Отчет по лабораторной работе № 1.4.5 «Изучение колебаний струны»

Выполнил Мещеряков Всеволод, студент Б02-001 $6 \ \mbox{ноября} \ 2020 \ \mbox{г}.$

Аннотация

Работа заключается в изучении поперечных стоячих волн на струне: определение собственных частот колебаний струны, исследование зависимости скорости распространения волн на струне в зависимости от ее натяжения. Для этого в работе используются закрепленная на станине струна, набор грузов, электромагнитные датчики, звуковой генератор, двухканальный осциллограф и частотометр.

Теоритическая справка

Рис. 1: Схема экспериментальной установки.

На рисунке 1 изображена экспериментальная установка: Струна закреплена между двумя стойками в горизонтальном положении. К одному из концов струны прикреплен груз, создающий натяжение. Возбуждение и регистрация колебаниколебаний струны осуществляются с помощью электромагнитных датчиков (в ибраторов), расположенных на станине под струноструной Возбуждающий датчик подключён к звуковому генератору. Сигнал с регистрирующего датчика подается на осциллограф.

Основной принцип работы датчиков заключается в том, что участок струны, расположеннырасположенный над э лектромагнитом, совершает колебательное движение в вертикальновертикальной плоскости с частоточастотой генератора. Колебания далее передаются по всей струне и, если частота колебаниколебаний совпадает с одноодной из собственных частот струны, на струне устанавливается стоячая волна. Колеблющаяся струна возбуждает в регистрирующем датчике переменную ЭДС, измеряющуюся с помощью осциллографа.

Струна в акустике - однородная тонкая гибкая упругая нить. Гибкость струны обусловлена тем, что её поперечные размеры малы по сравнению с длиной. Это означает, что напряжение в струне может быть направлено только вдоль неё, что позволяет не учитывать изгибные напряжения, которые могли бы возникать при поперечных деформациях.

Волновое уравнение:

$$\frac{d^2y}{dt^2} = u\frac{d^2y}{dx^2} \tag{1}$$

Где u - скорость распространения волн на струне. Общее решение этого уравнения представимо в виде суммы двух волн произвольной формы, бегущих в противоположные стороны со скоростями $\pm u$.

В случае гармонических волн:

$$y(x,t) = a\cos\omega t - kx + b\cos\omega t + kx,$$
(2)

Где $k = \frac{2\pi}{\lambda}$ - волновое число. Скорость распространения волны же зависит только от силы натяжения и погонной плотности:

$$u = \sqrt{\frac{T}{p}}. (3)$$

Свободные колебания струны с закрепленными концами описываются формулой:

$$y(x,t) = 2a\sin kx \cdot \sin \omega t. \tag{4}$$

Из нее видно, что точки, для которых $\sin kx = 0$, неподвижны в любой момент времени - их называют узлами. Точки же, для которых $\sin kx = 1$, называются пучностями. Так как длина волны связана с ее частотой, то струна может колебаться только с определенным набором частот, если на длине струны укладывается целое число полуволн:

$$\nu_n = \frac{n}{2L} \sqrt{\frac{T}{\rho}}.$$
 (5)

Набор разрешенных частот ν_n называют собственными частотами колебаний струны. Наименьшая частота μ_1 называется также основным тоном (или первой гармоникой), а остальные - обертонами (высшими гармониками).

Работа с установкой

Измерения

Прежде чем приступить к измерениям, стоит убедиться, что возбуждающий датчик расположен вблизи неподвижного конца струны, а регистрирующий - вблизи пучности.

Регистрация стоячих волн с помощью осциллографа

В этой части работы мы будем измерять гармоники для разных нагрузок. Измерим массы и рассчитаем нагрузки - результаты приведем в **таблице 1**.

Визуально настроим струну на основную гармонику, не меняя ее нагрузку и длину. Регистрирующий датчик установим в центре под струной.

Подстроим частоту ν генератора так, чтобы амплитуда сигнала была максимальна. Добьемся отсутствия нелинейных искажений, уменьшая амплитуду напряжения генератора, и при этом подстраивая частоту так, чтобы она соответствовала максимуму сигнала. Запишем окончательное значение частоты основной гармоники ν_1 . Проведем измерения частот для нескольких нечетных гармоник стоячих волн при длине струны 50 см и массе грузов ≈ 1 кг. Измерим частоты гармоник. Для этого станем смещать регистрирующий датчик 8 в предварительные расположения пучностей. Результаты занесем в **таблицу** 2.

Обработка результатов

Сравним значения частот ν_n , полученных при визуальном наблюдении и наблюдении с помощью осциллографа:

По **таблице 2** построим графики зависимостей частоты ν_n от номера n гармоники для различных натяжений T - **рисунок 2**. По ним определим скорости волн u и оценим погрешность.

На основании коэффициентов наклона получим **таблицу 3** со скоростями для каждой из нагрузок.

Построим график зависимости квадрата скорости u^2 от силы натяжения T по имеющимся данным - **рисунок 3**. Из них определим погонную плотность струны ρ_l .

Из графика зависимости квадрата скорости волны от величины нагрузки получим коэффициент наклона прямой k=1764,9(м/кг) с точностью $\pm 9,3\cdot 10^-6\text{м/кг}$. Тогда определим погонную плотность струны - она равна величине обратной значению коэффициента наклона прямой:

$$\rho = 566 \pm 9 \text{M} \text{F/M} \tag{6}$$

Установим частоту $\nu_1/2\approx 45.3\Gamma$ ц для первой нагрузки. Переключим осциллограф на режим X-Y. На экране увидим фигуру Лиссажу с одним самопересечением - это как раз говорит об отношении частот 2:1 - **Рисунок** 4.

Приложение - графики и таблицы.

Массы	462	941.5	1423	1915.8	2409.3
грузов, г	402	941.0	1420	1515.0	2405.5
Нагрузки, Н	5.686	10.390	15.113	19.948	24.789

Таблица 1: Изучаемые нагрузки. В массе каждого груза необходимо добавлять массу подвеса - 117.6 грамм.

Величина нагрузки, Н	5.7	10.4	15.1	19.9	24.8
/ Номера гармоник					
1 Гармоника, Гц	99.95	143.41	163.85	193.5	208.8
2 Гармоника, Гц	198.7	283.1	325.7	384.4	413.8
3 Гармоника, Гц	301.4	429.6	491.1	578.8	628.8
4 Гармоника, Гц	399.5	569.2	653.2	772.7	836.6
5 Гармоника, Гц	501.3	715.6	810.4	964.6	1050.5
6 Гармоника, Гц	602.4	858.7	981.9	1157.8	1253.8
7 Гармоника, Гц	698.3	1002.3	1144.2	1353.3	1463.9
8 Гармоника, Гц	798.7	1144.9	1311.1	1544.9	1673.2
9 Гармоника, Гц	897.2	1286.7	1470.9	1738.9	1877.9
10 Гармоника, Гц	997.8	1429.8	1634.7	1931.4	2090.4

Таблица 2: Измеренные гармоники для каждой из нагрузок.

Рис. 2: Зависимость частоты гармоники от ее номера для разных нагрузок.

Величина нагрузки, Н	5.69	10.39	15.11	19.95	24.79
Коэффициенты наклона [Гц]	99.67	143.11	163.22	193.22	208.96
Погрешность вычисления коэффициента	0.07621467	0.072463754	0.128123212	0.047079382	0.127711673
наклона [Гц]					
Скорость волны [м/с]	99.67	143.11	163.22	193.22	208.96

Таблица 3: Скорость волны при разных нагрузках.

Рис. 3: Зависимость квадрата скорости волны от величины нагрузки.

Рис. 4: Фигура Лиссажу.