11.1 Extension: Radian measure

- 1. A unit circle with a radius r=1 is divided in quarters. One sector, AOB, is shaded as shown.
 - (a) Find the circumference in terms of π . $(C = 2\pi r)$

- (b) Write down $m \angle AOB$ in degrees.
- (c) Find the length of the arc \widehat{AB} in terms of π .
- 2. The length of the arc of a unit circle is a measure of the central angle called *radians*. The circumference of the full circle is $2\pi = 360^{\circ}$.

Mark each angle with its radian measure.

(a) One half of a circle 180°

(b) One sixth of the circle 60°

(c) One eighth of the circle 45°

(d) One third of a circle 120°

3. Algebra view of radians to degrees using the formula $2\pi=360^\circ$ or $\pi=180^\circ$. Apply the appropriate formula.

$$r = d \times \frac{\pi}{180}$$

(a) $60^{\circ} = ? \text{ radians}$

(b) $30^{\circ} = ? \text{ radians}$

$$d=r\times\frac{180}{\pi}$$

(c)
$$\frac{\pi}{4} = ?$$
 degrees

(d)
$$\frac{\pi}{8} = ?$$
 degrees

Name:

Unit 11: Circle angles, sectors, arcs 27 February 2023

- 4. Do Now: Convert each set of units. One inch $=\frac{1}{12}$ foot or one foot =12 inches.
 - (a) How many feet are 30 inches?
 - (b) How many inches are 8.25 feet?

Example Greek letters are π , θ , α , Δ , β , σ , Σ , ϵ

5. Practice: Convert between units.

General method: if A = B multiply by $\frac{A}{B}$ or $\frac{B}{A}$. For example, π radians = 180 degrees $r = d \times \frac{\pi}{180}$ and $d = r \times \frac{180}{\pi}$

(a) $40^{\circ} = ?$ radians

(e) 1 euro = 1.21 dollars

20 euro =

(b) $\frac{\pi}{7} = ?$ degrees

(f) 100 dollars =

(c) 1 foot = 12 inches

3.5 feet =

(g) 1 mile = 5,280 feet

10,000 feet =

(d) 54 inches =

(h) $\frac{1}{2}$ mile =

- 6. The shaded sector of the unit circle is one tenth of the whole circle, as shown.
 - (a) Write down the circumference in terms of π . $(C = 2\pi r)$

- (b) Find $m \angle AOB$ in degrees.
- (c) Find $m \angle AOB$ in radians.
- 7. Convert equivalent angle measures between radians and degrees ($2\pi = 360^{\circ}$, $\pi = 180^{\circ}$). Apply the appropriate formula.

$$r = d \times \frac{\pi}{180}$$

$$d=r\times\frac{180}{\pi}$$

(a)
$$72^{\circ} = ?$$
 radians
Express in terms of π

(b)
$$\frac{\pi}{9} = ?$$
 degrees

27 February 2023

8. Lesson: Pie charts represent proportions using sector areas and central angles.

Population of NY City is 8,340,000 Population of NY State is 19,500,000

- (a) Find the fraction of New Yorkers, x, who reside in NYC as a percentage.
- (b) Find the central angle of the shaded area, $\theta = x \times 360^{\circ}$

9. Practice: Convert between radians to degrees knowing $2\pi = 360^{\circ}$ or $\pi = 180^{\circ}$. Apply the appropriate formula. Leave radians in terms of π .

$$r = d \times \frac{\pi}{180}$$

(a)
$$36^{\circ} = ? \text{ radians}$$

(b)
$$72^{\circ} = ?$$
 radians

$$d = r \times \frac{180}{\pi}$$

(c)
$$\frac{\pi}{7} = ?$$
 degrees

(d)
$$\frac{3\pi}{4}$$
 = ? degrees

General method: if A=B multiply by $\frac{A}{B}$ or $\frac{B}{A}$. For example, π radians = 180 degrees, therefore $r=d\times\frac{\pi}{180}$ and $d=r\times\frac{180}{\pi}$

(a) $135^{\circ} = ?$ radians

(c) 1 mile = 5,280 feet

14,520 feet =

(b)
$$\frac{3\pi}{5} = ?$$
 degrees

(d)
$$\frac{1}{4}$$
 mile =

11. Convert units of radians and degrees $(2\pi = 360^{\circ}, \pi = 180^{\circ})$.

Apply the appropriate formula.

$$d=r\times\frac{180}{\pi}$$

$$r = d \times \frac{\pi}{180}$$

(a)
$$m \angle A = \frac{\pi}{6} = ?$$
 degrees

12. Convert units of radians and degrees $(2\pi = 360^{\circ}, \pi = 180^{\circ})$.

Apply the appropriate formula.

$$d = r \times \frac{180}{\pi}$$

$$r = d \times \frac{\pi}{180}$$

(a)
$$m \angle A = \frac{\pi}{5} = ?$$
 degrees

(b) $m\angle B = 60^{\circ} = ?$ radians (in terms of π)

13. Convert units of radians and degrees $(2\pi = 360^{\circ}, \pi = 180^{\circ})$. Apply the appropriate formula.

$$d = r \times \frac{180}{\pi}$$

$$r = d \times \frac{\pi}{180}$$

(a)
$$m \angle A = \frac{\pi}{5} = ?$$
 degrees

14. Do Now: Convert units of radians and degrees $(2\pi = 360^{\circ}, \pi = 180^{\circ})$. Apply the appropriate formula.

$$d=r\times\frac{180}{\pi}$$

$$r = d \times \frac{\pi}{180}$$

(a)
$$m \angle A = \frac{\pi}{4} = ?$$
 degrees

(b) $m\angle B = 30^{\circ} = ?$ radians (in terms of π)

15. Right $\triangle ABC$ is drawn in *standard position* with vertex A on the origin and right $\angle C$ on the x-axis, as shown.

(a) Find the length of the hypotenuse AB using the Pythagorean Theorem $a^2 + b^2 = c^2$. (leave as a radical)

(b) Find the slope of the line segment \overline{AB} as a decimal.

16. Right $\triangle ABC$ is drawn in *standard position* with vertex A on the origin and right $\angle C$ on the x-axis, as shown.

(a) Find the length of the hypotenuse AB using the Pythagorean Theorem $a^2 + b^2 = c^2$. (leave as a radical)

(b) Find the slope of the line segment \overline{AB} as a decimal.