Unsupervised Learning

Yuyan Zhou May 20, 2020

Types of learning

- Supervised learning
- labelled dota. X => Y

- Classification
- Regression
- Semi-supervised learning
- Active learning
- Unsupervised learning
 - Clustering
 - Dimension reduction
- Reinforcement learning

• ...

Cluster analysis

- Top-down
- Bottom-up
- Key questions:
 - How to measure proximity
 - How to choose the number of clusters
 - Initialization

```
k too large p
```

Proximity matrices

- N objects, N by N matrix D to describe their pairwise proximity
- Nonnegative? Nonnegative?
- Symmetric? $D_{ij} = P_{ji}$
- Can be suitably convert to a dissimilarity matrix?
- Triangle inequality? Dij + Djk > Dik?

Common dissimilarities

- N measurements x_{ij} for i=1,2,...,N and j=1,2,...,p (variables/attributes)
- Define $D(x_i, x_{i'}) = \sum_{j=1}^{p} d_j(x_{ij}, x_{i'j})$
- Equivalent to based on correlation (similarity)

$$\rho(x_i, x_{i'}) = \frac{\sum_{j} (x_{ij} - \bar{x}_i)(x_{i'j} - \bar{x}_{i'})}{\sqrt{\sum_{j} (x_{ij} - \bar{x}_i)^2 \sum_{j} (x_{i'j} - \bar{x}_{i'})^2}} \sqrt{\sum_{j} (x_{ij} - \bar{x}_i)^2 \sum_{j} (x_{i'j} - \bar{x}_{i'})^2}$$

Weighted dissimilarity

Convex combination

$$D(x_i, x_{i'}) = \sum_{j=1}^p \underbrace{w_j \cdot d_j(x_{ij}, x_{i'j})}; \quad \sum_{j=1}^p w_j = 1.$$

$$\bar{D} = \frac{1}{N^2} \sum_{i=1}^N \sum_{i'=1}^N D(x_i, x_{i'}) = \sum_{j=1}^p \underbrace{w_j \cdot \bar{d_j}}_{\text{weighted}}, \text{ weighted in fluence of attribute}$$

$$\bar{d_j} = \frac{1}{N^2} \sum_{i=1}^N \sum_{i'=1}^N d_j(x_{ij}, x_{i'j})$$

Weighted squared Euclidean distance

$$D_I(x_i, x_{i'}) = \sum_{j=1}^p \overline{w_j} (\underline{x_{ij} - x_{i'j}})^2$$

$$\underline{\bar{d}_j} = \frac{1}{N^2} \sum_{i=1}^N \sum_{j=1}^N (x_{ij} - x_{i'j})^2 = 2 \cdot \mathrm{var}_j, \quad \text{influence of } j \text{ over the data set}.$$

$$1^{\circ}$$
 $Wj = [$

$$2^{\circ}$$
 $W_j = \frac{1}{J_j}$

Clustering algorithms

$$C(N) = \hat{v}$$
 $\hat{v} \in \{1, ..., k\}$.
 $N \longrightarrow K$ $\frac{S_2(n/K)}{K!} = \frac{1}{K!} \sum_{k=1}^{K} (-1)^{k-k} \binom{k}{k} k^N$.
 $S_2(19, 4) = \sqrt{p^{10}}$.

- Combinatorial algorithms
 - Work directly on the observed data
 - No direct inference to an underlying probability model
 - Encoder, many-to-one mapping
 - Local optimal, small-sized
- Mixture modeling
 - MLE, Bayesian approach
- Mode seeking
 - Bump hunting
 - PRIM ESL. 9.3

Common Heuristic in Practice:

The Lloyd's method

K-means.

[Least squares quantization in PCM, Lloyd, IEEE Transactions on Information Theory, 1982]

Input: A set of n datapoints $\mathbf{x^1}, \mathbf{x^2}, ..., \mathbf{x^n}$ in $\mathbf{R^d}$ $\mathcal{L}_{(x_i', x_{j'})} = \mathcal{E}_{(x_{i'}, x_{j'})} - \mathcal{L}_{(x_{i'})}$

Initialize centers $c_1, c_2, ..., c_k \in \mathbb{R}^d$ and clusters $C_1, C_2, ..., C_k$ in any way.

Repeat until there is no further change in the cost.

- For each j: $C_j \leftarrow \{x \in S \text{ whose closest center is } c_j\}$
- For each j: $c_j \leftarrow$ mean of C_j

Holding $c_1, c_2, ..., c_k$ fixed, pick optimal $C_1, C_2, ..., C_k$

Holding $C_1, C_2, ..., C_k$ fixed, pick optimal $c_1, c_2, ..., c_k$

Gaussian mixtures as soft K-means

K clusters
$$P(K=k|\pi)$$

 $P(x|K=k) = \pi N(x_i|M_k, 6^2)$
 $P(x) = \underset{k=1}{\overset{K}{=}} P(K=k|\pi) \cdot \pi N(x_i|M_k, 6^2)$
 E -step: $P(2|x, \theta)$
 M -step: maximize $E_{2}|x, \theta \log P(x, 2|\theta')$
 θ' soft K -means $\longrightarrow K$ -means

Hierarchical clustering

- Bottom-up
- Top-down
- Different linkage
 - Single linkage
 - Complete linkage
 - Average linkage
 - Ward's linkage

Spectral clustering

- Non-convex clusters
- Undirected similarity graph G=<V, E>
- Graph-partition problem
 - Edges between different groups have low weight
 - Within a group have high weight
- Random walk on the graph with transition probability matrix P
 - Construct groups that the random walk seldom transitions from one group to another

PCA

- Principal components
 - Projections of data
 - Mutually uncorrelated (orthogonal) v: vj = 0 v≠j v: Vi vj = 1 v=j ⇒ ||vi|| = |
 - Ordered in variance

$$\frac{1}{n} = \frac{1}{2} (\sqrt{1} \times i)^{2} = \sqrt{1} \times \sqrt{1} \times \sqrt{1}$$

$$\frac{1}{n} = \frac{1}{2} (\sqrt{1} \times i)^{2} = \sqrt{1} \times \sqrt{1} \times \sqrt{1}$$

$$\frac{1}{n} = \frac{1}{2} (\sqrt{1} \times i)^{2} = \sqrt{1} \times \sqrt{1}$$

$$\frac{1}{n} = \frac{1}{2} (\sqrt{1} \times i)^{2} = \sqrt{1} \times \sqrt{1}$$

$$\frac{1}{n} = \frac{1}{n} = \frac{1}{$$

Kernel principal components

$$\frac{\left[\phi\right] \cdot \mathbb{R}^{p} \Rightarrow \mathbb{R}^{p} \quad F : \mathbb{R}^{p} \quad D = p \quad k(x,y) = \phi(x)^{2}\phi(y) \quad D : \phi(x)\phi(x)^{T}\phi(x) \alpha = \lambda \phi(x)\alpha \quad \nu}{\chi = [\chi_{1}, \dots, \chi_{n}] \quad \nu}$$

$$\chi = [\chi_{1}, \dots, \chi_{n}] \quad \nu$$

$$\phi(X) = [\phi(x), \phi(x), \dots, \phi(\chi_{n})] \in \mathbb{R}^{p \times n}$$

$$\phi(X) = [\phi(x), \phi(x), \dots, \phi(\chi_{n})] \in \mathbb{R}^{p \times n}$$

$$\phi(X) = [\phi(x), \phi(x), \dots, \phi(\chi_{n})] \in \mathbb{R}^{p \times n}$$

$$\psi(X) = [\phi(x), \phi(x), \dots, \phi(\chi_{n})] \in \mathbb{R}^{p \times n}$$

$$\psi(X) = [\phi(x), \phi(x), \dots, \phi(\chi_{n})] \in \mathbb{R}^{p \times n}$$

$$\psi(X) = [\phi(x), \phi(x), \dots, \phi(\chi_{n})] \in \mathbb{R}^{p \times n}$$

$$\psi(X) = [\phi(x), \phi(x), \dots, \phi(\chi_{n})] \in \mathbb{R}^{p \times n}$$

$$\psi(X) = [\phi(x), \phi(x), \dots, \phi(\chi_{n})] \in \mathbb{R}^{p \times n}$$

$$\psi(X) = [\phi(x), \phi(x), \dots, \phi(\chi_{n})] \in \mathbb{R}^{p \times n}$$

$$\psi(X) = [\phi(x), \phi(x), \dots, \phi(\chi_{n})] \in \mathbb{R}^{p \times n}$$

$$\psi(X) = [\phi(x), \phi(x), \dots, \phi(\chi_{n})] \in \mathbb{R}^{p \times n}$$

$$\psi(X) = [\phi(x), \phi(x), \dots, \phi(\chi_{n})] \in \mathbb{R}^{p \times n}$$

$$\psi(X) = [\phi(x), \phi(x), \dots, \phi(\chi_{n})] \in \mathbb{R}^{p \times n}$$

$$\psi(X) = [\phi(x), \phi(x), \dots, \phi(\chi_{n})] \in \mathbb{R}^{p \times n}$$

$$\psi(X) = [\phi(x), \phi(x), \dots, \phi(\chi_{n})] \in \mathbb{R}^{p \times n}$$

$$\psi(X) = [\phi(x), \phi(x), \dots, \phi(\chi_{n})] \in \mathbb{R}^{p \times n}$$

$$\psi(X) = [\phi(x), \phi(x), \dots, \phi(\chi_{n})] \in \mathbb{R}^{p \times n}$$

$$\psi(X) = [\phi(x), \phi(x), \dots, \phi(\chi_{n})] \in \mathbb{R}^{p \times n}$$

$$\psi(X) = [\phi(x), \phi(x), \dots, \phi(\chi_{n})] \in \mathbb{R}^{p \times n}$$

$$\psi(X) = [\phi(x), \phi(x), \dots, \phi(\chi_{n})] \in \mathbb{R}^{p \times n}$$

$$\psi(X) = [\phi(x), \phi(x), \dots, \phi(\chi_{n})] \in \mathbb{R}^{p \times n}$$

$$\psi(X) = [\phi(x), \phi(x), \dots, \phi(\chi_{n})] \in \mathbb{R}^{p \times n}$$

$$\psi(X) = [\phi(x), \phi(x), \dots, \phi(\chi_{n})] \in \mathbb{R}^{p \times n}$$

$$\psi(X) = [\phi(x), \phi(x), \dots, \phi(\chi_{n})] \in \mathbb{R}^{p \times n}$$

$$\psi(X) = [\phi(x), \phi(x), \dots, \phi(\chi_{n})] \in \mathbb{R}^{p \times n}$$

$$\psi(X) = [\phi(x), \phi(x), \dots, \phi(\chi_{n})] \in \mathbb{R}^{p \times n}$$

$$\psi(X) = [\phi(x), \phi(x), \dots, \phi(\chi_{n})] \in \mathbb{R}^{p \times n}$$

$$\psi(X) = [\phi(x), \phi(x), \dots, \phi(\chi_{n})] \in \mathbb{R}^{p \times n}$$

$$\psi(X) = [\phi(x), \phi(x), \dots, \phi(x)]$$

$$\psi(X) = [\phi(x),$$

ICA

- PCA finds directions of maximum variation <
- ICA would find directions most "aligned" with data
 - Statistically independent linear transformation
 - Optimize based on mutual inforamtion