

Identifying accurate climate indicators of extreme wheat and maize yield loss

Tamara Ben-Ari & David Makowski (INRA)

P. Calanca (Agroscope), M. Van der Velde, AGRI Meeting, September, 20th 20 (JRC)

WHAT ARE THE **SKILLS** OF **EXISTING TOOLS**?

(FOR EXTREME YIELD LOSSES ANTICIPATION)

CONTEXT

	Yield t/ha					
Crop	Avg 5yrs	May Bulletin	MARS 2016 forecasts	% Diff 16/5yrs	% Diff May	
TOTAL CEREALS	5.27	5.54	5.53	+4.9	-0.2	
Total Wheat	5.60	5.85	5.82	+3.9	-0.5	
soft wheat	5.83	6.11	6.07	+4.1	-0.7	
durum wheat	3.33	3.45	3.48	+4.4	+0.9	
Total Barley	4.72	4.99	5.01	+6.3	+0.4	
spring barley	4.12	4.24	4.33	+4.9	+2.1	
winter barley	5.57	5.98	5.94	+6.5	-0.7	
Grain maize	6.93	7.31	7.35	+6.1	+0.5	
Rye	3.76	3.85	3.77	+0.3	-2.1	
Triticale	4.20	4.26	4.20	-0.2	-1.4	
Rape and turnip rape	3.20	3.29	3.24	+1.0	-1.5	
Potato	32.07	33.21	33.16	+3.4	-0.2	
Sugar beet	71.80	73.39	73.20	+2.0	-0.3	
Sunflower	1.94	2.01	2.08	+7.1	+3.5	

Issued: 17 June 2016

esolution: 25x25 km

JRC MARS Bulletin Crop monitoring in Europe

June 2016

Fairly good yield outlook for the EU-28

Excellent conditions in Spain; less positive in western Europe

Content:

- 1. Agro-meteorological overview
- 2. Observed canopy conditions by remote sensing
- 3. Country analysis
- 4. Crop yield forecasts
- 5. Pasture regional monitoring
- 6. Atlas

Covers the period from 1 May until 15 June

CLIMATE DATA

- T_{max} and T_{min} (°C)
- Angot radiation (MJ/m²)
- Rainfall (mm)
- Vapor pressure deficit (hPa)
- Potential evapotranspiration (mm/day)
- Drought indices:

$$ARID = 1 - \frac{T_a}{T_p}$$

$$FU = -\frac{P}{ET_0} + [1 + (\frac{P}{ET_0})^w]^{(1/w)}$$

- Critical temperatures (heat and frost) and critical ARID
- The North Atlantic Oscillation (NAO)
- Potential and water-limited simulated yields (WOFOST model, JRC)

YIELD DATA

- Yield time series (1976/1989 2013)
- NUTS3 scale

YIELD RESIDUALS (WHEAT IN FRANCE)

Yield Residuals with polynomial detrending (t/ha)

RECEIVING OPERATOR CHARACTERISTIC (ROC) ANALYSIS

ROC is based on the evaluation of a classification rule

"Maize yield loss is extreme (i.e., lower than 5^{th} or 10th percentile) if maximum temperature (I) exceeds a critical threshold $(I_T)^{"}$

Two types of errors :

	Optimal	Optimal Classification			
Classification rule	Non-Extreme Yield loss	Extreme Yield loss			
I <i<sub>T</i<sub>	TRUE NEGATIVE	FALSE NEGATIVE			
I>I _T	FALSE POSITIVE	TRUE POSITIVE			

EVALUATION OF THE CLASSIFICATION RULE

- **Sensitivity** = 1 False negative rate = TRUE POSITIVE RATE
- **Specificity** = 1 False positive rate = TRUE NEGATIVE RATE

• False negative rate and false positive rate are estimated for all possible threshold (I_T) values (e.g., the whole range of Tmax in the sample)

The results are summarized graphically

AREA UNDER THE ROC CURVE (AUC)

Indicator ROC curve for the FU index in Spain

COMPARING AUC SCORES FOR ALL INDICATORS / MAIZE IN FRANCE

Indicators with best AUC scores in France and Spain

Crop	Country	Raw yield residuals		
Wheat	France	November precipitation (0.64) July Potential yield (0.64) April Tmax (0.63) November FU indicator (0.63)		
Maize	France	June-July Tmax (0.87) June-July VPD (0.86) Yearly critical Tmax (0.85) Vegetative critical Tmax (0.85) Vegetative VPD (0.85) Vegetative Tmax (0.85) August potential yield (0.85)		
Wheat	Spain	Vegetative critical ARID (0.76) Vegetative ARID (0.76) April critical ARID (0.76) April ARID (0.76)		
Maize	Spain	April-May ARID (0.64) July Tmax (0.64) August Tmax (0.64)		

SENSITIVITY AND SPECIFICITIES ARE USED TO COMPUTE

PROBABILITIES OF EXTREME YIELD LOSS

SPATIALIZATION OF AUC SCORES (MAIZE, JUNE TMAX)

SUMMARY

1. WE SHOW THAT "SIMPLE" CLIMATE VARIABLES ARE EFFICIENT IN MOST CASES

- In France for non-irrigated maize and in Spain for wheat
- They often outperform complex indicators
- Drought index is a good compromise in these countries (both crops)

3. This framework could extend as a relatively cheap solution to support decision making

4. DEVELOPMENTS

- Combining indicators to improve accuracy
- Retrieve climatic and bioclimatic data for 2016 to compute the probability of wheat yield loss in France from combined covariates

Contents lists available at ScienceDirect

Agricultural and Forest Meteorology

journal homepage: www.elsevier.com/locate/agrformet

Identifying indicators for extreme wheat and maize yield losses

Tamara Ben-Ari a,*, Juliette Adrian a, Tommy Klein b, Pierluigi Calanca b, Marijn Van der Velde c, David Makowski a

- ^a UMR 211 Agronomie INRA, Agroparistech, Université Paris-Saclay, 78850 Thiverval-Grignon, France
- b Agroscope, Institute for Sustainability Sciences ISS, Reckenholzstrasse 191, 8046 Zurich, Switzerland
- ^c European Commission, Joint Research Centre (JRC), Institute for Environment and Sustainability (IES), Via E. Fermi 2749, 21027 Ispra, VA, Italy

THANK YOU FOR YOUR ATTENTION

COMBINATION OF CLIMATE INDICATORS TO IMPROVE ACCURACY

- Indicators can be combined
- AUC scores can be spatialized to identify most relevant areas across countries

- Collaboration with NIAES (Tsukuba, Japan) with global estimated yield dataset
- Target major worldwide production basins

Performance of classification based on cumulated rainfall and solar radiation U.S

COMPARING AUC SCORES FOR ALL INDICATORS / WHEAT IN SPAIN

COMBINING INDICATORS

SUPPLEMENT

- All four AUC matrices
- Bioclimatic indicators, formulas and parameters

COMPARING AUC SCORES — SENSITIVITY ANALYSIS

POSTERIOR PROBABILITY - GRAPHS

 $P(Ex Yield loss / I > I_T)$

The posterior probability of extreme yield loss conditionally to I

POSTERIOR PROBABILITY - GRAPHS

$$P(Ex\ Yield\ loss\ /\ I > I_T)$$

$$= \frac{Sensitivity\ (I_T)\ .\ P(Ex\ Yield\ loss)}{Sensitivity\ (I_T)\ .\ P(Ex\ Yield\ loss) + \left(1 - specificity(I_T)\right). \left(1 - P(Ex\ Yield\ loss)\right)}$$

$$Sensitivity\ (proportion\ of\ true\ positives)\ estimated\ from\ the$$

$$P(I > It\ /\ Ex\ Yield\ loss)$$

$$P(I < It\ /\ Non\ Ex\ Yield\ loss)$$

POSTERIOR PROBABILITY - GRAPHS

The prior probability of extreme yield loss (i.e., before measuring the indicator value).

Here it is the value of the quantile i.e., there is a 10% chance to witness an extreme yield loss (among all data

points)

The prior probability of non extreme yield loss (i.e., before measuring the indicator value). There is a 90% chance to witness a gain or moderate loss

COMPARING AUC SCORES – LIMITS (1/X)

 One score per indicator, per time period, per percentile, per detrending method and per country

whereby a simple phenological model for the accumulation of thermal units (TU) is used to distinguish between vegetative and reproductive stages. Here, TU is evaluated as:

$$TU = \begin{cases} 0 & \text{if } T < T_{\text{base}} \\ T - T_{\text{base}} & \text{if } T_{\text{base}} \le T \le T_{\text{cutoff}} \\ T_{\text{cutoff}} & \text{if } T > T_{\text{cutoff}} \end{cases}$$
(4)

where T, $T_{\rm cutoff}$ and $T_{\rm base}$ are the daily mean, cutoff and base temperatures, respectively. Typical values for $T_{\rm base}$ and $T_{\rm cutoff}$ are 0/6 and 25/30 °C for winter wheat/maize. TU requirements to reach emergence (start of the vegetative stages) and anthesis (start of the reproductive stages) are taken from Soltani and Sinclair (2012). Finally, we also consider the North Atlantic Oscillation index as an additional index combining information on atmospheric pressure (Hurrell, 1995).

Table 1Parameter values for defining critical temperatures (no unit) and critical ARID (no unit).

Indicator	Definition	Critical value	References
Heat	$T_{\text{max}} > T_{\text{max.cr}}$	34 (wheat)	Asseng et al. (2015)
		35 (maize)	Teixeira et al. (2013)
Frost	$T_{\min} < T_{\min,cr}$	-17.2 (wheat)	Porter and Gawith (1999)
		-15 (maize)	Snyder and Melo-Abreu (2005)
Drought	ARID > ARID.cr	0.85 (wheat)	Trnka et al. (2014)
		0.8 (maize)	Lobell et al. (2013)

$$ARID = 1 - \frac{T_a}{T_p},$$

$$FU = -\frac{P}{ET_0} + \left[1 + \left(\frac{P}{ET_0}\right)^w\right]^{(1/w)} \tag{3}$$

where P and ET_0 are the sums of precipitation and reference evapotranspiration over the chosen time period, and w is a shape parameter (w = 3).

SEVERE YIELD LOSS THRESHOLDS

Raw residuals (t ha ⁻¹)		France	France		Spain	
		Wheat	Maize	Wheat	Maize	
Polynomial	5th percentile 10th percentile	-0.95 -0.7	-2.45 -1.58	-1.12 -0.81	-1.42 -1.02	
Local (loess)	5th percentile	-0.92	-1.74	-1.07	-1.28	
Cubic splines	10th percentile 5th percentile	-0.69 -0.94	-1.18 -1.80	-0.77 -0.86	-0.91 -0.86	
	10th percentile	-0.68	-1.10	-0.51	-0.60	

Table 1. Values in t/ha below which a given yield is considered extreme

Wheat in Spain _ Linear detrending _ Percentile=0.05

Wheat in France_ Linear detrending _ Percentile=0.05

CLIMATE DATA

EXAMPLE: ARID [0-1] IN 2003

EVALUATION OF ALL CLASSIFICATION RULES

EVALUATION OF ALL CLASSIFICATION RULES

EXTREME AND NON-EXTREME INDICATOR DISTRIBUTIONS

$$P(I_1 > I_o) = AUC$$

EVALUATION OF ALL CLASSIFICATION RULES

YIELD TIME SERIES

