Manual de uso

José Camilo Romero Limones, Luis Oriol Soler Cruz, Pau Escofet Majoral, Roger González Herrera

Algorítmica

FIB • UPC

26 de septiembre de 2019

1. Organización del proyecto

El proyecto contiene:

- Una carpeta *src* con todos los ficheros cabecera .h y los ficheros fuente .cc del código implementado para realizar los experimentos. También, contiene una carpeta *TEST* con un fichero .cc para uso de testing de nuestro código.
- Un documento PDF *Documentacion.pdf* que contiene toda la documentación referente a las propiedades y modelos estudiados, además de los experimentos desarrollados: algoritmos empleados, ejecución de los experimentos, gráficos obtenidos, análisis de los resultados y conclusiones.
- Un documento PDF *Enunciado.pdf* con el enunciado de la práctica a realizar.
- Este documento PDF *ManualDeUso.pdf* con documentación de la organización, compilación y ejecución del proyecto.
- Un fichero *makefile* que contiene todas las reglas para la compilación y la generación del ejecutable. Explicamos su funcionalidad en el siguiente apartado.

2. Compilación del proyecto

La compilación del proyecto se realizará con la herramienta Make, que utiliza un fichero de texto llamado *makefile* para la gestión de la compilación del programa. Nuestro makefile contiene todas las reglas necesarias para la compilación de los ficheros fuente de la carpeta *src* y la creación del fichero ejecutable *program.exe*.

Mediante la terminal, y desde la carpeta principal de nuestro proyecto, simplemente es necesario ejecutar el siguiente comando:

\$ make

Dicho comando compilará los ficheros .h y .cc de la carpeta src, generando así los ficheros .o que se enlazarán con el fichero fuente main.cc, creando así nuestro ejecutable program.exe.

Para limpiar del proyecto todos los archivos .o y el ejecutable *program.exe*, tan solo es necesario introducir por terminal, y desde la carpeta principal del proyecto, el siguiente comando:

\$ make clean

3. Ejecución del proyecto

La ejecución del proyecto se realizará manualmente. Mediante la terminal, y desde la carpeta principal del proyecto, se ha de ejecutar el siguiente comando:

\$./program.exe

Aparecerá, por terminal, el menú principal de nuestra aplicación: el título del proyecto, los miembros del equipo y una lista de posibles experimentos a realizar. En esta entrega inicial, disponemos de dos experimentos basados en el estudio del valor esperado del número de componentes conexas en grafos aleatorios: un experimento para el modelo geométrico y otro para el modelo binomial.

Si escogemos un experimento, nos preguntará si queremos realizar el experimento por defecto o introducir nosotros mismos los valores para realizar un estudio personalizado:

- En caso de escoger un experimento por defecto, nos realizará todos los cálculos inmediatamente, mostrando por pantalla qué función és (caracterizado por su número de nodos 'n') y el valor esperado para cada parámetro variable ('r' en caso del modelo geométrico y 'p' en caso del modelo binomial). Por defecto, estudiaremos 5 funciones de 20, 40, 60, 80 y 100 nodos, respectivamente, de 19 valores de parámetro cada una, desde 0.00 hasta 0.45, con un aumento constante de 0.025, y 500 grafos aleatorios con los que calcular el valor esperado para cada valor de parámetro.
- En caso contrario, nos pedirá introducir el número de funciones a estudiar, el número de nodos de cada función, el número de valores de parámetro, el valor de cada parámetro y el número de grafos aleatorios con los que calcular el valor esperado para cada valor de parámetro.