(1.1) yapyapyap

(2.1) The ordinary differential equation (ODE) governing the temperature T(t) is:

$$\frac{dT(t)}{dt} = \frac{Q_f(t) - UA(T(t) - T_a)}{\rho V c_p}$$

For this problem, the furnace is off, so $Q_f(t) = 0$. Substituting this into the equation:

$$\frac{dT(t)}{dt} = \frac{-UA(T(t) - T_a)}{\rho V c_p}$$

At steady state, the temperature T(t) no longer changes with time, so:

$$\frac{dT(t)}{dt} = 0$$

Substitute this condition into the ODE:

$$0 = \frac{-UA(T(t) - T_a)}{\rho V c_p}$$

Solve:

$$T(t) - T_a = 0$$

Thus:

$$T(t) = T_a$$

(2.2) Using the dervied equation for T(t), the behaviour of the furnace as defined below, and the given definition of one step of the univariate Euler's method, we can plot Figure 1.

$$Q_f(t) = \begin{cases} 0 & \text{When } T(t) > 23^{\circ}\text{C}, \\ 1.5 \times 10^6 & \text{When } T(t) < 17^{\circ}\text{C}, \\ \text{unchanged} & \text{For all } 17 \le T(t) \le 23^{\circ}\text{C}. \end{cases}$$

Figure 1: Temperature and Furnace Input Over Time

- $\begin{array}{c} (3.1) \ \, {\rm Part} \,\, {\rm A} \\ \, \, {\rm SOLUTION} \end{array}$
- (3.2) Part B SOLUTION

- (4.1) Part A SOLUTION
- (4.2) Part B SOLUTION

- (5.1) Part A SOLUTION
- (5.2) Part B SOLUTION