RAVEN Workshop

Multi-Step Input Reduction

Nuclear Engineering Methods Development Department Idaho National Laboratory

www.inl.gov

Discussion Points

Overview	3
Motivations	7
Methods	12
Principle Component Analysis	14
Global Sensitivity Analysis	21
Twice-Reduced Space	27
Full Example	29

Overview

Overview: Uncertainty Quantification

Benefits:

- Quantity of Interest Variance
- Failure Probabilities
- Limit Surface Construction
- Design of Experiment

Overview: Session Goal

Reduce high-dimension input spaces

• Use PCA to eliminate correlated inputs

· Use sensitivity to eliminate low-impact inputs

Accurate UQ on a reduced input space

Overview: Assumptions

We assume:

• Simulation codes are expensive to run

• All inputs are initially perturbable

Saving time and money is good

Motivations

Motivations: Sampling Strategies

Two classes of forward sampling strategies in RAVEN:

 Structured (Orthogonal Grids, Limit Surface, Latin Hypercube)

Unstructured (Monte Carlo)

Motivations: Unstructured Sampling

Traditional Monte Carlo sampling

- Agnostic of Dimensionality
- Consistent, but slow convergence

Motivations: Structured Sampling

RAVEN has several structured solvers

- Orthogonal Grids
- Sparse Grid
- Stratified

Limit Surface Search

All of these suffer from the Curse of Dimensionality

Motivations: Proposed Solution

Remove unnecessary input dimensions

Correlated inputs have redundancy

· Low-impact inputs aren't useful to perturb

Perform UQ on reduced space

Methods

Methods: Procedure Overview

• (optional) Benchmark original problem

- Perform PCA on original input space
- Truncate to essential latent variables

Perform global sensitivity analysis

Truncate latent variables to exclude non-essential

Methods: Principal Component Analysis

Methods: Principal Component Analysis

Used to orthogonalize input space

Represent input space as sum of "latent" variables L

$$\mathbf{M} = \mathbf{Q} \cdot \mathbf{L},$$
 (1)

where

- M is the vector of original variables, $|M| \times 1$,
- **Q** is the PCA transformation matrix, $|M| \times |L|$,
- **L** is the vector of latent variables, $|L| \times 1$

All L are distributed as standard normal distributions

Methods: Principal Component Analysis

$$\mathbf{M} = \mathbf{Q} \cdot \mathbf{L},\tag{2}$$

Perform eigenvalue decomposition of covariance matrix and rank eigenvalues

Truncate latent variables at desirable eigenvalue

Add transformation to Sampler:

```
<MonteCarlo name='mcsamp'>
 <samplerInit>
    imit>100</limit>
 </samplerInit>
  <variablesTransformation distribution="mvn">
    <manifestVariables>x1, x2, x3, x4, x5, x6</manifestVariables>
    <latentVariables>v1, v2, v3, v4, v5, v6</latentVariables>
    <method>pca</method>
  </ra>
 <variable name='v1'>
    <distribution dim='1'>mvn</distribution>
  </wariable>
 <variable name='y2'>
    <distribution dim='2'>mvn</distribution>
 </variable>
 <variable name='y3'>
    <distribution dim='3'>mvn</distribution>
  </variable>
 <variable name='y4'>
    <distribution dim='4'>mvn</distribution>
  </variable>
  <variable name='v5'>
    <distribution dim='5'>mvn</distribution>
  </variable>
  <variable name='y6'>
    <distribution dim='6'>mvn</distribution>
  </wariable>
</MonteCarlo>
```


Use a PostProcessor to extract the rankings

PostProcessor

```
<PostProcessor name="stats" subType="ImportanceRank">
  <what>pcaindex</what>
  <features>y1, y2, y3, y4, y5, y6</features>
  <targets>ans</targets>
  <dimensions>1, 2, 3, 4, 5, 6</dimensions>
  <mvnDistribution>mvn</mvnDistribution>
  </PostProcessor>
```

Step

Use results from file TODO to pick PCA truncation

Once reduction level is decided, change sampler truncation and distribution truncation

```
<Sobol name='sobolsamp'>
  <variablesTransformation distribution="mvn">
    <manifestVariables>x1, x2, x3, x4, x5, x6</manifestVariables>
    <latentVariables>y1, y2, y3, y4</latentVariables>
    <method>pca</method>
  </wariablesTransformation>
  <variable name='v1'>
    <distribution dim='1'>mvn</distribution>
  </variable>
 <variable name='y2'>
    <distribution dim='2'>mvn</distribution>
 </variable>
 <variable name='y3'>
    <distribution dim='3'>mvn</distribution>
 </variable>
 <variable name='y4'>
    <distribution dim='4'>mvn</distribution>
 </variable>
 <ROM class='Models' type='ROM'>rom</ROM>
</Sobol>
```


Once reduction level is decided, change sampler truncation and distribution truncation

Now that we've reduced the input, we can do global sensitivity analysis

- Pearson Correlation Coefficients
- Spearman Rank Coefficients
- Sobol Sensitivity Coefficients

Pearson and Spearman can be sampled using forward samplers

Linear Sobol expansion often more efficient (1 run per latent variable)

Pearson Coefficients

Global correlation between dimensions

Can be input-input, input-output, or output-output

Can be calculated using most RAVEN Samplers

More on Sobol sampler and HDMRRom in Collocation workshop!

Sobol sampler

```
<Sobol name='sobolsamp'>
  <variablesTransformation distribution="myn">
    <manifestVariables>x1, x2, x3, x4, x5, x6</manifestVariables>
    <latentVariables>y1,y2,y3,y4</latentVariables>
    <method>pca</method>
  </variablesTransformation>
  <variable name='v1'>
    <distribution dim='1'>mvn</distribution>
 </variable>
 <variable name='y2'>
    <distribution dim='2'>mvn</distribution>
  </variable>
  <variable name='v3'>
    <distribution dim='3'>mvn</distribution>
 </variable>
 <variable name='v4'>
    <distribution dim='4'>mvn</distribution>
 </variable>
  <ROM class='Models' type='ROM'>rom</ROM>
</Sobol>
```


HDMRRom

```
<ROM name="rom" subType="HDMRRom">
     <SobolOrder>1</SobolOrder>
     <Target>ans</Target>
     <Features>y1, y2, y3, y4</Features>
     <IndexSet>TensorProduct</IndexSet>
     <PolynomialOrder>2</PolynomialOrder>
</ROM>
```

ROM Output

```
<Print name="sobol_stats">
  <type>xml</type>
  <source>rom</source>
  <what>all</what>
  </Print>
```


Steps

```
<Steps>
  <MultiRun name="sample" sleepTime="1e-5">
    <Input class="DataObjects" type="Point">inputPlaceHolder</Input>
    <Model class="Models" type="ExternalModel">atten</model>
    <Sampler class="Samplers" type="MonteCarlo">sobolsamp</Sampler>
    <Output class="DataObjects" type="PointSet">solns</Output>
  </MultiRun>
  <RomTrainer name="train">
    <Input class="DataObjects" type="PointSet">solns</Input>
    <Output class="Models" type="ROM">rom</Output>
  </RomTrainer>
  <IOStep name="dump">
    <Input class="DataObjects" type="PointSet">solns</Input>
    <Output class="OutStreams" type="Print">solns dump sobol</Output>
  </IOStep>
  <IOStep name="stats">
    <Input class="Models" type="ROM">rom</Input>
    <Output class="OutStreams" type="Print">sobol stats</Output>
  </IOStep>
</Steps>
```


Output from ROM

```
<ReducedOrderModel>
 <ans>
   <mean>0.781756851724</mean>
   <variance>0.275604991951
   <niimRiins>9</niimRiins>
   <indices>
     <tot variance>0.275604991951</tot variance>
     <variables>v1
       <partial variance>0.264042832714</partial variance>
       <Sobol index>0.958048077595</Sobol index>
     </variables>
     <variables>v2
       <partial variance>0.00984470571011
       <Sobol index>0.035720346139</Sobol index>
     </variables>
     <variables>v4
       <partial_variance>0.00157893548534</partial_variance>
       <Sobol index>0.00572897999474</Sobol index>
     </variables>
     <variables>v3
       <partial variance>0.000138518041296</partial variance>
       <Sobol index>0.000502596271263</Sobol index>
     </variables>
   </indices>
 </ans>
</ReducedOrderModel>
```


Methods: Twice-Reduced Analysis

Change dimensions in Sampler to prioritize

```
<MonteCarlo name='mcsamp'>
 <samplerInit>
    imit>100</limit>
  </samplerInit>
  <variablesTransformation distribution="mvn">
    <manifestVariables>x1,x2,x3,x4,x5,x6</manifestVariables>
    <latentVariables>y1, y2, y4</latentVariables>
    <method>pca</method>
 </variablesTransformation>
 <variable name='v1'>
    <distribution dim='1'>mvn</distribution>
 </variable>
 <variable name='y2'>
    <distribution dim='2'>mvn</distribution>
  </variable>
 <variable name='y4'>
    <distribution dim='4'>mvn</distribution>
 </variable>
</MonteCarlo>
```


Methods: Twice-Reduced Analysis

Now what?

Make a ROM

· Perform surrogate statistics sampling

· Compute limit surface on surrogate

Full Example

Example case: Cross Section Model

- 308 Correlated Cross Sections (SCALE)
- Simulation model is polynomial combinations
- PCA Reduction: 308 to 50
- Sensitivity Reduction: 50 to 9

See included examples:

- Original Monte Carlo benchmark: run_mc_orig.xml
- PCA reduction: run_mc_pca.xml
- PCA output: first/TODO
- Sensitivity reduction: run_mc2_[#].xml
- Sensitivity output: first/sobol_dump.xml
- ROM with twice-reduced space: sc_td[#].xml
- Twice-reduced output: td_[#]_dump.xml

Full Example: Mean Results

Original, PCA (50 terms), PCA (no sens.), PCA and Sensitivity

Figure: Mean Values by Terms Kept

Figure: Mean Errors by Terms Kept

Full Example: Variance Results

Original, PCA (50 terms), PCA (no sens.), PCA and Sensitivity

Figure: Variance Values by Terms Kept

Figure: Variance Errors by Terms Kept

Full Example: Number of Runs to Mean

Figure: Runs to Convergence, Mean, Twice-Reduced

Full Example: Number of Runs to Mean

Figure: Runs to Convergence, Mean, Twice-Reduced

Full Example: Number of Runs to Std. Dev.

Figure: Runs to Convergence, Std. Dev., Twice-Reduced

Full Example: Number of Runs to Std. Dev.

Figure: Runs to Convergence, Std. Dev., Twice-Reduced

Full Example: Convergence to Original Model

Figure: Convergence to Original Model

End of Session