ENG2009 – Modelling of Engineering Systems

Tutorial 5

System Responses and Stability

Quick revision: System Response (unit step response) and Stability (Lecture 9-10)

First order system

First-Order Systems

Example:

$$u(t)$$
 - force $y(t)$ - velocity

$$m\,\frac{dy(t)}{dt}+by(t)=u(t)$$

Other 1st order system

$$RC\frac{dy(t)}{dt} + y(t) = u(t)$$

First-Order Systems

- $T\frac{dy(t)}{dt} + y(t) = ku(t)$ · General form:
- · Transfer function:

k - constant (steady-state gain)

T - time constant

• Pole: $s = -\frac{1}{r}$

Step Response of 1st Order Systems

1st order system: system response

Example: Mass-damper animation

Spring constant k = 0Input: u(t) = 0

Output: y(t): velocity

Initial condition: $v(0) = \frac{dx}{dt} = 1$

Step Response of 1st Order Systems

- · General output analysis:
- General form: $T\frac{dy(t)}{dt} + y(t) = ku(t) \rightarrow \mathcal{L} \rightarrow \frac{Y(s)}{U(s)} = \frac{k}{(Ts+1)}$ Pole: $s = -\frac{1}{T}$, (\(\frac{1}{T}\), \(\frac{1}{T}\) pole: faster response)
- Unit-step, $U(s) = \frac{1}{s} \rightarrow Y(s) = \frac{1}{s(Ts+1)}$
- Partial fraction expansion: $Y(s) = \frac{1}{s} \frac{1}{s+1/T}$
- · Solve: Inverse Laplace transform:

Impulse Response of 1st Order Systems

- General form: $\frac{Y(s)}{U(S)} = \frac{k}{(Ts+1)}$
- k = 1, T = 1• Unit-impulse, R(s) = 1

transform:

- · Impulse response: $y_{ss}(t) = 0$

Second order system

Second-Order Systems

$$G(s) = \frac{Y(s)}{R(s)} = \frac{k\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

k = gain of system (sometime called DC gain)

= damping ratio - controls the rate of rise or decay of oscillations in the system (unitless)

 ω_n = natural frequency - frequency of oscillation of the system without damping (rad/s)

Second-Order Systems

· Solutions of the characteristic equation (quadratic):

$$s^2 + 2\zeta \omega_n s + \omega_n^2 = 0$$

Roots of characteristic equation (pole of TF)

$$s_1 = -\zeta \omega_n - \omega_n \sqrt{\zeta^2 - 1} \qquad s_2 = -\zeta \omega_n + \omega_n \sqrt{\zeta^2 - 1}$$

- · We will consider five cases:
 - 1) $\zeta = 1$, critically damped (stable system) last lecture
 - 2) $\zeta > 1$, overdamped (stable system) last lecture
 - 3) $0 < \zeta < 1$, underdamped (stable system)
 - 4) $\zeta = 0$, undamped (marginally stable system)
 - 5) $\zeta < 0$, exponential growth (unstable system)

Step Response of 2nd Order Systems

· Unit-step time response:

$$y(t) = 1 - \frac{e^{-\zeta \omega_n t}}{\sqrt{1 - \zeta^2}} \sin(\omega_d t + \theta)$$

$$y_{ss}(t) / y_t(t)$$

$$\theta = \tan^{-1} \left(\frac{\sqrt{1 - \zeta^2}}{\zeta} \right) \qquad \omega_d = \omega_n \sqrt{1 - \zeta^2}$$

Stability of LTI systems

An LTI system is said to be stable

all the poles have negative real parts

(i.e. they are all in the left half of the s-plane).

Note:

poles: the roots of the transfer function denominator polynomial)

Real example: mass-spring-damper system

$$\frac{d^2y(t)}{dt^2}+2\zeta\omega_n\frac{dy(t)}{dt}+\omega_n^2y(t)=\mathrm{k}\omega_n^2u(t)$$
 (general form)

$$m\frac{d^2y(t)}{dt^2} + b\frac{dy(t)}{dt} + ky(t) = u(t)$$

$$\frac{d^2y(t)}{dt^2} + \underbrace{\binom{b}{m}}_{2\zeta\omega_n} \frac{dy(t)}{dt} + \underbrace{\binom{k}{m}}_{\omega_n^2} y(t) = \underbrace{\binom{1}{m}}_{k\omega_n^2} u(t)$$

Natural frequency, $\omega_n = \sqrt{k/m}$

Damping factor, $\zeta = \frac{b}{2\omega_n m}$

- $\uparrow b \Rightarrow \uparrow \zeta$: (more damper, more damping factor, less oscillatory) $\uparrow k \Rightarrow \uparrow \omega_n$, $\downarrow \zeta$: (more spring, less damping factor, more oscillatory) $\uparrow m \Rightarrow \downarrow \omega_n$, $\downarrow \zeta$: (more weight, less damping factor, more oscillatory)

System output influenced by damping factor ζ?

Step Response of 2nd Order Systems

Case (3) Underdamped, $0 < \zeta < 1$:

· Two complex poles:

$$s_1 = -\zeta \omega_n - j \omega_n \sqrt{1-\zeta^2}$$

$$s_2 = -\zeta \omega_n + j\omega_n \sqrt{1 - \zeta^2}$$

$$\omega_d = \omega_n \sqrt{1 - \zeta^2}$$

$$\theta = \tan^{-1}\left(\frac{\sqrt{1-\zeta^2}}{\zeta}\right)$$

 $cos(\theta) = \zeta$

s-plane

$$\begin{split} s_2 &= -\zeta \omega_n + j \omega_n \sqrt{1-\zeta^2} \\ \text{Damped natural frequency} \\ \omega_d &= \omega_n \sqrt{1-\zeta^2} \\ \theta &= \tan^{-1} \left(\frac{\sqrt{1-\zeta^2}}{\zeta} \right) \\ &-\zeta \omega_n - j \omega_d \\ &- \omega_d \end{split}$$

Step Response of 2nd Order Systems

Recall: Stability of LTI systems

Effect of pole location on system response and stability

Example: Mass-spring-damper animation example

Given the differential equation: $m\frac{d^2y(t)}{dt^2} + b\frac{dy(t)}{dt} + ky(t) = u(t)$ for the mass-sprind-damper system below, where $m=1,\ b=0.2, k=1$. Assume that the input is a unit impulse $u(t)=\delta$.

Obtain the following:

- (a) Transfer function (assume zero initial conditions)
- (b) The order of the system
- (c) Poles and zeros
- (d) Draw the s-plane
- (e) Is the system stable?
- (f) Without solving the diffrential equation, predict the response of the system.
- (g) Use Python to create a simulation of the system. Assume that the input force u(t) is a unit impulse

Solutions:

(a) Differential eq: $m\frac{d^2y(t)}{dt^2} + b\frac{dy(t)}{dt} + ky(t) = u(t)$. Laplace Transfrom (assuming zero initial conditions):

$$ms^{2}Y(s) + bsY(s) + kY(s) = U(s)$$
$$(ms^{2} + bs + k)Y(s) = U(s)$$

Transfer function:

$$\frac{Y(s)}{U(s)} = \frac{1}{ms^2 + bs + k}$$

- (b) 2nd order system (highest power of denominator)
- (c) substituting $m=1,\ b=0.2, k=1$ to the transfer function:

$$\frac{Y(s)}{U(s)} = \frac{1}{s^2 + 0.2s + 1}$$

Zeros: roots of numerator: no zero

Poles: roots of denominator

$$s^2 + 0.2s + 1 = 0$$

 \rightarrow roots: s = -0.1000 + 0.9950i, s = -0.1000 - 0.9950i (two complex pair poles)

(d) s-plane

(e) Stable: all poles in LHP

(f) For secod order system, analyse damping ratio ζ :

Note that the general transfer function of a second order system is given by

$$G(s) = \frac{k\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} = \frac{1}{s^2 + 0.2s + 1}$$

where k is the gain of the system, ζ is the damping ratio and ω is the natural frequency.

Therefore in this case $\omega_n=1$ and $2\zeta\omega_n=0.2$

Which yield damping ratio $\underline{\zeta} = 0.1$ which is <u>underdamped</u> system.

Checking poles: s = -0.1000 + 0.9950i, s = -0.1000 - 0.9950i. Two complex pair farly close to the imaginary axis: <u>underdamped system</u>, slightly oscillatory, but converge to zero (due to impulse input).

Example:

(g) Python code example:

```
#import numpy, integrate and pyplot
import numpy as np
from scipy import integrate
from matplotlib import pyplot as plt
#sim data
m=1 #mass of the oscillator
b=0.2 #damper of the oscillator
k=1 #stiffness of the oscillator
omega = (k/m)**0.5 #angular frequency of the oscillator
T=2*np.pi/omega #period of the oscillator
#create 1000 unifirmply distributed points in the interval [0,10T]
t = np.linspace(0, 10*T, 1000)
#lambda returning the force
force = lambda t:t \le 0.1
#lambda with the RHS of the equation, it evaluates the force and returns a list
f = lambda X,t: [X[1],1/m*(force(t)-k*X[0]-b*X[1])]
\#solve equation using odeint, now the values of X for t=0 are given by a list
XOdeint = integrate.odeint(f,[0,0],t)
ti = np.linspace(0,10*T,1000)
#plot force
plt.plot(ti,force(ti))
plt.title('Force (input)')
plt.grid()
plt.xlabel('$t$')
plt.ylabel('$input$')
plt.show()
#plot displacements from both solutions (first column of each solution)
plt.plot(t, XOdeint[:,0])
plt.legend(['Odeint'])
plt.title('Displacement')
plt.grid()
plt.xlabel('$t$')
plt.ylabel('$x$')
plt.show()
#plot velocities from both solutions (first column of each solution)
plt.plot(t, XOdeint[:,1])
plt.legend(['Odeint'])
plt.title('Velocitie')
plt.grid()
plt.xlabel('$t$')
plt.ylabel('$\dot{x}$')
plt.show()
#Save data
np.savetxt('t.txt',t)
np.savetxt('x.txt', XOdeint[:,0])
```


Exercises:

For each of the transfer functions shown below, find:

- (a) Order of the system,
- (b) The poles and zeros,
- (c) plot the s-plane,
- (d) state wheather the system stable or unstable,
- (e) without solving for the inverse Laplace transform, state the nature of each response to a step input (state if the system is overdamped, underdamped, and so on).
- (f) DIY: Use Python to create a simulation of the system. Assume that the input force u(t) is a unit impulse

Q1)
$$G(s) = \frac{2s+1}{s^2+3s+2}$$

Q2)
$$G(s) = \frac{2}{s+2}$$

Q3)
$$G(s) = \frac{10(s+7)}{(s+10)(s+20)}$$

Q4)
$$G(s) = \frac{20}{s^2 + 6s + 144}$$

Q5)
$$G(s) = \frac{s+2}{s^2+9}$$

Solutions:

Q1) Solution

Transfer function: $G(s) = \frac{2s+1}{s^2+3s+2}$

- (a) 2nd order system (highest power of denominator)
- (b) **Zeros**: roots of numerator: 2s + 1 = 0

$$\rightarrow$$
 roots: $s = -\frac{1}{2}$ (one real zero)
Poles: roots of denominator

$$s^2 + 3s + 2 = (s + 2)(s + 1) = 0$$

$$\rightarrow$$
 roots: $s = -1$, $s = -2$ (two real poles)

(c) s-plane:

- (d) Stable: all poles in LHP (poles at -1 and -2)
- (e) For secod order system, analyse damping ratio ζ :

Note that the general transfer function of a second order system is given by

$$G(s) = \frac{k\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} = \frac{2s+1}{s^2 + 3s + 2}$$

where k is the gain of the system, ζ is the damping ratio and ω is the natural frequency.

Therefore in this case $\omega_n=\sqrt{2}$ and $2\zeta\omega_n=3$

Which yield damping ratio $\zeta = 1.0607$ which is <u>critical damped</u> system.

Checking the poles (roots of characteristic equation):

s = -1, \Rightarrow (real pole) critical damped response

s = -2, \Rightarrow (real pole) critical damped (more dominant than the first pole)

Q2) Solution

Transfer function: $G(s) = \frac{2}{s+2}$

(a) 1st order system (highest power of denominator)

(b) Zeros: roots of numerator: no zero

Poles: roots of denominator

$$(s + 2) = 0$$

 \rightarrow roots: s = -2 (one real poles)

(c) s-plane:

(d) Stable: all poles in LHP (poles at -2)

(e) Poles (roots of characteristic equation):

First order response (see Lecture 15), converge to steady state value (stable response/ non diverging).

Critical damp behaviour

Q3) Solution

Transfer function: $G(s) = \frac{10(s+7)}{(s+10)(s+20)}$

(a) 2nd order system (highest power of denominator)

(b) **Zeros**: roots of numerator: 10(s + 7) = 0

 \rightarrow roots: s = -7 (one real zero) **Poles**: roots of denominator

(s+10)(s+20) = 0

 \rightarrow roots: s = -10, s = -20 (two real poles)

(c) s-plane:

(d) Stable: all poles in LHP (poles at -10 and -20)

(e) For secod order system, analyse damping ratio ζ :

Note that the general transfer function of a second order system is given by

$$G(s) = \frac{k\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} = \frac{10(s+7)}{(s+10)(s+20)} = \frac{10(s+7)}{s^2 + 30s + 200}$$

where k is the gain of the system, ζ is the damping ratio and ω is the natural frequency.

Therefore in this case $\omega_n=\sqrt{200}$ and $2\zeta\omega_n=30$

Which yield damping ratio $\zeta = 1.0607$ which is <u>critical damped</u> system.

Checking poles (roots of characteristic equation):

s = -10, \Rightarrow (real pole) critical damped response: far from imaginary axis

s = -20, \Rightarrow (real pole) critical damped (more dominant than the first pole): far from imaginary axis

Q4) Solution

Transfer function: $G(s) = \frac{20}{s^2 + 6s + 144}$

(a) 2nd order system (highest power of denominator)

(b) Zeros: roots of numerator: no zero

Poles: roots of denominator (using roots of quadratic equation: $\frac{-b\pm\sqrt{b^2-4ac}}{2a}$

$$S^2 + 6s + 144 = 0$$

$$\rightarrow$$
 roots: $s = -3 + 3\sqrt{15}j$, $s = -3 - 3\sqrt{15}j$ (two complex pair poles)

(c) s-plane:

(d) Stable: all poles in LHP (two complex poles at $= -3 \pm 3\sqrt{15}j$)

(e) For secod order system, analyse damping ratio ζ :

Note that the general transfer function of a second order system is given by

$$G(s) = \frac{k\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} = \frac{20}{s^2 + 6s + 144}$$

where k is the gain of the system, ζ is the damping ratio and ω is the natural frequency.

Therefore in this case $\omega_n=\sqrt{144}=12$ and $2\zeta\omega_n=6$ Which yield damping ratio $\underline{\zeta}=0.25$ which is <u>under damped</u> system.

Checking poles (roots of characteristic equation):

 $s = -3 \pm 3\sqrt{15}j$, \Rightarrow (two complex poles) <u>underdamped</u> response

Q5) Solution

Transfer function: $G(s) = \frac{s+2}{s^2+9}$

(a) 2nd order system (highest power of denominator)

(b) **Zeros**: roots of numerator: s + 2 = 0

 \rightarrow roots: s = -2 (one real zero)

Poles: roots of denominator

$$s^2 + 9 = 0$$

 \rightarrow roots: s = 3j, s = -3j (two complex poles at imaginary axis)

(c) s-plane:

(d) marginally stable: poles in imaginary axis (poles at 3j and -3j)

(e) Poles (roots of characteristic equation):

s = 3j, s = -3j, \Rightarrow (two complex pole at imaginary axis) <u>undamped</u>

For secod order system, analyse damping ratio ζ :

Note that the general transfer function of a second order system is given by

$$G(s) = \frac{k\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} = \frac{s + 2}{s^2 + 9}$$

where k is the gain of the system, ζ is the damping ratio and ω is the natural frequency.

Therefore in this case $\omega_n=\sqrt{9}=3$ and $2\zeta\omega_n=0$

Which yield damping ratio $\underline{\zeta} = \underline{0}$ which is <u>undamped</u> system.