Final Project Presentation

Data Analysis with Pandas BMI of 500 People

Ankara University Artificial Intelligence Technology

Melisa Gözet
21823408
Data Analysis with Python
12th January 2022

Data Intake Report

Data Analysis with Pandas

Conclusion

AGENDA

Data Intake Report

<u>Data Storage Location</u>: https://www.kaggle.com/yersever/500-person-gender-height-weight-bodymassindex

<u>Tabular Data Details</u>: 500_Person_Gender_Height_Weight_Index.csv

Total number of observations	500 Rows
Total number of files	1
Total number of features	4 Columns
Base format of the file	.csv
Size of the data	15.8+ KB

df.info()

```
[9] df.isnull().sum()
```

Gender 0
Height 0
Weight 0
Index 0
dtype: int64

df

	Gender	Height	Weight	Index
0	Male	174	96	4
1	Male	189	87	2
2	Female	185	110	4
3	Female	195	104	3
4	Male	149	61	3
495	Female	150	153	5
496	Female	184	121	4
497	Female	141	136	5
498	Male	150	95	5
499	Male	173	131	5
500 rc	ws × 4 co	lumns		

DATA DESCRIPTION

> Gender : Male / Female

➤ Height: Number (cm)

➤ Weight : Number (kg)

> Index : [0 1 2 3 4 5]

#Making a BMI Column using the formula for BMI

df["BMI"] = round(df["Weight"]/((df["Height"])/100)**2, 2) #Weight(Kg)/Height(m)^2

df.head()

		Gender	Height	Weight	Index	BMI
	0	Male	174	96	4	31.71
	1	Male	189	87	2	24.36
,	2	Female	185	110	4	32.14
	3	Female	195	104	3	27.35
i	4	Male	149	61	3	27.48

 \Box

вмі	Nutritional status
Below 18.5	Underweight
18.5–24.9	Normal weight
25.0–29.9	Pre-obesity
30.0–34.9	Obesity class I
35.0–39.9	Obesity class II
Above 40	Obesity class III

```
def index(x):
    if x["BMI"] <18.5:
        return 0
    elif 18.5<= x["BMI"] < 25:
        return 1
    elif 25<= x["BMI"] < 30:
        return 2
    elif 30<= x["BMI"] < 35:
        return 3
    elif 35<= x["BMI"] < 40:
        return 4
    elif x["BMI"] >= 40:
        return 5
df["New_Index"] = df.apply(index, axis=1)
df.head()
```

⊋		Gender	Height	Weight	Index	BMI	New_Index
	0	Male	174	96	4	31.71	3
	1	Male	189	87	2	24.36	1
	2	Female	185	110	4	32.14	3
	3	Female	195	104	3	27.35	2
	4	Male	149	61	3	27.48	2

https://www.euro.who.int/en/health-topics/disease-prevention/nutrition/a-healthy-lifestyle/body-mass-index-bmi

```
def status(x):
    if x["New_Index"] == 0:
        return "Underweight"
    elif x["New_Index"] == 1:
        return "Normal weight"
    elif x["New_Index"] == 2:
        return "Pre-Obesity"
    elif x["New_Index"] == 3:
        return "Obese Class I"
    elif x["New_Index"] == 4:
        return "Obese Class II"
    elif x["New_Index"] == 5:
        return "Obese Class III"
    df["Status"] = df.apply(status, axis=1)
    df.head()
```

₽		Gender	Height	Weight	BMI	New_Index	Status	2
	0	Male	174	96	31.71	3	Obese Class I	
	1	Male	189	87	24.36	1	Normal weight	
	2	Female	185	110	32.14	3	Obese Class I	
	3	Female	195	104	27.35	2	Pre-Obesity	
	4	Male	149	61	27.48	2	Pre-Obesity	

df.describe().T

₽

	count	mean	std	min	25%	50%	75%	max
Height	500.0	169.94400	16.375261	140.00	156.0000	170.500	184.0000	199.00
Weight	500.0	106.00000	32.382607	50.00	80.0000	106.000	136.0000	160.00
BMI	500.0	37.76572	13.965550	12.75	27.1675	36.955	46.3875	78.85
New_Index	500.0	3.33600	1.705556	0.00	2.0000	4.000	5.0000	5.00

plt.subplots(figsize=(8,5))
sns.heatmap(df.corr(), annot = True, center = 0);

/usr/local/lib/python3.7/dist-packages/seaborn/axisgrid.py:2076: UserWarning: The `size` p warnings.warn(msg, UserWarning)

New_Index

```
[33] df[df["New Index"].isna()]
       Gender Height Weight BMI New Index Status
    print(df["New_Index"].value_counts())
     print()
     print(df["New Index"].value counts(normalize = True)*100)
D>
          202
           69
           65
           65
           65
           34
     Name: New_Index, dtype: int64
         40.4
         13.8
         13.0
         13.0
         13.0
          6.8
     Name: New Index, dtype: float64
```

Status

```
[52] df[df["Status"].isna()]
       Gender Height Weight BMI New Index Status
    print(df["Status"].value counts())
     print()
     print(df["Status"].value_counts(normalize = True)*100)
    Obese Class III
                        202
     Pre-Obesity
                        69
    Normal weight
                        65
    Obese Class II
                        65
    Obese Class I
                        65
    Underweight
                         34
    Name: Status, dtype: int64
     Obese Class III
                        40.4
     Pre-Obesity
                       13.8
    Normal weight
                       13.0
    Obese Class II
                       13.0
    Obese Class I
                       13.0
    Underweight
                        6.8
    Name: Status, dtype: float64
```

```
ax = sns.countplot(df['New_Index']);

for p in ax.patches:
    ax.annotate(format(p.get_height()), (p.get_x() + p.get_width() / 2., p.get_height()),
    ha = 'center', va = 'center', xytext = (0, 10), textcoords = 'offset points')

ax.set_title("Numerical Distribution of People By New_Index");
```

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the f FutureWarning


```
print(df["Status"].value_counts())
print()

label = "Obese Class III", "Pre-Obesity", "Obese Class II", "Obese Class I", "Normal weight", "Underweight"
explode = (0.1, 0.1, 0.1, 0.1, 0.1, 0.1)
sizes = df["Status"].value_counts(normalize = True)*100

fig1, ax1 = plt.subplots()
ax1.pie(sizes, explode=explode, labels = label, autopct="%1.1f%%", shadow=True, startangle=70)
ax1.axis("equal")
plt.title("Distribution by Status")
plt.rcParams['figure.figsize'] = [6, 6]
plt.show();
```


Gender

```
[37] df[df["Gender"].isna()]
       Gender Height Weight BMI New_Index Status
[38] print(df["Gender"].value_counts())
    print()
    print(df["Gender"].value_counts(normalize = True)*100)
    Female
             255
    Male 245
    Name: Gender, dtype: int64
    Female 51.0
    Male
         49.0
    Name: Gender, dtype: float64
```

```
print(df["Gender"].value_counts())
print()

label = "Female", "Male"
explode = (0, 0.1)
sizes = df["Gender"].value_counts(normalize = True)*100

fig1, ax1 = plt.subplots()
ax1.pie(sizes, explode=explode, labels = label, autopct='%1.1f%%', shadow=True, startangle=90)
ax1.axis("equal")
plt.title("Distribution by gender")
plt.rcParams['figure.figsize'] = [6, 6]
plt.show();
```

Female 255 Male 245 Name: Gender, dtype: int64

pd.crosstab(index = df["Status"], columns = df["Gender"], normalize = "index").\
plot(kind = "barh", stacked = True, figsize = (7,6), title = "Proportion of Genders per New_Index");

Height

```
fig, ax = plt.subplots(1,2, figsize = (13,5));
sns.histplot(df["Height"], kde = True, ax = ax[0]);
sns.boxplot(x = "Height", data = df, ax = ax[1]);
plt.suptitle("Height Distribution of People");
```

C.

Height Distribution of People

Weight

```
fig, ax = plt.subplots(1,2, figsize = (13,5));
sns.histplot(df["Weight"], kde = True, ax = ax[0]);
sns.boxplot(x = "Weight", data = df, ax = ax[1]);
plt.suptitle("Weight Distribution of People");
```

C.

Weight Distribution of Male/Female


```
fig, ax= plt.subplots(1,2, figsize=(15,8))
sns.lineplot(df['New_Index'],df['Weight'], ax=ax[0])
sns.lineplot(df['New_Index'],df['Height'], ax=ax[1])
plt.show();
```

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variables as keywor FutureWarning /usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variables as keywor

- df.boxplot(column="Weight", by="New_Index", figsize=(8,6));
- /usr/local/lib/python3.7/dist-packages/numpy/core/_asarray.py:83: Visit
 return array(a, dtype, copy=False, order=order)

- df.boxplot(column="Height", by="New_Index", figsize=(8,6));
- /usr/local/lib/python3.7/dist-packages/numpy/core/_asarray.py:83: VisibleD return array(a, dtype, copy=False, order=order)

Boxplot grouped by New_Index

- df.boxplot(column="Weight", by="Gender", figsize=(8,6));
- /usr/local/lib/python3.7/dist-packages/numpy/core/_asarray.py:83:
 return array(a, dtype, copy=False, order=order)

- df.boxplot(column="Height", by="Gender", figsize=(8,6));
- /usr/local/lib/python3.7/dist-packages/numpy/core/_asarray.py:83:
 return array(a, dtype, copy=False, order=order)

Boxplot grouped by Gender


```
fig = plt.figure(figsize=(12, 6))
rows = 1
columns = 1

fig.add_subplot(rows, columns, 1)
sns.boxplot(data=df, x=df["Gender"], y="Height", hue = df["New_Index"]);
```



```
color = ["teal", "purple"]
sns.set_palette(sns.color_palette(color))
sns.displot(data=df,x="Height",kind="kde",hue="Gender");
```



```
fig = plt.figure(figsize=(12, 6))
rows = 1
columns = 1

fig.add_subplot(rows, columns, 1)
sns.boxplot(data=df, x=df["Gender"], y="Weight", hue = df["New_Index"]);
```



```
color = ["teal", "purple"]
sns.set_palette(sns.color_palette(color))
sns.displot(data=df,x="Weight",kind="kde",hue="Gender");
```


df1 = df.groupby(["Gender", "New_Index","Status"]).size().reset_index().rename(columns = {0 : 'count'})
df1

Gender New_Index Sta	}	Gender	New_Index	Sta
----------------------	---	--------	-----------	-----

	Gender	New_Index	Status	count
0	Female	0	Underweight	13
1	Female	1	Normal weight	38
2	Female	2	Pre-Obesity	37
3	Female	3	Obese Class I	37
4	Female	4	Obese Class II	34
5	Female	5	Obese Class III	96
6	Male	0	Underweight	21
7	Male	1	Normal weight	27
8	Male	2	Pre-Obesity	32
9	Male	3	Obese Class I	28
10	Male	4	Obese Class II	31
11	Male	5	Obese Class III	106

gender = df.groupby(["Gender", "New_Index", "Status"]).mean()
gender

Weight	BMI
	Weight

			neight	weight	DIVIT
Gender	New_Index	Status			
Female	0	Underweight	187.076923	55.153846	15.840769
	1	Normal weight	171.894737	65.000000	21.913158
	2	Pre-Obesity	177.027027	86.702703	27.462973
	3	Obese Class I	172.405405	97.324324	32.418108
	4	Obese Class II	175.411765	116.823529	37.696471
	5	Obese Class III	161.989583	135.260417	52.079792
Male	0	Underweight	186.095238	57.380952	16.578571
	1	Normal weight	177.259259	71.259259	22.582222
	2	Pre-Obesity	175.406250	85.750000	27.671250
	3	Obese Class I	177.250000	103.428571	32.641071
	4	Obese Class II	169.838710	110.677419	38.000645
	5	Obese Class III	160.650943	130.632075	51.056321

0	df.groupby("New_Index")	.agg([np.mean,np.median])
---	-------------------------	---------------------------

C→	Height		Weight			BMI	
		mean	median	mean	median	mean	median
	New_Index						
	0	186.470588	188	56.529412	55	16.296471	16.92
	1	174.123077	177	67.600000	67	22.191077	22.22
	2	176.275362	181	86.260870	87	27.559565	27.47
	3	174.492308	177	99.953846	101	32.514154	32.36
	4	172.753846	175	113.892308	115	37.841538	38.04
	5	161.287129	160	132.831683	139	51.542723	48.92

0	df.groupby("Gender")	.agg([np.mean,np.median])
---	----------------------	---------------------------

C.		Height		Weight		BMI		New_Index	
		mean	median	mean	median	mean	median	mean	median
	Gender								
	Female	170.227451	170	105.698039	106	37.394392	35.74	3.290196	4
	Male	169.648980	171	106.314286	105	38.152204	38.39	3.383673	4

Conclusion

- People who are very tall are generally Underweight (Index 0) and people with shorter height are generally Obese Class III (Index 5).
- The mean weight of males is heavier than that of females.
- The mean height of males is slighly less than that of females.
- The distributions for height and weight don't have any outliers.
- The height of people varies between a minimum of 140 cm and a maximum of 199 cm. The mean height is 169 cm. Mean height of female is 170 cm and the mean height of males is 169 cm.
- The weight of people varies between a minimum of 50 kg and a maximum of 160 kg. The mean height is 106 kg. Mean height of female is 105 kg and the mean height of males is 106 kg.

THANK YOU ©