1 BASICS OF SET CONTSTRAINED AND UNCONSTRAINED OPTIMIZATION

6.1 Consider the problem

minimize
$$f(x)$$
 subject to $x \in \Omega$,

where $f \in C^2$. For each of the following specifications for Ω , \mathbf{x}^* and f, determine if the given point \mathbf{x}^* is: (i) definitely a local minimizer; (ii) definitely not a local minimizer; or (iii) possibly a local minimizer.

a.
$$f: \mathbb{R}^2 \to \mathbb{R}$$
, $\Omega = \{x = [x_1, x_2]^T : x_1 \ge 1\}$, $x^* = [1, 2]^T$, and gradient $\nabla f(x^*) = [1, 1]^T$.

b.
$$f: \mathbb{R}^2 \to \mathbb{R}$$
, $\Omega = \{x = [x_1, x_2]^\top : x_1 \ge 1, x_2 \ge 2\}$, $x^* = [1, 2]^\top$, and gradient $\nabla f(x^*) = [1, 0]^\top$.

c.
$$f: \mathbb{R}^2 \to \mathbb{R}$$
, $\Omega = \{ \boldsymbol{x} = [x_1, x_2]^\top : x_1 \ge 0, x_2 \ge 0 \}$, $\boldsymbol{x}^* = [1, 2]^\top$, gradient $\nabla f(\boldsymbol{x}^*) = [0, 0]^\top$, and Hessian $\boldsymbol{F}(\boldsymbol{x}^*) = \boldsymbol{I}$.

d.
$$f: \mathbb{R}^2 \to \mathbb{R}$$
, $\Omega = \{ \boldsymbol{x} = [x_1, x_2]^{\mathsf{T}} : x_1 \ge 1, x_2 \ge 2 \}$, $\boldsymbol{x}^* = [1, 2]^{\mathsf{T}}$, gradient $\nabla f(\boldsymbol{x}^*) = [1, 0]^{\mathsf{T}}$, and Hessian $\boldsymbol{F}(\boldsymbol{x}^*) = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$.

6.9 Consider the following function:

$$f(x_1, x_2) = x_1^2 x_2 + x_2^3 x_1.$$

- a. In what direction does the function f decrease most rapidly at the point $\mathbf{x}^{(0)} = [2, 1]^{\mathsf{T}}$?
- b. What is the rate of increase of f at the point $x^{(0)}$ in the direction of maximum decrease of f?
- c. Find the rate of increase of f at the point $\mathbf{x}^{(0)}$ in the direction $\mathbf{d} = [3, 4]^{\mathsf{T}}$.
- **6.11** Consider the problem

minimize
$$-x_2^2$$

subject to $|x_2| \le x_1^2$
 $x_1 \ge 0$,

where $x_1, x_2 \in \mathbb{R}$.

- a. Does the point $[x_1, x_2]^{\mathsf{T}} = \mathbf{0}$ satisfy the first-order necessary condition for a minimizer? That is, if f is the objective function, is it true that $\mathbf{d}^{\mathsf{T}} \nabla f(\mathbf{0}) \geq 0$ for all feasible directions \mathbf{d} at $\mathbf{0}$?
- b. Is the point $[x_1, x_2]^T = \mathbf{0}$ a local minimizer, a strict local minimizer, a local maximizer, a strict local maximizer, or none of the above?
- **6.23** Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by

Chong, Edwin Kah Pin., and Stanislaw H. Żak. *An Introduction to Optimization*. Fourth edition., John Wiley & Sons, Inc., 2013.

$$f(x) = (x_1 - x_2)^4 + x_1^2 - x_2^2 - 2x_1 + 2x_2 + 1,$$

where $\mathbf{x} = [x_1, x_2]^\mathsf{T}$. Suppose that we wish to minimize f over \mathbb{R}^2 . Find all points satisfying the FONC. Do these points satisfy the SONC?