Modal Logic

kankanray

Contents

1	Basic Concepts		1
	1.1	Relational Structures	1
	1.2	Modal Languages	2

1 Basic Concepts

1.1 Relational Structures

Definition 1.1. A relational structure \mathfrak{F} is a tuple, where the first component is a non-empty set W called *universe*, and remaining components are relations on W. We assume there is at least one relation on W.

In the following 2 definitions, we assume W be a non-empty set and R a binary relation on W.

Definition 1.2. $R^+ := \bigcap \{R' | R' \text{ is a transitive binary relation on } W \text{ and } R \subseteq R'\}$, is called the *transitive closure* of R.

Definition 1.3. $R^* := \bigcap \{R' | R' \text{ is a reflexive transitive binary relation on } W$ and $R \subseteq R'\}$, is called the *reflexive transitive closure* of R.

Note that transitive closure of a binary relation has nice *finite steps* property, see Exercise 1.1.3.

Definition 1.4. A tree \mathfrak{T} is a structural structure (T,S) where:

- (i) T, the set of nodes, contains a unique $r \in T$ (root), such that $\forall t \in TS^*rt$.
- (ii) For every $t \neq r$, there is a unique $t' \in T$, such that St't
- (iii) $\forall t \neg S^+tt$, so S is acyclic.

Question 1.1. Why we define tree like that?

1.2 Modal Languages

Definition 1.5. Basic modal language:

-A set of proposition letters(or proposition symbols or propositional variables) Φ , whose elements are usually denoted p, q, r, and so on.

-A unary modal operator \Diamond .

Then the well-formed $formulas \ \phi$ of the basic modal language are given by the rule:

```
\phi ::= p|\bot|\neg\phi|\psi\vee\phi|\Diamond\phi,
```

where p ranges over elements pf Φ .

There is also a dual operator \square which is defined by $\square \phi := \neg \lozenge \neg \phi$.

Moreover, we can define conjunction, implication, bi-implication, and the constant true as usual:

```
\phi \wedge \psi := \neg(\neg \phi \vee \neg \psi), 

\phi \rightarrow \psi := \neg \phi \vee \psi, 

\phi \leftrightarrow \psi := (\phi \rightarrow \psi) \wedge (\psi \rightarrow \phi), \text{ and } 

\top := \neg \bot.
```

The following 3 definitions generalize the concept of basic modal language.

Definition 1.6. A modal similarity type is a pair $\tau = (O, \rho)$ where O is a non-empty set, and ρ is a function $O \to \mathbb{N}$. The elements of O are called modal operators; we use \triangle , \triangle_0 , \triangle_1 ,..., to denote elements of O. The function ρ assigns to each operator $\triangle \in O$ a finite arity indicating the number of arguments \triangle can be applied to.

So we often refer to *unary* triangles as *diamonds*, and denote them by \Diamond_a or $\langle a \rangle$, where a is taken from some index set.

Definition 1.7. A modal language $ML(\tau, \Phi)$, with modal similarity type $\tau = (O, \rho)$ and a set of proposition letters Φ . The well-formed formulas are given by the rule:

```
\phi := p|\bot|\neg\phi|\phi_1 \lor \phi_2|\triangle(\phi_1,...,\phi_{\rho(\triangle)}), where p ranges over elements of \Phi.
```

Definition 1.8. Dual operators for non-nullary triangles. For each $\triangle \in O$ the dual ∇ is defined as $\nabla(\phi_0, ..., \phi_n) = \neg \triangle(\neg \phi_0, ..., \neg \phi_n)$. The dual of a triangle of arity at least 2 is called a *nabla*. A *box*(unary triangle-down) is written \square_a or [a].

Definition 1.9. A substitution is a map $\sigma: \Phi \to Form(\tau.\Phi)$ (formulas).

Then a substitution σ induces a map $(\cdot)^{\sigma}: Form(\tau, \Phi) \to Form(\tau, \Phi)$, which can be recursively defined as follows:

```
\begin{split} & \bot^{\sigma} = \bot, \\ & p^{\sigma} = \sigma(p), \\ & (\neg \psi)^{\sigma} = \neg \psi^{\sigma}, \\ & (\psi \lor \theta)^{\sigma} = \psi^{\sigma} \lor \theta^{\sigma}, \\ & (\triangle(\psi_1, ..., \psi_n))^{\sigma} = \triangle(\psi_1^{\sigma}, ..., \psi_n^{\sigma}) \end{split}
```