QUIZ 2 Solutions - MATH 225

Question. Use Gauss-Jordan elimination to determine the solution set to the given system

Morning session

$$2x - y - z = 2,$$

$$4x + 3y - 2z = -1,$$

$$x + 4y + z = 4.$$

Its augmented matrix is $\begin{bmatrix} 2 & -1 & -1 & | & 2 \\ 4 & 3 & -2 & | & -1 \\ 1 & 4 & 1 & | & 4 \end{bmatrix}$. We apply the following operations in order

 P_{13} , $A_{12}(-4)$, $A_{13}(-2)$, $M_3(-\frac{1}{3})$, $M_2(-1)$, $A_{32}(-4)$, $A_{23}(-3)$, $M_3(-\frac{1}{5})$, $A_{32}(-2)$, $A_{31}(-1)$, $A_{21}(-4)$.

Then we get $\begin{bmatrix} 1 & 0 & 0 & | & 3 \\ 0 & 1 & 0 & | & -1 \\ 0 & 0 & 1 & | & 5 \end{bmatrix}$, so (3, -1, 5) is the solution for the system.

Afternoon session

$$x - 3y + z = 8,$$

 $5x - 4y + z = 15,$
 $2x + 4y - 3z = -4.$

Its augmented matrix is $\begin{bmatrix} 1 & -3 & 1 & | & 8 \\ 5 & -4 & 1 & | & 15 \\ 2 & 4 & -3 & | & -4 \end{bmatrix}$. We apply the following operations in order

$$A_{12}(-5)$$
, $A_{13}(-2)$, $A_{32}(-1)$, $A_{23}(-10)$, $M_3(-\frac{1}{15})$, $A_{32}(-1)$, $A_{31}(-1)$, $A_{21}(3)$.

Then we get $\begin{bmatrix} 1 & 0 & 0 & | & 1 \\ 0 & 1 & 0 & | & -3 \\ 0 & 0 & 1 & | & -2 \end{bmatrix}$, so (1,-3,-2) is the solution for the system.