Universidade Federal de Santa Catarina EEL5105: Circuitos e Técnicas Digitais

Semestre: 2020-2 Exercícios-extra aula 8

Matrículas Pares

Questão 1: Considere o diagrama de estados da figura abaixo, onde cada estado é codificado com três bits. Projete o circuito associado usando apenas um registrador de três bits sem set/reset, portas lógicas de duas entradas que evite as situações de bloqueio para os estados **não definidos** (não pode usar Multiplexadores para evitar os bloqueios). Apresente o diagrama de estados obtido mostrando as transições entre os 8 estados.

Uma das possíveis soluções é:

Q2	Q1	Q0	D2	D1	D0	
0	0	0	0	1	1	
0	0	1	1	1	0	
0	1	1	1	0	0	
0	1	0	1	1	1	
1	1	0	1	1	1	
1	1	1	0	0	0	
1	0	1	1 1		0	
1	0	0	1	0	1	

Questão 2: Para o circuito sequencial da figura acima, projete o diagrama de estados usando a abordagem de engenharia reversa.: [1 ponto]

$$F = q1' + q0'$$
 $Q1 = q1q0 + Bq0 + A'q1$
 $Q0 = q1 q0 + Aq0' + B'q0$

q1	q0	Α	В	Q1	Q0	F
0	0	0	0	0	0	1
0	0	0	1	0	0	1
0	0	1	0	0	1	1
0	0	1	1	0	1	1
0	1	0	0	0	1	1
0	1	0	1	1	0	1
0	1	1	0	0	1	1
0	1	1	1	1	0	1
1	0	0	0	1	0	1
1	0	0	1	1	0	1
1	0	1	0	0	1	1
1	0	1	1	0	1	1
1	1	0	0	1	1	0
1	1	0	1	1	1	0
1	1	1	0	1	1	0
1	1	1	1	1	1	0

A' 00 A	B' 01	A' 10	11
1	1	1	0

Matrículas Ímpares

Questão 1: Considere o diagrama de estados da figura abaixo, onde cada estado é codificado com três bits. Projete o circuito associado usando apenas um registrador de três bits sem set/reset, portas lógicas de duas entradas que evite as situações de bloqueio para os estados **não definidos** (não pode usar Multiplexadores para evitar os bloqueios). Apresente o diagrama de estados obtido mostrando as transições entre os 8 estados. [1 ponto]

Questão 1: Considere o diagrama de estados da figura abaixo, onde cada estado é codificado com três bits. Projete o circuito associado usando apenas um registrador de três bits sem set/reset, portas lógicas de duas entradas que evite as situações de bloqueio para os estados **não definidos** (não pode usar Multiplexadores para evitar os bloqueios). Apresente o diagrama de estados obtido mostrando as transições entre os 8 estados.

Uma das possíveis soluções é:

Q2	Q1	Q0	D2	D1	D0
0	0	0	1	1	1
0	0	1	1	0) 0
0	1	1	0	0	0
0	1	0	0	0	0
1	1	0	1	0	1
1	1	1	1	1	0
1	0	1	1	0	0
1	0	0	0	1	(1)

Questão 2: Para o circuito sequencial da figura acima, projete o diagrama de estados usando a abordagem de engenharia reversa.: [1 ponto]

$$F = q1 q0$$
 $Q1 = q1 q0 + q0 B + A' q1$

$$Q0 = B'q0 + A q0' + AB$$

q1	q0	Α	В	Q1	Q0	F
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	0	1	0	0	1	0
0	0	1	1	0	1	0
0	1	0	0	0	1	0
0	1	0	1	1	0	0
0	1	1	0	0	1	0
0	1	1	1	1	0	0
1	0	0	0	1	0	0
1	0	0	1	1	0	0
1	0	1	0	0	1	0
1	0	1	1	0	1	0
1	1	0	0	1	1	1
1	1	0	1	1	1	1
1	1	1	0	1	1	1
1	1	1	1	1	1	1