The Grid Search editorial

Problem's link: https://www.hackerrank.com/challenges/the-grid-search/problem

There are two approaches demonstrated here:

- The brute force approach
- The dynamic programming approach

The brute force approach

Running the larger matrix G element by element, and check if there is a match for the smaller matrix P (using that element at the top left of both matrices)

example

$$\mathbf{G} = \begin{bmatrix} 123412 \\ 561212 \\ 123634 \\ 781288 \end{bmatrix} \quad \mathbf{P} = \begin{bmatrix} 12 \\ 34 \end{bmatrix}$$

below the behavior of the brute force approach:

below the behavior of the brate force approach;							
12 3412	1 23 412	12 <mark>34</mark> 12	123 <mark>41</mark> 2	1234 <mark>1</mark> 2	123412	123412	123412
56 1212	5 <mark>61</mark> 212	56 <mark>12</mark> 12	561 <mark>21</mark> 2	5612 <mark>12</mark>	56 1212	5 <mark>61</mark> 212	561 <mark>21</mark> 2
123634	123634	123634	123634	123634	12 3634	1 <mark>23</mark> 634	123 <mark>63</mark> 4
781288	781288	781288	781288	781288	781288	781288	781288
No match	No match	No match	No match	No match	No match	No match	No match

C++ code of the function "grid_search Time complexity: O(R*C*r*c)

```
bool check_match (vector<string> G, vector<string> P, int r, int c, int rg, int cg){
   for (int rp = 0; rp < r; ++rp)
     for (int cp = 0; cp < c; ++cp)
        if (P[rp][cp] != G[rg + rp][cg + cp]) return false;
   return true;
}

string grid_search(vector<string> G, vector<string> P, int R, int C, int r, int c) {
   for (int rg = 0; rg < R-r+1; ++rg)
     for (int cg = 0; cg < C-c+1; ++cg)
        if (check_match(G, P, r, c, rg, cg)) return "YES";

   return "NO";
}</pre>
```

Whole C++ code

```
/*
  * Brute force approach: O(t * R*C*r*c)
  * Terminated due to timeout
  */
#include <bits/stdc++.h>
using namespace std;

bool check_match (vector<string> G, vector<string> P, int r, int c, int rg, int cg)
{
  for (int rp = 0; rp < r; ++rp)
    for (int cp = 0; cp < c; ++cp)
        if (P[rp][cp] != G[rg + rp][cg + cp]) return false;
   return true;
}

string grid_search(vector<string> G, vector<string> P, int R, int C, int r, int c)
{
  for (int rg = 0; rg < R-r+1; ++rg)
    for (int cg = 0; cg < C-c+1; ++cg)
        if (check_match(G, P, r, c, rg, cg)) return "YES";
  return "NO";
}</pre>
```

```
int main(){
 int t;
 cin >> t;
 cin.ignore(numeric_limits<streamsize>::max(), '\n');
  for (int t_itr = 0; t_itr < t; t_itr++) {</pre>
    int R, C;
    cin >> R >> C;
    cin.ignore(numeric_limits<streamsize>::max(), '\n');
   vector<string> G(R);
    for (int i = 0; i < R; i++) {
     string G_item;
     getline(cin, G_item);
      G[i] = G_{item};
    int r, c;
   cin >> r >> c;
    cin.ignore(numeric_limits<streamsize>::max(), '\n');
   vector<string> P(r);
    for (int i = 0; i < r; i++) {
      string P_item;
      getline(cin, P_item);
     P[i] = P_{item};
   string result = grid_search(G, P, R, C, r, c);
   cout << result << "\n";</pre>
 return 0;
```

With this code, we got a timeout error (our program run too slow for tests cases #4 and #5)

Dynamic programming approach

The idea is to create a $r \times R$ matrix of pairs of {Boolean, array of all positions of each line of the smaller grid P, in each line of the greater grid G }.

The rows of the matrix represent the lines of P.

The columns of the matrix represent the lines of G.

	0	1	2	j	•	R-1
0	False,	True,	•			
i		•••	True,			
• • •		••		True,		
r-1					True,	

If a line i of P exists once (or more than once) in a line j of G, than the value of the matrix at cell (i,j) will be { true, all the positions of line <math>i in j).

To know if there is a match of $\ P$ in $\ G$, we check if all lines of $\ P$ exists consecutively in each line of $\ G$.

So, for each diagonal of the $r \times R$ matrix:

- If there is a cell with a false value (it means, the current line of P doesn't exist in the current line of G), so, no need to continue with that diagonal.
- Otherwise, compute the number of occurrence of each position in that diagonal.
- At the end, check the number of occurrence of each position:
 - \circ if it's equal to the number of P 's lines, return "YES"

example

$$\mathbf{G} = \begin{bmatrix} 123412 \\ 561212 \\ 123634 \\ 781288 \end{bmatrix} \quad \mathbf{P} = \begin{bmatrix} 12 \\ 34 \end{bmatrix}$$

12 is in positions:

- 0 and 4 of line #1 of G
- 2 and 4 of line #2 of *G*
- 0 line #3 of *G*
- 2 line #4 of *G*

34 is in position:

- 2 line #1 of *G*
- 4 line #3 of *G*

dp:	0	1	2	3	
0	true,	true,	true,	true,	
	0 4	2 4	0	2	
1	true,	false,	true,	false,	
	2		4		

For the 1^{st} diagonal (0,0)(1,1) , the line 34 doesn't exist in line 561212 , so no need to check. For the 2^{nd} diagonal (0,1)(1,2) :

- the line 12 exists in line 561212 at positions 2 and 4
- the line 34 exists in line 123634 at position 4
- as you see, the occurrence of position 4 is 2 for this diagonal, which is the number of line of P . we can conclude that P exists in G .

At the beginning, we have to find the number of all diagonals of the $r \times R$ gird. We mean by all diagonals, the ones those contain all P 's lines.

For example, an 4×8 matrix has 5 diagonals

In general, for a $r \times R$ grid, the number of diagonals is the number of cells (x or y) by columns:

We know the coordinates of the four points constructing the shape, so, it's easy to find w and z.

$$w=r-1-0+1=r=j_2-0+1$$

$$z=r-1-0+1=r=R-1-j_1+1$$

we have to find the values of x and y . also, we must to prove that x = y s.

let's find the value of x:

$$x=j_1-0+1=j_1+1$$

we have $r=R-j_1 \ll j_1=R-r$

so,
$$x=R-r+1$$

let's do the same for y:

$$y = R - 1 - j_2 + 1$$

we have
$$r = j_2 + 1 <=> j_2 = r - 1$$

so,
$$y=R-1-r+1+1 <=> y=R-r+1$$

we proved that x=y , so the #diagonals of the $r \times R$ matrix is R-r+1

	0	1	2		j	• •	6	R-1
0	#cells = R-r+1							
		#0			*cell	C		
i	#cells							
r-1					#cells	s = R-r+	1	

```
C++ code of the function "grid_search
Time complexity: O( R*C*r*c)
string grid_search(vector<string> G, vector<string> P, int R, int C,
int r, int c) {
  // Declare the r x R matrix
  vector<vector<pair<bool, vector<int>>>> dp(r, vector<pair<bool,</pre>
vector<int>>>(R));
  // Fill it
  for (int i = 0; i < r; ++i){
    vector<vector<int>> tmp(R);
    for (int j = 0 ; j < R ; ++j){
      size_t p = G[j].find(P[i]);
      while (p != string::npos) {
        tmp[j].push_back(p);
        dp[i][j] = \{true, tmp[j]\};
        p = G[j].find(P[i], p + 1);
  }
  // Run over all diagonals
  for (int d = 0; d < R-r+1; ++d) {
    // hash map to compute the number of occurence of each position
    map<int, int> occ;
    // Run over diagonal (d)
    for (int i = 0; i < r; ++i) {
      if (dp[i][i+d].first) {
        // Compute the number of occurence of the position (p) in (d)
        for (auto p: dp[i][i+d].second)
          occ[p]++;
      }
      else
        break;
    for (auto cnt: occ)
      // If #occurence of a position is equal to (r), (P) exists in (G)
      if (cnt.second == r) return "YES";
  return "NO";
                     The Grid Search 🌣
                                     Leaderboard Discussions Editorial
                             Submissions
                      Problem
```