

Lecture title

Subject Week

Ме

melbournebioinformatics.org.au

Lecture title

- 1. Contents slide starts with a single #
 - 2. Example algorithms

Normal slides start with a double

content goes here

Columns

left col right col

Overprint

Clipped images

Code blocks

put anything in the
class name and you
get grey

it should match the text indent

add .numberLines for numbered lines

work out bash/python

Alert blocks

Alerted block

- alerted content
- use the three colons to break out of the alertblock

We also have unstyled H3 blocks

- this matches the layout of alert blocks
- but has no colour

You need to use latex code to style the headers

use the contrast sparingly for highlights

Lecture title

- 1. Contents slide starts with a single #
 - 2. Example algorithms

Example algoriths

```
K-means (D, k, \varepsilon)
 1 t = 0
     Randomly initialize k centroids: \mu_1^t, \mu_2^t, ..., \mu_k^t \in \mathbb{R}^d
 з repeat
            t \leftarrow t + 1
            C_i \leftarrow \emptyset for all j = 1, ..., k
            // Cluster assignment step
            foreach x_i \in D do
                   j^* \leftarrow \operatorname{arg\,min}_i \left\{ \left\| x_j - \mu_i^t \right\|^2 \right\} // Assign x_j
                      to closest centroid
               C_{i^*} \leftarrow C_{i^*} \cup \{x_i\}
             // Centroid update step
            foreach i = 1 to k do
             \mu_i^t \leftarrow \frac{1}{|C_i|} \sum_{x_i \in C_i} x_j
11 until \sum_{i=1}^{k} \|\mu_{i}^{t} - \mu_{i}^{t-1}\|^{2} \leq \varepsilon
```

Procedure Dbscan(X, ε , minpts)

```
foreach unvisited point x \in X do
          mark x as visited
          N \leftarrow \text{GetNeighbours}(x, \varepsilon)
          if |N| < minpts then
                 mark x as noise
          else
                C \leftarrow \{x\}
                foreach point x' \in N do
                       N \leftarrow N \setminus x'
                       if x' is not visited then
10
                             mark x' as visited
11
                             N' \leftarrow \text{GetNeighbours}(x', \varepsilon)
                             if |N'| > minpts then
13
                                    N \leftarrow N \cup N'
14
                       if x' is not vet member of any cluster
15
                         then
                             C \leftarrow C \cup \{x'\}
16
```

label equations

Non-negativity:
$$d(a,b) \ge 0$$

Identity:
$$d(a, a) = 0$$

Symmetry:
$$d(a,b) = d(b,a)$$

Triangle inequality: $d(a,c) \le d(a,b) + d(b,c)$