

Università degli studi di Padova Laurea Triennale in Ingegneria Informatica

FUSIONE DI DATI STEREO E TIME-OF-FLIGHT MEDIANTE TECNICHE DI DEEP LEARNING

Relatore: Prof. Pietro Zanuttigh

Correlatore: Ing. Gianluca Agresti

Anno Accademico 2018-2019

25 settembre 2019

Laureando: Francesco Pham

Introduzione

- La stima della profondità di scene tridimensionali rappresenta un problema di forte interesse in molti ambiti, ad esempio:
 - > Robotica e automazione
 - > Intrattenimento
 - > Arte e architettura
- Nel corso degli anni, dispositivi dai costi più ridotti sono stati introdotti nel mercato. Due tipi di sensori in particolare:
 - > Il sistema stereo
 - ➤ I dispositivi Time-of-Flight

(b) Depth-map

Il sistema stereo

- Il sistema di visione stereo consiste nell'acquisire due immagini da una coppia di telecamere che inquadrano la stessa scena.
- Lo stesso punto P viene proiettato nel piano dell'immagine di ciascuna telecamera. I punti risultanti sono chiamati omologhi.
- La profondità viene calcolata per triangolazione.
- Principale svantaggio: difficoltà nell'analisi di scene con pattern uniformi o ripetitivi.

Il sensore Time-Of-Flight

Il principio di questa tecnologia è semplice: viene misurato il tempo che un impulso luminoso impiega per viaggiare da una sorgente luminosa ad un oggetto e ritornare al sensore. Limitazioni:

- Misure poco accurate per superfici poco riflettenti o di colore scuro
- Limitata risoluzione spaziale
- Il «multipath error» provocato dalla riflessione multipla del segnale prima di raggiungere il sensore

Figure 1. Working principle of ToF ranging camera

Fusione mediante deep learning

- Nel campo della computer vision è stato possibile ottenere progressi notevoli negli ultimi anni grazie al deep learning. In particolare, le reti neurali convoluzionali (CNN) costituiscono lo stato dell'arte nella risoluzione di problemi di visione artificiale.
- L'obiettivo di questa tesi è creare un modello di CNN in grado di fondere i dati acquisiti dal sistema stereo e dal sensore ToF, realizzando una ricostruzione più accurata.

Il dataset

Il dataset consiste in 55 scene 3D differenti simulate con *Blender*. Per poter compiere la fusione è necessario preparare i dati:

Il sensore ToF ha risoluzione nettamente inferiore rispetto allo stereo

Per fare la fusione è necessario che i dati forniti siano nello stesso sistema di riferimento

I due sensori rappresentano i dati in modo differente

Il dataset è limitato. È necessario ampliare il training set per una maggiore robustezza.

Interpolazione

Riproiezione

Calcolo della disparità

Data augmentation

Architettura della CNN selezionata 1/2

- Per questo lavoro è stato deciso di provare l'utilizzo di una rete neurale residuale. Viene sfruttato il concetto delle skip connection, che permette l'apprendimento del contributo incrementale a quanto già appreso negli strati precedenti.
- È stato inoltre deciso di includere nella rete alcuni strati di convoluzione dilatata. Permette di catturare più informazioni dall'input espandendo il campo recettivo, pur mantenendo limitato il numero di parametri.

Architettura della CNN selezionata 2/2

Diagramma del blocco residuale

Diagramma completo della rete

Risultati sperimentali 1/2

- Durata del training: 75 epoche
- Ottimizzatore Adam, learning rate 0.001
- Loss function MSE

Risultati sperimentali 2/2

Proviamo a fare un confronto per vedere gli effetti dei blocchi residuali e delle convoluzioni dilatate sulle performance della CNN

Conclusioni

- Questo lavoro dimostra come il deep learning permetta di realizzare un modello in grado di sfruttare al meglio le informazioni fornite dai due sensori
- Il sistema realizza una ricostruzione più accurata delle strutture tridimensionali della scena catturata.
- Inoltre si è visto come l'utilizzo delle reti neurali residuali assieme alle convoluzioni dilatate abbia apportato benefici sulle performance della rete nella stima della disparità.

Grazie per l'attenzione

Francesco Pham