Chapter 12: Web Usage Mining - An introduction

Chapter written by Bamshad Mobasher

Many slides are from a tutorial given by B. Berendt, B. Mobasher, M. Spiliopoulou

Introduction

- Web usage mining: automatic discovery of patterns in clickstreams and associated data collected or generated as a result of user interactions with one or more Web sites.
- Goal: analyze the behavioral patterns and profiles of users interacting with a Web site.
- The discovered patterns are usually represented as collections of pages, objects, or resources that are frequently accessed by groups of users with common interests.

Introduction

- Data in Web Usage Mining:
 - Web server logs
 - Site contents
 - Data about the visitors, gathered from external channels
 - Further application data
- Not all these data are always available.
- When they are, they must be integrated.
- A large part of Web usage mining is about processing usage/ clickstream data.
 - After that various data mining algorithm can be applied.

Web server logs

```
2006-02-01 00:08:43 1.2.3.4 - GET /classes/cs589/papers.html - 200 9221
  HTTP/1.1 maya.cs.depaul.edu
  Mozilla/4.0+(compatible; +MSIE+6.0; +Windows+NT+5.1; +SV1; +.NET+CLR+2.0.50727)
  http://dataminingresources.blogspot.com/
2 2 2006-02-01 00:08:46 1.2.3.4 - GET /classes/cs589/papers/cms-tai.pdf - 200 4096
  HTTP/1.1 maya.cs.depaul.edu
  Mozilla/4.0+(compatible;+MSIE+6.0;+Windows+NT+5.1;+SV1;+.NET+CLR+2.0.50727)
  http://maya.cs.depaul.edu/~classes/cs589/papers.html
3 | 2006-02-01 08:01:28 2.3.4.5 - GET /classes/ds575/papers/hyperlink.pdf - 200
  318814 HTTP/1.1 maya.cs.depaul.edu
  Mozilla/4.0+(compatible;+MSIE+6.0;+Windows+NT+5.1)
  http://www.google.com/search?hl=en&lr=&q=hyperlink+analysis+for+the+web+survey
4 | 2006-02-02 19:34:45 3.4.5.6 - GET /classes/cs480/announce.html - 200 3794
  HTTP/1.1 maya.cs.depaul.edu
  Mozilla/4.0+(compatible;+MSIE+6.0;+Windows+NT+5.1;+SV1)
  http://maya.cs.depaul.edu/~classes/cs480/
5 2006-02-02 19:34:45 3.4.5.6 - GET /classes/cs480/styles2.css - 200 1636
  HTTP/1.1 maya.cs.depaul.edu
  Mozilla/4.0+(compatible;+MSIE+6.0;+Windows+NT+5.1;+SV1)
  http://maya.cs.depaul.edu/~classes/cs480/announce.html
6 2006-02-02 19:34:45 3.4.5.6 - GET /classes/cs480/header.gif - 200 6027
  HTTP/1.1 maya.cs.depaul.edu
  Mozilla/4.0+(compatible;+MSIE+6.0;+Windows+NT+5.1;+SV1)
  http://maya.cs.depaul.edu/~classes/cs480/announce.html
```

Web usage mining process

Pattern Discovery Phase **Data Preparation Phase** Aggregate User models Web & Application Server Logs Pattern Analysis Pattern Filtering Aggregation Characterization Data Preprocessing Data Cleaning Pageview Identification Site Content Sessionization **Patterns** & Structure Data Integration Data Transformation Usage Mining Domain Knowledge Transaction Clustering User Pageview Clustering Transaction Correlation Analysis Database Association Rule Mining Sequential Pattern Mining

Pre-processing of web usage data

Data cleaning

Data cleaning

- remove irrelevant references and fields in server logs
- remove references due to spider navigation
- remove erroneous references
- add missing references due to caching (done after sessionization)

Identify sessions (sessionization)

- In Web usage analysis, these data are the sessions of the site visitors: the activities performed by a user from the moment she enters the site until the moment she leaves it.
- Difficult to obtain reliable usage data due to proxy servers and anonymizers, dynamic IP addresses, missing references due to caching, and the inability of servers to distinguish among different visits.

Sessionization strategies

Session reconstruction =

correct mapping of activities to different individuals + correct separation of activities belonging to different visits of the same individual

While users navigate the site: identify		In the analysis of log files: identify		Resulting partitioning	
users by	sessions by	users by	sessions by	of the log file	
_		IP & Agent	sessionization heuristics	constructed sessions ("u-ipa")	
cookies		_	sessionization heuristics	constructed sessions ("cookies")	
cookies	embedded session IDs	_	_	real sessions	

Sessionization heuristics

Sessionization example

Fig. 12.5. Example of sessionization with a time-oriented heuristic

User identification

Method	Description	Privacy	Advantages	Disadvantages
		Concerns		
IP Address +	Assume each unique	Low	Always available. No	Not guaranteed to be
Agent	IP address/Agent		additional	unique. Defeated by
	pair is a unique user		technology required.	rotating IPs.
Embedded	Use dynamically	Low to	Always available.	Cannot capture
Session Ids	generated pages to	medium	Independent of IP	repeat visitors.
	associate ID with		addresses.	Additional overhead
	every hyperlink			for dynamic pages.
Registration	User explicitly logs	Medium	Can track	Many users won't
	in to the site.		individuals not just	register. Not
			browsers	available before
				registration.
Cookie	Save ID on the client	Medium to	Can track repeat	Can be turned off by
	machine.	high	visits from same	users.
			browser.	
Software	Program loaded into	High	Accurate usage data	Likely to be rejected
Agents	browser and sends		for a single site.	by users.
	back usage data.			

User identification: an example

Time	IP	URL	Ref	Agent
0:01	1.2.3.4	Α	-	IE5;Win2k
0:09	1.2.3.4	В	Α	IE5;Win2k
0:10	2.3.4.5	С	-	IE6;WinXP;SP1
0:12	2.3.4.5	В	С	IE6;WinXP;SP1
0:15	2.3.4.5	Е	С	IE6;WinXP;SP1
0:19	1.2.3.4	С	Α	IE5;Win2k
0:22	2.3.4.5	D	В	IE6;WinXP;SP1
0:22	1.2.3.4	Α	-	IE6;WinXP;SP2
0:25	1.2.3.4	Е	С	IE5;Win2k
0:25	1.2.3.4	С	Α	IE6;WinXP;SP2
0:33	1.2.3.4	В	С	IE6;WinXP;SP2
0:58	1.2.3.4	D	В	IE6;WinXP;SP2
1:10	1.2.3.4	Е	D	IE6;WinXP;SP2
1:15	1.2.3.4	Α	-	IE5;Win2k
1:16	1.2.3.4	C	Α	IE5;Win2k
1:17	1.2.3.4	F	С	IE6;WinXP;SP2
1:26	1.2.3.4	F	С	IE5;Win2k
1:30	1.2.3.4	В	Α	IE5;Win2k
1:36	1.2.3.4	D	В	IE5;Win2k

User 1

0:01	1.2.3.4	Α	-
0:09	1.2.3.4	В	Α
0:19	1.2.3.4	С	Α
0:25	1.2.3.4	Е	С
1:15	1.2.3.4	Α	-
1:26	1.2.3.4	F	С
1:30	1.2.3.4	В	Α
1:36	1.2.3.4	D	В

User 2

0:10	2.3.4.5	С	-
0:12	2.3.4.5	В	С
0:15	2.3.4.5	Е	С
0:22	2.3.4.5	D	В

User 3

0:22	1.2.3.4	Α	-
0:25	1.2.3.4	С	Α
0:33	1.2.3.4	В	С
0:58	1.2.3.4	D	В
1:10	1.2.3.4	Е	D
1:17	1.2.3.4	F	С

Pageview

- A pageview is an aggregate representation of a collection of Web objects contributing to the display on a user's browser resulting from a single user action (such as a click-through).
- Conceptually, each pageview can be viewed as a collection of Web objects or resources representing a specific "user event," e.g., reading an article, viewing a product page, or adding a product to the shopping cart.

Path completion

- Client- or proxy-side caching can often result in missing access references to those pages or objects that have been cached.
- For instance,
 - if a user returns to a page A during the same session, the second access to A will likely result in viewing the previously downloaded version of A that was cached on the client-side, and therefore, no request is made to the server.
 - This results in the second reference to A not being recorded on the server logs.

Missing references due to caching

Fig. 12.7. Missing references due to caching.

Path completion

- The problem of inferring missing user references due to caching.
- Effective path completion requires extensive knowledge of the link structure within the site
- Referrer information in server logs can also be used in disambiguating the inferred paths.
- Problem gets much more complicated in frame-based sites.

Integrating with e-commerce events

- Either product oriented or visit oriented
- Used to track and analyze conversion of browsers to buyers.
 - Major difficulty for E-commerce events is defining and implementing the events for a site, however, in contrast to clickstream data, getting reliable preprocessed data is not a problem.
- Another major challenge is the successful integration with clickstream data

Product-Oriented Events

- Product View
 - Occurs every time a product is displayed on a page view
 - Typical Types: Image, Link, Text
- Product Click-through
 - Occurs every time a user "clicks" on a product to get more information

Product-Oriented Events

- Shopping Cart Changes
 - Shopping Cart Add or Remove
 - Shopping Cart Change quantity or other feature (e.g. size) is changed
- Product Buy or Bid
 - Separate buy event occurs for each product in the shopping cart
 - Auction sites can track bid events in addition to the product purchases

Web usage mining process

Integration with page content

Basic idea: associate each requested page with one or more domain concepts, to better understand the process of navigation

Example: a travel planning site

From ...

```
p3ee24304.dip.t-dialin.net - [19/Mar/2002:12:03:51 +0100]

"GET /search.html?l=ostsee%20strand&syn=023785&ord=asc HTTP/1.0" 200 1759

p3ee24304.dip.t-dialin.net - [19/Mar/2002:12:05:06 +0100]

"GET /search.html?l=ostsee%20strand&p=low&syn=023785&ord=desc HTTP/1.0" 200 8450

p3ee24304.dip.t-dialin.net - [19/Mar/2002:12:06:41 +0100]

"GET /mlesen.html?Item=3456&syn=023785 HTTP/1.0" 200 3478
```

To ...

Integration with link structure

Page type defined by hyperlink structure bears information on function, or the designer's view of how pages will be used [from Cool00]:

Page Type	Expected Physical	Expected Usage
	Characteristics	Characteristics
Head	 In-links from most site pages 	• First page in user sessions
	 Root of site file structure 	
Media	 Large text/graphic 	 Long average reference length
	to link ratio	
Navigation	 Small text/graphic 	 Short average reference length
	to link ratio	Not a maximal forward reference
Look-up	 Large number of in-links 	 Short average reference length
	• Few or no out-links	 Maximal forward reference
	 Very little content 	
Data Entry	 "FORM" tag is present 	 Followed by a POST request

- can be assigned manually by the site designer,
- or automatically by using classification algorithms
- a classification tag can be added to each page (e.g., using XML tags).

E-commerce data analysis

Session analysis

 Simplest form of analysis: examine individual or groups of server sessions and ecommerce data.

Advantages:

- Gain insight into typical customer behaviors.
- Trace specific problems with the site.

Drawbacks:

- LOTS of data.
- Difficult to generalize.

Session analysis: aggregate reports

Most common form of analysis.

Data aggregated by predetermined units such as days or sessions.

Generally gives most "bang for the buck."

Advantages:

- Gives quick overview of how a site is being used.
- Minimal disk space or processing power required.

Drawbacks:

No ability to "dig deeper" into the data.

Page	Number of	Average View Count
View	Sessions	per Session
Home Page	50,000	1.5
Catalog Ordering	500	1.1
Shopping Cart	9000	2.3

OLAP

Allows changes to aggregation level for multiple dimensions. Generally associated with a Data Warehouse.

Advantages & Drawbacks

- Very flexible
- Requires significantly more resources than static reporting.

Page	Number of	Average View Count
View	Sessions	per Session
Kid's Stuff Products	2,000	5.9

Page	Number of	Average View Count
View	Sessions	per Session
Kid's Stuff Products		
Electronics		
Educational	63	2.3
Radio-Controlled	93	2.5

Data mining

Frequent Itemsets

- The "Home Page" and "Shopping Cart Page" are accessed together in 20% of the sessions.
- The "Donkey Kong Video Game" and "Stainless Steel Flatware Set" product pages are accessed together in 1.2% of the sessions.

Association Rules

- When the "Shopping Cart Page" is accessed in a session, "Home Page" is also accessed 90% of the time.
- When the "Stainless Steel Flatware Set" product page is accessed in a session, the "Donkey Kong Video" page is also accessed 5% of the time.

Sequential Patterns

- add an extra dimension to frequent itemsets and association rules time
- "x% of the time, when A appears in a transaction, B appears within z transactions."
- Example: The "Video Game Caddy" page view is accessed after the "Donkey Kong Video Game" page view 50% of the time. This occurs in 1% of the sessions.

Data mining (cont.)

Clustering: Content-Based or Usage-Based

- Customer/visitor segmentation
- Categorization of pages and products

Classification

- "Donkey Kong Video Game", "Pokemon Video Game", and "Video Game Caddy" product pages are all part of the Video Games product group.
- customers who access Video Game Product pages, have income of 50K+, and have 1 or more children, should be get a banner ad for Xbox in their next visit.

Some usage mining applications

Personalization application

Web Personalization: "personalizing the browsing experience of a user by dynamically tailoring the look, feel, and content of a Web site to the user's needs and interests."

Why Personalize?

- broaden and deepen customer relationships
- provide continuous relationship marketing to build customer loyalty
- help automate the process of proactively market products to customers
 - lights-out marketing
 - cross-sell/up-sell products
- provide the ability to measure customer behavior and track how well customers are responding to marketing efforts

Standard approaches

Rule-based filtering

 provide content to users based on predefined rules (e.g., "if user has clicked on A and the user's zip code is 90210, then add a link to C")

Collaborative filtering

give recommendations to a user based on responses/ratings of other "similar" users

Content-based filtering

 track which pages the user visits and recommend other pages with similar content

Hybrid Methods

usually a combination of content-based and collaborative

Summary

- Web usage mining has emerged as the essential tool for realizing more personalized, user-friendly and business-optimal Web services.
- The key is to use the user-clickstream data for many mining purposes.
- Traditionally, Web usage mining is used by ecommerce sites to organize their sites and to increase profits.
- It is now also used by search engines to improve search quality and to evaluate search results, etc, and by many other applications.