

C3M0120065D

Silicon Carbide Power MOSFET C3M MOSFET Technology

N-Channel Enhancement Mode

Features

- 3rd Generation SiC MOSFET technology
- High blocking voltage with low on-resistance
- High speed switching with low capacitances
- Fast intrinsic diode with low reverse recovery (Qrr)
- Halogen free, RoHS compliant

Benefits

- Higher system efficiency
- Reduced cooling requirements
- Increased power density
- Increased system switching frequency
- Easy to parallel and simple to drive
- Enable new hard switching PFC topologies (Totem-Pole)

Applications

- Solar inverters
- DC/DC converters
- Switch Mode Power Supplies
- EV battery chargers
- UPS

_{DS} 650 V

I_{D @ 25°C} 22 A

 $R_{\text{DS(on)}}$ 120 m Ω

Package

Part Number	Package	Marking	
C3M0120065D	T0-247-3	C3M0120065D	

Maximum Ratings

Symbol	Parameter	Value	Unit	Note
V _{DSS}	Drain - Source Voltage, T _C = 25 °C	650	٧	
V _{GS}	Gate - Source voltage (Under transient events < 100 ns)	-8/+19	٧	Fig. 29
	Continuous Drain Current, V_{GS} = 15 V, T_{C} = 25°C Continuous Drain Current, V_{GS} = 15 V, T_{C} = 100°C		А	F:- 10
l _D				Fig. 19
I _{D(pulse)}	Pulsed Drain Current, Pulse width t _P limited by T _{jmax}	51	А	
P _D	Power Dissipation, $T_c = 25^{\circ}C$, $T_J = 175^{\circ}C$	98	W	Fig. 20
T_{J} , T_{stg}	Operating Junction and Storage Temperature	-40 to +175	°C	
T _L	Solder Temperature, 1.6mm (0.063") from case for 10s	260	°C	
M _d	Mounting Torque, (M3 or 6-32 screw)	1 8.8	Nm lbf-in	

Electrical Characteristics (T_c = 25°C unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Unit	Test Conditions	Note
$V_{(BR)DSS}$	Drain-Source Breakdown Voltage	650			٧	V _{GS} = 0 V, I _D = 100 μA	
V_{GSon}	Gate-Source Recommended Turn-On Voltage		15		V	Ctatio	Fig. 20
V_{GSoff}	Gate-Source Recommended Turn-Off Voltage		-4		V	Static	Fig. 29
	Cata Throphold Voltage	1.8	2.3	3.6	V	V _{DS} = V _{GS} , I _D = 1.86 mA	Fig. 11
$V_{GS(th)}$	Gate Threshold Voltage		1.9		V	V _{DS} = V _{GS} , I _D = 1.86 mA, T _J = 175°C	
I_{DSS}	Zero Gate Voltage Drain Current		1	50	μΑ	V _{DS} = 650 V, V _{GS} = 0 V	
I _{GSS}	Gate-Source Leakage Current		10	250	nA	V _{GS} = 15 V, V _{DS} = 0 V	
R	Drain-Source On-State Resistance		120	157	mΩ	V _{GS} = 15 V, I _D = 6.76 A	Fig. 4, 5,6
R _{DS(on)}	Drain Godree on State Resistance		168		11122	$V_{GS} = 15 \text{ V}, I_D = 6.76 \text{ A}, T_J = 175^{\circ}\text{C}$	
g fs	Transconductance		5.0		S	V _{DS} = 20 V, I _{DS} = 6.76 A	Fig. 7
915	Transconductance		4.9		Ŭ	V _{DS} = 20 V, I _{DS} = 6.76 A, T _J = 175°C	
C _{iss}	Input Capacitance		640			$V_{GS} = 0 \text{ V, } V_{DS} = 0 \text{V to } 400 \text{ V}$	
Coss	Output Capacitance		45			F = 1 Mhz	Fig. 17,
C_{rss}	Reverse Transfer Capacitance		2.3		pF	Vac = 25 mV	
C _{o(er)}	Effective Output Capacitance (Energy Related)		57				Note: 1
C _{o(tr)}	Effective Output Capacitance (Time Related)		79			$V_{GS} = 0 \text{ V, } V_{DS} = 0 \text{V to } 400 \text{ V}$	Note: 1
E _{oss}	C _{oss} Stored Energy		4.3		μJ	V _{DS} = 400 V, F = 1 Mhz	Fig. 16
E _{on}	Turn-On Switching Energy (Body Diode)		71			$V_{DS} = 400 \text{ V, } V_{GS} = -4 \text{ V/15 V, I}_{D} = 6.76 \text{ A,}$ $R_{G(ext)} = 10 \Omega$, L= 237 μ H, $T_{J} = 175^{\circ}\text{C}$	Fig. 25
E _{OFF}	Turn Off Switching Energy (Body Diode)		8		μJ	FWD = Internal Body Diode of MOSFET	
E _{on}	Turn-On Switching Energy (External Diode)		57			V _{DS} = 400 V, V _{GS} = -4 V/15 V, I _D = 6.76 A,	Fig. 25
E _{OFF}	Turn Off Switching Energy (External Diode)		7		μJ	$R_{G(ext)}$ = 10 Ω, L= 237 μH, T _J = 175°C FWD = External SiC DIODE	
t _{d(on)}	Turn-On Delay Time		7				
t _r	Rise Time		17			V_{DD} = 400 V, V_{GS} = -4 V/15 V I_{D} = 6.76 A, $R_{G(ext)}$ = 10 Ω	
$t_{\text{d(off)}}$	Turn-Off Delay Time		13		ns	Timing relative to V _{DS}	Fig. 26
t _f	Fall Time		8				
R _{G(int)}	Internal Gate Resistance		6		Ω	f = 1 MHz, V _{AC} = 25 mV	
Q_{gs}	Gate to Source Charge		7			V _{DS} = 400 V, V _{GS} = -4 V/15 V	
Q_{gd}	Gate to Drain Charge		11	7	nC	I _D = 6.76 A	Fig. 12
Qg	Total Gate Charge		28	7		Per IEC60747-8-4 pg 21	

Note (1): C_{O(er)}, a lumped capacitance that gives same stored energy as Coss while Vds is rising from 0 to 400V C_{O(tr)}, a lumped capacitance that gives same charging time as Coss while Vds is rising from 0 to 400V

Reverse Diode Characteristics ($T_c = 25^{\circ}C$ unless otherwise specified)

Symbol	Parameter	Тур.	Max.	Unit	Test Conditions	Note
V_{SD}	Diode Forward Voltage	4.5		٧	$V_{GS} = -4 \text{ V, I}_{SD} = 3.4 \text{ A, T}_{J} = 25 \text{ °C}$	Fig. 8, 9, 10
V SD		4.0		V	$V_{GS} = -4 \text{ V, } I_{SD} = 3.4 \text{ A, } T_{J} = 175 \text{ °C}$	
Is	Continuous Diode Forward Current		16	А	$V_{GS} = -4 \text{ V, } T_C = 25^{\circ}\text{C}$	
I _{S, pulse}	Diode pulse Current		51	Α	V_{GS} = -4 V, pulse width t_P limited by T_{jmax}	
t _{rr}	Reverse Recover time	18		ns		
Q _{rr}	Reverse Recovery Charge	81		nC	$V_{gS} = -4 \text{ V, } I_{SD} = 6.76 \text{ A, } V_{R} = 400 \text{ V}$ dif/dt = 2160 A/ μ s, $T_{J} = 175 ^{\circ}\text{C}$	
I _{rrm}	Peak Reverse Recovery Current	7		А		
t _{rr}	Reverse Recover time	25		ns		
Q _{rr}	Reverse Recovery Charge	76		nC	$V_{\text{GS}} = -4 \text{ V, I}_{\text{SD}} = 6.76 \text{ A, V}_{\text{R}} = 400 \text{ V}$ dif/dt = 900 A/µs, T, = 175 °C	
Irm	Peak Reverse Recovery Current	4		А		

Thermal Characteristics

Symbol	Parameter	Тур.	Unit	Test Conditions	Note
R _{eJC}	Thermal Resistance from Junction to Case	1.53	°C/W		Fig. 21
R _{θJA}	Thermal Resistance From Junction to Ambient	40	C/W		riy. 21

Figure 1. Output Characteristics T_J = -40 °C

Figure 2. Output Characteristics T_J = 25 °C

Figure 3. Output Characteristics T_J = 175 °C

Figure 4. Normalized On-Resistance vs. Temperature

Figure 5. On-Resistance vs. Drain Current For Various Temperatures

Figure 6. On-Resistance vs. Temperature For Various Gate Voltage

Figure 7. Transfer Characteristic for Various Junction Temperatures

Figure 8. Body Diode Characteristic at -40 °C

Figure 9. Body Diode Characteristic at 25 °C

Figure 10. Body Diode Characteristic at 175 °C

Figure 11. Threshold Voltage vs. Temperature

Figure 12. Gate Charge Characteristics

Figure 13. 3rd Quadrant Characteristic at -40 °C

Figure 14. 3rd Quadrant Characteristic at 25 °C

Figure 15. 3rd Quadrant Characteristic at 175 °C

Figure 16. Output Capacitor Stored Energy

Figure 17. Capacitances vs. Drain-Source Voltage (0 - 200V)

Figure 18. Capacitances vs. Drain-Source Voltage (0 - 650V)

Figure 19. Continuous Drain Current Derating vs.

Case Temperature

Figure 20. Maximum Power Dissipation Derating vs.

Case Temperature

Figure 21. Transient Thermal Impedance (Junction - Case)

Figure 22. Safe Operating Area

Figure 23. Clamped Inductive Switching Energy vs. Drain Current (V_{DD} = 400V)

Figure 24. Clamped Inductive Switching Energy vs. $R_{\rm G(ext)}$

Figure 25. Clamped Inductive Switching Energy vs.
Temperature

Figure 26. Switching Times vs. $R_{\rm G(ext)}$

Test Circuit Schematic

Figure 27. Clamped Inductive Switching Waveform Test Circuit

Figure 28. Body Diode Recovery Test Circuit

Figure 29. $V_{\rm GS}$ Waveform Example

Package Dimensions

Package TO-247-3

Pinout Information:

- Pin 1 = Gate Pin 2, 4 = Drain
- Pin 3 = Source

DOC	Inc	hes	Millimeters		
POS	Min	Max	Min	Max	
Α	.190	.205	4.83	5.21	
A1	.090	.100	2.29	2.54	
A2	.075	.085	1.91	2.16	
b	.042	.052	1.07	1.33	
b1	.075	.095	1.91	2.41	
b2	.075	.085	1.91	2.16	
b3	.113	.133	2.87	3.38	
b4	.113	.123	2.87	3.13	
С	.022	.027	0.55	0.68	
D	.819	.831	20.80	21.10	
D1	.640	.695	16.25	17.65	
D2	.037	.049	0.95	1.25	
Е	.620	.635	15.75	16.13	
E1	.516	.557	13.10	14.15	
E2	.145	.201	3.68	5.10	
E3	.039	.075	1.00	1.90	
E4	.487	.529	12.38	13.43	
е	.214	BSC	5.44 BSC		
N		3	3		
L	.780	.800	19.81	20.32	
L1	.161	.173	4.10	4.40	
ØΡ	.138	.144	3.51	3.65	
Q	.216	.236	5.49	6.00	
S	.238	.248	6.04	6.30	
Т	9°	11°	9°	11°	
U	9°	11°	9°	11°	
V	2°	8°	2°	8°	
W	2°	8°	2°	8°	

Recommended Solder Pad Layout

Notes

RoHS Compliance

The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/EC (RoHS2), as implemented January 2, 2013. RoHS Declarations for this product can be obtained from your Cree representative or from the Product Documentation sections of www.cree.com.

REACh Compliance

REACh substances of high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA) has published notice of their intent to frequently revise the SVHC listing for the foreseeable future, please contact a Cree representative to insure you get the most up-to-date REACh SVHC Declaration. REACh banned substance information (REACh Article 67) is also available upon request.

This product has not been designed or tested for use in, and is not intended for use in, applications implanted into the human body
nor in applications in which failure of the product could lead to death, personal injury or property damage, including but not limited
to equipment used in the operation of nuclear facilities, life-support machines, cardiac defibrillators or similar emergency medical
equipment, aircraft navigation or communication or control systems, air traffic control systems.

Related Links

- SPICE Models: http://wolfspeed.com/power/tools-and-support
- SiC MOSFET Isolated Gate Driver reference design: http://wolfspeed.com/power/tools-and-support
- SiC MOSFET Evaluation Board: http://wolfspeed.com/power/tools-and-support