

Bioquímica dos Alimentos

ALTERAÇÕES NAS PROTEÍNAS DE ALIMENTOS

Prof. M.Sc. Yuri Albuquerque

POLARIDADE DOS AMINOÁCIDOS

Aminoácidos polares.

Aminoácidos apolares.

PONTO ISOELÉTRICO DE AMINOÁCIDOS

INTERAÇÃO PROTEÍNA - PROTEÍNA

Interações covalentes

- Pontes dissulfeto
- Pontes derivadas de tirosina
- Pontes derivadas de lisina
- Pontes lisino-alanina
- Pontes ácido glutâmico-lisina

INTERAÇÃO PROTEÍNA - PROTEÍNA

- Interações não-covalentes
 - Pontes de H
 - Interações hidrofóbicas
 - Ligações iônicas

COMPOSIÇÃO DE AMINOÁCIDOS E INTERAÇÃO PROTEÍNA-ÁGUA

- Baixo conteúdo de aminoácidos hidrofóbicos (abaixo de 30%) → tendência a se ligar a moléculas de água na superfície da proteína
- •Maiores conteúdos de aminoácidos hidrofóbicos (~30%)
- → baixo nível de hidratação da proteína
- •Maior estabilidade térmica → maior quantidade de AA hidrofóbicos (Val, Ile, Leu e Phe), que realizam interações hidrofóbicas e dificultam o rompimento de ligações fracas

INTERAÇÃO PROTEÍNA - ÁGUA (WHC)

Dependente de pH

INTERAÇÃO PROTEÍNA - ÁGUA

Dependente de [NaCI]

- NaCl aumenta a retenção de água pelas proteínas, devido à sua característica higroscópica
- •Os sais se ligam às moléculas de água da carne, impedindo que ela se solte das proteínas
- Adição de NaCl torna a carne mais suculenta

• Dependente de [PO₄-3]

•Sais de fosfato elevam o pH acima do ponto isolétrico, aumentando a capacidade de retenção de água

INTERAÇÃO PROTEÍNA - ÁGUA (WHC)

- Qualquer modificação na conformação (estrutura secundária, terciária ou quaternária) sem rompimento das ligações peptídicas
- As estruturas são mantidas por interações fracas ->
 facilmente quebradas quando expostas a calor, ácidos, sais
 ou álcool
- Leva à diminuição da solubilidade devido à exposição do núcleo hidrofóbico
- Processo irreversível

- Desnaturação pelo calor (térmica)
 - Pode melhorar a digestibilidade de algumas proteínas (inibição dos inibidores de tripsina de leguminosas cruas)
 - Inibição de lipoxigenases e polifenoxidases

Desnaturação por alteração de pH

Desnaturação x teor de água

- Quanto maior o teor de água, maior a tendência à desnaturação → alimentos secos são estáveis à termodesnaturação
- Alimentos secos proteínas assumem uma estrutura com pouca mobilidade (rígida) -> adição de sais e açúcares aumentam a termoestabilidade
- Maior teor de água água penetra na molécula e incha a proteína, tornando-a mais móvel e mais flexível → mais suscetível à desnaturação

Tensões de cisalhamento

Sovar, amassar e bater massa causa desnaturação proteica, devido à incorporação de bolhas de ar

AQUECIMENTO DE PROTEÍNAS

- Aquecimento em pH alcalino e acima de 200°C favorece:
 - Pirólise Formação de compostos mutagênicos ou cancerígenos a partir da pirólise de AA (aminoimidazoquinolinas) → assados, grelhados

AQUECIMENTO DE PROTEÍNAS

- Aquecimento em pH alcalino e acima de 200°C favorece:
 - Entrecruzamento de proteínas → formação de lisinoalanina (nefrotóxico) → síntese durante o aquecimento do leite (UHT)
 - Inibição da formação de lisinoalanina pela adição de sulfito (bloqueio dos grupamentos reativos da lisina)

AQUECIMENTO DE PROTEÍNAS

- Aquecimento em pH alcalino e acima de 200°C favorece:
 - Racemização de aminoácidos (L→D aminoácidos)
 - D aminoácidos são de difícil hidrólise, menos absorvidos

OXIDAÇÃO DE PROTEÍNAS

H₂O₂

- Bactericidas e branqueadores de farinhas
- Oxidam AA e promovem polimerização de proteínas
- Met, Cys, Trp e His são os mais suscetíveis à oxidação
- Síntese de compostos carcinogênicos (quinurenina formada pela oxidação do Trp)

OXIDAÇÃO DE AMINOÁCIDOS DA CARNE DURANTE O PROCESSAMENTO POS-MORTEM

- Reações de maturação da carne
- Fermentação da carne
- Fatiamento (aumento da superfície de contato com agentes oxidantes)
- Congelamento prolongado
- Altas temperaturas (cocção, grelha, fritura) → ROS
- Empacotamento (tecnologia de atmosfera controlada)

MODIFICAÇÃO DE AMINOÁCIDOS A PARTIR DE REAÇÕES DE OXIDAÇÃO

Amino acid residue	Process of modification
Arginine	Carbonylation/metal ion-catalyzed oxidation
Lysine	Carbonylation/ metal ion-catalyzed oxidation
Proline	Carbonylation/ metal ion-catalyzed oxidation
Cysteine	Glutathiolation/ cross-linking/ metal ion-catalyzed oxidation
Threonine	Carbonylation/ metal ion-catalyzed
Leucine	Hydroxylation
Histidine	Metal ion-catalyzed oxidation
Glutamic acid Methionine Phenylalanine	– Sulfoxidation Hydroxylation
Tryptophan	Hydroxylation/nitration
Tyrosine	Metal ion-catalyzed oxidation/nitrosylation
Valine	Hydroxylation

Soladoye et al. (2015)

INTERAÇÃO PROTEÍNA-PROTEÍNA A PARTIR DE REAÇÕES DE OXIDAÇÃO

Agregação de proteínas globulares após danos oxidativos e desnaturação (formação de geis)

HIDRÓLISE DE PROTEÍNAS

- Uso de proteases (papaína, tripsina...) formam oligopeptídeos que conferem sabor amargo
- Quantos mais hidrofóbicos os AA, maior a formação de oligopeptídeos amargos

HIDRÓLISE DE PROTEÍNAS NA INDÚSTRIA DE **ALIMENTOS**

colágeno

hidrólise

gelatina

REAÇÕES COM PROTEÍNAS COM INTERESSE NA INDÚSTRIA DE ALIMENTOS

- Proteólise ação de proteases específicas para formar AA
 com características flavorizantes
- Síntese de adoçantes (aspartame) a partir do ácido aspártico e fenilalanina

