#### **Aviso**

#### AC A PIC

"Con motivo de la suspensión temporal de la actividad docente presencial en la UGR, se informa de las condiciones de uso de la aplicación de videoconferencia que a continuación se va a utilizar:

- 1. La sesión va a ser grabada con el objeto de facilitar al estudiantado, con posterioridad, el contenido de la sesión docente.
- 2. Se recomienda a los asistentes que desactiven e inhabiliten la cámara de su dispositivo si no desean ser visualizados por el resto de participantes.
- 3. Queda prohibida la captación y/o grabación de la sesión, así como su reproducción o difusión, en todo o en parte, sea cual sea el medio o dispositivo utilizado. Cualquier actuación indebida comportará una vulneración de la normativa vigente, pudiendo derivarse las pertinentes responsabilidades legales."

2º curso / 2º cuatr.

Grado en Ing. Informática

#### Arquitectura de Computadores

### Presentación

Material elaborado por los profesores responsables de la asignatura: Mancia Anguita - Julio Ortega

Licencia Creative Commons @ 000









## Organización de la Asignatura y Evaluación (criterios y valoración)

#### AC MATC

- Horas de trabajo semanal (6 crts. = 4 horas/semana presencial + 4horas/semana no presen.):
  - Teoría (3 crts. = 2 horas/semana presencial + 2 horas/semana no presencial) +
  - Prácticas (3 crts. = 2 horas/semana presencial + 2 horas/semana no presencial)
- Calificación final evaluación continua (10 puntos):

| Actividades formativas evaluación ordinaria             |                                                                                         | Ponderación | Mínimo<br>40% | Máximo |
|---------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------|---------------|--------|
| Actividades grupo<br>grande (teoría)                    | Actividades temas 1, 2, 3 y 4  Prueba de todos los temas dentro de la prueba final      | 60%         | 2,4           | 2      |
| Actividades grupo<br>reducido<br>(prácticas/seminarios) | Entregas y actividades  Prueba de todos los bloques prácticos dentro de la prueba final | 40%         | 1,6           | 2      |
| Calificación en Acta                                    |                                                                                         | 100%        | 5             | 10     |

Calificación final de evaluación única (10 puntos) (Según el Reglamento de la UGR, hay que solicitarla al Departamento en las dos primeras semanas de clase)

| Prueba única final                  | %    | Mín. | Máx. |
|-------------------------------------|------|------|------|
| Prueba escrita de la parte teórica  | 60%  | 2,4  | 6    |
| Prueba escrita prácticas/seminarios | 40%  | 1,6  | 4    |
| TOTAL                               | 100% | 5    | 10   |

### Contexto de la asignatura



# Curso 1º

#### Cuatr. 1 - Básicas

- Algebra Lineal y Estructuras Matemáticas
- Cálculo
- Fundamentos Físicos y Tecnológicos
- Fundamentos del Software
- Fundamentos de Programación

#### Cuatr. 2 - Básicas

- Lógica y Métodos Discretos
- Estadística
- Tecnología y Organización de Computadores
- Metodología de la Programación
- Ingeniería, Empresa y Sociedad

## .so 2<sup>5</sup>

#### Cuatr. 3 -Rama

- Estructura de Computadores
- Estructuras de Datos
- Sistemas Operativos
- Programación y Diseño Orientado a Objetos
- Sistemas Concurrentes y Distribuidos

#### Cuatr. 4 - Rama

- Arquitectura de Computadores
- Algorítmica
- Inteligencia Artificial
- Fundamentos de Bases de Datos
- Fundamentos de Ingeniería del Software

### Contexto de la asignatura



## Curso 3º

#### Cuatr. 5 - Rama

- Ingeniería de Servidores
- Fundamentos de Redes
- Modelos de Computación
- Informática Gráfica
- Diseño y Desarrollo de Sistemas de Información

## Cuatr. 6 - Obligatorias especialidades

- Computación y Sistemas Inteligentes
- Ingeniería de Computadores
  - Sist. de Cómp. para Aplicaciones Específicas (IC.SCAE)
  - Sist. de Cómp. de Altas Prestaciones (IC.SCAP)
- Ingeniería del Software
- Sistemas de Información
- Tecnologías de la Información

# Curso 4º

## Cuatr. 7 - Obligatorias especialidades

- Computación y Sistemas Inteligentes
- Ingeniería de Computadores
- Ingeniería del Software
- Sistemas de Información
- Tecnologías de la Información

## Cuatr. 8 - Optativas especialidades

- Computación y Sistemas Inteligentes
- Ingeniería de Computadores
- Ingeniería del Software
- Sistemas de Información
- Tecnologías de la Información

#### Motivación I





**Procesador Gráfico:** ¿por qué puede ejecutar eficientemente códigos para procesamiento de gráficos?





¿En qué se parecen? ¿Qué los diferencia?



#### Motivación II







#### **Fugaku**

Procesador: ARM A64FX 48C (2.2 GHz)

N° de Procesadores (cores): **7630848** 

**ENIAC (1946)** 

N° de Procesadores: 1 (100 KHz, 174 KW)

5000 sumas/s 357 mult/s 35 div/s

Mejora en un factor de 70x10<sup>12</sup> en unos 75 años (crecimiento exponencial, algo más del 50% anual)

Reloj "solo" 22000 (2.2x10<sup>4</sup>) veces más rápido y alrededor de 50x10<sup>-12</sup> J/flop vs. 34.8 J/suma

### Motivación III



#### Motivación IV





#### Motivación V





#### Motivación VI





- Desarrollo de códigos que usen el hardware más eficientemente
- Mejorar el hardware

#### Motivación VII

Optimización de JPEG







Es posible obtener prestaciones comparables (en incluso mejores) en plataformas con recursos menos avanzados tecnológicamente si se aprovechan esos recursos de forma óptima

#### Motivación VIII

#### AC MATC

- ¿Cuál es el mejor microprocesador del mercado y por qué? ¿Tiene sentido hablar del mejor microprocesador del mercado?
- ¿Cómo puedo aprovechar mejor las capacidades de mi computador para generar aplicaciones eficientes? ¿qué puedo aprovechar?
- ¿Qué herramientas puedo utilizar para programar mi computador de sobremesa o mi portátil?
- ¿Qué diferencia un procesador Core i7 de Intel de un Phenom X4 de AMD? ¿Y de un Itanium de Intel? ¿Y de un Xeon Phi de Intel?. ¿Y un NUMA de un UMA?
- ¿Cuántas instrucciones por segundo pueden ejecutar los microprocesadores actuales? ¿Pueden llegar a los 50 GIPS? ¿Se puede esperar que lleguen a esas velocidades? ¿Y los computadores actuales? ¿Qué consecuencia tiene esto sobre mis aplicaciones?
- ¿Puedo comprimir mi fichero multimedia en menos de 3 segundos en un Intel Core i7 a 3 GHz? ¿Cómo puedo hacer que mi compresor vaya más rápido en ese computador?
- ¿Qué características deben tener los equipos que tengo que adquirir para satisfacer las necesidades de mi empresa en los próximos 5 años?

## Objetivos de la Asignatura (resumidos)

#### AC A PIC

- Distinguir entre los distintos tipos de arquitecturas más utilizadas actualmente, evaluar sus prestaciones y explicar a qué se deben las prestaciones que ofrecen
- Analizar la interacción entre tecnología, arquitectura y aplicaciones, ilustrando la influencia de la tecnología, la forma en que los elementos de una arquitectura afectan a sus prestaciones y limitan su aplicabilidad
- Programar código que aproveche las características de la arquitectura
- Identificar las fuerzas que condicionan la evolución de la arquitectura para adquirir visiones plausibles del futuro y de la longevidad de un computador

## Planificación aproximada

| AC N PIC                                                     |       |                                       |                                                               |  |
|--------------------------------------------------------------|-------|---------------------------------------|---------------------------------------------------------------|--|
| Grupo reducido                                               |       | Grupo amplio (14 semanas aprox.:1-14) |                                                               |  |
| (14 semanas aprox.: 2-15)                                    |       | Clases de paralelismo                 | Tema 1. Arquitecturas                                         |  |
| Diames O. Futawa da Duar                                     | S0 P0 | Clases arquitecturas                  | paralelas: clasificación                                      |  |
| Bloque O. Entorno de Prog.                                   | S0 P0 | Eva. prestaciones                     | y prestaciones                                                |  |
|                                                              | S1 P1 | Herram., estilos, estruct.            | Tema 2. Programación<br>paralela                              |  |
| Bloque 1. Directivas OpenMP                                  | S1 P1 | Proceso paralelización                |                                                               |  |
|                                                              | P1    | Evaluación prestaciones               |                                                               |  |
| Bloque 2. Cláusulas OpenMP                                   | S2 P2 | Arquitecturas TLP                     | Tema 3. Arquitecturas<br>con paralelismo a nivel<br>de thread |  |
|                                                              | P2    | Coherencia                            |                                                               |  |
| Bloque 3. Interacción con el                                 | S3 P3 | Consistencia                          |                                                               |  |
| entorno en OpenMP                                            | S3 P3 | Sincronización                        |                                                               |  |
|                                                              | Р3    | Microarq. ILP. Cauces                 | Tema 4. Arquitecturas                                         |  |
|                                                              | S4 P4 | Consistencia proc., Saltos            | con paralelismo a nivel                                       |  |
| Bloque 4. Optimización de                                    | S4 P4 | VLIW                                  | de instrucción (ILP)                                          |  |
| código                                                       | P4    | SIMD, GPU y proc. de red              | Tema 5. Arquitecturas                                         |  |
| Cada fila es una semana (15 filas)<br>(S)eminario (P)ráctica |       |                                       | de propósito específico                                       |  |

## Bibliografía





## FUNDAMENTOS Y PROBLEMAS DE ARQUITECTURA DE COMPUTADORES.

AUTORES: Mancia Anguita López / Julio Ortega Lopera

Editorial Técnica Avicam

LIBRERÍA FLEMING AVENIDA DE MADRID, 12

E-Mail: ciencias@libreriafleming.com

TLF. 958280183 / 654387692

Ortega, J.; Anguita, M.; Prieto, A.: "Arquitectura de Computadores". Editorial Thomson-Paraninfo, 2005

Ortega, J.; González Peñalver, J.:"Problemas de Ingeniería de Computadores. Cien problemas de Procesadores Paralelos". Copicentro, 2007.