ЭКЗАМЕНАЦИОННАЯ РАБОТА

Дисципл	лина Многомерный а	анализ, интегралы и	ряды
Kypc [2018-2019 учебны	
Фамилия студента		№ группы	
Сумма баллов		Оценка	
Фамилия		Фамилия	
проверяющего		экзаменатора	1
2. ④ Найти первый и н	культетов, кроме ФОПФ κ функции $y=\sqrt[3]{ x \cdot(x)}$ второй дифференциалы	и ФИВТ. (r + 6) ² .	ощей функции: $f(x, y) =$
$= \exp(x + 2\cos y - 3). $ Раздири $x \to 1$ и $y \to 0$.	ожить эту функцию в то	очке M по формуле Теі	йлора до $o((x-1)^2 + y^2)$
3. ② Вычислить длин	у дуги кривой $\Gamma:x(t)=$	$= \sin^3 e^t, y(t) = \cos^3 e^t \text{ m}$	ou $\ln \frac{\pi}{4} \leqslant t \leqslant \ln \frac{\pi}{2}$.
4. (6) Исследовать фу	THEILING $w = f(x, y)$ us u	епрерывность и дифф	2 Вренцируемость в точке
$(0, 0)$, если $f(x, y) = \begin{cases} \ln \left(\frac{1}{x} \right) \end{cases}$	$1 + \frac{x^2}{ y ^{\alpha}}, y \neq 0;$ $0, y = 0.$		
5. ④ Исследовать несо			dx на сходимость.
6. ③ Исследовать ряд	$\sum_{n=1}^{\infty} \left(\frac{2n+1}{3n+1}\right)^n \alpha^n$ на сход	цимость.	
7. На множествах E_1 =	$= (0, 1)$ и $E_2 = (1, +\infty)$	р) исследовать на сход	имость и равномерную
сходимость функциональну	ую последовательность и	и функциональный ряд	: - 7 - 6
$\mathbf{a)} \ \ 4 \ \ f_n(x) = \frac{n^2}{x} \sin \frac{x}{n^2}$		$f_n(x) = \sum_{n=1}^{\infty} \left(\operatorname{ch} \frac{x}{\sqrt{n^3}} - \cos x \right)$	$(3, \frac{x}{\sqrt{n^3}}).$
8. ③ Разложить функц полученного ряда.	ию $f(x) = x^3 \arccos \frac{2}{\sqrt{1-x^2}}$	$\frac{2x}{x}$ по степеням x и н	айти радиус сходимости
		+ 4x ²	
Эта задача для студентов		APA .	
9. ③ Докажите, что фу	ИКЦИЯ $f(x) = 2^{[-\log_3 x]}$ и	интегрируема на (0, 1] и	
(здесь [a] - целая часть чи-			(0, 1)
Эта задача для студентов	з ФОПФ и ФИВТ.		
10. ① Пусть последова	тельность интегрируемь	ых по Лебегу функций	$f_n: [1, +\infty) \to \mathbb{R}$ при
всех $x \geqslant 1$ удовлетворяет ус	еловиям: $\lim_{n\to\infty} f_n(x) = 0$	$ \mathbf{u} \exists N : \forall n \geqslant N \mapsto f_n $	$f_n(x) \leqslant f_n(x)$.
Верно ли, что $\int_{1}^{\infty} f_n(x) dx$	$x \to 0$ при $n \to \infty$?		
			14474
			МФТИ — 91
«Использование электрон		в и вспомогательных ма	териалов запрещено»
С положением ознакомле	н:	(Фамилия	студента)

2018-2019 учебный год, 2 семестр

1. ① Асимптоты:
$$y = x + 4$$
 при $x \to +\infty$; $y = -x - 4$ при $x \to -\infty$. $y' = \frac{x(x+2)(x+6)}{|x|^{5/3}(x+6)^{4/3}}$; $y'' = -\frac{8}{|x|^{5/3}(x+6)^{4/3}}$; $y'' = -\frac{8}{|x|^{5/3}(x+6)^{4/3}}$; $y'(\pm 0) = \pm \infty$; $y'(-6 \pm 0) = \pm \infty$.

 $A(-2, 2^{5/3})$ — точка локального максимума; C(0, 0) — точки локального минимума с вертикальной касательной; B(-6,0) — точка локального минимума с вертикальной касательной.

2. (4)
$$df(M) = dx$$
; $d^2f(M) = dx^2 - 2dy^2$.

$$f(x,y) = 1 + (x-1) + \frac{1}{2} [(x-1)^2 - 2y^2] + o((x-1)^2 + y^2), x \to 1, y \to 0.$$

3.2)
$$L = \int_{\ln(\pi/4)}^{\ln(\pi/2)} \frac{3}{2} e^t \sin(2e^t) dt = \frac{3}{4}$$

4. ⑥ При $\alpha\leqslant 0$ выполняется $0\leqslant \ln\left(1+x^2|y|^{-\alpha}\right)\leqslant x^2|y|^{-\alpha}\leqslant \left(\sqrt{x^2+y^2}\right)^{2-\alpha}<\delta^{2-\alpha}=\varepsilon$.

 $orall arepsilon > 0 \quad \exists \, \delta = arepsilon^{1/(2-lpha)} \, > \, 0 \quad orall (x,\,y) \, : \, \, 0 \, < \, \sqrt{x^2+y^2} \, < \, \delta \quad o \quad 0 \, \leqslant \, f(x,\,y) \, < \, arepsilon .$ Функция w=f(x,y) непрерывна в точке (0, 0) при этом значении lpha.

 $\stackrel{=}{ ext{Если}} (x,y)$ непрерывна в точке (0, 0) при отом сла легии α . Тогда $\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in A}} f(x,y) = \ln 2 \neq 0$ и

функция w = f(x, y) разрывна в точке (0, 0) при $\alpha > 0$.

При $\alpha \leqslant 0$ выполняется $f_x(0, 0) = f_y(0, 0) = 0$;

$$0 \leqslant F(x, y) = \frac{f(x, y)}{\sqrt{x^2 + y^2}} \leqslant \left(\sqrt{x^2 + y^2}\right)^{1 - \alpha} < \delta^{1 - \alpha} = \varepsilon.$$

 $\forall \varepsilon > 0 \quad \exists \, \delta = \overset{\vee}{\varepsilon^{1/(1-\alpha)}} > 0 \quad \forall (x,y) \, : \, \, 0 < \sqrt{x^2+y^2} < \delta \quad \rightarrow \quad 0 \leqslant F(x,y) < \varepsilon \, - \, \text{функция}$ дифференцируема в точке (0,0) при $\alpha \leq 0$.

5. (4) $f(x) \ge 0$ при $x \ge 0$; $I = \int f(x) dx = \int f(x) dx + \int f(x) dx = I_1 + I_2$;

2018–2019 учебный год, 2 семестр, вариант 91

 I_1 : при $x \to 0$ выполняется $f(x) \sim \frac{C_1}{x^{3\alpha-7/3}}$; поэтому I_1 сходится при $\alpha < 10/9$.

 I_2 : при $x \to +\infty$ выполняется $f(x) \sim \frac{C_2 \cdot x^{1+lpha/3}}{e^{lpha x}}$; поэтому I_2 сходится при lpha > 0.

Интеграл I сходится при $\alpha \in \left(0, \frac{10}{9}\right)$.

6.③
$$c_n = \alpha^n \frac{(2n+1)^n}{(3n+1)^n} = \left(\frac{2}{3}\alpha\right)^n b_n, \quad b_n \to e^{1/6} = C \text{ при } n \to \infty.$$

Если $|\alpha|<\frac{3}{2},$ то $q=\frac{2}{3}|\alpha|<1$ и $|c_n|\sim Cq^n$ при $n\to\infty.$ Следовательно, $\sum_{n=0}^{\infty}|c_n|<\infty$ при $|\alpha| < \frac{3}{2}$ (признак сравнения) ред сх. сес.

Если $|\alpha|\geqslant \frac{3}{2}$, то $c_n\not\to 0$ при $n\to\infty$ и $\sum_{n=1}^\infty c_n=\infty$ (не выполнен необходимый признак сходимости ряда).

7 a). (4)
$$f(x) = \lim_{n \to \infty} f_n(x) = 1, x \in E_1 \cup E_2; g_n(x) = |f_n(x) - f(x)| = \left|1 - \frac{n^2}{x} \sin \frac{x}{n^2}\right|.$$

 $\underline{\text{Ha }E_1:}$ Пусть $t=x/n^2 \to 0$ при $n \to \infty$, формула Тейлора: $\left|1-\frac{\sin t}{t}\right|=\frac{t}{2}\sin \xi$, где $0 < \xi < rac{x}{n^2} < rac{1}{n^2} \leqslant 1$. Поэтому $g_n(x) \leqslant rac{1}{2n^2} o 0$, $\sup_{E_1} g_n(x) \leqslant rac{1}{2n^2} o 0$ при $n o \infty$. ${
m Ha}\ E_1$ есть равномерная сходимость.

 $\underline{\text{Ha }E_2}$: Пусть $x_n=n^2\in E_2$ при n>1, тогда $g_n(x_n)=1-\sin 1>rac{1-\sin 1}{2}=arepsilon_0>0$. На E_2 нет равномерной сходимости.

7 б). 4 $x_0 \in E_1 \cup E_2; \ f_n(x_0) \sim \frac{x_0^2}{n^3} = \frac{C(x_0)}{n^3}$ при $n \to \infty$, из интегрального признака и признака и сравнения следует поточечная сходимость на $E_1 \cup E_2$.

 $\frac{\text{На } E_1:}{\text{Ha } E_1:} f_n'(x) = \left(\sinh \frac{x}{\sqrt{n^3}} + \sin \frac{x}{\sqrt{n^3}} \right) \cdot \frac{1}{\sqrt{n^3}} \geqslant 0, \text{ поэтому } f_n(x) \leqslant \left(\cosh \frac{1}{\sqrt{n^3}} - \cos \frac{1}{\sqrt{n^3}} \right) \sim \frac{1}{n^3} \text{ при}$ $n o \infty$, из интегрального признака и признака Вейерштрасса следует равномерная сходимость на E_1 .

<u>На E_2 :</u> $x_n = \sqrt{n^3} \in E_2$, n > 1; $f_n(x_n) = \cosh 1 - \cos 1 > \frac{\cosh 1 - \cos 1}{2} = \varepsilon_0$. По отрицанию условия критерия Коши на E_2 нет равномерной сходимости.

8.③
$$f(x) = x^3 \cdot g(x), g'(x) = -\frac{2}{1+4x^2} = \sum_{k=0}^{\infty} (-1)^{k+1} 2^{2k+1} x^{2k}; \quad g(x) = \frac{\pi}{2} + \sum_{k=0}^{\infty} (-1)^{k+1} \frac{2^{2k+1}}{2k+1} x^{2k+1}$$

$$f(x) = \frac{\pi}{2} x^3 + \sum_{k=0}^{\infty} (-1)^{k+1} \frac{2^{2k+1}}{2k+1} x^{2k+4}, \quad R = 1/2.$$

9. ③ Пусть 0 < a < b, 1 < b. На промежутке $(b^{-(k+1)}, b^{-k}]$ функция $f(x) = a^{[-\log_b x]}$ принимает значения $a^k, k \in \mathbb{N}$, т.е. является ступенчатой. Ряд $\sum_{k=0}^{\infty} a^k (b^{-k} - b^{-(k+1)}) = \frac{b-1}{b-a}$ сходится абсолютно, поэтому f интегрируема и $\int f(x) dx = \frac{b-1}{b-a}$. Здесь $a=2,\,b=3$.

10. 1 Неверно.

Инструкция по проверке экзаменационной работы по «многомерному анализу, интегралам и рядам», весенний семестр 2018–2019 учебного года

- 1. На работе должна быть четко выписана фамилия проверяющего, сумма набранных очков и количество очков за каждую задачу.
 - **2.** Сбор преподавателей с проверенными работами -1 июня в 8-30 в 431 ауд.
- **3.** В случае возникновения проблем с поиском работы и идентификации проверяющего (по вине последнего) он несет дисциплинарную ответственность.
- 4. К 20-00 часам 31 мая итоги проверки работ: «количество работ количество очков» необходимо сообщить Знаменской Л.Н. но e-mail: znamenskaia.ln@mipt.ru
 - 5. За арифметическую ошибку, не имеющую существенного значения, снимать 0.5 очка.
- 6. В итоговой сумме дробные значения округлять до целого «в пользу студента». Значения итоговой суммы большие 30 очков заменять в сводной ведомости 30 очками.

Оценка отдельных задач

Н Н П	Найдена и исследована $y'(x)$ 1 очк Гайдена и исследована $y''(x)$ 1 очк Гайдены асимптоты 1 очк Гостроен график и описаны характерные точки 1 очк Гри отсутствии графика в задаче ставить не более 2 очков за задачу Гри отсутствии описания характерных точек снять 0.5 очка
2. ④	Найден первый дифференциал в точке 1 очк Найден второй дифференциал в точке 2.5 очк Выписана формула Тейлора 0.5 очк
3. ②	Правильно обоснована и выписана формула 1 очко Вычислен полученный интеграл 1 очко
4. ⑥	Доказана непрерывность функции при соответствующих значениях α . 2 очк Доказана, что при других α непрерывности нет
5. 4	За исследование каждой особенности по 2 очк
6. ③	Доказана абсолютная сходимость ряда при $ \alpha < R$
7 a).	4 Исследована поточечная сходимость 1 очк Доказана перавномерная сходимость на одном из множеств 1 очк Доказана равномерная сходимость на одном из множеств 2 очк
7 6). (Фустановлена поточечная сходимость 1 очк Доказана перавномерная сходимость на одном из множеств 1 очк Доказана равномерная сходимость на одном из множеств 2 очк
8.3 2	Для функции g' , где $f=x^k\cdot g$ или f' , найден ряд Тейлора