

Modern CNNs

Industrial AI Lab.

Prof. Seungchul Lee

CNNs for Computer Vision

[Krizhevsky 2012]

[Ciresan et al. 2013]

[Faster R-CNN - Ren 2015]

[NVIDIA dev blog]

Modern CNN

ImageNet

• Human performance = 5.1 %

ImageNet

LeNet

- CNN = Convolutional Neural Networks = ConvNet
- LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied to document recognition.
- All are still the basic components of modern ConvNets!

Yann LeCun

AlexNet

 Simplified version of Krizhevsky, Alex, Sutskever, and Hinton. "Imagenet classification with deep convolutional neural networks." NIPS 2012

- LeNet-style backbone, plus:
 - ReLU [Nair & Hinton 2010]
 - "RevoLUtion of deep learning"*
 - Accelerate training; better grad prop (vs. tanh)
 - Dropout [Hinton et al 2012]
 - In-network ensembling
 - Reduce overfitting
 - Data augmentation
 - Label-preserving transformation
 - Reduce overfitting

VGG-16/19

• Simonyan, Karen, and Zisserman. "Very deep convolutional networks for large-scale image recognition." (2014)

- Simply "Very Deep"!
 - Modularized design
 - 3x3 Conv as the module
 - Stack the same module
 - Same computation for each module
 - Stage-wise training
 - VGG-11 → VGG-13 → VGG-16
 - We need a better initialization...

GoogleNet/Inception

- Multiple branches
 - e.g., 1x1, 3x3, 5x5, pool
- Shortcuts
 - stand-alone 1x1, merged by concat.
- Bottleneck
 - Reduce dim by 1x1 before expensive 3x3/5x5 conv

ResNet (Deep Residual Learning)

- He, Kaiming, et al. "Deep residual learning for image recognition." CVPR. 2016.
- Plane net

H(x) is any desired mapping, hope the small subnet fit H(x)

ResNet (Deep Residual Learning)

- He, Kaiming, et al. "Deep residual learning for image recognition."
 CVPR. 2016.
- Residual net
- Skip connection

H(x) is any desired mapping, hope the small subnet fit H(x)hope the small subnet fit F(x)Let H(x) = F(x) + x

identity

 $\boldsymbol{\mathcal{X}}$

- A direct connection between 2 non-consecutive layers
- No vanishing gradient

ResNet (Deep Residual Learning)

- Parameters are optimized to learn a residual, that is the difference between the value before the block and the one needed after.
- F(x) is a residual mapping w.r.t. identity

- If identity were optimal, easy to set weights as 0
- If optimal mapping is closer to identity, easier to find small fluctuations

DensNets

Densely Connected Convolutional Networks

U-Net

U-Net

- The U-Net owes its name to its symmetric shape
- The U-Net architecture is built upon the Fully Convolutional Network and modified in a way that it yields better segmentation in medical imaging.
- Compared to FCN-8, the two main differences are
 - U-net is symmetric and
 - the skip connections between the downsampling path and the upsampling path apply a concatenation operator instead of a sum.
- These skip connections intend to provide local information to the global information while upsampling. Because of its symmetry, the network has a large number of feature maps in the upsampling path, which allows to transfer information.

Pre-trained Models

- Training a model on ImageNet from scratch takes days or weeks.
- Many models trained on ImageNet and their weights are publicly available!
- Transfer learning
 - Use pre-trained weights, remove last layers to compute representations of images
 - Train a classification model from these features on a new classification task
 - The network is used as a generic feature extractor
 - Better than handcrafted feature extraction on natural images

Pre-trained Models

- Training a model on ImageNet from scratch takes days or weeks.
- Many models trained on ImageNet and their weights are publicly available!
- Fine-tuning
 - Retraining the (some) parameters of the network (given enough data)
 - Truncate the last layer(s) of the pre-trained network
 - Freeze the remaining layers weights
 - Add a (linear) classifier on top and train it for a few epochs
 - Then fine-tune the whole network or the few deepest layers
 - Use a smaller learning rate when fine tuning