Задача 1. Докажите, что на x-y делится **a)** x^n-y^n ; **б)** P(x,y)-P(x,x), где P(x,y) — любой многочлен.

Определение 1. Степень одночлена ax^ny^m , где $a \neq 0$, — число m+n. Степень многочлена A(x,y) — наибольшая из степеней его ненулевых одночленов (в записи, где «приведены подобные»). Обозначение: $\deg A(x,y)$.

Задача 2. Пусть A(x,y), B(x,y) — ненулевые многочлены. Докажите, что $\deg AB = \deg A + \deg B$.

Задача 3. Кривая задана многочленом A(x,y) степени n. Докажите, что если она пересекает некую прямую y=kx+b более, чем в n точках, то A(x,y) делится на y-kx-b.

Задача 4. Дан многочлен A(x,y) степени n. **a)** Докажите, что либо у системы A(x,y) = 0, $x = y^2$ не более 2n решений, либо A делится на $x - y^2$ (геометрический смысл: кривая A либо пересекает параболу не более чем в 2n точках, либо содержит в себе параболу). **б)** Докажите то же самое для системы A(x,y) = 0, xy = 1.

Задача 5. Вершины четырёхугольника ABCD лежат на параболе $y=x^2$. Пусть прямые AB, BC, CD, DA задаются многочленами первой степени $l_1(x,y), m_1(x,y), l_2(x,y), m_2(x,y)$ соответственно. Рассмотрим кривую H с уравнением $\lambda l_1 l_2 + \mu m_1 m_2 = 0$, где $\lambda, \mu \in \mathbb{R}$. Докажите, что **a)** H проходит через A, B, C, D; **б)** можно подобрать λ, μ так, чтобы H пересекалась с параболой ещё в одной точке и совпадала бы с параболой.

Задача 6. Можно ли на плоскости задать многочленом в точности одну из ветвей гиперболы xy=1?

Задача 8. Докажите, что кривая, заданная уравнением $x^2 + 2xy + y^2 + \sqrt{2}x - \sqrt{2}y + 1 = 0$, имеет ось симметрии.

Задача 9. а) Две кривые пересекаются в конечном числе точек. Докажите, что в некоторой системе координат у них нет общих точек с одинаковыми ординатами. **6)*** Решите задачу 3 для системы $A(x,y) = 0, x^2 + y^2 - 1.$

Задача 10. Пусть шестиугольник ABCDEF вписан в окружность $x^2 + y^2 = 1$, прямые AB, BC, CD, DE, EF, FA задаются многочленами первой степени l_1 , m_1 , l_2 , m_2 , l_3 , m_3 соответственно. Рассмотрим кривую H с уравнением $\lambda l_1 l_2 l_3 + \mu m_1 m_2 m_3 = 0$, где λ , $\mu \in \mathbb{R}$. Докажите, что **a)** H содержит все вершины шестиугольника;

б) можно подобрать ненулевые λ , μ так, чтобы H имела с окружностью не менее 7 общих точек; **в)** полученная в пункте б) кривая H делится на $x^2 + y^2 - 1$. Замечание. Задачу можно сдать для параболы (гиперболы), если не сдана 96.

Задача 11. (*Теорема Паскаля*) Пусть ABCDEF вписан **а**) в окружность; **б**) в гиперболу или в параболу. Докажите, что точки пересечения прямых AB и DE, BC и EF, CD и FA лежат на одной прямой.

Задача 12. (*Теорема Паппа*) Пусть точки A, B, C и A', B', C' лежат на прямых l и l' соответственно. Докажите, что тогда точки пересечения прямых AB' и A'B, BC' и B'C, CA' и C'A лежат на одной прямой.

Задача 13. Три пунктирные прямые пересекают три сплошные прямые в девяти точках (см. рисунок). Докажите, что если 8 из этих точек лежат на некоторой *кубике* (кривой, задающейся многочленом третьей степени), то и оставшаяся девятая точка лежит на той же кубике.

Задача 14. а) Для каждого t найдите точки пересечения прямой y=1-xt с окружностью $x^2+y^2=1$. 6) Докажите, что все точки этой окружности, кроме (0,-1), задаются параметрически в виде $\left(\frac{2t}{1+t^2},\frac{1-t^2}{1+t^2}\right)$, $t\in\mathbb{R}$. в) Докажите, что все рациональные точки этой окружности, кроме (0,-1), получаются по формулам предыдущего пункта при $t\in\mathbb{O}$.

Задача 15. Выведите из задачи 14 **a)** формулы пифагоровых троек: если $X^2 + Y^2 = Z^2$, где X и Y взаимно просты и X чётно, то X = 2mn, $Y = m^2 - n^2$, $Z = m^2 + n^2$ для каких-то взаимно простых m и n; **б)*** задачу 96.

Задача 16. (M.Берже, C.Маркелов) На плоскости даны парабола p и окружность ω , у них ровно 2 общие точки A и B. Касательные к p и ω в точке A совпадают. Обязательно ли касательные к p и ω в точке B совпадают?

1 a	1 6	2	3	4 a	4 6	5 a	5 б	6	7 a	7 б	7 в	8	9 a	9 6	10 a	10 б	10 B	11 a	11 б	12	13	14 a	14 б	14 B	15 a	15 б	16