ত্রাধ্য তিরু ত্রিক প্রায়ন্তিতিক প্রক্রপূর্ণ চিত্রসমূহ

অধায় 🔇 তাপগতিবিদ্যা 🚶

চিত্র : তাপীয় ইঞ্জিন (পেট্রোল ইঞ্জিন)-এর ঘাতসমৃহ

তথ্যা 🚷 স্থির তড়িৎ

চিত্র : ঋণাতাক চার্জ অন্তর্মুখী

চিত্র : ধনাতাক চার্জ বহির্মখী

» চিত্র : তড়িৎ ক্ষেত্ররেখা

বিভিন্ন প্রকার ধারক : ১. পরিবর্তনশীল ধারক, ২. তড়িৎদ্রব ধারক, ৩. কাগজ ধারক

অগ্রায় 🛇 চল তড়িং

চিত্র : পোস্ট অফিস বক্স

অধ্যায় 🕙 তড়িৎ প্রবাহের চৌম্বক ক্রিয়া ও চুম্বকত্ব 🚶

চিত্র : তড়িৎ প্রবাহের চৌম্বক ক্রিয়া

অধ্যায় 🕜 তাড়িতচৌম্বকীয় আবেশ ও পরিবর্তী প্রবাহ

চিত্র : পরিবর্তী প্রবাহ ভায়নামো
চিত্র : চুম্বকের মাধ্যমে বিদ্যুৎ প্রবাহ সৃষ্টি

আধাৰে ভৌত আলোকবিজ্ঞান

আ্থাার ি পরমাণুর মডেল এবং নিউক্লিয়ার পদার্থবিজ্ঞান

চিত্র : নিউক্লিয়ার ফিশন বিক্রিয়া

আধারে 👀 সেমিকভান্টর ও ইলেকট্রনিক্স

চিত্র : n-type এবং p-type সেমিকভান্তর

👂 চিত্র 🕽 : বাংলাদেশের প্রথম ভূ-স্থির উপগ্রহ 'বঙ্গবন্ধু স্যাটেলাইট-১'। চিত্র ২ : স্পেসএক্স ফ্যালকন-৯ উৎক্ষেপণ যানের সাহায্যে বঙ্গবন্ধু স্যাটেলাইট-১ এর উৎক্ষেপণ (১২ মে, ২০১৮; বাংলাদেশ সময় রাত ২টা ১৪ মিনিট)

অধ্যামৃতিত্তিক গুরুত্বপূর্ণ সূত্র ও তথ্যাবলি

সূত্রাবলি, গ্রিক বর্ণমালা, দশের সূচক, আঃ রোধ, গলনাজক ও স্ফুটনাজক

দক্ষতা স্তরভিত্তিক মৌলিক ধারণা অর্জনে সহায়ক তথ্যাবলি

পদার্থবিজ্ঞান দ্বিতীয় পত্রে এইচএসসি পরীক্ষায় সৃজ্জনশীল প্রশ্নে ৭০-৮০% গাণিতিক সমস্যানির্ভর প্রয়োগ ও উচ্চতর দক্ষতা স্করের প্রশ্ন থাকতে পারে। এক্ষেত্রে সূত্রাবলি, ভৌত রাশিসমূহের একক, মাত্রা, রূপান্তর, বিভিন্ন ধ্রুবক রাশির মান জ্ঞানা থাকলে যেকোনো পরিবর্তিত সৃজ্ঞনশীল প্রশ্নের উত্তর করা সহজ হয়। শিক্ষার্থীদের অনুশীলনকে গতিশীল করতে এ বিষয়ের অধ্যায়ভিত্তিক গুরুত্বপূর্ণ সূত্র ও তথ্যাবলি এ অংশে অধ্যায়ের ধারাবাহিকতায় উপস্থাপন করা হলো।

অধ্যায়ভিত্তিক প্রয়োজনীয় সূত্রাবলি, প্রতীক ও একক পরিচিতি

অধায় ১ ১ তাপগতিবিদ্যা

সূত্রাবলি	প্রতীক পরিচিতি	একক
তাপমাত্রা, $\theta = \frac{x_{\theta} - x_{icc}}{x_{steam} - x_{icc}} \times 100^{\circ}\text{C}$	θ = তাপমাত্রা	444
	χ _θ = θ তাপমাত্রায় উষ্ণতামিতিক ধর্মের মান	কে ল ভিন (K)
$\theta = \frac{x_{\theta} - x_{icc}}{x_{steam} - x_{icc}} \times 180^{\circ}F + 32^{\circ}F$	x _{steam} = ঊ ধ্ব স্থির বিন্দুতে উষ্ণতামিতিক মান	ভিগ্রি ফারেনহাইট (°F)
X _{steam} - X _{icc}	x _{ice} = নিম্ন স্থির বিন্দুতে উষ্ণতামিতিক মান	10m 4/0345/50 (at)
তাপমাত্রা স্কেলের সম্পর্ক,	C = সেন্টিগ্রেড স্কেলে পাঠ	ডিগ্রি সেলসিয়াস (°C)
$\frac{C}{5} = \frac{F - 32}{9} = \frac{K - 273}{5}$	F = ফারেনহাইট স্কেলে পাঠ	ডিগ্রি ফারেনহাইট (°F)
5 9 5	K = কেলভিন স্কেলের পাঠ	কেলভিন (K)
চুটিপূর্ণ থার্মোমিটারের ক্ষেত্রে,	S = তুটিপূর্ণ স্কেলের তাপমাত্রা	CAPILON (K)
$\frac{S-M}{B-M} = \frac{C}{100} = \frac{F-32}{180}$	B = উর্ধ্ব স্থিরবিন্দ্	ভিগ্ৰি সেলসিয়াস (°C)
B – M 100 – 180	M = নিম্ন স্থিরবিন্দু	বা ডিগ্রি ফারেনহাইট (°F)
তাপমাত্রা, $\theta = \frac{R_t - R_0}{R_{100} - R_0} \times 100^{\circ} \text{C}$	θ = তাপমাত্রা	কেলভিন (K)
পানির ত্রেধ বিন্দুর সাপেক্ষে তাপমাত্রা,	T = তাপমাত্রা	কেলভিন (K)
$\Gamma = \frac{x}{x_{tr}} \times 273.16 \text{ K} ; T = \frac{R}{R_{tr}} \times 273.16 \text{ K}$	R = রোধ	ওহম (Ω)
মভ্যন্তরীণ শক্তির পরিবর্তন, $\Delta U = \Delta Q + \Delta W$	dQ = গৃহীত তাপ শক্তি, dU = অভ্যন্তরীণ শক্তির পরিবর্তন	
	dW = সম্পন্ন কাজ	জুল (J)
কৃত কাজ, W = JH	J = তাপীয় সমতা	জুল/ ক্যালরি (J cal ⁻¹)
	H = 이প	ক্যালরি (cal)
নমোঝ প্রক্রিয়ার ক্ষেত্রে: $P_1V_1 = P_2V_2$	P = 5191	Nm ⁻²
কুষ্বতাপীয় প্রক্রিয়ার ক্ষেত্রে :	V = আয়তন	m ³
(i) $P_1V_1^{\gamma} = P_2V_2^{\gamma}$ (ii) $T_1V_1^{\gamma-1} = T_2V_2^{\gamma-1}$	T = তাপমাত্রা	K
একই তাপমাত্রায় এনট্রপির পরিবর্তন,	dQ = তাপমাত্রার পরিবর্তন	কেলভিন (K)
$dS = \frac{dQ}{T}$; $dQ = mL_f$	dS = এনট্রপির পরিবর্তন	জুল/কেলভিন (JK ⁻¹)
T, dQ - IIILf	L _f = আপেক্ষিক সুপ্ততাপ	জুল/কেজি (Jkg ⁻¹)
ইঞ্জিনের দক্ষতা, $\eta = \left(1 - \frac{T_2}{T_1}\right) \times 100\%$	T ₁ = তাপ উৎসের তাপমাত্রা, T ₂ = তাপ গ্রাহকের তাপমাত্রা	কেলভিন (K)
ইঞ্জিনের দক্ষতা, $\eta = \left(1 - \frac{Q_2}{Q_1}\right) \times 100\%$	$\mathbf{Q}_1=$ উৎসে গৃহীত তাপ, $\mathbf{Q}_2=$ উৎস কর্তৃক বর্জিত তাপ	জুল (J)

অধ্যায় ২ > শ্বির তড়িৎ

সূত্রাবলি	প্রতীক পরিচিতি	একক
	F = বল	নিউটন (N)
1 0.0	Q_1 বা Q_2 = বিন্দু আধান	कुलाष (C)
কুলম্বের সূত্রানুসারে বল, $F = \frac{1}{4\pi \epsilon_0} \cdot \frac{Q_1 Q_2}{r^2}$	r = আধানম্বয়ের মধ্যবর্তী দূরত্ব	মিটার (m)
	$\frac{1}{4\pi\epsilon_0} = 4 ব মান = 9 \times 10^9 \text{ Nm}^2 \text{C}^{-2}$	নিউটন মিটার ^২ /কুলম্ব ^২ (Nm ² C ⁻²)
তড়িৎ ক্ষেত্রের প্রাবল্য, $E = \frac{1}{4\pi\epsilon_0} \cdot \frac{Q}{r^2}$	E = তড়িৎ প্রাবল্য	নিউটন/কুলম্ব (N/C) বা ভোল্ট/মিটার (V/m)
4x € 0 1	r = দূরত্ব	মিটার (m)

সূত্রাবলি	প্রতীক পরিচিত্তি	একক
	σ = চার্জের তলমাত্রিক ঘনত্ব	কুলম্ব/মিটার (C/m²)
চার্জের তলমাত্রিক ঘনতু, σ (সিগমা) = $rac{ extsf{Q}}{ extsf{A}}$	A = পরিবাহীর বহিঃপৃষ্ঠের ক্ষেত্রফল	বর্গমিটার (m²)
	4πr² = গোলকের পৃষ্ঠের ক্ষেত্রফল	বর্গমিটার (m²)
গোলকের ক্ষেত্রে চার্জের তলমাত্রিক ঘনত্ব, $\sigma = \frac{Q}{4\pi r^2}$	r = গোলকের ব্যাসার্ধ	মিটার (m)
তড়িৎ প্রাবল্য, $E = \frac{F}{Q}$	F = कू ल घ रल	নিউটন (N)
তড়িৎ প্রাবল্য, $E=rac{\sigma}{\epsilon_0}$	∈₀ = শূন্যস্থানের ভেদন যোগ্যতা	ফ্যারাডে/মিটার (F/m) বা কুলম্ব ² / নিউটন মিটার ² (C ² /N-m ²)
- Con (1997) (1997) (1997) (1997) (1997)	r = সূরত্ব	মিটার (m)
তড়িৎ ক্ষেত্রের বিভব, $V = \frac{1}{4\pi \epsilon_0} \cdot \frac{Q}{r}$	V = তড়িৎ বি ঙ ব	ভোল্ট (V)
গোলক পৃষ্ঠে ও অভ্যন্তরে বিভব, $V=rac{1}{4\pi\epsilon_0}\cdotrac{Q}{R}$	R = পরিবাহী গোলকের ব্যাসার্ধ	মিটার (m)
অসীম হতে একক ধনাত্মক চার্জকে তড়িৎক্ষেত্রের	W = কাজের পরিমাণ	জুল (J)
কোনো বিন্দুতে আনতে কৃত কাজ, $\mathbf{W} = \mathbf{V} \times \mathbf{Q}$	Q = চাৰ্জ	কুলম্ব (C)
তড়িৎ প্রাবল্য, $E = \frac{V}{d}$	V = তড়িৎ বিভব	ভোল্ট (V)
७।५८ यापणा, E = d	d = সমান্তরাল দুটি পাতের দূরত্ব	মিটার (m)
পরিবাহীর ধারকত্ব, $C = \frac{Q}{V}$	C = ধারকত্ব	ফ্যারাডে (F)
ત્રાહ્મ કાલ કાલ કર્યા છે. $C = \frac{1}{V}$	V = বিভব পার্থক্য	ভোল্ট (V)
গোলকীয় পরিবাহীর ধারকত্ব, C = 4π∈ ₀ r	r = গোলকের ব্যাসার্ধ	মিটার (m)
CHIPTER THATES THATE, C - 47.E01	∈₀ = তড়িৎভেদন যোগ্যতা	কুলম্ব ² /নিউটন-মিটার ² (C ² N ⁻¹ m ⁻²
সমান্তরাল পাত ধারকের ধারকত্, $C = \frac{\epsilon_0 A}{d}$	d = সমান্তরাল দুটি পাতের দূরত্ব	মিটার (m)
$\frac{1}{C_{s}} = \frac{1}{C_{1}} + \frac{1}{C_{2}} + \dots + \frac{1}{C_{n}}$	C _s = শ্রেণি সমবায়ে যুক্ত ধারকণুলোর ধারকত্ব	ফ্যারাড (F)
$C_p = C_1 + C_2 + \dots + C_n$	$C_{ m p}=$ সমান্তরাল সমবায়ে যুক্ত ধারকগুলোর ধারকত্	ফ্যারাড (F)

অধ্যায় ৩ 🖟 চল তড়িৎ

সূত্রাবলি	প্রতীক পরিচিতি	একক
0	I = তড়িৎ প্রবাহ	আ্যাম্পিয়ার (A)
তড়িৎ প্ৰবাহমাত্ৰা, $I=rac{Q}{t}$	Q = মোট চার্জ	কুলম্ব (C)
4 ²	t = সময়	সেকেন্ড (s)
V ²	H = তাপ	ক্যালরি (cal)
হাপ, $H = mS\theta = 0.24I^2Rt = 0.24 \text{ VIt} = 0.24 \times \frac{V^2}{R^4}$	m = ভর	কিলোগ্রাম (kg)
	S = আপেক্ষিক তাপ	জুল/কেজি-কেলভিন (Jkg ⁻¹ K ⁻¹)
তাপ, $H = 0.24 \times I^2 \times \rho \frac{4l}{\pi d^2} t$	<i>l</i> = দৈৰ্ঘ্য	মিটার (m)
πd ² t	d = ব্যাস	মিটার (m)
	I = পরিবাহীর তড়িৎ প্রবাহ	অ্যাম্পিয়ার (A)
তড়িৎ প্রবাহের ফলে সম্পন্ন কাজ, $\mathbf{W} = \mathbf{I}^2 \mathbf{R} \mathbf{t} = \mathbf{V} \mathbf{I} \mathbf{t}$	V = পরিবাহীর বিভব পার্থক্য	ভোল্ট (V)
	R = পরিবাহীর রোধ	ওম (Ω)
তাপের যান্ত্রিক সমতা, $J = \frac{W}{H} = \frac{VIt}{H}$	J = তাপের যান্ত্রিক সমতা	জুল/ক্যালরি (J Cal ⁻¹)
н н	W = শক্তি	জুল (J)
4.	α = রোধের উষ্ণতা গুণাঙক	প্রতি ডিগ্রি সেলসিয়াস (°C · ¹)
রোধের উষ্ণতা গুণাঙক, $\alpha = \frac{R_t - R_0}{R_s t}$	t = তাপমাত্রা	ডিগ্রি সে লসিয়াস (°C)
\mathbf{R}_{0} t	$\mathbf{R_t} = \mathbf{t}^{\mathbf{o}}\mathbf{C}$ তাপমাত্রায় পরিবাহীর রোধ	e 7 (O)
•	R ₀ = 0°C তাপমাত্রায় পরিবাহীর রোধ	ও'ম (Ω)
DA	🖊 = পরিবাহীর দৈর্ঘ্য	মিটার (m)
আপেন্ধিক রোধ বা রোধাঙ্ক, $\rho = \frac{RA}{l}$	A = পরিবাহীর প্রস্থক্ষেদের ক্ষেত্রফল	মিটার ^২ (m²)
	ρ = আপেক্ষিক রোধ	ও'ম-মিটার (Ωm)

সূত্ৰাবলি	প্রতীক পরিচিত্তি	একক
রোধের শ্রেণি সমবায়, $\mathbf{R}_s = \mathbf{R}_1 + \mathbf{R}_2 + \ldots + \mathbf{R}_n$	$R_1,R_2,,R_n$ শ্রেণি সমবায়ে যুক্ত রোধকপুলোর রোধ $R_s=$ শ্রেণি সমবায়ের তুল্য রোধ	ও'ম (Ω)
রোধের সমান্তরাল সমবায়, $\frac{1}{R_p} = \frac{1}{R_1} + \frac{1}{R_2} + + \frac{1}{R_n}$	$R_1, R_2,, R_n$ সমান্তরাল সমবায়ে যুক্ত রোধকগুলোর রোধ $R_p = $ সমান্তরাল সমবায়ের তুল্যরোধ	૭'૫ (Ω)
-	<u> ৷ = তড়িৎ প্রবাহমাত্রা</u>	অ্যাম্পিয়ার (A)
বর্তনীর প্রবাহ মাত্রা, $I = \frac{E}{R + r}$	E = তড়িচ্চালক শক্তি	ভোল্ট (V)
KTI	r = <mark>অভ্যন্তরী</mark> ণ রোধ	ও'ম (Ω)
-	n = কোষের সংখ্যা	-
শ্রেণি সমবায়ে তড়িৎ প্রবাহমাত্রা, $I = \frac{nE}{R + nr}$	E = তড়িচ্চালক শক্তি	ভোল্ট (V)
K - 11	r = <mark>অভ্যন্তরীণ রোধ</mark>	૭' ૫ (Ω)
সমান্তরাল সমবায়ে তড়িৎ প্রবাহমাত্রা, $I = \frac{nE}{nR + r}$	R = রোধ	ও'ম (Ω)
বিভব পার্থক্য, V = IR	I = তড়িৎ প্রবাহমাত্রা	অ্যাম্পিয়ার (A)
ARTONIA FOR AND PR	P, Q, R, S = C	ও'ম (Ω)
হুইটস্টোন ব্ৰিজ নীতি, $\frac{P}{Q} = \frac{R}{S} = \frac{l}{100 - l}$	<i>l</i> = দৈৰ্ঘ্য	মিটার (m)

অধ্যায় ৪ 🕨 তড়িৎ প্রবাহের চৌদ্বক ব্রিয়া ও চুদ্বকত্ব

সূত্রাবলি	প্রতীক পরিচিতি	একক
	F = চৌম্বক বল	নিউটন
চৌম্বক বল, $F = qvB \sin \theta$	q = চার্জের আধান	कुनध (C)
$F=qvB$, যখন, $\theta=90^\circ$	v = ইলে কট্রনের বেগ	মি./সে. (ms ⁻¹)
$F = I/B \sin \theta$	B = চৌম্বক ক্ষেত্র	টেসলা (T)
	<i>l</i> = তারের দৈর্ঘ্য	মিটার (m)
ঋজু তারের ক্ষেত্রে, $B = \frac{\mu_0 I}{2\pi a}$	a = লম্ব দূরত্	মিটার (m)
বৃত্তাকার কুণ্ডলীর ক্ষেত্রে, $B = \frac{\mu_0 I}{2r} N$	N = পাকসংখ্যা	- 1
	r = ব্যাসার্ধ	মিটার (m)
চৌম্বক বল, $F = \frac{\mu_0 I_1 I_2 I}{2\pi d}$	d = পরিবাহকদ্বয়ের মধ্যবর্তী দূরত্ব	মিটার (m)
2πd	$I_1, I_2 =$ তড়িৎপ্রবাহ	অ্যাম্পিয়ার (A)
হল বিভব, V _H = vBd	V _H = হল বিভব	ভোল্ট (V)
VH - VBu	v = চার্জের বেগ	মি./সে. (ms ⁻¹)
	τ = টৰ্ক	নিউটন-মি. (N-m)
$\vec{b}\vec{a}$, $\tau = NIAB \sin \theta = \vec{M} \times \vec{B}$	A = বর্তনীর ক্ষেত্রফল	মিটার ^২ (m²)
	B = চৌম্বক ফ্লাক্স ঘনত্ব	টেসলা (T)
U - D - c 2	H = অনুভূমিক উপাংশ	টেসলা (T)
$H = B \cos \delta,$ $V = B \sin \delta$ $V = H \tan \delta,$ $V^2 + H^2 = B^2$	V = উল্লঘ্ন উপাংশ	টেসলা (T)
$\mathbf{v} - \mathbf{H} \mathbf{u} \mathbf{H} \mathbf{o}, \mathbf{v} + \mathbf{H} = \mathbf{B}$	δ = বিনতি কোণ	ডিগ্রি (°)

অধ্যায় ৫ 🕨 তাড়িতটৌম্বকীয় আবেশ ও পরিবর্তী প্রবাহ

সূত্রাবলি	প্রতীক পরিচিতি	একক
	N = কুণ্ডলীর সলিনয়েডের পাক সংখ্যা	
আবিন্ট তড়িচ্চালক বল, $\varepsilon = -N \frac{d\phi_B}{dt} = -\frac{d}{dt}(N\phi_B)$	ε = আবিন্ট তড়িচ্চালক শক্তি	ভোল্ট (V)
di di	dop = চৌম্বক ফ্লাক্সের পরিবর্তন	ওয়েবার (Wb)
	B = চৌম্বক ক্ষেত্র	ওয়েবার/মি. (Wbm ⁻²)
চৌম্বক ফ্লাক্স, $\phi = AB \cos \theta$	φ = চৌম্বক ফ্লাক্স	ওয়ৈবার (Wb)
	A = পরিবাহীর ক্ষেত্রফল	মিটার ^২ (m ²)
গৌণ কুণ্ডলীতে আবিষ্ট তড়িচ্চালক বল, $\varepsilon = -M \frac{dI}{dt}$	dI = তড়িৎ প্রবাহের পরিবর্তন	অ্যাম্পিয়ার (A)
	dt = সময় পরিবর্তন	সেকেন্ড (s)
di	M = পারস্পরিক আবেশ গুণাঙ্ক	হেনরি (H)

সূত্রাবলি	প্রতীক পরিচিতি	07878
আবিষ্ট তড়িচ্চালক বল, $\varepsilon = -L rac{\mathrm{d} l}{\mathrm{d} t}$	L = মকীয় আবেশ গুণা ত ক	্র্যক্ক হেনরি (H)
ম্বকীয় আবেশ গুণা≪ ক এ র ক্ষে ত্রে, Nφ = Ll	φ = চৌম্বক ফ্লাঙ্ক	उटरावात (Wb)
আবিন্ট বিদ্যু কাল ক শক্তি, $\varepsilon=\varepsilon_0 \sin \omega t$	ϵ = আবিন্ট বিদ্যুচ্চালক শক্তি, ϵ_0 = সংৰ্বাচ্চ বিদ্যুচ্চালক শক্তি	ভোক্ট (V)
প্রবাহমাত্রা, I = Io sin wt	 ω = কৌণিক বেগ I = যেকোনো মুহূর্তে প্রবাহমাত্রা, I₀ = সর্বোচ্চ পরিবর্তী প্রবাহমাত্রা 	রেডিয়ান সে ^{-১} (rads ⁻¹
$\varepsilon_{\rm r.m.s} = \frac{\varepsilon_0}{\sqrt{2}} = 0.707\varepsilon_0$ এবং $I_0 = \frac{\varepsilon_0}{R}$	$\epsilon_{r.m.s} =$ পরিবর্তী বিদ্যুচ্চালক শস্তির গড় বর্গের বর্গমূল মান	অ্যাম্পিয়ার (A) অ্যাম্পিয়ার (A)
ট্রান্সফর্মারের সমীকরণ হতে, $\dfrac{E_a}{E_p}=\dfrac{I_p}{I_s}=\dfrac{n_s}{n_p}$	Ep ও E, যথাক্রমে মুখ্য ও গৌণ কৃগুলীর বিদ্যুচ্চালক শক্তি	ভোক্ট (V)
	I _p ও I, যথাক্রমে মুখ্য ও গৌণ কুণ্ডলীর তড়িৎ প্রবাহ n _p ও n _s যথাক্রমে মুখ্য ও গৌণ কুণ্ডলীর পাক সংখ্যা	অ্যাম্পিয়ার (A)

অধায় ৬ ১ জাহিতিক আলোকবিকা

সূত্রাবলি	প্রতীক পরিচিতি	একক	
কোন মাধ্যমে আলোর বেগ, $l_0=\mu_{ m m} imes l$	l = আলোর অতিক্রান্ত পথ	মিটার (m)	
, o Pin	μ _m = মাধ্যমের প্রতিসরণাঞ্জ	· · · · · · · · · · · · · · · · · · ·	
লেন্সের সূত্র, $\mu = \frac{\sin i}{\sin r}$	μ = প্রতিসরণাঙ্ক		
SINT	i = আপতন কোণ, r = প্রতিসরণ কোণ	ডিগ্রি (°)	
প্রতিসরণাঙ্ক, $_{\mathbf{a}}\mu_{\mathbf{b}}=\frac{1}{_{\mathbf{b}}\mu_{\mathbf{a}}}$; $_{\mathbf{b}}\mu_{\mathbf{c}}=\frac{\mu_{\mathbf{c}}}{\mu_{\mathbf{b}}}$	aμ _b = a মাধ্যমের সাপেকে b মাধ্যমের প্রতিসরণাক্ত	,,,,,	
ьµа от рь	ьμ _c =b মাধ্যমের সাপেকে c মাধ্যমের প্রতিসরণাক্ত		
লেসের সূত্রের সাধারণ রূপ, $\mu_x \sin i = \mu_y \sin r$	μ _x = x মাধ্যমের পরম প্রতিসরণাজ্ঞ		
у, дуни г. рузшт	μ _y = y মাধ্যমের পরম প্রতিসরণাঙ্ক		
	i ₁ = প্রথম আপতন কোণ		
বিচাতি, $\delta = i_1 + i_2 - A$ [যখন $A = r_1 + r_2$]	i ₂ = দ্বিতীয় প্রতিসরণ কোণ	60	
1 127	r ₁ = প্রথম প্রতিসরণ কোণ	ডিগ্রি (°)	
	r ₂ = দ্বিতীয় আপতন কোণ		
$A + \delta_{m}$	A = প্রিজম কোণ		
প্রিজম উপাদানের প্রতিসরণাঙ্ক, $\mu = \frac{\sin \frac{A + o_m}{2}}{\sin \frac{A}{2}}$	$\delta_{ m m}$ = ন্যূনতম বিচ্যুতি কোণ	ডিগ্রি (°)	
$\sin \frac{A}{a}$	δ = বিচ্যুতি কোণ		
	μ = প্রিজম পদার্থের প্রতিসরণাঙ্ক		
লেন্সের ক্ষমতার সমীকরণ, $P = \frac{1}{f}$	P = লেপের ক্ষমতা	ভায়প্টার (D	
f	f= ফোকাস দূরত্ব	মিটার (m)	
	F = সমবায়ের বা তুল্য লেন্সের ফোকাস দূরত্ব	()	
সমতুল্য লেন্সের ক্ষেত্রে, $F = \frac{\int \int f_2}{f_1 + f_2}$	f ₁ = প্রথম লেন্সের ফোকাস দূরত্ব	মিটার (m)	
J1 J2	f ₂ = দ্বিতীয় লেন্সের ফোকাস দূরত্ব		
<i>"</i> "	m = বিবর্ধন		
বিবর্ধনের ক্ষেত্রে, $\mathbf{m} = \frac{\ell'}{\ell} = -\frac{v}{u}$	ℓ' = প্রতিবিম্বের দৈর্ঘ্য, ℓ = লক্ষবস্তুর দৈর্ঘ্য	মিটার (m)	
	v = প্রতিবিম্বের দূরত্, u = লক্ষবস্থুর দূরত্		
সরল অণুবীক্ষণ যন্তের বিবর্ধন, $\mathbf{m} = \left(1 + \frac{\mathbf{D}}{f_0}\right)$	D = স্পন্ট দর্শনের ন্যুনতম দূরত্ব	Silve (-)	
(1. 1/0)	f ₀ = অভিলক্ষ্যের ফোকাস দূরত্ব	মিটার (m)	
The second secon	v ₀ = অভিলক্ষ্য হতে প্রথম প্রতিবিম্বের দূরত্ব		
যৌগিক অপুবীক্ষণ যন্তের বিবর্ধন, $\mathbf{m} = \frac{\mathbf{v_0}}{\mathbf{u_0}} \left(1 + \frac{\mathbf{D}}{f_{\mathbf{c}}} \right)$	u ₀ = অভিলক্ষ্য হতে বস্তুর দূরত্ব	মিটার (m)	
	fe = অভিনেত্রের ফোকাস দূরত্ব		
নডো-দূরবীক্ষণে বিবর্ধন (স্পন্ট দর্শনের ন্যূনতম দূরত্বে ফোকাসিং), $\mathbf{m} = f_0 \left(\frac{1}{\mathbf{D}} + \frac{1}{f_0} \right)$			
- 70	u _c = অভিনেত্র হতে বস্কুর দূরত্		
নভো-দূরবীক্ষণে বিবর্ধন (অসীম দূরত্বে বা স্বাভাবিক ফোকাসিং), $m = \frac{f_0}{f_0}$	্রি = অভিনেত্তের ফোকাস দূরত্ব ে = অভিনেত্তের ফোকাস দূরত		
নভো-দূরবীক্ষণে ন লের দৈর্ঘ্য (স্পন্ট দর্শনের ন্যূনতম দূরত্বে ফোকাসিং),		মিটার (m)	
$L = f_0 + u_e = f_0 + \left(\frac{Df_e}{D + f_e}\right)$	L = नत्नत रिपं		
	n = विवर्धन		
নজে-দূরবীক্ষণে নলের দৈর্ঘ্য (অসীম দূরত্বে বা মাভাবিক ফোকাসিং), L' = f_0 + f_0	1		

অধ্যায় ৭ 🕨 ভৌত আলোকবিজ্ঞান

সূত্রাবলি	প্রতীক পরিচিতি	একক
প্রতিসরণাঙ্ক ও আলোর বেগের মধ্যে সম্পর্ক, $_{a}\mu_{b}=rac{c_{a}}{c_{b}}$	μ = মাধ্যমের প্রতিসরণা ত্ত ক	1
Ch	$c_a=a$ মাধ্যমে আলোর বেগ, $c_b=b$ মাধ্যমে আলোর বেগ	মিটার/সে. (ms ⁻¹)
দশা পাৰ্থক্য, $\delta = \frac{2\pi}{\lambda} \times \sigma$	$\lambda=$ তরজা দৈর্ঘা, $\sigma=$ পথ পার্থক্য	মিটার (m)
কেন্দ্রীয় চরম থেকে দূরত্, $x_n=n\lambdarac{D}{d}$	$d = b$ র দুটির মধ্যবর্তী দূরত্ব, $D = b$ র থেকে পর্দার দূরত্ব $x_n = কেন্দ্রীয় চরম থেকে দূরত্ব, n = b ডোরার ক্রম$	মিটার (m)
ডোরা ব্যবধান, $\Delta x = \lambda \frac{D}{d}$	Δx = ডোরা ব্যবধান	মিটার (m)
উজ্জ্বল ডোরার প্রস্থ, $x=\lambda \frac{D}{2d}$	x = ডোরার প্রম্থ, λ = তরঞ্জা দৈর্ঘ্য	মিটার (m)
একক চিড়ে চরমের শর্ড, $a \sin \theta = (2n + 1) = \frac{\lambda}{2}$	a = চিড়ের প্রস্থ, $\lambda = $ তরঞ্জা দৈর্ঘ্য	মিটার (m)
	θ = অপবর্তন কোণ	ডিগ্রি (°)
একক চিড়ে অবমের শর্ত, a $\sin \theta = n\lambda$	a = চিড়ের প্রস্থ, λ = তর্জ্ঞা দৈর্ঘ্য	মিটার (m)
গ্রেটিং সমীকরণ, $d \sin \theta = n\lambda$	d = গ্রেটিং ধ্রুবক, λ = তরঞ্চা দৈর্ঘ্য	মিটার (m)

অধ্যায় ৮ 🕨 আধনিক পদার্থবিজ্ঞানের সচনা

স্ত্ৰাবলি	প্রতীক পরিচিতি	একক .
ফোটনের শক্তি, $E = hf = h \cdot \frac{c}{\lambda}$	h = প্ল্যাঙ্কের ধ্রুবক	জুল-সেকেন্ড (Js)
λ λ	f = কম্পাঙ্ক	হার্জ (Hz)
ফোটনের ভরবেগ, $P = \frac{h}{\lambda} = \frac{hf}{c}$	P = ভরবেগ	kgms ⁻¹
λ c	λ = আলোর তরঞ্জা দৈর্ঘ্য	মিটার (m)
5	v = ইলেকট্রনের বেগ	মিটার/সে. (ms ⁻¹)
V বিভব পার্থক্যে ইলেকট্রনের বেগ, $V=\sqrt{rac{2eV}{m}}$	e = ইলেকট্রনের আধান	কুলম্ব (C)
,	m = ইলেকট্রনের ভর	কিলোগ্রাম (kg)
গুনতম তর্জা দৈঘ্য, $\lambda_{\min} = \frac{\mathrm{hc}}{\mathrm{e}f}$	h = প্ল্যাঙ্কের ধ্রুবক	জুল-সেকেন্ড (Js)
<u> </u>	c = আলোর বেগ	মিটার/সেকেন্ড (ms ⁻¹)
ফটো ইলেকট্রনের সর্বোচ্চ গতিশক্তি, $rac{1}{2} \ ext{mv}^2_{ ext{max}} = ext{h} f - ext{W}_0 = ext{h} f - ext{h} f_0$	f ₀ = সূচন কম্পাঙ্ক	হার্জ (Hz)
সূচন কম্পাৰ্জ, $f_0=rac{\mathrm{W}_0}{\mathrm{h}}$	W ₀ = কার্য অপেক্ষক	ইলেকট্রন-ভোল্ট (eV)
সূচন তরজা দৈর্ঘ্য, $\lambda_0 = \frac{c}{f_0} = \frac{ch}{W_0}$	λ = তরজা দৈর্ঘ্য	মিটার (m)
নিবৃত্তি বিভব (V_s) ও ইলেকট্রনের সর্বোচ্চ বেগের মধ্যে সম্পর্ক, $eV_s=rac{1}{2}~{ m mv}^2_{ m max}$	V = বিভব পার্থক্য	ভোল্ট (V)
এক্স-রশ্মি বিকিরণে একক ফোটনের শক্তি, $E=hf=hrac{c}{\lambda}=rac{1}{2}\ mv^2+W_0$	E = *1@	জুল (J)
পর্যবেক্ষকের সাপেক্ষে গতিশীল অবস্থায় বস্তুর দৈর্ঘ্য, $L=L_0 \sqrt{1-rac{{ m v}^2}{c^2}}$	L ₀ = ঐ পর্যবেক্ষকের সাপেক্ষে স্থির অবস্থায় বস্তুর দৈর্ঘ্য	মিটার (m)
মিথর পর্যবেক্ষকের ঘড়িতে কোনো ঘটনার সময়, $t = \frac{t_0}{\sqrt{1-\frac{v^2}{c^2}}}$	t _o = গতিশীল পর্যবেক্ষকের ঘড়িতে কোনো ঘটনার সময়	সেকেন্ড (s)
বস্তুর মোট শক্তি, E = mc²	E = বস্থুর মোট শক্তি	জুল (J)
	m = কণার ভর	কেজি (kg)

অধ্যায় ৯ 🕨 পরমাণুর মডেল এবং নিউক্লিয়ার পদার্থবিজ্ঞান

সূত্রাবলি	প্রতীক পরিচিতি	একক
স্থায়ী কক্ষপথে ইলেকট্রনের কৌণিক ভরবেগ, $\mathbf{m} \mathbf{v} \mathbf{r} = \frac{\mathbf{n} \mathbf{h}}{2\pi}$	m = ইলেকট্রনের ভর	কেজি (kg)
	v = ইলেকট্রনের রৈখিক বেগ	মিটার/সে. (ms ⁻¹)
	r = কক্ষপথের ব্যাসার্ধ	মিটার (m)
ম্পায়ী কক্ষপথের ব্যাসার্থ, $r = \frac{h^2 \epsilon_0}{\pi me^2}$	e = ইলেকট্রনের আধান	কুলম্ (C)
πme ²	€0 = শূন্য মাধ্যমের ভেদন যোগ্যতা	কুলম্ব 2 /নিউটন-মিটার ($C^2N^{-1}m^{-1}$)

সূত্রাবলি	প্রতীক পরিচিতি	একক
3	E = ইলেকট্রনের শক্তি	ইলেকট্রন ভোল্ট (eV)
আবর্তনশীল ইলেকট্রনের মোট শক্তি, $E=-rac{me^4}{8n^2h^2\epsilon_0^2}$	n = কোয়ান্টাম সংখ্যা	-
ইলেকট্রনের কক্ষ স্থানান্তরের সময় নিঃসৃত শক্তি,	h = প্ল্যাভেকর ধ্রবক	জুল-সেকেন্ড (Js)
$E_2 - E_1 = ho$	$E_2, E_1 =$ কক্ষের ইলেকট্রনের শক্তি	ইলেকট্রন ভোল্ট (eV)
	υ = ইলেকট্রনের কম্পাঙ্ক	হার্জ (Hz)
0.693	T1/, = অর্ধায়	সেকেন্ড (s)
অর্ধায়ু ও ক্ষয় ধ্রুবকের মধ্যে সম্পর্ক, $T_{1/2}=rac{0.693}{\lambda}$	λ = তেজষ্ক্রিয় পদার্থটির ক্ষয় ধ্রুবক	প্রতি সেকেন্ড (s ⁻¹)
প্রতি সেকেন্ডে ফিশনের সংখ্যা, $N = \frac{P}{E}$	P = উৎপাদিত ক্ষমতা	ওয়াট (W)
	E = প্রতি ফিশনে নির্গত শক্তি	ইলেকট্রন ভোল্ট (eV)

অধ্যায় ১০ 🕨 সেমিকন্ডাক্টর ও ইলেকট্রনিক্স

সূত্রাবলি	প্রতীক পরিচিতি	একক
3	R = জাংশনের রোধ	ও'ম (Ω)
জাংশনের রোধ, $R = \frac{\Delta V}{\Delta I}$	ΔV = বিভব পার্থক্যের পরিবর্তন	ভোল্ট (V)
	ΔI = তড়িৎ প্রবাহের পরিবর্তন	অ্যাম্পিয়ার (A)
নিঃসারক প্রবাহ, $I_E = I_B + I_C$	$I_{ m B}=$ পীঠ প্রবাহ, $I_{ m C}=$ সংগ্রাহক প্রবাহ	অ্যাম্পিয়ার (A)
প্রবাহ পাঁভ, $eta=rac{\Delta I_C}{\Delta I_B}$ $\Delta I_C=$ সংগ্রাহক প্রবাহের পরিবর্তন, $\Delta I_B=$ পীঠ প্রবাহের পরিবর্তন		মিলি অ্যাম্পিয়ার (mA)
বিবর্ধন গুণক, $\alpha = \frac{I_C}{I_E}$	${f I}_{ m C}=$ সংগ্রাহক প্রবাহ, ${f I}_{ m E}=$ নিঃসারক প্রবাহ	অ্যাম্পিয়ার (A)

অধ্যায় ১১ ৮ জ্যোতির্বিজ্ঞান

সূত্রাবলি	প্রতীক পরিচিতি	একক
	v = অপসারণ বেগ	মিটার প্রতি সেকেন্ড (ms ⁻¹)
হাবল বিধি অনুসারে অপসারণ বেগ, v = HR	H = হাবল ধ্রুবক	কিলোমিটার প্রতি সেকেন্ড (kms ⁻¹)
3 (R = সূরত্ব	মিটার (m)
3H ²	H = হাবল ধ্রুবক	কিলোমিটার প্রতি সেকেন্ড (kms ⁻¹)
ক্রান্তিক ঘনতৃ, $Pc = \frac{3H^2}{8\pi G}$	G = মহাক্ষীয় ধ্রুবক	Nm ² kg ⁻²
ঘনত, $P = \frac{M}{V} = \frac{M}{2}$	M = গ্রহ বা নক্ষত্রের ভর	কিলোগ্রাম (kg)
ঘনত, $P = \frac{M}{V} = \frac{M}{\frac{3}{4} \pi R^3}$	V = আয়তন	ঘনমিটার (m³)
2GM	M = নক্ষত্রের ভর	কিলোগ্রাম (kg)
শোয়ার্জশিন্ড ব্যাসার্ধ, $R_s = \frac{2GM}{c^2}$	c = আলোর বেগ	মিটার প্রতি সেকেন্ড (ms ⁻¹)
v Δl	v = তারার বেগ, c = আলোর বেগ	মিটার প্রতি সেকেন্ড (ms ⁻¹)
ডপলারের সমীকরণ, $\frac{\mathbf{v}}{\mathbf{c}} = \frac{\Delta I}{I}$	ΔI = তরজ্ঞাদৈর্ঘ্যের পরিবর্তন	মিটার (m)
GM GM	M = পৃথিবীর ভর	কিলোগ্রাম (kg)
কৃত্রিম উপগ্রহের বেগ, $v = \frac{GM}{r} = \frac{GM}{R+h}$	R = পৃথিবীর ব্যাসার্ধ	মিটার (m)
R + h	h = পৃথিবীর পৃষ্ঠ হতে উপগ্রহের উচ্চতা	মিটার (m)
কৃত্রিম উপগ্রহের আবর্তনকাল, $T = 2\pi (R + h) \sqrt{\frac{R + h}{GM}}$	M = পৃথিবীর ভর	কিলোগ্রাম (kg)

পদার্থবিজ্ঞানে সংকেত হিসেবে ব্যবহৃত গ্রিক ব্র্ণমালা

বড় হাতের বর্ণ	ছোট হাতের বর্ণ	উচ্চারণ
Α	α	আলফা (alpha)
В	β	বেটা (beta)
Г	γ	গামা (gamma)
Δ	δ	ডেলটা (delta)
E	ε	ইপসাইলন (epsilon)
Z	ζ	জীটা (zeta)
Н	η	ইটা (eta)
Θ	θ	থিটা (theta)

বড় হাতের বর্ণ	ছোট হাতের বর্ণ	উচ্চারণ
1	ı	आरग्राण (iota)
K	ĸ	কাপ্পা (kappa)
Λ	λ	ল্যামডা (lambda)
М	μ	মিউ (mu)
N	v	নিউ (nu)
Ξ	ξ	জাই (xi)
0	0	ওমিক্রন (omicron)
п	π	পাই (pi)

বড় হাতের বর্ণ	ছোট হাতের বর্ণ	উচ্চারণ
P	ρ	রো (rho)
Σ	σ	সিগমা (sigma)
Т	τ	টাও (tau)
Y	υ	উপসিলন (upsilon)

বড় হাতের বর্ণ	ছোট হাতের বর্ণ	উত্তারণ
Φ	φ, Ø	ফাই (phi)
X	χ	কাই (chi)
Ψ	Ψ	সাই/পসাই (psi)
Ω	ω	ওমেগা (omega)

দশের সূচকসমূহের নাম, সংকেত ও উদাহরণ

নিম্নঘাত (ক্ষুদ্রাংশ)

উপসৰ্গ	উৎপাদক	সংকেত '	উদাহরণ
ডেসি (deci)	10^{-1}	d	1 ডেসি ওহম $= 1$ d $\Omega = 10^{-1}$ Ω
সেন্টি (centi)	10-2	c	1 সেন্টিমিটার = 1 cm = 10 ⁻² m
মিলি (milli)	10 ⁻³	m	1 মিলি অ্যাম্পিয়ার = 1 mA = 10 ⁻³ A
মাইক্রো (micro)	10 ⁻⁶	μ	1 মাইক্রো ভোল্ট = 1 μV = 10 ⁻⁶ V
ন্যানো (nano)	10 ⁻⁹	n	1 ন্যানো সেকেন্ড = 1 ns = 10 ⁻⁹ s
পিকো (pico)	10 ⁻¹²	р	1 পিকো ফ্যারাড = 1 pF = 10 ⁻¹² F
ফেমটো (femto)	10 ⁻¹⁵	f	1 ফেমটো মিটার = 1 fm = 10 ⁻¹⁵ m
অটো (atto)	10^{-18}	a	1 অটো কুলম্ব = 1 aC = 10 ⁻¹⁸ C

উচ্চঘাত (বৃহদাংশ)

উপসর্গ	উৎপাদক	সংকেত	উদাহরণ
ডেকা (deca)	101	da	1 ডেকা নিউটন = 1 daN = 10 N
হেক্টো (hecto)	10 ²	h	1 হেক্টো প্যাসকেল = 1 hPa = 10 ² Pa
কিলো (kilo)	103	k	1 কিলোভোল্ট = 1 kV = 10 ³ V
মেগা (mega)	106	M	1 মেগা ওয়াট = 1 MW = 10 ⁶ W
গিগা (giga)	109	G	1 গিগা বাইট = 1 Gbite = 10 ⁹ bite
টেরা (tera)	1012	T	1 টেরাহাম = 1 Tg = 10 ¹² g
পেটা (peta)	1015	P	1 পেটামিটার = 1 Pm = 10 ¹⁵ m
এক্সা (exa)	1018	E	া এক্সা মিটার = 1 Em = 10 ¹⁸ m

এক নজরে বিভিন্ন বস্তুর আপেন্দিক রোধ, ঘনত্ব/আপেন্দিক গুরুত্ব

বিভিন্ন বস্তুর আপেক্ষিক রোধ

বস্থ	আঃ রোধ, Ω-m (SI একক)
তা <mark>মা</mark>	1.7×10^{-8}
অ্যালুমিনিয়াম	2.94×10^{-8}
পিতল	4.1×10^{-8}
রুপা	1.6×10^{-8}
টিন	$(3.5-11.3) \times 10^{-8}$
সী <mark>সা</mark>	20.8×10^{-8}
ইস্পাত	$(19.9-25.6) \times 10^{-8}$
টাংস্টেন	5.5×10^{-8}
মাইকা	9.0×10^{-8}

বস্তু	আঃ রোধ, Ω-m (SI একক)
দস্তা	6.10×10^{-8}
ইউরেকা বা কনস্ট্যান্ট্যান	49 × 10 ⁻⁸
ম্যাজ্যানিজ	44 × 10 ⁻⁸
জার্মান রুপা	27 × 10 ⁻⁸
সোনা	2.42×10^{-8}
পারদ	95 × 10 ⁻⁸
প্লাটিনাম	11 × 10 ⁻⁸
নাইক্রোম	100 × 10 ⁻⁸
ফসফর ব্রোঞ্জ	$(5-10) \times 10^{-8}$

বিভিন্ন বস্তুর ঘনত্ব/ আপেক্ষিক গুরুত্ব

বন্ধুর নাম	ঘনত/ আপেকিক পুরুত্ (g/cm³)
সোনা (Au)	19.3
রুপা (Ag)	10.5
সীসা (Pb)	11.37
তামা (Cu)	8.9-9.3
পিতল (Brass)	8.6
লোহা (বিশুল্ধ) (Fe)	7.2

বৰুর নাম	ঘনত/ আপেক্ষিক গুরুত্ (g/cm³)				
তুঁতে দ্ৰবণ (CuSO ₄ solution)	1.1				
মোম (Paraffin Wax)	0.88				
সাধারণ লবণ (Salt)	2.17				
কাচ (ফ্লিন্ট) (glass)	2.9-4.5				
কাচ (ক্রাউন)	2.4-2.6				
পানি (H ₂ O)	1.00				

বন্ধুর নাম	ঘনত্/ আপেক্ষিক গুরুত্ব (g/cm³)				
সাধারণ লোহা (Fe)	7.8				
দস্তা (Zn)	7.1				
টিন (Sn)	7.29				
প্লাটিনাম (Pt)	21.6				
হীরা (Diamond)	3.52				
মাটি (Soil)	1.44-1.76				
বরফ (Ice)	0.92				
চিনি (Sugar)	1.59				
তুতে (CuSO ₄ crystal)	2.1				

বন্ধুর নাম	ঘনত/ আপেকিক গুরুত্ (g/cm³				
কেরোসিন (Kerosene)	0.8				
তাৰ্পিন তেল	0.87				
পারদ (Hg)	13.6				
ዃቔ (Milk)	1.03				
আালকোহল (Alcohol)	0.81				
পেট্রোল (Petrol)	0.70				
হাইড্রোজেন (H)	0.00009				
বায়ু (Air)	0.00129				
कर्क (Cork)	0.25				

কয়েকটি পদার্থের গলনাজ্ঞ্ক ও স্ফুটনাজ্ঞ্ক

পদার্থবিজ্ঞানে গলনাঙ্ক সম্পর্কিত বিভিন্ন গাণিতিক প্রশ্ন থাকে। কয়েকটি গুরুত্বপূর্ণ পদার্থের গলনাঙ্ক হলো—

পদাৰ্থ	গলনাজ্ঞ (°C)				
পারদ	-38				
বরফ	0				
মোম (সাদা)	52-56				
গল্পক	115				
সোনা	1063				
তামা	1083				
লোহা (ইস্পাত)	1300 -1400				

পদার্থ	গলনাক্ক (°C)
দস্তা	418
পিতল	800-1000
রুপা	960
কাচ	1000-1400
চিনি	160
সীসা	327

গলনাঙ্কের পাশাপাশি স্ফুটনাঙ্ক সম্পর্কিত গাণিতিক প্রশ্নও পদার্থবিজ্ঞানে হয়ে থাকে। কয়েকটি পদার্থের স্ফুটনাঙ্ক হলো—

পদার্থ	স্ফুটনাঙক (°C)			
পারদ	357			
তার্পিন	158			
বেনজিন	80.2			
গল্ধক	44.4			
অ্যালকোহল	78.3			
সীসা	1740			
দস্তা	907			

পদার্থ	ম্কুটনাঙ্ক (°C)			
নিকেল	2730			
রুপা	2210			
এলুমিনিয়াম	2060			
সোনা	2970			
তামা	2300			
লোহা	2740			
পানি	100			

বিভিন্ন পদার্থের স্থিতিস্থাপক গুণাঙ্ক এবং পানির ঘনত্

কয়েকটি গুরুত্বপূর্ণ পদার্থের স্থিতিস্থাপক গুণাঞ্জ সিজিএস (CGS) পম্থতিতে dyne/cm² এককে দেওয়া হলো–

পদার্থ	ইয়ং-এর গৃগাঙ্ক 'Y'	দৃঢ়তার গুণাঙ্ক 'n'	আয়তনিক গুণাঙ্ক 'k'	অসহ পীড়ন
তামা	12.5×10^{11}	4×10^{11}	14.3 × 10 ¹¹	2860 - 3160
ইম্পাত	$(19.5 - 20.6) \times 10^{11}$	$(7.9 - 8.9) \times 10^{11}$	18.1 × 10 ¹¹	11230 - 23780
অ্যালুমিনিয়াম	7.5×10^{11}	2.67 × 10 ¹¹		-
লৌহ (ঢালাই)	19.9×10^{11}	$(7.7 - 8.3) \times 10^{11}$	14.6 × 10 ¹¹	-
লৌহ (পেটা)	13 × 10 ¹¹	3.6 × 10 ¹¹		(
পিতল	9.02×10^{11}	3.6×10^{11}	10.1 × 10 ¹¹	3160 - 3980
ম্যাক্যানিজ	12.4×10^{11}			

বিভিন্ন তাপমাত্রায় পানির ঘনতৃ, ρ (গ্রাম/সি. সি.)

তাপমাত্রা	0	2	4	6	8	10	12	14	16	18
0°C	0.9998	0.9999	1.0000	0.9999	0.9998	0.9997	0.9995	0.9992	0.9989	0.9989
20°C	0.9982	0.9978	0.9973	0.9968	0.9962	0.9956	0.9950	0.9944	0.9937	0.9930
40°C	0.9922	0.9915	0.9907	0.9898	0.9890	0.9881	0.9872	0.9862	0.9853	0.9843
60°C	0.98323	0.9822	0.9811	0.9801	0.9780	0.9778	0.9767	0.9755	0.9743	0.731
80°C	0.9718	0.9706	0.9693	0.9680	0.9667	0.9653	0.9640	0.9620	0.9612	0.9598
100°C	0.9584	1	1 313 313			1		•		-