

Parametric models for N_e(t)

Egyptian HCV

Constant-Exponential-Constant dynamics

Steppe Bison

Boom-Bust dynamics

Skyline plots

Classic skyline plot

- Piecewise constant N_e
- Change-points at coalescence events
- Noisy estimate

Generalised skyline plot

- Group neighbouring segments
- Smoother estimate

Drummond et al. MBE 2005

Bayesian Skyline plot

- Recovers the same dynamics as the parametric model
- More flexible but also more uncertain

Birth-Death Skyline (BDSKY)

 Time-changing parameter can be any or all of the model rates (birth, death, sampling)

Birth-Death Skyline (BDSKY)

- Change-points can be anywhere between origin and present
- More difficult to set up XML if not equally-spaced

Birth-Death Skyline (BDSKY)

 Can even estimate change-point times (times of major transitions, e.g. when R_e first drops < 1

EBOV in West Africa

Bouckaert et al. PLOS Comp Biol 2019