Digital Systems Design and Laboratory [6. Quine-McCluskey Method]

Chung-Wei Lin

cwlin@csie.ntu.edu.tw

CSIE Department

National Taiwan University

Two-Level Logic Minimization

- ☐ Karnaugh map vs. Quine-McCluskey method
 - Same input
 - Minterm expansion
 - > Same output
 - A minimum SOP
 - > Same high-level procedure
 - Find all Prime Implicants (PIs)
 - Find a minimum SOP

Finding All Prime Implicants (1/5)

- ☐ Start with all minterms
- ☐ Group pairs of adjacent minterms
 - Mark and remove all covered terms
- ☐ Repeat grouping until no more grouping possible

CD AE	00	01	11	10
00	1 m ₀	m_4	m ₁₂	1 m ₈
01	1 m₁	1 m ₅	m ₁₃	1 m ₉
11	m ₃	1 m ₇	m ₁₅	m ₁₁
10	1 m ₂	1 m ₆	1 m ₁₄	1 m ₁₀

#1s	Minterm	Binary
0	0	0000
	1	0001
1	2	0010
	8	1000
	5	0101
2	6	0110
Z	9	1001
	10	1010
3	7	0111
	14	1110

Finding All Prime Implicants (2/5)

- ☐ Start with all minterms
- ☐ Group pairs of adjacent minterms
 - Mark and remove all covered terms
- ☐ Repeat grouping until no more grouping possible

CD AE	00	01	11	10
00	1			1
	m_0	m ₄	m ₁₂	m ₈
01	1 m ₁	1 m ₅	m ₁₃	1 m ₉
11	m ₃	1 m ₇	m ₁₅	m ₁₁
10	1 m ₂	1 m ₆	1 m ₁₄	1 m ₁₀

#1s	Minterm	Size 1	Minterm	Size 2
0	0	0000 -	→ 0,1	000-
	1	0001 /	0, 2	00-0
1	2	0010	0, 8	-000
	8	1000	1, 5	0-01
	5	0101	1, 9	-001
2	6	0110	2, 6	0-10
	9	1001	2, 10	-010
	10	1010	8, 9	100-
3	7	0111	8, 10	10-0
	14	1110	5, 7	01-1
			6, 7	011-
			6, 14	-110

10,14

1-10

Finding All Prime Implicants (3/5)

- ☐ Start with all minterms
- ☐ Group pairs of adjacent minterms
 - **▶** Mark and remove all covered terms
- ☐ Repeat grouping until no more grouping possible

CD AE	3 00	01	11	10
00	1 m ₀	${\sf m_4}$	m ₁₂	1 m ₈
01	1 m ₁	1 m ₅	m ₁₃	1 m ₉
11	m ₃	1 m ₇	m ₁₅	m ₁₁
10	1 m ₂	1 m ₆	1 m ₁₄	1 m ₁₀

#1s	Minterm	Size 1
0	0	0000
	1	0001
1	2	0010
	8	1000
	5	0101
2	6	0110
2	9	1001
	10	1010
2	7	0111
3	14	1110

Minterm	Size 2
0, 1	000-
0, 2	00-0
0, 8	-000
1, 5	0-01
1, 9	-001
2, 6	0-10
2, 10	-010
8, 9	100-
8, 10	10-0
5, 7	01-1
6, 7	011-
6, 14	-110
10,14	1-10

Finding All Prime Implicants (4/5)

- ☐ Start with all minterms
- ☐ Group pairs of adjacent minterms
 - ➤ Mark and remove all covered terms
- Repeat grouping until no more grouping possible

AB CD	00	01	11	10
00	1			1
	\overline{m}_0	m ₄	m ₁₂	m ₈
01	1 m₁	1 m ₅	m ₁₃	1 m ₉
11	m_3	1 m ₇	m ₁₅	m ₁₁
10	1 m ₂	1 m ₆	1 m ₁₄	1 m ₁₀

#1s	Minterm	Size 1
0	0	0000
	1	0001
1	2	0010
	8	1000
	5	0101
2	6	0110
2	9	1001
	10	1010
2	7	0111
3	14	1110
		1110

Minterm	Size 2
0, 1	000-
0, 2	00-0
0, 8	-000
1, 5	0-01
1, 9	-001
2, 6	0-10
2, 10	-010
8, 9	100-
8, 10	10-0
5, 7	01-1
6, 7	011-
6, 14	-110

10, 14

Minterm	Size 4
0,1,8,9	-00-
0,2,8,10	-0-0
0,8,1,9	-00-
0,8,2,10	-0-0
2,6,10,14	10
2,10,6,14	10
	_

Finding All Prime Implicants (5/5)

- ☐ Start with all minterms
- ☐ Group pairs of adjacent minterms
 - Mark and remove all covered terms
- Repeat grouping until no more grouping possible

CD AB	00	01	11	10
00	1			1
	m_0	m_4	m ₁₂	m ₈
01	1	1		1
-	m ₁	m ₅	m ₁₃	m ₉
11	m ₃	1 m ₇	m ₁₅	m ₁₁
ŀ	3	,	15	11
10	1	1	1	1
	m ₂	m ₆	m ₁₄	m ₁₀

#1s	Minterm	Size 1
0	0	0000
	1	0001
1	2	0010
	8	1000
	5	0101
2	6	0110
Z	9	1001
	10	1010
3	7	0111
	14	1110

Minterm	Size 2
0, 1	000-
0, 2	00-0
0, 8	-000
1, 5	0-01
1, 9	-001
2, 6	0-10
2, 10	-010
8, 9	100-
8, 10	10-0
5, 7	01-1
6, 7	011-
6, 14	-110

10, 14

Minterm	Size 4
0,1,8,9	-00-
0,2,8,10	-0-0
0,8,1,9	-00-
0,8,2,10	-0-0
2,6,10,14	10
2,10,6,14	10

Comparing with Karnaugh Map

☐ Try to find all prime implicants directly in the Karnaugh map

CD AB	00	01	11	10
00	1			1
	\overline{m}_0	m_4	m ₁₂	m ₈
01	1 m₁	1 m ₅	m ₁₃	1 m ₉
11	m_3	1 m ₇	m ₁₅	m ₁₁
10	1 m ₂	1 m ₆	1 m ₁₄	1 m ₁₀

#1s	Minterm	Size 1
0	0	0000
	1	0001
1	2	0010
	8	1000
	5	0101
2	6	0110
2	9	1001
	10	1010
2	7	0111
3	14	1110

Minterm	Size 2
0, 1	000-
0, 2	00-0
0, 8	-000
1, 5	0-01
1, 9	-001
2, 6	0-10
2, 10	-010
8, 9	100-
8, 10	10-0
5, 7	01-1
6, 7	011-
6, 14	-110

10, 14

Minterm	Size 4
0,1,8,9	-00-
0,2,8,10	-0-0
0,8,1,9	-00-
0,8,2,10	-0-0
2,6,10,14	10
2,10,6,14	10

Finding a Minimum SOP (1/4)

- **□** Build the prime implicant chart (table)
- ☐ Simplify the table using essential
 - > Select an essential, delete covered minterms, and repeat
- Optimally select PIs by column covering

AE	00	01	11	10
00	1			1
	m_0	m ₄	m ₁₂	m ₈
01	1	1		1
	m_1	m_5	m ₁₃	m ₉
11		1		
	m_3	m ₇	m ₁₅	m ₁₁
10	1	1	1	1
	m_2	m_6	m ₁₄	m ₁₀

						viint	erm	S			
PIs		0	1	2	5	6	7	8	9	10	14
0,1,8,9	-00-	х	X					X	Х		
0,2,8,10	-0-0	х		X				X		X	
2,6,10,14	10			Χ		Χ				X	X
1,5	0-01		X		X						
5,7	01-1				Χ		X				
6,7	011-					X	X				

Mintorma

Finding a Minimum SOP (2/4)

- ☐ Build the prime implicant chart (table)
- ☐ Simplify the table using essential prime implicants
 - > Select essential prime implicants and delete covered minterms
- Optimally select PIs by column covering

CD AE	00	01	11	10
00	1 m ₀	m_4	m ₁₂	1 m ₈
01	1 m₁	1 m ₅	m ₁₃	1 m ₉
11	m_3	1 m ₇	m ₁₅	m ₁₁
10	1 m ₂	1 m ₆	1 m ₁₄	1 m ₁₀

					ı	VIIIIL	erms	•			
PIs		0	1	2	5	6	7	8	9	10	14
0,1,8,9	-00-	Х	Х					Х	Х		
0,2,8,10	-0-0	Х		Χ				Х		Χ	
2,6,10,14	10			Χ		Х				Χ	Х
1,5	0-01		X		Χ						
5,7	01-1				X		X				
6,7	011-					X	X				

Mintorma

Finding a Minimum SOP (3/4)

- ☐ Build the prime implicant chart (table)
- ☐ Simplify the table using essential prime implicants
 - Select essential prime implicants and <u>delete covered minterms</u>
- Optimally select PIs by column covering

AB	00	01	11	10
00	1 m ₀	m_4	m ₁₂	1 m ₈
01	1 m ₁	1 m ₅	m ₁₃	1 m ₉
11	m_3	1 m ₇	m ₁₅	m ₁₁
10	1 m ₂	1 m ₆	1 m ₁₄	1 m ₁₀

		Minterms									
PIs		0	1	2	5	6	7	8	9	10	14
0,1,8,9	-00-	Х	Х					ж	Ж		
0,2,8,10	-0-0	ж		ж				ж		ж	
2,6,10,14	10			Х		ж				Х	Х
1,5	0-01		ж		Χ						
5,7	01-1				X		X				
6,7	011-					×	X				

Finding a Minimum SOP (4/4)

- ☐ Build the prime implicant chart (table)
- ☐ Simplify the table using essential prime implicants
 - > Select essential prime implicants and delete covered minterms
- Optimally select PIs by column covering

AE CD	3 00	01	11	10		
00	1 m ₀	m_4	m ₁₂	1 m ₈		
01	1 m ₁	1 m ₅	m ₁₃	1 m ₉		
11	m ₃	1 m ₇	m ₁₅	m ₁₁		
10	1 m ₂	1 m ₆	1 m ₁₄	1 m ₁₀		

		iviinterms									
Pls		0	1	2	5	6	7	8	9	10	14
0,1,8,9	-00-	ж	Х					ж	ж		
0,2,8,10	-0-0	ж		Х				ж		ж	
2,6,10,14	10			Х		Х				Х	ж
1,5	0-01		ж		X						
5,7	01-1				X		Х				
6,7	011-					×	Х				

Comparing with Karnaugh Map

☐ Try to find a minimum SOP directly in the Karnaugh map

Difficulty and Summary

- Column covering is hard
 - ➤ NP-complete
 - Consider a Boolean expression with n variables, in general
 - ~2ⁿ minterms
 - ~3ⁿ/n prime implicants
 - The proof is optional: https://core.ac.uk/download/pdf/82016049.pdf

Summary

- > Karnaugh map
 - Exact and effective as # of variables ≤ 5
- Quine-McCluskey method
 - Exact and realizable for more variables.
- > Espresso
 - Heuristic and faster than the Quine-McCluskey method

More Than Logic Design

- ☐ Are Integrated Circuit (IC) designers still doing this?
 - ➤ Maybe not...
 - > Existing semiconductor intellectual property (IP) core
 - ➤ Electronic Design Automation (EDA) tools
- ☐ How to decompose a complicated system to components (libraries) which you can implement easily?
 - > This decomposition must be correct, i.e., logically equivalent in this case

Q&A