Control Systems

G V V Sharma*

CONTENTS

1 Mason's Gain Formula 2 Bode Plot

1	Mason'	s Gain Formula	1	L	
2	Bode Plot		1	2.1 Introduction	
	2.1	Introduction	1	2.2 Example	
	2.2	Example	1	3 Second order System	
	~ .			3.1 Damping	
3	Second order System		l	3.2 Evample	
	3.1	Damping	1	<u> </u>	
	3.2	Example	1		
4	Routh Hurwitz Criterion		1	4.1 Routh Array	
	4.1	Routh Array	1	4.2 Marginal Stability	
	4.2	Marginal Stability	1	4.3 Stability	
	4.3	Stability	1	5 STATE-SPACE MODEL	
5	State-Space Model		1	5.1 Controllability and Observability	
	5.1	Controllability and Observability	1	5.1. The state equation and the output equation	0
	5.2	Second Order System	2	a control system are given below:	
6	Nyquist	Plot	2	$\dot{\mathbf{X}} = \begin{pmatrix} -4 & -1.5 \\ 4 & 0 \end{pmatrix} \mathbf{X} + \begin{pmatrix} 4 \\ 0 \end{pmatrix} \mathbf{U} \tag{5.1}$.1
7	Phase N	Margin	2	/ / /	
0		· ·	2	$\mathbf{Y} = \begin{pmatrix} 1.5 & 0.625 \end{pmatrix} \mathbf{X} \tag{5.1}$.2
8	Gain M	largin	2	Then transfer function representation of t	٠h٤
9	Compe	nsators	2		110
	9.1	Phase Lead	2		
10	Oscillat	or	2	$\dot{\mathbf{X}} = \mathbf{A}\mathbf{X} + \mathbf{B}\mathbf{U} \tag{5.2}$.1
, ,				$\mathbf{V} = \mathbf{C}\mathbf{V} + \mathbf{D}\mathbf{H}$ (5.2)	2

Abstract—This manual is an introduction to control systems based on GATE problems.Links to sample Python codes are available in the text.

Download python codes using

svn co https://github.com/gadepall/school/trunk/ control/codes

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

$$\mathbf{Y} = \mathbf{CX} + \mathbf{DU} \tag{5.2.2}$$

where A,B,C,D are matrices. Then the transfer function can be find using

$$T(s) = \mathbf{C} \left[(sI - \mathbf{A})^{-1} \right] .\mathbf{B} + \mathbf{D}$$
 (5.2.3)

From the given state space representation of the system, we can find matrices as

$$\mathbf{A} = \begin{pmatrix} -4 & -1.5 \\ 4 & 0 \end{pmatrix} \tag{5.2.4}$$

$$\mathbf{B} = \begin{pmatrix} 4 \\ 0 \end{pmatrix} \tag{5.2.5}$$

$$\mathbf{C} = (1.5 \quad 0.625) \tag{5.2.6}$$

We can find the transfer function using

$$T(s) = \mathbf{C} \left[(sI - \mathbf{A})^{-1} \right] .\mathbf{B} + \mathbf{D}$$
 (5.2.7)

$$(sI - \mathbf{A}) = \begin{pmatrix} s & 0 \\ 0 & s \end{pmatrix} - \begin{pmatrix} -4 & -1.5 \\ 4 & 0 \end{pmatrix}$$
 (5.2.8)

$$(sI - \mathbf{A}) = \begin{pmatrix} s - 4 & -1.5 \\ 4 & s \end{pmatrix} \tag{5.2.9}$$

$$|sI - \mathbf{A}| = s(s+4) - (-4) \times (-1.5)$$
 (5.2.10)

$$|sI - \mathbf{A}| = s^2 + 4s + 6$$
 (5.2.11)

and from (5.2.9)

$$Adj[sI - \mathbf{A}] = \begin{pmatrix} s & -1.5 \\ 4 & s+4 \end{pmatrix}$$
 (5.2.12)

$$[sI - \mathbf{A}]^{-1} = \frac{Adj[sI - \mathbf{A}]}{|sI - \mathbf{A}|}$$

$$= \begin{pmatrix} \frac{s}{(s^2 + 4s + 6)} & \frac{-1.5}{(s^2 + 4s + 6)} \\ \frac{4}{(s^2 + 4s + 6)} & \frac{s + 4}{(s^2 + 4s + 6)} \end{pmatrix}$$
(5.2.13)

$$[sI - \mathbf{A}]^{-1} \cdot \mathbf{B} = \begin{pmatrix} \frac{s}{(s^2 + 4s + 6)} & \frac{-1.5}{(s^2 + 4s + 6)} \\ \frac{4}{(s^2 + 4s + 6)} & \frac{s + 4}{(s^2 + 4s + 6)} \end{pmatrix} \begin{pmatrix} 4 \\ 0 \end{pmatrix}$$
(5.2.14)

. :
$$[sI - \mathbf{A}]^{-1} \cdot \mathbf{B} = \begin{pmatrix} \frac{4s}{(s^2 + 4s + 6)} \\ \frac{16}{(s^2 + 4s + 6)} \end{pmatrix}$$
 (5.2.15)

Substituting the values of $[sI - A]^{-1}$. **B** and **C** in equation (1.2.7)

$$T(s) = \begin{pmatrix} 1.5 & 0.625 \end{pmatrix} \begin{pmatrix} \frac{4s}{(s^2+4s+6)} \\ \frac{16}{(s^2+4s+6)} \end{pmatrix}$$
 (5.2.16)

$$T(s) = \left(\frac{6s}{(s^2 + 4s + 6)} + \frac{10}{(s^2 + 4s + 6)}\right)$$
 (5.2.17)

the transfer function representation of the system is

. :
$$\mathbf{T}(\mathbf{s}) = \left(\frac{6s+10}{(s^2+4s+6)}\right)$$
 (5.2.18)

verify the answer with python code https://github.com/srikanth2001/EE2227control-systems/tree/master/codes

5.2 Second Order System

6 Nyquist Plot

7 Phase Margin

8 GAIN MARGIN

9 Compensators

9.1 Phase Lead

10 OSCILLATOR