Selected Fun Problems of the ACM Programming Contest: **Booby Traps**

Noah Doersing

noah.doersing@student.uni-tuebingen.de

22. Januar 2016

Problembeschreibung

- Chinesische Grabräuber suchen nach einer Strategie, um eine spezielle Art von Labyrinth nach Schätzen zu durchsuchen.
- Dabei soll der kürzeste Pfad von einem Start- zu einem Endpunkt ermittelt werden (bzw. dessen Länge).

- Beim Labyrinth handelt es sich um ein w x h-Grid von begehbaren und nicht begehbaren Feldern.
- Start- und Endpunkt.

- Beim Labyrinth handelt es sich um ein w × h-Grid von begehbaren und nicht begehbaren Feldern.
- Länge des kürzesten Pfades: 4.

- Im Labyrinth befinden sich Fallen, wobei das Auslösen einer Falle α auch alle
 Fallen ≤ α auslöst, also nicht begehbar macht.
- Hier: C < B < A

- Im Labyrinth befinden sich Fallen, wobei das Auslösen einer Falle α auch alle
 Fallen ≤ α auslöst, also nicht begehbar macht.
- Hier: C < B < A
 - ► Pfad durch C unmöglich.
 - Dynamisches Labyrinth.

- Im Labyrinth befinden sich Fallen, wobei das Auslösen einer Falle α auch alle
 Fallen ≤ α auslöst, also nicht begehbar macht.
- Hier: C < B < A</p>
- Länge des kürzesten Pfades:8.

Problembeschreibung Input & Output

ZYXWVUTSRQPONMLKJIHGFEDCBA

4 4 xoxx xBoo xCxA

0000

■ **Input:** *trap domination order*, Breite *w* und Höhe *h*, *map* (Labyrinth), Start- und Endpunkt.

 Output: Länge des kürzesten Pfades von Start- zu Endpunkt oder IMPOSSIBLE.

- Schwache und dynamische Typisierung
 - ermöglicht schnelles und einfaches Prototyping.
- Listen, Mengen und insbesondere Dictionaries sind nahtlos integriert und einfach zu handhaben.
- Allgemein simple und intuitive Syntax.
- Mehrere Funktionsrückgabewerte.
- Nachteil: Performance (verglichen zu kompilierenden Sprachen).

- Die Eingabe wird vom standard input gelesen und geparst.
- Die Map-Darstellung des Labyrinths wird zu einem Graphen in Adjazenzlistendarstellung umgewandelt.
- Auf dem Graphen wird der kürzeste Pfad vom Start- zum Endpunkt ermittelt.
- 4 Die Länge des kürzesten Pfades wird ausgegeben, ggf. auch das Labyrinth und der Pfad selbst.

Umwandlung zu Adjazenzlistendarstellung

Feld \rightarrow Nachbarn $(1,0) \rightarrow [(1,1)]$ $(1,1) \rightarrow [(1,0),(1,2)]$ $(2,1) \rightarrow [(1,1),(3,1)]$ $\cdots \rightarrow \cdots$

Umwandlung zu Adjazenzlistendarstellung

Feld \to Nachbarn $(1,0) \to [(1,1)]$ $(1,1) \to [(1,0),(1,2)]$ $(2,1) \to [(1,1),(3,1)]$ $\cdots \to \cdots$

Umwandlung zu Adjazenzlistendarstellung

 $\begin{array}{l} \mathsf{Feld} \to \mathsf{Nachbarn} \\ (1,0) \to [(1,1)] \\ \hline (1,1) \to [(1,0),(1,2)] \\ (2,1) \to [(1,1),(3,1)] \\ \cdots \to \cdots \end{array}$

 $\begin{aligned} & \mathsf{Feld} \to \mathsf{Nachbarn} \\ & (1,0) \to [(1,1)] \\ & (1,1) \to [(1,0),(1,2)] \\ & (2,1) \to [(1,1),(3,1)] \\ & \cdots \to \cdots \end{aligned}$

- Im soeben erzeugten Graphen soll gesucht werden (n: Knotenanzahl, m: Kantenanzahl).
 - ▶ Breitensuche: $\mathcal{O}(n+m)$
 - ▶ Tiefensuche: $\mathcal{O}(n+m)$
- Genauer: Es soll ein kürzester Pfad im Graphen ermittelt werden.
 - ▶ Dijkstra: $\mathcal{O}(n^2 + m)$ bzw. $\mathcal{O}(n \cdot \log n + m)$
 - ▶ A*: $\mathcal{O}(n^2)$ bzw. $\mathcal{O}(n \cdot \log n)$
 - ▶ Bellman-Ford: $\mathcal{O}(n \cdot m)$
 - **.**..
- Noch genauer: Nur die Länge interessiert.
 - ightharpoonup Manhattan-Distanzen: $\mathcal{O}(1)$

- Im soeben erzeugten Graphen soll gesucht werden (n: Knotenanzahl, m: Kantenanzahl).
 - ▶ Breitensuche: $\mathcal{O}(n+m)$
 - ▶ Tiefensuche: $\mathcal{O}(n+m)$
- Genauer: Es soll ein kürzester Pfad im Graphen ermittelt werden.
 - ▶ Dijkstra: $\mathcal{O}(n^2 + m)$ bzw. $\mathcal{O}(n \cdot \log n + m)$
 - ► A*: $\mathcal{O}(n^2)$ bzw. $\mathcal{O}(n \cdot \log n)$
 - ▶ Bellman-Ford: $\mathcal{O}(n \cdot m)$
 - **...**
- Noch genauer: Nur die Länge interessiert.
 - ightharpoonup Manhattan-Distanzen: $\mathcal{O}(1)$

- Im soeben erzeugten Graphen soll gesucht werden (n: Knotenanzahl, m: Kantenanzahl).
 - ▶ Breitensuche: $\mathcal{O}(n+m)$
 - ▶ Tiefensuche: $\mathcal{O}(n+m)$
- Genauer: Es soll ein kürzester Pfad im Graphen ermittelt werden.
 - ▶ Dijkstra: $\mathcal{O}(n^2 + m)$ bzw. $\mathcal{O}(n \cdot \log n + m)$
 - $ightharpoonup A^*: \mathcal{O}(n^2) \text{ bzw. } \mathcal{O}(n \cdot \log n)$
 - ▶ Bellman-Ford: $\mathcal{O}(n \cdot m)$
 - **.** . . .
- Noch genauer: Nur die Länge interessiert.
 - ightharpoonup Manhattan-Distanzen: $\mathcal{O}(1)$

- Im soeben erzeugten Graphen soll gesucht werden (n: Knotenanzahl, m: Kantenanzahl).
 - ▶ Breitensuche: $\mathcal{O}(n+m)$
 - ▶ Tiefensuche: $\mathcal{O}(n+m)$
- Genauer: Es soll ein kürzester Pfad im Graphen ermittelt werden.
 - ▶ Dijkstra: $\mathcal{O}(n^2 + m)$ bzw. $\mathcal{O}(n \cdot \log n + m)$
 - $ightharpoonup A^*$: $\mathcal{O}(n^2)$ bzw. $\mathcal{O}(n \cdot \log n)$
 - ▶ Bellman-Ford: $\mathcal{O}(n \cdot m)$
 - **.** . . .
- Noch genauer: Nur die Länge interessiert.
 - ightharpoonup Manhattan-Distanzen: $\mathcal{O}(1)$

- **Nachteil:** Auf einem ungewichteten Graphen weniger effizient als Breitensuche: bestenfalls $\mathcal{O}(n \cdot \log n + m)$ vs. $\mathcal{O}(n + m)$.
- Vorteil: Möglichkeit der Graph-Optimierung vor Ausführung des Algorithmus.

- **Nachteil:** Auf einem ungewichteten Graphen weniger effizient als Breitensuche: bestenfalls $\mathcal{O}(n \cdot \log n + m)$ vs. $\mathcal{O}(n + m)$.
- Vorteil: Möglichkeit der Graph-Optimierung vor Ausführung des Algorithmus.

- **Nachteil:** Auf einem ungewichteten Graphen weniger effizient als Breitensuche: bestenfalls $\mathcal{O}(n \cdot \log n + m)$ vs. $\mathcal{O}(n + m)$.
- Vorteil: Möglichkeit der Graph-Optimierung vor Ausführung des Algorithmus.

- Fragliche Anpassbarkeit an Problembeschreibung: Wie kann hier die trap domination order berücksichtigt werden?
 - "Forking" des Algorithmus, sobald eine Falle erreicht wird.
 - $\mathcal{O}((n \cdot \log n + m) \cdot 3^{|T|})$, wobei |T| die Anzahl der Fallen im Labyrinth ist.
 - Setzen der Distanzen zu nicht mehr begehbaren Fallen auf ∞ .
 - In beiden Fällen: Häufiges Kopieren des algorithm state nötig.
 - ▶ O(teuer).

Lösungsansätze Dijkstra

■ **Teilerfolg:** Rekursive Implementation mit Backtracking, falls kein Pfad von Start- zu Endpunkt gefunden werden kann.

Algorithmus

```
q ← Queue(start)
v \leftarrow \{start\}
while not q.empty() do
     c \leftarrow q.pop()
     foreach n \in adj(c) do
          if c ∉ v then
                if c = end then
                     return True
                q.push(n)
                v \leftarrow v \cup \{n\}
return False
```


Lösungsansätze Breitensuche

- Fast lineare Komplexität: $\mathcal{O}(n+m)$.
 - Wegen der Grid-Struktur tatsächlich $\mathcal{O}(n+4n) = \mathcal{O}(n)$.
 - Wesentlich schneller als Dijkstra.
- Simpel und deswegen flexibel anpassbar.

- In der Warteschlange q soll neben dem zu besuchenden Feld folgendes gespeichert werden:
 - Bisheriger Pfad
 - weil dessen Länge zurückgegeben werden muss.
 - lacktriangle Maximale bisher ausgelöste Falle lpha
 - ightharpoonup um schnell prüfen zu können, ob ein Feld, das Falle lpha' enthält, besucht werden kann.

$$q = [((1,1), [\dots, (1,2), (1,1)], A),$$

$$((6,5), [\dots, (5,5), (6,5)], B),$$

$$((1,6), [\dots, (1,5), (1,6)], A),$$

$$\dots]$$

Modifizierte Breitensuche: Zur Warteschlage hinzufügen oder nicht?

- Beim Verarbeiten von Feldern kann für jeden Nachbarn einer von vier Fällen auftreten:
 - Nachbar besucht
 - nicht bearbeiten.
 - 2 Nachbar nicht besucht, enthält keine Falle
 - zur Warteschlange hinzufügen.
 - Nachbar nicht besucht, enthält eine Falle $\alpha' \leq$ maximale bisher ausgelöste Falle α
 - nicht bearbeiten.
 - 4 Nachbar nicht besucht, enthält eine Falle α' > maximale bisher ausgelöste Falle α
 - ightharpoonup mit neuer maximalen ausgelösten Falle α' zur Warteschlage hinzufügen.

$$(\ldots,[\ldots],\underline{\alpha'})$$

Modifizierte Breitensuche: Bereits besucht?

■ Wegen Fallen kann keine einzelne Menge *v* verwendet werden, um zu speichern, welche Felder bereits besucht wurden:

- Naive Lösung: verwende den Pfad, der mit dem Feld in der Warteschlange gespeichert ist.
 - ▶ Bei einem nicht lösbaren Labyrinth werden alle Felder in jeder vom Start aus möglichen Reihenfolge besucht.
 - **▶** $\mathcal{O}(n!)$

$$q = [((1,1), [\dots, (1,2), (1,1)], A),$$

$$((6,5), [\dots, (5,5), (6,5)], B),$$

$$((1,6), [\dots, (1,5), (1,6)], A),$$

$$\dots]$$

- Schneller: Verwende für jede Falle ∈ $T = \{A, B, ..., Z\}$ eine Menge $v_A, v_B, ..., v_Z$, zusätzlich v_0 .
- Arbeite immer mit der Menge v_{α} für die maximale bisher ausgelöste Falle α .
 - ▶ Jedes Feld wird maximal |T| + 1 = 26 + 1 = 27 mal besucht.

$$v_0 = \{(1,0)\}$$

$$v_A = \{(3,2)\}$$

$$v_B = \{(1,1), (2,1), (1,0), (3,1)\}$$

$$v_C = \emptyset$$

$$q = [(\dots, [\dots], \alpha]$$

Beispiel

(0,0)	(1,0)	(2,0)	(3,0)
(0,1)	B (1,1)	(2,1)	(3,1)
(0,2)	(1,2)	(2,2)	(3,2)
(0,3)	(1,3)	(2,3)	(3,3)

$$v_{0} = \{ (1,0) \}$$

$$v_{A} = \emptyset$$

$$v_{B} = \emptyset$$

$$v_{C} = \emptyset$$

$$q = [((1,0), [(1,0)], 0)]$$

(0,0)	(1,0)	(2,0)	(3,0)
(0,1)	(1,1) B	(2,1)	(3,1)
(0,2)	(1,2) C	(2,2)	(3,2)
(0,3)	(1,3)	(2,3)	(3,3)

(0,0)	(1,0)	(2,0)	(3,0)
(0,1)	B	(2,1)	(3,1)
(0,2)	(1,2)	(2,2)	(3,2) A
(0,3)	(1,3)	(2,3)	(3,3)

(0,0)	(1,0)	(2,0)	(3,0)
(0,1)	(1,1) B	(2,1)	(3,1)
(0,2)	(1,2) C	(2,2)	(3,2) A
(0,3)	(1,3)	(2,3)	(3,3)

(0,0)	(1,0)	(2,0)	(3,0)
(0,1)	(1,1) B	(2,1)	(3,1)
(0,2)	(1,2) C	(2,2)	(3,2)
(0,3)	(1,3)	(2,3)	(3,3)

(0,0)	(1,0)	(2,0)	(3,0)
(0,1)	(1,1)	(2,1)	(3,1)
	ב		
(0,2)	(1,2)	(2,2)	(3,2)
(0,3)	(1,3)	(2,3)	(3,3)

(0,0)	(1,0)	(2,0)	(3,0)
(0,1)	(1,1)	(2,1)	(3,1)
(0,2)	(1,2)	(2,2)	(3,2) A
(0,3)	(1,3)	(2,3)	(3,3)

(0,0)	(1,0)	(2,0)	(3,0)
(0,1)	(1,1)	(2,1)	(3,1)
	D		
(0,2)	(1,2)	(2,2)	(3,2)
(0,3)	(1,3)	(2,3)	(3,3)

$$c_{7} = (\underbrace{(3,3)}, [\dots, \underbrace{(3,2)}, (3,3)], A)$$

$$\downarrow \downarrow$$

$$v_{0} = \{(1,0)\}$$

$$v_{A} = \{\underbrace{(3,2)}, \underbrace{(3,3)}, (3,1), \underbrace{(2,3)}\}$$

$$v_{B} = \{(1,1), (2,1), (1,0), (3,1)\}$$

$$v_{C} = \emptyset$$

$$q = [((3,1), [\dots, \underbrace{(3,2)}, (3,1)], A), (\underbrace{(2,3)}, [\dots, \underbrace{(3,3)}, (2,3)], A)]$$

(0,0)	(1,0)	(2,0)	(3,0)
(0,1)	(1,1) B	(2,1)	(3,1)
(0,2)	(1,2)	(2,2)	(3,2)
(5.5)		()	A
(0,3)	(1,3)	(2,3)	(3,3)

(0,0)	(1,0)	(2,0)	(3,0)
(0,1)	(1,1)	(2,1)	(3,1)
)		
(0,2)	(1,2)	(2,2)	(3,2)
(0,3)	(1,3)	(2,3)	(3,3)

(0,0)	(1,0)	(2,0)	(3,0)
(0,1)	(1,1) B	(2,1)	(3,1)
(0,2)	(1,2) C	(2,2)	(3,2)
(0,3)	(1,3)	(2,3)	(3,3)

- Prüfe nicht nur in v_{α} .
- $lue{}$ Erzeuge Menge T' aller Fallen, die auf dem bisherigen Pfad liegen.
- Prüfe in $\bigcup_{t \in T'} v_t$.
 - Felder werden (hier) nicht mehrfach besucht.
 - ► Kürzere Laufzeit (Beispiel: 12 Schritte vs. 9 Schritte).
- Korrektheit nicht bewiesen, aber kein Gegenbeispiel gefunden.

Noah Doersing Booby Traps 22. Januar 2016 44 / 60

Beispiel

(0,0)	(1,0)	(2,0)	(3,0)
(0,1)	B (1,1)	(2,1)	(3,1)
(0,2)	(1,2)	(2,2)	(3,2)
(0,3)	(1,3)	(2,3)	(3,3)

$$v_{0} = \{ (1,0) \}$$

$$v_{A} = \emptyset$$

$$v_{B} = \emptyset$$

$$v_{C} = \emptyset$$

$$q = [((1,0), [(1,0)], 0)]$$

(0,0)	(1,0)	(2,0)	(3,0)
(0,1)	(1,1) B	(2,1)	(3,1)
(0,2)	(1,2) C	(2,2)	(3,2)
(0,3)	(1,3)	(2,3)	(3,3)

(0,0)	(1,0)	(2,0)	(3,0)
(0,1)	(1,1) B	(2,1)	(3,1)
(0,2)	(1,2)	(2,2)	(3,2) A
(0,3)	(1,3)	(2,3)	(3,3)

(0,0)	(1,0)	(2,0)	(3,0)
(0,1)	(1,1) B	(2,1)	(3,1)
(0,2)	(1,2) C	(2,2)	(3,2) A
(0,3)	(1,3)	(2,3)	(3,3)

(0,0)	(1,0)	(2,0)	(3,0)
(0,1)	(1,1) B	(2,1)	(3,1)
(0,2)	(1,2)	(2,2)	(3,2)
(0,3)	(1,3)	(2,3)	(3,3)

(0,0)	(1,0)	(2,0)	(3,0)
(0,1)	(1,1) B	(2,1)	(3,1)
(0,2)	(1,2) C	(2,2)	(3,2)
(0,3)	(1,3)	(2,3)	(3,3)

(0,0)	(1,0)	(2,0)	(3,0)
(0,1)	(1,1) B	(2,1)	(3,1)
(0,2)	(1,2) C	(2,2)	(3,2)
(0,3)	(1,3)	(2,3)	(3,3)

(0,0)	(1,0)	(2,0)	(3,0)
(0,1)	(1,1)	(2,1)	(3,1)
	ב		
(0,2)	(1,2)	(2,2)	(3,2) A
(0,3)	(1,3)	(2,3)	(3,3)

(0,0)	(1,0)	(2,0)	(3,0)
(0,1)	(1,1)	(2,1)	(3,1)
(0,2)	(1,2) :	(2,2)	(3,2)
(0,3)	(1,3)	(2,3)	(3,3)

(0,0)	(1,0)	(2,0)	(3,0)
(0,1)	(1,1)	(2,1)	(3,1)
	ם		
(0,2)	(1,2)	(2,2)	(3,2)
(0,3)	(1,3)	(2,3)	(3,3)

Map generator und pretty printing

- Simpler map generator, um Performance auf großen Labyrinthen ($w \cdot h \le 40000$) testen zu können: gravedigger.py.
- Außerdem sorgen bei boobytraps.py die Flags -v und -v2 für eine übersichtliche Ausgabe des Labyrinths und des Pfades.

Demo

Komplexität

- Erinnerung: Knotenanzahl n, Kantenanzahl m.
- Komplexität der Breitensuche: $\mathcal{O}(n+m)$.
- Sei | T" | die Anzahl der paarweise verschiedenen (unique) Fallen im Labyrinth.
- Komplexität wegen mehrfachem Besuchen von Feldern aufgrund der Fallen: $\mathcal{O}((n+m)\cdot(1+|T''|))$.
- Es gilt 0 < |T''| < |T| = 26 und 1 < m < 4n.
- Wähle |T''| = |T| = 26 und m = 4n.
 - Nomplexität $\mathcal{O}((n+4n)\cdot(1+26)) = \overline{\mathcal{O}(n)} = \mathcal{O}(w\cdot h)$.

Danke für die Aufmerksamkeit!

Quellen

- Grabräuber-Illustration: https://c418.bandcamp.com/album/catacomb-snatch-original-soundtrack
- Beschreibung der Breitensuche nach https://de.wikipedia.org/wiki/Breitensuche
- Illustration zur Breitensuche: http://www.cse.unsw.edu.au/~billw/Justsearch1.gif

Fork me on GitHub: https://github.com/doersino/acm-boobytraps