Problem Set: Continuity

Problem 1. Let a < b < c be real numbers. Show that the equation

$$\frac{1}{x-a} + \frac{1}{x-b} + \frac{1}{x-c} = 0$$

has two solutions x_1 and x_2 that satisfy $a < x_1 < b < x_2 < c$.

Problem 2 (Universal Chord Theorem). Let $f:[0,1]\to\mathbb{R}$ be a continuous function such that f(0)=f(1). Prove that for any positive integer n, there exists a real number $x, 0 \le x \le 1 - \frac{1}{n}$, such that

$$f(x) = f\left(x + \frac{1}{n}\right).$$

Problem 3. Given $x_1, x_2, \ldots, x_n \in [0, 1]$, show that there is some $x \in [0, 1]$ such that

$$\sum_{k=1}^{n} |x - x_k| = \frac{n}{2}.$$

Problem 4. Let S be a set of strings consisting of the symbols a and b. The set S has the following properties:

- (i) $\emptyset \in S$.
- (ii) If $\alpha \in S$ then $a\alpha b \in S$ and $b\alpha a \in S$.
- (iii) If $\alpha \in S$ and $\beta \in S$ then $\alpha \beta \in S$.

Prove that S is the set of all strings that have an equal number of as and bs.

Problem 5. Given a closed curve, show that there exist two perpendicular lines that divide the curve into four sections of equal area.

Problem 6. Let S be a set of 6n points in a line. Choose arbitrarily 4n of these points and paint them blue; the other 2n points are painted green. Prove that there exists a line segment that contains exactly 3n points from S, 2n of them blue and n of them green.

Problem 7. Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function. Let f_n denote the n^{th} iterate of f, so $f_1 = f$ and $f_n = f \circ f_{n-1}$ for all $n \geq 2$.

Prove that if f_n has a fixed point for some n, then f has a fixed point.

Problem 8. Let x_1, x_2, \ldots, x_n be real numbers satisfying the conditions

$$|x_1 + x_2 + \dots + x_n| = 1$$

and

$$|x_i| \le \frac{n+1}{2}$$

for i = 1, 2, ..., n.

Show that there exists a permutation y_1, y_2, \ldots, y_n of x_1, x_2, \ldots, x_n such that

$$|y_1 + 2y_2 + \dots + ny_n| \le \frac{n+1}{2}.$$

Problem 9. Establish necessary and sufficient conditions on the constant k for the existence of a continuous real valued function f(x) satisfying $f(f(x)) = kx^9$ for all real x.