Henry Rodrigues da Silva Jacyara Bosse Mathias Olivio Reolon René Nolio Santa Cruz

Projeto prático de simulação de sistemas (X2)

Projeto Prático 07

Gerenciamento de memória virtual

# Sumário

| introdução                                       | 5  |
|--------------------------------------------------|----|
| Organização do trabalho                          | 5  |
| Formulação e análise do problema                 | 6  |
| Objetivos                                        | 6  |
| Hipóteses                                        | 6  |
| Planejamento do projeto                          | 7  |
| Formulação do modelo conceitual                  | 7  |
| Coleta de dados e macro-informações              | 8  |
| Tratamento de dados coletados                    | 8  |
| Tradução do modelo                               | 10 |
| Verificação e validação                          | 16 |
| Projeto experimental final                       | 16 |
| Experimentação                                   | 17 |
| Resultados obtidos:                              | 18 |
| Hipótese 1                                       | 18 |
| Hipótese 2                                       | 19 |
| Interpretação e análise dos resultados           | 22 |
| Replicações                                      | 22 |
| Comparação e identificação das melhores soluções | 22 |
| Documentação                                     | 24 |
| Apresentação dos resultados e implementação      | 24 |
| Referências bibliográficas                       | 25 |

# Lista de figuras

| Figura 1: Etapas referentes a um estudo de modelagem e simulação (FREITAS, 2008) | 5  |
|----------------------------------------------------------------------------------|----|
| Figura 2: Esboço geral do sistema                                                | 8  |
| Figura 3: Distribuição utilizada: Distribuição triangular                        | 9  |
| Figura 4: Variáveis do modelo de simulação no Arena                              | 10 |
| Figura 5: Estatísticas coletadas pelo Arena                                      | 11 |
| Figura 6: Interação entre os componentes do sistema                              | 12 |
| Figura 7: Acesso a memória modelado no Arena                                     | 13 |
| Figura 8: Primeira parte do algoritmo de substituição de páginas                 | 14 |
| Figura 9: Segunda parte do algoritmo de substituição de páginas                  | 14 |
| Figura 10: Loop do processo                                                      | 15 |
| Figura 11: Resultados obtidos através do output analyzer                         | 18 |
| Figura 12: Resultados obtidos através do output analyzer                         | 19 |

# Lista de Abreviaturas e Siglas

| TLB   | Translation lookaside buffer, é um cache de memória que armazena traduções recentes de memória virtual em endereços físicos.    |
|-------|---------------------------------------------------------------------------------------------------------------------------------|
| RAM   | Random Access Memory, ou memória de acesso randômico                                                                            |
| LRU   | Least Recently Used, é um algoritmo de substituição de páginas que procura substituir a página menos recentemente utilizada     |
| LFU   | Least Frequently Used, é um algoritmo de substituição de páginas que procura substituir a página menos frequentemente utilizada |
| Disco | Disco rígido ou HD é a memória de massa                                                                                         |

## 1. Introdução

Este trabalho consiste na modelagem e simulação de um sistema de gerenciamento de memória virtual por paginação em um nível. O objetivo principal é avaliar o impacto do algoritmo de substituição de páginas, do tamanho da página e da velocidade do disco em relação ao tempo médio de acesso à memória. O sistema inclui uma TLB, tabela de páginas, páginas na memória RAM e disco rígido. Os algoritmos de substituição de páginas avaliados são o LRU (Least Recently Used) e o LFU (Least Frequently Used); ambos utilizam política de substituição de páginas local. São testados discos lentos e rápidos, e as páginas podem variar de 4 KB a 16 KB. Temos 2 processos executando, que geram uma referência à memória algum tempo após sua última referência ter sido atendida, e enquanto isso, eles permanecem bloqueados. Os tempos entre acessos foram fornecidos no enunciado.

## Organização do trabalho

As etapas de projeto de simulação adotadas neste trabalho são as etapas definidas no livro de Freitas Filho (Freitas Filho, 2008) conforme na figura 1, e estão descritas nas próximas seções.



Figura 1: Etapas referentes a um estudo de modelagem e simulação (FREITAS, 2008)

# 2. Formulação e análise do problema

De acordo com a proposta descrita acima, o problema que está sendo estudado é a simulação de um sistema de referências à memória com algoritmos diferentes de substituição de página, que são eles:

- LRU (Least Recently Used): O LRU é um algoritmo de substituição de página que apresenta um bom desempenho substituindo a página menos recentemente usada. Esta política foi definida baseada na seguinte observação: se a página está sendo intensamente referenciada pelas instruções é muito provável que ela seja novamente referenciada pelas instruções seguintes e, de modo oposto, aquelas que não foram acessadas nas últimas instruções também é provável que não sejam acessadas nas próximas (CASSETTARI, 2013).
- LFU (Least Frequently Used): O LFU (Least Frequently Used) escolhe a página que foi menos acessada dentre todas as que estão carregadas em memória. Para isso, é mantido um contador de acessos associado a cada página (hit) para que se possa realizar esta verificação. Esta informação é zerada cada vez que a página deixa a memória. (CASSETTARI, 2013).

Essa modelagem pretende alcançar os seguintes objetivos e testar as seguintes hipóteses:

## Objetivos

- → Avaliar os seguintes impactos:
  - Algoritmo de substituição de páginas
  - Tamanho da página
  - Velocidade do disco sobre o desempenho do sistema de gerenciamento de memória virtual por paginação em um nível
- → Obter estatísticas sobre o tempo em que os processos ficam bloqueados
- → Tempo médio de transferência de uma página e ainda sobre a taxa de ocupação da memória física.

## Hipóteses

#### Hipótese 1

**H**<sub>0</sub>: Tbloq LRU = Tbloq LFU **H**<sub>1</sub>: Tbloq LFU ≠ Tbloq LRU

#### Hipótese 2

**H**<sub>0</sub>: Tbloq p4KB ≥ Tbloq p16KB **H**<sub>4</sub>: Tbloq p4KB < Tbloq p16KB

\*Tbloq = Tempo médio que os processos ficam bloqueados pelo gerenciador de memória

\*p4KB = Páginas de tamanho de 4KB

\*p16KB = Páginas de tamanho de 16KB

# 3. Planejamento do projeto

Os recursos de hardware necessários para este projeto foram disponibilizados pela UFSC e pelos membros do grupo. Conforme orientado em aula, foi utilizado o software de simulação Arena sob a versão para estudantes, que está limitada a 150 entidades e 150 blocos. O projeto modelado utilizou poucos blocos e entidades, não sendo afetado pelas limitações desta versão do Arena.

Conforme podemos ver detalhadamente na etapa de projeto experimental final, foram simulados 8 cenários em total, correspondentes à combinação dos três seguintes fatores:

- Algoritmo de Substituição de páginas (LRU e LFU)
- Tamanho da página (4 KB e 16 KB)
- Taxa transf. disco/mem (500 ns / KB e 1 µs / KB)

# 4. Formulação do modelo conceitual

Nesta etapa do projeto, foi discutida como seria realizada a modelagem através das definições do enunciado, implementando as primeiras versões do projeto de simulação. Também nesta etapa foram levantadas as variáveis que seriam utilizadas para realizar a simulação. Conforme orientado em aula, optamos pela simulação discreta orientada a eventos.



Figura 2. Esboço geral do sistema. Fonte: elaboração própria.

A figura 2 mostra um esboço em alto nível do sistema modelado. As variáveis principais a serem modeladas são o tamanho das páginas e a velocidade de transferência do disco. Os dados de entrada estão disponíveis no arquivo "tempo\_entre\_referencias\_memoria\_ns.txt". Os resultados serão apresentados por meio dos arquivos .dat, que foram utilizados no output analyser para testar as hipóteses. Para avaliar a correlação dos fatores sobre a métrica de desempenho, foi utilizado o design expert.

# 5. Coleta de dados e macro-informações

Os dados necessários a serem coletados para o desenvolvimento deste projeto é o tempo entre referências à memória feita pelos processos. Esses dados já são fornecidos para estudo, conforme o arquivo

## Tratamento de dados coletados

A partir da análise dos dados de coleta que foram oferecidos pelo professor no arquivo "tempo\_entre\_referencias\_memoria\_ns.txt" por meio da ferramenta Input Analyzer, foi constatado que a melhor forma de distribuição cabível nos dados seria a distribuição triangular.

A distribuição triangular ocorre, principalmente, quando se desconhece a curva associada a uma variável aleatória, mas se tem boas estimativas dos seus limites: inferior (a) e superior (b), bem como de seu valor mais provável (m). Por exemplo, é conhecido o valor mínimo, mais provável e máximo associados ao tempo necessário para a realização de um teste de qualidade de um produto. Pelo fato de se estar estimando o comportamento de variáveis com uma informação a mais (o valor mais provável), implica, em geral, perspectivas de resultados mais aderentes à realidade do que aqueles com base apenas nos valores mínimo e máximo (com o emprego da distribuição uniforme) (FREITAS, 2018).



Figura 3. Distribuição utilizada: Distribuição triangular - TRIA(a=3, m=8.96, b=12).

Como podemos observar na figura 3, o Input Analyser encontrou uma distribuição triangular com limite inferior a=3, limite superior b=12 e valor mais provável m=8,96. O Input Analyser também fez dois testes de aderência: qui-quadrado e Kolmogorov-Smirnov; e obteve valores baixos para o p-value em ambos testes, portanto podemos dizer que esta distribuição representa bem os dados obtidos experimentalmente. Este fato também pode ser confirmado visualmente pela figura gerada pelo Arena.

# 6. Tradução do modelo

Durante esta fase, certas precauções foram tomadas com o objetivo de garantir a legibilidade do modelo. Os nomes das variáveis, blocos e estatísticas foram cuidadosamente escolhidos de forma a garantir a clareza dos diferentes componentes do modelo.

O desenvolvedor de um sistema operacional deseja avaliar o impacto de:

- A. Algoritmo de substituição de páginas;
- B. Tamanho da página;
- C. Velocidade do disco.

| Variab | le - Basic Process |                                                               |          |         |           |              |           |                |
|--------|--------------------|---------------------------------------------------------------|----------|---------|-----------|--------------|-----------|----------------|
|        | Name               | Comment                                                       | Rows     | Columns | Data Type | Clear Option | File Name | Initial Values |
| 1      | MemorySize         | Tamanho da memoria em bytes                                   |          |         | Real      | System       |           | 1 rows         |
| 2      | PageSize           | Tamanho da pagina em bytes                                    | İ        |         | Real      | System       |           | 1 rows         |
| 3      | Process.Count      | Numero de processos que existem atualmente                    | İ        |         | Real      | System       |           | 0 rows         |
| 4      | Process.MaxCount   | Numero maximo de processos a ser criado                       |          |         | Real      | System       |           | 1 rows         |
| 5 🕨    | TLB                | TLB dos processos, cada linha eh uma entrada e cada coluna eh | 6        | 2       | Real      | System       |           | 0 rows         |
| 6      | DiskTransferRate   | Taxa de transferencia do disco em ns/Kb                       | <u> </u> |         | Real      | System       |           | 1 rows         |
| 7      | TLB.I              | Indice para busca na TLB                                      | İ        |         | Real      | System       |           | 0 rows         |
| 8      | TLB.Min            | Indice da linha a ser removida da TLB                         | İ        |         | Real      | System       |           | 0 rows         |
| 9      | PageTable1         | Tabela de paginas do processo 1                               | 64       | 2       | Real      | System       |           | 0 rows         |
| 10     | PageTable2         | Tabela de paginas do processo 2                               | 64       | 2       | Real      | System       |           | 0 rows         |
| 11     | MainMemory         |                                                               | 64       | 2       | Real      | System       | İ         | 0 rows         |
| 12     | Mem.ToRemove       |                                                               | İ        |         | Real      | System       |           | 0 rows         |
| 13     | Mem.l              |                                                               | İ        |         | Real      | System       |           | 0 rows         |
| 14     | Mem.Usage          | O numero de paginas carregadas para a memoria principal       | İ        |         | Real      | System       |           | 1 rows         |
| 15     | BreakLoop          |                                                               | İ        |         | Real      | System       |           | 0 rows         |
| 16     | Suspend            |                                                               | İ        |         | Real      | System       |           | 0 rows         |
| 17     | TLB.Hits           |                                                               | İ        |         | Real      | System       |           | 0 rows         |

Figura 4. Variáveis do modelo de simulação no Arena.

Na figura 4, são apresentadas as variáveis do modelo de simulação traduzido para o Arena, inclusive com as variáveis que representam o tamanho de uma página (*PageSize*) e velocidade de transferência do disco (*DiskTransferRate*). O Algoritmo de paginação foi feito como dois arquivos de simulação separados, um para LRU e outro para LFU.

Sobre o desempenho do sistema de gerenciamento de memória virtual por paginação em um nível, que é medido como o **tempo médio de acesso a um dado referenciado** na memória. O desenvolvedor do sistema operacional deseja obter estatísticas sobre o tempo em que os processos ficaram bloqueados, o tempo médio de transferência de uma página e ainda sobre a taxa de ocupação da memória física.



Figura 5. Estatísticas coletadas pelo Arena.

Na figura 5, as estatísticas cadastradas para coleta no Arena.

Como conversado com o cliente, o tempo médio de transferência é considerado constante em cada cenário é dado pela fórmula abaixo:

$$T = R \times \frac{S}{1024}$$

Onde:

T : Tempo de transferência (em Nanosegundos)

R : Velocidade de transferência do disco (em ns/KB );

S: Tamanho da página (em Bytes).

O sistema é composto pelas referências a páginas virtuais (que contém os dados referenciados), que são parte dos endereços virtuais gerados pelos processos em execução.



Figura 6. Interação entre os componentes do sistema.

O mecanismo de hardware de memória virtual deve verificar se a referência está na TLB, na memória RAM ou no disco.



Figura 7. Acesso a memória modelado no Arena.

Se a memória física tiver todos seus frames alocados, então uma página física (frame) deve ser escolhida para ser removido da memória (frame vítima), conforme um algoritmo de substituição de páginas. A política de substituição de páginas é local. Se a página física tiver sido alterada, ela primeiro deve ser transferida inteiramente para o disco antes de receber a nova página virtual. Os algoritmos de substituição de páginas a serem avaliados são o LRU (*Least Recently Used*), que substitui a página referenciada a mais tempo no passado e o LFU (*Least Frequently Used*), que substitui a página menos frequentemente usada.



Figura 8. Primeira parte do algoritmo de substituição de páginas.



Figura 9. Segunda parte do algoritmo de substituição de páginas.

Há 2 processos executando. Cada processo em execução (não bloqueado) gera uma referência à memória apenas após sua última referência ter sido atendida, após um atraso que foi medido muitas vezes (em ns) e que está no arquivo "tempo\_entre\_referencias\_memoria\_ns.txt". 98% das referência a páginas virtuais são para a última página virtual referenciada pelo processo, e o restante para uma página virtual aleatória qualquer.

Como conversado com o cliente, a chance de uma referência ser para a última página acessada foi alterada para **75%**.



Figura 10. Loop do processo.

A quantidade de páginas virtuais depende do tamanho da página, sendo que os endereços virtuais possuem 16 bits. A memória física possui 256KB. As páginas podem variar de 4 KB a 16 KB (níveis mínimo e máximo).

Ele também gostaria de saber se pode afirmar, com 90% de certeza, que o tempo médio que processos ficam esperando (bloqueados) pelo gerenciador de memória é diferente para cada algoritmo avaliado, e se páginas de 4KB levam a menos tempo de bloqueio dos processos que páginas de 16KB. Essas afirmações serão verificadas em fases posteriores.

Simule esse sistema por **1 hora**, com tempo de aquecimento de **10%**. Como conversado com o cliente, a simulação por um tempo de 1 hora demanda muito poder computacional, portanto o tempo foi alterado para **0,25 segundos**, com tempo de aquecimento de **10%**.

# 7. Verificação e validação

De acordo com Freitas (2008), tanto a qualidade quanto a validade de um modelo de simulação estão diretamente relacionados com a proximidade entre os resultados do modelo e os do sistema real. A etapa de validação consiste em saber se o modelo se comporta de forma similar ao sistema real, e a etapa de verificação consiste em analisar se o modelo se comporta da maneira esperada, identificando e corrigindo eventuais erros no modelo.

Na etapa de verificação, o modelo foi depurado por meio do *debugger* do Arena utilizando *breakpoints*, e também executando a simulação passo a passo com animações, observando o caminho que cada entidade percorre, assim como observando a quantidade de entidades que passam por cada blocos e verificando se condiz com o esperado. A barra de *runtime elements*, que contém os atributos das entidades, também foi de grande auxílio para esta etapa.

A validação do sistema foi feita ao comparar o modelo produzido com a descrição do enunciado, tendo em vista que o sistema real proposto pelo enunciado não existe. Também foram consultados livros sobre organização de computadores (PATTERSON, 2010), para compreender corretamente o projeto a ser implementado.

# 8. Projeto experimental final

Nesta etapa do projeto é feito o planejamento dos cenários a serem cobertos pela modelagem do problema. Ao variar cada um dos três fatores considerados (algoritmo de substituição de páginas, tamanho da página e taxa de transferência), observando que cada um dos fatores pode assumir dois níveis, obtivemos 8 cenários que devem ser simulados, conforme ilustrado na tabela 1.

|                              | Cená              | irios                     |                   |
|------------------------------|-------------------|---------------------------|-------------------|
| Algoritmo de<br>Substituição | Tamanho da página | Taxa transf.<br>disco/mem | Número do cenário |
|                              | 4175              | 500 ns / KB               | 1                 |
| LRU                          | 4KB               | 1 μs / KB                 | 2                 |
|                              | ACKD              | 500 ns / KB               | 3                 |
|                              | 16KB              | 1 µs / KB                 | 4                 |
|                              | ALCE              | 500 ns / KB               | 5                 |
| LFU                          | 4KB               | 1 μs / KB                 | 6                 |
|                              | 4CKD              | 500 ns / KB               | 7                 |
|                              | 16KB              | 1 µs / KB                 | 8                 |

Tabela 1. Cenários a serem simulados.

Considerando que a quantidade de cenários é baixa ao variar um único fator por vez, são necessários poucos experimentos e, por tanto, é viável utilizar o projeto experimental simples. Pelo mesmo motivo, neste caso, não é necessário executar um projeto fatorial completo, fracionário ou utilizar outra técnica que permita reduzir a quantidade de experimentos.

# 9. Experimentação

Para cada um dos cenários foram obtidas 30 replicações, e com base nos resultados das mesmas, na próxima etapa poderá ser calculada a quantidade de replicações necessárias para satisfazer os objetivos com a precisão requerida.

#### Resultados obtidos:

## • Hipótese 1



Figura 11. Resultados obtidos através do output analyzer

A figura 11 representa os resultados a fim de obter conclusões sobre a Hipótese 1, ou seja, se o tempo médio que os processos ficam bloqueados pelo gerenciador de memória é diferente para os algoritmos LRU e LFU.

E com esses resultados pode-se concluir que o tempo médio que os processos ficam bloqueados é sim diferente para cada algoritmo de substituição de páginas, pois para o cenário onde o tamanho das páginas = 4KB e a taxa de transferência do disco é 1000ns/KB, rejeita-se com 90% de certeza a hipótese nula em que o tempo médio que

os processos ficam esperando (bloqueados) no caso do LRU é igual ao tempo médio dos processos que os processos ficam esperando (bloqueados) no caso do LFU.

Para os demais casos (págs. 4KB e taxa transf. 500ns; págs. 16KB e taxa transf. 500us; pág. 16KB e taxa transf. 1000ns) não foi possível rejeitar a hipótese nula, e portanto aceita-se a hipótese nula de que o tempo médio que os processos ficam esperando (bloqueados) sob a influência dos dois diferentes algoritmos de substituição de página é igual. Entretanto, como para o cenário págs. 4KB e taxa transf. 1000ns, aceitamos a hipótese alternativa, podemos afirmar, com 90% de certeza, que o tempo médio que processos ficam esperando (bloqueados) pelo gerenciador de memória é diferente para cada algoritmo avaliado.

## • Hipótese 2



Figura 12 - Resultados obtidos através do output analyzer

Na figura 12 pode-se observar os resultados para a seguinte hipótese: se o tempo de bloqueio para páginas de tamanho de 4KB é menor que o tempo de bloqueio para páginas de tamanho de 16KB. De acordo com tais observações, pode-se concluir que o tempo de bloqueio de processos com páginas de tamanho 4KB e 16KB são diferentes em todos os cenários (conforme descritos na tabela 1). Portanto, conforme as figuras acima pode-se rejeitar a hipótese nula para esta questão, ou seja, aceitamos a hipótese alternativa de que o tempo de bloqueio de processos com páginas de tamanho de 4KB é menor que o tempo de bloqueio de processos com páginas de tamanho 16KB.

Portanto, com a comparação das médias através dos cenários nas figuras abaixo, conclui-se que ambos algoritmos (LRU e LFU) com páginas de tamanho 4KB é melhor, ou seja mais rápido, que páginas com tamanho de 16KB.

Cenário 1 - LRU - Páginas 4KB e Taxa Transferência do Disco 500ns

| IDENTIFIER  | AVERAGE  | STANDARD<br>DEVIATION | 0.900 C.I.<br>HALF-WIDTH | MINIMUM<br>VALUE | MAXIMUM<br>VALUE | NUMBER<br>OF OBS. |
|-------------|----------|-----------------------|--------------------------|------------------|------------------|-------------------|
| BlockedTime | 2.2e-006 | 1.58e-009             |                          | 2.2e-006         | 2.2e-006         | 30                |

Cenário 2 - LRU - Páginas 4KB e Taxa Transferência do Disco 1000ns

| IDENTIFIER  | AVERAGE  | STANDARD | 0.900 C.I. | MINIMUM<br>VALUE | MAXIMUM<br>VALUE | NUMBER<br>OF OBS. |
|-------------|----------|----------|------------|------------------|------------------|-------------------|
| BlockedTime | 4.4e-006 |          | 1.44e-009  | 177777           |                  | 30                |

Cenário 3 - LRU - Páginas 16KB e Taxa Transferência do Disco 500ns

|             | Classical C.I. | Intervals | Summary    |           |           |         |
|-------------|----------------|-----------|------------|-----------|-----------|---------|
| IDENTIFIER  | AVERAGE        | STANDARD  | 0.900 C.I. | MINIMUM   | MAXIMUM   | NUMBER  |
|             |                | DEVIATION | HALF-WIDTH | VALUE     | VALUE     | OF OBS. |
| BlockedTime | 8.8e-006       | 1.53e-008 | 4.74e-009  | 8.77e-006 | 8.84e-006 | 30      |

## Cenário 4 - LRU - Páginas 16KB e Taxa Transferência do Disco 1000ns

|             | Classical C.I. | Intervals             | Summary                  |                  |                  |                   |
|-------------|----------------|-----------------------|--------------------------|------------------|------------------|-------------------|
| IDENTIFIER  | AVERAGE        | STANDARD<br>DEVIATION | 0.900 C.I.<br>HALF-WIDTH | MINIMUM<br>VALUE | MAXIMUM<br>VALUE | NUMBER<br>OF OBS. |
| BlockedTime | 1.76e-005      | 3.94e-008             | 1.22e-008                | 1.75e-005        | 1.77e-005        | 30                |

## Cenário 5 - LFU - Páginas 4KB e Taxa Transferência do Disco 500ns

|             | Classical C.I. | Intervals | Summary    |           |          |         |
|-------------|----------------|-----------|------------|-----------|----------|---------|
| IDENTIFIER  | AVERAGE        | STANDARD  | 0.900 C.I. | MINIMUM   | MAXIMUM  | NUMBER  |
|             |                | DEVIATION | HALF-WIDTH | VALUE     | VALUE    | OF OBS. |
| BlockedTime | 2.2e-006       | 2.53e-009 | 7.85e-010  | 2.19e-006 | 2.2e-006 | 30      |

## Cenário 6 - LFU - Páginas 4KB e Taxa Transferência do Disco 1000ns

|             | Classical C.I. | Intervals             | Summary                  |                  |                  |                   |
|-------------|----------------|-----------------------|--------------------------|------------------|------------------|-------------------|
| IDENTIFIER  | AVERAGE        | STANDARD<br>DEVIATION | 0.900 C.I.<br>HALF-WIDTH | MINIMUM<br>VALUE | MAXIMUM<br>VALUE | NUMBER<br>OF OBS. |
| BlockedTime | 4.4e-006       | 6.23e-009             | 1.93e-009                | 4.39e-006        | 4.41e-006        | 30                |

## Cenário 7 - LFU - Páginas 16KB e Taxa Transferência do Disco 500ns

| IDENTIFIER  | AVERAGE  | STANDARD  | 0.900 C.I. | MINIMUM   | MAXIMUM   | NUMBER  |
|-------------|----------|-----------|------------|-----------|-----------|---------|
|             |          | DEVIATION | HALF-WIDTH | VALUE     | VALUE     | OF OBS. |
| BlockedTime | 8.8e-006 | 1.6e-008  | 4.96e-009  | 8.77e-006 | 8.84e-006 | 30      |

### Cenário 8 - LFU - Páginas 16KB e Taxa Transferência do Disco 1000ns

| BlockedTime 1.76e-005 4.37e-008 1.36e-008 1.75e-005 1.77e-005 | WIDTH VALUE VALUE OF OBS.    |
|---------------------------------------------------------------|------------------------------|
| 21.00 000 11010 000 21000 000 211100 000                      | e-008 1.75e-005 1.77e-005 30 |

# 10. Interpretação e análise dos resultados

Ao medir a taxa de ocupação da memória física, observamos que os algoritmos de substituição de páginas utilizados mantêm a memória sempre 100% ocupada, pois as páginas somente são removidas quando são substituídas por outras, pela natureza destes algoritmos. O tempo de *warmup* requerido no enunciado foi suficiente, e inclusive poderia ser menor. Este sistema foi considerado como terminal.

## Replicações

A fim de calcular o número de replicações necessárias foi testado com o cenário 1, descrito na tabela 1. Inicialmente com 10 replicações, com 30, e com 60. Procuramos diferenças entre as médias e variâncias para as métricas calculadas nestes cenários e concluímos que o melhor número de replicações sería 30.

Para cálculo de replicações a fórmula utilizada foi a seguinte:

$$n \ge (t crit^2 * S^2) / E^2$$

Que resultou em n = 0,00208. Consideramos então as diferenças como explicado anteriormente.

# 11. Comparação e identificação das melhores soluções

Para encontrar a melhor solução, os oito cenários foram comparados entre si. A principal métrica para escolher a melhor alternativa é o tempo médio de acesso a memória, onde quanto menor o nível deste fator, melhor é o cenário relacionado. Estes resultados são avaliados sob um nível de significância de 90%, conforme especificado no enunciado.

Tempo médio de acesso a memória = +1.629E-007

+3.750E-008 \* A

-6.863E-008 \* B

-1.140E-007 \* C

-3.563E-008 \* A \* B

-5.068E-008 \* A \* C

+7.405E-008 \* B \* C

+1.170E-008 \* A \* B \* C

#### Onde:

- A. Velocidade do disco;
- B. Tamanho de página;
- C. Algoritmo de substituição de páginas.

## Sendo que no algoritmo LRU a equação é:

Tempo médio de acesso a memória =

+1.34667E-008

+6.68200E-010 \* Velocidade do disco

-1.16667E-010 \* Tamanho da página

-3.15500E-011 \* Velocidade do disco \* Tamanho da página

#### No algorítmo LFU é:

Tempo médio de acesso a memória =

-4.02667E-008

+1.06800E-010 \* Velocidade do disco

+1.28667E-008 \* Tamanho da página

-1.59500E-011 \* Velocidade do disco \* Tamanho da página

# 12. Documentação

Para a documentação de este projeto, foi confeccionado o presente relatório. Também procurou-se documentar de forma breve e clara o modelo nos arquivos do Arena.

# 13. Apresentação dos resultados e implementação

Através dos resultados obtidos (especificados na seção 10 de interpretação e análise de resultados) foi possível chegar às conclusões sobre os objetivos especificados na formulação do problema.

De acordo com Hasslinger (2018), em média, o algoritmo LFU é mais eficiente; porém, é necessário destacar que a eficiência relativa dos algoritmos LFU e LRU é altamente dependente do programa em execução e de outros parâmetros, como quantidade de memória, velocidade do disco e outros.

Por meio da simulação, chegamos às mesmas conclusões que Hasslinger: encontramos que o tempo de espera entre os dois algoritmos avaliados é diferente, conforme esperado na teoria; e encontramos também que páginas de 4KB levam menos tempo de bloqueio dos processos que páginas de 16KB, conforme esperado teoricamente.

# 14. Referências bibliográficas

**FREITAS** FILHO, P. J. Introdução à Modelagem e Simulação de Sistemas, 2ª Ed, Visual Books, 2008

**PATTERSON**, DAVID A; HENNESSY, JOHN L.; Computer Organization and Design: The Hardware/Software Interface. 4rd edition, Morgan Kaufmann Publishers, San Francisco, California, USA, 2010.

**CASSETTARI**, H. H. Análise da Localidade de Programas e Desenvolvimento de Algoritmos Adaptativos para Substituição de Páginas. Qualificação de Mestrado. Escola Politécnica da Universidade de São Paulo. Departamento de Engenharia de Computação e Sistemas Digitais. 2003.

HASSLINGER, GERHARD; HEIKKINEN, JUHO; NTOUGIAS, KONSTANTINOS; HASSLINGER, FRANK; HOHLFELD, OLIVER. Optimum Caching versus LRU and LFU: Comparison and Combined Limited Look-Ahead Strategies. Shanghai, China. 24 de maio de 2018. INSPEC Accession Number: 17789104. DOI: 10.23919/WIOPT.2018.8362880, Publisher: IEEE. Disponível em <a href="https://ieeexplore.ieee.org/document/8362880/">https://ieeexplore.ieee.org/document/8362880/</a>>. Acesso em 9 de junho de 2019, 18:24:17.