Channel Shaping Using Reconfigurable Intelligent Surfaces: From Diagonal to Beyond

Yang Zhao, Member, IEEE, Hongyu Li, Graduate Student Member, IEEE, Yijie Mao, Member, IEEE, Shanpu Shen, Member, IEEE, and Bruno Clerckx, Fellow, IEEE

I. ASSUMPTION

All proposals in this paper based on assumption of asymmetric passive Beyond-Diagonal (BD) Reconfigurable Intelligent Surface (RIS), i.e., symmetry constraint $\Theta_g = \Theta_g^{\mathsf{T}}$ is relaxed. This is feasible when asymmetric passive components (e.g., ring hybrids and branch-line hybrids) [1] are available. This assumption was also made in Hongyu's papers [2], [3]. For quadratic problems, the proposed algorithms may be extended to symmetric BD RIS by replacing singular value decomposition with Takagi factorization [4].

II. POINT-TO-POINT MIMO

A. Channel Power Maximization

Consider a BD RIS with N_s elements, which is divided into G groups of equal L elements.

$$\max_{\mathbf{\Theta}} \quad \left\| \mathbf{H}^{\mathrm{D}} + \sum_{g} \mathbf{H}_{g}^{\mathrm{B}} \mathbf{\Theta}_{g} \mathbf{H}_{g}^{\mathrm{F}} \right\|_{\mathrm{F}}^{2} \tag{1a}$$
s.t.
$$\mathbf{\Theta}_{g}^{\mathsf{H}} \mathbf{\Theta}_{g} = \mathbf{I}_{L}, \quad \forall g \in \mathcal{G} \triangleq \{1, ..., G\} \tag{1b}$$

s.t.
$$\Theta_g^{\mathsf{H}}\Theta_g = \mathbf{I}_L, \quad \forall g \in \mathcal{G} \triangleq \{1, ..., G\}$$
 (1b)

For symmetric BD-RIS, the problem has been solved in

- Matteo's paper [5]: SISO and equivalent¹;
- Ignacio's paper [6]: SISO and directless MISO/SIMO.

Remark 1. The difficulty of (1) is that the RIS needs to balance the additive (direct-indirect) and multiplicative (backwardforward) eigenspace alignment. Interestingly, it has the same form as the weighted orthogonal Procrustes problem [7]:

$$\min_{\mathbf{\Theta}} \|\mathbf{C} - \mathbf{A}\mathbf{\Theta}\mathbf{B}\|_F^2 \tag{2a}$$

s.t.
$$\Theta^{\mathsf{H}}\Theta = \mathbf{I}$$
 (2b)

There exists no trivial solution to (2). One lossy transformation, by moving Θ to one side [8], formulates a standard orthogonal Procrustes problem:

$$\min_{\mathbf{\Theta}} \quad \|\mathbf{A}^{\dagger}\mathbf{C} - \mathbf{\Theta}\mathbf{B}\|_F^2 \tag{3a}$$

s.t.
$$\Theta^{H}\Theta = I$$
 (3b)

(3) has a global optimal solution $\Theta^* = UV^H$, where U and V are left and right singular matrix of $A^{\dagger}CB^{H}$ [9]. This low-complexity solution will be compared with the one proposed later.

Inspired by [10], we propose an iterative algorithm to solve (1). The idea is to successively approximate the quadratic

¹Single-stream MIMO with given precoder and combiner.

objective with a sequence of affine functions and solve the resulting subproblems in closed form.

Proposition 1. Start from any $\Theta^{(0)}$, the sequence

$$\mathbf{\Theta}_{q}^{(r+1)} = \mathbf{U}_{q}^{(r)} \mathbf{V}_{q}^{(r)}, \quad \forall g \in \mathcal{G}$$
 (4)

converges to a stationary point of (1), where $\mathbf{U}_g^{(r)}$ and $\mathbf{V}_q^{(r)}$ are left and right singular matrix of

$$\mathbf{M}_{g}^{(r)} = \mathbf{H}_{g}^{\mathrm{B}^{\mathrm{H}}} \mathbf{H}^{\mathrm{D}} \mathbf{H}_{g}^{\mathrm{F}^{\mathrm{H}}} + \sum_{g' < g} \mathbf{H}_{g'}^{\mathrm{B}^{\mathrm{H}}} \mathbf{H}_{g'}^{\mathrm{B}} \mathbf{\Theta}_{g'}^{(r+1)} \mathbf{H}_{g'}^{\mathrm{F}} \mathbf{H}_{g'}^{\mathrm{F}^{\mathrm{H}}} + \sum_{g' > g} \mathbf{H}_{g'}^{\mathrm{B}^{\mathrm{H}}} \mathbf{H}_{g'}^{\mathrm{B}} \mathbf{\Theta}_{g'}^{(r)} \mathbf{H}_{g'}^{\mathrm{F}^{\mathrm{H}}} \mathbf{H}_{g'}^{\mathrm{F}^{\mathrm{H}}}.$$
(5)

REFERENCES

- [1] H.-R. Ahn, Asymmetric Passive Components in Microwave Integrated Circuits. Wiley, 2006. [Online]. https://books.google.co.uk/books?id=X6WdLbOuSNQC
- [2] H. Li, S. Shen, and B. Clerckx, "Beyond diagonal reconfigurable intelligent surfaces: From transmitting and reflecting modes to single-, group-, and fully-connected architectures," IEEE Transactions on Wireless Communications, vol. 22, pp. 2311-2324, 4 2023.
- —, "Beyond diagonal reconfigurable intelligent surfaces: A multisector mode enabling highly directional full-space wireless coverage," IEEE Journal on Selected Areas in Communications, vol. 41, pp. 2446-2460, 8 2023.
- [4] R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge University Press, 2012. [Online]. https://books.google.co.uk/books?id=O7sgAwAAQBAJ
- M. Nerini, S. Shen, and B. Clerckx, "Closed-form global optimization of beyond diagonal reconfigurable intelligent surfaces," IEEE Transactions on Wireless Communications, pp. 1-1, 2023. [Online]. Available: https://ieeexplore.ieee.org/document/10155675/
- [6] I. Santamaria, M. Soleymani, E. Jorswieck, and J. Gutiérrez, "Snr maximization in beyond diagonal ris-assisted single and multiple antenna links," IEEE Signal Processing Letters, vol. 30, pp. 923-926, 2023. [Online]. Available: https://ieeexplore.ieee.org/document/10187688/
- C. Gower and G. В. Dijksterhuis, Procrustes Problems. Oxford, OUP 2004 [Online]. Available: https://books.google.co.uk/books?id=kRRREAAAQBAJ
- T. Bell, "Global positioning system-based attitude determination and the orthogonal procrustes problem," Journal of Guidance, Control, and Dynamics, vol. 26, pp. 820-822, 9 2003. [Online]. Available: https://arc.aiaa.org/doi/10.2514/2.5117
- [9] G. H. Golub and C. F. V. Loan, Matrix Computations. Johns Hopkins University Press, 2013. [Online]. Available: https://jhupbooks.press.jhu.edu/title/matrix-computations
- [10] F. Nie, R. Zhang, and X. Li, "A generalized power iteration method for solving quadratic problem on the stiefel manifold," Science China Information Sciences, vol. 60, p. 112101, 11 2017. [Online]. Available: http://link.springer.com/10.1007/s11432-016-9021-9