Formulaire de primitives

Fonction	Une primitive	Intervalle	Commentaire
χ ⁿ	$\frac{x^{n+1}}{n+1}$	\mathbb{R}	$\mathfrak{n}\in\mathbb{N}$
$\frac{1}{x}$	$\ln(x)$]0,+∞[
$\frac{1}{x^n}$	$-\frac{1}{(n-1)x^{n-1}}$	\mathbb{R}^{+*} ou \mathbb{R}^{-*}	$n\in\mathbb{N}\setminus\{0,1\}$
$\frac{1}{\sqrt{x}}$	$2\sqrt{x}$]0,+∞[
xα	$\frac{x^{\alpha+1}}{\alpha+1}$]0, +∞[$\alpha \in \mathbb{R} \setminus \{-1\}$
ln x	$x \ln x - x$	$]0,+\infty[$	
e ^x	e ^x	\mathbb{R}	
e ^{zx}	$\frac{1}{z}e^{zx}$	R	$z\in\mathbb{C}^*$
a ^x	$\frac{a^x}{\ln a}$	\mathbb{R}	$a > 0$ et $a \neq 1$
$\operatorname{sh} x$	$\operatorname{ch} x$	\mathbb{R}	
$\operatorname{ch} x$	$\operatorname{sh} x$	\mathbb{R}	
$\frac{1}{\operatorname{ch}^2 x} = 1 - \operatorname{th}^2 x$	$\operatorname{th} x$	\mathbb{R}	
th x	$\ln(\operatorname{ch} x)$	\mathbb{R}	
$\cos x$	$\sin x$	\mathbb{R}	
$\sin x$	$-\cos x$	\mathbb{R}	
$\frac{1}{\cos^2 x} = 1 + \tan^2 x$	$\tan x$	$\left]-\frac{\pi}{2}+k\pi,\frac{\pi}{2}+k\pi\right[$	$k\in\mathbb{Z}$
$-\frac{1}{\sin^2 x} = -1 - \cot^2 x$	$\cot x$	$]k\pi,(k+1)\pi[$	$k\in\mathbb{Z}$
$\tan x$	$-\ln \cos x $		
$\frac{1}{\sin x}$	$\ln \left \tan \left(\frac{x}{2} \right) \right $		
$\frac{1}{\cos x}$	$\ln \left \tan \left(\frac{x}{2} + \frac{\pi}{4} \right) \right $		
$\frac{1}{\sqrt{1-x^2}}$	Arcsin x] – 1, 1[
$ \frac{1}{\sqrt{1-x^2}} $ $ \frac{1}{\sqrt{a^2-x^2}} $ $ \frac{1}{1+x^2} $	$Arcsin\left(\frac{x}{a}\right)$] - a, a[a > 0
$\frac{1}{1+x^2}$	Arctan x	R	
$\frac{1}{x^2 + a^2}$	$\frac{1}{\alpha} \operatorname{Arctan} \left(\frac{x}{\alpha} \right)$	R	$a \neq 0$
$\frac{1}{(x+\alpha)^2+\beta^2}$	$\frac{1}{\beta} \operatorname{Arctan} \left(\frac{x + \alpha}{\beta} \right)$	\mathbb{R}	$\beta \neq 0$

Fonction	Une primitive	Commentaire
f + g	F + G	
λf	λF	λ constante
$f' \times g \circ f'$	g∘f	
f′f ^α	$\frac{f^{\alpha+1}}{\alpha+1}$	$\alpha \in \mathbb{R} \setminus \{-1\}$
$\frac{f'}{f}$	$\ln f $	
$\frac{f'}{f}$ $\frac{f'}{f^n}$	$-\frac{1}{(n-1)f^{n-1}}$	$n \in \mathbb{N} \setminus \{0,1\}$
$\frac{\mathrm{f}'}{\sqrt{\mathrm{f}}}$	$2\sqrt{f}$	
f′e ^f	e ^f	
f' sin f	$-\cos f$	
f' cos f	sin f	
f'shf	ch f	
f'chf	sh f	
$\frac{f'}{\cos^2 f} = f' \left(1 + \tan^2 f \right)$	tanf	
$\frac{f'}{\cosh^2 f} = f' \left(1 - \tanh^2 f \right)$	thf	
$\frac{f'}{\sqrt{1-f^2}}$	Arcsinf	
$\frac{f'}{1+f^2}$	Arctan f	
÷	:	: