Principles and practice of Laboratory science (Laboratory medicine).

Prof. Victor Mwanakasale (BSc, MBChB, MSc, Dip, PhD) (2024)

Objectives of the lecture.

- 1. The students to understand the principles of laboratory medicine in clinical practice.
- 2. The students to learn the organisation of a medical laboratory.

Laboratory science:

- (Laboratory medicine).
- The science of the laboratory diagnosis of medical diseases and conditions by laboratory investigations (tests).
- Referred to is discipline involved in:
- Selection, provision, and interpretation of diagnostic testing using primarily samples* from a patient.

Field of Laboratory medicine:

- 1. Research
- 2. Administration
- 3. Teaching activities
- 4. Clinical service

Importance of laboratory diagnosis in clinical practice.

(Why)

- History + Physical examination + laboratory diagnosis=Confirm diagnosis/obtain valuable information about patient's condition.
- 2. Laboratory diagnostic tests are not therapeutic.
- 3. Laboratory diagnosis assists in more **effective** management and **cost containment**.

Indications for requesting laboratory investigations (tests): (when)

- 1. Confirm a clinical suspicion (make a definitive diagnosis).
- 2. Establish the **severity** of the condition.
- 3. Exclude a clinical diagnosis.
- 4. Assist in **selection**, **optimisation**, and **monitoring** of treatment.
- 5. Provide a prognosis.
- 6. Screening for disease (before symptoms and signs appear).
- 7. Establish and monitor the severity of a physiological disturbance

Field of laboratory medicine includes:

- 1. Clinical chemistry & molecular diagnosis*
- 2. Microbiology (bacteriology, parasitology, virology, mycology).
- 3. Hematology
- 4. Hemostasis and thrombosis
- 5. Blood banking (transfusion medicine)
- 6. Immunology
- 7. Identity test
- 8. Cytology and anatomical pathology (histopathology)*

Importance of Laboratory medicine (LM):

 One of the fundamental tools used in <u>making</u> decisions in the practice of clinical medicine.

Evidence-based medicine (EBM)*

- Defined as the conscientious, judicious, and explicit use of the best evidence in making decisions about the care of individual patients.
- Goal of EBM is to incorporate the best evidence from clinical research into clinical decisions.

EBM and LM*.

- Services of LM are important tools for the doctor to answer diagnostic questions and assist in decision making.
- Tools are called diagnostic tests (also known as laboratory tests or laboratory investigations).

What is Evidence-based LM (EBLM)

- Is the application of principles and techniques of EBM to LM.
- Clinician requesting an investigation has a question and must make a decision.

EBLM

 Is defined as the conscientious, judicious, and explicit use of best evidence in the use of LM investigations for assisting in decision making about the care of individual patients*. EBLM EBM

Best test → Best evidence → Best Decision

Types of diagnostic questions addressed in LM* about the patient.

- 4 scenarios typified by the questions:
- 1. What is the diagnosis?
- Can another diagnosis be ruled out?
- 3. What is the patient's prognosis?
- 4. How is the patient doing?

What is the diagnosis?

- Diagnosis is required by the doctor
- Diagnostic conclusions lead to a decision and some action and often an intervention (chemotherapy or surgery or none) to improve patient's condition.

Can another diagnosis be ruled out?

- The test result excludes a diagnosis.
- Also referred to as "rule out test"

What is this patient's prognosis?

Assessment of risk*

How is the patient doing?

concerned with patient management

In all the above scenarios:

3 components present:

- 1. A question
- 2. A decision
- 3. An action

Schematic representation of 4 common decision-making steps*.

Choice of laboratory investigations.

Based on subjective clinical judgment

Application of laboratory medicine.

- 1. Hospital/health centre:
- Outpatients
- Inpatients
- 2. Community survey:
- Sick and healthy individuals
- 3. Screening centre
- Apparently healthy individuals

Clinical specimens (samples) in LM.

Examples:

- 1. Stool
- 2. Urine
- 3. Blood
- 4. Bronchial-alveolar lavage (wash)
- 5. Biopsy (piece of body tissue)

- 6. Secretions (bronchial, saliva)
- 7. Discharge (pus, vaginal, urethral)
- 8. Impression (ulcer)
- **9. Body fluids** (Cerebral Spinal Fluid, pleural, semen, cervical mucus, peritoneal, synovial)

Processing samples from patient.

Involves:

- 1. Collection
- 2. Transportation
- 3. Handling
- 4. Examination
- 5. Reporting the results.

Organization of a medical laboratory.

- Ensure accurate laboratory results (best evidence)
- Essential elements of a medical laboratory include:
- 1. Building
- 2. Personnel
- 3. Equipment
- 4. Reagents/ chemicals/ test kits

- 5. Visual aids
- 6. Waste disposal system
- 7. Safe work environment (Safety)
- 8. Standard Operating Procedure (SOPs)

 Manual

Building.

- 1. Work space.
- 2. Power supply.
- 3. Gas supply.
- 4. Water supply.
- 5. Ventilation.

Personnel.

- Qualified laboratory scientists/ technologists/technicians/assistants required for quality assurance.
- Teamwork for internal consultations.
- Supervision for quality control.

Equipment.

- Appropriate equipment required for different laboratory tests.
- End users (laboratory staff).
- Installation and commissioning by contractor.
- Service contracts.

Examples of some equipment in medical laboratory;

- Microscopes
- Centrifuges
- Fridge/freezers
- Incubators
- pH meters
- Shakers
- Chemistry analysers
- Haematology analysers
- PCR machine

Reagents/chemicals/test kits.

- Proper labelling of containers.
- Correct colour of containers.
- Shelves labeled
- Expiry date of reagents/chemicals.
- Expiry dates for test kits (shelf-life).

Safety measures.

- Safe work environment
- Provided by use of equipment called Biosafety Cabinets (BC).
- BC provide primary containment of potentially infectious materials.
- Protection for personnel, product, and environment.
- There are 3 classes of BC

Biosafety Cabinets

Class I:

- Is an open-front negative pressure cabinet.
- provides personnel and environmental protection, but not product protection.

Class II:

- Is an open-front, ventilated cabinet.
- Provides personnel, environment and product protection.

Class III:

- Totally enclosed ventilated cabinet of gas-tight construction.
- Operations conducted through attached rubber gloves.
- Is maintained through negative air pressure when in use.
- For highly infectious samples

Waste disposal.

- Dustbin, waste bags labeled with a hazard sign available at all times for solid disposal.
- Chemical/reagents disposed according to laid down procedures.

Visual aids.

Reference materials:

- 1. Algorithms (Flow charts).
- 2. Diagrams.
- 3. Pictures.

Standard Operating Procedure Manual (SOPM/SOP).

- Most important document in a laboratory.
- Describes in detail the complete techniques for performing tests.
- Ensures that consistent and reproducible results are generated.
- Instructions in SOP Manual must be strictly adhered to by all laboratory staff.

Essential features of SOPM

Essential components of a SOPM

- i. Abbreviated administrative structure diagram.
 Indicating the line of authority in the laboratory.
- ii. Laboratory safety instructions. including emergency measures.

iii. Specimen collection.

- Condition under which the sample collected properly.
- Techniques for selection, collection.
- Transportation of specimens.
- Criteria for the rejection of a specimen.
- Action to be taken in case the sample is rejected.

iv. Inoculation procedures.

- Media required for each specimen, type and plating or inoculation technique used for this purpose.
- The temperature, duration and environment in which the samples are to be incubated.

v. Details of procedures

 Detail the steps in preforming a test indicating differential tests, flow charts or keys as well as identification criteria.

Differential tests.

Description in detail regarding the following for each test:

- Title
- Principle
- Material (e.g. colony to be tested)
- Reagents:
 - a)Source
 - b)Preparation technique
 - c)Storage technique

- Standards and controls to be used.
- Directions for performing the test.
- Interpretation of results.
- Commonly encountered problems and their solution.

vi. Antimicrobial susceptibility testing.

 Organism that can be tested and the antimicrobial agent which is to be used for testing.

- vii. Serological testing (immunological tests). (Includes details as given above under heading differential tests).
- viii. Referral to higher laboratories

 Describes how to use the reference laboratories.

- ix. Quality control.
- a) Time and frequency for performing quality control steps for media, reagents, antibiotic discs, sera.
- b) Control results are acceptable/not acceptable (supervision).
- c) Recording of results and the actions to be taken if deviations occur.

x. Reporting.

- Reporting results.
- Tests taking a longer time for completion.
- Preliminary reports issued.

xi. Preventive maintenance.

 For various equipment and materials used in the laboratory.

Summary of SOPM/SOP.

- Contains description of approved procedures for various laboratory tests.
- Is a reference handbook.

Quality control.

- A process of setting standards to make sure a laboratory test is done correctly.
- Involves:
- i. Equipment
- ii. Reagents/chemicals/diagnostic kits
- iii. Personnel

Quality assurance:

- A systematic measurement, comparison with a standard, monitoring of processes and an associated feedback loop that confers error prevention.
- National/international reference laboratory supervision.
- Ensures best results leave a particular laboratory

FIN