Chapitre 2:

Intégrales Généralisées

Table des matières

1. Rappel sur les integrales	1
2. Premières définitions.	2
3. Critères fondamentaux.	2
4. Critère de convergence pour le cas f de signe constant.	3
5. Intégrales généralisées absolument convergente.	5
6. Comparaison série-intégrale.	6
7. Produits infinis.	6

1. Rappel sur les integrales

Définition 1.1: Soit $f:[a,b] \to \mathbb{R}$ et une subdivision $\sigma:=\{x_0 < \ldots < x_n\}$ de [a,b]. On dit que f est Riemann intégrable si

$$\inf_{\sigma} \sum_{i=1}^n \Biggl((x_i - x_{i-1}) \sup_{[x_{i-1}, x_i]} f \Biggr) = \sup_{\sigma} \sum_{i=1}^n \Biggl((x_i - x_{i-1}) \inf_{[x_{i-1}, x_i]} f \Biggr)$$

Théorème 1.1: $f:[a,b] \to \mathbb{R}$ est Riemann intégrable si elle est continue par morceaux i.e il existe une subdivision $\sigma \coloneqq \{x_0 < \ldots < x_n\}$ de [a,b] tel que f soit continue sur les $]x_{i-1}; x_i[_{i \in [1;n]}.$

 $f:[a,b]\to\mathbb{C}$ est Riemann intégrable si Re(f) et Im(f) sont Riemann intégrables. On a alors :

$$\int_a^b f(x) \,\mathrm{d}x = \int_a^b \Re(f(x)) \,\mathrm{d}x + i \int_a^b \Im(f(x)) \,\mathrm{d}x$$

Proposition 1.1: Soit $f, g: [a, b] \to \mathbb{R}$ intégrables, $\lambda \in \mathbb{R}$.

- 1. $f + \lambda g$ est intégrable et $\int_a^b f + \lambda g = \int_a^b f + \lambda \int_a^b g$.
- 2. fg est intégrable (voir théorème d'intégration par parties).
- 3. $f \ge 0 \to \int_a^b f \ge 0$ avec $\int_a^b f = 0 \leftrightarrow \forall x \in [a;b] f(x) = 0$.
- 4. $f \ge g \to \int_a^b f \ge \int_a^b g$.
- 5. |f| est intégrable et $\left|\int_a^b f\right| \leq \int_a^b |f|$.

Théorème 1.2 (d'intégration par parties): Soit $f, g : [a, b] \to \mathbb{R}$ de classe C^1

$$\int_a^b f'g = [fg]_a^b - \int_a^b fg'$$

Théorème 1.3 (changement de variable): Soit I un intervalle, $\varphi:[a,b]\to I$ une fonction de classe C^1 et $f:I\to\mathbb{R}$ continue. On a:

$$\int_{a}^{b} f(\varphi(t))\varphi'(t) dt = \int_{\varphi(a)}^{\varphi(b)} f(x) dx$$

avec le changement de variables $x = \varphi(t)$ ou $dx = \varphi'^{(t)} dt$.

2. Premières définitions.

Définition 2.1:

- 1. Soit $f:[a,b[\to\mathbb{R}$ continue. On dit que l'intégrale $\int_a^b f(x)\,\mathrm{d}x$ converge si $\int_a^t f(x)\,\mathrm{d}x$ admet une limite finie quand $t\to b^-$.
- 2. Soit $f:]a, b] \to \mathbb{R}$ continue. On dit que l'intégrale $\int_a^b f(x) \, \mathrm{d}x$ converge si $\int_t^b f(x) \, \mathrm{d}x$ admet une limite finie quand $t \to a^+$.

Définition 2.2: Si $f:]a,b[\to \mathbb{R}$ continue, on dit que l'intégrale $\int_a^b f(x) \, \mathrm{d}x$ converge s'il existe $c \in]a,b[$ tel que $\int_a^c f(x) \, \mathrm{d}x$ converge et $\int_c^b f(x) \, \mathrm{d}x$ converge.

2

 $\begin{array}{l} \textit{Remarque} \colon \text{Si il existe } c \in]a,b[\text{ tel que } \int_a^c f(x) \, \mathrm{d}x \text{ converge alors pour tout } d \in]a,b[,\\ \int_a^d f(x) \, \mathrm{d}x \text{ converge car } \int_a^c f(x) \, \mathrm{d}x = \int_a^d f(x) \, \mathrm{d}x + \int_d^c f(x) \, \mathrm{d}x \text{ car } \int_d^c f(x) \, \mathrm{d}x \text{ converge.} \end{array}$

3. Critères fondamentaux.

Théorème 3.1 (de Riemann): Soit $\alpha \in \mathbb{R}$.

- 1. $\int_1^{+\infty} \frac{1}{x^{\alpha}} \, \mathrm{d}x$ converge si et seulement si $\alpha > 1$.
- 2. $\int_0^1 \frac{1}{x^{\alpha}} dx$ converge si et seulement si $\alpha < 1$.

En particulier, $\int_0^{+\infty} \frac{1}{x^{\alpha}} dx$ diverge toujours.

Démonstration:

1. Soit t > 1.

$$\int_{1}^{t} \frac{\mathrm{d}x}{x^{\alpha}} = \begin{cases} [\ln(x)]_{1}^{t} = \ln(t) & \longrightarrow +\infty \text{ si } \alpha = 1\\ [\frac{1}{1-\alpha}x^{-\alpha+1}]_{1}^{t} = \frac{1}{1-\alpha}[x^{-\alpha+1}]_{1}^{t} = \frac{1}{1-\alpha}(\frac{1}{t^{\alpha-1}} - 1) \text{ si } \alpha \neq 1 \end{cases}$$

Si $\alpha > 1: \int_1^t \frac{1}{x^\alpha} \, \mathrm{d}x \underset{t \to +\infty}{\longrightarrow} -1\frac{1}{1} - \alpha = \frac{1}{\alpha - 1} \in \mathbb{R} \Rightarrow \int_1^+ \infty \frac{1}{x^\alpha} \, \mathrm{d}x$ converge. Si $\alpha < 1: \int_1^t \frac{1}{x^\alpha} \, \mathrm{d}x \underset{t \to +\infty}{\longrightarrow} +\infty \Rightarrow \int_1^{+\infty} \frac{1}{x^\alpha} \, \mathrm{d}x$ diverge.

1. $\int_0^1 \frac{1}{x^\alpha} \, \mathrm{d}x$ par le changement de variable $y = \frac{1}{x}, \mathrm{d}x = -\frac{1}{y^2} \, \mathrm{d}y$, On obtient :

$$\int_{1}^{t} \frac{1}{x^{\alpha}} \, \mathrm{d}x = \int_{\frac{1}{t}}^{1} -\frac{y^{\alpha}}{y^{2}} \, \mathrm{d}y = \frac{\int_{1}^{1}}{t} \frac{1}{y^{2-\alpha}} \, \mathrm{d}y \text{ converge si et seulement si } 2 - \alpha < 1 \Leftrightarrow 1 < \alpha \qquad \qquad \square$$

Corollaire 3.1.1:

- 1. $\int_a^b \frac{1}{(x-a)^{\alpha}} \, \mathrm{d}x$ converge si et seulement si $\alpha < 1$.
- 2. $\int_a^b \frac{1}{(b-x)^{\alpha}} dx$ converge si et seulement si $\alpha < 1$.

Démonstration:

- 1. Soit $t \in]a,b[$. $\int_t^b \frac{1}{(x-a)^\alpha} \,\mathrm{d}x = \int_{t-a}^{b-a} \frac{1}{y^\alpha} \,\mathrm{d}y.$ 2. Pareil.
- 4. Critère de convergence pour le cas f de signe constant.

Théorème 4.1:

* Soit $f:[a,b[\to\mathbb{R}$ une fonction continue telle que pour tout $x\in[a,b[,f(x)\geq0.\int_a^bf(x)\,\mathrm{d}x$ converge si et seulement si $F:[a,b[\to\mathbb{R};t\mapsto\int_a^tf(x)\,\mathrm{d}x$ est majorée.

* Soit $f:]a,b] \to \mathbb{R}$ une fonction continue telle que pour tout $x \in]a,b], f(x) \geq 0.$ $\int_a^b f(x) \, \mathrm{d}x$ converge si et seulement si $F:]a,b] \to \mathbb{R}; t \mapsto \int_t^b f(x) \, \mathrm{d}x$ est majorée.

 $\begin{array}{l} \textit{D\'{e}monstration:} * \text{La fonction } F \text{ est d\'{e}rivanle et } F'(t) = f(t) \geq 0 \Rightarrow F \text{ est croissante} \Rightarrow \\ \lim_{t \to b^-} F(t) \text{ existe et } \lim_{t \to b^-} F(t) = \sup_{[a,b]} F(t) = l \in \mathbb{R} \cup \{\pm \infty\} \text{ or } l \in \mathbb{R} \text{ si et seulement si } F \text{ est major\'e\'e}. \end{array}$

$$\label{eq:formula} \begin{split} *\,F(t) &= \int_t^b f(x) \,\mathrm{d} x = - \int_b^t f(x) \,\mathrm{d} x. \\ \text{On a } F \text{ dérivable et } F'(t) &= -f(t) \leq 0 \Rightarrow F \text{ est décroissante} \Rightarrow \lim_{t \to a^+} F(t) \text{ existe et } \\ \lim_{t \to a^+} F(t) &= \inf_{[a,b]} F(t) = l \in \mathbb{R} \cup \{\pm \infty\} \text{ or } l \in \mathbb{R} \text{ si et seulement si } F \text{ est majoréé.} \end{split}$$

Exemple:

1. $F(t) = \int_0^1 \sin^2(\frac{1}{x}) dx \cdot f :]0,1] \to \mathbb{R}; x \mapsto \sin^2(\frac{1}{x})$ continue et positive.

De plus, $\forall x \in]0,1], f(x) \leq 1$ et $F(t) = \int_t^1 \sin^2\left(\frac{1}{x}\right) \mathrm{d}x \leq \int_t^1 1 \, \mathrm{d}x = [x]_t^1 = 1 - t \leq 1$. Donc F(t) est bornée $\Rightarrow \int_t^1 \sin^2\left(\frac{1}{x}\right) \mathrm{d}x$ converge.

Théorème 4.2 (Critère de comparaison): Soit $f, g : [a, b] \to \mathbb{R}$ continues telles que pour tout $t \in [a, b[, f(t) \le g(t)]$. Alors:

- 1. $\int_a^b g(t) dt$ converge $\Rightarrow \int_a^b f(t) dt$ converge.
- 2. $\int_a^b f(t) dt$ converge $\Rightarrow \int_a^b g(t) dt$ diverge.

 $\begin{array}{ll} \textit{D\'{e}monstration} \colon \text{Soit } F: [a,b[\to \mathbb{R}; t \mapsto \int_a^t f(x) \, \mathrm{d}x \text{ et } G: [a,b[\to \mathbb{R}; t \mapsto \int_a^t g(x) \, \mathrm{d}x \\ f \leq g \underset{\text{par monotonie}}{\Longrightarrow} \int_a^t f(x) \, \mathrm{d}x \leq \int_a^t g(x) \, \mathrm{d}x \Longrightarrow F(x) \leq G(x). \end{array}$

- 1. Si $\int_a^b g(x) dx$ converge G est bornée donc F est bornée donc $\int_a^b f(x) dx$.
- 2. Si $\int_a^b g(x) \, \mathrm{d}x$ diverge F n'est pas majorée i.e $\forall M \in \mathbb{R}, \exists x \in [a,b[\ \mathrm{tq}\ F(x) > M.$ De plus, $G(x) \geq F(x) > M$ donc G n'est pas majorée donc d'après le théorème $\int_a^b g(x) \, \mathrm{d}x$ diverge.

Exemple: 1. $\int_{1}^{+\infty} \frac{\sin(x)^2}{x^2} dx$. $: [1, +\infty[\to \mathbb{R}, x \mapsto \frac{\sin(x)^2}{x^2} \text{ est continue et positive et } \forall x \in [1, +\infty[, f(x) \le \frac{1}{x^2}].$

D'après le théorème de Riemann, $\int_1^{+\infty} \frac{1}{x^2} dx$ converge donc par le critère de comparaison, $\int_{1}^{+\infty} f(x) dx$ converge.

Théorème 4.3 (critère des équivalents): Soit $f,g:[a,b[\to\mathbb{R}$ continues et positives. $f\underset{b}{\sim}g\Rightarrow\left(\int_a^bf(x)\,\mathrm{d}x\,\operatorname{et}\int_a^bf(x)\,\mathrm{d}x\right)$ sont de même nature.

 $\textit{D\'{e}monstration:} \ f \underset{b}{\sim} g \Rightarrow \exists \delta > 0, \exists \lambda :]b - \delta; \\ b[\rightarrow \mathbb{R} \ \text{telle que} \lim_{x \rightarrow b^-} \lambda(x) = 0 \ \text{tels que} \ \forall x \in \mathbb{R} \ \text{telle que} \ \lambda(x) = 0 \ \text{tels que} \ \forall x \in \mathbb{R} \ \text{telle que} \ \lambda(x) = 0 \ \text{tels que} \ \forall x \in \mathbb{R} \ \text{telle que} \ \lambda(x) = 0 \ \text{tels que} \ \forall x \in \mathbb{R} \ \text{telle que} \ \lambda(x) = 0 \ \text{tels que} \ \forall x \in \mathbb{R} \ \text{telle que} \ \lambda(x) = 0 \ \text{tel$ $]b-\delta;b[,f(x)-g(x)+\lambda(x)g(x).$

Posons $\varepsilon = \frac{1}{2}$.

 $\exists \eta > 0 \text{ tel que } b - \eta < x < b \Rightarrow |\lambda(x)| < \tfrac{1}{2} \Leftrightarrow -\tfrac{1}{2} < \lambda(x) < \tfrac{1}{2} \text{ car } \lim_{x \to h^-} \lambda(x) = 0.$

On pose $\alpha = \max\{b-\delta, b-\eta.\}$ Ainsi, $\forall x \in]\alpha, b[\cap]\alpha, b[:]\alpha$

$$\begin{split} -\frac{1}{2}g(x) & \leq \lambda(x)g(x) \leq \frac{1}{2}g(x) \text{ car } g(x) > 0 \\ \Leftrightarrow -\frac{1}{2}g(x) & \leq f(x) - g(x) \leq \frac{1}{2}g(x) \text{ car } f \underset{b}{\sim} g \\ \Rightarrow \frac{1}{2}g(x) & \leq f(x) \leq \frac{3}{2}g(x). \end{split}$$

Ainsi, par le théorème des comparaisons, si $\int_{\alpha}^{b} f(x) dx$ converge, alors $\int_{\alpha}^{b} \frac{1}{2}g(x) dx$ converge

donc $\int_{\alpha}^{b}g(x)\,\mathrm{d}x$ converge. De même, si $\int_{\alpha}^{b}\frac{3}{2}g(x)\,\mathrm{d}x$ converge, alors $\int_{\alpha}^{b}g(x)\,\mathrm{d}x$ converge donc $\int_{\alpha}^{b}f(x)\,\mathrm{d}x$ converge. Enfin comme f et g sont bien définit sur $[a,\alpha]$, il n'y a pas de problème d'intégration. П **Théorème 4.4** (de négligeabilité): Soit $f, g : [a, b] \to \mathbb{R}$ continues et positives.

- 1. $\int_a^b g(x) dx$ converge $\Rightarrow \int_a^b f(x) dx$ converge.
- 2. $\int_a^b f(x) dx$ diverge $\Rightarrow \int_a^b f(x) dx$ diverge.

Démonstration: Soit $f,g:[a,b]\to\mathbb{R}$ continues et positives. Soit $\lambda:[c,b]\to\mathbb{R}$ telle que $\lim_{t \to b^-} \lambda(t) = 0$. On a $f = \lambda g$. Posons $\varepsilon = \frac{1}{2}$.

$$\exists c'>c \text{ tq } \forall x \in [c',b[,|\lambda(x)|<\frac{1}{2}$$

$$f(x) = \lambda(x)g(x) < \frac{1}{2}g(x).$$

Ainsi, par le théorème des comparaisons, si $\int_{c'}^b g(x) \, \mathrm{d}x$ converge, alors $\int_{c'}^b f(x) \, \mathrm{d}x$ converge. Et si, $\int_{c'}^b f(x) \, \mathrm{d}x$ diverge, alors $\int_{\alpha}^b g(x) \, \mathrm{d}x$ diverge.

Théorème 4.5 (de Bertrand): Soit $\alpha, \beta \in \mathbb{R}$.

- 1. $\int_b^{+\infty} \frac{1}{x^{\alpha} \ln(x)^{\beta}}$ converge si et seulement si $\alpha > 1$ ou $(\alpha = 1$ et $\beta > 1)$.
- 2. $\int_a^{b<1} \frac{1}{x^{\alpha} |\ln(x)|^{\beta}}$ converge si et seulement si $\alpha < 1$ ou $(\alpha = 1 \text{ et } \beta > 1)$.

Démonstration: A FAIRE !!!!

5. Intégrales généralisées absolument convergente.

Définition 5.1: On dit que l'intégrale $\int_a^b f(x) dx$ est absolument convergente si $\int_a^b |f(x)| dx$ converge. Si $\int_a^b f(x) dx$ converge mais pas absolument, on dit qu'elle est semi-convergente.

Théorème 5.1: Si $\int_a^b f(x) dx$ est absolument convergente alors $\int_a^b f(x) dx$ est convergente.

Démonstration: Soit $f:[a,b[o\mathbb{R} \text{ continue}]$. On définit $f_+(x)=\max\{0,f(x)\}=rac{f(x)+|f(x)|}{2}$ et $f_-(x)=\min\{0,f(x)\}=rac{|f(x)|-f(x)}{2}$

On a: $*f_+, f_-$ continue sur [a, b].

$$* f_{+} \geq 0, f_{-} \geq 0.$$

$$* f = f_{+} - f_{-}.$$

$$* |f| = f_+ + f_- \Rightarrow f_+ \le |f| \text{ et } f_- \le |f|.$$

On pose $F: [a, b[\to \mathbb{R}; t \mapsto \int_a^t f(x) \, \mathrm{d}x.$

Pour chaque $t \in [a,b[:\int_a^t f(x)\,\mathrm{d}x = \int_a^t f_+(x)\,\mathrm{d}x - \int_a^t f_-(x)\,\mathrm{d}x.$ Comme $0 \le f_+, f_- \le |f|$ et $\int_a^t |f(x)|\,\mathrm{d}x$ converge (Hypothèse inititiale), $\int_a^b f_+(x)\,\mathrm{d}x \;\mathrm{et} \int_a^b f_-(x)\,\mathrm{d}x \;\mathrm{convergent}. \;\mathrm{Ainsi} \int_a^b f_+(x)\,\mathrm{d}x - \int_a^b f_-\,\mathrm{d}x \;\mathrm{converge}$

Exemple

1.
$$\int_0^1 \sin\left(\frac{1}{x}\right) dx$$

 $f:]0,1] o \mathbb{R}; x \mapsto \sin\left(\frac{1}{x}\right)$ est continue. De plus, $\forall x \in]0,1], |f(x)| \le 1$ et $\int_0^1 1 \, \mathrm{d}x = 1$ Par le critère de comparaison, $\int_0^1 |f(x)| \, \mathrm{d}x$ converge $\Rightarrow \int_0^1 f(x) \, \mathrm{d}x$ converge.

Théorème 5.2: Soit $\varphi:]\alpha,\beta[\to]a,b[$ de classe C^1 bijective et $f:]a,b[\to\mathbb{R}$ continue. Les intègrales $\int_a^b f(t)\,\mathrm{d}t$ et $\int_\alpha^\beta f(\varphi(x))\varphi'(x)\,\mathrm{d}x$ ont la même nature.

Démonstration: A FAIRE !!!!! □

6. Comparaison série-intégrale.

Théorème 6.1: Soit $f:[a,+\infty[\to \mathbb{R}$ une fonction continue, positive et décroissante.

 $\int_a^+ \infty f(x) dx$ et $\sum_{n=a}^+ f(n)$ ont la même nature.

Si elles convergent, :

$$\int_{n+1}^{+\infty} f(t) \, \mathrm{d}t \leq R_n = \sum_{k=n+1}^{+\infty} f(k) \leq \int_n^{+\infty} f(t) \, \mathrm{d}t.$$

7. Produits infinis.

 $\textbf{Proposition 7.1} \colon \operatorname{Si}\Pi(1+a_n) \text{ converge alors } 1+a_n \underset{n \to +\infty}{\longrightarrow} 1 \Leftrightarrow a_n \underset{n \to +\infty}{\longrightarrow} 0.$

Théorème 7.1: Soit $(a_n)_{n\in\mathbb{N}}$ une suite de nombres réels positifs. Le porduit infini $\Pi(1+a_n)$ converge si et seulement si $\sum a_n$ converge.

Démonstration: VOIR POLY !!!!!

Exemple:

- 1. On a vu que $\Pi(1+\frac{1}{n})$ converge $\Rightarrow \sum_{n=1}^{\infty} \left(\frac{1}{n}\right)$ diverge.
- 2. Pour $\alpha > 1 : \sum_{n=0}^{\infty} \left(\frac{1}{n^{\alpha}}\right)^n$ converge $\Rightarrow \Pi\left(1 + \frac{1}{n^{\alpha}}\right)$ converge.
- 3. Soit $x \in [0, 1[, \sum_{n=1}^{\infty} (x^n) \text{ converge}] \Rightarrow \Pi(1 + x^n)$ converge.

Théorème 7.2: Soit $(a_n)_{n\in\mathbb{N}}$ une suite de nombres réels positifs. $\Pi(1-a_n)$ converge si et seulement si $\Sigma(a_n)$ converge si et seulement si $\Pi(1+a_n)$ converge.

 $\begin{array}{l} \textit{D\'{e}monstration} \colon \text{Si} \lim_{n \to +\infty} a_n \neq 0, \sum (a_n) \text{ diverge et } \Pi(a_n+1) \text{ diverge.} \\ \text{Si} \lim_{n \to +\infty} a_n = 0, \text{ il existe } N \in \mathbb{N} \text{ tel que } \forall n \geq N, a_n \leq \frac{1}{2}. \end{array}$

VOIR POLY!!!!! (On voit rien avec son stylo vert nul).

Exemple: $\sum \frac{1}{n^{\alpha}}$ converge $\Rightarrow \Pi(1 - \frac{1}{n^{\alpha}})$ converge si $\alpha > 1$.

Remarque: Sans l'hypothèse de positivité, le théorème est faux.

Définition 7.1 (convergence absolue): Soit $(a_n)_{n\in\mathbb{N}}$ une suite réelle. Le produit infini $\Pi(1+a_k)$ est dit absolument convergent si $\Pi(1+|a_k|)$ converge.

Théorème 7.3: Soit $(a_n)_{n\in\mathbb{N}}$ une suite réelle. Si le produit infini $\Pi(1+a_k)$ est absolument convergent alors il est convergent.

Théorème 7.4: Soit $(a_n)_{n\in\mathbb{N}}$ une suite réelle telle que pour tout $n\in\mathbb{N}, a_n+1\geq 0$. $\Pi(1+a_n)$ converge si et seulement si $\sum \ln(1+a_n)$ converge. De plus, une convergence est absolue si et seulement si l'autre l'est.

 $\it Remarque$: Il existe une variante du théorème avec a_n une suite complexe.

Théorème 7.5: Soit $(a_n)_{n\in\mathbb{N}}$ une suite de nombres réels telle que $\sum a_n^2$ converge. On a $\sum a_n$ et $\Pi(1+a_n)$ sont de même nature.