MINI ENSAYO DE MATEMÁTICA Nº 7

1. Si $p = \frac{2}{3}$ y $q = \frac{1}{3}$, entonces el valor numérico de la expresión $p^3 + q^3 - (p^2q + q^2p)$ es

A)
$$\frac{2}{27}$$
B) $\frac{1}{9}$
C) 1
D) $-\frac{1}{9}$
E) $-\frac{2}{27}$

B)
$$\frac{1}{9}$$

D)
$$-\frac{1}{9}$$

E)
$$-\frac{2}{27}$$

2. Si x es un número real positivo, ¿cuál(es) de las siguientes afirmaciones es (son) verdadera(s)?

$$1) \quad 2^{x} - \log_{2} x \ge 0$$

II)
$$x^2 - \sqrt{x} \ge 0$$

III) $|x| - [x] \ge 0$

III)
$$|x|-[x] \geq 0$$

3. Si f(x) = x + 3 y g(x) = x - 2, entonces el conjunto solución de la ecuación $f(x) \cdot g(x) = 0 es$

C)
$$\{-3, 2\}$$

- 4. Si A = (8, 0) y B = (0, 6), entonces la ecuación de la recta que pasa por el origen y por el punto medio de \overline{AB} es
 - A) 3x 4y = 0
 - B) 3x + 4y = 0
 - C) 4x 3y = 0
 - D) 4x + 3y = 0
 - E) 3x + 4y = 12
- 5. Sea **b** un número real positivo. La ecuación $x^2 + bx + 4 = 0$ tiene dos soluciones reales y distintas si
 - A) $b \ge 2$
 - B) b > 2
 - C) b > 0
 - D) $b \ge 4$
 - E) b > 4
- 6. El \triangle ABC de la figura 1, es rectángulo en C. Si \triangle QBR es equilátero de lado 4 y BRPQ es un rombo, entonces \overline{CR} =

D) 5

E) 10

fig. 1

7. En la circunferencia de centro O y diámetro \overline{AB} de la figura 2, el ΔABC es equilátero. Si \overline{AD} = 6, el área del ΔAOD es

B) $3\sqrt{3}$

C) $2\sqrt{3}$

D) $\sqrt{3}$

E) $\frac{\sqrt{3}}{2}$

8. En la figura 3, \overline{AC} es tangente en B a la circunferencia de centro O y radio r. \overline{AS} es una secante de la circunferencia que contiene a los puntos O y P. Si \overline{CS} es otra tangente a la circunferencia y \overline{AP} = 1 y \overline{AB} = r - 1, entonces el área del cuadrilátero BCSO es

- B) 96
- C) 48
- D) 24
- E) no se puede determinar

- 9. En la figura 4, \triangle ABC es isósceles de base $\overline{AB} = 8$ cm y área 12 cm². $\overline{DE} \perp \overline{AB}$ y $\overline{EF} \perp \overline{BC}$. Si $\overline{AE} = 2$ cm, entonces el perímetro del cuadrilátero CDEF es
 - A) 7,8 cm
 - B) 8 cm
 - C) 9 cm
 - D) 9,5 cm
 - E) no se puede calcular

- 10. En la circunferencia de diámetro $\overline{AB}=8$ de la figura 5, \overline{BC} es tangente a la circunferencia en el punto B. Si $\overline{AC}:\overline{AB}=2:1$ entonces $\overline{CD}=1$
 - A) 12
 - B) 11
 - C) 8
 - D) $6\sqrt{3}$
 - E) $4\sqrt{3}$

- 11. En la circunferencia de la figura 6, \overline{BE} diámetro y CDFA rectángulo. Entonces, ¿cuál(es) de las siguientes afirmaciones es (son) verdadera(s)?
 - I) $\triangle ABF \sim \triangle FBE$
 - II) ΔABF ~ ΔDEO
 - III) ΔFBE ~ ΔDEF
 - A) Sólo I
 - B) Sólo I y II
 - C) Sólo I y III
 - D) Sólo II y III
 - E) I, II y III

fig. 6

- 12. El \triangle ABC de la figura 7, es equilátero. Si $\overline{AP}: \overline{PC} = \overline{CQ}: \overline{QB} = 1:2$ y además $\overline{PQ} = 6$, entonces el área del \triangle ABP es
 - A) $27\sqrt{3}$
 - B) $12\sqrt{3}$
 - C) $9\sqrt{3}$
 - D) 9
 - E) 27

- 13. El triángulo ABC de la figura 8, es rectángulo en C. Si \overline{AD} es bisectriz del $\angle BAC$, $\overline{CD} = 2$ y $\overline{DB} = 4$, entonces ¿cuál(es) de las siguientes afirmaciones es (son) verdadera(s)?
 - I) ΔABC ~ ΔDBE
 - II) $sen 2\alpha = 2 sen \alpha \cdot cos \alpha$
 - III) $\overline{CE} = \overline{EB}$
 - A) Sólo I
 - B) Sólo III
 - C) Sólo I y III
 - D) Sólo II y III
 - E) I, II y III

- 14. En la figura 9, el rectángulo está formado por dos cuadrados de lado 6 cada uno de ellos. Entonces, el área del ΔPRS es
 - A) 2
 - B) 3
 - C) 4
 - D) 5
 - E) 6

- fig. 9
- 15. Si $ax^2 + bx a = 0$ es una ecuación cuadrática con **a** y **b** números reales distintos, ¿cuál(es) de las siguientes afirmaciones es (son) **siempre** verdadera(s) con respecto a esta ecuación?
 - I) Tiene dos raíces reales distintas.
 - II) Si a = 2 y b = 3 sus raíces son números enteros.
 - III) El producto de sus raíces siempre es -1.
 - A) Sólo II
 - B) Sólo III
 - C) Sólo I y III
 - D) Sólo II y III
 - E) I, II y III

16. El cuadrilátero de la figura 10, se puede inscribir en una circunferencia de diámetro $\overline{AB} = 10$. Si \overline{AB} es un eje de simetría y además $\overline{AB} = \overline{PA} + \overline{AQ}$, ¿cuál es el área del cuadrilátero?

- B) 100
- C) $25\sqrt{3}$
- D) 25
- E) No se puede determinar

17. ¿En cuál de las siguientes alternativas hay una simetría con respecto al punto P?

- 18. El punto simétrico de A = (3, 4), con respecto al origen O del sistema coordenado cartesiano es el punto B = (a, b). Si se realiza una rotación de 90° en torno al origen, en sentido antihorario, el punto B tendrá las coordenadas
 - A) (-3, -4)
 - B) (4, -3)
 - C) (-4, -3)
 - D) (-4, 3)
 - E) (4, 3)
- 19. Si $0 < \alpha < 90^{\circ}$ de modo que tg $\alpha = \frac{2ab}{a^2 b^2}$, ¿cuál(es) de las siguientes afirmaciones es (son) siempre verdadera(s)?
 - I) sen $\alpha = 2ab$
 - H)
 - $\cos \alpha = a^2 b^2$ $\cos^2 \alpha + \sin^2 \alpha = (a^2 + b^2)^2$
 - A) Sólo III
 - B) Sólo I y II
 - C) Sólo II y III
 - D) I, II y III
 - E) Ninguna de ellas

- 20. De acuerdo a la información dada por la tabla de distribución de frecuencias de la figura 11, ¿cuál(es) de las siguientes afirmaciones es (son) verdadera(s)?
 - I) Para algún valor de **p**, el promedio puede ser 6.
 - II) Para cualquier valor positivo posible de **p** menor que 7, la mediana es 5.
 - III) a = 20% sólo si p = 7.
 - A) Sólo I
 - B) Sólo II
 - C) Sólo I y II
 - D) Sólo II y III
 - E) I, II y III

Х	F	Fr		
4	6			
5	4	а		
6	р			
7	3			

fig. 11

- 21. En el juego del gato de la figura 12, le corresponde jugar a ●. ¿Cuál es la probabilidad de evitar que su contrincante complete tres **X** en línea en la siguiente jugada?
 - A) $\frac{1}{9}$
 - B) $\frac{1}{6}$
 - C) $\frac{1}{3}$
 - D) $\frac{2}{9}$
 - E) $\frac{1}{4}$

fig. 12

- 22. De acuerdo a la información proporcionada en el gráfico de la figura 13 (fuente INE), ¿cuál(es) de las siguientes afirmaciones es (son) verdadera(s)?
 - I) La suma de porcentajes en estos meses es de un 6,3%.
 - II) Si en febrero, un artículo costaba \$ 40.000, en abril valía lo mismo.
 - III) La mayor alza con respecto al mes anterior se produjo en el mes de mayo.
 - A) Sólo I
 - B) Sólo II
 - C) Sólo III
 - D) Sólo I y III
 - E) I, II y III

- 23. La probabilidad de que un hombre y una mujer vivan dentro de 10 años son $\frac{4}{5}$ y $\frac{2}{3}$, respectivamente. ¿Cuál es la probabilidad de que dentro de 10 años, al menos, uno viva?
 - A) $\frac{1}{15}$
 - B) $\frac{1}{5}$
 - C) $\frac{1}{3}$
 - D) $\frac{8}{15}$
 - E) $\frac{14}{15}$
- 24. En una caja hay 3 bolitas verdes, 2 azules y una roja. ¿Cuál es la probabilidad que al sacar dos bolitas, queden en el interior de la caja dos bolitas azules y dos bolitas verdes, dado que la primera bolita que se sacó fue roja?
 - A) $\frac{1}{12}$
 - B) $\frac{1}{10}$
 - C) $\frac{1}{5}$
 - D) $\frac{3}{5}$
 - E) $\frac{1}{3}$
- 25. El hexágono de la figura 14, es regular si :
 - (1) \overline{AD} es eje de simetría del hexágono.
 - (2) $\triangle ABC \cong \triangle DCB$
 - A) (1) por sí sola
 - B) (2) por sí sola
 - C) Ambas juntas, (1) y (2)
 - D) Cada una por sí sola, (1) ó (2)
 - E) Se requiere información adicional

fig. 14

- 26. Se puede determinar el vértice de la parábola definida por una función cuadrática si:
 - (1) Se conoce el recorrido de la función.
 - (2) Se conoce el eje de simetría del gráfico de la función.
 - A) (1) por sí sola
 - B) (2) por sí sola
 - C) Ambas juntas, (1) y (2)
 - D) Cada una por sí sola, (1) ó (2)
 - E) Se requiere información adicional
- 27. En un grupo de 90 personas, el 20% son extranjeros. Se puede determinar la probabilidad de escoger al azar un hombre chileno si:
 - (1) La tercera parte de los chilenos son hombres.
 - (2) En el grupo hay 48 mujeres chilenas.
 - A) (1) por sí sola
 - B) (2) por sí sola
 - C) Ambas juntas, (1) y (2)
 - D) Cada una por sí sola, (1) ó (2)
 - E) Se requiere información adicional
- 28. En la tabla de distribución de frecuencia, de la figura 15, se tiene que a < b < c < d. Entonces, **b** es la mediana si :
 - (1) p + q = 10 y r + s = 9
 - (2) p < q
 - A) por sí sola
 - B) por sí sola
 - C) Ambas juntas, (1) y (2)
 - D) Cada una por sí sola, (1) ó (2)
 - E) Se requiere información adicional

Х	f
а	р
b	q
С	r
d	S

fig. 15

- 29. En la figura 16, PQRSTU es un hexágono de área 36 cm 2 . Se puede determinar el área del ΔABC si :
 - (1) \triangle CTS es equilátero.
 - (2) \triangle ABC es equilátero.
 - A) (1) por sí sola
 - B) (2) por sí sola
 - C) Ambas juntas, (1) y (2)
 - D) Cada una por sí sola, (1) ó (2)
 - E) Se requiere información adicional

30. La solución de la ecuación $(2ax + b)^2 - (2ax + c)^2 = (b - c)^2$ es -1, si:

- (1) c = 2a
- (2) $(b-c)^2 > 0$
- A) (1) por sí sola B) (2) por sí sola
- C) Ambas juntas, (1) y (2)
 D) Cada una por sí sola, (1) ó (2)
- E) Se requiere información adicional

CLAVES

1	В	6	Α	11	С	16	С	21	В	26	С
2	С	7	В	12	С	17	С	22	D	27	D
3	С	8	С	13	E	18	В	23	E	28	С
4	Α	9	Α	14	В	19	E	24	D	29	Е
5	E	10	Α	15	С	20	D	25	E	30	С