一具多屬性特質之採購協商支援系統之建置

時序時*

淡江大學管理科學研究所

Tel: 886-2-8631-3221, Fax: 886-2-8631-3214

hshih@mail.tku.edu.tw

徐煥智

淡江大學資訊管理學系

Tel: (886) 2-2621-5656 ext. 2881; Fax: (886) 2-2620-9737 shyur@mail.im.tku.edu.tw

摘 要

本研究在建構一個以網頁爲基礎之整合型群體決策與協商支援系統 (negotiation support system, NSS),以協助企業在複雜的環境,能夠遂行有效率及有效能的評估,並 進而對於業務需求進行協商;並以企業之一策略性採購爲案例,驗證此系統的能力。

本系統包括決策支援與協商支援兩個主要部份。前者為一多屬性群體決策系統 (group decision support system, GDSS),在於支援不同時間及地點之組織決策活動,並以 多屬性描述問題的特質。後者則是協商 (negotiation) 支援,可藉由雙方預設的多項條件及其範圍進行協商,直至雙方接受條件或交易失敗為止。

在群體決策支援系統中,始於一最高指導者,針對所需之議題設立決策專案,然後再交由一專案管理主持人(或會議主席)來主持整個專案的進行。此時主持人就會選擇幾位相關人員進入專案中,透過彼此間的意見交換和腦力激盪、以及決策方法,爲此專案選擇最適解決方案,以供決策者參考。在此過程中,系統均可利用模式庫中所提供的多項決策工具(多屬性決定與群體決策技術)完成,並輔以群體共識指標(consensus indicators)協助解決群體歧見,故其決策的效能將可提升。

本群體決策支援系統先以電子類供應商評估為例,進行排序與選擇。其後則進入協商支援系統,按照原先供應商的評估優先順序進行協商電子類物料的採購工作。此協商主要考量價格、數量、交期、付款方式、及運送方式等條件,並以多屬性效用函數(multi-attribute utility function)表達。另在時間和效率的考量之下,系統內建有關時間及協商次數的限制,並輔之以適時之提醒,使得協商可以有效達成。最後,經案例驗證此雛型系統輔助組織決策之可行。

關鍵詞:協商支援系統、群體決策支援系統、多屬性決策、多屬性效用函數、資訊科技。

^{* --} corresponding author

一、前言

在企業的運作過程中,決策 (decision) 是每日的企業活動中,不可或缺的一項活動。根據 Teradata (2004) 所公佈「2003~2004 年企業決策制定報告」中顯示,在 158 位公司營收超過五億美元的企業高階主管中,有 73% 的高階主管們表示,他們需要制定決策的數目與日俱增。同時,亦有 56% 的受訪者表示,其決策比一年前更爲複雜;另有 53% 的人表示,制定決策的時間卻越來越短。如何使決策過程的效率提升與時間的縮短就成爲了一項重要的議題,因此本研究即在建構一群體決策支援系統,以期有效率及有效能地協助決策作爲。

隨著環境的改變和資訊科技的步,幾乎所有企業都有導入資訊系統來支援種種的企業活動,例如:交易處理系統(transaction processing system, TPS)、管理資訊系統(management information system, MIS)等。當然在決策活動上,也導入了決策支援系統(decision support systems, DSS),以便於管理階層進行決策。但是在環境的變遷等因素的影響下,許多企業的決策並不再只是存在於個人,而是發展出團體合作方面,以集合眾人智慧。其決策的制定,並非傳統的單一管理者或決策者來做,而是透過團體的力量,集合各個領域的專家,期能得到較好的解決方案。也因爲如此,所以由決策支援系統衍生出的群體決策支援系統(group decision support systems, GDSS)來支援組織決策活動益受重視。此一系統是由多數決策者,藉由交談式的電腦系統之輔助,以及一內建相關模式,處理企業內非結構化之問題之一有效工具(Holsapple and Whinston 1996)。

本文期在發展出一個整合型群體決策與協商支援系統 (negotiation support system, NSS),以期降低決策者在複雜環境下的負擔。此系統中主要可分成兩個部份:一是前段的群體決策過程,另一個則是後段的協商 (negotiation) 過程。在前段的系統中主要是以群體決策支援系統 (group decision support system, GDSS) 為主要架構。系統中有設定一最高指導者,他可以針對所需之議題設立決策專案,然後交由一專案管理主持人(或會議主席)來主持整個專案的進行;此時主持人就會選擇多位相關專長人員進入專案中,透過彼此間的意見交換、腦力激盪、或多類決策方法,為此專案產生出最適的解決方案。

本群體決策支援系統先以電子類供應商評估爲例,進行排序與選擇 (ranking and selection)。其後則進入協商工作(即協商支援系統),按照原先供應商的評估優先順序進行協商電子類物料的採購工作,以期達成交易。此協商主要考量價格、數量、交期、付款方式、及運送方式等條件,並以效用函數 (utility function)表達。也就是買賣雙方各自建立起自已的效用函數,再由雙方輸入相關變數的容許範圍,經由計算雙方效用皆符合各自的極限值時,交易協商即可成功。若雙方難有交集的時候,基於時間和效率的考量,系統內設時間及協商次數的限制並輔之以適當的提醒畫面,協商將行終止。若如此,協商工作將由第一順位的供應商轉換到第二順位的供應商,並重行設定相關資料,直至協商達成爲止。最後,以 Asp.net 與 SQL 資料庫所建構的雛型系統展示此複合系統輔助組織決策之可行。

二、文獻探討

物料對於企業經營扮演重要角色,不但會影響其作業效能,也會影響顧客滿意度,因此物料採購爲企業一主要功能。爲了有效達成企業目標,本節將對物料採購時所涉及的內容作一回顧,其中包括了採購評選與磋商準則、決策技術、協商活動、協商支援系統等項目。

2.1 採購評選與協商準則

在供應鏈中,物料係由供應商所負責。爲確保物料的來源及品質,通常會對供應商 進行評選,而企業會針對供應商的特性以及是否能配合企業的策略發展作考量。由於評 選通常考慮多個準則以涵蓋需求內容,所以多準則決策技術自然引入,以協助剖析複雜 問題。

傳統上,正式的供應商評選過程將追蹤供應商在品質(quality)、價格(price)、交運(delivery)、及服務(service)(Leenders et al. 2002)。在過去關於供應商選擇準則的研究中,首推 Dickson 所提出的 23 項準則爲最多學者探討(ref. Weber et al. 1991),其後Swift (1995) 爲單一來源檢驗了採購經理常用的 21 項準則。約在同時,Mummalaneni et al. (1996) 則對華人採購經理的調查,確認六項重要準則分別爲:及時交運(on-time delivery)、品質、價格/成本目標(price/cost targets)、專業能力(professionalism)、對顧客需求的反應能力(responsiveness to customer needs)、以及與採購公司的長期關係(long-term relationship with the purchasing company)。其後,de Boer et al. (1998) 建議考慮週轉(turnover)、距離(distance)、成本水準(cost level)、及品質印象(quality image)等四項。最近,Dulmin and Mininno(2003)對於運輸系統的研究,建議考慮七項準則:達成度(make-up)、處理時間(processing time)、雛型化時間(prototyping time)、設計改版時間(design revision time)、品質系統(quality system)、協同設計(co-design)、及技術水準(technological levels)。

無論最後選定的準則爲何,一般常以價格、品質、技術服務、交運可靠度、及交運前置時間等,爲各行業供應商評選的主要考量 (Tullous and Utecht 1994)。本文將據前述討論內容,並參考 Mummalaneni et al. (1996)的內容作爲評選及協商之基礎。另一方面,此等準則的數目將需另行考量。雖然評選或磋商時可以列出諸多準則,但是部份內容可能將具相關性而需合併。且在評選時會受到人們認知的限制,當準則的數目大幅增加時,評選將會失掉焦點。因此評選準則的數目將控制在 10 項以內,以避免評選的誤差。此等準則將在案例中展現。

2.2 決策技術

在複雜的供需關係中,決策問題的解決往往不是單一準則所能涵括,而且這些準則也往往是衝突的 (Hwang and Yoon 1981)。另一方面,在組織內參與決策的人員也不只一人,故解決問題也必須考量決策群體間多人的衝突與共識,甚至利益關係的對手,俾利面對實務問題 (Hwang and Lin 1987)。因此,問題的解決必須以仰賴多類特性的決策技術,並適度整合於決策的流程中,以支援一有效的決策 (Shih et al. 2004)。此等將包括多準則決策 (multi-criteria decision making, MCDM)、群體決策 (group decision making, GDM)、群體共識 (consensus)、以及相關技術之結合,以利順利解決問題,此即爲一決策支援的工作 (Shih 2006)。以上個別技術的文獻回顧,請參考時序時與徐煥智 (2005)。

2.3 協商活動

協商 (negotiation) 是多參與者 (multiple participants) 進行一付出與所得間之交換 (give-and-take interchange),進行直到所有參與者都同意一特定的方案爲止,或者意見破裂發生而中止協商 (Holsapple and Whinston 1996)。這是現代組織進行群體決策的一種方式,期在利益衝突中能獲致一雙方或多方妥協的解決方案。梁定澎 (1991) 歸納出協商的特性有:(i) 涉及兩個或兩個以上的成員;(ii) 存在明顯或潛在的利益;(iii) 協商成員彼此依賴;以及 (iv) 共同解決的意願。據此特性,成功的協商必須兼顧各方利益,而非零和賽局 (zero-sum game)。

有關協商的活動可視爲一解決問題的程序。Raiffa (1982) 曾提出協商四階段,包括談判準備、開局策略、讓步策略、及最後的結束談判。Robbinson and Volkov (1998) 也曾提出協商週期 (negotiation life cycle) 有六階段: (i) 描述及形成擁有者的目標; (ii) 正式摘要描述目標、加權偏好、限制式、及方案; (iii) 達成擁有者目標的計畫,利用適當科技與其他代理人互動; (iv) 代理人互動策略與權變模式,協商環境與工具的組成; (v) 參與代理人的互動,利用適當的協定與工具以最有利於擁有者的目標; 以及 (vi) 協商文件描述雙方承諾代理人與協商記錄。另其中 (i) 與 (ii) 階段爲分析階段,(iii) 與 (iv) 階段爲互動設計階段,(v) 與 (vi) 階段爲協商實現階段,此等階段定義了協商的工作內容。

至於協商的分類,根據趙國仁 (1998)、王敏詮 (2003)、及馬意澎等 (2005) 的綜合整理,有 (i) 根據參與協商雙方人數的多寡,可分爲對等議價 (bilateral bargain)、多邊議價 (multi-lateral bargain) 及雙邊拍賣(double side auctions) 等協商方法;以及 (ii) 根據經濟學觀點,就參與協商者的目標否互斥,可分爲分散式協商 (distributive negotiation)與整合式協商 (integrative negotiation)。本文研究之採購協商性質上較近似於對等議價與整合式協商,以兼顧雙方利益。

在協商進行時,雙方或多方必須考慮標的物的特質,並在一範圍內進行付出與所得間之交換,此即 Raiffa (1982) 所提同意(或議價)空間 (zone of agreement) 的概念,如圖一。在定義同意空間後,即進入出價策略。許斐盛 (2003) 整理麻省理工學院媒體實驗室所開發的 Kasbah 代理人議價協商系統,其中買賣雙方各有三種出價策略。其中買方是從低到高,依增加的速率分爲渴望型 (anxious)、冷靜型 (cool-head)、及節約型

(frugal); 賣方則是從高到低,依增加的速率分爲渴望型 (anxious)、冷靜型 (cool-head)、及貪心型 (greedy)。此等空間之討論將有利於本系統協商活動的建構 (林啓明 2003)。

圖一・議價空間示意圖 (Raiffa 1982)

至於協商標的物的特質一般均考量其多重屬性 (multiple attributes),例如:價錢、商品特色、運送時間、售後服務等,這些都可以在協商的過程時提出討論,或者以綜合方式呈現,此即利用多屬性效用函數 (multi-attribute utility function, MAUF) 來表達 (Keeney and Raiffa 1993)。在進行協商時,首先將各協商項目轉換成對應的數值,使協商雙方資料比對的工作更加容易進行,然後將各項目數值代入效用函數 (utility function)中分別乘以權值後再相加,所得即爲總合評估值 (洪瑞文 2002)。然後雙方再行檢查是否在其議價空間內,以確認交易之執行。

2.4 協商支援系統

協商支援系統 (negotiation support system, NSS) 屬於群體決策支援系統 (group decision support system, GDSS) 的一類,在協助參與者以達成同意的一系統 (Holsapple and Whinston 1996)。為進一步了解協商,Holsapple and Luo (1995) 區分八個協商元素,包括:協商議題 (issues)、參與成員 (participants)、接受區域 (acceptance region)、議題空間的位置 (location)、策略 (strategies)、移動方法 (movements)、協商規則 (rules of negotiation)、與第三者 / 干預者 (intervenor)。從這些元素可以看出協商的複雜程度,每位參與成員的決策行為不僅受到議題與策略的影響,也受到其他參與成員決策的影響。Holsapple and Whinston (1996) 進而按照協商參與者的類別(群體及更複雜的組織)與在協商中協商支援系統角色的本質,整理出協商支援系統的分類(如圖二)。它可以協

助參與者或是替代成爲參與者之協商活動。在前者角色中,它可以協助個別的參與者、參與者整體集合的子集合(結盟或非結盟)、參與者整個集合、或者第三者。在後者角色中,協商支援系統可以替代參與者或第三者,這是此系統的發展極致。另其中相關參與者的角色則見於協商生命週期模式 (negotiation life cycle model) 中的討論 (Robinson and Volkov 1998)。

依據以上分類,本研究則定位於協助型、結盟(具策略聯盟關係)狀態、一對一(子集合)的協商支援系統,以利策略性物料的採購協商。

Name of NSS's role 角色	Assists 協助							Serves as 替代		
		Subset of whole participant set			Whole participant					
	15	Coalition 結盟		Noncoalition 非結盟		set				
Name of participants	PatitiPati	Individually	Whole	Individually	Whole	Individually	Whole	THETEHOL	Participant	Intervenor
Group								161		
Organization										

圖二・協商支援系統的分類 (Holsapple and Whinston 1996)

另就資訊系統平台而言,協商支援系統與群體決策支援系同類似,在決策過程中可結合資料庫、模式庫、GDSS引擎、以及使用者介面等以協助解決問題(如圖三)。此系統使用交談模式,以輔助決策者解決半結構和非結構化問題。DeSanctis and Gallupe (1987) 認爲群體決策是透過成員之間的交流,調和彼此之間的人格特質和多樣性的觀點,消除群體溝通障礙,提供結構化的決策分析,並有系統地指引討論的型態、時機及內容,以協助群體解決一些較無結構性的問題。其次,就協商支援部份,Jelassi and Foroughi (1989) 首先整理出既有協商支援系統的特性比較;Espinasse et al. (1997) 提出多人協商 NegocIAD 的系統架構;Kersten and Noronha (1999) 也首先提出一網頁爲基礎協商支援系統 INSPIRE 的架構。此等系統架構將爲本研究之重要基礎。

圖三・群體決策支援系統之架構 (Shih et al. 2005)

三、流程與模式

本系統包括決策支援與協商支援兩個主要部份。前者為一多屬性群體決策,在支援不同時間及地點之供應商之排序與選擇 (時序時與徐煥智 2005)。後者則是在於合格的供應商被排序後,按照其優先順序進行採購協商,可藉由雙方預設的多項條件及其範圍進行協商,直至雙方接受條件或交易失敗為止。

在群體決策支援系統中,始於一最高指導者,針對所需之議題設立決策專案,然後再交由一專案管理主持人(或會議主席)來主持整個專案的進行。此時主持人就會選擇幾位相關人員進入專案中,透過彼此間的意見交換和腦力激盪、以及決策方法,爲此專案選擇最適解決方案,以供決策者參考。在此過程中,系統均可利用模式庫中所提供的決策工具來完成,包括名義群體技術(nominal group technique)、分析層級程序法(analytic hierarchy process)、TOPSIS(technique for order preference by similarity to ideal solution)、Group TOPSIS、Borda's function、以及投票相關模組等,並輔以群體共識指標(consensus indicators)協助解決群體歧見。其涉及步驟如下:

- (i) 經主席與決策者討論以確定問題評估準則 -- 一般性討論與 NGT;
- (ii) 進行準則權重評估 -- AHP;
- (iii) 準則及其權重的共識度量 -- 共識指標;
- (iv) 進行方案篩選(決定準則的上下限);
- (v) 個人選擇優先方案 -- TOPSIS;
- (vi) 群體優先順序排名 -- Borda's function;

或是可選用 Group TOPSIS 模組取代步驟 (v) 及 (vi)。

在策略性物料供應商被排序後,即行進入採購協商階段。此時將按照原先評比優先順序,進行一對一的對等協商,其協商步驟如下:

- (i) 買方發佈採購需求訊息。
- (ii) 賣方回報訊息。
- (iii) 買方檢視並分析相關內容後,有下列三種選擇:
 - (a)提出反提案。

將原提案不適用的地方修改後,回覆給賣方。

(b)接受賣方提案。

買方與賣方進入簽訂契約的程序。

(c)終止磋商。

結束與賣方磋商。

在步驟 (iiic) 的情況下,將繼續對第二順位的供應商進行採購協商,其步驟同上。直至最後順位的供應商協商成功或協商破裂爲止。另爲確保策略性物料供應順暢,買方必須不斷調整其採購需求的條件,以達雙贏。另本系統亦增加最後交易條件之調整功能,以因應實況所需。

有關採購協商的多重屬性將包括:價格、數量、交期、付款期限、運送方式等。此等屬性將透過多屬性效用函數 (multi-attribute utility function) 轉換成被評估的效用值,做爲買賣雙方溝通的基礎。這些數值類及非數值類的屬性將先作正規化,轉換成效用值,在透過權重轉換成多屬性效用值。然後據以評估雙方需求的落差,則買方可以決定協商的狀態。若是買方並不確定各屬性的權值的範圍,可由系統嘗試數種組合回報給買方,買方再由評估值決定是否要與特定賣方進一步的磋商。並在系統設定的協商次數與時間的限制內完成協商,或是繼續與次優供應商協商,以達妥協爲止。

四、採購協商支援展示

本協商支援系統利用 Asp.net 爲工具撰寫程式,並結合 Microsoft SQL 資料庫儲存資料,並建置於 Microsoft Windows 個人電腦區域網路的環境中。此爲一相當普遍之以網頁爲基礎的群體決策支援環境。

首先,供應商評估與協商專案的相關人員在網路上完成登入後,即進行供應商評選,並依序透過多屬性決策與群體決策技術,對合格的供應商進行評比。其次進入採購協商工作,此時系統中角色是由買方採購經理及相關人員與供應商(賣方)對等人員所組成,進行一對一的對等協商。若在系統設定的協商次數與時間內,排序優先的供應商之條件不能滿足買方,則可依排序與下一定廠商在進行協商。爲節省篇幅,本文僅展示協商支援部份。

在此策略性物料採購專案中,買方採購人員需先設定專案的相關屬性,如協商次數

限制、價格、數量、交期、付款方式、運送方式、最低效用值,並存於資料庫中,如圖四畫面。此時賣方也是使用類似畫面。接著就可以啟動協商,完成相關屬性設定後,採購人員需啟動協商,這樣賣方廠商才能進入協商主題內進行協商。接著,賣方鍵入系統要求的屬性,若已達到買方最低效用值,即中止協商,並等待買方回應及確認成交條件。

若買賣雙方條件差異較大,則系統會自動提示參考訊息,如價格太高、數量太少、 運送方式不合等;賣方則須重新輸入更新條件,以達買方滿意條件爲止。否則超過協商 限定的次數(此處設定五次)與限定時間,或低於效用値(此處設定爲 80),則系統 會顯示此次協商終止,如圖五書面。

此時系統自動通知第二順位的供應商參與協商,雙方依設定程序繼續協商。若協商達成原先設定效用值,則此階段工作完成,如圖六顯示果畫面。接著,買賣雙方繼續可就交易細節討論。買方採購人員收到協商完成訊息通知後,可選擇同意廠商條件或不同意(如圖六協商達成畫面);如同意,系統會發訊息給賣方供應商交易條件協商完成;如不同意,供應商須更新條件並等待買方採購人員回應。若達到調整共識,則交易達成,如圖七畫面;若三次細節調整均未達成,則以原先協商條件交易。

◎設定結束時間及磋商次數

次數: 5	次				
②設定属性					
	風性別	下限	上限	評估函數	種重
1 價格	數值	16400	16600	f(x)=(1-x)^2 ∨	4
2 數量	數值	50000	52000	f(x)=x^2 ▼	3 💌
3 交期	非數值	3週 🕶	1.5月 💌	f(x)=1-x	1 🕶
4 付款期限	非數值	30天 💌	90天 💌	f(x)=x	2 🕶
5 運送方式	離散集合	☑ 貨運 ☑ 鐵路 🛚	□海運 □空運	f(x)=1 if x=1 ▽	1 🕶
最低效用值:	75 (1~10	0)			

圖四・買方設定需求條件書面

專案代碼:T002 目前進行第: 6 次 剩餘時間: 3:2:51
◎輸入條件值
磋商時間已過,磋商終止

回首頁

次數	價格	數量	交期	付款期限	運送方式
5	16400	50600	3週	60天	貨運
4	16400	50500	3週	60美	貨運
3	16400	50000	3週	60天	貨運
2	16400	51000	1月	60天	貨運
1	16500	50000	1月	60天	貨運

圖五·協商條件失敗畫面

圖六・協商達成畫面

回首頁

次數	價格	數量	交期	付款期限	運送方式
4	16250	52500	1月	60天	貨運,鐵路
3	16300	52500	3週	60天	貨運,鐵路
2	16450	52000	3週	60天	貨運,鐵路
1	16500	51000	3週	60天	貨運,鐵路

圖七・交易達成書面

五、結論與建議

本研究在網頁爲基礎的群體決策支援環境下,以動態網頁技術 (Asp.net) 建立運算模組與連接資料庫,完成一電子類策略性物料採購之協商支援系統的雛型;並參考國內企業採購作業,以案例展示相關功能,驗證此決策支援系統之可行。

在硬體方面,透過網路的使用減少對地點的限制,提高參予的機會,並可有效率及效能的進行群體決策。此外,以 Asp.net 建構的網頁介面可簡化決策過程中的操作程序,並具提醒與防呆考量便於管理。資料庫提供決策者判斷決策問題時的基礎資料,與

決策過程的量化及質化數據,也提供相關專案的歷史資料查詢,將可有效支援決策活動。另外,系統還提供提供「問與答 (Questions and Answers, Q & A)」對話介面,支援個別使用者的需求,以利決策順利進行。

本雛型系統雖業已考量多方需求,但爲期支援實務運作需求,未來仍有一些發展空間。首先,可建立正式會議型式的溝通介面或與現有電子會議設備之結合,增加視覺與聲音的傳達效果,將能對成員間的溝通更爲有效。其次,可提供更多樣化的模式庫,以支援決策者的判斷與評估需求,甚至可考量處理語意模糊的表達與處理 (陳瑞斌2000),以及圖形化協商的狀況 (Espinasse et al. 1997),將使決策支援更爲彈性。最後,增加建立促進者 (facilitator) 介面,以負責所有的網路決策流程的控制與協助,並與主席介面分離,較能達成匿名性與及時支援的要求。

致謝:本文承蒙淡江大學資訊管理學系周清江教授的幫助,以及陳政揚、馬意澎、溫巧郁、羅義民、林智杰、高若瑜、與林柏良同學協助完成雛型系統,特致謝忱。

參考文獻

中文:

- 王敏詮 (2003),以網路服務爲基礎之分散式自動協商系統架構。資訊管理研究所碩士 論文,台灣大學,台北。
- 林啓明 (2003),以代理人爲基礎的線上協商支援系統。資訊管理研究所碩士論文,靜 宜大學,台中。
- 洪瑞文 (2002),以代理程式協商建構動態供應鏈網路之研究。資訊管理研究所碩士論文,朝陽科技大學,台中。
- 時序時、徐煥智 (2005), 一有效供應商評選之群體決策支援系統的建構。2005 年兩岸 管理科學暨經營決策學術研討會,771-785, 吉林大學,長春,吉林, 2004 年 4 月 19-20 日。
- 許斐盛 (2003),輔助供應鏈整合方法之研究。資訊管理研究所碩士論文,朝陽科技大學,台中。
- 梁定澎 (1991),決策支援系統,松崗,台北。
- 馬意澎、溫巧郁、羅義民、林智杰、高若瑜、林柏良、與陳政揚 (2005),一整合型群 體決策與磋商支援系統之建構。專題報告,資訊管理學系,淡江大學,台北。
- 趙國仁 (1998),電子商務與智慧型代理人,
 - http://handel.mba.ntu.edu.tw/~jtchiang/StrategyEC/eec/craychu/index.html •
- 陳瑞斌 (2000),智慧型網路拍賣與議價機制之研究。資訊管理研究所碩士論文,朝陽 科技大學,台中。

英文:

de Boer, L., L. van der Wegen, J. Telgen, Outranking methods in support of supplier selection. European J. of Purchasing and Supply Management, 4, 109-118, (1998).

- DeSanctis, G., R. Gallupe (1987), A foundation for the study of group decision support systems. Management Science, 33(5), 589-609.
- Dulmin, R., V. Mininno (2003), Supplier selection using a multi-criteria decision aided method. J. of Purchasing and Supply Management, 9, 177-187.
- Espinasse, B, G. Picolet, E. Chouraqui (1997), Negotiation support systems: a multi-criteria and multi-agent approach. European J. of Operational Research, 103, 389-409.
- Holsapple, C.W., W. Luo (1995), Dependent variables for organizational computing research: an empirical study. J. of Organizational Computing, 5 (1), 31-51.
- Holsapple, C.W., A.B. Whinston (1996), Decision Support Systems: A Knowledge-based Approach. West Pub., St. Paul, MN.
- Hwang, C.L., K. Yoon (1981), Multiple Attribute Decision Making: Methods and Applications. Springer-Veriag, Berlin.
- Hwang, C.L., M.J. Lin (1987), Group Decision Making under Multiple Criteria. Springer-Veriag, Berlin.
- Jelassi, M.T., A. Foroughi (1989), Negotiation support systems: an overview of design issues and existing software. Decision Support Systems, 5, 167-181.
- Keeney, R. L., H. Raiffa (1993), *Decisions with Multiple Objectives*. Cambridge University Press, Cambridge (John Wiley 1976).
- Kersten, G.E., S.J. Noronha (1999), WWW-based negotiation support: design, implementation, and use. Decision Support Systems, 25, 135-154.
- Leenders, M.R., H.E. Fearon, A.E. Flynn, P.F. Johnson (2002), Purchasing and Supply Management. McGraw-Hill, NY, 11th ed.
- Mummalaneni, V., K.M. Dubas, C. Chao (1996), Chinese purchasing managers' preferences and trade-offs in supplier selection and performance evaluation. Industrial Marketing Management, 25, 115-124.
- Raiffa, H. (1982), The Art and Science of Negotiation. Harvard Univ. press, Cambridge, MA.
- Robinson, W.N., V. Volkov (1998), Supporting the negotiation life cycle. Communications of the ACM, 41(5), 95-102.
- Shih, H.S., C.H. Wang, E.S. Lee (2004), A multiattribute GDSS for aiding problem-solving. Mathematical and Computer Modelling, 39, 1397-1412.
- Shih, H.S., L.C. Huang, H.J. Shyur (2005), Recruitment and Selection Processes through an Effective GDSS. Computers and Mathematics with Applications, 50(10-12), 1543-1558.
- Shih, H.S. (2006), Multiple Criteria Decision Making: from Decision Making to Decision Support. 交通部民用航空局演講稿,台北,民國 94 年 5 月 11 日。
- Swift, C.O. (1995), Preferences for single sourcing and supplier selection criteria. J. of Business Research, 32, 105-111.
- Teradata (a division of NCR)(2004), The 2003-2004 Teradata Report on Enterprise Decision-Making. EB-2072, NCR Corporation, Dayton, OH.

- Tullous, R., R.L. Utecht (1994), A decision support system for integration of vendor selection task. J. of Applied Business Research, 10(1), 132-143.
- Verma, R., M.E. Pullman, An analysis of the supplier selection process. Omega, 26(4), 739-750, (1998).
- Weber, C.A., J.R. Current, W.C. Benton (1991), Vendor selection criteria and methods. European J. of Operational Research, 50(1), 2-18.