Predicting the Prevalence of Obesity in U.S. Counties

Joseph Mintz February 14, 2022

Overview and Problem Statement

- America has an obesity epidemic.
- Obesity prevalence has been linked to socioeconomic factors as well as food insecurity, e.g. access to affordable healthy foods.
- What are the most important socioeconomic or food insecurity factors in predicting the prevalence of obesity in U.S. counties?

 And how reliable are these factors in accurately predicting obesity prevalence?

Data

United States county-level data was collected from the following:

2. Food Environment Atlas: Contains data on factors such as store/restaurant proximity, food prices, food and nutrition assistance programs, and community characteristics, which interact to influence food choices and diet quality.

3. Educational Attainment

4. Poverty and Median Income Estimates

Exploratory Data Analysis Iterations

Data Cleaning

- Check/remove nulls.
- Remove duplicates.
- Remove commas.
- Spaces to underscores.
- Objects to numeric.
- Make State/County/FIPS fields consistent for merging datasets.

Data Exploration

- Correlations
- Distributions
- Descriptive statistics

	State	County
2	Alabama	Autauga
3	Alabama	Baldwin

	FIPS	State	County
0	1001	AL	Autauga
1	1001	AL	Autauga

Feature Engineering

- Find/remove one half of highly correlating, redundant pairs, mostly on Food Environment Atlas.
- Remove years not of interest.
- Combine fields, e.g. create "overall" field from Male/Female data.

High Correlations

Variable_Code	Variable_Code				
LACCESS_CHILD10	LACCESS_POP10	0.992548			
FFR11	FSR11	0.986143			
FRESHVEG_FARMS12	VEG_FARMS12	0.978933			
GROC11	SPECS11	0.974504			
FSR11	RECFAC11	0.960574			
PCT_LACCESS_CHILD10	PCT_LACCESS_POP10	0.959638			
SNAPS12	WICS11	0.954590			
LACCESS_POP10	LACCESS_SENIORS10	0.950487			
FFR11	SNAPS12	0.948507			
GROC11	WICS11	0.948070			

Data Exploration

After iterations of data cleaning, exploration, and feature engineering:

- 48 variables
 - 1 Target: Obesity Prevalence by County from 2011
 - 47 Features
- 2166 counties

Modeling

Method	Best_alpha	R_sq_train	R_sq_test	MAE	MSE	RMSE	MAPE	Comments
GradientBoostingRegressor_Grid_Search	nan	0.980	0.786	1.468	3.378	1.838	3.924	baseline
GradientBoostingRegressor	nan	0.969	0.785	1.447	3.389	1.841	3.862	baseline
RandomForestRegressor_Grid_Search	nan	0.825	0.713	1.659	4.532	2.129	4.470	baseline
RidgeCV	10.000	0.752	0.741	1.561	4.090	2.022	4.177	baseline
LassoCV	0.034	0.744	0.745	1.549	4.029	2.007	4.151	baseline
ElasticNetCV	0.068	0.742	0.744	1.552	4.050	2.012	4.160	baseline
RandomForestRegressor	nan	0.713	0.642	1.842	5.659	2.379	4.976	baseline
SupportVectorRegressor_Grid_Search	nan	0.473	0.436	2.265	8.903	2.984	6.226	baseline

- The Gradient Boosting Regressor (GBR) clearly has the best explanatory power (R²_train = 0.98)
- However, the GBR R²_train R²_test difference indicates the model is not generalizable, i.e. the model is overfitting.
- Here, generalizability is more important than just a high explanatory power.
- Even though the Ridge, Lasso, and Elastic Net have lower R² values, the R²_train R²_test indicate these models are very generalizable. Furthermore, 0.74 can still be considered a satisfactory explanatory and predictive power.
- Among the Ridge, Lasso, and Elastic Net, the Lasso is slightly more generalizable. Lasso is therefore chosen as the best model to move forward.

Predictive Power

Feature Importance

Aside from the fields on education and percentage in poverty, variables from the **Food Environment Atlas** with high feature importance for predicting obesity prevalence include:

- FSRPTH11: Full-service restaurants/1,000 pop, 2011
- PERPOV10: Persistent-poverty counties, 2010
- PCT_LACCESS_HHNV10: Households, no car & low access to store (%), 2010
- SNAPSPTH12: SNAP-authorized stores/1,000 pop, 2012
- PCT_LOCLFARM12: Farms with direct sales (%), 2012
- PCT SFSP12: Summer Food Service Program participants (% children), 2012
- PCT REDUCED LUNCH10: Students eligible for reduced-price lunch (%), 2010

Feature Importance

Conclusions and Next Steps

- Reliable indicators of obesity prevalence in a U.S. county:
 - > Socioeconomic factors such as poverty and education level
 - > Food insecurity factors, such as low access to affordable healthy food
- Lasso regression is chosen as the best model.
 - > Satisfactory explanatory power
 - > Ability to generalize well with new data
- Recommended next steps for potential model improvement:
 - > Use other subsets of features after further eliminating high correlations / redundancies.
 - > Test methods of filling missing data to retain more counties, protecting against sampling bias.
- Use Case: Help local governments implement programs to target communities or groups that lack affordable healthy food options.

Questions?