ECE111|Digital Circuits Dr. Vish Visweswaran Lab_4:

Student Name : Shivam Agarwal

Roll No. : 2020123 Date : 12/2/2021

Aim 1: Design a 2x1 MUX using basic GATES

Components/ICs Use: 1 power supply, 3 slide switches, 4 resistors (1kohm), 4 LED, 1 Quad AND gate, 1 Quad OR gate, 1 Hex Inverter

Circuit Diagram:

Link of TINKERCAD Workspace:

https://www.tinkercad.com/things/ctkA3LWDZD6-brilliant-robo-luulia/editel ?sharecode=0quTkyTYoGmWxaN3XofEWB1Q-j_jA438nA_DbAtL4N8

Truth Table:

S Output

0	iO
1	i1

Logic circuit diagram:

Observations/Results:

When the value of s is 0 the i0 is given as output however when s is 1 then i1 is given as output.

Applications of the 2x1 MUX

- 1) It is used to connect 2 data lines to the output and send only one of them on the basis of selection signal
- 2) Can be used to create higher degree mux like 4x1 MUX by using several 2x1 MUX together

Aim 2: Design a 4x1 MUX using basic GATES

Components/ICs Use: 1 power supply, 6 slide switches, 7 resistors (1kohm), 7 LED, 2 Triple AND gate, 1 Quad OR gate, 1 Hex Inverter

Circuit Diagram:

Link of TINKERCAD Workspace:

https://www.tinkercad.com/things/9m6lJPFm3NB-copy-of-2x1-mux/editel?sharecode=9SBCct6NFtACRkoM72fZVXxD-c62BQK7uVKbSUYfm2U

Truth Table:

s1	s0	Output	
0	0	i0	
0	1	i1	
1	0	i2	
1	1	i3	

Logic circuit diagram:

Observations/Results:

From the given experiment we can prove that :

$$F = s1'.s0'.i0 + s1'.s0.i1 + s1.s0'.i2 + s1.s0.i3$$

Applications of the 4x1 MUX

- 1) It is used to to give a single output from 4 input lines based on the selection signal
- 2) It is a good method for data routing

Aim 3: Design a 8x1 MUX using basic GATES

Components/ICs Use: 1 power supply, 11 slide switches, 12 resistors (1kohm), 12 LED, 4 dual AND gate, 2 Quad OR gate, 1 Hex Inverter

Circuit Diagram:

Link of TINKERCAD Workspace:

https://www.tinkercad.com/things/0jprE5VafuR-copy-of-4x1-mux/editel?sharecode=Uh16yMK133q-e5DPvC8DrmJOLMD4U8853gcR5JPnNV4

Truth Table:

s2	s1	s0	Output
0	0	0	i0
0	0	1	i1
0	1	0	i2
0	1	1	i3
1	0	0	i4
1	0	1	i5
1	1	0	i6
1	1	1	i7

Logic circuit diagram:

Observations/Results:

From the given experiment we can prove that :

Applications of the 8x1 MUX

- 1) It is used to to give a single output from 8 input lines based on the selection signal
- 2) It is useful in parallel data transmission