線形写像の像と核

写像の像や逆像を、線形写像の場合に考える

$$Im(f) = f(V) = \{ f(\boldsymbol{v}) \in W \mid \boldsymbol{v} \in V \} \subset W$$

納得!線形空間入門 p79 ~84

ref: 図で整理!例題で

線形写像による像は、像空間とも呼ばれる

線形写像による核 線形写像 $f: V \to W$ に対して、f による $\{\mathbf{0}\}$ の逆像 $f^{-1}(\{\mathbf{0}\})$ を、線形写像 f の核といい、 $\operatorname{Ker}(f)$ と表記する

$$Ker(f) = f^{-1}(\{0\}) = \{ \boldsymbol{v} \in V \mid f(\boldsymbol{v}) = 0 \} \subset V$$

線形写像による核は、核空間あるいはカーネルとも呼ばれる

像空間と全射性

線形写像 $f: \mathbb{R}^n \to \mathbb{R}^m$ の全射性は、 \mathbb{R}^m の部分集合である像空間 Im(f) と関係している

ref: 行列と行列式の基 礎 p68~69

全射な写像は、定義域の元の像で値域を「埋め尽くす」

ということから、f が全射であることは、 $\operatorname{Im}(f) = \mathbb{R}^m$ と同値だとわかる

核空間と単射性

線形写像 f が単射であることは、次の条件と同値であった

$$f(\boldsymbol{v}) = 0 \Longrightarrow \boldsymbol{v} = 0$$

この条件は、次のように言い換えることができる

$$Ker(f) = \{\mathbf{0}\}$$

♣ 線形写像の単射性 f を線形写像とするとき、

$$f$$
 が単射 \iff Ker $(f) = \{0\}$

証明

Ker(f) の定義は

$$\operatorname{Ker}(f) = \{ \boldsymbol{v} \in V \mid f(\boldsymbol{v}) = \boldsymbol{0} \}$$

これを踏まえて、次の2つが同値であることを示す

i.
$$f(\boldsymbol{v}) = 0 \Longrightarrow \boldsymbol{v} = 0$$

ii.
$$Ker(f) = \{0\}$$

$(i) \Longrightarrow (ii)$

このとき、 $f(\boldsymbol{v}) = \mathbf{0}$ が $\boldsymbol{v} = \mathbf{0}$ を意味するので、 $\operatorname{Ker}(f)$ の元は零ベクトルのみになる

よって、
$$Ker(f) = \{0\}$$
 が成り立つ

$(ii) \Longrightarrow (i)$

 $\mathsf{Ker}(f) = \{\mathbf{0}\}$ であれば、 $\mathsf{Ker}(f)$ の元は零ベクトルのみである

よって、 $f(\boldsymbol{v}) = \boldsymbol{0}$ が成り立つとき、 $\boldsymbol{v} = \boldsymbol{0}$ が成り立つこ

すなわち、 $f(\boldsymbol{v}) = \mathbf{0} \Longrightarrow \boldsymbol{v} = \mathbf{0}$ が成り立つ

核空間と解空間

線形写像 $f: \mathbb{R}^n \to \mathbb{R}^m$ の表現行列を A とするとき、

$$\operatorname{Ker}(f) = \{ \boldsymbol{v} \in \mathbb{R}^n \mid A\boldsymbol{v} = \boldsymbol{0} \}$$

と定めると、 $f(oldsymbol{v}) = Aoldsymbol{v}$ という関係から、 $\operatorname{Ker}(f)$ と $\operatorname{Ker}(A)$ は同じものを指す

これは、斉次形の連立線形方程式 Ax = 0 の解空間そのものである Ker(A) の元は、Ax = 0 の基本解を使ってパラメータ表示できる