May 5th

- 1. Choose the point P on the line segment AB so as
 - (1) to maximize the angle θ ;
 - (2) to minimize the angle θ .
- 2. Find the following indefinite integrals:

$$(1) \int \frac{3t^2 + t + 4}{t^3 + t} dt \qquad (2) \int \cos \sqrt{x} \, dx$$

(2)
$$\int \cos \sqrt{x} \, dx$$

3. Evaluate $\lim_{x\to 0} \frac{1}{x} \int_0^x (1-\tan t)^{\frac{1}{t}} dt$.

5

6. $5 \sin \theta + 12 \cos \theta = 0$, $\frac{3}{2}\pi < \theta < 2\pi$.

(1)
$$\tan 2\theta =$$

$$(1)\tan 2\theta = \underline{\qquad \qquad (2)\cos\frac{\theta}{2} = \underline{\qquad \qquad }$$

7.
$$\sin \theta + \cos \theta = \frac{1}{5}$$
, $\frac{3}{2}\pi < \theta < 2\pi$, $\cos \theta =$

8.
$$\cos 2\theta = \frac{3}{5}$$
, $\sin 2\theta < 0$, $\tan \theta + \cot \theta =$

(1)令
$$t = \sin x + \cos x$$
, 請以 t 表示 $f(x) = ______$ (2)求 $f(x)$ 之最小值為______

10. 在
$$\triangle$$
ABC 中,若 $\frac{\sin 2A}{\sin B} = \frac{\cos A}{\cos C}$,試判斷此三角形的形狀。

1. (1)
$$x = 5 - 2\sqrt{5}$$
 (2) $x = 3$

2. (1)
$$4 \ln|t| - \frac{1}{2} \ln(t^2 + 1) + \tan^{-1} t + C$$
 (2) $2\sqrt{x} \sin \sqrt{x} + 2 \cos \sqrt{x} + C$

(2)
$$2\sqrt{x}\sin\sqrt{x} + 2\cos\sqrt{x} + C$$

3.
$$\frac{1}{e}$$
 4. $\frac{1}{2}$ 5. (1) $\frac{x^2}{2} sin^{-1}x - \frac{1}{4} sin^{-1}x + \frac{x}{4\sqrt{1-x^2}} + C$ (2) $\ln x - \ln(1 + \ln x) + C$

6. (1)
$$\frac{120}{119}$$
 (2) $-\frac{3}{\sqrt{13}}$ 7. $\frac{4}{5}$ 8. $-\frac{5}{2}$

7.
$$\frac{4}{5}$$

8.
$$-\frac{5}{2}$$

9.(1) -
$$t^2$$
 + t + 3, $-\sqrt{2}$ ≤ t ≤ $\sqrt{2}$ (2) $1-\sqrt{2}$ 10. 等腰或直角三角形

(2)
$$1-\sqrt{2}$$