New Optimizer I

Alexander Ludwig

Deep Learning Research Kitchen (ML-4501 / 3 ECTS)
June 13, 2024

Structure

New but famous optimizers Evidence Lower Bound & Entropy Coding

AdamW: decoupling weight decay from your adaptive optimizer

More state of the art research from Freiburg

- Given a loss $L(\theta) = \ldots + \lambda ||\theta||^2$ (L_2 regularization)
- only for vanilla SGD this is equivalent to weight decay

$$\theta_{t+1} = \theta_t - \eta(\dots + \lambda \theta_t)$$

- \implies first update $\theta_{t+1} = -\eta \lambda \theta_t$ then continue
- AdamW is one of the best practice optimizers (at least firmly ingrained in NanoGPT)

DECOUPLED WEIGHT DECAY REGUI

Ilya Loshchilov & Frank Hutter
University of Freiburg
Freiburg, Germany,
{ilya,fh}@cs.uni-freiburg.de

June 13, 2024

3/20

But why should we stick to first order methods?

Reminder: Antionio's Lecture and Newton's Method

"With $H = L \cdot I_{d\times d}$ the theory is perfect"

"the optimal η , yielding the maximum decrease is $\eta=1/L$ "

Hessian Matrix, $\theta \in \mathbb{R}^d$

$$H = \begin{bmatrix} \frac{\partial^2 L}{\partial \theta_1^2} & \frac{\partial^2 L}{\partial \theta_1 \partial \theta_2} & \cdots & \frac{\partial^2 L}{\partial \theta_1 \partial \theta_n} \\ \frac{\partial^2 L}{\partial \theta_2 \partial \theta_1} & \frac{\partial^2 L}{\partial \theta_2^2} & \cdots & \frac{\partial^2 L}{\partial \theta_2 \partial \theta_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 L}{\partial \theta_n \partial \theta_1} & \frac{\partial^2 L}{\partial \theta_n \partial \theta_2} & \cdots & \frac{\partial^2 L}{\partial \theta_n^2} \end{bmatrix} \in \mathbb{R}^{d \times d}$$

Newton's Method: $\theta_{t+1} = \theta_t - H^{-1}g$

"quadratic convergence for convex problems"

◄□▶◀圖▶◀불▶◀불▶ 불 쒸٩♡

Gauss-Newton-Bartlett Estimator

making the Hessian diagonal and linearize a deep neural network

Reminder: the multivariate Chain Rule $L: L(f_1(x), f_2(x), \dots, f_c(x))$:

$$\frac{\partial L}{\partial x_i}(f(x)) = \sum_{j=1}^c \frac{\partial L}{\partial f_j} \frac{\partial f_j}{\partial x_i} = \nabla_f L J_x$$

$$H_{ij} = \frac{\partial^{2} L}{\partial \theta_{i} \partial \theta_{j}} = \frac{\partial}{\partial \theta_{i}} \left(\sum_{j} \frac{\partial L}{\partial f_{j}} \frac{\partial f_{j}}{\partial \theta_{i}} \right) = \left(\sum_{j} \frac{\partial}{\partial \theta_{i}} \left(\frac{\partial L}{\partial f_{j}} \right) \frac{\partial f_{j}}{\partial \theta_{i}} + \frac{\partial L}{\partial f_{j}} \frac{\partial}{\partial \theta_{i}} \left(\frac{\partial f_{j}}{\partial \theta_{i}} \right) \right)$$

$$= \left(\sum_{j} \sum_{k} \frac{\partial^{2} L}{\partial f_{j} \partial f_{k}} \frac{\partial f_{j}}{\partial \theta_{i}} \frac{\partial f_{k}}{\partial \theta_{j}} \right) + \sum_{j} \left(\frac{\partial L}{\partial f_{j}} \underbrace{\frac{\partial}{\partial \theta_{i}} \left(\frac{\partial f_{j}}{\partial \theta_{i}} \right)}_{=0 \text{ for linear } f} \right) = J_{\theta}^{T} \underbrace{H_{f}}_{\in \mathbb{R}^{c \times c}} J_{\theta} + smol$$

GNB 2¹

Since
$$L = H(p_{data}, p_{model}) = E_{x \sim p_{data}}[-\log(p_{model}(x))]$$
 one can rewrite $H_f = E_{\hat{y} \sim p_{model}}[\frac{\partial^2 L}{\partial^2 f}] = E_{\hat{y} \sim p_{model}}[\frac{\partial L}{\partial f} \frac{\partial L}{\partial f}^T]$ (H_f does no independent on \hat{y}) $\to G = E[J_{\theta} \frac{\partial L}{\partial f} \frac{\partial L}{\partial f}^T J_{\theta}^T] = E_{\hat{y} \sim p_{model}}[\nabla_{\theta} L \odot \nabla_{\theta} L]$

- splitting up second derivatives in expectation is called Bartlett's second identity
- sample $\hat{y} \sim p_{model}$ and calculate gradient w.r.t. L

¹Here is great Lecture about Second Order Optimizer from the Numerics of ML lecture by Lukas Tatzel

Sophia

Second-order Clipped Stochastic Optimization

- accounts for curvature information during optimization
- clips gradient at 1
- "The authors suspect the GNB estimator has a smaller variance than the Hutchinson's estimator, [...]."
- public implementation is only with GNB available
- Hessian diagonal is approximated every k steps

Algorithm 3 Sophia

- 1: **Input:** θ_1 , learning rate $\{\eta_t\}_{t=1}^T$, hyperparameters $\lambda, \gamma, \beta_1, \beta_2$, ϵ , and estimator choice Estimator \in {Hutchinson, Gauss-Newton-Bartlett}
- 2: Set $m_0 = 0$, $v_0 = 0$, $h_{1-k} = 0$
- 3: for t = 1 to T do
- 4: Compute minibach loss $L_t(\theta_t)$.
- 5: Compute $g_t = \nabla L_t(\theta_t)$.
- 6: $m_t = \beta_1 m_{t-1} + (1 \beta_1) g_t$
- 7: **if** $t \mod k = 1$ **then**
- 8: Compute $\hat{h}_t = \text{Estimator}(\theta_t)$.
- 9: $h_t = \beta_2 h_{t-k} + (1 \beta_2) \hat{h}_t$
- 10: **else**
- 11: $h_t = h_{t-1}$
- 12: $\theta_t = \theta_t \eta_t \lambda \theta_t$ (weight decay)
- 13: $\theta_{t+1} = \theta_t \eta_t \cdot \text{clip}(m_t / \max\{\gamma \cdot h_t, \epsilon\}, 1)$

Defining 2x faster

 O_2 is k-times faster than O_1 if

$$\exists H_2, \quad \min_{H_1} \ \mathrm{Eval}(O_1, T, H_1) \geq \mathrm{Eval}(O_2, T/k, H_2)$$

Figure 1: For a fair comparison, training curves need to be tuned for the same criterion. Two ADAMW training runs (—, —) for RESNET-50 on IMAGENET using hyperparameters tuned within the same search space, but using different step budgets. Since the cosine learning rate decay schedule stretches with a longer step budget, we see "slower" training caused by the larger step budget (—). For each of the hyperparameter settings, we ran 20 different random seeds to create min/max error bounds around a median trajectory (|| || || || || ||). The dashed gray line (-) denotes the best median validation error achieved by both training runs. See Appendix A.4.3 for experimental details.

Lion: EvoLved Sign Momentum, an attempt to gödelize optimizers

Why not breed your dream optimizer via evolution

- regularized evolution searches through the symbolic representations
- inputs are weights, Ir and gradient; output can be weights update + extra stuff
- performance is measured on ViT on 10% of Imagenet (20 mins TPU) and very tiny on LM1B
- limited vocabulary and constants are modified/ newly sampled a la 2^a for $a \sim \mathcal{N}(0,1)$
- prune search space by checking for functional equivalence and redundant statements

Program 8: Raw program of Lion before removing redundent statements.

```
def train(w, g, m, v, lr):
 g = clip(g, lr)
 m = clip(m, lr)
 v845 = sqrt(0.6270633339881897)
 v968 = sign(v)
 v968 = v - v
 g = arcsin(g)
 m = interp(g, v, 0.8999999761581421)
 v = interp(g, m, 1.109133005142212)
 v845 = tanh(v845)
  1r = 1r * 0.0002171761734643951
 update = m * lr
 v1 = sart(v1)
 update = update / v1
  wd = 1r * 0.4601978361606598
  v1 = square(v1)
 m = cosh(update)
 lr = tan(1.4572199583053589)
 update = update + wd
 1r = \cos(v845)
```

return update, m, v

Lion 2

Optimizing NNs is already searching over TMs, where will this lead to when we now start searching optimizers?

- decoupled weight decay is added manually (gray lines)
- interp(a,b, λ) = $(1 \lambda)a + \lambda b$
- uniform update direction across **all** dimensions of θ
- authors argue that sign operation adds noise to gradient update and regularizes
- smaller memory footprint than AdamW (only momentum stored)
- almost the same as signSGD (moment variant)

Program 1: Discovered optimizer Lion. $\beta_1=0.9$ and $\beta_2=0.99$ by default are derived from Program 4. It only tracks momentum and uses the sign operation to compute the update. The two gray lines compute the standard decoupled weight decay, where λ is the strength.

```
def train(weight, gradient, momentum, lr): update = interp(gradient, momentum, \beta_1) update = sign(update) momentum = interp(gradient, momentum, \beta_2) weight_decay = weight * \lambda update = update + weight_decay update = update * lr return update, momentum
```

Cleaned up optimizer

Experiments

[rank1]: RuntimeError: Found NVIDIA GeForce GTX 1080 Ti which is too old to be supported by the triton GPU compiler, w hich is used as the backend. Triton only supports devices of CUDA Capability >= 7.0, but your device is of CUDA capability 6.1

sbatch: error: OOSMaxWallDurationPerJobLimit

#SBATCH --partition=day

2.2.2 Partitions (Queues):

4 partitions with different time limits are provided:

Partition name	TimelLimit	Always accessible nodes	Additional nodes accessible if unused	
test (default)	15 min	3	37	
day	1 day	10	25	
week	7 days	17	10	
month	30 days	10	0	

https://csweb.cs.uni-tuebingen.de/webprojects/TCML/

June 13, 2024

12 / 20

Setup

- All Experiments are run on the tcml cluster on a single computer node with 4x GeForce GTX 1080 Ti and Intel XEON CPU E5-2650 v4 (24 cores)
- fork of Sophia repository which itself is a fork of NanoGPT repository by Andrej Karpathy
- 10K update steps during training on data from OpenWebText 2
- cross entropy loss
- Cosine learning rate schedule with 200 steps warmup
- *tiny* transformer (30M parameters, 6 Layers, 6 attention heads, 384 embedding dimension, context length of 1024 tokens)
- gradient accumulation was used to simulate a higher batch size (120 most of the time)

Hyperparameters

- Sophia paper reports optimal hyperparameters for tiny model on 50K (40K more) steps for different optimizers
- increase maximum learning rate until divergence

Table 2: Model Configurations and Peak Learning Rate.

Acronym	Size	d_model	n_head	depth	AdamW lr	Lion lr	Sophia-H lr	Sophia-G lr
_ Tiny	30M	384	6	6	1.2e-3	4e-4	1e-3	1e-3
Small	125M	768	12	12	6e-4	1.5e-4	6e-4	6e-4
Medium	355M	1024	16	24	3e-4	6e-5	4e-4	4e-4
_	540M	1152	18	30	3e-4	_	4e-4	4e-4
Large	770M	1280	20	36	2e-4	_	3e-4	3e-4
NeoX 1.5B	1.5B	1536	24	48	1.5e-4	_	_	1.2e-4
NeoX 6.6B	6.6B	4096	32	32	1.2e-4	_	_	6e-5

adapted from Appendix B from Liu et.al 2024

Sophia vs AdamW: 2x faster in #steps or time?

Figure: lowest validation losses: AdamW: 3.621 bits, SophiaG: 3.669 bits

June 13, 2024 15 / 20

Both optimizer performed 10K steps but different wallclock times: AdamW 5h 21m, SophiaG: 6h 48m

Both optimizer run for approx. the same time: AdamW 6h 31m, SophiaG: 6h 48m

Caveats

- Since they don't report loss values for tiny (30M) model on 10K steps, this is not a "falsification" of their claims
- SophiaG run on 5k steps does also not achieve lower validation loss
- ...

Releasing the Lion

Validation Losses: Lion 3.606 bits, AdamW 3.621 bits, SophiaG 3.669 bits,

Thank you for your attention!

Any questions, comments or Feedback?

