Homework #7

- 1. Neural network에 dropout을 적용할 때, 아래 정보를 참고하여 다음 표를 채우시오.
 - $\mathbf{\Phi}$ Dropout rate = 0.25
 - $\mathbf{0} \qquad z = \sum_{i=0}^4 x_i w_i$

Step	w^0	w^1	w^2	w^3	Z
Training	0.2	0.2	0.2	0.2	1.2
Testing	0.7	0.1	0.3	0.4	2.0250

2. 아래의 Neural Network와 5개의 학습데이터를 가진 minibatch가 있다. 각 학습데이터가 주어졌을 때, 빨간색 노드의 net 값이 아래와 같다. Batch Normalization을 적용했을 때, 아래 표의 빈칸을 채우시오

* ipunb亚路科系

Nidden layer shallow &dap
早記は ReLU M71.=

activation function

7 : ReLU

Training Data	net	\widehat{net} $(\epsilon = 0)$	\widetilde{net} $(\gamma = 1, \beta = 1)$	у
Data 1	-1	-1.4925	-D.4985	0
Data 2	2	-0.0939	0.9063	0.9063
Data 3	5	1.3112	2.3112	2.3112
Data 4	4	0.8429	1.8429	1.8429
Data 5	1	-0.5620	0.4380	0.4320

```
import torch import numpy as np import torch.nn as nn data = torch.FloatTensor([-1,2,5,4,1]) #표준편차, 평균 계산 m = torch.mean(data) #s = torch.std(data) import math s = math.sqrt(((-1-2.2)**2 + (2-2.2)**2 + (5-2.2)**2 + (4-2.2)**2 + (1-2.2)**2)/5) s = torch.FloatTensor([s]) m,s (tensor(2.2000), tensor([2.1354]))
```

sigmoid = torch.nn.Sigmoid()
relu = torch.nn.ReLU()

net1 = (data-m)/s
print("^net:",net1)
net2 = net1 + 1
print("-net:",net2)
s_y = sigmoid(net2)
r_y = relu(net2)
print("activation function\nsigmoid:",s_y,"\nReLU:",r_y)

^net: tensor([-1.4985, -0.0937, 1.3112, 0.8429, -0.5620])

^net: tensor([-1.4985, -0.0937, 1.3112, 0.8429, -0.5620])
~net: tensor([-0.4985, 0.9063, 2.3112, 1.8429, 0.4380])
activation function
sigmoid: tensor([0.3779, 0.7123, 0.9098, 0.8633, 0.6078])

sigmoid: tensor([0.3779, 0.7123, 0.9098, 0.8633, 0.6078 ReLU: tensor([0.0000, 0.9063, 2.3112, 1.8429, 0.4380])

평: 2.2

五元四六: 2.1354