عدد الصفحات: 2	الامتحان التجريبي الموحد	الأكاديمية الجهوية للتربية و التكوين
المعامل: 7	السنة الثانية سلك البكالوريا	جهة الدار البيضاء الكبرى
مدة الإنجاز : 3 ساعات	شعبة العلوم التجريبية	نيابــة النواصــــر
	نمــوذج رقــم 1	ثانوية أبي حيان التوحيدي

يسمح باستعمال الآلة الحاسبة الغير قابلة للبرمجة

التمرين الأول

 $C\left(0;0;1
ight)$ في الفضاء لمنسوب إلى م م م م $B\left(0;1;0
ight)$ نعتبر النقط $A\left(1;0;0
ight)$ و $B\left(0;1;0
ight)$ و

$$ABC$$
 . $x+y+z-1=0$. هي: $\overrightarrow{AB} \wedge \overrightarrow{AC}$ و استنتج أن معادلة المستوى (ABC) هي: $\overrightarrow{AB} \wedge \overrightarrow{AC}$

- $x^2 + y^2 + z^2 2x 4y 2z + 3 = 0$ نعتبر الفّلكة (S) المحددة بالمعادلة الديكارتية: ${\cal O}$
 - . $\sqrt{3}$ و أن شعاعها يساوي Ω (1; 2; 1) هو النقطة Ω (0.5 pt)
 - (ب) بين أن المستوى (ABC) مماس للفلكة ((v)) (0,75 pt)
 - (ح) حدد نقطة تماس المستوى (ABC) و الفلكة (S). (ح) حدد نقطة تماس المستوى (ABC) (اج)

التمرين الثاني

- C حل في مجموعة الأعداد العقدية C المعادلة: $\mathbf{0}$ حل في مجموعة الأعداد العقدية (1 pt)
- A نعتبر في المستوى العقدي المنسوب إلى معلم متعامد ممنظم مباشر $(O; \overrightarrow{e_1}; \overrightarrow{e_2})$. النقط c=2-2i و b=2+2i و a=4 و التي ألحاقها على التوالي a=4
- بالدوران M(z) نقطة من المستوى العقدي و تخالف A و M'(z') صورة M(z) بالدوران π الذي مركزه A و زاويته π .
 - \mathscr{R} بين أن: z'=iz+4-4i ثم تحقق أن النقطة بين أن: z'=iz+4-4i بين أن: (1,5 pt)
 - رب $(1 ext{ pt})$ انشئ النقط A و B و C ثم بين أن الرباعي OBAC مربع $(1 ext{ pt})$

التمرين الثالث

يحتوي كيس على أربع كرات تحمل الأرقام 1;1;1;0 و ثلاث كرات سوداء تحمل الأرقام 1;1;0 لا يمكن التمييز بينها باللمس. نسحب عشوائيا بالتتابع و بدون إحلال كرتين من الكيس.

- (1 pt) أحسب احتمال سحب كرتين بيضاوين.
- (1 pt) أحسب احتمال سحب كرتين تحملان نفس الرقم.
- 0 بين أن $\frac{11}{21}$ هو احتمال سحب كرتين جداء رقميهما يساوي (1 pt)

الصفحة 1 من 2

التمرين الرابع

 $f(x)=x-(x^2+1)\,e^{-x}$ بما يلي: $\mathbb R$ بما يلي: ألعددية f المعرفة على المعرفة على المعرفة على المنحنى الممثل للدالة f في المستوى المنسوب إلى معلم متعامد ممنظم $(\mathcal C;\overrightarrow i;\overrightarrow j)$ المنحنى الممثل للدالة f

$$\lim_{x o +\infty} f(x)$$
 و $\lim_{x o +\infty} f(x)$ و أ $\lim_{x o +\infty} f(x)$ أحسب النهايتين :

بين أن المنحنى
$$(\mathscr{C}_f)$$
 يقبل بجوار ∞ فرعا شلجميا اتجاهه محور الأراتيب. (0,75 pt)

$$y=x$$
 مقارب مائل للمنحنى (\mathscr{C}_f) بجوار $y=x$ مقارب مائل للمنحنى ((Δ)) بجوار $(0.75~\mathrm{pt})$

$$(\Delta)$$
 الوضع النسبي للمنحنى (\mathscr{C}_f) و المستقيم (Δ).

$$f'(x)=1+(x-1)^2\,e^{-x}$$
 : لبين أن لكل x من x لدينا (ن لكل ($0.5~
m pt)$

$$f$$
 أعط جُمُولُ تغيرات الدالة (ب) أعط جُمُولُ تغيرات الدالة f

$$.f''(x)=-\left(x-1
ight)\left(x-3
ight)e^{-x}$$
 : بين أن لكل x من x لدينا x لدينا x (0,5 pt)

(ب) استنتج أن المنحنى
$$(\mathscr{C}_f)$$
 يقبل نقطتي انعطاف ينبغي تحديدهما. (\mathfrak{pt})

$$0 بين أن المعادلة $f(x)=0$ تقبل حلا وحيدا $lpha$ في $lpha$ و أن $f(x)=0$ بين أن المعادلة (0,5 pt)$$

$$ig(f(3)\simeq 1,6$$
 أنشئ المنحنى $ig(\mathscr{C}_f)$ و المستقيم ($ig\Delta$) في المعلم ($ig(\mathscr{C}_f)$ ناخذ $ig(\mathfrak{C}_f)$ و المستقيم (1,5 pt)

 $I_n = \int_0^1 x^n e^{-x} \, \mathrm{d}x$: نعتبر التكامل: \mathbb{N}^* من n من n نعتبر التكامل:

$$x\mapsto xe^{-x}$$
 ابين أن الدالة $x\mapsto xe^{-x}$ هي دالة أصلية للدالة $x\mapsto xe^{-x}$ ثم أحسب $x\mapsto xe^{-x}$ هي دالة أصلية الدالة $x\mapsto xe^{-x}$

$$I_{n+1}=-rac{1}{e}+(n+1)I_n$$
 : الأجزاء بين أن $I_{n+1}=-rac{1}{e}+(n+1)I_n$ ناستعمال مكاملة بالأجزاء بين أن (0,75 pt)

$$. I_2$$
 (ب) أحسب (0,25 pt)

$$\mathfrak{C}_f$$
 أحسب مساحة حيز المستوى المحصور بين المنحنى (\mathcal{C}_f) و المستقيمين $x=0$ اللذين معادلتاهما $x=0$ و $x=1$

عدد الصفحات: 2	الامتحان التجريبي الموحد	الأكاديمية الجهوية للتربية و التكوين
المعامل: 7	السنة الثانية سلك البكالوريا	جهة الدار البيضاء الكبرى
مدة الإنجاز : 3 ساعات	شعبة العلوم التجريبية	نيابــة النواصــــر
	نمــوذج رقـم 2	ثانوية أبي حيان التوحيدي

2/1 :الصفحة

يسمح باستعمال الآلة الحاسبة الغير قابلة للبرمجة

 $egin{aligned} u_o &= 4 \ & \ 2u_{n+1} = u_n + 3 \ ; \ orall n \in \mathbb{N} \end{aligned}$

 $(orall n\in \mathbb{N}):\ u_n>3$: ان بين بالترجع أن $oldsymbol{0}$ (0.5 pt)

(ب) بین أن المتثالیة $(u_n)_{n\in\mathbb{N}}$ تناقصیة ثم استنتج أنها متقاربة. (0.75 pt)

لمتالية العددية $(u_n)_{n\in\mathbb{N}}$ المعرفة بما يلي:

$$(orall v_n):v_n=u_n-3$$
 نضع: الله نضع: $(v_n):v_n=v_n-3$ نضع: (1) بين أن المتتالية (v_n) هندسية ، أساسها $(0.5~
m pt)$

$$\lim u_n$$
 بين أن $(orall n=3+\left(rac{1}{2}
ight)^n$ ، ثم أحسب (1,5 pt)

$$(orall n\in\mathbb{N}):T_n=3n+5-\left(rac{1}{2}
ight)^n$$
 : بین آن: $(orall n\in\mathbb{N}):T_n=u_0+\cdots+u_n$ نضع: $oldsymbol{3}$

التمرين الثاني (3 نقط)

في الفضاء المنسوب إلى معلم متعامد ممنظم (C(i,j;k) نعتبر الفلكة (S) التي مركزها $A\left(1;2;0
ight)$ و تمر بالنقطة $\Omega\left(-1;1;2
ight)$

- .(S) حدد معادلة ديكارتية للفلكة $oldsymbol{0}$ (0.75 pt)
- $(P):\; 2x+y-z+3=0$ نعتبر المستوى $oldsymbol{arrho}$
 - $\Omega \in (P)$:نحقق من أن $\Omega \in (P)$. (0.25 pt)
 - (P) حدد تقاطع المستوى (P) و الفلكة (0.75 pt)

$$(D): \left\{egin{array}{ll} x=t \ y=2t & (t\in\mathbb{R}) \end{array}
ight. :$$
نعتبر المستقيم $z=2t-2$

- $A\in (D)$ بين أن: $A\in (D)$ و أن $A\in (\Omega A)$. (0.75 pt)
- (P) استنتج أن المستقيم (D) مماس للفلكة (S) في النقطة (P)(0.5 pt)

التمرين الثالث (4 نقط

- $.(E): z^2-2z+2=0$ $oldsymbol{0}$ حل فى المجموعة ${\mathbb C}$ المعادلة: (1 pt)
 - و أكتب الحلول على الشكل المثلثي. (0.75 pt)
- B(1-i) و A(1+i) في المستوى العقدي المنسوب إلى المعلم A(1+i) المعلم ($O; \overrightarrow{e_1}; \overrightarrow{e_2}$). نعتبر النقطتين A(1+i) و
 - (أ) حدد طبيعة المثلث OAB (0.75 pt)

ABر التمثيل العقدى للدوران r الذي زاويته π و مركزه I منتصف AB

r(A)=B م استنتج أن (1,5 pt)

التمرين الرابع

- نعتبر الدالة العددية f لمعرفة على \mathbb{R}^+ بما يلى: (I $(O; \, ec{i} \, ; \, ec{j})$ منحناها في المستوى المنسوب إلى معلم متعامد ممنظم و ليكن (\mathscr{C}_f) .
 - . بين أن الدالة f متصلة في 0 على اليكين $\mathbf{0}$ (0.75 pt)
 - أحسب $\lim_{x \to +\infty} f(x)$ ثم أدر س الفرخ اللانهائي للمنحنى (\mathscr{C}_f). (1 pt)
 - انهایة: $\lim_{x\to 0^+} \frac{f(x)-f(0)}{x}$: أحسب النهایة: $\frac{1}{x}$ (0,75 pt)
 - \mathbb{R}^{+^*} لكل x من $f'(x) = -\ln(x)$ لكل x من $\left(\cdot
 ight)$ (0.5 pt)
 - $[1;+\infty[$ بين أن الدالة f تزايدية قطعا على [0;1] ، و تناقصية قطعا على $[1;+\infty[$ (1 pt)
 - (c) أعط جدول تغيرات الدالة f. (0.25 pt)
- $oldsymbol{e}$ (أ) حدد معادلة المستقيم (T) المماس للمنحنى (\mathscr{C}_f) في النقطة ذات الأفصول $oldsymbol{\Phi}$ (0.75 pt)
- $(e\simeq 2,7$ و المستقيم (T) في المعلم (\mathscr{C}_f) و المستقيم (\mathscr{C}_f) و المستقيم (\mathscr{C}_f) (1,5 pt)
- أحسب مساحة حيز المستوى المحصور بين المنحنى (\mathscr{C}_f) و محور الأهاصيل و المس أحسب مساحة حيز المستوى المحصور بين المناهبين و
 - x=e و x=1 اللذين معادلتاهما (1,5 pt)
 - $[1;+\infty[$ ليكن ${
 m g}$ قصور الدالة f على المجال (III
 - بين أن ${f g}$ تقبل دالة عكسية معرفة على مجال J يتم تحديده. (1 pt)
 - $(O; \overrightarrow{i}; \overrightarrow{j})$ أنشئ المنحنى $(\mathscr{C}_{\mathrm{g}^{-1}})$ في نفس المعلم 2(0.5 pt)

عدد الصف	الامتحان التجريبي الموحد	الأكاديمية الجهوية للتربية و التكوين
المعام	السنة الثانية سلك البكالوريا	جهة الدار البيضاء الكبري
مدة الإنجاز	شعبة العلوم التجريبية	نيابــة النواصــــر
	نمــوذج رقــم 3	ثانوية أبي حيان التوحيدي

يسمح باستعمال الآلة الحاسبة الغير قابلة للبرمجة

2,75 pts)

$$I = \int_1^e rac{1 + \ln^2(x)}{x} \,\mathrm{d}x$$
 :نجم التكامل (0,75 pt)

$$\mathbb{R}$$
 لکل x من $\frac{1}{(1+e^{2x})^2}=1-rac{e^{2x}}{(1+e^{2x})}-rac{e^{2x}}{(1+e^{2x})^2}$ نکل $(0.25 ext{ pt})$

$$J = \int_0^1 \frac{1}{(1+e^{2x})^2} \, \mathrm{d}x$$
 (ب) استنتی حساب (ب) (0,75 pt)

$$K = \int_2^3 rac{\ln{(x^2-1)}}{x^2} \, \mathrm{d}x$$
 باستعمال مكاملة بالأجزاء أحسب التكامل \Im (1 pt)

m(3,25~ptsm) التمرين الثاني

$$\int\limits_{0}^{\infty} u_o=0$$
 نعتبر المتتالية العددية $(u_n)_{n\in\mathbb{N}}$ المعرفة بما يلي: $u_{n+1}=rac{1}{8}\left(1+\sqrt[3]{u_n}
ight)^3\;;\; orall n\in\mathbb{N}$

.
$$(orall m{n} \in \mathbb{N}): \ 0 \leqslant u_n \leqslant 1$$
 : بين أن $m{0}$ $m{0}$ $m{0}$

$$(a^3-b^3=(a-b)(a^2+ab+b^2)$$
 أدرس رتابة (u_n) و استنتج أنها متقاربة (ستعمل (ب)) أدرس رتابة (بالمنابع أنها متقاربة (ستعمل (0,75 pt)

 $(orall \in \mathbb{N}): \ v_n = \sqrt[3]{u_n} - 1$ نعتبر المتتالية $(v_n)_{n \in \mathbb{N}}$ المعرفة بما يلي: \mathcal{Q}

(أ) بين أن المتتالية (v_n) هندسية ، محددا أساسها و حدها الأول. (0.5 pt)

> $\lim u_n$ أحسب v_n و u_n بدلالة v_n ثم حدد (ب) (0.75 pt)

. $\lim S_n$: ثم حدد $S_n=\sqrt[3]{u_0}+\sqrt[3]{u_1}+\cdots+\sqrt[3]{u_{n-1}}$. ثم حدد $S_n=\sqrt[3]{u_0}+\sqrt[3]{u_1}+\cdots+\sqrt[3]{u_{n-1}}$ (0.75 pt)

التمرين الثالث

$$.(E): \, z^2-z+4=0$$
 كل في المجموعة ${\Bbb C}$ المعادلة: $lackbox{0}$

$$z_1$$
 . (E) . z_2 و z_2 هما حلي المعادلة $z_1 + z_2^6 = 128$. $(0.75 \; \mathrm{pt})$

في المستوى العقدي المنسوب إلى م م م م $(O; \overrightarrow{u}; \overrightarrow{v})$. نعتبر النقط A و B و رلت $a=\sqrt{3}-i$ و $b=-\sqrt{3}+i$ على التوالي $a=1+i\sqrt{3}$ و

. بين أن النقط A و B و C تنتمي إلى الدائرة التي مركزها O و شعاعها C ثم أنشئها $oldsymbol{0}$ (0.75 pt)

$$ABC$$
 بين أن $i=rac{a-c}{a-b}=i$ و استنتج طبيعة المثلث (1 pt)

الصفحة 1 من 2

 $rac{\pi}{2}$ بين أن العدد O و زاويته $d=-1-i\sqrt{3}$ هو لحق و طورة B بالدوران الذي مركزه. G

معللا جوابك. ABDC معللا عي $O(0.25 \, \mathrm{pt})$

ig(10~ptsig) التمرين الرابع

 $\mathrm{g}(x)=x-1+e^{2x}$ بما يلي: \mathbb{R}^+ بما يلي: \mathbb{R}^+ المعرفة على جاء بما يلي:

 ${f g}'(x)$ يكل ${f g}'(x)$ ، ثم أعط جدول تغيرات الدالة ${f g}'(x)$

 \mathbb{R}^+ على \mathbf{g} على \mathbf{g} على (0,5 pt)

 $f(x)=x^2-2x+e^{2x}\;;\;x\geqslant 0$ المعرفة على $\mathbb R$ بما يلي: $f(x)=1+x-\ln(1-x)\;;\;x<0$ المعرفة على $f(x)=1+x-\ln(1-x)\;;\;x<0$ و ليكن f(x)=1+x المستوى المنسوب إلى معلم متعامد ممنظم f(x)=1+x

 $-\infty$ و ∞ عند f عند f عند f عند f و 0 و 0 و 0,75 pt)

 (\mathscr{C}_f) أدرس الفروع اللانهائية للمنحنى (0,5 pt).

(0,5 pt) ادرس قابلية اشتقاق الدالة f في 0 على اليمين و على اليسار.

 $[-\infty;0]$ بين أن الدالة f تزايدية قطعا على (ب) بين أن الدالة الم

 $[0;+\infty[$ علی $f'(x)=2\mathrm{g}(x)$. $[0;+\infty[$ و استنتج رتابة f علی $f'(x)=2\mathrm{g}(x)$. $[0,75~\mathrm{pt})$

.f أعط جدول تغيرات الدالة (د) (0,25 pt)

 (\mathscr{C}_f) على كل من المجالين $0;+\infty$ و $0;+\infty$ ا ثم أدرس تقعر المنحنى f''(x) على g حدد g

f(x)=0 . [-1;0] بين أن المعادلة f(x)=0 تقبل حلا وحيدا lpha في المجال ($0.5~{
m pt}$)

 $[-\infty;0[$ في المجال (Δ): $y \neq x$ مع المستقيم (\mathscr{C}_f) مع المنحنى (\mathscr{C}_f) في المجال (0,25 pt)

 $(0; m{i}; m{j})$ في المعلم ((Δ)) و المستقيم ((Δ)) في المعلم ((β, i))

[0,1] .] $-\infty;0$ ليكن [0,1] قصور الدالة [0,1] على المجال [0,1]

بين أن ${f h}$ تقبل دالة عكسية معرفة على مجال J يتم تحديمه (ائ) بين أن J

 $(0.5~{
m pt})$. $(h^{-1})'(1-e)$ بين أن h^{-1} قابلة للاشتقاق في العدد 1-e ثم أحسب $(0.5~{
m pt})$

. \mathbf{h}^{-1} أنشئ في نفس المعلم $(\mathscr{C}_{\mathbf{h}^{-1}})$ منحنى الدالة (0,25 pt)

الجزء الثالث:

 $.(orall x\leqslant 0): \; rac{-x}{1-x}=1-rac{1}{1-x}:$ نحقق أن (0,25 pt)

. $\int_{1-e}^{0} \ln(1-x) \, \mathrm{d}x$ باستعمال مكاملة بالأجزاء أحسب (0,75 pt)

x=0 و y=0 و المستقيمات y=0 و y=0 و

عدد الصفحات: 2	الامتحان التجريبي الموحد	الأكاديمية الجهوية للتربية و التكوين
المعامل: 7	السنة الثانية سلك البكالوريا	جهة الدار البيضاء الكبرى
مدة الإنجاز : 3 ساعات	شعبة العلوم التجريبية	نيابــة النواصــــر
	نمــوذج رقــم 4	ثانوية أبي حيان التوحيدي

يسمح باستعمال الآلة الحاسبة الغير قابلة للبرمجة

في المستوى العقدي المنسوب إلى م م م م $(O; \overrightarrow{u}; \overrightarrow{v})$. نعتبر النقط A و B و C التي ألحاقها على $z_C=-3+i$ و $z_B=1+3i$ و $z_A=2+i$ التوالي

- ABC أحسب أعلى استنتج أن A و B و B غير مستقيمية. و أن ABC قائم الزاوية في A(1,5 pt)
 - . مستطيل ABCD حدد لحق النقطة D بحيث يكون الرباعي (0.5 pt)
 - BC=2BA:و بين أن يا $\frac{z_B-z_A}{z_B}$ و بين أن \Im (1 pt)

: في الفضاء المنسوب إلى معلم متعامد ممنظم $\left(O;\,\overrightarrow{i};\overrightarrow{j};\overrightarrow{k}
ight)$ نعتبر الفلكة x-2y+z-1=0 و المستوى (P) و المستوى $x^2+y^2+z^2-2x-2y=0$

- $oldsymbol{0}$ حدد مركز و شعاع الفلكة (S). (0.75 pt)
- (أ) حدد متجهة منظمية على المستوى (P) $oldsymbol{arphi}$ (0.25 pt)
- $A\left(1;1;0
 ight)$ عدد تمثيلا بارامتريا للمستقيم $A\left(1;1;0
 ight)$ العمودي على $P\left(1;1;0
 ight)$ حدد تمثيلا بارامتريا للمستقيم $A\left(1;1;0
 ight)$ (0.75 pt)
 - ادرس الوضع النسبي للمستقيم (Δ) و الفلكة (S). (0.5 pt)

$(4 \ pts)$ التمرين الثالث

$$(E):\;y''-2y'+5y=0$$
 حل المعادلة التفاضلية: ${f 0}$

$$(E):\ y''-2y'+5y=0$$
 حل المعادلة التفاضلية: $f(rac{\pi}{2})=1$ و $f(rac{\pi}{2})=1$ و $f(rac{\pi}{2})=1$ و $f(rac{\pi}{2})=1$ عن المعادلة $f(f(rac{\pi}{2}))=1$ و $f(rac{\pi}{2})=1$

(II)

$$\mathbb{R}\setminus\{-1;1\}$$
 لکل x من $\frac{2x^2}{x^2-1}=2+rac{1}{x-1}-rac{1}{x+1}$ لکل x من $(0.5 ext{ pt})$

$$I=\int_0^{rac{1}{2}}rac{2x^2}{x^2-1}\,\mathrm{d}x$$
 أحسب التكامل: 2 (1 pt)

$\overline{2}$ الصفحة $\overline{1}$ من

(9,75~pts) التمرين الرابع

 $\operatorname{g}(x)=e^x-x$ يلي: g المعرفة على g بما يلي: والدالة العددية g

- $\lim_{x o -\infty} \mathrm{g}(x)$ و أحسب النهايتين $\sup_{x o +\infty} \mathrm{g}(x)$ و $(0.75 \mathrm{\ pt})$
- \mathbb{R} على \mathbb{R} على \mathbb{g} اكل $\mathbf{g}'(x)$ على $\mathbb{g}'(x)$ على $\mathbb{g}'(x)$ على $\mathbb{g}(0.75 \; \mathrm{pt})$
 - . $(orall x \in \mathbb{R}): \ \mathrm{g}(x) > 0$ استنتج آن $\mathbf{3}$ $\mathbf{0}$ $(0.25 \ \mathrm{pt})$

 $f(x)=e^x-rac{1}{2}x^2-1\;;\;x\leqslant 0$ المعرفة على $\mathbb R$ بما يلي: $f(x)=\ln{(e^x-x)}\;;\;x>0$ بما يلي: $f(x)=\ln{(e^x-x)}\;;\;x>0$ و ليكن $f(x)=\frac{1}{2}$ منحناها في المستوى المنسوب إلى معلم متعامد ممنظم $f(x)=\frac{1}{2}$

- $\lim_{x \to -\infty} f(x)$ ا أحسب النهايتين f(x) النهايتين (0,75 pt)
- $\lim_{x o +\infty}f(x)-x$ ثم أحسب $\int (\forall x\in\mathbb{R}^{+*}): f(x)=x+\ln(1-xe^{-x})$ ثم أحسب $\int (0.75 \, \mathrm{pt})$ ثم أعط تأويلا هندسيا للنتيجة.
 - . أحسب $\lim_{x \to +\infty} \frac{f(x)}{x}$ ثم أعط تأويلا هندسيا للنتيجة (ب) (0,5 pt)
 - بانهایتین $\lim_{x \to 0^-} f(x)$ و $\lim_{x \to 0^+} f(x)$ ماذا تستنتج $\mathbf{3}$ (0,75 pt)
 - (أ) أدرس قابلية اشتقاق الدالة f في 0 على البسار. ثم أو ل هندسيا النتيجة.
- وب) تحقق أن $\frac{f(x)}{x}$ $\frac{f(x)}{x} = 1 e^{-x} \frac{\ln(1 xe^{-x})}{-xe^{-x}}$ ثم أحسب $\frac{f(x)}{x} = (0.75 \text{ pt})$. أعط تأويلا هندسيا للنتيجة

 - (2 أنشئ المنحنى (\mathscr{C}_f) . (نقبل أن (\mathscr{C}_f) يقبل نقطة انعطاف أفصو لها أكبر من $(0.5 \mathrm{\ pt})$

 $u_0 \neq 2$ المعرفة بما يلي: $u_{n+1} = f(u_n) \; ; \; orall n \in \mathbb{N}$ المعرفة بما يلي: $u_{n+1} = f(u_n) \; ; \; \forall n \in \mathbb{N}$

- $(orall n\in \mathbb{N}):\; 0\leqslant u_n\leqslant 2$: بين بائتر جع أن $oldsymbol{0}$
- $\left(\ y=x \$ بين أن $\left(u_n
 ight)$ تناقصية . $\left(\ ext{ Yed}
 ight)$ و بين أن $\left(u_n
 ight)$ تناقصية . $\left(\ ext{ (0.5 pt)}
 ight)$
 - $\lim_{n o +\infty} u_n$ استنتج أن (u_n) متقاربة ، ثم أحسب (0,75 pt)

عدد الصفحات: 2	الامتحان التجريبي الموحد	الأكاديمية الجهوية للتربية و التكوين
المعامل: 7	السنة الثانية سلك البكالوريا	جهة الدار البيضاء الكبرى
مدة الإنجاز : 3 ساعات	شعبة العلوم التجريبية	نيابــة النواصــــر
	نمــوذج رقـم 5	ثانوية أبي حيان التوحيدي

يسمح باستعمال الآلة الحاسبة الغير قابلة للبرمجة

(5~pts) لتمرين الأول

 $P(z) = z^3 - 6z^2 + 12z - 16$

- $P(z) = (z-4)(z^2-2z+4)$ و تحقق أن: P(4) و تحقق النا (0,75 pt)
 - P(z)=0 : كم حل في المجموعة $\mathbb C$ المعادلة: $\mathcal O$

المستوى الْعُقِدي منسوب إلى م م م م $(O;\overrightarrow{e_1};\overrightarrow{e_2})$. نعتبر النقط A و B و C التي ألحاقها على التوالي a=4 و $b=1+i\sqrt{3}$ و a=4

- A و B و A و اكتب العددين B و C على الشكل المثلثي. ثم أنشئ النقط A و B و B (1,5 pt)
 - بين أن المثلث ABC متساوي الأضلاع. O(0.75 pt)

لتكن K النقطة التي لحقها i+t $k=+\sqrt{3}+t$ و G صورة النقطة K بالإزاحة التي متجهتها π ، و π صورة النقطة K بالدوران الذي مركزه G و زاويته π .

- حدد لحق النقطة G على شكله الجبري. $oldsymbol{0}$
- $(OF) \perp (OC)$: غلى شكله الأسي. ثم بين أن G اكتب لحق النقطة G على شكله الأسي. ثم بين أن G

(4~pts) التمرين الثاني

 $B\left(0;1;2
ight)$ و $A\left(1;1;1
ight)$ و الفضاء منسوب إلى معلم متعامد ممنظم مباشر X و X الفضاء منسوب إلى معلم متعامد ممنظم مباشر X و المعادلة: X و X

- . $\overrightarrow{AB} \wedge \overrightarrow{AC} = -\overrightarrow{i} \overrightarrow{k}$ نين ان: (۱) lacktriangled (0.75 pt)
- (4BC) (ب) استنتج معادلة ديكارتية للمستوى $(0.5~\mathrm{pt})$
 - $(P) \perp (ABC)$: بين أن (7)
- (P) المستقيم المار من A و العمودي على الستوى (Δ)
 - (Δ) أعط تمثيلا بارامتريا للمستقيم (أ) أعط تمثيلا بارامتريا المستقيم (0.25 pt)
 - (P) و المستقيم (Δ) و المستقيم (ب) حدد تقاطع المستقيم (0,75 pt)
- $x^2+y^2+z^2-2y-2z+1=0$ لتكن (S) مجموعة النقط M(x;y;z) من الفضاء التي تحقق (S) مجموعة النقط (S) من الفضاء التي تحقق (S) من القطاء التي تحقق (S) من التي تحقق (S)
 - R=1 و شعاعها $\Omega\left(0;1;1
 ight)$ و $\Omega\left(0;0;1;1
 ight)$ و $\Omega\left(0.5~\mathrm{pt}
 ight)$

- Ω عن المستوى (ب) أحسب مسافة النقطة Ω عن المستوى (0,5 pt)
 - . (P) عدد تقاطع الفلكة (S) و المستوى (F)

$(11 \ pts)$ سائسة

 $\operatorname{g}(x)=x-\ln(x)$ يلي: $\operatorname{g}(x)=x-\ln(x)$ المعرفة على $\operatorname{g}(x)=0$ بما يلي: $\operatorname{g}(x)=x-\ln(x)$

- $\lim_{x o 0^+} \mathrm{g}(x)$ النهايتين $\lim_{x o +\infty} \mathrm{g}(x)$ و $\mathbf{0}$
 - $[0; +\infty[$ على [0,75 pt] على الدالة [0,75 pt]
- $(0.75 ext{ pt})$. $(orall x>0): \ln(x)\leqslant 2\sqrt{x}-2$. و أن $(\sqrt{x}>0): \ln(x)\leqslant x-1$

 $\left\{egin{array}{l} f(x)=x-\sqrt{x}\ln(x)\;;\;x>0\ rac{|t_{m{x}}|}{|t_{m{x}}|}=e^x-x-1\;;\;x\leqslant0 \end{array}
ight.$ و ليكن $\left(\mathscr{C}_f
ight)$ منحناها في معلم متعامد ممنظم $\left(0;\,ec{i}\;;ec{j}
ight)$

- $oldsymbol{0}$. $oldsymbol{0}$ متصلة في $oldsymbol{0}$ (0,75 pt)
- $\lim_{x\to 0^+} \frac{f(x)}{x} = +\infty$ (ب) بين أن: $\infty + \infty$ و أو ل هندسيا النتيجة.
- ج) أدرس قابلية اشتقاق الدالة f على اليسار في 0 . ثم أو ل هندسيا النتيجة $(0,5~\mathrm{pt})$
 - $\lim_{x o -\infty} f(x)$ و أحسب و أحسب ان $\lim_{x o +\infty} f(x) = +\infty$ بين أن 2
 - $. \left\{ egin{array}{l} f'(x) = rac{2\sqrt{x} 2 \ln(x)}{2\sqrt{x}} \; ; \; x > 0 \ f(x) = e^x 1 \; ; \; x < 0 \end{array}
 ight. \; \left. \left(egin{array}{l} f(x) = 0 \end{array}
 ight.
 ight.
 ight.
 ight.
 ight. \left. \left(egin{array}{l} f(x) = 0 \end{array}
 ight.
 ignt.
 ight.
 ight.
 ight.
 ight.
 ight.
 ight.
 ight.
 ight.
 igh$
- $[-\infty;0[$ بين أن f تزايدية على المجال $[0;+\infty[$ وكتلاقصية على المجال f (0,75 pt)
 - بجوار ∞ (أ) أدرس الفرع اللانهائي للمنحنى (\mathscr{C}_f) بجوار ∞ (0,75 pt)
- $-\infty$ بين أن المستقيم ذو المعادلة y=-x-1 مقارب للمنحنى (\mathscr{C}_f) بجوار $(0.5~\mathrm{pt})$
 - $ig((\mathscr{C}_f)$ نقطة انعطاف للمنحنى $ig(\mathscr{C}_fig)$. $ig(\mathscr{C}_fig)$ نقطة انعطاف للمنحنى (0,75 pt)
 - $I = \sqrt[e]{\sqrt{x} \ln(x) \, \mathrm{d}x}$ اأ) باستعمال مكاملة بالأجواء أحسب التكامل (0,5 pt)
- x=1 و محور الأفاصيل و المستقيمين x=1 (ب) احسب مساحة الحيز المحصور بين x=1 و x=1 . $x=e^2$

- $(orall n\in \mathbb{N}):\ u_n>1:$ بين أن $(0,5 ext{ pt})$
- (f بين أن المتتالية (u_n) تناقصية . (يمكنك استعمال رتابة $oldsymbol{2}$
 - $\lim_{n \to +\infty} u_n$ استنتج أن المتتالية (u_n) متقاربة ، ثم أحسب (0,75 pt)

عدد الصفحات: 2	الامتحان التجريبي الموحد	الأكاديمية الجهوية للتربية و التكوين
المعامل: 7	السنة الثانية سلك البكالوريا	جهة الدار البيضاء الكبرى
مدة الإنجاز : 3 ساعات	شعبة العلوم التجريبية	نيابة النواصير
	نمــوذج رقـم 6	ثانوية أبي حيان التوحيدي

يسمح باستعمال الآلة الحاسبة الغير قابلة للبرمجة

$egin{pmatrix} (3,5 \ pts) \end{pmatrix}$ التمرين الأول

 $A\left(-2;8;2
ight)$ الفصاء منسوب إلى معلم متعامد ممنظم مباشر $O(;ec{i};ec{j};ec{k})$ نعتبر النقط $A\left(-2;8;2
ight)$ و $C\left(4;-4;2
ight)$ و الفلكة $C\left(4;-4;2
ight)$ التي معادلتها: $B\left(0;4;2
ight)$

$$\overrightarrow{OAB}$$
ين أن $\overrightarrow{OA} \wedge \overrightarrow{OB} = 8 \overrightarrow{i} + 4 \overrightarrow{j} - 8 \overrightarrow{k}$. و استنتج مساحة المثلث (1 pt)

- . (OAB) هي معادلة ديكارتية للمستوى 2x+y-2z=0 استنتج أن 2
 - $R=2\sqrt{2}$ بين أن مركز الفلكة (S) هو $\Omega\left(2;-4;0
 ight)$ و شعاعها $\Omega\left(0.5~\mathrm{pt}
 ight)$
- بين الفلكة ($m{\mathcal{S}}$ و المستوى (OAB) يتقاطعان و فق دائرة (\mathcal{S}) محددا مركزها و شعاعها.
 - . C ليكن (Δ) المستقيم العمودي على المستوى (OAB) و المار من النقطة $oldsymbol{\mathfrak{G}}$
 - \vec{u} (2; 1; -2) موجهة للمستقيم (1) موجهة المستقيم (0.25 pt)
 - (S) أحسب $\frac{||\overrightarrow{\Omega C} \wedge \overrightarrow{u}||}{||\overrightarrow{u}||}$ ثم استلتج أن المستقيم (Δ) مماس للفلكة ($0.5~{
 m pt}$
 - (Δ) المستقيم (Δ) المستقيم (Δ) المستقيم (Δ) (0.25 pt)

(3,5~pts) التمرين الثاني

- z^2 على المجموعة $\mathbb C$ المعادلة: $\mathbf C$ حل في المجموعة $\mathbf C$ حل في المجموعة (0,75 pt)
- B المستوى العقدي منسوب إلى معلم متعامد ممنظم مباشر $(O; \overrightarrow{e_1}; \overrightarrow{e_2})$. نعتبر النقط a=2+3i و c=1 التي ألحاقها على التوالي a=2+3i و a=2+3i
 - AC = BC : بین أن (0.25 pt)
- d=i-2 بين أن: d=d=0 بين أن: d=d=0 بين أن: d=d=0 بين أن: d=0
 - ثم استنتج أن المثلث ADC قائم الزاوية و متساوي الساقين. (z) ثم استنتج أن المثلث (z)
 - $-rac{\pi}{2}$ ليكن ${\mathcal R}$ الدوران الذي مركزه النقطة C و زاويته ${\mathcal G}$
 - \mathscr{R} بين أن A هي صورة النقطة D بالدوران $(0.25~\mathrm{pt})$
 - $e=\overline{d}$ مورة النقطة B بالدوران $\mathscr R$ هو E هو (0.5 pt)
 - رج) انشئ النقط A و B و D و D و D و استنتج أن النقط A و B و D متداورة. $(0.75~\mathrm{pt})$

$egin{pmatrix} (\ 3\ pts) & \end{pmatrix}$ التمرين الثالث

يحتوي كيس على ست كرات بيضاء تحمل الأرقام 2;1;1;0;0;0 و كرتين سوداوين تحملان الرقمين 1;0 ، لا يمكن التمييز بينها باللمس. نسحب بالتتابع و بدون إحلال كرتين من الكيس. نعتبر الحدثين: A:" الكرتان لهما نفس اللون " و B:" الكرتان تحملان رقمين زوجيين "

الصفحة 1 من 3

أحسب احتمال الحدث A و بين أن احتمال الحدث B هو $rac{5}{14}$. (0.5 pt)

ين أن احتمال الحدث
$$A\cap B$$
 هو $A\cap B$ هو $A\cap B$ و A مستقلان ؟ $O(5,5\,\mathrm{pt})$

$$p(C) = rac{5}{7}$$
 : "الكرتان لهما نفس اللون أو تحملان رقمين زوجيين" بين أن: $p(C) = rac{5}{7}$ الكرتان لهما نفس اللون أو تحملان رقمين زوجيين (0,5 pt)

ليكن X المتغير العشوائي الذي يربط كل سحبة بجداء الرقمين المسجلين على الكرتين.

$$p(X=0)=rac{11}{14}$$
 ثم بين أن $\{0;1;2\}$ هي $\{0;1;2\}$ هي (0.75 pt)

E(X) حدد قانون احتمال المتغير العشوائي X و استنتج أمله الرياضي.

(0.75 pt)

الجزء الأول: نعتبر الدالة العددية g المعرفة على $\mathbb R$ بما يلي: $g(x) = (1-x)e^x - 1$

> . \mathbf{g} تحقق أنْ $\mathbf{x} \in \mathbb{R}$: $\mathbf{g}'(x) = \mathbf{x}$ ، ثم ضع جدول تغيرات الدالة $\mathbf{0}$ (1 pt)

> > . $(orall x \in \mathbb{R}): \ \mathrm{g}(x) < 0$ استنتج أن: 2(0.5 pt)

 $\begin{cases} f(x)=2+rac{x}{e^x-1}\;;\;x
eq 0 \end{cases}$ بما يلي: نعتبر الدالة f المعرفة على $\mathbb R$ بما يلي: نعتبر الدالة f(0)=3 $(O; \, \overrightarrow{i}; \overrightarrow{j})$ منحناها في معلم متعامد ممنظم (\mathscr{C}_f) منحناها في معلم

> $oldsymbol{0}$ بين أن f متصلة في $oldsymbol{0}$ (0.5 pt)

أحسب $\displaystyle \lim_{x o +\infty} f(x)$ و استنتج الفرع اللانهائي لل (0,75 pt)

> $\lim_{x o -\infty} f(x)$ أحسب (أ) أحسب (أ) ا (0.5 pt)

$$(orall x \in \mathbb{R}^*)$$
 : $f(x) - (2-x) = rac{xe^x}{e^x - 1}$ (0,25 pt)

 $-\infty$ استنتج ان المستقيم $(\mathscr{C}_f):y=2-x$ مقارب ماثل لـ (\mathscr{C}_f) بجوار $(+\infty)$ (0.5 pt)

> (Δ) أدرس الوضع النسبي للمنحنى (\mathscr{E}_f) و المستقيم (Δ) (0.75 pt)

$$\left(f'(0) = -rac{1}{2}$$
نقبل أن $\left(\forall x \in \mathbb{R}^*\right): \ f'(x) = rac{\mathrm{g}(x)}{(e^x-1)^2}$ (نقبل أن $\left(1\right)$ (0,75 pt)

(ب) ضع جدول تغيرات الدالة f . (0,25 pt)

(0;3) أعط معادلة ديكارتية للمستقيم (T) مماس المنحنى (\mathscr{C}_f) عند النقطة (0;3)(0.25 pt)

> . (T) أنشئ المنحنى (\mathscr{C}_f) و المستقيم (T(1 pt)

(0.5 pt)

(1 pt)

. $\mathbb R$ على $\mathbf g$ على $\mathbf G(x)=(2-x)e^x-x$ بين أن الدالة $\mathbf G$ (0.5 pt)

 $x=\ln 2$ و y=0 و المستقيمات y=0 و y=0 أحسب مساحة الحيز المحصور بين $(\mathscr{C}_{\mathrm{g}})$ (1 pt)