DDR RFT Elektronik

Widerstände Kondensatoren Relais Schaltkreise Dioden Schalter Fundgrube für Bastler Q

Kondensatoren

KS Kondensatoren im Kunststoffgehäuse nach TGL 38158 und TGL 33965

Die KS Kondensatoren nach TGL 33965 und TGL 38158 sind Polystyrolkondensatoren in einem prismatischen Kunststoffgehäuse. Die Kondensatoren sind hochwertige Passivbauelemente der Elektronik und waren für die Anwendung in der kommerziellen Funk- und Fernmeldetechnik vorgesehen. Durch den Einbau der Kondensatorwickel in dem epoxidharzvergossenem Kunststoffbecher sind die KS-Kondensatoren sehr gut gegen Umwelteinflüsse geschützt, was sich sehr positiv auf die Konstanz

der Kennwerte auswirkt. Entsprechend der Anforderungen des Einsatzgebietes der Kondensatoren nach TGL 33965 und TGL 38158 wurden diese mit feingestuften Nennkapazitätswerten der Reihe E192 und zusätzlich mit kleinen Kapazitätstoleranzen gefertigt. Als Belag der Kondensatoren wurde Zinnfolie eingesetzt, was zu einem besonders kontaktsicheren und induktionsarmen Wickelaufbau sowie einer guten Langzeitstabilität der Kapazität führte.

Anzeige

Unterschiede der KS Kondensatoren TGL 33965 und TGL 38158

Die Kondensatoren der TGL 38158 sind bei einzuhaltenden Grenzwerten schwalllötbar. Die KS Kondensatoren der TGL 33965 unterscheiden sich von denen der TGL 38158 durch die Bauform, den erweiterten Nennkapazitätsbereich sowie die Möglichkeit der Herstellung als Doppelkapazitäten im Bereich 2x100pF bis 2x9090pF. Weiterhin besitzen diese Kondensatoren eine höhere Langzeitstabilität der Nennkapazität. Bei den Kondensatoren der TGL 33965 gibt es für ausgewählte Werte die Bauform P, welche an der Stelle der Polystyrolfolie ein Dieelektrikum aus Polypropylenfolie besitzt. Die Kondensatoren wurden in den folgenden Bauformen gefertigt:

- Bauform A und Bauform B beinhalten Einfachkapazitäten
- Bauform C und Bauform D enthalten Doppelkapazitäten
- Bauform B und Bauform D unterscheiden sich dabei von A bzw. C bei einigen Kenngrößen durch bessere Werte (Toleranz, Temperaturkoeffizient – TK oder temperaturabhängige Kapazitätsänderung)

Die Einzelkondensatoren der Doppelkapazitäten der Bauform C und Bauform D können auch unterschiedliche Nennkapazitäten der Reihe E192 aufweisen.

Kennwerte der prismatischen KS Kondensatoren nach TGL 33965

Kenngröße	Kennwert	Bemerkungen
Nennspannung U _N	25V und 63V	
zulässige Wechselspannung WS U _{eff}	15V	$f \ddot{u} r U_N = 25 V$
	40V	für $U_N = 63V$
zulässiger Wechselstrom I _{eff}	≤0,2A	
Nennkapazitäten C _N	100pF bis 27000pF	$U_N = 63V$, Reihe E192
	9200pF bis 56000pF	$U_N = 25V$, Reihe E192
Nennkapazitätstoleranz	±0,5%, ±1%, ±2%, ±5%	
Verlustfaktor tan δ	≤ 2 * 10 ⁻⁴	Bauform A, B, C, D f = 1kHz
	≤ 3 * 10 ⁻⁴	$Bauform~A,~B,~C,~D$ für $C_N \leq 1000 pF~und~f = 100 kHz$
	≤ 8 * 10 ⁻⁴	$Bauform~A,~C$ $\label{eq:condition} \text{für}~C_N \leq 10000 pF~und~f = 100 kHz$
	≤ 5 * 10 ⁻⁴	$Bauform\ B,\ D$ für $C_N \leq 10000 pF$ und $f=100 kHz$
	≤ 8 * 10 ⁻⁴	$Bauform~A,~C$ $\label{eq:bauform} \text{f\"{u}r}~C_N \leq 1000 \text{pF}~\text{und}~f = 1 \text{MHz}$
	≤ 5 * 10 ⁻⁴	$Bauform~B,~D$ für $C_{N} \! \leq \! 1000 pF$ und $f \! = \! 1MHz$
Isolationswiderstand	$1*10^{11}\Omega$	Bauform A, C, D, P
	$2*10^{11}\Omega$	Bauform B
Temperaturkoeffizient α_c	-(25 bis 150) * 10 ⁻⁶ /K	Bauform A, $C_N \le 2200 pF$
	-(75 bis 200) * 10 ⁻⁶ /K	Bauform A, $C_N > 2200 pF$
	-(50 bis 110) * 10 ⁻⁶ /K	Bauform B, $C_N \le 800 pF$
	-(75 bis 135) * 10 ⁻⁶ /K	Bauform B, $C_N \le 4000 pF$

	-(100 bis 160) * 10 ⁻⁶ /K	Bauform B, $20nF < C_N \le 82,5nF$
	-(25 bis 175) * 10 ⁻⁶ /K	Bauform C
	-(50 bis 140) * 10 ⁻⁶ /K	Bauform D
zeitliche Inkonstanz der Kapazität	-(230 bis 400) * 10 ⁻⁶ /K	Bauform P
	$\leq \pm (0.2\% + 0.5 \text{pF})$	nach einem Jahr
	≤±1%	Bauform P
Klimaprüfklasse	40/070/21	

Kennwerte der prismatischen Kondensatoren der TGL 38158

Kenngröße	Kennwert	Bemerkungen
Nennspannung U _N	25V und 63V	
zulässige Wechselspannung WS Ueff	15V	$f \ddot{u} r \; U_N = 25 V$
	40V	$f\ddot{u}r\ U_N = 63V$
zulässiger Wechselstrom $I_{\rm eff}$	≤0,2A	
Nennkapazitäten C _N	180pF bis 47000pF	U _N = 25V, Reihe E192
	180pF bis 18000pF	$U_N = 63V$, Reihe E192
Nennkapazitätstoleranz	±1%, ±2%, ±5%	
Verlustfaktor tan δ	≤ 2 * 10 ⁻⁴	für $C_N \le 1000 pF$ und $f \le 10 kHz$
	≤ 10 * 10 ⁻⁴	für $C_N \le 1000 pF$ und $f = 1MHz$
	≤ 4 * 10 ⁻⁴	für $C_N > 22000$ pF und $f = 1$ kHz
	≤ 8 * 10 ⁻⁴	für $C_N > 22000 pF$ und $f = 100 kHz$
Isolationswiderstand	$1*10^{11}\Omega$	
Temperaturkoeffizient α_c	-(25 bis 150) * 10 ⁻⁶ /K	$C_N \le 796 pF$
	-(40 bis 160) * 10 ⁻⁶ /K	$C_N \le 22000 pF$
	-(70 bis 170) * 10 ⁻⁶ /K	$C_N > 22000 pF$
zeitliche Inkonstanz der Kapazität	$\leq \pm (0.3\% + 0.4 pF)$	nach einem Jahr

Anzeige

#DDR Kondensatoren #KS Kondensatoren #Polystyrolkondensatoren

f

y

8+

DDR Zusatzspeicher ZS02 für F2000 von RFT Messzusatz WL41 nach TGL 37533

Das kann Sie auch interessieren

Fundgrube für Bastler

TGL 24685 RFT Steckverbinder DDR

Gerade habe ich zu meinem Angebot der TGL 24685 bei ebay eine Anfrage erhalten. Deshalb möchte ich hier zu den angebotenen Steckdosen noch mehr Details nennen. Dabei handelt es sich speziell um die...

Mehr lesen

Fundgrube für Bastler

Inkrementaler Geber rotatorisch Robotron 2000-D TGL 34235

Mit dem Inkrementaler Geber rotatorisch Robotron 2000-D TGL 34235 zeige ich Dir einen der optoelektronischen Messwandler. Dieser gibt bei Drehung der Messwandlerwelle eine winkelproportionale Anzahl...

Mehr lesen

Fundgrube für Bastler

Robotron M7512 HLW Druckaufnehmer

Solltest Du Interesse an einem Robotron M7512 HLW Druckaufnehmer haben, dann schau Dir das aktuelle Angebot auf ebay an. Leider habe ich nicht viel Informationen über das DDR Ersatzteil. Insofern...

Mehr lesen

Relais

30.2-024 – DDR Relais TGL 200-3796

Das Relais 30.2-024 ist ein Typ der
DDR Klappankerrelais nach TGL 200-3796. Der Typ
30.2 hat die Bauform C, speziell Bauform C1, was
einen Steckanschluss für Fassung C oder Lötanschluss
mit...

Mehr lesen

Suche		
Suche		
Neueste Beiträge		
TGL 24685 RFT Steckverbinder DDR		
Inkrementaler Geber rotatorisch Robotron 2000-D TGL 34235		
Robotron M7512 HLW Druckaufnehmer		
30.2-024 – DDR Relais TGL 200-3796		
30.4-40 – Klappankerrelais TGL 200-3796		