CS 101: Computer Programming and Utilization

Shivaram Kalyanakrishnan (Abhiram Ranade's slides, borrowed and edited)
Lecture 6

This Lecture

- How to express real life problems as numerical problems.
 - Picture processing
 - Predicting the weather
 - Processing text/language
- How a computer does the required operations
 - How numbers are represented
 - Parts of a computer

"What is in this picture?"

https://en.wikipedia.org/wiki/File:Jackson%27s_Chameleon_2_edit1.jpg

Picture, Representation, Reconstruction

(a)

(b)

(c)

Remarks

- Better representation if picture divided into more cells.
- Pictures with different "gray levels": use numbers 0, 0.1, ..., 1.0 to represent level of darkness rather than just 0, 1.
- Pictures with colours: picture = 3 sequences
 - sequence for red component,
 - sequence for blue component,
 - sequence for green component
- Add up the colours to get the actual colour.

Weather prediction

- Divide the surface of the earth into small regions (like pixels).
- Let p_i, t_i, h_i = pressure, temperature, humidity in region i
- Laws of physics tell us how to the values will change with time.
- We can measure current pressure, humidity, temperature values, and calculate what will happen tomorrow!
- Smaller the regions, better will be the accuracy. (Smaller the pixels, better will be the picture representation).

Language/text using numbers

- Define a code for representing letters.
- Commonly used code: ASCII
 - (American Standard Code for Information Interchange)
- Letter 'a' = 97 in ASCII, 'b' = 98, ...
- Uppercase letters, symbols, digits also have codes.
 Code also for space character.
- Words = sequences of ASCII codes of letters in the word.
- 'computer' = 99, 111, 109, 112, 117, 116, 101, 114.
- Sentences/paragraphs = larger sequences.
- Does the word "computer" occur in a paragraph?
 - Does a certain sequence of numbers occur inside another sequence of numbers?

This Lecture

- How to express real life problems as numerical problems.
 - Picture processing
 - Predicting the weather
 - Processing text/language
- How a computer does the required operations
 - How numbers are represented
 - Parts of a computer

Bits, bytes, half-words, words

- Bit = 1 binary "digit", (one number = 0 or 1)
- byte = 8 bits
- half-word = 16 bits
- word = 32 bits
- double word = 64 bits

"one byte of memory" = memory capable of storing 8 bits = 8 capacitors.

Binary representation revision

- Binary number a_{n-1}a_{n-2}...a₁a₀ . a₋₁a₋₂...a_{-k}
 - Example: 101.11
- Decimal value $v = \sum_i a_i 2^i$
 - $1*2^2 + 0*2^1 + 1*2^0 + 1*2^{-1} + 1*2^{-2} = 5.75$
- Converting a decimal integer v to binary
 - Divide v by 2, remainder gives a₀
 - Repeat previous step with the quotient to get a₁, a₂, ...
- Converting fraction f to binary
 - If f > 0.5, $a_{-1} = 1$
 - Similarly other bits...

Representing integers that can be positive or negative

- One of the bits is used to indicate sign
- Sign bit = 0 (low charge/voltage) means positive number, = 1 means negative number.
- To store -25 use
 100000000000000000000000000001
- Leftmost bit = sign bit
- Range stored: -2³¹ 1 to 2³¹ 1.
- Actual representation used:
 - more complex. "Two's complement".

Representing Real numbers

- Use analogue of "scientific notation":significand * 10^{exponent}
 e.g. 6.022 * 10²³
- Same idea, but significand, exponent are in binary, thus number is:

significand * 2 exponent

- "Single precision": store significand in 24 bits, exponent in 8 bits.
 - Fits in one word!
 - 24 bits of significand = 7-8 decimal digits
- "Double precision": store significand in 53 bits, exponent in 11 bits.
 - Fits in a double word!
 - 53 bits of significand = 16-17 decimal digits
- Actual representation: more complex. "IEEE Floating Point Standard".

Organization of a computer

This Lecture

- How to express real life problems as numerical problems.
 - Picture processing
 - Predicting the weather
 - Processing text/language
- How a computer does the required operations
 - How numbers are represented
 - Parts of a computer