Chương 9 Nén ảnh tĩnh

Dung lượng thông tin và vấn đề nén dữ liệu

Ví dụ về dung lượng thông tin đa phương tiện

- Một trang văn bản (text) : 2 Kbytes
- Một ảnh màu (800 x 600 x 24 bits) : 1,4 Mbytes
- 30 minutes video (800x600 x24 bits, 25 ånh/s): 64,8 Gbytes Tốc độ dòng bít video : 275 Mbit/s
- 30 phút âm thanh thoại số (8kHz, 8 bits) : 14 Mbytes
- 30 minutes audio CD (44.1kHz, 16 bits, stereo): 316 Mbytes
- 30 minutes audio (48kHz, 20 bits, stereo): 432 Mbyte.

Nén?

Giới thiệu chung về nén ảnh Một số khái niệm

- Nén dữ liệu ảnh: biến đổi dòng thông tin ảnh thành từ mã nhằm giảm độ dư thừa thông tin
- Các độ dư thừa thông tin : Dư thừa thông tin về không gian,
 về thời gian, độ dư thừa phổ và dư thừa do độ cảm thụ.
- Phân loại ảnh theo thời gian
 - Ânh tĩnh (Still Image): ảnh tự nhiên thu nhận (chụp), ảnh đồ họa (vẽ), có dư thừa không gian và độ dư thừa về cảm thụ.
 - Ånh động (Motion Image) gồm ảnh video, ảnh động chuyên dụng, hoạt hình, biến thiên theo thời gian; Có các loại dư thừa về không gian, thời gian, phổ và dư thừa do độ cảm thụ.

Dung lượng thông tin: lưu trữ, truyền (tôc độ dòng bit)

Các tham số chất lượng nén ảnh

• Tỷ số nén:

- Tỷ số:
$$C_R = \frac{\text{Kích thước dữ liệu ban đầu}}{\text{Kích thước dữ liệu sau nén}}$$
; (ví dụ 40:1)

- Tỷ số bit : Số bit sau khi nén
$$N_b = \frac{\text{Số bit sau khi nén}}{\text{Tổng số điểm ảnh}} \qquad \textbf{(bpp)}$$

- Tốc độ dòng bít (đối với ảnh động): bit/s

Chất lượng nén

- Nén có mất mát thông tin (lossless)
- Nén không mật mát thông tin (lossy) : MSE, SNR

• Độ phức tạp

- Về thời gian nén: Nén thời gian thực/ không thời gian thực.
- Về không gian, bộ nhớ

Khái quát về phương pháp nén ảnh tĩnh Phân loại phương pháp nén ảnh

- Nén không mất mát thông tin: các phương pháp mã hoá dữ liệu
- Nén có mất mát thông tin: phương pháp nén dựa trên phép biến đổi ảnh

Các phương pháp mã hoá cơ bản không mất mát thông tin

- ♦ Mã loạt dài (RLE) : Dùng số đếm để thay thế các điểm giống nhau lặp lại.
- ♦ Mã Shannon- Fano : Dùng các cụm bit có độ dài thay đổi để mã hoá.
- ◆ Mã Huffman: Sử dụng đặc điểm mã hoá của Shannon- Fano với ý tưởng: kí hiệu có khả năng xuất hiện nhiều có từ mã ngắn.
- ♦ Mã Lemple- Ziv : Dựa trên việc xây dựng và tra từ điển.
- ♦ Mã dự đoán (prediction) : Dựa trên quá trình tạo điểm tuần tự và luật dự đoán.

Nén ảnh tĩnh dựa trên phép biến đổi ảnh

Image Compression Nguyen Thi Hoang Lan

Các phép biến đổi áp dụng trong nén ảnh

- ♦ Phép biến đổi Cosin rời rạc (DCT): biểu diễn các giá trị điểm ảnh trên miền tần số, tập trung năng lượng vào một số hệ số, DCT áp dụng trong các chuẩn JPEG và MPEG.
- ♦ Phép biến đổi Wavelet rời rạc (DWT): Sử dụng các bộ lọc thông dải xử lý phân tích đa phân giải trong phép DWT.
- ◆ Phép biến đổi dựa trên hình học Fractal (phép biến đổi Fractal): Sử dụng các phép biến đổi hình học.

Phương pháp nén ảnh theo chuẩn JPEG

- ♦ Chuẩn JPEG: Joint Photographic Experts Group.
- ♦ Chuẩn JPEG: chuẩn quốc tế về nén ảnh tĩnh.
- Trình tự công nghệ nén ảnh JPEG: phép biến đổi Cosin DCT rời rạc, sắp xếp zigzag, lượng tử hoá, mă hoá dữ liệu.
- Giải thuật cơ bản của chuẩn JPEG là phép biến đổi Cosin rời rạc DCT và mă hoá
- ♦ Phương thức thực hiện mã hoá:
 - Mã tuần tự (Sequential DCT)
 - Mã luỹ tiến (Progressive DCT)
 - Mã không mất mát thông tin (Sequential lossless)
 - Mã phân cấp (Hierarchical progressive)

Phép biến đổi DCT

• Phép biến đổi Cosin rời rạc DCT hai chiều :

$$X[u,v] = \frac{4\varepsilon_k \varepsilon_l}{M.N} \sum_{k=0}^{M-1} \sum_{l=0}^{N-1} x(k,l) \cos\left(\frac{\pi (2k+1)u}{2M}\right) \cos\left(\frac{\pi (2l+1)v}{2N}\right)$$

Với x(k,l) là ma trận các khối điểm ảnh có kích thước 8×8 , Phép biến đổi cosin hai chiều được thực hiện lần lượt theo hàng sau đó theo cột, đều là các phép biến đổi một chiều.

• Công thức DCT một chiều :

$$X(u) = \frac{2\varepsilon_l}{M} \sum_{k=0}^{M-1} x(k) \cos\left(\frac{\pi(2k+1)u}{2M}\right) \qquad \varepsilon_k = 1/\sqrt{2} \ khi \ k = 0$$
$$\varepsilon_k = 1 \ V \acute{o}i \ k \ c\grave{o}n \ lai$$

• Entropy của thông điệp $S: H(S) = \sum_{i} p_{i} \log_{2} \frac{1}{p_{i}}$ Với p_{i} là xác suất xuất hiện của ký hiệu S_{i} trong S.

Sơ đồ nén và giải nén ảnh JPEG

Sơ đồ giải nén

Các công đoạn nén ảnh JPEG

Ví dụ nén ảnh JPEG

Original (262 Kb)

Compressed (22 Kb, 12:1)

Compressed (6 Kb, 43:1)

Chất lượng ảnh JPEG và tỷ số nén:

0.25 - 0.5 bpp : Trung bình

0.5 - 0.75 bpp : Khá tốt

0.75 - 1.5 bpp : Tốt

Image Compression Nguyen Thi Hoang Lan