Nombre: Josue Alejandro Sauca Pucha

Fecha: 16-06-2023

1. Elija y descargue un data set desde un repositorio libre y realice un análisis de correlación de sus variables.

```
In [67]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

data = pd.read_csv('covid-05-17-2020.csv')
```

In [68]: #Se presenta los datos de la base de datos
data

Out[68]:

	FIPS	Province_State	Country_Region	Last_Update	Lat	Long_	Confirmed
0	45001.0	South Carolina	US	5/18/2020 2:32	34.223334	-82.461707	35
1	22001.0	Louisiana	US	5/18/2020 2:32	30.295065	-92.414197	198
2	51001.0	Virginia	US	5/18/2020 2:32	37.767072	-75.632346	688
3	16001.0	Idaho	US	5/18/2020 2:32	43.452658	-116.241552	773
4	19001.0	lowa	US	5/18/2020 2:32	41.330756	-94.471059	5
3302	NaN	NaN	West Bank and Gaza	5/18/2020 2:32	31.952200	35.233200	381
3303	NaN	NaN	Western Sahara	5/18/2020 2:32	24.215500	-12.885800	6
3304	NaN	NaN	Yemen	5/18/2020 2:32	15.552727	48.516388	128
3305	NaN	NaN	Zambia	5/18/2020 2:32	-13.133897	27.849332	753
3306	NaN	NaN	Zimbabwe	5/18/2020 2:32	-19.015438	29.154857	44
2207.	-040 × 10) columno					

3307 rows × 10 columns

In [69]: #Se verifica si existen datos nulos dentro de la misma
data.isnull().sum()

Out[69]: FIPS 329 Province_State 181 Country_Region 0 0 Last_Update Lat 67 67 Long_ Confirmed 0 Deaths 0 Active 0 Combined_Key 0 dtype: int64

In [70]: #Se procede a remplaza los valores nulos con NaN
datos = data.replace('NaN', np.nan)

In [71]: #Se presenta la conversion de la tabla
datos

Out[71]:

	FIPS	Province_State	Country_Region	Last_Update Lat		Long_	Confirmed
0	45001.0	South Carolina	US	5/18/2020 2:32	34.223334	-82.461707	35
1	22001.0	Louisiana	US	5/18/2020 2:32	30.295065	-92.414197	198
2	51001.0	Virginia	US	5/18/2020 2:32	37.767072	-75.632346	688
3	16001.0	Idaho	US	5/18/2020 2:32	43.452658	-116.241552	773
4	19001.0	lowa	US	5/18/2020 2:32	41.330756	-94.471059	5
3302	NaN	NaN	West Bank and Gaza	5/18/2020 2:32	31.952200	35.233200	381
3303	NaN	NaN	Western Sahara	5/18/2020 2:32	24.215500	-12.885800	6
3304	NaN	NaN	Yemen	5/18/2020 2:32	15.552727	48.516388	128
3305	NaN	NaN	Zambia	5/18/2020 2:32	-13.133897	27.849332	753
3306	NaN	NaN	Zimbabwe	5/18/2020 2:32	-19.015438	29.154857	44

3307 rows × 10 columns

In [73]: #Como se ve el dataset ya no esta nulo datos.isnull().sum()

Out[73]: FIPS Province_State 0 Country_Region 0 Last_Update 0 Lat 0 Long_ 0 Confirmed 0 0 Deaths Active 0 Combined_Key 0 dtype: int64

In [74]: #Se presenta el nuevo dataset con los datos rellenados datos

Out[74]:

	FIPS	Province_State	Country_Region	Last_Update	Lat	Long_	Confirmed
0	45001.0	South Carolina	US	5/18/2020 2:32	34.223334	-82.461707	35
1	22001.0	Louisiana	US	5/18/2020 2:32	30.295065	-92.414197	198
2	51001.0	Virginia	US	5/18/2020 2:32	37.767072	-75.632346	688
3	16001.0	Idaho	US	5/18/2020 2:32	43.452658	-116.241552	773
4	19001.0	lowa	US	5/18/2020 2:32	41.330756	-94.471059	5
3302	78.0	Zhejiang	West Bank and Gaza	5/18/2020 2:32	31.952200	35.233200	381
3303	78.0	Zhejiang	Western Sahara	5/18/2020 2:32	24.215500	-12.885800	6
3304	78.0	Zhejiang	Yemen	5/18/2020 2:32	15.552727	48.516388	128
3305	78.0	Zhejiang	Zambia	5/18/2020 2:32	-13.133897	27.849332	753
3306	78.0	Zhejiang	Zimbabwe	5/18/2020 2:32	-19.015438	29.154857	44

3307 rows × 10 columns

In [75]: datos.describe()

Out[75]:

	FIPS	Lat	Long_	Confirmed	Deaths	Active
count	3307.000000	3307.000000	3307.000000	3307.000000	3307.000000	3307.000000
mean	29210.367705	37.027505	-80.857069	1425.346235	95.308437	804.931358
std	18991.635514	9.855225	40.855055	10807.399817	1017.738128	8730.230598
min	66.000000	-51.796300	-164.035380	0.000000	0.000000	-274829.000000
25%	16058.000000	34.068572	-96.769289	9.000000	0.000000	8.000000
50%	28085.000000	38.147175	-88.265644	41.000000	1.000000	35.000000
75%	45080.000000	41.864593	-81.143642	217.000000	8.000000	178.500000
max	99999.000000	71.706900	178.065000	281752.000000	34636.000000	211748.000000

In [76]: #Para separar los datos se va a tomar la columna Pronvicia_State, los valores
#Virginia y California para realiza la correlacion
datosVirginia = datos[(datos.Province_State == 'Virginia')]
datosCalifornia = datos[(datos.Province_State == 'California')]

#Se ve los datos de vignina de la columna Province_State
datosVirginia.head()

Out[76]:

	FIPS	Province_State	Country_Region	Last_Update	Lat	Long_	Confirmed	D
-	2 51001.0	Virginia	US	5/18/2020 2:32	37.767072	-75.632346	688	
2	3 51003.0	Virginia	US	5/18/2020 2:32	38.020807	-78.554811	138	
3	3 51510.0	Virginia	US	5/18/2020 2:32	38.814003	-77.081831	1476	
4	5 51005.0	Virginia	US	5/18/2020 2:32	37.786361	-80.002225	7	
5	5 51007.0	Virginia	US	5/18/2020 2:32	37.340810	-77.985846	18	
4								•

Out[77]:

	FIP	S Province_State	Country_Region	Last_Update	Lat	Long_	Confirmed	[
	24 6001.	0 California	US	5/18/2020 2:32	37.646294	-121.892927	2392	
	48 6003.	0 California	US	5/18/2020 2:32	38.596786	-119.822359	2	
	49 6005.	0 California	US	5/18/2020 2:32	38.445831	-120.656960	9	
3	06 6007.	0 California	US	5/18/2020 2:32	39.667278	-121.600525	22	
3	13 6009.	0 California	US	5/18/2020 2:32	38.205371	-120.552913	13	
4							1	

In [96]:

0.00

Se presenta una grafica respecto a los datos de covid en el estado de Californ primer parametro los datos confirmados de casos, las muertes, luego se va a to casos activos y se va a graficar

datosObtenidosCalifornia = datosCalifornia[["Confirmed", "Deaths"]].mean(axis=
plt.scatter(datosObtenidosCalifornia, datosCalifornia["Active"])
plt.show()

In [97]:

0.00

Se presenta una grafica respecto a los datos de covid en el estado de Virginia primer parametro los datos confirmados de casos, las muertes, luego se va a to casos activos y se va a graficar

datosObtenidosVirginia = datosVirginia[["Confirmed", "Deaths"]].mean(axis=1)
plt.scatter(datosObtenidosVirginia, datosVirginia["Active"])
plt.show()

In [80]: datos.corr(method='pearson')

Out[80]:

	FIPS	Lat	Long_	Confirmed	Deaths	Active
FIPS	1.000000	0.245692	-0.326275	-0.116693	-0.079414	-0.061950
Lat	0.245692	1.000000	-0.411557	-0.018917	0.020007	0.053804
Long_	-0.326275	-0.411557	1.000000	0.212000	0.134324	0.069030
Confirmed	-0.116693	-0.018917	0.212000	1.000000	0.809726	0.779910
Deaths	-0.079414	0.020007	0.134324	0.809726	1.000000	0.645875
Active	-0.061950	0.053804	0.069030	0.779910	0.645875	1.000000

In [81]: #Se utiliza la correlacion para los datos de virginia
datosVirginia.corr(method='pearson')

Out[81]:

	FIPS	Lat	Long_	Confirmed	Deaths	Active
FIPS	1.000000	0.695533	-0.889928	-0.029846	-0.028965	-0.029815
Lat	0.695533	1.000000	-0.536918	0.199934	0.158149	0.201076
Long_	-0.889928	-0.536918	1.000000	0.104056	0.097264	0.104088
Confirmed	-0.029846	0.199934	0.104056	1.000000	0.944897	0.999924
Deaths	-0.028965	0.158149	0.097264	0.944897	1.000000	0.940794
Active	-0.029815	0.201076	0.104088	0.999924	0.940794	1.000000

In [82]: #Se utiliza la correlacion para los datos de california datosCalifornia.corr(method='pearson')

Out[82]:

	FIPS	Lat	Long_	Confirmed	Deaths	Active
FIPS	1.000000	0.453286	0.135112	-0.037988	-0.032268	-0.038265
Lat	0.453286	1.000000	-0.656226	-0.355686	-0.308355	-0.357969
Long_	0.135112	-0.656226	1.000000	0.301422	0.268275	0.303009
Confirmed	-0.037988	-0.355686	0.301422	1.000000	0.995605	0.999989
Deaths	-0.032268	-0.308355	0.268275	0.995605	1.000000	0.995156
Active	-0.038265	-0.357969	0.303009	0.999989	0.995156	1.000000

```
In [83]: plt.scatter(datos['Active'],datos['Province_State'])
    plt.xlabel('Estados de USA')
    plt.xlabel('Casos activos de covid')
    plt.title('Grafica de Casos activos en las estados de USA')
    plt.show()
```



```
In [84]: import seaborn as sns

californiaDF = datosCalifornia.drop('Province_State', axis=1)
    virginiaDF = datosVirginia.drop('Province_State', axis=1)

californiaDF = californiaDF[californiaDF.columns]
    virginiaDF = virginiaDF[virginiaDF.columns]
```

```
In [86]: wcorr = californiaDF.corr()
    sns.heatmap(wcorr)
    plt.savefig('attribute_correlation_california.png')
```


In [88]: im = plt.imread('./attribute_correlation_california.png')
 plt.imshow(im)
 plt.show()


```
In [87]: wcorr = virginiaDF.corr()
    sns.heatmap(wcorr)
    plt.savefig('attribute_correlation_virginia.png')
```


In [89]: im = plt.imread('./attribute_correlation_virginia.png')
 plt.imshow(im)
 plt.show()


```
In [92]: datos.to_csv('nuevo_database.csv')
```

- ,FIPS,Province_State,Country_Region,Last_Update,Lat,Long_,Confirmed,Deaths,Ac
 tive,Combined Key
- 0,45001.0, South Carolina, US,5/18/2020 2:32,34.22333378,-82.46170658,35,0,3 5, "Abbeville, South Carolina, US"
- 1,22001.0,Louisiana,US,5/18/2020 2:32,30.2950649,-92.41419698,198,12,186,"Aca dia, Louisiana, US"
- 2,51001.0,Virginia,US,5/18/2020 2:32,37.76707161,-75.63234615,688,9,679,"Accomack, Virginia, US"
- 3,16001.0,Idaho,US,5/18/2020 2:32,43.4526575,-116.2415516,773,22,751,"Ada, Idaho, US"
- 4,19001.0,Iowa,US,5/18/2020 2:32,41.33075609,-94.47105874,5,0,5,"Adair, Iowa, US"
- 5,21001.0, Kentucky, US,5/18/2020 2:32,37.10459774,-85.28129668,92,14,78, "Adair, Kentucky, US"
- 6,29001.0,Missouri,US,5/18/2020 2:32,40.19058551,-92.60078167,26,0,26,"Adair, Missouri, US"
- 7,40001.0,0klahoma,US,5/18/2020 2:32,35.88494195,-94.65859267,75,3,72,"Adair, Oklahoma, US"
- 8,8001.0,Colorado,US,5/18/2020 2:32,39.87432092,-104.3362578,2613,102,2511,"A dams, Colorado, US"

2. Responda las siguientes preguntas:

1. Qué variables de su dataset tienen una correlación alta y porque cree que se da este fenómeno en su dataset?

En este caso las variables que mas van a tener relacion serán las de país con los casos activos ya que por ejemplo en un país como USA con una población de 331 millones de habitantes va a tener mas casos frente a un país como Ecuador que cuenta con 17 millones de habitantes.

2. Qué variables de su dataset tienen una correlación baj y porque cree que se da este fenómeno en su dataset?

En este caso las variables que van a tener una baja correlación serán las variables de latitud y longitud ya que estos datos son referente a la posición del país dentro del planeta tierra y no afectan nada a los casos confimados, muertes dentro del covid.

3. De las variables que tiene correlación se puede decir que una es causa de a otra?.

En el dataset presentado la variable Combined_Key(Llave Combinada), es una mezcla de la ciudad de un país y el paus en general, esto quiere decir que se combinan con el fin de mostrar la información mas commpleta de dicho campo.

4. Suba el arvhivo ipynb y pdf por separado no comprimido.