Name: Akond Rahman

HW#8 Lab 001-B

Date: April 17, 2016

Answer to 17.9(a):

The experiment is a x b design. The levels for factor A is $[a_1, a_2, \ldots, a_a]$, and the levels for factor B is $[b_1, b_2, \ldots, b_b]$

If A and B are both fixed: all the levels of $[a_1, a_2, \ldots, a_a]$ for A and all levels of $[b_1, b_2, \ldots, b_b]$ for B, are included in the design.

If A and B are both random: out of all the levels of $[a_1, a_2, ..., a_a]$ for A, only a subset of the $[a_1, a_2, ..., a_a]$ levels for A is randomly selected and included. For B, only a randomly selected subset of all levels of $[b_1, b_2, ..., b_b]$ for B, are included in the design.

Answer to 17.13(a):

The mixed effects model can be represented as:

$$y_{ijkl} = \mu + \tau_i + \beta_j + \gamma_k + \tau \beta_{ij} + \tau \gamma_{ik} + \beta \gamma_{jk} + \tau \beta \gamma_{ijk} + \epsilon_{l(ijk)}$$

here
$$i = 1, 2, 3, j = 1, 2, ..., 4$$
, and $k = 1, 2, ..., 6$,

Furthermore,

 y_{ijkl} is the l^{th} observation for the level of i, for factor chemical, the level of j, for factor B, and the level of k, for factor C.

 μ = overall mean response which is unknown

 τ_i = the random effect corresponding to the i^{th} level of factor A. The τ_i s have independent normal distribution with mean zero and variance σ^2_A

 β_j = the fixed effect corresponding to the j^{th} level of factor B.

 γ_k = the fixed effect corresponding to the k^{th} level of factor C.

 $\tau\beta_{ij}$ = the random effect due to interaction of the i^{th} level of factor A, and the j^{th} level of factor B. The $\tau\beta_{ij}$ s have independent normal distribution with mean zero and variance $\sigma^2_{\tau\beta}$

 $\tau\gamma_{ik}$ = the random effect due to interaction of the ith level of factor A, and the kth level of factor C. The $\tau\gamma_{ik}$ s have independent normal distribution with mean zero and variance $\sigma^2_{\tau\gamma}$

 $\beta\gamma_{jk}$ = the random effect due to interaction of the j^{th} level of factor B, and the k^{th} level of factor C. The $\beta\gamma_{jk}$ s have independent normal distribution with mean zero and variance $\sigma^2_{\beta\gamma}$

 $\tau\beta\gamma_{ijk}$ = the random effect due to interaction for the ith level of factor A, jth level of factor B, and the kth level of factor C. The $\tau\beta\gamma_{ijk}$ s have independent normal distribution with mean zero and variance $\sigma^2_{\tau\beta\gamma}$

 $\epsilon_{l(ijk)}$ = the random error associated with the l^{th} observation and has an independent distribution with man zero, and variance σ^2

 $\tau_{i}\,,\tau\beta_{ij}$, $\tau\gamma_{ik}\,,$ and $\tau\beta\gamma_{ijk}$ are mutually independent

Answer to 17.13(b):

Source	Expected Mean Square (EMS)	Degrees of Freedom (df)
A	$\sigma^{2} + n\sigma^{2}_{ABC} + nb\sigma^{2}_{AC} + nc\sigma^{2}_{AB} + nbc\sigma^{2}_{A}$	a-1=2
В	$\sigma^2 + n\sigma^2_{ABC} + nc\sigma^2_{AB} + nac\phi^2_{B}$	b-1=3
С	$\sigma^2 + n\sigma^2_{ABC} + nb\sigma^2_{AC} + nab\phi^2_{C}$	c-1=5
AB	$\sigma^2 + n\sigma^2_{ABC} + nc\sigma^2_{AB}$	(a-1)(b-1) = 6
AC	$\sigma^2 + n\sigma^2_{ABC} + nb\sigma^2_{AC}$	(a-1)(c-1)=10
BC	$\sigma^2 + n\sigma^2_{ABC} + na\phi^2_{BC}$	(b-1)(c-1)=15
ABC	$\sigma^2 + n\sigma^2_{ABC}$	(a-1)(b-1)(c-1) = 30
Error	σ^2	abc(n-1) = 216

Answer to 17.13(c):

For random effects of A, σ^2_A :

$$H_0$$
: $\sigma^2_A = 0$, H_A : $\sigma^2_A > 0$

Under H₀, $\sigma_{A}^2 = 0$, modified EMS = $\sigma_{ABC}^2 + n\sigma_{ABC}^2 + n\sigma_{AC}^2 + n\sigma_{AB}^2$

This modified EMS is not in the ANOVA table so we need to approximate the F-test is needed, with Satterwithe's degree of freedom formula. The modified EMS can be obtained from $MS_{AB} + MS_{AC} - MS_{ABC}$

For fixed effects of B, ϕ^2_B :

$$H_0$$
: $\varphi^2_B = 0$, H_A : $\varphi^2_B > 0$

Under H_0 , $\phi^2{}_B=0,$ modified EMS = $\sigma^2+n\sigma^2{}_{ABC}+nc\sigma^2{}_{AB}$

This modified EMS is in the ANOVA table, as well as with the degrees of freedom so we F-test = MS_B / MS_{AB}

For fixed effects of C, φ^2 C:

$$H_0$$
: $\varphi^2_C = 0$, H_A : $\varphi^2_C > 0$

Under H_0 , ϕ^2_C = 0, modified EMS = $\sigma^2_{}^{} + n\sigma^2_{}^{}_{ABC} + nb\sigma^2_{}_{AC}$

This modified EMS is in the ANOVA table, as well as with the degrees of freedom so we F-test = MS_C / MS_{AC}

For random effects of AB, σ^2_{AB} :

$$H_0$$
: $\sigma^2_{AB} = 0$, H_A : $\sigma^2_{AB} > 0$

Under H_0 , $\sigma^2_{AB} = 0$, modified EMS = $\sigma^2 + n\sigma^2_{ABC} + nc\sigma^2_{AB}$

This modified EMS and degrees of freedom is in the ANOVA table. The F-test = MS_{AB}/MS_{ABC}

For random effects of AC, σ^2_{AC} :

$$H_0$$
: $\sigma^2_{AC} = 0$, H_A : $\sigma^2_{AC} > 0$

Under H₀, $\sigma^2_{AC} = 0$, modified EMS = $\sigma^2 + n\sigma^2_{ABC}$

This modified EMS and degrees of freedom is in the ANOVA table. The F-test = MS_{AC}/MS_{ABC}

For random effects of BC, σ^2_{BC} :

$$H_0$$
: $\sigma^2_{BC} = 0$, H_A : $\sigma^2_{BC} > 0$

Under H₀, $\sigma^2_{BC} = 0$, modified EMS = $\sigma^2 + n\sigma^2_{ABC}$

This modified EMS and degrees of freedom is in the ANOVA table. The F-test = MS_{BC}/MS_{ABC}

For random effects of BC, σ^2_{ABC} :

$$H_0$$
: $\sigma^2_{ABC} = 0$, H_A : $\sigma^2_{ABC} > 0$

Under H₀, $\sigma^2_{ABC} = 0$, modified EMS = σ^2

This modified EMS and degrees of freedom is in the ANOVA table. The F-test = MS_{ABC}/MSE

Answer to 17.10(a):

The mixed effects model can be represented as:

$$y_{ijk} = \mu + \tau_i + \beta_j + \tau \beta_{ij} + \epsilon_{k(ij)}$$

here
$$i = 1, 2, 3, 4$$
, and $j = 1, 2, ..., 5$

Furthermore,

 y_{ijk} is the k^{th} observation for the level of i, for factor chemical, the level of j, for factor location.

 μ = overall mean response which is unknown

 τ_i = the fixed effect corresponding to the i^{th} level of factor 'chemical'.

 β_j = the random effect corresponding to the j^{th} level of factor 'location'. The β_j s have independent normal distribution with mean zero and variance $\sigma^2_{location}$

 $\tau\beta_{ij}$ = the random effect due to interaction of the i^{th} level of factor chemical, and the j^{th} level of factor location. The $\tau\beta_{ij}$ s have independent normal distribution with mean zero and variance $\sigma^2_{\ \tau\beta}$

 $\epsilon_{k(ij)}$ = the random error associated with the k^{th} observation and has an independent distribution with mean zero, and variance σ^2

 $\epsilon_{k(ij)}\,$, $\tau\beta_{ij}$, and β_{j} are mutually independent

Answer to 17.10(b):

Source	d f	Sum of Squar	Mea n Squa	Expected mean Square	Error term	Err or DF	F Val ue	p- valu e
Chemical	3	180.1 23	60.0 44	Var(Residual) + 2 Var (chemical*loc ation) + Q(chemical)	MS (chemical*loc ation)	12	44.5	< 0.00 01
Location	4	3.811	0.95	Var(Residual) + 2 Var (chemical*loc ation) + 8 Var (location)	MS (chemical*loc ation)	12	0.71	0.60
Chemical*loc ation	1 2	16.15 8	1.34	Var(Residual) + 2 Var (chemical*loc ation)	MS(Residual)	20	3.89	0.00
Error	2 0	6.925	0.34 6	Var(Residual)				

Answer to 17.11:

Fixed effects for chemical:

 H_0 : $\phi^2_{chemical} = 0$, H_A : $\phi^2_{chemical} > 0$

Decision: With 5% significance level, we reject the null hypothesis

Conclusion: There is significantly sufficient evidence that there is variability amongst the ith levels of chemical.

Random effects for location:

 H_0 : $\sigma^2_{location} = 0$, H_A : $\sigma^2_{location} > 0$

Decision: With 5% significance level, we fail to reject the null hypothesis

Conclusion: There is not significantly sufficient evidence that there is variability amongst the jth levels of location.

Random effects for interaction due to chemical*location:

$$H_0$$
: $\sigma^2_{\text{chemical * location}} = 0$, H_A : $\sigma^2_{\text{chemical * location}} > 0$

Decision: With 5% significance level, we reject the null hypothesis

Conclusion: There is significantly sufficient evidence that there is variability amongst the interaction due to jth levels of location and ith levels of chemical.

Answer to 17.27(a):

The mixed effects model can be represented as:

$$y_{ijk} = \mu + \tau_i + \beta_j + \tau \beta_{ij} + \epsilon_{k(ij)}$$

here
$$i = 1, 2, 3, 4$$
, and $j = 1, 2, 3$

Furthermore,

 y_{ijk} is the k^{th} observation for the level of i, for factor machine, the level of j, for factor operator.

 μ = overall mean response which is unknown

 τ_i = the random effect corresponding to the ith level of factor 'machine'. The τ_i s have independent normal distribution with mean zero and variance $\sigma^2_{machine}$

 β_j = the random effect corresponding to the j^{th} level of factor 'operator'. The β_j s have independent normal distribution with mean zero and variance $\sigma^2_{operator}$

 $\tau\beta_{ij}$ = the random effect due to interaction of the i^{th} level of factor machine, and the j^{th} level of factor operator. The $\tau\beta_{ij}$ s have independent normal distribution with mean zero and variance $\sigma^2_{\ \tau\beta}$

 $\epsilon_{k(ij)}$ = the random error associated with the k^{th} observation and has an independent distribution with mean zero, and variance σ^2

 $\epsilon_{k(ij)}\,$, $\tau\beta_{ij}$, and $\tau_{i},\,\beta_{j}$ are mutually independent

Answer to 17.27(b):

Source	d	Sum	Mea	Expected	Error term	Err	F	p-
	f	of	n	mean Square		or	Val	valu
		Squar	Squa			DF	ue	e
		es	re					
Machine	3	12.45	60.0	Var(Residual)	MS	6	0.56	0.66
		83	44	+ 2 Var	(machine*oper			19
				(machine*oper	ator)			
				ator) + 6 Var				
				(machine)				
Operator	2	160.3	0.95	Var(Residual)	MS	6	10.7	0.01
		33	2	+ 2 Var	(machine*oper		7	103
				(machine*oper	ator)			
				ator) + 8 Var				
				(operator)				
Machine*Ope	6	44.66	1.34	Var(Residual)	MS(Residual)	12	1.96	0.15
rator		67	6	+ 2 Var				07
				(machine*oper				
				ator)				
Error	1	45.50	0.34	Var(Residual)				
	2		6					

Answer to 17.27(c):

Random effects for machine:

$$H_0$$
: $\sigma^2_{machine} = 0$, H_A : $\sigma^2_{machine} > 0$, p-value =0.6619

Decision: With 5% significance level, we fail to reject the null hypothesis

Conclusion: There is not significantly sufficient evidence that there is variability amongst the ith levels of machine.

Random effects for operator:

$$H_0$$
: $\sigma^2_{\text{operator}} = 0$, H_A : $\sigma^2_{\text{operator}} > 0$, p-value =0.0103

Decision: With 5% significance level, we reject the null hypothesis

Conclusion: There is not significantly sufficient evidence that there is variability amongst the jth levels of operator.

Random effects for interaction due to machine*operator:

$$H_0$$
: $\sigma^2_{machine * operator} = 0$, H_A : $\sigma^2_{machine * operator} > 0$, p-value =0.1507

Decision: With 5% significance level, we fail to reject the null hypothesis

Conclusion: There is significantly sufficient evidence that there is variability amongst the interaction due to jth levels of operator and ith levels of machine.

Answer to 17.28(a):

Co-variance estimates from Type III:

```
Machine = -0.5486
Operator = 9.0903
Machine * operator = 1.8264
Residual = 3.7917
```

Co-variance estimates from REML:

```
Machine = 0
Operator = 9.2275
Machine * operator = 1.2777
Residual = 3.7917
```

REML is preferred as it includes adjustments needed for degree of freedom for estimating the mean squares. We also see from the output that the co-variance estimates for REML is different to that of Type III. For Type III the co-variance estimate is negative for machine.

Answer to 17.28(c):

The confidence interval for average solder strength = (199.43, 215.16) This value states that with 95% statistical confidence we can state that the true average solder strength lies between 199.43, and 215.16.

```
Akond Rahman
Date: April 14, 2016
Section 001B
Title: 17.10 and 17.11 problem for HW#8
/*Loading data*/
data fire ant killer;
  input chemical location @ ;
  do k = 1 to 2;
     input kill_count @;
     output;
  end;
  cards;
  1 1 7.2 9.6
  1 2 8.5 9.6
  1 3 9.1 8.6
  1 4 8.2 9.0
  1 5 7.8 8.0
  2 1 4.2 3.5
  2 2 2.9 3.3
  2 3 1.8 2.4
  2 4 3.6 4.4
  2 5 3.7 3.9
  3 1 9.5 9.3
  3 2 8.8 9.2
  3 3 7.6 7.1
  3 4 7.3 7.0
  3 5 9.2 8.3
  4 1 5.4 3.9
  4 2 6.3 6.0
  4 3 6.1 5.6
  4 4 5.0 5.4
  4 5 6.5 6.9
run;
quit;
proc mixed data = fire_ant_killer method = type3 ;
  class chemical location; /* chemical and location are the two factors*/
  model kill_count = chemical; /*chemical is the fixed factor, kill_count is the response*/
  random location location*chemical; /* location*chemical, and location are the random factors*/
```

run;

SAS Output Page 1 of 2

The SAS System

The Mixed Procedure

Model Information					
Data Set	WORK.FIRE_ANT_KILLER				
Dependent Variable	kill_count				
Covariance Structure	Variance Components				
Estimation Method	Type 3				
Residual Variance Method	Factor				
Fixed Effects SE Method	Model-Based				
Degrees of Freedom Method	Containment				

Class Level Information					
Class	Levels	Values			
chemical	4	1234			
location	5	12345			

Dimensions				
Covariance Parameters	3			
Columns in X	5			
Columns in Z	25			
Subjects	1			
Max Obs Per Subject	40			

Number of Observations			
Number of Observations Read	40		
Number of Observations Used	40		
Number of Observations Not Used	0		

	Type 3 Analysis of Variance									
Source	DF	Sum of Squares	Mean Square	Expected Mean Square	Error Term	Error DF	F Value	Pr > F		
chemical	3	180.132750	60.044250	Var(Residual) + 2 Var (chemical*location) + Q(chemical)	MS (chemical*location)	12	44.59	<.0001		
location	4	3.811500	0.952875	Var(Residual) + 2 Var (chemical*location) + 8 Var (location)	MS (chemical*location)	12	0.71	0.6020		
chemical*location	12	16.158500	1.346542	Var(Residual) + 2 Var (chemical*location)	MS(Residual)	20	3.89	0.0037		
Residual	20	6.925000	0.346250	Var(Residual)						

Covariance Parameter Estimates				
Cov Parm Estimate				
location	-0.04921			
chemical*location	0.5001			

SAS Output Page 2 of 2

Covariance Parameter Estimates				
Cov Parm	Estimate			
Residual	0.3462			

Fit Statistics					
-2 Res Log Likelihood	93.5				
AIC (smaller is better)	99.5				
AICC (smaller is better)	100.3				
BIC (smaller is better)	98.4				

1	Type 3 Test	ts of Fixed	l Effects	
Effect	Num DF	Den DF	F Value	Pr > F
chemical	3	12	44.59	<.0001

```
Akond Rahman
Date: April 14, 2016
Section 001B
Title: 17.27 and 17.28 problem for HW#8
/*Loading data*/
data strength data;
  input machine operator @ ;
  do k = 1 to 2;
     input strength @;
     output;
  end;
  cards;
  1 1 204 205
  1 2 205 207
  1 3 211 209
  2 1 205 210
  2 2 205 206
  2 3 207 210
  3 1 203 204
  3 2 206 204
  3 3 209 214
  4 1 205 203
  4 2 209 207
  4 3 215 212
run;
quit;
/*Using Type III method*/
proc mixed data = strength_data method = type3 ;
  class machine operator; /* machine and operator are the two factors*/
  model strength =; /* strength is the response*/
  random machine operator machine*operator; /* machine*operator, machine and operator are the random
run;
/* Ans.to 17.28 (a) */
/*Using REML method*/
proc mixed data = strength_data method = reml ;
  class machine operator; /* machine and operator are the two factors*/
  model strength = / ddfm = satterth cl ; /* strength is the response, used Satterwieth's adjustmen
  random machine operator machine*operator; /* machine*operator, machine and operator are the random
  estimate 'Avg. solder strength' intercept 1 / cl; * get CI of the estimate of the avg. solder strength
run;
```

SAS Output Page 1 of 4

The SAS System

The Mixed Procedure

Model Information			
Data Set	WORK.STRENGTH_DATA		
Dependent Variable	strength		
Covariance Structure Variance Components			
Estimation Method	Type 3		
Residual Variance Method	Factor		
Fixed Effects SE Method	Model-Based		
Degrees of Freedom Method	Containment		

Class Level Information				
Class	Levels Values			
machine	4	1234		
operator	3	123		

Dimensions		
Covariance Parameters	4	
Columns in X	1	
Columns in Z	19	
Subjects	1	
Max Obs Per Subject	24	

Number of Observations		
Number of Observations Read		
Number of Observations Used		
Number of Observations Not Used	0	

Type 3 Analysis of Variance								
Source	DF	Sum of Squares	Mean Square	Expected Mean Square	Error Term	Error DF	F Value	Pr > F
machine	3	12.458333	4.152778	Var(Residual) + 2 Var (machine*operator) + 6 Var (machine)	MS (machine*operator)	6	0.56	0.6619
operator	2	160.333333	80.166667	Var(Residual) + 2 Var (machine*operator) + 8 Var (operator)	MS (machine*operator)	6	10.77	0.0103
machine*operator	6	44.666667	7.444444	Var(Residual) + 2 Var (machine*operator)	MS(Residual)	12	1.96	0.1507
Residual	12	45.500000	3.791667	Var(Residual)				

Covariance Parameter Estimates			
Cov Parm Estimate			
machine -0.548			
operator 9.0903			

SAS Output Page 2 of 4

Covariance Parameter Estimates			
Cov Parm Estima			
machine*operator	1.8264		
Residual	3.7917		

Fit Statistics			
-2 Res Log Likelihood	109.5		
AIC (smaller is better)	117.5		
AICC (smaller is better)	119.7		
BIC (smaller is better)	115.1		

SAS Output Page 3 of 4

The SAS System

The Mixed Procedure

Model Information			
Data Set WORK.STRENGTH_			
Dependent Variable	strength		
Covariance Structure	Variance Components		
Estimation Method	REML		
Residual Variance Method	Profile		
Fixed Effects SE Method	Model-Based		
Degrees of Freedom Method	Satterthwaite		

Class Level Information				
Class	ss Levels Values			
machine	4	1234		
operator	3	123		

Dimensions		
Covariance Parameters	4	
Columns in X	1	
Columns in Z	19	
Subjects	1	
Max Obs Per Subject	24	

Number of Observations		
Number of Observations Read		
Number of Observations Used	24	
Number of Observations Not Used	0	

Iteration History							
Iteration	Evaluations	-2 Res Log Like	Criterion				
0	1	124.48875799					
1	3	109.85258730	0.00025935				
2	1	109.84333612	0.00000208				
3	1	109.84326553	0.00000000				

Convergence criteria met.

Covariance Parameter Estimates				
Cov Parm	Estimate			
machine	0			
operator	9.2275			
machine*operator	1.2777			

SAS Output Page 4 of 4

Covariance Parameter Estimates					
Cov Parm	Estimate				
Residual	3.7917				

Fit Statistics					
-2 Res Log Likelihood	109.8				
AIC (smaller is better)	115.8				
AICC (smaller is better)	117.1				
BIC (smaller is better)	114.0				

Solution for Fixed Effects									
Effect	Estimate	Standard Error	DF	t Value	Pr > t	Alpha	Lower	Upper	
Intercept	207.29	1.8277	2	113.42	<.0001	0.05	199.43	215.16	

Estimates								
Label	Estimate	Standard Error	DF	t Value	Pr > t	Alpha	Lower	Upper
Avg. solder strength	207.29	1.8277	2	113.42	<.0001	0.05	199.43	215.16