(1/58)

Solving nonlinear equations §1.1: The bisection method

MA385/530 – Numerical Analysis September 2019

Linear equations are of the form:

find x such that
$$ax + b = 0$$

and are easy to solve. Some nonlinear problems are also easy to solve, e.g.,

find x such that
$$ax^2 + bx + c = 0$$
.

Similarly, there are formulae for all cubic and quartic polynomial equations. But most equations do not have simple formulae for their solutions, so numerical methods are needed.

References

- Chap. 1 of Süli and Mayers (Introduction to Numerical Analysis). We'll follow this pretty closely in lectures, though we will do the sections in reverse order!
- Stewart (*Afternotes* ...), Lectures 1–5. A well-presented introduction, with lots of diagrams to give an intuitive introduction.
- Chapter 4 of Moler's "Numerical Computing with MATLAB". Gives a brief introduction to the methods we study, and description of MATLAB functions for solving these problems.
- The proof of the convergence of Newton's Method is based on the presentation in Thm 3.2 of Epperson.

Our generic problem is:

Let f be a continuous function on the interval [a, b].
Find
$$\tau \in [a, b]$$
 such that $f(\tau) = 0$.

Here f is some specified function, and τ is the **solution** to f(x) = 0.

This leads to two natural questions:

- (1) How do we know there is a solution?
- (2) How do we find it?

The following gives *sufficient* conditions for the existence of a solution:

Theorem 1.1

Let f be a real-valued function that is defined and continuous on a bounded closed interval $[a,b]\subset\mathbb{R}$. Suppose that $f(a)f(b)\leq 0$. Then there exists $\tau\in[a,b]$ such that $f(\tau)=0$.

So now we know there is a solution τ to f(x) = 0, but how to we actually solve it? **Usually we don't!** Instead we construct a sequence of estimates $\{x_0, x_1, x_2, x_3, \dots\}$ that **converge** to the true solution. So now we have to answer these questions:

- (1) How can we construct the sequence x_0, x_1, \dots ?
- (2) How do we show that $\lim_{k\to\infty} x_k = \tau$?

There are some subtleties here, particularly with part (2). What we would like to say is that at each step the error is getting smaller. That is

$$|\tau - x_k| < |\tau - x_{k-1}|$$
 for $k = 1, 2, 3, \dots$

But we can't. Usually all we can say is that the **bounds** on the error is getting smaller. That is: **let** ε_k **be a bound on the error** at step k

$$|\tau - x_k| < \varepsilon_k$$

then $\varepsilon_{k+1} < \mu \varepsilon_k$ for some number $\mu \in (0,1)$. It is easiest to explain this in terms of an example, so we'll study the simplest method: **Bisection**.

Bisection (8/58)

The most elementary algorithm is the "Bisection Method" (also known as "Interval Bisection"). Suppose that we know that f changes sign on the interval $[a,b]=[x_0,x_1]$ and, thus, f(x)=0 has a solution, τ , in [a,b]. Proceed as follows

- 1. Set x_2 to be the midpoint of the interval $[x_0, x_1]$.
- 2. Choose one of the sub-intervals $[x_0, x_2]$ and $[x_2, x_1]$ where f change sign;
- 3. Repeat Steps 1-2 on that sub-interval, until f is sufficiently small at the end points of the interval.

Bisection (9/58)

This may be expressed more precisely using some *pseudocode*.

The Bisection Algorithm

```
Set eps to be the stopping criterion.
If |f(a)| \leq eps, return a. Exit.
If |f(b)| \leq eps, return b. Exit.
Set x_I = a and x_R = b.
Set k=1
while (|f(x_k)| > eps)
    x_{k+1} = (x_l + x_R)/2;
    if (f(x_L)f(x_{k+1}) < eps)
        X_R = X_{k+1};
    else
        x_{l} = x_{k+1}
    end if:
    k = k + 1
end while;
```

Bisection (10/58)

Example 1.2

Find an estimate for $\sqrt{2}$ that is correct to 6 decimal places. **Solution:** Use bisection to solve $f(x) := x^2 - 2 = 0$ on the interval [0, 2].

Bisection (11/58)

Find an estimate for $\sqrt{2}$ that is correct to 6 decimal places. **Solution:** Use bisection to solve $f(x) := x^2 - 2 = 0$ on the interval [0, 2].

k	x_k	$ x_k - \tau $	$ x_k - x_{k-1} $
0	0.000000	1.41	
1	2.000000	5.86e-01	
2	1.000000	4.14e-01	1.00
3	1.500000	8.58e-02	5.00e-01
4	1.250000	1.64e-01	2.50e-01
5	1.375000	3.92e-02	1.25e-01
6	1.437500	2.33e-02	6.25e-02
7	1.406250	7.96e-03	3.12e-02
8	1.421875	7.66e-03	1.56e-02
9	1.414062	1.51e-04	7.81e-03
10	1.417969	3.76e-03	3.91e-03
:	:	:	:
22	1.414214	5.72e-07	9.54e-07

The main advantages of the Bisection method are

- It will always work.
- After *k* steps we know that

Theorem 1.3

$$|\tau - x_k| \le \left(\frac{1}{2}\right)^{k-1}|b-a|$$
, for $k = 2, 3, 4, ...$

A disadvantage of bisection is that it is not particularly efficient. So our next goal will be to derive better methods, particularly the **Secant Method** and **Newton's method**. We also have to come up with some way of expressing what we mean by "better"; and we'll have to use Taylor's theorem in our analyses.

Exercises (14/58)

Exercise 1.1

Does Proposition 1.1.1 mean that, if there is a solution to f(x) = 0 in [a, b] then $f(a)f(b) \le 0$? That is, is $f(a)f(b) \le 0$ a necessary condition for their being a solution to f(x) = 0? Give an example that supports your answer.

Exercise 1.2

Suppose we want to find $\tau \in [a,b]$ such that $f(\tau)=0$ for some given f, a and b. Write down an estimate for the number of iterations K required by the bisection method to ensure that, for a given ε , we know $|x_k - \tau| \le \varepsilon$ for all $k \ge K$. In particular, how does this estimate depend on f, a and b?

Exercises (15/58)

Exercise 1.3

How many (decimal) digits of accuracy are gained at each step of the bisection method? (If you prefer, how many steps are needed to gain a single (decimal) digit of accuracy?)

Exercise 1.4

Let $f(x) = e^x - 2x - 2$. Show that there is a solution to the problem: find $\tau \in [0,2]$ such that $f(\tau) = 0$.

Taking $x_0 = 0$ and $x_1 = 2$, use 6 steps of the bisection method to estimate τ . You may use a computer program to do this, but please note that in your solution.

Give an upper bound for the error $|\tau-x_6|$.

Exercises (16/58)

Exercise 1.5

We wish to estimate $\tau = \sqrt[3]{4}$ numerically by solving f(x) = 0 in [a, b] for some suitably chosen f, a and b.

- (i) Suggest suitable choices of f, a, and b for this problem.
- (ii) Show that f has a zero in [a, b].
- (iii) Use 6 steps of the bisection method to estimate $\sqrt[3]{4}$. You may use a computer program to do this, but please note that in your solution.
- (iv) Use Theorem 1.3 to give an upper bound for the error $|\tau-x_6|$.