关联规则分析与 Apriori 算法

CS245 数据科学基础 陆朝俊 叶泽林 515030910468

1 问题描述

关联规则分析是数据挖掘中活跃的研究方法之一,其目的是在一个数据集中找出各项之间的 关联关系(这种关系一般没有在数据中直接表示出来)。Apriori 是关联规则分析中最常用也是最 经典的挖掘频繁项集的算法,在本次作业中,我将实现 Apriori 算法,从交易数据集中发现频繁项 集,并生成相应的关联规则。

2 解决方案1

2.1 数据集的准备

为验证 Apriori 算法实现的正确性,我根据一定的规则生成了一个交易数据集,数据集的每个实例代表一条交易记录,共 100 个实例。我将商品分为食品(bread、milk、apple、orange、beer)电器(TV、PC、phone、fridge、ele_oven)和工具(scissors、stapler、plate、knife、glue)三类,各按照一定的出现及组合概率生成相应的商品交易记录,具体的参数设定可参见附录 A.1。

我认为对于交易情况的分析,仅使用模拟生成的数据集难以取得真实的结果,因此我额外在Groceries 数据集上执行了Apriori 算法。Groceries 数据集是内置于R语言的关联分析数据集,来源于某杂货店一个月的真实交易记录,包含9835条交易记录及169种商品。我将其从R语言包中提取出并重组为.csv格式,再使用Apriori算法进行分析。

2.2 Apriori 算法

Apriori 算法是最经典的挖掘频繁项集的算法,实现了在大数据集上可行的关联规则提取,其核心思想是通过连接产生候选项与其支持度,然后通过剪枝生成频繁项集,步骤主要为:

- 1. 找出所有的频繁项集(支持度大于等于给定的阈值);
- 2. 由频繁项集产生强关联规则(经过上个步骤后满足给定的置信度阈值的规则)。

为验证 Apriori 算法实现的正确性,我先使用蛮力算法在模拟交易数据集上运行一次,将结果与 Apriori 算法的结果进行比较。验证算法的正确性后,在 Groceries 数据集上我则直接使用 Apriori 算法进行分析。

3 实验及结果

3.1 模拟数据集

我将支持度和置信度的阈值分别设置为 0.1 及 0.6, 蛮力算法的运行结果根据支持度和置信度排序后为:

¹本次作业的主要代码实现可参见附录 A.2

```
–频 繁 项 集 –
('scissors', 'stapler'), 0.15
('plate', 'stapler'), 0.15
('knife', 'stapler'), 0.15
('scissors', 'knife'), 0.15
('stapler', 'glue'), 0.16
('ele_oven', 'TV'), 0.17
('milk',) , 0.18
('apple',) , 0.18
('bread',) , 0.19
('orange',) , 0.21
('beer',), 0.22
('PC',) , 0.22
('phone',) , 0.22
('glue',) , 0.23
('plate',) , 0.23
('scissors',) , 0.25
('fridge',) , 0.25
('ele_oven',) , 0.26
('knife',), 0.27
('TV',) , 0.29
('stapler',) , 0.30
  ('scissors',) --> ('stapler',) , 0.60
('scissors',) --> ('knife',) , 0.60
('plate',) -> ('stapler',) , 0.65
('ele oven',) --> ('TV',) , 0.65
('glue',) --> ('stapler',) , 0.70
```

得到以上的参考结果后,我使用 Apriori 算法和同样的参数对模拟交易数据集进行分析,所得结果见表 1 和表 2。

表 1: Apriori 算法在模拟交易数据集下发现的频繁项集(按支持度排序)

频繁项集	支持度	频繁项集	支持度
stapler, scissors	0.15	PC	0.22
knife, scissors	0.15	phone	0.22
stapler, knife	0.15	glue	0.23
plate, stapler	0.15	plate	0.23
stapler, glue	0.16	scissors	0.25
ele_oven, TV	0.17	fridge	0.25
milk	0.18	ele_oven	0.26
apple	0.18	knife	0.27
bread	0.19	TV	0.29
orange	0.21	stapler	0.30
beer	0.22		

表 2: Apriori 算法在模拟交易数据集下发现的关联规则(按置信度排序)

关联规则	置信度
scissors -> stapler	0.60
scissors -> knife	0.60
plate -> stapler	0.65
ele_oven -> TV	0.65
glue -> stapler	0.70

对比蛮力算法和 Apriori 算法排序后的结果,容易发现二者一致,可以证明我实现的 Apriori 算法的正确性。

3.2 Groceries 数据集

确认 Apriori 算法实现的正确性后,我将其应用到真实数据上。考虑到 Groceries 数据集商品种类相对于实例较少的特点,我选择了较小的支持度(0.01),置信度选择为0.2。运行结果参见表3和表4。

表 3: Apriori 算法在 Groceries 数据集下发现的频繁项集(按支持度排序)

频繁项集	支持度	频繁项集	支持度
stapler, scissors	0.15	PC	0.22
knife, scissors	0.15	phone	0.22
stapler, knife	0.15	glue	0.23
plate, stapler	0.15	plate	0.23
stapler, glue	0.16	scissors	0.25
ele_oven, TV	0.17	fridge	0.25
milk	0.18	ele_oven	0.26
apple	0.18	knife	0.27
bread	0.19	TV	0.29
orange	0.21	stapler	0.30
beer	0.22		

表 4: Apriori 算法在 Groceries 数据集下发现的关联规则(按置信度排序)

关联规则	置信度
scissors -> stapler	0.60
scissors -> knife	0.60
plate -> stapler	0.65
ele_oven -> TV	0.65
glue -> stapler	0.70

4 结论

A 附录

A.1 模拟交易数据集的详细信息

我将模拟交易数据集的交易记录按照交易商品数分为 4 类,即 2、3、4、5 件。不同的商品件数按照不同的比例随机混合三类商品,具体混合规则可参见表 5。

表 5: 模拟交易数据集生成交易记录的混合规则

商品数	混合规则(括号中数字代表各类商品在记录中所占数量)
2	(2); (1, 1)
3	(3); (2, 1)
4	(4); (3, 1); (2, 1, 1)
5	(5); (4, 1); (3, 2); (2, 2, 1)

A.2 Apriori 算法实现代码

```
from sklearn.cross validation import StratifiedKFold
   from sklearn. datasets import make classification
 2
   from sklearn.cross validation import train test split
   from sklearn. metrics import classification report
5
   from sklearn.tree import export graphviz
7
   from sklearn.tree import DecisionTreeClassifier
   from sklearn.ensemble import BaggingClassifier
   from sklearn.ensemble import AdaBoostClassifier
9
   from sklearn.grid search import GridSearchCV
10
11
12
   import numpy as np
   import matplotlib.pyplot as plt
13
   plt.rcParams['font.sans-serif']=['SimHei']
   plt.rcParams['axes.unicode minus']=False
15
16
17
   18
19
  n = 500
                           # number of instances
                          # number of features
20
   n f = 30
                          # number of classes
21
  n c = 3
  \inf f = \inf (0.6 * n f) \# 60\% real features
22
   red f = int(0.1 * n f) # 10\% redundant features
23
24
   rep f = int(0.1 * n f) # 10\% repeated features
   random seed = 1
                          # random seed for the experiments
25
26
27
  X, Y = make \ classification(n \ samples=n, n \ classes=n \ c, flip \ y=0.03,
28
                       n features=n f, n informative=inf f, n redundant=
                         red f,
29
                       n repeated=rep f, random state=random seed)
```

```
30
   X_{train}, X_{test}, Y_{train}, Y_{test} = 
31
       train test split (X, Y, test size = 0.8, random state=random seed)
32
   33
34
35
   # directly train the model with training set & testing set
   def exp plain train():
36
37
       model = DecisionTreeClassifier(random state=random seed)
38
       model. fit (X train, Y train)
39
40
       pred = model.predict(X test)
41
       print(classification report(Y test, pred))
42
43
       score = model.score(X_test, Y_test)
44
       print('plain utrain uscore uin utesting uset: u', score)
       score = model.score(X_train, Y_train)
45
       print('plain u train u score u in u training u set: u', score)
46
47
48
   # test model with cross-validation
49
   def exp cv(folds=10):
       kfolds = StratifiedKFold(Y, n folds=folds, random state=
50
          random seed)
51
       model = DecisionTreeClassifier(random state=random seed)
52
       scores train = []
53
       scores test = []
54
       for train, test in kfolds:
55
           model. fit (X[train], Y[train])
           \# pred = model.predict(X[test])
56
57
58
           score = model.score(X[test], Y[test])
59
           scores test.append(score)
60
           score = model.score(X[train], Y[train])
61
           scores train.append(score)
62
63
       mean test = np.array(scores test).mean()
       mean train = np.array(scores train).mean()
64
       print ('avg uscore uwith ucv ufolds u%d uin utesting uset: u'
65
             % folds, mean test)
66
       print ('avg score with cv folds %d in training set: '
67
             % folds, mean train)
68
69
70
       return mean test, mean train
71
72
   def plot cv():
73
       mean tests = []
74
       mean trains = []
75
       folds sum = 11
76
       for i in range (2, folds sum):
```

```
77
            m1, m2 = exp cv(i)
78
            mean tests.append(m1)
79
            mean trains.append(m2)
80
81
        # start to plot
82
        x = np.arange(2, folds sum)
        total width, n = 0.8, 2
83
        width = total width / n
84
85
        x = x - (total width - width) / 2
86
87
        plt.bar(x, mean tests, width=width,
                facecolor='#9999ff', edgecolor='white', label=u'测试集')
88
89
        plt.bar(x + width, mean trains, width=width,
                facecolor='#ffa07a', edgecolor='white', label=u'训练集')
90
91
        for x, y1, y2 in zip(x, mean tests, mean trains):
            plt.text(x -0.05, y1 + 0.01, '%.2f' % y1, ha='center', va='
92
               bottom')
            plt.text(x+width - 0.05, y2 + 0.01, '%.2f' % y2, ha='center',
93
               va='bottom')
94
95
        plt.xlabel(u'折数')
        plt.ylabel(u'平均 fl-score')
96
        plt.ylim ((0, 1.3))
97
98
        plt.legend()
99
        plt.savefig('report/img/cv bar')
        plt.show()
100
101
102
    # grid search
    def exp grid search (folds=10):
103
        model = DecisionTreeClassifier(random state=random seed)
104
        param_grid = {'criterion': ['gini', 'entropy'],
105
106
                       'max features': ['sqrt', 'log2', None],
107
                       'max depth': list(range(3, 15)),
108
                       'presort': [True, False],
109
                       'splitter': ['best', 'random']
110
        grid = GridSearchCV (model, param grid, cv=folds, scoring='
111
           fl weighted')
        grid. fit(X, Y)
112
113
114
        print(grid.best params )
115
        print(grid.best score )
116
117
        export_graphviz(grid.best_estimator_, filled=True, out_file='
           report/img/gs.dot')
118
119
    # bagging alg
   def bagging(cv=True):
```

```
121
        bagging = BaggingClassifier(
122
            DecisionTreeClassifier(random state=random seed),
123
                                         # number of models
            n estimators = 5,
            random state=random seed,
124
125
            bootstrap=True,
            max samples = 1.0,
126
                                          # Bootstrap sample size radio
            bootstrap features=True,
127
            max features = 1.0,
128
                                          # Bootstrap feature usage radio
129
        )
        if cv:
130
                         # using cross-validation
131
            scores train = []
132
            scores test = []
133
            kfolds = StratifiedKFold(Y, n folds=10, random state=
               random_seed)
134
            for train, test in kfolds:
                 bagging. fit (X[train], Y[train])
135
136
137
                 score = bagging.score(X[test], Y[test])
138
                 scores test.append(score)
139
                 score = bagging.score(X[train], Y[train])
                 scores_train.append(score)
140
141
142
            mean test = np.array(scores test).mean()
143
            mean train = np.array(scores train).mean()
144
            print ('avg score with cv folds 10 in testing set: ', mean test
145
            print ('avg score with cv folds 10 in training set: ',
               mean train)
146
        else:
                         # without cross-validation
            bagging. fit (X train, Y train)
147
148
            pred = bagging.predict(X_test)
149
            print(classification report(Y test, pred))
150
151
        # check the features extracted by each model
152
        plt. figure (figsize = (7, 5))
        f n = 30
153
        x = list(range(1, f n + 1))
154
        for i, f in enumerate (bagging estimators features ):
155
156
            print('model_\%d' % (i + 1), f)
157
            plt.scatter(x, f, label=u'子模型 %d'%(i + 1))
        plt.xlabel(u'特征编号')
158
        plt. xticks (list (range (0, 41, 5)))
159
        plt.ylabel(u'特征数值')
160
161
        plt.legend(loc=1)
        plt.savefig('report/img/bagging feature %d' % len(bagging.
162
           estimators features ))
163
        plt.show()
164
```

```
def plot_bagging():
165
        # results
166
167
        x = 1ist(range(10, 101, 10))
        y = [0.694, 0.720, 0.726, 0.730, 0.730, 0.738, 0.738,
168
           0.738, 0.744
        y b1 = [0.626, 0.672, 0.702, 0.716, 0.704, 0.727, 0.735, 0.732,
169
           0.736, 0.738
        y b2 = [0.668, 0.711, 0.738, 0.734, 0.744, 0.746, 0.738, 0.730,
170
           0.740, 0.738
171
172
        # ploting code
173
        plt. figure (figsize = (6, 4))
174
        ax = plt.gca()
        ax.plot(x, y_b1, color='#90EE90', linewidth=1.7, label=u'70%特征')
175
176
        ax.plot(x, y b2, color='#ffa07a', linewidth=1.7, label=u'90%特征')
        ax.plot(x, y, color='#9999ff', linewidth=1.7, label=u'100%特征')
177
        ax. scatter (x, y, s=13, c='#9999 ff')
178
179
        ax. scatter (x, y b1, s=13, c='#90EE90')
        ax.scatter(x, y b2, s=13, c='#ffa07a')
180
        ax.grid(color='b', alpha=0.5, linestyle='dashed', linewidth=0.5)
181
        plt.xlim((5, 105))
182
        plt.xticks(x)
183
        plt.xlabel(u'子模型数量')
184
        plt.ylabel(u'平均 fl-score')
185
        plt.legend()
186
187
        plt.savefig('report/img/bagging_kline')
188
        plt.show()
189
190
    # boosting alg
    def boosting(cv=True):
191
192
        boosting = AdaBoostClassifier(
193
            DecisionTreeClassifier(max depth=3, min samples leaf=2,
               random state=random seed),
194
            n estimators=15, # number of models
195
            algorithm = 'SAMME', # Advanced-Boosting
            random state=random seed
196
197
        )
        if cv:
198
                    # using cross-validation
199
            scores train = []
200
            scores test = []
            kfolds = StratifiedKFold(Y, n folds=10, random state=
201
               random seed)
            for train, test in kfolds:
202
203
                boosting. fit (X[train], Y[train])
204
205
                score = boosting.score(X[test], Y[test])
206
                scores test.append(score)
                score = boosting.score(X[train], Y[train])
207
```

```
208
                 scores train.append(score)
209
210
            mean test = np.array(scores test).mean()
            mean train = np.array(scores train).mean()
211
212
            print ('avg score with cv folds 10 in testing set: ', mean test
            print ('avg score with cv folds 10 in training set: ',
213
               mean train)
214
        else:
                     # without cross-validation
215
            boosting. fit (X train, Y train)
216
217
            pred = boosting.predict(X train)
            print(classification report(Y train, pred))
218
219
220
            pred = boosting.predict(X test)
            print(classification report(Y test, pred))
221
222
223
        # plot the relation between weights and error
224
        plt.figure()
225
        plt.xlabel(u'子模型权重')
        plt.ylabel(u'错误率')
226
        plt.plot(boosting.estimator weights, boosting.estimator errors)
227
        plt.savefig('report/img/boosting-weight-error-%d' % len(boosting.
228
           estimator weights ))
229
        plt.show()
230
231
    def plot_boosting():
232
        # results
233
        x = 1ist(range(10, 101, 10))
        y1 = [0.621, 0.649, 0.649, 0.666, 0.666, 0.672, 0.672, 0.688,
234
           0.688, 0.710
235
        y2 = [0.608, 0.570, 0.596, 0.616, 0.635, 0.633, 0.629, 0.650,
           0.664, 0.668
236
        y1 \text{ tr} = [0.860, 0.958, 0.984, 0.995, 0.996, 0.999, 1.000, 1.000,
           1.000, 1.000]
        y2 \text{ tr} = [0.904, 0.936, 0.960, 0.975, 0.988, 0.993, 0.993, 0.995,
237
           0.997, 0.998
238
        # plot testing results
239
240
        plt. figure (figsize = (6, 4))
241
        ax = plt.gca()
        ax.plot(x, yl, color='#9999 ff', linewidth=1.7, label='SAMME.R')
242
        ax.plot(x, y2, color='#90EE90', linewidth=1.7, label='SAMME')
243
        ax. scatter (x, y1, s=13, c='#9999 ff')
244
        ax. scatter (x, y2, s=13, c='#90EE90')
245
        ax.grid(color='b', alpha=0.5, linestyle='dashed', linewidth=0.5)
246
247
        plt.xlim((5, 105))
248
        plt.xticks(x)
```

```
plt.xlabel(u'子模型数量')
249
        plt.ylabel(u'平均 fl-score')
250
        plt.legend()
251
        plt.savefig('report/img/boosting kline test')
252
253
        plt.show()
254
255
        # plot training results
        plt. figure (figsize = (6, 4))
256
257
        ax = plt.gca()
        ax.\,plot\left(x\,,\ y1\_tr\,,\ color='\#9999\,ff'\,,\ linewidth=1.7\,,\ label='SAMME.R'\,\right)
258
        ax.plot(x, y2 tr, color='#90EE90', linewidth=1.7, label='SAMME')
259
        ax. scatter (x, y1 tr, s=13, c='#9999 ff')
260
261
        ax.scatter(x, y2_tr, s=13, c='\#90EE90')
        ax.grid(color='b', alpha=0.5, linestyle='dashed', linewidth=0.5)
262
263
        plt.xlim((5, 105))
        plt.xticks(x)
264
        plt.xlabel(u'子模型数量')
265
        plt.ylabel(u'平均 fl-score')
266
        plt.legend()
267
        plt.savefig('report/img/boosting kline train')
268
269
        plt.show()
270
271
    if __name__ == '__main__':
272
        # exp_plain_train()
273
        \# exp cv()
274
        # plot cv()
275
        # exp grid search()
276
        boosting()
        # plot boosting()
277
278
        # bagging()
279
        # plot bagging()
```