Wilson's Theorem

APS - Presentation

USN: 01FE15BCS136

NAME: Prashant Kumar

Wilson's Theorem.

Let p be an integer greater than one. p is prime if and only if $(p-1)! = -1 \pmod{p}$

Proof

It is easy to check the result when p is 2 or 3, so let us assume p > 3. If p is composite, then its positive divisors are among the integers 1, 2, 3, 4, ..., p-1

and it is clear that gcd((p-1)!,p) > 1, so we can not have $(p-1)! = -1 \pmod{p}$. However if p is prime, then each of the above integers are relatively prime to p. So for each of these integers a there is another b such that $ab = 1 \pmod{p}$. It is important to note that this b is unique modulo p, and that since p is prime, a = b if and only if a is 1 or p-1. Now if we omit 1 and p-1, then the others can be grouped into pairs whose product is one showing $2 \cdot 3 \cdot 4 \cdot ... \cdot (p-2) = 1 \pmod{p}$

(or more simply $(p-2)! = 1 \pmod{p}$). Finally, multiply this equality by p-1 to complete the proof.

Examples

Table of remainder modulo n

	(n-1)! .	$(n-1)! \mod n$
n	(sequence A000142 in the OEIS)	(sequence A061006 in the OEIS)
2	1	1
3	2	2
4	6	2
5	24	4
6	120	0
7	720	6
8	5040	0
9	40320	0
10	362880	0
11	3628800	10
12	39916800	0
13	479001600	12

References

- [1] https://en.wikipedia.org/wiki/Wilson%27s theorem
- [2] https://primes.utm.edu/notes/proofs/Wilsons.html