These questions are largely taken from Sipser's book [1].

1. Draw a DFA that accepts all strings over $\{a, b\}$ that have at least three a's.

2. Draw a DFA that accepts all strings over $\{a, b\}$ that have at least two b's.

3. Draw a DFA that accepts all strings over $\{a, b\}$ that have exactly two a's.

4. Draw a DFA that accepts all strings over $\{a,b\}$ that have an odd number of a's.

5. Draw a DFA that accepts all strings over $\{a, b\}$ that have at least three a's and at least two b's.

- 6. Define all of the above automata.
- 7. Draw an NFA that recognises, over the alphabet $\{0,1\}$, both strings that begin with a 1 and end with a 0 and strings that contain at least three 1's.

8. Draw an NFA that recognises, over the alphabet $\{0,1\}$, both strings that contain the substring 0101 and strings that don't contain the substring 110.

9. Draw an NFA that recognises, over the alphabet $\{0,1\}$, the concatenations of strings of length at most five and strings where every odd position is a 1.

10. Draw an NFA that recognises, over the alphabet $\{0,1\}$, the Kleene star of the language containing strings with at least two 0's and at most one 1.

Solution:

References

[1] Michael Sipser. Introduction to the Theory of Computation. International Thomson Publishing, 3rd edition, 1996.