전기회로 (가, 나)

Chapter 3: Methods of Analysis

2017. 1학기

윤영식 교수 글로벌브레인홀 204호 ysyoun@ssu.ac.kr

Learning Goals

• Nodal analysis

- without voltage sources
- with voltage sources

Mesh analysis

- without current sources
- with current sources

3.1 Introduction

- o 옴의 법칙
 - 전자 회로 전 분야에서 가장 기본적이며 강력한 법칙
- o 키르히호프의 전류 법칙
 - 한 개의 노드를 (들어가는 전류의 합) = (나오는 전류의 합)
 - 절점 해석 (Nodal Analysis)에 이용

- 폐 경로에서 (전압 강하의 합) = (전압 상승의 합)
- 망로 해석 (Mesh Analysis)에 이용

3.2 Nodal Analysis

- Nodal Analysis
 - 식의 표현 : **KCL** 이용 (∑*I_k* = 0)
 - 각 branch에 흐르는 전류 I_k: Ohm의 법칙(I_k = v/R)을 이용하여 계산
 → 각 node 의 전압을 변수로 사용

기준 전압 대비 각 노드의 전압

3.2 Nodal Analysis

3.2 Nodal Analysis

o 전류와 node 전압과의 관계

Nodal Analysis

- Step 1:
 기준 node (예: GND)의 선택
 나머지 node는 v₁, v₂, ... v_{n-1}으로 표시
- Step 2:
 기준 node가 아닌 node에 KCL 적용
 전류는 v₁, v₂, ... v_{n-1}과 저항으로 표현 (옴의 법칙)
- Step 3:연립 방정식 계산

일반적으로 기준 node는 0V의 전위로 가정 → 접지 (Ground, GND) (b)의 기호가 가장 흔히 사용 됨

• Step 1

- 기준 node의 선택
- 나머지 node에 $v_1, v_2, ..., v_{n-1}$ 할당 (기준 node에 대한 상대전압)

• Step 2

- 각 node에 KCL 적용
- 전류는 node전압과 저항을 이용하여 계산 ← Ohm's law

at node #1:

$$I_1 = I_2 + i_1 + i_2$$

 $I_1 = I_2 + (v_1 - o)/R_1 + (v_1 - v_2)/R_2$

at node #2:

$$I_2 + i_2 = i_3$$

 $I_2 + (v_1 - v_2)/R_2 = (v_2 - o)/R_3$

• Step 3

• 연립방정식 풀이

$$I_{1} = I_{2} + (v_{1}-o)/R_{1} + (v_{1}-v_{2})/R_{2}$$

$$I_{2} + (v_{1}-v_{2})/R_{2} = (v_{2}-o)/R_{3}$$
or
$$I_{1} = I_{2} + v_{1}G_{1} + (v_{1}-v_{2})G_{2}$$

$$I_{2} + (v_{1}-v_{2})G_{2} = v_{2}G_{3}$$

$$\begin{bmatrix} G_{1} + G_{2} & -G_{2} \\ -G_{3} & G_{3} + G_{3} \end{bmatrix} \begin{bmatrix} v_{1} \\ v_{2} \end{bmatrix} = \begin{bmatrix} I_{1} - I_{2} \\ I_{3} \end{bmatrix}$$

연립방정식 풀이 방법 - Cramer's rule

[2원1차연립방정식]

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} u \\ v \end{bmatrix} \implies \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} \begin{bmatrix} u \\ v \end{bmatrix}$$

$$x = \frac{\Delta_1}{\Delta}, \ y = \frac{\Delta_2}{\Delta}$$

$$\Delta = \begin{vmatrix} a & b \\ c & d \end{vmatrix}, \quad \Delta_1 = \begin{vmatrix} u & b \\ v & d \end{vmatrix}, \quad \Delta_2 = \begin{vmatrix} a & u \\ c & v \end{vmatrix}$$

연립방정식 풀이 방법 - Cramer's rule

[3원 차 연립방정식]

$$\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} u \\ v \\ w \end{bmatrix} \implies \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}^{-1} \begin{bmatrix} u \\ v \\ w \end{bmatrix}$$

$$x = \frac{\Delta_1}{\Delta}, y = \frac{\Delta_2}{\Delta}, z = \frac{\Delta_3}{\Delta}$$

Problem 3.3

• 다음에서 전류 I_1, I_2, I_3, I_4 와 v_0 를 구하라

Example 3.1

Practice 3.1

o 다음에서 노드 전압을 구하라

Example 3.2

o 다음에서 노드 전압을 구하라

Practice 3.2

o 다음에서 노드 전압을 구하라

Case 1: V source is between reference node & nonreference node

Case 2: V source is between 2 nonreference nodes

Problem 3.x

Case 3: V source가 저항과 직렬 연결을 구성할 때

Example 3.3

Practice 3.3

Example 3.4

Practice 3.4

Problem 3.14

Problem 3.30

- o 다음 수업 시간까지 (5문제)
- #1. Problem 3.2, 다음 회로에서 v_1, v_2 를 구하라

• #2. Problem 3.4, 다음 회로에서 $i_1 \sim i_4$ 를 구하라

• #3, Problem 3.8 노드 해석을 이용하여 v_0 를 구하라

• #4, Problem 3.17 노드 해석을 이용하여 i_0 를 구하라

o #5, Problem 3.18 노드 해석을 이용하여 노드 전압을 구하라

3.4 Mesh Analysis

Mesh Analysis

- Mesh (망로): 내부에 다른 루프를 포함하지 않는 루프
- 방법 : KVL 사용 ($\sum v_k = 0$)
- 변수: mesh current (옴의 법칙에 의해 $v_k = iR$ 이므로)

Step 1:

n 개의 Mesh 에 대해 Mesh Current $i_1, i_2, ... i_n$ 을 할당

Step 2:

n개의 Mesh 각각에 KVL을 적용 ← ohm의 법칙 이용

Step 3:

연립 방정식 계산

3.4 Mesh Analysis without current sources

• Step 1

• 각 mesh에 mesh current $i_1, i_2, ..., i_n$ 할당

Note:

• i_1 , i_2 : 실제 회로에 흐르는 전류와 다를 수 있음. (예) $I_3 = i_1 - i_2$

3.4 Mesh Analysis without current sources

• Step 2

• 각 mesh에 KVL 적용

$$-V_1 + i_1 R_1 + (i_1 - i_2) R_3 = 0 i_2 R_2 + V_2 + (i_2 - i_1) R_3 = 0$$

$$i_1 (R_1 + R_3) - i_2 R_3 = V_1 -i_1 R_3 + i_2 (R_2 + R_3) = -V_2$$

3.4 Mesh Analysis without current sources

- Step 3
 - 연립방정식 풀이

$$\begin{bmatrix} R_1 + R_3 & -R_3 \\ -R_3 & R_2 + R_3 \end{bmatrix} \begin{bmatrix} i_1 \\ i_2 \end{bmatrix} = \begin{bmatrix} V_1 \\ -V_2 \end{bmatrix}$$

• 실제 전류로 변환

$$I_1 = i_1$$
, $I_2 = i_2$, $I_3 = i_1 - i_2$

Example 3.5

Practice 3.5

• 메시 전류 i_1, i_2 를 구하라

Example 3.6

Practice 3.6

Problem 3.x

• Using mesh analysis

Problem 3.40

• Using mesh analysis

3.5 Mesh Analysis with current sources

• Case 1

• 전류원이 하나의 mesh에 존재할 때

3.5 Mesh Analysis with current sources

o Case 2

- 전류원이 2개의 mesh 사이에 존재할 때
- supermesh 형성 (∵ 전류원에 대해서는 KVL 적용 어려움)
- supermesh에 대하여 KVL 적용

 $KVL : 6i_1 + 14i_2 = 20$

 $KCL : i_2 = i_1 + 6$

Example 3.7

Practice 3.7

• 메시 전류 i_1, i_2, i_3 를 구하라

Problem 3.38

Problem 3.49

- o 다음 수업시간까지 (5문제): mesh analysis 사용할 것!!!
- #1. Problem 3.44 다음에서 i_0 를 구하라

• #2. Problem 3.50 다음에서 i_0 를 구하라

• #3. Problem 3.52 다음에서 i_1, i_2, i_3 를 구하라

 $oldsymbol{\circ}$ #4. Problem 3.61 다음 회로에서 전류이득 $^{i_o}/_{i_s}$ 를 구하라

• #4. Problem 3.63 다음 회로에서 i_0, v_χ 를 구하라

3.7 Nodal vs. Mesh Analysis

- o 어떤 방법을 선택할 것인가?
 - 회로의 형태
 - 직렬 vs. 병렬 →
 - 전압원 vs. 전류원 →
 - 변수 (또는 식)이 적은 방법 선택
 - 구하자고 하는 정보
 - node 전압 vs. mesh 전류 →
- o 한 가지 방법만 적용되는 예
 - Transistor 회로 → mesh analysis만 가능
 - Op amp 회로 → nodal analysis만 가능
 - 비평면 회로 → nodal analysis만 가능

3.8 Circuit Analysis with *PSpice*

• pspice student version install!!

전압원: VDC, VAC, VSRC

전류원: IDC, IAC, ISRC

접지: AGND

전류관찰 : iprobe

전압관찰: viewpoint

3.8 Circuit Analysis with *PSpice*

