3. Busser

Hvad er en bus?

- En forbindelse mellem komponenter
- Både interne og eksterne
 - Internt mellem system komponenter
 - * SPI, I²C Seriel
 - Eksterne komponenter
 - * eSATA
 - * USB(Universal Serial Bus)
- Kan også benyttes internt i en chip
 - Mange paralelle forbindelser kan indgå
 - Høj båndbredde
 - F.eks. internt i en CPU
- Busser bliver ofte delt mellem flere komponenter, med kun en CPU er delte busser lige så effektive som seperate busser

Hvilke signaler benytter man typisk på en parallel bus?

- På en typisk microprocessor:
 - Select Address on slave device
 - Data to/from slave device
 - Select, read, write and wait signals
 - Slave interrupts
 - Multi-master Control signals(Daisy Chaining, device tættest på får adgang først
 - Special Handshaking signals
 - Misc. signals

Hvordan adresserer man på en bus?

- Der benyttes en adresse bus
- \bullet For at kunne adressere 64K (2 $^{16})$ memory, skal der benyttes 16 adresse linjer
- READ/ fra host, er forbundet til OE/(output enable) på modtageren
- WRITE/ til WE/(write enable)
- Hosten ved reelt ikke hvad der sidder på hvilke adresser
 - Derfor vil "address spaces" som regel være delt op til hver enhed
 - F.eks. en opdeleing mellem RAM mest betydende bit altid 0, og ROM mest betydende bit altid 1
- (Byte-enable(NBE0, NBE1) kan benyttes til at læse en halv atomic memory block)

Hvilke ting skal konfigureres på en host for at kunne tale med et device på en bus?

- \bullet Adresse
 - Adressen på bussen
 - Chipselect til den specifikke enhed på bussen
- Read/Write host skal vide om der ønskes at læse fra eller skrive til devicen
- Timing, Clockhastigheden skal være den samme på host og device

Beskriv et læse/skrive scenarie og de timing parametre som indgår

• Wait states til langsomme eksterne enheder

Note: Der kan være et wait signal sendt fra devicet til CPU'en