- 1. Begrüßung
- 2. Thema

-Gliederung

Gliederung

Gliederung

- 1. Historie
- 2. Theorie
- 3. Messung/Experiment
- 4. Zusammenfasssung

0	Z ⁰ Resonanz
<u>ب</u>	└─Historischer Überblick
\vdash	
$\frac{1}{8}$	
0	

Historischer Überblick
Theorie
Experimentelle Untersuchung
Zus ammenfas sung

Zunächst Historie

Z⁰ Resonanz └─Historischer Überblick

∟Historischer Überblick

Historischer Überblick

Thereir: Eiktroschwache Wichseleikung

1. Vereinheitlichung von elektr.magn. + schwache WW. Kräfteaustausch durch Photon, W^{\pm} , Z^0

2. 1979 Nobelpreis für GWS

Z⁰ Resonanz └─Historischer Überblick

—Historischer Überblick

- 1. Gargamelle-Blasenkammer am CERN
- 2. Striche und Kreise sind Lamben und Spiegel Reflexionen
- 3. Myonlose Neutrinoreaktion
- 4. Neutrale Ströme von Blasenkammer.
- 5. Neutrionstrahl durch
- 6. Photon nur bei elekt
- Vorhergesagter Wink Wechselwirkung dur
- 8. 700000 Bilder über

utrinostrahl in

nd Ladungsfilter r Strom, Z)

– impliziert

ılung.

Blasenkammer:
$$\bar{v}_{\mu}+e^{-}\rightarrow \bar{v}_{\mu}+e^{-}$$
 [HASERT1973121]

Historischer Überblick

- 1. Am Large Electron Positorn Collider
- 2. Nobelpreis für Carlo Rubbia and Simon van der Meer für experimentelle Beitrag Proton-Antiproton-Kollisionen
- 3. Mehr später
- 4. Weil führte mit zum Nachweis der Z und W Bosonen

└─Historischer Überblick

- 1. Large Electron Positron Ring (CERN) Präzessionsmessungen
- 2. weiter Bestätigung der Theorie/Standardmodell und W-Z-Bosonen
- 3. bis 2000

Z⁰ Resonanz — Historischer Überblick

└─Historischer Überblick

- 1. Higgs Theorie in 60er-Jahren
- 2. 2013 François Englert und Peter Higgs Nobelpreis
- 3. Alle Nachweise am CERN!
- 4. Randnotitz

```
<sup>0</sup> Resonanz
—Theorie
└─Einordnung im Standardmodell der
Elementarteilchen
└─Einordnung im Standardmodell der
```


- lila(Quarks), grün(Leptonen), rot(Eichbosonen), gelb(Higgs)
- Generationen, Fermion, s=1/2

Cl - ... - ... + - ... + - !l - l-

- Boson s=1
- Ladung Fermionen 2/3 -1/3 0 1 Bosonen 0 außer W ±1
- Antiteilchen invers
- •
- Masse steigt mit Generation
- schwache WW
- W+- => elek. Teilchen WW (beta Zerfall)
- Z0 => auch neutral Teilchen WW (Neutrino)
- Z0 eigenes Antiteilchen
- •
- Higgs aus Vollständigkeit

OResonanz
—Theorie
—Elektroschwache Vereinheitlichung
—Elektroschwache Vereinheitlichung

Elektroschwache Vereinheitlichung Austauschteilchen

- Photon → elektromagnetische Wechselwirkung
 Gluon → starke Wechselwirkung
- ▶ W,Z-Boson → schwache Wechselwirkung

- 1. Warum? Weil Divergenzen in höherer Ordnung/Energien auftreten
- 2. Vereint QED mit schwacher WW.
- 3. Kräfte durch Austauschteilchen
- 4. Photon elektro magn. beispielweise Elektron-Elektron-Streuung, Rutherford Streuung
- 5. W,Z bsplw. Beta-Zerfall, Elektron-Positron-Streuung (Energieabhänig)
- 6. Gluon Kernzusammenhalt, Farbladung, 8 (n-p-Anziehung), Quarkanziehung

- 1. Einführung von schwachem Isospin, analogon zu starkem Isospin
- 2. Chiralität Index R/L formal: Zerlegung von Dirac-Spinoren in orthogonale Zustände die unter Paritätsoperationen ineinander übergehen. Eigenzustände ± 1
- 3. Rechtshändige e, μ, τ Singulett Zustand.
- 4. Chiralität (l/r), Spinor Symmetrie
- 5. Rechtshändige Neutrinos $T_3=z=0$, keine WW, Auftreten in Natur unbekannt
- Der' bedeuted != Masseneigenzustände, sondern Quarkmisch-Matrix CKM

1. Nur linkshändige Fermionmultipletts haben T!=0

Resonanz

Elektroschwache Vereinheitlichung Schwacher Isospin

	Fernissonskipletts			T	75.
Ceptune	("),	(%),	(%),	1/2	$^{+1/2}_{-1/2}$
S	es.	pro	79.	0	
ě	(°),	(1)	(i),	1/2	+1/2 -1/2
ŝ.	19.	CR	to	0	
	da	29.	by	0	

1. T₃ Werte Bereich analog zu anderen Spins

- 1. z_f beschreibt Ladung
- 2. invers für Antiteilchen: rechshändige Fermionen (linkshändige Antifermionen) Singulettt ($T=0=T_3$)
- 3. Umwandung durch Absorption von W^{\pm} -Boson innerhalb Multiplett (darin Ladungsdifferenz = 1)

- 1. Bekannt aus schwacher WW
- 2. $d\rightarrow u + W^-$

 β ⁻-Zerfall[**beta**]

1. T₃ Erhaltungsgröße

2018-11-30

 β^- -Zerfall[**beta**]

→ T₃ soll erhalten bleiben
→ W⁻: T₃ = −1

- 1. T: d(-1/2)=W(?)+u(1/2)
- 2. T: W(?)=e(-1/2)+v(-1/2)

 β ⁻-Zerfall[**beta**]

Elektroschwache Vereinheitlichung Schwacher Isospin

▶ T₃ soll erhalten bleiben
 ▶ W⁻: T₂ = −1

 $W^+: T_0 = 1$

1. analog u \rightarrow d + W^+

 β^- -Zerfall[**beta**]

- ► T₃ soll erhalten bleiben
- $W^{\dagger}: T_{3} = 1$
- W^0 : $(T = 1, T_3 = 0)$ B^0 : $(T = 0, T_3 = 0)$

- 1. B⁰ postuliert
- 2. Mehr zum Beta-Zerfall nächste Woche (+Paritätsverletzung)

 β^- -Zerfall[**beta**]

- Drehung um Weinberg-Winkel/elektroschwachen Mischungswinkel, Naturkonstante
- 2. spontane Symmetriebrechung, diagonaliesierung der Massematrix führt zu diesen.
- 3. orthogonal + linear Kombination

- 1. experimentelle Bestimmung, später mehr
- 2. Masse für Z⁰ leichter zu Bestimmen, da W-Boson in Neutrino zerfällt. => bestimmung über fehlenden Transversalimpuls

```
Elektroschwache Vereinheitlichung

Protein und P sie orthogeniste bitearkontination von \theta^{\mu} und \theta^{\mu}.

\|P\| = \cos \theta_{\theta} \|P\|^2 + \cos \theta_{\theta} \|P\|^2

\|P\| = -\sin \theta_{\theta} \|P\|^2 + \cos \theta_{\theta} \|P\|^2

P Weinbergeinkeit

\cos \theta_{\theta} = \frac{M_{\phi}}{M_{\phi}} = 0.88

Cotkopetite Ladangen:

\theta = 0.2100h
```

- 1. schwache Ladung g (Analogon zu e) aus schwache WW. aus QFT
- 2. beschreibbar durch elektrische und schwache Ladung
- 3. Umformung zu e/g und M/M

Resonanz

-Experimentelle Untersuchung

-Erzeugung

--Erzeugung

- W/Z-Boson durch Antilepton+Lepton/AntiQuark+Quark Reaktion
- kollidierende Teilchenstrahlen
- feynman diagram
- Zeit nach rechts
- Antiteilchen Zeitlich invers (Aus Dirac-Gleichung (Schrödinger gleichung mit eingesetzter Impuls/Energie Relation wirkt auf vier komponentigen Dirac Spinor) ergeben sich positive und negative Lösungen für die Energie) (bzw. Klein Gordon Gleichung (entkoppelt)) nach Stückelberg-Feynman-Interpretation, bsplw. E-Feld e⁻ vs e⁺ mit anderer Richtung ist gleich. (Dirac sagte Antiteilchen vorher/definierte, wobei negative Energien besetzt sind und Löcher sich ausbreiten basierend auf Pauli-Ausschlussprinzip, da Bosonen nicht gehorchen => reverse Zeit Interpretation)
- über yoder Z zu Fermion und Antifermion paar.
- bei passender Energie approx M_Z dominiert Z^0 , aus QFT+Feynmanregeln

1. 1989 am Stanford Linear Collider und LEP

1. Energie muss in Quarks enthalten sein \to sehr viel mehr Energie auf Protonen (analog mit d) => e-e+ Kollision einfacher

- 1. Besser Proton-Antiproton, da weniger Enrgie notwendig.
- 2. in Beschleuniger inverse Rotation

Erzeugung

- ▶ $e^- + e^- \rightarrow Z^9$: Schwerpunktsenergie $\sqrt{s} = 2E_e \ge M_2c^2 \approx 91.6 \text{ GeV}$ ▶ $u + \overline{u} \rightarrow Z^9$: pp-Kollision benötigt $E_n \ge 600 \text{ GeV}$
- $u + \overline{u} \rightarrow Z$: pp-konision benotig: $\varepsilon_p \lesssim 600 \text{ GeV}$ $u + \overline{u} \rightarrow Z^0$: $p\overline{v}$ -Kollision benötiet $E_r \gtrsim 300 \text{ GeV}$
- $\blacktriangleright~e^+ + e^- \rightarrow W^+ + W^- :$ benötigt 2 $E_e \geq 2 M_W c^2 \approx 160.8~{\rm GeV}$

- 1. Tritt nicht auf bei Energien $\approx 100~\text{GeV}$
- 2. 1996 am LEP, 50 \rightarrow 86 \rightarrow 104,6 GeV

- 1. weiter relevanter Effekt
- 2. Energie schwankt im Tagesverlauf
- 3. Güne Linie ist grob Erdrotation

- 1. Resonante depolarisation genaue Enrgiemessung (notwendig)
- 2. Über Verhalten des Spins der beschleunigten Elektronen
- 3. Größe primär relevant für Energie (+Synchrotron strahlung)

- 1. Analog Vorlesung, Hadronen Jets
- 2. Masse/Ladung durch Felder+ Drifts mit Magnetfeld

- 1. Analog Vorlesung, Hadronen Jets
- 2. Masse/Ladung durch Felder+ Drifts mit Magnetfeld

- nicht L3, aber analog
- Beispiel Event einer der ersten Messung
- Plane unten sind Kaloriemeterzellen
- Energie Summe = Masse Z^0
- Winkel 180° => entgegen gesetzte Richtungen

- 1. L3 detector LEP
- 2. beispielhafte Ereignisse
- 3. entlang der Strahlachse
- 4. Balken sind die Energien die Kaloriemeter messen
- 5. Hadronische Jets, Farbladung nicht aleine vorkommend, immmer neue Quark-Antiquark-Paare

- 1. herausgezoomt, weil Enrgie weniger verteilt
- 2. analog zu Lego
- 3. Winkel 180° => entgegen gesetzte Richtungen

1. Muon erst an äußeren Platten detektiert

- 1. Über Wirkungsquerschnitt? src [PD12]
- 2. Breite + Maximalstelle

- 1. Hadronen (idR. Anti+Quark) nicht unterscheidbar
- 2. Anti+Neutrino schwer detektierbar \Rightarrow % über Γ_{tot}

Z⁰ Resonanz

Experimentelle Untersuchung

Anzahl Neutrinogenerationen

Anzahl Neutrinogenerationen

- 1. Formel für σ Breit-Wigner
- 2. Einheiten *h* und *c* multiplizieren
- 3. Abhängig von ...
- 4. y unterdrückt

Anzahl Neutrinogenerationen Zerfallsbreite $\Gamma_Z = \sum \Gamma_{Z \rightarrow df}$

1. Breite ergibt sich aus Partial Breiten

1. kein top-Quark, da t-Masse ($\approx 175 \, GeV$)größer als Z^0 -Masse ist

1.
$$\Gamma_f = \frac{G_F M_Z^3}{24\sqrt{2}\pi} \cdot (1 + (1 - e|Q_f|\sin^2\theta_{\psi_f})^2) = \frac{G_F M_Z^3}{24\sqrt{2}\pi} \cdot (1 + (1 - e|Q_f|\sin^2\theta_W)^2)$$
2. G_F Fermikonstante

- 3. Q_f Ladung des Fermions
- 4. Quantenmechanisch Herleitung der Formel nicht notwendig
- 5. primär von Ladung abhängig
- 6. Lep: e^{\pm} , μ^{\pm} , τ^{\pm}
- 7. Had: u,c= 2/3; d,s,b=-1/3
- 8. Neutrinos

1. Einsetzen, vgl Maximal für minimale $= \frac{\text{La}}{24\sqrt{2}\pi} \cdot (1 + (1 - e|Q_f|\sin^2\theta_W)^2)$

1. Summe

$$\Gamma_f = \frac{G_F M_Z^3}{24\sqrt{2}\pi} \cdot (1 + (1 - e|Q_f|\sin^2\theta_W)^2)$$

- 1. Korrekturen aus QFT, höherer Ordungen, Get Möllungskorrektur θ_W 2. Passt mit Unsicherheiten zu Exp. (richt auf Folie)
- 3. $\Gamma_e/\Gamma_{tot}=3,37\%$ passt auch zu Exp.

Resonanz
-Experimentelle Untersuchung
-Anzahl Neutrinogenerationen
-Anzahl Neutrinogenerationen

- 1. Cern Experiment
- 2. Wirkungsquerschnitt gegen Schwerpunktenergie
- 3. Ähnlich der Breit Wigner Funktion aber nicht passend symmetrisch durch Korrekturen höherer Ordnung udn Bremstrahlung durch e^-
- 4. Verschiedene Anzahl-Neutrinogenerationen-Kurven
- 5. 3 Neutrinogenerationen ightarrow 3 Leptonen 3 Quarks Generationen

Zusammenfassung

➤ Weinbergwinkel cos θ_W ≈ 0

➤ Zerfallsbreite Γ_Z ≈ 2,4 GeV

➤ 3 Neutrinogeneration

- 1. Weinbergwinkel Massenverhältniss W,Z Boson
- 2. Zerfallsbreite aus QFT großer Erfolg in Übereinstimmung mit Experiment
- 3. Bestätigung, dass es 3 Neutrinogenerationen gibt
- 4. Weiterfüherend Große Vereinheitlichung Analog ab 10¹⁶ GeV ⇒ keine Differenzierung Fermionen, Quarks und Leptonen. (Astrovorträge, Universumentwicklungröhre)
- 5. Noch Weiterfüherend Quantengravitation kombiniert mit GUT