FORMALE SPRACHEN UND AUTOMATEN

MTV: Modelle und Theorie Verteilter Systeme

13.06.2022 - 19.06.2022

Zusatzaufgaben 8

Aufgabe 1: Minimierung von DFAs

Gegeben seien das Alphabet $\Sigma \triangleq \{ a, b \}$ und die DFAs

$$M_1 \triangleq \{\{q_0, q_1, q_2, q_3, q_4\}, \Sigma, \delta_1, q_0, \{q_4\}\},$$

$$M_2 \triangleq (\{\ q_0,\ q_1,\ q_2,\ q_3,\ q_4,\ q_5,\ q_6,\ q_7\ \}, \Sigma, \delta_2, q_0, \{\ q_1,\ q_7\ \})\ und$$

$$M_{3}\triangleq(\{\ q_{0},\ q_{1},\ q_{2},\ q_{3},\ q_{4},\ q_{5}\ \},\Sigma,\delta_{3},q_{0},\{\ q_{3},\ q_{5}\ \})\,,$$

wobei δ_1 , δ_2 und δ_3 durch die folgenden Graphen gegeben sind:

Schritt 2.2 (markiere Paare von Endzuständen und Nicht-Endzuständen):

q_1				
q ₁ q ₂ q ₃				
q_3				
q_4	Х	Х	х	х
	$\overline{q_0}$	q_1	q ₂	$\overline{q_3}$

Schritt 2.3 (wende die Regel FS 4.3.8.3 so oft wie möglich an):

q_1	х			
q ₂ q ₃ q ₄	х	Х		
q_3		Х	х	
q_4	х	Х	х	x
	$\overline{q_0}$	q_1	q ₂	q ₃

Schritt 2.4 (markiere die verschmelzbaren Paare):

q_1	Х			
$\begin{array}{c} q_1 \\ q_2 \\ q_3 \end{array}$	х	х		
q_3	0	Х	х	
q_4	Х	Х	х	х
	q_0	q_1	q_2	q_3

Schritt 3 (gib alle Äquivalenzklassen von Zuständen an):

$$[q_0] = \{ q_0, q_3 \}$$
$$[q_1] = \{ q_1 \}$$
$$[q_2] = \{ q_2 \}$$
$$[q_4] = \{ q_4 \}$$

Schritt 4 (gib den minimierten DFA an):

 $M_1' = (\{ [q_0], [q_1], [q_2], [q_4] \}, \Sigma, \delta_1', [q_0], \{ [q_4] \}), \text{ wobei } \delta_1' \text{ durch den folgenden}$ Graphen gegeben ist:

1.b) Gib an:
$$L(M_1)$$

Lösung

$$L(M_1) = L((b + aa(a + b))^* ab(a + b)^*) = \{xaby \mid x \in \{b, aaa, aab\}^* \land y \in \Sigma^*\}$$

Hinweis: Der Minimierungs-Algorithmus ändert die Sprache des Automaten nicht (siehe Lemma 4.3.9). Wenn wir den Algorithmus korrekt anwenden, gilt daher $L(M_1) = L(M_1')$. Sind wir uns also sicher, dass wir den Algorithmus korrekt angewendet haben, dann können wir die Sprache an dem minimierten (und somit einfacherem) DFA bestimmen.

1.c) Berechne: Minimiere den DFA M₂.

------Lösung

Schritt 1 (eliminiere nicht erreichbare Zustände): nur q_1 und q_2 sind nicht erreichbar Schritt 2 (Table-Filling):

q_3	X				
q3q4q5q6q7	Х	х			
q_5	Х	0	х		
q_6	Х	х	Х	х	
q_7	Х	х	х	х	х
	$\overline{q_0}$	q ₃	q_4	q_5	$\overline{q_6}$

Schritt 3 (gib alle Äquivalenzklassen von Zuständen an):

$$[q_0] = \{q_0\}$$

$$[q_3] = \{q_3, q_5\}$$

$$[q_4] = \{q_4\}$$

$$[q_6] = \{q_6\}$$

$$[q_7] = \{q_7\}$$

Schritt 4 (gib den minimierten DFA an):

 $M_2' = (\{ [q_0], [q_3], [q_4], [q_6], [q_7] \}, \Sigma, \delta_2', [q_0], \{ [q_7] \}),$ wobei δ_2' durch den folgenden Graphen gegeben ist:

1.d) Gib an: $L(M_2)$

------Lösung

$$\begin{split} L(M_2) &= L\big(a\,\big(b + aa + ab\,(ab)^*\,(b + aa)\big)^*\,ab\,(ab)^*\big) \\ &= \big\{\;axaby \mid x \in \{\;b, aa, abvw \mid v \in \{\;ab\;\}^* \land w \in \{\;b,\;aa\;\}\,\}^* \land y \in \{\;ab\;\}^*\;\big\} \end{split}$$

1.e) Berechne: Minimiere den DFA M₃.

------Lösung

Schritt 1 (eliminiere nicht erreichbare Zustände): nur q_4 und q_5 sind nicht erreichbar Schritt 2 (Table-Filling):

Schritt 3 (gib alle Äquivalenzklassen von Zuständen an):

$$[q_0] = \{ q_0 \}$$
$$[q_1] = \{ q_1 \}$$
$$[q_2] = \{ q_2 \}$$
$$[q_3] = \{ q_3 \}$$

Schritt 4 (gib den minimierten DFA an):

 $M_3' = (\{ [q_0], [q_1], [q_2], [q_3] \}, \Sigma, \delta_3', [q_0], \{ [q_3] \})$, wobei δ_3' durch den folgenden Graphen gegeben ist:

1.f) *Gib an:* L(M₃)

-----(Lösung)-----

$$\begin{split} L(M_3) &= L\big((b+ab^*aa)^*\,ab^*ab\,(a+b)^*\big) \\ &= \big\{\,xab^naby \mid x \in \{\,b,ab^maa \mid m \in \mathbb{N}\,\}^* \land n \in \mathbb{N} \land y \in \Sigma^*\,\,\big\} \end{split}$$

Aufgabe 2: Myhill-Nerode für reguläre Sprachen

Gegeben seien das Alphabet $\Sigma = \{ a, b \}$ und die Sprachen $D \triangleq \{ ab^na \mid n \in \mathbb{N}^+ \}$, $E \triangleq \{ a^nb^n \mid n \in \mathbb{N} \land n \leqslant 2 \}$ und $F \triangleq \{ w \in \{ a, b \}^* \mid |w|_a \mod 2 = 0 \}$.

2.a) Gib alle Äquivalenzklassen der Myhill-Nerode-Relation bzgl. D an.

------Lösung

$$\begin{split} & [\ \epsilon \]_{\equiv_D} = \{ \ \epsilon \ \} \\ & [\ \alpha \]_{\equiv_D} = \{ \ \alpha \ \} \\ & [\ \alpha b \]_{\equiv_D} = \{ \ \alpha b^n \mid n \in \mathbb{N}^+ \ \} \\ & [\ \alpha b \alpha \]_{\equiv_D} = D \\ & [\ b \]_{\equiv_D} = \{ \ bx, \alpha \alpha x, \alpha b^n \alpha y \mid x \in \Sigma^* \land y \in \Sigma^+ \land n \in \mathbb{N}^+ \ \} \end{split}$$

/Lösung

2.b) Gib den D-Äquivalenzklassenautomaten M_{D} $\mathit{an}.$

------Lösung

 $M_D = (\{\,[\,\epsilon\,],\,[\,\alpha\,],\,[\,\alpha b\,],\,[\,\alpha b\,],\,[\,b\,]\,\},\Sigma,\delta_D,[\,\epsilon\,],\{\,[\,\alpha b\alpha\,]\,\}), \text{ wobei }\delta_D \text{ durch den folgenden Graphen gegeben ist:}$

2.c) Gib alle Äquivalenzklassen der Myhill-Nerode-Relation bzgl. E an.

-----(Lösung)-----

```
 \begin{split} [\;\epsilon\;]_{\equiv_E} &= \{\;\epsilon\;\} \\ [\;\alpha\;]_{\equiv_E} &= \{\;\alpha\;\} \\ [\;\alpha\alpha\;]_{\equiv_E} &= \{\;\alpha\alpha\;\} \\ [\;\alpha\alphab\;]_{\equiv_E} &= \{\;\alpha\alphab\;\} \\ [\;\alphab\;]_{\equiv_E} &= \{\;\alphab,\;\alpha\alphabb\;\} \\ [\;b\;]_{\equiv_F} &= \{\;bx,\alpha\alpha\alphax,\alpha\alphab\alphax,\alphaby,\alpha\alphabby\;|\;x\in\Sigma^* \land y\in\Sigma^+\;\} \end{split}
```

2.d) Gib den E-Äquivalenzklassenautomaten M_E an.

----- Lösung

 $M_D = (\{\,[\,\epsilon\,],\,[\,\alpha\,],\,[\,\alpha\alpha\,],\,[\,\alpha\alpha\,],\,[\,\alpha b\,],\,[\,b\,]\,\}, \Sigma, \delta_E, [\,\epsilon\,], \{\,[\,\epsilon\,],\,[\,\alpha b\,]\,\}), \text{ wobei } \delta_E \text{ durch den folgenden Graphen gegeben ist:}$

2.e) Gib alle Äquivalenzklassen der Myhill-Nerode-Relation bzgl. F $\,an$.

------Lösung

[
$$\epsilon$$
] _{\equiv_F} = F
[α] _{\equiv_F} = { $w \in {\alpha, b}^* | |w|_{\alpha} \mod 2 = 1}$

/Lösung

2.f) Gib den F-Äquivalenzklassenautomaten M_F an.

-----(Lösung)-----

 $M_F = (\{ [\epsilon], [\alpha] \}, \Sigma, \delta_F, [\epsilon], \{ [\epsilon] \}),$ wobei δ_F durch den folgenden Graphen gegeben ist:

