Precalculus Quadratic polynomials viewed as functions

Todor Milev

2019

Definition

Let a, b, c be real numbers with $a \neq 0$. The function

$$f(x) = ax^2 + bx + c$$

is called a quadratic function.

Definition

Let a, b, c be real numbers with $a \neq 0$. The function

$$f(x) = ax^2 + bx + c$$

is called a quadratic function.

• The graph of a quadratic function is called a parabola.

Example (Completing the square)

$$3x^2 - 5x + 1$$

Example (Completing the square)

$$3x^2 - 5x + 1 = 3(x^2 - 7x) + 1$$

Example (Completing the square)

$$3x^2 - 5x + 1 = 3\left(x^2 - \frac{5}{3}x\right) + 1$$

Example (Completing the square)

$$3x^{2} - 5x + 1 = 3\left(x^{2} - \frac{5}{3}x\right) + 1$$
$$= 3\left(x^{2} - \frac{5}{2 \cdot 3}x\right) + 1$$

Example (Completing the square)

$$3x^{2} - 5x + 1 = 3\left(x^{2} - \frac{5}{3}x\right) + 1$$

$$= 3\left(x^{2} - 2 \cdot \frac{5}{2 \cdot 3}x\right) + 1$$

$$= 3\left(x^{2} - 2 \cdot \frac{5}{6}x + ? - ?\right) + 1$$

Example (Completing the square)

$$3x^{2} - 5x + 1 = 3\left(x^{2} - \frac{5}{3}x\right) + 1$$

$$= 3\left(x^{2} - 2 \cdot \frac{5}{2 \cdot 3}x\right) + 1$$

$$= 3\left(x^{2} - 2 \cdot \frac{5}{6}x + ? - ?\right) + 1$$

Example (Completing the square)

$$3x^{2} - 5x + 1 = 3\left(x^{2} - \frac{5}{3}x\right) + 1$$

$$= 3\left(x^{2} - 2 \cdot \frac{5}{2 \cdot 3}x\right) + 1$$

$$= 3\left(x^{2} - 2 \cdot \frac{5}{6}x + \left(\frac{5}{6}\right)^{2} - \left(\frac{5}{6}\right)^{2}\right) + 1$$

Example (Completing the square)

$$3x^{2} - 5x + 1 = 3\left(x^{2} - \frac{5}{3}x\right) + 1$$

$$= 3\left(x^{2} - 2 \cdot \frac{5}{2 \cdot 3}x\right) + 1$$

$$= 3\left(x^{2} - 2 \cdot \frac{5}{6}x + \left(\frac{5}{6}\right)^{2} - \left(\frac{5}{6}\right)^{2}\right) + 1$$

Example (Completing the square)

$$3x^{2} - 5x + 1 = 3\left(x^{2} - \frac{5}{3}x\right) + 1$$

$$= 3\left(x^{2} - 2 \cdot \frac{5}{2 \cdot 3}x\right) + 1$$

$$= 3\left(x^{2} - 2 \cdot \frac{5}{6}x + \left(\frac{5}{6}\right)^{2} - \left(\frac{5}{6}\right)^{2}\right) + 1$$

$$= 3\left(? - ?\right) + 1$$

Example (Completing the square)

$$3x^{2} - 5x + 1 = 3\left(x^{2} - \frac{5}{3}x\right) + 1$$

$$= 3\left(x^{2} - 2 \cdot \frac{5}{2 \cdot 3}x\right) + 1$$

$$= 3\left(x^{2} - 2 \cdot \frac{5}{6}x + \left(\frac{5}{6}\right)^{2} - \left(\frac{5}{6}\right)^{2}\right) + 1$$

$$= 3\left(\left(x - \frac{5}{6}\right)^{2} - ?\right) + 1$$

Example (Completing the square)

$$3x^{2} - 5x + 1 = 3\left(x^{2} - \frac{5}{3}x\right) + 1$$

$$= 3\left(x^{2} - 2 \cdot \frac{5}{2 \cdot 3}x\right) + 1$$

$$= 3\left(x^{2} - 2 \cdot \frac{5}{6}x + \left(\frac{5}{6}\right)^{2} - \left(\frac{5}{6}\right)^{2}\right) + 1$$

$$= 3\left(\left(x - \frac{5}{6}\right)^{2} - \frac{?}{2}\right) + 1$$

Example (Completing the square)

$$3x^{2} - 5x + 1 = 3\left(x^{2} - \frac{5}{3}x\right) + 1$$

$$= 3\left(x^{2} - 2 \cdot \frac{5}{2 \cdot 3}x\right) + 1$$

$$= 3\left(x^{2} - 2 \cdot \frac{5}{6}x + \left(\frac{5}{6}\right)^{2} - \left(\frac{5}{6}\right)^{2}\right) + 1$$

$$= 3\left(\left(x - \frac{5}{6}\right)^{2} - \frac{25}{36}\right) + 1$$

Example (Completing the square)

$$3x^{2} - 5x + 1 = 3\left(x^{2} - \frac{5}{3}x\right) + 1$$

$$= 3\left(x^{2} - 2 \cdot \frac{5}{2 \cdot 3}x\right) + 1$$

$$= 3\left(x^{2} - 2 \cdot \frac{5}{6}x + \left(\frac{5}{6}\right)^{2} - \left(\frac{5}{6}\right)^{2}\right) + 1$$

$$= 3\left(\left(x - \frac{5}{6}\right)^{2} - \frac{25}{36}\right) + 1$$

$$= 3\left(x - \frac{5}{6}\right)^{2} - \frac{25}{12} + 1$$

Example (Completing the square)

$$3x^{2} - 5x + 1 = 3\left(x^{2} - \frac{5}{3}x\right) + 1$$

$$= 3\left(x^{2} - 2 \cdot \frac{5}{2 \cdot 3}x\right) + 1$$

$$= 3\left(x^{2} - 2 \cdot \frac{5}{6}x + \left(\frac{5}{6}\right)^{2} - \left(\frac{5}{6}\right)^{2}\right) + 1$$

$$= 3\left(\left(x - \frac{5}{6}\right)^{2} - \frac{25}{36}\right) + 1$$

$$= 3\left(x - \frac{5}{6}\right)^{2} - \frac{25}{12} + 1$$

Example (Completing the square)

$$3x^{2} - 5x + 1 = 3\left(x^{2} - \frac{5}{3}x\right) + 1$$

$$= 3\left(x^{2} - 2 \cdot \frac{5}{2 \cdot 3}x\right) + 1$$

$$= 3\left(x^{2} - 2 \cdot \frac{5}{6}x + \left(\frac{5}{6}\right)^{2} - \left(\frac{5}{6}\right)^{2}\right) + 1$$

$$= 3\left(\left(x - \frac{5}{6}\right)^{2} - \frac{25}{36}\right) + 1$$

$$= 3\left(x - \frac{5}{6}\right)^{2} - \frac{25}{12} + 1$$

$$= 3\left(x - \frac{5}{6}\right)^{2} + ?$$

Example (Completing the square)

$$3x^{2} - 5x + 1 = 3\left(x^{2} - \frac{5}{3}x\right) + 1$$

$$= 3\left(x^{2} - 2 \cdot \frac{5}{2 \cdot 3}x\right) + 1$$

$$= 3\left(x^{2} - 2 \cdot \frac{5}{6}x + \left(\frac{5}{6}\right)^{2} - \left(\frac{5}{6}\right)^{2}\right) + 1$$

$$= 3\left(\left(x - \frac{5}{6}\right)^{2} - \frac{25}{36}\right) + 1$$

$$= 3\left(x - \frac{5}{6}\right)^{2} - \frac{25}{12} + 1$$

$$= 3\left(x - \frac{5}{6}\right)^{2} - \frac{13}{12}.$$

Definition (Completing the square)

$$ax^2 + bx + c$$

Definition (Completing the square)

$$ax^2 + bx + c = a\left(x^2 + \frac{b}{a}x\right) + c$$

Definition (Completing the square)

$$ax^2 + bx + c = a\left(x^2 + \frac{b}{a}x\right) + c$$

Definition (Completing the square)

$$ax^{2} + bx + c = a\left(x^{2} + \frac{b}{a}x\right) + c$$
$$= a\left(x^{2} + 2 \cdot \frac{b}{2a}x\right) + c$$

Definition (Completing the square)

$$ax^{2} + bx + c = a\left(x^{2} + \frac{b}{a}x\right) + c$$

$$= a\left(x^{2} + 2 \cdot \frac{b}{2a}x\right) + c$$

$$= a\left(x^{2} + 2\frac{b}{2a}x + \left(\begin{array}{c} \\ \end{array}\right)^{2} - \left(\begin{array}{c} \\ \end{array}\right)^{2}\right) + c\left(\begin{array}{c} \text{Add \& subtract} \\ \end{array}\right)^{2}$$

Definition (Completing the square)

$$ax^{2} + bx + c = a\left(x^{2} + \frac{b}{a}x\right) + c$$

$$= a\left(x^{2} + 2 \cdot \frac{b}{2a}x\right) + c$$

$$= a\left(x^{2} + 2\frac{b}{2a}x + \left(\frac{b}{2a}\right)^{2} - \left(\frac{b}{2a}\right)^{2}\right) + c\left(\frac{b}{2a}\right)^{2}$$
Add & subtract $\left(\frac{b}{2a}\right)^{2}$

Definition (Completing the square)

$$ax^{2} + bx + c = a\left(x^{2} + \frac{b}{a}x\right) + c$$

$$= a\left(x^{2} + 2 \cdot \frac{b}{2a}x\right) + c$$

$$= a\left(x^{2} + 2\frac{b}{2a}x + \left(\frac{b}{2a}\right)^{2} - \left(\frac{b}{2a}\right)^{2}\right) + c \begin{vmatrix} Add & \text{subtract} \\ \left(\frac{b}{2a}\right)^{2} \end{vmatrix}$$

$$= a\left(\left(x + \frac{b}{2a}\right)^{2} - \frac{b^{2}}{4a^{2}}\right) + c \begin{vmatrix} Add & \text{subtract} \\ \left(\frac{b}{2a}\right)^{2} \end{vmatrix}$$

$$= a\left(\left(x + \frac{b}{2a}\right)^{2} - \frac{b^{2}}{4a^{2}}\right) + c \begin{vmatrix} Add & \text{subtract} \\ \left(\frac{b}{2a}\right)^{2} \end{vmatrix}$$

$$= a\left(\left(x + \frac{b}{2a}\right)^{2} - \frac{b^{2}}{4a^{2}}\right) + c \begin{vmatrix} Add & \text{subtract} \\ \left(\frac{b}{2a}\right)^{2} \end{vmatrix}$$

$$= a\left(\left(x + \frac{b}{2a}\right)^{2} - \frac{b^{2}}{4a^{2}}\right) + c \begin{vmatrix} Add & \text{subtract} \\ \left(\frac{b}{2a}\right)^{2} + \frac{b^{2}}{2a^{2}} + \frac{b^{2}}{2a^{2}$$

Definition (Completing the square)

$$ax^{2} + bx + c = a\left(x^{2} + \frac{b}{a}x\right) + c$$

$$= a\left(x^{2} + 2 \cdot \frac{b}{2a}x\right) + c$$

$$= a\left(x^{2} + 2\frac{b}{2a}x + \left(\frac{b}{2a}\right)^{2} - \left(\frac{b}{2a}\right)^{2}\right) + c \begin{vmatrix} Add & \text{subtract} \\ \left(\frac{b}{2a}\right)^{2} \\ \text{use} \end{vmatrix}$$

$$= a\left(\left(x + \frac{b}{2a}\right)^{2} - \frac{b^{2}}{4a^{2}}\right) + c \begin{vmatrix} Add & \text{subtract} \\ \left(\frac{b}{2a}\right)^{2} \\ \text{use} \\ \left(A + B\right)^{2} = A^{2} + 2AB + B^{2} \end{vmatrix}$$

Definition (Completing the square)

$$ax^{2} + bx + c = a\left(x^{2} + \frac{b}{a}x\right) + c$$

$$= a\left(x^{2} + 2 \cdot \frac{b}{2a}x\right) + c$$

$$= a\left(x^{2} + 2 \cdot \frac{b}{2a}x\right) + c \left(\frac{b}{2a}\right)^{2} - \left(\frac{b}{2a}\right)^{2}\right) + c \begin{vmatrix} Add & \text{subtract} \\ \left(\frac{b}{2a}\right)^{2} \\ \text{use} \end{vmatrix}$$

$$= a\left(\left(x + \frac{b}{2a}\right)^{2} - \frac{b^{2}}{4a^{2}}\right) + c \begin{vmatrix} Add & \text{subtract} \\ \left(\frac{b}{2a}\right)^{2} \\ \text{use} \\ \left(A + B\right)^{2} = A^{2} + 2AB + B^{2}$$

Definition (Completing the square)

$$ax^{2} + bx + c = a\left(x^{2} + \frac{b}{a}x\right) + c$$

$$= a\left(x^{2} + 2 \cdot \frac{b}{2a}x\right) + c$$

$$= a\left(x^{2} + 2\frac{b}{2a}x + \left(\frac{b}{2a}\right)^{2} - \left(\frac{b}{2a}\right)^{2}\right) + c \begin{vmatrix} Add & \text{subtract} \\ \left(\frac{b}{2a}\right)^{2} \end{vmatrix}$$

$$= a\left(\left(x + \frac{b}{2a}\right)^{2} - \frac{b^{2}}{4a^{2}}\right) + c \begin{vmatrix} Add & \text{subtract} \\ \left(\frac{b}{2a}\right)^{2} \end{vmatrix}$$

$$= a\left(\left(x + \frac{b}{2a}\right)^{2} - \frac{b^{2}}{4a^{2}}\right) + c \begin{vmatrix} Add & \text{subtract} \\ \left(\frac{b}{2a}\right)^{2} \end{vmatrix}$$

$$= a\left(x^{2} + 2\frac{b}{2a}x + \left(\frac{b}{2a}\right)^{2} - \frac{b^{2}}{4a^{2}}\right) + c \begin{vmatrix} Add & \text{subtract} \\ \left(\frac{b}{2a}\right)^{2} + \frac{b}{2a}x + \frac{b}{2a$$

Definition (Completing the square)

$$ax^{2} + bx + c = a\left(x^{2} + \frac{b}{a}x\right) + c$$

$$= a\left(x^{2} + 2 \cdot \frac{b}{2a}x\right) + c$$

$$= a\left(x^{2} + 2\frac{b}{2a}x + \left(\frac{b}{2a}\right)^{2} - \left(\frac{b}{2a}\right)^{2}\right) + c \begin{vmatrix} Add & subtract \\ \left(\frac{b}{2a}\right)^{2} \end{vmatrix}$$

$$= a\left(\left(x + \frac{b}{2a}\right)^{2} - \frac{b^{2}}{4a^{2}}\right) + c$$

$$= a\left(x + \frac{b}{2a}\right)^{2} - a \cdot \frac{b^{2}}{4a^{2}} + c$$

$$= a\left(x + \frac{b}{2a}\right)^{2} - a \cdot \frac{b^{2}}{4a^{2}} + c$$

Definition (Completing the square)

$$ax^{2} + bx + c = a\left(x^{2} + \frac{b}{a}x\right) + c$$

$$= a\left(x^{2} + 2 \cdot \frac{b}{2a}x\right) + c$$

$$= a\left(x^{2} + 2\frac{b}{2a}x + \left(\frac{b}{2a}\right)^{2} - \left(\frac{b}{2a}\right)^{2}\right) + c \begin{vmatrix} Add & \text{subtract} \\ \left(\frac{b}{2a}\right)^{2} \end{vmatrix}$$

$$= a\left(\left(x + \frac{b}{2a}\right)^{2} - \frac{b^{2}}{4a^{2}}\right) + c$$

$$= a\left(x + \frac{b}{2a}\right)^{2} - a \cdot \frac{b^{2}}{4a^{2}} + c$$

$$= a\left(x + \frac{b}{2a}\right)^{2} + c - \frac{b^{2}}{4a}.$$

Definition (Completing the square)

$$ax^{2} + bx + c = a\left(x^{2} + \frac{b}{a}x\right) + c$$

$$= a\left(x^{2} + 2 \cdot \frac{b}{2a}x\right) + c$$

$$= a\left(x^{2} + 2\frac{b}{2a}x + \left(\frac{b}{2a}\right)^{2} - \left(\frac{b}{2a}\right)^{2}\right) + c \begin{vmatrix} Add & \text{subtract} \\ \left(\frac{b}{2a}\right)^{2} \end{vmatrix}$$

$$= a\left(\left(x + \frac{b}{2a}\right)^{2} - \frac{b^{2}}{4a^{2}}\right) + c$$

$$= a\left(x + \frac{b}{2a}\right)^{2} - a \cdot \frac{b^{2}}{4a^{2}} + c$$

$$= a\left(x + \frac{b}{2a}\right)^{2} + c - \frac{b^{2}}{4a}.$$

$$f(x) =$$

$$f(x) = a\left(x + \frac{b}{2a}\right)^2 + c - \frac{b^2}{4a}$$

$$f(x) = a\left(x + \frac{b}{2a}\right)^2 + c - \frac{b^2}{4a}$$
 complete the square
$$= a\left(x - \left(-\frac{b}{2a}\right)\right)^2 - \frac{b^2 - 4ac}{4a}$$

$$f(x) = a\left(x + \frac{b}{2a}\right)^2 + c - \frac{b^2}{4a}$$
 complete the square
$$= a\left(x - \left(-\frac{b}{2a}\right)\right)^2 - \frac{b^2 - 4ac}{4a}$$

Let $a \neq 0$ and let $f(x) = ax^2 + bx + c$. Then we have the equality

$$f(x) = a\left(x + \frac{b}{2a}\right)^2 + c - \frac{b^2}{4a}$$
 complete the square
$$= a\left(x - \left(-\frac{b}{2a}\right)\right)^2 - \frac{b^2 - 4ac}{4a}$$

Definition (Discriminant of quadratic function)

The quantity $D = b^2 - 4ac$ is called the *discriminant* of the quadratic function $ax^2 + bx + c$.

Let $a \neq 0$ and let $f(x) = ax^2 + bx + c$. Then we have the equality

$$f(x) = a\left(x + \frac{b}{2a}\right)^2 + c - \frac{b^2}{4a}$$
$$= a\left(x - \left(-\frac{b}{2a}\right)\right)^2 - \frac{b^2 - 4ac}{4a}$$
$$= a\left(x - \left(-\frac{b}{2a}\right)\right)^2 - \frac{D}{4a}.$$

complete the square

Definition (Discriminant of quadratic function)

The quantity $D = b^2 - 4ac$ is called the *discriminant* of the quadratic function $ax^2 + bx + c$.

Let $a \neq 0$ and let $f(x) = ax^2 + bx + c$. Then we have the equality

$$f(x) = a\left(x + \frac{b}{2a}\right)^2 + c - \frac{b^2}{4a}$$
 complete the square
$$= a\left(x - \left(-\frac{b}{2a}\right)\right)^2 - \frac{b^2 - 4ac}{4a}$$

$$= a\left(x - \left(-\frac{b}{2a}\right)\right)^2 - \frac{D}{4a}.$$

Definition

The expression $f(x) = a(x - h)^2 + k$, where $h = -\frac{b}{2a}$ and $k = -\frac{D}{4a} = -\frac{b^2 - 4ac}{4a}$ is called the standard form of $ax^2 + bx + c$.

Definition (Discriminant of quadratic function)

The quantity $D = b^2 - 4ac$ is called the *discriminant* of the quadratic function $ax^2 + bx + c$.

Let $a \neq 0$ and let $f(x) = ax^2 + bx + c$. Then we have the equality

$$f(x) = a\left(x + \frac{b}{2a}\right)^2 + c - \frac{b^2}{4a}$$
 complete the square
$$= a\left(x - \left(-\frac{b}{2a}\right)\right)^2 - \frac{b^2 - 4ac}{4a}$$

$$= a\left(x - \left(-\frac{b}{2a}\right)\right)^2 - \frac{D}{4a}.$$

Definition

The expression $f(x) = a(x - h)^2 + k$, where $h = -\frac{b}{2a}$ and $k = -\frac{D}{4a} = -\frac{b^2 - 4ac}{4a}$ is called the standard form of $ax^2 + bx + c$.

Definition (Discriminant of quadratic function)

The quantity $D = b^2 - 4ac$ is called the *discriminant* of the quadratic function $ax^2 + bx + c$.

Let $a \neq 0$ and let $f(x) = ax^2 + bx + c$. Then we have the equality

$$f(x) = a\left(x + \frac{b}{2a}\right)^2 + c - \frac{b^2}{4a}$$
 complete the square
$$= a\left(x - \left(-\frac{b}{2a}\right)\right)^2 - \frac{b^2 - 4ac}{4a}$$

$$= a\left(x - \left(-\frac{b}{2a}\right)\right)^2 - \frac{D}{4a}.$$

Definition

The expression $f(x) = a(x - h)^2 + k$, where $h = -\frac{b}{2a}$ and $k = -\frac{D}{4a} = -\frac{b^2 - 4ac}{4a}$ is called the standard form of $ax^2 + bx + c$.

$$k = -\frac{D}{4a} = -\frac{b^2 - 4ac}{4a}$$
 is called the standard form of $ax^2 + bx + c$.

The expression $f(x) = a(x - h)^2 + k$, where $h = -\frac{b}{2a}$ and

$$k = -\frac{D}{4a} = -\frac{b^2 - 4ac}{4a}$$
 is called the standard form of $ax^2 + bx + c$.

• The graph of $y = x^2$ is a parabola; its shape is assumed known.

6/22

$$k = -\frac{D}{4a} = -\frac{b^2 - 4ac}{4a}$$
 is called the standard form of $ax^2 + bx + c$.

- The graph of $y = x^2$ is a parabola; its shape is assumed known.
- The standard form shows how the graph of an arbitrary quadratic is obtained from the graph of $y = x^2$:

$$k = -\frac{D}{4a} = -\frac{b^2 - 4ac}{4a}$$
 is called the standard form of $ax^2 + bx + c$.

- The graph of $y = x^2$ is a parabola; its shape is assumed known.
 - The standard form shows how the graph of an arbitrary quadratic is obtained from the graph of $y = x^2$:
 - ax^2 stretches $y = x^2$ by factor of a and possibly reflects across the x axis.

The expression
$$f(x) = a(x - h)^2 + k$$
, where $h = -\frac{b}{2a}$ and

$$k = -\frac{D}{4a} = -\frac{b^2 - 4ac}{4a}$$
 is called the standard form of $ax^2 + bx + c$.

- The graph of $y = x^2$ is a parabola; its shape is assumed known.
 - The standard form shows how the graph of an arbitrary quadratic is obtained from the graph of $y = x^2$:
 - ax^2 stretches $y = x^2$ by factor of a and possibly reflects across the x axis.
 - $a(x-h)^2$ shifts $y=ax^2$ by h units right.

$$k = -\frac{D}{4a} = -\frac{b^2 - 4ac}{4a}$$
 is called the standard form of $ax^2 + bx + c$.

- The graph of $y = x^2$ is a parabola; its shape is assumed known.
- The standard form shows how the graph of an arbitrary quadratic is obtained from the graph of y = x²:
 - ax^2 stretches $y = x^2$ by factor of a and possibly reflects across the x axis.
 - $a(x-h)^2$ shifts $y=ax^2$ by h units right.
 - $a(x-h)^2 + k$ shifts $y = a(x-h)^2 + k$ by k units up.

The expression $f(x) = a(x - h)^2 + k$, where $h = -\frac{b}{2a}$ and

$$k = -\frac{D}{4a} = -\frac{b^2 - 4ac}{4a}$$
 is called the standard form of $ax^2 + bx + c$.

• The graph of a quadratic function is a parabola.

$$k = -\frac{D}{4a} = -\frac{b^2 - 4ac}{4a}$$
 is called the standard form of $ax^2 + bx + c$.

- The graph of a quadratic function is a parabola.
- When a > 0 the parabola opens upwards.

$$k = -\frac{D}{4a} = -\frac{b^2 - 4ac}{4a}$$
 is called the standard form of $ax^2 + bx + c$.

- The graph of a quadratic function is a parabola.
- When a > 0 the parabola opens upwards.
- When a < 0 the parabola opens downwards.

The expression $f(x) = a(x - h)^2 + k$, where $h = -\frac{b}{2a}$ and

$$k = -\frac{D}{4a} = -\frac{b^2 - 4ac}{4a}$$
 is called the standard form of $ax^2 + bx + c$.

- The graph of a quadratic function is a parabola.
- When a > 0 the parabola opens upwards.
- When a < 0 the parabola opens downwards.
- When |a| increases, the parabola becomes steeper.

2019

$$k = -\frac{D}{4a} = -\frac{b^2 - 4ac}{4a}$$
 is called the standard form of $ax^2 + bx + c$.

- The graph of a quadratic function is a parabola.
- When a > 0 the parabola opens upwards.
- When a < 0 the parabola opens downwards.
- When |a| increases, the parabola becomes steeper.

$$k = -\frac{D}{4a} = -\frac{b^2 - 4ac}{4a}$$
 is called the standard form of $ax^2 + bx + c$.

- The graph of a quadratic function is a parabola.
- When a > 0 the parabola opens upwards.
- When a < 0 the parabola opens downwards.
- When |a| increases, the parabola becomes steeper.

The expression $f(x) = a(x - h)^2 + k$, where $h = -\frac{b}{2a}$ and

$$k = -\frac{D}{4a} = -\frac{b^2 - 4ac}{4a}$$
 is called the standard form of $ax^2 + bx + c$.

- The graph of a quadratic function is a parabola.
- When a > 0 the parabola opens upwards.
- When a < 0 the parabola opens downwards.
- When |a| increases, the parabola becomes steeper.

2019

$$k = -\frac{D}{4a} = -\frac{b^2 - 4ac}{4a}$$
 is called the standard form of $ax^2 + bx + c$.

- The graph of a quadratic function is a parabola.
- When a > 0 the parabola opens upwards.
- When a < 0 the parabola opens downwards.
- When |a| increases, the parabola becomes steeper.

$$k = -\frac{D}{4a} = -\frac{b^2 - 4ac}{4a}$$
 is called the standard form of $ax^2 + bx + c$.

- The graph of a quadratic function is a parabola.
- When a > 0 the parabola opens upwards.
- When a < 0 the parabola opens downwards.
- When |a| increases, the parabola becomes steeper.

$$k = -\frac{D}{4a} = -\frac{b^2 - 4ac}{4a}$$
 is called the standard form of $ax^2 + bx + c$.

- The graph of a quadratic function is a parabola.
- When a > 0 the parabola opens upwards.
- When a < 0 the parabola opens downwards.
- When |a| increases, the parabola becomes steeper.
- The point $(h, k) = (-\frac{b}{2a}, -\frac{D}{4a})$ is called the vertex of the parabola.

$$k = -\frac{D}{4a} = -\frac{b^2 - 4ac}{4a}$$
 is called the standard form of $ax^2 + bx + c$.

- The graph of a quadratic function is a parabola.
- When a > 0 the parabola opens upwards.
- When a < 0 the parabola opens downwards.
- When |a| increases, the parabola becomes steeper.
- The point $(h, k) = (-\frac{b}{2a}, -\frac{D}{4a})$ is called the vertex of the parabola.
- The parabola is symmetric with respect to the line $x = h = -\frac{b}{2a}$, i.e., the vertical line through its vertex.

$$k = -\frac{D}{4a} = -\frac{b^2 - 4ac}{4a}$$
 is called the standard form of $ax^2 + bx + c$.

- The graph of a quadratic function is a parabola.
- When a > 0 the parabola opens upwards.
- When a < 0 the parabola opens downwards.
- When |a| increases, the parabola becomes steeper.
- The point $(h, k) = \left(-\frac{b}{2a}, -\frac{D}{4a}\right)$ is called the vertex of the parabola.
- The parabola is symmetric with respect to the line $x = h = -\frac{b}{2a}$, i.e., the vertical line through its vertex.

The expression $f(x) = a(x - h)^2 + k$, where $h = -\frac{b}{2a}$ and $k = -\frac{D}{4a} = -\frac{b^2 - 4ac}{4a}$ is called the standard form of $ax^2 + bx + c$.

$$k = -\frac{D}{4a} = -\frac{b^2 - 4ac}{4a}$$
 is called the standard form of $ax^2 + bx + c$

When we change *h* and *k* we move the vertex of the parabola without change in steepness.

The expression $f(x) = a(x - h)^2 + k$, where $h = -\frac{b}{2a}$ and

$$k = -\frac{D}{4a} = -\frac{b^2 - 4ac}{4a}$$
 is called the standard form of $ax^2 + bx + c$.

 When we change h and k we move the vertex of the parabola without change in steepness.

The expression $f(x) = a(x - h)^2 + k$, where $h = -\frac{b}{2a}$ and

$$k = -\frac{D}{4a} = -\frac{b^2 - 4ac}{4a}$$
 is called the standard form of $ax^2 + bx + c$.

 When we change h and k we move the vertex of the parabola without change in steepness.

2019

$$k = -\frac{D}{4a} = -\frac{b^2 - 4ac}{4a}$$
 is called the standard form of $ax^2 + bx + c$.

- When we change h and k we move the vertex of the parabola without change in steepness.
- Therefore when we change b and c we move the vertex of the parabola without change in steepness.

Write an equation of a parabola with vertex at (1,2) that passes through the point $(2,\frac{3}{2})$.

Write an equation of a parabola with vertex at (1,2) that passes through the point $(2,\frac{3}{2})$.

$$a(x-h)^2+k = y$$

Standard form

Write an equation of a parabola with vertex at (1,2) that passes through the point $(2,\frac{3}{2})$.

$$a(x-h)^2+k = y$$

$$a(x-?)^2+? = y$$

Standard form

Write an equation of a parabola with vertex at (1,2) that passes through the point $(2,\frac{3}{2})$.

$$a(x-h)^2 + k = y$$

 $a(x-1)^2 + 2 = y$

Standard form
Vertex at (1,2)

Write an equation of a parabola with vertex at (1,2) that passes through the point $(2,\frac{3}{2})$.

$$a(x - h)^2 + k = y$$

 $a(x - 1)^2 + 2 = y$

Standard form
Vertex at (1,2)

Write an equation of a parabola with vertex at $(1, \frac{2}{2})$ that passes through the point $(2, \frac{3}{2})$.

$$a(x-h)^2 + k = y$$

 $a(x-1)^2 + 2 = y$

Standard form
Vertex at (1,2)

Write an equation of a parabola with vertex at (1,2) that passes through the point $(2,\frac{3}{2})$.

$$a(x-h)^2 + k = y$$

 $a(x-1)^2 + 2 = y$
 $a(2-1)^2 + 2 = \frac{3}{2}$

Standard form

Vertex at (1,2)

Passes through $(2, \frac{2}{3})$

Write an equation of a parabola with vertex at (1,2) that passes through the point $(2,\frac{3}{2})$.

$$a(x-h)^2 + k = y$$

 $a(x-1)^2 + 2 = y$
 $a(2-1)^2 + 2 = \frac{3}{2}$

Standard form

Vertex at (1,2)

Passes through $(2, \frac{2}{3})$

Write an equation of a parabola with vertex at (1,2) that passes through the point $(2,\frac{3}{2})$.

$$a(x-h)^2 + k = y$$

 $a(x-1)^2 + 2 = y$
 $a(2-1)^2 + 2 = \frac{3}{2}$

Standard form

Vertex at (1,2)

Passes through $(2, \frac{2}{3})$

Write an equation of a parabola with vertex at (1,2) that passes through the point $(2,\frac{3}{2})$.

$$a(x-h)^2 + k = y$$

 $a(x-1)^2 + 2 = y$
 $a(2-1)^2 + 2 = \frac{3}{2}$
 $a = \frac{3}{2} - 2$

Standard form

Vertex at (1,2)Passes through $(2,\frac{2}{3})$

Write an equation of a parabola with vertex at (1,2) that passes through the point $(2,\frac{3}{2})$.

$$a(x-h)^{2} + k = y$$

 $a(x-1)^{2} + 2 = y$
 $a(2-1)^{2} + 2 = \frac{3}{2}$
 $a = \frac{3}{2} - 2$

Standard form

Vertex at (1,2)Passes through $(2,\frac{2}{3})$

Write an equation of a parabola with vertex at (1,2) that passes through the point $(2,\frac{3}{2})$.

$$a(x-h)^{2} + k = y$$

 $a(x-1)^{2} + 2 = y$
 $a(2-1)^{2} + 2 = \frac{3}{2}$
 $a = \frac{3}{2} - 2 = -\frac{1}{2}$

Standard form

Vertex at (1,2)

Passes through $(2, \frac{2}{3})$

Write an equation of a parabola with vertex at (1,2) that passes through the point $(2,\frac{3}{2})$.

$$a(x-h)^{2} + k = y$$

$$a(x-1)^{2} + 2 = y$$

$$a(2-1)^{2} + 2 = \frac{3}{2}$$

$$a = \frac{3}{2} - 2 = -\frac{1}{2}$$

$$y = -\frac{1}{2}(x-1)^{2} + 2$$
Standard form

Vertex at $(1,2)$

Passes through $(2,\frac{2}{3})$

Write an equation of a parabola with vertex at (1,2) that passes through the point $(2,\frac{3}{2})$.

$$a(x-h)^{2} + k = y$$

$$a(x-1)^{2} + 2 = y$$

$$a(2-1)^{2} + 2 = \frac{3}{2}$$

$$a = \frac{3}{2} - 2 = -\frac{1}{2}$$

$$y = -\frac{1}{2}(x-1)^{2} + 2$$
Standard form

Vertex at $(1,2)$

Passes through $(2,\frac{2}{3})$

Write an equation of a parabola with vertex at (1,2) that passes through the point $(2,\frac{3}{2})$.

$$a(x-h)^{2} + k = y$$

$$a(x-1)^{2} + 2 = y$$

$$a(2-1)^{2} + 2 = \frac{3}{2}$$

$$a = \frac{3}{2} - 2 = -\frac{1}{2}$$

$$y = -\frac{1}{2}(x-1)^{2} + 2$$

$$y = -\frac{1}{2}x^{2} + x + \frac{3}{2}$$

Standard form

Vertex at (1,2)

Passes through $(2, \frac{2}{3})$

Final answer

Alternative answer

Problem (Quadratic equation formula)

$$ax^2 + bx + c = 0$$

Problem (Quadratic equation formula)

$$ax^{2} + bx + c = 0$$
 | complete the square $a\left(x + \frac{b}{2a}\right)^{2} - \frac{D}{4a} = 0$

Problem (Quadratic equation formula)

Solve the general quadratic equation

$$ax^{2} + bx + c = 0$$
 complete the square $a\left(x + \frac{b}{2a}\right)^{2} - \frac{D}{4a} = 0$ where $D = b^{2} - 4ac$

complete the square

where
$$D = b^2 - 4ac$$

Problem (Quadratic equation formula)

Solve the general quadratic equation

$$ax^{2} + bx + c = 0$$

$$a\left(x + \frac{b}{2a}\right)^{2} - \frac{D}{4a} = 0$$

$$a\left(\left(x + \frac{b}{2a}\right)^{2} - \frac{D}{4a^{2}}\right) = 0$$

complete the square

where
$$D = b^2 - 4ac$$

Problem (Quadratic equation formula)

Solve the general quadratic equation

$$ax^{2} + bx + c = 0$$

$$a\left(x + \frac{b}{2a}\right)^{2} - \frac{D}{4a} = 0$$

$$a\left(\left(x + \frac{b}{2a}\right)^{2} - \frac{D}{4a^{2}}\right) = 0$$

$$a\left(\left(x + \frac{b}{2a}\right)^{2} - \left(\frac{\sqrt{D}}{2a}\right)^{2}\right) = 0$$

complete the square where $D = b^2 - 4ac$

Problem (Quadratic equation formula)

Solve the general quadratic equation

$$ax^{2} + bx + c = 0$$

$$a\left(x + \frac{b}{2a}\right)^{2} - \frac{D}{4a} = 0$$

$$a\left(\left(x + \frac{b}{2a}\right)^{2} - \frac{D}{4a^{2}}\right) = 0$$

$$a\left(\left(x + \frac{b}{2a}\right)^{2} - \left(\frac{\sqrt{D}}{2a}\right)^{2}\right) = 0$$

complete the square $where D = b^2 - 4ac$

Problem (Quadratic equation formula)

Solve the general quadratic equation
$$ax^2 + bx + c = 0 \qquad \text{complete the square}$$

$$a\left(x + \frac{b}{2a}\right)^2 - \frac{D}{4a} = 0 \qquad \text{where } D = b^2 - 4ac$$

$$a\left(\left(x + \frac{b}{2a}\right)^2 - \frac{D}{4a^2}\right) = 0$$

$$a\left(\left(x + \frac{b}{2a}\right)^2 - \left(\frac{\sqrt{D}}{2a}\right)^2\right) = 0$$

$$a\left(x + \frac{b}{2a} - \frac{\sqrt{D}}{2a}\right)\left(x + \frac{b}{2a} + \frac{\sqrt{D}}{2a}\right) = 0 \qquad \text{use } A^2 - B^2 = (A - B)(A + B)$$

Problem (Quadratic equation formula)

Solve the general quadratic equation
$$ax^2 + bx + c = 0 \qquad | complete the square$$

$$a\left(x + \frac{b}{2a}\right)^2 - \frac{D}{4a} = 0 \qquad | where D = b^2 - 4ac$$

$$a\left(\left(x + \frac{b}{2a}\right)^2 - \frac{D}{4a^2}\right) = 0$$

$$a\left(\left(x + \frac{b}{2a}\right)^2 - \left(\frac{\sqrt{D}}{2a}\right)^2\right) = 0$$

$$a\left(x + \frac{b}{2a} - \frac{\sqrt{D}}{2a}\right)\left(x + \frac{b}{2a} + \frac{\sqrt{D}}{2a}\right) = 0 \qquad | use A^2 - B^2 = (A - B)(A + B)$$

Problem (Quadratic equation formula)

Solve the general quadratic equation
$$ax^2 + bx + c = 0 \qquad | complete the square$$

$$a\left(x + \frac{b}{2a}\right)^2 - \frac{D}{4a} = 0 \qquad | where D = b^2 - 4ac$$

$$a\left(\left(x + \frac{b}{2a}\right)^2 - \frac{D}{4a^2}\right) = 0$$

$$a\left(\left(x + \frac{b}{2a}\right)^2 - \left(\frac{\sqrt{D}}{2a}\right)^2\right) = 0$$

$$a\left(x + \frac{b}{2a} - \frac{\sqrt{D}}{2a}\right)\left(x + \frac{b}{2a} + \frac{\sqrt{D}}{2a}\right) = 0 \qquad | use A^2 - B^2 = (A - B)(A + B)$$

Problem (Quadratic equation formula)

Solve the general quadratic equation
$$ax^2 + bx + c = 0 \qquad | complete the square$$

$$a\left(x + \frac{b}{2a}\right)^2 - \frac{D}{4a} = 0 \qquad | where D = b^2 - 4ac$$

$$a\left(\left(x + \frac{b}{2a}\right)^2 - \frac{D}{4a^2}\right) = 0$$

$$a\left(\left(x + \frac{b}{2a}\right)^2 - \left(\frac{\sqrt{D}}{2a}\right)^2\right) = 0$$

$$a\left(x + \frac{b}{2a} - \frac{\sqrt{D}}{2a}\right)\left(x + \frac{b}{2a} + \frac{\sqrt{D}}{2a}\right) = 0 \qquad | use A^2 - B^2 = (A - B)(A + B)$$

$$x + \frac{b}{2a} - \frac{\sqrt{D}}{2a} = 0 \qquad or \quad x + \frac{b}{2a} + \frac{\sqrt{D}}{2a} = 0$$

Problem (Quadratic equation formula)

solve the general quadratic equation
$$ax^2 + bx + c = 0$$

$$a\left(x + \frac{b}{2a}\right)^2 - \frac{D}{4a} = 0$$

$$a\left(\left(x + \frac{b}{2a}\right)^2 - \frac{D}{4a^2}\right) = 0$$

$$a\left(\left(x + \frac{b}{2a}\right)^2 - \left(\frac{\sqrt{D}}{2a}\right)^2\right) = 0$$

$$a\left(\left(x + \frac{b}{2a}\right)^2 - \left(\frac{\sqrt{D}}{2a}\right)^2\right) = 0$$

$$a\left(x + \frac{b}{2a} - \frac{\sqrt{D}}{2a}\right)\left(x + \frac{b}{2a} + \frac{\sqrt{D}}{2a}\right) = 0$$

$$x + \frac{b}{2a} - \frac{\sqrt{D}}{2a} = 0$$
or $x + \frac{b}{2a} + \frac{\sqrt{D}}{2a} = 0$

Problem (Quadratic equation formula)

Solve the general quadratic equation
$$ax^2 + bx + c = 0$$

$$a\left(x + \frac{b}{2a}\right)^2 - \frac{D}{4a} = 0$$

$$a\left(\left(x + \frac{b}{2a}\right)^2 - \frac{D}{4a^2}\right) = 0$$

$$a\left(\left(x + \frac{b}{2a}\right)^2 - \left(\frac{\sqrt{D}}{2a}\right)^2\right) = 0$$

$$a\left(\left(x + \frac{b}{2a}\right)^2 - \left(\frac{\sqrt{D}}{2a}\right)^2\right) = 0$$

$$a\left(x + \frac{b}{2a} - \frac{\sqrt{D}}{2a}\right)\left(x + \frac{b}{2a} + \frac{\sqrt{D}}{2a}\right) = 0$$

$$x + \frac{b}{2a} - \frac{\sqrt{D}}{2a} = 0$$

$$x = \frac{-b + \sqrt{D}}{2a}$$

$$x = \frac{-b + \sqrt{D}}{2a}$$

Problem (Quadratic equation formula)

$$ax^{2} + bx + c = 0$$

$$a\left(x + \frac{b}{2a}\right)^{2} - \frac{D}{4a} = 0$$

$$a\left(\left(x + \frac{b}{2a}\right)^{2} - \frac{D}{4a^{2}}\right) = 0$$

$$a\left(\left(x + \frac{b}{2a}\right)^{2} - \left(\frac{\sqrt{D}}{2a}\right)^{2}\right) = 0$$

$$a\left(\left(x + \frac{b}{2a}\right)^{2} - \left(\frac{\sqrt{D}}{2a}\right)^{2}\right) = 0$$

$$a\left(x + \frac{b}{2a} - \frac{\sqrt{D}}{2a}\right)\left(x + \frac{b}{2a} + \frac{\sqrt{D}}{2a}\right) = 0$$

$$x + \frac{b}{2a} - \frac{\sqrt{D}}{2a} = 0$$

$$x = \frac{-b + \sqrt{D}}{2a}$$

Problem (Quadratic equation formula)

Solve the general quadratic equation
$$ax^2 + bx + c = 0$$
 | complete the square
$$a\left(x + \frac{b}{2a}\right)^2 - \frac{D}{4a} = 0$$
 | where $D = b^2 - 4ac$
$$a\left(\left(x + \frac{b}{2a}\right)^2 - \frac{D}{4a^2}\right) = 0$$

$$a\left(\left(x + \frac{b}{2a}\right)^2 - \left(\frac{\sqrt{D}}{2a}\right)^2\right) = 0$$

$$a\left(x + \frac{b}{2a} - \frac{\sqrt{D}}{2a}\right)\left(x + \frac{b}{2a} + \frac{\sqrt{D}}{2a}\right) = 0$$
 | use $A^2 - B^2 = (A - B)(A + B)$
$$x + \frac{b}{2a} - \frac{\sqrt{D}}{2a} = 0$$
 or
$$x + \frac{b}{2a} + \frac{\sqrt{D}}{2a} = 0$$

$$x = \frac{-b + \sqrt{D}}{2a}$$
 or
$$x = \frac{-b - \sqrt{D}}{2a}$$
.

Problem (Quadratic equation formula)

Solve the general quadratic equation
$$ax^2 + bx + c = 0 \qquad \text{complete the square}$$

$$a\left(x + \frac{b}{2a}\right)^2 - \frac{D}{4a} = 0 \qquad \text{where } D = b^2 - 4ac$$

$$a\left(\left(x + \frac{b}{2a}\right)^2 - \left(\frac{D}{2a}\right)^2\right) = 0$$

$$a\left(\left(x + \frac{b}{2a}\right)^2 - \left(\frac{\sqrt{D}}{2a}\right)^2\right) = 0$$

$$a\left(x + \frac{b}{2a} - \frac{\sqrt{D}}{2a}\right)\left(x + \frac{b}{2a} + \frac{\sqrt{D}}{2a}\right) = 0 \qquad \text{use } A^2 - B^2 = (A - B)(A + B)$$

$$x + \frac{b}{2a} - \frac{\sqrt{D}}{2a} = 0 \qquad \text{or} \quad x + \frac{b}{2a} + \frac{\sqrt{D}}{2a} = 0$$

$$x = \frac{-b + \sqrt{D}}{2a} \quad \text{or} \quad x = \frac{-b - \sqrt{D}}{2a}.$$

Problem (Quadratic equation formula)

solve the general quadratic equation
$$ax^{2} + bx + c = 0$$

$$a\left(x + \frac{b}{2a}\right)^{2} - \frac{D}{4a} = 0$$

$$a\left(\left(x + \frac{b}{2a}\right)^{2} - \frac{D}{4a^{2}}\right) = 0$$

$$a\left(\left(x + \frac{b}{2a}\right)^{2} - \left(\frac{\sqrt{D}}{2a}\right)^{2}\right) = 0$$

$$a\left(\left(x + \frac{b}{2a}\right)^{2} - \left(\frac{\sqrt{D}}{2a}\right)^{2}\right) = 0$$

$$a\left(x + \frac{b}{2a} - \frac{\sqrt{D}}{2a}\right)\left(x + \frac{b}{2a} + \frac{\sqrt{D}}{2a}\right) = 0$$

$$x + \frac{b}{2a} - \frac{\sqrt{D}}{2a} = 0$$

$$x = \frac{-b + \sqrt{D}}{2a}$$
or
$$x = \frac{-b - \sqrt{D}}{2a}$$

$$x = \frac{-b - \sqrt{D}}{2a}$$

Problem (Quadratic equation formula)

$$ax^2 + bx + c = 0$$

$$x = \frac{-b + \sqrt{D}}{2a}$$
 or

$$x = \frac{-b - \sqrt{D}}{2a}.$$

The solutions of the quadratic equation

$$ax^2 + bx + c = 0$$

are given by:

$$x = \frac{-b + \sqrt{D}}{2a}$$
 or $x = \frac{-b - \sqrt{D}}{2a}$

The solutions of the quadratic equation

$$ax^2 + bx + c = 0$$

are given by:

$$x = \frac{-b + \sqrt{D}}{2a}$$
 or $x = \frac{-b - \sqrt{D}}{2a}$

where $D = b^2 - 4ac$

The solutions of the quadratic equation

$$ax^2 + bx + c = 0$$

are given by:

$$x = x_1 = \frac{-b + \sqrt{D}}{2a}$$
 or $x = x_2 = \frac{-b - \sqrt{D}}{2a}$,

where $D = b^2 - 4ac$

Theorem

The solutions of the quadratic equation

$$ax^2 + bx + c = 0$$

are given by:

$$x = x_1 = \frac{-b + \sqrt{D}}{2a}$$
 or $x = x_2 = \frac{-b - \sqrt{D}}{2a}$,

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Theorem

The solutions of the quadratic equation

$$ax^2 + bx + c = 0$$

are given by:

$$x = x_1 = \frac{-b + \sqrt{D}}{2a}$$
 or $x = x_2 = \frac{-b - \sqrt{D}}{2a}$,

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Theorem

The solutions of the quadratic equation

$$ax^2 + bx + c = 0$$

are given by:

$$x = x_1 = \frac{-b + \sqrt{D}}{2a}$$
 or $x = x_2 = \frac{-b - \sqrt{D}}{2a}$,

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Theorem

The solutions of the quadratic equation

$$ax^2 + bx + c = 0$$

are given by:

$$x = x_1 = \frac{-b + \sqrt{D}}{2a}$$
 or $x = x_2 = \frac{-b - \sqrt{D}}{2a}$,

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Theorem

The solutions of the quadratic equation

$$ax^2 + bx + c = 0$$

are given by:

$$x = x_1 = \frac{-b + \sqrt{D}}{2a}$$
 or $x = x_2 = \frac{-b - \sqrt{D}}{2a}$,

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Theorem

The solutions of the quadratic equation

$$ax^2 + bx + c = 0$$

are given by:

$$x = x_1 = \frac{-b + \sqrt{D}}{2a}$$
 or $x = x_2 = \frac{-b - \sqrt{D}}{2a}$,

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Theorem

The solutions of the quadratic equation

$$ax^2 + bx + c = 0$$

are given by:

$$x = x_1 = \frac{-b + \sqrt{D}}{2a}$$
 or $x = x_2 = \frac{-b - \sqrt{D}}{2a}$,

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

The solutions of the quadratic equation

$$ax^2 + bx + c = 0$$

are the numbers

$$x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$
 $x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$.

$$x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

The solutions of the quadratic equation

$$ax^2 + bx + c = 0$$

are the numbers

$$x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$
 $x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$

$$x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

Abbreviated as

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-b \pm \sqrt{D}}{2a},$$
 where $D = b^2 - 4ac$.

where
$$D = b^2 - 4ac$$
.

The solutions of the quadratic equation

$$ax^2 + bx + c = 0$$

are the numbers

$$x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$
 $x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$

$$x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

Abbreviated as

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-b \pm \sqrt{D}}{2a},$$
 where $D = b^2 - 4ac$.

where
$$D = b^2 - 4ac$$
.

• If D < 0 then \sqrt{D} is not a real \Rightarrow quadratic has no real solutions.

Theorem

The solutions of the quadratic equation

$$ax^2 + bx + c = 0$$

are the numbers

$$x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$
 $x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$

Abbreviated as

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-b \pm \sqrt{D}}{2a},$$
 where $D = b^2 - 4ac$.

- If D < 0 then \sqrt{D} is not a real \Rightarrow quadratic has no real solutions.
- If D = 0 then $x_1 = x_2$, the equation has only one zero (with multiplicity two).

Theorem

The solutions of the quadratic equation

$$ax^2 + bx + c = 0$$

are the numbers

$$x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a} \qquad x_2 = \frac{-b}{2a}$$

$$x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

Abbreviated as

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-b \pm \sqrt{D}}{2a},$$
 where $D = b^2 - 4ac$.

- If D < 0 then \sqrt{D} is not a real \Rightarrow quadratic has no real solutions.
- If D = 0 then $x_1 = x_2$, the equation has only one zero (with multiplicity two). The zero is located at the vertex of the parabola.

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
$$= \frac{-(-4) \pm \sqrt{(-4)^2 - 4 \cdot 1 \cdot 3}}{2 \cdot 1}$$

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$= \frac{-(-4) \pm \sqrt{(-4)^2 - 4 \cdot 1 \cdot 3}}{2 \cdot 1}$$

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$= \frac{-(-4) \pm \sqrt{(-4)^2 - 4 \cdot 1 \cdot 3}}{2 \cdot 1}$$

$$x_{1}, x_{2} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$= \frac{-(-4) \pm \sqrt{(-4)^{2} - 4 \cdot 1 \cdot 3}}{2 \cdot 1}$$

$$= \frac{4 \pm \sqrt{4}}{2}$$

$$x_{1}, x_{2} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$= \frac{-(-4) \pm \sqrt{(-4)^{2} - 4 \cdot 1 \cdot 3}}{2 \cdot 1}$$

$$= \frac{4 \pm \sqrt{4}}{2}$$

$$x_{1}, x_{2} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$= \frac{-(-4) \pm \sqrt{(-4)^{2} - 4 \cdot 1 \cdot 3}}{2 \cdot 1}$$

$$= \frac{4 \pm \sqrt{4}}{2}$$

$$= \frac{4 \pm 2}{2}$$

$$x_{1}, x_{2} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$= \frac{-(-4) \pm \sqrt{(-4)^{2} - 4 \cdot 1 \cdot 3}}{2 \cdot 1}$$

$$= \frac{4 \pm \sqrt{4}}{2}$$

$$= \frac{4 \pm 2}{2}$$

$$= \begin{cases} \frac{4 + 2}{2} \\ \frac{4 - 2}{2} \end{cases}$$

$$x_{1}, x_{2} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$= \frac{-(-4) \pm \sqrt{(-4)^{2} - 4 \cdot 1 \cdot 3}}{2 \cdot 1}$$

$$= \frac{4 \pm \sqrt{4}}{2}$$

$$= \frac{4 \pm 2}{2}$$

$$= \begin{cases} \frac{4 + 2}{2} = \frac{6}{2} \\ \frac{4 - 2}{2} \end{cases}$$

$$x_{1}, x_{2} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$= \frac{-(-4) \pm \sqrt{(-4)^{2} - 4 \cdot 1 \cdot 3}}{2 \cdot 1}$$

$$= \frac{4 \pm \sqrt{4}}{2}$$

$$= \frac{4 \pm 2}{2}$$

$$= \begin{cases} \frac{4+2}{2} = \frac{6}{2} = 3 \\ \frac{4-2}{2} \end{cases}$$

$$x_{1}, x_{2} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$= \frac{-(-4) \pm \sqrt{(-4)^{2} - 4 \cdot 1 \cdot 3}}{2 \cdot 1}$$

$$= \frac{4 \pm \sqrt{4}}{2}$$

$$= \frac{4 \pm 2}{2}$$

$$= \begin{cases} \frac{4 + 2}{2} = \frac{6}{2} = 3 \\ \frac{4 - 2}{2} = \frac{2}{2} \end{cases}$$

$$x_{1}, x_{2} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$= \frac{-(-4) \pm \sqrt{(-4)^{2} - 4 \cdot 1 \cdot 3}}{2 \cdot 1}$$

$$= \frac{4 \pm \sqrt{4}}{2}$$

$$= \frac{4 \pm 2}{2}$$

$$= \begin{cases} \frac{4 + 2}{2} = \frac{6}{2} = 3\\ \frac{4 - 2}{2} = \frac{2}{2} = 1 \end{cases}$$

$$x_{1}, x_{2} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$= \frac{-(-4) \pm \sqrt{(-4)^{2} - 4 \cdot 1 \cdot 3}}{2 \cdot 1}$$

$$= \frac{4 \pm \sqrt{4}}{2}$$

$$= \frac{4 \pm 2}{2}$$

$$= \begin{cases} \frac{4+2}{2} = \frac{6}{2} = 3\\ \frac{4-2}{2} = \frac{2}{2} = 1 \end{cases}$$

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x_{1}, x_{2} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$= \frac{-(-1) \pm \sqrt{(-1)^{2} - 4 \cdot \frac{1}{2} \cdot (-1)}}{2 \cdot \frac{1}{2}}$$

$$x_{1}, x_{2} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$= \frac{-(-1) \pm \sqrt{(-1)^{2} - 4 \cdot \frac{1}{2} \cdot (-1)}}{2 \cdot \frac{1}{2}}$$

$$x_{1}, x_{2} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$= \frac{-(-1) \pm \sqrt{(-1)^{2} - 4 \cdot \frac{1}{2} \cdot (-1)}}{2 \cdot \frac{1}{2}}$$

$$x_{1}, x_{2} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$= \frac{-(-1) \pm \sqrt{(-1)^{2} - 4 \cdot \frac{1}{2} \cdot (-1)}}{2 \cdot \frac{1}{2}}$$

$$x_{1}, x_{2} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$= \frac{-(-1) \pm \sqrt{(-1)^{2} - 4 \cdot \frac{1}{2} \cdot (-1)}}{2 \cdot \frac{1}{2}}$$

$$= 1 \pm \sqrt{3}$$

$$x_{1}, x_{2} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$= \frac{-(-1) \pm \sqrt{(-1)^{2} - 4 \cdot \frac{1}{2} \cdot (-1)}}{2 \cdot \frac{1}{2}}$$

$$= 1 \pm \sqrt{3}$$

$$x_{1}, x_{2} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$= \frac{-(-1) \pm \sqrt{(-1)^{2} - 4 \cdot \frac{1}{2} \cdot (-1)}}{2 \cdot \frac{1}{2}}$$

$$= 1 \pm \sqrt{3}$$

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$= \frac{-(-2) \pm \sqrt{(-2)^2 - 4 \cdot 1 \cdot (3)}}{2 \cdot 1}$$

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{\frac{2a}{2 \cdot 1}}$$

$$= \frac{-(-2) \pm \sqrt{(-2)^2 - 4 \cdot 1 \cdot (3)}}{2 \cdot 1}$$

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$= \frac{-(-2) \pm \sqrt{(-2)^2 - 4 \cdot 1 \cdot (3)}}{2 \cdot 1}$$

$$x_{1}, x_{2} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$= \frac{-(-2) \pm \sqrt{(-2)^{2} - 4 \cdot 1 \cdot (3)}}{2 \cdot 1}$$

$$= \frac{2 \pm \sqrt{-8}}{2}$$

$$x_{1}, x_{2} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$= \frac{-(-2) \pm \sqrt{(-2)^{2} - 4 \cdot 1 \cdot (3)}}{2 \cdot 1}$$

$$= \frac{2 \pm \sqrt{-8}}{2}$$

$$x_{1}, x_{2} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$= \frac{-(-2) \pm \sqrt{(-2)^{2} - 4 \cdot 1 \cdot (3)}}{2 \cdot 1}$$

$$= \frac{2 \pm \sqrt{-8}}{2}$$
no real solutions

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$= \frac{-(-2) \pm \sqrt{(-2)^2 - 4 \cdot 1 \cdot (3)}}{2 \cdot 1}$$

$$= \frac{2 \pm \sqrt{-8}}{2}$$
no real solutions
$$no x - intercepts$$

Proposition

Let $ax^2 + bx + c$, $a \neq 0$ be a quadratic with discriminant $D = b^2 - 4ac$ and roots x_1 and x_2 . Then $D = a^2 (x_1 - x_2)^2$.

Proof.

Proposition

Let $ax^2 + bx + c$, $a \neq 0$ be a quadratic with discriminant $D = b^2 - 4ac$ and roots x_1 and x_2 . Then $D = \frac{a^2}{(x_1 - x_2)^2}$.

Proof.

$$a^{2}(x_{1}-x_{2})^{2} = a^{2}\left(\frac{-b+\sqrt{D}}{2a}-\frac{-b-\sqrt{D}}{2a}\right)$$

Let $ax^2 + bx + c$, $a \neq 0$ be a quadratic with discriminant $D = b^2 - 4ac$ and roots x_1 and x_2 . Then $D = a^2 (x_1 - x_2)^2$.

Proof.

$$a^{2}(x_{1}-x_{2})^{2} = a^{2}\left(\frac{-b+\sqrt{D}}{2a}-\frac{-b-\sqrt{D}}{2a}\right)$$

Let $ax^2 + bx + c$, $a \neq 0$ be a quadratic with discriminant $D = b^2 - 4ac$ and roots x_1 and x_2 . Then $D = a^2 (x_1 - x_2)^2$.

Proof.

$$a^{2}(x_{1}-x_{2})^{2} = a^{2}\left(\frac{b+\sqrt{D}}{2a}-\frac{b-\sqrt{D}}{2a}\right)$$

Let $ax^2 + bx + c$, $a \neq 0$ be a quadratic with discriminant $D = b^2 - 4ac$ and roots x_1 and x_2 . Then $D = a^2 (x_1 - x_2)^2$.

Proof.

$$a^{2}(x_{1}-x_{2})^{2} = a^{2}\left(\frac{\cancel{b}+\sqrt{D}}{2a}-\frac{\cancel{b}-\sqrt{D}}{2a}\right)$$
$$= a^{2}\left(\frac{2\sqrt{D}}{2a}\right)^{2}$$

Let $ax^2 + bx + c$, $a \neq 0$ be a quadratic with discriminant $D = b^2 - 4ac$ and roots x_1 and x_2 . Then $D = a^2 (x_1 - x_2)^2$.

Proof.

$$a^{2}(x_{1}-x_{2})^{2} = a^{2}\left(\frac{\cancel{b}+\sqrt{D}}{2a}-\frac{\cancel{b}-\sqrt{D}}{2a}\right)$$
$$= a^{2}\left(\frac{\cancel{2}\sqrt{D}}{\cancel{2}a}\right)^{2}$$

Let $ax^2 + bx + c$, $a \neq 0$ be a quadratic with discriminant $D = b^2 - 4ac$ and roots x_1 and x_2 . Then $D = a^2 (x_1 - x_2)^2$.

Proof.

$$a^{2}(x_{1}-x_{2})^{2} = a^{2}\left(\frac{\cancel{b}+\sqrt{D}}{2a}-\frac{\cancel{b}-\sqrt{D}}{2a}\right)$$
$$= a^{2}\left(\frac{\cancel{2}\sqrt{D}}{\cancel{2}a}\right)^{2}$$
$$= a^{2}\frac{\cancel{D}}{a^{2}}$$

Let $ax^2 + bx + c$, $a \neq 0$ be a quadratic with discriminant $D = b^2 - 4ac$ and roots x_1 and x_2 . Then $D = a^2 (x_1 - x_2)^2$.

Proof.

$$a^{2}(x_{1}-x_{2})^{2} = a^{2}\left(\frac{\cancel{b}+\sqrt{D}}{2a}-\frac{\cancel{b}-\sqrt{D}}{2a}\right)$$
$$= a^{2}\left(\frac{2\sqrt{D}}{2a}\right)^{2}$$
$$= a^{2}\frac{D}{a^{2}}$$

Let $ax^2 + bx + c$, $a \neq 0$ be a quadratic with discriminant $D = b^2 - 4ac$ and roots x_1 and x_2 . Then $D = a^2 (x_1 - x_2)^2$.

Proof.

$$a^{2}(x_{1}-x_{2})^{2} = a^{2}\left(\frac{\cancel{b}+\sqrt{D}}{2a}-\frac{\cancel{b}-\sqrt{D}}{2a}\right)$$

$$= a^{2}\left(\frac{\cancel{2}\sqrt{D}}{\cancel{2}a}\right)^{2}$$

$$= a^{2}\left(\frac{\cancel{D}}{\cancel{2}a}\right)^{2}$$

$$= D$$

Let $ax^2 + bx + c$, $a \neq 0$ be a quadratic with discriminant $D = b^2 - 4ac$ and roots x_1 and x_2 . Then $D = a^2 (x_1 - x_2)^2$.

Proof.

$$a^{2}(x_{1} - x_{2})^{2} = a^{2} \left(\frac{\cancel{b} + \sqrt{D}}{2a} - \frac{\cancel{b} - \sqrt{D}}{2a} \right)$$

$$= a^{2} \left(\frac{\cancel{2}\sqrt{D}}{\cancel{2}a} \right)^{2}$$

$$= a^{2} \frac{\cancel{D}}{\cancel{a}^{2}}$$

$$= D, \text{ as desired.}$$

Let $ax^2 + bx + c$, $a \neq 0$ be a quadratic with discriminant $D = b^2 - 4ac$ and roots x_1 and x_2 . Then $D = a^2 \left(\frac{x_1 - x_2}{2} \right)^2$.

Proof.

$$a^{2}(x_{1}-x_{2})^{2} = a^{2}\left(\frac{\cancel{b}+\sqrt{D}}{2a} - \frac{\cancel{b}-\sqrt{D}}{2a}\right)$$

$$= a^{2}\left(\frac{\cancel{2}\sqrt{D}}{\cancel{2}a}\right)^{2}$$

$$= a^{2}\underbrace{\frac{\cancel{D}}{\cancel{2}a}}_{=}$$

$$= D, \text{ as desired.}$$

Discriminant is zero ⇔ the quadratic has non-distinct roots

Let $ax^2 + bx + c$, $a \neq 0$ be a quadratic with discriminant $D = b^2 - 4ac$ and roots x_1 and x_2 . Then $D = a^2 (x_1 - x_2)^2$.

Proof.

$$a^{2}(x_{1}-x_{2})^{2} = a^{2}\left(\frac{\cancel{b}+\sqrt{D}}{2a} - \frac{\cancel{b}-\sqrt{D}}{2a}\right)$$

$$= a^{2}\left(\frac{\cancel{2}\sqrt{D}}{\cancel{2}a}\right)^{2}$$

$$= a^{2}\left(\frac{\cancel{D}}{\cancel{2}a}\right)^{2}$$

$$= D, \text{ as desired.}$$

Discriminant is zero
 ⇔ the quadratic has non-distinct roots, hence
 the discriminant discriminates between the two roots.

Find the values of the parameter k for which the equation $3x^2 - kx + 1$ has two real distinct roots.

• Quadratic roots: $x_1, x_2 = ?$

Find the values of the parameter k for which the equation $3x^2 - kx + 1$ has two real distinct roots.

• Quadratic roots: $x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$.

Find the values of the parameter k for which the equation $3x^2 - kx + 1$ has two real distinct roots.

• Quadratic roots:
$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
.

• \Rightarrow The roots x_1, x_2 are real and distinct when $\frac{b^2 - 4ac}{} > 0$

• Quadratic roots:
$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

- Quadratic roots: $x_1, x_2 = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$.
- \Rightarrow The roots x_1, x_2 are real and distinct when

$$\frac{b^2 - 4ac > 0}{(-k)^2 - 4 \cdot 3 \cdot 1 > 0}$$

- Quadratic roots: $x_1, x_2 = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$
- \Rightarrow The roots x_1, x_2 are real and distinct when

$$b^2 - 4ac > 0$$
$$(-k)^2 - 4 \cdot 3 \cdot 1 > 0$$

- Quadratic roots: $x_1, x_2 = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$
- \Rightarrow The roots x_1, x_2 are real and distinct when

$$b^2 - 4ac > 0$$
$$(-k)^2 - 4 \cdot 3 \cdot 1 > 0$$

- Quadratic roots: $x_1, x_2 = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$.
- \Rightarrow The roots x_1, x_2 are real and distinct when

$$b^{2} - 4ac > 0$$

$$(-k)^{2} - 4 \cdot 3 \cdot 1 > 0$$

$$k^{2} - 12 > 0$$

- Quadratic roots: $x_1, x_2 = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$.
- \Rightarrow The roots x_1, x_2 are real and distinct when

$$b^{2} - 4ac > 0$$

$$(-k)^{2} - 4 \cdot 3 \cdot 1 > 0$$

$$k^{2} - 12 > 0$$

Find the values of the parameter k for which the equation $3x^2 - kx + 1$ has two real distinct roots.

• Quadratic roots:
$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
.

• \Rightarrow The roots x_1, x_2 are real and distinct when

$$b^{2} - 4ac > 0$$

$$(-k)^{2} - 4 \cdot 3 \cdot 1 > 0$$

$$k^{2} - 12 > 0$$

$$k^{2} - \sqrt{12}^{2} > 0$$

Find the values of the parameter k for which the equation $3x^2 - kx + 1$ has two real distinct roots.

• Quadratic roots:
$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
.

The roots x_1, x_2 are real and distinct when $b^2 - 4ac > 0$ $(-k)^2 - 4 \cdot 3 \cdot 1 > 0$ $k^2 - 12 > 0$ $k^2 - \sqrt{12}^2 > 0$ $(k - \sqrt{12}) \left(k + \sqrt{12}\right) > 0$

- Quadratic roots: $x_1, x_2 = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$.
- \bullet \Rightarrow The roots x_1, x_2 are real and distinct when

- Quadratic roots: $x_1, x_2 = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$
- \bullet \Rightarrow The roots x_1, x_2 are real and distinct when

$$b^{2} - 4ac > 0$$

$$(-k)^{2} - 4 \cdot 3 \cdot 1 > 0$$

$$k^{2} - 12 > 0$$

$$k^{2} - \sqrt{12}^{2} > 0$$

$$\left(k - \sqrt{12}\right) \left(k + \sqrt{12}\right) > 0$$

- Quadratic roots: $x_1, x_2 = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$.
- \bullet \Rightarrow The roots x_1, x_2 are real and distinct when

Find the values of the parameter k for which the equation $3x^2 - kx + 1$ has two real distinct roots.

• Quadratic roots:
$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
.

• \Rightarrow The roots x_1, x_2 are real and distinct when

$$b^{2} - 4ac > 0$$

$$(-k)^{2} - 4 \cdot 3 \cdot 1 > 0$$

$$k^{2} - 12 > 0$$

$$k^{2} - \sqrt{12}^{2} > 0$$

$$\left(k - \sqrt{12}\right) \left(k + \sqrt{12}\right) > 0$$

Find the values of the parameter k for which the equation $3x^2 - kx + 1$ has two real distinct roots.

• Quadratic roots:
$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

• \Rightarrow The roots x_1, x_2 are real and distinct when

$$b^{2} - 4ac > 0$$

$$(-k)^{2} - 4 \cdot 3 \cdot 1 > 0$$

$$k^{2} - 12 > 0$$

$$k^{2} - \sqrt{12}^{2} > 0$$

Find the values of the parameter k for which the equation $3x^2 - kx + 1$ has two real distinct roots.

• Quadratic roots:
$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
.

• \Rightarrow The roots x_1, x_2 are real and distinct when $b^2 - 4ac > 0$

$$\begin{array}{c} b - 4ac > 0 \\ (-k)^2 - 4 \cdot 3 \cdot 1 > 0 \\ k^2 - 12 > 0 \\ k^2 - \sqrt{12}^2 > 0 \\ \left(k - \sqrt{12}\right) \left(k + \sqrt{12}\right) > 0 \end{array}$$

Find the values of the parameter k for which the equation $3x^2 - kx + 1$ has two real distinct roots.

• Quadratic roots:
$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
.

• \Rightarrow The roots x_1, x_2 are real and distinct when

$$b^{2} - 4ac > 0$$

$$(-k)^{2} - 4 \cdot 3 \cdot 1 > 0$$

$$k^{2} - 12 > 0$$

$$k^{2} - \sqrt{12}^{2} > 0$$

$$\left(k - \sqrt{12}\right) \left(k + \sqrt{12}\right) > 0$$

Find the values of the parameter k for which the equation $3x^2 - kx + 1$ has two real distinct roots.

• Quadratic roots:
$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
.

 \bullet \Rightarrow The roots x_1, x_2 are real and distinct when

$$b^{2} - 4ac > 0$$

$$(-k)^{2} - 4 \cdot 3 \cdot 1 > 0$$

$$k^{2} - 12 > 0$$

$$k^{2} - \sqrt{12}^{2} > 0$$

$$\left(k - \sqrt{12}\right) \left(k + \sqrt{12}\right) > 0$$

- Quadratic roots: $x_1, x_2 = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$.
- $\bullet \Rightarrow$ The roots x_1, x_2 are real and distinct when

- Quadratic roots: $x_1, x_2 = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$.
- \Rightarrow The roots x_1, x_2 are real and distinct when

The roots
$$x_1, x_2$$
 are real and distinct when
$$b^2 - 4ac > 0$$
$$(-k)^2 - 4 \cdot 3 \cdot 1 > 0$$
$$k^2 - 12 > 0$$
$$k^2 - \sqrt{12}^2 > 0$$
$$\left(k - \sqrt{12}\right) \left(k + \sqrt{12}\right) > 0$$
$$k \in \left(-\infty, -\sqrt{12}\right) \cup \left(\sqrt{12}, \infty\right)$$

- Quadratic roots: $x_1, x_2 = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$.
- \Rightarrow The roots x_1, x_2 are real and distinct when

The roots
$$x_1, x_2$$
 are real and distinct when
$$b^2 - 4ac > 0$$

$$(-k)^2 - 4 \cdot 3 \cdot 1 > 0$$

$$k^2 - 12 > 0$$

$$k^2 - \sqrt{12}^2 > 0$$

$$(k - \sqrt{12}) \left(k + \sqrt{12}\right) > 0$$

$$k \in \left(-\infty, -\sqrt{12}\right) \cup \left(\sqrt{12}, \infty\right)$$

- Quadratic roots: $x_1, x_2 = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$
- \Rightarrow The roots x_1, x_2 are real and distinct when

- Quadratic roots: $x_1, x_2 = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$
- \Rightarrow The roots x_1, x_2 are real and distinct when

- Quadratic roots: $x_1, x_2 = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$
- \Rightarrow The roots x_1, x_2 are real and distinct when

Find the values of the parameter k for which the equation $3x^2 - kx + 1$ has two real distinct roots.

- Quadratic roots: $x_1, x_2 = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$.
- \Rightarrow The roots x_1, x_2 are real and distinct when

Find the values of the parameter k for which the equation $3x^2 - kx + 1$ has two real distinct roots.

- Quadratic roots: $x_1, x_2 = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$.
- \Rightarrow The roots x_1, x_2 are real and distinct when

The roots
$$x_1, x_2$$
 are real and distinct when
$$b^2 - 4ac > 0$$

$$(-k)^2 - 4 \cdot 3 \cdot 1 > 0$$

$$k^2 - 12 > 0$$

$$k^2 - \sqrt{12}^2 > 0$$

$$(k - \sqrt{12}) \left(k + \sqrt{12}\right) > 0$$

$$k \in \left(-\infty, -\sqrt{12}\right) \cup \left(\sqrt{12}, \infty\right)$$

Find the vertex of the parabola.

- Find the vertex of the parabola.
- Find the *y* intercept.

16/22

- Find the vertex of the parabola.
- Find the *y* intercept.
- Find the x intercept(s) if any.

- Find the vertex of the parabola.
- Find the y intercept.
- Find the x intercept(s) if any.
- Select (or re-select) axes scale so all important points found in the preceding items fit in the plot.

16/22

- Find the vertex of the parabola.
- Find the y intercept.
- Find the x intercept(s) if any.

 Plot the parabola freehand, making sure that the parabola passes through all special points you found in the preceding items.

- Find the vertex of the parabola.
- Find the y intercept.
- Find the x intercept(s) if any.

 If a > 0 your parabola should open upwards, if a < 0 your parabola should open downwards

16/22

- Find the vertex of the parabola.
- Find the y intercept.
- Find the x intercept(s) if any.

- If a > 0 your parabola should open upwards, if a < 0 your parabola should open downwards.
- For |a| > 1 we should aim to draw the graph steeper than $a = x^2$, for |a| < 1 we should aim to draw the graph flatter than $a = x^2$.

Plot roughly by hand the graph of $f(x) = -\frac{2}{3}x^2 + 7x + 3$.

Plot roughly by hand the graph of $f(x) = -\frac{2}{3}x^2 + 7x + 3$.

$$X =$$

$$y = ?$$

Plot roughly by hand the graph of
$$f(x) = -\frac{2}{3}x^2 + 7x + 3$$
.

$$x = -\frac{b}{2a} = -\frac{7}{2(-\frac{2}{3})}$$

$$y = ?$$

Plot roughly by hand the graph of $f(x) = -\frac{2}{3}x^2 + \frac{7}{3}x + 3$.

$$x = -\frac{b}{2a} = -\frac{7}{2(-\frac{2}{3})}$$

$$y = ?$$

Plot roughly by hand the graph of $f(x) = -\frac{2}{3}x^2 + 7x + 3$.

$$x = -\frac{b}{2a} = -\frac{7}{2(-\frac{2}{3})}$$

$$y = ?$$

Plot roughly by hand the graph of
$$f(x) = -\frac{2}{3}x^2 + 7x + 3$$
.

$$x = -\frac{b}{2a} = -\frac{7}{2(-\frac{2}{3})} = \frac{21}{4}$$

$$y = ?$$

Plot roughly by hand the graph of $f(x) = -\frac{2}{3}x^2 + 7x + 3$.

$$x = -\frac{b}{2a} = -\frac{7}{2(-\frac{2}{3})} = \frac{21}{4}$$

$$y = 2$$

Plot roughly by hand the graph of $f(x) = -\frac{2}{3}x^2 + 7x + 3$.

$$x = -\frac{b}{2a} = -\frac{7}{2(-\frac{2}{3})} = \frac{21}{4}$$

$$y = ?$$

Plot roughly by hand the graph of $f(x) = -\frac{2}{3}x^2 + 7x + 3$.

$$x = -\frac{b}{2a} = -\frac{7}{2(-\frac{2}{3})} = \frac{21}{4}$$

$$y = ?$$

Plot roughly by hand the graph of $f(x) = -\frac{2}{3}x^2 + 7x + 3$.

$$x = -\frac{b}{2a} = -\frac{7}{2(-\frac{2}{3})} = \frac{21}{4}$$

 $y = f(-\frac{b}{2a}) = -\frac{D}{4a} = -\frac{(b^2 - 4ac)}{4a}$

$$x = -\frac{b}{2a} = -\frac{7}{2(-\frac{2}{3})} = \frac{21}{4}$$

$$y = f(-\frac{b}{2a}) = -\frac{D}{4a} = -\frac{(b^2 - 4ac)}{4a}$$

$$= -\frac{7^2 - 4(-\frac{2}{3})3}{4(-\frac{2}{3})}$$

Plot roughly by hand the graph of $f(x) = -\frac{2}{3}x^2 + 7x + 3$.

$$x = -\frac{b}{2a} = -\frac{7}{2(-\frac{2}{3})} = \frac{21}{4}$$

$$y = f(-\frac{b}{2a}) = -\frac{D}{4a} = -\frac{(b^2 - 4ac)}{4a}$$

$$= -\frac{7^2 - 4(-\frac{2}{3})3}{4(-\frac{2}{3})}$$

$$x = -\frac{b}{2a} = -\frac{7}{2(-\frac{2}{3})} = \frac{21}{4}$$

$$y = f(-\frac{b}{2a}) = -\frac{D}{4a} = -\frac{(b^2 - 4ac)}{4a}$$

$$= -\frac{7^2 - 4(-\frac{2}{3})3}{4(-\frac{2}{3})}$$

$$x = -\frac{b}{2a} = -\frac{7}{2(-\frac{2}{3})} = \frac{21}{4}$$

$$y = f(-\frac{b}{2a}) = -\frac{D}{4a} = -\frac{(b^2 - 4ac)}{4a}$$

$$= -\frac{7^2 - 4(-\frac{2}{3})3}{4(-\frac{2}{3})} = \frac{49 + 8}{\frac{8}{3}}$$

Plot roughly by hand the graph of $f(x) = -\frac{2}{3}x^2 + 7x + 3$.

$$x = -\frac{b}{2a} = -\frac{7}{2(-\frac{2}{3})} = \frac{21}{4}$$

$$y = f(-\frac{b}{2a}) = -\frac{D}{4a} = -\frac{(b^2 - 4ac)}{4a}$$

$$= -\frac{7^2 - 4(-\frac{2}{3})\cancel{3}}{4(-\frac{2}{3})} = \frac{49 + 8}{\frac{8}{3}}$$

$$x = -\frac{b}{2a} = -\frac{7}{2(-\frac{2}{3})} = \frac{21}{4}$$

$$y = f(-\frac{b}{2a}) = -\frac{D}{4a} = -\frac{(b^2 - 4ac)}{4a}$$

$$= -\frac{7^2 - 4(-\frac{2}{3})\cancel{3}}{4(-\frac{2}{3})} = \frac{49 + 8}{\frac{8}{3}}$$

$$x = -\frac{b}{2a} = -\frac{7}{2(-\frac{2}{3})} = \frac{21}{4}$$

$$y = f\left(-\frac{b}{2a}\right) = -\frac{D}{4a} = -\frac{(b^2 - 4ac)}{4a}$$

$$= -\frac{7^2 - 4\left(-\frac{2}{3}\right)3}{4\left(-\frac{2}{3}\right)} = \frac{49 + 8}{\frac{8}{3}}$$

$$x = -\frac{b}{2a} = -\frac{7}{2(-\frac{2}{3})} = \frac{21}{4}$$

$$y = f\left(-\frac{b}{2a}\right) = -\frac{D}{4a} = -\frac{(b^2 - 4ac)}{4a}$$

$$= -\frac{7^2 - 4\left(-\frac{2}{3}\right)3}{4\left(-\frac{2}{3}\right)} = \frac{49 + 8}{\frac{8}{3}}$$

$$x = -\frac{b}{2a} = -\frac{7}{2(-\frac{2}{3})} = \frac{21}{4}$$

$$y = f(-\frac{b}{2a}) = -\frac{D}{4a} = -\frac{(b^2 - 4ac)}{4a}$$

$$= -\frac{7^2 - 4(-\frac{2}{3})\cancel{3}}{4(-\frac{2}{3})} = \frac{49 + 8}{\frac{8}{3}}$$

Plot roughly by hand the graph of $f(x) = -\frac{2}{3}x^2 + 7x + 3$.

$$x = -\frac{b}{2a} = -\frac{7}{2(-\frac{2}{3})} = \frac{21}{4}$$

$$y = f\left(-\frac{b}{2a}\right) = -\frac{D}{4a} = -\frac{(b^2 - 4ac)}{4a}$$

$$= -\frac{7^2 - 4\left(-\frac{2}{3}\right)3}{4\left(-\frac{2}{3}\right)} = \frac{49 + 8}{\frac{8}{3}}$$

$$= \frac{3 \cdot 57}{8}$$

Plot roughly by hand the graph of $f(x) = -\frac{2}{3}x^2 + 7x + 3$.

$$x = -\frac{b}{2a} = -\frac{7}{2(-\frac{2}{3})} = \frac{21}{4}$$

$$y = f(-\frac{b}{2a}) = -\frac{D}{4a} = -\frac{(b^2 - 4ac)}{4a}$$

$$= -\frac{7^2 - 4(-\frac{2}{3})3}{4(-\frac{2}{3})} = \frac{49 + 8}{\frac{8}{3}}$$

$$= \frac{3 \cdot 57}{8}$$

$$x = -\frac{b}{2a} = -\frac{7}{2(-\frac{2}{3})} = \frac{21}{4}$$

$$y = f\left(-\frac{b}{2a}\right) = -\frac{D}{4a} = -\frac{(b^2 - 4ac)}{4a}$$

$$= -\frac{7^2 - 4\left(-\frac{2}{3}\right)\mathcal{S}}{4\left(-\frac{2}{3}\right)} = \frac{49 + 8}{\frac{8}{3}}$$

$$= \frac{3 \cdot 57}{9} = \frac{171}{9}.$$

Vertex at: $\left(\frac{21}{4}, \frac{171}{8}\right)$

Plot roughly by hand the graph of $f(x) = -\frac{2}{3}x^2 + 7x + 3$.

$$x = -\frac{b}{2a} = -\frac{7}{2(-\frac{2}{3})} = \frac{21}{4}$$

$$y = f(-\frac{b}{2a}) = -\frac{D}{4a} = -\frac{(b^2 - 4ac)}{4a}$$

$$= -\frac{7^2 - 4(-\frac{2}{3})}{4(-\frac{2}{3})} = \frac{49 + 8}{\frac{8}{3}}$$

$$= \frac{3 \cdot 57}{8} = \frac{171}{8}.$$

Vertex at: $\left(\frac{21}{4}, \frac{171}{8}\right)$

Plot roughly by hand the graph of $f(x) = -\frac{2}{3}x^2 + 7x + 3$.

• The vertex of the parabola is given by:

$$x = -\frac{b}{2a} = -\frac{7}{2(-\frac{2}{3})} = \frac{21}{4}$$

$$y = f\left(-\frac{b}{2a}\right) = -\frac{D}{4a} = -\frac{(b^2 - 4ac)}{4a}$$

$$= -\frac{7^2 - 4\left(-\frac{2}{3}\right)3}{4\left(-\frac{2}{3}\right)} = \frac{49 + 8}{\frac{8}{3}}$$

$$= \frac{3 \cdot 57}{8} = \frac{171}{8}.$$

• The *y*-intercept is f(0) = ?.

Vertex at: $\left(\frac{21}{4}, \frac{171}{8}\right)$ y-intercept at y = 3 Plot roughly by hand the graph of $f(x) = -\frac{2}{3}x^2 + 7x + 3$.

• The vertex of the parabola is given by:

$$x = -\frac{b}{2a} = -\frac{7}{2(-\frac{2}{3})} = \frac{21}{4}$$

$$y = f(-\frac{b}{2a}) = -\frac{D}{4a} = -\frac{(b^2 - 4ac)}{4a}$$

$$= -\frac{7^2 - 4(-\frac{2}{3})3}{4(-\frac{2}{3})} = \frac{49 + 8}{\frac{8}{3}}$$

$$= \frac{3 \cdot 57}{8} = \frac{171}{8}.$$

• The y-intercept is f(0) = 3.

Vertex at:
$$\left(\frac{21}{4}, \frac{171}{8}\right)$$
 y-intercept at $y = 3$

Plot roughly by hand the graph of $f(x) = -\frac{2}{3}x^2 + 7x + 3$.

• The *x* intercepts are given by the solutions of $-\frac{2}{3}x^2 + 7x + 3 = 0$

Plot roughly by hand the graph of $f(x) = -\frac{2}{3}x^2 + 7x + 3$.

$$-\frac{2}{3}x^2 + 7x + 3 = 0$$
$$-2x^2 + 21x + 9 = 0$$

.3

Vertex at: $\left(\frac{21}{4}, \frac{171}{8}\right)$ y-intercept at y = 3

.3

Example

• The x intercepts are given by the solutions of

$$-\frac{2}{3}x^2 + 7x + 3 = 0$$

$$-2x^2 + 21x + 9 = 0$$

$$x = ?$$

Vertex at: $\left(\frac{21}{4}, \frac{171}{8}\right)$ y-intercept at y = 3

.3

Example

• The x intercepts are given by the solutions of

$$-\frac{2}{3}x^{2} + 7x + 3 = 0$$

$$-2x^{2} + 21x + 9 = 0$$

$$x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

Vertex at: $\left(\frac{21}{4}, \frac{171}{8}\right)$ y-intercept at y = 3

Vertex at: $\left(\frac{21}{4}, \frac{171}{8}\right)$ *y*-intercept at y = 3

Plot roughly by hand the graph of $f(x) = -\frac{2}{3}x^2 + 7x + 3$.

$$\begin{array}{c|c}
-\frac{2}{3}x^2 + 7x + 3 = 0 & 3 \\
-2x^2 + 21x + 9 = 0 & 3 \\
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} & 3 \\
-\frac{-21 \pm \sqrt{21^2 - 4 \cdot (-2) \cdot 9}}{2a}
\end{array}$$

Plot roughly by hand the graph of $f(x) = -\frac{2}{3}x^2 + 7x + 3.$

The x intercepts are given by the solutions of

Vertex at: $(\frac{21}{4}, \frac{171}{8})$ y-intercept at y=3

Plot roughly by hand the graph of $f(x) = -\frac{2}{3}x^2 + 7x + 3$.

$$-\frac{2}{3}x^{2} + 7x + 3 = 0$$

$$-2x^{2} + 21x + 9 = 0$$

$$x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

Vertex at:
$$\left(\frac{21}{4}, \frac{171}{8}\right)$$
 y-intercept at $y = 3$

Vertex at: $\left(\frac{21}{4}, \frac{171}{8}\right)$ *y*-intercept at y = 3

Plot roughly by hand the graph of $f(x) = -\frac{2}{3}x^2 + 7x + 3$.

$$\begin{array}{c|c}
-\frac{2}{3}x^2 + 7x + 3 = 0 & | \cdot 3 \\
-2x^2 + 21x + 9 = 0 & | \\
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} & | \\
= \frac{-21 \pm \sqrt{21^2 - 4 \cdot (-2) \cdot 9}}{2 \cdot (-2)} & | \\
= \frac{-21 \pm \sqrt{441 + 72}}{2 \cdot (-2)} & | \\
= \frac{-21 \pm \sqrt{441 + 72}}{2 \cdot (-2)} & | \\
= \frac{-21 \pm \sqrt{441 + 72}}{2 \cdot (-2)} & | \\
= \frac{-21 \pm \sqrt{441 + 72}}{2 \cdot (-2)} & | \\
= \frac{-21 \pm \sqrt{441 + 72}}{2 \cdot (-2)} & | \\
= \frac{-21 \pm \sqrt{441 + 72}}{2 \cdot (-2)} & | \\
= \frac{-21 \pm \sqrt{441 + 72}}{2 \cdot (-2)} & | \\
= \frac{-21 \pm \sqrt{441 + 72}}{2 \cdot (-2)} & | \\
= \frac{-21 \pm \sqrt{441 + 72}}{2 \cdot (-2)} & | \\
= \frac{-21 \pm \sqrt{441 + 72}}{2 \cdot (-2)} & | \\
= \frac{-21 \pm \sqrt{441 + 72}}{2 \cdot (-2)} & | \\
= \frac{-21 \pm \sqrt{441 + 72}}{2 \cdot (-2)} & | \\
= \frac{-21 \pm \sqrt{441 + 72}}{2 \cdot (-2)} & | \\
= \frac{-21 \pm \sqrt{441 + 72}}{2 \cdot (-2)} & | \\
= \frac{-21 \pm \sqrt{441 + 72}}{2 \cdot (-2)} & | \\
= \frac{-21 \pm \sqrt{441 + 72}}{2 \cdot (-2)} & | \\
= \frac{-21 \pm \sqrt{441 + 72}}{2 \cdot (-2)} & | \\
= \frac{-21 \pm \sqrt{441 + 72}}{2 \cdot (-2)} & | \\
= \frac{-21 \pm \sqrt{441 + 72}}{2 \cdot (-2)} & | \\
= \frac{-21 \pm \sqrt{441 + 72}}{2 \cdot (-2)} & | \\
= \frac{-21 \pm \sqrt{441 + 72}}{2 \cdot (-2)} & | \\
= \frac{-21 \pm \sqrt{441 + 72}}{2 \cdot (-2)} & | \\
= \frac{-21 \pm \sqrt{441 + 72}}{2 \cdot (-2)} & | \\
= \frac{-21 \pm \sqrt{441 + 72}}{2 \cdot (-2)} & | \\
= \frac{-21 \pm \sqrt{441 + 72}}{2 \cdot (-2)} & | \\
= \frac{-21 \pm \sqrt{441 + 72}}{2 \cdot (-2)} & | \\
= \frac{-21 \pm \sqrt{441 + 72}}{2 \cdot (-2)} & | \\
= \frac{-21 \pm \sqrt{441 + 72}}{2 \cdot (-2)} & | \\
= \frac{-21 \pm \sqrt{441 + 72}}{2 \cdot (-2)} & | \\
= \frac{-21 \pm \sqrt{441 + 72}}{2 \cdot (-2)} & | \\
= \frac{-21 \pm \sqrt{441 + 72}}{2 \cdot (-2)} & | \\
= \frac{-21 \pm \sqrt{441 + 72}}{2 \cdot (-2)} & | \\
= \frac{-21 \pm \sqrt{441 + 72}}{2 \cdot (-2)} & | \\
= \frac{-21 \pm \sqrt{441 + 72}}{2 \cdot (-2)} & | \\
= \frac{-21 \pm \sqrt{441 + 72}}{2 \cdot (-2)} & | \\
= \frac{-21 \pm \sqrt{441 + 72}}{2 \cdot (-2)} & | \\
= \frac{-21 \pm \sqrt{441 + 72}}{2 \cdot (-2)} & | \\
= \frac{-21 \pm \sqrt{441 + 72}}{2 \cdot (-2)} & | \\
= \frac{-21 \pm \sqrt{441 + 72}}{2 \cdot (-2)} & | \\
= \frac{-21 \pm \sqrt{441 + 72}}{2 \cdot (-2)} & | \\
= \frac{-21 \pm \sqrt{441 + 72}}{2 \cdot (-2)} & | \\
= \frac{-21 \pm \sqrt{441 + 72}}{2 \cdot (-2)} & | \\
= \frac{-21 \pm \sqrt{441 + 72}}{2 \cdot (-2)} & | \\
= \frac{-21 \pm \sqrt{441 + 72}}{2 \cdot (-2)} & | \\
= \frac{-21 \pm \sqrt{441 + 72}}{2 \cdot (-2)} & | \\
= \frac{-21 \pm \sqrt{441 + 72}}{2 \cdot (-2)} & | \\
= \frac{-21 \pm \sqrt{441 + 72}}{2 \cdot (-2)} & | \\
= \frac{-21 \pm \sqrt{441 + 72}}{2 \cdot (-2)} & | \\
= \frac{-21 \pm \sqrt{441 +$$

Vertex at: $\left(\frac{21}{4}, \frac{171}{8}\right)$ y-intercept at y = 3

Plot roughly by hand the graph of $f(x) = -\frac{2}{3}x^2 + 7x + 3$.

$$\begin{vmatrix}
-\frac{2}{3}x^2 + 7x + 3 = 0 \\
-2x^2 + 21x + 9 = 0
\end{vmatrix} \cdot 3$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$= \frac{-21 \pm \sqrt{21^2 - 4 \cdot (-2) \cdot 9}}{2 \cdot (-2)}$$

$$= \frac{-21 \pm \sqrt{441 + 72}}{2 \cdot (-2)}$$

Vertex at: $\left(\frac{21}{4}, \frac{171}{8}\right)$ *y*-intercept at y = 3

Plot roughly by hand the graph of $f(x) = -\frac{2}{3}x^2 + 7x + 3$.

$$\begin{vmatrix}
-\frac{2}{3}x^2 + 7x + 3 = 0 \\
-2x^2 + 21x + 9 = 0
\end{vmatrix}$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$= \frac{-21 \pm \sqrt{21^2 - 4 \cdot (-2) \cdot 9}}{2 \cdot (-2)}$$

$$= \frac{-21 \pm \sqrt{441 + 72}}{2 \cdot (-2)}$$

Vertex at: $(\frac{21}{4}, \frac{171}{8})$ y-intercept at y = 3 Plot roughly by hand the graph of $f(x) = -\frac{2}{3}x^2 + 7x + 3$.

$$\begin{array}{c|c}
-\frac{2}{3}x^2 + 7x + 3 = 0 & | \cdot 3 \\
-2x^2 + 21x + 9 = 0 & | \\
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} & | \\
= \frac{-21 \pm \sqrt{21^2 - 4 \cdot (-2) \cdot 9}}{2 \cdot (-2)} & | \\
= \frac{-21 \pm \sqrt{441 + 72}}{-4} & | \\
= \frac{21 \pm \sqrt{513}}{\sqrt{513}}
\end{array}$$

Vertex at: $(\frac{21}{4}, \frac{171}{8})$ y-intercept at y = 3 Plot roughly by hand the graph of $f(x) = -\frac{2}{3}x^2 + 7x + 3$.

$$\begin{vmatrix}
-\frac{2}{3}x^2 + 7x + 3 = 0 & | \cdot 3 \\
-2x^2 + 21x + 9 = 0 & | x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} & | \\
= \frac{-21 \pm \sqrt{21^2 - 4 \cdot (-2) \cdot 9}}{2 \cdot (-2)} & | \\
= \frac{-21 \pm \sqrt{441 + 72}}{-4} & | = \frac{21 \pm \sqrt{513}}{4}
\end{vmatrix}$$

Plot roughly by hand the graph of $f(x) = -\frac{2}{3}x^2 + 7x + 3$.

The x intercepts are given by the solutions of

$$\begin{array}{c|c}
-\frac{2}{3}x^2 + 7x + 3 = 0 & | \cdot 3 \\
-2x^2 + 21x + 9 = 0 & | \\
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} & | \\
= \frac{-21 \pm \sqrt{21^2 - 4 \cdot (-2) \cdot 9}}{2 \cdot (-2)} & | \\
= \frac{-21 \pm \sqrt{441 + 72}}{-4} & | \\
= \frac{21 \pm \sqrt{513}}{4} & | \\
= \frac{21 \pm \sqrt{9 \cdot 57}}{4}
\end{array}$$

Vertex at: $\left(\frac{21}{4}, \frac{171}{8}\right)$ *y*-intercept at y = 3

Plot roughly by hand the graph of $f(x) = -\frac{2}{3}x^2 + 7x + 3$.

• The x intercepts are given by the solutions of

$$\begin{array}{c|c}
-\frac{2}{3}x^2 + 7x + 3 = 0 & | \cdot 3 \\
-2x^2 + 21x + 9 = 0 & \\
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} & \\
= \frac{-21 \pm \sqrt{21^2 - 4 \cdot (-2) \cdot 9}}{2 \cdot (-2)} & \\
= \frac{-21 \pm \sqrt{441 + 72}}{-4} & \\
= \frac{21 \mp \sqrt{513}}{4} & \\
& -21 \mp \sqrt{9 \cdot 57}
\end{array}$$

 $=\frac{21\mp\sqrt{9}\sqrt{57}}{2}$

Vertex at: $\left(\frac{21}{4}, \frac{171}{8}\right)$ y-intercept at y = 3

Plot roughly by hand the graph of $f(x) = -\frac{2}{3}x^2 + 7x + 3$.

The x intercepts are given by the solutions of

$$-\frac{2}{3}x^2 + 7x + 3 = 0$$

$$-2x^2 + 21x + 9 = 0$$

$$X = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$= \frac{-21 \pm \sqrt{21^2 - 4 \cdot (-2) \cdot 9}}{2 \cdot (-2)}$$

$$= \frac{-21 \pm \sqrt{441 + 72}}{-4}$$

$$= \frac{21 \pm \sqrt{513}}{4}$$

$$= \frac{21 \pm \sqrt{9 \cdot 57}}{4}$$

$$= \frac{21 \pm \sqrt{9} \sqrt{57}}{4}$$

$$= \frac{21 \pm \frac{3}{\sqrt{57}}}{4}$$

Vertex at: $\left(\frac{21}{4}, \frac{171}{8}\right)$ y-intercept at y = 3

Vertex at: $\left(\frac{21}{4}, \frac{171}{8}\right)$ *y*-intercept at y = 3 *x*-intercepts at $x = \frac{21 - 3\sqrt{57}}{4}$, $x = \frac{21 + 3\sqrt{57}}{4}$.

Plot roughly by hand the graph of $f(x) = -\frac{2}{3}x^2 + 7x + 3$.

$$\begin{array}{c|c}
-\frac{2}{3}x^2 + 7x + 3 = 0 & | \cdot 3 \\
-2x^2 + 21x + 9 = 0 & \\
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} & \\
= \frac{-21 \pm \sqrt{21^2 - 4 \cdot (-2) \cdot 9}}{2 \cdot (-2)} & \\
= \frac{-21 \pm \sqrt{441 + 72}}{-4} & \\
= \frac{21 \pm \sqrt{513}}{4} & \\
= \frac{21 \pm \sqrt{9} \cdot 57}{4} & \\
= \frac{21 \pm 3 \sqrt{57}}{4} & \\
= \frac{21 \pm 3 \sqrt{57}}{4} & \\
\end{array}$$

Vertex at: $\left(\frac{21}{4}, \frac{171}{8}\right)$ *y*-intercept at y = 3 *x*-intercepts at $x = \frac{21 - 3\sqrt{57}}{4}$, $x = \frac{21 + 3\sqrt{57}}{4}$.

- Select scale to fit the picture:
 - $\frac{21}{4}$ is close to $\frac{20}{4}$

Vertex at: $\left(\frac{21}{4}, \frac{171}{8}\right)$ *y*-intercept at y = 3 *x*-intercepts at $x = \frac{21 - 3\sqrt{57}}{4}$, $x = \frac{21 + 3\sqrt{57}}{4}$.

- Select scale to fit the picture:
 - $\frac{21}{4}$ is close to $\frac{20}{4} = 5$.

Vertex at: $\left(\frac{21}{4}, \frac{171}{8}\right)$ *y*-intercept at y = 3 *x*-intercepts at $x = \frac{21 - 3\sqrt{57}}{4}$, $x = \frac{21 + 3\sqrt{57}}{4}$.

- Select scale to fit the picture:
 - $\frac{21}{4}$ is close to $\frac{20}{4} = 5$.
 - $\frac{171}{8}$ is between the integers ?

Vertex at: $\left(\frac{21}{4}, \frac{171}{8}\right)$ *y*-intercept at y = 3 *x*-intercepts at $x = \frac{21 - 3\sqrt{57}}{4}$, $x = \frac{21 + 3\sqrt{57}}{4}$.

- Select scale to fit the picture:
 - $\frac{21}{4}$ is close to $\frac{20}{4} = 5$.
 - $\frac{171}{8}$ is between the integers 21 and 22.

Vertex at: $\left(\frac{21}{4}, \frac{171}{8}\right)$ y-intercept at y = 3 x-intercepts at $x = \frac{21 - 3\sqrt{57}}{4}$, $x = \frac{21 + 3\sqrt{57}}{4}$.

- Select scale to fit the picture:
 - $\frac{21}{4}$ is close to $\frac{20}{4} = 5$.
 - $\frac{171}{8}$ is between the integers 21 and 22.
 - $\frac{21+3\sqrt{57}}{4}$ is close to $\frac{21+3\sqrt{64}}{4}$

Vertex at: $\left(\frac{21}{4}, \frac{171}{8}\right)$ y-intercept at y = 3 x-intercepts at $x = \frac{21 - 3\sqrt{57}}{4}$, $x = \frac{21 + 3\sqrt{57}}{4}$.

- Select scale to fit the picture:
 - $\frac{21}{4}$ is close to $\frac{20}{4} = 5$.
 - $\frac{171}{8}$ is between the integers 21 and 22.
 - $\frac{21+3\sqrt{57}}{4}$ is close to $\frac{21+3\sqrt{64}}{4} = \frac{21+24}{4}$

Vertex at: $\left(\frac{21}{4}, \frac{171}{8}\right)$ y-intercept at y = 3 x-intercepts at $x = \frac{21 - 3\sqrt{57}}{4}$, $x = \frac{21 + 3\sqrt{57}}{4}$.

- Select scale to fit the picture:
 - $\frac{21}{4}$ is close to $\frac{20}{4} = 5$.
 - $\frac{171}{8}$ is between the integers 21 and 22.
 - $\frac{21+3\sqrt{57}}{4}$ is close to $\frac{21+3\sqrt{64}}{4} = \frac{21+24}{4} = \frac{45}{4}$

Vertex at: $\left(\frac{21}{4}, \frac{171}{8}\right)$ *y*-intercept at y = 3 *x*-intercepts at $x = \frac{21 - 3\sqrt{57}}{4}$, $x = \frac{21 + 3\sqrt{57}}{4}$.

- Select scale to fit the picture:
 - $\frac{21}{4}$ is close to $\frac{20}{4} = 5$.
 - $\frac{171}{8}$ is between the integers 21 and 22.
 - $\frac{21+3\sqrt{57}}{4}$ is close to $\frac{21+3\sqrt{64}}{4} = \frac{21+24}{4} = \frac{45}{4}$ which is close to $\frac{44}{4} = 11$.

Vertex at: $\left(\frac{21}{4}, \frac{171}{8}\right)$ *y*-intercept at y = 3 *x*-intercepts at $x = \frac{21 - 3\sqrt{57}}{4}$, $x = \frac{21 + 3\sqrt{57}}{4}$.

- Select scale to fit the picture:
 - $\frac{21}{4}$ is close to $\frac{20}{4} = 5$.
 - $\frac{171}{8}$ is between the integers 21 and 22.
 - $\frac{21+3\sqrt{57}}{4}$ is close to $\frac{21+3\sqrt{64}}{4} = \frac{21+24}{4} = \frac{45}{4}$ which is close to $\frac{44}{4} = 11$.
 - $\frac{21-3\sqrt{57}}{4}$ is close to $\frac{21-3\sqrt{64}}{4}$

Vertex at: $\left(\frac{21}{4}, \frac{171}{8}\right)$ *y*-intercept at y = 3 *x*-intercepts at $x = \frac{21 - 3\sqrt{57}}{4}$, $x = \frac{21 + 3\sqrt{57}}{4}$.

- Select scale to fit the picture:
 - $\frac{21}{4}$ is close to $\frac{20}{4} = 5$.
 - $\frac{171}{8}$ is between the integers 21 and 22.
 - $\frac{21+3\sqrt{57}}{4}$ is close to $\frac{21+3\sqrt{64}}{4} = \frac{21+24}{4} = \frac{45}{4}$ which is close to $\frac{44}{4} = 11$.
 - $\frac{21-3\sqrt{57}}{4}$ is close to $\frac{21-3\sqrt{64}}{4} = \frac{21-24}{4}$

Vertex at: $\left(\frac{21}{4}, \frac{171}{8}\right)$ *y*-intercept at y = 3 *x*-intercepts at $x = \frac{21 - 3\sqrt{57}}{4}$, $x = \frac{21 + 3\sqrt{57}}{4}$.

- Select scale to fit the picture:
 - $\frac{21}{4}$ is close to $\frac{20}{4} = 5$.
 - $\frac{171}{8}$ is between the integers 21 and 22.
 - $\frac{21+3\sqrt{57}}{4}$ is close to $\frac{21+3\sqrt{64}}{4} = \frac{21+24}{4} = \frac{45}{4}$ which is close to $\frac{44}{4} = 11$.
 - $\frac{21-3\sqrt{57}}{4}$ is close to $\frac{21-3\sqrt{64}}{4} = \frac{21-24}{4} = -\frac{3}{4}$

Vertex at: $\left(\frac{21}{4}, \frac{171}{8}\right)$ *y*-intercept at y = 3 *x*-intercepts at $x = \frac{21 - 3\sqrt{57}}{4}$, $x = \frac{21 + 3\sqrt{57}}{4}$.

- Select scale to fit the picture:
 - $\frac{21}{4}$ is close to $\frac{20}{4} = 5$.
 - $\frac{171}{8}$ is between the integers 21 and 22.
 - $\frac{21+3\sqrt{57}}{4}$ is close to $\frac{21+3\sqrt{64}}{4} = \frac{21+24}{4} = \frac{45}{4}$ which is close to $\frac{44}{4} = 11$.
 - $\frac{21-3\sqrt{57}}{4}$ is close to $\frac{21-3\sqrt{64}}{4} = \frac{21-24}{4} = -\frac{3}{4}$ which is close to -1.

Vertex at: $\left(\frac{21}{4}, \frac{171}{8}\right)$ *y*-intercept at y = 3 *x*-intercepts at $x = \frac{21 - 3\sqrt{57}}{4}$, $x = \frac{21 + 3\sqrt{57}}{4}$.

- Select scale to fit the picture:
 - $\frac{21}{4}$ is close to $\frac{20}{4} = 5$.
 - $\frac{171}{8}$ is between the integers 21 and 22.
 - $\frac{21+3\sqrt{57}}{4}$ is close to $\frac{21+3\sqrt{64}}{4} = \frac{21+24}{4} = \frac{45}{4}$ which is close to $\frac{44}{4} = 11$.
 - $\frac{21-3\sqrt{57}}{4}$ is close to $\frac{21-3\sqrt{64}}{4} = \frac{21-24}{4} = -\frac{3}{4}$ which is close to -1.
 - The parabola vertex is less than 22 units high and the parabola opens downwards.

Vertex at: $\left(\frac{21}{4}, \frac{171}{8}\right)$ *y*-intercept at y = 3 *x*-intercepts at $x = \frac{21 - 3\sqrt{57}}{4}$, $x = \frac{21 + 3\sqrt{57}}{4}$.

- Select scale to fit the picture:
 - $\frac{21}{4}$ is close to $\frac{20}{4} = 5$.
 - $\frac{171}{8}$ is between the integers 21 and 22.
 - $\frac{21+3\sqrt{57}}{4}$ is close to $\frac{21+3\sqrt{64}}{4} = \frac{21+24}{4} = \frac{45}{4}$ which is close to $\frac{44}{4} = 11$.
 - $\frac{21-3\sqrt{57}}{4}$ is close to $\frac{21-3\sqrt{64}}{4} = \frac{21-24}{4} = -\frac{3}{4}$ which is close to -1.
 - The parabola vertex is less than 22 units high and the parabola opens downwards.
 - Axes height of 22 units appears reasonable.

Vertex at: $\left(\frac{21}{4}, \frac{171}{8}\right)$ *y*-intercept at y = 3 *x*-intercepts at $x = \frac{21 - 3\sqrt{57}}{4}$, $x = \frac{21 + 3\sqrt{57}}{4}$.

- Select scale to fit the picture:
 - $\frac{21}{4}$ is close to $\frac{20}{4} = 5$.
 - $\frac{171}{8}$ is between the integers 21 and 22.
 - $\frac{21+3\sqrt{57}}{4}$ is close to $\frac{21+3\sqrt{64}}{4} = \frac{21+24}{4} = \frac{45}{4}$ which is close to $\frac{44}{4} = 11$.
 - $\frac{21-3\sqrt{57}}{4}$ is close to $\frac{21-3\sqrt{64}}{4} = \frac{21-24}{4} = -\frac{3}{4}$ which is close to -1.
 - The parabola vertex is less than 22 units high and the parabola opens downwards.
 - Axes height of 22 units appears reasonable.
 - A grid of width 3 units appears reasonable.

Vertex at: $\left(\frac{21}{4}, \frac{171}{8}\right)$ y-intercept at y = 3x-intercepts at $x = \frac{21 - 3\sqrt{57}}{4}$,

 $x = \frac{21 + 3\sqrt{57}}{4}$.

- Select scale to fit the picture:
 - $\frac{21}{4}$ is close to $\frac{20}{4} = 5$.
 - $\frac{171}{8}$ is between the integers 21 and 22.
 - $\frac{21+3\sqrt{57}}{4}$ is close to $\frac{21+3\sqrt{64}}{4} = \frac{21+24}{4} = \frac{45}{4}$ which is close to $\frac{44}{4} = 11$.
 - $\frac{21-3\sqrt{57}}{4}$ is close to $\frac{21-3\sqrt{64}}{4} = \frac{21-24}{4} = -\frac{3}{4}$ which is close to -1.
 - The parabola vertex is less than 22 units high and the parabola opens downwards.
 - Axes height of 22 units appears reasonable.
 - A grid of width 3 units appears reasonable.
 - Plot all relevant points.

Vertex at: $(\frac{21}{4}, \frac{171}{8})$ y-intercept at y = 3x-intercepts at $x = \frac{21 - 3\sqrt{57}}{4}$,

 $x = \frac{21 + 3\sqrt{57}}{4}$.

- Select scale to fit the picture:
 - $\frac{21}{4}$ is close to $\frac{20}{4} = 5$.
 - $\frac{171}{8}$ is between the integers 21 and 22.
 - $\frac{21+3\sqrt{57}}{4}$ is close to $\frac{21+3\sqrt{64}}{4} = \frac{21+24}{4} = \frac{45}{4}$ which is close to $\frac{44}{4} = 11$.
 - $\frac{21-3\sqrt{57}}{4}$ is close to $\frac{21-3\sqrt{64}}{4} = \frac{21-24}{4} = -\frac{3}{4}$ which is close to -1.
 - The parabola vertex is less than 22 units high and the parabola opens downwards.
 - Axes height of 22 units appears reasonable.
 - A grid of width 3 units appears reasonable.
 - Plot all relevant points.

Vertex at: $\left(\frac{21}{4}, \frac{171}{8}\right)$ y-intercept at y = 3x-intercepts at $x = \frac{21 - 3\sqrt{57}}{4}$,

 $x = \frac{21 + 3\sqrt{57}}{4}$.

- Select scale to fit the picture:
 - $\frac{21}{4}$ is close to $\frac{20}{4} = 5$.
 - $\frac{171}{8}$ is between the integers 21 and 22.
 - $\frac{2\dot{1}+3\sqrt{57}}{4}$ is close to $\frac{21+3\sqrt{64}}{4}=\frac{21+24}{4}=\frac{45}{4}$ which is close to $\frac{44}{4}=11$.
 - $\frac{21-3\sqrt{57}}{4}$ is close to $\frac{21-3\sqrt{64}}{4} = \frac{21-24}{4} = -\frac{3}{4}$ which is close to -1.
 - The parabola vertex is less than 22 units high and the parabola opens downwards.
 - Axes height of 22 units appears reasonable.
 - A grid of width 3 units appears reasonable.
 - Plot all relevant points.

Vertex at: $\left(\frac{21}{4}, \frac{171}{8}\right)$ *y*-intercept at y = 3 *x*-intercepts at $x = \frac{21 - 3\sqrt{57}}{4}$, $x = \frac{21 + 3\sqrt{57}}{4}$.

- Select scale to fit the picture:
 - $\frac{21}{4}$ is close to $\frac{20}{4} = 5$.
 - $\frac{171}{8}$ is between the integers 21 and 22.
 - $\frac{21+3\sqrt{57}}{4}$ is close to $\frac{21+3\sqrt{64}}{4} = \frac{21+24}{4} = \frac{45}{4}$ which is close to $\frac{44}{4} = 11$.
 - $\frac{21-3\sqrt{57}}{4}$ is close to $\frac{21-3\sqrt{64}}{4} = \frac{21-24}{4} = -\frac{3}{4}$ which is close to -1.
 - The parabola vertex is less than 22 units high and the parabola opens downwards.
 - Axes height of 22 units appears reasonable.
 - A grid of width 3 units appears reasonable.
 - Plot all relevant points.
 - Finally "connect the dots with a freehand drawing".

Vertex at: $\left(\frac{21}{4}, \frac{171}{8}\right)$ *y*-intercept at y = 3 *x*-intercepts at $x = \frac{21 - 3\sqrt{57}}{4}$,

 $x = \frac{21+3\sqrt{57}}{4}$.

- Select scale to fit the picture:
 - $\frac{21}{4}$ is close to $\frac{20}{4} = 5$.
 - $\frac{171}{8}$ is between the integers 21 and 22.
 - $\frac{21+3\sqrt{57}}{4}$ is close to $\frac{21+3\sqrt{64}}{4} = \frac{21+24}{4} = \frac{45}{4}$ which is close to $\frac{44}{4} = 11$.
 - $\frac{21-3\sqrt{57}}{4}$ is close to $\frac{21-3\sqrt{64}}{4} = \frac{21-24}{4} = -\frac{3}{4}$ which is close to -1.
 - The parabola vertex is less than 22 units high and the parabola opens downwards.
 - Axes height of 22 units appears reasonable.
 - A grid of width 3 units appears reasonable.
 - Plot all relevant points.
 - Finally "connect the dots with a freehand drawing".

Find the values of the parameter k for which $x^2 + (k+1)x + 2k > 0$ holds for all real x.

Find the values of the parameter k for which $x^2 + (k+1)x + 2k > 0$ holds for all real x.

• In order for the quadratic to be positive, its graph must lie entirely above the *x* axis.

- In order for the quadratic to be positive, its graph must lie entirely above the *x* axis.
- Leading coefficient is positive

- In order for the quadratic to be positive, its graph must lie entirely above the x axis.
- Leading coefficient is positive ⇒ graph opens up

- In order for the quadratic to be positive, its graph must lie entirely above the *x* axis.
- Leading coefficient is positive ⇒ graph opens up ⇒ is above x axis if it does not intersect it

- In order for the quadratic to be positive, its graph must lie entirely above the x axis.
- Leading coefficient is positive \Rightarrow graph opens up \Rightarrow is above x axis if it does not intersect it \Rightarrow the quadratic has no real solutions.

- In order for the quadratic to be positive, its graph must lie entirely above the x axis.
- Leading coefficient is positive \Rightarrow graph opens up \Rightarrow is above x axis if it does not intersect it \Rightarrow the quadratic has no real solutions.
- The roots of a quadratic are $x_1, x_2 = ?$

- In order for the quadratic to be positive, its graph must lie entirely above the x axis.
- Leading coefficient is positive ⇒ graph opens up ⇒ is above x axis if it does not intersect it ⇒ the quadratic has no real solutions.
- The roots of a quadratic are $x_1, x_2 = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$.

- In order for the quadratic to be positive, its graph must lie entirely above the x axis.
- Leading coefficient is positive ⇒ graph opens up ⇒ is above x
 axis if it does not intersect it ⇒ the quadratic has no real solutions.
- The roots of a quadratic are $x_1, x_2 = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$

$$b^2 - 4ac < 0$$

- In order for the quadratic to be positive, its graph must lie entirely above the x axis.
- Leading coefficient is positive ⇒ graph opens up ⇒ is above x axis if it does not intersect it ⇒ the quadratic has no real solutions.
- The roots of a quadratic are $x_1, x_2 = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$.

$$\frac{b^2 - 4ac}{(k+1)^2 - 4 \cdot 1 \cdot 2k} < 0$$

- In order for the quadratic to be positive, its graph must lie entirely above the x axis.
- Leading coefficient is positive ⇒ graph opens up ⇒ is above x axis if it does not intersect it ⇒ the quadratic has no real solutions.
- The roots of a quadratic are $x_1, x_2 = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$.

$$b^2 - 4ac < 0$$

 $(k+1)^2 - 4 \cdot 1 \cdot 2k < 0$

- In order for the quadratic to be positive, its graph must lie entirely above the x axis.
- Leading coefficient is positive ⇒ graph opens up ⇒ is above x axis if it does not intersect it ⇒ the quadratic has no real solutions.
- The roots of a quadratic are $x_1, x_2 = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$.

$$b^2 - 4ac < 0$$

 $(k+1)^2 - 4 \cdot 1 \cdot 2k < 0$

- In order for the quadratic to be positive, its graph must lie entirely above the x axis.
- Leading coefficient is positive \Rightarrow graph opens up \Rightarrow is above x axis if it does not intersect it \Rightarrow the quadratic has no real solutions.
- The roots of a quadratic are $x_1, x_2 = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$

$$b^2 - 4ac < 0$$

 $(k+1)^2 - 4 \cdot 1 \cdot 2k < 0$

$$\frac{(k+1)^2 - 4 \cdot 1 \cdot 2k}{k^2 + 2k + 1 - 8k} < 0$$

- In order for the quadratic to be positive, its graph must lie entirely above the x axis.
- Leading coefficient is positive \Rightarrow graph opens up \Rightarrow is above x axis if it does not intersect it \Rightarrow the quadratic has no real solutions.
- The roots of a quadratic are $x_1, x_2 = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$

$$b^2 - 4ac < 0$$

 $(k+1)^2 - 4 \cdot 1 \cdot 2k < 0$

$$(k+1)^2 - 4 \cdot 1 \cdot 2k < 0$$

$$k^2 + 2k + 1 - 8k < 0$$

$$k^2 + 2k + 1 - 8k < 0$$

- In order for the quadratic to be positive, its graph must lie entirely above the x axis.
- Leading coefficient is positive ⇒ graph opens up ⇒ is above x axis if it does not intersect it ⇒ the quadratic has no real solutions.
- The roots of a quadratic are $x_1, x_2 = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$.

$$b^{2} - 4ac < 0$$

$$(k+1)^{2} - 4 \cdot 1 \cdot 2k < 0$$

$$k^{2} + 2k + 1 - 8k < 0$$

$$k^{2} - 6k + 1 < 0$$

- In order for the quadratic to be positive, its graph must lie entirely above the x axis.
- Leading coefficient is positive ⇒ graph opens up ⇒ is above x axis if it does not intersect it ⇒ the quadratic has no real solutions.
- The roots of a quadratic are $x_1, x_2 = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$.

$$b^{2} - 4ac < 0$$

$$(k+1)^{2} - 4 \cdot 1 \cdot 2k < 0$$

$$k^{2} + 2k + 1 - 8k < 0$$

$$k^{2} - 6k + 1 < 0$$

$$(k-k_{1})(k-k_{2}) < 0$$

- In order for the quadratic to be positive, its graph must lie entirely above the x axis.
- Leading coefficient is positive ⇒ graph opens up ⇒ is above x axis if it does not intersect it ⇒ the quadratic has no real solutions.
- The roots of a quadratic are $x_1, x_2 = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$.

$$\begin{array}{rcl} b^2 - 4ac & < & 0 \\ (k+1)^2 - 4 \cdot 1 \cdot 2k & < & 0 \\ k^2 + 2k + 1 - 8k & < & 0 \\ k^2 - 6k + 1 & < & 0 \\ (k - k_1)(k - k_2) & < & 0 \end{array}$$

$$k_1, k_2 = ?$$

- In order for the quadratic to be positive, its graph must lie entirely above the x axis.
- Leading coefficient is positive ⇒ graph opens up ⇒ is above x axis if it does not intersect it ⇒ the quadratic has no real solutions.
- The roots of a quadratic are $x_1, x_2 = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$.

$$b^{2} - 4ac < 0$$

$$(k+1)^{2} - 4 \cdot 1 \cdot 2k < 0$$

$$k^{2} + 2k + 1 - 8k < 0$$

$$k^{2} - 6k + 1 < 0$$

$$(k - k_{1})(k - k_{2}) < 0$$

$$k_{1}, k_{2} = \frac{-(-6) \pm \sqrt{(-6)^{2} - 4 \cdot 1 \cdot 1}}{2 \cdot 1}$$

- In order for the quadratic to be positive, its graph must lie entirely above the x axis.
- Leading coefficient is positive ⇒ graph opens up ⇒ is above x axis if it does not intersect it ⇒ the quadratic has no real solutions.
- The roots of a quadratic are $x_1, x_2 = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$.

$$b^{2} - 4ac < 0$$

$$(k+1)^{2} - 4 \cdot 1 \cdot 2k < 0$$

$$k^{2} + 2k + 1 - 8k < 0$$

$$k^{2} - 6k + 1 < 0$$

$$(k-k_{1})(k-k_{2}) < 0$$

$$k_{1}, k_{2} = \frac{-(-6) \pm \sqrt{(-6)^{2} - 4 \cdot 1 \cdot 1}}{2 \cdot 1}$$

- In order for the quadratic to be positive, its graph must lie entirely above the x axis.
- Leading coefficient is positive ⇒ graph opens up ⇒ is above x axis if it does not intersect it ⇒ the quadratic has no real solutions.
- The roots of a quadratic are $x_1, x_2 = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$.

$$b^{2} - 4ac < 0$$

$$(k+1)^{2} - 4 \cdot 1 \cdot 2k < 0$$

$$k^{2} + 2k + 1 - 8k < 0$$

$$k^{2} - 6k + 1 < 0$$

$$(k-k_{1})(k-k_{2}) < 0$$

$$k_{1}, k_{2} = \frac{-(-6) \pm \sqrt{(-6)^{2} - 4 \cdot 1 \cdot 1}}{2 \cdot 1}$$

- In order for the quadratic to be positive, its graph must lie entirely above the x axis.
- Leading coefficient is positive ⇒ graph opens up ⇒ is above x axis if it does not intersect it ⇒ the quadratic has no real solutions.
- The roots of a quadratic are $x_1, x_2 = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$.

$$b^{2} - 4ac < 0$$

$$(k+1)^{2} - 4 \cdot 1 \cdot 2k < 0$$

$$k^{2} + 2k + 1 - 8k < 0$$

$$k^{2} - 6k + 1 < 0$$

$$(k-k_{1})(k-k_{2}) < 0$$

$$k_{1}, k_{2} = \frac{-(-6) \pm \sqrt{(-6)^{2} - 4 \cdot 1 \cdot 1}}{2 \cdot 1}$$

- In order for the quadratic to be positive, its graph must lie entirely above the x axis.
- Leading coefficient is positive ⇒ graph opens up ⇒ is above x axis if it does not intersect it ⇒ the quadratic has no real solutions.
- The roots of a quadratic are $x_1, x_2 = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$.

$$\begin{array}{rcl} b^2 - 4ac & < & 0 \\ (k+1)^2 - 4 \cdot 1 \cdot 2k & < & 0 \\ k^2 + 2k + 1 - 8k & < & 0 \\ k^2 - 6k + 1 & < & 0 \\ (k - k_1)(k - k_2) & < & 0 \end{array}$$

$$k_1, k_2 = \frac{-(-6) \pm \sqrt{(-6)^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1} = \frac{6 \pm \sqrt{32}}{2}$$

 $b^2 - 4ac < 0$

Example

- In order for the quadratic to be positive, its graph must lie entirely above the x axis.
- Leading coefficient is positive ⇒ graph opens up ⇒ is above x axis if it does not intersect it ⇒ the quadratic has no real solutions.
- The roots of a quadratic are $x_1, x_2 = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$.

$$(k+1)^{2} - 4 \cdot 1 \cdot 2k < 0$$

$$k^{2} + 2k + 1 - 8k < 0$$

$$k^{2} - 6k + 1 < 0$$

$$(k-k_{1})(k-k_{2}) < 0$$

$$k_{1}, k_{2} = \frac{-(-6) \pm \sqrt{(-6)^{2} - 4 \cdot 1 \cdot 1}}{2 \cdot 1} = \frac{6 \pm \sqrt{32}}{2}$$

- In order for the quadratic to be positive, its graph must lie entirely above the x axis.
- Leading coefficient is positive ⇒ graph opens up ⇒ is above x axis if it does not intersect it ⇒ the quadratic has no real solutions.
- The roots of a quadratic are $x_1, x_2 = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$.

$$\begin{array}{rcl} b^2 - 4ac & < & 0 \\ (k+1)^2 - 4 \cdot 1 \cdot 2k & < & 0 \\ k^2 + 2k + 1 - 8k & < & 0 \\ k^2 - 6k + 1 & < & 0 \\ (k - k_1)(k - k_2) & < & 0 \end{array}$$

$$k_1, k_2 = \frac{-(-6) \pm \sqrt{(-6)^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1} = \frac{6 \pm \sqrt{32}}{2}$$

- In order for the quadratic to be positive, its graph must lie entirely above the x axis.
- Leading coefficient is positive ⇒ graph opens up ⇒ is above x axis if it does not intersect it ⇒ the quadratic has no real solutions.
- The roots of a quadratic are $x_1, x_2 = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$.

$$\begin{array}{rcl} b^2 - 4ac & < & 0 \\ (k+1)^2 - 4 \cdot 1 \cdot 2k & < & 0 \\ (k-k_1)(k-k_2) & < & 0 \end{array}$$

$$k_1, k_2 = \frac{-(-6) \pm \sqrt{(-6)^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1} = \frac{6 \pm \sqrt{32}}{2}$$

- In order for the quadratic to be positive, its graph must lie entirely above the x axis.
- Leading coefficient is positive ⇒ graph opens up ⇒ is above x axis if it does not intersect it ⇒ the quadratic has no real solutions.
- The roots of a quadratic are $x_1, x_2 = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$.

$$b^{2} - 4ac < 0$$

$$(k+1)^{2} - 4 \cdot 1 \cdot 2k < 0$$

$$(k-k_{1})(k-k_{2}) < 0$$

$$k_{1}, k_{2} = \frac{-(-6) \pm \sqrt{(-6)^{2} - 4 \cdot 1 \cdot 1}}{2 \cdot 1} = \frac{6 \pm \sqrt{32}}{2}$$

$$= \frac{2 \cdot 3 \pm \sqrt{4}\sqrt{8}}{2}$$

- In order for the quadratic to be positive, its graph must lie entirely above the x axis.
- Leading coefficient is positive ⇒ graph opens up ⇒ is above x axis if it does not intersect it ⇒ the quadratic has no real solutions.
- The roots of a quadratic are $x_1, x_2 = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$.

$$b^{2} - 4ac < 0$$

$$(k+1)^{2} - 4 \cdot 1 \cdot 2k < 0$$

$$(k-k_{1})(k-k_{2}) < 0$$

$$k_{1}, k_{2} = \frac{-(-6) \pm \sqrt{(-6)^{2} - 4 \cdot 1 \cdot 1}}{2 \cdot 1} = \frac{6 \pm \sqrt{32}}{2}$$

$$= \frac{2 \cdot 3 \pm \sqrt{4}\sqrt{8}}{2}$$

- In order for the quadratic to be positive, its graph must lie entirely above the x axis.
- Leading coefficient is positive ⇒ graph opens up ⇒ is above x axis if it does not intersect it ⇒ the quadratic has no real solutions.
- The roots of a quadratic are $x_1, x_2 = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$.

$$b^{2} - 4ac < 0$$

$$(k+1)^{2} - 4 \cdot 1 \cdot 2k < 0$$

$$(k-k_{1})(k-k_{2}) < 0$$

$$k_{1}, k_{2} = \frac{-(-6) \pm \sqrt{(-6)^{2} - 4 \cdot 1 \cdot 1}}{2 \cdot 1} = \frac{6 \pm \sqrt{32}}{2}$$

$$= \frac{2 \cdot 3 \pm \sqrt{4}\sqrt{8}}{2} = \frac{2(3 \pm \sqrt{8})}{2}$$

- In order for the quadratic to be positive, its graph must lie entirely above the x axis.
- Leading coefficient is positive ⇒ graph opens up ⇒ is above x axis if it does not intersect it ⇒ the quadratic has no real solutions.
- The roots of a quadratic are $x_1, x_2 = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$.

$$b^{2} - 4ac < 0$$

$$(k+1)^{2} - 4 \cdot 1 \cdot 2k < 0$$

$$(k-k_{1})(k-k_{2}) < 0$$

$$k_{1}, k_{2} = \frac{-(-6) \pm \sqrt{(-6)^{2} - 4 \cdot 1 \cdot 1}}{2 \cdot 1} = \frac{6 \pm \sqrt{32}}{2}$$

$$= \frac{2 \cdot 3 \pm \sqrt{4}\sqrt{8}}{2} = \frac{2(3 \pm \sqrt{8})}{2} = 3 \pm \sqrt{8}$$

- In order for the quadratic to be positive, its graph must lie entirely above the x axis.
- Leading coefficient is positive ⇒ graph opens up ⇒ is above x axis if it does not intersect it ⇒ the quadratic has no real solutions.
- The roots of a quadratic are $x_1, x_2 = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$.

$$b^{2} - 4ac < 0$$

$$(k+1)^{2} - 4 \cdot 1 \cdot 2k < 0$$

$$(k-k_{1})(k-k_{2}) < 0$$

$$k_{1}, k_{2} = \frac{-(-6) \pm \sqrt{(-6)^{2} - 4 \cdot 1 \cdot 1}}{2 \cdot 1} = \frac{6 \pm \sqrt{32}}{2}$$

$$= \frac{2 \cdot 3 \pm \sqrt{4}\sqrt{8}}{2} = \frac{2(3 \pm \sqrt{8})}{2} = 3 \pm \sqrt{8}$$

- In order for the quadratic to be positive, its graph must lie entirely above the x axis.
- Leading coefficient is positive ⇒ graph opens up ⇒ is above x axis if it does not intersect it ⇒ the quadratic has no real solutions.
- The roots of a quadratic are $x_1, x_2 = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$.

$$\begin{array}{rcl} b^2 - 4ac & < & 0 \\ (k+1)^2 - 4 \cdot 1 \cdot 2k & < & 0 \\ (k-k_1)(k-k_2) & < & 0 \end{array}$$

$$k_1, k_2 = \frac{2 \cdot 3 \pm \sqrt{4}\sqrt{8}}{2} = \frac{2(3 \pm \sqrt{8})}{2} = 3 \pm \sqrt{8}$$

- In order for the quadratic to be positive, its graph must lie entirely above the x axis.
- Leading coefficient is positive ⇒ graph opens up ⇒ is above x axis if it does not intersect it ⇒ the quadratic has no real solutions.
- The roots of a quadratic are $x_1, x_2 = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$.

$$b^{2} - 4ac < 0$$

$$(k+1)^{2} - 4 \cdot 1 \cdot 2k < 0$$

$$(k-k_{1})(k-k_{2}) < 0$$

$$k_{1}, k_{2} = \frac{2 \cdot 3 \pm \sqrt{4}\sqrt{8}}{2} = \frac{2(3 \pm \sqrt{8})}{2} = 3 \pm \sqrt{8}$$

$$k \in ?$$

- In order for the quadratic to be positive, its graph must lie entirely above the x axis.
- Leading coefficient is positive ⇒ graph opens up ⇒ is above x axis if it does not intersect it ⇒ the quadratic has no real solutions.
- The roots of a quadratic are $x_1, x_2 = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$.

$$\begin{array}{rcl} b^2 - 4ac & < & 0 \\ (k+1)^2 - 4 \cdot 1 \cdot 2k & < & 0 \\ (k-k_1)(k-k_2) & < & 0 \end{array}$$

$$k_{1}, k_{2} = \frac{2 \cdot 3 \pm \sqrt{4}\sqrt{8}}{2} = \frac{2(3 \pm \sqrt{8})}{2} = 3 \pm \sqrt{8}$$

$$k \in ?$$

- In order for the quadratic to be positive, its graph must lie entirely above the x axis.
- Leading coefficient is positive ⇒ graph opens up ⇒ is above x axis if it does not intersect it ⇒ the quadratic has no real solutions.
- The roots of a quadratic are $x_1, x_2 = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$.

$$b^{2} - 4ac < 0$$

$$(k+1)^{2} - 4 \cdot 1 \cdot 2k < 0$$

$$(k-k_{1})(k-k_{2}) < 0$$

$$k_{1}, k_{2} = \frac{2 \cdot 3 \pm \sqrt{4}\sqrt{8}}{2} = \frac{2(3 \pm \sqrt{8})}{2} = 3 \pm \sqrt{8}$$

$$k \in ?$$

- In order for the quadratic to be positive, its graph must lie entirely above the x axis.
- Leading coefficient is positive ⇒ graph opens up ⇒ is above x axis if it does not intersect it ⇒ the quadratic has no real solutions.
- The roots of a quadratic are $x_1, x_2 = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$.

$$b^{2} - 4ac < 0$$

$$(k+1)^{2} - 4 \cdot 1 \cdot 2k < 0$$

$$(k-k_{1})(k-k_{2}) < 0$$

$$k_{1}, k_{2} = \frac{2 \cdot 3 \pm \sqrt{4}\sqrt{8}}{2} = \frac{2(3 \pm \sqrt{8})}{2} = 3 \pm \sqrt{8}$$

$$k \in ?$$

- In order for the quadratic to be positive, its graph must lie entirely above the x axis.
- Leading coefficient is positive ⇒ graph opens up ⇒ is above x axis if it does not intersect it ⇒ the quadratic has no real solutions.
- The roots of a quadratic are $x_1, x_2 = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$.

$$\begin{array}{rcl} b^2 - 4ac & < & 0 \\ (k+1)^2 - 4 \cdot 1 \cdot 2k & < & 0 \\ (k-k_1)(k-k_2) & < & 0 \end{array}$$

$$k_{1}, k_{2} = \frac{2 \cdot 3 \pm \sqrt{4}\sqrt{8}}{2} = \frac{2(3 \pm \sqrt{8})}{2} = 3 \pm \sqrt{8}$$

$$k \in (k_{1}, k_{2}) = (3 - \sqrt{8}, 3 + \sqrt{8})$$

- In order for the quadratic to be positive, its graph must lie entirely above the x axis.
- Leading coefficient is positive ⇒ graph opens up ⇒ is above x axis if it does not intersect it ⇒ the quadratic has no real solutions.
- The roots of a quadratic are $x_1, x_2 = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$.

$$b^{2} - 4ac < 0$$

$$(k+1)^{2} - 4 \cdot 1 \cdot 2k < 0$$

$$(k-k_{1})(k-k_{2}) < 0$$

$$k_{1}, k_{2} = \frac{2 \cdot 3 \pm \sqrt{4}\sqrt{8}}{2} = \frac{2(3 \pm \sqrt{8})}{2} = 3 \pm \sqrt{8}$$

$$k \in (k_{1}, k_{2}) = (3 - \sqrt{8}, 3 + \sqrt{8})$$

Find the values of the parameter k for which $x^2 + (k+1)x + 2k > 0$ holds for all real x.

- In order for the quadratic to be positive, its graph must lie entirely above the x axis.
- Leading coefficient is positive ⇒ graph opens up ⇒ is above x axis if it does not intersect it ⇒ the quadratic has no real solutions.
- The roots of a quadratic are $x_1, x_2 = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$.

$$\begin{array}{rcl} b^2 - 4ac & < & 0 \\ (k+1)^2 - 4 \cdot 1 \cdot 2k & < & 0 \\ (k-k_1)(k-k_2) & < & 0 \end{array}$$

$$k_{1}, k_{2} = \frac{2 \cdot 3 \pm \sqrt{4}\sqrt{8}}{2} = \frac{2(3 \pm \sqrt{8})}{2} = 3 \pm \sqrt{8}$$

$$k \in (k_{1}, k_{2}) = (3 - \sqrt{8}, 3 + \sqrt{8})$$

Find the minimum point on the curve $y = 3x^2 + 2x + 1$ by completing the square.

Find the minimum point on the curve
$$y = 3x^2 + 2x + 1$$
 by completing the square.

$$3x^2 + 2x + 1 = 3\left(x^2 + 2 \cdot \frac{1}{3}x + ? - ?\right) + 1$$

Find the minimum point on the curve
$$y = 3x^2 + 2x + 1$$
 by completing the square.

$$3x^2 + 2x + 1 = 3\left(x^2 + 2 \cdot \frac{1}{3}x + ? - ?\right) + 1$$

Find the minimum point on the curve
$$y = 3x^2 + 2x + 1$$
 by completing the square.

$$3x^2 + 2x + 1 = 3\left(x^2 + 2 \cdot \frac{1}{3}x + ? - ?\right) + 1$$

Find the minimum point on the curve
$$y = 3x^2 + 2x + 1$$
 by completing the square.

$$3x^2 + 2x + 1 = 3\left(x^2 + 2 \cdot \frac{1}{3}x + \frac{1}{9} - \frac{1}{9}\right) + 1$$

Find the minimum point on the curve
$$y = 3x^2 + 2x + 1$$
 by completing the square.

$$3x^{2} + 2x + 1 = 3\left(x^{2} + 2 \cdot \frac{1}{3}x + \frac{1}{9} - \frac{1}{9}\right) + 1$$
$$= 3\left(\left(x + \frac{1}{3}\right)^{2} - \frac{1}{9}\right) + 1$$

Find the minimum point on the curve
$$y = 3x^2 + 2x + 1$$
 by completing the square.

$$3x^{2} + 2x + 1 = 3\left(x^{2} + 2 \cdot \frac{1}{3}x + \frac{1}{9} - \frac{1}{9}\right) + 1$$
$$= 3\left(\left(x + \frac{1}{3}\right)^{2} - \frac{1}{9}\right) + 1$$
$$= 3\left(x + \frac{1}{3}\right)^{2} - \frac{1}{3} + 1$$

Find the minimum point on the curve
$$y = 3x^2 + 2x + 1$$
 by completing the square.

$$3x^{2} + 2x + 1 = 3\left(x^{2} + 2 \cdot \frac{1}{3}x + \frac{1}{9} - \frac{1}{9}\right) + 1$$

$$= 3\left(\left(x + \frac{1}{3}\right)^{2} - \frac{1}{9}\right) + 1$$

$$= 3\left(x + \frac{1}{3}\right)^{2} - \frac{1}{3} + 1$$

$$= 3\left(x - \left(-\frac{1}{3}\right)\right)^{2} + ?$$

Find the minimum point on the curve
$$y = 3x^2 + 2x + 1$$
 by completing the square.

$$3x^{2} + 2x + 1 = 3\left(x^{2} + 2 \cdot \frac{1}{3}x + \frac{1}{9} - \frac{1}{9}\right) + 1$$

$$= 3\left(\left(x + \frac{1}{3}\right)^{2} - \frac{1}{9}\right) + 1$$

$$= 3\left(x + \frac{1}{3}\right)^{2} - \frac{1}{3} + 1$$

$$= 3\left(x - \left(-\frac{1}{3}\right)\right)^{2} + ?$$

Find the minimum point on the curve
$$y = 3x^2 + 2x + 1$$
 by completing the square.

$$3x^{2} + 2x + 1 = 3\left(x^{2} + 2 \cdot \frac{1}{3}x + \frac{1}{9} - \frac{1}{9}\right) + 1$$

$$= 3\left(\left(x + \frac{1}{3}\right)^{2} - \frac{1}{9}\right) + 1$$

$$= 3\left(x + \frac{1}{3}\right)^{2} - \frac{1}{3} + 1$$

$$= 3\left(x - \left(-\frac{1}{3}\right)\right)^{2} + \frac{2}{3}$$

Find the minimum point on the curve $y = 3x^2 + 2x + 1$ by completing the square.

$$3x^{2} + 2x + 1 = 3\left(x^{2} + 2 \cdot \frac{1}{3}x + \frac{1}{9} - \frac{1}{9}\right) + 1$$

$$= 3\left(\left(x + \frac{1}{3}\right)^{2} - \frac{1}{9}\right) + 1$$

$$= 3\left(x + \frac{1}{3}\right)^{2} - \frac{1}{3} + 1$$

$$= 3\left(x - \left(-\frac{1}{3}\right)\right)^{2} + \frac{2}{3}$$
Minimum point = $(?,?)$

Find the minimum point on the curve $y = 3x^2 + 2x + 1$ by completing the square.

$$3x^{2} + 2x + 1 = 3\left(x^{2} + 2 \cdot \frac{1}{3}x + \frac{1}{9} - \frac{1}{9}\right) + 1$$

$$= 3\left(\left(x + \frac{1}{3}\right)^{2} - \frac{1}{9}\right) + 1$$

$$= 3\left(x + \frac{1}{3}\right)^{2} - \frac{1}{3} + 1$$

$$= 3\left(x - \left(-\frac{1}{3}\right)\right)^{2} + \frac{2}{3}$$
Minimum point = $\left(-\frac{1}{3}, \frac{2}{3}\right)$

Maximum or minimum value of a quadratic function

- Let $f(x) = ax^2 + bx + c$ quadratic $(a \neq 0)$.
- Let *D* be the discriminant $D = b^2 4ac$.

$$f(x) = a\left(x - \left(-\frac{b}{2a}\right)\right)^2 - \frac{D}{4a}$$
 complete the square

Maximum or minimum value of a quadratic function

- Let $f(x) = ax^2 + bx + c$ quadratic $(a \neq 0)$.
- Let *D* be the discriminant $D = b^2 4ac$.

$$f(x) = a\left(x - \left(-\frac{b}{2a}\right)\right)^2 - \frac{D}{4a}$$
 complete the square

• Therefore if a > 0 then $f(x) = a(square) - \frac{D}{4a}$

Maximum or minimum value of a quadratic function

- Let $f(x) = ax^2 + bx + c$ quadratic $(a \neq 0)$.
- Let *D* be the discriminant $D = b^2 4ac$.

$$f(x) = a\left(x - \left(-\frac{b}{2a}\right)\right)^2 - \frac{D}{4a}$$
 complete the square

• Therefore if a > 0 then $f(x) = a(\text{square}) - \frac{D}{4a} \ge -\frac{D}{4a}$.

Maximum or minimum value of a quadratic function

- Let $f(x) = ax^2 + bx + c$ quadratic $(a \neq 0)$.
- Let *D* be the discriminant $D = b^2 4ac$.

$$f(x) = a\left(x - \left(-\frac{b}{2a}\right)\right)^2 - \frac{D}{4a}$$
 complete the square

- Therefore if a > 0 then $f(x) = a(\text{square}) \frac{D}{4a} \ge -\frac{D}{4a}$.
- Similarly if a < 0 then $f(x) = a(square) \frac{D}{4a} \le -\frac{D}{4a}$.

Maximum or minimum value of a quadratic function

- Let $f(x) = ax^2 + bx + c$ quadratic $(a \neq 0)$.
- Let *D* be the discriminant $D = b^2 4ac$.

$$f(x) = a\left(x - \left(-\frac{b}{2a}\right)\right)^2 - \frac{D}{4a}$$
 complete the square

- Therefore if a > 0 then $f(x) = a(\text{square}) \frac{D}{4a} \ge -\frac{D}{4a}$.
- Similarly if a < 0 then $f(x) = a(\text{square}) \frac{D}{4a} \le -\frac{D}{4a}$.

Recall
$$f(x) = ax^2 + bx + c = a\left(x - \left(-\frac{b}{2a}\right)\right)^2 - \frac{D}{4a}$$
.

Proposition

Let $f(x) = ax^2 + bx + c$, $a \neq 0$ and let $D = b^2 - 4ac$.

- If a > 0 then f(x) has no maximum and has minimum at $x = -\frac{b}{2a}$.
- If a < 0 then f(x) has no minimum and has maximum at $x = -\frac{b}{2a}$.
- In both cases, the extremal value (either maximum or minimum) is $f\left(-\frac{b}{2a}\right) = -\frac{b^2-4ac}{4a} = -\frac{D}{4a}$.

Recall
$$f(x) = ax^2 + bx + c = a\left(x - \left(-\frac{b}{2a}\right)\right)^2 - \frac{D}{4a}$$
.

Proposition

Let $f(x) = ax^2 + bx + c$, $a \neq 0$ and let $D = b^2 - 4ac$.

- If a > 0 then f(x) has no maximum and has minimum at $x = -\frac{b}{2a}$.
- If a < 0 then f(x) has no minimum and has maximum at $x = -\frac{b}{2a}$.
- In both cases, the extremal value (either maximum or minimum) is $f\left(-\frac{b}{2a}\right) = -\frac{b^2-4ac}{4a} = -\frac{D}{4a}$.

Recall
$$f(x) = ax^2 + bx + c = a\left(x - \left(-\frac{b}{2a}\right)\right)^2 - \frac{D}{4a}$$
.

Proposition

Let $f(x) = ax^2 + bx + c$, $a \neq 0$ and let $D = b^2 - 4ac$.

- If a > 0 then f(x) has no maximum and has minimum at $x = -\frac{b}{2a}$.
- If a < 0 then f(x) has no minimum and has maximum at $x = -\frac{b}{2a}$.
- In both cases, the extremal value (either maximum or minimum) is $f\left(-\frac{b}{2a}\right) = -\frac{b^2-4ac}{4a} = -\frac{D}{4a}$.

Let x, z be two numbers that add to 12. Choose x and z so that the product $x \cdot z$ is maximal.

Let x, z be two numbers that add to 12. Choose x and z so that the product $x \cdot z$ is maximal.

Maximizing:

XZ

Let x, z be two numbers that add to 12. Choose x and z so that the product $x \cdot z$ is maximal.

$$x + z = 12$$

Maximizing:

XZ

Let x, z be two numbers that add to 12. Choose x and z so that the product $x \cdot z$ is maximal.

$$x + z = 12$$
$$z = 12 - x$$

Maximizing:

ΧZ

Let x, z be two numbers that add to 12. Choose x and z so that the product $x \cdot z$ is maximal.

$$x + z = 12$$
$$z = 12 - x$$

Maximizing:

$$xz = x(12-x)$$

Example

Let x, z be two numbers that add to 12. Choose x and z so that the product $x \cdot z$ is maximal.

$$x + z = 12$$
$$z = 12 - x$$

Maximizing:

$$xz = x(12-x)$$
$$= -x^2 + 12x$$

Example

Let x, z be two numbers that add to 12. Choose x and z so that the product $x \cdot z$ is maximal.

$$x + z = 12$$
$$z = 12 - x$$

Maximizing:

$$xz = x(12-x)$$
$$= -x^2 + 12x$$

Example

Let x, z be two numbers that add to 12. Choose x and z so that the product $x \cdot z$ is maximal.

$$x + z = 12$$
$$z = 12 - x$$

Maximizing:

$$xz = x(12-x)$$
$$= -x^2 + 12x$$

Parabola

Let x, z be two numbers that add to 12. Choose x and z so that the product $x \cdot z$ is maximal.

$$x + z = 12$$
$$z = 12 - x$$

Maximizing:

$$xz = x(12-x)$$
$$= -x^2 + 12x$$

Parabola opens down

Let x, z be two numbers that add to 12. Choose x and z so that the product $x \cdot z$ is maximal.

$$x + z = 12$$
$$z = 12 - x$$

Maximizing:

$$xz = x(12-x)$$
$$= -x^2 + 12x$$

Let x, z be two numbers that add to 12. Choose x and z so that the product $x \cdot z$ is maximal.

$$x + z = 12$$
$$z = 12 - x$$

Maximizing:

$$xz = x(12-x)$$
$$= -x^2 + 12x$$

$$X = ?$$

Let x, z be two numbers that add to 12. Choose x and z so that the product $x \cdot z$ is maximal.

$$x + z = 12$$
$$z = 12 - x$$

Maximizing:

$$xz = x(12-x)$$
$$= -x^2 + 12x$$

$$x = -\frac{b}{2a}$$

Let x, z be two numbers that add to 12. Choose x and z so that the product $x \cdot z$ is maximal.

$$x + z = 12$$
$$z = 12 - x$$

Maximizing:

$$xz = x(12-x)$$

= $-x^2 + 12x$

$$\begin{array}{rcl} X & = & -\frac{b}{2\epsilon} \\ & = & -\frac{12}{-2} \end{array}$$

Let x, z be two numbers that add to 12. Choose x and z so that the product $x \cdot z$ is maximal.

$$x + z = 12$$
$$z = 12 - x$$

Maximizing:

$$xz = x(12-x)$$
$$= -x^2 + 12x$$

$$\begin{array}{rcl} X & = & -\frac{b}{2\epsilon} \\ & = & -\frac{12}{-2} \end{array}$$

Let x, z be two numbers that add to 12. Choose x and z so that the product $x \cdot z$ is maximal.

$$x + z = 12$$
$$z = 12 - x$$

Maximizing:

$$xz = x(12-x)$$
$$= -x^2 + 12x$$

$$x = -\frac{b}{2a}$$
$$= -\frac{12}{-2} = 6$$

Let x, z be two numbers that add to 12. Choose x and z so that the product $x \cdot z$ is maximal.

$$x + z = 12$$
$$z = 12 - x$$

Maximizing:

$$xz = x(12-x)$$
$$= -x^2 + 12x$$

$$x = -\frac{b}{2a}$$
$$= -\frac{12}{-2} = 6$$
$$z = 12 - x$$

Let x, z be two numbers that add to 12. Choose x and z so that the product $x \cdot z$ is maximal.

$$x + z = 12$$
$$z = 12 - x$$

Maximizing:

$$xz = x(12-x)$$
$$= -x^2 + 12x$$

$$x = -\frac{b}{2a} = -\frac{12}{-2} = 6 z = 12 - x = 12 - 6$$

Let x, z be two numbers that add to 12. Choose x and z so that the product $x \cdot z$ is maximal.

$$x + z = 12$$
$$z = 12 - x$$

Maximizing:

$$xz = x(12-x)$$
$$= -x^2 + 12x$$

$$x = -\frac{b}{2a}$$

$$= -\frac{12}{-2} = 6$$

$$z = 12 - x = 12 - 6 = 6$$

Let x, z be two numbers that add to 12. Choose x and z so that the product $x \cdot z$ is maximal.

$$x + z = 12$$
$$z = 12 - x$$

Maximizing:

$$xz = x(12-x)$$
$$= -x^2 + 12x$$

Parabola opens down ⇒ has maximum, attained at:

$$x = -\frac{b}{2a}$$

$$= -\frac{12}{-2} = 6$$

$$z = 12 - x = 12 - 6 = 6$$

Max. product = xz

Let x, z be two numbers that add to 12. Choose x and z so that the product $x \cdot z$ is maximal.

$$x + z = 12$$
$$z = 12 - x$$

Maximizing:

$$xz = x(12-x)$$
$$= -x^2 + 12x$$

Parabola opens down ⇒ has maximum, attained at:

$$x = -\frac{b}{2a}$$

$$= -\frac{12}{-2} = 6$$

$$z = 12 - x = 12 - 6 = 6$$

Max. product = $xz = 6 \cdot 6$

Let x, z be two numbers that add to 12. Choose x and z so that the product $x \cdot z$ is maximal.

$$x + z = 12$$
$$z = 12 - x$$

Maximizing:

$$xz = x(12-x)$$
$$= -x^2 + 12x$$

Parabola opens down ⇒ has maximum, attained at:

$$x = -\frac{b}{2a}$$

$$= -\frac{12}{-2} = 6$$

$$z = 12 - x = 12 - 6 = 6$$

Max. product = $xz = 6 \cdot 6$

Let x, z be two numbers that add to 12. Choose x and z so that the product $x \cdot z$ is maximal.

$$x + z = 12$$
$$z = 12 - x$$

Maximizing:

$$xz = x(12-x)$$
$$= -x^2 + 12x$$

Parabola opens down ⇒ has maximum, attained at:

$$x = -\frac{3}{2a}$$

$$= -\frac{12}{-2} = 6$$

$$z = 12 - x = 12 - 6 = 6$$

Max. product = $xz = 6 \cdot 6 = 36$.

Let x, z be two numbers that add to 12. Choose x and z so that the product $x \cdot z$ is maximal.

$$x + z = 12$$
$$z = 12 - x$$

Maximizing:

$$xz = x(12-x)$$
$$= -x^2 + 12x$$

Parabola opens down ⇒ has maximum, attained at:

$$x = -\frac{b}{2a}$$

= $-\frac{12}{-2} = 6$
 $z = 12 - x = 12 - 6 = 6$

Max. product $= xz = 6 \cdot 6 = 36$.