DATA 608: Homework 1 (Baseball Regression)

Shoshanna Farber, Josh Forster, Glen Davis, Andrew Bowen, Charles Ugiagbe 2023-09-04

First, let's read in the provided dataset

Data Exploration

First, let's print out some summary statistics. We're primarily interested in the TARGET_WINS feature, so we'll look at that first

- ## The mean number of wins in a season is 80.7908611599297
- ## The median number of wins in a season is 82
- ## The standard deviation for number of wins in a season is 15.7521524768421

Let's also make a boxplot and histogram of the TARGET_WINS variable. This should give us a sense of the distribution of wins for teams/seasons in our population

Overall, the number of wins in a season for a given baseball team looks fairly normally distributed. We can also plot this distribution via a boxplot, which helps to highlight outliers.

Let's look at raw correlations between our other included variables and a team's win total for a season:

```
[,1]
##
## TARGET_WINS
                     1.0000000
## TEAM_BATTING_H
                     0.3887675
## TEAM_BATTING_2B
                     0.2891036
## TEAM_BATTING_3B
                     0.1426084
## TEAM_BATTING_HR
                     0.1761532
## TEAM_BATTING_BB
                     0.2325599
## TEAM_BATTING_SO
                             NA
## TEAM_BASERUN_SB
                             NA
## TEAM_BASERUN_CS
                             NA
## TEAM_BATTING_HBP
                             NA
## TEAM_PITCHING_H
                    -0.1099371
## TEAM_PITCHING_HR
                     0.1890137
## TEAM_PITCHING_BB
                     0.1241745
## TEAM_PITCHING_SO
## TEAM_FIELDING_E -0.1764848
## TEAM_FIELDING_DP
```

Let's make a basic model with all inputs

```
## (Intercept) TEAM_BATTING_H TEAM_BATTING_2B TEAM_BATTING_3B
## 60.28826257 1.91347621 0.02638808 -0.10117554
```

```
TEAM_BATTING_HR
                    TEAM_BATTING_BB
                                       TEAM_BATTING_SO
                                                        TEAM_BASERUN_SB
##
##
        -4.84370721
                          -4.45969136
                                            0.34196258
                                                             0.03304398
    TEAM_BASERUN_CS TEAM_BATTING_HBP
                                       TEAM_PITCHING_H TEAM_PITCHING_HR
##
##
        -0.01104427
                           0.08247269
                                           -1.89095685
                                                             4.93043182
                                       TEAM_FIELDING_E TEAM_FIELDING_DP
  TEAM_PITCHING_BB TEAM_PITCHING_SO
##
##
         4.51089069
                          -0.37364495
                                           -0.17204198
                                                            -0.10819208
```

We can make some plots to help test our assumptions of our basic model using the plot function on our model variable

Residuals vs Fitted

Now we can make a model with inputs that we know from baseball.

- Total hits (TEAM_BATTING_H)
- Total walks gained (TEAM_BATTING_BB)
- Total hits allowed (TEAM_PITCHING_H)
- Total walks allowed (TEAM_PITCHING_BB)

The thinking being here that good teams generally tend to get on base more frequently (TEAM_BATTING_HITS and TEAM_BATTING_BB) while allowing fewer runners on base (Negative predictor variables TEAM_PITCHING_H and TEAM_PITCHING_BB)

```
##
## Call:
  lm(formula = TARGET_WINS ~ TEAM_BATTING_H + TEAM_BATTING_BB +
##
       TEAM_PITCHING_H + TEAM_PITCHING_BB, data = train)
##
##
  Residuals:
##
       Min
                1Q
                    Median
                                 3Q
                                        Max
   -52.133
                     0.379
                                    52.416
##
            -8.860
                             9.373
##
## Coefficients:
##
                      Estimate Std. Error t value Pr(>|t|)
  (Intercept)
                    -0.3518000
                                3.2552864
                                            -0.108 0.913949
##
## TEAM_BATTING_H
                     0.0497667
                                0.0021032
                                            23.663
                                                    < 2e-16 ***
## TEAM BATTING BB
                     0.0148499
                                0.0039923
                                             3.720 0.000204 ***
## TEAM PITCHING H
                    -0.0025469
                                0.0003317
                                            -7.679 2.36e-14 ***
## TEAM_PITCHING_BB
                     0.0092317
                                0.0027681
                                             3.335 0.000867 ***
##
                  0 '*** 0.001 '** 0.01 '* 0.05 '. ' 0.1 ' ' 1
## Signif. codes:
```

##
Residual standard error: 13.73 on 2271 degrees of freedom
Multiple R-squared: 0.2416, Adjusted R-squared: 0.2403
F-statistic: 180.9 on 4 and 2271 DF, p-value: < 2.2e-16</pre>

Residuals vs Fitted

Fitted values
'ARGET_WINS ~ TEAM_BATTING_H + TEAM_BATTING_BB + TEAM_PITCHING_H + TEAM_BATTING_BB + TEAM_PITCHING_BB + TEAM_PITCHING

Theoretical Quantiles

ARGET_WINS ~ TEAM_BATTING_H + TEAM_BATTING_BB + TEAM_PITCHING_H + TEAM_BATTING_BB + TEAM_PITCHING_BB + TE

ARGET_WINS ~ TEAM_BATTING_H + TEAM_BATTING_BB + TEAM_PITCHING_H + TEAM_BATTING_BB +

'ARGET_WINS ~ TEAM_BATTING_H + TEAM_BATTING_BB + TEAM_PITCHING_H + TEAM_BATTING_BB + TEAM_BATTING_BB + TEAM_PITCHING_H + TEAM_BATTING_BB +

It's interesting to not that with selected variables (walks and hits gained/allowed per team) that our adjusted R^2 actually went down, indicating the amount of variability in TARGET_WINS explained by our more selective walks/hits model is less than the model including all variables.

Looking at our residual plot above, there seems to be a clustering of residuals along the x-axis at $X \approx 80$. This shows a pattern in our residuals

Let's plot our response variable ($Total\ Wins$) versus each of our predictor variables to get a sense of linear relationships

Model Evaluation

<pre>predict(lm_all, test)</pre>											
##	1	2	3	4	5	6	7	8			
##	NA	NA	NA	79.60984	NA	NA	NA	NA			
##	9	10	11	12	13	14	15	16			
##	NA	NA	NA	NA	NA	NA	NA	NA			
##	17	18	19	20	21	22	23	24			
##	NA	78.95693	NA	NA	NA	NA	NA	NA			
##	25	26	27	28	29	30	31	32			
## '	77.16939	86.81801	NA	NA	NA	NA	NA	NA			
##	33	34	35	36	37	38	39	40			
##	NA	NA	NA	NA	NA	NA	NA	NA			
##	41	42	43	44	45	46	47	48			
##	NA	NA	NA	NA	NA	NA	NA	NA			
##	49	50	51	52	53	54	55	56			
##	NA	NA	NA	NA	NA	NA	NA	NA			
##	57	58	59	60	61	62	63	64			
##	NA	NA	NA	NA	NA	NA	NA	85.05198			
##	65	66	67	68	69	70	71	72			
	81.33195	NA	NA	NA	NA	NA	NA	NA			
##	73	74	75	76	77	78	79	80			
##	NA	NA	NA	NA	NA	NA	NA	NA			
##	81	82	83	84	85	86	87	88			
##	NA	NA	NA	NA	NA	NA	NA	NA			
##	89	90	91	92	93	94	95	96			
##	NA	NA	NA	NA	NA	NA	NA	NA			
##	97	98	99	100	101	102	103	104			

	37.4	37.4	37.4	37.4	37.4	37.4	27.4	37.4
##	NA 105	NA 100	NA 107	NA 100	NA 100	NA	NA	NA 110
##	105	106	107	108	109	110	111	112
##	NA	NA		72.39264		NA	NA	NA 100
##	113	114	115	116	117	118	119	120
##	NA 101	NA 100	NA 102	NA 104		74.49284		NA 100
##	121	122	123	124	125	126	127	128
##	NA	NA	NA	NA	NA	NA	NA	NA
##	129	130	131	132	133	134	135	136
##	NA	NA	NA	NA	NA		86.10463	NA
##	137	138	139	140	141	142	143	144
##	NA	NA	NA	NA	NA	NA	NA	NA
##	145	146	147	148	149	150	151	152
##	NA	NA	NA	NA	NA	NA	NA	NA
##	153	154	155	156	157	158	159	160
##	NA	NA	NA		86.64915	NA	NA	NA
##	161	162	163	164	165	166	167	168
##	NA	NA	NA	NA	NA	NA	NA	NA
##	169	170	171	172	173	174	175	176
##	NA	NA	NA	NA	NA	NA	NA	NA
##	177	178	179	180	181	182	183	184
##	NA	NA	NA	NA	NA	NA		88.27315
##	185	186	187	188	189	190	191	192
##	NA	NA	NA	NA	NA	NA	NA	NA
##	193	194	195	196	197	198	199	200
##	NA	NA	NA	NA	NA	NA	NA	NA
##	201	202	203	204	205	206	207	208
##	NA	NA	NA	NA	NA	NA	NA	NA
##	209	210	211	212	213	214	215	216
##	NA	NA	NA	NA	NA	NA	NA	NA
##	217	218	219	220	221	222	223	224
##	NA	NA	NA	NA	NA		77.10932	
##	225	226	227	228	229	230	231	232
##	NA	NA		69.38398		NA	NA	NA
##	233	234	235	236	237	238	239	240
##	NA	NA	NA	NA	NA	NA	NA	NA
##	241	242	243	244	245	246	247	248
##	NA	NA	NA	NA	NA	NA	NA	NA
##	249	250	251	252	253	254	255	256
##		78.12011		NA	NA	NA	NA	NA
##	257	258	259					
##	NA	NA	NA					

Appendix: Report Code

```
knitr::opts_chunk$set(echo = TRUE)
library(glue)
library(tidyverse)
library(car)
df <- read.csv("https://raw.githubusercontent.com/andrewbowen19/businessAnalyticsDataMiningDATA621/main
df <- data.frame(df)
mean_wins <- mean(df$TARGET_WINS)</pre>
```

```
median_wins <- median(df$TARGET_WINS)</pre>
sd_wins <- sd(df$TARGET_WINS)</pre>
# Print summary stats
print(glue("The mean number of wins in a season is {mean_wins}"))
print(glue("The median number of wins in a season is {median_wins}"))
print(glue("The standard deviation for number of wins in a season is {sd_wins}"))
ggplot(df, aes(x=TARGET_WINS)) + geom_histogram()
ggplot(df, aes(x=TARGET_WINS)) + geom_boxplot()
train <- subset(df, select=-c(INDEX))</pre>
cor(train, df$TARGET_WINS)
lm_all <- lm(TARGET_WINS~., train)</pre>
coef(lm_all)
plot(lm_all)
# Create model with select inputs (walks and hits allowed/gained)
lm_select <- lm(TARGET_WINS ~ TEAM_BATTING_H + TEAM_BATTING_BB + TEAM_PITCHING_H + TEAM_PITCHING_BB, tr</pre>
summary(lm_select)
plot(lm_select)
# Plot selective model residuals
plot(lm_select$residuals)
# Plot our response variable for each predictor variable to get a sense of
plot(TARGET WINS ~ TEAM BATTING H + TEAM BATTING BB + TEAM PITCHING H + TEAM PITCHING BB, data=train)
eval_data_url <- "https://raw.githubusercontent.com/andrewbowen19/businessAnalyticsDataMiningDATA621/ma
test <- read.csv(eval_data_url)</pre>
predict(lm_all, test)
eval_data_url <- "https://raw.githubusercontent.com/andrewbowen19/businessAnalyticsDataMiningDATA621/ma
test <- read.csv(eval_data_url)</pre>
```

Model Evaluation

We'll need to read in our evaluation data, which is hosted on GitHub for reproduceability.

Appendix: Report Code

Below is the code for this report to generate the models and charts above

```
knitr::opts_chunk$set(echo = TRUE)
library(glue)
library(tidyverse)
library(car)
df <- read.csv("https://raw.githubusercontent.com/andrewbowen19/businessAnalyticsDataMiningDATA621/main
df <- data.frame(df)
mean_wins <- mean(df$TARGET_WINS)</pre>
```

```
median_wins <- median(df$TARGET_WINS)</pre>
sd_wins <- sd(df$TARGET_WINS)</pre>
# Print summary stats
print(glue("The mean number of wins in a season is {mean_wins}"))
print(glue("The median number of wins in a season is {median_wins}"))
print(glue("The standard deviation for number of wins in a season is {sd_wins}"))
ggplot(df, aes(x=TARGET_WINS)) + geom_histogram()
ggplot(df, aes(x=TARGET_WINS)) + geom_boxplot()
train <- subset(df, select=-c(INDEX))</pre>
cor(train, df$TARGET_WINS)
lm_all <- lm(TARGET_WINS~., train)</pre>
coef(lm all)
plot(lm_all)
# Create model with select inputs (walks and hits allowed/gained)
lm_select <- lm(TARGET_WINS ~ TEAM_BATTING_H + TEAM_BATTING_BB + TEAM_PITCHING_H + TEAM_PITCHING_BB, tr</pre>
summary(lm_select)
plot(lm_select)
# Plot selective model residuals
plot(lm_select$residuals)
# Plot our response variable for each predictor variable to get a sense of
plot(TARGET WINS ~ TEAM BATTING H + TEAM BATTING BB + TEAM PITCHING H + TEAM PITCHING BB, data=train)
eval_data_url <- "https://raw.githubusercontent.com/andrewbowen19/businessAnalyticsDataMiningDATA621/ma
test <- read.csv(eval_data_url)</pre>
predict(lm_all, test)
eval_data_url <- "https://raw.githubusercontent.com/andrewbowen19/businessAnalyticsDataMiningDATA621/ma
test <- read.csv(eval_data_url)</pre>
```