Physics 158 Formula Sheet - Apr 15/24

Constants

Coulomb's Constant	$k = \frac{1}{4\pi\epsilon_0} \approx 8.988 \times 10^9 \mathrm{Nm}^2/\mathrm{C}^2$
Vacuum Permittivity	$\epsilon_0 = 8.854 \times 10^{-12} \frac{\text{C}^2}{\text{Nm}^2}$

Electron Charge
$$e = -1.602 \times 10^{-19} \,\mathrm{C}$$

Vacuum Permeability
$$\mu_0 = 4\pi \times 10^{-7} \,\mathrm{N/A^2}$$

Speed of Light
$$c = \frac{1}{\sqrt{\epsilon_0 \mu_0}} = 2.998 \times 10^8 \,\mathrm{m/s}$$

DC Circuits

Resistor Circuits

Ohm's Law	V = IR

Power Dissipated
$$P = IV = I^2 R = \frac{V^2}{R}$$

Resistors in Series
$$R_{eq} = R_1 + R_2 + \cdots$$

Resistors in Parallel
$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \cdots$$

RC Circuits

Time Constant
$$\tau = RC$$

Increasing exponential
$$f(t) = A(1 - e^{-t/\tau})$$

Decreasing exponential
$$g(t) = Be^{-t/\tau}$$

RL Circuits

Time Constant
$$\tau = \frac{L}{R}$$

RLC Circuits

Time Constant
$$\tau = \frac{2L}{R}$$

Resonance Frequency $\omega_0 = \frac{1}{\sqrt{LC}}$
Frequency $\omega = \sqrt{\omega_0^2 - \frac{R^2}{4L^2}}$

Charge
$$q(t) = Ae^{-t/\tau}\cos(\omega t + \phi)$$

AC Circuits

Reactance and Impedance

Capacitor Reactance
$$X_C = \frac{1}{\omega C}$$

Capacitor Voltage
$$V_C = X_C I$$

Inductor Reactance
$$X_L = \omega L$$

Inductor Voltage
$$V_L = X_L I$$

Impedance(in Series)
$$Z^2 = R^2 + (X_L - X_C)^2$$

Impedance(Parallel)
$$1/Z^2 = 1/R^2 + (1/X_L - 1/X_C)^2$$

Voltage
$$V = IZ$$

Phase Angles (Series circuits)

Phase Angle
$$\tan \phi = \frac{X_L - X_C}{R}$$

If
$$v(t) = V_0 \cos(\omega t)$$
 then $i(t) = I_{\text{max}} \cos(\omega t - \phi)$

Power

Power Factor
$$\cos \phi = \frac{R}{Z}$$

Average Power
$$P_{\text{avg}} = V_{\text{RMS}} I_{\text{RMS}} \cos \phi = I_{\text{RMS}}^2 R$$

RMS Current
$$I_{\rm RMS} = \frac{I_{\rm max}}{\sqrt{2}}$$

Capacitors

$$C = \frac{Q}{V}$$

$$U = \frac{1}{2}CV^{2} = \frac{1}{2}\frac{Q^{2}}{C} = \frac{1}{2}QV$$
$$\frac{1}{C_{eq}} = \frac{1}{C_{1}} + \frac{1}{C_{2}} + \cdots$$

$$\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2} + \cdots$$

$$C_{eq} = C_1 + C_2 + \cdots$$

Parallel Plate Capacitor
$$C = \frac{\epsilon_0 A}{d}$$

$$C = \frac{\epsilon_0 A}{d}$$

$$C_{\text{dielectric}} = \kappa C_{\text{vacuum}}$$

Inductors

Self-Induced EMF
$$\mathcal{E} = -L\frac{di}{dt}$$
 Stored Energy
$$U = \frac{1}{2}LI^2$$

Inductors in Series
$$L_{eq} = L_1 + L_2 + \cdots$$

Inductors in Parallel
$$\frac{1}{L_{eq}} = \frac{1}{L_1} + \frac{1}{L_2} + \cdots$$

Solenoids

Coil Density
$$n = N/L$$

Magnetic Field
$$B = \mu_0 nI$$

Inductance
$$L = \frac{N\Phi_B}{I}$$

Electrostatics

Electric Force

Coulomb's Law
$$|\vec{F}| = k \frac{|q_1 q_2|}{r^2} = q |\vec{E}|$$

Electric Field

$$\vec{E}$$
 from Point Charge $\vec{E} = \frac{kq}{r^2}$

E from Charged Rod
$$E(z) = \frac{kQ}{z\sqrt{z^2 + a^2}}$$
 E from Charged Ring
$$E(z) = \frac{kQz}{(R^2 + z^2)^{3/2}}$$

E from Charged Ring
$$E(z) = \frac{\kappa Qz}{(R^2 + z^2)^{3/2}}$$

E from Charged Disk
$$E(z) = \frac{2Qk}{R^2} \left(1 - \frac{z}{\sqrt{z^2 + R^2}}\right)$$

E from Infinite Sheet
$$E(z) = \frac{\sigma}{2\epsilon_0}$$

Electric Flux
$$\Phi_E = \iint_S \vec{E} \cdot d\vec{A}$$

Energy Density
$$u_E = \frac{\epsilon_0}{2} E^2$$

Electric Potential

Potential

Difference Notation $V_{if} = V_f - V_i$

V from Point Charge $V = \frac{kq}{r} + \text{Constant}$

Potential Difference $V_f - V_i = -\int_{-r}^{f} \vec{E} \cdot d\vec{l}$

Electric Field from V $\vec{E} = -\nabla V$

 $E_x = -\frac{dV}{dx}, etc$

Potential Energy

Work done by E Force $W_{i \rightarrow f} = U_i - U_f$

Potential Energy from V = qV

 $U = \frac{kq_1q_2}{r}$ Between Point Charges

Magnetostatics

Magnetic Force

 $\vec{F} = a\vec{E} + a\vec{v} \times \vec{B}$ Lorentz Force

 $\vec{F} = I\vec{L} \times \vec{R}$ Force on Current

Force Between Wires $\frac{F}{L} = \frac{\mu_0 I_1 I_2}{2\pi d}$

Magnetic Fields

Biot-Savart Law $d\vec{B} = \frac{\mu_0}{4\pi} \frac{I \, d\vec{l} \times \hat{r}}{r^2}$

Ampere's Law $\oint_C \vec{B} \cdot d\vec{l} = \mu_0 I_{\text{enc}}$

Loop of Current $\vec{B}(z) = \frac{\mu_0 I R^2}{2(z^2 + R^2)^{3/2}} \hat{n}$

Straight Wire $B = \frac{\mu_0 I}{4\pi r} \sin \theta \Big|_{\theta_L}^{\theta_R} = \frac{\mu_0 I x}{4\pi r \sqrt{x^2 + r^2}} \Big|_{x_L}^{x_R}$

 $\Phi_B = \iint \vec{B} \cdot d\vec{A}$ Flux

Energy Density

Torque on Current Loop

 $\vec{\tau} = \vec{\mu} \times \vec{B}$ Torque Vector

Magnetic Dipole Moment $\vec{\mu} = I\vec{A}$

 $U_m = -\vec{\mu} \cdot \vec{B}$ Potential Energy

Maxwell's Equations

 $\oint \int_{S} \vec{E} \cdot d\vec{A} = \frac{Q_{\text{enc}}}{\epsilon_{0}} \qquad \oint \int_{S} \vec{B} \cdot d\vec{A} = 0$

 $\oint_C \vec{E} \cdot d\vec{l} = -\frac{d\Phi_B}{dt} \qquad \oint_C \vec{B} \cdot d\vec{l} = \mu_0 I_{\rm enc} + \mu_0 \epsilon_0 \frac{d\Phi_E}{dt}$

Energy Flow Rate(Poynting) = $\vec{S} = \frac{1}{\mu_0} (\vec{E} \times \vec{B})$

Electromagnetic Induction

Induced EMF $\mathcal{E} = -\frac{d\Phi_B}{dt}$

Motional EMF $\mathcal{E} = \oint (\vec{v} \times \vec{B}) \cdot d\vec{l}$

Mechanics

Kinematics

Linear Motion $x = x_0 + \frac{1}{2}(v_0 + v)t$

 $x = x_0 + vt + \frac{1}{2}at^2$

 $v = v_0 + at$

 $v^2 = v_0^2 + 2a(x - x_0)$

Circular Motion $a_c = \frac{v^2}{r}$

Forces

Newton's Second Law $\vec{F} = m\vec{a} = \frac{d\vec{p}}{dt}$

 $\vec{F} = -kx\hat{x}$ Spring Force

 $F_k = \mu_k N$ Friction Force

 $\vec{F} = -b\vec{v}$ Damping Force $F = \rho V q$ Bouvant Force

Work and Energy

 $W = \int_{\vec{r}}^{r_f} \vec{F} \cdot d\vec{r} = \vec{F} \cdot \Delta \vec{r}$ Work

Kinetic Energy $K = \frac{1}{2}mv^2$

 $\Delta U_a = mau$ Gravitational Potential

Spring Potential Energy $\Delta U_s = \frac{1}{2}kx^2$

 $\vec{F} = -\nabla U$ Conservative Forces

 $P = \frac{dW}{dt} = \vec{F} \cdot \vec{v}$ Power

Mathematics

Area and Volume

Volume of a Sphere

 $V = \pi r^2 L$ Volume of a Cylinder

 $A = 4\pi r^2$ Area of a Sphere $A = 2\pi r L$ Area of a Cylinder

Area of a Circle $A = \pi r^2$

Circumference of a Circle $C = 2\pi r$

Trigonometry

Pythagorean Theorem $a^2 + b^2 = c^2$

 $s = r\theta$ Arc Length

Pythagorean Identity $\sin^2 \theta + \cos^2 \theta = 1$

 $\sin(2\theta) = 2\sin\theta\cos\theta$ Double Angle

 $\cos(2\theta) = \cos^2\theta - \sin^2\theta$

 $V = \frac{4}{2}\pi r^3$

 $\sin^2(\frac{\theta}{2}) = \frac{1 - \cos\theta}{2}$ Half Angle

 $\cos^2(\frac{\theta}{2}) = \frac{1 + \cos\theta}{2}$

Integrals

 $\int x^n dx = \begin{cases} \frac{x^{n+1}}{n+1} + \text{Constant} & n \neq -1\\ \ln|x| + \text{Constant} & n = -1 \end{cases}$

Vectors

Dot Product $\vec{a} \cdot \vec{b} = ab \cos \theta$

Cross Product $\|\vec{a} \times \vec{b}\| = ab \sin \theta$

$$ec{a} imes ec{b} = egin{array}{ccc} \hat{i} & \hat{j} & \hat{k} \ a_x & a_y & a_z \ b_x & b_y & b_z \ \end{pmatrix}$$

Right Hand Rule

