Grupos e Corpos

Prof. Lucas Calixto

Aula 9 - Extensões de corpos

De agora em diante, as letras \mathbb{F} , \mathbb{E} , \mathbb{K} , ... denotarão corpos

Dado um poli $f(x) \in \mathbb{F}[x]$, queremos encontrar um corpo $\mathbb E$ que contenha as raízes de f. Nesse caso

$$f(x) = (x - \alpha_1) \cdots (x - \alpha_n) \text{ em } \mathbb{E}[x]$$

Exemplo: $f(x) = x^4 - 5x + 6 \in \mathbb{Q}(x)$ se escreve como $(x^2 - 2)(x^2 - 3)$ em $\mathbb{Q}[x]$

Assim, se queremos achar raízes de f(x) precisamos de um corpo maior do que $\mathbb Q$

Por exemplo,

$$f(x) = (x - \sqrt{2})(x + \sqrt{2})(x - \sqrt{3})(x + \sqrt{3}) \text{ em } \mathbb{R}[x]$$

Note: não precisamos de todo \mathbb{R} para conseguir raízes de f(x). De fato, tome

$$\mathbb{Q}(\sqrt{2}) = \{ a + b\sqrt{2} \mid a, b \in \mathbb{Q} \}$$

Então, f(x) tem raíz em $\mathbb{Q}(\sqrt{2})$ e

$$f(x) = (x - \sqrt{2})(x + \sqrt{2})(x^2 - 3) \text{ em } \mathbb{Q}(\sqrt{2})[x]$$

A ideia será estudar esse tipo de corpo para polinômios em $\mathbb{F}[x]$

Extensões de corpos

Se $\mathbb{F} \subset \mathbb{E}$ dizemos que \mathbb{E} é uma extensão de \mathbb{F} (ou \mathbb{F} é um subcorpo de \mathbb{E})

Exemplo: Tome $\mathbb{F} = \mathbb{Q}(\sqrt{2})$ e $\mathbb{E} = \mathbb{Q}(\sqrt{2} + \sqrt{3}) = 0$ menor corpo que contem \mathbb{Q} e $\sqrt{2} + \sqrt{3}$. Note que $\frac{1}{\sqrt{2} + \sqrt{3}} = \sqrt{2} - \sqrt{3} \in \mathbb{E}$. Logo,

$$(\sqrt{2}+\sqrt{3})\pm(\sqrt{2}-\sqrt{3})=\sqrt{2},\sqrt{3}\in\mathbb{E}\Rightarrow\mathbb{Q}\subset\mathbb{F}\subset\mathbb{E}$$

Essa conta $\Rightarrow \mathbb{Q}(\sqrt{2} + \sqrt{3}) = \mathbb{Q}(\sqrt{2}, \sqrt{3}) = 0$ menor corpo que contem $\mathbb{Q}, \sqrt{2}$ e $\sqrt{3}$

Teorema: Seja $p(x) \in \mathbb{F}[x]$ poli não constante. Então existe extensão $\mathbb{E} \supset \mathbb{F}$ tal que p(x) tem raiz em \mathbb{E}

Prova: Podemos assumir $p(x) = b_0 + b_1 x + \dots + b_k x^k$ irredutível

$$\mathbb{E} = \mathbb{F}[x]/\langle p(x)\rangle = \{a_0+a_1x+\cdots+a_{k-1}x^{k-1}+\langle p(x)\rangle \mid a_i \in \mathbb{F}\} \text{ \'e tal corpo}$$

Notação:
$$\overline{a_0 + a_1 x + \dots + a_{k-1} x^{k-1}} = a_0 + a_1 x + \dots + a_{k-1} x^{k-1} + \langle p(x) \rangle$$

Note:

$$\overline{a_0 + a_1 x + \dots + a_{k-1} x^{k-1}} = a_0 + a_1 x + \dots + a_{k-1} x^{k-1} + \langle p(x) \rangle$$

$$= (a_0 + \langle p(x) \rangle) + (a_1 + \langle p(x) \rangle)(x + \langle p(x) \rangle) + \dots + (a_{k-1} + \langle p(x) \rangle)(x^{k-1} + \langle p(x) \rangle)$$

$$= (a_0 + \langle p(x) \rangle) + (a_1 + \langle p(x) \rangle)(x + \langle p(x) \rangle) + \dots + (a_{k-1} + \langle p(x) \rangle)(x + \langle p(x) \rangle)^{k-1}$$

$$= \bar{a}_0 + \bar{a}_1 \bar{x} + \dots + \bar{a}_{k-1} \bar{x}^{k-1}$$

Logo, $\mathbb{E} = \{\bar{a}_0 + \bar{a}_1\bar{x} + \dots + \bar{a}_{k-1}\bar{x}^{k-1} \mid a_i \in \mathbb{F}\}$. **Obs:** não confundam \bar{x} (que é um elemento de \mathbb{E}) com x (que continua sendo uma variável)

 \bullet $\mathbb{F} \subset \mathbb{E}$: e fácil ver que o homomorfismo

$$\phi: \mathbb{F} \to \mathbb{E}, \quad \phi(a) = \bar{a}$$

permite identificarmos \mathbb{F} com $\phi(\mathbb{F}) \subset \mathbb{E}$

• $\bar{x} \in \mathbb{E}$ é raiz de $p(x) \in \mathbb{E}[x]$: (note que \bar{x} é elemento de \mathbb{E} e x é variável e portanto $x \notin \mathbb{E}$)

$$p(\bar{x}) = \bar{b}_0 + \bar{b}_1 \bar{x} + \dots + \bar{b}_k \bar{x}^k$$

= $b_0 + b_1 x + \dots + b_k x^k + \langle p(x) \rangle$
= $0 + \langle p(x) \rangle = \bar{0}$ em \mathbb{E}

Exemplo: $p(x) = x^2 + x + 1 \in \mathbb{Z}_2[x]$ é irredutível

$$\Rightarrow \mathbb{E} = \mathbb{Z}_2[x]/\langle p(x)\rangle = \{\bar{a} + \bar{b}\bar{x} \mid a,b \in \mathbb{Z}_2\} = \{\bar{0},\bar{b}\bar{x},\bar{1},\bar{1} + \bar{x}\} \text{ \'e corpo}$$

Considerando $p(x) \in \mathbb{E}[x]$, temos $p(\bar{x}) = 0$ em \mathbb{E}

Exemplo: $p(x) = x^5 + x^4 + 1 \in \mathbb{Z}_2[x]$ não é irredutível

$$p(x) = (x^2 + x + 1)(x^3 + x + 1)$$
 é fatoração em irredutíveis (pq?)

Em
$$\mathbb{E}_1 = \mathbb{Z}_2[x]/\langle x^2 + x + 1 \rangle$$
, $\alpha_1 = x + \langle x^2 + x + 1 \rangle$ é raiz de $p(x)$

$$\Rightarrow p(x) = (x - \alpha_1)(x - \alpha_2)(x^3 + x + 1) \text{ em } \mathbb{E}_1[x] \text{ (aqui, } \alpha_2 = (1 + x) + \langle x^2 + x + 1 \rangle)$$

Em
$$\mathbb{E}_2 = \mathbb{Z}_2[x]/\langle x^3 + x + 1 \rangle$$
, $\beta_1 = x + \langle x^3 + x + 1 \rangle$ é raiz de $p(x)$

$$\Rightarrow p(x) = (x - \beta_1)(x - \beta_2)(x^2 + x + 1) \text{ em } \mathbb{E}_2[x].$$
 Quem é β_2 ?

Note:
$$|\mathbb{E}_1| = 4$$
 e $|\mathbb{E}_2| = 8$

Seja $\mathbb{F} \subset \mathbb{E}$ uma extensão

Um elemento $\alpha \in \mathbb{E}$ é algébrico sobre \mathbb{F} se $p(\alpha) = 0$ para algum $p(x) \in \mathbb{F}[x]$

Um elemento $\alpha \in \mathbb{E}$ é transcendental sobre \mathbb{F} se α não é algébrico sobre \mathbb{F}

Se todo $\alpha\in\mathbb{E}$ é algébrico sobre $\mathbb{F},$ dizemos que a extensão $\mathbb{F}\subset\mathbb{E}$ é algébrica

O menor subcorpo de $\mathbb E$ que contem $\mathbb F$ e elementos $\alpha_1,\dots,\alpha_n\in\mathbb E$ será denotado por $\mathbb F(\alpha_1,\dots,\alpha_n)$

Se $\exists \ \alpha \in \mathbb{E} \ \text{tal que } \mathbb{E} = \mathbb{F}(\alpha)$, dizemos que a extensão $\mathbb{F} \subset \mathbb{E}$ é simples

Exemplo: • $\sqrt{2}$, $i \in \mathbb{C}$ são algébricos sobre \mathbb{Q} , já que são, respetivamente, raízes dos polis $x^2 - 2$ e $x^2 + 1$ em $\mathbb{Q}[x]$

• π e e são transcendentais sobre $\mathbb Q$ (a demonstração não é trivial)

Fato: números transcendentais são difíceis de achar, mas os números algébricos que são raros (os algébricos tem cardinalidade $\aleph_0 = |\mathbb{N}|$, enquanto que os transcendentais tem cardinalidade $\aleph_1 = |\mathbb{R}|$)

Exemplo: $\alpha = \sqrt{2 + \sqrt{3}}$ é algébrico sobre \mathbb{Q} . De fato,

$$\alpha^2 = 2 + \sqrt{3} \Rightarrow \alpha^2 - 2 = \sqrt{2} \Rightarrow \alpha^4 - 4\alpha^2 + 4 = 3 \Rightarrow \alpha^4 - 4\alpha^2 + 1 = 0$$

Logo, α é raiz de $p(x) = x^4 - 4x^2 + 1 \in \mathbb{Q}[x]$

Teorema: Seja $\mathbb{F} \subset \mathbb{E}$ uma extensão, e $\alpha \in \mathbb{E}$. Então, α é transcendental sobre \mathbb{F} se e só se $\mathbb{F}(\alpha) \cong \mathbb{F}(x)$ (lembre: $\mathbb{F}(x)$ é o corpo de frações do domínio integral $\mathbb{F}[x]$)

Prova: Tome $\phi_{\alpha}: \mathbb{F}[x] \to \mathbb{E}$, $\phi_{\alpha}(f(x)) = f(\alpha)$ (homomorfismo de avaliação em α)

 α é transcendental $\Leftrightarrow \ker(\phi_\alpha) = \{0\} \Leftrightarrow \phi_\alpha$ é injetora

Logo, α é transcendental $\Leftrightarrow F[x] \cong \operatorname{im} \phi_{\alpha}$ e portanto $F(x) \cong Q(\operatorname{im} \phi_{\alpha}) = \operatorname{corpo}$ de frações do domínio $\operatorname{im} \phi_{\alpha}$. Lembrem,

$$Q(\operatorname{im} \phi_{\alpha}) = \{ f(\alpha)g(\alpha)^{-1} \mid f(x), g(x) \in \mathbb{F}[x], \ g(x) \neq 0 \} \subset \mathbb{E}$$

Afirmamos que $Q(\operatorname{im} \phi_{\alpha}) = F(\alpha)$

$$\phi_{\alpha}(x) = \alpha \in Q(\operatorname{im} \phi_{\alpha}), \ \phi_{\alpha}(a) = a \in Q(\operatorname{im} \phi_{\alpha}) \ \forall a \in \mathbb{F} \Rightarrow \mathbb{F}(\alpha) \subset Q(\operatorname{im} \phi_{\alpha})$$

Por outro lado, $f(\alpha), g(\alpha) \in \mathbb{F}(\alpha)$ para todos $f(x), g(x) \in \mathbb{F}[x] \Rightarrow f(\alpha)g(\alpha)^{-1} \in \mathbb{F}(\alpha)$

$$\Rightarrow Q(\operatorname{im} \phi_{\alpha}) \subset \mathbb{F}(\alpha) \Rightarrow Q(\operatorname{im} \phi_{\alpha}) = \mathbb{F}(\alpha) \Rightarrow \mathbb{F}(x) \cong \mathbb{F}(\alpha)$$

Teorema: Seja $\mathbb{F} \subset \mathbb{E}$ uma extensão, e $\alpha \in \mathbb{E}$ algébrico sobre \mathbb{F} . Então existe único poli monico irredutível em $\mathbb{F}[x]$ de grau mínimo tal que $p(\alpha) = 0$. Além disso, se $f(x) \in \mathbb{F}[x]$ é tal que $f(\alpha) = 0$, então $p(x) \mid f(x)$.

Prova: Tome $\phi_{\alpha} : \mathbb{F}[x] \to \mathbb{E}, \ \phi_{\alpha}(f(x)) = f(\alpha)$

 α algébrico $\Rightarrow \ker \phi_{\alpha} \neq 0$. Seja $p(x) \in \mathbb{F}[x]$ único poli mônico com $\operatorname{gr}(p(x)) > 0$ tal que $\ker \phi_{\alpha} = \langle p(x) \rangle$

$$p(x)$$
 redutível $\Leftrightarrow p(x) = g(x)q(x)$ com $\operatorname{gr}(g(x)) > 0$ e $\operatorname{gr}(q(x)) > 0 \Leftrightarrow \langle p(x) \rangle \subsetneq \langle g(x) \rangle$ e $\langle p(x) \rangle \subsetneq \langle q(x) \rangle$. Logo, $p(\alpha) = 0 \Rightarrow g(\alpha) = 0$ ou $q(\alpha) = 0$

Se
$$g(x) = 0 \Rightarrow g(x) \in \ker \phi_{\alpha} = \langle p(x) \rangle \Rightarrow \langle g(x) \rangle \subset \langle p(x) \rangle$$
 (contradição)

Logo, p(x) é irredutível

Se
$$f(\alpha) = 0$$
, então $f(x) \in \ker \phi_{\alpha} = \langle p(x) \rangle \Rightarrow p(x) \mid f(x)$

Note: o poli $p(x) \in \mathbb{F}[x]$ do teorema tem grau mínimo dentre os polis que tem α como raiz. Esse é chamado poli minimal de α sobre \mathbb{F} e será denotado por $m_{\alpha}(x)$. O grau de $m_{\alpha}(x)$ é chamado de grau de α sobre \mathbb{F}

Exemplo: Os polis $f(x) = x^2 - 2 \in \mathbb{Q}[x]$ e $g(x) = x^4 - 4x^2 + 1 \in \mathbb{Q}[x]$ são os polis minimais de $\sqrt{2}$ e $\sqrt{2 + \sqrt{3}}$, respetivamente.

Teorema: Seja $\mathbb{F} \subset \mathbb{E}$ uma extensão, e $\alpha \in \mathbb{E}$ algébrico sobre \mathbb{F} . Então $\mathbb{F}(\alpha) \cong \mathbb{F}[x]/\langle m_{\alpha}(x) \rangle$.

Prova: Pelo Teorema anterior, vemos que $\mathbb{F}[x]/\langle m_{\alpha}(x)\rangle \cong \operatorname{im} \phi_{\alpha}$. Logo, $\operatorname{im} \phi_{\alpha}$ é corpo de \mathbb{E} que contem \mathbb{F} e $\alpha \Rightarrow F(\alpha) \subset \operatorname{im} \phi_{\alpha}$

Por outro lado, im $\phi_{\alpha} = \{f(\alpha) \mid f(x) \in \mathbb{F}[x]\}$ está obviamente contido em $F(\alpha)$

Portanto, $\mathbb{F}[x]/\langle m_{\alpha}(x)\rangle \cong \operatorname{im} \phi_{\alpha} = \mathbb{F}(\alpha)$

Corolário Seja $\mathbb{F} \subset \mathbb{E}$ uma extensão, $\alpha \in \mathbb{E}$ algébrico sobre \mathbb{F} . Então, todo elemento $\beta \in \mathbb{F}(\alpha)$ pode ser unicamente expresso como

$$\beta = a_0 + a_1 \alpha + \dots + a_n \alpha^{n-1}, \quad a_i \in \mathbb{F} \text{ e } n = \text{gr}(m_\alpha(x))$$

Prova: Segue da formula que dá o isomorfismo $\mathbb{F}(\alpha) \cong \mathbb{F}[x]/\langle m_{\alpha}(x) \rangle$

Corolário: Seja $\mathbb{F} \subset \mathbb{E}$ uma extensão, $\alpha \in \mathbb{E}$ algébrico sobre \mathbb{F} . Então $\mathbb{F}(\alpha)$ é um \mathbb{F} -espaço vetorial com base $\{1,\ldots,\alpha^{n-1}\}$, onde $n=\operatorname{gr}(m_{\alpha}(x))$. Em particular, $\dim_{\mathbb{F}} \mathbb{F}(\alpha)=n$.

Se $\mathbb{F} \subset \mathbb{E}$ é uma extensão e \mathbb{E} é um espaço vetorial de dimensão n sobre \mathbb{F} , dizemos que a extensão $\mathbb{F} \subset \mathbb{E}$ é finita de grau n e escrevemos $[\mathbb{E} : \mathbb{F}] = n$

Corolário: Se $\mathbb{F} \subset \mathbb{E}$ é uma extensão, $\alpha \in \mathbb{E}$ algébrico sobre \mathbb{F} , então $[\mathbb{F}(\alpha) : \mathbb{F}] = \operatorname{gr}(m_{\alpha}(x))$

Exemplo: $[\mathbb{Q}(\sqrt{2}:\mathbb{Q})] = 2 \in [\mathbb{C}:\mathbb{R}] = 2$

Teorema: Se $\mathbb{F} \subset \mathbb{E}$ é uma extensão finita, então \mathbb{E} é algébrico sobre \mathbb{F}

Prova: Suponha $[\mathbb{E}:\mathbb{F}]=n$ e tome $\alpha\in\mathbb{E}.$ Então $1,\alpha,\ldots,\alpha^n$ é LD

 \Rightarrow existe expressão $a_01 + a_1\alpha + \dots + a_n\alpha^n = 0$ com algum $0 \neq a_i \in \mathbb{F}$

 $\Rightarrow f(x) = a_0 + a_1 x + \dots + a_n x^n \in \mathbb{F}[x] \setminus \{0\} \text{ e } f(\alpha) = 0 \Rightarrow \alpha \text{ \'e alg\'ebrico sobre } \mathbb{F}$

Exercício: Mostre que a reciproca do Teorema não vale (dica: tome $\mathbb{E} = \{ \alpha \in \mathbb{R} \mid \alpha \text{ \'e alg\'ebrico sobre } \mathbb{Q} \}$, mostre que $\mathbb{E} \text{ \'e corpo e que } [\mathbb{E} : \mathbb{Q}] = \infty)$

Teorema: Suponha que $\mathbb{F}\subset\mathbb{E}$ e $\mathbb{E}\subset\mathbb{K}$ são extensões finitas. Então, $\mathbb{F}\subset\mathbb{K}$ é finita e

$$[\mathbb{K}:\mathbb{F}]=[\mathbb{K}:\mathbb{E}][\mathbb{E}:\mathbb{F}]$$

Prova: Exercício de álgebra linear. Basta mostrar que se $\{\alpha_1, \ldots, \alpha_n\}$ é base de \mathbb{E} sobre \mathbb{F} e $\{\beta_1, \ldots, \beta_m\}$ é base de \mathbb{K} sobre \mathbb{E} , então $\{\alpha_i\beta_j \mid i=1,\ldots,n,\ j=1,\ldots,m\}$ é base de \mathbb{K} sobre \mathbb{F} .

Corolário: Suponha que $\mathbb{F}_1 \subset \mathbb{F}_2$, $\mathbb{F}_2 \subset \mathbb{F}_3$, \cdots , $\mathbb{F}_{n-1} \subset \mathbb{F}_n$ são extensões finitas. Então, todas as extensões $\mathbb{F}_i \subset \mathbb{F}_j$ com i < j são finitas, e vale

$$[\mathbb{F}_j : \mathbb{F}_i] = [\mathbb{F}_j : \mathbb{F}_{j-1}] \cdots [\mathbb{F}_{i+1} : \mathbb{F}_i]$$

Corolário: Suponha $\mathbb{F} \subset \mathbb{E}$ é uma extensão, $\alpha \in \mathbb{E}$ algébrico sobre \mathbb{F} . Então, $\operatorname{gr}(m_{\beta}(x)) \mid \operatorname{gr}(m_{\alpha}(x))$ para qualquer $\beta \in \mathbb{F}(\alpha)$

Prova: Note que: $\bullet \ \mathbb{F} \subset \mathbb{F}(\beta) \ \mathrm{e} \ \mathbb{F}(\beta) \subset \mathbb{F}(\alpha)$

•
$$[\mathbb{F}(\beta) : \mathbb{F}] = \operatorname{gr}(m_{\beta}(x)) \ e \ [\mathbb{F}(\alpha) : \mathbb{F}] = \operatorname{gr}(m_{\alpha}(x))$$

Como

$$\operatorname{gr}(m_{\alpha}(x)) = [\mathbb{F}(\alpha) : \mathbb{F}] = [\mathbb{F}(\alpha) : \mathbb{F}(\beta)][\mathbb{F}(\beta) : \mathbb{F}] = [\mathbb{F}(\alpha) : \mathbb{F}(\beta)]\operatorname{gr}(m_{\beta}(x))$$

o resultado segue.

Exemplo: Vamos analisar a extensão $\mathbb{Q} \subset \mathbb{Q}(\sqrt{3} + \sqrt{5})$. Como no exemplo do slide 7, vemos que $m(x) = x^4 - 16x^2 + 4 \in \mathbb{Q}[x]$ é poli que tem $\sqrt{3} + \sqrt{5}$ como raiz. Eisenstein implica que m(x) é irredutível e portanto minimal de $\sqrt{3} + \sqrt{5}$. Logo,

$$[\mathbb{Q}(\sqrt{3}+\sqrt{5}):\mathbb{Q}]=4$$

Por outro lado,

$$[\mathbb{Q}(\sqrt{3},\sqrt{5}):\mathbb{Q}] = [\mathbb{Q}(\sqrt{3},\sqrt{5}):\mathbb{Q}(\sqrt{3})][\mathbb{Q}(\sqrt{3}):\mathbb{Q}],$$

onde já sabemos que $[\mathbb{Q}(\sqrt{3}):\mathbb{Q}]=2$

$$\begin{array}{l} [\mathbb{Q}(\sqrt{3},\sqrt{5}):\mathbb{Q}(\sqrt{3})]=1\Rightarrow \mathbb{Q}(\sqrt{3},\sqrt{5})=\mathbb{Q}(\sqrt{3})\Rightarrow [\mathbb{Q}(\sqrt{3},\sqrt{5}):\mathbb{Q}]=[\mathbb{Q}(\sqrt{3}):\mathbb{Q}]=2 \text{ o que \'e uma contradição pois } \mathbb{Q}(\sqrt{3}+\sqrt{5})\subset \mathbb{Q}(\sqrt{3},\sqrt{5}) \end{array}$$

Logo,
$$[\mathbb{Q}(\sqrt{3},\sqrt{5}):\mathbb{Q}(\sqrt{3})]=2,$$
 pois $x^2-5\in\mathbb{Q}(\sqrt{3})[x]$ é zero em $\sqrt{5}$

Assim,
$$[\mathbb{Q}(\sqrt{3}, \sqrt{5}) : \mathbb{Q}] = [\mathbb{Q}(\sqrt{3}, \sqrt{5}) : \mathbb{Q}(\sqrt{3})][\mathbb{Q}(\sqrt{3}) : \mathbb{Q}] = 4$$

Note: $\mathbb{Q}(\sqrt{3}, \sqrt{5})$ é \mathbb{Q} -esp vet de dimensão 4 e contem o subespaço vet $\mathbb{Q}(\sqrt{3} + \sqrt{5})$ cuja dimensão sobre \mathbb{Q} também é 4. Logo, $\mathbb{Q}(\sqrt{3} + \sqrt{5}) = \mathbb{Q}(\sqrt{3}, \sqrt{5})$

Mais ainda, temos que $\{1, \sqrt{3}, \sqrt{5}, \sqrt{3}\sqrt{5}\}$ é base de $\mathbb{Q}(\sqrt{3} + \sqrt{5})$ sobre \mathbb{Q}

Exemplo: Vamos analisar a extensão $\mathbb{Q} \subset \mathbb{Q}(\sqrt[3]{5}, i\sqrt{5})$, onde $\sqrt[3]{5}$ é a raiz cúbica real de 5 (ou seja, a raiz real do poli $x^3 - 5$)

$$i\sqrt{5}\notin\mathbb{Q}(\sqrt[3]{5})\Rightarrow [\mathbb{Q}(\sqrt[3]{5},i\sqrt{5}):\mathbb{Q}(\sqrt[3]{5})]=2,\,\text{já que }i\sqrt{5}\text{ \'e raiz de }x^2+5\in\mathbb{Q}[x]$$

Temos também que $[\mathbb{Q}(\sqrt[3]{5}) : \mathbb{Q}] = 3 \text{ (pq?)}$

$$\text{Assim, } [\mathbb{Q}(\sqrt[3]{5},i\sqrt{5}):\mathbb{Q}] = [\mathbb{Q}(\sqrt[3]{5},i\sqrt{5}):\mathbb{Q}(\sqrt[3]{5})][\mathbb{Q}(\sqrt[3]{5}):\mathbb{Q}] = 6$$

Por outro lado, $i\sqrt[6]{5}$ é raiz de $x^6+5\in\mathbb{Q}[x]$, que é irredutível por Eisenstein

$$\text{Logo, } [\mathbb{Q}(i\sqrt[6]{5}):\mathbb{Q}] = 6. \text{ Como } \mathbb{Q}(i\sqrt[6]{5}) \subset \mathbb{Q}(\sqrt[3]{5},i\sqrt{5}), \text{ temos } \mathbb{Q}(\sqrt[3]{5},i\sqrt{5}) = \mathbb{Q}(i\sqrt[6]{5})$$

Note: • $\{1, i\sqrt{5}\}$ é base de $\mathbb{Q}(\sqrt[3]{5}, i\sqrt{5})$ sobre $\mathbb{Q}(\sqrt[3]{5})$

- $\{1, \sqrt[3]{5}, (\sqrt[3]{5})^2\}$ é base de $\mathbb{Q}(\sqrt[3]{5})$ sobre \mathbb{Q}
- $\Rightarrow \{1, i\sqrt{5}, \sqrt[3]{5}, (\sqrt[3]{5})^2, i\sqrt[3]{5}\sqrt{5}, i(\sqrt[3]{5})^2\sqrt{5}\} \text{ \'e base de } \mathbb{Q}(\sqrt[3]{5}, i\sqrt{5}) \text{ sobre } \mathbb{Q}$

Obs: Esses exemplos mostram que podemos ter extensões simples de \mathbb{F} que a primeira vista são da forma $\mathbb{F}(\alpha_1,\ldots,\alpha_n)$, e sendo assim, parecem ser não simples. Esse também foi o caso de $\mathbb{Q}(\sqrt{2},\sqrt{3}) = \mathbb{Q}(\sqrt{2}+\sqrt{3})$ no slide 3

Teorema: Suponha que $\mathbb{F} \subset \mathbb{E}$ seja uma extensão. São equivalentes:

- lacktriangle A extensão $\mathbb{F} \subset \mathbb{E}$ é finita
- **2** Existem $\alpha_1, \ldots, \alpha_n \in \mathbb{E}$ algébricos sobre \mathbb{F} tais que $\mathbb{E} = \mathbb{F}(\alpha_1, \ldots, \alpha_n)$
- 3 Existe uma cadeia de corpos

$$\mathbb{F} \subset \mathbb{F}(\alpha_1) \subset \cdots \subset \mathbb{F}(\alpha_1, \ldots, \alpha_n) = \mathbb{E},$$

onde cada $\mathbb{F}(\alpha_1, \ldots, \alpha_i)$ é algébrico sobre $\mathbb{F}(\alpha_1, \ldots, \alpha_{i-1})$.

Prova: $(1) \Rightarrow (2)$: Se $\{\alpha_1, \ldots, \alpha_n\}$ é base de \mathbb{E} sobre \mathbb{F} , então $\mathbb{E} = \mathbb{F}(\alpha_1, \ldots, \alpha_n)$. De fato, é óbvio que $\mathbb{F}(\alpha_1, \ldots, \alpha_n) \subset \mathbb{E}$, e que qualquer \mathbb{F} -combinação linear dos elementos $\alpha_1, \ldots, \alpha_n$ está em $\mathbb{F}(\alpha_1, \ldots, \alpha_n)$. Logo, $\mathbb{E} = \mathbb{F}(\alpha_1, \ldots, \alpha_n)$. Como a extensão $\mathbb{F} \subset \mathbb{E}$ é finita, cada α_i é algébrico sobre \mathbb{F} .

- $(2) \Rightarrow (3)$ Óbvio
- $(3) \Rightarrow (1) \alpha_i$ algébrico sobre $\mathbb{F}(\alpha_1, \dots, \alpha_{i-1})$

$$\Rightarrow [\mathbb{F}(\alpha_1,\ldots,\alpha_i):\mathbb{F}(\alpha_1,\ldots,\alpha_{i-1})] = \operatorname{gr}(m_{\alpha_i}(x)),$$

onde $m_{\alpha_i}(x)$ é o poli minimal de α_i em $\mathbb{F}(\alpha_1,\ldots,\alpha_{i-1})[x]$. Logo,

$$[\mathbb{E}:\mathbb{F}] = \operatorname{gr}(m_{\alpha_1}(x)) \cdots \operatorname{gr}(m_{\alpha_n}(x)) < \infty$$

Lista de exercícios:

 ${\rm Cap}\ 21:1,\,2,\,4,\,5,\,9,\,10,\,12,\,13,\,14,\,15,\,20,\,21,\,22,\,25,\,26,\,27$