KUNCI JAWABAN

TES AKHIR PRAKTIKUM 5 UJI HIPOTESIS

Nomor 1

Bagian A

Soal menunjukkan bahwa data yang diberikan merupakan kasus data berpasangan. Kita definisikan hipotesis sebagai berikut:

Ho: $\mu_d = \mu_o$

 $H1: \mu_d \neq \mu_o$

Kita gunakan titik kritis $T < -t_{1-\alpha/2}$ atau $T > t_{1-\alpha/2}$. Hasil menunjukkan nilai T diperoleh yaitu $T \approx 2.35339$. Titik kritis jatuh pada T < -2.31 atau T > 2.31. Hal ini menandakan nilai uji T jatuh pada titik kritis sehingga H_0 ditolak. Kesimpulan yang diambil yaitu frekuensi pernafasan kedua kondisi berbeda.

Apabila dilihat dari nilai p-value, nilai tersebut lebih kecil dibanding α (0.04643 < 0.05) yang mendukung pernyataan sebelumnya.

Bagian B

kita dapat melakukan uji hipotesis satu sisi dengan penyusunan dugaan sebagai berikut :

Ho: $\mu_d = \mu_o$

t	2.35339362165821
t.half.alpha	2.30600413520417
t.lower	-1.8595480375309
t.twosided	num [1:2] -2.31 2.31
t.upper	1.8595480375309

Paired t-test

data: CO and Tanpa_CO
t = 2.3534, df = 8, p-value = 0.04643
alternative hypothesis: true mean difference is not equal to 0
95 percent confidence interval:
 0.04027332 3.95972668
sample estimates:
mean difference

 $H1: \mu_d > \mu_o$

Kita gunakan titik kritis $T > t_{1-\alpha}$. Hasil menunjukkan nilai T diperoleh yaitu $T \approx 2.35339$. Titik kritis jatuh pada T > 1.859548. Hal itu menunjukkan nilai uji T jatuh pada titik kritis sehingga H_o ditolak. Kesimpulan yang diambil yaitu frekuensi pernafasan dengan karbon monoksida lebih besar dibanding frekuensi pernafasan saat tanpa karbon monoksida.

Nomor 2

F	0.867185761957731
F.half.alpha	7.4959059148136
F.lower	0.165868559500591
F.twosided	num [1:2] -7.5 7.5
F.upper	6.02887010661257

F test to compare two variances

Bagian A

Soal menunjukkan bahwa terdapat dua populasi yang ingin diuji kesamaan variansinya. Oleh karena itu, kita menetapkan hipotesis sebagai berikut:

Ho:
$$\sigma^2_A = \sigma^2_B$$

$$H1:\sigma^2_A\neq\sigma^2_B$$

Dari hipotesis yang telah didefinisikan, kita ambil titik kritis $F < f_{1-\alpha/2,(n1-1,n2-1)}$ atau $F > f_{1-\alpha/2,(n1-1,n2-1)}$. Nilai uji F diperoleh sebesar $F \approx 0.86718576$. Nilai tersebut tidak jatuh di titik kritis sehingga kita belum memiliki cukup bukti untuk menunjukkan bahwa kedua variansi tidak sama.

Hal ini juga didukung oleh nilai pvalue = $0.8452 > \alpha = 0.05$ yang membuat Ho diterima.

Bagian B

Hasil *boxplot* ditampilkan dengan digabungkan menjadi satu untuk mempermudah dalam melakukan perbandingan hasil.

Pembuatan *boxplot* seperti di samping dilakukan dengan menggunakan nama variabel dalam *import* data

Contoh:

Apabila kita menggunakan "alat" sebagai nama variabel import data, kita tuliskan :

boxplot(alat, horizontal=T, main="Uji Kandungan CO Alat A dan B")

Bagian C

Apabila kita lihat jawaban dari poin (a) dan (b), kita dapat menyimpulkan bahwa kedua alat dapat digunakan dengan baik. Hal ini didukung oleh penerimaan Ho yang menyatakan bahwa $\sigma^2_A = \sigma^2_B$ dan hasil *boxplot* menunjukkan bahwa data pengukuran alat A dan alat B tidak memiliki pencilan dan ukuran *boxplot* yang dihasilkan cukup identik.

Data yang memiliki pencilan menunjukkan ketidakakuratan alat ukur dalam bekerja karena pencilan tersebut menunjukkan data tersebut berjarak jauh dari rata-rata. Hal ini didukung oleh nilai variansi yang semakin besar menunjukkan semakin jauh data yang kita gunakan tersebar dari nilai rata-ratanya.