Exercices de Modélisation Stochastique

Feuille 1

On pourra utiliser sans démonstration que

$$E\left[\int_0^t W_u du | \mathcal{F}_s\right] = \int_0^t E\left[W_u | \mathcal{F}_s\right] du.$$

- 1. Montrer que $E[W_sW_t^2] = E[W_sE[W_t^2|\mathcal{F}_s]]$.
- 2. Calculer pour tout couple (s,t) les quantités:
 - (a) $E[W_t|\mathcal{F}_s]$,
 - (b) $E[W_t|W_s]$,
 - (c) $E[e^{\lambda W_t}|\mathcal{F}_s]$.
- 3. Calculer $E\left[\int_0^t W_u du | \mathcal{F}_s\right]$ avec t>s et $E\left[\int_0^t W_u du | W_s\right]$
- 4. Calculer $E[W_t^2W_s^2]$.
- 5. Quelle est la loi de $W_t + W_s$?
- 6. Soit θ_s une variable aléatoire bornée \mathcal{F}_s -mesurable. Calculer pour tout $t \geq s$, $E[\theta_s(W_t W_s)]$ et $E[\theta_s(W_t W_s)^2]$
- 7. Calculer $E[\mathbf{1}_{W_t \leq a}]$ et $E[W_t \mathbf{1}_{W_t \leq a}]$.
- 8. Parmi les processus suivants, quels sont ceux qui sont des martingales.
 - (a) $M_t = W_t^3 3 \int_0^t W_s ds$,
 - (b) $Z_t = W_t^3 3tW_t$,
 - (c) $X_t = tW_t \int_0^t W_s ds$,
 - (d) $U_t = \sin(W_t) + \int_0^t \frac{1}{2} \sin(W_s) ds$,
 - (e) $Y_t = tW_t 2\int_0^t W_s ds$.
- 9. Montrer que le processus $Y_t = \int_0^t W_s ds$ est gaussien. Calculer son espérance et sa covariance.
- 10. Expliciter la solution de

$$dX_t = -aX_t dt + e^{bt} dW_t.$$

Calculer $E[X_t]$ et $Var(X_t)$.