Model	E(N[(t)])	Interpretation of Parameters
Goel-Okumoto ¹ (GO) Concave	$a(1 - e^{-bt})$ a > 0, b > 0	a – expected cumulative total number of MRs b – MRs-detection rate per MR NHPP
GO S-shaped ² (GO-S) S-shaped	$a(1 - (1 + bt)e^{-bt})$ a > 0, b > 0	a – expected cumulative total number of MR b – MR removal: defect detection rate, defect isolation rate NHPP
Gompertz ³ (G) S-shaped for $b > e^{-1}$	$a \cdot b^{c^t}$ a > 0.0 < b < 1.0 < c < 1	a – expected cumulative total number of MRs b , c – no physical meaning TREND
Hossain-Dahiya/GO 4 (HD) S-shaped for $c>1$	$a(1 - e^{-bt})/(1 + ce^{-bt})$ $a \ge 0, b > 0, c > 0$	a – expected cumulative total number of MRs c – inflection parameter : $c(r)=(1-r)/r \ge 1$, 0 <r< 1="" 2="" <math="">r – inflection rate indicating the ratio of detectable MRs to the total number of MRs in the software NHPP</r<>
Logistic 3 (L) S-shaped for $b>1$	$a/(1 + be^{-ct})$ a > 0, b > 0, c > 0	a – expected cumulative total number of MRs b – inflection parameter TREND
Weibull ⁶ (W) S-shaped	$a(1 - e^{-b \cdot t^{c}})$ a > 0, b > 0, c > 0	a – expected cumulative total number of MRs b – error-detection rate c – parameter that changes error detection rate NHPP
Weibull <i>more</i> S-shaped ⁷ (W-S) S-shaped	$a(1 - (1 + b \cdot t^{c}) \cdot e^{-b \cdot t^{c}})$ a > 0, b > 0, c > 0	 a – expected cumulative total number of MRs b – error-detection rate, error-isolation rate c – parameter that changes error detection rate NHPP
Yamada Exponential ⁸ (YE) Concave	$a (1 - e^{-b(1 - e^{-c \cdot t})})$ a > 0, b > 0, c > 0	a – expected cumulative total number of MRs $b \cdot (1 - e^{-c \cdot t})$ – cumulative testing effort based on Exponential model NHPP
Yamada Raleigh ⁸ (YR) S-shaped	$a(1 - e^{-b(1 - e^{-c\frac{t^2}{2}})})$ a > 0, b > 0, c > 0	a – expected cumulative total number of MRs $b \cdot (1 - e^{-c \cdot \frac{t^2}{2}})$ – cumulative testing effort based on Weibull model NHPP