11 класс

1. Мощность в пространстве

На изначально покоящийся на гладком горизонтальном столе брусок массы m=2 кг, начали действовать постоянной горизонтальной силой ${\bf \it F}$. В результате была получена зависимость мощности N от перемещения s бруска. Некоторые измерения могли оказаться не очень точными.

- В каких координатных осях экспериментальная зависимость мощности от перемещения линейна?
- Определите мощность силы в точке с координатой $s_0 = 10$ см.
- Найдите значение силы F.

<i>N</i> , Вт	0,28	0,40	0,57	0,75	1,02	1,10	1,23	1,26	1,50
s, cm	1,0	2,0	4,0	7,0	13	15	19	20	30

Возможное решение

Гордеев 3.

Так как $N=F\upsilon$ и работа силы $A=Fs=\frac{m\upsilon^2}{2}$, то $N=\sqrt{\frac{2F^3s}{m}}$ и ожидается линейная

зависимость $N(\sqrt{s})$. Линейная зависимость будет и в логарифмических координатах. Построим график $N(\sqrt{s})$ по табличным данным. Проведем через нанесённые точки наилучшую прямую из начала координат.

Сегодня, 20 января, на портале **online.mipt.ru** составители данного комплекта проведут онлайн-разбор решений задач. Начало разбора (по московскому времени):

Региональный этап всероссийской олимпиады школьников по физике. 20 января 2016 г. В точке с координатой s=10 см мощность должна составлять 0,89 Вт. По угловому коэффициенту наклона графика $k=\frac{\Delta N}{\sqrt{\Delta s}}=\sqrt{\frac{2F^3}{m}}\approx 2,8$ Вт/м $^{1/2}$ определяем значение силы $F=\sqrt[3]{k^2m/2}\approx 2,0$ Н.

Сегодня, 20 января, на портале **online.mipt.ru** составители данного комплекта проведут онлайн-разбор решений задач. Начало разбора (по московскому времени):

Критерии оценивания

•	Вывод теоретической зависимости $N(s)$		
•	Выбор осей $N(\sqrt{s})$ или $N^2(s)$, в которых зависимость линейна		
•	Построение графика в осях $N\!\left(\sqrt{s}\right)$	3 балла	
	 Если построен криволинейный график 1 балл 		
•	Нахождение мощности в точке $s = 10$ см	1 балл	
	о интерполяция на криволинейном графике 0 баллов		
•	Нахождение углового коэффициента графика	1 балл	
•	Нахождение значения силы	2 балла	

Сегодня, 20 января, на портале **online.mipt.ru** составители данного комплекта проведут онлайн-разбор решений задач. Начало разбора (по московскому времени):

2. «Тёмная материя»

Скопления звёзд образуют бесстолкновительные системы — галактики, в которых звёзды равномерно движутся по круговым орбитам вокруг оси симметрии системы. Галактика NGC 2885 состоит из скопления звёзд в виде шара (ядра радиусом $r_{\rm H} = 4$ кпк) и тонкого кольца,

внутренний радиус которого совпадает с радиусом ядра, а внешний равен 15 $r_{\rm S}$. Кольцо состоит из звёзд с пренебрежимо малой по сравнению с ядром массой. В ядре звёзды распределены равномерно.

Было установлено, что линейная скорость движения звёзд в кольце не зависит от расстояния до центра галактики: от внешнего края кольца вплоть до края ядра скорость звёзд $\upsilon_0 = 240$ км/с. Такое явление может быть объяснено наличием несветящейся массы («тёмной материи»), распределенной сферически симметрично относительно центра галактики вне её ядра.

- 1) Определите массу M_{g} ядра галактики.
- 2) Определите среднюю плотность $\rho_{\rm f}$ вещества ядра галактики.
- 3) Найдите зависимость плотности «тёмной материи» $\rho_T(r)$ от расстояния до центра галактики.
- 4) Вычислите отношение массы «тёмной материи», влияющей на движение звёзд в диске, к массе ядра.

Примечание: 1 кпк = 1 килопарсек = $3,086 \cdot 10^{19}$ м, гравитационная постоянная $\gamma = 6,67 \cdot 10^{-11} \text{H} \cdot \text{M}^2 \cdot \text{кг}^{-2}$.

Сегодня, 20 января, на портале **online.mipt.ru** составители данного комплекта проведут онлайн-разбор решений задач. Начало разбора (по московскому времени):

Возможное решение

Коротков П.

Из уравнения $\frac{\upsilon_0^2}{r_{_{\!\mathit{H}}}} = \frac{\gamma M_{_{\!\mathit{H}}}}{r_{_{\!\mathit{H}}}^2}$ находим массу ядра галактики: $M_{_{\!\mathit{H}}} = \frac{r_{_{\!\mathit{H}}}\upsilon_0^2}{\gamma} = 1,1\cdot 10^{41}$ кг.

Средняя плотность материи в ядре галактики $\rho_{\scriptscriptstyle H} = \frac{M_{\scriptscriptstyle H}}{\left(4/3\right)\pi\,r_{\scriptscriptstyle H}^3} = \frac{3\upsilon_0^2}{4\pi\gamma r_{\scriptscriptstyle H}^2} = 1,35\cdot 10^{-20}\,{\rm kg/m}^3.$

Вне ядра галактики $\frac{\upsilon_0^2}{r} = \left(\frac{\gamma}{r^2}\right) \left(M_{\mathcal{A}} + M_{\mathcal{T}}\left(r\right)\right)$. Тогда $\upsilon_0^2 r = \gamma \left(M_{\mathcal{A}} + M_{\mathcal{T}}\left(r\right)\right)$.

После дифференцирования этого выражения получим: $\upsilon_0^2 dr = \gamma dM_T(r) = \gamma \rho(r) 4\pi r^2 dr$.

Из последнего уравнения найдём зависимость плотности «тёмной материи» $\rho_{\rm T}(r)$ от

расстояния до центра галактики: $\rho(r) = \frac{\upsilon_0^2}{4\pi\gamma r^2} = \frac{M_{_{\mathcal{I}}}}{4\pi r_{_{\!\!f}} r^2}.$

Масса тёмной материи $M_T = \frac{15 r_{\!\scriptscriptstyle g} \upsilon_0^2}{\gamma} - M_{\scriptscriptstyle g} = 14 M_{\scriptscriptstyle g}$. Этот же результат можно получить и

интегрированием: $M_T=\int\limits_{r_g}^{15r_g}
ho(r)4\pi r^2dr=14M_{_{_{\it H}}}$.

Таким образом, искомое отношение равно 14.

Критерии оценивания

5) Определена масса $M_{\rm g}$ ядра галактики

2 балла

6) Определена средняя плотность р_я вещества ядра галактики

1 балл

7) Найдена зависимость плотности «тёмной материи» $\rho_{\rm T}(r)$ от расстояния до центра галактики **4 балла**

8) Вычислено отношение массы «тёмной материи», влияющей на движение звёзд в диске, к массе ядра 3 балла

Сегодня, 20 января, на портале **online.mipt.ru** составители данного комплекта проведут онлайн-разбор решений задач. Начало разбора (по московскому времени):

3. Четыре в кубе

Куб собран из одинаковых резисторов, имеющих сопротивления R. Четыре резистора заменены на идеальные перемычки, как указано на рисунке.

- Найдите общее сопротивление получившейся системы между контактами A и B.
- Через какие резисторы сила текущего тока максимальна, а через какие минимальна? Найдите эти значения силы тока, если сила тока, входящего в узел A равна $I_0 = 1,2$ A?

• Какова сила тока, текущего через идеальную перемычку АА'?

Возможное решение

Иванов М.

Изобразим эквивалентную схему и расставим токи в ветвях с учетом закона сохранения заряда и симметрии соединения резисторов.

Силу тока I_1 найдем, приравняв разность потенциалов между узлами A и L для ветвей AL и ACL:

$$I_1R = IR + (2I - I_1)R$$
, откуда $I_1 = 3I/2$.

Аналогичным образом найдём силу тока I_2 :

$$U_0 = I_2 R = I_1 R + I R = 5 I R / 2$$
, откуда $I_2 = 5 I / 2$.

Сила тока
$$I_0 = 2I + I_1 + I_2 = 5I/2 = 6I$$
. Отсюда $I = 0,2$ А.

Теперь легко дать ответы на вопросы задачи.

Общее сопротивление цепи равно
$$R_0 = \frac{U_0}{I_0} = \frac{5IR}{2} \frac{1}{6I} = \frac{5}{12} R$$
.

Сила тока, текущего через идеальную перемычку АА', равна сумме токов через резисторы в ветвях А'С и А'В':

$$7I/2 = 0.7 \text{ A}.$$

- Правильная эквивалентная схема 2 балла
- Найдены токи через резисторы 3 балла
- Найдено общее сопротивление 2 балла
- Определены максимальные и минимальные токи 2 балла

Сегодня, 20 января, на портале **online.mipt.ru** составители данного комплекта проведут онлайн-разбор решений задач. Начало разбора (по московскому времени):

• Найден ток через перемычку	1 балл
Cooding 20 guages us norman antima mint	
Сегодня, 20 января, на портале online.mipt.ru составители данного ко проведут онлайн-разбор решений задач. Начало разбора (по мост	
времени):	
7 класс — 16.00 ; 8 класс — 17.00 ; 9 класс — 18.30 ; 10 класс — 20.00 ; 11 класс — Для участия в разборе необходимо зарегистрироваться на портале online	

Региональный этап всероссийской олимпиады школьников по физике. 20 января 2016 г.

4. Ромб. Циклический процесс, совершаемый над идеальным газом, на (p, V) плоскости представляет собой ромб (см. качественный рисунок). Вершины (1) и (3) лежат на одной изобаре, а вершины (2) и (4) — на одной изохоре. За цикл газ совершил работу A.

Насколько отличается количество теплоты Q_{12} , подведённой к газу на участке 1-2, от количества теплоты $\left|Q_{3,4}\right|$, отведённой от 0 газа на участке 3-4?

Возможное решение.

Слободянин В.

Количество теплоты, подведённое к газу на участке 1-2 равно $Q_{1,2} = U_{1,2} + A_{1,2}$.

Количество теплоты, отведённое от газа на участке 3-4 равно $\left|Q_{\scriptscriptstyle 3,4}\right| = U_{\scriptscriptstyle 4,3} + A_{\scriptscriptstyle 4,3}$.

Сравним изменения величин внутренних энергий.

Пусть давление в точках 1 и 3 равно p_0 , а объем в точках 2 и 4 равен V_0 . Пусть далее, при переходе из состояния 1 в 2 давление изменяется на Δp , а объем на ΔV . Тогда изменение температуры найдём из следующих соображений:

$$\begin{split} \nu R T_2 &= p_0 V_0 + V_0 \Delta p; \\ \nu R T_1 &= p_0 V_0 - p_0 \Delta V; \\ \nu R \left(T_2 - T_1 \right) &= V_0 \Delta p + p_0 \Delta V. \end{split}$$

При переходе из состояния 3 в состояние 4 изменение температуры найдём из следующих соображений:

$$vRT_3 = p_0V_0 + p_0\Delta V;$$

$$vRT_4 = p_0V_0 - V_0\Delta p;$$

$$vR(T_3 - T_4) = p_0\Delta V + V_0\Delta p.$$

Поскольку T_3-T_4 равно T_2-T_1 , то равны между собой и изменения величин внутренней энергии: $U_{1,2}=U_{4,3}$.

Работа $A_{1,2}$ больше работы $A_{4,3}$ на величину A/2.

Следовательно, и количество теплоты, подведённой к газу на участке 1-2, больше количества теплоты, отведённой от газа на участке 3-4, на A/2.

Сегодня, 20 января, на портале **online.mipt.ru** составители данного комплекта проведут онлайн-разбор решений задач. Начало разбора (по московскому времени):

Критерии оценивания

- 1. Использовано 1-е начало термодинамики для участков 1-2 и 3-4 цикла 1 балл
- 2. Показано, что изменения температуры на участках 1-2 и 3-4 одинаковы (по модулю)

4 балла

- 3. Сделан вывод о том, что изменения внутренней энергии на участках 1-2 и 3-4 равны (по модулю)

 1 балл
- 4. Показано, что модули работы на участках 1-2 и 3-4 отличаются на А/2 3 балла
- 5. Записан окончательный результат

1 балл

5. Колебаниям – нет!

В электрической цепи (см. рис.), состоящей из резистора сопротивлением R, катушки индуктивностью L, на конденсаторе емкостью C_0 находится заряд Q_0 . В некоторый момент времени замыкают ключ K и одновременно начинают изменять емкость конденсатора так, что идеальный вольтметр показывает постоянное напряжение.

- 1) Как зависит от времени емкость конденсатора C(t) при изменении t от 0 до $t_1 = \sqrt{C_0 L}$?
- 2) Какую работу за время t_1 совершили внешние силы? Считайте, что $t_1 = L/R = \sqrt{C_0 L}$. **Подсказка**. Количество теплоты, выделившейся на резисторе за время t_1 ,

равно $W_R = \int_0^{t_1} I^2(t) R dt = \frac{Q_0^2}{3C_0}$.

Возможное решение.

Осин М.

В начальный момент времени ток в цепи не течёт, поэтому $U_L = U_C = \frac{Q_0}{C_0}$.

Поскольку $U_{L}=L\frac{dI}{dt}$ и остается постоянным (по условию), то: $I=\frac{Q_{0}}{C_{0}L}t\;.$

По закону Ома для полной цепи

$$U_{C} = U_{L} + RI(t) = L\frac{dI}{dt} + RI(t) = \frac{Q_{0}}{C_{0}} + \frac{Q_{0}R}{C_{0}L}t = \frac{Q_{0}}{C_{0}}\left(1 + \frac{R}{L}t\right).$$

Заряд на конденсаторе изменяется по закону

$$Q(t) = Q_0 - \frac{Q_0}{C_0 L} \int_0^t \tau d\tau = Q_0 \left(1 - \frac{t^2}{2C_0 L} \right).$$

Этот же результат можно получить, вычислив площадь под графиком зависимости I(t).

Сегодня, 20 января, на портале **online.mipt.ru** составители данного комплекта проведут онлайн-разбор решений задач. Начало разбора (по московскому времени):

Региональный этап всероссийской олимпиады школьников по физике. 20 января 2016 г.

Окончательно,
$$C(t) = \frac{Q(t)}{U(t)} = C_0 \left(1 - \frac{t^2}{2C_0L}\right) / \left(1 + \frac{Rt}{L}\right)$$
.

Искомую работу найдем из закона сохранения энергии

$$A = W_R + \Delta W_C + \Delta W_I$$
.

Энергия, запасенная в конденсаторе,

$$\begin{split} W_C = & \frac{1}{2} \mathcal{Q} U_C = \frac{\mathcal{Q}_0^2}{2C_0} \bigg(1 - \frac{t^2}{2C_0L}\bigg) \bigg(1 + \frac{R}{L}t\bigg). \end{split}$$
 Отсюда $W_C(0) = \frac{1}{2} \mathcal{Q} U_C = \frac{\mathcal{Q}_0^2}{2C_0}$,
$$W_C(t_1) = \frac{1}{2} \mathcal{Q} U_C = \frac{\mathcal{Q}_0^2}{2C_0} \bigg(1 - \frac{1}{2}\bigg) \bigg(1 + 1\bigg) = \frac{\mathcal{Q}_0^2}{2C_0}. \end{split}$$

Окончательно

$$A = \frac{Q_0^2}{3C_0} + 0 + \frac{Q_0^2}{2C_0} = \frac{5Q_0^2}{6C_0}.$$

Примечание. Условие, что напряжение на индуктивности остается постоянным, может выполняться только конечное время, поэтому в вопросе (1) стоит ограничение $t < t_1 = \sqrt{C_0 L}$.

Критерии оценивания

	±	
1.	Получена зависимость $I(t)$	1 балл
2.	Получена зависимость $U(t)$	2 балла
3.	Получена зависимость $Q(t)$	2 балла
4.	Найдена зависимость $C(t)$	1 балл
5.	Записан закон сохранения энергии	1 балл
6.	Показано, что энергия конденсатора не изменилась	2 балла
7.	Вычислена работа внешних сил	1 балл

Сегодня, 20 января, на портале **online.mipt.ru** составители данного комплекта проведут онлайн-разбор решений задач. Начало разбора (по московскому времени):