苏州大学 <u>物理化学下(一)</u>课程期末试卷 A 共 7 页

序号_	
-----	--

考试形式 闭 卷 2015年7月(2012级应化、师范、化学专业)

院系: <u>*</u> 姓名: _	材料与化学化工学部	年级: 学号:			专业: 成绩:		
一、 选打 1. 2分	泽题(共 10 题 20 分)					
p [⊖] 和 298	K下,把 Pb 和 Cu(Ac) ₂ 溶	F液发生的 <i>B</i>	反应安?	非为电池,	当获得可逆电	13功	
(A)	$1.84\mathrm{kJ}$ 时,电池同时吸热 $\Delta_{\mathrm{r}}U\!\!>\!\!0,\Delta_{\mathrm{r}}S\!\!>\!\!0$ $\Delta_{\mathrm{r}}U\!\!>\!\!0,\Delta_{\mathrm{r}}S\!\!<\!\!0$	(B)	$\Delta_{ m r} U < 0$			()
2. 2分 下列	两电池的电动势之间的关	系为:				()
(1) Pt I	$H_2(p^\ominus)$ HCl(0.001 mol • kg	g-1) HCl(0	.01 mo	l• kg ⁻¹) H	$H_2(p^{\ominus}) \mid Pt$		
(2) Pt I	$H_2(p^\ominus)$ HCl(0.001 mol • kg	g^{-1}) $\operatorname{Cl}_2(p^{\ominus})$) - Cl ₂ ((p [⊕]) HCl(0	0.01 mol • kg ⁻¹	¹) H ₂ (p	ρ [⊕]) Pt
	$E_1 = E_2$ $E_1 \le E_2$		` ′	E ₁ > E ₂ 无法判断			
(A (B (C	偿法(对消法)测定可逆)消除电极上的副反应)减少标准电池的损耗)在可逆情况下测定电池)简便易行]势时,	主要为了	:	()
4. 2分							
1-1	级对峙反应 $A \stackrel{k_1}{\longleftarrow} B$	由纯 A	开始尽	反应,当进 ^汉	行到 A 和 B	浓度相	1等的时
间为: (፲	E、逆向反应速率常数分别	$]为 k_1, k_2$)			(,
	$(A) t = \ln \frac{k_1}{k_2}$			(B)	$t = \frac{1}{k_1 - k_2} 1$	$\ln \frac{k_1}{k_2}$	
	(C) $t = \frac{1}{k_1 + k_2} \ln \frac{2k_1}{k_1 - k_2}$	- 2		(D)	$t = \frac{1}{k_1 + k_2} \ln \left(\frac{1}{k_1 + k_2} \right)$	$1 \frac{k_1}{k_1 - k_2}$	_ 2

	2 分 某双分子反应的速率常数 5很小。则说明:	b 为 k ,根据阿仑尼乌斯公式 $k=A\exp(-E_a/RT)$,若指前		的实)	
	(A) 表观活化能很大	(B) 活化熵有绝对值较大的负值 值 (D) 活化焓有绝对值较大的负值		,	
6.	2 分 Lindemann 单分子反应标 (A) 立即分解 (C) 发出辐射		()	
7.	2分 设某基元反应在500K时	「实验活化能为 83.14 kJ•moΓ ¹ ,则此反应的临界能为	J:		
	(A) 81.06 kJ • moΓ ¹ (C) 162.1 kJ • moΓ ¹		()	
8.	2 分过渡态理论的速率常数的	可公式为 $k = (k_B T / h)(q^{\neq} / q_A q_B) \exp(-\Delta E_0 / RT)$,下这	戈说法 正	E确的是 ()
	(A) <i>q</i> [≠] 不是过渡态的全面	己分函数			
	(B) q _A , q _B 是任意体积中分	子的配分函数			
	$(C)q_A, q_B, q^{\neq}$ 均是分子	在基态时的配分函数			
	$(D)(k_{\rm B}T/h)$ 是过渡态 M	1 [≠] 中任一个振动自由度配分函数			
9.	2 分 对于有过量 KI 存在的 A (A) K ₃ [Fe(CN) ₆] (B) MgSO ₄ (C) FeCl ₃ (D) NaCl	AgI 溶液,电解质聚沉能力最强的是: ()	
10.	2 分 使用瑞利 (Reyleigh) 散射 (A) 溶胶粒子的大小 (B) 溶胶粒子的形状 (C) 测量散射光的波长 (D) 测量散射光的振幅)		

11.	2 分
	无限稀释 LiCl 水溶液的摩尔电导率为 $115.03 \times 10^{-4}~{ m S\cdot m^2\cdot mol^{-1}}$,在 298 K 时,测得 LiCl 稀溶液
中I	i [†] 的迁移数为 0.3364,则 CΓ离子的摩尔电导率λ _m (CΓ)为:
	2分 在其他条件不变时,电解质溶液的摩尔电导率随溶液浓度的增加而(填入增大、、、、先增后减)。
13.	2 分
	将反应 $Ag_2O(s) = 2Ag(s) + \frac{1}{2}O_2(g)$ 设计成电池的表示式为:。
14.	1 分 298 K 时分子能量大于 20 kJ·mol¹的百分数为。
15.	2 分
	对于摩尔熵,用统计力学方法可计算不同运动形式的典型值如下, $S_{\mathrm{m}}^{\ominus}(\mathbf{T})=150\ \mathrm{J}\cdot\mathrm{K}^{^{1}}\cdot\mathrm{mol}^{^{1}}$,转动及
振动	物毎个自由度相应有 $S_{\mathfrak{m}}^{\Theta}$ (转) =30 $\mathbf{J} \cdot \mathbf{K}^{1} \cdot mol^{1}$, $S_{\mathfrak{m}}^{\Theta}$ (振) =1 $\mathbf{J} \cdot \mathbf{K}^{1} \cdot mol^{1}$,反应 A+BC 生成非线性过渡
态时	ர,其Δ [≠] S [⊖] _m =。
16.	2 分
	$K_3[Fe(C_2O_4)_3]$ 溶液,经光作用可使 Fe^{3+} 被还原,而 $C_2O_4^{2-}$ 被氧化, 已知 λ
=3	13 nm, ϕ =1.24 则欲使在 36.5 min 内产生 1.3×10^{-5} mol Fe ²⁺ ,吸收光强 I_a 应为。
17.	2 分 25℃时,水的表面张力为 0.071 97 N•m ⁻¹ ,将一玻璃管插入水中,水面上升 5 cm,此毛细管半径为 。
18.	2 分 用化学凝聚法制成 Fe(OH) ₃ 胶体的反应如下: FeCl ₃ +3H ₂ O =Fe(OH) ₃ (溶胶) +3HCl 溶液中一部分 Fe(OH) ₃ 有如下反应: Fe(OH) ₃ +HCl =FeOCl +2H ₂ O FeOCl =FeO ⁺ +Cl

二、填空题(共8题 15分)

则 Fe(OH)3 溶胶的胶团结构为_____。

三、计算题(共5题 45分)

19. 5分

下列电池在 298 K 时, E=0.3394 V, m=0.134 $mol \cdot kg^{-1}$, $E^{\ominus}=0.2224$ V,试计算 HCl 在该浓度时的 \mathfrak{L} 。

Pt $\mid H_2(p^{\ominus}) \mid HCl(m) \mid AgCl(s) \mid Ag(s)$

20.10 分

我们试验成功用电解法生产氧化亚铜, 其工艺条件如下:

电解液为 15% NaCl + 1-3 g • dm⁻³ NaOH 溶液, 阳极为电解铜, 阴极为紫铜, 电流密度为 $5 \, \text{A} \cdot \text{dm}^{-2}$, 电解液温度为 $70 \, ^{\circ} \text{C}$ 。外加电压为 $1.5 \, \text{V}$,通入电解槽的电流强度为 $95 \, \text{A}$,电解 $7 \, \text{h}$,得到 $1.66 \, \text{kg}$ 氧化亚铜。

- (1) 写出阳极、阴极反应和电解反应
- (2) 计算电流效率(Cu 的相对原子量为 63.55)
- (3) 计算电解反应的平衡常数。(已知 Cu_2O 和 $H_2O(1)$ 的 $\Delta_iG_{m}^{\ominus}$ 分别为 -142.26 和 -237.23 kJ $mo\Gamma^1$)

对某一特定的一级反应在 27℃反应时,经过 $5\,000\,\mathrm{s}$ 后,反应物的浓度减少到初始值的一半,在 $37\,\mathrm{℃}$ 时,经过 $1\,000\,\mathrm{s}$,浓度就减半,计算:

- (1)27℃时的反应速率常数
- (2) 在 37℃反应时, 当反应物浓度降低到其初始值的四分之一时所需的时间
- (3) 该反应的活化能

22.10 分

650 K 时,双分子气相反应,A=0.0100 $\mathrm{mol}^{-1} \bullet \mathrm{dm}^3 \bullet \mathrm{s}^{-1}$ (指前因子)且 $\Delta^{\neq}S_{\mathrm{m}}$ =79.20 $\mathrm{J} \bullet \mathrm{K}^{-1} \bullet \mathrm{mol}^{-1}$ 。若选取压力为标准态压力 p^\ominus ,则求 $\Delta^{\neq}S_{\mathrm{m}}^{\ominus}$ 。

水在 40°C下若以半径为 $r=1\times10^3$ m 的小液滴存在,试计算其饱和蒸气压增加的百分率。已知液滴的附加压力 $p_s=1.39\times10^7$ N•m⁻²,水在 40°C的摩尔体积 $V_m=1.84\times10^{-5}$ m³•mol⁻¹。

四、问答题(共2题 20分)

24. 10 分

从 Langmuir 吸附等温式出发,证明当覆盖度很小时,将 $\ln (\theta/p)$ 对 θ 作图应得一直线,直线的斜率为 -1。如果在表面覆盖度很小时,将 $\ln (V/p)$ 对 V 作图也应得一直线,此直线的斜率等于什么? (V 为气体吸附的体积,p 为吸附平衡时的压力)(数学提示:因为 x<<1 时, $\ln(1-x)=-x$)

汞蒸气存在下的乙烯加氢反应

$$C_2H_4+H_2 \xrightarrow{Hg} C_2H_6$$

按下反应历程进行:

Hg + H₂
$$\xrightarrow{k_1}$$
 Hg+2H
H+C₂H₄ $\xrightarrow{k_2}$ C₂H₅
C₂H₅+H₂ $\xrightarrow{k_3}$ C₂H₆+H
H+H+Hg $\xrightarrow{k_4}$ H₂+Hg

求 C_2H_6 之生成速率表示式、表观活化能 E_a 与各元反应活化能的关系。

苏州大学 物理化学下(一)课程期末试卷答案

考试形式 闭 卷 2015年7月(2012级应化、师范、化学专业)

```
一、选择题 (共10题 20分)
1. 2分
     [答] (A)
2. 2分
    [答] (A)
3. 2分
    [答] (C)
4. 2分
    [答] (C)
5. 2分
    [答] (B)
6. 2分
    [答] (B)
7. 2分
    [答] (A)
8. 2分
    [答] (A)
9. 2分
    [答] (C)
10. 2分
    [答] (A)
二、填空题 (共8题 15分)
11. 2分
     [答] 76.33×10<sup>-4</sup> S·m<sup>2</sup>·mol<sup>-1</sup>
12. 2分
     [答] 减小
13. 2分(4153)
     [答] Pt,O_2(g)|OH^-(aq)|Ag_2O(s)|Ag(s)
14. 1分
    [答] 3.12×10<sup>-4</sup>
        N/N_0 = \exp(-E_c/RT)
15. 2分
[答] -119 J • K<sup>1</sup> • mol<sup>-1</sup>
16. 2分
    [答] 4.8×10<sup>-9</sup> mol • s<sup>-1</sup>
        dn(Fe^{2+})/dt = 1.3 \times 10^{-5} \text{ mol/} (36.5 \times 60) = 5.9 \times 10^{-9} \text{ mol} \cdot \text{s}^{-1},
```

 $I_a = [dn(Fe^{2+})/dt]/\Phi$

17. 2分

[答]
$$r = \frac{2\gamma}{\rho gh} = 0.03 \text{ cm}$$
 (2分)

18. 2分

[答]
$$\{[Fe(OH)_3]_m \cdot nFeO^+ \cdot (n-x)CI\}^{x+} \cdot xCI$$

三、计算题 (共5题 45分)

19. 5分

解:电池反应
$$\frac{1}{2}$$
 H₂(g)+AgCl(s)=Ag(s)+H⁺+Cl (2 分)

 $E=E^{\ominus}-RT/F \times \ln[a(H^{\dagger}) \cdot a(C\Gamma)]=E^{\ominus}-RT/F \times \ln(m/m^{\ominus})^{2}$

$$-RT/F \times \ln \gamma_{\pm}^{2}$$

 $\gamma_{\pm} = 0.887$ (3 分)

20.10 分

[答] (1) 阳:
$$2Cu + H_2O \longrightarrow Cu_2O + 2H^+ + 2e^-$$
 (2 分) 阴: $2H^+ + 2e^- \longrightarrow H_2$ (2 分)

(2) 理论产量
$$W=(95\times7\times3600/96500)\times\frac{1}{2}\times143.08=1775$$
 g
电流效率=实际产量/理论产量= $1660/1775=0.935$ (3 分)

(3) 由
$$\Delta_l G_m^{\ominus}$$
 数据,算得 E^{\ominus} =0.5 V
电能效率=0.935×0.5/1.5 =0.31 (3 分)

21.10 分

[答]
$$(1) k_1 = 0.693/(t_{\frac{1}{2}}) = 1.39 \times 10^{-4} \text{ s}^{-1}$$
 (3 分)

(2)
$$k_2 = 0.693/(t_{\frac{1}{3}}) = 6.93 \times 10^{-4} \text{ s}^{-1}$$
 (3 $\%$)

(3)
$$E_a = RT_1T_2/(T_2-T_1) \times \ln(k_2/k_1) = 124 \text{ kJ} \cdot \text{mol}^1$$
 (4 $\frac{1}{2}$)

22. 10 分

[答]
$$A_c = (k_B T/h)e^2(c^{\ominus})^{-1} \exp(\Delta^{\neq} S_m/R)$$

$$\Delta^{\neq} S_{m} = 79.2 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$$

$$A_{p}=(k_{B}T/h)e^{2}(p^{\ominus})^{-1}\exp(\Delta^{\neq}S_{m}^{\ominus}/R)$$

$$\Delta^{\neq} S_{m}^{\ominus} = \Delta^{\neq} S_{m} - R[\ln(A_{c}c^{\ominus}/A_{p}p^{\ominus})] \tag{5 \%}$$

$$A_{p} = A_{c}(RT)^{-1} = 1.85 \times 10^{-9} \text{ Pa}^{-1} \cdot \text{s}^{-1}$$
 (2 $\%$)

$$\begin{split} \Delta^{\neq} S_{m}^{\ominus} &= 79.2 - 8.314 \times [\ln \frac{0.0100 \times 10^{3}}{1.85 \times 10^{-9} \times 1.01 \times 10^{5}}] \text{ J} \cdot \text{K}^{1} \cdot \text{mol}^{1} \\ &= [79.2 - 8.314 \times (\ln 5.35 \times 10^{4})] \text{ J} \cdot \text{K}^{1} \cdot \text{mol}^{1} \\ &= (79.2 - 90.4) \text{ J} \cdot \text{K}^{1} \cdot \text{mol}^{1} \\ &= -11.2 \text{ J} \cdot \text{K}^{1} \cdot \text{mol}^{1} \end{split}$$

[答]
$$p_{\rm s} = \frac{2\gamma}{r} \qquad \rho V_{\rm m} = M \tag{4分}$$

$$\ln \frac{p_{\rm r}}{p_{\rm o}} = \frac{2\gamma M}{RTr\rho} = \frac{2 \times \frac{p_{\rm s} r}{2} \times \rho V_{\rm m}}{RTr\rho} = \frac{p_{\rm s} V_{\rm m}}{RT}$$

$$= \frac{1.39 \times 10^7 \times 1.84 \times 10^{-5}}{8.314 \times 313.15} = 0.098.22 \tag{4 \%}$$

$$\frac{p_{\rm r}}{p_0} = 1.103$$

$$\frac{p_{\rm r} - p_0}{p_0} \times 100\% = 10.3\% \tag{2 \%}$$

四、问答题 (共2题 20分)

24.10分

[答]

$$\theta = ap/(1+ap)$$
 $\theta/p = a(1-\theta)$

$$ln(\theta/p) = ln \ a + ln(1-\theta) = ln a - \theta$$

(因为
$$\theta$$
<< 1 时, $\ln(1-\theta)$ =- θ) 以 $\ln\theta/p \sim \theta$ 作图,斜率为 -1 (5 分)

 $\ln(V/p) = \ln V_{\rm m} a - V/V_{\rm m}$

$$ln(V/p) \sim V$$
 作图, 斜率为 $-1/V_m$ (5分)

25.10 分

[答] 由稳态近似可得 $[H]=(k_1/k_2)^{1/2} \cdot [H_2]^{1/2}$,

$$[C_2H_5] = (k_2/k_3)(k_1/k_4)^{1/2}[C_2H_4]/[H_2]^{1/2}$$
(4 分)

$$d[C_2H_6]/dt = k_3[H_2][C_2H_5] = k_2(k_1/k_4)^{1/2}[C_2H_4][H_2]^{1/2}$$
(3 分)

$$: k(表) = k_2(k_1/k_4)^{1/2} : E_a = E_2 + \frac{1}{2} (E_1 - E_4)$$
 (3 分)