Chapter 17

Monte Carlo Methods

Monte Carlo Sampling

 To approximate sums or integrals (which are costly to evaluate or intractable) by drawing samples

$$s = \sum_{\boldsymbol{x}} p(\boldsymbol{x}) f(\boldsymbol{x}) \text{ or } s = \int p(\boldsymbol{x}) f(\boldsymbol{x}) d\boldsymbol{x}$$

• **Idea:** To view the sum/integral as an expectation under some distribution and to approximate it by an *average*

$$s = E_p[f(\boldsymbol{x})] \approx \hat{s}_n = \frac{1}{n} \sum_{i=1}^n f(\boldsymbol{x}^{(i)})$$

where

$$\boldsymbol{x}^{(i)} \sim p(\boldsymbol{x})$$

ullet It is easy to verify that the estimator \hat{s}_n is unbiased

$$E[\hat{s}_n] = E_p[f(\boldsymbol{x})] = s$$

ullet If the samples $oldsymbol{x}^{(i)}$ are independently and identically distributed (i.i.d.),

$$\mathsf{Var}[\hat{s}_n] = rac{\mathsf{Var}[f(m{x})]}{n}$$
 $\hat{s}_n \sim \mathcal{N}(s, \mathsf{Var}[\hat{s}_n])$ (C.L.T.)

Importance Sampling

• To approximate the expectation based on a proposal distribution q(x) that is easier to draw samples from than p(x)

$$s = \sum_{\boldsymbol{x}} p(\boldsymbol{x}) f(\boldsymbol{x}) = \sum_{\boldsymbol{x}} q(\boldsymbol{x}) \frac{p(\boldsymbol{x}) f(\boldsymbol{x})}{q(\boldsymbol{x})}$$

• Importance sampling estimator \hat{s}_q

$$\hat{s}_q = \frac{1}{n} \sum_{i=1}^n \frac{p(\mathbf{x}^{(i)}) f(\mathbf{x}^{(i)})}{q(\mathbf{x}^{(i)})} = \frac{1}{n} \sum_{i=1}^n \frac{p(\mathbf{x}^{(i)})}{q(\mathbf{x}^{(i)})} f(\mathbf{x}^{(i)})$$

where

$$m{x}^{(i)} \sim q(m{x})$$

 $ullet p(oldsymbol{x}^{(i)})/q(oldsymbol{x}^{(i)})$ are known as importance weights

• It is readily seen that \hat{s}_q is unbiased irrespective of the choice of $q(\boldsymbol{x})$

$$E_q[\hat{s}_q] = E_q[\frac{p(\boldsymbol{x})f(\boldsymbol{x})}{q(\boldsymbol{x})}] = E_p[f(\boldsymbol{x})] = s$$

• The variance of \hat{s}_q is however highly sensitive to the choice of q(x)

$$\mathsf{Var}[\hat{s}_q] = \mathsf{Var}[rac{p(oldsymbol{x})f(oldsymbol{x})}{q(oldsymbol{x})}]/n$$

Biased Importance Sampling

ullet Oftentimes $p(\boldsymbol{x})$ can only be evaluated up to a normalization constant

$$p(\boldsymbol{x}) = \frac{\tilde{p}(\boldsymbol{x})}{Z_p}$$

That is, $\tilde{p}(x)$ is easy to evaluate and Z_p is unknown (or intractable)

ullet We may also wish to use a $q(oldsymbol{x})$ with the same property

$$q(\boldsymbol{x}) = \frac{\tilde{q}(\boldsymbol{x})}{Z_q}$$

The importance sampling estimator is then given by

$$\hat{s}_q = \frac{1}{n} \sum_{i=1}^n \frac{p(\boldsymbol{x}^{(i)})}{q(\boldsymbol{x}^{(i)})} f(\boldsymbol{x}^{(i)})$$
$$= \frac{Z_q}{Z_p} \frac{1}{n} \sum_{i=1}^n \frac{\tilde{p}(\boldsymbol{x}^{(i)})}{\tilde{q}(\boldsymbol{x}^{(i)})} f(\boldsymbol{x}^{(i)})$$

$$= \frac{Z_q}{Z_p} \frac{1}{n} \sum_{i=1}^n \tilde{r}_i f(\boldsymbol{x}^{(i)})$$

where

$$ilde{r}_i = rac{ ilde{p}(m{x}^{(i)})}{ ilde{q}(m{x}^{(i)})} ext{ and } m{x}^{(i)} \sim q(m{x})$$

ullet The same set of data $oldsymbol{x}^{(i)}$ can be used to approximate the ratio Z_p/Z_q

$$\begin{split} \frac{Z_p}{Z_q} &= \frac{\sum_{\boldsymbol{x}} \tilde{p}(\boldsymbol{x})}{Z_q} \\ &= \sum_{\boldsymbol{x}} \tilde{p}(\boldsymbol{x}) \frac{1}{Z_q} \\ &= \sum_{\boldsymbol{x}} \tilde{p}(\boldsymbol{x}) \frac{q(\boldsymbol{x})}{\tilde{q}(\boldsymbol{x})} \\ &= \sum_{\boldsymbol{x}} \frac{\tilde{p}(\boldsymbol{x})}{\tilde{q}(\boldsymbol{x})} q(\boldsymbol{x}) \end{split}$$

$$\simeq \frac{1}{n} \sum_{i} \frac{\tilde{p}(\boldsymbol{x}^{(i)})}{\tilde{q}(\boldsymbol{x}^{(i)})}$$
$$= \frac{1}{n} \sum_{i} \tilde{r}_{i}$$

• We then arrive at a biased importance estimator

$$\hat{s}_{BIS} = \frac{\sum_{i=1}^{n} \tilde{r}_{i} f(\boldsymbol{x}^{(i)})}{\sum_{i=1}^{n} \tilde{r}_{i}} = \sum_{i=1}^{n} \tilde{w}_{i} f(\boldsymbol{x}^{(i)})$$

where

$$\tilde{w}_i = \frac{\tilde{r}_i}{\sum_{i=1}^n \tilde{r}_i}$$

• \hat{s}_{BIS} is asymptotically unbiased; that is, as $n \to \infty$, $E[\hat{s}_{BIS}] = s$

- ullet The success of importance sampling depends crucially on how well $q(m{x})$ matches the desired distribution $p(m{x})$
- When $p(\boldsymbol{x})f(\boldsymbol{x})$ is strongly varying and has its mass concentrated over small regions of \boldsymbol{x} space, most samples collected may be useless since they contribute little to the final estimate due to the fact $q(\boldsymbol{x}^{(i)}) \gg p(\boldsymbol{x}^{(i)})|f(\boldsymbol{x}^{(i)})|$
- ullet As such, underestimation of $E_p[f(m{x})]$ is typical, especially when $m{x}$ is high dimensional

Markov Chain Monte Carlo Methods

- Methods that involve drawing samples from Markov chains to perform Monte Carlo estimation
- Drawing samples from a Markov Chain
 - 1. Start with an initial state $oldsymbol{x}^{(1)}$
 - 2. Sample repeatedly from transition distributions $p(\boldsymbol{x}^{(\tau+1)}|\boldsymbol{x}^{(\tau)})$

Sample
$$x^{(\tau+1)} \sim p(x^{(\tau+1)}|x^{(\tau)}), \ \tau = 1, \dots, t-1$$

• Given a desired distribution $p^*(x)$, we choose transition distributions such that $x^{(t)}$ eventually becomes a fair sample of $p^*(x)$

First-Order Markov Chains

ullet A sequence of discrete-valued random variables $m{x}^{(1)},\ldots,m{x}^{(M)}$ with the conditional independence property

$$p(\boldsymbol{x}^{(m+1)}|\boldsymbol{x}^{(m)},\ldots,\boldsymbol{x}^{(1)}) = p(\boldsymbol{x}^{(m+1)}|\boldsymbol{x}^{(m)}),$$

for $m \in \{1, ..., M-1\}$

• The joint distribution of $x^{(1)},\dots,x^{(M)}$ is characterized by $p(x^{(1)})$ together with the transition probabilities $p(x^{(m+1)}|x^{(m)})$

$$p(\boldsymbol{x}^{(1)}, \dots, \boldsymbol{x}^{(M)}) = p(\boldsymbol{x}^{(1)}) \prod_{i=1}^{M-1} p(\boldsymbol{x}^{(m+1)} | \boldsymbol{x}^{(m)})$$

ullet The marginal distribution $p({m x}^{(m+1)})$ can be expressed as

$$p(\mathbf{x}^{(m+1)}) = \sum_{\mathbf{x}^{(m)}} p(\mathbf{x}^{(m+1)}|\mathbf{x}^{(m)})p(\mathbf{x}^{(m)})$$

• In matrix form, we have

$$v^{(m+1)} = A^{(m)}v^{(m)}$$

where

$$v_i^{(m+1)} = p(\boldsymbol{x}^{(m+1)} = \boldsymbol{s}_i),$$
 Prob. of $\boldsymbol{x}^{(m+1)}$ in state \boldsymbol{s}_i $v_j^{(m)} = p(\boldsymbol{x}^{(m)} = \boldsymbol{s}_j),$ Prob. of $\boldsymbol{x}^{(m)}$ in state \boldsymbol{s}_j $A_{i,j}^{(m)} = p(\boldsymbol{x}^{(m+1)} = \boldsymbol{s}_i | \boldsymbol{x}^{(m)} = \boldsymbol{s}_j),$ Transition probabilities

• A Markov chain is said to be homogeneous if the transition probability $p(\boldsymbol{x}^{(m+1)}|\boldsymbol{x}^{(m)})$ does not depend on m

ullet In this case, we see that $A^{(m)}=A$ is a constant matrix and that over time, all the eigenvalues are exponentiated

$$m{v}^{(t)} = m{A}^{t-1} m{v}^{(1)} = m{U} \Lambda^{t-1} m{U}^{-1} m{v}^{(1)}$$

- ullet Under some conditions (e.g. non-zero transition probabilities), $oldsymbol{A}$ has only one eigenvector $oldsymbol{v}$ with the largest eigenvalue 1
- $m{v}^{(t)}$ eventually converges to that eigenvector $m{v}$, which denotes the equilibrium distribution, regardless of the choice of initial state $m{v}^{(1)}$

$$Av = v$$

ullet We hope that by choosing transition probabilities correctly, v will be equal to the distribution we wish to sample from

- Running the Markov chain until it reaches its equilibrium is called burning in and the time required is called the mixing time
- Unfortunately, we only know that the chain will converge under some mild conditions, but not how much time it will take
- Most properties of discrete-valued Markov chains as presented here can carry over to the continuous-valued case

Gibbs Sampling

ullet To build a Markov chain that samples from a distribution $p_{\mathsf{model}}(oldsymbol{x})$

$$p_{\mathsf{model}}(\boldsymbol{x}) = p_{\mathsf{model}}(x_1, x_2, \dots, x_M)$$

- Procedure
 - 1. Start with an initial state $x_i^{(1)}, i = 1, 2, \dots, M$
 - 2. For $\tau = 1, ..., t-1$
 - Sample $x_1^{(\tau+1)} \sim p_{\text{model}}(x_1|x_2^{(\tau)}, x_3^{(\tau)}, \dots, x_M^{(\tau)})$
 - Sample $x_2^{(\tau+1)} \sim p_{\mathsf{model}}(x_2|x_1^{(\tau+1)}, x_3^{(\tau)}, \dots, x_M^{(\tau)})$

•

- Sample $x_j^{(\tau+1)} \sim p_{\mathsf{model}}(x_j|x_1^{(\tau+1)}, \dots, x_{j-1}^{(\tau+1)}, x_{j+1}^{(\tau)}, \dots, x_M^{(\tau)})$

•

- Sample $x_M^{(\tau+1)} \sim p_{\mathsf{model}}(x_M | x_1^{(\tau+1)}, x_2^{(\tau+1)}, \dots, x_{M-1}^{(\tau+1)})$

- In words, each step replaces one variable x_i by drawing a sample from the distribution $p_{\mathsf{model}}(x_i|\boldsymbol{x}_{-i})$ of x_i conditioned on the values of the remaining variables \boldsymbol{x}_{-i}
- This procedure eventually yields samples of $p_{\mathsf{model}}(\boldsymbol{x})$ because
 - The resulting Markov chain will converge to an equilibrium distribution, if none of the transition probabilities is zero anywhere
 - $-p_{\mathsf{model}}({m{x}})$ is invariant w.r.t. this Markov chain
- A distribution $p^*(x)$ is said to be invariant w.r.t. a Markov chain if each step in the chain leaves that distribution invariant, i.e.

$$p(\mathbf{x}') = \sum_{\mathbf{x}} p(\mathbf{x}'|\mathbf{x}) p^{\star}(\mathbf{x}) = p^{\star}(\mathbf{x}')$$

• In the present case, we have

$$egin{aligned} oldsymbol{x} &= (x_i^{old}, oldsymbol{x}^{old}) \sim p_{\mathsf{model}}(oldsymbol{x}) \ oldsymbol{x}' &= (x_i^{new}, oldsymbol{x}^{old}_{-i}) \ \mathrm{with} \ x_i^{new} \sim p_{\mathsf{model}}(x_i | oldsymbol{x}^{old}_{-i}) \end{aligned}$$

• It can be shown that $p(x') = p_{\mathsf{model}}(x')$; that is, $p_{\mathsf{model}}(x)$ is invariant

$$\begin{aligned} p(\boldsymbol{x}') &= p(x_i^{new}, \boldsymbol{x}_{-i}^{old}) \\ &= p(\boldsymbol{x}_{-i}^{old}) p(x_i^{new} | \boldsymbol{x}_{-i}^{old}) \\ &= p_{\mathsf{model}}(\boldsymbol{x}_{-i}^{old}) p_{\mathsf{model}}(x_i^{new} | \boldsymbol{x}_{-i}^{old}) \\ &= p_{\mathsf{model}}(x_i^{new}, \boldsymbol{x}_{-i}^{old}) \\ &= p_{\mathsf{model}}(\boldsymbol{x}') \end{aligned}$$

• Block Gibbs sampling: In some cases, it is possible to sample many variables simultaneously; for example, in RBM, $p(\boldsymbol{h}|\boldsymbol{v})$ and $p(\boldsymbol{v}|\boldsymbol{h})$ are factorial, suggesting that the elements of \boldsymbol{h} and of \boldsymbol{v} can be sampled simultaneously

Challenges

- ullet Successive samples are preferably independent and different regions in $oldsymbol{x}$ space should be visited proportional to their probability
- In reality, successive samples are highly correlated even though they have identical distributions
- Independent samples may be obtained by retaining every M samples for sufficiently large M, or by running multiple chains in parallel

 \bullet Moreover, Gibbs sampling may mix slowly when the variables of $p_{\rm model}({\bm x})$ are highly correlated

Sampling a correlated Gaussian of two variables

- Mixing between modes may be difficult if they are widely separated by regions of low probability
 - Toy problem: Consider the following energy model

$$\tilde{p}(a,b) = \exp(-E(a,b)), \ a,b \in \{-1,1\}$$

where

$$E(a,b) = -wab$$

It is seen that

$$p(b=1|a=1) = \sigma(w)$$

— When w is extremely large, Gibbs sampling will only rarely flip the signs of a,b even if p(b=1,a=1)=p(b=-1,a=-1)

– More examples:

Confronting The Partition Function

• Many undirected graphical models are defined by an unnormalized distribution $\tilde{p}_{\text{model}}(\boldsymbol{x};\boldsymbol{\theta})$ with an intractable partition function $Z(\boldsymbol{\theta})$

$$p_{\mathsf{model}}({m{x}};{m{ heta}}) = rac{ ilde{p}_{\mathsf{model}}({m{x}};{m{ heta}})}{Z({m{ heta}})}$$

where

$$Z(\boldsymbol{\theta}) = \sum_{\boldsymbol{x}} \tilde{p}_{\mathsf{model}}(\boldsymbol{x}; \boldsymbol{\theta}) \ or \ Z(\boldsymbol{\theta}) = \int_{\boldsymbol{x}} \tilde{p}_{\mathsf{model}}(\boldsymbol{x}; \boldsymbol{\theta}) d\boldsymbol{x}$$

• For training, we maximize the log-likelihood w.r.t. training data

$$E_{\boldsymbol{x} \sim p_{\text{data}}} \log p_{\text{model}}(\boldsymbol{x}; \boldsymbol{\theta}) = E_{\boldsymbol{x} \sim p_{\text{data}}} \log \tilde{p}_{\text{model}}(\boldsymbol{x}; \boldsymbol{\theta}) - \log Z(\boldsymbol{\theta})$$

through gradient descent

$$\nabla_{\boldsymbol{\theta}} E_{\boldsymbol{x} \sim p_{\mathsf{data}}} \log p_{\mathsf{model}}(\boldsymbol{x}; \boldsymbol{\theta}) = \underbrace{E_{\boldsymbol{x} \sim p_{\mathsf{data}}} \nabla_{\boldsymbol{\theta}} \log \tilde{p}_{\mathsf{model}}(\boldsymbol{x}; \boldsymbol{\theta})}_{\mathsf{Positive phase}} - \underbrace{\nabla_{\boldsymbol{\theta}} \log Z(\boldsymbol{\theta})}_{\mathsf{Negative phase}}$$

ullet For discrete-valued $oldsymbol{x}$, the gradient of $\log Z$ can be evaluated as

$$\nabla_{\boldsymbol{\theta}} \log Z(\boldsymbol{\theta}) = \frac{\nabla_{\boldsymbol{\theta}} Z(\boldsymbol{\theta})}{Z(\boldsymbol{\theta})} = \frac{\nabla_{\boldsymbol{\theta}} \sum_{\boldsymbol{x}} \tilde{p}_{\mathsf{model}}(\boldsymbol{x}; \boldsymbol{\theta})}{Z(\boldsymbol{\theta})} = \frac{\sum_{\boldsymbol{x}} \nabla_{\boldsymbol{\theta}} \tilde{p}_{\mathsf{model}}(\boldsymbol{x}; \boldsymbol{\theta})}{Z(\boldsymbol{\theta})}$$

• Additionally, if $\tilde{p}_{\mathsf{model}}(\boldsymbol{x};\boldsymbol{\theta}) > 0$ for all \boldsymbol{x} (e.g. energy-based models),

$$\begin{split} \frac{\sum_{\boldsymbol{x}} \nabla_{\boldsymbol{\theta}} \tilde{p}_{\mathsf{model}}(\boldsymbol{x}; \boldsymbol{\theta})}{Z(\boldsymbol{\theta})} &= \frac{\sum_{\boldsymbol{x}} \nabla_{\boldsymbol{\theta}} \exp(\log \tilde{p}_{\mathsf{model}}(\boldsymbol{x}; \boldsymbol{\theta}))}{Z(\boldsymbol{\theta})} \\ &= \frac{\sum_{\boldsymbol{x}} \exp(\log \tilde{p}_{\mathsf{model}}(\boldsymbol{x}; \boldsymbol{\theta})) \nabla_{\boldsymbol{\theta}} \log \tilde{p}_{\mathsf{model}}(\boldsymbol{x}; \boldsymbol{\theta})}{Z(\boldsymbol{\theta})} \\ &= \frac{\sum_{\boldsymbol{x}} \tilde{p}_{\mathsf{model}}(\boldsymbol{x}; \boldsymbol{\theta}) \nabla_{\boldsymbol{\theta}} \log \tilde{p}_{\mathsf{model}}(\boldsymbol{x}; \boldsymbol{\theta})}{Z(\boldsymbol{\theta})} \\ &= \sum_{\boldsymbol{x}} p_{\mathsf{model}}(\boldsymbol{x}; \boldsymbol{\theta}) \nabla_{\boldsymbol{\theta}} \log \tilde{p}_{\mathsf{model}}(\boldsymbol{x}; \boldsymbol{\theta}) \\ &= E_{\boldsymbol{x} \sim p_{\mathsf{model}}} \nabla_{\boldsymbol{\theta}} \log \tilde{p}_{\mathsf{model}}(\boldsymbol{x}; \boldsymbol{\theta}) \end{split}$$

• To summarize, we see that

$$\nabla_{\boldsymbol{\theta}} E_{\boldsymbol{x} \sim p_{\mathsf{data}}} \log p_{\mathsf{model}}(\boldsymbol{x}; \boldsymbol{\theta})$$

$$= E_{\boldsymbol{x} \sim p_{\mathsf{data}}} \nabla_{\boldsymbol{\theta}} \log \tilde{p}_{\mathsf{model}}(\boldsymbol{x}; \boldsymbol{\theta}) - E_{\boldsymbol{x} \sim p_{\mathsf{model}}} \nabla_{\boldsymbol{\theta}} \log \tilde{p}_{\mathsf{model}}(\boldsymbol{x}; \boldsymbol{\theta})$$

- In the positive phase, we increase the log-likelihood by increasing $\log \tilde{p}(\boldsymbol{x}; \boldsymbol{\theta})$ with \boldsymbol{x} drawn from training data $p_{\text{data}}(\boldsymbol{x})$
- In the negative phase, we increase the log-likelihood by decreasing the partition function $Z(\theta)$, or equivalently, by decreasing $\log \tilde{p}(x;\theta)$ with x drawn from the model distribution $p_{\text{model}}(x)$
- When $p_{\mathsf{model}}(\boldsymbol{x}) = p_{\mathsf{data}}(\boldsymbol{x})$, there is no longer gradient

Contrastive Divergence and Its Variants

• To compute the gradient of the negative phase with Gibbs sampling

$$E_{\boldsymbol{x} \sim p_{\mathsf{model}}}
abla_{\boldsymbol{\theta}} \log \tilde{p}_{\mathsf{model}}(\boldsymbol{x}; \boldsymbol{\theta})$$

- There are different strategies for initializing the Markov chains
 - Contrastive divergence (CD) from training data
 - Persistent contrastive divergence (PCD) from previous step
 - (Study by yourself)

• Example: Contrastive Divergence (CD)

```
while not converged do
     Sample a minibatch of m examples \{\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(m)}\} from the training set.
    \mathbf{g} \leftarrow \frac{1}{m} \sum_{i=1}^{m} \nabla_{\boldsymbol{\theta}} \log \tilde{p}(\mathbf{x}^{(i)}; \boldsymbol{\theta}).
     for i = 1 to m do
         \tilde{\mathbf{x}}^{(i)} \leftarrow \mathbf{x}^{(i)}.
     end for
     for i = 1 to k do
          for j = 1 to m do
               \tilde{\mathbf{x}}^{(j)} \leftarrow \text{gibbs update}(\tilde{\mathbf{x}}^{(j)}).
          end for
     end for
    \mathbf{g} \leftarrow \mathbf{g} - \frac{1}{m} \sum_{i=1}^{m} \nabla_{\boldsymbol{\theta}} \log \tilde{p}(\tilde{\mathbf{x}}^{(i)}; \boldsymbol{\theta}).
     \theta \leftarrow \theta + \epsilon \mathbf{g}.
end while
```

Review

- Why sampling?
- Importance sampling
- Gibbs sampling
- Issues with mixing of MCMC methods
- MCMC approach to learning with intractable partition functions