

UNIVERSITE DE MONTPELLIER

FACULTE DES SCIENCES

Session :1/	Durée de l'épreuve : 2 heures
Date: 20 /05 / 2021	Documents autorisés :
Licence Master	Mention : EEA & Méca
Parcours : 1°année	Libellé + Code de l'UE : HLEE204

On rappelle : permittivité diélectrique du vide ε_0 = 8.85 10^{-12} F/m

Exercixe 1 : Charges ponctuelles (10 pts). Toutes les questions sont indépendantes

Soit 3 charges ponctuelles placées en P_1 (+2q), en O (-q) et en P_2 (+2q) suivant le schéma ci-dessous Les distances sont telles que $P_1O = P_2O = a$; OM = y et $P_1M = P_2M = r$ $q = 1\mu C$ (1x10⁻⁶C) et a = 10 cm; $\overrightarrow{u_x}$ et $\overrightarrow{u_y}$ vecteurs unitaires orthogonaux.

- **1-** On veut déterminer la force électrostatique engendrée par l'interaction de la charge en P₁ avec les autres charges.
- Représenter au point P_1 la force exercée par la charge en O sur P_1 ($\overrightarrow{F_{01}}$); la force exercée par la charge en P_2 sur P_1 ($\overrightarrow{F_{21}}$)
- Calculer la force électrostatique totale $(\overrightarrow{F_T})$ au point P_1
- **2-** On veut déterminer le champ électrique $\vec{E}(\mathsf{M})$ au point M
- Représenter les 3 vecteurs champs $(\overrightarrow{E1}, \overrightarrow{E0}, \overrightarrow{E2})$ créés par les 3 charges au point M.
- Exprimer le champ électrique au point M, $\vec{E}(M)$, en fonction de a et y.
- Déterminer la distance OM = y à laquelle ce champ s'annule au point M. Faire l'application numérique.
- 3- On veut déterminer le potentiel V(M) au point M
- Exprimer le potentiel au point M, V(M), en fonction de a et y.
- Déterminer la distance OM = y à laquelle ce champ s'annule au point M. Faire l'application numérique.
- 4- Calculer l'énergie électrique totale W de cette répartition de charges

Exercice 2 – Condensateur cylindrique (10 pts). Les 2 parties sont indépendantes

Partie I-

Soit un cylindre considéré, compte tenu de ses dimensions, comme <u>infini suivant l'axe Oz</u>, de rayon R, de hauteur h, <u>uniformément chargé en surface</u> (charges positives, densité surfacique de charge σ). On se placera dans un repère cylindrique $(\overrightarrow{u_r}, \overrightarrow{u_\theta}, \overrightarrow{u_z})$.

On donne $\sigma = 2x10^{-1} \text{C/m}^2$; $R_1 = 5 \text{ mm}$; h = 10 cm

 R_2 ϵ_0 h

Partie I : cylindre chargé en surface

Partie II: Condensateur cylindrique

- I-1- Calculer la charge Q de ce cylindre chargé en surface.
- **I-2** En considérant les symétries du système, montrer que le champ électrique en un point M de tout l'espace $\overrightarrow{E(M)}$ est radial donc dirigé selon $\overrightarrow{u_r}$. Représenter les vecteurs champs électriques dans tout l'espace de permittivité ε_0
- **I-3** En utilisant le théorème de Gauss, établir l'expression du champ électrique radial $\overrightarrow{E(r)}$ dans tout l'espace, pour r variant de 0 à l'infini, en fonction de $(Q, r, h, \varepsilon_0, \overrightarrow{u_r})$. On notera E_1 pour $r < R_1$ et E'_1 pour $r > R_1$.
- **I-4** Tracer approximativement E = f(r) où l'on précisera l'expression du champ en $r = R_1$
- **I-5** Le potentiel vaut V_0 en r = 0. Etablir l'expression du potentiel dans tout l'espace en fonction de $(Q, r, R, h, \epsilon_0, V_0)$. On notera V_1 pour $r < R_1$ et V_1 pour $r > R_1$ et on utilisera la continuité du potentiel en r = R.

Partie II-

On utilise le cylindrique précédent uniformément chargé en surface pour former un condensateur cylindrique. Pour cela, on l'entoure par un cylindre de rayon R_2 neutre qui ensuite est relié au sol. La permittivité reste celle du vide ϵ_0

- **II-1-** Représenter la répartition des charges dans le condensateur ainsi que les vecteurs champ électrique \vec{E}
- **II-2-** Le système est isolé.

Sachant que l'expression du champ électrique est $E=\frac{Q}{2\pi\varepsilon_0\,r\,h}$ pour R1 < r < R2 (partie I), déterminer l'expression de la capacité C de ce condensateur.

- II-3- Calculer la capacité de ce condensateur pour $R_2 = 20 \text{ mm}$; $R_1 = 5 \text{ mm}$; h = 10 cm
- **II-4-** On applique une tension de 100V aux bornes de ce condensateur. Calculer l'énergie électrique W qu'il peut restituer.

Exercise 1: Charges ponctuelles

Soit 3 charges ponctuelles placée Les distances sont telles que P₁O q = 1μ C ($1x10^{-6}$ C) et a = 10 cm ; \overline{u}

		r a	y	/r	
<u>ૄ ફિ.૮</u>	P ₁ (+2q)	a	\vec{u}_y \vec{v}_x (-q)	а	P ₂ (+2q)

- 1- On veut déterminer la force autres charges.
- Représenter au point P₁ la force $P_2 \operatorname{sur} P_1(\overrightarrow{F_{21}})$ - Calculer la force électrostatique
- 2- On veut déterminer le champ
- Représenter les 3 vecteurs chan
- Exprimer le champ électrique au
- Déterminer la distance OM = y
- 3- On veut déterminer le potentie
- Exprimer le potentiel au point N
- Déterminer la distance OM = y
- 4- Calculer l'énergie électrique to

s (10 pts). Toutes les questions sont indépendantes														
es en P ₁ (+2q), en O (-q) et en P ₂ (+2q) suivant le schéma ci-dessous														
$O = P_2O = a$; $OM = y$ et $P_1M = P_2M = r$	1													
$\overrightarrow{u_x}$ et $\overrightarrow{u_y}$ vecteurs unitaires orthogonaux.														
M														
r v r														
α														
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$														
(+2q) (-q) (+2q)														
e électrostatique engendrée par l'interaction de la charge en P ₁ avec les														
. electrostatique engenaree par l'interaction de la charge en 11 avec les														
ce exercée par la charge en O sur P $_1$ $(\overline{F_{01}})$; la force exercée par la charge en														
ie totale $(\overrightarrow{F_T})$ au point P_1														
o électrique $ec{E}(M)$ au point M														
imps $(\overrightarrow{E1}, \overrightarrow{E0}, \overrightarrow{E2})$ créés par les 3 charges au point M.														
au point M, $ec{E}(M)$, en fonction de a et y.														
à laquelle ce champ s'annule au point M. Faire l'application numérique.														
tiel V(M) au point M														
M, V(M), en fonction de a et y.														
à laquelle ce champ s'annule au point M. Faire l'application numérique.														
cotale W de cette répartition de charges														

	اد	C +	-0 E		2 01		1		1
	- (₁ .	Jar	L.F	₹ •	4TF0	a ²	-9	4 <u>2 q</u> 2	-)
les									
en									

