Métodos directos de resolución de sistemas de ecuaciones lineales: factorización LU. Cómo usar los materiales del trabajo

POR DELGADO MARCOS, ADRIÁN; LOBATO PÉREZ, JAVIER; MARTÍNEZ CAMPO, ALBERTO Y RODRÍGUEZ ROBLES, PABLO

Resumen

En este documento pretendemos resumir las pautas necesarias para trabajar con los materiales elaborados para nuestro trabajo «Métodos directos de resolución de sistemas de ecuaciones lineales: factorización LU».

Entre estos materiales se incluyen los siguientes archivos:

- factorizacion_lu-diapositivas.pdf (Transparencias de la presentación, PDF)
- factorizacion lu-diapositivas latex (Carpeta con el código IATEX)
- factorizacion lu-pdf.pdf (Trabajo escrito, PDF)
- factorizacion_lu-texmacs.tm (Fichero TEX_{MACS} correspondiente al trabajo escrito, TEX_{MACS})
- notebook rutinas lu.ipynb (Ejemplos con Python, Notebook de IPython)
- rutinas lu.py (Rutinas de LU en Python, fichero .py)

1 Uso del material en Python

1.1 Instalación de Python e IPython Notebook

Anaconda es la opción recomendada para la instalación de Python en un entorno de programación científica (https://store.continuum.io/cshop/anaconda/). Anaconda contiene todos los paquetes necesarios para ejecutar las rutinas que hemos elaborado, así como IPython Notebook para leer el notebook.

En este vídeo se explica el procedimiento a seguir para su instalación: https://youtu.be/x4xegDME5C0?list=PLGBbVX WvN7as DnOGcpkSsUyXB1G wqb¹.

1.2 Apertura de los notebook de IPython Notebook

Si solamente se busca la lectura de los ejemplos y las celdas de código recomendamos la lectura de este en el nbviewer, ya que este no requiere la instalación de ningún software adicional: http://nbviewer.ipython.org/github/PabloRdrRbl/factorizacion_lu/blob/master/note-book_rutinas_lu.ipynb.

Si por el contrario se desea interactuar y cambiar el código de los ejemplos así como cambiarlo optaremos por la la ejecución nativa desde IPython Notebook. Una vez instalado ejecutaremos en una Terminal el comando , más tarde, desde la interfaz del navegador podremos abrir el archivo sin ningún problema.²

^{1.} Este video forma parte de uno de los cursos recomendados en la presentación: «Introducción a Python para científicos e ingenieros. Segunda edición» (http://cacheme.org/curso-online-python-científico-ingenieros/).

^{2.} Nótese que en notebook rutinas lu.ipynb se incluyen las mismas rutinas que en el archivo rutinas lu.py.

2 Sección 4

2 Uso del material LATEX

factorizacion_lu-diapositivas_latex contiene los archivos main.tex y references.tex necesarios para reproducir o modificar las transparencias usadas durante nuestra presentación.

Recomendamos el uso de TeXStudio como entorno nativo de progrmación en LATEX o bien www.sharelatex.com como entorno de trabajo en la nube.

Del mismo modo incluimos en factorizacion_lu-texmacs.tm el documento T_EX_{MACS} del trabajo con el fin de que cualquiera pueda modificarlo o mejorarlo.

3 GitHub

Por último, el trabajo se encuentra alojado en GitHub con la intención de estar disponible permanentemente para su descarga y consulta así como para posibles mejoras y modificaciones por parte de otros autores.

GitHub (https://github.com/) es una plataforma de desarrollo colaborativo para alojar proyectos utilizando el sistema de control de versiones Git³.

Todos los archivos del proyecto se encuentran en los siguientes repositorios:

- https://github.com/hawke96/factorizacion lu
- https://github.com/PabloRdrRbl/factorizacion lu

4 Conclusión

Los miembros del grupo animamos a nuestros compañeros a preguntar cualquier duda sobre la utilización del material del proyecto. Así mismo, invitamos a aquellos que estén interesados en aprender las herramientas mencionadas que nos pregunten por más información, la cual excede los objetivos del trabajo.

^{3.} Recomendamos el siguiente tutorial como un primer acercamineto al control de versiones, Git y GitHub: $\frac{1}{2} \frac{1}{2} \frac{$