Memory Hierarchy

'22H2

송 인 식

Outline

- Storage technologies and trends
- Locality of reference
- Caching in the memory hierarchy

Random-Access Memory (RAM)

Key features

- RAM is traditionally packaged as a chip.
- Basic storage unit is normally a cell (one bit per cell).
- Multiple RAM chips form a memory.
- Static RAM (SRAM)
 - Each cell stores a bit with a four or six-transistor circuit.
 - Retains value indefinitely, as long as it is kept powered.
 - Relatively insensitive to electrical noise (EMI), radiation, etc.
 - Faster and more expensive than DRAM.
- Dynamic RAM (DRAM)
 - Each cell stores bit with a capacitor. One transistor is used for access
 - Value must be refreshed every 10-100 ms.
 - More sensitive to disturbances (EMI, radiation,...) than SRAM.
 - Slower and cheaper than SRAM.

SRAM vs DRAM Summary

			Needs refresh?		Cost	Applications
SRAM	4 or 6	1X	No	Maybe	100x	Cache memories
DRAM	1	10X	Yes	Yes	1X	Main memories, frame buffers

Conventional DRAM Organization

- d x w DRAM:
 - dw total bits organized as d supercells of size w bits

Reading DRAM Supercell (2,1)

Step 1(a): Row access strobe (RAS) selects row 2.

Step 1(b): Row 2 copied from DRAM array to row buffer.

Reading DRAM Supercell (2,1)

Step 2(a): Column access strobe (CAS) selects column 1.

Step 2(b): Supercell (2,1) copied from buffer to data lines, and eventually

Memory Modules

Enhanced DRAMs

- Basic DRAM cell has not changed since its invention in 1966.
 - Commercialized by Intel in 1970.
- DRAM cores with better interface logic and faster I/O :
 - Synchronous DRAM (SDRAM)
 - Uses a conventional clock signal instead of asynchronous control
 - Allows reuse of the row addresses (e.g., RAS, CAS, CAS, CAS)
 - Double data-rate synchronous DRAM (DDR SDRAM)
 - Double edge clocking sends two bits per cycle per pin
 - By 2010, standard for most server and desktop systems

Nonvolatile Memories

- DRAM and SRAM are volatile memories
 - Lose information if powered off.
- Nonvolatile memories retain value even if powered off
 - Read-only memory (ROM): programmed during production
 - Programmable ROM (PROM): can be programmed once
 - Erasable PROM (EPROM): can be bulk erased (UV, X-Ray)
 - Electrically erasable PROM (EEPROM): electronic erase capability
 - Flash memory: EEPROMs with partial erase capability
 - Wears out after 1000 ~ 100,000 erases.
- Uses for Nonvolatile Memories
 - Firmware programs stored in a ROM (BIOS, controllers for disks, network cards, graphics accelerators, security subsystems,...)
 - Solid state disks (replace rotating disks in thumb drives, smart phones, mp3 players, tablets, laptops,...)
 - Disk caches

Traditional Bus Structure Connecting CPU and Memory

- A bus is a collection of parallel wires that carry address, data, and control signals.
- Buses are typically shared by multiple devices.

Memory Read Transaction (1)

CPU places address A on the memory bus.

Memory Read Transaction (2)

 Main memory reads A from the memory bus, retrieves word x, and places it on the bus.

Memory Read Transaction (3)

 CPU read word x from the bus and copies it into register %rax.

Memory Write Transaction (1)

 CPU places address A on bus. Main memory reads it and waits for the corresponding data word to arrive.

Memory Write Transaction (2)

CPU places data word y on the bus.

Memory Write Transaction (3)

 Main memory reads data word y from the bus and stores it at address A.

What's Inside A Disk Drive?

Image courtesy of Seagate Technology

Disk Geometry

- Disks consist of platters, each with two surfaces.
- Each surface consists of concentric rings called tracks.
- Each track consists of sectors separated by gaps.

Disk Geometry (Multiple-Platter View)

Aligned tracks form a cylinder.

Disk Capacity

- Capacity: maximum number of bits that can be stored.
 - Vendors express capacity in units of gigabytes (GB), where
 1 GB = 10⁹ Bytes (Lawsuit pending! Claims deceptive advertising).
- Capacity is determined by these technology factors:
 - Recording density (bits/in): number of bits that can be squeezed into a 1 inch segment of a track.
 - Track density (tracks/in): number of tracks that can be squeezed into a 1 inch radial segment.
 - Areal density (bits/in2): product of recording and track density.

Recording Zones

- Modern disks partition tracks into disjoint subsets called recording zones
 - Each track in a zone has the same number of sectors, determined by the circumference of innermost track.
 - Each zone has a different number of sectors/track, , outer zones have more sectors/track than inner zones.
 - So we use average number of sectors/track when computing capacity.

Disk Access Time

- Average time to access some target sector approximated by :
 - $-T_{access} = T_{avg_seek} + T_{avg_rotation} + T_{avg_transfer}$
- Seek time (T_{avg_seek})
 - Time to position heads over cylinder containing target sector.
 - Typical T_{avg seek} is 3~9 ms
- Rotational latency (T_{avg_rotation})
 - Time waiting for first bit of target sector to pass under r/w head.
 - $-T_{avg_rotation} = 1/2 \times 1/RPMs \times 60 sec/1 min$
 - Typical T_{avg_rotation}: 7200 RPMs → 4.16 ms
- Transfer time (T_{avg transfer})
 - Time to read the bits in the target sector.
 - $-T_{avg\ transfer} = 1/RPM\ x\ 1/(avg\ #\ sectors/track)\ x\ 60\ secs/1\ min.$

Logical Disk Blocks

- Modern disks present a simpler abstract view of the complex sector geometry:
 - The set of available sectors is modeled as a sequence of b-sized logical blocks (0, 1, 2, ...)
- Mapping between logical blocks and actual (physical) sectors
 - Maintained by hardware/firmware device called disk controller.
 - Converts requests for logical blocks into (surface, track, sector) triples.
- Allows controller to set aside spare cylinders for each zone.

I/O Bus

Reading a Disk Sector (1)

Reading a Disk Sector (2)

Reading a Disk Sector (3)

Solid State Disks (SSDs)

- Pages: 512KB to 4KB, Blocks: 32 to 128 pages
- Data read/written in units of pages.
- Page can be written only after its block has been erased
- A block wears out after about 100,000 repeated writes.

SSD Performance Characteristics

Sequential read tput	550 MB/s	Sequential write tput	470 MB/s
Random read tput	365 MB/s	Random write tput	303 MB/s
Avg seq read time	50 us	Avg seq write time	60 us

- Sequential access faster than random access
 - Common theme in the memory hierarchy
- Random writes are somewhat slower
 - Erasing a block takes a long time (~1 ms)
 - Modifying a block page requires all other pages to be copied to new block
 - In earlier SSDs, the read/write gap was much larger.

Source: Intel SSD 730 product specification.

SSD Tradeoffs vs Rotating Disks

Advantages

No moving parts → faster, less power, more rugged

Disadvantages

- Have the potential to wear out
 - Mitigated by "wear leveling logic" in flash translation layer
 - E.g. Intel SSD 730 guarantees 128 petabyte (128 x 10¹⁵ bytes) of writes before they wear out
- In 2015, about 30 times more expensive per byte

Applications

- MP3 players, smart phones, laptops
- Beginning to appear in desktops and servers

Outline

- Storage technologies and trends
- Locality of reference
- Caching in the memory hierarchy

The CPU-Memory Gap

The gap widens between DRAM, disk, and CPU speeds.

Storage Trends

SRAM

Metric	1985	1990	1995	2000	2005	2010	2015	2015:1985
\$/MB	2,900	320	256	100	75	60	25	116
access (ns)	150	35	15	3	2	1.5	1.3	115

DRAM

Metric	1985	1990	1995	2000	2005	2010	2015	2015:1985
\$/MB	880	100	30	1	0.1	0.06	0.02	44,000
access (ns)	200	100	70	60	50	40	20	10
typical size (MB)	0.256	4	16	64	2,000	8,000	16.000	62,500

Disk

Metric	1985	1990	1995	2000	2005	2010	2015	2015:1985
\$/GB	100,000	8,000	300	10	5	0.3	0.03	3,333,333
access (ms)	75	28	10	8	<i>5</i>	<i>3</i>	<i>3</i>	25
typical size (GB)	0.01	0.16	1	20	160	1,500	3,000	300,000

CPU Clock Rates

Inflection point in computer history when designers hit the "Power Wall"

	1985	1990	1995	2003	2005	2010	2015	2015:1985
CPU	80286	80386	Pentium	P-4	Core 2	Core i7(r	n)Core i7(ł	٦)
Clock rate (MH	z) 6	20	150	3,300	2,000	2,500	3,000	500
Cycle time (ns)	166	50	6	0.30	0.50	0.4	0.33	500
Cores	1	1	1	1	2	4	4	4
Effective cycle time (ns)	166	50	6	0.30	0.25	0.10	0.08	2,075

⁽n) Nehalem processor

⁽h) Haswell processor

Locality to the Rescue!

The key to bridging this CPU-Memory gap is a fundamental property of computer programs known as locality

Locality

 Principle of Locality: Programs tend to use data and instructions with addresses near or equal to those they have used recently

Temporal locality:

 Recently referenced items are likely to be referenced again in the near future

- Spatial locality:
 - Items with nearby addresses tend to be referenced close together in time

Locality

Source: Glass & Cao (1997 ACM SIGMETRICS)

Locality Example

```
sum = 0;
for (i = 0; i < n; i++)
    sum += a[i];
return sum;</pre>
```

Data references

 Reference array elements in succession Spatial locality (stride-1 reference pattern).

Reference variable sum each iteration.

Temporal locality

Instruction references

Reference instructions in sequence.

Cycle through loop repeatedly.

Temporal locality

Outline

- Storage technologies and trends
- Locality of reference
- Caching in the memory hierarchy

Memory Hierarchies

- Some fundamental and enduring properties of hardware and software:
 - Fast storage technologies cost more per byte, have less capacity, and require more power (heat!).
 - The gap between CPU and main memory speed is widening.
 - Well-written programs tend to exhibit good locality.
- These fundamental properties complement each other beautifully.
- They suggest an approach for organizing memory and storage systems known as a memory hierarchy.

An Example Memory Hierarchy

Caches

- Cache: A smaller, faster storage device that acts as a staging area for a subset of the data in a larger, slower device.
- An optimization resulting from a perfect match between memory technology and two types of program locality
 - Temporal locality (locality in time)
 - If an item is referenced, it will tend to be referenced again soon.
 - Spatial locality (locality in space)
 - If an item is referenced, items whose addresses are close by will tend to be referenced soon..
- *Big Idea:* To provide a "virtual" memory technology (an illusion) that has an access time of the highest-level memory with the size and cost of the lowest-level memory

General Cache Concepts

General Cache Concepts: Hit

General Cache Concepts: Miss

General Caching Concepts: Types of Cache Misses

Cold (compulsory) miss

Cold misses occur when a block is accessed for the first time.

Conflict miss

- Most caches limit blocks at level k+1 to a small subset of blocks (sometimes a single block) at level k.
 - e.g., Block i at level k+1 must be placed in block (i mod 4) at level k.
- Conflict misses occur even when the level k cache is large enough if multiple data objects all map to the same level k block.
 - e.g., Referencing blocks 0, 8, 0, 8, 0, 8, ... would miss every time.

Capacity miss

 Occurs when the set of active cache blocks (working set) is larger than the cache.

Examples of Caching in the Hierarchy

Cache Type	What is Cached?	Where is it Cached?	Latency (cycles)	Managed By
Registers	4-8 bytes words	CPU core	0	Compiler
TLB	Address translations	On-Chip TLB	0	Hardware
L1 cache	64-bytes block	On-Chip L1	1	Hardware
L2 cache	64-bytes block	On/Off-Chip L2	10	Hardware
Virtual Memory	4-KB page	Main memory	100	Hardware + OS
Buffer cache	Parts of files	Main memory	100	OS
Disk cache	Disk sectors	Disk controller	100,000	Disk firmware
Network buffer cach e	Parts of files	Local disk	10,000,000	AFS/NFS client
Browser cache	Web pages	Local disk	10,000,000	Web browser
Web cache	Web pages	Remote server disks	1,000,000,000	Web proxy serv er

Summary

- The speed gap between CPU, memory and mass storage continues to widen.
- Well-written programs exhibit a property called locality.
- Memory hierarchies based on caching close the gap by exploiting locality.

Questions?