หากไม่ได้รับความอนุญาตจาก นายอัครพนธ์ วัชรพลากร (พี่พีท)

โจทย์ชุดที่สิบสาม วันเสาร์ที่ 22 เมษายน พ.ศ. 2566 จำนวน 9 ข้อ

ที่	เนื้อหา	โจทย์	
1.	Bellman-Ford algorithm จำนวน 1 ข้อ	1. แฟลชถนนพิศวง (FC_Road Wonder)	
2.	Floyd-Warshall algorithm จำนวน 4 ข้อ	2. รัชต๋อย 2018 (RT_RushTOI)	
		3. ความสัมพันธ์แบบถ่ายทอด (48_Transitive Closure)	
		4. อไจล์เมืองปลอดเชื้อ (AG_Sterile City)	
		5. นครมาเก็ต (12.21 TOI17)	
3.	โจทย์ประยุกต์ จำนวน 4 ข้อ	6. พีทกีตาร์ชาบู (GT_Shabu)	
		7. พีทเทพใจกลางเมือง (PT_Town Center)	
		8. อไจล์กั้งซดน้ำซุป (AG_Soup Kang)	
		9. เอ็กซ์พีไดท์ส่งสัญญาณ (EC_Cascade Signaling)	

1. เรื่อง Bellman-Ford algorithm จำนวน 1 ข้อ

1. แฟลชถนนพิศวง (FC_Road Wonder)

้ ที่มา: ข้อสี่ Flash Contest 2017 โจทย์สำหรับติวผู้แทนศูนย์ สอวน. คอมพิวเตอร์ ม.บูรพา รุ่น 13

เมืองอันแสนสงบที่คุณอาศัยอยู่นั้น มีทางแยกจำนวน N ทางแยก และถนนจำนวน M เส้น ถนนในเมืองนี้เป็นถนนทางเดียว แต่ความแปลกของเมืองนี้คือมีถนนพิศวงอยู่ K เส้น แต่ละเส้นจะมีเลขบ่งบอก W ถ้าคุณเข้าถนนเส้นนี้ด้วยเวลา P คุณจะออกจาก ถนนเส้นนี้ได้ในเวลา P-W กล่าวคือ ถนนปกติจะใช้เวลาผ่านถนนเป็น W แต่ถนนพิศวงจะใช้เวลาผ่านถนนเป็น -W นั่นเอง

ในเช้าตรู่ของทุก ๆ วัน คุณได้อาศัยอยู่ตรงทางแยก S และต้องการทราบว่า การจะไปทางแยกใด ๆ คุณจะใช้เวลาในการ เดินทางสั้นที่สุดเท่าไหร่

<u>ข้อมูลนำเข้า</u>

บรรทัดแรก ระบุจำนวนเต็ม 4 จำนวน คือ N M K T (1 <= N <= 1,000; 1 <= M <= 1,000; 1 <= K <= 100; 1 <= T <= 100) โดยที่ N ระบุจำนวนแยก แยกมีหมายเลขตั้งแต่ 1 ถึง N; M แทนจำนวนถนน; K แทนจำนวนถนนพิศวง; T แทนจำนวน คำถาม จากนั้นอีก M บรรทัด ระบุข้อมูลถนนปกติ ในบรรทัดที่ 1+J จะระบุจำนวนเต็ม 3 จำนวน A B W (1 <= A <= N; 1 <= B <= N; 1 <= W <= 3,000) เพื่อบอกว่ามีถนนปกติหมายเลข J ออกจากเมือง A ไปยังเมือง B และมีเลขบ่งบอก W จากนั้นอีก K บรรทัด ระบุข้อมูลถนนพิศวง ในบรรทัดที่ 1+M+J จะระบุจำนวนเต็ม 3 จำนวน A B W (1 <= A <= N; 1 <= B <= N; 1 <= W <= 3,000) เพื่อบอกว่ามีถนนพิศวงหมายเลข J ออกจากเมือง A ไปยังเมือง B และมีเลขบ่งบอก W อีก T บรรทัดถัดมา ระบุตัวเลข T ตัว แสดงถึง Si เพื่อบอกว่าวันที่ i คุณได้อาศัยอยู่ตรงทางแยก Si

<u>ข้อมูลส่งออก</u>

T บรรทัด แต่ละบรรทัด แสดงตัวเลข N ตัว บ่งบอกถึง ระยะเวลาสั้นสุดในการเดินทางจากแยก Si ไปยังเมือง i ใด ๆ หากไม่มี เส้นทางจากเมือง Si ยังเมือง i หรือ ระยะเวลาสั้นสุดมีค่าเป็น -INF ให้แสดงค่า -1

ตัวอย่าง

หากไม่ได้รับความอนุญาตจาก นายอัครพนธ์ วัชรพลากร (พี่พีท)

ข้อมูลนำเข้า	ข้อมูลส่งออก
10 5 5 5	12 0 -1 -1 1 -1 -1 5 -1 -1
1 7 8	-1 -1 -1 0 -1 -1 -1 -1 -1
2 5 1	-1 -1 -1 -1 -1 0 -1 -1 -1
3 4 7	-1 -1 -1 -1 -1 -1 0 -1 -1
5 8 4	-6 -1 -1 6 -3 -1 -5 1 -1 0
5 1 11	
10 1 6	
10 5 3	
10 3 1	
9 5 10	
5 7 2	
2	
4	
6	
8	
10	

+++++++++++++++++

2. เรื่อง Floyd-Warshall algorithm จำนวน 4 ข้อ

2. รัชต์อย 2018 (RT_RushTOI)

. ที่มา: ข้อหนึ่ง Rush TOI 2018 โจทย์สำหรับติวผู้แทนศูนย์ สอวน. คอมพิวเตอร์ ม.บูรพา รุ่น 14

รัชต๋อย 2018 เป็นการแข่งขันเขียนโปรแกรมที่มีเครื่องคณิตกรณ์จำนวน N เครื่อง และเชื่อมต่อกันด้วยสายแลนจำนวน M สาย สายแลนแต่ละสายสามารถส่งข้อมูลแบบทางเดียวจากเครื่องหมายเลข si ไปยังเครื่องหมายเลข ei ได้ wi หน่วย

พีทเทพเป็นผู้จัดการแข่งขันรัชต๋อยนี้ เขาอยากรู้ว่าเครื่องคณิตกรณ์แต่ละเครื่องสามารถส่งข้อมูลไปหาเครื่องต่าง ๆ ได้น้อย ที่สุดกี่หน่วย

<u>งานของคุณ</u>

จงเขียนโปรแกรมเพื่อหาจำนวนข้อมูลที่น้อยที่สุดที่เครื่องคณิตกรณ์แต่ละเครื่องจะส่งไปหาเครื่องอื่น ๆ

<u>ข้อมูลนำเข้า</u>

บรรทัดแรก รับจำนวนเต็มบวก N M แทนจำนวนเครื่องคณิตกรณ์และจำนวนสายแลนตามลำดับ โดยที่ N ไม่เกิน 300 และ M ไม่เกิน 10,000

อีก M บรรทัดต่อมา รับจำนวนเต็มบวก si ei wi ห่างกันหนึ่งช่องว่าง โดยที่ 1 <= si, ei <= N และ wi ไม่เกิน 1,000 30% ของชุดข้อมูลทดสอบจะมี N, M ไม่เกิน 10

<u>ข้อมูลส่งออก</u>

มีทั้งสิ้น N บรรทัด แต่ละบรรทัดแสดงจำนวนเต็ม N จำนวนแสดงจำนวนข้อมูลน้อยที่สุดในการส่งไปหาเครื่องอื่น ๆ ตามลำดับจากเครื่องที่ 1 ถึงเครื่องที่ N ห่างกันหนึ่งช่องว่าง หากไม่สามารถส่งข้อมูลไปได้ให้ตอบ 0

หากไม่ได้รับความอนุญาตจาก นายอัครพนธ์ วัชรพลากร (พี่พีท)

ตัวอย่าง

ข้อมูลนำเข้า	ข้อมูลส่งออก
4 5	0 10 15 0
1 2 10	0 0 10 0
2 3 10	0 0 0 0
1 3 15	10 20 25 10
4 4 10	
4 1 10	

+++++++++++++++++

3. ความสัมพันธ์แบบถ่ายทอด (48_Transitive Closure)

ที่มา: ข้อสอบท้ายค่ายสองคัดเลือกผู้แทนศูนย์ ม.บูรพา รุ่น 14 ออกโดย PeaTT~

กำหนดให้ G = (V, E) เป็นกราฟแบบมีทิศทางที่ไม่มี parallel edges และ self-loop

<u>นิยาม</u> Transitive closure ของ G (แทนด้วยสัญลักษณ์ G^T) ว่าเป็นกราฟที่มี vertices เหมือนกับ G โดยที่ G^T จะมีเส้น เชื่อม $u \to v$ ก็ต่อเมื่อในกราฟ G มี directed path จาก u ไปยัง v

<u>งานของคูณ</u>

จงเขียนโปรแกรมเพื่อรับค่าของกราฟ G ในรูปแบบของ Adjacency matrix แล้วทำการหา Transitive closure ของ G และแสดงผลในรูปของ Adjacency Matrix เช่นเดียวกัน

จากภาพ กราฟ G^T มีเส้นทางที่เพิ่มมาจากกราฟ G ได้แก่ โหนด 2 มีเส้นทางไปยังโหนด 2 ได้ (เป็น cycle ผ่านโหนด 4), โหนด 2 มีเส้นทางไปยังโหนด 3 (โดยผ่านโหนด 1), โหนด 4 มีเส้นทางไปยังโหนด 1 (โดยผ่านโหนด 2), โหนด 4 มีเส้นทางไปยัง โหนด 3 (โดยผ่านโหนด 2 และโหนด 1) และ โหนด 4 มีเส้นทางไปยังโหนด 4 ได้ (เป็น cycle ผ่านโหนด 2)

<u>ข้อมูลนำเข้า</u>

บรรทัดแรก จำนวนเต็มบวก N แทนจำนวน vertices ในกราฟ โดยที่ N ไม่เกิน 500

อีก N บรรทัด แสดงตัวเลข 0 (ไม่มีเส้นเชื่อม) หรือ 1 (มีเส้นเชื่อม) ในรูปแบบ Adjacency matrix โดยในเส้นทแยงมุมจะเป็น ตัวเลข 0 เสมอ

<u>ข้อมูลส่งออก</u>

N บรรทัด แสดงตัวเลข 0 หรือ 1 ในรูปแบบ Adjacency matrix ของ G^{T}

หากไม่ได้รับความอนุญาตจาก นายอัครพนธ์ วัชรพลากร (พี่พีท)

ตัวอย่าง

ข้อมูลนำเข้า	ข้อมูลส่งออก
4	0 0 1 0
0 0 1 0	1 1 1 1
1 0 0 1	0 0 0 0
0 0 0 0	1 1 1 1
0 1 0 0	

+++++++++++++++++

4. อไจล์เมืองปลอดเชื้อ (AG_Sterile City)

ที่มา: ข้อสี่สิบสอง Agile Programming Contest 2021 โจทย์สำหรับติวผู้แทนศูนย์ สอวน. คอมพิวเตอร์ ม.บูรพา รุ่น17
ประเทศพีทแลนด์ มีเมืองทั้งสิ้น N เมือง เชื่อมต่อกันด้วย<u>ถนนสองทาง</u> M สาย ถนนแต่ละสายจะมีระยะห่างเป็น d หน่วย เนื่องด้วยสถานการณ์ไวรัสโควิด-19 ทำให้บางเมืองเป็นเมืองติดเชื้อ โดยใน N เมืองนี้จะมีเมืองปลอดเชื้อทั้งสิ้น K เมือง กษัตริย์พีทคิงต้องการเดินทาง 2 ครั้ง โดยในแต่ละครั้งเมืองต้นทางและเมืองปลายทางจะต้องเป็นเมืองปลอดเชื้อที่ไม่ซ้ำกัน เลย และถนนที่ใช้ในการเดินทางทั้งสองครั้งจะไม่ใช้ถนนสายเดียวกัน กล่าวคือ หากครั้งแรกออกเดินทางจากเมือง S1 ไปยังเมือง E1 และครั้งที่สองออกเดินทางจากเมือง S2 ไปยังเมือง E2 จะได้ว่าทั้งสองเส้นทางต้องไม่มีถนนที่ใช้ร่วมกันและ S1, E1, S2, E2 ต้องเป็นเมืองปลอดเชื้อที่ไม่ซ้ำกันทั้งหมด กษัตริย์พีทคิงต้องการเดินทางให้ใช้เวลารวมที่น้อยที่สุดเท่าที่จะเป็นไปได้

<u>งานของคุณ</u>

จงเขียนโปรแกรมเพื่อหาระยะทางรวมที่น้อยที่สุดที่กษัตริย์พีทคิงออกเดินทางสองครั้งภายใต้เงื่อนไขข้างต้น

<u>ข้อมูลนำเข้า</u>

บรรทัดแรก รับจำนวนเต็มบวก Q แทนจำนวนคำถาม โดยที่ Q ไม่เกิน 3 ในแต่ละคำถาม

บรรทัดแรก รับจำนวนเต็มบวก N M K แทนจำนวนเมืองทั้งหมด, จำนวนถนนทั้งหมด และ จำนวนเมืองปลอดเชื้อ ตามลำดับ โดยที่ 4 <= K <= N <= 500 และ M ไม่เกิน 100.000

อีก M บรรทัดต่อมา รับจำนวนเต็มบวก u v d เพื่อระบุว่าถนนสายนี้เชื่อมระหว่างเมืองที่ u และเมืองที่ v และมีระยะทาง d หน่วย โดยที่ 1 <= u, v <= N; u ไม่เท่ากับ v และ <math>1 <= d <= 1,000 หากเริ่มต้นคู่เมืองใดไม่มีถนนจะถือว่าระยะห่างระหว่างคู่ เมืองนี้เป็น Infinity

บรรทัดที่ M+2 ระบุจำนวนเต็มบวก K จำนวน แทนจำนวนเมืองปลอดเชื้อ ซึ่งมีค่าอยู่ในช่วง [1, N] <u>หมายเหตุ</u> ข้อนี้เคสเจนยาก อาจจะมี Rejudge หลังสอบ

<u>ข้อมูลส่งออก</u>

Q บรรทัด แต่ละบรรทัดแสดงระยะทางรวมที่น้อยที่สุดที่กษัตริย์พีทคิงออกเดินทางสองครั้งโดยที่จุดเริ่มต้นและจุดสิ้นสุดของแต่ละ ครั้งเป็นเมืองปลอดเชื้อซึ่งไม่ซ้ำกันเลย และการเดินทางทั้งสองครั้งไม่ใช้ถนนร่วมกัน

ตัวอย่าง

หากไม่ได้รับความอนุญาตจาก นายอัครพนธ์ วัชรพลากร (พี่พีท)

ข้อมูลนำเข้า	ข้อมูลส่งออก
2	8
5 4 4	15
1 2 1	
3 4 2	
4 5 5	
5 3 8	
3 1 5 2	
6 6 4	
1 2 5	
2 4 7	
4 6 50	
6 5 3	
1 5 15	
3 5 6	
1 5 4 6	

คำอธิบายตัวอย่างที่ 1

มี 2 คำถาม ได้แก่

คำถามแรก กษัตริย์พีทคิงจะเดินทางสองครั้ง ครั้งแรกเดินทางจากเมือง 1 ไปยังเมือง 2 ระยะทางสั้นสุดเป็น 1 หน่วย ส่วน ครั้งที่สองเดินทางจากเมือง 3 ไปยังเมือง 5 ระยะทางสั้นสุดเป็น 7 หน่วย จึงตอบว่าใช้ระยะทางรวมน้อยสุดเป็น 8 หน่วยนั่นเอง สังเกตว่าเมืองที่ 1, 2, 3, 5 ล้วนเป็นเมืองปลอดเชื้อที่ไม่ซ้ำกันทั้งหมด และทั้งสองเส้นทางจะไม่ใช้ถนนร่วมกัน ดังภาพ

คำถามที่สอง กษัตริย์พีทคิงจะเดินทางสองครั้ง ครั้งแรกเดินทางจากเมือง 1 ไปยังเมือง 4 ระยะทางสั้นสุดเป็น 12 หน่วย ส่วนครั้งที่สองเดินทางจากเมือง 5 ไปยังเมือง 6 ระยะทางสั้นสุดเป็น 3 หน่วย จึงตอบว่าใช้ระยะทางรวมน้อยสุดเป็น 15 หน่วย นั่นเอง สังเกตว่าเมืองที่ 1, 4, 5, 6 ล้วนเป็นเมืองปลอดเชื้อที่ไม่ซ้ำกันทั้งหมด และทั้งสองเส้นทางจะไม่ใช้ถนนร่วมกัน ดังภาพ

หากไม่ได้รับความอนุญาตจาก นายอัครพนธ์ วัชรพลากร (พี่พีท)

5. นครมาเก็ต (12.21 TOI17)

. ที่มา: ข้อสอบโอลิมปิกวิชาการระดับชาติครั้งที่ 17 ณ ศูนย์ สอวน. ม.วลัยลักษณ์

ในปีนี้ วันประกาศผลการแข่งขันคอมพิวเตอร์โอลิมปิกระดับชาติตรงกับวันจัดรายการส่งเสริมการขายส่งท้ายปี 2021 ที่ เรียกว่าโปรโมชั่น 12.21 ของตลาดนัดชิคแอนด์ชิลออนไลน์ ที่ชื่อว่า "นครมาเก็ต" โดยรายการส่งเสริมการขายนี้ รู้จักกันในคำเรียก ติดปากว่าโปรโมชั่น "ซื้อคู่ถูกกว่า" นั่นคือ การซื้อสินค้าสองชิ้นปรากฏในใบเสร็จเดียวกันจะไม่แพงกว่าการซื้อสินค้าเพียงชิ้นเดียว จำนวนสองครั้งแยกคนละใบเสร็จกัน ตัวอย่างเช่น

ตารางที่ 1 ราคาสินค้าของการซื้อสินค้าชิ้นเดียว (ซื้อแยกคนละใบเสร็จ)

สินค้า	ราคา (บาท)
ขนมจีนเส้นสด	35
ปูม้า	50
ม่วงมุด	32
กะปิ	25

ตารางที่ 2 ราคาสินค้าของโปรโมชั่น "ซื้อคู่ถูกกว่า" (ซื้อใบเสร็จเดียวกัน)

รายการที่	คู่สินค้า		ราคาซื้อคู่ (บาท)
	สินค้าชิ้นที่ 1	สินค้าชิ้นที่ 2	
1	ขนมจีนเส้นสด	กะปิ	55
2	กะปิ	ปู่ม้า	20
3	ม่วงมุด	ปู่ม้า	50
4	ม่วงมุด	กะปิ	30

จากตารางที่ 1 และ 2 ถ้าเราต้องการสินค้าสองชิ้น ได้แก่ กะปิ และ ขนมจีนเส้นสด เราสามารถซื้อได้สองวิธี คือ วิธีที่ (1) ซื้อแยกสองใบเสร็จ จะได้ราคารวม 35 + 25 = 60 บาท หรือ วิธีที่ (2) ซื้อคู่ถูกกว่าตามรายการที่ 1 จะได้ราคารวม 55 บาท ซึ่งถูก กว่าวิธีที่ (1)

ทั้งนี้ ลำดับของคู่สินค้าในแต่ละรายการ "ซื้อคู่ถูกกว่า" นั้น สามารถสลับลำดับสินค้าชิ้นที่ 1 กับชิ้นที่ 2 ได้ ซึ่งจะให้ ความหมายเดียวกัน เช่น เราอาจกล่าวว่า คู่สินค้าของรายการที่ 1 คือ กะปิ และ ขนมจีนเส้นสดได้เช่นกัน

อีกตัวอย่างหนึ่งคือ ถ้าต้องการสินค้าสองชิ้น ได้แก่ ม่วงมุด และปูม้า (หรืออาจกล่าวว่าต้องการ ปูม้าและม่วงมุด ก็ได้ เช่นกัน) เราสามารถซื้อได้หลายวิธี เช่น

ตารางที่ 3 ตัวอย่างวิธีการซื้อม่วงมุดและปูม้า

วิธี	วิธีการซื้อ	รายละเอียดคู่สินค้า	ราคารวม (บาท)	จำนวนสินค้ารวม (ชิ้น)
(ก)	ซื้อแยกสองใบเสร็จ	ม่วงมุด และ ปู่ม้า	32 + 50 = 82	2
(গু)	ซื้อคู่ถูกกว่า รายการที่ 3 (ตารางที่ 2)	ม่วงมุด คู่กับ ปูม้า	50	2
(ค)	ซื้อคู่ถูกกว่า รายการที่ 2 และ 4 (ตารางที่ 2)	กะปี คู่กับ ปูม้า และ ม่วงมุด คู่กับ กะปี	20 + 30 = 50	4

จากตารางที่ 3 สังเกตว่าการซื้อแบบวิธี (ข) ซื้อรายการที่ 3 จะได้สินค้าที่ต้องการคือ ม่วงมุด และปูม้าในราคารวม 50 บาท เช่นเดียวกับการซื้อแบบวิธี (ค) ซื้อรายการที่ 2 และ 4 แต่การซื้อแบบวิธี (ค) จะได้จำนวนสินค้ารวมคือ 4 ชิ้น ซึ่งมากกว่าการซื้อ แบบวิธี (ข) ที่ได้รับสินค้าเพียง 2 ชิ้น

ลูกค้าคู่หนึ่งที่มักจะแวะเวียนสั่งซื้อสินค้าเป็นประจำ คือ คุณ A และคุณ B ซึ่งเป็นเพื่อนรักกัน ทั้งสองคนต้องการสินค้าสอง ชิ้นที่<u>แตกต่างกัน</u> ได้แก่ สินค้า P_{q,A} และ P_{q,B} ตามลำดับ โดย แต่ที่ P_{q,A} ไม่เท่ากับ P_{q,B} แต่ที่สำคัญคือคุณ A ไม่ต้องการซื้อสินค้า P_{q,B} และคุณ B ก็ไม่ต้องการซื้อสินค้า P_{q,A} สำหรับสินค้าชิ้นอื่น ๆ แต่ละชิ้นที่อาจซื้อมาพร้อมกันนั้น พวกเขาจะแบ่งออกเป็นสองส่วนเท่า ๆ กัน

วันจัดรายการส่งเสริมการขายส่งท้ายปี 2021 ใกล้เข้ามาแล้ว พวกเขาทั้งคู่จึงต้องการสั่งซื้อสินค้าในช่วงดังกล่าว โดยในหนึ่ง ใบเสร็จ จะมีสินค้า $P_{q,A}$ และ $P_{q,B}$ เพียงหนึ่งชิ้นเท่านั้นสำหรับคุณ A และคุณ B ตามลำดับ ส่วนสินค้าอื่น ๆ ที่อาจซื้อมาพร้อมกันนั้น จะต้องมีจำนวนเป็นคู่เพื่อให้สามารถแบ่งสองส่วนเท่า ๆ กันได้ กล่าวคือ คุณ A และ คุณ B จะต้องได้สินค้าที่เหมือนกัน ยกเว้น สินค้าที่ตนเองต้องการ ($P_{q,A}$ และ $P_{q,B}$)

ดังนั้น ในหนึ่งใบเสร็จอาจจะมีรูปแบบการซื้อสินค้าเป็น $P_{q,A}$, $P_{q,x1}$, $P_{q,x2}$, ..., $P_{q,xy}$, $P_{q,B}$ เมื่อ $P_{q,A}$ และ $P_{q,B}$ ต้องซื้อหนึ่งชิ้น เท่านั้น และสินค้าอื่นใด ๆ ที่ไม่ใช่ $P_{q,A}$ หรือ $P_{q,B}$ ต้องซื้อเป็นจำนวนเต็มคู่เท่านั้น โดย y เป็นจำนวนนับใด ๆ ที่ไม่เกิน N-2 และ N คือจำนวนสินค้าทั้งหมด ตัวอย่างเช่น ถ้าคุณ A ต้องการม่วงมุด ($P_{q,A}$) และคุณ B ต้องการปูม้า ($P_{q,B}$) เมื่อพิจารณาตามตารางที่ 3 จะพบว่าสามารถซื้อสินค้าได้ตามวิธี (ค) ซึ่งสามารถแบ่งกะปิเป็นสองส่วนเท่า ๆ กันได้ ซึ่งจะได้ว่าใบเสร็จจะมีรูปแบบการซื้อสินค้า เป็นม่วงมุด, กะปิ (2 ชิ้น), ปูม้า (หรืออาจกล่าวว่าใบเสร็จจะมีรูปแบบการซื้อสินค้าเป็น ปูม้า, กะปิ (2 ชิ้น), ม่วงมุดก็ได้เช่นกัน)

<u>งานของคุณ</u>

จงเขียนโปรแกรมที่มีประสิทธิภาพเพื่อซื้อสินค้าสองชิ้นตามเงื่อนไข โดยพิจารณารูปแบบการซื้อสินค้า (หรือใบเสร็จ) ที่มี ราคารวมถูกที่สุดเป็นลำดับแรก กรณีที่ราคารวมถูกที่สุดมีมากกว่าหนึ่งรูปแบบการซื้อสินค้า (หรือใบเสร็จ) ให้เลือกรูปแบบการซื้อ สินค้า (หรือใบเสร็จ) ที่ได้จำนวนรวมของสินค้ามากชิ้นที่สุด โดยแสดงราคารวมในใบเสร็จนั้นและจำนวนสินค้ารวมทั้งหมดที่ได้รับ

<u>ข้อมูลนำเข้า</u>

บรรทัดที่ 1 รับจำนวนเต็ม 3 จำนวน N M Q แทนจำนวนสินค้าทั้งหมด, จำนวนรายการส่งเสริมการขาย และ จำนวน คำถาม ตามลำดับห่างกันด้วยช่องว่าง โดย 3 <= N <= 500 และ 1 <= M <= 100,000 และ 1 <= Q <= 10,000

อีก N บรรทัดถัดมา แต่ละบรรทัดมีจำนวนเต็ม c_i แทนราคาของสินค้าหมายเลข i โดย $0 < c_i <= 10^8$

อีก M บรรทัดถัดมา แต่ละบรรทัดระบุรายการส่งเสริมการขาย "ซื้อคู่ถูกกว่า" ซึ่งประกอบไปด้วยจำนวนเต็ม 3 จำนวน ได้แก่ $P_{j,1}$, $P_{j,2}$, C_j แทนหมายเลขสินค้าของสินค้าชิ้นที่ 1 ในการซื้อคู่ถูกกว่ารายการที่ j, หมายเลขสินค้าของสินค้าชิ้นที่ 2 ในการซื้อ คู่ถูกกว่ารายการที่ j และ ราคาเมื่อซื้อสินค้าคู่กันในการซื้อคู่ถูกกว่ารายการที่ j เมื่อ 1 <= j <= M ตามลำดับห่างกันด้วยช่องว่าง กำหนดให้ $1 <= P_{j,1}$, $P_{j,2} <= N$ และ $P_{j,1}$ ไม่เท่ากับ $P_{j,2}$ และ $0 < C_j < 2 \times 10^8$ รับประกันว่าเมื่อมีการระบุหมายเลขสินค้าชิ้นที่ 1 และ 1 <= 1 ของการซื้อคู่ถูกกว่ารายการที่ 1 <= 1 และ 1 <= 1

อีก Q บรรทัดถัดมา แต่ละบรรทัดระบุคำถาม ซึ่งประกอบไปด้วยจำนวนเต็ม 2 จำนวน ได้แก่ $P_{q,A}$ และ $P_{q,B}$ แทนหมายเลข สินค้าของคำถาม q (1 <= q <= q) ที่คุณ q ต้องการแต่คุณ q ไม่ต้องการ และ หมายเลขสินค้าของคำถาม q (1 <= q <= q) ที่ คุณ q ต้องการแต่คุณ q ไม่เท่ากับ q ไม่เท่ากับ q q ไม่เท่ากับ q q ไม่เท่ากับ q q

25% ของชุดข้อมูลทดสอบจะมีค่า N <= 40

<u>ข้อมูลส่งออก</u>

มีทั้งสิ้น Q บรรทัด แต่ละบรรทัดแสดง $\vee_q w_q$ แทนราคารวมถูกที่สุดของรูปแบบการซื้อ (หรือใบเสร็จ) ที่เป็นไปตามเงื่อนไข ระบุในคำถาม q และ จำนวนรวมสินค้ามากที่สุดของรูปแบบการซื้อ (หรือใบเสร็จ) ที่มีราคารวมเท่ากับ \vee_q และเป็นไปตามเงื่อนไข ระบุในคำถาม q ตามลำดับห่างกันด้วยหนึ่งช่องว่าง

<u>ตัวอย่าง</u>

ข้อมูลนำเข้า	ข้อมูลส่งออก
4 5 1 35 50 32 25 1 4 50 4 2 20 3 2 60 3 4 30 1 2 80 2 3	50 4
6 7 3 35 50 32 25 89 100 1 4 50 4 2 20 3 2 60 3 4 30 1 2 80 5 6 90 1 6 110 1 3 2 4 2 1	67 2 20 2 70 4

+++++++++++++++++

3. เรื่องโจทย์ประยุกต์ จำนวน 4 ข้อ

6. พีทกีตาร์ชาบู (GT_Shabu)

ที่มา: ข้อสอบท้ายค่ายสอง สอวน. คอมพิวเตอร์ ศูนย์ ม.บูรพา รุ่น 19 ออกโดย PeaTT~

"กระผมอาจารย์พีท กีตาร์ เจ้าเก่า กราบสวัสดีครับ" ทุกคนน่าจะคุ้นเคยกับประโยคนี้ดีหลังจากเปิดคลิปวิดีโอด้วยเสียง กีตาร์ที่เร้าใจ และน่าจะเป็นประโยคเปิดสำหรับทุก ๆ คลิปที่อาจารย์พีทลงในยูทูบช่อง 'PeattGuitar' ที่มีภาพปกคลิปสีสันสวยงาม แถมมีภาพกราฟิกที่มีจินตนาการสุดลึกล้ำ แม้ว่าอาจารย์พีทจะมีนามสกุลว่ากีตาร์พ่วงอยู่ด้วย แต่ดูเหมือนว่าทุกวันนี้อาจารย์จะหัน เข้าสู่ธรรมะอย่างเต็มตัว และพยายามบรรยายเกี่ยวกับคำสอนชีวิตให้กับผู้คนบนโลกออนไลน์อย่างตั้งใจจริง

ในวันนี้อาจารย์พีทกีตาร์ได้เปิดร้านบุฟเฟต์ชาบูที่มีชื่อว่า "พีทกีตาร์ชาบู" โดยเป็นร้านบุฟเฟต์สไตล์ใหม่ที่อาหารบนโต๊ะแต่ ละโต๊ะนั้นไม่เหมือนกัน ส่งผลให้แต่ละโต๊ะมีราคาไม่เท่ากัน บางโต๊ะเป็นหมูไก่ก็จะราคาถูกหน่อย บางโต๊ะเป็นปลาแซลมอนก็จะราคา แพงหน่อย ร้านพีทกีตาร์ชาบูมีโต๊ะทั้งสิ้น N โต๊ะ เรียกว่าโต๊ะหมายเลข 1 จนถึงโต๊ะหมายเลข N ในแต่ละโต๊ะจะมีราคาบุฟเฟต์เป็น Ai บาทต่อน้ำหนักตัว 1 กิโลกรัมของลูกค้า

ลูกค้าที่มาเข้าร้านพีทกีตาร์ชาบูจะมีทั้งสิ้น M คน เรียกว่าคนที่ 1 จนถึงคนที่ M แต่ละคนจะมีน้ำหนักตัว wi กิโลกรัม เริ่มต้นมาทุกโต๊ะจะว่าง เมื่อมีลูกค้าเข้ามาพีทกีตาร์จะหาโต๊ะว่างที่มีหมายเลขน้อยที่สุดให้ลูกค้านั่ง หากไม่มีโต๊ะว่างเลยจะให้ลูกค้า ยื่นต่อแถวอยู่หน้าร้าน เพื่อรอจนกว่าจะมีโต๊ะว่างแล้วถึงจะให้คนที่อยู่หน้าสุดในแถวหน้าร้านได้เข้าไปรับประทานบุฟเฟต์

<u>งานของคุณ</u>

จงเขียนโปรแกรมเพื่อช่วยอาจารย์พีทกีตาร์หาว่าการเปิดร้านพีทกีตาร์ชาบูจะได้รับเงินรวมทั้งสิ้นกี่บาท ข้อมูลนำเข้า

บรรทัดแรก รับจำนวนเต็มบวก Q แทน จำนวนคำถาม โดยที่ Q มีค่าไม่เกิน 5 ในแต่ละคำถาม

บรรทัดแรก รับจำนวนเต็มบวก N M แทน จำนวนโต๊ะ และ จำนวนลูกค้าตามลำดับ คั่นด้วยหนึ่งช่องว่าง โดยที่ N ไม่เกิน 100 และ M ไม่เกิน 2.000

> บรรทัดที่สอง รับจำนวนเต็มบวก N จำนวน แทนราคาของแต่ละโต๊ะ โดยที่ Ai จะมีค่าไม่เกิน 100 บรรทัดที่สาม รับจำนวนเต็มบวก M จำนวน แทนน้ำหนักตัวของลูกค้า โดยที่ wi <= 10,000

อีก 2M บรรทัดต่อมา รับรูปแบบการเข้าร้านของลูกค้า โดย i แปลว่า ลูกค้าคนที่ i เข้าร้าน และ -i แปลว่า ลูกค้า คนที่ i ลุกออกจากร้าน โดยที่ 1 <= i <= M

พี่พีทรับประกันว่าจะสร้างชุดทดสอบอย่างดี ให้ไม่กำกวม <u>โดยจะไม่มีลูกค้าออกจากร้านก่อนเข้าร้าน และ จะไม่มีลูกค้าคน</u> <u>ไหนออกจากร้านตอนที่ยังยืนอยู่ในแถวหน้าร้าน</u> ขอให้เชื่อใจฝีมือการสร้างชุดข้อมูลทดสอบของพี่พีทได้

20% ของชุดข้อมูลทดสอบ จะมีโต๊ะว่างอย่างน้อยหนึ่งโต๊ะสำหรับเมื่อมีลูกค้าเข้ามาใหม่ หรือ จะไม่ต้องให้ลูกค้ายืนต่อแถว อยู่หน้าร้านนั่นเอง

<u>ข้อมูลส่งออก</u>

มีทั้งสิ้น Q บรรทัด ในแต่ละบรรทัดให้แสดงเงินรวมที่พีทกีตาร์ได้รับจากการเปิดร้านชาบู

ตัวอย่าง

ข้อมูลนำเข้า	ข้อมูลส่งออก
1	1590
2 4	
7 4	
60 80 70 90	
3	
2	
1 -3 -2	
-3	
-2	
4	
-1	
-4	

คำอธิบายตัวอย่างที่ 1

มี 1 คำถาม ได้แก่ มีโต๊ะ 2 ตัว, มีลูกค้า 4 คน เริ่มต้นลูกค้าคนที่ 3 เข้ามา นั่งโต๊ะที่ 1 เสียเงิน 7x70 = 490 บาท, ลูกค้าคน ที่ 2 เข้ามา นั่งโต๊ะที่ 2 เสียเงิน 4x80 = 320 บาท, ลูกค้าคนที่ 1 เข้ามา ยืนรอหน้าร้าน, ลูกค้าคนที่ 3 ลุกออกจากร้านทำให้ลูกค้า คนที่ 1 ได้นั่งโต๊ะที่ 1 เสียเงิน 7x60 = 420 บาท, ลูกค้าคนที่ 2 ลุกออกจากร้าน, ลูกค้าคนที่ 4 เข้ามา นั่งโต๊ะที่ 2 เสียเงิน 4x90 = 360 บาท ทำให้พีทกีตาร์ได้เงินรวม 490+320+420+360 = 1,590 บาท

++++++++++++++++++

7. พีทเทพใจกลางเมือง (PT_Town Center)

-ที่มา: ข้อสอบท้ายค่ายสองคูนย์ ม.บูรพา รุ่น 15 ออกโดย PeaTT~

พีทเทพ (Peattaep) เป็นพระราชาปกครองดินแดน POSNBUU วันนี้เขาจะต้องมาหาบ้านที่อยู่ใจกลางเมือง ดินแดน POSNBUU มีทั้งสิ้น N บ้าน เรียกว่าบ้านหมายเลข 1 ถึงบ้านหมายเลข N บ้านทั้ง N หลังจะเชื่อมด้วยถนนแบบ สองทางทั้งสิ้น N-1 เส้น ทำให้ทั้งหมู่บ้านสามารถเดินทางไปมาหาสู่กันได้หมดเพียงวิธีเดียว

พีทเทพได้กำหนดบ้านที่เป็น "ใจกลางเมือง" ไว้ว่าจะต้องเป็นบ้านที่มีถนนติดกับบ้านนั้นมากที่สุด หากมีหลายบ้านที่มีถนน มากที่สุดเท่ากัน บ้านที่เป็น "ใจกลางเมือง" จะเป็นบ้านที่มีหมายเลขน้อยที่สุด

<u>งานของคุณ</u>

จงเขียนโปรแกรมเพื่อช่วยพีทเทพหาบ้านที่เป็นใจกลางเมือง และหาว่ามีถนนติดกับบ้านนั้นกี่เส้น?

<u>ข้อมูลนำเข้า</u>

บรรทัดแรก รับจำนวนเต็มบวก Q แทนจำนวนคำถาม โดยที่ Q ไม่เกิน 10 ในแต่ละคำถาม ข้อมูลในแต่ละบรรทัดมีรายละเอียดดังนี้ บรรทัดแรก รับจำนวนเต็มบวก N แทนจำนวนบ้าน โดยที่ 2 <= N <= 1,000

อีก N บรรทัดต่อมา รับจำนวนเต็ม N จำนวน เพื่อระบุว่า บ้านหมายเลข i ไปยังบ้านหมายเลข j มีระยะห่างกันเท่าไหร่ (ระยะห่างนี้ อาจรวมระยะทางที่ผ่านบ้านอื่น ๆ ไปยังบ้านหมายเลข j ด้วย) เป็นจำนวนเต็มบวกที่มีค่าไม่เกิน 1,000,000,000 ยกเว้นบ้านหมายเลข i ไปยังบ้านตัวเองจะมีค่าเป็น 0

50% ของชุดข้อมูลทดสอบ จะมี N ไม่เกิน 300

หากไม่ได้รับความอนุญาตจาก นายอัครพนธ์ วัชรพลากร (พี่พีท)

<u>ข้อมูลส่งออก</u>

มีทั้งสิ้น Q บรรทัด แต่ละบรรทัดให้แสดงหมายเลขบ้านที่เป็นใจกลางเมือง เว้นวรรค จำนวนถนนที่ติดกับบ้านนั้น

<u>ตัวอย่าง</u>

ข้อมูลนำเข้า	ข้อมูลส่งออก
1	2 3
4	
0 7 12 8	
7 0 5 1	
12 5 0 6	
8 1 6 0	

คำอธิบายตัวอย่างที่ 1

มี 1 คำถาม ได้แก่ มี 4 หมู่บ้าน มีเส้นเชื่อม 3 เส้น ข้อมูลนำเข้าแสดงว่า บ้าน 1 ห่างบ้าน 1 อยู่ 0, บ้าน 1 ห่างบ้าน 2 อยู่ 7, บ้าน 1 ห่างบ้าน 3 อยู่ 12, บ้าน 1 ห่างบ้าน 4 อยู่ 8, บ้าน 2 ห่างบ้าน 1 อยู่ 7 เป็นต้น ดังภาพ

จากภาพ จะเห็นได้ว่า ใจกลางเมืองคือบ้านหมายเลข 2 และมีถนนที่ติดกับบ้านนั้นทั้งสิ้น 3 เส้น นั่นเอง

++++++++++++++++

8. อไจล์กั้งซดน้ำซุป (AG_Soup Kang)

-ที่มา: ข้อเก้าสิบสาม Agile Programming Contest 2021 โจทย์สำหรับติวผู้แทนศูนย์ สอวน. คอมพิวเตอร์ ม.บูรพา รุ่น17 พี่พีท

กั้งชอบซดน้ำซุปเป็นอย่างมาก วันนี้เขาจะมาซดน้ำซุปใต้ต้นฝรั่ง ดังภาพ การซดน้ำซุปของ กั้งแต่ละครั้งดังสนั่นลั่นเมือง ทำให้ฝรั่งหล่นลงมาสู่พื้นทุกครั้งที่ซดน้ำซุป (โหดมาก) พีทเทพได้สังเกต กั้งและพบว่าเขาจะซดน้ำซุปทุกนาที นั่นทำให้ทุกนาทีจะมีผลฝรั่งร่วงหล่นลงมานาทีละหนึ่งผลเสมอ

มีตารางขนาด R x C เริ่มต้นบางช่องมีต้นฝรั่งอยู่ พีทเทพจะสังเกตเป็นเวลา T นาที ในแต่ ละนาทีจะมีผลฝรั่งตกลงมาที่พิกัด (i, j) เมื่อผลฝรั่งตกลงมาที่ช่องใด ในนาทีถัดไปมันจะกลายเป็นต้น ฝรั่งทันที (โหดมาก) พีทเทพอยากรู้ว่าในแต่ละนาทีที่ผลฝรั่งตกลงมานั้น ผลฝรั่งผลนั้นจะอยู่ใกล้กับ ต้นฝรั่งต้นใดมากที่สุด โดยระยะทางในข้อนี้ให้ใช้เป็น Euclidean distance ยกกำลังสอง กล่าวคือ ระยะทางระหว่างช่อง (a, b) ไปยังช่อง (c, d) เท่ากับ (a - c)² + (b - d)² นั่นเอง

<u>งานของคูณ</u>

จงเขียนโปรแกรมเพื่อหาต้นฝรั่งที่อยู่ใกล้ที่สุดของผลฝรั่งที่ตกลงมาในแต่ละนาที

<u>ข้อมูลนำเข้า</u>

บรรทัดแรก รับจำนวนเต็มบวก R C แทนขนาดตาราง โดยที่ R, C ไม่เกิน 500

อีก R บรรทัดต่อมา รับตารางเริ่มต้น โดย . แทนช่องว่าง และ x และต้นฝรั่ง รับประกันว่าเริ่มต้นจะมีต้นฝรั่งอย่างน้อย 1 ต้นเสมอ

บรรทัดที่ R+2 รับจำนวนเต็มบวก T โดยที่ T ไม่เกิน 100,000

อีก T บรรทัดต่อมา รับจำนวนเต็มบวก i j แทนช่องที่ผลฝรั่งตก (1 <= i <= R และ 1 <= j <= C) โดยอาจจะมีผลฝรั่งบาง ผลที่ตกลงบนต้นฝรั่งก็ได้

ประมาณ 30% ของชุดข้อมูลทดสอบ จะมีค่า T ไม่เกิน 500

<u>ข้อมูลส่งออก</u>

มีทั้งสิ้น T บรรทัด แต่ละบรรทัดให้แสดงระยะห่างระหว่างผลฝรั่งไปยังต้นฝรั่งที่อยู่ใกล้ที่สุด

ตัวอย่าง

ข้อมูลนำเข้า	ข้อมูลส่งออก
5 5	8
x	8
X	0
• • • • •	4
• • • • •	
• • • • •	
4	
3 1	
5 3	
2 5	
4 5	

คำอธิบายตัวอย่างที่ 1

นาทีแรกใกล้สุดที่ต้น (1, 3), นาทีที่สองใกล้สุดที่ต้น (3, 1), นาทีที่สามและนาทีที่สี่ใกล้สุดที่ต้น (2, 5)

+++++++++++++++++

9. เอ็กซ์พี่ไดท์ส่งสัญญาณ (EC_Cascade Signaling)

. ที่มา: ข้อสิบห้า Expedite Code 2022 โจทย์สำหรับติวผู้แทนศูนย์ สอวน. คอมพิวเตอร์ ม.บูรพา รุ่น18

พี่พีทมีตารางขนาด N x M ช่อง โดยในแต่ละช่องจะมีหลอดไฟที่ปิด (อักขระ .) หรือก้อนหิน (อักขระ #) และเราจะส่ง สัญญาณไปที่หลอดไฟในช่องในแถวที่ i หลักที่ j จำนวน Q รอบ โดยจะใช้พลังงาน W หน่วย ซึ่งพลังงานที่ใช้ในการส่งสัญญาณที่ แตกต่างกันจะมีลูกโซ่ที่ยาวไม่เท่ากัน โดยถ้าใช้พลังงาน W หน่วย จะมีการส่งสัญญาณเป็นลูกโซ่ต่อจากช่องในแถวที่ i หลักที่ j ไป ทางซ้าย ขวา บน ล่างด้านละ W ช่อง โดยการส่งสัญญาณนี้ถ้าส่งไปยังหลอดไฟจะทำให้หลอดไฟที่ปิด (อักขระ .) กลายเป็นหลอดไฟ ที่เปิด (อักขระ *) และทำให้หลอดไฟที่เปิด (อักขระ *) กลายเป็นหลอดไฟที่ปิด (อักขระ .) แต่ถ้าส่งไปยังก้อนหินหรือส่งออกไปนอก ตารางจะทำให้การส่งสัญญาณหยุดทันที และไม่สามารถส่งสัญญาณเป็นลูกโซ่ต่อ

เช่น การส่งสัญญาณด้วยพลังงานที่แตกต่างกัน ไปที่ช่องในแถวที่ 4 และหลักที่ 4

หากไม่ได้รับความอนุญาตจาก นายอัครพนธ์ วัชรพลากร (พี่พีท)

			*
		*	*
	*	*	*
* * * * * * * * * * * * * * * * * * * *	* * *	*****	*****
	*	*	*
		*	*
	• • • • •	• • • • •	*
W=0	W=1	W=2	W=3

หรือ ถ้ามีก้อนหินวางไว้ในช่องแถวที่ 4 หลักที่ 3 และช่องแถวที่ 2 หลักที่ 4 จะทำให้การส่งสัญญาณเป็นไปดังนี้

#	#	#	#
	* * * * * * * * * * * * * * * * * * * *	*	*
#*	#**	#***.	#***
	*	*	*
		*	*
			*
W=0	W=1	W=2	W=3

แต่ถ้าก้อนหินวางไว้ที่แถวที่ 4 หลักที่ 4 ซึ่งตรงกับจุดที่ส่งสัญญาณพอดี จะไม่มีการส่งสัญญาณเกิดขึ้น

W=0,1,2,3

ในฐานะผู้แทนศูนย์บูรพา จงช่วยพี่พีทหาว่าสถานะการเปิดปิดไฟของทั้งตารางหลังจากส่งสัญญาณทั้ง Q ครั้งเป็นอย่างไร <u>งานของคุณ</u>

จงช่วยช่วยออกแบบโปรแกรมในการหาสถานะการเปิดปิดไฟของทั้งตารางหลังจากส่งสัญญาณทั้ง Q ครั้ง

<u>ข้อมูลนำเข้า</u>

บรรทัดแรก นำเข้าจำนวนเต็มบวกหนึ่งจำนวนคือ T แทนจำนวนชุดทดสอบ โดยที่ 1 <= T <= 2 ในแต่ละชุดทดสอบ

บรรทัดแรก นำเข้าจำนวนเต็มบวกสองจำนวน คือ N, M แทนขนาดของตาราง โดยที่ 1 <= N, M <= 2,000 บรรทัดที่ 2 ถึง N+1 นำเข้าอักขระจำนวน M อักขระ ประกอบด้วยอักขระ . และ # บรรทัดที่ N+2 นำเข้าจำนวนเต็มบวกหนึ่งจำนวน คือ Q โดยที่ 1 <= Q <= 100,000 บรรทัดที่ N+3 ถึง N+Q+2 นำเข้าจำนวนเต็มบวกสามจำนวน คือ i, j และ W

โดยที่ 1 <=i <=N, 1 <=j <=M และ 1 <=W <= 2,000

20% ของชุดข้อมูลทดสอบจะไม่มีอักขระ # ในข้อมูลนำเข้า

20% ของชุดข้อมูลทดสอบมี 1 <= Q <=1,000

หากไม่ได้รับความอนุญาตจาก นายอัครพนธ์ วัชรพลากร (พี่พีท)

<u>ข้อมูลส่งออก</u>

มี NT บรรทัด แต่ละ N บรรทัดแทนคำตอบของชุดทดสอบแต่ละชุด

ตัวอย่าง

ข้อมูลนำเข้า	ข้อมูลส่งออก
2	*
7 7	*** ** .
	**
	.*.***
	**
• • • • • •	*
• • • • • •	• • • • •
• • • • • •	• • * • • •
	***#
2	***
4 4 2	#***.
2 3 3	• • • * • • •
7 7	•••*
• • • • • •	• • • • •
#	
#	
• • • • • •	
• • • • • •	
3	
4 4 2	
2 3 3	
2 4 1	

คำอธิบายตัวอย่างที่ 1

ในชุดทดสอบที่ 1 หลังจากส่งสัญญาณครั้งแรกได้สถานการณ์เปิดปิดไฟเป็นดังนี้

เมื่อส่งสัญญาณครั้งที่ 2 ทำให้หลอดไฟในช่องในแถวที่ 2 หลักที่ 4 และแถวที่ 4 หลักที่ 3 ถูกเปลี่ยนจากเปิดเป็นปิด ดังนี้

หากไม่ได้รับความอนุญาตจาก นายอัครพนธ์ วัชรพลากร (พี่พีท)

	•		*	•		
	*	*	*	•	*	*
			*	*		
		*	•	*	*	*
			*	*		
				*		
ได้	สเ					้เป็

ในชุดทดสอบที่ 2 หลังจากส่งสัญญาณครั้งแรกได้สถานการณ์เปิดปิดไฟเป็นดังนี้

เมื่อส่งสัญญาณครั้งที่ 2 จะเป็นดังนี้ จะเห็นว่าการส่งสัญญาณไม่สามารถส่งผ่านก้อนหินได้

***#... ..**...

ในการส่งสัญญาณครั้งที่ 3 เนื่องจากเริ่มส่งสัญญาณตรงที่เป็นก้อนหินพอดี ทำให้ไม่สามารถส่งสัญญาณได้เลยทำให้ผลลัพธ์ เป็นเหมือนเดิม

+++++++++++++++++