

Ministério da Educação

Universidade Federal dos Vales do Jequitinhonha e Mucuri Faculdade de Ciências Sociais, Aplicadas e Exatas - FACSAE Departamento de Ciências Exatas - DCEX

Disciplina: Cálculo Numérico Semestre: 2023/2 Prof. Dr. Luiz C. M. de Aquino

		1		
Aluno(a	a):	Data:	/	/

Avaliação I

Instruções

- Todas as justificativas necessárias na solução de cada questão devem estar presentes nesta avaliação;
- As respostas finais de cada questão devem estar escritas de caneta;
- Esta avaliação tem um total de 30,0 pontos.
- 1. [6,0 pontos] Deduza a expressão para o termo x_n no método de Newton:

$$x_n = x_{n-1} - \frac{f(x_{n-1})}{f'(x_{n-1})}$$

- 2. [6,0 pontos] Dê exemplo de uma função contínua que possua uma única raiz no intervalo [2;4], mas para a qual não é possível aplicar o Método de Newton para aproximar o valor dessa raiz. Justifique porque não é possível usar o método no seu exemplo.
- 3. [6,0 pontos] Seja a um número natural qualquer. Considere que n seja um quadrado perfeito mais próximo de a. Utilize o método de Newton para provar que $\sqrt{a} \approx \frac{a+n}{2\sqrt{n}}$. (Observação: dizemos que n é um quadrado perfeito se existe um natural m tal que $n=m^2$.)
- 4. [6,0 pontos] Use o método de Newton para calcular x_1 como aproximação de $\sqrt[3]{3}$ considerando $x_0 = 1, 5$.
- 5. [6,0 pontos] Escreva a expressão para o termo x_n do método de Newton para aproximar o ponto de interseção entre os gráficos de $f(x) = \frac{1}{x}$ e $g(x) = x^3 + 1$ no primeiro quadrante.