Parameter sensitivity and identifiability for a biogeochemical model of hypoxia in the northern Gulf of Mexico

2

3

Marcus W. Beck¹, John C. Lehrter², Lisa L. Lowe³

¹USEPA National Health and Environmental Effects Research Laboratory Gulf Ecology Division, 1 Sabine Island Drive, Gulf Breeze, FL 32561 Phone: 850-934-2480, Fax: 850-934-2401 Email: beck.marcus@epa.gov

> ²Dauphin Island Sea Lab, University of South Alabama Dauphin Island, AL 36528 Phone: 251-861-2141 ext. 7567 Email: jlehrter@disl.org

³Lockheed Martin IS & GS - Civil, supporting the USEPA Resarch Triangle Park, NC 27709 Phone: 919-541-3985, Email: lowe.lisa@epa.gov

Version Date: Thu Dec 1 12:24:21 2016 -0600

Abstract

5

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

26

27

28

31

Bio-geo-chemical models are useful tools in environmental sciences that can guide management and policy-making. Consequently, significant time and resources are spent developing these models in system-specific contexts. The optimization of model parameters to maximize precision, including transferability of these models to different systems, are fundamental concerns in the development and application of these tools. This study provides a context for understanding quantitative limitations of coupled hydrodynamic-ecological models by evaluating parameter sensitivity and identifability of a zero-dimensional (0-D) unit of a larger spatio-temporal model of hypoxia on the Louisiana continental shelf of Gulf of Mexico. The analysis provides a contrast of numeric and ecological certainty in parameter subsets using a systematic framework to infer larger trends in dissolved oxygen dynamics over time, having implications for understanding factors that contribute to environmental conditions that are detrimental to aquatic resources. In particular, we focus on issues of parameter identifiability using local sensitivity analyses to provide quantitative descriptions of numerical constraints on model precision. We argue that quantitative and ecological certainty in model calibration are often at odds and practitioners must choose explicit model components to optimize given tradeoffs between the two. We further conclude that numerically optimal parameter sets for models of hypoxia are often small subsets of the complete parameter set because of redundancies in the unique effects of parameter perturbations on model output. As a result, we demonstrate that use of a model for inference into ecological mechanisms of observed or predicted changes in hypoxic condition can be potentially misguided in the absence of quantitative descriptions of identifiability. Although these concerns have been expressed in the literature, they are rarely explicitly addressed or included in model evaluations. In addition to immediate implications for regional models, we provide a framework for describing the effects of parameter uncertainty and identifiability that can be applied to similar models to better inform environmental management.

1 Introduction

Hypoxia formation in bottom waters of coastal oceans occurs primarily from excess nutrient inputs from land-based sources (Justíc et al. 1987, Diaz and Rosenberg 1995, Howarth et al. 1996). These events are detrimental to aquatic organisms and have significant negative effects on economic resources derived from coastal ecosystems (Lipton and Hicks 2003, Diaz and

```
Rosenberg 2011). An understanding of the biological, physical, and chemical processes that
   contribute to the growth of hypoxic areas is a critical concern for mitigating and preventing these
   negative impacts. Numerical ecosystem models have been important tools for describing current
37
   knowledge of ecosystem processes that contribute to hypoxia formation and for predicting the
   effects of proposed management activities or future scenarios (Scavia et al. 2004, Hagy and
   Murrell 2007, Pauer et al. 2016). Unlike statistical models that have more generic structures,
   simulation and process-based models include explicit descriptions of relevant processes that are
   constrained by empirical or observational data relevant to the system of interest (e.g. Omlin et al.
   2001b, Eldridge and Roelke 2010). These models are often coupled with hydrodynamic grids to
   provide spatially-explicit representations of patterns in three dimensions (Warner et al. 2005,
   Zhao et al. 2010, Ganju et al. 2016). Combined hydrodynamic and bio-geo-chemical models have
   been developed specifically to describe hypoxic conditions on the Louisiana continental
   shelf (LCS) in the northern Gulf of Mexico (GOM) (Fennel et al. 2013, Obenour et al. 2015,
   Pauer et al. 2016, Lehrter et al. in review). This area drains a significant portion of the continental
   United States through the Mississippi-Atchafalaya River Basin (MARB) and is the second largest
   hypoxic area in the world (Rabalais et al. 2002). Understanding processes that contribute to the
   frequency and duration of hypoxic events remains a critical research goal for the region, including
51
   the application of process-based models to characterize the current knowledge domain.
52
          The development and application of a model represents a tradeoff between characteristics
53
   expected from the output or provided by the structural components. An idealized model is
   sufficiently generalizable across systems, provides results that are precise given the inputs, and
55
   includes components that are realistic descriptions of actual processes (Levins 1966). Given that
   these characteristics cannot be simultaneously achieved, models are developed in partial
57
   dependence of reality and theoretical constructs, completely separate from both, or dependent on
   one or the other (Morrison and Morgan 1999, Ganju et al. 2016). These challenges are analagous
   to the well-known bias-variance tradeoff in statistical models that balances the competing
   objectives of over- and under-fitting to an observed dataset. Process-based models are more
61
   commonly imbalanced between reality and theory, such that most are over-parameterized in an
   attempt to completely describe reality (Denman 2003, Nossent and Bauwens 2012, Petrucci and
   Bonhomme 2014). Such over-parameterization, including use of many structural equations, can
```

have serious implications for practical applications. Quantitative limitations of over-parameterization are analagous to degrees of freedom in standard statistical models as free parameters cannot be numerically estimated when constrained to an observed dataset (Kirchner 67 2006). More importantly, over-parameterization can limit use across systems outside of the data domain and impose uncertainty in model predictions as realistic values for every variable may not be known or inaccurately applied from existing studies (Durand et al. 2002, Refsgaard et al. 2007, Wade et al. 2008). The application of process-based models to describe hypoxia dynamics has not been immune to these challenges and comprehensive approaches are needed to develop models that more carefully balance theory with reality (e.g., Snowling and Kramer 2001). 73 Standard approaches for uncertainty analysis can be used to begin addressing model 74 complexity issues. In the most general sense, uncertainty is evaluated relative to the effects of input conditions or the observed data used to calibrate a model, changes in parameter values, or variation in the structural components (Beck 1987). Evaluating parameter uncertainty is by far the 77 most common and simplest means of evaluating model behavior. Although uncertainty analyses 78 should be integrated throughout model development and application, parameters are more often evaluated post-hoc as a form of 'damage control' for further calibration. This approach is sometimes called inverse modelling where results from sensitivity analyses are used to guide 81 calibration or fit of the developed model to observations (Soetaert and Petzoldt 2010, or 82 confronting models with data, sensu Hilborn and Mangel 1997). Parameter sensitivity analysis 83 combined with inverse modelling necessarily involves questions of parameter 'identifiability', where only a subset of parameters can be numerically constrained to the data as compared to the 85 entire parameter set. Redundancies in parameter effects lead to unidentifiable models where 86 optimal solutions may be empirically impossible (i.e., standard algorithms will not converge) or 87 parameter values may be non-unique leading to the right answer for the wrong reason (Kirchner 2006). The concept of identifiable parameter subsets is not foreign to hypoxia or eutrophication models (Omlin et al. 2001a, Estrada and Diaz 2010, Mateus and Franz 2015), although there is a clear need for greater integration of these concepts in model development (Fasham et al. 2006). 91 Moreover, the inclusion of sensitivity and identifiability analyses in model tuning will require the adoption of selection rules that are context-dependent given the subsets that are possible with

large parameter sets (e.g., Wagener et al. 2001a,b).

This study describes a parameter sensitivity analysis to evaluate identifiability of 95 parameter subsets for a bio-geo-chemical model of hypoxia for the northern GOM. We evaluate a 96 simple $\overset{\text{acro}:zerod}{\text{zero-dimensional}}$ (0-D) unit of a larger spatial-temporal model to explore relationships 97 between multiple parameter sets and hypoxia dynamics on the LCS. Specifically, we provide empirical results to support the assumption that models are generally over-parameterized and only a finite and smaller subset of the larger parameter set can be optimized for a given research 100 question or dataset. We provide explicit guidance for choosing such subsets of the parameter 101 space given constraints on identifiability as directly related to sensitivity analyses. The objectives 102 are to 1) identify the parameters that have the greatest influence on dissolved oxygen (O_2) using 103 local sensitivity analysis, 2) quantify the identifiability of subsets of the total parameter space based on sensitivity, 3) and provide a set of heuristics for choosing parameters based on 105 sensitivity, identifiability, and parameter categories, including extension to other state variables 106 provided by the model. A final analysis evaluates identifiability relative to structural uncertainty 107 to provide an example of extending these methods to more complex uncertainty assessments. The 108 optimum parameter space is defined as the chosen subset that represents the maximum number of identifiable parameters. Here, 'optimum' is both a qualitative description based on a research 110 question or management goal and a quantitative objective based on numerical optimization 111 criteria for fitting model output to a calibration dataset. These results can be used to refine 112 existing models or guide application of models to novel contexts, such as downscaling or 113 application to new environments. We conclude with a discussion of the implications for hypoxia formation in coastal regions, including management strategies for nutrient reduction and use of 115 mechanistic models to inform decision-making. 116

2 Methods

117

118 2.1 Model description

Hypoxic events, defined as <2 mg L⁻¹ of O₂ (<64 mmol m⁻³), occur seasonally in bottom waters in the northern GOM. The LCS receives high nutrient loads from the MARB that drains a significant portion of the continental United States. Nutrient-stimulated primary production in surface waters increases biological oxygen demand in bottom waters as sinking organic matter is decomposed (Bierman et al. 1994, Murrell et al. 2013). The hypoxic area averages 15,540 km² annually (1993-2015) with minimum concentrations observed from late spring to early fall. Seasonal variation is strongly related to carbon and nutrient export from the MARB (Lohrenz et al. 2008, Bianchi et al. 2010), whereas hydrologic variation, currents, and wind patterns can affect vertical salinity gradients that contribute to the formation of hypoxia (Wiseman et al. 1997, Paerl et al. 1998, Obenour et al. 2015).

This study evaluated the core unit of a recently developed hydrodynamic and ecological 129 model that describes horizontal and vertical transport and mixing of state variables relevant for 130 hypoxia in the northern GOM. The Coastal General Ecosystem Model (CGEM) includes 131 elements from the Navy Coastal Ocean Model (Martin 2000) that describes hydrodynamics on the 132 LCS and a biogeochemical model with multiple plankton groups, water-column metabolism, and sediment diagenesis (Eldridge and Roelke 2010). The hydrodynamic component of CGEM provides a spatially-explicit description of hypoxia using an orthogonal grid with an approximate 135 horizontal resolution of 1.9 km² and twenty equally-spaced vertical sigma layers on the shelf 136 (depth ≤ 100 m, with additional hybrid layers at deeper depths). The biogeochemical component 137 includes equations for 36 state variables including six phytoplankton groups (with nitrogen and phosophorus quotas for each), two zooplankton groups, nitrate, ammonium, phosphate, dissolved 139 inorganic carbon, oxygen, silica, and multiple variables for dissolved and particulate organic 140 matter from different sources. Atmospheric and hydrological boundary conditions described in 141 Hodur (1997) and Lehrter et al. (2013) are also included in CGEM. 142

The core unit of CGEM is FishTank, a 0-D model that implements the biogeochemical 143 equations in Eldridge and Roelke (2010) and does not include any form of physical transport (i.e., 144 advection, mixing, or surface flux) nor sediment diagenesis. Although FishTank was developed 145 for specific application in CGEM, it can easily be applied to other hydrodynamic grids. 146 Accordingly, the sensitivity and identifiability analyses described below focused exclusively on 147 FishTank and are informative for both the LCS gridded model as well as potential applications to different systems. The FishTank model provides estimates for the 36 state variables described above using a 0-D parcel that is uniformly mixed as a closed system. A set of initial conditions is 150 provided on execution of the model that is based on observations of relevant variables obtained 151 from research cruises in the northern GOM during April, June, and September of 2006 (Table 1 in Murrell et al. 2014).

Results from FishTank are based on time-dependent differential equations that describe energy flow between phytoplankton and zooplankton groups as affected by nutrient uptake rates, organic matter inputs and losses, inherent optical properties, and temperature (Penta et al. 2008, Eldridge and Roelke 2010, see appendix in Lehrter et al. in review). A total of 108 equations are estimated at each time step to return a value for each of the 36 state variables described by the model. In addition to the initial conditions, 251 parameter values for each of the equations are also supplied at model execution. These parameters define relationships among fixed effects in the equations and represent ecological properties described by the model that influence hypoxia formation. Values for each of the parameters were based on estimates from the literature, field or laboratory-based measurements, or expert knowledge in absence of the former. As such, a sensitivity analysis of parameter values is warranted given that, for example, literature or field-based estimates may not apply under all scenarios or expert knowledge is not completely certain (Refsgaard et al. 2007).

154

155

156

157

160

161

162

164

165

166

The sensitivity of O_2 to perturbations of all relevant parameters for the 108 equations was 167 estimated using a five minute timestep of FishTank simulations from January 1st to December 31st, 2006. Irrelevant parameters were removed for several reasons; parameters were not relevant 169 for the 0-D model (i.e., hydrodynamic parameters), were considered physical constants, or had no 170 effect given initial conditions. Additionally, FishTank includes six phytoplankton and two 171 zooplankton groups to describe complexity in community structure and foodweb dynamics. 172 However, structural equations for each group are identical such that chosen parameter values 173 primarily control differences between the groups, e.g., large-bodied or small-bodied plankton, 174 slow-growing or fast-growing plankton, etc. Initial analyses indicated that parameter sensitivity of 175 dissolved oxygen was identical within the six phytoplankton and zooplankton groups. To remove 176 obvious redundancies in the model, the sensitivity analyses were conducted using only one phytoplankton and one zooplankton group. The final parameter set that was evaluated included 51 parameters that were further grouped into one of six categories based on applicable biogeochemical components of the model: optics (n = 4 parameters), organic matter (12), 180 phytoplankton (22), temperature (2), and zooplankton (11). A full description of the model 181 parameters is available as an appendix in Lehrter et al. in review.

2.2 Local sensitivity analysis

183

The analysis focused on sensitivity of O_2 and other state variables (noted below) in the 0-D FishTank model to identify parameters that may affect spatial and temporal variation of hypoxia in the larger model. A local sensitivity analysis was performed by evaluating the change in O_2 following perturbation of each parameter from its original value. The analyses relied exclusively on concepts used in the FME package developed for the R statistical programming language (Soetaert and Petzoldt 2010, RDCT (R Development Core Team) 2016). Parameters were individually perturbed by 50% of the original values and the model was executed to obtain an estimate O_2 sensitivity. For each perturbation, a sensitivity value S was estimated for each time step S given a change for parameter S as:

$$S_{ij} = \frac{\partial y_i}{\partial \Theta_j} \cdot \frac{w_{\Theta_j}}{w_{u_i}}$$
 sijean (1)

where the estimate depended on the change in the predicted value for response variable y divided 193 by the change in the parameter Θ_j multiplied by the quotient of scaling factors w for each. The 194 scaling factors, w_{Θ_j} for the parameter Θ_j and w_{y_i} for response variable y_i , were set as the default 195 value of the unperturbed parameter and the predicted value of y_i after perturbation (Soetaert and 196 Petzoldt 2010). The scaling ensures the estimates are unitless such that the relative magnitudes 197 allow comparisons of model sensitivity to parameters and state variables that differ in scale. 198 Sensitivity values for all j parameters were summarized across the time series from i = 1 to n as 199 L1:200

$$L1 = \sum |S_{ij}|/n \tag{2}$$

All parameters for each of the six equation categories (optics, organic matter,
phytoplankton, temperature, and zooplankton) that had non-zero L1 (suggesting sensitivity) were
retained for identifiability analysis.

2.3 Identifiability and selecting parameter subsets

Identifiability of parameter subsets was estimated from the minimum eigenvector of the cross-product of a selected sensitivity matrix (Brun et al. 2001, Omlin et al. 2001a):

$$\gamma = \frac{1}{\sqrt{\min\left(\text{EV}[\hat{S}^{\top}\hat{S}]\right)}} \tag{3}$$

where γ ranges from one to infinity for perfectly identifiable (orthogonal) or unidentifiable (perfectly collinear) results for parameters in a sensitivity matrix S. The sensitivity functions were supplied as a matrix \hat{S} with rows i and columns j (eq. (1)) that described deviations of predicted O_2 from the default parameter values. The matrix \hat{S} was first normalized by dividing by the square root of the summed residuals (Omlin et al. 2001a, Soetaert and Petzoldt 2010).

The collinearity index γ provides a measure of the linear dependence between sensitivity functions described above for subsets of parameters. Estimates of γ greater than 10-15 suggest parameter sets are poorly identifiable (Brun et al. 2001, Omlin et al. 2001a), meaning parameter values that maximize precision on a calibration dataset are inestimable by conventional optimization algorithms given similar effects of the selected parameters on O_2 . Greater sensitivity of a state variable to a subset of parameters does not always imply better identifiability if the individual effects are similar. An intuitive interpretation of γ is provided by Brun et al. (2001) such that a change in a state variable caused by a change in one parameter can be offset by the fraction $1-1/\gamma$ by the remaining parameters. That is, $\gamma=10$ suggests the relative change in O_2 for an arbitrary parameter in the selected set can be compensated for by 90% with changes in the other parameters.

Initial analyses suggested that considerably limited subsets of parameters were identifiable of the 51 evaluated for the FishTank model. Given this limitation, parameter selection must consider the competing objectives of increased precision with parameter inclusion and reduced identifability as it relates to optimization. An additional challenge is the excessively high number of combinations of parameter sets, which complicates selection given sensitivity differences and desired ecological categories of each parameter (e.g., practicioners may only be interested in optics parameters). For example, Fig. 1 provides a simple graphic of the unique number of combinations that are possible for different subsets of 'complete' parameter sets of different sizes (i.e., based on n choose k combinations equal to n!/(k!(n-k)!)). The number of unique combinations increases with the total parameters in the set and is also maximized for moderate selections (e.g., selecting half the total). For example, over 10^{14} combinations are possible by

selecting 25 parameters from a set of 50. Accordingly, parameter selection is complicated by differing sensitivity, identifiability limits for parameter subsets, and the difficulty of choosing from many combinations.

A set of heuristics was developed that address the tradeoff in model complexity and 237 identifiability given the challenges described above (see also Wagener et al. 2001a). These 238 rulesets were developed with the assumption that parameters will be selected with preference for those with high sensitivity and identifiability based on $\gamma < 15$ as an acceptable threshold for 240 subsets (e.g., 93% accountability). Selection heurestics also recognized that parameter categories 241 (i.e., optics, organic matter, phytoplankton, temperature, zooplankton) may have unequal 242 preferences by model users given questions of interest. In all selection scenarios, parameters were 243 selected by decreasing sensitivity starting with the most sensitive until identifiability did not exceed $\gamma = 15$ where selections were 1) blocked within parameter category, 2) independent of 245 parameter category, 3) or considering all categories equally. The selection rules produced seven 246 subsets of parameters that could further be used to optimize model calibration. 247

2.4 Observational and structural uncertainty

235

236

248

263

In addition to parameter uncertainty, the effects of observational and structural uncertainty 249 on the sensitivity analyses were evaluated by changing the initial conditions and structural 250 components, respectively, from the default model setup. First, observational uncertainty (i.e., 251 effects of observed data on model output) was evaluated by varying the initial conditions that were based on observational data from research cruises in the northern GOM (Murrell et al. 253 2014). Uncertainty in these data translates directly to uncertainty that can influence results of the 254 sensitivity analysis. For example, the sensitivity of O_2 to variation in the half-saturation constants 255 for phytoplankton (the concentration supporting half the maximum uptake rate of nutrients) will 256 vary given the initial nutrient concentrations (Eppley et al. 1969). Further, changes in the ratio between nitrogen and phosphorus could affect sensitivity depending on the limiting nutrient. 258 Parameter sensitivity was re-evaluated by varying all initial conditions that were non-zero by 259 different seasonal means based on averages of water quality data across stations and years. April 260 and September seasonal averages of the observed data were used to evaluate the effects of 26 conditions that were typical of spring and late summer on the LCS (Table 1). 262

The effects of model structure on parameter sensitivity (i.e., structural uncertainty) were

evaluated by changing specific components of the model. The FishTank model includes several ecosystem processes or characteristics that can be included based on expected conditions, 265 available data, or desired complexity. These 'switches' are conceptually different from model 266 parameters as they allow the inclusion or exclusion of explicit equations or processes. Switches in 267 FishTank include different structural equations for the vertical attenuation of light through the 268 water column (inherent or apparent optical properties, Penta et al. 2009, Eldridge and Roelke 269 2010) and chlorophyll to carbon ratio models (fixed or dynamic given light and nutrients, Cloern 270 et al. 1995). Several switches also affect phytoplankton growth including different models for 271 specific growth and effects of temperature, light dependence, nutrient uptake, and internal cell 272 quotas (Lehrter et al. in review, references therein). 273

Parameter sensitivity was evaluated by comparing the results from the default model setup 274 to a more complex setup with alternative switches (Table 2). The scenarios used switches for 275 different equations to represent structural relationships of phytoplankton growth patterns with 276 temperature, nutrient uptake, cell quotas, chlorophyll a (chl-a) to carbon ratios, photosynthesis 277 dynamics, and specific growth limits. The default scenario modelled phytoplankton growth with temperature as a sigmoidal function (Eldridge and Roelke 2010), nutrient uptake as 279 Michaelis-Menten kinetics (Dugdale and Goering 1967), internal cell quotas following Droop 280 (1973), chl-a to carbon ratios as a simple regression (Murrell et al. 2014), light-dependence of 281 photosynthesis with photoinhibition (Platt et al. 1980), and a specific growth rate following 282 Leibig's law of the minimum. Conversely, the complex scenario used switches that modelled 283 relationships between phytoplankton growth with temperature using the Arrhenius model (Geider 284 et al. 1997), nutrient uptake as proposed by Lehman et al. (1975) and modified in Geider et al. 285 (1998), internal cell quotas following Flynn (2003), chl-a to carbon ratios following Cloern et al. 286 (1995), light-dependence of photosynthesis that is nutrient dependent (Flynn 2003), and a specific 287 growth rate that is nutrient dependent. Complete details are provided as supplementary material to Lehrter et al. in review.

2.5 Extension to other state variables

290

29

The above analyses were repeated for additional state variables estimated by FishTank to provide further descriptions of ecological dynamics that are relevant for hypoxia. In addition to O₂, other state variables that were evaluated were ammonium, chl-a, irradiance, nitrate, introduced in the contract of the contra

particulate organic matter (POM), dissolved organic matter (DOM), and phosphorus. Particulate and dissolved organic matter were estimated as the summation of the respective outputs for organic matter from phytoplankon (*OM1 A*, *OM2 A*) and fecal pellets from zooplankton (*OM1 Z*, 297 *OM2 Z*, see Lehrter et al. in review).

Local sensitivity analyses showed that O₂ was sensitive to perturbations in 38 of the 51

298 3 Results

300

299 3.1 Local sensitivity analysis

(75% of total) evaluated parameters in FishTank (default panel Fig. 2, Table 3). Within each parameter category, O₂ was sensitive to three parameters for optics (75% of all optic parameters), 302 eight for organic matter (67%), 16 for phytoplankton (73%), one for temperature (50%), and 10 303 for zooplankton (91%). Although O₂ had the greatest sensitivity to parameters in the zooplankton 304 category (as percentage of total), the relative effects varied. Among all parameters, sensitivity values ranged from $L1 = 8.34 \times 10^{-8}$ for *QminP* (phytoplankton) to 0.05 for *umax* 306 (phytoplankton), whereas average sensitivity among all parameters was L1 = 0.01. Within 307 categories (excluding temperature), sensitivity ranged from 4.39×10^{-5} (astarOMA) to 308 7.51×10^{-4} (astar490) for optics, 4.17×10^{-4} (KNH4) to 0.01 (KG1) for organic matter, 309 8.34×10^{-8} (QminP) to 0.05 (umax) for phytoplankton, and 3.69×10^{-5} (ZQp) to 0.05 (ZKa) for zooplankton (Table 3). Average sensitivity values in each category were $L1 = 2.81 \times 10^{-4}$ for 311 optics, 0 for organic matter, 0.02 for temperature, 0.01 for phytoplankton, and 0.01 for 312 zooplankton. 313 Local sensitivity analyses for the additional state variables (ammonium, chl-a, irradiance, 314 nitrate, POM, DOM, and phosphorus) had similar results as O₂ with some exceptions (Fig. 2 and Tables S1 to S7). All additional variables were sensitive to the same parameters (38 of 51 316 evaluated), although average sensitivity differed between variables. Average L1 ranged from 0.02 317 for irradiance (Table S3) to 0.71 for DOM (Table S6). All average sensitivity values for the state 318 variables were higher than the average for O_2 (L1 = 0.01). For each variable, L1 ranged from 319 2.24×10^{-6} (*QminP*) to 8.49 (*mA*) for ammonium (Table S1), 1.38×10^{-6} (*QminP*) to 13.94 (mA) for chl-a (Table S2), 1.92×10^{-7} (*QminP*) to 0.13 (ZKa) for irradiance (Table S3), 6.67×10^{-7} (*QminP*) to 8.49 (*umax*) for nitrate (Table S4), 6.41×10^{-5} (*KNH4*) to 7.22 (*mA*) for

POM (Table S5), 7.41×10^{-5} (*KNH4*) to 14.25 (*mA*) for DOM (Table S6), and 8.21×10^{-7} (*QminP*) to 1.47 (*ZKa*) for phosphate (Table S7). For the parameter categories, ammonium was most sensitive to phytoplankton parameters (average L1 = 0.8 across all parameters in the category), chl-a to phytoplankton (L1 = 1.14), irradiance to zooplankton (L1 = 0.03), nitrate to zooplankton (L1 = 1.06), POM to temperature (L1 = 0.86), DOM to temperature (L1 = 1.48), and phosphate to zooplankton (L1 = 0.31). Finally, average sensititivy between parameter categories independent of the state variables ranged from 0.01 for optics (average L1 across all variables) to 0.62 for phytoplankton.

3.2 Subset identifiability

33

The identifiability analyses suggested that many parameter subsets exceeded the 332 thresholds of $\gamma = 10, 15$, providing further justification for using selection heuristics for 333 parameter optimization. Results for O₂ are provided first to demonstrate general concepts for the 334 identifiability analyses, followed by an extension to the remaining state variables. Parameter 335 identifiability (as γ) for O_2 increased at different rates with increasing size of parameter subsets depending on the parameter category or the number of top parameters that were selected (Fig. 3). 337 By category, identifiability was lowest for all combinations of parameter subsets (from two to 338 many parameters) in the phytoplankton (60% less than $\gamma = 15$, 43% less than $\gamma = 10$) and 339 zooplankton categories (53.1% less than $\gamma = 15$, 40% less than $\gamma = 10$), whereas a all combinations were identifiable for optics (100% less than $\gamma = 15$, 100% less than $\gamma = 10$) and a majority identifiable for organic matter (91.9% less than $\gamma = 15, 76.5\%$ less than $\gamma = 10$) 342 combinations were identifiable. Identifiability for parameters in the temperature category was not 343 evaluated because O_2 was sensitive to only one parameter (i.e., $\gamma = 1$). Parameter combinations for choosing from the top, top two, top three, and top four parameters in each category together 345 had decreasing identifiability with the increasing size of the selection pool (e.g., top one versus top four parameters, Fig. 3). The percentage of parameter subsets that were below the acceptable 347 thresholds for identifability was 100% less than $\gamma = 15$ and 100% less than $\gamma = 10$ for the top 348 parameters in each category, 90.6% and 80.7% for the top two, 80.7% and 70.9% for the top 349 three, and 55.8% and 45.7% for the fop four. Results for the remaining state variables had similar patterns in identifiability with increasing size of parameter subsets and selection categories, 35 although differences in identifiability between state variables was observed (Fig. 4). Most 352

notably, nitrate was consistently the least identifiable variable for all selection heuristics (highest γ), whereas O_2 was most identifiable.

An alternative view of the results in Fig. 3 can be used to demonstrate the effects of parameter selection criteria and number of parameters in the selection pool on identifiability. Fig. 5 shows the percentage of identifiable parameter sets for O_2 using the same selection criteria in Fig. 3, i.e., selection of parameters only within parameter categories and selection of the top sensitive parameters regardless of category. Fig. 5 is conceptually similar to Fig. 3, with the added effect of a chosen γ threshold on identifiability. Previous studies have provided general rules for γ thresholds, such that exact values beyond which model calibration fails could vary for the given model and optimization method. The selected γ thresholds are somewhat arbitrary, although the results show differences that have implications for parameter selection for model calibration. In general, identifiability decreases with the addition of parameters, although the rate of decrease depends on the selected threshold for γ . Notable differences in identifiability are also observed by selection criteria (within categories or top parameters only), which further supports results in Figs. 3 and 4.

An evaluation of the effects of individual parameters on γ further suggested that some parameters have disproportionate effects on identifiability. Based on $\gamma=15$, Fig. 3 suggests that most parameter sets for organic matter were identifiable, regardless of how many parameters were selected (i.e., two through eight). Because identifiability of the organic matter parameters was generally acceptable, identification of one or more redundant parameters that are inflating γ values could provide useful information. Fig. 6 shows an alternative view of identifiability of O₂ with exclusion and inclusion of individual parameters in different sets for the organic matter category. Collinearity increases with more parameters included in a subset, although the increase varies depending on which parameter was included or excluded from the set. For example, inclusion of KNO3 in a parameter set almost always inflated γ . All parameter subsets that did not include KNO3 were well below $\gamma = 15$, suggesting that removal of this parameter improves identifiability. Interestingly, the inclusion of some parameters caused a reduction in γ , which contradicts the general rule that more parameters caused reduced identifiablity. For example, parameter sets that included KGcdom generally had lower γ values relative to those that excluded the parameter.

- 3.3 Parameter selection
- 3.4 Observational and structural uncertainty
- 385 4 Discussion

References

- Beck MB. 1987. Water quality modeling: A review of the analysis of uncertainty. Water Resources Research, 23(8):1393–1442.
- Bianchi TS, DiMarco SF, Jr JHC, Hetland RD, Chapman P, Day JW, Allison MA. 2010. The science of hypoxia in the Northern Gulf of Mexico: a review. Science of the Total Environment, 408(7):1471–1484.
- Bierman VJ, Hinz SC, Zhu DW, Wiseman WJ, Rabalais NN, Turner RE. 1994. A preliminary mass-balance model of primary productivity and dissolved oxygen in the Mississippi River plume/ inner Gulf shelf region. Estuaries, 17(4):886–899.
- Brun R, Reichert P, Künsch HR. 2001. Practical identifiability analysis of large environmental simulation models. Water Resources Research, 37(4):1015–1030.
- Cloern JE, Grenz C, Vidergar-Lucas L. 1995. An empirical model of the phytoplankton:carbon ratio the conversion factor between productivity and growth rate. Limnology and Oceanography, 40(7):1313–1321.
- Denman KL. 2003. Modelling planktonic ecosystems: parameterizing complexity. Progress in Oceanography, 57(3-4):429–452.
- Diaz RJ, Rosenberg R. 1995. Marine benthic hypoxia: A review of its ecological effects and the behavioural responses of benthic macrofauna. Oceanography and Marine Biology, 33:245–303.
- Diaz RJ, Rosenberg R. 2011. Introduction to environmental and economic consequences of hypoxia. International Journal of Water Resources Development, 27(1):71–82.
- Droop MR. 1973. Some thoughts on nutrient limitation in algae. Journal of Phycology, 9:264–272.
- Dugdale RC, Goering JJ. 1967. Uptake of new and regenerated nitrogen in primary productivity. Limnology and Oceanography, 12:196–206.
- Durand P, Gascuel-Odoux C, Cordier MO. 2002. Parameterisation of hydrological models: a
 review and lessons learned from studies of an agricultural catchment (Naisin, France.
 Agronomie, 22(2):217–228.
- Eldridge PM, Roelke DL. 2010. Origins and scales of hypoxia on the Louisiana shelf: importance of seasonal plankton dynamics and river nutrients and discharge. Ecological Modelling, 221(7):1028–1042.
- Eppley RW, Rogers JN, McCarthy J. 1969. Half-saturation constants for uptake of nitrate and ammonium by marine phytoplankton. Limnology and Oceanography, 14(6):912–920.
- Estrada V, Diaz M. 2010. Global sensitivity analysis in the development of first principle-based eutrophication models. Environmental Modelling and Software, 25:1539–1551.

- Fasham MJR, Flynn KJ, Pondaven P, Anderson TR, Boyd PW. 2006. Development of a robust marine ecosystem model to predict the role of iron in biogeochemical cycles: A comparison of
- results for iron-replete and iron-limited areas, and the SOIREE iron-enrichment experiment.
- Deep-Sea Research I, 53:333–366.
- Fennel K, Hu J, Laurent A, Marta-Almeida M, Hetland R. 2013. Sensitivity of hypoxia predictions for the northern Gulf of Mexico to sediment oxygen consumption and model
- nesting. Journal of Geophysical Research: Oceans, 118(2):990–1002.
- Flynn KJ. 2003. Modelling multi-nutrient interactions in phytoplankton; balancing simplicity and realism. Progress in Oceanography, 56(2):249–279.
- Ganju NK, Brush MJ, Rashleigh B, Aretxabaleta AL, del Barrio P, Grear JS, Harris LA, Lake SJ,
- McCardell G, O'Donnell J, Ralston DK, Signell RP, Testa JM, Vaudrey JMP. 2016. Progress
- and challenges in coupled hydrodynamic-ecological estuarine modeling. Estuaries and Coasts,
- 432 39(2):311–332.
- Geider RJ, MacIntyre HL, Kana TM. 1997. A dynamic model of phytoplankton growth and acclimation: responses of the balanced growth rate and the chlorophyll *a*:carbon ratio to light,
- nutrient-limitation and temperature. Marine Ecology Progress Series, 148:187–200.
- Geider RJ, MacIntyre HL, Kana TM. 1998. A dynamic regulatory model of phytoplanktonic acclimation to light, nutrients, and temperature. Limnology and Oceanography, 43(4):679–694.
- Hagy JD, Murrell MC. 2007. Susceptibility of a northern Gulf of Mexico estuary to hypoxia: An analysis using box models. Estuarine Coastal and Shelf Science, 74:239–253.
- Hilborn R, Mangel M. 1997. The Ecological Detective: Confronting Models with Data.
 Princeton University Press, Princeton, New Jersey.
- Hodur RM. 1997. The Naval Research Laboratory's Coupled Ocean/Atmosphere Mesoscale
 Prediction System (COAMPS). Monthly Weather Review, 125:1414–1430.
- Howarth RW, Billen G, Swaney D, Townsend A, Jaworski N, Lajtha K, Downing JA, Elmgren R,
- Caraco N, Jordan T, Berendse F, Freney J, Kudeyarov V, Murdoch P, Zhao-Liang Z. 1996.
- Regional nitrogen budgets and riverine N & P fluxes for the drainages to the North Atlantic
- Ocean: natural and human influences. Biogeochemistry, 35(1):75–139.
- Justíc D, Legovíc T, Rottini-Sandrini L. 1987. Trends in oxygen content 1911–1984 and
- occurrence of benthic mortality in the northern Adriatic Sea. Estuarine, Coastal and Shelf
- science, 25(4):435–445.
- Kirchner JW. 2006. Getting the right answers for the right reasons: Linking measurements,
- analyses, and models to advance the science of hydrology. Water Resources Research,
- 42(3):W03S04.
- Lehman JT, Botkin DB, Likens GE. 1975. The assumptions and rationales of a computer model of phytoplankton population dynamics. Limnology and Oceanography, 20(3):343–364.

- Lehrter JC, Ko DS, Lowe L, Penta B. In review. Predicted effects of climate change on the
- severity of northern Gulf of Mexico hypoxia. In: Justic et al., editor, Modeling Coastal
- Hypoxia: Numerical Simulations of Patterns, Controls, and Effect of Dissolved Oxygen
- Dynamics. Springer, New York.
- Lehrter JC, Ko DS, Murrell MC, III JDH, Schaeffer BA, Greene RM, Gould RW, Penta B. 2013.
- Nutrient distributions, transports, and budgets on the inner margin of a river-dominated
- continental shelf. Journal of Geophysical Research, 118(10):4822–4838.
- Levins R. 1966. The strategy of model building in population biology. American Scientist, 54(4):421–431.
- Lipton D, Hicks R. 2003. The cost of stress: low dissolved oxygen and eocnomic benefits of
- recreational striped bass (*Morone saxatilis* fishing in the Patuxent River. Estuaries,
- 467 26(2A):310–315.
- Lohrenz SE, Redalje DG, Cai WJ, Acker J, Dagg M. 2008. A retrospective analysis of nutrients
- and phytoplankton productivity in the Mississippi River plume. Continental Shelf Research,
- 470 28(12):1466–1475.
- Martin PJ. 2000. Description of the navy coastal ocean model version 1.0. Technical Report NRL/FR/7322-00-9962, Naval Research Lab, Stennis Space Center, Mississippi.
- Mateus MD, Franz G. 2015. Sensitivity analysis in a complex marine ecological model. Water, 7:2060–2081.
- Morrison M, Morgan MS. 1999. Models as mediating agents. In: Morgan MS, Morrison M, editors, Models as Mediators, page 401. Cambridge University Press, Cambridge.
- 477 Murrell MC, Beddick DL, Devereux R, Greene RM, III JDH, Jarvis BM, Kurtz JC, Lehrter JC,
- Yates DF. 2014. Gulf of mexico hypoxia research program data report: 2002-2007. Technical
- Report EPA/600/R-13/257, US Environmental Protection Agency, Washington, DC.
- ⁴⁸⁰ Murrell MC, Stanley RS, Lehrter JC, Hagy JD. 2013. Plankton community respiration, net
- ecosystem metabolism, and oxygen dynamics on the Louisiana continental shelf: Implications
- for hypoxia. Continental Shelf Research, 52:27–38.
- Nossent J, Bauwens W. 2012. Multi-variable sensitivity and identifiability analysis for a complex
- environmental model in view of integrated water quantity and water quality modeling. Water
- science & Technology, 65(3):539–549.
- Obenour DR, Michalak AM, Scavia D. 2015. Assessing biophysical controls on Gulf of Mexico hypoxia through probabilistic modeling. Ecological Applications, 25(2):492–505.
- Omlin M, Brun R, Reichert P. 2001a. Biogeochemical model of Lake Zürich: sensitivity,
- identifiability and uncertainty analysis. Ecological Modelling, 141(1-3):105–123.
- Omlin M, Reichert P, Forster R. 2001b. Biogeochemical model of Lake Zürich: model equations and results. Ecological Modelling, 141(1-3):77–103.

- Paerl HW, Pinckney JL, Fear JM, Peierls BL. 1998. Ecosystem responses to internal and
 watershed organic matter loading: consequences for hypoxia in the eutrophying Neuse River
 Estuary, North Carolina, USA. Marine Ecology Progress Series, 166:17–25.
- Pauer JJ, Feist TJ, Anstead AM, DePetro PA, Melendez W, Lehrter JC, Murrell MC, Zhang X, Ko
 DS. 2016. A modeling study examining the impact of nutrient boundaries on primary
 production on the Louisiana continental shelf. Ecological Modelling, 328:136–147.
- Penta B, Lee Z, Kudela RM, Palacios SL, Gray DJ, Jolliff JK, Shulman IG. 2008. An underwater light attenuation scheme for marine ecosystem models. Optical Express, 16(21):16581–16591.
- Penta B, Lee Z, Kudela RM, Palacios SL, Gray DJ, Jolliff JK, Shulman IG. 2009. An underwater
 light attenuation scheme for marine ecosystem models: errata. Optical Express,
 17(25):23351–23351.
- Petrucci G, Bonhomme C. 2014. The dilemma of spatial representation for urban hydrology semi-distributed modelling: trade-offs among complexity, calibration and geographical data. Journal of Hydrology, 517:997–1007.
- Platt T, Gallegos CL, Harrison WG. 1980. Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. Journal of Marine Research, 38:687–701.
- Rabalais NN, Turner RE, Scavia D. 2002. Beyond science into policy: Gulf of Mexico hypoxia and the Mississippi river. BioScience, 52(2):129–142.
- RDCT (R Development Core Team). 2016. R: A language and environment for statistical computing, v3.3.1. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org.
- Refsgaard JC, van der Sluijs JP, Højberg AL, Vanrolleghem PA. 2007. Uncertainty in the environmental modelling process a framework and guidance. Environmental Modelling & Software, 22(11):1543–1556.
- Scavia D, Justic D, Bierman VJ. 2004. Reducing hypoxia in the Gulf of Mexico: Advice from three models. Estuaries, 27(3):419–425.
- Snowling SD, Kramer JR. 2001. Evaluating modelling uncertainty for model selection.
 Ecological Modelling, 138:17–30.
- Soetaert K, Petzoldt T. 2010. Inverse modelling, sensitivity, and Monte Carlo analysis in R using package FME. Journal of Statistical Software, 33(3):1–28.
- Wade AJ, Jackson BM, Butterfield D. 2008. Over-parameterised, uncertain 'mathematical marionettes' how can we best use catchment water quality models? An example of an 80-year catchment-scale nutrient balance. Science of the Total Environment, 400(1-3):52–74.
- Wagener T, Boyle DP, Lees MJ, Wheater HS, Gupta HV, Sorooshian S. 2001a. A framework for development and application of hydrological models. Hydrology and Earth System Sciences, 5(1):13–26.

- Wagener T, Lees MJ, Wheater HS. 2001b. A toolkit for the development and application of
 parsimonious hydrological models. In: Singh VP, Meyer DKFSP, editors, Mathematical
 Models of Small Watershed Hydrology and Applications Volume 2, pages 91–140. Water
 Resources Publications LLC, USA.
- Warner JC, Geyer WR, Lerczak JA. 2005. Numerical modeling of an estuary: a comprehensive skill assessment. Journal of Geophysical Research: Oceans, 110(C5):13.
- Wiseman WJ, Rabalais NN, Turner RE, Dinnel SP, MacNaughton A. 1997. Seasonal and
 interannual variability within the Louisiana coastal current: stratification and hypoxia. Journal
 of Marine Systems, 12(1-4):237–248.
- Zhao L, Chen C, Vallino J, Hopkinson C, Beardsley RC, Lin H, Lerczak J. 2010.
 Wetland-estuarine-shelf interactions on the Plum Island Sound and Merrimack River in the
 Massachusetts coast. Journal of Geophysical Research, 115(C10):13.

Table 1: Initial conditions that were varied to evaluate effects of observational uncertainty on parameter sensitivity. April and September values are based on seasonal averages from water quality samples of the LCS. All units are μ mol L⁻¹.

Variables	Default	April	September
Dissolved Inorganic Carbon	2134	2096.5	2133.37
Ammonium	1.09	1.79	0.35
Nitrate	71.4	3.75	2.04
Dissolved Oygen	172	194.47	152.57
Phosphate	1.81	0.23	0.42
Silica	71.4	5.84	9.77

Table 2: Model switches that were used to evaluate effects of structural uncertainty on parameter sensitivity. Complete details and equations are provided as supplementary material to Lehrter et al. in review.

Switch type	Default	Complex
Temperature	sigmoidal (Eldridge and Roelke 2010)	Arrenhius (Geider et al. 1997)
Uptake	Michaelis-Menten (Dugdale and Goering 1967)	Geider (Lehman et al. 1975, Geider et al. 1998)
Quota	Droop (Droop 1973)	Flynn (Flynn 2003)
Chla:C	regression (Murrell et al. 2014)	Cloern (Cloern et al. 1995)
Photosynthesis	photoinhibition (Platt et al. 1980)	nutrient dependent
Specific growth rate	Leibig's minimum	nutrient dependent

Table 3: Sensitivity of O_2 to perturbations of individual parameters. Sensitivities are based on a 50% increase from the initial parameter value, where L1 summarizes differences in model output from the default (see eq. (2)). Parameters that did not affect O_2 are not shown. Parameters are grouped by categories as optics, temperature, phytoplankton, zooplankton, and organic matter.

Description	Parameter	L1
Optics		
Chla specific absorption at 490 nm	astar490	7.51×10^{-4}
OMZ specific absorption at 490 nm	astarOMZ	4.92×10^{-5}
OMA specific absorption at 490 nm	astarOMA	4.39×10^{-5}
Temperature		
Optimum temperature for growth(C)	$Tref(nospA + nospZ)_{p1}$	0.02
Phytoplankton		
maximum growth rate	umax	0.05
mortality coefficient	mA	0.02
initial slope of the photosynthesis-irradiance relationship	alpha	0.02
edibility vector for Z1	ediblevector(Z1)	0.02
phytoplankton carbon/cell	Qc	0.01
phytoplankton growth respiration coefficient	respg	8.36×10^{-3}
N-uptake rate measured at umax	vmaxN	8.12×10^{-3}
phytoplankton basal respiration coefficient	respb	6.94×10^{-3}
Phytoplankton threshold for grazing, is multiplied by VOLcell	Athresh	4.57×10^{-3}
minimum N cell-quota	<i>QminN</i>	4.32×10^{-3}
P-uptake rate measured at umax	vmaxP	4.27×10^{-3}
coefficient for non-limiting nutrient	aN	4.23×10^{-3}
phytoplankton volume/cell	volcell	4.13×10^{-3}
half-saturation constant for P	Kp	2.9×10^{-3}
half-saturation constant for N	Kn	2.77×10^{-4}
minimum P cell-quota	QminP	8.34×10^{-8}
Zooplankton		
half saturation coefficient for grazing	ZKa	0.05
zooplankton nitrogen/individual	ZQn	0.02
Zooplankton mortality constant for quadratic mortality	Zm	0.02
maximum growth rate of zooplankton	Zumax	0.02
assimilation efficiency as a fraction of ingestion	Zeffic	0.01
proportion of grazed phytoplankton lost to sloppy feeding	Zslop	7.78×10^{-3}
Zooplankton growth-dependent respiration factor	Zrespg	5.32×10^{-3}
Zooplankton biomass-dependent respiration factor	Zrespb	2.96×10^{-3}
zooplankton carbon/individual	ZQc	9.38×10^{-5}
zooplankton phosphorus/individual	\widetilde{ZQp}	3.69×10^{-5}
Organic Matter	~1	
turnover rate for OM1A and OM1Z	KG1	6.15×10^{-3}
turnover rate for OM2A and OM2Z	KG2	3.14×10^{-3}
O2 concentration that inhibits denitrification	KstarO2	3.04×10^{-3}
decay rate of CDOM, 1/day	KGcdom	2.98×10^{-3}
half-saturation concentration for O2 utilization	KO2	5.85×10^{-4}
half-saturation concentration for NO3 used in denitrification	KNO3	5.8×10^{-4}
maximum rate of nitrification per day	nitmax	4.99×10^{-4}
NH4 rate constant for nitrification	KNH4	4.17×10^{-4}

^{*}Temperature parameters apply separately to phytoplankton (p1, one group) or zooplankton (z1, one group), denoted by subscripts

Table 4: Parameter identifiability (as γ , eq. (3)) by category for relevant state variables. Selections followed the first heuristic where parameters were selected within categories from most to least sensitive until $\gamma > 15$. Rank describes the relative parameter sensitivity in each category for each state variable.

Parameter	Rank	Ammonium	Chl-a	O_2	Irradiance	Nitrate	OM1	OM2	Phosphate
Optics									
astar490	1	1	1	1	1	1	1	1	1
astarOMA	2	7.33	5.42	-	5.36	-	7.78	7.87	-
astarOMZ	2	-	-	1.39	-	-	-	-	4.73
astarOMA	3	-	-	3.87	-	-	-	-	10.04
astarOMZ	3	7.58	5.51	-	6.02	-	7.91	7.87	-
Organic Matter									
KG1	1	-	-	1	-	-	1	-	1
KG2	1	-	-	-	-	-	-	1	-
KGcdom	1	-	1	-	1	-	-	-	-
KstarO2	1	-	-	-	-	1	-	-	-
nitmax	1	1	-	-	-	-	-	-	-
KG1	2	-	1.12	-	1.93	-	-	-	-
KG2	2	-	-	6	-	-	-	-	13.43
KGcdom	2	-	-	-	-	-	1.47	1.39	-
KNH4	2	4.03	-	-	-	-	-	-	-
KG1	3	4.09	-	-	-	-	-	-	-
KG2	3	-	-	-	8.19	-	-	-	-
KGcdom	3	-	-	-	-	-	-	-	13.75
KO2	3	-	-	-	-	-	14.07	11.96	-
KstarO2	3	-	-	6.04	-	-	-	-	-
KGcdom	4	4.19	-	6.12	-	-	-	-	-
KO2	4	-	-	-	-	-	-	-	14.68
KstarO2	4	-	-	-	10.65	-	14.08	-	-
KO2	5	9.47	-	8.61	-	-	-	-	-
Phytoplankton									
mA	1	1	1	-	-	-	1	1	-
umax	1	-	-	1	1	1	-	-	1
ediblevector(Z1)	2	1.13	1.17	-	-	-	1.15	-	-
mA	2	-	-	1.19	1.29	-	-	-	-
Qc	2	-	-	-	-	11.57	-	-	-
umax	2	-	-	-	-	-	-	1.21	-
vmaxP	2	-	-	-	-	-	-	-	7.45
alpha	3	-	-	1.44	1.98	-	-	-	-
ediblevector(Z1)	3	-	-	-	-	-	-	2.9	-
umax	3	2.73	2.11	-	-	-	3.26	-	-
alpha	4	3.55	4.57	-	-	-	-	-	-
ediblevector(Z1)	4	-	-	2.09	4.09	-	-	-	-
Qc	4	-	-	-	-	-	4.98	-	-
vmaxN	4	-	-	-	-	-	-	4.9	-
alpha	5	-	-	-	-	-	10.11	-	-
Qc	5	-	-	2.9	-	-	-	-	-
vmaxN	5	8.14	-	-	-	-	-	-	-
Athresh	6	11.27	-	-	-	-	-	-	-
respg	6	-	-	3.41	-	-	-	-	-
vmaxN	7	-	-	3.97	-	-	-	-	-
Zooplankton	_			_	_				
ZKa	1	-	-	1	1	1	-	-	1
Zumax	1	1	1	-	-	-	1	1	-
ZKa	2	-	4.31	-	-	-	7.3	5.43	-
ZQn	2	-	-	3.18	6.32	9.76	-	-	8.54
Zm	3	-	-	4.57	-	-	-	-	-
Zumax	3	-	-	-	6.93	-	-	-	-
Zm	4	-	-	-	11.86	-	-	-	-
Zumax	4	-	-	5.2	-	-	-	-	-

Table 5: Parameter identifiability (as γ , eq. (3)) for relevant state variables. Selections followed the second heuristic where parameters were selected independent of category from most to least sensitive (L1, eq. (2)), until $\gamma > 15$. Rank describes the relative parameter sensitivity in each category for each state variable (O: optics, OM: organic matter, P: phytoplankton, T: temperature, Z: zooplankton). See Fig. 7 for a graphical illustration.

Selections by state variable	Parameter	L1	Rank	γ
Ammonium				
1	mA	8.49	$1_{\mathbf{P}}$	1
2	nitmax	1.54	1_{OM}	1.16
3	Zumax	1.42	$1_{\mathbb{Z}}$	2.9
Chlorophyll				
1	mA	13.94	$1_{\mathbf{P}}$	1
2	Zumax	1.02	$1_{\mathbb{Z}}$	1.18
Dissolved Oxygen				
1	umax	0.05	$1_{\mathbf{P}}$	1
2	ZKa	0.05	$1_{\mathbb{Z}}$	2.17
3	mA	0.02	$2_{\rm P}$	2.31
4	$Tref(nospA+nospZ)_{p1}$	0.02	1_{T}	2.37
5	ZQn	0.02	2_{Z}	4.69
6	alpha	0.02	$3_{\rm P}$	4.91
7	Zm	0.02	3_{Z}	6.73
8	Zumax	0.02	4_{Z}	6.81
Irradiance				
1	ZKa	0.13	$1_{\mathbb{Z}}$	1
2	umax	0.09	1_{P}	4.41
3	ZQn	0.06	$2_{\mathbb{Z}}$	7.54
4	mA	0.05	$2_{\rm P}$	8.17
5	KGcdom	0.05	1_{OM}	9.44
6	alpha	0.04	$3_{\rm P}$	9.66
7	Zumax	0.04	$3_{\mathbb{Z}}$	10.79
Nitrate				
1	umax	8.49	$1_{\mathbf{P}}$	1
OM1				
1	mA	7.22	$1_{\mathbf{P}}$	1
2	Zumax	0.96	$1_{\mathbb{Z}}$	1.15
3	KG1	0.92	1_{OM}	3.87
OM2				
1	mA	14.25	$1_{\rm P}$	1
2	$Tref(nospA+nospZ)_{p1}$	1.48	1_{T}	1.05
3	umax	1.11	$2_{\rm P}$	2.46
4	Zumax	1.01	$1_{\mathbb{Z}}$	2.91
Phosphate				
1	ZKa	1.47	$1_{\mathbf{Z}}$	1
2	umax	0.78	$1_{\mathbf{P}}$	11.45
3	vmaxP	0.59	$2_{\rm P}$	11.48
4	ZQn	0.5	2_{Z}	13.74

Table 6: Parameter identifiability (as γ , eq. (3)) for relevant state variables. Selections followed the third heuristic where parameters were selected equally within each category from most to least sensitive (L1, eq. (2)), until $\gamma > 15$. Rank describes the relative parameter sensitivity in each category for each state variable (O: optics, OM: organic matter, P: phytoplankton, T: temperature, Z: zooplankton).

Selections by state variable	Parameter	L1	Rank	γ
Ammonium				
1	mA	8.49	$1_{\mathbf{P}}$	1
2	nitmax	1.54	1_{OM}	1.16
3	Zumax	1.42	$1_{\mathbb{Z}}$	2.9
4	$Tref(nospA+nospZ)_{p1}$	0.79	1_{T}	3.46
5	astar490	0.03	$1_{\rm O}$	4.25
Chlorophyll				
1	mA	13.94	$1_{\mathbf{P}}$	1
2	Zumax	1.02	$1_{\mathbb{Z}}$	1.18
3	$Tref(nospA+nospZ)_{p1}$	0.6	1_{T}	2.62
4	KGcdom	0.07	1_{OM}	3.24
5	astar490	0.02	$1_{\rm O}$	5.98
Dissolved Oxygen				
1	umax	0.05	$1_{\mathbf{P}}$	1
2	ZKa	0.05	$1_{\mathbb{Z}}$	2.17
3	$Tref(nospA+nospZ)_{p1}$	0.02	1_{T}	2.29
4	KG1	0.01	1_{OM}	3.85
5	astar490	7.51×10^{-4}	$1_{\rm O}$	3.89
6	mA	0.02	$2_{\rm P}$	4.42
7	ZQn	0.02	$2_{\mathbb{Z}}$	5.22
Irradiance				
1	ZKa	0.13	$1_{\mathbf{Z}}$	1
2	umax	0.09	1_{P}	4.41
3	KGcdom	0.05	1_{OM}	4.5
4	$Tref(nospA+nospZ)_{p1}$	0.03	1_{T}	4.5
5	astar490	0.02	1_{O}	6.9
6	ZQn	0.06	$2_{\rm Z}$	10.63
7	mA	0.05	$2_{\rm P}$	11.21
8	KG1	0	2_{OM}	14.65
9	astarOMA	0	$2_{\rm O}$	14.72
Nitrate				
1	umax	8.49	1_{P}	1
OM1				
1	mA	7.22	1_{P}	1
2	Zumax	0.96	$1_{\mathbb{Z}}$	1.15
3	KG1	0.92	1_{OM}	3.87
4	$Tref(nospA+nospZ)_{p1}$	0.86	1_{T}	3.93
5	astar490	0.03	1 ₀	5.81
OM2		1405		
1	mA	14.25	1_{P}	1
2	$Tref(nospA+nospZ)_{p1}$	1.48	1_{T}	1.05
3	Zumax	1.01	$1_{\rm Z}$	2.61
4	KG2	0.94	1_{OM}	3.39
5	astar490	0.04	$1_{\rm O}$	4.46
6	umax 7K -	1.11	$2_{\rm P}$	6.02
7	ZKa	0.88	2_{Z}	9.21
Phosphate	7V	1 45	4	4
1	ZKa	1.47	$1_{\rm Z}$	1
2	umax	0.78	1_{P}	11.45
3 4	$Tref(nospA+nospZ)_{p1}$	0.16	1_{T}	13.71
4	KG1	0.14	1 _{OM}	14.64

Table 7: Changes in mean sensitivity of state variables by parameter categories to different initial conditions and structural components of the model. Changes show the difference in average sensitivity from results using the default model setup. Sensitivities are based on average L1 (see eq. (2)) values of the state variables to changes in parameters in each parameter category. Increases in average sensitivity are in bold. Medians and ranges of sensitivity values for the different conditions are shown in Fig. 8.

State variables by parameter category			Change	
	Default sensitivity	Initial: April	Initial: September	Structure: complex
Optics				
Ammonium	0.01	0.01	0.01	0.01
Chlorophyll	0.01	0.01	0.01	0.01
Dissolved Oxygen	2.81×10^{-4}	$2.11 imes 10^{-4}$	$1.46 imes 10^{-4}$	$1.93 imes 10^{-4}$
Irradiance	0.01	-0	-0	-0
Nitrate	0.01	0.01	0.01	0.01
OM1	0.01	0.01	0.01	0.01
OM2	0.02	0.01	0.01	0.01
Phosphate	0	0	0	0
Organic Matter				
Ammonium	0.31	-0.08	-0.04	$2.22 imes 10^{-4}$
Chlorophyll	0.02	-0.12	-0.14	0.01
Dissolved Oxygen	0	6.75×10^{-4}	-2.32×10^{-4}	0.01
Irradiance	0.01	-0.01	-0.01	2.99×10^{-4}
Nitrate	0.12	-0.01 -0.06	-0.01 -0.09	2.99 × 10 0.1
OM1	0.12	-0.00 -0.15	-0.03 -0.12	-0.04
OM1 OM2	0.13	-0.13 -0.07	-0.12 -0.17	-0.04 -0.05
Phosphate	0.14	-0.07 -0.04		
Phytoplankton	0.03	-0.04	-0.06	0.02
	0.8	0.00	0.2	CT 00
Ammonium		0.02	-0.3	-65.98 -104.24
Chlorophyll	1.14	-1.23	-4.38	-
Dissolved Oxygen	0.01	4.58×10^{-4}	-0	-3.44×10^{-4}
Irradiance	0.02	0	-0 - 1 T	-0.01
Nitrate	0.74	0.43	0.45	0.64
OM1	0.76	-0.17	-0.46	-55.11
OM2	1.28	-0.34	-1.15	-128.93
Phosphate	0.17	-0.03	-0.05	0.14
Temperature				
Ammonium	0.79	0.69	0.69	-272.31
Chlorophyll	0.6	0.47	0.45	-114.51
Dissolved Oxygen	0.02	0.02	0.02	0.01
Irradiance	0.03	0.02	0.02	-0.01
Nitrate	0.3	0.15	0.16	0.19
OM1	0.86	0.68	0.69	-215.17
OM2	1.48	1.21	1.2	-900.26
Phosphate	0.16	0.11	0.09	0.11
Zooplankton				
Ammonium	0.47	0.45	0.44	0.16
Chlorophyll	0.39	0.26	0.23	0.2
Dissolved Oxygen	0.01	0.01	0.01	0.01
Irradiance	0.03	0.02	0.02	0.01
Nitrate	1.06	1.02	1.02	0.98
OM1	0.37	0.27	0.28	0.18
OM2	0.39	0.3	0.28	0.18
Phosphate	0.31	0.19	0.17	0.27

Fig. 1: Examples of unique parameter combinations from different parameter sets and number of selected parameters. The number of combinations are shown for increasing numbers of selected parameters from the total in the set, where 50 parameter sets are shown each with one through 50 total parameters. Note that the number of unique combinations is shown as the natural log mbnex

Fig. 2: Sensitivity values (L1, eq. (2)) of all state variables to changes in parameter values using default conditions, changes in initial conditions (April, September seasonal means, Table 1), and changes in structural complexity (Table 2). Parameters are grouped by category: optics, organic matter, phytoplankton, zooplankton, temperature, and zoplankton. See Table 3 for L1 values for O_2 and Tables S1 to S7 for the other state variables.

Fig. 3: Identifiability (as γ , eq. (3)) of parameter subsets for O_2 . Plots in (a) show identifiability by parameter categories and (b) shows identifiability by selecting the top 1 through 4 parameters in all categories. Lines represent identifiability ranges for the possible combinations given the number of parameters in the set. The temperature category is not shown because O_2 was sensitive to only one parameter (i.e., $\gamma = 1$).

Fig. 5: Percent of identifiable parameter sets for O_2 at different γ thresholds, selection criteria, and total number of parameters in the set. Thresholds varied from $\gamma=2$ to 20 such that sets with γ below a threshold were considered identifiable relative to the value. Plots in (a) show percent of identifiable sets by selecting parameters within categories and (b) shows percent identifiable by selecting from the top 1 through 4 parameters in all categories. Percent identifiable was based on all sets in Fig. 3.

Fig. 6: Identifiability (as γ , eq. (3)) for O_2 of organic matter parameters for subset combinations in Fig. 3. Identifiability is evaluated for subsets that excluded and included the parameters at the top of each plot. Identifiability of including all eight parameters is in Fig. 3. Grey lines indicate potential thresholds at $\gamma=10,15$ for maximum acceptable identifiability.

Fig. 7: Identifiability (as γ , eq. (3)) of selecting parameters for all state variables. Parameters are selected by decreasing sensitivity independent of parameter categories. Grey lines indicate potential thresholds at $\gamma=10,15$ for maximum acceptable identifiability. Selection stops after $\gamma>15$.

Fig. 8: Summaries of changes in parameter sensitivity values (L1, eq. (2)) from the default model conditions. Sensitivity was re-evaluated using initial conditions as seasonal means for April and September, and added structural complexity. Sensitivity is summarized as the minimum, median, and maximum for each state variable separated by parameter categories. Changes in average sensitivity from the default model conditions are in Table 7.

Table S1: Sensitivity of ammonium to perturbations of individual parameters. Sensitivities are based on a 50% increase from the initial parameter value, where L1 summarizes differences in model output from the default (see eq. (2)). Parameters that did not affect ammonium are not shown. Parameters are grouped by categories as optics, temperature, phytoplankton, zooplankton, and organic matter.

Description	Parameter	L1
Optics		
Chla specific absorption at 490 nm	astar490	0.03
OMA specific absorption at 490 nm	astarOMA	1.63×10^{-3}
OMZ specific absorption at 490 nm	astarOMZ	1.5×10^{-3}
Temperature		
Optimum temperature for growth(C)	$Tref(nospA + nospZ)_{p1}$	0.79
Phytoplankton		
mortality coefficient	mA	8.49
edibility vector for Z1	ediblevector(Z1)	1.32
maximum growth rate	umax	0.65
initial slope of the photosynthesis-irradiance relationship	alpha	0.6
N-uptake rate measured at umax	vmaxN	0.46
Phytoplankton threshold for grazing, is multiplied by VOLcell	Athresh	0.29
coefficient for non-limiting nutrient	aN	0.17
phytoplankton growth respiration coefficient	respg	0.16
phytoplankton basal respiration coefficient	respb	0.15
half-saturation constant for P	Кp	0.14
phytoplankton volume/cell	volcell	0.14
minimum N cell-quota	QminN	0.1
P-uptake rate measured at umax	vmaxP	0.1
phytoplankton carbon/cell	Qc	0.03
half-saturation constant for N	Kn	0.01
minimum P cell-quota	QminP	2.24×10^{-6}
Zooplankton	· -	
maximum growth rate of zooplankton	Zumax	1.42
assimilation efficiency as a fraction of ingestion	Zeffic	0.76
half saturation coefficient for grazing	ZKa	0.74
zooplankton nitrogen/individual	ZQn	0.62
Zooplankton mortality constant for quadratic mortality	Zm	0.5
proportion of grazed phytoplankton lost to sloppy feeding	Zslop	0.3
Zooplankton growth-dependent respiration factor	Zrespg	0.22
Zooplankton biomass-dependent respiration factor	Zrespb	0.16
zooplankton phosphorus/individual	ZQp	1.07×10^{-3}
zooplankton carbon/individual	ZQc	1.44×10^{-4}
Organic Matter	~	
maximum rate of nitrification per day	nitmax	1.54
NH4 rate constant for nitrification	KNH4	0.66
turnover rate for OM1A and OM1Z	KG1	0.07
decay rate of CDOM, 1/day	KGcdom	0.07
half-saturation concentration for O2 utilization	KO2	0.06
O2 concentration that inhibits denitrification	KstarO2	0.05
turnover rate for OM2A and OM2Z	KG2	0.03
half-saturation concentration for NO3 used in denitrification	KNO3	7.55×10^{-3}

Table S2: Sensitivity of chl-a to perturbations of individual parameters. Sensitivities are based on a 50% increase from the initial parameter value, where L1 summarizes differences in model output from the default (see eq. (2)). Parameters that did not affect chl-a are not shown. Parameters are grouped by categories as optics, temperature, phytoplankton, zooplankton, and organic matter.

astar490 astarOMA astarOMZ Tref(nospA+nospZ) _{p1} mA ediblevector(Z1) umax	$0.02 \\ 1.45 \times 10^{-3} \\ 1.13 \times 10^{-3}$ 0.6 13.94 0.95
$astarOMA$ $astarOMZ$ $Tref(nospA+nospZ)_{p1}$ mA $ediblevector(Z1)$	1.45×10^{-3} 1.13×10^{-3} 0.6 13.94
$astarOMZ$ $Tref(nospA+nospZ)_{p1}$ mA $ediblevector(Z1)$	$ \begin{array}{c} 1.13 \times 10^{-3} \\ 0.6 \\ 13.94 \end{array} $
$Tref(nospA+nospZ)_{p1}$ mA $ediblevector(Z1)$	0.6
mA ediblevector(Z1)	13.94
mA ediblevector(Z1)	13.94
ediblevector(Z1)	
ediblevector(Z1)	
	0.95
umax	0.00
	0.85
alpha	0.62
vmaxN	0.53
respg	0.26
Athresh	0.25
respb	0.24
aN	0.17
Kp	0.14
vmaxP	0.12
volcell	0.1
QminN	0.07
$\widetilde{Q}c$	0.02
Kn	0.01
QminP	1.38×10^{-6}
Zumax	1.02
ZKa	0.85
Zeffic	0.57
ZQn	0.52
Zm	0.41
Zslop	0.23
_	0.17
	0.14
_	1.29×10^{-3}
=	7.55×10^{-5}
220	1.00 // 10
KGcdom	0.07
	0.03
	0.01
	0.01
	3.35×10^{-3}
	1.19×10^{-3}
	3.4×10^{-5}
	2.97×10^{-5}
	umax alpha vmaxN respg Athresh respb aN Kp vmaxP volcell QminN Qc Kn QminP Zumax ZKa Zeffic ZQn

Table S3: Sensitivity of irradiance to perturbations of individual parameters. Sensitivities are based on a 50% increase from the initial parameter value, where L1 summarizes differences in model output from the default (see eq. (2)). Parameters that did not affect irradiance are not shown. Parameters are grouped by categories as optics, temperature, phytoplankton, zooplankton, and organic matter.

Description	Parameter	L1
Optics		
Chla specific absorption at 490 nm	astar490	0.02
OMA specific absorption at 490 nm	astarOMA	1.47×10^{-3}
OMZ specific absorption at 490 nm	astarOMZ	1.34×10^{-3}
Temperature		
Optimum temperature for growth(C)	$Tref(nospA + nospZ)_{p1}$	0.03
Phytoplankton		
maximum growth rate	umax	0.09
mortality coefficient	mA	0.05
initial slope of the photosynthesis-irradiance relationship	alpha	0.04
edibility vector for Z1	ediblevector(Z1)	0.04
N-uptake rate measured at umax	vmaxN	0.03
Phytoplankton threshold for grazing, is multiplied by VOLcell	Athresh	0.02
coefficient for non-limiting nutrient	aN	0.01
phytoplankton growth respiration coefficient	respg	0.01
half-saturation constant for P	Kp	0.01
P-uptake rate measured at umax	vmaxP	9.48×10^{-3}
phytoplankton basal respiration coefficient	respb	9.38×10^{-3}
phytoplankton volume/cell	volcell	8.1×10^{-3}
minimum N cell-quota	QminN	5.75×10^{-3}
phytoplankton carbon/cell	$\widetilde{Q}c$	3.78×10^{-3}
half-saturation constant for N	Kn	9.81×10^{-4}
minimum P cell-quota	QminP	1.92×10^{-7}
Zooplankton		
half saturation coefficient for grazing	ZKa	0.13
zooplankton nitrogen/individual	ZQn	0.06
maximum growth rate of zooplankton	Zumax	0.04
Zooplankton mortality constant for quadratic mortality	Zm	0.04
assimilation efficiency as a fraction of ingestion	Zeffic	0.03
proportion of grazed phytoplankton lost to sloppy feeding	Zslop	0.02
Zooplankton growth-dependent respiration factor	Zrespg	0.01
Zooplankton biomass-dependent respiration factor	Zrespb	9.67×10^{-3}
zooplankton phosphorus/individual	ZQp	9.34×10^{-5}
zooplankton carbon/individual	ZQc	1.99×10^{-5}
Organic Matter		
decay rate of CDOM, 1/day	KGcdom	0.05
turnover rate for OM1A and OM1Z	KG1	3.96×10^{-3}
turnover rate for OM2A and OM2Z	KG2	9.88×10^{-4}
O2 concentration that inhibits denitrification	KstarO2	7.2×10^{-4}
half-saturation concentration for O2 utilization	KO2	3.54×10^{-4}
half-saturation concentration for NO3 used in denitrification	KNO3	6.18×10^{-5}
maximum rate of nitrification per day	nitmax	1.72×10^{-6}
NH4 rate constant for nitrification	KNH4	1.48×10^{-6}

Table S4: Sensitivity of nitrate to perturbations of individual parameters. Sensitivities are based on a 50% increase from the initial parameter value, where L1 summarizes differences in model output from the default (see eq. (2)). Parameters that did not affect nitrate are not shown. Parameters are grouped by categories as optics, temperature, phytoplankton, zooplankton, and organic matter.

Description	Parameter	L1
Optics		
Chla specific absorption at 490 nm	astar490	0.02
OMZ specific absorption at 490 nm	astarOMZ	1.27×10^{-3}
OMA specific absorption at 490 nm	astarOMA	1.19×10^{-3}
Temperature		
Optimum temperature for growth(C)	$Tref(nospA+nospZ)_{p1}$	0.3
Phytoplankton		
maximum growth rate	umax	8.49
phytoplankton carbon/cell	Qc	0.89
initial slope of the photosynthesis-irradiance relationship	alpha	0.7
edibility vector for Z1	ediblevector(Z1)	0.33
mortality coefficient	mA	0.27
Phytoplankton threshold for grazing, is multiplied by VOLcell	Athresh	0.2
N-uptake rate measured at umax	vmaxN	0.19
coefficient for non-limiting nutrient	aN	0.13
phytoplankton growth respiration coefficient	respg	0.11
phytoplankton volume/cell	volcell	0.1
P-uptake rate measured at umax	vmaxP	0.1
half-saturation constant for P	Кр	0.09
minimum N cell-quota	QminN	0.09
phytoplankton basal respiration coefficient	respb	0.07
half-saturation constant for N	Kn	7.06×10^{-3}
minimum P cell-quota	QminP	6.67×10^{-7}
Zooplankton		
half saturation coefficient for grazing	ZKa	7.59
zooplankton nitrogen/individual	ZQn	1.17
Zooplankton mortality constant for quadratic mortality	Zm	0.7
maximum growth rate of zooplankton	Zumax	0.34
proportion of grazed phytoplankton lost to sloppy feeding	Zslop	0.26
assimilation efficiency as a fraction of ingestion	Zeffic	0.25
Zooplankton growth-dependent respiration factor	Zrespg	0.17
Zooplankton biomass-dependent respiration factor	Zrespb	0.1
zooplankton carbon/individual	ZQc	3.8×10^{-3}
zooplankton phosphorus/individual	\widetilde{ZQp}	8.59×10^{-4}
Organic Matter	~1	
O2 concentration that inhibits denitrification	KstarO2	0.78
half-saturation concentration for NO3 used in denitrification	KNO3	0.07
decay rate of CDOM, 1/day	KGcdom	0.04
half-saturation concentration for O2 utilization	KO2	0.03
turnover rate for OM1A and OM1Z	KG1	0.02
turnover rate for OM2A and OM2Z	KG2	0.01
maximum rate of nitrification per day	nitmax	9.96×10^{-3}
NH4 rate constant for nitrification	KNH4	9.87×10^{-3}

Table S5: Sensitivity of POM to perturbations of individual parameters. Sensitivities are based on a 50% increase from the initial parameter value, where L1 summarizes differences in model output from the default (see eq. (2)). Parameters that did not affect POM are not shown. Parameters are grouped by categories as optics, temperature, phytoplankton, zooplankton, and organic matter.

Description	Parameter	L1
Optics		
Chla specific absorption at 490 nm	astar490	0.03
OMA specific absorption at 490 nm	astarOMA	1.73×10^{-3}
OMZ specific absorption at 490 nm	astarOMZ	1.49×10^{-3}
Temperature		
Optimum temperature for growth(C)	$Tref(nospA+nospZ)_{p1}$	0.86
Phytoplankton		
mortality coefficient	mA	7.22
edibility vector for Z1	ediblevector(Z1)	0.9
maximum growth rate	umax	0.89
phytoplankton carbon/cell	Qc	0.67
initial slope of the photosynthesis-irradiance relationship	alpha	0.67
N-uptake rate measured at umax	vmaxN	0.45
phytoplankton growth respiration coefficient	respg	0.29
phytoplankton basal respiration coefficient	respb	0.24
Phytoplankton threshold for grazing, is multiplied by VOLcell	Athresh	0.22
minimum N cell-quota	QminN	0.21
coefficient for non-limiting nutrient	aN	0.14
half-saturation constant for P	Кp	0.11
phytoplankton volume/cell	volcell	0.1
P-uptake rate measured at umax	vmaxP	0.09
half-saturation constant for N	Kn	0.01
minimum P cell-quota	QminP	7.35×10^{-4}
Zooplankton	2	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
maximum growth rate of zooplankton	Zumax	0.96
half saturation coefficient for grazing	ZKa	0.79
assimilation efficiency as a fraction of ingestion	Zeffic	0.54
zooplankton nitrogen/individual	ZQn	0.49
Zooplankton mortality constant for quadratic mortality	Zm	0.39
proportion of grazed phytoplankton lost to sloppy feeding	Zslop	0.27
Zooplankton growth-dependent respiration factor	Zrespg	0.16
Zooplankton biomass-dependent respiration factor	Zrespb	0.12
zooplankton carbon/individual	ZQc	9.64×10^{-3}
zooplankton phosphorus/individual	ZQp	1.06×10^{-3}
Organic Matter	-zr	
turnover rate for OM1A and OM1Z	KG1	0.92
decay rate of CDOM, 1/day	KGcdom	0.07
half-saturation concentration for O2 utilization	KO2	0.04
O2 concentration that inhibits denitrification	KstarO2	0.02
turnover rate for OM2A and OM2Z	KG2	0.01
half-saturation concentration for NO3 used in denitrification	KNO3	3.72×10^{-3}
maximum rate of nitrification per day	nitmax	6.98×10^{-5}
NH4 rate constant for nitrification	KNH4	6.41×10^{-5}

Table S6: Sensitivity of dissolved organic matter to perturbations of individual parameters. Sensitivities are based on a 50% increase from the initial parameter value, where L1 summarizes differences in model output from the default (see eq. (2)). Parameters that did not affect dissolved organic matter are not shown. Parameters are grouped by categories as optics, temperature, phytoplankton, zooplankton, and organic matter.

Description	Parameter	L1
Optics		
Chla specific absorption at 490 nm	astar490	0.04
OMA specific absorption at 490 nm	astarOMA	2.48×10^{-3}
OMZ specific absorption at 490 nm	astarOMZ	2.04×10^{-3}
Temperature		
Optimum temperature for growth(C)	$Tref(nospA+nospZ)_{p1}$	1.48
Phytoplankton		
mortality coefficient	mA	14.25
maximum growth rate	umax	1.11
edibility vector for Z1	ediblevector(Z1)	0.94
N-uptake rate measured at umax	vmaxN	0.86
initial slope of the photosynthesis-irradiance relationship	alpha	0.85
phytoplankton carbon/cell	Qc	0.67
phytoplankton growth respiration coefficient	respg	0.36
phytoplankton basal respiration coefficient	respb	0.29
coefficient for non-limiting nutrient	aN	0.25
minimum N cell-quota	QminN	0.24
Phytoplankton threshold for grazing, is multiplied by VOLcell	Athresh	0.22
half-saturation constant for P	Кр	0.2
P-uptake rate measured at umax	vmaxP	0.14
phytoplankton volume/cell	volcell	0.1
half-saturation constant for N	Kn	0.02
minimum P cell-quota	QminP	4.37×10^{-3}
Zooplankton	_~	
maximum growth rate of zooplankton	Zumax	1.01
half saturation coefficient for grazing	ZKa	0.88
assimilation efficiency as a fraction of ingestion	Zeffic	0.58
zooplankton nitrogen/individual	ZQn	0.54
Zooplankton mortality constant for quadratic mortality	Zm	0.41
Zooplankton growth-dependent respiration factor	Zrespg	0.17
Zooplankton biomass-dependent respiration factor	Zrespb	0.13
proportion of grazed phytoplankton lost to sloppy feeding	Zslop	0.12
zooplankton carbon/individual	ZQc	0.04
zooplankton phosphorus/individual	ZQp	1.69×10^{-3}
Organic Matter		
turnover rate for OM2A and OM2Z	KG2	0.94
decay rate of CDOM, 1/day	KGcdom	0.1
half-saturation concentration for O2 utilization	KO2	0.04
turnover rate for OM1A and OM1Z	KG1	0.04
O2 concentration that inhibits denitrification	KstarO2	0.03
half-saturation concentration for NO3 used in denitrification	KNO3	3.16×10^{-3}
maximum rate of nitrification per day	nitmax	8.44×10^{-5}
NH4 rate constant for nitrification	KNH4	7.41×10^{-5}

Table S7: Sensitivity of phosphate to perturbations of individual parameters. Sensitivities are based on a 50% increase from the initial parameter value, where L1 summarizes differences in model output from the default (see eq. (2)). Parameters that did not affect phosphate are not shown. Parameters are grouped by categories as optics, temperature, phytoplankton, zooplankton, and organic matter.

Description	Parameter	L1
Optics		
Chla specific absorption at 490 nm	astar490	9.01×10^{-3}
OMZ specific absorption at 490 nm	astarOMZ	5.21×10^{-4}
OMA specific absorption at 490 nm	astarOMA	5.13×10^{-4}
Temperature		
Optimum temperature for growth(C)	$Tref(nospA+nospZ)_{p1}$	0.16
Phytoplankton		
maximum growth rate	umax	0.78
P-uptake rate measured at umax	vmaxP	0.59
edibility vector for Z1	ediblevector(Z1)	0.25
initial slope of the photosynthesis-irradiance relationship	alpha	0.23
mortality coefficient	mA	0.2
N-uptake rate measured at umax	vmaxN	0.18
Phytoplankton threshold for grazing, is multiplied by VOLcell	Athresh	0.13
coefficient for non-limiting nutrient	aN	0.11
phytoplankton growth respiration coefficient	respg	0.09
phytoplankton volume/cell	volcell	0.06
phytoplankton basal respiration coefficient	respb	0.06
minimum N cell-quota	QminN	0.04
half-saturation constant for P	$\widetilde{K}p$	0.03
half-saturation constant for N	Kn	6.97×10^{-3}
phytoplankton carbon/cell	Qc	6.68×10^{-3}
minimum P cell-quota	QminP	8.21×10^{-7}
Zooplankton	_~	
half saturation coefficient for grazing	ZKa	1.47
zooplankton nitrogen/individual	ZQn	0.5
Zooplankton mortality constant for quadratic mortality	Zm	0.35
maximum growth rate of zooplankton	Zumax	0.26
assimilation efficiency as a fraction of ingestion	Zeffic	0.19
proportion of grazed phytoplankton lost to sloppy feeding	Zslop	0.15
Zooplankton growth-dependent respiration factor	Zrespg	0.1
Zooplankton biomass-dependent respiration factor	Zrespb	0.06
zooplankton phosphorus/individual	ZQp	6.43×10^{-3}
zooplankton carbon/individual	ZQc	3.38×10^{-5}
Organic Matter		0.00 = 0
turnover rate for OM1A and OM1Z	KG1	0.14
turnover rate for OM2A and OM2Z	KG2	0.06
decay rate of CDOM, 1/day	KGcdom	0.02
half-saturation concentration for O2 utilization	KO2	0.01
O2 concentration that inhibits denitrification	KstarO2	7.29×10^{-3}
half-saturation concentration for NO3 used in denitrification	KNO3	1.19×10^{-3}
maximum rate of nitrification per day	nitmax	2.7×10^{-5}
NH4 rate constant for nitrification	KNH4	2.64×10^{-5}
1 111 1 1 1 1 1 CONSTRUCT TOT INTERPRETATION	1111117	2.01 ∧ 10