

Radar Signal Processing Mastery

Theory and Hands-On Applications with mmWave MIMO Radar Sensors

Date: 7-11 October 2024

Time: 9:00AM-11:00AM ET (New York Time)

Mohammad Alaee-Kerahroodi

Research scientist

SnT, University of Luxembourg

Email: Mohammad.alaee@uni.lu

Website: https://radarmimo.com/

Outline

Time: 9:00AM-11:00AM ET (New York Time)

Lecture	Duration	Date
Lecture 1: Radar Systems Fundamental	2 Hours	October 7 th , 2024
Lecture 2: Advanced Radar Systems	2 Hours	October 8 th , 2024
Lecture 3: Practical Radar Signal Processing - Motion Detection	2 Hours	October 9 th , 2024
Lecture 4: Practical Radar Signal Processing - Breathing and Heart Rate Estimation	2 Hours	October 10 th , 2024
Lecture 5: Practical Radar Signal Processing – Angle estimation with MIMO radar	2 Hours	October 11 th , 2024

IEEE

Lecture 3

Motion Detection with Infineon BGT60LTR11AIP

Lecture 3: Motion Detection with Infineon BGT60LTR11AIP

What we learn in Lecture 3

- Getting started with BGT60LTR11AIP
- Doppler and Micro-Doppler effects
- Motion detection principle
- Real-time data measurement
- Signal processing and motion detection

Scan the QR code for access to the codes

- Doppler and Micro-Doppler
- Radar Target Classification based on Micro-Doppler

Recall from lecture 1 - CW Radar

Infineon DEMO BGT60LTR11AIP

Product	Description
BGT60LTR11AIP	XENSIV™ 60 GHz first completely autonomous radar sensor for motion sensing
BGT60LTR11SAIP	XENSIV™ 60 GHz first completely autonomous radar sensor for motion
DEMO BGT60LTR11AIP	XENSIV™ BGT60LTR11AIP 60 GHz radar sensor pulsed Doppler demo board
SHIELD_AUTONOM_BGT60	Arduino MKR board
REF BGT60LTR11AIP M0	Reference design with Cortex®-M0 MCU for data processing
S2GO RADAR BGT60LTR11	Shield2Go version
BGT60TR13C	XENSIV™ 60 GHz radar sensor for advanced sensing
DEMO BGT60TR13C	XENSIV™ 60 GHz radar sensor demo board for advanced sensing
BGT60UTR11AIP	XENSIV™ highly integrated 60 GHz FMCW radar sensor
DEMO BGT60UTR11AIP	XENSIV™ BGT60UTR11AIP 60 GHz radar sensor FMCW demo boar

Infineon DEMO BGT60LTR11AIP

https://www.infineon.com/cms/en/product/evaluation-boards/demo-bgt60ltr11aip/

	OI
	21
UNIVERSITY OF	UI
LUXEMBOURG	

Parametrics	DEMO BGT60LTR11AIP
Antenna	Antennas in package
Board Type	Demo Board
Direction of Motion	Yes
Field of View	90
Frequency min max	61 GHz 61.5 GHz
Max Detection Range	11 m
Min Detection Range	0.6 m
Number of Rx Antennas	1
Number of Tx Antennas	1
Target Application	Automated door openers; Contactless switches; Displays such as TVs; monitors; laptops or tablets; Lighting systems and lighting control (mainly indoor lighting); Multicopter and drones; Smart Building; Smart appliances; Smart home security and alarm systems including IP cameras; Smart Home devices; Air conditioners

Infineon DEMO BGT60LTR11AIP

https://www.infineon.com/cms/en/product/evaluation-boards/demo-bgt60ltr11aip/

BGT60LTR11AIP MMIC

BGT60LTR11AIP Shield

DEMO BGT60LTR11AIP

- = Radar Baseboard MCU7
- + BGT60LTR11AIP Shield

https://www.infineon.com/cms/en/product/evaluation-boards/demo-bgt60ltr11aip/#!designsupport

Radar SDK allows users to configure and fetch raw data from above mentioned XENSIV™ radar sensors using C/C++, Python and Matlab programming languages. In addition, it contains sophisticated propriety algorithms to solve target detection and localization use-cases, and some useful tools to e.g. data recording and flash firmware etc.

from ifxradarsdk import get_version from ifxradarsdk.ltr11 import DeviceLtr11 from ifxradarsdk.ltr11.types import Ltr11Config

$$f_c = 60 \text{ GHz}$$

$$\lambda = 0.005 \text{ m}$$

assume
$$v_r = 1 \frac{\text{m}}{\text{s}}$$

$$f_d = \frac{2v_r}{\lambda} = \frac{2}{0.005} = 400 \text{ Hz}$$

```
prt_index = 1 # 0 = 4000 Hz, 1 = 2000 Hz, 2 = 1000 Hz, 3 = 500 Hz

If prt_index == 0:
    sample_rate = 4000
elif prt_index == 1:
    sample_rate = 2000
emprt_index == 2:
    sample_rate = 1000
else:
    sample_rate = 500
```


"Radar Fusion GUI"


```
config = Ltr11Config(
  aprt_factor=4,
  detector_threshold=80,
  disable internal detector=False,
  hold time=8,
  mode=0, # 0: continuous wave mode, -- 1: pulse mode
  num_of_samples=num_of_samples,
  prt=prt_index,
  pulse_width=3,
  rf_frequency_Hz=61044000000,
  rx_if_gain=8,
  tx_power_level=7,
                                                IEEE
```



```
Initialize the parameters
# Initialization
ENABLE I Q PLOT = True
sample time = 1/sample_rate
num_of_samples = 256
window_time = 1 # second
buffer_time = 5 * window_time # second
figure update time = 25 # m second
num rx antennas = 1
raw_data_size = int(buffer_time * sample_rate)
IQ_xaxis = np.linspace(1, buffer_time, raw_data_size)
epsilon_value = 0.00000001
```


Initialize the data queue

```
# data queue
data_queue = queue.Queue()
def read_data(device):
  while True:
    frame contents = device.get next frame()
    for frame in frame_contents:
      data_queue.put(frame)
```



```
class myProcessorClass:
    def process_data(self):
        global raw_data
    while True:
        time.sleep(1/sample_rate)
        if not data_queue.empty():
        frame = data_queue.get()
        if np.size(frame) == num_of_samples:
            raw_data = np.roll(raw_data, -num_of_samples)
            raw_data[-num_of_samples:] = frame
#
```



```
def generate iq plot():
                                                                                Create plot
  plot = pg.plot(title='Inphase and Quadrature')
  plot.showGrid(x=True, y=True)
  plot.setLabel('bottom', 'Time [s]')
  plot.setLabel('left', 'Amplitude')
  plot.addLegend()
  plots = [
    ('lightblue', 'Inphase [I]'),
    ('gold', 'Quadrature [Q]')
  plot_objects = [[] for _ in range(len(plots))]
  for j, (color, name) in enumerate(plots):
    line_style = {'color': color, 'style': [QtCore.Qt.SolidLine, QtCore.Qt.DashLine, QtCore.Qt.DotLine][0]}
    plot_obj = plot.plot(pen=line_style, name=f'{name}')
    plot_obj.setVisible(True)
    plot_objects[j].append(plot_obj)
  return plot, plot objects
# Usage:
if ENABLE I Q PLOT:
  iq_figure, I_Q_PLOT = generate_iq_plot()
  iq_figure.show()
```



```
Update plot by timer
def update_plots():
 if ENABLE_I_Q_PLOT:
   I_Q_PLOT[0][0].setData(IQ_xaxis, np.real(raw_data))
   I_Q_PLOT[1][0].setData(IQ_xaxis, np.imag(raw_data))
timer = QTimer()
timer.timeout.connect(update_plots)
timer.start(figure_update_time) # Update the plots based on figure_update_time
```



```
Connect to sensor
if __name__ == "__main__":
 # connect to the device
 pp = pprint.PrettyPrinter()
 with DeviceLtr11() as device:
    print("Radar SDK Version: " + get version())
    print("Sampling Frequency [Hz]: ", sample rate)
    sampling_frequency = device.get_sampling_frequency(prt_index)
    config defaults = device.get config defaults()
    config = Ltr11Config(
     aprt factor=4,
     detector threshold=80,
     disable internal detector=False,
     hold time=8,
     mode=0, # 0: continuous wave mode, -- 1: pulse mode
     num of samples=num of samples,
     prt=prt index,
     pulse width=3,
     rf frequency Hz=61044000000,
     rx if gain=8,
    device.set config(config)
```



```
Start the data_thread and process_thread
# initialization
raw_data = np.zeros(raw_data_size, dtype=np.complex128)
# Threads for reading data and processing
data_thread = threading.Thread(target=read_data, args=(device,))
data thread.start()
radar processor = myProcessorClass()
process_thread = threading.Thread(target=radar_processor.process_data, args=())
process_thread.start()
sys.exit(app.exec_())
```


Record Data Demo BGT60LTR11AIP

Signal Processing
Society

Recorded Data Demo BGT60LTR11AIP

Lect3_example2.m

Recorded Data Demo BGT60LTR11AIP

Micro Doppler with BGT60LTR11AIP

I and Q Modulator in CW Radar

Micro-Doppler

$$\overline{s}_{rx}(t) = A_r e^{(j2\pi f_d t)}$$

$$f_d = \frac{2v_r}{\lambda} = \frac{2}{\lambda} \left(v_{target} + \sum_{i=1}^{n} v_{component,i} \right)$$

 v_{target} : Velocity of the main target

 $v_{component,i}:$ Velocity of the i-th moving component contributing to the micro-Doppler effect

n: number of components contributing to the micro-Doppler signature

Chest + heart + body movement

$$x(t) = x_h(t) + x_c(t) + x_b(t)$$
Heart
Chest
Body

	Displacement (mm)
Heartbeat	0.15 - 0.5
Chest	0.01 - 0.15

Chest + heart + body movement

	Displacement (mm)
Heartbeat	0.15 - 0.5
Chest	0.01 - 0.15

$$\overline{s}_{rx}(t) = A_r e^{(j\phi(t))} = I + jQ$$

$$\hat{\phi} = \arctan \frac{Q}{I}$$

$$f_c = 60 \text{ GHz}$$

$$\lambda = 0.005 \text{ m}$$

Displacement (mm) = 0.5 mm = 0.005 m

$$\Delta \phi \ge \frac{4\pi}{0.005} \ 0.005 = 4\phi$$

Folding happens

Signal Processing
Society

Lect3_example7.m

What we learned from Lecture 3

• In Lecture 3 we used BGT60LTR11AIP to capture real data and processed it to extract Doppler, micro-Doppler and breathing pattern of human. Different signal processing techniques to this end has been applied in real-time operation.

Scan the QR code for access to the codes

Using a FMCW radar, how can we better monitor vital signs of human?

