РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ

Факультет физико-математических и естественных наук Кафедра прикладной информатики и теории вероятностей

Архипов Олег Константинович

Содержание

1	Цель работы			
2	Выполнение лабораторной работы 2.1 Символьные и численные данные в NASM			
3	Самостоятельная работа	20		
4	Выводы	23		
Сп	исок литературы	24		

Список иллюстраций

2.1	Каталог и фаил asm для новои ЛР	5
2.2	Файл in_out.asm	6
2.3	Программа вывода значения регистра еах	7
2.4	Исполнение lab6-1.asm	7
2.5	Изменение файла lab6-1.asm	8
2.6	Исполнение и результат обновленного файла lab6-1.asm	9
2.7	Файл lab6-2.asm	9
2.8	Текст программы в файле lab6-2.asm	9
2.9	Исполнение файла lab6-2	10
2.10	Изменение файла lab6-2.asm	10
2.11	Исполнение измененного файла lab6-2	11
	Замена iprintLF на iprint в файле lab6-2.asm	11
	Запуск файла lab6-2 без символа перевода строки	11
2.14	Файл lab6-3.asm	12
	Текст файла lab6-3.asm	13
2.16	Результат работы файла lab6-3	14
	Измененная часть файла lab6-3.asm	15
2.18	Результат работы измененного файла lab6-3	15
2.19	Файл variant.asm	16
2.20	Текст в variant.asm	17
	Запуск variant	18
2.22	Ввод номера студ. билета	18
2.23	Мой вариант	18
3.1	Файл для вычисления самостоятельного задания	20
3.2	Код программы	21
3.3	Результат работы программы	22
3.4	Результат работы программы с альтернативным значением	22

1 Цель работы

Освоение арифметических инструкций языка ассемблера NASM.

2 Выполнение лабораторной работы

2.1 Символьные и численные данные в NASM

Создаю каталог для программ ЛР №6, перехожу в него и создаю там файл lab6-1.asm (рис. 2.1).

```
[okarkhipov@fedora ~]$ mkdir ~/work/arch-pc/lab06
[okarkhipov@fedora ~]$ cd ~/work/arch-pc/lab06
[okarkhipov@fedora lab06]$ touch lab6-1.asm
[okarkhipov@fedora lab06]$ [
```

Рис. 2.1: Каталог и файл asm для новой ЛР

Копирую файл in out.asm в новую директорию ~/work/arch-pc/lab06 (рис. 2.2).

Левая панель	Файл	Команда	Настройки Прав	ая панель
┌<- ~/work/arch-pc/	'lab06 —	.[^]>	~/work/arch-pc	/lab05[^]> ₇
.и Имя	Размер	Время правки	.и Имя	Размер Время правки
/	-BBEPX-	окт 28 21:00	/	-ВВЕРХ- окт 28 21:00
in_out.asm		окт 26 21:19	in_out.asm	3942 окт 26 21:19
lab6-1.asm		окт 28 21:00	lab5-1.asm	305 окт 27 19:32
			lab5-1.o	1056 окт 27 19:54
			*lab5-12	8992 окт 28 19:31
			lab5-12.asm	633 окт 28 19:26
			lab5-12.o	1120 окт 28 19:27
			*lab5-2	9092 окт 27 21:24
			lab5-2.asm	1299 окт 27 21:23
			lab5-2.o	1312 окт 27 21:24
			*lab5-22	9092 окт 28 19:54
			lab5-22.asm	1327 окт 28 19:51
			lab5-22.o	1328 окт 28 19:53

Рис. 2.2: Файл in_out.asm

Прописываю в файле lab6-1.asm текст программы, которая запишет в регистр еах символ 6, в регистр ebx - символ 4, далее сложит эти два значения и выведет результат (для последнего запишет значение регистра еах в переменную buf1 (в квадратных скобках, т.к. это переменная) и затем в регистр еах - адрес переменной buf1 (адрес - без скобок) (рис. 2.3).

```
GNU nano 7.2 /hc
%include 'in_out.asm'
SECTION .bss
buf1: RESB 80
SECTION .text
GLOBAL _start
_start:
mov eax,'6'
mov ebx,'4'
add eax,ebx
mov [buf1],eax
mov eax,buf1
call sprintLF
call quit
```

Рис. 2.3: Программа вывода значения регистра еах

Создаю и запускаю исполняемый файл и действительно получаю на выходе символ j, т.к. складываются двоичные представления кодов символов 6 и 4, после чего выводится символ, соответствующий этому суммарному коду (рис. 2.4).

```
[okarkhipov@fedora lab06]$ nasm -f elf lab6-1.asm
[okarkhipov@fedora lab06]$ ld -m elf_i386 -o lab6-1 lab6-1.o
[okarkhipov@fedora lab06]$ ./lab6-1
j
[okarkhipov@fedora lab06]$ [
```

Рис. 2.4: Исполнение lab6-1.asm

Изменяю mov eax, 6' и mov ebx, 4' на mov eax, 6 и mov ebx, 4 в исходном коде

(рис. 2.5).

```
GNU nano 7.2 /he
%include 'in_out.asm'
SECTION .bss
buf1: RESB 80
SECTION .text
GLOBAL _start
_start:
mov eax,6
mov ebx,4
add eax,ebx
mov [buf1],eax
mov eax,buf1
call sprintLF
call quit
```

Рис. 2.5: Изменение файла lab6-1.asm

Снова исполняю обновленный файл и поучаю символ с кодом 10, или LF т.е. символ перевода строки, отображаться он не будет (если не учитывать пропущенную строку) (рис. 2.6).

```
[okarkhipov@fedora lab06]$ nasm -f elf lab6-1.asm
[okarkhipov@fedora lab06]$ ld -m elf_i386 -o lab6-1 lab6-1.o
[okarkhipov@fedora lab06]$ ./lab6-1
[okarkhipov@fedora lab06]$ ]
```

Рис. 2.6: Исполнение и результат обновленного файла lab6-1.asm

Создаю новый файл lab6-2.asm в той же директории (рис. 2.7).

```
[okarkhipov@fedora lab06]$ touch ~/work/arch-pc/lab06/lab6-2.asm
[okarkhipov@fedora lab06]$ [
```

Рис. 2.7: Файл lab6-2.asm

Ввожу следующую программу (рис. 2.8).

```
GNU nano 7.2 /hc
%include 'in_out.asm'
SECTION .text
GLOBAL _start
_start:
mov eax,'6'
mov ebx,'4'
add eax,ebx
call iprintLF
call quit
```

Рис. 2.8: Текст программы в файле lab6-2.asm

Компилирую исполняемый файл для lab6-2.asm и запускаю его, получаю число 106, которое является суммой кодов исходных символов (рис. 2.9).

```
[okarkhipov@fedora lab06]$ nasm -f elf lab6-2.asm
[okarkhipov@fedora lab06]$ ld -m elf_i386 -o lab6-2 lab6-2.o
[okarkhipov@fedora lab06]$ ./lab6-2
106
[okarkhipov@fedora lab06]$ |
```

Рис. 2.9: Исполнение файла lab6-2

Заменяю в lab6-2.asm mov eax, 6' и mov ebx, 4' на mov eax, 6 и mov ebx, 4 как и в предыдущем файле lab6-1.asm (рис. 2.10).

```
GNU nano 7.2 /he
include 'in_out.asm'
SECTION .text
GLOBAL _start
_start:
mov eax,6
mov ebx,4
add eax,ebx
call iprintLF
call quit
```

Рис. 2.10: Изменение файла lab6-2.asm

Создаю объектный и исполняемый файлы программы и запускаю последний, получаю число 10 (рис. 2.11).

```
[okarkhipov@fedora lab06]$ nasm -f elf lab6-2.asm
[okarkhipov@fedora lab06]$ ld -m elf_i386 -o lab6-2 lab6-2.o
[okarkhipov@fedora lab06]$ ./lab6-2
10
[okarkhipov@fedora lab06]$ ]
```

Рис. 2.11: Исполнение измененного файла lab6-2

Заменяю функцию iprintLF на iprint и снова создаю исполняемый файл, после чего запускаю его, получаю то же число 10, без символа перевода строки, что и характеризует отличие функций iprintLF на iprint (рис. 2.12-2.13).

```
%include 'in_out.asm'
SECTION .text
GLOBAL _start
_start:
mov eax,6
mov ebx,4
add eax,ebx
call iprint
call quit
```

Рис. 2.12: Замена iprintLF на iprint в файле lab6-2.asm

```
[okarkhipov@fedora lab06]$ nasm -f elf lab6-2.asm
[okarkhipov@fedora lab06]$ ld -m elf_i386 -o lab6-2 lab6-2.o
[okarkhipov@fedora lab06]$ ./lab6-2
10[okarkhipov@fedora lab06]$ [
```

Рис. 2.13: Запуск файла lab6-2 без символа перевода строки

2.2 Арифметические операции в NASM

Создаю файл lab6-3.asm в каталоге ~/work/arch-pc/lab06 (рис. 2.14).

[okarkhipov@fedora lab06]\$ touch ~/work/arch-pc/lab06/lab6-3.asm [okarkhipov@fedora lab06]\$ [

Рис. 2.14: Файл lab6-3.asm

Ввожу текст программы в файл lab6-3.asm (рис. 2.15).

```
%include 'in_out.asm'
SECTION .data
 liv: DB 'Результат: ',0
  em: DB 'Остаток от деления: ',0
ECTION .text
 LOBAL _start
; Вычисление выражения
mov eax,5 ; EAX=5
mov ebx,2 ; EBX=2 mul ebx ; EAX=EAX*EBX add eax,3 ; EAX=EAX+3 xor edx,edx ; Обнуляем EDX для корректной работы div mov ebx,3 ; EBX=3 div ebx ; EAX=EAX/3, EDX=остаток
mov edi,eax  ; Запись результата вычисления в 'edi'
; Вывод результата на экран
mov eax,div ; Вызов подпрограммы печати
call sprint  ; сообщения 'Результат: '
mov eax,edi ; Вызов подпрограммы печати
call iprintLF ; значения из 'edi' в виде символов
mov eax,rem ; Вызов подпрограммы печати
call sprint ; сообщения 'Остаток от деления: '
mov eax,edx ; Вызов подпрограммы печати значения
call iprintLF ; из 'edx' (остаток) в виде символов
call quit
```

Рис. 2.15: Текст файла lab6-3.asm

Создаю файлы: объектный lab6-3.0 и исполняемый lab6-3 и запускаю программу, получаю 4 и 1 в остатке, как и должно быть (рис. 2.16).

```
[okarkhipov@fedora lab06]$ nasm -f elf lab6-3.asm
[okarkhipov@fedora lab06]$ ld -m elf_i386 -o lab6-3 lab6-3.o
[okarkhipov@fedora lab06]$ ./lab6-3
Результат: 4
Остаток от деления: 1
[okarkhipov@fedora lab06]$ [
```

Рис. 2.16: Результат работы файла lab6-3

Изменяю текст программы для вычисления выражения

$$f(x) = (4*6+2)/5$$

(можно сравнить рис. 2.17 и рис. 2.15).

```
/home/okarkhipov/work/arch-pc/lab06/l
  GNU nano 7.2
%include 'in_out.asm'
  CTION .data
 iv: DB 'Результат: ',0
 em: DB 'Остаток от деления: ',0
  ECTION .text
 LOBAL _start
; Вычисление выражения
mov eax,4
              ; EAX=4
            ; EBX=6
; EAX=EAX*EBX
mov ebx,6
mul ebx
add eax,2 ; EAX=EAX+2
xor edx,edx ; Обнуляем EDX для корректной работы div
mov ebx,5 ; EBX=5
div ebx
             ; EAX=EAX/5, EDX=остаток
mov edi,eax ; Запись результата вычисления в 'edi'
```

Рис. 2.17: Измененная часть файла lab6-3.asm

Проверяю результат работы программы после внесенных изменений (рис. 2.18).

```
[okarkhipov@fedora lab06]$ nasm -f elf lab6-3.asm
[okarkhipov@fedora lab06]$ ld -m elf_i386 -o lab6-3 lab6-3.o
[okarkhipov@fedora lab06]$ ./lab6-3
Результат: 5
]Остаток от деления: 1
[okarkhipov@fedora lab06]$
```

Рис. 2.18: Результат работы измененного файла lab6-3

Для следующего задания по вычислению варианта задания по номеру студенческого билета создаю файл variant.asm в каталоге ~/work/arch-pc/lab06 (рис. 2.19).

[okarkhipov@fedora lab06]\$ touch ~/work/arch-pc/lab06/variant.asm [okarkhipov@fedora lab06]\$ [

Рис. 2.19: Файл variant.asm

Ввожу текст программы, которая запросит номер студ. билета, затем вычислит вариант по формуле $(S_n \mod 20)+1$, т.е. остаток от деления $N^{\rm o}$ билета на 20 и ещё плюс 1, после чего выведет ответ на экран (рис. 2.20).

```
GNU nano 7.2 /home/okarkhipov/work/arch-p
%include | in_out.asm'
 ECTION .data
nsg: DB 'Введите № студенческого билета: ',0
 em: DB 'Ваш вариант: ',0
ECTION .bss
 RESB 80
SECTION .text
GLOBAL _start
mov eax, msg
call sprintLF
mov ecx, x
mov edx, 80
call sread
mov eax,х ; вызов подпрограммы преобразования
call atoi ; ASCII кода в число, `eax=x`
xor edx,edx
mov ebx,20
div ebx
inc edx
mov eax,rem
call sprint
mov eax,edx
call iprintLF
call quit
```

Рис. 2.20: Текст в variant.asm

Создаю исполняемый файл и запускаю его (рис. 2.21), ввожу номер билета (рис. 2.22) и получаю в ответе 4, что верно (рис. 2.23).

```
[okarkhipov@fedora lab06]$ nasm -f elf <mark>variant</mark>.asm
[okarkhipov@fedora lab06]$ ld -m elf_i386 -o variant variant.o
[okarkhipov@fedora lab06]$ ./variant
Введите № студенческого билета:
```

Рис. 2.21: Запуск variant

```
[okarkhipov@fedora lab06]$ nasm -f elf <mark>variant</mark>.asm
[okarkhipov@fedora lab06]$ ld -m elf_i386 -o variant variant.o
[okarkhipov@fedora lab06]$ ./variant
Введите № студенческого билета:
1132236063
```

Рис. 2.22: Ввод номера студ. билета

```
[okarkhipov@fedora lab06]$ nasm -f elf variant.asm
[okarkhipov@fedora lab06]$ ld -m elf_i386 -o variant variant.o
[okarkhipov@fedora lab06]$ ./variant
Введите № студенческого билета:
1132236063
Ваш вариант: 4
[okarkhipov@fedora lab06]$ [
```

Рис. 2.23: Мой вариант

1) В этой программе за вывод на экран сообщения 'Ваш вариант:' отвечают строки:

```
rem: DB 'Ваш вариант: ',0
```

.
mov eax,rem
call sprint

2) Строки:

mov ecx, x
mov edx, 80
call sread

отвечают за помещение адреса x , где x - вводимая строка (в данном случае номер билета) в регистр есx , а в регистр edx - максимальную длину этой строки, call sread - вызов подпрограммы внешнего файла in_out.asm , отвечающей за ввод сообщения с клавиатуры.

- 3) Инструкция "call atoi" используется для вызова функции преобразования ASCII кода символа в целое число, после чего записывает результат в регистр eax .
- 4) За вычисление варианта отвечают команды: "xor edx,edx" обнуление регистра edx, "mov ebx,20" присвоение регистру ebx значения 20, "div ebx" деление на 20 (значение регистра ebx) значения соответствующего регистра eax, в edx остаток, "inc edx" увеличение остатка, записанного в регистр edx на 1.
- 5) Как уже упоминалось выше остаток от деления при выполнении инструкции "div ebx" записывается в регистр edx .
- 6) Инструкция "inc edx" нужна для увеличения значения в регистре edx на 1.
- 7) За вывод на экран результата вычислений отвечают команды "mov eax,edx" и "call iprintLF".

3 Самостоятельная работа

Мой номер варианта 4, значит беру функцию вида

$$f(x) = (4/3) * (x - 1) + 5,$$

где
$$x_1 = 4, x_2 = 10.$$

Создаю в директории ~/work/arch-pc/lab06 файл solution.asm (рис. 3.1).

[okarkhipov@fedora lab06]\$ touch ~/work/arch-pc/lab06/solution.asm [okarkhipov@fedora lab06]\$ []

Рис. 3.1: Файл для вычисления самостоятельного задания

Далее прописываю код. Он достаточно подробно описан на рис. 3.2.

```
GNU nano 7.2
                              /home/okarkhipov/work/arch-
%include 'in_out.asm'
        'Введите переменную х: ',0
    : DB 'Ответ: ',0
     ION .bss
        80
  _OBAL _start
mov eax, msg ; Вывод сообщения
call sprint ; 'Введите переменную х:'
; Действие 1: присвоение переменной х
mov ecx, x
mov edx, 80
call sread ; Ввод переменной х
mov eax,x ; Вызов подпрограммы преобразования
call atoi ; ASCII кода в число, `eax=x`
; Действие 2: вычитание единицы
sub eax,1 ; eax=eax-1
mov edi,eax ; Освобождаю регистр eax
; Действие 3: деление 4/3
xor edx,edx ; Обнуляю edx для корректной работы div
mov ebx,3
mov eax,4 ; eax=eax/ebx , т.е. 4 на 3,
div ebx ; остаток записывается в edx
; Действие 4: умножение результата ДЗ на результат Д2
mul edi
              ; eax=edi∗eax
; Действие 5: сумма результата Д4 и числа 5
mov ebx,5
add eax,ebx ; eax=eax+ebx=eax+5
; Вывод результата
mov edi,eax ; Перемещаю результат в регистр edi
mov eax,rem ; Вызов подпрограммы печати
call sprint  ; сообщения 'Ответ: '
mov eax,edi ; Вызов подпрограммы печати значения
call iprintLF ; из 'edi' (результат) в виде символов
call quit
```

Рис. 3.2: Код программы

Создаю исполняемый файл и запускаю его, в качестве переменной ввожу 4, получаю ответ 8. Это результат без учета остатка в операции деления (рис. 3.3).

```
[okarkhipov@fedora lab06]$ nasm -f elf solution.asm
[okarkhipov@fedora lab06]$ ld -m elf_i386 solution.o -o solution
[okarkhipov@fedora lab06]$ ./solution
Введите переменную х: 4
Ответ: 8
```

Рис. 3.3: Результат работы программы

Запускаю программу еще раз с переменной 10, чтобы удостовериться в правильности работы программы, результат верный (рис. 3.4).

```
[okarkhipov@fedora lab06]$ ./solution
Введите переменную х: 10
Ответ: 14
```

Рис. 3.4: Результат работы программы с альтернативным значением

4 Выводы

Были освоены особенности арифметических операций в ассемблере NASM.

Список литературы