Problem K. 点分治

Input file: standard input
Output file: standard output

Time limit: 3 seconds
Memory limit: 256 megabytes

对于一棵 n 个点的无根树 T, 点的编号为 $1,2,\cdots,n$, 小 A 将其按照排列 p_1,p_2,\cdots,p_n 操作以如下方式得到一棵有根树 T':

- 1. 找到无根树 T 中在排列 p_1, p_2, \cdots, p_n 中出现位置最早的点 x。
- 2. 将x从T中删除,并往T'中加入x作为T'的根。
- 3. T 中剩下若干个连通块 $T_1,T_2,\cdots T_k$ (可能 k=0),每个连通块 T_i 仍然是一棵无根树,对每棵无根树 T_i 操作得到有根树 T_i' 。
- 4. 将每棵有根树 T_i' 加入 T', 并将 T_i' 的根的父亲设为 x。

现在给出一棵树 T 和操作排列 p_1,p_2,\cdots,p_n ,小 A 希望得到 T 按照排列 p_1,p_2,\cdots,p_n 操作后得到的有根树 T' 上每个点的父亲。

Input

第一行一个正整数 T $(1 \le T \le 10^4)$,表示数据组数。

对于每组数据,第一行一个整数 $n (1 \le n \le 10^5)$ 表示树的点数。

第二行 n 个整数 p_1, p_2, \dots, p_n $(1 \le p_i \le n, \forall i \ne j, p_i \ne p_i)$,表示排列。

接下来 n-1 行,每行两个整数 x,y $(1 \le x,y \le n, x \ne y)$,表示树上的一条边。

保证单个测试点内每组数据中 n 的和不超过 10^6 。

Output

对于每组数据,一行 n 个整数,第 i 个整数表示操作后得到的有根树 T' 上点 i 的父亲,如果点 i 为根则点 i 的父亲编号为 0。

Example

standard input	standard output
3	2 0 2
3	2 0 1 2 2
2 3 1	0 1 1 2 2
1 2	
2 3	
5	
2 1 4 5 3	
1 2	
1 3	
2 4	
2 5	
5	
1 2 3 4 5	
1 2	
1 3	
2 4	
2 5	

The 2025 Sichuan Provincial Collegiate Programming Contest China, Sichuan, June, 8, 2025

Note

对于第一组样例,首先 $p_1=2$,所以 T' 的根为 2,T 分为连通块 $T_1=\{2\}, T_2=\{3\}$,于是 2,3 在 T' 上的父亲均为 2。

对于第二组样例,首先 $p_1=2$,所以 T' 的根为 2,T 分为连通块 $T_1=\{1,3\}, T_2=\{4\}, T_3=\{5\}$ 。 T_2, T_3 都是单个点构成的树,于是 4,5 的在 T' 上的父亲均为 2;而对于 $T_1=\{1,3\}$,由于 1 在序列 p 中的出现位置更靠前($p_2=1, p_5=3$),所以 T'_1 的根为 1,于是 1 在 T' 上的父亲为 2,3 在 T' 上的父亲为 1。

对于第三组样例,首先 $p_1=1$,所以 T' 的根为 1,T 分为连通块 $T_1=\{2,4,5\},T_2=\{3\}$ 。 T_2 是单个点构成的树,于是 3 在 T' 上的父亲为 1;而对于 $T_1=\{2,4,5\}$,由于 2 在序列 p 中的出现位置更靠前($p_2=2,p_4=4,p_5=5$),所以 T'_1 的根为 2,于是 2 在 T' 上的父亲为 1。继续拆分 4,5 分别构成单独子树,其在 T' 上的父亲均为 2。