NASA TECHNICAL MEMORANDUM

NASA TM X-969

13056182

DISTRIBUTION STATEMENT A
Approved for Public Release
Distribution Unlimited

NATIONAL ALTITUDE ROCKET TEST FACILITIES

Reproduced From Best Available Copy

by Jack A. Suddreth

NASA Headquarters

Washington, D. C.

20011210 061

56182

NATIONAL ALTITUDE ROCKET TEST FACILITIES

By Jack A. Suddreth

Office of Advanced Research and Technology Washington, D.C.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

NATIONAL ALTITUDE ROCKET TEST FACILITIES

by Jack A. Suddreth

Office of Advanced Research and Technology

SUMMARY

The necessity for experimental verification of rocket-engine performance at altitude or near-space conditions has long been recognized in the aerospace industry. Recent spacecraft rocket-engine research and development trends toward higher area ratios, advanced nozzle concepts, and nonequilibrium flow considerations have made altitude simulation a requirement of development programs. Because the need for information regarding the capabilities and characteristics of altitude test facilities that are suitable for <u>liquid-rocket-engine</u> operation was recognized, this survey was compiled with the help of representatives of industry and government agencies:

INTRODUCTION

The advent of upper-stage and spacecraft engine-vehicle development programs along with the need for more rigorous performance and reliability data justified the construction of a number of altitude test facilities. The test capabilities of these facilities range from small attitude-control engines to large upper-stage engines. The altitude-simulating systems include simple diffusers coupled to the engine nozzle exit (fig. 1), steam ejector coupled to the engine-driven diffuser (fig. 2), and pumped environmental chambers coupled to a diffuser or ejector system for use during engine firing (fig. 3). Several techniques for vacuum generation exist. In addition to the conventional systems of mechanical pumps and steam boilers for steam ejectors, there are semi-portable liquid-propellant-driven steam generators.

GENERAL COMMENTS

Certain facts must be kept in mind when using the information in this report:

- (a) Tabular listing, which is convenient to use, cannot provide sufficient detail to describe a facility completely. Only the most basic characteristics of the facility are included in the tabulation.
 - (b) Modification and expansion of facilities is a continuous effort.

(c) Many existing facilities can be varied to provide a wide range of environment, propellant combination, exhaust pressure level, starting and shutdown transients, types of data, recording capability, and accuracy.

The various columns of table I are described more fully as follows:

Operator; Owner: The operator is the division and/or corporation having jurisdiction of the facility. The owner is the corporation and/or government agency owning the facility.

Stand: The code or popular name by which the stand is known.

Location: The community or geographical area where the stand is located.

Type: The type of propulsion system, liquid and/or solid, that can be tested in the cell. (Several factors including exhaust-gas composition, scrubber capability, and available propellant plumbing and storage can affect the type of system tested.) Any predominant capability for a liquid-propellant combination that exists in the facility has been noted.

Rated thrust; Simulated altitude: The thrusts and altitudes shown are typical of a particular installation and are provided for geometrical considerations as well as facility capability. In some cases, mass-flow limitations as well as altitude at no engine flow (start conditions) are provided. Thrust and altitude were chosen as the major parameters of interest instead of mass flow, vacuum, and other factors such as maximum area ratio and blockage; cooling of combustion products; exhaust-product flow limitations (free hydrogen, solids, water vapor, etc.). Lastly, comments regarding safety considerations for facility, personnel, or the surrounding community are not included.

Environment: The manner in which the engine is coupled to the facility, either by encapsulation or by direct connection at the nozzle exit.

Attitude: The direction of firing or installation within the facility.

Vacuum generation: The equipment available to generate and/or maintain a vacuum condition.

Status: The operational or planning status as of the summer of 1963.

SUMMARY OF RESULTS

The modern high-performance upper stage and spacecraft rocket-engine systems require extensive testing. The proof of reliability in addition to an accurate determination of space performance of propulsion systems has placed a severe demand on test facilities capable of simulating altitude conditions. Therefore, a survey was made in order to provide a tabulation of altitude facilities available for rocket engine testing.

COMMENT

Because it is recognized that this tabulation may be incomplete, comments, corrections, and additions are solicited so that it may be revised.

Office of Advanced Research and Technology
National Aeronautics and Space Administration
Washington, D. C., March 12, 1964

TABLE I. - NATIONAL ALTITUDE ROCKET TEST FACILITIES, SUMMER 1963

Status		Operational				∤ Operational	6/64 Operational 6/64		Operational			√ Operational	4/64 Operational	S/64 Proposal for	1/65 Proposal for	operational				→
Vacuum generation		Pump Ope				ď.	/9 /9 /9 /9		Diffuser Ope	Pump and	diffuser Diffuser Pump Diffuser Diffuser	and plug Diffuser Diffuser Ope	Ejector Ope		Steam ejector L/ Diffuser and Proston 1		Pump and	Alliuser Pump and	diffuser Pump and	diffuser Mechanical pump only
Attitude		Horizontal	_			√ Vertical	Vertical		Horizontal	Vertical	Vertical Horizontal		>	Vertical P	Horizontal D					Σ
Engine environment		Capsuled					→		Ambient					*		Capsuled	Ambient			
Simulated altitude,	opment Center (AEDC)a	120,000 - Run	140,000 - Run 120,000 - Run	150,000 - Run	1.1	550,000 - Start 100,000 - Run 100,000 - Run	120,000 - Run	et-General	70,000 - Run	160,000 - Start	60,000 - Run 160,000 - Start 70,000 - Run 60,000 - Run 60,000 - Run	60,000 - Run 60,000 - Run	60,000 - Run	90,000 - Start	70,000 - Start		220,000 - Start	220,000 - Start	40,000 to 80,000 - Run 220,000 - Start	40,000 to 80,000 - Kun 235,000 (Ignition conditions only)
Rated thrust,	Engineering Development	20,000 (Max., 490	20,000 20,000 (Max., 490	3,000 (Max., 490 lbm/sec)	60,000 20,000	100,000	100,000	Operator, Aerojet-General	100,000	100,000	60,000 200,000 100,000 5,000	21,000	Unknown	1,500,000	1,500,000	1.0 nominal	() K	80,000 max.	8,000	Variable
Type	Arnold	Liquid or solid				/ Liquid	Solid	0	Liquid								Solid			
Location	Operator,	Tullahoma, Tenn.							Sacramento,	•					>	Azusa, Calif.	Sacramento,	•		
Stand		RAC T-1	RAC T-3 RAC T-4	RAC T-5B	RAC J-2 RAC J-2A	SRC J-3 VRC J-4	SRC J-5		G-2	G-3	0 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	H-3 (Apollo) H-4	H-5	J-2	5-2		P-1	W-7	W-10	C - E1
Owner		Air Force							Air Force	Air Force	NASA Air Force	NASA			>	Aerojet-General	Air Force	Navy	AGC	Air Force

				Operator, Douglas	las Aircraft				
NASA	Stand A (6 engine)	Sacramento, Calif.	Liquid hydrogen	15,000/engine	53,000 - Start 46,000 - Run	Ambient	Vertical	Steam ejector and diffuser	Operational
	Stand 2B			15,	53,000 - Start 46,000 - Run				Operational
	Deta Complex (A)			000 00	1 1				Operational fall-winter
	Beta Complex (B)		→	20,000	53,000 - Start 46,000 - Run	→			Operational early 1964
			Ope:	Operator, Edwards	Air Force Base				
Air Force	Test Area 1-14 (Cell A)	Edwards AFB	Liquid and solid	(2.5 lbm/sec)	100,000	Capsuled	Horizontal	Steam ejector and diffuser	Operational (31 by 48 in.
	Modification of Cell A	Edwards AFB	Liquid and solid	4,000	100,000	Capsuled	Horizontal	Steam ejector and diffuser	access door) Operational
			-	Operator, General/Dynamics	al/Dynamics				
Air Force - General Dynamics/ Astronautics	Centaur	Sycamore Canyon, Calif.	Liquid hydrogen and oxygen	15,000/engine	53,000 - Start 46,000 - Run	Ambient	Vertical	Ejector and	Operational
		Open	ator, Pomona	Division Ordna	Operator, Pomona Division Ordnance Aerophysics Laboratory ^b	toryb			
Navy	4 ft dlam. 10 ft dlam. 15 ft dlam.	Daingerfleld, Texas	Liquid and solid	20,000	120,000	Capsuled	Horizontal	Pump and steam ejector	Operational Operational
			Operator,	or, Jet Propuls	Jet Propulsion Laboratory				
NASA	"D" Stand	Edwards AFB	Liquid and solid	800 800	85,000 122,000	Capsuled	Hor1zontal	Hyprox ejector and diffuser (For Hyprox ejector alone at 225,000 lbm/hr of steam)	Operational (5 by 5 ft access door)
		Ope	rator, Lockhe	sed Aircraft Co.	Operator, Lockheed Aincraft Corporation, California	Div.			
Lockheed	C-1	Rye Canyon (near Burbank,	Solid	5,000	150,000 - Start	Capsuled	Horizontal or vertical	Pump	Operational
	Propulsion Tunnel	Rye Canyon		10,000		Capsuled	Horizontal	Pump	Operational

^aFor additional information, see Test Facilities Handbook, Arnold Engineering Development Center.

^bFor additional information, see Ordnance Aerophysics Laboratory Facility Handbook, General Dynamics - Pomona, Daingerfield Division.

^oHigh-temperature inlet air at 1800^o F and 300 lb/sq in. added in summer of 1963; inlet air at 1800^o F and 1000 lb/sq in. available early 1965.

5

TABLE I. - Concluded. NATIONAL ALTITUDE ROCKET TEST FACILITY INVENTORY, APRIL 1963

Status		Operational							Idle		Operational				Proposed	Operational 1/65	Proposed		Operational	Operational
Vacuum generation		Pump, steam	diffuser Steam ejector	and dilluser		Y Diffusion and mechanical	pump Pump and steam ejector or	diffuser Steam ejector and diffuser	Pump, steam ejector, and diffuser		Pump					Diffusion pump, steam ejector, and	diffuser		Steam ejector and diffuser	Mechanical pump
Attitude			Vertical	Vertical	Any direction	Horizontal			<u></u>		Horizontal	Horizontal	vertical Horizontal	Horizontal			-		Horizontal	Horizontal or vertical
Engine environment		Ambient			Capsuled	Ambient	-		-		Capsuled						>		Capsuled	Capsuled
Simulated altitude,	t Corporation ^d	000,06	100,000	100,000	160,000	400,000	000,00	140,000	90,000	Research Center	100,000 - Start 75,000 - Run	100,000 - Start 75,000 - Run	35,000 - Run	50,000 - Run		150,000 - Run 10 ⁻⁵ (in. Hg) - Start		Space Flight Center	46,000 - Run	120,000 - Start
Rated thrust,	Operator, Marquardt	20,000	100	100	230	25	20,000	200	20,000	NASA Lewis	15,000	15,000	2,000	4,000		45,000		NASA Marshall	15,000	To 5,000
Type	Oper	Liquid and solid	Liquid	Liquid	Liquid and solid					Operator,	Liquid hydrogen	and oxygen Liquid and solid				Liquid hydrogen and oxygen		Operator,	Liquid hydrogen	
Location		Van Nuys, Calif.					>	Saugus, Calif.	Ogden, Utah		Cleveland, Ohio			>	Plum Brook (near Sandusky,	0110)			Huntsville, Ala.	Huntsville, Ala.
Stand		AF-MJL-VN Cell 8	Cell 6	Aerothermo Lab	Rocket System Test Stand (20-in, diam.	sphere) North Test Area (Short Pulse)	Cell 2 (Minor Mod)	Research Field Lab (RFL)	I and 2 AF-MJL-0		PSL 1	PSL 2	8 by 6 Foot Supersonic	Wind Tunnel 10 by 10 Foot Supersonic	B-1	B-2	B-3		LHTS	Vacuum chamber
Owner		Air Force	Air Force - NASA	Marquardt -		Marquardt - NASA	Marquardt - Air Force	Marquardt - Air Force	Air Force		NASA 						→		NASA	

	early .		Operator	Operator, NASA Manned Spacecraft	Spacecraft Center				
NASA	Undesignated	Clear Lake, Tex.	Liquid	2,000 to 5,000	46,000 - Run	Capsuled	Vertical	Steam ejector and diffuser	Operational (complete fall 1964)
		Operator, Pratt	& Whitney Ai	Aircraft Company,	Florida Research &	Development Div.	.v.		1
NASA	-E	West Palm Beach, Fla.	Liquid hydrogen	15,000	53,000 - Start 46,000 - Run	Capsuled	Horizontal	Steam ejector and diffuser	Operational
	Z-3		and oxygen	15,000					
	E-3			15,000	1 1				
	E-4			15,000	1 1	•			
	E-5 Dual			15,000/engine	1 1	Ambient	Vertical		
	Engine Stand E-6			15,000	45,000 - Run 53,000 - Start	Capsuled			
	E-7			15,000	1 1	Capsuled			
→	B-3		·	15,000	1 1	Ambient	Horizontal		
Pratt & Whitney	Undesignated Area 10K Bay		Liquid hy- drogen and fluorine	15,000	46,000 - Run 46,000 - Run	Ambient	Horizontal		·
		Operati	Operator, Rocketdyne	Division of	North American Aviation, Inc.	n, Inc.			
NASA	VTS-3A	Santa Susanna, Calif.	Liquid hydrogen	200,000	60,000 - Start 90,000 - Run	Capsuled 	Horizontal	Ejector and diffuser	Operational
NASA	Delta-2A		and oxygen 	200,000	60,000 - Start		Vertical	Ejector and	
Air Force	CTL-3 28B			100				Ejector Diffuser and	
	CTL-39 CTL-4 35A			300 50	1 1		All Horizontal	ejector Ejector Pump, diffuser,	
	CTL-4 35B			100	110,000 - Kun 110,000 - Start 130,000 - Run		Horizontal	and elector Elector diffuser and	
	CTL-4 37			300	150,000 - Start		A11	ejector Pump, diffuser,	
→	CTL-4 38	>		100	120,000 - Aun 120,000 - Start		All	Elector	
Rocketdyne	Undes1gnated	Reno, Nev.	-	Similar to CTL-3 stands	[d		Vertical	Ejector	
			Operator,	Thickol	Chemical Corporation				
Navy 	Undesignated	Elkton, Md.	Solid	20,000	100,000 - Start 70,000 - Run	Capsuled	Horizontal	Hyprox ejector and diffuser	Operational
	Stand 10B	Lake Denmark, Denville, N.J.	Liquid and solid	50,000	250,000 - Start 120,000 - Run	Capsuled or ambient	Vertical or horizontal	Hyprox ejector and diffuser	
•	Stand 10B-1	Lake Denmark, Denville, N.J.	Liquid and solid	1,000 Max.	100,000	Capsuled or ambient	Vertical or horizontal	Ejector and diffuser	

dSeveral other cells have altitude capability with minor modification.

Figure 1. - Simple diffuser providing only altitude simulation at nozzle exit during firing.

Figure 2. - Steam ejector and diffuser with an encapsulated engine providing altitude ignition with altitude environment before and during engine operation.

Figure 3. - Environmental chambers for long term space simulation with high altitude simulation at ignition and altitude simulation during engine runs. (AEDC-Cell J-2A)

NASA-Langley, 1964 E-2537

I. Suddreth, Jack A. II. NASA TM X-969	NASA	I. Suddreth, Jack A. II. NASA TM X-969	NASA
NASA TM X-969 National Aeronautics and Space Administration. NATIONAL ALITTUDE ROCKET TEST FACILITIES. Jack A. Suddreth. June 1964. 10p. OTS price, S0.50. (NASA TECHNICAL MEMORANDUM X-969) A tabular inventory of altitude test facilities available for testing rocket engines is provided. Included in the listing are ownership, contractual operator if applicable, code name of stand, geographic location, propulsion system type, nominal thrust level and operating altitude, engine operating environment, firing attitude, vacuum generation system, and status in summer of 1963.		NASA TM X-969 National Aeronautics and Space Administration. National Aeronautics and Space Administration. NATIONAL ALITIUDE ROCKET TEST FACILITIES. Jack A. Suddreth. June 1964. 10p. OTS price, \$0.50. (NASA TECHNICAL MEMORANDUM X-969) A tabular inventory of altitude test facilities available for testing rocket engines is provided. Included in the listing are ownership, contractual operator if applicable, code name of stand, geographic location, propulsion system type, nominal thrust level and operating altitude, engine operating environment, firring attitude, vacuum generating svstem, and status in summer of 1963.	
I. Suddreth, Jack A. II. NASA TM X-969	, NASA	I. Suddreth, Jack A. II. NASA TM X-969	NASA
NASA TM X-969 National Aeronautics and Space Administration. NATIONAL ALITTUDE ROCKET TEST FACILITIES. Jack A. Suddreth. June 1964. 10p. OTS price, S0.50. (NASA TECHNICAL MEMORANDUM X-969) A tabular inventory of altitude test facilities available for testing rocket engines is provided. Included in the listing are ownership, contractual operator if applicable, code name of stand, geographic location, propulsion system type, nominal thrust level and operating altitude, engine operating environment, firing attitude, vacuum generation system, and status in summer of 1963.		NASA TM X-969 NATIONAL ALTITUDE ROCKET TEST FACILITIES. Jack A. Suddreth. June 1964. 10p. OTS price, 50.50. (NASA TECHNICAL MEMORANDUM X-969) A tabular inventory of altitude test facilities available for testing rocket engines is provided. Included in the listing are ownership, contractual operator if applicable, code name of stand, geographic location, propulsion/system type, nominal thrust level and operating altitude, engine operating environment, firring altitude, vacuum generation system, and status in summer of 1963.	

"The aeronautical and space activities of the United States shall be conducted so as to contribute . . . to the expansion of human knowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."

-NATIONAL AERONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS: Information receiving limited distribution because of preliminary data, security classification, or other reasons.

CONTRACTOR REPORTS: Technical information generated in connection with a NASA contract or grant and released under NASA auspices.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

TECHNICAL REPRINTS: Information derived from NASA activities and initially published in the form of journal articles.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities but not necessarily reporting the results of individual NASA-programmed scientific efforts. Publications include conference proceedings, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Washington, D.C. 20546