Climate Model Simulation Crashes Data Set

1. Data processing

The data had to be cleaned and separated into columns at first. Microsoft Excel was used to pre-process the data. The first two columns (study ID, and simulation ID) were removed because they are not relevant to the outcome. The goal is to predict climate model simulation outcomes (column 19, fail or succeed) given scaled values of climate model input parameters (columns 1-18). Columns 1-18: values of 18 climate model parameters scaled in the interval [0, 1] Column 19: simulation outcome (0 = failure, 1 = success)

2. Training and testing datasets

Sklearn train_test_split was used to separate the data into train and test datasets. The test dataset is 15% of the training set. A randomly chosen training and testing dataset is generated each time the program is run.

3. Model type: KNN Classification

This dataset will need to be approached as a Classification problem, with a boolean output. KNN was used to predict the outcome (0 = fail, 1 = succeed), depending on the 18 independent variables.

4. Model Evaluation

Choosing the optimal K neighbors:

A for loop was used to iterate through K values, and measure the accuracy of each. Accuracy was then converted to misclassification error. The K (optimal_k) value with the lowest misclassification error is then passed into the KneighborsClassifier function.

The KneighborsClassifier function is then run 10,000 times, and the accuracy is averaged out. Which was 92.8% accuracy.

The ExtraTreesClassifier function was used to measure the importance of each variable on the outcome. The two most important variable with an importance of 0.1368148 and 0.13702292, where: vconst_corr and vconst_2, all other variables had a n importance of < .1.

Α.	В	С	D	E	F	G	Н		J	K	L	М	N	0	P	Q	R	
	vconst_2	vconst_3									vertical_decay_scale							outco
	06 0.92782453				0.735936041					0.104225865		0.997518496			0.858310365		0.869893038	
	25 0.45772836											0.845247142			0.356573417		0.512256144	
	77 0.37323848									0.803413076		0.718441133			0.250642371		0.365857964	4
	59 0.10405531									0.597878903		0.362750561		0.977971175	0.845921227		0.475986735	
0.4062495	31 0.51319929	0.06181157	7 0.635836719	0.844797517	0.441502227	0.191926451	0.487546116	0.358533581		0.743876519		0.650222833			0.376660111	0.280097759	0.132282876	8
0.041379	47 0.62902593	0.30338010	5 0.813407572	0.222817123	0.971206033	0.60977829	0.647803859	0.737913873	0.440943207	0.035982366	0.615867667	0.017487184	0.932319515	0.329318038	0.954122776	0.135378915	0.294804796	8
0.1610500	68 0.54883849	0.15358345	6 0.654415397	0.140346213	0.796645887	0.405839624	0.662635625	0.049426685	0.578519494	0.264854683	0.959217373	0.698106832	0.467358949	0.637077696	0.011251331	0.147325157	0.213814247	7
0.4152989	86 0.89873136	0.93182176	3 0.916647939	0.399105638	0.009445115	0.84625746	0.68377254	0.397306457	0.886768087	0.522427847	0.694773565	0.886522318	0.411672883	0.481108054	0.92654637	0.02643087	0.092739552	2
0.1667578	78 0.35297185	0.98812061	1 0.287070317	0.5636256	0.402707875	0.380931733	0.479191238	0.060165294	0.236524445	0.290483708	0.391833072	0.254944302	0.488399586	0.053683565	0.862225604	0.415055139	0.487125899	9
0.6556260	79 0.41393071	0.80528847	8 0.163485864	0.861901695	0.947594532	0.546563676	0.426141006	0.417080309	0.945609574	0.325387509	0.666526808	0.374270055	0.100291351	0.21329028	0.222859671	0.007286213	0.420027362	2
0.5900079	77 0.29369241	0.42349784	4 0.329803463	0.4578377	0.829782296	0.497766735	0.159440334	0.971121865	0.492342538	0.084268972	0.974333948	0.926423909	0.295425919	0.804212452	0.870840009	0.546295023	0.884871079	9
0.8819290	79 0.42491615	0.90322236	7 0.173305914	0.791005372	0.476183524	0.681175841	0.905843852	0.828415466	0.083717329	0.520566651	0.072915346	0.948094685	0.999615891	0.728459115	0.285888356	0.210889643	0.833589868	8
0.9610102	62 0.97690680	0.85792877	3 0.614971227	0.615515929	0.352769204	0.833960006	0.095091749	0.230892542	0.954833278	0.577181749	0.78351143	0.530424645	0.175169764	0.544458264	0.081392441	0.733014883	0.531368855	5
0.1725295	25 0.01355637	0.62344650	8 0.519135859	0.254456363	0.366947346	0.055695644	0.51850145	0.371256629	0.853783565	0.347039855	0.947346732	0.597281032	0.428806485	0.401369982	0.82044557	0.599584286	0.135680676	6
0.3965135	59 0.2012412	0.9681076	0.836439982	0.609976638	0.244681982	0.788270514	0.356016875	0.125054	0.510102589	0.403965968	0.865611911	0.499515991	0.589648486	0.014997916	0.893354828	0.562122469	0.028448737	7
0.0516203	63 0.31091255	0.90929255	8 0.719117468	0.433167082	0.997141749	0.231381709	0.771588936	0.593069372	0.109138528	0.21511746	0.051819288	0.29352604	0.751845499	0.922480759	0.606573034	0.318208833	0.718853514	4
0.8143564	36 0.69677386	0.70288255	3 0.975635677	0.983484815	0.031136722	0.938889143	0.744846045	0.752253549	0.41252405	0.586656405	0.941652686	0.247466384	0.550210882	0.229890761	0.691478239	0.999305937	0.647063187	7
0.5956241	21 0.79153125	0.79412293	8 0.430667284	0.916778135	0.897785418	0.729778768	0.560203906	0.658952968	0.835251912	0.644758866	0.444219065	0.820039098	0.87805546	0.238453253	0.41353844	0.378726412	0.973049473	3
0.4532874	68 0.22781419	0.86896393	0.83954677	0.133349425	0.951339573	0.179080954	0.02315243	0.144846838	0.674269176	0.083272596	0.437239218	0.231382255	0.424553435	0.578621063	0.140284237	0.538908979	0.620391974	4
0.3586774	93 0.53976397	0.40820447	3 0.391341766	0.660984427	0.730276729	0.415556778	0.677969692	0.092242834	0.4576951	0.971049521	0.116668505	0.893424314	0.895280358	0.41210954	0.067489641	0.254949351	0.146701198	8
	42 0.12978654									0.435143216		0.868267937		0.525977488	0.785420605		0.740922908	
	59 0.36044670									0.316248889		0.384431766		0.94148821	0.981674888		0.69264385	
	96 0.67572462									0.41984847		0.782013775		0.450856709	0.909224239		0.125961426	
	22 0.81786957											0.369055732		0.426082946	0.381707776		0.56183777	
	17 0.27282527									0.984838874		0.145046735	0.961694304	0.021560996	0.127715148		0.877524397	
	27 0.02999488									0.118619659		0.489322637	0.35412897	0.527805905	0.77771341		0.262728187	
	96 0.37187186					0.874233445				0.393120692		0.788371192	0.856284486		0.168630821		0.987512719	
	45 0.14878719									0.371573714		0.506994244			0.595529737		0.199845544	
	56 0.24067023												0.194218463		0.181757552		0.615791178	
	95 0.73477184									0.73603117		0.978484093	0.828647165	0.442606477	0.452043046		0.43586573	
	58 0.88314877									0.662520833		0.30589365	0.02676161	0.030902354	0.339045275		0.759567056	
	37 0.32915834									0.835672806		0.004825306	0.682274386		0.566027905		0.802771117	
	22 0.11573812									0.158751384		0.142947952	0.16427107	0.809067914	0.768809702		0.402335295	
	86 0.42064543			0.043077611						0.422670447		0.897420062	0.72972669	0.158203094	0.875170029		0.218368287	
	95 0.94456598									0.61986926		0.702105575		0.376942453	0.477158463		0.328101977	
	45 0.43604895									0.000418997		0.731630352			0.249720026		0.823390264	
	52 0.23689645									0.333492747		0.763592802	0.064541143		0.745185426			
	05 0.75871833									0.818059952		0.393926545		0.068229331	0.592252771		0.102812312	
	12 0.62418100									0.545554604		0.052521026		0.676870104	0.828808791		0.121719626	
	34 0.60443837					0.657343118			0.558981592	0.600618184		0.745948438	0.055227859	0.951102504	0.742371089		0.784525826	
	76 0.25225114									0.356989707		0.215716961		0.32463964	0.713245168		0.522124229	
	57 0.53448738											0.549086272	0.11790858	0.901308792	0.274064094		0.038789302	
0.3199914	05 0.50018576	0.54254151	3 0.57893229	0.939126686	0.187563712	0.643975153	0.101767815	0.610325831	0.380909514	0.878104988	0.681669557	0.929239327	0.988241664	0.136341162	0.128085921	0.648092821	0.384532118	8
0.675576	68 0.90487074	0.96546672	5 0.763904438	0.633558896	0.759305095	0.216829513	0.255340614	0.665202852	0.368364859	0.74790174	0.934943769	0.956876101	0.420295416	0.986997475	0.955677423	0.485108416	0.206474049	9
0.1328955	97 0.9615894	0.51478250	9 0.819531342	0.288644342	0.528931266	0.796683771	0.843941962	0.037139483	0.464196776	0.776284523	0.77523183	0.124201822	0.74023159	0.883947314	0.203020178	0.032277739	0.68873416	8
0.3661138	48 0.16214460	0.55923018	0.888008265	0.33493644	0.089915759	0.466294991	0.652752669	0.541212114	0.475613799	0.373546016	0.709623018	0.613064649	0.884660433	0.875652156	0.549356306	0.166464893	0.537765079	9
0.1167060	48 0.76121416	0.34410306	5 0.777035822	0.1584583	0.664698656	0.576138704	0.044686546	0.774181312	0.497616293	0.394574679	0.067844535	0.057784017	0.153044141	0.613849775	0.271658446	0.059970371	0.595262407	7

Figure 1: Processed data ready to be imported with pandas

```
import pandas as pd
import sklearn as sk
import numpy as np
import math
import random
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
from sklearn.decomposition import PCA
from sklearn.datasets import load_svmlight_file
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn import preprocessing, cross_decomposition, neighbors
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import confusion_matrix
from sklearn.ensemble import ExtraTreesClassifier
df = pd.read csv("/home/fubunutu/PycharmProjects/midterm/newpop2.csv")
x = np.array(df.drop(['outcome'], 1))
y = np.array(df['outcome'])
x train, x test, y train, y test = train test split(x,y,test size=0.15)
clf = neighbors.KNeighborsClassifier(n neighbors=3)
clf.fit(x train, y train)
myList = list(range(1,50))
neighbors = list(filter(lambda x: x % 2 != 0, myList))
cv scores = []
for k in neighbors:
    clf = KNeighborsClassifier(n_neighbors=k)
    scores = cross_val_score(clf, x_train, y_train, cv=15, scoring='accuracy')
    cv scores.append(scores.mean())
MSE = [1 - x \text{ for } x \text{ in } cv \text{ scores}]
# determining best k
optimal k = neighbors[MSE.index(min(MSE))]
print("The optimal number of neighbors is %d" % optimal_k)
plt.plot(neighbors, MSE)
plt.xlabel('Number of Neighbors K')
plt.ylabel('Misclassification Error')
plt.show()
acclist = []
```

Figure 2: First half of code: Imports data→ creates train/test sets → finds k with highest accuracy.

```
loops = 10000
 loopstr = str(loops)
\# i = 1
= for i in range(loops):
     x_train, x_test, y_train, y_test = train_test_split(x,y,test_size=0.15)
clf = KNeighborsClassifier(n_neighbors=optimal_k)
     clf.fit(x_train, y_train)
accuracy = clf.score(x_test, y_test)
     accstr = str("%.3f" % accuracy)
# np.append(acclist, accuracy)
     acclist.append(accuracy)
     opt = str(optimal k)
 y pred = clf.predict(x test)
 cm = confusion matrix(y test, y pred)
 plt.matshow(cm)
 plt.title('Confusion matrix')
 plt.colorbar()
 plt.ylabel('True label')
 plt.xlabel('Predicted label')
plt.show()
 model = ExtraTreesClassifier(n estimators=1000)
 model.fit(x, y)
 labels = df.head(0)
 importance =np.array(model.feature_importances_)
 print(importance)
 print("The average accuracy from " + loopstr + " simulations is:")
 print(sum(acclist)/len(acclist))
```

Figure 3: 2nd half of code: Create array of accuracy \rightarrow run 10000 knn sims with optimal k \rightarrow average accuracy

Figure 4: Plot of misclassification error for odd k values from 1-50

Figure 5: Confusion matrix showing the predicted vs true labels

```
/home/fubunutu/PycharmProjects/midterm/bin/python /home/fubunutu/Downloads/loopknn.py
The optimal number of neighbors is 5
The importance (0-1) of each feature with regard to the outcome
[0.1368148  0.13702292  0.03629747  0.04277402  0.04181272  0.03925524
  0.0363659  0.04143334  0.04415148  0.03823481  0.04223007  0.03887678
  0.08161605  0.07602488  0.04272585  0.04491572  0.03978081  0.03966712]
The average accuracy from 10000 simulations is:
  0.9280506172839834

Process finished with exit code 0
```

Figure 6: Output: optimal_k, importance of each variable, and average accuracy