Fakultet elektrotehnike i računarstva Zavod za elektroniku, mikroelektroniku, računalne i inteligentne sustave

Elektronika 2

Željko Butković

6. Stabilnost pojačala s povratnom vezom

Frekvencijski odziv pojačala s povratnom vezom (1)

Za šire područje frekvencija

$$A_f(j\omega) = \frac{A(j\omega)}{1 + \beta(j\omega)A(j\omega)}$$

Pojačanje u petlji povratne veze

$$\beta(j\omega) A(j\omega) = |\beta(j\omega) A(j\omega)| \cdot \exp(j\phi_{\beta A})$$

Način na koji se amplituda $|\beta(j\omega)A(j\omega)|$ i faza $\phi_{\beta A}$ mijenjaju s frekvencijom određuje stabilnost pojačala s povratnom vezom

Frekvencijski odziv pojačala s povratnom vezom (2)

Ako je na frekvenciji ω_{180} fazni pomak jednak $\phi_{\beta A} = \pm \ 180^{\circ} \rightarrow \beta(j\omega_{180}) A(j\omega_{180})$ je negativni realni broj \rightarrow povratna veza postaje pozitivna

Za $|\beta(j\omega_{180})A(j\omega_{180})| < 1 \rightarrow |A_f(j\omega_{180})| > |A(j\omega_{180})|$ ali $|A_f(j\omega_{180})|$ je konačno pojačanje \rightarrow pojačalo s povratnom vezom je stabilno

Za $\beta(j\omega_{180})A(j\omega_{180}) = -1 \rightarrow |A_f(j\omega_{180})| = \infty \rightarrow x_{iz}$ konačno uz $x_{ul} = 0 \rightarrow$ oscilacije \rightarrow pojačalo s povratnom vezom je nestabilno

Za $|\beta(j\omega_{180})A(j\omega_{180})| > 1 \rightarrow$ oscilacije se pojačavaju \rightarrow pojačalo s povratnom vezom je nestabilno

Polovi prijenosne funkcije pojačala s povratnom vezom

Prijenosna funkcija pojačala s povratnom vezom

$$A_f(s) = \frac{A(s)}{1 + \beta(s) A(s)}$$

Polovi prijenosne funkcije → korijeni polinoma kompleksne frekvencije s u nazivniku → određuju se rješavanjem jednadžbe

$$1 + \beta(s) A(s) = 0$$

Korijeni su realni $s=\sigma_i$ ili konjugirano kompleksni $s=\sigma_i\pm j\omega_i$

Uz $s = \sigma_i \pm j\omega_i \rightarrow \text{odziv}$ na poremećaj ili smetnju

$$u(t) = U_1 \exp(\sigma_i t) \left[\exp(j\omega_i t) + \exp(-j\omega_i t) \right] = 2U_1 \exp(\sigma_i t) \cos(\omega_i t)$$

Položaj polova i vremenski odziv

Pojačalo je stabilno ako su realni dijelovi polova negativni ili ako su polovi smješteni u lijevoj poluravnini

Pojačalo s jednim polom u prijenosnoj funkciji

Prijenosna funkcija

$$A(s) = \frac{A_0}{1 + s/\omega_p} \qquad \beta = \beta_0 \neq f(s) \qquad \rightarrow \qquad A_f(s) = \frac{A(s)}{1 + \beta A(s)} = \frac{A_{0f}}{1 + s/\omega_{pf}}$$

$$A_f(s) = \frac{A(s)}{1 + \beta A(s)} = \frac{A_{0f}}{1 + s/\omega_{nf}}$$

$$A_{0f} = \frac{A_0}{1 + \beta A_0}$$

$$\omega_{pf} = \omega_p \left(1 + \beta A_0 \right)$$

Primjenom povratne veze pol ostaje u negativnoj poluravnini → pojačalo je bezuvjetno stabilno

Pojačalo s dva pola u prijenosnoj funkciji (1)

Prijenosna funkcija

$$A(s) = \frac{A_0}{\left(1 + s/\omega_{p1}\right)\left(1 + s/\omega_{p2}\right)} \qquad \beta = \beta_0 \neq f(s)$$

polovi
$$\rightarrow s_{p1} = -\omega_{p1}$$
, $s_{p2} = -\omega_{p2}$

$$A_f(s) = \frac{A(s)}{1 + \beta A(s)} = \frac{A_{0f}}{1 + a_1 s + a_2 s^2}$$

$$a_1 = \frac{1}{1 + \beta A_0} \left(\frac{1}{\omega_{p1}} + \frac{1}{\omega_{p2}} \right)$$
 $a_2 = \frac{1}{(1 + \beta A_0)\omega_{p1}\omega_{p2}}$

Pojačalo s dva pola u prijenosnoj funkciji (2)

Drugi oblik

$$A_f(s) = \frac{A_{0f}}{1 + (1/Q)(s/\omega_0) + (s/\omega_0)^2}$$

$$\omega_0 = \sqrt{(1 + \beta A_0)\omega_{p1}\omega_{p2}} \qquad Q = \frac{\omega_0}{\omega_{p1} + \omega_{p2}}$$

polovi → rješenje kvadratne jednadžbe

$$(s/\omega_0)^2 + (1/Q)(s/\omega_0) + 1 = 0$$

Pojačalo s dva pola u prijenosnoj funkciji (3)

polovi

$$\begin{split} s_{p1,2f} &= -\frac{\omega_0}{2Q} \pm \frac{\omega_0}{2Q} \sqrt{1 - 4Q^2} = \\ &= -\frac{\omega_{p1} + \omega_{p2}}{2} \pm \frac{\omega_{p1} + \omega_{p2}}{2} \sqrt{1 - 4Q^2} \end{split}$$

Primjenom povratne veze polovi ostaju u negativnoj poluravnini → pojačalo je **bezuvjetno stabilno**

Konjugirano-kompleksni polovi → uzrokuju prigušene oscilacije

Pojačalo s dva pola - amplitudna frekvencijska karakteristika

$$A_{f}(j\omega) = \frac{A_{0f}}{1 - (\omega/\omega_{0})^{2} + j(1/Q)(\omega/\omega_{0})} \rightarrow \left|A_{f}\right| = \frac{\left|A_{0f}\right|}{\sqrt{\left[1 - (\omega/\omega_{0})^{2}\right]^{2} + \left(1/Q^{2}\right)(\omega/\omega_{0})^{2}}}$$

Pojačalo s tri pola u prijenosnoj funkciji (1)

Prijenosna funkcija

$$A(s) = \frac{A_0}{(1 + s/\omega_{p1})(1 + s/\omega_{p2})(1 + s/\omega_{p3})} \qquad \beta = \beta_0 \neq f(s)$$

$$polovi \to s_{p1} = -\omega_{p1}, s_{p2} = -\omega_{p2}, s_{p3} = -\omega_{p3}$$

$$A_f(s) = \frac{A(s)}{1 + \beta A(s)} = \frac{A_{0f}}{1 + a_1 s + a_2 s^2 + a_3 s^3}$$

$$a_1 = \frac{1}{1 + \beta A_0} \left(\frac{1}{\omega_{p1}} + \frac{1}{\omega_{p2}} + \frac{1}{\omega_{p3}} \right)$$

$$a_2 = \frac{1}{1 + \beta A_0} \left(\frac{1}{\omega_{p1}} + \frac{1}{\omega_{p2}} + \frac{1}{\omega_{p3}} + \frac{1}{\omega_{p3}} \right) \qquad a_3 = \frac{1}{(1 + \beta A_0)(\alpha_{p3} + \alpha_{p3})}$$

Pojačalo s tri pola u prijenosnoj funkciji (2)

Pojačalo s povratnom vezom je stabilno, kada su polovi u lijevoj polovici kompleksne ravnine, ali postaje nestabilno kada polovi prijeđu u desnu polovicu → stabilnost ovisi o pojačanju u petlji povratne veze → pojačalo je uvjetno stabilno.

Primjer 6.1 (1)

U pojačalu s povratnom vezom prijenosna funkcija osnovnog pojačala je

$$A(s) = \left(\frac{10}{1 + s/10^4}\right)^3 .$$

U pojačalu je primijenjena frekvencijski neovisna grana povratne veze. Odrediti polove prijenosne funkcije pojačala s povratnom vezom. Nacrtati dijagram položaja polova u ovisnosti o koeficijentu povratne veze β , te odrediti iznos β uz koji pojačalo postaje nestabilno.

Primjer 6.1 (2)

Nyquistov dijagram

Za ispitivanje stabilnosti dovoljno je analizirati pojačanje u petlji povratne veze

$$T(j\omega) = \beta(j\omega) A(j\omega)$$

Nyquistov kriterij stabilnosti

Na frekvenciji $\omega_{180} \rightarrow \phi_T = -180^{\circ}$

- **□** za $|T(j\omega_{180})| < 1$ → pojačalo je stabilno
- **□** za $|T(j\omega_{180})| \ge 1$ → pojačalo je nestabilno

Nyquistov kriterij stabilnosti

Ako Nyquistov dijagram ne obuhvaća točku (-1,0) sustav s povratnom vezom je stabilan, a ako obuhvaća točku (-1,0) sustav je nestabilan.

Kriterij se primjenjuje na Nyquistove dijagrame crtane za frekvencije

$$-\infty < \omega < \infty$$

Primjer 6.2

U pojačalu s povratnom vezom prijenosna funkcija osnovnog pojačala je

$$A(s) = \left(\frac{10}{1 + s/10^4}\right)^3 .$$

U pojačalu je primijenjena frekvencijski neovisna grana povratne veze. Odrediti frekvenciju ω_{180} na kojoj je fazni kut pojačanja u petlji povratne veze $T = \beta A \phi_T = -180^\circ$. Izračunati iznos β uz koji pojačalo postaje nestabilno.

Amplitudno i fazno osiguranje

Amplitudno osiguranje

$$A.O. = |T(j\omega_{180})|$$

Fazno osiguranje

$$F.O. = \phi_T(j\omega_1) + 180^{\circ}$$

Utjecaj faznog osiguranja na frekvencijski odziv

Pretpostavka: $A_{0f} \approx 1/\beta$

Na frekvenciji jediničnog pojačanja ω_1

$$\beta A(j\omega_1) = 1 \cdot \exp(j\phi_{T1}) \rightarrow \phi_{T1} = \phi_T(j\omega_1) = F.O. - 180^\circ$$

$$A_f(j\omega_1) = \frac{A(j\omega_1)}{1 + \beta A_f(j\omega_1)} = \frac{1}{\beta} \frac{\exp(j\phi_{T1})}{1 + \exp(j\phi_{T1})}$$

$$\left| A_f(j\omega_1) \right| = \frac{1}{\left| \beta \right|} \frac{1}{\left| 1 + \exp(j\phi_{T1}) \right|}$$

 $|A_f(j \omega_1)|$ razlikuje se od $|A_{0f}| \approx |1/\beta| \rightarrow$ ovisi o F.O.

Primjer 6.3

Odrediti amplitudu pojačanja $|A_f(j\omega_1)|$ pojačala s povratnom vezom ako je pojačalo stabilno s faznim osiguranjem $F.O. = 45^{\circ}$. Pojačalo je izvedeno s frekvencijski neovisnim koeficijentom povratne veze.

Ispitivanje stabilnosti primjenom Bodeovog dijagrama

Primjer 6.4 (1)

U pojačalu s povratnom vezom prijenosna funkcija osnovnog pojačala je

$$A(j\omega) = \frac{-10^4}{(1+j\omega/10^6)(1+j\omega/10^7)(1+j\omega/3\cdot10^7)}$$

a koeficijent povratne veze β neovisan je o frekvenciji. Odrediti maksimalni iznos pojačanja u petlji povratne veze uz koji će se postići fazno osiguranje $F.O. = 45^{\circ}$. Koliki je pri tome koeficijent povratne veze β ?

Primjer 6.4 (2)

Primjer 6.5 (1)

U pojačalu s povratnom vezom prijenosne funkcija osnovnog pojačala i koeficijent povratne veze su

$$A(j\omega) = \frac{-10^3}{(1+j\omega/8\cdot10^5)^2} , \qquad \beta(j\omega) = \beta_0 \frac{1+j\omega/8\cdot10^6}{1+j\omega/8\cdot10^4}$$

- a) Koliko iznosi β_0 uz fazno osiguranje $F.O. = 0^{\circ}$?
- b) Koliki je β_0 uz amplitudno osiguranje A.O. = -12 dB? Koliko je pri tome fazno osiguranje?

Primjer 6.5 (2)

Frekvencijska kompenzacija dominantnim polom

