Partikel simulering

Vi delade upp boxen på bredden i lika många delar som antalet kärnor. Sedan lät vi varje kärna få ett lika stort antal partiklar att börja med (totala_antalet partiklar/antal kärnor).

För varje partikel kontrollerades och hanterades kollisioner. De partiklar som förflyttat sig utanför boxen placerades i en höger eller vänster ut buffert. Sedan utbyttes informationen cirkulärt i en ring topologi, där vi skickar de partiklar som lämnade regionen till vänster med tag-värdet 10, varpå en mottagning sker ifrån höger med samma tag-värde. Därefter sker samma sak fast åt andra hållet och med ett nytt tag-värde.

När alla iterationer är klara samlas resultatet ihop genom MPI_Reduce och delar resultatet med antalet iterationer och omkretsen på lådan.

Förenklingar

Istället för att sprida partiklarna slumpvis över hela lådan valde vi att sprida lika många partiklar i varje del för att på så sett garantera en jämn fördelning mellan noderna i initialläget.

Vi kontroller bara kollisioner med partiklar av högre index, vilket kan resultera i att en partikel som kolliderar kan flyttas så den kolliderar med en annan partikel av lägre index, detta kommer dock inte upptäckas. Men det förenklar kollisionshanteringen avsevärt.

Verifiering

Vi verifierade gas lagen genom att ändra antalet partiklar och bredden på lådan och kom fram till följande moment:

Moment	Partiklar	låda bredd
0,036661	24000	40000
0,031782	12000	20000
0,027437	6000	10000
0,023233	3000	5000

Resultatet varieration har troligtvis mycket att göra med slumpgenereringen av partiklar.

Exekveringstider

Då vi varierade antalet kärnor ifrån 1 till 8 med 16000 partiklar fick vi följande exekveringstider och speedup. Vi ser att exekveringstiden minskar drastiskt och har en exponentiell speedup. Omfattande, väl balanserade och oberoende beräkningarna på de olika kärnorna och relativt låg kommunikation gör att problemet parallelliseras bra.

Figure 1 Exekveringstider för partikel simulering

Figur 2: Speedup för partikel simulering

Beräkning av scaled speedup:

Kärnor(P)	Partiklar(N)	Exekveringstid
1	2000	2,4763
2	4000	2,5277
4	8000	2,5619
6	12000	2,5459
8	16000	2,5847

