Ch 4.3.3 and 4.3.4 - Multiple and Multinomial Logistic Regression Lecture 7 - CMSE 381

Michigan State University

::

Dept of Computational Mathematics, Science & Engineering

January 31, 2024

Covered in this lecture

Last Time:

Logistic Regression

This time:

- More on Logistic Regression
- Multiple Logistic Regression
- Multinomial Logistic Regression

2/21

Section 1

Review of Logistic Regression from last time

(MSU-CMSE) January 31, 2024

Logistic regression

- Assume single input X
- Output takes values Y ∈ {Yes, No}

$$p(X) = Pr(Y = yes \mid balance)$$

$$p(\mathbf{x}) = \frac{e^{\beta_0 + \beta_1 \mathbf{x}}}{1 + e^{\beta_0 + \beta_1 \mathbf{x}}}$$

4/21

How to get logistic function

Assume the (natural) log odds (logits) follow a linear model

$$\log\left(\frac{p(x)}{1-p(x)}\right) = \beta_0 + \beta_1 x$$

Solve for p(x):

$$p(x) = \frac{e^{\beta_0 + \beta_1 x}}{1 + e^{\beta_0 + \beta_1 x}}$$

5/21

Playing with the logistic function: desmos.com/calculator/cw1pyzzgci

How to perform logistic regression?

Given
$$p(\mathbf{x}) = \frac{e^{\beta_0 + \beta_1 \mathbf{x}}}{1 + e^{\beta_0 + \beta_1 \mathbf{x}}}$$
 and the training data $\{(x_i, y_i)\}_{i=1}^m$. How to estimate β_0, β_1 ?

Maximum Likelihood:

The estimates $\hat{\beta}_0$ and $\hat{\beta}_1$ are chosen to maximize the likelihood function.

$$\ell(\beta_0, \beta_1) = \prod_{i: y_i = 1} p(x_i) \prod_{i': y_{i'} = 0} (1 - p(x_{i'}))$$

 β_0 and β_1 are such that the predicted conditional probability is as close as possible to the individual's observed default status.

(MSU-CMSE) January 31, 2024

Example

Balance	Prediction		
0	No		
500	No		
1000	No		
1500	Yes		
2000	Yes		
2500	Yes		

(MSU-CMSE) January 31, 2024

Section 2

Multiple Logistic Regression

(MSU-CMSE) January 31, 2024

New assumption

$$p \ge 1$$
 input variables

$$X_1, X_2, \cdots, X_p$$

Y output variable has only two levels

9/21

Multiple Logistic Regression

Multiple features:

$$p(X) = \frac{e^{\beta_0 + \beta_1 X_1 + \dots + \beta_\rho X_\rho}}{1 + e^{\beta_0 + \beta_1 X_1 + \dots + \beta_\rho X_\rho}}$$

Equivalent to:

$$\log\left(\frac{p(X)}{1-p(X)}\right) = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$

(MSU-CMSE) January 31, 2024

Example from Smarket data

	Lag1	Lag2	Volume	Direction
1	0.381	-0.192	1.19130	Up
2	0.959	0.381	1.29650	Up
3	1.032	0.959	1.41120	Down
4	-0.623	1.032	1.27600	Up
5	0.614	-0.623	1.20570	Up
1246	0.422	0.252	1.88850	Up
1247	0.043	0.422	1.28581	Down
1248	-0.955	0.043	1.54047	Up
1249	0.130	-0.955	1.42236	Down
1250	-0.298	0.130	1.38254	Down

11 / 21

1250 rows × 4 columns

Goal in lab was predicting direction from three input variables

Our Results

[-0.11582541

```
X = smarket[['Lag1','Lag2','Volume']]
Y = smarket.Direction

clf = LogisticRegression(random_state=0)
clf.fit(X,Y)
```

LogisticRegression LogisticRegression(random_state=0)

$$p(X) = \frac{\exp(\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p)}{1 + \exp(\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p)}$$

12/21

```
print(clf.coef_)
print(clf.intercept_)
[[-0.07302967 -0.04272162  0.128624331]
```

$$p(X) = \frac{\exp(-0.115 - 0.073 \cdot \text{Lag1} - 0.043 \cdot \text{Lag2} + 0.129 \cdot \text{Volume})}{1 + \exp(-0.115 - 0.073 \cdot \text{Lag1} - 0.043 \cdot \text{Lag2} + 0.129 \cdot \text{Volume})}$$

Section 3

Multinomial Logistic Regression

MSU-CMSE) January 31, 2024

New assumption

$$p \ge 1$$
 input variables

$$X_1, X_2, \cdots, X_p$$

Y output variable has K levels

14 / 21

Remember dummy variables?

Slide from linear regression days

Region:

Create spare dummy variables:

$$x_{i1} = \begin{cases} 1 & \text{if } i \text{th person from South} \\ 0 & \text{if } i \text{th person not from South} \end{cases}$$
 $x_{i2} = \begin{cases} 1 & \text{if } i \text{th person from West} \\ 0 & \text{if } i \text{th person not from West} \end{cases}$

Baseline is the level we're not using

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \varepsilon_i$$

Example

Predict $Y \in \{\text{stroke, overdose, seizure}\}\$ for hospital visits based on some input(s) X

$$Pr(Y = stroke \mid X = x) =$$

$$Pr(Y = overdose \mid X = x) =$$

$$Pr(Y = seizure \mid X = x) =$$

- We're going to figure out three numbers for any given input x, then pick the one with the highest probability
- Note that if we know two we can figure out the third

(MSU-CMSE) January 31, 2024

Example

Predict $Y \in \{\text{stroke, overdose, seizure}\}\$ for hospital visits based on Xp

$$\begin{split} \Pr(Y = \texttt{stroke} \mid X = x) &= \frac{\exp(\beta_{\texttt{str},0} + \beta_{\texttt{str},1}x)}{1 + \exp(\beta_{\texttt{str},0} + \beta_{\texttt{str},1}x) + \exp(\beta_{\texttt{0D},0} + \beta_{\texttt{0D},1}x)} \\ \Pr(Y = \texttt{overdose} \mid X = x) &= \frac{\exp(\beta_{\texttt{0D},0} + \beta_{\texttt{0D},1}x)}{1 + \exp(\beta_{\texttt{str},0} + \beta_{\texttt{str},1}x) + \exp(\beta_{\texttt{0D},0} + \beta_{\texttt{0D},1}x)} \\ \Pr(Y = \texttt{seizure} \mid X = x) &= \frac{1}{1 + \exp(\beta_{\texttt{str},0} + \beta_{\texttt{str},1}x) + \exp(\beta_{\texttt{0D},0} + \beta_{\texttt{0D},1}x)} \end{split}$$

Note that using seizure is the baseline

(MSU-CMSE) January 31, 2024

Multinomial Logistic Regression

Plan A

- Assume Y has K levels
- Make K (the last one)
 the baseline

$$\Pr(Y = k | X = x) = \frac{e^{\beta_{k0} + \beta_{k1} x_1 + \dots + \beta_{kp} x_p}}{1 + \sum_{l=1}^{K-1} e^{\beta_{l0} + \beta_{l1} x_1 + \dots + \beta_{lp} x_p}}$$

$$\Pr(Y = K | X = x) = \frac{1}{1 + \sum_{l=1}^{K-1} e^{\beta_{l0} + \beta_{l1} x_1 + \dots + \beta_{lp} x_p}}.$$

Log odds

Calculated so that log odds between any pair of classes is linear. Specifically, for Y = k vs Y = K, we have

$$\log \left(\frac{\Pr(Y = k \mid X = x)}{\Pr(Y = K \mid X = x)} \right) = \beta_{k0} + \beta_{k1}x_1 + \dots + \beta_{kp}x_p$$

$$\Pr(Y = k | X = x) = \frac{e^{\beta_{k0} + \beta_{k1} x_1 + \dots + \beta_{kp} x_p}}{1 + \sum_{l=1}^{K-1} e^{\beta_{l0} + \beta_{l1} x_1 + \dots + \beta_{lp} x_p}}$$

$$\Pr(Y = K | X = x) = \frac{1}{1 + \sum_{l=1}^{K-1} e^{\beta_{l0} + \beta_{l1} x_1 + \dots + \beta_{lp} x_p}}.$$

(MSU-CMSE) January 31, 2024

Plan B: Softmax coding

Treat all levels symmetrically

$$\Pr(Y = k | X = x) = \frac{e^{\beta_{k0} + \beta_{k1} x_1 + \dots + \beta_{kp} x_p}}{\sum_{l=1}^{K} e^{\beta_{l0} + \beta_{l1} x_1 + \dots + \beta_{lp} x_p}}.$$

Calculated so that log odds between two classes is linear

$$\log\left(\frac{\Pr(Y=k|X=x)}{\Pr(Y=k'|X=x)}\right) = (\beta_{k0} - \beta_{k'0}) + (\beta_{k1} - \beta_{k'1})x_1 + \dots + (\beta_{kp} - \beta_{k'p})x_p.$$

(MSU-CMSE) January 31, 2024

Softmax example

$$\begin{split} & \Pr(Y = \texttt{stroke} \mid X = x) \\ & = \frac{\exp(\beta_{\texttt{str},0} + \beta_{\texttt{str},1}x)}{\exp(\beta_{\texttt{str},0} + \beta_{\texttt{str},1}x) + \exp(\beta_{\texttt{0D},0} + \beta_{\texttt{0D},1}x) + \exp(\beta_{\texttt{seiz},0} + \beta_{\texttt{seiz},1}x)} \\ & \Pr(Y = \texttt{overdose} \mid X = x) \\ & = \frac{\exp(\beta_{\texttt{0D},0} + \beta_{\texttt{0D},1}x)}{\exp(\beta_{\texttt{str},0} + \beta_{\texttt{str},1}x) + \exp(\beta_{\texttt{0D},0} + \beta_{\texttt{0D},1}x) + \exp(\beta_{\texttt{seiz},0} + \beta_{\texttt{seiz},1}x)} \\ & \Pr(Y = \texttt{seizure} \mid X = x) \\ & = \frac{\exp(\beta_{\texttt{seiz},0} + \beta_{\texttt{seiz},1}x)}{\exp(\beta_{\texttt{str},0} + \beta_{\texttt{str},1}x) + \exp(\beta_{\texttt{0D},0} + \beta_{\texttt{0D},1}x) + \exp(\beta_{\texttt{seiz},0} + \beta_{\texttt{seiz},1}x)} \end{split}$$

(MSU-CMSE) January 31, 2024