MATH 3310 Convergence of Alternating Harmonic to log(2) Nick Figgins

Claim . The alternating harmonic series $\sum_{n=1}^{\infty} \frac{(-1)^{(n+1)}}{n}$ converges to $\log 2 = 0.693147181...$

This claim will be proven using Exercise 7.5.8 (d) and (e) in [A]. I will begin with part (d), first proving the convergence of the sequence:

$$\gamma_n = \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}\right) - \log n \tag{1}$$

After I have proven the convergence of γ_n , I will use the definitions of γ_n and γ_{2n} to derive a value for $\log 2$ by considering the sequence $\gamma_{2n} - \gamma_n$. Throughout this proof, the fact that $\log(x) = \int_1^x \frac{1}{t} dt$ will be used.

Proof. Convergence of (1):

To prove that γ_n is bounded below (by zero), I will prove that $(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}) \ge \log n \ \forall \ n \in \mathbb{N}$

$$\log n = \int_1^n \frac{1}{t} dt = \int_1^2 \frac{1}{t} dt + \int_2^3 \frac{1}{t} dt + \dots + \int_{n-1}^n \frac{1}{t} dt$$

For each of these definite integrals, $\frac{1}{t}$ is at its maximum value when t is equal to its lower bound value, i.e. $\forall t \in [n, n+1], \frac{1}{t} \leq \frac{1}{n}$. So, we can plug in these upper values for $\frac{1}{t}$ into our integrals to get an integral greater than or equal to our integrals evaluated with $\frac{1}{t}$:

$$\int_{1}^{n} \frac{1}{t} dt = \int_{1}^{2} \frac{1}{t} dt + \int_{2}^{3} \frac{1}{t} dt + \dots + \int_{n-1}^{n} \frac{1}{t} dt \le \int_{1}^{2} \frac{1}{1} dt + \int_{2}^{3} \frac{1}{2} dt + \dots + \int_{n-1}^{n} \frac{1}{n-1} dt
\int_{1}^{2} \frac{1}{1} dt + \int_{2}^{3} \frac{1}{2} dt + \dots + \int_{n-1}^{n} \frac{1}{n-1} dt = (2-1) + (\frac{3}{2}-1) + \dots + (\frac{n}{n-1} - \frac{n-1}{n-1}) = 1
1 + \frac{1}{2} + \dots + (\frac{1}{n-1})
\implies \int_{1}^{n} \frac{1}{t} dt \le (1 + \frac{1}{2} + \dots + \frac{1}{n-1})
\implies \gamma_{n} = (1 + \frac{1}{2} + \dots + \frac{1}{n}) - \int_{1}^{n} \frac{1}{t} dt \ge (1 + \frac{1}{2} + \dots + \frac{1}{n}) - (1 + \frac{1}{2} + \dots + \frac{1}{n-1}) = \frac{1}{n}
\implies \gamma_{n} \ge \frac{1}{n}$$

Thus we have that γ_n is greater than or equal to $\frac{1}{n} \, \forall \, n \in \mathbb{N}$, proving that γ_n is bounded below by zero since $\frac{1}{n} > 0 \, \forall n \in \mathbb{N}$.

Next, I will show that (γ_n) is decreasing.

$$\gamma_{n} = \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}\right) - \log n = \sum_{k=1}^{n} \frac{1}{k} - \log (n)$$

$$\gamma_{n+1} = \sum_{k=1}^{n+1} \frac{1}{k} - \log (n+1)$$

$$\gamma_{n+1} \le \gamma_{n} \iff \sum_{k=1}^{n+1} \frac{1}{k} - \log (n+1) \le \sum_{k=1}^{n} \frac{1}{k} - \log (n)$$

$$\iff \frac{1}{n+1} + \sum_{k=1}^{n} \frac{1}{k} - \log (n+1) \le \sum_{k=1}^{n} \frac{1}{k} - \log (n)$$

$$\iff \frac{1}{n+1} - \log (n+1) \le - \log (n)$$

$$\iff \frac{1}{n+1} \le \log (n+1) - \log (n) = \int_{1}^{n+1} \frac{1}{t} dt - \int_{1}^{n} \frac{1}{t} dt = \int_{n}^{n+1} \frac{1}{t} dt$$

 $\int_{n}^{n+1} \frac{1}{t} dt$ is at its minimum when t = n+1, so we can plug in this t value into the integral to state that our given integral must be greater than or equal to this value:

$$\int_{n}^{n+1} \frac{1}{n+1} dt \le \int_{n}^{n+1} \frac{1}{t} dt$$

$$\int_{n}^{n+1} \frac{1}{n+1} dt = \frac{1}{n+1} \implies \frac{1}{n+1} \le \int_{n}^{n+1} \frac{1}{t} dt$$

So we have that the statement is true for all $n \in \mathbb{N}$, thus this implication proves that $\gamma_{n+1} \leq \gamma_n$ which implies that the sequence is decreasing. Then, since (γ_n) is decreasing and bounded below, we have that the sequence must converge by the Monotone Convergence Theorem.

Knowing that (γ_n) converges, we must have that (γ_{2n}) also converges as $n \to \infty$ and to the same value as (γ_n) . Thus, we must also have that the sequence $\lim_{n\to\infty} (\gamma_n - \gamma_{2n}) = 0$.

$$\lim_{n \to \infty} (\gamma_n - \gamma_{2n}) = 0$$

$$\implies \lim_{n \to \infty} ((\sum_{k=1}^n \frac{1}{k} - \log(n)) - (\sum_{k=1}^{2n} \frac{1}{k} - \log(2n))) = 0$$

$$\implies \lim_{n \to \infty} ((\sum_{k=1}^n \frac{1}{k} - \sum_{k=1}^{2n} \frac{1}{k} - \log(n) + \log(2n)) = 0$$

Using log rules proven in HW 12, we can rewrite $\log(2n)$ as $\log(2) + \log(n)$, giving:

$$\implies \lim_{n \to \infty} \left(\left(\sum_{k=1}^{n} \frac{1}{k} - \sum_{k=1}^{2n} \frac{1}{k} - \log(n) + \log(n) + \log(2) \right) = 0$$

$$\implies \lim_{n \to \infty} \left(\left(\sum_{k=1}^{n} \frac{1}{k} - \sum_{k=1}^{2n} \frac{1}{k} + \log(2) \right) = 0$$

Since log(2) is a constant, we can rewrite this by the ALT as:

$$\lim_{n \to \infty} \left(\left(\sum_{k=1}^{n} \frac{1}{k} - \sum_{k=1}^{2n} \frac{1}{k} \right) + \log(2) = 0 \right)$$

$$\implies \lim_{n \to \infty} \left(\left(\sum_{k=1}^{n} \frac{1}{k} - \sum_{k=1}^{2n} \frac{1}{k} \right) = -\log(2) \right)$$

$$\implies \lim_{n\to\infty} \left(-\sum_{k=n+1}^{2n} \frac{1}{k}\right) = -\log(2)$$

$$\implies -\lim_{n\to\infty} \left(\sum_{k=n+1}^{2n} \frac{1}{k}\right) = -\log(2)$$

$$\implies \lim_{n \to \infty} \left(\sum_{k=n+1}^{2n} \frac{1}{k} \right) = \log(2)$$

Next, I will prove that $\sum_{k=n+1}^{2n} \frac{1}{k} = \sum_{i=1}^{2n} \frac{(-1)^{i+1}}{i}$ using proof by induction.

Let
$$n = 1$$
: $\sum_{k=2}^{2} \frac{1}{k} = \sum_{i=1}^{2} \frac{(-1)^{i+1}}{i} \Leftrightarrow \frac{1}{2} = 1 - \frac{1}{2} = \frac{1}{2}$

Let
$$n = 2$$
: $\sum_{k=3}^{4} \frac{1}{k} = \sum_{i=1}^{4} \frac{(-1)^{i+1}}{i} \Leftrightarrow \frac{1}{3} + \frac{1}{4} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4}$

Adding $\frac{1}{4}$ to both sides yields: $\frac{1}{3} + \frac{1}{2} = 1 - \frac{1}{2} + \frac{1}{3} \Leftrightarrow \frac{1}{3} + \frac{1}{2} = \frac{1}{2} + \frac{1}{3}$.

So, the above statement is true for n=1 and n=2. Assume that the above is true for n=r. Now, I will prove this true for n=r+1:

$$\textstyle \sum_{k=r+1}^{2r} \frac{1}{k} = \sum_{i=1}^{2r} \frac{(-1)^{i+1}}{i} \implies \sum_{k=r+1}^{2r} \frac{1}{k} - \frac{1}{r+1} = \sum_{i=1}^{2n} \frac{(-1)^{i+1}}{i} - \frac{1}{r+1} = \sum_{i=1}^{2r} \frac{(-1)^{i+1}}{i} = \sum_{i=1}^{2r} \frac{($$

 $\sum_{k=r+1}^{2r} \frac{1}{k} - \frac{1}{r+1}$ can be rewritten as a single sum by removing the $(r+1)^{th}$ index to get: $\sum_{k=r+2}^{2r} \frac{1}{k}$. Next, we need our summation to go to 2(r+1) = 2r+2, which we can do by adding $\frac{1}{2r+1} + \frac{1}{2r+2}$ on both sides.

$$\sum_{k=r+2}^{2r} \frac{1}{k} + \frac{1}{2r+1} + \frac{1}{2r+2} = \sum_{i=1}^{2r} \frac{(-1)^{i+1}}{i} - \frac{1}{r+1} + \frac{1}{2r+1} + \frac{1}{2r+2}$$

$$\implies \sum_{k=r+2}^{2r+2} \frac{1}{k} = \sum_{i=1}^{2r} \frac{(-1)^{i+1}}{i} - \frac{1}{r+1} + \frac{1}{2r+1} + \frac{1}{2r+2}$$

The left hand side of the equation is now correctly defined for n = r + 1. Now, the right hand side can be further simplified:

$$\sum_{i=1}^{2r} \frac{(-1)^{i+1}}{i} - \frac{1}{r+1} + \frac{1}{2r+1} + \frac{1}{2r+2} = \sum_{i=1}^{2r} \frac{(-1)^{i+1}}{i} - \frac{2}{2r+2} + \frac{1}{2r+1} + \frac{1}{2r+2}$$

$$= \sum_{i=1}^{2r} \frac{(-1)^{i+1}}{i} - \frac{1}{2r+2} + \frac{1}{2r+1}$$

$$= \sum_{i=1}^{2r+2} \frac{(-1)^{i+1}}{i}.$$

Thus, we now have that $\sum_{k=r+2}^{2r+2} \frac{1}{k} = \sum_{i=1}^{2r+2} \frac{(-1)^{i+1}}{i}$, showing that our statement is true for n = r + 1 and $\forall n \in \mathbb{N}$.

So, we have:

$$\log(2) = \lim_{n \to \infty} \sum_{k=n+1}^{2n} \frac{1}{k} = \lim_{n \to \infty} \sum_{i=1}^{2n} \frac{(-1)^{i+1}}{i}$$

Now, by the alternating series test, we know that $\sum_{i=1}^{\infty} \frac{(-1)^{i+1}}{i}$ converges since we can let $(a_n) = \frac{1}{i}$ which is both decreasing and converges to zero as $i \to \infty$. Thus, we can set the partial sum of our series to $S_m = \sum_{i=1}^{2m} \frac{(-1)^{i+1}}{i}$. Then

we have that $\lim_{m\to\infty} S_m = \log(2)$ which implies that the infinite alternating harmonic series must also converge to this value, finally giving us:

$$\log(2) = \lim_{m \to \infty} S_m = \sum_{i=1}^{\infty} \frac{(-1)^{i+1}}{i} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots$$