Space Y Előzetes tervfelülvizsgálat

2024. november 13.

Tartalomjegyzék (kötelező)

1. A csapat bemutatása	3
2. Ütemterv	3
3. A küldetések áttekintése	3
4. Kockázatok, várható nehézségek	3
5. Mechanikai - szerkezeti tervezés	3
6. Elektromos tervezés 6.1 Általános felépítés 6.2 A másodlagos küldetés eszközei 6.3 Energiaellátás 6.4 Kommunikációs rendszer	4 4 4 4
7. Szoftver	4
8. Visszatérési rendszer	5
9. Földi állomás (ground station)	5
10. Ismeretterjesztés, kommunikáció (outreach)	5

1. A csapat bemutatása

Mi az V. kerületi Eötvös József Gimnázium diákjai vagyunk a 10.D. 10.C és 9. E osztályokból. Mentorunk Holicsné Csejk Gabriella, aki segít nekünk ha a projekt megvalósításával kapcsolatban van kérdésünk.

Balás László Márton - csapatvezető

Csapat munkájának vezetője. A projekt fizikai megvalósíthatóságáért felel.

Simon Nimród - szoftverszakértő

Feladata a CanSat programozása, a szenzorokból az információ kinyerése és mentése a fedélzetre.

Benedek Kalmár - hardverszakértő

Saját Arduino-s projektjeivel jártas a szenzorok és áramkörök világában. A projektben a feladata az hardveres elektronika kivitelezése.

Horváth Maja - mérnök

Feladata a papírforma gyakorlatba ültetése.

Katona Salamon - 3D modellező

Feladata a CanSat szerkezetének megtervezése 3D-ben.

2. Ütemterv

Feladat	Vég	2024					2025										
reiduat	Kezdet	veg	11/ 11	11/ 21	12/ 1	12/ 11	12/ 21	12/ 31	1/ 10	1/ 20	1/ 30	2/ 9	2/ 19	3/ 1	3/ 11	3/ 21	3/ 31
	2024-11-	2025-															
Teljes verseny	13	04-01															
	2024-11-	2025-															
1. Szakasz	13	01-13															
	2025-01-	2025-															
2. Szakasz	03	02-20															
	2025-02-	2025-															
3. Szakasz	9	04-01															

GANTT Táblázat

Az ütemtervünk 3 szakaszra tagolódik:

- Az 1. szakaszban megépítjük és külön külön teszteljük a fő elemek prototípusait. A végére azt akarjuk elérni, hogy össze tudjuk rakni az első teljes CanSat prototípust.
- A 2. szakaszban a teljes CanSat prototípusokat akarjuk tesztelni és fejleszteni. Ennek a szakasznak az a célja, hogy a végére minden elem működjön együtt a CanSat-ben és hogy már egy akár kilövésre kész verziónk legyen. A CDR ekkora már majdnem kész lesz.
- A 3. szakasz a végső simítások és optimalizálások alkalma. A szakasz fő célja a PLR és magára a kilövésre a felkészülés.

3. A küldetések áttekintése

- 1. Elsődleges küldetése
 - a. A légnyomást és a hőmérsékletet is a kezdőszettből kapott légnyomás és hőmérővel fogjuk mérni.
- 2. A másodlagos küldetések, amiket a CanSat-en elvégzünk két dolgot szeretnének mérni:
 - a. Azt, hogy a sebesség tényleg állandó lesz az ejtőernyő kinyitása után és hogy ez a sebesség ténylegesen megfelel az elvártaknak(8. Visszatérési rendszer). Ezt egy accelero méterrel mérnénk. Ezzel bizonyítanak $mg = \frac{1}{2} \times \rho \times C_d \times A \times v^2$ összefüggést. A CanSat helyzetét is szeretnénk rögziteni a GPS-en, hogy meg tudjuk találni landolás után és hogy útját is vissza lehessen majd nézni.
 - b. Azt is meg szeretnénk figyelni, hogy az űrben valóban nem terjed a hang. Ehhez hogy egy mikrofont és egy hangszórót is bele építünk a cansatbe. Miért is kell hangszóró, azért kell, hogy biztosan legyen egy hangforrás.
 - c. A küldetés változtatás jogát fent szeretnénk tartani, elsősorban egy biológiai kísérlet számára.

4. Kockázatok, várható nehézségek

E projekt megvalósításához számos ismerettel rendelkezünk, (mint a programozás, a 3D tervezés vagy a nyomtatás,) viszont a megvalósításhoz néhány akadállyal meg kell a küzdenünk:

Probléma	Megoldás				
Szerteágazó feladatok Még nem foglalkoztunk ilyen szinten interdiszciplináris projekttel.	 A szervezés nagy része a GitHub segítségével történik. Itt A kódunkat egységesen tudjuk tárolni, Ha bármelyikünk elveszne, a ReadMe segít eligazodni, A GitHub projektünkön belül mindig nyomonkövethetjük a feladatokat és határidőket, A projekten belül egyénre leosztva látjuk, ki hogyan halad a feladataival, így látjuk, ha valamelyikünk segítségre szorul. 				
Rádiókommunikáció korábban egyikünk sem foglalkozott rádiókommunikációval.	Tanulás terén rugalmasak vagyunk, így bármilyen ismeretlen terület csínját-bínját szívesen elsajátítjuk. (Illetve könnyen kérünk segítséget ismeretségi körből.)				

<u>Vázanyaq</u>

Korábban már használtunk 3D nyomtatót, viszont számunkra kérdéses az anyag strapabírása. Attól tartunk, hogy a váz érkezéskor sérülhet. A váz képességeit tesztelésnek vetjük alá, hogy szükség esetén ezeket korrigálhassuk.

Váratlan problémák

Nem vagyunk jósok, így könnyen elképzelhetőnek tartjuk, hogy éles helyzetben váratlan problémákkal kell szembenéznünk. A versenyhelyzetet tesztelések során minél pontosabban szeretnénk szimulálni a kellemetlenségek elkerülése érdekében.

5. Mechanikai - szerkezeti felépítés

A cansatünk felépítésének a <u>vázlatos</u> modellje a képeken láthatóak. A modellek pontosak, de még közel sem véglegesek!

Ami látható a jelenlegi terveken:

- A jobb oldali szürke elem a cansat megvédéséért felelős. Ehhez kapcsolódik az ejtőernyő is.
- A bal oldali fekete elem a jobb oldali elembe illeszkedik bele és ez tartalmazza az elektronikát és a műszereket-> a terepen pillanatok alatt hozzá lehet férni az egyes alkatrészekhez, ha cserélni kéne valamit.

Ami még fejlesztés alatt van:

- A. A rádiónak valo nyílás a bal oldali elemen
- B. A két elemet egymásba záró szerkezet
- C. Az elektronikának az elhelyezkedése a cansatben valamint az ezek rögzítésére szolgáló elemek.

6. Elektronikai felépítés

6.1 Általános felépítés

Raspberry Pi Pico

A CanSat agyát egy Raspberry Pi Pico számítógép képezi. Az elsődleges küldetés végrehajtásához szükséges méréseket egy BMP280 Hő- és légnyomásmérő fogja végezni. Az Ublox NEO-6M — GPS modul lesz a helymeghatározó rendszerünk fő eleme. A másodlagos küldetésekhez egy accelerometer-t fogunk használni és egy mikrofon plusz passive buzzer kombót. A rádiókommunikációhoz egy-egy AiThinker Ra-01 — LoRa adó-vevő modul-t a földön és a fedélzeten is. A CanSat által rögzített adatok az USB porton keresztül csatlakoztatott pendrive-on lesznek tárolva.

6.2 A másodlagos küldetés

A másodlagos küldetés során a sebességet egy gyorsulásmérővel és hang terjedését egy mikrofon segítségével tervezzük vizsgálni. A CanSat-be egy GPS vevő modult is beépítünk, hogy folyamatosan nyomon követhessük földrajzi helyzetét a landolásig.

Landolás során azt vizsgáljuk, hogy a <u>8. Visszatérési rendszer</u>ben helyesek-e a számításaink, mely szerint a CanSat közel 9,003 m/s-os állandó sebességgel fog földet érni.

Annak érdekében, hogy biztosak lehessünk abban, hogy van hang, egy <u>passive buzzer</u> használatával egyszerű hangot tervezünk lejátszani. Mivel a CanSat csak 1 km magasságba lesz fellőve, eredményként azt várjuk, hogy a mikrofon a passive buzzer hangkimenetét veszi fel.

6.3 Energiaellátás

Az alábbiakban bemutatjuk a CanSat energiafogyasztásával kapcsolatos becsléseinket.

50mAh + 90mAh + 30mAh + 45mAh + 1mAh + 1mAh = 220mAh

Ahhoz hogy a CanSatünknek legalább 4-óráig legyen energia ellátása kell nekünk egy legalább 880 mAh-s akkumulátor.

$$220mAh \times 4 = 880mAh$$

1200mA-s Li-Ion elemekkel akarjuk fedezni a CanSet fedélzeti energia szükségleteit. 1200mAh-val akár több mint 5 óraig tudnánk bekapcsolva tartani a CanSat-et.

$$\frac{1200mAh}{220mAh} = 5,45h$$

6.4 Kommunikációs rendszer

AiThinker Ra-01 - LoRa adó-vevő modul

A CanSat és a földi állomás között egyirányú kapcsolatot szeretnénk létrehozni, vagyis nem fogunk a földről adatokat küldeni. AiThinker Ra-01 – LoRa adó-vevő modult használnánk, amelynek előre csatlakoztatott antennája van. Mi azért választottuk a LoRa modult, mert nagy távolságban képes információtovábbításra. Terveink szerint a mért légnyomási és hőmérsékleti adatok, illetve a GPS modul által mért adatok kerülnek továbbításra a 433 MHz-es frekvencián.

7. Szoftver

A CanSat-unkat MicroPython nyelven tervezzük programozni. A kód a belső flash memórián kerül raktározásra, a gyűjtött adatokat pedig egy külső egységen tároljuk, melyet az USB porton csatlakoztatunk a Raspberry-hez.

A fejlesztői környezet változó, ugyanis a kódunkat GitHub segítségével közösen tudjuk szerkeszteni. Csapatunk elsősorban Visual Studio Code-ot használ.

8. Visszatérési rendszer

A képlet amivel dolgoztunk:

$$mg = \frac{1}{2} \times C_d \times \rho \times A \times v^2$$

Jel:	Mit jelent:	Értéke:
m	Cansat tömege	0,350kg
C _d	ernyő légellenállási együtthatója	0,75
V _{max}	maximális sebesség	11 m/s
V _{min}	minimális sebesség	8 m/s
ρ	légsűrűség	1,255 kg/m³
g	gravitációs gyorsulás	9,81 m/s ²

az ejtőernyő méretei

Ezekből az adatokból meg tudjuk állapítani az ejtőernyőnek a felületét a minimális és maximális sebesség értékre nézve: $A=\frac{2mg}{C_{.0}\rho v^2}$

 V_{max} esetén A_{max} , V_{min} esetén A_{min} lesz a felület, az előző egyenlettel kiszámolva:

 $A_{max} \approx 0,0603 \, m^2 \, {
m míg} \, A_{min} \approx 0,1140 \, m^2.$ A mi CanSetünkön az ejtőernyő A=0,09m²-es lesz.

Ezzel a felülettel a sebesség: $v=\sqrt{\frac{2mg}{C_d\rho A}}$, a képletet felhasználva v=9,003 m/s

Ezzel a sebességgel 1000m-ről 111mp alatt fog földre érni, ha nem tekintjük az elején a gyorsulási szakaszt.

Az ernyő egy nyolcszög alakú lapos ernyő lesz.

Az ejtőernyőt a vázhoz kapcsoló kötél hossza és annak kiszámítása az <u>alábbi linken</u> található.

9. Földi állomás (ground station)

Yagi-Uda antenna

A földi állomáson ugyanazt a LoRa-t használnánk, mint amit a <u>6.4 Kommunikációs</u> rendszerben. Az állomás úgy fog kinézni, hogy a LoRa-t összekötjük egy Raspberry Pi 3 Model B+ számítógéppel, amely az információkat továbbítja a központi laptophoz. A jeleket egy Uda Yagi típusú antennával szeretnénk befogadni.

10. Ismeretterjesztés, kommunikáció (outreach)

A munkafolyamatok közben <u>GitHub</u>-on és <u>Youtube</u>-on fogjuk dokumentálni a projekt menetét, a különféle teszteket és felmerülő akadályokat, azok átlépését és egyéb fontos részleteket. A projekt befejeztével a kapott adatokat és eredményeket elemeznénk, majd mindenki számára online hozzáférhetővé tennénk, ha olyan versenyre megyünk, ahol ezen eredmények hasznát vehetjük, használni fogjuk őket.