Задача 10-3. Вода из воздуха

Для дачных участков, удалённых от источников воды, предлагается следующий генератор воды из воздуха. Насыпается пирамида из камней. Днём в тёплое время года щебёнка прогревается прямыми солнечными лучами и потоками тёплого воздуха. Ночью водяные пары, содержащиеся в атмосфере, конденсируются на остывшей щебёнке, и вода стекает в место сбора. Для насыпки пирамиды используют крупную щебёнку, так как тогда вся конструкция будет свободно продуваться тёплым воздухом.

В данной задаче вам необходимо рассмотреть некоторые серьезные физические проблемы, связанные с этим не хитрым устройством. Во всех пунктах задачи предполагается, что при изменении температуры плотность водяных паров не изменяется. Зависимость давления насыщенных паров от температуры приведена в таблице.

t,°C	$P, \Pi a$	t,°C	Р, Па	t,°C	Р, Па	t,°C	Р, Па
0,00	611						
1,00	657	11,00	1313	21,00	2488	31,00	4246
2,00	706	12,00	1403	22,00	2645	32,00	4495
3,00	758	13,00	1498	23,00	2810	33,00	4758
4,00	814	14,00	1599	24,00	2985	34,00	5034
5,00	873	15,00	1706	25,00	3169	35,00	5323
6,00	935	16,00	1819	26,00	3363	36,00	5627
7,00	1002	17,00	1938	27,00	3567	37,00	5945
8,00	1073	18,00	2064	28,00	3782	38,00	6280
9,00	1148	19,00	2198	29,00	4008	39,00	6630
10,00	1228	20,00	2339	30,00	4246	40,00	6997

На отдельном бланке приведен график этой зависимости. При необходимости вы можете использовать его для проведения дополнительных построений.

Для решения задачи используйте следующие табличные данные:

Плотность воды -
$$\rho_0 = 1{,}00 \cdot 10^3 \frac{\kappa z}{M^3}$$
;

Удельная теплоемкость воды
$$c=4.18 \frac{\kappa \square \varkappa c}{\kappa z \cdot K};$$

Удельная теплота испарения воды
$$L=2250\frac{\kappa \cancel{\square} \cancel{3}\cancel{\kappa}}{\cancel{\kappa}\cancel{2}};$$

Зависимостью этих величин от температуры можно пренебречь.

Атмосферное давление считать постоянным и равным $P_{A} = 1,00 \cdot 10^{5} \, \Pi a$

Наконец-то, вопросы задачи.

Температуры воздуха вечером равнялась $t_0 = 25.5^{\circ}C$, относительная влажность $\varphi = 71.0\%$.

- 1. При какой температуре начнется образование тумана и росы.
- 2. Какой объем воздуха прошел через пирамиду, если в генераторе было получено 10 л воды. Температура выходящего из пирамиды воздуха равна $t_0 = 15,0$ °C

Для получения воды из воздуха используется охлажденный до температуры $t=0.0^{\circ}C$ булыжник. Масса булыжника $m=2.5\kappa z$, удельная теплоемкость камня $c=1.80\frac{\kappa \mathcal{J}\mathcal{M}}{v^2}$.

3. Какое максимальное количество воды можно извлечь из воздуха с помощью этого охлажденного булыжника. При каких условиях может быть получено максимальное количество воды?

В сосуд объемом $V = 10,0\pi$ вливают 1,00 л воды при температуре $t = 40,0^{\circ}C$ и сосуд закрывают. Считайте, что в сосуде находился сухой воздух (без водяных паров). Теплоемкостью воздуха и сосуда, а также теплообменом с окружающей средой следует пренебречь.

4. Рассчитайте, какая температура установится в сосуде после установления в нем термодинамического равновесия.