Week 10: Temporal data

23/03/23

Child mortality in Sri Lanka

In this lab you will be fitting a couple of different models to the data about child mortality in Sri Lanka, which was used in the lecture. Here's the data and the plot from the lecture:

Ratio of neonatal to other child mortality (logged), Sri Lanka

Fitting a linear model

Let's firstly fit a linear model in time to these data. Here's the code to do this:

Extract the results:

```
res <- mod %>%
  gather_draws(mu[t]) %>%
  median_qi() %>%
  mutate(year = years[t])
```

Plot the results:

Ratio of neonatal to other child mortality (logged), Sri Lanka Linear fit shown in black

Question 1

Project the linear model above out to 2023 by adding a generated quantities block in Stan (do the projections based on the expected value μ). Plot the resulting projections on a graph similar to that above.

```
stan_data <- list(y = lka$logit_ratio, year_i = observed_years - years[1]+1,</pre>
                  T = nyears, years = years, N = length(observed_years),
                  mid_year = mean(years), se = lka$se,P=9)
mod2 <- stan(data = stan_data,</pre>
             file = here("Labs/Lab7/lka2.stan"))
mod2
res=mod2 %>%
  gather_draws(mu[t]) %>%
  median_qi() %>%
  mutate(year=years[t])
res_p=mod2 %>%
  gather_draws(mu_p[p]) %>%
  median_qi() %>%
  mutate(year=years[nyears]+p)
ggplot(lka, aes(year, logit_ratio)) +
  geom_point(aes( color = source)) +
  geom_line(aes( color = source), lty = 2) +
  geom_ribbon(aes(ymin = logit_ratio - se,
                  ymax = logit_ratio + se,
                  fill = source), alpha = 0.1) +
  theme_bw()+
  geom_line(data = res, aes(year, .value)) +
  geom_ribbon(data = res, aes(y = .value, ymin = .lower, ymax = .upper), alpha = 0.2)+
  geom_line(data = res_p, aes(year, .value),col="red") +
  geom_ribbon(data = res_p, aes(y = .value, ymin = .lower, ymax = .upper),fill="red", alph
  theme_bw()+
  labs(title = "Ratio of neonatal to other child mortality (logged), Sri Lanka",
       y = "log ratio", subtitle = "Linear fit shown in black, projections in red")
```


Random walks

Question 2

Code up and estimate a first order random walk model to fit to the Sri Lankan data, taking into account measurement error, and project out to 2023.

Ratio of neonatal to other child mortality (logged), Sri Lanka RW fit shown in black, projections in red

Question 3

Now alter your model above to estimate and project a second-order random walk model (RW2).

Question 4

Run the first order and second order random walk models, including projections out to 2023. Compare these estimates with the linear fit by plotting everything on the same graph.

```
mod4 <- stan(data = stan_data,</pre>
             file = here("Labs/Lab7/lka4.stan"))
mod4
# Plot projections
res2=mod4 %>%
  gather_draws(mu[t]) %>%
  median_qi() %>%
  mutate(year=years[t])
res2_p=mod4 %>%
  gather_draws(mu_p[p]) %>%
  median_qi() %>%
  mutate(year=years[nyears]+p)
ggplot(lka, aes(year, logit_ratio)) +
  geom_point() +
  geom\_line(lty = 2) +
  #geom_ribbon(aes(ymin = logit_ratio - se,
                   ymax = logit_ratio + se,
                   fill = source), alpha = 0.1) +
  geom_line(data = res, aes(year, .value, col = "RW1")) +
  geom_ribbon(data = res, aes(y = .value, ymin = .lower, ymax = .upper, fill = "RW1"), alp
  geom_line(data = res_p, aes(year, .value,col="RW1 projections")) +
  geom_ribbon(data = res_p, aes(y = .value, ymin = .lower, ymax = .upper,fill="RW1 project
   geom_line(data = res2, aes(year, .value, col = "RW2")) +
  geom_ribbon(data = res2, aes(y = .value, ymin = .lower, ymax = .upper, fill = "RW2"), al
  geom_line(data = res2_p, aes(year, .value,col="RW2 projections")) +
  geom_ribbon(data = res2_p, aes(y = .value, ymin = .lower, ymax = .upper,fill="RW2 projection")
  theme bw()+
  labs(title = "Ratio of neonatal to other child mortality (logged), Sri Lanka",
       y = "log ratio")
```


Question 5

Rerun the RW2 model excluding the VR data. Briefly comment on the differences between the two data situations.

```
res3_p=mod5 %>%
  gather_draws(mu_p[p]) %>%
 median_qi() %>%
  mutate(year=years[nyears]+p)
ggplot(lka, aes(year, logit_ratio)) +
 geom_point() +
  geom_line(lty = 2) +
 # geom_ribbon(aes(ymin = logit_ratio - se,
                 ymax = logit_ratio + se,
                  fill = source), alpha = 0.1) +
  geom_line(data = res2, aes(year, .value, col = "VR")) +
  geom_ribbon(data = res2, aes(y = .value, ymin = .lower, ymax = .upper, fill = "VR"), alp
  geom_line(data = res2_p, aes(year, .value,col="VR projections")) +
  geom_ribbon(data = res2_p, aes(y = .value, ymin = .lower, ymax = .upper,fill="VR project
  geom_line(data = res3, aes(year, .value, col = "No VR")) +
  geom_ribbon(data = res3, aes(y = .value, ymin = .lower, ymax = .upper, fill = "No VR"),
 geom_line(data = res3_p, aes(year, .value,col="No VR projections")) +
 geom_ribbon(data = res3_p, aes(y = .value, ymin = .lower, ymax = .upper,fill="No VR proje
 theme_bw()+
 labs(title = "Ratio of neonatal to other child mortality (logged), Sri Lanka",
       y = "log ratio")
```


Question 6

Briefly comment on which model you think is most appropriate, or an alternative model that would be more appropriate in this context.