Monte Carlo ES (Exploring Starts), for estimating $\pi \approx \pi_*$

 $\pi(s) \in \mathcal{A}(s)$ (arbitrarily), for all $s \in \mathcal{S}$

 $G \leftarrow \gamma G + R_{t+1}$

Initialize:

$$Q(s, a) \in \mathbb{R}$$
 (arbitrarily), for all $s \in \mathcal{S}$, $a \in \mathcal{A}(s)$
 $Returns(s, a) \leftarrow \text{empty list, for all } s \in \mathcal{S}$, $a \in \mathcal{A}(s)$

Loop forever (for each episode):

Loop forever (for each episode):

Choose
$$S_0 \in \mathcal{S}$$
, $A_0 \in \mathcal{A}(S_0)$ randomly such that all pairs have probability > 0

Concrete an episode from S_0 , A_0 following π : S_0 , A_0 , R_1 , R_2 , R_3 , R_4 , R_4 , R_5

Append G to $Returns(S_t, A_t)$

 $\pi(S_t) \leftarrow \operatorname{arg\,max}_a Q(S_t, a)$

Choose
$$S_0 \in \mathcal{S}$$
, $A_0 \in \mathcal{A}(S_0)$ randomly such that S_0 Generate an episode from S_0, A_0 , following π : S_0

Generate an episode from S_0, A_0 , following $\pi: S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T$

 $Q(S_t, A_t) \leftarrow \text{average}(Returns(S_t, A_t))$

Generate an episode from
$$S_0, A_0$$
, following π : S_0

$$G \leftarrow 0$$

Generate an episode from
$$S_0, T_0$$
, is nowing π . S_0, T_0
 $G \leftarrow 0$
Loop for each step of episode, $t = T - 1, T - 2, \dots, 0$:

e.
$$t = T - 1, T - 2, \dots$$