Artonov R.A. Ivanenko I.P., Rubtsov V. I. // Instellation for Measuring of Primary Energy Spectrum of Cosmic Rays in the Energy Runge above 105104eV.

Pros. 14 ICRC, Munchen, 1975, 9, 3360-3364.

TOTALOGIA JUE REMETERS REPORTED OF ALLEADY CHAPTER CAUSE CHAPTER ROCKING COURS ALEADY BEING B ALLEADY CHAPTER CAUSE $10^{15}-10^{16}$ 30.

P.A. ANTUMOS. H.H. ABAHAHAO. E.H. IVELUS

паучно-последовательски институт адорьов физики СГУ

Описывается модиминация установим, продложенной ранос А.И.Чудановым, иможеря существонно более выский энерготический порог.

установка позвания инмерать эноргетический споктр перанчани частиц косниц коснического колучения в области эноргий свекс $10^{15} + 10^{16}$ эв путои воблюдовка с бокакой вности световки пятен образованиях черенковский свотом частиц ПАЛ не васнежанием новерхности в почное время.

Исследование опертетического спектра в осласти эдергий 10¹⁵эв представляют больной наторос как с точки эрошин космодизмым (пали-чис и форма второго перетиба в спектре при эвергии частиц 10¹⁷ → 10¹⁸ эв существование ролинтово, с обрезовин спектра при эвергии 10²⁰ эв), так и с точки эрошин маучения жарактера взаимодоботвия частиц при сверхвысских энергиях путём изучения характернетии дал.

В ностоящое время экергетический спектр частиц коснического колучения в области впертый 10^{15} эв интенсивно изучастои принции напориметрическими методами. При экергии 10^{15} эв данные о нотоке частиц полученные различными нетодами различными ра

В области же внергий овиже 10¹⁵ + 10¹⁶ эв вст имеющьеся экспоранентальные данно получени с номощье больших имропользаевых установов, доляне разлячиях ввторов разлячается нежду собой в 10 и боное раз. Это описано с трудностини в опроделении полного чесла частиц в пивне и пообходимостью использования исдельных предстанаений
о хоронторо развития лияни для переходо от числа частиц в лигие и
первичен завиргии.

же взресяю, полний черенковский свет частиц БАЛ во всей толне втисоферы пропорционалов сункарные новизационные потерие всех инвисиих частиц, ноторие, в свою очередь, составляют сольшую часть

В 1972г. А.Е. Чудвиовым [2] была высказона идея о возможности наморения эперготического спентра в областа онергай $\gtrsim 10^{13}$ эп путом фотографирования с помощью эсля в последующего фотометрирования светсяются последующего фотометрирования светсяются последующего фотометрирования светсяются высеты ВАЛ на засноженной поверхности в вочное время о болькой высеты.

Ресометриваемый в расоте [2] конкретный вормант установки при подзёме на самолете на высоту ~ 10 км имел эпергетический порот $\sim 10^{18}$ эк и при разумном времени экспозиции позвожил сы измерить иле спектр до эвергий $\sim 10^{20}$ эк, а, возможно, и выше. Величина эпергетического порота в рассмотренном варианте определяность, гланичны образом, максимально возможной величиной диаметра объектима, проещирующего изображение на 900 (принималось $\mathbb Z$ = 2 см).

В постоящей работе рассматривается модирикация установки, изготовнение которой начинается в настоящее время, и котороя повволит существенно повивить энерготический порог.

Основные отличин рессматриваемой установки от установки [2] эк-

имчается в следующем:

 ЭОП заменен мозанной из фотоумножителей, расположения на фокальвой повержности оферического верима больного дипнотра (ом. рис.1)

2) вмоота подъбма установки сникастои с $10~{\rm km}$ до $\sim 3~{\rm km}$

3) при намереннях в области эмергий водили порого время интегрировения сокращеется в 10⁻⁵ сен. до 10⁻⁶ сен. (предполагается, что при этом будет анаживироваться тольно ливни падамене на онег под углами достаточно бинакими и нертинали, этот угол определяется по форме светового плана).

невозование оферического ворнала (в отличие от параболического) позволиет сомранить больной угол обевропия ($\Omega \sim 1$ стер.), что при внооте установии ~ 3 им дойт величину площеди для регистрации осей ливней ~ 10 квадратных нилометров.

Так наи дианотр оветового питна на опету имост воличину ~ 1 км; изображение питна на фокальной поверхности попадает на $\sim 6 + 7$ (о-тоумножителей (см. рис. 2).

Кан извество оферичесное верхало обладает оферической обсерацией ухумновией начество изображения. Однако, изиду невысових требовавий и изчеству изображения и рассистриваемом случае, опазалось достаточным использовать для коррекции простейшую систему — диафрагму отсемению пресвие лучи. При указанных на рас. 1 разворох двефрогни дополнительное развижие окстового патна не превышает радиуса фотоумножителя, а угли подении лучей на поворхность фотокатода относительно нормали и фотокатоду не превышают 50°.

число фотовлентронов с фотокатода накдого из соу, по которые провидруется изображение плина

 2.10^4 эв — внаргии на 1 черенковский фотов (300 ни $\lesssim \lambda \lesssim$ 60: ни). 0.1 — вфрактивность фотокатода.

плочадь входного врачка зерхальной спотемы.

- высоте веркала над засножений поверхностью.

число фотовлентровов о фотоватода навдого не 61 фоу выяващих фоновой ваоветной от ввёздного небя

где T - время интегрировиния (при регистрации ливней падалдых не сиет под любыми углами спедует броть $T\simeq 10^{-5}$ сен. [2], при регистрации ливней падалжих не сиет под зопитивым углами $\lesssim 30^\circ$ ножно взять $T\simeq 10^{-6}$ сен).

10⁻² — тельсина угол, с ноторого собирается овет на наидиа вз 50у, 2.10 см⁻² сел ст — потока свотових квантов (500 нм $\lesssim \lambda \lesssim$ 600 нм) от ввездвого вобе.

При размерах установки приведенных на рис. 1 $S = 7.6.10^3$ си 2 (с учётом перекрытия части входного отверстия региотрирукаей системой фау).

аля высоты уровия веблюдения H=3 им и $E=10^{16}$ эв получеси

110

illi ii

$$n \approx \frac{10^{16}}{2.10^4} \cdot \frac{7.6.10^3}{\pi.9.10^{10}} \cdot 0.1 \cdot \frac{1}{7} = 190,$$

$$\int_{0.7}^{1} n \approx \sqrt{7.6.10^3.10^{-6}.2.10^8.0.1.10^{-2}} = 39$$

Нойденное отношение $\frac{CHPRAN}{PRYN} \simeq 5$ будет имоть место для квидо о из 6 + 7 ФОГ, на которые проецируется изображение светсвого пятив. Это обстоятельство можно вспользовить для запуски установки, потребовав совпадение инпульсов больше порогового в 3 + 4 любих, по соседних

1 (05 mil 1 / 2260-5767.

COTOYUTORUTORUX.

Нок видно по рас. 2 при сопользования мозваки на ФУ часть овото будет попадоть в промежутии между фотонатодом и тораться. Для иводратной сетив фотошатодов, без учёто нечувствительности иросвых областей патода, доля терпемого света составила бы 22%. Для сетив непользуемой нами (рис. 2) это доля составиле т.13%. С учётом нечувствительности иросвых областей фотонатода и наличии небольсих запоров между обу это доля возрастног до 40%. С учётом потерь на отражение от стение обу доля тернемого света составияет 46%. Эту величину можно существенно упецемить, поместив перед фотокатодом комдого воря вориальный отражатель концентрирукций свет на фотокатодом комдого воря

можно понизить внергетический порот до неск. сд. и 10¹⁵ эв поникоя уровень наблюдения и запаралленивая обу. Это имост самол долать в том случае, ссли детальное изучение форми сретомых пятей покакот, что можно достаточно надежно учесть прастие офјекти (с понимением уровия наблюдения будет воврастать доля собитин, в которых чнось изо-

брокония не будет поподать на площадь перекривасную сол).

О полью получения данних об энерготической спектре в облести предельно високих энергий ножно вту не установку запустить с понощью висотного заростите на висоту ~ 35 км, например, непользув зачкнутие циркуппционные воздушные потоки существущие в призических обществи или приодъзовать энестний саполот.

В таблице I приведена ожидаемая интенсивность рогистрируемых событий в предположения, что для $10^{16} \lesssim E \lesssim 10^{18}$ эв понаватель интегропиного спектра $\chi \sim 2.0$, а при $E \gtrsim 10^{18}$ эв $\chi \sim 1.5$.

E,	I(>E)	Н	,۲	F(>E) T = 10-6 cm	e T = 10-5 cen
) b	m rac cref	м	M ²	52~1crep	S2~ Screp
1016	4.10-5	3000	107	4.102	•
1017	4.10-7	r7	Ħ	-	20
1018	4.10-9	Ħ	ti .	•	Ug 2
10	9	35000	109	4	20
1019	10 ⁻¹⁰	Ħ	4	-	(4)
1020	3.40-12	a	11	<i>†</i>	1,5.17
201 2 12	4 15.3				

Авторы благодорны А.Е. Чудакову и И.В. Пеглову ва ценние обсущасит