11. 논리제어

Contents

- Introduction to logic control
- PLC (Programmable Logic Controller)
- **♦** Ladder logic

Introduction to logic control (1)

Two types of control

- Motion control (CNC & Industrial robots)
- Logic (discrete) control

♦ What is discrete control?

- Deal with parameters that change at discrete moments
- Discrete: Binary or 1/0 or True/False
- Example
 - Limit switch: contact/no contact
 - Motor: on/off
 - Valve: closed/open

Introduction to logic control (2)

◆ Two category of discrete control

- Logic control: event-driven changes in the system
- Sequence control: time-driven changes in the system

Characteristics of logic control

- No memory (does not consider any previous values of input)
- Time-independent
- Basic elements (logic gates): AND, OR, NOT

Logic gates: AND, OR, NOT

AND

A —	
в	

OR

NOT

Inputs		Output
A	В	C
0	0	0
0	1	0
1	0	0
1	1	1

Inputs		Output
A	В	C
0	0	0
0	1	1
1	0	1
1	1	1

Input	Output
A	C
0	1
1	0

Logic gates: NAND, NOR, XOR

(OR + NOT)

Α	В	F
0	0	1
0	1	1
1	0	1
1	1	0

Α	В	F
0	0	1
0	1	0
1	0	0
1	1	0

Α	В	F
0	0	0
0	1	1
1	0	1
1	1	0

Logic gates

Push button switch example

Truth table

Start	Stop	Motor	Power-to- motor
0	0	0	0
0	1	0	0
1	0	0	1
1	1	0	0
0	0	1	1
0	1	1	0
1	0	1	1
1	1	1	0

PLC (Programmable Logic Controller) (1)

What is PLC?

- A microprocessor-based device to replace wiring and relay for logic control
- Programming is easier than wiring!
- Advantages of PLC
 - Smaller than relay logic network
 - Better reliability
 - Better connectivity to computer system
 - Variety of control functions
 - ✓ Timer, counter, ...

PLC (Programmable Logic Controller) (1)

PLC (Programmable Logic Controller) (2)

Components of PLC

- Processor
- Memory
- I/O
- Programming device

Screen for PLC programming

Commercial PLCs

PLC (Programmable Logic Controller) (3)

- Standard logic programming languages (IEC 61131-3)
 - The third part (of 8) of the open international standard
 IEC 61131 for programmable logic controllers
 - Ladder diagram (LD), graphical
 - Function block diagram (FBD), graphical
 - Sequential function chart (SFC), graphical
 - Continuous Function Chart (CFC), graphical
 - Structured text (ST), textual
 - Instruction list (IL), textual

Ladder logic (1)

Ladder Logic Diagram

- Programming language that represents a program by a graphical diagram based on the circuit diagrams of relay logic hardware
- Used to develop software for programmable logic controller (PLC) used in industrial control applications
 - PLC: used to configure complex automation systems

Ladder logic (2)

Symbol for ladder logic diagram

Ladder logic (3)

Ladder logic (4)

◆ AND, OR, NOT in ladder logic

- AND
 - Y = X1 AND X2

- OR
 - Y = X1 OR X2

- NOT
 - Y = NOT X1

Ladder logic (5)

♦ Control relay

Ladder logic (6)

♦ Fluid filling operation example

Ladder logic (7)

Example 1

Draw ladder logic diagram to configure automatic

