MATH 541 Lecture Notes

Pongsaphol Pongsawakul

Spring 2023

Contents

1	Gro	ups	3
	1.1	Axioms of Groups	3
		1.1.1 Properties	4
	1.2	Dihedral Groups	6
		1.2.1 Triangle	6
		1.2.2 n-gon	7
		1.2.3 Definition	7
	1.3	Symmetric Group	7
		1.3.1 Cycle Decomposition	8
	1.4	Homomorphisms and Isomorphisms	8
	1.5	Group Actions	.(
2	Sub	groups 1	. 1
	2.1	Definition and Examples	. 1
	2.2	Centralizers and Normalizers, Stabilizers and Kernels	1
	2.3	Cyclic groups	
3	Quo	tient Groups and Homomorphisms 1	.4
		Definition and Examples	4

• Book: Dujmit Foote "Modern Algebra 3rd ed"

• Midterm 3/23 in class

• Final 5/8

• Homeworks: weekly

 \bullet Honors Credit: Extra sections + homeworks

1 Groups

Operations often modeled: $+, \cdot$

composition: space of thing that you are looking at \leftarrow alomst always not commutative

Groups: One operation \cdot

Rings: 2 operations: $+, \cdot$ that play nice

1.1 Axioms of Groups

By "operation" on S, I mean a function $\cdot S \times S \to S$

Instead of $\cdot(a,b)$, we write $a \cdot b$

A group is a set G with an operation \cdot satisfying:

- 1. Associativity: $(a \cdot b) \cdot c = a \cdot (b \cdot c)$
- 2. There is an identity element: there is one special element $1 \in G$ so $1 \cdot a = a$ for any $a \in G$ and $a \cdot 1 = a$ for any $a \in G$
- 3. Inverses: For any $a \in G$, there is a $b \in G$ so $a \cdot b = b \cdot a = 1$

Note: $a \cdot b = b \cdot a$ is <u>not</u> an axiom.

If G satisfies this, we call it an abelian group

Example 1. $(\mathbb{Z},+),(\mathbb{Q},+),(\mathbb{R},+),(\mathbb{C},+)$

- 1. 0 is the identity
- 2. inverses: -a is the inverse of a

Example 2. $(\mathbb{Q} \setminus \{0\}, \cdot), (\mathbb{R} \setminus \{0\}, \cdot), (\mathbb{C} \setminus \{0\}, \cdot)$

- 1. 1 is the identity
- 2. Inverses: $\frac{1}{a}$ is the inverse of a

Note: $(\mathbb{Z} \setminus \{0\}, \cdot)$ is not a group

(V, +) is a group

Example 3. For n, a natural number, $(\mathbb{Z}/n\mathbb{Z}, +)$ is a group

On \mathbb{Z} , we say a, b are (mod n) equivalent (written $a \equiv b \pmod{n}$) if n divides a - b $\mathbb{Z}/n\mathbb{Z}$ is the set of equivalence classes mod n

Example 4. n = 2: (odds, evens) which is $\{0_{\text{mod } 2}, 1_{\text{mod } 2}\}$

 $17_{\text{mod } 2} + 64_{\text{mod } 2} = 81_{\text{mod } 2} = 1_{\text{mod } 2}$

Example 5. $\mathbb{Z}/3\mathbb{Z} = \{0_{\text{mod } 3}, 1_{\text{mod } 3}, 2_{\text{mod } 3}\}$

Example 6. $(2\mathbb{Z}, +)$ is a group (even numbers)

Example 7. If (G, \cdot_G) and (H, \cdot_H) are groups, then $(G \times H, \cdot_G \times \cdot_H)$ is a group

- $(g_1, h_1) \cdot_{G \times H} (g_2, h_2) = (g_1 \cdot_G g_2, h_1 \cdot_H h_2)$
- Identity: $1_{G \times H} = (1_G, 1_H)$
- Inverse of (g,h): (g^{-1},h^{-1})

1.1.1 Properties

- G has exactly 1 identity
- Each $g \in G$, there is exactly 1 inverse of g we write this g^{-1} (i.e. $^{-1}: G \to G$)
- $(g^{-1})^{-1} = g$
- $(a \cdot b)^{-1} = b^{-1} \cdot a^{-1}$
- $(a_1 \cdot a_2 \cdot \ldots \cdot a_m)^{-1} = a_m^{-1} \cdot a_{m-1}^{-1} \cdot \ldots \cdot a_1^{-1}$

Proof.

- Suppose a, b are both identities in G. Then $a = a \cdot b = b$
- Suppose a, b are both inverses of g. i.e $a \cdot g = g \cdot a = 1$ and $b \cdot g = g \cdot b = 1$ Then $b = 1 \cdot b = (a \cdot g) \cdot b = a \cdot (g \cdot b) = a \cdot 1 = a$

- know $g \cdot g^{-1} = g^{-1} \cdot g = 1$ so $(g^{-1})^{-1} = g$
- $(a \cdot b)^{-1}$ satisfies: $x \cdot (a \cdot b) = (a \cdot b) \cdot x = 1$ we check $b^{-1}a^{-1}$ does this $(b^{-1}a^{-1}) \cdot (a \cdot b) = b^{-1}(a^{-1} \cdot a)b = b^{-1} \cdot 1 \cdot b = b^{-1}b = 1$ $(ab)(b^{-1}a^{-1}) = a(b \cdot (b^{-1}) \cdot a^{-1} = a \cdot 1 \cdot a^{-1} = aa^{-1} = 1$

Theorem 8. In G, there is exactly 1 solution to the equation ax = b for a fixed $a, b \in G$

Corollary 9. Cancellation laws:

$$ax = ay \implies x = y$$

 $xa = ya \implies x = y$

Proof. If $a \cdot x = b$

$$a^{-1} \cdot a \cdot x = a^{-1} \cdot b$$
$$(a^{-1} \cdot a) \cdot x = a^{-1} \cdot b$$
$$1x = x = a^{-1} \cdot b$$

Definition 10. For $x \in G$, the order of x, written |x|, is the least n > 0 so

$$x^n = \underbrace{x \cdot x \cdot \dots \cdot x}_{n} = 1_G$$

If there is no such n, x has "infinite order"

Example 11. In $(\mathbb{R} \setminus \{0\}, \cdot)$, $|5| = \infty$, |-1| = 2, |1| = 1

Example 12. $(\mathbb{Z}/6\mathbb{Z}, +)$, $|1_{\text{mod } 6}| = 6$, $|2_{\text{mod } 6}| = 3$, $|3_{\text{mod } 6}| = 2$, $|4_{\text{mod } 6}| = 3$, $|5_{\text{mod } 6}| = 2$

1.2 Dihedral Groups

1.2.1 Triangle

Look at the collection of symmetries of an equilateral Triangle

Rotation right

$$\bullet$$
 1 \rightarrow 2

$$\bullet$$
 2 \rightarrow 3

•
$$3 \rightarrow 1$$

r

Reflection around 1

- \bullet 1 \rightarrow 1
- \bullet 2 \rightarrow 3
- \bullet 3 \rightarrow 2

s

Rotation Left

•
$$1 \rightarrow 3$$

$$\bullet$$
 2 \rightarrow 1

•
$$3 \rightarrow 2$$

 r^2

Reflection around 3

- $1 \rightarrow 2$
- \bullet 2 \rightarrow 1
- $3 \rightarrow 3$

$$r \circ s = s \circ r^2$$

Reflection around 2

- $1 \rightarrow 3$
- \bullet 2 \rightarrow 2
- $3 \rightarrow 1$

 $r^2 \circ s$

Identity

- \bullet 1 \rightarrow 1
- \bullet 2 \rightarrow 2
- $3 \rightarrow 3$

 r^3, s^2

$$r^2 s = r \cdot (r \cdot s)$$

$$= (r \cdot s) \cdot r^{-1}$$

$$= s \cdot (r^{-1} \cdot r^{-1})$$

$$= s \cdot (r^{-1})^2$$

(Symmetry of \triangle, \circ) = D_6

1.2.2 n-gon

Rotation right

Reflection around 1

My Symmetry

• $k \to k+1$ (for k < n) • $k \to n+2-k$

• $1 \rightarrow k$

• $n \rightarrow 1$

 \bullet 1 \rightarrow 1

• $2 \rightarrow k+1$

r, |r| = n

s, |r| = n

 r^k

So, $\{r, s\}$ generates the group of sym of regular n-gon

(Symmetry of a regular n-gon, \circ) = D_{2n}

1.2.3 Definition

Rules of dihedral group multiplication in D_{2n} $\{r, s\}$

- a) $r^n = 1$
- b) $s^2 = 1$
- c) $r \cdot s = s \cdot r^{-1}$

When you have generators S for G and can list R_1, R_2, R_3 all the rules you need to know to do multiplication in G Then $\langle S, R_1, R_2, R_3 \rangle$ is a "presentation of the group G"

$$D_{2n} = \langle r, s \mid r^n = 1, s^2 = 1, rs = sr^{-1} \rangle = \{1, r, \dots, r^{n-1}, s, rs, \dots, rs^{n-1}\}$$

Fact: There is a finite set of rule R_1, \ldots, R_{2000} so $\langle a, b | R_1, \ldots, R_{2000} \rangle$ "undecidable word problem"

1.3 Symmetric Group

Given Ω any set, $S_{\Omega} =$ The permutations of $\Omega =$ The bijections $f : \Omega \to \Omega$

Example 13. $\Omega = \{1, 2, 3\}$

 $S_n = S_{\{1,2,\ldots,n\}}$ has n! elements

$$|S_3| = 6, |D_6| = 6, D_6 \subseteq S_3$$

$$|D_{2n}| = 2n$$

$$|S_n| = n!$$

1.3.1 Cycle Decomposition

 $1 \to 4, 2 \to 1, 3 \to 2, 4 \to 3, 5 \to 5$ can be written as (1432)(5)

 $(a_1 \dots a_{m_1})(a_{m_1+1} \dots a_{m_2})$ with a_i is disjoint represents the function which satisfies

- a_i to a_{i+1} unless $i = m_j$ for some j
- a_{m_i} to $a_{m_{i-1}} + 1$ $j \neq 1$
- a_{m_1} to a_1

$$(1)(2)(3)(4)(5)(6)(7) = 1$$

$$(1442) \circ (3421) = (124)$$

$$|(123)(45)| = 6$$

Order of a product of disjoint cycles is the lcm(lengths of the cycles)

1.4 Homomorphisms and Isomorphisms

Definition 14. A homorphism from (G, \cdot_G) to (H, \cdot_H) is a function $f: G \to H$ such that

$$f(x \cdot_G y) = f(x) \cdot_H f(y)$$

for all $x, y \in G$

•
$$f(x^{-1}) = f(x)^{-1}$$

$$f(x) = f(1_G \cdot_G x)$$

$$= f(1_G) \cdot_H f(x)$$

$$f(x) \cdot_H (f(x))^{-1} = f(1_G) \cdot_H f(x) \cdot_H (f(x))^{-1}$$

$$1_H = f(1_G)$$

$$1_H = f(1_G) = f(x \cdot_G x^{-1}) = f(x) \cdot_H f(x^{-1})$$

$$1_H = f(1_G) = f(x^{-1} \cdot_G x) = f(x^{-1}) \cdot_H f(x)$$

Definition 15. If f is a bijection and a homorphism, then f is an isomorphism

Example 16. $\cdot id: G \rightarrow G$

$$\cdot^{-1}: G \to G, x \mapsto x^{-1}$$

$$(x \cdot y)^{-1} = (x^{-1}) \cdot (y^{-1})$$

is an isomorphism if and only if G is abelian

$$xyx^{-1}y^{-1} = 1$$

Example 17. $e^x: (\mathbb{R}, +) \to (\mathbb{R}, \cdot), f(x+y) = f(x) \cdot f(y)$ is an isomorphism

Example 18. $f: \mathbb{Z}/6\mathbb{Z} \to \mathbb{Z}/3\mathbb{Z}$

- \bullet $0 \rightarrow 0$
- $1 \rightarrow 1$
- $2 \rightarrow 2$
- $3 \rightarrow 0$
- $4 \rightarrow 1$
- $5 \rightarrow 2$

is a homorphism NOT an isomorphism

Definition 19. G and H is isomorphic if there is a $f:G\to H$ which is an isomorphism (written $G\cong H$)

If $G \cong H$ then

 \bullet G is a belian iff H is abelian

Abelian: For every $x, y \cdot x \cdot_G y = y \cdot_G x$

$$f(y) \cdot_H f(x) = f(y \cdot_G x) = f(x \cdot_G y) = f(x) \cdot_H f(y)$$

So, any 2 elements

If f is a \cong , $f: G \to H$ and $x \in G$ has order 2 Then $f(x) \in H$ has order 2

$$x^{2} = 1_{G}$$
$$(f(x))^{2} = f(x) \cdot f(x) = f(x \cdot x) = f(1_{G}) = 1_{H}$$

Recall $D_{2n} = \langle r, s \mid r^n = 1, s^2 = 1, rs = sr^{-1} \rangle$

If $G = \langle g_1, \dots, g_n \mid R_1, R_2, \dots \rangle$ and $h_1, \dots, h_n \in H$ so $R_1(h_1 \dots h_n) \dots$ Then $f : g_i \mapsto h_i$ is a homomorphism

1.5 Group Actions

Definition 20. A group action is a function

$$\alpha: G \times A \to A$$

so

$$\alpha(g, \alpha(h, a)) = \alpha(g \cdot h, a)$$

We write $g \cdot a$ for $\alpha(g, a)$

$$g \cdot (h \cdot a) = (g \cdot h) \cdot a$$

• $1_G \cdot a = a$ for any $a \in A$

For any $g \in G$ the function $g \cdot : A \to A$, $a \mapsto g \cdot a$ is a bijection of a.

$$(g \cdot (g^{-1} \cdot_G)) : A \to A$$
$$= (g \cdot g^{-1}) \cdot a$$
$$= 1_G \cdot a = a$$
$$q^{-1}(g \cdot a) = a$$

Since this function has an inverse (as a function) it is bijective

Recall: S_A is the group of all permutations of A

Get a function $\sigma: G \to S_A$ and $\sigma(g) =$ the function $a \mapsto g \cdot a$

Observation: σ is a homomorphism

$$\sigma(g \cdot h) = \sigma(g) \cdot \sigma(h)$$

Example 21. (\mathbb{R} , +) acts on $A = \{1, 2, 3\}$

$$g \cdot a = a$$

$$\sigma: \mathbb{R} \to S_3, g \mapsto 1_{S_3}$$

2 Subgroups

2.1 Definition and Examples

Definition 22. Let G be a group. The subset H of G is a subgroup of G if

- $1_G \in H$
- $\forall x, y \in H, x \cdot y \in H$
- $\forall x \in H, x^{-1} \in H$

We write $H \leq G$ to indicate that H is a subgroup of G.

Proposition 23. A subset H of a group G is a subgroup of G if and only if

- $H \neq \emptyset$
- $\forall x, y \in H, xy^{-1} \in H$

2.2 Centralizers and Normalizers, Stabilizers and Kernels

Definition 24 (Centralizer). Let G be a group and A be a subset of G. The centralizer of A in G is

$$C_G(A) = \{ g \in G \mid gag^{-1} = a \text{ for all } a \in A \}$$

Moreover, $C_G(A)$ is a subgroup of G.

Definition 25 (Center). Let G be a group. The center of G is

$$Z(G) = \{ g \in G \mid gx = xg \text{ for all } x \in G \}$$

Definition 26 (Normalizer). Let G be a group and A be a subset of G. Let

$$gAg^{-1} = \{gag^{-1} \mid a \in A\}$$

The Normalizer of A in G is

$$N_G(A) = \{ g \in G \mid gAg^{-1} = A \}$$

Definition 27 (Stabilizer). If G is a group acting on a set S and s is some fixed element of S the stabilizer of s is

$$G_s = \{ g \in G \mid g \cdot s = s \}$$

2.3 Cyclic groups

Definition 28. A group H is a cyclic if H can be generated by a single element. i.e., $H = \langle x \rangle = \{x^n \mid n \in \mathbb{Z}\}$ for some $x \in H$.

Proposition 29. If $H = \langle x \rangle$, then |x| = n.

Proposition 30. Let G be an arbitrary group, $x \in G$ and let $m, n \in \mathbb{Z}$. If $x^n = 1$ and $x^m = 1$, then $x^d = 1$, where d = (m, n).

Proof. By the Euclidean Algorithm, there exists $q, r \in \mathbb{Z}$ such that d = mr + ns where d = (m, n). Thus

 $x^{d} = x^{mr+ns} = (x^{m})^{r}(x^{n})^{s} = 1^{r}1^{s} = 1$

Theorem 31. If H_1, H_2 is cyclic groups and $|H_1| = |H_2|$ then $H_1 \cong H_2$.

Proposition 32. Let G be a group, let $x \in G$ and let $a \in \mathbb{Z} - \{0\}$.

- 1. If $|x| = \infty$, then $|x^a| = \infty$
- 2. If $|x| = n < \infty$, then $|x^a| = \frac{n}{(n,a)}$

3.

Theorem 33. If $H = \langle x \rangle$ and |x| = n then $x^a = 1$ if and only if $n \mid a$.

Theorem 34. If $H = \langle x \rangle$ and $K \leq H$. Then K is cyclic

Proof. Let a be the least positive integer such that $x^a \in K$, let $y = x^a$

Then we want to show $\langle y \rangle = K$.

• $\langle y \rangle \subseteq K$ Obvious

• $\langle y \rangle \supseteq K$ Given $x^b \in K$ we can write b = am + r with $a \le r < a$

$$x^{b} = x^{am+r} = (x^{a})^{m} x^{r}$$
$$= y^{m} \underbrace{x^{r}}_{\in K}$$
$$x^{r} = \underbrace{y^{-m}}_{\in K} \underbrace{x^{b}}_{\in K}$$

So,
$$x^r \in K$$
 so $r = 0$, $x^b = y^m$

Therefore
$$\langle y \rangle = K$$

3 Quotient Groups and Homomorphisms

3.1 Definition and Examples

Definition 35. If $\varphi: G \to H$ is a homomorphism then $\ker(\varphi) = \{x \in G \mid \varphi(x) = 1_H\}$

Lemma 36. $\ker(\varphi) \leq G$

Proof. Proof eash properties of subgroup

• Closed identity, Since $\varphi(1_G) = 1_H$

$$\varphi(1_G) = \varphi(1_G 1_G) = \varphi(1_G) \cdot \varphi(1_G) = 1$$

So, $1_G \in \ker(\varphi)$

• Closed under inverses, if $x \in ker(\varphi)$

$$\varphi(x^{-1}) = (\varphi(x))^{-1} = (1_H)^{-1} = 1_H$$
$$1_H = \varphi(1_G) = \varphi(x^{-1}x) = \varphi(x) \cdot \varphi(x^{-1})$$

So, $x^{-1} \in \ker(\varphi)$

• Closed under multiplication, if $x, y \in \ker(\varphi)$

$$\varphi(xy) = \varphi(x) \cdot \varphi(y)$$
$$= 1_H \cdot 1_H = 1_H$$

So, $xy \in \ker(\varphi)$

Definition 37. Given $\varphi: G \to H$ a homomorphism and $K = \ker(\varphi)$ For any $a \in H$, let

$$X_a = \{ x \in G \mid \varphi(x) = a \}$$

then

$$G/K = (\{X_a \mid a \in H\}, \circ)$$

where

$$X_a \circ X_b = X_{ab}$$

Lemma 38. If $\varphi: G \to H$ is a homomorphism, $K = \ker(\varphi)$, and $\varphi(b) = a$ then $X_a = bK$ where $bK = \{b \cdot z \mid z \in K\}$

Proof. The goal is to show $X_a = bK$

• $X_a \supseteq bK$, Given $y \in bK$, $y = b \cdot z$ for some $z \in K$

$$\varphi(y) = \varphi(b \cdot z) = \varphi(b) \cdot \varphi(z) = a \cdot 1_H = a$$

• $X_a \subseteq bK$, Given $\varphi(y) = a$

$$\varphi(b^{-1}y) = \varphi(b^{-1})\varphi(y) = (\varphi(b))^{-1} \cdot \varphi(y) = a^{-1} \cdot a = 1$$

Therefore $X_a = bK$

Definition 39. For any $N \leq G$ and for any $g \in G$ let

$$gN = \{gn \mid n \in N\}$$

and

$$Ng = \{ ng \mid n \in N \}$$

Theorem 40. Let G be a group and K be the kernel of some homomorphism. Then the set whose elements are the left cosets of K in G with operation defined by

$$uK \circ vK = (uv)K$$

forms a group G/K.

Proof. Let $X,Y \in G/K$ and let Z = XY in G/K. Since K is the kernel of some homomorphism, $\varphi : G \to H$, so $X = \varphi^{-1}(a)$ and $Y = \varphi^{-1}(b)$ for some $a,b \in H$. By definition of the operation in G/K, $Z = \varphi^{-1}(ab)$.

Let u, v be arbitrary representatives of X, Y ($\varphi(u) = a, \varphi(v) = b$ and X = uK, Y = vK)

GOAL: show $uv \in Z$

$$uv \in Z \iff uv \in \varphi^{-1}(a, b)$$

 $\iff \varphi(uv) = ab$
 $\iff \varphi(u)\varphi(v) = ab$

Therefore Z is the (left) coset (uv)K.

Proposition 41. If $N \leq G$ then for all $u, v \in G, uN = vN$ if and only if $v^{-1}u \in N$

Proof. Since N is a subgroup of G, since $1_G \in N$ then

$$G = \bigcup_{g \in G} gN$$

If $x \in uN \cap vN$ then for some $n_1, n_2 \in N$

$$x = un_1 = vn_2$$

 $v^{-1}u = n_2n_1^{-1} \in N$

For any $n \in N$

$$un = (vv^{-1})un = v(v^{-1}un) \in vN$$

So $uN \subseteq vN$, wlog, $vN \subseteq uN$. Therefore uN = vN.

Definition 42. The element gng^{-1} is called the *conjugate* of $n \in N$ by g. The set gNg^{-1} is called the *conjugate* of N by g. if $gNg^{-1} = N$ then g is said to *normalize* N.

If $N \leq G$ called normal if for any $g \in G$ normalizes N. In another word, $gNg^{-1} = N$ for all $g \in G$, written

$$N \leq G$$

Theorem 43. For $N \leq G$, the following are equivalent

- $N \triangleleft G$
- $N_G(N) = G$
- gN = Ng for all $g \in G$
- $gNg^{-1} \subseteq N$ for all $g \in G$