HousePriceChallenge.pdf

March 10, 2017

1 House Price Challenge

Kaggle Munich Meetup 2017-03-09 Woodmark Consulting AG

- Wolfgang Moser wolfgang.moser@woodmark.de
- Frank Ditsche frank.ditsche@woodmark.de
- Simon Heeg simon.heeg@woodmark.de

2 Preparation

2.1 Libraries

```
In [1]: import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    from scipy.stats import skew
    from sklearn import linear_model
    from sklearn.preprocessing import StandardScaler
    from sklearn.model_selection import cross_val_score
    from IPython.display import display
```

2.2 Load input data

```
In [2]: train = pd.read_csv("input/train.csv")
    test = pd.read_csv("input/test.csv")
```


2.3 Check data dimensions

2.4 Where is the ID / the training prices?

2.5 What do the features look like?

In [5]: train.iloc[:,:10].head(5)

```
LotFrontage LotArea Street Alley LotShape \
Out [5]:
           Ιd
                MSSubClass MSZoning
        0
                        60
                                  RL
                                              65.0
                                                        8450
                                                                       NaN
            1
                                                                Pave
                                                                                 Reg
            2
                         20
                                  RL
                                              80.0
        1
                                                        9600
                                                                Pave
                                                                       NaN
                                                                                 Reg
                                  RL
                                              68.0
            3
                        60
                                                       11250
                                                                Pave
                                                                       NaN
                                                                                 IR1
        3
            4
                        70
                                  RL
                                              60.0
                                                        9550
                                                                Pave
                                                                       NaN
                                                                                 IR1
                        60
                                  RL
                                              84.0
                                                       14260
                                                               Pave
                                                                       NaN
                                                                                 IR1
```

```
0 Lvl AllPub
1 Lvl AllPub
2 Lvl AllPub
3 Lvl AllPub
4 Lvl AllPub
```

LandContour Utilities

Max. lot area: 215245 ftš Mean lot area: 10516.83 ftš

2.6 Make index column the actual data frame index

2.7 Split off the price column from the training data

2.8 Check value ranges of (numerical) features

2.9 Deal with numerical features first

2.9.1 Check positivity and fill missing values with column means

2.10 Check skewness (third central moment)

Numerical feature columns:

Skeweness of numerical training features:

```
array([ 1.40621011, 2.38249918, 12.19514213, 0.21672098, 0.69235521, -0.61283072, -0.5030445, 2.67366126,
```

```
1.6837709 ,
            4.25088802,
                            0.9193227 ,
                                          1.52268809,
1.37534174,
             0.81219427,
                            9.00208042,
                                          1.36515595,
0.59545404,
             4.09918567,
                            0.03652398,
                                          0.67520283,
                            0.67564577,
0.21157244,
              4.48378409,
                                          0.64889763,
-0.66748815, -0.3421969,
                            0.17979594,
                                          1.5397917,
             3.08669647, 10.29375236,
2.36191193,
                                          4.11797738,
14.81313466, 24.45163962,
                            0.21183506,
                                          0.09616958])
```

2.11 Log(1+p) transform of skewed features

Skeweness of numerical training features after transformation:

```
array([ 2.48741218e-01, -8.91060059e-01,
                                          -1.37263272e-01,
        2.16720977e-01,
                          6.92355214e-01,
                                          -6.12830724e-01,
       -5.03044497e-01,
                         4.80625684e-01,
                                          -6.17774284e-01,
                          9.19322702e-01, -5.14937258e+00,
        2.52110019e+00,
        8.00317572e-02,
                          8.12194273e-01,
                                           7.45264962e+00,
       -6.13394321e-03,
                          5.95454038e-01,
                                           3.92902155e+00,
        3.65239844e-02, 6.75202835e-01,
                                           2.11572442e-01,
        3.86543714e+00,
                          6.75645767e-01,
                                           6.48897631e-01,
       -6.67488146e-01, -3.42196895e-01,
                                           1.79795942e-01,
        1.53378802e-01, -2.33732497e-02,
                                           2.11010418e+00,
                                           1.43483416e+01,
        7.72702571e+00, 3.14717122e+00,
        5.16538998e+00, 2.11835060e-01,
                                           9.61695796e-02])
```

2.12 Normalize numerical features

2.12.1 Apply the transformed values to the orginial sets

```
In [18]: train.iloc[:, num_feat] = train_num
    test.iloc[:, num feat] = test num
```

2.13 Transform categorical to numerical features

```
In [19]: train_test = pd.concat([train, test])
         train_test = pd.get_dummies(train_test)
         train_test.iloc[:,40:50].head(4)
Out[19]:
             MSZoning_RM Street_Grvl Street_Pave Alley_Grvl Alley_Pave \
         Id
         1
                        0
                                      0
                                                   1
                                                                0
                                                                             0
         2
                        0
                                      0
                                                   1
                                                                0
                                                                             0
         3
                        0
                                      0
                                                   1
                                                                0
                                                                             0
         4
                        0
                                      0
                                                   1
                                                                0
                                                                             0
             LotShape IR1 LotShape IR2 LotShape IR3 LotShape Reg LandContour Bnk
         Id
                         0
                                                                                       0
         1
                                        0
                                                       0
                                                                     1
         2
                         0
                                        0
                                                       0
                                                                     1
                                                                                       0
         3
                                        0
                                                      0
                                                                     0
                                                                                       0
                         1
         4
                         1
                                                       0
                                                                     0
                                                                                       0
```

2.14 Split sets again

```
In [20]: train = train_test.iloc[:train.shape[0], :]
     test = train_test.iloc[train.shape[0]:, :]
```

3 Finally we can start with machine learning

3.1 First try: Linear Regression

3.2 Second try: Ridge Regression

Ridge Regression seems to work better!

3.3 Fit estimator to training data

3.3.1 Apply estimator to test set and retransform predicted prices

```
In [24]: preds = ridge.predict(test)
In [25]: preds_price = np.expm1(preds)
```

3.3.2 Prepare format for submission and save as CSV