Multiscale Models for Synthetic Biology

Yiannis N. Kaznessis

University of Minnesota

Department of Chemical Engineering and Materials Science

Acknowledgements

Jon Tomshine

Vassilis Sotiropoulos

Dan Bolintineanu

John Barrett

Anushree Chaterjee

Kat Volzing

Costas Billliouris

Ben Swiniarski

Dr. Chandrika Mulakala

Dr. Abdallah Sayyed-Ahmad

Dr. Tony Hill

Dr. Poonam Srivastava

Dr. Victor Vivcharuk

Dr. Himanshu Khandelia

Dr. Howard Salis

Dr. Spyros Vicatos

Dr. Allison Langham

Dr. Vijay Reddy

Dr. Yuhua Duan

Dr. Ting-Lan Chiu

Dr. Kavita Iyer

Dr. Hairong Wei

Ted Davis, Wei-Shou Hu, Jennifer Maynard,

Prodromos Daoutidis (CEMS)

George Vasmatzis (Mayo Clinic)

John Lambris (UPenn)

Bob Lehrer, Alan Waring (UCLA)

Sangtae Kim (Purdue)

Eric Fauman, Marc Snow (Pfizer)

Supported by NIH, NSF CAREER, Army Research Laboratory, 3M, IBM, University of Minnesota Biotechnology Institute

Computational Resources: National Center for Supercomputing Applications and Minnesota Supercomputing Institute.

How does life emerge from a soup of chemicals?

- Atoms
- Molecular components (amino acids, nucleotide bases, lipids, metabolites)
- Macromolecular Components (proteins, DNA, RNA, membranes)
- Biomolecular Interactions
- Gene Networks
- Logical and Informational Architectures
- Environmental Context
- Teleonomy Morphogenesis -Reproduction

promoter gene

Can we develop mathematical representations to describe and predict biological phenotypic complexity?

Can models be based on universal laws of thermodynamics and principles of molecular biology?

- Two major challenges:
 - The complexity is stupefying (number of components, nonlinear interactions, environment and context dependences)
 - Dobzansky's dictum: Biology is a discipline in history

Gene network engineering

- With Genome Projects toolboxes available of
 - Regulatory proteins (activators and repressors)
 - Operator and promoter sites
 - Small inducer molecules
- DNA can be cut and pasted!
- Chemical synthesis of DNA
 - Inexpensive: \$0.5/bp
 - Robust: construct 1000-long DNA strands without errors
- Novel gene regulatory networks are at hand.
- Synthetic biology: Forward engineering of biological systems (beyond traditional genetic engineering).

Examples of Synthetic Biology

Bistable switch, Gardner and Collins (2000)

DNA plasmid sequences

Network topology

Examples of Synthetic Biology

Repressilator, Elowitz, Leibler (2000)

DNA plasmid sequences

Dynamic behavior

Synthetic Biology

- Controlling the temporal production of protein
 - Switches (e.g. if C_{inducer}>0 then turn on production of protein A)
 - Amplitude filters (e.g. if C_{inducer}>C_{threshold} then turn on production of protein
 A)
 - Logical operators (e.g. if signal molecule 1 AND signal molecule 2 are present, then turn on production of protein A)
 - Numerous applications (e.g. gene therapy, biofuels, sensors, biosynthetic production optimization, biological computing)

Synthetic Biology Challenge

DNA sequences – network topologies

Phenotypic dynamic behavior

ATGGCATATGGTT

Modeling Gene Networks

Adopt Jacob's and Monod's postulate: all biological phenotypic complexity is the result of biomolecules interactions.

Chemical Kinetic Models

- Model all interactions at the molecular level
 - Protein Interactions
 - Transcription
 - Translation
 - Regulation
- Cascades of reactions represent interactions

$$\begin{array}{c}
M + M \longrightarrow D \\
M + M \xrightarrow{k_1} D \\
D \xrightarrow{k_2} M + M
\end{array}$$

Stochastic Kinetics

- Modeling cell functions
 - Many rare distinct events
 - Some participating species are sparse and diluted
 - Intrinsic fluctuations important
- Far from the thermodynamic limit: Stochastic chemical kinetics (McQuarrie, 1949; Oppenheim, 1965; Fredrickson, 1963)
- Kinetic Monte Carlo: Stochastic Simulation Algorithm (SSA)
 - Chemical Master equation (CME) instead of ODEs
- Stochastic algorithms (Gillespie DT, 1976)

Stochastic Simulation Algorithm

Model

- N species react through M reaction channels.
- X_i(t) is the number of molecules of species i, in the system at time t.

Algorithm

- Determine probability that, starting at time t, reaction μ , $R\mu$, will be the next reaction to occur in the interval [t+ τ , t + τ +d τ]
- Execute reaction μ and propagate time.

- The system may contain rare, discrete, but critical events and continuously occurring deterministic or stochastic transitions.
- Simulation using the SSA will be very slow. Computational time scales with the number of reaction occurrences.

Multiscale Modeling Framework

Petzold, Gillespie, Cao, Vlachos, Kevrekidis, Vanden-Eijnden, Arkin, Khammash

- I: Discrete / Stochastic
 - Jump Markov process
 - Stochastic simulation algorithm (Gibson and Bruck, 2000)
- II: Discrete / Stochastic
 - Tau-Leaping (Cao, Petzold, Gillespie, 2005)
 - Probabilistic steady state
- III-IV: Continuous / Stochastic
 - Valid continuous Markov process
 - Chemical Langevin equation
 - (Gillespie, 2001; Haseltine and Rawlings, 2002)
- V: Continuous / Deterministic
 - Valid ordinary differential equations (Amundson, 1966)

Modeling Regimes

Reaction rate (propensity)

Integrate stochastic-discrete and stochastic-continuous models Hy3S, Salis and Kaznessis, J.Chem. Phys. 2005

Hybrid Equations

- Partition into slow/discrete and fast/continuous reactions
- The <u>effects</u> of the fast/continuous reactions are described by Itô SDEs, called the chemical Langevin equation

$$dX_{i} = \sum_{j=1}^{M} v_{ji} \alpha_{j} \left(\underline{X}(t) \right) dt + \sum_{j=1}^{M} v_{ji} \sqrt{\alpha_{j} \left(\underline{X}(t) \right)} dW_{j}, \qquad j = 1, ..., M^{fast}$$

- The <u>times</u> of the slow/discrete reaction events are governed by a system of <u>differential Jump equations</u>, describing the time evolution of the <u>reaction</u> <u>residuals</u>, Rj
 - When Rj(t) = 0, then the jth reaction has occurred at time t.
 - These are also Itô SDEs, but without a Wiener process, W

$$dR_j = \alpha_j^{slow}(\underline{X}(t))dt$$
, $R_j(t_o) = \log(URN_j)$, $j = 1,...,M^{slow}$

SDE integration

• Euler-Maruyama Scheme, numerical error $\alpha \sqrt{(\Delta t)}$

$$X_{i}(t+Dt) = X_{i}(t) + \sum_{j=1}^{M^{fast}} v_{ji} a_{j}^{f}(\underline{X}(t))Dt + \sum_{j=1}^{M^{fast}} v_{ji} \sqrt{a_{j}^{f}(\underline{X}(t))}DW_{j}$$

$$R_{j}(t+\Delta t) = R_{j} + a^{s}(\underline{X}(t)) \Delta t$$

Milstein Scheme, numerical error O(∆t)

$$X_{i}(t + \Delta t) = X_{i}(t) + \sum_{j=1}^{M^{fast}} v_{ji} a_{j}^{f} (\underline{X}(t)) \Delta t + \sum_{j=1}^{M^{fast}} v_{ji} \sqrt{a_{j}^{f} (\underline{X}(t))} \Delta W_{j}$$

$$+ \frac{1}{2} \sum_{j_{1}, j_{2}=1}^{M^{fast}} \sum_{n=1}^{N} v_{j_{1}n} v_{j_{2}i} \sqrt{\frac{a_{j_{1}}(\underline{X}(t))}{a_{j_{2}}(\underline{X}(t))}} \frac{\partial a_{j_{1}}}{\partial X_{n}} I(j_{1}, j_{2})$$

Speed Comparisons with SSA

The Cycle Test

System Size proportional to the number of reactant molecules of fast reactions

Ratios of Computational Run Times						
System Size	TSSA/TANRH					
100	9.64					
1000	116.1					
10,000	1198.2					
100,000	20535					

$$A \xrightarrow{k_1} B$$

$$B \xrightarrow{k_2} C$$

$$C \xrightarrow{k_3} D$$

$$A + C \xrightarrow{k_4} D$$

$$B + C \xrightarrow{k_5} E$$

$$k_1, k_2, k_3 << k_4, k_5$$

Large scale benchmark in Salis and Kaznessis J.Chem.Phys. 2005a

Accuracy: A Cycle Test

Mean

Probability Distribution

Variance

Modeling Regimes

Modeling Regimes

Adaptive integration scheme for chemical Langevin equations Sotiropoulos, Kaznessis, J. Chem. Phys. 2008

Computational Synthetic Biology

- Multi-scale stochastic-discrete and stochastic-continuous algorithm enables simulations of hundreds of species involved in thousands of reactions with disparate kinetic constants.
- Model gene networks with all the known molecular components.
- Generate detailed design principles.

Tuttle, Salis, Tomshine, Kaznessis, Biophys. J. (2005) Salis, Kaznessis, Phys. Biol. (2007) Tomshine and Kaznessis, Biophys. J. (2006) Sotiropoulos, Kaznessis, BMC Systems Biology, (2007) Kaznessis, BMC Systems Biology, (2007)

Synthesis of a Bio-Logical AND Gate

Lacl and TetR repressors

DNA sites: *lac* operators (lacO1, lacO2, lacO3), *tet* operators (tetO1, tetO2)

Promoter sequences (-35 and -10 σ70 dependent hexamers)

RBS sequences (hairpin secondary structures, RNAse binding sites)

AND Logic Gate

- Express a gene when two signals are present:
 - aTc
 - IPTG

Six possible designs

Experimental Construction of a Lac/Tet AND Gate

Models/Experiments Based on Real Biomolecular Components

Reaction Network

```
2 TetR1 \rightarrow TetR2 TetR2 \rightarrow 2 TetR1
```

TetR2 + tetO2 → TetR2:tetO2 TetR2:tetO2 → TetR2 + tetO2

RNAp + tetP → RNAp:tetP RNAp:tetP → RNAp + tetP

RNAp:tetP → RNAp:tetP* tetO2 + RNAp:tetP* → tetP + RNAp:tetO2

RNAp:tetO2 → RNAp + tetO2 RNAp:tetO2 → tetO2 + RNAp:DNA_lac RNAp:DNA lac → RNAp + mRNA lac

rib + mRNA_lac \rightarrow rib:mRNA_lac rib:mRNA_lac \rightarrow mRNA_lac + rib:mRNA_lac1 rib:mRNA_lac1 \rightarrow LacR1 + rib + mRNA_lac1

RNase + mRNA_lac \rightarrow RNase:mRNA_lac RNase:mRNA_lac \rightarrow RNase

DTet→ **TetR1** → **TetR2** →

dimerization

Opening of DNA, Transcription

Degradation of proteins and mRNA

AND Gate Simulations

- Network with 63 reactions.
- Species are uniformly distributed in the cell.
- •Initial cell volume is 10^{-15} L. Cell division occurs every 30 ± 5 minutes: the volume doubles exponentially and then halves.
- •Simulate a grid of 6x6 aTc-IPTG pair concentrations (0-200 ng/ml and 0-2mM). Simulate 1,000 trajectories for each pair.
- Simulate six designs (LLT, TTL).
- •Measure GFP number of molecules for 216,000 trajectories (36,000 CPU hours).

Stochastic simulations

Synthetic Promoter Designs

Flow cytometry

Computer-Aided Design of Bio-Logical AND Gates

- •TTL is the highest-fidelity AND gate.
- Leakage of lacO can explain the variable phenotypic behavior.
- •Biological insight: leakage as a function of promoter topology.
- •Double-L systems not expressing enough GFP. Too much Lacl in *E.coli* strain.
- Models capture experimental phenotype.

Synthetic Biology Software Suite synbioss.sourceforge.net

- Numerical simulations are conducted with SynBioSS Desktop.
- Windows installation executable
- Codes for UNIX/Linux available
- Working on MacOS executable
- Graphical User Interface:
 - Upload models
 - Build new models
 - Change existing models
 - Set simulation parameter
- Conduct Simulations
 - Multiscale algorithms
 - Stochastic algorithms
 - Generate probability distributions
- Output
 - NetCDF/SBML
 - CSV for analysis of probability distributions with Excel

BioBricks (http://partsregistry.org)

- BioBrick standard biological parts are <u>DNA</u> sequences of defined structure and function.
- designed to be composed and incorporated into living cells such as <u>E. coli</u> to construct new biological systems.

Parts

Parts

Light responsive system, dual regulation

Repressilator

Toggle Switch

Synthetic Biology Software Suite

- SynBioSS.sourceforge.net
- Complete tool for generation, curation and simulation of synthetic biological networks.
- Three components:
 - Designer: Reaction network generation for arbitrary synthetic construct
 - Wiki: Kinetic data storage/retrieval. Community driven effort
 - Desktop Simulator: Numerical simulation with multiscale algorithms
- Designer and Wiki developed for iGEM
- Goals
 - Use accurate, fast and detailed quantitative models
 - Make model creation simple, faster
 - Directly connect DNA sequences with dynamic phenotype

SynBioSS: users can quickly build models of arbitrary synthetic gene regulatory networks (a-b), store and retrieve quantitative information (c), conduct numerical simulations (d-e), compare results with targeted synthetic phenotype and, if necessary, go back to re-design (f).

SynBioSS connects DNA sequences to targeted phenotypes. We believe this can rationalize synthetic biology.

Everything is available at synbioss.sourceforge.net

Hill et al. Bioinformatics 2008 24(21):2551

SynBioSS Designer

- Automated generation of kinetic models.
- Molecular biology dogma.
- Web interface tool.
- Input
 - BioBrick components and relations
- Output
 - NetCDF
 - SBML
 - Anyone can build a model in 15 minutes

Model Structure: Network

Number	General Transcription & Translation Reactions	k	Source	Number	TetR Repression, 2nd Tet Operator	k	Source
1	RNAp + lacP + lacO1 + tetO1 + tetO2 → RNAp:lacP	1.00E+07	30	33	tetR2 + tetO2 → tetR2:tetO2	100000000	
2	(see below)			34	tetR2:tetO2 → tetR2 + tetO2	0.001	29 *
3	(see below)			35	tetR2:aTc + tetO2 → tetR2:tetO2:aTc	100000000	
4	RNAp:lacP → RNAp:lacP*	0.01	31	36	tetR2:tetO2:aTc → tetR2:aTc + tetO2	1	28 *,†
5	RNAp:lacP \rightarrow RNAp + lacP + lacO1 + tetO1 + tetO2	1	30	37	tetR2:aTc2 + tetO2 → tetR2:tetO2:aTc2	100000000	28 *
6	RNAp:lacP* → lacP + lacO1 + tetO1 + tetO2 + RNAp:DNAgfp	30	32	38	tetR2:tetO2:aTc2 → tetR2:aTc2 + tetO2	100000	28 *,†
7	$RNAp:DNAgfp \rightarrow RNAp + gfp_mRNA$	30	32 §	39	tetR2:tetO2 + aTc → tetR2:tetO2:aTc	100000000	28 *
8	gfp_mRNA + rib \rightarrow rib:gfp_mRNA	100000	1	40	tetR2:tetO2:aTc → tetR2:tetO2 + aTc	0.001	28 *
9	rib:gfp_mRNA \rightarrow rib:gfp_mRNA_1 + gfp_mRNA	33	32	41	tetR2:tetO2:aTc + aTc → tetR2:tetO2:aTc2	100000000	28 *
10	rib:gfp_mRNA_1 \rightarrow rib + gfp	33	32 §	42	tetR2:tetO2:aTc2 → tetR2:tetO2:aTc + aTc	0.001	28 *
	LacI Repression at Lac Operator				Nonspecific DNA Interactions		
11	lacl4 + lacO1 → lacl4:lacO1	2E+09	27	43	lacl4 + nsDNA → lacl4:nsDNA	1000	33 *
12	lacl4:lacO1 → lacl4 + lacO1	4.00E-04	27	44	lacl4:nsDNA → lacl4 + nsDNA	0.0041667	33 *
13	lacl4 + IPTG → lacl4:IPTG	4.60E+06	27	45	lacl4:IPTG + nsDNA → lacl4:IPTG:nsDNA	1000	33 *
14	lacl4:IPTG → lacl4 + IPTG	0.2	27	46	lacl4:IPTG:nsDNA → lacl4:IPTG + nsDNA	0.0041667	33 *
15	lacl4:lacO1 + IPTG → lacl4:lacO1:IPTG	1.00E+06	27	47	tetR2 + nsDNA → tetR2:nsDNA	1000	33 *
16	lacl4:lacO1:IPTG → lacl4:lacO1 + IPTG	0.8	27	48	tetR2:nsDNA → tetR2 + nsDNA	3.2409	33 *
17	lacl4:IPTG + lacO1 → lacl4:lacO1:IPTG	2E+09	27	49	tetR2:aTc + nsDNA → tetR2:aTc:nsDNA	1000	33 *
18	lacl4:lacO1:IPTG → lacl4:IPTG + lacO1	0.4	27	50	tetR2:aTc:nsDNA → tetR2:aTc + nsDNA	3.2409	33 *
	TetR Repression, 1st Tet Operator				Degradation and Dilution Reactions		
19	tetR2 + aTc → tetR2:aTc	100000000	28 *	51	→ tetR2	1.00E-11	
20	tetR2:aTc → tetR2 + aTc	0.001	28 *	52	tetR2 →	2.89E-04	
21	tetR2:aTc + aTc → tetR2:aTc2	100000000	28 *	53	tetR2:aTc → aTc	2.89E-04	
22	tetR2:aTc2 → tetR2:aTc + aTc	0.001	28 *	54	tetR2:aTc2 → 2 aTc	2.89E-04	
23	tetR2 + tetO1 → tetR2:tetO1	100000000	29 *	55	→ lacl4	1.00E-09	
24	tetR2:tetO1 → tetR2 + tetO1	0.001	29 *	56	lacl4 →	2.89E-04	
25	tetR2:aTc + tetO1 → tetR2:tetO1:aTc	100000000	28 *	57	lacl4:IPTG → IPTG	2.89E-04	
26	tetR2:tetO1:aTc → tetR2:aTc + tetO1	1	28 *,†	58	gfp_mRNA \rightarrow	1.16E-03	¶
27	tetR2:aTc2 + tetO1 → tetR2:tetO1:aTc2	100000000	28 *	59	gfp o	3.21E-05	‡
28	tetR2:tetO1:aTc2 → tetR2:aTc2 + tetO1	100000	28 *,†	60	lacl4:nsDNA → nsDNA	1.93E-04	**
29	tetR2:tetO1 + aTc → tetR2:tetO1:aTc	100000000	28 *	61	lacl4:IPTG:nsDNA → nsDNA + IPTG	1.93E-04	**
30	tetR2:tetO1:aTc → tetR2:tetO1 + aTc	0.001	28 *	62	tetR2:aTc:nsDNA → nsDNA + aTc	1.93E-04	**
31	tetR2:tetO1:aTc + aTc → tetR2:tetO1:aTc2	100000000	28 *	63	tetR2:nsDNA → nsDNA	1.93E-04	**
32	tetR2:tetO1:aTc2 → tetR2:tetO1:aTc + aTc	0.001	28 *				
	Lacl / lacO Leakiness Reactions						
2	RNAp + lacP + lacI4:lacO1 + tetO1 + tetO2 → RNAp:lacP + la	cl4				6.23E+05	
_		5 . I I A I DT	- ~			0.005.05	II.

6.23E+05

RNAp + lacP + lacI4:lacO1:IPTG + tetO1 + tetO2 -> RNAp:lacP + lacI4:IPTG

SynBioSS Wiki

- Kinetic data repository
 - Formatted & searchable
 - Includes references
- Curated by users
- Manual network creation
 - SBML output
- Connections to Designer
 - Data retrieval
 - Network input
- Have entered data for tetracyline, lactose and arabinose operons.

http://synbioss.sourceforge.net/

Summary

- Available toolbox of DNA sequences and regulatory proteins.
 Design novel gene networks to control protein production.
- Hybrid stochastic-discrete and stochastic-continuous network simulations tackle multiple scales.
- Software tool available to the synthetic and systems biology community (SynBioSS).
- http://synbioss.sourceforge.net/
- Computer-assisted design of a synthetic Bio-Logical AND-gate.
- Can reductionism be validated?

