世界知的所有権機関 国際事務局 特許協力条約に基づいて公開された国際出願

(51) 国際特許分類6

C12P 21/02, C12N 15/06, 5/16, C07K 16/28, A61K 39/395, G01N 33/53

A1

(11) 国際公開番号

WO98/22616

(43) 国際公開日

1998年5月28日(28.05.98)

(21) 国際出願番号

PCT/JP97/04259

(22) 国際出願日

1997年11月21日(21.11.97)

(81) 指定国 AU, BG, BR, CA, CN, CZ, HU, IL, JP, KR, MX, NO, NZ, PL, RO, SG, SI, SK, UA, US, VN, ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), 欧州特許 (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

(30) 優先権データ

特願平8/311109

1996年11月21日(21.11.96)

添付公開書類

国際調査報告書

明細書とは別に、規則13の2に基づいて提出された微生物 の寄託に関する表示

国際事務局による受理の日付: 1997年12月05日(05.12.97)

(71) 出願人(米国を除くすべての指定国について) 協和醱酵工業株式会社

(KYOWA HAKKO KOGYO CO., LTD.)[JP/JP]

〒100 東京都千代田区大手町一丁目6番1号 Tokyo, (JP)

(72) 発明者;および

(75) 発明者/出願人(米国についてのみ)

設楽研也(SHITARA, Kenya)[JP/JP]

〒251 神奈川県藤沢市鵠沼石上2-1-19 Kanagawa, (JP)

伊東幹人(ITO, Mikito)[JP/JP]

〒194 東京都町田市旭町3-6-6 Tokyo, (JP)

花井陳雄(HANAI, Nobuo)[JP/JP]

〒229 神奈川県相模原市大野台7-9-15 Kanagawa, (JP)

從谷正史(SHIBUYA, Masabumi)[JP/JP]

〒333 埼玉県川口市芝5374-18-601 Saitama, (JP)

(54) Title: ANTI-HUMAN VEGF RECEPTOR F1t-1 MONOCLONAL ANTIBODY

(54)発明の名称 抗ヒトVEGF受容体Flt-1モノクローナル抗体

(57) Abstract

A monoclonal antibody which immunologically reacts with human VEGF receptor F1t-1, cells having the human VEGF receptor F1t-1, expressed thereon, and the like; a monoclonal antibody having an inhibitory activity against the binding of human VEGF to human VEGF receptor F1t-1; and the diagnosis and treatment of diseases wherein the pathological condition advances by abnormal vascularization, such as propagation and metastasis of solid tumors, arthritis in chronic articular rheumatism, diabetic retinopathy, prematurity retinopathy and psoriasis, by using the monoclonal antibody.

(57) 要約

本発明は、ヒトVEGF受容体Flt-1およびヒトVEGF受容体Flt-1を細胞表面に発現 した細胞などと免疫学的に反応するモノクローナル抗体、およびヒトVEGFのヒト VEGF受容体Flt-1への結合を阻害するモノクローナル抗体を提供する。さらに、 該モノクローナル抗体を用いた固形腫瘍の増殖、転移形成、慢性関節リュウマチ における関節炎、糖尿病性網膜症、未熟児網膜症、乾鮮など異常な血管新生によ り病態が進行する疾患を診断、治療を提供する。

PCTに基づいて公開される国際出願のパンフレット第一頁に掲載されたPCT加盟国を同定するために使用されるコード(参考情報)

AAAAABBBBBBBBBCCCCCCCCCCDDEE NADG JWKT AGSNAUW ,FGGGGGGGGHIIIIIIKKKKKLLLLL RABEHMNWRUDELSTPEGPROCIKRS ルーマニア ロスータエア ン アングェガゲー デル アングロログエア スシスフン ススエラ・レオーネ

明細書

抗ヒトVEGF受容体Flt-1モノクローナル抗体

技 術 分 野

本発明は、固形腫瘍の増殖もしくは転移形成、慢性関節リウマチにおける関節炎、糖尿病性網膜症、未熟児網膜症および乾鮮など血管新生の異常により病態が進行する疾患の診断あるいは治療に有用であるヒトVEGF受容体Flt-1に特異的に結合するモノクローナル抗体、該抗体を生産するハイブリドーマおよび該モノクローナル抗体を用いてヒトVEGF受容体Flt-1を免疫学的に検出する方法、並びに該モノクローナル抗体を用いた固形腫瘍、慢性関節リュウマチ、糖尿病性網膜症、未熟児網膜症および乾鮮などの診断法および治療法に関する。

血管新生は、脊椎動物の個体の発生および組織の構築に重要な役割を果たすと

背景技術

ともに、成熟個体(雌)の性周期における黄体形成、子宮内膜の一過性の増殖お よび胎盤形成などにも密接に関与している。さらに、病的状態としては、固形腫 瘍の増殖もしくは転移形成、糖尿病性網膜症および慢性関節リュウマチの病態形 成あるいは促進に血管新生が深く関与している「ザ・ジャーナル・オブ・バイオ ロジカル・ケミストリー(J. Biol. Chem.), 267, 10931, (1992)]。血管新生 は、血管新生因子の分泌が引き金となり、分泌された血管新生因子の近傍にある 既存の血管の内皮細胞からのプロテアーゼ分泌による基底膜、間質の破壊、続い て起こる血管内皮細胞の遊走、増殖により、管腔が形成され、血管が新生される 過程よりなる [ザ・ジャーナル・オブ・バイオロジカル・ケミストリー(」. Biol. Chem.), 267, 10931, (1992)]。血管新生を誘導する因子としては、 Vascular permeability factor (以下、VPFと略記する)、Vascular endothelial growth factor (以下、VEGFと略記する) があり(VPF/VEGFと記す)、これらは 発生過程における血管新生および病的な状態における血管新生において最も重要 な因子として知られている[アドバンシーズ・イン・キャンサー・リサーチ (Advances in Cancer Research), 67, 281, (1995)]。 VPF/VEGFはホモダイマー よりなる分子量約4万の蛋白質であり、1983年に血管透過性促進因子(Vascular permeability factor: VPF) として [サイエンス(Science), 219, 983. (1983)]、

PCT/JP97/04259

WO 98/22616

1989年に血管内皮細胞増殖因子(Vascular endothelial growth factor:VEGF) と して「バイオケミカル・アンド・バイオフィジカル・リサーチ・コミュニケーシ ョンズ(Biochem. Biophys. Res. Comm.), 161, 851, (1989)] それぞれ独立した 分子として報告されたが、cDNAクローニングの結果、両者は同一の物質であるこ とが明らかとなった [サイエンス(Science), 246, 1306, (1989): サイエンス (Science), 246. 1309. (1989)] (以下、VPF/VEGFはVEGFと記す)。 VEGFの活性 としてはこれまでに、血管内皮細胞に対する、増殖促進活性「バイオケミカル・ アンド・バイオフィジカル・リサーチ・コミュニケーションズ(Biochem. Biophys. Res. Comm.)、161. 851,(1989)]、遊走促進活性[ザ・ジャーナル・オブ・イ ムノロジー(J. Immunology), 152, 4149, (1994)]、メタロプロテアーゼ分泌促 進活性「ザ・ジャーナル・オブ・セルラー・フィジオロジー(J. Cell Physiol.). 153, 557, (1992)])、ウロキナーゼ、tPA分泌促進活性 [バイオケミカル・アン ド・パイオフィジカル・リサーチ・コミュニケーションズ(Biochem. Biophys. Res. Comm.), 181, 902, (1991)] などが知られており、in vivoにおいて血管 新生促進活性 [サーキュレーション(Circulation), 92_suppl II, 365, (1995)]、 血管透過性促進活性 [サイエンス(Science) 219, 983, (1983)] などがこれまで に知られている。VEGFは血管内皮細胞に極めて特異性の高い増殖因子であり[バ イオケミカル・アンド・バイオフィジカル・リサーチ・コミュニケーションズ (Biochem. Biophys. Res. Comm.), 161, 851. (1989)]、またmRNAのオルタ ナティブスプライシング(Alternative splicing)により分子量の異なる4種類の 蛋白質が存在することが報告されている [ザ・ジャーナル・オブ・バイオロジカ ル・ケミストリー(J. Biol. Chem.), 267, 26031, (1991)]。

血管新生を伴う疾患の中で、固形腫瘍の増殖もしくは転移形成、糖尿病性網膜症、慢性関節リュウマチの病態形成にVEGFが深く関与していることが報告されている。固形腫瘍については、これまでに腎癌[キャンサー・リサーチ(Cancer Research), <u>54</u>, 4233, (1994)]、乳癌[ヒューマン・パソロジー(Human Pathology), <u>26</u>, 86, (1995)]、脳腫瘍[ザ・ジャーナル・オブ・クリニカル・インベスティゲーション(J. Clinical Investigation), <u>91</u>, 153, (1993)]、消化器癌[キャンサー・リサーチ(Cancer Research), <u>53</u>, 4727, (1993)]、卵巣癌[

キャンサー・リサーチ(Cancer Research)、54、276、(1994)] などの多くのヒト腫瘍組織におけるVEGFの産生が報告されている。また、乳癌患者の腫瘍におけるVEGF発現量と患者の生存率との相関性を検討した結果、VEGF高発現腫瘍は、VEGF低発現腫瘍の乳癌患者は、VEGF低発現腫瘍の乳癌患者に比べて生存率が低いことも明らかとなっている[ジャパニーズ・ジャーナル・オブ・キャンサー・リサーチ(Japanese J. Cancer Research)、85、1045、(1994)]。また、ヌードマウスにヒト腫瘍を皮下移植したゼノグラフトモデル実験系において、抗VEGFモノクローナル抗体は腫瘍増殖抑制効果を示すことが報告されている[ネイチャー(Nature)、362、841、(1993)]。さらに、ヌードマウスにおけるヒト腫瘍の転移癌モデルにおいて、抗VEGFモノクローナル抗体は癌転移を抑制できることが報告されている[キャンサー・リサーチ(Cancer Research)、56、921、(1996)]。また、ヒトの癌性胸水、腹水中に高濃度のVEGFが検出されることから、胸水、腹水貯留の主要な因子である可能性も示されている[バイオケミカ・エト・バイオフィジカ・アクタ(Biochimica et Biophysica Acta)、1221、211、(1994)]。

糖尿病網膜症においては、血管新生の異常により網膜剥離や硝子体出血をおこして失明にいたるが、糖尿病性網膜症における血管新生と患者眼球内のVEGFレベルが正相関することが報告されている [ニュー・イングランド・ジャーナル・オブ・メディシン(New England J. Medicine), 331, 1480, (1994)]。また、サルの網膜症モデルにおいて抗VEGF中和モノクローナル抗体の限内投与によりVEGF活性を抑制すると血管新生が抑制されることが報告されている [Arch Opthalmol. 114, 66, (1996)]。

慢性関節リュウマチの関節炎の病態の進展(骨、軟骨の破壊)には血管新生を伴うが、慢性関節リュウマチ患者の関節液中にはVEGFが高濃度で含まれていること、関節中のマクロファージがVEGFを産生することが報告されている[ザ・ジャーナル・オブ・イムノロジー(Journal of Immunology), 152, 4149, (1994); ザ・ジャーナル・オブ・エキスペリメンタル・メディシン(J. Experimental Medicine), 180, 341, (1994)]。

VEGF受容体としてはこれまでに受容体型チロシンキナーゼファミリーに属する

fms-like tyrosine kinase(以下、Flt-1と略記する) [オンコジーン(Oncogene). 5, 519, (1990);サイエンス(Science), 255, 989, (1992)] およびkinase insert domain-containing receptor (以下、KDR と略記する) 「W092/14748:プロシー ディングス・オブ・ザ・ナショナル・アカデミー・オブ・サイエンス・オブ・ザ ・U. S. A. (Proc. Natl. Acad. Science, USA), 88, 9026, (1991) :バイオ ケミカル・アンド・バイオフィジカル・リサーチ・コミュニケーションズ (Biochem. Biophys. Res. Comm.), 187, 1579(1992); W094/11499] が報告され ている。Flt-1およびKDRは、7個のイムノグロブリン様部位よりなる細胞外領域 とチロシンキナーゼ部位よりなる細胞内領域とを有する、分子量180~200キロダ ルトンの膜蛋白質である。VEGFと、Flt-1およびKDRとは、KD値が20 pMおよび75pM で特異的に結合し、またFlt-1およびKDRは血管内皮細胞に特異的に発現している と報告されている「プロシーディングス・オブ・ザ・ナショナル・アカデミー・ オブ・サイエンス・オブ・ザ・U. S. A. (Proc. Natl. Acad. Sci. USA), 90, 7533. (1993):プロシーディングス・オブ・ザ・ナショナル・アカデミー・オブ・ サイエンス・オブ・ザ・U. S. A. (Proc. Natl. Acad. Sci. USA), 90, 8915. (1993)]。Flt-1の様々な疾患における発現については、ヒトグリオブラストー マ組織の腫瘍血管内皮細胞 [ネイチャー(Nature), 359, 845, (1992)] 、ヒト消 化器癌組織の腫瘍血管内皮細胞 [キャンサー・リサーチ(Cancer Research), 53, 4727、(1993)] で、正常組織の血管内皮細胞に比べflt-1 mRNAの発現が上昇して いることが報告されている。さらに、慢性関節リュウマチ患者の関節の血管内皮 細胞においてもイン・サイチュ・ハイブリダイゼーション (in situ hybridization)によりflt-1 mRNAの発現が認められることが報告されている [ザ ・ジャーナル・オブ・エキスペリメンタル・メディシン(J. Experimental Medicine), 180, 341, (1994)]。これらの結果は、腫瘍血管新生においてVEGF -VEGFレセプターFlt-1系が重要な役割を果たしていることを強く示唆するもので ある。Flt-1はVEGFが結合すること、細胞内ドメインが自己リン酸化されること が報告されているが「サイエンス(Science), 255、989、(1992)]、詳しい機能 については不明である。しかし、「lt-l遺伝子を破壊した「lt-lノックアウトマウ スは発生初期の血島形成や、それに続く血管新生において、血管内皮細胞の形能

異常により血管構築が異常となり胎生8.5~9.5日齢で死亡することから、Flt-1は血管新生における血管内皮細胞の管腔形成に必須の機能を果たしていると推定されている「ネイチャー(Nature)、376.66. (1995)]。

以上のことから、VEGF受容体Flt-1 に結合し、VEGFの生物活性を阻害できる抗体は固形腫瘍の増殖もしくは転移形成、慢性関節リュウマチにおける関節炎、糖尿病性網膜症、未熟児網膜症および乾鮮など異常な血管新生により病態が進行する疾患の診断、治療に有用であることが期待される。しかしながら、VEGF受容体Flt-1を発現している細胞を検出できる抗VEGF受容体Flt-1モノクローナル抗体、および、VEGFの生物活性を阻害できる抗VEGF受容体Flt-1モノクローナル抗体はこれまで確立されていない。

発明の開示

固形腫瘍の増殖もしくは転移形成、慢性関節リュウマチにおける関節炎、糖尿病性網膜症、未熟児網膜症あるいは乾鮮など異常な血管新生により病態が進行する疾患を診断、治療するための有用な方法が求められている。これまで抗ヒトVEGF受容体Flt-1モノクローナル抗体の報告はないが、抗ヒトVEGF受容体Flt-1モノクローナル抗体を入手し、血管新生部位を検出および抑制することは、これら疾患の診断および治療に役立つと考えられる。したがって、抗ヒトVEGF受容体Flt-1モノクローナル抗体の開発が望まれている。

本発明は、ヒトVEGF受容体Flt-1に特異的に反応するモノクローナル抗体に関する。ヒトVEGF受容体Flt-1のN末端アミノ酸(シグナル配列を含む)から1~750番目に存在するエピトープ、特に、N末端アミノ酸(シグナル配列を含む)から1~338番目に存在するエピトープを認識するモノクローナル抗体に関する。本発明は、免疫細胞染色によりヒトVEGF受容体Flt-1に特異的に反応するモノクローナル抗体、およびヒトVEGFのヒトVEGF受容体Flt-1への結合を阻害し、かつヒトVEGFの生物活性を阻害するモノクローナル抗体に関する。免疫細胞染色によりヒトVEGF受容体Flt-1に特異的に反応するモノクローナル抗体としては、マウスIgG1サブクラスに属するモノクローナル抗体KM1730、マウスIgG2aサブクラスに属するモノクローナル抗体KM1732、マウスIgG2bサブクラスに属するモノクローナル抗体KM1748、

およびマウスIgC2bサブクラスに属するモノクローナル抗体KM1750があげられ、さらにヒトVEGFのヒトVEGF受容体Flt-lへの結合を阻害し、かつヒトVEGFの生物活性を阻害するモノクローナル抗体としては、マウスIgG1サブクラスに属するモノクローナル抗体KM1732、マウスIgG2bサブクラスに属するモノクローナル抗体KM1732、マウスIgG2bサブクラスに属するモノクローナル抗体KM1750があげられる。また本発明は、モノクローナル抗体KM1730を生産するハイブリドーマKM1730(FERM BP-5697)、モノクローナル抗体KM1731を生産するハイブリドーマKM1731(FERM BP-5698)、モノクローナル抗体KM1732を生産するハイブリドーマKM1732(FERM BP-5698)、モノクローナル抗体KM1748を生産するハイブリドーマKM1748(FERM BP-5699)、モノクローナル抗体KM1750を生産するハイブリドーマKM1748(FERM BP-5699)、モノクローナル抗体KM1750を生産するハイブリドーマKM1750(FERM BP-5609)、モノクローナル抗体KM1750を生産するハイブリドーマKM1750(FERM BP-5700)に関する。

また本発明は、本発明のモノクローナル抗体を用いて、ヒトVEGF受容体Flt-1を免疫学的に検出する方法、ヒトVEGF受容体Flt-1を細胞表面に発現した細胞を免疫学的に検出する方法、および可溶性ヒトVEGF受容体Flt-1を免疫学的に検出および定量する方法に関する。さらに、本発明のモノクローナル抗体を用いてヒトVEGFとヒトVEGF受容体Flt-1との結合を阻害する方法、ヒトVEGFの生物活性を阻害する方法に関する。

固形腫瘍の増殖もしくは転移形成、慢性関節リウマチにおける関節炎、糖尿病性網膜症、未熟児網膜症、乾鮮など血管新生の異常により病態が進行する疾患の診断薬に関する。

本発明者らは、ヒトVEGF受容体Flt-1のN末端アミノ酸から1~338 番目に存在するエピトープを認識する抗ヒトVEGF受容体Flt-1モノクローナル抗体が、免疫細胞染色によりヒトVEGF受容体Flt-1に特異的に反応すること、およびVEGFの抗VEGF受容体Flt-1への結合を阻害することによりヒトVEGFの生物活性を阻害できることを見いだした。これらのモノクローナル抗体を用いれば、前記固形腫瘍の増殖もしくは転移形成、慢性関節リュウマチにおける関節炎、糖尿病性網膜症、未熟児網膜症および乾鮮など血管新生の異常により病態が進行する疾患の診断および治療を行うことができる。

したがって、本発明は、ヒトVEGF受容体Flt-1に特異的に反応する抗体を提供

する。本発明のモノクローナル抗体としては、ヒトVEGF受容体Flt-lのN末端ア ミノ酸 (シグナル配列を含む) から1~750 番目に存在するエピトープ、特に、 N末端アミノ酸(シグナル配列を含む)から1~338 番目に存在するエピトープ を認識し、免疫細胞染色によりヒトVEGF受容体Flt-1に特異的に反応するモノク ローナル抗体、およびヒトVEGFのヒトVEGF受容体Flt-1への結合を阻害し、かつ ヒトVEGFの生物活性を阻害するモノクローナル抗体を提供する。該エピトープを 認識し、免疫細胞染色によりヒトVEGF受容体Flt-1に特異的に反応するモノクロ ーナル抗体としては、ハイブリドーマ株KM1730(FERM BP-5697)が生産するモノク ローナル抗体KM1730、ハイブリドーマ株KM1731(FERM BP-5718)が生産するモノク ローナル抗体KM1731、ハイブリドーマ株KM1732(FERM BP-5698)が生産するモノク ローナル抗体KM1732、ハイブリドーマ株KM1748 (FERM BP-5699) が生産するモノク ローナル抗体KM1748、およびハイブリドーマ株KM1750(FERM BP-5700)が生産する モノクローナル抗体KM1750があげられ、さらにヒトVEGFのヒトVEGF受容体Flt-1 への結合を阻害し、かつヒトVEGFの生物活性を阻害するモノクローナル抗体とし ては、ハイブリドーマ株KM1732(FERM BP-5698)が生産するモノクローナル抗体 KM1732、ハイブリドーマ株KM1748(FERM BP-5699)が生産するモノクローナル抗体 KM1748、およびハイブリドーマ株KM1750 (FERM BP-5700)が生産するモノクローナ ル抗体KM1750が具体例としてあげられる。

本発明におけるモノクローナル抗体は、ヒトVEGF受容体Flt-Iに特異的に反応すればいかなるものでもよいが、以下に述べる製造法によって確立したものが好適なものとしてあげられる。すなわち、ヒトVEGF受容体Flt-Iタンパクを抗原として調製し、それらをマウス、ラット、ハムスター、ラビット等、ハイブリドーマを作製することが可能な動物に免疫することにより、抗原特異性をもつ形質細胞を誘導し、さらに、それと骨髄腫細胞株とを融合させ、モノクローナル抗体産生能を有したハイブリドーマを調製し、これを培養することにより、抗ヒトVEGF受容体Flt-Iモノクローナル抗体を取得できる。

以下に本発明の抗ヒトVEGF受容体Flt-1抗体の製造法について説明する。

1. 抗ヒトVEGF受容体Flt-1モノクローナル抗体の製造法

(1) 抗原の調製

抗ヒトVEGF受容体Flt-1モノクローナル抗体を作製するために必要な抗原としては、ヒトVEGF受容体Flt-1を細胞表面に発現した細胞あるいはその細胞膜画分、または、長さの異なる細胞外領域を有する可溶性ヒトVEGF受容体Flt-1蛋白質あるいは該蛋白質と抗体のFc部分との融合蛋白質などを用いることができる。ヒトVEGF受容体Flt-1を細胞表面に発現する細胞としては、NIH3T3-Flt-1細胞[オンコジーン(Oncogene), 10, 135, (1995)]があげられる。長さの異なる細胞外領域を有する可溶性ヒトVEGF受容体Flt-1蛋白質あるいは該蛋白質と抗体のFc部分との融合蛋白質として発現させる方法としては、ヒトVEGF受容体Flt-1をコードする全長あるいはその部分断片cDNA[オンコジーン(Oncogene), 5, 519, (1990)、第18回日本分子生物学会年会議・講演要旨集、演題番号2P-227(1995.12月)]を適当なベクターのプロモーター下流に挿入した組み換えベクターを造成し、それを宿主細胞に導入することにより得られたヒトVEGF受容体Flt-1発現細胞を、適当な培地中で培養することにより細胞内あるいは培養上清中にヒトVEGF受容体Flt-1の全長あるいは部分断片をそのままあるいは融合蛋白質として生産することができる。

宿主としては、細菌、酵母、動物細胞、昆虫細胞など、目的とする遺伝子を発現できるものであれば、いずれでもよい。細菌としては、エシェリヒア・コリ (Escherichia coli)、バチルス・ズブチリス (Bacillus subtilis)等のエシェリヒア属、バチルス属等が例示される。酵母としては、サッカロミセス・セレビシエ (Saccharomyces cerevisae)、シゾサッカロミセス・ポンベ

(Schizosaccharomyces pombe) 等が例示される。動物細胞としては、ヒトの細胞であるナマルバ細胞、サルの細胞であるCOS細胞、チャイニーズ・ハムスターの細胞であるCHO細胞等が例示される。昆虫細胞としては、Sf9、Sf21(ファーミンジェン社製)、High Five (インビトロジェン社製)等が例示される。

本発明のDNAを導入するベクターとしては、該DNAを組み込むことができ、 宿主細胞で発現できるものであればいかなるベクターでも用いることができる。

細菌、例えばエシェリヒア・コリ(<u>Escherichia coli</u>)を宿主として用いる場合の発現ベクターとしては、プロモーター、リボゾーム結合配列、本発明の DNA、転写終結配列、場合によってはプロモーターの制御配列より構成されて

いるのが好ましいが、例えば、市販のpGEX(ファルマシア社製)、pET システム (ノバジェン社製) などが例示される。

細菌への組換えベクターの導入方法としては、細菌にDNAを導入する方法であれば、例えば、カルシウムイオンを用いる方法 [プロシーディングス・オブ・ザ・ナショナル・アカデミー・オブ・サイエンス・オブ・ザ・U.S.A. (Proc. Natl. Acad. Sci., USA), 69, 2110-2114, (1972)]、プロトプラスト法 (特開昭63-2483942) 等、いずれの方法も用いられる。

酵母を宿主として用いる場合には、発現ベクターとして、例えば、YEp13 (ATCC37115)、YEp24 (ATCC37051)、YCp50 (ATCC37419) 等が用いられる。

酵母への組換えベクターの導入方法としては、酵母にDNAを導入する方法であれば、例えば、エレクトロポレーション法 [メソッズ・オプ・エンザイモロジー (Methods. Enzymol.), 194, 182-187, (1990)]、スフェロプラスト法 [プロシーディングス・オブ・ザ・ナショナル・アカデミー・オブ・サイエンス・オブ・ザ・U. S. A. (Proc. Natl. Acad. Sci., USA), 84, 1929-1933, (1978)]、酢酸リチウム法 [ジャーナル・オブ・バクテリオロジー(J. Bacteriol.), 153, 163-168, (1983)]等、いずれの方法も用いられる。

動物細胞を宿主として用いる場合には、発現ベクターとして、例えば、pAGE107 [特開平3-22979;サイトテクノロジー(Cytotechnology), 3,133,(1990)],pAGE103 [ジャーナル・オブ・バイオケミストリー(J. Biochem.)101,1307,(1987)]等が用いられる。

プロモーターとしては、動物細胞中で発現できるものであればいかなるものを用いてもよいが、例えば、サイトメガロウィルス(CMV)のIE(immediate early)遺伝子のプロモーター、SV40あるいはメタロチオネインのプロモーター等があげられる。また、ヒトCMVのIE遺伝子のエンハンサーをプロモーターとともに用いてもよい。

動物細胞への組換えベクターの導入方法としては、動物細胞にDNAを導入する方法であれば、例えば、エレクトロポレーション法[サイトテクノロジー (Cytotechnology), 3, 133(1990)]、リン酸カルシウム法(特開平2-227075)、

リポフェクション法 [プロシーディングス・オブ・ザ・ナショナル・アカデミー・オブ・サイエンス・オブ・ザ・U. S. A. (Proc. Natl. Acad. Sci., USA), 84. 7413. (1987)] 等、いずれの方法も用いられる。

昆虫細胞を宿主として用いる場合には、例えばカレント・プロトコールズ・イン・モレキュラー・バイオロジー、サプルメント1 ~34 (Current Protocols in Molecular Biology, Supplement 1-34)、バキュロウイルス・イクスプレッション・ベクターズ、ア・ラボラトリー・マニュアル (Baculovirus expression vectors, A laboratory manual)等に記載された方法によって、タンパク質を発現することができる。すなわち、以下に述べる組換え遺伝子導入ベクターおよびバキュロウイルスを昆虫細胞に共導入して昆虫細胞培養上清中に組換えウイルスを得たのち、さらに組換えウイルスを昆虫細胞に感染させ、タンパク質発現昆虫細胞を取得する。

遺伝子導入ベクターとしては、例えば、pVL1392、pVL1393 、pBlueBacIII (ともにインビトロジェン社製)等が用いられる。

バキュロウイルスとしては、例えば、夜盗蛾科昆虫に感染するウイルスである アウトグラファ・カリフォルニカ・ヌクレアー・ポリヘドロシス・ウイルス (Autograph californica nuclear polyhedrosis virus)などが用いられる。

組換えウイルスを調製するための、昆虫細胞への上記組換え遺伝子導入ベクターと上記バキュロウイルスの共導入方法としては、例えば、リン酸カルシウム法 (特開平2-227075)、リポフェクション法[プロシーディングス・オブ・ザ・ナショナル・アカデミー・オブ・サイエンス・オブ・ザ・U.S.A. (Proc. Natl. Acad. Sci., USA)、84,7413,(1987)]等が用いられる。

また、ファーミンジェン社製バキュロゴールドスターターキットなどを用いて 組み換えバキュロウィルスを作製したのち、前述したSf9、Sf21あるいはHigh Five等の昆虫細胞に該組み換えウィルスを感染させることにより蛋白質を生産さ せることもできる[バイオテクノロジー(Bio/Technology), 6, 47(1988)]。

遺伝子の発現方法としては、直接発現以外に、分泌生産、融合蛋白質発現等が開発されており、いずれの方法も用いることができる。例えば、モレキュラー・クローニング第2版 [Molecular Cloning 2nd edition. Cold Spring Harbor

Lab. Press, New York (1989)] に記載されている方法に準じて行うことができる。

以上のようにして得られる形質転換体を培地に培養し、培養物中に本発明の蛋白質を生成蓄積させ、該培養物から採取することにより、ヒトVEGF受容体 Flt-1 の全長あるいは部分断片をそのままあるいは融合蛋白質として製造することができる。

本発明の形質転換体を培地に培養する方法は、宿主の培養に用いられる通常の方法に従って行われる。

大腸菌あるいは酵母等の微生物を宿主として得られた形質転換体を培養する培地としては、微生物が資化し得る炭素源、窒素源、無機塩類等を含有し、形質転換体の培養を効率的に行える培地であれば天然培地、合成培地のいずれを用いてもよい [モレキュラー・クローニング 第 2 版、コールドスプリングハーバーラボ・プレス (Molecular Cloning 2nd edition, Cold Spring Harbor Lab. Press), New York(1989)]。培養は、通常振盪培養または深部通気攪拌培養などの好気的条件下、 $15\sim40$ で $16\sim96$ 時間行う。培養期間中、pHは $3.0\sim9.0$ に保持する。pHの調整は、無機または有機の酸、Tルカリ溶液、尿素、炭酸カルシウム、Tンモニアなどを用いて行う。培養中は必要に応じて、Tンピシリンやテトラサイクリン等の抗生物質を培地に添加してもよい。

動物細胞を宿主として得られた形質転換体を培養する培地としては、一般に使用されているRPMI1640培地、EagleのMEM培地またはこれら培地に牛胎児血清等を添加した培地等が用いられる。培養は、通常5%CO2存在下、35~37℃で3~7日間行い、培養中は必要に応じて、カナマイシン、ペニシリン等の抗生物質を培地に添加してもよい。

昆虫細胞を宿主として得られた形質転換体を培養する培地としては、一般に使用されているTNM-FH培地 [ファーミンジェン (Pharmingen) 社製]、Sf900IISFM [ライフテクノロジーズ (Life Technologies) 社製]、ExCell400 、ExCell405 [いずれもJRH バイオサイエンシーズ (JRH Biosciences) 社製]等が用いられる。培養は、 $25\sim30$ で1 ~4 日間行い、培養中は必要に応じて、ゲンタマイシン等の抗生物質を培地に添加してもよい。

動物細胞および昆虫細胞の培地中に血清が含有されているが、ヒトVEGF受容体Flt-1 の全長あるいは部分断片をそのままあるいは融合蛋白質の精製を容易にするため、好ましくは血清無添加の培地を用いる。

ヒトVEGF受容体Flt-1 の全長あるいは部分断片をそのままあるいは融合蛋白質として宿主細胞内に蓄積された場合には、培養終了後、細胞を遠心分離し、水系緩衝液にけん濁後、超音波法、フレンチプレス法などにより細胞を破砕し、その遠心分離上清に該蛋白質を回収する。

さらに、細胞内に不溶体を形成した場合には、不溶体をタンパク質変性剤で可溶化後、タンパク質変性剤を含まないあるいはタンパク質変性剤の濃度がタンパク質が変性しない程度に希薄な溶液に希釈、或いは透析し、タンパク質の立体構造を形成させることができる。

ヒトVEGF受容体Flt-1 の全長あるいは部分断片をそのままあるいは融合蛋白質として細胞外に分泌された場合には、培養上清中に発現蛋白質を回収することができる。単離精製については、溶媒抽出、有機溶媒による分別沈殿、塩析、透析、遠心分離、限外ろ過、イオン交換クロマトグラフィー、ゲルろ過クロマトグラフィー、疎水性クロマトグラフィー、アフィニティークロマトグラフィー、逆相クロマトグラフィー、結晶化、電気泳動などの分離操作を単独あるいは組み合わせて行うことができる。

(2) 動物の免疫と抗体産生細胞の調製

免疫に用いる動物としては、マウス、ラット、ハムスター、ラビットなどハイブリドーマを作製することが可能であれば、いかなるものでもよいが、本発明においてはマウスおよびラットを用いる例を説明する。3~20週令のマウスまたはラットに、上記1(1)で得られた該蛋白質を抗原として免疫し、その動物の脾、リンパ節、末梢血より抗体産生細胞を採取する。免疫は、動物の皮下、静脈内または腹腔内に、適当なアジュバントとともに抗原を数回投与することにより行う。アジュバンドとしては、フロインドの完全アジュバント(Complete Freun d's Adjuvant)または、水酸化アルミニウムゲルと百日咳菌ワクチンなどがあげられる。各投与後3~7日目に免疫動物の眼底静脈叢あるいは尾静脈より採血し、抗原として用いた可溶性ヒトVEGF受容体Flt-1あるいはヒトVEGF受容体

Flt-1細胞表面に発現しているNIH3T3細胞に対しての反応性について、酵素免疫 測定法などで確認し[酵素免疫測定法(ELISA 法):医学書院刊(1976年)]、 その血清が十分な抗体価を示したマウスまたはラットを抗体産生細胞の供給源と する。抗原物質の最終投与後3~7日目に、免疫したマウスより公知の方法[ア ンティボディーズ・ア・ラボラトリー・マニュアル、コールド・スプリングハー バー・ラボラトリー(Antibodies-A Laboratory Manual, Cold Spring Harbor Laboratory, 1988)、以下、アンチボディーズ・ア・ラボラトリー・マニュアル と記す]に準じて脾臓を摘出し、脾細胞と骨髄腫細胞とを融合させる。

(3) 骨髄腫細胞の調製

骨髄腫細胞としては、マウスから得られた株化細胞である、8-アザグアニン耐性マウス (BALB/c由来) 骨髄腫細胞株P3-X63Ag8-U1(P3-U1) [G. Kohlerら;ヨーロピアン・ジャーナル・オブ・イムノロジィ(Europ. J. Immunol.), <u>6</u>, 511 (1976)]、SP2/0-Ag14(SP-2) [M. Shulmanら;ネイチャー(Nature) <u>276</u>, 269, (1978)]、P3-X63-Ag8653(653) [J. F. Kearneyら;ジャーナル・オブ・イムノロジィ(J. Immunol.), <u>123</u>, 1548, (1979)]、P3-X63-Ag8(X63) [G. Kohlerら;ネイチャー(Nature), <u>256</u>, 495, (1975)] など、イン・ビトロ (in vitro) で増殖可能な骨髄腫細胞であればいかなるものでもよい。これらの細胞株の培養および継代については公知の方法(アンチボディーズ・ア・ラボラトリー・マニュアル)に従い、細胞融合時までに2×10⁷ 個以上の細胞数を確保する。

(4) 細胞融合

(2) で得られた抗体産生細胞と(3) で得られた骨髄腫細胞とを洗浄したのち、ポリエチレングライコールー1000 (PEG-1000) などの細胞凝集性媒体を加え、細胞を融合させ、培地中に懸濁させる。細胞の洗浄にはMEM培地またはPBS (リン酸二ナトリウム1.83g、リン酸一カリウム0.21g、食塩7.65g、蒸留水1 リットル、pH7.2) などを用いる。また、融合細胞を懸濁させる培地としては、目的の融合細胞のみを選択的に得られるように、HAT 培地 {正常培地 [RPMI-1640 培地にグルタミン(1.5mM)、2-メルカプトエタノール(5×10 $^{-5}$ M)、ジェンタマイシン(10 μ g/ml)および牛胎児血清(FCS) (CSL 社製、10%)を加えた培地]にヒポキサンチン(10 $^{-4}$ M)、チミジン(1.5×10 $^{-5}$ M) およびアミノプテリン

(4 ×10^{-7M}) を加えた培地 を用いる。

培養後、培養上清の一部をとり(5)に述べる酵素免疫測定法により、(1)で述べたヒトVEGF受容体Flt-lまたはヒトVEGF受容体Flt-lとの融合蛋白などの組み換え蛋白質に特異的に反応する穴を選択する。ついで、限界希釈法によりクローニングを2回繰り返し〔1回目は、HT培地(HAT 培地からアミノプテリンを除いた培地)、2回目は、正常培地を使用する〕、安定して強い抗体価の認められたものを抗ヒトVEGF受容体Flt-lモノクローナル抗体産生ハイブリドーマ株として選択する。

(5) 抗ヒトVEGF受容体Flt-1モノクローナル抗体の選択

抗ヒトVEGF受容体Flt-1モノクローナル抗体を産生するハイブリドーマの選択は、以下に述べる酵素免疫測定法により行う。

酵素免疫測定法

1(1)で述べたヒトVEGF受容体Flt-IまたはヒトVEGF受容体Flt-Iとの融合蛋白などの組み換え蛋白質を適当なプレートにコートし、ハイプリドーマ培養上清もしくは1(6)で得られる精製抗体を第一抗体として反応させ、さらに第二抗体としてビオチン、酵素、化学発光物質あるいは放射線化合物等で標識した抗マウスイムノグロブリン抗体もしくは抗ラットイムノグロブリン抗体を反応させた後に標識物質に応じた反応を行ない、ヒトVEGF受容体Flt-Iに特異的に反応するものを抗ヒトVEGF受容体Flt-Iモノクローナル抗体を生産するハイブリドーマとして選択する。当該ハイブリドーマ株の具体例としては、ハイブリドーマ株KM1730、KM1731およびKM1732、KM1748およびKM1750が挙げられる。ハイブリドーマ株KM1730、KM1731は、平成8年10月22日付で、それぞれ工業技術院生命工学工業技術研究所(日本国茨城県つくば市東一丁目1番3号)に、FERM BP-5697、FERM BP-5698、FERM BP-5699、FERM BP-5700 およびFERM BP-5718として寄託されている。

(6) モノクローナル抗体の調製

プリスタン処理〔2, 6, 10, 14-テトラメチルペンタデカン(Pristane) 0. 5mlを腹腔内投与し、2週間飼育する〕した8~10週令のマウスまたはヌードマウスに、

1(3) で得られた抗ヒトVEGF受容体Flt-Iモノクローナル抗体産生ハイブリドーマ細胞2×10⁷~5×10⁶細胞/匹を腹腔内に注射する。10~21日間でハイブリドーマは腹水癌化する。該マウスまたはヌードマウスから腹水を採取し、遠心分離、40~50%飽和硫酸アンモニウムによる塩析、カプリル酸沈殿法、DEAE-セファロースカラム、プロテインA-カラムあるいはセルロファインGSL2000(生化学工業社製)のカラムなどを用いて、「gGあるいは「gM画分を回収し、精製モノクローナル抗体とする。

精製モノクローナル抗体のサブクラスの決定は、マウスモノクローナル抗体タイピングキットまたはラットモノクローナル抗体タイピングキットなどを用いて行うことができる。蛋白質量は、ローリー法あるいは280nm での吸光度より算出することができる。

また、本発明は、本発明のモノクローナル抗体を用いて、ヒトVEGF受容体Flt-lおよびヒトVEGF受容体Flt-lを細胞表面に発現した細胞を免疫学的に検出する方法、可溶性ヒトVEGF受容体Flt-lを免疫学的に検出および定量する方法、ならびにヒトVEGFとヒトVEGF受容体Flt-lとの結合およびヒトVEGFの生物活性を阻害する方法に関する。

さらに、本発明は固形腫瘍の増殖もしくは転移形成、慢性関節リウマチにおける関節炎、糖尿病性網膜症、未熟児網膜症、乾鮮など血管新生の異常により病態が進行する疾患診断薬に関する。

以下に、ヒトVEGF受容体Flt-1の検出および定量法について述べる。

2. 抗ヒトVEGF受容体Flt-1モノクローナル抗体を用いたヒトVEGF受容体Flt-1の 検出および定量法

本発明のモノクローナル抗体を用いた、ヒトVEGF受容体Flt-1およびヒトVEGF 受容体Flt-1を細胞表面に発現した細胞を免疫学的に検出する方法ならびに可溶性ヒトVEGF受容体Flt-1を免疫学的に検出および定量する方法としては、免疫細胞染色、ウェスタンブロッティング法、サンドイッチELISA 法などがあげられる。以下、それらについて説明する。

(1) モノクローナル抗体を用いた免疫細胞染色

まず、ヒトVEGF受容体Flt-1を細胞表面に発現した細胞について調製する。浮

遊細胞についてはそのまま、付着細胞についてはトリプシンEDTAにて細胞をはが した後、免疫細胞染色用緩衝液 (1%BSA 、0.02%EDTA 、0.05% アジ化ナトリウム を含むPBS) などに懸濁し、1 ×10⁵ ~2 ×10⁶ 個ずつに分注する。 1(4) で得 られた抗ヒトVEGF受容体Flt-1モノクローナル抗体産生ハイブリドーマの培養上 清あるいは1(6) で得られた精製モノクローナル抗体、または公知の方法(酵素 抗体法:学際企画刊 1985年)でビオチン標識した該モノクローナル抗体を0.1 ~50 ug/mlの濃度になるように免疫細胞染色用緩衝液あるいは10%動物血清を含 む免疫細胞染色用緩衝液を用いて希釈したものを20~500 µ1 ずつ分注し、氷冷 下で30分間反応させる。1(4)で得られた抗ヒトVEGF受容体Flt-Iモノクローナ ル抗体産牛ハイブリドーマの培養上清または1(6)で得られた精製モノクローナ ル抗体を反応させた場合、免疫細胞染色用緩衝液で細胞を洗浄後、FITCあるいは フィコエリスリンなどの蛍光色素で標識した抗マウスイムノグロブリン抗体ある いは抗ラットイムノグロブリン抗体を0.1 ~50 μg/ml程度の濃度で含む免疫細胞 染色用緩衝液を50~500 μ1 ずつ分注し、氷冷下で30分間遮光して反応させる。 また、ビオチン標識した該モノクローナル抗体を反応させた場合、ストレプトア ビジンを50~500 μ1ずつ分注し、氷冷下で30分間遮光して反応させる。反応後 は、よく免疫細胞染色用緩衝液で洗浄し、セルソーターにより解析する。

(2) ウエスタンブロット法によるヒトVEGF受容体Flt-1の検出

ヒトVEGF受容体Flt-1を発現している細胞、例えばヒトVEGF受容体Flt-1 発現NIH3T3細胞(NIH3T3-Flt-1と称す)、およびコントロール細胞、例えばNIH3T3細胞(NIH3T3-Neoと称す)[オンコジーン(Oncogene)、10、135、(1995)]等より、細胞膜成分を調製し、還元条件下でレーンあたりのタンパク量として0.1~30μgの膜成分をSDS-PAGE法により泳動する。泳動されたタンパク質をPVDF膜にトランスファーし1%BSAを含むPBSに室温で30分間反応させブロッキング操作を行う。1(4)で得られた抗ヒトVEGF受容体Flt-1モノクローナル抗体産生ハイブリドーマの培養上清または1(6)で得られた精製モノクローナル抗体を反応させ、0.05%Tweenを含むPBSで洗浄し、ペルオキシダーゼ標識したヤギ抗マウスIgGを室温で2時間反応させる。0.05%Tweenを含むPBSで洗浄し、ECLTMWestern blotting detection reagents (Amersham社製)等を用いて、抗ヒトVEGF受容体Flt-1モノク

PCT/JP97/04259

ローナル抗体が結合したバンドを検出する。

- (3) モノクローナル抗体による可溶性VEGF受容体Flt-1定量
- 1(6) で得られた精製モノクローナル抗体を一次抗体として適当なプレートにコートし、1(!) で得られた精製可溶性VEGF受容体Flt-1 0.056~10,000ng/ml、もしくはヒト血清などの検体を反応させる。プレートをよく洗浄した後、さらに第二抗体としてビオチン、酵素、化学発光物質あるいは放射線化合物等で標識した1(6) で得られた精製モノクローナル抗体のうち一次抗体として使用したモノクローナル抗体とは異なるエピトープを認識するモノクローナル抗体を反応させた後、標識物質に応じた反応を行なう。精製可溶性VEGF受容体Flt-1 に対する反応性をもとに検量線を描き、検体中の可溶性VEGF受容体Flt-1 濃度を算出する。

ヒトVEGFとヒトVEGF受容体Flt-1との結合およびヒトVEGFの生物活性を阻害する方法については、以下の方法があげられる。

(4) モノクローナル抗体を用いたVEGF-VEGF受容体Flt-1結合阻害試験 96ウェル・マルチスクリーン・IPプレート(96-well MultiScreen-IP Plate; ミリポア社製)にメタノールを $100\,\mu$ I/ウェルで分注し、プレート底部のPVDF膜を親水化する。水で洗浄後、PBS で $0.1\sim10\,\mu$ g/ml の濃度に希釈したヒトVEGF受容体Flt-1またはヒトVEGF受容体Flt-1との融合蛋白などの組み換え蛋白を、 $50\,\mu$ I/ウェルで分注し、4 ℃で一晩放置して吸着させる。洗浄後、1 %牛血清アルブミン(BSA) を含むPBS を $100\,\mu$ I/ウェル加え、室温1時間反応させて残っている活性基をブロックする。PBS で洗浄後、1 (4) で得られた抗ヒトVEGF受容体 Flt-1モノクローナル抗体産生ハイブリドーマの培養上清または1 (6) で得られた精製モノクローナル抗体を $50\,\mu$ I/ウェルで分注し、さらに、 $0.1\sim10\,\text{ng/ml}$ の $125\,\text{I}$ 標識VEGF(アマシャム社製)を $50\,\mu$ I/ウェル加え室温で $1.5\,$ 時間反応させる。0.05% tween-PBS で洗浄後、50℃にてウェルを乾燥させ、シンチレーターを $20\,\text{cm}$ ら $100\,\mu$ I/ウェル加え、各ウェルに結合した $125\,\text{I}$ 標識VEGFの放射活性をトップカウント(パッカード社製)等を用いて測定する。

(5) モノクローナル抗体を用いたVEGF-VEGF受容体Flt-1発現細胞結合阻害試験

96ウェル・マルチスクリーン・HVプレート (96-well MultiScreen-HV Plate;

ミリポア社製)に1 %牛血清アルブミン(BSA) を含むPBS を100 μ 1/ウェル加え、室温1時間反応させてウェル中の活性基をブロックし、0.05%NaN3を含む1% BSA-PBS に懸濁したNIH3T3-Flt-1細胞を 1×10^4 個~ 1×10^5 個/ウェル加える。1% BSA-PBS で洗浄後、1 (4) で得られた抗ヒトVEGF受容体Flt-1モノクローナル抗体産生ハイブリドーマの培養上清または1 (6) で得られた精製モノクローナル抗体を $50\,\mu$ 1/ウェルで分注し、さらに、0.1~10ng/mlの 1^{25} 1標識VEGF(アマシャム社製)を $50\,\mu$ 1/ウェル加え室温で1.5時間反応させる。PBS で洗浄後、 $50\,^{\circ}$ Cにてウェルを乾燥させ、シンチレーターを $20\,^{\circ}$ 100 μ 1/ウェル加え、各ウェルに結合した 1^{25} 1標識VEGFの放射活性をトップカウント(パッカード社製)等を用いて測定する。

図表の簡単な説明

- 第1図はプラスミドpVL1393/Flt 3Nの造成工程を示した図である。
- 第2図はプラスミドpVL1393/Flt 7Nの造成工程を示した図である。
- 第3図は精製したFlt-17NおよびFlt-13NのSDSポリアクリルアミド電気泳動 (5~20%グラジェントゲルを使用)のパターンを示した図である。左より、分子量マーカー、Flt-13N、Flt-17Nの泳動パターンをそれぞれ示す。還元条件下で電気泳動を行った。

第4図はプレートコートした可溶性ヒトVEGF受容体Flt-17Nへの $^{125}I-$ ヒトVEGFの結合に及ぼす可溶性ヒトVEGF受容体Flt-17NおよびFlt-13Nの阻害効果を解析した結果を示す。

第5図は抗ヒトVEGF受容体Flt-1モノクローナル抗体の結合反応性を酵素免疫 測定法にて検討した結果を示す。

第6図は抗ヒトVEGF受容体Flt-1モノクローナル抗体によるVEGFとヒトVEGF受容体Flt-1の結合阻害活性を検討した結果を示す。

第7図は抗ヒトVEGF受容体Flt-1モノクローナル抗体KM1732、KM1748および KM1750によるヒトVEGFとヒトVEGF受容体Flt-1の結合阻害活性を検討した結果を 示す。

第8図は抗ヒトVEGF受容体Flt-1モノクローナル抗体KM1732、KM1748および KM1750によるヒトVEGFとヒトVEGF受容体Flt-1発現細胞の結合阻害活性を検討し

た結果を示す。

第9図は抗ヒトVEGF受容体Flt-1モノクローナル抗体KM1730、KM1731、KM1732、KM1748およびKM1750のヒトVEGF受容体Flt-1発現細胞NIH3T3-Flt-1およびコントロール細胞NIH3T3-Neo細胞との反応性をフローサイトメーターにて解析した結果を示す。

第10図は抗ヒトVEGF受容体Flt-1モノクローナル抗体KM1737のヒトVEGF受容体 Flt-1との反応性をウエスタンブロッティングにより検討した結果を示す。レーン1は、NIH3T3-Flt-1細胞、レーン2は、NIH3T3-Neo細胞のウエスタンブロッティングのパターンを示す。

第11図は抗ヒトVEGF受容体Flt-1モノクローナル抗体KM1732およびビオチン化 KM1730を用いて可溶性ヒトVEGF受容体Flt-1 3NおよびFLT-1 7Nの定量系を検討した結果を示す。

第12図は、抗ヒトVEGF受容体Flt-1モノクローナル抗体のヒト血管内皮細胞HUVECとの反応性をフローサイトメーターにて解析した結果を示す。

第13図は、抗ヒトVEGF受容体Flt-1モノクローナル抗体のVEGF非刺激、刺激時のヒト血管内皮細胞HUVECとの反応性をフローサイトメーターにて解析した結果を示す。

第14図は、VEGF非刺激、刺激時のヒト血管内皮細胞HUVECにおけるヒトVEGF受容体Flt-1の発現量の変化を解析した結果を示す。Flt-1の発現量は、コントロール抗体の反応性を1とした時の抗ヒトVEGF受容体Flt-1モノクローナル抗体 KM1730の相対的な反応値として示す。

発明を実施するための最良の形態

実施例1

- 1. 抗原の調製
- (1) 可溶性ヒトVEGF受容体Flt-1 3N発現ベクターの構築

ヒトVEGF受容体Flt-1のN末端アミノ酸から1~338番目(シグナル配列を含む) に相当する可溶性ヒトVEGF受容体Flt-1 断片(以下、可溶性ヒトVEGF受容体 Flt-1 3Nと称す)を発現するためのベクターを以下の手順で作製した。可溶性ヒトVEGF受容体Flt-1 3Nは、可溶性ヒトVEGF受容体Flt-1の細胞外領域のN末端側

から3個のイムノグロブリン様部位に相当する。

ヒトVEGF受容体Flt-1の完全長cDNAをコードするcDNAクローンflt#3-7(M. Shibuyaら; Oncogene, 5, 519, 1990)をEcoRIとTaqIの両制限酵素により部分切断し、5、末端から1263bpのEcoRI-TaqI DNA断片を回収し、バキュロウイルス遺伝子組み換えベクターpVL1393プラスミド(インビトロジェン社製)のポリヘドリン(Polyhedrin)遺伝子の転写開始点の下流5、側EcoRIおよび3、側NotI部位に、人為的に終始コドンを導入したTaqI-NotIアダプター(配列番号1および配列番号2に示した塩基配列を有する合成DNA)を用いて組み込み、可溶性ヒトVEGF受容体Flt-1 3N発現ベクターpVL1393/Flt 3Nを作製した(図1)。

(2) 可溶性ヒトVEGF受容体Flt-1 7N発現ベクターの構築

ヒトVEGF受容体Flt-1のN末端アミノ酸から1~750番目(シグナル配列を含む)に相当する可溶性ヒトVEGF受容体Flt-1 断片(以下、可溶性ヒトVEGF受容体Flt-1 7Nと称す)を発現するためのベクターを以下の手順で作製した。可溶性ヒトVEGF受容体Flt-1 7Nは、可溶性ヒトVEGF受容体Flt-1 の細胞外領域の7個のイムノグロブリン様部位に相当する。

配列番号3および配列番号4に示した塩基配列を有するプライマー10 pmol、flt#3-7 クローン [オンコジーン(Oncogene), 5, 519, (1990)] DNA 10ng、および、10mMデオキシヌクレオチド三リン酸(deoxynucleotide triphosphates)を含む10mM MgCl₂、0.001% (W/V)ゼラチン溶液100 μlに2.5 units Taqポリメラーゼを加えた。反応は95℃で5分間の前処理した後に、95℃で90秒間、50℃で90秒間、最後に72℃で90秒間のポリメラーゼ・チェイン・リアクション(PCR)を30回繰り返し、DNA断片を回収した。このDNA断片をHindIII(flt#3-7クローンで1893bpの位置)とNotIにより切断し、610 bpのHindIII-NotI DNA断片、すなわちflt#3-7クローンで1894-2499bp断片と終始コドンおよびNotI認識配列を含むDNA 断片を回収した。次に、flt#3-7クローンをEcoRIとHindIIIの両制限酵素により切断し、5、末端から1893bpのEcoRI-HindIII断片を回収した。続いて、610 bpのHindIII-NotI DNA断片、および、1893 bpのEcoRI-HindIII断片をバキュロウイルス遺伝子組み換えベクターpVL1393プラスミドのポリヘドリン(Polyhedrin)遺伝子の転写開始点の下流5、側EcoRIおよび3、側NotI部位に組み込み、可溶性

ヒトVEGF受容体Flt-1 7N発現ベクターpVL1393/Flt 7Nを作製した(図2)。

(3) 昆虫細胞による可溶性ヒトVEGF受容体Flt-1発現を行うための組み換えウィルスの作製

昆虫細胞による蛋白質の生産には目的遺伝子を組み込んだ組み換えウィルスの作製が必要であるが、その作製にはトランスファーベクターと呼ばれる目的蛋白質をコードするcDNAを特殊なプラスミドに組み込む過程と野生型ウィルスとトランスファーベクターを昆虫細胞にコトランスフェクションし、相同組み換えにより組み換えウィルスを取得する過程を経る。以上の過程についてファーミンジェン社製バキュロゴールドスターターキット(製品番号PM-21001K)を用いてそのマニュアルに従い以下の手順で行った。

TMN-FHインセクトメディウム(ファーミンジェン社製)にて培養した昆虫細胞 Sf9 (ファーミンジェン社製)に線状バキュロウィルスDNA [バキュロゴールド・バキュロウィルスDNA(BaculoGold baculovirus DNA)、ファーミンジェン社 製] および作製したトランスファーベクターDNA をリポフェクチン法にて導入すること [蛋白質核酸酵素、37, 2701,(1992)] により行い組み換えバキュロウィルスを以下のように作製した。

(2) で作製したpVL1393/F1t7Nあるいは(1) で作製したpVL1393/F1t3Nの1 μg と線状パキュロウィルスDNA の20ngとを12μlの蒸留水に溶解し、さらにリポフェクチン6 μl と蒸留水6 μl とを混和したものを加え室温で15分間放置した。一方、Sf9 細胞1 ×10⁶ 個を2ml のSf900-II培地[ギブコ(Gibco) 社製] に懸濁し、直径35mmの細胞培養用プラスチックシャーレに入れた。ここに上記のプラスミドDNA、線状パキュロウィルスDNA およびリポフェクチン混和溶液全量を加え27℃で3 日間培養後、組み換えウィルスを含む培養上清1ml を採取した。シャーレには新たにSf900-II培地1ml を加え、さらに27℃で3 日間培養し組み換えウィルスを含む培養上清をさらに1.5ml 得た。

次に蛋白発現に用いるために得られた組み換えウィルスを以下の手順で増殖させた。

Sf9 細胞 2×10^7 個を10ml のSf900-II 培地に懸濁し、 $175cm^2$ フラスコ(グライナー社製)に入れて室温で1 時間放置して細胞をフラスコに付着させた。放置後

上清を除き新たに15mlのTMN-FHインセクトメディウムと上記の組み換えウィルスを含む培養上清のうち1mlを加え27℃で3日間培養した。培養後上清を1,500×gで10分間遠心分離して細胞を除き、蛋白質発現に使用する組み換えウィルス溶液を得た。

得られた組み換えウィルス溶液についてウィルスの力価をバキュロゴールドスターターキット・マニュアル(ファーミンジェン社製)に記載の方法で算定した。 SI9 細胞6 ×106 個を4ml のSf900-II培地に懸濁し、直径60mmの細胞培養用プラスチックシャーレに入れ、室温で1 時間放置して細胞をシャーレに付着させた。次に上清を除き新たにSf900-II培地400 μ1 とSf900-II培地で10,000倍に希釈した上記組み換えウィルス溶液を加え室温で1 時間放置した後、培地を除き5mlの1%低融点アガロース [アガープラーク・アガロース(Agarplaque Agarose)、ファーミンジェン社製]を含む培地 [滅菌した1ml の5%アガープラークプラス・アガロース水溶液と4ml のTMN-FHインセクトメディウムを混和し、42℃に保温したもの]を該シャーレに流し込んだ。室温で15分間放置した後、乾燥を防ぐためビニルテープをシャーレにまき、密閉可能なプラスチック製容器に該シャーレを入れ、27℃で6 日間培養した。該シャーレに0.01% ニュートラルレッドを含むPBS1mlを加えさらに1 日培養した後、出現したプラークの数を数えた。以上の操作より該組み換えウィルス溶液はいずれも約1 ×107 プラークフォーミングユニット(以下、PFU と称す)/ml のウィルスを含んでいることがわかった。

(4) 昆虫細胞における可溶性ヒトVEGF受容体Flt-1 7NおよびFlt-1 3Nの発現、 精製

可溶性ヒトVEGF受容体Flt-1 7NおよびFlt-1 3Nは以下のようにして得た。High Five 細胞4 ×10⁷個を175cm²フラスコ(グライナー社製)にEX-CELLTM400培地 (JRH Bioscience社製)30mlに懸濁し、室温で1時間放置し、フラスコに付着させた。(3) で得られたトランスファーベクターpVL1393/Flt 7NおよびpVL1393/Flt 3N由来の組み換えウィルスを約1~3×10⁸PFU/ml の濃度で含む溶液を1ml 加え、室温で2時間感染させた。培養上清を除き新たに30mlのEX-CELLTM400培地30mlを加え27℃にて3~4日間培養した。培養終了後、培養上清を回収し1,500 ×gで10分間遠心分離を行い上清を得た。

カラムに約60mlのヘパリンーセファロースCL-6Bゲル [ファルマシア・バイオテック (Pharmacia Biotech) AB社製]を充填し、600mlの20mMトリスー塩酸 (pH7. 5) 緩衝液を用いて0.5ml/分の流速でカラムを洗浄した。洗浄後、上記のように調整した可溶性ヒトVEGF受容体Flt-1 7NおよびFlt-1 3Nを含む培養液1000mlを0.5ml/分の流速でヘパリンーセファロースCL-6Bカラムに通塔した。さらに0.5ml/分の流速でペパリンーセファロースCL-6Bカラムに通塔した。さらに0.5mlの0.5ml/分の流速で洗浄した後、濃度勾配が0.5mlの0.5mlone 0.5mlの0.5mlの0.5mlの0.5mlの0.5mlの0.5mlの0.5mlの0.5

(5) 可溶性ヒトVEGF受容体Flt-1 7N, Flt-1 3Nの純度の確認

精製可溶性ヒトVEGF受容体Flt-1 7N、Flt-1 3Nの純度をSDS-PAGEを用いて確認した。SDS-PAGEは文献記載の方法(Anticancer Research、12, 1121, 1992)に従った。ゲルには5 \sim 20%グラジエントゲル(アトー社製)を用い、還元条件下でレーンあたりのタンパク量として 2μ gのFlt-1 7NおよびFlt-1 3Nをそれぞれ泳動し、クーマシーブリリアントブルーにて染色した。図3に結果を示した。Flt-1 7NおよびFlt-1 3Nの純度は95%以上であった。

(6) 可溶性ヒトVEGF受容体Flt-1 7NおよびFlt-1 3Nの対照抗原蛋白質の精製可溶性ヒトVEGF受容体Flt-1 7NおよびFlt-1 3Nの対照抗原蛋白質(ネガティブコントロール蛋白質)は以下のようにして得た。High Five細胞4 ×10⁷個を175cm²フラスコ(グライナー社製)にEX-CELLTM400培地(JRH Bioscience社製)30mlに懸濁し、室温で1時間放置し、フラスコに付着させ、27℃にて3~4日間培養した。培養終了後、培養上清を回収し1,500 ×gで10分間遠心分離を行い上清を得た。

カラムにヘパリンーセファロースCL-6Bゲル [ファルマシア・バイオテック (Pharmacia Biotech) AB社製] 約20mlを充填し、200mlの20mMトリスー塩酸(pH

7.5) 緩衝液を用いて0.5ml/分の流速で洗浄した。洗浄後、上記のように調製した High Five細胞の培養液500ml を0.5ml/分の流速でヘパリンーセファロースCL-6B カラムに通塔した。さらに200mlの0.2M NaClを含む20mMトリスー塩酸(pH7.5)を 用いて0.5ml/分の流速で洗浄した後、1M NaClを含む20mMトリスー塩酸(pH7.5) からなる緩衝液を200 ml通塔し、ヘパリンーセファロースに吸着した蛋白質を溶出した。1M NaCl溶出画分をセントリプレップ10 (アミコン社製) を用いて濃縮し対照抗原蛋白を溶液として7 ml(蛋白濃度として867μg/ml) 得た。

(7) 可溶性ヒトVEGF受容体Flt-1 7NおよびFlt-1 3N のヒトVEGF結合活性の確認 可溶性ヒトVEGF受容体Flt-1 7NおよびFlt-1 3NのヒトVEGF結合活性を以下の手 順により確認した。

96ウェル・イムオビロンTM - P -

結果を図4に示す。可溶性ヒトVEGF受容体Flt-1 7NおよびFlt-1 3Nは濃度依存的に¹²⁵I標識ヒトVEGFの可溶性ヒトFlt-1 7Nへの結合を阻害することが示された。可溶性ヒトVEGF受容体Flt-1 7NおよびFlt-1 3Nは同程度のヒトVEGF結合活性を示したことから、ヒトVEGFはFlt-1 3N部分(シグナル配列を含むN末端アミノ酸から1から338 番目)に結合することが明らかとなった。

(8) 昆虫細胞におけるヒトVEGFの発現

ヒトVEGFは以下のようにして得た。High Five細胞4 ×107個を175cm2フラスコ

(グライナー社製)にEX-CELLTM400培地(JRH Bioscience社製)30mlに懸濁し、 室温で1時間放置し、フラスコに付着させた。文献 [セル・グロース・アンド・ ディファレンシエーション(Cell Growth & Differentiation), 7, 213, (1996)] 記載の方法により得られたヒトVEGF組み換えバキュロウィルス溶液を約1~3×10⁸ PFU/mlの濃度で含む溶液を1ml 加え、室温で2時間感染させた。培養上清を除き 新たに30mlのEX-CELLTM400培地30mlを加え27℃にて3~4日間培養した。培養終了 後、培養上清を回収し1,500 ×g で10分間遠心分離を行い上清を得た。

カラムに約40mlのヘバリンーセファロースCL-6Bゲル [ファルマシア・バイオテック (Pharmacia Biotech) AB社製]を充填し、400mlの20mMトリスー塩酸 (pH7.5) からなる緩衝液を用いて0.5ml/分の流速で洗浄した。洗浄後、上記のように調製したヒトVEGFを含む培養液1500mlを0.5ml/分の流速でヘバリンーセファロースCL-6Bカラムに通塔した。さらに400mlの20mMトリスー塩酸 (pH7.5)を用いて0.5ml/分の流速で洗浄した後、0.2M、0.5Mおよび1MのNaCl含有20mMトリスー塩酸 (pH7.5)からなる緩衝液各120 mlを順次通塔し、ヘパリンーセファロースに吸着した蛋白質を段階的に溶出を行うと共に8ml ずつ溶出液を分画した。各分画に含まれる蛋白をSDSポリアクリルアミドゲル電気泳動にて解析し、ヒトVEGFを含む分画 (0.5~1M NaCl画分)を120ml回収した。セントリプレップ-10 (アミコン社製)で濃縮後、ヒトVEGFを溶液として4ml (蛋白濃度1.2 mg/ml) 得た。

2. 動物の免疫と抗体産生細胞の調製

1(4)より得られた各種抗原 50μ g をそれぞれアルミニウムゲル2mg および百日 咳ワクチン(千葉県血清研究所製) 1×10^9 細胞とともに5 週令雌BALB/c(日本 S L C 社製)、B6C3F1マウス(日本チャールズリバー社製)あるいは雌SDラット(日本 S L C 社製)に投与し、2 週間後より $10\sim50\mu$ g の蛋白質を1 週間に1 回、計4 回投与した。また、NIH3T3-F1t-1細胞 1×10^7 個を5 週令雌BALB/c(日本 S L C 社製) 3 匹に投与し、計6 回投与した。眼底静脈叢あるいは尾静脈より採血し、その血清抗体価を以下に示す酵素免疫測定法で調べ、十分な抗体価を示したマウスあるいはラットから最終免疫3 日後に脾臓を摘出した。なお、NIH3T3-F1t-1細胞を投与した5 週令雌BALB/cでは免疫がかからず、可溶性F1t-1 7Nに対する抗体価は上昇しなかった。

脾臓をMEM 培地(日水製薬社製)中で細断し、ピンセットでほぐし、遠心分離(1,200rpm、5分間)した後、上清を捨て、トリスー塩化アンモニウム緩衝液(pH7.65)で1~2分間処理し赤血球を除去し、MEM 培地で3回洗浄し、細胞融合に用いた。

3. 酵素免疫測定法

1(4)で得られた可溶性ヒトFlt-1 7NおよびFlt-1 3Nを免疫したマウスあるいは ラットに由来する抗血清およびハイブリドーマの培養上清の測定に関しては、抗 原として、1(4)の昆虫細胞培養上清より得られた可溶性ヒトVEGF受容体Flt-1 7N およでXFI:-1 3Nを用いた。96ウェルのEIA 用プレート(グライナー社製)に、PBS 希釈1~10 μg/ml可溶性ヒトVEGF受容体Flt-1 7N、Flt-1 3Nおよび対照抗原とし て1(6)で得られたHigh Five細胞培養上清のヘパリンカラム吸着画分を、それぞ **れ50 μ1/ウェルで分注し、4 ℃で一晩放置して吸着させた。洗浄後、1 %牛血清** アルブミン(BSA) を含むPBS を100 μ 1/ ウェル加え、室温1時間反応させて残 っている活性基をブロックした。1%BSA-PBS を捨て、被免疫マウスあるいは被免 - 疲ラット抗血清およびハイブリドーマの培養上清を50 μ l/ウェルで分注し2 時間 反応させた。0.05% tween-PBS で洗浄後、ペルオキシダーゼ標識ウサギ抗マウス イムノグロブリンあるいはペルオキシダーゼ標識ウサギ抗ラットイムノグロブリ ン(ともにDAKO社製)を50 u 1/ウェルで加えて室温、1 時間反応させ、0.05% tween-PBS で洗浄後ABTS基質液 [2.2-アジノビス (3-エチルベンゾチアゾール-6 - スルホン酸) アンモニウム] を用いて発色させOD415nm の吸光度E max 「モレ キュラー・デバイシーズ (Molecular Devices)社製] を測定した。

4. マウス骨髄腫細胞の調製

8-アザグアニン耐性マウス骨髄腫細胞株P3-U1 を正常培地で培養し、細胞融合時に2 ×10⁷ 以上の細胞を確保し、細胞融合に親株として供した。

5. ハイブリドーマの作製

2で得られたマウス脾細胞あるいはラット脾細胞と4で得られた骨髄腫細胞とを10:1になるよう混合し、遠心分離(1,200rpm、5 分間)した後、上清を捨て、沈澱した細胞群をよくほぐした後、攪拌しながら、37℃で、ポリエチレングライコール-1000(PEG-1000)2g、MEM 培地2ml およびDMS0 0.7mlの混液0.2 ~1ml/10^B

マウス脾細胞を加え、 $1\sim2$ 分間毎にMEM 培地 $1\sim2$ ml を数回加えた後、MEM培地を加えて全量が50mlになるようにした。遠心分離(900rpm、5 分間)後、上清を捨て、ゆるやかに細胞をほぐした後、メスピペットによる吸込み、吸出しでゆるやかに細胞をHAT 培地100ml 中に懸濁した。

この懸濁液を96ウェル培養用プレートに $100~\mu$ l/ウェルずつ分注し、 $5\%C0_2$ インキュベーター中、37℃で10~14日間 $C0_2$ 5%下で培養した。この培養上清を実施例1の3に記載した酵素免疫測定法で調べ、1(4)で得られた可溶性ヒトVEGF受容体F1t-17NあるいはF1t-13Nに特異的に反応し、かつ1(6)で得られた対照抗原に反応しないウェルを選び、さらにHT培地と正常培地に換え、2回クローニングを繰り返して、抗ヒトVEGF受容体F1t-1モノクローナル抗体を生産するハイブリドーマ株を確立した。以下にその結果を示す。

第 1 表

動物	匹数	免疫原ス	ウリーニング原 	スクリーニング したウエル数	確立したハイブリドーマ数
Balb/cマウス	3	NIH3T3-FIt-1	Flt 7N	-	-
SDラット	1	Fit 7N	Fit 7N	1008	3 (KM1733, 1735, 1736)
Balb/cマウス	1	Fit 7N	Flt 7N	672	5 (KM1737, 1739, 1740, 1742, 1743)
SDラット	1	Fit 7N	Fit 7N	1176	3 (KM1745, 1746, 1747)
B3C3F1マウス	1	Fit 7N	FIt 3N	672	3 (KM1748, 1749, 1750)
Balb/cマウス	1	FIt 7N	FIt 3N	420	3 (KM1730, 1731, 1732)

1 (4) で得られた可溶性ヒトVEGF受容体Flt-1 7Nを免疫したBalb/cマウス1 匹、あるいはSDラット2匹から得られたハイブリドーマを可溶性ヒトVEGF受容体Flt-1 7Nを用いてそれぞれ約672ウェルおよび約2184ウェルずつスクリーニングした結果、それぞれ5クローンおよび6クローンの抗ヒトVEGF受容体Flt-1モノクローナル抗体を得、これらをそれぞれKM1737、KM1739、KM1740、KM1742、KM1743および KM1733、KM1735、KM1736、KM1745、KM1746、KM1747と命名した。これらのクローンの中で、8に示したヒトVEGFのFlt-1結合阻害作用を示すものはなかった。さらに、KM1735、KM1736、KM1742、KM1743およびKM1745は10で示した免疫細胞染色法においてヒトVEGF受容体Flt-1発現細胞と反応したが、KM1730、KM1731および

KM1732 に比較して極めて弱いものであった。

一方、1 (4) で得られた可溶性ヒトVEGF受容体Flt-1 7Nを免疫したB3C3F1マウス1匹、および、Balb/cマウス1匹から得られたハイブリドーマを1 (4) で得られた可溶性ヒトVEGF受容体Flt-1 3Nを用いてそれぞれ約672ウェルおよび420ウェルスクリーニングした結果、それぞれから3クローンずつ抗ヒトVEGF受容体Flt-1モノクローナル抗体を得、これらをそれぞれKM1748、KM1749、KM1750およびKM1730、KM1731、KM1732と命名した。これらクローンの中で後記8で示したヒトVEGFのFlt-1結合阻害作用を示すものとしてKM1732、KM1748およびKM1750の3クローンが認められた。さらに、KM1730、KM1731およびKM1732の3クローンは10で示した免疫細胞染色法においてヒトVEGF受容体Flt-1発現細胞に極めて強く反応した。

モノクローナル抗体の抗体クラスはサブクラスタイピングキット [ザイメット (Zymed) 社製] を用いた酵素免疫測定法を行った。その結果を以下の表に示す。

第 2 表

-		
-	モノクローナル抗体	抗体サブクラス
	KM1733	マウス IgG2a
	KM1735	ラット IgG1
	KM1736	ラット IgG2a
	KM1737	マウス IgG1
	KM1739	マウス IgG1
	KM1740	マウス IgG1
	KM1742	マウス IgG1
	KM1743	マウス IgG1
	KM1745	ラット IgG2a
	KM1746	ラット IgG1
	KM1747	ラット IgG1
	KM1748	マウス IgG2b
	KM1749	マウス IgG1
	KM1750	マウス IgG2b
	KM1730	マウス IgG1
	KM1731	マウス IgG2a
	KM1732	マウス IgG1

本発明で確立したモノクローナル抗体はすべてIgGクラスであった。

6. モノクローナル抗体の精製

プリスタン処理した8週令ヌード雌マウス(Balb/c)に5で得られたハイブリドーマ株を5~ 20×10^6 細胞/匹それぞれ腹腔内に注射した。10~21日後に、ハイブリドーマは腹水癌化した。腹水のたまったマウスから、腹水を採取(1~8ml/ 匹)し、遠心分離(3,000rpm、5~分間)して固形分を除去した後カプリル酸沈殿法(アンチボディーズ・ア・ラボラトリー・マニュアル)により精製し、精製モノクローナル抗体とした。

7. モノクローナル抗体の特異性の確認

5で述べた抗ヒトVEGF受容体Flt-1モノクローナル抗体の特異性を3に記載した 酵素免疫測定法を用いて確認した。

結果を図5に示す。Flt-1 7Nを免疫したマウス、ラットよりハイブリドーマを作製し、Flt-1 7Nを用いて選択したモノクローナル抗体(KM1733, KM1735, KM1736, KM1737, KM1739, KM1740, KM1742, KM1743, KM1745, KM1746, KM1747)の中で、KM1740だけはFlt-1 7NおよびFlt-1 3Nに反応したことから、Flt-1のN末端アミノ酸(シグナル配列を含む)から1~338 番目に存在するエピトープを認識していることが明らかとなった。残りの10クローンは、Flt-1 7Nには反応するがFlt-1 3Nには反応しないことから、Flt-1のN末端アミノ酸(シグナル配列を含む)から339~750 番目に存在するエピトープを認識していることが明らかとなった。一方、Flt-1 7Nを免疫したマウスよりハイブリドーマを作製し、Flt-1 3Nを用いて選択した6種のモノクローナル抗体(KM1748, KM1749, KM1750, KM1730, KM1731, KM1732)はすべて、Flt-1 7NおよびFlt-1 3Nに反応したことから、Flt-1のN末端アミノ酸(シグナル配列を含む)から1~338 番目に存在するエピトープを認識していることが明らかとなった。

- 8. 抗Flt-I モノクローナル抗体によるヒトVEGFとヒトVEGF受容体Flt-1 の結合 阻害活性の確認
- 5 で述べた抗ヒトVEGF受容体Flt-1 モノクローナル抗体のヒトVEGFとヒトVEGF 受容体Flt-1 の結合阻害活性を以下の手順に従い確認した。

96ウェル・マルチスクリーン- I Pプレート (96-well MultiScreen-IP Plate; = 1 まりポア社製) にメタノールを100 μ 1/ウェルで分注し、プレート底部のPVDF膜

を親水化した。水で洗浄後、PBSで1.6 μ g/mlの濃度に希釈した可溶性ヒト VEGF受容体Flt-1 7Nを50 μ l/ウェルで分注し、4 $\mathbb C$ で一晩放置して吸着させた。洗浄後、1 %牛血清アルブミン(BSA) 含有PBS を50 μ l/ウェル加え、室温1 時間反応させて残っている活性基をブロックした。PBS で洗浄後、ハイブリドーマの培養上清あるいは0.5M NaCl を含む1%BSA-PBS 溶液で希釈した精製モノクローナル抗体 (0.01~7.29 μ g/ml) を50 μ l/ウェルで分注し、さらに、3ng/mlの¹²⁵I 標識ヒトVEGF(アマシャム社製)を50 μ l/ウェル加え室温で1.5 時間反応させた。0.05%tween-PBSで洗浄後、50 $\mathbb C$ にてウェルを乾燥させ、マイクロシンチ-0(パッカード社製)を30 μ l/ウェル加え、トップカウント(パッカード社製)を用いて、各ウェルに結合した¹²⁵I標識ヒトVEGFの放射活性を測定した。

ハイブリドーマの培養上清の活性を検討した結果を図6 に示す。確立した17種のモノクローナル抗体の中で、3 種のモノクローナル抗体KM1748、KM1750、KM1732が、それぞれ阻害率62.6%、66.3%、83.1%でヒトVEGFとヒトVEGF受容体Flt-1の結合を阻害した。

通常、モノクローナル抗体産生ハイブリドーマのスクリーニング方法としては、免疫原に用いた抗原と同一蛋白質で行う。今回、免疫原として用いたFlt-1 7Nで選択された計11種のモノクローナル抗体は全く結合阻害活性を示さず、Flt-1 3Nで選択された6種のモノクローナル抗体(KM1748, KM1749, KM1750, KM1730, KM1731, KM1732) のうち、KM1748、KM1750およびKM1732については結合阻害活性を示していた。ハイブリドーマのスクリーニングにFlt-1 3Nを用いたことにより、結合阻害活性を有するモノクローナル抗体が取得できたことは、予想外の効果であった。そして、Flt-1 3Nが結合阻害活性を有するモノクローナル抗体の確立に非常に重要であることが示された。

精製した抗F1t-1モノクローナル抗体KM1732、KM1748、KM1750を用いて結合阻害活性を検討した結果を図7に示す。KM1732、KM1748、KM1750は濃度依存的にヒトVEGFとヒトVEGF受容体F1t-1の結合を阻害した。ヒトVEGFとヒトVEGF受容体F1t-1の結合の50%阻害を示すKM1732、KM1748、KM1750の濃度(IC50)は1.1、1.3、2.0 μ g/mlであった。一方、コントロールとして使用したマウスIgG1クラスである抗シアリルルイスAモノクローナル抗体KM231「アンチキャンサー・リサーチ

(Anticancer Research), 10, 1579, (1990)] は全く阻害活性を示さなかった。 9. 抗Flt-1モノクローナル抗体によるヒトVEGFとヒトVEGF受容体Flt-1発現細胞 の結合阻害活性の確認

抗ヒトVEGF受容体Flt-1モノクローナル抗体KM1732、KM1748およびKM1750によるヒトVEGFとヒトVEGF受容体Flt-1の結合阻害活性を以下の手順に従い確認した。

96ウェル・マルチスクリーンーHVプレート(96-well MultiScreen-HV Plate; ミリボア社製)に1 %牛血清アルブミン(BSA) を含むPBS を100 μ 1 / ウェル加え、室温1時間反応させてウェル中の活性基をブロックし、0.05%NaN₃を含む1% BSA-PBSに懸濁したNIH3T3-Flt-1細胞を 5×10^4 個/ウェル加えた。1%BSA-PBS で洗浄後、精製モノクローナル抗体(0.01~7.29 μ g/ml)を 50μ 1/ウェルで分注し、さらに、3ng/mlの 125 1標識ヒトVEGF(アマシャム社製)を 50μ 1 / ウェル加え、氷上で2 時間反応させた。PBS で洗浄後、50℃にてウェルを乾燥させ、マイクロシンチ-0(パッカード社製)を 30μ 1/ウェル加え、トップカウント(パッカード社製)を100 を用いて、各ウェルに結合した1251 標識ヒトVEGFの放射活性を測定した。

精製した抗Flt-1モノクローナル抗体KM1732、KM1748、KM1750を用いて結合阻害活性を検討した結果を図8に示す。KM1732、KM1748、KM1750は濃度依存的にヒトVEGFとNIH3T3-Flt-1細胞への結合を阻害した。ヒトVEGFとNIH3T3-Flt-1細胞の結合の50%阻害を示すKM1732、KM1748、KM1750の濃度(IC50)は0.050、0.037、0.041μg/mlであった。一方、コントロールとして使用したマウスIgG1クラスである抗シアリルルイスAモノクローナル抗体KM231は全く阻害活性を示さなかった。10.モノクローナル抗体のヒトVEGF受容体Flt-1発現細胞との反応性の確認5で述べた抗ヒトVEGF受容体Flt-1モノクローナル抗体の特異性を免疫細胞染色を用いて以下の手順に従い確認した。

ヒトVEGF受容体F1t-1発現NIH3T3細胞(NIH3T3-F1t-1)、コントロールNIH3T3細胞(NIH3T3-Neo) [オンコジーン(Oncogene)、10, 135,(1995)] 5 ×10⁵ 個を丸底96ウェルプレートに免疫細胞染色用緩衝液(1%BSA、0.02%EDTA、0.05% アジ化ナトリウムを含むPBS)100 μ 1 に懸濁して分注した。4 $\mathbb C$ 、350 \times g で1 分間遠心分離後、上清を除き、ハイブリドーマ培養上清あるいは精製抗体(10μ g/ml)50 μ 1 を加えて4 $\mathbb C$ で30分間反応させた。反応後、200 μ 1 の免疫細胞染色用緩

衝液を各ウェルに加え4 \mathbb{C} 、350 \times g で1 分間遠心分離後上清を除き細胞の洗浄を行った。この洗浄操作をさらに2 回行った後、FITC標識抗マウスイムノグロブリン抗体あるいはFITC標識抗ラットイムノグロブリン抗体(和光純薬社製)を 1 μ g/mlの濃度で含む免疫細胞染色用緩衝液50 μ 1 を加えて4 \mathbb{C} で30分間反応させた。反応後、上記と同様の洗浄操作を3回行った後フローサイトメーター(コールター社製)を用いて解析を行った。

結果を図9に示す。抗ヒトVEGF受容体Flt-1モノクローナル抗体KM1730、KM1731 およびKM1732はコントロール細胞には反応せずFlt-1発現細胞に特異的に顕著に反応した(A)。また、精製抗体である抗ヒトVEGF受容体Flt-1モノクローナル抗体KM1748($10\,\mu\,g/m1$)およびハイブリドーマ培養上清KM1748もコントロール細胞には反応せずFlt-1 発現細胞に特異的に顕著に反応した(B)。この結果、モノクローナル抗体KM1730、KM1731、KM1732、KM1748およびKM1750は細胞表面上のヒトVEGF受容体Flt-1を特異的に認識することが明らかとなった。一方、KM1735、KM1736、KM1742、KM1743およびKM1745はヒトVEGF受容体Flt-1発現細胞と反応したが、KM1730、KM1731、KM1732、KM1748およびKM1750に比較して極めて弱いものであった。

11. モノクローナル抗体を用いたウエスタンプロット法によるヒトVEGF受容体 Flt-1の検出

NIH3T3-Flt-1細胞、コントロールNIH3T3細胞 (NIH3T3-Neo)より、文献記載の方法 [キャンサー・リサーチ (Cancer Research), 46, 4438, (1986)] に従い細胞膜成分を調製し、SDS-PAGE法により泳動した。SDS-PAGEは文献記載の方法 [アンチキャンサー・リサーチ (Anticancer Research), 12, 1121, (1992)] に従い、ゲルには5~20%グラジエントゲル(アトー社製)を用い、還元条件下でレーンあたりのタンパク量として15 μ gの細胞膜成分を泳動した。泳動されたタンパク質を文献記載の方法(Anticancer Research, 12, 1121, 1992)に従い、PVDF膜にトランスファーした。続いて、PVDF膜を1%BSAを含むPBSに室温で30分間反応させブロッキング操作を行い、抗ヒトVEGF受容体Flt-1モノクローナル抗体KM1737の培養上清を4℃にて1晩反応させた。0.05% Tweenを含むPBSで洗浄し、ペルオキシダーゼ標識したヤギ抗マウスIgG [5,000 倍希釈:ケミコン(Chemicon)社製)を

室温で2時間反応させた。0.05% Tweenを含むPBSで洗浄し、ECLTMウェスタンブロッティングディテクションリアージェンツ(ECLTMWestern blotting detection reagents;アマシャム社製)を用いて、抗ヒトVEGF受容体Flt-1モノクローナル抗体KM1737が結合したバンドを検出した。

図10に結果を示す。抗ヒトVEGF受容体Flt-1モノクローナル抗体KM1737は、NIH3T3-Flt-1 細胞に発現している分子量180キロダルトンのヒトVEGF受容体Flt-1を特異的に検出できることが明らかとなった。

12. モノクローナル抗体を用いた可溶性ヒトVEGF受容体Flt-1の検出

96ウェルのEIA 用プレート(グライナー社製)に、抗ヒトVEGF受容体Flt-1モノクローナル抗体KM1732をPBS で10μg/mlの濃度に希釈し、50μ1/ウェルずつ分注し、4℃で一晩放置して吸着させた。洗浄後、1%牛血清アルブミン(BSA) を含むPBS を100μ1/ウェル加え、室温1 時間反応させて残っている活性基をブロックした。1%BSA-PBS を捨て、1%BSA-PBS で1000~0.0056ng/mlの濃度に希釈した1(4)で得られた精製可溶性ヒトVEGF受容体Flt-1 7NおよびFlt-1 3Nを4℃で一晩反応させた。0.05% tween-PBS で洗浄後、公知の方法(酵素抗体法:学際企画刊 1985年)でビオチン標識した抗ヒトVEGF受容体Flt-1モノクローナル抗体KM 1730を1 %BSA-PBS で0.1μg/mlの濃度に希釈して50μ1/ウェルずつ加えて室温にて2時間反応させた。0.05% tween-PBS で洗浄後、1%BSA-PBS にて4,000倍に希釈したアビジン標識ペルオキシダーゼ(ベクター社製)を50μ1/ウェルで加えて室温にて1時間反応させた。0.05% tween-PBS で洗浄後入1%BSA-PBS にて4,000倍に希釈したアビジン標識ペルオキシダーゼ(ベクター社製)を50μ1/ウェルで加えて室温にて1時間反応させた。0.05% tween-PBS で洗浄後入BTS基質液 [2.2-アジノビス(3-エチルベンゾチアゾール-6-スルホン酸)アンモニウム]を用いて発色させ0D415nmの吸光度を測定した。(E max;モレキュラーデバイシーズ社製)

結果を図11に示す。この結果、抗ヒトVEGF受容体Flt-1モノクローナル抗体KM 1732およびピオチン標識抗ヒトVEGF受容体Flt-1モノクローナル抗体KM1730を用いることにより可溶性ヒトVEGF受容体Flt-1 3Nは0.46 ng/mlより、Flt-1 7Nは 1.37ng/ml より測定することができることが明らかとなった。

- 13. モノクローナル抗体のヒト血管内皮細胞HUVECとの反応性の確認
- 5 で述べた抗ヒトVEGF受容体Flt-1モノクローナル抗体のヒト血管内皮細胞HUVECとの反応性を免疫細胞染色を用いて以下の手順に従い確認した。

ヒトさい帯静脈由来の血管内皮細胞(HUVEC)(Clonetics社より購入) 2×10^5 個を丸底96ウェルプレートに免疫細胞染色用緩衝液(1%BSA、0.02%EDTA、0.05% アジ化ナトリウムを含むPBS) $100~\mu$ 1 に懸濁して分注した。4%、350 ×g で1 分間遠心分離後、上清を除き、ビオチン化精製抗体KM1730、KM1750およびそれらのコントロール抗体 50μ 1(10μ g/ml)をそれぞれ加えて4%0で30分間反応させた。KM1730のコントロール抗体としては、KM1730と同様のサプクラスである1gG1タイプの抗M x Aモノクローナル抗体KM1135(W096/05230)を用いた。KM1750のコントロール抗体としては、KM1750と同様のサプクラスである1gG2bタイプの抗T細胞レセプター γ 鎖モノクローナル抗体KM365(特開平2-491)を用いた。その後、 $200~\mu$ 1の免疫細胞染色用緩衝液を各ウェルに加え4%、350×g で1 分間遠心分離後上清を除き細胞の洗浄を行った。この洗浄操作をさらに2 回行った後、Avidin-PE(Streptoavidin-R-Phycoerythrin)(Gibco社製)を5 μ g/mlの濃度で含む免疫細胞染色用緩衝液 20μ 1を加えて4%0で30分間反応させた。反応後、上記と同様の洗浄操作を3回行った後フローサイトメーター(コールター社製)を用いて解析を行った。

結果を図12に示す。抗ヒトVEGF受容体Flt-1モノクローナル抗体KM1730および KM1750はコントロール抗体に比べ、HUVECに反応した。この結果、モノクローナル抗体KM1730およびKM1750はヒト血管内皮細胞上のヒトVEGF受容体Flt-1を検出可能であることが明らかとなった。

14. VEGF刺激によるHUVEC上のFlt-1発現量の上昇

血管新生部位の血管内皮細胞のモデルとして、VEGFによる刺激前後でのヒトVE GF受容体Flt-1の発現の変動を抗ヒトVEGF受容体Flt-1モノクローナル抗体KM1730を用いて以下の手順に従い検討した。

4種のロット (lot. #4031, #4102, #2477, #4723; Clonetics社より購入)の HUVEC 4~6×10⁵個を、E-BM培地に5%ウシ胎児血清 (FBS)、ヒト組み換え型 上皮成長因子 (hEGF) 10ng/ml、ハイドロコーチゾン1μg/ml、ゲンタマイシン50μg/ml、アンファテリシンB 50ng/mlを添加した培地 (クラボウ社製) (コントロール培地) 20mlに懸濁し、さらに、増殖因子としてウシ脳抽出液 (BBE) (クラボウ社製) 1,2μg/mlを添加し、75cm²フラスコ (Sumilon社製) 中で37℃にて

2~3日間培養した。細胞が1~2×10⁶個まで増殖後、培地を除去し、新たにコントロール培地を20m1加えた後、合計2日間培養した。培養1日後、ヒトVEGFを終濃度で5 ng/m1加え、さらに1日間培養した細胞をVEGF刺激細胞とした。VEGFを添加せず2日間培養した細胞をコントロール細胞(VEGF非刺激細胞)とした。培養後、細胞を回収し、13. で述べた手法に従い、免疫細胞染色法にて抗ヒトVEGF受容体F11-1モノクローナル抗体KM1730の反応性を検討した。

ロット#2477HUVECとの反応性を検討した結果を図13に示す。KM1730はVEGF非刺激HUVECに反応するが、VEGF刺激HUVECにはより強く反応した。コントロール抗体 KM1135の反応性は、VEGF刺激、非刺激に関わらず変化しなかった。図14.には、4種のロット(10t.#4031,#4102,#2477,#4723)のHUVECにおけるFlt-1発現の VEGF刺激による変化を示した。KM1730の反応性を指標に表すことのできるFlt-1の発現量は、コントロール抗体の反応性を1とした相対的な値として示した。4種のロットのHUVECは全てVEGF非刺激時においてFlt-1を発現しているが、VEGF刺激 によりFlt-1の発現量が上昇することが示された。

新生血管のモデルであるVEGF刺激されたヒト血管内皮細胞HUVECにおいてF1t-1の発現量が上昇し、抗F1t-1モノクローナル抗体の反応性が上昇することは、当該モノクローナル抗体は、VEGFにより血管新生が促進され、病態が進行する腫瘍、慢性関節リュウマチ、糖尿病性網膜症のような疾患の診断、治療に有用であること示している。

産業上の利用可能性

本発明により、ヒト血管新生部の血管内皮細胞上に特異的に発現されていると考えられるヒトVEGF受容体Flt-1に特異的に結合するモノクローナル抗体が提供される。本発明のモノクローナル抗体は免疫細胞染色におけるヒト血管新生部の免疫学的検出、ヒトVEGFの生物活性の阻害による固形腫瘍の増殖、転移形成、慢性関節リュウマチにおける関節炎、糖尿病性網膜症、未熟児網膜症、乾鮮など異常な血管新生により病態が進行する疾患の診断あるいは治療に有用である。

【配列表】

配列番号:1

配列の長さ:23

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸 合成DNA

配列:

CGACAAACCA ATATAATCTA AGC 23

配列番号:2

配列の長さ:25

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸 合成DNA

配列:

GGCCGCTTAG ATTATATTGG TTTGT 25

配列番号:3

配列の長さ:21

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸 合成DNA

配列:

GGAATCTACA TTTGCATAGC T 21

配列番号:4

配列の長さ:33 配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸 合成DNA

配列:

TTATGCGGCC GCTTATCCTT GAACAGTGAG GTA

33

請求の範囲

- (1) ヒトVEGF受容体Flt-Iに特異的に反応するモノクローナル抗体。
- (2) ヒトVEGF受容体Flt-1のN末端アミノ酸(シグナル配列を含む)から $1 \sim 750$ 番目に存在するエピトープを認識する請求項1記載のモノクローナル抗体。
- (3) ヒトVEGF受容体Flt-1のN末端アミノ酸(シグナル配列を含む)から $1 \sim 338$ 番目に存在するエピトープを認識する請求項2記載のモノクローナル抗体。
- (4) 免疫細胞染色によりヒトVEGF受容体F1t-1に特異的に反応する請求項 $1 \sim 3$ から選ばれるモノクローナル抗体。
- (5) ヒトVEGFのヒトVEGF受容体Flt-1への結合を阻害し、かつヒトVEGFの 生物活性を阻害する請求項 $1\sim3$ から選ばれるモノクローナル抗体。
- (6) マウスIgG1サブクラスに属する請求項4記載のモノクローナル抗体 KM1730。
- (7) マウスIgG2aサブクラスに属する請求項4記載のモノクローナル抗体 KM1731。
- (8) マウスIgG1サブクラスに属する請求項4または5記載のモノクローナル抗体KM1732。
- (9) マウス[gG2bサブクラスに属する請求項4または5記載のモノクロー ナル抗体KM1748。
- (10) マウスIgG2bサブクラスに属する請求項4または5記載のモノクローナル抗体KM1750。
- (11) 請求項 6 記載のモノクローナル抗体を生産するハイブリドーマKM1730 (FERM BP-5697)。
- (12) 請求項7記載のモノクローナル抗体を生産するハイブリドーマKM1731 (FERM BP-5718)。
- (13) 請求項 8 記載のモノクローナル抗体を生産するハイブリドーマKM1732 (FERM BP-5698)。
 - (14) 請求項9記載のモノクローナル抗体を生産するハイブリドーマKM1748

(FERM BP-5699).

(15) 請求項10記載のモノクローナル抗体を生産するハイブリドーマ KM1750 (FBRM BP-5700)。

- (16) 請求項 $1\sim1$ 0記載のモノクローナル抗体を用いてヒトVEGF受容体 Flt-1を免疫学的に検出する方法。
- (17) 請求項 $1\sim1$ 0記載のモノクローナル抗体を用いてヒトVEGF受容体 Flt-1を細胞表面に発現した細胞を免疫学的に検出する方法。
- (18) 請求項 $1\sim 1$ 0 記載のモノクローナル抗体を用いて可溶性ヒトVEGF受容体F1t-1を免疫学的に検出および定量する方法。
- (19) 請求項 $1\sim5$ および $8\sim1$ 0 記載のモノクローナル抗体を用いてヒト VEGFとヒトVEGF受容体Flt-1との結合を阻害する方法。
- (20) 請求項 $1\sim5$ および $8\sim1$ 0記載のモノクローナル抗体を用いてヒト VEGFの生物活性を阻害する方法。

第 2 図

第 3 図

レーン

- 1. 分子量マーカー
- 2. Flt-1 (3N)
- 3. Flt-1 (7N)

第 4 図

4 / 1 2 替换页(细则第26条)

第 5 図

5/12

替换页(细则第26条)

第 6 図

5/1/12

替换页(细则第26条)

第 7 図

6 / 1 2 替换页(细则第26条)

第 8 図

7/12 替换页(细则第26条)

替换页(细则第26条)

第 10 図

1......

- 1. NIH3T3-FIt-1
- 2. NIH3T3-Neo

8/1/12

第 11 図

第 12 図

HUVEC

相対蛍光強度(抗体の反応性)

10/12 替换页(细则第26条)

第 13 図

1 1 / 1 2 替换页(细则第26条)

第 14 図

12/12

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP97/04259

	ASSIFICATION OF SUBJECT MATTER			
Int.	C16 C12P21/02, C12N15/06	, C12N5/16, C07K16/28,	A61K39/395,	
According	G01N33/53 to International Patent Classification (IPC) or to bot	h national classification and IPC		
	LDS SEARCHED			
Minimum d	ocumentation searched (classification system followed l			
Int.	C16 C12P21/02, C12N15/06 G01N33/53	, C12N5/16, C07K16/28,	A61K39/395,	
Documenta	tion searched other than minimum documentation to the	extent that such documents are included in the	ne fields searched	
	ata base consulted during the international search (name SIS (DIALOG)	e of data base and, where practicable, search t	terms used)	
C. DOCU	JMENTS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where	appropriate, of the relevant passages	Relevant to claim No.	
Х	Oncogene, Vol. 5, (1990) M. "Nucleotide Sequence and exhuman receptor-type tyrosis closely related to the fms	xpression of a novel ne kinase gene (flt)	1 - 20	
Y	Oncogene, Vol. 10, (1995) L. Seetharam et al. 1 - 20 "A unique signal transduction from FLT tyrosine kinase, a receptor for vascular endothelial growth factor VEGF" p. 135-147			
Y	Nature, Vol. 362, (1993) K. Jin Kim et al. "Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo" p. 841-844			
У	Science, Vol. 255, (1992) "The fms-Like Tyrosine Kin Vascular Endothelial Growt	ase, a Receptor for	5, 20	
X Furthe	er documents are listed in the continuation of Box C.	See patent family annex.		
"A" docume	categories of cited documents: nt defining the general state of the art which is not considered particular relevance	"T" later document published after the inter date and not in conflict with the applic the principle or theory underlying the	national filing date or priority ation but cited to understand invention	
"E" earlier d	locument but published on or after the international filing date	"X" document of particular relevance; the considered novel or cannot be considered.	claimed invention cannot be ered to involve an inventive	
	establish the publication date of another citation or othe reason (as specified) nt referring to an oral disclosure, use, exhibition or othe	"Y" document of particular relevance; the	claimed invention cannot be	
"P" docume	nt published prior to the international filing date but later than rity date claimed		e art	
Date of the a	octual completion of the international search	Date of mailing of the international sear	ch report	
Febr	ruary 12, 1998 (12. 02. 98)	February 24, 1998	(24. 02. 98)	
Name and mailing address of the ISA/		Authorized officer	· · · · · · · · · · · · · · · · · · ·	
_	nese Patent Office			
Facsimile No		Telephone No.		
orm PC1/IS/	A/210 (second sheet) (July 1992)			

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP97/04259

		101/0	1297/04259
C (Continu	ation). DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the rele	vant passages	Relevant to claim No
Y	Edited by Tamie Ando et al. "Manual fo Experiments on Monoclonal Antibody (in Japanese)" (Kodansha Scientific) 1991,	1 - 20	
Y	Cancer Res., Vol. 56, (1996) O. Melnyk "Vascular Endothelial Growth Factor Pr Tumor Dissemination by a Mechanism Dis from Its Effect on Primary Tumor Growt p. 921-924	tinct	5, 20
			*-

A. 発明の属する分野の分類(国際特許分類(IPC)) Int. C1 ⁶ C12P21/02, C12N 15/06, C12N5/16, C07K16/28, A61K39/395, G01N33/53					
B. 調査を行					
	しったガザ 最小限資料(国際特許分類(IPC))				
Int. C1° C12P21/02, C12N 15/06, C12N5/16, C07K16/28, A61K39/395, G01N33/53					
最小限資料以外	トの資料で調査を行った分野に含まれるもの				
国際調査で使用した電子データベース(データベースの名称、調査に使用した用語) BIOSIS(DIALOG)					
C. 関連する	ると認められる文献				
引用文献の			関連する		
カテゴリー*	引用文献名 及び一部の箇所が関連する。		請求の範囲の番号		
Y	Oncogene, 第5巻, (1990) Masabumi SI Sequence and expression of a nove tyrosine kinase gene(flt) closely p. 519-524	el human receptor-type	1-20		
Y	Oncogene,第10巻,(1995) L.Seethara transduction from FLT tyrosine ki vascular endothelial growth facto	nase, a receptor for	1-20		
X C欄の続き	きにも文献が列挙されている。	□ パテントファミリーに関する別	紙を参照。		
* 引用文献のカテゴリー 「A」特に関連のある文献ではなく、一般的技術水準を示すもの 「E」先行文献ではあるが、国際出願日以後に公表されたもの 「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献(理由を付す) 「O」口頭による開示、使用、展示等に言及する文献「P」国際出願日前で、かつ優先権の主張の基礎となる出願		の日の後に公表された文献 「T」国際出願日又は優先日後に公表された文献であって て出願と矛盾するものではなく、発明の原理又は理 論の理解のために引用するもの 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの 「&」同一パテントファミリー文献			
国際調査を完了した日 12.02.98		国際調査報告の発送日 24.02	98		
国際調査機関の名称及びあて先 日本国特許庁(ISA/JP) 郵便番号100-8915 特許庁審査官(権限のある職員) 田中 美奈子 印			4B 9359		
	B千代田区霞が関三丁目4番3号	電話番号 03-3581-1101	内線 3449		

	E PARTA EL TA CI	E SKEINSE S I CI / JI C	,, 04200
C (続き) .	関連すると認められる文献		
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときに	は、その関連する箇所の表示	関連する 請求の範囲の番号
Y	Nature,第362巻,(1993)K. Jin Kim et al. endothelial growth factor-induced angi tumour growth in vivo」p.841-844	5, 20	
Y	Science, 第255巻, (1992) Carlie de Vries Tyrosine Kinase, a Receptor for Vascul Factor」p. 989-991	5, 20	
Y	安東民衛他編「単クローン抗体実験マニュアル」 (講談社サイエン ティフィック) 1991 p. 8-84		1-20
Y	Cancer Res., 第56巻, (1996) O. Melnyk et Endothelial Growth Factor Promotes Tum Mechamism Distinct from Its Effect on p. 921-924	or Dissemination by a	5, 20
į			