Basics of Machine Learning

Ismaël Lajaaiti

What is Machine Learning?

What is Machine Learning?

Algorithms that learn.

Image classification

Discovers the information by itself

Image classification

Discovers the information by itself

Machine Learning

Unsupervised

Reinforcement

Train with labeled data

Discovers the information by itself

Simulate game-like situations, get reward and penalties

K-means

Supervised

Machine Learning

Unsupervised

Reinforcement

Train with labeled data

Discovers the information by itself

Simulate game-like situations, get reward and penalties

K-means

AlphaGo

Machine Learning

Supervised

Unsupervised

Reinforcement

Train with labeled data

Discovers the information by itself

Simulate game-like situations, get reward and penalties

Image classification

K-means

AlphaGo

Categorical variable

Layer

Hidden layer

Deep neural networks

Stacked hidden layers

Deep neural networks

What is a neuron?

f = activation function

f = activation function

How does the neural network learn?

How does the neural network learn?

1. Define an objective: minimize distance between predicted and expected value

How does the neural network learn?

Define an objective: minimize distance between predicted and expected value
 Loss function

How does the neural network learn?

1. Define an objective: minimize distance between predicted and expected value

Loss function

Mean Square Error (MSE)
MSE =
$$\Sigma_{i}(y_{i,pred} - y_{i,true})^{2}$$

How does the neural network learn?

1. Define an objective: minimize distance between predicted and expected value

Loss function

Mean Square Error (MSE) MSE = $\Sigma_{i}(y_{i,bred} - y_{i,true})^{2}$

2. Optimize network to reach this objective

How does the neural network learn?

1. Define an objective: minimize distance between predicted and expected value

Loss function

Mean Square Error (MSE)

$$MSE = \sum_{i} (y_{i,pred} - y_{i,true})^{2}$$

2. Optimize network to reach this objective

Compute loss **gradient** vs. weights with backward propagation

Avoid **overfitting** i.e. neural network learn train data 'by heart' and is not able to extrapolate to new data

Avoid **overfitting** i.e. neural network learn train data 'by heart' and is not able to extrapolate to new data

1. Split data set in two subsets: training set & validation set

Avoid **overfitting** i.e. neural network learn train data 'by heart' and is not able to extrapolate to new data

- 1. Split data set in two subsets: training set & validation set
- 2. Track train & validation losses through the training

Avoid **overfitting** i.e. neural network learn train data 'by heart' and is not able to extrapolate to new data

- 1. Split data set in two subsets: training set & validation set
- 2. Track train & validation losses through the training
- Stop the training when validation loss stop to decrease = early stopping

Frameworks (in R)

Google Facebook

Industry-focused

Facebook

Research-focused

Industry-focused

Easier to learn (Keras)

Facebook

Research-focused

Harder to learn

Industry-focused

Easier to learn (Keras)

Requires Python

Facebook

Research-focused

Harder to learn

Does not require Python

Torch

Google

Industry-focused

Easier to learn (Keras)

Requires Python

Good documentation

Facebook

Research-focused

Harder to learn

Does not require Python

Poor documentation

Industry-focused

Easier to learn (Keras)

Requires Python

Good documentation

Facebook

Research-focused

Harder to learn

Does not require Python

Poor documentation

Examples of use

APPLICATION

Methods in Ecology and Evolution ecological

Machine learning to classify animal species in camera trap images: Applications in ecology

```
Michael A. Tabak<sup>1,2</sup>  | Mohammad S. Norouzzadeh<sup>3</sup> | David W. Wolfson<sup>1</sup> |

Steven J. Sweeney<sup>1</sup> | Kurt C. Vercauteren<sup>4</sup> | Nathan P. Snow<sup>4</sup>  | Joseph M. Halseth<sup>4</sup> |

Paul A. Di Salvo<sup>1</sup> | Jesse S. Lewis<sup>5</sup> | Michael D. White<sup>6</sup> | Ben Teton<sup>6</sup> |

James C. Beasley<sup>7</sup> | Peter E. Schlichting<sup>7</sup> | Raoul K. Boughton<sup>8</sup> | Bethany Wight<sup>8</sup> |

Eric S. Newkirk<sup>9</sup> | Jacob S. Ivan<sup>9</sup> | Eric A. Odell<sup>9</sup> | Ryan K. Brook<sup>10</sup> |

Paul M. Lukacs<sup>11</sup> | Anna K. Moeller<sup>11</sup> | Elizabeth G. Mandeville<sup>2,12</sup> | Jeff Clune<sup>3</sup> |

Ryan S. Miller<sup>1</sup>
```


Rates of speciation & extinction?

architectures

Thanks!

Questions