Nechť

- p je počet čísel na tabuli, který se snažíme maximalizovat
- n je přirozené číslo menší nebo rovno p
- a_n je n-té přirozené číslo na tabuli
- S_n je součet prvních n čísel:

$$S_1 = a_1 \tag{1}$$

$$S_n = a_n + S_{n-1} \quad (2)$$

$$S_p = 2024 \tag{3}$$

• k_n je koeficient n-tého čísla (pozor: k_1 není definováno)

$$a_n = k_n \cdot S_{n-1} \quad (4)$$

Podle (2) platí:

$$S_n = a_n + S_{n-1}$$

Dosadme za a_n podle (4):

$$S_n = k_n \cdot S_{n-1} + S_{n-1}$$

Po vytknutí dostáváme vztah:

$$S_n = (k_n + 1) \cdot S_{n-1}$$

Tenhle proces můžeme zopakovat pro S_{n-1} :

$$S_n = (k_n + 1) \cdot (k_{n-1} + 1) \cdot S_{n-2}$$

Tak to bude pokračovat dokud na konci nebude S_1 :

$$S_n=(k_n+1)\cdot (k_{n-1}+1)\cdot \ldots \cdot (k_2+1)\cdot S_1$$

Podle (1) dostáváme výsledný vztah:

$$S_p = a_1 \cdot \prod_{i=2}^n (k_i + 1)$$

Vojtěch Křižan 5. E, GFPVM A-I-3

 a_1 je přirozené číslo, ale (k_i+1) musí být vždy ≥ 3 (viz N1). Našim úkolem je mít co nejvíce členů. Podle (4) je $S_p=2024=2^3\cdot 11\cdot 23.$ To nám dává následující 2 řešení:

1)
$$2024 = 1 \cdot 2^3 \cdot 11 \cdot 23 \Rightarrow a_1 = 1; k \in \{7, 10, 22\}$$

2)
$$2024 = 2 \cdot 2^2 \cdot 11 \cdot 23 \Rightarrow a_1 = 2; k \in \{3, 10, 22\}$$

V 1. řešení nemůžeme rozdělit 2^3 na více členů (k_i+1) , protože pak by minimálně jeden z nich byl roven 2, což je v rozporu s výše uvedenou podmínkou. Můžeme maximálně vzít 2 z 2^3 a dosadit ji za a_1 - tím dostáváme 2. řešení. Ještě můžeme dopočítat oboje řešení a vyzkoušet zda jsou doopravdy korektní:

Tím dostáváme naši odpověď: na tabuli mohou být nanejvýš 4 čísla.