Régions de confrança

Referência 1: Ribeiro, A. A; Karas, E. W. Otimização contínua. Cengage, 2014 Estratégea de busca linear $\chi^{k} = \chi^{k+1} = \chi^{k} + \left(\chi(-\nabla f(\chi^{k})) \right),$ $f(\chi^{k+1}) < f(\chi^{k}) \qquad t \in (0,1]$ dinimi f ao largo de uma direção Le descida (local) d a partir do porto Estratégia de regiões de confiança min flæ) um modile de s.a. $1/\chi - \chi' || \leq \Delta_1$ modèle de f (aproxima

localmente () é facil de

 $f(x) = x^{3} \quad \text{Em } x' = -1,$ $f(x) = x^{3} \quad \text{m(d)} = 3d - 3d^{2},$ $f(x) = -1 \quad \text{cujo minimizador}$ $e^{x} = -1 \quad \text{fr}$ a prosimação quadratica mão

Convera. Una solução: trocar & f(x*) por uma matriz B, simétrica e definida positiva, e que aproxime & f(x*) em algum sentido. $m(d) = f(x^{\kappa}) + \nabla f(x^{\nu})^{t} d + f d^{t} B_{\kappa} d$ Atternativas para Br:
1) grass-Newton (BFGS, DFP) leons resultados numericos 2) $B_{\kappa} = \nabla^2 f(x^{\kappa}) + \sigma_{\kappa} I$, once $\sigma_{\kappa} \gg 1$ é tal que B_K seja definida positiva. Lo G_K: estimativa do menos antovalos de

/redução boa, -sle Px > n (acidamos o ponto) $L \rightarrow \chi^{K+1} = \chi^{K} + d^{K}$ Suráo
Lo X = X (Lo mão damos o parso) > Se Px 14 (redução rum), Lo ∆ x+1 = 1 ∆ x (reduzimos o raise) ose $\rho_{\kappa} > \frac{3}{4} e \left| \left| d^{\kappa} \right| = \Delta_{\kappa}$ Lo DK+1 = 2DK redução losa e o modelo alconçou a borda da região de eoufiança - aumentamos /redução (si boa, mas a borda não foi atingida → o raio atral é adequado *K <- K+1

	Project de constração Constração
	Legios de confiança - Convergência
	Problema Modelo ao redor de n':
	min $f(x)$ min $m(d) = f(x^{\kappa}) + \nabla f(x^{\kappa})^{t} d + y d^{t} B_{\kappa} d$
	min $f(x)$ min $m(d) = f(x^{\kappa}) + \nabla f(x^{\kappa})^{t} d + y d^{t} B_{\kappa} d$ $s.a. \ d\ \leq \Delta_{\kappa}$
	No método, damos o passo xx+1 = xx+ d somente se
	$0 \le \eta < \rho_{\kappa} = \frac{\text{ared}}{\text{med}}$, onde $\text{ared} = f(x^{\kappa}) - f(x^{\kappa} + d^{\kappa})$
	e pred = m(0) - m(dk). Como dk é solução
	aproximada de modele, sempre pred > O. Cirim,
	$\rho_{\kappa} > 0 \Rightarrow \text{ared} > 0 \Rightarrow f(\chi^{\kappa+1}) < f(\chi^{\kappa}), \forall \kappa$
	durante o método.
	Para provar convergência do método de regions de
	eonfiança, impomos:
	Hipóteses sobre o problema P:
	H1) Of é lipsohitz-contino, isto é, existe L>0
•	tal que Nof(x)-Of(y) 1 < L 1x-y1, +x,y.
	, , , , , , , , , , , , , , , , , , , ,

H2) f é limitada inferiormente no conjunto de nével $N = 3 \times ER^m$; $f(x) < f(x^o) < (x^o)$ to inicial) Hi poteses sobre as seguencias geradas pelo algoritmo: H3) de satulaz, +k, pred = $m(0) - m(d^*) \ge c \|\nabla f(x^*)\| \cdot \min_{x \in \mathbb{N}} \Delta_x, \frac{\|\nabla f(x^*)\|}{\|B_x\|}$ para alguma constante $c \in (0,1)$. Ciqui, 11Bx 11 é a norma matricial induzida pula noma II de R. H4) as matrizes Bx são miformemente limitadas, isto é, eniste B>O tal que NBxN < B, Xx. adicionalmente, lembre-se que no método temos $\|d^{\kappa}\| \leq \Delta_{\kappa}, \forall \kappa$.

_	Clorema: Supronha H1, H2, H3 e H4 validas Então
	'
1	(i) caso n=0, temos liminf \Pf(x^k) = 0, isto
	· · · · · · · · · · · · · · · · · · ·
	é, exite subsegnência 3 x x x tal que
	lim MDf(xx)N=0.
	KEK I

(ii) case $\eta \in (0, 1_4)$, temos $\lim_{\kappa \to \infty} \|\nabla f(\kappa^{\kappa})\| = 0$ (a leguência intera converge).

Prova: Clija seção 5.5.3 do livero de Karas e Rilino (5.3.3 na versão atternativa) DU

Tuoremas 4.5 e 4.6 des livere de Mocedal e Wright

Ulservações:

1) O tevema garante convergência de qualquer método de regións de confiança onde d'écalculada para Satisfazu H3. Exibiremos alguns dells...
2) Garantimos H4 escolhardo Bx adequadamente.