深度学习迁移训练使用说明

YangtseJin

本文所做的深度学习迁移训练时基于 AlexNet 所做,运行本文附带的 m 文件时,确保已经装载 Deep Learning Toolbox,并安装 AlexNet 包,否则可能会运行失败。

本文附有已经经过迁移训练好的模型,即 AlexNet_TransferLearning.mat 文件,若只做图片测试,则可以运行 testAlex_transfered.m 文件,只需修改此程序中的图片路径即可。

打开 main.m 文件,点击运行,即可开始训练。训练时,可以修改代码选择 GPU 或者 CPU 进行训练,一般 GPU 训练速度更快。训练完成后,保存训练出来的 n 网络为 AlexNet_TransferLearning.mat 文件,便于后续测试使用。训练过程 如图 1 所示。

			Seque	nceLe	ngth: 'longest'														
		Se	quencePad	lingV	alue: 0														
	Se	quen	cePadding	Direc	tion: 'right'														
		Di	spatchInB	ackgr	ound: 0														
	F	eset	InputNorm	aliza	tion: 1														
	BatchN	orma	lizationS	tatis	tics: 'population'														
在	初始化	偷入多	数据归一化.																
=						=		===		==		==						1	
	轮	- 1	迭代	-1	经过的时间		小批量准确度	1	验证准确度	1	小批量损失		验证损失	1	基础	学习	鲜	I .	
		- 1		- 1	(hh: mm: ss)			1		1				1				1	
-						-				==								1	
	1	- 1	1	-1	00:00:18		28.12%	1	57.24%	1	3.0492		1. 1200	1	1. 0	0 0	0 e —	0 4	
	3	- 1	5 0	-1	00:00:26		100.00%	1		1	0.0019			1	1. 0	0 0	0 e —	0 4	
	4	- 1	8 0	-1	00:00:31		100.00%	1	97.98%	1	0.0007		0.0925	1	1. 0	0 0	0 e —	0 4	
	5	- 1	1 0 0	1	00:00:54		100.00%	1		1	1.7787e-	0 5	5		- 1	1.	0 0 0	0 e - 0 4	- 1
	8	- 1	1 5 0	1	00:01:00		100.00%	1		1	0.0002			1	1. 0	0 0	0 e —	0 4	
	8	- 1	1 6 0	1	00:01:02		100.00%	1	96.97%	1	0.0002		0.1399	1	1. 0	0 0	0 e —	0 4	
	1 0	- 1	2 0 0	-1	00:01:07		100.00%	1		1	3. 0 2 5 1 e -	0 6	5		- 1	1.	0 0 0	0 e - 0 4	- 1
	1 2	- 1	2 4 0	-1	00:01:12		100.00%	1	97.98%	1	5.0741e-	0 6	3 0.08	7 2	1	2.	5 0 0	0 e - 0 5	1
	1 2	- 1	2 5 0	1	00:01:13		100.00%	1		1	6.8383e-	0 6	3		1	2.	5 0 0	0 e - 0 5	1
	1 5	- 1	3 0 0	1	00:01:20		100.00%	1		1	1.8105e-	0 6	3		1	2.	5 0 0	0 e - 0 5	1
	1 6	- 1	3 2 0	1	00:01:23		100.00%	1	97.98%	1	7.4506e-	0 9	9 0.09	9 4 1	1	2.	5 0 0	0 e - 0 5	1
	1.7	- 1	3 5 0	1	00:01:26		100.00%	1		L	8. 1212e-	0 7	7		1	2.	5 0 0	0 e - 0 5	1
			4 0 0	1.0	00:01:33		100.00%	1	97, 98%	ī.	1.9744e-	0 7	7 0.08	3 4	1	2.	5 0 0	0 e - 0 5	1
	2 0																		

图 1

训练结果如图 2 所示, 所得混淆矩阵如图 3 所示。

图 2

本文所用数据集通过python爬虫从百度图片获取,存放于imgdata文件夹下,其中70%的图片做训练集,剩下30%的图片做验证集。

接下来是验证结果,本文针对原始的 AlexNet 无法识别的订书机、排插、空调、平板做了迁移训练,使得最终的网络能够识别这些物品。

在原始的 AlexNet 中无法识别订书机,会将订书机错误的识别为其他物品,如图 4 所示。下文所列图片均不在前文所述训练集和测试集中,其中图 5 为图 4 的原图,来源于老师课堂。

图 5

在迁移训练之后,新得到的AlexNet网络可以准确识别订书机,如图6所示。

图 5

为更好的验证此迁移学习所得网络的准确率,从周围的物体拍摄图片并进行测试,如图 6 到图 11 所示。

图 6

图 7

图 8

图 9

图 10

图 11