

Факультет компьютерных наук Департамент программной инженерии Отчет по преддипломной практике

Программа поведенческого анализа вполне структурированных систем переходов

Выполнил студент группы БПИ131 образовательной программы 09.03.04 «Программная инженерия» Михайлов В. Е. Научный руководитель: Старший преподаватель Дворянский Л. В.

Формальная верификация

Формальное доказательство соответствия или несоответствия формального предмета верификации его формальному описанию

Примеры объектов верификации:

- Исходные тексты программ
- Криптографические протоколы
- Протоколы передачи данных
- Логические схемы

Цель и задачи работы

Цель работы

Разработать программу для поведенческого анализа вполне структурированных систем переходов.

Задачи работы

- 1. Реализовать алгоритмы поведенческого анализа: Метод насыщения и Покрывающее дерево системы переходов
- 2. Разработать язык описания систем переходов WSTSL, основанный на языке SETL
- 3. Поставить эксперимент для изучения возможных путей совершенствования реализованных алгоритмов
- 4. Разработать техническую документацию

Оглавление ВКР

Глава 1. Вполне структурированные системы переходов (95%)

Глава 2. Алгоритмы поведенческого анализа

Метод насыщения (100%)

Покрывающее дерево системы переходов (85%)

Глава 3. Архитектура системы (90%)

Глава 4. Описание языка WSTSL (30%)

Глава 5. Эксперимент (60%)

Приложение А.

Техническое задание (90%)

Программа и методика испытаний (0%)

Руководство оператора (0%)

Текст программы (80%)

Вполне структурированные системы переходов

Вполне структурированной системой переходов называется система переходов $LTS = (S, T, \rightarrow, s_0)$, дополненная отношением квазипорядка $\leq \subseteq S \times S$, удовлетворяющая следующим двум условиям:

- Отношение ≤ является правильным квазипорядком;
- Квазипорядок \leq совместим с отношением переходов \rightarrow , а именно, для любых состояний $s \le q$ и перехода $s \stackrel{\iota}{\to} s'$ существует переход $q \stackrel{\iota}{\to} q'$ такой, что $s' \leq q'$.

Вполне структурированные системы переходов

Вполне структурированной системой переходов называется система переходов $LTS = (S, T, \rightarrow, s_0)$, дополненная отношением квазипорядка $\leq \subseteq S \times S$, удовлетворяющая следующим двум условиям:

- 1) Отношение ≤ является правильным квазипорядком;
- 2) Квазипорядок \leq совместим с отношением переходов \rightarrow , а именно, для любых состояний $s \leq q$ и перехода $s \stackrel{t}{\rightarrow} s'$ существует переход $q \stackrel{t}{\rightarrow} q'$ такой, что $s' \leq q'$.

Вполне структурированные системы переходов

Вполне структурированной системой переходов называется система переходов $LTS = (S, T, \rightarrow, s_0)$, дополненная отношением квазипорядка $\leq \subseteq S \times S$, удовлетворяющая следующим двум условиям:

- 1) Отношение ≤ является правильным квазипорядком;
- 2) Квазипорядок \leq совместим с отношением переходов \rightarrow , а именно, для любых состояний $s \leq q$ и перехода $s \stackrel{t}{\rightarrow} s'$ существует переход $q \stackrel{t}{\rightarrow} q'$ такой, что $s' \leq q'$.

Квазипорядок (предпорядок) ≤ на множестве М:

$$\forall a \in X : a \le a$$

$$\forall a, b, c \in X : (a \le b \land b \le c) \Rightarrow (a \le c)$$

Вполне структурированные системы переходов

Вполне структурированной системой переходов называется система переходов $LTS = (S, T, \rightarrow, s_0)$, дополненная отношением квазипорядка $\leq \subseteq S \times S$, удовлетворяющая следующим двум условиям:

- 1) Отношение ≤ является правильным квазипорядком;
- 2) Квазипорядок \leq совместим с отношением переходов \rightarrow , а именно, для любых состояний $s \leq q$ и перехода $s \stackrel{t}{\rightarrow} s'$ существует переход $q \stackrel{t}{\rightarrow} q'$ такой, что $s' \leq q'$.

ВЫБОР МОДЕЛЕЙ, МЕТОДОВ И АЛГОРИТМОВ

- 1) Покрывающее дерево системы переходов
- 2) Метод насыщения

1) Вершины дерева помечены состояниями системы переходов

- 1) Вершины дерева помечены состояниями системы переходов
- 2) Каждая вершина является живой, либо мертвой

- 1) Вершины дерева помечены состояниями системы переходов
- 2) Каждая вершина является живой, либо мертвой
- 3) Корень живая вершина с пометкой s_0

- 1) Вершины дерева помечены состояниями системы переходов
- 2) Каждая вершина является живой, либо мертвой
- 3) Корень живая вершина с пометкой s_0
- 4) Мертвые вершины не имеют потомков

- 1) Вершины дерева помечены состояниями системы переходов
- 2) Каждая вершина является живой, либо мертвой
- 3) Корень живая вершина с пометкой s_0
- 4) Мертвые вершины не имеют потомков
- 5) Живая вершина с пометкой s имеет по одному потомку на каждое состояние из Succ(s)

- 1) Вершины дерева помечены состояниями системы переходов
- 2) Каждая вершина является живой, либо мертвой
- 3) Корень живая вершина с пометкой s_0
- 4) Мертвые вершины не имеют потомков
- 5) Живая вершина с пометкой s имеет по одному потомку на каждое состояние из Succ(s)
- 6) Если на пути от корня до вершины с пометкой s' есть вершина с пометкой $s \le s'$, то она мертвая

- 1) Вершины дерева помечены состояниями системы переходов
- 2) Каждая вершина является живой, либо мертвой
- 3) Корень живая вершина с пометкой s_0
- 4) Мертвые вершины не имеют потомков
- 5) Живая вершина с пометкой s имеет по одному потомку на каждое состояние из Succ(s)
- 6) Если на пути от корня до вершины с пометкой s' есть вершина с пометкой $s \le s'$, то она мертвая

Задача покрытия: может ли быть достигнуто некоторое состояние s' из начального состояния s_0 , такое что оно $s' \ge s$, где s — заданное состояние, чье покрытие необходимо проверить?

Задача покрытия: может ли быть достигнуто некоторое состояние s' из начального состояния s_0 , такое что оно $s' \ge s$, где s — заданное состояние, чье покрытие необходимо проверить?

$$Pred^*(I)$$
 — предел последовательности $I_0\subseteq I_1\subseteq \cdots$, где
$$I_0=^{def}I$$

$$I_{n+1}=^{def}I_n\cup Pred(I_n)$$

Задача покрытия: может ли быть достигнуто некоторое состояние s' из начального состояния s_0 , такое что оно $s' \ge s$, где s — заданное состояние, чье покрытие необходимо проверить?

$$Pred^*(I)$$
 — предел последовательности $I_0\subseteq I_1\subseteq \cdots$, где
$$I_0=^{def}I$$

$$I_{n+1}=^{def}I_n\cup Pred(I_n)$$

Решение задачи покрытия: проверка $s_0 \in Pred^*(\uparrow s)$.

Задача покрытия: может ли быть достигнуто некоторое состояние s' из начального состояния s_0 , такое что оно $s' \ge s$, где s — заданное состояние, чье покрытие необходимо проверить?

$$Pred^*(I)$$
 — предел последовательности $I_0\subseteq I_1\subseteq \cdots$, где
$$I_0=^{def}I$$

$$I_{n+1}=^{def}I_n\cup Pred(I_n)$$

Решение задачи покрытия: проверка $s_0 \in Pred^*(\uparrow s)$.

Последовательность множеств
$$K_0$$
, K_1 , ..., где
$$K_0 = ^{def} I^b \text{ и } K_{n+1} = ^{def} K_n \cup pb(K_n)$$

Задача покрытия: может ли быть достигнуто некоторое состояние s' из начального состояния s_0 , такое что оно $s' \ge s$, где s — заданное состояние, чье покрытие необходимо проверить?

$$Pred^*(I)$$
 — предел последовательности $I_0\subseteq I_1\subseteq \cdots$, где
$$I_0=^{def}I$$

$$I_{n+1}=^{def}I_n\cup Pred(I_n)$$

Решение задачи покрытия: проверка $s_0 \in Pred^*(\uparrow s)$.

Последовательность множеств K_0 , K_1 , ..., где $K_0 = ^{def} I^b \text{ и } K_{n+1} = ^{def} K_n \cup pb(K_n)$

Может быть показано, что $\uparrow \cup K_i = Pred^*(I)$ \Rightarrow необходимо проверить $s_0 \in \uparrow min(\uparrow \cup K_i)$,

Архитектура системы

Язык WSTSL

- 1) Основывается на языке SETL ориентирован на работу с множествами
- 2) Похож на Python
- 3) Операторы
 exists iterator | test
 forall iterator | test
 cpr
- 4) Встроенные операторы порядков (embedsinto, parikh и др.)

Язык WSTSL


```
K0: [\{P1=1, P2=1, P3=1, P4=2\}]
K1: [\{P1=0, P2=2, P3=2, P4=1\},
      {P1=2, P2=0, P3=0, P4=2}]
K2: [\{P1=1, P2=1, P3=1, P4=1\}]
K3: [\{P1=0, P2=2, P3=2, P4=0\}]
      {P1=2, P2=0, P3=0, P4=1}]
K4: [\{P1=1, P2=1, P3=1, P4=0\}]
K5: [\{P1=2, P2=0, P3=0, P4=0\}]
Union: [\{P1=0, P2=2, P3=2, P4=0\}],
         \{P1=0, P2=2, P3=2, P4=1\},
         \{P1=1, P2=1, P3=1, P4=0\},
         {P1=1, P2=1, P3=1, P4=1},
         \{P1=1, P2=1, P3=1, P4=2\},
         \{P1=2, P2=0, P3=0, P4=0\},
         \{P1=2, P2=0, P3=0, P4=1\},
         \{P1=2, P2=0, P3=0, P4=2\}
min (Union): [\{P1=0, P2=2, P3=2, P4=0\},
               \{P1=1, P2=1, P3=1, P4=0\},
               {P1=2, P2=0, P3=0, P4=0}]
```

The state $\{P1=1, P2=1, P3=1, P4=2\}$ is not covered

```
P1 = { "P1", "P2", "P3", "P4" };
T1 = { "T1", "T2" };
PT1 = { ["T1", "P1"], ["T2", "P2"], ["T2", "P3"] };
TP1 = { ["T1", "P2"], ["T1", "P3"], ["T2", "P1"], ["T2", "P4"] };
PN1 = [ P1, T1, PT1, TP1 ];
m0 = { <"P1", 1>, <"P2", 0>, <"P3", 2>, <"P4", 1> };
mc = { <"P1", 1>, <"P2", 1>, <"P3", 1>, <"P4", 2> };
func wqo(PN, s1, s2)
    return forall p in PN[0] | s1[p] <= s2[p];
end func:
func pred(wsts, s)
    P = wsts[0];
   T = wsts[1];
   PT = wsts[2];
   TP = wsts[3]:
    predecessors = { };
    for t in T
        if forall to in TP[t] \mid s[tp[1]] - 1 >= 0 then
            s1 = s:
            for pt in PT[t]
                s1[pt[1]] = s1[pt[1]] + 1;
            end for:
            for tp in TP[t]
                s1[tp[1]] = s1[tp[1]] - 1;
            end for:
            predecessors = predecessors with s1;
        end if:
    end for:
    return predecessors;
end func:
backwardanalysis(PN1, wqo, pred, m0, mc);
```


Покрытие тестами

Done: 191 of 191 Failed: 24 (in 1s)

Element	 Method, %	Line, %
c wstsl.Interpreter	 73% (47/64)	66% (286/432)

Эксперимент

	Run time (s)	Size of FRT
Phil5	0.08587	241
Phil6	1.87815	25711
Phil7	5221.64756	88062003

Эксперимент

Эксперимент

АПРОБАЦИЯ РАБОТЫ

ОСНОВНЫЕ РЕЗУЛЬТАТЫ практики

- 1) Алгоритмы поведенческого анализа (90%)
- 2) Интерпретатор WSTSL (80%)
- 3) Эксперимент (75%)
- 4) Текст ВКР (65%)
- 5) Документация по ЕСПД (20%)

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. A. Finkel and P. Schnoebelen, "Well-structured transition systems everywhere!", Theoretical Computer Science, vol. 256, no. 1-2, pp. 63-92, 2001.
- 2. P. Abdulla, K. Čerāns, B. Jonsson and Y. Tsay, "Algorithmic Analysis of Programs with Well Quasi-ordered Domains", Information and Computation, vol. 160, no. 1-2, pp. 109-127, 2000.
- 3. Е. Кузьмин, В. Соколов, Вполне структурированные системы помеченных переходов, М.: ФИЗМАТЛИТ, 2005.

Спасибо за внимание!

Михайлов Владимир Евгеньевич, vemikhaylov@edu.hse.ru

Москва - 2017