Chapitre 18

Polynôme

Table des matières

Ι	Définition	2
II	Évaluation	6

Dans ce chapitre, $\mathbb K$ désigne un corps

Première partie

Définition

I Définition

Definition

- Un polynôme à coefficiants dans $\mathbb K$ est une suite presque nulle de $\mathbb K^{\mathbb N}$
- Le polynôme nul, noté 0 est la suite nulle.
- Soit $P = (a_n)_{n \in \mathbb{N}}$ un polynôme non nul. $\{n \in \mathbb{N} \mid a_n \neq 0_{\mathbb{K}}\}$ est non-vide et majoré. Le <u>degré</u> de P est $\max\{n \in \mathbb{N} \mid a_n \neq 0_{\mathbb{K}}\}$, et on le note $\deg(P)$ et $a_{\deg(P)}$ est le <u>coefficiant dominant</u> de P, il est noté $\dim(P)$.
- Le degré du polynôme nul est $-\infty$

Proposition Définition

Soient $P = (a_n)_{n \in \mathbb{N}}$ et $Q = (b_n)_{n \in \mathbb{N}}$ deux polynômes à coefficiants dans \mathbb{K} . Alors, $P + Q = (a_n + b_n)_{n \in \mathbb{N}}$ est un polynôme appelé somme de P et Q

Proposition Définition

Soient $P = (a_n)_{n \in \mathbb{N}}$ et $Q = (b_n)_{n \in \mathbb{N}}$ deux polynômes à coefficiants dans K. On pose

$$\forall n \in \mathbb{N}, c_n = \sum_{k=0}^n a_k b_{n-k}$$

La suite $(c_n)_{n\in\mathbb{N}}$ est presque nulle. Ce polynôme est appelé <u>produit de P et Q et noté PQ.</u>

Remarque

Notation

Soit $P = (a_n)_{n \in \mathbb{N}}$, un polynôme à coefficients dans \mathbb{K} et $\lambda \in \mathbb{K}$. Le polynôme $(\lambda a_n)_{n \in \mathbb{N}}$ est noté λP

Remarque

Notation

On pose $X = (0_{\mathbb{K}}, 1_{\mathbb{K}}, 0_{\mathbb{K}}, \ldots) = (\delta_{1,n})_{n \in \mathbb{N}}$

Théorème

Soit $P=(a_n)_{n\in\mathbb{N}}$ un polynôme non nul à coefficiants dans \mathbb{K} . Alors

$$P = \sum_{k=0}^{n} a_k X^k$$
 où $n = \deg(P)$ et $X^0 = (1, 0, ...)$

3

I Définition

Remarque

Notation

On note $\mathbb{K}[X]$ l'ensemble des polynômes à coefficiants dans \mathbb{K} dont l'indéterminée $(0,1,0,\ldots)$ est notée X.

Proposition

 $\left(\mathbb{K}[X],+,\times,\cdot\right)$ est une $\mathbb{K}\text{-algèbre}$ commutative i.e.

- 1. $(\mathbb{K}[X], +, \times)$ est un anneau commutatif
- 2. $\left(\mathbb{K}[X],+,\cdot\right)$ est un K-espace vectoriel

3.
$$\forall \lambda \in \mathbb{K}, \forall (P,Q) \in (\mathbb{K}[X])^2, \lambda \cdot (P \times Q) = (\lambda \cdot P) \times Q = P \times (\lambda \cdot Q)$$

Remarque

 $(\mathcal{M}_n(\mathbb{K}), +, \times, \cdot)$ est une \mathbb{K} -algèbre non commutative (si n > 1)

Proposition

 $i: \begin{array}{ccc} \mathbb{K} & \longrightarrow & \mathbb{K}[X] \\ \lambda & \longmapsto & \lambda X^0 \end{array}$ est un morphisme d'algèbre injectif, i.e.

$$\forall \lambda, \mu \in \mathbb{K}, \begin{cases} i(\lambda + \mu) = i(\lambda) + i(\mu) \\ i(\lambda \cdot \mu) = i(\lambda) \times i(\mu) \end{cases}$$

et i est injective.

Remarque

Notation

On identifie $\lambda \in \mathbb{K}$ avec $\lambda X^0 \in \mathbb{K}[X]$. Ainsi, on peut écrire $X^0=1$, on peut écrire $2+X+3X^2$ au lieu de $2X^0+X+3X^2$

Proposition

Soient
$$P, Q \in \mathbb{K}[X]$$

$$\begin{split} &-\operatorname{deg}(P+Q)\leqslant \operatorname{max}\left(\operatorname{deg}(P),\operatorname{deg}(Q)\right)\\ &-\operatorname{Si}\operatorname{deg}(P)\neq\operatorname{deg}(Q),\operatorname{alors}\\ &-\operatorname{deg}(P+Q)=\operatorname{max}\left(\operatorname{deg}(P),\operatorname{deg}(Q)\right)\\ &-\operatorname{dom}(P+Q)=\begin{cases} \operatorname{dom}(P)&\operatorname{si}\operatorname{deg}(P)>\operatorname{deg}(Q)\\ \operatorname{dom}(Q)&\operatorname{si}\operatorname{deg}(P)<\operatorname{deg}(Q) \end{cases}\\ &-\operatorname{Si}\operatorname{deg}(P)=\operatorname{deg}(Q)\operatorname{et}\operatorname{dom}(P)+\operatorname{dom}(Q)\neq0,\\ &\operatorname{alors}\begin{cases} \operatorname{deg}(P+Q)=\operatorname{deg}(P)=\operatorname{deg}(Q)\\ \operatorname{dom}(P+Q)=\operatorname{dom}(P)+\operatorname{dom}(Q) \end{cases}\\ &-\operatorname{Si}\operatorname{deg}(P)=\operatorname{deg}(Q)\operatorname{et}\operatorname{deg}(P)+\operatorname{deg}(Q)=0,\operatorname{alors}\operatorname{deg}(P+Q)<\operatorname{deg}(P) \end{split}$$

Proposition

I Définition

Soient $P,Q\in\mathbb{K}[X].$ Alors

$$\deg(PQ) = \deg(P) + \deg(Q)$$

Deuxième partie Évaluation

Definition

Soit A une K-algèble et $P \in K[X]$. On pose $P = \sum_{k=0}^{n} e_k X^k$. Soit $a \in A$.

On pose

$$P(a) = \sum_{k=0}^{n} e_k a^k$$

= $e_0 1_A + e_1 a + e_2 a^2 + \dots + e_n a^n \in A$

On dit qu'on a <u>évalué</u> P en a, ou spécialisé X avec la valeur de a, ou remplacé X par a, substitué a à X.

Definition

Soit $P \in \mathbb{K}[X]$ et $a \in \mathbb{K}$.

On dit que a est une racine de P si $P(a) = 0_{\mathbb{K}}$

Definition

Soit $P \in \mathbb{K}[X] \in \mathcal{M}_n(\mathbb{K})$. On dit que c'est un polynôme de matrices.

Definition

Soient
$$P, Q \in \mathbb{K}[X], P = \sum_{k=0}^{n} a_k X^k$$
.

Alors
$$P(Q) = \sum_{k=0}^{n} a_k Q^k \in \mathbb{K}[X]$$

C'est la composée de P et Q .

Remarque

$$\bigwedge$$
 Attention

Proposition

Soient
$$P,Q\in\mathbb{K}[X]$$
 avec $\begin{cases} Q\neq 0\\ P\neq 0 \end{cases}$. On a

$$\deg (P(Q)) = \deg(P) \times \deg(Q)$$

Théorème

II Évaluation

Soit A une $\mathbbm{K}\text{-algèbre}.$ L'application

$$\varphi: \mathbb{K}[X] \longrightarrow A^A$$

$$P \longmapsto f_P: \begin{array}{ccc} A & \longrightarrow & A \\ a & \longmapsto & P(a) \end{array}$$

vérifie

1. $\forall P, Q \in \mathbb{K}[X], \varphi(P+Q) = \varphi(P) + \varphi(Q)$

2.
$$\forall P, Q \in \mathbb{K}[X], \varphi(PQ) = \varphi(P) \times \varphi(Q)$$

3.
$$\forall \lambda \in \mathbb{K}, \forall P \in \mathbb{K}[X], \varphi(\lambda P) = \lambda \varphi(P)$$

8