

Description

The VSM80N08 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. This device is suitable for use in PWM, load switching and general purpose applications.

General Features

• $V_{DS} = 85V, I_{D} = 80A$ $R_{DS(ON)} < 8.5mΩ @ V_{GS} = 10V$ (Typ:6.8mΩ)

- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Special designed for convertors and power controls
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation
- Special process technology for high ESD capability

Application

- Power switching application
- Hard switched and High frequency circuits
- Uninterruptible power supply

TO-263

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM80N08-T3	VSM80N08	TO-263	-	-	-

Absolute Maximum Ratings (T_A=25 ℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	85	V	
Gate-Source Voltage	V _G s	±20	V	
Drain Current-Continuous	I _D	80	А	
Drain Current-Continuous(T _C =100°C)	I _D (100°C)	60	А	
Pulsed Drain Current	I _{DM}	320	Α	
Maximum Power Dissipation	P _D	170	W	
Peak diode recovery voltage	dv/dt	15	V/ns	
Derating factor		1.13	W/℃	
Single pulse avalanche energy (Note 5)	E _{AS}	620	mJ	
Operating Junction and Storage Temperature Range	T_{J} , T_{STG}	-55 To 175	$^{\circ}$ C	

Shenzhen VSEEI Semiconductor Co., Ltd

Thermal Characteristic

Thermal Resistance,Junction-to-Case ^(Note 2)	$R_{ heta JC}$	0.88	°C/W	
---	----------------	------	------	--

Electrical Characteristics (T_A=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics	•		•			
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250µA	87	89	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =85V,V _{GS} =0V	-	-	1	μA
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)						
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	2	2.85	4	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =40A	-	6.8	8.5	mΩ
Forward Transconductance	g FS	V _{DS} =25V,I _D =40A	110	-	-	S
Dynamic Characteristics (Note4)						
Input Capacitance	C _{lss}	\/ OF\/\/ O\/	-	4400	-	PF
Output Capacitance	C _{oss}	V_{DS} =25V, V_{GS} =0V, F=1.0MHz	-	340	-	PF
Reverse Transfer Capacitance	C _{rss}	F-1.UIVIDZ	-	260	-	PF
Switching Characteristics (Note 4)						
Turn-on Delay Time	t _{d(on)}		-	18	-	nS
Turn-on Rise Time	t _r	VDD=30V,ID=2A,RL=15Ω	-	12	-	nS
Turn-Off Delay Time	t _{d(off)}	,RG=2.5Ω,VGS=10V	-	56	-	nS
Turn-Off Fall Time	t _f		-	15	-	nS
Total Gate Charge	Qg	V 20VI 20A	-	100	-	nC
Gate-Source Charge	Q _{gs}	V_{DS} =30V, I_D =30A, V_{GS} =10V	-	20	-	nC
Gate-Drain Charge	Q_{gd}	V _{GS} -10V	-	30	-	nC
Drain-Source Diode Characteristics						
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =40A	-	-	1.2	V
Diode Forward Current (Note 2)	I _S		-	-	80	Α
Reverse Recovery Time	t _{rr}	Tj=25°C,I _F =75A	-		36	nS
Reverse Recovery Charge	Qrr	di/dt=100A/μs ^(Note3)	-		56	nC
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)				

Notes:

- $\textbf{1.} \ \textbf{Repetitive Rating: Pulse width limited by maximum junction temperature.}$
- **2.** Surface Mounted on FR4 Board, $t \le 10$ sec.
- **3.** Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.
- 4. Guaranteed by design, not subject to production
- **5.** EAS condition: Tj=25 $^{\circ}\text{C}$,VDD=40V,VG=10V,L=0.5mH,Rg=25 Ω

Test Circuit

1) E_{AS} Test Circuits

2) Gate Charge Test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Rdson-Junction Temperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 8 Safe Operation Area

Figure 9 BV_{DSS} vs Junction Temperature

Figure 10 V_{GS(th)} vs Junction Temperature

Figure 11 Normalized Maximum Transient Thermal Impedance