Регулярные языки распознаются автоматами (2)

$$egin{aligned} \mathcal{A}_{\cdot} &= \left(Q_{1} \cup Q_{2}, \Sigma, \delta, \{s_{1}\}, \mathcal{T}_{2} \right)$$
 при $\lambda \notin L_{2}, \ \mathcal{A}_{\cdot} &= \left(Q_{1} \cup Q_{2}, \Sigma, \delta, \{s_{1}\}, \mathcal{T}_{1} \cup \mathcal{T}_{2} \right)$ при $\lambda \in L_{2}, \$ где $\delta = \delta_{1} \cup \delta_{2} \cup \{(t, a, q) \mid t \in \mathcal{T}_{1}, q \in Q_{2}, (s_{2}, a, q) \in \delta_{2} \}$ $L(\mathcal{A}_{\cdot}) = L(\mathcal{A}_{1}) \cdot L(\mathcal{A}_{2}) \end{aligned}$

$$\mathcal{A}_* = (Q_1 \cup \{s'\}, \Sigma, \delta', \{s_1, s'\}, T \cup \{s'\})$$
, где $\delta' = \delta_1 \cup \{(t, a, q) \mid t \in T, q \in Q_1, (s_1, a, q) \in \delta\}$ \star s' нужно только для распознавания λ $L(\mathcal{A}_*) = (L(\mathcal{A}_1))^*$

Регулярность автоматных языков

- Пусть $\mathcal{A}=(Q,\Sigma,\delta,s,T)$ автомат; докажем, что $L(\mathcal{A})\in \mathsf{R}$ индукцией по $|\delta|$ База индукции: $|\delta|=0$
 - $L(\mathcal{A})=\{\lambda\}\in\mathbf{R}$ при $s\in T$ и $L(\mathcal{A})=\varnothing\in\mathbf{R}$ при $s\notin T$ Шаг индукции: $|\delta|=k$
 - по предположению индукции, языки, распознаваемые автоматами с менее чем k переходами (ребрами), регулярны
 - ullet возьмем произвольный переход $(q,a,r)\in \delta$, пусть $\delta'=\delta\setminus\{(q,a,r)\}$; положим

$$A_0 = (Q, \Sigma, \delta', s, T)$$

$$\mathcal{A}_1 = (Q, \Sigma, \delta', s, \{q\})$$

$$\mathcal{A}_2 = (Q, \Sigma, \delta', r, \{q\})$$

- $A_3 = (Q, \Sigma, \delta', r, T)$
- \star языки $L(\mathcal{A}_0), L(\mathcal{A}_1), L(\mathcal{A}_2), L(\mathcal{A}_3)$ регулярны по предположению индукции
- ullet Докажем, что $L(\mathcal{A}) = L(\mathcal{A}_0) \cup L(\mathcal{A}_1) a ig(L(\mathcal{A}_2) aig)^* L(\mathcal{A}_3)$
 - ullet пусть $w\in L(\mathcal{A})$ помечает (s,t)-маршрут W в \mathcal{A} , $t\in T$
 - \star если $(q,a,r)\notin W$, то $w\in L(\mathcal{A}_0)$
 - \star если $(q,a,r)\in W$, то $w=w_0aw_1\dots aw_n$, где a отмечают все случаи использования перехода (q,a,r):

- $\Rightarrow w_0 \in L(A_1), w_1, \ldots, w_{n-1} \in L(A_2), w_n \in L(A_3) \Rightarrow w \in L(A_1)a(L(A_2)a)^*L(A_3)$
- $\Rightarrow w \in L(A_0) \cup L(A_1)a(L(A_2)a)^*L(A_3)$
 - $L(A_0) \subseteq L(A)$ очевидно
 - $w \in L(A_1)a(L(A_2)a)^*L(A_3) \Rightarrow w = w_0aw_1\dots aw_n$ как на рисунке $\Rightarrow w \in L(A)$

Замкнутость **R** относительно операций

- Теорема Клини позволяет доказывать замкнутость R относительно операций
 - * R замкнуто относительно дополнения:
 - ullet если $\mathcal{A}=(Q,\Sigma,\delta,s,T)$ ДКА, $L=L(\mathcal{A})$, то $ar{L}=L(ar{\mathcal{A}})$, где $ar{\mathcal{A}}=(Q,\Sigma,\delta,s,Q\setminus T)$
 - - формулы де Моргана
 - \star R замкнуто относительно разности, потому что $L_1 \setminus L_2 = L_1 \cap ar{L}_2$
 - ! докажите, у регулярного языка регулярными являются

левые и правые частные

гомоморфные образы

префиксное и подсловное замыкание

антисловарь

- ★ Объединение, пересечение и разность регулярных языков можно распознавать при помощи декартова произведения ДКА:
 - ullet пусть $\mathcal{A}_1 = (Q_1, \Sigma, \delta_1, s_1, T_1), \ \mathcal{A}_2 = (Q_2, \Sigma, \delta_2, s_2, T_2) \ \DAKA$
 - $\star \ \mathcal{A}_{\cup} = \big(Q_1 \times Q_2, \Sigma, \delta_1 \times \delta_2, (s_1, s_2), Q_1 \times Q_2 \setminus (Q_1 \setminus T_1) \times (Q_2 \setminus T_2)\big)$
 - $\star \ \mathcal{A}_{\cap} = \big(Q_1 \times Q_2, \Sigma, \delta_1 \times \delta_2, (s_1, s_2), T_1 \times T_2\big)$
 - $\star \ \mathcal{A}_{\setminus} = \big(Q_1 \times Q_2, \Sigma, \delta_1 \times \delta_2, (s_1, s_2), T_1 \times (Q_2 \setminus T_2)\big)$