WHAT IS CLAIMED IS:

- 1. A light-emitting semiconductor device which comprises an n-layer of n-type gallium nitride compound semiconductor ($Al_XGa_{1-X}N$; inclusive of x=0) and an illayer of insulating gallium nitride compound semiconductor ($Al_XGa_{1-X}N$; inclusive of x=0) doped with p-type impurities, wherein at least one of said n-layer and said i-layer is of double-layer structure, the respective layers of said double-layer structure having different concentrations.
- 2. A light-emitting semiconductor device as claimed in Claim 1, wherein said n-layer is of double-layer structure including an n-layer of low carrier concentration and an n⁺-layer of high carrier concentration, the former being adjacent to said i-layer.
- 3. A light-emitting semiconductor device as claimed in Claim 1, wherein said i-layer is of double-layer structure including an i_L -layer of low impurity concentration containing p-type impurities in comparatively low concentration and an i_H -layer of high impurity concentration containing p-type impurities in comparatively high concentration, the former being

adjacent to said \n-layer.

- 4. A light-emitting semiconductor device as claimed in Claim 1. Wherein said n-layer is of double-layer structure including an n-layer of low carrier concentration and an n'-layer of high carrier concentration, the former being adjacent to said i-layer, and said i-layer is of double-layer structure including an i_L-layer of low impurity concentration containing p-type impurities in comparatively low concentration and an i_H-layer of high impurity concentration containing p-type impurities in comparatively high concentration, the former being adjacent to said n layer.
- 5. A light-emitting semiconductor device as claimed in Claim 1, wherein the thickness of said n-layer is 2.5 12 $\,\mu\text{m}$
- 6. A light-emitting semiconductor device as claimed in Claim 1, wherein the carrier concentration of said n-layer is 1 x 10^{14} 1 x 10^{19} /cm³.
- 7. A light-emitting semiconductor device as claimed in Claim 2, wherein the thickness of said n-

layer of low carrier concentration is 0.5 - 2 μ m and the thickness of said n⁺-layer of high carrier concentration is 2 - 10 μ m.

- 8. A light-emitting semiconductor device as claimed in Claim 2, wherein the carrier concentration of said n-layer of low carrier concentration is 1 x 10^{14} 1 x 10^{17} /cm³ and the carrier concentration of said n⁺-layer of high carrier concentration is 1 x 10^{17} 1 x 10^{19} /cm³.
- 9. A light-emitting semiconductor device as claimed in Claim 1, wherein the thickness of said 1-layer is 0.03 1.3 μm
- 10. A light-emitting semiconductor device as claimed in Claim 1, wherein the impurity concentration of said i-layer is 1 x 10^{16} 5×10^{20} /cm³.
- 11. A light-emitting semiconductor device as claimed in Claim 3, wherein the thickness of said i_L -layer of low impurity concentration is 0.01 1 μm and the thickness of said i_H -layer of high impurity concentration is 0.02 0.3 μm .

- claimed in Claim 3, wherein the impurity concentration of said i_L-layer of low impurity concentration is 1 x 10¹⁶ 5 x 10¹⁹ /cm³ and the impurity concentration of said i_H-layer of high impurity concentration is 1 x 10¹⁹ 5 x 10²⁰ /cm³.
- 13. A light-emitting semiconductor device as claimed in Claim 2, wherein said n^+ -layer of high carrier concentration is doped with silicon.
- 14. A light-emitting semiconductor device as claimed in Claim 4, wherein said n^+ -layer of high carrier concentration is doped with silicon.
- claimed in Claim 3, wherein both said i_L -layer of low impurity concentration and said i_H -layer of high impurity concentration are doped with zinc, the amount of doped zinc in said i_H -layer of high impurity concentration being higher than that in said i_L -layer of low impurity concentration.
- 16. A light-emitting semiconductor device as claimed in Claim 4, wherein both said i_L -layer of low impurity concentration and said i_H -layer of high

impurity concentration are doped with zinc, the amount of doped zinc in said i_H -layer of high impurity concentration being higher than that in said i_L -layer of low impurity concentration.

17. A method for producing a light-emitting semiconductor device comprising an n-layer of n-type gallium nitride compound semiconductor ($Al_xGa_{1-x}N$; inclusive of x=0) and an i-layer of insulating gallium nitride compound semiconductor ($Al_xGa_{1-x}N$; inclusive of x=0) doped with p-type impurities from organometal compound by vapor phase epitaxy, comprising the steps of:

feeding a silicon-containing gas and other raw material gases together at a controlled mixing ratio to a substrate; and

growing said n-layer having a controlled conductivity.

18. A method as claimed in Claim 17, comprising:

growing an n^+ -layer of high carrier concentration, which is an n-type gallium nitride compound semiconductor ($Al_XGa_{1-x}N$; inclusive of x=0) having a comparatively high conductivity, on said substrate

having a buffer layer of aluminum nitride formed thereon, by feeding said silicon-containing gas and said other raw material gases together at a controlled mixing ratio; and

growing an n-layer of low carrier concentration, which is an n-type gallium nitride compound semiconductor ($Al_XGa_{1-X}N$; inclusive of x=0) having a comparatively low conductivity, on said n^+ -layer, by feeding said raw material gases excluding said siliconcontaining gas.

Adda3>