Real Variables: Problem Set VIII

Youngduck Choi

Courant Institute of Mathematical Sciences New York University yc1104@nyu.edu

Abstract

This work contains solutions to the problem set VIII of Real Variables 2015 at NYU.

1 Solutions

Question 1. Royden 11-30.

- 30. For topological spaces X and Y, let the mapping $f: X \to Y$ be one-to-one and onto. Show that the following assertions are equivalent.
 - (i) f is a homeomorphism of X onto Y.
 - (ii) A subset E of X is open in X if and only if f(E) is open in Y.
 - (iii) A subset E of X is closed in X if and only if f(E) is closed in Y.
 - (iv) The image of the closure of a set is the closure of the image, that is, for each subset A of X, $f(\overline{A}) = \overline{f(A)}$.

Solution. Assume (i). We claim that $f(\bar{A}) \subseteq \overline{f(A)}$. Let $y \in f(\bar{A})$. Then, there exists $x \in \bar{A}$, such that f(x) = y. Since f is homeomorphic, it is continuous. By continuity of f at x, for any neighborhood O of y, there exists a neighborhood U of x, such that $f(U) \subseteq O$. As $x \in \bar{A}$, $U \cap A \neq \emptyset$, and $f(U) \cap f(A) \neq \emptyset$. Since $f(U) \subseteq O$, $f(A) \cap O \neq \emptyset$. Hence, $y \in \overline{f(A)}$. We now claim that $\overline{f(A)} \subseteq f(\bar{A})$. Let $y \in \overline{f(A)}$.

Assume (ii), and let E be a closed subset of X. We have $X \setminus E$ is open. By (ii), $f(X \setminus E)$ is open. As f is surjective, we have f(X) = Y. It follows that

$$f(X \setminus E) = f(X) \setminus f(E)$$

= $Y \setminus f(E)$.

Since $Y \setminus f(E)$ is open, f(E) is closed.

Question 2. Royden 11-34.

34. Suppose that a topological space X has the property that every continuous real-valued function on X takes a minimum value. Show that any topological space that is homeomorphic to X also possesses this property.

Solution. Let Y be a topological space that is homeomorphic to X, and $\phi: X \to Y$ be a bijective map such that ϕ^{-1} is continuous. Let g be a continuous real-valued function, defined on Y. Consider g(Y). We wish to show that $\inf_{y \in Y} g(y) \in g(Y)$.

Question 3. Royden 11-44.

44. Let (X, T) be a topological space.

- (i) Prove that if (X, \mathcal{T}) is compact, then (X, \mathcal{T}_1) is compact for any topology \mathcal{T}_1 weaker than \mathcal{T} .
- (ii) Show that if (X, T) is Hausdorff, then (X, T_2) is Hausdorff for any topology T_2 stronger than T.
- (iii) Show that if (X, \mathcal{T}) is compact and Hausdorff, then any strictly weaker topology is not Hausdorff and any strictly stronger topology is not compact.
- **Solution.** (i) Let \mathscr{T}_1 be a topology for X, that is weaker than \mathscr{T} . It follows that $\mathscr{T}_1 \subseteq \mathscr{T}$. Let E be a subset of X, and $\{O_{\lambda}\}_{{\lambda}\in\Lambda}$ be an open cover of E in (X,\mathscr{T}_1) . As $\mathscr{T}_1\subseteq\mathscr{T}$, the considered open cover is also an open cover in (X,\mathscr{T}) . By compactness of (X,\mathscr{T}) , there exists a finite subcollection of the open cover, that covers E. Hence, (X,\mathscr{T}_1) is compact.
- (ii) Let \mathscr{T}_2 be a topology for X, that is stronger than \mathscr{T} . It follows that $\mathscr{T}\subseteq\mathscr{T}_2$. If |X|<2, X with any topology is trivially Hausdorff. Hence, we only consider the remaining case of $|X|\geq 2$. Let $x,y\in X$ such that $x\neq y$. As (X,\mathscr{T}) is Hausdorff, there exists a neighborhood of x, and a neighborhood of y, that are disjoint, which we denote as U and V respectively. As $\mathscr{T}\subseteq\mathscr{T}_2$, U and V are also open in (X,\mathscr{T}_2) . Hence, U is a neighborhood of x, and Y is a neighborhood of y in (X,\mathscr{T}_2) . Moreover, U and V are disjoint. Hence, (X,\mathscr{T}_2) is Hausdorff. \square
- (iii) Let \mathscr{T}_1 be a topology for X, that is strictly weaker than \mathscr{T} . It follows that there exists a subset E of X such that it is open in (X,\mathscr{T}) , but not open in (X,\mathscr{T}_1) . Furthermore, $X\setminus E$ is closed in (X,\mathscr{T}) , but not closed in $(X\mathscr{T}_1)$. As (X,\mathscr{T}) is compact, $X\setminus E$ is compact as a subspace. Since \mathscr{T}_1 is weaker than $\mathscr{T}, X\setminus E$ is compact. Suppose for sake of contradiction that (X,\mathscr{T}_1) is Hausdorff. It implies that $X\setminus E$ is closed in (X,\mathscr{T}) , which is a contradiction. Hence, (X,\mathscr{T}_1) is not Hausdorff. \square

Let \mathscr{T}_2 be a topology for X, that is strictly stronger than \mathscr{T} . It follows that there exists a subset E of X such that it is open in (X,\mathscr{T}_2) , but not open in (X,\mathscr{T}) . Furthermore, $X\setminus E$ is closed in (X,\mathscr{T}_2) , but not closed in (X,\mathscr{T}) . Suppose for sake of contradiction that (X,\mathscr{T}_2) is compact. Then, as $X\setminus E$ is closed in (X,\mathscr{T}_2) is compact. As \mathscr{T} is weaker than $\mathscr{T}_2, X\setminus E$ is compact in (X,\mathscr{T}) . As $(X\mathscr{T})$ is Hausdorff, $X\setminus E$ is closed in (X,\mathscr{T}) , which is a contradiction. Hence, (X,\mathscr{T}_2) is not compact. \Box

Question 4. Royden 11-46.
46. (Dini's Theorem) Let {f _n } be a sequence of continuous real-valued functions on a countably compact space X. Suppose that for each x ∈ X, the sequence {f _n (x)} decreases monotonically to zero. Show that {f _n } converges to zero uniformly.
Solution.

Question 4. Royden 12-16.

16. Consider the countable collection of metric spaces $\{(X_n, \rho_n)\}_{n=1}^{\infty}$. For the Cartesian product of these sets $X = \prod_{n=1}^{\infty} X_n$, define $\rho \colon X \times X \to \mathbf{R}$ by

$$\rho(x, y) = \sum_{n=1}^{\infty} \frac{\rho_n(x_n, y_n)}{2^n [1 + \rho_n(x_n, y_n)]}.$$

¹It is convenient here to call an open set \mathcal{O} set of the form $\mathcal{O} = \Pi_{\lambda \in \Lambda} \mathcal{O}_{\lambda}$, where each \mathcal{O}_{λ} is an open subset of X_{λ} and $\mathcal{O}_{\lambda} = X_{\lambda}$ except for one λ , a *subbasic set* and the finite intersection of such sets a *basic set*.

Section 12.3 The Stone-Weierstrass Theorem 247

Use the preceding problem to show that ρ is a metric on $X = \prod_{n=1}^{\infty} X_n$ which induces the product topology on X, where each X_n has the topology induced by the metric ρ_n .

Solution.

Question 6. Royden 12-20.

20. Provide a direct proof of the assertion that if X is compact and I is a closed, bounded interval, then $X \times I$ is compact. (Hint: Let \mathcal{U} be an open covering of $X \times I$, and consider the smallest value of $t \in I$ such that for each t' < t the set $X \times [0, t']$ can be covered by a finite number of sets in \mathcal{U} . Use the compactness of X to show that $X \times [0, t]$ can also be covered by a finite number of sets in \mathcal{U} and that if t < 1, then for some t'' > t, $X \times [0, t'']$ can be covered by a finite number of sets in \mathcal{U} .)

Solution.