555- Multivibrador astable

555- Diagrama interno

Comparador B: $1/3 \text{ Vcc} > \text{IN} \rightarrow \text{Set}$

555-¿Cómo funciona?

Cálculos

- $T = t_H + t_L$ (período deseado)
- $\bullet \ t_{L} / t_{H} = R_{B} / R_{A} + R_{B}$
- Decidir proporción t_L / t_H
- Mirar el gráfico para fijar valores de las Resistencias y Capacitor según la frecuencia deseada

Figure 13. Typical Astable Waveforms

Gráfico $(R_{\Delta} + 2R_{B})$ f vs C

Figure 14. Free-Running Frequency

Sobre qué valores deben estar RA y RB para generar:

Onda biestable de 1 KHz con un capacitor C = 0,1 microfaradios

- \checkmark línea de RA + 2 RB = 10Kohms .. RA = 10 K 2RB
- \checkmark decidimos 4/5 o 2/3 o similar para t_L / t_H

$$_{\checkmark}$$
 4/5 = $R_{\rm B}$ / $R_{\rm A}$ + $R_{\rm B}$ (sabemos resolver dos ecuaciones con 2 incógnitas)

¿Y para una onda de 10 Hz?

¿Y para una de 1 Hz?