

862.C2205

288

PATENT APPLICATION

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

7-18-01 #2 private

In re Application of:

YOSHIYUKI NAGAI, et al.

Application No.: 09/839,139

Filed: April 23, 2001

For: LASER OSCILLATION
APPARATUS, EXPOSURE
- APPARATUS,
SEMICONDUCTOR
MANUFACTURING METHOD,
SEMICONDUCTOR

MANUFACTURING FACTORY, AND EXPOSURE APPARATUS MAINTENANCE METHOD July 11, 2001

Examiner: Not Assigned

Group Art Unit: Unknown

Commissioner for Patents Washington, D.C. 20231

CLAIM TO PRIORITY

Sir:

Applicants hereby claims priority under the International Convention and all rights to which they are entitled under 35 U.S.C. § 119 based upon the following Japanese Priority Application:

JAPAN

2000-126502

April 26, 2000.

A certified copy of the priority document is enclosed.

Applicants' undersigned attorney may be reached in our Washington, D.C. office by telephone at (202) 530-1010 All correspondence should continue to be directed to our address given below.

Respectfully submitted,

Attorney for Applicant Steven E. Warner Registration No. 33,326

FITZPATRICK, CELLA, HARPER & SCINTO 30 Rockefeller Plaza New York, New York 10112-3801 Facsimile: (212) 218-2200

SEW/lmj

09/839,139 YOSHIYUKI NAGAI Fal

"LASSE DSCILLATION APPARATUS, EXPOSURE APPARATUS, SEMICONDUCTOR DEVICE MANUFACTURING METHOD, SEMICONDUCTOR MANUFACTURING FACTURY, AND EXPOSURE APPARATUS MAINTENANCE METHOD"
(translation of the front page of the priority document of

Japanese Patent Application No. 2000-126502)

PATENT OFFICE JAPANESE GOVERNMENT

This is to certify that the annexed is a true copy of the following application as filed with this Office.

Date of Application:

April 26, 2000

Application Number: Patent Application 2000-126502

Applicant(s)

: Canon Kabushiki Kaisha

May 18, 2001

Commissioner,

Patent Office

Kouzo OIKAWA

Certification Number 2001-3041018

国特許庁

JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office

出願年月日

Date of Application:

2000年 4月26日

出 願 番 号

Application Number:

特願2000-126502

出 願 人 Applicant(s):

キヤノン株式会社

JUL 12 2001 .

2001年 5月18日

特許庁長官 Commissioner, Japan Patent Office

特2000-126502

【書類名】

特許願

【整理番号】

4211073

【提出日】

平成12年 4月26日

【あて先】

特許庁長官殿

【国際特許分類】

H01L 21/30

【発明の名称】

レーザ発振装置、露光装置、半導体デバイス製造方法、

6. C. 1

半導体製造工場、および、露光装置の保守方法

【請求項の数】

24

【発明者】

東京都大田区下丸子3丁目30番2号キヤノン株式会社 【住所又は居所】

内

【氏名】

永井 善之

【発明者】

【住所又は居所】

東京都大田区下丸子3丁目30番2号キヤノン株式会社

内

【氏名】

佐野 直人

【特許出願人】

【識別番号】

000001007

【氏名又は名称】 キヤノン株式会社

【代理人】

【識別番号】

100086287

【弁理士】

【氏名又は名称】

伊東 哲也

【選任した代理人】

【識別番号】

100103931

【弁理士】

【氏名又は名称】

関口 鶴彦

【手数料の表示】

【予納台帳番号】

002048

特2000-126502

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【プルーフの要否】

THE

【書類名】 明細書

【発明の名称】 レーザ発振装置、露光装置、半導体デバイス製造方法、半導体製造工場、および、露光装置の保守方法

【特許請求の範囲】

【請求項1】 波長選択素子を駆動し、レーザ光の発振波長を目標値に変更 する波長変更手段を有するレーザ発振装置であって、

前記波長変更手段は、前記目標値に基づいて前記波長選択素子の駆動量を算出し、 第出された前記波長選択素子の駆動量に基づいて前記波長選択素子を駆動し、 前記レーザ光の発振波長を目標値に変更することを特徴とするレーザ発振装置。

【請求項2】 前記レーザ光の発振状態を発振履歴として記憶する発振履歴 記憶手段を有し、

前記波長変更手段は、前記発振履歴に基づいて前記波長選択素子の駆動量を算出 し、算出された前記波長選択素子の駆動量に基づいて前記波長選択素子を駆動し 、前記レーザ光の発振波長を目標値に変更することを特徴とする請求項1に記載 のレーザ発振装置。

【請求項3】 前記発振履歴は、前記レーザ光の発振波長の変更量、前記レーザ光の発振休止時間、および、発振デューティのうち少なくとも1つであることを特徴とする請求項2に記載のレーザ発振装置。

【請求項4】 前記レーザ光の発振波長の変更量および前記レーザ光の発振 休止時間のそれぞれにしきい値を設け、前記レーザ光の発振波長の変更量または 前記レーザ光の発振休止時間が前記しきい値を超えているか否かを判断し、その 判断結果に基づいて波長ロック信号を出力することを特徴とする請求項1~3の いずれか1つに記載のレーザ発振装置。

【請求項5】 前記レーザ光の発振波長の変更量または前記レーザ光の発振 休止時間が前記しきい値を越えている場合には前記レーザ光の出力を停止することを特徴とする請求項4に記載のレーザ発振装置。

【請求項6】 前記レーザ光の発振波長を計測する波長計測手段を有することを特徴とする請求項1~5のいずれか1つに記載のレーザ発振装置。

【請求項7】 前記波長計測手段の内部環境を計測する内部環境計測手段を

有し、

計測された前記波長計測手段の内部環境に基づいて前記波長計測手段を補正する ことを特徴とする請求項6に記載のレーザ発振装置。

【請求項8】 前記波長計測手段の内部環境は温度および気圧のうち少なくとも1つであることを特徴とする請求項7に記載のレーザ発振装置。

【請求項9】 計測された前記レーザ光の発振波長が所定の許容範囲内で発振しているか否かを判断し、その判断結果に基づいて波長ロック信号を出力することを特徴とする請求項6~8のいずれか1つに記載のレーザ発振装置。

【請求項10】 前記レーザ光の発振波長が所定の前記許容範囲内で発振していない場合には前記レーザ光の出力を停止することを特徴とする請求項9に記載のレーザ発振装置。

【請求項11】 前記レーザ光の発振波長を変更する際には前記レーザ光の 出力を停止しないことを特徴とする請求項1~3のいずれか1つに記載のレーザ 発振装置。

【請求項12】 前記レーザ光の発振波長を変更する際には空打ちを行なわないことを特徴とする請求項1~3のいずれか1つに記載のレーザ発振装置。

【請求項13】 前記波長選択素子はグレーティングまたはエタロンである ことを特徴とする請求項1~12のいずれか1つに記載のレーザ発振装置。

【請求項14】 前記レーザ光はエキシマレーザ光であることを特徴とする 請求項1~13のいずれか1つに記載のレーザ発振装置。

【請求項15】 請求項1~14のいずれか1つに記載のレーザ発振装置を 光源として用いることを特徴とする露光装置。

【請求項16】 被露光基板上の所定の露光領域における露光が終了してから次の露光領域における露光が開始されるまでの間に、前記レーザ光の発振波長を変更することを特徴とする請求項15に記載の露光装置。

【請求項17】 請求項15または16に記載の露光装置を用いて半導体デバイスを製造することを特徴とする半導体デバイス製造方法。

【請求項18】 請求項15または16に記載の露光装置を含む各種プロセス用の製造装置群を半導体製造工場に設置する工程と、該製造装置群を用いて複

数のプロセスによって半導体デバイスを製造する工程とを有することを特徴とする半導体デバイス製造方法。

【請求項19】 前記製造装置群をローカルエリアネットワークで接続する工程と、前記ローカルエリアネットワークと前記半導体製造工場外の外部ネットワークとの間で、前記製造装置群の少なくとも1台に関する情報をデータ通信する工程とをさらに有することを特徴とする請求項18に記載の半導体デバイス製造方法。

【請求項20】 前記露光装置のベンダもしくはユーザが提供するデータベースに前記外部ネットワークを介してアクセスしてデータ通信によって前記製造装置の保守情報を得る、もしくは前記半導体製造工場とは別の半導体製造工場との間で前記外部ネットワークを介してデータ通信して生産管理を行うことを特徴とする請求項19に記載の半導体デバイス製造方法。

【請求項21】 請求項15または16に記載の露光装置を含む各種プロセス用の製造装置群と、該製造装置群を接続するローカルエリアネットワークと、該ローカルエリアネットワークから工場外の外部ネットワークにアクセス可能にするゲートウェイを有し、前記製造装置群の少なくとも1台に関する情報をデータ通信することを可能にしたことを特徴とする半導体製造工場。

【請求項22】 半導体製造工場に設置された請求項15または16に記載の露光装置の保守方法であって、前記露光装置のベンダもしくはユーザが、半導体製造工場の外部ネットワークに接続された保守データベースを提供する工程と、前記半導体製造工場内から前記外部ネットワークを介して前記保守データベースへのアクセスを許可する工程と、前記保守データベースに蓄積される保守情報を前記外部ネットワークを介して半導体製造工場側に送信する工程とを有することを特徴とする露光装置の保守方法。

【請求項23】 請求項15または16に記載の露光装置において、ディスプレイと、ネットワークインタフェースと、ネットワーク用ソフトウェアを実行するコンピュータとをさらに有し、露光装置の保守情報をコンピュータネットワークを介してデータ通信することを可能にしたことを特徴とする露光装置。

【請求項24】 前記ネットワーク用ソフトウェアは、前記露光装置が設置

された工場の外部ネットワークに接続され前記露光装置のベンダもしくはユーザが提供する保守データベースにアクセスするためのユーザインタフェースを前記ディスプレイ上に提供し、前記外部ネットワークを介して該データベースから情報を得ることを可能にすることを特徴とする請求項23に記載の露光装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、例えばレーザ光の発振波長の変更が可能なレーザ発振装置、および、それを用いた露光装置、半導体デバイス製造方法、半導体製造工場、露光装置の保守方法に関するものである。

[0002]

【従来の技術】

ステップ・アンド・リピート方式或いはステップ・アンド・スキャン方式の露 光装置は半導体集積回路の製造工程において中心的役割を担っている。この露光 装置はマスク或いはレチクル(以下、レチクルと呼ぶ)の回路パターンを投影レ ンズを介し、レジストが塗布された被露光基板(以下、ウエハと呼ぶ)面上に露 光する。近年、半導体集積回路の集積度はますます高くなる傾向にあり、それに 伴い、より短い波長の露光光を発する光源が必要になってきている。特に、レー ザ発振装置の一種である希ガスハライドエキシマレーザ(以下、エキシマレーザ と呼ぶ)が、紫外域高出力レーザとして注目を集めている。

[0003]

露光装置は通常クリーンルーム内で使用されており、天候の変化などによりクリーンルーム内の気圧が変化するのに伴い、露光光の屈折率が変化し、回路パターンの結像位置が変動してしまう。通常、露光装置用エキシマレーザは発振波長を変更することが可能であり、その可変範囲は300~400pm程度である。露光光の屈折率は波長によって異なるため、例えばジョブ開始やウエハ交換などの適当なタイミングで、露光装置の使用環境における気圧を計測し、気圧の変化による結像位置の変動を相殺するように発振させるべき最適な発振波長を算出し、エキシマレーザの発振波長を所望の量だけ変更することで、露光装置の使用環

境における気圧の変化に対応させている。

[0004]

· ,ī

このような露光装置では、図12に示すようなフローで露光が行なわれる。ジ ョブ開始(ステップ901)後、例えばウエハロード時などのタイミングで投影 レンズ近傍の気圧を計測し(ステップ902)、露光装置の主制御部はステップ 903でその気圧を基に露光に最適な発振波長(発振波長目標値)を算出し、ス テップ904でその発振波長目標値がエキシマレーザの制御部に送信され、ステ ップ905でエキシマレーザはエキシマレーザ出射口部に設けられたシャッタを 閉じ、ステップ906でパルス光を発振させた状態で空打ちを行ない、発振波長 をエキシマレーザ内部の光計測部で監視しながら波長変更手段を用いて発振波長 を変更し、ステップ907で発振波長が発振波長目標値から所定の許容範囲内に 入ったか否かを判断する。発振波長が所定の許容範囲に入らなかった場合、エキ シマレーザはエラー状態となり、発振を停止する(ステップ908)。発振波長 が所定の許容範囲内に入った場合、ステップ909でそれを知らせる波長ロック 信号ONを露光装置側に送信し、シャッタを開け、ステップ910で露光装置側 からの発光信号に応じて露光を開始する。露光終了後ウエハアンロードをし(ス テップ911)、次のウエハを露光するか判断し(ステップ912)、次のウエ ハを露光しない場合はジョブ終了とし(ステップ913)、次のウエハを露光す る場合はステップ902へ戻る。

[0005]

【発明が解決しようとする課題】

ところが従来例では発振波長を変更する毎に、変更後の発振波長が目標値になったか否かの確認するために、シャッタを閉じて空打ちを行なう必要があり、シャッタの開閉および空打ちに費やす時間だけ露光装置の生産性を低下させてしまっていた。

[0006]

本発明はこのような点を考慮してなされたものであり、このレーザ発振装置を 露光装置用光源として使用する際には、露光装置の生産性の低下を招くことなく 、常に良好な回路パターンを露光する露光装置、半導体デバイス製造方法、半導 体製造工場、および、露光装置の保守方法を提供することを目的とする。

[0007]

【課題を解決するための手段】

上述の目的を達成するために、本発明は、波長選択素子を駆動し、レーザ光の発振波長を目標値に変更する波長変更手段を有するレーザ発振装置であって、前記波長変更手段は、前記目標値に基づいて前記波長選択素子の駆動量を算出し、算出された前記波長選択素子の駆動量に基づいて前記波長選択素子を駆動し、前記レーザ光の発振波長を目標値に変更することを特徴とする。また、前記波長変更手段は、前記発振履歴に基づいて前記波長選択素子の駆動量を算出し、算出された前記波長選択素子の駆動量に基づいて前記波長選択素子を駆動し、前記レーザ光の発振波長を目標値に変更することが望ましく、前記波長選択素子はグレーティングまたはエタロンであることが望ましい。

[0008]

更にレーザ発振を始めた直後もしくはバースト発振させた場合のバースト先頭から数十・数百パルスのレーザ光の波長は不安定で波長がドリフトしており、そのドリフトの量はレーザの発振履歴やレーザ発振装置内部にある波長計測部内部の環境によって変化することが本発明の発明者らの実験により明らかになった。発振履歴としては、波長の変更幅、発振中止してからの経過時間、発振デューティ(発振時間/休止時間の比率)など、波長計測部内部の環境としては気圧、温度などを挙げることができる。このため本発明のレーザ発振装置では、レーザ発振装置内部にレーザ光の発振履歴を記憶する発振履歴記憶手段および波長計測部内部の環境を計測する波長計測部内環境計測手段のうち一つまたは両方を持ち、発振履歴記憶手段に記録されている発振履歴および前記波長計測部内環境計測手段による計測結果のうち少なくとも一つを用いてレーザ発振装置内部の波長計測部のドリフト量を計算し、その計算結果を考慮して目標波長から所定の許容範囲内の波長で発振させるように波長調整手段を駆動制御することがより好ましい。

[0009]

更に、レーザ発振を休止していた時間が長い場合や波長の変更量が非常に大きい場合には発振開始直後の波長を所望の範囲内に調整することが困難であり、レ

ーザ発振装置が所望の許容範囲の波長で正常に発振しているかの判断も困難となるおそれもあるため、本発明に係るレーザ発振装置の望ましい形態では、発振波長が所定の許容範囲内で発振しているか否かを判断する信号を送信する波長ロック信号送信機能を持ち、発振波長の変更量もしくは発振中止してからの経過時間のうち一つまたは両方にしきい値を設け、上記波長ロック信号の状態はそのしきい値により判断される。

[0010]

また、本発明に係る露光装置では、本発明のレーザ発振装置を光源として用いることにより、波長が所定の許容範囲内に入ったか否かの確認のための空打ちを実行することなく露光を開始する事を特徴とする。もし波長の変更量や発振休止時間が非常に大きい場合や、その他の何らかの理由で波長が所定の許容範囲内に入らない場合は、レーザ発振装置は、波長が所定の範囲内に調整されているか調整されていないかを判断する波長ロック信号を出力として持ち、露光装置はガスレーザ発振装置が波長ロック信号に基づいて空打ちを行うか行わないかの判断をする。本発明の露光装置では、波長変更のタイミングは或る一枚のウエハ交換時以外にも或る露光領域への露光が完了した後、次に露光する領域を露光する前に行っても良い。

[0011]

【発明の実施の形態】

以下、図に示した実施例に基づいて本発明の実施の形態を詳細に説明する。

図1は本発明に係る露光装置の一実施例を示す構成図である。この図において、1は一般にステッパ(またはスキャナ)と呼ばれている周知のステップ・アンド・リピート(またはステップ・アンド・スキャン)方式の露光装置本体部、2はエキシマレーザを利用したレーザ光源であり、エキシマレーザとしては例えばKrF(波長248nm)エキシマレーザ、ArF(波長193nm)エキシマレーザ等がある。

[0012]

この露光装置本体部1は、レーザ光源2からレーザ光(ビーム)の光路に沿って、光源2からのレーザ光の断面を所望の形状にするためのビーム整形光学系3

、レーザ光の強度を調整するための可変NDフィルタ4、レチクル12面上での 照度を均一化させるためにレーザ光を分割して重ねるオプティカルインテグレー タ5、オプティカルインテグレータ5を介したレーザ光を集光するコンデンサレ ンズ6、コンデンサレンズ6からのレーザ光の一部を光検出器8に導くためのビ ームスプリッタ7、コンデンサレンズ6によってレーザ光が集光される位置の近 傍に配置され、レチクル12の面上でレーザ光が照射される範囲を規制するマス キングブレード9、マスキングブレード9の像をレチクル12上に結像する結像 レンズ10、およびレーザ光の光路を投影レンズ13の方向に向けるためのミラ ー11等が設けられて構成されている。

[0013]

かかる光学要素を含む照明光学系を通過してきたレーザ光源2からのレーザ光によってレチクル12は照明され、これによりレチクル12上のパターンは、投影光学系としての投影レンズ13を介して基板としてのウエハ14上の複数のショット領域の一つに、例えば1/2~1/10に縮小されて投影露光(転写)される。ウエハ14は不図示の移動ステージによって投影レンズ13の光軸に垂直な面に沿って2次元的に移動され、露光ショット領域の露光が終了する毎に次の露光ショット領域が投影レンズ13によってレチクル12のパターンが投影される位置に移動される。

[0014]

15は気圧計であり、これは所定の時間間隔で露光装置内部の気圧を計測するものである。その計測値は露光装置本体部1の主制御部16に送信され、主制御部16はそのときに最適なレーザ光の発振波長(発振波長目標値)を算出し、例えば所定の露光領域における露光が終了してから次の露光領域における露光が開始されるまでの間などのタイミングでレーザ光源2に発振波長目標値信号を送信する。また主制御部16では、レーザ光源2に発光させるためのトリガ信号を送信するとともに、光検出器8で検出されたレーザ光の強度に応じて光電変換処理を行い、それを積算し、露光量制御信号を求め、これをレーザ光源2に送信する。レーザ光源2はこれらの発振波長目標値信号、トリガ信号、露光量制御信号に基づいてレーザ光源2内のユニットを制御する。

[0015]

またレーザ光源2からは、主制御部16に波長ロック信号を送信する。この信号は、実際に発振している波長が発振波長目標値から所定の許容範囲内に入っている場合には波長ロック信号ONとし、そうでない場合は波長ロック信号OFFとなる。波長ロック信号ONの場合、発振波長は目標値に対して所定の許容範囲内であるため、レーザ光源2内のシャッタの開閉動作や空打ちを 行わず直ちにウエハへの露光を開始できる。波長ロック信号OFFの場合は、主制御部16はウエハ14への露光を実施せず、レーザ光源2の出射口部にあるシャッタを閉じて、発振波長を所定の許容範囲内に入れるために空打ちを行い、所定の許容範囲内に入った後にシャッタを開け、再度露光を開始することができる。

[0016]

図2は図1に示すレーザ光源2の一例であるエキシマレーザ内部の概略を示す図である。露光装置本体の主制御部16から送信された発振波長目標値信号、トリガ信号、露光量制御信号はレーザ制御部201で受信される。レーザ制御部201は高電圧信号を高圧電源202に送信するとともにレーザを発光させるタイミングでトリガ信号を圧縮回路203に送信する。またレーザ制御部201は発振波長目標値信号を波長制御部204に送信する。レーザチャンバ205内には放電電極205A、205B間で放電が発生し、レーザチャンバ205内に封入されているレーザガスを励起することでレーザ光を発振する。レーザチャンバ205の光射出部には不図示の出力ミラーが取り付けられている。レーザチャンバ205の光射出部には不図示の出力ミラーが取り付けられている。レーザチャンバ205から発振されたレーザ光はビームスプリッタ206を透過してシャッタ207を通って図1で示されているビーム整形光学系3へ出射されるとともに、一部のレーザ光はビームスプリッタ206で反射して光モニタ部208へ導入される。レーザ制御部201は図1中の主制御部16からの命令に従ってシャッタ207の開閉を行う。

[0017]

光モニタ部208ではレーザ光のパルスエネルギ、発振波長を常時モニタしており、計測されたパルスエネルギが露光量目標値に対して所望の値であるか否か

を判断して、パルスエネルギが所望の値よりも低い場合は放電電極205A、205Bへの印可電圧を上昇させる信号を、高い場合は印可電圧を降下させる信号をレーザ制御部201から高圧電源回路203に送信する。また波長制御部204はレーザ制御部201から送信された発振波長目標値と光モニタ部208にて計測された発振波長とを比較し、計測された発振波長が発振波長目標値に対して所定の許容範囲内にあるか否かを判断する。発振波長が所定の許容範囲内にある場合は、シャッタ207の開閉動作や空打ちを行わず直ちにウエハへの露光を開始できる。発振波長が所定の許容範囲内に入らない場合は、波長制御部204はレーザ制御部201を介して図1の主制御部16に波長ロック信号OFFを送信する。その後、目標値から外れている場合にはシャッタ207が閉じられ、波長制御部204は波長を所定の範囲に入るように調整する信号をステッピングモータ212に送信する。発振波長が発振波長目標値から所定の許容範囲内に入った時点で波長制御部204は波長ロック信号ONをレーザ制御部201を介して図1に示す主制御部16に送信し、シャッタ207は開かれる。

[0018]

また、光モニタ部208内部には気圧計や温度計といった光モニタ部208の内部環境を計測する光モニタ部内部環境計測手段210が載置してあり、この計測結果を基に光モニタ部208内部環境におけるレーザ光の屈折率などを算出することが可能である。この結果に基づいて光モニタ部208のドリフト量を算出し、光モニタ部208のドリフト量を補正することで、常時安定した発振波長のレーザ光を出力することができる。

[0019]

狭帯域化モジュール211はレーザチャンバ205の光射出部にある不図示の出力ミラーと対になってレーザ共振器を構成しており、レーザ光のスペクトル線幅を半値全幅で約1pm程度に狭帯域化するとともに、付随するステッピングモータ212を駆動させることによって狭帯域化モジュール211内部に内蔵されているグレーティングもしくはエタロンなどの波長選択素子を駆動し、発振波長を変更させることが可能である。このとき、この波長選択素子の駆動量は発振波長目標値に基づいて算出される。波長制御部204はレーザ制御部201から送

信された発振波長目標値と光モニタ部208で計測された発振波長とを比較して、レーザ光の発振波長が所定の許容範囲内になるようステッピングモータ212に信号を送信しながら常時発振波長を制御している。また発振波長の発振波長目標値が再度変更された場合には、波長制御部204は、発振波長が変更された発振波長目標値と一致するようにステッピングモータ212を再度駆動させる。再度発振波長を変更する時には、波長制御部204は発振履歴記憶部209に記憶された発振履歴に基づいて、次に発振させるレーザ光の発振波長のドリフト量を予測算出し、その算出結果に基づいてステッピングモータ212を駆動させるようにする事がより好ましい。

[0020]

以下に、本発明の発明者らが行った、エキシマレーザ発振装置の発振波長安定 性の実験結果を示す。図3 (a)は発振を終了してから再度発振させるまでの発 振休止時間a、b(a<b)における発振波長安定性を示すデータである。発振 休止時間が大きいbの方が、休止後再度発振させてから数十パルス発振するまで の間で、発振目標値に対してエラー量が大きいことを示している。図3(b)は 発振を終了してから再度発振させた場合において、発振休止時間を一定とした場 合の、休止前の発振デューティ(Duty)c、d(c<d)における発振波長 安定性を示すデータである。休止前の発振デューティが高いdの方が、休止後再 度発振させてから数十パルス発振するまでの間で、発振目標値に対してエラー量 が大きいことを示している。図3(c)は発振を終了してから、再度発振させる 時の発振波長の変更量 e 、 f (e < f)における発振波長安定性を示すデータで ある。発振波長の変更量が大きいfの方が、休止後再度発振させた直後で、発振 目標値に対してエラー量が大きいことを示している。このように、レーザ光の発 振開始直後の発振波長安定性は不安定であり、発振休止時間、発振デューティや 発振波長の変更量に応じて、バースト先頭の数十~数百パルスにおいて、チャー ピング(Сhirping)と呼ばれる波長エラーのうねりが発生することが分 かる。

[0021]

本発明では、レーザ制御部201もしくは波長制御部204において、これら

図3(a)、(b)および(c)で見られるようなバースト先頭で発生する発振 波長のエラー量(ドリフト量)を予測算出し、このドリフト量を打ち消して常時 レーザ光が所望の発振波長で発振するようにステッピングモータ 2 1 2 を補正制 御する。

[0022]

発振波長のドリフト量を予測算出する一例としては以下の式で近似的に表すことが可能である。

[0023]

【数1】

 $\Delta \lambda = F (\lambda \text{ exc.}) + A (1 - e \times p (-B t)) + C + D (1)$

ここに、Δλ:発振波長のドリフト量

F (λ exc.):発振波長の変更量に依存する波長量誤差

A、B:係数(発振デューティや発振波長などに依存する)

t:発振休止時間

C:チャーピング

D:光モニタ部のドリフト量

[0024]

(1)式で一般にF(λ exc.)は発振波長の変更量λ exc.が大きいほど大きい値となり、一例として図4に示すようになっている。チャーピングはレーザチャンバ205内部の設計に依存するものである。レーザ発振装置の製造過程において、発振波長のドリフト量を実験的に求めて(1)式のF(λ exc.)、A、BおよびCを決定し、これをパラメータとして発振履歴記憶部209内部に記憶しておく。また、気圧計や温度計といった光モニタ部内部環境計測手段210による計測結果を基に光モニタ部208内の内部環境におけるレーザ光の屈折率を算出し、その算出結果を用いて光モニタ部208のドリフト量Dを求める。これらのパラメータを用いて(1)式から発振波長のドリフト量 Δ λ を算出し、バースト先頭から発振波長が所定の許容範囲内に入るように、波長制御部204はステッピングモータ212を駆動させ、発振波長を発振波長目標値に変更する。ここで、ステッピングモータ212に1パルス送信した場合の発振波長の変更量をa(pm/パルス)とすると、発振波長を常時所望の許容範囲内にするために、波長

制御部204はステッピングモータ212にΔλ/ a (パルス) だけ送信すれば、常時所望の許容範囲内の波長で発振することが可能である。発振波長のドリフト量Δλを求める工程は露光装置稼働中の非露光時に定期的に行っても良い。

[0025]

また、発振終了後からの休止時間が大きいほど波長のドリフト量Δ1も大きい 値となることが本発明の発明者らの実験により明らかになった。発振休止時間が 或る量より大きいと発振開始直後のレーザ光の発振波長を所定の許容範囲内に制 御することが困難となり、所望の露光性能が達成できない可能性がある。このた め、レーザ制御部201もしくは波長制御部204内部に(1)式のF(λexc.)およびtの値にそれぞれ或るしきい値を設定しておき、F(λexc.)またはt がこのしきい値よりも大きい場合は、その時点で波長ロック信号OFFを送信す る。このしきい値よりも小さい場合は、波長ロック信号はONのままで、シャッ タ207を開けたままの状態で露光動作が可能である。波長ロック信号OFFの 場合は、露光装置の主制御部16はレーザ光源2内部のシャッタ207を閉じ、 レーザ光源2のレーザ制御部201は空打ちをしながら発振波長が所定の許容範 囲内で発振できるよう、ステッピングモータ212を駆動させ、発振波長を調整 する。発振波長が所定の許容範囲内に入った時点でレーザ制御部201は主制御 部16に波長ロック信号ONを送信し、シャッタ207が開かれ、レーザ光源2 外部ヘレーザ光が出力される。図3(d)はこれらの制御を用いた結果、バース ト先頭を含めて、所望の発振波長で発振させることが可能になったことを示す図 である。

[0026]

以下、図5を用いて本発明による露光装置でのフローを説明する。露光装置のジョブが開始され(ステップ501)、まずウエハロードのタイミングで気圧計15は気圧を計測し(ステップ502)、主制御部16は発振波長目標値を算出し(ステップ503)、レーザ光源2に目標波長値を送信する(ステップ504)。ステップ505ではレーザ光源2の主制御部201は発振波長の変更量を算出し、ステップ506でレーザ光の空打ちを行わずにステッピングモータ212を駆動させ、所定の発振波長で発振できるように狭帯域化モジュール211内部

にあるグレーティングもしくはエタロンなどの波長選択素子を調整する。ここで、ステップ507において発振波長の変更量またはレーザ光の発振休止時間が或るしきい値を越えていないか判定し、しきい値を超えていない場合はシャッタ207の開閉動作や空打ちは行わず即露光を開始する。一方、しきい値を超えている場合には波長ロック信号OFFを送信し(ステップ508)、シャッタ207を閉じ、空打ちを行いながら発振波長が目標値に対して許容範囲内になるよう調整する(ステップ509)。発振波長が許容範囲内に入った時点でレーザ主制御部201は波長ロック信号ONを露光装置側の主制御部16に送信し、シャッタ207を開け(ステップ510)、露光装置本体の主制御部16からのトリガ信号により露光が開始される(ステップ512)。ステップ509において発振波長が許容範囲内に入らない場合は、レーザ発振装置はエラー状態となり停止する(ステップ511)。ウエハへの露光が終了しウエハがアンロードされた後(ステップ513)、引き続いて次のウエハを露光するか判断し(ステップ514)、次のウエハを露光する場合には、ステップ502に戻る。次のウエハを露光しない場合は、ジョブ終了(ステップ515)となる。

[0027]

上記の例では発振波長の変更をウエハロードのタイミングで行なっていたが、ウエハ上の所定の露光領域への露光が終了してから次の露光領域への露光が開始されるまでの間に行っても良い。以下、図6を用いて、このときのフローについて説明する。ウエハへの露光がスタートし(ステップ601)、或る露光領域への露光が開始される(ステップ602)。露光中、レーザ光源2の波長制御部204は実際に発振されているレーザ光の発振波長安定性やエラー(実際に発振している波長と発振波長目標値との差)が所定の許容範囲内に入っているかを常時監視している(ステップ603)。許容範囲内に入っている限り露光は継続される(ステップ604)が、発振波長が不安定になり所定の許容範囲内に入らない場合には波長ロック信号OFFを送信し、露光を中断する(ステップ605)。ステップ606ではレーザ光源2のシャッタ207は閉じられ、空打ちを行いながら発振波長が許容範囲内になるよう調整される。許容範囲内になったところで、ステップ607において波長ロック信号ONが送信され、露光が再度開始され

る(ステップ604)。ステップ606で波長を許容範囲内になるよう調整できない場合はレーザ光源2はエラー状態となり、露光がストップする(ステップ608)。或る露光領域の露光が完了(ステップ609)した後、露光装置の主制御部16は次の露光領域を露光するかどうかを判断し(ステップ610)、露光する場合は、ステップ612において気圧計15の計測結果から新しい発振波長目標値が算出され、それをレーザ光源2に送信し、ステップ602へ戻って空打ちを行うことなく次の露光領域の露光が開始される。次の露光領域を露光しない場合は、そのウエハへの露光は終了し(ステップ611)、ウエハはアンロードされる。このようにウエハ上の所定の露光領域への露光が終了してから次の露光領域への露光が開始されるまでの間にレーザ光の発振波長を変更することで、ウエハの大口径化という近年の傾向に伴い、ウエハ1枚の露光所要時間が長くなり、ウエハ上の全露光領域に対し、最適な発振波長で露光できなくなるという問題を解決することができる。

[0028]

(半導体生産システムの実施例)

次に、本発明に係る装置を用いた半導体デバイス(ICやLSI等の半導体チップ、液晶パネル、CCD、薄膜磁気ヘッド、マイクロマシン等)の生産システムの例を説明する。これは半導体製造工場に設置された製造装置のトラブル対応や定期メンテナンス、あるいはソフトウェア提供などの保守サービスを、製造工場外のコンピュータネットワークを利用して行うものである。

[0029]

図7は全体システムをある角度から切り出して表現したものである。図中、101は半導体デバイスの製造装置を提供するベンダ(装置供給メーカ)の事業所である。製造装置の実例としては、半導体製造工場で使用する各種プロセス用の半導体製造装置、例えば、前工程用機器(露光装置、レジスト処理装置、エッチング装置等のリソグラフィ装置、熱処理装置、成膜装置、平坦化装置等)や後工程用機器(組立て装置、検査装置等)を想定している。事業所101内には、製造装置の保守データベースを提供するホスト管理システム108、複数の操作端末コンピュータ110、これらを結んでイントラネット等を構築するローカルエ

リアネットワーク(LAN)109を備える。ホスト管理システム108は、LAN109を事業所の外部ネットワークであるインターネット105に接続するためのゲートウェイと、外部からのアクセスを制限するセキュリティ機能を備える。

[0030]

一方、102_104は、製造装置のユーザとしての半導体製造メーカの製造 工場である。製造工場102_104は、互いに異なるメーカに属する工場であ っても良いし、同一のメーカに属する工場(例えば、前工程用の工場、後工程用 の工場等)であっても良い。各工場102_ 104内には、夫々、複数の製造装 置106と、それらを結んでイントラネット等を構築するローカルエリアネット ワーク(LAN)111と、各製造装置106の稼動状況を監視する監視装置と してホスト管理システム107とが設けられている。各工場102_ 104に設 けられたホスト管理システム107は、各工場内のLAN111を工場の外部ネ ットワークであるインターネット105に接続するためのゲートウェイを備える 。これにより各工場のLAN111からインターネット105を介してベンダ1 01側のホスト管理システム108にアクセスが可能となり、ホスト管理システ ム108のセキュリティ機能によって限られたユーザだけにアクセスが許可とな っている。具体的には、インターネット105を介して、各製造装置106の稼 動状況を示すステータス情報(例えば、トラブルが発生した製造装置の症状)を 工場側からベンダ側に通知する他、その通知に対応する応答情報(例えば、トラ ブルに対する対処方法を指示する情報、対処用のソフトウェアやデータ)や、最 新のソフトウェア、ヘルプ情報などの保守情報をベンダ側から受け取ることがで きる。各工場102_ 104とベンダ101との間のデータ通信および各工場内 のLAN111でのデータ通信には、インターネットで一般的に使用されている 通信プロトコル(TCP/IP)が使用される。なお、工場外の外部ネットワー クとしてインターネットを利用する代わりに、第三者からのアクセスができずに セキュリティの高い専用線ネットワーク(ISDNなど)を利用することもでき る。また、ホスト管理システムはベンダが提供するものに限らずユーザがデータ ベースを構築して外部ネットワーク上に置き、ユーザの複数の工場から該データ

ベースへのアクセスを許可するようにしてもよい。

[0031]

さて、図8は本実施形態の全体システムを図7とは別の角度から切り出して表現した概念図である。先の例ではそれぞれが製造装置を備えた複数のユーザ工場と、該製造装置のベンダの管理システムとを外部ネットワークで接続して、該外部ネットワークを介して各工場の生産管理や少なくとも1台の製造装置の情報をデータ通信するものであった。これに対し本例は、複数のベンダの製造装置を備えた工場と、該複数の製造装置のそれぞれのベンダの管理システムとを工場外の外部ネットワークで接続して、各製造装置の保守情報をデータ通信するものである。図中、301は製造装置ユーザ(半導体デバイス製造メーカ)の製造工場であり、工場の製造ラインには各種プロセスを行う製造装置、ここでは例として露光装置302、レジスト処理装置303、成膜処理装置304が導入されている。なお図8では製造工場301は1つだけ描いているが、実際は複数の工場が同様にネットワーク化されている。工場内の各装置はLAN306で接続されてイントラネットを構成し、ホスト管理システム305で製造ラインの稼動管理がされている。

[0032]

一方、露光装置メーカ310、レジスト処理装置メーカ320、成膜装置メーカ330などベンダ(装置供給メーカ)の各事業所には、それぞれ供給した機器の遠隔保守を行うためのホスト管理システム311,321,331を備え、これらは上述したように保守データベースと外部ネットワークのゲートウェイを備える。ユーザの製造工場内の各装置を管理するホスト管理システム305と、各装置のベンダの管理システム311,321,331とは、外部ネットワーク300であるインターネットもしくは専用線ネットワークによって接続されている。このシステムにおいて、製造ラインの一連の製造機器の中のどれかにトラブルが起きると、製造ラインの稼動が休止してしまうが、トラブルが起きた機器のベンダからインターネット300を介した遠隔保守を受けることで迅速な対応が可能で、製造ラインの休止を最小限に抑えることができる。

[0033]

半導体製造工場に設置された各製造装置はそれぞれ、ディスプレイと、ネット ワークインタフェースと、記憶装置にストアされたネットワークアクセス用ソフ トウェアならびに装置動作用のソフトウェアを実行するコンピュータを備える。

[0034]

記憶装置としては内蔵メモリやハードディスク、あるいはネットワークファイ ルサーバーなどである。上記ネットワークアクセス用ソフトウェアは、専用又は 汎用のウェブブラウザを含み、例えば図9に一例を示す様な画面のユーザインタ フェースをディスプレイ上に提供する。各工場で製造装置を管理するオペレータ は、画面を参照しながら、製造装置の機種401、シリアルナンバー402、ト ラブルの件名403、発生日404、緊急度405、症状406、対処法407 . 経過408等の情報を画面上の入力項目に入力する。入力された情報はインタ ーネットを介して保守データベースに送信され、その結果の適切な保守情報が保 守データベースから返信されディスプレイ上に提示される。またウェブブラウザ が提供するユーザインタフェースはさらに図示のごとくハイパーリンク機能41 0 412を実現し、オペレータは各項目の更に詳細な情報にアクセスしたり、 ベンダが提供するソフトウェアライブラリから製造装置に使用する最新バージョ ンのソフトウェアを引出したり、工場のオペレータの参考に供する操作ガイド(ヘルプ情報)を引出したりすることができる。ここで、保守データベースが提供 する保守情報には、上記説明した本発明に関する情報も含まれ、また前記ソフト ウェアライブラリは本発明を実現するための最新のソフトウェアも提供する。

[0035]

次に上記説明した生産システムを利用した半導体デバイスの製造プロセスを説明する。図10は半導体デバイスの全体的な製造プロセスのフローを示す図である。ステップ1(回路設計)では半導体デバイスの回路設計を行う。ステップ2(マスク製作)では設計した回路パターンを形成したマスクを製作する。一方、ステップ3(ウエハ製造)ではシリコン等の材料を用いてウエハを製造する。ステップ4(ウエハプロセス)は前工程と呼ばれ、上記用意したマスクとウエハを用いて、リソグラフィ技術によってウエハ上に実際の回路を形成する。次のステップ5(組み立て)は後工程と呼ばれ、ステップ4によって作製されたウエハを

用いて半導体チップ化する工程であり、アッセンブリ工程(ダイシング、ボンディング)、パッケージング工程(チップ封入)等の組立て工程を含む。ステップ 6 (検査)ではステップ 5 で作製された半導体デバイスの動作確認テスト、耐久性テスト等の検査を行う。こうした工程を経て半導体デバイスが完成し、これを出荷(ステップ7)する。前工程と後工程はそれぞれ専用の別の工場で行い、これらの工場毎に上記説明した遠隔保守システムによって保守がなされる。また前工程工場と後工程工場との間でも、インターネットまたは専用線ネットワークを介して生産管理や装置保守のための情報がデータ通信される。

[0036]

図11は上記ウエハプロセスの詳細なフローを示す図である。ステップ11(酸化)ではウエハの表面を酸化させる。ステップ12(CVD)ではウエハ表面に絶縁膜を成膜する。ステップ13(電極形成)ではウエハ上に電極を蒸着によって形成する。ステップ14(イオン打込み)ではウエハにイオンを打ち込む。

[0037]

ステップ15 (レジスト処理)ではウエハに感光剤を塗布する。ステップ16 (露光)では上記説明した露光装置によってマスクの回路パターンをウエハに焼付露光する。ステップ17 (現像)では露光したウエハを現像する。ステップ18 (エッチング)では現像したレジスト像以外の部分を削り取る。ステップ19 (レジスト剥離)ではエッチングが済んで不要となったレジストを取り除く。これらのステップを繰り返し行うことによって、ウエハ上に多重に回路パターンを形成する。各工程で使用する製造機器は上記説明した遠隔保守システムによって保守がなされているので、トラブルを未然に防ぐと共に、もしトラブルが発生しても迅速な復旧が可能で、従来に比べて半導体デバイスの生産性を向上させることができる。

[0038]

【発明の効果】

以上、本発明によれば、レーザ発振装置を光源として使用する露光装置において、露光装置の生産性の低下を招くことなく、常に良好な回路パターンを露光することができる。

【図面の簡単な説明】

- 【図1】 本発明に係る露光装置の一実施例を示す構成図である。
- 【図2】 本発明に係るレーザ発振装置の一実施例を示す図構成である。
- 【図3】 (a)~(c)はレーザ発振装置による、発振波長安定性の実験結果を示す図であって、(a)は発振休止時間を変化させた場合であり、(b)は発振休止時間を固定し、発振デューティを変化させた場合であり、(c)は発振波長の変更量を変化させた場合の図である。また、(d)は本発明に係るレーザ発振装置による発振波長安定性を示す図である。
- 【図4】 発振波長の変更量に依存するレーザ発振開始時の波長誤差量の一 例を表す図である。
- 【図5】 本発明に係る露光装置による、ジョブ開始から終了までのフロー を示す図である。
- 【図6】 本発明に係る露光装置による、ウエハ上の所定の露光領域への露光が終了してから次の露光領域への露光が開始されるまでの間に発振波長を変更する場合のフローを示す図である。
- 【図7】 本発明に係る装置を用いた半導体デバイスの生産システムをある 角度から見た概念図である。
- 【図8】 本発明に係る装置を用いた半導体デバイスの生産システムを別の 角度から見た概念図である。
 - 【図9】 ユーザインタフェースの具体例である。
 - 【図10】 デバイスの製造プロセスのフローを説明する図である。
 - 【図11】 ウエハプロセスを説明する図である。
- 【図12】 従来の技術による、ジョブ開始から終了までのフローを示す図である。

【符号の説明】 1:露光装置本体部、2:レーザ光源、3:ビーム整形光学系、4:NDフィルタ、5:オプティカルインテグレータ、6:コンデンサレンズ、7:ビームスプリッタ、8:光検出器、9:マスキングブレード、10:結像レンズ、11:ミラー、12:レチクル、13:投影レンズ、14:ウエハ、15:気圧計、16:主制御部、201:レーザ制御部、202:高圧電源、

特2000-126502

203:圧縮回路、204:波長制御部、205:レーザチャンバ、205A, 205B:放電電極、206:ビームスプリッタ、207:シャッタ、208: 光モニタ部、209:発振履歴記憶部、210:光モニタ部内部環境計測手段、 211:狭帯域化モジュール、212:ステッピングモータ。 【書類名】

図面

【図1】

【図2】

【図6】

【図7】

【図9】

【図10】

半導体デバイス製造フロー

【図11】

ウエハプロセス

【図12】

特2000-126502

【書類名】 要約書

【要約】

【課題】 レーザ発振装置を光源として使用する露光装置の生産性の低下を招く ことなく、常に良好な回路パターンの露光を可能にする。

【解決手段】 狭帯域化モジュール211内の波長選択素子を駆動し、レーザ光の発振波長を目標値に変更する波長変更手段と、レーザ光の発振状態を発振履歴として記憶する発振履歴記憶部209とを有し、前記波長変更手段は、前記発振履歴に基づいて前記波長選択素子を駆動し、前記レーザ光の発振波長を目標値に変更する。

【選択図】 図2

出願人履歴情報

識別番号

[000001007]

1. 変更年月日

1990年 8月30日

[変更理由]

新規登録

住 所

東京都大田区下丸子3丁目30番2号

氏 名

キヤノン株式会社