Trabajo Práctico 1, Reconocimiento de Patrones

Federico De Rocco

April 23, 2015

1 Introducción

El objetivo de éste informe es el de descrivir como se resolvió el primer trabajo práctico de la materia Reconocimiento De Patrones. En las siguientes secciones se expondrán y explicaran las elecciones que se llevo a cabo para poder lograr éste objetivo.

2 Ejercicio 1

Se nos pide generar una imagen sintética a partir de phantom y después clasificarla. Se utilizara los mismos valores medios para cada uno de los casos de covarianza.

Figure 1: Imagen original

Considerando que tenemos ${\bf 6}$ clases distintas utilizaremos lo siguiente:

Combiac	rairao	que ces	COLLION
	1	2.3	1.34
mus =	1.26	1.23	2.39
	8	1.47	0.53
	2.01	1.99	0.60
	1.88	1.52	0.81
	2.39	1.24	0.67

${f 2.1}$ Utilizando matrices de covarianza isotrópicas e iguales entre sí

Se toma las siguientes matrices de covarianza:

Con estas se generaron las siguientes imágenes:

Figure 2: Usango sigma1

Figure 3: Usando sigma2

Y estas son sus tablas de comfución:

Tabla de confusión del caso con covarianza isotrópicas e iguales entre si. (sigma1)

()						
	Caso1	Caso2	Caso3	Caso4	Caso5	Caso6
Caso1	42180	7460	0	6948	5057	643
Caso2	4295	31570	0	277	2068	1049
Caso3	0	0	22325	0	0	1
Caso4	5356	1089	0	18286	6118	7686
Caso5	4127	2830	0	8123	9113	9297
Caso6	493	913	0	3476	3244	11620

Tabla de confusión del caso con covarianza isotrópicas e iguales entre si. (sigma2)

(()						
	Caso1	Caso2	Caso3	Caso4	Caso5	Caso6
Caso1	18294	17620	9919	7852	1806	6797
Caso2	8800	14855	6613	3392	1086	4513
Caso3	899	1929	15937	1537	106	1918
Caso4	8959	8967	8399	5696	1165	5349
Caso5	7353	8972	6968	4250	1015	4932
Caso6	3759	4872	4861	2527	581	3146

2.2 Utilizando matrices de covarianza diagonales y diferentes para cada clase

Se toma las siguientes matrices de covarianza:

Con estas se generaron las siguientes imágenes:

Figure 4: Usango sigma1

Figure 5: Usando sigma2

Y estas son sus tablas de comfusión:

Tabla de confusión del caso con covarianza diagonales y diferentes para cada clase. (sigma1)

	Caso1	Caso2	Caso3	Caso4	Caso5	Caso6
Caso1	42612	7228	0	7601	4294	553
Caso2	4311	30110	0	544	2681	1613
Caso3	0	0	22326	0	0	0
Caso4	5700	1460	0	18495	5869	7011
Caso5	3755	3677	0	8106	8726	9226
Caso6	428	1214	0	3189	3075	11840

Tabla de confusión del caso con covarianza diagonales y diferentes para cada clase. (sigma2)

	Caso1	Caso2	Caso3	Caso4	Caso5	Caso6
Caso1	16468	16363	17221	5513	1261	5462
Caso2	8620	12546	10980	2665	734	3714
Caso3	2654	3602	12467	1569	226	1808
Caso4	8948	9090	12170	3656	795	3876
Caso5	7365	8467	10486	3028	681	3463
Caso6	3984	4860	6476	1772	422	2232

2.3 Utilizando matrices de covarianza no diagonales y diferentes para cada clase

Se toma las siguientes matrices de covarianza:

$$\begin{array}{c} \text{sigma1} = \begin{array}{cccc} 0.6 & 0.3 & 0.2 \\ 0.3 & 0.2 & 0.15 \\ 0.2 & 0.15 & 0.12 \\ \\ 12 & 6 & 4 \\ \text{sigma2} = \begin{array}{cccc} 6 & 4 & 3 \\ 4 & 3 & 2.4 \end{array} \end{array}$$

Con estas se generaron las siguientes imágenes:

Figure 6: Usango sigma1

Figure 7: Usando sigma2

Y estas son sus tablas de comfusión:

Tabla de confusión del caso con covarianza no diagonales y diferentes para cada clase. (sigma1)

	Caso1	Caso2	Caso3	Caso4	Caso5	Caso6
Caso1	62218	0	0	70	0	0
Caso2	0	39259	0	0	0	0
Caso3	0	0	22326	0	0	0
Caso4	63	0	0	38472	0	0
Caso5	0	0	0	0	33144	346
Caso6	0	0	0	0	214	19532

Tabla de confusión del caso con covarianza no diagonales y diferentes para cada clase. (sigma2)

	Caso1	Caso2	Caso3	Caso4	Caso5	Caso6
Caso1	37892	0	1	14966	9024	405
Caso2	0	39074	146	0	0	39
Caso3	0	83	21555	0	0	688
Caso4	8212	0	0	27890	2348	85
Caso5	4302	5	90	1888	17296	9909
Caso6	327	23	589	181	5463	13163

2.4 Conclusiones

Como podemos ver si hacemos más grandes los valores de la matriz de covarianza la imagen generada se ve menos nítida y se vuelve mas difícil a simple vista distinguir los colores. Esto también se traduce en la tabla de confusión donde entre mas varianza haya la misma dispersara mas los valores. Esto provoca que al verla como matriz esta sea, por decirlo de alguna manera, menos diagonalmente dominante.

3 Ejercicio 2

Para éste punto tenemos que extraer datos de las regiones de entrenamiento y calcular su valor medio y covarianza.

Figure 8: Esta es la imagen normal

Figure 9: Esta es la imagen con las regiones de entrenamiento marcadas

Figure 10: Esta es la imagen con las regiones de entrenamiento marcadas y coloreadas para diferenciarlas

Valor medio para la zona gris= (159.1992, 160.9931, 156.2931)

Valor medio para la zona gris oscuro= (101.7899, 87.4822, 95.7200)

Valor medio para la zona negra= (63.4611, 41.5487, 54.7426)

Valor medio para la zona roja=(184.9976, 71.3169, 75.95761)

Covarianza para zona gris $=$	946.5474	752.1900	659.5253
	752.1900	677.9327	599.7840
	659.5253	599.7840	557.4782
Covarianza para zona gris osc	uro= 562.	2911 579.	2911 529.4815 7685 536.8973 8973 512.0039
Covarianza para zona negra=	102.4073	71.1859	71.7668
	71.1859	74.0204	72.9073
	71.7668	72.9073	77.0635
Covarianza para zona roja=	852.1874	157.6038	173.0104
	157.6038	165.8111	160.8769
	173.0104	160.8769	192.0786

Lo siguiente que pide el enunciado es clasificar la imagen. Para esto calculare la covarianza de la imagen que tendrá el nombre sigma.

Los valores medio para clasificar serán los calculados anteriormente. Una vez clasificada la imagen, se debe hacer lo mismo con cada una de las regiones de entrenamiento y calcular la tabla de confusión para cada uno de los casos.

Tabla de confusión zona gris:

	Gris	Gris Oscuro	Rojo	Negro
Gris	122525	1752	0	0
Gris Oscuro	8452	1240	0	0
Rojo	11	65	0	0
Negro	35	19	0	2

Tabla de confusión zona gris oscuro:

	Gris	Gris Oscuro	Rojo	Negro
Gris	249	212	0	0
Gris Oscuro	93	6059	0	358
Rojo	0	0	0	0
Negro	1	1093	0	939

Tabla de confusión zona negra:

	Gris	Gris Oscuro	Rojo	Negro
Gris	0	0	0	0
Gris Oscuro	5	49	0	330
Rojo	0	0	0	0
Negro	0	12	0	12366

Tabla de confusión zona roja:

	Gris	Gris Oscuro	Rojo	Negro
Gris	0	0	5	0
Gris Oscuro	0	34	65	11
Rojo	0	32	2321	1
Negro	0	0	4	4

Por último se debe repetir el proceso anterior pero seleccionando zonas de entrenamiento propias. Para resolver este problema se llego la decisión de tomar una serie de puntos de cada una de las zonas de entrenamiento anteriores, osea una parte de la zona, y calcular la tabla de confusión utilizando esa parte. De esta forma se cumple el enunciado y además se ahorra el clasificar nuevamente una zona que ya lo está.

Tabla de confusión zona gris propia:

	Gris	Gris Oscuro	Rojo	Negro
Gris	3709	46	0	0
Gris Oscuro	177	68	0	0
Rojo	0	0	0	0
Negro	0	0	0	0

Tabla de confusión zona gris oscuro propia:

	Gris	Gris Oscuro	Rojo	Negro
Gris	15	44	0	0
Gris Oscuro	20	2766	0	123
Rojo	0	0	0	0
Negro	0	536	0	496

Tabla de confusión zona negra propia:

	Gris	Gris Oscuro	Rojo	Negro
Gris	0	0	0	0
Gris Oscuro	1	10	0	116
Rojo	0	0	0	0
Negro	0	0	0	3873

Tabla de confusión zona roja propia:

	Gris	Gris Oscuro	Rojo	Negro
Gris	0	0	5	0
Gris Oscuro	0	31	44	10
Rojo	0	29	880	1
Negro	0	0	0	0

3.1 Conclusiones

Como podemos ver tanto en el caso de las regiones de entrenamiento, tanto provistas como las propias, tenemos que cada una de las matrices tienen como mayor numero de coincidencias a los colores de sus respectivas zonas. O lo que es lo mismo, la clasificación muestra que en la zona de un color lo que predomina es ese color por sobre los demás.