Algebraic Topology

Aryaman Maithani

https://aryamanmaithani.github.io/

August 5, 2020

In what follows, I will denote the closed interval $[0,1] \subset \mathbb{R}$.

Whenever we talk about a map $f: X \to Y$ between topological spaces X and Y, we will always mean a *continuous function* f.

A path σ in a space X is a map $\sigma: I \to X$. If $x_0 = \sigma(0)$ and $x_1 = \sigma(1)$, we write this as

$$x_0 \stackrel{\sigma}{\longrightarrow} x_1$$
.

Moreover, x_0 and x_1 are called the *end points* of σ . In particular, x_0 is the initial point and x_1 is the final point.

All the topological spaces are assumed to be nonempty.

§1. Homotopy of Paths

§§1.1. The Fundamental Group

Definition 1.1 (Homotopy). Let σ and τ be paths in a space X with the same end points, i.e., $\sigma(0) = \tau(0)$ and $\sigma(1) = \tau(1)$.

We say that σ and τ are homotopic with ends points held fixed written

$$\sigma \simeq \tau \operatorname{rel} \{0, 1\}$$

if there is a map $F: I \times I \to X$ such that

- 1. $F(s,0) = \sigma(s)$ for all $s \in I$,
- 2. $F(s,1) = \tau(s)$ for all $s \in I$,
- 3. $F(0,t) = x_0$ for all $t \in I$,
- 4. $F(1,t) = x_1 \text{ for all } t \in I$.

F is called a *homotopy* from σ to τ . We write

$$F: \sigma \simeq \tau \text{ rel } \{0,1\}.$$

The above can be pictorially depicted as

The above picture is interpreted as follows:

Along the (bottom) line t=0, F agrees with σ and along the (top) line t=1, F agrees with t=1.

Similarly, along the (left) line s=0, F is identically equal to x_0 and along the (right) line s=1, it is x_1 .

In particular, if σ is a loop, i.e., $x_0 = x_1$ and e_{x_0} is the constant loop $s \mapsto x_0$ for $s \in I$, and if $\sigma \simeq e_{x_0}$ rel $\{0,1\}$, we say that " σ can be shrunk to a point," or is *homotopically trivial*.

Proposition 1.2 (\simeq is an equivalence relation).

- 1. $\sigma \simeq \sigma \operatorname{rel} \{0, 1\},\$
- 2. $\sigma \simeq \tau$ rel $\{0,1\} \implies \tau \simeq \sigma$ rel $\{0,1\}$,
- 3. $\sigma \simeq \tau$ rel $\{0,1\}$ and $\tau \simeq \rho$ rel $\{0,1\} \implies \sigma \simeq \rho$ rel $\{0,1\}$.

Proof. 1. Define $F(s,t) := \sigma(s)$.

- 2. Define F(s,t) := F(s, 1-t).
- 3. Given $F: \sigma \simeq \tau$ rel $\{0,1\}$ and $G: \tau \simeq \rho$ rel $\{0,1\}$, define $H: I \times I \to X$ as

$$H(s,t) := \begin{cases} F(s,2t) & 0 \le 2t \le 1, \\ G(s,2t-1) & 1 \le 2t \le 2. \end{cases}$$

Note that F and G do agree for 2t=1 since we have $F(s,1)=\tau(s)=G(s,0)$ for all $s\in I$. It is easy to see that H is well-defined.

Note that H is continuous (by the pasting lemma) and it satisfies all the four properties of a homotopy (from σ to ρ), since F and G do so.

Thus, we can consider the homotopy classes $[\sigma]$ of paths σ from x_0 to x_1 under the equivalence relation \simeq . (Note very carefully that all paths in an equivalence class have the same end points.)

Definition 1.3 (Multiplication of paths). Let σ be a path from x_0 to x_1 and τ from x_1 to x_2 .

The product $\sigma * \tau$ is a path from x_0 to x_2 defined as

$$\sigma * \tau(s) := \begin{cases} \sigma(2s) & 0 \le 2s \le 1, \\ \tau(2s-1) & 1 \le 2s \le 2. \end{cases}$$

Once again, it's an easy check that $\sigma\tau$ is well-defined and continuous (using the pasting lemma).

The above $\sigma * \tau$ is essentially the path from x_0 to x_1 obtained by first travelling from x_0 to x_1 via σ and then from x_1 to x_2 via τ .

We will now be lenient with notation and simply denote $\sigma * \tau$ as $\sigma \tau$ unless necessary. The next proposition shows how this product behaves with the equivalence relation.

Proposition 1.4.

$$\sigma \simeq \sigma' \operatorname{rel} \{0,1\}$$
 and $\tau \simeq \tau' \operatorname{rel} \{0,1\} \implies \sigma \tau \simeq \sigma' \tau' \operatorname{rel} \{0,1\}.$

Proof. The proof is motivated by the following diagram.

Given $F: \sigma \simeq \sigma'$ rel $\{0,1\}$ and $G: \tau \simeq \tau'$ rel $\{0,1\}$, define $H: I \times I \to X$ as

$$H(s,t) := \begin{cases} F(2s,t) & 0 \le 2s \le 1, \\ G(2s-1,t) & 1 \le 2s \le 2. \end{cases}$$

As earlier, H is well-defined (since $F(1,t)=x_1=G(0,t)$ for all $t\in I$) and continuous. Moreover, we have

$$H(0,t) = F(0,t) = x_0, \quad H(1,t) = G(1,t) = x_2,$$

$$H(s,0) = \begin{cases} F(2s,0) & 0 \le 2s \le 1, \\ G(2s-1,0) & 1 \le 2s \le 2 \end{cases} = \begin{cases} \sigma(2s) & 0 \le 2s \le 1, \\ \tau(2s-1) & 1 \le 2s \le 2 \end{cases} = \sigma\tau(s),$$

and similarly,

$$H(s,1) = \sigma' \tau'(s)$$
 for all $s \in I$.

This shows that

$$H: \sigma \tau \simeq \sigma' \tau' \text{ rel } \{0,1\}.$$

Definition 1.5 (Product of equivalence classes). In view of the above proposition, we define

$$[\sigma] * [\tau] \vcentcolon= [\sigma * \tau].$$

The above, of course, is defined only when the final point of σ (and thus, any other representative of $[\sigma]$) equals the initial point of τ (and thus, any other representative of $[\tau]$).

As before, we shall drop the * and simply write $[\sigma][\tau]$.

Lemma 1.6. Let σ, τ, ω be paths such that the products $\sigma(\tau\omega)$ and $(\sigma\tau)\omega$ are defined. Then,

$$\sigma(\tau\omega) \simeq (\sigma\tau)\omega \operatorname{rel} \{0,1\}.$$

Proof. Let x_0, x_1, x_2, x_3 be points such that

$$x_0 \xrightarrow{\sigma} x_1 \xrightarrow{\tau} x_2 \xrightarrow{\omega} x_3.$$

We define a homotopy F from $\sigma(\tau\omega)$ to $(\sigma\tau)\omega$. To motivate the definition of F, we may first visualise the homotopy as follows.

One can note that the top line depicts the path $(\sigma \tau)\omega$ and the bottom $\sigma(\tau\omega)$.

We define $F: I \times I \to X$ piece-wise on the three regions (from left to right) as follows:

$$F(s,t) := \begin{cases} \sigma\left(\frac{4s}{2-t}\right) & 0 \le s \le \frac{1}{4}(2-t), \\ \tau(4s+2-t) & \frac{1}{4}(2-t) \le s \le \frac{1}{4}(3-t), \\ \omega\left(\frac{4s+t-3}{t+1}\right) & \frac{1}{4}(3-t) \le s \le 1. \end{cases}$$

It is clear that F is continuous on each piece. By the pasting lemma, it is continuous everywhere.

The four properties of being a homotopy are also clear, by construction. (The diagram makes it clear why.) \Box

Definition 1.7 (Inverse path). Given a path σ from x_0 to x_1 , its *inverse path* σ^{-1} is a path from x_1 to x_0 given by

$$\sigma^{-1}(s) := \sigma(1-s), \qquad s \in I.$$

The above is simply "travelling backwards σ ."

Lemma 1.8. Let $\sigma, \sigma': I \to X$ be paths such that $\sigma \simeq \sigma'$ rel $\{0, 1\}$. Then,

$$\sigma^{-1} \simeq \sigma'^{-1} \operatorname{rel} \{0, 1\}.$$

Proof. Let $F:\sigma\simeq\sigma'$ rel $\{0,1\}$ be a homotopy. Then, F'(s,t):=F(1-s,t) is a homotopy between the inverses. \Box

Definition 1.9 (Inverse class). Let $\sigma:I\to X$ be a path. We define the inverse of the class $[\sigma]$ as

$$[\sigma]^{-1} := [\sigma^{-1}].$$

In view of the above lemma, the above definition is indeed well-defined.

Lemma 1.10. Given any path σ from x_0 to x_1 , we have

$$e_{x_0} \simeq \sigma \sigma^{-1} \operatorname{rel} \{0, 1\},$$

where e_{x_0} denotes the constant loop at x_0 .

Proof. As usual, we motivate the proof with a diagram. In this case, it is the following:

The homotopy $F: I \times I \to X$ in this case, is defined as

$$F(s,t) := \begin{cases} \sigma(2s) & 0 \le 2s \le t, \\ \sigma(t) & t \le 2s \le 2 - t, \\ \sigma^{-1}(2s - 1) & 2 - t \le 2s \le 2. \end{cases}$$

It is clear that the piecewise definitions agree on the dashed line 2s=t. Observe that $\sigma^{-1}(2s-1)=\sigma(2-2s)$ and thus, the functions do agree on the dashed line 2s=2-t as well.

One can easily check that the four properties of the homotopy are satisfied. To see the bottom line property, note that $F(s,0)=\sigma(0)$ (using the second piece definition) and $\sigma(0)=x_0=e_{x_0}(s)$ for all $s\in I$.

Note that since $(\sigma^{-1})^{-1} = \sigma$, the above also shows that $\sigma^{-1}\sigma = e_{x_1}$.

Lemma 1.11. Let $x_0 \stackrel{\sigma}{\longrightarrow} x_1$ and e_{x_0} be the constant path at x_0 . Then,

$$\sigma \simeq e_{x_0} \sigma \operatorname{rel} \{0, 1\}.$$

Proof. The proof is motivated by this diagram.

The homotopy is $F: I \times I \to X$ defined as

$$F(s,t) := \begin{cases} x_0 & 0 \le 2s \le t, \\ \sigma\left(\frac{2s-t}{2-t}\right) & t \le 2s \le 2. \end{cases}$$

As one would expect, we have a lemma in the other direction as well.

Lemma 1.12. Let $x_1 \stackrel{\sigma}{\longrightarrow} x_0$ and e_{x_0} be the constant path at x_0 . Then,

$$\sigma \simeq \sigma e_{x_0}$$
 rel $\{0,1\}$.

Proof. Similar as in the last case and we omit it.

The astute reader might have sensed a group sneaking around the corner.

However, note that the product of equivalence classes defined above is not a binary operation unless the endpoints are the same. Due to this, we restrict ourselves to loops in the next theorem.

Theorem 1.13. Let $\pi_1(X, x_0)$ be the set of homotopy classes of loops in X at x_0 . If multiplication in $\pi_1(X, x_0)$ is defined as above, $\pi_1(X, x_0)$ becomes a group, in which the neutral element is the class $[e_{x_0}]$ and the inverse of a class $[\sigma]$ is the class of the inverse $[\sigma^{-1}]$.

Proof. Interpreting Lemmas 1.6 to 1.12 as equalities of the equivalence classes shows that $\pi_1(X, x_0)$ verifies the group axioms.

The next proposition tells us how $\pi_1(X, x_0)$ and $\pi_1(X, x_1)$ are related in the case that x_0 and x_1 lie in the same path-connected component. (In the case that they do not, nothing can be said.)

Proposition 1.14. Let α be a path from x_0 to x_1 . The mapping $\widehat{\alpha}$ defined by

$$[\sigma] \mapsto [\alpha^{-1}] * [\sigma] * [\alpha] = [\alpha^{-1} \sigma \alpha]$$

is an isomorphism of the group $\pi_1(X, x_0)$ onto $\pi_1(X, x_1)$.

Note that the above is well-defined since * is well-defined.

Proof. We first note that if $[\sigma] \in \pi_1(X, x_0)$, then $\alpha^{-1}\sigma\alpha$ is path as follows:

$$x_1 \xrightarrow{\alpha^{-1}} x_0 \xrightarrow{\sigma} x_0 \xrightarrow{\alpha} x_1$$

and thus, $[\alpha^{-1}\sigma\alpha]$ is indeed an element of $\pi_1(X,x_1)$. Moreover, note that

$$\widehat{\alpha}([\sigma\sigma']) = [\alpha^{-1}\sigma\sigma'\alpha]$$

$$= [\alpha^{-1}\sigma][\sigma'\alpha]$$

$$= [\alpha^{-1}\sigma][\alpha\alpha^{-1}][\sigma'\alpha]$$

$$= [\alpha^{-1}\sigma\alpha][\alpha^{-1}\sigma'\alpha]$$

$$= \widehat{\alpha}([\sigma])\widehat{\alpha}([\sigma']).$$

This shows that $\widehat{\alpha}$ is a homomorphism. That this is an isomorphism follows by noting that it has as inverse $\widehat{\alpha^{-1}}$.

Corollary 1.15. If X is pathwise connected, the group $\pi_1(X, x_0)$ is independent of the point x_0 , up to isomorphism.

Note that if C is a connected component of X containing x_0 , then $\pi_1(X, x_0) = \pi_1(C, x_0)$ since any loop at x_0 must necessarily lie in C. For this reason, we might as well only work with pathwise connected spaces.

Definition 1.16. If X is pathwise connected, we write $\pi_1(X)$ for $\pi_1(X, x_0)$ and call it the fundamental group of X.

Note that this group depends on x_0 in the sense that the elements of the group depend on the base point x_0 but the isomorphism class does not.

Definition 1.17 (Simply connected). A space X is called simply connected if it is pathwise connected and its fundamental group is trivial.

§§1.2. Functoriality

We now wish to turn π_1 into a functor. Since we need to take care of the base points, we look at the category of *Pointed Topological spaces*.

Definition 1.18 (Pointed Topological Spaces). The category Top_• of *pointed topological spaces* is the category whose objects and morphisms are given as follows:

- Objects: Pairs (X, x_0) where X is a topological space and $x_0 \in X$,
- Morphisms: $f:(X,x_0)\to (Y,y_0)$ such that $f:X\to Y$ is a continuous function and $f(x_0)=y_0$.

That the above is a category can be easily verified.

Definition 1.19. Let $h:(X,x_0)\to (Y,y_0)$ be a morphism. Define

$$h_*: \pi_1(X, x_0) \to \pi_1(Y, y_0)$$

by the equation

$$h_*([\sigma]) = [h \circ \sigma].$$

The map h_* is called the homomorphism induced by h, relative to the base point x_0 .

To see that h_* is well-defined, we note that if

$$F: \sigma \simeq \sigma' \text{ rel } \{0,1\}$$

for loops σ , σ' in X at x_0 , then

$$h \circ F : h \circ \sigma \simeq h \circ \sigma' \text{ rel } \{0, 1\}.$$

That is to say, if two loops at x_0 are homotopic, then so are the loops obtained by precomposing h.

To see that h_* is a homomorphism, first note that

$$(h \circ \sigma)(h \circ \sigma') = h \circ (\sigma \sigma').$$

(This follows from the definition of the product of paths.)

Then, we see that

$$h_*([\sigma\sigma']) = [h \circ (\sigma\sigma')] = [h \circ \sigma][h \circ \sigma'] = h_*([\sigma])h_*([\sigma']).$$

Theorem 1.20 (Functoriality). If $h:(X,x_0)\to (Y,y_0)$ and $k:(Y,y_0)\to (Z,z_0)$ are morphisms, then

$$(k \circ h)_* = k_* \circ h_*$$
.

If $i:(X,x_0)\to (X,x_0)$ is the identity map, then i_* is the identity homomorphism.

Proof. By definition, we have

$$(k \circ h)_*([\sigma]) = [(k \circ h) \circ \sigma]$$

$$= [k \circ (h \circ \sigma)]$$

$$= k_*([h \circ \sigma])$$

$$= k_*(h_*([\sigma]))$$

$$= (k_* \circ h_*)([\sigma]).$$

Thus, $(k \circ h)_* = k_* \circ h_*$.

Now, if i is the identity map, then we have

$$i_*([\sigma]) = [i \circ \sigma] = [\sigma],$$

showing that i_* is the identity map of $\pi_1(X, x_0)$.

The above then shows that π_1 defines a functor from the category Top_* to Grp . Since functors preserve isomorphisms in general, we get the following corollary.

Corollary 1.21. If $h:(X,x_0)\to (Y,y_0)$ is a morphism such that $h:X\to Y$ is a homeomorphism, then

$$h_*: \pi_1(X, x_0) \to \pi_1(Y, y_0)$$

is an isomorphism.

Since we aren't discussing Category Theory, we give a proof for this special example of functors.

Proof. Let $h^{-1}: Y \to X$ be the inverse, which is continuous since h is a homeomorphism. Moreover, $h^{-1}(y_0) = x_0$ and thus, $h^{-1}: (Y, y_0) \to (X, x_0)$ is a morphism and the inverse of h.

Now, note that,

$$(h_*) \circ ((h^{-1})^*) = (h \circ h^{-1})^* = (\mathrm{id}_{(Y,y_0)})^* = \mathrm{id}_{\pi_1(Y,y_0)},$$

by functoriality. Similarly, we have

$$((h^{-1})^*) \circ (h_*) = \mathrm{id}_{(X,x_0)},$$

proving the corollary.

§2. Homotopy of Maps

In the previous section, we talked about homotopy of special types of maps. More precisely, we only considered maps $I \to X$. However, we can replace I by an arbitrary topological space Y. In the place of endpoints, we just consider a subspace $A \subset Y$.

Definition 2.1 (Relative homotopy). Given maps $f, g: Y \to X$ such that $f|_A = g|_A$, we say f and g are homotopic relative to A written

$$f \simeq g \operatorname{rel} A$$

if there is a map $F: Y \times I \to X$ satisfying

- 1. F(y,0) = f(y) for all $y \in Y$,
- 2. F(y,1) = g(y) for all $y \in Y$,
- 3. F(a,t) = f(a) = g(a) for all $a \in A, t \in I$.

This map F is called a homotopy from f to g relative to A and we write

$$F: f \simeq q \text{ rel } A.$$

Note that the "second coordinate" above is still *I*.

Note that (3) is satisfied vacuously if $A = \emptyset$ and we have $f|_A = g|_A$ for all maps $f, g: Y \to X$. Keeping this in mind, we have the following definition.

Definition 2.2 (Homotopy). Maps $f, g: Y \to X$ are said to be *homotopic* if f and g are homotopic relative to \emptyset .

We write this more simply as

$$f \simeq q$$
.

Moreover, any F as before is simply called a homotopy from f to g. As before, we write

$$F: f \simeq q$$
.

Once again, we obtain an equivalence. The homotopies defined as in the proof of Proposition 1.2 work again.

Definition 2.3 (Contractible space). If X is a topological space such that the identity map on X is homotopic to a constant map on some point in X, we say that X is *contractible*.

Proposition 2.4. X is contractible if and only if for any space Y, any two maps of Y into X are homotopic. A contractible space is pathwise connected.

Proof. (\Longrightarrow) Let X be contractible and Y be any space. Fix any $x_0 \in X$ such that id_X is homotopic to the constant map $e_{x_0}: X \to X$.

Let $f_{x_0}: Y \to X$ denote the constant map $y \mapsto x_0$.

Now, given any map $f: Y \to X$, we show that it is homotopic to f_{x_0} .

This will prove that any two maps of Y into X are homotopic since \simeq is an equivalence relation.

Let $H: \mathrm{id}_X \simeq e_{x_0}$ be any homotopy. Then, we have

$$H(x,0) = x$$
, $H(x,1) = x_0$; for all $x \in X$.

(Note that H is continuous.)

Now, we define $F: Y \times I \to X$ as

$$F(y,t) = H(f(y),t).$$

It is clear that F is a map. (That is, F is continuous.)

Moreover, note that

$$F(y,0) = H(f(y),0) = f(y), \quad F(y,1) = H(f(y),1) = x_0 = f_{x_0}(y);$$
 for all $y \in Y$.

This shows that $F: f \simeq f_{x_0}$, as desired.

(\iff) To show that X is contractible, simply consider Y=X and consider the maps id_X and e_{x_0} . (Both of these are indeed continuous.)

By hypothesis, these maps are homotopic and by definition, X is contractible.

Now, we show that X is pathwise connected assuming that it is contractible.

Let x_0 and x_1 be any two points in X. As X is contractible, (\Longrightarrow) tells us that the maps e_{x_0} and e_{x_1} are homotopic.

Let F be any homotopy from e_{x_0} and e_{x_1} . Define $\sigma:I\to X$ as

$$\sigma(t) := F(x_0, t).$$

 σ is clearly continuous. Moreover, we have

$$\sigma(0) = F(x_0, 0) = e_{x_0}(x_0) = x_0,$$

$$\sigma(1) = F(x_0, 1) = e_{x_1}(x_0) = x_1.$$

Thus, σ is path from x_0 to x_1 in X, proving the proposition.

Example 1. Every convex subset X of Euclidean space is contractible. Given maps f, f, Y, Y, we have a homotopy F, f, x, f given by

Given maps $f_1, f_2: Y \to X$, we have a homotopy $F: f_1 \simeq f_2$ given by

$$F(y,t) = tf_2(y) + (1-t)f_1(y), \quad y \in Y, t \in I.$$

By the convexity assumption, the above F is indeed a map into X.

By the previous proposition, this shows that X is contractible.

Example 2. \mathbb{R}^n is contractible for any n.

To see this, we could either appeal to the previous example or do it directly by defining a homotopy $F: e_0 \simeq \mathrm{id}_{\mathbb{R}^n}$ as

$$F(x,t) = tx$$
.

We would now like to show that any contractible space is simply connected. What we do know is that any loop would be homotopic to a point. However, we do not know if this homotopy is relative to $\{0,1\}$. Indeed, to show that we do have a homotopy relative to $\{0,1\}$, we would need to use the fact that X is contractible once again. Before proving that, we first look at a lemma.

Lemma 2.5. Let $F: I \times I \to X$ be a map. Set $\alpha(t) = F(0,t)$, $\beta(t) = F(1,t)$, $\gamma(s) = F(s,0)$, and $\delta(s) = F(s,1)$, as in the diagram

Then, $\delta = \alpha^{-1} \gamma \beta$.

Proof. The proof is quite intuitive. First, we define the paths

$$\sigma: I \to I \times I, \quad \tau: I \to I \times I$$

as

$$\sigma(s) := (t, 1)$$

and

$$\tau(s) := \begin{cases} (0, 1 - 4s) & 0 \le 4s \le 1, \\ (4s - 1, 0) & 1 \le 4s \le 2, \\ (1, 2s - 1) & 1 \le 2s \le 2. \end{cases}$$

These paths are the following ones in I^2 :

As it should be clear from the diagram (and one can easily check), we have

$$\delta = F \circ \sigma, \quad (\alpha^{-1}\gamma)\beta = F \circ \tau.$$

(Note that the bracketing in $(\alpha^{-1}\gamma)\beta$ is necessary.)

Also, since I^2 is convex, we see that σ and τ are homotopic relative to $\{0,1\}$ with $H:I\times I\to I\times I$ being a required homotopy defined as

$$H(s,t) := (1-t)\sigma(s) + t\tau(s).$$

Thus,

$$F \circ H : F \circ \sigma \simeq F \circ \tau \quad \text{rel } \{0, 1\}$$

$$\implies F \circ H : \delta \simeq (\alpha^{-1} \gamma) \beta \quad \text{rel } \{0, 1\},$$

as desired. \Box

Theorem 2.6. Let X be a contractible space. Then, X is simply connected.

Proof. Note that by Proposition 2.4, we know that X is pathwise connected. Now we show that that $\pi_1(X)$ is trivial.

Let $x_0 \in X$ be arbitrary and $\alpha : I \to X$ be a loop at x_0 in X.

If we show that $\alpha \simeq e_{x_0} \quad \mathrm{rel} \ \{0,1\}$, then we are done.

To do this, we will use the earlier lemma after constructing an appropriate F.

Using that X is contractible, we fix a homotopy $H: \mathrm{id}_X \simeq f_{x_0}$ where $f_{x_0}: X \to X$ is the constant function $x \mapsto x_0$.

(This is different from e_{x_0} since the domains are different in general.)

To recall, H has the following properties:

$$H(x,0) = x, \ H(x,1) = x_0 \text{ for all } x \in X.$$

Now, we define $F: I \times I \to X$ as

$$F(s,t) := H(\sigma(s),t).$$

Now, note that if we set $\alpha, \beta, \gamma, \delta$ as in the previous lemma, we have

$$\alpha(t) = F(0,t) = H(\sigma(0),t) = H(x_0,t)$$

$$= H(\sigma(1),t) = F(1,t) = \beta(t),$$

$$\gamma(s) = F(s,0) = H(\sigma(s),0) = \sigma(s),$$

$$\delta(s) = F(s,1) = H(\sigma(s),1) = x_0.$$

In other words, we have

$$\alpha = \beta, \gamma = \sigma, \delta = e_{x_0}.$$

By the previous lemma, we know that $[\delta] = [\alpha^{-1}\gamma\beta]$, where [.] is the homotopy class of a path relative to $\{0,1\}$. Thus, we have

$$[e_{x_0}] = [\alpha^{-1}\sigma\alpha]$$

$$\implies [\alpha][e_{x_0}][\alpha^{-1}] = [\sigma]$$

$$\implies [e_{x_0}] = [\sigma]$$

$$\implies e_{x_0} \simeq \sigma \text{ rel } \{0, 1\},$$

finishing the proof.

Proposition 2.7. Let $f, g: Y \to X$ be maps which are homotopic by means of a homotopy $F: Y \times I \to X$.

Let $y_0 \in Y$, $x_0 := f(y_0) = F(y_0, 1)$, and $x_1 := g(y_0) = F(y_0, 1)$. Let $\alpha : I \to X$ be a path from x_0 to x_1 given by

$$\alpha(t) = F(y_0, t) \quad t \in I.$$

Then, the following diagram commutes.

Proof. The diagram commuting is just saying that

$$\widehat{\alpha} \circ f_* = g_*.$$

Let $[\sigma] \in \pi_1(Y, y_0)$ be arbitrary. Showing that the above is true is equivalent to showing that

$$(\widehat{\alpha} \circ f_*)([\sigma]) = g_*([\sigma]).$$

Using the definitions of $\widehat{\alpha}$ and f_* , we note that

$$(\widehat{\alpha} \circ f_*)([\sigma]) = g_*([\sigma])$$

$$\iff \widehat{\alpha}(f_*([\sigma])) = g_*([\sigma])$$

$$\iff \widehat{\alpha}([f \circ \sigma]) = [g \circ \sigma]$$

$$\iff [\alpha^{-1}(f \circ \sigma)\alpha] = [g \circ \sigma].$$

Now, defining $\tilde{F}:I\times I\to X$ as

$$\tilde{F}(s,t) = F(\sigma(s),t).$$

Then, we have the following diagram as in Lemma 2.5 which proves the proposition.

To see that the sides are indeed as labeled, recall that σ is a loop at y_0 and note that

$$\tilde{F}(0,t) = F(\sigma(0),t) = F(y_0,t) = \alpha(t),
\tilde{F}(1,t) = F(\sigma(1),t) = F(y_0,t) = \alpha(t),
\tilde{F}(s,0) = F(\sigma(s),0) = g(\sigma(s)) = (g \circ \sigma)(s),
\tilde{F}(s,1) = F(\sigma(s),1) = f(\sigma(s)) = (f \circ \sigma)(s).$$

By the conclusion of Lemma 2.5, we are done.

Recall that $\hat{\alpha}$ is an isomorphism and thus, we get the following corollary.

Corollary 2.8. With the same setup as above, f_* is an isomorphism if and only if g_* .

What the above corollary says is that if f and g are homotopic, then f_* is an isomorphism iff g_* is.

Definition 2.9 (Homotopy equivalence). A map $f: Y \to X$ is said to be a *homotopy* equivalence if there exists a map $f': X \to Y$ such that

$$ff' \simeq \mathrm{id}_X,$$

 $f'f \simeq \mathrm{id}_Y.$

If such a map exists, we say that X and Y are homotopically equivalent spaces.

It can be checked that being homotopically equivalent is an "equivalence relation."

Corollary 2.10. If $f: Y \to X$ is a homotopy equivalence, then f_* is an isomorphism

$$\pi_1(Y, y_0) \to \pi_1(X, f(y_0))$$

for any $y_0 \in Y$.

Proof. Let $f': X \to Y$ be as in the definition.

Then, $ff' \simeq \mathrm{id}_X$. By the previous corollary, we have that $(ff')_*$ is an isomorphism. (Since $(\mathrm{id}_X)_*$ is.)

Similarly, $(f'f)_*$ is an isomorphism. Since $(ff')_* = f_* \circ f'_*$ and $(f'f)_* = f'_* \circ f_*$, we see that f_* is a bijection and hence, an isomorphism.

The above shows that the fundamental group of a path-connected space is a *homotopy invariant*. We had shown earlier that this was a topological invariant.

Note that being homotopically equivalent is a weaker concept than being topologically invariant (i.e., homeomorphic). Clearly, if $f: X \to Y$ is a homeomorphism, it also a homotopy equivalence with $f' = f^{-1}$.

However, the closed interval I is homotopically equivalent to the point space but clearly not homeomorphic. In fact, one can note that X is contractible if and only if it is homeomorphic to a point.