Begriffe, die in dieser Übersicht definiert sind, sind kursiv gesetzt.

Begriffe

abgeschlossene Menge: Komplement einer offenen Menge (Def. 4.1.5)

Abschluss einer Menge: Menge inklusive ihrer Randpunkte (Def. 4.1.11)

Abschlussoperator: Operator, der jeder Menge ihren Abschluss zuordnet (Def. 4.1.11)

Abstand: das, was eine *Metrik* misst

Dreiecksungleichung: $f(x,y) + f(y,z) \ge f(x,z)$ (Def. 4.3.1)

Häufungspunkt einer Menge: Punkt für den in jeder *Umgebung* andere Punkte aus der Menge liegen (Def. 4.1.27)

induzierte Topologie: Topologie auf einem metrischen Raum in der Punkte innere Punkte einer Menge sind, wenn sie eine ε -Umgebung haben, die ganz in der Menge liegt (Def. 4.3.3)

Inneres einer Menge: Kern der Menge (Def. 4.1.14)

Kern eine Menge: Menge ohne ihre *Randpunkte* (Def. 4.1.14)

Kernoperator: Operator, der jeder Menge ihren Kern zuordnet (Def. 4.1.14)

offene Menge: Element einer Topologie (Def. 4.1.1)

Metrik: Abbildung, die je zwei Punkten ihren Abstand zuordnet. Sie muss positiv definit und symmetrisch sein und die Dreiecksungleichung erfüllen. (Def. 4.3.1)

metrischer Raum: Menge mit einer Metrik (Def. 4.3.1)

offene Umgebung eines Punktes: offene Menge, die den Punkt enthält (Def. 4.1.4)

positive Definitheit: Im Kontext von Metriken ist eine Abbildung $f: X \times X \to \mathbb{R}$ positiv definit, wenn für alle $x, y \in X$ gilt: $f(x, y) \ge 0$ und $f(x, y) = 0 \Leftrightarrow x = y$. (Def. 4.3.1)

Rand einer Menge: Menge der Randpunkte der Menge (Def. 4.1.8)

Randoperator: Operator, der jeder Menge ihren Rand zuordnet (Def. 4.1.8)

Randpunkt einer Menge: Punkt, für den jede *Umgebung* sowohl Punkte enthält, die in der Menge liegen als auch Punkte, die nicht in ihr liegen (Def. 4.1.8)

Standardmetrik: Metrik auf \mathbb{R}^n , bei der zwei Punkte $(x_1,...,x_n)$ und $(y_1,...y_n)$ den Abstand $\sqrt{(x_1-y_1)^2+...+(x_n-y_n)^2}$ haben (Def. 4.3.7)

stetige Abbildung: Abbildung zwischen topologischen Räumen, für die Urbilder offener Mengen offen sind (Def. 4.1.31)

Symmetrie: Eine Abbildung $f: X^2 \to Y$ ist symmetrisch, wenn für alle $x, y \in X$ gilt: f(x, y) = f(y, x). (Def. 4.3.1)

Teilraumtopologie: Topologie auf einer Teilmenge eines topologischen Raumes X, bei der die offenen Mengen durch Schnitte mit offenen Mengen aus X entstehen (Def. 4.2.1)

Topologie: Mengensystem, das die leere und die gesamte Menge enthält und abgeschlossen ist unter Vereinigung und endlichem Schnitt (Def. 4.1.1)

topologischer Raum: Paar aus einer Grundmenge und einer Topologie (Def. 4.1.1)

 ε -Umgebung eines Punktes: Menge der Punkte in einem metrischen Raum, die von dem Punkt einen kleineren Abstand als ε haben (Def. 4.3.2)

Symbole

Anmerkung: in dem folgenden Symbolen taucht X als Index auf. Falls X ein topologischer Raum ist, dann ist eben diese Topologie gemeint, falls X Teilmenge eines topologischen Raumes ist ohne explizit angegebene eigene Topologie, so ist die Teilraumtopologie auf X gemeint und wenn X eine Metrik ist, so ist die von X induzierte Topologie gemeint. Ist X eine natürliche Zahl n, so ist die Standardtopologie im \mathbb{R}^n gemeint.

```
B_{\varepsilon}(p) - \varepsilon-Umgebung von p
```

 C_X - Menge der in X abgeschlossenen Mengen (Def. 4.1.5)

 \mathbf{cl}_X - Abschlussoperator auf X (Def. 4.1.11)

d - Standardmetrik auf \mathbb{R}^3 (Konvention 4.3.8)

 d_n - Standardmetrik auf \mathbb{R}^n (Def. 4.3.7)

 ∂_X - Randoperator auf X (Def. 4.1.8)

 $\mathbf{HP}_X(A)$ - Menge der $H\ddot{a}ufungspunkte$ von A in X (Def. 4.1.27)

 \mathcal{O}_X - Topologie auf X (Konvention 4.1.2, Def. 4.2.1, Def. 4.3.3)

 $\mathcal{O}_X(p)$ - Menge der offenen Umgebungen von p in X (Def. 4.1.4)

 $\mathbf{op}_X \quad \text{-} \quad \textit{Kernoperator} \text{ auf } X \text{ (Def. 4.1.14)}$