Arhitektura računala 2

Završni ispit

- 1.) Razmatramo računalo s 32-bitnim adresama, veličinom stranica 4kB, te veličinom straničnih opisnika 4B. Pretpostavite da računalo izvršava 5 programa od kojih svaki koristi 64 MB radne memorije. Izračunajte minimalnu i maximalnu količinu memorije za potrebe adresnog preslikavanja ako je poznato da računalo koristi
 - a) jednorazinsko straničenje
 - b) dvorazinsko straničenje sa straničnim imenikom koji ima 256 stavki veličine 6B
- 2.) Zadan je računalni sustav s 4 razreda instrukcija zadanih tablicom:

razred	А	В	С	D
СРІ	1	2	4	4
udio	0.1	0.2	0.4	0.3

- a) Odredite ukupni CPI
- b) Odredite potrebnu promjenu parametra CPI_B kako bi se performasa poboljšala za 20%
- c) Kako bi se na performansu računala odrazilo sklopovsko proširenje koje bi trostruko ubrzalo izvođenje svake druge instrukcije razreda C?
- 3.) Razmatramo sljedeće 3 varijante priručne memorije:
 - a) Izravno preslikavanje, vrijeme pogotka je 2 ΔT.
 - b) Asocijativno preslikavanje u skupove od dvije linije, vrijeme pogotka je 3ΔT.
 - c) Aspocijativno preslikavanje u skupove od 4 lijnije, vrijeme pogotka je 4ΔT.

Duljina linije je 4B, ukupna veličina memorije 32B. Koristi se algoritam izbacivanja LRU, te cijena promašaja iznost $10\Delta T$. Koja varijanta će postići najbolju performansu u slučaju kada procesor neposredno nakon pokretanja proziva bajtove na sljedećim adresama: 22, 26, 23, 27, 16, 3, 17, 2, 34, 18.

4.) Zadan je sljedeći kod u C-u:

a) Napišite odgovarajući strojni kod za RISC procesor arhitekture MIPS, pod pretpostavkom zakašnjelog grananja i zakašnjelog učitavanja. Varijable i,j i a predstavite registrima t_0 , t_1 , t_2 .

Za pohranu privremenih podataka možete iskoristiti registre $t_3 - t_7$. Priključke zakašnjelih instrukcija popunite instrukcijama nop.

- b) Izmjenite strojni kod na način da priključke za kašnjenje popunite korisnim instrukcijama gdje je to moguće.
- c) Pretpostavite da se kod iz prethodnog zadatka izvodi na procesoru sa statičkim izdavanjem koji ima savršeno predviđanje grananja i instrukcije grananja ne trebaju priključak za kašnjenje. Prikažite redoslijed izdavanja instrukcija tijekom jednog prolaska kroz petlju (dakle, zanemarivši inicijalizaciju varijable i na početku petlje), kao i instrukcije nop koje procesor mora dodati zbog podatkovnog hazarda.
- 5.) Zadane su 4 dretve prikazane slikom. Prikažite njihovo izvođenje na Eggersovom modelu superskalarnog procesora koji izdaje do 4 instrukcije u jednom periodu signala takta i koristi finozrnatu višedretvenost. Protočne struture nisu specijelizirane. Pretpostavite da nema kašnjenja između prospajanja dretvi.

1	1		
1			
1	1	1	
1	1		
1	1	1	1
1			
1	1	1	

2	2	2	
2 2	2		
2			
2			
2			
2	2	2	2
2	2		
2	2		

3	3	3	
3	3		
3			
3			
3	3	3	
	•		

4			
4	4	4	
4	4		
4	4		
4	4	4	4

Opaska: Ovo nije original završnog ispita, moguće da ima grešaka.