E-mail: E-mail do Autor

Curso: Sigla do Curso

UC: Nome da Cadeira

Data: 19 de setembro de 2024

Exercício 1 Exame 2018/2019 - Parte sem consulta

Explique o conceito de distribuição temperada e como se definem/caracterizam analiticamente.

Solução: Uma distribuição g(t) é o processo de associar a uma função arbitrária $\phi(t)$, de uma certa classe C, um número $N_g[\phi(t)]$ que pode assumir qualquer quantidade dependente de $\phi(t)$ e são representados por:

$$N_g \left[\phi(t) \right] \equiv \int_{-\infty}^{+\infty} g(t) \cdot \phi(t) \cdot dt$$

A classe C contém as funções que possuem derivadas de todas as ordens, e que tendem para zero mais rapidamente que qualquer potência de t, quando t tende para infinito. Representa-se analiticamente por:

$$\phi(t) \in C \text{ se } \begin{cases} \exists \phi^{(n)}(t) & \forall t, n \\ \lim_{t \to +\infty} [t^n \cdot \phi(t)] = 0 \end{cases}$$

Exercício 2 Exame 2018/2019 - Parte sem consulta

Explique e defina analiticamente a operação de convolução e represente graficamente a seguinte convolução: $\delta(t+4)*\mathrm{sign}(t)*\delta(t-3)$.

Solução:

$$\delta(t+4) * \operatorname{sign}(t) * \delta(t-3) = \operatorname{sign}(t+1)$$

 $\delta(t) \rightarrow$ unidade de convolução, logo só temos de transladar o sinal!

A operação de convolução pode ser definida por:

$$\phi(t) = \phi_1(t) * \phi_2(t) = \int_{-\infty}^{+\infty} \phi_1(\tau) \cdot \phi_2(t - \tau) \cdot d\tau$$

este integral, conhecido como integral de convolução, define uma função ou distribuição de τ , e é simultaneamente funcional de $\phi_1(t)$ e $\phi_2(t)$ para todos os valores.