## This Page Is Inserted by IFW Operations and is not a part of the Official Record

## **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

## IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.



## ORGANISATION MONDIALE DE LA PROPRIETE INTELLECTUELLE Bureau international



## DEMANDE INTERNATIONALE PUBLIEE EN VERTU DU TRAITE DE COOPERATION EN MATIERE DE BREVETS (PCT)

(51) Classification internationale des brevets 6:

(11) Numéro de publication internationale:

WO 99/49991

B05D 7/24, C23C 16/26

**A1** 

(43) Date de publication internationale: 7 octobre 1999 (07.10.99)

(21) Numéro de la demande internationale:

PCT/FR99/00692

(22) Date de dépôt international:

25 mars 1999 (25.03.99)

(30) Données relatives à la priorité:

98/03824

27 mars 1998 (27.03.98)

FR

(71) Déposant (pour tous les Etats désignés sauf US): SIDEL [FR/FR]; Avenue de la Patrouille de France, F-76930 Octeville sur Mer (FR).

(72) Inventeurs; et

- (75) Inventeurs/Déposants (US seulement): DARRAS, David [FR/FR]; 56, rue Clément Marical, F-76600 Le Havre (FR). RIUS, Jean-Michel [FR/FR]; 23, rue du Général de Gaulle, F-76133 Maneglise (FR). CHOLLET, Patrick [FR/FR]; 5, impasse du Penker, F-22300 Lannion (FR). BOUTROY, Naïma [FR/FR]; 7, chemin de Bringwiller, Landrellec, F-22560 Pleumeur-Bodou (FR). BELDI, Nasser [FR/FR]; 115, rue Saint-Guirec, Ploumanach, F-22700 Perros-Guirec (FR). OGE, Fabrice [FR/FR]; 7, rue Albert Schweitzer, F-22300 Lannion (FR).
- (74) Mandataire: GORREE, Jean-Michel; Cabinet Plasseraud, 84, rue d'Amsterdam, F-75440 Paris Cedex 09 (FR).

(81) Etats désignés: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW, brevet ARIPO (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), brevet eurasien (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), brevet européen (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), brevet OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

#### Publiée

Avec rapport de recherche internationale.

- (54) Title: CONTAINER WITH MATERIAL COATING HAVING BARRIER EFFECT AND METHOD AND APPARATUS FOR MAKING SAME
- (54) Titre: RECIPIENT AVEC UN REVETEMENT EN MATIERE A EFFET BARRIERE ET PROCEDE ET APPAREIL POUR SA FABRICATION

#### (57) Abstract

The invention concerns a method for forming a coating in amorphous carbon material with polymer trend on a substrate of polymer material having the shape of a container to be obtained, such as a bottle or flask, using a plasma with electromagnetic wave excitation, which consists in: introducing into a chamber (2), wherein a high vacuum has been generated, a container blank (18), made of polymer material forming said substrate; injecting into a reaction chamber (2, 18) at least a carbon precursor is gaseous phase under very low pressure, the precursor being selected among the alkane, alkene, alkyne, aromatic compounds or a combination of some of them; generating simultaneously in the reaction chamber a microwave electromagnetic excitation in the UHF (8–12) domain with relatively low power for generating a plasma in temperature conditions which maintain the polymer at a temperature lower than glass transition temperature and which bring about the deposit of a overhydrogenated carbon material with polymer trend.



#### (57) Abrégé

L'invention concerne la formation d'un revêtement en un matériau carbone amorphe à tendance polymère sur un substrat en matière polymère possédant la conformation d'un récipient à obtenir, tel que bouteille ou flacon, par mise en oeuvre d'un plasma avec excitation par onde électromagnétique: on introduit dans une enceinte (2), dans laquelle a été créé un vide poussé, une ébauche du récipient (18) constituée en matière polymère formant le substrat précité; on injecte dans une chambre de réaction (2, 18) au moins un précurseur carboné à l'état gazeux sous très faible pression, le précurseur étant choisi parmi les alcanes, les alcènes, les alcynes, les aromatiques ou une combinaison de certains de ceux-ci; et on établit simultanément dans la chambre de réaction une excitation électromagnétique micro-onde dans le domaine UHF (8-12) avec une puissance relativement faible propre à engendrer un plasma dans des conditions de température qui, d'une part, maintiennent le polymère à une température inférieure à celle de la transition vitreuse et qui, d'autre part, provoquent le dépôt d'une matière carbone surhydrogénée ayant une tendance polymère.

#### UNIQUEMENT A TITRE D'INFORMATION

Codes utilisés pour identifier les Etats parties au PCT, sur les pages de couverture des brochures publiant des demandes internationales en vertu du PCT.

| AL | Albanie                   | ES  | Espagne               | LS | Lesotho                  | SI | Slovénie              |
|----|---------------------------|-----|-----------------------|----|--------------------------|----|-----------------------|
| AM | Arménie                   | FI  | Pinlande              | LT | Lituanie                 | SK | Slovaquie             |
| AT | Autriche                  | FR  | France                | LU | Luxembourg               | SN | Sénégal               |
| AU | Australie                 | GA  | Gabon                 | LV | Lettonie                 | SZ | Swaziland             |
| AZ | Azerbaidjan               | GB  | Royaume-Uni           | MC | Monaco                   | TD | Tchad                 |
| BA | Bosnie-Herzégovine        | GE  | Géorgie               | MD | République de Moldova    | TG | Togo                  |
| BB | Barbade                   | GH  | Ghana                 | MG | Madagascar               | TJ | Tadjikistan           |
| BE | Belgique                  | GN  | Guinée                | MK | Ex-République yougoslave | TM | Turkménistan          |
| BF | Burkina Faso              | GR  | Grèce                 |    | de Macédoine             | TR | Turquie               |
| BG | Bulgarie                  | HU  | Hongrie               | ML | Mali                     | TT | Trinité-et-Tobago     |
| BJ | Bénin                     | IE  | Irlande               | MN | Mongolie                 | UA | Ukraine               |
| BR | Brésil                    | IL  | Israël                | MR | Mauritanie               | UG | Ouganda               |
| BY | Bélarus                   | IS  | Islande               | MW | Malawi                   | US | Etata-Unis d'Amérique |
| CA | Canada                    | IT  | Italie                | MX | Mexique                  | UZ | Ouzbékistan           |
| CF | République centrafricaine | JР  | Japon                 | NE | Niger                    | VN | Viet Nam              |
| CG |                           | KE  | Kenya                 | NL | Pays-Bas                 | YU | Yougoslavie           |
|    | Congo<br>Suisse           | KG  | Kirghizistan          | NO | Norvège                  | zw | Zimbabwe              |
| СН |                           | KP  | République populaire  | NZ | Nouvelle-Zélande         |    |                       |
| CI | Côte d'Ivoire             | K.F | démocratique de Corée | PL | Pologne                  |    |                       |
| CM | Cameroun                  | KR  | République de Corée   | PT | Portugal                 |    | ·                     |
| CN | Chine                     |     | Kazakstan             | RO | Roumanie                 |    |                       |
| CU | Cuba                      | ΚZ  |                       |    | Fédération de Russie     |    |                       |
| CZ | République tchèque        | LC  | Sainte-Lucie          | RU |                          |    |                       |
| DE | Allemagne                 | LI  | Liechtenstein         | SD | Soudan                   |    |                       |
| DK | Danemark                  | LK  | Sri Lanka             | SE | Suède                    |    |                       |
| EE | Estonie                   | LR  | Libéria               | SG | Singapour                |    |                       |

. 3

5

10

15

20

25

30

35

## RECIPIENT AVEC UN REVETEMENT EN MATIERE A EFFET BARRIERE ET PROCEDE ET APPAREIL POUR SA FABRICATION

La présente invention concerne les récipients tels que bouteilles ou flacons, de constitution hétérogène en une matière à effet barrière et une matière polymère.

Les récipients en matière polymère telle que le PET présentent l'inconvénient de ne pas être imperméables à certains gaz, notamment à l'oxygène et au gaz carbonique.

C'est ainsi que les boissons carbonatées perdent progressivement leur gaz carbonique qui migre dans l'atmosphère à travers la matière polymère : la durée de vie d'un liquide carbonaté contenu dans une bouteille en PET ne peut dépasser, commercialement, quelques semaines, ou au plus un petit nombre de mois (par exemple 4 à 6 mois).

C'est ainsi également que l'oxygène de l'atmosphère parvient, à travers la matière polymère, au contact du liquide contenu dans le récipient et risque d'oxyder celui-ci en dégradant ses caractéristiques : la durée de vie d'une bouteille en PET remplie de bière ne peut dépasser, commercialement, quelques semaines (par exemple 2 à 5 semaines).

Il est connu d'accroître l'effet barrière propre des matières polymères constitutives des récipients en doublant la paroi en polymère d'une couche d'une matière à effet barrière plus élevée.

On a ainsi proposé d'utiliser à cet effet des matières synthétiques en multicouche telles que celles réalisées à partir de polyamides aliphatiques et/ou de mélanges de diverses matières. Les récipients sont alors fabriqués à partir de préformes multicouches, dans lesquelles la couche de matière à effet barrière est enchâssée entre au moins deux couches de matière polymère (par exemple en PET). Des bouteilles de bière ainsi constituées voient leur durée de vie commerciale accrue

# Raw TCP

WO9949991(A1).pdf 01-23-04 01:32



हैं। अ

5

10

15

20

25

30

35

2

sensiblement (par exemple jusqu'à 12 semaines).

Toutefois, un inconvénient majeur de ces récipients multi-couches réside dans le décollement des couches les unes des autres. En outre aussi bien la fabrication de la préforme que la fabrication du récipient à partir de la préforme par soufflage ou étirage-soufflage sont complexes, nécessitent des précautions et sont coûteuses.

On a également proposé de traiter les récipients en matière polymère par enduction externe d'une couche d'un matériau approprié, tel que ceux dénommés PVDC ou des résines thermodurcissables. Toutefois, le gain d'effet barrière ainsi obtenu reste faible et la présence du matériau d'enduction entraîne des difficultés pour le recyclage de la matière polymère de base.

En outre, toutes les solutions connues précitées maintiennent la matière polymère (par exemple du PET) au contact du liquide, et elles n'offrent donc pas de protection contre les inconvénients engendrés par ce contact : possibilité de migration de certains constituants du polymère dans le liquide, possibilité de réaction chimique du polymère avec le liquide, transfert d'acétaldéhyde dans le liquide, etc., autant de phénomènes susceptibles d'engendrer des problème d'organoleptie.

Il a également été proposé de déposer une couche d'un matériau à effet barrière, par exemple du carbone dur, sur une paroi en polymère par exemple en PET, en mettant en oeuvre un plasma (document US 5 041 303).

Le document EP 0 773 166 mentionne en outre la possibilité de former une telle couche de carbone sur la face intérieure de la paroi du récipient.

Une couche de carbone ainsi déposée permet certes de remédier à l'ensemble des inconvénients qui ont été énoncés plus haut.

Toutefois, il s'agit alors d'une couche, relativement épaisse de carbone dur ou carbone de type

¥

5

10

15

20

25

30

35

37

3 . . .

diamant, ("diamond-like carbon" ou DLC). La paroi d'un récipient ainsi constitué associe donc une couche interne en carbone dur DLC, qui présente une rigidité sensible, et une couche externe en matière polymère telle que du PET, qui présente une déformabilité sensible. En raison de leurs caractéristiques mécaniques différentes et incompatibles, il est fréquent que les deux couches de polymère et de carbone dur finissent par se désolidariser ou se disloquer.

D'une façon générale, la fabrication de récipients en matière polymère qui présentent un effet barrière par mise en oeuvre de l'une des techniques précitées est peu répandue en raison de la complexité de mise en oeuvre des différents procédés, des faibles cadences de production et des coûts importants de ces fabrications.

L'invention a essentiellement pour but de remédier simultanément à l'ensemble des problèmes ci-dessus évoqués, rencontrés avec les récipients à effet barrière amélioré actuellement connus, et de proposer un récipient offrant une protection efficace de son contenu tout en étant fabricable de façon industrielle, à l'aide de moyens peu complexes dans des conditions économiques acceptables.

A ces fins, selon un premier de ses aspects, l'invention concerne un récipient, tel que bouteille ou flacon, de constitution hétérogène en une matière à effet barrière et une matière polymère qui, étant constitué conformément à l'invention, se caractérise en ce que la matière à effet barrière consiste en un matériau carbone amorphe à tendance polymère, qui revêt un substrat en matière polymère. Le substrat est constitué par une ébauche du récipient qui possède déjà la forme finale du récipient.

Par matériau carbone amorphe à tendance polymère, on entend désigner du carbone contenant non seulement des liaisons CH et  $CH^2$  déjà présentes dans le carbone dur, mais également des liaisons  $CH^3$  qui sont absentes dans le

Ş

5

10

15

20

25

30

35

4

carbone dur (pour fixer les idées, les proportions des liaisons CH<sup>3</sup>, CH<sup>2</sup> et CH sont respectivement de 0, de 40 et de 60 dans le carbone dur et de 25, de 60 et de 15 dans le carbone amorphe à tendance polymère, tandis que les proportions des états électroniques sp<sup>3</sup>, sp<sup>2</sup> et sp sont respectivement de 68, de 30 et de 2 pour le carbone dur et de 53, de 45 et de 2 pour le carbone de type polymère).

Le choix d'un matériau carbone amorphe à tendance polymère permet de résoudre le problème provoqué par la rigidité du carbone dur ou DLC : en effet, les matériaux amorphe à tendance polymère présentent rigidité mécanique sensiblement moins élevée que celle du carbone dur et la déformabilité d'une couche d'un tel matériau est comparable à celle d'un matériau polymère tel récipient constituée : une paroi de PET le que conformément à l'invention par un tel matériau carbone amorphe à tendance polymère adhérant à un substrat en matériau polymère tel que du PET peut donc subir les qu'il résulte courantes sans en un déformations décollement de ces deux couches.

Certes les matériaux carbone amorphe à tendance polymère possèdent, de façon inhérente à leur structure coefficient de perméabilité un physico-chimique, moléculaire inférieur à celui du carbone dur employé jusqu'ici et on pensait que l'effet barrière qu'ils procurent est moins parfait. C'est du reste une raison pour laquelle ils avaient été écartés jusqu'à présent, et que les couches à effet barrière en carbone étaient carbone dur ou DLC. Or, en constituées surprenante, les essais menés avec des matériaux carbone à tendance polymère ont montré l'effet que barrière obtenu dans certaines conditions opératoires est pratique pour suffisant dans la largement conditionnement des liquides carbonatés ou des liquides oxydables.

On peut également envisager l'emploi de

å, ₹, "

5

10

15

20

25

30

35

... 5

nanocomposites de type carbone (ou DLN) - c'est-à-dire de composés à double réseaux mutuellement imbriqués, stabilisés et aléatoires dont l'un est un réseau de carbone amorphe à tendance polymère (a-c:H, avec jusqu'à 50% de liaisons sp³) et l'autre peut être un réseau de silice stabilisé par l'oxygène (a-Si:0) - et de nanocomposites avec inclusion d'atomes de métal.

Le revêtement de matériau carbone amorphe à tendance polymère présente avantageusement une épaisseur inférieure à environ 3000 Å (au-delà, l'épaisseur trop importante confère à la couche carbonée une rigidité mécanique trop élevée risquant de conduire à sa rupture et/ou à son décollement), de préférence comprise entre 800 et 1500 Å.

On notera que le carbone amorphe de type polymère, bien qu'étant encore transparent dans les épaisseurs indiquées, présente une couleur ambrée, qui contribue à la rayonnements ultraviolets les contre protection (protection de la bière notamment). On a constaté que, conditions opératoires, l'efficacité certaines de cette protection barrière aux ultra-violets fonction de l'épaisseur du revêtement et de façon très l'intensité fortement avec s'accroît intéressante lumineuse ambiante (facteur d'environ 8 dans l'obscurité, mais facteur d'environ 30 à la lumière du jour).

La matière polymère qui est, dans les applications pratiques, un polyéfine ou un polyester tel que du PET ou du PEN peut, en raison de la rigidité propre de la couche carbonée, voir son épaisseur réduite. A ce sujet, on notera également que le revêtement carboné contribue à réduire la déformation de la paroi du récipient sous l'action de la pression d'un liquide gazeux, tel qu'un liquide carbonaté. Le récipient conserve donc une forme stable et son volume intérieur demeure constant : il n'en résulte aucune modification de la composition du liquide qui y est renfermé.

2

5

10

15

20

25

30

35

. - 6

Bien que le revêtement en matière à effet barrière puisse être disposé à l'extérieur de l'ébauche de récipient, il est toutefois préférable que ce revêtement constitue la couche interne du récipient de façon qu'il contribue à isoler le matériau polymère et le liquide contenu dans le récipient : l'effet barrière est alors étendu et rend impossible une éventuelle migration de constituants du polymère dans le liquide, une éventuelle réaction chimique entre des substances du polymère et le liquide, une éventuelle migration de l'acétaldéhyde dans le liquide, etc.

On insistera ici sur le fait que le fondement de la constitution d'un récipient conforme à l'invention repose sur l'établissement de liaisons chimiques entre les atomes de carbone superficiels du substrat polymère qui présentent une liaison chimique disponible et les atomes du matériau carboné qui sont amenés au contact du polymère avec une liaison chimique libre, prête à se combiner avec liaison disponible des carbones superficiels substrat polymère. Dans ces conditions, c'est par une liaison chimique, extrêmement puissante donc, revêtement en matériau carboné est lié au substrat polymère ; le matériau carboné ayant en outre la tendance polymère explicitée précédemment, la liaison chimique puissante s'accompagne toutefois d'une relative aptitude à du revêtement carboné, déformabilité caractéristiques conjointes conduisant à une structure qui ne présente plus les inconvénients (décollage des couches notamment) des récipients antérieurs en carbone dur ou DLC.

Pour déposer le revêtement carboné avec des atomes de carbone présentant une liaison chimique libre prête à se lier avec celle d'un atome de carbone superficiel en polymère, on peut mettre en oeuvre un procédé de dépôt par plasma.

Ainsi, selon un deuxième de ses aspects,

•••

5

15

20

25

30

35

7

l'invention propose un procédé mettant en œuvre un plasma avec excitation par onde électromagnétique pour former un récipient, tel que bouteille ou flacon, de constitution hétérogène en une matière à effet barrière et une matière polymère formant un substrat possédant la conformation dudit récipient à obtenir, caractérisé en ce qu'on revêt ladite matière polymère formant substrat avec une matière à effet barrière comportant un matériau carbone amorphe à tendance polymère en ayant recours aux étapes suivantes :

- on introduit dans une enceinte une ébauche du récipient en matière polymère formant le substrat précité,
  - on injecte dans une chambre de réaction au moins un précurseur carboné à l'état gazeux sous très faible pression inférieure à 10 mbar, le précurseur étant choisi parmi les alcanes, les alcènes, les alcynes, les aromatiques ou une combinaison de certains de ceux-ci,
  - on établit dans la chambre de réaction une excitation électromagnétique micro-onde dans le domaine UHF avec une puissance relativement faible propre à engendrer un plasma dans des conditions de température qui, d'une part, maintiennent le polymère à une température inférieure à celle de la transition vitreuse et qui, d'autre part, provoquent le dépôt d'un matériau carbone amorphe à tendance polymère.

Dans un premier mode possible de mise en oeuvre, l'ébauche de récipient en matière polymère est fermée pendant que le précurseur carboné gazeux est injecté dans l'enceinte qui constitue alors la chambre de réaction, ce grâce à quoi le revêtement carbone amorphe à tendance polymère est déposé sur la surface externe de l'ébauche de récipient.

Dans un second mode possible de mise en oeuvre, le précurseur carboné gazeux est introduit dans l'ébauche de récipient en matière polymère, qui constitue alors la chambre de réaction, en même temps qu'on crée dans

Ę

5

10

15

20

25

30

35

8 - - -

l'ébauche de récipient une dépression prononcée, ce grâce à quoi on engendre la formation d'un plasma uniquement à l'intérieur de l'ébauche et le revêtement carbone amorphe à tendance polymère est déposé sur la surface interne de l'ébauche de récipient ; par ailleurs, pour éviter la déformation du récipient en raison du vide qui y règne, on provoque simultanément une dépression dans l'enceinte pour réduire le différentiel de pression entre l'intérieur et l'extérieur de l'ébauche. En outre, de préférence dans ce cas, l'enceinte présente une dimension transversale voisine de celle du corps de l'ébauche de récipient, de manière à épouser étroitement l'ébauche de récipient, pour nécessiter l'emploi de moyens de mise sous vide de puissance moindre.

Grâce aux dispositions caractérisant le procédé conforme à l'invention, on est en mesure de générer le dépôt d'un revêtement en matériau carbone amorphe à tendance polymère ayant la faible épaisseur inférieure à 3000 Å et notamment comprise entre 800 et 1500 Å, en un temps court de l'ordre de quelques secondes et n'excédant pas la vingtaine de secondes, avec une puissance micro-onde modeste de l'ordre de quelques centaines de watts (par exemple d'environ 200 à 600 W) entraînant une densité de puissance d'environ 0,5 à 2 watts par centimètres cube. Il en résulte que l'élévation correspondante de température dans le matériau polymère constituant l'ébauche de récipient et servant de substrat pour le dépôt (intérieur ou extérieur selon le cas) du relativement demeure carboné revêtement inférieure à la température de transition vitreuse du polymère (environ 80°C pour le PET).

Ce sont ces conditions de formation du revêtement carboné sous l'action d'un plasma micro-onde sous faible pression (n'excédant pas quelques millibars et en pratique de l'ordre de 0,01 à 0,5 mbar) ou "plasma froid" qui

3

10

15

20

25

30

35

. .9. ... . . . .

conduisent à une structure carbonée amorphe à tendance polymère, c'est-à-dire constituée par ou comportant un réseau de carbone amorphe surhydrogéné, lequel possède les caractéristiques avantageuses citées plus haut.

Outre l'obtention d'un récipient à couche à effet barrière ayant une bonne tenue mécanique sur le substrat polymère, le procédé conforme à l'invention offre par ailleurs l'avantage notable de faciliter la fabrication de récipients stériles utilisables dans les chaînes de conditionnement aseptique.

Le plasma généré au cours du processus de dépôt du revêtement carboné peut s'avérer suffisant pour obtenir un nettoyage désiré de la surface interne de l'ébauche de récipient.

Pour l'obtention d'un degré d'aseptie élevé, on peut envisager de mettre en oeuvre un agent bactéricide préalablement pulvérisé sous forme de micro-gouttelettes ou introduit sous forme vapeur, par exemple grâce à un bulleur, sur la surface interne de l'ébauche de récipient (par exemple peroxyde d'hydrogène, acide phosphorique, vapeur d'eau, etc.) ; la génération subséquente d'un plasma dans les conditions précitées est susceptible de réducteur (par exemple milieu fortement créer un génération d'oxygène natif) qui est capable de réduire la contamination bactérienne initiale pour répondre aux exigences de stérilisation.

Pour la mise en oeuvre du procédé précédent, l'invention propose, selon un troisième de ses aspects, un appareil mettant en œuvre un plasma avec excitation par onde électromagnétique pour former un récipient, tel que bouteille ou flacon, de constitution hétérogène en une matière à effet barrière et une matière polymère formant un substrat (ébauche de récipient) possédant la conformation dudit récipient à obtenir, cet appareil comportant un dispositif générateur de plasma, avec une enceinte pourvue de moyens d'injection d'un précurseur

3

5

10

15

20

25

30

35

.. 10

des moyens d'excitation électromagnétique, gazeux lequel appareil se caractérise en ce que, pour revêtir ladite matière polymère formant substrat en une matière à effet barrière comportant un matériau carbone amorphe à tendance polymère, les moyens d'injection du précurseur sont raccordés à un générateur d'un précurseur à l'état gazeux choisi parmi les alcanes, les alcènes, les alcynes, les aromatiques, ou une combinaison de certains d'entre eux, en ce que, pour revêtir ladite matière polymère en une matière à effet barrière substrat amorphe tendance matériau carbone à comportant un d'injection débouchent moyens les polymère, l'enceinte et sont agencés pour délivrer le précurseur gazeux sous une très faible pression inférieure à 10 mbar, et en ce que les moyens d'excitation électromagnétiques sont propres à générer des micro-ondes dans le domaine UHF.

Dans un premier mode de réalisation, l'enceinte présente des dimensions sensiblement supérieures à celles de l'ébauche de récipient à traiter et les moyens d'injection débouchent dans l'enceinte à l'extérieur de l'ébauche de récipient, ce grâce à quoi, l'ébauche de récipient étant fermée, l'appareil génère un plasma à l'extérieur de l'ébauche de récipient et c'est sur la surface externe de l'ébauche du récipient que se dépose le revêtement en matériau carbone amorphe à tendance polymère.

Dans un second mode de réalisation, les moyens d'injection du précurseur gazeux débouchent à l'intérieur de l'ébauche de récipient disposée dans l'enceinte et il est prévu des moyens de pompage s'ouvrant dans l'ébauche de récipient et propres à engendrer dans celle-ci une dépression prononcée, ce grâce à quoi le plasma est généré à l'intérieur de l'ébauche de récipient et c'est sur la surface intérieure de l'ébauche de récipient que se dépose le revêtement en matériau carbone amorphe à tendance

11 . .

. . .

5

10

15

20

25

30

35

polymère. Pour éviter une déformation de l'ébauche en raison de la dépression régnant à l'intérieur, on crée simultanément une dépression à l'intérieur de l'enceinte pour réduire le différentiel de pression entre l'intérieur Avantageusement l'ébauche. l'extérieur de l'enceinte est munie d'un couvercle amovible d'obturation étanche agencé pour supporter l'injecteur des moyens d'injection du précurseur gazeux et l'orifice d'aspiration des moyens de pompage ; il comporte en outre des moyens de support propre à supporter une ébauche de récipient par le col de celle-ci en appliquant le buvant de ladite ébauche de récipient de façon étanche contre la face intérieure susdits orifices entourant les couvercle, en dudit d'aspiration et injecteur. De plus, il est souhaitable que les moyens de support soient déplaçables axialement pour amener l'ébauche de récipient contre la face intérieure du couvercle en coiffant les susdits orifices d'aspiration et injecteur préalablement au dépôt du revêtement ou en écarter le récipient achevé après le dépôt du revêtement.

De préférence, pour faciliter l'emploi des moyens de pompage et éviter d'avoir recours à des moyens surdimensionnés, l'enceinte présente une dimension transversale voisine de celle du corps de l'ébauche de récipient.

Grâce aux dispositions conformes à l'invention, en particulier grâce aux durées réduites de traitement, on est en mesure de mettre en oeuvre industriellement un processus de fabrication d'un récipient à couche à effet barrière qui permette de produire de tels récipients à une cadence compatible avec les exigences actuelles du conditionnement des liquides.

L'invention sera mieux comprise à la lecture de la description détaillée qui suit de certains modes de réalisation donnés uniquement à titre d'exemples non limitatifs. Dans cette description, on se réfère aux dessins annexés sur lesquels :

1

5

10

15

20

25

30

35

. - 12

- les figures 1 à 3 illustrent de façon schématique, en coupe, respectivement trois modes de réalisation d'un appareil permettant de constituer un récipient comportant une couche de matériau à effet barrière conformément à l'invention, et

- la figure 4 est une vue en coupe d'un exemple de réalisation préféré de l'appareil de la figure 1 agencé en vue de la formation d'une couche de matériau à effet barrière située à l'intérieur du récipient.

En se reportant tout d'abord à la figure 1, l'appareil comprend une cavité 1, à parois conductrices, par exemple métalliques, qui est dimensionnée en fonction de l'objet à traiter et du mode de couplage recherché et qui renferme une enceinte 2 définie par des parois 3 en un matériau transparent pour les micro-ondes électromagnétiques, par exemple en quartz.

L'enceinte 2 est fermée par exemple en haut par un couvercle amovible 4 permettant la mise en place de l'objet à traiter dans l'enceinte et son enlèvement après traitement.

Pour qu'un vide puisse y être engendré, l'enceinte 2 est raccordée à des moyens de pompage externes (non représentés) par l'intermédiaire d'au moins un raccord: sur la figure 1, deux raccords 5 sont prévus respectivement dans le fond et dans le couvercle 4 (pompage symbolisé par les flèches 6).

Pour l'injection, de préférence sous une pression inférieure à 1mbar, d'au moins un précurseur gazeux dans l'enceinte 2, il est prévu au moins un injecteur 7 raccordé à au moins un générateur de précurseur gazeux ou liquide (non montré), tel qu'un réservoir, un mélangeur ou un bulleur. L'injecteur 7 traverse le couvercle auquel il est fixé, par exemple en s'étendant coaxialement dans le raccord 5 des moyens de pompage.

La cavité 1 est connectée à un générateur de micro-ondes électromagnétiques (non représenté) par un

5

10

15

20

25

30

35

13

guide d'onde 8 qui s'étend radialement par rapport à la paroi latérale de la cavité 1. Ce guide d'onde est muni de moyens de réglage, par exemple des vis plongeantes 12, permettant l'accord de la cavité. A l'opposé (diamétralement opposé si la cavité est cylindrique de révolution comme c'est en pratique le cas) s'étend un tronçon de guide d'onde 9 pourvu d'un piston d'accord 10 mobile axialement qui constitue un dispositif de court-circuit transversal.

Enfin, dans la cavité 1 sont disposées respectivement en haut et en bas deux plaques annulaires 11 entourant l'enceinte 2 et constituant des courts-circuits longitudinaux pour les micro-ondes.

Dans le cas où l'on cherche à déposer du carbone sur le substrat en matière polymère, c'est-à-dire sur la paroi de l'ébauche de récipient en matière polymère, le précurseur gazeux peut être choisi parmi les alcanes (par exemple le méthane), les alcènes, les alcynes (par exemple l'acétylène) et les aromatiques.

La pression au sein de la chambre de réaction (constituée soit par l'enceinte, soit par l'ébauche de récipient comme cela sera expliqué ultérieurement) doit être faible, de préférence inférieure à environ 10 mbar, en pratique de l'ordre de 0,01 à 0,5 mbar.

En outre, il est indispensable que l'échauffement polymère subi par la matière du substrat suffisamment faible pour que ne soit pas atteinte la température de transition vitreuse du polymère (qui par exemple est de l'ordre de 80°C pour le PET). Il est donc nécessaire de mettre en oeuvre, pour la réaction de dépôt, une puissance micro-onde peu importante, par exemple de quelques centaines de watts au maximum avec des microondes de la gamme UHF (par exemple de l'ordre de 2,45 GHz).

Compte tenu des conditions de dépôt, notamment de

\_ \_

5

10

15

20

25

30

35

la faible température de dépôt du carbone, on obtient un carbone amorphe fortement hydrogéné, contenant seulement des radicaux CH et CH2, mais aussi une fraction notable de radicaux CH3. Il s'agit donc d'un carbone à tendance polymère ou carbone "mou", qui présente une rigidité moins élevée que le carbone dur ou DLC. Cette couche de carbone à tendance polymère présente donc une capacité de déformation qui la rend apte à accompagner tant soit peu les déformations du polymère constitutif du substrat. Il en résulte donc un meilleur couplage mécanique du substrat polymère et du carbone et les risques de décollement se trouvent ainsi réduits, voire éliminés.

Toutefois, il faut bien comprendre que, bien que présentant une rigidité moins élevée que le carbone dur ou DLC, le carbone à tendance polymère ou carbone "mou" conserve lui aussi une sensible rigidité qui, en tout état de cause, est sensiblement supérieure à celle du polymère constitutif du substrat. Ainsi il devient envisageable d'attribuer à la couche de carbone la fonction de conférer une partie de la rigidité intrinsèque du récipient achevé; le substrat en polymère peut, alors, être déchargé d'une partie de la fonction de résistance mécanique au sein du récipient achevé. On peut ainsi réduire l'épaisseur du substrat en polymère et donc la quantité de polymère entrant dans la fabrication de chaque récipient.

Par ailleurs, la présence de la couche de carbone renforce la résistance mécanique du récipient et, de ce fait, réduit, voire supprime la capacité de déformation d'un récipient rempli d'un liquide fortement carbonaté : la forme et donc le volume du récipient restent stables et on évite ainsi un dégazage partiel du liquide.

Bien entendu, les avantages qui viennent d'être mentionnés accompagnent celui, fondamental, indiqué précédemment et qui est recherché au premier degré, qui consiste en l'obtention d'un effet barrière s'opposant

5

10

15

20

25

30

35

15 -- .

notamment aux échanges gazeux entre le liquide contenu dans le récipient et l'atmosphère.

Enfin, grâce aux moyens mis en oeuvre conformément à l'invention, on peut réaliser une vitesse de dépôt de plusieurs centaines d'angströms par seconde et obtenir des temps de traitement de l'ordre de quelques secondes qui sont alors tout-à-fait compatibles avec des processus de fabrication industrielle.

Bien entendu, d'autres modes de réalisation d'appareil peuvent être envisagés pour générer le plasma propre au dépôt de la couche de carbone amorphe à tendance polymère recherchée dans le cadre de la présente invention.

Ainsi, à la figure 2, en conservant le même agencement de la cavité 1 et de l'enceinte 2 (les mêmes références numériques sont conservées pour désigner les organes identiques à ceux de la figure 1), l'excitation micro-onde est ici obtenue à partir d'une antenne 13 qui pénètre radialement dans la cavité 1 à travers la paroi latérale de celle-ci et qui est raccordée par un conducteur coaxial 14 à un guide d'onde 15 en mode transversal.

La figure 3 illustre un autre mode de réalisation à cavité micro-onde axiale à partir d'une antenne 13 qui est montée dans le fond de la cavité 1, sensiblement transversalement audit fond et approximativement coaxialement à l'enceinte 2. Le court-circuit longitudinal est procuré ici par la seule plaque annulaire supérieure 11, tandis qu'un seul orifice de pompage 5 est prévu dans l'enceinte 2.

Les divers modes de réalisation d'appareil qui viennent d'être exposés permettent le dépôt du matériau carboné sur la face externe de l'ébauche de récipient en matière polymère : l'enceinte 2 présente alors un volume notablement plus grand que celui de l'ébauche de récipient afin que le plasma puisse se développer, l'ébauche de

16

récipient étant mise en place bouchée pour éviter un dépôt intérieur.

Toutefois, comme cela a été indiqué précédemment, une couche externe de matériau carboné ne procure qu'un effet barrière partiel, qui ne permet pas d'entraver les interactions entre le polymère du substrat et le contenu généralement liquide.

L'obtention d'un effet barrière total ne peut donc être procuré que par une couche à effet barrière disposé sur le substrat intérieurement au récipient. Le dépôt d'une telle couche intérieure nécessite un aménagement de l'appareil de traitement.

10

15

20

25

30

35

A la figure 4 est représentée une variante de l'appareil de la figure 1 agencé pour le dépôt d'une 2 L'enceinte possède carbonée interne. préférence une conformation telle que sa dimension transversale ou diamétrale soit peu supérieure à celle de l'ébauche de récipient à traiter, pour faciliter la mise sous vide de l'enceinte décrite ci-après. Pour éviter une déformation de l'ébauche en raison de la dépression crée simultanément l'intérieur, on à dépression à l'intérieur de l'enceinte pour réduire, voire annuler le différentiel de pression entre l'intérieur et l'extérieur de l'ébauche.

Le couvercle 4, qui est mobile verticalement (double flèche 16) pour permettre la mise en place de l'ébauche de récipient et l'extraction du récipient traité, est traversé par un bras vertical 17 de support de l'ébauche de récipient 18 ; ce bras est mobile verticalement (double flèche 19) et éventuellement rotatif.

Le couvercle 4 comporte une garniture intérieure 20 munie d'un passage axial 21 dans lequel ou en regard duquel débouche l'injecteur 7 de précurseur gazeux. A son extrémité inférieure, le passage axial 21 est conformé en siège 22 propre à recevoir de façon sensiblement étanche

PCT/FR99/00692

5

10

15

20

25

30

35

WO 99/49991

le buvant 23 du goulot de l'ébauche de récipient 18 en vue d'un positionnement axial précis de l'ébauche de récipient. La garniture 20 comporte en outre une ouverture annulaire, traversée par le susdit bras de support 17, avec laquelle communique le passage central 22 ; cette ouverture forme l'orifice 5 d'aspiration en direction des moyens de pompage pour l'établissement du vide. Pour assurer les conditions propres à l'établissement du plasma dans l'ébauche de récipient seul, on établit dans celle-ci une dépression prononcée, en même temps qu'on crée dans l'enceinte la dépression de compensation susmentionnée.

Grâce à cet agencement, on est en mesure de créer un plasma dans l'ébauche de récipient qui constitue ainsi la chambre à réaction elle-même, ce qui permet un dépôt interne du matériau carboné.

A titre d'exemple, on a mis en oeuvre l'appareil de la figure 4 en utilisant l'acétylène en tant que précurseur gazeux introduit dans le goulot de l'ébauche de récipient par un injecteur de 4 mm de diamètre, avec un débit de 80 sccm et sous une pression de 0,25 mbar. La pression résiduelle à l'intérieur de l'ébauche est de l'ordre de 0,2 mbar et on a constaté qu'une pression mbar à l'intérieur de l'enceinte 50 résiduelle de s'avérait suffisante pour empêcher la déformation de l'ébauche dans ces conditions. L'excitation est procurée par des micro-ondes du domaine UHF ayant une fréquence de 2,45 GHz (soit une longueur d'onde  $\lambda$  = 12 cm dans le vide) ; la puissance micro-ondes est de l'ordre de 180 W. Dans ces conditions, on a pu effectuer un dépôt de carbone avec une vitesse de croissance de l'ordre de 250 Å/s, c'est-à-dire obtenir une couche ayant une épaisseur de l'ordre de 1500 Å en un temps d'environ 6 secondes.

Selon un second exemple, on a mis en œuvre un appareil du type de la figure 4, en injectant dans l'ébauche de récipient de l'acéthylène sous un débit

d'environ 160 sccm sous une pression d'environ 0,1 mbar. Dans ce cas, avec une puissance micro-ondes d'environ 350 W pour une bouteille d'un demi-litre, ou d'environ 500 W pour une bouteille d'un litre, on obtient une couche barrière efficace dans un temps d'environ 2 à 3 secondes.

5

10

15

20

25

30

35

La mise en oeuvre d'un plasma dans le processus de fabrication du récipient permet, selon les conditions de traitement (durée notamment), d'envisager la réalisation, de façon simple, d'un traitement de nettoyage ou d'aseptie (stérilisation) de l'intérieur du récipient dans les installations effectuant en ligne la fabrication du récipient, le remplissage et le bouchage en milieu aseptique.

Le plasma généré au cours du dépôt de la couche carbonée peut s'avérer suffisant pour obtenir un nettoyage de premier degré de la surface interne de l'ébauche.

Pour un traitement d'un niveau plus poussé, un simple plasma d'oxygène crée des espèces réactives, par exemple des métastables, de l'oxygène atomique ou moléculaire, qui sont capables, sous l'action de leurs énergies propres, de réduire la contamination bactérienne initiale dans une proportion suffisante pour répondre au critère de sanitation.

Ces traitements s'effectuent dans des temps inférieurs à la dizaine de secondes qui sont compatibles avec des installations industrielles.

l'obtention d'une stérilisation Pour degré, on doit avoir recours à un agent bactéricide tel que le peroxyde d'hydrogène  $H_2 O_2$  sur lequel, après un temps de contact prédéterminé avec l'ébauche, on fait agir un plasma d'oxygène : les phénomènes physico-chimiques le mélange plasma dans engendrés par le engendrent les espèces réactives d'hydrogène-oxygène mentionnées et autres qui sont fortement réductrices et peuvent avoir un fort pouvoir bactéricide.

Le traitement par plasma peut également être envisagé comme technique d'élimination d'un agent bactéricide tel que l'acide phosphorique qui est réducteur.

19

On peut ici souligner que, indépendamment de sa fonction bactéricide, le peroxyde d'hydrogène se comporte comme créateur de radicaux libres parmi les atomes de carbone du polymère qui sont présents à la surface du substrat : il en résulte à la surface du polymère un accroissement du nombre des radicaux libres prêts à accueillir des atomes de carbone déposés en surface, et donc un renforcement des liaisons chimiques établies entre le polymère et le carbone déposé à sa surface. Il peut donc être envisagé de faire précéder le dépôt en atmosphère plasma de la couche carbonée par une pulvérisation de peroxyde d'hydrogène sur la surface du substrat soumise ensuite à un plasma d'oxygène afin d'obtenir une meilleure adhérence de la couche de carbone au polymère.

#### **REVENDICATIONS**

1. Récipient, tel que bouteille ou flacon, de constitution hétérogène en une matière à effet barrière et une matière polymère, caractérisé en ce que la matière à effet barrière comporte un matériau carbone amorphe à tendance polymère, qui revêt un substrat en matière polymère.

5

10

15

20

25

30

- 2. Récipient selon la revendication 1, caractérisé en ce que la matière à effet barrière est un nanocomposite à base de carbone amorphe à tendance polymère.
- 3. Récipient selon la revendication 2, caractérisé en ce que la matière à effet barrière est un nanocomposite à base de carbone amorphe à tendance polymère avec inclusion d'atomes de métal.
- 4. Récipient selon l'une quelconque des revendications précédentes, caractérisé en ce que le revêtement en matière à effet barrière possède une épaisseur inférieure à environ 3000 Å.
- 5. Récipient selon la revendication 4, caractérisé en ce que le revêtement en matière à effet barrière possède une épaisseur comprise entre 50 et 1500 Å.
- 6. Récipient selon l'une quelconque des revendications précédentes, caractérisé en ce que la matière polymère est un polyoléfine, ou un polyester notamment du PET ou du PEN.
- 7. Récipient selon l'une quelconque des revendications précédentes, caractérisé en ce que le revêtement en matière à effet barrière est disposé sur le substrat à l'intérieur du récipient.
- 8. Récipient selon l'une quelconque des revendications 1 à 6, caractérisé en ce que le revêtement en matière à effet barrière est disposé sur le substrat à l'extérieur du récipient.
- 9. Procédé mettant en œuvre un plasma avec excitation par onde électromagnétique pour former un récipient, tel que bouteille ou flacon, de constitution

hétérogène en une matière à effet barrière et une matière polymère formant un substrat possédant la conformation dudit récipient à obtenir, caractérisé en ce qu'on revêt ladite matière polymère formant substrat avec une matière à effet barrière comportant un matériau carbone amorphe à tendance polymère en mettant en œuvre les étapes suivantes :

5

10

15

20

25

30

- on introduit dans une enceinte (2), dans laquelle a été créé un vide poussé, une ébauche du récipient (18) constituée en matière polymère formant le substrat précité,
- on injecte dans une chambre de réaction (2, 18) au moins un précurseur carboné à l'état gazeux sous très faible pression, le précurseur étant choisi parmi les alcanes, les alcènes, les alcynes, les aromatiques ou une combinaison de certains de ceux-ci et
- on établit simultanément dans la chambre de réaction une excitation électromagnétique micro-onde dans le domaine UHF avec une puissance relativement faible propre à engendrer un plasma dans des conditions de température qui, d'une part, maintiennent le polymère à une température inférieure à celle de la transition vitreuse et qui, d'autre part, provoquent le dépôt d'un matériau carbone amorphe à tendance polymère.
- 10. Procédé selon la revendication 9, caractérisé en ce que l'ébauche de récipient(18) en matière polymère est fermée pendant que le précurseur carboné gazeux est injecté dans l'enceinte (2) à l'extérieur de l'ébauche, le volume compris entre l'enceinte et l'extérieur de l'ébauche constituant la chambre de réaction, ce grâce à quoi le revêtement en matériau carbone amorphe à tendance polymère est formé sur la surface externe de l'ébauche de récipient.
- 11. Procédé selon la revendication 9, caractérisé en ce que le précurseur carboné gazeux est introduit dans l'ébauche de récipient (18) en matière polymère qui constitue alors la chambre de réaction, en même temps

PCT/FR99/00692

5

10

15

20

25

30

35

qu'on crée dans l'ébauche de récipient une dépression prononcée, ce grâce à quoi le plasma se forme uniquement à l'intérieur de l'ébauche et le revêtement en matériau carbone amorphe à tendance polymère est déposé sur la surface interne de l'ébauche de récipient, et on crée simultanément une dépression dans l'enceinte pour réduire le différentiel de pression entre l'intérieur et l'extérieur de l'ébauche.

- 12. Procédé selon la revendication 11, caractérisé en ce que l'enceinte (2) présente une dimension transversale voisine de celle du corps de l'ébauche de récipient (18), de manière à épouser étroitement l'ébauche de récipient, afin de faciliter la formation du vide dans l'enceinte.
- 13. Procédé selon l'une quelconque des revendications 9 à 12, caractérisé en ce que le précurseur gazeux est injecté sous une pression inférieure à 1 mbar.
- 14. Procédé selon l'une quelconque des revendications 9 à 13, caractérisé en ce qu'avant la formation du revêtement intérieur en matériau carbone amorphe à tendance polymère, on forme dans l'ébauche de récipient (18) un plasma d'oxygène propre à engendrer de l'oxygène natif, afin de nettoyer l'ébauche de récipient.
- 15. Procédé selon l'une quelconque des revendications 9 à 13, caractérisé en ce qu'avant la formation du revêtement intérieur en matériau carbone amorphe à tendance polymère, on pulvérise dans l'ébauche de récipient (18) un agent bactéricide, puis on établit un plasma d'oxygène,
- ce grâce à quoi le plasma engendre la formation d'un milieu fortement réducteur propre à réduire la contamination bactérienne.
- 16. Appareil mettant en œuvre un plasma avec excitation par onde électromagnétique pour former un récipient, tel que bouteille ou flacon, de constitution hétérogène en une matière à effet barrière et une matière

----

5

10

15

20

25

30

35

23

polymère formant un substrat (ébauche de récipient (18)) possédant la conformation dudit récipient à obtenir, cet appareil comportant un dispositif générateur de plasma, avec une enceinte (2) pourvue de moyens (7) d'injection d'un précurseur gazeux et des moyens d'excitation électromagnétique (8-12),

matière caractérisé en ce que, ladite pour revêtir polymère formant substrat avec une à matière barrière comportant un matériau carbone amorphe à tendance polymère, les moyens (7) d'injection du précurseur sont raccordés à un générateur d'un précurseur à l'état gazeux choisi parmi les alcanes, les alcènes, les alcynes, les aromatiques, ou une combinaison de certains d'entre eux, et les moyens d'injection sont agencés pour délivrer le précurseur gazeux sous une très faible pression, et les moyens d'excitation électromagnétiques (8-12) sont propres à générer des micro-ondes dans le domaine UHF.

- revendication la 16. Appareil selon 17. l'enceinte (2) présente ce que caractérisé en dimensions sensiblement supérieures à celles de l'ébauche de récipient (18) à traiter et en ce que les moyens d'injection débouchent dans l'enceinte (2) à l'extérieur de l'ébauche de récipient (18),
- ce grâce à quoi, l'ébauche de récipient étant fermée, l'appareil génère un plasma à l'extérieur de l'ébauche de récipient et c'est sur la surface externe de l'ébauche du récipient que se dépose le revêtement en matériau carbone amorphe à tendance polymère.
- 18. Appareil selon la revendication 16, caractérisé en ce que les moyens (7) d'injection du précurseur gazeux débouchent à l'intérieur de l'ébauche de récipient (18) disposée dans l'enceinte (2),
- en ce qu'il est prévu des moyens de pompage (6) s'ouvrant dans l'ébauche de récipient (18) et propres à engendrer dans celle-ci une dépression prononcée, ce grâce à quoi le plasma est généré à l'intérieur de l'ébauche de récipient

24

qui constitue une chambre de réaction et c'est sur la surface intérieure de l'ébauche de récipient que se dépose le revêtement en matériau carbone amorphe à tendance polymère,

et

en ce que les moyens de pompage (6) sont par ailleurs agencés pour engendrer simultanément dans l'enceinte (2) une dépression afin de réduire le différentiel de pression entre l'intérieur et l'extérieur de l'ébauche.

10

5

19. Appareil selon la revendication 18, caractérisé en ce que l'enceinte (2) est munie d'un couvercle amovible (4) d'obturation étanche agencé pour supporter l'injecteur (7) des moyens d'injection du précurseur gazeux et l'orifice (5) d'aspiration des moyens de pompage

15

et en ce qu'il comporte en outre des moyens (17) de support propres à supporter une ébauche de récipient (18) par le col de celle-ci en appliquant le buvant (23) de ladite ébauche de récipient de façon étanche contre la face intérieure (22) dudit couvercle, en entourant les susdits orifices d'aspiration et l'injecteur.

20

20. Appareil selon la revendication 19, caractérisé en ce que les moyens de support (17) sont déplaçables axialement (19) pour amener l'ébauche de récipient contre la face intérieure du couvercle (4) en coiffant les susdits orifices d'aspiration et l'injecteur préalablement au dépôt du revêtement ou en écarter le récipient achevé après le dépôt du revêtement.

30

35

25

21. Appareil selon les revendications 16 à 20, caractérisé en ce que les moyens d'excitation à micro-ondes comprennent un guide d'ondes (8) raccordé radialement à une cavité (1) entourant l'enceinte (2), ladite cavité (1) étant pourvue de moyens (11) de court-circuit longitudinal entourant ladite enceinte et le guide d'onde étant pourvu de moyens (10) de court-circuit transversal.

25

22. Appareil selon l'une quelconque des revendications 18 à 21, caractérisé en ce que l'enceinte (2) présente une dimension transversale voisine de celle du corps de l'ébauche de récipient (18).

23. Appareil selon l'une quelconque des revendications 16 à 20, caractérisé en ce que les moyens d'excitation à micro-ondes comprennent une antenne (13) raccordée à un guide d'onde (15) et disposée radialement dans une cavité (1) entourant l'enceinte (2), ladite cavité (1) étant pourvue de moyens de court-circuit longitudinal (11).

5

10

15

24. Appareil selon l'une quelconque des revendications 16 à 20, caractérisé en ce que les moyens d'excitation à micro-ondes comprennent une antenne (13) raccordée à un guide d'onde (15) et disposée coaxialement dans une cavité (1) entourant l'enceinte (2), ladite cavité (1) étant pourvue de moyens de court-circuit longitudinal (11).

1/2





PCT/FR99/00692



## INTERNATIONAL SEARCH REPORT

Inte onal Application No PCT/FR 99/00692

| A. CLASSII<br>IPC 6                                                         | FICATION OF SUBJECT MATTER B05D7/24 C23C16/26                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                        |  |
|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--|
| According to                                                                | International Patent Classification (IPC) or to both national classificat                                                                                                                                                                                                                                                                                               | ion and IPC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        |  |
|                                                                             | SEARCHED                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                        |  |
| Minimum do<br>IPC 6                                                         | cumentation searched (classification system followed by classification B05D C23C                                                                                                                                                                                                                                                                                        | n symbols)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        |  |
| Documentat                                                                  | ion searched other than minimum documentation to the extent that su                                                                                                                                                                                                                                                                                                     | ch documents are included in the fields se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | arched                                 |  |
| Electronic d                                                                | ata base consulted during the international search (name of data base                                                                                                                                                                                                                                                                                                   | e and, where practical, search terms used                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |  |
| C. DOCUM                                                                    | ENTS CONSIDERED TO BE RELEVANT                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                        |  |
| Category °                                                                  | Citation of document, with indication, where appropriate, of the rele                                                                                                                                                                                                                                                                                                   | vant passages                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Relevant to claim No.                  |  |
| X                                                                           | WO 95 22413 A (COCA COLA CO)<br>24 August 1995                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1-7,9,<br>11,12,<br>14,16,<br>18-20,22 |  |
|                                                                             | see the whole document                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                        |  |
| х                                                                           | EP 0 778 089 A (KAUTEX WERKE GMBH<br>CHEM TECH WERKE (DE)) 11 June 199                                                                                                                                                                                                                                                                                                  | 1,4,6,7,<br>9,11,12,<br>16,<br>18-20,22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |  |
| Υ                                                                           | see the whole document                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | . 14                                   |  |
| X                                                                           | EP 0 739 655 A (INPRO INNOVATIONS<br>30 October 1996                                                                                                                                                                                                                                                                                                                    | GMBH)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1,6,7,9,<br>11,12,<br>16,<br>18-20,22  |  |
|                                                                             | see the whole document                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10 20,22                               |  |
|                                                                             |                                                                                                                                                                                                                                                                                                                                                                         | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                        |  |
| X Fur                                                                       | ther documents are listed in the continuation of box C.                                                                                                                                                                                                                                                                                                                 | X Patent family members are listed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | In annex.                              |  |
| "A" docum consi "E" earlier filling "L" docum which citatic "O" docum other | nent defining the general state of the art which is not dered to be of particular relevance document but published on or after the international date ent which may throw doubts on priority claim(a) or is cited to establish the publication date of another on or other special reason (as specified) nent referring to an oral disclosure, use, exhibition or means | "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention  "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone  "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.  "&" document member of the same patent family |                                        |  |
|                                                                             | e actual completion of the international search                                                                                                                                                                                                                                                                                                                         | Date of mailing of the international se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <del></del>                            |  |
|                                                                             | 25 June 1999                                                                                                                                                                                                                                                                                                                                                            | 07/07/1999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        |  |
| Name and                                                                    | mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2                                                                                                                                                                                                                                                                                               | Authorized officer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        |  |
|                                                                             | NL - 2280 HV Rijswijk<br>Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,<br>Fax: (+31-70) 340-3016                                                                                                                                                                                                                                                                           | Brothier, J-A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |  |

#### INTERNATIONAL SEARCH REPORT

Int Ional Application No PCT/FR 99/00692

| .,00      | STIGNT DUCKINGER 13 CONSIDERED TO DE MELEVANT                                                                                                                                                                                                                  |                       |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| ategory ° | ation) DOCUMENTS CONSIDERED TO BE RELEVANT  Citation of document, with indication, where appropriate, of the relevant passages                                                                                                                                 | Relevant to claim No. |
|           | DE 43 16 349 A (VER ZUR FOERDERUNG DES<br>INST FU) 17 November 1994<br>see the whole document                                                                                                                                                                  | 1,4,5,7,<br>9,11,13   |
|           | DE 36 32 748 A (VER ZUR FOERDERUNG DES<br>INST FU) 7 April 1988                                                                                                                                                                                                | 1,16                  |
| •         | see column 2, line 59 - line 66                                                                                                                                                                                                                                | 14                    |
| [         | DE 44 37 050 A (LEYBOLD AG) 18 April 1996                                                                                                                                                                                                                      | 16,<br>18-20,22       |
|           | see the whole document                                                                                                                                                                                                                                         | 35 25,22              |
|           | EP 0 773 166 A (KIRIN BREWERY) 14 May 1997 see the whole document                                                                                                                                                                                              | 1,4-7                 |
| 1         | US 4 756 964 A (KINCAID PAMELA J J ET AL) 12 July 1988 see the whole document                                                                                                                                                                                  | 1,4-6                 |
| <b>V</b>  | EP 0 575 299 A (AKERLUND & RAUSING AB) 22 December 1993 see the whole document                                                                                                                                                                                 | 9                     |
| 1         | DANZER T ET AL: "INFLUENCE OF SELECTED PROCESS PARAMETERS ON THE DEPOSITION OF POLYMER-LIKE AMORPHOUS HYDROGENATED CARBON FILMS IN GLOW DISCHARGES" THIN SOLID FILMS, vol. 219, no. 1 / 02, 30 October 1992, pages 119-128, XP000334912 see the whole document |                       |

## INTERNATIONAL SEARCH REPORT

information on patent family members

Inte onal Application No
PCT/FR 99/00692

| Patent document cited in search repor | t | Publication<br>date | Patent family member(s)       | Publication date-        |
|---------------------------------------|---|---------------------|-------------------------------|--------------------------|
| WO 9522413                            | A | 24-08-1995          | AT 179914 T                   | 15-05-1999               |
|                                       |   |                     | BR 9505649 A<br>DE 69509597 D | 19-03-1996<br>17-06-1999 |
|                                       |   |                     | EP 0693975 A                  | 31-01-1996               |
|                                       |   |                     | JP 8509166 T                  | 01-10-1996               |
|                                       |   |                     | NO 954105 A                   | 16-10-1995               |
|                                       |   |                     | US 5849366 A                  | 15-12-1998               |
|                                       |   |                     | ZA 9501048 A                  | 12-10-1995               |
| EP 0778089                            | Α | 11-06-1997          | DE 4318084 A                  | 08-12-1994               |
| EF 0//0009                            | ^ | 11 00 1557          | DE 4318086 A                  | 08-12-1994               |
|                                       |   |                     | CA 2164223 A                  | 08-12-1994               |
|                                       |   |                     | WO 9427745 A                  | 08-12-1994               |
|                                       |   |                     | DE 59406143 D                 | 09-07-1998               |
|                                       |   |                     | EP 0705149 A                  | 10-04-1996               |
|                                       |   |                     | ES 2117789 T                  | 16-08-1998               |
|                                       |   |                     | US 5677010 A                  | 14-10-1997               |
|                                       |   | 20 10 1006          |                               | 06-05-1999               |
| EP 0739655                            | A | 30-10-1996          |                               | 00-05-1999               |
| DE 4316349                            | A | 17-11-1994          | NONE                          |                          |
| DE 3632748                            | Α | 07-04-1988          | NONE                          |                          |
| DE 4437050                            | A | 18-04-1996          | DE 59501767 D                 | 07-05-1998               |
|                                       |   |                     | EP 0708185 A                  | 24-04-1996               |
|                                       |   |                     | JP 8208860 A                  | 13-08-1996               |
|                                       |   |                     | US 5690745 A                  | 25-11-1997<br>           |
| EP 0773166                            | Α | 14-05-1997          | JP 8053116 A                  | 27-02-1996               |
| _:                                    | • |                     | CA 2196888 A                  | 22-02-1996               |
|                                       |   |                     | WO 9605111 A                  | 22-02-1996               |
| US 4756964                            | A | 12-07-1988          | NONE                          |                          |
| EP 0575299                            | Α | 22-12-1993          | SE 503260 C                   | 29-04-1996               |
|                                       | - |                     | AT 151670 T                   | 15-05-1997               |
|                                       |   |                     | DE 69309783 D                 | 22-05-1997               |
|                                       |   |                     | DE 69309783 T                 | 04-09-1997               |
|                                       |   |                     | DK 575299 T                   | 06-10-1997               |
|                                       |   |                     | ES 2101999 T                  | 16-07-1997               |
|                                       |   |                     | FI 932720 A                   | 16-12-1993               |
|                                       |   |                     | NO 932182 A                   | 16-12-1993               |
|                                       |   |                     | SE 9201827 A                  | 16-12-1993               |

## RAPPORT DE RECHERCHE INTERNATIONALE

e internationale No

PCT/FR 99/00692 A. CLASSEMENT DE L'OBJET DE LA DEMANDE CIB 6 B05D7/24 C23C16 C23C16/26 Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE Documentation minimale consultée (système de classification suivi des symboles de classement) B05D C23C CIB 6 Documentation consultée autre que la documentation minimale dans la mesure où ces documents relèvent des domaines sur lesquels a porté la recherche Base de données électronique consultée au cours de la recherche internationale (nom de la base de données, et si réalisable, termes de recherche utilisés) C. DOCUMENTS CONSIDERES COMME PERTINENTS Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents no, des revendications visées Catégorie <sup>4</sup> WO 95 22413 A (COCA COLA CO) 24 août 1995 1-7,9, X 11,12, 14,16, 18-20,22 voir le document en entier EP 0 778 089 A (KAUTEX WERKE GMBH ; BUCK 1,4,6,7, X 9,11,12, CHEM TECH WERKE (DE)) 11 juin 1997 16. 18-20,22 14 Υ voir le document en entier EP 0 739 655 A (INPRO INNOVATIONS GMBH) 1,6,7,9, X 11,12, 30 octobre 1996 16, 18-20,22 voir le document en entier Les documents de familles de brevets sont indiqués en annexe Voir la suite du cadre C pour la fin de la liste des documents X ° Catégories spéciales de documents cités: "T" document uitérieur publié après la date de dépôt international ou la date de priorité et n'appartenenant pas à l'état de la technique pertinent, mais cité pour comprendre le principe ou la théorie constituant la base de l'invention "A" document définissant l'état général de la technique, non considéré comme particulièrement pertinent "E" document antérieur, mais publié à la date de dépôt international "X" document particulièrement pertinent; l'Inven tion revendiquée ne peut ou après cette date être considérée comme nouvelle ou comme impliquant une activité "L" document pouvant jeter un doute sur une revendication de priorité ou cité pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (telle qu'indiquée) inventive par rapport au document considéré isolément "Y" document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme impliquant une activité inventive lorsque le document est associé à un ou plusieurs autres documents de même nature, cette combinaison étant évidente pour une personne du métier "O" document se référant à une divulgation orale, à un usage, à une exposition ou tous autres moyens document publié avant la date de dépôt international, mais "&" document qui fait partie de la même famille de brevets postérieurement à la date de priorité revendiquée Date à laquelle la recherche internationale a été effectivement achevée Date d'expédition du présent rapport de recherche internationale 07/07/1999 25 juin 1999

Fax: (+31-70) 340-3016

1

Nom et adresse postale de l'administration chargée de la recherche internationale

Office Européen des Brevets, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni,

Fonctionnaire autorisé

Brothier, J-A

#### RAPPORT DE RECHERCHE INTERNATIONALE

Den e internationale No PCT/FR 99/00692

| (suite) D  | OCUMENTS CONSIDERES COMME PERTINENTS                                                                                                                                                                                                                               |                                  |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| atégorie ° | Identification des documents cités, avec, le cas échéant, l'Indicationdes passages pertinen                                                                                                                                                                        | ts no. des revendications visées |
| (          | DE 43 16 349 A (VER ZUR FOERDERUNG DES<br>INST FU) 17 novembre 1994<br>voir le document en entier                                                                                                                                                                  | 1,4,5,7,<br>9,11,13              |
|            | DE 36 32 748 A (VER ZUR FOERDERUNG DES<br>INST FU) 7 avril 1988                                                                                                                                                                                                    | 1,16                             |
| ,          | voir colonne 2, ligne 59 - ligne 66                                                                                                                                                                                                                                | 14                               |
|            | DE 44 37 050 A (LEYBOLD AG) 18 avril 1996                                                                                                                                                                                                                          | 16,<br>18-20,22                  |
|            | voir le document en entier                                                                                                                                                                                                                                         | 15 20,22                         |
| (          | EP 0 773 166 A (KIRIN BREWERY) 14 mai 1997<br>voir le document en entier                                                                                                                                                                                           | 1,4-7                            |
| \          | US 4 756 964 A (KINCAID PAMELA J J ET AL)<br>12 juillet 1988<br>voir le document en entier                                                                                                                                                                         | 1,4-6                            |
| ν.         | EP 0 575 299 A (AKERLUND & RAUSING AB)<br>22 décembre 1993<br>voir le document en entier                                                                                                                                                                           | 9                                |
| A          | DANZER T ET AL: "INFLUENCE OF SELECTED PROCESS PARAMETERS ON THE DEPOSITION OF POLYMER-LIKE AMORPHOUS HYDROGENATED CARBON FILMS IN GLOW DISCHARGES" THIN SOLID FILMS, vol. 219, no. 1 / 02, 30 octobre 1992, pages 119-128, XP000334912 voir le document en entier |                                  |
|            |                                                                                                                                                                                                                                                                    |                                  |
|            |                                                                                                                                                                                                                                                                    |                                  |
|            |                                                                                                                                                                                                                                                                    |                                  |

#### RAPPORT DE RECHERCHE INTERNATIONALE

Renseignements relatifs aux membres de familles de brevets

Den a Internationale No PCT/FR 99/00692

|    | ment brevet cite<br>port de recherci |   | Date de publication | fami                                               | mbre(s) de la<br>lle de brevet(s)                                                                              | Date de publication                                                                                          |
|----|--------------------------------------|---|---------------------|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| WO | 9522413                              | A | 24-08-1995          | AT<br>BR<br>DE<br>EP<br>JP<br>NO<br>US<br>ZA       | 179914 T<br>9505649 A<br>69509597 D<br>0693975 A<br>8509166 T<br>954105 A<br>5849366 A<br>9501048 A            | 15-05-1999<br>19-03-1996<br>17-06-1999<br>31-01-1996<br>01-10-1995<br>16-10-1995<br>15-12-1998<br>12-10-1995 |
| EP | 0778089                              | Α | 11-06-1997          | DE<br>DE<br>CA<br>WO<br>DE<br>EP<br>ES<br>US       | 4318084 A<br>4318086 A<br>2164223 A<br>9427745 A<br>59406143 D<br>0705149 A<br>2117789 T<br>5677010 A          | 08-12-1994<br>08-12-1994<br>08-12-1994<br>08-12-1994<br>09-07-1998<br>10-04-1996<br>16-08-1998<br>14-10-1997 |
| EP | 0739655                              | Α | 30-10-1996          | DE                                                 | 59505516 D                                                                                                     | 06-05-1999                                                                                                   |
| DE | 4316349                              | Α | 17-11-1994          | AUCL                                               | IN                                                                                                             |                                                                                                              |
| DE | 3632748                              | Α | 07-04-1988          | AUCL                                               | IN                                                                                                             |                                                                                                              |
| DE | 4437050                              | A | 18-04-1996          | DE<br>EP<br>JP<br>US                               | 59501767 D<br>0708185 A<br>8208860 A<br>5690745 A                                                              | 07-05-1998<br>24-04-1996<br>13-08-1996<br>25-11-1997                                                         |
| EP | 0773166                              | Α | 14-05-1997          | JP<br>CA<br>WO                                     | 8053116 A<br>2196888 A<br>9605111 A                                                                            | 27-02-1996<br>22-02-1996<br>22-02-1996                                                                       |
| US | 4756964                              | Α | 12-07-1988          | AUC                                                | JN                                                                                                             |                                                                                                              |
| EP | 0575299                              | A | 22-12-1993          | SE<br>AT<br>DE<br>DE<br>DK<br>ES<br>FI<br>NO<br>SE | 503260 C<br>151670 T<br>69309783 D<br>69309783 T<br>575299 T<br>2101999 T<br>932720 A<br>932182 A<br>9201827 A | 29-04-1996<br>15-05-1997<br>22-05-1997<br>04-09-1997<br>06-10-1997<br>16-07-1993<br>16-12-1993<br>16-12-1993 |

#### Transmission Report

Date/Time Local ID Local Name Company Logo 1-22-04; 4:44PM

This document was confirmed. (reduced sample and details below)

Document Size Letter-S

Received: 1/81/94 3:00PM; LEAR CORPORATION -> HAMILTON DOW AUTO -: 14: Pege 1 .
11:32 JRN 21, 2884 ID: LEAR IOAR CITY PLANT TEL NO: 338-4867 e176795 PAGE: 1/1

Master Pull Sheet From Lear Iowa City

Pull For: Wednesday, January 21, 2004

**DOW** Contact: GLADIE HAMILION Active: GLADIE HAMILTON
Fee: (1)(248'391-6392

P.O. #

Pulla in Rota - Time Pull In Rota - Time Pulla in Rota - Time Pull International Pull International Pull International Pull International Pull International Pull International Internat 2:01200.-00 of 12:01200.-00 l3 c101200.-00 l3 c101200.-00 l3 c101200.-00 l3 c101400.-22 of 2:01400.-22 l5 c101400.-22 l5 c101400.-22 l5 c101400.-22 l5 c101400.-22 l2 c101400.-22 c1 c1014

Please Sign and Date

When You Have Confirmed This Master Pull Shoot, Please Fax à back to 319-332-9409

Total Pages Scanned : 1 Total Pages Confirmed : 1

| No. | Doc | Remote Station | Start Time      | Duration | Pages | Mode | Comments | Results |
|-----|-----|----------------|-----------------|----------|-------|------|----------|---------|
| 1   | 645 | 913193389409   | 1-22-04; 4:43PM | 36"      | 1/ 1  | G3   |          | CP 14.4 |

Notes :

EC: Error Correct

BC: Broadcast Send

CP: Completed HS: Host Scan HF: Host Fax

RE: Resend

MP: Multi-Poil

RM: Receive to Memory HP: Host Print

HR: Host Receive

PD: Polled by Remote

PG: Polling a Remote DR: Document Removed FO: Forced Output

MB: Receive to Mailbox PI: Power Interruption TM: Terminated by user WT: Waiting Transfer

FM: Forward Mailbox Doc. WS: Walting Send

#### Transmission Report

Date/Time Local ID Local Name Company Logo 1-22-04; 4:45PM

This document was confirmed.

(reduced sample and details below)

Document Size Letter-S

> Received: 1/22/04 2:14PM; 11:44 JRY 22, 2884 -> MAMILTON DOW AUTO 144: Page 1
> TEL NO! 9528610 439980 PROE! 1/1

> > Dow

#### Master Pull Sheet From Covington

Pull For: Thursday, Jennary 22, 2004.

Contact: Mannia Curties Attn: Marnia Curties (1)(248)391-6392 Vendor 4.

Pulls in Data - Time. **Loop Faxed** 9 1/19/04 8:04:39 AM 20008239-00 20008239-00 004 9 1/22/04 9:49:34 AM 1631 20008239-00 008 9 1/18/04 8:D4:39 AM

546-965-6529

When You Have Confirmed This Musics Pull Sheet, Please Fax it back to Lear Cordington

Total Pages Scanned : 1 Total Pages Confirmed : 1

| No. | Doc | Remote Station | Start Time      | Duration | Pages | Mode | Comments | Results |
|-----|-----|----------------|-----------------|----------|-------|------|----------|---------|
| 1   | 648 | 915409656529   | 1-22-04; 4:44PM | 22"      | 1/ 1  | EC   |          | CP 26.4 |

Notes :

EC: Error Correct

BC: Broadcast Send CP: Completed

HS: Host Scan HF: Host Fax

RE: Resend

MP: Multi-Poll

RM: Receive to Memory HP: Host Print

HR: Host Receive

PD: Polled by Remote

PG: Polling a Remote DR: Document Removed FO: Forced Output

WT: Walting Transfer

MB: Receive to Mailbox PI: Power Interruption TM: Terminated by user

FM: Forward Malibox Doc. WS: Walting Send