WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

(51) International Patent Classification 5:	1	(11) International Publication Number	WO 91/08755
A61K 37/02	A1	(43) International Publication Date:	27 June 1991 (27.06.91)
(21) International Application Number: PCT/US (22) International Filing Date: 6 December 1990		Edell, Welter & Schmidt 3	00 Norwest Center 90 South
(30) Priority data: 450,419 14 December 1989 (14.12 (71) Applicant: REGENTS OF THE UNIVERS MINNESOTA [US/US]; Morrill Hall, 100 Street S.E., Minneapolis, MN 55455 (US). (72) Inventors: CHELBERG, Mary, K.; 3815 - 46t South, Minneapolis, MN 55406 (US). TSILIBA tini-Effie, C.; 3536 Dupont Avenue South, Min MN 55408 (US). MCCARTHY, James, B.; 25 Avenue South, Minneapolis, MN 55406 (US).	h Aven	tent), DK (European patent) (European patent), GB (E pean patent), IT (European patent), NL (European patent) Published With international search rep Refore the expiration of the	n patent), DE (European paris), ES (European patent), FR uropean patent), GR (European patent), JP, LU (European ent), SE (European patent).
(54) Title: POLYPEPTIDE WITH TYPE IV COLLA	GEN (CELL ADHESION, SPREADING AN	ID MOTILITY ACTIVITY

(57) Abstract

A polypeptide having the following formula is provided: gly-val-lys-gly-asp-lys-gly-asn-pro-gly-trp-pro-gly-ala-pro which has the ability to promote cellular adhesion, spreading and motility, while remaining highly cell specific. Medical applications such as chemodiagnostic and chemotherapeutic devices are also provided.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

ΑT	Austria	FI	Finland	ML	Mali
AU	Australia	FR	France	MN	Mongolia
BB	Barbados	GA	Gabon	MR	Mauritania
BE	Belgium	GB	United Kingdom	MW	Malawi
BF	Burkina Faso	GN	Guinea	NL	Netherlands
BG	Bulgaria	GR	Greece	NO	Norway
BJ	Benin	HU	Hungary	PL	Poland
BR	Brazil	IT:	Italy	RO	Romania ·
CA	Canada	JР	Japan	SD	Sudan
CF	Central African Republic	KP	Democratic People's Republic	SB	Sweden
CG	Congo		of Korea	SN	Senegal
CH	Switzerland	KR	Republic of Korea	รบ	Soviet Union
CI	Côte d'Ivoire	LI	Liechtenstein	TD	Chad
CM	Cameroon	LK	Sri Lanka	TG	Togo
DE	Germany	w	Luxembourg	us	United States of America
DK	Denmark	MC	Monaco		
ES	Spain	MG	Madagascar		
	•		-		

POLYPEPTIDE WITH TYPE IV COLLAGEN CELL ADHESION, SPREADING AND MOTILITY ACTIVITY

-1-

Government Support

This invention was made with government support under contract Nos. CA 43924 and 39216 by the U.S. Institutes of Health. The government has certain rights in the invention.

10 Background of the Invention

Type IV collagen is a distinctive glycoprotein which occurs almost exclusively in basement membranes, structures which are found in the basal surface of many types, including vascular endothelial 15 epithelial cells, etc. Type IV collagen is a major component of basement membranes. It differs from interstitial collagens. See New Trends in Basement Membrane Research, K. Kuehn et al., eds., Raven Press, NY, at pp. 57-67 (1982). Type IV collagen has a molecular 20 weight (MW) of about 500,000 and consists of three polypeptide chains: two α l (MW 185,000) chains and one α 2 (MW 170,000) chain. Type IV collagen has two major proteolytic domains: a large, globular, non-collagenous, NCl domain and another major triple-helical collagenous The latter domain is interrupted by noncollagenous sequences of variable length. A diagrammatic representation of the type IV collagen molecule is shown in Figure 1. It is a complex and multidomain protein with different biological activities residing in different 30 domains.

Type IV collagen self-assembles to polymeric structures which constitute the supportive frame of basement membranes. Various other macromolecular components bind to type IV collagen, such as: laminin, entactin/nidogen and heparin sulfate proteoglycan. An additional function of type IV collagen is to mediate cell binding. A variety of cell types specifically adhere and spread onto type IV collagen-coated substrata. See J. C. Murray et al., J. Cell Biol., 80, 197-202 (1979);

M. Aumailley et al., J. Cell Biol., 103, 1569-1576 (1986);
T. J. Herbst et al., J. Cell Biol., 106, 1365-1373 (1988).
Various cell surface proteins, a 47 kD protein [M. Kurkinen et al., J. Biol. Chem., 259, 5915-5922 (1984)],
5 a 70 kD protein [S. P. Sugrue, J. Biol. Chem., 262, 3338-3343 (1987)] and members of the superfamily of integrins [K. J. Tomaselli et al., J. Cell Biol., 105, 2347-2358 (1987)], have been reported to mediate cell binding to type IV collagen.

10 The variety of functions of type IV collagen suggests that this glycoprotein is important in many diverse and clinically relevant processes such as cell attachment and migration in wound healing, tumor cell metastasis, invasion and diabetic microangiopathy, 15 vascular hypertrophy due to hypertension and several kidney diseases such as diabetic nephropathy and nephrotic syndromes of variable etiology. For example, Goodpasture's syndrome, a disease characterized hemoptysis and hematuria due to alveolitis and nephritis, 20 respectively, an antibody to the major non-collagenous NC1 domain of type IV collagen is found in the serum of all Goodpasture's patients. hereditary kidney Another disease, Alport's familial nephritis, is apparently due to a genetic defect of the NC1 domain of type IV collagen. 25 In addition, in diabetes mellitus, intact type collagen, as well as the triple helix-rich domain, are chemically modified and functionally impaired by the increased amounts of glucose present in the plasma and in the immediate vicinity of the basement membranes, i.e., in 30 the extracellular matrix.

In order to better understand the pathophysiology of these processes at a molecular level, there is a need to try to assign at least several of the above-mentioned biological activities of type IV collagen to the specific proteolytic domains (i.e., NC1, triple helix-rich domains) or oligopeptides of type IV collagen. If this can be achieved, it will be possible to synthesize small peptides

3

which can provide the basis for important pharmaceutical compositions.

Brief Description of the Invention

The present invention provides a polypeptide (hereinafter designated "IV-H1") which represents fragment of the $\alpha 1$ chain of human type IV collagen derived from the continuous collagenous region of the major triple helical domain. This polypeptide can be prepared by 10 conventional solid phase synthesis. The formula of the polypeptide is:

gly-val-lys-gly-asp-lys-gly-asn-pro-gly-trp-pro-gly-alapro

15

5

Polypeptide IV-H1 formally represents isolated type IV collagen residues 1263-1277 from the major triple helical region of the αl chain of type IV collagen. letter amino acid code for this polypeptide 20 GVKGDKGNPGWPGAP.

This synthetic polypeptide was assayed biological activity and found to promote the adhesion and spreading of many cell types, and was a potent attractant for melanoma cell motility. In addition, peptide IV-H1 is 25 highly specific in its cell binding properties. example, the peptide promotes binding of nerve cells, but not of endothelial cells. Therefore, it is believed that polypeptide IV-H1 may be useful to (a) promote cellular attachment to culture substrata, and (b) inhibit the 30 metastasis and invasion of tumor cells. Since certain cell types have been shown or are expected to have cell specific binding behavior in response to peptide IV-H1, other uses of this peptide are envisioned, such as assistance in nerve regeneration and diagnostic use. 35 Furthermore, since it is expected that further digestion/hydrolysis of peptide IV-H1 in vitro or in vivo will yield some fragments of substantially equivalent

4

bioactivity, such lower molecular weight peptides are also considered to be within the scope of the present invention.

Brief Description of the Drawings

5

Figure 1 is a diagrammatic representation of type IV collagen, indicating the structure of the αl (IV) and αl (IV) chains, each with a major non-collagenous, NC1 domain and the triple helix-rich domain containing interruption of the gly-X-Y triple helical motif.

Figure 2 depicts the primary amino acid sequence of the human and murine $\underline{\alpha 1}$ chain of type IV collagen in comparison.

Figure 3a is a graph showing the percent melanoma cell adhesion per concentration of peptide IV-H1 (o), and control peptides 15 (m), 17 (•) and 18 (□), coated on Immulon I wells.

Figure 3b is a graph showing the percent of melanoma cell spreading per concentration of peptide IV-20 H1 (o), and control peptides 15 (m), 17 (o) and 18 (d), coated on Immulon I wells.

Figure 4a is a graph showing the average cell motility of melanoma cells in response to peptide IV-H1 (o) and BSA (•) coated on polycarbonate filters.

25 Figure 4b is a graph showing the number of melanoma cells which migrated across a polycarbonate filter imposed in a Boyden chamber in response to the lower wells of said chamber being filled with Type IV collagen.

Figure 5a is a graph showing the relative inhibition of adhesion of melanoma cells to Immulon I wells coated with peptide IV-H1 (o), Type I collagen (□) and Type IV collagen (□) per concentration of excess soluble peptide IV-H1 and coated with Type IV collagen per concentration of excess soluble control peptide 17 (•).

Figure 5b is a graph showing the relative inhibition of spreading of melanoma cells on Immulon I

5

wells coated with peptide IV-H1 (o), Type I collagen (D) and Type IV collagen (*) per concentration of excess soluble peptide IV-H1 and coated with Type IV collagen per concentration of excess soluble control peptide 17 (.).

Figure 5c is a graph showing the inhibition of melanoma cell motility through polycarbonate filters coated with Type IV (■) and Type I (□) collagen, in response to excess soluble peptide IV-H1, and coated with Type IV collagen in response to excess soluble control 10 peptide 17 (Δ).

Figure 6a is a graph showing the relative inhibition of adhesion of melanoma cells to Immulon I wells coated with peptide IV-H1 (o), Type I collagen (D) or Type IV collagen () per concentration of Anti-IV-H1 15 IgG and coated with Type IV collagen per concentration of normal rabbit IgG (A).

Figure 6b is a graph showing the relative inhibition of spreading of melanoma cells on Immulon I wells coated with peptide IV-H1 (o), Type I collagen (\square) 20 or Type IV collagen (■) per concentration of Anti-IV-H1 IgG and coated with Type IV collagen per concentration of normal rabbit IgG (▲).

Figure 6c is a graph showing the inhibition of melanoma cell motility on polycarbonate filters coated 25 with Type I collagen (□) and Type IV collagen (■) in response to Anti-IV-H1 IgG and coated with Type IV collagen in response to normal rabbit IgG (A).

Figure 7 is a graph showing the percent of chick neurons adhering to Immulon I wells coated with varying 30 concentrations of peptide IV-H1, and the percent of the adherent neurons with extended neurites per concentration of peptide IV-H1.

Detailed Description of the Invention

35 The structure of the two αl chains and the single $\alpha 2$ chain of type IV collagen, has been the subject of much study. See J. Oberbaümer et al., Eur. J. Biochem., 147,

6

217-224 (1985); T. Pihlajanien et al., J. Biol. Chem., 260, 7681-7687 (1985); U. Schwarz-Magdolen et al., Febs. Lett., 208, 203-207 (1986); D. Brazel et al., Eur. J. Biochem., 172, 35-42 (1988); R. Soininemi et al., Febs. 5 Lett., 225, 188-194 (1987); D. Brazel et al., Eur. J. Biochem., 168, 529-536 (1987); G. Muthukamaran et al., J. Biol. Chem., 264, 6310-6317 (1989); J. Saus et al., J. Biol. Chem., 264, 6318-6324 (1989). The sequence of the α l chain is shown in Figure 2. The total number of 10 amino acids per collagen molecule is approximately 4,550, with each $\alpha 1(IV)$ chain containing approximately 1,390 amino acids.

Patent No. 4,876,332 describes peptides (designated "TS-1, TS-2 and TS-3") from the NC1 15 domain of the α l (IV) chain of type IV collagen that promote adhesion of a number of cell types, including aortic endothelial cells and metastatic carcinoma cells. Two of these peptides (TS-2 and TS-3) also bind to heparin.

Peptide IV-H1 described herein is derived from the pepsin generated major triple helical fragment of type Peptide IV-H1 promotes cell adhesion and IV collagen. spreading and is a potent attractant for M4 melanoma tumor cell motility. However, peptide IV-H1 does not bind 25 heparin. See G. F. Koliakos et al., J. Biol. Chem., 264, 2313-2323 (1989). Importantly, it has been found that peptide IV-H1 only promotes adhesion of certain specific cell types such as melanoma and nerve cells, but not endothelial or fibrosarcoma cells.

Synthesis of the Polypeptide

20

30

The polypeptide of the invention was synthesized using the Merrifield solid phase method. This is the method most commonly used for peptide synthesis, and it is 35 extensively described by J. M. Stewart and J. D. Young in Solid Phase Peptide Synthesis, Pierce Chemical Company, pub., Rockford, IL (2nd ed., 1984), the disclosure of

7

which is incorporated by reference herein.

The Merrifield system of peptide synthesis uses a 1% crosslinked polystyrene resin functionalized with benzyl chloride groups. The halogens, when reacted with 5 the salt of a protected amino acid will form an ester, linking it covalently to the resin. The benzyloxycarbonyl (BOC) group is used to protect the free amino group of the amino acid. This protecting group is removed with 25% trifluoroacetic acid (TFA) in dichloromethane (DCM). 10 newly exposed amino group is converted to the free base by 10% triethylamine (TEA) in DCM. The next BOC-protected amino acid is then coupled to the free amino of the previous amino acid by the use of dicyclohexylcarbodiimide (DCC). Side chain functional groups of the amino acids 15 are protected during synthesis by TFA stable benzyl derivatives. All of these repetitive reactions can be automated, and the peptides of the present invention were synthesized at the University of Minnesota Microchemical facility by the use of a Beckman System 990 Peptide 20 synthesizer.

Following synthesis of a blocked polypeptide on the resin, the polypeptide resin is treated with anhydrous hydrofluoric acid (HF) to cleave the benzyl ester linkage to the resin and thus to release the free polypeptide. 25 The benzyl-derived side chain protecting groups are also removed by the HF treatment. The polypeptide is then extracted from the resin, using a 1.0 M acetic acid, followed by lyophilization of the extract. Lyophilized crude polypeptides are purified by preparative high 30 performance liquid chromatography (HPLC) by reverse phase technique on a C-18 column. A typical elution gradient, such as used in the present case, is 0% to acetonitrile with 0.1% TFA in H20. Absorbance of the eluant is monitored at 220 nm, and fractions are collected 35 and lyophilized.

Characterization of the purified polypeptide is by amino acid analysis. The polypeptides are first

hydrolyzed anaerobically for 24 hours at 110°C in 6 M HCl (constant boiling) or in 4 N methanesulfonic acid, when cysteine or tryptophane are present. The hydrolyzed amino acids are separated by ion exchange chromatography using 5 a Beckman System 6300 amino acid analyzer, using citrate Beckman. buffers supplied by Quantitation absorbance at 440 and 570 nm, and comparison with standard The polypeptides may be further characterized by sequence determination. This approach is especially 10 useful longer polypeptides, where amino for composition data are inherently less informative. Sequence determination is carried out by sequential Edman degradation from the amino terminus, automated on a Model 470A gas-phase sequenator (Applied Biosystems, Inc.), by 15 the methodology of R. M. Hewick et al., J. Biol. Chem., 256, 7990 (1981).

The peptide of the invention, IV-H1 (GVKGDKGNPGWPGAP), was synthesized from the sequence of the major triple helical domain of human type IV collagen.

20 As a further control, other type IV collagen-derived peptides from the major triple helical domain were synthesized and studied (See Table 1). Certain of the peptides were synthesized with a tyrosyl residue to the carboxy terminal end to allow radioactive iodination of the peptide.

9

Table 1
Type IV Collagen-Derived Synthetic Peptides

	<u>Peptide</u>	name	Peptide Sequence*	Residue Numbers
	peptide	15	GPKGEPGKIVPLPG(Y)	634-647
5	peptide	16	GLPGKPGSNDKVDMGSMKG(Y)	930-948
	peptide	17	GVPGKDGQAGQPGQP(Y)	975-989
	peptide	18	GEKGDKGLPGLD(Y)	1115-1126
	•	_		

*Using the single-letter aminio acid code: A=alanine, D=aspartate, E=glutamate, G=glycine, I=isoleucine, 10 K=lysine, L=leucine, M=methionine, N=asparagine, P=proline, Q=glutamine, S=serine, V=valine. Each peptide contained a tyrosine residue (Y) at the carboxyl terminal end so that the peptides could be iodinated.

15 Residue numbers assigned beginning with amino terminal end, based upon the sequence presented in Muthukumaran, Blumberg, and Kurkinen, <u>J. Biol. Chem.</u>, <u>264</u>, 6310-6317 (1989).

20

Cell Culture

Highly metastatic murine melanoma cells, K-1735-M4 were originally provided by Dr. I. J. Fidler of Anderson Hospital, University of Texas Health Sciences 25 Center, Houston, Texas. When the cells were received, a large number of early passage cells were propagated and frozen in liquid nitrogen. The tumor cells are usually cultured in vitro for no longer than six weeks, and the number of in vitro passages is limited to eight. 30 cells are then discarded and new cells withdrawn from storage for use in further in vitro and in vivo experiments. These precautions are taken to minimize phenotypic drift that can occur as a result of continuous in vitro passage. The cells were cultured in Dulbecco's 35 Modified Eagle's Medium (DME) containing 10% inactivated fetal calf serum. The cultures were grown in 37°C incubators with a humidified atmosphere containing 5% Cells were subcultured twice weekly by releasing cells gently from the flask, using 0.05% trypsin and 1mM 40 EDTA as described by McCarthy et al., Biochemistry, 27,

1380-1388 (1988).

To characterize peptide IV-H1, the interaction of the peptide with other cell lines was investigated. These cell lines include the highly metastatic human melanoma 5 cell line A375 M (also provided by Dr. Fidler), which was maintained in MEM with added vitamins and 10% FBS; and the fibrosarcoma cell line UV2237 MM, which was maintained in DME with 10% FBS. Other cell lines studied included: the C6 rat glioma cell line (ATCC, #CCL107), which was 10 maintained in DME plus 10% CS; the SCC9 human squamous carcinoma cell line (ATCC, #CRL1629), which was maintained in a 1:1 solution of DME and HAM F12 containing 10% FBS; the B65 and B104 murine neuroblastoma cell lines which were obtained from Dr. David Schubert at the Salk 15 Institute (Schuber et al., Nature, 249, 224-227 (1974)) and maintained in F12H media with supplements; and bovine aortic endothelial cells, which were isolated and maintained as described by Herbst et al., J. Cell Biol., 1365-1373 (1988), the disclosure of which is 20 incorporated by reference herein.

<u>Protein Purification and Preparation of Proteolytic</u> Fragments of Type IV Collagen

25 collagen was extracted from Type IV Englebreth Holm Swarm sarcoma grown in lathyritic mice according to a modification of the method by Kleinman et al., Biochemistry, 21, 6188-6193 (1982), as described in Herbst et al., J. Cell Biol., supra. Type IV collagen purified by DEAE anion exchange chromatography was 30 subjected to ultracentrifugation at 110,000 X g for 90 minutes to clear aggregates greater than 50S. supernatant was decanted and stored in 2M quanidine containing 2mM dithiothreitol at 4°C until needed. 35 concentration of type IV collagen was determined spectrophotometrically as described by Waddell, J. Lab. Type I collagen Med., 48, 311-314 (1956). (Vitrogen) was obtained from the Collagen Corporation,

11

Palo Alto, CA.

Iodination of Peptides and Determination of Binding Efficiency on Immulon 1 Plates

5

Labeling of peptides with Na¹²⁵I was performed as described by McCanahey and Dixon, Methods Enzymol., 70, 210-213 (1980). Briefly, 0.1 mg of each peptide in NaHPO $_4$ buffer (pH 7.2) was incubated for 2 minutes with 0.05 mg 10 chloramine T and 0.5 mCi Na¹²⁵I (NEN Division of Du Pont Co., Boston, MA). The reaction was terminated by the addition of 0.2 mg of Na,S,Os. Free iodine was removed by reverse-phase chromatography using Sep-pak C-18 columns (Waters Division of Millipore, Bedford, MA), from which 15 the radiolabeled peptides were eluted with acetonitrile (50%) containing 0.1% trifluoroacetic acid. The labeled peptides were lyophilized and stored at -80°C until needed. The efficiency of peptide binding to the wells of 96-well polystyrene Immulon 1 plates (Dynatech 20 Laboratories, Inc., Chantilly, VA) was determined by drying down 100 µl aliquots of radioiodinated peptides, which had been diluted in Voller's carbonate buffer to concentrations ranging from 1-10 μ g/ml. In order to simulate binding conditions of the peptides in adhesion 25 and spreading assays, the wells were then washed and incubated for 2 hours with 150 μ l/well of a 10 mg/ml solution of BSA in Voller's carbonate buffer. The wells were then washed and the amount of peptides bound to the surfaces was quantitated by solubilizing the peptides with 150 μ l/well of 0.5 N NaOH containing 1% SDS. Bound 30 radioactivity was quantitated in a Tm Analytic gamma counter model 1193.

The invention will be further described by reference to the following detailed examples.

12

EXAMPLE 1

Melanoma Cell Adhesion and Spreading on Peptide IV-H1

A number of peptides derived from the major triple helical region of human type IV collagen were 5 synthesized as described above. These peptides, including peptide IV-H1 were screened for their ability to promote K 1735 M4 melanoma cell adhesion and spreading as follows:

Subconfluent cultures of M4 melanoma cells were radiolabeled overnight with 2 μCi/ml ³H-thymidine. Prior 10 to the adhesion assay, the cells were released from the culture flasks with 10 mM EDTA in Hank's media or, alternatively, in a trypsin solution (0.05% trypsin with 0.02% EDTA) in order to confirm that cell adhesion did not require endogenous cell surface proteins which would be 15 retained after EDTA treatment. The melanoma cells were then washed and resuspended to a final concentration of 3-4X104 cells/ml in DME supplemented with 20 mM Hepes and 10 The cells remained viable (>95%) after this ma/ml BSA. procedure, based upon exclusion of trypan blue dye.

20

Immulon 1 microtiter plates were prepared by drying down 100 μ l/well of IV-H1 peptide which had been diluted to various concentrations (1-500 μ g/ml) Voller's carbonate buffer. The ability of the IV-H1 bind the plates was determined using peptide to 25 radioiodinated peptides (described previously) in order to be certain that any differences in cell adhesion (or spreading) were not due to differential binding to Nonspecific cell adhesion to sites on the surfaces. plastic was blocked by the use of a 10 mg/ml solution of 30 BSA in Voller's carbonate buffer at 37°C for 1 hr. Voller's/BSA solution was then aspirated and 5-6X103 M4 melanoma cells were added to each well in 150 μ l of adhesion media (DME containing 20 mM Hepes and 10 mg/ml BSA). The cells were incubated for 30-40 min. at 37°C (or 35 up to 90 min. for certain assays), at which time cells were either visualized for spreading or harvested to determine adhesion. Adhesion was quantitated after

13

washing to remove nonadherent and weakly adherent cells, by solubilizing the cells with 150 μ l/well of 0.5 N NaOH containing 1% SDS. Bound radioactivity was quantitated in a Beckman LS 3801 liquid scintillation counter. Spreading 5 determinations were made by two different individuals, in double blind studies by visualizing at least cells/well and calculating the percentage of spread cells. Each experiment was repeated a minimum of three times, and within a given experiment, each experimental point was 10 determined in triplicate.

The IV-H1 peptide promoted melanoma cell adhesion in a concentration-dependent manner within a coating range of 1-500 μq/ml (Figure 3a). Significant cell adhesion (35% of input cells) occurred at a coating concentration of 15 10 µg/ml of peptide IV-H1 and maximal cell adhesion (>50% of input cells) was observed in wells coated with a 100 μg/ml solution of peptide IV-H1. Also, melanoma cell spreading occurred on surfaces coated with peptide IV-H1 in a concentration-dependent manner. Maximal spreading 20 (approximately 70% of input cells) was observed within 40 min. at the 100 μ g/ml coating concentration of peptide IV-H1 (Figure 3b).

EXAMPLE 2

Comparative Adhesion and Spreading of Various 25 Cell Types on Peptide IV-Hl

30

In order to ensure that peptide IV-H1-mediated cell adhesion and spreading was not unique to K1735 M4 melanoma cells, various other cell types were screened for adhesion and spreading on surfaces coated with the peptide. Cells of different embryonic origin and from various species were studied for the ability to adhere and spread on surfaces coated with peptide IV-H1. The cell 35 types comprised three major groups (See Table 2): first, cells which adhere and spread on both peptide IV-H1 and type IV collagen which, in addition to including the murine high metastatic K1735 M4 melanoma, included a highly metastatic human melanoma (A375 M), a rat glioma (C6), and a rat neuroblastoma (B104); second, cells which adhered and spread on type IV collagen but not on peptide IV-H1, including bovine aortic endothelial cells and the human squamous carcinoma cell line (SCC9); and third, cells which did not adhere to either type IV collagen or peptide IV-H1, including the murine UV2237 MM fibrosarcoma and the rat B65 neuroblastoma. In all cases, cell adhesion and spreading on surfaces coated with BSA or control peptides was <5%.

15

Table 2

Cell Adhesion and Spreading to Substratum-Bound Peptide

IV-H1 or Type IV Collagen

5	Cell Types	Species of Origin	Peptide	IV-H1*	Type IV Collagen
			% AD ^e	% SP	% AD
10	GROUP 1				
10	K1735 M4 melanoma	mouse	22.4	70 ·	61.9
15	A375 M melanoma	human	16.3	78	50.3
	C6 glioma	rat	35.9	82	100.0
20	B104 neuroblastoma	rat	18.5	20	18.6
	GROUP 2				
25	Bovine aortic endothelial	bovine	0.8	0	52.7
30	Squamous carcinoma	human	1.9	0	39.6
30	GROUP 3				
35	UV 2237 fibrosarcoma	murine	1.1	0	7.9
J J	B65 neuroblastoma	rat	4.6	0	7.7

^{*}Surfaces were coated with 100 μ l/well of peptide IV-H1 or intact type IV collagen at 100 μ g/ml in Voller's carbonate buffer.

Percent of input cells which adhered or spread as described in Example 1. Data is expressed as the average of three experiments, each experiment performed in triplicate.

16

Example 3

Melanoma Cell Motility on Peptide IV-H1

In light of the involvement of cell adhesion and spreading in motility, peptide IV-H1 was studied for its 5 ability to directly promote melanoma cell motility. Peptide-mediated M4 melanoma cell motility was examined in 48-well microchemotaxis chambers (Neuroprobe, Bethesda, MD) equipped with 8 µm pore size polyvinylpyrrolidone-free polycarbonate filters by a modification of a procedure 10 described by Herbst et al., supra. Briefly, peptides were diluted in Voller's carbonate buffer and added in triplicate 50 μ l aliquots to the lower wells of the chambers. The chambers were assembled with the filters in place and incubated overnight at 37°C to allow the 15 peptides to adsorb to the lower surfaces of the filters. The filters were then washed and transferred to fresh chambers which contained only media (DME containing 20 mM Hepes, pH 7.4). Cells were then added to the upper wells at 20,000/well in DME/Hepes media and incubated for 6 hr. 20 at 37°C in a humidified CO, chamber. Filters were then washed, fixed and stained, and the number of cells which had migrated through the filters was quantitated using an Optomax Image Analysis System as described in Herbst et al., supra. Each experiment was repeated a minimum of 25 three times. The results show that peptide IV-H1 promoted a concentration-dependent increase in melanoma cell motility in microchemotaxis chambers (Figure 4a). Whereas a significant level of motility (twice BSA control levels) was observed at a coating level as low as 20 µg/ml, 30 maximal cell motility (5 times BSA control levels) was observed when the filter was coated with a 100-200 μg/ml solution of peptide IV-H1. This compares with melanoma cell motility of 10-fold background levels in response to a 10 µg/ml solution of intact type IV collagen (Figure 35 4b).

17

Example 4

Inhibition of Cellular Adhesion, Spreading and Motility by Exogenous Peptide IV-H1

5 The ability of excess soluble peptide IV-H1 to inhibit type IV collagen-mediated M4 melanoma adhesion, spreading and migration was studied. The specificity of the peptide IV-H1 sequence within type IV collagen was determined by including type I collagen in 10 the inhibition studies. As an additional control, type IV collagen-derived peptide 17 was studied for its ability to inhibit collagen-mediated cell activity. Peptide 17 has a length and amino acid content similar to peptide IV-H1, but does not promote melanoma cell adhesion or spreading. 15 Cells remained viable in the presence concentrations of peptides studied, as demonstrated by exclusion of trypan blue dye.

In these examples, Immulon 1 plates were coated as described in Example 1 above, for use in cell adhesion 20 assays using concentrations of peptide IV-H1, type IV collagen or type I collagen (50 µg/ml of the peptide and 5 μ g/ml of the intact proteins) which yielded half-maximal M4 melanoma cell adhesion in previous dose-response experiments. The cells were preincubated for 20 min. at 37°C 25 in the presence (or absence) concentrations of the peptides in order to occupy the cell surface binding proteins recognizing these peptides. Spreading and adhesion determinations were quantitated as described in Example 1 above.

30 The ability of peptide IV-H1 to inhibit type IV collagen-mediated haptotactic motility was determined by precoating filters on the underside with either type IV collagen or type I collagen in Voller's carbonate buffer as described in Example 3 above. The collagen coating 35 concentration (5 μg/ml) was chosen based on concentration which yielded half-maximal cellular motility. The inhibitory effect of the peptides on cell motility was determined by preincubating the cells

with increasing concentrations of the peptides for 20 min. prior to the assay to allow for binding to cell surface receptors. Cells in the continued presence of peptides were then added to the upper wells of chambers containing the protein-coated filters.

In the adhesion assays, exogenous soluble peptide IV-H1 strongly inhibited IV-H1-and type IV collagenmediated melanoma cell adhesion (Figure 5a). cell adhesion on surfaces coated with peptide IV-H1 was 10 inhibited by nearly 40% in the presence of soluble peptide 20 μ g/ml, and by 80% at the highest IV-H1 at concentration of peptide IV-H1 tested (500 μ g/ml) (Figure 5a). Similarly, melanoma cell adhesion to surfaces coated with type IV collagen was inhibited by 20% in the 15 presence of only 20 $\mu g/ml$ soluble peptide IV-H1, and by as much as 70% at the highest concentration of peptide studied (500 μ g/ml). In contrast, melanoma cell adhesion on surfaces coated with type I collagen was not affected by the presence of soluble peptide IV-H1. In addition, no 20 effect of the control peptide 17 (Figure 3a) on type IV collagen-mediated melanoma cell adhesion was observed, even at the highest concentration tested (500 μ g/ml).

Cell spreading on surfaces coated with peptide IV-H1 was inhibited by up to 70% in the presence of 25 soluble peptide IV-H1 at 200 μg/ml (Figure Similarly, cell spreading on type IV collagen-coated inhibited by 20% at the 100 μ g/ml surfaces was concentration of peptide IV-H1 and the level of cell spreading decreased by 50% at the highest concentration 30 studied (200 $\mu g/ml$). In contrast, pretreatment of cells with peptide IV-H1 had no effect on the percent of cells spreading on surfaces coated with type I collagen. control studies, excess peptide 17 (Figure 5b) had no effect on cell spreading on surfaces coated with type IV 35 collagen or peptide IV-H1.

Finally, type IV collagen-mediated cell motility was inhibited by peptide IV-H1 in a dose-dependent manner

with maximal inhibition of 80% at the 50 μ g/ml level of peptide IV-Hl (Figure 5c). Melanoma cell motility through filters precoated with type I collagen, however, was not inhibited by the presence of peptide IV-Hl. Peptide 17 had no effect on type IV collagen-mediated cell motility.

Example 5

Polyclonal IgG Inhibition of Type IV Collagen-Mediated Cell Adhesion, Spreading and Motility

10

A. Generation and Purification of Polyclonal Antibodies

Polyclonal antibodies were generated against peptide IV-H1 coupled to keyhole limpet hemocyanin (KLH: Sigma Chemical Co.) using carbodiimide as a coupling agent, based on a procedure described by Bauminger and Wilchek, In, Methods in Enzymology, H. Van Bunakis and J.J. Langone, eds., 70, 151-159 (1980). Briefly, equal amounts (by weight) of peptide and KLH were solubilized in water and mixed with a 10-fold excess (by weight) of 1-20 ethyl-3(3-dimethlyaminopropyl)-carbodiimide hydrochloride (Sigma Chemical Co.) dissolved in water. New Zealand White rabbits were immunized on the back by multiple intradermal injections of approximately 2 mg. per rabbit of peptide/KLH conjugate in Complete Freund's Adjuvant. Subsequent biweekly boosts were given intramuscularly in 25 Incomplete Fruend's Adjuvant. Sera were collected 14 days following the fourth immunization, and tested by RIA for reactivity against uncoupled peptide, the protein of origin, and various other ligands.

Immunoglobulin G (IgG) was purified from normal rabbit sera and pooled immune sera by precipitation with a final concentration of 50% ammonium sulfate overnight at 4°C. The resolubilized precipitate was dialyzed against 0.035 M NaCl in 0.025 M Tris, pH 8.8, and the IgG was purified by DEAE column chromatography as described previously (Skubitz et al., 1987). Purity of the IgG was determined by SDS-PAGE. Retained immunoreactivity of the

20

purified IgG was verified by RIA.

B. Assays for IV-H1 Antibody Specificity

Immune sera and purified anti-peptide IV-H1 IgG 5 was screened for specificity by an indirect solid-phase RIA in 96-well polystyrene Immulon 1 plates as described in Skubitz et al., Exp. Cell Res., 173, 349-369 (1987). Briefly, 50 μ l of proteins or peptides at various concentrations in Voller's carbonate buffer was added to 10 each well and dried overnight at 29°C. The next day, 200 μl of PBS containing 5% BSA (fraction V, fatty acid free, Sigma Chemical Co.), 0.1% Triton X-100, and 0.02% NaN, was added to each well followed by a 60 min. incubation at After removal of this buffer, 100 μ l of purified 15 IgG at various dilutions in PBS containing 5% BSA and 0.02% NaN3, was added in triplicate and the wells were incubated 1 hr. at 37°C. After three washings with the above buffer, bound IgG was detected by the addition of 100 µl of 5% BSA in PBS/NaN, containing approximately 100,000 cpm of 125I-labeled donkey IgG directed against 20 rabbit IgG (sp. act. 5 μ Ci/ μ g; Amersham, Arlington Heights, IL). After a 1 hr. incubation at 37°C, unbound antibody was removed by washing. Following an incubation with 100 μ l of 2 M NaOH for 15 min. at 60°C, the 25 solubilized proteins were transferred to glass tubes and the radioactivity was measured in a Tm Analytic gamma counter model 1193.

Purified IgG generated against KLH-coupled peptide IV-H1 was screened for immunoreactivity by RIA 30 (See Table 3). Reactivity of anti-peptide IV-H1 IgG was type IV collagen-specific, since the IgG recognized type IV collagen and peptide IV-H1 but not type I collagen. The control purified normal rabbit IgG did not react with type IV collagen or any of the synthetic type IV collagen-derived peptides.

C. Effect of Anti-peptide IV-H1 IgG on Collagen-Mediated Cell Adhesion, Spreading and Motility

Polyclonal antibodies were generated against peptide IV-H1 and tested for the ability to inhibit type IV collagen-mediated M4 melanoma cell adhesion, spreading and motility. In these assays, Immulon 1 plates were coated as described in Example 1 above for use in cell adhesion assays using concentrations of peptide IV-H1, type IV collagen or type I collagen (50 μ g/ml of the peptide and 5 μ g/ml of the intact proteins) which yielded half maximal M4 melanoma cell adhesion in previous dose response experiment.

The protein coated surfaces were incubated with various concentrations of purified normal rabbit IgG or purified IgG against peptide IV-H1 in order to block the corresponding sequence within the surface-bound protein. Cells were then dispensed into the wells, in the continued presence of peptide or IgG, and incubated at 37°C for 30 min. Spreading and adhesion determinations were quantitated as described above.

In addition, the inhibitory effect of antipeptide IV-H1 IgG on haptotaxis was determined by
incubation of the protein-coated filters for 20-30 min.
with antibody in the lower wells to bind (and thus block)
the IV-H1 sequence within the type IV collagen molecule.
Cells were then added to the upper wells and the assay
proceeded as described in Example 4 above.

Table 3

Reactivity of Antibody Raised Against Peptide IV-H1

22

_	(Ligand)	IgG Concentration $(\mu g/ml)$				
5	Protein or Peptide	0.001*	0.004	0.02	1.0	
	Peptide IV-Hl	2996 [@]	3179	3705	3927	
10	Type IV collagen	127	290	779	1747	
	Type I collagen	69	71	. 110	198	
	Fibronectin	88	73	88	257	

*Purified anti-peptide IV-H1 IgG was screened for specificity by an indirect solid-phase RIA. Briefly, surfaces were coated with proteins or peptides as described previously. Purified IgG at various dilutions were added. Bound IgG was detected by the addition of 125 I-labeled secondary IgG (sp. act. 5 µCi/µg).

 $^{\rm e}$ Quantitation of $^{\rm 125}$ I-labeled secondary IgG bound, expressed as cpm.

25

Melanoma cell adhesion on surfaces coated with peptide IV-H1, intact type IV collagen, or type I collagen was monitored in the presence of increasing concentrations 30 of anti-peptide IV-H1 IgG. Melanoma cell adhesion on surfaces coated with 50 µg/ml of peptide IV-H1 was inhibited 40% by anti-IV-H1 IgG at 20 μ g/ml (Figure 6a). Maximal inhibition (70%) was observed at the highest concentration of antibody tested (500 μ g/ml). 35 adhesion to type IV collagen was also reduced in a concentration-dependent manner by preincubation with anti-Significant inhibition (20%) was observed in the presence of only 20 µg/ml of anti-peptide IV-Hl IgG, and a 40% inhibition of adhesion was observed at 500 µg/ml In contrast, preincubation 40 of anti-peptide IV-H1 IgG. with the anti-peptide IV-H1 IgG did not reduce the levels of melanoma cell adhesion to surfaces coated with type I No inhibition of cell adhesion to surfaces collagen. coated with any of the collagenous proteins was observed in the presence of normal rabbit IgG, even at the highest

concentrations used (500 μ g/ml); demonstrated by the lack of inhibition of cell adhesion to peptide IV-H1 with normal rabbit IgG (Figure 6a).

Melanoma cell spreading on surfaces coated with 5 peptide IV-H1, intact type IV collagen, or type I collagen was monitored in the presence of increasing concentrations of anti-peptide IV-H1 IgG. Cell spreading on surfaces coated with peptide IV-H1 was significantly decreased (50%) at levels of anti-peptide IV-H1 IgG as low as 20 10 μ g/ml, and maximal inhibition (80%) was observed at 50 μ g/ml (Figure 6b). Similarly, cell spreading on surfaces coated with type IV collagen was decreased by 20% in the presence of 50 µg/ml of anti-peptide IV-Hl IgG and by as much as 60% when 100 μ g/ml of this IgG was present. 15 contrast, cell spreading on surfaces coated with type I collagen was not affected by this IgG (Figure 6b). control normal rabbit IgG did not affect cell spreading on surfaces coated with peptide IV-H1, type IV collagen, or type I collagen.

The effect of anti-peptide IV-H1 IgG on melanoma cell haptotaxis mediated by type IV collagen was monitored by incubating the collagen-coated filter with anti-peptide IV-H1 IgG prior to the addition of cells to the motility assay (Figure 6c). Motility was decreased in a concentration-dependent manner with maximal inhibition of 70% at 100 µg/ml of IgG. In contrast, cell motility through filters precoated with type I collagen (Figure 6c) was not inhibited by preincubation of the filters with anti-peptide IV-H1 IgG. Normal rabbit IgG had no effect on type IV collagen-mediated cell motility.

Example 6

Binding of Peptide IV-H1 to Neural Cells

Dorsal Root Ganglia were isolated surgically from 9-day chick embryos. Connective tissue was removed from the neural tissue, both surgically and enzymatically. The remainder of isolated cells included neurons, glial cells,

24

and residual fibroblasts. Cells were then diluted to 40,000 cells per milliliter of media. 0.5 ml of the cell suspension was added to the wells of 24 Immulon I plates which had been coated as shown in Example I above, with peptide IV-H1, as well as various positive and negative controls.

The assay was incubated in a 37°C humidified incubator for 24 hours. The media was then removed and the plates were washed to remove nonadherent cells. 10 Adherent cells were fixed using a 1% glutaraldehyde Quantification of the number of neurons which solution. adhered to the surfaces as well as the number of neurons extending neurites was done by two individuals, under The results show that neuron double blind conditions. 15 adhesion and neurite extension were promoted concentration dependent manner. (Figure 7). Α concentration of 5 μ g/ml of peptide IV-Hl resulted in maximal cell adhesion, while 50 μ g/ml caused the highest extension of neurites from adherant neurons.

20

25

30

These results taken together indicate that peptide IV-H1 is a major participant in the process of tumor cell adhesion, spread and motility, and is highly specific as to the cell type with which it will bind.

A number of practical applications for the polypeptide of the present invention can be envisioned. Such applications include the ability to inhibit metastasis and invasion of malignant cells, use as a diagnostic tool, and to promote the regeneration of nerves.

In the past, selected laminin domains have been studied for ability to decrease the metastatic potential of invasive cell lines [McCarthy et al., Cancer Met. Rev., 4, 125-152 (1985)]. This effect is mediated via the saturation and therefore neutralization of cell surface receptors for laminin. In accordance with the present invention, the data presented herein suggest that

25

receptors for the polypeptide IV-H1 from type IV collagen exist on cell surfaces of malignant cells. Consequently, excess soluble polypeptide or polyclonal IgG antibodies of peptide IV-H1 could be used to block type IV collagen receptors of metastatic cells and therefore reduce their metastatic potential. In addition, peptide IV-H1 coupled to an appropriate chemotherapeutic agent could be used to diagnose and treat malignant cell growths.

Also, the peptide of the present invention may prove useful to facilitate regeneration of damaged nerve tissue. In particular, peptide IV-H1 favors nerve cell outgrowth since the peptide promotes the adhesion only of cells of neural crest origin. For example, neurons adhere, but endothelial cells do not. Thus, the binding specificity of the peptide precludes endothelial cells from interfering with the artificial nerve growth.

The invention has been described with reference to various specific and preferred embodiments and techniques. However, it should be understood that many variations and modifications may be made while remaining within the spirit and scope of the invention.

WHAT IS CLAIMED IS:

1. A polypeptide of the formula:

gly-val-lys-gly-asp-lys-gly-asn-pro-gly-trp-pro-gly-ala-pro.

- 2. A chemodiagnostic device for detection of malignant cell growths comprising a polypeptide of the formula: gly-val-lys-gly-asp-lys-gly-asn-pro-gly-trp-pro-gly-alapro, coupled to an appropriate biologically compatible agent.
- 3. A chemotherapeutic device for treatment of malignant cell growths comprising a polypeptide of the formula: gly-val-lys-gly-asp-lys-gly-asn-pro-gly-trp-pro-gly-alapro, coupled to an appropriate biologically compatible agent.
- 4. A polypeptide comprising an amino acid sequence of the $\underline{\alpha l}$ chain of type IV collagen derived from the continuous collagenous region of the major triple helical domain which promotes cellular adhesion and spreading, and melanoma cell motility.
- 5. The polypeptide of claim 4 wherein said polypeptide has the formula: gly-val-lys-gly-asp-lys-gly-asn-pro-gly-trp-pro-gly-alapro.

<u>된</u>

2/7

FIG. 2

FIG. 2 CONTINUED

_ · · · 16· · ·	
ICPPGANCPPCGEGPPGSSGPPGIKGEKGFPGFPGLDHPCPKGDKGSQGLPGLTGQSGLPGLPGQQGTPGVPGFPGSKGEPGVHGTPCQPGSPGPAGTPG	000
	900
TEPPGARGPPGCQGPPGLSGPPGIKGEKGPPGFPGLDAPGPKGDKGAQGLPGITGQSGLPGLPGQQGAPGIPGFPGSKGENGYNGTPGQPGSPGPVGAPG	900
LPGEKGDHGLPGSSGPRGDPGFKGDXGDVGLPCHPGSHEHVDHCSHUEQKGDQGEKCQIGPTGDXGSRGDPGTPCVPGKDCQLCHPCQPGPKGDPGLSGT	1888
_}{};;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	1000
LPGEKGDHGFFGSKGPRGDPGLKGDKGDVGLPGKPGSHDKVDHGSHJEQKGDQGEKGQIGPIGEKGSRGDPGTPGVPGKDCQLGQPGQPCPKGDPGISGT	1000
. 18.	
PGSPGLPGPKGSVGCHGLPGSPGEKGVPGIPGSQGVPGSPGEKGAKGEKGQSGLPGIGIPGRPGDKGDQGLAGFPGSPGEKGEKGSAGTPGHPGSPGPRG	1100
PGAPGLPGPPGSVCGHGLPGTPGEXGVPGIPGPQGSPGLPGDXGAXGEXCQAGPPGTGIPGLRGEXGDQGIAGFPGSPGEXGEXGSIGIPGHPGSPGIXG	1100
CRANT CHARGE RATE PART PART PART PART PART PART PART PART	
SPCHIGHPGSPGLPGEKGDKGLPGLDGVPGVKGEAGLPGTPGPTGPACQKGEPGSDGIPGSAGEKGEQGVFGTGFPGFPGSKGDKGSKGEVGFPGLAGSP	1200
CREATION PARTICULAR PA	
SPGSVGYPGSPGLPGEKGDKGLPGLDCIPGVKGEAGLPCTPCPTGPACQKGEPGSDCIPGSAGEKGEPGLFGFFPGFPGAKGDKGSKGEVGFPGLAGSP	1200
20	
GIPGVKGEQGFMGPPGPQCQPGLPGTPGHFVEFPKGDRGPQCQPGLPGHPGPMGPPGFPGIMGPKGDKGMQGMPGAPGVPGPKGDPGFQGMPGIGGSPGI	1300
GIPGSKGEQGFHGPPGPQCQPGLPGSPGHATEGFKGDRGPQGQPGLPGLPGPHGPPGLPGIDGVKGDKGHPGWPGAPGVPGPKGDPGFQCHPGIGGSPGI	1300
<u> </u>	
TGSKGDHGLPGYPGFQCQXGLPGLQGYKGDQCDQGYPGPKGLQCPPGPPGPPDVIKCEPGLPGPPGPPGLXGLQCPPGPKGQQCYTGSVGLPGPPGYPGP	1400
TGSKGDHCPPGVPGFQGFKGLPGLQGIKGDQGDQGVPGAKGLPGPPGPPGPPDIIKGEPGLPGPPGGPPGLKGLQGLPGPKGQQGVTGLVGIPGPPGIPGF	1400
DGAPGOKGETGPFGPPGPPGPPGPPGPDGLPGSHCPPGTPSVDEGFLVTRESQTTDDPLCPPCTKILYEGYSLLYVQGHERAHGODLGTAGSCLRKFSTH	1500
DGAPGQKGENGPAGPTGPRGFPGPPGPDGLPGSHGPPGTPSVDHGFLVTRHSQTIDDPQCPSGTKILYHGYSLLYVQGHERAHGQDLGTAGSCLRKFSTH	1500
	.,,,,
PPLFCHIHNVCHFASRHDYSYWLSTPEPHPHSHAPISGDHIRPFISRCAVCEAPAHVHAVHSQTIQIPQCPHGHSSLWIGYSFVHHTSAGAEGSGQALAS	1600
	1000
PPLICHINNVCHFASRNDYSYVLSTPEPHPMSMAPITGENIRPFISRCAVCEAPAMVMAVESQTIQIPPCPSGWSSLWIGTSFVMHTSAGAEGSGQALAS	1600
• • • • • • • • • • • • • • • • • • •	1000
PGSCLEEFRSAPFIECHGRGTCNYANAYSFWLATIERSEMFKXPTPSTLKAGELRTHVSRCOVCNRRT 1699	
PGSCLEEFRSAPFIECHGRGTCHYYANAYSFWLATIERSEMFKKPTPSTLKAGELRTHVSRCQVCMRRT 1699	

FIG. 3A

FIG. 3B

FIG. 4A

FIG. 4B

FIG. 5B

FIG. 5C

FIG. 6A

FIG. 6B

FIG. 6C

FIG. 7

INTERNATIONAL SEARCH REPORT

International Application No PCT/US90/07162

	I. GLASSIFICATION OF SUBJECT MATTER (if exvers classification symbols apply, indicate all) ?					
	According to International Patent Classification (IPC) or to both National Classification and IPC IPC(5): A61K 37/02					
U.S. CL: 530/326; 514/						
II. FIELDS	SEARCI					
Classification	on System	Minimum Docum	Clearification Searched 4			
US						
		Documentation Searched other to the Extent that such Document	than Minimum Documentation to are included in the Fields Searched 5	4		
APS TE	XT SEARC	H, BIOSIS, CAS				
		ONSIDERED TO BE RELEVANT 14				
Category *	Citat	ion of Document, 14 with indication, where ap	propriate, of the relevant passages 17	Relevant to Claim No. (*		
<u>Ж</u> У	no Pil fo: TV of Car sec	urnal of Biological C. 12. issued 25 June 1 nlajaniemi et al., "cD: r the Pro-el (IV) Cha Pro Collagen Reveal Amino Acid Sequences rboxyl terminal Domai. e entire document.	985. T. NA Clone Coding in of Human Type an unusual Homology in Two Halves of th n", pages 7681-7687,	4 1,5		
y Y	Voʻ Br hu	roceedings National Academy Sciences USA, 4 1 82, issued June 1985 , J.M. 1,5 rinker et al., "Restricted Homology between man &1 type IV and other procollagen chains", ages 3649-3653, see entire document.				
Y	US.A.4,876,332 (Tsilibary et al.) 24 October 1,2,4,5 1989, see entire document					
"T" later document aublished after the international filing date of drighty date and not in conflict with the application but considered to be of particular relevance. "E" earlier document but published on or after the international filing date. "L" document which may throw doubts on priority claim(s) or which is cited to establish the aublication date of another claimed invention or other special reason (as specified). "O" document referring to an oral disclosure, use, exhibition or other mains. Such comment published after the international filing date in the articular relevance; the claimed invention involve an inventive step when the cannot be considered to involve an inventive account to comment aublished after the international filing date cannot be considered to understand the principle or theory underlying the cannot be considered novel or cannot be considered to involve an inventive at inventive and i						
Internations	Searchin	Authordy ^L	Signature of Authorized Officer :	+		
ISA/I	US		AVIS DAVENPORT	7		

International Application No. PCT/US90/07162

FURTHER INFO	RMATION CONTINUED	FROM THE SECON	D SHEET		
	•	•			
V. TORSERVA	TIONS WHERE CERTAIN	CLAIMS WERE FO	NING UNSEARCE	HARLE 1	<u> </u>
··[] ••••···	TIONO WALKE CERTAIN	CEAIMO WERE IN	TORD ON TAXABLE	TABLE .	
This international 1. Claim numb	search report has not been et lers , because they rela	stablished in respect o ite to aubject matter 4:			• • • • • • • • • • • • • • • • • • • •
	ers, because they related the meaningform of the meaningform.				lih the prescribed require-
				•	
3. Claim numbe PCT Rule 6.4		are dependent claims n	ot drafted in accorda	nce with the second an	d third sentences of
VI. TOBBERV	TIONS WHERE UNITY O	f INVENTION IS L	ACKING!		
This International	Searching Authority found mu	ultiple inventions in th	ls international appl	ication as follows:	
	SEE ATTA	abhment			,
	ed additional scarch fees were stronal application.	timely paid by the App	ficant, this internatio	nnai aoarch-repert co	ters on searchable claims
2. As only son those claims	e of the required additional se of the international application	earch fees were timely in for which fees work	paid by the applica paid, specifically cli	nt, this enternational solution	ea - Pacif , vers Only
	additional search fees were tin first mantioned in the claims:			this international Sear	en familis restricted to
Cla	ims 1,2,4 and 5 ((Telephone P	ractice)		
invite payme	abin clauns could be searched nt of any additional lim.	aitigut elfoit nearlys	ng an additional fee	, the International Se	arction Authoric du cor
Remark on Protest	al search leos were accompan	out by anthesetts ever	rest		
=	er search toos were decompan and the property of Ad	· · · · · · · · · · · · · · · · · · ·) T f is		. •
		,		•	

PCT/US90/07162

Attachment to PCT/ISA/210

VI Observations Where Unity of Invention is Lacking

- T. Claims 1.2.4 and 5 are drawn to the polypeptide and the process of use classified in class 530. subclass 326
- TI. Claim 3 is drawn to a chemotherapeutic denice classified in class 128 subclass 630