

引力波数据处理

胡一鸣

$$G_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$$

git commitID: 1d0cf1acb951664a64f9acb7a32e8fc231966490

编译日期: Mon Oct 14 08:31:12 2019 +0800

任何建议及错误信息请发送至邮箱

huyiming@sysu.edu.cn

本作品 LaTeX 模板采用",遵守知识共享署名-非商业性使用 4.0 国际许可协议进行许可。访问https://creativecommons.org/licenses/by-nc/4.0/查看该许可协议。

^ahttps://github.com/muzimuzhi/Qbook

Joseph Weber 是引力波探测的先驱。他建造了两个相隔上千公里的探测器,这样就可以有效地隔绝环境噪声产生的误警(实际上,LIGO也是遵从这样的宗旨选址的),这是因为引力波的传播速度是光速,那么两个探测器应该近乎同时探测到信号;同时,噪声的到来对不同的探测器是相互独立的。Weber 记录的数据中,就有几个信号,不同的探测器记录的时间差非常短。1969年,Weber 在 Physical Review Letters 上发表论文"Evidence for discovery of gravitational radiation",宣称发现了引力波信号。一时间,他名声鹊起,成为了聚光灯前的宠儿,媒体将其捧为继 Einstein 之后最伟大的物理学家。

2017年,三位物理学家由于引力波的发现而获得诺贝尔奖。三个人里,没有 Weber。当然,斯人已去,Weber 在世纪之交的 2000 年 9 月 30 日就已作古。然而,Weber 与诺奖失之交臂,并不是因为他活的不够长——这一点日渐成为获得诺奖的必要非充分条件——而是因为后续的研究无法重复 Weber 的结论。先是理论计算结果与 Weber 宣称的引力波信号强度、频次相差悬殊;接着,其他团队建造的更灵敏的探测器宣布无法探测到引力波事件;最致命的是,Weber 在相隔三个时区的两个信号中寻找同时信号的时候,竟然忘了考虑时差。

Weber 是真诚的,直到他去世时,他依然坚信他成功地探测到了引力波。这里并没有学术不端,有的,只是对数据处理的极度忽视。当然,也许,Weber 数据处理地好一些,就不会引发这么大的轰动,也就不会吸引这么多聪明人投身到引力波探测这个领域,也许2015年9月14日穿越地球而过的那一串小小涟漪,就会如它之前的所有双黑洞并合的信号般,悄悄地来,又悄悄地去,不留下一丝痕迹。

2016年,引力波探测的大门,已然被叩开,黑洞与中子星疯狂的舞蹈终于觅来了知音。在2019年的这个夏天,当我远眺未来,充满的是憧憬和期待,当天琴卫星上天,当宇宙的长波电台被天琴接收到信号时,又会上演什么样的一出好戏呢?科学的魅力往往就在于它的不可捉摸和不可预测。不管是什么样的发现,背后一定会有着有力的数据处理方法作为支撑。还好,卫星上的时钟同步用的是原子钟,应该不至于忘记考虑时差这回事。

历史不容假设,当我们回望过去的时候,我们也许会将 Weber 铭记为一位勇敢的先驱,一位卓绝的工程师,甚或是一位天才的实验物理学家;但同时,不容否认,他在引力波数据处理这门课上,表现地糟糕透了。我相信,当未来的人们回望这段当前,回顾

中国科学的崛起时,"引力波探测"、"天琴计划",都会是绕不过去的、在历史的长河中熠熠发光的名词。我们有着国内顶尖的激光团队,国内顶尖的惯性基准团队,国内顶尖的卫星系统团队。我希望,我们也将会有国内顶尖的引力波数据处理团队。我更希望,这本讲义能成为奔向这个远方的起点。

这段历史画卷, 现在就将由你谱写。

愿这一本讲义, 能成为你的画笔, 你的颜料。

目 录

序		i
前言		ix
第一章	相对论基础	1
1.1	相对性原理 (Principle of relativity)	2
	1.1.1 Galilean 相对论	2
	1.1.2 Maxwell 方程组	3
	1.1.3 狭义相对论	4
1.2	微分几何初步	5
	1.2.1 张量 (tensor) 初步	5
	1.2.2 等效原理	7
	1.2.3 协变导数	8
	1.2.4 测地线 (geodesics)	11
1.3	广义相对论 (General Relativity) 初步	12
	1.3.1 曲率张量	12
	1.3.2 Einstein 场方程	12
第二章	引力波方程	15
2.1	广义相对论的 Newtonian 极限	
2.1	2.1.1 线性化引力 (linerized gravity)	
	2.1.2 Newtonian 极限	
2.2		
2,2	2.2.1 引力波的传播	
	2.2.3 引力波的效果	19

第三章	引力波	支源和波形		23
3.1	双黑洞	月并合		23
	3.1.1	双黑洞并合的波形	/	24
	3.1.2	BBH 天文学		29
	3.1.3	BBH 与基础物理		34
3.2	中子星	皇双星并合		35
	3.2.1	中子星		35
	3.2.2	波形		38
	3.2.3	中子星双星天文学		38
3.3	EMRI			43
	3.3.1	天文学背景		43
	3.3.2	波形		47
3.4	Contin	uous Wave		51
	3.4.1	变形的中子星		51
	3.4.2	双白矮星		51
3.5	Supern	ivoa		51
3.6	SGWE	3		51
3.7	其他波	で源		
	3.7.1	QNM		51
	3.7.2	Cosmic String Susps		51
	3.7.3	引力波暴		51
Politica No.	→1.1. \ 1			
		按探测手段		53
4.1		《测器		
	4.1.1	原理		
	4.1.2	噪声		
	4.1.3	灵敏度		
4.2		放光干涉探测器		
	4.2.1	原理		
	4.2.2	波源和噪声		
	4.2.3	灵敏度		
4.3		力波探测		
	4.3.1	原理		
	4.3.2	波源和噪声		53

	4.3.3	现状	53			
4.4	脉冲星	计时阵	53			
	4.4.1	原理	54			
	4.4.2	源、噪声和现状	54			
4.5	宇宙微	波背景辐射	54			
	4.5.1	原理	54			
	4.5.2	源、噪声和现状	54			
4.6	其他探	测方案	54			
第五章	在 "穷人版"引力波数据处理示例					
第六章	引力波	信号探测	57			
6.1	概率初	步	57			
	6.1.1	随机变量	57			
	6.1.2	频率学派 v.s.Bayesian	57			
	6.1.3	典型分布	57			
	6.1.4	随机过程	57			
6.2	时序列	分析	57			
	6.2.1	Fourier 变换	57			
	6.2.2	样本平均和相关函数	57			
	6.2.3	卷积	57			
	6.2.4	功率谱密度	58			
	6.2.5	周期图	58			
6.3	信号探	测的统计学原理	58			
	6.3.1	假设检验	58			
6.4	连续引	力波探测	58			
	6.4.1	F-统计	58			
	6.4.2	误警率和探测概率	58			
	6.4.3	模板数	58			
	6.4.4	次优滤波	58			
	6.4.5	F-统计算法	58			
6.5	啁啾信	号探测	58			
*	6.5.1	最佳探测统计	58			
	6.5.2	匹配滤波	59			

	6.5.3	时频分析	59
	6.5.4	同时性	59
	6.5.5	显著度分析	59
第七章	引力波	注信号测量	61
7.1	参数估	i计	61
	7.1.1	测量精度	61
	7.1.2	参数估计中的系统误差	61
	7.1.3	置信区间	61
	7.1.4	nuisance 参数	61
	7.1.5	Fisher 信息矩阵	61
7.2	Markov	v 链蒙特卡洛	61
	7.2.1	MetropolisHastings 算法	61
7.3	模型选	择与 Occam 剃刀	61
	7.3.1	模型选择	62
	7.3.2	定量的 Occam 剃刀	62
	7.3.3	Odds ratio	62
7.4	层级采	梯	62
	7.4.1	问题描述	62
	7.4.2	基本算法	62
	7.4.3	随机采样	62
	7.4.4	后验概率采点	62
	7.4.5	模拟淬火	62
第八章	其他方	法及复杂情形	63
8.1	随机引	力波背景探测	63
	8.1.1	单探测器信噪比	63
	8.1.2	相关与似然函数	63
	8.1.3	多数据情形	63
	8.1.4	最大似然探测统计	63
	8.1.5	Bayesian 相关分析	63
	8.1.6	其他方法	63
8.2	无法建	性模信号的探测统计量	63
	8.2.1	功率超出法	63
		V	

	69
常用物理量	67
引力波数据处理实例	65
8.6.2 Kludge	64
8.6.1 Reduced-ordermodels	
效率提高	64
数据包含间隔的情形	64
非稳态、非 Gauss、非线性噪声下的探测	63
机器学习	63
	非稳态、非 Gauss、非线性噪声下的探测

前言

这份讲义是我为中山大学物理与天文学院研究生课程"引力波数据处理"课程所准备的。由于本人能力有限,准备时间仓促,一定包含了大量错误,我会力争在收到反馈之后进行更正。感谢谢思远、刘丽璇、周立祥、等指出部分错误。本书第3.1.2.2中借鉴了王海天的硕士论文。讲义的电子版可以在https://github.com/yiminghu-SYSU/GW_DA_notes获得。

这本讲义的写作对象是对引力波数据处理感兴趣的高年级本科生或研究生。本书默 认读者已经初步掌握了狭义相对论的基本概念,并有一定概率论基础。在讲义中,我会 尽可能追求内容的完整性,以便尚未完成广义相对论等课程学习的同学也可以在脑中构 建起足够的物理图景。

但限于篇幅和授课计划,本书肯定无法替代广义相对论等基础课程。因此,文中肯定会在数学逻辑的严谨性和课程主题的完备性之间做出倾向于后者的取舍,也敬请诸位谅解。

胡一鸣 2019 年 8 月 14 日, 于珠海唐家

1

相对论基础

本讲义的授课主题,是引力波数据处理,共分为两部分,引力波与数据处理。如果脱离了引力波的物理图景,而直接空谈数据处理,未免空中楼阁。而在另一方面,引力波又是 Einstein 广义相对论的直接理论预言,因此,引力波的理论描述,无法跳脱广义相对论的框架。

图 1-1 修改引力理论

Figure 1–1 Theories of modified gravity. Credit: http://www.cgc-yzu.cn/Upload/research/MG-20240317524.png

从 Einstein 至今,引力理论已经有了长足的发展,如图1-1所示,仅基于广义相对论基础上发展起来的修改引力理论就已不计其数。由于和量子力学原理的深刻矛盾,有理由认为 Einstein 决定论性的的广义相对论在某个地方一定背离了引力的物理本质。然而,时至今日,Einstein 昔日基于广义相对论所作出的诸多预言,一一被实验所验证;所有可靠的实验检验下,广义相对论均可以给出解释——而它通常是最简洁的那个理论。因此,即使将来的实验证明了广义相对论与引力的物理本质之间的偏离,对广义相对论的理解依然有着重要的意义。

1.1 相对性原理 (Principle of relativity)

1.1.1 Galilean 相对论

虽然在 20 世纪,相对论一次专指 Einstein 的理论,但是相对性原理 (Principle of relativity) 的思想在 Newtonian 力学中就有体现:两个服从 Newtonian 力学的、相对均匀运动的惯性参考系,无法通过在内部展开的力学实验进行区分。这一思想一般认为是 Galileo 在《关于 Ptolemaic 和 Copernican 两大世界体系的对话》中首先提出的 [76]:

材料 1.1 Dialogo sopra i due massimi sistemi del mondo

把你和一些朋友关在一条大船的甲板下的主舱里,让你们带着几只苍蝇、蝴蝶和其他小飞虫,舱内放一只大碗,其中有几条鱼,然后,挂上一个水瓶,让水一滴一滴地滴到下面的一个宽口罐里。船停着不动时,你留神观察,小虫都以等速向舱内各方向飞行,鱼向各方向随便游动,水滴滴进下面的罐中。你把任何东西扔给你的朋友时,只要距离相等,向这一方向也不比向另一方向更多用力。你的双脚齐跳,无论向哪个方向跳过的距离都相等。当你仔细观察这些事情之后,再使船以任何速度前进,只要运动是均匀的,也不忽左忽右地摆动,你将发现,所有上述现象都没有丝毫变化,你无法从任何一个现象来确定,船是在运动还是在停着不动。即使船运动得相当快,在跳跃时,你也将和以前一样,你跳向船尾也不会比跳向船头更省力。

在 Galilean 相对性原理表明的这个表述中,日常生活中涉及到的物理学性质,在地球坐标系下(船停着不动)和船的坐标系下(船在运动)没有任何区别。

用公式来表述的话,则可以设立两个坐标系,亦即"静止的"地球坐标系 S(t,x,y,z) 和 "运动的"船坐标系 S'(t',x',y',z')。不妨令 t=t'=0 时,两个坐标系重合,且船以速度 v 沿

x方向移动,则有

$$t' = t$$

$$x' = x - vt$$

$$y' = y$$

$$z' = z$$
(1.1)

这种变换通常被称为 Galilean 变换。不难得出,Galilean 变换下的速度转换公式是 $u'_x = u_x - v$

实际上,这种朴素的相对论性原理是非常直观的,在《尚书纬·考灵曜 (yào)》中,就有文字表达了相当类似的想法:

材料 1.2 尚书纬·考灵曜

地恒动不止而人不知、譬如人在大舟中、闭牖(yǒu)而坐、舟行而不觉也

1.1.2 Maxwell 方程组

Maxwell 总结了前人归纳的方程组,得到了

$$\nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0}$$

$$\nabla \cdot \mathbf{B} = 0$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$\nabla \times \mathbf{B} = \mu_0 \mathbf{J}$$
(1.2)

其中 ε_0 为真空电容率, μ_0 为真空磁导率。尤其,他注意到这组方程与连续性公式 (如下) 冲突

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \mathbf{J} = 0 \tag{1.3}$$

在放弃实验总结公式和放弃连续性方程之间,Maxwell 作出了伟大的抉择:他相信连续性方程必须成立。由此,他总结了著名的 Maxwell 方程,用以描述电磁场的一般性质。

$$\nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0}$$

$$\nabla \cdot \mathbf{B} = 0$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$\nabla \times \mathbf{B} = \mu_0 \left(\mathbf{J} + \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t} \right)$$
(1.4)

而其中 $\varepsilon_0 \frac{\partial \mathbf{E}}{\partial t}$ 这项被称为位移电流。

Maxwell 注意到,通过 Maxwell 方程组,利用真空中 $\rho = 0$, $\mathbf{J} = \mathbf{0}$ 的可以推导出,

$$\nabla^2 \mathbf{B} - \varepsilon_0 \mu_0 \frac{\partial^2 \mathbf{B}}{\partial^2 t} = 0 \tag{1.5}$$

不难看出, 电磁场的变化以波动形式传播, 其速度 c 取决于:

$$c^2 = \frac{1}{\varepsilon_0 \mu_0} \tag{1.6}$$

从数值上,c 的取值与当时已经从实验上测得的光速极为接近,这使得他大胆假设:光就是一种电磁波。

然而,Maxwell 方程组与 Galilean 变换是不自洽的。考虑在运动的船 S'上进行电磁 学测量,根据 Galilean 变换1.1,真空中电磁场的传播方程1.5变为

$$c^{2}\nabla^{2}\mathbf{B} = \frac{\partial^{2}\mathbf{B}}{\partial t^{2}} + (\mathbf{v} \cdot \nabla)^{2}\mathbf{B} - 2\mathbf{v} \cdot \nabla \left(\frac{\partial \mathbf{B}}{\partial t}\right)$$
(1.7)

一个平庸的结论是,通过 Galilean 变换,船上的物理学家将测得光速变为 $c \pm v$ 。然而更深刻的问题是,这一结论意味着,如果 Galilean 相对论是正确的,那么 Maxwell 方程组只能对某个特定惯性参考系成立,而物理学家可以根据电磁场的测量来确定实验室位于"船"上还是相对静止。Newtonian 力学必须借助绝对绝对空间的概念,在坚持 Galilean 相对论的前提下,似乎可以得出,满足1.5的参考系就是 Newtonian 力学概念中的绝对空间。

其时,人们认为电磁波传播需要介质,而这种依附于绝对空间而具有独特性质的参考系,具象化为"以太 (aether)"[75]。

1.1.3 狭义相对论

Lorentz 和 Poincaré 第一次意识到,如果 S 坐标系和 S' 坐标系之间的转换关系采用 如

$$t' = \gamma \left(t - \frac{vx}{c^2} \right)$$

$$x' = \gamma \left(x - vt \right)$$

$$y' = y$$

$$z' = z$$

$$\gamma = \frac{1}{\sqrt{1 - v^2/c^2}}$$
(1.8)

的形式的话, 那么 Maxwell 方程组 (公式1.4) 在所有的惯性系中都能成立。这里的 γ 通常被称为 Lorentz 因子。形如公式1.8的变换称为 Lorentz 变换 (Lorentz transformation),我们可以说,Maxwell 方程组在不同的惯性系中,通过 Lorentz 变换维持了不变性。可以发现,Lorentz 变换下的速度转换公式是

$$u_x' = \frac{dx'}{dt'} = \frac{\gamma(dx - vdt)}{\gamma\left(dt - \frac{vdx}{c^2}\right)} = \frac{\frac{dx}{dt} - v}{1 - \left(\frac{v}{c^2}\right)\left(\frac{dx}{dt}\right)} = \frac{u_x - v}{1 - u_x v/c^2}.$$
 (1.9)

1.2 微分几何初步

在 Maxwell 方程组的有效性和 Galilean 相对论之间, Einstein 作出了伟大的抉择:他相信光速不变必须成立, Lorentz 变换背后对应着深刻的物理原理。

从某种意义上说,Lorentz 变换就是狭义相对论的精髓。但物理学界今天达成共识,认为是 Einstein 而非 Lorentz 或 Poincaré 发明了狭义相对论,这是因为 Einstein 第一次严肃地认为 Lorentz 变换体现了时间与空间的本质,而非简单的数学工具。由此,时间与空间并非完全独立,而是交织在一起,甚至可以互换。要标记一个事件,必须同时标记其在某个惯性系下的空间坐标 (x,y,z) 和时间坐标 t。对于两个事件,在 S 坐标系下看来可能是同时发生的 $(\Delta t = 0)$,但在 S 坐标系看来却可能发生于不同时间 $(\Delta t \neq 0)$ 。在不同的惯性系下,通过 Lorentz 变化,两个不同事件之间,保持不变的,是事件间时间间隔和空间间隔的某种组合,称为时空间隔:

$$\Delta s^2 = -(c\Delta t)^2 + \Delta x^2 + \Delta y^2 + \Delta z^2 \tag{1.10}$$

通常其微分形式使用起来更为方便:

$$ds^{2} = -c^{2}dt^{2} + dx^{2} + dy^{2} + dz^{2}$$
(1.11)

在 Lorentz 变换下,ds² 保持不变。特别的,我们将符合这种描述的时空称为 Minkowski 时空。

1.2 微分几何初步

1.2.1 张量 (tensor) 初步

在相对论框架下,时间坐标 t 和空间坐标 (x,y,z) 联合起来形成一个统一的时空坐标 $x^{\alpha}=(t,x,y,z)$ 。如此处的 α 一般出现在坐标上标上的希腊字母,会遍历 0,1,2,3。 $x^{0}=t$ 具有时间量纲,而 $x^{1}=x,x^{2}=y,x^{3}=z$ 则代表空间坐标。这样,我们可以将公式 1.11 重新表达为

$$ds^2 = \eta_{\alpha\beta} dx^{\alpha} dx^{\beta} \tag{1.12}$$

这里, $\eta_{\alpha\beta}$ 是一个对角矩阵,

$$\eta_{\alpha\beta} = \begin{pmatrix}
-c^2 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$
(1.13)

注意到 $\eta_{00} = -c^2$,而 $\eta_{11} = \eta_{22} = \eta_{33} = 1$,并且,根据 **Einstein 求和约定 (Einstein summation convention)**,如公式**1**.12一般,当某个希腊字母同时出现在上下标的时候,则意味着要对该字母求和。

注 1.3. 通常,约定俗成:采用希腊字母时,默认遍历 {0,1,2,3};采用英语字母时,默认 遍历 {1,2,3},即只包含空间项。

材料 1.4 Kronecker delta

有一个特殊的张量,即所谓 Kronecker delta 张量

$$\delta_{\alpha\beta} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \tag{1.14}$$

该张量的表现形式在所有的坐标系中都一致。

在更一般的情形下, 可以写成

$$ds^2 = g_{\alpha\beta} dx^{\alpha} dx^{\beta} \tag{1.15}$$

我们通常把 $\eta_{\alpha\beta}$ 称为 Minkowski 时空中的**度规张量** (metric tensor, 在数学语境中通常 翻译为度量张量),或者简称为 Minkowski 度规。当坐标 x^{α} 发生变化时,度规张量相应 变化,使得公式1.12维持不变量。也就是说,通过公式1.16,我们可以把随坐标变换而 改变的 x^{α} 转化成不随坐标变换而改变的时空间隔 ds^{2} 。

注 1.5. 注意,平直时空(*Minkowski* 时空)并不一定意味着 *Minkowski* 度规。如,若空间部分采用球坐标系,则有坐标基底为 $\{t,r,\theta,\phi\}$,这时时空间隔可以写为

$$ds^{2} = -c^{2}dt^{2} + dr^{2} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2})$$
(1.16)

亦即, 对应的度规为

$$g_{\alpha\beta} = \begin{pmatrix} -c^2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & r^2 & 0 \\ 0 & 0 & 0 & r^2 \sin^2 \theta \end{pmatrix}$$
 (1.17)

可以定义在坐标系中的矢量 $d\vec{x} = \vec{e}_a dx^a$ 。在坐标系变换过程中,由于坐标基底 $\vec{e}_a = \partial \vec{x}/\partial x^a$ 改变了,相应的矢量 $d\vec{x}$ 在坐标基底上的分量 dx^a 也会变化,但是矢量本身

¹注意,度规张量是对称的,也就是 $g_{\alpha\beta} = g_{\beta\alpha}$ 。

1.2 微分几何初步

dx 是不变的¹ 需要指出的是,矢量也是一种张量。实际上,张量也符合上述性质: 当坐标基底改变时,张量在坐标基底上的分量会发生变化,但是张量本身是不变的。

度规也自然地定义了在坐标系中两个矢量的内积。 $d\vec{x}$ 与自己的内积是时空间隔 ds^2 ,展开得:

$$ds^2 = d\vec{x} \cdot d\vec{x} = (\vec{e}_{\alpha} \cdot \vec{e}_{\beta}) dx^{\alpha} dx^{\beta}$$
(1.18)

通过与公式1.16比较,可以发现 $g_{\alpha\beta} = \vec{e}_{\alpha} \cdot \vec{e}_{\beta}$ 。更一般的,两个矢量 $\vec{A} = A^{\alpha} \vec{e}_{\alpha}$ 和 $\vec{B} = B^{\alpha} \vec{e}_{\alpha}$ 的内积可以写成

$$\vec{A} \cdot \vec{B} = A^{\alpha} B^{\beta} \left(\vec{e}_{\alpha} \cdot \vec{e}_{\beta} \right) = g_{\alpha\beta} A^{\alpha} B^{\beta}. \tag{1.19}$$

1.2.2 等效原理

Einstein 的狭义相对论,虽然可以将 Newtonian 框架下的绝对空间观点移除,但惯性系仍然在所有的坐标系中占据一个特殊的位置。 2 由此探究了十年时间之后,Einstein 最终得到了广义相对论,并最终将惯性系的特殊性也彻底移除。Einstein 观察到,在 Newtonian 力学体系中,质量 m 这个概念出现在两个完全截然不同的地方:Newton's second law of motion 指出,物体所受的力 F=ma,这里 a 为加速度,由此可以定义出惯性质量 m_I 。而在万有引力公式中,Newton 又指出,物体所受的引力与其质量大小成正比,由此定义了引力质量 m_G 。两者的语境完全不同,而实验可以证明在实验精度内 $m_I=m_G$ 精确成立。两种质量的严格相等,通常被称为"弱"等效原理。 3

 m_I 与 m_G 的相等,是物理性质的重合还是源于背后物理机理的等价性?对此,Einstein 又作出了伟大的抉择:他相信弱等效原理并非巧合,而引力实际上等效于加速度。拥有相同质量的物体,可以拥有完全不同的电量,由此在电场中受到不同的电磁力作用。然而拥有相同惯性质量 m_I 的物体,一定拥有相同的引力质量 m_G ,这也就暗示了引力作用从本质上和其他相互作用的区别。在狭义相对论的语境中,物理学家无法通过任何局部开展的实验了解自己所处的船舱是否处于均匀运动状态。而弱等效原理中,物理学家无法通过实验分辨船舱是在加速(由 m_I 确定,服从 Newton's second law of motion)还是受到了引力作用(由 m_G 确定,服从引力作用)。既然加速度和引力等价,那么处于自由下落状态的实验室,所开展的所有**局域 (local)** 实验结果,都将完全一样,这一点与实验室的速度、所处的位置都不相关。这一等价性,被称为"强"等效原理。[67]

¹注意,在非 Euclidean 几何中,指标的上下具有特定的含义,上指标如 x^{α} 对应于矢量,而下指标如 \vec{x}_{α} 对应于所谓(1-形式)one-form,有时候也称对偶矢量。感兴趣的读者请自行参阅广义相对论方面的参考资料,在本书中恕不详细展开。

²扩展阅读: [64] 等著作中关于 Mach's principle 和 Isaac Newton's rotating bucket argument (also known as Newton's bucket) 的讨论。

³需要注意,弱等效原理的表述方式有很多,但是几种表述互相之间均等效。

根据强等效原理,所有在局域展开的物理实验,只要转换到自由落体状态的参考系下看,都是一致的。换言之,可以将自由落体参考系下的结果,通过合理的坐标变换,得到有引力时的表达式。最重要的,就是度规的转换。在自由落体状态时候,局部 Lorentz 坐标系 ξ^{μ} 遵从 Minkowski 度规 $\eta_{\mu\nu}$ 。假设一般的坐标系 x^{α} 与局部 Lorentz 坐标系之间符合转换关系 $\xi^{\mu} = f^{\mu}(x^{\alpha})$,则有 $d\xi^{\mu} = (\partial_{\alpha}f^{\mu})dx^{\alpha}$ 。可以得到

$$ds^{2} = (\eta_{\mu\nu}\partial_{\alpha}f^{\mu}\partial_{\beta}f^{\nu})dx^{\alpha}dx^{\beta}$$
(1.20)

与公式1.16比较, 可以得到, $g_{\alpha\beta} = \eta_{\mu\nu}\partial_{\alpha}f^{\mu}\partial_{\beta}f^{\nu}$

材料 1.6 Raising and Lowering of index

指标的上下标具有不同的含义。对于一维的张量而言,指标在上时是**矢量**,其坐标转换关系满足逆变 (contravariant);指标在下时是**对偶矢量**(或 1-形式),其坐标转换关系满足协变 (covariant)。指标可以通过度规 $g_{\mu\nu}$ 进行升降。首先可以定义逆变张量 $g^{\mu\nu}$

$$g^{\alpha\mu}g_{\mu\beta} = \delta^{\alpha}_{\ \beta} \tag{1.21}$$

其中 δ^{α}_{β} 是 Kronecker delta 张量,数值上与公式1.14一致。利用度规,可以实现指标的升降:

$$A^{\alpha} = g^{\alpha\beta} A_{\beta} \tag{1.22}$$

类似地,有

$$A_{\beta} = g_{\beta\alpha} A^{\alpha}. \tag{1.23}$$

1.2.3 协变导数

Minkowski 度规描述的是平直的 Euclidean 几何。在广义相对论的框架下,要描述动力学,就需要运用弯曲的时空对应的数学语言,或者是非 Euclidean 几何 (non-Euclidean geometry)

材料 1.7 Parallel postulate

Euclidean 几何的五大公设中, 第五公设为:

若两条直线都与第三条直线相交,并且在同一边的内角之和小于两个直角,则这两条直线在这一边必定相交。。

这一定义相较其他公设更为冗长,并不是那么显然。晚近的研究表明,将第五公设去除后,也可以构成自洽的几何体系,即所谓非 Euclidean 几何。根据曲率的不

1.2 微分几何初步

Figure 1–2 two examples of non-Euclidean geometry. Credit: https://blogs.futura-sciences.com/e-luminet/2017/09/22/non-euclidean-geometries/

同,可以将其分为椭圆几何(又称 Riemannian 几何,任意两条直线一定相交;三角形内角和大于 180°)和双曲几何(又称 Lobachevskian 几何,至少可以引出两条平行线;三角形内角和小于 180°)。

对于函数 $\vec{A}(x)$ 的导数,我们通常定义为 $\lim_{dx\to 0} \frac{\vec{A}(x+dx)-\vec{A}(x)}{dx}$ 。然而在非 Euclidean 几何中,需要重新审视一些在 Euclidean 几何里习以为常的概念:比如,**矢量**的分量必须依赖局部的坐标系。如此一来, $\vec{A}(x+dx)-\vec{A}(x)$ 的具体取值,就很值得玩味:如何对不在同一个位置处的两个矢量进行比较?

在 Euclidean 几何中这并不是一个问题,因为可以简单的平移矢量 $\vec{A}(x)$ 至 x + dx 处,然后与 $\vec{A}(x + dx)$ 比较。然而,在非 Euclidean 几何中,矢量的平移这个概念也需要被仔细检阅。具体来说,平移后的矢量,不仅取决于矢量的指向,也取决于平移的路径。

例 1.8 让我们想象一个生活在地球仪表面的二维生物(不妨假设这是一个没有厚度的蚂蚁,它只能沿着地球仪表面运动),假设这只蚂蚁从地球仪上的(0°,0°)出发(也就是本初子午线和赤道的交点),决心一路向北。

在任意时刻,它的前进方向都是一个矢量,在起点处,这个方向指向正北。随着它的运动,这个矢量被不断的平移(注意,在这个二维球面空间里,矢量也只能在地球仪表面上定义)。当它到达北极点时,这个平移后的矢量就称为指向东西经 180°线。在我们的三维世界里去看的话,会发现,两个矢量的方向其实是垂直的(再继续走 1/4 圈的话就变成了指向南极方向,与原方向相反了)。

图 1-3 非 Euclidean 几何中矢量协变导数的图示

Figure 1–3 demonstration of covariant derivative of vectors in non-Euclidean geometry. Credit: Martin Hendry

如图1–3所示,在 P 点处(坐标为 x^{β})有一矢量 $\vec{A}(x)$,其坐标分量为 A^{α} ,经过 $P \to Q$ 的路径到达 Q 点(坐标为 $x^{\alpha} + dx^{\alpha}$),这时,如果保持原来的坐标分量不变,则分量依然是 A^{α} 。与 Euclidean 几何不同,由于不同点处坐标基底也发生了改变,因此在 x + dx 处的 A^{α} 并不一定与 $\vec{A}(x)$ 平行,真正平行的矢量为 $\vec{D}A(x + dx)$,其坐标分量为 DA^{α}

$$DA^{\alpha}(x + dx) = A^{\alpha}(x) + \delta A^{\alpha}(x)$$
 (1.24)

由坐标基底 \vec{e} 发生变化而引起的 δA^{α}

$$\delta A^{\alpha}(x) = -\Gamma^{\alpha}_{\mu\beta} A^{\mu} dx^{\beta} \tag{1.25}$$

其中, $\Gamma^{\alpha}_{\mu\beta}$ 是 Christoffel 符号,通过它,可以得到不同位置处坐标基底之间的转换关系

$$\frac{\partial \vec{e}_{\mu}}{\partial x^{\beta}} = \Gamma^{\alpha}_{\mu\beta} \vec{e}_{\alpha} \tag{1.26}$$

再次强调:我们在1.2.1节中提到过,在坐标基底发生变化时,张量的具体分量会变化,但是张量本身不会变。当我们定义了矢量的平移以后,我们终于可以合理地定义矢量的(不随坐标基底变化的)导数了:可以在 Q 点 x+dx 处,将 $\vec{A}(x+dx)$ 与从 P 点平移而来的 $\vec{DA}(x+dx)$ 进行比较。这样定义出来的导数,我们称之为协变导数 (covariant derivative) $A^{\alpha}_{:B}$ (见图1–3)。

$$A^{\alpha}_{;\beta} \equiv \lim_{\mathrm{d}x^{\beta} \to 0} \frac{\vec{A}^{\alpha}(x^{\beta} + \mathrm{d}x^{\beta}) - \vec{D}\vec{A}^{\alpha}(x^{\beta} + \mathrm{d}x^{\beta})}{\mathrm{d}x^{\beta}} = A^{\alpha}_{,\beta} + \Gamma^{\alpha}_{\mu\beta}A^{\mu}$$
(1.27)

其中, $A^{\alpha}_{,\beta}$ 是普通的偏导 $\partial A^{\alpha}/\partial x^{\beta}$ 。

通过度量张量 $g_{\mu\nu}$ 的协变导数为 0,并通过交换指标、求和,可以得到

$$\Gamma^{\mu}_{\alpha\beta} = \frac{1}{2} g^{\mu\nu} \left(\frac{\partial g_{\nu\alpha}}{\partial x^{\beta}} + \frac{\partial g_{\nu\beta}}{\partial x^{\alpha}} - \frac{\partial g_{\alpha\beta}}{\partial x^{\nu}} \right), \tag{1.28}$$

这里可以看出,不同局部之间的联系,完全由局部的度规决定。

1.2.4 测地线 (geodesics)

我们关心一个粒子的世界线¹,每一个原时 (proper time) τ 的取值都可以对应一个坐标点 x^{α} ,同时有 d $\tau = \sqrt{-ds^{2}}/c$ 。可以定义,在 x^{α} 处,粒子运动的速度 (切矢) 为

$$u^{\alpha} = \frac{\mathrm{d}x^{\alpha}}{\mathrm{d}\tau},\tag{1.29}$$

不难得到

$$g_{\alpha\beta}u^{\alpha}u^{\beta} = c^2 \tag{1.30}$$

Newtonian 力学描述物体在惯性系中沿直线运动。然而,在弯曲时空中,直线的概念消失了;而和直线概念最为接近的,就是测地线。我们考虑一条曲线,它的每一个点上的切矢都与前一个点上的切矢平行,这样的操作可以唯一定义一条曲线,这样的曲线叫做测地线。根据定义,则有

$$u^{\alpha}u^{\beta}_{:\alpha} = 0 \tag{1.31}$$

代入速度定义式1.29和协变导数公式1.27,可以得到

$$\frac{\mathrm{d}^2 x^{\mu}}{\mathrm{d}\tau^2} + \Gamma^{\mu}_{\alpha\beta} \frac{\mathrm{d}x^{\alpha}}{\mathrm{d}\tau} \frac{\mathrm{d}x^{\beta}}{\mathrm{d}\tau} = 0 \tag{1.32}$$

¹世界线是三位空间中"轨迹"概念的延生和对应。

这样一条测地线描述了在广义相对论框架下,Newton's first law of motion 的对应:不受外力作用的物体,沿测地线运动。需要特别说明的是,在推导过程中,我们默认了类时的测地线,这样,每一个点对应一个原时 τ 。然而,对于类光的测地线(即,测地线上每一点的原时 τ 都相同),将 τ 替换成仿射参量(affine parameter) λ 以后,公式1.31依然成立。特别的,这样的测地线称为**零测地线** (null geodesics)。

1.3 广义相对论 (General Relativity) 初步

1.3.1 曲率张量

我们之前说过,在非 Euclidean 几何中,三角形内角和不等于 180°,但显然三角形需要三个顶点,并不一定能在某个足够小的局域定义。能不能通过对某个点的时空性质观察,局域地确定时空是否弯曲?答案是肯定的,借助的工具就是 Riemann 张量。

$$R^{\alpha}_{\beta\gamma\delta} = \partial_{\gamma}\Gamma^{\alpha}_{\beta\delta} - \partial_{\delta}\Gamma^{\alpha}_{\beta\gamma} + \Gamma^{\alpha}_{\mu\gamma}\Gamma^{\mu}_{\beta\delta} - \Gamma^{\alpha}_{\mu\delta}\Gamma^{\mu}_{\beta\gamma}$$
 (1.33)

各类对称性可以消除独立分量的数目,在四维时空中,Riemann 张量一共有 20 个独立分量。

在 Riemann 张量基础上,还可以定义两个重要的张量: Ricci 张量

$$R_{\alpha\beta} \equiv R^{\mu}_{\ \alpha\mu\beta} \tag{1.34}$$

和 Einstein 张量

$$G_{\alpha\beta} \equiv R_{\alpha\beta} - \frac{1}{2} g_{\alpha\beta} R. \tag{1.35}$$

其中 $R = g^{\alpha\beta}R_{\alpha\beta}$ 。

1.3.2 Einstein 场方程

可以证明1,

$$G^{\alpha\beta}_{\ ;\beta} = 0. \tag{1.36}$$

上述等式有时被称为缩并 Bianchi 恒等式。

在 Newtonian 引力中,

$$\nabla^2 \left(-\frac{Gm}{r} \right) = 4\pi G\rho \tag{1.37}$$

¹可以通过 Bianchi 恒等式证明,具体过程请参阅各参考书。

等式的左边描述引力势 (通常由 Φ 表示),等式的右边描述的是质量分布。在广义相对论下,虽然对引力的描述改变了,但 Newton 对于引力的描述仍然应该近似成立。Einstein 认为引力是时空弯曲的表现,所以上述等式中的左边可以对应于 $G_{\alpha\beta}$,而质量分布在相对论中的对应是所谓能量-动量张量 $T_{\alpha\beta}$ 。 $T^{\alpha\beta}$ 是 α 方向的动量流穿越等 x^{β} 线的分量。

图 1-4 能量-动量张量的协变分量

Figure 1–4 Covariant components of the energy-momentum tensor Credit: https://commons.wikimedia.org/wiki/File:StressEnergyTensor.svg

对于理想流体而言, T^{00} 是能量密度, T^{ii} 是压强,其他分量皆为零。由连续性要求可以得到

$$T^{\alpha\beta}_{:\beta} = 0. \tag{1.38}$$

面对公式1.36和公式1.41, Einstein 猜测其解的形式为

$$G^{\alpha\beta} = kT^{\alpha\beta} \tag{1.39}$$

通过在弱场情形下与 Newtonian 引力的比较,可以确定常数 k 的取值,

$$G^{\alpha\beta} = \frac{8\pi G}{c^4} T^{\alpha\beta} \tag{1.40}$$

这就是广义相对论中描述时空与质量分布关系的公式为 Einstein 场方程。

¹有时候称为应力-能量张量,也称应力-能量-动量张量、能量-应力张量

中,常会设置 c = G = 1,这又被称为几何单位制。在本讲义中,为帮助物理量相应量级与量纲的计算和校验,我们不采用几何单位制。但部分公式推导中几何单位制更为方便,请同学们自行甄别。

Exercise 1.1

试证, 空间部分采用球坐标系时, 坐标基底采取 $\{t,r,\theta,\phi\}$, 利用 $g_{\alpha\beta}=\eta_{\mu\nu}\partial_{\alpha}f^{\mu}\partial_{\beta}f^{\nu}$, Minkowski 时空的度规可以写成

$$g_{\alpha\beta} = \begin{pmatrix} -c^2 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & r^2 & 0\\ 0 & 0 & 0 & r^2 \sin^2 \theta \end{pmatrix}$$
 (1.41)

或者等价地, $ds^2 = -c^2 dt^2 + dr^2 + r^2 (d\theta^2 + \sin^2\theta d\phi^2)$

2

引力波方程

2.1 广义相对论的 Newtonian 极限

根据 Wheeler 的描述,"the matter tells spacetime how to curve, and the spacetime tells matter how to move",可以看到,Einstein 场方程是高度耦合在一起的,我们说这样的系统是高度非线性的,因此它的求解是非常困难的一件事情。然而,我们可以通过在一些特殊情形下对其进行分析,进而得到一些有意义的结论。一个比较有用的特殊情形,就是弱场近似 (weak-field approximation),这样可以将场方程线性化,因此这也被称为线性化引力近似 (linearized gravity approximation)。如果加上低速限制条件,我们就可以得到广义相对论的 Newtonian 极限。

2.1.1 线性化引力 (linerized gravity)

让我们考虑如下情形:在原本平直的时空背景上,出现了一个小小的扰动,那么时空度规便偏离了原本的 Minkowski 度规 $\eta_{lphaeta}$

$$g_{\alpha\beta} = \eta_{\alpha\beta} + h_{\alpha\beta} \tag{2.1}$$

当然,这样的扰动并不大 ($h \ll 1$),我们可以在指标升降 (见材料 1.6) 时,近似使用 Minkowski 度规 $\eta_{\alpha\beta}$ 而不是真实的度规 $g_{\alpha\beta}$ 。 ¹

由此可以计算在弱场近似下的 Riemann 张量

$$R_{\alpha\beta\gamma\delta} = \frac{1}{2} \left(-\frac{\partial^2 h_{\beta\delta}}{\partial x^\alpha \partial x^\gamma} + \frac{\partial^2 h_{\beta\gamma}}{\partial x^\alpha \partial x^\delta} + \frac{\partial^2 h_{\alpha\delta}}{\partial x^\beta \partial x^\gamma} - \frac{\partial^2 h_{\alpha\gamma}}{\partial x^\beta \partial x^\delta} \right) + O(h^2)$$
 (2.2)

¹注,计算度规的逆变分量时除外,见[16]2.127式

其中, $h = h_{\mu}^{\ \mu} \stackrel{}{=} h_{\mu}^{\ \nu}$ 的**迹** (trace)

由此, 线性化的 Ricci 张量可以写为

$$R_{\alpha\beta} = R_{\alpha\mu\beta}^{\mu}$$

$$= \frac{1}{2} \left(-\frac{\partial^{2}h}{\partial x^{\alpha}\partial x^{\beta}} + \frac{\partial^{2}h_{\beta}^{\mu}}{\partial x^{\alpha}\partial x^{\mu}} + \frac{\partial^{2}h_{\alpha}^{\mu}}{\partial x^{\mu}\partial x^{\beta}} - \eta^{\mu\nu} \frac{\partial^{2}h_{\alpha\beta}}{\partial x^{\mu}\partial x^{\nu}} \right) + O(h^{2})$$
(2.3)

通过变量代换,使用 trace-reversed perturbation $\bar{h}_{lphaeta}$

$$\bar{h}_{\alpha\beta} \equiv h_{\alpha\beta} - \frac{1}{2} \eta_{\alpha\beta} h \tag{2.4}$$

在线性化近似下,可以得到形式相对简化的 Einstein 张量

$$G_{\alpha\beta} = \frac{1}{2} \left(\frac{\partial^2 \bar{h}^{\mu}_{\beta}}{\partial x^{\alpha} \partial x^{\mu}} + \frac{\partial^2 \bar{h}^{\mu}_{\alpha}}{\partial x^{\mu} \partial x^{\beta}} - \eta^{\mu\nu} \frac{\partial^2 \bar{h}_{\alpha\beta}}{\partial x^{\mu} \partial x^{\nu}} - \eta_{\alpha\beta} \frac{\partial^2 \bar{h}^{\mu\nu}}{\partial x^{\mu} \partial x^{\nu}} \right) + O(h^2)$$
 (2.5)

由此,可以将线性化的 Einstein 场方程化为

$$-\eta^{\mu\nu}\frac{\partial^2 \bar{h}_{\alpha\beta}}{\partial x^{\mu}\partial x^{\nu}} - \eta_{\alpha\beta}\frac{\partial^2 \bar{h}^{\mu\nu}}{\partial x^{\mu}\partial x^{\nu}} + \frac{\partial^2 \bar{h}^{\mu}_{\beta}}{\partial x^{\alpha}\partial x^{\mu}} + \frac{\partial^2 \bar{h}^{\mu}_{\alpha}}{\partial x^{\mu}\partial x^{\beta}} + O(h^2) = \frac{16\pi G}{c^4}T_{\alpha\beta}$$
(2.6)

值得注意的是,等式的第一项可以写为 $-\Box \bar{h}_{\alpha\beta}$,其中 \Box 符号为 d'Alembertian 算符,也就是在平直时空中的波算符。

但是,这个等式依然过于冗长。但实际上,广义相对论是包含一定冗余的自由度的,可以通过选取合理的规范,使得公式2.6更简洁。通常,可以选取所谓 Lorenz 规范¹,即

$$\bar{h}^{\mu\nu}_{\ \ \nu} = 0 \tag{2.7}$$

在这样的形式下,公式2.6中,等式左边的后三项均变为零。我们也就得到了 Lorenz 规范下的 Einstein 场方程

$$-\Box \bar{h}_{\alpha\beta} = \frac{16\pi G}{c^4} T_{\alpha\beta} \tag{2.8}$$

材料 2.1 Gauge transformations

考虑基于"矢量"ξα 的如下形式的坐标变换:

$$x^{\alpha\prime} = x^{\alpha} + \xi^{\alpha}(x^{\beta}) \tag{2.9}$$

使得公式2.1的条件依然成立。当 $|\xi^{\alpha}_{,\beta} \ll 1|$ 时,通过定义 $\xi_{\alpha} \equiv \eta_{\alpha\beta}\xi^{\beta}$,可以得到

$$h_{\alpha\beta} \to h_{\alpha\beta} - \xi_{\alpha,\beta} - \xi_{\beta,\alpha}$$
 (2.10)

¹注意,很多书本中错误地写作 Lorentz 规范,其实 Lorenz 和 Lorentz 是 2 位科学家

2.2 引力波 17

通过合理选取"矢量" ξ^{α} ,可以在不改变公式物理本质的前提下,简化数学表达式。 这就是所谓的规范变换。

2.1.2 Newtonian 极限

在低速 $(v \ll c)$ 情形下,Newtonian 力学可以看做是狭义相对论的极限情形。类似地,在弱场 $(h \ll 1)$ 、低速 $(v \ll c)$ 条件下,Newtonian 引力也应该可以看做是广义相对论的极限情形。这一节里,我们将展示这一点。

在 Newtonian 极限下,我们可以得到如下条件

$$T_{00}/c^4 = \rho$$
 (mass energy density)
 $|T_{0i}|/c^3 \approx \rho(v/c) \ll T_{00}/c^4$ (slow motion $v \ll c$) (2.11)
 $|T_{ij}|/c^2 \approx p/c^2 \& \rho(v/c)^2 \ll T_{00}/c^4$ (small internal stresses)

在低速情形下, $\partial/\partial t \approx v\partial/\partial x$ 是小量,由此 d'Alembertian 算符可以近似为空间 Laplac 算符 $\Box \to \nabla^2$ 。因此,在 Newtonian 极限下,场方程退化为

$$\nabla^2 \bar{h}_{00} = -16\pi G \rho$$

$$\nabla^2 \bar{h}_{0i} = 0$$

$$\nabla^2 \bar{h}_{ij} = 0$$
(2.12)

这个方程组可以得到平凡解 $\bar{h}_{0i}=0$ 和 $\bar{h}_{ij}=0$ 。对应公式1.37,可以发现非平凡解 $\bar{h}_{00}=2h_{00}=-4\Phi$ 。

更进一步, 可以得到

$$g_{\mu\nu} = \begin{pmatrix} -c^2 - 2\Phi & 0 & 0 & 0\\ 0 & 1 - 2\Phi/c^2 & 0 & 0\\ 0 & 0 & 1 - 2\Phi/c^2 & 0\\ 0 & 0 & 0 & 1 - 2\Phi/c^2 \end{pmatrix} + O(\Phi^2/c^4)$$
 (2.13)

2.2 引力波

2.2.1 引力波的传播

从公式2.8中可以看到,在 Lorenz 规范下,由平直时空背景上的线性微扰引起的运动方程是波动方程,其中能量-动量张量是源项。在真空中,度规微扰的解就变成了波,

这就是引力波。具体来说,该方程的解具有如下形式:

$$\bar{h}^{\alpha\beta} = A^{\alpha\beta} \exp(ik_{\mu}x^{\mu}) \tag{2.14}$$

注意,其中 k_{μ} 是 1-形式的 (实) 常数分量,而 $A^{\alpha\beta}$ 是某个张量的常数成分。

不难证明, k_{α} 是一个**零 (null)** 1-形式, 换句话说, 矢量 k_{μ} 是零矢量 (类光的), 它与光子的世界线相切。更进一步的, 可以证明引力波的传播速度即光速, 传播过程中不包含色散。

不难发现,这个解是平面波,也就是说,在满足

$$k_{\mu}x^{\mu} = k_0 + \mathbf{k} \cdot \mathbf{x} = \text{const.} \tag{2.15}$$

的超曲面上, $\bar{h}^{\alpha\beta}$ 是一个常数。这其中, $\mathbf{k} = k^i$ 。方便起见,可以定义 $k^0 = \omega$,这样,矢量 \vec{k} 的四维分量可以写成 (ω, \mathbf{k}) 。

材料 2.2 Plane Wave

在物理学领域,经常采用类似 $A^{\alpha\beta}$ exp($ik_{\mu}x^{\mu}$) 形式的平面波解,这其中, $A^{\alpha\beta}$ 可以是复的,而我们通常仅选取解的实部。

当然,现实情况中我们感兴趣的波很可能更为复杂,而不是单频的平面波。然而,根据 Fourier 定理,可以证明,任何满足波动方程(公式2.8)和 Lorenz 规范(公式2.7)的解,都可以看作是平面波解的叠加。因此,本章中引力波部分的讨论均基于平面波。

在推导公式2.8的过程中,用到了规范条件 $\bar{h}^{\alpha\beta}_{,\beta}=0$ 。同时注意,通过对波动解公式2.14求偏导,有 $\bar{h}^{\alpha\beta}_{,\mu}=\mathrm{i}k_{\mu}\bar{h}^{\alpha\beta}$ 。将上述两者结合,可以发现

$$A^{\alpha\beta}k_{\alpha} = 0 \tag{2.16}$$

这给了 $A^{\alpha\beta}$ 限制条件,它必须与 \vec{k} 正交。这说明引力波的传播方向与其作用方向垂直,因此,引力波是横波。

2.2.2 横向无迹规范 (transverse-traceless gauge)

可以注意到, Lorenz 规范并不能唯一地选取某个特定的坐标。实际上, 通过引入额外的满足 $\Box \xi_{\alpha} = 0$ 条件的 ξ_{α} , 公式2.14将依然成立。我们总可以选取 ξ_{α} , 使得 $h = h_{\mu}^{\ \mu} = 0$, 以及 $h_{0i}(x) = 0$ 。对照公式2.4,可以意识到,迹 h = 0 意味着 $\bar{h}_{\alpha\beta} = h_{\alpha\beta}$ 。这样,Lorenz 规范下 $\mu = 0$ 的分量可以写成

$$\partial^0 h_{00} + \partial^i h_{0i} = 0 (2.17)$$

2.2 引力波 19

又由于选取了 $h_{0i}(x) = 0$,可以得到 $\partial^0 h_{00} = 0$ 。 h_{00} 就变成了不随时间变化的常数项。回顾2.1.2节,我们知道 h_{00} 代表了引力势 Φ ,而静态的引力势具体取值的选取是不重要的,对于依赖时间的引力波而言,我们完全可选取 $h_{00} = 0$ 。

总结起来, 我们有如下条件

$$h^{0\mu} = 0, \qquad h^i_{\ i} = 0, \qquad \partial^j h_{ij} = 0$$
 (2.18)

这就是在引力波研究中经常采用的横向无迹规范 (transverse-traceless gauge, TT gauge)。 注意到,由于 $h_{\mu\nu}$ 对称,整个 4×4 的度规张量一共只有 10 个自由度。在采用 Lorenz 规 范后,又消减了 4 个自由度,剩下 6 个自由度。通过选定 $\Box \xi_{\alpha} = 0$ 条件的 ξ_{α} ,进一步消 减,只剩下 2 个自由度。这两个自由度,就对应了引力波的两个极化 (polarisation, 或 称偏振)。

从简化表达式的角度考虑,不妨将坐标基矢 e_3 方向选为平面波的波矢 \mathbf{k}_{μ} 方向。由于引力波是横波 $A^{\alpha\beta}k_{\alpha}=0$,这样一来,可以得到 $A^{3\beta}=0$,又由于对称性,可以得到 $A^{\beta3}=0$ 。这样,引力波振幅张量 $A_{\alpha\beta}$ 中所有非零的量只剩下 A_{11} , A_{12} , A_{21} , A_{22} ,

由于无迹要求导致了 $A_{11} + A_{22} = 0$,又由于对称性要求 $A_{12} = A_{21}$,因此通常可以将 TT gauge 下的引力波张量表达为

$$h_{\mu\nu}^{TT} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & A_{11} & A_{12} & 0 \\ 0 & A_{12} & -A_{11} & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \cos \left[\omega(t - z/c)\right]$$
(2.19)

我们这里定义 $h_+ = A_{11} \cos \left[\omega(t-z/c)\right]$,以及 $h_\times = A_{12} \cos \left[\omega(t-z/c)\right]$,我们在之后会解释这样命名的原因。这样,可以将引力波张量表示简化为

$$h_{\mu\nu}^{TT} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & h_{+} & h_{\times} & 0 \\ 0 & h_{\times} & -h_{+} & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
 (2.20)

2.2.3 引力波的效果

由于广义相对论说任何局域坐标系在自由落体状态下都可以由 Minkowski 度规描述,因此,作用在一个点上时,引力波的效果无法被探测到。考虑一个检验粒子,遵从测地线方程(公式1.32),故此,其加速度为

$$\frac{\mathrm{d}^2 x^{\mu}}{\mathrm{d}\tau^2} = -\Gamma^{\alpha}_{00} = \frac{1}{2} \eta^{\alpha\beta} (h_{\beta0,0} + h_{0\beta,0} - h_{00,\beta})$$
 (2.21)

不难发现,粒子的加速度为零,因此,对于单个粒子而言,引力波没有可观测效应。

接下来,我们考虑有两个检验粒子,假设他们在 x^1 方向上间隔 ε ,我们可以看到,引力波会对两个粒子间的距离产生变化。两个粒子之间的**固有距离**是

$$\Delta l = \int (|ds|^2)^{1/2} = \int (|g_{\alpha\beta} dx^{\alpha} dx^{\beta}|)^{1/2}$$

$$= \int_0^{\varepsilon} (|g_{11} dx^1 dx^1|)^{1/2}$$

$$\approx \varepsilon |g_{11}(x^1 = 0)|)^{1/2}$$

$$\approx \varepsilon [1 + \frac{1}{2}h_+(x^1 = 0)]$$
(2.22)

也就是说、引力波会改变两个粒子间的固有距离。

下面我们来看具体的演化。假设两个粒子间以矢量 $\boldsymbol{\xi} = \boldsymbol{\xi} (\sin\theta\cos\phi\,\mathbf{e}_1 + \sin\theta\sin\phi\,\mathbf{e}_2 + \cos\theta\,\mathbf{e}_3)$ 间隔,且以 4-速度 u^{α} 运动。如果两个粒子的空间间隔远小于引力波的特征波长,就可以得到两个粒子间隔的演化,具体来说由测地线偏离 (geodesic deviation) 公式给出

$$\frac{D^2 \xi^{\alpha}}{ds^2} = -R^{\alpha}_{\beta\gamma\delta} u^{\beta} \xi^{\gamma} u^{\delta} \tag{2.23}$$

这其中,D/ds 是沿 u^{α} 方向的协变微分,而 $R^{\alpha}_{\beta\gamma\delta}$ 是 Riemann 张量。在低速情形下,方程可以简化为:

$$\frac{\mathrm{d}^2 \xi^j}{\mathrm{d}t^2} = \frac{1}{2} \frac{\partial h_{TT}^{jk}}{\partial t^2} \xi_k \tag{2.24}$$

考虑引力波 h_{TT}^{jk} 很小的前提下,可以直接积分,得到

$$\xi^{j} = \xi^{j}(0) + \frac{1}{2}h_{TT}^{jk}(t - R/c)\xi_{k}(0)$$
(2.25)

可以看到,两个粒子间的间距,同时依赖于引力波 h_{TT}^{jk} 和初始间距 $\xi^k(0)$ 。

将粒子间隔 ξ 代入,可以得到:

$$\frac{d^2x^1}{dt^2} = \frac{1}{2}\frac{\partial^2}{\partial t^2}h_+ \xi \sin\theta \cos\phi + \frac{1}{2}\frac{\partial^2}{\partial t^2}h_\times \xi \sin\theta \sin\phi$$

$$\frac{d^2x^2}{dt^2} = -\frac{1}{2}\frac{\partial^2}{\partial t^2}h_+ \xi \sin\theta \sin\phi + \frac{1}{2}\frac{\partial^2}{\partial t^2}h_\times \xi \sin\theta \cos\phi$$

$$\frac{d^2x^3}{dt^2} = 0$$
(2.26)

注意到,两个粒子的距离在 z 轴上的分量保持不变,这是因为引力波是横波,而我们选用的 TT 规范中,引力波的传播方向为 z 轴方向。因此,在引力波传播方向上 (z 轴),引力波不会产生作用。

例 2.3 可以通过进一步简化,得出更直观的理解。设两个粒子的连线与引力波波矢垂直, 也就是说 $\theta = 0$,我们可以简化得到 $\boldsymbol{\xi} = \boldsymbol{\xi}(\cos\phi\,\mathbf{e}_1 + \sin\phi\,\mathbf{e}_2 + 0\,\mathbf{e}_3)$ 。这种情况下,不妨 2.2 引力波 21

考虑两个特例: 如果 $\frac{\partial^2}{\partial t^2}h_{\times} = 0$ 且 $\frac{\partial^2}{\partial t^2}h_{+} > 0$, 可以得到

$$\frac{\frac{d^2 x^1}{dt^2} \propto x^1}{\frac{d^2 x^2}{dt^2} \propto -x^2} \tag{2.27}$$

反之, 如果 $\frac{\partial^2}{\partial t^2} h_+ = 0$ 且 $\frac{\partial^2}{\partial t^2} h_\times > 0$, 可以得到

$$\frac{\mathrm{d}^2 x^1}{\mathrm{d}t^2} \propto x^2$$

$$\frac{\mathrm{d}^2 x^2}{\mathrm{d}t^2} \propto x^1$$
(2.28)

对于单位矢量 $e_{\xi} = \xi/\xi$ 而言,其受到的加速度 a_{ξ} 是

$$a_{\xi} = e_{\xi}^{i} \cdot \frac{d^{2}x_{j}}{dt^{2}} = \frac{1}{\xi} R_{0i0j} \xi^{i} \xi^{j}$$

$$= \frac{d^{2}x_{1}}{dt^{2}} \sin \theta \cos \phi + \frac{d^{2}x_{2}}{dt^{2}} \sin \theta \sin \phi$$

$$= \xi \left(\frac{1}{2} \frac{\partial^{2}}{\partial t^{2}} h_{+} \sin^{2} \theta \cos 2\phi + \frac{1}{2} \frac{\partial^{2}}{\partial t^{2}} h_{\times} \sin^{2} \theta \sin 2\phi \right)$$
(2.29)

两重积分后, 就可以得到

$$\xi(t) = \xi(0) \left(1 + \frac{1}{2} h_{+} \sin^{2} \theta \cos 2\phi + \frac{1}{2} h_{\times} \sin^{2} \theta \sin 2\phi \right)$$
 (2.30)

 $otin oldsymbol{i}$ $otin oldsymbol{2} 2.4. 注意,<math>h_+$ 和 $h_ imes$ 之间的旋转关系依赖于两倍的方位角 2ϕ ,所以引力波是四极场。

如图**2–1**所示,在垂直于引力波传播方向的平面上,一圈自由放置的粒子将会由于引力波影响而变形。当 $h_+ \neq 0$ 而 $h_\times = 0$ 时,这圈粒子的轨迹如同加号 + 般,故称 h_+ 为"plus mode"(加模);当 $h_\times \neq 0$ 而 $h_+ = 0$ 时,这圈粒子的轨迹如同乘号 ×,故称 h_\times 为"cross mode"(乘模)。

图 2-1 广义相对论下引力波的两种偏振

Figure 2–1 Two polarisation modes under general relativity. Credit: [66]

Exercise 2.1

由于 h 与 \bar{h} 互相反迹,因此有 $h_{\alpha\beta}\equiv \bar{h}_{\alpha\beta}-\frac{1}{2}\eta_{\alpha\beta}\bar{h}$ 。请利用 Newtonian 极限,试证明 $\bar{h}_{00}=2h_{00}$ 。

Exercise 2.2

在真空中,有 $-\Box \bar{h}_{\alpha\beta} = 0$,考虑平面波解 $\bar{h}_{\alpha\beta} = A_{\alpha\beta} \exp(ik_{\mu}x^{\mu})$ 。试证明, k_{μ} 是一个零矢量 (null vector),即, $\eta^{\mu\nu}k_{\mu}k_{\nu} = k^{\mu}k_{\mu} = 0$

Exercise 2.3

- 一圈粒子围成圆型,在垂直于其平面方向上,有引力波作用。假设引力波为正弦函数 $h(t) = h_0 \sin t$ 。采用长波近似,即粒子间距相对于引力波波长可以忽略不计。请编写程序作图,画出:
 - ▶ 设 $h_x = 0$, 当 $t = \pi/2$ 时, 粒子的分布。
 - ▶ 设 $h_{\times} = 0$, 当 $t = -\pi/2$ 时, 粒子的分布。
 - ▶ 设 $h_+ = 0$, 当 $t = \pi/2$ 时, 粒子的分布。
 - ▶ 设 $h_+ = 0$, 当 $t = -\pi/2$ 时, 粒子的分布。
 - ▶ (加分题 1)作 gif 图,展示出 $h_x = 0$ 时加模的效应
 - ▶ (加分题 2)作 gif 图,展示出 $h_+=0$ 时乘模的效应

(交作业时请附上程序源代码,否则成绩无效。)

3

引力波源和波形

引力波数据处理的目标是更好地理解引力波源的性质,因此,在作引力波数据处理 之前,对引力波源及引力理论下预言的引力波波形有足够的了解是十分必要的。在本章 中,我们将对主要的引力波源及其对应的波形做介绍。

引力波可以由非轴对称的系统产生,这种系统可以产生随时间变化的质量四极矩。通常而言,双星系统可以产生较强的时变质量四极矩,而在宇宙中,双星系统又是较为容易出现的,因此我们可以看到,双星系统是一类主要的引力波源。如果按照质量大小来区分,可以分成:两个重的天体(大质量双黑洞3.1.2.2)、两个轻的天体(恒星级双黑洞3.1.2.1、中子星双星3.2、双白矮星3.4.2等)、一个重一个轻的天体(极端质量比旋近3.3)组成的双星。除此以外,单个天体也能产生引力波信号 (如变形的中子星3.4.1、超新星爆发3.5);许多信号的叠加也能产生引力波信号 (随机引力波背景3.6)。

3.1 双黑洞并合

通常预期双黑洞的并合过程并不会产生电磁波或高能粒子如中微子等。因此,引力波手段是针对双黑洞并合过程几乎唯一的探测手段。

这种描述双星并合过程的相对论性两体问题非常复杂,在本节中,主要讨论质量比接近1的双星系统。「更进一步地,物质的存在会引起更进一步的复杂性,因此我们讨论更简化的问题,这种最简化的问题就是双黑洞并合的问题。

¹质量相差悬殊的双星系统的演化和引力波波形尤为复杂,因此将极端质量比旋近(EMRI)单独列出于3.3。

3.1.1 双黑洞并合的波形

双黑洞并合的整个过程可以分为三个阶段: inspiral (旋近), merger (并合)和 ringdown (铃宕), 图3–1所示。在旋近阶段,可以对 Einstein 场方程进行 post-Newtonian 近似,得到所谓 post-Newtonian(PN) 波形。在并合阶段,必须利用数值相对论 (numerical relativity) 才能准确计算系统的演化和相应波形。在铃宕阶段,可以利用微扰法去计算 Kerr 黑洞辐射的准正则模 (quasi-normal mode, QNM)。

图 3-1 双黑洞并合过程的三个阶段: 旋近、并合和铃宕

Figure 3–1 Three stages of binary black hole merger: inspiarl, merger and ringdown. Credit: [23]

3.1.1.1 旋近与 Newtonian 近似

我们首先看旋近阶段。根据广义相对论公式,可以得到

$$h^{jk} = \frac{2G}{c^4 D} \frac{d^2}{d\tau^2} I^{jk}$$
 (3.1)

其中 D 是双星离观测者的距离,而 I^{jk} 是描述质量分布的质量四极矩 (mass quadrupole moment)

$$I^{jk}(\tau) = \int_{\mathcal{M}} \frac{\tau^{00}(\tau, \mathbf{x}')}{c^2} x'^j x'^k d^3 x'$$

= $\int_{\mathcal{M}} \rho^*(\tau, \mathbf{x}') x'^j x'^k d^3 x' + O(c^{-2})$ (3.2)

 $\hat{\Sigma}$ **注 3.1.** 注意到其中我们采用 $\rho^* = \sqrt{-g} \rho u^0/c$ 而非 ρ 。当然在一般情形下我们可以忽略两者的差别。

3.1 双黑洞并合 25

为严谨起见,我们指 I^{jk} 为四极矩张量,而指 I^{jk} 为 Newtonian 四极矩张量。这样,在最低阶近似下,引力波场可以写成

$$h_{TT}^{jk} = \frac{2G}{c^4 D} \frac{d^2}{d\tau^2} I_{TT}^{jk}$$
 (3.3)

可以证明,

$$h_{+} = -\frac{4G\mu r^{2}\Omega^{2}}{c^{4}D} \frac{1}{2} (1 + \cos^{2} \iota) \cos 2\phi$$

$$h_{\times} = -\frac{4G\mu r^{2}\Omega^{2}}{c^{4}D} \cos \iota \sin 2\phi$$
(3.4)

其中, Ω 是轨道圆频率,r 是双星间距, $\mu = \frac{M_1 M_2}{M}$ 是约化质量, $M = M_1 + M_2$ 是总质量,而 ι 是轨道倾角, $\cos \iota$ 就是源方位单位向量和源角动量方向单位向量的内积。

对于一个引力波探测器,其记录到的引力波信号是两种极化的叠加

$$h(t) = F_{+}h_{+} + F_{\times}h_{\times}. \tag{3.5}$$

探测器具体的响应 $F_{+/\times}$ 表达式及其推导我们留待第四章再展开。不妨计时间域信号为 $h(t) = Q(\text{angles}) \frac{G^2 \mu M}{c^4 Dr(t)} \exp(i\Phi)$ 其中,Q(angles) 代表了探测器对不同角度、偏振、倾角源的响应强度,这部分我们之后再详细展开。

不妨考虑圆轨道下的双星系统¹ 在 Newtonian 引力下,可以得到

$$\Omega = \sqrt{\frac{GM}{r^3}} \tag{3.6}$$

而旋近的速率可以由下式表示

$$\frac{dr}{dt} = -\frac{r}{E}\frac{dE}{dt} = -\frac{64G^3}{5c^5}\frac{\mu M^2}{r^3}$$
 (3.7)

对3.7式积分,可以得到

$$r = \left(\frac{256G^3}{5c^5}\mu M^2\right)^{1/4} (t_c - t)^{1/4}$$
(3.8)

其中 t_c 是 $r \to 0$ 时对应的时刻, 我们称之为并合时刻。

全 注 3.2. 从形式上看, 旋近阶段的 Newtonian 近似似乎可以描述一直到并合的整个过程, 但是当双星系统靠得足够近时, 广义相对论效应开始体现, Newtonian 及至 post Newtonian 描述都会失效。一个较为合适的分界线可以选取为最内稳定圆轨道 innermost circular stable orbit, ISCO。其对应的引力波频率是 $f_{ISCO} = \frac{c^3}{6^{3/2}\pi GM}$ 。关于 ISCO 的具体推导, 可以参考 [63] 第 5.6 章。

¹由于轨道的圆化效应 circularization, 在并合时的双星轨道偏心率几乎都为零。

结合式3.6式3.7, 可以得到引力波频率的演化

$$\frac{df}{dt} = \frac{df}{d\Omega} \frac{d\Omega}{dr} \frac{dr}{dt}
= \frac{1}{\pi} \sqrt{GM} \left(-\frac{3}{2}\right) r^{-5/2} \left(-\frac{64G^3}{5c^5}\right) \frac{\mu M^2}{r^3}
= \frac{96}{5} \frac{G^{7/2}}{c^5 \pi} \frac{\mu M^{5/2}}{r^{11/2}}$$
(3.9)

注意,回顾注2.4,引力波频率 f 是双星轨道频率 f_{orb} 的两倍,即,有 $f = 2f_{orb}$ 。 更进一步地,继续将公式3.6代人,可以有,

$$\frac{df}{dt} = \frac{96}{5} \frac{G^{7/2}}{c^5 \pi} \frac{\mu M^{5/2} \pi^{11/3} f^{11/3}}{G^{11/6} M^{11/6}}
= \frac{96}{5} \frac{G^{5/3}}{c^5} \mu M^{2/3} \pi^{8/3} f^{11/3}
= \frac{96}{5} \left(\frac{GM}{c^3}\right)^{5/3} \pi^{8/3} f^{11/3}$$
(3.10)

在最后一行,我们定义了啁啾质量 chirp $\max M = \mu^{3/5} M^{2/5}$ 。可以发现,随着时间的推移,双星系统将辐射引力波,这部分能量由引力势能提供,轨道缩减,进而双星频率增加。结合公式3.4,不难发现,引力波的振幅随着时间推移而增强。

我们可以定义引力波的相位 $Φ(t) = \int 2\pi f(t)dt$,那么代人公式3.8和3.6后可以得到,

$$\Phi(t) = \int dt 2\pi \frac{\Omega}{\pi}
= \int dt 2 \frac{5^{3/8} c^{15/8}}{8G^{5/8} \mu^{3/8} M^{1/4}} (t_c - t)^{-3/8}
= \frac{5^{3/8} c^{15/8}}{4G^{5/8} \mu^{3/8} M^{1/4}} \frac{5}{8} (t - t_c)^{5/8} + \Phi_c
= 2 \frac{c^{15/8}}{5^{5/8} G^{5/8} \mu^{3/8} M^{1/4}} (t - t_c)^{5/8} + \Phi_c
= 2 \left[\frac{c^3}{5GM} (t - t_c) \right]^{5/8} + \Phi_c$$
(3.11)

结合公式3.10与公式3.11, 可以得到

$$t(f) = t_c - 5(8\pi f)^{-8/3} \left(\frac{G\mathcal{M}}{c^3}\right)^{-5/3}$$
 (3.12)

及

$$\Phi(f) = \Phi_c - 2\left(\frac{8\pi G M f}{c^3}\right)^{-5/3}$$
 (3.13)

引力波数据处理通常在频率域进行,因此,有必要研究双黑洞旋近过程的 Fourier 变换。我们定义引力波波形的 Fourier 变换为

$$\tilde{h}(f) = \int_{-\infty}^{\infty} dt \exp(2\pi i f t) h(t)$$
(3.14)

解析地对波形积分是较为困难地,但是,利用稳相近似 stationary phase approximation (SPA),则可以得到近似的频率域波形。对于 $B(t) = A(t) \cos \phi(t)$,如果有 $d \ln(A)/dt \ll$

3.1 双黑洞并合 27

 $d\phi(t)/dt$, 并且 $d^2\phi(t)/dt^2 \ll (d\phi(t)/dt)^2$, 可以得到

$$\tilde{B}(f) \approx \frac{1}{2}A(t) \left(\frac{\mathrm{d}f}{\mathrm{d}t}\right)^{-1/2} \exp\{\mathrm{i}[2\pi f t - \phi(f) - \pi/4]\} \tag{3.15}$$

对应到引力波波形中,引力波相位的变化远快于其振幅的变化,稳相近似适用,因此可以得到

$$\tilde{h}(f) = \sqrt{\frac{5}{384}} \frac{Q}{D} G^{5/6} c^{-3/2} \mathcal{M}^{5/6} \pi^{-2/3} f^{-7/6} \exp[i\Phi(f)]$$
(3.16)

对于正频率部分 f > 0,相位项 $\Phi(f)$ 为

$$\Phi(f) = 2\pi f t_c - \Phi_c - \frac{\pi}{4} + \frac{3}{4} \left(\frac{8\pi G \mathcal{M} f}{c^3} \right)^{-5/3}$$
(3.17)

材料 3.3 Stationary Phase Approximation

让我们看一下稳相近似的具体推导过程。将引力波信号分为振幅 A 和相位 Φ 两部分,即, $h(t) = A(t_{ret})\cos\Phi(t_{ret})$,其中 $t_{ret} = t - \frac{r}{c}$ 是推迟时间。

$$\tilde{h}(f) = \int_{-\infty}^{\infty} dt A(t_{\text{ret}}) \cos \Phi(t_{\text{ret}}) \exp(2\pi i f t)$$

$$= \frac{1}{2} \exp(i2\pi f r/c) \int_{-\infty}^{\infty} dt_{\text{ret}} A(t_{\text{ret}}) \left(\exp[i\Phi(t_{\text{ret}})] + \exp[i\Phi(t_{\text{ret}})] \right) \exp(2\pi i f t_{\text{ret}})$$

$$\approx \frac{1}{2} \exp(i2\pi f r/c) \int_{-\infty}^{\infty} dt A(t) \exp\left[i(2\pi f t_{\text{ret}} - \Phi(t))\right]$$
(3.18)

在第三行、我们略去了快速震荡的小项。

我们假设在 t_s 时刻,有 $\dot{\Phi}(t_s(f)) = 2\pi f$ 成立,那么围绕 $t = t_s$ 对 $2\pi f t - \Phi(t)$ 作 Taylor 展开,就有

$$2\pi f t - \Phi(t) = 2\pi f t_s - \Phi(t_s) - \frac{1}{2} \ddot{\Phi}(t_s) (t - t_s)^2 + O(t - t_s)^3$$
 (3.19)

进而有

$$\tilde{h}(f) \approx \frac{1}{2} A(t_s(f)) e^{i2\pi f r/c} e^{i\left(2\pi f t_s(f) - \Phi(t_s(f))\right)} \left(\frac{2}{\ddot{\Phi}(t_s(f))}\right)^{1/2} \int_{-\infty}^{\infty} dx e^{-ix^2}$$
(3.20)

又因为有

$$\int_{-\infty}^{\infty} \mathrm{d}x e^{-\mathrm{i}x^2} = \sqrt{\pi} e^{-\mathrm{i}\pi/4} \tag{3.21}$$

最后化简为

$$\tilde{h}(f) \approx \frac{\sqrt{\pi}}{2} A(t(f)) e^{-i\Phi_0} e^{i\Psi(f)} \left(\frac{2}{\ddot{\Phi}(t_s(f))}\right)^{1/2}$$
(3.22)

而其中

$$\Psi(f) = 2\pi f t(f) - \Phi(t(f)) - \pi/4 \tag{3.23}$$

更进一步,可以得到 post Newtonian 修正的波形。这是在近场情形下,采取低速近似,在 Newtonian 情形上加以 Einstein 修正得到的结果。低速意味着 $v/c \ll 1$ 自然可以选择对 v/c 作小量展开。通常,选择以 $(v/c)^2$ 的阶数作为 post Newtonian 展开的阶数,故此有 1.5PN,2.5PN 等。具体的展开方式篇幅较长且与课程关系不紧密,请有兴趣的同学参阅 [63] 的第 8-11 章。

3.1.1.2 EOB 波形

在 Newtonian 力学中, 双星系统的演化可以通过研究有心力场下约化质量 $\mu = \frac{m_1 m_2}{m_1 + m_2}$ 而得到,本质上这是利用了系统的对称性,消除冗余自由度实现的。在广义相对论下,类似的对称性依然存在,Damour 和 Buonanno 等人由此发展了一套等效单体 (effective one body, EOB) 体系,来描述双星系统的引力波波形。

EOB 方法的思路是,寻找一个单体系统,使得其 Hamiltonian 与两体系统的一致。自然,在 Newtonian limit 下,这一思路是可行的。经过一系列复杂的计算以后,可以证明在 2PN 下,双星的演化可以由一个约化质量 μ 在变形的 Schwarzschild 度规¹描述。并且,可以证明,这种从双星系统到等效单体问题的映射是严格的,可以将其拓展到更高阶的 PN 项。

这对于引力波数据处理是十分重要的,因为 PN 波形只能作为双星系统演化到并合之前的近似,只能较为有效地近似描述旋近波形。反过来,EOB 方法对于双星系统的描述可以一直贯穿旋近、并合、铃宕的全过程。当然,EOB 方法中等效的 Schwarzschild 度规也同样有视界等概念,在约化质量接近视界范围时,描述系统演化的公式发生变化,但是这种 EOB-双星系统的对应关系依然成立。现在,通过将并合阶段与数值相对论波形、准正则模波形相比对、校准,既可由 EOB 方法给出双星并合全过程的引力波波形。这种研究的意义在于,目前数值相对论的计算极为耗时,而通过校准后,EOB 方法可以以极快的速度产生相对准确的波形,这为快速开展引力波数据处理提供了保障。

与 EOB 波形类似的还有 IMR 波形,也是试图通过拟合方法快速产生旋近、并合、铃宕全过程波形。事实上,IMR 即得名于双星并合的三个阶段。但这一方法并无类似 EOB 这样的物理对应,这里不作展开。

3.1.1.3 数值相对论波形

对广义相对论的求解,很多时候没有办法找到解析解。而这时,理论上来说最可靠的方法就是对场方程进行数值求解。然而,这种利用数值方法求解广义相对论方程的思

¹Schwarzschild 度规是球对称黑洞的广义相对论解。

3.1 双黑洞并合 29

路在过去的半个世纪里艰难前行,在本节中我们简单回顾数值相对论的过往。

我们在第2.2.2节中看到,虽然度规张量 $g_{\mu\nu}$ 有 10 个分量,但是其中的部分自由度是冗余的。通过寻找合适的坐标系,可以简化问题。较为常用的做法是,首先选取类时坐标 t,然后确定剩余三个类空的坐标 x^i 。在这类对时空的所谓 3+1 分解中,最常用的有 Arnowitt-Deser-Misner (ADM) 分解。

这样, Einstein 的 10 个场方程就可以被拆分成 6 个动力学方程和 4 个针对初始条件的限制方程。由于截断误差的存在,初始条件可能无法精确满足限制方程,而随着动力学系统的演化,这种差异可能被放大。近年来,数值相对论取得突破的一大要素,就是发展了一套新的场方程表达式,使得违背限制方程的项的生长速率得到控制。

对于引力波研究而言,仅仅研究动力学系统在广义相对论方程下的演化是不够的,还需要从系统中提取引力波波形。可以根据 Weyl 张量 $C_{\alpha\beta\gamma\delta}$,定义出 Weyl 标量 $\Psi_4 = -k^{\mu}m^{*\nu}k^{\rho}m^{*\sigma}C_{\mu\nu\rho\sigma}$ 。在远场下, Ψ_4 就包含了引力波波形的完整描述。

3.1.2 BBH 天文学

早在 18 世纪,Laplace 就曾提出过"黑星"的概念,提出当星体引力场极大时,其逃逸速度将超过光速。但是在广义相对论理论下,黑洞的概念更进一步,Einstein 的理论会预言天体最终会塌缩到密度无穷大,体积无穷小的奇点。

恒星究其一生都在通过核聚变产生的辐射压和气体压强抵抗引力作用。在核球区的核燃料燃烧殆尽后,恒星的核聚变反应终将迎来终结,而恒星也不可避免的迎来引力塌缩的命运。根据残余物质质量的不同,恒星塌缩后分别可以形成白矮星、中子星和黑洞。

在 Advanced LIGO (aLIGO) 运作之前,人们对于双黑洞存在的观测证据是相对较弱的,因为黑洞本身难以产生可观测的效应。不过,在由黑洞和恒星形成的双星系统中,黑洞可以通过对伴星的吸积,产生可观测的 X 射线辐射。如天鹅座 X-1(Cygnus X-1) 就是如此被发现,并最终被证实是黑洞的。围绕着这个发现,Stephen Hawking 还曾和 Kip Thorne 打赌并输掉了赌局。(见图3–2)

事件视界望远镜(Event Horizon Telescope, EHT)通过甚长基线干涉阵的观测,合成了一个等效口径与地球表面积相近的高分辨率射电望远镜,进而可以观测黑洞视界附近的现象。[6] 2019 年 4 月 10 日,EHT 项目合作组发表了"黑洞照片",如图3–3所示。对 EHT 在 2017 年 4 月份的四个夜晚的联合观测的数据分析显示,在 M87 星系中心,EHT 观测到了一个非对称的直径为 $42\pm3\mu as$ 的致密射电源。这一现象与质量为 $(6.5\pm0.7)\times10^7M_{\odot}$ 的 Kerr 黑洞所产生的阴影一致。其周围非对称的亮环可以由等离子体辐射的相对论性射束(relativistic beaming)效应解释。

¹ 感兴趣的读者可以参阅 [16] 的第 4.3.1 节。

Cukereas Stephen Hawking has such a large investment in General Relativity and Black Holas and desires an insurance policy, and whereas Kip Thorns likes to live dangerously without an insurance policy,

Therefore be it resolved that stephen Hawking Bets I year's subscription to Penthouse" as against Kip Thorne's wagen of a 4-year Subscription to Phirate Eye", that Cygnus XI does not contain a black hole of mass above the Chandrasekkan limit.

Look home Kips Thomas Witnesseld their transfer Thomas Witnesseld their transfer Thomas Witnesseld their transfer Thomas Minesseld their transfer Thomas Miness

图 3-2 Hawking 与 Thorne 关于 Cyg X-1 的赌约

Figure 3–2 Bet over Cyg X-1 between Stephen Hawking and Kip Thorne. Credit: https://www.star.le.ac.uk/ sav2/blackholes/xrays.html/www.star.le.ac.uk/ sav2/blackholes/xrays.html

图 3-3 EHT 合作组拍摄到的 M87 星系中心的大质量黑洞。

Figure 3-3 The black hole image in the middle of the M87 galaxy observed by EHT collaboration. Credit:

3.1 双黑洞并合 31

3.1.2.1 恒星级

LIGO 和 Virgo 等地面引力波探测器在过去的几年时间里取得了令人瞩目的成就, 其对 GW150914 等引力波事件的探测, 使得 LIGO 科学合作组成员获得了基础物理突破 奖, 更使得 Rainer Weiss, Barry C. Barish 和 Kip S. Thorne 三位 LIGO 的重要创始人获得了 2017 年的 Nobel 奖, "for decisive contributions to the LIGO detector and the observation of gravitational waves"。以第一例引力波事件 GW150914 为例的双黑洞并合也让我们对于恒星级双黑洞有了更深入的理解。

一般定义质量 $M \leq 100 M_{\odot}$ 的黑洞为恒星级黑洞。在 LIGO 实现引力波探测之前,通过电磁手段对黑洞的研究主要认为黑洞的质量小于约 $20~M_{\odot}$,大部分集中于 $5-10~M_{\odot}$ 这也与之前的恒星演化模型一致,由于金属 ho存在,会增大恒星中光子与物质作用的散射界面,增强辐射场到物质的动量转移,进而导致强的星风过程,使最终残余的致密星质量偏小。然而,以 GW150914 为例的引力波事件表明,黑洞双星的质量可以大大超过之前认为的上限,这为黑洞双星的形成机制带来了挑战。一个可能的解释是,这些双黑洞的前身星拥有极低的金属丰度,因此残余致密天体的质量可以很大;另外一个可能是,这些黑洞并非由恒星产生,而是所谓的原初黑洞 (primordial black hole),这是由于宇宙早期过程中局部密度涨落导致部分区域引力塌缩产生的黑洞。

LIGO 等地面引力波探测器对双黑洞并合辐射的引力波信号的探测,表明了黑洞不仅存在,还会成对存在,并在足够短的时间内并合。恒星级双黑洞的形成,主要有三种可能性:1. 共同演化;2. 动力学俘获;3. 原初黑洞双星。在第一种机制中,黑洞的前身星就是独立的双恒星系统,并经过动力学和化学演化,最终形成黑洞双星。由于双星系统经历过公共包层阶段(common envelope),预期双黑洞的自选方向一致,并与轨道角动量一致。在动力学俘获模型中,双黑洞处于密集星体环境,如球状星团、星系核区等区域中,两个黑洞分别单独形成,通过动力学俘获形成双星,并通过三体相互作用等机制进一步加强引力束缚。这种模型下,黑洞的自旋方向可以任意,近乎各项均匀。第三种机制就是两个原初黑洞分别独立产生,并形成双星系统。

双星共同演化存在一些机制,可能会阻止双黑洞的形成。比如,双星系统中,首先有一颗恒星通过超新星爆发形成黑洞,这个过程可能会通过超新星爆发的不对称性,引入较大的 natal kick,有可能打破双星间的引力束缚。较强的 natal kick 甚至会将黑洞踢出星团的引力势,所以也可能会影响动力学俘获的双黑洞形成机制。即使双星可以在第一个黑洞形成时存活,第二颗恒星末期会膨胀,经历所谓公共包层阶段,将包裹业已形成的黑洞,并在第二课黑洞产生之前通过摩擦与恒星核区并合。

¹天文学中,"金属"指除了氢、氦以外的所有元素

目前对于双黑洞并合信号的探测,一定程度上排除了这些阻碍双黑洞形成、演化的机制的普遍存在性。另一方面,现有的测量表明,GW170104中黑洞的自旋与轨道角动量有非零夹角,倾向于认为双黑洞并非来自双星协同演化。

到目前为止,恒星级双黑洞的观测,均来自 LIGO/Virgo 等地面引力波探测的结果。在表3-1中,罗列了 O1 和 O2 单独公布的几个引力波事件。在 O2 结束后,LIGO/Virgo 又公布了一批新的源信息,这其中包括将 LVT151012"升格"为"GW151012",也包括之前未发表的几例双黑洞并合事件。

Event	m_1/M_{\odot}	m_2/M_{\odot}	\mathcal{M}/M_{\odot}	$\chi_{ m eff}$	$M_{\rm f}/M_{\odot}$	a_{f}	$E_{\rm rad}/(M_{\odot}c^2)$	$\ell_{peak}/(erg~s^{-1})$	$d_L/{ m Mpc}$	z	$\Delta\Omega/deg^2$
GW150914	$35.6^{+4.8}_{-3.0}$	$30.6^{+3.0}_{-4.4}$	$28.6^{+1.6}_{-1.5}$	$-0.01\substack{+0.12 \\ -0.13}$	$63.1^{+3.3}_{-3.0}$	$0.69^{+0.05}_{-0.04}$	$3.1^{+0.4}_{-0.4}$	$3.6^{+0.4}_{-0.4} \times 10^{56}$	430+150	$0.09^{+0.03}_{-0.03}$	180
GW151012	$23.3^{+14.0}_{-5.5}$	$13.6^{+4.1}_{-4.8}$	$15.2^{+2.0}_{-1.1}$	$0.04^{+0.28}_{-0.19}$	$35.7^{+9.9}_{-3.8}$	$0.67^{\tiny{+0.13}}_{\tiny{-0.11}}$	$1.5^{+0.5}_{-0.5}$	$3.2^{+0.8}_{-1.7} \times 10^{56}$	1060^{+540}_{-480}	$0.21^{\tiny{+0.09}}_{\tiny{-0.09}}$	1555
GW151226	$13.7^{+8.8}_{-3.2}$	$7.7^{+2.2}_{-2.6}$	$8.9^{+0.3}_{-0.3}$	$0.18^{+0.20}_{-0.12}$	$20.5^{+6.4}_{-1.5}$	$0.74^{+0.07}_{-0.05}$	$1.0^{+0.1}_{-0.2}$	$3.4^{+0.7}_{-1.7} \times 10^{56}$	440^{+180}_{-190}	$0.09^{\tiny{+0.04}}_{\tiny{-0.04}}$	1033
GW170104	$31.0^{+7.2}_{-5.6}$	$20.1^{+4.9}_{-4.5}$	$21.5^{+2.1}_{-1.7}$	$-0.04^{+0.17}_{-0.20}$	$49.1^{+5.2}_{-3.9}$	$0.66^{+0.08}_{-0.10}$	$2.2^{+0.5}_{-0.5}$	$3.3^{+0.6}_{-0.9} \times 10^{56}$	960^{+430}_{-410}	$0.19^{+0.07}_{-0.08}$	924
GW170608	$10.9^{+5.3}_{-1.7}$	$7.6^{+1.3}_{-2.1}$	$7.9^{+0.2}_{-0.2}$	$0.03^{+0.19}_{-0.07}$	$17.8^{+3.2}_{-0.7}$	$0.69^{+0.04}_{-0.04}$	$0.9^{+0.05}_{-0.1}$	$3.5^{+0.4}_{-1.3} \times 10^{56}$	320^{+120}_{-110}	$0.07^{\tiny{+0.02}}_{\tiny{-0.02}}$	396
GW170729	$50.6^{+16.6}_{-10.2}$	$34.3^{+9.1}_{-10.1}$	$35.7^{+6.5}_{-4.7}$	$0.36^{+0.21}_{-0.25}$	$80.3^{+14.6}_{-10.2}$	$0.81^{+0.07}_{-0.13}$	$4.8^{+1.7}_{-1.7}$	$4.2^{+0.9}_{-1.5} \times 10^{56}$	2750^{+1350}_{-1320}	$0.48^{+0.19}_{-0.20}$	1033
GW170809	$35.2^{+8.3}_{-6.0}$	$23.8^{+5.2}_{-5.1}$	$25.0^{+2.1}_{-1.6}$	$0.07^{+0.16}_{-0.16}$	$56.4^{+5.2}_{-3.7}$	$0.70^{+0.08}_{-0.09}$	$2.7^{+0.6}_{-0.6}$	$3.5^{+0.6}_{-0.9}\times10^{56}$	990^{+320}_{-380}	$0.20^{+0.05}_{-0.07}$	340
GW170814	$30.7^{+5.7}_{-3.0}$	$25.3^{+2.9}_{-4.1}$	$24.2^{+1.4}_{-1.1}$	$0.07^{+0.12}_{-0.11}$	$53.4^{+3.2}_{-2.4}$	$0.72^{+0.07}_{-0.05}$	$2.7^{+0.4}_{-0.3}$	$3.7^{+0.4}_{-0.5}\times10^{56}$	580^{+160}_{-210}	$0.12^{+0.03}_{-0.04}$	87
GW170817	$1.46^{+0.12}_{-0.10}$	$1.27^{+0.09}_{-0.09}$	$1.186^{\tiny{+0.001}}_{\tiny{-0.001}}$	$0.00^{+0.02}_{-0.01}$	≤ 2.8	≤ 0.89	≥ 0.04	$\geq 0.1\times 10^{56}$	40^{+10}_{-10}	$0.01^{\tiny{+0.00}}_{\tiny{-0.00}}$	16
GW170818	$35.5^{+7.5}_{-4.7}$	$26.8^{+4.3}_{-5.2}$	$26.7^{+2.1}_{-1.7}$	$-0.09^{\tiny{+0.18}}_{\tiny{-0.21}}$	$59.8^{+4.8}_{-3.8}$	$0.67^{+0.07}_{-0.08}$	$2.7^{+0.5}_{-0.5}$	$3.4^{+0.5}_{-0.7} \times 10^{56}$	1020^{+430}_{-360}	$0.20^{+0.07}_{-0.07}$	39
GW170823	$39.6^{+10.0}_{-6.6}$	$29.4^{+6.3}_{-7.1}$	$29.3_{-3.2}^{+4.2}$	$0.08^{+0.20}_{-0.22}$	$65.6^{+9.4}_{-6.6}$	$0.71^{\tiny{+0.08}}_{\tiny{-0.10}}$	$3.3^{+0.9}_{-0.8}$	$3.6^{+0.6}_{-0.9}\times10^{56}$	1850^{+840}_{-840}	$0.34^{+0.13}_{-0.14}$	1651

表 3-1 LIGO/Virgo 在 O1 和 O2 中发现的引力波事件数,以及对应的部分参数估计结果。列出的误差范围均为 90% 置信区间,包括了统计误差和来自波形模型的系统误差 [71]。

Table 3–1 Gravitational wave events detected by LIGO/Virgo during the O1 and O2, together with parameter estimation results [71].

3.1.2.2 大质量

主流模型认为,在宇宙形成之后,在小尺度上的密度涨落使冷暗物质凝聚起来,并进一步促使重子物质掉入引力势并形成星系。根据主流的"自上而下"的层级理论,星系之间会发生并合,由小长大。一般定义,质量 $\gtrsim 10^5 M_{\odot}$ 的黑洞即为大质量黑洞。通常认为,星系中心普遍存在大质量黑洞,并且其与宿主星系密切相关。因此,星系并合也会出发对应的中心大质量黑洞的并合,对这一过程的引力波观测,将提供一个宝贵的观测窗口,供我们一窥大质量黑洞、星系、甚至宇宙演化的奥妙。

目前,我们对于大质量黑洞的形成过程的理解尚存一些不确定,当前主要有两种形成模型,即轻种子模型与重种子模型。轻种子模型中,气体云降落入原初暗物质晕形成的引力势中,这样就形成了第一代大质量恒星,它们的质量可以大于 $100M_{\odot}$,这些初代

3.1 双黑洞并合 33

模型	事件率 (yr ⁻¹)	天琴		两组天琴		
快 至	事件率 (y/) 	探测率 (yr ⁻¹)	探测占比	探测率 (yr-1)	探测占比	
L – seed	2.57	0.08	3.1%	0.162	6.3%	
H – seed	2.57	1.055	41.1%	1.642	63.9%	
popIII	174.70	10.58	6.1%	22.60	12.9%	
Q3_d	8.18	4.42	54.0%	8.06	98.5%	
Q3_nod	122.44	58.96	48.2%	118.12	96.5%	

表 3-2 不同天琴构型、不同天文学模型下,天琴对大质量双黑洞并合的探测率汇总。 Table 3-2 Summary of detection rate of TianQin for massive black hole binaries under different configuration and different astronomical models.

恒星被称为"星族 III(Population III)"。大质量的星族 III 恒星在红移约为 20 处可以塌缩成为质量约为 100 M。的种子黑洞。然后这些种子黑洞会通过吸积生长,并且和它们的星系以及暗物质晕一起演化,最终成为星系中心的黑洞。这种种子黑洞的生长模型被称之为"轻种子"模型。

然而,近年来在高红移处观测到的明亮类星体,意味着在宇宙早期就以存在较大质量的黑洞,而轻种子黑洞难以在短时间内成长为大质量黑洞,这一观测事实为轻种子黑洞模型带来了一定挑战。而重种子黑洞则不存在这种问题:在重种子模型下,宇宙早期的背景温度较高,强紫外背景阻止了气体云的冷却,有效地阻止了气体云的分块。在引力作用下,大质量的气体云会直接坍塌,在红移约为 10 时形成质量约为 10⁴ ~ 10⁶ M₀的重种子黑洞。

基于不同的种子黑洞模型,可以预测引力波探测器的探测率。对此,王海天等人的研究指出,如表3-2所示,天琴可以在不同构型下,对不同天文学模型预言出的黑洞并合历史,可以实现不同的探测率 [73]。不同模型的具体含义可以参考 [73] 及相关硕士论文。需要注意第一二行对应的星系并合模型基于 Millenium simulation I,由于数值模拟的计算力有限导致质量分辨率有限,因此其预言出的事件率是极为保守的估计。天琴的真实探测率预期将高于此预期。

对于红移为 2 处的大质量双黑洞并合,天琴可以在它们并合 24 小时之前以足够高的信噪比对其实现探测,从而实现早期预警,并触发多信使联合观测。而且空间定位精度好于 $100~\rm deg^2$,最好能够达到 $10~\rm deg^2$ 。

图 3-4 针对大质量双黑洞并合事件, 天琴对某些特定情形下的参数限制能力。

Figure 3–4 TianQin's ability of constraining physical parameters of binary massive black hole mergers.

3.1.2.3 中等质量

通常认为,质量处于 $10^2 M_{\odot} \lesssim M \lesssim 10^5 M_{\odot}$ 范围内的黑洞为中等质量黑洞。不同于恒星级黑洞和大质量黑洞,对于中等质量黑洞的观测都只有非常间接的证据,如通过动力学测量显示中等质量黑洞存在的迹象。不过,观测表明,星系质量与星系中心黑洞的质量有很好的相关关系。由此类推,可以预期在球状星团中心,或者矮星系中心,存在中等质量黑洞。超亮 X 射线源 (ultra-luminous X-Ray source, ULX) 可以用中等质量黑洞来解释。

关于中等质量黑洞的形成机制尚无定论。一方面,它同样可以由原初黑洞解释;另一方面,大质量的恒星在核聚变停止后,最终会通过超新星爆发而经历死亡。氦核质量约为 64 – 135 *M*。的恒星会由于对不稳定性超新星(pulsational pair-instability supernova)机制而完全爆发干净,不会留下黑洞。而质量更大的恒星可以直接塌缩为中等质量黑洞。另一种机制是,恒星级黑洞经过一次或多次并合后,也可以成长为中等质量黑洞。

球状星团中可能有多个中等质量黑洞通过动力学摩擦而进入星团中心,并进而结合为双星系统并最终并合。小质量星系的并合也可能会产生中等质量黑洞双星的并合。 LIGO 科学合作组已经尝试在地面引力波探测器中搜寻中等质量黑洞双星的踪迹,到目前为止尚未发现信号。

3.1.3 BBH 与基础物理

3.1.3.1 超越 GR

虽然广义相对论到目前为止都通过了所有实验测试,但是,与黑洞奇点和黑洞信息有关的理论问题以及关于暗物质和暗能量的观察证据都表明,广义相对论可能不是最终

3.2 中子星双星并合 35

的引力理论。目前,在广义相对论的基础上,许多研究者已经提出了许多修改引力理论。一般认为,双黑洞并合后的残余物会从一个高度扰动的状态通过辐射引力波最终形成一个 Kerr 黑洞,这个阶段一般被称为铃宕。通过对黑洞并合过程中的铃宕信号,可以通过引力波探测实现对引力理论的检验。[12]

3.1.3.2 检验 Kerr 本质

引力波提供了一种检验黑洞无毛定理的实验方法,基于此可进一步检验强场下广义相对论的有效性。铃宕阶段辐射的引力波可以通过多个振荡衰减的准正则模式(quasinormal mode)叠加构成。若广义相对论预言的无毛定理在强场下依然有效,则每一个准正则模的振荡频率和衰减时间都由黑洞的质量和自旋唯一确定。可以通过不同模式所预言的黑洞质量和自旋之间的一致性进行无毛定理的检验。[69]

3.1.3.3 与暗物质的联系

到目前为止,我们对暗物质的理解仍然十分有限,仅知道其具有引力作用,并且占据整个宇宙质量的重要部分,其总质量甚至是我们日常研究的普通物质的数倍。引力波的研究方法自然就是十分理想的手段。如,有研究者认为 LIGO 探测到的恒星级质量双黑洞可能源于原初黑洞,并且这类黑洞起码构成了部分的暗物质。同时,不同的暗物质模型也会间接地影响引力波测量,比如,由于暗物质的自引力效应,Einstein 场方程的具体解可能与广义相对论下的解发生偏离。黑洞处在暗物质环境中,可能也会产生吸积和拖曳效应,这种效应通过轨道的长期演化,可能会在引力波波形中体现出来。

3.2 中子星双星并合

3.2.1 中子星

早在上世纪 30 年代,Landau 等理论学家就曾经预言中子星的存在。由于中子星引力场极强,电子间的简并压无法抵抗引力,因此纷纷形成中子(也包括一小部分质子)。因此,可以将中子星形象地比喻为一个巨大的原子核。

在上世纪 60 年代, 射电天文学和 X 射线天文学的进展为天文观测带来了飞跃。1967年, Antony Hewish 为了观测行星际射电源闪烁, 建立了一个射电望远镜。而当时还是博士生的 Jocelyn Bell 在处理仪器记录的数据时发现在数据中存在一个周期为 1.337s 的信号, 从而第一次发现了脉冲星 PSR B1919+21。其实这种规律的周期信号前人也发现过, 但很多时候是被认为人类活动产生的噪声而丢弃的。Jocelyn 的贡献在于她仔细检

查了持续时间非常长的信号,并确认了这一周期信号每隔 23 小时 56 分钟出现一次,由此可以确认这一信号是天文学起源。Pacini 和 Gold 首先指出快速旋转的中子星磁场可以解释蟹状星云的能量来源。如果中子星在偏离自转轴的某个 θ 角度方向上辐射,则中子星就好像一个灯塔一般。脉冲星,就是"灯塔"的光会扫过地球观测者的中子星。

将中子星简化为磁偶极矩 μ , 并以 Ω 的频率旋转, 对应的其周期为 P

$$\mathcal{L}_{\rm em} = \frac{2}{3c^2} \mu_\perp^2 \Omega^4 \tag{3.24}$$

对应的磁偶极矩辐射会将中子星的自转动能提取,从而导致中子星自转速度减慢,对应的转动速度减慢速率为

$$-\frac{dE_{\text{rot}}}{dt} = -\frac{d}{dt} \frac{1}{2} I\Omega^{2}$$

$$= -I\Omega\dot{\Omega}$$

$$= 4\pi^{2} I \frac{\dot{P}}{P^{3}}$$
(3.25)

考虑中子星典型的转动惯量 $I = 10^{45} \text{g cm}^2$,有

$$-\frac{dE_{\text{rot}}}{dt} \sim 3.95 \times 10^{31} \text{erg s}^{-1} \left(\frac{I}{10^{45} \text{g cm}^2}\right) \left(\frac{\dot{P}}{10^{-15}}\right) \left(\frac{1 \text{s}}{P}\right)^3$$
(3.26)

当假设脉冲星的减速完全由磁偶极矩辐射引起,则可以得到 $\dot{\Omega} = -\kappa \Omega^n$,其中 $\kappa = 2\mu_\perp^2/(3Ic^3)$ 且 n=3。通常把 n 称为减速因子 (breaking index),也可以由 $n=\Omega \ddot{\Omega}/\dot{\Omega}^2$ 得到。实际上,不同的脉冲星中,其减速因子差别巨大,在为数不多的可以测量减速因子的脉冲星中,减速因子大多均小于 3。注意到,如果中子星的减速机制完全由引力波辐射引起,则其减速因子 n=5。2016 年,Archibald 等人宣布测量了 PSR J1640-4631 的减速因子 $n=3.15\pm0.03$,这可能可以由引力波辐射所解释 [9]。

P和 \dot{P} 对于中子星研究有着至关重要的作用,比如,可以从量级上估计出中子星年龄

$$\tau \sim -\frac{1}{n-1} \frac{\Omega}{\dot{\Omega}}$$

$$= \frac{1}{n-1} \frac{P}{\dot{P}}$$
(3.27)

在假设中子星减速过程由磁偶极辐射主导 (n=3)以后,可以得到典型年龄时标 $\tau_c = \frac{P}{2P}$ 。另一方面,也可以估计出中子星的表面磁场 $B \propto (\dot{P}P)^{1/2}$ 。

如图3-5所示

3.2 中子星双星并合 37

图 3-5 ATNF 脉冲星星表的 $P-\dot{P}$ 图。其中 $\dot{P} \propto P^3$ 的线代表着等光度线,阴影区域内的脉冲星射电活动关闭,不再有效地进行辐射,分界线称为"death line"。 $\dot{P} \propto P$ 的线代表着等年龄线。 $\dot{P} \propto 1/P$ 的线代表着等磁场强度线。图中最右上角的区域磁场强度最强,称为磁星(magnetar),中部大量的普通脉冲星;左下角的脉冲星磁场强度小,年龄大,通常是老年的毫秒脉冲星。[62]

Figure 3–5 $P - \dot{P}$ plot for pulsars within the catalogue of ATNF. Credit: [62]

3.2.2 波形

包含中子星的双星系统并合,本质上与双黑洞并合类似,在最低阶近似的条件下,也可以用后牛顿波形计算。但是由于物质的存在,会对引力波波形带来一定的改变;另一方面,正是因为普通物质的存在,使得中子星双星系统除了可以辐射引力波,也可以通过不同机制辐射电磁波,这种系统自然是多信使天文学探测的完美对象。

中子星具有一定尺寸,因此在双星系统中会受引潮力 $\mathcal{E}_{ij} = \partial_i \partial_j U_{\text{ext}}$ 作用而产生形变,导致质量四极矩会产生响应变化 $Q_{ij} = -\lambda \mathcal{E}_{ij}$ 。至于形变的大小,则由 Love number k_2 决定 $k_2 = \frac{3}{2} \frac{G_A}{R^5}$ 其中,R 是中子星半径。这一效应可以体现到引力波波形中,通常以无量纲量 $\Lambda_i = \frac{2}{3} k_2 \left(\frac{R_i}{Gm_i/c^2}\right)^5$ 来描述中子星形变对引力波波形的影响。

3.2.3 中子星双星天文学

3.2.3.1 BNS

虽然 LIGO 在 21 世纪才第一次直接观测到引力波,但引力波的间接效应在 1982 年就已经被探测到。在 1974 年,Russell Hulse 和 Joseph Taylor 两人开展了一项脉冲星搜寻工作,并在 1975 年发现了 PSR B1913+16 这一双中子星系统,由于这一双星系统的重要意义,也被称为 Hulse-Taylor binary。1982 年,通过数年间对 Hulse-Taylor binary 系统的观测,Russell Hulse 和 Joel Weisberg 公布了其公转周期演化,并与理论预言进行了比较,特别是确认了轨道周期的缓慢缩减,与广义相对论推导的引力波预期高度一致(相对误差 0.2%)。由于这一发现,Hulse 和 Taylor 两人获得了 1993 年的 Nobel 奖,"for the discovery of a new type of pulsar, a discovery that has opened up new possibilities for the study of gravitation"。之后发现的双中子星系统 PSR J0737-3039 对广义相对论作出了更强的限制,其观测结果与理论预言在 0.05% 的误差范围内一致。

2017年8月17日, LIGO和 Virgo观测到了一起双中子星并合事件, GW170817, 同时电磁波段望远镜也观测到了这一事件的电磁对应体。[3,4,2,1]。通过对引力波信号的数据分析,可以限制两个中子星的潮汐变形性,如图3-7所示。GW170817系统位于此图的绿色阴影区域内。黑线表示某些状态模型方程的预测。虚线(实线)围住了潮汐变形能力真实值所在的区域,概率为50%(90%)。绿线和蓝线是指此分析中使用的两种方法,而橙线是指对源性质的假设较少的分析。

这一多信使观测确定了短伽玛暴的双中子星并合起源,并确认了双中子星并合导致的 r-元素增丰是宇宙中重元素产生的重要渠道。这一双中子星并合发生于 S0 星系 NGC 4993 中,由此估算出的局部双中子星并合率为 1540^{+3200}_{-1220} Gpc $^{-3}$ yr $^{-1}$ 。同样,可以通过双星演化模型解释观测到的双中子星系统。但目前的理论预言给出的中子星并合事件

3.2 中子星双星并合 39

图 3-6 来自双中子星系统 PSR B1913 + 16 的轨道衰减。数据点对应具有不确定性的实际观测值,而 实线是广义相对论的理论预测。

Figure 3–6 Orbital decay from the binary pulsar system PSR B1913+16. The points are actual observations with uncertainty, while the line is predicted by 广义相对论. Credit: [74]

率低于探测值。在乐观估计下,考虑不同种类的星系均能产生双中子星并合,则可以调和两者的矛盾。但需要注意的是,由短伽马暴和r-过程重元素增丰预言的双种子星并合率同样低于由 LIGO/Virgo 给出的并合率估计。当然,随着观测时间的累积,未来有望对这一事件率给出更精确的估计。

图 3-7 GW170817 显示的双中子星的潮汐变形性 Λ, 同时画出了几种可能的状态方程。 Figure 3-7 The tidal deformability of the two neutron stars from GW170817. Credit: [5]

除了引力波测量以外,中子星可以通过脉冲星等方式进行电磁观测,因此可以编撰 出银河系中的双中子星源表,如表3-3所示。虽然其一般离并合时间极远,无法在较近 的未来被探测到,但是这些中子星双星的质量、并合时标等信息可以帮助我们更好地理 解这类恒星级致密双星的性质。

3.2.3.2 NS-BH

关于中子星-黑洞双星系统的观测,不确定度极大,截止目前,尚无公开发表的引力波观测结果,也没有公认的电磁观测结果。但一些研究认为在中子星-黑洞双星并合时能产生电磁信号,从而被记录到,如[27]认为部分短伽玛暴会伴有红外超,认为其物理起源为中子星-黑洞双星并合,同时,其亮度无法由双中子星并合对应的千新星解释。

3.2 中子星双星并合 41

Pulsar Name	$M_T (M_{\odot})$	$m_r (M_{\odot})$	$m_s (M_{\odot})$	$\mathcal{M}_c (M_{\odot})$	q	P_b (day)	T_c (Gyr)	
Systems will merge within a Hubble time								
J1946+2052	2.50(4)	< 1.35	> 1.17	(1.05, 1.11)	(0.68, 1)	0.078	0.046	
J1756-2251	2.56999(6)	1.341(7)	1.230(7)	1.1178(3)	0.92(1)	0.320	1.656	
J0737-3039A/B	2.58708(16)	1.3381(7)	1.2489(7)	1.1253(1)	0.933(1)	0.102	0.086	
J1906+0746	2.6134(3)	1.322(11)	1.291(11)	1.1372(2)	(0.956, 1)	0.166	0.308	
B1534+12	2.678463(4)	1.3330(2)	1.3455(2)	1.165870(2)	0.9907(3)	0.421	2.734	
B2127+11C	2.71279(13)	1.358(10)	1.354(10)	1.18043(8)	(0.975, 1)	0.335	0.217	
J1757-1854	2.73295(9)	1.3384(9)	1.3946(9)	1.18930(4)	0.960(1)	0.184	0.076	
J0509+3801	2.805(3)	1.34(8)	1.46(8)	1.215(5)	(0.793, 1)	0.380	0.574	
B1913+16	2.828378(7)	1.4398(2)	1.3886(2)	1.230891(5)	0.9644(3)	0.323	0.301	
J1913+1102	2.875(14)	1.64(4)	1.24(4)	1.239(8)	0.76(4)	0.206	0.475	
Systems will not merge within a Hubble time								
J1807-2500B	2.57190(73)	1.3655(21)	1.2064(21)	1.1169(3)	0.883(3)	9.957	1044	
J1518+4904	2.7183(7)	1.41(8)	1.31(8)	1.181(5)	(0.794, 1)	8.634	8832	
J0453+1559	2.733(4)	1.559(5)	1.174(4)	1.175(2)	0.753(5)	4.072	1453	
J1411+2551	2.538(22)	< 1.64	> 0.92	(1.05, 1.11)	(0.57, 0.95)	2.616	466	
J1811-1736	2.57(10)	< 1.75	> 0.91	(1.02, 1.17)	(0.58, 0.95)	18.78	1794	
J1829+2456	2.59(2)	< 1.36	> 1.25	(1.08, 1.14)	(0.65, 1)	1.176	55	
J1930-1852	2.59(4)	< 1.32	> 1.30	(1.07, 1.15)	(0.58, 0.96)	45.06	$\sim 10^5$	

表 3-3 表格引用自 [17],列出了银河系内双中子星系统的质量信息,包括了双星总质量 (M_T) ,再生中子星质量 (m_r) 和满转中子星 (m_s) ,双星啁啾质量 (M_c) ,质量比 (q),双星轨道周期 (P_b) 和并合时标 T_c 。括号中的数字表示了最后一位数字的 1- σ 不确定度。对五个没有子星质量测量的双星系统,列出了 m_r 和 m_s 的 99% 概率上下限。

这些事件包括 sGRB 050709, sGRB 060614, 和 sGRB 130603B。由于电磁观测只能反演源周围物理性质,无法准确推断对应的中子星-黑洞双星的准确物理信息。

2019 年,LIGO/Virgo 开始了 O3 观测,提高的灵敏度带来了更多探测。虽然截止目前尚未有正式发表的论文,但是高显著度的事件都已近乎实时地发布在网上,目前可能的恒星级致密双星并合事件包括:S190408an[28], S190412m[29], S190421ar[30], S190425z[31], S190426c[32], S190503bf[33], S190510g[34], S190512at[35], S190513bm[36], S190517h[37], S190519bj[38], S190521g[39], S190521r[40], S190602aq[41], S190630ag[42], S190701ah[43], S190706ai[44], S190707q[45], S190720a[46], S190727h[47], S190728q[48], S190814bv[49], S190828j[50], S190828l[51], S190901ap[52], S190910d[53], S190910h[54], S190915ak[55], S190923y[56], S190924h[57], S190930s[58], S190930t[59]。这其中,S190426c、S190510g之后被认为是源于地面噪声;S190425z、S190901ap、S190910h最有可能来自 双中子星并合;S190814bv、S190910d、S190923y、S190930t最有可能来自中子星-黑洞 双星并合;S190924h、S190930s 极有可能处于质量间隔(即起码有一个成员质量处于 $3-5M_{\odot}$ 范围中);其余信号均最有可能来自恒星级双黑洞并合。

3.2.3.3 引力波宇宙学

如果将广义相对论应用于宇宙学研究,就可以得到宇宙不同时期宇宙的演化历史。 Hubble 第一次用观测证明,几乎所有的星系都在离我们远去,并且离我们越远的星系 (即光度距离 D_L 越大),远去的速度越快(即红移 z 越大),换句话说,宇宙处于膨胀 状态。这就是著名的 Hubble's Law

$$v = H_0 D_L \tag{3.28}$$

这其中 H_0 是 Hubble 常数。注意其中 v 是星系退行速度,和红移 z 的关系可以由下式给出:

$$1 + z = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} \tag{3.29}$$

1998 年, Supernova Cosmology Project 和 High-Z Supernova Search Team 分别搜寻并测量了 Ia 型超新星的光度距离和红移,发现宇宙的膨胀在加速,由此,两个团队的领导者 Saul Perlmutter, Brian P. Schmidt 和 Adam G. Riess 分获了 2011 年的 Nobel 奖, "for the discovery of the accelerating expansion of the Universe through observations of distant supernovae"。

宇宙学研究,可以通过分别测量天体的光度距离和红移来研究。传统天文学研究中, 光度距离通常无法直接测量,需要通过逐级定标,包含了较大的系统误差。目前,两种

3.3 EMRI 43

不同的方法精确测得的 Hubble 常数有着明显的不一致。而引力波测量过程中,可以直接得到光度距离 D_L 的测量,无需层层定标,因此可以提供独立的宇宙学参数测量,具有重大意义。

如图3-8通过LIGO/Virgo 对 GW170817 的电磁波观测,结合对其对此对应体及宿主星系的红移观测,可以对 Hubble 常数进行限定 [1]。虽然精度上比不上电磁波手段获得的宇宙学参数限制能力,但这表明引力波宇宙学的方法切实可行,随着观测数量的增加将有望得到更精确的测量结果。

图 3-8 不同测量方法下得到的 Hubble 常数概率分布。

Figure 3–8 Inference on the Hubble constant using three methods. Credit: [1]

除了利用多信使手段同时测量光度距离和红移以研究宇宙学,还可以利用星系在宇宙中分布不均匀的特性,无需确定宿主星系即可得到 Hubble 常数的估计值。这样的方法已经运用于双黑洞并合事件 GW170814,并得到了对 Hubble 常数的限制结果。虽然精度上更比不上 GW170817 对宇宙学参数的测量,但是这一方法独立于电磁对应体的发现,具有更好的普适性和独立性 [70]。

3.3 EMRI

3.3.1 天文学背景

在星系中心的核区,除了中心的大质量黑洞之外,还有大量的小质量天体,聚集在大约秒差距的尺度内。一般预期,核区的质量密度高达 $\sim 10^6 pc^{-3}$,并以 100-1,000 km/s

的高速运动着。实际上,大质量黑洞与其宿主星系之间的相互作用,很大程度上是藉由中心核区实现的。在核区的复杂动力学环境下,也会上演着精彩的天文大戏:如果恒星靠近大质量黑洞太过接近,大质量黑洞的引潮力可能会将恒星变形、撕裂,从而形成潮汐瓦解事件, tidal disruption event (TDE)。

例 3.4 假设一颗类太阳的恒星发生TDE,考虑其多方指数为 3,则其潮汐瓦解半径为

$$r_t \approx 1.4 \times 10^{11} \left(\frac{M_{\bullet}}{M_{\odot}}\right)^{1/3} \text{cm}$$
 (3.30)

如果接近大质量黑洞的天体密度增加,那么其瓦解半径将会减小。更进一步地,小天体的碰撞参数也足够大,能避免小天体直接掉落进大质量黑洞的视界中,那么这就构成了一种极为有趣的研究对象:这种一大一小、质量比及其悬殊的双星系统,将成为一种极佳的引力波源,我们通常称之为极端质量比旋近, extreme mass-ratio inspiral (EMRI)。我们对于如白矮星、中子星或恒星级质量黑洞作为小天体的EMRI系统特别感兴趣,是因为小天体可以非常靠近大质量黑洞而不被潮汐瓦解。

全 注 3.5. 在相关领域的研究中,通常定义EMRI 为质量比小于 10^{-4} 的系统,并将质量比处于 $10^{-4}-10^{-2}$ 范围内的系统称为中等质量比旋近, intermediate mass-ratio inspiral (IMRI)。 在本文中,我们不对EMRI和IMRI作特别区分。

在EMRI系统中,其动力学演化末期阶段将由引力波主导,随着引力波辐射能量,小天体绕大质量黑洞的轨道半长径不断缩减,总体上有频率增强的趋势。

通过研究小天体围绕大质量黑洞绕转的过程,我们可以得到大质量黑洞周围时空的信息,也由此可以获得大质量黑洞的相关物理参数。而这一信息可以通过引力波传播,正因此,对EMRI系统的引力波探测将实现对广义相对论的高精度检验。与此同时,对EMRI的研究也可以用来研究星系核区的动力学、大质量黑洞成长过程等等。

由于大质量黑洞尺度极小,除非对TDE之类的灾变现象进行观测,或者,花费极大观测资源进行观测,否则对于大质量黑洞的各类观测技术只能间接地展示中心黑洞及其周围环境。因此,到目前为止,我们对于EMRI系统的理解也相当间接,在引力波探测器运作之前,无法通过直接测量的方式研究。因此,当前对EMRI的研究目前主要集中于理论模拟。而这类研究的重点集中于小质量天体如何在各种机制的作用下,靠近大质量黑洞,并且由引力波辐射机制接管之后的轨道演化的。研究的手段主要是利用多体动力学模拟或经验公式给出。

在将小天体带入大质量黑洞附近的过程中,主要有三种作用可能起作用:小天体的两体弛豫、碰撞和久期演化。

3.3 EMRI 45

大质量黑洞周围的引力势,除了光滑的引力背景,也存在小尺度的起伏。而实际上, 当两个小天体极为靠近时,互相之间的引力作用将可能导致能量和角动量的互换,导致 小天体之间的引力作用将盖过大质量黑洞和背景引力势的影响。

通常,在天文学领域讨论的"碰撞"并非物理意义上的撞击,而是指引力相互作用导致作用结束后新的轨道和旧的轨道之间不存在相关性。但由于在大质量黑洞附近恒星的密度极端地高~ $10^*M_{\odot}/pc^3$,因此真实发生的两星碰撞过程也不可避免,但这一过程对星系中心核区星团的影响可以忽略不计。

最后,小天体轨道的久期演化不会改变能量,但是可以在不同天体之间实现角动量的交换。

通常定义,当通过作用后,小天体的径向速度分量的改变 δv_{\perp} 与原径向速度 v_{\perp} 处于同一量级时,认为系统已经充分弛豫。早在 1942 年,Chandrasekhar 就已研究过两体 弛豫过程的典型时标。可以估算出,星系中心核区的两体弛豫时标为

$$t_{rlx}(r) \approx 1.8 \times 10^8 \text{yr} \left(\frac{\sigma(r)}{100 \text{kms}^{-1}} \right)^3 \left(\frac{10 M_{\odot}}{m_{CO}} \right) \left(\frac{10^6 M_{\odot} \text{pc}^{-3}}{\langle m \rangle n(r)} \right)$$
(3.31)

这其中 $\sigma(r)$ 是局部的速度弥散;n(r) 是局部恒星数密度; $\langle m \rangle$ 是平均恒星质量;而 M_{CO} 是小天体的质量,通常主要考虑约 $10M_{\odot}$ 的恒星级质量黑洞。另一个常用于计算的 是动力学时标 t_{dyn} ,通常有 $t_{dyn} \ll t_{rlx}$ 。

可以发现,在 R_{infl} 内,当 r 减小时, 弛豫时标 t_{rlx} 也会拉长。通过两体弛豫作用,不同小天体之间的能量会大致均分,相同的动能对于较重的天体而言意味着较小的速度;正因此,平均而言较重的天体会处于离大质量黑洞更近,引力势更深的区域。这一过程通常被称为质量分隔 (mass segregation) 或动力学摩擦 (dynamical friction),最终导致在大质量黑洞附近的恒星数密度按照幂律分布,并形成所谓的数密度尖峰 (number density cusp)

$$n(r) \propto r^{-\gamma} \tag{3.32}$$

其中,幂指数取 $\gamma \approx 1.75 - 2.1$ 。对类似银河系的星系而言,其中心的大质量黑洞附近的弛豫时标是短于 Hubble 时标的。值得一提的是,由于动力学摩擦让大质量天体沉入引力势中,因此在大质量黑洞周围恒星级质量黑洞的数密度极高,远高于星系的其他区域。

对于小天体而言,要形成我们感兴趣的EMRI系统,就必须尽可能靠近大质量黑洞。通常,可以用损失锥 (loss cone) 来描述这一条件,即小天体的速度矢量必须处于一个给定的范围内,才能足够近地靠近大质量黑洞 $r < r_{lc}$ 。可以借此将符合条件的临界角度定义为损失锥角 θ_{lc} ,如图3–9所示

图 3-9 损失锥角 θ_{lc} 的示意图

Figure 3–9 Illustration of loss cone angle θ_{lc} Credit:[60]

通过上述描述的星系中心大质量黑洞及附近恒星级小天体动力学过程的理解,可以通过数值的多体动力学模拟、或半解析的蒙特卡洛模拟以开展分析。基于上述研究,可以对大质量黑洞俘获致密小天体的事件率进行估算,进而计算EMRI事件率。

相关研究中,最为典型的是针对激光干涉空间天线, Laser Interferometer Space Antenna (LISA)开展对EMRI事件率和探测率的计算 [11], 我们以此为例开展讨论。如前所述, EMRI的事件率依赖于多种不同因素,包括:不同红移除的大质量黑洞质量、红移分布;星系中心包含大质量黑洞的比例;不同质量、不同小天体性质的系统对应的EMRI事件率。研究过程中,可以自然产生模拟的引力波源表。

对于大质量黑洞的族群性质,有多种可能模型。如 Barausse12 模型,在大质量黑洞由轻种子黑洞成长的模型下 [24],大质量黑洞质量函数为

$$\frac{\mathrm{d}n}{\mathrm{d}\log M} = 0.005 \left(\frac{M}{3 \times 10^6 M_{\odot}}\right)^{-0.3} \mathrm{Mpc^{-3}}$$
 (3.33)

或者 Gair10 模型, 以保守起见, 选择唯象的质量函数估计 [18], 其中大质量黑洞的数量

3.3 EMRI 47

更偏向相对小质量端

$$\frac{dn}{d\log M} = 0.002 \left(\frac{M}{3 \times 10^6 M_{\odot}}\right)^{0.3} \text{Mpc}^{-3}$$
 (3.34)

对于大质量黑洞的自旋,也有多种可能性。如轻种子黑洞模型下的 a98 模型,大质量黑洞通过不断吸积,其自旋也接近极端旋转黑洞的极限,上限为 a = 0.998,而中位数为 a = 0.98[68]。对应比较的是自旋均匀分布的 aflat 模型和吴自旋的 a0 模型。

对于黑洞周围的恒星数密度尖峰(cusp),在星系并合的情形下,由于来自两个星系中心的大质量黑洞会通过动力学摩擦往引力势中心下沉,由于能量守恒,等效于"加热"周围的小天体,特别是耗尽处于损失锥中的天体。这会导致恒星数密度尖峰的损耗,而在系统稳定后又会由于两体弛豫等作用,使得数密度尖峰再次增长和损失锥的再填充。

通常,将再次形成数密度尖峰所需要的时长定义为 t_{cusp} ,其具体的取值与 M_{σ} 关系的标定有很大联系。在根据 [20] 所定义的 Gultekin09 模型下, $t_{cusp} \approx 6 \mathrm{Gyr}$;最悲观的 KormendyHo13 模型 [25] 和最乐观的 GrahamScott13 模型 [19] 则分别给出 $t_{cusp} \approx 10 \mathrm{Gyr}$ 和 $t_{cusp} \approx 2 \mathrm{Gyr}$ 的估计。

对于单个大质量黑洞周围,不同小天体性质所对应的EMRI事件率。根据 [7] 考虑强质量分层效应的多体数值动力学模拟,可以得到EMRI 事件率依赖大质量黑洞质量的函数

$$R_0 = 300 \left(\frac{M}{10^6 M_{\odot}}\right)^{-0.19} \text{Gyr}^{-1}$$
 (3.35)

然而,相关研究并没有考虑小天体直接撞向大质量黑洞的过程(plunge),这一效应会导致小天体无法产生足够长时间的旋近过程,进而无法被引力波探测器有效地探测到,需要在计算EMRI事件率的过程中略去,并且大质量黑洞的质量增长需要考虑直接碰撞的效应,具体影响由参数 N_p 决定

$$\dot{M} = 3000(1 + N_p) \left(\frac{m}{10M_{\odot}}\right) \left(\frac{M}{10^6 M_{\odot}}\right)^{-0.19} M_{\odot} \text{Gyr}^{-1}$$
 (3.36)

这其中m是小质量天体的典型质量。

在表3-4中,罗列了考虑不同模型组合下,所预言的EMRI 事件率。可以发现,不同的模型下,EMRI的事件率有 3 个量级的不确定性。

3.3.2 波形

通常,可以将EMRI波形的计算按照方法分为:微扰法、Teukolsky 法、kludge 法、半相对论性法、后牛顿, post-Newtonian (PN)法和**EOB!** (**EOB!**)法。

	Mass	MBH	Cusp	М-σ		CO	EMRI rate [yr ⁻¹]
Model	function	spin	erosion	relation	N_{p}	mass $[M_{\odot}]$	Total
M1	Barausse12	a98	yes	Gultekin09	10	10	1600
M2	Barausse12	a98	yes	KormendyHo13	10	10	1400
M3	Barausse12	a98	yes	GrahamScott13	10	10	2770
M4	Barausse12	a98	yes	Gultekin09	10	30	520 (620)
M5	Gair10	a98	no	Gultekin09	10	10	140
M6	Barausse12	a98	no	Gultekin09	10	10	2080
M7	Barausse12	a98	yes	Gultekin09	0	10	15800
M8	Barausse12	a98	yes	Gultekin09	100	10	180
M9	Barausse12	aflat	yes	Gultekin09	10	10	1530
M10	Barausse12	a0	yes	Gultekin09	10	10	1520
M11	Gair10	a0	no	Gultekin09	100	10	13
M12	Barausse12	a98	no	Gultekin09	0	10	20000

表 3-4 根据大质量黑洞的质量分布、自旋分布、数密度尖峰是否存在消耗、 $M-\sigma$ 关系、直接碰撞和EMRI的比例、以及小天体的典型质量等模型的不同,预言出较大差异的EMRI事件率。注意到,在最乐观和最悲观的模型下,事件率有着三个量级的差距。注意所有的模型都将事件率考虑的红移上限设定为 z=6.5 的情形,列入括号中。

Table 3–4 EMRI event rate under various of models. Credit: [11]

对EMRI波形的计算,最为简单的是通过黑洞微扰的方式进行展开。即,将时空度规 $g_{\mu\nu}$ 分解为两个不同的部分。具体来说,包含了稳态的,由大质量黑洞提供的背景时空度规,以及运动的,由小天体引起的扰动成分。通过对质量比进行展开,原则上就可以得到微扰法下EMRI系统的波形。由于EMRI讨论的系统中,大小黑洞之比远小于 1,因此上述的分解是成立的。

虽然这一思路较为简单,但在实际操作中非常困难。特别是,EMRI的系统演化实际上还依赖于小天体的自引力(self-force),否则的话,整个系统不会辐射引力波,由于能量守恒,小天体将无法旋近至大质量黑洞的视界中。

另外一种解析方式获得EMRI波形的方式是 Teukolsky 法。这种方法首先选定一组轨道根数以作为初始条件,从而得到一根测地线,作为大质量黑洞小天体轨迹的基准。在此基础上,利用上述测地线,求解求解线性化的 Einstein 场方程,从而获得轨道根数的演化。接下来,用新的轨道根数确定新的测地线方程,并重复上述过程。通过求解非齐次的 Teukolsky 方程,可以获知微扰下的 Weyl 张量 Ψ_4 ,并可以基于此计算出系统相应的引力波波形。通过这种方法,既可以计算频率域的EMRI波形,也可以计算时间域

的EMRI波形。Teukolsky 法得到的波形虽然相对精确,但是由于需要对 Teukolsky 方程进行述职积分,并且对大量高阶模进行求和,其计算时耗时长久,也由此因此难以实际运用于引力波数据处理中。

值得注意的是,通过 Teukolsky 法推算, EMRI系统有时会经历一种所谓"zoom-whirl"的效应。小天体通过椭圆轨道进入大质量黑洞附近,接着可能会在大质量黑洞附近沿近圆轨道运动,接着偏心率又增加,小天体又一次远离大质量黑洞。这一效应有点类似在篮球比赛中的某种特殊情形:就像如同篮球奔向篮框,沿着篮框转了几圈,但是并不掉人篮筐中,反而最终弹出[22]。这种 zoom-whirl 效应随大质量黑洞自旋的增强而增强。

另一类方法被归类为"kludge"法。kludge 在英语中的原意是七拼八凑的组装品,意指强行拼凑、勉强够用的产品。顾名思义,kludge 方法并不追求求解EMRI波形的物理严谨性,而仅为了追求实用。而利用 kludge 方法得到波形的过程,正是综合从不同角度出发得到的对轨道演化的描述,拼凑而成的EMRI系统波形。由此,kludge 波形自身在物理上并非是自洽的,它的主要目的是为了在进行科学目标分析和初步数据处理能力研究的过程中,可以实现对EMRI特性的体现。

Kludge 方法首次由 Barack 等人提出 [13]。在所谓的analytical kludge (AK)波形中,EMRI系统每时每刻都遵循 Newtonian 轨道,并且按照 Peters & Matthews [61] 的公式,考虑椭圆轨道对应的质量四极矩的加速变化而产生引力波。在此基础上,以PN方程对轨道根数进行久期演化。特别是,AK波形中还考虑了辐射反作用、近星点进动和轨道面 Lense-Thirring 进动。这两种进动的产生主要是因为径向、轴向和方位角方向的频率不一致而导致。通过这样的处理,AK波形可以考虑除了小天体自旋以外的所有物理参数,在参数空间上和EMRI真实参数空间一致,包含了 14 个参数 [t_0 ln μ , ln M, S/M^2 , e_0 , $\hat{\gamma}_0$, Φ_0 , α_0 , μ_s = $\cos\theta_S$, ϕ_S , $\cos\lambda$, μ_K = $\cos\theta_K$, ϕ_K , $\ln(\mu/D)$]。这其中, t_0 是参考时刻; μ 是小天体质量;M是大质量黑洞质量;S是大质量黑洞的自旋强度(有 $0 \leq S/M^2 \leq 1$); e_0 是轨道偏心率, $\hat{\gamma}_0$ 描述了轨道近星点在轨道面上的方位, Φ_0 则是平近点角, Φ_0 是小天体轨道角动量 Φ_0 相对大质量黑洞自旋 Φ_0 方向的角度。上述几个参数都是随时间演化的,因此在选定初始条件时都是选择 Φ_0 时刻的具体取值; Φ_0 和 Φ_0 描述了EMRI系统相对观测者的方位角; Φ_0 是源距离。

需要注意的是,虽然采用AK方法得到的EMRI波形可以定性地描述EMRI系统,但是其波形的准确性并不可靠,甚至会在小时量级上与真实波形发生偏离。此外,一些特殊效应 (如 zoom-whirl 效应) 无法在AK方法中描述。同时,AK波形中,轨道角动量 $\mathbf L$ 与大质量黑洞自旋角动量 $\mathbf S$ 的夹角 λ 保持常数,但是真实情况下,其值会发生一定变化。

在AK的基础上, Babak 等人扩展了numerical kludge (NK)波形 [10]。NK的逻辑是, 将

小天体轨道的精确解与引力波辐射的近似解相结合,由此,虽然NK依然是对真实引力波波形的近似,但依然能够较为准确地表达EMRI系统的动力学性质。首先,在给定轨道能量 E、轴向角动量 L_z 和 Carter 常数 Q 等初始条件下,获得相空间上的旋近轨道;其次,在旋近轨道上,对 Kerr 测地线进行数值积分,由此得到小天体的 Boyer-Lindquist 坐标随时间的演化;最后就是从上述轨道中提取引力波波形。与AK方法类似,NK对轨道根数也只计算轨道平均后的久期演化,从而简化计算;并且NK同样从多极矩中提取引力波信号,只不过除了最低阶的四极矩外,NK还会考虑次领头阶。

在 NK的处理中,会导致所谓"beads-on-a-wire"问题。为了简化计算,在弯曲时空背景下获得小天体的测地线方程后,具体轨迹被置于平直时空中用于计算引力波信号。然而,这一轨道与物理条件不一致的情形,会使得整个系统的能量、角动量不守恒——小天体并不是按照背景时空而运动,而像是穿在线上的珠子一般受迫运动。这种物理图景上的不一致是采用 kludge 方法下可以直接预期的,也会带来代价:NK的波形与真实波形间,可能会显著地影响参数估计时的结果,这一点在开展物理参数测量时需要特别留意。

NK虽然相对精确的 Teukolsky 法而言速度更快,但相对AK波形而言仍然较为耗时。在AK 波形中,轨道频率 f_{orb} 由 Kepler 第三定律决定;而两个进动的频率:近星点进动频率 f_{peri} 和 Lense-Thirring 进动频率 f_{LT} 均由PN展开引入的修正获得。然而,上述三种频率与真实的频率 $(\omega_r,\omega_\phi-\omega_r,\omega_\phi-\omega_\theta)$ 并不对应。这导致了AK波形很快就与真实物理系统失去了对应,甚至在旋近早期阶段就可能与NK波形产生分歧。

近年来,蔡靖康与 Gair 等人发展了一套augmented analytical kludge (AAK)波形的计算方法,在与NK相近精度计算EMRI的前提下,与AK耗时接近,同时结合了两种方法的所长 [15]。在AAK波形的计算过程中,通过对数值的波形进行分析,可以将EMRI系统中的物理参数,如大质量黑洞质量 M,自旋 a 和轨道半通径 p 并映射到一组拟合得出的、非物理的新参数 \tilde{M} , \tilde{a} , 和 \tilde{p} 。虽然新的参数并不对应物理,但通过校准,反而可以准确的反应出不同成分的频率 f_{Orb} , f_{peri} 和 f_{LT} 。这样,在采用AK方法计算波形的快速波形生成基础上,可以得到更为真实的波形,就结果而言与NK有着极高的一致性。

半相对论性法由 Ruffini 和 Sasaki 于 1981 年首先提出 [65]。简单来说,这一方法的 思路就是:在弯曲时空下计算小天体的运动,以及引力波的产生;又在平直时空下计算 引力波的传播。这一方法的主要问题是,整个系统中不会考虑辐射反作用,能量并不守恒,导致小天体永远不会往大质量黑洞旋近。可以将半相对论性法视作不考虑辐射反作用的NK法。半相对论性法可以被视作质量比趋于零时的绝热近似的极限情形。基于半相对论性法开展的研究主要是为了理解在 Kerr 时空背景下的轨道特性,其研究出发点更多偏向于理论分析;由于其引力波波形仅在相当段的时长内正确,其对数据处理帮助

3.4 Continuous Wave 51

甚微。

对许多系统而言,在 Newtonian 力学基础上展开的PN波形可以很好地描述双星并合之前的引力波信号。对双星系统的PN波形展开的研究最早可以追溯至上世纪六十年代。然而,对于质量比 $q \ll 1$ 的双星系统而言,在PN展开下,高阶项系数收敛速度极慢。同时,PN展开的推导随着阶数的增加而迅速变得复杂,这就导致了用PN展开得到的EMRI无法准确地描述EMRI系统的演化特性。

类似于第3.1.1.2节中,即使质量比悬殊,也可以利用 EOB 方法进行研究。Nagar 等人开始针对质量比较为悬殊的情形开展的 EOB 研究,并在之后逐渐发展完善 [21]。

如前所述,准确地描述引力自力对EMRI系统演化的影响对于自治地产生EMRI波形而言至关重要。在极端质量比情形下,Barack 和 Sago 研究了 Schwarzschild 背景下小天体的引力自力 [14]。随后,van de Meent 等人对 Kerr 背景下的引力自力计算进行了推广,目前可以对封闭轨道关于质量比展开到一阶 [72]。这些工作为考虑引力自力的EMRI波形提供了基础,并已取得一定突破 [8]。

3.4 Continuous Wave

- 3.4.1 变形的中子星
- 3.4.2 双白矮星
- 3.5 Supernvoa
- **3.6 SGWB**
- 3.7 其他波源
- 3.7.1 **QNM**
- 3.7.2 Cosmic String Susps
- 3.7.3 引力波暴

Exercise 3.1

考虑质量为 $10M_{\odot}$ - $10M_{\odot}$ 的双黑洞系统,假设其距离我们 100Mpc,倾角 $\iota=0$ 。请编写程序作图,

- ▶ $t \in [t_c 1yr, t_c]$ 时间内频率随时间变化的图。
- ▶ $t \in [t_c 1yr, t_c]$ 的时间内相位随时间变化的图。
- ▶ $t \in [t_c 1s, t_c]$ 的时间域波形 (假设 Q(angles) = 1)。
- ▶ $t \in [t_c 1yr, t_c]$ 对应的频率域波形,考虑 OPN (以Bode 图形式给出)。
- ▶ (加分题 1)功率谱密度 (PSD)是描述探测器不同频率处噪声强度的图形。振幅谱密度 (ASD)是 PSD 开根号后的结果。请找出 LIGO 的 PSD, (任意一种均可,请注明来源),并将其与上述双黑洞系统的波形振幅一同给出(以 log-log 形式画出)。
- ▶ (加分题 2)请自行找出天琴的 ASD, 并将其与上述双黑洞系统的波形振幅一同给出。设从双星并合前 5 年开始观测 (以 log-log 形式画出)。

引力波探测手段

- 4.1 棒状探测器
- 4.1.1 原理
- 4.1.2 噪声
- 4.1.3 灵敏度
- 4.2 地面激光干涉探测器
- 4.2.1 原理
- 4.2.2 波源和噪声
- 4.2.3 灵敏度
- 4.3 空间引力波探测
- 4.3.1 原理
- 4.3.2 波源和噪声
- 4.3.3 现状
- 4.4 脉冲星计时阵

- 4.4.1 原理
- 4.4.2 源、噪声和现状
- 4.5 宇宙微波背景辐射
- 4.5.1 原理
- 4.5.2 源、噪声和现状
- 4.6 其他探测方案

"穷人版"引力波数据处理示例

引力波信号探测

6.1	概率初	415
0.1	燃华彻	ノレ

- 6.1.1 随机变量
- 6.1.2 频率学派 v.s.Bayesian
- 6.1.2.1 最大熵原理
- 6.1.3 典型分布
- 6.1.3.1 Binomial
- 6.1.3.2 Poisson
- 6.1.3.3 Gaussian
- 6.1.4 随机过程
- 6.2 时序列分析
- 6.2.1 Fourier 变换
- 6.2.2 样本平均和相关函数
- 6.2.3 卷积

- 6.2.4 功率谱密度
- 6.2.5 周期图

6.3 信号探测的统计学原理

6.3.1 假设检验

- 6.3.1.1 频率学派方法
- 6.3.1.2 Bayesian 方法
- 6.3.1.3 Neyman-Pearson 方法
- 6.3.1.4 似然函数比检验

6.4 连续引力波探测

6.4.1 F-统计

- 6.4.1.1 振幅调制
- 6.4.1.2 Doppler 频移和相位调制
- 6.4.1.3 已知源搜索
- 6.4.1.4 未知源搜索
- 6.4.1.5 周期性检验
- 6.4.1.6 拟合度检验
- 6.4.2 误警率和探测概率
- 6.4.3 模板数
- 6.4.4 次优滤波
- 6.4.5 F-统计算法
- 6.5 啁啾信号探测
- 6.5.1 最佳探测统计

6.5 啁啾信号探测 59

6.5.2 匹配滤波

- 6.5.2.1 外秉参数的消除
- 6.5.2.2 未知匹配参数
- 6.5.2.3 匹配滤波的统计学性质
- 6.5.2.4 时间未知的匹配滤波
- 6.5.2.5 匹配滤波模板库
- 6.5.3 时频分析
- 6.5.4 同时性
- 6.5.5 显著度分析

引力波信号测量

- 7.1 参数估计
- 7.1.1 测量精度
- 7.1.2 参数估计中的系统误差
- 7.1.3 置信区间
- 7.1.4 nuisance 参数
- 7.1.5 Fisher 信息矩阵
- 7.2 Markov 链蒙特卡洛
- 7.2.1 MetropolisHastings 算法
- 7.2.1.1 MH 算法的有效性
- 7.2.1.2 模拟淬火
- 7.2.1.3 平行回火
- 7.2.1.4 EMCEE
- 7.3 模型选择与 Occam 剃刀

- 7.3.1 模型选择
- 7.3.2 定量的 Occam 剃刀
- 7.3.3 Odds ratio
- 7.4 层级采样
- 7.4.1 问题描述
- 7.4.2 基本算法
- 7.4.3 随机采样
- 7.4.4 后验概率采点
- 7.4.5 模拟淬火

8

其他方法及复杂情形

- 8.1 随机引力波背景探测
- 8.1.1 单探测器信噪比
- 8.1.2 相关与似然函数
- 8.1.3 多数据情形
- 8.1.4 最大似然探测统计
- 8.1.5 Bayesian 相关分析
- 8.1.5.1 Bayesian 相关分析与频率派互相关方法比较
- 8.1.6 其他方法
- 8.2 无法建模信号的探测统计量
- 8.2.1 功率超出法
- 8.3 机器学习
- 8.4 非稳态、非 Gauss、非线性噪声下的探测

- 8.5 数据包含间隔的情形
- 8.6 效率提高
- 8.6.1 Reduced-ordermodels
- **8.6.2** Kludge

9

引力波数据处理实例

常用物理量

物理含义	符号	数值	量纲	备注
光速	С	299, 792, 458	m/s	引力波速度亦为光速 c
引力常数	G	$6.67430(15) \times 10^{-1}$	$1 m^3 \cdot kg^{-1} \cdot s^{-2}$	来自CODATA 数据 ¹
太阳质量	m_{\odot}	1.98847×10^{30}	kg	
百万秒差距	Mpc	3.08567758128×10	²² m	

[」] 「其中最新、误差最小的测量来自天琴中心主任罗俊院士所带领团队 [26]

- [1] B. P. Abbott et al. "A gravitational-wave standard siren measurement of the Hubble constant". 刊于: *Nature* 551.7678 (Nov. 2017), pp. 85–88. doi: 10.1038/nature24471. arXiv: 1710.05835 [astro-ph.CO].
- [2] B. P. Abbott et al. "Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A". 刊于: *the Astrophysical Journal Letters* 848.2, L13 (Oct. 2017), p. L13. DOI: 10.3847/2041-8213/aa920c. arXiv: 1710.05834 [astro-ph.HE].
- [3] B. P. Abbott et al. "GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral". 刊于: *Physical Review Letters* 119.16, 161101 (Oct. 2017), p. 161101. poi: 10.1103/PhysRevLett.119.161101. arXiv: 1710.05832 [gr-qc].
- [4] B. P. Abbott et al. "Multi-messenger Observations of a Binary Neutron Star Merger". 刊 于: *the Astrophysical Journal Letters* 848.2, L12 (Oct. 2017), p. L12. DOI: 10.3847/2041-8213/aa91c9. arXiv: 1710.05833 [astro-ph.HE].
- [5] B. P. Abbott et al. "Properties of the Binary Neutron Star Merger GW170817". 刊于: *Physical Review X* 9.1, 011001 (Jan. 2019), p. 011001. poi: 10.1103/PhysRevX.9. 011001. arXiv: 1805.11579 [gr-qc].
- [6] Kazunori Akiyama et al. "First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole". 刊于: *Astrophys. J.* 875.1 (2019), p. L1. doi: 10.3847/2041-8213/ab0ec7. arXiv: 1906.11238 [astro-ph.GA].
- [7] Pau Amaro-Seoane and Miguel Preto. "The impact of realistic models of mass segregation on the event rate of extreme-mass ratio inspirals and cusp re-growth". 刊于: *Classical and Quantum Gravity* 28.9 (Apr. 2011), p. 094017. ISSN: 1361-6382. DOI: 10.1088/0264-9381/28/9/094017. URL: http://dx.doi.org/10.1088/0264-9381/28/9/094017.
- [8] Andrea Antonelli et al. "Quasi-circular inspirals and plunges from non-spinning effective-one-body Hamiltonians with gravitational self-force information". 刊于: *arXiv e-prints*, arXiv:1907.11597 (July 2019), arXiv:1907.11597. arXiv: 1907.11597 [gr-qc].

[9] R. F. Archibald et al. "A High Braking Index for a Pulsar". 刊于: *the Astrophysical Journal Letters* 819.1, L16 (Mar. 2016), p. L16. DOI: 10.3847/2041-8205/819/1/L16. arXiv: 1603.00305 [astro-ph.HE].

- [10] Stanislav Babak et al. ""Kludge" gravitational waveforms for a test-body orbiting a Kerr black hole". 刊于: *Physical Review D* 75.2, 024005 (Jan. 2007), p. 024005. doi: 10.1103/PhysRevD.75.024005. arXiv: gr-qc/0607007 [gr-qc].
- [11] Stanislav Babak et al. "Science with the space-based interferometer LISA. V. Extreme mass-ratio inspirals". 刊于: *Physical Review D* 95.10, 103012 (May 2017), p. 103012. poi: 10.1103/PhysRevD.95.103012. arXiv: 1703.09722 [gr-qc].
- [12] Jiahui Bao et al. "Constraining modified gravity with ringdown signals: an explicit example". 刊于: (2019). arXiv: 1905.11674 [gr-qc].
- [13] Leor Barack and Curt Cutler. "LISA capture sources: Approximate waveforms, signal-to-noise ratios, and parameter estimation accuracy". 刊于: *Physical Review D* 69.8, 082005 (Apr. 2004), p. 082005. DOI: 10.1103/PhysRevD.69.082005. arXiv: gr-qc/0310125 [gr-qc].
- [14] Leor Barack and Norichika Sago. "Gravitational self-force on a particle in eccentric orbit around a Schwarzschild black hole". 刊于: *Physical Review D* 81.8, 084021 (Apr. 2010), p. 084021. por: 10.1103/PhysRevD.81.084021. arXiv: 1002.2386 [gr-qc].
- [15] Alvin J. K. Chua and Jonathan R. Gair, "Improved analytic extreme-mass-ratio inspiral model for scoping out eLISA data analysis". 刊于: *Classical and Quantum Gravity* 32.23, 232002 (Dec. 2015), p. 232002. DOI: 10.1088/0264-9381/32/23/232002. arXiv: 1510.06245 [gr-qc].
- [16] Jolien D. E. Creighton and Warren G. Anderson. *Gravitational-wave physics and astronomy. An introduction to theory, experiment and data analysis.* Hoboken, NJ: John Wiley & Sons, 2011, pp. xiv + 375. ISBN: 978-3-527-40886-3/hbk.
- [17] N. Farrow, X.-J. Zhu, and E. Thrane. "The Mass Distribution of Galactic Double Neutron Stars". 刊于: *the Astrophysical Journal* 876, 18 (May 2019), p. 18. doi: 10.3847/1538-4357/ab12e3. arXiv: 1902.03300 [astro-ph.HE].

[18] Jonathan R. Gair, Christopher Tang, and Marta Volonteri. "LISA extreme-mass-ratio inspiral events as probes of the black hole mass function". 刊于: *Physical Review D* 81.10 (May 2010). ISSN: 1550-2368. DOI: 10.1103/physrevd.81.104014. URL: http://dx.doi.org/10.1103/PhysRevD.81.104014.

- [19] Alister W. Graham and Nicholas Scott. "THEMBH-LSPHEROIDRELATION AT HIGH AND LOW MASSES, THE QUADRATIC GROWTH OF BLACK HOLES, AND INTERMEDIATE-MASS BLACK HOLE CANDIDATES". 刊于: *The Astrophysical Journal* 764.2 (Feb. 2013), p. 151. ISSN: 1538-4357. DOI: 10.1088/0004-637x/764/2/151. URL: http://dx.doi.org/10.1088/0004-637X/764/2/151.
- [20] Kayhan Gültekin et al. "THE M- σ AND M-LRELATIONS IN GALACTIC BULGES, AND DETERMINATIONS OF THEIR INTRINSIC SCATTER". †] ‡: *The Astrophysical Journal* 698.1 (May 2009), pp. 198–221. ISSN: 1538-4357. DOI: 10.1088/0004-637x/698/1/198. URL: http://dx.doi.org/10.1088/0004-637X/698/1/198.
- [21] Wen-Biao Han. "Fast Evolution and Waveform Generator for Extreme-Mass-Ratio Inspirals in Equatorial-Circular Orbits". 刊于: *arXiv e-prints*, arXiv:1609.06817 (Sept. 2016), arXiv:1609.06817. arXiv: 1609.06817 [gr-qc].
- [22] Wen-Biao Han, Zhoujian Cao, and Yi-Ming Hu. "Excitation of high frequency voices from intermediate-mass-ratio inspirals with large eccentricity". 刊于: *Class. Quant. Grav.* 34.22 (2017), p. 225010. DOI: 10.1088/1361-6382/aa891b. arXiv: 1710.00147 [gr-qc].
- [23] Stephen W. Hawking, Werner Israel, and William G. Unruh. "300 Years of Gravitation". 刊于: *Physics Today* 41.7 (1988), p. 69. ISSN: 00319228. DOI: 10.1063/1.2811500. URL: http://link.aip.org/link/PHTOAD/v41/i7/p69/s1%5C&Agg=doi.
- [24] Antoine Klein et al. "Science with the space-based interferometer eLISA: Supermassive black hole binaries". 刊于: *Physical Review D* 93.2 (Jan. 2016). ISSN: 2470-0029. DOI: 10.1103/physrevd.93.024003. URL: http://dx.doi.org/10.1103/PhysRevD.93.024003.
- [25] John Kormendy and Luis C. Ho. "Coevolution (Or Not) of Supermassive Black Holes and Host Galaxies". 刊于: *Annual Review of Astronomy and Astrophysics* 51.1 (Aug. 2013), pp. 511–653. ISSN: 1545-4282. DOI: 10.1146/annurev-astro-082708-101811. URL: http://dx.doi.org/10.1146/annurev-astro-082708-101811.
- [26] Q. Li et al. "Measurements of the gravitational constant using two independent methods". 刊于: *Nature* 560 (Aug. 2018), pp. 582–588. poi: 10.1038/s41586-018-0431-5.

[27] Xiang Li et al. "Neutron StarBlack Hole Coalescence Rate Inferred from Macronova Observations". 刊于: *Astrophys. J.* 844.2 (2017), p. L22. doi: 10.3847/2041-8213/aa7fb2. arXiv: 1611.01760 [astro-ph.HE].

- [28] LIGO, Virg, and ligo scientific collaboration. *Superevent info S190408an*. https://gracedb.ligo.org/superevents/S190408an/view/. 2019.
- [29] LIGO, Virg, and ligo scientific collaboration. *Superevent info S190412m*. https://gracedb.ligo.org/superevents/S190412m/view/. 2019.
- [30] LIGO, Virg, and ligo scientific collaboration. *Superevent info \$190421ar*. https://gracedb.ligo.org/superevents/\$190421ar/view/. 2019.
- [31] LIGO, Virg, and ligo scientific collaboration. *Superevent info S190425z*. https://gracedb.ligo.org/superevents/S190425z/view/. 2019.
- [32] LIGO, Virg, and ligo scientific collaboration. *Superevent info S190426c*. https://gracedb.ligo.org/superevents/S190426c/view/. 2019.
- [33] LIGO, Virg, and ligo scientific collaboration. *Superevent info S190503bf*. https://gracedb.ligo.org/superevents/S190503bf/view/. 2019.
- [34] LIGO, Virg, and ligo scientific collaboration. *Superevent info S190510g*. https://gracedb.ligo.org/superevents/S190510g/view/. 2019.
- [35] LIGO, Virg, and ligo scientific collaboration. *Superevent info S190512at*. https://gracedb.ligo.org/superevents/S190512at/view/. 2019.
- [36] LIGO, Virg, and ligo scientific collaboration. *Superevent info S190513bm*. https://gracedb.ligo.org/superevents/S190513bm/view/. 2019.
- [37] LIGO, Virg, and ligo scientific collaboration. *Superevent info S190517h*. https://gracedb.ligo.org/superevents/S190517h/view/. 2019.
- [38] LIGO, Virg, and ligo scientific collaboration. *Superevent info S190519bj*. https://gracedb.ligo.org/superevents/S190519bj/view/. 2019.
- [39] LIGO, Virg, and ligo scientific collaboration. *Superevent info S190521g*. https://gracedb.ligo.org/superevents/S190521g/view/. 2019.
- [40] LIGO, Virg, and ligo scientific collaboration. *Superevent info S190521r*. https://gracedb.ligo.org/superevents/S190521r/view/. 2019.

[41] LIGO, Virg, and ligo scientific collaboration. *Superevent info - S190602aq*. https://gracedb.ligo.org/superevents/S190602aq/view/. 2019.

- [42] LIGO, Virg, and ligo scientific collaboration. *Superevent info \$190630ag*. https://gracedb.ligo.org/superevents/\$190630ag/view/. 2019.
- [43] LIGO, Virg, and ligo scientific collaboration. *Superevent info S190701ah*. https://gracedb.ligo.org/superevents/S190701ah/view/. 2019.
- [44] LIGO, Virg, and ligo scientific collaboration. *Superevent info S190706ai*. https://gracedb.ligo.org/superevents/S190706ai/view/. 2019.
- [45] LIGO, Virg, and ligo scientific collaboration. *Superevent info S190707q*. https://gracedb.ligo.org/superevents/S190707q/view/. 2019.
- [46] LIGO, Virg, and ligo scientific collaboration. *Superevent info S190720a*. https://gracedb.ligo.org/superevents/S190720a/view/. 2019.
- [47] LIGO, Virg, and ligo scientific collaboration. *Superevent info S190727h*. https://gracedb.ligo.org/superevents/S190727h/view/. 2019.
- [48] LIGO, Virg, and ligo scientific collaboration. *Superevent info S190728q*. https://gracedb.ligo.org/superevents/S190728q/view/. 2019.
- [49] LIGO, Virg, and ligo scientific collaboration. *Superevent info S190814bv*. https://gracedb.ligo.org/superevents/S190814bv/view/. 2019.
- [50] LIGO, Virg, and ligo scientific collaboration. *Superevent info S190828j*. https://gracedb.ligo.org/superevents/S190828j/view/. 2019.
- [51] LIGO, Virg, and ligo scientific collaboration. *Superevent info S190828l*. https://gracedb.ligo.org/superevents/S190828l/view/. 2019.
- [52] LIGO, Virg, and ligo scientific collaboration. *Superevent info S190901ap*. https://gracedb.ligo.org/superevents/S190901ap/view/. 2019.
- [53] LIGO, Virg, and ligo scientific collaboration. *Superevent info S190910d*. https://gracedb.ligo.org/superevents/S190910d/view/. 2019.
- [54] LIGO, Virg, and ligo scientific collaboration. *Superevent info S190910h*. https://gracedb.ligo.org/superevents/S190910h/view/. 2019.
- [55] LIGO, Virg, and ligo scientific collaboration. *Superevent info S190915ak*. https://gracedb.ligo.org/superevents/S190915ak/view/. 2019.

[56] LIGO, Virg, and ligo scientific collaboration. *Superevent info - S190923y*. https://gracedb.ligo.org/superevents/S190923y/view/. 2019.

- [57] LIGO, Virg, and ligo scientific collaboration. *Superevent info S190924h*. https://gracedb.ligo.org/superevents/S190924h/view/. 2019.
- [58] LIGO, Virg, and ligo scientific collaboration. *Superevent info S190930s*. https://gracedb.ligo.org/superevents/S190930s/view/. 2019.
- [59] LIGO, Virg, and ligo scientific collaboration. *Superevent info S190930t*. https://gracedb.ligo.org/superevents/S190930t/view/. 2019.
- [60] David Merritt. "Loss-cone Dynamics". 刊于: *Class. Quant. Grav.* 30 (2013), p. 244005. poi: 10.1088/0264-9381/30/24/244005. arXiv: 1307.3268 [astro-ph.GA].
- [61] P. C. Peters and J. Mathews. "Gravitational Radiation from Point Masses in a Keplerian Orbit". 刊于: *Physical Review* 131 (July 1963), pp. 435–440. doi: 10.1103/PhysRev. 131.435.
- [62] M. Pitkin. "psrqpy: a python interface for querying the ATNF pulsar catalogue". 刊于: *Journal of Open Source Software* 3.22 (Feb. 2018), p. 538. doi: 10.21105/joss.00538. URL: https://doi.org/10.21105/joss.00538.
- [63] E. Poisson and C.M. Will. *Gravity: Newtonian, Post-Newtonian, Relativistic*. Cambridge University Press, 2014. ISBN: 9781107032866. URL: https://books.google.com.tw/books?id=PZ5cAwAAQBAJ.
- [64] Wolfgang Rindler. 相对论精义——狭义、广义和宇宙学相对论. Trans. by 方励之 江山. 合肥: 安徽科学技术出版社, 1977.
- [65] R. Ruffini and M. Sasaki. "On a Semirelativistic Treatment of the Gravitational Radiation From a Mass Thrusted Into a Black Hole". 刊于: *Prog. Theor. Phys.* 66 (1981), pp. 1627–1638. DOI: 10.1143/PTP.66.1627.
- [66] B. S. Sathyaprakash and Bernard F. Schutz. "Physics, Astrophysics and Cosmology with Gravitational Waves". 刊于: *Living Reviews in Relativity* 12.1 (Mar. 4, 2009), p. 2. ISSN: 1433-8351. DOI: 10.12942/lrr-2009-2. URL: https://doi.org/10.12942/lrr-2009-2.
- [67] B. Schutz. *A First Course in General Relativity*. Cambridge University Press, 2009. ISBN: 9781139479004.

[68] A. Sesana, E. Barausse, M. Dotti, and E. M. Rossi. "LINKING THE SPIN EVOLUTION OF MASSIVE BLACK HOLES TO GALAXY KINEMATICS". 刊于: *The Astrophysical Journal* 794.2 (Sept. 2014), p. 104. ISSN: 1538-4357. DOI: 10.1088/0004-637x/794/2/104. URL: http://dx.doi.org/10.1088/0004-637X/794/2/104.

- [69] Changfu Shi et al. "Science with the TianQin observatory: Preliminary results on testing the no-hair theorem with ringdown signals". 刊于: *Phys. Rev.* D100.4 (2019), p. 044036. poi: 10.1103/PhysRevD.100.044036. arXiv: 1902.08922 [gr-qc].
- [70] M. Soares-Santos et al. "First Measurement of the Hubble Constant from a Dark Standard Siren using the Dark Energy Survey Galaxies and the LIGO/Virgo Binary—Black-hole Merger GW170814". 刊于: *the Astrophysical Journal Letters* 876.1, L7 (May 2019), p. L7. DOI: 10.3847/2041-8213/ab14f1. arXiv: 1901.01540 [astro-ph.CO].
- [71] The LIGO Scientific Collaboration et al. "GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs". 刊于: *arXiv e-prints* (Nov. 2018). arXiv: 1811.12907 [astro-ph.HE].
- [72] Maarten van de Meent. "Gravitational self-force on generic bound geodesics in Kerr spacetime". 刊于: *Physical Review D* 97.10, 104033 (May 2018), p. 104033. DOI: 10. 1103/PhysRevD.97.104033. arXiv: 1711.09607 [gr-qc].
- [73] Hai-Tian Wang et al. "Science with the TianQin observatory: Preliminary results on massive black hole binaries". 刊于: *Phys. Rev.* D100.4 (2019), p. 043003. DOI: 10.1103/PhysRevD.100.043003. arXiv: 1902.04423 [astro-ph.HE].
- [74] J. M. Weisberg and J. H. Taylor. "Relativistic Binary Pulsar B1913+16: Thirty Years of Observations and Analysis". 刊于: *Astronomical Society of the Pacific Conference Series* 328 (2005), p. 25. arXiv: 0407149 [astro-ph]. url: http://arxiv.org/abs/astro-ph/0407149.
- [75] 俞允强. 电动力学简明教程. 北京: 北京大学出版社, 1997.
- [76] 方励之. 普适性一例——伽利略相对性原理. 2012. url: http://fang-lizhi.hxwk. org/2012/01/02/.