MATH 541 L1 Notes

Jan 30, 2023

We will cover basics of **groups**, **rings**, and **modules**. There are all **sets** with additional structures.

Example 0.1

 \mathbb{R} is a ring (a field). A vector space over \mathbb{R} is a module.

1 Recap of Sets

A, B are sets, $f: A \to B$ is a function.

Definition 1.1 Injection

f is an **injection** if $f(a) = f(b) \implies a = b$.

Example 1.1

 $f: \mathbb{R} \to \mathbb{R}, x \mapsto x^2$ is not an injection. $f(2) = f(-2), 2 \neq -2$

Definition 1.2 Surjection

f is a **surjection** if $\forall b \in B, \exists a \in A, \text{s.t.} f(a) = b$

Definition 1.3 Bijection

f is a **bijection** if f is both a **surjection** and an **injection**. f is bijective $\iff f$ has an unique inverse function f^{-1} .

$$f^{-1}(f(a)) = a \ \forall a \in A, \quad f(f^{-1}(b)) = b \ \forall b \in B$$

1.1 Products of Sets

Definition 1.4 Products of Sets

A,B are sets, $A\times B$ is the set of all ordered pairs (a,b) where $a\in A,b\in B.$ $A\times B=\{(a,b)|a\in A,b\in B\}$

Example 1.2

 $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$

2 Binary Operation

Definition 2.1 Binary Operation

Binary Operation on a set X is a function *

$$*: X \times X \to X, (x, y) \mapsto x + y$$

Example 2.1

 $X = \mathbb{Z}, * = +$ is a binary operation on $\mathbb{R}, 3 + 5 = 8$

Example 2.2

Consider the set $[n] = \{1, 2, \dots, n\},\$

$$\operatorname{Aut}([n]) = \{ f : [n] \to [n] \mid f \text{ is bijective} \}$$

n = 3, f = (2, 1, 3) = (1, 3, 2) (Cycle Representation), can form

$$[n] \xrightarrow{g} [n] \xrightarrow{f} [n]$$

$$f \circ g$$

$$f \circ g(1) = f(g(1)) = f(1) = 3$$
$$f \circ g(2) = f(g(2)) = f(3) = 2$$
$$f \circ g(3) = f(g(3)) = f(2) = 1$$
$$f \circ g = (3, 1) = (1, 3)$$

 $(\operatorname{Aut}[n], \circ)$ forms a group.

3 Group

Definition 3.1 Group

A group G is a **set** equipped with a binary operation * such that:

- Associative: $(a*b)*c = a*(b*c), \forall a,b,c \in G$
- Identity: $\exists e \in G, \ e * a = a * e = a, \ \forall a \in G$
- Inverse: $\forall a \in G, \ \exists a^{-1} \in G, \ a * a^{-1} = a^{-1} * a = e$

Example 3.1

Check $(\operatorname{Aut}[n], \circ)$ is a group.

- Associative: $(f \circ g) \circ h = f \circ (g \circ h)$. This is an equality of functions: $[n] \to [n]$. i.e. $\forall x \in [n], (f \circ g) \circ h(x) = f \circ (g \circ h)(x) = f(g(h(x)))$
- Identity: $\exists e \in \operatorname{Aut}[n], \ e \circ f = f \circ e = f$. i.e $\operatorname{id}_{[n]}(x) = x, \forall x \in [n]$, namely the permutation that does nothing.
- Inverse: $f \in \operatorname{Aut}([n])$ is bijective. i.e. $\forall f \in \operatorname{Aut}[n], \ \exists f^{-1} \in \operatorname{Aut}[n], \ f \circ f^{-1} = f^{-1} \circ f = \operatorname{id}_{[n]}.$

Exercise 1. Compute $(1,2,3) \circ (2,3)$ and $(2,3) \circ (1,2,3)$

$$(1,2,3)\circ(2,3)=(2,1,3)$$

$$(2,3) \circ (1,2,3) = (1,3)$$

In general, for a group (G, *), $a * b \neq b * a$ (not necessarily)

Definition 3.2 Abelian Group

If $a*b=b*a, \forall a,b\in G$, then G is called **abelian**, or **commutative**.

Example 3.2

 $(\mathbb{Z},+)$ is an abelian group.

 $(\mathbb{Z},*)$ is **NOT** a group! (Inverse of 0 does not exist)

 $(\pm 1, \times)$ is an abelian group.

 $M_{n \times n} = \{n \times n \text{ matrices } / \mathbb{R}\} \ (M_{n \times n}, +) \text{ is an abelian group.}$

 $M_{n\times n}^{\times} = \{A \in M_{n\times n} | \det(A) \neq 0\}.$ Then $(M_{n\times n}^{\times}, \times)$ is a group.

 $\mathbb{R}^n \to \mathbb{R}^n$ usually not commutative.