# **CHAPTER - 08**

# **CIRCLES**

#### JEE MAIN - SECTION I

- 1. A Centre (5,5) and radius = 5
- 2. D Let cent (h, 2) r = h

$$(h+1)^2 + (0-2)^2 = h^2$$

$$h^2 + 24 + 1 + 4 = h^2$$

$$h = \frac{-5}{2}$$

Eq of the circle is  $\left(x + \frac{5}{2}\right)^2 + \left(y - 2^2\right) = \frac{25}{4}$ 



3. D



$$(m-p)^2 + (n-q)^2 = (n+q)^2$$

4. A



$$r - \sqrt{(5)^2 + 2^2} = 3$$

5. B The circum circle passes through the centre of the given circle
 ∴ (1,8) and (3,2) are the ends point of the diameter

6. B 
$$x^2 + y^2 + 3x - 6y - 9 = 0$$
;  $c = \left(\frac{-3}{2}, 3\right)$   $r = \sqrt{\frac{9}{4} + 9 + 9} = \frac{9}{2}$   
locus is circle with centre  $\left(\frac{-3}{2}, 2\right)$   $r = \frac{9}{2} + 2 = \frac{13}{2}$ 

- 7. 4 Let the centre be (h, k), then radius = h

  Also  $CC_1 = R_1 + R_2$  or  $\sqrt{(h-3)^2 + (k-3)^2} = h + \sqrt{9+9-14}$   $\Rightarrow (h-3)^2 + (k-3)^2 = h^2 + 4 + 4h$   $\Rightarrow k^2 10h 6k + 14 = 0$  or  $y^2 10x 6y + 14 = 0$ .
- 8. Suppose  $(x_1, y_1)$  be any point on first circle from which tangent is to be drawn, then  $x_1^2 + y_1^2 + 2gx_1 + 2fy_1 + c_1 = 0$  ....(i) and also length of tangent  $= \sqrt{S_2} = \sqrt{x_1^2 + y_1^2 + 2gx_1 + 2fy_1 + c}$  ....(ii) From (i), we get (ii) as  $\sqrt{c c_1}$ .
- 9. 3

  Here,  $g_1 = \frac{k}{2}$ ,  $f_1 = 2$ ,  $c_1 = 2$   $g_2 = -1$ ,  $f_2 = \frac{-3}{4}$ ,  $c_2 = \frac{k}{2}$ Condition for orthogonal intersection,  $\Rightarrow 2(g_1g_2 + f_1f_2) = c_1 + c_2$   $\Rightarrow 2\left[\frac{-k}{2} + \left(\frac{-3}{2}\right)\right] = 2 + \frac{k}{2}$   $\Rightarrow -k 3 = 2 + \frac{k}{2} \Rightarrow \frac{3k}{2} = -5; \ k = \frac{-10}{3}.$

10. 2

Let point of contact be  $P(x_1, y_1)$ .

This point lies on line

$$x_1 + 2y_1 = -12$$

Gradient of OP = 
$$m_1 = \frac{y_1 - 1}{x_1 + 1}$$

Gradient of  $x + 2y + 12 = m_2 = -\frac{1}{2}$ 

The two lines are perpendicular,

$$m_1m_2 = -1$$

$$\Rightarrow \left(\frac{y_1-1}{x_1+1}\right)\!\!\left(\frac{-1}{2}\right) = -1 \Rightarrow y_1-1 = 2x_1+2$$

$$\Rightarrow 2x_1 - y_1 = -3$$
 ....(ii)

On solving equation (i) and (ii), we get

$$(x_1,y_1) = \left(\frac{-18}{5}, \frac{-21}{5}\right)$$
.



11. 3 Let any point on the circle  $x^2 + y^2 = a^2$  be (acost, asint) and  $\angle OPQ = \theta$ Now; PQ = length of tangent from P on the circle  $x^2 + y^2 = a^2 \sin^2 \alpha$ 

$$\therefore PQ = \sqrt{a^2 \cos^2 t + a^2 \sin^2 t - a^2 \sin^2 \alpha} = a \cos \alpha$$

OQ = Radius of the circle 
$$x^2 + y^2 = a^2 \sin^2 \alpha$$

$$OQ = a \sin \alpha \; , \; \; \therefore \; tan \theta = \frac{OQ}{PQ} = tan \alpha \; \Rightarrow \; \theta = \alpha$$

∴ Angle between tangents = ∠QPR = 2α.



12. The equation of required circle is  $S_1 + \lambda S_2 = 0$ .

$$\Rightarrow x^{2}(1+\lambda) + y^{2}(1+\lambda) + x(2+13\lambda) - y(\frac{7}{2}+3\lambda) - \frac{25}{2} = 0$$

Centre = 
$$\left(\frac{-(2+13\lambda)}{2}, \frac{\frac{7}{2}+3\lambda}{2}\right)$$

· Centre lies on 13x + 30y = 0

$$\Rightarrow -13\left(\frac{2+13\lambda}{2}\right) + 30\left(\frac{\frac{7}{2}+3\lambda}{2}\right) = 0 \Rightarrow \lambda = 1.$$

Hence the equation of required circle is

$$4x^2 + 4y^2 + 30x - 13y - 25 = 0$$

Given circle is  $x^2 + y^2 = 1$ 

C(0,0) and radius = 1 and chord is y = mx + 1,  $\cos 45^\circ = \frac{CP}{CR}$ 



CP = Perpendicular distance from (0,0) to chord y = mx + 1

$$CP = \frac{1}{\sqrt{m^2 + 1}}$$
 (CR = radius = 1)

$$\cos 45^{\circ} = \frac{1/\sqrt{m^2 + 1}}{1} \Rightarrow \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{m^2 + 1}}$$

$$m^2 + 1 = 2 \Rightarrow m = \pm 1$$
.

14. 2 Let chord 
$$AB = r$$

 $\therefore$   $\Delta AOM$  is right angled triangle

$$\therefore$$
 OM =  $\frac{r\sqrt{3}}{2}$  = perpendicular distance of line

AB from (0, 0)

$$\frac{r\sqrt{3}}{2} = \left| \frac{3}{\sqrt{5}} \right|, \ r^2 = \frac{12}{5}.$$



Slope of tangent to  $x^2 + y^2 = 1$  at  $P\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$   $2x + 2yy' = 0 \implies m_T|_P = -1$  y = mx + c is tangent to  $(x - 3)^2 + y^2 = 1$  y = x + c is tangent to  $(x - 3)^2 + y^2 = 1$  $\left|\frac{c + 3}{\sqrt{2}}\right| = 1 \implies c^2 + 6c + 7 = 0$ 

16. 4 
$$R = \sqrt{16 + 4 - 16} = 2$$
,  $L = \sqrt{S_1} = 4$ 

AB(Chord of contact) =  $\frac{2LR}{\sqrt{L^2 + R^2}} = \frac{8}{\sqrt{5}}$  $(AB)^2 = \frac{64}{5}$ 



17. 2

Let length of common chord = 2x $\sqrt{25-x^2} + \sqrt{144-x^2} = 13$  after solving  $x = \frac{12 \times 5}{13}$ ,  $2x = \frac{120}{13}$ 

18. 1 Equation of circles are 
$$\begin{cases} (x-3)^2 + (y-5)^2 = 25\\ (x-3)^2 + (y+5)^2 = 25 \end{cases}$$

$$\Rightarrow \begin{cases} x^2 + y^2 - 6x - 10y + 9 = 0 \\ x^2 + y^2 - 6x + 10y + 9 = 0 \end{cases}$$

19. Centre of circles are opposite side of line 
$$(3+4-\lambda)(27+4-\lambda) < 0$$
  $(\lambda-7)(\lambda-31) < 0$ 

$$\lambda \in (7,31)$$
 distance from  $S_1 = \left| \frac{3+4-\lambda}{5} \right| \ge 1$ 

$$\Rightarrow \lambda \in (-\infty, 2] \cup (12, \infty]$$

Distance from 
$$S_2 = \left| \frac{27 + 4 - \lambda}{5} \right| \ge 2$$

$$\Rightarrow \lambda \in (-\infty, 21] \cup [41, \infty)$$

So, 
$$\lambda \in [12,21]$$

20. 1 Clearly, 
$$P(\sqrt{2}, \sqrt{6})$$
 lies on  $x^2 + y^2 = 8$ , which is director circle of  $x^2 + y^2 = 4$  Therefore, tangents PA and PB are perpendicular to each other So, OAPB is a square,

Hence, area of OAPB= 
$$(\sqrt{S_1})^2 = S_1$$

$$=(\sqrt{2})^2+(\sqrt{6})^2-4=4$$

.. Both statements are true and statement II is correct explanation of statementI

# **SECTION II (NUMERICAL)**

In 
$$\triangle APO$$
,  $\left(\frac{\sqrt{2}r}{2}\right)^2 + 1^2 = r^2$ 

$$\Rightarrow r = \sqrt{2}$$

So, distance between centres =  $\sqrt{2}r = 2$ 



23. 7 Let 
$$P(3\cos\theta, 3\sin\theta)$$
,  $Q(-3\cos\theta, -3\sin\theta)$   

$$\Rightarrow \alpha\beta = \frac{|(3\cos\theta + 3\sin\theta)^2 - 4|}{2}$$

$$\Rightarrow \alpha\beta = \frac{5 + 9\sin 2\theta}{2} \le 7.$$

Circle 
$$x^2 + y^2 - 2x - 4y + 4 = 0$$
  
 $\Rightarrow (x-1)^2 + (y-2)^2 = 1$   
Centre:  $(1, 2)$ , Radius = 1  
Line  $3x + 4y - k = 0$  intersects the circle at two distinct points.  
 $\Rightarrow$  distance of centre from the line < radius  
 $\Rightarrow \left| \frac{3 \times 1 + 4 \times 2 - k}{\sqrt{3^2 + 4^2}} \right| < 1 \Rightarrow \left| 11 - k \right| < 5$   
 $\Rightarrow 6 < k < 16 \Rightarrow k \in \{7, 8, 9, ...., 15\}$  since  $k \in I$ 

25. 23 
$$2g_2(g_1 - g_2) + 2f_2(f_1 - f_2) = c_1 - c_2$$
$$2(1)(3 - 1) + 2(-3)(-1 + 3) = k + 15$$

Number of k is 9.

# JEE ADVANCED LEVEL SECTION III

26. D

The given expression can be written as

 $4-12=k+15 \text{ or } -8=k+15 \Rightarrow |k|=23.$ 

$$6(l^2 + m^2) = 9l^2 + 6l + 1$$
 i.e.  $\frac{3l+1}{\sqrt{l^2 + m^2}} = \sqrt{6}$ .

From this expression we can infer that the perpendicular distance of the point (3, 0) from the line lx + my + 1 = 0 is  $\sqrt{6}$ . This proves that the given line is a tangent to the circle  $(x-3)^2 + y^2 = 6$ .

#### 27. B



It is clear from question that one of the vertex of triangle is intersection of x-axis and

$$x+y+1=0 \Rightarrow A(-1,0)$$

Let vertex B be  $(\alpha, -\alpha - 1)$ 

Line AC  $\perp$  BH so,  $m_{AC}$ .  $m_{BH} = -1$ 

$$\Rightarrow$$
  $O = -\frac{(1-\alpha)}{\alpha+2} \Rightarrow \alpha = 1 \Rightarrow B(1,-2)$ 

Let vertex C be (β, 0)

Line AH ⊥ BC

$$\Rightarrow \ \frac{1}{2}.\frac{2}{\beta-1} \!=\! -1 \Rightarrow \ \beta \!=\! 0$$

Centroid of  $\triangle ABC$  is  $\left(0, -\frac{2}{3}\right)$ 

We know that G (centroid) divides line joining circumcentre (O) and orthocentre (H) in the ratio 1:2.

$$\Rightarrow \frac{(h,k)}{O} \xrightarrow{\begin{pmatrix} 0, -\frac{2}{3} \end{pmatrix}} \xrightarrow{(1,1)}$$

$$2h+1=0 \Rightarrow \frac{2k+1}{3} = -\frac{2}{3}$$

$$\Rightarrow \quad h = -\frac{1}{2} \Rightarrow k = -\frac{3}{2}$$

$$\Rightarrow \ \ \text{Circumcentre is} \left( -\frac{1}{2}, -\frac{3}{2} \right).$$

Equation of circum circle is (passing through C (0, 0)) is  $x^2 + y^2 + x + 3y = 0$ 

# 28. B



$$r = \sqrt{4 + 9 - 9\sin\alpha - 13\cos^2\alpha} = 2\sin\alpha$$

$$\sin \alpha = \frac{2 \sin \alpha}{p c}$$
;  $pc = 2$ ;  $(pc)^2 = 4$ 

- 29. C Length of the transversal common tangent =  $\sqrt{d^2 (r_1 + r_2)^2}$
- 30. B Given circle is  $(x-2)^2 + y^2 = 4$ Centre is (2, 0) and radius = 2 Therefore, distance between (2,0) and (5,6) is

$$\sqrt{9+36} = 3\sqrt{5} \Rightarrow r_1 = \frac{3\sqrt{5}-2}{2}$$

and 
$$r_2 = \frac{3\sqrt{5} + 2}{2} = r_1 r_2 = \frac{41}{4}$$



#### SECTION IV (More than one correct )

31. B,C  $DC + AB = AD + CB \Rightarrow CB = a + b - 2r$ 



The triangle CNB gives

$$(2r)^2 + (b-a)^2 = (a+b-2r)^2$$

32. B,D The two circles are orthogonal.

$$\therefore \angle OAO_1 = \frac{\pi}{2}, O_1O = 5$$

The common area = Area of sector AOB + Area of sector  $AO_1B$  - Area of the kite  $OAO_1B$ .



Let 
$$\angle AOO_1 = \theta, \angle AO_1O = \phi = \frac{\pi}{2} - \theta$$

Area = 
$$\frac{9}{2} \cdot 2\theta + \frac{16}{2} \cdot 2\phi - 3 \times 4$$

$$= 9\theta + 16\phi - 12 = 9\theta + 16\left(\frac{\pi}{2} - \theta\right) - 12$$

$$= 8\pi - 7\theta - 12 = 8\pi - 12 - 7\tan^{-1}\frac{4}{3}$$
$$= 8\pi - 12 - 7\left(\frac{\pi}{2} - \tan^{-1}\frac{3}{4}\right) = \frac{9\pi}{2} - 12 + 7\tan^{-1}\frac{3}{4}.$$

33. A,C 
$$a > 2$$
  $b > 2$ 

$$\frac{1}{a} > \frac{1}{2} \frac{1}{b} > \frac{1}{2}$$

$$\frac{1}{a} + \frac{1}{b} < 1$$

Equation of AB is 
$$\frac{x}{a} + \frac{y}{b} = 1$$

$$\left| \frac{\frac{1}{a} + \frac{1}{b} - 1}{\sqrt{\frac{1}{a^2} + \frac{1}{b^2}}} \right| = 1; \frac{1}{a} + \frac{1}{b} - 1 < 0$$

$$\frac{1}{a} + \frac{1}{b} - 1 = -\sqrt{\frac{1}{a^2} + \frac{1}{b^2}}$$

34. A,B When two circles intersect, the common chord AB of maximum length will be the diameter of smaller circle.

$$S_1: x^2 + y^2 = 16, C_1(0,0), r_1 = 4$$

$$S_2: (x-h)^2 + (y-k)^2 = 5^2, C_2(h,k), r_2 = 5$$
, then  $S_1$  is smaller circle.

$$r_2^2 = r_1^2 + (C_1C_2)^2 \Rightarrow S^2 = 4^2 + (h^2 + k^2)$$

$$h^2 + k^2 = 3^2$$

Slope of 
$$AB = m_1 = \frac{3}{4}$$
 (gien);

Slope of 
$$C_1C_2 = m_2 = \frac{y_2 - y_1}{x_2 - x_1} = \frac{k - 0}{h - 0} = \frac{k}{h}$$

$$C_1C_2 \perp AB; m_1m_2 = -1; \frac{k}{h} \left(\frac{3}{4}\right) = -1; 3k = -4h$$

$$\frac{h}{-3} = \frac{k}{4} = t$$
  $h = -3t$ ,  $k = 4t(2)$ 

Put (2) in (1), 
$$t^2(3^2 + 4^2) = 3^2$$
;  $t = \pm \frac{3}{5}$ 

If 
$$t = \frac{3}{5}$$
, then (2);  $h = -\frac{9}{5}$ ,  $k = \frac{12}{5}$ ;

$$C_2(h,k) = \left(-\frac{9}{5}, \frac{12}{5}\right)$$
 If  $t = \frac{3}{5}$ , then (2)  $h = \frac{9}{5}, k = -\frac{12}{5}$   
 $C_2\left(\frac{9}{5}, -\frac{12}{5}\right)$ 

35. A,D Note that if side of a square is x then radius of the inscribed circle must be  $\frac{x}{2}$  and if the radius of the circle is R then side of the square inscribed is  $R\sqrt{2}$ .

Now 
$$a_n = \pi (r_1^2 + r_2^2 + r_3^2 + ....)$$

$$= \pi \left[ \left( \frac{1}{2} \right)^2 + \left( \frac{1}{4} \sqrt{2} \right)^2 + \left( \frac{1}{8} \left( \sqrt{2} \right) \left( \sqrt{2} \right) \right)^2 + \dots \right]$$

36. A,B,C,D

The given circle is  $x^2 + y^2 = 1(1)$ 

Centre O (0,0) & radius =1

Let T<sub>1</sub> & T<sub>2</sub> be the targents drawn from (-2,0) to the circle (1)



Let m be the slope of targent then equations of targents are y-0=m(m+2)

$$r_1 = 5; r_2 = \sqrt{15}; C_1 C_2 = \sqrt{40}$$

$$\Rightarrow r_1 + r_2 > C_1C_2 > r_1 - r_2$$

Hence, circles intersect in two distinct points

There are two common tangents

Also 
$$2g_1g_2 + 2f_1f_2 = 2(1)(3) + 2(2)(-4) = -10$$

and 
$$c_1 + c_2 = -20 + 10 = -10$$

Thus, two circle are orthogonal

Length of common chord is 
$$\frac{2r_1r_2}{\sqrt{r_1^2 + r_2^2}} = 5\sqrt{\frac{3}{2}}$$

Length of common tangent is 
$$\sqrt{C_1C_2^3 - (r_1 - r_2)} = 5\left(\frac{12}{5}\right)^{\frac{1}{4}}$$

Now any given ..... is such that its centre lies on x-axis

Let (h,o) be the centre of such circle, then from fig.

$$OC_1 = OA + AC_1 \Rightarrow |h| = 1 + AC_1$$

But AC, - ..... dist of (h,o) to tgt

$$|\mathbf{h}| = 1 + \left| \frac{\mathbf{h} + 2}{2} \right| \Rightarrow |\mathbf{h}| - 1 = \left| \frac{\mathbf{h} + 2}{2} \right|$$

squaring, 
$$h^2 - 2|h| + 1 = \frac{h^2 + 4h + 4}{4}$$
;  $h = 4$  or  $\frac{-4}{3}$ 

Thus, centres of circles are (4,0),  $\left(\frac{-4}{3},0\right)$ 

: radius of circle with centre

$$\left(\frac{-4}{3},0\right) = \frac{4}{3} - 1 = \frac{1}{3}$$

.. Two possible circles are

$$(x-4)^2 + y^2 = 3^2 \& \left(x + \frac{4}{3}\right)^2 + y^2 = \left(\frac{1}{2}\right)^2$$

37. B,C Distance of line x + y - 1 = 0 from centre

$$\left(\frac{1}{2}, \frac{-1}{2}\right)$$
 is  $\frac{\left|\frac{1}{2} - \frac{3}{2} - 1\right|}{\sqrt{2}} = \sqrt{2}$ 

Let req.d line by y - mx = 0

Dist of 
$$\left(\frac{1}{2}, \frac{-3}{2}\right)$$
 from  $y - mx = 0$  should also be  $\sqrt{2}$ 

$$\frac{\left|\frac{-3}{2} - \frac{m}{2}\right|}{\sqrt{1 + m^2}} = \sqrt{2} \Rightarrow m = 1, \frac{-1}{7} \Rightarrow x - y = 0 \text{ or } x + 7y = 0$$

$$r_1 = 5$$
;  $r_2 = \sqrt{15}$ ;  $c_1 c_2 = \sqrt{40}$ 

$$r_1 + r_2 > c_1 c_2 > r_1 - r_2$$

Hence, circles intersect in 2 dist points

There are two common targets

Also 
$$2g_1g_2 + 2f_1f_2 = 2(1)(3) + 2(2)(-4) = -10$$

& 
$$c_1 + c_2 = -20 + 10 = -10$$

Thus, two circles are orthogonal

Length of common chord 
$$\frac{2r_1r_2}{\sqrt{r_1^2 + r_2^2}} = 5\sqrt{\frac{3}{2}}$$

Length of common tgt = 
$$\sqrt{C_1C_2^2 - (r_1 - r_2)^2}$$
; =  $5\left(\frac{15}{5}\right)^{\frac{1}{4}}$ 

Equation of tgt of slope 'm' to  $x^2 + y^2 = 1$  is

$$y = mx \pm (1)\sqrt{1 + m^2}$$
 (1)

Sine it passes  $(0,5) \Rightarrow m = \pm \sqrt{24}$ 

$$\therefore y = \pm \sqrt{24}x + 5$$

$$\pm \sqrt{24} x - y + 5 = 0$$
 (2)

Let the target intersect  $x^2 + y^2 = 4$  at P & Q

If tgt at P & Q intersect at (h,k), then chord of certact of (h,k) to

$$x^2 + y^2 = 4$$
 is  $\pm \sqrt{24}x - y + 5 = 0$ 

Also chord of certact of (h,k) w.r.t  $x^2 + y^2 = 4$  is

$$hx + ky = 4 \Rightarrow hx + ky - 4 = 0$$

(2) & (3) are considered

$$\frac{h}{\pm\sqrt{24}} = \frac{k}{-1} = \frac{-4}{5} \Rightarrow (h,k) = \left(\frac{8\sqrt{6}}{5}, \frac{4}{5}\right) (or) \left(\frac{-8\sqrt{6}}{5}, \frac{4}{5}\right)$$

# SECTION VI - (Matrix match type)

40. A-S; B-R; C-Q; D-P

a) 
$$\sqrt{2}(b-a) = (b+a)$$

b) 
$$a^2 + b^2 - 4ab = 0 \Rightarrow \frac{b}{a} = 2 + \sqrt{3}$$

- c) Radicual axis passes through the centre of small circle
- d) conceptual