Analiza numeryczna

4. Aproksymacja

Rafał Nowak

Definicja

Wzór

$$\langle f, g \rangle := \int_{a}^{b} p(x)f(x)g(x) dx$$
 (1)

definiuje **iloczyn skalarny** funkcji $f,\,g\in C_p[a,b].$ Sprawdza się że dla dowolnych f,g,h i $\alpha\in\mathbb{R}$

(i)
$$\langle f, f \rangle \geqslant 0$$
; $\langle f, f \rangle = 0 \Leftrightarrow f = 0$;

(ii)
$$\langle f, g \rangle = \langle g, f \rangle$$
,

(iii)
$$\langle \alpha f, g \rangle = \alpha \langle f, g \rangle$$
,

(iv)
$$\langle f + g, h \rangle = \langle f, h \rangle + \langle g, h \rangle$$
.

Twierdzenie (Ortogonalizacja Grama-Schmidta)

Dla dowolnego układu $f_1,\,f_2,\ldots,f_m$ funkcji liniowo niezależnych układ $g_1,\,g_2,\ldots,g_m$, określony wzorami

$$\begin{cases}
g_1 &:= f_1, \\
g_k &:= f_k - \sum_{i=1}^{k-1} \frac{\langle f_k, g_i \rangle}{\langle g_i, g_i \rangle} g_i \quad (k = 2, 3, \dots, m),
\end{cases}$$
(2)

jest ortogonalny.

Wielomiany ortogonalne $\{\bar{P}_k\}$ nazwiemy **standardowymi**, jeśli dla każdego k wielomian \bar{P}_k ma współczynnik 1 przy x^k . Zauważmy, że jeśli $\{P_k\}$ jest dowolnym ciągiem wielomianów ortogonalnych w tej przestrzeni i $P_k(x) = a_k x^k + \dots$ $(k \geqslant 0)$, to $P_k = a_k \bar{P}_k$ $(k \geqslant 0)$.

Twierdzenie

Wielomiany ortogonalne $\{\bar{P}_k\}$ spełniają związek rekurencyjny

$$\bar{P}_0(x) = 1, \tag{3}$$

$$\bar{P}_1(x) = x - c_1,\tag{4}$$

$$\bar{P}_k(x) = (x - c_k)\bar{P}_{k-1}(x) - d_k\bar{P}_{k-2}(x)$$
 $(k = 2, 3, ...), (5)$

gdzie

$$c_k = \langle x\bar{P}_{k-1}, \bar{P}_{k-1} \rangle / \langle \bar{P}_{k-1}, \bar{P}_{k-1} \rangle \qquad (k = 1, 2, ...),$$
 (6)

$$d_k = \langle \bar{P}_{k-1}, \bar{P}_{k-1} \rangle / \langle \bar{P}_{k-2}, \bar{P}_{k-2} \rangle \qquad (k = 2, 3, ...).$$
 (7)

Standardowe wielomiany ortogonalne względem parzystej funkcji wagowej p(x) w przedziale [-a,a] (a>0) spełniają związek rekurencyjny

$$\bar{P}_0(x) = 1, \tag{8}$$

$$\bar{P}_1(x) = x,\tag{9}$$

$$\bar{P}_k(x) = x\bar{P}_{k-1}(x) - d_k\bar{P}_{k-2}(x) \qquad (k = 2, 3, ...),$$
 (10)

gdzie

$$d_k = \langle \bar{P}_{k-1}, \bar{P}_{k-1} \rangle / \langle \bar{P}_{k-2}, \bar{P}_{k-2} \rangle \qquad (k = 1, 2, ...).$$
 (11)

Wniosek

Jeśli funkcja wagowa p(x) jest parzysta, to dla $m=0,1,\ldots$ wielomiany $\bar{P}_{2m}(x)$ są funkcjami parzystymi, $\bar{P}_{2m+1}(x)$ – funkcjami nieparzystymi.

Jeśli ciąg $\{P_k\}\subset C_p[a,b]$ jest ortogonalny, to n-ty wielomian optymalny w_n^* określony w zadaniu 1 istnieje, jest określony jednoznacznie i wyraża się wzorem

$$w_n^* = \sum_{k=0}^n \frac{\langle f, P_k \rangle}{\langle P_k, P_k \rangle} P_k, \tag{12}$$

a n-ty błąd aproksymacji optymalnej funkcji f jest równy

$$||f - w_n^*||_2 = \sqrt{||f||_2^2 - \sum_{k=0}^n \frac{\langle f, P_k \rangle^2}{\langle P_k, P_k \rangle}}.$$
 (13)

<u>Twierdzenie</u>

Niech $\{P_k\}$ będzie ciągiem wielomianów, określonych w następujący sposób rekurencyjny:

$$P_0(x) = \alpha_0, P_1(x) = (\alpha_1 x - \beta_1) P_0(x),$$

$$P_k(x) = (\alpha_k x - \beta_k) P_{k-1}(x) - \gamma_k P_{k-2}(x) (k = 2, 3, ...),$$

gdzie α_k , β_k , γ_k są danymi stałymi. Wartość wielomianu

$$s_n := a_0 P_0 + a_1 P_1 + \ldots + a_n P_n$$

o danych współczynnikach a_0,a_1,\ldots,a_n można obliczyć stosując następujący uogólniony algorytm Clenshawa:

Obliczamy pomocnicze wielkości V_k $(k=0,1,\ldots,n+2)$ według wzorów

$$V_k = a_k + (\alpha_{k+1}x - \beta_{k+1})V_{k+1} - \gamma_{k+2}V_{k+2}$$
 $(k = n, n-1, \dots, 0),$

gdzie $V_{n+1} = 0$, $V_{n+2} = 0$. Wynik: $s_n(x) = \alpha_0 V_0$.

Definicja

Aproksymacją jednostajną nazywamy aproksymację w przestrzeni C(T) funkcji rzeczywistych ciągłych na zbiorze zwartym (tj. domkniętym i ograniczonym) $T\subset\mathbb{R}1$, z normą

$$||f||_{\infty} \equiv ||f||_{\infty}^T := \max_{x \in T} |f(x)|,$$

zwaną normą jednostajną (albo normą Czebyszewa).

Dla dowolnej funkcji $f \in C(T)$ i dla dowolnego $n \in \mathbb{N}$ istnieje dokładnie jeden n-ty wielomian optymalny.

Twierdzenie (twierdzenie Czebyszewa o alternansie)

Niech T będzie dowolnym podzbiorem domkniętym przedziału [a,b]. Na to, by wielomian w_n był n-tym wielomianem optymalnym dla funkcji $f \in C(T)$ (tj. by dla każdego $u_n \in \Pi_n$ zachodziła nierówność $||f-w_n||_{\infty}^T \leqslant ||f-u_n||_{\infty}^T$) potrzeba i wystarcza, żeby istniały takie punkty $x_0, x_1, \ldots, x_{n+1} \in T$ ($x_0 < x_1 < \ldots < x_{n+1}$), że dla $e_n := f - w_n$ jest

$$e_n(x_k) = -e_n(x_{k-1})$$
 $(k = 0, 1, ..., n + 1),$ (14)

$$|e_n(x_j)| = ||e_n||_{\infty}^T$$
 $(j = 0, 1, ..., n + 1).$ (15)

Zbiór punktów $x_0, x_1, \ldots, x_{n+1}$, w których różnica e_n przyjmuje wartość $||e_n||_{\infty}^T = \max_{x \in T} |e_n(x)|$ z naprzemiennymi znakami, nazywamy (n-tym) alternansem funkcji f (związanym ze zbiorem T).

Przykład

Niech będzie $f(x)=\sqrt{1-x^2},\ T=[a,b]=[-1,1],\ Y=\Pi_1$ (zauważmy, że dim Y=2), $g(x)\equiv\frac{1}{2}$. Wykresem różnicy e:=f-g w przedziale [-1,1] jest półokrąg o promieniu 1, przechodzący przez punkty $(-1,-\frac{1}{2}),\ (0,\frac{1}{2})$ i $(1,-\frac{1}{2}).$ Norma tej różnicy w przedziale [-1,1] jest równa $\frac{1}{2},$ a w trzech punktach $-1,\ 0,\ 1$ różnica e ma na przemian wartości $-\frac{1}{2},\ \frac{1}{2}$ i $-\frac{1}{2}.$ Punkty te spełniają zatem równości $(14),\ (15).$ Stąd i z Twierdzenia 2.3 wynika, że stała $\frac{1}{2}$ jest pierwszym wielomianem optymalnym dla funkcji $\sqrt{1-x^2}$ w przedziale [-1,1]. Inaczej mówiąc, nie istnieje żaden wielomian postaci a_0+a_1x , o własności

$$||\sqrt{1-x^2}-(a_0+a_1x)||_{\infty}^{[-1,\,1]}<||\sqrt{1-x^2}-\frac{1}{2}||_{\infty}^{[-1,\,1]}.$$

Niech s oznacza dowolną funkcję określoną zbiorze $T=\{x_0,x_1,\ldots,x_{n+1}\}$ (gdzie $x_0< x_1<\ldots< x_{n+1}$) i taką, że $s(x_k)=(-1)^k$ ($k=0,1,\ldots,n+1$). n-ty wielomian optymalny dla funkcji f na zbiorze T wyraża się wzorem

$$w_n(x) = d(x_0) + (d[x_0, x_1](x - x_0) + \dots + d[x_0, x_1, \dots, x_n](x - x_0) \dots (x - x_{n-1}),$$
(16)

gdzie

$$d := f - \varepsilon s, \qquad \varepsilon = \frac{f[x_0, x_1, \dots, x_{n+1}]}{s[x_0, x_1, \dots, x_{n+1}]}.$$
 (17)

n-tym wielomianem optymalnym dla jednomianu x^{n+1} w przedziale [-1,1] jest wielomian $x^{n+1}-2^{-n}T_{n+1}(x)$, a n-ty błąd aproksymacji optymalnej tej funkcji jest równy 2^{-n} . Spośród wszystkich wielomianów postaci $x^{n+1}+a_1x^n+\ldots+a_{n+1}$ (z dowolnymi współczynnikami a_1,a_2,\ldots,a_{n+1}) najmniejszą normę $||\cdot||_{\infty}^{[-1,1]}$, równą 2^{-n} , ma wielomian $\tilde{T}_{n+1}:=2^{-n}T_{n+1}$.

Algorytm Remeza I

Dane są: zbiór domknięty T zawierający co najmniej n+2 punkty i funkcja f, która na T jest ciągła i nie jest tam wielomianem klasy Π_n . Niech $w_n^{(m)}$ będzie n-tym wielomianem optymalnym dla funkcji f na podzbiorze

$$D_m = \{x_{m0}, x_{m1}, \dots, x_{m,n+1}\} \qquad (x_{m0} < x_{m1} < \dots < x_{m,n+1})$$

zbioru T, określonym w następujący sposób:

- Podzbiór D_0 jest dowolny.
- $\textbf{9} \quad \text{Jeśli} \ E_n(f;D_{m-1}) = 0 \ (m\geqslant 1) \text{, to wybieramy taki punkt} \\ \xi \in T \setminus D_{m-1}, \ \dot{\text{ze}} \ f(\xi) w_n^{(m-1)}(\xi) \neq 0 \ \text{i przyjmujemy} \\ D_m := D_{m-1} \setminus \{x_{m-1,j}\} \cup \{\xi\} \ (j-\text{dowolne}).$

Algorytm Remeza II

- ① Jeśli zbiór D_{m-1} nie tworzy (n+2)-punktowego alternansu dla funkcji $f-w^{(m-1)}$ (tzn. wielomian $w_n^{(m-1)}$ nie jest n-tym wielomianem optymalnym dla funkcji f) na zbiorze T, to podzbiór D_m wybieramy tak, żeby
 - (R1) różnice $f(x_{mk}) w_n^{(m-1)}(x_{mk})$ (k = 0, 1, ..., n+1) są na przemian dodatnie i ujemne,
 - (R2) $|f(x_{mk}) w_n^{(m-1)}(x_{mk})| \ge E_n(f; D_{m-1})$ (k = 0, 1, ..., n+1),
 - (R3) $\max_{0 \le k \le n+1} |f(x_{mk}) w_n^{(m-1)}(x_{mk})| = ||f w_n^{(m-1)}||_{\infty}^T.$

Jeśli powyższy algorytm określa ciąg nieskończony $\{w_n^{(m-1)}\}$, to jest on zbieżny do n-tego wielomianu optymalnego w_n dla funkcji f na zbiorze T. W przeciwnym razie ostatni skonstruowany element ciągu jest równy w_n .

Wielomiany prawie optymalne

Przykładem wielomianu prawie optymalnego jest wielomian

$$S_n(x) := \sum_{k=0}^{n} a_k T_k(x), \quad a_k := \frac{2}{\pi} \int_{-1}^{1} f(x) T_k(x) (1 - x^2)^{-1/2} dx \quad (k \geqslant 0),$$

czyli n-ty wielomian optymalny w sensie aproksymacji w przestrzeni $L^2(-1,1,(1-x^2)^{-1/2}),$ z normą

$$||f||_2 = \left(\int_{-1}^1 f^2(x)(1-x^2)^{-1/2} dx\right).$$

Udowodniono, że dla dowolnej funkcji $f \in C[-1,1]$ zachodzi

$$||f - S_n||_{\infty} \leqslant K_n E_n(f), \tag{18}$$

gdzie

$$K_n := \frac{2n+2}{2n+1} + \frac{2}{\pi} \sum_{k=1}^n k^{-1} \operatorname{tg} \frac{k\pi}{2n+1} \sim \frac{4}{\pi^2} \ln n.$$
 (19)

np. $K_5 = 2.961$, $K_{10} = 3.223$, $K_{20} = 3.494$, $K_{100} = 4.139$.

Wielomian interpolacyjny I_n z węzłami $t_{n+1,j}$, wyraża się wzorem

$$I_n(x) = \frac{2}{n+1} \sum_{i=0}^{n'} \left(\sum_{j=0}^{n} f(t_{n+1,j}) T_i(t_{n+1,j}) \right) T_i(x).$$
 (20)

Można wykazać, że

$$||f - I_n||_{\infty} \leqslant L_n E_n(f),$$

gdzie

$$L_n := 1 + \frac{1}{n+1} \sum_{k=0}^{n} \operatorname{tg} \frac{2k+1}{4n+4} \pi \sim \ln n.$$

Zatem czynnik L_n rośnie wolno wraz z n. Np. $L_5=3.104,\ L_{10}=3.489,\ L_{20}=3.901,\ L_{100}=4.901.$