MATH 305:201, 2020W T2

Homework set 2 — due January 29

Problem 1. Prove the following identities and bounds:

1.
$$\overline{z+w} = \overline{z} + \overline{w}$$

$$2. \ \overline{zw} = \overline{z} \, \overline{w}$$

3.
$$|\overline{z}| = |z|$$

4.
$$|\text{Re}(z)| \le |z|$$
, $|\text{Im}(z)| \le |z|$

5.
$$|z+w|^2=|z|^2+|w|^2+2{\rm Re}(z\overline{w})$$
 (Hint: Recall that $|\zeta|^2=\zeta\overline{\zeta}$)

6. Combine the above two results to derive the triangle inequality:

$$|z + w| \le |z| + |w|,$$

valid for any $z, w \in \mathbb{C}$.

7. Deduce the inequality $|z - w| \ge ||z| - |w||$.

Problem 2. Derive the following trigonometric identities using the complex exponential:

(i)
$$\sin(3\theta) = 3\cos^2(\theta)\sin(\theta) - \sin^3(\theta)$$
,

(ii)
$$\sin(\theta - \psi) = \sin(\theta)\cos(\psi) - \cos(\theta)\sin(\psi)$$
.

Problem 3. Sketch the domain $\Omega \subset \mathbb{C}$ and its image $f(\Omega)$ under the mapping f:

1.
$$\Omega = \{z \in \mathbb{C} : |z| < 1 \text{ and } \operatorname{Im}(z) > 0\} \text{ and } f(z) = 2e^{i\pi/2}z + (2+2i)$$

2.
$$\Omega = \{z \in \mathbb{C} : -1 < \operatorname{Im}(z) < 1\}$$
 and $f(z) = e^{\pi z/2}$

3.
$$\Omega = \{z \in \mathbb{C} : \operatorname{Re}(z) > 0\}$$
 and $f(z) = (z-1)/(z+1)$

Problem 4. Let $\Omega \subset \mathbb{C}$ be a domain and let $f \in H(\Omega)$.

- 1. Assume that f is real-valued. Show that f is constant on Ω .
- 2. Assume now that both $f, \overline{f} \in H(\Omega)$. Show that f is constant on Ω .

Problem 5. Use the Cauchy-Riemann equations to show that the functions below are entire and compute their derivative:

1.
$$f: \mathbb{C} \to \mathbb{C}$$
 given by $f(x+iy) = e^{-2xy} \left(\cos(x^2-y^2) + i\sin(x^2-y^2)\right)$

2.
$$g: \mathbb{C} \to \mathbb{C}$$
 given by $g(z) = (1/2) \left(e^{iz} + e^{-iz} \right)$