

Agenda

- 1 Falsifikation im Bereich Autonomes Fahren
- 2 Reinforcement Learning
- 3 Einblick ins Projekt
- 4 Ausblick

Falsifikation im Bereich Autonomes Fahren

20.03.2018, 10:50 Uhr

> Tödlicher Unfall mit Roboter-Auto: Polizei entlastet Uber

Tödlicher Unfall mit Roboter-Auto: Polizei entlastet Uber

https://www.br.de/nachrichten/deutschland-welt/behoerden-ermitteln-nach-toedlichemunfall-mit-uber-roboterwagen, Qmp87GT

13.11.2018, 11:23 Uhr

> Wissen > Autonomes Fahrzeug im Dilemma: Wen soll ich überfahren?

Autonomes Fahrzeug im Dilemma: Wen soll ich überfahren?

https://www.br.de/nachrichten/wissen/autonomes-fahrzeug-im-dilemma-wen-soll-ich-ueberfahren,R7Ogajo

Falsifikation im Bereich Autonomes Fahren

Agenda

- 1 Falsifikation im Bereich Autonomes Fahren
- 2 Reinforcement Learning
- 3 Einblick ins Projekt
- 4 Ausblick

Reinforcement Learning

Reinforcement Learning

Vorteile:

- Agent versucht optimale Lösung zu finden
- Es können neue und unbekannte Lösungen entstehen
- Großer State-Space möglich

Herausforderungen:

- Stabiles Environment
- Gute Reward-Funktion
- Geeigneter Action- und Observation-Space
- Lange Trainingszeiten
- Optimierung der Hyperparameter

Agenda

- 1 Falsifikation im Bereich Autonomes Fahren
- 2 Reinforcement Learning
- 3 Einblick ins Projekt
- 4 Ausblick

Agenten Verhalten:

- Verschiedene Wege testen
- Neue Wege erkunden vs. alte Verbessern
- Ziel: Reward Maximierung

Reward-Design

Fortlaufende Rewards:

- Distance Auto
- Winkel zum Auto

Extra-Reward:

- Kollision mit Fußgänger
- Kollision Fahrzeug mit Objekt
- Vollbremsung
- Sehr nah am Fußgänger vorbei fahren

Optuna

Agenda

- Falsifikation im Bereich Autonomes Fahren
- 2 Reinforcement Learning
- 3 Einblick ins Projekt
- Ausblick

Ausblick

- **Andere Situationen**
- Andere Methodik
- Reward-Design verbessern
- Effizientere Algorithmen
- Tooling erweitern

Quellen

Bilder

- Lange Straße: https://www.dieweltenbummler.de/wp-content/uploads/2017/12/Lange-Stra%C3%9Fe-in-Kalifornien-1536x1024.jpg
- Carla: https://cdn2.unrealengine.com/Unreal+Engine%2Fspotlights%2Fcarla-democratizes-autonomous-vehicle-r-d-with-free-open-source-simulator%2FSpotlight_CARLA_blog_body_img6-1640x1000-eeea5b85b7ae79fbeea32eb669226974d5e581ef.jpg
- Reinforcement Learning: https://miro.medium.com/max/1400/0*WC4l7u90TsKs_eXj.png
- Stable-Baselines3: https://stable-baselines3.readthedocs.io/en/master/_static/logo.png
- Optuna: https://raw.githubusercontent.com/optuna/optuna/optuna/master/docs/image/optuna-logo.png
- TensorBoard: https://www.tensorflow.org/site-assets/images/project-logos/tensorboard-logo-social.png
- Algorithmus: https://blog.qbeyond.de/wp-content/uploads/2018/06/Algorithmus-1.jpg
- Toolkit: https://thenounproject.com/icon/toolkit-154266/
- Reward: https://www.ambassify.com/hs-fs/hubfs/New%2025%20Employee%20Recognition%20Recognition%20%26%20Rewards%20Ideas-13%202-13.png

Quellen

Paper/ Artikel

- BMW: https://www.br.de/nachrichten/wirtschaft/nach-unfall-mit-bmw-was-ist-autonomes-fahren,TEg0fcF
- Uber: https://www.br.de/nachrichten/deutschland-welt/behoerden-ermitteln-nach-toedlichem-unfall-mit-uber-roboterwagen,Qmp87GT
- Safety-Assessment-Approach: https://mediatum.ub.tum.de/doc/1615375/1615375.pdf
- Safety-Assessment-Approach: https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9090897

Vielen Dank für Ihre Aufmerksamkeit

Axel Böll

Lehrstuhl Mechatronik / Fakultät für Angewandte Informatik

Universität Augsburg

Axel.boell@student.uni-augsburg.de

www.uni-augsburg.de

Optimization History Plot

Hyperparameter Importances

Slice Plot

