

Emergent Open-Vocabulary Semantic Segmentation from Off-the-shelf Vision-Language Models

Jiayun Luo, Siddhesh Khandelwal, Leonid Sigal, and Boyang Li

{luoj0028, boyang.li}@ntu.edu.sg, {skhandel, lsigal}@cs.ubc.ca

Motivation

 $(K+3) \times D_t$

A picture of class 1

class 2 ... class K

GPT40 Filtering

All class labels

Q: What is the white object on the grey table?

BLIP: Paper.

Vision Language Models (VLMs) can identify objects of interest, but isolating this localization capability to create usable segmentation masks without continuously posing questions is unexplored.

Main Contributions

- We propose to combine **text-to-image attention**, **GradCAM**, **and Salience DropOut** to iteratively acquire accurate segmentation of arbitrary classes from pretrained VLM.
- We replace the densely annotated validation set for hyperparameter tuning, which is needed by most existing methods, with a contrastive reward function based on CLIP. This reward function, coupled with random search, finds a good set of hyperparameters for OVSS.
- The proposed method, PnP-OVSS, is simple to use, requires no extra finetuning, and delivers high performance. Its success hints at a new direction for open-vocabulary segmentation tasks leveraging large VLMs.

Final Prediction

 $S^{(t)} = S^{(t-1)} \setminus \{(i,j) | U_{ij}^{(t)} \in A \}$

Method

 $(P \times P + 1) \times D_v$

Repeat

Salience

PnP-OVSS has five major steps.

We prompt GPT4o to output the categories that appear in each image.

1st Drop

- 2. We extract a cross-attention salience map for each predicted category from a VLM.
- We sharpen the salience map by weighing it with the image-text matching gradient in the style of GradCAM. This highlights the salient region of the objects but results in incomplete masks.
- We apply Salience DropOut which iteratively drops salient image patches to move the attention to previously unattended object areas. For each drop iteration, we black out N remaining image patches with the highest aggregated attention value, run step 2 and 3 again, and sum up the attention maps from all iterations. Salience DropOut helps complete the salience maps.
- 5. We apply Thresholding, Gaussian Blur, and Dense CRF for fine-grained adjustment. * Layer L Head H and Threshold T are automatically tuned with our weakly supervised reward

Experiments

Method	Finetuning VLMs	HT on Dense Labels	Short-side Resolution	Pascal VOC-20	Pascal Context-59	COCO Object-80	COCO Stuff-171	ADE 20K-150
Gro	up 1: Methods	that require wea	ıkly supervised	l finetuning	on image-text o	data		
ViL-Seg [†] [43]	✓	✓	-	37.3	18.9	-	18.0	_
CLIPpy [51]	✓	✓	224	52.2	-	32.0	25.5*	13.5
SegClip [44]	✓	✓	224	52.6	24.7	26.5	-	-
GroupVit (by [51])	✓	✓	224	28.1	14.8	12.9	-	6.2
GroupVit (by [6])	✓	✓	448	50.4	18.7	27.5	15.3	9.2
GroupVit [74]	✓	✓	448	52.3	22.4	24.3	-	-
ViewCo [52]	✓	✓	448	52.4	23.0	23.5	-	-
OVSegmentor [75]	✓	✓	448	53.8	20.4	25.1	-	5.6
TCL [6] +PAMR [2]	✓	✓	448	<u>55.0</u>	<u>30.4</u>	<u>31.6</u>	22.4	<u>17.1</u>
PACL [46]	\checkmark	✓	224×4	72.3	50.1	-	38.8	31.4
	Group 2: Met	thods that require	e finetuning bu	t not real in	age-text data			
MaskClip w/ ST [90]	✓	✓	336	-	31.1	-	18.0	-
MaskClip w/ ST (by [6])	\checkmark	✓	448	38.8	23.6	20.6	16.4	9.8
ZeroSeg* [8]	\checkmark	✓	448	37.3	19.7	17.8	-	
ZeroSeg [8]	✓	✓	448	40.8	20.4	20.2	-	-
	(Group 3: Method	s that require	no finetunin	g			
MaskClip (by [51])	×	×	224	22.1	-	13.8	8.1	6.8
MaskClip [90]	×	×	336	-	25.5	-	14.6	-
Reco [58]	×	×	320	-	27.2	-	27.2*	-
Reco (by [6])	×	×	448	25.1	19.9	15.7	14.8	11.2
		PnP-OVSS	with different	VLMs				
BLIP _{Flickr}	×	×	224	46.3	27.5	32.3	17.3	13.6
$\mathrm{BLIP}_{\mathrm{Flickr}}$	×	×	336	51.3	28.0	36.2	17.9	14.2
BridgeTower	×	×	336	42.4	25.3	30.4	15.7	14.8

Table 3. Zero-shot semantic segmentation performance in mIoU. Group 3 contains the most similar baselines that serve as fair comparisons to PnP-OVSS. Groups 1 and 2 benefit from additional training, extra image-text data, and hyperparameter tuning on dense labels. We use the word "by" followed by a paper citation to indicate results of the same technique reported by different papers. * CLIPpy tests on 133 categories of COCO Stuff and Reco tests on 27 super categories while we test all 171 classes of COCO Stuff. ViL-Seg[†] is tested on subset of classes on the three datasets, as detailed in the supplementary.

Takeaway: PnP-OVSS outperform comparable training-free methods in Group 3 with +26.2% mIoU on Pascal VOC, +20.5% mloU on MS COCO, +3.1% mloU on COCO Stuff and +3.0% mloU on ADE20K

Automatic Hyperparameter Tuning

Hyperparameters	Start	End	Step	Solution
BLIP				
Layer	1	12	1	8
Head	1	12	1	10
Attention Threshold	0.05	0.5	0.1	0.15
BridgeTower				
Layer	1	6	1	2
Head	1	16	1	8
Attention Threshold	0.05	0.5	0.1	0.15
Gaussian Blur				
Standard Deviation	0.01	0.11	0.02	0.05

Table 2. Search space for hyperparameters

Reward =	\sum	$\mathbb{I}\left[\Pr(M^{(k)} \otimes I, k) > \Pr(0, k)\right]$	(4)
	$k \in K(I)$,	
		$\operatorname{ovn}(f(I, k))$	

$$\Pr(I,k) = \frac{\exp(f(I,k))}{\sum_{k' \in K(I)} \exp(f(I,k'))}$$
(5)
$$I: Image \quad k: Class \ of \ interest \ K(I): All \ classes \ in \ the \ dataset$$

0: Black Image f: Image and label similarity calculated with CLIP

Given GT class labels of the image, Reward + 1 when

