Algorithms and Satisfiability

Lecture 1 Intro & Dynamic Programming

DAT6 spring 2023
Simonas Šaltenis & Álvaro Torralba

People

- Lecturers:
 - First 6 lectures: Simonas Šaltenis
 - Email: simas@cs.aau.dk
 - Office: 4.2.57
 - Last 6 lectures: Álvaro Torralba
 - Email: alto@cs.aau.dk
 - Office: 1.2.47

Location, Time, Structure

- Location: 0.2.13
- Time: Thursdays, 12:30–14:15 (Exercises: 14:30–16:15)
 - Self-studies and mini-projects other days see the schedule.
 - Please, check the schedule on Moodle for any changes.
- A total of 16 sessions:
 - 12 regular sessions + 2 self-study sessions + 2 mini-projects
 - A regular session = 2-hour lecture + 2-hour exercises
 - A self-study exercise session = 4 hours of exercises
 - A mini-project session = 4 hours of exercises
 - Plus a short lecture

Workload

- This is a 5 ECTS course =~ 150 hours of your effort
 - 12 regular sessions:
 - 2h lecture + 2h exercises + 3.5h preparing. In total, 12*(2+2+3.5)=90h
 - 2 self-studies:
 - 4h solving exercise + 3h preparing/feedback. In total = 14h
 - 2 mini-projects:
 - 1h short lecture + 4h work + 3h preparing/feedback. In total = 16h
- Preparation for exam and exam = 30h
- In total: 90+14+16+30 = 150h

Textbook

- First six lectures:
 - T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. *Introduction to Algorithms*, 3rd edition, The MIT Press. ISBN:9780262533058
 - ...or 4th edition. ISBN: 9780262046305
 - On the Moodle, I use CLRS for both editions, or CLRS3/CLRS4 when there is a difference.
 - Additional notes and videos.
- Last six lectures:
 - Notes/handouts will be provided

Advice, Exam

- Prepare for lectures: read, watch videos.
- Be active during lectures, have paper and pen there will be mini-exercises/quizzes.
- Exercises, self-studies, and mini-projects are very important:
 - The exam will consist of a set of exercises / questions
 - A few of the exam exercises will directly relate to selected parts of self-studies/mini-projects.
 - Make sure you understand all exercises by YOURSELF after your group work on exercises.
- Your feedback, positive and negative, is always welcome!
- The exam will be a 4-hour Moodle-based digital exam with notes and books.

What is it about?

- It is about solving problems with algorithmic tools
 - First six lectures cover some selected algorithms (and data structures), algorithm design techniques, and algorithm analysis techniques for *tractable* problems (i.e., with known efficient algorithms)
 - We continue where the AD course left off, but focus a bit more on the design of algorithms rather than just understanding them "as is".
 - Many problems we recognize to be hard (see Computability and Complexity course). What do we do then?
 - Last six lectures focus on solving hard (NP-hard) problems by applying a powerful paradigm:
 - First, model them as so-called satisfiability problems;
 - Then, solve them as efficiently as possible using different methods/tools.

Course content

- Lecture 1: Dynamic programming
- Lecture 2: Greedy algorithms
- Lecture 3: Computational geometry algorithms: sweeping
- Lecture 4: External-memory algorithms and data structures
- Lecture 5: Parallel algorithms
- Lecture 6: Amortized analysis
- Lecture 7: Satisfiability: Syntax, Semantics, Resolution
- Lecture 8: Satisfiability: DPLL, Clause Learning
- Lecture 9: Binary Decision Diagrams
- Lecture 10: Planning Problems; Planning as Heuristic Search
- Lecture 11: Advanced Heuristic Functions
- Lecture 12: Planning as SAT, Planning as Symbolic Search

Mini-quiz 1

1.2. (3 points)
$$700 \cdot n^2 + 999 \cdot n^2 \lg n + 0.1 \cdot n^2 \lg^2 n$$
 is:

a)
$$\Theta(n^2 \lg n)$$

$$\square$$
 b) $\Omega(n^2 \lg n)$

$$\square$$
 c) $\Theta(n^2)$

a)
$$\Theta(n^2 \lg n)$$
 b) $\Omega(n^2 \lg n)$ **c)** $\Theta(n^2)$ **d)** $\Theta(n^2 \cdot \lg^2 n)$

Go to Socrative and vote (the link is also on course Moodle)

Mini-quiz 2

- From the reading material for today: "... would take ω(1) time..." What does it mean?
 - A: Would take constant time (not dependent on problem size)
 - B: Would take more time than constant
 - C: Would take constant time or more

Go to <u>Socrative</u> and vote (the link is also on course Moodle)

Mini-quiz 3

- Have you prepared for the lecture today?
 - A: Read everything and watched the two videos
 - B: Read some of it and watched the two videos
 - C: Watched some (parts) of the videos and read everything
 - D: Watched some (parts) of the videos and read some of it
 - E: Did not have time/energy/desire to prepare at all

Go to <u>Socrative</u> and vote (the link is also on course Moodle)

Dynamic Programming

- Goals of this lecture:
 - to understand the principles of dynamic programming;
 - to be able to apply the dynamic programming algorithm design technique.

Optimization problems

- Many problems can be framed as optimization problems:
 - Find the shortest route from A to B.
 - Find the items that give most value and can fit into a knapsack.
- Two things that we need to find:
 - Compute the optimum value:
 - Length of route
 - Total value of items in the knapsack.
 - Construct an object that has that optimum value (i.e., proof of the value):
 - Route
 - The set of items

Dynamic programming

- Dynamic programming:
 - A powerful technique to solve optimization problems
- Structure:
 - To arrive at an optimal solution *a number of choices* are made
 - Each choice generates a number of sub-problems
 - Which choice to make is decided by looking at all possible choices and the solutions to sub-problems that each choice generates.
 - The solution to a specific sub-problem is used many times in the algorithm
 - Subproblems are overlapping
 - First, think how to compute the value of a variable that we optimize,
 - Then, augment your algorithm to remember the choices made.
 - Finally, the choices can be traced back to build an optimal solution corresponding to an optimal value.

DP algorithm design roadmap

- Construction:
 - Which choices have to be considered in each step of the algorithm?
 - What are the sub-problems? Which parameters define each sub-problem?
 - How are the trivial sub-problems solved?
 - (In which order do we have to solve the subproblems?)
 - Or write a memoized version of the algorithm
 - Remember the (optimal) choices made
 - Use the remembered choices to construct a solution
- Analysis:
 - How many different sub-problems are there in total?
 - How many choices have to be considered in each step of the algorithm?

Edit Distance

- Problem definition:
 - Two strings: s [1..m], and t [1..n]
 - Find *edit distance dist*(*s*,*t*)— the smallest number of edit operations that turns *s* into *t*
 - Edit operations:
 - Replace one letter with another
 - Delete one letter
 - Insert one letter

Example: ghost delete g

host insert **u**

houst replace t by e

house

Sub-problems

- What are the sub-problems?
 - Goal 1: To have as few sub-problems as possible
 - Goal 2: Solution to the sub-problem should be possible by combining solutions to smaller sub-problems.

- Sub-problem:
 - $d_{i,j} = dist (s [1..i], t [1..j])$
 - Then $dist(s, t) = d_{m,n}$

Making a choice

- How can we solve a sub-problem by looking at solutions of smaller sub-problems to make a choice?
 - Let's look at the last symbol: s [i] and t [j]. There are three options, do whatever is cheaper:
 - If s [i] = t [j], then turn s [1..i-1] to t [1..j-1], else replace s [i] by t [j] and turn s [1..i-1] to t [1..j-1]
 - Delete s [i] and turn s [1..i-1] to t [1..j]
 - **Insert** insert *t* [*j*] at the end of *s* [1..*i*] and turn *s* [1..*i*] to *t* [1..*j*-1]

Recurrence

$$d_{i,j} = \min \begin{cases} d_{i-1,j-1} + \begin{cases} 0 & \text{if } s[i] = t[j] \\ 1 & \text{else} \end{cases} \\ d_{i-1,j} + 1 \\ d_{i,j-1} + 1 \end{cases}$$

- How do we solve trivial sub-problems?
 - To turn empty string to *t* [1..*j*], do *j* **insert**s
 - To turn s [1..i] to empty string, do i deletes
- (In which order do we have to solve the sub-problems?)

Algorithm, memoized


```
EditDistance(s[1..m], t[1..n])
                                             d_{i,j} = \min \begin{cases} d_{i-1,j-1} + \begin{cases} 0 & \text{if } s[i] = t[j] \\ 1 & \text{else} \end{cases} \\ d_{i-1,j} + 1 \\ d_{i,j-1} + 1 \end{cases}
01 \text{ for } i = 0 \text{ to } m \text{ do}
02 	 for j = 0 to n do
           dist[i, j] = \infty
03
04 return EditDistR(s, t, m, n)
EditDistR(s, t, i, j)
01 if dist[i,j] == \infty then
02
       if j == 0 then dist[i,j] = i
03 else if i == 0 then dist[i,j] = j
0.4
     else
05
           if s[i] == t[j] then
06
               dist[i,j] = min(EditDistR(s,t,i-1,j-1),
                                    EditDistR(s,t,i-1,j)+1,
                                    EditDistR(s,t,i,j-1)+1)
07
           else
08
            dist[i,j] = 1 + min(EditDistR(s,t,i-1,j-1),
                                       EditDistR(s,t,i-1,j),
                                       EditDistR(s,t,i,j-1))
09 return dist[i,j]
```

Algorithm


```
EditDistance(s[1..m], t[1..n])
01 for i = 0 to m do dist[i,0] = i
02 for j = 0 to n do dist[0, j] = j
03 for i = 1 to m do
04
      for j = 1 to n do
0.5
         if s[i] = t[j] then
06
            dist[i,j] = min(dist[i-1,j-1], dist[i-1,j]+1,
                             dist[i, j-1]+1)
07
         else
0.8
            dist[i,j] = 1 + min(dist[i-1,j-1], dist[i-1,j],
                             dist[i, i-1])
09 return dist[m,n]
```

- What is the running time of this algorithm?
- How do we modify it to remember the edit operations?

Let's run the algorithm

$$d_{i,j} = \min \begin{cases} d_{i-1,j-1} + \begin{cases} 0 & \text{if } s[i] = t[j] \\ 1 & \text{else} \end{cases} \\ d_{i-1,j} + 1 \\ d_{i,j-1} + 1 \end{cases}$$

			G	Н	0	S	Т
	j∖i	0	1	2	3	4	5
	0	0	1 _D	2 _D	3 _D	4 _D	5 _D
Н	1	1,	1_{R}	1 _c			
0	2	21					
U	3	31					
S	4	41					
Ε	5	51					

I: insert

D: delete

R: replace

C: do nothing

Let's run the algorithm

$$d_{i,j} = \min \begin{cases} d_{i-1,j-1} + \begin{cases} 0 & \text{if } s[i] = t[j] \\ 1 & \text{else} \end{cases} \\ d_{i-1,j} + 1 \\ d_{i,j-1} + 1 \end{cases}$$

			G	Н	0	S	Т
	j∖i	0	1	2	3	4	5
	0	0			3 _D	4 _D	5 _D
Н	1	1,	1_{R}	1 _c	2 _D		
0	2	21					
U	3	31					
S	4	41					
Ε	5	51					

I: insert

D: delete

R: replace

C: do nothing

Elements of Dynamic Programming

- Dynamic programming is used for optimization problems
 - A number of choices have to be made to arrive at an optimal solution
 - At each step, consider all possible choices and solutions to sub-problems induced by these choices (compare to greedy algorithms)
 - The order of solving of the sub-problems is important from smaller to larger
- Usually a table of sub-problem solutions is used

Elements of Dynamic Programming

- To be sure that the algorithm finds an optimal solution, the optimal sub-structure property has to hold
 - the simple "cut-and-paste" argument usually works:
 - If an optimal solution includes a choice that we consider then it includes optimal solutions to the subproblems that this choice generates.
 - but not always! Longest simple unweighted path example no optimal sub-structure!
 - The subproblems have to be independent.

Activity-Selection Problem

- Input:
 - A set of n activities, each with start and end times: A[i].s and A[i].f. The activity lasts during the period [A[i].s, A[i].f)
- Output:
 - The largest subset of mutually compatible activities
 - Activities are compatible if their intervals do not intersect

"Straight-forward" solution

- Let's just pick (schedule) one activity A[k]
 - This generates two set's of activities compatible with it: Before(k), After(k)
 - E.g., $Before(4) = \{1, 2\}$; $After(4) = \{6,7,8,9\}$

Solution:

$$MaxN(A) = \begin{cases} 0 & \text{if } A = \emptyset, \\ \max_{a \in A} \{ MaxN(Before(a)) + MaxN(After(a)) + 1 \} & \text{if } A \neq \emptyset. \end{cases}$$

Dynamic Programming Alg.

- The recurrence results in a dynamic programming algorithm
 - Sort activities on the end time (for simplicity assume also "sentinel" activities A[0] and A[n+1])
 - Let S_{ij} a set of activities after A[i] and before A[j] and compatible with A[i] and A[j].
 - Let's have a two-dimensional array, s.t., $c[i, j] = MaxN(S_{ij})$:

$$c[i,j] = \begin{cases} 0 & \text{if } S_{ij} = \emptyset, \\ \max_{a_k \in S_{ij}} \{c[i,k] + c[k,j] + 1\} & \text{if } S_{ij} \neq \emptyset. \end{cases}$$

• $MaxN(A) = MaxN(S_{0,n+1}) = c[0, n+1]$

Dynamic Programming Alg. II

- Does it really work correctly?
 - We have to prove the optimal sub-structure:
 - If an optimal solution A to S_{ij} includes A[k], then it also includes optimal solutions to S_{ik} and S_{ki}
 - To prove use "cut-and-paste" argument
- What is the running time of this algorithm?

Activity Selection DP Alg. 2.0

- Alternative way of thinking about it binary choice:
 - Sort activities on the start time (have "sentinel" activity A[n+1] after all the other activities)
 - Let $next(i) = min \{k \mid k > i \land \neg overlaps(A[i], A[k])\}$
 - The subproblem is then to schedule all the activities starting with i and after.
 - What is the recurrence?

- MaxN(A) = c[1]
- What is the running time and space used?

Activity Selection DP Alg. 2.0

- Alternative way of thinking about it binary choice:
 - Sort activities on the start time (have "sentinel" activity A[n+1] after all the other activities)
 - Let $next(i) = min \{k \mid k > i \land \neg overlaps(A[i], A[k])\}$
 - The subproblem is then to schedule all the activities starting with i and after.

$$c[i] = \begin{cases} 0 & \text{if } i > n, \\ \max(1+c[next(i)], c[i+1]) & \text{otherwise.} \end{cases}$$

- \blacksquare MaxN(A) = c[1]
- What is the running time and space used?