Application of Information Theory, Lecture 8 Parallel Repetition of Interactive Arguments

Iftach Haitner

Tel Aviv University.

December 08, 2011

Part I

Interactive Proofs and Arguments

\mathcal{NP} as a Non-interactive Proofs

Definition 1 (\mathcal{NP})

 $\mathcal{L} \in \mathcal{NP}$ iff \exists and poly-time algorithm \lor such that:

- ▶ $\forall x \in \mathcal{L}$ there exists $w \in \{0, 1\}^*$ s.t. V(x, w) = 1
- ▶ V(x, w) = 0 for every $x \notin \mathcal{L}$ and $w \in \{0, 1\}^*$

Only |x| counts for the running time of V.

\mathcal{NP} as a Non-interactive Proofs

Definition 1 (\mathcal{NP})

 $\mathcal{L} \in \mathcal{NP}$ iff \exists and poly-time algorithm \lor such that:

- ▶ $\forall x \in \mathcal{L}$ there exists $w \in \{0, 1\}^*$ s.t. V(x, w) = 1
- ▶ V(x, w) = 0 for every $x \notin \mathcal{L}$ and $w \in \{0, 1\}^*$

Only |x| counts for the running time of V.

This proof system has

Efficient verifier, efficient prover (given the witness)

\mathcal{NP} as a Non-interactive Proofs

Definition 1 (\mathcal{NP})

 $\mathcal{L} \in \mathcal{NP}$ iff \exists and poly-time algorithm \lor such that:

- ▶ $\forall x \in \mathcal{L}$ there exists $w \in \{0, 1\}^*$ s.t. V(x, w) = 1
- ▶ V(x, w) = 0 for every $x \notin \mathcal{L}$ and $w \in \{0, 1\}^*$

Only |x| counts for the running time of V.

This proof system has

- Efficient verifier, efficient prover (given the witness)
- Soundness holds unconditionally

Protocols between efficient verifier and unbounded/efficent prover.

Protocols between efficient verifier and unbounded/efficent prover.

Definition 2 (Interactive proof)

A protocol (P, V) is an interactive proof for \mathcal{L} , if V is a PPT and:

Completeness $\forall x \in \mathcal{L}$: $Pr[(P, V)(x) = 1] \ge 2/3$.

Soundness $\forall x \notin \mathcal{L}$, and any algorithm P*: $\Pr[(P^*, V)(x) = 1] \leq 1/3$.

Protocols between efficient verifier and unbounded/efficent prover.

Definition 2 (Interactive proof)

A protocol (P, V) is an interactive proof for \mathcal{L} , if V is a PPT and:

Completeness $\forall x \in \mathcal{L}$: $Pr[(P, V)(x) = 1] \ge 2/3$.

Soundness $\forall x \notin \mathcal{L}$, and any algorithm P*: $Pr[(P^*, V)(x) = 1] \leq 1/3$.

IP is the class of languages that have interactive proofs.

▶ IP = PSPACE!

Protocols between efficient verifier and unbounded/efficent prover.

Definition 2 (Interactive proof)

A protocol (P, V) is an interactive proof for \mathcal{L} , if V is a PPT and:

Completeness
$$\forall x \in \mathcal{L}$$
: $Pr[(P, V)(x) = 1] \ge 2/3$.

Soundness $\forall x \notin \mathcal{L}$, and any algorithm P*: $\Pr[(P^*, V)(x) = 1] \leq 1/3$.

- ► IP = PSPACE!
- ▶ The above protocol has completeness error $\frac{1}{3}$, and sourness error $\frac{1}{3}$

Protocols between efficient verifier and unbounded/efficent prover.

Definition 2 (Interactive proof)

A protocol (P, V) is an interactive proof for \mathcal{L} , if V is a PPT and:

Completeness
$$\forall x \in \mathcal{L}$$
: $Pr[(P, V)(x) = 1] \ge 2/3$.

Soundness $\forall x \notin \mathcal{L}$, and any algorithm P*: $Pr[(P^*, V)(x) = 1] \leq 1/3$.

- ► IP = PSPACE!
- ► The above protocol has completeness error $\frac{1}{3}$, and sourness error $\frac{1}{3}$
- We typically consider achieve (directly) perfect completeness.

Protocols between efficient verifier and unbounded/efficent prover.

Definition 2 (Interactive proof)

A protocol (P, V) is an interactive proof for \mathcal{L} , if V is a PPT and:

Completeness
$$\forall x \in \mathcal{L}$$
: $Pr[(P, V)(x) = 1] \ge 2/3$.

Soundness $\forall x \notin \mathcal{L}$, and any algorithm P*: $\Pr[(P^*, V)(x) = 1] \leq 1/3$.

- ► IP = PSPACE!
- ► The above protocol has completeness error $\frac{1}{3}$, and sourness error $\frac{1}{3}$
- We typically consider achieve (directly) perfect completeness.
- Smaller "soundness error" achieved via repetition.

Protocols between efficient verifier and unbounded/efficent prover.

Definition 2 (Interactive proof)

A protocol (P, V) is an interactive proof for \mathcal{L} , if V is a PPT and:

Completeness
$$\forall x \in \mathcal{L}$$
: $Pr[(P, V)(x) = 1] \ge 2/3$.

Soundness $\forall x \notin \mathcal{L}$, and any algorithm P*: $\Pr[(P^*, V)(x) = 1] \leq 1/3$.

- ▶ IP = PSPACE!
- ► The above protocol has completeness error $\frac{1}{3}$, and sourness error $\frac{1}{3}$
- We typically consider achieve (directly) perfect completeness.
- Smaller "soundness error" achieved via repetition.
- ► Relaxation: interactive arguments [also known as, Computationally sound proofs]: soundness only guaranteed against efficient (PPT) provers.

Protocols between efficient verifier and unbounded/efficent prover.

Definition 2 (Interactive proof)

A protocol (P, V) is an interactive proof for \mathcal{L} , if V is a PPT and:

Completeness
$$\forall x \in \mathcal{L}$$
: $Pr[(P, V)(x) = 1] \ge 2/3$.

Soundness $\forall x \notin \mathcal{L}$, and any algorithm P*: $Pr[(P^*, V)(x) = 1] \leq 1/3$.

- ▶ IP = PSPACE!
- ► The above protocol has completeness error $\frac{1}{3}$, and sourness error $\frac{1}{3}$
- We typically consider achieve (directly) perfect completeness.
- Smaller "soundness error" achieved via repetition.
- Relaxation: interactive arguments [also known as, Computationally sound proofs]: soundness only guaranteed against efficient (PPT) provers.
- Games no-input protocols.

Section 1

Interactive Proof for Graph Non-Isomorphism

 Π_m – the set of all permutations from [m] to [m]

Definition 3 (graph isomorphism)

 Π_m – the set of all permutations from [m] to [m]

Definition 3 (graph isomorphism)

$$\blacktriangleright \ \mathcal{GI} = \{(G_0, G_1) \colon G_0 \equiv G_1\} \in \mathcal{NP}$$

 Π_m – the set of all permutations from [m] to [m]

Definition 3 (graph isomorphism)

- $\blacktriangleright \ \mathcal{GI} = \{(G_0, G_1) \colon G_0 \equiv G_1\} \in \mathcal{NP}$
- ▶ Does $\mathcal{GNI} = \{(G_0, G_1) \colon G_0 \not\equiv G_1\} \in \mathcal{NP}$?

 Π_m – the set of all permutations from [m] to [m]

Definition 3 (graph isomorphism)

- $\blacktriangleright \ \mathcal{GI} = \{(G_0, G_1) \colon G_0 \equiv G_1\} \in \mathcal{NP}$
- ▶ Does $\mathcal{GNI} = \{(G_0, G_1) \colon G_0 \not\equiv G_1\} \in \mathcal{NP}$?
- We will show a simple interactive proof for GNT

 Π_m – the set of all permutations from [m] to [m]

Definition 3 (graph isomorphism)

- $\blacktriangleright \ \mathcal{GI} = \{(G_0, G_1) \colon G_0 \equiv G_1\} \in \mathcal{NP}$
- ▶ Does $\mathcal{GNI} = \{(G_0, G_1) \colon G_0 \not\equiv G_1\} \in \mathcal{NP}$?
- We will show a simple interactive proof for GNT

 Π_m – the set of all permutations from [m] to [m]

Definition 3 (graph isomorphism)

- $\blacktriangleright \ \mathcal{GI} = \{(G_0, G_1) \colon G_0 \equiv G_1\} \in \mathcal{NP}$
- ▶ Does $\mathcal{GNI} = \{(G_0, G_1) \colon G_0 \not\equiv G_1\} \in \mathcal{NP}$?
- We will show a simple interactive proof for GNT Idea: Beer tasting...

Interactive proof for \mathcal{GNI}

Protocol 4 ((P, V)(G₀ = ([m], E₀), G₁ = ([m], E₁)))

- 1. V chooses $b \leftarrow \{0,1\}$ and $\pi \leftarrow \Pi_m$, and sends $\pi(E_b)$ to P.^a
- **2.** P send b' to V (tries to set b' = b).
- **3.** V accepts iff b' = b.
 - ${}^{a}\pi(E) = \{(\pi(u), \pi(v) : (u, v) \in E\}.$

Interactive proof for \mathcal{GNI}

Protocol 4 ((P, V)(G₀ = ([m], E₀), G₁ = ([m], E₁)))

- **1.** V chooses $b \leftarrow \{0,1\}$ and $\pi \leftarrow \Pi_m$, and sends $\pi(E_b)$ to P.^a
- **2.** P send b' to V (tries to set b' = b).
- **3.** V accepts iff b' = b.

$$a\pi(E) = \{(\pi(u), \pi(v) : (u, v) \in E\}.$$

Claim 5

The above protocol is IP for \mathcal{GNI} , with perfect completeness and soundness error $\frac{1}{2}$.

 Graph isomorphism is an equivalence relation (separates all graph pairs into separate subsets)

 Graph isomorphism is an equivalence relation (separates all graph pairs into separate subsets)

- Graph isomorphism is an equivalence relation (separates all graph pairs into separate subsets)
- ▶ $([m], \pi(E_i))$ is a random element in $[G_i]$ the equivalence class of G_i

- Graph isomorphism is an equivalence relation (separates all graph pairs into separate subsets)
- ▶ $([m], \pi(E_i))$ is a random element in $[G_i]$ the equivalence class of G_i

- Graph isomorphism is an equivalence relation (separates all graph pairs into separate subsets)
- ▶ $([m], \pi(E_i))$ is a random element in $[G_i]$ the equivalence class of G_i

Hence,

$$G_0 \equiv G_1$$
: $Pr[b' = b] \leq \frac{1}{2}$.

- Graph isomorphism is an equivalence relation (separates all graph pairs into separate subsets)
- ▶ $([m], \pi(E_i))$ is a random element in $[G_i]$ the equivalence class of G_i

Hence,

$$G_0 \equiv G_1$$
: $Pr[b' = b] \le \frac{1}{2}$.
 $G_0 \not\equiv G_1$: $Pr[b' = b] = 1$ (i.e., P can, possibly inefficiently, extracted from $\pi(E_i)$)

Part II

▶ In most settings we need very small soundness error (i.e., close to 0)

- In most settings we need very small soundness error (i.e., close to 0)
- Typically done by "amplifying the security" of an interactive proof/argument of large soundness error.

- In most settings we need very small soundness error (i.e., close to 0)
- Typically done by "amplifying the security" of an interactive proof/argument of large soundness error.
- Two main approaches:

- In most settings we need very small soundness error (i.e., close to 0)
- Typically done by "amplifying the security" of an interactive proof/argument of large soundness error.
- ► Two main approaches:
 - Sequential repetition: achieves optimal amplification rate in almost any computation model, but increases the round complexity

- ▶ In most settings we need very small soundness error (i.e., close to 0)
- Typically done by "amplifying the security" of an interactive proof/argument of large soundness error.
- ► Two main approaches:
 - Sequential repetition: achieves optimal amplification rate in almost any computation model, but increases the round complexity
 - Parallel repetition: sometimes does not achieve optimal amplification rate and sometimes achieves nothing

- ► In most settings we need very small soundness error (i.e., close to 0)
- Typically done by "amplifying the security" of an interactive proof/argument of large soundness error.
- ► Two main approaches:
 - Sequential repetition: achieves optimal amplification rate in almost any computation model, but increases the round complexity
 - Parallel repetition: sometimes does not achieve optimal amplification rate and sometimes achieves nothing
- How come parallel repetition might not work?

- ► In most settings we need very small soundness error (i.e., close to 0)
- Typically done by "amplifying the security" of an interactive proof/argument of large soundness error.
- ► Two main approaches:
 - Sequential repetition: achieves optimal amplification rate in almost any computation model, but increases the round complexity
 - Parallel repetition: sometimes does not achieve optimal amplification rate and sometimes achieves nothing
- How come parallel repetition might not work?

- ▶ In most settings we need very small soundness error (i.e., close to 0)
- Typically done by "amplifying the security" of an interactive proof/argument of large soundness error.
- ► Two main approaches:
 - Sequential repetition: achieves optimal amplification rate in almost any computation model, but increases the round complexity
 - Parallel repetition: sometimes does not achieve optimal amplification rate and sometimes achieves nothing
- ► How come parallel repetition might not work? Example

- ► In most settings we need very small soundness error (i.e., close to 0)
- Typically done by "amplifying the security" of an interactive proof/argument of large soundness error.
- ► Two main approaches:
 - Sequential repetition: achieves optimal amplification rate in almost any computation model, but increases the round complexity
 - Parallel repetition: sometimes does not achieve optimal amplification rate and sometimes achieves nothing
- ► How come parallel repetition might not work? Example
- Parallel repetition does achieve optimal amplification rate for interactive proofs and public-coin interactive arguments

- ► In most settings we need very small soundness error (i.e., close to 0)
- Typically done by "amplifying the security" of an interactive proof/argument of large soundness error.
- ► Two main approaches:
 - Sequential repetition: achieves optimal amplification rate in almost any computation model, but increases the round complexity
 - Parallel repetition: sometimes does not achieve optimal amplification rate and sometimes achieves nothing
- ► How come parallel repetition might not work? Example
- Parallel repetition does achieve optimal amplification rate for interactive proofs and public-coin interactive arguments
- ▶ Public-coin interactive proof/argument in each round the verifier flips coins and sends them to the prover. To compute its output, the verifier applies some (fixed) function to the protocol's transcript.

▶ Give a protocol $\pi = (P, V)$ and $k \in \mathbb{N}$, let $\pi^{(k)} = (P^{(k)}, V^{(k)})$ be the k-fold parallel repetition of π : i.e., k parallel independent copies of π

- ▶ Give a protocol $\pi = (P, V)$ and $k \in \mathbb{N}$, let $\pi^{(k)} = (P^{(k)}, V^{(k)})$ be the k-fold parallel repetition of π : i.e., k parallel independent copies of π
- Assume $\Pr\left[(\widetilde{P},V)=1\right] \leq \varepsilon$ for any *s*-size algorithm \widetilde{P} , we would like to prove that $\Pr\left[(\widetilde{P^{(k)}},V^{(k)})=1^k\right] \leq f(\varepsilon)$ for any $s^{(k)}$ -size algorithm $\widetilde{P^{(k)}}$.

- ▶ Give a protocol $\pi = (P, V)$ and $k \in \mathbb{N}$, let $\pi^{(k)} = (P^{(k)}, V^{(k)})$ be the k-fold parallel repetition of π : i.e., k parallel independent copies of π
- Assume $\Pr\left[(\widetilde{P},V)=1\right] \leq \varepsilon$ for any *s*-size algorithm \widetilde{P} , we would like to prove that $\Pr\left[(\widetilde{P^{(k)}},V^{(k)})=1^k\right] \leq f(\varepsilon)$ for any $s^{(k)}$ -size algorithm $\widetilde{P^{(k)}}$.
- ▶ Typically, $s^{(k)} = s \cdot \text{poly}(f(\varepsilon)/k)$

- ▶ Give a protocol $\pi = (P, V)$ and $k \in \mathbb{N}$, let $\pi^{(k)} = (P^{(k)}, V^{(k)})$ be the k-fold parallel repetition of π : i.e., k parallel independent copies of π
- Assume $\Pr\left[(\widetilde{P},V)=1\right] \leq \varepsilon$ for any *s*-size algorithm \widetilde{P} , we would like to prove that $\Pr\left[(\widetilde{P^{(k)}},V^{(k)})=1^k\right] \leq f(\varepsilon)$ for any $s^{(k)}$ -size algorithm $\widetilde{P^{(k)}}$.
- ▶ Typically, $s^{(k)} = s \cdot poly(f(\varepsilon)/k)$
- ▶ If $f(\varepsilon) = \varepsilon^{\Omega(k)}$, the above is an exponential-rate amplification (and hence optimal)

- ▶ Give a protocol $\pi = (P, V)$ and $k \in \mathbb{N}$, let $\pi^{(k)} = (P^{(k)}, V^{(k)})$ be the k-fold parallel repetition of π : i.e., k parallel independent copies of π
- Assume $\Pr\left[(\widetilde{P},V)=1\right] \leq \varepsilon$ for any *s*-size algorithm \widetilde{P} , we would like to prove that $\Pr\left[(\widetilde{P^{(k)}},V^{(k)})=1^k\right] \leq f(\varepsilon)$ for any $s^{(k)}$ -size algorithm $\widetilde{P^{(k)}}$.
- ▶ Typically, $s^{(k)} = s \cdot poly(f(\varepsilon)/k)$
- ▶ If $f(\varepsilon) = \varepsilon^{\Omega(k)}$, the above is an exponential-rate amplification (and hence optimal)
- ▶ If $f(\varepsilon) = \varepsilon^{\delta_1 \cdot k^{\delta_2}}$, the above is a weakly-exponential-rate amplification

- ▶ Give a protocol $\pi = (P, V)$ and $k \in \mathbb{N}$, let $\pi^{(k)} = (P^{(k)}, V^{(k)})$ be the k-fold parallel repetition of π : i.e., k parallel independent copies of π
- Assume $\Pr\left[(\widetilde{P},V)=1\right] \leq \varepsilon$ for any *s*-size algorithm \widetilde{P} , we would like to prove that $\Pr\left[(\widetilde{P^{(k)}},V^{(k)})=1^k\right] \leq f(\varepsilon)$ for any $s^{(k)}$ -size algorithm $\widetilde{P^{(k)}}$.
- ▶ Typically, $s^{(k)} = s \cdot poly(f(\varepsilon)/k)$
- ▶ If $f(\varepsilon) = \varepsilon^{\Omega(k)}$, the above is an exponential-rate amplification (and hence optimal)
- ▶ If $f(\varepsilon) = \varepsilon^{\delta_1 \cdot k^{\delta_2}}$, the above is a weakly-exponential-rate amplification
- Why size?

- ▶ Give a protocol $\pi = (P, V)$ and $k \in \mathbb{N}$, let $\pi^{(k)} = (P^{(k)}, V^{(k)})$ be the k-fold parallel repetition of π : i.e., k parallel independent copies of π
- Assume $\Pr\left[(\widetilde{P},V)=1\right] \leq \varepsilon$ for any *s*-size algorithm \widetilde{P} , we would like to prove that $\Pr\left[(\widetilde{P^{(k)}},V^{(k)})=1^k\right] \leq f(\varepsilon)$ for any $s^{(k)}$ -size algorithm $\widetilde{P^{(k)}}$.
- ▶ Typically, $s^{(k)} = s \cdot poly(f(\varepsilon)/k)$
- ▶ If $f(\varepsilon) = \varepsilon^{\Omega(k)}$, the above is an exponential-rate amplification (and hence optimal)
- ▶ If $f(\varepsilon) = \varepsilon^{\delta_1 \cdot k^{\delta_2}}$, the above is a weakly-exponential-rate amplification
- ▶ Why size?
- Concrete security

- ▶ Give a protocol $\pi = (P, V)$ and $k \in \mathbb{N}$, let $\pi^{(k)} = (P^{(k)}, V^{(k)})$ be the k-fold parallel repetition of π : i.e., k parallel independent copies of π
- Assume $\Pr\left[(\widetilde{P},V)=1\right] \leq \varepsilon$ for any *s*-size algorithm \widetilde{P} , we would like to prove that $\Pr\left[(\widetilde{P^{(k)}},V^{(k)})=1^k\right] \leq f(\varepsilon)$ for any $s^{(k)}$ -size algorithm $\widetilde{P^{(k)}}$.
- ▶ Typically, $s^{(k)} = s \cdot poly(f(\varepsilon)/k)$
- ▶ If $f(\varepsilon) = \varepsilon^{\Omega(k)}$, the above is an exponential-rate amplification (and hence optimal)
- ▶ If $f(\varepsilon) = \varepsilon^{\delta_1 \cdot k^{\delta_2}}$, the above is a weakly-exponential-rate amplification
- Why size?
- Concrete security
- ▶ In the following we focus on games (no input protocols)

Section 2

Parallel repetition of public-coin interactive argument

Theorem 6

Let $\pi = (P, V)$ be m-round, public-coin protocol with $\Pr\left[(\widetilde{P}, V) = 1\right] \le \varepsilon$ for any s-size \widetilde{P} , then $\Pr\left[(\widetilde{P^{(k)}}, V^{(k)}) = 1^k\right] \le \varepsilon^{k/4}$ for any $s \cdot \frac{\varepsilon^{k/4}}{mk^3s_V}$ -size $\widetilde{P^{(k)}}$, where s_V is V's size.

Theorem 6

Let $\pi = (P, V)$ be m-round, public-coin protocol with $\Pr\left[(\widetilde{P}, V) = 1\right] \leq \varepsilon$ for any s-size \widetilde{P} , then $\Pr\left[(\widetilde{P^{(k)}}, V^{(k)}) = 1^k\right] \leq \varepsilon^{k/4}$ for any $s \cdot \frac{\varepsilon^{k/4}}{mk^3s_V}$ -size $\widetilde{P^{(k)}}$, where s_V is V's size.

Theorem 6

Let $\pi = (P, V)$ be m-round, public-coin protocol with $\Pr\left[(\widetilde{P}, V) = 1\right] \leq \varepsilon$ for any s-size \widetilde{P} , then $\Pr\left[(\widetilde{P^{(k)}}, V^{(k)}) = 1^k\right] \leq \varepsilon^{k/4}$ for any $s \cdot \frac{\varepsilon^{k/4}}{mk^3 s_V}$ -size $\widetilde{P^{(k)}}$, where s_V is V's size.

Proof plan: Let $\widetilde{\mathsf{P}^{(k)}}$ be $s^{(k)}$ -size algorithm with $\Pr\left[(\widetilde{\mathsf{P}^{(k)}},\mathsf{V}^{(k)})=1^k\right]=\varepsilon^{(k)}$, we construct $s^{(k)}\cdot\frac{mk^3\mathsf{s}_\mathsf{V}}{\varepsilon^{(k)}}$ -size $\widetilde{\mathsf{P}}$ with $\Pr\left[(\widetilde{\mathsf{P}},\mathsf{V})=1\right]\geq(\varepsilon^{(k)})^{4/k}$.

▶ The k/4 in the exponent can be pushed to be almost k.

Theorem 6

Let $\pi = (P, V)$ be m-round, public-coin protocol with $\Pr\left[(\widetilde{P}, V) = 1\right] \le \varepsilon$ for any s-size \widetilde{P} , then $\Pr\left[(\widetilde{P^{(k)}}, V^{(k)}) = 1^k\right] \le \varepsilon^{k/4}$ for any $s \cdot \frac{\varepsilon^{k/4}}{mk^3s_V}$ -size $\widetilde{P^{(k)}}$, where s_V is V's size.

- ▶ The k/4 in the exponent can be pushed to be almost k.
- Assume for simplicity that P(k) is deterministic

Theorem 6

Let $\pi = (P, V)$ be m-round, public-coin protocol with $\Pr\left[(\widetilde{P}, V) = 1\right] \le \varepsilon$ for any s-size \widetilde{P} , then $\Pr\left[(\widetilde{P^{(k)}}, V^{(k)}) = 1^k\right] \le \varepsilon^{k/4}$ for any $s \cdot \frac{\varepsilon^{k/4}}{mk^3s_V}$ -size $\widetilde{P^{(k)}}$, where s_V is V's size.

- ▶ The k/4 in the exponent can be pushed to be almost k.
- Assume for simplicity that $P^{(k)}$ is deterministic
- Assume wlg. that V sends the first message in π and that in each round it samples and sends ℓ coins.

Theorem 6

Let $\pi = (P, V)$ be m-round, public-coin protocol with $\Pr\left[(\widetilde{P}, V) = 1\right] \leq \varepsilon$ for any s-size \widetilde{P} , then $\Pr\left[(\widetilde{P^{(k)}}, V^{(k)}) = 1^k\right] \leq \varepsilon^{k/4}$ for any $s \cdot \frac{\varepsilon^{k/4}}{mk^3 s_V}$ -size $\widetilde{P^{(k)}}$, where s_V is V's size.

- ▶ The k/4 in the exponent can be pushed to be almost k.
- ▶ Assume for simplicity that $P^{(k)}$ is deterministic
- Assume wlg. that V sends the first message in π and that in each round it samples and sends ℓ coins.
- ▶ We view the coins of $V^{(k)}$ as a matrix $R \in \{0, 1\}^{m \times (k\ell)}$, letting R_j denote the coins of the j'th round, and $R_{1,...,j}$ the coins of the first j rounds.

Theorem 6

Let $\pi = (P, V)$ be m-round, public-coin protocol with $\Pr\left[(\widetilde{P}, V) = 1\right] \le \varepsilon$ for any s-size \widetilde{P} , then $\Pr\left[(\widetilde{P^{(k)}}, V^{(k)}) = 1^k\right] \le \varepsilon^{k/4}$ for any $s \cdot \frac{\varepsilon^{k/4}}{mk^3 s_V}$ -size $\widetilde{P^{(k)}}$, where s_V is V's size.

- ▶ The k/4 in the exponent can be pushed to be almost k.
- Assume for simplicity that $P^{(k)}$ is deterministic
- Assume wlg. that V sends the first message in π and that in each round it samples and sends ℓ coins.
- ▶ We view the coins of $V^{(k)}$ as a matrix $R \in \{0, 1\}^{m \times (k\ell)}$, letting R_j denote the coins of the j'th round, and $R_{1,...,j}$ the coins of the first j rounds.
- ▶ Let $\mathbb{R} \sim \{0,1\}^{m \times (k\ell)}$

Algorithm \widetilde{P}

Algorithm \widetilde{P} Let $q = k^2$.

Algorithm P

Let $q = k^2$.

Algorithm 7 (\widetilde{P})

- 1. Let $i^* \leftarrow [k]$.
- **2.** Upon getting the j'th message r from V, do:
 - **2.1** Let $R \leftarrow \{0,1\}^{m \times (k\ell)}$, conditioned that $R_{1,\dots,j-1} = \widetilde{R}_{1,\dots,j-1}$ and $R_{j,i^*} = r$.
 - **2.2** If $(P^{(k)}, V^{(k)}(R)) = 1^k$:
 - **2.2.1** Set $\widetilde{R}_j = R_j$
 - **2.2.2** Send a_{j,i^*} back to V, for a_j being the j'th message $P^{(k)}$ send to $V^{(k)}$ in $(P^{(k)}, V^{(k)}(R))$.

Else, GOTO Line 2.1

2.3 Abort if the overall number of sampling exceeds $\lceil qm/\varepsilon^{(k)} \rceil$.

Algorithm P

Let $q = k^2$.

Algorithm 7 (\widetilde{P})

- 1. Let $i^* \leftarrow [k]$.
- **2.** Upon getting the j'th message r from V, do:
 - **2.1** Let $R \leftarrow \{0,1\}^{m \times (k\ell)}$, conditioned that $R_{1,\dots,j-1} = \widetilde{R}_{1,\dots,j-1}$ and $R_{j,i^*} = r$.
 - **2.2** If $(P^{(k)}, V^{(k)}(R)) = 1^k$:
 - **2.2.1** Set $\widetilde{R}_j = R_j$
 - **2.2.2** Send a_{j,i^*} back to V, for a_j being the j'th message $P^{(k)}$ send to $V^{(k)}$ in $(\widetilde{P^{(k)}}, V^{(k)}(R))$.

Else, GOTO Line 2.1

- **2.3** Abort if the overall number of sampling exceeds $\lceil qm/\varepsilon^{(k)} \rceil$.
- Let \widetilde{P}' be the non aborting variant of \widetilde{P} , let \widetilde{R} and \widetilde{N} be the value of \widetilde{R} and # of samples done in a random execution of $(\widetilde{P}', V^{(k)})$.

Algorithm \widetilde{P}

Let $q = k^2$.

Algorithm 7 (\widetilde{P})

- 1. Let $i^* \leftarrow [k]$.
- **2.** Upon getting the *j*'th message *r* from **V**, do:
 - **2.1** Let $R \leftarrow \{0,1\}^{m \times (k\ell)}$, conditioned that $R_{1,\dots,j-1} = \widetilde{R}_{1,\dots,j-1}$ and $R_{j,j^*} = r$.
 - **2.2** If $(\widetilde{P^{(k)}}, V^{(k)}(R)) = 1^k$:
 - **2.2.1** Set $\widetilde{R}_j = R_j$
 - **2.2.2** Send a_{j,i^*} back to V, for a_j being the j'th message $P^{(k)}$ send to $V^{(k)}$ in $(\widetilde{P^{(k)}}, V^{(k)}(R))$.

Else, GOTO Line 2.1

- **2.3** Abort if the overall number of sampling exceeds $\lceil qm/\varepsilon^{(k)} \rceil$.
- Let \widetilde{P}' be the non aborting variant of \widetilde{P} , let \widetilde{R} and \widetilde{N} be the value of \widetilde{R} and # of samples done in a random execution of $(\widetilde{P}', V^{(k)})$.
- $\qquad \qquad \Pr\left[(\widetilde{P},V)=1\right] \geq \Pr\left[\text{win}(\widetilde{\textbf{R}},\widetilde{\textbf{N}}) := (\widetilde{P^{(k)}},V^{(k)}(\widetilde{\textbf{R}})) = 1^k \wedge \widetilde{\textbf{N}} \leq qm/\varepsilon^{(k)}\right].$

Experiment 8 (P)

- 1. Let $R \leftarrow \{0,1\}^{m \times (k\ell)}$, conditioned that $R_{1,\dots,j-1} = \hat{R}_{1,\dots,j-1}$.
- **2.** If $(\widetilde{P^{(k)}}, V^{(k)}(R)) = 1^k$, set $\hat{R}_j = R_j$. Else, GOTO Line 1.

Experiment 8 (P)

- 1. Let $R \leftarrow \{0,1\}^{m \times (k\ell)}$, conditioned that $R_{1,\dots,j-1} = \hat{R}_{1,\dots,j-1}$.
- **2.** If $(\widetilde{P^{(k)}}, V^{(k)}(R)) = 1^k$, set $\hat{R}_j = R_j$. Else, GOTO Line 1.
- Let $\hat{\mathbf{R}}$ be the value of $\hat{\mathbf{R}}$ in the end of a random execution of $\hat{\mathbf{P}}$.

Experiment 8 (P)

- 1. Let $R \leftarrow \{0,1\}^{m \times (k\ell)}$, conditioned that $R_{1,\dots,j-1} = \hat{R}_{1,\dots,j-1}$.
- **2.** If $(\widetilde{P^{(k)}}, V^{(k)}(R)) = 1^k$, set $\hat{R}_j = R_j$. Else, GOTO Line 1.
- Let $\hat{\mathbf{R}}$ be the value of $\hat{\mathbf{R}}$ in the end of a random execution of $\hat{\mathbf{P}}$.
- $\blacktriangleright \ \hat{\boldsymbol{R}} \sim \boldsymbol{R}|_{\widetilde{(P^{(k)},V^{(k)}(\boldsymbol{R}))}=1^k}$

Experiment 8 (P)

- 1. Let $R \leftarrow \{0,1\}^{m \times (k\ell)}$, conditioned that $R_{1,\dots,j-1} = \hat{R}_{1,\dots,j-1}$.
- **2.** If $(\widetilde{P^{(k)}}, V^{(k)}(R)) = 1^k$, set $\hat{R}_i = R_i$. Else, GOTO Line 1.
- Let $\hat{\mathbf{R}}$ be the value of $\hat{\mathbf{R}}$ in the end of a random execution of $\hat{\mathbf{P}}$.
- $\blacktriangleright |\hat{\mathbf{R}} \sim \mathbf{R}|_{(\widetilde{\mathsf{P}^{(k)}},\mathsf{V}^{(k)}(\mathbf{R}))=1^k}$
- ► In particular, $\Pr\left[(\widetilde{\mathsf{P}^{(k)}},\mathsf{V}^{(k)}(\hat{\mathbf{R}})=1^k\right]=1$

Experiment 8 (P)

- 1. Let $R \leftarrow \{0,1\}^{m \times (k\ell)}$, conditioned that $R_{1,\dots,j-1} = \hat{R}_{1,\dots,j-1}$.
- **2.** If $(\widetilde{P^{(k)}}, V^{(k)}(R)) = 1^k$, set $\hat{R}_j = R_j$. Else, GOTO Line 1.
- Let $\hat{\mathbf{R}}$ be the value of $\hat{\mathbf{R}}$ in the end of a random execution of $\hat{\mathbf{P}}$.
- $\blacktriangleright |\hat{\mathbf{R}} \sim \mathbf{R}|_{(\widetilde{\mathsf{P}^{(k)}},\mathsf{V}^{(k)}(\mathbf{R}))=1^k}$
- ► In particular, $\Pr\left[(\widetilde{\mathsf{P}^{(k)}},\mathsf{V}^{(k)}(\hat{\mathbf{R}})=1^k\right]=1$
- ▶ Let \hat{N} be # of samples done in \hat{P} .

Experiment 8 (P)

- 1. Let $R \leftarrow \{0,1\}^{m \times (k\ell)}$, conditioned that $R_{1,\dots,j-1} = \hat{R}_{1,\dots,j-1}$.
- **2.** If $(\widetilde{P^{(k)}}, V^{(k)}(R)) = 1^k$, set $\hat{R}_j = R_j$. Else, GOTO Line 1.
- Let $\hat{\mathbf{R}}$ be the value of $\hat{\mathbf{R}}$ in the end of a random execution of $\hat{\mathbf{P}}$.
- $\blacktriangleright |\hat{\mathbf{R}} \sim \mathbf{R}|_{(\widetilde{\mathsf{P}^{(k)}},\mathsf{V}^{(k)}(\mathbf{R}))=1^k}$
- ► In particular, $\Pr\left[(\widetilde{\mathsf{P}^{(k)}},\mathsf{V}^{(k)}(\hat{\mathbf{R}})=1^k\right]=1$
- ▶ Let \hat{N} be # of samples done in \hat{P} .

Experiment 8 (P)

For j = 1 to m:

- 1. Let $R \leftarrow \{0,1\}^{m \times (k\ell)}$, conditioned that $R_{1,\dots,j-1} = \hat{R}_{1,\dots,j-1}$.
- **2.** If $(\widetilde{P^{(k)}}, V^{(k)}(R)) = 1^k$, set $\hat{R}_j = R_j$. Else, GOTO Line 1.
- Let $\hat{\mathbf{R}}$ be the value of $\hat{\mathbf{R}}$ in the end of a random execution of $\hat{\mathbf{P}}$.
- $\blacktriangleright |\hat{\mathbf{R}} \sim \mathbf{R}|_{(\widetilde{\mathsf{P}^{(k)}},\mathsf{V}^{(k)}(\mathbf{R}))=1^k}$
- ► In particular, $\Pr\left[(\widetilde{\mathsf{P}^{(k)}},\mathsf{V}^{(k)}(\hat{\mathbf{R}})=1^k\right]=1$
- ▶ Let N̂ be # of samples done in P̂.

Lemma 9

$$\Pr\left[\hat{\mathbf{N}} \leq qm/arepsilon^{(k)}
ight] \geq 1 - rac{1}{q}$$

► For $(z_1, ..., z_m)$, let $z^j = (z_1, ..., z_m)$.

- ► For $(z_1, ..., z_m)$, let $z^j = (z_1, ..., z_m)$.
- ▶ Let $(X_1, ..., X_m) = \mathbf{R}$ and $(Y_1, ..., Y_m) = \widehat{\mathbf{R}}$

- ► For $(z_1, ..., z_m)$, let $z^j = (z_1, ..., z_m)$.
- ► Let $(X_1, \ldots, X_m) = \mathbf{R}$ and $(Y_1, \ldots, Y_m) = \widehat{\mathbf{R}}$
- ▶ For $\mathbf{y} \in \text{Supp}(Y^j)$, let

$$v(\mathbf{y} = (y_1, \dots, y_j)) := \text{Pr}\left[(\widetilde{\mathsf{P}^{(k)}}, \mathsf{V}^{(k)}(X^m) = 1^k \mid X^j = \mathbf{y}\right]$$

- ► For $(z_1, ..., z_m)$, let $z^j = (z_1, ..., z_m)$.
- ► Let $(X_1, ..., X_m) = \mathbf{R}$ and $(Y_1, ..., Y_m) = \widehat{\mathbf{R}}$
- ▶ For $\mathbf{y} \in \text{Supp}(Y^j)$, let

$$v(\mathbf{y} = (y_1, \dots, y_j)) := \text{Pr}\left[(\widetilde{\mathsf{P}^{(k)}}, \mathsf{V}^{(k)}(X^m) = 1^k \mid X^j = \mathbf{y}\right]$$

► Conditioned on $Y^j = \mathbf{y}$, the expected # of samples done in (j + 1)'th round of \widehat{P} is $\frac{1}{V(\mathbf{y})}$.

- ► For $(z_1, ..., z_m)$, let $z^j = (z_1, ..., z_m)$.
- ► Let $(X_1, ..., X_m) = \mathbf{R}$ and $(Y_1, ..., Y_m) = \widehat{\mathbf{R}}$
- ▶ For $\mathbf{y} \in \text{Supp}(Y^j)$, let

$$v(\mathbf{y} = (y_1, \dots, y_j)) := \text{Pr}\left[(\widetilde{\mathsf{P}^{(k)}}, \mathsf{V}^{(k)}(X^m) = 1^k \mid X^j = \mathbf{y}\right]$$

- ► Conditioned on $Y^j = \mathbf{y}$, the expected # of samples done in (j+1)'th round of \widehat{P} is $\frac{1}{\nu(\mathbf{y})}$.
- ▶ We prove Lemma 9 showing that $\mathsf{E}\left[\frac{1}{\nu(Y^j)}\right] \leq \frac{1}{\varepsilon^{(k)}}$ for every $j \in \{0, \dots, m-1\}$

- ► For $(z_1, ..., z_m)$, let $z^j = (z_1, ..., z_m)$.
- ► Let $(X_1, ..., X_m) = \mathbf{R}$ and $(Y_1, ..., Y_m) = \widehat{\mathbf{R}}$
- ▶ For $\mathbf{y} \in \text{Supp}(Y^j)$, let

$$v(\mathbf{y} = (y_1, \dots, y_j)) := \text{Pr}\left[(\widetilde{\mathsf{P}^{(k)}}, \mathsf{V}^{(k)}(X^m) = 1^k \mid X^j = \mathbf{y}\right]$$

- ► Conditioned on $Y^j = \mathbf{y}$, the expected # of samples done in (j+1)'th round of \widehat{P} is $\frac{1}{\nu(\mathbf{y})}$.
- ▶ We prove Lemma 9 showing that $\mathsf{E}\left[\frac{1}{\nu(Y^j)}\right] \leq \frac{1}{\varepsilon^{(k)}}$ for every $j \in \{0, \dots, m-1\}$

- ► For $(z_1, ..., z_m)$, let $z^j = (z_1, ..., z_m)$.
- ▶ Let $(X_1, ..., X_m) = \mathbf{R}$ and $(Y_1, ..., Y_m) = \widehat{\mathbf{R}}$
- ▶ For $\mathbf{y} \in \text{Supp}(Y^j)$, let

$$v(\mathbf{y} = (y_1, \dots, y_j)) := \Pr \left[(\widetilde{P^{(k)}}, V^{(k)}(X^m) = 1^k \mid X^j = \mathbf{y} \right]$$

- ► Conditioned on $Y^j = \mathbf{y}$, the expected # of samples done in (j+1)'th round of \widehat{P} is $\frac{1}{v(\mathbf{y})}$.
- ▶ We prove Lemma 9 showing that $E\left[\frac{1}{\nu(Y^{j})}\right] \leq \frac{1}{\varepsilon^{(k)}}$ for every $j \in \{0, \dots, m-1\}$

Claim 10

For $j \in \{0, \dots, m-1\}$ and $\mathbf{y} \in \operatorname{Supp}(Y^j)$, it holds that $\Pr_{Y^j}[\mathbf{y}] = \Pr_{X^j}[\mathbf{y}] \cdot \frac{v(\mathbf{y})}{\varepsilon^{(k)}}$

- ► For $(z_1, ..., z_m)$, let $z^j = (z_1, ..., z_m)$.
- ► Let $(X_1, ..., X_m) = \mathbf{R}$ and $(Y_1, ..., Y_m) = \widehat{\mathbf{R}}$
- For $\mathbf{y} \in \text{Supp}(Y^j)$, let $v(\mathbf{y} = (y_1, \dots, y_j)) := \Pr\left[(\widetilde{P^{(k)}}, V^{(k)}(X^m) = 1^k \mid X^j = \mathbf{y}\right]$
- ► Conditioned on $Y^j = \mathbf{y}$, the expected # of samples done in (j + 1)'th round of \widehat{P} is $\frac{1}{v(\mathbf{y})}$.
- ▶ We prove Lemma 9 showing that $\mathsf{E}\left[\frac{1}{\nu(\mathsf{Y}^j)}\right] \leq \frac{1}{\varepsilon^{(k)}}$ for every $j \in \{0, \dots, m-1\}$

For
$$j \in \{0, \dots, m-1\}$$
 and $\mathbf{y} \in \operatorname{Supp}(Y^j)$, it holds that $\Pr_{Y^j}[\mathbf{y}] = \Pr_{X^j}[\mathbf{y}] \cdot \frac{v(\mathbf{y})}{\varepsilon^{(k)}}$

Hence,
$$\mathsf{E}\left[\frac{1}{\nu(Y^j)}\right] = \sum_{\mathbf{y} \in \mathsf{Supp}(Y^j)} \mathsf{Pr}[Y^j = \mathbf{y}] \cdot \frac{1}{\nu(\mathbf{y})}$$

- ► For $(z_1, ..., z_m)$, let $z^j = (z_1, ..., z_m)$.
- ► Let $(X_1, \ldots, X_m) = \mathbf{R}$ and $(Y_1, \ldots, Y_m) = \widehat{\mathbf{R}}$
- For $\mathbf{y} \in \text{Supp}(Y^j)$, let $v(\mathbf{y} = (y_1, \dots, y_j)) := \text{Pr}\left[(\widetilde{\mathsf{P}^{(k)}}, \mathsf{V}^{(k)}(X^m) = 1^k \mid X^j = \mathbf{y}\right]$
- ► Conditioned on $Y^j = \mathbf{y}$, the expected # of samples done in (j + 1)'th round of \widehat{P} is $\frac{1}{V(\mathbf{y})}$.
- ▶ We prove Lemma 9 showing that $\mathsf{E}\left[\frac{1}{v(Y^j)}\right] \leq \frac{1}{\varepsilon^{(k)}}$ for every $j \in \{0, \dots, m-1\}$

Claim 10

For $j \in \{0, \dots, m-1\}$ and $\mathbf{y} \in \operatorname{Supp}(Y^j)$, it holds that $\Pr_{Y^j}[\mathbf{y}] = \Pr_{X^j}[\mathbf{y}] \cdot \frac{v(\mathbf{y})}{\varepsilon^{(k)}}$

Hence,
$$\mathsf{E}\left[\frac{1}{v(Y^j)}\right] = \sum_{\mathbf{y} \in \mathsf{Supp}(Y^j)} \mathsf{Pr}[Y^j = \mathbf{y}] \cdot \frac{1}{v(\mathbf{y})}$$

= $\sum_{\mathbf{y}} \mathsf{Pr}[X^j = \mathbf{y}] \cdot \frac{v(\mathbf{y})}{\varepsilon^{(k)}} \cdot \frac{1}{v(\mathbf{y})} = \frac{1}{\varepsilon^{(k)}} \cdot \sum_{\mathbf{y} \in \mathsf{Supp}(Y^j)} \mathsf{Pr}[X^j = \mathbf{y}] \leq \frac{1}{\varepsilon^{(k)}}.$

Note that

$$\Pr_{Y_{j}|Y^{j-1}=\mathbf{y}_{1,...,j-1}}[y_{j}] = \sum_{\ell=1}^{\infty} (1 - v(\mathbf{y}_{1,...,j-1}))^{\ell-1} \cdot \Pr_{X_{j}|X^{j-1}=\mathbf{y}_{1,...,j-1}}[y_{j}] \cdot v(\mathbf{y}) \qquad (1)$$

$$= \frac{1}{v(\mathbf{y}_{1,...,j-1})} \cdot \Pr_{X_{j}|X^{j-1}=\mathbf{y}_{1,...,j-1}}[y_{j}] \cdot v(\mathbf{y})$$

Note that

$$\Pr_{Y_{j}|Y^{j-1}=\mathbf{y}_{1,...,j-1}}[y_{j}] = \sum_{\ell=1}^{\infty} (1 - \nu(\mathbf{y}_{1,...,j-1}))^{\ell-1} \cdot \Pr_{X_{j}|X^{j-1}=\mathbf{y}_{1,...,j-1}}[y_{j}] \cdot \nu(\mathbf{y}) \qquad (1)$$

$$= \frac{1}{\nu(\mathbf{y}_{1,...,j-1})} \cdot \Pr_{X_{j}|X^{j-1}=\mathbf{y}_{1,...,j-1}}[y_{j}] \cdot \nu(\mathbf{y})$$

Note that

$$\Pr_{Y_{j}|Y^{j-1}=\mathbf{y}_{1...,j-1}}[y_{j}] = \sum_{\ell=1}^{\infty} (1 - v(\mathbf{y}_{1...,j-1}))^{\ell-1} \cdot \Pr_{X_{j}|X^{j-1}=\mathbf{y}_{1...,j-1}}[y_{j}] \cdot v(\mathbf{y}) \qquad (1)$$

$$= \frac{1}{v(\mathbf{y}_{1...,j-1})} \cdot \Pr_{X_{j}|X^{j-1}=\mathbf{y}_{1...,j-1}}[y_{j}] \cdot v(\mathbf{y})$$

$$\Pr_{\mathbf{y}^{j}}[\mathbf{y}] = \Pr_{\mathbf{y}^{j-1}}[\mathbf{y}_{1\dots,j-1}] \cdot \Pr_{\mathbf{y}_{j}|\mathbf{y}^{j-1}=\mathbf{y}_{1\dots,j-1}}[\mathbf{y}_{j}]$$

Note that

$$\Pr_{Y_{j}|Y^{j-1}=\mathbf{y}_{1...,j-1}}[y_{j}] = \sum_{\ell=1}^{\infty} (1 - \nu(\mathbf{y}_{1...,j-1}))^{\ell-1} \cdot \Pr_{X_{j}|X^{j-1}=\mathbf{y}_{1...,j-1}}[y_{j}] \cdot \nu(\mathbf{y}) \qquad (1)$$

$$= \frac{1}{\nu(\mathbf{y}_{1...,j-1})} \cdot \Pr_{X_{j}|X^{j-1}=\mathbf{y}_{1...,j-1}}[y_{j}] \cdot \nu(\mathbf{y})$$

$$\Pr_{Y_{j}}[\mathbf{y}] = \Pr_{Y_{j-1}}[\mathbf{y}_{1...,j-1}] \cdot \Pr_{Y_{j}|Y^{j-1} = \mathbf{y}_{1...,j-1}}[y_{j}]
= \Pr_{X_{j-1}}[\mathbf{y}_{1...,j-1}] \cdot \frac{v(\mathbf{y}_{1...,j-1})}{\varepsilon^{(k)}} \cdot \Pr_{Y_{j}|Y^{j-1} = \mathbf{y}_{1...,j-1}}[y_{j}]$$
(i.h.)

Note that

$$\Pr_{Y_{j}|Y^{j-1}=\mathbf{y}_{1...,j-1}}[y_{j}] = \sum_{\ell=1}^{\infty} (1 - \nu(\mathbf{y}_{1...,j-1}))^{\ell-1} \cdot \Pr_{X_{j}|X^{j-1}=\mathbf{y}_{1...,j-1}}[y_{j}] \cdot \nu(\mathbf{y}) \qquad (1)$$

$$= \frac{1}{\nu(\mathbf{y}_{1...,j-1})} \cdot \Pr_{X_{j}|X^{j-1}=\mathbf{y}_{1...,j-1}}[y_{j}] \cdot \nu(\mathbf{y})$$

$$\begin{aligned}
&\Pr_{\mathbf{y}_{j}}[\mathbf{y}] = \Pr_{\mathbf{y}_{j-1}}[\mathbf{y}_{1...,j-1}] \cdot \Pr_{\mathbf{y}_{j}|\mathbf{y}_{j-1} = \mathbf{y}_{1...,j-1}}[y_{j}] \\
&= \Pr_{\mathbf{x}_{j-1}}[\mathbf{y}_{1...,j-1}] \cdot \frac{v(\mathbf{y}_{1...,j-1})}{\varepsilon^{(k)}} \cdot \Pr_{\mathbf{y}_{j}|\mathbf{y}_{j-1} = \mathbf{y}_{1...,j-1}}[y_{j}] \\
&= \Pr_{\mathbf{x}_{j-1}}[\mathbf{y}_{1...,j-1}] \cdot \frac{v(\mathbf{y}_{1...,j-1})}{\varepsilon^{(k)}} \cdot \frac{v(\mathbf{y})}{v(\mathbf{y}_{1...,j-1})} \cdot \Pr_{\mathbf{x}_{j}|\mathbf{x}_{j-1} = \mathbf{y}_{1...,j-1}}[y_{j}] \quad \text{(Eq. (1))}
\end{aligned}$$

Note that

$$\Pr_{Y_{j}|Y^{j-1}=\mathbf{y}_{1,...,j-1}}[y_{j}] = \sum_{\ell=1}^{\infty} (1 - v(\mathbf{y}_{1,...,j-1}))^{\ell-1} \cdot \Pr_{X_{j}|X^{j-1}=\mathbf{y}_{1,...,j-1}}[y_{j}] \cdot v(\mathbf{y}) \qquad (1)$$

$$= \frac{1}{v(\mathbf{y}_{1,...,j-1})} \cdot \Pr_{X_{j}|X^{j-1}=\mathbf{y}_{1,...,j-1}}[y_{j}] \cdot v(\mathbf{y})$$

$$\begin{aligned}
&\Pr_{\mathbf{y}^{j}}[\mathbf{y}] = \Pr_{\mathbf{y}^{j-1}}[\mathbf{y}_{1...,j-1}] \cdot \Pr_{\mathbf{y}_{j}|\mathbf{y}^{j-1} = \mathbf{y}_{1...,j-1}}[y_{j}] \\
&= \Pr_{\mathbf{x}^{j-1}}[\mathbf{y}_{1...,j-1}] \cdot \frac{\mathbf{v}(\mathbf{y}_{1...,j-1})}{\varepsilon^{(k)}} \cdot \Pr_{\mathbf{y}_{j}|\mathbf{y}^{j-1} = \mathbf{y}_{1...,j-1}}[y_{j}] \\
&= \Pr_{\mathbf{x}^{j-1}}[\mathbf{y}_{1...,j-1}] \cdot \frac{\mathbf{v}(\mathbf{y}_{1...,j-1})}{\varepsilon^{(k)}} \cdot \frac{\mathbf{v}(\mathbf{y})}{\mathbf{v}(\mathbf{y}_{1...,j-1})} \cdot \Pr_{\mathbf{x}_{j}|\mathbf{x}^{j-1} = \mathbf{y}_{1...,j-1}}[y_{j}] \quad \text{(Eq. (1))} \\
&= \Pr_{\mathbf{y}^{j}}[\mathbf{y}] \cdot \frac{\mathbf{v}(\mathbf{y})}{\varepsilon^{(k)}}.
\end{aligned}$$

- 1. Let $i^* \leftarrow [k]$.
- **2.** For j = 1 to m:
 - **2.1** Let $R \leftarrow \{0,1\}^{m \times (k\ell)}$, conditioned on $R_{1,\dots,j-1} = \widehat{R}_{1,\dots,j-1}$.
 - **2.2** If $(P^{(k)}, V^{(k)}(R)) = 1^k$, set $\widehat{R}_{j,j^*} = R_{j,j^*}$. Else, GOTO Line 2.1.
 - **2.3** Let $R \leftarrow \{0,1\}^{m \times \ell}$, conditioned on $R_{1,...,j-1} = \widehat{R}_{1,...,j-1}$ and $R_{j,i^*} = \widehat{R}_{j,i^*}$.
 - **2.4** If $(P^{(k)}, V^{(k)}(R)) = 1^k$, set $\hat{R}_i = R_i$. Else, GOTO Line 2.3.

- 1. Let $i^* \leftarrow [k]$.
- **2.** For j = 1 to m:
 - **2.1** Let $R \leftarrow \{0,1\}^{m \times (k\ell)}$, conditioned on $R_{1,\dots,j-1} = \widehat{R}_{1,\dots,j-1}$.
 - **2.2** If $(\widehat{P^{(k)}}, V^{(k)}(R)) = 1^k$, set $\widehat{R}_{j,j^*} = R_{j,j^*}$. Else, GOTO Line 2.1.
 - **2.3** Let $R \leftarrow \{0,1\}^{m \times \ell}$, conditioned on $R_{1,...,j-1} = \widehat{R}_{1,...,j-1}$ and $R_{j,i^*} = \widehat{R}_{j,i^*}$.
 - **2.4** If $(\widehat{P^{(k)}}, V^{(k)}(R)) = 1^k$, set $\widehat{R}_j = R_j$. Else, GOTO Line 2.3.
- Let $\widehat{\mathbf{R}}$ be the final value of $\widehat{\mathbf{R}}$ in $\widehat{\mathbf{P}}$.

- **1.** Let $i^* \leftarrow [k]$.
- **2.** For j = 1 to m:
 - **2.1** Let $R \leftarrow \{0,1\}^{m \times (k\ell)}$, conditioned on $R_{1,\dots,j-1} = \widehat{R}_{1,\dots,j-1}$.
 - **2.2** If $(\widehat{P^{(k)}}, V^{(k)}(R)) = 1^k$, set $\widehat{R}_{j,j^*} = R_{j,j^*}$. Else, GOTO Line 2.1.
 - **2.3** Let $R \leftarrow \{0,1\}^{m \times \ell}$, conditioned on $R_{1,...,j-1} = \widehat{R}_{1,...,j-1}$ and $R_{j,i^*} = \widehat{R}_{j,i^*}$.
 - **2.4** If $(P^{(k)}, V^{(k)}(R)) = 1^k$, set $\widehat{R}_j = R_j$. Else, GOTO Line 2.3.
- Let $\widehat{\mathbf{R}}$ be the final value of $\widehat{\mathbf{R}}$ in $\widehat{\mathbf{P}}$.
- $\blacktriangleright \ \widehat{\boldsymbol{\mathsf{R}}} \sim \boldsymbol{\mathsf{R}}|_{(\widetilde{\mathsf{P}^{(k)}},\mathsf{V}^{(k)}(\boldsymbol{\mathsf{R}}))=1^k}$

- **1.** Let $i^* \leftarrow [k]$.
- **2.** For j = 1 to m:
 - **2.1** Let $R \leftarrow \{0,1\}^{m \times (k\ell)}$, conditioned on $R_{1,\dots,j-1} = \widehat{R}_{1,\dots,j-1}$.
 - **2.2** If $(\widehat{P^{(k)}}, V^{(k)}(R)) = 1^k$, set $\widehat{R}_{j,j^*} = R_{j,j^*}$. Else, GOTO Line 2.1.
 - **2.3** Let $R \leftarrow \{0, 1\}^{m \times \ell}$, conditioned on $R_{1,...,j-1} = \widehat{R}_{1,...,j-1}$ and $R_{j,i^*} = \widehat{R}_{j,i^*}$. **2.4** If $(\widehat{P}^{(k)}, V^{(k)}(R)) = 1^k$, set $\widehat{R}_i = R_i$. Else, GOTO Line 2.3.
- ▶ Let $\hat{\mathbf{R}}$ be the final value of $\hat{\mathbf{R}}$ in $\hat{\mathbf{P}}$.
- $\blacktriangleright |\widehat{\mathbf{R}} \sim \mathbf{R}|_{(\widetilde{P^{(k)}}, \mathsf{V}^{(k)}(\mathbf{R})) = 1^k}$
- Let \hat{N} be the # of Step-2.3-samples done in \hat{P} .

- **1.** Let $i^* \leftarrow [k]$.
- **2.** For j = 1 to m:
 - **2.1** Let $R \leftarrow \{0,1\}^{m \times (k\ell)}$, conditioned on $R_{1,\dots,j-1} = \widehat{R}_{1,\dots,j-1}$.
 - **2.2** If $(\widehat{P^{(k)}}, V^{(k)}(R)) = 1^k$, set $\widehat{R}_{j,j^*} = R_{j,j^*}$. Else, GOTO Line 2.1.
 - **2.3** Let $R \leftarrow \{0, 1\}^{m \times \ell}$, conditioned on $R_{1,...,j-1} = \widehat{R}_{1,...,j-1}$ and $R_{j,i^*} = \widehat{R}_{j,i^*}$. **2.4** If $(\widehat{P}^{(k)}, V^{(k)}(R)) = 1^k$, set $\widehat{R}_i = R_i$. Else, GOTO Line 2.3.
- ▶ Let $\hat{\mathbf{R}}$ be the final value of $\hat{\mathbf{R}}$ in $\hat{\mathbf{P}}$.
- $\blacktriangleright |\widehat{\mathbf{R}} \sim \mathbf{R}|_{(\widetilde{P^{(k)}}, \mathsf{V}^{(k)}(\mathbf{R})) = 1^k}$
- Let \hat{N} be the # of Step-2.3-samples done in \hat{P} .

Experiment 11 (\hat{P})

- 1. Let $i^* \leftarrow [k]$.
- **2.** For j = 1 to m:
 - **2.1** Let $\underline{R} \leftarrow \{0,1\}^{m \times (k\ell)}$, conditioned on $R_{1,\dots,j-1} = \widehat{R}_{1,\dots,j-1}$.
 - **2.2** If $(\widehat{P^{(k)}}, V^{(k)}(R)) = 1^k$, set $\widehat{R}_{j,j^*} = R_{j,j^*}$. Else, GOTO Line 2.1.
 - **2.3** Let $R \leftarrow \{0,1\}^{m \times \ell}$, conditioned on $R_{1,...,j-1} = \widehat{R}_{1,...,j-1}$ and $R_{j,i^*} = \widehat{R}_{j,j^*}$.
 - **2.4** If $(P^{(k)}, V^{(k)}(R)) = 1^k$, set $\widehat{R}_j = R_j$. Else, GOTO Line 2.3.
- Let $\widehat{\mathbf{R}}$ be the final value of $\widehat{\mathbf{R}}$ in $\widehat{\mathbf{P}}$.
- $\blacktriangleright \ \widehat{\boldsymbol{R}} \sim \boldsymbol{R}|_{(\widetilde{P^{(k)}},V^{(k)}(\boldsymbol{R}))=1^k}$
- ▶ Let \hat{N} be the # of Step-2.3-samples done in \hat{P} .

Lemma 12 (Essentially the same proof as of Lemma 9)

$$\Pr\left[\text{win}(\widehat{\pmb{R}}, \widehat{\pmb{N}}) \right] \ge 1 - \frac{1}{q}$$

Let
$$\widetilde{\mathbf{R}}_i := \widetilde{\mathbf{R}}|_{i^*=i}$$
 and $\widehat{\mathbf{R}}_i := \widehat{\mathbf{R}}|_{i^*=i}$ $(= \widehat{\mathbf{R}})$.

Let
$$\widetilde{\mathbf{R}}_i := \widetilde{\mathbf{R}}|_{i^*=i}$$
 and $\widehat{\mathbf{R}}_i := \widehat{\mathbf{R}}|_{i^*=i}$ $(= \widehat{\mathbf{R}})$.

$$D(\widehat{\mathbf{R}}, \widehat{\mathbf{N}}||\widetilde{\mathbf{R}}, \widetilde{\mathbf{N}}) \leq \frac{1}{k} \sum_{i \in [k]} D(\widehat{\mathbf{R}}_i||\widetilde{\mathbf{R}}_i).$$

Let
$$\widetilde{\mathbf{R}}_i := \widetilde{\mathbf{R}}|_{i^*=i}$$
 and $\widehat{\mathbf{R}}_i := \widehat{\mathbf{R}}|_{i^*=i}$ (= $\widehat{\mathbf{R}}$).

Claim 13

$$D(\widehat{\mathbf{R}}, \widehat{\mathbf{N}} || \widetilde{\mathbf{R}}, \widetilde{\mathbf{N}}) \leq \frac{1}{k} \sum_{i \in [k]} D(\widehat{\mathbf{R}}_i || \widetilde{\mathbf{R}}_i).$$

$$\sum_{i\in[k]}D(\widehat{\mathbf{R}}||\widetilde{\mathbf{R}}_i)\leq D(\widehat{\mathbf{R}}||\mathbf{R}).$$

Let
$$\widetilde{\mathbf{R}}_i := \widetilde{\mathbf{R}}|_{i^*=i}$$
 and $\widehat{\mathbf{R}}_i := \widehat{\mathbf{R}}|_{i^*=i}$ $(= \widehat{\mathbf{R}})$.

Claim 13

$$D(\widehat{\mathbf{R}}, \widehat{\mathbf{N}} || \widetilde{\mathbf{R}}, \widetilde{\mathbf{N}}) \leq \frac{1}{k} \sum_{i \in [k]} D(\widehat{\mathbf{R}}_i || \widetilde{\mathbf{R}}_i).$$

Claim 14

$$\sum_{i \in [k]} D(\widehat{\mathbf{R}}||\widetilde{\mathbf{R}}_i) \leq D(\widehat{\mathbf{R}}||\mathbf{R}).$$

1. Thm. 7 in Lecture 7 $\implies D(\widehat{\mathbf{R}}||\mathbf{R}) \leq \log \frac{1}{\Pr[(\widehat{\mathbf{P}^{(k)}}, \mathbf{V}^{(k)}(\mathbf{R})) = 1^k]} = \log \frac{1}{\varepsilon^{(k)}}$

Let
$$\widetilde{\mathbf{R}}_i := \widetilde{\mathbf{R}}|_{i^*=i}$$
 and $\widehat{\mathbf{R}}_i := \widehat{\mathbf{R}}|_{i^*=i}$ (= $\widehat{\mathbf{R}}$).

Claim 13

$$D(\widehat{\mathbf{R}}, \widehat{\mathbf{N}}||\widetilde{\mathbf{R}}, \widetilde{\mathbf{N}}) \leq \frac{1}{k} \sum_{i \in [k]} D(\widehat{\mathbf{R}}_i||\widetilde{\mathbf{R}}_i).$$

$$\sum_{i \in [k]} D(\widehat{\mathbf{R}}||\widetilde{\mathbf{R}}_i) \leq D(\widehat{\mathbf{R}}||\mathbf{R}).$$

- **1.** Thm. 7 in Lecture 7 $\implies D(\widehat{\mathbf{R}}||\mathbf{R}) \leq \log \frac{1}{\Pr[(\widehat{P^{(k)}}, V^{(k)}(\mathbf{R})) = 1^k]} = \log \frac{1}{\varepsilon^{(k)}}$
- 2. Hence, $D(\min(\widehat{\mathbf{R}}, \widehat{\mathbf{N}})||\min(\widetilde{\mathbf{R}}, \widetilde{\mathbf{N}})) \leq D(\widehat{\mathbf{R}}, \widehat{\mathbf{N}}||\widetilde{\mathbf{R}}, \widetilde{\mathbf{N}}) \leq -\frac{1}{k} \cdot \log \varepsilon^{(k)}$

Let
$$\widetilde{\mathbf{R}}_i := \widetilde{\mathbf{R}}|_{i^*=i}$$
 and $\widehat{\mathbf{R}}_i := \widehat{\mathbf{R}}|_{i^*=i}$ $(= \widehat{\mathbf{R}})$.

Claim 13

$$D(\widehat{\mathbf{R}},\widehat{\mathbf{N}}||\widetilde{\mathbf{R}},\widetilde{\mathbf{N}}) \leq \frac{1}{k} \sum_{i \in [k]} D(\widehat{\mathbf{R}}_i||\widetilde{\mathbf{R}}_i).$$

$$\sum_{i \in [k]} D(\widehat{\mathbf{R}}||\widetilde{\mathbf{R}}_i) \leq D(\widehat{\mathbf{R}}||\mathbf{R}).$$

- 1. Thm. 7 in Lecture 7 $\implies D(\widehat{\mathbf{R}}||\mathbf{R}) \leq \log \frac{1}{\Pr[(\widetilde{P^{(k)}}, V^{(k)}(\mathbf{R})) = 1^k]} = \log \frac{1}{\varepsilon^{(k)}}$
- 2. Hence, $D(\min(\widehat{\mathbf{R}}, \widehat{\mathbf{N}})||\min(\widetilde{\mathbf{R}}, \widetilde{\mathbf{N}})) \leq D(\widehat{\mathbf{R}}, \widehat{\mathbf{N}}||\widetilde{\mathbf{R}}, \widetilde{\mathbf{N}}) \leq -\frac{1}{k} \cdot \log \varepsilon^{(k)}$
- 3. Lemma 12 $\implies \alpha := \Pr[\min(\widehat{\mathbf{R}}, \widehat{\mathbf{N}})] \ge 1 \frac{1}{q}$, and let $\beta := \Pr[\min(\widetilde{\mathbf{R}}, \widetilde{\mathbf{N}})]$.

Let
$$\widetilde{\mathbf{R}}_i := \widetilde{\mathbf{R}}|_{i^*=i}$$
 and $\widehat{\mathbf{R}}_i := \widehat{\mathbf{R}}|_{i^*=i}$ (= $\widehat{\mathbf{R}}$).

Claim 13

$$D(\widehat{\mathbf{R}}, \widehat{\mathbf{N}} || \widetilde{\mathbf{R}}, \widetilde{\mathbf{N}}) \leq \frac{1}{k} \sum_{i \in [k]} D(\widehat{\mathbf{R}}_i || \widetilde{\mathbf{R}}_i).$$

$$\sum_{i\in[k]}D(\widehat{\mathbf{R}}||\widetilde{\mathbf{R}}_i)\leq D(\widehat{\mathbf{R}}||\mathbf{R}).$$

- 1. Thm. 7 in Lecture 7 $\implies D(\widehat{\mathbf{R}}||\mathbf{R}) \leq \log \frac{1}{\Pr[(\widetilde{P^{(k)}}, V^{(k)}(\mathbf{R})) = 1^k]} = \log \frac{1}{\varepsilon^{(k)}}$
- 2. Hence, $D(\min(\widehat{\mathbf{R}}, \widehat{\mathbf{N}})||\min(\widetilde{\mathbf{R}}, \widetilde{\mathbf{N}})) \leq D(\widehat{\mathbf{R}}, \widehat{\mathbf{N}}||\widetilde{\mathbf{R}}, \widetilde{\mathbf{N}}) \leq -\frac{1}{k} \cdot \log \varepsilon^{(k)}$
- 3. Lemma 12 $\implies \alpha := \Pr[\min(\widehat{\mathbf{R}}, \widehat{\mathbf{N}})] \ge 1 \frac{1}{q}$, and let $\beta := \Pr[\min(\widetilde{\mathbf{R}}, \widetilde{\mathbf{N}})]$.
- **4.** By (2), $\alpha \cdot \log \frac{\alpha}{\beta} + (1 \alpha) \log \frac{1 \alpha}{1 \beta} \le -\frac{1}{k} \cdot \log \varepsilon^{(k)}$

Let
$$\widetilde{\mathbf{R}}_i := \widetilde{\mathbf{R}}|_{i^*=i}$$
 and $\widehat{\mathbf{R}}_i := \widehat{\mathbf{R}}|_{i^*=i}$ (= $\widehat{\mathbf{R}}$).

Claim 13

$$D(\widehat{\mathbf{R}},\widehat{\mathbf{N}}||\widetilde{\mathbf{R}},\widetilde{\mathbf{N}}) \leq \frac{1}{k} \sum_{i \in [k]} D(\widehat{\mathbf{R}}_i||\widetilde{\mathbf{R}}_i).$$

$$\sum_{i\in[k]}D(\widehat{\mathbf{R}}||\widetilde{\mathbf{R}}_i)\leq D(\widehat{\mathbf{R}}||\mathbf{R}).$$

- 1. Thm. 7 in Lecture 7 $\implies D(\widehat{\mathbf{R}}||\mathbf{R}) \le \log \frac{1}{\Pr[(\widetilde{P^{(k)}}, V^{(k)}(\mathbf{R})) = 1^k]} = \log \frac{1}{\varepsilon^{(k)}}$
- 2. Hence, $D(\min(\widehat{\mathbf{R}}, \widehat{\mathbf{N}})||\min(\widetilde{\mathbf{R}}, \widetilde{\mathbf{N}})) \leq D(\widehat{\mathbf{R}}, \widehat{\mathbf{N}}||\widetilde{\mathbf{R}}, \widetilde{\mathbf{N}}) \leq -\frac{1}{k} \cdot \log \varepsilon^{(k)}$
- 3. Lemma 12 $\implies \alpha := \Pr[\min(\widehat{\mathbf{R}}, \widehat{\mathbf{N}})] \ge 1 \frac{1}{q}$, and let $\beta := \Pr[\min(\widetilde{\mathbf{R}}, \widetilde{\mathbf{N}})]$.
- **4.** By (2), $\alpha \cdot \log \frac{\alpha}{\beta} + (1 \alpha) \log \frac{1 \alpha}{1 \beta} \le -\frac{1}{k} \cdot \log \varepsilon^{(k)}$ $\implies \beta > 2^{\log \alpha + \frac{1 \alpha}{\alpha} \log(1 \alpha) + \frac{1}{\alpha k} \log \varepsilon^{(k)}}$

Let
$$\widetilde{\mathbf{R}}_i := \widetilde{\mathbf{R}}|_{i^*=i}$$
 and $\widehat{\mathbf{R}}_i := \widehat{\mathbf{R}}|_{i^*=i}$ $(= \widehat{\mathbf{R}})$.

Claim 13

$$D(\widehat{\mathbf{R}}, \widehat{\mathbf{N}} || \widetilde{\mathbf{R}}, \widetilde{\mathbf{N}}) \leq \frac{1}{k} \sum_{i \in [k]} D(\widehat{\mathbf{R}}_i || \widetilde{\mathbf{R}}_i).$$

$$\sum_{i\in[k]}D(\widehat{\mathbf{R}}||\widetilde{\mathbf{R}}_i)\leq D(\widehat{\mathbf{R}}||\mathbf{R}).$$

- 1. Thm. 7 in Lecture 7 $\implies D(\mathbf{R}||\mathbf{R}) \le \log \frac{1}{\Pr[(\widetilde{P^{(k)}}, V^{(k)}(\mathbf{R})) = 1^k]} = \log \frac{1}{\varepsilon^{(k)}}$
- 2. Hence, $D(\min(\widehat{\mathbf{R}}, \widehat{\mathbf{N}})||\min(\widetilde{\mathbf{R}}, \widetilde{\mathbf{N}})) \leq D(\widehat{\mathbf{R}}, \widehat{\mathbf{N}}||\widetilde{\mathbf{R}}, \widetilde{\mathbf{N}}) \leq -\frac{1}{k} \cdot \log \varepsilon^{(k)}$
- 3. Lemma 12 $\implies \alpha := \Pr[\min(\widehat{\mathbf{R}}, \widehat{\mathbf{N}})] \ge 1 \frac{1}{q}$, and let $\beta := \Pr[\min(\widetilde{\mathbf{R}}, \widetilde{\mathbf{N}})]$.
- **4.** By (2), $\alpha \cdot \log \frac{\alpha}{\beta} + (1 \alpha) \log \frac{1 \alpha}{1 \beta} \le -\frac{1}{k} \cdot \log \varepsilon^{(k)}$ $\implies \beta \ge 2^{\log \alpha + \frac{1 \alpha}{\alpha} \log(1 \alpha) + \frac{1}{\alpha k} \log \varepsilon^{(k)}}$
- **5.** Since $q = k^2$: $\alpha \ge 2^{-\frac{2}{q}} \ge 2^{-\frac{1}{k}}$ and $\frac{1-\alpha}{\alpha} \log(1-\alpha) \ge -\frac{4 \log k}{k^2} \ge -\frac{1}{k}$

Let
$$\widetilde{\mathbf{R}}_i := \widetilde{\mathbf{R}}|_{i^*=i}$$
 and $\widehat{\mathbf{R}}_i := \widehat{\mathbf{R}}|_{i^*=i}$ (= $\widehat{\mathbf{R}}$).

Claim 13

$$D(\widehat{\mathbf{R}},\widehat{\mathbf{N}}||\widetilde{\mathbf{R}},\widetilde{\mathbf{N}}) \leq \frac{1}{k} \sum_{i \in [k]} D(\widehat{\mathbf{R}}_i||\widetilde{\mathbf{R}}_i).$$

$$\sum_{i\in[k]}D(\widehat{\mathbf{R}}||\widetilde{\mathbf{R}}_i)\leq D(\widehat{\mathbf{R}}||\mathbf{R}).$$

- 1. Thm. 7 in Lecture 7 $\implies D(\widehat{\mathbf{R}}||\mathbf{R}) \leq \log \frac{1}{\Pr[(\widetilde{P^{(k)}}, V^{(k)}(\mathbf{R})) = 1^k]} = \log \frac{1}{\varepsilon^{(k)}}$
- 2. Hence, $D(\min(\widehat{\mathbf{R}}, \widehat{\mathbf{N}})||\min(\widetilde{\mathbf{R}}, \widetilde{\mathbf{N}})) \leq D(\widehat{\mathbf{R}}, \widehat{\mathbf{N}}||\widetilde{\mathbf{R}}, \widetilde{\mathbf{N}}) \leq -\frac{1}{k} \cdot \log \varepsilon^{(k)}$
- 3. Lemma 12 $\implies \alpha := \Pr[\text{win}(\widehat{\mathbf{R}}, \widehat{\mathbf{N}})] \ge 1 \frac{1}{q}$, and let $\beta := \Pr[\text{win}(\widehat{\mathbf{R}}, \widehat{\mathbf{N}})]$.
- **4.** By (2), $\alpha \cdot \log \frac{\alpha}{\beta} + (1 \alpha) \log \frac{1 \alpha}{1 \beta} \le -\frac{1}{k} \cdot \log \varepsilon^{(k)}$ $\implies \beta > 2^{\log \alpha + \frac{1 \alpha}{\alpha} \log(1 \alpha) + \frac{1}{\alpha k} \log \varepsilon^{(k)}}$
- 5. Since $q=k^2$: $\alpha \geq 2^{-\frac{2}{q}} \geq 2^{-\frac{1}{k}}$ and $\frac{1-\alpha}{\alpha}\log(1-\alpha) \geq -\frac{4\log k}{k^2} \geq -\frac{1}{k}$
- **6.** We conclude that $\beta \geq 2^{\frac{4}{k}\log \varepsilon^{(k)}} = \sqrt[k/4]{\varepsilon^{(k)}}$.

Let $\widehat{\mathbf{I}}$ and $\widetilde{\mathbf{I}}$ be the values of i^* in $\widehat{\mathbf{P}}$ and $\widetilde{\mathbf{P}}$ respectively.

Let \hat{I} and \hat{I} be the values of i^* in \hat{P} and \hat{P} respectively.

$$D(\widehat{\mathbf{R}}, \widehat{\mathbf{N}} || \widetilde{\mathbf{R}}, \widetilde{\mathbf{N}}) \leq D(\widehat{\mathbf{R}}, \widehat{\mathbf{N}}, \widehat{\mathbf{I}} || \widetilde{\mathbf{R}}, \widetilde{\mathbf{N}}, \widetilde{\mathbf{I}})$$

Let $\widehat{\mathbf{I}}$ and $\widehat{\mathbf{I}}$ be the values of i^* in $\widehat{\mathbf{P}}$ and $\widehat{\mathbf{P}}$ respectively.

$$D(\widehat{\mathbf{R}}, \widehat{\mathbf{N}}||\widetilde{\mathbf{R}}, \widetilde{\mathbf{N}}) \leq D(\widehat{\mathbf{R}}, \widehat{\mathbf{N}}, \widehat{\mathbf{I}}||\widetilde{\mathbf{R}}, \widetilde{\mathbf{N}}, \widetilde{\mathbf{I}})$$

(data-processing)

Let $\widehat{\mathbf{I}}$ and $\widehat{\mathbf{I}}$ be the values of i^* in $\widehat{\mathbf{P}}$ and $\widehat{\mathbf{P}}$ respectively.

$$\begin{split} D(\widehat{\mathbf{R}},\widehat{\mathbf{N}}||\widetilde{\mathbf{R}},\widetilde{\mathbf{N}}) &\leq D(\widehat{\mathbf{R}},\widehat{\mathbf{N}},\widehat{\mathbf{I}}||\widetilde{\mathbf{R}},\widetilde{\mathbf{N}},\widetilde{\mathbf{I}}) \\ &= D(\widehat{\mathbf{I}}||\widetilde{\mathbf{I}}) + \frac{1}{k} \sum_{i \in [k]} D(\widehat{\mathbf{R}}_i,\widehat{\mathbf{N}}_i||\widetilde{\mathbf{R}}_i,\widetilde{\mathbf{N}}_i) \end{split} \tag{data-processing}$$

Let $\hat{\mathbf{I}}$ and $\hat{\mathbf{I}}$ be the values of i^* in $\hat{\mathbf{P}}$ and $\hat{\mathbf{P}}$ respectively.

$$\begin{split} D(\widehat{\mathbf{R}},\widehat{\mathbf{N}}||\widetilde{\mathbf{R}},\widetilde{\mathbf{N}}) &\leq D(\widehat{\mathbf{R}},\widehat{\mathbf{N}},\widehat{\mathbf{I}}||\widetilde{\mathbf{R}},\widetilde{\mathbf{N}},\widetilde{\mathbf{I}}) \\ &= D(\widehat{\mathbf{I}}||\widetilde{\mathbf{I}}) + \frac{1}{k} \sum_{i \in [k]} D(\widehat{\mathbf{R}}_i,\widehat{\mathbf{N}}_i||\widetilde{\mathbf{R}}_i,\widetilde{\mathbf{N}}_i) \end{split} \tag{chain rule}$$

Let $\widehat{\mathbf{I}}$ and $\widehat{\mathbf{I}}$ be the values of i^* in $\widehat{\mathbf{P}}$ and $\widehat{\mathbf{P}}$ respectively.

$$\begin{split} D(\widehat{\mathbf{R}},\widehat{\mathbf{N}}||\widetilde{\mathbf{R}},\widetilde{\mathbf{N}}) &\leq D(\widehat{\mathbf{R}},\widehat{\mathbf{N}},\widehat{\mathbf{I}}||\widetilde{\mathbf{R}},\widetilde{\mathbf{N}},\widetilde{\mathbf{I}}) \\ &= D(\widehat{\mathbf{I}}||\widetilde{\mathbf{I}}) + \frac{1}{k} \sum_{i \in [k]} D(\widehat{\mathbf{R}}_i,\widehat{\mathbf{N}}_i||\widetilde{\mathbf{R}}_i,\widetilde{\mathbf{N}}_i) \\ &= \frac{1}{k} \sum_{i \in [k]} D(\widehat{\mathbf{R}}_i,\widehat{\mathbf{N}}_i||\widetilde{\mathbf{R}}_i,\widetilde{\mathbf{N}}_i) \end{split} \tag{chain rule}$$

Let \hat{I} and \hat{I} be the values of i^* in \hat{P} and \hat{P} respectively.

$$\begin{split} D(\widehat{\mathbf{R}},\widehat{\mathbf{N}}||\widetilde{\mathbf{R}},\widetilde{\mathbf{N}}) &\leq D(\widehat{\mathbf{R}},\widehat{\mathbf{N}},\widehat{\mathbf{I}}||\widetilde{\mathbf{R}},\widetilde{\mathbf{N}},\widetilde{\mathbf{I}}) \\ &= D(\widehat{\mathbf{I}}||\widetilde{\mathbf{I}}) + \frac{1}{k} \sum_{i \in [k]} D(\widehat{\mathbf{R}}_i,\widehat{\mathbf{N}}_i||\widetilde{\mathbf{R}}_i,\widetilde{\mathbf{N}}_i) \\ &= \frac{1}{k} \sum_{i \in [k]} D(\widehat{\mathbf{R}}_i,\widehat{\mathbf{N}}_i||\widetilde{\mathbf{R}}_i,\widetilde{\mathbf{N}}_i) \end{split} \tag{chain rule}$$

$$D(\widehat{\mathbf{R}}_i, \widehat{\mathbf{N}}_i || \widehat{\mathbf{R}}_i, \widehat{\mathbf{N}}_i) = D(\widehat{\mathbf{R}}_i || \widehat{\mathbf{R}}_i) + \underset{r \leftarrow \widehat{\mathbf{R}}_i}{\mathsf{E}} \left[D(\widehat{\mathbf{N}}_i || \widehat{\mathbf{R}}_i = r || \widehat{\mathbf{N}}_i || \widehat{\mathbf{R}}_i = r) \right]$$

Let \hat{I} and \hat{I} be the values of i^* in \hat{P} and \hat{P} respectively.

$$\begin{split} D(\widehat{\mathbf{R}},\widehat{\mathbf{N}}||\widetilde{\mathbf{R}},\widetilde{\mathbf{N}}) &\leq D(\widehat{\mathbf{R}},\widehat{\mathbf{N}},\widehat{\mathbf{I}}||\widetilde{\mathbf{R}},\widetilde{\mathbf{N}},\widetilde{\mathbf{I}}) \\ &= D(\widehat{\mathbf{I}}||\widetilde{\mathbf{I}}) + \frac{1}{k} \sum_{i \in [k]} D(\widehat{\mathbf{R}}_i,\widehat{\mathbf{N}}_i||\widetilde{\mathbf{R}}_i,\widetilde{\mathbf{N}}_i) \\ &= \frac{1}{k} \sum_{i \in [k]} D(\widehat{\mathbf{R}}_i,\widehat{\mathbf{N}}_i||\widetilde{\mathbf{R}}_i,\widetilde{\mathbf{N}}_i) \end{split} \tag{chain rule}$$

$$D(\widehat{\mathbf{R}}_i, \widehat{\mathbf{N}}_i || \widehat{\mathbf{R}}_i, \widehat{\mathbf{N}}_i) = D(\widehat{\mathbf{R}}_i || \widehat{\mathbf{R}}_i) + \underset{r \leftarrow \widehat{\mathbf{R}}_i}{\mathsf{E}} \left[D(\widehat{\mathbf{N}}_i | \widehat{\mathbf{R}}_i = r || \widehat{\mathbf{N}}_i | \widehat{\mathbf{R}}_i = r) \right] \quad \text{(chain rule)}$$

Let \hat{I} and \hat{I} be the values of i^* in \hat{P} and \hat{P} respectively.

$$\begin{split} D(\widehat{\mathbf{R}},\widehat{\mathbf{N}}||\widetilde{\mathbf{R}},\widetilde{\mathbf{N}}) &\leq D(\widehat{\mathbf{R}},\widehat{\mathbf{N}},\widehat{\mathbf{I}}||\widetilde{\mathbf{R}},\widetilde{\mathbf{N}},\widetilde{\mathbf{I}}) \\ &= D(\widehat{\mathbf{I}}||\widetilde{\mathbf{I}}) + \frac{1}{k} \sum_{i \in [k]} D(\widehat{\mathbf{R}}_i,\widehat{\mathbf{N}}_i||\widetilde{\mathbf{R}}_i,\widetilde{\mathbf{N}}_i) \\ &= \frac{1}{k} \sum_{i \in [k]} D(\widehat{\mathbf{R}}_i,\widehat{\mathbf{N}}_i||\widetilde{\mathbf{R}}_i,\widetilde{\mathbf{N}}_i) \end{split} \tag{chain rule}$$

$$D(\widehat{\mathbf{R}}_{i}, \widehat{\mathbf{N}}_{i} || \widehat{\mathbf{R}}_{i}, \widetilde{\mathbf{N}}_{i}) = D(\widehat{\mathbf{R}}_{i} || \widetilde{\mathbf{R}}_{i}) + \underset{r \leftarrow \widehat{\mathbf{R}}_{i}}{\mathsf{E}} \left[D(\widehat{\mathbf{N}}_{i} || \widehat{\mathbf{R}}_{i} = r || \widetilde{\mathbf{N}}_{i} || \widetilde{\mathbf{R}}_{i} = r) \right] \quad \text{(chain rule)}$$

$$= D(\widehat{\mathbf{R}}_{i} || \widetilde{\mathbf{R}}_{i})$$

Let \hat{I} and \hat{I} be the values of i^* in \hat{P} and \hat{P} respectively.

$$\begin{split} D(\widehat{\mathbf{R}},\widehat{\mathbf{N}}||\widetilde{\mathbf{R}},\widetilde{\mathbf{N}}) &\leq D(\widehat{\mathbf{R}},\widehat{\mathbf{N}},\widehat{\mathbf{I}}||\widetilde{\mathbf{R}},\widetilde{\mathbf{N}},\widetilde{\mathbf{I}}) \\ &= D(\widehat{\mathbf{I}}||\widetilde{\mathbf{I}}) + \frac{1}{k} \sum_{i \in [k]} D(\widehat{\mathbf{R}}_i,\widehat{\mathbf{N}}_i||\widetilde{\mathbf{R}}_i,\widetilde{\mathbf{N}}_i) \\ &= \frac{1}{k} \sum_{i \in [k]} D(\widehat{\mathbf{R}}_i,\widehat{\mathbf{N}}_i||\widetilde{\mathbf{R}}_i,\widetilde{\mathbf{N}}_i) \end{split} \tag{chain rule}$$

$$\begin{split} D(\widehat{\mathbf{R}}_i,\widehat{\mathbf{N}}_i||\widetilde{\mathbf{R}}_i,\widetilde{\mathbf{N}}_i) &= D(\widehat{\mathbf{R}}_i||\widetilde{\mathbf{R}}_i) + \mathop{\mathsf{E}}_{r \leftarrow \widehat{\mathbf{R}}_i} \left[D(\widehat{\mathbf{N}}_i|\widehat{\mathbf{R}}_i = r||\widetilde{\mathbf{N}}_i|\widetilde{\mathbf{R}}_i = r) \right] \quad \text{(chain rule)} \\ &= D(\widehat{\mathbf{R}}_i||\widetilde{\mathbf{R}}_i) \quad \text{(since } (\widehat{\mathbf{N}}_i|\widehat{\mathbf{R}}_i = r) \equiv (\widetilde{\mathbf{N}}_i|\widetilde{\mathbf{R}}_i = r) \text{ for every } r) \end{split}$$

Let \hat{I} and \hat{I} be the values of i^* in \hat{P} and \hat{P} respectively.

$$\begin{split} D(\widehat{\mathbf{R}},\widehat{\mathbf{N}}||\widetilde{\mathbf{R}},\widetilde{\mathbf{N}}) &\leq D(\widehat{\mathbf{R}},\widehat{\mathbf{N}},\widehat{\mathbf{I}}||\widetilde{\mathbf{R}},\widetilde{\mathbf{N}},\widetilde{\mathbf{I}}) \\ &= D(\widehat{\mathbf{I}}||\widetilde{\mathbf{I}}) + \frac{1}{k} \sum_{i \in [k]} D(\widehat{\mathbf{R}}_i,\widehat{\mathbf{N}}_i||\widetilde{\mathbf{R}}_i,\widetilde{\mathbf{N}}_i) \\ &= \frac{1}{k} \sum_{i \in [k]} D(\widehat{\mathbf{R}}_i,\widehat{\mathbf{N}}_i||\widetilde{\mathbf{R}}_i,\widetilde{\mathbf{N}}_i) \end{split} \tag{chain rule}$$

$$D(\widehat{\mathbf{R}}_{i}, \widehat{\mathbf{N}}_{i}||\widehat{\mathbf{R}}_{i}, \widetilde{\mathbf{N}}_{i}) = D(\widehat{\mathbf{R}}_{i}||\widehat{\mathbf{R}}_{i}) + \underset{r \leftarrow \widehat{\mathbf{R}}_{i}}{\mathsf{E}} \left[D(\widehat{\mathbf{N}}_{i}|\widehat{\mathbf{R}}_{i} = r||\widehat{\mathbf{N}}_{i}||\widehat{\mathbf{R}}_{i} = r) \right] \quad \text{(chain rule)}$$

$$= D(\widehat{\mathbf{R}}_{i}||\widehat{\mathbf{R}}_{i}) \quad \text{(since } (\widehat{\mathbf{N}}_{i}|\widehat{\mathbf{R}}_{i} = r) \equiv (\widetilde{\mathbf{N}}_{i}|\widehat{\mathbf{R}}_{i} = r) \text{ for every } r)$$

Hence,
$$D(\widehat{\mathbf{R}}, \widehat{\mathbf{N}} || \widetilde{\mathbf{R}}, \widetilde{\mathbf{N}}) \leq \frac{1}{k} \sum_{i \in [k]} D(\widehat{\mathbf{R}}_i || \widetilde{\mathbf{R}}_i) \square$$

Lemma 15

Let $Z = \{Z_{ij}\}_{(i,j) \in [k] \times [m]}$ be iids and let W be an event. For $z \in \text{Supp}(Z)$, let

$$D_i(z) := \textstyle \prod_{j=1}^m \text{Pr}\left[Z_{j,i} = z_{i,j}\right] \cdot \text{Pr}\left[Z_{j,-i} = z_{i,j-1} | Z_{1,\dots,j-1} = z_{1,\dots,j-1} \wedge Z_{j,i} = z_{i,j} \wedge W\right].$$

Then $\sum_{i=1}^{k} D(Z|_{W}||D_{i}) \leq D(Z|_{W}||Z)$.

Lemma 15

Let $Z = \{Z_{ij}\}_{(i,j) \in [k] \times [m]}$ be iids and let W be an event. For $z \in \text{Supp}(Z)$, let

$$D_{i}(z) := \prod_{j=1}^{m} \Pr\left[Z_{j,i} = z_{i,j}\right] \cdot \Pr\left[Z_{j,-i} = z_{i,j-1} | Z_{1,...,j-1} = z_{1,...,j-1} \wedge Z_{j,i} = z_{i,j} \wedge W\right].$$

Then $\sum_{i=1}^{k} D(Z|_{W}||D_{i}) \leq D(Z|_{W}||Z)$.

Letting $Z = \mathbf{R}$ and W be the event $(\widetilde{\mathsf{P}^{(k)}}, \mathsf{V}^{(k)}(\mathbf{R})) = 1^k$, Lemma 15 yields that $\sum_{i \in [k]} D(\widehat{\mathbf{R}}||\widetilde{\mathbf{R}}_i) = \sum_{i \in [k]} D(\mathbf{R}|_W||\widetilde{\mathbf{R}}_i) \le D(\mathbf{R}|_W||\mathbf{R}) = D(\widehat{\mathbf{R}}||\mathbf{R})$. \square

Lemma 15

Let $Z = \{Z_{ij}\}_{(i,j) \in [K] \times [m]}$ be iids and let W be an event. For $z \in \text{Supp}(Z)$, let $D_i(z) := \prod_{j=1}^m \Pr\left[Z_{j,i} = z_{i,j}\right] \cdot \Pr\left[Z_{j,-i} = z_{i,j-1} | Z_{1,...,j-1} = z_{1,...,j-1} \wedge Z_{j,i} = z_{i,j} \wedge W\right]$.

Then
$$\sum_{i=1}^{k} D(Z|_{W}||D_{i}) \leq D(Z|_{W}||Z)$$
.

Letting $Z = \mathbf{R}$ and W be the event $(\widetilde{\mathsf{P}^{(k)}}, \mathsf{V}^{(k)}(\mathbf{R})) = 1^k$, Lemma 15 yields that $\sum_{i \in [k]} D(\widehat{\mathbf{R}}||\widehat{\mathbf{R}}_i) = \sum_{i \in [k]} D(\mathbf{R}|_W||\widehat{\mathbf{R}}_i) \leq D(\mathbf{R}|_W||\mathbf{R}) = D(\widehat{\mathbf{R}}||\mathbf{R})$. \square

Lemma 15

Let $Z = \{Z_{ij}\}_{(i,j) \in [k] \times [m]}$ be iids and let W be an event. For $z \in \text{Supp}(Z)$, let $D_i(z) := \prod_{j=1}^m \Pr\left[Z_{j,i} = z_{i,j}\right] \cdot \Pr\left[Z_{j,-i} = z_{i,j-1} | Z_{1,...,j-1} = z_{1,...,j-1} \wedge Z_{j,i} = z_{i,j} \wedge W\right]$. Then $\sum_{i=1}^k D(Z|_W||D_i) < D(Z|_W||Z)$.

Letting
$$Z = \mathbf{R}$$
 and W be the event $(\widetilde{\mathsf{P}^{(k)}}, \mathsf{V}^{(k)}(\mathbf{R})) = 1^k$, Lemma 15 yields that $\sum_{i \in [k]} D(\widehat{\mathbf{R}}||\widetilde{\mathbf{R}}_i) = \sum_{i \in [k]} D(\mathbf{R}|_W||\widetilde{\mathbf{R}}_i) \leq D(\mathbf{R}|_W||\mathbf{R}) = D(\widehat{\mathbf{R}}||\mathbf{R})$. \square

Proof: (of Lemma 15) We prove for m = k = 2.

▶ Let $X = Z_1$ and $Y = Z_2$

Lemma 15

Let $Z = \{Z_{ij}\}_{(i,j) \in [k] \times [m]}$ be iids and let W be an event. For $z \in \text{Supp}(Z)$, let $D_i(z) := \prod_{j=1}^m \Pr\left[Z_{j,i} = z_{i,j}\right] \cdot \Pr\left[Z_{j,-i} = z_{i,j-1} | Z_{1,...,j-1} = z_{1,...,j-1} \wedge Z_{j,i} = z_{i,j} \wedge W\right]$. Then $\sum_{i=1}^k D(Z|_W||D_i) < D(Z|_W||Z)$.

Letting
$$Z = \mathbf{R}$$
 and W be the event $(\widetilde{\mathsf{P}^{(k)}}, \mathsf{V}^{(k)}(\mathbf{R})) = 1^k$, Lemma 15 yields that $\sum_{i \in [k]} D(\widehat{\mathbf{R}}||\widetilde{\mathbf{R}}_i) = \sum_{i \in [k]} D(\mathbf{R}|_W||\widetilde{\mathbf{R}}_i) \le D(\mathbf{R}|_W||\mathbf{R}) = D(\widehat{\mathbf{R}}||\mathbf{R})$. \square

- ▶ Let $X = Z_1$ and $Y = Z_2$
- $U(x_1, x_2, y_1, y_2) := \Pr_{(X,Y)} [(x_1, x_2, y_1, y_2)]$

Lemma 15

Let $Z = \{Z_{ij}\}_{(i,j) \in [k] \times [m]}$ be iids and let W be an event. For $z \in \text{Supp}(Z)$, let $D_i(z) := \prod_{j=1}^m \Pr\left[Z_{j,i} = z_{i,j}\right] \cdot \Pr\left[Z_{j,-i} = z_{i,j-1} | Z_{1,...,j-1} = z_{1,...,j-1} \wedge Z_{j,i} = z_{i,j} \wedge W\right]$. Then $\sum_{i=1}^k D(Z|_W||D_i) < D(Z|_W||Z)$.

Letting
$$Z = \mathbf{R}$$
 and W be the event $(\widetilde{\mathsf{P}^{(k)}}, \mathsf{V}^{(k)}(\mathbf{R})) = 1^k$, Lemma 15 yields that $\sum_{i \in [k]} D(\widehat{\mathbf{R}}||\widetilde{\mathbf{R}}_i) = \sum_{i \in [k]} D(\mathbf{R}|_W||\widetilde{\mathbf{R}}_i) \le D(\mathbf{R}|_W||\mathbf{R}) = D(\widehat{\mathbf{R}}||\mathbf{R})$. \square

- ▶ Let $X = Z_1$ and $Y = Z_2$
- $U(x_1, x_2, y_1, y_2) := \Pr_{(X,Y)} [(x_1, x_2, y_1, y_2)]$
- $C(x_1, x_2, y_1, y_1) := \Pr_{(X,Y)|_W} [(x_1, x_2, y_1, y_2)]$

Lemma 15

Let $Z = \{Z_{ij}\}_{(i,j) \in [k] \times [m]}$ be iids and let W be an event. For $z \in \text{Supp}(Z)$, let $D_i(z) := \prod_{j=1}^m \Pr\left[Z_{j,i} = z_{i,j}\right] \cdot \Pr\left[Z_{j,-i} = z_{i,j-1} | Z_{1,...,j-1} = z_{1,...,j-1} \wedge Z_{j,i} = z_{i,j} \wedge W\right]$. Then $\sum_{i=1}^k D(Z|_W||D_i) < D(Z|_W||Z)$.

Letting
$$Z = \mathbf{R}$$
 and W be the event $(\widetilde{\mathsf{P}^{(k)}}, \mathsf{V}^{(k)}(\mathbf{R})) = 1^k$, Lemma 15 yields that $\sum_{i \in [k]} D(\widehat{\mathbf{R}}||\widetilde{\mathbf{R}}_i) = \sum_{i \in [k]} D(\mathbf{R}|_W||\widetilde{\mathbf{R}}_i) \le D(\mathbf{R}|_W||\mathbf{R}) = D(\widehat{\mathbf{R}}||\mathbf{R})$. \square

- ▶ Let $X = Z_1$ and $Y = Z_2$
- $U(x_1, x_2, y_1, y_2) := \Pr_{(X,Y)} [(x_1, x_2, y_1, y_2)]$
- $ightharpoonup C(x_1, x_2, y_1, y_1) := \Pr_{(X,Y)|_W} [(x_1, x_2, y_1, y_2)]$
- $Pr[X_1, x_2, y_1, y_1) := Pr[X_1 = x_1 | W] \cdot Pr[X_2 = x_2 | W] \cdot Pr[Y_1 = y_1 | W, X = (x_1, x_2)] \cdot Pr[Y_2 = y_2 | W, X = (x_1, x_2)]$

Lemma 15

Let
$$Z = \{Z_{ij}\}_{(i,j) \in [k] \times [m]}$$
 be iids and let W be an event. For $z \in \text{Supp}(Z)$, let $D_i(z) := \prod_{j=1}^m \Pr\left[Z_{j,i} = z_{i,j}\right] \cdot \Pr\left[Z_{j,-i} = z_{i,j-1} | Z_{1,...,j-1} = z_{1,...,j-1} \wedge Z_{j,i} = z_{i,j} \wedge W\right]$.

Then
$$\sum_{i=1}^{k} D(Z|_{W}||D_{i}) \leq D(Z|_{W}||Z)$$
.

Letting
$$Z = \mathbf{R}$$
 and W be the event $(P^{(k)}, V^{(k)}(\mathbf{R})) = 1^k$, Lemma 15 yields that $\sum_{i \in [k]} D(\widehat{\mathbf{R}}||\widetilde{\mathbf{R}}_i) = \sum_{i \in [k]} D(\mathbf{R}|_W||\widetilde{\mathbf{R}}_i) \le D(\mathbf{R}|_W||\mathbf{R}) = D(\widehat{\mathbf{R}}||\mathbf{R})$. \square

- ► Let $X = Z_1$ and $Y = Z_2$
- $U(x_1, x_2, y_1, y_2) := \Pr_{(X,Y)} [(x_1, x_2, y_1, y_2)]$
- $C(x_1, x_2, y_1, y_1) := \Pr_{(X,Y)|_W} [(x_1, x_2, y_1, y_2)]$
- ▶ $Q(x_1, x_2, y_1, y_1) := \Pr[X_1 = x_1 | W] \cdot \Pr[X_2 = x_2 | W] \cdot \Pr[Y_1 = y_1 | W, X = (x_1, x_2)] \cdot \Pr[Y_2 = y_2 | W, X = (x_1, x_2)]$
- ► We write $\frac{C(x_1, x_2, y_1, y_1)}{U(x_1, x_2, y_1, y_1)} = \frac{\Pr[X_1 = x_1 | W] \cdot \Pr[Y_1 = y_1 | W, X = (x_1, x_2)]}{\Pr[X_1 = x_1] \cdot \Pr[Y_1 = y_1]} \cdot \frac{\Pr[X_2 = x_2 | W] \cdot \Pr[Y_2 = y_2 | W, X = (x_1, x_2)]}{\Pr[X_2 = x_2] \cdot \Pr[Y_2 = y_2]} \cdot \frac{C(x_1, x_2, y_1, y_1)}{Q(x_1, x_2, y_1, y_1)}$

$$\begin{split} D(C||U) &= \mathop{\mathbb{E}}_{(x_1, x_2, y_1, y_2) \leftarrow C} \left[\log \frac{\Pr[X_1 = x_1 | W] \cdot \Pr[Y_1 = y_1 | W, X = (x_1, x_2)]}{\Pr[X_1 = x_1] \cdot \Pr[Y_1 = y_1]} \right] \\ &+ \mathop{\mathbb{E}}_{(x_1, x_2, y_1, y_2) \leftarrow C} \left[\log \frac{\Pr[X_2 = x_2 | W] \cdot \Pr[Y_2 = y_2 | W, X = (x_1, x_2)]}{\Pr[X_2 = x_2] \cdot \Pr[Y_2 = y_2]} \right] \\ &+ \mathop{\mathbb{E}}_{(x_1, x_2, y_1, y_2) \leftarrow C} \left[\log \frac{C(x_1, x_2, y_1, y_2)}{Q(x_1, x_2, y_1, y_2)} \right]. \end{split}$$

$$\begin{split} D(C||U) &= \mathop{\mathsf{E}}_{(x_1, x_2, y_1, y_2) \leftarrow C} \left[\log \frac{\Pr[X_1 = x_1 | W] \cdot \Pr[Y_1 = y_1 | W, X = (x_1, x_2)]}{\Pr[X_1 = x_1] \cdot \Pr[Y_1 = y_1]} \right] \\ &+ \mathop{\mathsf{E}}_{(x_1, x_2, y_1, y_2) \leftarrow C} \left[\log \frac{\Pr[X_2 = x_2 | W] \cdot \Pr[Y_2 = y_2 | W, X = (x_1, x_2)]}{\Pr[X_2 = x_2] \cdot \Pr[Y_2 = y_2]} \right] \\ &+ \mathop{\mathsf{E}}_{(x_1, x_2, y_1, y_2) \leftarrow C} \left[\log \frac{C(x_1, x_2, y_1, y_2)}{Q(x_1, x_2, y_1, y_2)} \right]. \end{split}$$

It follows that

$$\begin{split} D(C||U) &= D(X_1|_W, X_2|_{W,X_1}, Y_1|_{W,X}, Y_2|_{W,X,Y_1}||X_1, X_2|_{W,X_1}, Y_1, Y_2|_{W,X,Y_1}) \\ &+ D(X_2|_W, X_1|_{W,X_2}, Y_2|_{W,X}, Y_1|_{W,X,Y_2}||X_2, X_1|_{W,X_2}, Y_2, Y_1|_{W,X,Y_2}) \\ &+ D(C||Q) \end{split}$$

$$\begin{split} D(C||U) &= \mathop{\mathsf{E}}_{(x_1, x_2, y_1, y_2) \leftarrow C} \left[\log \frac{\Pr[X_1 = x_1 | W] \cdot \Pr[Y_1 = y_1 | W, X = (x_1, x_2)]}{\Pr[X_1 = x_1] \cdot \Pr[Y_1 = y_1]} \right] \\ &+ \mathop{\mathsf{E}}_{(x_1, x_2, y_1, y_2) \leftarrow C} \left[\log \frac{\Pr[X_2 = x_2 | W] \cdot \Pr[Y_2 = y_2 | W, X = (x_1, x_2)]}{\Pr[X_2 = x_2] \cdot \Pr[Y_2 = y_2]} \right] \\ &+ \mathop{\mathsf{E}}_{(x_1, x_2, y_1, y_2) \leftarrow C} \left[\log \frac{C(x_1, x_2, y_1, y_2)}{Q(x_1, x_2, y_1, y_2)} \right]. \end{split}$$

It follows that

$$D(C||U) = D(X_1|_W, X_2|_{W,X_1}, Y_1|_{W,X}, Y_2|_{W,X,Y_1}||X_1, X_2|_{W,X_1}, Y_1, Y_2|_{W,X,Y_1})$$

$$+ D(X_2|_W, X_1|_{W,X_2}, Y_2|_{W,X}, Y_1|_{W,X,Y_2}||X_2, X_1|_{W,X_2}, Y_2, Y_1|_{W,X,Y_2})$$

$$+ D(C||Q)$$

and the proof follows since $D(C||Q) \ge 0$. \square

Similar proof to the public-coin proof we gave above.

- Similar proof to the public-coin proof we gave above.
- In each round, the attacker \widetilde{P} samples random continuations of $(\widetilde{P^{(k)}}, V^{(k)})$, till he gets an accepting execution.

- Similar proof to the public-coin proof we gave above.
- In each round, the attacker P samples random continuations of (P(k), V(k)), till he gets an accepting execution.
- Why fails us to extend this approach for non-public-coin interactive arguments?

Section 3

Parallel amplification for any interactive argument

Parallel amplification theorem for any protocol

Can we amplify the security of any interactive argument "in parallel"?

Parallel amplification theorem for any protocol

- Can we amplify the security of any interactive argument "in parallel"?
- Yes we can!