

INTRO

Evolution and the Natural World

Lecture 2

16/09/2021

Vasili Pankratov

Materials

- Moodle: lecture slides, videos, etc.
- Evolution book (N. Barton and co-authors)
- Take lecture notes

Goals: the SciTech program

- Help you with your carreer choices
- Promote interdisciplinarity

Goals: the EATNW course

- Very general overview of biology from an evolutionary perspective (how do we currently understand life?)
- Overview of human evolution
- Some insight into and promotion of current research in human evolutionary genetics

Evaluation

Final score =

- 0.1 x test score +
- 0.3 x presentation score +
- 0.6 x exam score

Final score:

- <50% fail
- 50-60% E
- 60-70% D
- 70-80% C
- 80-90% B
- 90-100% A

BACK TO SCHOOL: GENETICS

Evolution and the Natural World

Lecture 2

16/09/2021

Vasili Pankratov

Evolutionary Biology in the 19th Century

- Paleontology
- Comparative morphology
- Comparative anatomy
- Comparative embryology
- Biogeography

Evolutionary Biology in the 21th Century

- Molecular Biology
- Genomics
- Evolutionary developmental biology
- Ecology
- Experimental evolution
- Modeling and simulations

Modern Theory of Evolution

- It is impossible to understand modern evolutionary theory without knowing other fields of biology
- Darwin's theory of evolution ≠ modern theory
- Modern theory of evolution ≠ ultimate theory
- New data adds to and modifies our understanding of evolution – still a lot to be learned

What is Evolution?

What is Evolution?

- Descent with modification
- Sometimes new traits emerge and can be passed on to offsprings
- Some traits are "better" than others (increase fitness) such traits spread over generations

What is Evolution?

- Descent with modification
- Sometimes new traits emerge and can be passed on to offsprings
- Some traits are "better" than others (increase fitness) such traits spread over generations

GENETICS

How does inheritance work?

	Flower color	Flower position	Seed color	Seed shape	Pod shape	Pod color	Stem length
	Purple	Axial	Yellow	Round	Inflated	Green	Tall
P	××	××	×	×	1×	1 _×	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	White	Terminal	Green	Wrinkled	Constricted	Yellow	Dwarf
F ₁			<u></u>	<u></u>			
	Purple	Axial	Yellow	Round	Inflated	Green	Tall

I. Mendel's experiments: conclusions

- There are some discrete heritable entities that determine the phenotype (traits) – genes
- Pea plants (and many other species) are diploid each individual has two "copies" of each gene
- Genes come in different versions alleles
- Each individual has a combination of two alleles for a given gene – genotype.
- An organism can be a homozygote or a heterozygote for a given gene

I. Mendel's experiments: conclusions

 In many cases one allele is dominant over the other (which is recessive) – the phenotype of a heterozygote (Aa) is the same as the phenotype of a homozygote for the dominant allele (AA)

II. Chromosomal theory of inheritance

D. melanogaster

- Chromosomes come in pairs –
 homologous chromosomes
- Gametes have only 1 chromosome from each pair – haploid
- Some genes in Drosophila behave as if females had 2 copies, but males had 1 – X-linked traits

II. Chromosomal theory of inheritance

- Some traits are linked
- Genes are grouped into linkage groups – correspond to chromosomes
- Genes are arranged linearly
- Genes are chromosomal segments

https://sciencemusicvideos.com/ap-biology/genetics-mendelian-blood-type-sex-linkage/linked-genes/

Wikipedia, Madeleine Price Ball

rough strain & heat-killed smooth strain mouse dies

- Non-virulent (R)
 Streptococcus strain can be transformed into a virulent strain (S) by something present in heat-killed S cells
- DNA was found to be the "transforming principle"

IV. DNA structure

IV. DNA structure

grouped into 2 classes based on their chemical structure

Bases can be

Pyrimidines

IV. DNA structure

- Four types of nucleotides with no restrictions on the sequence – DNA contains information
- Base-pairing is the key to copying and "reading" this information

Wikipedia, Madeleine Price Ball

IV. Differences in DNA structure

Alleles of the same gene differ slightly in terms of their nucleotide sequence

Genetics: key points

- Genes are units of inheritance
- Physically genes are chromosomal regions
- Chromosomes are made of DNA so genes are segments of DNA
- Genes are defined by the nucleotide sequence
- Alleles are gene versions with slightly different nucleotide sequence
- So small differences in nucleotide sequence may lead to differences in phenotype (trait)