

高数期中讲座

Contents Title

导数: 高阶导数与隐函数求导

导数定义 设函数 y = f(x) 在 x_0 点的某邻域内有定义,当自变量 x 在 x_0 点处取得增量 $\Delta x(\Delta x \neq 0)$ 时,相应地,函数 y 取得增共 $\Delta y = f(x_0 + \Delta x) - f(x_0)$,如果极限

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

存在,则称函数 y = f(x) 在 x_0 点可导,并称这个极限值为函数 y = f(x) 在 x_0 点处的导数,记為 $f'(x_0), y'(x_0), \frac{dy}{dx}\Big|_{x=x_0}$

例如

设
$$f(x) = x(x+1)(x+2)\cdots(x+n)$$
, 则 $f'(0) =$

解 根据 f(x) 在点 x = 0 导数的定义

$$f'(0) = \lim_{h \to 0} \frac{f(h) - f(0)}{h} = \lim_{h \to 0} (h+1)(h+2) \cdots (h+n) = n!$$

故应填 n!.

高阶导数是什么?

高阶导数 函数 y = f(x) 的导数的导数,即 (y')',称为 f(x) 的二阶导数,记为 y'' = f''(x);一般 y = f(x) 的 (n-1) 阶导数的导数称为 f(x) 的 n 阶导数,记为 $y^{(n)} = f^{(n)}(x)$. 二阶及二阶以上的导数称为高阶导数.

重点

设函数
$$u=u(x), v=v(x)$$
 具有 n 阶导数,则
$$[u\pm v]^{(n)}=u^{(n)}\pm v^{(n)}$$

$$[ku]^{(n)}=ku^{(n)}$$

$$[uv]^{(n)}=\sum_{k=0}^{n}C_{n}^{k}u^{(n-k)}v^{(k)} =u^{(n)}v+nu^{(n-1)}v'+\frac{n(n-1)}{2!}u^{(n-2)}v''+\cdots+nu'v^{(n-1)}+uv^{(n)}$$
 称为莱布尼兹 n 阶导数公式.

例1: 设 $y = \sin^4 x - \cos^4 x$, 则求 $y^{(n)}$

$$y = \sin^4 x - \cos^4 x = (\sin^2 x - \cos^2 x) (\sin^2 x + \cos^2 x) = \sin^2 x - \cos^2 x$$

$$= -\cos 2x$$

$$y' = 2\sin 2x$$
.....
$$y^{(n)} = 2 \cdot 2^{n-1} \sin \left(2x + \frac{n-1}{2}\pi\right) = 2^n \sin \left(2x + \frac{n-1}{2}\pi\right) 2^n \sin \left(2x + \frac{n-1}{2}\pi\right)$$

例2: 求函数 $f(x) = x^2 \ln(1+x)$ 在 x = 0 处的 n 阶导数 $f^{(n)}(0)(n \ge 3)$

解法一由莱布尼兹公式

$$(uv)^{(n)} = u^{(n)}v^{(0)} + C_n^1u^{(n-1)}v' + C_n^2u^{(n-2)}v'' + \dots + u^{(0)}v^{(n)}$$

及
$$[\ln(1+x)]^{(k)} = \frac{(-1)^{k-1}(k-1)!}{(1+x)^k}$$
 (k 为正整数)得

$$f^{(n)}(x) = x^2 \frac{(-1)^{n-1}(n-1)!}{(1+x)^n} + 2nx \frac{(-1)^{n-2}(n-2)!}{(1+x)^{n-1}} + n(n-1) \cdot \frac{(-1)^{n-3}(n-3)!}{(1+x)^{n-2}}$$

所以
$$f^{(n)}(0) = (-1)^{n-3}n(n-1)(n-3)! = \frac{(-1)^{n-1}n!}{n-2}$$

解法二由麦克劳林公式及

$$f(x) = f(0) + \frac{f'(0)}{1!}x + \dots + \frac{f^{(n)}(0)}{n!}x^n + o(x^n)$$

$$x^2 \ln(1+x) = x^2 \left[x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + (-1)^{n-1} \frac{x^{n-2}}{n-2} + o(x^{n-2}) \right]$$

$$= x^3 - \frac{x^4}{2} + \frac{x^5}{3} + \dots + (-1)^{n-1} \cdot \frac{x^n}{n-2} + o(x^n)$$

$$x^n \text{ in } \text{ in$$

比较 x^n 的系数得 $\frac{f^{(n)}(0)}{n!} = \frac{(-1)^{n-1}}{n-2}$ 所以 $f^{(n)}(0) = \frac{(-1)^{n-1}n!}{n-2}$

隐函数的导数求由方程 F(x,y)=0 所确定的隐函数 y=y(x) 的导数 y'(x), 可将方程 F(x,y)=0 两端对 x 求导,并注意 y 是 x 的函数,最后解出 y'(x).

例3: 方程 $\sqrt[x]{y} = \sqrt[y]{x}(x > 0, y > 0)$ 确定函数 y = f(x), 求 $\frac{d^2y}{dx^2}$.

直接求导?

显然不是!

单击此处添加内容

eln大法!!!

例3: 方程
$$\sqrt[x]{y} = \sqrt[y]{x}(x > 0, y > 0)$$
 确定函数 $y = f(x)$, 求 $\frac{d^2y}{dx^2}$. 解 $y^{\frac{1}{x}} = x^{\frac{1}{3}}$, $\frac{1}{x} \ln y = \frac{1}{y} \ln x$, $y \ln y = x \ln x$ 等式两边对 x 求导,得($\ln y + 1$) $\frac{dy}{dx} = \ln x + 1$, 即 $\frac{dy}{dx} = \frac{\ln x + 1}{\ln y + 1}$. 所以

$$\frac{d^2y}{dx^2} = \frac{\frac{1}{x}(\ln y + 1) - (\ln x + 1) \cdot \frac{1}{y} \cdot \frac{dy}{dx}}{(\ln y + 1)^2} = \frac{y(\ln y + 1)^2 - x(\ln x + 1)^2}{xy(\ln y + 1)^3}$$

中值定理 Rolle、Lagrange与Cauchy

(Rolle 定理) 若函数 f:[a,b]满足下列条件:

- (1) f 在 [a, b] 上连续
- (2) f 在 (a, b) 内可导
- (3) f(a) = f(b),

则至少存在一点 $\xi \in (a,b)$, 使 $f'(\xi) = 0$.

Lagrange? ——Rolle加强版

Lagrange中值定理

弦
$$AB$$
 的斜率 $=\frac{f(b)-f(a)}{b-a}=f'(\xi_1)=f'(\xi_2)$

在曲线弧 AB 上至少有一点,在该点处的切线平行于弦 AB.

例4: 设 f(x) 在 $\left[0, \frac{\pi}{2}\right]$ 上一阶导函数连续,在 $\left(0, \frac{\pi}{2}\right)$ 上二阶可导,且 $f(0) = 0, f(1) = 3, f\left(\frac{\pi}{2}\right) = 1$,证明: 存在 $\xi \in \left(0, \frac{\pi}{2}\right)$,使得: $f'(\xi) + f''(\xi) \tan \xi = 0$.

中值定理我知道,但是怎么用?!

当然是构造!

例4: 设 f(x) 在 $\left[0, \frac{\pi}{2}\right]$ 上一阶导函数连续, 在 $\left(0, \frac{\pi}{2}\right)$ 上二阶可导, 且 $f(0) = 0, f(1) = 3, f\left(\frac{\pi}{2}\right) = 1$, 证明: 存在 $\xi \in \left(0, \frac{\pi}{2}\right)$, 使得: $f'(\xi) + f''(\xi) \tan \xi = 0$.

证明: 将 ξ 替换为 $x, f'(x) + f''(x) \tan x = 0 \Longrightarrow f''(x) \sin x + f'(x) \cos x = 0$, $\Rightarrow F(x) = f'(x)\sin x,$ 因为 $F'(x) = f''(x)\sin x + f'(x)\cos x$ 因此我们需要在区间上找到两个相等的点即可证明题中结论 (Rolle定理), 且当x = 0时,sin x = 0,即F(0) = 0, $\sin x$ 在 $\left[0,\frac{\pi}{2}\right]$ 上单调, 应考虑 f'(x) 另一个零点 由于 f(x) 在 [0,1] 上连续, f(0) = 0, f(1) = 3, 根据介值定理, 存在 $\eta \in (0,1)$, 使得 $f(\eta) = 1$, 故存在 $\tau \in (\eta, \frac{\pi}{2})$, 使得 $f'(\tau) = 0$ (Rolle定理)。 于是有 F(0) = 0, $F(\tau) = f'(\tau) \sin x = 0$, 推出: 存在 $\xi \in (0, \tau) \subset (0, \frac{\pi}{2})$, 使得 $F'(\xi) = 0$, 即 $f''(\xi)\sin\xi + f'(\xi)\cos\xi = 0$, 故存在 $\xi \in (0,\tau) \subset (0,\frac{\pi}{2})$ 使得 $f'(\xi) + f''(\xi) \tan \xi = 0$

构造

1) 欲证
$$\xi f'(\xi) + nf(\xi) = 0$$
, 令 $F(x) = x^n f(x)$;

3) 欲证
$$f'(\xi) + \lambda f(\xi) = 0$$
, 令 $F(x) = e^{\lambda x} f(x)$

特别的:
$$f'(\xi) + f(\xi) = 0$$
, 令 $F(x) = e^x f(x)$

$$f'(\xi) - f(\xi) = 0, \quad \Leftrightarrow F(x) = e^{-x} f(x)$$

4) 欲证
$$\alpha f'(\xi) + \beta f(\xi) = 0$$
, $\Rightarrow F(x) = e^{\frac{\beta}{\alpha}x} f(x); (\alpha \neq 0)$

5)欲证
$$f''(x)sinx + f'(x)cosx = 0$$
, $\Rightarrow F(x) = f'(x)sin x$,

或者
$$f''(x)\cos x - f'(x)\sin x = 0$$
, $\diamondsuit F(x) = f'(x)\cos x$,

6) 欲证
$$f'(\xi) + g'(\xi)f(\xi) = 0$$
, 令 $F(x) = e^{g(x)}f(x)$

7) 欲证
$$f'(\xi) + g(\xi)f(\xi) = 0$$
, $令 F(x) = e^{\int_0^x g(t)dt} f(x)$;

双值问题

设函数 f(x) 在[a,b]上连续,在 (a,b) 内可导,且 $f'(x) \neq 0$. 试证:存在 $\xi, \eta \in (a,b)$,使得 $\frac{f'(\xi)}{f'(\eta)} = \frac{e^b - e^a}{b-a} \cdot e^{-\eta}$

设函数 f(x) 在[a,b]上连续,在 (a,b) 内可导,且 $f'(x) \neq 0$. 试证:存在 $\xi, \eta \in (a,b)$,使得 $\frac{f'(\xi)}{f'(\eta)} = \frac{e^b - e^a}{b-a} \cdot e^{-\eta}$

证 令 $g(x) = e^x$, 则 g(x) 与 f(x) 在 [a,b] 上满足柯西中值定理条件,故由柯西中值定理,存在 $\eta \in (a,b)$, 使得

$$\frac{f(b) - f(a)}{e^b - e^a} = \frac{f'(\eta)}{e^{\eta}}, \quad \frac{f(b) - f(a)}{b - a} = \frac{(e^b - e^a)e^{-\eta}}{b - a} \cdot f'(\eta)$$

又 f(x) 在 [a,b] 上满足拉格朗日中值定理条件,故存在 $\xi \in (a,b)$, 使

$$\frac{f(b) - f(a)}{b - a} = f'(\xi)$$

由题设 $f'(x) \neq 0$ 知 $f'(\eta) \neq 0$ 从而 $\frac{f'(\xi)}{f'(\eta)} = \frac{e^b - e^a}{b^{-a}} \cdot e^{-\eta}$

设 $f(x) \in C[a,b], D(a,b), 0 \le a \le b \le \frac{\pi}{2}$. 证明至少存在两点 $\xi_1, \xi_2 \in (a,b)$, 使 $f'(\xi_2) \tan \frac{a+b}{2} = f'(\xi_1) \frac{\sin \xi_2}{\cos \xi_1}$

证明:先把相同变量的移到等式一边。

$$\frac{f'(\xi_2)}{\sin \xi_2} = \frac{f'(\xi_1)}{\cos \xi_1 \tan \frac{a+b}{2}}$$

$$\Rightarrow \frac{f(b)-f(a)}{(\sin b-\sin a)\tan\frac{a+b}{2}} \frac{f(b)-f(a)}{2\sin\left(\frac{a+b}{2}\right)\sin\left(\frac{b-a}{2}\right)} = \frac{f(b)-f(a)}{\cos a-\cos b} = \frac{f'(\xi_2)}{\sin \xi_2}$$

巧妙运用和差化积

例6: 证明不等式

$$\frac{2a}{a^2+b^2}<\frac{\ln b-\ln a}{b-a}<\frac{1}{\sqrt{ab}}.$$

证根据Lagrange定理,至少存在一点 $\xi \in (a,b)$, 使

$$\frac{\ln b - \ln a}{b - a} = (\ln x)'|_{x = \xi} = \frac{1}{\xi}$$

H.

$$\frac{1}{b} < \frac{1}{\xi} < \frac{1}{a}$$

然后呢?

先证左边不等式

由于
$$0 < a < \xi < b$$
, 故 $\frac{1}{\xi} > \frac{1}{b} > \frac{2a}{a^2+b^2}$, 从而 $\frac{\ln b - \ln a}{b-a} > \frac{2a}{a^2+b^2}$

再证右边不等式.

$$\varphi(x) = \ln x - \ln a - \frac{x - a}{\sqrt{ax}} \quad (x > a > 0), :$$

$$\varphi'(x) = \frac{1}{x} - \frac{1}{\sqrt{a}} \left(\frac{1}{2\sqrt{x}} + \frac{a}{2x\sqrt{x}} \right) = -\frac{(\sqrt{x} - \sqrt{a})^2}{2x\sqrt{ax}} < 0$$

故当 x>a 时, $\varphi(x)$ 单调减少,又 $\varphi(a)=0$,所以,当 x>a 时, $\varphi(x)<\varphi(a)=0$,即

$$\ln x - \ln a < \frac{x - a}{\sqrt{ax}}$$

从而当 b>a>0 时, $\ln b - \ln a < \frac{b-a}{\sqrt{ab}}$,即 $\frac{\ln b - \ln a}{b-a} < \frac{1}{\sqrt{ab}}$. 综上,

$$\frac{2a}{a^2+b^2} < \frac{\ln b - \ln a}{b-a} < \frac{1}{\sqrt{ab}}$$

得证

治学团学业辅导群7.0

群号: 796348624

扫一扫二维码. 加入群聊。

11.8治学团高数讲座通

扫一扫二维码,加入群聊。

谢谢大家

