Part of born so Chap 10-7 sem-1
simply applicable
to power seriest Ration dest. Enapterno. 6 Criteria limit | n+1+term Exercise 6.1. -> Sem -2 Now if converges Remember L 21 L>1 diverges (i) limit 1 => 0 test not applicable CL = 1 (ii) I 1 is a harmonic series i.e divergent apply another test. > Alternating Series test applies on alternating series. Divergence test

ninterm

test Alternating Series e.g: generally { (i) \(\subseteq \) (-1) \(\superall \) if limit an \(\superall \) diverges indicates (ii) \(\superall \) (-1) \(\superall \) an. I elsewise with may or use this test \(\superall \) \(\superall \) \(\superall \) if \(\superall \) indicates \(\superall \) in Now alternating series test has Teanditions which should be met; if met the series converges; else diverges. limit an = 0 [fails divergence test] (11) The squence is decreasing; i.e antl < an Example: $f(1)^n(1)$; check this by alternating series to if it converges cycliverales.

The 2 condition meet and it is the 1 converges.

The 1 condition meet and it is converges. 1/m+1 < 1/2 => 1/2 < 1

Example; Now check this term.

$$\frac{20}{1}$$
 $(-1)^{n+1}$ $\frac{5n+3}{2n-7}$.

P-series test!

then this power 'p' can tell us. If a series is in the form of

Abosulte Convergent E test!

If we take the an term of a series and take its moduls with alimit > say this convergence.

Then we conde than the original series convergence

as well.

if
$$\sum_{n=1}^{\infty} |a_n| = 1$$
 converges. Then $\sum_{n=1}^{\infty} |a_n| = 1$ and $\sum_{n=1}^{\infty} |a_n| = 1$

Geometri C series test

I arn-1 now if
$$|r| \angle 1$$
.

Ly converges

 $|r| \ge 1$ diverges.

aprind interval of convey of power series & its radius. 6. FKI (1-1)K. No the power series converge s; by the not term test; ratio limit | (x-1)kt => (k+1)kt (x-1)k+1-k k-70 | K1, (x-1)k| => (k+1)kt (x-1)° | kt (x-1)° 711(K+1) (2-1) => 12-11limit (K+1) <1 Now as the limit k-70 we need to stopit and only x=1 con do it to let our power series be convergent.

the internal of convergence is reduced to only one and the radius of interval is 0; as their is only one point.

Marie Marie

Said phints in the said

$$= \frac{1}{2} \left(\frac{1}{(-1)^{k}} \frac{1}{1} \frac{1}{k(k+1)} \right)$$

here we can split the series into two to check the convergence.

$$\frac{2}{1}(-1)^{1/2}$$
 $\frac{2}{1}$ $\frac{2}$

of Both salved by alternating series test.

$$=7$$
 $=\frac{2}{2}$ $=\frac{1}{K(1)}$

$$\sum_{k=1}^{\infty} \left(\frac{1}{k} - \frac{1}{k+1} \right) = Partial$$
fraction

Expanding this series will give

a telescoping series and if

thattelescoping series yeid

a finite answer, it is convergent

To cater negativity of the the derived terms 1-variable we may adjust the values of our summation.

Thousever 2° is good 3

$$\left(\frac{1+\frac{1}{2}\chi^2+\frac{1}{4!}\chi^4+\dots}{\frac{1}{4!}\chi^3+\frac{1}{5!}\chi^5+\infty}\right) = 7 \sinh \chi' \text{ Maclaurin Series}.$$

Now the same series with alternating signs are.

$$\left(1-\frac{1}{2!}\chi^2+\frac{1}{4!}\chi^4-\cdots\right)$$
 cos χ 's Maclawin series.

$$\left(\chi - \frac{1}{3!}\chi^3 + \frac{1}{5!}\chi^5\right)$$
 Sin χ 's Maclaurin Series.

$$\frac{2}{\sum_{k=0}^{1/2}} \left(\frac{1+x+x^2+x^3+x^4}{2!} \right) e^{x}$$
 Macdawin Series!

in the question were we put a defined series just like abore ones, we immediately expand and take abore variables common afterwards!