CONCORDIA UNIVERSITY

DEPARTMENT OF COMPUTER SCIENCE AND SOFTWARE ENGINEERING

COMP 6651: Algorithm Design Techniques

Fall 2019

Quiz # 2

First Name	Last Name	ID#

Question 1

- 1. What is the description of the problem solved by the SELECT algorithm?
- 2. Recall the 5 steps of the Select algorithm for computing the k order of a set of n numbers.
- 3. What is the complexity of each step?
- 4. What is the overall complexity?

Description of the problem solved by the select algorithm

Selection Problem

Input: A set A of n (distinct) elements and a number i, with $1 \le i \le n$ Output: The element $x \in A$ that is larger than exactly i-1 other elements of A (= find ith **order statistics** of A) (1 point)

Step 1.

Divide n elements into $\lfloor n/5 \rfloor$ groups of 5 elements. Note that one group may have less than 5 elements.

(.5 point)

Complexity of Step 1.

O(n) (.5 point)

Step 2.

Find the median of each group by first insertion sorting the elements of each group, and then picking the median from the sorted list of group elements. $M \leftarrow$ set of medians.

(.5 point)

Complexity of Step 2.

O(n) (.5 point)

Step 3.

Use Select recursively, i.e., $\frac{\lceil n/5 \rceil}{2}$, to find the median x of the $\lceil n/5 \rceil$ medians found in Step 2.

(1 point)

Complexity of Step 3.

 $T(\lceil n/5 \rceil)$ assuming T(n) denotes the running time of Select(n), i.e., of determining the ith smallest of an input array of n > 1 elements.

(1 point)

Step 4.

Partition the input array A around the median-of-medians x using Partition. Let i be one more than the number of elements on the low side of the partition, so that x is the ith smallest element and there are n-i elements on the high side of the partition.

(1 point)

Complexity of Step 4.

O(n) using the PARTITION algorithm (1 point)

Step 5.

If i = k, then return x. Otherwise, use Select recursively to find the ith smallest element on the low side if i < k

i.e., Select(A[1..k-1],i)),

or the (i-k)th smallest elements on the high side if i > k,

i.e., Select(A[k+1..n], i-k)).

(1 point)

Complexity of Step 5.

$$\leq T(7n/10+6)$$
 (1 point)

Overall Complexity

$$underbraceO(n)_{\text{Step 1}} + \underbrace{O(n)}_{\text{Step 2}} + \underbrace{T(\lceil n/5 \rceil)}_{\text{Step 3}} + \underbrace{O(n)}_{\text{Step 4}} + \underbrace{T(7n/10+6)}_{\text{Step 5}} = O(n)$$

(1 point)

Question 2

Recall the quicksort algorithm and its complexity (worst and average case)

For a given subarray [p..r]

- Divide. Partition (rearrange) the array A[p...r] into two (possibly empty) subarrays A[p...q-1] and A[q+1..r] such that each element of A[p...q-1] is less than or equal to A[q], which is, in turn, less than or equal to each element of A[q+1..r]. Compute the index q as part of this partitioning procedure.
- Conquer. Sort the two subarrays A[p...q-1] and A[q+1..r] by recursive calls to quicksort.
- Combine. Since the subarrays are sorted in place, no work is needed to combine them: the entire array A[p..r] is now sorted.

(4 points) for the correct and complete description of the Quicksort algorithm

Quicksort: The divide-and-conquer paradigm

```
For a given subarray [p..r] with n elements: Quicksort(A,p,r) if p < r then q \leftarrow \text{Partition}(A,p,r) Quicksort(A,p,q-1) Quicksort(A,q+1,r).
```

- Worst Case Analysis: $O(n^2)$ (.5 point)
- Expected Running Time: $O(n \log n)$ (.5 point)

```
(5 points) for the correct and complete description of the Partitioning algorithm Partitioning an array

For a given subarray A = [p..r] with n elements

Partition(A, p, r) // use A[r] as the pivot for partitioning // returns location of pivot after partitioning x \leftarrow A[r]; i \leftarrow p-1; for j \leftarrow p to r-1 do if A[j] \leq x then i \leftarrow i+1 exchange A[i] \leftrightarrow A[j] exchange A[i] \leftrightarrow A[j] return i+1;
```