

HCAI5DS02 – Data Analytics and Visualization. Lecture – 10 Introduction to Time Series Analysis. Siman Giri

1.1 What is Time Series Data?

- Time series Data is a sequence of data points collected or recorded at specific, consistent time intervals.
- Think of it as any dataset where you can ask;
 - "What was the value at this specific time?"
- Key characteristics:
 - Time series data has three fundamental components:
 - 1. Time stamps: The specific points in time when each measurement is taken
 - e.g. 2023 1 27, 14:30:00, Jan 2023, Q2 2022
 - 2. Metric/Value: The actual measurement or observation recorded at that time
 - e.g. 25°C, \$145.67, 10, 000 website visits
 - 3. Regular Intervals (usually): The data is most valuable when collected at consistent intervals.
 - e.g. every second, every hour, every day
 - However, irregular intervals like emergency room visits can also form a time series.

1.2 Time Series Data: Example.

- Data gathered sequentially in time are called a time series.
 - 1. Economics and Finance:
 - Daily closing of Apple stock $(X_t = price on day t)$.
 - Monthly inflation rate or unemployment rate.
 - 2. Environmental Modelling:
 - Hourly CO₂ concentration levels in the atmosphere.
 - Daily river discharge measurements.
 - Ocean temperature variations across.
 - 3. Medicine:
 - Electrocardiogram (ECG) signal of a patient (continuous time series).
 - Daily number of COVID 19 cases.
 - Hourly blood sugar levels for a diabetic patient.

Date	Stock Price (USD)	Exchange Rate (USD→NPR)	Inflation Rate (%)	GDP Growth (%)
Jan 2020	310.2	113.5	4.1	2.8
Feb 2020	295.7	113.7	4.3	2.6
March 2020	270.8	118.2	4.6	-1.5
Apr 2020	280.1	120.4	4.8	-3.0

1.2.1 Visualizing Time Series Data.

1.3 Mathematical Definition of a Time Series.

- A time series can be formally defined as: $\{X_t: t \in T\}$ where:
 - $X_t =$ observed value of the variable at time t
 - t = time index (discrete: daily, monthly, or continuous: every second
 - T = ordered set of time points
- So, a time series is essentially a stochastic process indexed by time.
- A **stochastic process** is a family of random variables:
 - $\{Y_t: t \in T\}$ defined on a **common probability space** $\{\Omega, \mathcal{F}, \mathbb{P}\}$,
 - where t belongs to an index set
 - (e.g. time: $T = \mathbb{N}$ for discrete or $T = \mathbb{R}^+$ for continuous).
 - $Y_t =$ the random variable at time t.
 - Together, they describe the evolution of randomness across time.
- Relation to Time Series:
 - Time series = one realization (sample path) of a stochastic process.
 - For example:
 - Stochastic process: all possible ways a stock price could evolve.
 - Time Series: the actual observed stock price sequence in reality.

1.3.1 Discrete Vs. Continuous Time Series Data.

- Discrete Time Series:
 - A discrete time series is a sequence of
 - random variables observed at
 - equally spaced discrete time points.
 - Formally:
 - $\{X_t: t \in \mathbb{Z}^+\}, t = 1, 2, 3, ...$
 - where each X_t is a random variable
 - observed at time step t.
 - Example:
 - Daily closing price of a stock,
 - monthly unemployment rates,
 - annual rainfall.
 - observations at *fixed intervals*

- Continuous Time Series:
 - A continuous time series (or continuous time stochastic process)
 - is a family of random variables indexed
 - by continuous time.
 - Formally:
 - $\{X(t): t \in \mathbb{R}, t \geq 0\}$
 - where X(t) gives the value of the process
 - at any real valued time t.
 - Example:
 - ECG signal, temperature recorded continuously.
 - observations can be taken *at any point in time* (theoretically infinite resolution).

1.4 Basic Components of Time Series Data.

- Any **time series** can be broadly viewed as a combination of:
 - Trend $(T_t) \rightarrow \text{Long-term}$ movement or direction of the series (upward, downward, flat).
 - Seasonality $(S_t) \rightarrow \text{Regular}$, repeating short-term patterns with fixed frequency.
 - Noise/Irregularity $(I_t) \rightarrow Random$, unpredictable fluctuations.

1.4.1 Basic Component – Trend (T_t).

• **Definition:** The smooth, slowly varying part of the series that shows the long-term direction.

Mathematical Form: Often modeled as a deterministic function of time.

- $T_t = \alpha + \beta \cdot t$
- Here:
 - α : intercept, baseline value of the series at time t = 0.
 - β: slope, rate of change per time unit.
- This reperesents a straight-line trend,
- Example:
 - Sales increasing by 100 units per month.

Different Types of Trend in Time Series

Linear Trend ($\alpha + \beta t$)

Quadratic Trend ($\alpha + \beta t + yt^2$)

1.4.1 Basic Component – Trend (T_t).

- Definition: The smooth, slowly varying part of the series that shows the long-term direction.
- Mathematical Form: Often modeled as a deterministic function of time.
 - 2. Quadratic or Polynomial Trend:
 - $T_t = \alpha + \beta \cdot t + \gamma \cdot t^2$
 - Adds curvature to the trend.
 - y: controls acceleration or deceleration of the trend.
 - Positive $\gamma \rightarrow$ trend bends upwards (accelerating growth).
 - Negative $\gamma \rightarrow$ trend bends downwards (slowing growth).
 - Can be extended to higher order polynomials (e.g., cubic, quartic).

1.4.1 Basic Component – Trend (T_t).

- Definition: The smooth, slowly varying part of the series that shows the long-term direction.
- Mathematical Form: Often modeled as a deterministic function of time.
 - 3. Exponential Trend:
 - $T_t = \alpha e^{\beta t}$
 - Growth or decay is multiplicative rather than additive.
 - If $\beta > 0$ \rightarrow the trend grows exponentially (compounding growth)
 - If $\beta < 0 \rightarrow$ the trend decays exponentially (compounding decline)
 - Often used in finance, population growth, epidemiology etc.

1.4.2 Basic Component – Seasonality (S_t).

- **Definition:** Regular, **periodic fluctuations** with fixed and **known period p**.
 - Mathematical: $S_{t+p} = S_t \forall t$
 - This is the formal definition of a **perfectly periodic (strict) seasonal component** in a time series.
 - Here:
 - **S**_t: The value of **the seasonal component** at **time t**.
 - S_{t+p} : The value of the seasonal component at exactly one period p later.
 - ∀t: For all time points t.
 - The equation means:
 - The seasonal pattern repeats every p time steps.
 - For example:
 - If sales peak every December,
 - then the seasonal effect for December 2024 is the same as December 2025.

1.4.2 Basic Component – Seasonality (S_t).

- Representing Seasonality with Fourier Series :
 - The Modeling Tool → **Fourier Series**:
 - Sometimes the seasonal component is **complex** and not just a simple sine wave.
 - In such cases, we can **decompose it into a sum of sines and cosines**:

•
$$S_t = \sum_{k=1}^{K} \left[a_k \cos\left(\frac{2\pi kt}{p}\right) + b_k \sin\left(\frac{2\pi kt}{p}\right) \right]$$

- This is the how do we actually create a function S_t that obeys the rule $S_{t+p} = S_t \ \forall t$.
- Here we use **sum of sine and cosine waves**, which are **naturally periodic**.
 - This sum is called a **Fourier Series**.
- Let's dissect the components:

Symbol	Meaning	
k	 Harmonic number. k = 1 is the fundamental frequency; k > 1 are higher harmonics capturing more complex seasonal patterns. 	
a_k, b_k	 Coefficients that determine the amplitude of each cosine and sine wave. They are estimated from the data. 	
$\frac{2\pi kt}{p}$	 Frequency of wave. Ensures the wave completes k cycles over the period p. 	
K	 Number of harmonics included. More harmonics more detailed/complex seasonal pattern. 	

Building Seasonality with Fourier Series (K=3)

1.4.2 Basic Component – Seasonality (S_t).

- Representing Seasonality with Fourier Series :
 - Example:
 - Suppose monthly sales have yearly seasonality (p = 12):

•
$$S_t = a_1 \cos\left(\frac{2\pi t}{12}\right) + b_1 \sin\left(\frac{2\pi t}{12}\right) + a_2 \cos\left(\frac{4\pi t}{12}\right) + b_2 \sin\left(\frac{4\pi t}{12}\right)$$

- k = 1 captures the main yearly peak.
- k = 2 captures secondary peaks e.g. mid year sales.
- Adding more harmonics k > 2 captures finer details.
- In short, additive seasonality assumes a repeating pattern, and
 - Fourier series provides a flexible mathematical way to represent it using sine and cosine waves.

- Harmonic k=3

1.4.3 Basic Component – Irregular Component (I_t).

- Definition: Residual part of the time series after removing trend, seasonality, and cycles.
- Mathematical Form:
 - $I_t \sim \epsilon_t$, here $\mathbb{E}[\epsilon_t] = 0$, & $Var(\epsilon_t) = \sigma^2$.
 - where ϵ_t is random error term also known as white noise $\left(\epsilon_t \sim i.i.d\ N(0,\sigma^2)\right)$

1.5 Extended Component – Time Series Data.

- Cyclic Component (C_t):
 - **Definition:** Long term oscillations without a fixed period, typically influenced by external factors such as economy, politics.
 - Mathematical Form:

• Modeled as smooth fluctuations, often approximated by autoregressive processes or low – frequency sine/cosine terms:

• $C_t \sim f(t)$ with period not constant.

• Example: boom – recession cycles.

1.6 Decomposition of Time Series.

- A **time series** can generally be expressed as a sum or product of four distinct components:
 - Additive Form (aka Additive Model):

•
$$X_t = T_t + S_t + C_t + I_t$$

• Or, Multiplicative forms (aka Multiplicative Model):

•
$$X_t = T_t \cdot S_t \cdot C_t \cdot I_t$$

2. General Approach to Time Series Modeling.

2.1 Time Series Forecasting: Workflow in Practice.

1. Visual Inspection:

- Plot the series and examine the main features of the graph, checking whether there is
 - a trend,
 - a seasonal or another periodic component,
 - any apparent sharp changes in behavior,
 - any outlying observations.

2. Remove Trend and Periodic Components:

- Remove the trend and periodic components to get stationary residuals (this step is called *detrending and deseasonalizing*).
- Broadly speaking, a time series is said to be *stationary* if there is
 - no systematic change in the mean (no trend);
 - no systematic change in the variance, and
 - no strictly periodic variations.

3. Model Stationary Residuals:

- Choose a model to fit the residuals, making use of various sample statistics,
 - including the *sample autocorrelation function* (ACF).
- Forecast the residuals and then invert the transformations to arrive at forecasts of the original series.

2.2 Classes of Forecasting Models.

- Time series forecasting models can be broadly divided into two general classes:
 - Univariate Time Series Models:
 - Definition:
 - These models use only the historical values of a single variable to make predictions.
 - No other **external factors (covariates)** are considered.
 - The **goal** is to **model patterns** in the series it self: trend, seasonality and **auto correlation**.
 - Key Type is **Autoregressive (AR) Models:**
 - "Auto" means self the series **predicts itself using past values**.
 - General form:
 - $Y_t = f(Y_{t-1}, Y_{t-2}, ..., Y_{t-p}) + \epsilon_t$
 - where p is the number of lags (how many past values we use).
 - Linear AR Model example:

•
$$Y_t = \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \cdots + \phi_p Y_{t-p} + \epsilon_t$$

- Example:
 - Predicting monthly airline passengers using only past passenger numbers.
- Key feature: only the target series is needed, no external variables.

2.2.1 How Autoregressive Works?

- An autoregressive (AR) model predicts the current value of a time series using its own past values.
 - It is like saying:
 - "What happens today depends on what happened on the past?"
 - General Representations for AR(p) is:

•
$$Y_t = c + \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \cdots + \phi_p Y_{t-p} + \epsilon_t$$

- Where:
 - Y_t = value of the series at time t
 - c = constant (intecept)
 - ϕ_i = coefficinets for past values
 - p = order (number of past lags used)
 - ϵ_t = random error at time t
- Special Cases:
 - AR(1): First order autoregression $\rightarrow Y_t = c + \phi_1 Y_{t-1} + \epsilon_t$
 - Today depends on yesterday.
 - AR(2): Second order autoregression \rightarrow Y_t = c + ϕ_1 Y_{t-1} + ϕ_2 Y_{t-2} + ϵ_t
 - Today depends on yesterday and the day before yesterday.
 - In General AR(p) Today looks like the last p days combined.
- Q: How do you choose the order p?

2.2 Classes of Forecasting Models.

- Mulityariate Time Series Models:
 - Definition:
 - These models use **additional variables (covariates, regressors, predictors)** along with the target series to improve forecasts.
 - They can capture how external factors influence the target variable.
 - Simple Example Multiple Regression:
 - $Y_t = \beta_0 + \beta_1 X_{1,t} + \beta_2 X_{2,t} + \cdots + \epsilon_t$
 - here:
 - Y_t = target variable at time t
 - $X_{i,t}$ = external predictors (covariates)
 - $\beta_i = coefficients$

2.2 Classes of Forecasting Models.

- Mulitvariate Time Series Models:
 - Advanced Example Multivariate AR Models (VAR or ARIMAX):
 - Here, past values of both the target and predictors are used:
 - $Y_t = f(Y_{t-1}, ..., Y_{t-p}, X_{t-1}, ..., X_{t-q}) + \epsilon_t$
 - p = lags of the target variable
 - q = lags of the predictors
 - Example:
 - Forecasting **electricity demand** using:
 - Past electricity demand (autoregressive part)
 - Temperature, day of week, holidays (external covariates)
 - Key feature: **Combines self history with influencing factors.**

2.3 Stationarity in Time Series Model.

- What is Stationarity?
 - In simple terms, a stationary time series is one whose statistical properties do not change over time.
 - Think of it like this:
 - A stationary process is in a state of "statistical equilibrium".
 - Its behavior is consistent, making it predictable.
 - Example:
 - If you were to take a "snapshot" of any chunk of the series,
 - it would look roughly like any other chunk.
 - A time series is said to be strictly stationary if the entire distribution of its values
 - is constant over time.
 - This is very strong condition and often impractical to check.
 - Therefore,
 - we usually work with a **weaker but more practical form called weak stationarity** (or covariance stationarity).

2.3.1 Weak – Stationarity in Time Series Model.

- A weakly stationary series must satisfy three conditions:
 - 1. Constant Mean: The average value of the series remains constant over time.
 - Non stationary example: A series with an upward trend has a mean that increases over time.
 - Stationary example: A series that fluctuates around a fixed horizontal line.
 - **2. Constant Variance:** The volatility or spread of the data points around the mean does not change over time. This is also known as homoscedasticity.
 - Non stationary example: A series where the fluctuations become wider and more volatile as time goes on.
 - Stationary example: The "wobbliness" of the series remains consistent throughout.
 - **3. Constant Autocovariance:** The relationship (covariance) between values at two time points depends only on the *distance* or *lag* between those two points and not on the actual time at which they are observed.
 - *Simplified:* The relationship between today's value and yesterday's value is the same as the relationship between the value on June 10th and June 9th, or any other two consecutive days.
- Q: How to make Time Series Data Stationary or weak stationary?

2.3.1 Weak – Stationarity in Time Series Model.

- A weakly stationary series must satisfy three conditions:
 - 1. Constant Mean: The average value of the series remains constant over time.
 - Non stationary example: A series with an upward trend has a mean that increases over time.
 - Stationary example: A series that fluctuates around a fixed horizontal line.
 - **2. Constant Variance:** The volatility or spread of the data points around the mean does not change over time. This is also known as homoscedasticity.
 - Non stationary example: A series where the fluctuations become wider and more volatile as time goes on.
 - Stationary example: The "wobbliness" of the series remains consistent throughout.
 - **3. Constant Autocovariance:** The relationship (covariance) between values at two time points depends only on the *distance* or *lag* between those two points and not on the actual time at which they are observed.
 - *Simplified:* The relationship between today's value and yesterday's value is the same as the relationship between the value on June 10th and June 9th, or any other two consecutive days.
- Q: How to make Time Series Data Stationary or weak stationary?
 - Smoothing, Detrending & Deseasonalization

2.4 Smoothing.

- **Smoothing** is the process of reducing short-term fluctuations (noise) in a time series to reveal the underlying long-term pattern (trend or seasonality).
- Finite Moving Average (MA) Smoothing:
 - Finite Moving Average (MA) smoothing is a technique to **remove random noise** in a time series by replacing each observation with the **average of its neighbors** within a fixed window.
 - Mathematically, for a time series $\{y_t\}$, the centered moving average with window size m is:

•
$$\widetilde{y_t} = \frac{1}{m} \sum_{i=-k}^k y_{t+i}$$

- where:
 - m = 2k + 1 (odd window size, centered at t)
 - k = number of points before or after t included.
- If we don't have symmetry we use trailing moving average:

•
$$\widetilde{\mathbf{y}_t} = \frac{1}{m} \sum_{i=0}^{m-1} \mathbf{y}_{t-i}$$

For Further please follow the

{Notebook.}