Topology

DHVANIL GHEEWALA

June 2023

Contents

1	Wh	at have I learnt?	2
2	Sun	mary	2
			2
		2.1.1 Definition: Topology	2
		2.1.2 Definition: discrete space	2
			3
		2.1.4 Definition: Open sets	3
		2.1.5 Proposition:	3
		2.1.6 Definition: Closed sets	3
		2.1.7 Definition: Clopen	3
			4
	2.2		4
		2.2.1 Definition: The Euclidean topology on \mathbb{R}	4
		2.2.2 Definition: Basis	4
	2.3	Limit points:	5
		2.3.1 Definition: Limit point	5
		2.3.2 Definition: Closure of A	5
		2.3.3 Definition: dense in X	5
	2.4	Homeomorphism	5
		2.4.1 Definition: Subspaces	5
		2.4.2 Definition: Homeomorphism	5
		2.4.3 Definition: Interval	6
	2.5	Continuous Mappings	6
		2.5.1 Lemma:	6
		2.5.2 Definition: Continuous Mapping	6
			6
		2.5.4 Theorem : Weierstrass Intermediate Value Theorem	6
	2.6	Metric spaces	6
		2.6.1 Definition: Metric Space	6
			7
			8
			8
		2.6.5 Definition: Metrizability	8
			8
		2.6.7 Definition: Cauchy sequence	8
		2.6.8 Definition: Complete	8
			8
		2.6.10 Definition: Monotonic	8
		2.6.11 Definition: Peak point	8

1 What have I learnt?

Topology is one of the topics which have piqued my interest. I am always inclined towards learning new mathematical topics, especially wanted to study one of the topics of abstract algebra. I am currently using "Topology without tears" as a base reference for studying Topology.

I have completed 3 chapters from that book, namely

- 1. topological spaces
- 2. The Euclidean Topology
- 3. Limit points

and I am enjoying learning topology, of course there are portions where i get stuck, but then I reattempt it to improve my understanding. I will sumarise my learning below with some examples.

2 Summary

2.1 What is a Topology?

2.1.1 Definition: Topology

Let X be a non-empty set. A set T of subsets of X is said to be a **topology on** X if

- (i) X and the empty set, ϕ , belong to T
- (ii) the union of any finite or infinite number of sets in T belongs to T, and
- (iii) the intersection of any two sets in T belongs to T.

The pair (X,T) is called a topological space.

Example: Let
$$X = \{a, b, c, d, e, f\}$$
 and $T_1 = \{X, \phi, \{a\}, \{c, d\}, \{a, c, d\}, \{b, c, d, e, f\}\}.$

As T_1 satisfies all conditions of Definition 2.1.1, it is a topology on X

Example: Let
$$X = \{a, b, c, d, e\}$$
 and $T_2 = \{X, \phi, \{a\}, \{c, d\}, \{a, c, e\}, \{b, c, d\}\}.$

Then T_2 is not a topology on X as the union

$$\{c,d\} \cup \{a,c,e\} = \{a,c,d,e\}$$

doesn't belong to T_2

2.1.2 Definition: discrete space

Let X be any non empty set and let T be the collection of all subsets of X. Then T is called the **discrete topology** on the set X. The topological space (X, T) is called a **discrete space**.

2.1.3 Definition: indiscrete topology

Let X be any non empty set and $T = \{X, \phi\}$. Then T is called **indiscrete topology** and (X, T) is said to be an **indiscrete space**.

Propositon: If (X,T) is a topological space such that, for every $x \in X$, the singleton set $\{x\}$ is in T, then T is the discrete topology.

Proof:

every set is the union of all its singleton subsets; that is, if S be any subset of X, then

$$S = \bigcup_{x \in S} \{x\}$$

Since we are given that each $\{x\}$ is in T, and the above equation imply that $S \in T$. As S is an arbitrary subset of X, we have that T is the discrete topology.

2.1.4 Definition: Open sets

Let (X,T) be any Topological space. Then the members of T are said to be **open sets**.

2.1.5 Proposition:

If (X,T) is any topological space, then

- (i) X and ϕ are open sets,
- (ii) the union of any (finite or infinite) number of open sets is an open set and
- (iii) the intersection of any finite number of open sets is an open set.

2.1.6 Definition: Closed sets

Let (X,T) be a topological space. A subset S of X is said to be a **closed set** in (X,T) if its complement in X, namely $X \setminus S$, is open in (X,T).

2.1.7 Definition: Clopen

A subset S of a topological space (X,T) is said to be **clopen** of ot os both open and closed in (X,T).

Some points to remember:

- (i) In every topological space (X,T) both X and ϕ are clopen.
- (ii) In a discrete space all subsets of X are clopen.
- (iii) In an indiscrete space the only clopen subsets are X and ϕ

2.1.8 Definition: Cofinite topology

Let X be any non-empty set. A topology T on X is called the **finite-closed topology** or the **cofinite topology** if the closed subsets of X are X and all finite subsets of X; that is, the open sets are ϕ and all subsets of X which have finite complements.

2.2 The Euclidean Topology

2.2.1 Definition: The Euclidean topology on \mathbb{R}

A subset S of \mathbb{R} is said to be open in the *euclidean topology on* \mathbb{R} if it has the following property: (*) For each $x \in S$, there exist a, b in \mathbb{R} , with a < b, such that $x \in (a, b) \subseteq S$

2.2.2 Definition: Basis

Let (X,T) be a topological space. A collection B of open subsets of X is said to be a **basis** for the topology T if every open set is a union of members of B. **Example:**

Let (X,T) be a discrete space and B the family of all singleton subsets of X; that is, $B = \{\{x\} : x \in X\}$, Then B is a basis for T. **Proposition:** Let X be a non-empty set and let \mathbf{B} be a collection of subsets of X. Then \mathbf{B} is a basis for a topology on X if and only if \mathbf{B} has the following properties:

(a)
$$X = \bigcup_{B \in \mathbf{B}} B$$
, and

(b) for any $B_1, B_2 \in \mathbf{B}$, the set $B_1 \cap B_2$ is a union of members of \mathbf{B}

Example: Let B be the collection of all "open rectangles"

$$\{\langle x, y \rangle : \langle x, y \rangle \in \mathbb{R}^2, a < x < b, c < y < d\}$$

in the plane which have each side parallel to the X - orY - axis.

Then B is a basis for a topology on the plane. This topology is called the euclidean topology.

Proposition: Let (X,T) be a topological space. A family **B** of open subsets of X is a basis for T if and only if for any point x belonging to any open set U, there is a $B \in \mathbf{B}$ such that $x \in B \subseteq U$ **Proposition:** Let $\mathbf{B}_1 and \mathbf{B}_2$ be bases for topologies T_1 and T_2 , respectively, on a non-empty set X. Then $T_1 = T_2$ if and only if

4

- (i) for each $B \in \mathbf{B}_1$ and each $x \in B$, there exists a $B' \in \mathbf{B}_2$ such that $x \in B' \subseteq B$, and
- (ii) for each $B \in \mathbf{B}_2$ and each $x \in B$, there exists a $B' \in \mathbf{B}_1$ such that $x \in \mathbf{B}' \subseteq B$.

2.3 Limit points:

2.3.1 Definition: Limit point

Let A be a subset of a topological space (X,T). A point $x \in X$ is said to be a **limit point of** A if every open set, U, containing x contains a point of A different from x.

Example: Consider the topological space (X,T) where the set $X = \{a,b,c,d,e\}$, the topology $T = \{X,\phi,\{a\},\{c.d\},\{a,c,d\},\{b,c\}\}$ and $A = \{a,b,c\}$. Then b,dande are limit point of A but a and c are not the limit points of A.

Proof:

The set $\{a\}$ is open and contains no other point of A. So a is not a limit point of A. The set $\{c,d\}$ is an open set containing c but no other point of A. So c is not a limit point of A.

Proposition: Let A be a subset of a topological space (X,T) and A' the set of all limit points of A. Then $A \cup A'$ is a closed set.

2.3.2 Definition: Closure of A

Let A be a subset of a topological space (X,T). Then the set $A \cup A'$ consisting of A and all its limit points is called the *Closure of* A and is denoted by \bar{A} .

2.3.3 Definition: dense in X

Let A be a subset of a topological space (X,T). Then A is said to be **dense** in X or **everywhere dense** in X if $\bar{A} = X$

2.4 Homeomorphism

2.4.1 Definition: Subspaces

Let Y be a non-empty subset of a topological space (X,T). The collection $T_Y = \{O \cap Y : O \in T\}$ of subsets of Y is a topology on Y called **subspace topology** (or the **relative topology** or the **induced topology** or the **topology** induced on Y by T) The topological space (Y,T_Y) is said to be a **subspace** of (X,T).

Example : Let $X = \{a, b, c, d, e, f\}, T = \{X, \phi, \{a\}, \{c, d\}, \{a, c, d\}, \{b, c, d, e, f\}\},$ and $Y = \{b, c, e\}.$ Then the subspace topology on Y is $T_Y = \{Y, \phi, \{c\}\}.$

2.4.2 Definition: Homeomorphism

Let (X, T) and (Y, T_1) be topological spaces. Then they are said to be **homeomorphic** if there exists a $f: X \longrightarrow Y$ which has the following properties:

- (i) f is one-to-one
- (ii) f is onto
- (iii) for each $U \in T_1$, $f^{-1}(U) \in T$
- (iv) for each $V \in T$, $f(V) \in T_1$

Further, the map f is said to be a homeomorphism between (X,T) and (Y,T_1) . We rite $(X,T)\cong (Y,T_1)$

Example Let(X, T), (Y, T_1) and (Z, T_2) be topological spaces. $(X, T) \cong (Y, T_1)$ and $(Y, T_1) \cong (Z, T_2)$, prove that (X, T_2) .

Solution: As $(X,T) \cong (Y,T_1)$ and $(Y,T_1) \cong (Z,T_2)$, there exist homeomorphism $f:(X,T) \to (Y,T_1)$ and $g:(Y,T_1) \to (Z,T_2)$. The composite function $g \circ f:X \to Z$ is one one and onto and satisfies all conditions thus $(X,T) \cong (Z,T_2)$.

Proposition: Any topological space homeomorphic to a connected space is connected.

2.4.3 Definition: Interval

A subset S of $\mathbb R$ is said to be an *interval* if it has the following property: if $x \in S, z \in S$ and $y \in \mathbb R$ are such that x < y < z, then $y \in S$. **NOTE:**

- (i) Each singleton set $\{x\}$ is an interval.
- (ii) Every interval has one of the following forms: $\{a\}$, [a,b], (a,b), [a,b), (a,b), $(-\infty,a)$, $(-\infty,a)$, (a,∞) , $[a,\infty)$, $(-\infty,\infty)$
- (iii) Every interval is homeomorphic to (0,1), [0,1], [0,1), or0

Proposition : A subspace S of \mathbb{R} is connected if and only if it is an interval.

2.5 Continuous Mappings

2.5.1 Lemma:

Let f be a function mapping \mathbb{R} into itself. Then f is continuous if and only if for each $a \in \mathbb{R}$ and each open set U containing f(a), there exists an open set V containing a such that $f(V) \subseteq U$.

2.5.2 Definition: Continuous Mapping

Let (X,T) and (Y,T_1) be topological spaces and f a function from X into Y. Then $f:(X,T)\to (Y,T_1)$ is said to be **continuous mapping** if for each $U\subset T_1, f^{-1}(U)\in T$

Example: Let $f: \mathbb{R} \to \mathbb{R}$ be given by f(x) = c, for c a constant and all $x \in \mathbb{R}$. Then let U be any open set in R. Clearly $f^{-1}(U) = \mathbb{R}$ if $c \in U$ and ϕ if $c \notin U$. In both cases, $f^{-1}(U)$ is open. So f is continuous.

2.5.3 Definition: Pathwise connected

A topological space (X,T) is said to be **path-connected** if for each pair of (distinct) points a and b of X there exists a continuous mapping $f:[0,1]\to (X,T)$, such that f(0)=a and f(1)=b. The mapping f is said to be a **path joining a to b**.

2.5.4 Theorem: Weierstrass Intermediate Value Theorem

Let $f:[a,b]\to\mathbb{R}$ be continuous and let $f(a)\neq f(b)$. Then for every number p between f(a) and f(b) there is a point $c\in[a,b]$ such that f(c)=p. **Proof:**

As [a, b] is connected and f is continuous, f([a, b]) is connected. This implies that f([a, b]) is an interval. Now f(a) and f(b) are in f([a, b]). So if p is between f(a) and $f(b), p \in f([a, b])$, that is, p = f(c), for some $c \in [a, b]$.

2.6 Metric spaces

2.6.1 Definition: Metric Space

Let X be a non-empty set and d a real-valued function defined on $X \times X$ such that for $a, b \in X$:

- (i) $d(a,b) \ge 0$ and d(a,b) = 0 if and only if a = b;
- (ii) d(a,b) = d(b,a) and
- (iii) $d(a,c) \le d(a,b) + d(b,c)$ for all a,b and c in X.

Then d is said to be a **metric** on X, (X,d) is called a **metric space** and d(a,b) is referred to as the **distance** between a and b.

2.6.2 Definition: Open ball about a point

Let (X,T) be a metric space and r any positive real number. Then the **open ball about** $a \in X$ of radius r is the set $B_r(a) = \{x : x \in X \text{ and } d(a, x) < r\}$. **Example:** In \mathbb{R}^2 with euclidean metric, $B_r(a)$ is the open disc with centre a and radius r.

Example: In \mathbb{R}^2 with the metric d^* given by $d^*(\langle a_1, a_2 \rangle, \langle b_1, b_2 \rangle) = max\{|a_1 - b_1|, |a_2 - b_2|\}$, the open ball $B_1(\langle 0,0\rangle)lookslike$

Lemma : Let (X, d) be a metric space and a and b points of X. further, let δ_1 and δ_2 be positive real numbers. If $c \in B_{\delta_1}(a) \cap B_{\delta_2}(b)$, then there exists a $\delta > 0$ such that $B_{\delta}(c) \subseteq B_{\delta_1}(a) \cap B_{\delta_2}(b)$.

2.6.3 Definition: Equivalent

Metrics on a set X are said to be **equivalent** if they induce the same topology on X.

2.6.4 Definition: Hausdorff space

A topological space (X,T) is said to be a **Hausdorff space** if for each pair of distinct points a and b in X, there exist open sets U and V such that $a \in U, b \in V$, and $U \cap V = \phi$.

2.6.5 Definition: Metrizability

A space (X,T) is said to be **metrizable** if there exists a metric d on the set X with the property that T is the topology induced by d.

2.6.6 Definition: Convergence of Sequences

Let (X,T) be a metric space and x_1, \ldots, x_n, \ldots a sequence of points in X. Then the sequence is said to **converge** to $x \in X$ if given any $\epsilon > 0$ there exists an integer n_0 such that for all $n \geq n_0, d(x, x_n) < \epsilon$. This is denoted by $x_n \longrightarrow x$.

The sequence $y_1, y_2, \ldots, y_n, \ldots$ of points in (X, d) is said to be **convergent** if there exists a point $y \in X$ such that $y_n \longrightarrow y$.

2.6.7 Definition: Cauchy sequence

A sequence $x_1, x_2, ..., x_n, ...$ of points in ametric space (X,d) is said to be a **Cauchy sequence** if given any real number $\epsilon > 0$, there exists a positive integer n_0 , such that for all integers $m \ge n_0$ and $n \ge n_0$, $d(x_m, x_n) < \epsilon$.

2.6.8 Definition: Complete

A metric space (X,d) is said to be **complete** if every Cauchy sequence in (X,d) converges to a point in (X,d).

2.6.9 Definition: subsequence

If $\{x_n\}$ is any sequence then the sequence x_{n_1}, x_{n_2}, \ldots is said to be a **subsequence** if $n_1 < n_2 < n_3 < \ldots$

2.6.10 Definition: Monotonic

Let $\{x_n\}$ be a sequence in \mathbb{R} . Then it is said to be an *increasing sequence* if $x_n \leq x_{n+1}$, for all $n \in \mathbb{N}$. It is said to be a *decreasing sequence* if $x_n \geq x_{n+1}$, for all $n \in \mathbb{N}$. A sequence which is either increasing or decreasing is said to be *monotonic*.

2.6.11 Definition: Peak point

Let $\{x_n\}$ be a sequence in \mathbb{R} . Then $n_0 \in \mathbb{N}$ is said to be a **peak point** if $x_n \leq x_{n_0}$, for every $n \geq n_0$.

This is what I have read till now