Priyanshu Bhath D-30

$$T(n) = 3T(n/2) + n^{2}$$

$$C = dog_{1}^{3} = 1.58$$

$$n^{2} = n^{1.58}$$

$$ed n^{2} > n^{2.58}$$

$$ed f(n) > n^{2}$$

$$T(n) = 0 (n^{2})$$

$$2) T(n) = 4T(n/2) + n^{2}$$

$$C = \log_{2} 4 = 2$$

$$e = n^{2}$$

$$e = n^{2}$$

$$e = n^{2}$$

$$f(n) = 0 (n^{2} \log n)$$

3)
$$T(n) = T(n|2) + 2^n$$

$$C = dg_2 1 = 0$$

$$n^2 = n^2 = 1$$

$$f(n) = 2^n$$

$$g(n) > n^2$$

$$T(n) = 0(2^n)$$

$$T(n) = 2^{n}T(n/2) + n^{n}$$

$$C = \log_{2} 2^{n}$$

$$n^{n} = n^{2n}$$

$$f(n) = n^{n}$$

$$f(n) = n^{n}$$

$$f(n) = 0 (n^{2n})$$

5)
$$T(n) = \pm 6T(n/4) + n$$

of $C = \log_{1} \pm 6 = 2$
 $C = n^{2}$
 $C = n^{2}$
 $C = n^{2}$
 $C = n^{2}$
 $C = \log_{2} 2 = 1$
 $C = n$
 $C = n$

T(n) = O(n)

$$T(n) = 2T(n/u) + n^{0.52}$$

$$C = dog_{4}2 = 0.5$$

$$n^{C} = n^{0.5}$$

$$n^{0.5} \times n^{0.51}$$

$$e) n^{C} \times f(n)$$

$$e) T(n) = 0 (n^{0.51})$$

9)
$$T(n) = 0.5T(n/2) + 1/n$$

 $a = 0.5$
c) $a < 1$, for applying marter theorem
condition should be $a > 1$

of Here, Marter theorem does not apply

11)
$$T(n) = 4T(n/2) + logn$$
 $c = log_2 4 = 2$
 $c = n^2$
 $c = n^2$
 $c = n^2 > logn$
 $c = f(n)$
 $c = f(n)$

12)
$$T(n) = \sqrt{n} T(n/2) + \log n$$
 $C = \log_2 \sqrt{n}$
 $C = \log_2 \sqrt{n}$
 $C = \frac{1}{2} \log_2 n$
 $C = \frac{$

16)
$$T(n) = 3T(n/n) + n \log n$$

e) $a = 3$, $b = 9$
 $c = \log 3 = 0.792$
 $n^{c} = n^{0.792}$
 $n^{c} = 100$
 $n^{$

 $1. v_5 = v/John$

=) T(n) = 0 (n2)

20)
$$T(n) = 64T(n/8) - n' \log n$$
 $q = 64$, $b = 8$
 $c = \log 864 = 2$

e) $n' = n^2$, but

:: $f(n) = -n^2 \log n$
 $f(n) \in 0$ Marden's theorem can't be applied

21) $T(n) = 7 (7 (3) + n^2)$
 $q = 7$, $b = 3$

e) $c = \log_3 7 = 1.771$

e) $f(n) > n^2$
 $T(n) = 0 (f(n)) = 0 (n^2)$

22) $T(n) = T(n/2) + n(2 - \cos n)$
 $q = 1$, $b = 2$
 $c = \log_2 1 = 0$
 $n^2 = n^2 = 1$
 $n^2 = 1$
 n^2