Oficina d'Accés a la Universitat

Proves d'accés a la universitat

Electrotècnia

Sèrie 3

La prova consta de dues parts, amb dos exercicis cadascuna. La primera part és comuna i la segona té dues opcions (A i B). Resoleu els exercicis de la primera part i, per a la segona part, escolliu UNA de les dues opcions (A o B) i feu els exercicis de l'opció triada.

PRIMERA PART

Exercici 1

[2,5 punts]

[En cada qüestió només es pot triar UNA resposta. Qüestió ben contestada: 0,5 punts; qüestió mal contestada: -0,16 punts; qüestió no contestada: 0 punts.]

Qüestió 1

En un transformador trifàsic, la tensió nominal al primari és $U_1 = 25 \,\mathrm{kV}$ i la tensió nominal al secundari és $U_2 = 420 \,\mathrm{V}$. La tensió simple de la fase A del primari i la tensió simple de la fase a del secundari estan desfasades 30°. Quin desfasament hi haurà entre la tensió simple de la fase a del primari i la tensió simple de la fase a del secundari?

- $a) 0^{\circ}$
- **b**) 30°
- c) 90°
- **d**) 120°

Qüestió 2

Un díode real d'un circuit té l'ànode a una tensió de –12 V respecte a una referència. Perquè el díode condueixi corrent, quina hauria de ser la tensió del càtode respecte a la mateixa referència?

- a) $U_{\text{Càtode-Ref}} > -12 \text{ V}.$
- b) $U_{\text{Càtode-Ref}} < -12 \text{ V}.$
- c) $U_{\text{Càtode-Ref}} > 0 \text{ V}.$
- d) El díode no pot estar mai en conducció en les condicions descrites.

Qüestió 3

Una línia monofàsica (conductor de fase i conductor neutre) que alimenta una càrrega produeix una caiguda de tensió del 4 %. Podem afirmar que

- a) la caiguda de tensió disminuirà si disminueix la secció del conductor de fase.
- b) la caiguda de tensió disminuirà si disminueix la secció del conductor neutre.
- c) la caiguda de tensió disminuirà si augmenta la secció del conductor neutre.
- d) la caiguda de tensió no es modificarà si augmenta la secció del conductor de fase.

Qüestió 4

Un motor d'inducció trifàsic de petita potència es connecta a una instal·lació de manera que sempre es fa una arrencada estrella-triangle. La xarxa trifàsica és de 400 V de tensió nominal (composta). Quines d'aquestes tensions han de figurar en la placa de característiques del motor?

- a) 130/230 V
- **b**) 230/400 V
- c) 400/230 V
- d) 400/690 V

Qüestió 5

Una càrrega monofàsica té una impedància de valor $\underline{Z} = 3 + j \Omega$. Si connectem el consum entre dues fases d'un sistema trifàsic de tensió composta de 400 V, quines seran, aproximadament, les potències activa P i reactiva Q consumides per la càrrega?

- a) P = 48 kW i Q = 16 kvar
- **b)** P = 48 kW i Q = -16 kvar
- c) P = 16 kW i Q = 5,33 kvar
- d) P = 16 kW i Q = -5.33 kvar

Exercici 2

[2,5 punts en total]

R_1	$=5\Omega$
R_2	$= 10 \Omega$
R_3	$=15 \Omega$
R_4	$= 20 \Omega$
R_5	$=10 \Omega$
U_1	$=U_2 = 24 \text{ V}$

En el circuit de la figura, determineu:

a) La mesura de l'amperímetre A_3 .

[1 punt]

b) La mesura del wattímetre W_1 .

[1 punt]

c) La potència consumida pel conjunt de totes les resistències.

[0,5 punts]

SEGONA PART

OPCIÓ A

Exercici 3

[2,5 punts en total]

El transformador del circuit de la figura és ideal i la placa de característiques indica que la potència nominal és de 400 VA; la tensió nominal del primari (a l'esquerra del dibuix) és de 240 V, i la tensió nominal del secundari (a la dreta del dibuix) és de 24 V. Tota la instal·lació es connecta a la xarxa, que té la tensió real d'alimentació *U* indicada en el requadre.

En aquestes condicions, determineu:

zii aqaestes conaicions, acterimica.	
a) La mesura del voltímetre V_1 .	[0,5 punts]
<i>b</i>) El corrent <i>I</i> que subministra la font a tota la installació.	[1 punt]
c) El valor de la resistència R_1 .	[0,5 punts]
d) El valor de la resistència equivalent de tota la instal·lació $R_{\rm rg}$.	[0,5 punts]

Exercici 4

[2,5 punts en total]

Un motor de corrent continu d'excitació independent té les dades següents en la placa de característiques:

$P_{\rm N} = 30 \rm kW$	$U_{\rm N} = 500 { m V}$	$I_{\rm N} = 69 {\rm A}$	$n_{\rm N} = 1.750 \rm min^{-1}$
Excitació:	$U_{\text{ExcN}} = 300 \text{ V}$	$R_{\rm Exc} = 45 \ \Omega$	

Les pèrdues mecàniques i en les escombretes es consideren negligibles, i l'excitació es manté en tot moment en condicions nominals.

Si l'induït del motor també treballa en condicions nominals, determineu:

a) El rendiment η expressat en tant per cent.	[0,5 punts]
b) El parell Γ desenvolupat.	[0,5 punts]
c) El valor de la resistència de l'induït R_i .	[0,5 punts]
d) El valor del corrent d'excitació nominal I_{ExcN} .	[0,5 punts]

Si el motor desenvolupa el 30 % del parell nominal i s'alimenta al 50 % de la tensió nominal, determineu:

e) La nova velocitat de gir del motor n' expressada en min⁻¹. [0,5 punts]

OPCIÓ B

Exercici 3

[2,5 punts en total]

El circuit de la figura mostra una càrrega simètrica connectada en triangle. La càrrega és alimentada per un sistema trifàsic simètric i equilibrat de tensió composta U i a una freqüència de $50\,\mathrm{Hz}$. Determineu:

a) La mesura del voltímetre V_1 .

[0,5 punts]

b) La potència activa P consumida per la càrrega.

[1 punt]

c) La potència reactiva Q consumida per la càrrega.

[0,5 punts]

d) El factor de potència de la instal·lació.

[0,5 punts]

Exercici 4

[2,5 punts en total]

La figura mostra una font de tensió sinusoidal (U_1) , una font de tensió contínua (U_2) , uns díodes que es poden considerar ideals i unes resistències. Disposem d'un oscil·loscopi d'un canal i d'una sonda diferencial aïllada 1:1. Connectem la sonda de l'oscil·loscopi en els borns de R_2 . L'escala de temps de l'oscil·loscopi és de 2 ms/div. i l'escala de tensió del canal és de 5 V/div. Determineu:

a) El valor de la tensió U_2 .

[0,5 punts]

b) El valor de pic U_{1pic} i el valor eficaç de la tensió d'alimentació U_{1} .

[1,5 punts]

c) El valor de la freqüència f de la tensió d'alimentació.

[0,5 punts]

