TT-010 Matemática Aplicada II

Prof. Nelson Luís Dias (Lemma, Centro Politécnico, 3320-2025) nldias@ufpr.br

Ensalamento e Horário 2as 4as sala PF13 07:30–09:10 6as sala PF03 07:30–09:10

Objetivos Didáticos

A Disciplina TT010 tem por objetivo aprofundar o domínio pelo aluno de modelos matemáticos analíticos e numéricos aplicáveis à Engenharia Ambiental. A disciplina incluirá aplicações de: álgebra linear, espaços vetoriais normados, séries de Fourier e transformadas de Fourier, assim como diversas técnicas de solução de equações numéricas e analíticas diferenciais parciais. Essas técnicas são ilustradas com problemas em Mecânica dos Fluidos, Hidrologia, Meteorologia, Química Ambiental e Ecologia, enfatizando-se a capacidade de formular e de resolver alguns problemas típicos (dispersão,reações químicas, dinâmica de populações, etc.) de importância em Engenharia Ambiental.

Unidades Didáticas

1	Solução numérica de equações diferenciais parciais
2	Análise linear, sistemas lineares em Engenharia
3	Séries e Transformadas de Fourier.
4	Teoria de Distribuições. Funções de Green e Identidades de Green em Engenharia: Hidrógrafa Unitária Instanânea, Problemas de Dispersão de Poluentes.
5	Teoria de Sturm-Liouville e algumas funções especiais adicionais (Legendre, Laguerre, Hermite). Importância da teoria no método de separação de variáveis para equações diferenciais parciais.
6	Equações Diferenciais Parciais: problemas lineares e não-lineares em escoamentos na atmosfera, nos oceanos, em rios e no solo, e problemas de dispersão de poluentes. Classificação e o método das características. Solução por separação de variáveis, transformadas integrais e transformada de Boltzmann.

Programa

Aula	Data	Previsto	Realizado
1	31/07/17	Introdução ao Curso. Revisão de Ferramentas Computacionais.	
2	02/08/17	Diferenças finitas: método explícito para a equação de	
	02, 00, 17	advecção. Fracasso do método. Explicação: instabilidade numérica. Análise de estabilidade de von Neumann.	
3	04/08/17	Esquemas numéricos para advecção: Upwind. Esquema explícito. Condição de estabilidade. Difusão pura.	
4	07/08/17	Esquema implícito: programação matricial e <i>slicing</i> com Numpy. Difusão pura.	
5	09/08/17	Crank-Nicholson. A equação de difusão-advecção. Introdução ao método ADI.	
6	11/08/17	Condições de contorno em esquemas numéricos de equações diferenciais parciais. Aceleradores (Numba). Distribuição do TC	
7	14/08/17	Espaços normados: produto interno.	
8	16/08/17	Espaços normados: desigualdade de Schwarz e aplicações. espaços vetoriais de dimensão infinita (início da discussão)	
9	18/08/17	Espaços normados: espaços vetoriais de dimensão infinita.	
10	21/08/17	Séries de Fourier: Conceitos gerais e cálculo dos termos complexos.	
11	23/08/17	Séries de Fourier: série real e complexa. Funções pares e ímpares.	
12	25/08/17	Continuação de funções pares e ímpares, e Exemplos com séries de Fourier.	
13	28/08/17	Desigualdade de Bessel e Igualdade de Parseval. Mínimos quadrados.	
14	30/08/17	Transformada de Fourier. Teorema da Inversão. Cálculo de transformadas.	
15	01/09/17	P1	
16	04/09/17	Propriedades da Transformada de Fourier: derivada, teorema da convolução. Teorema de Parseval.	
17	06/09/17	Aplicações da Transformada de Fourier.	
18	08/09/17	Livre, após Independência	
19	11/09/17	Aplicação da Transformada de Fourierà solução de EDO's e EDP's.	
20	13/09/17	Operador Adjunto. Operador auto-adjunto. Matriz adjunta. Operadores diferenciais.	
	15/09/17	Proclamação da República	
	18/09/17	Semana de Engenharia Ambiental	
	20/09/17	Semana de Engenharia Ambiental	
	22/09/17	Semana de Engenharia Ambiental	
21	25/09/17	Funções de Green.	
22	27/09/17	Funções de Green	
23	29/09/17	Teoria de Sturm-Liouville.	
24	02/10/17	Teoria de Sturm-Liouville: Aplicações	
25	04/10/17	Teoria de Sturm-Liouville: Aplicações	
26	06/10/17	P2	
27	09/10/17	Equações diferenciais parciais: aplicações em Engenharia. Método das características	

28	11/10/17	Método das características
	13/10/17	Livre
29	16/10/17	Classificação de EDPs. O método de separação de variáveis: a equação da difusão.
30	18/10/17	O método de separação de variáveis. A equação de Boussinesq não-linear e sua solução.
31	20/10/17	Difusão em coordenadas cilíndricas: uso de funções de Bessel.
32	23/10/17	Equação de Laplace em coordenadas esféricas: solução por separação de variáveis (início)
33	25/10/17	Equação de Laplace em coordenadas esféricas. Polinômios de Legendre. Exemplo: bolha esférica causada pela explosão de uma mina.
34	27/10/17	Equação de Laplace em coordenadas cartesianas. Exemplos 17.9 e 17.10.
35	30/10/17	Equação de Laplace: aplicações.
36	01/11/17	Equação da onda: solução por separação de variáveis. Método das características: solução de d'Alembert para a equação da onda.
	03/11/17	Livre (Finados)
37	06/11/17	P3
	08/11/17	Prof. em afastamento no país: X Workshop Brasileiro de Micrometeorologia
	10/11/17	Prof. em afastamento no país: X Workshop Brasileiro de Micrometeorologia
38	13/11/17	Equação da onda: solução por separação de variáveis.
39	15/11/17	Equação da onda: solução por separação de variáveis.
40	17/11/17	Difusão-advecção: evaporação de um tanque cilíndrico para a atmosfera.
41	20/11/17	O método da transformada de Boltzmann para resolver um problema difusivo: placa em movimento.
41	22/11/17	Transformação de Boltzmann para a equação de Boussinesq não-linear.
42	24/11/17	Revisão
43	27/11/17	Revisão
44	29/11/17	Revisão
45	01/12/17	P4 [último dia letivo]
	04/12/17	Semana de estudos
	06/12/17	Semana de estudos
	08/12/17	Semana de estudos
49	11/12/17	F

Avaliação

A disciplina é semestral. A avaliação da disciplina é contínua: haverá 4 exames parciais (P1, P2, P3, P4) aproximadamente mensais, e um trabalho computacional (TC), seguidos de um exame final F. O conteúdo de todos os exames é cumulativo. Os alunos poderão solicitar revisão de prova durante o período até a promulgação da nota do exame posterior. Após esse prazo, não será concedida nenhuma revisão. Os alunos que fizerem a revisão de prova devem comparecer à sala do professor com uma cópia impressa da solução da prova, devidamente estudada. As soluções são disponibilizadas eletronicamente em www.lemma.ufpr.br/nldias, juntamente com as notas. O prazo

final para a revisão da prova final é 11/12/2015.

A média parcial, P, será a média ponderada de:

- P4 (obrigatoriamente): peso 1.
- As duas maiores notas entre P1, P2 e P3: peso 1 para cada uma das duas.
- TC: peso 0,5.

A ausência na P4 obriga o aluno a fazer a F, que contará como substituta da P4 e, eventualmente, como a própria F. O resultado parcial é: Alunos com P < 40 estão reprovados. Alunos com P \geq 70 estão aprovados. Para os alunos aprovados nesta fase, a sua média final é M = P. Alunos com $40 \leq P < 70$ farão o exame final F . Calcula-se a média final M = (P + F)/2. Alunos que obtiverem M \geq 50 estão aprovados. Alunos com M < 50 estão reprovados. Todas as contas são feitas com 2 algarismos significativos com arredondamento para cima. A sistemática dos exames é a seguinte: para cada prova, eu gero um mapa de prova aleatoriamente, com o nome e a posição dos alunos. Ao chegar à porta da sala de aula, verifique no mapa a sua posição durante a prova. O caderno de prova já estará distribuído, com seu número bem visível. Deixe todo o seu material junto ao quadro negro, e sente-se: tenha com você apenas um estojo contendo: caneta azul, lápis ou lapiseira, apontador, e borracha. Neste curso, não será permitido o uso de calculadoras, exceto quando explicitamente indicado antes de alguma prova. O mapa de prova torna o seu início muito rápido e confortável para você.

É proibido usar telefones celulares durante a prova. É proibido usar bonés, turbantes, etc., durante a prova, exceto por motivos religiosos, e nesse caso o aluno/aluna fica proibido de retirar a cobertura durante a prova. É proibido deixar a sala após o início da prova. Portanto, vá ao banheiro antes, desligue o seu celular e deixe-o junto com o resto do material dentro de sua pasta ou mochila, verifique suas lentes de contato, óculos, etc.. Após o início da prova, você só se retirará após entregar a prova.

Textos para estudo

O texto adotado para este curso é a versão preliminar de: Dias [2016]: Uma cópia atualizada pode ser obtida em http://www.lemma.ufpr.br/wiki/images/a/af/Matappa-2016-07-27.pdf. Um bom material adicional para a UD 1 é Versteeg e Malalasekera [2007]. O livro de Michael Greenberg [Greenberg, 1998] permanece sendo, provavelmente, um dos melhores textos de matemática aplicada existentes, e é recomendado como material adicional. Além disso, nele você encontrará uma grande quantidade de exercícios adicionais que complementam os exercícios resolvidos e propostos no livro texto.

Estudo individual

Reserve pelo menos 6 horas semanais para o estudo em casa desta disciplina. Leia a teoria no livro, evitando pular direto para exemplos e exercícios. Digite e rode os exemplos computacionais; faça o trabalho computacional individualmente, e não deixe para a última hora. Entenda a teoria, principalmente as deduções. Essa é a única maneira de estudar e entender matemática. Evite estudar apenas pelo caderno. Procure depois fazer o maior número possível de problemas, mas cuidado: evite fazer problemas apenas sobre uma parte da matéria. Planeje cuidadosamente seu tempo de estudo para que você consiga fazer exercícios sobre toda a matéria.

Referências

Brutsaert, W. (1967). Evaporation from a Very Small Water Surface at Ground Level: Three-

Dimensional Turbulent Diffusion without Convection. Journal of Geophysical Research, 72(22):5361–5369.

Butkov, E. (1988). Física matemática. Guanabara Koogan, Rio de Janeiro.

Dias, N. L. (2016). Uma introdução aos métodos matemáticos para Engenharia. a ser submetido à editora da UFPR, Curitiba, PR.

Greenberg, M. D. (1998). Advanced engineering mathematics. Prentice Hall, Upper Saddle River, New Jersey 07458, 2a edição.

Versteeg, H. K. e Malalasekera, W. (2007). An Introduction to Computational Fluid Dynamics. Pearson Prentice-Hall.