ICE-3261 Communication Engineering

Utpalananda Chowdury (Utpal)

Assistant Professor

Dept. of Computer Science and Engineering

University of Rajshahi, Rajshahi, Bangladesh

E-mail: unchowdhury@gmail.com

Mobile: 01710440244

Slide Courtesy: http://www.mhhe.com/forouzan

Course Outline

Topics included:

Communication engineering fundamentals, analog communication, digital communication, various modulation-demodulation techniques, error control, block control, propagation techniques, satellite communication, Fiber optic communication

Course materials:

1. Text books:

- Data Communication and Networking, 5th Edition,
 Behrouz A. Forouzan
- Data and Computer Communications, William Stallings, 8th Edition

2. Reference books:

- Data Communication, Computer Network and Open Systems, F. Halsall
- ii) Computer Networks, Andrew S. Tanenbaum
- iii) Optical Fiber Communications, John M. Senior

Tentative Class Schedules

1 st week:	Fundamentals of communication engineering, Data and Signals – fundamental concepts
2 nd week:	Digital communication fundamentals – transmission modes, impairments
3 rd week:	Digital transmission: digital to digital conversions – Line coding scheme
4 th week:	Digital transmission: digital to digital conversions – Block coding schemes
5 th week:	Digital transmission: analog to digital conversions – PCM, DM, Transmission modes
6 th week:	Analog transmission: Digital to analog conversions
7 th week:	Analog transmission: Analog to analog conversions — AM, FM, PM
8 th week:	Error detection and correction
9 th week:	Multiplexing
10 th week:	Transmission Media: Guided media, fiber optic communication, Unguided media, Propagation
11 th week:	Satellite Communication

Evaluation

-Marks-75

(70% Exam, 20% Quizzes/Class Test, 10% Attendance)

-Credit-3 (Examination 3 Hours)

-Strategies:

Class Test – I – 4%

Class Test – II – 4%

Class Test – II – 4%

Surprise Test – 4%

Assignments – 4%

Attendance – 10%

Final exam – 70%

Data Communications and Networking Fourth Edition

Chapter 1 Introduction

1-1 DATA

COMMUNICATIONS

The term telecommunication means communication at a distance. The word data refers to information presented in whatever form is agreed upon by the parties creating and using the data. Data communications are the exchange of data between two devices via some form of transmission medium such as a wire cable.

Topics discussed in this section:

- Components of a data communications system
- Effectiveness
- Data Flow

Figure 1.1 Components of a data communication system

Effectiveness

- Delivery Correct destination
- Accuracy Unaltered
- Timeliness Timely
- Jitter Uneven delay

Data Representation

- Text Code, Unicode (32 bit), ASCII (127 Char)
- Numbers binary conversion
- Images RGB, YCM (CMYK)
- Audio
- Video

Figure 1.2 Data flow (simplex, half-duplex, and full-duplex)

1-4 PROTOCOLS

A protocol is synonymous with rule. It consists of a set of rules that govern data communications. It determines what is communicated, how it is communicated and when it is communicated. The key elements of a protocol are syntax, semantics and timing

Topics discussed in this section:

- Syntax
- Semantics
- Timing

Elements of a Protocol

- Syntax
 - Structure or format of the data
 - Indicates how to read the bits field delineation
- Semantics
 - Interprets the meaning of the bits
 - Knows which fields define what action
- Timing
 - When data should be sent and what
 - Speed at which data should be sent or speed at which it is being received.