Regression Part II: Model Fit and Variable type/quantity PSC7475: Week 6

Prof. Weldzius

Villanova University

Slides Updated: 2025-02-24

Presidential Popularity and the Midterms

Presidential Popularity and the Midterms

• Does popularity of the president or recent changes in the economy better predict midterm election outcomes?

Name	Description		
year president	midterm election year name of president		
president	Democrat or Republican		
approval	Gallup approval rating at midterms		
rdi.change change in real disposable income over the year before midterms			
${\tt seat.change}{}{}$ change in the number of House seats for the president's party			

Loading the data:

```
library(tidyverse)
midterms <- read.csv("../data/midterms.csv")
head(midterms)</pre>
```

```
##
          president party approval seat.change rdi.change
    1946
               Truman
                           D
                                    33
                                                -55
                                                             NΑ
                                                            8.2
   2 1950
               Truman
                           D
                                    39
                                                -29
    1954 Eisenhower
                                    61
                                                            1.0
                           R.
                                                 -4
     1958 Eisenhower
                                    57
                                                -47
                                                            1.1
                           R.
   5 1962
              Kennedy
                           D
                                    61
                                                -4
                                                            5.0
              Johnson
                                                -47
   6 1966
                           D
                                    44
                                                            5.3
```

Fitting the Approval Model

```
fit.app <- lm(seat.change ~ approval, data = midterms)</pre>
fit.app
##
## Call:
## lm(formula = seat.change ~ approval, data = midterms)
##
## Coefficients:
## (Intercept) approval
## -96.845
                     1.424
```

Fitting the Income Model

```
fit.rdi <- lm(seat.change ~ rdi.change, data = midterms)
fit.rdi
##
## Call:
## lm(formula = seat.change ~ rdi.change, data = midterms)
##
## Coefficients:
## (Intercept) rdi.change
## -27.354
                     1.004
```

Comparing Models

- How well do the models "fit the data"?
 - How well does the model predict the outcome variable in the data?

Model Fit

- One number summary of model fit: R^2 or **coefficient of determination**.
 - Measure of the proportional reduction in error by the model.
- Prediction error compared to what?
 - Baseline prediction error: Total sum of squares

• TSS =
$$\sum_{i=1}^{n} (Y_i - \bar{Y})^2$$

Model prediction error: Sum of squared residuals

• SSR =
$$\sum_{i=1}^{n} \epsilon_i^2$$

- TSS SSR: reduction in prediction error by the model.
- R² is this reduction in error divided by the baseline error:

$$R^2 = \frac{\mathsf{TSS} - \mathsf{SSR}}{\mathsf{TSS}}$$

• Roughly: proportion of the variation in Y_i "explained by" X_i

Total sum of squares vs. Sum of squared residuals

Total sum of squares vs. Sum of squared residuals

Model Fit in R

• To access R^2 from the lm() output, use the summary() function:

```
fit.app.sum <- summary(fit.app)
fit.app.sum$r.squared</pre>
```

```
## [1] 0.4307133
```

• Compare to fit using change in income:

```
fit.rdi.sum <- summary(fit.rdi)
fit.rdi.sum$r.squared</pre>
```

```
## [1] 0.008529029
```

• Which does a better job predicting midterm election outcomes?

- Little hard to see what's happening in that example.
- Let's look at fake variables x and y:

$$fit.x \leftarrow lm(y \sim x)$$

• Very good model fit: $R^2 \approx 0.95$

Is R-squared useful?

• Can be very misleading. Each of these samples have the same R^2 even though they are vastly different:

Overfitting

- In-sample fit: how well your model predicts the data used to estimate it.
 - R^2 is a measure of in-sample fit.
- Out-of-sample fit: how well your model predicts new data.
- Overfitting: OLS optimizes in-sample fit; may do poorly out of sample.
 - Example: predicting winner of Democratic presidential primary with gender of the candidate.
 - Until 2016, gender was a **perfect** predictor of who wins the primary.
 - Prediction for 2016 based on this: Bernie Sanders as Dem. nominee.
 - Bad out-of-sample prediction due to overfitting!

Multiple Predictors (Multivariate Regression)

• What if we want to predict Y as a function of many variables?

$$\mathtt{seat.change}_i = \alpha + \beta_1 \mathtt{approval}_i + \beta_2 \mathtt{rdi.change}_i + \epsilon_i$$

- Better predictions (at least in-sample).
 - Better interpretation as ceteris paribus relationships:
 - β_1 is the relationship between approval and seat.change holding rdi.change constant.

Multiple regression in R

-120.436 1.572

```
mult.fit <- lm(seat.change ~ approval + rdi.change, data = midterms)
mult.fit

##
## Call:
## lm(formula = seat.change ~ approval + rdi.change, data = midterms)
##
## Coefficients:
## (Intercept) approval rdi.change</pre>
```

• $\hat{\alpha} = -120.4$: average seat change president has 0% approval and no change in income levels.

3.334

- $\hat{\beta}_1 = 1.57$: average increase in seat change for additional percentage point of approval, **holding RDI change fixed**
- $\hat{\beta}_1 = 3.334$: average increase in seat change for each additional percentage point increase of RDI, **holding approval fixed**

Least squares with multiple regression

- How do we estimate the coefficients?
- The same exact way as before: minimize prediction error!
- Residuals (aka prediction error) with multiple predictors:

$$\hat{\epsilon_i} = \mathtt{seat.change}_i - \hat{lpha} - \hat{eta}_1 \mathtt{approval}_i - \hat{eta}_2 \mathtt{rdi.change}_i$$

 Find the coefficients that minimizes the sum of the squared residuals:

$$SSR = \sum_{i=1}^{n} \hat{\epsilon_i^2} = (Y_i - \hat{\alpha} - \hat{\beta_1} X_{i1} - \hat{\beta_2} X_{i2})^2$$

Model fit with multiple predictors

- \bullet R^2 mechanically increases when you add a variables to the regression.
 - But this could be overfitting!!
- Solution: penalize regression models with more variables.
 - Occam's razor: simpler models are preferred
- Adjusted R^2 : lowers regular R^2 for each additional covariate.
 - If the added covariates don't help predict, adjusted R^2 goes down!

Comparing Model Fits

```
summary(fit.app)$r.squared

## [1] 0.4307133

summary(mult.fit)$r.squared
```

```
## [1] 0.4448387
```

```
summary(mult.fit)$adj.r.squared
```

```
## [1] 0.3655299
```

Binary and Categorical Predictors

- Political effects of government programs
 - Progesa: Mexican conditional cash transfer program (CCT) from c. 2000
 - Welfare \$ given if kids enrolled in schools, get regular check-ups, etc.
 - Do these programs have political effects?
 - Program had support from most parties.
 - Was implemented in a nonpartisan fashion.
 - Would the incumbent presidential party be rewarded?

The Data

- Randomized roll-out of the CCT program:
 - treatment: receive CCT 21 months before 2000 election
 - control: receive CCT 6 months before 2000 election
 - Does having CCT longer mobilize voters for incumbent PRI party?

Name	Description
treatment pri2000s t2000	early Progresa (1) or late Progresa (0) PRI votes in the 2000 election as a share of adults in precinct turnout in the 2000 election as share of adults in precinct

```
cct <- read.csv("../data/progresa.csv")</pre>
```

Difference in Means Estimates

Does CCT affect turnout?

```
cct.turn.ate <- cct %>% group_by(treatment) %>%
  summarize(t2000_mean = mean(t2000)) %>%
  pivot_wider(names_from = treatment, values_from = t2000_mean) %>%
  mutate(turnout_ate = `1` - `0`)
cct.turn.ate$turnout_ate
```

```
## [1] 4.269676
```

Does CCT affect PRI (incumbent) votes?

```
cct.pri.ate <- cct %>% group_by(treatment) %>%
  summarize(pri2000s_mean = mean(pri2000s)) %>%
  pivot_wider(names_from = treatment, values_from = pri2000s_mean) %>%
  mutate(pri_ate = `1` - `0`)
cct.pri.ate$pri_ate
```

```
## [1] 3.622496
```

Binary independent variables

$$Y_i = \alpha + \beta X_i + \epsilon_i$$

- When independent variable X_i is binary:
- Intercept α is the average outcome in the X=0 group.
- Slope β is the difference-in-means of Y between X=1 group and X=0 group.

$$\hat{\beta} = \bar{Y}_{treated} - \bar{Y}_{control}$$

• If there are other independent variables, this becomes the difference-in-means controlling for those covariates.

Linear regression for experiments

• Under **randomization**, we can estimate the ATE with regression:

```
cct.turn.ate <- cct %>%
  group_by(treatment) %>%
  summarize(t2000_mean = mean(t2000)) \%\%
 pivot_wider(names_from = treatment, values_from = t2000_mean) %>%
 mutate(turnout_ate = `1` - `0`)
cct.turn.ate$turnout_ate
## [1] 4.269676
lm(pri2000s ~ treatment, data = cct)
##
## Call:
## lm(formula = pri2000s ~ treatment, data = cct)
##
## Coefficients:
   (Intercept) treatment
        34 489
                      3 622
```

Categorical variables in regression

- We often have categorical variables:
 - Race/ethnicity: white, Black, Latino, Asian.
 - Partisanship: Democrat, Republican, Independent
 - Strategy for including in a regression: create a series of binary variables

Unit	Party	Democrat	Republican	Independent
1	Democrat	1	0	0
2	Democrat	1	0	0
3	Independent	0	0	1
4	Republican	0	1	0
:	<u>:</u>	į	:	÷

• Then include all but one of these binary variables:

 $turnout_i = \alpha + \beta_1 \text{Republican}_i + \beta_2 \text{Independent}_i + \epsilon_i$

Interpreting categorical variables

$$turnout_i = \alpha + \beta_1 \text{Republican}_i + \beta_2 \text{Independent}_i + \epsilon_i$$

- $\hat{\alpha}$: average outcome in the **omitted group/baseline** (Democrats).
- $\hat{\beta}$ coefficients: average difference between each group and the baseline.
 - \hat{eta}_1 : average difference in turnout between Republicans and Democrats
 - $\hat{\beta}_2$: average difference in turnout between Independents and Democrats