K is an L-amino acid independently selected at each occurrence from the group: arginine, citrulline, N-methylarginine, lysine, homolysine, 2-aminoethylcysteine, δ-N-2-imidazolinylornithine, δ-N-benzylcarbamoylornithine, and β-2-benzimidazolylacetyl-1,2-diaminopropionic acid;

K' is a D-amino acid independently selected at each occurrence from the group: arginine, citrulline, N-methylarginine, lysine, homolysine, 2-aminoethylcysteine, δ-N-2-imidazolinylornithine, δ-N-benzylcarbamoylornithine, and β-2-benzimidazolylacetyl-1,2-diaminopropionic acid;

L is independently selected at each occurrence from the group: glycine, L-alanine, and D-alanine;

M is L-aspartic acid;

M' is D-aspartic acid;

R¹ is an amino acid substituted with 0-1 bonds to L_n, independently selected at each occurrence from the group: glycine, L-valine, D-valine, alanine, leucine, isoleucine, norleucine, 2-aminobutyric acid, 2-aminobexanoic acid, tyrosine, phenylalanine, thienylalanine, phenylglycine, cyclohexylalanine, homophenylalanine, 1-naphthylalanine, lysine, serine, ornithine, 1,2-diaminobutyric acid, 1,2-diaminopropionic acid, cysteine, penicillamine, and methionine;

R² is an amino acid, substituted with 0-1 bonds to L_n, independently selected at each occurrence from the group: glycine, valine, alanine, leucine, isoleucine, norleucine, 2-aminobutyric acid, 2-aminohexanoic acid, tyrosine, L-phenylalanine, D-phenylalanine, thienylalanine, phenylglycine, biphenylglycine, cyclohexylalanine, homophenylalanine, L-1-naphthylalanine, D-1-naphthylalanine, lysine, serine, ornithine, 1,2-diaminobutyric acid, 1,2-diaminopropionic acid, cysteine, penicillamine, methionine, and 2-aminothiazole-4-acetic acid;

 R^3 is an amino acid, substituted with 0-1 bonds to L_n , independently selected at each occurrence from the group: glycine, D-valine, D-alanine, D-leucine, D-isoleucine, D-norleucine,

D-2-aminobutyric acid, D-2-aminohexanoic acid, D-tyrosine, D-phenylalanine, D-thienylalanine, D-phenylglycine, D-cyclohexylalanine, D-homophenylalanine, D-1-naphthylalanine, D-lysine, D-serine, D-ornithine, D-1,2-diaminobutyric acid, D-1,2-diaminopropionic acid, D-cysteine, D-penicillamine, and D-methionine;

R⁴ is an amino acid, substituted with 0-1 bonds to L_n, independently selected at each occurrence from the group: glycine, D-valine, D-alanine, D-leucine, D-isoleucine, D-norleucine, D-2-aminobutyric acid, D-2-aminohexanoic acid, D-tyrosine, D-phenylalanine, D-thienylalanine, D-phenylglycine, D-cyclohexylalanine, D-homophenylalanine, D-1-naphthylalanine, D-lysine, D-serine, D-ornithine, D-1,2-diaminobutyric acid, D-1,2-diaminopropionic acid, D-cysteine, D-penicillamine, D-methionine, and 2-aminothiazole-4-acetic acid;

R⁵ is an amino acid, substituted with 0-1 bonds to L_n, independently selected at each occurrence from the group: glycine, L-valine, L-alanine, L-leucine, L-isoleucine, L-norleucine, L-2-aminobutyric acid, L-2-aminohexanoic acid, L-tyrosine, L-phenylalanine, L-thienylalanine, L-phenylglycine, L-cyclohexylalanine, L-homophenylalanine, L-1-naphthylalanine, L-lysine, L-serine, L-ornithine, L-1,2-diaminobutyric acid, L-1,2-diaminopropionic acid, L-cysteine, L-penicillamine, L-methionine, and 2-aminothiazole-4-acetic acid;

provided that one of R¹, R², R³, R⁴, and R⁵ in each Q is substituted with a bond to L_n, further provided that when R² is 2-aminothiazole-4-acetic acid, K is N-methylarginine, further provided that when R⁴ is 2-aminothiazole-4-acetic acid, K and K' are N-methylarginine, and still further provided that when R⁵ is 2-aminothiazole-4-acetic acid, K' is N-methylarginine;

d is selected from 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;

 L_n is a linking group having the formula:

$$(CR^6R^7)_{g^{\text{--}}}(W)_{h^{\text{--}}}(CR^{6a}R^{7a})_{g^{\text{+-}}}(Z)_{k^{\text{--}}}(W)_{h^{\text{+-}}}(CR^8R^9)_{g^{\text{++-}}}(W)_{h^{\text{+-}}}(CR^{8a}R^{9a})_{g^{\text{+++}}}$$

provided that g+h+g'+k+h'+g"+h"+g" is other than 0;

W is independently selected at each occurrence from the group: O, S, NH, NHC(=O), C(=O)NH, C(=O), C(=O)O, OC(=O), NHC(=S)NH, NHC(=O)NH, SO₂, (OCH₂CH₂O)_s, (CH₂CH₂O)_{s'}, (OCH₂CH₂CH₂O)_{s'}, (CH₂CH₂CH₂O)_t, and (aa)_{t'};

aa is independently at each occurrence an amino acid;

- Z is selected from the group: aryl substituted with 0-3 R¹⁰, C₃₋₁₀ cycloalkyl substituted with 0-3 R¹⁰, and a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-3 R¹⁰;
- R⁶, R^{6a}, R⁷, R^{7a}, R⁸, R^{8a}, R⁹ and R^{9a} are independently selected at each occurrence from the group: H, =O, COOH, SO₃H, PO₃H, C₁-C₅ alkyl substituted with 0-3 R¹⁰, aryl substituted with 0-3 R¹⁰, benzyl substituted with 0-3 R¹⁰, and C₁-C₅ alkoxy substituted with 0-3 R¹⁰, NHC(=O)R¹¹, C(=O)NHR¹¹, NHC(=O)NHR¹¹, NHR¹¹, R¹¹, and a bond to C_h;
- R¹⁰ is independently selected at each occurrence from the group: a bond to C_h, COOR¹¹, OH, NHR¹¹, SO₃H, PO₃H, aryl substituted with 0-3 R¹¹, C₁₋₅ alkyl substituted with 0-1 R¹², C₁₋₅ alkoxy substituted with 0-1 R¹², and a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-3 R¹¹;
- R¹¹ is independently selected at each occurrence from the group: H, aryl substituted with 0-1 R¹², a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-1 R¹², C₃₋₁₀ cycloalkyl substituted with 0-1 R¹², polyalkylene glycol substituted with 0-1 R¹², carbohydrate substituted with 0-1 R¹², cyclodextrin substituted with 0-1 R¹², amino acid substituted with 0-1 R¹², polyaraboxyalkyl substituted with 0-1 R¹², polyazaalkyl substituted with 0-1 R¹², peptide substituted with 0-1 R¹², wherein the peptide is comprised of 2-10 amino acids, and a bond to Ch;

R¹² is a bond to C_h;

k is selected from 0, 1, and 2; h is selected from 0, 1, and 2;

h' is selected from 0, 1, 2, 3, 4, and 5;
h" is selected from 0, 1, 2, 3, 4, and 5;
g is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;
g" is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;
g" is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;
g" is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;
s is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;
s' is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;
t is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;
t' is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;
t' is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;

Ch is a metal bonding unit having a formula selected from the group:

AT
$$E - A^2$$
, AT $E - A^6$, A

 A^1 , A^2 , A^3 , A^4 , A^5 , A^6 , A^7 , and A^8 are independently selected at each occurrence from the group N, NR¹³, NR¹³R¹⁴, S, SH, S(Pg), O, OH, PR¹³, PR¹³R¹⁴, P(O)R¹⁵R¹⁶, and a bond to L_n;

, and

E is a bond, CH, or a spacer group independently selected at each occurrence from the group: C₁-C₁₀ alkyl substituted with 0-3 R¹⁷, aryl substituted with 0-3 R¹⁷, C₃₋₁₀ cycloalkyl substituted with 0-3 R¹⁷, heterocyclo-C₁₋₁₀ alkyl substituted with 0-3 R¹⁷, wherein the heterocyclo group is a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O, C₆₋₁₀ aryl-C₁₋₁₀ alkyl substituted

with 0-3 R^{17} , C_{1-10} alkyl- C_{6-10} aryl- substituted with 0-3 R^{17} , and a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-3 R^{17} ;

R¹³, and R¹⁴ are each independently selected from the group: a bond to L_n, hydrogen, C₁-C₁₀ alkyl substituted with 0-3 R¹⁷, C₁₋₁₀ cycloalkyl substituted with 0-3 R¹⁷, heterocyclo-C₁₋₁₀ alkyl substituted with 0-3 R¹⁷, wherein the heterocyclo group is a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O, C₆₋₁₀ aryl-C₁₋₁₀ alkyl substituted with 0-3 R¹⁷, C₁₋₁₀ alkyl-C₆₋₁₀ aryl- substituted with 0-3 R¹⁷, a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-3 R¹⁷, and an electron, provided that when one of R¹³ or R¹⁴ is an electron, then the other is also an electron;

alternatively, R^{13} and R^{14} combine to form = $C(R^{20})(R^{21})$;

 R^{15} and R^{16} are each independently selected from the group: a bond to L_n , -OH, C_1 - C_{10} alkyl substituted with 0-3 R^{17} , aryl substituted with 0-3 R^{17} , C_{3-10} cycloalkyl substituted with 0-3 R^{17} , heterocyclo- C_{1-10} alkyl substituted with 0-3 R^{17} , wherein the heterocyclo group is a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O, C_{6-10} aryl- C_{1-10} alkyl substituted with 0-3 R^{17} , C_{1-10} alkyl- C_{6-10} aryl- substituted with 0-3 R^{17} , and a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-3 R^{17} ;

 R^{17} is independently selected at each occurrence from the group: a bond to L_n , =0, F, Cl, Br, I, $-CF_3$, -CN, $-CO_2R^{18}$, $-C(=O)R^{18}$, $-C(=O)N(R^{18})_2$, -CHO, $-CH_2OR^{18}$, $-OC(=O)R^{18}$, $-OC(=O)R^{18}$, $-OC(=O)N(R^{18})_2$, $-NR^{19}C(=O)R^{18}$, $-NR^{19}C(=O)OR^{18a}$, $-NR^{19}C(=O)N(R^{18})_2$, $-NR^{19}SO_2N(R^{18})_2$, $-NR^{19}SO_2R^{18a}$, $-SO_3H$, $-SO_2R^{18a}$, $-SR^{18}$, $-S(=O)R^{18a}$, $-SO_2N(R^{18})_2$, $-N(R^{18})_2$, $-NHC(=S)NHR^{18}$, $=NOR^{18}$, NO_2 , $-C(=O)NHOR^{18}$, $-C(=O)NHNR^{18}R^{18a}$, $-OCH_2CO_2H$, 2-(1-morpholino)ethoxy, C_1 - C_2 -clayly, C_2 - C_4 -alkenyl, C_3 - C_6 -cycloalkyl, C_3 - C_6 -cycloalkylmethyl, C_2 - C_6 -alkoxyalkyl, aryl substituted with 0-2 R^{18} , and a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O;

R¹⁸, R^{18a}, and R¹⁹ are independently selected at each occurrence from the group: a bond to L_n, H, C₁-C₆ alkyl, phenyl, benzyl, C₁-C₆ alkoxy, halide, nitro, cyano, and trifluoromethyl;

Pg is a thiol protecting group;

 R^{20} and R^{21} are independently selected from the group: H, C_1 - C_{10} alkyl, -CN, -CO₂ R^{25} , -C(=O) R^{25} , -C(=O) R^{25} , -C(=O) R^{25} , aryl substituted with 0-3 R^{23} , unsaturated 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-3 R^{23} , and unsaturated C_{3-10} carbocycle substituted with 0-3 R^{23} :

alternatively, R²⁰ and R²¹, taken together with the divalent carbon radical to which they are attached form:

 R^{22} and R^{23} are independently selected from the group: H, R^{24} , C_1 - C_{10} alkyl substituted with 0-3 R^{24} , C_2 - C_{10} alkenyl substituted with 0-3 R^{24} , and C_{3} - C_{10} alkenyl substituted with 0-3 R^{24} , and C_{3} - C_{10} alkenyl substituted with 0-3 R^{24} , and C_{3} - C_{10} carbocycle substituted with 0-3 R^{24} ;

alternatively, R²², R²³ taken together form a fused aromatic or a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O;

 \mathbf{a} and \mathbf{b} indicate the positions of optional double bonds and \mathbf{n} is 0 or 1;

 R^{24} is independently selected at each occurrence from the group: =O, F, Cl, Br, I, -CF₃, -CN, -CO₂R²⁵, -C(=O)R²⁵, -C(=O)N(R²⁵)₂, -N(R²⁵)₃+, -CH₂OR²⁵, -OC(=O)R²⁵, -OC(=O)OR^{25a}, -OC(=O)N(R²⁵)₂, -NR²⁶C(=O)R²⁵, -NR²⁶C(=O)OR^{25a},

-NR²⁶C(=O)N(R²⁵)₂, -NR²⁶SO₂N(R²⁵)₂, -NR²⁶SO₂R^{25a}, -SO₃H, -SO₂R^{25a}, -SR²⁵, -S(=O)R^{25a}, -SO₂N(R²⁵)₂, -N(R²⁵)₂, =NOR²⁵, -C(=O)NHOR²⁵, -OCH₂CO₂H, and 2-(1-morpholino)ethoxy; and,

R²⁵, R^{25a}, and R²⁶ are each independently selected at each occurrence from the group: hydrogen and C₁-C₆ alkyl;

and a pharmaceutically acceptable salt thereof.

- 12. (Amended) A composition according to Claim 11, wherein the metallopharmaceutical is a diagnostic radiopharmaceutical, the metal is a radioisotope selected from the group: ^{99m}Tc, ⁹⁵Tc, ¹¹¹In, ⁶²Cu, ⁶⁴Cu, ⁶⁷Ga, and ⁶⁸Ga, the targeting moiety is a peptide or a mimetic thereof and the linking group is present between the targeting moiety and chelator.
- 13. (Amended) A composition according to Claim 12, wherein the targeting moiety is a cyclic pentapeptide.
- 19. (Amended) A composition according to Claim 11, wherein the metallopharmaceutical is a therapeutic radiopharmaceutical, the metal is a radioisotope selected from the group: ¹⁸⁶Re, ¹⁸⁸Re, ¹⁵³Sm, ¹⁶⁶Ho, ¹⁷⁷Lu, ¹⁴⁹Pm, ⁹⁰Y, ²¹²Bi, ¹⁰³Pd, ¹⁰⁹Pd, ¹⁵⁹Gd, ¹⁴⁰La, ¹⁹⁸Au, ¹⁹⁹Au, ¹⁶⁹Yb, ¹⁷⁵Yb, ¹⁶⁵Dy, ¹⁶⁶Dy, ⁶⁷Cu, ¹⁰⁵Rh, ¹¹¹Ag, and ¹⁹²Ir, the targeting moiety is a peptide or a mimetic thereof and the linking group is present between the targeting moiety and chelator.
- 20. (Amended) A composition according to Claim 19, wherein the targeting moiety is a cyclic pentapeptide.
- 27. (Amended) A composition according to Claim 11, wherein the metallopharmaceutical is a MRI contrast agent, the metal is a paramagnetic metal ion selected from the group: Gd(III), Dy(III), Fe(III), and Mn(II), the targeting moiety is a peptide or a mimetic thereof and the linking group is present between the targeting moiety and chelator.
- 28. (Amended) A composition according to Claim 27, wherein the targeting moiety is a cyclic pentapeptide.

B5

31. (Amended) A composition according to Claim 11, wherein the metallopharmaceutical is a X-ray contrast agent, the metal is selected from the group: Re, Sm, Ho, Lu, Pm, Y, Bi, Pd, Gd, La, Au, Au, Yb, Dy, Cu, Rh, Ag, and Ir, the targeting moiety is a cyclic pentapeptide, and the linking group is present between the targeting moiety and chelator.