

사용 설명서 HEX 포스 토크 센서

KUKA KRC4용

제E9판

OnRobot FT KUKA 소프트웨어 버전4.0.0

2018 년9월

1	머리	말	5
	1.1	대성	당 독자5
	1.2	사용	용 목적5
	1.3	중요	요 안전 수칙5
	1.4	경고	그 기호5
	1.5	丑フ	│규칙6
2	시즈	¦하 기	/ 7
	2.1	제공	공되는 품목7
	2.2	장츠	ነ8
	2.2.	1	ISO 9409-1-50-4-M6 툴 플랜지8
	2.2.	2	ISO 9409-1-31.5-7-M5 툴 플랜지8
	2.2.	3	ISO 9409-1-40-4-M6 툴 플랜지9
	2.3 케이블 연결		블 연결10
	2.4	소프	프트웨어 설치10
	2.4.	1	KUKA 라인 인터페이스 설정 (이더넷)10
	2.4.	2	KUKA 로봇 센서 인터페이스 패키지 설치13
	2.4.	3	OnRobot KUKA 소프트웨어 설치16
3	OnF	Robot	t 패키지 프로그래밍19
	3.1	개요	3
	3.1.	1	KRL 변수19
	3.1.	2	KRL 함수 및 서브 프로그램19
	3.2	초フ	화19
	3.2.	1	OR_INIT()
	3.3	핸드	트가이드20
	3.3.	1	OR_HANDGUIDE()20
	3.4	경로	르기록 및 재생20

	3.4.	1 경로 기록	20
	3.4.	2 경로 재생: OR_PATH_REPLAY()	23
	3.5	포스 제어	25
	3.5.	1 OR_BIAS()	25
	3.5.	2 OR_FORCE_TORQUE_ON()	25
	3.5.	3 OR_FORCE_TORQUE_OFF()	26
	3.5.	4 OR_WAIT()	26
	3.5.	5 포스 제어 예제	26
4	용아	ᅥ해설	28
5	약0	ᅥ정리	29
6	부록	<u>-</u>	30
	6.1	Compute Box 의 IP 변경	30
	6.2	소프트웨어 제거	
		파	

Copyright © 2017-2018 OnRobot A/S. All rights Reserved. OnRobot A/S의 사전 서면허가 없이는 이 설명서의 어떠한 부분도 어떤 형식이나 방법으로도 복제할 수 없습니다.

이 문서에 제공된 정보는 발행 당시의 정보를 최대한 정확하게 반영하였습니다. 발간 이후 제품이 수정된 경우, 이 문서와 제품 간에는 차이가 있을 수 있습니다.

OnRobot A/S는 이 문서의 오류나 누락에 대해 어떠한 책임도 없습니다. 어떠한 경우에도 OnRobot A/S는 이 문서의 사용으로 인해 발생하는 개인 또는 재산상의 손실이나 손해에 대해 책임을 지지 않습니다.

이 문서의 정보는 사전 통보 없이 변경될 수 있습니다. 다음 웹사이트에서 최신 버전을 확인하세요. https://onrobot.com/.

이 설명서의 원어는 영어입니다. 제공되는 다른 모든 언어는 영문 설명서를 번역한 것입니다.

모든 상표는 해당 소유자의 자산입니다. (R) 과TM의 표시는 생략됨.

1 머리말

1.1 대상 독자

이 문서는 전적으로 로봇 애플리케이션을 설계하고 설치하는 통합업체를 위해 제작되었습니다. 센서를 사용하는 작업자는 다음의 전문 지식을 갖추고 있어야 합니다:

기계 시스템에 대한 기본 지식

전자 및 전기 시스템에 대한 기본 지식

로봇 시스템에 대한 기본 지식

1.2 사용 목적

이 센서는 로봇의 엔드 이펙터에 설치되어 포스와 토크를 측정하도록 설계되었습니다. 센서는 정의된 측정 범위 내에서 사용될 수 있습니다. 범위를 벗어나서 센서를 사용할 경우, 오용으로 간주됩니다. OnRobot은 오용으로 인한 손상이나 부상에 대해 책임을 지지 않습니다.

1.3 중요 안전 수칙

센서는 부분적으로 완성된 기계이며 센서가 포함된 각 애플리케이션에 대한 위험 평가가 요구됩니다. 본 설명서의 모든 안전 지침을 준수하는 것이 중요합니다. 안전 지침은 센서에만 국한되며 완전한 애플리케이션의 안전 예방 조치는 다루지 않습니다.

완전한 애플리케이션은 설치되는 해당 국가의 표준 및 규정에 명시된 안전 요구사항에 따라설계 및 설치되어야합니다.

1.4 경고 기호

위험:

피하지 않으면 부상이나 사망을 초래할 수 있는 매우 위험한 상황을 나타냅니다.

경고:

피하지 않으면 부상이나 장비 손상을 초래할 수 있는 잠재적으로 위험한 전기 상황을 나타냅니다.

경고:

피하지 않으면 부상이나 심각한 장비 손상을 초래할 수 있는 잠재적으로 위험한 상황을 나타냅니다.

주의:

피하지 않으면 장비 손상을 초래할 수 있는 상황을 나타냅니다.

참조:

팁이나 권장사항과 같은 추가 정보를 나타냅니다.

1.5 표기 규칙

본 문서에서는 다음의 표기 규칙이 사용됩니다.

표1: 규칙

쿠리어 텍스트	파일 경로 및 파일 이름, 코드, 사용자 입력 및 컴퓨터 출력.
기울임꼴 텍스트	텍스트의 인용 및 이미지 호출 표시.
굵은 텍스트	버튼 및 메뉴 옵션에 있는 텍스트를 포함한UI 요소.
굵은 파란색 텍스트	외부 링크 또는 내부 상호 참조.
<꺽쇠 괄호>	실제 값 또는 문자열로 대체되는 변수 이름.
1. 번호 매기기 목록	절차 단계.
A. 알파벳순 목록	이미지 호출 설명.

2 시작하기

2.1 제공되는 품목

KUKA KRC4 OnRobot HEX 센서 키트에는KUKA 로봇에OnRobot 포스/토크 센서를 연결하는 데 필요한 모든 것이 포함되어 있습니다.

- OnRobot 6축 포스/ 토크 센서(모델HEX-E v2 또는HEX-H v2)
- OnRobot Compute Box
- OnRobot USB 드라이브
- 어댑터-A2, B2, 또는C2
- 센서 케이블(4 핀M8 4 핀M8, 5m)
- Compute Box 전원 케이블(3 핀M8 개방형)
- Compute Box 전원 공급 장치
- UTP 케이블(RJ45 RJ45)
- PG16 케이블 글랜드
- 비닐봉투, 포함 내역:
 - 케이블홀더
 - o M6x8 나사(6개)
 - o M5x8 나사(9개)
 - o M4x6 나사(7개)
 - o M5 와셔(9개)
 - o M6 와셔(6개)

2.2 장착

센서와 함께 제공된 나사만 사용하세요. 더 긴 나사는 센서 또는 로봇을 손상시킬 수 있습니다.

2.2.1 ISO 9409-1-50-4-M6 툴 플랜지

ISO 9409-1-50-4-M6 툴 플랜지에 센서를 장착하려면 다음 절차를 따르세요.

- 1. 4 개의M6x8 나사로 어댑터-A2를 로봇에 고정시킵니다. 6 Nm 조임 토크를 사용합니다.
- 2. M4 와셔를 끼운5 개의M4x6 나사로 센서를 어댑터에 고정합니다. 1,5 Nm 조임 토크를 사용합니다.
- 3. 하나의M4x12 나사와<mark>M4</mark> 와셔로 케이블 홀더가 있는 센서에 케이블을 고정합니다. 1,5 Nm 조임 토크를 사용합니다.

기호 설명: 1 - 로봇 툴 플랜지, 2 - 어댑터A2, 3 - M6x8 나사, 4 - M6 와셔, 5 - M4x6 나사, 6 - 센서, 7 - 케이블 홀더

2.2.2 ISO 9409-1-31.5-7-M5 툴 플랜지

ISO 9409-1-31.5-7-M5 툴 플랜지에 센서를 장착하려면 다음 절차를 따르세요:

7 개의M5x8 나사로 어댑터B2를 로봇에 고정시킵니다. 4 Nm 조임 토크를 사용합니다.

M4 와셔를 끼운5 개의M4x6 나사로 센서를 어댑터에 고정합니다. 1,5 Nm 조임 토크를 사용합니다.

하나의M4x12 나사와<mark>M4</mark> 와셔로 케이블 홀더가 있는 센서에 케이블을 고정합니다. 1,5 Nm 조임 토크를 사용합니다.

기호 설명: 1 - 로봇 툴 플랜지, 2 - 어댑터A2, 3 - M5x8 나사, 4 - M5 와셔, 5 - M4x6 나사, 6 - 센서, 7 - 케이블 홀더

2.2.3 ISO 9409-1-40-4-M6 툴 플랜지

ISO 9409-1-40-4-M6 툴 플랜지에 센서를 장착하려면 다음 절차를 따르세요:

1. 4 개의M6x8 나사로 어댑터-C2를 로봇에 고정시킵니다. 6 Nm 조임 토크를 사용합니다.

M4 와셔를 끼운5 개의M4x6 나사로 센서를 어댑터에 고정합니다. 1,5 Nm 조임 토크를 사용합니다.

하나의M4x12 나사와<mark>M4</mark> 와셔로 케이블 홀더가 있는 센서에 케이블을 고정합니다. 1,5 Nm 조임 토크를 사용합니다.

기호 설명: 1 - 로봇 툴 플랜지, 2 - 어댑터A2, 3 - M6x8 나사, 4 - M6 와셔, 5 - M4x6 나사, 6 - 센서, 7 - 케이블 홀더

2.3 케이블 연결

센서를 연결하려면 다음 절차를 따르세요:

- 1. 4 핀M8 케이블(길이5m)을 센서에 연결하고 케이블 타이로 로봇에 고정시킵니다.
 - 구부림에 대비해 관절 주변에는 케이블 길이를 여유 있게 확보합니다.
- 2. 변환기를KUKA 로봇 제어 캐비닛 근처에 배치한 후4 핀M8 센서 케이블을 연결합니다.
- 3. 제공된UTP 케이블(황색) 을 사용하여Compute Box 의 이더넷 인터페이스를KUKA 제어기의 이더넷 인터페이스(KLI)에 연결합니다.
- 4. Compute Box 는Compute Box 전원 공급 장치로, 센서는 벽면 소켓에서 전원을 공급합니다.
- 5. 적절하게 이더넷 변환기와KUKA 로봇의 네트워크를 설정하세요. 기본 이더넷 변환기IP 주소는192.168.1.1입니다. 센서의IP 주소를 변경하려면센서 IP 변경을 참조하세요.

2.4 소프트웨어 설치

2.4.1 KUKA 라인 인터페이스 설정 (이더넷)

KUKA 로봇 제어기의IP 설정을 변경하려면 다음 절차를 따르세요:

 'Configuration' > 'User group'으로 이동합니다.

3. 'Start-up' > 'Network configuration'으로 이동합니다.

 'Expert'를 선택하고 비밀번호를 입력합니다.

4. Compute Box와 동일한 서브넷 상에IP 주소를 설정합니다.

5. Save를 클릭합니다.

 프롬프트를 수락하고 로봇 제어기를 다시 시작합니다.

2.4.2 KUKA 로봇 센서 인터페이스 패키지 설치

 'Start-up' > 'Additional software'로 이동하고'New software'를 클릭합니다.

3. 빈 슬롯을 클릭한 다음'Path selection'을 클릭합니다.

2. 패키지가 목록에 없는 경우, 'Configure'를 클릭합니다.

4. RSI 의 설치 폴더를 찾은 다음 'Save'를 두 번 클릭합니다.

5. RSI 패키지 이름 옆의 체크박스를 선택합니다.

7. 로봇 제어기를 재부팅하라는 메시지가 표시되면'Yes'를 클릭합니다.

 설치를 기다리고 모든 프롬프트를 수락합니다.

8. 재부팅 후'Start-up' > 'Service' > 'Minimize HMI'로 이동합니다.

9. 시작 메뉴를 클릭하고 'RSI-Network' 애플리케이션을 엽니다.

10. 'RSI-Ethernet' 아래의'New' 필드를 클릭하고'Edit'를 클릭합니다. KLI와 다른 서브넷을 가진IP 주소를 입력합니다.

2.4.3 OnRobot KUKA 소프트웨어 설치

Main Menu'>'Configuration'>'User group' 으로 이동해서'Expert' 모드를 선택합니다. 비밀번호를 입력한 다음'Start-up'>'Service'>'Minimize HMI'로 이동합니다.

제공된USB 드라이브를 제어 상자의USB 포트 중 하나에 연결합니다.

OnRobot KUKA Setup 프로그램을 찾은 다음 실행합니다. 이 프로그램의 목적은 다양합니다. OnRobot KUKA 패키지의 초기 설치를 비롯해 네트워크 구성 툴로도 사용할 수 있습니다.

다음 창에는 세 개의 입력 필드가 있습니다. 첫 번째는 로봇과 함께 사용할Compute Box를 정의하기 위한 것입니다. 두 번째와 세 번째는RSI 연결을 정의하기 위한 것입니다.

먼저 로봇과 함께 사용하려는Compute Box 의IP 주소를 입력합니다. 기본 주소는 192.168.1.1입니다. Compute Box 가 아직 구성되지 않았거나 고정IP 모드로 설정된 경우이 주소를 사용합니다.

IP 주소를 입력한 후'Check'을 클릭합니다. 프로그램이Compute Box에 성공적으로 연결되면Box 에 연결된 센서의 이름과Compute Box 소프트웨어의 버전과 함께 녹색체크표시가 나타납니다.

Compute Box IP를 성공적으로 설정한 후, RSI 연결을 위한IP 및 서브넷 마스크를 입력합니다.

여기에 입력한IP 는RSI 설정 중에 정의한IP와 동일한 서브넷에 있어야 합니다. (예: 로봇 제어기의RSI에 대해192.168.173.1을 설정할 경우, 여기에192.168.173.X를 설정합니다. X 는2 - 255 사이의 숫자일 수 있습니다.) 로봇 제어기에서와 동일한 서브넷 마스크를 사용해야 합니다.

모든 필드를 입력한 후'Install'을 클릭하여 설치/구성을 마칩니다. 설치가 성공적으로 완료되면 녹색 체크표시가 나타납니다. Compute Box에 연결하는 데 문제가 있거나 로봇 제어기의 하드 드라이브에 쓰기 방지 기능이 있는 경우, 설치 오류가 발생할 수 있습니다.

설정을 완료하려면Smart HMI 로 돌아가서Navigator 에서'D:\OnRobot'로 이동합니다. 'OnRobotFT.src' 와'OnRobotFT.dat'를 선택한 다음, 'Edit'메뉴에서 복사를 누릅니다.

'KRC:\R1\TP'로 이동해서 다음 이름의 폴더를 만듭니다.' OnRobot. 두 파일을 새 폴더에 붙여 넣습니다.

로봇 제어기를 다시 시작합니다.

3 OnRobot 패키지 프로그래밍

3.1 개요

3.1.1 KRL 변수

```
STRUC OR AXEN BOOL X,Y,Z,A,B,C
```

포스 제어를 위해 축 활성화 또는 비활성화에 사용되는 구조.

```
STRUC OR_FORCE_TORQUE_PARAM
```

포스 제어 매개변수를 정의하는 데 사용되는 구조. 이 구조에는 포스-토크 제어 섹션에서 논의될 많은 필드가 있습니다.

3.1.2 KRL 함수 및 서브 프로그램

```
OR_INIT()

OR_BIAS()

OR_HANDGUIDE()

OR_PATH_REPLAY()

OR_WAIT()

OR_FORCE_TORQUE_ON()

OR_FORCE_TORQUE_OFF()
```

3.2 초기화

3.2.1 OR_INIT()

모든 명령의 올바른 동작을 위한 매개변수 초기화를 위해 이 서브 프로그램은OnRobot 포스 제어 명령을 사용하는 모든 코드에 삽입되어야 합니다. 반드시 한 번만 포함되어야 하며 첫 번째 OnRobot 명령 이전에 삽입되어야 합니다.

3.3 핸드 가이드

3.3.1 OR HANDGUIDE()

이 서브 프로그램은 로봇의 센서 유도 핸드 가이드를 실행합니다. 이 프로그램에는 프로그램이 실행되는 실제 위치로의BCO 이동이 포함됩니다. 프로그램 시작 시 센서 또는 부착된 도구를 만지지 마세요.

이 서브 프로그램의 인수는 특정 축 주위 또는 특정 축을 따라 로봇의 동작을 제한하는 데 사용됩니다. 아래 예제에서z 축을 따른 이동은A 축 및B축 주위의 회전과 함께 비활성화됩니다.

OR_HANDGUIDE는 보수적 속도 제한이 있습니다.

예제:

```
DECL OFAXEN ENABLED_AXES
ENABLED_AXES={X TRUE, Y TRUE, Z FALSE, A FALSE, B FALSE, C TRUE}
OR_INIT()
OR HANDGUIDE(ENABLED AXES)
```

3.4 경로 기록 및 재생

3.4.1 경로 기록

로봇을 수동으로 핸드 가이드하여 생성된 경로든 또는 포스로 제어되는 이동 중의 표면 모양이든, 로봇이 수행하는 모든 이동을 기록할 수 있습니다. 모든 경우, 경로 기록은 경로 기록 GUI를 사용하여 수동으로 시작되어야 합니다. GUI 는SmartHMI 의 왼쪽 툴바에 있는'On' 아이콘을 사용하여 호출할 수 있습니다.

핸드 가이드 경로를 기록하려면 다음 단계를 따라야 합니다:

- 1. 핸드 가이딩을 시작하려면OR_HANDGUIDE () 명령이 포함된 프로그램을 작성합니다(또는 제공된 예제 프로그램을 사용).
- 2. 프로그램을 선택하고 시작합니다. 이를 위해 티치(Teach) 모드를 사용하는 것이 좋습니다.
- 3. 경로 기록을 시작할 위치로 로봇을 이동시킵니다. 이를 위해, 핸드 가이딩을 사용할 수 있으나, 기록된 모든 경로는 상대 동작으로 간주되므로 명시된 프로그래밍된 위치를 시작점으로 사용하는 것이 좋습니다. 그렇게 하면, 재생 및 경로 재사용이 더 쉬워집니다.
- 4. 로봇이 핸드 가이딩 모드에서 올바른 초기 위치에 있는 경우, ① 왼쪽 툴바의 아이콘을 선택하여 경로 기록GUI를 불러옵니다.

6. 기록하려는 경로를 따라 로봇을 이동시킵니다.

7. 기록이 끝나면Stop Path Recording을 누릅니다.

8. 기록된 경로에 만족할 경우, Save Path를 클릭합니다.

새 경로가 왼쪽의 목록에 추가되고 해당 식별자가Last saved path 옆에 표시됩니다. 이제 경로가Compute Box에 저장됩니다.

이 절차는 포스로 제어되는 이동을 기록하는데도 사용할 수 있습니다. 이것은 포스 제어의 정확성과 속도를 현저하게 향상시킬 수 있습니다.

저장된 경로는Compute Box 웹페이지를 통해 내보내고 다른Compute Box로 업로드할 수 있습니다. 저장된 경로는 로봇 종류 간에 상호 교환 가능합니다(예: KUKA 로봇에 기록된 경로는 Compute Box가 지원하는 다른 모든 로봇에서 재생할 수 있음)

3.4.2 경로 재생: OR PATH REPLAY()

이 기능은Compute Box에 저장된 경로를 재생하는 데 사용될 수 있습니다. 명령에는 세 개의 인수가 있습니다.

OR PATH REPLAY(SPEED:IN, ACCELERATION:IN, PATHID:IN)

SPEED: 경로를 재생하는 데 사용되는 일정한 병진 속도(단위: mm/s). 이 속도는 전역적입니다. 따라서 로봇은 이 속도로 모든 동작을 재생하려고 합니다. 이런 이유로 인해, 병진이 없는 회전은 피해야 합니다.

ACCELERATION: 경로 재생에 사용되는 가속도 및 감속도(단위: mm/s²). 경로의 시작과 끝에서보다 부드러운 가속을 원할 경우, 낮은 숫자를 사용하세요.

PATHID: 재생될 경로의4 자리 식별자.

반환값:

- 9: 경로 완료
- -1: 일반적 오류
- -11: 지정된 경로를 찾을 수 없습니다.
- -13: 지정된 경로가 비어 있습니다.
- -14: 지정된 경로 파일을 열 수 없습니다.

예제:

```
DECL INT retval

OR_INIT()

PTP {A1 0,A2 -90, A3 90, A4 0, A5 90, A6 0}

retval = OR_PATH_REPLAY(50, 50, 9159)
```

3.5 포스 제어

3.5.1 OR BIAS()

주어진 하중에 대한 센서값을 재설정하는 데 사용. 포스 제어(핸드 가이드 제외) 도중에 센서 값의 초기 바이어싱에, 또는 센서의 방향이 변경되는 경우 바이어싱에 사용됩니다.

3.5.2 OR_FORCE_TORQUE_ON()

사전 정의된 매개변수로 포스 제어를 활성화합니다. 포스 제어가 활성화된 후 모든 이동이 포스 제어(KUKA 이동 명령 또는 경로 재생)에 중첩됩니다.

OR FORCE TORQUE ON (PARAM: IN)

PARAM 은 다음 필드가 있는OR_FORCE_TORQUE_PARAM 구조입니다.

FRAME_TYPE: 포스 제어에 사용되는 이동 프레임. #BASE는 로봇 베이스에 고정된 로봇의 기본 좌표계입니다. #TOOL은 로봇 플랜지에 고정된 프레임입니다.

ENABLE: OR AXEN 구조로 컴플라이언스 축을 정의합니다.

FRAME_MOD: 사용된 좌표계의 프레임 오프셋. 주요 용도는 경사축 또는 평면을 따라 포스 제어를 위해 좌표축을 회전하기 위한 것입니다.

P_GAIN: 포스 제어기의 비례 게인. 이것은 기본 포스 제어에 가장 많이 사용되는 매개변수입니다. 포스의 변화에 따른 로봇의 반응속도를 결정하지만 진동을 유발할 수 있습니다. 이러한 값은 작은 값에서 시작해야 하며(포스의 경우1, 토크의 경우0.1) 동작을 개선하기 위해 점차적으로 증가되어야 합니다.

I_GAIN: 포스 제어기의 적분 게인. 지속적인 포스오류(예: 경사면)를 수정하는 데 사용됩니다. 로봇 반응성을 둔화시키고 오버슈팅을 증가시킵니다.

D_GAIN: 포스 제어기의 미분 게인. 제어기 유도 진동을 감쇠시키는 데 사용됩니다. 로봇 반응성을 둔화시키고 높은 값은 진동을 증가시킵니다.

FT: FRAME_TYPE 및FRAME_MOD이 정의한 축을 따라 유지될 목표 포스의 정의. 이 매개변수는 비활성화된 축에서 무시됩니다.

F_SQR_TH: 포스 감도 제곱에 대한 포스 임계값. 낮은 포스의 경우, 가벼운 포스 차단으로 사용될 수 있습니다(포스가 낮을수록 덜 민감하여 진동이 감소됨). 사용할 경우, 모든 게인 값을 현저히 낮춰야 합니다.

T_SQR_TH: 토크 감도 제곱에 대한 토크 임계값. 낮은 토크의 경우, 가벼운 토크 차단으로 사용될 수 있습니다(토크가 낮을수록 덜 민감하여 진동이 감소됨). 사용할 경우, 모든 게인 값을 현저히 낮춰야 합니다.

MAX_TRANS_SPEED: 포스 제어기가 허용하는 최대 병진 속도. [mm/s]

MAX ROT SPEED: 포스 제어기가 허용하는 최대 각속도. [deg/s]

3.5.3 OR FORCE TORQUE OFF()

이 서브 프로그램은 포스 제어를 끕니다.

3.5.4 OR WAIT()

포스 제어 중 지정된 시간 동안 대기합니다.

OR WAIT (TIMEOUT: IN)

TIMEOUT: 대기 중 경과된 시간(단위: ms).

반환값: 7: 지정된 시간이 지났습니다.

3.5.5 포스 제어 예제

이 예제는 툴-z 방향으로20N을 유지하면서 세 개의 병진축을 모두 컴플라이언스하는 포스 제어 이동의 매개변수화를 보여줍니다. 활성화 후 로봇이2초 정도 대기한 다음(예: 접촉으로 로봇이 이동), X 방향으로200 mm 이동합니다.

```
DECL OR_AXEN enable

DECL OR_FORCE_TORQUE_PARAM param

DECL POS pgain, dgain, igain, framemod, force

DECL INT retval, tmp

OR_INIT()

PTP {A1 0,A2 -90, A3 90, A4 0, A5 90, A6 0}

OR_BIAS()

enable = {X TRUE, Y TRUE, Z TRUE, A FALSE, B FALSE, C FALSE}

pgain = {X 1, Y 1, Z 1, A 0.1, B 0.1, C 0.1}

dgain = {X 0, Y 0, Z 0, A 0, B 0, C 0}

igain = {X 0, Y 0, Z 0, A 0, B 0, C 0}

framemod = {X 0, Y 0, Z 20, A 0, B 0, C 0}

force = {X 0, Y 0, Z 20, A 0, B 0, C 0}

param.FRAME_TYPE = #TOOL
```

```
param.ENABLE = enable
param.FRAME_MOD = framemod
param.P_GAIN = pgain
param.I_GAIN = igain
param.D_GAIN = dgain
param.FT = force
param.F_SQR_TH = 0
param.T_SQR_TH = 0
param.MAX_TRANS_SPEED = 0
 param.MAX_ROT_SPEED = 0
 OR_FORCE_TORQUE_ON(param)
 ;WAIT 2 sec
 tmp = OR WAIT(2000)
 ; KUKA MOVE
 PTP REL {X 200}
 OR FORCE TORQUE OFF()
```

4 용어 해설

용어	설명
Compute Box	OnRobot이 센서와 함께 제공하는 장치. OnRobot이 구현한 명령과 애플리케이션을 사용하는 데 필요한 계산을 수행합니다. 센서와 로봇 제어기에 연결해야 합니다.
OnRobot Data Visualization	OnRobot에서 만든 데이터 시각화 소프트웨어로 센서를 통해 제공되는 데이터를 시각화합니다. Windows 운영체제에 설치할 수 있습니다.

5 약어정리

약어	확장
DHCP	Dynamic Host Configuration Protocol
DIP	dual in-line package
F/T	Force/Torque
ID	Identifier
IP	Internet Protocol
IT	Information technology
MAC	media access control
PC	Personal Computer
RPY	Roll-Pitch-Yaw
SP	Starting Position
SW	software
ТСР	Tool Center Point
UTP	unshielded twisted pair

6.1 Compute Box 의IP 변경

센서의IP 주소를 변경하려면 노트북 컴퓨터나 외부PC 를OnRobot Compute Box에 연결합니다.

- 1. 기기에 전원이 공급되지 않도록 확인합니다. 제공된 이더넷 케이블로 기기와 컴퓨터를 연결합니다.
- 2. 기기가 공장 출하 시 기본 설정으로 되어있는 경우, 3 단계로 진행합니다. 그렇지 않은 경우, DIP 스위치3을 켜짐(ON) 위치(위) 로 놓고DIP 스위치4를 꺼짐(OFF) 위치(아래)로 놓습니다.

- 3. 기기의 제공된 전원 공급 장치 전원을 켜고 기기가 부팅될 때까지30초 정도 기다립니다.
- 4. 웹 브라우저(Internet Explorer 권장) 를 열고http://192.168.1.1로 이동합니다. 시작 화면이 표시됩니다.
- 5. 상단 메뉴에서Configuration을 클릭합니다. 다음 화면이 표시됩니다:

- 6. Network mode드롭다운 메뉴에서Static IP 옵션을 선택합니다.
- 7. IP 주소를 편집합니다.

- 8. DIP 스위치3을 꺼짐(OFF)으로 설정합니다.
- 9. Save버튼을 클릭합니다
- 10. 웹 브라우저(Internet Explorer 권장)를 열고7 단계에 있는IP 주소로 이동합니다.

6.2 소프트웨어 제거

다음 단계에서는 로봇 제어기에서OnRobot 패키지를 제거할 것입니다:

- 1. Main Menu 에서'Configuration'>'User group' 으로 이동한 다음'Expert' 모드로 들어갑니다.
- 2. 'Start-up'>'Service'>'Minimize HMI'로 사용자 인터페이스를 최소화합니다.
- 3. 파일 탐색기를 열고'D:\ OnRobot'으로 갑니다.
- 4. OnRobot 설치 실행 파일을 시작합니다.
- 5. 'Uninstall'을 클릭하고 프롬프트에 동의합니다.

6. 로봇 제어기를 다시 시작합니다.

6.3 판

판	의견
제2판	문서 재구성됨.
	용어 해설이 추가됨.
	약어 정리가 추가됨.
	부록이 추가됨.
	대상 독자가 추가됨.
	사용 목적이 추가됨.
	저작권, 상표, 연락 정보, 원어 정보가 추가됨.
제3판	편집 변경.
제4판	편집 변경.
제5판	편집 변경.
제6판	편집 변경.