2425-MA140 Engineering Calculus

Week 03, Lecture 1 The Squeeze Theorem & one-sided limits Dr Niall Madden

School of Mathematical and Statistical Sciences, University of Galway

Tuesday, 1 October, 2024

This version of the slides are by Niall Madden. Some are based on original notes by Dr Kirsten Pfeiffer.

Outline

- 1 News!
 - Assignments, Tutorials and SUMS
- 2 Recall... the Squeeze Theorem
 - $=\sin(\theta)/\theta$
 - Other examples
- 3 Infinite Limits

- 4 Digression: How fast can an object travel
- 5 One-sided Limits
 - Notation
 - Piecewise functions
 - Empty and full circle notation
 - Existence of a limit
- 6 Exercises

For more, see Section 7.8.1 (Limit of a function of a real number) in *Modern Engineering Mathematics*: https://search.library.nuigalway.ie/permalink/f/3b1kce/TN_cdi_askewsholts_vlebooks_9780273742517

However, even better is Section 2.2 (Limit of a Function) from **Calculus** by Gil Strang and Jed Herman, published by the non-profit OpenStax. See https://openstax.org/books/calculus-volume-1/pages/

2-2-the-limit-of-a-function

Reminder

- ➤ Assignment 1 has a deadline of 5pm, Friday. You can access it on Canvas... 2425-MA140... Assignments.
- ► The Tutorial Sheet is available at https://universityofgalway.instructure.com/ files/2040359/download?download_frd=1
- A new assignment will be posted later this week.

For help with the assignment, attend a tutorial. The schedule is on the Canvas "Course Information" page:

https://universityofgalway.instructure.com/courses/35693/pages/2425-ma140-information

Support is also available at **SUMS**.

Recall... the Squeeze Theorem

Last Thursday, we finished with...

The Squeeze Theorem (a.k.a. Sandwich Theorem)

Suppose that for functions f, g and h in a given interval I:

$$g(x) \leqslant f(x) \leqslant h(x)$$
 and $\lim_{x \to c} g(x) = \lim_{x \to c} h(x) = L$.

Then $\lim_{x\to c} f(x) = L$.

We'll use the Squeese Theorem to explain that $\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1$

$$\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1$$

First, we few facts about trigonometric functions.

- ▶ In this module, we only every use radians (never degrees).
- ► Given the triangle drawn below, $\sin \theta = \frac{b}{b}$, $\cos \theta = \frac{a}{b}$, $\tan \theta = \frac{b}{a} = \frac{\sin \theta}{\cos \theta}$
- Area of a sector of a circle is $\frac{1}{2}r^2\theta$ where r is the radius of the circle, and θ is the angle subtended by the sector.

Here are plots of $\sin \theta$ (red) and $\cos \theta$ (blue).

Various other facts are summarised in the State Examination Commission's Tables:

Triantánacht $\tan A = \frac{\sin A}{\cos A} \quad \cot A = \frac{\cos A}{\sin A}$ $\sec A = \frac{1}{\cos A} \quad \csc A = \frac{1}{\sin A}$ $\cot A = \frac{\cos A}{\sin A} \quad \cot A = \frac{\cos A}{\sin A}$ $\cot A = \frac{\cos A}{\sin A} \quad \cot A = \frac{\cos A}{\sin A}$ $\cot A = \frac{\cos A}{\sin A} \quad \cot A = \frac{\cos A}{\sin A}$ $\cot A = \frac{\cos A}{\sin A} \quad \cot A = \frac{\cos A}{\sin A}$ $\cot A = \frac{\cos A}{\sin A} \quad \cot A = \frac{\cos A}{\sin A}$ $\cot A = \frac{\cos A}{\sin A} \quad \cot A = \frac{\cos A}{\sin A}$ $\cot A = \frac{\cos A}{\sin A} \quad \cot A = \frac{\cos A}{\sin A}$ $\cot A = \frac{\cos A}{\sin A} \quad \cot A = \frac{\cos A}{\sin A}$ $\cot A = \frac{\cos A}{\sin A} \quad \cot A = \frac{\cos A}{\sin A}$ $\cot A = \frac{\cos A}{\sin A} \quad \cot A = \frac{\cos A}{\sin A}$ $\cot A = \frac{\cos A}{\sin A} \quad \cot A = \frac{\cos A}{\sin A}$ $\cot A = \frac{\cos A}{\sin A} \quad \cot A = \frac{\cos A}{\sin A}$ $\cot A = \frac{\cos A}{\sin A} \quad \cot A = \frac{\cos A}{\sin A}$ $\cot A = \frac{\cos A}{\sin A} \quad \cot A = \frac{\cos A}{\sin A}$ $\cot A = \frac{\cos A}{\sin A} \quad \cot A = \frac{\cos A}{\sin A}$ $\cot A = \frac{\cos A}{\sin A} \quad \cot A = \frac{\cos A}{\sin A}$ $\cot A = \frac{\cos A}{\sin A} \quad \cot A = \frac{\cos A}{\sin A}$ $\cot A = \frac{\cos A}{\sin A} \quad \cot A = \frac{\cos A}{\sin A}$ $\cot A = \frac{\cos A}{\sin A} \quad \cot A = \frac{\cos A}{\sin A}$ $\cot A = \frac{\cos A}{\sin A} \quad \cot A = \frac{\cos A}{\sin A}$ $\cot A = \frac{\cos A}{\sin A} \quad \cot A = \frac{\cos A}{\sin A}$ $\cot A = \frac{\cos A}{\sin A} \quad \cot A = \frac{\cos A}{\sin A}$ $\cot A = \frac{\cos A}{\sin A} \quad \cot A = \frac{\cos A}{\sin A}$ $\cot A = \frac{\cos A}{\sin A} \quad \cot A = \frac{\cos A}{\sin A}$ $\cot A = \frac{\cos A}{\sin A} \quad \cot A = \frac{\cos A}{\sin A}$ $\cot A = \frac{\cos A}{\sin A} \quad \cot A = \frac{\cos A}{\sin A}$ $\cot A = \frac{\cos A}{\sin A} \quad \cot A = \frac{\cos A}{\sin A}$ $\cot A = \frac{\cos A}{\sin A} \quad \cot A = \frac{\cos A}{\sin A}$ $\cot A = \frac{\cos A}{\sin A} \quad \cot A = \frac{\cos A}{\sin A}$ $\cot A = \frac{\cos A}{\sin A} \quad \cot A = \frac{\cos A}{\sin A}$ $\cot A = \frac{\cos A}{\sin A} \quad \cot A = \frac{\cos A}{\sin A}$ $\cot A = \frac{\cos A}{\sin A} \quad \cot A = \frac{\cos A}{\sin A}$ $\cot A = \frac{\cos A}{\sin A} \quad \cot A = \frac{\cos A}{\sin A}$ $\cot A = \frac{\cos A}{\sin A} \quad \cot A = \frac{\cos A}{\sin A}$ $\cot A = \frac{\cos A}{\sin A} \quad \cot A = \frac{\cos A}{\sin A}$ $\cot A = \frac{\cos A}{\sin A} \quad \cot A = \frac{\cos A}{\sin A}$ $\cot A = \frac{\cos A}{\sin A} \quad \cot A = \frac{\cos A}{\sin A}$ $\cot A = \frac{\cos A}{\sin A} \quad \cot A = \frac{\cos A}{\sin A}$ $\cot A = \frac{\cos A}{\sin A} \quad \cot A = \frac{\cos A}{\sin A}$ $\cot A = \frac{\cos A}{\sin A} \quad \cot A = \frac{\cos A}{\sin A}$ $\cot A = \frac{\cos A}{\sin A} \quad \cot A = \frac{\cos A}{\sin A}$ $\cot A = \frac{\cos A}{\sin A} \quad \cot A = \frac{\cos A}{\sin A}$ $\cot A = \frac{\cos A}{\sin A} \quad \cot A = \frac{\cos A}{\sin A}$ $\cot A = \frac{\cos A}{\sin A} \quad \cot A = \frac{\cos A}{\sin A}$ $\cot A = \frac{\cos A}{\sin A} \quad \cot A = \frac{\cos A}{\sin A}$ $\cot A = \frac{\cos A}{\sin A} \quad \cot A = \frac{\cos A}{\sin A}$ $\cot A = \frac{\cos A}{\sin A} \quad \cot A = \frac{\cos A}{\sin A}$ $\cot A = \frac{\cos A}{\sin A} \quad \cot A = \frac{\cos A}{\sin A}$ $\cot A = \frac{\cos A}{\sin A} \quad \cot A = \frac{\cos A}{\sin$

(0, -1)

Nóta: Bíonn tan A agus sec A gan sainiú nuair $\cos A = 0$. Bíonn $\cot A$ agus $\csc A$ gan sainiú nuair $\sin A = 0$. Note: $\tan A$ and $\sec A$ are not defined when $\cos A = 0$. $\cot A$ and $\csc A$ are not defined when $\sin A = 0$.

A (céimeanna)	0°	90°	180°	270°	30°	45°	60°	A (degrees)
A (raidiain)	0	π	π	3π	π	π	π	A (radians)
A (Taidiaiii)		2	, n	2	6	4	3	A (faulans)
cos A	1	0	-1	0	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	$\cos A$
sin A	0	1	0	-1	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	sin A
tan A	0	-	0	-	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	tan A

1 rad. ≈ 57.296°

 $1^{\circ} \approx 0.01745 \text{ rad.}$

Foirmlí uillinneacha comhshuite

$$cos(A+B) = cos A cos B - sin A sin B$$

$$sin(A + B) = sin A cos B + cos A sin B$$

$$\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

Compound angle formulae

$$cos(A - B) = cos A cos B + sin A sin B$$

$$\sin(A - B) = \sin A \cos B - \cos A \sin B$$

$$\tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$$

Foirmlí uillinneacha dúbailte

$$\cos 2A = \cos^2 A - \sin^2 A$$

$$\sin 2A = 2\sin A\cos A$$

$$\cos^2 A = \frac{1}{2} (1 + \cos 2A)$$

$$\sin^2 A = \frac{1}{2} (1 - \cos 2A)$$

Double angle formulae

$$\tan 2A = \frac{2\tan A}{1 - \tan^2 A}$$

$$\cos 2A = \frac{1 - \tan^2 A}{1 + \tan^2 A}$$

$$\sin 2A = \frac{2\tan A}{1 + \tan^2 A}$$

Iolraigh a thiontú ina suimeanna agus ina ndifríochtaí

Products to sums and differences

$$2\cos A\cos B = \cos(A+B) + \cos(A-B)$$

$$2\sin A\cos B = \sin(A+B) + \sin(A-B)$$

$$2\sin A\sin B = \cos(A-B) - \cos(A+B)$$

$$2\cos A\sin B = \sin(A+B) - \sin(A-B)$$

Suimeanna agus difríochtaí a thiontú ina n-iolraigh

Sums and differences to products

$$\cos A + \cos B = 2\cos\frac{A+B}{2}\cos\frac{A-B}{2}$$

$$\cos A - \cos B = -2\sin\frac{A+B}{2}\sin\frac{A-B}{2}$$

$$\sin A + \sin B = 2\sin\frac{A+B}{2}\cos\frac{A-B}{2}$$

$$\sin A - \sin B = 2\cos\frac{A+B}{2}\sin\frac{A-B}{2}$$

Example

Evaluate $\lim_{x\to 0} \frac{\tan 3x}{\sin 2x}$

Example

Evaluate $\lim_{\theta \to 0} \frac{1 - \cos \theta}{\theta^2}$

Infinite Limits

So far, we've had lots of examples that are a little like:

$$\lim_{x \to 1} \frac{x^3 - x^2 - x + 1}{(x - 1)^2} = 2.$$

(Check that this is correct).

But what about

$$\lim_{x \to 1} \frac{1}{(x-1)^2} = ???$$

Let's plot it and see:

Infinite Limits

$$f(x) = \frac{1}{(x-1)^2}$$

As x get closer and closer to 1, the value of f(x) gets larger and larger. In fact, it becomes infinite.

For this we write

$$\lim_{x\to 1} f(x) = \infty.$$

Digression: How fast can an object travel

- Q: Is there any limit to the speed at which an object can travel?
- ► A: Yes! (Assuming you believe Einstein)

Thanks to Einstein ($E = mc^2$), Lorenz and others, it is known that the mass of a moving charged particle behaves like

$$m = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}}$$

where m_0 is its mass at rest, c is the speed of light, and v is the particles current speed. What happens as $v \to c$?

One-sided Limits

Let's consider a motivating example, very similar to the one where we introduced ∞ .

$$f(x) = \frac{1}{x - 1}$$

As x get closer and closer to 1, then $f(x) \to -\infty$ or $f(x) \to \infty$, depending on whether x approaches 1 from the left or right.

To express this, we need the concept of a **one-sided limit**

 $\lim_{x\to a^-} f(x)$ is: limit of f as x approaches a from the left

 $\lim_{x\to a^+} f(x)$ is: limit of f as x approaches a from the right

In the previous example, with $f(x) = \frac{1}{x-1}$, we have

In many important examples, we encounter functions that have different definitions in different regions. The most classic example is the **absolute value function**:

$$|x| = \begin{cases} -x & x < 0 \\ x & x > 0. \end{cases}$$

Care has to be taken when evaluating the limits of such functions....

Example

Sketch the function

$$f(x) = \begin{cases} 3 - x, & x \leq 2\\ \frac{x}{2} + 1, & x > 2 \end{cases}$$

Find $\lim_{x\to 2^-} f(x)$ and $\lim_{x\to 2^+} f(x)$.

Empty and Full Circle Notation:

In the previous sketch, we use the convention that

- ► If the end point of a line segment is **not** included in its definition, it terminates with an **open circle**, ∘
- ► If the end point of a line segment is included in its definition, it terminates with an **closed circle** •.

 $\lim_{x\to a} f(x)$ exists if and only if

$$\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x)$$

So if $\lim_{x\to a} f(x) = L$ exists, we have

$$\lim_{x \to a} f(x) = \lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x)$$

[but not necessarily = f(a)!]

Note: One-sided limits can be introduced formally by using the ϵ/δ approach.

Example

Sketch the function

$$f(x) = \begin{cases} 3 - x, & x < 2 \\ 4, & x = 2 \\ \frac{x}{2}, & x > 2 \end{cases}$$

Determine if $\lim_{x\to 2} f(x)$ exists.

Exercises

Exercise 3.1.1 (from 2023/24 Q1(b))

Evaluate

$$\lim_{\theta \to 0} \frac{2\sin(\theta)}{\theta + 3\tan(\theta)}$$