Final Exam

MATH 60062/70062: Mathematical Statistics II

May 5, 2022

- Please turn off your phone.
- Print your name clearly at the top of this page.
- This is a closed-book and closed-notes exam.
- This exam contains 4 questions. There are 100 points in total.
- You have 75 minutes to complete the exam.
- Please show your work and explain all of your reasoning.
- You must work by yourself. Do not communicate in any way with others.

- 1. (15 points) Give full definitions for the following concepts:
 - a. Coverage probability
 - b. Confidence coefficient
 - c. Pivotal quantity
 - d. Consistent estimator
 - e. Asymptotic relative efficiency

2. (35 points) Suppose that X_1, \ldots, X_n are iid $\mathcal{N}(\mu, \sigma^2)$, where $-\infty < \mu < \infty$ and $\sigma^2 > 0$. Both parameters are unknown. Consider testing

$$H_0: \mu = \mu_0$$
 versus $H_1: \mu \neq \mu_0$.

Let $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$, where \bar{X} is the sample mean. The size α one-sample two-sided t-test rejects H_0 when

$$|\bar{x}-\mu_0|\geq t_{n-1,\alpha/2}\sqrt{s^2/n}.$$

- a. (20 points) Show that the test can be derived as a likelihood ratio test.
- b. (15 points) Find a 1α confidence set for μ by inverting the two-sided *t*-test.

- 3. (35 points) Suppose X_1, \ldots, X_n are iid Beta $(\theta, 1)$, where $\theta > 0$.
 - a. (5 points) Find the method of moments estimator of θ , $\hat{\theta}_{MOM}$.
 - b. (10 points) Show that $\hat{\theta}_{MOM}$ satisfies

$$\sqrt{n}(\hat{\theta}_{\text{MOM}} - \theta) \xrightarrow{d} \mathcal{N}\left(0, \frac{\theta(\theta+1)^2}{\theta+2}\right).$$

Hint: Use Central Limit Theorem and Delta Method. **Useful fact:** For $Y \sim \text{Beta}(\alpha, \beta)$,

$$f_Y(y \mid \theta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} y^{\alpha - 1} (1 - y)^{\beta - 1}.$$

The mean and variance of Y are $E[Y] = \frac{\alpha}{\alpha + \beta}$ and $Var[Y] = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}$, respectively.

- c. (5 points) Find the maximum likelihood estimator of θ , $\hat{\theta}_{MLE}$.
- d. (10 points) Show that $\hat{\theta}_{\text{MLE}}$ satisfies

$$\sqrt{n}(\hat{\theta}_{\text{MLE}} - \theta) \xrightarrow{d} \mathcal{N}(0, \theta^2).$$

Hint: Use large sample results for MLEs.

e. (5 points) What is the asymptotic relative efficiency (ARE) of $\hat{\theta}_{MOM}$ to $\hat{\theta}_{MLE}$? Graph the ARE as a function of θ , and summarize the graph in 1-3 sentences.

4. (15 points) Suppose X_1, \ldots, X_n are iid Bern(p), where $0 . Derive a <math>1 - \alpha$ Wald confidence interval for

$$g(p) = \log\left(\frac{p}{1-p}\right),\,$$

the log odds of p.