Instituto Superior de Engenharia do Porto

Departamento de Engenharia Informática

Princípios da Computação - 19/20 1ºSemestre

Época de Normal/Melhoria

17/01/2020 - 09:30

Teórica (sem consulta) **Duração 45 minutos**

Nome:	No

Folha de Respostas

1 -

1 - Cotações: Cada questão vale 1 valor.

a) □ b) □ c) □ d) □

- 2 Relativamente às perguntas de escolha múltipla (1-19) deverá assinalar uma resposta correta e se a resposta assinalada for incorreta sofrerá uma penalização de 1/3 da cotação da pergunta.
- 3 A questão 20 será pontuada com 1 (<u>resposta correta</u>) ou 0 (resposta incorreta).
- 3 Apenas as respostas assinaladas nesta folha serão consideradas.
- 4 Devem ser entregues todas as folhas do exame.

2 -	a) 🗆	b) □	c) 🗆 d) 🗆
3 -	a) 🗆	b) □	c) 🗆 d) 🗆
4 -	a) 🗆	b) □	c) 🗆 d) 🗆
5 -	a) 🗆	b) □	c) 🗆 d) 🗆
6 -	a) 🗆	b) □	c) 🗆 d) 🗆
7 -	a) 🗆	b) □	c) 🗆 d) 🗆
8 -	a) 🗆	b) □	c) 🗆 d) 🗆
9 -	a) 🗆	b) □	c) 🗆 d) 🗆
10 -	a) 🗆	b) □	c) 🗆 d) 🗆
11 -	a) 🗆	b) □	c) 🗆 d) 🗆
12 -	a) 🗆	b) □	c) 🗆 d) 🗆
13 -	a) 🗆	b) □	c) 🗆 d) 🗆
14 -	a) 🗆	b) □	c) 🗆 d) 🗆
15 -	a) 🗆	b) □	c) 🗆 d) 🗆
16 -	a) 🗆	b) □	c) 🗆 d) 🗆
17 -	a) 🗆	b) □	c) 🗆 d) 🗆
18 -	a) 🗆	b) □	c) 🗆 d) 🗆
19 -	a) 🗆	b) □	c) 🗆 d) 🗆
20 -	Desenvolvimento		

- 1 Qual o estado de um processo após a execução de uma operação de I/O:
 - a) Running.
 - b) Ready.
 - c) Waiting.
 - d) Nenhuma das anteriores.
- 2 Um processo é um fluxo de atividade:
 - a) Automática que executa ações determinadas por um programa.
 - b) Autónoma que executa ações determinadas por um programa.
 - c) Aleatória que executa ações determinadas por um programa.
 - d) Manual que executa ações determinadas por um programa.
- 3 Um sistema operativo multitarefa visa gerir a execução de processos de modo a:
 - a) Maximizar a utilização de memória.
 - b) Maximizar a utilização do processador.
 - c) Maximizar a utilização dos dispositivos de I/O.
 - d) Minimizar a utilização dos dispositivos de I/O.
- 4 Um sistema operativo moderno permite a criação de processos:
 - a) Através de ações de utilizadores.
 - b) Através de ações de outros processos.
 - c) Que podem comunicar com outros processos.
 - d) Todos as anteriores são verdadeiras.
- 5 Quais das seguintes são razões para se interromper um processo em execução:
 - a) Ter excedido o tempo de execução atribuído.
 - b) Ter ocorrido uma falta de memória.
 - c) Ter executado uma instrução inválida.
 - d) Todas as anteriores são verdadeiras.
- 6 Em termos de transições de estados de um processo:
 - a) A sequência *Ready* => *Waiting* => *Running* é válida.
 - b) A sequência *Ready* => *Running* => *Waiting* é válida.
 - c) A sequência *Running* => *Ready* => *Waiting* é válida.
 - d) Nenhuma das anteriores.
- 7 Um processo a correr na CPU necessita de uma operação de I/O, tendo este sido escalonado de forma não preemptiva e por prioridades:
 - a) O processo é removido da UCP e passa para o estado de Waiting.
 - b) O processo continua na UCP e passa para o estado de Waiting.
 - c) O processo é removido da UCP e passa para o estado de New.
 - d) Todas as anteriores são verdadeiras.
- 8 Num sistema operativo moderno:
 - a) Só pode haver uma fila para os processos prontos a executar.
 - b) Pode haver várias filas para os processos que esperam por recursos de memória.
 - c) Pode haver várias filas onde estão processos à espera de operações I/O terminadas.
 - d) Todas as anteriores são verdadeiras.

9 – O escalonamento preemptivo por prioridades fixas não é eficaz no escalonamento de processos em sistemas *desktop*, dado que:

- a) Este tipo de escalonamento apenas é adequado para processos que não efetuem operações de I/O.
- b) Favorece os processos limitados por I/O em prejuízo dos processos limitados pela UCP.
- c) Este tipo de escalonamento é mais adaptado a sistemas monoprocesso.
- d) Favorece os processos computacionalmente pesados em detrimento dos processos limitados por I/O de igual prioridade.

10 – Na comutação entre processos faz-se, entre outras operações:

- a) A salvaguarda do processo que vai ter acesso à UCP.
- b) A salvaguarda do processo que vai perder o acesso à UCP.
- c) A salvaguarda do processo que vai perder acesso à UCP, apesar da informação do PCB estar danificada.
- d) Nenhuma das anteriores.

11 – Em termos de estados dos processos (PCBs), as filas de escalonamento do SO:

- a) Não permitem conhecer o estado de todos os processos.
- b) Permitem conhecer o estado de todos os processos em execução.
- c) Permitem conhecer o estado de todos os processos anteriormente terminados.
- d) Permitem conhecer o estado de todos os processos existentes.

12 – Relativamente aos equipamentos que recorriam ao processamento em série:

- a) As operações de I/O tinham que ser definidas pelos programas.
- b) A primeira versão já possuía um sistema operativo residente em memória.
- c) Possibilitavam que vários programas corressem concorrentemente.
- d) A primeira versão já possuía o utilitário Monitor.

13 – Em termos de escalonador de longo prazo:

- a) Pode ser invocado apenas quando vários processos terminam.
- b) Tende a ser lento.
- c) É executado com alta frequência.
- d) Nenhuma das anteriores é verdadeira.

14 – O escalonador de médio-prazo:

- a) Pode remover processos da memória.
- b) Pode retomar mais tarde a execução de processos.
- c) Recorre a *Swapping* para lidar com falta de memória.
- d) Todas as anteriores são verdadeiras.

15 – Um supercomputador atual é essencialmente composto por:

- a) Imensas UCPs e pouca memória RAM.
- b) Algumas UCPs e imensa memória RAM.
- c) Imensas UCPs e dispositivos de I/O.
- d) Imensas UCPs, imensa memória RAM e dispositivos de I/O.

16 – Num sistema operativo atual:

- a) Processos e subprocessos alternam a execução de instruções e operações de I/O.
- b) Só subprocessos alternam a execução de instruções e operações de I/O.
- c) Só processos alternam a execução de instruções e operações de I/O.
- d) Todas as anteriores são verdadeiras.

17 – Na elaboração de um programa é normal que a ordem de utilização das ferramentas auxiliares envolvidas seja a seguinte:

- a) Editor, compilador e linker.
- b) Editor, linker e compilador.
- c) Linker, editor e compilador.
- d) Linker, compilador e editor.

18 – Num sistema computacional com uma palavra de 64 bits:

- a) O maior valor inteiro possível de ser representado é sempre superior ao de um sistema computacional com uma palavra de 32 bits.
- b) Os registos de uso genérico são de 16 bits.
- c) Sempre que se armazena um byte em memória são desperdiçados 7 bytes de memória.
- d) Pode ser utilizado um esquema de endereçamento de memória de 64 bits.

19 – Em termos de critérios de desempenho computacional orientado para o utilizador, o mais adequado a sistemas interativos é:

- Turnaround time.
- b) Tempo de resposta.
- Deadline.
- d) Predictabilidade.

20 – Considere o seguinte conjunto de processos:

Processo	Perfil do processo	Prioridade	Tempo de chegada
1	XXXIIIIXXX	2	0
2	XXIIXX	1 (a mais alta)	1
3	XX	3 (a mais baixa)	0

X – representa uma unidade de tempo de atividade na UCP.

Utilizando escalonamento por prioridades e preemptivo, represente, no espaço abaixo disponível, a forma como os processos deverão ser escalonados pela UCP, utilizando a notação gráfica praticada nesta unidade curricular:

Ράσ Δ

I – representa uma unidade de tempo de operação I/O.