```
In [1]: import numpy as np
import pandas as pd
df=pd.read_csv('Social_Network_Ads.csv')
df
```

Out[1]:

	User ID	Gender	Age	EstimatedSalary	Purchased
0	15624510	Male	19	19000	0
1	15810944	Male	35	20000	0
2	15668575	Female	26	43000	0
3	15603246	Female	27	57000	0
4	15804002	Male	19	76000	0
395	15691863	Female	46	41000	1
396	15706071	Male	51	23000	1
397	15654296	Female	50	20000	1
398	15755018	Male	36	33000	0
399	15594041	Female	49	36000	1

400 rows × 5 columns

In [2]: df.head()

Out[2]:

	User ID	Gender	Age	EstimatedSalary	Purchased
0	15624510	Male	19	19000	0
1	15810944	Male	35	20000	0
2	15668575	Female	26	43000	0
3	15603246	Female	27	57000	0
4	15804002	Male	19	76000	0

```
In [4]:
       features=df.iloc[:,[2,3]].values
       label=df.iloc[:,4].values
       features
Out[4]: array([[
                   19,
                       19000],
                   35,
                       200001,
                   26,
                       43000],
              27,
                       57000],
              [
                   19,
                       76000],
              [
                   27,
                       58000],
              27,
                       84000],
                   32, 150000],
                   25,
                       330001,
                   35,
                       65000],
                   26,
                       80000],
              [
                   26,
                       52000],
                   20,
                       86000],
                   32,
                       18000],
                   18,
                       82000],
                   29,
                       80000],
              47,
                       25000],
              45,
                       26000],
                       28000],
              46,
       label
In [5]:
Out[5]: array([0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1,
              1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
              0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
              0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,
                    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                                                           0, 0, 0, 0,
                   0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,
              0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
              0, 1,
                    0, 0, 1,
                            0, 1,
                                 0, 1,
                                          1, 0, 1, 1, 0, 0,
                                                                0, 0,
                                       0,
                      1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1,
                                                    0, 1, 0, 0, 0, 1, 1,
                   0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0,
                                                                   1,
              1, 1,
                    0, 0, 1, 0, 0, 1,
                                    1, 1, 1, 1, 0, 1, 1, 1,
                                                           1, 0, 1,
              0, 1,
                            1, 1, 0, 0,
                      1, 1,
                                       0, 1, 1, 0, 1, 1,
                                                        1,
                                                          1, 1, 0,
              1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1,
              0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0,
              1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1,
              0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1,
              1, 1, 0, 1], dtype=int64)
       from sklearn.model_selection import train_test_split
In [6]:
       from sklearn.linear model import LogisticRegression
```

```
In [7]:
       for i in range(1,401):
          x_train,x_test,y_train,y_test=train_test_split(features,label,test_size=0.
          model=LogisticRegression()
          model.fit(x_train,y_train)
          train_score=model.score(x_train,y_train)
          test_score=model.score(x_test,y_test)
          if test_score>train_score:
            print("Test {} Train{} Random State {}".format(test_score,train_score,i)
        Test 0.6875 Train0.63125 Random State 3
        Test 0.7375 Train0.61875 Random State 4
        Test 0.6625 Train0.6375 Random State 5
        Test 0.65 Train0.640625 Random State 6
        Test 0.675 Train0.634375 Random State 7
        Test 0.675 Train0.634375 Random State 8
        Test 0.65 Train0.640625 Random State 10
        Test 0.6625 Train0.6375 Random State 11
        Test 0.7125 Train0.625 Random State 13
        Test 0.675 Train0.634375 Random State 16
        Test 0.7 Train0.628125 Random State 17
        Test 0.7 Train0.628125 Random State 21
        Test 0.65 Train0.640625 Random State 24
        Test 0.6625 Train0.6375 Random State 25
        Test 0.75 Train0.615625 Random State 26
        Test 0.675 Train0.634375 Random State 27
        Test 0.7 Train0.628125 Random State 28
        Test 0.6875 Train0.63125 Random State 29
        Test 0.6875 Train0.63125 Random State 31
In [8]: x_train,x_test,y_train,y_test=train_test_split(features,label,test_size=0.2,
        finalModel=LogisticRegression()
        finalModel.fit(x_train,y_train)
Out[8]: LogisticRegression()
        In a Jupyter environment, please rerun this cell to show the HTML representation or
        trust the notebook.
        On GitHub, the HTML representation is unable to render, please try loading this page
        with nbviewer.org.
```

```
In [9]: print(finalModel.score(x_train,y_train))
print(finalModel.score(x_test,y_test))

0.834375
0.9125
```

In [10]: from sklearn.metrics import classification_report
print(classification_report(label,finalModel.predict(features)))

	precision	recall	f1-score	support
0	0.85	0.93	0.89	257
0				_
1	0.84	0.71	0.77	143
accuracy			0.85	400
macro avg	0.85	0.82	0.83	400
weighted avg	0.85	0.85	0.85	400

In []: