Séries d'exercices 4ème info ETUDES DES FONCTIONS

maths au lycee *** ali auir

Site Web: http://maths-akir.midiblogs.com/

EXERCICE N°1

Le plan est rapporté à un repère orthonormal $(O; \vec{i}, \vec{j})$.

Soit f la fonction définie sur R par : $f(x) = (x^3 - 1)\sqrt{x^2 + 1}$

1°)Calculer $\lim_{x\to +\infty} f(x)$ et $\lim_{x\to +\infty} f(x)$

2°)Déterminer la fonction dérivée f' de la fonction f et en déduire que le signe de f'(x) et le même que celui de $P(x) = 4x^4 + 3x^2 - x$.

 3°)Soit $Q(x) = 4x^{3} + 3x - 1$, étudier les variations de Q sur R et démontrer que l'équation Q(x) = 0 admet une unique solution α sur R dont on donnera une valeur approchée à 10^{-3} près.

4°)En déduire le signe de Q(x) puis le signe de f'(x).

5°)Dresser le tableau de variation de f sur R.

6°) Tracer la courbe (ζf) de la fonction f.

EXERCICE N°2

Partie A

Soit P la fonction polynôme définie sur R par : $P(x) = x^3 - 3x + 4$.

1°) Etudier les variations de P.

2°) Démontrer que l'équation P(x) = 0 admet une unique solution α dont on donner une valeur approchée à 10^{-2} près.

3°) En déduire le signe de P(x) suivant les valeurs de x.

Partie B

Soit f la fonction définie sur R^* par : $f(x) = x + 2 + \frac{3x - 2}{x^2}$ et C_f sa courbe représentative dans un repère orthonormal $(O; \vec{i}, \vec{j})$. (unité 1 cm)

1°) Démontrer que la courbe C_f admet deux asymptotes que l'on précisera. Préciser la position de C_f par rapport à la droite Δ d'équation y = x + 2.

2°) Démontrer que $f'(x) = \frac{P(x)}{x^3}$ et en déduire le sens de variation de f.

3°) Déterminer le ou les points où la tangente à la courbe C_f est parallèle à la droite Δ .

4°) Tracer la courbe C_f , la droite Δ et les autres renseignements obtenus sur C_f ,.

EXERCICE N°3

Partie I.

Soit la fonction f définie sur $R-\{2\}$ par : $f(x)=\frac{ax^2+bx+c}{x-2}$ où a, b et c sont des réels.

On désigne par (ζf) la courbe représentative de f dans un repère orthonormé (O, \vec{i}, \vec{j}) .

Déterminer les réels a , let c pour que:

• La courbe (ζf) passe par le point A(0,-1)

• La fonction f admet un extremum en 0

• La courbe (ζf) admet au point d'abscisse 1 une tangente de coefficient directeur (-3)

Partie II.

On donne $a \neq 1$, $b \neq -1$ et c = 2.

 1°)Dresser le tableau de variations de la fonction f.

2°)Préciser les extremum de f.

3°) En utilisant les variations de f comparer les nombres : $A = \frac{2008 \times 2007 + 2}{2006}$ et $B = \frac{2009 \times 2008 + 2}{2007}$

EXERCICE N°4

Soit f une fonction vérifiant

- 1. f définie et continue sur R
- 2. $\lim_{t \to 0} f = 1$
- 3. $\lim_{x \to 1^{-}} \frac{f(x) f(1)}{x 1} = +\infty$ et $\lim_{x \to 1^{+}} \frac{f(x) f(1)}{x 1} = 0$

- 4. $\lim_{x \to -\infty} (f(x) x) = 0$ et $\lim_{x \to -\infty} (f(x) x) = 0$
- 5. Pour tout $x \in]-\infty,1]: f(x) > x$
- **6.** Pour tout $x \in]-\infty,1[:f'(x)>0]$
- 7. Pour tout $x \in]1,+\infty[:f'(x)<0]$
- 8. f(1) = 3
- 1°)Interpréter géométriquement les points: 2, 3, et 4.
- 2°)Dresser le tableau de variations de f.
- 3°) $Tracer\ l'allure\ de\ (\zeta f)$ où (ζf) la courbe représentative de f dans un repère orthonormé du plan.

EXERCICE N°5

Partie A

Soit g la fonction définie sur R par : $g(x) = x^4 - 4x - 3$

- 1°) Etudier les variations de g.
- 2°) a) Démontrer que l'équation g(x)=0 admet deux solutions α et β sur R telles que : $\alpha < 0 < \beta$.
- b) Déterminer un encadrement d'amplitude $10^{\circ 2}$ de α et de β .
- c) Déterminer le signe de g(x) en fonction de x.

Partie B

Soit f la fonction définie sur $R \setminus \{1\}$ par : $f(x) = \frac{x^4 + 1}{x^3 - 1}$

- 1°) Etudier les limites de f aux bornes de son ensemble de définition.
- 2°) a) Déterminer les réels a, b, c, d et e tels que pour tout $x \ne 1$: f(x) = ax + b + cx + dx + c
- b) En déduire que la courbe C_f représentative de f admet une asymptote oblique que l'on indiquera.
- c) Préciser la position de C_f par rapport à la droite d'équation y = x.
- 3°) a) Démontrer que $f'(x) = \frac{x^2 g(x)}{(x^3 1)^2}$
- b) En déduire les variations de f.
- 4°) En utilisant les encadrements de la partie A, déterminer un encadrement de $f(\alpha)$ et de $f(\beta)$.
- 5°) Déterminer une équation de la tangente à la courbe au point d'abscisse -1.
- 6°) Dresser le tableau de variation complet de f et tracer dans un repère orthonormal (unité graphique : 2 cm)

EXERCICE N°6

Soit la fonction f définie sur $[2,+\infty[par\ f(x)=2x+\sqrt{x^2-4}\]$. On désigne $par\ (\zeta f)$ la courbe représentative de f dans un repère orthonormé (0,i,j) du plane

- 1°)a)Déterminer $\lim_{x\to 2^+} \frac{f(x)-4}{x-2}$ et interpréter géométriquement le résultat.
 - b)Déterminer $\lim_{x\to +\infty} f(x)$
 - c)Déterminer $\lim_{x\to+\infty} \frac{f(x)}{x}$ et $\lim_{x\to+\infty} f(x) 3x$). Interpréter géométriquement le résultat.
- 2°)Montrer que f est dérivable sur]2,+ ∞ [et calculer f '(x) pour tout $x \in$]2,+ ∞ [
- 3°) Tracer la courbe (f) de la fonction f.
- 4°) Montrer que f est une bijection de $[2,+\infty[$ sur un intervalle J que l'on précisera. On note f^{-1} sa fonction réciproque.
- 5°)a)Sur quelle intervalle K, f^{-1} est continue
 - b)Etudier les variations de f^{-1}
- 6°)Construire la courbe (ζf^{-1}) de la fonction f^{-1} dans le même repère.
- 7°) Expliciter $f^{-1}(x)$ pour tout $x \in J$

EXERCICE N°7

Soit f la fonction définie sur $\left[-\frac{1}{2}; +\infty \right]$ par : $f(x) = \frac{1}{\sqrt{2x+1}} + \frac{x}{8} + 1$

Partie A

1°)Montrer que f'est définie sur $\left] -\frac{1}{2}; +\infty \right[par: f'(x) = \frac{\left(\sqrt{2x+1}\right)^3 - 8}{8\left(\sqrt{2x+1}\right)^3}$

- 2°) Etudier les variations de f et dresser son tableau de variation complet.
- 3°) Soit (C) la courbe représentative de f.
- a) Démontrer que (C) admet deux asymptotes dont l'une est la droite (D) d'équation : $y = \frac{x}{a} + 1$.

Préciser la position relative de (C) et de (D).

- b) Construire (C) dans un repère orthonormal $(0; \vec{i}, \vec{j})$, unité graphique : 4 cm.
- 4°) Calculer, en cm^2 , l'aire du domaine plan délimité par (C), (D) et les droites d'équation x=1 et x=2.

Parie B

1°) Soit g la fonction définie sur $\left| -\frac{1}{2}; +\infty \right|$ par g(x) = f(x) - x.

Démontrer que l'équation g(x) = 0 admet une unique solution α et que $\alpha \in [1; 2]$.

- 2°) Démontrer que, pour tout $x \in [1; 2]$, on $a: |f'(x)| \le \frac{1}{10}$
- 3°) Soit (u_n) la suite définie par : $\begin{cases} u_0 = 1 \\ u_{n+1} = f(u_n), & pour tout \ n \in N \end{cases}$
- a) Démontrer que pour tout $x \in [1; 2]$, on $a: f(x) \in [1; 2]$.
- b) Démontrer par récurrence que, pour tout $n \in \mathbb{N}$, $1 \le u_n \le 2$.
- c) En utilisant l'inégalité des accroissements finis, démontrer que ; lu
- d)En déduire que pour tout n de N : $|u_n \alpha| \le \frac{2}{10^n}$. En déduire $\lim_{n \to +\infty} u_n$
- d) Déterminer une valeur approchée de α à 10^{-3} près.

EXERCICE N°8

Soit la fonction f définie sur $[1,+\infty[$ par : $f(x) = x + \sqrt{x}$

- 1°) Montrer que f est dérivable sur $]1,+\infty[$ et calculer f(x).
- 2°)Etudier la dérivabilité de f à droite en 1 et interpréter le résultat obtenu.
- 3°)Dresser le tableau de variation de f.
- 4°) Montrer que f réalise une bijection de $(1,+\infty)$ sur un intervalle J que l'on précisera .
- 5°) Montrer que pour tout x de J: f $\downarrow (x) =$
- 6°)On désigne par C et C' les courbe respectives de f et f^1 dans même repère orthonormé. montrer que la droite D: y = 2x est une asymptote oblique à C. 7°) Tracer C et C'.

EXERCICE N°9

EXERCICE N°9

On considère la fonction f définie sur [-1,1]- $\{0\}$ par : $f(x) = 1 + \frac{\sqrt{1-x^2}}{x}$

On note par C so courbe représentative dans un repère orthonormé R.

- 1°) Calculer $\lim_{x \to \infty} f(x)$; $\lim_{x \to \infty} f(x)$ et interpréter les résultats obtenus
- 2°) Etudier la dévivabilité de f en point d'abscisse x=1 et interpréter le résultat obtenu.
- 3°) Etudier la dérivabilité de f en point d'abscisse x=-1 et interpréter le résultat obtenu.
- 4°) Montrer que : $\forall x \in]-1,1[-\{0\}:f'(x)=\frac{-1}{x^2\sqrt{1-x^2}}]$
- 5°)Dresser le tableau de variation de la fonction f.
- 6°)Montrer que f réalise une bijection de [0,1] sur un intervalle J que l'on précisera .
- 7°) Expliciter $f^{-1}(x)$ pour tout x de J.
- 8°) Représenter dans le même repère R la courbe C et C' de f^{-1} .

