MATH 311

Chapter 3

SECTION 3.2: DETERMINANTS AND MATRIX INVERSES

Contents

Product Rule	2
Matrix Inverses	4
Transpose and Determinants	6

Created by: Pierre-Olivier Parisé Spring 2024

PRODUCT RULE

EXAMPLE 1. Show that for any number a, b, c, d, we have the following identity

$$(a^2 + b^2)(c^2 + d^2) = (ac - bd)^2 + (ad + bc)^2.$$

SOLUTION. Checked with Python!

Set
$$A = \begin{bmatrix} a & b \\ -b & a \end{bmatrix}$$
 and $B = \begin{bmatrix} c & d \\ -d & c \end{bmatrix}$.

THEOREM 1. If A and B are $n \times n$ matrices, then $\det(AB) = \det(A) \det(B).$

Facts:

- For three matrices, det(ABC) = det(A) det(B) det(C).
- For *n* matrices,

$$\det(A_1 A_2 \cdots A_n) = \det(A_1) \det(A_2) \cdots \det(A_n).$$

• For powers of a matrix, $det(A^k) = (det(A))^k$ (here, $k \ge 1$).

EXAMPLE 2. Assume that det(A) = 2, det(B) = 3, and det(C) = -2. Compute

$$\mathbf{D} = \det(A^2BCBC^2).$$

SOLUTION.

$$= (2^2)(3)(-2)(3)(-2)^2$$

Matrix Inverses

Recall that

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 is invertible $\iff \det(A) = ad - bc \neq 0$.

THEOREM 2. Let A be an $n \times n$ matrix. The matrix A is invertible if and only if $\det(A) \neq 0$. In this case, we have $\det(A^{-1}) = \frac{1}{\det(A)}$.

AA-1 = I \longrightarrow Let A be an $n \times n$ matrix. The matrix A is invertible if and only if $\det(A) \neq 0$. In this case, we have

PROOF. See page 156 in the textbook for the complete proof.

EXAMPLE 3. For which real value(s) of c is the matrix A =

$$\begin{bmatrix} 0 & c & c \\ -1 & 2 & 1 \\ c & -c & d \end{bmatrix}$$
 invertible?

SOLUTION.

We have

$$det A = -c \left| \frac{1}{c} \left| \frac{1}{c} \right| + (-c) \left| \frac{1}{c} \left| \frac{2}{c} \right| \right|$$

$$= -c \left(-2c \right) - c \left(-c \right)$$

$$= 3c^{2}$$

A is invertible

A is invertible

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A # 0

A #

Transpose and Determinants

EXAMPLE 4. Let $A = \begin{bmatrix} 5 & 1 & 3 \\ -1 & 2 & 3 \\ 1 & 4 & 8 \end{bmatrix}$. Find $\det(A)$ and $\det(A^{\top})$ and compare their values.

SOLUTION.

det
$$A = \frac{3}{48} - \frac{3}{18} + \frac{3}{18} + \frac{2}{14}$$

$$= 13$$

$$= \frac{3}{48} - \frac{3}{18} + \frac{3}{18} + \frac{2}{18} + \frac{3}{18} + \frac{2}{18} + \frac{3}{18} + \frac{3$$

THEOREM 3. If A is an $n \times n$ matrix, then $\det(A) = \det(A^{\top})$.

EXAMPLE 5. Assume that det(A) = 2 and det(B) = 4. Find the value of $det(AA^T(B^T)^2)$. = **D**

SOLUTION.

$$D = \operatorname{det}(A) \operatorname{det}(A^{T}) \operatorname{det}(B^{T})^{2}$$

$$= \operatorname{det} A \operatorname{det} A \quad (\operatorname{det} B^{T})^{2}$$

$$= \operatorname{det} A \operatorname{det} A \quad (\operatorname{det} B^{T})^{2}$$

$$= (2)(2)(4)^{2} = \boxed{64}$$

EXAMPLE 6. A square matrix is called **orthogonal** if $A^{-1} = A^{\top}$. What are the possible values of $\det(A)$ if A is orthogonal?

SOLUTION. Assume that A is orthogonal.

$$\Rightarrow A^{-1} = A^{T}$$
.

So,
$$\det(AA^{-1}) = \det(I) = 1$$

$$\Rightarrow \det(A) \det(A^{-1}) = 1$$

$$\Rightarrow \det(A) \det(A^{-1}) = 1$$

$$\Rightarrow \det(A) \det(A) = 1$$