

KI Labor - Sommersemester 22

Termin 1 - Organisation & Computer Vision

Agenda für Heute

- 1. Organisation
 - a. Teamvorstellung
 - b. Modus
 - c. Bewertung
- 2. Computer Vision

Vorstellung

Modus

- > Angelehnt an Scrum-Prozess
 - > Sprint dauert 2 Wochen
 - > **Sprint 1:** Einarbeitung (Übungsaufgaben)
 - > **Sprint 2:** Assignment
- > Teilweise in Präsenz und Remote

Sprint-Modus

- > **Sprintwechsel** (i.d.R) alle 2 Wochen in Präsenz
 - > **Review**: Lösungen präsentieren
 - Retro: Was lief gut? Was lief schlecht?
 - > **Planning**: Neue Aufgaben / Assignment
- > Im Sprint: Remote-Betreuung
 - Freitags: Q&A Timeslots (per Zoom / Meet)
 - 30 Minuten gemeinsam,
 - 15 Minuten individuell für jede Gruppe
 - Dazwischen über Slack-Workspace:
 - https://join.slack.com/t/kilaborss22/shared_invite/zt-151obzfgg-eNeQXE2Iseb3vrLvt8zmlQ

Semesterplan

Thema

CV

CV

Ostern

NLP

NLP

NLP

RL

RL

RL

NLP / RL

Sommerplenum

Pfingsten (H-KA zu)

Puffer

CV / NLP

Inhalt

Q&A Sessions

Q&A Sessions

Q&A Sessions

Q&A Sessions

Organisation, Teamfindung, Vorstellung CV

Sprintwechsel, Vorstellung Assignment

Sprintwechsel, Vorstellung Assignment

Sprintwechsel, Vorstellung Assignment

Abgabe CV, Vorstellung NLP

Abgabe NLP, Vorstellung RL

Q&A Sessions (Brückentag)

Abgabe RL, Abschluss KI Labor

Präsenz

Ja

Nein

Ja

Nein

Ja

Nein

Ja

Nein

Ja

Ja

Nein

Ja

inovex

Datum

01.04.22

08.04.22

05.04.22

22.04.22

29.04.22

06.05.22

13.05.22

20.05.22

27.05.22

03.06.22

10.06.22

17.06.22

24.06.22

01.07.22

Hardware

- Bearbeitung der Aufgaben auf
 - > Pool-Rechnern
 - › Eigener Hardware
 - > Cloud
- Cloud: Google Colab
 - Kostenlose GPUs und TPUs!
 - Benötigt Google-Account (und Internet)
- > Cloud 2: Kaggle
 - > Training auch mit geschlossenem Browser-Fenster möglich

Gruppenfindung

- 1. Zu 3er/4er Teams zusammenfinden
 - \rightarrow 16 Teilnehmer:innen \rightarrow 4-5 Teams

2. Team-Name überlegen

3. Mitglieder und Team-Name mitteilen (slack)

Bewertung

- Labor wird benotet
- Übungsaufgaben werden nicht benotet (aber müssen bestanden werden)
- > Je Themenblock ein bewertetes Assignment und Präsentation
- > Assignment
 - Jupyter Notebook
 - > Abgabe vor der Präsentation
 - > Jedes Team gibt eigene Lösung ab
- Präsentation
 - > Jede/r in den Gruppen sollte Redeanteil haben
 - > Müssen keine Slides sein (Notebook zeigen)
 - > 15 20 Minuten je Gruppe

Folien und Aufgaben

siehe Github Repository

⇒ https://github.com/inovex/ai-lab

Computer Vision

Agenda for today

- 1. Introduction
- 2. Deep Learning
- 3. Analysing Model/Training performance
- 4. Exercise Notebooks

Introduction

What is Computer Vision (CV)?

CV has a number of challenges to overcome

Viewpoint variation Scale variation Deformation Occlusion Background clutter Intra-class variation Illumination conditions

Can we trust machines to make fair decisions?

Research shows AI is often biased. Here's how to make algorithms work for all of us

RETAIL OCTOBER 11, 2018 / 1:04 AM / UPDATED 3 YEARS AGO

Amazon scraps secret AI recruiting tool that showed bias against women

Battling bias and other toxicities in natural language generation

Despite numerous and concerted efforts to train NLG systems to generate content without offensive elements, success is still elusive.

Your favorite A.I. language tool is toxic

BY JONATHAN VANIAN September 29, 2020 5-25 PM GMT+2

Predictive policing algorithms are racist. They need to be dismantled.

Lack of transparency and biased training data mean these tools are not fit for purpose. If we can't fix them, we should ditch them.

by Will Douglas Heaven

July 17, 2020

The SOTA algorithms for solving CV problems are based on deep learning

Deep Learning

What is deep learning?

"[...] very large neural networks we can now have and ... huge amounts of data that we have access to [...]" - Andrew Ng (2015)

"Deep learning methods aim at learning feature hierarchies [...] at multiple levels of abstraction allow[ing] a system to learn complex functions mapping the input to the output directly from data, without depending completely on human-crafted features." - Yoshua Bengio (2009)

"It has been obvious since the 1980s that backpropagation through deep autoencoders would be very effective for nonlinear dimensionality reduction, provided that computers were fast enough, data sets were big enough, and the initial weights were close enough to a good solution. All three conditions are now satisfied." - Geoffrey Hinton (2006)

Let's start with building a simple Neural Network Multi-Layer Perceptron

We can learn complex functions by applying non-linear activation functions

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

tanh

tanh(x)

Maxout

 $\max(w_1^T x + b_1, w_2^T x + b_2)$

ReLU

 $\max(0, x)$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

But how do we actually learn?

Let's advance to more complex Neural Networks Convolutional Neural Network

Can we show the discriminative power of NNs?

t-Distributed Stochastic Neighbor Embedding (t-SNE)

Analysing Model/Training performance

8 0.55

0.50

0.45

0.40

40

Epoch

Underfitting: Model is too simple

Overfitting: Model is too complex

Optimal model complexity

What about neural networks?

 Compared to polynomials, the complexity / variance of neural networks is extremely high

The tasks / targets are also very complex

Preventing overfitting in neural networks

- Using Validation set
 - Network size fine-tuning
 - Early stopping
- Regularization methods
 - Weight regularization
 - Dropout
- Data based methods
 - Data Augmentation
 - Noise
 - Extending the dataset

Early Stopping

Weight regularization

Penalizing a NN based on the size of the weights

weight decay
$$L1 = \sum_{i} |\theta_i|$$

weight decay
$$L2 = \sum \theta_i^2$$

- Variation of scales of input variables causes the scale of the weights of the network to vary accordingly
 - Problematic for weight regularization
 - Solution: normalization, standardization

Dropout

- "Ephemeral sparsity"
- applied only during the training phase

(b) After applying dropout.

Data based methods

- Data Augmentation
 - Synthetic data generation
 - Data modification

Noise

- Useful for natural signals
- Extending the dataset
 - Used in real world & kaggle competitions

Original Image

De-texturized

De-colorized

Edge Enhanced

Salient Edge Map

Flip/Rotate

Augmentation

