Numerical Linear Algebra: Homework #1

Due on August 31, 2022 at 10:00PM

Instructor: Professor Blake Barker Section 1

Michael Snyder

Problem 1.2

Suppose masses m_1, m_2, m_3, m_4 are located at positions x_1, x_2, x_3, x_4 in a line connected by springs with spring constants k_{12}, k_{23}, k_{34} whose natural lengths of extension are l_{12}, l_{23}, l_{34} . Let f_1, f_2, f_3, f_4 denote the rightward forces on the masses, e.g., $f_1 = k_{12}(x_2 - x_1 - l_{12})$.

(a) Write the 4x4 matrix equation relating the column vectors f and x. Let K denote the matrix in this equation.

Solution

$$\begin{pmatrix} f_1 \\ f_2 \\ f_3 \\ f_4 \end{pmatrix} = \begin{pmatrix} -k_{12} & k_{12} & 0 & 0 \\ k_{12} & -(k_{12} + k_{23}) & k_{23} & 0 \\ 0 & k_{23} & -(k_{23} + k_{34}) & k_{34} \\ 0 & 0 & k_{34} & -k_{34} \end{pmatrix} + \begin{pmatrix} k_{12}l_{12} & 0 & 0 \\ k_{12}l_{12} & -k_{23}l_{23} & 0 \\ 0 & k_{23}l_{23} & -k_{34}l_{34} \\ 0 & 0 & k_{34}k_{34} \end{pmatrix}$$

(b) What are the dimensions of the entries of K in the physics sense.

Solution The entries of K are spring constants and have units of N/m or kg/s^2 .

(c) What are the dimensions of det(K), again in the physics sense.

Solution The dimensions of det(K) are $(N/m)^4$ or $(kg/s^2)^4$.

(d) Suppose K is given numerical values based on the units meters, kilograms, and seconds. Now the system is rewritten with a matrix K' based on centimeters, grams, and seconds. What is the relationship of K' to K? What is the relationship of $\det(K')$ to $\det(K)$?

Solution Since 1kg = 1000g, K' = 1000K and $det(K') = 1000^4 det(K)$.

Problem 1.3

Generalizing Example 1.3, we say that a square or rectangular matrix R with entries r_{ij} is upper-triangular if $r_{ij} = 0$ for i > j. By considering what space is spanned by the first n columns of R and using (1.8), show that if R is a nonsingular $m \times m$ upper-triangular matrix, then R^{-1} is also upper-triangular.

Proof. Suppose R is a nonsingular $m \times m$ upper triangular matrix.

We list two useful relationships:

† The fact that R is nonsingular implies that $r_{ii} \neq 0$ for $1 \leq i \leq m$.

* The equation for (1.8) is $e_j = \sum_{i=1}^m z_{ij} r_i$, where z_{ij} is the ij-entry of $Z = R^{-1}$ and r_i is the i^{th} column of R.

We will use \dagger and \star to show by induction that $Z=R^{-1}$ is upper-diagonal. We begin with two base cases, R a 2×2 matrix and R a 3×3 matrix. In the 2×2 case, we have

$$RZ = egin{pmatrix} r_{11} & r_{12} \ 0 & r_{22} \end{pmatrix} egin{pmatrix} z_{11} & r_{12} \ z_{21} & r_{22} \end{pmatrix} = egin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix}$$

Then using \star , we have

$$e_1=egin{pmatrix}1\0\end{pmatrix}=z_{11}egin{pmatrix}r_{11}\0\end{pmatrix}+z_{21}egin{pmatrix}r_{12}\r_{22}\end{pmatrix}$$

and

$$e_2 = egin{pmatrix} 0 \ 1 \end{pmatrix} = z_{12} egin{pmatrix} r_{11} \ 0 \end{pmatrix} + z_{22} egin{pmatrix} r_{12} \ r_{22} \end{pmatrix}$$

As has already been asserted, by \uparrow , $r_{22} \neq 0$. However, the second component of e_1 , which we denote $(e_1)_2 = 0$. Thus, $z_{21} = 0$, and $Z_{2\times 2}$ is upper diagonal.

In the 3×3 case, we have

$$RZ = egin{pmatrix} r_{11} & r_{12} & r_{13} \ 0 & r_{22} & r_{23} \ 0 & 0 & r_{33} \end{pmatrix} egin{pmatrix} z_{11} & z_{12} & z_{13} \ z_{21} & z_{22} & z_{23} \ z_{31} & z_{32} & z_{33} \end{pmatrix} = egin{pmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{pmatrix}$$

Again, using ★, we have

$$e_1 = egin{pmatrix} 1 \ 0 \ 0 \end{pmatrix} = z_{11} egin{pmatrix} r_{11} \ 0 \ 0 \end{pmatrix} + z_{21} egin{pmatrix} r_{12} \ r_{22} \ 0 \end{pmatrix} + z_{31} egin{pmatrix} r_{13} \ r_{23} \ r_{33} \end{pmatrix}$$
 $e_2 = egin{pmatrix} 0 \ 1 \ 0 \end{pmatrix} = z_{12} egin{pmatrix} r_{11} \ 0 \ 0 \end{pmatrix} + z_{22} egin{pmatrix} r_{12} \ r_{22} \ 0 \end{pmatrix} + z_{32} egin{pmatrix} r_{13} \ r_{23} \ r_{33} \end{pmatrix}$ $e_3 = egin{pmatrix} 0 \ 0 \ 1 \end{pmatrix} = z_{11} egin{pmatrix} r_{11} \ 0 \ 0 \end{pmatrix} + z_{23} egin{pmatrix} r_{12} \ r_{22} \ 0 \end{pmatrix} + z_{33} egin{pmatrix} r_{13} \ r_{23} \ r_{33} \end{pmatrix}$

From the 2×2 case, we already have $z_{21} = 0$. Using the same logic, we see that, since $(e_j)_i = 0$ for i > j and $r_{ij} \neq 0$ for $j \geq i$, it is necessary that $z_{ij} = 0$ for i > j, $1 \leq i \leq 3$, $1 \leq j \leq 3$.

Applying induction, we now assume that $Z_{k\times k}$ is upper diagonal for k>3, and that the result is verified for all matrices Z less than $k\times k$. Then since $r_{kk}\neq 0$ by \dagger , we have $z_{kj}=0$ for k>j. Otherwise, $(e_j)_k\neq 0$ for k>j. Therefore, the $m\times m$ matrix $Z=R^{-1}$ is an upper-diagonal matrix, as was to be shown.

Problem 1.4

Let f_1, \ldots, f_2 be a set of functions defined on the interval [1,8] with the property that for any numbers d_1, \ldots, d_8 , there exists a set of coefficients c_1, \ldots, c_8 such that

$$\sum_{j=1}^8 c_j f_j(i) = d_i, \qquad i = 1, \ldots, 8.$$

(a) Show by appealing to the theorems of this lecture that d_1, \ldots, d_8 determine c_1, \ldots, c_8 uniquely.

Proof. Suppose to the contrary that d_1, \ldots, d_8 do not uniquely determine c_1, \ldots, c_8 . Then $\exists a_1, \ldots, a_8$ such that

$$d_i=\sum_{j=1}^8 a_j f_j(i) \quad i=1,\ldots,8.$$

But this means

$$0 = d_i - d_i = \sum_{i=1}^8 (a_j - c_j) f_j(i), \hspace{5mm} i = 1, \ldots, 8.$$

But this implies $a_j = c_j$, contradicting our assumption that the d_i do not uniquely determine the c_j . Therefore, d_1, \ldots, d_8 uniquely determines c_1, \ldots, c_8 .

(b) Let A be the 8 × 8 matrix representing the linear mapping from data d_1, \ldots, d_8 to coefficients c_1, \ldots, c_8 . What is the ij-entry of A^{-1} ?

Solution: The ij-entry of A^{-1} is $f_j(i)$, since if A maps data d_1, \ldots, d_8 to coefficients c_1, \ldots, c_8 , then

$$\vec{c} = A\vec{d} \tag{1}$$

$$A^{-1}\vec{c} = A^{-1}A\vec{d} \tag{2}$$

$$A^{-1}\vec{c} = \vec{d} \tag{3}$$

which means A^{-1} is the matrix of functions $f_i(i)$.