Assessing Capability from an \overline{X} & R Chart

Data Science for Quality Management: Process Capability

with Wendy Martin

Learning objective:

Assess capability from an Xbar and R chart for data that is normally distributed

Capability of the Cartridge Bearing Production Process: Assess the Potential Capability of the Process

$$C_p = \frac{USL - LSL}{NT} = \frac{0.012}{0.01965} = 0.61085$$
 Where: NT' = 6σ

Capability of the Cartridge Bearing Production Process:

Assess the Potential Capability of the Process to Produce within Specification
$$C_{pk}U = \frac{USL - \mu}{3\sigma} \qquad \qquad C_{pk}U = 0.61163$$

$$C_{pk}U = \frac{USL - \mu}{3\sigma}$$

$$C_{pk}U = 0.61163$$

$$C_{pk}L = \frac{\mu - LSL}{3\sigma}$$

$$C_{pk}L = 0.61007$$

$$\begin{split} C_{pk} &= \min\left(C_{pk}U, C_{pk}L\right) & C_{pk} = 0.61007 \\ &\text{\# Calculate Cp using sig_est} \\ &\text{spcxbar.r$capability[2,1:4]} = 0.61007 \end{split}$$

Capability of the Cartridge Bearing Production Process: Assess the Potential Capability of the Process to Produce within Specification

$$C_{pm} = \frac{USL - LSL}{6\sqrt{\sigma^2 + (\mu - Nominal)^2}}$$

$$C_{pm} = 0.61085$$

Calculate Cp using sig_est
spcxbar.r\$capability[3,1:4] = 0.61085

Standard Deviation (s)

- When we use the overall s,
 - Cp -> Pp
 - Cpk -> Ppk
 - Cpm -> Ppm

Standard Deviation Overall

```
# Calculate overall standard
deviation
s<-sd(bearing$diameter)</pre>
```

```
= 0.003302562
```

Natural Tolerance using s

```
# Calculate the natural tolerance
# If normally distributed, this is
6*s
nt_s<-6*s = 0.01981537</pre>
```

Performance Measures - Pp

```
# Calculate Pp using s
spcxbar.r$capability[4,1:4]
= 0.60559
```

Performance Measures - Ppk

```
# Calculate Ppk using s
spcxbar.r$capability[5,1:4]
= 0.60481
```

Performance Measures - Ppm

```
# Calculate Ppm using s
spcxbar.r$capability[6,1:4]
= 0.60559
```

Generating Capability & Performance Indices

statistic	eq	n	value
Ср	=		0.61085
Cpk	=		0.61007
Cpm	=		0.61085
Рр	=		0.60559
Ppk	=		0.60481
Ppm	=		0.60559
Obs. n / PPM (lower)	=	4	30769.00000
Obs. n / PPM (upper)	=	1	7692.00000
Obs. n / PPM (total)	=	5	38461.00000
Pot. PPM (lower)	=		33610.00000
Pot. PPM (upper)	=		33260.00000
Pot. PPM (total)	=		66870.00000

Conclusions About the Bearing Cartridge Diameter Process

- The process is in control
- The process average is on target
- The target is centered between the specifications
- The process is not capable
- The capability problem is one of spread (dispersion), not location (central tendency)

Why Might the Dispersion Be Too Great?

 Will ordering the operating crew to reduce the piece-to-piece variability accomplish anything?

Control Limits and Specifications

Repeat after me . . .

"I will never draw specification limits on a control chart unless we are plotting individual values."

Specifications versus Control Limits on a Mean Chart

Specifications versus Control Limits on a Mean Chart with Individuals

Mean Chart - Diameter

Sources

The material used in the PowerPoint presentations associated with this course was drawn from a number of sources. Specifically, much of the content included was adopted or adapted from the following previously-published material:

- Luftig, J. An Introduction to Statistical Process Control & Capability. Luftig & Associates, Inc. Farmington Hills, MI, 1982
- Luftig, J. Advanced Statistical Process Control & Capability. Luftig & Associates, Inc. Farmington Hills, MI, 1984.
- Luftig, J. A Quality Improvement Strategy for Critical Product and Process Characteristics. Luftig & Associates, Inc. Farmington Hills, MI, 1991
- Luftig, J. Guidelines for Reporting the Capability of Critical Product Characteristics. Anheuser-Busch Companies, St. Louis, MO. 1994
- Spooner-Jordan, V. Understanding Variation. Luftig & Warren International, Southfield, MI 1996
- Luftig, J. and Petrovich, M. Quality with Confidence in Manufacturing. SPSS, Inc. Chicago, IL 1997
- Littlejohn, R., Ouellette, S., & Petrovich, M. Black Belt Business Improvement Specialist Training, Luftig & Warren International, 2000
- Ouellette, S. Six Sigma Champion Training, ROI Alliance, LLC & Luftig & Warren, International, Southfield, MI 2005