Pregunta 1 (2,5 puntos)

Sea un conjunto X no vacío y sea $f\colon X\longrightarrow X$ una aplicación tal que $f\circ f\circ f=f.$ Demuestre que:

f es inyectiva si y sólo si f es sobreyectiva

Pregunta 2 (2,5 puntos)

Se define en \mathbb{Z} la relación dada por:

 $x \mathcal{R} y$ si y sólo si x + y es divisible por 2

- a) Demuestre que \mathcal{R} es una relación de equivalencia en \mathbb{Z} .
- b) Determine las clases de equivalencia.

Pregunta 3 (2,5 puntos)

Sea la sucesión tal que $u_0 = 0$ y

$$u_{n+1} = \frac{1 + 2u_n}{2 + u_n}$$

para todo $n \in \mathbb{N}^*$. Demuestre por inducción que para todo $n \in \mathbb{N}^*$ se tiene $0 < u_n \le 1$.

Pregunta 4 (2,5 puntos)

Sea $H = \{z \in \mathbb{C} : z = a + ib, a, b \in \mathbb{Z}\}$. Consideramos las operaciones suma y producto de números complejos restringidas a H.

- a) ¿Es (H, +) un grupo?
- b) ¿Es (H^*, \cdot) un grupo? (siendo $H^* = H \setminus \{0\}$)

Justifique las respuestas.