Rješenje: D

Arhitektura računala 2 2. međuispit – ak. god. 2008/09 Teorijski dio – Grupa D

(40% bodova – 20 pitanja)

by **Tomislav**

		• ———	
1)	a) b) c)	nje registarskog operanda u tipičnoj RISC arhitekturi odvija se: nakon dekodiranja operacijskog koda prije pribavljanja instrukcije usporedno s dekodiranjem instrukcije za vrijeme pribavljanja instrukcije	Rješenje: C
2)	a) b) c)	operacija se izvodi u segmentu EX arhitekture MIPS kod instrukcija upisa u pristup memoriji upis pročitanog podatka u odredišni registar određivanje efektivne adrese zbrajanje dvaju registara	memoriju: Rješenje: C
3)	Raču a) b) c) d)	unanje odredišta relativnog grananja u arhitekturi MIPS odvija se: prije pribavljanja instrukcije usporedno s pristupom podatkovnoj memoriji za vrijeme pribavljanja instrukcije usporedno s dekodiranjem instrukcije	Rješenje: D
4)	slje a) b) c)	ursni konflikt instrukcije load u jednostavnoj protočnoj arhitekturi tipa RISC i dećeg resursa: memorija registarski skup zbrajala sklopovi za grananje	može nastati oko Rješenje: A
5)	a)	roprogramski procesor s predavanj omogućava uvjetno mikrogrananje s obzirom na zastavicu X uvjetno mikrogrananje s obzirom na predznak podatka na glavnoj sabirnici zakašnjelo grananje uvjetno mikrogrananje s obzirom na zastavicu C	Rješenje: B
6)	Adre a) b) c) d)	esa sljedeće mikroinstrukcije ne može se dobiti: prijenosom adresnog polja u mikroriječ prijenosom usputne konstante makroinstrukcije povećanjem mikroprogramskog brojila za 1 prijenosom operacijskog koda makroinstrukcije	Rješenje: B
7)	Instr a) b) c)	rukcije osaminstrukcijskog procesora: mogu imati sve operande u memoriji nemaju memorijske operande uvijek imaju sve operande u registrima	Diažania D

d) mogu imati najviše jedan memorijski operand

٤١	Koncent	nrotočnosti	ie koristan	ier	omogućava:
Οį	Koncept	protochosti	ie konstan	ıcı	uniugucava.

- a) CISC arhitekturama da se po performansi izjednače s RISC-om
- b) istu performansu uz manji broj tranzistora
- c) iskorištavanje instrukcijskog paralelizma

d) smanjivanje potrebnog broja registara

Rješenje: C

- 9) Slijed instrukcija load r5,20(rl); add r2, rl,r5 može rezultirati:
 - a) hazardom tipa WAR
 - b) hazardom tipa RAW
 - c) hazardom tipa RAR

d) hazardom tipa WAW

Rješenje: B

- 10) Arhitektura MIPS u svakom ciklusu signala takta izvrši:
 - a) uvijek točno dva memorijska pristupa
 - b) najviše jedan memorijski pristup
 - c) uvijek točno jedan memorijski pristup
 - d) najviše dva memorijska pristupa

Rješenje: D

- 11) Ako je registar R s odvojenim <u>izvodima</u> za čitanje i pisanje spojen na dijeljenu sabirnicu, sklopovi s tri stanja su:
 - a) nepotrebni, ali ne ometaju normalan rad
 - b) potrebni samo kod čitanja registra R
 - c) potrebni kod bilo kojeg prijenosa podataka u ili iz registra R
 - d) nepotrebni i ometaju normalan rad

Rješenje: B

- 12) U kakvom su odnosu MHz (radni takt procesora) i SPECint2000 (rezultat na SPEC-ovom testiranju):
 - a) vrijednost SPECmarka ne ovisi o vrijednosti MHz
 - b) MHz je relevantniji pokazatelj performanse
 - c) SPECmark je čimbenik performanse, a MHz pokazatelj
 - d) MHz je čimbenik performanse, a SPECmark pokazatelj

Rješenje: D

- 13) Za upravljačku jedinicu osaminstrukcijskog procesora vrijedi:
 - a) da podržava instrukcijski skup RISC
 - b) da se ne može izvesti mikroprogramiranjem
 - c) da se može izvesti poljem PLA
 - d) da je izvedena mikroprogramiranjem

Rješenje: C

- 14) Koji nedostatak Von Neumannove memorijske organizacije je izbjegnut u Harvardskoj memorijskoj organizaciji:
 - a) jedinstvena sabirnica za podatke i instrukcije
 - b) dugačko vrijeme pristupa
 - c) bajtna zrnatost
 - d) loša propusnost

Rješenje: A

- 15) Koja komponenta modernog računala nije bila prisutna u originalnoj Von Neumannovoj arhitekturi:
 - a) aritmetička jedinica
 - b) priručna memorija podataka
 - c) interna sabirnica
 - d) radna memorija

Rješenje: B

- 16) Svih 5 segmenata osnovne arhitekture MIPS koriste se samo prilikom izvođenja:
 - a) instrukcija uvjetnog grananja
 - b) instrukcija pisanja u memoriju
 - c) instrukcija čitanja iz memorije
 - d) instrukcija bezuvjetnog grananja
- 17) Tipično, mikroprogram koji implementira fazu izvrši makroinstrukcijski završava
 - a) upisom nove vrijednosti u programsko brojilo
 - b) pozivom mikroprograma za fazu pribavi
 - c) prozivanjem nanoprogramske memorije
 - d) upisom rezultata u radnu memoriju
- 18) Neka w(R) označava broj bitova registara. Tada za osaminstrukcijski procesor vrijedi:
 - a) w(MAR) > w(MDR)
 - b) w(AC) = w(PC)
 - c) w(MDR) w(PC) = w(MAR)
 - d) w(IR) + w(PC) = w(MDR)
- 19) Koja od navedenih komponenti nije element puta podataka
 - a) interna sabirnica
 - b) aritmetičko-logička jedinica
 - c) priručna memorija podataka
 - d) radna memorija
- 20) Za tipične horizontalne mikroinstrukcije vrijedi:
 - a) mogu nezavisno upravljati sklopovljem
 - b) instrukcijska riječ im je kraća od 16 bitova
 - c) pobuđuju po 1 mikroopreraciju
 - d) imaju sporiji odziv od alternativnih pristupa

Napomena: točna rješenja su prepisana sa Ahyco-a.

Rješenje: B

Rješenje: C

Rješenje: D

Rješenje: D

Rješenje: A