概率论与数理统计A

(对)

(错)

上海大学 2014~2015 学年冬季学期试卷(A卷)

成绩

课程名: <u>概率论与数理统计</u>课程号: <u>23014030</u>学分: <u>5</u>

我保证遵守《上海大学学生手册》中的《上海大学考场规则》,如有考试违纪、作弊行为,愿意接受《上海大学学生考试违纪、作弊行为界定及处分规定》的纪律处分。

1						
ĺ	题号	_	=	三	四	五
	得分	10	15	10	60	5

得分	评卷人		日子上田田	(年1月50八	5 晒井 10 八\
;		一、	是非趣:	(每小题2分,	5 题共 10 分)

- 1、概率不为零的独立事件 A 与 B 一定不是互不相容的。
- $\mathbf{2}$ 、如果 X 和 Y 都服从正态分布,那么 X+Y 也一定服从正态分布。 (错)
- 3、若事件 A 发生了,则必有 P(A) > 0。
- 4、设 $X_1,...,X_n$ 是来自总体 $X \sim N(\mu,\sigma^2)$ 的简单样本,则统计量 $\overline{X} = \frac{1}{n}\sum_{i=1}^n X_i$ 和

$$\sum_{i=1}^{n} (X_i - \bar{X})^2$$
不独立。 (错)

5、设 $\hat{\theta}$ 为参数 θ 的无偏估计,且 $\hat{\theta}^2$ 是参数 θ^2 的无偏估计。则 $D(\hat{\theta})=0$ 。 (对)

得分	评卷人		1-1-2-100	(=# a /\	H 15 // \
		Ξ,	填空趣:	(每格3分,	共13分)

- 6、设事件 $A \cap B$ 的概率为 P(A) = 0.7, P(B) = 0.5, 则 P(AB) 的取值范围是 [0.2, 0.5]。
- 7、自动包装食盐,每 500g 一袋。已知标准差为 $\sigma=3g$,要使每包食盐平均重量的 95% 置信区间长度不超过 4.2g ,则样本容量 n 至少为 8 。
- 8、有标号为1-n的n个盒子,每个盒子中有a个白球,b个黑球。现从第一个盒子中取一个球放入第二个盒子,再从第二个盒子取一球放入第三个盒子,依次继续,则从最后
- 一个盒子中取到白球的概率为 $\frac{a}{a+b}$ 。
- 9、设 X_1,X_2 为来自总体X的一个简单随机样本, $E(X)=\mu$,D(X)>0。若 aX_1+bX_2 为 μ 的最佳无偏估计,那么a= $\frac{1}{2}$,b= $\frac{1}{2}$ 。

得分 评卷人

三、选择题: (每小题 2 分, 5 题共 10 分)

- 10、(X,Y)为二维随机变量,与Cov(X,Y)=0不等价的是 D 。
- (A) E(XY) = E(X)E(Y):
- **(B)** D(X+Y) = D(X) + D(Y);
- (C) D(X-Y) = D(X) + D(Y); (D) X = Y相互独立。
- 11、随机变量 $X \sim F(n,m)$,即服从 F 分布。对 $0 < \alpha < 1$,不一定成立的是 C 。
- (A) $\frac{1}{V} \sim F(m,n)$;

- (B) $F_{0.5}(m,m) = F_{0.5}(n,n)$;
- (C) $F_{\alpha}(m,n) + F_{1-\alpha}(n,m) = 1$; (D) $F_{\alpha}(m,n) = \frac{1}{F_{\alpha}(m,m)}$.
- 12、设总体 $X \sim N(\mu, \sigma^2)$, 其中 μ 已知, 而 σ^2 为未知参数。 X, \dots, X 是来自于总体 X 简单样本,样本均值为 \overline{X} ,样本方差为 S^2 。则是统计量的是 A 。

- (A) $\frac{1}{n} \sum_{i=1}^{n} (X_i \mu)^2$; (B) $\frac{\bar{X} \mu}{\sigma^2 / \sqrt{n}}$; (C) $\frac{S^2}{\sigma^2}$; (D) $\frac{1}{\sigma^2} \sum_{i=1}^{n} (X_i \bar{X})^2$.
- 13、设某人罚篮命中率为50%,独立罚篮100次,那么罚篮命中总次数用中心极限 定理估计的近似分布为 C_{-} 。(这里, $\phi(x)$ 是标准正态分布的分布函数)
- (A) $\phi(x)$;

- (B) $\phi(x-50)$; (C) $\phi\left(\frac{x-50}{5}\right)$; (D) $\phi\left(\frac{x-50}{25}\right)$.
- 14、设随机变量 X 的分布函数与概率密度函数分别为 F(x) 与 f(x), -X 与 X 同分布, 则有___B__。
- (A) F(x) = F(-x);

(B) f(x) = f(-x);

(C) F(x) = -F(x);

(D) f(x) = -f(-x).

得分	评卷人

四、计算题: (5 题共 60 分)

15、(本题共 10 分) 某信号传递过程中,由于存在干扰、发出的信号不一定能被正确接 受。统计表明,发出的信号是0的概率为60%,发出的信号是1的概率为40%;而发出的 0被接受端以20%的概率误认为1;发出的1则被接受端以90%的概率正确接受。

- (1)(6分)发出的信号被正确接受的概率是多大?
- (2)(4分)如果发现接受的信号有误,问该信号是0的概率是多大?

解: (1) 以 A 记事件 "发出的信号是 i", i = 0,1;

则
$$P(B) = P(A_0)P(B|A_0) + P(A_1)P(B|A_1) = 0.6 \times 0.8 + 0.4 \times 0.9 = 0.84$$
 (2+2 分)

(2)
$$P(\overline{B}) = 0.16$$
, (+1 分)

因此
$$P(A_0 | \overline{B}) = \frac{P(\overline{B} | A_0)P(A_0)}{P(\overline{B})} = \frac{0.2 \times 0.6}{0.16} = \frac{3}{4} = 0.75$$
。 (1+2 分)

注:(2)中如果理解为"收到的信号为0"相应计算结果(25%)正确的,也给分。

16、(本题共 15 分)设二维随机变量(X,Y)的联合概率密度函数为

$$f(x,y) = \begin{cases} cxy, & 1 \ge y \ge x \ge 0 \\ 0, & 其它 \end{cases}$$

(1) 确定常数c的值;

分)

- (2) 计算 X, Y的边缘概率密度函数;
- (3) 判断 X, Y 是否相互独立;
- (4) 判断 X,Y 是否线性相关。

解: (1)
$$1 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) dx dy = c \int_{0}^{1} dx \int_{x}^{1} xy dy = \frac{c}{8}$$
, 所以 $c = 8$ (2+2 分)

$$(2) \quad f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy = \begin{cases} 0, & x \notin (0, 1) \\ \int_{1}^{1} 8xy dy = 4x(1 - x^2), & x \in (0, 1) \end{cases},$$

$$f_Y(y) = \int_{-\infty}^{\infty} f(x, y) dx = \begin{cases} 0, & y \notin (0, 1) \\ \int_{1}^{y} 8xy dx = 4y^3, & y \in (0, 1) \end{cases},$$

$$(2+2\frac{1}{2})$$

(3)
$$f(x,y) \neq f_X(x) f_Y(y)$$
, 故不相互独立。 (+2 分)

(4)
$$E(X) = \int_{-\infty}^{+\infty} x f_X(x) dx = \int_{0}^{1} 4x^2 (1 - x^2) dx = \frac{8}{15},$$
 (+1 \(\frac{1}{2}\))

$$E(Y) = \int_{-\infty}^{+\infty} y f_Y(y) dy = \int_0^1 4y^4 dy = \frac{4}{5}, \qquad (+1 \text{ }\frac{4}{3})$$

$$E(XY) = \int_{-\infty}^{\infty} \int_{-\infty}^{+\infty} xyf(x, y) dx dy = 8 \int_{0}^{1} dx \int_{x}^{1} x^{2} y^{2} dy = \frac{4}{9}, \qquad (+1 \%)$$

从而
$$\rho(X,Y) = E(XY) - E(X)E(Y) = \frac{4}{9} - \frac{8}{15} \times \frac{4}{5} = \frac{4}{225} \neq 0$$
,故 X,Y 线性相关。(+2)

17、(本题 10 分)某产品的一项质量指标 $X \sim N(\mu, 0.05^2)$, μ 未知。现从一批产品中随机地抽取 5 件,测得样本方差 $s^2 = 0.0078$ 。问,根据这一数据能否推断该产品的方差较以往有显著的变化?(显著性水平取为 $\alpha = 0.05$)

(附注: $\chi^2_{0.025}(5) = 12.833$, $\chi^2_{0.05}(5) = 11.071$, $\chi^2_{0.975}(5) = 0.831$, $\chi^2_{0.95}(5) = 1.145$, $\chi^2_{0.025}(4) = 11.143$, $\chi^2_{0.05}(4) = 9.488$, $\chi^2_{0.975}(4) = 0.484$, $\chi^2_{0.95}(4) = 0.711$)

解: 原假设
$$H_0$$
: $\sigma^2 = \sigma_0^2 = 0.05^2$; 备择假设 H_1 : $\sigma^2 \neq 0.05^2$ 。 (+3 分)

用
$$\chi^2$$
 - 检验法,拒绝域为 $\{s^2 \mid \chi^2 = \frac{(n-1)s^2}{\sigma_0^2} < \chi^2_{1-\alpha/2}(n-1)$ 或 $> \chi^2_{\alpha/2}(n-1)\}$, (+3 分)

这里,
$$n=5$$
, $s^2=0.0078$, $\alpha=0.05$ 。代入计算: $\chi^2=\frac{(n-1)s^2}{\sigma_0^2}=12.48>11.143$, (+2)。

即在拒绝域内。因此拒绝原假设,认为该产品的方差有显著的变化。 (+2 分)

18、(本题 15 分)(本题 15 分)设随机变量(X,Y)的联合分布律为

	11 1		
X	Y -1	0	1
0	8 100	а	20 100
1	ь	18 100	30 100

且X与Y独立。

- 1) 确定参数 $a \to b$; 2) 计算 $Z_1 = X + Y$ 的分布律; 3) 计算 $Z_2 = \min\{X,Y\}$ 的分布律;
- 4) 计算概率 P{X > Y}。

件: し1ノ	11.1			
X	-1	0	1	
0	100	а	$\frac{20}{100}$	$a + \frac{28}{100}$
1	ь	$\frac{18}{100}$	30 100	$b + \frac{48}{100}$
	$b + \frac{8}{100}$	$a + \frac{18}{100}$	50 100	

(+3分)

独立性得,
$$b = \frac{12}{100}$$
, $a = \frac{12}{100}$ 。 (+2 分)

(2)(+4分)

Z_1	-1	0	1	2
	8	24	38	30
	100	100	$\frac{38}{100}$	100

(3) (+3分)

(3) (13)4)	-1 18		
Z_2	-1	0	1
	20	50 100	30
2022	100	100	100

(4)
$$P\{X > Y\} = P\{X = 0, Y = -1\} + P\{X = 1, Y = -1\} + P\{X = 1, Y = 0\}$$

= $\frac{8}{100} + \frac{12}{100} + \frac{18}{100} = 0.38 \quad (+3 \ \%)$

19、(本题 10 分)设总体 X 的分布律为

$$p_x(\theta) = \frac{\theta^x}{x!} e^{-\theta}, \quad x = 0, 1, 2, \dots, \quad \theta > 0,$$

其中份为未知参数。

- (1)(4分)求参数 θ 的矩估计 $\hat{\theta}$;
- (2)(6分) 求参数 θ 的最大似然估计 $\hat{\theta}_2$ 。

解: (1)
$$EX = \sum_{r=1}^{\infty} x \frac{\theta^r}{x!} e^{-\theta} = \sum_{r=1}^{\infty} \frac{\theta^r}{(x-1)!} e^{-\theta} = \theta$$
, (+2)

所以, $\hat{\theta}_i = \overline{X}$ 。(+2)

(2) 对数最大似然函数,

$$\ln L(\theta; x_1, \dots, x_n) = \ln \left[e^{-n\theta} \theta^{\sum_{i=1}^n x_i} \prod_{i=1}^n \frac{1}{x_i!} \right] = -n\theta + \ln \theta \sum_{i=1}^n x_i - \sum_{i=1}^n \ln(x_i)!, \quad (+4)$$

$$0 = \frac{\partial}{\partial \theta} \ln L(\theta; x_1, \dots, x_n) = -n + \frac{1}{\theta} \sum_{i=1}^n x_i, \quad \exists P \hat{\theta}_2 = \overline{x} \circ (1+1 \cancel{f})$$

$$0 = \frac{\partial}{\partial \theta} \ln L(\theta; x_1, \dots, x_n) = -n + \frac{1}{\theta} \sum_{i=1}^n x_i , \quad \text{If } \hat{\theta}_2 = \overline{x} \circ (1 + 1 \text{ f})$$

纸

得分 评卷人

五、证明题: (1题共5分)

证明: 己知P(AB) = P(A)P(B),

(+2分)

所以,

草稿纟

上海大学 2012~2013	学年秋季学期试卷	(A	卷)
----------------	----------	----	----

绩

<u> 概率论与数理统计 A</u>课程号: <u>01014016</u> 学分: <u>5</u> 应试人声明:

我保证遵守《上海大学学生手册》中的《上海大学考场规则》,如有考试违纪、作 弊行为,愿意接受《上海大学学生考试违纪、作弊行为界定及处分规定》的纪律处分。

应试人学号 应试人 应试人所在院系

题号		=	· =	四	1
得分	10	15	10	60	5

评卷人 得分

一、是非题: (每小题 2 分, 5 题共 10 分)

 $\sqrt{1}$ 、对事件 $A \subseteq B$, 一定成立等式 $(A \cup B) - B = A$.

(销)

 $_{1}^{2}$ 7 对事件 $_{A}$ 和 $_{B}$,若 $_{P(A)}$ + $_{P(B)}$ > $_{1}$,则这两个事件一定不是互不相容的。

3、设 $X_1,...,X_n$ 是来自总体 $X \sim N(\mu,\sigma^2)$ 的简单样本,则统计量 $\overline{X} = \frac{1}{n}\sum_{i=1}^n X_i$ 和

 $\sum_{i=1}^{n} (X_i - \bar{X})^2$ 不独立。

(错)

(错)

5、设总体 X 的期望 $\mu = EX$ 存在, 但未知, 那么 $\frac{1}{n}\sum_{i=1}^{n}X_{i}$ 为参数 μ 的相合估计量。(对)

得分	评卷人

二、填空题: (每格 3 分, 共 15 分)

6 已知随机事件 A 和 B 的概率分别为 P(A) = 0.7 和 P(B) = 0.5,且 P(B-A) = 0.15,那 Δ , $P(B|A) = \frac{P(AB)}{P(A)} = \frac{P(B) - P(B-A)}{P(A)} = \frac{0.5 - 0.15}{0.7} = 0.5$

7、设随机变量X服从区间[-1,1]上的均匀分布,随机变量 $Y = X^2$,则它们的协方差函数 $cov(X,Y) = \underbrace{EXEY - E(XY) = 0}_{\text{cov}}$: 事件 $\{Y \le \frac{1}{2}\}$ 的概率 $P(Y \le \frac{1}{2}) = \frac{1}{2} \int_{V(x)}^{\sqrt{1/2}} dx = \sqrt{\frac{1}{2}}$.

81 甲乙两人独立抛掷一枚均匀硬币各两次,则甲抛出的正面次数不少于乙的概率为 11 16

9、如果 X_1,\ldots,X_n 是来自总体 $X\sim b(1,p)$ (服从0-1分布)的简单样本,而 x_1,\ldots,x_n 是其 (对) 样本观测值。那么最大似然函数为 $p^{\sum_{i=1}^{n}(1-p)^{n-\sum_{i=1}^{n}x_{i}}}$ 。

评卷人

三、选择题: (每小题 2 分, 5 题共 10 分)

- 10, 随机变量 X 以概率 1 取值为零,Y 服从 b(1,p) (0-1 分布),则正确的是
- (A) X与Y一定独立;

(B) X 与 Y 一定不独立:

(C) X 与 Y 不相关但不独立:

- (D) 不能确定X与Y的独立性。
- 11、设随机变量 X 和 Y 的联合密度函数 $f(x,y) = \begin{cases} e^{-y}, & 0 < x < y \\ 0, & \text{其它} \end{cases}$ 则一定有 D
- (A) X和Y独立;

(B) $f_{Y}(y) = \begin{cases} e^{-y}, & y > 0 \\ 0, & y < 0 \end{cases}$;

(C) $f_x(x)=1$;

- (D) X和Y不独立。
- 12、设总体 $X \sim N(\mu, \sigma^2)$, $X_1, ..., X_n$ 是简单样本, $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i$, $S_1^2 = \frac{1}{n} \sum_{i=1}^n (X_i \bar{X})^2$,

$$S_2^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$$
, $S_3^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2$, $S_4^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \mu)^2$ 。那么服从 $t(n-1)$ 分

- (A) $\frac{\bar{X}-\mu}{S/\sqrt{n}}$; (B) $\frac{\bar{X}-\mu}{S/\sqrt{n}}$; (C) $\frac{\bar{X}-\mu}{S/\sqrt{n}}$; (D) $\frac{\bar{X}-\mu}{S/\sqrt{n}}$.

- 13、设某人罚篮命中率为70%,独立罚篮100次,那么罚篮命中总次数用中心极限 定理估计的近似分布为 C 。(这里, $\phi(x)$ 是标准正态分布的分布函数)
- (A) $\phi(x)$;
- (B) $\phi(x-70)$; (C); $\phi\left(\frac{x-70}{\sqrt{21}}\right)$ (D) $\phi\left(\frac{x-70}{21}\right)$.
- 14、设连续型随机变量 X 的密度函数满足 f(x) = f(-x),则对 x > 0,分布函数 F(x)一定有<u>B</u>.
- (A) $F(-x) = 1 \int f(u) du$;

(B) $F(-x) = \frac{1}{2} - \int_{1}^{x} f(u) du$;

(C) F(x) = F(-x);

(D) F(-x) = 2F(x) - 1

得分 评卷人

四、计算题: (5 题共 60 分)

15、(本题共10分)已知某地区某种疾病男性的发病率是5%,而女性的发病率是0.25%。 如果该地区男女的人数相同。计算,

- (1)(6分)该地区这种疾病的发病率;
- (2)(4分)如果某人未息这种疾病,那么患者是男性的概率是多大?

解 1) 以A记事件"抽到的人是男性":则 \overline{A} 为事件"抽到的人是女性"。

以 B 记事件"此人思病"。那么已知条件为: $P(A) = P(\overline{A}) = 0.5$: P(B|A) = 5%,

 $P(B|\overline{A}) = 0.25\%$ 。(2分)

 $P(B) = P(B|A)P(A) + P(B|\overline{A})P(\overline{A}) \approx 2.63\% \quad (2+2\%)$

2)
$$P(A|\overline{B}) = \frac{P(\overline{B}|A)P(A)}{1 - P(B)} = 48.8\% \quad (2+2\%)$$

注: 本题题(2)由于会产生二意性,因此按照下列方法计算,得分:

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)} = \frac{1}{6} (2+2\%)$$

16、(本题共 15 分) 设随机变量 X 与 Y 的联合概率密度为 $f(x,y) = Ax(1-y), \quad 0 < x < 1, \quad x < y < 1; \quad f(x,y) = 0,$ 其它。

(1)(4分)求系数 A 的值;

(2) (5 分) 求(X,Y)落在区域 $D = \{(x,y) | \frac{1}{2} < x < 1, \frac{1}{2} < y < 1\}$ 的概率:

(3) (6分) 计算边缘概率密度函数 $f_{\chi}(x)$ 和 $f_{\gamma}(y)$ 并判断这两个随机变量是否独立。

解 1)
$$1 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) dx dy = \int_{0}^{1} \int_{x}^{1} Ax(1 - y) dx dy = \frac{A}{24}$$
 (+2 分), 因此 $A = 24$. (+2 分)

2)
$$P((X,Y) \in D) = 24 \int_{0}^{1} x(1-y) dx dy \quad (+3 \frac{1}{12})$$

= $12 \int_{0}^{1} x(1-x)^{2} dx dy = 12 \int_{0}^{\frac{1}{2}} (1-x)x^{2} dx = \frac{5}{16} \quad (+2 \frac{1}{12})$

3)
$$f_X(x) = 24 \int_0^1 x(1-y)dy = 12x(1-x)^2$$
, 其它处为零; (1+1 分)

$$f_r(y) = 24 \int_0^y x(1-y)dx = 12(1-y)y^2$$
, 其它处为零; (1+1 分)

因 $f(x,y) \neq f_X(x) f_Y(y)$, 所以不独立。(+2 分)

17、(本题 15 分) 机器包装食盐,包装的重量服从正态分布 $X \sim N(\mu, \sigma^2)$ 。要求每段的标准重量为 1kg,且方差 $\sigma^2 \le 0.02^2$ 。每天设备正式运行时,要做抽样检验,抽取 9 个样本,得到的数据如下:样本均值 x=0.998 kg,样本标准差 s=0.032 。问:

(1) (7分) 在显著性水平 $\alpha = 0.05$ 下,就平均重量而言,机器设备是否处于正常工作状态?

(2) (7分) 在显著性水平 $\alpha = 0.05$ 下,就方差而言,机器设备是否处于正常工作状态? (3) (1分) 你认为设备是否处于正常工作状态。

(附注: $t_{0.025}(8) = 2.306$, $t_{0.025}(9) = 2.262$, $u_{0.025} = 1.960$, $u_{0.05} = 1.645$,

 $\chi^2_{0.025}(8) = 17.535$, $\chi^2_{0.025}(9) = 19.023$, $\chi^2_{0.975}(8) = 2.180$, $\chi^2_{0.975}(9) = 2.700$

 $\chi^2_{0.05}(8) = 15.057$, $\chi^2_{0.05}(9) = 16.919$, $\chi^2_{0.95}(8) = 2.733$, $\chi^2_{0.95}(9) = 3.325$)

解 (1) 原假设 H_0 : $\mu=1$, 备选假设 H_0 : $\mu\neq 1$ 。(1+1 分) 利用T检验, 拒绝域

$$\{T = \left| \frac{\overline{x} - 1}{s / \sqrt{9}} \right| > t_{0.025}(8) = 2.306\}$$
,(+2 分)而观测值 $t = \left| \frac{0.998 - 1}{0.032 / 3} \right| = 0.1875$,不在拒绝域内。

就净重而言,机器工作正常。(2+1分)

(2) 原假设 H_0 : $\sigma^2 \le 0.02^2$, 备选假设 H_0 : $\sigma^2 > 0.02^2$ 。(1+1 分) 利用 χ^2 检验, 拒绝

域
$$\chi^2 = \frac{n-1}{\sigma_0^2/s^2} \ge \chi_{0.05}^2(8) = 15.057$$
,(+2 分)。而观测值 $\chi^2 = \frac{8}{0.02^2/0.032^2} = 20.48$,在拒绝

域内。就方差而言,机器工作不正常。(2+1分)

(3) 只要有一个检验没有通过,就不能认为机器正常工作。所以机器处于不正常工作状态。(+1分)

草稿细

18、(本题 10 分)设某种商品的需求量 X 服从区间(10,30)上的均与分布,而进货数为区间(10,30)中的某一整数。商店每正常销售 1 单位商品可获利 500元; 若供大于求,多余商品则削价处理,每处理 1 单位商品亏损 100元; 若供不应求,则可从外部调剂供应,此时每 1 单位商品仅获利 300元。为使商店所或利润期望值不少于 9280元,确定最少进货量。

解 进货量为S,则利润为 $Z = \{500X - 100(S - X)\}\chi_{(X \le S)} + \{500S + 300(X - S)\}\chi_{(X > S)}$ (2+2 分) (可用分段表示);

$$EZ(S) = E[\{500X - 100(S - X)\}\chi_{\{X \le S\}} + \{500S + 300(X - S)\}\chi_{\{X > S\}}]$$

$$= \frac{1}{20} \left[\int_{10}^{S} \{500x - 100(S - x)\} dx + \int_{S}^{30} \{500S + 300(x - S)\} dx \right] (+2 \%)$$

$$= 5 \left[\int_{10}^{S} \{6x - S\} dx + \int_{S}^{30} \{2S + 3x\} dx \right]$$

$$=5\{[3S^2-300-S^2+10S]+[60S-2S^2+1350-1.5S^2]\}$$

$$= 5\{[70S+1050-1.5S^2]\} \ge 9280 (+2 分)$$

所以, 3S²-140S+1612≤0

$$(3S-62)(S-26) \le 0$$
,因此, $\frac{62}{3} \le S \le 26$,即 $S_{min} = 21$ 。(+2分)

19、(本题 10 分) 设总体 X 的分布律为 $p_k(\theta) = \frac{\theta^x}{x!} e^{-\theta}, \quad x = 0, 1, 2, \dots, \theta > 0,$

其中 θ 为未知参数。

- (1)(4分)求参数 θ 的矩估计 $\hat{\theta}_i$:
- (2)(6分)求参数 θ 的最大似然估计 $\hat{\theta}_2$ 。

解 (1) $EX = \sum_{i=1}^{\infty} x \frac{\theta^x}{x!} e^{-\theta} = \sum_{i=1}^{\infty} \frac{\theta^x}{(x-1)!} e^{-\theta} = \theta$, (+2)

所以,
$$\hat{\theta}_i = \overline{X}$$
。(+2)

(2) 对数最大似然函数,

$$\ln L(\theta; x_1, \dots, x_n) = \ln \left[e^{-n\theta} \theta^{\sum_{i=1}^{n} x_i} \prod_{i=1}^{n} \frac{1}{x_i!} \right] = -n\theta + \ln \theta \sum_{i=1}^{n} x_i - \sum_{i=1}^{n} \ln(x_i)!, \quad (+4)$$

$$0 = \frac{\partial}{\partial \theta} \ln L(\theta; x_1, \dots, x_n) = -n + \frac{1}{\theta} \sum_{i=1}^n x_i , \quad \text{Iff } \hat{\theta}_2 = \overline{x} . \quad (1+1 \text{ fb})$$

草 稿 细

得分 评卷人

五、证明题: (1题共5分)

20、(本题 5 分)设口袋中有一个球,可能是白球,也可能是黑球,没有任何信息。现在放入一个白球,然后等可能地任取一个球。证明:如果拿出的是白球时,原来的球也是白球的概率是 $\frac{2}{3}$ 。

证明:以A记事件"原来的球是白球",以B记事件"第二次拿出的球是白球"。 则要证明的结果是 $P(A|B) = \frac{2}{3}$ 。(+1)

由题意,
$$P(A) = P(\overline{A}) = \frac{1}{2}$$
, $P(B|A) = 1$, $P(B|\overline{A}) = \frac{1}{2}$, (+2 分)

因此
$$P(A|B) = \frac{P(B|A)P(A)}{P(B|A)P(A) + P(B|\overline{A})P(\overline{A})} = \frac{1}{1 + \frac{1}{2}} = \frac{2}{3}$$
。(+2分)

草稿组

上海大学	2010	~	2011	年度冬季学期试卷A卷

课程名: 概率论与数理统计A 课程号: 01014016 学分: 5 应试人声明:

我保证遵守《上海大学学生手册》中的《上海大学考场规则》,如有考试违纪、作 弊行为,愿意接受《上海大学学生考试违纪、作弊行为界定及处分规定》的纪律处分。

应试人

题号		Ξ	四	五	六	七	八
得分			1				

- 一、(20分) 填空题(每格2分)
 - 1. 袋中有红球4个,黄球3个,白球1个,每次从袋中任取一个球,有放回地抽三次, 个都是红球的概率等于______.
 - 2. 设连续型随机变量X的分布函数为F(x), 它满足F(-x) = 1 F(x), 则P(X > x)0 = _____; 对于a > 0, $P\{|X| \le a\} = ______.$
 - 3. 设(X,Y)的联合分布函数为F(x,y),则X的边缘分布函数为 $F_X(x) = ______;$ 条件概率 $P\{Y \leq y | X \leq x\} =$ ______
 - X与Y的相关系数 $\rho_{XY} =$
 - 5. 设总体的均值与方差分别为 μ , σ^2 , (X_1, X_2, \cdots, X_n) 为取自总体的一组简单随 机样本, 并记 \overline{X} 为该样本均值. 则 $\overline{E}(\overline{X}) = \underline{\hspace{1cm}}; \, \overline{MD}(\overline{X}) = \underline{\hspace{1cm}}$
- 二、(10分) 判别题(请在每个问题后的括号中填入√或 X. 每小题2分)
 - 1. 设A, B为任意两个事件并适合 $A \subset B$, P(B) > 0. 则 $P(A) \le P(A|B)$ 必然成 立.()

- $0. \quad x < 0$ 2. $F(x) = \begin{cases} \sin x, & 0 \le x < \pi \end{cases}$ 是某一连续型随机变量的分布函数 ()
- 3. 设X和Y分别服从正态分布, 那么(X,Y)将服从二维正态分布.()
- 4. 如果估计量 $\hat{0}$ 是未知参数0的无偏估计量, 那么 $\hat{0}^2$ 必是 0^2 的无偏估计量. ()
- 5. 假设检验问题中、显著性水平α为Ha成立但经检验被拒绝的概率的上限。()
- 三、(10分)选择题(请在每个问题后的括号中填入 A, B, C或 D, 每小题2分)
 - 发射3发子弹,事件A_i表示"击中i发", i = 0,1,2,3. 那么事件A = A₀ ∪ A₁表示

 - (A) 至少击中一发 (B) 至多击中一发

 - (C)恰好击中一发 (D)必有一发击中
 - 2. 设X的分布律为 $P\{X=0\}=0.25$, $P\{X=1\}=0.35$, $P\{X=2\}=0.4$. F(x)是X的分布函数,则 $F(\sqrt{2})=($
 - (A) 0.6
- (B) 0.35 (C) 0.25
- (D) 0
- 3. 设X的概率密度为 $f(x) = \frac{1}{\sqrt{n\pi}} e^{-\frac{(x-y)^2}{n}} (-\infty < x < \infty), 则D(X) = ().$
 - (A) $\sqrt{3}$
- (B) $\sqrt{6}$
- (C) 3
- (D) 6
- 4. 设总体X服从 $(0,\theta)$ 上的均匀分布,从中抽取容量为2的样本 (X_1,X_2) ,则下述 θ 的 无偏估计量中()最有效.

 - (A) $\frac{X_1+3X_2}{2}$ (B) $\frac{2X_1+4X_2}{3}$ (C) $\frac{3X_1+5X_2}{4}$ (D) $\frac{4X_1+8X_2}{5}$
- 5. 设总体均值为 μ , 对于检验问题: $H_0: \mu \leq \mu_0$. $H_1: \mu > \mu_0$, 选择样本均值 \overline{X} 作 为检验统计量.则合理的Hu的拒绝域应形如().

 - (A) $\{(x_1, \dots, x_n) | \bar{x} \ge C\}$ (B) $\{(x_1, \dots, x_n) | \bar{x} \le C\}$

(C)
$$\{(x_1,\dots,x_n)||\bar{x}-\mu_0|\geq C\}$$
 (D) $\{(x_1,\dots,x_n)||\bar{x}-\mu_0|\leq C\}$

(D)
$$\{(x_1, \dots, x_n) | |\bar{x} - \mu_0| \leq C$$

四、(10分)设每100个男人中有5个色盲者,而每10000个女人中有25个色盲者.今在3000个男人和2000个女人中任意抽查一人,

- 1. (6分) 求这个人是色盲者的概率;
- 2. (4分) 已知抽到的是一个色盲者, 问此人是男性的概率是多少?

草稿纸

五、(15分)已知连续型随机变量X的分布函数为

$$F(x) = \begin{cases} 0, & x < -a \\ A + B \arcsin \frac{x}{a}, & |x| \le a \\ 1, & x > a \end{cases}$$

其中a > ()为常数, 求:

- 1. (5分) 常数A, B的值;;
- 2. (5分) X的概率密度函数 f(x);
- 3. (5分) $P\left\{\frac{n}{2} < \mathcal{X} < u\right\}$.

六、(15分)设(X,Y)的联合分布律为:

\			
X	-1	0	1
-1	0.1	0.3	0.2
0	0.1	0.1	0.2

- 1. (5分) 求 X 与 Y 中至少有一个小于0的概率;
- 2. (5分) 求X = 0时, 1 的条件分布律;
- 3. (5分) 写出 2 = X·Y的分布律.

七、(10分)设T为电子元件的失效时间,其概率密度函数为:

$$f(t;t_0,\beta) = \begin{cases} \beta e^{-\beta(t-t_0)}, & t \geq t_0 \\ 0, & t < t_0 \end{cases}$$

假定对n个元件进行测试,记录失效时间为 $T_1,T_2,\cdots,T_n,$ 求:

- 1. (5分) to和/3的矩估计量;
- 2. (5分) t₀和β的极大似然估计量.

草稿纸

八、(10分) 由于工艺水平的限制,食品添加剂含量在每包食品中并不是完全相同的(假设服从正态分布),但根据规定每包食品中添加剂含量变化的标准差不得超过0.2 mg/kg. 现对该种食品进行检测,从送样中随机抽取25袋,测得添加剂的平均含量为1.05 mg/kg, 样本标准差s=0.23 mg/kg.

- 1. (5分) 在α = 0.05显著性水平下, 能否认为每包中食品添加剂含量变动超标?
- 2. (5分) 求该批食品每包添加剂平均含量的90%的区间估计.

草稿纸

χ²-分布和t-分布分位点表

α	0.975	0.950	0.900	0.100	0.050	0.025
$\chi_{\alpha}^{2}(24)$	12.4012	13.8484	15.6587	33.1962	36.4150	39.3041
$\chi^2_{\rm u}(25)$	13.1197	14.6114	16.4734	34.3816	37.6525	40.6465
$\chi_{\alpha}^{2}(26)$	13.8439	15.3792	17.2919	35.5632	38.8851	41.9232
t _n (24)	-2.0639	-1.7i09	-1.3178	1.3178	1.7109	2.0639
$t_{\alpha}(25)$	-2.0595	-1.7081	-1.3163	1.3163	1.7081	2.0595
t. (26)	-2.0555	-1.7056	-1.3150	1.3150	1.7056	2,0558

上海大学 2010-11 年度冬季学期试卷(A卷)

概率论与数理统计A(01014016)评分标准

1 填空题,每格2分,共20分

1-1. $\frac{1}{8}$ 1-2. $\frac{1}{14}$ 2-1. $\frac{1}{2}$ 2-2. 2F(a)-1 3-1. $F(x,+\infty)$ 3-2. $\frac{F(x,y)}{F(x,+\infty)}$ 4-1. 2 4-2. 1 5-1. μ 5-2. σ^2

2 判别题,每小题2分,共10分

1, / 2, X 3, X 4, X 5, X

3 选择题,每小题2分,共10分

1. B 2. A 3. C 4. D 5. A

4 计算题, 共60分

4-1解: 记A··· 抽到的一人为色盲者: B··· 抽到的一人为男性,

$$P(A) = P(B)P(A|B) + P(B)P(A|B)$$
 (13)

$$= \frac{3}{5} \cdot \frac{1}{20} + \frac{2}{5} \cdot \frac{1}{400} \tag{44}$$

$$\frac{31}{1000}$$
 (1 $\frac{3}{1}$)

4-2解:

$$P(B|A) = \frac{P(B)P(A|B)}{P(A)} \tag{2}$$

$$=\frac{30}{31}\tag{2}$$

5-1解: 根据题意A, B应满足;

$$\begin{cases} F(-a) = A - \frac{\pi}{8}B = 0 \\ F(a) = A + \frac{\pi}{8}B = 1 \end{cases}$$
 (34)

得
$$A = \frac{1}{2}$$
, $B = \frac{1}{\pi}$.
5-2 R ; 当 $|x| > a$ 时, $f(x) = 0$.

(1+1分) (1+1分)

当四 ≤ a时,

(1分)

$$f(x) = F'(x) = \frac{1}{\sqrt{1 - \left(\frac{x}{a}\right)^2}}$$
 (1+1\frac{\frac{x}}{a})

5-3AV:

$$P\left\{\frac{a}{2} < X < a\right\} = F(a) - F(a/2) \tag{25}$$

$$= \left(\frac{1}{2} + \frac{1}{\pi} \arcsin(1)\right) - \left(\frac{1}{2} + \frac{1}{\pi} \arcsin(1/2)\right) \tag{1}$$

$$= \frac{1}{2} - \frac{1}{6} = \frac{1}{2} \tag{25}$$

G-1/¥:

$$P(\{X < 0\} \cup \{Y < 0\}) = 1 - P\{X \ge 0, Y \ge 0\}$$
 (2+1/3)

$$= 1 - (P(X = 0, Y = 0) + P(X = 0, Y = 1))$$
 (1 $\%$)

6-2解:

$$P\{Y = j | X = 0\} = \frac{P\{X = 0, Y = j\}}{P\{X = 0\}}$$
 (157)

$$P\{X=0\} = 0.4 \tag{14}$$

$$P\{Y = -1 | X = 0\} = \frac{1}{4} \tag{15}$$

$$P\{Y = 0 | X = 0\} = \frac{1}{4} \tag{15}$$

$$P(Y=1|X=0) = \frac{1}{2} \tag{14}$$

6.3解: 2的取值及其概率每个值占1分, 销5个或全错不得分

$$\begin{array}{c|ccccc} Z & -1 & 0 & 1 \\ \hline p_k & 0.2 & 0.7 & 0.1 \end{array}$$

7-1解:

$$E(T) = \int_{t_0}^{\infty} t \beta e^{-\beta(t-t_0)} dt = \frac{1}{\beta} + t_0$$
 (157)

$$\mathbb{E}\left(T^{2}\right) = \int_{t_{0}}^{\infty} t^{2} \beta e^{-\rho(t-t_{0})} dt = \frac{2}{\mu^{2}} + \frac{2t_{0}}{\beta} + t_{0}^{2} = \frac{1}{\beta^{2}} + \left(\frac{1}{\beta} + t_{0}\right)^{2} \tag{157}$$

记 $\overline{T} = \frac{1}{n} \sum_{i=1}^{n} T_i, A_2 = \frac{1}{n} \sum_{i=1}^{n} T_i^2, B_2 = \frac{1}{n} \sum_{i=1}^{n} (T_i - \overline{T})^2 = A_2 - \overline{T}^2.$ 令:

$$\begin{cases} \frac{1}{\beta} + \hat{t}_0 = \overline{T} \\ \frac{1}{\beta^3} + \left(\frac{1}{\beta} + \hat{t}_0\right)^2 = A_2 \end{cases} \tag{157}$$

得:
$$\hat{t}_0 = \overline{T} - \sqrt{B_2}$$
, $\hat{\beta} = \frac{1}{\sqrt{B_2}}$. (1+1分)

7-2解:

$$L(t_0, \beta) = \prod_{i=1}^{n} f(t_i; t_0, \beta)$$
 (1分)

$$= \begin{cases} \beta^{\hat{n}} \exp\left\{-\beta \sum_{i=1}^{n} t_i + n\beta t_0\right\}, & t_0 \le \min(t_1, \dots, t_n) \\ 0, & t_0 > \min(t_1, \dots, t_n) \end{cases}$$
(137)

$$\hat{t}_0 = \min(t_1, \cdots, t_n) \tag{15}$$

$$l(\dot{t}_0, \beta) = n \ln \beta - \beta \sum_{i=1}^{n} (t_i - \dot{t}_0)$$

$$(12)$$

$$l'_{\beta}(\hat{t}_0, \beta) = \frac{n}{\beta} - \sum_{i=1}^{n} (t_i - \hat{t}_0) \stackrel{\triangle}{=} 0, \ l''_{\beta}(\hat{t}_0, \beta) = -\frac{n}{\beta^2} < 0$$

$$\hat{\beta} = \left(\frac{1}{n} \sum_{i=1}^{n} (t_i - \hat{t}_0)\right)^{-1} = \left(\frac{1}{n} \sum_{i=1}^{n} t_i - \hat{t}_0\right)^{-1} \tag{15}$$

 l_0 和 β 的极大似然估计量为: $\hat{l}_0 = \min(T_1, \cdots, T_n), \hat{\beta} = (\overline{T} - \hat{l}_0)^{-1}$.

8-1解:
$$H_0: \sigma \le 0.2$$
 $H_1: \sigma > 0.2$ (1分)

$$K = \frac{(n-1)s^2}{\sigma_n^2} \tag{15}$$

$$=\frac{24\times0.23^2}{0.2^2}=31.74\tag{14}$$

$$<\chi^2_{0.05}(24) = 36.415$$
 (15)

接受 H_0 , 即 $\alpha=0.05$ 显著性水平下, 不能认为每包中食品添加剂含量变动超标. (1分) 8-2解:

$$\left[\bar{x} - \frac{s}{\sqrt{n}}t_{\frac{\alpha}{2}}(n-1), \, \bar{x} + \frac{s}{\sqrt{n}}t_{\frac{\alpha}{2}}(n-1)\right] \tag{24}$$

$$= \left[1.05 - \frac{0.23}{5} \times 1.7109, 1.05 - \frac{0.23}{5} \times 1.7109\right]$$
 (1 $\%$)

$$=[0.9713, 1.1287]$$
 $(1+1\%)$

	:				第 1]	页 ———
					成	7
上海大学	± 2011~20	12 学年冬	季学期试卷	*(A 卷)	绩	
课程名: 世	班率论与数	理统计A	课程号: _	学分): <u>5</u>	
		学生手册》中(学学生考试进				
应试人		试人学号		试人所在院系		-
题号	-	=	=	57	Ж.	
得分					5	
得分 评卷人 一. 是非题 (每小题 2 分, 5 题共 10 分) 1、事件 A 与 B 互不相容, 若 A 不发生, 那么 B 一定发生。 (错)						

- (对) 2、事件 AUB 表示事件" A与B都没有发生"。
- 3、设 \bar{X} 和 S^2 分别是总体 $X \sim N(\mu, \sigma^2)$ 的样本均值和样本方差, 样本容量是 μ, μ 和 σ^2 是未知参数, 但 $U = \frac{\overline{X} - \mu}{S / \sqrt{n}}$ 仍是一个统计量。 (锴)
- 4、如果 X 是一个连续型的随机变量, 那么 P(X = x) = 0. . (对)
- 5、如果 $X \sim \chi^2(n)$, $Y \sim \chi^2(m)$,则一定有结论: $F = \frac{X/n}{Y/m} \sim F(n,m)$ 。 (错)

得分	评卷人		1-10-1-1-1777	, - 1	44 A.S.
		=.	填空题	(每空3分,	共 15 分)

- 6、已知随机事件 A 和 B 的概率分别为 P(A) = 0.7 和 P(B) = 0.5,且这两个事件独立,那 么, P(B-A) = P(B) - P(AB) = 0.5 - 0.35 = 0.15.
- 7、设随机变量 X 服从区间 [0,1] 上的均匀分布,则随机变量 $Y = e^X$ 的数学期望 $EY = \int_{a}^{b} e^{x} dx = e - 1; \quad \text{\vec{T}} \stackrel{\text{def}}{=} DY = \int_{a}^{b} e^{2x} dx - (EY)^{2} = \frac{1}{2} (e^{2} - 1) - (e - 1)^{2} = \frac{1}{2} (e - 1)(3 - e).$
- 8、把5只球随机放入三个盒中,则每个盒子中至少有一球的概率为 $1-\frac{2^3-1}{3^4}=0.62$.
- 9、设 $X_1,...,X_{10}$ 是来自总体 $X \sim N(\mu,\sigma^2)$ 的简单样本,当常数 $c = \frac{1}{18}$ 时,统计量 $c\sum_{i=1}^{n}(X_{i+1}-X_{i})^{2}$ 为参数 σ^{2} 的无偏估计。

草

得分	评卷人

三. 选择题(每小题2分,5题共10分)

- (A) $A \supset B$:

(B) A与B互不相容;

(C) P(AB) = 0:

- (D)上述结论不一定成立。
- 11、设随机变量 X 和 Y 服从指数分布,且相互独立,则下列分布一定服从指数分布 的是 B___。
- (A) Z = X + Y:
- (B) $Z = \min\{X, Y\}$: (C) $Z = \max\{X, Y\}$:
- (D) Z = XY.
- 12、设总体 $X\sim N(\mu_1,\sigma^2)$,总体 $Y\sim N(\mu_2,\sigma^2)$,且相互独立, X_1,\dots,X_{n_1} 和 Y_1,\dots,Y_{n_2} 分 别是它们的简单样本,那么不正确的是 A

加定と刊的同年件本、那么不正确的定A。
(A)
$$\frac{\bar{X} - \bar{Y} - (\mu_1 - \mu_2)}{\sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}}} \sim t(n_1 + n_2 - 1);$$
 (B) $\frac{\bar{X} - \bar{Y} - (\mu_1 - \mu_2)}{S_1 \sqrt{1/n_1 + 1/n_2}} \sim t(n_1 - 1);$

(C)
$$\frac{\overline{X} - \overline{Y} - (\mu_1 - \mu_2)}{\sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}}} \sim t(n_1 + n_2 - 2); \quad \text{(D)} \quad \frac{\overline{X} - \overline{Y} - (\mu_1 - \mu_2)}{S_2 \sqrt{1/n_1 + 1/n_2}} \sim t(n_2 - 1).$$

- 13、如果总体 X 服从正态分布 $N(\mu, \sigma^2)$, 其中, μ 已知, σ^2 未知, X_1 , X_2 , X_3 , X_4 取自总体的一个样本,那么是统计量的是C
- (A) $\frac{\bar{X} \mu}{\sigma / \sqrt{3}}$;

- (C) $\max\{X_1, X_2, X_3\}$;
- (D) $\frac{1}{\sigma^2}(X_1 + X_2 + X_3)$.
- 14、设随机变量 $X \sim I(n)$,则正确的是___B__。
- (A) $P(X \le 0) > \frac{1}{2}$;
- (B) $P(X \le 0) = \frac{1}{2}$;
- (C) $P(X \le 0) < \frac{1}{2}$;
- (D) 以上结论都不正确。

得分	评卷人

四. 计算题: (5 题, 共60 分)

15、(10 分)设市场共有n种品牌的电脑,市场占有率分别为 $\alpha_i > 0$, $i=1,\cdots,n$,其中 $\sum \alpha_i = 1$. 第i 种品牌电脑有质量问题的概率为 β_i 。现在对市场上的这些品牌电脑进行质 量抽查, 计算

- 1) 电脑产品的抽样合格率:
- 2) 如果发现一台电脑被抽检后判断为不合格,那么该电脑是第一种品牌的概率是多大。

解 以A记事件"抽检的电脑是合格的": 以B记事件"该电脑是第i种品牌的电脑"。

那么已知条件为: $P(A|B_i) = 1 - \beta_i$; $P(B_i) = \alpha_i$. (2分)

1)
$$P(A) = \sum_{i=1}^{n} P(B_i) P(A \mid B_i) = \sum_{i=1}^{n} (1 - \beta_i) \alpha_i$$

2)
$$P(B_1 | \overline{A}) = \frac{P(\overline{A} | B_1)P(B_1)}{1 - P(A)} = \frac{\alpha_1 \beta_1}{\sum_{i=1}^{n} \alpha_i \beta_i}$$

$$f(x) = \begin{cases} Ae^{-2x} & x \ge 1\\ 0 & x < 1 \end{cases}$$

- 1) 确定参数 A 的值并计算相应的概率分布函数 F(x)
- 2) 计算 P(-1 < X < 2);
- 3) 计算Y=InX的概率密度函数:
- 4) 计算 $E(2\sqrt{X-1})$

解 1)
$$A \int e^{-2x} dx = 1$$
, 则 $\frac{A}{2}e^{-2} = 1$, 即 $A = 2e^2$. (2分).

概率分布函数:
$$F(x) = \begin{cases} 0, & x < 1 \\ 2 \int_{1}^{x} e^{-2(t-1)} dt, & x \ge 1 \end{cases} = \begin{cases} 0, & x < 1 \\ 1 - e^{-2(x-1)}, & x \ge 1 \end{cases}$$
 (3分)

2)
$$P(-1 < X < 2) = \int_{-2}^{2} 2e^{-2(x-1)} dx = F(2) - F(-1) = 1 - e^{-2}$$
 (2%)

3)
$$F_{\gamma}(y) = \begin{cases} 0, & y \le 0 \\ P(\ln X < y), & y > 0 \end{cases} = \begin{cases} 0, & y \le 0 \\ 0, & y \le 0 \end{cases}$$
 (2 %)

所以
$$f_Y(y) = \begin{cases} 0, & y \le 0 \\ 2e^{-2(e^Y-1)+y}, & y > 0 \end{cases}$$
 (2分)

4)
$$E(2\sqrt{X-1}) = \int_{1}^{\infty} 4\sqrt{x-1}e^{-2(x-1)}dx = \int_{0}^{\infty} y^{2}e^{-\frac{y^{3}}{2}}dy$$
 (2 %)

$$=\sqrt{\frac{\pi}{2}}\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}y^{2}e^{-\frac{y^{2}}{2}}dy = \sqrt{\frac{\pi}{2}}$$
(25)

17、(10 分)设某种产品的寿命 $X \sim N(\mu, 200^2)$ 。以往的统计数据显示,旧工艺下生产的产品寿命的均值不超过1500 小时。现在,改进了生产工艺。为弄清新工艺是否有效提高了产品的寿命,做了样本容量为25 的抽样,得到的样本均值的观测值为 \overline{x} = 1575。由此抽样结果,你对此新工艺可作出什么样的判断?给出相应的参数假设检验问题,并在置信水平为 α = 0.05 时,对你的假设作出判断。

(附注), $u_{0.025} = 1.96$, $u_{0.05} = 1.645$.

解 由给出的样本均值 2 > 1500, 假设检验问题:

原假设 H₀: μ≤1500: 备选假设H₁: μ>1500

拒绝域:
$$W = \{x \mid \frac{x - 1500}{200/\sqrt{25}} > u_{0,05}\}$$
 (2分).

判断:
$$\frac{\bar{x}-1500}{200/\sqrt{25}} = 1.875 \in W$$
, (2分)

结论,拒绝原假设,接受备选假设,即认为新工艺确实提高了产品的寿命。(2分)

18、(10分)一位顾客进入银行柜台等候服务,他前面还有二位顾客,其中一位顾客刚刚开始接受服务。假设每位顾客完成服务所需时间是随机的,并且独立,服从参数为 λ 的指数分布,即密度函数都为 $\lambda e^{-\lambda t}$ 。那么,

- (1) 给出这位顾客在接受服务之前所需的等待时间的概率密度函数:
- (2) 该顾客所需等待的平均时间是多长:
- (3) 如果顾客不是刚刚开始接受服务,已经过了一段时间的服务,那么由(1),(2) 给出的结论是否仍正确?是否进入顾客的等待时间会缩短?

解 (1) 两位顾客完成服务的时间记为X, 和X, ,则由假设条件:

$$f_1(x) = \lambda e^{-\lambda x}, \quad f_2(x) = \lambda e^{-\lambda x}, \quad (2/3)$$

所以, 等待时间为当W = X, + X,,

(2分)

利用随机变量和的密度函数的计算公式上

$$f_{W}(x) = \int_{0}^{x} \lambda^{2} e^{-\lambda(x-y)} e^{-\lambda y} dy = \lambda^{2} x e^{-\lambda x}.$$
(2 \(\delta\)

(2) 利用期望的线性: $EW = EX_1 + EX_2 = \frac{2}{1}$. (2分)

(3)由于指数分布的无记忆性,该顾客在新顾客进入系统之前已经过的服务时间不 影响完成服务所需的时间的概率分布,因此,所有结论仍成立。 (2分) 19、(15分)设总体 X 的密度函数为

$$f(x) = \begin{cases} \sqrt{\theta} x^{\sqrt{\theta} - 1}, & 0 \le x \le 1\\ 0, & x < 0, x > 1 \end{cases}$$

其中 $\sqrt{\theta}$ 为未知参数。

- (1) 求参数 $\sqrt{\theta}$ 的矩估计 $\hat{\theta}$;
- (2) 求参数 $\sqrt{\theta}$ 的最大似然估计 $\hat{\theta}_{ij}$;
- (3) 此时,参数 θ 的矩估计和最大似然估计是否相应为 $\hat{\theta}_{i}^{2}$ 和 $\hat{\theta}_{i}^{2}$ 。

解 (1)
$$EX = \int_0^1 x \sqrt{\theta} x^{\sqrt{\theta} - 1} dx = \int_0^1 \sqrt{\theta} x^{\sqrt{\theta}} dx = \frac{\sqrt{\theta}}{\sqrt{\theta} + 1} = \overline{X}$$
,
$$(2 \%) \qquad (1 \%) \qquad (1 \%)$$
所以 $\dot{\theta}_1 = \frac{\overline{X}}{1 - \overline{Y}}$ 。 (2 分)

(2) 对数最大似然函数, $\ln L(\theta; x_1, ..., x_n) = \frac{n}{2} \ln \theta + (\sqrt{\theta} - 1) \sum_{i=1}^{n} \ln x_i$, (4 分)

$$(2\%) \qquad \frac{\partial}{\partial \theta} \ln L(\theta; x_1, \dots, x_n) = \frac{n}{2\theta} + \frac{1}{2\sqrt{\theta}} \sum_{i=1}^n \ln x_i = 0$$
 (2\%)

所以,
$$\hat{\theta}_2 = -\frac{n}{\sum_{i=1}^{n} \ln x_i}$$
 (1分)

得分	评卷人	_ !')	(m () \
		五.	计算题:	(5分)

20、(5分) 设随机变量 X 和Y 独立,且均服从正态分布 $N(0,\frac{1}{2})$ 。

证明: $Z = X + Y \sim N(0,1)$.

$$\frac{1}{1} \int_{-\infty}^{\infty} e^{-x^2} e^{-(x-x^2)^2} dx = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \frac{2}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-2(x-\frac{x}{2})^2} dx$$
(2 \(\frac{1}{2}\))

$$=\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}\frac{1}{\sqrt{2\pi}}\int_{-\pi}^{\pi}e^{-\frac{x^2}{2}}du=\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$$
 (15)

所以
$$Z = X + Y \sim N(0,1)$$
 (1分)

上海大学 2011~2012 学年冬季学期试卷 (B卷)

课程名: 概率论与数理统计 A 课程号: 学分: 5

应试人声明:

我保证遵守《上海大学学生手册》中的《上海大学考场规则》, 如有考试选纪、作 弊行为,愿意接受《上海大学学生考试选纪、作弊行为界定及处分规定》的纪律处分。

应试人 _______ 应试人学号_____ 应试人所在院系

题号	_	=	Ξ	ĽΨ	. T ī.
得分	10	15	10	60	5

得分	评卷人

一. 是非题 (每题 2 分, 共 10 分)

- 1、概率不为零且相互独立的两个事件 A 与 B 一定不是互不相容的。
- (校)

2、事件 \overline{AB} 表示事件"A与B都没有发生"。

- (错)
- 3、设 \overline{X} 和 S^2 分别是总体 $X \sim N(\mu, \sigma^2)$ 的样本均值和样本方差,样本容量是 μ, μ 是 已知参数, σ^2 是未知参数, 则 $T = \frac{\bar{X} - \mu}{S / \sqrt{n}}$ 仍是一个统计量。 (対)
- 4、样本容量给定时,无法同时减小假设检验发生第一和第二类错误的概率。 (対)
- 5、设随机变量 $X \sim \chi^2(m)$, $Y \sim \chi^2(n)$, 则一定有 $X + Y \sim \chi^2(m+n)$. (错)

得分	评卷人

- 二. 填空题(每空3分, 共15分)
- 6、已知随机事件 A 和 B 的概率分别为 P(A) = 0.4 和 P(B) = 0.5 ,且 P(A|B) = 0.2 ,那么, P(A-B) = P(A) - P(A|B)P(B) = 0.4 - 0.1 = 0.3.
- 7、设随机变量 X 的密度函数为 $f(x) = ce^{-|x|}$, $-\infty < x < \infty$, 则 c = 1; EX = 0.
- 8、甲乙两人分别抛均匀硬币3次和2次。那么甲抛出的正面次数超过乙的概率为 $\frac{1}{2}$ 。
- 9、设 $X_1,...,X_n$ 是来自总体 $X \sim N(\mu,\sigma^2)$ 的简单样本,当常数 $c = \frac{1}{10}$ 时,统计量 $\bar{X}^2 - cS^2$ 为参数 μ^2 的无偏估计。

评卷人 得分

三. 选择题 (每小题 2 分, 共 10 分)

- 10、对概率不为零的事件 A 和 B , 一定有结论 C 。
- (A) $P(A|B) + P(\overline{A}|\overline{B}) = 1$;

(B) $P(A|B) + P(A|\overline{B}) = 1$;

(C) $P(A|B) + P(\bar{A}|B) = 1$;

- (D)上述结论都不一定成立。
- 11、设相互独立的随机变量 X 和 Y 服从参数为 λ 的泊松分别,则仍服从泊松分布的 是_A__。
- (A) Z = X + Y:
- (B) $Z = \min\{X,Y\}$; (C) $Z = \max\{X,Y\}$;
- (D) Z = XY.
- 12、设总体 $X \sim N(0, \sigma^2)$, $X_1, ..., X_{100}$ 是它的一个简单样本,则不正确的是_____D_

(A)
$$\frac{\overline{X}}{S/10} \sim t(n-1)$$

(A)
$$\frac{\bar{X}}{S/10} \sim t(n-1)$$
; (B) $\frac{\sum_{k=1}^{50} X_k}{\sqrt{\sum_{k=5}^{100} X_k^2}} \sim t(50)$;

(C):
$$\sum_{k=1}^{50} X_k^2 \sim F(50,50)$$

(D)
$$\frac{\sum_{k=1}^{30} X_k}{\sqrt{\sum_{k=3}^{100} X_k^2}} \sim t(49)$$

- 13、如果总体X 服从正态分布 $N(\mu,\sigma^2)$, 其中, μ 未知, σ^2 已知, X_1 , X_2 , X_3 , 是 取自总体的一个样本,那么不是统计量的是_____。
- (A) $X_1 + X_2 + X_3$; (B) $\frac{X_1 + X_2 + X_3}{3} \mu$;
- (C) $\min\{X_1, X_2, X_3\}$ (D) $\frac{1}{\sigma^2}(X_1^2 + X_2^2 + X_3^2)$.
- 14、设随机变量 $X \sim I(n)$,则正确的是___B__。
- (A) $P(X > 0) > \frac{1}{2}$; (B) $P(X > 0) = \frac{1}{2}$;
- (C) $P(X > 0) < \frac{1}{2}$;
- (D) 以上结论都不正确。

得分	评卷人

四. 计算题: (5 题共 60 分)

15、(10 分)设市场共有 n 种品牌的电脑,市场占有率分别为 $\alpha_i > 0$, $i=1,\cdots,n$, 其中 $\sum_{i=1}^{n} \alpha_{i} = 1$ 。第i种品牌电脑有质量问题的概率为 β_{i} 。现在对市场上的这些品牌电脑进行质 量抽查, 计算,

- 1) 电脑产品的抽样不合格率;
- 2) 如果发现一台电脑被抽检后判断为不合格,那么该电脑是第 k 种品牌的概率是多大。

解 以A记事件"抽检的电脑是合格的";以B,记事件"该电脑是第1种品牌的电脑"。

那么已知条件为: $P(A|B)=1-\beta_i$; $P(B_i)=\alpha_i$.

(2分)

1)
$$P(\overline{A}) = \sum_{i=1}^{n} P(B_i) P(\overline{A} \mid B_i) = \sum_{i=1}^{n} \beta_i \alpha_i$$

2)
$$P(B_k \mid \overline{A}) = \frac{P(\overline{A} \mid B_k)P(B_k)}{1 - P(A)} = \frac{\alpha_k \beta_k}{\sum_{i=1}^n \alpha_i \beta_i}$$

$$(2 \%) \qquad (2 \%)$$

草

16、(15 分) 设随机变量 X 与 Y 的联合密度函数为

$$f(x,y) = \begin{cases} Ae^{-(x+y-1)}, & 0 < x < 1, 1 < y < \infty \\ 0, & \text{ \sharp } \text{ } \end{cases},$$

- 1) 确定参数 A的值:___
- 2) 计算边缘概率密度函数 $f_{x}(x)$ 和 $f_{y}(y)$: 并判断它们是否独立:
- 3) 计算 Z = In Y 的概率密度函数:
- 4) 计算 $E(\sqrt{2(Y-1)})$.

2) $f(x,y) = (\frac{c}{e-1}e^{-x})e^{-(y-1)} = f_X(x)f_Y(y)$. 所以

$$f_{X}(x) = \begin{cases} \frac{e}{e-1}e^{-x}, & 0 < x < 1\\ 0, & x \le 0, x \ge 1 \end{cases}$$
 (23)

$$f_{Y}(y) = \begin{cases} e^{-(y-1)}, & y > 1\\ 0, & y < 1 \end{cases}$$
 (25)

且独立。 (2分)

3)
$$F_z(z) = \begin{cases} 0, & z \le 0 \\ P(\ln Y < z), & z > 0 \end{cases} = \begin{cases} 0, & z \le 0 \\ e', & z > 0 \end{cases}$$
 (2%)

所以
$$f_z(z) = \begin{cases} 0, & z \le 0 \\ e^{-(e^z-1)+z}, & z > 0 \end{cases}$$
 (2分)

4)
$$E(\sqrt{2(Y-1)}) = \int_{0}^{\pi} \sqrt{2(y-1)}e^{-(y-1)}dy = \int_{0}^{\pi} z^{2}e^{-\frac{z^{2}}{2}}dz = \sqrt{\frac{\pi}{2}} \frac{1}{\sqrt{2\pi}} \int_{-\pi}^{\pi} z^{2}e^{-\frac{z^{2}}{2}}dz = \sqrt{\frac{\pi}{2}}$$
 (3%)

17、(15 分) 设商场随机调查了 25 位顾客的消费额, 得到样本均值的观测值为 $\bar{x} = 80$ 元。样本标准差的观测值为 s = 12 元。如果顾客的消费额 $X \sim N(\mu, \sigma^2)$,

- 1) 求顾客的平均消费额μ的置信区间,置信度取为95%;
- 2)如果以往的经验表明,方差一般为100,那么,能否认为此次方差偏大是一次 個然现象,显著性水平取为5%。

(附注), $t_{0.025}(24) = 2.0639$, $t_{0.025}(25) = 2.0595$; $\chi_{0.05}^2(24) = 36.415$, $\chi_{0.05}^2(25) = 37.652$.

解 1)这是一个方差未知的区间估计问题。 置信度为95%的置信区间为

$$(\overline{x} - t_{0.025}(24) \frac{s}{\sqrt{25}}, \quad \overline{x} - t_{0.025}(24) \frac{s}{\sqrt{25}}) = (75.05, 84.95).$$

2) 原假设 H₀: σ² ≤100; 备选假设H₁: σ² > 100

拒绝域:
$$W = \{S^2 \mid \frac{24S^2}{100} > \chi^2_{0.05}(24) = 36.415\}$$
 (2分).

判断:
$$\frac{24s^2}{100} = \frac{24 \times 144}{100} = 34.56 < \chi_{0.05}^2(24) = 36.415$$
,不在拒绝域内。 (2 分),

草稿纸

18、(10分)一位病人到医院去挂号看病。他发现前面有三位病人在挂号,而且,到达时恰好一位病人刚完成挂号。假设每位病人挂号所需时间都服从参数为λ的指数分布,即密度函数都为λε-λα,并且相互独立。

- (1) 计算这位病人挂号之前所需等待时间的概率密度函数;
- (2) 该顾客挂完号所的平均时间是多长。

解 (1) 两位顾客完成服务的时间记为 X, 和 X, , 则由假设条件:

$$f_1(x) = \lambda e^{-\lambda x}, \quad f_2(x) = \lambda e^{-\lambda x}, \quad (2 \%)$$

所以,等待时间为当 $W = X_1 + X_2$ 。

(2分)

利用随机变量和的密度函数的计算公式:

$$f_{W}(x) = \int_{0}^{x} \lambda^{2} e^{-\lambda(x-y)} e^{-\lambda y} dy = \lambda^{2} x e^{-\lambda x} . \qquad (2.5)$$

(2) 他自己需要的挂号时间为X, 概率密度函数为 $f_3(x) = \lambda e^{-\lambda x}$ 。所以完成整个挂号

过程所需的时间为 $X_1 + X_2 + X_3$,利用期望的线性, $E(X_1 + X_2 + X_3) = \frac{3}{\lambda}$ 。
(2分)

$$f(x) = \begin{cases} 2^{\theta} \theta x^{-(\theta+1)}, & x \ge 2\\ 0, & x < 2 \end{cases}$$

其中θ为未知参数。

- (1) 求参数 θ 的矩估计 $\hat{\theta}_i$:
- (2) 求参数 θ 的最大似然估计 $\hat{\theta}$,

19、(10分)设总体 X 的密度函数为

所以
$$\hat{\theta}_i = \frac{\bar{X}}{\bar{X} - 2}$$
. (2分)

(2) 対数最大似然函数,
$$\ln L(\theta; x_1, ..., x_n) = n\theta \ln 2 + n \ln \theta - (\theta + 1) \sum_{i=1}^{n} \ln x_i$$
, (2 分)

$$\frac{\partial}{\partial \theta} \ln L(\theta; x_1, \dots, x_n) = n \ln 2 + \frac{n}{\theta} - \sum_{i=1}^n \ln x_i = 0$$
 (2 \(\frac{1}{2}\))

所以,
$$\hat{\theta}_2 = \frac{n}{\sum_{i=1}^{n} \ln x_i - n \ln 2}$$
 (2分)

得分 评卷人

五. 证明题(共5分)

20、(本题 5 分) 如果随机变量 $X \sim N(0,1)$, $Y \sim N(0,1)$ 且相互独立。

证明: $X^2 + Y^2 - \left(\frac{X+Y}{\sqrt{2}}\right)^2 \sim \chi^2(1)$.

(提示: 可利用结论 $Z_1 = \frac{X+Y}{\sqrt{2}}$, $Z_2 = \frac{-X+Y}{\sqrt{2}}$, 则 (Z_1, Z_2) 服从二维正态分布)

证 可证 $cov(Z_1,Z_2)=0$,所以 Z_1 与 Z_2 独立,且都服从标准汇态分布 (2分)

此时, $X^2 + Y^2 - \left(\frac{X+Y}{\sqrt{2}}\right)^2 = Z_2^2 - \chi^2(1)$. (3分)

草 稿 纸

res West

上海大学 2010 ~ 2011 年度秋季学期试卷A卷解答 成绩

课程名: 概率论与数理统计A 课程号: 01014016 学分: 5 应试人声明:

我保证遵守《上海大学学生手册》中的《上海大学考场规则》,如有考试违纪、作 弊行为,愿意接受《上海大学学生考试违纪、作弊行为界定及处分规定》的纪律处分。

应试人

应试人学号

应试人所在院系

题号	_		Ξ	四	五	六	七	八	九
得分	20	10	10	10	10	10	10	10	10

一、(20分) 填空题(每格2分)

- 1. 在10件产品中有2件是次品. 现从中任取3件,则在取出的3件中恰有1件次品的 概率为 $\frac{7}{15} \approx 0.4667$; 至少有1件次品的概率为 $\frac{1}{15} \approx 0.5333$.
- 2. 某人射击的命中率为0.4, 用X表示他在3次独立射击中命中目标的次数, 则 $X \sim b(3, 0.4)$; $P\{X = 1 | X > 0\} = 0.55102$.
- 3. 设义的分布函数为F(x). 则Y = 2X的分布函数 $F_{Y}(y) = F(\frac{y}{2})$; $Z = F(X) \sim U(0, 1) .$
- 4. 设义的概率密度函数为 $f(x) = \frac{1}{2}e^{-\frac{1}{2}}(x > 0)$, 则 $E(X) = \theta$; $E(X(X-1)) = \theta(2\theta-1).$
- 5. 设 X_1, X_2, X_3 相互独立且均服从 $N(0, \sigma^2)$, 则当 $a = \frac{1}{3\sigma^2}$ 时, $a(X_1 + X_2 + X_3)^2$ 服从 χ^2 分布; 当 $b = \underline{2}$ 时, $b\left(\frac{X_1}{X_2 + X_3}\right)^2$ 服从F分布.

- 二、(10分) 判别题(请在每个问题后的括号中填入 \ 或 \ X. 每小题2分)
 - 1. 若A与B互为对立事件, 且P(A)P(B) > 0, 则P(B|A) > 0. (X)
 - 2. $\forall F(x) = P\{X \le x\}$, 那么 $P\{X \ge a\} = 1 F(a)$. (X)
 - 3. 如果随机变量X, Y相互独立、且均服从指数分布、则min(X, Y)也服从指数分 布.(1)
 - 4. 对于随机变量序列 $\{X_n\}$, 若满足 $\lim_{n \to \infty} D(X_n) = 0$, 则对任意 $\varepsilon > 0$, 成立 $\lim_{n\to\infty} P\{|X_n - \mathbb{E}(X_n)| > \varepsilon\} = 0. \ (\checkmark)$
 - 5. 记Ha和Ha为显著性检验问题中的原假设与备择假设, 那么犯第二类错误的概 率= P{接受H₀|H₁}. (✓)
- 三、(10分) 选择题(请在每个问题后的括号中填入 A, B, C 或 D, 每小题2分)
 - 1. $\mathcal{C}P(A) > 0$, P(B) > 0, 并且 $A \cap B = \emptyset$, 则(C)
 - (A) A与B互相对立 (B) A与B相互独立 (C) A与B互不相容 (D) A与B相容
 - 2. 设 $X \sim \pi(\lambda)$, 则 $P\{X(X-1)=0\}=(B)$

 - (A) $e^{-\lambda}$ (B) $(1 + \lambda)e^{-\lambda}$ (C) $e^{-\lambda^2}$
- (D) $\lambda e^{-\lambda^2}$
- 3. 设 $X \sim b(m, p), Y \sim b(n, p),$ 且它们相互独立. 则 $X + Y \sim (D)$.
- (A) b(mn, 2p) (B) b(mn, p) (C) b(m + n, 2p) (D) b(m + n, p)
- 4. 若随机变量 $X \sim N(1.9)$, 则 $\frac{\sqrt{DX}}{EX}$ 为(C)
 - (A) $\frac{1}{3}$
- (B) 1/6
- (C) 3
- (D) 9
- 5. 设 X_1, X_2, \dots, X_n 是从总体 $N(\mu, \sigma^2)$ 中抽取的样本, 其中 μ 未知, $\sigma > 0$ 已知. \overline{X} 和 S^2 分别为样本均值和样本方差,则下列各式中能作为统计量的是(D).
 - (A) $\sum_{i=1}^{n} (X_i \mu)^2$

(B) $\frac{(n-1)S^2}{r^2}$

(C) $\frac{\nabla - \mu}{2} \sqrt{n}$

(D) $\frac{\overline{X} - \mu}{S} \sqrt{n}$

四、(10分) 根据以往的经验, 某工厂生产的产品次品率为1%的可能性为0.6, 为2%的可能性则为0.4. 现从该厂的一批产品中随机抽取10件样品.

- 1. (5分) 求这10件样品均为正品的概率;
- 2. (5分) 在经检验10件样品均为正品的条件下,该批产品的次品率为1%,2%的概率分别等于多少?

解1: 记 B_k 为次品率是k%(k=1,2), A为"抽到的10件样品均为正品".

$$P(A) = P(B_1)P(A|B_1) + P(B_2)P(A|B_2)$$
 (2\(\frac{1}{2}\))

$$= 0.6 \times 0.99^{1}0 + 0.4 \times 0.98^{1}0 \tag{2}$$

$$= 0.869458$$
 (1分)

解2:

$$P(B_k|A) = \frac{(B_k)P(A|B_k)}{P(A)} \tag{25}$$

$$P(B_1|A) = \frac{0.6 \times 0.99^{1}0}{0.869458} = 0.6241 \tag{25}$$

$$P(B_2|A) = 1 - 0.6241 = 0.3759 \tag{13}$$

五; (10分) 设随机变量X和Y同分布, 且X的分布密度为

$$f(x) = \begin{cases} kx^2, & 0 < x < 2 \\ 0, & \exists \Sigma \end{cases}$$

- 1. (5分) 求常数k;
- 2. (5分) 如果已知事件 $A = \{X > c\}$ 和 $B = \{Y > c\}$ 相互独立, 且 $P(A \cup B) = \frac{3}{4}$,求常数c.

解1:

$$\int_{-\infty}^{\infty} f(x) dx = k \int_{0}^{2} x^{2} dx$$
 (157)

$$=\frac{8}{3}k \stackrel{\diamondsuit}{=} 1 \qquad (2\mathcal{H}+1\mathcal{H})$$

$$k = \frac{3}{8} \tag{14}$$

解2:

$$P(A \cup B) = P(A) + P(B) - P(AB) = P(A)(2 - P(A)) = \frac{3}{4} \quad (1 / 2 + 1 / 3)$$

$$P(A) = \frac{1}{2} \tag{1}$$

$$i \exists p = P\{X \le c\} = \frac{c^3}{8}, \tag{1分}$$

$$得c = 2^{\frac{2}{3}}.$$

六、(10分)设义与)相互独立,它们的联合分布律为:

X	-1	υ	1	-
-1	18	12	$\frac{1}{2 \cdot i}$	
0 .	32	A	В	

- 1. (5分) 求A, B;
- 2. (5分) 写出Z = X + Y的分布律,

解1: 因为

$$P\{X = -1\} = \frac{1}{8} + \frac{1}{12} + \frac{1}{21} = \frac{1}{4}$$

$$P\{Y = 0\} = A + \frac{1}{12}$$

$$P\{Y = 1\} = B + \frac{1}{24}$$
(25)

于是

$$\begin{cases} \frac{1}{4} \left(A + \frac{1}{12} \right) = \frac{1}{12} \\ \frac{1}{4} \left(B + \frac{1}{24} \right) = \frac{1}{24} \end{cases} \tag{1/2}$$

得
$$A = \frac{1}{4}$$
, $B = \frac{1}{8}$. (1分+1分)

解2: 以下2的取值范围占1分,每个概率各占1分:

Z	-2	-1	0	1
Pi	18	11	7 24	18

七、(10分) 设有两个相互独立的总体 \mathcal{L} 和 \mathcal{L} ,它们的方差均已知,分别为 σ_1^2 和 σ_2^3 两个总体具有相同的均值 μ . 为估计 μ , 现从 $\mathcal L$ 抽出容量为 n_1 的样本, 其均值为 \overline{X} ; 从少抽出容量为72的样本, 其均值为了.

- 1. (5分) 证明对于任意常数a, $\hat{\mu}_a = a\overline{X} + (1-a)\overline{Y}$ 都是 μ 的无偏估计量;
- 2. (5分) 求a使得ûa最有效.

证1:

$$\mathbb{E}(\hat{\mu}_a) = a\mathbb{E}(\overline{X} + (1-a)\overline{Y}) \tag{1}$$

$$= a E(\overline{X}) + (1 - a) E(\overline{Y}) \tag{2}$$

$$= a\mu + (1-a)\mu = \mu \tag{2}$$

解2: $idd(a) = D(\mu_a)$, 则

$$d(a) = a^2 \frac{\sigma_1^2}{n_1} + (1 - a)^2 \frac{\sigma_2^2}{n_2} \tag{2}$$

$$d(a) = a^2 \frac{\sigma_1^2}{n_1} + (1 - a)^2 \frac{\sigma_2^2}{n_2}$$

$$d'(a) = \frac{2\alpha\sigma_1^2}{n_1} - \frac{2(1 - a)\sigma_2^2}{n_2}$$
(257)

$$d^{n}(a) = \frac{2\sigma_{1}^{2}}{n_{1}} + \frac{2\sigma_{2}^{2}}{n_{2}} > 0$$

令
$$d'(a) = 0$$
, 得 $a = \frac{n_1 \sigma_2^2}{n_1 \sigma_2^2 + n_2 \sigma_1^2}$. (1分)

八、(10分)设总体公具有概率密度

$$f(x;\theta) = \frac{1}{2}e^{-|x-\theta|}, \quad -\infty < x < +\infty$$

其中 $\theta > 0$ 为未知参数. 设 (X_1, X_2, \dots, X_n) 为一组简单随机样本.

- 1. (5分) 求θ的矩估计量;
- 2. (3分) 写出 的对数似然函数;
- 3, (24) 就n = 3时, 求0的最大似然估计量.

解1:

$$E(\mathcal{X}) = \frac{1}{2} \int_{-\infty}^{\infty} x e^{-|x-\theta|} dx \tag{2}$$

$$\lim_{n \to \infty} \frac{\theta}{2} \int_{-\infty}^{\infty} (u + \theta) e^{-|u|} du = \theta$$
 (25)

$$\theta = \mathbb{E}(\mathcal{X})$$

$$\hat{\theta}_{M} = \overline{X} \tag{1}$$

解2:

$$L(\theta) = \prod_{i=1}^{n} f(x_i; \theta) \tag{1}$$

$$=\frac{1}{2^n}\exp\left\{-\sum_{i=1}^n|x_i-\theta|\right\} \tag{1}$$

$$l(\theta) = -\sum_{i=1}^{n} |x_i - \theta|$$
或 $l(\theta) = -n \ln 2 - \sum_{i=1}^{n} |x_i - \theta|$

解3: 极大化 $l(\theta)$, 即为极小化 $\sum_{i=1}^{n} |x_i - \theta|$ 对于n = 3. $(X_{(1)}, X_{(2)}, X_{(3)})$ 是次序统计 量. 记 $d_1 = X_{(2)} - X_{(1)}, d_2 = X_{(3)} - X_{(2)}$. 于是

$$\sum_{i=1}^{3} |x_{i} - \theta| = \begin{cases} 2d_{1} + d_{2} + 3(X_{(1)} - \theta). & \theta \leq X_{(1)} \\ d_{1} + d_{2} + (X_{(2)} - \theta). & X_{(1)} < \theta \leq X_{(2)} \\ d_{1} + d_{2} + (\theta - X_{(2)}). & X_{(2)} < \theta \leq X_{(3)} \\ d_{1} + 2d_{2} + 3(\theta - X_{(3)}). & \theta > X_{(3)} \end{cases}$$

$$\hat{\theta}_{i} = X_{(2)}$$

$$(15)$$

$$\hat{\theta}_L = X_{(2)}$$

注: 没有过程只给结果, 得1分.

九、(10分) 某实验室对一批建筑材料进行抗断强度试验,已知这批材料的抗断强度 $\mathcal{Z} \sim N(\mu, \sigma^2)$. 现从中抽取容量为16的样本,计算出样本平均值 $\bar{x}=502.92$,以及样本标准差s=12. (附: $\chi^2_{0.076}(15)=6.26$, $\chi^2_{0.026}(15)=27.49$, $t_{0.06}(15)=1.75$)

- 1. (5分) 求σ的置信度为95%的区间估计;
- 2. (5分) 在 $\alpha = 0.05$ 水平下, 能否认为该批材料的平均强度 $\mu > 500$?

解1: σ 的1 - α 的置信区间为:

$$\left[\sqrt{\frac{(n-1)S^2}{\chi^2_{\alpha/2}(n-1)}}, \sqrt{\frac{(n-1)S^2}{\chi^2_{1-\alpha/2}(n-1)}}\right]$$
 (2 $\%$)

$$= \left[\sqrt{\frac{15 \times 12^2}{27.49}}, \sqrt{\frac{15 \times 12^2}{6.26}} \right]$$

$$= \left[\sqrt{78.574}, \sqrt{345.048} \right]$$
(2 $\%$)

$$= [8.8642, 18.5755]$$
 (1 $\%$)

注: 如果没有开根号, 所得结果是σ2的区间估计, 则扣1分.

解2: 建立假设检验问题:

$$H_0: \mu \le 500, H_1: \mu > 500$$
 (1分)

利用t检验法, 对于给定的显著性水平 $\alpha = 0.05$, 查表得拒绝域为

$$W = \{t | t > t_{\alpha}(n-1) = t_{0.05}(15) = 1.75\}$$
 (1分)

ΠD

$$t = \frac{\bar{x} - \mu_0}{\epsilon} \sqrt{n} \tag{1}$$

$$=\frac{502.92-500}{12}\sqrt{16}=0.9733<1.75$$

所以接受H₀, 即总体均值μ仍然没有超过500. (1分)

上海大学 2011	2012	兴左	エル	未出加出来
上海入子 2011	2012	子牛	伙	季学期试卷

课程名: 概率论与数理统计 A (答案) 课程号 01014016 学分: 5 应试人声明:

我保证遵守《上海大学学生手册》中的《上海大学考场规则》,如有考试违纪、作 弊行为,愿意接受《上海大学学生考试违纪、作弊行为界定及处分规定》的纪律处分

应试人所在院系

题号	 =	11	四	五	六	七	八	九	+
得分									

- 一、填充题 (每格 2 分, 共 20 分)
- 1. 已知 P(A) = 0.5, P(B) = 0.6, P(B|A) = 0.8, 则 $P(A \cup B) = 0.7$, P(A B) = 0.1
- 2. 设X₁~N(1,2),X₂~N(0,3),X₃~N(2,1),相互独立,则2X₁+3X₂-X₃~N(0,36)

$$P\{0 \le 2X_1 + 3X_2 - X_3 \le 6\} = 0.3413$$

- 3. 设随机变量 X 的概率密度函数为 $f(x) = Ce^{-x^2+x}, -\infty < x < +\infty$, $C = e^{-azz} \pi^{-0.5} = \frac{1}{4c\sqrt{c}}$
- 4. X 的分布律

 4474 444	*	11 2	
X	-1	1	3
Pk	0.3	0.5	0.2

5. 设随机变量 X_1, X_2, \dots, X_n 独立同分布, $EX_1 = \mu$, $DX_1 = 8$, 记 $Y_n = \frac{1}{n} \sum_{i=1}^{n} X_i$, 则用

切比雪夫不等式估计 $P(|Y_n - \mu| < 2) \ge 1 - \frac{2}{n}$.

6. 设总体 X 与 Y 相互独立,且 $X \sim N(\mu_1, \sigma_1^2), Y \sim N(\mu_2, \sigma_2^2), X_1, X_2, \dots, X_n$ 为来自 总体X的样本, $Y_1,Y_2,...,Y_n$ 为来自总体Y的样本.则

$$Z = \overline{X} + \overline{Y} \sim N(\mu_1 + \mu_2, \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}).$$

7. 设 X_1, X_2, \dots, X_n 是来自 $N(\mu, \sigma^2)$ 的样本, \overline{X}_1, S^2 分别表示样本均值和样本方差,则 μ 未知时, σ^2 的 置信水平为 $1-\alpha$ 的双侧置信区间为

$$\left(\frac{(n-1)S^2}{\chi_{\frac{n}{2}}^2(n-1)},\frac{(n-1)S^2}{\chi_{\frac{n}{2}-\frac{n}{2}}^2(n-1)}\right)_{-----}.$$

- 8. 要检验两个正态总体的方差是否相等,可以用___F___检验法。
- 二、单选题(每格2分,共10分)
- 1. 设 $X \sim N(\mu, 4^2), Y \sim N(\mu, 5^2)$, 记 $p_1 = P\{X \le \mu 4\}, p_2 = P\{Y \ge \mu + 5\}$, 则(A)
 - (A)对任何实数 μ ,都有 $p_1 = p_2$; (B)对任何实数 μ ,都有 $p_1 < p_2$;
 - (C)只对个别 μ , 才有 $p_1 = p_2$; (D)对任何实数 μ , 都有 $p_1 > p_2$;
- 2. 设A和B任意两个概率非零的不相容事件,则(D).
 - (A) A 的逆事件与 B 的逆事件不相容;
- (B) P(AB) = P(A)P(B)
- (C) A 逆事件与 B 的逆事件相互独立; ; (D) P(A-B)=P(A).
- 3. 设总体 X 的方差为 σ^2 , $(X_1, X_2, ..., X_n)$ 是来自 X 的样本,则(C).
 - (A) S是o的无偏估计量; (B) S是o的最大似然估计量;
 - (C)S是 σ 的相合估计量; (D)S与 \overline{X} 独立.
- 4. 设 μ_n 是 n 次独立重复试验中事件 A 出现的次数,p 是事件 A 在每次试验中发生的概
 - 率,则对于任意的 $\varepsilon > 0$,均有 $\lim_{n \to \infty} P\{|\frac{\mu_n}{n} p| > \varepsilon\}$ (A
 - (A) = 0

(C) > 0

- (D) 不存在
- 5. 对正态总体的数学期望 μ 进行假设检验,如果在显著水平 0.05 下接受 $H_{i}: \mu = \mu_{0}$, 那么在显著水平 0.01 下,下列结论中正确的是(D)
 - (A) 不接受, 也不拒绝 &
- (B) 可能接受 K, 也可能拒绝 K

(C) 必拒绝 K

(D) 必接受 H

三、数字通讯过程中,信号源发射 0、1 两种信号。其中发 0 的概率为 0.55,发 1 的概率为 0.45。由于信道中存在干扰,在发 0 的时候,接收端分别以概率 0.9、0.05 和 0.05 接收为 0、1 和 "不清"。在发 1 的时候,接收端分别以概率 0.85、0.05 和 0.1 接收为 1、0 和 "不清"。现接收端接收到一个"1"的信号,问发射端发出的是"0"的概率是多少。 $(8\,\%)$

解: 设事件 A: 发射端发出 "0"; 事件 B: 接收端收到 "1"。 (1分)

$$P(A) = 0.55,$$
 (1 $\%$), $P(B|A) = 0.05,$ (1 $\%$) $P(B|\bar{A}) = 0.85,$ (1 $\%$)
 $P(\bar{A}) = 0.45,$ (1 $\%$)

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B \mid A)P(A) + P(B \mid \overline{A})P(\overline{A})} = \frac{0.05 \times 0.55}{0.05 \times 0.55 + 0.85 \times 0.45}$$

$$(1 \%) \qquad (1 \%)$$

$$= 0.067 \qquad (1 \%)$$

四、设(X,Y)的联合分布律为:

Y	X	1	2]`
1		1/8	3/8	
2		1/12	A	
3		1/24	В	

- (1) 确定数 A, B, 使随机变量 X 与 Y 相互独立。(5分)
- (2) 求 $U = \max(X, Y)$ 的分布律。(3分)

解: (1)
$$\frac{1}{8} + \frac{3}{8} + \frac{1}{12} + A + \frac{1}{24} + B = 1$$
 ①(1分)

$$P(X=1) = \frac{1}{8} + \frac{1}{12} + \frac{1}{24}, \quad P(Y=2) = \frac{1}{12} + A \quad (1分),$$

X,Y 独立,:
$$P(x=1,y=2) = P(x=1) \cdot P(y=2) \Rightarrow \frac{1}{12} = \left(\frac{1}{8} + \frac{1}{12} + \frac{1}{24}\right) \cdot \left(\frac{1}{12} + A\right)$$
 ②(1分)

综合①②有:
$$A = \frac{1}{4}$$
 (1分) $B = \frac{1}{8}$ (1分)

(2) 每个数字0.5分

(2)	1 32 7 010 7	<u>, </u>		
U	1	2	3	
p _k	1/8	17/24	1/6	

五、设随机变量
$$(X,Y)$$
的概率密度为 $f(x,y) = \begin{cases} \frac{1}{25} \left(\frac{20-x}{x}\right) & 10 \le x \le 20, \frac{x}{2} \le y \le x \\ 0 &$ 其它

求(1) $f_X(x)$; (3分) (2) 求条件概率密度 $f_{Y|X}(y|x)$ (4分) (3) 求x = 12时,

Y的条件概率密度。(1分)

解: (1)
$$10 < x < 20$$
时, $f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy = \int_{\frac{x}{2}}^{x} \frac{1}{25} \frac{20 - x}{x} dy = \frac{1}{50} (20 - x)$

$$f_X(x) = \begin{cases} \frac{1}{50}(20 - x) & 10 < x < 20\\ 0 & \text{其它} \end{cases}$$
 (1 $\%$)

(2)

10 < x < 20时,条件概率密度 $f_{Y|X}(y|x)$ 存在。 (1分

$$| f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)} = \begin{cases} \frac{1}{\frac{2}{35}} \frac{2^{2D-X}}{x} = \frac{2}{x} & \frac{x}{2} < y < x \\ \frac{1}{50} (20-x) = \frac{2}{x} & \frac{x}{2} < y < x \end{cases}$$
 (1 分)

(公式1分)

(3) 当x = 12时,Y的条件概率密度函数为

$$f_{Y|X}(y|12) = \begin{cases} \frac{1}{6} & 6 < y < 12 \\ 0 & 其它 \end{cases}$$
 (1分)

六、设随机变量 $X \sim N(\mu, \sigma^2)$, 求 $Y = e^{2X}$ 的概率密度函数。(8分)

 $解: y = e^{2x}$ 是严格增函数,仅在 $(0, +\infty)$ 上取值。反函数为 $h(y) = \frac{1}{2} \ln y$, $h'(y) = \frac{1}{2y}$ (1分)

 $y \le 0$ 时, $F_Y(y) = 0$, 从而 $f_Y(y) = 0$. (1分)

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) \qquad (1 \ \%)$$

$$y > 0$$
 时, $f_Y(y) = f_X(h(y))|h'(y)| = \frac{1}{2\sqrt{2\pi}\sigma y} exp\left(-\frac{(\ln y - 2\mu)^2}{8\sigma^2}\right)$

$$(1 分) \qquad (2 分)$$

七、商店销售某种商品,每出售一公斤可获利a元,如果未售完,则余下商品每公斤净亏损 $\frac{2}{3}$ α 元。假设该商品需求量X服从区间[0,100]上的均匀分布。为使商店获得最

大的期望利润,商店应贮备该商品多少公斤? (10分)解:设贮备该商品 s公斤,则利润

$$Y = f(X) = \begin{cases} as, & X > s \\ aX - \frac{2}{3}a(s - X), & 0 \le X < s \end{cases}$$
 (25)

$$EY = Ef(X) = \int_0^1 \left(\frac{5}{3}ax - \frac{2}{3}as\right) \frac{1}{100}dx + \int_1^{100} as \frac{1}{100}dx$$
 (2 分 + 2 分)

$$= \frac{1}{100} \left[-\frac{5}{6} as^2 + 100 as \right]$$
 (2 \(\frac{1}{2}\)\(\frac{1}{2}\)

EY 最大, s=60 (公斤) (2分)

八、某元件的寿命服从均值为 100 小时的指数分布。现随机取 16 个,设它们的寿命 是相互独立的。用中心极限定理求这 16 个元件的寿命总和大于 1920 小时的概率。(8 分)

解: 设 X_i 为第 i 个元件的寿命, $i=1,2,\cdots,16$, $E(X_i)=100$ $D(X_i)=10000$

(1分)

 $X = \sum_{i=1}^{16} X_i$ 表示 16 个元件的寿命总和,

$$E(X) = 16 \times 100 = 1600, \quad D(X) = 16 \times 10000 = 160000$$

$$(1 \%) \qquad (1 \%) \qquad (1 \%)$$

$$P(\sum_{i=1}^{16} X_i \ge 1920) = P\left(\frac{X - 1600}{\sqrt{160000}} \ge \frac{1920 - 1600}{\sqrt{160000}}\right) \qquad (1 \%)$$

$$= 1 - P\left(\frac{X - 1600}{400} < \frac{320}{400}\right) \qquad (1 \%)$$

$$\approx 1 - \Phi(0.8) \qquad (1 \%)$$

$$= 1 - 0.7881 \qquad (1 \%)$$

$$= 0.2119 \qquad (1 \%)$$

九、已知随机变量 X 的密度函数为 $f(x) = \begin{cases} (\theta+1)(x-5)^{\theta} & 5 < x < 6 \\ 0 & \text{其他} \end{cases}$

其中 θ 为未知参数,求 θ 的矩估计量与极大似然估计量. (10 分)

$$EX = \int_{5}^{6} x(\theta+1)(x-5)^{\theta} dx = \int_{5}^{6} x d(x-5)^{\theta+1} = 6 - \int_{5}^{6} (x-5)^{\theta+1} dx = 6 - \frac{1}{\theta+2}$$
(1分) (1分) (1分)

(2) 极大似然估计法

似然函数
$$L(\theta) = \prod_{i=1}^{n} f(x_i; \theta) = (\theta + 1)^n \prod_{i=1}^{n} (x_i - 5)^{\theta}$$
, (1分)

$$\ln L(\theta) = n \ln(1+\theta) + \theta \sum_{i=1}^{n} \ln(x_i - 5)$$
 (1 分)

$$\frac{d\ln L(\theta)}{d\theta} = \frac{n}{1+\theta} + \sum_{i=1}^{n} \ln(x_i - 5) = 0$$
(1 \(\frac{\frac{1}}{2}\))

$$\theta$$
的极大似然估计量为 $\hat{\theta} = -\frac{n}{\sum_{i=1}^{n} \ln(X_i - 5)} - 1$ (1分)

+, (3)
$$H_0: \sigma^2_B < 17.66^2 = 311.8756$$
 $H_1: \sigma^2_B \ge 17.66^2 = 311.8756$

检验统计量为 $\chi^2 = \frac{(n-1)S^2}{311.8756}$, 拒绝域为 $\chi^2 \ge \chi^2_{0.05}(n-1)$, $\chi^2_{0.05}(13) = 22.362$

经计算, $\chi^2 = 2.4768$, 不在拒绝域内, 故接受 H_0 , 认为B类基金的方差小于A类基

即B类基金的风险较小。投资B类基金较好。

(计算x²值1分, 查表1分, 最后结论1分)

十、有 A 和 B 两类投资基金,都以最近 3 年为计算周期, A 类基金的年投资回报率的 質 术平均数和标准差分别是 27,00%和 17,66%。抽取 14 家 B 类基金,它们的年投资回报率 的数据如下:

B 类投资基金	X, (%)	B类投资基金	X, (%)
1	31. 50	8	20. 72
2	12. 46	9	13.80
3	9. 77	10	21. 49
4	22. 47	11	11. 35
5	18. 47	12	17. 48
. 6	15. 47	13	18. 61
7	38. 16	14	18. 37

- (1) 求 B 类投资基金年投资回报率的样本均数和样本方差,并求 B 类投资基金年投资回 报率算术平均数和方差的估计值。(4分)
- (2) 如果希望得到较大的平均收益,应该投资哪类基金?用假设检验的方法说明理由, $(\alpha = 0.05)(3 分)$
- (3) 从收益的波动的角度考虑风险,希望风险较小,应该投资哪类基金?用假设检验的 方法说明理由。(α = 0.05)(3分)

解: (1)
$$\bar{x}$$
 =19.29429, (1分) $S^2 = 59.42083$, . (1分)

算术平均数的估计值为 19. 29429. (1分)方差的估计值 59. 42083 (1分)

(2) H_0 : $\mu_B < 27$, H_1 : $\mu_B \ge 27$

检验统计量为
$$t = \frac{R-27}{\frac{S}{\sqrt{n}}}$$
, 拒绝域为 $t \ge t_{0.05}(n-1)$, $t_{0.05}(13) = 1.7709$

经计算,t=-3.74031,不在拒绝域内,故接受 H_0 ,认为B类基金的平均收益小于A类基 金。投资 A 类基金较好。

(计算 t 值 1 分, 查表 1 分, 最后结论 1 分)

(3) 见左

		:		标准	正态分	布表				
z	0	1	2	3	4	5	6	7	8	
0,2	0.5793	0.5832	0.7201	0.591	0.7227	0,5987	0,7253	0,6064	0.7279	0,614
0,3	0.6179	0,6217	0,7329	0,6293	0.7354	0.6368	0.7379	0,6443	0.7403	0,651
0.4	0.6554	0.6591	0.7451	0.6664	0.7474	0.6736	0.7497	0.6808	0,752	0.687
0,5	0,6915	0,695	0,7565	0.7019	0,7586	0,7088	0.7608	0.7157	0.7629	0.722
0.6	0,7257	0,7291	0,7324	0,7357	0.7389	0,7422	0.7454	0.7486	0.7517	0.754
0.7	0.758	0.7611	0.7642	0.7673	0.7704	0.7734	0,7764	0.7794	0.7823	0,785
0.8	0.7881	0,791	0.7939	0.7967	0,7995	0,8023	0,8051	0.8078	0.8106	0,813
0.9	0.8159	0,8186	0.8212	0.8238	0.8264	0,8289	0,8315	0,834	0,8365	0,838
1	0.8413	0,8438	0,8461	0.8485	0.8508	0.8531	0.8554	0,8577	0,8599	0,862
1.1	0.8643	0,8665	0.8686	0.8708	0,8729	0.8749	0,877	0,879	0.881	0,88
1,2	0.8849	0.8869	0,8888	0,8907	0,8925	0.8944	0,8962	0,898	0,8997	0,901
1,3	0.9032	0,9049	0,9066	0,9082	0,9099	0.9115	0.9131	0.9147	0.9162	0,917
1.4	0.9192	0.9207	0,9222	0,9236	0,9251	0,9265	0.9279	0.9292	0,9306	0,931
1.5	0.9332	0.9345	0.9357	0.937	0,9382	0,9394	0,9406	0,9418	0.9429	0.944
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0,9505	0.9515	0.9525	0,9535	0.954
1.7	0.9554	0.9564	0,9573	0.9582	0.9591	0.9599	0.9608	0,9616	0,9625	0,963

t 分布表

		1 分中衣		
n	α=0.1	0.05	0.025	0.01
11	1.3634	1.796	2.201	2.718
12	1.3562	1.782	2.179	2.681
13	1.3502	1.771	2,16	2,65
14	1,345	1.761	2.145	2.624
15	1,3406	1.753	2.131	2,602
16	1.3368	1.746	2.12	2.583

γ²分布表

	i .	7	λ // '	11:45		
n	α=0.99	0.975	0.95	0.1	0.05	0.025
11	3.053	3.816	4.575	17.275	19.675	21.92
12	3.571	4.404	5.226	18.549	21.026	23,337
13	4.107	5.009	5.892	19.812	22,362	24.736
14	4.66	5.629	6.571	21,064	23.685	26.119
15	5.229	6.262	7.261	22.307	24.996	27.488
16	5,812	6.908	7.962	23.542	26.296	28.845

草稿组

2009~2010 学年春季学期概率论与数理统计 A 试卷

一、是非题

- 1. 不可能事件与任何事件既互不相容又相互独立。()
- 2. 设 $F(x) = P\{X \le x\}$, 那么 $P\{X < x\} = F(x-0)$. ()
- 3. 如果 (X,Y) 服从二维均匀分布,则X,Y 也必分别服从一维均匀分布。()
- 4. 对于任何随机变量 X, 必存在有限数学期望 E(X). ()
- 5. 设 (X_1, X_2, X_3, X_4) 为来自正态总体的样本,设 $Y = (X_1 X_2)^2 + (X_3 X_4)^2$,则必 存在常数 C, 使得 $CY \sim \chi^2(2)$. ()

二、填空题

- 出现一次正面"发生的概率为 .
- 2. P(B) = 0.6, P(B-A) = 0.4, MP(AB) = P(A|B) = 0.4
- 3, 设 X 服从参数为 λ 的 Poisson 分布、且已知 E[(X-1)(X-2)]=1. 则 λ= $P\{|X-1| \le 1\} =$
- 4. 设离散型随机变量 X 与 Y 独立同分布, 分布律为 $P(X = k) = p_k (k = 1, 2, \cdots)$, 则 P{X=Y}=_____; 若连续型随机变量 X 与 Y 独立同分布, 则 P{X=Y}=_____
- 5. 设 X_1, X_2, \dots, X_n 相互独立,且具有相同的均值和方差: $E(X_i) = \mu, D(X_i) = \sigma^2$,则

对任意 $\epsilon > 0$,由 Chebyshev 不等式, $P\left\{\frac{1}{n}\sum_{i=1}^{n}X_{i} - \mu\right| \geq \epsilon\right\} \leq \underline{\hspace{1cm}};$ 而

$$\lim_{n\to\infty} P\left\{ \left| \frac{1}{n} \sum_{i=1}^{n} X_i - \mu \right| \ge \varepsilon \right\} = \underline{\qquad}.$$

三、选择题

- 1. 如果 P(A|B) = P(B|A), 且 P(AB) > 0, 则().
 - (A) A = B

(B) P(A) = P(B)

(C) A, B 相互独立

- (D) $A \cup B = S$
- 2. 已知随机变量 X 服从均值为 $\frac{1}{\lambda}$ 的指数分布,则 $\frac{E(X)}{\sqrt{D(X)}}$ 等于().
- (A) λ
- (B) $\frac{1}{1}$ (C) $\frac{1}{2}$
- (D) 1
- 3. 设 μ, 是 n 次独立重复试验中事件 A 发生的次数, p 是事件 A 在每次试验中发生的概
- 率,则 $\forall \varepsilon > 0$,均有 $\lim_{n \to \infty} P\left\{ \left| \frac{\mu_n}{n} p \right| < \varepsilon \right\} = ($).
 - (A) 0
- (C) p
- (D) 1-p

4. 设 $\hat{\theta}$, 与 $\hat{\theta}$, 均是 θ 的无偏估计量, 则().

(A) $E[(\hat{\theta}_{1} - \hat{\theta}_{2})]^{2} = 0$

(B) $D(\hat{\theta}_i) = D(\hat{\theta}_i)$

(C) $E(\hat{\theta}_1 - \hat{\theta}_2) = 0$

(D) $E\left(\frac{\hat{\theta}_1}{\hat{\theta}_1}\right) = 1$

5. 对于假设检验问题: H_0 : $\theta = \theta_0$, H_1 : $\theta \neq \theta_0$, 第二类错误即为().

- (A) H_0 为真却拒绝 H_0
- (B) H_{o} 为假却接受 H_{o}

(C) 总是拒绝 H。

(D) 总是接受 H。

四、玻璃杯成箱出售, 每箱 10 只. 已知各箱中残次品个数为 0, 1, 2 的概率分别为 0.8, 0.15、 0.05. 现有一顾客欲购一箱玻璃杯, 售货员任意取一箱, 顾客开箱随机地检验一只, 若不是 残次品, 顾客则买下该箱玻璃杯, 试求:

- 1. 顾客买下该箱玻璃杯的概率:
- 2. 在顾客买下的一箱玻璃杯中, 确实无残次品的概率

五、设随机变量 X 的密度函数为

$$f(x) = ce^{-|x|}, -\infty < x < +\infty$$

求;

- 常数c;
- 2. X 的分布函数:
- 3. X 的值落在(-1,1) 内的概率;
- 4. 求 $Y = X^2$ 的概率密度函数 $f_{\nu}(\nu)$.

六、设 A, B 为随机事件,且 $P(A) = \frac{1}{4}$, $P(B|A) = \frac{1}{2}$, $P(A|B) = \frac{1}{2}$, 令

$$X = \begin{cases} 1, & A \text{ 发生} \\ 0, & A \text{ 不发生} \end{cases} Y = \begin{cases} 1, & B \text{ 发生} \\ 0, & B \text{ 不发生} \end{cases}$$

- 1. 求二维随机变量(X,Y)的分布律(列表):
- 2. 计算 X 与 Y 的协方差.

七、设总体 X 具有概率密度

$$f(x; \beta) = \begin{cases} \beta(1-x)^{\beta-1}, & 0 < x < 1 \\ 0, & \text{ 其他} \end{cases}$$

其中 $\beta > 0$ 为未知参数、设 (X_1, X_2, \dots, X_n) 为一组简单随机样本、试求:

- 1. β 的矩估计量;
- 2. β的最大似然估计量.

八、设总体 $X \sim N(\mu, \sigma^2)$,现从该总体抽取一组容量为 40 的样本,算得样本均值 $\frac{1}{x} = 4.3082$,样本标准差 $\frac{1}{x} = 1.8537$.

- 1. 求σ的置信度为95%的区间估计;
- 2. 在 $\alpha = 0.05$ 水平下, 能否认为总体均值 μ 仍然没有超过 4?

2009~2010 学年春季学期 概率论与数理统计 A 参考答案

一、是非题

1. 对; 2. 对; 3. 错; 4. 错; 5. 又

二、填空歷

1.
$$\{TT, TH, HT, HH\}; \frac{3}{4};$$

2.
$$0.2$$
; $\frac{1}{3}$;

3. 1;
$$\frac{5}{2}e^{-1}$$
;

4.
$$\sum_{k=1}^{+\infty} p_k^2$$
; 0;

5.
$$\frac{\sigma^2}{n\varepsilon^2}$$
; 0.

三、选择题

1, B; 2, D; 3, B; 4, C; 5, B,

四、玻璃杯成箱出售, 每箱 10 只. 已知各箱中残次品个数为 0, 1, 2 的概率分别为 0.8, 0.15, 0.05. 现有一顾客欲购一箱玻璃杯, 售货员任意取一箱, 顾客开箱随机地检验一只, 若不是 残次品, 顾客则买下该箱玻璃杯. 试求:

- 1. 顾客买下该箱玻璃杯的概率;
- 2. 在顾客买下的一箱玻璃杯中, 确实无残次品的概率.

解: 1. 记 B_k 为箱中有k个残次品(k=0,1,2,3), A为"顾客买下该箱玻璃杯".

$$P(A) = \sum_{k=0}^{3} P(B_k) P(A \mid B_k) = 0.8 \times 1 + 0.15 \times 0.9 + 0.05 \times 0.8 = 0.975;$$

2.
$$P(B_0 \mid A) = \frac{P(B_0)P(A \mid B_0)}{P(A)} = \frac{0.8}{0.975} = 0.8205$$
.

五、设随机变量 X 的密度函数为

$$f(x) = ce^{-|x|}, -\infty < x < +\infty.$$

求

- 1. 常数c;
- 2. X的分布函数;

- 3. X 的值落在 (-1, 1) 内的概率;
- 4. 求 $Y = X^2$ 的概率密度函数 $f_Y(y)$.

解: 1.
$$1 = \int_{-\infty}^{+\infty} f(x) dx = c \int_{-\infty}^{+\infty} e^{-|x|} dx = 2c \int_{0}^{+\infty} e^{-x} dx = 2c$$
, $c = \frac{1}{2}$;

$$2. F(x) = \int_{-\infty}^{x} f(u) du$$

当
$$x < 0$$
 时, $F(x) = \frac{1}{2} \int_{-\infty}^{x} e^{u} du = \frac{1}{2} e^{x}$;

当 x ≥ 0 时,
$$F(x) = \frac{1}{2} + \frac{1}{2} \int_0^x e^{-u} du = 1 - \frac{1}{2} e^{-x}$$
;

3.
$$P\{-1 < X < 1\} = F(1) - F(-1) = 1 - \frac{1}{2}e^{-1} - \frac{1}{2}e^{-1} = 1 - e^{-1};$$

4.
$$F_Y(y) = P\{Y \le y\}$$
.

当
$$y > 0$$
 时, $F_y(y) = P\{X^2 \le y\} = P\{-\sqrt{y} \le X \le \sqrt{y}\}$

$$= F(\sqrt{y}) - F(-\sqrt{y}) = 2F(\sqrt{y}) - 1,$$

$$f_r(y) = F'_r(y) = \frac{f(\sqrt{y})}{\sqrt{y}} = \frac{1}{2\sqrt{y}} e^{-\sqrt{y}};$$

当
$$y \le 0$$
时, $f_v(y) = 0$.

六、设 A, B 为随机事件,且 $P(A) = \frac{1}{4}$, $P(B|A) = \frac{1}{2}$, $P(A|B) = \frac{1}{2}$, 令

$$X = \begin{cases} 1, & A 发生 \\ 0, & A 不发生 \end{cases} Y = \begin{cases} 1, & B 发生 \\ 0, & B 不发生 \end{cases}$$

- 1. 求二维随机变量(X,Y)的分布律;
- 2. 计算 X 与 Y 的协方差.

解: 1.
$$P\{X=1\} = P(A) = \frac{1}{A}$$
,

$$P(X = 1, Y = 1) = P(AB) = P(A)P(B \mid A) = \frac{1}{6}$$

$$P{Y = 1} = P(B) = \frac{P(AB)}{P(A|B)} = \frac{1}{4}.$$

2.
$$E(X) = \frac{1}{4}$$
, $E(Y) = \frac{1}{4}$, $E(XY) = \frac{1}{8}$,

$$Cov(X, Y) = E(XY) - E(X)E(Y) = \frac{1}{16}$$
.

Y	0	1	<i>p_{t.}</i>
-1	<u>5</u> 8	1/8	3 4
1	1/8	<u>1</u> 8	<u>1</u> 4
$p_{.j}$	$\frac{3}{4}$	<u>1</u> 4	,

七、设总体 X 具有概率密度

$$f(x; \beta) = \begin{cases} \beta(1-x)^{\beta-1}, & 0 < x < 1\\ 0, & 其他 \end{cases}$$

其中 $\beta > 0$ 为未知参数. 设 (X_1, X_2, \dots, X_n) 为一组简单随机样本, 试求:

- β 的矩估计量;
- 2. β的最大似然估计量。

解: 1.
$$E(X) = \int_0^1 \beta x (1-x)^{\beta-1} dx = \frac{1}{\beta+1}, \quad \beta = \frac{1-E(X)}{E(X)},$$

$$\beta \text{ 的矩估计量 } \hat{\rho}_M = \frac{1-\overline{X}}{E(X)};$$

2. 记(x₁, x₂, ···, x_n) 为样本观测值,

$$L(\beta) = \prod_{i=1}^{n} f(x_i; \beta) = \beta^n \left(\prod_{i=1}^{n} (1 - x_i) \right)^{\beta - 1},$$

$$l(\beta) = n \ln \beta + (\beta - 1) \sum_{i=1}^{n} \ln(1 - x_i),$$

$$l'(\beta) = \frac{n}{\beta} + \sum_{i=1}^{n} \ln(1 - x_i) = 0$$
,

$$\beta$$
的最大似然估计值 $\hat{\beta}_L = -\frac{n}{\sum_{i=1}^{n} \ln(1-x_i)}$.

$$\beta$$
的最大似然估计量 $\hat{\beta}_L = -\frac{n}{\sum_{i=1}^{n} \ln(1-X_i)}$.

八、设总体 $X\sim N(\mu,\sigma^2)$. 现从该总体抽取一组容量为 40 的样本,算得样本均值 x=4.3082,样本标准差s=1.8537

- 1. 求σ的置信度为95%的区间估计;
- 2. 在 $\alpha = 0.05$ 水平下,能否认为总体均值 μ 仍然没有超过47

解: 1.
$$\sigma$$
 的 $1-\alpha$ 的 置信区间为 $\left[\sqrt{\frac{(n-1)S^2}{\chi^2_{al2}(n-1)}}, \sqrt{\frac{(n-1)S^2}{\chi^2_{1-al2}(n-1)}}\right]$

查表得
$$\chi^2_{0.05/2}(40-1) = 58.1201$$
, $\chi^2_{1-0.05/2}(40-1) = 23.6543$,

于是置信区间为
$$\left[\sqrt{\frac{39 \times 1.8537^2}{58.1201}}, \sqrt{\frac{39 \times 1.8537^2}{23.6543}}\right]$$

即[1.5185, 2.3802].

2. 建立假设检验问题:

$$H_0: \mu \le 4, H_1: \mu > 4.$$

利用 / 经验法,对于给定的显著性水平 $\alpha=0.05$,查表得拒绝域为

$$W = \{t \mid t > t_{\alpha}(n-1)\} = \{t \mid t > t_{0.05}(39)\} = \{t \mid t > 1.6849\}.$$

int

$$t = \frac{\bar{x} - \mu_0}{s} \sqrt{n} = \frac{4.3082 - 4}{1.8537} \cdot \sqrt{40} = 1.0515 < 1.6849,$$

所以接受 H₀, 即总体均值 μ 仍然没有超过 4.

上海大学 2008 ~ 2009 年度 秋 季学期试卷

成绩	
项	

课程名: 概率论与数理统计A 课程号: 01014016 学分: 5 应试人声明:

我保证遵守《上海大学学生手册》中的《上海大学考场规则》,如有考试违纪、作 弊行为,愿意接受《上海大学学生考试违纪、作弊行为界定及处分规定》的纪律处分。

立试人	·	

应试人学号 应试人所在院系

题号	 -1	Ξ	四	五	六	七	八
得分							

一、(20分) 填空题(每格2分)

- 1. 一口袋中有5个小球, 其中有2个白球和3个是黑球. 现有从中取两次球, 每次取 一个. 如果是无放回地取,则取到一黑一白的概率为: 3. 如果是有放回地取, 则取到黑白各一球的概率为: 26.
- 3. 如果 $X \sim \pi(3)$, 那么 $P\{X > 1\} = 1 4e^{-3}$; $E(|X|^2) = 12$.
- 4. 设随机变量序列 $X_1, X_2, \cdots, X_{100}$ 相互独立, 且每个 X_i 的分布率均为: $P\{X =$ -1 = $P\{X = 1\} = 1/2$. 根据中心极限定理, 对于适当的a和b, 可以使 得 $\frac{\sum_{i=1}^{100} X_i - a}{b}$ 近似地服从N(0,1),则a = 0,b = 10.
- 5. 已知X, Y, Z独立同分布于 $N(0, \sigma^2)$, 那么 $\frac{X+Y}{\sqrt{2}|Z|} \sim \underline{t(1)}$; 为使 AX^2 服从 χ^2 分布, 则 $A = \frac{1}{62}$.
- 二、(10分) 判别题(请在每个问题后的括号中填入 ✓ 或 🗸 每小题2分)
 - 1. 如果P(A) > 0, 那么总有 $P(A B|A) = P(\bar{B}|A)$. (🗸)
 - 2. 设F(x)为随机变量X的概率分布函数, 那么 $P\{a \leq X \leq b\} = F(b) F(a^-)$. **(/)**

- 3. 二维正态分布的边缘分布可能不是正态分布.(X)
- 4. 如果X与Y的相关系数等于0, 那么X与Y必相互独立. (X)
- 5. 当样本容量n及置信度 α 固定时, 未知参数的置信区间是唯一确定的. (X)
- 三、(10分) 选择题(请在每个问题后的括号中填入 A, B, C 或 D. 每小题2分)
 - 1. 如果0 < P(A) < 1, 且P(B|A) = P(B), 则(B)
 - (A) $A \subset B$ (B) $A \ni B$ 相互独立 (C) $A \ni B$ 互不相容 (D) A = B
 - 2. 设F(x,y)分别为随机向量(X,Y)的分布函数,则 $P\{X>a,Y>b\}=(C)$.

 - (A) 1 F(a, b) (B) $1 F(a, +\infty) F(+\infty, b)$
 - (C) $1 F(a, +\infty) F(+\infty, b) + F(a, b)$
 - (D) $F(a, +\infty) + F(+\infty, b) F(a, b)$
 - 3. 二维随机变量 $(X,Y) \sim N(0,0,2,4,0)$, 则 $P\{\max(X,Y) \leq 0\}$ 等于(B).
 - (A) $\frac{1}{2}$
- (B) $\frac{1}{4}$
- (C) $\frac{1}{8}$
- (D) 0
- 4. 设 (X_1, X_2, \dots, X_n) 为取自均匀分布总体 $U(\alpha, \beta)$ 的一组样本, 其中 α 已知, β 未 知. 则(A)不是统计量.
 - (A) $\beta \max(X_1, \dots, X_n)$ (B) $\min(X_1, \dots, X_n) \alpha$
 - (C) $(\min(X_1, \dots, X_n), \max(X_1, \dots, X_n))$
 - (D) $\max(X_1, \dots, X_n) \min(X_1, \dots, X_n)$
- 5. 设 α 和 β 分别为一个假设检验问题犯第I类和第II类错误的概率. 如果降低 α , 则 β 将 相应(C).
 - (A) 降低 (B) 不变 (C) 提高 (D) 不确定
- 四、(10分) 盒子中装有5支笔, 其中3支是新的, 其余两支是用过的. 第一次从盒中 任取两支使用, 用后仍放回盒中. 第二次再从盒中任取两支,
 - 1. (5分) 求第二次取出的两支中只有一支是新的概率;

- 2. (5分) 如果第二次取出的两支中只有一支是新的, 求第一次取到的两支均是新笔的概率.
- 1答: 设A为"第二次取出的两支中只有一支是新笔", B_i 为"第一次取出的两支中有i支新笔". 样本空间的完备事件组为 $B_0 \cup B_1 \cup B_2$. 并且

$$P(B_0) = \frac{C_3^0 C_2^0}{C_5^2} = \frac{1}{10}, \ P(B_1) = \frac{C_3^1 C_2^1}{C_5^2} = \frac{6}{10}, \ P(B_2) = \frac{C_3^2 C_2^0}{C_5^2} = \frac{3}{10}.$$

于是

$$P(A) = \sum_{i=0}^{2} P(B_i)P(A|B_i)$$

$$= \frac{1}{10} \times \frac{3}{5} + \frac{6}{10} \times \frac{3}{5} + \frac{3}{10} \times \frac{2}{5}$$

$$= \frac{27}{50}$$

2答: 如果第二次取出的两支中只有一支是新笔,则第一次取到的两支均是新笔的概率为:

$$P(B_2|A) = \frac{P(B_2)P(A|B_2)}{P(A)}$$

$$= \frac{\frac{3}{10} \times \frac{2}{5}}{\frac{27}{50}}$$

$$= \frac{2}{9}$$

五、(20分) 设随机变量X的概率密度函数为:

$$\oint (x) = \begin{cases} \sin(x) & 0 \le x \le A \\ 0 & \text{#\dot{c}} \end{cases}$$

试计算

- 1. (5分) 常数A;
- 2. (5分) X的分布函数F(x);
- 3. (5分) $P\{|X| \le 1\}$;
- 4. (5分) $Y = \sin(X)$ 的概率密度.

1答: 根据概率密度函数的性质,

$$\int_0^A \sin(x) \mathrm{d}x = 1 - \cos(A) = 1$$
 得 $A = \frac{\pi}{2} + k\pi$. 又因为在 $[0, A]$ 上, $f(x) \ge 0$, 所以 $A = \frac{\pi}{2}$

2答: X的分布函数为:

$$F(x) = \int_{-\infty}^{x} f(u) du = \begin{cases} 0, & x < 0 \\ 1 - \cos(x), & 0 \le x \le \frac{\pi}{2} \\ 1, & x > \frac{\pi}{2} \end{cases}$$

3答:

$$P\{-1 \le X \le 1\} = F(1) - F(-1) = 1 - \cos(1) \approx 0.4597$$

4答: $g(x) = \sin(x)$, 其反函数 $h(y) = \arcsin(y)$. 对于 $0 \le y < 1$,

$$f_Y(y) = \frac{f(h(y))|h'(y)|}{\int f_Y(y) = f(h(y))|h'(y)|}$$

$$= \sin(\arcsin(y)) \frac{1}{\sqrt{1 - y^2}}$$

$$= \frac{y}{\sqrt{1 - y^2}}$$

所以

六、(10分) 已知 $X\sim N(0,1)$, 即 $f_X(x)=\varphi(x)$. 在X=x的条件下, Y的条件分布: $Y|X=x\sim N(x,1)$, $f_{Y|X}(y|x)=\varphi(y-x)$. 求给定Y=y下, X的条件概率密度函数 $f_{X|Y}(x|y)$.

答: 先计算(X,Y)的联合概率密度:

$$f(x,y) = f_X(x)f_{Y|X}(y|x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}\frac{1}{\sqrt{2\pi}}e^{-\frac{(y-x)^2}{2}} = \frac{1}{2\pi}e^{-\frac{1}{2}(y^2 - 2xy + 2x^2)}$$

Y的边缘密度为:

$$f_{Y}(y) = \int_{-\infty}^{+\infty} f(x, y) dx$$

$$= \frac{1}{2\sqrt{\pi}} e^{-\frac{y^{2}}{4}} \int_{-\infty}^{+\infty} \frac{1}{\sqrt{\pi}} e^{-(x - \frac{y}{2})^{2}} dx$$

$$= \frac{1}{2\sqrt{\pi}} e^{-\frac{y^{2}}{4}}$$

最后得到给定Y = y下, X的条件概率密度函数:

$$f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)}$$

$$= \frac{\frac{1}{2\sqrt{\pi}}e^{-\frac{y^2}{4}}\frac{1}{\sqrt{\pi}}e^{-(x-\frac{y}{2})^2}}{\frac{1}{2\sqrt{\pi}}e^{-\frac{y^2}{4}}}$$

$$= \frac{1}{\sqrt{\pi}}e^{-(x-\frac{y}{2})^2}$$

即 $X|Y = y \sim N\left(\frac{y}{2}, \frac{1}{2}\right)$.

七、(10分) 设简单随机样本 X_1, X_2, \cdots, X_n 为取自密度函数为

$$f(x;\theta) = \begin{cases} \frac{\theta}{2} |x|^{\theta-1} & |x| \le 1\\ 0 & \text{其它} \end{cases}$$

的总体($\theta > 0$). 求

- 1. (5分) θ 的矩估计量 $\hat{\theta}_M$;
- 2. (5分) θ 的最大似然估计量 $\hat{\theta}_L$.
- 1答: 因为E(X) = 0, 所以继续计算

$$E(X^{2}) = \frac{\theta}{2} \int_{-1}^{1} x^{2} |x|^{\theta - 1} dx$$

$$= \theta \int_{0}^{1} x^{\theta + 1} dx$$

$$= \frac{\theta}{\theta + 2}$$

$$\theta = \frac{2E(X^{2})}{1 - E(X^{2})}$$

于是

$$\hat{\theta}_{M} = \frac{\frac{2}{n} \sum_{i=1}^{n} X_{i}^{2}}{1 - \frac{1}{n} \sum_{i=1}^{n} X_{i}^{2}} = \frac{2 \sum_{i=1}^{n} X_{i}^{2}}{n - \sum_{i=1}^{n} X_{i}^{2}}$$

2答: 设 (x_1,x_2,\cdots,x_n) 为一组样本观测值,则 θ 的似然函数为:

$$L(\theta) = \prod_{i=1}^{n} f(x_i, \theta)$$

$$= \prod_{i=1}^{n} \frac{\theta}{2} |x_i|^{\theta - 1}$$

$$= \frac{\theta^n}{2^n} \left(\prod_{i=1}^{n} |x_i| \right)^{\theta - 1}$$

 θ 的对数似然函数为:

$$l(\theta) = \ln L(\theta) = n \ln \theta - \ln 2^n + (\theta - 1) \sum_{i=1}^n \ln |x_i|$$

$$l'(\theta) = \frac{n}{\theta} + \sum_{i=1}^n \ln |x_i| \stackrel{\diamondsuit}{=} 0$$
 即得 $\hat{\theta}_L = -\frac{n}{\sum_{i=1}^n \ln |x_i|}$, θ 的最大似然估计量为 $\hat{\theta}_L = -\frac{n}{\sum_{i=1}^n \ln |x_i|}$.

八、(10分) 设总体X $\sim N(\mu, \sigma^2)$, 现从该总体中随机抽取一组容量为100的样本, 算得样本均值 $\bar{x}=1.0959$, 样本标准差s=1.7370.

- 1. (5分) 求总体方差σ²的置信度为0.95的区间估计;
- 2. (5分) 在显著性水平 $\alpha = 0.05$ 下,能否认为该总体的期望等于1.

1答: 总体标准差σ²的置信度为0.95的区间估计为:

$$\begin{bmatrix} \frac{(n-1)s^2}{\chi_{\frac{\alpha}{2}}^2(n-1)}, \frac{(n-1)s^2}{\chi_{1-\frac{\alpha}{2}}^2(n-1)} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{99 \times 1.7370^2}{128.4220}, \frac{99 \times 1.7370^2}{73.3611} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{298.6997}{128.4220}, \frac{298.6997}{73.3611} \end{bmatrix}$$

$$= \begin{bmatrix} 2.3259, 4.0716 \end{bmatrix}$$

2答: 构造假设:

 $H_0: \mu=1 \quad H_1: \mu\neq 1$

其拒绝域为:

$$W = \left\{ x \left| \frac{|\bar{x} - 1|}{s} \sqrt{n} > t_{\frac{\alpha}{2}}(n - 1) \right. \right\}$$
$$= \left\{ x \left| \frac{|\bar{x} - 1|}{s} \sqrt{n} > 1.9842 \right. \right\}$$

由于 $\frac{|x-1|}{s}\sqrt{n}=(1.0959-1)/1.7370\times 10=0.552<1.9842$, 样本观测值 $x\notin W$, 因此接受 H_0 , 即在水平0.05下可以认为该总体的期望等于1.

t-分布和χ2-分布分位点表

	α	0.975	0.950	0.900	0.100	0.050	0.025		
1	$t_{\alpha}(99)$	-1.9842	-1.6604	-1.2902	1.2902	1.6604	1.9842		
t	_α (100)	-1.9840	-1.6602	-1.2901	1.2901	1.6602	1.9840		
t	α(101)	-1.9837	-1.6601	-1.2900	1.2900	1.6601	1.9837		
	$\chi^2_{\alpha}(99)$	73.3611	77.0463	81.4493	117.4069	123.2252	128.4220		
χ	$\chi^2_{\alpha}(100)$	74.2219	77.9295	82.3581	118.4980	124.3421	129.5612		
λ	$\chi^2_{\alpha}(101)$	75.0835	78.8132	83.2675	119.5887	125.4584	130.6997		