نمونه سوالات امتحان ميان ترم درس شبكه

- ا فرض کنید دو فرستنده از سیستم DSSS برای ارسال همزمان سیگنال خود به DSSS برای ارسال همزمان سیگنال خود به 10 بیتی 10 استفاده می کنند. اگر فرستنده اول الگوی 01 را با کد 101100101 و فرستنده دوم الگوی بیتی خواهد را با کد 011011010 ارسال کنند، آنچه بر روی خط قابل مشاهده است، چه الگوی بیتی خواهد بود؟ با این الگوی بیتی سیگنال فرستنده دوم در مقصد به چه صورت استخراج می گردد؟
 - ۲ الف) تفاوتهای شبکه های Packet Switch و Circuit Switch را بیان کنید.
- ب) مفاهیم Connection-less و Connection Oriented با دو مفهوم فوق چه تفاوتی دارند؟ ج) فرض کنید پهنای باند خروجی یک روتر 1Mbps است. اگر کاربرانی داشته باشیم که به طور متوسط به 100Kbps نرخ انتقال نیاز داشته باشند و تنها در ۲۰ درصد زمانها فعال باشند، به عنوان طراح شبکه در هر یک مدلهای ذکر شده در بند الف، چند کاربر را پذیرش خواهید کرد؟
- د) فرض کنید نرخ انتقال روی کلیه لینکهای بین یک مبدا و مقصد با 8 گره میانی 8 است. اگر اندازه بسته برابر 1 بیت باشد و نرخ خطای بیتی در هر لینک برابر با BER در نظر گرفته شود، با فرض اینکه در صورت وجود خطا در بسته در ارسال مجدد حتما آن بسته به مقصد خواهد رسید، زمان انتقال مورد انتظار بسته را تا مقصد محاسبه کنید.
- ۳ الف) انواع تاخیر را نام برده و هر کدام را به طور مختصر شرح دهید. ب) رابطه بین تاخیر و میزان ترافیک ورودی و خروجی یک مسیریاب را با رسم نمودار مناسب توصیف کنید
- ج) پیشنهاد شما برای جلوگیری از ایجاد تاخیرهای طولانی در صف ورودی مسیریابها چیست؟ فرض کنید یک سازمان از شما به عنوان یک کارشناس امنیت در حوزه حملات DDoS مشاوره در حوزه تست نفوذ را درخواست دارد. رویکرد شما در انجام تست نفوذ حملات DDoS چه خواهد بود؟ در هر مرحله چه مواردی را تست می کنید؟
- الف) فرض کنید که یک سازمان برای جلوگیری از دریافت مکرر فایلها از اینترنت یک سیستم AMB و 4MB را راهاندازی نموده است. اگر اندازه اشیا درخواستی کاربران به طور متوسط برابر باشند، نرخ ارسال درخواست برابر با ۱۰ درخواست در ساعت باشد و ۶۰٪ درخواستها نیز تکراری باشند، میزان صرفهجویی در ترافیک اینترنت را در یک روز کاری ۸ ساعته محاسبه کنید. (از ترافیک ایجاد شده در ارسال درخواست صرف نظر کرده و صرفا ترافیک مورد استفاده در دانلود یک شی از اینترنت را لحاظ نمایید)
- ب) مسئله بالا را در شرایطی محاسبه کنید که ٪۳۰ درخواستهای ارجاعی به Cache Server به اشیایی باشند که بر روی وب سرور اصلی دچار بهروز رسانی شده اند.

پیغام "Hello World!" را در نظر بگیرید. این پیغام را از طریق سیستم کدگذاری Base64 ارسال در قالب یک پیغام SMTP ارسال کنید. از جدول ذیل برای تبدیل کارکترها به کدهای ASCII استفاده کنید.

ASCII TABLE

Decimal	Hexadecimal	Binary	0ctal	Char	Decimal	Hexadecimal	Binary	0ctal	Char	Decimal	Hexadecimal	Binary	0ctal	Char
0	0	0	0	[NULL]	48	30	110000	60	0	96	60	1100000	140	`
1	1	1	1	[START OF HEADING]	49	31	110001	61	1	97	61	1100001	141	a
2	2	10	2	[START OF TEXT]	50	32	110010	62	2	98	62	1100010	142	b
3	3	11	3	[END OF TEXT]	51	33	110011		3	99	63	1100011		c
4	4	100	4	[END OF TRANSMISSION]	52	34	110100	64	4	100	64	1100100	144	d
5	5	101	5	[ENQUIRY]	53	35	110101		5	101	65	1100101		е
6	6	110	6	[ACKNOWLEDGE]	54	36	110110		6	102	66	1100110		f
7	7	111	7	[BELL]	55	37	110111		7	103	67	1100111	147	g
8	8	1000	10	[BACKSPACE]	56	38	111000		8	104	68	1101000		h
9	9	1001	11	[HORIZONTAL TAB]	57	39	111001		9	105	69	1101001		i
10	Α	1010	12	[LINE FEED]	58	3A	111010		:	106	6A	1101010		i .
11	В	1011	13	[VERTICAL TAB]	59	3B	111011		;	107	6B	1101011		k
12	С	1100	14	[FORM FEED]	60	3C	111100		<	108	6C	1101100		i .
13	D	1101	15	[CARRIAGE RETURN]	61	3D	111101		=	109	6D	1101101		m
14	E	1110	16	[SHIFT OUT]	62	3E	111110		>	110	6E	1101110		n
15	F	1111	17	[SHIFT IN]	63	3F	111111		?	111	6F	1101111		0
16	10	10000	20	IDATA LINK ESCAPEI	64	40	1000000		@	112	70	1110000		р
17	11	10001	21	[DEVICE CONTROL 1]	65	41	1000001	101	Ā	113	71	1110001	161	q
18	12		22	[DEVICE CONTROL 2]	66	42	1000010		В	114	72	1110010		r
19	13	10011	23	IDEVICE CONTROL 31	67	43	1000011		С	115	73	1110011		s
20	14	10100	24	[DEVICE CONTROL 4]	68	44	1000100	104	D	116	74	1110100	164	t
21	15	10101	25	[NEGATIVE ACKNOWLEDGE]	69	45	1000101		E	117	75	1110101		u
22	16		26	[SYNCHRONOUS IDLE]	70	46	1000110		F	118	76	1110110		v
23	17	10111	27	[ENG OF TRANS. BLOCK]	71	47	1000111		G	119	77	1110111		w
24	18	11000	30	[CANCEL]	72	48	1001000		н	120	78	1111000		X
25	19	11001	31	[END OF MEDIUM]	73	49	1001001		i i	121	79	1111001		у
26	1A	11010	32	[SUBSTITUTE]	74	4A	1001010	112	j	122	7A	1111010		z
27	1B	11011	33	[ESCAPE]	75	4B	1001011		K	123	7B	1111011		{
28	1C	11100	34	[FILE SEPARATOR]	76	4C	1001100	114	L	124	7C	1111100	174	ř.
29	1D	11101	35	[GROUP SEPARATOR]	77	4D	1001101	115	M	125	7D	1111101	175	}
30	1E	11110	36	[RECORD SEPARATOR]	78	4E	1001110		N	126	7E	1111110		~
31	1F	11111	37	[UNIT SEPARATOR]	79	4F	1001111	117	0	127	7F	1111111	177	[DEL]
32	20	100000	40	[SPACE]	80	50	1010000	120	P					
33	21	100001	41	1	81	51	1010001	121	Q					
34	22	100010	42		82	52	1010010	122	R					
35	23	100011	43	#	83	53	1010011	123	S					
36	24	100100	44	\$	84	54	1010100	124	T					
37	25	100101	45	%	85	55	1010101	125	U					
38	26	100110	46	&	86	56	1010110	126	V					
39	27	100111	47	1	87	57	1010111	127	w					
40	28	101000	50	(88	58	1011000	130	X					
41	29	101001)	89	59	1011001		Υ					
42	2A	101010		*	90	5A	1011010		Z					
43	2B	101011		+	91	5B	1011011		[
44	2C	101100		,	92	5C	1011100		Ň					
45	2D	101101		-	93	5D	1011101		i					
46	2E	101110			94	5E	1011110		^					
47	2F	101111		1	95	5F	1011111		_					

- ۷ الف) فرض کنید نرخ انتقال در downlink بر روی هر سیستم دو برابر uplink باشد. اگر نرخ انتقال AClient برابر 3Mbps باشد و اندازه فایل جهت توزیع بر روی کلیه Client و سرور برابر 1000Mbps باشد و اندازه فایل جهت توزیع بر روی کلیه Client در نظر گرفته شود، نمودار زمان توزیع (Distribution Time) برای دو مدل P2P برای تعداد Client برابر ۵، ۱۰، ۱۵ و ۲۰ رسم کنید.
- ب) از این نمودار چه مشاهداتی قابل حصول است؟ الف) نحوه دسترسی به سرورهای CDN را به کمک سرویس DNS در قالب یک سناریو تشریح کنید.
 - ب) برای بهبود ارتباط با سرورهای CDN چه راه حل هایی وجود دارد؟
- ج) در ارتباط بین Name Server های Primary و Secondary چه مواردی در سرویس DNS باید پیکربندی شود.
 - د) مفهوم Netmask Ordering در سرویس کا کیست؟
 - ۹ الف) مفهوم Multiplexing را در لایه transport بیان کنید.
 - ب) چه تفاوتهایی بین Multiplexing در UDP و TCP وجود دارد.

ج) با ذکر یک نمونه نشان دهید مکانیزم Checksum در UDP می تواند با خطا همراه گردد.

د) تفاوتهای TCP و UDP را در حوزههای مکانیزمهای ارتباطات با قابلیت اطمینان، کنترل جریان و کنترل ازدحام بیان کنید. با این شرایط UDP را مناسب چه سناریوهایی میدانید؟

ه) سرویسهای TCP و UDP در چه مواردی پاسخگوی نیاز برنامه های کاربردی نیستند؟