$$-x_1 + 4x_3 = 13$$
 $= 1$ $= 1$, $x_3 = \frac{14}{4} = \frac{7}{2}$

b.
$$\vec{d}^{x_2} = (d_{x_1}, 1, d_{x_3}, 0)$$

 $-d_{x_1} + 4d_{x_3} = -1$
 $2d_{x_1} = -6$

$$= d_{x_1} = -3, d_{x_3} = -1$$

c.
$$\overline{C}_{X_2} = -30 + 1 = -29$$

 $\Rightarrow \overline{d}^{X_2}$ not improving

$$\vec{d}^{x_4} = (d_{x_1}, 0, d_{x_2}, 1)$$

$$-d_{x_1} + 4d_{x_3} = -21$$

$$2d_{x_1} = 2$$

$$\Rightarrow d_{x_1} = 1, d_{x_3} = -5$$

d. Choose dx4: X4 is the entering variable

$$\lambda_{\text{max}} = \min\left\{\frac{7/2}{5}\right\} = \frac{7}{10}$$
 λ_{3} is the leaving variable.

=> new BFS =
$$(1,0,\frac{7}{2},0) + \frac{7}{10}(1,0,-5,1) = (\frac{17}{10},0,0,\frac{7}{10})$$

new bosis = $\{x_1, x_4\}$.

s.t.
$$y_1 + 2y_2 > 3$$
 (1)
 $2y_1 + 3y_2 > 4$ (2)
 $y_1 + y_2 > 1$ (3)
 $2y_1 + 3y_2 > 5$ (4)
 $y_1, y_2 > 0$.

optimal soln: $y_i^* = 1$, $y_2^* = 1$.

Onal complementary slackness: dual constraint not active
 corresponding primal variable = 0.

From part b, it is clear that constraints (2) and (3) are not active at (1,1). \Rightarrow In an optimal solution to [P], we must have $X_2 = X_3 = 0$.

d. modified [P]:

max
$$3x_1 + 5x_4$$

s.t. $x_1 + 2x_4 \le 5$
 $2x_1 + 3x_4 \le 8$
 $x_1, x_4 \ge 0$

optimal soln to modified [P]: *\$58. $\chi_1^{k} = 1, \quad \chi_{\psi}^{k} = 2$

optimal soln. to [P]: (1,0,0,2)

P3. Symbolic input parameters:

C = cost of crude oil per 1000 barrels

Pa = price of unprocessed aviation fuel per 1000 barrels

Ph = price of unprocessed heating oil per 1000 barrels

qa = price of processed aviation fuel per 1000 barrels

Bh = price of processed heating oil per 1000 barrels

ta = time to process aviation fuel per 1000 barrels

th = time to process aviation fuel per 1000 barrels

th = time to process heating oil per 1000 barrels

B = available crude oil, in 1000s.

Decision variables: (in 1000 barrels)

Z = amt. of crude oil to buy

Xa = amt. of unprocessed AF to sell

Xh = amt. of unprocessed HO to sell

Ya = amt. of processed AF to sell

Yh = amt. of processed HO to sell.

Model:

max $Pa \times x_n + Ph \times x_n + ga \times x_n + gh \times x_n - CZ$ (total profit) s.t. $\frac{3}{4}Z = Xa + ya$ (crude oil $\rightarrow AF$) $\frac{1}{4}Z = Xh + yh$ (crude oil $\rightarrow Ho$) $taya + thyh \leq T$ (cracker time) $Z \leq B$ (available crude oil) $Xa, ya, Xh, yh, Z \geq 0$

vertices - quarters.

numbers in red next to vertices = demand in that quarter

Arc (i,j) represents: "produce in quarter i to cover demand in quarters i,...,j-1."

For example, arc (1,3): produce 30 + 25 in quarter 1 30 units used immediately to satisfy demand in quarter 1 25 units held over to satisfy demand in quarter 2. total cost: 100 + 3(30+25) + 5(25) = 390.

arc	costs	
(1,2)	100 +	
(1,3)	100 +	3(30+25) + 5(25) demand in quarter 3 has to be held for 2 quarters.
(1,4)	100 +	3(30+25+10) + 5(25) + (5+5)(10)
(1,5)	100 +	3(30+25+10+35) + 5(25) + (5+5)(10) + (5+5+5)(10).
(2,3)	100 +	3(25)
(2,4)	100 +	3(25+10) + 5(10)
(2,5)	(00 t	3(25+10+35) + 5(10) + (5+5)(35)
(3,4)	100 +	3(10)
(3,5)	100 +	3(10+35) + 5(35)
(4,5)	100 +	3(31)

A shortest path from vertex I to vertex 5 in the above network " the above arc costs corresponds to a minimum total cost production plan.

- $\frac{P5}{c}$. The objective for vector $\vec{c} = (3, 11, -8, 0)$
 - a. $\vec{d}^{\text{Wy}} = (1, 0, -4, 1)$ does NOT lead to a conclusion that the LP is unbounded, since its components are not all nonnegative.
 - b. $\vec{d}^{W4} = (1, 3, 0, 1)$ has associated reduced cost $\vec{C}_{W4} = 3b$. Since the LP is minimizing, \vec{d}^{W4} is not improving. So, even though all components of \vec{d}^{W4} are nonnegative, we cannot conclude that the LP is unbounded.
 - c. $\vec{d}^{W4} = (1, 0, 3, 1)$ has associated reduced cost $\vec{c}_{W4} = -21$, and so \vec{d}^{W4} is improving, with all nonnegative components. Therefore, we can conclude that the LP is unbounded.
 - d. $\vec{d}^{W4} = (-1, 1, -2, 1)$. Similar to part a.

P6.

Symbolic input parameters:

P = set of presents C = set of children

Vij = happiness of child i "present j for iEC, jeP bj = # present j available for jeP.

Decision variables: Xij = # present j given to child i for iEC, jeP.

max min { \(\sum_{jeP} \) \(V_{ij} \) \(X_{ij} \) ie C } Model: Lhappiness of child i

s.t. $\sum_{i \in C} x_{ij} \leq b_{j}$ for $j \in P$ (available presents) Xij ≥0 for ie C, je P.

convert to LP

max

s.t. $z \leq \sum_{j \in P} V_{ij} X_{ij}$ for it C ∑ xij ≤ bj for jeP Xij ≥0 for i∈ C, jeP.