Variational Inference

Evan Glas

Overview

- Motivation
- Mathematical Derivation
- Coordinate Ascent Variational Inference
- Applications

A Familiar Problem

Suppose we are interested in the true value of an unobserved value θ given observations X. What is the posterior distribution of θ given prior beliefs $p(\theta)$?

$$p(\theta|X) = \frac{p(X|\theta)p(\theta)}{p(X)}$$

Posterior Computation

Evidence

$$p(X) = \int_{\theta \in \Theta} p(X|\theta)p(\theta)d\theta$$

- Can become too expensive to compute p(X) under all but the simplest joint distributions $p(X, \theta)$.
 - E.g., p(X) may become intractable if θ is high dimensional or takes on a complicated prior.

Solutions

- Expectation Maximization
 - Avoid the problem entirely by simply optimizing the likelihood. Sacrifices computing a posterior distribution around the MLE.
- Sampling
 - Take random samples from the posterior or conditional posterior distributions
 - MCMC
 - Gibbs Sampling
 - Metropolis-Hastings
- Applying conjugate prior-posterior pairs
- Variational Inference

Variational Inference (VI)

- Variational Inference: a set of techniques for approximating and evaluating a proposal posterior distribution, $q(\theta)$, to match a true posterior $p(\theta|X)$.
 - Frames posterior approximation as an optimization problem.
- Goal: Find $q(\theta)$ as close as possible to $p(\theta|X)$.

VI: Past and Present

- 1976: Rustagi: Variational Methods in Statistics
- 1999: Jordan et. al: An Introduction to Variational Methods for Graphical Models
- 2003: Jordan et. al: Latent Dirichlet Allocation
- 2013: Kingma et. al: Auto-Encoding Variational Bayes
- 2021: Rombach et. al: *High-Resolution Image Synthesis with*

Conditioning Semantic

Denoising U-Net $\epsilon_{ heta}$

Latent Diffusion Models

What Does "Variational" Mean?

- From Calculus of Variations
 - The study of the optimization of functionals
- What is a "functional"?
 - A functional is a function-valued mapping.
 - Definite Integral: $\int_a^b f(x)dx$
 - Derivative at a point: $\frac{d}{dx} f(x)|_{\{x=x_0\}}$
 - That is, a functional takes a mapping that takes a function as input.
- How does this relate?
 - We seek to optimize a proposal posterior distribution $q(\theta)$, a function defined over θ .

VI: Optimization Function

- Goal: Find $q(\theta)$ as close as possible to $p(\theta|X)$.
 - What does "close" mean?
- Kullback-Leibler (KL) Divergence
 - A measure of distance between two probability distributions, P and Q

$$D_{KL}(P||Q) = \int_{\theta} p(\theta) \log \frac{p(\theta)}{q(\theta)} d\theta$$

• We hope to minimize the KL Divergence between $q(\theta)$ and $p(\theta|X)$.

$$\min_{q} D_{KL}(Q||P)$$

Evidence Lower Bound (ELBO)

• The optimization problem "maximize the KL Divergence" is equivalent to a reformulated problem, "minimize the ELBO".

$$D_{KL}(P||Q) = \mathbb{E}_q(\log q(\theta)) - \mathbb{E}_q(\log p(\theta|X))$$

= $\mathbb{E}_q(\log q(\theta)) - \mathbb{E}_q(\log p(\theta,X)) + \log p(X)$

• Note: $D_{KL}(P||Q) \ge 0$. $p(\theta)$ is constant with respect to q.

$$\Rightarrow \log p(X) \ge \mathbb{E}_q \left(\log \frac{p(\theta, X)}{q(\theta)} \right) = ELBO$$

• New goal: maximize the lower bound on $\log p(X)$, the ELBO.

Variational Inference: Now What?

- Variational methods take various approaches from this point.
 - All share the common objective function described previously.
- Choice of $q(\theta)$
 - E.g., is $q(\theta)$ normal, exponential, uniform, etc.?
- Optimization procedure
 - Do we need an exact solution?
 - Do we want a deterministic solution?
 - What computing resources are available?
- Classic Variational Inference: apply mean-field approximation and iterative optimization algorithm

Mean-field Approximation

• We may simplify the optimization problem by constraining $q(\theta)$ to a distribution that factorizes (mean-field approximation):

$$q(\theta) = \prod_{i=1}^{N} q_i(\theta_i)$$

- The mean-field approximation enables us to apply an iterative optimization algorithm
 - Optimize each q_i one at a time without considering the other $q_i(\theta)$

—— Exact Posterior

— Mean-field Approximation

VI Algorithm

From the mean-field approximation, we derive the VI update rule:

$$\mathbb{E}_q\left(\log\frac{p(\theta,X)}{q(\theta)}\right) = ELBO$$

- Differentiate the ELBO with respect to q_i and set to zero.
 Requires techniques from variational calculus

 - Simplify to get the following result:

$$q_i^*(\theta) = \exp\left(\mathbb{E}_{q_{i\neq j}}(\log p(\theta, X))\right)$$

Coordinate Ascent Variational Inference (CAVI)

$$q_i^*(\theta) = \exp\left(\mathbb{E}_{q_{i\neq j}}(\log p(\theta, X))\right)$$

- Like Gibb's sampling, we may apply the above update rule iteratively since $q(\theta)$ factorizes and we may derive the full conditional of θ_j with respect to $\{\theta\}_{i\neq j}$.
- This algorithm is called Coordinate Ascent Variational Inference (CAVI).
 - At each iteration, maximizes the ELBO with respect to q_i while holding the remaining $q_{i\neq j}$ fixed
 - Not guaranteed to reach global optimum (the ELBO is not necessarily concave)

CAVI Example: Gaussian Mixture Model

- We may apply CAVI towards the problem of fitting a Gaussian Mixture model.
- Consider the following observed data →
- We make the following assumptions:

•
$$x_i \sim \begin{cases} N(\mu_1, \sigma = 1), \ prob. = \phi_i \\ N(\mu_2, \sigma = 1), \ prob. = 1 - \phi_i \end{cases}$$

• $(\mu_1, \mu_2, \{\phi\}_i) \sim q$

CAVI Fitting: Visualization

Beyond CAVI

- CAVI Limitations
 - Requires one to compute the update rule explicitly, which may become difficult in high dimensions or complex $q(\theta)$.
 - Necessary to loop over the entire dataset at each iteration to compute the expectation $\mathbb{E}_{q_{i\neq i}}(\log p(\theta,X))$.
- Stochastic Gradient Descent
 - Can instead apply SGD, using only a portion of the data each step.
- SGD offers the computational efficiency to apply VI to large datasets and potentially complex $q(\theta)$.

Application: Topic Modeling

- Goal: cluster a set of documents given a bag of word assumption over potential topics.
 - Applies a Bayesian network to model the distribution of topics and words
- Latent Dirichlet Allocation
 - In Jordan et. al proposed modelling the posterior distribution of topics across documents and words across documents as Dirichlet priors
 - Optimize the posterior via VI

- *M* documents
- N_i words per document
- Z: topic of word j
- θ : distribution of topics for document i
- ϕ : distribution of words for topic K
- α, β : Dirichlet distribution parameters

https://en.wikipedia.org/wiki/Latent_Dirichlet_allocation#cite_note-blei2003-3

Application: Variational Autoencoder: VAE

- A machine learning model to approximate arbitrary distributions q(heta)
 - Represents $q(\theta)$ via a neural network
 - Jointly estimates $p(\theta, X)$
- Uses the same optimization function (maximize the ELBO)

Why VI?

- VI has several advantages over alternative posterior density estimation tools.
 - Faster convergence: stochastic sampling methods may take extremely long to converge.
 - Deterministic: not (necessarily) stochastic
 - Parallelizable: can apply posterior updates in parallel (assuming meanfield approximation)
- VI retains a broad range of applications within fields including statistics, physics, and machine learning.
 - E.g., stable diffusion