1 Oppgave 1

Gjør kjøretidsanalyse av følgende algoritmer

1.1 a)

```
public static double F1(double x, int k) {
   if (k == 1) {
      return x;
   }
   return x * F1(x, k - 1);
```

Svar. if - setningen er en operasjon, og har kjøretid: O(1). return x * F1(x, k - 1) teller for tre operasjoner, og har kjøretid O(3). Disse operasjonene kjøres k ganger. Siste operasjon: return x kjøres en gang, og teller for to operasjoner, og har kjøretid O(2). Vi ender opp med en eksakt kjøretid O(4k+2). Dette er i Big-O notasjon lik O(k).

1.2 b)

```
public static double F2(double x, int k) {
   if (k == 1) {
      return x;
   }
   int k2 = k/2;
   return F2(x, k2) * F2(x, k2);
```

Svar. Operasjonene har følgende kjøretider:

Operasjon	Kjøretid
if (k == 1)	1
return x;	2
int k2 = k / 2;	2
retun $F2(x, k2) * F2(x,k2)$	4

Vi har at F2(x, 1) = 2, og ettersom k2 halveres i hvert funksjonskall, og return setningen kjører F2 to ganger, ender vi opp med O(7k+2), som er O(k) i Big-O notasjon

1.3 c)

```
public static double F3(double x, int k) {
   if (k == 1) {
      return x;
   }
   double res = F3(x, k/2);
   return res*res;
}
```

Svar. Operasjonene har følgende kjøretider:

Operasjon	Kjøretid
if (k == 1)	1
return x;	2
double res = $F3(x, k / 2)$	3
return res*res	2

Vi har at F3(x, 1) har kjøretid O(2). Videre har vi F3(x, k) har kjøretid $O(5 \log k)$, vi får Big-O kjøretid på $O(\log k)$.

2 Oppgave 2

Gi rekkefølgen på noder besøkt for følgende graf

2.1 a)

Svar. DFS 0, 5, 4, 1, 3, 7, 6, 8, 9, 2

2.2 b)

Svar. Rekkefølgen på nodene når DFS er ferdig med å behandle nodene.

2.3 c)

Svar. Gi rekkefølgen på de sterkt sammenhengende komponentene som de oppdages med Kosaraju-Sharir algoritmen.

2.4 d)

Svar. Gi rekkefølgen på nodene etter første besøk iht. BFS

3 Oppgave 3

3.1 a)

Hva er kjøretiden til quicksort dersom vi alltid velger det første elementet som pivot og input er sortert i stigende rekkefølge ved start?

Svar.
$$O(n^2)$$

3.2 b)

Hva er kjøretiden til innsettingssortering dersom input er sortert i synkende rekkefølge ved start?

Svar. $O(n^2)$

3.3 c)

Hva er kjøretiden til mergesort dersom input er sortert i stigende rekkefølge ved start?

Svar. $O(n \log n)$

3.4 d

Hva er kjøretiden til mergesort dersom input er sortert i stigende rekkefølge ved start og vi hopper over alle "merge" operasjoner av to lister A og B hvis siste elementet i A er mindre eller lik første elementet i B?

Svar. O(n)