Name:	
Perm:	

Math 34A Practice Midterm 1, Spring 2022

1. (2pts) Solve for x in the following equation.

$$\frac{4}{5(x-n)} - \frac{5}{4(x+n)} = 0$$

$$x =$$

2. (2pts) Multiply out and simplify.

$$(2x - 3y^{-1})(3x^{-1} + xy)$$

3. $(2pts)$ Substitute $x = ab + c$ in	nto the expression below and simplify
	$2x^2 + 3cx - 1.$
	20 000 1.
(0,0) and $(2,3)$ while the second	ection of two lines. The first line passes through the points nd line passes through the points $(0,5)$ and $(4,0)$. Finding tions below may help you find the answer.
	$y = m_1 x + b_1$
	$y = m_2 x + b_2$

x =

y =

How many miles from Isla Vista was the bad guy when Jason and Marie met	5.	(4pts) Jason started driving from Phoenix towards Isla Vista at noon at a speed mph. At 2pm Marie started driving from Isla Vista towards Phoenix at 100 mph. and Marie met at 4pm. Meanwhile a bad guy follows Jason. He leaves Phoenix and drives along the same route at 90 mph.	Jason
		How many miles from Isla Vista was the bad guy when Jason and Marie met?	
			miles
			innes

6. (4 points)

(a) A cylinder with radius r and height h has a volume of $36\pi m^3$. Express the surface area in terms of the height h.

(The formula for the volume of a cylinder is $\pi r^2 h$, and the surface area formula is $2\pi r^2 + 2\pi r h$.)

(b) The side of a roof is going to be built. Its shape is an isosceles triangle with base b and height h (figue below). The area of this triangle is $10m^2$. Express the perimeter in terms of the height.

7. (3 points) What are the following limits?	
(a) $\lim_{h \to 0} 10 - 7h$	
$n \rightarrow 0$	
(b) $\lim_{x \to 2} \frac{x^2 - 4x + 4}{2x - 4}$	
$x \rightarrow 2$ $2x-4$	
·	
(c) $\lim_{n \to \infty} \frac{3n-2}{n+3}$	
$n \rightarrow \infty$ $n + 3$	
8. (3 points) Compute the logarithms below.	
(a) $\log_3(27)$	
l	
(b) $\log_{10}(1,000,000)$	
(b) $\log_{10}(1,000,000)$	
l	
(c) $\log_2(\frac{1}{4})$	
L. C.	