Generative Models

Laura Manduchi, Dario Pavllo

ETH Zürich

2-3 May 2019

Overview

(Variational) Autoencoders

Generative Adversarial Networks

GANs vs VAEs

(Variational) Autoencoders

Autoencoder (paradigm)

- A form of unsupervised learning
- ► **Applications**: dimensionality reduction, compression, representation learning, pretraining/semi-supervised learning
- ▶ Encoder-decoder architecture with reconstruction loss
 - Encoder (latent code): $\mathbf{z} = f_e(\mathbf{x})$
 - ▶ Decoder (reconstruction): $\hat{\mathbf{x}} = f_d(\mathbf{z})$
 - ▶ The loss is usually MSE, L1, or cross-entropy
 - ► Example (MSE objective): min $||f_d(f_e(\mathbf{x})) \mathbf{x}||^2$
- Can be applied to any kind of data (not just images)

Linear autoencoder (refresher)

- ▶ Simplest case: f_e and f_d are linear maps
 - ightharpoonup z = Cx
 - ▶ x̂ = Dz
- ► MSE objective: min $\|\mathbf{DCx} \mathbf{x}\|^2$
 - Can be solved efficiently using SVD
- ► Same thing as principal component analysis (PCA)

Non-linear autoencoder (aka the autoencoder)

- $ightharpoonup f_e$ and f_d are neural networks (learnable non-linear functions)
- Also referred to as non-linear PCA
- ► Typical modern architecture for images: (de)convolutional
 - ► Encoder: convolutions + pooling/strides
 - Decoder: transposed convolutions

Non-linear autoencoder (continued)

- Powerful data-driven compression
- Can also be used for denoising (denoising autoencoder)
- ▶ **However:** no clear interpretation/structure of latent space
- Unclear how to sample or interpolate
- Visualization of the latent space is tricky
 - ▶ Many dimensions are used in practice (128+)

Variational autoencoder (motivation)

- ► We want to enforce a structure on the latent space, at the expense of the reconstruction quality
- One possible choice: force a prior on the latent space (e.g. Gaussian distribution)
- We can then generate by decoding a sample from the distribution

► The compactness of the latent space enables smooth interpolation

Variational autoencoder (idea)

- Model latent codes as soft regions instead of points
- Sampling with reparameterization trick
- KL divergence to enforce Gaussian prior
 - Without it, the model would learn $\sigma \to 0$, reverting to a normal autoencoder

AE vs VAE (on MNIST digits)

https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf

- ► The latent space of a VAE approximates a Gaussian distribution, which makes sampling easy
- ► The lack of "holes" allows for smooth interpolation

Practical considerations

- Diagonal covariance
 - ▶ For D dimensions, $\mathcal{O}(D)$ parameters instead of $\mathcal{O}(D^2)$ for full covariance matrix

- Enforcing $\sigma > 0$ in the model architecture
 - ▶ Solution: predict $\log(\sigma^2)$ (defined across \mathbb{R}) and update formulas accordingly

Posterior collapse

- Model gets stuck in a bad local minimum, no learning occurs
- Can be easily detected (KL term goes to 0)
- ► Workaround: decrease strength of KL term (β-VAE)

Generative Adversarial Networks

Idea

- ► Two networks, **generator** and **discriminator** learn to fool each other
 - ▶ They play a minimax game
- Generator: generates a sample given input noise
- Discriminator: classifies the sample as real (coming from the data distribution) or fake (coming from the generator)
- Generator and discriminator are trained in alternation by optimizing opposite objectives
 - The generator becomes increasingly better at fooling the discriminator

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\mathbf{x} \sim p_{\mathsf{data}}(\mathbf{x})}[\log D(\mathbf{x})] + \mathbb{E}_{\mathbf{z} \sim p_{\mathbf{z}}(\mathbf{z})}[\log(1 - D(G(\mathbf{z})))]$$

Training (discriminator)

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\mathbf{x} \sim p_{\mathsf{data}}(\mathbf{x})}[\log D(\mathbf{x})] + \mathbb{E}_{\mathbf{z} \sim p_{\mathbf{z}}(\mathbf{z})}[\log(1 - D(G(\mathbf{z})))]$$

Training (generator)

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\mathbf{x} \sim p_{\mathsf{data}}(\mathbf{x})}[\log D(\mathbf{x})] + \mathbb{E}_{z \sim p_{z}(z)}[\log(1 - D(G(z)))]$$

Practical considerations

- Very hard to train (may not converge)!
- Mode collapse (limited diversity)
 - ▶ The generator may just learn to generate a few samples
 - ► Input noise is (partially or totally) ignored
 - Data distribution not entirely captured

- Need to balance generator and discriminator
 - ▶ They may learn at different speeds

Evaluation

How do you evaluate something qualitatively without humans?

Inception score

- Quality: classify images with pretrained Inception network and compute entropy of classes (must be low)
- Diversity: look at entropy of generated images (must be high)

Fréchet Inception Distance (FID)

- 1. Use pretrained Inception network to extract features from generated images
- 2. Compare their distributions with those of a real dataset
- Not entirely convincing, but this is what we have

GANs vs VAEs

Quality

- (V)AEs tend to generate blurry images
 - Caused by pixel-wise factorization and local loss
 - ► High-frequency details are poorly correlated and hard to predict

- GANs generate sharper images
 - Discriminator learns a "perceptual" loss

VAE

GAN

GAN

GAN

Training

- GANs are very hard to train
 - Architecture and hyperparameters play a crucial role
 - Many variants have been proposed

- VAEs are somewhat easier to train
 - ▶ But not easy (especially for other domains like text)!

Applications

- GANs learn an implicit density
 - Can only generate (sample)
- VAEs learn an explicit density
 - Can sample and encode
- Some approaches combine VAEs and GANs to take the best of both of worlds
 - VAE-GAN
 - VAE to guide the style of a GAN (e.g. SPADE in figure below)

