Dongliang Mu

Associate Professor Tel: +86 15171501908 School of Cyber Science and Engineering dzm91@hust.edu.cn

Mingde Building A309

Huazhong University of Science and Technology

Wuhan, Hubei, China 430043

dzm91@hust.edu.cn mudongliangabcd@outlook.com https://mudongliang.github.io/about Google Scholar

Research Interests

My research focuses on **Software and System Security**. More specifically, my research interests span the areas of Software Failure Diagnosis, Vulnerability Reproduction, Vulnerability Fuzzing, and Binary Analysis. Currently, I am really interested in the vulnerability fuzzing, analysis and fixing of kernel programs (e.g., Linux Kernel).

Education

2014-2019 Ph.D. in Computer Science and Technology, Nanjing University

Adviser: Professor Bing Mao

2010-2014 B.E. in Computer Science and Technology, Zhengzhou University

Experiences

2020/08-now Associate Professor, Huazhong University of Science and Technology

2020/01-07 **Research Fellow**, Pennsylvania State University

Adviser: Professor Xinyu Xing

02/2018 Organizer of 2018 Penn State Cybersecurity Competition, Pennsylvania State University

HomePage: https://psusecurity.github.io/

2016-2020 Research Assistant, Pennsylvania State University

Adviser: Professor Xinyu Xing

2014-2016 Graduate Research and Teaching Assistant, Nanjing University

Adviser: Professor Bing Mao

Honors & Awards

07/2019 Student Travel Grant of 14th ACM ASIA Conference on Computer and Communications Se-

curity

10/2018 Artificial Intelligence Scholarship at Nanjing University

10/2018 ACM CCS Outstanding Paper Award (Top 1)

05/2017 Student Travel Grant of 38th IEEE Symposium on Security and Privacy

Publications

* means equal contribution

Conference Papers:

P-9 [ASE 2019] Mu, D.*, Guo, W.*, Cuevas, A., Chen, Y., Gai, J. Xing, X., Mao, B., Song, C., "RENN: Efficient Reverse Execution with Neural-Network-assisted Alias Analysis", In Proceedings of the 34th IEEE/ACM International Conference on Automated Software Engineering, San Diego, CA, November 2019. (CCF

A)

[AsiaCCS 2019] Chen, Y.*, Mu, D.*, Sun, Z., Xu, J., Shen, W., Xing, X., Lu, L., Mao B., "Ptrix: Efficient Hardware-Assisted Fuzzing for COTS Binary", In Proceedings of the 14th ACM ASIA Conference on Computer and Communications Security, Auckland, New Zealand, July 2019.

P-7

P-8

[USENIX Security 2019] Guo, W.*, Mu, D.*, Xing, X., Du, M., Song, D., "DEEPVSA: Facilitating Valueset Analysis with Deep Learning for Postmortem Program Analysis", In Proceedings of the 28th USENIX Security Symposium, Santa Clara, California, August 2019. (CCF A)

- P-6 [CCS 2018] Guo, W., Mu, D., Xu, J., Su, P., Wang, G., Xing, X., "LEMNA: Explaining Deep Learning based Security Applications", In Proceedings of The 25th ACM Conference on Computer and Communications Security, Toronto, Canada, October 2018. (CCF A, Outstanding Paper Award)
- P-5 [USENIX Security 18] Mu, D., Cuevas, A., Yang, L., Hu, H., Xing, X., Mao, B., Wang, G., "Understanding the Reproducibility of Crowd-reported Security Vulnerabilities", In Proceedings of the 27th USENIX Security Symposium, Baltimore, Mayland, August 2018. (CCF A)
- P-4 [SecureCOMM 17] Mu, D., Guo, J., Ding, W., Wang, Z., Mao, B., Shi, L., "ROPOB: Obfuscating Binary Code via Return Oriented Programming", In International Conference on Security and Privacy in Communication Systems, Niagara Falls, Canada, October 2017.
- P-3 [SecureCOMM 17] Zhu, J., Zhou, W., Wang, Z., Mu, D., Mao, B., "DiffGuard: Obscuring Sensitive Information in Canary Based Protections", In International Conference on Security and Privacy in Communication Systems, Niagara Falls, Canada, October 2017.
- P-2 [USENIX Security 17] Xu, J., Mu, D., Xing, X., Liu, P., Chen, P., Mao, B., "POMP: Postmortem Program Analysis with Hardware-Enhanced Post-Crash Artifacts", In Proceedings of the 26th USENIX Security Symposium, Vancouver, Canada, August 2017. (CCF A)
- P-1 [CCS 16] Xu, J., Mu, D., Chen, P., Wang, P., Xing, X., Liu, P., "CREDAL: Towards Locating a Memory Corruption Vulnerability with Your Core Dump", In Proceedings of the 23nd ACM Conference on Computer and Communications Security, Vienna, Austria, October 2016. (CCF A)

Journal Papers:

J-1 [TSE 2019] Mu, D., Du, Y., Xu, J., Xing, X., Mao, B., "POMP++: Facilitating Postmortem Program Diagnosis with Value-set Analysis", In IEEE Transactions on Software Engineering, 2326-3881, 2019. (CCF A)

Academic Service

Reviewer:

[Oakland SP] IEEE Symposium on Security and Privacy: 2021 subreviewer

[ACM CCS] ACM Conference on Computer and Communications Security: 2019, 2020 subviewer

[USENIX Security] USENIX Symposium on Security: 2020 subreviewer

[ACSAC] Annual Computer Security Applications Conference: 2019, 2020 subviewer

[ISC] Information Security Conference: 2019 subreviewer

[JSA] Journal of Systems Architecture: 2020 reviewer

Talks

7/2019 Facilitating Vulnerability Removal by Diagnosing Software Failures
InforSec Workshop, Wuhan, Hubei, China

7/2019 Ptrix: Efficient Hardware-Assisted Fuzzing for COTS Binary

AsiaCCS, Auckland, New Zealand

Towards Facilitating the Removal of Software Defect

Towards Facilitating the Removal of Software Defects *QiZhen Youth Forum in Zhejiang University*, Hangzhou, Zhejiang, China

10/2018 From Physical Security to Cyber Security: How to forge data spoofing personalized auto insurance *GeekPwn China*, Shanghai, China

8/2018 Understanding the Reproducibility of Crowd-reported Security Vulnerabilities USENIX Security, Baltimore, USA

Research Projects

Deep Learning Assisted Program Analysis Cyber Security Lab, Penn State University
 Develop deep learning assisted Value Set Analysis to faciliate Postmortem Program Analysis. [See P-7,

• Develop deep learning assisted Value Set Analysis to faciliate Postmortem Program Analysis. [See P-7, P-9]

2017-2018 Vulnerability Reproduction Cyber Security Lab, Penn State University

• Perform an in-depth analysis on the reproducibility of crowd-reported security vulnerabilities. [See P-5]

2016-2017 Analysis on Software Crashes Cyber Security Lab, Penn State University

- Analyze core dumps caused by memory corruption vulnerabilities; locate the crash point; restore the stack trace; narrow down code segments carrying vulnerabilities. [See P-1]
- Enhance a core dump with execution trace logged through Intel Processor Tracing; perform reverse execution and symbolic execution against the trace; pinpoint the root cause of software crash. [See P-2]
- Leverage Value-set Analysis to improve the memory alias problem in the POMP, to achieve better effectiveness and efficiency. [See J-1]

2015-2016 Obfuscation based ROP System Security Lab, Nanjing University

• Propose an obfuscation scheme for binaries based on ROP (Return Oriented Programming), which aims to serve as an efficient and deployable anti-reverse-engineering approach. [See P-4]

Teaching

- Software Security, Instructor, Spring 2020
- Assembling Language, Instructor, Fall 2021

Open Source Projects

06/2016 LinuxFlaw

• Record all the memory error vulnerabilities we used for our Usenix Security 2018 [see P-5]. We not only disclose the detail of vulnerability reproduction but also try to create docker images about those vulnerabilities as possible as we can.

06/2016 Source-packages

• Source code for the vulnerable software in the LinuxFlaw

06/2016 **Dockerfiles**

• All the useful Dockerfiles and related tools in the LinuxFlaw

04/2016 TraditionalMitigation

• Summarize traditional mitigations in GCC to defend Memory Corruption Vulnerability

05/2017 **POMP**

• Leverage Intel PT to do reverse execution, and diagnose the root cause of software failure

06/2019 **DEEPVSA**

• Facilitate Value-set Analysis with Recurrent Neural Network for better Postmortem Program Analysis

12/2014 Linux-insides

• One book-in-progress about Linux Kernel and its insides.

12/2014 Linux-insides-zh

• Chinese Translation of linux-insides. This upstream repo is a book-in-progress about Linux Kernel and its insides.

CVE Discovered

CVE ID	Vulnerability Type	Vulnerable Software	Vulnerable Version	
CVE-2018-8816	Stack Exhaustion	perl	5.26.1	
CVE-2018-8881	Heap buffer overflow	nasm	2.13.02rc2	
CVE-2018-8882	Stack buffer overflow	nasm	2.13.02rc2	
CVE-2018-8883	Global buffer overflow	nasm	2.13.02rc2	
CVE-2018-10016	Division-by-zero	nasm	2.14rco	
CVE-2018-9138	Stack Exhaustion	binutils	2.29	
CVE-2018-9996	Stack Exhaustion	binutils	2.29	
CVE-2018-10316	Denial-of-Service	nasm	2.14rco	
CVE-2018-9251	Denial-of-Service	libxml2	2.9.8	
CVE-2018-8883 CVE-2018-10016 CVE-2018-9138 CVE-2018-9996 CVE-2018-10316	Global buffer overflow Division-by-zero Stack Exhaustion Stack Exhaustion Denial-of-Service	nasm nasm binutils binutils nasm	2.13.02FC2 2.14FC0 2.29 2.29 2.14FC0	

Upstream Linux Kernel Bug Patches

Age	Kernel Commits
8/13/21	ipack: tpci200: fix memory leak in the tpci200_register
8/13/21	ipack: tpci200: fix many double free issues in tpci200_pci_probe
8/4/21	media: em28xx-input: fix refcount bug in em28xx_usb_disconnect
7/22/21	spi: meson-spicc: fix memory leak in meson_spicc_remove
7/22/21	media: dvb-usb: Fix error handling in dvb_usb_i2c_init
7/22/21	media: dvb-usb: fix uninit-value in vp702x_read_mac_addr
7/22/21	media: dvb-usb: fix uninit-value in dvb_usb_adapter_dvb_init
7/21/21	usb: hso: fix error handling code of hso_create_net_device
7/17/21	netfilter: nf_tables: fix audit memory leak in nf_tables_commit
7/15/21	usb: hso: fix error handling code of hso_create_net_device
7/7/21	ieee802154: hwsim: fix GPF in hwsim_new_edge_nl
6/22/21	ieee802154: hwsim: fix GPF in hwsim_set_edge_lqi
6/18/21	ieee802154: hwsim: Fix memory leak in hwsim_add_one
6/16/21	net: caif: modify the label out_err to out
6/14/21	net: usb: fix possible use-after-free in smsc75xx_bind
6/8/21	ieee802154: hwsim: Fix possible memory leak in hwsim_subscribe_all_others
6/2/21	media: dvd_usb: memory leak in cinergyt2_fe_attach
5/21/21	ALSA: control led: fix memory leak in snd_ctl_led_register
5/17/21	misc/uss720: fix memory leak in uss720_probe
1/26/21	NFC: nci: fix memory leak in nci_allocate_device