

Lab1 MOSFET

Department of Electronic and Computer Engineering National Taiwan University of Science of Science and Technology MSIC Lab

Professor: 鍾勇輝

TA:郭駿浩、郭哲原

2024/03/06

- Lab1_1:利用Virtuoso了解MOSFET的特性。
- 實驗步驟:試著利用 Virtuoso將圖一的電路描述出來,讓Length = 0.18um, Width = 1um, $V_{DS} = 1.8$ V。試著將 V_{GS} 從0 V到1.8 V每次增加0.01 V,觀察 I_{DS} 。 即為模擬 $I_{DS} V_{GS}$ Characteristic Curve。

$$\frac{W}{L} = \frac{1um}{0.18um}$$

3.選擇cic018.l這個檔案

(路徑: /home/學號/cic18/CIC_PDK/model/New_Folder)

X Choosing Analyses ADE L (3)@2-ip57.et.ntust.edu.tw					
Analysis	o pxf	opz pac psp qpxf		o envlp pnoise qpac hb	
DC Analysis					
Save DC Operating Point ✓ Hysteresis Sweep ✓					
Sweep Variable ☐ Temperature ☑ Design Variable ☐ Component Parameter ☐ Model Parameter ☐ Model Parameter					
Sweep Range Start-Stop Center-Span Stop 1.8					
Sweep Type Step Size Number of Steps					
Add Specific Points					
Enabled • Options					
OK Cancel Defaults Apply Help					

- Lab1_2:改變NMOS的Width,例如把Width放大兩倍,放大三倍,模擬 I_{DS} V_{GS} Characteristic Curve觀察 I_D 的變化。
- 實驗步驟:試著利用Hspice將圖一的電路描述出來,讓 Length = 0.18um, Width = 1um/2um/3um, $V_{DS} = 1.8$ V。試著將 V_{GS} 從0 V到1.8 V每次增加0.01 V,觀察 I_{DS} 。即為模擬 $I_{DS} V_{GS}$ Characteristic Curve。

• Lab1_3:由Gate端輸入偏壓 $V_{GS}=1.8$ V,接著將 V_{DS} 從0 V到1.8 V每次增加0.01 V,觀察 $I_{DS}-V_{DS}$ Characteristic Curve。

- 改變Gate端的偏壓 $V_{GS}=1.5$ V、 $V_{GS}=1.2$ V、 $V_{GS}=0.9$ V、 $V_{GS}=0.6$ V、 $V_{GS}=0.3$ V、 $V_{GS}=0$ V,看 $I_{DS}-V_{DS}$ Characteristic Curve,因為MOS在 飽和區時, $I_{DS}=\frac{1}{2}\mu C_{ox}\frac{W}{L}(V_{GS}-V_{TH})^2$ 由模擬可知,在只有改變 V_{GS} 值的情況下,可以証明得知 I_{DS} 與 V_{GS} 的平方成正比。
- 使 $V_{GS} = 1.8 \text{ V}$, $V_{DS} = 1.8 \text{ V}$ 改變NMOS元件Channel Width,讓Width = 1.2um,Width = 1.8um,Width = 2.4um,模擬 $I_{DS} V_{DS}$ Characteristic Curve, $I_{DS} = \frac{1}{2} \mu C_{ox} \frac{W}{L} (V_{GS} V_{TH})^2$,由模擬可知道, I_{DS} 與Width成正比,而模擬出來的結果確實也成線性關係。

Lab1.a-1

- 用.dc看NMOS特性曲線
 - 1. I_D 對 V_{GS} ($V_{GS} = 0 \sim 1.8 \text{ V}$; $V_{DS} = 0.9 \text{ V}$)
 - 2. I_D 對 V_{DS} ($V_{DS} = 0 \sim 1.8 \text{ V}$; Sweep $V_{GS} = 0.6 \cdot 0.7 \cdot 0.8 \text{ V}$)

Lab1.a-1

- 用.dc看PMOS特性曲線
 - 1. I_D 對 V_{SG} ($V_{SG} = 0 \sim 1.8 \text{ V}$; $V_{SD} = 0.9 \text{ V}$)
 - 2. I_D 對 V_{SD} ($V_{SD} = 0 \sim 1.8 \text{ V}$; Sweep $V_{SG} = 0.6 \cdot 0.7 \cdot 0.8 \text{ V}$)
 - 3. V_{TH} 對 V_{BS} $(V_{BS} = 0 \sim 1.8 \text{ V}; V_{SG} = 0.7 \text{ V}; V_{SD} = 0.9 \text{ V})$

Lab1.b

- 利用Virtuoso模擬Inverter電路,使用.tran看輸入和輸出的時序圖
- V_{out} 's loading cap is 50f F
- Design (W/L) to meet
 - L-H and H-L delays less than 100ps
 - Both rise and fall time of V_{out} are less than 100ps

Homework Submission Requirements

- · 檔名:Lab1_學號.pdf
- 請勿抄襲,抄襲者0分
- 評分標準:
 - 規定時間內繳交,逾時者會扣分(如有其他原因導致未繳交請與助教聯絡)
 - 一 符合題目要求規格
 - 一 完整的設計流程(考慮的原因詳細分析,設計參數如何決定)
 - 一 模擬結果與分析
 - 一 面積越小分數越高

Thank You For Your Attention

Yung-Hui Chung