- 1. In each case, show that $E \supseteq F$ is Galois, find the lattice of intermediate fields and find a primitive element for each intermediate field.
 - a) $E = \mathbb{Q}(e^{2\pi i/5}), F = \mathbb{Q}.$
 - b) $E = \mathbb{Q}(e^{2\pi i/7}), F = \mathbb{Q}.$
 - c) $E = \mathbb{Q}(i, \sqrt{3}), F = \mathbb{Q}.$
 - d) $E = \mathbb{Z}_2(u)$, where u is a root of $x^4 + x + 1$ and $F = \mathbb{Z}_2$.
 - e) $E = \mathbb{Q}(\sqrt[4]{2}, i)$ and $F = \mathbb{Q}$.
- 2. Show that a finite Galois extension $E \supseteq F$ has a finite number of intermediate fields.
- 3. Here you are asked to prove Lemma 2.11 of the Lecture notes. Let $E \supseteq F$ be a field extension and \mathscr{F} and \mathscr{H} be defined as in the notes. For $K, L \in \mathscr{F}$ and $H, I \in \mathscr{H}$ one has
 - i) $H \subseteq H^{**}$
 - ii) $K \subseteq K^{**}$
 - iii) $K \subseteq L$ implies $K^* \supseteq L^*$ and $H \subseteq I$ implies $H^* \supseteq I^*$
 - iv) $H^{***} = H^*$ and $K^{***} = K^*$.
- 4. Let $E \supseteq F$ be fields and consider the correspondence mapping * from the lecture.
 - a) Show that $*: \mathcal{H} \to \mathcal{F}$ is onto if and only if $K^{**} = K$ for each $K \in \mathcal{F}$.
 - b) Show that $*: \mathscr{F} \to \mathscr{H}$ is onto if and only if $H^{**} = H$ for each $H \in \mathscr{H}$.
- 5. Let $L \supseteq K$ be a finite Galois extension, and let $G = \operatorname{Gal}(L : K)$ be its Galois group. For an element $a \in L$, we denote by $\operatorname{orb}_G(a) = \{\sigma(a) \mid \sigma \in G\}$ the orbit of a by G. Also, we denote by $\operatorname{Stab}_G(a) = \{\sigma \in G \mid \sigma(a) = a\}$ the stabilizer of a in G. Show that:

$$p(x) = \prod_{a_i \in orb_G(a)} (x - a_i)$$

is an irreducible polynomial in K[x] (hence in particular it is the minimal polynomial of a).

Deduce that if $Stab_G(a) = \{id\}$, then a is a primitive element for $L \supseteq K$.

Problems selected by J.Baudin, F. Eisenbrand S.Giampietro and V.A.Nadarajan

- 6. Let $a_1,...,a_n$ be pairwise co-prime non-square integers. Consider the extension $\mathbb{Q}(\sqrt{a_1},...,\sqrt{a_n}) \supseteq \mathbb{Q}$ and let G be its Galois group.
 - Compute the Galois group G.

 Hint: you can use results from last week's exercise sheet!
 - Show that $\sum_{i=1}^{n} \sqrt{a_i}$ is a primitive element. [Hint: Use previous exercise.]
 - Show that $1 + \sqrt{2} + \sqrt{3} + \dots + \sqrt{N} \notin \mathbb{Q}$.