Лабораторная работа №1

Введение в базовые операции

Вариант 1

Во всех заданиях для генерирования случайных величин можно пользоваться только командами rand и randn. Все задания должны выполняться с минимальным использованием циклов. Каждое задание должно быть оформлено как блок в скрипте. В каждом задании, где нужно что-либо "проверить", программа должна выводить адекватное сообщение об ошибке в случае невыполнения проверяемого условия.

Любое изменение скорости работы алгоритма должно производиться по большому количеству запусков алгоритма

при фиксированных параметрах, с последующим усреднением результатов.

- $\mathbf{1}$ [0,5]. Задать два вещественных числа (a и b), натуральное число n и равномерную сетку на [a,b] с n точками. Задать функцию $f(x) = \sin(x + x^2)$. Нарисовать график её значений на сетке, отметить отдельно максимальные и минимальные значения.
 - 2 [0,5]. Запросить у пользователя ввод числа n. Проверить, что введенное число натуральное.
 - 1. Создать вектор из всех нечетных чисел, делящихся на 9, из промежутка от 1 до n.
 - 2. Построить матрицу размера $n \times n$, все элементы *i*-й строки которой равны *i*.
 - 3. Создать матрицу $B n \times (n+1)$ вида

$$B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$

Вытянуть матрицу B в вектор c. Присвоить переменной D последние 2 столбца матрицы B.

- 3 [0,5]. Создать матрицу размера 7×7 , состоящую из случайных элементов с равномерным распределением среди натуральных чисел от 1 до 50, найти максимальный элемент на диагонали этой матрицы, найти максимальное и минимальное отношение произведения к сумме для строк этой матрицы, отсортировать строки матрицы в лексикографическом порядке (то есть строка $[a_1,a_2,a_3,\ldots,a_n]$ стоит в матрице выше строки $[b_1,b_2,b_3,\ldots,b_n]$, если $a_i=b_i$ при $i=1,\ldots,k-1$ и $a_k < b_k$ для некоторого k). 4 [0,5]. Построить таблицу умножения всевозможных пар элементов таких, что первый — элемент вектора X, а
- второй вектора Y:

$$\begin{bmatrix} x_1y_1 & x_1y_2 & x_1y_3 \\ x_2y_1 & x_2y_2 & x_2y_3 \\ x_3y_1 & x_3y_2 & x_3y_3 \end{bmatrix}$$

- $\mathbf{5}$ [0,5]. Запросить у пользователя ввод числа n. Проверить, что введенное число простое. Создать случайную матрицу $A \in \mathbb{R}^{n \times n}$ и вектор $b \in \mathbb{R}^{n \times 1}$, в случае, если A не вырождена, решить уравнение Ax = b (решить задачу не менее чем двумя способами и вставить проверку возможности решения и правильности решения).
- **6** [0,5]. Даны векторы a размерности n и b размерности m. Найти, используя только арифметические операции и команды **max** и **min**, максимум функции $|a_i b_j|$, где a_i элемент вектора a, b_j элемент вектора b. Функцию **abs** и дополнительную память не использовать.
- $\mathbf{7}$ [0,5]. Пусть у нас задано n точек в пространстве \mathbb{R}^k в виде матрицы double[n,k]. Требуется построить матрицу double[n,n] расстояний между каждой парой точек. Пользоваться командами pdist и squareform нельзя.
- 8 [0,5]. Построить матрицу, в которой по строкам записаны все n-мерные бинарные векторы. Натуральное число n задается пользователем.
- $\mathbf{9}$ [0,5]. Реализовать функцию \mathbf{C} = my_multiply(A,B), которая выполняет расчет значения C=AB по определению («строка на столбец»). Сравнить быстродействие этой функции и стандартного умножения матриц для матриц различной размерности. Построить график времени работы.
- 10 [0,5]. Напишите функцию, которая находит средние значения (по одному направлению) с учётом NaN элементов матрицы. Для

$$X = \begin{bmatrix} NaN & 1 & 2\\ NaN & 0 & 6\\ 1 & 5 & NaN \end{bmatrix}$$

ответ [1, 2, 4]. Команду nanmean использовать нельзя.

11 [1]. Сгенерировать вектор из n случайных величин с нормальным распределением $N(a, \sigma^2)$. Проверить «правило трёх сигм»: вывести долю элементов вектора, находящихся в интервале $[a-3\sigma,a+3\sigma]$.

- 12 [2]. По аналогии с функцией trapz реализовать аналогичные функции rectangles (интегрирование методом прямоугольников) и simpson (методом Симпсона). С помощью них построить график первообразной функции f(x) = $=\sin(x)/x$. Сравнить внутреннюю скорость сходимости при использовании всех трёх методов (внутренняя скорость сходимости определяется с помощью сравнения разностей решений при шаге h и h/2, нарисовать график этой ошибки в зависимости от h). Сравнить время вычисления.
- 13 [1]. Задать формулу для некоторой функции и её производной. На одном графике в логарифмическом масштабе (loglog) вывести модули разностей между точным значением производной в некоторой точке и правой и центральной разностной производной в зависимости от шага численного дифференцирования.

Лабораторная работа №1

Введение в базовые операции

Вариант 2

Во всех заданиях для генерирования случайных величин можно пользоваться только командами rand и randn. Все задания должны выполняться с минимальным использованием циклов. Каждое задание должно быть оформлено как блок в скрипте. В каждом задании, где нужно что-либо "проверить", программа должна выводить адекватное сообщение об ошибке в случае невыполнения проверяемого условия.

Любое изменение скорости работы алгоритма должно производиться по большому количеству запусков алгоритма при фиксированных параметрах, с последующим усреднением результатов.

- $\mathbf{1}$ [0,5]. Задать два вещественных числа (a и b), натуральное число n и равномерную сетку на [a,b] с n точками. Задать функцию $f(x) = \cos(2x^3 + 5)$. Нарисовать график её значений на сетке, отметить отдельно максимальные и минимальные значение.
 - 2 [0,5]. Запросить у пользователя ввод числа n. Проверить, что введенное число простое.
 - 1. Создать вектор из всех нечетных чисел, делящихся на 7, из промежутка от 1 до n.
 - 2. Построить матрицу размера $n \times n$, все элементы i—й строки которой равны i+1. 3. Создать матрицу B $(n+1) \times (n+1)$ вида

$$B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

Вытянуть матрицу B в вектор c. Присвоить переменной D последние 2 столбца матрицы B.

- 3 [0.5]. Создать матрицу размера 4×9 , состоящую из случайных элементов с равномерным распределением среди натуральных чисел от 1 до 100, найти максимальный элемент на диагонали этой матрицы, найти максимальное и минимальное отношение произведения к сумме для строк этой матрицы, отсортировать строки матрицы в обратном лексикографическом порядке (то есть строка $[a_1, a_2, a_3, \ldots, a_n]$ стоит в матрице ниже строки $[b_1, b_2, b_3, \ldots, b_n]$, если $a_i = b_i$ при $i = 1, \dots, k-1$ и $a_k < b_k$ для некоторого k).
 - 4 [0,5]. Реализовать разбиение произвольной матрицы $A \in \mathbb{R}^{n \times m}$ на матрицы R, G, B по следующему правилу:

$$A = \begin{bmatrix} G_{11} & R_{11} & G_{12} & R_{12} & \dots \\ B_{11} & G_{21} & B_{12} & G_{22} & \dots \\ G_{31} & R_{21} & G_{32} & R_{22} & \dots \\ B_{21} & G_{41} & B_{22} & G_{42} & \dots \\ \dots & \dots & \dots & \dots & \dots \end{bmatrix}$$

- **5** [0.5]. Для пар векторов $x \in \mathbb{R}^n$, $y \in \mathbb{R}^m$ построить матрицу $A \in \mathbb{R}^{nm \times 2}$, строки которой все пары декартова произведения $x \times y$.
- **6** [0.5]. Задан $3 \times n$ массив точек, интерпретируемый как координаты векторов $x_1, x_2, \dots, x_n \in \mathbb{R}^3$. Построить матрицу $A \in \mathbb{R}^{n \times n}$, такую, что $a_{ij} = |x_i \times x_j|$ (модуль векторного произведения).
- 7 [0,5]. Даны векторы a размерности n и b размерности m. Найти, используя только арифметические операции и команды **max** и **min**, максимум функции $|a_i - b_j|$, где a_i — элемент вектора a, b_j — элемент вектора b. Функцию **abs** и дополнительную память не использовать.
- 8 [0,5]. Пусть у нас задано n точек в пространстве \mathbb{R}^k в виде матрицы double [n,k]. Требуется построить матрицу double[n,n] расстояний между каждой парой точек. Пользоваться командами pdist и squareform нельзя.
- 9 [0,5]. Реализовать функцию $C = my_add(A,B)$, которая выполняет сложение матриц C = A + B по определению. Сравнить быстродействие этой функции и стандартного сложения матриц для матриц различной размерности. Построить график времени работы.
- 10 [0,5]. Проверить, является ли вектор A симметричным. Например, векторы A = [3, 4, 5, 4, 3], A = [6, 6], A = [7]являются, а векторы A = [1, 2], A = [1, 2, 3, 4, 1] — нет.
- 11 [1]. Сгенерировать вектор из n случайных величин с равномерным распределением на отрезке [0,a]. Проверить неравенство Маркова: для заданного числа b>0 вывести долю элементов вектора, больших b, и сравнить с числом a/2b.
- 12 [2]. По аналогии с функцией trapz реализовать аналогичные функции rectangles (интегрирование методом прямоугольников) и simpson (методом Симпсона). С помощью них построить график первообразной функции f(x) $= \exp(-x^2)$. Сравнить внутреннюю скорость сходимости при использовании всех трёх методов (внутренняя скорость сходимости определяется с помощью сравнения разностей решений при шаге h и h/2, нарисовать график этой ошибки в зависимости от h). Сравнить время вычисления.
- 13 [1]. Задать формулу для некоторой функции и её производной. На одном графике в логарифмическом масштабе (loglog) вывести модули разностей между точным значением производной в некоторой точке и правой и центральной разностной производной в зависимости от шага численного дифференцирования.

Лабораторная работа №1

Введение в базовые операции

Вариант 3

Во всех заданиях для генерирования случайных величин можно пользоваться **только** командами **rand** и **rand**л. Все задания должны выполняться с минимальным использованием циклов. Каждое задание должно быть оформлено как блок в скрипте. В каждом задании, где нужно что-либо "проверить", программа должна выводить адекватное сообщение об ошибке в случае невыполнения проверяемого условия.

Любое изменение скорости работы алгоритма должно производиться по большому количеству запусков алгоритма при фиксированных параметрах, с последующим усреднением результатов.

- 1 [0,5]. Задать два вещественных числа $(a \ u \ b)$, натуральное число n и равномерную сетку на [a,b] с n точками. Задать функцию $f(x) = x \sin(2x+1)$. Нарисовать график её значений на сетке, отметить отдельно максимальные и минимальные значения.
 - 2 [0.5]. Запросить у пользователя ввод числа n. Проверить, что введенное число простое.
 - 1. Создать вектор из всех нечетных чисел, делящихся на 7, из промежутка от 1 до n.
 - 2. Построить матрицу размера $n \times n$, все элементы i-й строки которой равны i+1.
 - 3. Создать матрицу $B(n+1) \times (n+1)$ вида

$$B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

Вытянуть матрицу B в вектор c. Присвоить переменной D последние 2 столбца матрицы B.

- **3** [0,5]. Создать матрицу размера 9×11 , состоящую из случайных элементов с нормальным распределением с параметрами a=9, $\sigma^2=0.001$, найти элемент с максимальным модулем на диагонали этой матрицы, найти максимальное и минимальное отношение произведения к сумме для столбцов этой матрицы, отсортировать строки матрицы в обратном лексикографическом порядке (то есть строка $[a_1,a_2,a_3,\ldots,a_n]$ стоит в матрице ниже строки $[b_1,b_2,b_3,\ldots,b_n]$, если $a_i=b_i$ при $i=1,\ldots,k-1$ и $a_k< b_k$ для некоторого k).
 - **4** [0,5]. Предложить три способа создания матрицы A размера $(2n+1) \times (2n+1)$, где $n \geqslant 5$, следующего вида:

$$A = \{a_{ij}\}, \ a_{ij} = \begin{cases} 10, & i = 1 \text{ или } (2n+1), \ j - \text{чётное,} \\ 10, & i - \text{чётное,} \ j = 1 \text{ или } (2n+1), \\ 30, & (i,j) = \{(n,n),(n+2,n),(n,n+2),(n+2,n+2)\}, \\ 50, & (i,j) = \{(n+1,n+1), \\ 0, & \text{иначе.} \end{cases}$$

- **5** [0,5]. Задан массив $2 \times n$ координат точек на плоскости. Построить матрицу $A \in \mathbb{R}^{n \times n}$, в позиции (i,j) которой будет стоять псевдоскалярное произведение *i*-го и *j*-го вектора $(x \bullet y = x_1y_2 x_2y_1)$.
- **6** [0,5]. Даны векторы a размерности n и b размерности m. Найти, используя только арифметические операции и команды \max и \min , максимум функции $|a_i-b_j|$, где a_i элемент вектора a, b_j элемент вектора b. Функцию abs и дополнительную память не использовать.
- 7 [0,5]. В каждом столбце матрицы X есть ненулевой элемент. Найти порядковые номера (в столбце) и значения всех первых ненулевых элементов каждого столбца.
- 8 [0,5]. Пусть у нас задано n точек в пространстве \mathbb{R}^k в виде матрицы double[n,k]. Требуется построить матрицу double[n,n] расстояний между каждой парой точек. Пользоваться командами pdist и squareform нельзя.
- 9 [0,5]. Реализовать функцию $c = my_prod(x,y)$, которая выполняет скалярное умножение векторов $c = \langle x,y \rangle$ по определению (церез цикл). Сравнить быстродействие этой функции, команды x*y, и команды dot для векторов различной размерности. Построить график времени работы.
- 10 [0,5]. Применяя функцию Matlab ismember, реализовать ее версию с ключом 'rows' для матрицы с неотрицательными целочисленными элементами (можно использовать функцию ismember без ключа и функцию sub2ind).
- 11 [1]. Сгенерировать вектор x из n случайных величин с нормальным распределением $N(a, \sigma^2)$. Проверить неравенство Чебышёва: для заданного числа b вывести долю элементов x_i таких, что $|x_i a| > b$, и сравнить с числом σ^2/b^2 .
- 12 [2]. По аналогии с функцией trapz реализовать аналогичные функции rectangles (интегрирование методом прямоугольников) и simpson (методом Симпсона). С помощью них построить график первообразной функции $f(x) = \cos(x^2)$. Сравнить внутреннюю скорость сходимости при использовании всех трёх методов (внутренняя скорость сходимости определяется с помощью сравнения разностей решений при шаге h и h/2, нарисовать график этой ошибки в зависимости от h). Сравнить время вычисления.
- 13 [1]. Задать формулу для некоторой функции и её производной. На одном графике в логарифмическом масштабе (loglog) вывести модули разностей между точным значением производной в некоторой точке и правой и центральной разностной производной в зависимости от шага численного дифференцирования.