

Informe Taller 1

- 1. Modelo relacional que soporta la totalidad de las funcionalidades descritas.
 - Se planteo la creación de 6 tablas (propietario, mascota, veterinaria, visita veterinaria, funcionarios alcaldía, tipos casos mascotas), según el planteamiento del enunciado. Adicional a esto se planteo el modelo relacional.

2. Diccionario de datos.

Campo	Tamaño	Tipo de dato	Descripcion
id_alcaldia		int	identificacion funcionario alcaldia
nombre	30	varchar	Nombre funcionario
mail	40	varchar	Mail funcionario
contraseña	20	varchar	contraseña usuario funcionario
cargo	25	varchar	cargo del funcionario
id_propietario_mascota	8	int	identificacion Propietario de la mascota
nombre	40	varchar	Nombre mascota
edad	5.V 5.V	int	Edad mascota
especie	40	varchar	Especie mascota
sexo	40	varchar	Sexo mascota
tamaño	30	varchar	Tamaño mascota
potencialmente_peligroso	30	varchar	Categoria dada por el estado si es peligroso o no
microchip	22	varchar	identificacion de la mascota dadad por una veterina
id_propietario		int	identificacion Propietario de la mascota
nombre	30	varchar	Nombre propiertario
contacto	20	varchar	Numero telefono propietario
mail	40	varchar	Correo propietario
contraseña	15	varchar	contraseña Propietario
residencia	25	varchar	direccion residencia propietario
barrio	20	varchar	barrio propietario
localidad	20	varchar	localidad propietario
nombre_mascota	40	varchar	Nombre mascota
caso	40	varchar	motivo por el cual se hace la consulta
fecha_ingreso		date	fecha ingreso a la consulta
nit_veterinaria	20	varchar	nit veterinaria que realizo la consulta
nit	15	varchar	nit veterinaria
razon_social	45	varchar	nombre veterinaria
telefono	40	varchar	telefono veterinaria
correo	45	varchar	correo veterinaria
direccion	45	varchar	direccion veterinaria
barrio	45	varchar	barrio veterinaria
localidad	45	varchar	localidad veterinaria
nitVeterinaria	15	varchar	nit veterinaria que realiza la visita
tipovisita	15	varchar	motivo por el cual se hace la visita
fecha_ingreso	45	date	fecha de la visita
microchip	40	varchar	identificacion mascota

3. Diseño de vistas (mín. 2) e índices (mín. 3, adicional a los PK). Describa textualmente las vistas e índices que deberían extender el modelo de datos. Responda las preguntas:

Vistas:

a. ¿Las vistas que decide crear a qué requerimiento no funcional obedecen? Seguridad o facilidad de consulta. ¿Deberían ser vistas materializadas? Argumente. Realice los supuestos que considere necesarios.

Consideramos el uso de las vistas de manera en que facilite el proceso de consultas y además de no mostrar datos confidenciales a propietarios o veterinarias. Siendo el administrador que puede ver todos estos datos los funcionarios de la alcaldía.

- Se planteo la creación de dos vistas para los "funcionarios de la alcaldía" una de ellas se realizo con el fin de cumplir los requerimientos que solicitaba el enunciado. Además de por otra se planteó utilizar la vista materializada debido a que esta nos permite tener la base de datos actualizada, esto con el fin de que la alcaldía siempre va necesitar ver los datos actualizados. Mismo caso para las veterinarias, para poder obtener los casos que cada veterinaria tienen.
 - Vista materializada Alcaldía.

Vista materializada veterinaria casos.

 La otra vista se planteo con la finalidad de que la alcaldía pueda obtener información de veterinarias, localidad, especie, sexo, tamaño, si es potencialmente peligroso y el microchip, que todas las mascotas deben tener para su identificación y control.

- Finalmente se planteó una vista de la parte del propietario en donde pueda ver con las veterinarias y sus datos, por medio de la localidad.

Índices

b. ¿Cuáles consultas a la base de datos, a partir de los requerimientos dados, pueden optimizarse mediante índices? ¿De qué tipos deben ser dichos índices? Argumente. Realice los supuestos que considere necesarios.

Se crearon 3 índices para este taller los cuales son:

- 1. CREATE INDEX microchip on mascota (microchip);
- 2. CREATE INDEX nitVisitaVet ON visitaveterinaria (nitveterinaria)
- 3. CREATE INDEX direccionVet ON visitaveterinaria (direccion)

El primero, se creó dado que en el laboratorio pasado se comprobó una mejoría al momento de crear dos índices para las llaves primarias, el que viene por defecto cuando se crea el índice y otro que estamos creando nosotros por nuestra cuenta y se evidencia en las estadísticas la diferencia de 10ms en los tiempos

		_						
#	Node	Exclusive Inclusive		Rows X	Actual	Plan	Loops	
1.	→ Hash Inner Join (cost=1.072.25 rows=3 width=98) (ac Hash Cond: ((mascota.microchip)::text = (visitaveterinaria.mi crochip)::text)		0.038 ms	11	3	3		
2.	→ Seq Scan on public.mascota as mascota (cost=0	0.013 ms	0.013 ms	↑1	11	11		
3.	→ Hash (cost=1.031.03 rows=3 width=98) (actual= Buckets: 1024 Batches: 1 Memory Usage: 9 kB	0.01 ms		†1 tivar Wind	3 dows	3		
4.	→ Seq Scan on public.visitaveterinaria as visitav	0.007 ms	0.007 ms	a Configu r at	ión para a g	ivar Wi 3 1	dows.	

		_					
#	Node	Exclusive	Inclusive	Rows X	Actual	Plan	Loops
1.	→ Hash Inner Join (cost=1.072.25 rows=3 width=98) (ac Hash Cond: ((mascota.microchip)::text = (visitaveterinaria.microchip)::text)	0.008 ms	0.027 ms	†1	3	3	
2.	→ Seq Scan on public.mascota as mascota (cost=0	0.01 ms	0.01 ms	11	11	11	
3.	→ Hash (cost=1.031.03 rows=3 width=98) (actual= Buckets: 1024 Batches: 1 Memory Usage: 9 kB	0.003 ms	0.01 ms Ac	†1 tivar Wind	3 dows	3	
4.	→ Seq Scan on public.visitaveterinaria as visitav	0.007 ms	0.007 ms	a Configu r a c i	ón para a g t	ivar Wi 3 1	dows.

Statistics per Node Type				Statistics per Relation					
Node type	Count Time spent % of query		Relation name	Scan count	Total time	% of query			
Hash	1	0.01 ms	26.32%	Node type	Count	Sum of times	% of relation		
Hash Inner Join	1	0.01 ms	26.32%	,,					
Seg Scan	2	0.02 ms	52.64%	public.mascota	1	0.013 ms	34.22		
ocq ocum	2	0.02 1113	02.04%	Seq Scan	1	0.013 ms	100		
						dows _{0.007} ms			
				Seg Scan	/e a Configura	dión para activar 0.007 ms	Windows.		
Statistics per Node	Туре			Statistics per Relation					

Statistics per Node	Гуре			Statistics per Relation					
Node type	Count	Time spent	% of query	Relation name	Scan count	Total time	% of query		
Hash	1	0.003 ms	11.12%	Node type	Count	Sum of times	% of relation		
Hash Inner Join	1	0.008 ms	29.63%	muhlia massasta	-	0.01 mg	07.04		
Seg Scan	2	0.017 ms	62.97%	public.mascota	1	0.01 ms	37.04		
	_			Seq Scan	1	0.01 ms	100		
				public.visitaveterinaria	Activar Win	0.007 ms	25.93		
				Seq Scan	7 4001 001 00111	ción pa <mark>0.007t</mark> ms	Windows.00		

- El segundo se realizó dado que la columna nitVeterinaria que no es primaria en la tabla visitaVeterinaria y estos valores de la columna son únicos en cada registro, nos puede ayudar a optimizar consultas con el índice por defecto que crea postgresql que es el btree.
- Por último, tomando en cuenta el mismo argumento del índice número dos, las direcciones no son iguales, a menos que se agreguen direcciones de otros piases y en muy pocos casos estas tienen la misma nomenclatura, por lo tanto, se llega a la conclusión de crear un índice el cual nos ayude a optimizar tiempos en las consultas que este incluido la residencia del propietario