Package 'RMacoqui'

July 20, 2015

Type rackage	
Title Identifying and describing chorotypes based on similarity between species distributions	
Version 1.0	
Date 2015-07-04	
Author Jesus Olivero, Ramon Hidalgo, Ana L. Marquez, A. Marcia Barbosa, Raimundo Real	
Maintainer Ramon Hidalgo <ramon@uma.es></ramon@uma.es>	
Description RMacoqui develops a probability procedure for the identification of chorotypes, i.e. distribution patterns shared by a group of species, which can be operatively identified within an area.	
License GPL-2	
R topics documented:	
RMacoqui-package	2
* * *	4
	4
	6
	7
	8
simil	0
ver.matRmacoqui	
Index 1	4

2 RMacoqui-package

RMacoqui-package

Identifying and describing chorotypes based on species distributions

Description

RMacoqui develops a probability procedure for the identification of chorotypes, i.e. distribution patterns shared by a group of species, which can be operatively identified within an area (Baroni-Urbani et al., 1978). This method was first published by M<e1>rquez et al. (1997), based on a prior proposal for detecting biogeographic boundaries (Real et al., 1992), and with a mathematic rationale derived from McCoy et al. (1986). The method for chorotype identification was later enhanced by Mu<f1>oz et al. (2003) and Real et al. (2008), and was updated and contextualized under a fuzzy logic framework by Olivero et al. (2011). RMacoqui outputs are also useful as the basis for delimiting biogeographic regions and transition zones with the support of the fuzzy logic (Olivero et al. 2013).

Details

Package: RMacoqui Type: Package Version: 1.0

Date: 2014-04-04 License: GPL-2

Author(s)

Jesus Olivero, Ramon Hidalgo, Ana L. Marquez, A. Marcia Barbosa, Raimundo Real

Maintainer: Ramon Hidalgo <ramon@uma.es>

References

Baroni-Urbani C., Rufo S., Vigna-Taglianti A. (1978) Materiali per una biogeografia italiana fondata su alcuni generi di Coleotteri, Cicindelidi, Carabidi e Crisomelidi. Estratto della Memorie della Societa Entomologica Italiana 56:35-92.

Marquez A.L., Real R., Vargas J.M., Salvo A.E. (1997) On identifying common distribution patterns and their causal factors: a probabilistic method applied to pteridophytes in the Iberian Peninsula. Journal of Biogeography 24:613-631.

McCoy E.D., Bell S.S., Waters K. (1986) Identifying biotic boundaries along environmental gradients. Ecology 67:749-759.

Munoz A.R., Real R., Olivero J., Marquez A.L., Guerrero J.C., Barcena S.B., Vargas J.M. (2003) Biogeographical zonation of African hornbills and their biotic and geographic characterisations. Ostrich 74:39-47.

RMacoqui-package 3

Olivero J., M<e1>rquez A.L., Real R. (2013) Integrating fuzzy logic and statistics to improve the reliable delimitation of biogeographic regions and transition zones. Systematic Biology 62:1-21.

Olivero J., Real R., M<e1>rquez A.L. (2011) Fuzzy chorotypes as a conceptual tool to improve insight into biogeographic patterns. Systematic Biology 60:645-660.

Real R., Olivero J., Vargas J.M. (2008) Using chorotypes to deconstruct biogeographical and biodiversity patterns: the case of breeding waterbirds in Europe. Global Ecology and Biogeography 17:735-746.

Real R., Vargas J.M., Guerrero J.C. (1992) Analisis biogeografico de clasificación de areas y especies. Monograf<ed>as de Herpetologia 2:73-84.

```
## EXAMPLE 1: Basic usage of function macoqui
## If the data set is a presences/absences matrix:
data(amphib)
macoquires <- macoqui(amphib)</pre>
## If the data set is a similarity matrix:
data(simil)
macoquires <- macoqui(simil, nloc=273, isprox=1, vmax=0.553, vmin=0.445)
## Friendly 'macoqui' output:
ver.matRmacoqui(macoquires)
## EXAMPLE 2: Basic usage of function locCorot
## Parameters for chorotype mapping (only available if 'data' is a presences/absences matrix),
## and friendly output:
data(amphib)
macoquires <- macoqui(amphib)</pre>
locs <- locCorot(macoquires)</pre>
ver.matRmacoqui(locs)
## EXAMPLE 3: Basic usage of function fuzzy.Clusters
## Fuzzy-logic analysis of clusters selected by the researcher, and friendly output:
data(amphib)
macoquires <- macoqui(amphib)</pre>
grupos <- c(12,1,12,2,13,1,13,2,15,1,10,1,10,2,17,2)
fuzzyres <- fuzzy.Clusters(macoquires, grupos)</pre>
ver.matRmacoqui(fuzzyres)
```

4 fuzzy.Clusters

```
## EXAMPLE 4: Basic usage of function locCorotGrupos
##
## Parameters for cluster mapping, and friendly output:
data(amphib)
macoquires <- macoqui(amphib)
grupos <- c(12,1,12,2,13,1,13,2,15,1,10,1,10,2,17,2)
fuzzyres <- fuzzy.Clusters(macoquires, grupos)
fuzzylocs <- locCorotGrupos(fuzzyres, grupos)
ver.matRmacoqui(fuzzylocs)</pre>
```

amphib

Amphibian presence/absence data

Usage

```
data("amphib")
```

Format

A data frame with 273 rows (localities) and 18 columns (amphibian species), with values representing their presence (1) or absence (0).

Examples

```
data(amphib)
head(amphib)
```

fuzzy.Clusters

Fuzzy-logic analysis of dendrogram clusters selected by the researcher

Description

This function provides fuzzy-logic descriptions and inter-relationships for all clusters in the dendrogram on which the analyst wishes to put the focus.

Usage

```
fuzzy.Clusters(macoquires, grupos)
```

Arguments

macoquires object resulting from function macoqui

grupos dendrogram clusters -identified by the analyst- on which the analysis is focused

fuzzy.Clusters 5

Details

Before applying fuzzy. Clusters, macoqui must be run, and outputs must be stored as object 'macoquires'.

```
grupos <- c(n, b, ...), where:
```

n dendrogram-node number (as in the dendrogram plot) b node-branch corresponding to the cluster (1 if left, 2 if right) ... idem for all clusters to be analized

Value

This function returns a list of 9 elements, some of which are shown in the console:

ngrupos the input number of analysed groups

grupos the input groups object

desGrupos a description of the input groups, including their node and branch

elementosGrupos1

elementosGrupos2

ldifusaGrupos parameters to compute cluster fuzzy entropy, fuzzy union of clusters, and fuzzy

intersection between clusters

mcardinales cardinals of fuzzy unions between clusters (top-right semi-matrix), and of fuzzy

intersections between clusters (bottom-left semi-matrix)

mentropia cluster fuzzy parameters (cardinal, entropy, height) and number of species in the

cluster; fuzzy inclusion of the cluster in other clusters; fuzzy overlap between

clusters

datos the input species dataset

Author(s)

Jesus Olivero, Ramon Hidalgo, Ana L. Marquez, A. Marcia Barbosa, Raimundo Real

See Also

```
macoqui, locCorotGrupos, ver.matRmacoqui
```

```
data(amphib)
macoquires <- macoqui(amphib)
grupos <- c(12,1,12,2,13,1,13,2,15,1,10,1,10,2,17,2)
fuzzyres <- fuzzy.Clusters(macoquires, grupos)</pre>
```

6 locCorot

locCorot

Parameters for chorotype mapping

Description

This function provides ways for chorotype mapping. For each locality (rows in data), values of four parameters are given. Pi: Presence of chorotype i (presence/absence of at least one species of the chorotypical cluster); SRi: Species Richness of chorotype i (number of species of the chorotypical cluster); MMDi: Maximum Membership Degree-of any species-in chorotype i (fuzzy version of Pi); FSRi: Fuzzy Species Richness (fuzzy version of SRi, i.e sum of all species' degrees of membership in chorotype i).

Usage

locCorot(macoquires)

Arguments

macoquires

object resulting from function macoqui

Details

Before applying locCorot, macoqui must be run, and outputs stored as object 'macoquires'.

For locCorot to be run, function macoqui must be executed with a presences/absences data set.

Value

This function returns (invisibly) the macoquires input list with one added element, which is also shown in the console:

locCorotipos

locality identification (correlative numbers starting in 1 are given to lines in data); Pi, SRi, MMDi and FSRi values of every chorotype i in each locality

Note

This function can take some computing time.

Author(s)

Jesus Olivero, Ramon Hidalgo, Ana L. Marquez, A. Marcia Barbosa, Raimundo Real

See Also

macoqui, ver.matRmacoqui

locCorotGrupos 7

Examples

```
data(amphib)
macoquires <- macoqui(amphib)
locs <- locCorot(macoquires)</pre>
```

locCorotGrupos

Parameters for cluster mapping

Description

This function provides ways for cluster mapping. For each locality (lines in data), values of four parameters are given. Pi: Presence of the cluster i (presence/absence of at least one species of the cluster); SRi: Species Richness of the cluster i (number of species of the cluster); MMDi: Maximum Membership Degree-of any species-in the cluster i (fuzzy version of Pi); FSRi: Fuzzy Species Richness (fuzzy version of SRi, i.e sum of all species' degree of membership in the cluster i).

Usage

```
locCorotGrupos(fuzzyres, grupos)
```

Arguments

fuzzyres object resulting from function fuzzy. Clusters

grupos dendrogram clusters-identified by the analyst-on which the analysis is focused

(see fuzzy.Clusters)

Details

Before applying locCorotGrupos, fuzzy.Clusters must be run, and outputs stored as object fuzzyres.

Function locCorotGrupos currently only works if fuzzy. Clusters was run with an object (macoquires) which resulted from executing macoqui with a presences/absences data set.

Value

This function returns the input list (invisibly), with one added element which is also shown in the console:

locality identification (correlative numbers starting in 1 are given to rows in

data); Pi, SRi, MMDi and FSRi values of every cluster i in each locality

Note

This function can take some computing time for large data sets.

8 macoqui

Author(s)

Jesus Olivero, Ramon Hidalgo, Ana L. Marquez, A. Marcia Barbosa, Raimundo Real

See Also

```
fuzzy.Clusters, ver.matRmacoqui
```

Examples

```
data(amphib)
macoquires <- macoqui(amphib)
grupos <- c(12,1,12,2,13,1,13,2,15,1,10,1,10,2,17,2)
fuzzyres <- fuzzy.Clusters(macoquires, grupos)
fuzzylocs <- locCorotGrupos(fuzzyres, grupos)</pre>
```

macoqui

Identify and describe chorotypes

Description

A chorotype is a distribution pattern, shared by a group of species, which can be operatively identified within an area (Baroni-Urbani et al., 1978). The function 'macoqui' provides a set of outputs for the detection and description of chorotypes, based on similarities between species distributions. The most important outputs are: (1) a dendrogram showing a classification of species according to distribution similarities; (2) a 'chorotype report' that identifies chorotypical clusters (i.e. groups of species shaping each chorotype) with branches of the dendrogram. Other outputs describe chorotypes as fuzzy sets, and show the fuzzy relationships between all chorotypes.

Usage

```
macoqui(datos, lang = "en", isprox = 0, nloc = 0, vmax = 0, vmin = 0)
```

Arguments

datos	a matrix of data, which can be either presences/absences or similarities
lang	lang="en" provides outputs with labels in English language (default option); lang="es" provides outputs with labels in Spanish language
isprox	isprox=1 if data is a similarity (or proximity) matrix, and isprox=0 if data is a presence/absence matrix (isprox=0 by default)
nloc	number of localities considered for computing similarity (only required if is-prox=1; otherwise nloc=0, which is the default value)
vmax	critical value above which similarity is significant (required if isprox=1, it can be specified if isprox=0 as well; by default, vmax automatically chooses critical values for the Baroni-Urbani & Buser index)
vmin	critical value below which dissimilarity is significant (required if isprox=1, it can be specified if isprox=0 as well; by default, vmin automatically chooses critical values for the Baroni-Urbani & Buser index)

macoqui 9

Details

The 'data' set is, by default, a matrix of presences (1) and absences (0) of species (columns) in localities (rows). In this version, headers are only admitted in columns, and empty columns produce a function error. By default, 'macoqui' uses the Baroni-Urbani & Buser (1976) index to calculate similarities between distributions, and automatically estimates significant similarities (+) and differences (-), according to the table of critical values (vmax and vmin) of this index. For other indices, it is necessary to provide a similarity matrix (isprox=1), and values for nloc, vmax and vmin.

Value

This function returns a list of 30 elements, some of which are returned invisibly and some of which are also shown in the console:

nvar number of species (number of columns in data)

nval number of localities (number of rows in data, excluding header)

extremos list of the 2 critical values, vmax and vmin

metodo similarity index employed: Baroni-Urbani & Buser mprox similarity matrix, columns arranged as in data

mproxOrdc similarity matrix, columns arranged as in the dendrogram

msignosC significant similarity matrix; significant similarities represented as '+', signifi-

cant dissimilarities represented as '-'

dend a dendrogram in which species distributions are classified

macdatos similarity values of each dendrogram node, and intermediate parameters for

chorotype search

macres Macoqui parameters for chorotype search in each dendrogram node

ncor number of chorotypes identified

CorElementos chorotype composition: species (numbered as arranged in data) and the chorotype

of which they are chorotypical clusters (0 means "species not classified within any chorotype"); degree of membership of every species in each chorotype, as

defined by fuzzy logic

desCorotipos chorotype location in the dendrogram

ldifusa parameters to compute chorotype fuzzy entropy, fuzzy union between chorotypes,

and fuzzy intersection between chorotypes

mcardinales cardinals of fuzzy unions between chorotypes (top-right semi-matrix), and of

fuzzy intersections between chorotypes (bottom-left semi-matrix)

mentropia chorotype fuzzy parameters (cardinal, entropy, height) and number of species

in the chorotypical cluster; fuzzy inclusion of chorotypes in other chorotypes;

fuzzy overlap between chorotypes

isprox the input isprox value

datos a data frame with the input data

Another output provided is a plot of the dendrogram in which species distributions are classified where nodes are identified with numbers, for interpretation of the elements macdatos, macres and desCorotipos.

10 simil

Author(s)

Jesus Olivero, Ramon Hidalgo, Ana L. Marquez, A. Marcia Barbosa, Raimundo Real

References

Baroni-Urbani C., Buser M.W. (1976) Similarity of binary data. Systematic Zoology 25:251-259.

Baroni-Urbani C., Rufo S., Vigna-Taglianti A. (1978) Materiali per una biogeografia italiana fondata su alcuni generi di Coleotteri, Cicindelidi, Carabidi e Crisomelidi. Estratto della Memorie della Societa Entomologica Italiana 56:35-92.

See Also

```
ver.matRmacoqui
```

Examples

```
## If the data set is a presences/absences matrix:

data(amphib)
macoquires <- macoqui(amphib)
macoquires

## If the data set is a similarity matrix:

data(simil)
macoquires <- macoqui(simil, nloc=273, isprox=1, vmax=0.553, vmin=0.445)
macoquires</pre>
```

simil

Similarity matrix among amphibian presence/absence patterns

Usage

```
data("simil")
```

Format

A data frame with the similarity values among the presence/absence patterns of the 18 species of amphibians included in amphib.

```
data(simil)
```

ver.matRmacoqui 11

ver.matRmacoqui

Friendly visualization of RMacoqui outputs

Description

This function allows a user-friendly visualization of objects resulting from functions macoqui, codelocCorot, fuzzy.Clusters and locCorotGrupos. The results listed in these objects are visualized as tables, and are easily exportable as .txt files.

Usage

```
ver.matRmacoqui(x)
```

Arguments

x object resulting from function macoqui or from function fuzzy.Clusters.

Value

The returned output is a Tcl/Tk interface (which appears in a separate window) with a menu of links.

The following links are provided in the menu after ver.matRmacoqui(macoquires):

Similarity Initial Order

Similarity Cluster Order

Significant Similarity

Intermediate MACOQUI Parameters

MACOQUI Parameters

Chorotype Report

Degree of Membership in Chorotypes

Intermediate Fuzzy Parameters

Cardinality Intersection-Union between Chorotypes

Fuzzy Parameters

Chorotypes in Localities

The following links are provided in the menu after ver.matRmacoqui(fuzzyres):

12 ver.matRmacoqui

```
Cluster Description

Species Presences in Clusters

Degree of Membership in Clusters

Intermediate Fuzzy Parameters

Cardinality Intersection-Union between Clusters

Fuzzy Parameters

Clusters in Localities
```

Note

Before running ver.matRmacoqui, the tcltk package must be installed and loaded.

Author(s)

Jesus Olivero, Ramon Hidalgo, Ana L. Marquez, A. Marcia Barbosa, Raimundo Real

See Also

```
macoqui, locCorot, fuzzy.Clusters, locCorotGrupos
```

```
## ver.matRmacoqui for 'macoqui', not including link to 'Chorotypes in Localities':

data(amphib)
macoquires <- macoqui(amphib)
ver.matRmacoqui for 'macoqui', including link to 'Chorotypes in Localities':

data(amphib)
macoquires <- macoqui(amphib)
locs <- locCorot(macoquires)
ver.matRmacoqui(locs)

## ver.matRmacoqui for 'fuzzy.Clusters', not including link to 'Chorotypes in Localities':

data(amphib)
macoquires <- macoqui(amphib)
grupos <- c(12,1,12,2,13,1,13,2,15,1,10,1,10,2,17,2)
fuzzyres <- fuzzy.Clusters(macoquires, grupos)
ver.matRmacoqui(fuzzyres)</pre>
```

ver.matRmacoqui 13

```
## ver.matRmacoqui for 'fuzzy.Clusters', including link to 'Chorotypes in Localities':
data(amphib)
macoquires <- macoqui(amphib)
grupos <- c(12,1,12,2,13,1,13,2,15,1,10,1,10,2,17,2)
fuzzyres <- fuzzy.Clusters(macoquires, grupos)
fuzzylocs <- locCorotGrupos(fuzzyres, grupos)
ver.matRmacoqui(fuzzylocs)</pre>
```

Index

```
*Topic \textasciitildekwd1
    macoqui, 8
*Topic \textasciitildekwd2
    macoqui, 8
*Topic datasets
    amphib, 4
    simil, 10
*Topic package
    RMacoqui-package, 2
amphib, 4, 10
fuzzy.Clusters, 4, 7, 8, 11, 12
locCorot, 6, 11, 12
locCorotGrupos, 5, 7, 11, 12
macoqui, 4-7, 8, 11, 12
RMacoqui (RMacoqui-package), 2
RMacoqui-package, 2
simil, 10
ver.matRmacoqui, 5, 6, 8, 10, 11
```