Implementazione di un simulatore di macchina Enigma in Python

Matteo Ghera

Università degli Studi di Firenze

7 Settembre 2020

Introduzione

- La macchina Enigma era un dispositivo, simile ad una macchina da scrivere, utilizzato dai tedeschi durante la Seconda Guerra Mondiale per criptare e decriptare un messaggio;
- Esistevano diverse versioni di Enigma e ogni comparto dell'esercito utilizzava una diversa versione;
- La scoperta di un procedimento che consentisse di decriptare i messaggi nemici da parte degli Alleati era una sfida importante per le sorti della guerra;
- Secondo alcuni storici, tale scoperta contribuì a ridurre la durata della guerra di due anni;
- Lo scopo del mio progetto è quello di implementare un simulatore di una macchina Enigma in Python.

Figure 1: Foto di una macchina Enigma esposta presso il Museo nazionale della scienza e della tecnologia "L. Da Vinci" di Milano

La struttura di Enigma

- Enigma può essere considerata come un estensione del metodo del cifrario di Vigenère munita di dischi cifrati.
- Gli elementi elettromeccanici che componevano una macchina Enigma erano i seguenti:
 - una tastiera (keyboard);
 - 2 un pannello luminoso (lampboard);
 - 3 tre rotori connessi a cascata;
 - **4** un riflettore;
 - **5** un pannello a più prese (plugboard).

Figure 2: Schema che rappresenta il funzionamento di una macchina Enigma tratto da [6]

Analisi matematica

- Si consideri una generica macchina Enigma;
- Sia S l'insieme fissato dei rotori, dove ciascun rotore realizza una permutazione nota fra le lettere, allora una *chiave* di Enigma consiste di:
 - una tripla $(R_1, R_2, R_3) \in S$ di rotori;
 - una tripla $(i, j, k) \in \mathbb{Z}_{26}^3$ che specifica la posizione iniziale di ciascuno dei tre rotori;
 - una permutazione σ dell'alfabeto con esattamente sei punti fissi che specifica le connessioni della plugboard.
- (R_1, R_2, R_3, i, j, k) rappresenta lo *stato* della macchina enigma in un certo momento.

Numero di possibili chiavi

Il numero di possibili chiavi K è dato da:

$$K = (5 \cdot 4 \cdot 3) \cdot 26^{3} \cdot \frac{20!}{(20 - 10)!} \cdot \frac{1}{2^{10}} \cdot {26 \choose 20}$$

$$= (5 \cdot 4 \cdot 3) \cdot 26^{3} \cdot \frac{20!}{10!} \cdot \frac{1}{2^{10}} \cdot \frac{26!}{20! \cdot 6!}$$

$$= (5 \cdot 4 \cdot 3) \cdot 26^{3} \cdot \frac{26!}{(6! \cdot 10! \cdot 2^{10})} \approx 10^{20} \text{ oppure } \approx 2^{67.1}$$

Funzioni di Encryption e Decryption

- Si supponga che
 - a. $\alpha, \beta, \gamma, \pi$ e σ siano le trasformazioni applicate alle lettere dal rotore sinistro, dal rotore centrale, dal rotore destro dal riflettore e dalla plugboard;
 - b. $\alpha^{-1}, \beta^{-1}, \gamma^{-1}$ e σ^{-1} siano le trasformazioni all'indietro applicate alle lettere dalle diverse componenti.
- La funzione di Encryption alla fase iniziale è data da:

$$E(x) = \sigma^{-1} \circ \alpha^{-1} \circ \beta^{-1} \circ \gamma^{-1} \circ \pi \circ \gamma \circ \beta \circ \alpha \circ \sigma(x)$$

• Se si indica con $\mu^{-n}R\mu^n$ la rotazione del generico rotore R di n posizioni, si ottiene la funzione di Encryption generica:

$$E(x) = \sigma^{-1} \circ \left(\mu^{-i}\alpha^{-1}\mu^{i}\right) \circ \left(\mu^{-j}\beta^{-1}\mu^{j}\right) \circ \left(\mu^{-k}\gamma^{-1}\mu^{k}\right) \circ \pi$$
$$\circ \left(\mu^{-k}\gamma\mu^{k}\right) \circ \left(\mu^{-j}\beta\mu^{j}\right) \circ \left(\mu^{-i}\alpha\mu^{i}\right) \circ \sigma(x)$$

- $\sigma \in \pi$ sono involuzioni;
- σ ha esattamente sei punti fissi mentre π non ha punti fissi,

Proposizione 1

Sia $\rho = \sigma^{-1} \circ \tilde{\tau} \circ \sigma$, dove $\tilde{\tau} = \alpha^{-1} \circ \beta^{-1} \circ \gamma^{-1} \circ \pi \circ \gamma \circ \beta \circ \alpha$, una permutazione allora ρ è un'involuzione e non ha punti fissi.

Implementazione del simulatore in Python

Riflettore	Rotore sinistro	Rotore al centro	Rotore destro	Iniziale
T U	E O	E L	I Y	Q
ΕI	Q A	Y Q	JХ	W
V 0	D S	UW	U C	E
J A	L D	F E	H V	R
C S	B F	H R	х в	T
L D	C G	ХТ	ΖN	Z
X F	КН	Z Z	M M	U
Z G	J J	M U	N L	I
R H	G K	N I	A Q	0
A J	V P	J 0	V W	Α
Q K	PΥ	G A	O E	S
N P	U X	0 S	E R	D
ΒY	R C	P D	ΥT	F
F X	W V	A F	FΖ	G
S C	N B	QG	W U	H
0 V	X N	ΙH	L I	J
Y B	A M	RЭ	D 0	К
P N	H L	L K	Q A	P
W M	S Q	D P	C S	Υ
D L	T W	ΤΥ	B D	X
ΚQ	ΙE	W X	S F	С
M W	O R	V C	P G	V
ΙE	F T	K V	ТН	В
H R	ΜZ	S B	κэ	N
UT	ΥU	B N	R K	M

Figure 3: Tabella delle permutazioni ottenute con la configurazione UOLY

La classe *EnigmaRotor*

- __init__(self, entrata, uscita, rotore_succ=None,flag=True)
 - entrata e uscita definiscono la permutazione realizzata dal rotore corrente;
 - rotore_succ indica il rotore successivo (se esiste) a cui sarà inviato il segnale di rotazione una volta completato il giro;
- flag | indica se il rotore corrente può essere ruotato. impostaPosizione(self, elemento)
 - Imposta la configurazione iniziale del rotore corrente alla lettera indicata da elemento

posizioneSinistra(self, posizione)

• Ricerca la lettera nel vettore uscita corrispondente alla lettera presente alla posizione indicata nel vettore entrata

posizioneDestra(self, posizione)

• Analogo al precedente

muovi(self)

• Se è consentito, muove il rotore di una posizione verso l'alto e invia un segnale al rotore successivo (se esiste)

La classe EnigmaMachine

- La classe Python *EnigmaMachine* simula il comportamento di una macchina Enigma;
- Il costruttore di tale classe riceve in ingresso quattro oggetti di tipo EnigmaRotor (riflettore, rotoreSinistro, rotoreCentrale e rotoreDestro) e due liste (alfabeto e plugboard);
- Il metodo *impostaEnigma* sarà utilizzato per impostare le posizioni dei rotori e del riflettore;
- Il metodo esegui cripta/decripta il messaggio in input.
- L'alfabeto scelto è il QWERTZ;
- La lista *plugboard* è una sequenza di numeri da 0 a 25 che realizzano lo scambio tra coppie di lettere

Bibliografia

- Enigma (crittografia), 2019. https://it.wikipedia.org/wiki/Enigma_(crittografia).
- Una macchina enigma virtuale, 2019. http://www.crittologia.eu/critto/js/enigma.html.
- M. Boreale Corso di data security e privacy, esercizi su crittografia a chiave condivisa, 2018. https://e-l.unifi.it/pluginfile.php/780653/course/section/87266/Esercizi.
- S. Keegan, John *Intelligence in warfare* New York: Alfred A. Knopf, 2003
- M. Rejewski An application of the theory of permutations in breaking the enigma cipher Applicationes Mathematicae
- D. Salomon Data Privacy and Security Springer, 2003