30. a. DNA in <i>E. coli</i> is single long stretch of nucleotide while many RNA transcripts are synthesized using DNA as template. In this case how RNA polymerase determine the starting and ending position in DNA? Explain the process.	12	4 .	3	2
(OR)				
b. Explain the process of post translational modifications of tRNA and rRNA.	12	3	3	3
31. a. Discuss in detail about import of protein in nucleus and mitochondria.	12	3	4	2
(OR)				
b. Explain the process of translation with appropriate diagrams.	12	3	4	2
32. a. In an experiment, <i>E. coli</i> cells are grown in Flask A: lactose as carbon source Flask B: glucose as carbon source. Comment on growth of <i>E. coli</i> in both the flasks and compare their gene regulation.	12	4	5	3
(OR)	10	4	_	2
b. What will happen if you grow <i>E.coli</i> cells in medium without tryptophan? Will they grow? If yes, explain the process.	12	4	0	3

* * * * *

Reg. No.

B.Tech. DEGREE EXAMINATION, MAY 2023

Fourth Semester

18BTC105J – MOLECULAR BIOLOGY

(For the candidates admitted from the academic year 2018-2019 to 2021-2022)

(i) (ii)	Part - A should be answered in OMR sheet within first 40 minutes and OMR sheet over to hall invigilator at the end of 40 th minute. Part - B & Part - C should be answered in answer booklet.	shoul	d be	han	ded.
Time: 3	nours	ax. N	/Iark	s: 1	00
N	$PART - A (20 \times 1 = 20 Marks)$	Marks	BL	со	PO
1.	Answer ALL Questions In Meselson-Stall experiment, the light band appears in CsCl ₂ centrifugation after	1	2	1	1
	(A) Growing the cells in ¹⁵ N (B) Growing the cells in ¹⁴ N – labelled NH ₄ Cl for one generation				
	(C) Growing the cells in ¹⁴ N – (D) Growing the cells in CsCl ₂ NH ₄ Cl for two generation containing medium				
2.	Alpha complementation is closely related to (A) Lac operon (B) Trp operon (C) Ara operon (D) His operon	1	2	1	2
3.	Poly A tail with messenger RNA is added (A) During transcription (B) As post translational modification	1	2	1	2
	(C) As post transcriptional (D) During replication modification				
4.	The length of 28s rRNA is (A) ~28 kda (B) ~28 rNTs (C) ~4800 rNTs (D) ~4800 bp	1	2	1	2
5.	Which of the following catalytic activity DNA polymerase III has (A) 5' to 3' exonuclease and 5' to 3' (B) 3' to 5' polymerase and 5' to 3' polymerase exonuclease (C) 5' to 3' endonuclease and 5' to 3' (D) 5' to 3' exonuclease and 5' to 3'	1	2	2	1
	(C) 5' to 3' endonuclease and 5' to 3' (D) 5' to 3' exonuclease and 5' to 3' polymerase endonuclease				
6.	DNA ligase can establish phosphodiester bond between (A) 3' OH and 5' P of incoming (B) 5' OH and 5' O of incoming dNTPs (C) 3' OH AND 5' monophosphate (D) 3' OH and 3' P of adjacent	1	2	2	2
	of adjacent deoxynucleotides dNTPs				

Note:

of 4	(D) (C	_	30M418B	TC10:	5J	
16.		_	1	2	4	3
15.	RNA primers in lagging strand is removed by (A) Helicase (B) D (C) DNA polymerase I (D) L	NA polymerase III	1	2	2	3
	(C) Side chains of aminoacyl tRNA (D) S and peptidyl tRNA	ide chains of growing peptide				
14.	Peptide bond formation in translation happer (A) C terminal of aminoacyl tRNA (B) C and N terminal of peptidyl N tRNA		1	2	4	3
	(C) The mRNA codes for more (D) T than one protein	•				
13.	191	The mRNA codes for protein with more cytosine residue	1	2	4	3
12.		ription termination is rich in A-T base pair Poly U tail	1	2	3	·3
	and initiate the transcription in (C) Initiate the transcription and (D) C termination tr					
11.	The role of sigma factor in transcription is to (A) Recognize the initiation site (B) In	nitiate the transcription and	1	2	3	3
	include more than one gene of (C) Transcription unit is only the (D) To coding region unit is only the coding region unit is	•				
10.	Which of the following statement is true in e (A) A transcription unit may (B) A	A transcription unit contains	1	2	3	3
9.		d in transcription of mRNA in DNA polymerase I RNA polymerase III	1	2	3	3
8.	In a mismatch repair, which enzyme is in stranded gap (A) Exonuclease VII (C) Exonuclease VI (D) II	A.*	1	2	2	2
	(C) Helicase (D) N	Mut H			į	
1.	during DNA repair? (A) Mut S (B) M		1	2		2

	17.	In negative gene regulation,	1	2	5	3
		(A) Repressor protein prevents (B) Inducer protein prevents transcription				
		(C) Repressor protein and inducer (D) Promoter does not activate on its				
		complex prevent transcription own				
	18.	Ara B gene codes for	1	2	5	3
		(A) Ribulokinase (B) Arabinose isomerase			•	
		(C) Arabinose kinase (D) Ribulose epimerase				
	19.	When there is sufficient amount of tryptophan in cell	1	2	6	3
		(A) Trp operon is repressed (B) Trp operon is induced				
		(C) Active repressor are converted (D) Not enough tryptophan to to apo repressor function as corepressor				
	20.	Which one of the following is regulatory gene in <i>lac</i> operon?	1	2	6	3
		(A) lac A (B) lac Z				
		(C) lac I (D) lac promoter				
		$PART - B (5 \times 4 = 20 Marks)$				
		Answer ANY FIVE Questions	Marks	BL		PO
	21.	Differentiate A, B and Z forms of DNA.	4	3	1	1
	22.	Write down the role of topoisomerase in replication.	4	3	1	1
	23.	3. Compare the role of DNA poly I and DNA poly III in replication process.		3	2	2
	24. Describe the transcription termination process.			3	3	2
	25.	25. Draw schematic diagram of <i>E.coli</i> rRNA transcript.			4	2
	26.	26. Write down the mechanism of protein import into the nucleus.		2	4	2
	27.	List out the genes present in Trp operon with their gene product and function.	4	2	5	3
		$PART - C (5 \times 12 = 60 \text{ Marks})$				
2	Ω ,	Answer ALL Questions Which of the following corruscentia information from any concretion to the	Marks 12	BL 2	CO	PO 2
۷.	o. a.	Which of the following carry genetic information from one generation to the other, DNA or protein? Give experimental evidence.	12	-		2
10		(OR)				
	ъ.	Explain the method to study the DNA topology.	12	3	1	2
2	9. a.	Draw replication fork and illustrate the mechanism of DNA replication and proofreading.	12	3	2	2
		(OR)				
	b.	Give experimental proof of semi-conservative mode of replication.	12	3	2	3

Page 2 of 4