

New York City Parking Violations

VISUALIZATION OF TICKET ISSUANCES
USING R AND GGPLOT2

Summary

- New York City offers detailed parking violations information through the NYC Open Data initiative, https://nycopendata.socrata.com/
- ▶ This analysis includes tickets issued for FY 2016:

https://data.cityofnewyork.us/City-Government/Parking-Violations-Issued-Fiscal-Year-2016/kiv2-tbus

- In spite of the title, the data appears to stretch from 1/1/15 thru 12/31/16.
- The selected subset of data encompasses 7.4 million records.

Issues

- Entire database is discrete data
 - ➤ Solution: None. I've got no continuous charts...
- Large database makes data-analysis time consuming
 - ▶ Solution: analysis encompasses Manhattan only, about ½ dataset
- Data is not clean: Missing values, incorrect factors
 - Solution: missing values are excluded only if they are plotted in the chart. Otherwise, all records are included in the charts.

Heat Map for Manhattan Island by Precinct

Recipients of Parking Tickets Happy vs. Unhappy

Supporting Slides

Code to Load Data

```
2
        setwd("C:/Users/steve/OneDrive/Documents/BootCamp/R Working Dir/Visualization Project")
    # Load the packages
        library("dplyr", lib.loc="~/R/win-library/3.2")
    # READ THE RAW DATA FILES.....
        PVI <- read.csv("Parking_Violations_Issued_-_Fiscal_Year_2016.csv", stringsAsFactors = FALSE)
 8
        violCodes <- read.csv('DOF_Parking_Violation_codes.csv', stringsAsFactors = FALSE)</pre>
        StreetDB <- read.fwf('snd15Dcow.txt', widths = c(1,1,32,1,1,1,\bar{5},2,3,2,1,1,2,32,2,20,1,92))
 9
10
        names(StreetDB) = c('F1', 'BoCode', 'FeatName', 'Primary', 'Princ', 'BoCode2', 'Street.Code1', 'GrpCode', 'Spellvar', 'F2', 'NNInd',
11
12
                              'FeatType', 'LenProg', 'Prog', 'MinNameLen', 'StName2', 'HTTCode', 'F3')
13
        FeatType <- read.csv('GeoFeatureTypes.csv', stringsAsFactors = FALSE)
14
        PctBoroughs = read.csv('PctBorough.csv', stringsAsFactors = FALSE)
15
        ShortPVCodes = read.csv('Short PV Codes.csv')
   # Rename some fields to make the joins easy
        names(ViolCodes)[3] = 'Manhattan'
17
18
        names (PctBoroughs)[1] = 'Violation. Precinct'
19
        names(FeatType)[2] = 'FeatType'
20
21
    # Need to convert ViolCodes, Violation, Code to INTEGER
22
        ViolCodesa1 = mutate(ViolCodes, Violation.Code = as.numeric(ViolCodes$CODE))
23
        violCodes2 = left_join(ViolCodesa1, ShortPVCodes, by = c('Violation.Code'='CODE_Num'))
24
   # JOINS!
25
26
        StreetDB2 = filter(StreetDB, Primary=='P') %>%
27
                left_join(.,FeatType,by = 'FeatType')
28
        PVIRemoveColumns = c(31:33,37:42)
29
        PVIa1 = mutate(PVI,DDate = as.Date(Issue.Date, format='%m/%d/%Y'))
30
31
        PVIa2 = select(PVIa1,-PVIRemoveColumns)
32
        PVIa3 = left_join(PVIa2.PctBoroughs, by = 'Violation.Precinct')
33
        PVIa4 = left_join(PVIa3, ViolCodes2, by = 'Violation. Code')
34
        PVI2 = left_join(PVIa4, StreetDB2,by = c('Street.Code1', 'BoCode'))
35
36
37
   # Finally, clean up original tables
38
        rm(PVI, PVIa1, PVIa2, PVIa3, PVIa4, StreetDB, ViolCodes, ViolCodesa1, FeatType)
                                                                                                                                    Steven Ginzberg
```

Code to Create Charts

```
library("ggplot2", lib.loc="~/R/win-library/3.2")
    library(RColorBrewer)
   library(scales)
    # Histogram of tickets issued for all 5 boroughs
 6
        agplot(PVI2.aes(x=BoroughNm,fill=BoroughNm)) +
 7
          geom_bar() +
          ggtitle('Parking Violations Issued by Borough') +
 8
 9
          xlab('Borough') + ylab('Tickets issued') +
          scale_x_discrete(limits=c("M","BK","BX","Q","SI")) +
10
11
          scale_y_continuous(labels=comma) +
12
          scale_fill_brewer(palette='Set2') +
13
          theme(legend.position = 'none')
14
            # ggsave('Chart1.png',width=10,height=6)
15
16
        ManhattanOnly = mutate(filter(PVI2,BoroughNm=='M', Issuer.Code != 0),FPrecinct = as.factor(Violation.Precinct),
17
                               VCode = as.factor(Violation.Code))
        PVI3 = mutate(PVI2,FPrecinct = as.factor(Violation.Precinct),VCode = as.factor(Violation.Code))
18
19
    ************
20
    # Change this to PVI3 for all
21
22
   # boroughs, or Manhattanonly
23
24
        SelectDB = Manhattanonly
25
        SelectDBName = 'Manhattan'
26
27
28
    # Top 10 Violation Types issued for Manhattan
        Top10violations = group_by(SelectDB, VCode) %>%
29
30
                            summarise(Cnt = n()) %>%
31
                            arrange(desc(Cnt)) %>%
32
                            slice(1:10)
33
34
        PlotLegendTextLookup = group_by(SelectDB, ShortDefn) %>%
35
                               summarise(Cnt=n()) %>%
36
                               arrange(desc(Cnt)) %>%
37
                               slice(1:10)
38
39
        PlotLegendText2 = PlotLegendTextLookup$ShortDefn
40
        Top10ViolationRatio = round(sum(Top10Violations$Cnt)/nrow(SelectDB) * 100)
41
        Top10ViolationText = paste0(Top10ViolationRatio, '% of all violations')
```

Steven Ginzberg

Code to Create Charts, 2

```
43
        ggplot(Top10Violations, aes(x=VCode, y=Cnt, fill=Cnt)) +
44
           geom_bar(stat='sum') +
45
           geom_text(label=PlotLegendText2,hjust=1,size=5,color='white') +
46
           coord_flip() +
47
           ggtitle(pasteO('Top 10 Violations in ',SelectDBName)) +
48
           xlab('violation Code') +
49
           ylab('Tickets Issued') +
           theme(legend.position = 'none') +
50
51
           annotate("text", x=10, y=300000, label= Top10ViolationText, size = 6) +
52
           scale_y_continuous(labels=comma,breaks=seq(0, 700000, 100000))
53
54
            #ggsave('Chart2.png',width=10,height=6)
55
   # Count of all violations
56
57
   # NOT USED
58
       ggplot(SelectDB, aes(x=VCode, fill=VCode)) +
59
           geom_bar() +
60
           coord_flip() +
61
           scale_x_discrete() +
62
           theme(legend.position = 'none')
63
64
   # Top 10 Dates of Ticket Issuances
65
         Top10Dates = group_by(SelectDB, Issue. Date) %>%
66
             summarise(Cnt = n()) %>%
67
             arrange(desc(Cnt)) %>%
68
             slice(1:10)
69
70
         Top10DatesViolationRatio = round(sum(Top10Dates$Cnt)/nrow(SelectDB) * 100)
71
         Top10DatesViolationText = paste0(Top10DatesViolationRatio, '% of all violations')
72
73
         TicketsperDayGrp = group_by(SelectDB,Issue.Date) %>%
74
                            summarise(Cnt=n())
75
         AvgTicketsperDay = rep(mean(TicketsperDayGrp$Cnt),10)
76
77
         ggplot(Top10Dates, aes(x=Issue.Date, y = Cnt, fill=Cnt)) +
78
            geom_bar(stat='sum') +
79
            ggtitle(paste0('Top 10 Dates for Ticket Issuances, ',SelectDBName)) +
80
            xlab('Date') +
81
            ylab('Tickets Issued') +
82
            geom_point(aes(x=Issue.Date,y=AvgTicketsperDay)) +
```

Code to Create Charts, 3

```
theme(legend.position = 'none') +
             annotate("text", x=9, y=30000, label= Top10DatesViolationText,size=5) +
 84
 85
             scale_y_continuous(labels=comma, breaks=seq(0, 50000, 10000))
 86
 87
                 #ggsave('Chart4.png',width=10,height=6)
 88
     # Violations for all Dates, All Manhattan
                                                              - NOT USED, for support only
 89
 90
 91
          ggplot(SelectDB, aes(x=Issue.Date,fill=Issue.Date)) +
 92
              geom_bar() +
 93
              coord_flip() +
 94
              theme(legend.position = 'none')
 95
                 #ggsave('Chart6.png',width=10,height=6)
 96
 97
     # Top 20 Street Locations of Issuances
          Top20Streets = group_by(SelectDB,FeatName) %>%
 98
 99
            summarise(Cnt = n()) %>%
100
            filter((!is.na(FeatName) & !(FeatName == ''))) %>%
101
            arrange(desc(Cnt)) %>%
102
            slice(1:20)
103
104
          StreetNames = Top20Streets$FeatName
105
          Top20StreetsViolationRatio = round(sum(Top20Streets$Cnt)/nrow(SelectDB) * 100)
106
          Top20StreetsViolationText = paste0(Top20StreetsViolationRatio, '% of all violations')
107
108
          ggplot(Top20Streets,aes(x=FeatName, y = Cnt,fill=Cnt),na.rm='TRUE') +
109
              geom_bar(stat='sum') +
110
             coord_flip() +
             geom_text(label=StreetNames, size=3,color='white') +
111
             ggtitle(paste0('Top 20 Streets for Ticket Issuances, ',SelectDBName)) +
112
113
             xlab('Street') +
114
             ylab('Tickets Issued') +
             theme(legend.position = 'none',
115
116
                   axis.text.y=element_blank(),
                    axis.ticks = element_blank()) +
117
             annotate("text", x=19, y=100000, label= Top20StreetsViolationText,size=5) +
118
119
             scale_y_continuous(label=comma, breaks=seq(0, 120000, 30000))
120
                 #ggsave('Chart4.png',width=10,height = 6)
121
122
```