UNIVERSIDAD DE EL SALVADOR FACULTAD MULTIDISCIPLINARIA DE OCCIDENTE DEPARTAMENTO DE INGENIERIA.

GUIA DE EIERCICIOS Nº 3. (CÁLCULO DIFERENCIAL DE INGENIERIA)

A) Utilizando el círculo unitario, determine los valores de las funciones trigonométricas en el ángulo que se indica.

1)
$$-\pi$$

2)
$$-\frac{\pi}{4}$$

1)
$$-\pi$$
 2) $-\frac{\pi}{4}$ 3) $-\frac{\pi}{6}$ 4) $\frac{5\pi}{4}$

4)
$$\frac{5\pi}{4}$$

5)
$$-\frac{7\pi}{6}$$

6)
$$\frac{11\pi}{6}$$

7)
$$\frac{4\pi}{3}$$

5)
$$-\frac{7\pi}{6}$$
 6) $\frac{11\pi}{6}$ 7) $\frac{4\pi}{3}$ 8) $-\frac{5\pi}{3}$

9)
$$\frac{5\pi}{3}$$

10)
$$\frac{23\pi}{4}$$

11)
$$\frac{19\pi}{4}$$

9)
$$\frac{5\pi}{3}$$
 10) $\frac{23\pi}{4}$ 11) $\frac{19\pi}{4}$ 12) $-\frac{47\pi}{6}$

13)
$$\frac{301\pi}{3}$$

13)
$$\frac{301\pi}{2}$$
 14) -315°

B) Pruebe las identidades básicas siguientes:

1)
$$sen^2 t + cos^2 t = 1$$

2)
$$\tan^2 t + 1 = \sec^2 t$$

$$3) 1 + \cot^2 t = \csc^2 t$$

C) Con las identidades del literal anterior, encuentre todas las funciones trigonométricas:

1)
$$\cos t = \frac{3}{5}$$
 $0 < t < \frac{\pi}{2}$

$$0 < t < \frac{\pi}{2}$$

2)
$$\operatorname{sen} t = \frac{5}{13}$$
 $0 < t < \frac{\pi}{2}$

$$0 < t < \frac{\pi}{2}$$

3)
$$\operatorname{sen} t = -\frac{8}{17}$$
 $\pi < t < \frac{3\pi}{2}$

4)
$$\cos t = -\frac{4}{5}$$
 $\frac{\pi}{2} < t < \pi$

5)
$$\cos t = \frac{12}{13}$$
 $-\frac{\pi}{2} < t < 0$

6)
$$\operatorname{sen} t = -\frac{15}{17}$$
 $\frac{3\pi}{2} < t < 2\pi$

7)
$$\tan t = -\frac{3}{4}$$
 0 < cos t

8)
$$\sec t = 3$$
 $\frac{3\pi}{2} < t < 2\pi$

9)
$$\sec t = 2$$
 $\sec t < 0$

10)
$$\tan t = \frac{1}{4}$$
 $\pi < t < \frac{3\pi}{2}$

11)
$$\tan t = -4$$
 $\frac{\pi}{2} < t < \pi$

- D) Demuestre las siguientes identidades, las cuales son bastante importantes por la frecuencia que se presentan (Suponga como verdadera la identidad $\cos(t-v) = \cos t \cos v + \sin t \sin v$).
 - 1) $\cos(t+v) = \cos t \cos v \sin t \sin v$

$$2) \quad \operatorname{sen}\left(\frac{\pi}{2} - t\right) = \cos t$$

3)
$$\cos\left(\frac{\pi}{2} - t\right) = \operatorname{sen} t$$

4)
$$\operatorname{sen}(t+v) = \operatorname{sen} t \cos v + \operatorname{sen} v \cos t$$

5)
$$\operatorname{sen}(t - v) = \operatorname{sen} t \cos v - \operatorname{sen} v \cos t$$

6)
$$\operatorname{sen}(2t) = 2 \operatorname{sen} t \cos t$$

7)
$$\cos(2t) = \cos^2 t - \sin^2 t$$

= 1 - 2 sen² t
= 2 cos² t - 1

$$8) \quad \operatorname{sen}^2 t = \frac{1 - \cos 2t}{2}$$

9)
$$\cos^2 t = \frac{1 + \cos 2t}{2}$$

10)
$$\sin^2 \frac{1}{2}t = \frac{1-\cos t}{2}$$

11)
$$\cos^2 \frac{1}{2}t = \frac{1 + \cos t}{2}$$

E) Pruebe las siguientes identidades :

1)
$$(\tan t + \cot t)^2 = \sec^2 t \csc^2 t$$

2)
$$\tan^2 t - \sec^2 t = \tan^2 t \sec^2 t$$

3)
$$\frac{\sec t + 1}{\sec t - 1} = \frac{1 + \cos t}{1 - \cos t}$$

4)
$$\frac{1 - \cot^2 t}{1 + \cot^2 t} = \sin^2 t - \cos^2 t$$

5)
$$\frac{1}{\tan t + \cot t} = \operatorname{sen} t \cos t$$

6)
$$\frac{\csc^2 t - 1}{\sec^2 t - 1} = \cot^4 t$$

7)
$$\frac{1}{\csc t - 1} - \frac{1}{\csc t + 1} = 2 \tan^2 t$$

8)
$$\frac{1}{1 + \sec t} + \frac{1}{1 - \sec t} = 2 \sec^2 t$$

9)
$$\frac{\operatorname{sen} t}{1 + \cos t} + \frac{1 + \cos t}{\operatorname{sen} t} = 2 \csc t$$

$$10) \quad \frac{\cos t}{1 + \sin t} = \frac{1 - \sin t}{\cos t}$$

11)
$$\sec t + \tan t = \frac{1}{\sec t - \tan t}$$

12)
$$\operatorname{sen}^3 t + \cos^3 t + \operatorname{sen} t \cos^2 t + \operatorname{sen}^2 t \cos t = \operatorname{sen} t + \cos t$$

13)
$$\frac{\operatorname{sen}^3 t + \cos^3 t}{\operatorname{sen} t + \cos t} = 1 - \operatorname{sen} t \cos t$$

14)
$$\frac{\tan^3 t + \text{sentsec } t - \text{sentcos } t}{\text{sec } t - \text{cos } t} = \tan t \sec t + \sin t$$

15)
$$\tan(t + v) = \frac{\tan t + \tan v}{1 - \tan t \tan v}$$

16)
$$\tan(t - v) = \frac{\tan t - \tan v}{1 + \tan t \tan v}$$

17)
$$\cot(t-v) = \frac{\cot t \cot v + 1}{\cot v - \cot t}$$

18)
$$\csc(t+v) = \frac{\csc t \csc v}{\cot t + \cot v}$$

19)
$$\frac{1-\cos 8t}{8} = \sin^2 2t \cos^2 2t$$

20)
$$\frac{\operatorname{sen}(t+v) + \operatorname{sen}(t-v)}{\cos(t+v) + \cos(t-v)} = \tan t$$

21)
$$\frac{\text{sen}(t-v)}{\text{sen } t \text{ sen } v} = \cot v - \cot t$$

22)
$$\cos(t + v)\cos(t - v) = \cos^2 t - \sin^2 v$$

23)
$$\cos t \operatorname{sen}(t + v) - \operatorname{sen} t \cos(t + v) = \operatorname{sen} v$$

24)
$$sen t cos v = \frac{1}{2} [sen (t+v) + sen (t-v)]$$

25)
$$\cos t \operatorname{sen} v = \frac{1}{2} \left[\operatorname{sen} (t + v) - \operatorname{sen} (t - v) \right]$$

26)
$$\cos t \cos v = \frac{1}{2} [\cos (t+v) + \cos (t-v)]$$

27)
$$sen t sen v = \frac{1}{2} [cos(t - v) - cos(t + v)]$$

F) Determine cada valor que se pide, en caso de que estén definidas:

1)
$$\operatorname{sen}^{-1}(\frac{1}{2})$$

2)
$$\cos^{-1}(\frac{1}{2})$$

4)
$$\operatorname{sen}^{-1}(\frac{\sqrt{3}}{2})$$
 5) $\tan^{-1}(\sqrt{3})$ 6) $\operatorname{sen}^{-1}(-2)$

5)
$$\tan^{-1}(\sqrt{3})$$

6)
$$\operatorname{sen}^{-1}(-2)$$

7)
$$\tan^{-1}\left(\frac{\sqrt{3}}{3}\right)$$
 8) $\tan^{-1}\left(-1\right)$ 9) $\sec^{-1}\left(\sqrt{3}\right)$

8)
$$tan^{-1}(-1)$$

9)
$$sen^{-1}(\sqrt{3})$$

10)
$$\cos^{-1}\left(-\frac{\sqrt{3}}{2}\right)$$

11) sen (sen⁻¹ (
$$\frac{1}{3}$$
))

13)
$$\operatorname{sen}^{-1}(\operatorname{sen}(\frac{5\pi}{6}))$$

14)
$$\tan(\tan^{-1}(10))$$

15)
$$\cos^{-1}(\cos(\frac{\pi}{3}))$$

16)
$$\tan^{-1}(\tan(\frac{2\pi}{3}))$$

17)
$$\tan(\sin^{-1}(\frac{1}{2}))$$

18)
$$\cos(\sec^{-1}(\frac{\sqrt{3}}{2}))$$

19)
$$\tan (2 \operatorname{sen}^{-1}(\frac{\pi}{3}))$$

20)
$$\cos^{-1}(\sqrt{3} \operatorname{sen}(\frac{\pi}{6}))$$
 21) $\operatorname{sen}(\cos^{-1}(\frac{3}{5}))$

21) sen
$$(\cos^{-1}(\frac{3}{5}))$$

22)
$$\tan (\operatorname{sen}^{-1}(\frac{4}{5}))$$

23)
$$\cos(\tan^{-1}(2))$$

24) sen
$$(2 \operatorname{sen}^{-1}(\frac{3}{5}))$$

25)
$$\tan (2 \tan^{-1} (\frac{5}{13}))$$

26)
$$\operatorname{sen}\left(\operatorname{sen}^{-1}\left(\frac{1}{2}\right) + \cos^{-1}\left(\frac{1}{2}\right)\right)$$

27)
$$\cos(\sec^{-1}(\frac{3}{5}) - \cos^{-1}(\frac{3}{5}))$$

G) Dado el siguiente triángulo :

La siguiente relación de proporcionalidad, se le conoce como la Ley del Seno:

$$\frac{a}{\operatorname{sen}\alpha} = \frac{b}{\operatorname{sen}\beta} = \frac{c}{\operatorname{sen}\theta} .$$

La otra relación importante que se establece es la Ley del Coseno, que damos a conocer a continuación :

$$a^2 = b^2 + c^2 - 2bc \cos \alpha$$

$$b^2 = a^2 + c^2 - 2ac \cos \beta$$

$$c^2 = a^2 + b^2 - 2ab \cos \theta$$

Basándonos en el mismo triángulo , determinemos los lados o ángulos que faltan .

1)
$$\alpha = 42^{\circ}$$
 $\beta = 56^{\circ}$ $c = 33.2$

2)
$$a = 1894$$
 $b = 2246$ $c = 3548$

3)
$$a = 23.5$$
 $b = 23.5$ $\alpha = 52^{\circ}$

4)
$$a = 10$$
 $b = 20$ $\theta = 60^{\circ}$

5)
$$a = 17$$
 $b = 14$ $\alpha = 38.8^{\circ}$

6)
$$a = 0.5$$
 $c = 0.4$ $\beta = 48^{\circ}$

7)
$$b = 15.3$$
 $c = 18$ $\beta = 27.3^{\circ}$

8)
$$b = 100$$
 $c = 200$ $\alpha = 120^{\circ}$

9)
$$a = 19.8$$
 $c = 15.3$ $\theta = 31^{\circ}$

10)
$$a = 1$$
 $b = 2$ $c = 2.5$

11)
$$b = 28.3$$
 $c = 22.5$ $\theta = 39.9^{\circ}$

12)
$$b = 10$$
 $c = 8$ $\alpha = 98.53^{\circ}$