МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ)

Физтех-школа аэрокосмических технологий

РАСЧЕТНО-ГРАФИЧЕСКАЯ РАБОТА

по дисциплине

«Метрология, стандартизация и сертификация»

(Вариант 4)

Выполнил: студент 937 группы Бузин Глеб Борисович

Проверил: Моисеев Леонид Фёдорович

Москва 2022

Содержание

1 Постановка задачи		тановка задачи	3
	1.1	Исходные данные	3
2	Реш	ение	3

1 Постановка задачи

Необходимо найти ЭДС источника постоянного тока (с использованием закона Ома), при которой в нагрузке (r_x) с минимальной погрешностью выделяется требуемая мощность P.

1.1 Исходные данные

№ варианта	№ типа	№ типа	Выделяемая	R
	вольтметра	амперметра	мощность Р, Вт	
4	5	2	0.5	10

Таблица 1: Параметры варианта

	№ типа вольтметра	5
1	Диапазон измерений, В	0-50
2	Внутреннее сопротивление, кОм	250
3	Класс точности	0.1/0.2

Таблица 2: Параметры вольтметра

	№ типа амперметра	2
1	Диапазон измерений, мА	0-20
2	Внутреннее сопротивление, кОм	0.01
3	Класс точности	0.02/0.02

Таблица 3: Параметры амперметра

2 Решение

Схема 1: Изначальная схема

Схема 2: Преобразованная схема

Закон Ома для схемы:

$$I_A = I_V + I_r \tag{1}$$

$$U_V = U_r = U (2)$$

$$\varepsilon = U_V + I_A(R_A + R_\varepsilon) \tag{3}$$

Так как внутреннее сопротивление источника $R_{arepsilon}$ = 0, то ЭДС равна:

$$\varepsilon = U_V + I_A R_A \tag{4}$$

Выделяемая на R мощность P равна:

$$P = I_r U_r = I_r U \tag{5}$$

Следовательно, из (1) и (4) получаем:

$$I_A = \frac{P}{U} + \frac{U}{R_V} = \frac{PR_V + U^2}{UR_V}$$
 (6)

Погрешность вычисления мощности $\Delta P = P \times \delta_p$,

$$\delta_p = \sqrt{\delta_A^2 + \delta_V^2} \tag{7}$$

где $\delta_p \delta_v \delta_a$ - относительные погрешности измерения мощности, напряжения и тока соответственно.

$$\delta_A = \pm c_A + d_A(|\frac{D_A}{I_A}| - 1))$$
 (8)

где c_A, d_A - класс точности амперметра, D_A - диапазон измерений амперметра.

$$\delta_V = \pm c_V + d_V(\left|\frac{U_K}{U_V}\right| - 1)) \tag{9}$$

где c_V, d_V - класс точности вольтметра, U_k – нормирующее значение напряжения (предельное значение), U_v - действительное значение измеряемой величины.

Для решения задачи нам нужно минимизировать величину δ_p по напряжению. Для удобства исследуем производную $(\delta_p^2)'$ и найдем значение U, которое минимизирует δ_p^2 . Это же значение U будет минимизировать величину δ_p , т.к. возведение в квадрат и извлечение корня – монотонные преобразования.

$$\begin{split} \delta_p^2 &= \delta_A^2 + \delta_V^2 = \\ &= (c_A + d_A(|\frac{D_A}{I_A}| - 1))^2 + (c_V + d_V(|\frac{U_K}{U_V}| - 1))^2 = \\ &= (0.02 + 0.02(|\frac{5000U}{125 * 10^3 + U^2}| - 1))^2 + \\ &+ (0.1 + 0.2(|\frac{50}{U_V}| - 1))^2 \end{split}$$

Схема 3: $\delta^2(U)$ на диапазоне измерений

Функция строго убывающая, т.е. минимум достигается в правой краевой точке, т.е. там, где напряжение будет наибольшим на допустимом множестве.

Таким образом, подставим значение U=50B в (6):

$$I_A = \frac{0.5 \times 250 \times 10^3 + 50^2}{50 \times 250 \times 10^3} = 0.0102(A)$$
 (10)

Найденное значение I_A попадает в заданный диапазон (0-20 мA), и таким образом минимум достигается при $I_A=10.2$ мA.

Найдем ЭДС источника из (4):

$$\varepsilon = 50 + 0.0102 \times 0.01 \times 10^3 = 50.102(B) \tag{11}$$

Погрешность определения мощности на нагрузке минимальна при $\varepsilon=50.102B$.