Universidade Federal do Piauí

Centro de Ciências da Natureza

Departamento de Matemática

Professor: Mário Gomes dos Santos

Período: 2º/2019

Disciplina: Cálculo Dif. e Integral I

Lista de Exercícios

- 1. Calcule a derivada da função $f(x) = (\sin x + e^x)^2(\cos x + x^3)^3$ no ponto $p_0 = 0$
- 2. Obtenha a derivada de cada uma das seguintes funções:

a)
$$f(x) = \sec x - tgx$$
 b) $f(x) = (x^2 + 1)tgx$ c) $f(x) = \left(\frac{e^x}{tgx}\right)^2$

d)
$$f(x) = tg(\cos x)$$
 $e)$ $f(x) = tg^3 2x$ $f)$ $f(x) = \sin e^x$

$$g) \ f\left(x\right) = arctg(\sqrt{x}) \quad h) \ f\left(x\right) = arcsen(2x+1) \quad i) \ g\left(x\right) = (1+x^2)arctg(x)$$

- 3. Obtenha a equação da reta tangente à curva $y=x\sqrt{x+1}$ no ponto de abscissa $x_0=3.$
- 4. Obtenha a equação da reta tangente à curva $y = \frac{e^x + e^{-x}}{2}$ no ponto de abscissa $x_0 = -2$.
- 5. Seja f uma função de classe C^{∞} inversível. Calcule $(f^{-1})'(5)$, sabendo que f(4)=5 e f'(4)=2/3.
- 6. Considere $f:]0,\infty[\longrightarrow]0.\infty[$ definida por $f(x)=x^2.$ Usando o Teorema da Função Inversa, obtenha a derivada a função $f^{-1}(x)=\sqrt{x}.$
- 7. Considere $f:]0, \infty[\longrightarrow]0.\infty[$ definida por $f(x) = \sqrt{x}$. Usando o Teorema da Função Inversa, obtenha a derivada a função $f^{-1}(x) = x^2$.

1