Introdução à Teoria dos Grafos

Prof. Alexandre Noma

Semana passada...

- Caminho mínimo
 - É um caminho de comprimento mínimo.

• Ex. qual seria um caminho mínimo de 1 até 6?

Semana passada...

- Caminho mínimo
 - É um caminho de comprimento mínimo.

• Ex. qual seria um caminho mínimo de 1 até 6?

• Calcule um caminho mínimo de a até e?

• Calcule um caminho mínimo de a até e?

$$|P_1| = 4 + 8 + 7 + 9 = 28$$
 é mínimo?

• Calcule um caminho mínimo de a até e?

$$|P_1| = 4 + 8 + 7 + 9 = 28$$
 não é mínimo!

$$|P_2| = 8 + 1 + 2 + 10 = 21$$
 é mínimo?

Grafo ponderado

- É um grafo com pesos nas arestas.
- Como representar no computador?

Aulas passadas

Representar um grafo no computador:

• (1) Matriz de adjacências

• (2) Listas de adjacências

1. Matriz de Adjacências

	1	2	3	4	5	6
1	0	1	0	1	0	0
2	0	0	0	0	1	0
3	0	0	0	0	1	1
4	0	1	0	0	0	0
5	0	0	0	1	0	0
6	0	1 0 0 1 0	0	0	0	1

1. Matriz de Adjacências?

1. Matriz de Adjacências?

2. Listas de Adjacências

(2) Listas de adjacências

1: 2, 4

2: 5

3: 5, 6

4: 2

5: 4

6: 6

2. Listas de Adjacências?


```
1: ?, ?
2: ?
3: ?, ?
4: ?
5: ?
```

2. Listas de Adjacências?


```
1: 2 (12), 4 (14)
```

Exercício Programa

08-leGrafoPonderado.py

Algoritmo de Dijkstra

 (caminhos mínimos para grafos ponderados)

- Pré-requisitos:
 - Definições: caminho, comprimento, caminho mínimo, distância
 - Fila de prioridade

Definições

- Caminho
- Comprimento
- Caminho mínimo
- Distância

- Insere(Q, x)
 - insere elemento x no conjunto Q
- Mínimo(Q)
 - devolve o elemento de Q com a menor chave
- ExtraiMínimo(Q)
 - remove e devolve o elemento de Q com a menor chave
- Vazio(Q)
 - devolve verdadeiro se fila vazia, falso caso contrário

Exemplo

|--|

ExtraiMínimo: ?

Exemplo

ExtraiMínimo: 12

Exemplo

ExtraiMínimo: ?

Exemplo

ExtraiMínimo: 14

Exemplo

ExtraiMínimo: ?

Exemplo

ExtraiMínimo: 20

Exercício Programa

09-filaDePrioridade.py
 (implementação simples e ineficiente com vetor de índices)

Ex. Implementação eficiente com HEAP

Algoritmo de Dijkstra

- Dijkstra(G, w, s)
 - Entrada: um grafo G, ponderado com pesos W,
 e um vértice inicial S
 - Saída: distâncias em relação ao vértice inicial (e caminhos mínimos)
- Atributos
 - v.d: distância
 - v.∏ (v.**pai**)
 - ("árvore de caminhos mínimos")

```
DIJKSTRA(G, w, s)

1 INITIALIZE-SINGLE-SOURCE(G, s)

2 Q = G.V

3 while Q \neq \emptyset

4 u = \text{EXTRACT-MIN}(Q)

5 for each vertex v \in G.Adj[u]

6 RELAX(u, v, w)
```

```
DIJKSTRA(G, w, s)

1 INITIALIZE-SINGLE-SOURCE(G, s)

2 Q = G.V

3 while Q \neq \emptyset

4 u = \text{EXTRACT-MIN}(Q)

5 for each vertex v \in G.Adj[u]

6 RELAX(u, v, w)
```

```
INITIALIZE-SINGLE-SOURCE(G, s)

1 for each vertex v \in G. V

2 v.d = \infty

3 v.\pi = \text{NIL}

4 s.d = 0
```

```
RELAX(u, v, w)

1 if u.d + w(u, v) < v.d

2 v.d = u.d + w(u, v)

3 v.\pi = u
```

• Exemplo

- 1 INITIALIZE-SINGLE-SOURCE (G, s)
- Q = G.V
- 3 while $Q \neq \emptyset$
- 4 u = EXTRACT-MIN(Q)
- for each vertex $v \in G.Adj[u]$
- 6 RELAX(u, v, w)

- 1 INITIALIZE-SINGLE-SOURCE (G, s)
- Q = G.V

INITIALIZE-SINGLE-SOURCE(G, s)

- 1 **for** each vertex $\nu \in G.V$
- $2 \qquad \nu.d = \infty$
- $\nu.\pi = NIL$
- $4 \quad s.d = 0$

- 1 INITIALIZE-SINGLE-SOURCE (G, s)
- Q = G.V

INITIALIZE-SINGLE-SOURCE(G, s)

- 1 **for** each vertex $\nu \in G.V$
- $v.d = \infty$
- $\nu.\pi = NIL$
- $4 \quad s.d = 0$

- 1 INITIALIZE-SINGLE-SOURCE (G, s)
- Q = G.V
- 3 while $Q \neq \emptyset$
- u = EXTRACT-MIN(Q)
- for each vertex $v \in G.Adj[u]$
- 6 RELAX(u, v, w)

INITIALIZE-SINGLE-SOURCE (G, s)Q = G.Vwhile $Q \neq \emptyset$ u = EXTRACT-MIN(Q)**for** each vertex $v \in G.Adj[u]$ Relax(u, v, w) ∞ 10 X ∞ ∞ ∞ ∞ ∞ ∞

INITIALIZE-SINGLE-SOURCE (G, s)Q = G.Vwhile $Q \neq \emptyset$ u = EXTRACT-MIN(Q)for each vertex $v \in G.Adj[u]$ Relax(u, v, w) ∞ 10X ∞ ∞ ∞ ∞ ∞ ∞

- 1 INITIALIZE-SINGLE-SOURCE (G, s)2 Q = G.V
- 3 while $Q \neq \emptyset$
- u = EXTRACT-MIN(Q)
- for each vertex $v \in G.Adj[u]$
- 6 RELAX(u, v, w)

RELAX
$$(u, v, w)$$

1 **if** $u.d + w(u, v) < v.d$
2 $v.d = u.d + w(u, v)$
3 $v.\pi = u$

RELAX
$$(u, v, w)$$

1 **if** $u.d + w(u, v) < v.d$
2 $\rightarrow v.d = u.d + w(u, v)$
3 $v.\pi = u$

RELAX
$$(u, v, w)$$

1 **if** $u.d + w(u, v) < v.d$
2 $v.d = u.d + w(u, v)$
3 $\rightarrow v.\pi = u$

INITIALIZE-SINGLE-SOURCE (G, s)Q = G.Vwhile $Q \neq \emptyset$ u = EXTRACT-MIN(Q)**for** each vertex $v \in G.Adj[u]$ Relax(u, v, w)10 X ∞ 10 ∞ ∞

INITIALIZE-SINGLE-SOURCE (G, s)Q = G.Vwhile $Q \neq \emptyset$ u = EXTRACT-MIN(Q)for each vertex $v \in G.Adj[u]$ Relax(u, v, w)10 X ∞ 10 ∞ ∞

- 1 INITIALIZE-SINGLE-SOURCE (G, s)
- Q = G.V
- 3 while $Q \neq \emptyset$
- 4 u = EXTRACT-MIN(Q)
- for each vertex $v \in G.Adj[u]$
- 6 RELAX(u, v, w)

RELAX
$$(u, v, w)$$

1 **if** $u.d + w(u, v) < v.d$
2 $v.d = u.d + w(u, v)$
3 $v.\pi = u$

RELAX
$$(u, v, w)$$

1 **if** $u.d + w(u, v) < v.d$
2 $\rightarrow v.d = u.d + w(u, v)$
3 $v.\pi = u$

RELAX
$$(u, v, w)$$

1 **if** $u.d + w(u, v) < v.d$
2 $v.d = u.d + w(u, v)$
3 $\rightarrow v.\pi = u$

- 1 INITIALIZE-SINGLE-SOURCE (G, s)
- Q = G.V
- 3 while $Q \neq \emptyset$
- 4 u = EXTRACT-MIN(Q)
- for each vertex $v \in G.Adj[u]$
- 6 RELAX(u, v, w)

- 1 INITIALIZE-SINGLE-SOURCE (G, s)
- Q = G.V
- 3 while $Q \neq \emptyset$
- u = EXTRACT-MIN(Q)
- for each vertex $v \in G.Adj[u]$
- 6 RELAX(u, v, w)

- 1 INITIALIZE-SINGLE-SOURCE (G, s)
- Q = G.V
- 3 while $Q \neq \emptyset$
- u = EXTRACT-MIN(Q)
- for each vertex $v \in G.Adj[u]$
- 6 RELAX(u, v, w)

RELAX
$$(u, v, w)$$

1 **if** $u.d + w(u, v) < v.d$
2 $v.d = u.d + w(u, v)$
3 $v.\pi = u$

RELAX
$$(u, v, w)$$

1 **if** $u.d + w(u, v) < v.d$
2 $\rightarrow v.d = u.d + w(u, v)$
3 $v.\pi = u$

RELAX
$$(u, v, w)$$

1 **if** $u.d + w(u, v) < v.d$
2 $v.d = u.d + w(u, v)$
3 $\rightarrow v.\pi = u$

- 1 INITIALIZE-SINGLE-SOURCE (G, s)
- Q = G.V
- 3 while $Q \neq \emptyset$
- 4 u = EXTRACT-MIN(Q)
- for each vertex $v \in G.Adj[u]$
- 6 RELAX(u, v, w)

- 1 INITIALIZE-SINGLE-SOURCE (G, s)
- Q = G.V
- 3 while $Q \neq \emptyset$
- u = EXTRACT-MIN(Q)
- for each vertex $v \in G.Adj[u]$
- 6 RELAX(u, v, w)

- 1 INITIALIZE-SINGLE-SOURCE (G, s)
- Q = G.V
- 3 while $Q \neq \emptyset$
- 4 u = EXTRACT-MIN(Q)
- for each vertex $v \in G.Adj[u]$
- 6 RELAX(u, v, w)

RELAX
$$(u, v, w)$$

1 **if** $u.d + w(u, v) < v.d$
2 $v.d = u.d + w(u, v)$
3 $v.\pi = u$

RELAX
$$(u, v, w)$$

1 **if** $u.d + w(u, v) < v.d$
2 $\rightarrow v.d = u.d + w(u, v)$
3 $v.\pi = u$

RELAX
$$(u, v, w)$$

1 **if** $u.d + w(u, v) < v.d$
2 $v.d = u.d + w(u, v)$
3 $\rightarrow v.\pi = u$

- 1 INITIALIZE-SINGLE-SOURCE (G, s)
- Q = G.V
- 3 while $Q \neq \emptyset$
- 4 u = EXTRACT-MIN(Q)
- for each vertex $v \in G.Adj[u]$
- 6 RELAX(u, v, w)

- 1 INITIALIZE-SINGLE-SOURCE (G, s)
- Q = G.V
- 3 while $Q \neq \emptyset$
- u = EXTRACT-MIN(Q)
- for each vertex $v \in G.Adj[u]$
- 6 RELAX(u, v, w)

- 1 INITIALIZE-SINGLE-SOURCE (G, s)
- Q = G.V
- 3 while $Q \neq \emptyset$
- 4 u = EXTRACT-MIN(Q)
- for each vertex $v \in G.Adj[u]$
- 6 RELAX(u, v, w)

- 1 INITIALIZE-SINGLE-SOURCE (G, s)
- Q = G.V
- 3 while $Q \neq \emptyset$
- 4 u = EXTRACT-MIN(Q)
- for each vertex $v \in G.Adj[u]$
- 6 RELAX(u, v, w)

Dijkstra

```
DIJKSTRA(G, w, s)
```

```
1 INITIALIZE-SINGLE-SOURCE (G, s)

2 Q = G.V

3 while Q \neq \emptyset

4 u = \text{EXTRACT-MIN}(Q)

5 for each vertex v \in G.Adj[u]

6 RELAX(u, v, w)
```

```
INITIALIZE-SINGLE-SOURCE(G, s)

1 for each vertex v \in G. V

2 v.d = \infty

3 v.\pi = \text{NIL}

4 s.d = 0
```

Dijkstra

```
DIJKSTRA(G, w, s)

1 INITIALIZE-SINGLE-SOURCE(G, s)

2 Q = G.V

3 while Q \neq \emptyset

4 u = \text{EXTRACT-MIN}(Q)

5 for each vertex v \in G.Adj[u]

6 RELAX(u, v, w)
```

```
RELAX(u, v, w)

1 if u.d + w(u, v) < v.d

2 v.d = u.d + w(u, v)

3 v.\pi = u
```


Consumo de tempo?

```
DIJKSTRA(G, w, s)

1 INITIALIZE-SINGLE-SOURCE(G, s)

2 Q = G.V

3 while Q \neq \emptyset

4 u = \text{EXTRACT-MIN}(Q)

5 for each vertex v \in G.Adj[u]

6 RELAX(u, v, w)
```

```
INITIALIZE-SINGLE-SOURCE(G, s)

1 for each vertex v \in G. V

2 v.d = \infty

3 v.\pi = \text{NIL}

4 s.d = 0
```

```
RELAX(u, v, w)

1 if u.d + w(u, v) < v.d

2 v.d = u.d + w(u, v)

3 v.\pi = u
```

Exercício Programa

• 10-dijkstra.py