Reinforcement Learning

Shusen Wang

Terminologies

Terminology: state and action

state s (this frame)

Action $a \in \{left, right, up\}$

Terminology: policy

policy π

• Policy function π : $(s, a) \mapsto [0,1]$: $\pi(a \mid s) = \mathbb{P}(A = a \mid S = s).$

- It is the probability of taking action a given state s and policy π .
- Upon observing state s, the agent's action a can be random, e.g.,
 - $\pi(\text{left} \mid s) = 0.2$,
 - $\pi(\text{right}|s) = 0.1$,
 - $\pi(\text{up} \mid s) = 0.7$.

reward r

• Collect a coin: r = +1

reward r

• Collect a coin: r = +1

• Win the game: r = +10000

reward r

• Collect a coin: r = +1

• Win the game: r = +10000

• Touch a Goomba: r = -10000 (game over).

reward r

- Collect a coin: r = +1
- Win the game: r = +10000
- Touch a Goomba: r = -10000 (game over).
- Nothing happens: r = 0

Terminology: state transition

up

state transition

- $(s, a) \mapsto s'$.
- E.g., "up" action leads to a new state.

Terminology: state transition

up w.p. 0.8 w.p. 0.2

state transition

- $(s, a) \mapsto s'$.
- E.g., "up" action leads to a new state.

- State transition can be random.
- Randomness is from the environment.
- $p(s'|s,a) = \mathbb{P}(S'=s'|S=s,A=a)$.

Terminology: agent environment interaction

Terminology: agent environment interaction

Terminology: agent environment interaction

Randomness in Reinforcement Learning

Policy $\pi(a|s)$ can be random.

- Given state s and policy π , the action a can be random, e.g., .
 - $\pi(\text{"left"}|s) = 0.2$,
 - $\pi(\text{"right"}|s) = 0.1$,
 - $\pi(\text{"up"}|s) = 0.7.$

State transition p(s'|s,a) can be random.

• Given state s and action a, the environment randomly generates a new state s'.

Play the game using AI

- Observe a frame (state s_0)
- \rightarrow Make action a_0 (left, right, or up)
- \rightarrow Observe a new frame (state s_1) and reward r_0
- \rightarrow Make action a_1
- → ...

• (state, action, reward) trajectory:

$$S_0, a_0, r_0, S_1, a_1, r_1, \cdots, S_T, a_T, r_T$$

Rewards and Returns

Return

Definition: Return (aka cumulative future reward).

• $R_t = r_t + r_{t+1} + r_{t+2} + r_{t+3} + \cdots$ (to infinity.)

Return

Definition: Return (aka cumulative future reward).

• $R_t = r_t + r_{t+1} + r_{t+2} + r_{t+3} + \cdots$ (to infinity.)

Question: Are r_t and r_{t+1} equally important?

- Which of the followings do you prefer?
 - I give you \$100 right now.
 - I will give you \$100 one year later.

Return

Definition: Return (aka cumulative future reward).

• $R_t = r_t + r_{t+1} + r_{t+2} + r_{t+3} + \cdots$ (to infinity.)

Question: Are r_t and r_{t+1} equally important?

- Which of the followings do you prefer?
 - I give you \$100 right now.
 - I will give you \$100 one year later.
- Future value is less valuable than present value.
- r_{t+1} should be given less weight than r_t .

Discounted Return

Definition: Discounted return (aka cumulative discounted future reward).

- γ : discount rate (tuning hyper-parameter).
- $R_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \cdots$ (to infinity.)

Discounted Return

Definition: Discounted return (aka cumulative discounted future reward).

- γ : discount rate (tuning hyper-parameter).
- $R_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \cdots$ (to infinity.)

R_t can be random. (Two sources of randomness.)

- 1. Action can be random: $a \sim \pi(\cdot | s)$, where $\pi(a|s) = \mathbb{P}(A = a | S = s)$.
- 2. State transition can be random: $s' \sim p(\cdot | s, a)$, where

$$p(s'|s, \mathbf{a}) = \mathbb{P}(S' = s'|S = s, A = \mathbf{a}).$$

Value Functions

Action-Value Function Q(s, a)

Definition: Discounted return (aka cumulative discounted future reward).

•
$$R_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \cdots$$
 (to infinity.)

Definition: Action-value function for policy π .

•
$$Q_{\pi}(s_t, a_t) = \mathbb{E}\left[R_t | s_t, a_t, \pi\right].$$

- Taken w.r.t. actions a_{t+1} , a_{t+2} , a_{t+3} , \cdots and states s_{t+1} , s_{t+2} , s_{t+3} , \cdots
- Actions are randomly sampled: $a_t \sim \pi(\cdot | s_t)$. (Policy function.)
- States are randomly sampled: $s_{t+1} \sim p(\cdot | s_t, a_t)$. (State transition.)

Action-Value Function Q(s, a)

Definition: Discounted return (aka cumulative discounted future reward).

•
$$R_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \cdots$$
 (to infinity.)

Definition: Action-value function for policy π .

•
$$Q_{\pi}(s_t, \mathbf{a}_t) = \mathbb{E}\left[R_t|s_t, \mathbf{a}_t, \pi\right].$$

Definition: Optimal action-value function.

•
$$Q^*(s_t, \mathbf{a}_t) = \max_{\pi} Q_{\pi}(s_t, \mathbf{a}_t).$$

State-Value Function *V*(*s*)

Definition: Discounted return (aka cumulative discounted future reward).

•
$$R_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \cdots$$
 (to infinity.)

Definition: Action-value function for policy π .

•
$$Q_{\pi}(s_t, \mathbf{a_t}) = \mathbb{E}[R_t|s_t, \mathbf{a_t}, \pi].$$

Definition: State-value function.

•
$$V_{\pi}(s_t) = \mathbb{E}_{a_t} [Q_{\pi}(s_t, a_t)].$$

• Taken w.r.t. the action $a_t \sim \pi(\cdot | s_t)$.

State-Value Function $V(s, \pi)$

Definition: Discounted return (aka cumulative discounted future reward).

•
$$R_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \cdots$$
 (to infinity.)

Definition: Action-value function for policy π .

•
$$Q_{\pi}(s_t, \mathbf{a_t}) = \mathbb{E}[R_t | s_t, \mathbf{a_t}, \pi].$$

Definition: State-value function.

•
$$V_{\pi}(s_t) = \mathbb{E}_{a_t} \left[Q_{\pi}(s_t, a_t) \right] = \sum_{a} \pi(a|s_t) \cdot Q_{\pi}(s_t, a).$$

Explaining Value Functions

- Optimal action-value function: $Q^*(s_t, a_t) = \max_{\pi} Q_{\pi}(s_t, a_t)$.
- How good it is for an agent to pick action a_t while being in state s_t .

- State-value function: $V_{\pi}(s_t) = \mathbb{E}\left[Q_{\pi}(s_t, a_t)\right]$
- For policy π , how good the situation is in state s_t .

Goals

Goal of agent: Make actions a_1, a_2, a_3, \cdots to maximize the return R_t .

Goal of reinforcement learning: Guide the agent to make good actions.

Suppose we have a good policy $\pi(a|s)$.

- Upon observe the state s_t ,
- random sampling: $a_t \sim \pi(\cdot | s_t)$.

Goals

Goal of agent: Make actions a_1, a_2, a_3, \cdots to maximize the return R_t .

Goal of reinforcement learning: Guide the agent to make good actions.

Suppose we have a good policy $\pi(a|s)$.

Alternatively, suppose we know the optimal value function $Q^*(s, a)$.

- Upon observe the state s_t ,
- choose the action that maximizes the value: $a_t = \operatorname{argmax}_a Q^*(s_t, a)$.

Goals

Goal of agent: Make actions a_1, a_2, a_3, \cdots to maximize the return R_t .

Goal of reinforcement learning: Guide the agent to make good actions.

Suppose we have a good policy $\pi(a|s)$.

Alternatively, suppose we know the optimal value function $Q^*(s, a)$.

Learn either $\pi(a|s)$ or $Q^*(s,a)$ from the rewards: r_1, r_2, r_3, \cdots

Play games using reinforcement learning

- Gym is a toolkit for developing and comparing reinforcement learning algorithms.
- https://gym.openai.com/

Classical control problems

Cart Pole

Pendulum

- Gym is a toolkit for developing and comparing reinforcement learning algorithms.
- https://gym.openai.com/

Atari Games

- Gym is a toolkit for developing and comparing reinforcement learning algorithms.
- https://gym.openai.com/

MuJoCo (Continuous control tasks.)

Play CartPole Game

```
import gym
env = gym.make('CartPole-v0')
```

- Get the environment of CartPole from Gym.
- "env" provides states and reward.

```
state = env.reset()
for t in range (100) A window pops up rendering CartPole.
    env.render()
                                    A random action.
    print(state)
    action = env.action space.sample()
    state, reward, done, info = env.step(action)
    if done: "done=1" means finished (win or lose the game)
         print('Finished')
         break
env.close()
```

Summary

Summary

Terminologies

Agent

- Environment
- State s.
- Action a.
- Reward r.
- Policy $\pi(a|s)$
- State transition p(s'|s,a).

Return and Value

• Return:

$$R_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \cdots$$

Action-value function:

$$Q_{\pi}(s, \mathbf{a}) = \mathbb{E}[R_t|s, \mathbf{a}, \pi].$$

Optimal action-value function:

$$Q^{\star}(s, \mathbf{a}) = \max_{\pi} Q_{\pi}(s, \mathbf{a}).$$

State-value function:

$$V_{\pi}(s) = \mathbb{E}_{\boldsymbol{a}}[Q_{\pi}(s, \boldsymbol{a})].$$

Play game using reinforcement learning

• Observe state s_t , make action a_t , environment gives s_{t+1} and reward r_t .

- Suppose we know either policy function $\pi(a|s)$ or the optimal action-value function $Q^*(s,a)$.
- Then action α can be make according to $\pi(\alpha|s)$ or $Q^*(s,\alpha)$.

We are going to study...

- Deep Q network (DQN) for approximating $Q^*(s, a)$.
- Learn the network parameters using temporal different (TD).

- Policy network for approximating $\pi(a|s)$.
- Learn the network parameters using policy gradient.
- Actor-critic method. (Policy network + value network.)