Exercises: Artificial Intelligence

Constraint Processing II & Waltz: The 4 Teachers problem

Constraint Processing II & Waltz: The 4 Teachers problem

PROBLEM

Problem

- Four teachers: A, B, C & D
 - A, B, C & D assigned rooms
 - 5 rooms available: 1, 2, 3, 4 & 5
 - $-A \neq 1$
 - $-B \neq 2$
 - room D ≥ 3
 - room D < room B</p>
 - $|C-B| \neq 1$
 - $-C \neq 5$

Problem

- Which family lives in which house?
- Solve with:
 - Forward checking
 - Dynamic rearrangement forward checking

Constraint Processing II & Waltz: The 4 Teachers problem

CONSTRAINT PROCESSING: PROBLEM REPRESENTATION

Constraint Processing

Problem representation:

MiniMax & Constraint Processing: The 4 Houses problem

CONSTRAINT PROCESSING: PROBLEM OPTIMIZATION

Problem Optimization

Problem optimization:

MiniMax & Constraint Processing: The 4 Houses problem

CONSTRAINT PROCESSING: FORWARD CHECKING

Α

A

Α

MiniMax & Constraint Processing: The 4 Houses problem

CONSTRAINT PROCESSING: DYNAMIC SEARCH REARRANGEMENT FC

C=1 D=3

Exercises: Artificial Intelligence

Constraint Processing II & Waltz: Waltz I

Constraint Processing II & Waltz: Waltz I

INTRODUCTION WALTZ

Introduction Waltz

Constraint Processing II & Waltz: Waltz I

PROBLEM

Problem

• Label the following figure:

Constraint Processing II & Waltz: Waltz I

SOLUTION

Constraint Processing II & Waltz: Waltz I

PROBLEM

Problem

• Label the following figure:

Constraint Processing II & Waltz: Waltz I

SOLUTION

Constraint Processing II & Waltz: Waltz I

PROBLEM

Problem

• Label the following figure:

Constraint Processing II & Waltz: Waltz I

SOLUTION

Constraint Processing II & Waltz: Waltz I

PROBLEM

Problem

• Label the following figure:

Constraint Processing II & Waltz: Waltz I

SOLUTION

Constraint Processing II & Waltz: Waltz I

PROBLEM

Problem

• Label the following figure:

Constraint Processing II & Waltz: Waltz I

SOLUTION

Line Drawing NOT allowed: 3-faced vertices!!

Constraint Processing II & Waltz: Waltz I

PROBLEM

Problem

• Label the following figure:

Constraint Processing II & Waltz: Waltz I

SOLUTION

Drawing is locally correct, but is globally impossible. Waltz procedure is local, thus, cannot detect this!

Exercises: Artificial Intelligence

Constraint Processing II & Waltz: Waltz II

Constraint Processing II & Waltz: Waltz II

PROBLEM

Problem

- Finish the labeling of the following figure.
- Give all solutions:

Constraint Processing II & Waltz: Waltz II

SOLUTION

• Solution 1: Floating cube

• Solution 1: Floating cube

• Solution 2: Sitting cube

• Solution 2: Sitting cube

Exercises: Artificial Intelligence

Constraint Processing II & Waltz: Waltz III

Constraint Processing II & Waltz: Waltz III

PROBLEM

Problem

- Labeling the following figure fragment.
- Give all solutions:

Constraint Processing II & Waltz: Waltz III

SOLUTION

Exercises: Artificial Intelligence

Constraint Processing II & Waltz: Waltz IV

Constraint Processing II & Waltz: Waltz IV

PROBLEM

Problem

- Consider the following figure:
 - At most 3 edges
 - No shadows/cracks
- Find labelings:
 - Write down junction piles for A,B,...,H
 - Consider nodes in order of A,B,...,H
 - Return to previous nodes for pruning if possible

Constraint Processing II & Waltz: Waltz IV

SOLUTION

We can determine all nodes except for D:

• D can still take 6 interpretations:

Exercises: Artificial Intelligence

Constraint Processing II & Waltz: Waltz V

Constraint Processing II & Waltz: Waltz V

PROBLEM

Problem

Prove the termination of the Waltz procedure

Constraint Processing II & Waltz: Waltz V

TERMINATION WALTZ

Termination Waltz

- Waltz's procedure terminates if
 - No possibilities for some vertex
 OR
 - No reduction of junction piles
- Waltz's procedure does not terminate if
 - Only non-empty piles
 AND
 - Reduction of piles possible

BUT

- Piles are finite ⇒ Number of iterations finite
- ⇒ Waltz's procedure terminates