Modelos de Distribuição

MONITORIA DE ESTATÍSTICA E PROBABILIDADE PARA COMPUTAÇÃO

Distribuições Discretas

- Bernoulli
- Binomial
- Geométrica
- Hipergeométrica
- Poisson

Distribuição de Bernoulli

- Primeiramente devemos saber que um experimento de Bernoulli possui somente dois possíveis resultados: **Fracasso** ou **Sucesso**.
- Então, seja X a variável aleatória que possui esses dois resultados. Seja p
 o parâmetro que se refere a probabilidade de sucesso e 1-p de fracasso.
 (a soma de P(X = Sucesso) + P(X= Fracasso) deve ser 1)
- Uma notação usada para representar a distribuição de Bernoulli é Be(p), no qual p representa a probabilidade de obter sucesso, então:

$$X v.a. \sim Be(p)$$

Domínio de X:

$$X = \{0,1\}$$

$$P(X = 0) = 1-p$$

$$P(X = 1) = p$$

Distribuição de Bernoulli

Funcao de distribuição acumulada

$$F(X) = 1 - p, \ 0 \le X < 1$$

 $P, \ X \ge 1$

Valor Esperado (Esperança)

$$E(X) = 0(1 - p) + 1(p) = p$$
, logo:
 $E(X) = p$

Variância

$$Var(X) = E[(X - \mu)^2] = (1 - p)(0 - \mu)^2 + p(1 - \mu)^2$$

= $(1 - p)p^2 + p(1 - 2p + p^2) = p - p^2 = p(1 - p)$, logo:
 $Var(X) = p(1 - p)$

Distribuição de Bernoulli

Exemplos

- Lançamento de uma moeda (Sucesso-cara ou Fracasso-coroa) p=1/2; 1-p=1/2;
- Ao retirar uma lâmpada de uma caixa que contem defeituosas e nao defeituosas. (digamos por exemplo 10 no total, com 3 defeituosas) p = 7/10; 1 p = 3/10;
- A chance de um computador conseguir transmitir uma mensagem para um destinatário qualquer. (Chegou? Sucesso Não chegou? Fracasso)

Distribuição Binomial

- Ocorre vários ensaios de Bernoulli, ou seja um experimento com n experimentos de Bernoulli no qual cada experimento e independente identicamente distribuídos.
- Seja um Y a variável aleatória que representa uma Distribuição Binomial

$$Y v.a \sim Bi(p,n)$$

- n representa a quantidade de experimentos de Bernoulli independentes realizados.
- p representa a probabilidade de se obter sucesso em cada um dos n experimentos.
- O Domínio depende da quantidade de experimentos
 - Se eu tenho n experimentos eu irei ter um domínio com n+1 elementos.

Distribuição Binomial

Probabilidade (P)

Digamos que queremos tirar k lâmpadas perfeitas em n retiradas, qual a probabilidade disto ocorrer? (Seja p a probabilidade de ser perfeita)

$$P(X=k) = \binom{n}{k} p^k (1-p)^{n-k}$$

Valor Esperado (Esperança)

$$E(X) = np$$

Variância

$$Var(X) = np(1-p)$$

Observação!

O binômio de Newton $\binom{n}{k}$ também pode ser chamado de combinação de n a k elementos, ou seja, C(n,k) ou ainda, $C_{n,k}$

Distribuição Binomial

Exemplos

Lançamento de 3 moedas qual a probabilidade de retirar 2 caras?

$$R = P(X = 2) = {3 \choose 2} \cdot \left(\frac{1}{2}\right)^2 \cdot \left(\frac{1}{2}\right)^{3-2}$$

 Ao retirar 4 lâmpadas de uma caixa que contem defeituosas e nao defeituosas (digamos por exemplo 10 no total, com 3 defeituosas). Qual a probabilidade de que as 4 sejam perfeitas?

$$P(X = 4) = {4 \choose 4} \cdot \left(\frac{7}{10}\right)^4 \cdot \left(\frac{3}{10}\right)^{4-4}$$

Distribuição Geométrica

- É um caso particular de uma binomial negativa (esta não será cobrada neste curso) no qual você realiza k provas até obter o primeiro sucesso. Mais precisamente, a probabilidade de ocorrer na k-ésima prova o 1º sucesso. Cada prova é realizada de forma independente.
- Seja X uma variável aleatória que represente o numero de fracassos ate a ocorrência do primeiro sucesso, e p a probabilidade de sucesso $X \ v.\ a. \sim G(k,p)$
- Essa probabilidade de P(X=k) é determinada por:

$$P(X = k) = p \cdot (1 - p)^{k-1}$$

Distribuição Geométrica

Valor Esperado (Esperança)

$$E(X)=\frac{1}{p}$$

Variância

$$Var(X) = \frac{1-p}{p^2}$$

- Exemplo
 - Se jogarmos uma moeda 5 vezes qual a probabilidade de a cara ocorrer primeiramente no quinto lançamento?

$$R = P(X = 5) = \frac{1}{2} \cdot \left(\frac{1}{2}\right)^{5-1}$$

- Dado um conjunto com N elementos, nos quais pode-se distinguir os elementos do tipo M(M elementos) e o seu complementar do tipo complementar a M (N-M elementos). Dessa população se retira n amostras sem reposição.
- Então, seja **X** a variável aleatória que representa os **n** elementos retirados do que são do tipo A.
- A probabilidade P de que de n elementos escolhidos m sejam do tipo M é dada por:

$$P(X = k) = \frac{\binom{M}{k} \cdot \binom{N - M}{n - k}}{\binom{N}{n}}$$

- Para facilitar, considere um conjunto com n elementos, que possui 2 tipos de elementos, n_1 e n_2 (obviamente, $n_2 = n n_1$).
- Considere s a quantidade de elementos que serão sorteados sem reposição.
- Considere s_1 a quantidade de elementos n_1 que estarão entre os elementos sorteados, e consequentemente, s_2 os elementos de n_2 . Obviamente, $s_2 = s s_1$.
- Logo, a probabilidade de que o conjunto de s elementos contenha s_1 elementos de n_1 será:

$$P(X = s_1) = \frac{\binom{n_1}{s_1} \binom{n_2}{s_2}}{\binom{n}{s}}$$

Valor Esperado (Esperança)

Temos que
$$p = M/N$$
 (ou $p = n_1/n$), $E(X) = np$ ou $E(X) = sp$

Variância

$$Var(X) = np(1-p) \cdot \left(\frac{N-n}{N-1}\right)$$

Ou

$$Var(X) = sp(1-p) \cdot \left(\frac{n_1 - s_1}{n-1}\right)$$

Exemplo

 Numa caixa misturaram-se por engano 2 parafusos defeituosos e 18 parafusos em bom estado. Se for retirada, sem reposição, uma amostra de 10 parafusos, calcule a probabilidade de nesta amostra existir um parafuso defeituoso.

$$R = P(X = 1) = (C(2, 1) \cdot C(18, 10 - 1)) / (C(20, 10))$$

Distribuição de Poisson

- Representa a distribuição de probabilidade de uma variável aleatória que registra o numero de ocorrências (k) sobre um intervalo de tempo ou espaço específicos. Λ representa a média do numero de ocorrências.
- Probabilidade em um dado intervalo de tempo ou espaço específicos

$$P(X = k) = \frac{\lambda^k \cdot e^{-\lambda}}{k!}$$

Distribuição de Poisson

Valor Esperado (Esperança)

$$E(X) = \lambda$$

Variância

$$Var(X) = \lambda$$

- Exemplo
 - Suponha que o numero médio de carros que chegam no período de 30 minutos é 5, logo:

$$P(X = k) = (5^k \cdot e^{-5})/k!$$

Qual a probabilidade de chegarem 3 em 30 minutos?

$$R = P(X = k) = (5^3 \cdot e^{-5})/3!$$

Distribuições Contínuas

- Uniforme
- Exponencial
- Normal

Distribuição Uniforme

- A função da variável é constante em qualquer ponto num dado intervalo (eventos equiprováveis) e não é afetada por nenhum fator externo.
- Para dado valor x que pode variar entre os valores mínimo e máximo a e b, a função de densidade é dada por:

$$f(x) = \begin{cases} \frac{1}{b-a}, & a \le x \le b \\ 0, & caso\ contrário \end{cases}$$

- Exemplos:
 - Defeito no ponto X de uma barra, rompimento de um cabo em dado ponto, posição do ponteiro em um relógio, etc.

Distribuição Uniforme

Função de distribuição

$$F(x) = \frac{x - a}{b - a}$$

• Esperança

$$E(X) = \frac{b+a}{2}$$

Variância

$$VAR(X) = \frac{(b-a)^2}{12}$$

Distribuição Exponencial

- Representa a probabilidade de duração total de tempo (ou espaço) de um objeto que se desgasta com o tempo
- Para dada quantidade de tempo x e média λ , a função de densidade de probabilidade de x é dada por:

$$f(x) = \begin{cases} \lambda e^{-\lambda t}, & x \ge 0 \\ 0, & x < 0 \end{cases}$$

- Exemplos:
 - Duração de uma lâmpada, extensão de uso de um pneu (em quilômetros), vida útil de um componente, etc.

Distribuição Exponencial

• Função de distribuição

$$F(x) = \begin{cases} 1 - e^{-\lambda t}, & x > 0 \\ 0, & x \le 0 \end{cases}$$

Esperança
$$E(X) = \frac{1}{\lambda}$$

Variância

$$VAR(X) = \frac{1}{\lambda^2}$$

- Pode representar qualquer tipo de medida cuja frequência seja maior na média, e diminui simetricamente quando a medida aumenta ou diminui, sem considerar nenhum outro fator externo que possa modificar as frequências
- A distribuição Normal pode abranger uma infinidade de fenômenos, por exemplo: duração de uma doença, idade dos alunos em uma sala de aula, intensidade de um fenômeno físico, etc.

Algumas características da Distribuição Normal:

- A variável é definida por $X \sim N(\mu, \sigma^2)$
- $X = \mu$ é o ponto máximo de f(x)
- $X = \mu + \sigma$ e $X = \mu \sigma$ são os pontos de inflexão
- A curva é simétrica em relação a μ

A função de probabilidade é dada por:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

Na prática, nós definimos Z uma variável aleatória $Z \sim N(0,1)$ tal que:

$$Z = \frac{X - \mu}{\sigma}$$

Z representa quantos desvios-padrões a variável X está afastada da média (também pode ser chamada de Distribuição Normal Padrão).

Para calcular o valor de P(a < X < b), podemos calcular o valor de Z para a e b, e consultar o valor de $P(z_a < Z < z_b)$ através de uma tabela de Distribuição Normal Padrão

Tabela A6.2 Distribuição normal — valores de $P(0 \le Z \le z_0)$

z	0	1	2	3	4	5	6	7	8	9
0,0	0,0000	0,0040	0,0080	0,0120	0,0160	0,0199	0,0239	0,0279	0,0319	0,0359
0,1	0398	0438	0478	0517	0557	0596	0636	0675	0714	075
0,2	0793	0832	0871	0910	0948	0987	1026	1064	1103	114
0,3	1179	1217	1255	1293	1331	1368	1406	1443	1480	151
0,4	1554	1591	1628	1664	1700	1736	1772	1808	1844	187
0,5	1915	1950	1985	2019	2054	2088	2123	2157	2190	222
0,6	2258	2291	2324	2357	2389	2422	2454	2486	2518	254
0,7	2580	2612	2642	2673	2704	2734	2764	2794	2823	285
0,8	2881	2910	2939	2967	2996	3023	3051	3078	3106	313
0,9	3159	3186	3212	3238	3264	3289	3315	3340	3365	338
1,0	3413	3438	3461	3485	3508	3531	3554	3577	3599	362
1,1	3643	3665	3686	3708	3729	3749	3770	3790	3810	383
1,2	3849	3869	3888	3907	3925	3944	3962	3980	3997	401
1,3	4032	4049	4066	4082	4099	4115	4131	4147	4162	417
1,4	4192	4207	4222	4236	4251	4265	4279	4292	4306	431
1,5	4332	4345	4357	4370	4382	4394	4406	4418	4429	444
1,6	4452	4463	4474	4484	4495	4505	4515	4525	4535	454
1,7	4554	4564	4573	4582	4591	4599	4608	4616	4625	463
1,8	4641	4649	4656	4664	4671	4678	4686	4693	4699	470
1,9	4713	4719	4726	4732	4738	4744	4750	4756	4761	476
2,0	4772	4778	4783	4788	4793	4798	4803	4808	4812	481
2,1	4821	4826	4830	4834	4838	4842	4846	4850	4854	485
2,2	4861	4864	4868	4871	4875	4878	4881	4884	4887	489
2,3	4893	4896	4898	4901	4904	4906	4909	4911	4913	491
2,4	4918	4920	4922	4925	4927	4929	4931	4932	4934	493
2,5	4938	4940	4941	4943	4945	4946	4948	4949	4951	495
2,6	4953	4955	4956	4957	4959	4960	4961	4962	4963	496
2,7	4965	4966	4967	4968	4969	4970	4971	4972	4973	497
2,8	4974	4975	4976	4977	4977	4978	4979	4979	4980	498
2,9	4981	4982	4982	4983	4984	4984	4985	4985	4986	498
3,0	4987	4987	4987	4988	4988	4989	4989	4989	4990	499
3,1	4990	4991	4991	4991	4992	4992	4992	4992	4993	499
3,2	4993	4993	4994	4994	4994	4994	4994	4995	4995	499
3,3	4995	4995	4995	4996	4996	4996	4996	4996	4996	499
3,4	4997	4997	4997	4997	4997	4997	4997	4997	4997	499
3,5	4998	4998	4998	4998	4998	4998	4998	4998	4998	499
3,6	4998	4998	4999	4999	4999	4999	4999	4999	4999	499
3,7	4999	4999	4999	4999	4999	4999	4999	4999	4999	499
3,8	4999	4999	4999	4999	4999	4999	4999	4999	4999	499
3,9	0,5000	0,5000	0,5000	0,5000	0,5000	0,5000	0,5000	0,5000	0,5000	0,500