Laboratorium 04

Aproksymacja

Adam Bista, 28.03.2023

1 Treść zadań

Zadania

- 1. Aproksymować funkcję $f(x)=1+x^3$ w przedziale [0,1] wielomianem pierwszego stopnia metodą średniokwadratową ciągłą dla w(x)=1.
- 2. Aproksymować funkcję $f(x)=1+x^3$ w przedziale [0,1] wielomianem stopnia drugiego przy użyciu wielomianów Legendre'a.

Zadania domowe

- 1. Napisz procedurę realizującą metodę aproksymacji punktowej za pomocą wielomianów drugiego stopnia
- 2. Oblicz wartości funkcji f(x)= 1-x2 w dyskretnych punktach xi: xi=-1+ 0.5*i, i=0,1..4, a następnie aproksymuj funkcję wielomianami Grama stopnia trzeciego

2 Rozwiązania zadań

1. Metoda średniokwadratowa, ciągła, w(x)=1, wielomian pierwszego stopnia:

$$\varphi_0 = 1, \varphi_1 = x.$$

$$\begin{bmatrix} \int_0^1 w(x)\varphi_0(x)\varphi_0(x)dx & \int_0^1 w(x)\varphi_0(x)\varphi_1(x)dx \\ \int_0^1 w(x)\varphi_1(x)\varphi_0(x)dx & \int_0^1 w(x)\varphi_1(x)\varphi_1(x)dx \end{bmatrix} \cdot \begin{bmatrix} a_0 \\ a_1 \end{bmatrix} = \begin{bmatrix} \int_0^1 w(x)\varphi_0(x)f(x)dx \\ \int_0^1 w(x)\varphi_1(x)f(x)dx \end{bmatrix}$$

Podstawiając $\varphi_0 = 1, \varphi_1 = x, w(x) = 1$ do powyższego układu otrzymamy:

$$\int_{0}^{1} w(x)\varphi_{0}(x)\varphi_{0}(x)dx = \int_{0}^{1} dx = 1$$

$$\int_{0}^{1} w(x)\varphi_{0}(x)\varphi_{1}(x)dx = \int_{0}^{1} xdx = \frac{1}{2}$$

$$\int_{0}^{1} w(x)\varphi_{1}(x)\varphi_{0}(x)dx = \int_{0}^{1} xdx = \frac{1}{2}$$

$$\int_{0}^{1} w(x)\varphi_{1}(x)\varphi_{1}(x)dx = \int_{0}^{1} x^{2}dx = \frac{1}{3}$$

$$\int_{0}^{1} w(x)\varphi_{0}(x)f(x)dx = \int_{0}^{1} (1+x^{3})dx = \frac{5}{4}$$

$$\int_{0}^{1} w(x)\varphi_{1}(x)f(x)dx = \int_{0}^{1} x(1+x^{3})dx = \frac{7}{10}$$

Wobec tego nasz układ równań przyjmuje postać:

$$\begin{bmatrix} 1 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{3} \end{bmatrix} \cdot \begin{bmatrix} a_0 \\ a_1 \end{bmatrix} = \begin{bmatrix} \frac{5}{4} \\ \frac{7}{10} \end{bmatrix}$$

Z tego otrzymujemy: $a_0 = \frac{4}{5}, a_1 = \frac{9}{10}$ aproksymacja:

$$a(x) = \frac{9}{10}x + \frac{4}{5}$$

Rysunek 1: przybliżenie funkcji na przedziale od 0 do 1 (wykonane przy użyciu programu Desmos)

Obydwie funkcje są najbardziej podobne do siebie tylko dla przedziału [0,1]. Dla porównania weźmy przedział [-10,10]

Rysunek 2: Różnice dla przedziału od -10 do 10 (wykonane przy użyciu programu Desmos)

2. Metoda średniokwadratowa, ciągła,w(x)=1, wielomian drugiego stopnia (Lagendre'a):

$$\varphi_0 = 1, \varphi_1 = x, \varphi_2 = \frac{3x^2 - 1}{2}$$

$$\begin{bmatrix} \int_0^1 w(x) \varphi_0(x) \varphi_0(x) dx & \int_0^1 w(x) \varphi_0(x) \varphi_1(x) dx & \int_0^1 w(x) \varphi_0(x) \varphi_2(x) dx \\ \int_0^1 w(x) \varphi_1(x) \varphi_0(x) dx & \int_0^1 w(x) \varphi_1(x) \varphi_1(x) dx & \int_0^1 w(x) \varphi_1(x) \varphi_2(x) dx \\ \int_0^1 w(x) \varphi_2(x) \varphi_0(x) dx & \int_0^1 w(x) \varphi_2(x) \varphi_1(x) dx & \int_0^1 w(x) \varphi_2(x) \varphi_2(x) dx \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} \int_0^1 w(x) \phi_0(x) f(x) dx \\ \int_0^1 w(x) \phi_0(x) f(x) dx \\ \int_0^1 w(x) \phi_1(x) f(x) dx \end{bmatrix}$$

Z tego powstaje:

$$\int_{0}^{1} w(x)\varphi_{0}(x)\varphi_{0}(x)dx = \int_{0}^{1} dx = 1$$

$$\int_{0}^{1} w(x)\varphi_{0}(x)\varphi_{1}(x)dx = \int_{0}^{1} xdx = \frac{1}{2}$$

$$\int_{0}^{1} w(x)\varphi_{0}(x)\varphi_{2}(x)dx = \int_{0}^{1} \left(\frac{3x^{2}-1}{2}\right)dx = 0$$

$$\int_{0}^{1} w(x)\varphi_{1}(x)\varphi_{0}(x)dx = \int_{0}^{1} xdx = \frac{1}{2}$$

$$\int_{0}^{1} w(x)\varphi_{1}(x)\varphi_{1}(x)dx = \int_{0}^{1} x^{2}dx = \frac{1}{3}$$

$$\int_{0}^{1} w(x)\varphi_{1}(x)\varphi_{2}(x)dx = \int_{0}^{1} \left(\frac{3x^{2}-1}{2}\right)xdx = \frac{1}{8}$$

$$\int_{0}^{1} w(x)\varphi_{2}(x)\varphi_{0}(x)dx = \int_{0}^{1} \left(\frac{3x^{2}-1}{2}\right)dx = 0$$

$$\int_{0}^{1} w(x)\varphi_{2}(x)\varphi_{1}(x)dx = \int_{0}^{1} \left(\frac{3x^{2}-1}{2}\right)xdx = \frac{1}{8}$$

$$\int_{0}^{1} w(x)\varphi_{2}(x)\varphi_{2}(x)dx = \int_{0}^{1} \left(\frac{3x^{2}-1}{2}\right)^{2}dx = \frac{1}{5}$$

$$\int_{0}^{1} w(x)\varphi_{0}(x)f(x)dx = \int_{0}^{1} (1+x^{3})dx = \frac{5}{4}$$

$$\int_{0}^{1} w(x)\varphi_{1}(x)f(x)dx = \int_{0}^{1} (1+x^{3})dx = \frac{7}{10}$$

$$\int_{0}^{1} w(x)\varphi_{2}(x)f(x)dx = \int_{0}^{1} \left(\frac{3x^{2}-1}{2}\right)(1+x^{3})dx = \frac{1}{8}$$

$$\left[\frac{1}{2}, \frac{1}{3}, \frac{1}{8}, \frac{1}{5}\right] \begin{bmatrix} a_{0} \\ a_{1} \\ a_{2} \end{bmatrix} = \begin{bmatrix} \frac{5}{4} \\ \frac{7}{10} \\ \frac{1}{8} \end{bmatrix}$$

$$a_0=1.55,\,a_1=-0.6,\,a_2=1$$
 Aproksymacja: $a(x)=\frac{3}{2}x^2-\frac{1}{2}-0.6x+1.55=1.5x^2-0.6x+1.05$

Rysunek 3: przybliżenie funkcji na przedziale od 0 do 1 (wykonane przy użyciu programu Desmos)

Rysunek 4: Różnice dla przedziału od -3 do 3 (wykonane przy użyciu programu Desmos)

Rozwiązania zadań domowych

1. Metoda aproksymacji punktowej za pomocą wielomianów drugiego stop-

$$\begin{bmatrix} \sum_{i=0}^{n} 1 & \sum_{i=0}^{n} x_{i} & \sum_{i=0}^{n} x_{i}^{2} \\ \sum_{i=0}^{n} x_{i} & \sum_{i=0}^{n} x_{i}^{2} & \sum_{i=0}^{n} x_{i}^{3} \\ \sum_{i=0}^{n} x_{i}^{2} & \sum_{i=0}^{n} x_{i}^{3} & \sum_{i=0}^{n} x_{i}^{4} \end{bmatrix} \begin{bmatrix} a_{0} \\ a_{1} \\ a_{2} \end{bmatrix} = \begin{bmatrix} \sum_{i=0}^{n} y_{i} \\ \sum_{i=0}^{n} y_{i}x_{i} \\ \sum_{i=0}^{n} y_{i}x_{i} \end{bmatrix}$$

Teraz należy policzyć sumy i rozwiązać podany układ równań. Rozwiązanie:

$$a(x) = a_2 x^2 + a_1 x + a_0$$

2. $f(x) = 1 - x^2$, dyskretne punkty xi : xi = -1 + 0.5 * i, i = 0, 1..4Obliczenia najlepiej przedstawić w arkuszu kalkulacyjnym: Wielomiany:

	Α	В	С	D	E	F	G	Н	1	J	K	L
2				Ţ								
2						i	0	1	2	3	4	
3						x	-1	-0,5	0	0,5	1	
4						у	0	0,75	1	0,75	0	
5												
6												
7												
8												
9	f=0	f=1	f=2	f=3								
	FO(i)	F1(i)	F2(i)	F3(i)		FO(xi)	F1(xi)	F2(xi)	F3(xi)			
11		l	1 1			1						
12		1 0				1						
13			0 -1			1						
14		l -0				1						
15 16		L ·	1 1	1		1	-1	1	-1			
17												
18												
19												
20				g0	g1	g2	g3					
21				5								
22				h0	h1	h2	h3					
23				2,5								
24							j3					
25				0,5		-						
26				ĺ		, i						

Rysunek 5

$$F_0(x) = 1$$

$$F_1(x) = -x$$

$$F_2(x) = 2x^2 - 1$$

$$F_3(x) = -\frac{20}{3}x^3 + \frac{17}{3}x$$

 $F_1(x) = 1$ $F_1(x) = -x$ $F_2(x) = 2x^2 - 1$ $F_3(x) = -\frac{20}{3}x^3 + \frac{17}{3}x$ Po podstawieniu otrzymujemy:

$$a(x) = 1 - x^2$$

4 Bibliografia

- $\bullet\,$ Katarzyna Rycerz: "Wykład z przedmiotu Metody Obliczeniowe w Nauce i Technice"
- $\bullet\ https://www.sciencedirect.com/science/article/pii/S0893965912001607$