Polinômios e seus automorfismos

Vyacheslav Futorny Lucia Murakami

IME/USP

E ste artigo, como prometido no número anterior da *Matemática Universitária*, pretende discorrer um pouco mais sobre o trabalho de Ivan Shestakov e Ualbai Umirbaev, publicado em dois artigos no *Journal of the American Mathematical Society* ([17] e [18]), em que resolvem o chamado *Problema dos Geradores Mansos*, sobre o automorfismo de Nagata da álgebra de polinômios de três variáveis. Esse problema estava em aberto por mais de 30 anos e foi completamente resolvido nos trabalhos citados, onde se desenvolveram novas e poderosas técnicas para o estudo de automorfismos de álgebras polinomiais.

Aqui vamos descrever algumas ideias em torno desse trabalho, sem entrar em muitos detalhes técnicos. Além dos artigos originais e palestras proferidas por Shestakov e Umirbaev, usaremos um excelente *survey* de A. van den Essen ([6]).

1 – Automorfismos e funções polinomiais

Sejam K um corpo de característica zero e $R_n = K[x_1, x_2, ..., x_n]$ a álgebra de polinômios nas variáveis $x_1, ..., x_n$ sobre K. Um *endomorfismo* da álgebra R_n é uma aplicação $\phi: R_n \to R_n$ tal que

$$\phi(af) = a\phi(f)$$
 , $\phi(f+g) = \phi(f) + \phi(g)$

e

$$\phi(fg) = \phi(f)\phi(g),$$

para quaisquer f, $g \in R_n$ e $a \in K$. Note que, por essas propriedades,

$$\phi(f)(x_1,\ldots,x_n)=f(\phi(x_1),\ldots,\phi(x_n)).$$

Observe ainda que, dados $y_1, ..., y_n \in R_n$, existe um único endomorfismo de R_n cuja imagem de x_i é y_i , i = 1, ..., n. Assim, existe uma correspondência biunívoca entre o conjunto dos endomorfismos de R_n e o conjunto das n-uplas $(y_1, ..., y_n)$ formadas por elementos de R_n .

Se o endomorfismo ϕ é uma bijeção então ele é chamado de *automorfismo da álgebra* R_n . O conjunto de todos os automorfismos de R_n com a operação de composição é um grupo, usualmente denotado por Aut R_n .

Exemplo. Seja $\phi: K[x_1,x_2] \to K[x_1,x_2]$ dada por $\phi(f)(x_1,x_2) = f(x_1+x_2,x_1-x_2)$. Obviamente, ϕ é um automorfismo da álgebra $K[x_1,x_2]$.

Uma questão ambiciosa, porém natural, é o

Problema 1. Descrever Aut R_n .

Como já mencionado, dado um automorfismo ϕ de R_n , temos uma n-upla de polinômios (y_1,\ldots,y_n) associada a ϕ . Observe que a sobrejetividade de ϕ é equivalente a y_1,\ldots,y_n gerarem R_n . A injetividade, por sua vez, equivale a y_1,\ldots,y_n serem algebricamente independentes (pois, se existe $f \in R_n$ tal que $f(y_1,\ldots,y_n) = 0$, então $\phi(f) = 0$). Assim, determinar Aut R_n é o mesmo que encontrar todas as n-uplas de polinômios que sejam algebricamente independentes e que gerem R_n . Vejamos como melhorar essa caracterização.

Considere o espaço vetorial K^n sobre K. Uma n-nupla (f_1,\ldots,f_n) de elementos de R_n também determina uma função $\Phi:K^n\to K^n$ definida por

$$\Phi(a_1,\ldots,a_n) = (f_1(a_1,\ldots,a_n),\ldots,f_n(a_1,\ldots,a_n)).$$

Dizemos que Φ é uma *função polinomial* de K^n e escrevemos $\Phi = (f_1, \ldots, f_n)$. A função polinomial Φ é chamada *inversível* se existe uma função polinomial $\Psi = (g_1, \ldots g_n)$ tal que a composição de Φ e Ψ é a identidade.

Dada uma função polinomial Φ definimos a matriz

jacobiana de Φ por

$$J(\Phi) = \left(\frac{\partial f_i}{\partial x_j}\right)_{1 \le i, j \le n}.$$

Observe que se f_1, \ldots, f_n são algebricamente dependentes então, dado um polinômio não constante de grau minimal $g(x_1, \ldots, x_n) \in R_n$ tal que $g(f_1, \ldots, f_n) = 0$, temos, pela regra da cadeia,

$$0 = \frac{\partial}{\partial x_j} g(f_1, \dots, f_n) = \sum_{i=1}^n \frac{\partial g}{\partial x_i} (f_1, \dots, f_n) \frac{\partial f_i}{\partial x_j},$$

para cada j = 1, ..., n, o que determina uma relação de dependência entre as linhas da matriz jacobiana de f e, portanto, podemos concluir que seu determinante é nulo.

A mesma regra da cadeia pode ser usada para determinar a matriz jacobiana da composição de duas funções polinomiais: se $\Phi = (f_1, \ldots, f_n)$ e $\Psi = (g_1, \ldots, g_n)$ então

$$J(\Psi \circ \Phi) = \Phi(J(\Psi))J(\Phi),$$

em que
$$\Phi(J(\Psi)) = \left(\frac{\partial g_i}{\partial x_j}(f_1,\ldots,f_n)\right)_{1 \le i,j \le n}$$

Proposição 1.1. Seja $\Phi = (f_1, ..., f_n)$ uma função polinomial. Então as seguintes condições são equivalentes:

- (a) f_1, \ldots, f_n são geradores do anel R_n ;
- (b) Φ é inversível;
- (c) o endomorfismo ϕ da álgebra R_n determinado por f_1, \ldots, f_n é um automorfismo de R_n .

Demonstração. Já vimos que se $f_1, ..., f_n$ geram R_n então o endomorfismo ϕ de R_n determinado por $f_1, ..., f_n$ é sobrejetor. Assim, para cada i = 1, ..., n, existe $g_i \in R_n$ tal que $\phi(g_i) = x_i$. Não é difícil mostrar que $\Psi = (g_1, ..., g_n)$ é a inversa de Φ. Logo, temos que (a) implica (b).

Suponha agora que Φ seja inversível e que $\Psi = (g_1, \dots g_n) : K^n \to K^n$ seja o inverso de Φ . Temos então que

$$I = I(\Psi \circ \Phi) = \Phi(I(\Psi))I(\Phi)$$
,

em que I denota a matriz identidade. Assim, $\det J(\Phi) \neq 0$. Mas isso implica que os polinômios f_1, \ldots, f_n são algebricamente independentes sobre K,

isto é, ϕ é injetor. A sobrejetividade de ϕ vem do fato que $\Psi \circ \Phi$ é a função identidade: $\phi(g_i)(x_1,\ldots,x_n) = g_i(f_1(x_1,\ldots,x_n),\ldots,f_n(x_1,\ldots,x_n)) = x_i$, para todo $i=1,\ldots,n$. Portanto, (b) implica (c). A implicação (c) \Rightarrow (a) é evidente, usando-se apenas a sobrejetividade de ϕ , como já comentamos.

Repare, da demonstração da proposição anterior, que det $J(\Phi)$ não apenas é um polinômio não nulo, se Φ é inversível. Pode-se concluir que esse elemento é um *escalar não nulo*, já que não há divisor da unidade de grau diferente de zero. Esse fato será usado posteriormente.

Assim, existem as seguintes formulações equivalentes ao Problema 1:

Problema 2. Descrever todas as n-uplas de polinômios em R_n que geram R_n .

Problema 3. Descrever todas as funções polinomiais inversíveis do espaço K^n .

Da Proposição 1.1 obtemos o fato que todo endomorfismo sobrejetor de R_n é também injetor ou, equivalentemente, todo conjunto gerador de R_n com n elementos é algebricamente independente. Observe, no entanto, que existem endomorfismos injetores que não são sobrejetores (por exemplo, $x \mapsto x^2$ quando n = 1). Na descrição das funções polinomiais inversíveis de K^n , ao contrário, quem desempenha um papel fundamental é a injetividade, pelo menos quando o corpo é algebricamente fechado:

Teorema 1.2 (Bialynicki-Birula, Rosenlicht, [2]). Se K é algebricamente fechado de característica zero e $\Phi: K^n \to K^n$ é uma função polinomial então Φ é inversível se, e somente se, Φ é injetiva.

Observação. Dada uma função polinomial $\Phi = (f_1, \ldots, f_n)$ de K^n , mostramos que se f_1, \ldots, f_n são algebricamente dependentes então det $J(\Phi) = 0$. Pode-se provar que a recíproca desse fato é verdadeira, isto é, se o determinante jacobiano de $\Phi = (f_1, \ldots, f_n)$ for nulo então f_1, \ldots, f_n serão algebricamente dependentes (ver [15]). Portanto, o determinante jacobiano estabelece um

critério para decidir sobre a injetividade do endomorfismo de R_n determinado pelos polinômios f_1,\ldots,f_n . A questão envolvendo a sobrejetividade é mais complicada. Quando $\phi\colon R_n\to R_n$ é um automorfismo então $\Phi=(\phi(x_1),\ldots,\phi(x_n))$ é inversível e a relação $I=\Phi(J(\Phi^{-1}))J(\Phi)$ revela não só que det $J(\phi)$ é um polinômio não nulo, mas que det $J(\Phi)\in K^*$, como comentamos acima. A recíproca, porém, é desconhecida já para o caso em que n=2 e K é o corpo dos números complexos. Essa questão é a famosa

Conjectura 1.3 (Conjectura do Jacobiano). *Seja* Φ *uma função polinomial de* \mathbb{C}^n . *Se* det $J(\Phi) \in \mathbb{C}^*$ *então* Φ *é inversível*.

Tendo em vista o Teorema 1.2, escrevendo $\Phi'(z)=\det J(\Phi(z))$, para $z\in\mathbb{C}^n$, a conjectura acima é equivalente a "se $\Phi'(z)\neq 0$, para todo $z\in\mathbb{C}^n$, então Φ é injetora?", ou ainda, "se $\Phi(a)=\Phi(b)$, para $a,b\in\mathbb{C}^n$, distintos, então $\Phi'(z)=0$, para algum $z\in\mathbb{C}^n$?" ¹. Repare que esta última formulação seria uma generalização do Teorema de Rolle do cálculo de uma váriavel real.

A Conjectura do Jacobiano foi formulada por O. H. Keller em 1939. Desde então diversos casos particulares foram tratados. O livro [5] é dedicado ao estudo dos automorfismos de polinômios com especial ênfase nessa conjectura.

2 – Automorfismos elementares e a conjectura de Nagata

É conhecido da álgebra linear que toda transformação linear inversível é composição de transformações elementares. Para automorfismos de R_n também existe um conceito análogo de aplicação elementar.

Uma vez que $a \in K \setminus \{0\}$, $i \in \{1, ..., n\}$ e $f \in R_n$ não contenha a variável x_i , fica determinado um automorfismo de R_n via

$$(x_1,\ldots,x_n)\mapsto (x_1,\ldots,x_{i-1},ax_i+f,x_{i+1},\ldots,x_n).$$

Tal automorfismo será denotado por $\phi_{i,a,f}$. Aplicações desse tipo são denominadas *automorfismos elementares*. Um automorfismo de R_n é denominado *manso* (*tame*, em inglês) se for uma composição de automorfismos elementares.

As operações elementares de matrizes correspondem a automorfismos mansos: multiplicação de uma linha por um fator não nulo e soma de um múltiplo de uma linha a outra são elementares no sentido acima. Já a troca de linhas é obtida por composição de três automorfismos elementares. Por exemplo, para a troca de linhas em K^2 , usamos a seguinte sequência:

$$(x,y) \xrightarrow{\phi_{1,-1,y}} (-x+y,y) \xrightarrow{\phi_{2,1,-x}} (-x+y,y-(-x+y))$$
$$= (-x+y,x) \xrightarrow{\phi_{1,1,y}} (-x+y+x,x) = (y,x).$$

Assim, para qualquer n, qualquer automorfismo do tipo $\phi:(x_1,\ldots,x_n)\mapsto (f_1,\ldots,f_n)$, em que f_1,\ldots,f_n são expressões lineares em x_1,\ldots,x_n sem termos constantes, é manso, já que a função polinomial correspondente,

$$\Phi(a_1,\ldots,a_n) = (f_1(a_1,\ldots,a_n),\ldots,f_n(a_1,\ldots,a_n)),$$

define um operador linear inversível no espaço K^n . Em particular, o automorfismo $\phi(f)(x,y)=f(x+y,x-y)$ do nosso exemplo é manso.

Generalizando isso, podemos afirmar que qualquer automorfismo da forma $\phi:(x_1,\ldots,x_n)\mapsto (f_1,\ldots,f_n)$, onde f_1,\ldots,f_n são polinômios de grau 1, é manso. Por exemplo, o automorfismo ϕ de R_3 , $(x,y,z)\mapsto (x+1,x+y,y-z+2)$ é manso.

Observe que a inversa de um automorfismo elementar é elementar. Mais precisamente, $\phi_{i,a,f}^{-1} = \phi_{i,a^{-1},-a^{-1}f}$. Assim, o conjunto $T(R_n)$ de todos os automorfismos mansos de R_n é um grupo. Um automorfismo não manso é denominado *selvagem* (*wild*, em inglês).

Se n=1 então qualquer automorfismo é manso, já que todo automorfismo ϕ de K[x] deve ser da forma $\phi(x)=\alpha x+\beta$, com $\alpha\neq 0$. Isto segue imediatamente da observação de que o determinante (que aqui é a derivada) tem que ser constante e não nulo. Portanto, Aut $R_1=T(R_1)$.

¹ Observe que $\Phi'(z) \neq 0$ para todo $z \in \mathbb{C}^n$ já implica em $\Phi'(z)$ constante não nulo, já que \mathbb{C} é algebricamente fechado.

Em 1942, H. W. E. Jung [7] mostrou que $\operatorname{Aut} R_2 = T(R_2)$, para o caso em que a característica do corpo é zero. Esse resultado foi estendido para característica positiva por van der Kulk [8], em 1953. Rentschler [14], Makar-Limanov [11] e Dicks [4] também apresentaram demonstrações alternativas para esse fato.

Problema 4. A inclusão $T(R_n) \subset \operatorname{Aut} R_n$ é própria, para $n \geq 3$?

Este problema é conhecido como *Problema dos Geradores Mansos* (*Tame Generators Problem*, em inglês). Como a suspeita era de que a resposta a esse problema fosse positiva, alguns candidatos a automorfismos selvagens para $R_3 = K[x,y,z]$ foram criados. O primeiro e mais conhecido deles foi proposto por Nagata, em 1972 ([13]).

Conjectura 2.1 (Conjectura de Nagata). *O automorfismo* ϕ *de* K[x, y, z] *definido por*

$$\phi(x) = x + (x^2 - yz)z$$

$$\phi(y) = y + 2(x^2 - yz)x + (x^2 - yz)^2z$$

$$\phi(z) = z$$

é selvagem.

Durante os 30 anos em que essa conjectura permaneceu aberta, algumas evidências para sua validade foram encontradas. Por exemplo, J. Alev mostrou, em [1], que o automorfismo de Nagata não admite certos tipos de decomposição.

Os artigos de Shestakov e Umirbaev não apenas resolvem a Conjectura de Nagata, mas mostram que os automorfismos mansos de R_3 são algoritmicamente identificáveis. A ideia inovadora foi imergir a álgebra de polinômios numa álgebra "maior". Trata-se da álgebra de Poisson livre, que possui uma estrutura adicional, o colchete de Poisson. Com essa abordagem, foi possível domar o comportamento dos automorfismos mansos.

3 – Reduções elementares

Para mostrar que um dado automorfismo é manso, é de se esperar que seja usado algum argumento indutivo no grau dos polinômios envolvidos. Uma redução de grau natural é descrita a seguir.

Para $f \in R_n$ vamos denotar por \bar{f} a parte homogênea de f de maior grau. Seja $\Phi = (f_1, \ldots, f_n)$ uma função polinomial inversível do espaço K^n . Por abuso de notação, chamaremos também de Φ o automorfismo de R_n determinado por f_1, \ldots, f_n . Definimos o grau de Φ como

$$gr(\Phi) = gr(f_1) + \ldots + gr(f_n).$$

Dizemos que Φ é *elementarmente redutível* se existe um automorfismo elementar e tal que $\operatorname{gr}(e \circ \Phi) < \operatorname{gr}(\Phi)$. Isto é equivalente a dizer que, para algum i, existe um polinômio $g \in R_n$ que não contém x_i tal que

$$\operatorname{gr}(f_i - g(f_1, \dots, f_{i-1}, f_{i+1}, \dots, f_n)) < \operatorname{gr}(f_i).$$

Neste caso vamos dizer também que f_i é elementarmente redutível.

A demonstração de que todos os automorfismos de R₂ são mansos consiste em provar que eles são elementarmente redutíveis. Alguns casos particulares são tratados facilmente: considere qualquer função polinomial inversível $\Phi = (f_1, f_2)$ de K^2 . Se o grau de Φ é menor ou igual a 2, então Φ é afim e, portanto, manso. Então suponha que o grau de Φ seja maior do que 2. Já sabemos que f₁ e f₂ são algebricamente independentes sobre K, pela Proposição 1.1. Por outro lado, como det $J(f_1, f_2) \in K^*$ e Φ não é linear, concluímos que det $J(\bar{f}_1, \bar{f}_2) = 0$ (pois gr $(\Phi) \geq 3$ e det $J(\bar{f}_1, \bar{f}_2)$ é o termo de det $J(f_1, f_2)$ de grau $gr(\Phi) - 2$). Assim, \bar{f}_1 e \bar{f}_2 são algebricamente dependentes sobre K. Suponhamos primeiro que podemos escrever $\bar{f}_1 = \alpha(\bar{f}_2)^r$, para algum $r \ge 1$ e algum $\alpha \in K^*$. Então tomamos $e(x_1, x_2) =$ $(x_1 - \alpha x_2^r, x_2)$, para o qual vale $gr(e \circ \Phi) < gr(\Phi)$, isto é, Φ é elementarmente redutível. Portanto, a demonstração está feita quando um dos polinômios \bar{f}_i é gerado pelo outro.

Assim, só falta considerar os pares de polinômios f_1 , f_2 que verificam as seguintes condições:

- f_1 , f_2 são algebricamente independentes sobre K;
- \bar{f}_1 , \bar{f}_2 são algebricamente dependentes sobre K;
- \bar{f}_1 não é gerado por \bar{f}_2 , e \bar{f}_2 não é gerado por \bar{f}_1 .

Tais pares de polinômios são chamados *-reduzidos.

O colchete de Poisson foi fundamental na descrição do comportamento dos polinômios *-reduzidos, no que diz respeito à estimativa de um limitante inferior para seus graus. Além da descrição já mencionada sobre os automorfismos de R_3 , esse estudo também proporcionou uma nova demonstração de que os automorfismos de R_2 são mansos (que consiste em mostrar que, para n=2, não existem pares *-reduzidos). Para explicitar um pouco melhor esses métodos, vamos à definição e algumas propriedades dessa nova estrutura.

3.1 Álgebras de Poisson

Uma álgebra de Poisson é uma álgebra associativa e comutativa $(A, +, \cdot)$ munida de uma aplicação bilinear

$$[,]: A \times A \rightarrow A,$$

o *colchete de Poisson*, de modo que (A, +, [,]) seja uma álgebra de Lie (isto é, [a, a] = 0 e [a, [b, c]] + [c, [a, b]] + [b, [c, a]] = 0, para quaisquer $a, b, c \in A$) e tal que

$$[a \cdot b, c] = a \cdot [b, c] + [a, c] \cdot b \tag{1}$$

para quaisquer $a, b, c \in A$ (a regra de Leibniz).

Exemplo. A álgebra polinomial R_n é uma álgebra de Poisson com respeito ao produto

$$[f,g] = \sum_{1 \le i < j \le n} \left(\frac{\partial f}{\partial x_i} \frac{\partial g}{\partial x_j} - \frac{\partial f}{\partial x_j} \frac{\partial g}{\partial x_i} \right).$$

Para n = 2, esse produto é o determinante jacobiano de (f, g).

Uma construção importante que combina as estruturas de álgebras de Lie e de Poisson é a estrutura de álgebra de Lie-Poisson. Seja L uma álgebra de Lie sobre K com produto de Lie $[\ ,\]$ e base $l_1,\ldots,l_t,$ e chamemos de P(L) o anel de polinômios $K[l_1,\ldots,l_t]$ sobre L. Shestakov mostra, em [16], que a operação $[\ ,\]$ da álgebra de Lie pode ser estendida de maneira única a um colchete de Poisson em P(L) por intermédio da regra de Leibniz [1]. A álgebra [1]0 é chamada álgebra de Lie-Poisson. Se

L[X] é uma álgebra de Lie livre com conjunto de geradores X então P(L[X]) é uma álgebra de Poisson livre. A feramenta principal dos trabalhos [17] e [18] é a imersão da álgebra de polinômios $R_3 = K[x_1, x_2, x_3]$ na álgebra de Poisson livre com geradores $X = \{x_1, x_2, x_3\}$.

Se $X = \{x_1, ..., x_n\}$ então a álgebra de Lie livre L[X] tem base

$$x_1, x_2, \dots, x_n, [x_1, x_2], \dots, [x_1, x_n], \dots, [x_{n-1}, x_n],$$

 $[[x_1, x_2], x_3], \dots, [[x_{n-2}, x_{n-1}], x_n], \dots$

e a álgebra de Lie-Poisson P(L[X]), como espaço vetorial, coincide com a álgebra de polinômios nesses elementos. Note que a álgebra $R_n = K[x_1, \ldots, x_n]$ pode ser identificada com o subespaço de P(L[X]) gerado pelos elementos

$$x_1^{r_1}x_2^{r_2}\dots x_n^{r_n}$$
 , $r_i \ge 0$, $1 \le i \le n$.

e que, se $f, g \in R_n$, então

$$[f,g] = \sum_{1 \le i < j \le n} \left(\frac{\partial f}{\partial x_i} \frac{\partial g}{\partial x_j} - \frac{\partial f}{\partial x_j} \frac{\partial g}{\partial x_i} \right) [x_i, x_j].$$

A álgebra de Poisson $P(L[X]) = P_n$ é uma álgebra graduada com $gr(x_i) = 1$, para todo i, e $gr([x_i, x_j]) = 2$, se $i \neq j$. Para quaisquer f, $g \in R_n$, temos

$$\operatorname{gr}([f,g]) = \max_{1 \le i < j \le n} \left\{ \operatorname{gr}\left(\frac{\partial f}{\partial x_i} \frac{\partial g}{\partial x_j} - \frac{\partial f}{\partial x_j} \frac{\partial g}{\partial x_i}\right) \right\} + 2.$$

Portanto $gr([f,g]) \leq gr(f) + gr(g)$ para quaisquer $f,g \in R_n$.

O colchete de Poisson permite caracterizar polinômios algebricamente independentes: observe que f e g são algebricamente independentes sobre K se, e somente se, $[f,g] \neq 0$. Em vista da fórmula acima para o grau de [f,g], temos então que f e g são algebricamente independentes sobre K se, e somente se,

$$\operatorname{gr}([f,g]) \geq 2$$
.

Suponhamos agora que o par f_1 , f_2 seja *-reduzido. Denotamos por m_i o grau de f_i , para i=1,2. Sem perda de generalidade, suponhamos sempre que $m_1 \leq m_2$. Em [3] demonstra-se que, se g_1 , g_2 são elementos homogêneos não nulos, algebricamente dependentes, então

existem $a,b \in K$, $n_1,n_2 \in \mathbb{N}$ e um polinômio h tais que $g_1 = a_1h^{n_1}$ e $g_2 = a_2h^{n_2}$. Aplicando esse resultado para \bar{f}_1 e \bar{f}_2 concluímos que nem $m_1 = m_2$ nem m_1 divide m_2 , senão \bar{f}_1 geraria \bar{f}_2 . Então seja $d = \mathrm{MDC}(m_1,m_2)$ e escreva $m_i = dp_i$, i = 1,2. Como m_1 não divide m_2 , obrigatoriamente $p_i \geq 2$, i = 1,2. Em seguida, definimos

$$N(f_1, f_2) = p_1 m_2 - m_1 - m_2 + gr([f_1, f_2])$$

(em particular, $N(f_1, f_2) > \operatorname{gr}([f_1, f_2])$, já que $p_i \geq 2$ e $m_2 > m_1$).

Seja $g \in K[x_1, ..., x_n]$. Denotaremos por $gr_i(g)$ o grau de g como polinômio de variável x_i , i = 1, ..., n.

O seguinte teorema é o resultado central de [17].

Teorema 3.1. Seja f_1 , f_2 par *-reduzido e a consequente notação acima. Escreva $gr_2(g) = q_1p_1 + r_1$, $gr_1(g) = q_2p_2 + r_2$, com $0 \le r_i < p_i$, i = 1, 2. Então

$$gr(g(f_1, f_2)) \ge q_1 N(f_1, f_2) + m_2 r_1$$

е

$$gr(g(f_1, f_2)) \ge q_2 N(f_1, f_2) + m_1 r_2.$$

Veremos, como primeira aplicação deste lema, a conclusão da análise dos automorfismos de R_2 .

3.2 Caso n = 2, o Teorema de Jung

Para concluir a demonstração de que todo automorfismo de R_2 é manso, é suficiente mostrar que se $\Phi = (f_1, f_2)$ é um automorfismo então o par f_1, f_2 não pode ser *-reduzido.

Seja $\Psi=(g_1,g_2)$ o inverso de Φ . Imediatamente, temos $x_i=g_i(f_1,f_2)$, i=1,2. Suponha que f_1,f_2 seja *-reduzido. Se $\operatorname{gr}_2(g_1)=q_1p_1+r_1$, $0\leq r_1< p_1$, então, pelo Teorema 3.1,

$$1 = \operatorname{gr}(g_1(f_1, f_2)) \ge q_1 N(f_1, f_2) + m_2 r_1$$
.

Como f_1 e f_2 são algebricamente independentes temos que $N(f_1,f_2) > \operatorname{gr}([f_1,f_2]) \geq 2$. Logo, $q_1 = r_1 = 0$ e portanto g_1 é polinômio somente de x_1 . Assim recaímos no caso de automorfismo quando n=1, pois

 $x_1=g_1(f_1)$. Logo f_1 e \bar{f}_1 têm ambos grau 1. Como \bar{f}_1 e \bar{f}_2 são algebricamente dependentes concluímos que \bar{f}_2 é gerado por \bar{f}_1 , o que é uma contradição. Portanto, não existem pares *-reduzidos em R_2 e, consequentemente, todo automorfismo de R_2 é manso.

3.3 Caso n = 3

Vamos considerar agora o caso n = 3.

Em 1972, M. Nagata [13] construiu o seguinte automorfismo de R_2 para o caso em que K não é um corpo, mas somente um domínio de integridade. Seja $z \in K^*$ qualquer elemento não inversível e seja $\sigma = (f_1, f_2)$, com

$$f_1 = x - 1 - 2x_2(zx_1 + x_2^2) - z(zx_1 + x_2^2)^2$$
,
 $f_2 = x_2 + z(zx_1 + x_2^2)$.

Pode-se mostrar que σ é um automorfismo e não é manso.

Repare que o automorfismo da conjectura de Nagata \acute{e} o mesmo acima, tratando z agora como uma terceira variável e considerando K o corpo dos números complexos. Ele pode ser escrito como

$$\sigma_{\alpha} = (x_1 - 2x_2\alpha - x_3\alpha^2, x_2 + x_3\alpha, x_3),$$

em que $\alpha = (x_1x_3 + x_2^2)$. Observe que σ_{α} é um automorfismo de R_3 , pois tem a inversa

$$\sigma_{\alpha}^{-1} = \sigma_{-\alpha} = (x_1 + 2x_2\alpha - x_3\alpha^2, x_2 - x_3\alpha, x_3).$$

Primeiramente podemos verificar que o automorfismo de Nagata não é elementarmente redutível. De fato, se $f_1 = x_1 - 2x_2\alpha - x_3\alpha^2$, $f_2 = x_2 + x_3\alpha$, $f_3 = x_3$ então $\bar{f}_1 = \alpha^2 x_3$, $\bar{f}_2 = \alpha x_3$ e $\bar{f}_3 = x_3$, que são dois a dois algebricamente independentes. Mais ainda, verifica-se que se i é diferente de j e de k, então \bar{f}_i não é gerado por \bar{f}_j e \bar{f}_k . Isso implica que f_i não é elementarmente redutível, para qualquer i, e, portanto, σ não é elementarmente redutível.

Seria natural esperar que qualquer automorfismo manso fosse elementarmente redutível, mas Shestakov e Umirbaev mostraram que este não é o caso se n=3.

Um exemplo de tal automorfismo é exibido na seguinte proposição.

Proposição 3.2. Considere os seguintes polinômios

$$\begin{aligned} h_1 &= x_1 \,, \\ h_2 &= x_2 + x_1^2 \,, \\ h_3 &= x_3 + 2x_1x_2 + x_1^3 \,, \\ g_1 &= 4h_2 + h_3^2 \,, \\ g_2 &= 6h_1 + 6h_2h_3 + h_3^3 \,, \\ g_3 &= h_3 \,, \\ g &= g_2^2 - g_1^3 \,. \end{aligned}$$

O automorfismo $\Phi = (f_1, f_2, f_3)$ definido por

$$f_1 = g_1$$
, $f_2 = g_2 + g_3 + g$, $f_3 = g_3 + g$,

é manso mas não é elementarmente redutível.

Demonstração. É fácil mostrar, por inspeção, que $H = (h_1, h_2, h_3)$ e $G = (g_1, g_2, g_3)$ são automorfismos mansos e, portanto, Φ também é manso. Em particular, f_1, f_2, f_3 são algebricamente independentes.

Suponhamos que Φ seja elementarmente redutível. Então um dos f_i , i=1,2,3 é elementarmente redutível. Explicitando as partes homogêneas de maior grau, temos $\bar{f}_1=x_1^6$, $\bar{f}_2=x_1^9$, $\bar{f}_3=12(x_1^7x_3-x_1^6x_2^2)$. Observamos que \bar{f}_2 e \bar{f}_3 são algebricamente independentes e \bar{f}_1 não é gerado por \bar{f}_2 e \bar{f}_3 . Portanto f_1 não é elementarmente redutível. Da mesma maneira, mostra-se que f_2 não é elementarmente redutível. Finalmente, suponhamos que f_3 seja elementarmente redutível, isto é, que $\bar{f}_3=\bar{g}(f_1,f_2)$ para algum polinômio $g\in R_2$. Em particular, $gr(f_3)=gr(g(f_1,f_2))$. Aplicando o Teorema 3.1 ao par (f_1,f_2) , obtemos

$$q(3 + gr([f_1, f_2])) + 9r \le 8$$
,

em que $\operatorname{gr}_2 g = 2q + r$. Logo, q = r = 0, $\operatorname{gr}_2 g = 0$ e $g \in R_1$. Concluímos que \overline{f}_3 é gerado por \overline{f}_1 . Isto é uma contradição. Portanto, Φ não é elementarmente redutível.

4 – Reduções não elementares

Como vimos acima, um automorfismo manso pode não ser elementarmente redutível no caso n=3. Vamos considerar novamente o automorfismo Φ da Proposição 3.2. Seja $l=(x_1,x_2-x_3,x_3)$, que é um automorfismo elementar. Então $l\circ\Phi=(g_1,g_2,g_3+g)$. Considere agora o automorfismo elementar $E=(x_1,x_2,x_3-y)$, onde $y=y(x_1,x_2)=x_2^2-x_1^3$. Como $g=y(g_1,g_2)$ temos

$$E \circ l \circ \Phi = (g_1, g_2, g_3),$$

 $g_1 = f_1$, $\operatorname{gr}(g_2) = \operatorname{gr}(f_2)$, $\operatorname{gr}(g_3) = 3 < 8 = \operatorname{gr}(f_3)$. Ou seja, neste caso existe um automorfismo linear $l = (x_1, x_2 - x_3, x_3)$ tal que $l \circ \Phi$ é elementarmente redutível.

Esse exemplo mostrou que, no caso n=3, existem automorfismos mansos que não são elementarmente redutíveis, mas que se tornam assim depois de uma torção por um automorfismo linear. E será essa a única possibilidade? Na realidade, Shestakov e Umirbaev introduziram quatro classes de automorfismos (tipos I-IV) que não são elementarmente redutíveis. A definição destes quatro tipos de automorfismos é bastante técnica. Por exemplo, um automorfismo $F=(f_1,f_2,f_3)$ admite a redução do tipo I se, salvo a permutação dos índices, os polinômios f_1 , f_2 e f_3 verificam as seguintes condições:

- existe um número ímpar $s \ge 3$ tal que $s \cdot \operatorname{gr}(f_1) = 2 \cdot \operatorname{gr}(f_2)$,
- $gr(f_1) < gr(f_3) \le gr(f_2)$,
- $\bar{f}_3 \notin K[\bar{f}_1, \bar{f}_2]$,
- existem um $a \in K$ não nulo e $f \in K[f_1, f_2 af_3]$ tais que $gr(f + f_3) < gr(f_3)$ e

$$gr([f_1, f + f_3]) < gr(f_2) + gr([f_1, f_2 - af_3]).$$

Neste caso, se $l=(x_1,x_2-ax_3,x_3)$ então $l\circ F=(f_1,f_2-af_3,f_3)$ é elementarmente redutível (somando f_3 com f diminuímos o grau de f_3).

Exemplo. O automorfismo manso Φ considerado acima é automorfismo com redução do tipo I e s=3.

Não daremos as definições formais para os outros três tipos de automorfismos introduzidos em [18]; os interessados podem verificar o artigo original. Observamos somente que qualquer automorfismo que admite a *redução do tipo II* é elementarmente redutível depois de torção por dois automorfismos lineares da forma $(x_1, x_2 - ax_3, x_3)$. Qualquer automorfismo que admite a *redução do tipo III* é elementarmente redutível depois de torção por dois automorfismos: um linear e outro quadrático da forma $(x_1, x_2 - bx_3 - cx_3^2, x_3)$. Finalmente, qualquer automorfismo que admite a *redução do tipo IV* é elementarmente redutível depois de torção por três automorfismos: um linear e dois quadráticos.

Observação. Se um automorfismo $F = (f_1, f_2, f_3)$ admite uma redução do tipo I-IV então $gr(f_i) > 1, i = 1,2,3$. Isso segue imediatamente das definições.

Definem-se então os automorfismos *simples* de modo indutivo. São simples todos os automorfismos de grau 3 (isto é, os afins) e também aqueles que admitem uma redução ou elementar ou de tipos I a IV para um outro automorfismo simples. Como todas essas reduções são composições de elementares, segue automaticamente que os automorfismos simples são mansos.

O resultado principal de Shestakov e Umirbaev é o seguinte:

Teorema 4.1. Todos os automorfismos mansos são simples. Em particular, todos os automorfismos mansos admitem uma redução ou elementar ou de tipos I a IV (e essa redução é univocamente definida).

A demonstração consiste em mostrar que toda composição de um automorfismo simples θ com um elementar e é também um automorfismo simples. Assim, sendo a identidade, por definição, um automorfismo simples, qualquer automorfismo manso também o será, dado que é uma composição de elementares.

Essa demonstração é trabalhosa e bastante técnica. Considera-se que θ possa ter qualquer um dos 5 tipos de redução em alguma de suas 3 componentes, perfazendo 15 casos a serem estudados. Aqui a estimativa obtida no Teorema 3.1 é novamente fundamental.

Agora, levando em conta a observação anterior ao teorema, concluímos que qualquer automorfismo manso não linear $\Phi=(f_1,f_2,f_3)$ tem $\operatorname{gr}(f_i)>1$, para todo i=1,2,3. Mas $f_3=x_3$ no automorfismo de Nagata. Portanto, temos imediatamente

Corolário 4.2. O automorfismo de Nagata é selvagem.

Construir automorfismos mansos em geral é um problema difícil. Van den Essen, Makar-Limanov e Willems construíram uma série de automorfismos mansos na classe D_I com s=3,5,7 (ver [20]). Recentemente, Kuroda [9] construiu exemplos de automorfismos em D_I para qualquer s ímpar.

Os artigos de Shestakov e Umirbaev deixaram em aberto a questão de construir pelo menos um exemplo de automorfismos nas classes D_{II} , D_{III} e D_{IV} . Kuroda mostrou em [10] que a classe D_{IV} é vazia. O problema de existência de automorfismos nas classes D_{II} e D_{III} continua em aberto.

5 – Estrutura dos grupos de automorfismos mansos

Além da demonstração de que todo automorfismo de R_2 é manso, van der Kulk, em [8], descreve a estrutura de Aut R_2 : ele é o produto amalgamado livre de dois grupos sobre sua intersecção. Um deles é o grupo afim Aff(k,2) formado pelas aplicações afins inversíveis e o outro é o chamado *Grupo de Jonquieres* J(k,2), formado pelas aplicações do tipo $F = (a_1x + f_1(y), a_2y + f_2)$, onde $a_1, a_2 \in K^*$, $f_2 \in K$ e $f_1(y) \in K[y]$.

Outro resultado conhecido acerca da estrutura de Aut R_2 é que todo subgrupo finito de Aut R_2 é conjugado a um grupo de automorfismos lineares. A demonstração desses fatos pode ser encontrada em [3].

No caso de R_3 , Umirbaev obteve uma descrição de seu grupo de automorfismos mansos através de geradores e relações, que veremos a seguir.

Vamos considerar os automorfismos elementares de R_3 :

$$\phi_{i,a,f}:(x_1,\ldots,x_n)\mapsto (x_1,\ldots,x_{i-1},ax_i+f,x_{i+1},\ldots,x_n).$$

É fácil ver que esses automorfismos satisfazem as seguintes identidades:

$$\phi_{i,a,f}\phi_{i,b,g} = \phi_{i,ab,bf+g}. \tag{2}$$

Além disso, se $i \neq j$ e f não depende de x_i e x_j , temos

$$\phi_{i,a,f}^{-1}\phi_{j,b,g}\phi_{i,a,f} = \phi_{j,b,\phi_{i,a,f}^{-1}(g)}.$$
 (3)

Seja σ_{ks} o automorfismo de permutação das variáveis x_k e x_s . Este automorfismo pode ser naturalmente escrito como composição de automorfismos elementares e, portanto, σ_{ks} é manso. Temos

$$\sigma_{ks}\phi_{i,a,f} = \sigma_{j,a,\sigma_{ks}(f)} , \qquad (4)$$

onde $x_i = \sigma_{ks}(x_i)$.

Teorema 5.1. (Umirbaev, [19]) O grupo de automorfismos mansos de R_3 tem geradores $\phi_{i,a,f}$ e relações (2)-(4).

A descrição do grupo de automorfismos mansos para n > 3 está em aberto.

6 – Considerações finais

O uso da álgebra de Poisson livre $P_n = P(L[X])$ como ferramenta na descrição dos automorfismos mansos de R_3 estabeleceu uma conexão entre suas estruturas. Algumas questões envolvendo os automorfismos de P_n surgiram naturalmente. Citaremos alguns resultados interessantes nessa direção.

Observe que existe um epimorfismo canônico de álgebras de Poisson $P_n \to R_n$ induzindo um epimorfismo de grupos $\pi: Aut\, P_n \to Aut\, R_n$. A restrição desse epimorfismo ao subgrupo de automorfismos mansos de P_n induz um epimorfismo ao grupo $T_n(K)$ de automorfismos mansos de R_n .

Makar-Limanov, Tursunbekova e Umirbaev [12] mostraram que qualquer automorfismo de P_2 é manso. De fato, temos isomorfismo de grupos $Aut P_2 \simeq Aut R_2$. Por outro lado, não é verdade que qualquer automorfismo de P_3 seja manso. Isso vem do fato que o

automorfismo de Nagata pode ser levantado a um automorfismo de P_3 .

Recentemente, Shestakov construiu o seguinte automorfismo Φ de P_3 , que é selvagem mas tem imagem polinomial $\pi(\Phi)$ mansa:

$$\Phi = (x_1 + [z, x_3], x_2 + zx_3, x_3),$$

onde
$$z = x_1 x_3 - [x_2, x_3]$$
.

Makar-Limanov e Shestakov mostraram o seguinte resultado interessante. Seja $\phi: P_n \to P_n$ um endomorfismo tal que sua imagem $\pi(\phi)$ seja um automorfismo de R_2 . Se $\phi([x_1,x_2])$ é um múltiplo de $[x_1,x_2]$ então ϕ é um automorfismo de P_2 .

Como observado por van den Essen em [6], a história do Problema dos Geradores Mansos tem os seguintes episódios: em 1942, Jung solucionou o caso para n=2; em 1972, Nagata construiu um candidato a contraexemplo para o caso n=3; e, em 2002, Shestakov e Umirbaev resolveram o caso n=3. Assim, ele propõe:

Problema do ciclo de 30 anos. O que acontecerá em 2032?

Referências

- [1] ALEV, J. A note on Nagata's automorphism. In: Automorphisms of affine spaces. Conference on Invertible Polynomial Maps, Curaçao, 1994. Proceedings. Dordrecht: Kluwer, 1995. p. 215–221.
- [2] BIALYNICKI-BIRULA, A.; ROSENLICHT, M. Injective morphisms of real algebraic varieties. *Proceedings of the American Mathematical Society*, v. 13, p. 200–203, 1962.
- [3] COHN, P. M. Free rings and their relations. 2. ed. London: Academic Press, 1985. (London Mathematical Society Monographs, 19)
- [4] DICKS, W. Automorphisms of the polynomial ring in two variables. *Publicacions de la Secció de Matemàtiques Universitat Autònoma de Barcelona*, v. 27, n. 1, 155–162, 1983.

- [5] VAN DEN ESSEN, A. (Ed.) Polynomial automorphisms and the Jacobian conjecture. Basel: Birkhäuser Verlag, 2000. (Progress in Mathematics, 190)
- [6] VAN DEN ESSEN, A. The solution of the tame generators conjecture according to Shestakov and Umirbaev. *Colloquium Mathematicum*, v. 100, n. 2, p. 181–194, 2004.
- [7] JUNG, H. W. E. Über ganze birationale Transformationen der Ebene. *Journal für die Reine und Angewandte Mathematik*, v. 184, p. 161–174, 1942.
- [8] VAN DER KULK, W. On polynomial rings in two variables. *Nieuw Archief voor Wiskunde* (3), v. 1, p. 33–41, 1953.
- [9] KURODA, S. Automorphisms of a polynomial ring which admit reductions of type I. *ar-Xiv:0708.2120v2*.
- [10] KURODA, S. Shestakov-Umirbaev reductions and Nagata's conjecture on a polynomial automorphism. *arXiv:0801.0117v1*.
- [11] MAKAR-LIMANOV, L. On automorphisms of certain algebras (in Russian). Ph.D. Thesis Moscow State University, 1970.
- [12] MAKAR-LIMANOV, L.; TURUSBEKOVA, U.; UMIR-BAEV, U. Automorphisms and derivations of free Poisson algebras in two variables. *arXiv*:0708.1148.
- [13] NAGATA, M. On automorphism group of k[X,Y]. Tokyo: Kinokuniya Book-Store, 1972. (Department of Mathematics, Kyoto University, Lectures in Mathematics, 5)
- [14] RENTSCHLER, R. Opérations du groupe additif sur le plan affine. *C.R. Acad. Sci. Paris. Sér. A-B*, v. 267, p. A384-A387, 1968.
- [15] ROWEN, L. H. *Graduate algebra: commutative view.* Providence: American Mathematical Society, 2006. (Graduate Studies in Mathematics, 73)
- [16] SHESTAKOV, I. Quantization of Poisson superalgebras and speciality of Jordan superalgebras of Poisson type. *Algebra and Logic*, v. 32, n. 5, p. 309–317, 1993.

- [17] SHESTAKOV, I.; UMIRBAEV, U. Poisson brackets and two-generated subalgebras of rings of polinomials. *Journal of the American Mathematical Society*, v. 17, n. 1, p. 181–196, 2004.
- [18] SHESTAKOV, I.; UMIRBAEV, U. The tame and the wild automorphisms of polynomial rings in three variables. *Journal of the American Mathematical Society*, v. 17, p. 197–227, 2004.
- [19] UMIRBAEV, U. Defining relations of the tame automorphism group of polynomial algebras in three variables. *Journal für die Reine und Angewandte Mathematik*, v. 600, p. 203–235, 2006.
- [20] WILLEMS, R.; VAN DEN ESSEN, A.; MAKAR-LIMANOV, L. *Remarks on Shestakov-Umirbaev*. Nijmegen: Radboud University, 2004. (Report, 0414)

Vyacheslav Futorny (futorny@ime.usp.br)
Lucia S. I. Murakami (ikemoto@ime.usp.br)
Instituto de Matemática e Estatística da USP
C. P. 66281 - 05314–970 - São Paulo, SP