CONTROLLER DESIGN IN FREQUENCY DOMAIN BASED ON SECOND ORDER SYSTEM

- part 2 -

1. THE GOALS

- ♦ To follow and to understand the design method steps
- ◆ To check the resulting performance indicators;

2. THEORETICAL BACKGROUND

The logarithmic diagrams methods allow a hand over, convenient and direct design of controllers. These advantages are emphasized only if the process has the particular form:

$$H_f(s) = \frac{K_f}{s(T_f s + 1)}.$$

The imposed performance specifications are:

$$\begin{cases} & \epsilon_{stp}^* = 0 \\ & \sigma^* \leq \sigma \\ & t_r^* \leq t_r \\ & c_v^* \geq c_v \\ \Delta \omega_B^* \leq \Delta \omega_B \end{cases}$$

2.1. PD controller design steps

A P controller is first designed and the performance criteria are tested. Assume the settling time is too large and all other performance criteria are fulfilled. In this case a PD controller is useful:

$$H_{PD} = V_R \frac{1 + \tau_D s}{1 + T_N s}$$
In order to

In order to determine the

controller parameters, ω_{t1} is estimated and $t_r = \frac{2}{\xi^2 \omega_{t1}}$. From $t_r^* = \frac{2}{\xi^2 \omega_{t2}}$ results

 $\omega_{t2} = \omega_{t1} \frac{t_r}{t_r^*}$. The new cutting frequency $\omega = \omega_{t2}$ is placed on the frequency axis; this is the cutting frequency for the new open loop transfer function:

 $H_{d2}(s)=H_f(s)*H_p(s)*H_{PD}(s)$. The shifting to the right of the structure $H_{d1}(s)=H_f(s)*H_p(s)$ requires a PD controller. The parameters are:

$$V_R|_{dB} = \overline{MN}$$

$$\tau_d = T_f$$

$$T_N = \tau_d \frac{t_r^*}{t_r}$$

The bandwidth, has to be checked, all other performance specifications being fulfilled.

2.2. PID controller design steps

Having a strict performance specifications set, a simple P controller can't fulfill all of them, moreover, neither a PD or PI controller can't solve the problem. In this case a PID controller is recommended, with the structure:

$$H_{R}\left(s\right) = V_{R} \; \frac{1+s\tau_{d}}{1+sT_{N}} \cdot \frac{1+sT_{z}}{1+sT_{p}} \; . \label{eq:hamiltonian}$$

The design starts with the design of a P controller:

- The Bode diagram for $H_f(j\omega)$ is represented first
- (ξ) is determined from the overshoot and then |A|, resulting the point N and the structure H_{d1} . The performance criteria are evaluated. The settling time is larger and the velocity coefficient is

smaller. A P controller cannot meet all these performance criteria.

- The new cutting frequency for the PD controller that corrects the settling time is computed next (ω_{t2}) and the structure (H_{d1}) is shifted to the right untill (H_{d2})
- The velocity coefficient (c_v) is determined given by H_{d2}. In the event that the velocity coefficient is still too small, a PI controller is deisgned:
- The corner frequency for the zero and pole are computed $\begin{cases} \omega_z \approx 0.1\omega_{t2} \\ \omega_p = \frac{c_v}{c_v^*}\omega_z \end{cases}$

resulting the complete structure (H_{dC}) , in which the modified PI structure is added too, resulting in a final PID controller.

The controller parameters are:

$$\begin{cases} V_R \big|_{dB} = \overline{DE} + \overline{MF} \\ T_z = \frac{1}{\omega_z} = \frac{1}{0,l\omega_t} \\ T_P = \frac{1}{\omega_P} = \frac{1}{\omega_z} \cdot \frac{c_v^*}{c_v} \\ \tau_d = T_f \\ T_N = \tau_d \frac{\omega_{t2}}{\omega_{t1}} \end{cases}$$

The V_R gain as computed above contains all three controller gains, $V_R=V_{RP}*V_{RPI}*V_{RPD}$. From the performance indices, only the bandwidth must be checked, all other being fulfilled.

3. PROBLEMS

For the process having the transfer function

$$H_f(s) = \frac{3.5}{s(0.5s+1)}$$

and the performance indices sets

$$\begin{cases} \epsilon_{stp}^* = 0 \\ \sigma^* \leq 10\% \end{cases}$$
 a)
$$\begin{cases} \epsilon_{stp}^* = 0 \\ t_r^* \leq 3[sec] \end{cases}$$
 respectively
$$\begin{cases} \epsilon_{stp}^* = 0 \\ \sigma^* \leq 10\% \end{cases}$$
 b)
$$\begin{cases} \epsilon_{t}^* \leq 1[sec] \\ c_v^* \geq 2 \end{cases}$$

$$\Delta \omega_B^* \leq 15[rad/sec]$$

Following the steps described above, design a PD and a PID controller. Simulate the output of the closed loop for a step and ramp input to highlight the performance indices.