[CII] Emission in z ~ 6 Strongly Lensed, Star-Forming Galaxies

Kirsten K. Knudsen,^{1*} Johan Richard,² Jean-Paul Kneib,^{3,4} Mathilde Jauzac,^{5,6,7} Benjamin Clément,² Guillaume Drouart,⁸ Eiichi Egami,⁹ Lukas Lindroos¹ http://arxiv.org/abs/1603.02277

Abstract

The far-infrared fine-structure line [C II] at 1900.5 GHz is known to be one of the brightest cooling lines in local galaxies, and therefore it has been suggested to be an efficient tracer for star-formation in very high-redshift galaxies. However, recent results for galaxies at z > 6 have yielded numerous non-detections in star-forming galaxies, except for quasars and submillimeter galaxies. We report the results of ALMA observations of two lensed, star-forming galaxies at z = 6.029 and z = 6.703. The galaxy A383-5.1 (star formation rate [SFR] of 3.2 M_{\odot} yr⁻¹ and magnification of $\mu = 11.4$) shows a line detection with $L_{\rm [CIII]} = 8.3 \times 10^6 \, L_{\odot}$, making it the so far lowest $L_{\rm [CIII]}$ ever detected at z > 6. For MS0451-H (SFR = 0.4 M_{\odot} yr⁻¹ and $\mu = 100 \pm 20$) we provide an upper limit of $L_{\rm [CIII]} < 3 \times 10^5 \, L_{\odot}$, which is 1 dex below the local SFR- $L_{\rm [CIII]}$ relations. The results are consistent with predictions for low-metallicity galaxies at z > 6, however, other effects could also play a role in terms of decreasing $L_{\rm [CIII]}$. The detection of A383-5.1 is encouraging and suggests that detections are possible, but much fainter than initially predicted.

- A383-5.1 (z=6.029, SFR=3.2 M_{sun}/yr, nu=11.4), MS0451-H (z=6.703, SFR=0.4 M_{sun}/yr, nu=100+/-20) のALMA観測を報告
- A383-5.1からは[CII]158um輝線を検出(L_[CII]=8.3x10⁶ L_{sun})
- MS0451-Hからは[CII]は検出されず、L_{[CIII}<3x10⁵ L_{sun}
- これらの[CII]光度は、近傍のSFR-L_{[CIII}関係よりも有意に低い
- この低い[CII]光度は z>6 の低金属量な銀河への予想と無矛盾だが、金属量以外の効果も[CII]光度の減少に寄与しているかもしれない。

Introduction

- Photo-zで高赤方偏移(i.e., z>6)だとされている銀河は数多くあるが、 星形成に重要なガス(inter stellar medium; ISM)の物理的性質を知る には分光観測は不可欠である。
- ガスの物理的性質を探る手法として、CO輝線と[CII] 158um輝線観測がある
 - CO輝線: H₂に次いで二番目に多い分子で、分子ガス質量の推定等に使われる
 - [CII]輝線: 近傍の星形成銀河で最も明るいFIR輝線の1つ。近傍ではSFRとの相関が示唆されている
- 地上望遠鏡の性能向上により、遠方銀河の[CII]輝線探しが可能になった
 - 1-4 L*くらいの明るい 5<z<6 LBGsでは[CII]輝線が検出され、近傍のSFR vs L_[CII]関係と無矛盾(Capak+15, Willott+15b)
 - LAEsでは、非常に明るいはずのHimikoを含め[CII]は非検出
- この論文では、重力レンズで増光された2個のsub-L*銀河 (z>6) の ALMA[CII]観測を報告する

Observation

- ターゲット
 - A383-5.1 (Richard+11, Stark+15)
 - z=6.029, SFR=3.2 M_{sun}/yr , nu=11.4
 - MS0451-H (Kneib+ in prep)
 - z=6.703, SFR=0.4 M_{sun}/yr , nu=100+/-20
- ALMA Cycle 2, Band 6で観測
 - Resolution: それぞれ 0.86" x 0.67", 1.6" x 0.9"
 - [CII] line付近のノイズレベルは、RMS=0.125, 0.163 mJy beam-1。 Richard+11
- CASA (McMullin+07) Treduction, calibration, imaging

Results

- A383-5.1
 - [CII]輝線を検出。Speak=0.96 +/- 0.19 mJy (5.1 sigma)
 - $z_{\text{ICIII}} = 6.0274 + /-0.0002$
 - z_{Lya} =6.029+/-0.002, $z_{CIII]}$ =6.0265+/-0.00013と無矛盾
 - FWHM=100+/-23 km s⁻¹
 - L_[CIII]=8.3 x 10⁶ L_{sun}
 - Dust continuumは非検出 (5sigma upper limit = 55 uJy)
 - L_{FIR} < 0.5 x 10¹⁰ L_{sun} (modified black body, T=35 K, beta=1.6)
- MS0451-H
 - [CII]輝線は非検出(5sigma upper limit = 0.026 Jy km s-1)
 - L_{ICIII}<3.0 x 10⁵ L_{sun} (FWHM=100 km s⁻¹を仮定)
 - Dust continuumも非検出 (upper limit = 55 uJy)
 - $L_{FIR} < 0.07 \times 10^{10} L_{sun}$

of NIR emission increasing from the lower part of the image is caused by ponding redshift and uncertainty determined from the Ly α line. The topthe bright emission from the central galaxy of the A383 cluster. Bottom: axis shows the velocity relative the Ly α redshift. ALMA spectra extracted at the position of A383-5.1 and centered at the frequency of the redshifted [C II] line. The green solid curve shows the bestfit Gaussian. The vertical dashed line and grey area shows the corresponding redshift and uncertainty determined from the Ly α line, and the red dashed line and area corresponds to the redshift measured from Cm] (Stark et al.

2015). The top-axis shows the velocity relative the Ly α redshift.

A383-5.1, -5.2

RA (J2000)

Figure 1. Top: HST WFC3 F140W image overlaid with the contours of the Figure 2. The ALMA band-6 spectrum extracted at the position of the integrated spectral line. The contours show 3, 4, 5\u03c3. The apparent gradient MS0451-H arc. The vertical line and grey area shows indicate the corres-

Name	ZLyα	Z[CII]	μ	$L_{ m [CII]} \ [m L_{\odot}]$	$\begin{array}{c} SFR_{[CII]} \\ [M_{\odot}yr^{-1}] \end{array}$	$L_{ m FIR} \ [{ m L}_{\odot}]$	SFR _{FIR} [M _☉ yr ⁻¹]
A383-5.1	6.029 ± 0.002	6.028	11.4	8.3×10^{6}	0.64	$<0.5\times10^{10}$	< 0.5
MS0451-H	6.703 ± 0.001		100	$< 3.0 \times 10^{5} a$	< 0.04	$< 0.07 \times 10^{10}$	< 0.07

 $^{^{}a}$ assuming a line width of $100\,\mathrm{km\,s^{-1}}$ as measured for A383-5.1

Discussion

- SFR vs L_[CII]上で、今回の2天体は近傍の関係よりL_[CII]が4倍以上も低い (重力レンズのおかげ)
- IRで明るいstarburst銀河やAGNでは[CII]放射の効率が下がるとされているが、今回の天体はstarburstでもAGNでもない
- 説明1: 金属量
 - 金属量が低いほど[CII]が出ないという理論研究 (Rollig+06)
 - Vallini+15のz=6.6のsimulationの結果によると、低金属量(Z=0.05-0.2 Z_{sun})だと近傍の関係より下にくる
 - ちなみに A383-5.2の金属量はZ=0.047 Z_{sun}
- 説明2: ハードなradiation field
 - C+を電離してしまう
 - 実際A383-5.2はionization parameter高い(logU=-1.79; Stark+15)
- 説明3: selection bias, systematics等
 - LAEではSFRを過大評価しているのかもしれない
 - Lya emissionは星形成以外にもinflowガスのshock ionizationでも起こる

Figure 3. We plot the detection of A383-5.1 and the sensitive upper limit for MS0451-H after correcting for magnification, both black squares. We also include the recent $z\sim 6$ results from Ota et al. (2014); González-López et al. (2014); Willott et al. (2015b); Maiolino et al. (2015); Capak et al. (2015); Schaerer et al. (2015); Knudsen et al. (2016, in preparation). The $L_{\rm [CII]}$ - SFR relation, where the green region shows the relation for local star-forming galaxies and the orange region shows that for low-metallicity dwarf galaxies (De Looze et al. 2014). The blue solid and dotted line shows the resulting relation from the low-metallicity simulations from Vallini et al. (2015) (solid: $Z=0.05Z_{\odot}$, dotted: $Z=0.2Z_{\odot}$) and the magenta dash-dot-line the results for massive $z\sim 2$ galaxies from Olsen et al. (2015).

Summary

- A383-5.1, MS0451-HのALMA観測を報告
- A383-5.1からは[CII]158um輝線を検出(L_{[CIII}=8.3x10⁶ L_{sun})
- MS0451-Hからは[CII]は検出されず、 $L_{\text{[CII]}}$ < $3x10^5 L_{\text{sun}}$
- これらの[CII]光度は近傍のSFR-L_[CII]関係よりも有意に低く、低金属量や ハードなradiation fieldの影響が考えられる
- 高赤方偏移宇宙 (z>6) における[CII]観測は、近傍の関係で予想されるよりも難しいが、A383-5.1の検出により不可能でないことが示された