1

Sistemas Operacionais – 2020/2 Trabalho Prático 01

Guilherme Leles Victor Moraes

Resumo—Este relatório descreve a prática de controle da planta de um rotor duplo. O sistema é composto por duas hélices, semelhante a um helicóptero, sendo uma no sentido horizontal e outra no vertical. O intuito do presente trabalho foi realizar o controle de ambos graus de liberdade da planta: ângulos de arfagem e de guinada. Para tal, realizou-se identificação do sistema para cada entrada e para cada saída. Assim foram obtidas quatro funções de transferência que aproxima o sistema real. Tal modelo foi validado por meio de simulações na planta. Foi realizado o projeto de um desacoplador e controladores PID foram projetados para controle de arfagem e guinada. Esses controladores foram simulados nos modelos e posteriormente testado na planta.

I. Introdução

Uma das aplicações de controle na aeronáutica mais importantes é o controle da orientação espacial de uma aeronave, a fim de alterar a trajetória do veículo em voo. Os ângulos controlados são: em relação ao eixo horizontal, ângulo de arfagem; em relação ao eixo vertical: ângulo de guinada; e em relação ao sentido longitudinal da aeronave, o ângulo de rolagem. Em helicópteros comerciais tais controles são realizados atuando na velocidade dos rotores e ângulos das pás, controlando empuxo, arfagem e guinada.

O dispositivo didático utilizada nesta prática é o sistema rotor duplo de múltiplas entradas e múltiplas saídas (MIMO), que é uma simplificação de um helicóptero e produzida pela *Feedback*. O controle de tal planta deve possuir dois controladores, sendo cada um dependente de ambas entradas. Contudo, é possível desacoplar as entradas e eliminar o efeito cruzado, isto é, o efeito em que uma entrada, afeta a saída oposta, permitindo o controle de um sistema MIMO.

Figura 1: Orientação espacial de uma aeronave: arfagem (*pitch*), rolagem (*roll*) e guinada (*heading*).

II. ESPECIFICAÇÃO

Os requisitos de desempenho no domínio do tempo adotados para o controle de pitch foram:

- 1) Overshoot máximo percentual: $M_p \leq 30\%$;
- 2) Tempo de acomodação: $t_{2\%} \le 20 \,\mathrm{s}; \,\mathrm{e}$
- Erro nulo em estado estacionário para entradas do tipo degrau.

Os requisitos de desempenho no domínio do tempo adotados para o controle de yaw foram:

- 1) Overshoot máximo percentual: $M_p \leq 20\%$;
- 2) Tempo de acomodação: $t_{2\%} \le 10 \,\mathrm{s}; \,\mathrm{e}$
- Erro nulo em estado estacionário para entradas do tipo degrau.

Tais requisitos introduziram restrições que delimitaram uma região de suposto desempenho satisfatório no plano complexo s, e foram consideradas no projeto dos controladores.

III. ALGORITMO

O sistema é composto por dois rotores de velocidade variáveis, sendo uma hélice horizontal e outra vertical, acoplado em uma haste com dois graus de liberdade que por sua vez está conectada a uma outra haste com contra-peso. A planta possui duas variáveis de entrada, que são as tensões de alimentação de cada rotor, fornecidas pela unidade eletrônica, que recebe uma referência de -2.5 a $2.5\,\mathrm{V}$ do controlador. Também possui duas variáveis a serem controladas, correspondente aos dois graus de liberdade: ângulo de arfagem e angulo de guinada, sendo sensoreadas, cada uma, por *encoders* incrementais, lidos pela unidade de aquisição de dados e enviados ao controlador [?].

Figura 2: Dispositivo Twin rotor MIMO System.

No sistema físico está presente a perturbação de fluxos de ar externos e turbulências. Como não-linearidades, tem-se o atraso da aceleração do rotor e de seu empuxo. O torque de arfagem depende de forma não-linear da orientação espacial.

Tem-se como variável controlada o ângulo de arfagem (*pitch angle*), responsável pelo movimento vertical do rotor dianteiro. A tensão aplicada ao rotor é a variável manipulada. O *setpoint* ou referência é o ângulo de arfagem desejado, que nessa prática foi expresso em sinais do tipo degrau, senoide e rampa. A variável medida foi o ângulo de arfagem real do rotor (resposta do sistema).

IV. RESULTADOS EXPERIMENTAIS

A. Teste do Controlador na Planta

Simulamos os controladores, até que estivessem com um desempenho satisfatório. Então foram realizados ensaios com uma entrada variável, para realizar a observação de desempenho dos controles com desacoplamento, correspondentes às figuras 4, 3. É possível observar que o desempenho foi satisfatório e condizente com os requisitos.

Figura 3: Validação de controle desacoplado de pitch.

Figura 4: Validação de controle desacoplado de yaw.

B. Análise de Desempenho

Para a avaliação de desempenho do sistema em malha fechada para a entrada variável mostrada na Figura ??, foi realizada utilizando-se dois índices de desempenho, a Integral do Erro Quadrático (*ISE - Integral Squared Error*) e a Integral do Erro Absoluto (*IAE - Integral Absolute Error*). Os quais foram calculados por meio das equações (1) e (2)

$$ISE = \int_0^T e^2(t)dt \tag{1}$$

$$IEA = \int_0^T |e(t)|dt \tag{2}$$

onde e é o erro, dado pela diferença entre o set-point e o ângulo medido e T representa a janela de tempo considerada.

Para o yaw, obtivemos os seguintes índices:

$$ISE = 2.8430$$

$$IAE=450.3624$$

E para o *pitch*, obtivemos:

$$ISE=507.7020$$

$$IAE = 5.5331 \times 10^3$$

V. Conclusões

Por meio dessa prática, foi possível controlar, com desempenho satisfatório, uma planta do tipo MIMO, utilizando a técnica de desacoplamento, dessa forma possibilitando o controle para yaw e pitch independentemente.

REFERÊNCIAS