

Healthcare Analytics — Analysing Hospitalized Patient Mortality Dataset using MySQL.

Introduction

Hospitalized Patient Mortality, Healthcare data analysis plays a crucial role in understanding patient outcomes, improving care quality, and optimizing resource allocation in medical facilities. In this report, we will delve into a comprehensive analysis of Patient Mortality and healthcare data, focusing on a dataset named "ps_data.csv".

Using MySQL, we will perform advanced data analysis to address complex questions and provide valuable information for healthcare professionals and administrators.

The analysis presented in this report will not only shed light on patient survival and healthcare utilization patterns but will also highlight opportunities for improving the quality and efficiency of healthcare services. We will examine trends in patient admissions, patient outcomes, and the financial impact on healthcare facilities.

We will use MySQL as our tool for data analysis.

Introduction to SQL:

SQL, or Structured Query Language, is a powerful and standardized programming language used for managing and manipulating relational databases. Developed in the 1970s, SQL has become the de facto standard for working with data stored in a structured format, and it plays a crucial role in modern data management.

SQL is designed to perform a wide range of tasks related to database management, including:

- 1. Data Retrieval: SQL allows users to retrieve data from a database by using queries to specify what information they need. This is done using the SELECT statement.
- 2. Data Manipulation: SQL enables users to insert, update, and delete records in a database. The INSERT, UPDATE, and DELETE statements are used for these tasks.
- 3. Data Definition: SQL is used to define the structure of a database, including creating tables, defining their structure, setting constraints, and establishing relationships between tables.

4. Data Control: SQL provides mechanisms for controlling access to data, ensuring security and maintaining data integrity through permission management.

SQL is known for its simplicity, versatility, and portability. It is not tied to a specific database management system (DBMS), which means you can use SQL with various relational database systems such as MySQL, PostgreSQL, SQL Server, Oracle, and more.

Whether you are a database administrator, a data analyst, a software developer, or someone working with data in any capacity, SQL is an essential tool for effectively managing and extracting information from relational databases. It provides a common language for interacting with data, making it a fundamental skill in the world of data management and analysis.

Overview

Dataset used:

The source of the data for this project is Kaggle, a platform that hosts various datasets for data science and machine learning. The data consists of web-scraped information from ESPN, a sports media company. The data is available on Kaggle as a CSV file.

https://www.kaggle.com/datasets/mitishaagarwal/patient

Dataset (Kaggle): Patient Survival

Software Used: MS SQL

	A	В	С	D	E	F	G	Н	1	J	K	L	М	N	0
1	encounter_id	patient_id	hospital_id	age	bmi	elective_surgery	ethnicity	gender	height	icu_admit_source	icu_i	d icu_stay_type	icu_type	pre_icu_los_days	weigh
2	66154	25312	118	68	22.73	C	Caucasian	M	180.3	Floor	9	2 admit	CTICU	0.541666667	73.9
3	114252	59342	81	77	27.42	C	Caucasian	F	160	Floor	9	0 admit	Med-Surg ICU	0.92777778	70.2
4	119783	50777	118	25	31.95	0	Caucasian	F	172.7	Accident & Emergency	9	3 admit	Med-Surg ICU	0.000694444	95.3
5	79267	46918	118	81	22.64	1	Caucasian	F	165.1	Operating Room / Recovery	9	2 admit	CTICU	0.000694444	61.7
6	92056	34377	33	19		0	Caucasian	M	188	Accident & Emergency	9	1 admit	Med-Surg ICU	0.073611111	
7	33181	74489	83	67	27.56	C	Caucasian	M	190.5	Accident & Emergency	9	5 admit	Med-Surg ICU	0.000694444	100
8	82208	49526	83	59	57.45	0	Caucasian	F	165.1	Accident & Emergency	9	5 admit	Med-Surg ICU	0.000694444	156.6
9	120995	50129	33	70		C	Caucasian	M	165	Accident & Emergency	9	1 admit	Med-Surg ICU	0.002083333	
10	80471	10577	118	45		0	Caucasian	M	170.2	Other Hospital	11	4 admit	CCU-CTICU	0.009027778	
11	42871	90749	118	50	25.71	C		M	175.3	Accident & Emergency	11	4 admit	CCU-CTICU	0.060416667	79
12	105427	125898	77	72	28.25705249	1	Hispanic	F	154.9	Operating Room / Recovery	11	3 admit	Med-Surg ICU	0.004861111	67.8
13	91609	78266	83	80	27.3828125	1	Caucasian	F	160	Operating Room / Recovery	9	5 admit	Med-Surg ICU	1.271527778	70.1
14	76356	41311	118	48		C	Caucasian	M	175.3	Accident & Emergency	10	2 admit	Neuro ICU	0.020833333	
15	34030	103766	118	65		1	Caucasian	M	172.7	Operating Room / Recovery	9	3 admit	Med-Surg ICU	1.045138889	
16	108388	98174	118	81	38.18906706	1	Caucasian	M	172.7	Operating Room / Recovery	9	7 admit	MICU	1.376388889	113.9
17	120677	124688	118	78		C	Caucasian	F	160	Accident & Emergency	9	7 admit	MICU	0.000694444	
18	115771	71252	81	30	23.38317807	0	Caucasian	M	193	Accident & Emergency	9	0 admit	Med-Surg ICU	0.240972222	87.3
19	22471	112115	118	46	25.84571744	C	Hispanic	M	167.6	Accident & Emergency	9	2 admit	CTICU	0	72.6
20	48056	114220	118	65	28.40892909	0	Hispanic	M	167.6	Accident & Emergency	10	0 admit	Neuro ICU	0	79.8
21	45954	102946	118	39	37.0102781	1		M	177.8	Operating Room / Recovery	9	2 admit	CTICU	5.163888889	117
22	79115	88295	83	79	28.37610001	1	Caucasian	F	170.2	Operating Room / Recovery	9	5 admit	Med-Surg ICU	0.89375	82.2
23	118620	59115	118	80	35.65998942	C	Caucasian	M	170.2	Floor	9	7 admit	MICU	0.000694444	103.3
24	21050	31257	81	58		1	Caucasian	F	162.6	Operating Room / Recovery	9	o admit	Med-Surg ICU	0.003472222	
25	95460	120539	118	87	21.96376348	C	Caucasian	М	180.3	Floor	9	7 admit	MICU	5.046527778	71.4
26	7220	92453	77	60	29.50995926	C	Caucasian	M	188	Accident & Emergency	11	3 admit	Med-Surg ICU	0.08125	104.3

Methodology

Database Setup:

We've ps_data.csv files in this dataset. I have framed some questions on this data that I will solve using SQL queries and find answers to them.

First let us create a database by clicking on 'Create a new schema' option. I have created a DB called Patient Survival. We will then use the created database by writing *Patient Survival*.

Then we will import all the ps_data.csv files into tables by right clicking on the Patient Survival database and then on the Table Data Import Wizard ps_data.csv. We've to do this step for all the .csv files. As we've the data in our tables, we will go ahead and answer the questions.

My DB Setup

Implementation

Analyzing the match results:

The Analyzing Hospitalized Patient Mortality or Patient Survival results are in the ps_data.csv file that is loaded into the results table. I will first fix the datatype of the date column in results table using the below queries.

SELECT * FROM `patient_survival`.`ps_data`;

	encounter_id	patient_id	hospital_id	age	bmi	elective_surgery	ethnicity	gender	height	icu_admit_source	icu_ic
•	66154	25312	118	68	22.73	0	Caucasian	М	180.3	Floor	92
	114252	59342	81	77	27.42	0	Caucasian	F	160	Floor	90
	119783	50777	118	25	31.95	0	Caucasian	F	172.7	Accident & Emergency	93
	79267	46918	118	81	22.64	1	Caucasian	F	165.1	Operating Room / Recovery	92
	92056	34377	33	19		0	Caucasian	M	188	Accident & Emergency	91
	33181	74489	83	67	27.56	0	Caucasian	M	190.5	Accident & Emergency	95
	82208	49526	83	59	57.45	0	Caucasian	F	165.1	Accident & Emergency	95
	120995	50129	33	70		0	Caucasian	M	165	Accident & Emergency	91
	80471	10577	118	45		0	Caucasian	M	170.2	Other Hospital	114

Q1: How many total deaths occured in the hospital and what was the percentage of the mortality rate?

SELECT COUNT(CASE WHEN hospital_death = 1 THEN 1 END) AS total_hospital_deaths,

 $ROUND(COUNT(CASE\ WHEN\ hospital_death = 1\ THEN\ 1\ END)*100/COUNT(*), 2)\ AS\ mortality_rate$

FROM `patient_survival`.`ps_data`;

Q2: What was the death count of each ethnicity?

SELECT ethnicity, COUNT(hospital_death) as total_hospital_deaths

FROM `patient_survival`.`ps_data`

WHERE hospital_death = '1'

GROUP BY ethnicity

	ethnicity	total_hospital_deaths
١	Caucasian	78
	African American	18
	Hispanic	5
		3
	Native American	2
	Asian	4

Q3: What was the death count of each gender?

SELECT gender, COUNT(hospital_death) as total_hospital_deaths

FROM `patient_survival`.`ps_data`

WHERE hospital_death = '1'

GROUP BY gender

Q4: Comparing the average and max ages of patients who died and patients who survived.

SELECT ROUND(AVG(age),2) as avg_age,

MAX(age) as max_age, hospital_death

FROM `patient_survival`.`ps_data`

WHERE hospital_death = '1'

GROUP BY hospital_death

UNION

SELECT ROUND(AVG(age),2) as avg_age,

MAX(age) as max_age, hospital_death

FROM `patient_survival`.`ps_data`

WHERE hospital_death = '0'

GROUP BY hospital_death

	avg_age	max_age	hospital_death
۰	66.66	89	1
	62.41	89	0

Q5: Comparing the amount of patients that died and survived by each age

SELECT age,

COUNT(CASE WHEN hospital_death = '1' THEN 1 END) as amount_that_died,

COUNT(CASE WHEN hospital_death = '0' THEN 1 END) as amount_that_survived

FROM `patient_survival`.`ps_data`

GROUP BY age

ORDER BY age ASC;

	age	amount_that_died	amount_that_survived
•	17	0	1
	18	0	6
	19	0	9
	20	0	4
	21	0	6
	22	0	3
	23	1	7
	24	0	5
	25	0	9
	26	1	8

age	amount_that_died	amount_that_survived
81	2	30
82	0	30
83	5	31
84	4	39
85	2	28
86	2	22
87	0	30
88	1	19
89	1	13

SELECT

CONCAT(FLOOR(age/10)*10, '-', FLOOR(age/10)*10+9) AS age_interval,

COUNT(*) AS patient_count

FROM `patient_survival`.`ps_data`

GROUP BY age_interval

ORDER BY age_interval;

	age_interval	patient_count
١	10-19	16
	20-29	67
	30-39	104
	40-49	170
	50-59	367
	60-69	447
	70-79	401
	80-89	299

Q7: Amount of patients above 65 who died vs Amount of patients between 50-65 who died

SELECT COUNT(CASE WHEN age > 65 AND hospital_death = '0' THEN 1 END) as survived_over_65,

COUNT(CASE WHEN age BETWEEN 50 AND 65 AND hospital_death = '0' THEN 1 END) as survived_between_50_and_65,

COUNT(CASE WHEN age > 65 AND hospital_death = '1' THEN 1 END) as died_over_65,

COUNT(CASE WHEN age BETWEEN 50 AND 65 AND hospital_death = '1' THEN 1 END) as died_between_50_and_65

FROM `patient_survival`.`ps_data`;

Q8: Calculating the average probability of hospital death for patients of different age groups

SELECT

CASE

WHEN age < 40 THEN 'Under 40'

WHEN age >= 40 AND age < 60 THEN '40-59'

WHEN age >= 60 AND age < 80 THEN '60-79'

ELSE '80 and above'

END AS age_group,

ROUND(AVG(apache_4a_hospital_death_prob),3) AS average_death_prob

FROM `patient_survival`.`ps_data`

GROUP BY age_group;

Q9: Which admit source of the ICU did most patients die in and get admitted to?

SELECT DISTINCT icu_admit_source,

COUNT(CASE WHEN hospital_death = '1' THEN 1 END) as amount_that_died,

COUNT(CASE WHEN hospital_death = '0' THEN 1 END) as amount_that_survived

FROM `patient_survival`.`ps_data`

GROUPBY icu_admit_source;

	icu_admit_source	amount_that_died	amount_that_survived
١	Floor	28	220
	Accident & Emergency	67	974
	Operating Room / Recovery	9	519
	Other Hospital	6	45
	Other ICU	0	3

Q10: Average age of people in each ICU admit source and amount that died.

SELECT DISTINCT icu_admit_source,

COUNT(hospital_death) as amount_that_died,

ROUND(AVG(age),2) as avg_age

FROM `patient_survival`.`ps_data`

WHERE hospital_death = '1'

GROUP BY icu_admit_source

	icu_admit_source	amount_that_died	avg_age
١	Other Hospital	6	56.83
	Floor	28	71.79
	Operating Room / Recovery	9	70.78
	Accident & Emergency	67	64.85

Q11: Average age of people in each type of ICU and amount that died.

SELECT DISTINCT icu_type,

COUNT(hospital_death) as amount_that_died,

ROUND(AVG(age),2) as avg_age

FROM `patient_survival`.`ps_data`

WHERE hospital_death = '1'

GROUP BY icu_type;

	icu_type	amount_that_died	avg_age
•	CCU-CTICU	17	65.12
	Neuro ICU	13	68.54
	Med-Surg ICU	46	67.39
	MICU	24	63.63
	SICU	5	74.40
	CTICU	5	67.20

Q12: How many patients are suffering from each comorbidity?

SELECT

SUM(aids) AS patients_with_aids,

SUM(cirrhosis) AS patients_with_cirrhosis,

SUM(diabetes_mellitus) AS patients_with_diabetes,

SUM(hepatic_failure) AS patients_with_hepatic_failure,

SUM(immunosuppression) AS patients_with_immunosuppression,

SUM(leukemia) AS patients_with_leukemia,

SUM(lymphoma) AS patients_with_lymphoma,

SUM(solid_tumor_with_metastasis) AS patients_with_solid_tumor

FROM `patient_survival`.`ps_data`;

	patients_with_aids	patients_with_cirrhosis	patients_with_diabetes	patients_with_hepatic_failure	patients_with_immunosuppression	patients_with_le
>	0	39	480	29	115	15

Q13: What is the mortality rate in percentage?

SELECT

COUNT(CASE WHEN hospital_death = 1 THEN 1 END)*100/COUNT(*) AS mortality_rate FROM `patient_survival`.`ps_data`;

Q14: What was the percentage of patients who underwent elective surgery?

SELECT

COUNT(CASE WHEN elective_surgery = 1 THEN 1 END)*100/COUNT(*) AS elective_surgery_percentage

FROM patient_survival.ps_data;

Q15: What was the average weight and height for male & female patients who underwent elective surgery?

SELECT

ROUND(AVG(CASE WHEN gender = 'M' THEN weight END),2) AS avg_weight_male,

ROUND(AVG(CASE WHEN gender = 'M' THEN height END),2) AS avg_height_male,

ROUND(AVG(CASE WHEN gender = 'F' THEN weight END),2) AS avg_weight_female,

ROUND(AVG(CASE WHEN gender = 'F' THEN height END),2) AS avg_height_female

FROM patient_survival.ps_data

WHERE elective_surgery = 1;

	avg_weight_male	avg_height_male	avg_weight_female	avg_height_female
•	81.78	176.93	67.54	162.37

Q16: What were the top 10 ICUs with the highest hospital death probability?

SELECT icu_id,

apache_4a_hospital_death_prob as hospital_death_prob

FROM patient_survival `. `ps_data`

ORDER BY apache_4a_hospital_death_prob DESC

LIMIT 10;

	icu_id	hospital_death_prob
١	98	0.97
	92	0.96
	95	0.94
	103	0.92
	91	0.92
	98	0.91
	85	0.86
	108	0.85
	97	0.83
	114	0.82

Q17: What was the average length of stay at each ICU for patients who survived and those who didn't?

SELECT

icu_type,

ROUND(AVG(CASE WHEN hospital_death = 1 THEN pre_icu_los_days END), 2) AS avg_icu_stay_death,

 $ROUND(AVG(CASE\ WHEN\ hospital_death = 0\ THEN\ pre_icu_los_days\ END),\ 2)\ AS\ avg_icu_stay_survived$

FROM `patient_survival`.`ps_data`

GROUP BY icu_type

ORDER BY icu_type;

	icu_type	avg_icu_stay_death	avg_icu_stay_survived
•	CCU-CTICU	2.02	0.34
	CTICU	0.34	1.41
	Med-Surg ICU	0.67	0.43
	MICU	1.62	0.89
	Neuro ICU	1.79	0.6
	SICU	1.52	0.41

Q18: What was the average BMI for patients that died based on ethnicity? (excluding missing or null values)

SELECT

ethnicity,

ROUND(AVG(bmi),2) AS average_bmi

FROM `patient_survival`.`ps_data`

WHERE bmi IS NOT NULL

AND hospital_death = '1'

GROUP BY ethnicity;

	ethnicity	average_bmi
۱	Caucasian	22.67
	African American	22.48
	Hispanic	22.63
		27.24
	Native American	23.47
	Asian	28.73

Q19: What was the death percentage for each ethnicity?

SELECT

ethnicity,

ROUND(COUNT(CASE WHEN hospital_death = 1 THEN 1 END) * 100 / (SELECT COUNT(*) FROM patient_survival.ps_data), 2) AS death_percentage

FROM `patient_survival`.`ps_data`

GROUP BY ethnicity;

	ethnicity	death_percentage
١	Caucasian	4.17
		0.16
	Hispanic	0.27
	African American	0.96
	Asian	0.21
	Native American	0.11
	Other/Unknown	0.00

Conclusion

The Patient Mortality dataset has provided valuable insights into patient Mortality or survival and healthcare dynamics. We have answered a series of complex questions, addressing various aspects of patient demographics, and healthcare performance. the data contains related to patients admitted to a hospital.

By analyze patient mortality rates and identify factors that may contribute to patient deaths. By examining the data, we can gain insights into the prevalence of different medical conditions among patients who died, the effectiveness of different types of care, and the impact of demographic factors on patient outcomes.

Overall, the ps_data.csv file provides a valuable resource for researchers and healthcare professionals looking to better understand patient mortality rates and improve patient outcomes. By analyzing this data, we can identify areas for improvement in patient care and develop strategies to reduce patient mortality rates.