ML Interpretation

What Types of Insights Are Possible

- What features in the data did the model think are most important?
- For any single prediction from a model, how did each feature in the data affect that particular prediction?
- How does each feature affect the model's predictions in a big-picture sense (what is its typical effect when considered over a large number of possible predictions)?

Why Are These Insights Valuable

These insights have many uses, including

- Debugging
- Informing feature engineering
- Directing future data collection
- · Informing human decision-making
- Building Trust

One of the most basic questions we might ask of a model is *What features have the biggest impact on predictions?* This concept is called *feature importance*

Permutation importance

Consider data with the following format:

Height at age 20 (cm)	Height at age 10 (cm)	 Socks owned at age 10
182	155	 20
175	147	 10
156	142	 8
153	130	 24

We want to predict a person's height when they become 20 years old, using data that is available at age 10.

Permutation importance is calculated after a model has been fitted. So we won't change the model or change what predictions we'd get for a given value of height, sock-count, etc.

Height at age 20 (cm)	Height at age 10 (cm)	 Socks owned at age 10
182	155	 20
175	147	 10
	/ \	
156	142	 8
153	130	 24

Randomly re-ordering a single column should cause less accurate predictions,

Code Example

Our example will use a model that predicts whether a soccer/football team will have the "Man of the Game" winner based on the team's statistics.

```
import eli5
from eli5.sklearn import PermutationImportance

perm = PermutationImportance(my_model, random_state=1).fit(val_X, val_y)
eli5.show_weights(perm, feature_names = val_X.columns.tolist())
```

Weight	Feature
0.1750 ± 0.0848	Goal Scored
0.0500 ± 0.0637	Distance Covered (Kms)
0.0437 ± 0.0637	Yellow Card
0.0187 ± 0.0500	Off-Target
0.0187 ± 0.0637	Free Kicks
0.0187 ± 0.0637	Fouls Committed
0.0125 ± 0.0637	Pass Accuracy %
0.0125 ± 0.0306	Blocked
0.0063 ± 0.0612	Saves
0.0063 ± 0.0250	Ball Possession %
0 ± 0.0000	Red
0 ± 0.0000	Yellow & Red
0.0000 ± 0.0559	On-Target
-0.0063 ± 0.0729	Offsides
-0.0063 ± 0.0919	Corners
-0.0063 ± 0.0250	Goals in PSO
-0.0187 ± 0.0306	Attempts
-0.0500 ± 0.0637	Passes

Partial Dependence Plots

While feature importance shows **what** variables most affect predictions, partial dependence plots show *how* a feature affects predictions.

This is useful to answer questions like:

- Controlling for all other house features, what impact do longitude and latitude have on home prices? To restate this, how would similarly sized houses be priced in different areas?
- Are predicted health differences between two groups due to differences in their diets, or due to some other factor?

Like permutation importance, partial dependence plots are calculated after a model has been fit. The model is fit on real data that has not been artificially manipulated in any way.

SHAP Values (an acronym from SHapley Additive exPlanations) break down a prediction to show the impact of each feature. Where could you use this?

- A model says a bank shouldn't loan someone money, and the bank is legally required to explain the basis for each loan rejection
- A healthcare provider wants to identify what factors are driving each patient's risk of some disease so they can directly address those risk factors with targeted health interventions


```
import shap # package used to calculate Shap values

# Create object that can calculate shap values
explainer = shap.TreeExplainer(my_model)

# Calculate Shap values
shap_values = explainer.shap_values(data_for_prediction)

shap.initjs()
shap.force_plot(explainer.expected_value[1], shap_values[1], data_for_prediction)
```

Advance use of Shap Values

Some things you should be able to easily pick out:

- The model ignored the Red and Yellow & Red features.
- Usually Yellow Card doesn't affect the prediction, but there is an extreme case where a high value caused a much lower prediction.
- High values of Goal scored caused higher predictions, and low values caused low predictions

SHAP Dependence Contribution Plots

The spread suggests that other features must interact with Ball Possession %.

Resource: https://www.kaggle.com/learn/machine-learning-explainability
By Dan Becker