My Solutions to Old Quals

Jacob S Townson
May-July 2017

January 2016 Qual

Let $(G, \mathring{\mathbf{u}})$ be a group and Z = Z(G) its center. Suppose that the group G/Z is cyclic. Show that G is Abelian.

My Solution

Let G/Z be cyclic with generator xZ. Every element in G/Z can be written as x^kZ where $k \in \mathbb{Z}$ and $z \in Z$. Now let $g, h \in G$. Then

$$g = x^a z$$

and

$$h = x^b w$$

for $a, b \in \mathbb{Z}$ and $z, w \in Z$.

Thus

$$qh = x^a z x^b w = x^{a+b} z w = x^{b+a} w z = x^b w x^a z = hq$$

because $z, w \in \mathbb{Z}$. Thus gh = hg which implies that G is Abelian. QED

Prove that every prime ideal is maximal in a PID.

My Solution

Let P be a prime ideal in the PID R. So $ab \in P$ iff a or $b \in P$. But R is a PID, so P = (a) where $a \in R$. So we want to show P is maximal using this information, ie. if I is an ideal that contains P, then I = P or I = R. So let I be an ideal containing P such that $P \subset I \subset R$. Let I = (b) where $B \in R$ because R is a PID. Now, $a \in (a) \subset (b)$ which implies that there exists $c \in R$ such that a = bc. Since $a = bc \in P$, we know either b or c is in P because it's prime.

If $b \in P$, then $I = (b) \subset P$ which implies P = I. On the other hand, if $c \in P = (a)$, then there exists $d \in R$ such that c = ad. So

$$a = bc = bad$$

Because R is an integral domain (because it'e a PID), we can reduce the above formula to

$$1 = bd$$

Thus b is a unit which implies that I = (b) = R.

Thus either P = I or I = R for all I containing P, so P is maximal in R. QED