

Materia: Bases de datos

Profesor: Fernando Arreola Franco

Alumno: Rueda De Oliveira Chun Shik

Tarea: Tarea 11

Semestre: 2026-1

Grupo: 1

Introducción

Los niveles de aislamiento en bases de datos relacionales son mecanismos que controlan cómo las transacciones interactúan entre sí cuando acceden simultáneamente a los datos. Estos niveles forman parte de las propiedades ACID (Atomicidad, Consistencia, Aislamiento, Durabilidad) y determinan qué tipos de conflictos entre transacciones son permitidos.

Consideraciones Prácticas

- La elección del nivel de aislamiento depende del equilibrio necesario entre concurrencia y protección de datos
- Niveles más altos proporcionan mayor protección pero pueden reducir el rendimiento
- Para la mayoría de aplicaciones, Read Committed suele ser suficiente
- El nivel Serializable debe usarse solo cuando sea absolutamente necesario debido al impacto en el rendimiento

Niveles de Aislamiento Detallados

1. Serializable (Serializable)

- Garantiza que todas las transacciones ocurran como si fueran ejecutadas una después de otra
- Es el nivel más alto de aislamiento
- Utiliza bloqueos completos tanto de lectura como de escritura
- o Previene todos los efectos secundarios de concurrencia

Repeatable Read (Lectura Repetible)

- Mantiene los bloqueos de lectura y escritura hasta el final de la transacción
- Evita las lecturas sucias y no repetibles
- Permite las lecturas fantasma
- Ideal cuando necesitas leer datos múltiples veces dentro de una transacción

Read Committed (Lectura Comprometida)

- o Mantiene solo los bloqueos de escritura hasta el final de la transacción
- Previne las lecturas sucias
- Permite lecturas no repetibles y fantasma
- o Ofrece un buen balance entre concurrencia e integridad de datos

Read Uncommitted (Lectura No Comprometida)

- o Es el nivel más bajo de aislamiento
- No utiliza bloqueos
- Permite todas las anomalías de concurrencia
- o Proporciona la máxima concurrencia, pero menor protección

Comparación de efectos secundarios

Nivel de Aislamiento	Lectura Sucia	Lectura No Repetible	Lectura Fantasma
Serializable	No	No	No
Repeatable Read	No	No	Sí
Read Committed	No	Sí	Sí
Read Uncommitted	Sí	Sí	Sí

Propiedades ACID

Las propiedades ACID son fundamentales para garantizar la fiabilidad y consistencia de las transacciones en bases de datos. Veamos cada una de estas propiedades en detalle:

Atomicidad (A)

- Garantiza que cada transacción se complete totalmente o no se realice en absoluto
- Características principales:
 - Todas las operaciones de la transacción son tratadas como una unidad indivisible
 - Si alguna parte falla, toda la transacción se revierte (rollback)
 - o Si todo funciona, la transacción se confirma (commit) completamente

Consistencia (C)

- Asegura que la base de datos permanece en un estado válido antes y después de cada transacción
- Aspectos clave:
 - o Se mantienen todas las restricciones de integridad referencial
 - Las reglas de negocio se cumplen en todo momento
 - Los índices y vistas se actualizan correctamente

Aislamiento (I)

- Define cómo y cuándo los cambios producidos por una operación son visibles para otras operaciones concurrentes
- Niveles de control:
 - Serializable: máximo nivel de protección
 - o Repeatable Read: previene lecturas sucias y no repetibles
 - Read Committed: evita solo las lecturas sucias
 - Read Uncommitted: menor nivel de protección

Durabilidad (D)

- Garantiza que una vez confirmada una transacción, sus efectos son permanentes
- Características principales:
 - o Los cambios persisten incluso después de un fallo del sistema
 - Se mantiene la integridad de los datos en caso de reinicio
 - o Las operaciones commit sobreviven a problemas hardware o software

Ejemplo Práctico

Consideremos una transferencia bancaria entre dos cuentas:

- 1. **Atomicidad**: Si falla cualquier paso durante la transferencia, toda la operación se revierte:
 - a. Restar dinero de cuenta origen √
 - b. Sumar dinero a cuenta destino X (error)
 - c. Resultado: Se restaura el saldo original de ambas cuentas
- 2. Consistencia: Se mantienen las reglas del sistema:
 - a. El saldo nunca puede ser negativo
 - b. La suma de todos los saldos debe mantenerse constante
 - c. Se validan los límites diarios de transferencia
- 3. Aislamiento: Las transacciones simultáneas no afectan el resultado:
 - a. Otros programas no ven los cambios hasta que se confirma la transferencia
 - b. Múltiples transferencias pueden procesarse sin interferir entre sí
 - c. Los estados intermedios permanecen ocultos
- 4. **Durabilidad**: Una vez confirmada la transferencia:
 - a. Los cambios persisten en el disco duro
 - b. La operación sobrevive a un apagón del sistema
 - c. Se mantiene el registro de la transacción para auditoría

Importancia Práctica

Las propiedades ACID son fundamentales porque:

- 1. Garantizan la integridad de los datos en sistemas distribuidos
- 2. Permiten recuperación segura después de fallos del sistema
- 3. Facilitan la auditoría y el seguimiento de transacciones
- 4. Aseguran que las operaciones complejas se ejecuten de manera confiable

- David-Engel. (s/f). *Descripción de los niveles de aislamiento*. Microsoft.com. Recuperado el 24 de octubre de 2025, de https://learn.microsoft.com/es-es/sql/connect/jdbc/understanding-isolation-levels?view=sql-server-ver17
- Db2 for Linux, UNIX and Windows. (2025, enero 13). lbm.com. https://www.ibm.com/docs/es/db2/12.1.0?topic=issues-isolation-levels
- Dominic. (2019, noviembre 22). *Niveles de Aislamiento de Transacción*.

 DataSunrise. https://www.datasunrise.com/es/informacion-profesional/niveles-de-aislamiento-de-transacciones/
- Niveles de aislamiento—ArcMap. (s/f). Arcgis.com. Recuperado el 24 de octubre de 2025, de https://desktop.arcgis.com/es/arcmap/latest/manage-data/geodatabases/isolation-levels.htm
- Wikipedia contributors. (s/f). *Aislamiento (ACID)*. Wikipedia, The Free Encyclopedia. https://es.wikipedia.org/w/index.php?title=Aislamiento_(ACID)&oldid=1643468 00
- (S/f). Amazon.com. Recuperado el 24 de octubre de 2025, de https://docs.aws.amazon.com/es_es/neptune/latest/userguide/transactions-isolation-levels.html