Exercice 1

Voici deux graphiques qui représentent le QI d'un échantillon de belges.

Graphique A:

Graphique B:

1. Quel est le type de la variable représentée ? Justifiez.

Variable quantitative continue.

2. Comment se nomme le graphique A ? et le graphique B ?

Graphique A = histogramme des effectifs

Graphique B = histogramme des fréquences cumulées relatives.

3. Dans les graphiques A et B, quelle est l'amplitude de chaque classe ?

10 (on peut par exemple le déterminer en calculant l'écart entre 2 centres de classes, ou voir qu'il y a 9 classes pour une étendue de 150 - 60 = 90. Or, $\frac{90}{9} = 10$).

4. Combien vaut n?

200 (chaque bâton du graphique A nous informe sur la fréquence absolue de chaque classe, en additionnant toutes ces fréquences absolues on trouve 200).

- 5. Combien y a-t-il de belges dans l'échantillon qui ont un QI compris entre 110 et 130 ? 55 (additionner les fréquences absolues des bâtons qui représentent les classes dont le centre vaut 115 et 125).
- 6. Quelle est la proportion d'étudiants ayant un QI inférieur ou égal à 150 ?1 (ou 100%), en effet tous ont un QI inférieur à 150.
 - 7. Sur base des graphiques, complétez le tableau de fréquences ci-dessous. N'oubliez pas de nommer les colonnes, en utilisant les notations adéquates.

j	y j	Centre de classe	nj	$N_{\rm j}$	f_j	F_j
1	[60-70]	65	5	5	0,025	0,025
2	[70-80]	75	10	15	0,050	0,075
3	[80-90]	85	20	35	0,100	0,175
4	[90-100]	95	35	70	0,175	0,350
5	[100-110]	105	60	130	0,300	0,650
6	[110-120]	115	30	160	0,150	0,800
7	[120-130]	125	25	185	0,125	0,925
8	[130-140]	135	10	195	0,050	0,975
9	[140-150]	145	5	200	0,025	1

8. Déterminez les bornes inférieures et supérieures de la classe modale.

Borne inférieure = 100

Borne supérieure = 110

9. Approximez l'écart-interquartile (en gardant bien à l'esprit le type de la variable étudiée). Détaillez vos calculs.

Q1	Q3
Entre les centres de classe 85 et 95	Entre les centres de classe 105 et 115
$0,175 \Rightarrow 10 \\ 0,025 \Rightarrow \frac{10}{7} \approx 1,43 \\ 0,075 \Rightarrow \frac{30}{7} \approx 4,29$	$0,150 \to 10 \\ 0,050 \to \frac{10}{3} \approx 3,33 \\ 0,100 \to \frac{20}{3} \approx 6,67$
\Rightarrow Q1 = 85 + 4,29 = 89,29	⇒ 105 + 6,67 = 111,67

$$Q3 - Q1 = 22,38$$

Exercice 2

On demande à 30 personnes de choisir, parmi 4 candidats politiques (candidat A, 2=candidat B, candidat C et candidat D), celui qu'ils préfèrent. Voici les résultats obtenus :

i	X_{i}	i	Xi	I	Xi
1	A	11	A	21	A
2	В	12	В	22	A
3	В	13	С	23	С
4	C	14	С	24	D
5	D	15	В	25	В
6	A	16	A	26	В
7	D	17	D	27	В
8	C	18	D	28	С
9	C	19	D	29	A
10	В	20	D	30	A

1. Quel est le type de la variable représentée ? Justifiez.

Variable qualitative nominale.

2. Combien la variable étudiée a-t-elle de modalités ? Citez-les.

4 modalités : respectivement les candidats A, B, C et D.

3. Nommez les représentations graphiques vues en cours qui permettent de représenter ce type de variable.

Diagramme en bâton et diagramme circulaire.

4. Quelle est le mode de cette série ?

Il y a deux modes : les candidats A et B (puisqu'ils sont tous les deux représentés par 8 sujets).

5. Est-il pertinent de calculer la moyenne et l'écart-type pour ce type de données ? Si oui, calculez-les.

Non ce n'est pas pertinent. Cela ne peut se faire que sur des variables de type quantitatif.

Exercice 3

On étudie les scores obtenus par 10 étudiants de l'IPFC en finance (variable X) et en statistiques (variable Y).

i	X_{i}	Yi
1	12	16
2	8	11
3	8	13
4	16	17
5	12	15
6	10	12
7	10	10
8	16	13
9	18	16
10	20	17

1. Quel est le type de chacune des variables représentées ? Justifiez.

Il s'agit de variables quantitatives discrètes.

2. Pour chacune d'elles, calculez la moyenne, le mode et la médiane.

moyenne	mode	Médiane
$\bar{\bar{X}} = 13$	Mode en finance = 8,10,12, et 16	Med en finance = 12
$\bar{\bar{Y}} = 14$	Mode en stat = $13,16$ et 17	Med en stat $= 14$

3. Déterminez la variance et l'écart-type de chaque variable.

Variance	Écart-type
$S_{finance}^2 = 16,2$ $S_{stat}^2 = 5,8$	$S_{finance}$ =4,02 S_{stat} =2,41

4. Déterminez la valeur du coefficient r de Pearson. Interprétez cette valeur. $\frac{9,2}{5,8\times2,41} = 0,95$ \rightarrow Il s'agit d'une forte corrélation positive.