This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

THIS PAGE BLANK (USPTO)

2/19/1

003519850

WPI Acc No: 1982-67835E/ 198232

Mfr. of polyurethane by polycondensation of diamine - using activated bis-carbonate diol reagent to give linear structure and solubility in organic solvents

Patent Assignee: PHYSIOLOGY INST (PHYS-R)

Inventor: KARTVELISH T M; KATSARAVA R D; ZAALISHVIL M M

Number of Countries: 001 Number of Patents: 001

Patent Family:

Patent No Kind Date Applicat No Kind Date Week SU 872531 B 19811015 198232 B

Priority Applications (No Type Date): SU 2808343 A 19790807

Patent Details:

Patent No Kind Lan Pg Main IPC Filing Notes

SU 872531 B 4

Abstract (Basic): SU 872531 B

Mfr. of polyurethane uses activated bis-carbonate diol (I) (as diol deriv.) of formula: X-O-CO-O-R-O-CO-O-X (I) (where X is ortho- or para-nitrophenyl, 2,4-dinitro-phenyl, 2,4,5-trichlorophenyl or penta-chloro-phenyl gps. R is -(CH2)2-, -(CH2)3-, -(CH2)4-, -(CH2)2-CH(CH3)-, CH2CH2-O-CH2CH2-) and reaction temp. 75-120 deg. C to give prod. with linear structure, solubility in organic solvent (e.g. DMF), and increased yield (69-94%) and viscosity characteristics (e.g. intrinsic visc. is 0.5-1.6 dl/g. in m-cresol). As previously, the process involves polycondensn. of iol deriv. and diamine.

In an example, 4.06g activated bis-carbonate (based on 1,3-propandiol and p-nitrophenol) are added at room temp. to a soln. of 1.16g (0.01 moles) hexamethylenediamine in 16.6ml. N,N-dimethyl formamide before stirring 45 mins. at room temp. and 2.5 hrs. at 105 deg. C. The polymeric prod. is pptd. by water. After extg. with ethanol the prod. is dried to give: yield 88%; intrinsic visc. 1.4 dl/g. in m-cresol at 25 deg. C.). Bul. 38/15.10.81. (4pp)

Title Terms: MANUFACTURE; POLYURETHANÈ; POLYCONDENSATION; DI; AMINE; ACTIVATE; DI; CARBONATE; DIOL; REAGENT; LINEAR; STRUCTURE; SOLUBLE; ORGANIC; SOLVENT

Derwent Class: A25

International Patent Class (Additional): C08G-071/04

File Segment: CPI

Manual Codes (CPI/A-N): A05-G

Plasdoc Codes (KS): 0016 0034 0226 0230 1299 1319 1321 1323 1325 1329 1715 3117 1723 1727 1913 2043 2064 2152 2172 2559 2575

Polymer Fragment Codes (PF):

001 013 02& 04& 150 151 157 163 169 170 171 172 173 200 206 207 208 225 262 273 293 34- 344 346 355 398 512 532 537 59& 689 724

Derwent WPI (Dialog® File 351): (c) 2004 Thomson Derwent. All rights reserved.

THIS PAGE BLANK (USPTO)

Союз Советских Социалистических Республик

Писани Е (п) 872531 **ИЗОБРЕТЕНИЯ**

Государственный комитет CCCP по делам изобретений и сткрытий

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

(61) Дополнительное к авт. свид-ву -

(22)Заявлено 07.08.79 (21) 2808343/23-05

с присоединением заявки № -

(23) Приоритет -

Опубликовано 15.10.81. Бюллетень №38

Дата опубликования описания 15.10.81

(51) М. Кл.

C 08 G 71/04

(53)УДK_{678,664} (088.8)

(72) Авторы изобретення М. М. Заалишвили, Р. Д. Кацарава и Т. М. Картвелишвили

(71) Заявитель

Институт физиологии им. И. С. Бериташвил

(54) СПОСОБ ПОЛУЧЕНИЯ ПОЛИУРЕТАНОВ

Изобретение относится к высокомолекулярным соединениям, а именно к синтезу полиуретанов, нашедших широкое применение в различных областях техники.

Известен способ получения полиуретанов конденсацией в растворе диизоцианатов с диолами [1].

Недостатки известного способа - необходимость синтеза дорогостоящих диизошианатов, потеря растворимости полиуретанами в результате возникновения пространственных сшивок за счет взаимодействия уретановых группировок полимерных цепей с изоцианатными группани с образованием аллофанатных структур и трудность ₁₅ получения линеяных полимеров.

Наиболее близким к изобретению по технической сущности является способ попучения полиуретанов поликонденсацией в растворе производных диолов с диаминами с последующим высаживанием полиуретана водой [2].

Недостатки такого способа получения полиуретанов - низкие выходы и низкие

вязкостные характеристики полимеров, обусловленные протеквнием побочных процессов взаимодействия хлорформиатных группировок с растворителями и третичными аминами, используемыми в качестве акцептора хлористого водорода. что приводит к гибели функциональных групп; трудность хранения и транспортировки бис-хлорформиатов, обусловленная легкостью их гидропиза, сопровождающийся образованием монофункциональных примесей и увеличением давления (при гидролизе выделяются СО2, НСС), а также протеканием интенсивной коррозии; неудобство работы с бисклорформиатами, большинство из которых жидкости; трудность очистки биохлорформиатов, обусловленная их высокими температурами кипения, они очищаются лишь перегонкой в вакууме; невозможность синтеза пинейных полиуретанов с боковыми функциональными группами (например ОН-группами), с которыми хлорформиаты активно реагируюr.

Цель изобретения – получение полиуретана пинейного строения, растворимого в органических растворителях, а также повышение процента его выхода.

Указанная цель достигается тем, что в качестве производных диолов используют активированные бис-карбонаты диолов общей формулы

$$X = 0 - \frac{0}{C} = 0 - R = 0 - \frac{0}{C} = 0 - X_1$$

$$IDE X: \longrightarrow NO_2 : \longrightarrow NO_2$$

$$K: (CH_2)_2 -, -(CH_2)_3 -, -(CH_2)_4 -,$$
 $-(CH_2)_2 - CH -, -CH_2CH_2 - O - CH_2CH_2 -,$
 CH_3

и поликонденсацию проводят при 75-120°С.
Полученные таким образом полиуретаны полностью растворимы в органических растворителях, так как N, N диметил- 30 формамид (ДМФА), N, К диметилацетамид, N-метилирролидон, м -крезол, смесь тетрахлорэтана с фенолом (3:1). Приведенная вязкость полученных полиуретанов 0,5-1,6 дл/г в м-крезоле, выход 69-35 94% в зависимости от условий реакции и природы активирующей группы.

Синтезированные полимеры характеризуются по приведенной вязкости их растворов и данными ИК-спектрального анализа.

Пример 1. Краствору 1,16 г (0,01 моля) гексаметилендиамина (ГМДА) в 16,6 мл N, N-диметилформамида добавляют 4,06 г активированного бис-карбона- 45 та на основе 1,3-пропандиола и п -нитрофенола при комнатной температуре, Наблюдается разогревание реакционного раствора в резупьтате экзотермической реакции. Реакционную смесь перемешивают при комнатной температуре в течение 45 мин, а затем помещают в силиконовую баню при 105°C (при комнатной температуре полимер выпелает из раствора, при нагревании до 105°С - гомогенный раствор). Перемешивание продолжают при 105 С в течение 2,5 ч и горячий реакпионный раствор выпивают в воду. Вы-

павший полимер отфильтровывают, промывают этиповым спиртом, экстрагируют спиртом в аппарате Сокслетта и сущат. Выход 88%; tnp 1,4 дл/г в м-крезопе при 25°C, C 0,5 г/дл.

Пример 2. Синтез полиуретана осуществляют в соответствии с методикой, приведенной в примере 1, с той разницей, что в качестве активированного бис-карбоната используют бис-[2,4-динитро(карбофенокси)]-1,3-пропандиоп (ДНКФП). Выход полиуретана 69%; ър 0,60 дл/г в м-крезоле при 25°C, С 0,5 г/дл.

Пример З. Синтез полнуретана осуществляют в соответствии с методикой, приведенной в примере 1, с той разницей, что в качестве активированного бискарбоната используют бис—[2,4,6—трихлор (карбофенокси)]—1,3—пропандиол (ТХКФП). Выход полнуретана 83%; Упр 0,61 дл/г, в м-крезоле при 25°С, С 0,5 г/дл.

Пример 4. Синтез полиуретана осуществляют в соответствии с методикой, приведенной в примере 1, с той разницей, что в качестве активированного карбоната используют бис—пентахлор (карбофенок—си)—1,3—пропандиол (ПХКФП). Выход полиуретана 68%; 7пр 0,48 дл/г в м-крезоле при 25°С, С 0,5 г/дл.

Пример 5. Краствору 1,16 г. (0,01 моля) гексаметилендиамина в 16,7 мм N , N -диметилформамида добавпяют 4,20 г бис-[п -нитро(карбофенокси--1;3-бутандиола (ПНКФБ). Наблюдается разогревание реакционного раствора в результате экзотермической реакции. Реакционную смесь перемешивают при комнатной температуре в течение 0,5 ч, а затем при 75°C в течение 3 ч (полимер растворим в N , N -диметилформамиде при комнатной температуре). Реакционный раствор выпивают в воду. Выпавший полимер отфильтровывают, промывают водой, эксводой в аппарате Сокслетта трагируют и сушат. Выход 91%, 100,96 дл/г в м-крезоле при 25°C, С 0,5 г/дл.

Пример 6. Синтез полимера осушествляют в соответствии с методикой, приведенной в примере 5, с той лишь разницей, что используют бис-- пентахлор(карбофенокси)—1,3-бутандиол (ПХКФБ). Выход 71%, пр 0.43 дл/г в м-крезоле при 25°C, С 0,5 г/дл.

0.7 дл/г при 25° C в м-крезоле C 0.5 г/дл.

Пример 8. Синтез полнуретана осуществляют в соответствии с методикой, приведенной в примере 1, с той разницей, 5 что в качестве катализатора в реакционную смесь вводят триэтиламин (из расчета 2,2 моля триэтиламина на 1 моль диамина). Выход полиуретана 90%, Спр 1,6 дл/г в м-крезоле при 25°C, 10 С 0,5 г/дл.

Пример 9. Синтез полиуретана осуществляют в соответствии с примером 2 с той разницей, что в реакционную смесь в качестве катализатора вводят три—15 этиламин (из расчета 2,2 моля на 1 моль диамина). Выход полиуретана 82%; 1пр 0,75 дл/г в м-крезоле при 25°C, С 0,5 г/дл.

Пример 10. Синтез полиуретана осуществляют в соответствии с примером 3, с той разницей, что в реакционную смесь в качестве катализатора вводят триэтиламин (из расчета 2,2 моля на 1 моль диамина). Выход полиуретана 88%, Спр 0,85 дл/г в м-крезоле при 25°C, С 0,5 г/дл.

Првмер 11. Синтез полкуретана осуществляют в соответствии с примером 4, с той разницей, что в реакционную смесь в качестве катализатора вводят три-этиламин (из расчета 2,2 моля на 1 моль диамина). Выход 79%; упр 0,75 дл/г в м-крезоле при 25°С, С 0,5 г/дл.

II р и м е р 12. Синтез осуществляют в соответствии с методикой, приведенной в примере 1, с той лишь разницей, что вместо гексаметилендиамина используют 4,4-диаминодифенилметан (ДАДМ) и реакцию проводят при 120°С. Выход полимера 89%, 1пр 0,84 дл/г в м-крезоле при 25°С, С 0,5 г/дл.

Пример 13. Синтез осуществляют в соответствии с методикой, приведентой в примере 1, с той разнидей, что нопользуют N -(2-оксиэтил)-этилендиамин
(ОЭДА), а поликонденсацию проводят при
комнатной температуре в течение 16 ч.
Выход полимера 94%; 1пр 1,06 дл/г в
том в температуре в течение 16 ч.

Основные характеристики полученных полиуретанов приведены в таблице.

Активиро— ванный бис-карбо— нат	Диамин	Раствори- тель (ре- акционная среда)	Катализа- тор		Темпера- тура ре- акции, ^о С	Продол- житель- ность реакции, ч	% пос⊶ ле экс⊶	тпр дл/г (в м-крезо- ле при 25°C, С О,5 г/дл
1	2	3	4		` 5	6	7	, 8
пнкфп*	ГМДА	ДМФА	·		105	2,5	88	1,40
•ДНКФП			_		105	2,5	69	0,70
ТХКФП			-		105	2,5	83	0,61
ПХКФП	_*		-	ţ	105	2,5	68	0,66
ПНКФБ		*-	-	•	75	3,0	91	0,96
ПХКФБ		مند است	. ·		7 5.	3,0	71	0,43
пнкфп*		.ГМФА * 	-		105	2,5	89	0.70
		ДМФА	N(C2H5)3		105	2,5	90 .	1,60
ДНКФП	· _•_	~ "~	N(C2H5)3		105	2,5	82	0,75
ТХКФП			N(C ₂ H ₅) ₃		105	2,5	. 88	0,85
ПХКФП		-'-	N(C2H5)3		105	2,5	79	0,75

				Прополжение таблиць					
1/1	2 .	3 -	4	5 .	6	7	8 ·	_	
ДНКФП	ДАДМ		- .	120	2,5	89	0,84		
пнкфп*	ОЭДА	 -	-	25	16	94	1,06		

^{*} ПНКФП - бис-[п-нитро(карбофенокси)-1,3-проландиол.

Применение предпагаемого способа попучения полиуретанов обеспечивает по сравнению с известными способами высокие выходы и вязкостные характеристики целевых полиуретанов, обусповленные возможностью проведения поликонденсации в высокополярных растворителях (например, в N , N -диметитформамиде, гексаметилфосфорамиде) и отсутствием побочных реакций, приводящих к гибели функциональных групп; высокую гидролитическую устойчивость активированных бис-карбонатов, 25 легкость транспортировки и хранения в течение продолжительного времени, отсутствие опасности выделения газообразных продуктов и, соответственно, повышения давления; отсутствие коррозии; строго линейную структуру полиуретанов, обусловленную отсутствием реакции ветвлений и сшивки; легкость очистки исходных мономеров обычной перекристаппизации; возможность синтеза линейных полиуретанов с различными боковыми функциональными группами (например, -\$H, -СООН, -ОН группами), обусповленную высокой селективностью активированных карбонатных группировок, не взаимодействующих с указанными группировками.

Формула изобретения

Способ получения полиуретанов поликонденсацией в растворе производных диолов с диаминами с последующим выделением полиуретанов, о т л и ч а ю щ и й с я тем, что, с целью получения полиуретанов линейного строения, растворимого в органических растворителях, а также повышения выхода и вязкостных характеристик в качестве производных диолов используют активированные бис-карбонаты диолов общей формулы

$$X = 0$$
 $C = 0$
 $C =$

$$NO_2$$
; Ce ce ; Ce ce ; Ce ce ;

R:
$$(CH_2)_2 - , -(CH_2)_3 - , -(CH_2)_4 - ,$$

 $-(CH_2)_2 - CH - , -CH_2CH_2 - O - CH_2CH_2 - ,$
 CH_3

и поликонденсацию проводят при 75-120°C. Источники информации,

принятые во внимание при экспертизе

- 1. Саундерс Дж. и Фриш К. К. Химия полиуретанов. М., "Химия", 1968.
- 2. Морган П. У. Поликонденсационный метод синтеза полимеров. Л., "Химия" 1970, с. 256 (прототип).

Составитель С. Пурина

Редактор С. Лыжова Техред Ж.Кастелевич

Корректор С. Шекмар

Заказ 8944/40

Тираж 533

Подписное

ВНИИПИ Государственного комитета СССР по делам изобретений и открытий

113035, Москва, Ж-35, Раушская наб., д. 4/5

Филиал ППП "Патент", г. Ужгород, ул. Проектная, 4

^{**} ГМФА - гексаметилфосфортриамид.