Questions de cours.

- 1. Montrer que le produit matriciel est associatif.
- **2.** On note $(E_{ij})_{1 \leq i,j \leq n}$ la base canonique de $\mathbb{M}_n(\mathbb{K})$. Calculer $E_{ij}E_{k\ell}$ pour tous $1 \leq i,j,k,\ell \leq n$.
- **3.** Pour toutes matrices $A, B \in \mathbb{M}_n(\mathbb{K})$, calculer ${}^t\!(AB)$ en fonction de ${}^t\!A$ et ${}^t\!B$.

1 Matrices

Exercice 1.1 (*). Soit $A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$. Calculer A^n pour $n \in \mathbb{Z}$.

Exercice 1.2 (*). On pose $M = \begin{pmatrix} 2 & j & j^2 \\ j & -j & 1 \\ j^2 & 1 & -j^2 \end{pmatrix}$ où $j = \exp\left(i\frac{2\pi}{3}\right)$.

- **1.** Calculer $(M I_3)^2$.
- **2.** En déduire M^n pour $n \in \mathbb{N}$.

Exercice 1.3 (*). Soit $n \in \mathbb{N}^*$. Si $A \subset \mathbb{M}_n(\mathbb{K})$, on appelle commutant de A dans $\mathbb{M}_n(\mathbb{K})$ l'ensemble $C(A) = \{M \in \mathbb{M}_n(\mathbb{K}), \forall N \in A, MN = NM\}$ et centre de A l'ensemble $Z(A) = A \cap C(A)$.

- **1.** Déterminer $Z(\mathbb{M}_n(\mathbb{K}))$.
- 2. Déterminer le commutant puis le centre de l'ensemble des matrices triangulaires supérieures strictes.
- 3. Déterminer le commutant puis le centre de l'ensemble des matrices triangulaires supérieures.
- **4.** Soit D une matrice diagonale dont les coefficients diagonaux sont deux à deux distincts. Déterminer $C(\{D\})$.

Exercice 1.4 (\star) . Soit $n \in \mathbb{N}^*$ et $A \in \mathbb{M}_n(\mathbb{C})$ t.q.

$$\forall i \in \{1, \dots, n\}, |A_{i,i}| > \sum_{j \neq i} |A_{i,j}|.$$

Montrer que A est inversible.

Exercice 1.5 (\star) . Soit $n \in \mathbb{N}^*$ et $H \in \mathbb{M}_n(\mathbb{C})$ une matrice de rang 1.

- 1. Montrer que $H^2 = (\operatorname{tr} H) H$.
- **2.** Après avoir précisé quand $(I_n + H)$ est inversible, calculer $(I_n + H)^{-1}$.

Exercice 1.6 (*). *Soit* $n \in \mathbb{N}_{\geq 2}$. *On note :*

$$E_{n} = \left\{ \begin{pmatrix} a & b & \cdots & b \\ b & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & b \\ b & \cdots & b & a \end{pmatrix} \in \mathbb{M}_{n} (\mathbb{R}), (a, b) \in \mathbb{R}^{2} \right\}.$$

- **1.** E_n est-il un espace vectoriel?
- **2.** Si E_n est un espace vectoriel, est-il de dimension finie?
- **3.** Si E_n est de dimension finie, quelle est sa dimension?
- **4.** Montrer que E_n est stable par produit (c'est donc une algèbre).
- **5.** Trouver une base $(P_1, \ldots, P_{\dim E_n})$ de E_n t.q. $\forall k \in [1, \dim E_n], P_k^2 = P_k$. On utilisera cette base par la suite.

- **6.** Trouver les éléments inversibles de E_n (i.e. les éléments de E_n admettant un inverse dans E_n).
- 7. Quel type de structure a l'ensemble des éléments non inversibles de E_n (ex : plan vectoriel, droite vectoriel, réunion d'un plan et d'une droite ...).
- **8.** Résoudre dans E_n l'équation $X^2 = X$.
- **9.** Montrer qu'il existe un isomorphisme d'algèbres entre E_n et E_2 .

Exercice 1.7 (Trace, \star). Soit $n \in \mathbb{N}^*$. La trace d'une matrice $A \in \mathbb{M}_n(\mathbb{K})$ est définie par $\operatorname{tr} A = \sum_{k=1}^n A_{k,k}$.

- **1.** Montrer que $\operatorname{tr}: \mathbb{M}_n(\mathbb{K}) \to \mathbb{K}$ est une forme linéaire. Est-elle injective? Surjective?
- **2.** Montrer que $\forall (A, B) \in \mathbb{M}_n(\mathbb{K})^2$, $\operatorname{tr}(AB) = \operatorname{tr}(BA)$.
- **3.** Existe-t-il deux matrices A, B de $\mathbb{M}_n(\mathbb{K})$ t.q. $AB BA = I_n$?
- 4. Déterminer la trace de la matrice d'un projecteur et d'une symétrie.
- **5.** Soit f une forme linéaire sur $\mathbb{M}_n(\mathbb{K})$ t.q. $\forall (A,B) \in \mathbb{M}_n(\mathbb{K})^2$, f(AB) = f(BA). Montrer que $f \in \operatorname{Vect}(\operatorname{tr})$.
- **6.** Soit f une forme linéaire quelconque sur $\mathbb{M}_n(\mathbb{C})$. Montrer que :

$$\exists A \in \mathbb{M}_n(\mathbb{K}), \forall M \in \mathbb{M}_n(\mathbb{K}), f(M) = \operatorname{tr}(AM).$$

2 Dimension finie

Exercice 2.1 (*). On se place dans $E = \mathbb{R}^4$. On considère $F = \{x \in E, x_1 + x_2 + x_3 + x_4 = 0\}$ et $G = \{x \in E, x_1 + x_2 = x_3 + x_4\}$. Déterminer la dimension et donner une base de F, G, F + G et $F \cap G$.

Exercice 2.2 (*). Soit $(P_n)_{n\in\mathbb{N}}$ une suite de polynôme de $\mathbb{K}[X]$ t.q. $\forall n\in\mathbb{N}$, $\deg P_n=n$.

- **1.** Montrer que pour tout $N \in \mathbb{N}$, (P_0, \dots, P_N) est une base de $\mathbb{K}_N[X]$.
- **2.** Montrer que $(P_n)_{n\in\mathbb{N}}$ est une base de $\mathbb{K}[X]$.

Exercice 2.3 (*). Soit E un \mathbb{K} -espace vectoriel de dimension finie.

- **1.** Si H_1 et H_2 sont deux hyperplans de E, montrer l'existence d'un sous-espace vectoriel $D \subset E$ t.q. $E = H_1 \oplus D = H_2 \oplus D$.
- **2.** Si F_1 et F_2 sont deux sous-espaces vectoriels de E de même dimension, montrer l'existence d'un sous-espace vectoriel $G \subset E$ t.q. $E = F_1 \oplus G = F_2 \oplus G$.

Exercice 2.4 (*). Soit E un \mathbb{K} -espace vectoriel de dimension n. Soit $f \in \mathcal{L}(E)$. On suppose qu'il existe $x_0 \in E$ t.q. la famille $(f(x_0), \ldots, f^n(x_0))$ est libre.

- 1. Montrer que f est bijective.
- **2.** Soit $g \in \mathcal{L}(E)$ t.q. $g \circ f = f \circ g$. Montrer qu'il existe $(b_0, \ldots, b_{n-1}) \in \mathbb{K}^n$ t.q. $g = \sum_{k=0}^{n-1} b_k f^k$.

Exercice 2.5 (*). Soit E un \mathbb{K} -espace vectoriel de dimension finie. Soit $f \in \mathcal{L}(E)$.

- 1. Montrer l'équivalence des assertions suivantes :
 - (i) $E = \operatorname{Ker} f \oplus \operatorname{Im} f$.
 - (ii) $\operatorname{Im} f = \operatorname{Im} f^2$.
- 2. Que subsiste-t-il de ce résultat en dimension infinie?