M10 : Polarisation des ondes électromagnétiques

Louis Heitz et Vincent Brémaud

Sommaire

Rapport du jury	3
Bibliographie	3
Introduction	4
I Méthode $lambda/4$	4
II Vérification de la loi de Malus	4
III Mesure de l'angle de Brewster	4
Conclusion	4
A Correction	5
B Commentaires	5
C Matériels	5
D Tableau présenté	5

Le code couleur utilisé dans ce document est le suivant :

- \bullet \to Pour des élements de correction / des questions posées par le correcteur
- Pour les renvois vers la bibliographie
- Pour des remarques diverses des auteurs
- \triangle Pour des points particulièrement délicats, des erreurs à ne pas commettre
- Pour des liens cliquables

Rapports du jury

Bibliographie

[1] Compte rendu de Blandine

Introduction

Onde électromagnétique = rayon + polarisation. rayons -> interférences, polarisation a son importance pour biréfringence. Polarisation du ciel, les abeilles tout ça.

I Méthode lambda/4

On utilise une lame biréfringente dont on connaît Δn et e. On montre que l'ellipticité est $\phi = 2\pi \Delta n e/\lambda$. On mesure en pratique l'ellipticité divisée par deux, soit

$$\beta = \phi/2 = \pi \Delta ne/\lambda$$

Protocole:

- Montage polariseur analyseur croisés, lumière parallèle
- On ajoute la lame biréfrigente, on cherche l'extinction, on tourne de 45 °. On a en sortie de la lame une polarisaiton elliptique dont les axes sont ceux des polariseurs et analyseurs.
- On ajoute la lame $\lambda/4$, extinction puis 45 degrés.
- Puis on remet la lame biréfringente, on tourne l'analyseur jusqu'à avoir une extinction : on mesure alors β

Pour remonter à ϕ , il faut faire le calcul modulo $\pi/2$ pour avoir un angle entre $-\pi$ et π . On peut trouver l'ellipticité = $\arctan(a/b)$ ou $\pi/2 - \arctan(b/a)$. A voir !

II Vérification de la loi de Malus

III Mesure de l'angle de Brewster

Conclusion

Production: on a vu par réflexion, on peut aussi faire par absorption (polariseur).

- A Correction
- **B** Commentaires
- C Matériels
- D Tableau présenté