

COMMUNITY CHRISTMAS COMPETITION IV SIMULATION OF THE BACKWARD FACING STEP

Name: SC Vutlapalli Gmail: rsb.suri@gmail.com

Problem Description and workflow

Steps	Validation of the backward facing step using openFOAM simulations			
1.	Generation of 2D blockMesh of given geometry and applied appropriate initial boundary conditions (BC)			
2.	Selection of turbulence model and solver from RAS, LES and laminar			
3.	Comparison of incompressible and compressible solvers using RAS models			
4.	Selection of a compressible solver to simulate non-reacting flow and combustion solver for reacting flow			
blockMesh	n (2D)	Mesh Independency & BC		
Z ×		Mesh	For mesh independency, n=1.5 factor used to increase cells in x and y directions. Coarse mesh (4.8k), medium mesh (11k) and fine mesh (25.6k) cells.	
		common BC	T = 300 k p = 1 bar Ø = 0.57	
Fig.1: Generated b	lockMesh configuration	Terminal ogy	<pre>XR Reattachment length fun = {k, epsilon, omega} fun1= fun(U1), fun2= fun(U2), fun3= fun(U3)</pre>	

Boundary Conditions: non-Reacting and reacting flow

Solvers/Turbulence Model Velocity (U), m/s	inlet	outlet	Wall (remaining)
rhoPimpleFoam & pimpleFoam & pisoFoam k-epsilon / realizable k- epsilon	U, k, epsilon: fixedValue k ₁ = 0.286 k ₂ = 0.56 k ₃ = 1.366 U ₁ = 9,1 U ₂ =13.3 U ₃ =22.2 epsilon ₁ = 14.37 epsilon ₂ =39.34 epsilon ₃ =150	U, k, epsilon: ZeroGradient	U: noSlip k: kqRWallFunction epsilon: epsilonWallFunction
rhoPimpleFoam & pimpleFoam & pisoFoam k-omega / k-omega SST	U, k, omega: fixedValue U and k are same as above omega1= 558 omega2= 781omega3=1219	U, k, omega: ZeroGradient	U: noSlip omega: omegaWallFunction
rhoPimpleFoam LES (keqn model)	U: fixedValue nut: calculated	U: ZeroGradient Nut: calculated	U: noSlip nut: nutkWallFunction
XiFoam (k-omega SST)	U, omega, k, nut are same as above Su/Xi: fixedValue Su_C3H8=0.44 m/s; Su_(premixed)~0.09 m/s	U: ZeroGradient Su/Xi: inletOutlet	U: noSlip omega: omegaWallFunction Su/Xi: zeroGradient

Model Validation: non-Reacting flow (rhoPimpleFoam)

Turbulence Model (RAS) Velocity (U), m/s		Cell cou	nt: 4.8 k	Cell cou	ınt: 11 k	Cell cou	nt 25.6 k
		XR (in m)	Error %	XR (in m)	Error %	XR (in m)	Error %
k-epsilon	$U_1 = 9.1$	0.147	-10.5	0.155	-7.5	0.156	-4.1
	$U_2 = 13.3$	0.146	-19.8	0.153	-14.3	0.158	-10.7
	$U_3 = 22.2$	0.16	-6.2	0.155	-9.6	0.1 <i>57</i>	-8.2
k-omega	$U_1 = 9.1$	0.151	-7.6	0.164	0.9	0.164	0.91
	$U_2 = 13.3$	0.147	-19.0	0.151	-15.8	0.1 <i>57</i>	-11.4
	$U_3 = 22.2$	0.145	-17.2	0.15	-13.3	0.147	-15.6
Realizable k-epsilon	$U_1 = 9.1$	0.179	9.2	0.183	11.2	0.187	13.1
	$U_2 = 13.3$	0.182	3.8	0.184	4.8	0.189	7.4
	$U_3 = 22.2$	0.176	3.4	0.182	6.5	0.188	9.5
k-omega SST (* selected)	$U_1 = 9.1$	0.166	2.1	0.166	2.1	0.161	-0.93
	$U_2 = 13.3$	0.163	-7.3	0.169	-3.5	0.168	-4.1
	$U_3 = 22.2$	0.15	-13.3	0.165	-2.9	0.169	-0.59

Model Validation: comparison of solvers (non-reacting flow)

Solvers U (velocity in m/s)		Cell count: 11 k		
		XR (in m)	Error %	
pimpleFoam laminar	U ₁	0.125	>15	
	U ₂	0.15	>15	
	Uз	0.162	-4.9	
pisoFoam k-omega SST	Uı	0.149	-9.0	
	U ₂	0.156	-12.1	
	Uз	0.159	-6.9	
pimpleFoam	Uı	0.151	-7.6	
k-omega SST	U ₂	0.155	-12.9	
331	Uз	0.168	-1.2	
rhoPimpleFo am LES	Uı	0.16	-1.5	
	U ₂	0.164	-6.7	
	Uз	0.16	-6.25	

Fig.2: Stream line plots for fine mesh are generated using rhoPimpleFoam solver. Plots are shown for U₁, U₂, U₃.

Model Validation: continuation

Fig.3.1: Static pressure coefficient values are plotted using rhoPimpleFoam for U₁, U₂, U₃.

are generated using XiFoam solver. Plots are shown for U₁, U₂, U₃.

Conclusions:

- The simulations are performed using incompressible solvers (pimpleFoam, pisoFoam), compressible solver (rhoPimpleFoam) and combustion solver (XiFoam).
- 4 different RAS turbulence models used along with laminar and LES (keqn) to conduct the simulations.
- The rhoPimpleFoam gave numerical error < 5% with k-omega SST turbulence model.
- LES results of rhoPimpleFoam gave better visualization of flow phenomena.
- Coefficient of pressure plots are analyzed and plotted for rhoPimpleFoam for three velocities here.
- The simulation times for XiFoam are longer than remaining others. A compromise between accuracy and computation time has been made. So medium mesh is used to simulate the flow for 3 velocities.

Simulation figures

Fig.4: Q-factor plot for U₁ obtained from rhoPimpleFoam simulated using LES (keqn).

Simulation figures: conti.

Fig.6: U₃ comparison for rhoPimpleFoam (k-omegaSST) and XiFoam (k-omegaSST)

References

https://www.openfoam.com/documentation/guides/latest/api/

Formulas:

Calculation of k

$$k=rac{3}{2}(I|\mathbf{u}_{ref}|)^2$$

omega

$$\omega=rac{k^{0.5}}{C_{\mu}^{0.25}L}$$

epsilon

$$\epsilon = rac{C_{\mu}^{0.75}k^{1.5}}{L}$$

Calculation of error %

Error = (Numerical value-Experimental value)/ Numerical value