

INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI

MID SEMESTER EXAMINATION - BT 501 Biotechniques

September 2023. Time: 2 hours. QP has 3 pages, 7 Questions

Questions 1-6: 10 marks each. Q7: 20 marks. Total: 80 Marks

1. Answer the following questions from	m the choices given	(2 marks each)
. 1: What does the retention factor, k', d The distribution of an analyte between The migration rate of an analyte through The velocity of the mobile phase	n the stationary and the mobile phase	
1. 2. What does the selectivity factor, de	scribe?	
a) The proportional difference in widths b) The maximum number of different sp c) The relative separation achieved between	pecies which a column can separate sim	ultaneously
1. 3. What useful information can be for a) The selectivity factor b) Optimum mobile phase flow rate c) Optimum column temperature	und from a Van Deemter plot?	
1. 4. Resolution is proportional to the sq the column's length increases resolution True or false?	•	ates in a column. For example, doubling
1. 5. In reverse phase chromatography, A) Polar substance B) Non Polar S		D) Metals
Q2. Explain the principle and working	of a flow cytometer	(10 marks)
Q3. HPLC chromatogram of a hypotherm of the phase (C-8) column is shown below:	hetical mixture of four different prote	in/peptide segments USING REVERSI
Protein - Sequence 1: ACDEF	GHI; Sequence 2: TVWILFHI;	

Sequence 3: DEGKMNRK and Sequence 4: KLMNPRST

(3 marks)

Figure 1. HPLC Chromatogram

Match Sequence 1, 2, 3 and 4 against A, B, C and D.

What changes (qualitatively) in the sequence of elution do you expect if you use

(3 marks)

Q4. The data from a typical chromatogram given below (Table 1). This data was obtained using HPLC stationary phase (C-18 column) and an acetonitrile/water mobile phase, for the separation of two compounds in a mixture. Both compounds are peptides with the following sequence

Peptide 1: ADEFGDEVDEAA; Peptide 2: AVIFGLEVDAAA

Table 1

(ii) Normal Phase column

	Component A	Component B
t _M (min)	1.53	1.53
t _R (min)	8.36	9.18
w _{sc} (min)	0.62	0.68

Table 2

compound	pentane	heptane	toluene	
b. p	35 °C	98 °C	110 °C	
of the second se	1			

- A) Match peptides (1 and 2) against their peaks (component A or component B) (5 marks)
- B) Are the two peaks corresponding to component A and component B, well resolved OR do you expect an overlap? Explain Why? / Why not? (5 marks)
- Q5. A) The vibration frequency of ¹H ³⁵Cl is 2990.6 cm-1. Without calculating the bond force constant, estimate the frequency for ¹H ³⁷Cl, and ²D ³⁵Cl. (6 marks)
- B) Write the increasing order of Carbon-Carbon stretching frequency in ethane, ethene and ethyne. (2 marks)
- C) In an IR spectrum, the wavelength corresponding to the peak at 1720 cm⁻¹ is ______ (2 marks)
- Q6. A) Absorption and emission spectra of three aromatic amino acids, F, Y and W are shown in the figure 5 A. Draw an approximate spectrum of the molecule in figure 5B, with x axis and y axis properly labeled. Explain how it is similar or different from the spectrum of F, Y and W (4 marks)

^{*}Hydrophobicity Data from Cambridge University press

Figure 5 A

Figure 5 B

B) In the Jablonski Diagram shown below, if the absorption A and fluorescence F is strictly happening as shown in Case A and Case B, what would be its effect in

i) Fluorescence intensity ii) Quantum yield and iii) wavelength

(6 marks)

Case A

Case B

Q7. Write Short notes on

- i) Gradient elution
- ii) Partition coefficient
- iii) Gel filtration chromatography
- iv) 2D Gel Electrophoresis

(5 marks each)