Lesson Plan

Subject code: EP-203 Course title: Mathematical Physics

Relative Weight: CWS: 25 MTE: 25 ETE: 50

Unit No.	Contents
I	Introduction, Scalar and vector fields, Triple Products, Vector Differentiations, divergence and curl, Vector and Volume Integrations,
	Greens, Gauss's and stokes theorem, Applications of Greens, Gauss's and stokes theorem, Equation of continuity and its applications
п	Introduction, Definition, Rank of a Tensor, Einstein's summation convention, Dummy and real index
	Contravariant, Covariant and Mixed tensors, Addition, subtraction, Contraction
	Multiplication of tensors: inner and outer product, Quotient law, symmetric and anti-symmetric tensors-
	Application of tensor theory to strain, thermal expansion, piezo-electricity and converse piezo-electric effect
Ш	Introduction, Functions of complex variables, limit, continuity, Analytic function, Cauchy-Reimann
	equations, Harmonic function, Singular points and classification, Cauchy theorem, Cauchy's integral formula
	Taylor's and Laurent's series, Residues, Calculations of residues, Residue theorem-evaluation of
	definite integrals.
IV	Introduction, Method of separation of variables- Solution of Laplace Equation in two dimensions
	D'alemberts solution of the wave equation
	Application of Laplace equation to two dimensional steady state of heat flow in a thin rectangular
	plate - application to the vibration of a rectangular membrane.
V	Introduction to Numerical analysis, Forward and backward differences
	Relation between the operators, Concept of Interpolation and Extrapolation,
	Newton-Gregory formula for forward and backward interpolation, Solution of ordinary differential
	equations of first order using Runge-Kutta Method.

Suggested Books

S.No.	Name of Books/ Authors	Year of Publication/ Reprint
1.	Vector Analysis by M. R. Spiegel	1959/Schaum's outline series, Tata McGraw Hill
2.	Vector and Tensor analysis by Harry Lass,	1950/McGraw-Hill
	International Student edition	
3.	Tensor Analysis-theory and applications by I.S.	1951/John Wiley & Sons, Inc.
	Sokolnikof	
4.	Physical properties of crystals - their	1957/Oxford Science Publications, Oxford
	representation by Tensors and Matrices by J.F.	University Press
	Nye	
5.	Complex variables by M. J. Ablowitz, A.S. Fokas	2003/2 nd Edition/Cambridge University Press
6.	Complex variable and applications by J.W. Brown	2009/6 th ed., McGraw-Hill Higher Education
	and R.V. Churchill	
7.	Advanced Engineering Mathematics by Erwin	2011/10 th Edition/John Wiley & Sons, INC.
	Kreyszig	
8.	Higher Engineering Mathematics by H.K. Dass,	2012/ S. Chand & Company Ltd.
	Er. R. Verma	