Out as a	final exam
Oct 31, 2023	Today's topics:- 2-5 pm
—)	Today's topico: Toce is NOT always Po (paneto ophinel) Some examples when it is
	Some expresses refere it is
	- one champies when he is
	Example 1
	$\left\{q_t\right\}_{t=0}^{\infty} \qquad {}^{n}_{ct} = {}^{n}_{kt}, \; {}^{n}_{nt} = {}^{n}_{kt} = 0$
	Govt B.C.: E Ptgt = ETt
	Claim: TDCE is 80 in this case
	TDC5 $\stackrel{\mathcal{E}}{\underset{t \neq 0}{\mathcal{E}}} \beta_{t} u (c_{t}, n_{t}) \rightarrow max$ $\stackrel{\text{why?}}{\underset{t \neq 0}{\mathcal{E}}}$
	S.t. $\underset{t=0}{\overset{\sim}{\sum}} p_t c_t + p_t (k_{t+1} - (1-\delta) k_t) = \overset{\sim}{\underset{t=0}{\overset{\sim}{\sum}}} r_t k_t + w_t n_t + T_t$
	Foc:
	(ct): Bt u'c (t) = Ape
	(n_t) : $g^t u'_n(t) = A n_t$
	(k ₂₊₁): - + + + (1-8) + =0
	PE = 1-8
	Pt+1 Pe+1
→	$\frac{u'_{c}(t)}{\beta u'_{c}(t)} = \frac{r_{t+1}}{r_{t+1}} + \frac{1-\delta}{r_{t+1}}$
	B Wc (tr) Pt Conditions:
	$c_t + x_t + g_t = F(k_t, n_t)$
	J. J

Consider SPP:—
$ \stackrel{\approx}{\underset{t \Rightarrow 0}{\mathbb{E}}} p^{t} \mathcal{U}(c_{t}, n_{t}) \max_{\substack{f \in L, n_{t} \neq 0 \\ \text{S.t.}}} g_{t} g_{$
$\kappa_{\text{full}} = (1-8)\kappa_{\text{full}} \times \kappa_{\text{full}}$
FOC for SPP: -
$\frac{u_c'(t)}{\beta u_c'(t+1)} = \hat{f}_k(t+1) + 1 - \delta$
$\frac{U_n(t)}{U_t(t)} = \hat{F}_n(t)$
This is the same as for TOCS (gt is a constant). TOCE is PO in this case (lump sum taxes & toansfers)

-	Example 2:	
	$C_{tt} = C_{nt} = C_{t} \forall t$ $C_{ct} = C_{xt} = 0 \forall t$ $T_{t} = 0 \forall t$ $C_{out} B_{t} : B_{t} = C_{t} T_{t} \times T_{t$	(b.C. is cleaned every
	Gort. B.C.: Pegt = Tereket Tewene + t	pd - stricter cound han ex 1)
	$\leq p^{t} u(c_{t}, n_{t}) \rightarrow max$	
	$\underset{t \to 0}{\overset{\infty}{\not=}} \text{PtCt} + \text{Pt}(k_{HI} - (1-8)k_t) = \underset{t \to 0}{\overset{\infty}{\not=}} (r_t k_t)$	$t(1-T_t)+w_t n_t (1-T_t)$
(h _t	Foc: -): $p^{t} u_{c}(t) = \lambda p_{t}$): $p^{t} u_{n}(t) = \lambda w_{t}(1 - \tau_{t})$): $-p_{t} + p_{t}(1 - S) + r_{t}(1 - \tau_{t}) = 0$	
	Pt = ren (1-2011) + 1-8 Ptr)	
<i>⇒</i>	$\frac{u'_{c}(t)}{\beta u'_{c}(t+1)} = \frac{r_{t+1}}{\beta t} \left(1 - T_{t+1}\right) + 1 - 8$ $\frac{u'_{n}(t)}{\beta u'_{c}(t+1)} = \frac{u_{t}}{\beta t} \left(1 - T_{t}\right)$ $\frac{u'_{n}(t)}{u'_{c}(t+1)} = \frac{u_{t}}{\beta t} \left(1 - T_{t+1}\right)$	Characterizes the equilibrium
	$C_{t} + \lambda_{t} + g_{t} = F(K_{t}, n_{t})$	where does this

	SPP
	Estu(cz,nt) -> max
	s.t. ct + xt = (1-2t).f(kt, nt) (Redifine prod technology)
	$0 \leq n_{t} + l_{t} \leq 1$ ko & given
	Foc
	$P^{t} u'_{c}(t) = \lambda_{t}$ $P^{t} u'_{n}(t) = \lambda_{t} (1 - \lambda_{t}) P'_{n}(t)$
	$-\lambda_{t} + \lambda_{t+1} \left[\left(1 - \mathcal{T}_{t+1} \right) + \left(t + 1 \right) + 1 - s \right] = 0$
	Welt) = (1-Ttr) f'(tel)+(-8) Equilibrium conditions un the same
	$\frac{u'_{n}[t]}{u'_{c}(t)} = (1-t_{t})F'_{n}(t)$ as before.
	Dr. a da a da a Drat A a a a'd
	Now we have to show that fearibility constaint in CE & DCE is the came.
	$C_{t} + x_{t} + g_{t} = f(k_{t}, n_{t}) \rightarrow FC \text{ in } CF$
	PtCt + Ptxt+ Ptgt = Pt F(Kt1 nt)
=	PECE + PEXE + Te(reke + went) = PEF(ke, ne)

	Under CRS:
	PECE + PEXE = (1- TE) PEF(KE, NE) + TE(PEF(KE, NE)-Went
	$-r_{t}r_{t}$
	Under COS, mis vis D.
\Leftrightarrow	PtCt + Ptxt = (1- Tt)Pt F
\Rightarrow	$c_t + x_t = (1-\tau_t) + - + c_i = + + + + + + + + + + + + + + + + + + $
œ	Add some to to this, I you'll see that the cond" are
	THE SAME
ſ	Example 3 :
	Same world as example 2
	Suppose 21 to 30%. (unexpected thanks so that agents
	Suppose 2 1 to 30%. [unexpected thanke so that agents do not have a chance to Clarge Truir behavior prins to tax change.]
	Suppose labor supply inelastic $W_n = 0$
	$\mathcal{E}\mathcal{E}$:
	$u'_{c}(t) = \beta u'_{c}(t) \left[f'_{k}(t) \left((-7_{t}) + 1 - \delta \right) \right]$
	Steady-State 602
	Steady-State $k_{0.2}^{\kappa}$ $k_{eff} = (1-8)k_{t} + \chi_{t} \Rightarrow \chi_{0.2}^{\star} = 8k_{0.2}^{\kappa}$
	They are same In CS.

	From fearibility constraint;
	$C_t = F(k_t) - k_{t+1} + (1-\delta)k_t \Rightarrow c_{0.2}^* = F(k_{0.2}^*) - \delta k_{0.2}^*$
	Prom EE ; ($u^{\prime}c(t)=u_{c}(t+1)$) in ss:- $ (=p[(1-0.2)F_{K}(k^{*}o_{2})+1-6] $
	Assume $P(k_t) = Ak_t^{\alpha}$, $\alpha = 1/3$
	$P' = \frac{1 - (1 - 8)}{1 - 0.2}$
	$F' = \left(AK^{\alpha}\right)' = A K K^{\alpha-1}$
=>	$A \propto \left(\begin{array}{c} k \\ \end{array} \right)^{\alpha - 1} = \frac{1}{\beta} - \left(1 - \delta \right)$
	$k = \begin{bmatrix} const \\ 1-0.2 \end{bmatrix}$ This is regarine $k = \begin{bmatrix} const \\ 1-0.2 \end{bmatrix}$
7	$\frac{k^{*}o_{2}}{k^{*}o_{2}} = \frac{\text{Const}(1-0.2)}{(1-0.3)^{1/\alpha-1} \cdot \text{const}}$
	$= \frac{1-0.2}{1-0.3} 10.1 \approx 0.62$

Why CRS - no spotis?
f(x)= 2x
py - wx
p((x) - wx
(OC = 2P = W
p-(zx)-(2p)w =0 (zer) +