Predicting Employee Attrition Using Machine Learning Models

Introduction

In this report, I will use a machine learning model to predict employee attrition with the Synthetic Employee Attrition Dataset. This dataset has 74,498 samples, split into training and testing sets for model building and testing. Each sample includes a unique Employee ID and various features like demographics, job details, and personal circumstances that might affect attrition.

The main goal is to understand why employees leave and create models to identify employees at risk of leaving. This dataset is great for HR analytics, building machine learning models, and showing advanced data analysis methods. It gives a detailed and realistic view of what affects employee retention, making it useful for HR researchers and professionals.

EDA(PLOTS) IN POWERBI

Distribution of attrition

The following graph illustrates the distribution of attrition within the dataset

Attrition by Job Role

The following analysis explores the distribution of attrition across different job roles within the organization.

Attrition by job Satisfaction

The following analysis examines the relationship between job satisfaction levels and employee attrition within the organization.

Attrition by Work-Life Balance

The following analysis investigates the relationship between work-life balance and employee attrition within the organization.

Attrition by Marital Status

The following analysis examines the relationship between marital status and employee attrition within the organization.

Pair plot for selected features

he following pair plot visualizes the relationships between selected features in the dataset.

DATA PREP

```
# Import necessary Azure ML and data science libraries

# Workspace and Dataset management
from azureml.core.workspace import Workspace
from azureml.core.dataset import Dataset

# Experiment and AutoML configuration
from azureml.core.experiment import Experiment
from azureml.train.automl import AutoMLConfig

# Run details for tracking experiment progress
from azureml.widgets import RunDetails

# Scikit-learn for train-test split
from sklearn.model_selection import train_test_split

# Data manipulation with Pandas
import pandas as pd
```

```
# Load the Azure ML Workspace from the configuration file
ws = Workspace.from_config()

# Access the datasets available in the workspace
ws.datasets
```

{'Attrition': DatasetRegistration(id='16eee55e-d2e0-4c62-90ea-b38abd8f6d2e', name='Attrition', version=1, description='', tags={})}

```
•[4]: # Retrieve the Attrition dataset from the workspace by its name
Attrition_Ds = Dataset.get_by_name(workspace=ws, name="Attrition")

# Load the dataset into a pandas DataFrame
df_data = pd.read_csv("train.csv")

# Display the DataFrame
df_data
```

⊙ ↑ ↓ 古 ♀ ▮

:		Employee ID	Age	Gender	Years at Company	Job Role	Monthly Income	Work- Life Balance	Job Satisfaction	Performance Rating	Number of Promotions	 Number of Dependents		Company Size	Company Tenure	Remote Work	Leadership Opportunities	
	0	8410	31	Male	19	Education	5390	Excellent	Medium	Average	2	 0	Mid	Medium	89	No	No	
	1	64756	59	Female	4	Media	5534	Poor	High	Low	3	 3	Mid	Medium	21	No	No	
	2	30257	24	Female	10	Healthcare	8159	Good	High	Low	0	 3	Mid	Medium	74	No	No	
	3	65791	36	Female	7	Education	3989	Good	High	High	1	 2	Mid	Small	50	Yes	No	
	4	65026	56	Male	41	Education	4821	Fair	Very High	Average	0	 0	Senior	Medium	68	No	No	
	8181	74082	48	Female	30	Media	6462	Good	High	Average	3	 1	Senior	Medium	70	No	No	
	8182	43772	35	Female	5	Healthcare	8452	Excellent	Medium	High	3	 2	Entry	Medium	25	No	No	
	8183	23725	57	Male	22	Education	3661	Good	Low	Average	1	 5	Senior	Small	64	No	No	
	8184	69304	53	Female	5	Education	3900	Excellent	Very High	Average	0	 0	Entry	Large	40	Yes	No	
	8185	7222	43	Female	33	Media	5988	Fair	Low	Average	1	 2	Mid	Medium	58	No	No	
8	186 ro	ws × 24 co	lumns															
	()

```
# Display the columns of the DataFrame df data.columns
```

```
# Split the data into training and testing sets with 70% for training and 30% for testing
x_train, x_test = train_test_split(df_data, test_size = 0.3)
# Display the shape of the training set
```

x_train.shape

(5730, 24)

Display the shape of the testing set $x_{test.shape}$

(2456, 24)

2. AutoML Configuration

3. Experiment Management

```
# Define the name of the experiment
experiment_name = 'Attrition_Experiment'

# Create an Experiment object with the workspace and experiment name
experiment = Experiment(workspace=ws, name=experiment_name)

# Submit the experiment with the AutoML configuration and display the output
run = experiment.submit(automl_config, show_output=True)

No run_configuration provided, running on local with default configuration

2024-07-25 20:54:49.576531: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: can
not open shared object file: No such file or directory

2024-07-25 20:54:49.576573: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
2024-07-25 20:54:56.431483: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcuda.so.1
2024-07-25 20:55:01.634323: E tensorflow/stream_executor/cuda/cuda_driver.cc:328] failed call to cuInit: CUDA_ERROR_NO_DEVICE: no CUDA-capable device is detected
2024-07-25 20:55:01.63453: I tensorflow/stream_executor/cuda/cuda_driver.cc:328] failed call to cuInit: CUDA_ERROR_NO_DEVICE: no CUDA-capable device is detected
2024-07-25 20:55:01.63453: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (roemoc): /proc/driver/nvidia/v
ersion does not exist
Running in the active local environment.
```

Ехре	riment	ld	Туре	Status	Details Page	Docs Page
Attrition_Expe	eriment Au	utoML_f4cff539-58a7-4e8e- 80ad-cb3c8282a00d	automl	Preparing	Link to Azure Machine Learning studio	Link to Documentation
Current status: Datase	etEvaluation.	Gathering dataset statistics.				

```
Attnton_experiment 80ad-cb3c8282a00d automi Preparing studio Link to Documentation

Current status: DatasetEvaluation. Gathering dataset statistics.

Current status: FeaturesGeneration. Generating features for the dataset.

Current status: DatasetFeaturization. Beginning to fit featurizers and featurize the dataset.

Current status: DatasetFeaturizationCompleted. Completed fit featurizers and featurizing the dataset.

Current status: DatasetFeaturizationCompleted. Completed fit featurizers and featurizing the dataset.

2024/07/25 20:55:31 WARNING mlflow.sklearn: Model was missing function: predict. Not logging python_function flavor!
```

Experiment Ы Туре Status **Details Page** Docs Page AutoML f4cff539-58a7-4e8e-Link to Azure Machine Learning Attrition_Experiment automl Preparing Link to Documentation 80ad-cb3c8282a00d

Current status: DatasetEvaluation. Gathering dataset statistics.

Current status: Datasettvaluation. Gathering dataset statistics.

Current status: FeaturesGeneration. Generating features for the dataset.

Current status: DatasetFeaturization. Beginning to fit featurizers and featurize the dataset.

Current status: DatasetFeaturizationCompleted. Completed fit featurizers and featurizing the dataset.

Current status: DatasetCrossValidationSplit. Generating individually featurized CV splits.

 $2024/07/25\ 20:55:31\ \text{WARNING mlflow.sklearn: Model was missing function: predict. Not logging python_function flavor!}$

DATA GUARDRAILS:

TYPF: Class balancing detection

STATUS: PASSED

DESCRIPTION: Your inputs were analyzed, and all classes are balanced in your training data.

Learn more about imbalanced data: https://aka.ms/AutomatedMLImbalancedData

TYPE: Missing feature values imputation

STATUS: PASSED

DESCRIPTION: No feature missing values were detected in the training data.

Learn more about missing value imputation: https://aka.ms/AutomatedMLFeaturization

High cardinality feature detection

STATUS: PASSED

DESCRIPTION: Your inputs were analyzed, and no high cardinality features were detected.

Learn more about high cardinality feature handling: https://aka.ms/AutomatedMLFeaturization

Current status: ModelSelection. Beginning model selection.

ITER: The iteration being evaluated.

PIPELINE: A summary description of the pipeline being evaluated.
DURATION: Time taken for the current iteration.
METRIC: The result of computing score on the fitted pipeline.

BEST: The best observed score thus far.

ITER	PIPELINE	DURATION	METRIC	BEST	
0	MaxAbsScaler LightGBM	0:00:37	0.8267	0.8267	
1	MaxAbsScaler XGBoostClassifier	0:00:57	0.8133	0.8267	
2	MaxAbsScaler ExtremeRandomTrees	0:00:36	0.7957	0.8267	
3	MaxAbsScaler RandomForest	0:00:36	0.7862	0.8267	
4	StandardScalerWrapper LightGBM	0:00:36	0.8111	0.8267	
5	SparseNormalizer XGBoostClassifier	0:00:48	0.8079	0.8267	
6	SparseNormalizer RandomForest	0:00:41	0.8143	0.8267	
7	StandardScalerWrapper XGBoostClassifier	0:00:47	0.7793	0.8267	
8	SparseNormalizer XGBoostClassifier	0:00:49	0.8023	0.8267	
9	MaxAbsScaler RandomForest	0:00:36	0.7863	0.8267	
10	SparseNormalizer LightGBM	0:00:36	0.8060	0.8267	
11	MaxAbsScaler ExtremeRandomTrees	0:00:46	0.8254	0.8267	
12	StandardScalerWrapper XGBoostClassifier	0:00:47	0.8232	0.8267	
13	StandardScalerWrapper ExtremeRandomTrees	0:00:37	0.8154	0.8267	
14	StandardScalerWrapper RandomForest	0:00:55	0.8179	0.8267	
15	MaxAbsScaler LightGBM	0:00:37	0.8221	0.8267	
16	MaxAbsScaler LogisticRegression	0:00:36	0.8444	0.8444	
17	StandardScalerWrapper ExtremeRandomTrees	0:00:56	0.7987	0.8444	
18	StandardScalerWrapper XGBoostClassifier	0:00:47	0.8127	0.8444	
19	MaxAbsScaler ExtremeRandomTrees	0:00:38	0.8227	0.8444	
20	VotingEnsemble	0:00:45	0.8452	0.8452	
21	StackEnsemble	0:00:53	0.8440	0.8452	

Stopping criteria reached at iteration 22. Ending experiment.

Current status: BestRunExplainModel. Best run model explanations started Current status: ModelExplanationDataSetSetup. Model explanations data setup completed Current status: PickSurrogateModel. Choosing LightGBM as the surrogate model for explanations

Current status: EngineeredFeatureExplanations. Computation of engineered features started
2024-07-25:21:13:22 537 INFO [explanation client nv:334] Using default datastone for unloads

Choose best model based on high Accuracy

Information about best model based on accuracy

Register the model

Start the deployment

Check endpoints and consume the model at test

Use third party "POSTMAN" for consuming

http://ffd063a4-ca9d-4c75-955b-0e35f80fe431.koreacentral.azurecontainer.io/score

