Ιόνιο Πανεπιστήμιο – Τμήμα Πληροφορικής Αρχιτεκτονική Υπολογιστών 2019-20

Αρχιτεκτονικές Συνόλου Εντολών

(Instruction Set Architectures - ISA)

http://mixstef.github.io/courses/comparch/

Μ. Στεφανιδάκης

Ο (μικρο)επεξεργαστής

• Ο επεξεργαστής

Τι περιέχεται στη συσκευασία ενός μικροεπεξεργαστή σήμερα;

- (Micro)processor
 - Ψηφιακό σύστημα που εκτελεί υπολογισμούςσε πολλαπλά βήματα
 - Αρχικά: Κεντρική Μονάδα Επεξεργασίας (ΚΜΕ)
 - Central Processing Unit (CPU)
 - Μέρος ενός ευρύτερου υπολογιστικού συστήματος (ή «υπολογιστή»)
 - γενικού ή ειδικού σκοπού
 - Περιέχει σήμερα πολλαπλές υπομονάδες επεξεργασίας

Ένα τυπικό υπολογιστικό σύστημα

οι ρυθμοί μεταφοράς που δίνονται είναι οι θεωρητικά μέγιστοι!

Είδη μικροεπεξεργαστών

- Γενικού σκοπού
 - Οι περισσότερο γνωστοί επεξεργαστές
- Συνεπεξεργαστές (co-processors)
 - Ειδικές λειτουργίες
- Μικροελεγκτές (microcontrollers)
 - Συστήματα ελέγχου
- Μέσα σε Systems-on-Chip
 - Μαζί με κυκλώματα σχετικά με τη λειτουργία του συστήματος
 - π.χ. με τον «ασύρματο» ενός κινητού

Είδη μικροεπεξεργαστών

- Γενικού σκοπού
 - Οι περισσότερο γνωστοί επεξεργαστές
- Συνεπεξεργαστές (co-processors)
 - Ειδικές λειτουργίες
- Μικροελεγκτές (microcontrollers)
 - Συστήματα ελέγχου
- Μέσα σε Systems-on-Chip
 - Μαζί με κυκλώματα σχετικά με τη λειτουργία του συστήματος
 - π.χ. με τον «ασύρματο» ενός κινητού

Το μοντέλο von Neumann

- **Σ**ε ποια μορφή αποθηκεύονται οι εντολές;
- Το πρόγραμμα εκτέλεσης, όπως και τα δεδομένα, αποθηκεύονται στη μνήμη του υπολογιστή
 - "Stored-program computer"

Εκτέλεση ακολουθίας λειτουργιών

• Ο επεξεργαστής

9 Ποιος ο ρόλος του σήματος ρολογιού;

Εκτέλεση εντολών: ο κύκλος μηχανής

• Ο επεξεργαστής

Τι συμβαίνει με τις εξωτερικές διακοπές (interrupts);

Ο χρόνος εκτέλεσης είναι ο ίδιος για όλες τις εντολές;

Fetch: Φέρε την επόμενη εντολή προς εκτέλεση από τη μνήμη Decode: Αποκωδικοποίησε την εντολή (προετοίμασε τα σήματα ελέγχου και τις πηγές των δεδομένων) για πάντα Execute: Εκτέλεσε την απαιτούμενη πράξη/λειτουργία Store: Αποθήκευσε τα αποτελέσματα (εάν απαιτείται)

Εκτέλεση εντολών

- Επόμενη εντολή προς εκτέλεση
 - Program Counter (PC): η διεύθυνση της θέσης μνήμης όπου περιέχεται η επόμενη εντολή
 - Σειριακή αύξηση διεύθυνσης μετά την εκτέλεση εντολής
 - Ή μεταπήδηση σε νέα θέση μνήμης (διακλάδωση)
- Εκκίνηση εκτέλεσης
 - Με την εφαρμογή τάσης ο PC παίρνει μια προκαθορισμένη τιμή
 - "BIOS"
- Τερματισμός επανάληψης κύκλου μηχανής
 - Συμβατικά, ποτέ!
 - Περιπτώσεις SLEEP για μείωση κατανάλωσης ενέργειας

Αρχιτεκτονική Συνόλου Εντολών

- Ο επεξεργαστής
- ISA

- Instruction Set Architecture (ISA)
 - Το ορατό μέρος ενός υπολογιστικού
 συστήματος για τον προγραμματιστή (και τον μεταγλωττιστή)
 - Δεκαετία 60-70: συνώνυμο του όρου «αρχιτεκτονική Η/Υ»
 - « η δομή ενός υπολογιστή, την οποία ο προγραμματιστής πρέπει να γνωρίζει για να γράψει ένα σωστό (χρονικά ανεξάρτητο) πρόγραμμα σε γλώσσα μηχανής για τον υπολογιστή αυτόν» (IBM)

Η διεπαφή ISA στην ιεραρχία επιπέδων

- Ο επεξεργαστής
- ISA

9 Τι ακριβώς περιγράφει η διεπαφή ISA;

- Αρχιτεκτονική Εντολών (ISA)
 - Η διεπαφή υλικού-λογισμικού

Αρχιτεκτονική Συνόλου Εντολών

- Ο επεξεργαστής
- ISA

- Τι περιγράφει;
 - Διαθέσιμες πράξεις/λειτουργίες
 - Κωδικοποίηση λειτουργιών
 - Μορφή των δεδομένων εισόδου-εξόδου
 - Operands
 - Μέθοδοι προσπέλασης μνήμης
 - Προέλευση των δεδομένων
 - Χώροι προσωρινής αποθήκευσης
 - Καταχωρητές
 - Διακοπές και καταστάσεις σφάλματος
 - Ποια η "αντίδραση" του επεξεργαστή

Κωδικοποίηση Εντολών

- Ο επεξεργαστής
- ISA

- Σειρά δυαδικών ψηφίων
 - Μεταβλητού μήκους
 - Περισσότερο συμπαγή προγράμματα
 - Πολυπλοκότερο υλικό!
 - Σταθερού μήκους
 - Απλούστερη και ταχύτερη λήψη-αποκωδικοποίηση
 - Μεγαλύτερα προγράμματα
 - Μέθοδοι συμπίεσης

Γιατί είναι ταχύτερη η λήψη και αποκωδικοποίηση των εντολών σταθερού μήκους;

Κωδικοποίηση Εντολών

- Ο επεξεργαστής
- ISA

Εντολές: κατηγορίες λειτουργιών

- Ο επεξεργαστής
- ISA
- Κατηγορίες εντολών

- Βασικές κατηγορίες
 - Αριθμητικές και λογικές πράξεις
 - Μεταφορά δεδομένων
 - Από-πρός Καταχωρητές και Μνήμη
 - Έλεγχος ροής εκτέλεσης
 - Διακλαδώσεις και κλήσεις ρουτινών
- Άλλες κατηγορίες
 - Ειδικές εντολές συστήματος
 - ΛΣ, εικονική μνήμη
 - Επεξεργασία πολλαπλών δεδομένων ταυτόχρονα («παράλληλα»)
 - Χρήσιμο για γραφικά, σειρές χαρακτήρων, multimedia

Αριθμητικές/λογικές εντολές

- Ο επεξεργαστής
- ISA
- Κατηγορίες εντολών

- Αριθμητικές-λογικές πράξεις
 - Είδος πράξης
 - Είδος δεδομένων
 - Πηγές δεδομένων και προορισμός
 - Παράδειγμα:
 - add R1, R2, R3 // R3 = R1+R2

Τι συμβολίζουν τα R1, R2 ..; Πώς αναπαρίστανται μέσα στην εντολή;

add R1 R2 R3

Εντολές μεταφοράς δεδομένων

- Ο επεξεργαστής
- ISA
- Κατηγορίες εντολών

- Μεταφορά δεδομένων
 - Πηγή δεδομένων και προορισμός
 - Μήκος μεταφερόμενης λέξης
 - Παράδειγμα:
 - load R1, 0x7FF0 // R1 = mem[0x7FF0]

•

Η απόλυτη διεύθυνση (π.χ. 0x7FF0) καλύπτει όλες τις επιθυμητές περιπτώσεις χρήσης;

load R1 0x7FF0

Εντολές διακλάδωσης

- Ο επεξεργαστής
- ISA
- Κατηγορίες εντολών
- Διακλάδωση
 - Με ή χωρίς συνθήκη
 - bne R1, R2, +8 // branch if not R1==R2
 - Σε απόλυτη διεύθυνση
 - jump 0xFF97DE00
 - Σχετικά ως προς την τρέχουσα θέση (offset)
 - jump +130 // offset = +130
 - Ο παραγόμενος κώδικας μπορεί να τοποθετηθεί οπουδήποτε στη μνήμη

bne R1 R2 +8

Η στοίβα (stack)

διεύθυνση μνήμης

- Ο επεξεργαστής
- ISA
- Κατηγορίες εντολών

- Η ΚΜΕ παρέχει ειδικό καταχωρητή (stack pointer SP)
 και εντολές push και pop
- Η στοίβα δεν είναι ειδική μνήμη αλλά ένα εναλλακτικό μοντέλο προσπέλασης της κανονικής μνήμης
 - Αποθήκευση διεύθυνσης επιστροφής από συναρτήσεις
 - Αποθήκευση τοπικών μεταβλητών δομημένων γλωσσών

Εντολές διακλάδωσης (2)

- Ο επεξεργαστής
- ISA
- Κατηγορίες εντολών

- Κλήση συνάρτησης (call)
 - Αποθήκευση της επόμενης διεύθυνσης εκτέλεσης (καταχωρητή PC) στη στοίβα (push)
 - Μετάβαση στη διεύθυνση της συνάρτησης
- και επιστροφή (return)
 - Χρήση αποθηκευμένης τιμής από στοίβα (pop)
 - Τοποθετείται στον καταχωρητή PC
 - Η εκτέλεση επιστρέφει στην επόμενη εντολή μετά το call

Προέλευση και αποθήκευση δεδομένων

- Ο επεξεργαστής
- ISA
- Κατηγορίες εντολών
- Προέλευση δεδομένων

- Προέλευση δεδομένων αποθήκευση αποτελεσμάτων μιας πράξης
 - Operand addressing
 - Εξαρτάται από την αρχιτεκτονική του επεξεργαστή
 - Στους πρώτους επεξεργαστές
 - Stack (σωρός-στοίβα)
 - Accumulator (συσσωρευτής, συχνά ο μόνος καταχωρητής του συστήματος)
 - Μεταγενέστεροι υπολογιστές
 - Δεδομένα από καταχωρητές μνήμη
 - Δεδομένα από καταχωρητές μόνο (αρχιτεκτονικές loadstore)

Αρχιτεκτονική σωρού (stack)

- Ο επεξεργαστής
- ISA
- Κατηγορίες εντολών
- Προέλευση δεδομένων

Αρχιτεκτονική συσσωρευτή (accumulator)

- Ο επεξεργαστής
- ISA
- Κατηγορίες εντολών
- Προέλευση δεδομένων

- Μια πηγή δεδομένων και ταυτόχρονα θέση αποθήκευσης του αποτελέσματος είναι πάντα ο συσσωρευτής
 - 1-address architecture
 - Αρχιτεκτονική των πρώτων υπολογιστών!

Αρχιτεκτονικές με καταχωρητές (registers)

- Ο επεξεργαστής
- ISA
- Κατηγορίες εντολών
- Προέλευση δεδομένων

Καταχωρητές: προσωρινές θέσεις αποθήκευσης αποτελεσμάτων, η γενίκευση της ιδέας του συσσωρευτή.

add R2, R1,mem(100)

(R2 = R1 + mem[100])

- Memory-register
 - Οποιαδήποτε εντολή μπορεί να προσπελάσει τη μνήμη
- Όμως:
 - Πολλαπλές προσπελάσεις μνήμης
 - Λήψη εντολής Λήψη δεδομένων εντολής
 - Πολύπλοκη εκτέλεση εντολής σε στάδια
 - Συνωστισμός στον δίαυλο επικοινωνίας με μνήμη

Αρχιτεκτονικές με καταχωρητές (registers)

- Ο επεξεργαστής
- ISA
- Κατηγορίες εντολών
- Προέλευση δεδομένων

Είναι επιθυμητός ένας πολύ μεγάλος αριθμός καταχωρητών;

add R1, R2,R3 (R1 = R2 + R3)

- Register-register (load-store)
 - Μόνο εντολές load-store μπορούν να προσπελάσουν τη μνήμη
- Η αρχιτεκτονική των σύγχρονων επεξεργαστών
 - Οι καταχωρητές προσπελαύνονται πολύ γρήγορα
 - Χρειάζονται λιγότερα bits για να επιλεγούν
 - Οι μεταγλωττιστές αναθέτουν μεταβλητές σε καταχωρητές

Μέθοδοι προσπέλασης μνήμης

- Ο επεξεργαστής
- ISA
- Κατηγορίες εντολών
- Προέλευση δεδομένων
- Προσπέλαση μνήμης

- Τουλάχιστον κάποιες εντολές προσπελαύνουν τη μνήμη
 - για ανάγνωση ή εγγραφή δεδομένων
 - Πώς σχηματίζεται η διεύθυνση προσπέλασης;
 - Η γενική ιδέα: υποβοήθηση του λογισμικού
 - Διαφορετικός σχηματισμός διεύθυνσης για
 - Τοπικές μεταβλητές
 - Δείκτες (έμμεση προσπέλαση)
 - Στατικά δεδομένα
 - Διάσχιση πινάκων
 - (Σταθερές τιμές)
- Υποστήριξη ανάλογα με αρχιτεκτονική

Μέθοδοι προσπέλασης μνήμης

- Ο επεξεργαστής
- ISA
- Κατηγορίες εντολών
- Προέλευση δεδομένων
- Προσπέλαση μνήμης

Πώς κωδικοποιούνται οι μέθοδοι προσπέλασης μνήμης μέσα στην εντολή;

- Στο σχηματισμό της διεύθυνσης μνήμης μπορούν να συμμετέχουν:
 - Απόλυτες τιμές διεύθυνσης
 - Καταχωρητές
 - Σταθερές τιμές μετατόπισης (offsets)

displacement	mem[offs+reg]	τοπικές
register indirect	mem[reg]	δείκτες
indexed	mem[reg1+reg2]	πίνακες
direct	mem[addr]	στατικές
memory indirect	mem[mem[reg]]	*δείκτες
auto-increment	mem[reg++]	πίνακες
scaled	mem[offs+reg1+reg2*d]	πίνακες

πιθανή

χρήση

Η εξέλιξη της αρχιτεκτονικής εντολών

- Ο επεξεργαστής
- ISA
- Κατηγορίες εντολών
- Προέλευση δεδομένων
- Προσπέλαση μνήμης
- Εξέλιξη αρχιτεκτονικής

- Οι πρώτοι υπολογιστές (.. '60)
 - Αρχιτεκτονική συσσωρευτή και αργότερα σωρού
 - Ικανοποιητική λύση λόγω της απλής τεχνολογίας των μεταγλωττιστών
- Πολύπλοκες αρχιτεκτονικές ('70 ..)
 - Ενσωμάτωση σύνθετων μορφών εντολών και μεθόδων προσπέλασης μνήμης
 - Προσπάθεια υποστήριξης υψηλών γλωσσών
 προγραμματισμού μείωσης κόστους λογισμικού
 - Πολλά χαρακτηριστικά μένουν αχρησιμοποίητα!
 - Complex Instruction Set Computers (CISC)

Η εξέλιξη της αρχιτεκτονικής εντολών

- Ο επεξεργαστής
- ISA
- Κατηγορίες εντολών
- Προέλευση δεδομένων
- Προσπέλαση μνήμης
- Εξέλιξη αρχιτεκτονικής

- Reduced Instruction Set Computers (RISC) ('80 ...)
 - Απλούστερες και φθηνότερες load-store
 αρχιτεκτονικές με σταθερό μήκος εντολών
 - Μεγαλύτερη απόδοση ταχύτερη εκτέλεση εντολών
 - Ευνοείται από την αφθονία υλικού χαμηλού κόστους και την προηγμένη τεχνολογία των μεταγλωττιστών
 - Οι σημερινοί επεξεργαστές με εντολές CISC (αρχιτεκτονική x86), μεταφράζει εσωτερικά σε σε εντολές RISC