MATH 1800-B HANDOUT 3: LINES AND PLANES IN 3D

Subhadip Chowdhury

■ Exercise 1.

Below is a list of vectors and a list of properties. Match the two sets in such a way that each entry in left column matches a different entry in right column.

A. $(3, -2, 8)$	I. is parallel to the straight line $\frac{x-1}{2} = y - 3 = z$
B. 4,2,2	II. is perpendicular to the plane $z - 2y - x = 3$
C. (3, 1, -1)	III. is perpendicular to both $\langle 2,3,0 \rangle$ and $\langle -2,5,2 \rangle$
D. (1,2,-1)	IV. lies in the plane $x - y + 2z = 3$

■ Exercise 2.

Find the point(s) on the surface xy + yz + zx + 4 = 0 where the tangent plane is parallel to the XY-plane.

■ Exercise 3.

- (a) Find parametric equations for the line through the points (6,1,1) and (9,1,4). Call this line L_1 .
- (b) Find parametric equations for the line through the points (-4,4,0) and (-6,5,1). Call this line L_2 .
- (c) Find parametric equations for the line through the points (6, -1, -5) and (2, 1, -3). Call this line L_3 .
- (d) Verify that L_2 and L_3 are parallel. (Their direction vectors should be parallel.) Are they the same line? How could you tell?
- (e) Do lines L_1 and L_2 intersect? If so, where?
- (f) Find the intersection of L_1 with the plane given by the equation 2x + y + 3z = 7.
- (g) Find the point on the plane 2x + y + 3z = 7 which is closest to the origin.
- (h) Find the point on L_2 closest to the origin.

■ Exercise 4.

Suppose the curve given by $\vec{r}(t) = \langle \cos(\pi t), \sin(\pi t), t \rangle$ intersects the paraboloid $z = x^2 + y^2$ at a point $P = (x_0, y_0, z_0)$.

- (a) Find the coordinates of P.
- (b) Find equation of the tangent plane to the paraboloid at *P*.
- (c) What is the equation of the tangent line to the curve $\vec{r}(t)$ at P?
- (d) What is the angle of intersection between the curve and the paraboloid? This is the angle between the tangent line in part (3) and the plane in part (2).