

A 30-Year Record of Surface Mass Balance (1966-95), and Motion and Surface Altitude (1975-95) at Wolverine Glacier, Alaska

Open-File Report 2004-1069

U.S. Department of the Interior

U.S. Geological Survey

maintaining the data needed, and of including suggestions for reducing	nection of minimation is estimated to completing and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar OMB control number.	ion of information. Send comments arters Services, Directorate for Infor	regarding this burden estimate mation Operations and Reports	or any other aspect of the , 1215 Jefferson Davis	is collection of information, Highway, Suite 1204, Arlington
1. REPORT DATE 2004		2. REPORT TYPE N/A		3. DATES COVE	RED
4. TITLE AND SUBTITLE				5a. CONTRACT	NUMBER
	of Surface Mass Bal 1975-95) at Wolverin	`	Motion and	5b. GRANT NUM	1BER
Surface Affitude (1	1973-93) at Wolvern	ie Giaciei, Alaska		5c. PROGRAM E	LEMENT NUMBER
6. AUTHOR(S)				5d. PROJECT NU	JMBER
				5e. TASK NUMB	ER
				5f. WORK UNIT	NUMBER
	ZATION NAME(S) AND AD fine Interior U.S. GOC 20240	* *	49 C. Street,	8. PERFORMING REPORT NUMB	GORGANIZATION ER
9. SPONSORING/MONITO	RING AGENCY NAME(S) A	AND ADDRESS(ES)		10. SPONSOR/M	ONITOR'S ACRONYM(S)
				11. SPONSOR/M NUMBER(S)	ONITOR'S REPORT
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release, distributi	on unlimited			
13. SUPPLEMENTARY NO The original docum	otes nent contains color i	mages.			
14. ABSTRACT					
15. SUBJECT TERMS					
16. SECURITY CLASSIFIC	CATION OF:		17. LIMITATION OF	18. NUMBER	19a. NAME OF
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	ABSTRACT UU	OF PAGES 114	RESPONSIBLE PERSON

Report Documentation Page

Form Approved OMB No. 0704-0188

A 30-Year Record of Surface Mass Balance (1966-95) and Motion and Surface Altitude (1975-95) at Wolverine Glacier, Alaska

Open-File Report 2004-1069

U.S. Department of the Interior U.S. Geological Survey

Fairbanks, Alaska 2004

U.S. DEPARTMENT OF THE INTERIOR

Gale A. Norton, Secretary

U.S. GEOLOGICAL SURVEY

Charles G. Groat, Director

Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government.

For additional information write to:

District Chief U.S. Geological Survey 4230 University Drive, Suite 201 Anchorage, AK 99508-4664

http://ak.water.usgs.gov

Contents

Abstract	
Introduc	tion
Acknow	edgments
Descript	ion of the measurement sites
Surface	mass balance3
St	akes5
St	ake measurements
Sr	now pits and cores5
Sr	now probing
Sı	ımmer surfaces 6
М	ass balance data7
	Measurements7
	Surface mass balances
	End-of-year estimates11
Glacier r	notion and surface altitudes
Ge	eodetic monuments
Si	te surveys
	acier motion
Sı	ırface altitudes
	of surface mass balance, motion, and surface altitude measurements
	ces cited
110101011	
Figu	res
1.	Map showing location of Wolverine Glacier, Kenai Peninsula, south-central Alaska, showing the
	principal measurement sites in the basin
2.	Map showing locations of long-term measurement sites and geodetic control monuments in Wolverine Glacier Basin, Alaska
3.	Diagram showing mass balance quantities measured at two different locations on a glacier 5
4.	Diagram of surface mass balance measurement site showing snow pit, stake, and snow probe
	measurements
5.	Graph showing average snow density above specified depths in the snow for different dates,
6.	Wolverine Glacier, Alaska
U.	of snow depth and age on the date of measurement

7.	Graph showing yearly net mass balance measurements at sites A, B, and C on Wolverine Glacier, Alaska
8.	Vertical section along the glacier flow line at Site A on Wolverine Glacier, Alaska, showing the relations among mass balance measurements, stake positions, components of glacier motion, and surface heights from August 17, 1984, to January 12, 1985
9-14.	Graphs showing:
9.	Glacier surface speed at site A on Wolverine Glacier, Alaska
10.	Glacier surface speed at site B on Wolverine Glacier, Alaska
11.	Glacier surface speed at site C on Wolverine Glacier, Alaska
12.	Glacier surface altitude at site A on Wolverine Glacier, Alaska
13.	Glacier surface altitude at site B on Wolverine Glacier, Alaska17
14.	Glacier surface altitude at site C on Wolverine Glacier, Alaska
able	S
1.	Snow and new firn depth and density measurements at sites A, B, and C on Wolverine Glacier, Alaska
2.	Mass balance data from site A on Wolverine Glacier, Alaska
3.	Mass balance data from site B on Wolverine Glacier, Alaska
4.	Mass balance data from site C on Wolverine Glacier, Alaska
5.	Daily and monthly average air temperature at 990 meters altitude in Wolverine Glacier Basin, Alaska, during the 1995 hydrologic year and October 1995, the first month on the 1996 hydrologic year 91
6.	Differences in air temperature, precipitation gage catch, and snow accumulation between measurement sites and the weather station located at the weather station located at 990 meters altitude in the Wolverine Glacier Basin, Alaska92
7.	Ratio between snow accumulation at measurement sites and the gage catch of precipitation recorded during winter at the weather station located at 990 meters altitude in the Wolverine Glacier Basin, Alaska
8.	Daily and monthly average precipitation gage catch at the weather station located at 990 meters altitude in Wolverine Glacier Basin, Alaska, during the 1995 hydrologic year and October 1996, the first month of the 1996 hydrologic year
10.	Summary of yearly surface net mass balance and annual mass balance measured at sites A, B, and C on Wolverine Glacier, Alaska, from 1966 to 199595
11.	Evolution of the project grid coordinates of survey monuments in Wolverine Glacier Basin, Alaska, and coordinate changes to Net79, the coordinate system used to report the glacier data96
12.	Glacier motion and surface altitude data from site A (590 meters) on Wolverine Glacier, Alaska97
13.	Glacier motion and surface altitude data from site B (1,070 meters) on Wolverine Glacier, Alaska 100
14.	Glacier motion and surface altitude data from site C (1,290 meters) on Wolverine Glacier, Alaska 103

CONVERSION FACTORS AND VERTICAL DATUM

Multiply	Ву	To obtain
millimeter (mm)	0.03937	inch
meter (m)	3.281	foot
kilometer (km)	0.6214	mile
square meter (m ²)	10.76	square foot
square kilometer (km ²)	0.3861	square mile
kilogram per liter (kg/L)	62.43	pounds per cubic foot
meter per year (m/yr)	3.281	foot per year
grad (angle)	0.9	degree (angle)
metric ton (t)	1.102	ton
degree Celsius (°C)	1.8, then add 32	degree Fahrenheit (°F)

VERTICAL DATUM:

In this report "sea level" refers to the National Geodetic Vertical Datum of 1929 (NGVD of 1929)--a geodetic datum derived from a general adjustment of the first-order level nets of both the United States and Canada, formerly called Sea Level Datum of 1929. Altitudes are the same in both the local coordinate system and the Universal Transverse Mercator system.

Symbols and abbreviations used in this report:

$b_0(i)$	initial ice balance at a site
$b_0(s)$	initial snow balance at a site
$b_I(i)$	final ice balance at a site
$b_1(ls)$	late snow balance at a site
<i>b</i> (<i>f</i>)	new firn balance
b(k)	internal accumulation at a site
b(s)	snow balance at a site
b(i)	old firn and ice balance at a site
b_a	annual snow, firn, and ice balance during a hydrologic year at a site
$b_a(f)$	annual new firn balance
$b_a(i)$	annual old firn and ice balance at a site
$b_m(s)$	measured snow balance at a site
b_n	yearly net firn and ice balance between times of minimum balance at a site

 $b_n(f)$ net new firn balance (ice content only) at a site

 $b_n(i)$ net balance of old firn and ice at a site

b' average stake height of the glacier surface within a 3- to 5-meter radius

 b'_0 stake height of the glacier surface at the beginning of a measurement period

 b'_{1} stake height of the glacier surface at the end of a measurement period

b'(i) water equivalent of old firn and ice above a stake base
 b'ss height of a summer surface above the base of a stake
 b* surveyed stake height of the snow, firn, or ice surface

 b^{**} stake height, vertical distance between base of a leaning stake and the glacier surface

d snow depth or depth of snow that has become new firn

d or δ as a prefix before any symbol means a change in that quantity

 D_h horizontal distance projected to a plane at sea level

°d degree-days

e emergence of the glacier surface during a measurement period

 \dot{e} emergence rate of the glacier surface

E estimated snow density, when listed after density data in tables

f Earth curvature and atmospheric refraction coefficient in optical surveying

LSnow abbreviation for late snow, fresh snow on new firn

m partially measured density, when listed after density data in tables

m(w) meters depth of snow or ice in water equivalent

M measured density, when listed after density data in tables

n number of probes, pits, and cores taken at the time of each measurementNFirn abbreviation for new firn, snow that has survived the summer melt season

OFirn abbreviation for old firn

P precipitation

 ρ density of snow, firn, or ice

 $\rho(s)$ density of snow $\rho(w)$ density of water $\rho(i)$ density of glacier ice

F dip of glacier motion near surface

S average glacier surface speed

 S_e average emergence speed

SFirn abbreviation for superimposed ice in old firn

SIce abbreviation for superimposed ice

 ss_0 initial summer surface, the glacier reference surface for a measurement year

 ss_1 final summer surface

 S_{wi} irreducible water-volume constant, water retained in snow by capillary retention

 t_0 beginning of hydrologic year

 t_1 end of hydrologic year

Q horizontal glacier surface motion directionUTM Universal Transverse Mercator Projection

V glacier motion vector

 V_m vertical angle to a geodetic monument

X project grid coordinate, increasing easterlyY project grid coordinate, increasing northerly

Z altitude above sea level; glacier surface altitude above sea level

 Z_0 altitude of the glacier surface at the beginning of a measurement period

 Z_1 altitude of the glacier surface at the end of a measurement period

 Z_i altitude of a surveying instrument Z_m altitude of a geodetic monument

 Z_{ss} summer surface altitude

A 30-Year Record of Surface Mass Balance (1966-95) and Motion and Surface Altitude (1975-95) at Wolverine Glacier, Alaska

By Lawrence R. Mayo, Dennis C. Trabant, and Rod S. March

ABSTRACT

Scientific measurements at Wolverine Glacier, on the Kenai Peninsula in south-central Alaska, began in April 1966. At three long-term sites in the research basin, the measurements included snow depth, snow density, heights of the glacier surface and stratigraphic summer surfaces on stakes, and identification of the surface materials. Calculations of the mass balance of the surface strata - snow, new firn, superimposed ice, and old firn and ice mass at each site were based on these measurements. Calculations of fixed-date annual mass balances for each hydrologic year (October 1 to September 30), as well as net balances and the dates of minimum net balance measured between time-transgressive summer surfaces on the glacier, were made on the basis of the strata balances augmented by air temperature and precipitation recorded in the basin. From 1966 through 1995, the average annual balance at site A (590 meters altitude) was -4.06 meters water equivalent; at site B (1,070 meters altitude), was -0.90 meters water equivalent; and at site C (1,290 meters altitude), was +1.45 meters water equivalent.

Geodetic determination of displacements of the mass balance stake, and glacier surface altitudes was added to the data set in 1975 to detect the glacier motion responses to variable climate and mass balance conditions. The average surface speed from 1975 to 1996 was 50.0 meters per year at site A, 83.7 meters per year at site B, and 37.2 meters per year at site C. The average surface altitudes were 594 meters at site A, 1,069 meters at site B, and 1,293 meters at site C; the glacier surface altitudes rose and fell over a range of 19.4 meters at site A, 14.1 meters at site B, and 13.2 meters at site C.

INTRODUCTION

Research into mountain climate, glacier responses to climate, and glacier runoff at Wolverine Glacier in the coastal, maritime Kenai Peninsula of southcentral Alaska (fig. 1) began with measurements in April 1966. This study at Wolverine Glacier is the only long-term, continuous monitoring effort

investigating climate, glacier processes, and glacier hydrology in the highly glacierized coastal mountains of southcentral Alaska.

Wolverine Glacier, approximately 18 km² in area and 7 km long, is one "link" in the International Hydrological Decade's (1964–75) North-South American "chain of glaciers" from the Antarctic Peninsula to Arctic Alaska (UNESCO, 1970). Two other glaciers in this chain are under routine observation by the U.S. Geological Survey (USGS): South Cascade Glacier in the maritime North Cascade Range of Washington (Krimmel, 1999); and Gulkana Glacier in the continental Alaska Range of interior Alaska (March and Trabant, 1998). Kahiltna and Traleika Glaciers near Mt. McKinley in the Alaska range have been observed since 1990 by the U.S. National Park Service using the same methods used at Wolverine and Gulkana Glaciers.

Three sites (fig. 1) were established on Wolverine Glacier for mass balance measurements. In this report, only surface mass balances are reported for these sites; internal freezing and melting processes are known, but not discussed here. In 1975, additional measurements of glacier surface altitude at fixed locations and ice motion began at the three sites. The purpose of establishing these three sites was to make year-round measurements of mass balance, flow, and surface altitude changes continuously over the long periods of time required for climate change research. The complete time-series of measurements of glacier mass balance, motion, and surface-altitude at each of these sites are presented in tables and graphs in this report.

ACKNOWLEDGMENTS

Research began at Wolverine Glacier as a result of the recognition that glaciers can be significant in both local and global water balance equations. Yet, few reliable data exist for glaciers. Many of the research concepts applied at Wolverine Glacier originated with Carl Benson, Herfreid Hoinkes, Mark Meier, Gunnar Østrem, Hans Rothlisberger, and Wendell Tangborn. Their pioneering work was essential.

Figure 1. Location of Wolverine Glacier, Kenai Peninsula, south-central Alaska, showing the principal measurement sites in the basin.

Wolverine Glacier is in a remote area of Alaska where weather and terrain conditions are severe. Even under ideal conditions, the work is not easy and patience is required to accomplish it. The work was interrupted frequently for 2 to 10 days by high winds, blowing snow, and fog that make glacier and helicopter travel impossible.

Stanley Jones devoted two years coping with these conditions—sometimes with no shelter available—to assist in establishing the necessary scientific equipment and other facilities. Later, several other people assisted in the investigation at Wolverine Glacier, both in winter and summer. These individuals include principally Chester Zenone, David Scully, and Gail Mayo, all of whom contributed to the research program. They were resourceful in accomplishing equipment repairs, contributing useful ideas, and made some of the initial calculations in the data sets. About 30 other individuals also assisted at Wolverine Glacier.

During the 30-year period, small teams of glaciologists travelled safely to Wolverine glacier a total of 115 times to maintain the continuous, year-round measurement campaign. The cooperation of all these people helped to ensure the safety and success of the measurements at Wolverine Glacier for three decades. The authors, as well as the science of glaciology, are indebted to the cumulative efforts of these scientists.

Robert Krimmel, William Harrison, Timothy Brabets, Elizabeth Snyder, Sonja Benson, Ben Kennedy, and Dave Meyer reviewed this report and offered useful suggestions that improved its clarity.

DESCRIPTION OF THE MEASUREMENT SITES

The three long-term measurement sites at Wolverine Glacier (fig. 2) are located in relatively flat parts of the glacier to minimize the damaging effects of snow creep on stakes. Site A, at 590 m altitude, is low in the glacier's ablation area. Site B, at 1,070 m, is normally high in the ablation area, but during years with large positive mass balances, it is low in the glacier's accumulation area. The glacier surface at site B in late summer is a complex mixture of old firn, superimposed ice, and iced firn (firn permeated with water because it is near the glacier's equilibrium line). When this slushy mixture refreezes during the subsequent winter, it usually has a density of 0.90 kg/L. Site C, at 1,290 m, is normally in the accumulation area of the glacier except during years with large negative mass balances, when it is very high in the ablation area.

During the first 2 years of observation, 1966 and 1967, the measurement sites were not at fixed locations; instead, the glacier's mass balance was mapped (Meier and others, 1971; Tangborn and others, 1977). The data presented in this report for those years are from the mass balance maps and the nearest measurement stake. The fixed measurement sites featured in this report were established in 1968. In 1975, sites A and B were moved about 100 m to the glacier's centerline, which was

defined for glacier-volume-change surveys. In 1978, site C was moved 208.4 m northeastward to the glacier's centerline.

A weather recording station was established at 990 m elevation near the western boundary of the glacier basin (Mayo and others, 1992; see fig. 2). The station is slightly lower than the glacier's average equilibrium line altitude and approximately 500 m from the west edge of the glacier. Air temperature and precipitation are recorded at the site since 1967.

SURFACE MASS BALANCE

The methods of glacier mass balance measurement at Wolverine Glacier evolved from those described in Meier (1960), Meier and Tangborn (1965), Østrem and Stanley (1969), Mayo and others (1979), and Mayo and Trabant (1982); and are similar to the methods used at several Alaska glaciers: Black Rapids Glacier (Heinrichs and others, 1995), and Gulkana Glacier (March and Trabant, 1998), Columbia Glacier (Mayo and others, 1979), and more recently at Kahiltna and Traleika Glaciers. The specific methods used at Wolverine Glacier are described in this report. The internal mass balance, consisting of internal accumulation (Trabant and Mayo, 1985) and internal ablation (Mayo, 1992), is not analyzed here.

Mass balance measurements at the surface of a glacier consist of measuring the changes in snow and ice that result from the cumulative effects of snow precipitation, snow compaction, melting of snow and ice, wind erosion of snow, freezing of water, and sublimation from ice. The measurements are simple in concept, that is, repeated measurements of the height of the glacier surface on stakes installed in the glacier, snow depths, and snow densities, and identification of the mass balance stratum at the surface of the glacier, such as snow, new firn, old firn, superimposed ice, and glacier ice. Making these simple field measurements is often physically demanding and potentially dangerous because of the frequently inclement weather and the remoteness of the site. Maintaining a continuous measurement program also is made difficult because stakes are distorted by glacier movement and snow and wind loading, snow pits require laborious excavation, travel can be dangerous, and snow probing and coring-auger samples do not always produce reliable measurements of the base of the annual snow layer.

Each year's mass balance measurements at a stake are referenced to the previous year's summer surface. The data resulting from these measurements are listed in the data files using a combined system, both as the net balance, b_n , in the stratigraphic system, and also as the annual balance, b_a , in the fixed-date system following the concepts developed by Mayo and others (1972).

The reference plane for each year's measurement, the summer surface, separates different glacier mass balance stratigraphic units, or strata. The summer surface is a time-transgressive feature on a glacier (fig. 3). It forms during

4 A 30-Year Record of Surface Mass Balance (1966-95) and Motion and Surface Altitude (1975-95) at Wolverine Glacier

Figure 2. Locations of long-term measurement sites and geodetic control monuments in Wolverine Glacier Basin, Alaska. (Map compiled from August 3, 1979, aerial photography and surveyed control panels)

the early fall at the top of the glacier, and then progressively later at lower altitudes as winter sets in. The amount of time required for the formation of this summer surface over the entire glacier varies from year to year depending on the local weather, typically taking 2-4 weeks at Wolverine Glacier.

Thus, the net new firn and ice balances, $b_{\rm n}(f)$ and $b_{\rm n}(i)$, at the three sites on Wolverine Glacier do not represent the same time period. Annual mass balances, $b_{\rm a}$, on the other hand, are reported for each fixed-date hydrologic year beginning October 1 and ending the following September 30. The balance data

Figure 3. Mass balance quantities measured at two different locations on a glacier. [Measurements made using the stratigraphic system referenced to the summer surface that moves with the glacier (Lagrangian coordinates). Annual balance quantities are obtained from these data by reference to the balance conditions at the beginning and end of the hydrologic year (Mayo and others, 1972). Symbols are: t_o , beginning of hydrologic year; t_p , end of hydrologic year; $b_o(s)$, initial snow balance; $b_1(ls)$, late snow balance; $b_m(s)$, measured snow balance; $b_n(f)$, net new firn balance; ss_o , initial (reference) summer surface; ss_p , final summer surface; $b_o(i)$, initial ice balance; $b_1(i)$, final ice balance; $b_n(i)$, annual new firn balance; and $b_o(i)$, annual old firn and ice balance]

together with air temperature and precipitation data from the basin are used to estimate the small changes in mass balance between the measured balances, the minimum balance, and the balance for the fixed-date year beginning on October 1.

Stakes

Each stake set in the glacier is labeled with a unique identification name and installed in a hole drilled with a manual auger or a steam drill. The stakes are 1-inch-(25-mm)-diameter metal electrical conduit cut to lengths of 3 m, and connected with short flanged pipes that fit inside the ends of each stake section. Small holes are drilled in the conduit precisely at 0.5-m intervals to serve as height markers and to let water out. A wood plug is driven into the base of each stake to prevent it from sinking into the ice. In the early years, the need for the wood plugs was not appreciated, so occasionally they were not used and some of these stakes sank into the ice.

At site A, a new stake is usually installed in September of each year to a depth of 10 to 11 m with about 3 m exposed above the ice surface for measurements in winter. No connector is put at the 6-m joint so the stake will come apart at that point during the following summer melt period. The stake is adjusted to be 3 m above the ice surface in the fall. At site B, a new stake is installed about every 2 years to a depth of 9 m. Each fall, stakes at site B that are in good repair are extended 4 to 5 m above the surface for winter measurements. At site C, stakes are installed about 3 m deep into old firn almost every year and extended to 4 to 5 m above the summer surface in the fall. In mid-winter, the stake again is extended to 3 m above the snow surface.

If a stake becomes buried during winter and cannot be found, another stake is installed nearby. If both the old and

new stakes are found at a later date, they can be measured and surveyed simultaneously. Assuming that the stakes' relative positions are constant, the balance and position of the temporarily lost stake can be accurately estimated, thus providing an unbroken measurement series.

Stake Measurements

At the time a stake is installed, and during each successive visit, the stake name and height of the snow, firn, or ice surface, (b'), on the stake are measured and recorded (fig. 4). Generally, snow and firn surfaces at Wolverine Glacier are smooth, without large wind features such as sastrugi and snow dunes. However, local relief on glacier ice surfaces commonly is 0.2 to 0.5 m.

Snow Pits and Cores

Both snow density and direct measurements to buried summer surfaces are possible when pits are dug in snow and firn. In very deep snow, a pit is dug through part of the snow, and auger core samples are taken from the floor of the pit to the base of the snow. If the snow is less than 3 m deep, coring of the snowpack is possible by simply thrusting a long tube into the snow. Because snow density is difficult to measure, relatively few measurements have been made at Wolverine Glacier, and most of those were made before 1980. Continuous vertical coring of the snow in pit walls using relatively large diameter coring tube (72.3 mm) that is 0.6-m long, produces highly accurate snow density data. However, auger coring is often discontinuous, with gaps in the core where the snow was very soft; in these cases, the density of missing layers was estimated. Pit and auger-coring sites are far enough

Figure 4. Surface mass balance measurement site showing snow pit, stake, and snow probe measurements. (b', average stake height of the glacier surface within a 3- to 5-meter radius; b'ss, height of summer surface above the base of the stake; m, meters)

from stakes so that stake and snow near the stake are not disturbed. As a result snow depths at pits may be slightly different from snow depths at stakes. A total of 107 snow pits and cores at Wolverine Glacier successfully produced snow density and depth measurements for the full depth of the snowpack (table 1). [Note: all tables are in a section at the back of this report]. Additional snow density measurements in the upper part of deep snowpacks are listed in the mass balance tables (tables 2, 3, and 4).

Snow Probing

Snow depths in the ablation area of Wolverine Glacier are measured with a probe rod if the snow is less than about 6 m deep, the ice at the summer surface is very hard, and a false summer surface (a very hard layer in the snow) is usually absent. When possible, 5 to 10 probe measurements are made within a 3- to 5-m radius of the stake to obtain the average snow depth. In this way, errors caused by local variations of snow depth and surface roughness near the stake are reduced. Sometimes the summer surface, especially in the accumulation area, is difficult or impossible to identify when probing. All probing data are listed in the mass balance tables in this report; however, some data were disregarded because subsequent measurements indicated that the probing did not produce the

correct snow depth. Probing, while relatively easy, is the least reliable measure of snow depth at Wolverine Glacier.

Summer Surfaces

Summer surfaces (ss₀ and ss₁, fig. 3) at Wolverine Glacier are usually easily identifiable, but in some instances, can be difficult to identify if they are very clean. Care is taken with all measurements to ensure that the reference summer surface is identified correctly. Several problems can arise with identification of a summer surface. (1) A false summer surface can be created by a fall storm with mixed rain and snow, which forms a slush layer. When the slush freezes, a solid false summer surface is formed. Even though it feels like glacier ice with a probe, careful observation in a pit can reveal that the hard layer does not have a concentration of dirt at its surface, and that it overlies an identifiable dirty summer surface. (2) Occasionally, no dirt accumulates on the snow surface during the summer. (3) Thick ice layers may form in the snow during severe winter ice storms or during spring when meltwater percolates into cold snow. These can stop a probe rod and give the appearance of a solid ice surface at the floor of a snow pit. (4) Even in the ablation area, summer surfaces may be misidentified because a layer of ice usually forms at the base of the snow overlying cold glacier ice in spring when meltwater

refreezes. At Wolverine Glacier, layers of transient, superimposed ice are commonly 0.01 to 0.05 m thick.

In the glacier's accumulation area at site C, a 1-m² piece of plywood with a hole in the center is placed over the stake and lowered to the surface each fall. During subsequent measurements, the plywood is used to positively identify the previous summer surface. However, even this technique is not foolproof because investigators have believed several times that they were probing to the plywood, whereas other measurements indicated that they had been probing to an ice layer in the snow above the plywood. The best method to ensure accuracy of snow depth data with a plywood marker is to use a steam drill to penetrate to the plywood. Additionally, sawdust and wire meshes can be placed on the surface during late summer to identify it, but plywood is the easiest and most effective. Plywood markers can also be used for glacier motion analysis when a stake is buried by snow.

Mass Balance Data

The glacier surface mass balance tables for Wolverine Glacier (tables 2, 3, and 4) present the measurements, necessary interim calculations, and mass balance results for each site in meters of water equivalent, m(w), for each surface stratum of the glacier: snow, new firn, old firn, superimposed ice, and old firn and ice. For clarity, all measurements that were needed to calculate the mass balance at a site are included with each measurement year, even though some duplication results from year to year. Each stake is identified by its name, and information is given about the date of installation and any unusual features of the stake. Explanations of each column in the tables are given in the following paragraphs.

Measurements

Field Notes: This column references the original field notes on file at the Fairbanks office of the USGS. This reference is included to expedite further research that might require access to related observations.

Date: Measurement dates are in month/day/year format. Specific dates relating to the beginning and end of each measurement year are also listed. These include the date of minimum balance at the beginning of the net-balance year, the date of the beginning of each fixed-date hydrologic year (October 1), the date of the minimum balance at the end of the net-balance year, and the date of the end of the fixed-date hydrologic year (September 30).

Stake Heights: Tape: Each stake measurement, b', is the height in meters on the stake from the base of the stake to the glacier surface. The measurement incorporates a visually estimated average surface height within a 3- to 5-m radius of the stake. Standard practice is to mark this height on the stake and then measure to the point with a pocket tape from the nearest height mark (hole) in the stake. If measurements of more than one stratum are made, the entries are recorded; for

example, both the snow surface and superimposed ice surface are recorded for stake 66-3 on 4/23/66 (table 2).

Survey: Beginning in 1978, each stake was surveyed at two points—one well above the glacier surface, and the other at the glacier surface. The glacier surface point as viewed with a theodolite, b^* , may not be precisely the same point as the b'measurement, so both are listed. Another stake height, b^{**} , is a calculated value that has been corrected for stake lean or other distortions. Stake heights are corrected for lean by first calculating the lean of the stake top using the surveyed position data, then calculating the stake bow if in snow, and finally calculating the coordinates of the stake base using any lean previously measured for the lower sections of the stake. This method was developed by Hodge (1972) for use at Nisqually Glacier, Washington. The calculated vertical distance from the stake base to the sloping glacier surface directly above it is listed as b^{**} . This value would have been the stake height had the stake been vertical. In calculations of mass balance involving stake heights, b^{**} values are used instead of b' values when available, because mass balance quantities are always considered to be vertical measurements.

Stratum: Identification of the stratum at a glacier surface is essential to interpretation of mass balance. Surface strata include snow, superimposed ice, new firn, old firn, glacier ice, and "superfirn," a mixture of old firn and superimposed ice. To save space in the data tables, these are listed, respectively, as Snow, SIce, NFirn, OFirn, Ice, and SFirn. New snow from a recent storm and old snow are distinguished in some places.

- *Snow* includes all ice layers and liquid water contained in the snow. On a glacier, the summer surface identifies the base of the snowpack. Late snow resting on new firn is part of the snow accumulation during a hydrologic year and is also part of the snow strata observed during the subsequent measurement year.
- Superimposed ice (SIce) is a layer of ice on top of glacier ice that forms by freezing of water in the base of the snowpack. Superimposed ice that forms during the spring, then remelts during the summer, is termed "transient superimposed ice." The density of superimposed ice at Wolverine Glacier is estimated to be 0.9 kg/L because of the relative absence of air bubbles.
- Firn is snow that has survived at least one summer's melting and becomes part of the net accumulation added to the glacier. New firn (NFirn) refers to the increment of firn that forms on a glacier during a specific measurement year. The new firn of one year becomes old firn (OFirn) thereafter. The density of old firn ranges from about 0.6 to 0.9 kg/L.
- Glacier ice is metamorphosed old firn that can also include additional ice that froze within the glacier. Glacier ice is identified by its large grain size (0.02 to 0.15 mm in diameter), highly compressed air bubbles, and foliation structure. The density of glacier ice at Wolverine Glacier has not been measured, but is assumed to

- be 0.90 kg/L because it contains relatively few gas bubbles. The density of pure ice is 0.917 kg/L.
- Superfirn (SFirn), a new term introduced in this report, is firn that has become saturated with water and refrozen. This combination of superimposed ice and firn has been observed by the authors on numerous glaciers near the equilibrium line following one or more years of positive mass balance in locations where firn overlies glacier ice. Superfirn is fine grained, has numerous small air bubbles, is horizontally stratified, and has a dirty summer surface at the top, similar to firn. The density of superfirn is near 0.9 kg/L.

Snow Depth: Snow depth is calculated from the field measurements. First, the stake height of each summer surface ("Obsvd. b'ss", tables 2, 3, and 4) is calculated as either b^{**} , b^* , or b' minus the average snow depth. Next, the average summer surface height, Average b'ss, for the entire winter is calculated by weighting the measurements by the number (n)of probes, pits, and cores made at the time of each measurement. This is the most reliable measure of the height of the reference summer surface at a stake. Finally, the snow depth, d, is the difference between the stake heights, b^{**} , b^{*} , or b'and the average summer surface height, average b'ss. This system utilizes all relevant information at each stake to produce the most representative snow depth at a stake.

The very deep spring snowpack at site C in 1981 was difficult to measure and required detailed notation than normal in the mass balance data set (table 4). The 1980 reference summer surface at site C was difficult to document because all of the stakes were buried and digging a snow pit deeper than 10 m was not feasible. Probing through cold winter snow on January 26, 1981, defined a hard layer at a depth of 6.7 m, and hard surfaces that felt like firn at depths of 10.25 and 10.42 m. Four corings on January 27, 1981, exposed a grain size increase from 0.5-mm diameter to 1.5-mm diameter at a depth of 12.00 m. On June 7, 1981 core samples were taken from the site (surveyed and assuming average glacier motion) where sawdust was spread on the snow surface in August 1980. These samples were melted to search for debris that might indicate a summer surface. One sawdust particle and numerous small vegetation fragments were found in the sample that came from the depth interval from 13.4 to 13.7 m; the coring auger flights held two more sawdust particles. Checks of field notes from earlier years show that sawdust had not been put at this site previously. Stake 81-C2 was placed on a small wooden base in this core hole. On September 2, 1981, a core sample from the sawdust site contained an abrupt change in snow grain size at a depth of 9.65 m, which was about the same level relative to the stake as the sawdust found earlier. Coring on September 25, 1981, did not identify a summer surface nor did it go deep enough to encounter the previously identified grain size changes or sawdust layer. Analysis of the reference summer surface (table 4) determined that the grain size change found at 12.00-m depth found on January 27, 1981; the sawdust at an average depth of 13.55 m on June 7,

1981, and the abrupt grain size increase found at 9.65-m depth on September 2, 1981, are the 1980 summer surface. Therefore, the snowpack was concluded to have reached a depth of 13.6 m by June 5 or 6, 1981, and to have been 9.4-m deep on September 11, 1981, the end of the summer. Although this is not the record snow depth for Wolverine Glacier (15.2 m was measured on June 7, 1977, at 1,530-m altitude), the snow depth at site C in 1981 was greater than expected, judging from the snow depths at sites A and B.

Pit: Snow depth measured at a pit in which the summer surface can be identified visually is the most reliable method. However, it is a measurement at only one point and the observation is laborious, so pit studies are made much less frequently than other types of snow depth measurements.

<u>Probe</u>: Snow depths measured by probing become more reliable when done in conjunction with pit measurements, because false summer surfaces that are exposed in the pit can be identified when probing. Probing can be done quickly at a number of points, so probing is useful in establishing the average snow depth, especially in the ablation area, which has a rough ice surface. If a snow pit was not made to confirm the probing horizon, depth measured by snow probing was verified by previous evaluations of the stake height of the summer surface whenever possible.

Average, standard error, and number of snow depth measurements: Snow depth measurements use all of the pit and probe data on a given date. However, because the snow depth, d, at a stake is the difference between the stake height of the glacier surface $(b^{**}, b^{*}, \text{ or } b')$ and the average summer surface height (b'ss), it is not an independent evaluation of snow depth and is, therefore, not included in the calculation of standard error (s.e.) or counted in the number (n) of measurements. The average of the direct snow depth measurements is used when no measurements at a stake are available.

Summer Surface: Observed: Stake heights of reference summer surfaces, b'ss (fig. 4), are listed as "Obsvd." in the mass balance data tables (2, 3, and 4) for each combination of stake and snow-depth measurement.

Average: When the summer surface heights cluster about a central value, the b'ss on the stake is assigned the average value. A series of summer surface heights that continuously rise relative to the stake indicate that the stake is sinking into the glacier and the average stake height is not used for mass balance calculations.

Surface Mass Balances

Old Firn and Ice: Density is mass per unit volume. Snow and ice densities are used to convert linear measurements of depth and stake height to water equivalent values. The "stake-reference" old firn and ice balance, b'(i), in meters water equivalent, m(w), is the product of summer surface average height, b'ss, on the stake and the density of the stratum. This interim value, b'(i), is the basis for calculating the amount of old firn and glacier ice that melts during the summer and is posted in tables 2, 3, and 4. The annual ice balance, $b_a(i)$, is the difference between the amount of old firn and ice, b'(i), at the beginning of the measurement year and the amount remaining at the end of the year.

Accurate snow and firn density data are essential for mass balance measurements. A total of 107 full-depth snow and firn density measurements were made at Wolverine Glacier (table 1) for this study. Numerous other partial-depth measurements were made also and are reported with the stake data (tables 2, 3, and 4).

Samples of snow and firn for density measurements are continuous vertical cores rather than horizontal cores. Vertical core sampling produces accurate average density data for each depth interval cored (Østrem and Stanley, 1969). Horizontal cores produce accurate information about internal layering for identifying snow and firn strata (Benson, 1959), but the data can be difficult to interpret to obtain the average density of a stratum. At Wolverine Glacier, vertical coring was chosen for its accuracy and speed, and summer surfaces were identified as by searching for dirty layers. Although this method works in most years, the dirt marking summer surfaces at Wolverine Glacier is not distributed uniformly, so it can be missed by a coring auger. Occasionally, there is no dirt on the summer surface at Wolverine Glacier.

The accuracy of measuring snow density has not been studied at Wolverine Glacier. Some investigators, for example, George Claggett, U.S. Department of Agriculture Snow Surveyor, oral communication, 1984, have estimated that small samplers, such as the McCall (11.61 cm² cross-section area) push-type sampler, may under-sample loose snow by about 6 percent. Larger samplers, such as the Norwegian tube (41.05 cm²) are estimated to be accurate to within 2 percent in firm snow.

Density measurements of deep snow tend to be more accurate than measurements of shallow snow because more samples of deep snow are collected, and random errors tend to cancel when the average density is calculated. Snow density measurements in this report are posted to three digits and the sampling method is identified (table 1). Reporting values is probably more precise than can realistically be obtained but was done so that precise corrections can be applied in the future for each method, thus avoiding additional errors associated with rounding. This is consistent with the standard practices followed for performing all calculations with more significant digits than can be measured absolutely and rounding the final result.

Snow and New Firn: The snow balance, b(s), for any date is the snow depth, d, at the stake multiplied by the density of snow, $\rho(s)$. The product has the dimension of depth in meters of water equivalent, m(w), after the density has been converted to a relative density with respect to water, $\rho(s)/\rho(w)$.

Snow Density: Snow density, $\rho(s)$, can be measured (M), partially measured (m), or estimated (E) from generalized knowledge of snow density as a function of snow depth and date. Density can be measured by one or a combination of methods -- various core sampling devices, vertical coring in a pit wall, and occasionally extended in depth by vertical coring from a pit floor to the base of the snow.

Two methods have been used for estimating snow density when snow depth is the only measurement. In one method, the snow density is measured in the upper part of the snowpack and an estimate of the unmeasured lower part of the snowpack is made. To do this, reliable snow density measurements are plotted so that the average density above any specified depth in a snowpack is shown (fig. 5). When the density measured

Figure 5. Average snow density above specified depths in the snow for different dates, Wolverine Glacier, Alaska. (The circled dot shows a measurement of snow density at site B on May 13, 1992 of 0.44 kilograms per liter average density to a partial depth of 2.51 meters. The average density for the entire snowpack of 3.74 meters depth is estimated from this graph to be 0.47 kilograms per liter)

Figure 6. Average snow and new firn densities (numerals) at Wolverine Glacier, Alaska, as a function of snow depth and age, on the date of measurement. (Contours are a generalization from the data and are used for estimating snow density when only snow depth and date are known. Density values are kilograms per liter)

in the upper part of the snowpack is plotted, the density for the entire snowpack can be estimated by assuming that the increase in snow density with depth is a reasonable estimate of the density of the unmeasured part of the snowpack. Snow density entries based on partial measurements are given the notation "m" in the mass balance data tables (tables 2, 3, and 4).

If no snow density is measured, the average density of the entire snowpack must be estimated. Snow depth and density data for Wolverine Glacier (table 1) show that snow and new firn densities increase both with depth and with age, where age is defined in terms of the date of measurement (fig. 6). The generalized contours of density on figure 6 are used to obtain the density estimates listed in the mass balance data tables (tables 2, 3, and 4); these estimates are indicated by the notation "E."

NFirn: New firn, $b_n(f)$, is the seasonal snow remaining at the time of minimum balance at the end of the summer in the accumulation area of a glacier. Snow that becomes new firn is a mixture of ice crystals, liquid water, and air. However, only the ice component of the snow becomes a relatively permanent addition to the glacier. The liquid component is in temporary storage. Some of it is converted into internal accumulation, b(k), by freezing during the next winter (Trabant and Mayo, 1985); the rest drains from the glacier as the firn compresses gradually into glacier ice. The liquid component of new firn creates a potential problem in glacier mass balance account-

ing, because the same material could be counted twice, once in the new firn, and a second time when it freezes. At Wolverine Glacier, the liquid component is subtracted from the snow balance when snow becomes new firn.

The liquid component is analyzed separately for determining the amount of internal accumulation that will be included in the new firn. The rest of the liquid is assumed to become part of the glacier's runoff. The amount of ice (without water) contained in new firn, $b_n(f)$, at Wolverine Glacier, is calculated by subtracting the water volume retained by capillary retention, 0.07 of the void space of the old snow, from the snow balance, b(s):

$$b_{y}(f) = b(s) - S_{yy}[d(1-\rho(s)/\rho(i))], \tag{1}$$

where

 S_{wi} is the irreducible water volume constant, the water retained in snow by capillary retention (Colbeck, 1974);

d is the depth of snow that becomes new firn;

 $\rho(s)$ is the snow density that is measured (bulk density including water); and

 $\rho(i)$ is the density of ice, assumed to be 0.9 kg/L.

Yearly Results: The last two columns of the mass balance tables are the total surface mass balances summed for the two periods defined in the combined glacier mass balance system (Mayo and others, 1972). The net balance, b_n , is the snow, firn, and ice balance accumulated since the previous minimum balance at the beginning of the net-balance year when the initial summer surface formed. The annual balance, b_a , is the sum of the snow, firn, and ice balance accumulated since October 1, the beginning of the fixed-date hydrologic year.

Both the stratigraphic system (net) and the fixed-date system (annual) mass balances are derived from the same field measurements. The initial snow and ice balance at each site are listed for the dates of minimum balance and the beginning of the hydrologic year. During a year, several stakes may be measured at a single site. Frequently only one stake is judged to be reliable, so that stake is used to compute the mass balance for the site. For other years, measurements from several stakes are averaged for determining the mass balance of the site. Balance measurements made during the year result in "year-to-date" values listed under the "Yearly Results" heading (tables 2, 3, and 4). The net balance of old firn and ice, $b_n(i)$, is zero during the winter. For this reason, only the annual old firn and ice balances, $b_a(i)$, are tabulated separately (tables 2, 3, and 4).

Other mass balance quantities can be identified or calculated from the measurements. For example, the initial snow balance, $b_o(s)$, is the new snowpack on the glacier at the beginning of a hydrologic year. This value is listed in tables 2, 3, and 4 as the snow balance, b(s), on October 1. Similarly, the initial ice balance, $b_o(i)$, is the loss of ice after October 1 and before winter accumulation begins. The quantity is the difference between the ice balance at the stake, b'(i), on October 1 and the b'(i) listed for the date of the minimum balance, when the minimum balance occurs after October 1. In other words, this is the part of a year's net balance that occurs after the beginning of the next fixed-date year.

End-of-Year Estimates

For field safety reasons, the last visit of the summer usually is made before the time of the minimum balance and seldom precisely at the beginning of the fixed-date mass balance year, on October 1. The field safety concerns are that shortly after the time of minimum mass balance, thin new snow bridges form over crevasses and intense winter storms prevail at Wolverine Glacier; both increase the dangers of surface access to and movement in the vicinity of the measurement sites.

The net balance minima and balance values for the end of the fixed-date (hydrologic) year are measured or estimated using late summer measurements of air temperature and precipitation and the mass balances measured before and after the end of summer. Minimum values for the net mass balance are actually measured during subsequent winter field visits, before the next spring melting begins. However, the time of occur-

rence of the net mass balance minima and the mass balance at the end of the hydrologic year must be estimated.

A simple mass balance model is used to estimate the date of the net balance minimum and the adjustment values needed to evaluate the mass balance at the end of the hydrologic year. The model is applied to the period between the measured mass balances that bound the end of summer and uses the average lapse rate of air temperature between the nearby coastal city of Seward, 17 m altitude (fig. 1), and Wolverine Glacier, 990 m altitude, of -5.8°C/1,000 m (calculated from data in Mayo and others (1992), Kennedy (1995), and tables 5 and 6 in this report). Daily precipitation at each site is estimated by using the ratio of snow accumulation at each site and the precipitation-gage catch (tables 7 and 8) for periods when there is no snowmelt. Snow and rain are differentiated by assuming that wet snow falls when the daily average air temperature is between 0°C and +1.7°C, as documented elsewhere (U.S. Army, 1956, p. 55). During periods when temperatures are within that range, snow accumulation and snowmelt occur simultaneously. Dry snow is assumed to accumulate when the daily average temperature is below 0°C, and rain is assumed to be falling when the daily average temperature is above +1.7°C at each site. The model estimates ablation on the basis of the daily average air temperature and the rate of icemelt expressed in meters of water equivalent per degree-day, m(w)/°d (table 9). A melting rate of -0.0045 m/°C-day is used to estimate the melting of wet snow and glacier ice.

The date of the net mass balance minimum at each site is estimated by using the model to evaluate daily snow and ice balances for the period after the late-summer field trip. After the date of the net mass balance minimum is determined, the mass balance at the end of the hydrologic year is evaluated.

If the net mass balance minimum occurs before the end of the hydrologic year, the amount of accumulation between the two dates must be estimated. This estimated quantity is termed the late snow balance, $b_i(ls)$. The late snow balance is evaluated for the period between the net balance minimum and the end of the hydrologic year as the cumulative value of the modeled daily precipitation as snow.

If the net mass balance minimum occurs after the end of the hydrologic year, the amount of melting of snow and ice between the two dates is estimated. This estimated quantity is termed the final ice balance, $b_i(i)$. The final ice balance is evaluated for the period between the end of the hydrologic year and the time of the net balance minimum by accumulating the number of degree-days warmer than 0° C at each measurement site and multiplying by the average melt rate.

The estimated quantities are small increments of mass balance that are added to or subtracted from the field measurements to determine the annual mass balance for the hydrologic year. The estimated quantities are different for each site and each year. However, the estimated quantities introduce no cumulative errors in mass balance because the final ice balance increments, $b_i(i)$, and late snow balance, $b_i(ls)$, of one year become the initial balances, $b_o(i)$ and $b_o(s)$, of the next year.

Figure 7. Yearly net mass balance measurements at sites A, B, and C on Wolverine Glacier, Alaska. (Lines connecting measurements are discontinuous where data are missing)

All the mass balance measurements from April 1966 through January 1996, the estimated balance-minimum dates, and end-of-year balances are listed in tables 2, 3, and 4 for each measurement stake. The net and annual mass balances from 1966 through 1995 at three sites on Wolverine Glacier are summarized in table 10 and in figure 7.

GLACIER MOTION AND SURFACE ALTITUDES

Geodetic Monuments

Permanent geodetic monuments are installed at Wolverine Glacier at strategic locations (fig. 2) where the snow usually is blown away. The monuments are visible from the glacier because the reference points are the tops of cement-filled pipes that extend above the rock, except the monument Stylus, which is a sharp, rocky peak, and Precip, which is the precipitation gage orifice at the weather station. These monuments provide year-round reference marks for all motion and glacier surface altitude measurements. The coordinates assigned to the monuments are based on the Universal Transverse Mercator Projection (UTM Zone 6). A local, rectilinear coordinate system at Wolverine Glacier has its origin at UTM Easting = 392,000 m and Northing = 6,693,000 m; NAD 27; its linear scale is located at sea level.

The coordinates of the monuments (table 11) evolved from 1976 to 1979 for several reasons. First, the altitude of the surface where the horizontal scale is calculated in the local system changed, initially at 1,000 m altitude, and finally at sea

level. Second, eventually all angles and all sides of adjacent triangles were measured, which improved the accuracy. Third, the coordinates were based, at first, to geodetic monuments having coordinates that pre-dated the 1964 Good Friday earthquake (9.2 Richter magnitude) in south-central Alaska. Before 1979, the horizontal coordinates represented pre-earthquake positions. The altitude control at Wolverine Glacier, however, was based on the pre-earthquake positions of control monuments but corrected for the lowering of 0.9 m measured in nearby coastal areas (Plafker, 1969).

In 1979, the USGS established post-earthquake coordinates in the southern region of Alaska to correct for the considerable crustal movement that accompanied the 1964 earthquake. The 1979 coordinates at Wolverine Glacier (Net79, table 11) are based on surveys to the glacier from control monuments having post-1964 earthquake positions. The horizontal coordinates of Net79 are at sea level.

Project grid coordinates (Net79) at Wolverine Glacier can be converted to UTM (Zone 6) coordinates with the following equations:

UTM Easting =
$$392,000 + 0.999735X$$
 (2)

UTM Northing =
$$6,693,000 + 0.999735Y$$
 (3)

Great care was taken at Wolverine Glacier to establish accurate monument coordinates. All sides and angles of each adjacent triangle were measured. Then the angles and side lengths were adjusted within the measurement uncertainty to form mathematically correct figures. Accurate vertical angles were measured simultaneously between two survey theodolites located over each of two monuments so that the effects of Earth curvature and atmospheric refraction could be determined and eliminated in the process of defining the precise altitude differences between monuments. As a result, adjacent

monuments have relative position accuracies on the order of 0.01 to 0.02 m in X, Y, and Z coordinates, and the cumulative uncertainty over the entire geodetic network is on the order of 0.10 m. High relative precision of monument coordinates enables the analysis of variable atmospheric refraction conditions that result from variable weather conditions during each glacier survey. Thus, variable atmospheric conditions do not introduce vertical errors in stake positions and glacier surface altitudes at Wolverine Glacier.

Geodetic surveys before 1979 either were shifted by the amounts indicated in table 11 or recalculated using Net79 coordinates. In either case, accuracy is maintained within about ± 0.05 m. Final values are rounded to 0.1 m because glacier surface roughness and stake deformation produce larger uncertainties in the glacier motion results than do the surveys.

Site Surveys

Accurate measurements of stake positions and glacier surface altitudes are made routinely at sites A, B, and C at Wolverine Glacier at the same time that mass balance measurements are made. A description of the survey methods used at Wolverine Glacier is given here because some of the methods are very useful for glacier research but are not described in standard surveying texts.

To reduce the time required for the measurements, any of four survey methods can be used: resection, foresight, and intersection (see Mayo and Trabant, 1982, for details). The method selected is the one that requires the least travel. Surveys are made most frequently with a theodolite set up on the glacier surface. Its precise location is determined by the resection method. The local targets then are surveyed by short foresights. At site A, intersection from two easily accessible monuments sometimes is used if the stake does not need attention, thus avoiding a hike to the site. Occasionally, when crevasses block access to the stakes or when many stakes are visible, intersection surveys are made to the stakes from two accessible resection sites.

To set up a theodolite on the glacier, three small plywood boards are placed in holes chopped in the ice or stamped firmly into the snow to serve as supports for the tripod legs. A period of 5 to 10 minutes is sometimes required between the initial setup and the beginning of the survey to allow the supports and the instrument to stabilize. If the temperature is above 0° C, snow or ice is placed on the tripod feet to shield them from the effects of sunlight and warm air.

After the theodolite is stable, measurements are made to three monuments to determine the coordinates of the instrument by resection. The closest monument typically is used as the principal reference, and then a second monument is observed. The principal monument is surveyed a second time to detect any instrument motion. Immediately, the third monument is measured, and a final closing measurement of the principal monument is made. This produces eight independently measured horizontal angles between the monuments,

six vertical angles to the principal reference monument, and two vertical angles to the other two monuments.

The horizontal angle data are used to calculate the instrument's horizontal location by the resection method that is explained in standard surveying texts (for example, Moffitt and Bouchard, 1987).

To reduce the effect of variable meteorological conditions, the measured vertical angles are used to solve for two unknowns: the Earth curvature/atmospheric refraction coefficient, f, and the altitude of the surveying instrument, Z_i , using a technique developed by the authors for surveying at large mountain glaciers (Mayo and others, 1979). The method requires using two equations to solve for the two unknowns. The equation used to calculate the instrument altitude is:

$$Z_i = Z_m - D_b \tan V_m - f D_b^2, \tag{4}$$

where

 Z_m is the monument altitude,

 D_h is the horizontal distance between the instrument and the monument, and

 V_m is the vertical angle to the monument.

The second equation is the same as the first (equation 4) but uses a second monument, its altitude, and the measured vertical angle to it. In the general case, the subscript, m, is replaced by A, B, or C to identify the monuments. Because Z_i must have a single value, the right sides of the two equations can be equated. Then, assuming that the combined Earth curvature and refraction coefficient, f_i has a unique value:

$$f = \frac{Z_B - D_{hB} \tan V_B - Z_A + D_{hA} \tan V_A}{(D_{hB})^2 - (D_{hA})^2} \ . \tag{5}$$

Once the curvature and refraction coefficient, f, is known, the instrument altitude, Z_i , can be calculated using equation 4.

In practice, the measurements to the three monuments are paired in three combinations, AB, BC, and CA. This results in three independent determinations of Z_i and f. Some care must be exercised in interpreting these results. For example, as the horizontal distances to the two monuments approach the same value, the denominator of equation 5 approaches zero and the ability of this technique to determine Earth curvature/ atmospheric refraction diminishes. The strongest solution for f is where the difference in the distances to two monuments is relatively large. Knowing this, the surveyor can select an optimal group of monuments for a resection. The coefficient f normally ranges from about 0 to 70 x 10^{-9} . If f is 0, light travels along a curve that is the same as Earth curvature; the Earth appears to be flat and there is no correction. This can be caused by temperature inversion conditions. If f is 70 x 10⁻⁹, then the vertical correction is 0.28 m at a horizontal distance, D_{h} , of 2,000 m. Values outside these limits are rejected if there is a reason to suspect they are weak. For example, sometimes the exact top of a monument is not clear in the telescope view.

If that is noted, calculations of f using that monument are also suspect.

The final instrument altitude, Z_i , is determined using only the reliable vertical measurements and strong solutions for f. The result of this altitude determination process is that variable atmospheric refraction conditions do not contaminate the data. Thus, resection location data are relatively accurate despite the fact that instruments are set up on snow and ice and that they are calculated on the basis of monuments located at some distance away at the margin of the glacier.

After the theodolite location is established by resection, care is taken not to disturb the instrument when foresight surveys to the stake and glacier surface are made. Local survey targets include two points on each stake: one above the glacier surface and a second at the glacier surface. These two surveys enable calculation of stake lean and the position of the base of the stake.

The glacier surface altitude at a fixed location is measured during each visit by surveying three points on the glacier surface. The points form a triangle surrounding a horizontally fixed measurement site, enabling calculation of the surface altitude at the fixed location (the horizontally fixed sites are listed later in the "Surface Altitudes" section). In some cases, the glacier surface beneath the surveying instrument serves as one of these points and the glacier surface at the stake often serves as a second point, so only one additional surface point is needed. To help select the three surface points, the field crew carries a map showing the expected location of the stake relative to the horizontally fixed surface altitude measurement site.

Glacier Motion

The base of a stake is the most reliable point to follow for glacier ice motion determination because the stake base is affected least by stake lean. Stake positions listed in tables 12, 13, and 14 are the coordinates of the bases of the stakes. The average ice speed between surveys is calculated from the stake displacement in three dimensions and the number of days between surveys divided by 365.25 days per year. This results in speed expressed as meters per year. Stake locations are calculated initially to 0.01-m accuracy, then rounded to 0.1 m because of uncertainties about the stake lean and the location of the stake base. The uncertainties of stake position surveys are on the order of 0.1 to 0.2 m in the horizontal and 0.05 to 0.10 m in the vertical.

Glacier motion directions, both horizontal and vertical, are reported using the grad angular unit, in which 100 grads is a right angle. Horizontal motion direction is reported using standard rectangular to polar coordinate conversions where zero is east and the positive direction is counter clockwise from east. Vertical motion direction also is reported in grad units where horizontal is zero and positive is upward.

Sometimes stakes are temporarily lost because they are buried by deep snow. Nevertheless, the glacier motion record can be maintained without interruption. A buried stake sometimes can be found by predicting where glacier motion has moved it, then finding that location by surveying and digging a wide pit at the site. In one case, the stake was not found in the initial pit, but a compass indicated its presence in the snow behind the pit wall, where it was, indeed, found.

The method used for recovering glacier motion data from a temporarily lost stake is to install another stake near the buried stake and survey it. Later, when both stakes become visible, both are surveyed to determine their relative positions. Assuming that the two stakes have maintained their relative positions, the coordinates of the buried stake can be calculated for the dates when only the replacement stake was surveyed This procedure sustains a continuous glacier motion record, even when deep snow interrupts sequential measurements. When this Procedure is used, the mass balance data tables (tables 2, 3, and 4) list a stake as buried, but the ice motion tables (tables 12, 13, and 14) indicate estimated coordinates for the buried stake and a calculated stake height, b'.

Surface Altitudes

Glacier surface altitudes at horizontally fixed locations are calculated for the following three sites on Wolverine Glacier (Mayo and Trabant, 1982):

Site	X (meters)	Y (meters)
A	2502.6	1773.0
В	3075.8	4796.9
C (before 2/28/78)	2160.5	6473.6
C (after 2/28/78)	2353.1	6553.2

Snow depths reported in the mass balance tables (tables 2, 3, and 4) are transferred to the ice motion tables (tables 12, 13, and 14) to calculate the altitudes of buried summer surfaces. Surface altitude and snow depth values are rounded to 0.1 m for calculations of summer surface altitudes and the emergence component of motion because that is the general precision of determining glacier surface altitudes.

Emergence (fig. 8) is the vertical component of glacier motion measured near the surface of a glacier (Meier and Tangborn, 1965). In other words, emergence is a measure of how much glacier motion would change the thickness of the glacier at a location that is fixed in space if the mass balance were zero. The motion is emergent if the vector is directed upward; that is, the glacier would become thicker at this location if the mass balance were zero. The motion is submergent (negative emergence) if the vector is directed downward; the glacier would become thinner at this location if the mass balance were zero. The emergence for a period can be determined as the difference between the change in altitude of the glacier

Figure 8. Vertical section along the glacier flow line at Site A on Wolverine Glacier, Alaska, showing the relations among mass balance measurements, stake positions, components of glacier motion, and surface heights from August 17, 1984, to January 12, 1985. (The diagram shows a single stake at two different times and the fixed location. Stake heights of the glacier surface (b') are listed in tables 2 and 12. The method used to evaluate the position of a temporarily buried stake using a second, nearby stake, is defined in text section "Glacier Motion." Consecutive positions of stake 87-A2 (X, Y, and Z), glacier motion vector (V), stake readings (b'), altitudes of the glacier surface at the fixed-location measurement site (Z₁ each date), and emergence (e) are listed in table 12. The upward emergence (e) caused by the vertical angle of motion being less steep downward than the glacier's surface slope indicates that the glacier would have become 4.7 meters (m) thicker at this site during the measurement period if the mass balance had been zero. However, 4.1 m of snow accumulated between the two dates and, as a result, the glacier altitude increase, δZ , was the total of 4.7 m (emergence) + 4.1 m (mass balance) = 8.8 m. Other abbreviations: b'ss, height of summer surface above base of stake; Zss, summer surface altitude; g, grad angular units; m/yr, meters per year)

surface at a fixed location and the altitude effect of the mass balance change during the period (eq. 6 and fig. 8).

The emergence, e, for the period between surveys is:

$$e = (Z_1 - Z_0) - (b'_1 - b'_0),$$
 (6)

where

Z₁ is the altitude of the glacier surface at the fixed site at the end of the period,

Z₀ is the altitude of the glacier surface at the fixed site at the beginning of the period,

 b_1' is the stake height of the glacier surface at the end of the period, and

 b'_0 is the stake height of the glacier surface at the beginning of the period.

The emergence rate, \dot{e} , in meters per year, is the emergence, e, divided by the time period, in years. Emergence and emergence rate are tabulated on tables 12, 13, and 14.

RESULTS OF SURFACE MASS BALANCE, MOTION, AND ALTITUDE MEASUREMENTS

Thirty years of net and annual mass balances from April 1966 through the 1995 measurement year at three sites on Wolverine Glacier are summarized in table 10 and in figure 7. The estimated balance-minimum dates, end-of-year balances, and all the field measurements are listed in tables 2, 3, and 4 for each measurement stake. The average annual balance at site A (590 meters altitude) was -4.06 meters water equivalent; at site B (1,070 meters altitude), -0.90 meters water equiva-

lent; and at site C (1,290 meters altitude), +1.45 meters water equivalent.

Glacier ice motion measurements began in February 1975; the data are listed through January 1996. The measurements provide a 21-year record of seasonal glacier surface speeds (figs. 9, 10, and 11) and glacier surface altitude fluctuations (figs. 12, 13, and 14). A small number of breaks in the record are caused by extreme conditions, such as the burial of stakes by snow, snow depths too great for reliable probing, or summers with large amounts of melt that caused stakes to

fall before they could be reset. The average surface speed at the three sites from 1975 to 1996 was 50.0 m/yr at site A, 83.7 m/yr at site B, and 37.2 m/yr at site C. Surface speeds ranged from a minimum of 34.1 m/yr to a maximum of 74.0 m/yr at site A; from 67.4 to 100.3 m/yr at site B; and from 27.3 to 50.3 m/yr at site C. In response to mass balance and glacier motion variations, glacier surface altitudes rose and fell over a range of 19.4 m at site A, 14.1 m at site B, and 13.2 m at site C. The average surface altitudes were 594 m at site A, 1,069 m at site B, and 1,293 m at site C.

Figure 9. Glacier surface speed at site A on Wolverine Glacier, Alaska. (When more than one stake was measured during a period, the average speed is plotted. Lines are discontinuous where data are missing)

Figure 10. Glacier surface speed at site B on Wolverine Glacier, Alaska. (When more than one stake was measured during a period, the average speed is plotted. Data for stakes located more than 100 meters from the flow line though the measurement site are not shown. Lines are discontinuous where data are missing)

Figure 11. Glacier surface speed at site C on Wolverine Glacier, Alaska. (When more than one stake was measured during a period, the average speed is plotted. Lines are discontinuous where data are missing)

Figure 12. Glacier surface altitude at site A on Wolverine Glacier, Alaska. (The line connecting the surface altitude measurements also is drawn through estimates of the seasonal maxima and minima. Dots below the line representing the glacier surface indicate altitudes of summer surfaces buried under the snow)

Figure 13. Glacier surface altitude at site B on Wolverine Glacier, Alaska. (The line connecting the surface altitude measurements also is drawn through estimates of the seasonal maxima and minima. Dots below the line representing the glacier surface indicate altitudes of summer surfaces buried under the snow)

Figure 14. Glacier surface altitude at site C on Wolverine Glacier, Alaska. (The line connecting the surface altitude measurements also is drawn through estimates of the seasonal maxima and minima. Dots below the line representing the glacier surface indicate altitudes of summer surfaces buried under the snow)

REFERENCES CITED

Benson, C.S., 1959, Physical investigations of the snow and firn of northwest Greenland, 1952, 1953, and 1954: U.S. Army Corps of Engineers, Snow Ice and Permafrost Research Establishment Research Report 26, 62 p.

Colbeck, S.C., 1974, The capillary effects on water percolation in homogeneous snow: Journal of Glaciology, v. 13, no. 67, p. 85-98.

Heinrichs, T.A., Mayo, L.R., Trabant, D.C., and March, R.S., 1995, Observations of the surge-type Black Rapids Glacier, Alaska, during a quiescent period, 1970-92: U.S. Geological Survey Open-File Report 94-512, 95 p., appendixes.

- Hodge, S.M., 1972, The movement and basal sliding of the Nisqually Glacier, Mt. Rainier: University of Washington, Department of Atmospheric Sciences, Science Report, 409
 p. (Ph.D. dissertation.)
- Kennedy, B.W., 1995, Air temperature and precipitation data, Wolverine Glacier Basin, Alaska, 1967-94: U.S. Geological Survey Open-File Report 95-444, 79 p.
- Krimmel, R.M., 1999, Water, ice, meteorological, and speed measurements at South Cascade Glacier, Washington, 1998 balance year: U.S. Geological Survey Water-Resources Investigations Report 99-4049, 36 p.
- March, R.S., and Trabant, D.C., 1998, Mass balance, meteorological, ice motion, surface altitude, and runoff data at Gulkana Glacier, Alaska, 1994 balance year: U.S. Geological Survey Water-Resources Investigations Report 97-4251, 31 p.
- Mayo, L.R., 1992, Internal ablation—An overlooked component of glacier mass balance: Eos, Transactions American Geophysical Union, v. 73, no. 43, p. 180.
- Mayo, L.R., March, R.S., and Trabant, D.C., 1992, Air temperature and precipitation data, 1967-88, Wolverine Glacier Basin, Alaska: U.S. Geological Survey Open-File Report 91-246, 80 p.
- Mayo, L.R., Trabant, D.C., March, Rod, and Haeberli, Wilfried, 1979, Columbia Glacier stake location, mass balance, glacier surface altitude, and ice radar data, 1978 measurement year: U.S. Geological Survey Open-File Report 79-1168, 72 p.
- Mayo, L.R., Meier, M.F., and Tangborn, W.V., 1972, A system to combine stratigraphic and annual mass balance systems: A contribution to the International Hydrological Decade: Journal of Glaciology, v. 11, no. 61, p. 3-14.
- Mayo, L.R., and Trabant, D.C., 1982, Geodetic trisection, altitude, and ice-radar techniques used at Knik Glacier, Alaska, and summary of 1979, 1980, and 1981 data: U.S. Geological Survey Open-File Report 82-685, 26 p.
- Mayo, L.R., Trabant, D.C., March, Rod, and Haeberli, Wilfried, 1979, Columbia Glacier stake location, mass balance, glacier surface altitude, and ice radar data, 1978 measurement year: U.S. Geological Survey Open-File Report 79-1168, 79 p.
- Meier, M.F., 1960, Mode of flow of Saskatchewan Glacier, Alberta, Canada: U.S. Geological Survey Professional Paper 351, 70 p.
- Meier, M.F., and Tangborn, W.V., 1965, Net budget and flow of South Cascade Glacier, Washington: Journal of Glaciology, v. 5, no. 41, p. 547-566.

- Meier, M.F., Tangborn, W.V., Mayo, L.R., and Post, Austin, 1971, Combined ice and water balances of Gulkana and Wolverine Glaciers, Alaska, and South Cascade Glacier, Washington, 1965 and 1966 hydrologic years: U.S. Geological Survey Professional Paper 715-A, 23 p.
- Moffitt, F.H., and Bouchard, H., 1987, Surveying (8th edition): New York, Harper Collins Publishers, 876 p.
- Østrem, Gunnar, and Stanley, Alan, 1969, Glacier mass balance measurements—A manual for field and office work, revised edition: Canadian Department of Energy, Mines and Resources, and The Norwegian Water Resources and Electricity Board, 107 p.
- Plafker, George, 1969, Tectonics of the March 27, 1964, Alaska Earthquake: U.S. Geological Survey Professional Paper 543-I, 74 p.
- Tangborn, W.V., Mayo, L.R., Scully, D.R., and Krimmel,
 R.M., 1977, Combined ice and water balances of Maclure
 Glacier, California, South Cascade Glacier, Washington, and
 Wolverine and Gulkana Glaciers, Alaska, 1967 hydrologic
 year: U.S. Geological Survey Professional Paper 715-B, 20
 p.
- Trabant, D.C., and Mayo, L.R., 1985, Estimation and effects of internal accumulation on five glaciers in Alaska: Annals of Glaciology, v. 6, p. 113-117.
- UNESCO, 1970, Combined heat, ice and water balances at selected glacier basins: United Nations Educational, Scientific, and Cultural Organization, International Association of Scientific Hydrology, Technical Papers in Hydrology, no. 5, 20 p.
- U.S. Army, 1956, Snow hydrology; summary report of snow investigations: U.S. Army Corps of Engineers, North Pacific Division, Portland, Oregon, 435 p.

DATA TABLES 1-14

Table 1. Snow and new firn depth and density measurements at sites A, B, and C on Wolverine Glacier, Alaska. (Measurements made by snow pit or coring the layer and identifying the summer surface)

[Abbreviations: NFirn, new firn; PS, pit wall samples for density measurements taken with SIPRE tubes having a cross-sectional area of 26.24 cm²; CS, core using a SIPRE 45.60-cm² sampling auger; PN, pit and Norwegian 41.05-cm² tube sampler; CN, core using a Norwegian 62.21 cm² sampling auger; PN/CN, combined pit and core below the pit floor to the summer surface using the Norwegian tube and auger; CM, core using a McCall 11.61-cm² tube sampler. All snow and firn samplers inserted vertically. Abbreviations of units: m/d/y, month/day/year; m, meters; kg/L, kilograms per liter. When NFirn and Snow are measured at the same pit, they are listed in the chronological order of the deposit's age]

	Site A (a					Site B (al					Site C (al			
Date	Stratum	-	Density	Method	Date	Stratum	-	Density	Method	Date	Stratum		Density	Method
m/d/y		m	kg/L		m/d/y		m	kg/L		m/d/y		m	kg/L	
4/23/66	Snow	1.60	0.473	PS	4/01/67	Snow	0.97	0.362	PN	4/02/67	Snow	4.38	0.446	PN
4/04/68	Snow	2.52	0.397	PN	1/26/68	Snow	2.02	0.418	PN	1/30/68	Snow	3.04	0.428	PN
1/28/69	Snow	0.60	0.361	PN	4/08/68	Snow	3.64	0.413	PN	7/19/68	Snow	3.00	0.560	PN
4/13/69	Snow	1.69	0.364	PN	10/10/68	Snow	0.46	0.294	PN	8/22/68	Snow	1.21	0.536	PN
4/18/70	Snow	3.45	0.432	PN	1/27/69	Snow	1.64	0.392	PN	10/10/68	NFirn	1.04	0.519	PN
6/10/70	Snow	1.86	0.535	PN	4/12/69	Snow	4.05	0.356	PN	10/10/68	Snow	0.91	0.326	PN
1/09/71	Snow	0.79	0.291	PN	11/19/69	Snow	1.25	0.400	PN	1/26/69	Snow	2.40	0.410	PN
4/27/71	Snow	2.46	0.365	PN	4/11/70	Snow	6.00	0.442	PN/CN	6/03/69	Snow	5.78	0.518	PN
1/11/72	Snow	0.41	0.345	PN	6/09/70	Snow	4.40	0.569	PN/CN	7/31/69	Snow	2.20	0.560	PN
4/08/72	Snow	0.21	0.336	PN	7/24/70	Snow	3.02	0.615	PN	9/13/69	NFirn	1.60	0.614	PN
1/06/73	Snow	0.83	0.296	PN	1/11/71	Snow	2.02	0.369	PN	9/13/69	Snow	0.30	0.430	PN
4/19/73	Snow	2.13	0.341	PN	4/29/71	Snow	4.79	0.404	PN	11/19/69	Snow	2.62	0.422	PN
3/09/74	Snow	0.98	0.338	PN	7/10/71	Snow	3.65	0.570	PN	4/19/70	Snow	8.48	0.472	PN/CN
2/08/75	Snow	1.60	0.377	PN	10/16/71	Snow	0.83	0.305	PN	9/29/70	NFirn	5.11	0.584	CN
2/25/76	Snow	0.83	0.375	PN	1/13/72	Snow	1.25	0.350	PN	9/29/70	Snow	0.28	0.291	PN
2/22/77	Snow	5.06	0.539	PN	4/10/72	Snow	1.68	0.354	PN	1/08/71	Snow	2.70	0.361	PN
6/10/77	Snow	3.33	0.610	PN	6/21/72	Snow	1.60	0.502	PN	7/11/71	Snow	4.50	0.598	PN
3/02/78	Snow	3.00	0.389	PN	7/12/72	Snow	0.77	0.520	PN	10/19/71	NFirn	2.37	0.573	PN
6/09/88	Snow	2.64	0.587	CM	1/04/73	Snow	1.25	0.338	PN	10/19/71	Snow	1.59	0.351	PN
1/12/96	Snow	0.90	0.354	CM	4/16/73	Snow	3.30	0.371	PN	1/13/72	Snow	2.15	0.387	PN
					6/01/73	Snow	3.19	0.445	PN	4/10/72	Snow	2.73	0.384	PN
					10/12/73	Snow	0.38	0.324	PN	1/08/73	Snow	2.50	0.342	PN
					3/06/74	Snow	2.17	0.390	PN	4/18/73	Snow	4.87	0.376	PN
					6/08/74	Snow	2.39	0.579	PN	7/06/73	Snow	4.73	0.552	PN
					2/07/75	Snow	2.90	0.411	PN	10/16/73	NFirn	2.75	0.561	PN
					6/03/75	Snow	4.31	0.560	PN	10/16/73	Snow	1.06	0.325	PN
					10/27/75	Snow	0.48	0.320	PN	3/05/74	Snow	3.41	0.372	PN
					2/23/76	Snow	2.07	0.378	PN	6/08/74	Snow	3.50	0.508	PN
					7/12/76	Snow	0.97	0.671	PN	2/06/75	Snow	3.35	0.413	PN
					10/15/76	Snow	0.80	0.330	PN	8/19/75	Snow	2.18	0.587	PN
					6/11/77	Snow	5.90	0.570	CS	10/28/75	NFirn	1.66	0.594	PN
					10/24/77	Snow	1.52	0.294	PN	10/27/75	Snow	0.95	0.389	PN
					3/01/78	Snow	4.03	0.374	PN	2/23/76	Snow	2.90	0.381	PN
					3/07/79	Snow	2.67	0.404	PN	7/13/76	Snow	2.72	0.581	PN
					1/20/82	Snow	2.10	0.435	PN	10/20/76	NFirn	0.32	0.548	PN
					1/19/84	Snow	2.58	0.390	CM	10/20/76	Snow	1.84	0.365	PN
					10/01/87	Snow	0.47	0.316	PN	6/08/77	Snow	8.90	0.536	SC
					2/16/89	Snow	2.36	0.452	CM	10/25/77	Snow	2.50	0.308	NP
					1/06/91	Snow	1.12	0.364	CM	9/29/78	Snow	0.15	0.390	NP
					5/13/91	Snow	3.12	0.398	CM	9/02/81	Snow	9.65	0.600	CS
					1/22/92	Snow	3.15	0.355	CM	1/19/84	Snow	4.29	0.414	CM
					1/31/95	Snow	3.26	0.381	CM	1/13/85	Snow	3.60	0.375	CS
										8/28/85	Snow	3.51	0.586	CS
										1/06/91	Snow	1.93	0.408	CM
										1/13/96	Snow	2.97	0.397	PN

Table 2. Mass balance data from site A (590 meters altitude) on Wolverine Glacier, Alaska

[Field Notes, locator for observation notebook entries; abbreviation methods are explained in the Mass balance data section. Stake reading, b', average height of the surface above a stake base within 3- to 5-m radius, measured by pocket tape; b^* , average surface height on a stake measured by surveying; b^{***} , average height on a leaning stake calculated (beginning in 1979) as the vertical distance between the stake base and the sloping glacier surface above it, and is the most accurate stake reading. *Stratum*, mass balance stratigraphic unit; Sice, superimposed ice; OFirn, old firn; SFirn, superimposed ice in old firn; NFirn, new firn. Snow Depth, d, measured vertically in pits and core holes and by probing. Average depth, d; standard error, s.e.; and number of observations, n, calculated from the pit, core, and probe data. Measured summer surface height between stratigraphic units, Obsvd. b'ss, is each stake reading minus the average snow or new firn depth at a pit or core hole measured at the same time. Average summer surface height at the stake, Average b'ss, is the average of the measured summer surfaces each season weighted by the number of measurements each observation. Old Firn and Ice Density, ρ , is estimated unless noted as measured. The water equivalent depth of old firn and ice above the stake base, b'(i), is used to calculate the old firn and ice loss, $b_a(i)$, since the beginning of the hydrologic year. Snow and New Firn Depth, d, listed under Surface Mass Balance, is the difference between the most accurate stake reading, b', b', or b', and the average summer surface height at the stake, Average b'ss. Snow and New Firn density, ρ , is measured, M; partially measured, m; or estimated, E; see Mass balance data section for methods. Surface Mass Balance Yearly Results, b(i), old firn and ice balance after October 1; b(s), snow balance; b', weither net or annual new firn balance; and b_a , annual balance, are derived from the measurements and explained in t

				OBSERV	ATIONS-							<		S	URFAC	CE MAS	SS BA	LANCE-			
		<	-Stake Rea	ding>	:	Snow	Depth		-	Summe	r Surface	<old< th=""><th>Firn and</th><th>Ice></th><th><</th><th>Snow</th><th>and l</th><th>New Firn-</th><th>></th><th>Yearly</th><th>Results</th></old<>	Firn and	Ice>	<	Snow	and l	New Firn-	>	Yearly	Results
Field	Date	Tape	Survey		Pit/Core	Probe	Average	s.e.	n	Obsvd.	Average	Density	Stake	Ice	Depth	Densi	ty	Snow	NFirn	Net	Annual
Notes		b'	b^* b^*	** Stratum	d	d	d			b'ss	b'ss	ρ	b'(i)	b(i)	d	ρ		b(s)	b(f)	bn	ba
	m/d/y	m	m r	n	m	m	m	m		m	m	kg/L	m(w)	m(w)	m	kg/L	,	m(w)	m(w)	m(w)	m(w)
							196	6 ME	ASU	REMEN	T YEAR										
		(Minimu	ım balancı	e) Date not l	known; no	weath	er data at	the gl	acie	r.								0.00			
	10/01/65	(Hydrole	ogic year be	egins) Initial	and final b	alance o	onditions	of the h	ıydro	logic yea	ar not obse	erved.									
		First ma	ss balance	measurement	at Wolveri	ne Glac	ier.														
		STAKE	66-3 (woo	d stake instal	led 4/23/6	6; flexil	ole connec	tion at	3-m	joint)											
M45A	4/23/66			Snow	1.60	1.58	1.58	0.03	3						1.58	0.473	M	0.75			
					Snow list	ed abov	e does not	include	e a 0.	03-m thi	ck layer of	f transient	superim	posed ic	e at its	base.					
		8.05		SIce	0.03		0.03		1	8.02					0.03	0.90	Е				
	Tot	tal of Sno	w and Supe	erimposed Ice:	1.63		1.61				8.02	0.90	7.22		1.61	0.48	m	0.77		0.77	
M68A	6/19/66			Snow			0.05		1		8.02	0.90	7.22		0.05	0.60	Е	0.03		0.03	
							Observed	"thin s	now'	at the st	ake.										
M98A	9/03/66	4.00		Ice								0.90	3.60							-3.62	
	9/30/66	(Hydrole	ogic year ei	nds)																	
		(Minimu	ım balance) Date not	known; no	weathe	r data at th	e glaci	er.				2.30					0.00		-4.92	
												Minimun	n balance	estimat			ations	of May 1	967.		
M154A	10/20/66		ried.	Snow		0.50	0.50		1						0.50	0.30	E	0.15			
M81B	5/28/67	2.50		Ice								0.90	2.25								
M83A	5/30/67	2.46		Ice	2% remna	ant snov	cover of	area ne	ar sta	ıke.		0.90	2.21								

Table 2. Mass balance data from site A (590 meters altitude) on Wolverine Glacier, Alaska--Continued

				(OBSERVA	ATIONS							<		S	URFAC	E MA	SS BA	ALANCE-			
		<	Stake	Readin	g>	<	Snov	v Depth		>	Summe	r Surface	<old< th=""><th>Firn and</th><th>Ice></th><th><</th><th>Snow</th><th>and i</th><th>New Firn-</th><th>></th><th>Yearly</th><th>Result</th></old<>	Firn and	Ice>	<	Snow	and i	New Firn-	>	Yearly	Result
Field	Date	Tape	Surv	ey	-	Pit/Core	Probe	Average	s.e.	n	Obsvd.	Average	Density	Stake	Ice	Depth	Densi	ty	Snow	NFirn	Net	Annua
Notes		b'	b^*	b**	Stratum	d	d	d			b'ss	b'ss	ρ	b'(i)	b(i)	d	ρ		b(s)	b(f)	bn	b_a
	m/d/y	m	m	m		m	m	m	m		m	m	kg/L	m(w)	m(w)	m	kg/L	,	m(w)	m(w)	m(w)	m(w)
								196	7 ME	ASU	REMEN	T YEAR										
		STAKE	E 66-3 (i	nstalle	1 4/23/66)																	
	10/01/66	(Hydrol	ogic yea	ır begin	s)	Initial bal	ance coi	ndition for	the hy	drolo	gic year	not observ	ved.									
		(Minim	um balaı	nce)	Date not	known; no	weather	r data at th	e glaci	er.				2.30					0.00		0.00	
M154A	10/20/66	Stake b	uried.		Snow		0.50	0.50		1				2.30		0.50	0.30	E	0.15		0.15	
Map 67-1	4/01/67	Stake b	uried.		Snow		1.00	1.00		1				2.30		1.00	0.39	E	0.39		0.39	
M80B	5/26/67	Stake n	ot found																			
M81B	5/28/67	2.50			Ice								0.90	2.25							-0.05	
M83A	5/30/67	2.46			Ice	2% snow	cover of	f area near	stake.				0.90	2.21							-0.09	
SHJ	8/02/67	Stake fo	ound fall	en over	•																	
		STAKE	E 67-4 (i	nstalle	1 5/30/67)									Ice balar	ice conti	nued fro	om Sta	ke 66	-3.			
M83A	5/30/67	7.52			Ice								0.90	6.77							-0.09	
SHJ	8/02/67	3.60			Ice								0.90	3.24							-3.62	
M137C	9/18/67	2.25			Ice								0.90	2.03							-4.83	
	9/30/67	(Hydrol	ogic yea	r ends)										1.91					0.00		-4.95	
Photo	10/04/67				Snow			0.10		1				1.88		0.10	0.30	E	0.03		-4.95	
								Thin snow	obser	ved f	rom airc	raft.										
	10/14/67	(Minim	um balaı	nce)										1.77					0.00		-5.09	
M66C	6/07/68	2.80			Snow			0.83			1.97	1.97	0.90	1.77		0.83	0.55	E	0.46			
						Snow dep	th meas	ured at nea	arby St	ake 6	68-4A.											

Table 2. Mass balance data from site A (590 meters altitude) on Wolverine Glacier, Alaska--Continued

		<	Stake	Readi	ng>	<	Sno	w Depth		>	Summe	r Surface	<old< th=""><th>Firn and</th><th>Ice></th><th><</th><th>Snow</th><th>and l</th><th>New Firn-</th><th>></th><th>Yearly</th><th>Result</th></old<>	Firn and	Ice>	<	Snow	and l	New Firn-	>	Yearly	Result
Field	Date	Tape	Sur	vey		Pit/Core	Probe	Average	s.e.	n	Obsvd.	Average	Density	Stake	Ice	Depth	Densi	ty	Snow	NFirn	Net	Annua
Notes		b'	b*	b**	Stratum	d	d	d			b'ss	b'ss	ρ	b'(i)	b(i)	d	ρ		b(s)	b(f)	bn	b_a
	m/d/y	m	m	m		m	m	m	m		m	m	kg/L	m(w)	m(w)	m	kg/L		m(w)	m(w)	m(w)	m(w)
								196	8 ME	ASUF	REMEN	T YEAR										
		STAKE	67-4 (installe	ed 5/30/67)																	
M137C	9/18/67	2.25			Ice								0.90	2.03								
	10/01/67	(Hydrol	ogic ye	ar begi										1.91	0.00				0.00			0.00
Photo	10/04/67				Snow			0.10		1		2.09	0.90	1.88	-0.03	0.10	0.30	E	0.03			0.03
								Thin snov	v at site	e obse	rved fro	m aircraft.										
	10/14/67	(Minim	um bala	ince)										1.77	-0.14				0.00		0.00	-0.14
M9C	3/31/68				Snow		1.90	1.90	0.00	2		1.97	0.90	1.77	-0.14		0.40	E	0.76		0.76	0.62
M66C	6/07/68	2.80			Snow			0.83			1.97	1.97	0.90	1.77	-0.14	0.83	0.55	E	0.46		0.46	0.32
						Snow dep	oth obse	rvation at 1	nearby	Stake	68-4A.											
	10/01/65				ed 4/04/68 i	in a snow	pit.)								0.00				0.00			0.00
71	10/01/67	(Hydrol	ogic ye	ar begi	/			0.40							0.00	0.10	0.20	_	0.00			0.00
Photo	10/04/67				Thin snov	w observed	d.	0.10		1					-0.03		0.30	Е	0.03			
	10/14/67	01: :	1 1	`									Ice balan			1 Stake	6/-4.		0.00		0.00	0.14
MOC	10/14/67	(Minim	um baia	ince)	C		1.00	1.00	0.00	2		5.52	0.90	4.97	-0.14	1.00	0.40	г	0.00		0.00	-0.14
M9C	3/31/68	7 72			Snow	2.52	1.90	1.90	0.00		5 50	5.52	0.90	4.97	-0.14		0.40	E	0.76		0.76	0.62
M12A	4/04/68	7.73 5.21			Snow Ice	2.52	2.18	2.21	0.06	12	5.52	5.52	0.90	4.97	-0.14	2.21	0.397	M	0.88		0.88	0.74
		Stake of	acomico d	in ano																		
M79C	7/18/68	3.80	osei veu	III SHO	Ice								0.90	3.42	-1.69						-1.55	-1.69
M87A	8/20/68	2.10			Ice								0.90	1.89	-3.22						-3.08	-3.22
IVIO / A	9/29/68	(Minim	um hala	ince)	icc								0.90	1.08	-4.03				0.00		-3.89	-4.03
	9/30/68	(Hydrol)									1.08	-4.03				0.00		-3.67	-4.02
M108D	10/06/68	1.22	ogic yc	ai ciius	Snow		0.02	0.02		1	1.20	1.20	0.90	1.08	-4.03	0.02	0.30	Е	0.01			-4.02
M109D	10/09/68	1.22			Snow		0.02	0.01		1	1.20	1.20	0.50	1.00			0.30	E	0.003			
MIOD	10/07/00				SHOW			Thin snov	v obser							0.01	0.50	_	0.005			
M4D	1/28/69	1.80			Snow	0.60		0.60	. 00001	1	1.20	1.20	0.90	1.08		0.60	0.361	М	0.22			
	1,20,00	1.00			SHO W	0.00		0.00		•	1.20	1.20	0.50	1.00		0.00	0.201		0.22			
		STAKE	68-4A	(insta	lled 4/04/68	8. inserted	l in sno	w to ice)					Ice balan	ce contin	ued fron	1 Stake	67-4.					
M12A	4/04/68	2.02		,	Snow	2.52	2.18	2.21	0.06	12	-0.19	-0.19	0.90	-0.17	-0.14		0.397	M	0.88		0.88	0.74
M14A	4/06/68	2.04			Snow							-0.19	0.90	-0.17	-0.14		0.40	E	0.89		0.89	0.75
M16F	4/07/68	2.06			Snow							-0.19	0.90	-0.17	-0.14	2.25	0.40	E	0.90		0.90	0.76
M65F	6/07/68	0.64			Snow							-0.19	0.90	-0.17	-0.14		0.55	E	0.46		0.46	0.32
	7/18/68	(Stake	found fa	allen ov																		

Table 2. Mass balance data from site A (590 meters altitude) on Wolverine Glacier, Alaska--Continued

					-OBSERV	ATIONS							<		S	URFA	CE MAS	SS BA	LANCE-			
		<	Stake	Readir	1g>	<	Snov	w Depth		>	Summe	er Surface	<old< th=""><th>Firn and</th><th>d Ice></th><th><</th><th>Snow</th><th>and l</th><th>New Firn-</th><th>></th><th>Yearly</th><th>Results</th></old<>	Firn and	d Ice>	<	Snow	and l	New Firn-	>	Yearly	Results
Field	Date	Tape	Surv	/ey		Pit/Core	Probe	Average	s.e.	n	Obsvd.	Average	Density	Stake	Ice	Depth	Densit	У	Snow	NFirn	Net	Annual
Notes		b'	b^*	b^{**}	Stratum	d	d	d			b'ss	b'ss	ρ	b'(i)	b(i)	d	ρ		b(s)	b(f)	bn	b_a
	m/d/y	m	m	m		m	m	m	m		m	m	kg/L	m(w)	m(w)	m	kg/L		m(w)	m(w)	m(w)	m(w)
								196	9 ME	ASUF	REMEN	IT YEAR										
		STAKE	E 68-4 (i	nstalle	ed 4/04/68)																	
M87A	8/20/68	2.10			Ice								0.90	1.89								
	9/29/68	,												1.08					0.00		0.00	
	10/01/68		ogic yea	ır begii	ns)									1.08	0.00				0.01		0.01	0.00
M108D	10/06/68	1.22			Snow		0.02	0.02		1	1.20	1.20	0.90	1.08	0.00		0.30	Е	0.01		0.01	0.00
M109D	10/09/68				Snow		0.02	0.02		1		1.20	0.90	1.08	0.00			E	0.01		0.01	0.00
M4D	1/28/69	1.80			Snow	0.60		0.60		1	1.20	1.20	0.90	1.08	0.00		0.361	M	0.22		0.22	0.21
M12A	4/13/69				Snow	1.69		1.69		1		1.20	0.90	1.08	0.00	1.69	0.364	M	0.62		0.62	0.61
M67B	6/06/69	2.15			Snow							1.20	0.90	1.08	0.00	0.95	0.46	E	0.44		0.44	0.43
M81C	8/02/69	Stake fo	ound me	lted ou	t.																<-1.08	<-1.09
		STAKE	E 69-4 (i	nstalle	ed 8/02/69)								Ice balan	ce conti	nued fron	n Stake	68-4.					
M81C	8/02/69	3.20			Ice								0.90	2.88	<-1.08						<-1.08	<-1.09
M105A	9/16/69	1.29			Ice								0.90	1.16	<-2.08						<-2.08	<-2.09
	9/30/69	(Hydrol	ogic yea	ar ends)														0.00			
	10/31/69	(Minim	um bala	nce)																		
	11/19/69				Ice (Obse	erved from	aircraft)														
M112B	11/23/69	0.70			Snow		0.10	0.10		10	0.60	0.60	0.90	0.54	<-3.42	0.10	0.30	E	0.03		<-3.42	<-3.42
		STAKE	E 69-4A	(instal	lled 10/06/	68)																
	9/29/68	(Minim	um bala	nce)															0.00		0.00	
	10/01/68	(Hydrol			ns)									1.13	0.00				0.01		0.01	0.00
M108D	10/06/68	1.07		U	Snow		0.02	0.02		1	1.05	1.26	0.90	1.13	0.00	0.02	0.30	Е	0.01		0.01	0.00
M4D	1/28/69	1.80			Snow	0.60		0.60		1	1.20	1.26	0.90	1.13	0.00	0.54	0.361	M	0.19		0.19	0.18
M12A	4/13/69	3.23			Snow	1.69		1.69		1	1.54	1.26	0.90	1.13	0.00	1.97	0.364	M	0.72		0.72	0.71
M67B	6/06/69	1.95			Snow							1.26	0.90	1.13	0.00	0.69	0.46	E	0.32		0.32	0.31
M81C	8/02/69	Stake no	ot found																		<-1.23	<-1.24
	9/30/69	(Hydrol)														0.00			
	10/31/69																					
		`																				

Table 2. Mass balance data from site A (590 meters altitude) on Wolverine Glacier, Alaska--Continued

																		S BALANO			
					1g>			_										and New Fi			
Field	Date	Tape	Surv	•		Pit/Core		Average	s.e.	n		_	Density	Stake	Ice	Depth	Density		w NFirn	Net	
Notes		b'	b^*	b**	Stratum	d	d	d			b'ss	b'ss	ρ	b'(i)	b(i)	d	ρ	b(s	07	bn	b_a
	m/d/y	m	m	m		m	m	m	m		m	m	kg/L	m(w)	m(w)	m	kg/L	m(v	(v) m(w)	m(w)	m(w)
								197) MEA	SUF	REMEN'	ΓYEAR									
(0) (107)	0/1/6/60		69-4 (i	nstalle	ed 8/02/69)								0.00	1.16							
69M105A	9/16/69	1.29		1 .	Ice								0.90	1.16	0.00			0.00			0.00
	10/01/69	(Hydrol		_	ns)									0.87	0.00			0.00		0.00	0.00
Г	10/31/69	(Minim	um balai	nce)	I (O1	1.0	. 0							0.54	-0.33			0.00		0.00	
Form	11/19/69	0.70			,	erved from		•		10	0.60	0.60	0.00	0.54	-0.33	0.10	0.20	0.00		0.00	
M112B	11/23/69	0.70			Snow	200/	0.10	0.10		10		0.60	0.90	0.54	-0.33	0.10	0.30	E 0.03		0.03	-0.30
M40D	7/22/70	0.55			Ice	20% snov		Stake bro					0.90	0.50	-0.37					-0.04	-0.37
		CTALL	70.46	matalla	ed 4/18/70)			ice top du	ring pr	eviou	is winter		Ice balance		und from	. Ctalra	60.4				
M23H,Z9A	4/18/70	11.00	/U-4 (I	nstane	Snow	3.45	3.57	3.56	0.02	9	7.44	7.44	0.90	6.70	-0.33			M 1.54		1.54	1.21
M23H,Z9A Z21B	6/10/70	9.34			Snow	1.86	3.37	1.86	0.02	1	7.44	7.44 7.44	0.90	6.70	-0.33		0.432			1.02	
Z23B	6/11/70	9.34			Snow	1.00		1.00		1	7.40	7.44	0.90	6.70	-0.33		0.535	E 1.00		1.02	
M40D	7/22/70	7.20			Ice							7.44	0.90	6.48	-0.55	1.60	0.54	E 1.00		-0.22	
M75G	9/27/70	4.70			Ice								0.90	4.23	-2.80					-2.47	
W/JG	9/30/70	(Hydrol	ogic ves	ır ends									0.70	4.20	-2.83			0.00		-2.50	
M82D	10/03/70	4.65	ogic yet	ii ciids	Ice								0.90	4.19	2.03			0.00		-2.51	2.03
111021	10/13/70	(Minim	um balai	nce)	100								0.70	4.07				0.00		-2.63	
M2C	1/09/71	5.34	um ouru		Snow	0.79		0.79		1	4.55	4.52	0.90	4.07		0.82	0.291			2.00	
20	1/05//1	0.0.			DIIO II		nerimpo	sed ice ob	served	at ni		2	0.50	,		0.02	0.271	0.2 .			
M62C	7/09/71	4.99			Slush		0.50	0.50		1	4.49	4.52	0.90	4.07		0.47	0.90	E 0.42			
		STAKE	70-4A	(instal	lled 9/16/6	9; metal c	onduit v	vithout we	od pli	ıg in	base)										
M105A	9/16/69	1.52			Ice				-	_	•		0.90	1.37							
Airplane	11/19/69				Ice	Observati	ion from	aircraft.													
M112B	11/23/69	2.29			Snow		0.10	0.10		10	2.19	2.30	0.90	2.07		0.10	0.30	E 0.03		0.03	
M23,24,Z9	4/18/70	5.97			Snow	3.45	3.57	3.56	0.02	9	2.41	2.30	0.90	2.07		3.67	0.432	M 1.59		1.59	
Z21B,22	6/10/70	4.16			Snow	1.86		1.86		1	2.30	2.30	0.90	2.07		1.86	0.535	M 1.00		1.00	
		Stake le	aning ~	30 deg	rees; snow	depth mea	sured at	snow pit.													

Table 2. Mass balance data from site A (590 meters altitude) on Wolverine Glacier, Alaska--Continued

		OBSERVATIONS										SURFACE MASS BALANCE											
		<>				<snow depth<="" th=""><th>Summe</th><th>r Surface</th><th colspan="3"><old and="" firn="" ice=""></old></th><th colspan="5"><></th><th colspan="2">Yearly Results</th></snow>					Summe	r Surface	<old and="" firn="" ice=""></old>			<>					Yearly Results		
Field	Date	Tape	Sur	rvey		Pit/Core	Probe	Average	s.e.	n	Obsvd.	Average	Density	Stake	Ice	Depth	Densi	ty	Snow	NFirn	Net	Annual	
Notes		b'	b^*	b**	Stratum	d	d	d			b'ss	b'ss	ρ	b'(i)	b(i)	d	ρ		b(s)	<i>b(f)</i>	bn	b_a	
	m/d/y	m	m	m		m	m	m	m		m	m	kg/L	m(w)	m(w)	m	kg/L		m(w)	m(w)	m(w)	m(w)	
								197	1 MEA	SUF	REMEN'	T YEAR											
		STAK	E 70-4	(installe	ed 4/18/70)																		
M75G	9/27/70	4.70			Ice								0.90	4.23									
	10/01/70	(Hydro	logic ye	ear begi	ns)									4.20	0.00				0.00			0.00	
M82D	10/03/70	4.65			Ice								0.90	4.19	-0.01							-0.01	
	10/13/70	(Minim	num bal	ance)										4.07	-0.13				0.00		0.00	-0.13	
M2C	1/09/71	5.34			Snow	0.79		0.79		1	4.55	4.52	0.90	4.07	-0.13	0.82	0.291	M	0.24		0.24	0.11	
								base of sn															
M33C	4/27/71				Snow	2.46	2.37	2.38	0.02	11					-0.13		0.365		0.87		0.87	0.74	
M36G	5/03/71	Stake b	uried.		Snow	0.37		0.37		1					-0.13	0.37	0.30	Е	0.11		0.11	-0.02	
	_,,,,,					0.37 m no		after 4/27	7/71.									_					
M62C	7/09/71	4.99			Slush		0.50	0.50		1	4.49	4.52	0.90	4.07	-0.13	0.47	0.90	Е	0.42		0.42	0.29	
M77A	8/14/71							. •					0.90	2.70	-1.63						-1.37	-1.63	
	9/30/71	(Hydrologic year ends) Final bal (Minimum balance) Date not									data at th	_	0.00	1.27					0.00		2.70		
M103B	10/17/71	1.86	ium bai	ance)	Snow	known; no	0.43	r data at th 0.43	ie giaci	er. 1	1.43	1.52 1.52	0.90	1.37		0.24	0.31	Е	0.00		-2.70		
MIIOSB	10/1///1	1.60			Silow		0.43	0.43		1	1.43	1.32	0.90	1.57		0.34	0.51	E	0.11				
								197	2 MEA	SUF	REMEN'	ΓYEAR											
		STAK	E 70-4	(installe	ed 4/18/70)																		
	10/01/71	,								ather	data.			0.00									
														1.37					0.00		0.00		
M103B	10/17/71	1.86			Snow		0.43	0.43		1	1.43	1.52	0.90	1.37		0.34	0.31	Е	0.11		0.11		
M2B	1/11/72	1.82			Snow	0.41		0.41		1	1.41	1.52	0.90	1.37		0.30	0.345	M	0.10		0.10		
M8J	4/08/72	1.88			Snow	0.21	0.35	0.34	0.05	11	1.54	1.52	0.90	1.37		0.36	0.336	M	0.12		0.12		
M36C	6/19/72	0.80			Ice								0.90	0.72							-0.65		
					Stake is f	rozen in.																	
																~ .							
	4/4.4/50	STAKE 72-4 (installed 4/11/72;			unlabele	,				0.55	0.55	Ice balan					_	0.10		0.12			
M13Y	4/11/72	9.90			Snow		0.35	0.35		1	9.55	9.55	0.90	8.60		0.35	0.38	E	0.13		0.13		
M36C	6/19/72	9.00			Ice								0.90	8.10							-0.50		
M42C	7/12/72	7.78			Ice								0.90	7.00							-1.60		
M61I	8/19/72	6.00	l1	2002)	Ice								0.90	5.40							-3.20		
	9/29/72	(Minim		/	\									4.30					0.003		-4.30		
M66D	9/30/72 10/01/72	(Hydro 4.65	logic ye	ear ends	/		0.01	0.01		1	4.64	170	0.00	4.30		0.01	0.30	Е	0.003				
M66D M2B	1/06/73	4.65 5.57			Snow Snow	0.83	0.01	0.01	0.04	-	4.64	4.78 4.78	0.90 0.90	4.30			0.30		0.003				
ıvı∠D	1/00//3	3.37			SHOW	0.83	0.78	0.78	0.04	11	4.79	4./8	0.90	4.50		0.79	0.290	IVI	0.23				

Table 2. Mass balance data from site A (590 meters altitude) on Wolverine Glacier, Alaska--Continued

					-OBSERV	ATIONS							<		S	URFAC	CE MAS	SS BA	ALANCE-			
		<	Stake	Readi	ng>	<	Snov	w Depth		>	Summe	r Surface	<old< td=""><td>Firn and</td><td>Ice></td><td><</td><td>Snow</td><td>and l</td><td>New Firn-</td><td>></td><td>Yearly</td><td>Results</td></old<>	Firn and	Ice>	<	Snow	and l	New Firn-	>	Yearly	Results
Field	Date	Tape	Surv	/ey		Pit/Core	Probe	Average	s.e.	n	Obsvd.	Average	Density	Stake	Ice	Depth	Densit	y	Snow	NFirn	Net	Annual
Notes		b'	b^*	b^{**}	Stratum	d	d	d			b'ss	b'ss	ρ	b'(i)	b(i)	d	ρ		b(s)	b(f)	bn	b_a
	m/d/y	m	m	m		m	m	m	m		m	m	kg/L	m(w)	m(w)	m	kg/L		m(w)	m(w)	m(w)	m(w)
								1973	3 MEA	SUR	EMEN	T YEAR										
		STAKE	72-4 (i	nstall	ed 4/11/72)																	
M61I	8/19/72	6.00			Ice								0.90	5.40								
	9/29/72	(Minim																			0.00	
	10/01/72	(Hydrol	ogic yea	ar begi	ins)										0.00				0.003		0.003	
M66D	10/01/72	4.65			Snow		0.01	0.01		1	4.64	4.78	0.90	4.30	0.00	0.01	0.30	E	0.003		0.003	0.00
M2B	1/06/73	5.57			Snow	0.83	0.78	0.78	0.04	11	4.79	4.78	0.90	4.30	0.00	0.79	0.296	M	0.23		0.23	0.23
M21.5C	4/19/73	Stake bu	ıried.		Snow	2.13	2.21	2.20	0.05	9					0.00	2.20	0.341	M	0.75		0.75	0.75
M29B	5/31/73	Stake bu	ıried.		Snow		1.65	1.65	0.00	2					0.00	1.65	0.46	Е	0.76		0.76	0.76
M32E	7/07/73	4.60			Ice								0.90	4.14	-0.16						-0.16	-0.16
M53A	8/25/73	1.64			Ice								0.90	1.48	-2.82						-2.82	-2.82
		STAKE	73-4 (i	nstalle	ed 8/25/73)																	
													Ice balan	ce contin	ued fron	1 Stake	72-4.					
M53F	8/25/73	1.80			Ice								0.90	1.62	-2.82						-2.82	-2.82
	9/30/73	(Hydrol	ogic yea	ar ends	s)									0.85	-3.59				0.00		-3.59	-3.59
	10/01/73	(Minim	um bala	nce)										0.85	-3.59				0.00		-3.59	
M60B	10/15/73	1.00			Snow		0.08	0.08		1	0.92	0.94	0.90	0.85		0.06	0.30	E	0.02			
M24B	6/09/74	0.98			SIce	0.03		0.03		1	0.95	0.94	0.90	0.85		0.04	0.90	E	0.04			

Table 2. Mass balance data from site A (590 meters altitude) on Wolverine Glacier, Alaska--Continued

					-OBSERV	ATIONS							<		S	URFA	CE MA	SS BA	LANCE-			
		<	Stake	Readir	ng>	<	Snov	v Depth		>	Summe	r Surface	<old< th=""><th>Firn and</th><th>l Ice></th><th><</th><th>Snow</th><th>and l</th><th>New Firn-</th><th>></th><th>Yearly</th><th>Results</th></old<>	Firn and	l Ice>	<	Snow	and l	New Firn-	>	Yearly	Results
Field	Date	Tape	Sur	vey		Pit/Core	Probe	Average	s.e.	n	Obsvd.	Average	Density	Stake	Ice	Depth	Densi	ty	Snow	NFirn	Net	Annua
Notes		b'	b^*	b**	Stratum	d	d	d			b'ss	b'ss	ρ	b'(i)	b(i)	d	ρ		b(s)	b(f)	bn	b_a
	m/d/y	m	m	m		m	m	m	m		m	m	kg/L	m(w)	m(w)	m	kg/L	,	m(w)	m(w)	m(w)	m(w)
								1974	4 MEA	SUR	REMEN	ΓYEAR										
		STAKE	E 73-4 (installe	ed 8/25/73)																	
M53F	8/25/73	1.80			Ice								0.90	1.62								
	10/01/73	(Hydrol	ogic ye	ar begii	ns and mini	imum bala	nce)							0.85	0.00				0.00		0.00	0.00
M60B	10/15/73	1.00			Snow		0.08	0.08		1	0.92	0.94	0.90	0.85	0.00	0.06	0.30	E	0.02		0.02	0.02
T3A	3/09/74				Snow	0.98		0.98		1					0.00	0.98	0.338	M	0.33		0.33	0.33
T5G	3/10/74	1.90			Snow							0.94	0.90	0.85	0.00	0.96	0.34	E	0.33		0.33	0.33
M24B	6/09/74	0.98			SIce	0.03		0.03			0.95	0.94	0.90	0.85	0.00	0.04	0.90	E	0.04		0.04	0.04
	9/30/74	(Hydrol	ogic ye	ar ends	and minim	ium balanc	e)												0.00			
T6	2/08/75	0.40			Ice						Stake sa	nk into the	e ice.									
AST TO A	LOCATION	ON THE	LONG	GITUDI	NAL CEN	TERLINE	OF TH	E GLACIE	El													
			E 74-4 (installe	ed 6/09/74)								Ice balan									
M24G	6/09/74	4.24			SIce	0.03		0.03		1	4.21	4.21	0.90	3.79	0.00	0.03	0.90	Е	0.03		0.03	0.03
		_	lrill hol	e dry; tl	herefore, ic	e is colder	than 0C	. .														
T43A	8/04/74	1.15			Ice								0.90	1.04	-2.75						-2.75	-2.75
		Stake re	eset																			
T43A	8/04/74	3.13			Ice								0.90	2.82	-2.75							-2.75
M49I	9/22/74	0.50			Ice								0.90	0.45	-5.12							-5.12
	9/30/74		ogic ye	ar ends	and minim									0.36	-5.21				0.00		-5.21	-5.21
T5A	2/08/75	0.40			Ice		1.53	1.55	0.10	3			0.90	0.36		1.55	0.377	M	0.58			
		Stake re	ading o	of ice su	ırface made	by diggin	g to the	surface.														
								197	5 MEA	SUR	REMEN	 Γ YEAR										
		STAKE	2 75-A	(install	ed 2/08/75))		/-														
	10/01/74			`	ns and mini		nce)							5.62	0.00				0.00		0.00	0.00
T5A	2/08/75	7.79		-	Snow		1.53	1.55	0.10	3	6.24	6.24	0.90	5.62	0.00	1.55	0.377	M	0.58		0.58	0.58
M8D	5/31/75	7.55			Snow							6.24	0.90	5.62	0.00	1.31	0.45	E	0.59		0.59	0.59
M21A	8/17/75	3.50			Ice								0.90	3.15	-2.47						-2.47	-2.47
		Stake re	moved																			
		STAKE	E 75-A2	2 (instal	lled 2/08/7	5)							Ice balan	ce contin	ued fron	n Stake	75-A.					
T5A	2/08/75	12.20			Snow	1.60	1.53	1.55	0.10	3	10.65	10.65	0.90	9.59	0.00	1.55	0.377	M	0.58		0.58	0.58
M8D	5/31/75	Stake bu	uried.																			
M21A	8/17/75	8.50			Ice								0.90	7.65	-1.94						-1.94	-1.94
T33C	8/20/75	8.45			Ice								0.90	7.61	-1.98						-1.98	-1.98
1330	0.100.155	(Undrol	ogio vo	on on do	`									5.59	-4.00				0.00		-4.00	-4.00
1330	9/30/75	(Hydror	ogic ye	ar enus)									0.07	7.00				0.00		1.00	
1330	9/30//5	. •			<i>)</i>									5.32	-4.27				0.00		-4.27	

Table 2. Mass balance data from site A (590 meters altitude) on Wolverine Glacier, Alaska--Continued

					-OBSERV	ATIONS							<		S	URFAC	CE MAS	SS BA	ALANCE-			
		<	Stake	Readir	1g>	· <	Snov	v Depth		>	Summe	r Surface	<old< th=""><th>Firn and</th><th>Ice></th><th><</th><th>Snow</th><th>and 1</th><th>New Firn-</th><th>></th><th>Yearly</th><th>Results</th></old<>	Firn and	Ice>	<	Snow	and 1	New Firn-	>	Yearly	Results
Field	Date	Tape	Surv	vey		Pit/Core	Probe	Average	s.e.	n	Obsvd.	Average	Density	Stake	Ice	Depth	Densit	y	Snow	NFirn	Net	Annual
Notes		b'	b^*	b^{**}	Stratum	d	d	d			b'ss	b'ss	ρ	b'(i)	b(i)	d	ρ		b(s)	<i>b(f)</i>	bn	b_a
	m/d/y	m	m	m		m	m	m	m		m	m	kg/L	m(w)	m(w)	m	kg/L		m(w)	m(w)	m(w)	m(w)
								1970	6 MEA	SUR	REMEN	ΓYEAR										
		STAKE	E 75-A2	(instal	lled 2/08/7	5)																
T33C	8/20/75	8.45			Ice								0.90	7.61								
	10/01/75	(Hydrol	ogic yea	ar begir	ns)									5.59	0.00				0.00			0.00
	10/08/75	(Minim	um bala	nce)										5.32	-0.27				0.00		0.00	-0.27
M44A	10/25/75	6.11			Snow		0.20	0.20		1	5.91	5.91	0.90	5.32	-0.27	0.20	0.30	E	0.06		0.06	-0.21
	1/23/76	Augusti	ne volca	ano beg	gan eruptin	g; ashfall o	on Wolv	erine Glac	ier.													
M8A	2/25/76	No stak	e readin	g.	Snow	0.83	1.29	1.26	0.11	18		5.91	0.90	5.32	-0.27	1.26	0.375	M	0.47		0.47	0.20
						Pit to ice	; no volc	anic ash fo	ound.													
M30E	7/10/76	4.65			Ice								0.90	4.19	-1.40						-1.13	-1.40
T22A	7/12/76	4.53			Ice								0.90	4.08	-1.51						-1.24	-1.51
	9/27/76	(Minim	um bala	nce)										0.72	-4.87				0.00		-4.60	-4.87
	9/30/76	(Hydrol	ogic yea	ar ends))										-4.87				0.04			-4.83
T34	10/19/76	0.90			Snow		0.10	0.10		1	0.80	0.80	0.90	0.72		0.10	0.60	Е	0.06			
		Stake fo	und lea	ning ha	adly, propp	ed un											Densit	v esti	imated visi	ually.		
		Stake ic	ouria rea	iiiig ou	idiy, propp	cu up.											Donor	,		•		
							nduit w					 Γ YEAR										
	9/27/76	STAKE	E 77-A (installe	ed 2/22/77		nduit w					Γ YEAR							0.00		0.00	
		STAKE (Minim	E 77-A (um bala	installe	ed 2/22/77		nduit w					 Γ YEAR			0.00				0.00 0.04		0.00	0.00
Т3А	9/27/76 10/01/76 2/22/77	STAKE (Minim	E 77-A (um bala	installe	ed 2/22/77					g in b		Γ YEAR 0.26			0.00	4.91	0.539					0.00
T3A T4A	10/01/76	STAKE (Minimum) (Hydrol	E 77-A (um bala ogic yea	installe	ed 2/22/77	; metal co		ithout woo	od plug	g in b	oase)								0.04		0.04	
	10/01/76 2/22/77	STAKE (Minimum) (Hydrol 5.17	E 77-A (um bala ogic yea	installe	ed 2/22/77 ns) Snow	; metal co	4.90	4.91	od plug 0.07	g in b	oase)	0.26			0.00	4.71	0.539	M	0.04 2.65		0.04 2.65	2.61
T4A	10/01/76 2/22/77 2/23/77	STAKE (Minimo (Hydrol 5.17 Stake no	E 77-A (um bala ogic yea	installe	ed 2/22/77 ns) Snow Snow	; metal co	4.90 4.71	4.91 4.71	0.07 0.07	11 10	0.26	0.26 0.26			0.00	4.71 3.83	0.539 0.54	M E E	0.04 2.65 2.54		0.04 2.65 2.54	2.61 2.50
T4A M30A	10/01/76 2/22/77 2/23/77 6/06/77	STAKE (Minima (Hydrol 5.17 Stake no 5.44	E 77-A (um bala ogic yea	installe	ed 2/22/77 ns) Snow Snow Snow	; metal co	4.90 4.71	4.91 4.71 3.83	0.07 0.07	11 10 4 1	0.26 1.61 1.97	0.26 0.26 1.61 1.97	into the i	ce; the st	0.00 0.00 0.00 0.00	4.71 3.83 3.33	0.539 0.54 0.54 0.610	M E E M	0.04 2.65 2.54 2.07 2.03	ce data.	0.04 2.65 2.54 2.07	2.61 2.50 2.03
T4A M30A	10/01/76 2/22/77 2/23/77 6/06/77	STAKE (Minima (Hydrol 5.17 Stake no 5.44	E 77-A (um bala ogic yea	installe	ed 2/22/77 ns) Snow Snow Snow	; metal co	4.90 4.71	4.91 4.71 3.83	0.07 0.07	11 10 4 1	0.26 1.61 1.97	0.26 0.26 1.61 1.97	into the i	ce; the st	0.00 0.00 0.00 0.00	4.71 3.83 3.33	0.539 0.54 0.54 0.610	M E E M	0.04 2.65 2.54 2.07	ce data.	0.04 2.65 2.54 2.07	2.61 2.50 2.03
T4A M30A	10/01/76 2/22/77 2/23/77 6/06/77	STAKE (Minima (Hydrol 5.17 Stake no 5.44 5.30	E 77-A (um bala ogic yea ot read.	instalk nce) ar begin	ns) Snow Snow Snow Snow Snow Snow	; metal co	4.90 4.71	4.91 4.71 3.83	0.07 0.07	11 10 4 1	0.26 1.61 1.97	0.26 0.26 1.61 1.97	into the i	ŕ	0.00 0.00 0.00 0.00 0.00 ake read	4.71 3.83 3.33 ings are	0.539 0.54 0.54 0.610 e not val	M E E M	0.04 2.65 2.54 2.07 2.03	ce data.	0.04 2.65 2.54 2.07	2.61 2.50 2.03
T4A M30A	10/01/76 2/22/77 2/23/77 6/06/77 6/10/77	STAKE (Minima (Hydrol 5.17 Stake no 5.44 5.30	E 77-A (um bala ogic yea ot read.	installe nce) ar begin	ed 2/22/77 ns) Snow Snow Snow	; metal co	4.90 4.71	4.91 4.71 3.83	0.07 0.07	11 10 4 1	0.26 1.61 1.97	0.26 0.26 1.61 1.97		ŕ	0.00 0.00 0.00 0.00 0.00 ake read	4.71 3.83 3.33 ings are	0.539 0.54 0.54 0.610 e not val	M E E M	0.04 2.65 2.54 2.07 2.03	ce data.	0.04 2.65 2.54 2.07	2.61 2.50 2.03
T4A M30A	10/01/76 2/22/77 2/23/77 6/06/77 6/10/77	STAKE (Minimum) (Hydrol) 5.17 Stake no 5.44 5.30	E 77-A (um bala ogic yea ot read.	installonce) ar begin (installonce)	ns) Snow Snow Snow Snow Snow Snow Snow	; metal co	4.90 4.71	4.91 4.71 3.83	0.07 0.07	11 10 4 1	0.26 1.61 1.97	0.26 0.26 1.61 1.97		ce contin	0.00 0.00 0.00 0.00 0.00 ake read	4.71 3.83 3.33 ings are	0.539 0.54 0.54 0.610 e not val	M E E M	0.04 2.65 2.54 2.07 2.03 r ice balance	ce data.	0.04 2.65 2.54 2.07 2.03	2.61 2.50 2.03
T4A M30A	10/01/76 2/22/77 2/23/77 6/06/77 6/10/77	STAKE (Minimum) (Hydrol) 5.17 Stake no 5.44 5.30	E 77-A (um bala ogic yea ot read.	installonce) ar begin (installonce)	ns) Snow Snow Snow Snow Snow Snow Snow	; metal co	4.90 4.71	4.91 4.71 3.83	0.07 0.07	11 10 4 1	0.26 1.61 1.97	0.26 0.26 1.61 1.97		ce contin	0.00 0.00 0.00 0.00 0.00 ake read	4.71 3.83 3.33 ings are	0.539 0.54 0.54 0.610 e not val	M E E M	0.04 2.65 2.54 2.07 2.03 r ice balance	ce data.	0.04 2.65 2.54 2.07 2.03	2.61 2.50 2.03 1.99
T4A M30A T34A	10/01/76 2/22/77 2/23/77 6/06/77 6/10/77	STAKE (Minimum) (Hydrol) 5.17 Stake no 5.44 5.30 STAKE (Minimum) (Hydrol)	E 77-A (um bala ogic yea ot read.	installonce) ar begin (installonce)	ns) Snow Snow Snow Snow Snow Snow Snow Snow	; metal co	4.90 4.71 3.83	4.91 4.71 3.83 3.33	0.07 0.07 0.09	11 10 4 1	0.26 1.61 1.97 Stake sa	0.26 0.26 1.61 1.97 nk 1.67 m	Ice baland	6.36 6.36	0.00 0.00 0.00 0.00 0.00 ake read ued from	4.71 3.83 3.33 3.33 ings are 1 Stake	0.539 0.54 0.54 0.610 e not val	M E E M id for	0.04 2.65 2.54 2.07 2.03 r ice balance	ce data.	0.04 2.65 2.54 2.07 2.03	2.61 2.50 2.03 1.99
T4A M30A T34A	10/01/76 2/22/77 2/23/77 6/06/77 6/10/77	STAKE (Minimum (Hydrol 5.17 Stake no 5.44 5.30 STAKE (Minimum (Hydrol 10.75	E 77-A (um bala ogic yea ot read.	installonce) ar begin (installonce)	ed 2/22/77 ns) Snow Snow Snow Snow Snow Snow Snow Snow	; metal co 5.06 3.33 7)	4.90 4.71 3.83	4.91 4.71 3.83 3.33	0.07 0.07 0.09	11 10 4 1	0.26 1.61 1.97 Stake sa 7.04 7.22	0.26 0.26 1.61 1.97 nk 1.67 m	Ice baland	6.36 6.36 6.36	0.00 0.00 0.00 0.00 0.00 ake read ued from 0.00 0.00	4.71 3.83 3.33 3.33 ings are 1 Stake	0.539 0.54 0.54 0.610 e not val	M E E M id for	0.04 2.65 2.54 2.07 2.03 r ice balance 0.00 0.04 1.99	ce data.	0.04 2.65 2.54 2.07 2.03 0.00 0.04 1.99	2.61 2.50 2.03 1.99
T4A M30A T34A	10/01/76 2/22/77 2/23/77 6/06/77 6/10/77	STAKE (Minim (Hydrol 5.17 Stake no 5.44 5.30 STAKE (Minim (Hydrol 10.75 10.55	E 77-A (um bala ogic yea ot read. E 77-A2 um bala ogic yea	(installed nce) ar begin (instal nce) ar begin	ed 2/22/77 ns) Snow Snow Snow Snow Snow Snow Snow Snow	; metal co 5.06 3.33 7)	4.90 4.71 3.83	4.91 4.71 3.83 3.33	0.07 0.07 0.09	11 10 4 1	0.26 1.61 1.97 Stake sa 7.04 7.22	0.26 0.26 1.61 1.97 nk 1.67 m	Ice baland	6.36 6.36 6.36	0.00 0.00 0.00 0.00 0.00 ake read ued from 0.00 0.00	4.71 3.83 3.33 3.33 ings are 1 Stake	0.539 0.54 0.54 0.610 e not val	M E E M id for	0.04 2.65 2.54 2.07 2.03 r ice balance 0.00 0.04 1.99	ce data.	0.04 2.65 2.54 2.07 2.03 0.00 0.04 1.99	2.61 2.50 2.03 1.99
T4A M30A T34A	10/01/76 2/22/77 2/23/77 6/06/77 6/10/77 9/27/76 10/01/76 6/06/77 6/10/77	STAKE (Minim (Hydrol 5.17 Stake no 5.44 5.30 STAKE (Minim (Hydrol 10.75 10.55	E 77-A (um bala ogic yea of read. E 77-A2 um bala ogic yea ogic yea	(installed) (installed) (installed) (ar begin	ed 2/22/77 ns) Snow Snow Snow Snow Snow Snow Snow Snow	; metal co 5.06 3.33 7)	4.90 4.71 3.83	4.91 4.71 3.83 3.33	0.07 0.07 0.09	11 10 4 1	0.26 1.61 1.97 Stake sa 7.04 7.22	0.26 0.26 1.61 1.97 nk 1.67 m	Ice baland	6.36 6.36 6.36 6.36	0.00 0.00 0.00 0.00 0.00 ake read ued from 0.00 0.00	4.71 3.83 3.33 3.33 ings are 1 Stake	0.539 0.54 0.54 0.610 e not val	M E E M id for	0.04 2.65 2.54 2.07 2.03 r ice balance 0.00 0.04 1.99 2.12	ce data.	0.04 2.65 2.54 2.07 2.03 0.00 0.04 1.99 2.12	2.61 2.50 2.03 1.99 0.00 1.95 2.08
T4A M30A T34A	10/01/76 2/22/77 2/23/77 6/06/77 6/10/77 9/27/76 10/01/76 6/06/77 6/10/77	STAKE (Minim (Hydrol 5.17 Stake no 5.44 5.30 STAKE (Minim (Hydrol 10.75 10.55	E 77-A (um bala ogic yea of read. E 77-A2 um bala ogic yea ogic yea	(installed) (installed) (installed) (ar begin	ed 2/22/77 ns) Snow Snow Snow Snow Snow Snow Snow Snow	; metal co 5.06 3.33 7)	4.90 4.71 3.83	4.91 4.71 3.83 3.33	0.07 0.07 0.09	11 10 4 1	0.26 1.61 1.97 Stake sa 7.04 7.22	0.26 0.26 1.61 1.97 nk 1.67 m	Ice baland	6.36 6.36 6.36 6.36 3.47	0.00 0.00 0.00 0.00 0.00 ake read ued from 0.00 0.00	4.71 3.83 3.33 ings are 1 Stake 3.68 3.48	0.539 0.54 0.54 0.610 e not val	M E E M id for	0.04 2.65 2.54 2.07 2.03 r ice balance 0.00 0.04 1.99 2.12	ce data.	0.04 2.65 2.54 2.07 2.03 0.00 0.04 1.99 2.12	2.61 2.50 2.03 1.99 0.00 1.95 2.08

Table 2. Mass balance data from site A (590 meters altitude) on Wolverine Glacier, Alaska--Continued

				OB	SERV	ATIONS							<		S	URFA	CE MAS	SS BA	LANCE			
		<	Stake I	Reading	>	<	Snov	v Depth		>	Summe	r Surface	<old< th=""><th>Firn and</th><th>Ice></th><th><</th><th>Snow</th><th>and N</th><th>New Firn</th><th>></th><th>Yearly</th><th>Results</th></old<>	Firn and	Ice>	<	Snow	and N	New Firn	>	Yearly	Results
Field	Date	Tape	Surve	ey		Pit/Core	Probe	Average	s.e.	n	Obsvd.	Average	Density	Stake	Ice	Depth	Densit	ty	Snow	NFirn	Net	Annua
Notes		b'	b^*	b** Si	tratum	d	d	d			b'ss	b'ss	ρ	b'(i)	b(i)	d	ρ		b(s)	<i>b(f)</i>	bn	b_a
	m/d/y	m	m	m		m	m	m	m		m	m	kg/L	m(w)	m(w)	m	kg/L		m(w)	m(w)	m(w)	m(w)
								1978	8 MEA	SUR	EMEN	T YEAR										
		STAKE	E 77-A2 ((installed	6/06/7	7)																
	10/01/77	` •	~ ,	0 /										3.47	0.00				0.00			0.00
	10/14/77	(um balan	ice)										3.17	-0.30				0.00		0.00	-0.30
T98A	10/24/77	4.13		Sr	now	0.33	0.47	0.46	0.07	14	3.67	3.52	0.90	3.17	-0.30	0.61	0.31	E	0.19		0.19	-0.11
		3.80		Ic		Pit at the	stake.															
M3A	3/01/78	6.55			now							3.52	0.90	3.17	-0.30		0.39	Е	1.18		1.18	0.88
T7A	3/02/78	6.52			now	3.00	3.18	3.17	0.13	12	3.35	3.52	0.90	3.17	-0.30		0.389	M	1.17		1.17	0.87
M26A	6/04/78	5.32			now							3.52	0.90	3.17	-0.30	1.80	0.49	Е	0.88		0.88	0.58
T108	9/28/78	Stake fo	ound falle	en over.																		
		STAKI	E 78-6.9 A	\ (installe	ed 3/02/	78)							Ice balan	ce contin	ued fron	1 Stake	77-A2.					
T7A	3/02/78	10.77		Sr	now	3.00	3.18	3.17	0.13	12	7.60	7.60	0.90	6.84	-0.30	3.17	0.389	M	1.23		1.23	0.93
M26A	6/04/78	9.53		Sr	now							7.60	0.90	6.84	-0.30	1.93	0.49	E	0.95		0.95	0.65
T108	9/28/78	3.40		Ic	e								0.90	3.06	-4.08						-3.78	-4.08
		Stake re	eset.																			
T108	9/28/78	1.40		Ic	e								0.90	1.26	-4.08						-3.78	-4.08
	9/30/78	(Hydrol	logic year	r ends)										1.24	-4.10				0.00		-3.80	-4.10
	10/18/78	,	um balan	ice)										1.16					0.00		-3.88	
МЗВ	3/11/79	3.19		Sr	now		1.90	1.90	0.09	10	1.29	1.29	0.90	1.16		1.90	0.38	E	0.72			
		STAKI	E 78-6.9 A	A2 (install	led 3/02	2/78)							Ice balan	ce contin	ued fron	1 Stake	77-A2.					
T7	3/02/78	10.06		Sr	now	3.00	3.18	3.17	0.13	12	6.89	6.89	0.90	6.20	-0.30	3.17	0.389	M	1.23		1.23	0.93
M26A	6/04/78	8.80		Sr	now							6.89	0.90	6.20	-0.30	1.91	0.49	E	0.94		0.94	0.64
T108	9/28/78	2.73		Ic	e								0.90	2.46	-4.04						-3.74	-4.04
		Stake re	emoved; 1	balance at	t end of	year estim	ated fro	m balance	s meas	ured a	at other	stakes.										
	9/30/78	(Hydrol	logic year	r ends)															0.00		-3.76	-4.06
	10/18/78	(Minim	um balan	ice)															0.00		-3.84	
																		Ave	erage of 2 s	stakes:	-3.86	-4.08

Table 2. Mass balance data from site A (590 meters altitude) on Wolverine Glacier, Alaska--Continued

					OBSERVA	ATIONS							<		S	URFA	CE MA	ASS BA	ALANCE-			
		<	Stake	Readir	1g>	<	Snov	Depth		>	Summe	r Surface	<old< th=""><th>Firn and</th><th>Ice></th><th><</th><th>Snov</th><th>w and</th><th>New Firn-</th><th>></th><th>Yearly</th><th>Results</th></old<>	Firn and	Ice>	<	Snov	w and	New Firn-	>	Yearly	Results
Field	Date	Tape	Sur	vey		Pit/Core	Probe	Average	s.e.	n	Obsvd.	Average	Density	Stake	Ice	Depth	Dens	sity	Snow	NFirn	Net	Annual
Notes		b'	b^*	b^{**}	Stratum	d	d	d			b'ss	b'ss	ρ	b'(i)	b(i)	d	ρ		b(s)	<i>b(f)</i>	bn	b_a
	m/d/y	m	m	m		m	m	m	m		m	m	kg/L	m(w)	m(w)	m	kg/I	L	m(w)	m(w)	m(w)	m(w)
								197	9 MEA	SUR	EMENT	T YEAR										
			E 78-6.9	A (inst	alled 3/02/	78)																
T108	9/28/78	1.40			Ice								0.90	1.26								
	10/01/78			_	ns)									1.24	0.00				0.00			0.00
	10/18/78	(um bala	ince)										1.16	-0.08				0.00		0.00	
M3B	3/11/79	3.19			Snow		1.90	1.90	0.09	10	1.29	1.29	0.90	1.16	-0.08		0.38	Е	0.72		0.72	0.64
M6B	3/14/79		3.40		Snow							1.29	0.90	1.16	-0.08	1.91	0.38	Е	0.73		0.73	0.65
	NOTES:				Fb^* and b																	
		STAKE	READ	INGS I	LISTED A	S <i>b</i> * ARE	SURVE	YED; TH	OSE L	ISTE	D ASb*	* ARE S	URVEYE	D AND	CORRE	CTED 1	FOR S	TAKE	LEAN.			
		~																				
	10/01/50			,	alled 3/11/	79)								7 (0								
	10/01/78	(Hydrol	ogic ye	ar begii	ns)								x 1 1	7.62	0.00	0. 1	7 0.60		0.00			0.00
	10/10/50	00:	1 1	,									Ice balan			n Stake	/8-6.9	A.	0.00		0.00	0.00
M2D	10/19/78	,	um bala	ince)	C		1.90	1.00	0.00	10	0.20	0.20	0.00	7.54	-0.08	1.00	0.20	E	0.00		0.00	-0.08
M3B	3/11/79	10.28	10.46	10.40	Snow		1.90	1.90	0.09	10	8.38	8.38	0.90	7.54	-0.08		0.38	Е	0.72		0.72	0.64
M5A	3/14/79	4.40	10.46	10.40	Snow							8.38	0.90	7.54	-0.08	2.02	0.39	Е	0.79		0.79	0.71
M105	8/11/79	4.40	:-	4	Ice								0.90	3.96	-3.66				0.00		-3.58	-3.66
	9/30/79	(Hydrol)									1.95 1.65	-5.67				0.00		-5.59 -5.89	-5.67
T4	10/27/79	3.18	um baia	ince)	Snow		1.35	1.35	0.08	10	1.83	1.83	0.00	1.65		1 25	0.24	Е	0.00		-3.89	
14	1/11/80	3.18			Show		1.33	1.33	0.08	10	1.63	1.03	0.90	1.03		1.33	0.34	E	0.40			
								198	0 MEA	SUR	EMEN	Γ YEAR										
		STAKE	E 79-6.9	A (inst	alled 3/11/	79)																
M105	8/11/79	4.40			Ice	,							0.90	3.96								
	10/01/79	(Hydrol	ogic ve	ar begii	ns)									1.95	0.00				0.00			0.00
	10/27/79			_	,									1.65	-0.30				0.00		0.00	-0.30
T4	1/11/80	3.18		,	Snow		1.35	1.35	0.08	10	1.83	1.83	0.90	1.65	-0.30	1.35	0.34	Е	0.46		0.46	0.16
M37	6/04/80	5.17		5.09	Snow							1.83	0.90	1.65	-0.30	3.26	0.50	Е	1.63		1.63	1.33
		STAKE	E 80-A ((install	ed 1/11/80))							Ice balan	ce contin	ued fron	n Stake	79-6.9	A.				
T4	1/11/80	10.90		,	Snow		1.35	1.35	0.08	10	9.55	9.55	0.90	8.60	-0.30	1.35	0.34	Е	0.46		0.46	0.16
M37	6/04/80	12.80*			Snow		* b' esti	mate beca	use stal	ke wa	s burried	l			-0.30	3.25	0.50	Е	1.63		1.63	1.33
M82	9/02/80		8.44	8.14	Ice								0.90	7.33	-1.57						-1.27	-1.57
M89	9/09/80	8.00			Ice								0.90	7.20	-1.70						-1.40	-1.70
	9/30/80	(Hydrol	ogic ye	ar ends)									6.74	-2.16				0.00		-1.86	-2.16
	10/07/80	(Minim	um bala	ince)										6.64					0.00		-1.96	

Table 2. Mass balance data from site A (590 meters altitude) on Wolverine Glacier, Alaska--Continued

					-OBSERV	ATIONS							<		S	URFAC	CE MA	SS BA	ALANCE-			
		<	Stake	Readin	1g>	<	Snov	v Depth		>	Summe	r Surface	<old< th=""><th>Firn and</th><th>Ice></th><th><</th><th>Snow</th><th>and 1</th><th>New Firn-</th><th>></th><th>Yearly</th><th>Results</th></old<>	Firn and	Ice>	<	Snow	and 1	New Firn-	>	Yearly	Results
Field	Date	Tape	Sur	vey		Pit/Core	Probe	Average	s.e.	n	Obsvd.	Average	Density	Stake	Ice	Depth	Densi	ty	Snow	NFirn	Net	Annual
Notes		b'	b^*	b^{**}	Stratum	d	d	d			b'ss	b'ss	ρ	b'(i)	b(i)	d	ρ		b(s)	b(f)	bn	b_a
	m/d/y	m	m	m		m	m	m	m		m	m	kg/L	m(w)	m(w)	m	kg/L		m(w)	m(w)	m(w)	m(w)
								198	1 MEA	SUR	EMEN'	T YEAR										
		STAKE	E 80-A (install	ed 1/11/80))																
M89	9/09/80	8.00			Ice								0.90	7.20								
	10/01/80	` •	~ ,	_	ns)									6.74	0.00				0.00			0.00
	10/07/80	(um bala	nce)										6.64	-0.10				0.00		0.00	
T5	1/22/81	9.15			Snow		1.77	1.77	0.05	20	7.38	7.38	0.90	6.64	-0.10		0.35	E	0.62		0.62	0.52
M4	1/26/81				Snow							7.38	0.90	6.64	-0.10	2.20		E	0.79		0.79	0.69
RM12	6/02/81			9.64	Snow							7.38	0.90	6.64	-0.10	2.26	0.50	E	1.13		1.13	1.03
RM31	9/01/81	5.15			Ice								0.90	4.64	-2.10						-2.00	-2.10
T101	9/01/81	~~	5.11	5.14									0.90	4.63	-2.11						-2.01	-2.11
	9/30/81	(Hydrol	~ .)									4.11	-2.63				0.00		-2.53	-2.63
1 40	10/17/81	(um bala	nce)	C		1.02	1.02	0.01	_	4.42	4.42	0.00	3.99		1.02	0.22	_	0.00		-2.65	
M8	1/20/82	5.45			Snow		1.02	1.02	0.01	5	4.43	4.43	0.90	3.99		1.02	0.33	E 	0.34			
								1982	2 MEA	SUR	EMEN	T YEAR										
T101	0/04/04	STAKE	E 80-A (ed 1/11/80))							0.00									
T101	9/01/81	/TT 1 1		5.14									0.90	5.14	0.00				0.00			0.00
	10/01/81	. •		_	ns)									4.11 3.99	0.00				0.00		0.00	0.00
M8	10/17/81 1/20/82	5.45	um baia	ince)	Snow		1.02	1.02	0.01	_	1 12	4.42	0.90	3.99	-0.12	1.02	0.33	E	0.00		0.00	-0.12 0.22
M11	1/20/82	5.45		5 40	Snow		1.02	1.02	0.01	3	4.43	4.43 4.43	0.90	3.99	-0.12		0.33	E E	0.34		0.34	0.22
M37	6/25/82	3.81		3.85								4.43	0.90	3.47	-0.12	0.97	0.55	E	0.32		-0.52	
IVI 3 /	0/23/82	3.61		3.63	ice								0.90	3.47	-0.04						-0.32	-0.04
		STAKE	E 82-A (install	ed 6/25/82))							Ice balan	ce contin	ued fron	1 Stake	80-A.					
M37	6/25/82			7.14	Ice								0.90	6.43	-0.64						-0.52	-0.64
M97	8/31/82			3.30	Ice								0.90	2.97	-4.10						-3.98	-4.10
M109	9/02/82	3.25	3.29	3.33	Ice								0.90	3.00	-4.07						-3.95	-4.07
	9/30/82	(Hydrol	ogic ye	ar ends)									2.26	-4.81				0.00		-4.69	-4.81
	10/02/82	(Minim	um bala	nce)										2.25					0.00		-4.70	
T54	11/06/82	3.00			Snow		0.47	0.47	0.03	10	2.53	2.50	0.90	2.25		0.50	0.31	E	0.16			
												See 1983	measuren	nent year	for aver	age b'ss	S.					

Table 2. Mass balance data from site A (590 meters altitude) on Wolverine Glacier, Alaska--Continued

					OBSERVA	ATIONS							<		S	URFAC	CE MA	SS B.	ALANCE-			
		<	Stake	Readir	ng>	<	Snov	w Depth		>	Summe	r Surface	<old< th=""><th>Firn and</th><th>Ice></th><th><</th><th>Snov</th><th>w and</th><th>New Firn-</th><th>></th><th>Yearly</th><th>y Results</th></old<>	Firn and	Ice>	<	Snov	w and	New Firn-	>	Yearly	y Results
Field	Date	Tape	Sur	vey		Pit/Core	Probe	Average	s.e.	n	Obsvd.	Average	Density	Stake	Ice	Depth	Dens	ity	Snow	NFirn	Net	Annual
Notes		b'	b^*	b^{**}	Stratum	d	d	d			b'ss	b'ss	ρ	b'(i)	b(i)	d	ρ		b(s)	b(f)	bn	b_a
	m/d/y	m	m	m		m	m	m	m		m	m	kg/L	m(w)	m(w)	m	kg/I		m(w)	m(w)	m(w)	m(w)
								198	3 MEA	SUR	EMEN	T YEAR										
				`	ed 6/25/82))																
M109	9/02/82		3.29										0.90	3.00								
	10/01/82				ns)									2.26	0.00				0.00			0.00
	10/02/82	(um bala	ance)										2.25	-0.01				0.00		0.00	
T54	11/06/82	3.00			Snow		0.47	0.47	0.03		2.53	2.50	0.90	2.25	-0.01		0.31	Е	0.16		0.16	
M7	1/10/83	4.09			Snow		1.62	1.62	0.15	3	2.47	2.50	0.90	2.25	-0.01		0.33	Е	0.52		0.52	
T10	1/14/83			4.11	Snow							2.50	0.90	2.25	-0.01		0.35	Е	0.56		0.56	0.55
M21	6/11/83			3.26	Snow		0.78	0.78	0.10	10	2.48	2.50	0.90	2.25	-0.01	0.76	0.46	Е	0.35		0.35	0.34
		STAKE	E 83-A ((installe	ed 6/11/83))							Ice balance	ce contin	ued fron	n Stake	82-A.					
M22	6/11/83	8.13		•	Snow		0.78	0.78	0.10	10	7.32	7.32	0.90	6.59	-0.01	0.78	0.46	E	0.36		0.36	0.35
		Stake si	tting on	connec	ctor at 3 m,	0.10 m ex	cess len	gth; correc	ctions r	nade.												
M62	9/02/83			3.53	Ice								0.90	3.18	-3.42						-3.41	-3.42
	9/30/83	(Hydrol	logic ye	ar ends))									2.48	-4.12				0.00		-4.11	-4.12
	10/05/83													2.40					0.00		-4.19	
								198	4 MEA	SUR	EMEN	 Г YEAR										
		STAKE	E 83-A ((installe	ed 6/11/83))																
M62	9/02/83			3.53	Ice								0.90	3.18								
	10/01/83	(Hydrol	logic ye	ar begir	ns)									2.48	0.00				0.00			0.00
	10/05/83	(Minim	um bala	ance)										2.40	-0.08				0.00		0.00	-0.08
M66	11/14/83	3.55			Snow		0.73	0.73	0.02	3	2.82	2.67	0.90	2.40	-0.08	0.88	0.31	E	0.27		0.27	0.19
M6	1/18/84		4.49	4.42	Snow							2.67	0.90	2.40	-0.08	1.75	0.36	E	0.63		0.63	0.55
M12	1/21/84	4.45			Snow							2.67	0.90	2.40	-0.08	1.78	0.36	E	0.64		0.64	0.56
			onnecto	r nested	l, lowered (0.13 m.																
T26	6/07/84	3.44			Snow							2.67	0.90	2.40	-0.08	0.77	0.45	Е	0.35		0.35	0.27
M23	6/10/84	3.30			Snow		0.72				2.52	2.67	0.90	2.40	-0.08		0.45	Е	0.26		0.26	0.18
		Stake fo	ound wi	th only	3-m and 9-	m section	s; 6-m s	ection miss	sing. C	orrec	tions ap	plied to va	alues recor	ded in fi	eld note	s.						
		STAKE	E 84-A ((installe	ed 6/10/84))							Ice balance	ce contin	ued fron	n Stake	83-A.					
M24	6/10/84	9.30		9.27	Snow			0.57			8.70	8.70	0.90	7.83	-0.08	0.57	0.45	E	0.26		0.26	0.18
								Snow dep	th mea	sured	at Stake	e 83-A.										
M38	8/17/84			4.83	Ice			•					0.90	4.35	-3.56						-3.48	-3.56
	9/30/84	(Hydrol	logic ye	ar ends))									2.71	-5.20				0.00		-5.12	-5.20
	10/11/84	(Minim	um bala	ance)										2.51					0.00		-5.32	
	10/11/04																					

Table 2. Mass balance data from site A (590 meters altitude) on Wolverine Glacier, Alaska--Continued

					OBSERV.	ATIONS							<		S	URFA	CE MA	SS B	ALANCE-			
		<	Stake	Readir	1g>	<	Snov	v Depth		>	Summe	r Surface	<old< th=""><th>Firn and</th><th>Ice></th><th><</th><th>Snov</th><th>w and</th><th>New Firn-</th><th>></th><th>Yearly</th><th>Results</th></old<>	Firn and	Ice>	<	Snov	w and	New Firn-	>	Yearly	Results
Field	Date	Tape	Surv	vey		Pit/Core	Probe	Average	s.e.	n	Obsvd.	Average	Density	Stake	Ice	Depth	Dens	ity	Snow	NFirn	Net	Annua
Notes		b'	b^*	b^{**}	Stratum	d	d	d			b'ss	b'ss	ρ	b'(i)	b(i)	d	ρ		b(s)	<i>b(f)</i>	bn	b_a
	m/d/y	m	m	m		m	m	m	m		m	m	kg/L	m(w)	m(w)	m	kg/I	Ĺ	m(w)	m(w)	m(w)	m(w)
								198	5 MEA	SUR	REMEN	T YEAR										
		STAK	E 84-A (install	ed 6/10/84)																
M38	8/17/84			4.83	Ice								0.90	4.35								
	10/01/84	(Hydro	logic yea	ar begii	ns)									2.71	0.00				0.00			0.00
	10/11/84	(Minim	um bala	nce)										2.51	-0.20				0.00		0.00	-0.20
RM84	10/30/84	2.80			Snow		0.01	0.01		1	2.79	2.79	0.90	2.51	-0.20	0.01	0.30	Е	0.003		0.003	-0.20
RM8	1/12/85		4.47	4.33	Snow							2.79	0.90	2.51	-0.20	1.54	0.35	Е	0.54		0.54	0.34
M38	6/08/85		4.90	4.74	Snow							2.79	0.90	2.51	-0.20	1.95	0.50	E	0.98		0.98	0.78
RM45	6/09/85	4.89		4.73	Snow		1.42	1.42	0.10	11	3.31	2.79	0.90	2.51	-0.20	1.94	0.50	E	0.97		0.97	0.77
							Probe li	ikely stopp	ed by	ice la	yers in th	e snow.	Snow dept	th indicat	ted by sta	ake is u	sed.					
RM74	8/27/85	0.45			Ice								0.90	0.41	-2.30						-2.10	-2.30
		b' base	d on dep	oth of h	ole from w	hich stake	had rec	ently faller	1.											N	lo resul	ts
		STAK	E 85-A (ed 6/08/85)							Ice balan									
M39	6/08/85			8.74	Snow							6.91	0.90	6.22	-0.20		0.50	Е	0.92		0.92	0.72
RM45	6/09/85	8.85			Snow			1.94			6.91	6.91	0.90	6.22	-0.20	1.94	0.50	Е	0.97		0.97	0.77
								Snow dep	th fron	n Stal	ke 84-A.											
RM74	8/27/85	4.56		4.44									0.90	4.00	-2.42						-2.22	-2.42
	9/30/85	\)									3.15	-3.27				0.00		-3.07	-3.27
	10/13/85	,	um bala	nce)										3.04					0.00		-3.18	
RM87	12/03/85	3.61			Snow		0.32	0.32	0.04	21	3.29	3.38	0.90	3.04		0.23	0.31	Е	0.07			
													ment year		-							
								108	6 MF	STIE		Γ YEAR										
		STAKI	E 85-A (install	ed 6/08/85	`		170	UNIE	ison	EIVIEIV.	ILAK										
RM74	8/27/85		4.57			,							0.90	4.00								
IXIVI / T	10/01/85												0.50	3.15	0.00				0.00			0.00
	10/01/85	. •		_	115)									3.04	-0.11				0.00		0.00	-0.11
RM87	12/03/85	3.61	uiii baia	ncc)	Snow		0.32	0.32	0.04	21	3.29	3.38	0.90	3.04	-0.11	0.23	0.31	Е	0.07		0.00	-0.11
M6	2/17/86	3.01	6.83	6.08	Snow		0.32	0.32	0.04	21	3.29	3.38	0.90	3.04	-0.11		0.40	E	1.08		1.08	0.97
M30	6/14/86	4.35	4.36		Snow		0.79	0.79	0.05	17	3.50	3.38	0.90	3.04	-0.11		0.46	E	0.42		0.42	0.31
T51	8/20/86		ound me				0.77	0.77	0.03	1 /	3.30	3.30	0.50	3.04	-0.11	0.71	0.40	L	0.42	N	Jo resul	
131	0/20/00	Stake I	Juna me	neu ou	ι.															1	io icsui	13
		STAKI	E 86-A (install	ed 6/14/86	`							Ice balan	ce contin	ued fron	ı Stake	85-A					
M30	6/14/86	8.69	Stake v			,	0.79	0.79	0.05	17	7.90	7.90	0.90	7.11	-0.11		0.46	Е	0.36		0.36	0.25
T51	8/20/86	4.53	4.50				0.77	0.77	0.03	1 /	1.50	7.50	0.90	4.04	-3.18	0.77	5.40	ப	0.50		-3.07	-3.18
1.01	9/30/86		logic yea										0.50	2.98	-4.24				0.00		-4.13	-4.24
	11/02/86	. •			,									2.66	-4.56				0.00		-4.45	7,27
T30	6/14/87	(141111111	un vara	1100)	Snow		1.72	1.72	0.04	15	2.96	2.96	0.90	2.66	7.50	1 72	0.49	Е	0.84		7.73	
130	0/17/0/	Stake b			SHOW		1./4	1./4	0.04		Snow du							L	0.07			

Table 2. Mass balance data from site A (590 meters altitude) on Wolverine Glacier, Alaska--Continued

					OBSERVA	ATIONS							<		S	URFAC	CE MA	SS B	ALANCE-			
		<	Stake	Readir	ıg>	<	Snov	v Depth		>	Summe	r Surface	<old< th=""><th>Firn and</th><th>Ice></th><th><</th><th>Snov</th><th>v and</th><th>New Firn-</th><th>></th><th>Yearly</th><th>Results</th></old<>	Firn and	Ice>	<	Snov	v and	New Firn-	>	Yearly	Results
Field	Date	Tape	Surv	/ey		Pit/Core	Probe	Average	s.e.	n	Obsvd.	Average	Density	Stake	Ice	Depth	Densi	ity	Snow	NFirn	Net	Annual
Notes		b'	b*	b^{**}	Stratum	d	d	d			b'ss	b'ss	ρ	b'(i)	b(i)	d	ρ		b(s)	b(f)	bn	b_a
	m/d/y	m	m	m		m	m	m	m		m	m	kg/L	m(w)	m(w)	m	kg/L	,	m(w)	m(w)	m(w)	m(w)
								198′	7 MEA	SUR	REMEN'	T YEAR										
		STAKE	E 86-A (installe	ed 6/14/86))																
	10/01/86	(Hydrol	ogic yea	ar begin	ns)									2.98	0.00				0.00			0.00
	11/02/86	(Minim	um bala	nce)										2.66	-0.32				0.00		0.00	-0.32
RM2	2/10/87				Snow		2.72	2.72	0.10	15		2.96	0.90	2.66	-0.32	2.72	0.40	E	1.09		1.09	0.77
		Stake bu	uried by	snow																		
T30	6/14/87	Stake be	ent badly	y.	Snow		1.72	1.72	0.04	15	2.96	2.96	0.90	2.66	-0.32	1.72	0.49	Е	0.84		0.84	0.52
		2.96			Ice						Snow di	ug away fr	om stake	for direc	t observa	ition of	b' at th	e glac	cier ice sur	face.		
M45	10/01/87	Stake fa	ıllen ove	er; bow	from 2.5 to	o 4.0 m.																
		STAKE	E 87-A (installe	ed 6/15/87))							Ice balan	ce contin	ued fron	1 Stake	86-A.					
M33,T31	6/15/87	6.60			Snow		1.72	1.72	0.04	15	4.88	4.88	0.90	4.39	-0.32	1.72	0.49	E	0.84		0.84	0.52
	9/30/87	(Hydrol	ogic yea	ar ends)														0.00		-3.23	-3.55
M45	10/01/87	1.35	1.51	1.29	Ice								0.90	1.16	-3.55						-3.23	
	10/10/87	(Minim	um bala	nce)										1.09	-3.62				0.00		-3.30	
M6	3/18/88	Stake bu			Snow		4.11	4.11	0.16	6						4.11	0.43	Е	1.77			
		Stake no	ot found	by dig	ging.																	

Table 2. Mass balance data from site A (590 meters altitude) on Wolverine Glacier, Alaska--Continued

					-OBSERV	ATIONS						<		S	URFAC	CE MA	SS BA	LANCE-			
		<	Stake	Readin	1g>	> <	Snov	v Depth		> Sumn	ner Surface	<old< th=""><th></th><th>l Ice></th><th><</th><th>Snov</th><th>v and N</th><th>lew Firn-</th><th>></th><th>Yearly</th><th>Results</th></old<>		l Ice>	<	Snov	v and N	lew Firn-	>	Yearly	Results
Field	Date	Tape	Sur	vey		Pit/Core	Probe	Average	s.e.	n Obsvo	l. Average	Density	Stake	Ice	Depth	Densi	ty	Snow	NFirn	Net	Annua
Notes		b'	b^*	b^{**}	Stratum	d	d	d		b'ss	b'ss	ρ	b'(i)	b(i)	d	ρ		b(s)	b(f)	bn	b_a
	m/d/y	m	m	m		m	m	m	m	m	m	kg/L	m(w)	m(w)	m	kg/L	,	m(w)	m(w)	m(w)	m(w)
								198	8 MEA	SUREME	NT YEAR										
		STAKI	E 87-A2	(instal	lled 10/01/	(87)															
	10/01/87	(Hydro	logic ye	ar begi	ns)									0.00				0.00			0.00
	10/1-10/87	(Minim	um bala	nce)	Í								5.22	0.00				0.00		0.00	0.00
M46,RM21	10/01/87	6.07	6.06	6.12	Ice	(readings	at the st	take)					5.22								
		5.77		5.83	Ice	(area ave	rage rea	dings)		5.83	5.80	0.90	5.22	0.00				0.00		0.00	0.00
M6	3/18/88	Stake b	uried.		Snow		4.11	0 /	0.16	6	5.80	0.90	5.22	0.00	4.11	0.43	E	1.77		1.77	1.77
M8	3/19/88	Stake b	uried.		Snow			4.11	Assum	ed depth.	5.80	0.90	5.22	0.00	4.11	0.43	m	1.77		1.77	1.77
						Dug up a	wide ar			g the stake.					Pit to o	lepth o	f 1.60 1	n; density	y 0.345 l	kg/L.	
RM7	6/09/88	8.51		8.40	Snow	2.64		2.64		1 5.76	5.80	0.90	5.22	0.00		0.587		1.53	•	1.53	1.53
M38	9/18/88		3.15	3.17								0.90	2.85	-2.37						-2.37	-2.37
RM19	9/20/88	3.15	5.10	5.17	Ice							0.90	2.84	-2.38							-2.38
Idvii)/20/00		ery loos	e and le		vater-filled	hole: m	av be unre	liable			0.50	2.01	2.50						2.50	2.50
			-		_	found boy		•													
	9/30/88		•		•	Tourid box	wed mon	11 0.2 10 7	, III.				2.74	-2.48				0.00		-2.48	-2.48
	10/13/88	` •	~ ,		,								2.64	-2.40				0.00		-2.58	-2.40
T11	2/16/89	Site not		/									2.04					0.00		-2.36	
T58	6/15/89	1.97	i iiicasui	cu.	Ice							0.90	1.77								
136	0/13/09	1.97			icc							0.90	1.//								
		STAKI	F 88_A (inctall	od 3/18/88	by nuchir	a it inte	the enou	to the	ice surface)										
M7	3/18/88	STAIN	L 00-A (IIIstaii	Snow	by pusiii	4.18	4.18	to the	1 0.00	•				118	0.43	Е	1.80		1.80	
M8	3/19/88	1 95	Stake	vartical			4.09	4.18	0.19		0.00					0.43	m	2.09		2.09	
IVIO	3/19/00	4.63	Stake	verticai	Silow			o a false su			0.00							n; density	v 0 3/15 1		
RM7	6/09/88	2.61	2.61	2.64	Cmarri	2.64	riobe to	2.64	minici	1 0.00	0.00					0.587			y 0.545 I	1.55	
KIVI /	0/09/88	2.61	2.61	2.04	Show	2.04		2.04		1 0.00	0.00				2.04	0.387	IVI	1.33		1.33	
								108	0 MF	SUREME	T VEAR										
		STAKI	F 97 A2	(instal	lled 10/01/	(97)		170) IVIE	SUKEME	VI ILAK										
RM19	9/20/88	3.15	E 0/-AL	3.17		07)						0.90	2.84								
KWI19	9/20/00		a stalea n									0.90	2.04								
	10/01/88		g stake p										2.74	0.00				0.00			0.00
					118)															0.00	
T11	10/13/88	(,									2.64	-0.10				0.00		0.00	-0.10
T11	2/16/89		measur		Lan							0.00	1 77	0.07						0.07	0.07
T58	6/15/89	2.00		1.97		(): 1	L C	1154 611	7:	-4- 4 ·	41 1 :	0.90	1.77	-0.97						-0.87	-0.97
T(2	(117/00		eset in sa	ame ho		(w) icemel	it from 6	/15 to 6/1	estim/	ated using v	eather data		5.40	1.05						0.07	1.07
T63	6/17/89	6.10			Ice							0.90	5.49	-1.07				0.00		-0.97	-1.07
m	9/30/89	(Hydro																0.00			
T157		Survey	ed stake	base at	ice surfac	e; stake me	elted out							<-6.74	0.10		_	0.03		<6.64	<-6.74
T158	10/04/89							0.10							0.10	0.30	E	0.03			
	401001							Visual est	imate	of snow cov	er over enti	re glacier.									
	10/08/89	(Minim	ium bala	ince)														0.00			

Table 2. Mass balance data from site A (590 meters altitude) on Wolverine Glacier, Alaska--Continued

					-OBSERV	ATIONS							<		S	URFA	CE MA	SS BA	ALANCE-			
		<	Stake	Readir	1g>	<	Snov	v Depth		>	Summe	r Surface	<old< th=""><th>Firn and</th><th>Ice ></th><th><</th><th>Snov</th><th>v and l</th><th>New Firn-</th><th>></th><th>Yearly</th><th>Results</th></old<>	Firn and	Ice >	<	Snov	v and l	New Firn-	>	Yearly	Results
Field	Date	Tape	Sur	vey		Pit/Core	Probe	Average	s.e.	n	Obsvd.	Average	Density	Stake	Ice	Depth	Dens	ity	Snow	NFirn	Net	Annua
Notes		b'	b^*	b^{**}	Stratum	d	d	d			b'ss	b'ss	ρ	b'(i)	b(i)	d	ρ		b(s)	b(f)	bn	b_a
	m/d/y	m	m	m		m	m	m	m		m	m	kg/L	m(w)	m(w)	m	kg/I	,	m(w)	m(w)	m(w)	
								199	0 MEA	SUR	REMENT	T YEAR										
		STAKI	E 89-A ((installe	ed 10/03/89	9)																
	10/01/89	(Hydro	logic ye	ar begir	ns)									7.10	0.00							0.00
T157	10/03/89	7.90	7.97	7.85	Ice								0.90	7.07	-0.03							-0.03
T158	10/04/89							0.10						7.07	-0.03	0.10	0.30	E	0.03		0.03	0.00
								Visual ob	servatio	on of	snow co	ver over e	ntire glac	ier.								
	10/08/89	(Minin	num bala	ance)											-0.16				0.00		0.00	-0.16
T60	10/08/89	7.85			Ice						7.85	7.71	0.90	6.94	-0.16							-0.16
T53	2/14/90	9.50	9.46	9.36	Snow							7.71	0.90	6.94	-0.16	1.65	0.36	E	0.59		0.59	0.43
T63	3/17/90	9.60			Snow		1.95	1.95	0.02	4	7.65	7.71	0.90	6.94	-0.16	1.89	0.37	E	0.70		0.70	0.54
M23	6/02/90	7.87	7.89	7.76	Ice			0.02			7.74	7.71	0.90	6.94	-0.16	0.02	0.90	E	0.02		0.02	-0.14
					Snow wit	h superim	posed ic	e covers 4	0% of	surfa	ce.											
M34	9/07/90		2.04	1.35	Ice								0.90	1.22	-5.88						5.72	-5.88
M35	9/10/90	2.00		1.31	Ice								0.90	1.18	-5.92						-5.76	-5.92
			E 90-A (,	ed 9/10/90))							Ice balan			n Stake	89-A.					
M35	9/10/90	8.10		8.10									0.90	7.29	-5.92							-5.92
	9/30/90	(Hydro	~ ,	1)									6.95	-6.26				0.00		-6.10	-6.26
	10/12/90	(Minim			~									6.87					0.00		-6.18	
M5	1/07/91		7.78	7.75	Snow		0.12	0.12	0.03	10	7.63	7.63	0.90	6.87		0.12	0.35	Е	0.04			
								100	1 ME 4	CIID	REMENT	r ve a d										
		STAKI	E 00 A /	(install	ed 9/10/90)			199	I NILA	SUR	ENIEN	I ILAK										
M35	9/10/90	8.10	L 90-A (8.10		,							0.90	7.29								
IVISS	10/01/90		logic va										0.90	6.95	0.00				0.00			0.00
	10/01/90			_	113)							7.63	0.90	6.87	-0.08				0.00		0.00	
M5	1/07/91	7.75	7.78		Snow		0.12	0.12	0.03	10	7.63	7.63	0.90	6.87	-0.08	0.12	0.35	Е	0.04		0.04	-0.04
M16	5/13/91	1.13	9.38		Snow		0.12	0.12	0.03	10	7.03	7.63	0.90	6.87	-0.08		0.33	E	0.80		0.80	0.72
M32	9/12/91		3.49	3.48								7.03	0.90	3.13	-3.82	1.70	0.43	L	0.00		-3.74	-3.82
M39	9/18/91	3.15	5.17	3.15									0.90	2.84	-4.11						-4.03	-4.11
M4	1/23/92		uried	5.15	100								0.50	2.01								
	1,25,72	Starre 0																				
		STAKI	E 91-A ((installe	ed 9/18/91))							Ice balan	ce contin	ued fron	n Stake	90-A.					
M39	9/18/91	8.90	•	8.90									0.90	8.01	-4.11						-4.03	-4.11
	9/30/91	(Hydro	logic ye	ar ends)									8.00	-4.12				0.00		-4.04	-4.12
	10/1-8/91													8.00					0.00		-4.04	
M3	1/23/92		10.66		Snow							8.89	0.90	8.00		1.78	0.39	Е	0.69			
M7	1/27/92	A	ssumed	10.60	Snow			1.80			8.80	8.89				1.80	0.39	E	0.70			
								Snow dep	th mea	sured	l at nearb	y glacier s	surface m	arker.								
								1				2 measure			age b'ss.							

Table 2. Mass balance data from site A (590 meters altitude) on Wolverine Glacier, Alaska--Continued

					OBSERVA	ATIONS							<		S	URFAC	CE MA	SS B	ALANCE-			
		<	Stake	Readi	ıg>	<	Snov	v Depth		>	Summe	r Surface	<old< th=""><th>Firn and</th><th>Ice></th><th><</th><th>Snov</th><th>v and</th><th>New Firn-</th><th>></th><th>Yearly</th><th>Results</th></old<>	Firn and	Ice>	<	Snov	v and	New Firn-	>	Yearly	Results
Field	Date	Tape	Sur	vey		Pit/Core	Probe	Average	s.e.	n	Obsvd.	Average	Density	Stake	Ice	Depth	Dens	ity	Snow	NFirn	Net	Annua
Notes		b'	b^*	b^{**}	Stratum	d	d	d			b'ss	b'ss	ρ	b'(i)	b(i)	d	ρ		b(s)	b(f)	bn	b_a
	m/d/y	m	m	m		m	m	m	m		m	m	kg/L	m(w)	m(w)	m	kg/I		m(w)	m(w)	m(w)	m(w)
								199	2 MEA	SUI	REMEN'	ΓYEAR										
		STAKI	E 91-A ((install	ed 9/18/91)	1																
M39	9/18/91	8.90		8.90	Ice								0.90	8.01								
	10/01/91	(Hydro	logic ye	ar begi	ns)									8.00	0.00							0.00
	10/1-8/91	(Minim	um bala	ince)								8.89	0.90	8.00	0.00				0.00		0.00	0.00
M3	1/23/92		10.66	10.67	Snow							8.89	0.90	8.00	0.00	1.78	0.39	Е	0.67		0.67	0.67
M7	1/27/92	A	ssumed	10.60	Snow			1.80			8.80	8.89				1.71	0.39	E	0.67			
								Snow dep	th meas	sure	d at nearb	y ice surfa	ace marke	r.								
M12	5/13/92		10.77	10.78	Snow							8.89	0.90	8.00	0.00	1.89	0.50	E	0.95		0.95	0.95
M14	5/16/92	10.73			Snow		1.82	1.82	0.02	6	8.91	8.89	0.90	8.00	0.00	1.84	0.50	E	0.92		0.92	0.92
M61	9/06/92	5.74	5.64	5.71	Ice								0.90	5.14	-2.86						-2.86	-2.86
													Icemelt a	fter 9/06	92 estim	ated fro	om wea	ther o	data.			
	9/30/92	(Hydro	logic ye	ar ends)									4.86	-3.14				0.00		-3.14	-3.14
	10/08/92	(Minim	um bala	ince)								5.29	0.90	4.76	-3.24				0.00		-3.24	
												Summer s	surface he	ight calc	ulated fr	om min	imum	mass 1	balance.			
M5	2/09/93		6.91	6.89	Snow							5.29	0.90	4.76		1.60	0.38	E	0.61			

Table 2. Mass balance data from site A (590 meters altitude) on Wolverine Glacier, Alaska--Continued

					OBSERVA	ATIONS							<		S	URFAC	E MA	SS BA	ALANCE-			
					1g>														New Firn-			
Field	Date	Tape	Sur	vey		Pit/Core	Probe	Average	s.e.	n	Obsvd.	Average	Density	Stake	Ice	Depth	Densi	ty	Snow	NFirn	Net	Annua
Notes		b'	b^*	b^{**}	Stratum	d	d	d			b'ss	b'ss	ρ	b'(i)	b(i)	d	ρ		b(s)	b(f)	bn	b_a
	m/d/y	m	m	m		m	m	m	m		m	m	kg/L	m(w)	m(w)	m	kg/L	r	m(w)	m(w)	m(w)	m(w)
								1993	3 MEA	SUF	REMEN	ΓYEAR										
				`	ed 9/18/91))																
M61	9/06/92	5.74	5.64																			
	10/01/02	(TT 1 :			Best b' ; 1	ean correc	tion and	measured	averag	ge ice	e level at	stake.	0.90	5.14	0.00				0.00			0.00
	10/01/92	` •	~ .	_	ns)							5.20	0.00	4.86	0.00				0.00		0.00	0.00
	10/08/92	(Minim	ium baia	ance)								5.29 Summer s	0.90	4.76	-0.10	om min		naga k	0.00		0.00	-0.10
M5	2/09/93		6.91	6.80	Snow							5.29	0.90	4.76	-0.10	1.60		E E	0.61		0.61	0.51
M17	5/16/93		7.17		Snow							5.29	0.90	4.76	-0.10	1.89		E	0.01		0.01	0.85
M32	9/10/93	Stake fo										3.29	0.90	4.70	-0.10	1.09	0.50	L	0.93		0.93	0.83
11132	J/10/J3	Stake It	ound me	ciica ou	ι.																	
		STAKI	E 92-A	(install	ed 9/07/92)																
M63	9/07/92		7.99	•		,							0.90	7.19								
	10/01/92													6.91	0.00				0.00			0.00
	10/08/92	(Minim	ıum bala	ance)	,							7.57	0.90	6.81	-0.10				0.00		0.00	-0.10
												Summer s	surface he	ight calc	ulated fr	om mini	imum r	nass t	alance.			
	2/09/93	Stake si	urvey in	comple	te for b^* a	nd b**.																
M17	5/16/93		9.29	9.29	Snow							7.57	0.90	6.81	-0.10	1.72	0.50	E	0.86		0.86	0.76
M32	9/10/93		3.72	3.71	Ice								0.90	3.34	-3.57						-3.47	-3.57
M34	9/11/93	3.70			Ice								0.90	3.33	-3.58						-3.48	-3.58
M37	9/13/93	3.40			Ice								0.90	3.06	-3.85						-3.75	
	9/30/93		~ ,)									2.78	-4.13				0.00		-4.03	-4.13
	10/16/93	(Minim		,								2.73	0.90	2.46	-4.45				0.00		-4.35	
M4	2/05/94		4.70		Snow							2.73	0.90	2.46		1.95		E	0.74			
M14	5/14/94	4.55	4.61	4.57	Snow		1.02	1.02	0.02	_	2.72	2.73	0.90	2.46		1.84		Е	0.81			
M16	5/16/94	4.55			Snow		1.82	1.82	0.03	5	2.73	2.73	0.90	2.46		1.82	0.44	Е	0.80			
								100	4 ME A	CIII) FMFN'	 Γ YEAR										
		STAKI	E 93_A	(install	ed 9/13/93	· no conne	ector at						nmer)									
M37	9/13/93		9.13	`		, no conne	ctor at	m so top	part	V 111 1	an neer	next sun	0.90	8.17								
11137	10/01/93												0.50	8.11	0.00				0.00			0.00
	10/16/93	` •	~ ,	_)									7.99	-0.12				0.00		0.00	
M4	2/05/94		10.65	10.59	Snow							8.88	0.90	7.99	-0.12	1.71	0.36	Е	0.62		0.62	0.50
M14	5/14/94		10.70	10.64	Snow							8.88	0.90	7.99	-0.12	1.76	0.45	E	0.79		0.79	0.67
M16	5/16/94	10.70			Snow		1.82	1.82	0.03	5	8.88	8.88	0.90	7.99	-0.12	1.82	0.44	E	0.80		0.80	0.68
M25	9/07/94	3.40			Ice								0.90	3.06	-5.05						-4.93	-5.05
M27	9/09/94		3.30	3.21	Ice								0.90	2.89	-5.22						-5.10	-5.22
	9/30/94	(Hydro	logic ye	ar ends)									2.74	-5.37						-5.25	-5.37
	10/16/95	(Minim		,										2.66	-5.45						-5.33	
M3	1/31/95		4.96	4.81	Snow			1.86			2.95	2.95	0.90	2.66		1.86	0.36	E	0.67			
								Snow dep	th mea	surec	d at Stake	94-A.										

Table 2. Mass balance data from site A (590 meters altitude) on Wolverine Glacier, Alaska--Continued

					OBSERV	ATIONS							<		S	URFAC	CE MAS	SS BA	LANCE-			
		<	Stake	Readin	ng>	<	Snov	v Depth		>	Summe	er Surface	<old< th=""><th>Firn and</th><th>Ice></th><th><</th><th>Snow</th><th>and l</th><th>New Firn-</th><th>></th><th>Yearly</th><th>Results</th></old<>	Firn and	Ice>	<	Snow	and l	New Firn-	>	Yearly	Results
Field	Date	Tape	Sur	vey		Pit/Core	Probe	Average	s.e.	n	Obsvd.	Average	Density	Stake	Ice	Depth	Densi	ty	Snow	NFirn	Net	Annual
Notes		b'	b^*	b^{**}	Stratum	d	d	d			b'ss	b'ss	ρ	b'(i)	b(i)	d	ρ		b(s)	b(f)	bn	b_a
	m/d/y	m	m	m		m	m	m	m		m	m	kg/L	m(w)	m(w)	m	kg/L		m(w)	m(w)	m(w)	m(w)
								199	5 MEA	SUF	REMEN'	T YEAR										
		STAKI	E 93-A ((installe	ed 9/13/93	; no conne	ctor at	6 m so top	part v	will f	all freely	y next sun	nmer)									
M27	9/09/94		3.30	3.21	Ice								0.90	2.89								
	9/30/94	(Hydro	logic ye	ar begir	ns)									2.74	0.00				0.00			0.00
		(Minim		,										2.58	-0.16				0.00		0.00	-0.16
M3	1/31/95		4.96		Snow							2.87	0.90	2.58	-0.16		0.36	Е	0.70		0.70	0.54
	5/11/95	Stake n	ot obser		Snow		1.94	1.94	0.05	5		2.87	0.90	2.58	-0.16		0.45	Е	0.87		0.87	0.71
M13	5/14/95			4.74	Snow			1.87			2.87	2.87	0.90	2.58	-0.16	1.87	0.45	Е	0.84		0.84	0.68
								Snowmelt			to 5/15 e	stimated fi										
M31	9/15/95	0.71			Ice	Stake ma	y have n	nelted into	the ice	: .			0.90	0.64	-2.10						-1.94	-2.10
		STAKI	E 94-A	(install	led 9/07/94	; no conn	ector at	6 m)														
M25	9/07/94	10.05		`	Ice	,		,					0.90	9.05								
M27	9/09/94		10.06	9.91	Ice								0.90	8.92								
	10/01/94	(Hydro	logic ye	ar begir	ns)									8.60	0.00				0.00			0.00
	10/16/95	(Minim	um bala	ince)										8.42	-0.18				0.00		0.00	-0.18
M3	1/31/95		11.35	11.21	Snow							9.35	0.90	8.42	-0.18	1.86	0.36	E	0.67		0.67	0.49
M9	5/11/95	11.43		11.29	Snow		1.94	1.94	0.05	5	9.35	9.35	0.90	8.42	-0.18	1.94	0.50	E	0.97		0.97	0.79
				Stake r	not surveye	ed; lean co	rrection	measured	on 5/14	1/95	applied t	o b'ss.				Snow i	is wet.					
M12	5/14/95		11.36	11.23	Snow							9.35	0.90	8.42	-0.18	1.88	0.50	E	0.94		0.94	0.76
M26	9/14/95	5.09	5.12	5.16	Ice								0.90	4.64	-3.96						-3.78	-3.96
	9/30/95	(Hydro	logic ye	ar ends))										-4.71				0.00		-4.53	-4.71
	10/09/95	(Minim	ium bala	ince)										3.75	-4.85				0.00		-4.67	
T2, BK3	1/12/96	5.10	5.06	5.12	Snow	0.90	0.96	0.95	0.03	18	4.17	4.17	0.90	3.75	-4.85	0.95	0.354	M	0.34			
						Snow cor	e, 4 mea	surements	using	the N	/IcCall to	ibe; 14 ado	litional de	pth meas	surement	s by pro	obing.					

Table 3. Mass balance data from site B (1,070 meters altitude) on Wolverine Glacier, Alaska.

<					-OBSERVA	ATIONS						>	<		S	URFAC	E MAS	SS BA	ALANCE-			;
		<	Stake	Readi	ng>	<	Snov	Depth		>	Summe	r Surface	<old< th=""><th>Firn and</th><th>Ice></th><th><</th><th>Snow</th><th>and I</th><th>New Firn-</th><th>></th><th>Yearly</th><th>y Results</th></old<>	Firn and	Ice>	<	Snow	and I	New Firn-	>	Yearly	y Results
Field	Date	Tape	Surv	vey		Pit/Core	Probe	Average	s.e.	n	Obsvd.	Average	Density	Stake	Ice	Depth	Densit	ty	Snow	NFirn	Net	Annual
Notes		b'	b^*	b^{**}	Stratum	d	d	d			b'ss	b'ss	ρ	b'(i)	b(i)	d	ρ		b(s)	b(f)	b_n	b_a
	m/d/y	m	m	m		m	m	m	m		m	m	kg/L	m(w)	m(w)	m	kg/L		m(w)	m(w)	m(w)	m(w)
								196	6 ME	ASUF	REMEN	T YEAR										
M48B	4/23/66				Snow		2.30	2.30		1						2.30	0.44	E	1.01		1.01	
					This mea	surement i	s located	d 1 km dov	vn-glac	cier fr	om site	B.										
PP715-A		(Minim	um bala	nce) E	Estimate at s	ite from n	nass bala	ance map (Meier	and o	thers, 19	71).							0.00		-1.00	
M165A	10/24/66				Snow		0.80	0.80		1						0.80	0.32	E	0.26			
								196	7 ME	ASUF	REMEN	T YEAR										
		(Minim	um bala	nce)	Date unk	nown; no	weather	data at the	glacie	r.									0.00			
M165A	10/24/66				Snow		0.80	0.80		1						0.80	0.32	E	0.26		0.26	
Data Form	4/01/67				Snow	0.97		0.97		1						0.97	0.362	M	0.35		0.35	
M22E	4/04/67				Snow		2.10	2.10		1						2.10	0.42	E	0.88		0.88	
		STAKE	67-16	(instal	led 6/02/67)																
M88D	6/02/67	2.70		`	Snow	,	1.20	1.20		1	1.50		0.90	1.35		1.20	0.49	E	0.59		0.59	
M139C	9/20/67	Stake fo	und me	lted ou	ıt; temporar	ily reinsta	lled in a	narrow cr	evasse.												<-1.35	,
		4.00			Ice	•							0.90	3.60								
		Stake no	ot seen a	again u	ntil Oct. 16	, 1971.																
PP715-B	9/24/67	(Minim	um bala	nce) E	Estimate fro	m mass ba	lance m	ap (Tangb	orn and	d othe	ers, 1977).									-2.00	

Table 3. Mass balance data from site B (1,070 meters altitude) on Wolverine Glacier, Alaska--Continued

<					OBSERV <i>A</i>	TIONS							<		S	URFAC	E MASS B	ALANCE-			
		<	Stake	Readin	g>	<	Snow	Depth		- :	Summe	r Surface	<old< th=""><th>Firn and</th><th>Ice></th><th><</th><th>Snow and</th><th>New Firn-</th><th>></th><th>Yearly</th><th>y Result</th></old<>	Firn and	Ice>	<	Snow and	New Firn-	>	Yearly	y Result
Field	Date	Tape	Surv	vey		Pit/Core	Probe	Average	s.e.	n	Obsvd.	Average	Density	Stake	Ice	Depth	Density	Snow	NFirn	Net	Annua
Notes		b'	b^*	b^{**}	Stratum	d	d	d			b'ss	b'ss	ρ	b'(i)	b(i)	d	ρ	b(s)	<i>b(f)</i>	b_n	b_a
	m/d/y	m	m	m		m	m	m	m		m	m	kg/L	m(w)	m(w)	m	kg/L	m(w)	m(w)	m(w)	m(w)
								196	8 ME	ASU	REMEN	T YEAR									
		STAKE	E 68-21A	A (insta	lled 1/26/6	8, inserte	ed in sno	ow to ice)													
	9/24/67	(Minim	um bala	nce)										-0.10				0.00		0.00	
	10/01/67	(Hydrol	ogic yea	ar begin	s)									-0.10	0.00			0.13		0.13	0.00
M2A	1/26/68	1.92			Snow	2.02	1.96	1.97	0.03	3	-0.05	-0.11	0.90	-0.10	0.00	2.03	0.418 M	0.85		0.85	0.72
M4A	1/29/68	1.87			Snow							-0.11	0.90	-0.10	0.00	1.98	0.42 E	0.83		0.83	0.70
		(Raised	ski tracl	ks indic	ate recent	snow loss	caused	by erosion	by wi	nd)											
M5B	1/30/68	1.86			Snow							-0.11	0.90	-0.10	0.00	1.97	0.42 E	0.83		0.83	0.70
M6D	3/29/68	3.03			Snow							-0.11	0.90	-0.10	0.00	3.14	0.41 E	1.29		1.29	1.16
	4/04/68	(Snow b	alance 1	measur	ed using str	atigraphy	in snow	pit, 4/08/	68)									1.31		1.31	1.18
M19E	4/08/68	3.25			Snow	3.64	3.25	3.45	0.14	2	-0.20	-0.11	0.90	-0.10	0.00	3.36	0.413 M	1.39		1.39	1.26
M62C	6/05/68	2.59			Snow							-0.11	0.90	-0.10	0.00	2.70	0.60 E	1.62		1.62	1.49
M63C	6/06/68	2.58			Snow							-0.11	0.90	-0.10	0.00	2.69	0.60 m	1.61		1.61	1.48
						Snow der	nsity me	asured to t	op of s	lush	at depth	of 2.32 m;	density, ().54 kg/L	. Slush	density	estimated, 0	0.90 kg/L.			
M81D	7/20/68	0.87			Snow							-0.11	0.90	-0.10	0.00	0.98	0.78 m	0.76		0.76	0.63
		Stake al	oandone	d.		Snow der	nsity me	asured to to	op of s	lush	at depth	of 0.45 m;	density, ().57 kg/L	. Slush	density	estimated, 0	0.90 kg/L.			
		STAKE	E 68-21	(install	ed 1/26/68	in snow	pit)						Ice balan	ce contin	ued fron	n stake 6	68-21A.				
M2A	1/26/68	10.72			Snow	2.02	1.96	1.97	0.03	3	8.75	8.75	0.90	7.88	0.00	1.97	0.418 M	0.82		3.21	3.08
M88F	8/21/68	7.70			Ice								0.90	6.93	-0.95					-0.95	-1.08
	9/24/68	(Minim	um bala	nce)										6.44	-1.44			0.00		-1.44	-1.57
	9/30/68	(Hydrol	ogic yea	ar ends)										6.44	-1.44			0.09			-1.48
M107B	10/05/68	7.65			Snow							7.15	0.90	6.44	-1.44	0.50	0.28 E	0.14			
											See 196	9 measure	ment year	for aver	age b'ss.						

Table 3. Mass balance data from site B (1,070 meters altitude) on Wolverine Glacier, Alaska--Continued

(OBSERV	ATIONS							<		S	URFAC	E MAS	S BALANCE-			
			Stake	Readin	g>	<		1				er Surface			Ice>	<	-Snow a	and New Firn-	>	Yearly	Resul
Field	Date	Tape	Surv	vey		Pit/Core	Probe	Average	s.e.	n	Obsvd.	Average	Density	Stake	Ice	Depth	Density	Snow	NFirn	Net	Annu
Notes		b'	b^*	b**	Stratum	d	d	d			b'ss	b'ss	ρ	b'(i)	b(i)	d	ρ	b(s)	b(f)	b_n	b_a
	m/d/y	m	m	m		m	m	m	m		m	m	kg/L	m(w)	m(w)	m	kg/L	m(w)	m(w)	m(w)	m(w
								196	9 ME	ASU	REMEN	T YEAR									
			68-21	(install		3 in snow p	oit at sit	e B)													
M88F	8/21/68	7.70			Ice																
	9/24/68	(Minim		/										6.44				0.00		0.00	
	10/01/68	(Hydrol	ogic yea	ar begii	ıs)									6.44	0.00			0.09		0.09	0.0
M107B	10/05/68	7.65			Snow							7.15	0.90	6.44	0.00	0.50	0.28			0.14	0.0
M109E	10/10/68	7.61			Snow	0.46		0.46		1	7.15	7.15	0.90	6.44	0.00	0.46	0.294	M 0.14		0.14	0.03
M80A	7/31/69	6.87			Ice	Transient		ne 15 to 20	m fror	n stal	ke.		0.90	6.18	-0.26					-0.26	-0.33
M99D	9/12/69	6.03			Snow		0.03	0.03		1	6.00	6.00	0.90	5.40	-1.04	0.03	0.30	E 0.01		-1.03	-1.12
M105B	9/17/69	5.97			Ice								0.90	5.37	-1.07					-1.07	-1.16
					Surface h	alf covere	d with f	resh snow.													
	9/26/69	(Minim	um bala	ince)	Final ice	melt meas	ured at	Stake 69-C							-1.12			0.00		-1.12	-1.2
	9/30/69	(Hydrol	ogic yea	ar ends)										-1.12			0.12			-1.09
		STAKE	69-21	A (inst	alled 10/0	6/68; no w	ood plu	g in base)													
	9/24/68	(Minim	um bala	ince)														0.00		0.00	
	10/01/68	()	ogic yea	ar begir	ns)									0.96	0.00			0.09		0.09	0.00
M108C	10/06/68	1.52			Snow		0.52	0.52		1	1.00	1.07	0.90	0.96	0.00	0.45	0.25			0.11	0.02
M109E	10/10/68	1.45			Snow	0.46		0.46		1	0.99	1.07	0.90	0.96	0.00	0.38	0.294	M 0.11		0.11	0.02
M3C	1/27/69	2.77			Snow	1.64		1.64		1	1.13	1.07	0.90	0.96	0.00	1.70	0.392	M 0.67		0.67	0.58
M8F	4/12/69	5.05			Snow	4.05	3.93	3.96	0.04	4	1.09	1.07	0.90	0.96	0.00	3.98	0.356	M 1.42		1.42	1.32
M23C	4/18/69	5.11			Snow							1.07	0.90	0.96	0.00	4.04	0.36	E 1.45		1.45	1.35
M65B	6/04/69	4.40			Snow							1.07	0.90	0.96	0.00	3.33	0.59	E 1.96		1.96	1.86
M66A	6/05/69	4.30			Snow							1.07	0.90	0.96	0.00	3.23	0.64	m 2.07		2.07	1.98
								at depth of		_	• /	2									
						Slush and	l ice bel	ow the dep	th of 2	.72 m	cannot	be sample	d; assume	d density	of the s	lush is 0	.90 kg/L	٠.			
							Ice laye	er at depth	of 2.87	m is	too thic	k to penetr	ate with p	robe.							
		STAKE	E 68-C ((installe	ed 6/06/68	200 m eas	t of Site	e B)							Ice bala			om Stake 69-2	21A.		
M110A	10/10/68	2.20			Snow		0.50	0.50		1	1.70	1.71	0.90	1.54	0.00	0.49	0.29	E 0.14		0.14	0.05
M79D	7/31/69	1.72			Ice						1.72	1.71	0.90	1.54	0.00					0.00	-0.09
					Stake loc	ated at the	transier	nt snowline													
M99G	9/13/69	1.00			Snow		0.08	0.08	0.01	5	0.92	0.92	0.90	0.83	-0.71	0.08	0.32			-0.68	-0.77
	9/26/69	(Minim	um bala	ince)											-0.76			0.00		-0.76	-0.85
	9/30/69	(Hydrol	ogic yea	ar ends											-0.76			0.12			-0.73
M110A	11/19/69	2.85			Snow		1.98	1.98	0.03	4	0.87	0.87	0.90	0.78	-0.76	1.98	0.40	E 0.79			
						Snow den	sity me	asured at S	take 70	0-21	A; see 19	70 measur	ement year	ar.							
																		Average of 2	stakes:	-0.94	-0.91

Table 3. Mass balance data from site B (1,070 meters altitude) on Wolverine Glacier, Alaska--Continued

						ATIONS																
		<	Stake	Reading	>	<		-				r Surface			Ice>						Yearly	
Field	Date	Tape	Surv	-				Average	s.e.	n		_	Density		Ice	Depth	Density	y	Snow			Annua
Notes		b'	b^*	b^{**}	Stratum	d	d	d			b'ss	b'ss	ρ	b'(i)	b(i)	d	ρ		b(s)	b(f)	b_n	b_a
	m/d/y	m	m	m		m	m	m	m		m	m	kg/L	m(w)	m(w)	m	kg/L		m(w)	m(w)	m(w)	m(w)
								197	'0 ME	ASUI	REMEN	T YEAR										
			2 70-21	A (instal	led 9/17/0	69; no wo	od plug	in base)														
M105B	9/17/69	1.00			Ice																	
	9/26/69	(Minim																	0.00		0.00	
	10/01/69		ogic yea	ar begins	3)										0.00				0.12		0.12	0.00
M110B	11/19/69	3.35			Snow	1.25	1.25	1.25	0.02	5	2.10	2.11	0.90	1.90	0.00	1.24	0.40	M (0.50		0.50	0.38
		2.08			Ice						2.08											
			_	ght, b' , m	easured a	it the stake	: .				Stake sa	nk before	freezing i	n.								
M20D	4/11/70	Stake bu	aried.		Snow	6.00	5.90	5.95	0.02	2		2.11	0.90	1.90	0.00	5.95	0.442	M 2	2.63		2.63	2.51
Z17A	6/09/70	Stake bu	uried.		Snow	4.40		4.40		1		2.11	0.90	1.90	0.00	4.40	0.569	M 2	2.50		2.50	2.38
						Pit to 1.5	8-m dep	th; core to	ice at 4	1.40-1	m depth.											
M44A	7/24/70	5.40			Snow	3.02		3.02		1	2.38	2.11	0.90	1.90	0.00	3.29	0.615	M 2	2.02		2.02	1.90
						Pit to 1.2	5-m dep	th;core to	dirty ic	e at 3	3.02-m de	epth.										
	9/19/70	(Minim	um bala	nce)														(0.94	0.86	0.86	0.74
																		I	Differer	nce of 0.	.08 m is	water.
M72C	9/20/70	3.54			NFirn													(0.94	0.86		
M75I	9/27/70	3.54	(Assum	red <i>b'</i>)	NFirn	1.63		1.63		1	1.91	2.11	0.90	1.90	0.00	1.43	0.66	m (0.94	0.86		
	Weather	cold sinc	e 9/20;	no new s	snow.	Pit to the	water ta	ble at dept	th of 1.	32 m	; density	to depth of	of 1.20 m,	0.559 kg	g/L. Nev	v firn fro	zen to o	depth of	f 0.80 m	ı.		
						Density o	f the nev	w firn incl	udes 0.	31-m	deep slu	ish layer b	elow the	water tab	le; dens	ity estim	ated, 0.9	90 kg/L.				
						Water con	ntent of	the new fir	rn is the	e sum	n of the v	vater in th	e unsatura	ted firn j	olus the	water in	the slus	h layer.				
						Slush at t	he base	of the enou	az azill k		11.1		t franzas:	a false si	ımmer s	urface.						
	9/30/70	(Hridaal				DIGGII GC C		of the show	** *****	becon	ne solid	ice when i	t neezes,									
1. C.A.D.		(пушог	logic yea	ar ends)		Siddle de c		or the show	w will t	oecon	ne solid	ice when i	t freezes,		0.00			(0.01	0.86		0.75
M4B	1/11/71	5.30	ogic ye		Snow	2.02	1.25	or the show	w wiii c	oecon 1	ne solid	3.54	t neezes,		0.00	1.76	0.369		0.01	0.86		0.75
M4B	1/11/71	` •	logic ye		Snow		1.25	o ice, a fals		1		3.54	observe	d at the s	****		0.369			0.86		0.75
M4B	1/11/71	` •	logic ye.		Snow		1.25 Probe to	o ice, a fal	se sumi	1 mer s	surface.	3.54 <i>b</i> 'ss	observe		take on	9/20/70		M (0.65	0.86		0.75
М4В	1/11/71	` •	logic ye		Snow	2.02	1.25 Probe to	o ice, a fal	se sumi	1 mer s	surface.	3.54 <i>b</i> 'ss	observe		take on	9/20/70		M (0.65	0.86		0.75
М4В	1/11/71	5.30		,		2.02	1.25 Probe to d 100 m	o ice, a fals up glacies	se sumi	1 mer s	surface. ake to av	3.54 b'ss roid the sli	observe		take on	9/20/70		M (0.65	0.86		0.75
М4В	1/11/71 9/26/69	5.30 STAKE	E 71-21 2	A (instal		2.02 Pit locate	1.25 Probe to d 100 m	o ice, a fals up glacies	se sumi	1 mer s	surface. ake to av	3.54 b'ss roid the sli	observe		take on	9/20/70		M (0.65	0.86	0.00	0.75
М4В		5.30 STAKE (Minimum	E 71-21 um bala	A (instal	led 9/28/	2.02 Pit locate	1.25 Probe to d 100 m	o ice, a fals up glacies	se sumi	1 mer s	surface. ake to av	3.54 b'ss roid the sli	observe		take on	9/20/70		M (0.65 en now.	0.86	0.00 0.12	0.75
M4B	9/26/69	5.30 STAKE (Minimum	E 71-21 um bala	A (instal	led 9/28/	2.02 Pit locate	1.25 Probe to d 100 m	o ice, a fals up glacies	se sumi	1 mer s	surface. ake to av	3.54 b'ss roid the sli	observe		take on	9/20/70		M (0.65 en now.	0.86		
M4B	9/26/69	5.30 STAKE (Minimum) (Hydrol	E 71-21 Aum bala	A (instal ance) ar begins	led 9/28/	2.02 Pit locate	1.25 Probe to d 100 m	o ice, a fals up glacies	se sumi	1 mer s	surface. ake to av	3.54 b'ss roid the sli	observe		take on	9/20/70		M (0.65 en now.	0.86		
M4B	9/26/69 10/01/69	5.30 STAKE (Minimum) (Hydrol	E 71-21 Aum bala	A (instal ance) ar begins	led 9/28/	2.02 Pit locate	1.25 Probe to d 100 m	o ice, a fals up glacies	se sumi	1 mer s	surface. ake to av	3.54 b'ss roid the sli	observe		take on	9/20/70		M (0.65 en now. 0.00 0.12	0.88	0.12	0.00
M4B	9/26/69 10/01/69	5.30 STAKE (Minimum) (Hydrol	E 71-21 Aum bala	A (instal ince) ar begins ince)	led 9/28/	2.02 Pit locate	1.25 Probe to d 100 m	o ice, a fals up glacies	se sumi	1 mer s	surface. ake to av	3.54 b'ss roid the sli	observe		take on	9/20/70		M (0.65 en now. 0.00 0.12	0.88	0.12	0.00
	9/26/69 10/01/69 9/19/70	5.30 STAKE (Minimum) (Hydrol	E 71-21 A um bala logic yea um bala	A (instal nnce) ar begins nnce)	led 9/28/*	2.02 Pit locate	1.25 Probe to d 100 m	o ice, a fals up glacier pod plug;	se sumi	1 mer s the standard	ourface. ake to av surface)	3.54 b'ss oid the sh	observe		take on	9/20/70. se on 9/2	7/70, ar	M ()	0.65 en now. 0.00 0.12 0.97 Differer	0.88 ace of 0.	0.12 0.88 .09 m is	0.00 0.76 water.
M76A	9/26/69 10/01/69 9/19/70 9/28/70	5.30 STAKE (Minimum) (Hydrol	E 71-21 A um bala logic yea um bala	A (instal ince) ar begins ince)	led 9/28/*	2.02 Pit locate	1.25 Probe to d 100 m	o ice, a fals up glacier pod plug;	se sumi	1 mer s the standard	ourface. ake to av surface)	3.54 b'ss oid the sh	observe		take on	9/20/70. se on 9/2	7/70, ar	M ()	0.65 en now. 0.00 0.12 0.97 Differer 0.97	0.88 nce of 0.	0.12 0.88 .09 m is	0.00 0.76 water. 0.76
	9/26/69 10/01/69 9/19/70 9/28/70 9/30/70 10/04/70	STAKE (Minimu) (Hydrol (Minimu) 1.47 (Hydrol	E 71-21A um bala logic yea um bala	A (instal ince) ar begins ince)	led 9/28/	2.02 Pit locate	1.25 Probe to d 100 m	o ice, a fals up glacier pod plug;	se sumi	1 mer s the standard	surface. ake to av surface)	3.54 <i>b</i> 'ss oid the slo	observe		take on	9/20/70. se on 9/2	7/70, ar	M ()	0.65 en now. 0.00 0.12 0.97 Differer 0.97 0.01	0.88 nce of 0.	0.12 0.88 .09 m is	0.00 0.76 water. 0.76

Table 3. Mass balance data from site B (1,070 meters altitude) on Wolverine Glacier, Alaska--Continued

<				(DBSERVA	ATIONS							<		S	URFAC	CE MASS B.	ALANCE-			
		<	Stake R	eading	;>	<	Snow	Depth		-:	Summe	r Surface	<old< th=""><th>Firn and</th><th>Ice></th><th><</th><th>Snow and</th><th>New Firn-</th><th>></th><th>Yearly</th><th>Results</th></old<>	Firn and	Ice>	<	Snow and	New Firn-	>	Yearly	Results
Field	Date	Tape	Surve	y		Pit/Core	Probe	Average	s.e.	n	Obsvd.	Average	Density	Stake	Ice	Depth	Density	Snow	NFirn	Net	Annual
Notes		b'	b^*	b**	Stratum	d	d	d			b'ss	b'ss	ρ	b'(i)	b(i)	\overline{d}	ρ	b(s)	<i>b(f)</i>	b_n	b_a
	m/d/y	m	m	m		m	m	m	m		m	m	kg/L	m(w)	m(w)	m	kg/L	m(w)	m(w)	m(w)	m(w)
								197	'1 ME/	SUE	REMEN	T YEAR					_				
		STAKI	E 70-21A	(instal	led 9/17/0	69; no woo	od plug	in base)													
M44A	7/24/70	5.40			Snow	3.02		3.02		1	2.38										
						Pit to 1.2	5-m dep	th; core to	dirty ic	e at	depth of	3.02 m.									
	9/19/70	(Minim	um balanc	ce)														0.00		0.00	
M72C	9/20/70	3.54			OFirn																
M75I	9/27/70	(3.54)	Assumed	b'	OFirn	1.63		1.63		1	1.91	1.91				1.63	0.60 m	0.98			
					Ice							1.91	0.90	1.72		-					
													TE FOR S								
											2 layers		e of minin		nce:						
							_						Density	b'(i)							
		See Sta	ke 70-21 <i>A</i>	in the	e 1970 me	asurement	year, fo	or 1970 fir	n data.		OFirn	1.63	0.60	0.98							
											Ice	1.91	0.90	1.72							
	0/20/50	(TT 1 1			`						Total	3.54		2.70	0.00	J		0.01		0.01	0.00
MAD		` •	logic year	_	/	2.02	1.05	2.02		,		2.54	2 T	2.70	0.00	1.76	0.260.14	0.01	0.65	0.01	0.00
M4B	1/11/71	5.30			Snow	2.02 Probe to i	1.25	2.02		l efo			2 Layers	2.70	0.00	1.76	0.369 M was 3.54 m	0.65	0.65	0.65	0.64
							•	, a iaise si lown over								9/20//0	was 5.34 III	•			
								up glacie						•		ze on 0/	27/70				
M34C	4/27/71	Stake b	uried		Snow	1 It locate	4.63	4.63	0.07		ake to av		2 Layers	2.70	0.00	4.63	0.46 E	2.13		2.13	2.12
M35D	4/29/71	Stake b			Snow	4.79	4.05	4.79	0.07	1			2 Layers	2.70	0.00	4.79	0.404 M	1.94		1.94	1.93
M66F	7/10/71	Stake b			Snow	3.65	3.66	3.66	0.04	6			2 Layers	2.70	0.00	3.66	0.57 M	2.09		2.09	2.08
M76D	8/13/71		or 1.50		Snow	1.80	1.58	1.62	0.04				2 Layers	2.70	0.00	1.62	0.60 E	0.97		0.97	0.96
			dentity in o					face obser			of 1.80		•				eading not u		culate sn		
			um balanc			Date unki								2.51	-0.19		<u> </u>	0.00		-0.19	
	9/30/70	,	logic year	/		Final bala				_		not know	n; no weat	her data	at the gl	acier.					
M101C	10/14/71	4.15			Snow								2 Layers		-0.19	0.88	0.30 E	0.26			
M101E	10/16/71	4.12			Snow	0.83	0.85	0.85	0.01	11	3.27	3.27	•			0.85	0.305 M	0.26			

Table 3. Mass balance data from site B (1,070 meters altitude) on Wolverine Glacier, Alaska--Continued

<				OBSER	VATIONS							-<		S	SURFAC	CE MASS E	BALANCE			
		<	Stake Rea	ading	-><	Snow	Depth		-:	Summe	r Surface	<old< th=""><th></th><th>Ice></th><th><</th><th>Snow and</th><th>New Firn-</th><th>></th><th>Yearly</th><th>/ Results</th></old<>		Ice>	<	Snow and	New Firn-	>	Yearly	/ Results
Field	Date	Tape	Survey		Pit/Core	Probe	Average	s.e.	n	Obsvd.	Average	Density	Stake	Ice	Depth	Density	Snow	NFirn	Net	Annua
Notes		b'	b^* b	** Stratu	m d	d	d			b'ss	b'ss	ρ	b'(i)	b(i)	d	ρ	b(s)	<i>b(f)</i>	b_n	b_a
	m/d/y	m	m ı	m	m	m	m	m		m	m	kg/L	m(w)	m(w)	m	kg/L	m(w)	m(w)	m(w)	m(w)
							197	72 ME	ASUI	REMEN	T YEAR									
		STAKI	E 70-21A (i	nstalled 9/1	7/69; 69-21	A label;	no wood j	plug)								_				
												TE FOR S								
											2 layers a	at the time	of minir	num bal	ance					
												Density	b'(i)							
										OFirn	1.36	0.58	0.79							
										Ice	1.91	0.90	1.72							
		~		_						Total	3.27		2.51							
			um balance	/	nknown; no			_		_	3.27		2.51				0.00		0.00	
241046	10/01/71	()	logic year b	<i>U</i>	al balance co	nditions	not know	n; no w	eathe	er data at	U				0.00	0.00 =				
M101C	10/14/71	4.15		Snow	0.00	0.05	0.05	0.01		2.25		2 Layers	2.51		0.88	0.30 E	0.26		0.26	
M101E	10/16/71	4.12		Snow	0.83	0.85	0.85	0.01	11	3.27		2 Layers	2.51		0.85	0.305 M	0.26		0.26	
M108B	10/21/71	4.27		Snow	1.25		1.05			2.07		2 Layers	2.51		1.00	0.31 E	0.31		0.31	
M3B	1/13/72	5.12		Snow	1.25	C	1.25	. 1 4	1	3.87		2 Layers	2.51		1.85	0.35 M	0.65		0.65	
M10	4/10/72	5.51		Snow	1.68	1.95	1.88	0.07		3.63		height at	2.51	;. 	2.24	0.254 M	0.79		0.79	
MIIO	4/10/72	3.31		Show	Pit to dirt			0.07	4	3.03	3.27	2 Layers	2.31		2.24	0.354 M	0.79		0.79	
M36G	6/21/72	5.18		Snow	1.60	y iceu-i	1.60		1	3.58	3 27	2 Layers	2.51		1.91	0.502 M	0.96		0.96	
M42D	7/12/72	4.15		Snow	0.77		0.77		1	3.38		2 Layers	2.51		0.88				0.46	
M60C	8/18/72	2.03		Ice	0.77		0.77		•	5.50	2.03	0.90	1.83		0.00	0.52 111	0.10		-0.68	
M68H	10/03/72	2.46		Snow		0.03	0.03		1	2.43	2.43	0.90	2.19		0.03	0.30 E	0.01		0.00	
			g during sur		valid old fin			ance da	ta afi			0.50	2.17		0.02	0.00 1	0.01			
		•	<i>3 8</i>	,																
		STAKI	E 68-21 (in	stalled 1/26	5/68)									Net bal	ance. b	", continue	d from Sta	ke 70-21	Α.	
M60C	8/18/72	5.44	`	Ice	,							0.90	4.90						-0.68	
	9/22/72	(Minim	um balance)									4.24				0.00		-1.34	
	9/30/72	,	logic year e	/									4.24				0.03			
M68H	10/03/72	4.71	<i>U</i> ,	Ice								0.90	4.24							
				Ice at t	the stake; thir	n snow i	n the area.													
		Stake 7	2-21A (inst	talled 1/13/	72; stake ba	se on bo	ard place	d on ic	ed-fi	rn at the	1971 su	mmer sur	face)							
M3B	1/13/72	1.25		Snow	1.25		1.25		1	0.00	-0.15				1.40	0.35 M	0.49		0.49	
M10L	4/10/72	1.82		Snow	1.68	1.95	1.88	0.07	4	-0.06	-0.15				1.97	0.35 E	0.69		0.69	
M36G	6/21/72	1.36		Snow	1.60		1.60		1	-0.24	-0.15				1.51	0.502 M	0.76		0.76	
M42D	7/12/72	0.34		Snow	0.77		0.77		1	-0.43	-0.15				0.49	0.52 M	0.25		0.25	
M68J	10/03/72	Stake n	ot found.																	

Table 3. Mass balance data from site B (1,070 meters altitude) on Wolverine Glacier, Alaska--Continued

					g>			1									Snow and I			•	
Field	Date	Tape	Sur	•	~			Average	s.e.	n		_	•		Ice		Density		NFirn		Annua
Notes		b'	b^*	b**	Stratum	d	d	d			b'ss	b'ss	ρ	b'(i)	b(i)	d	ρ	b(s)	b(f)	b_n	b_a
	m/d/y	m	m	m		m	m	m	m		m	m	kg/L	m(w)	m(w)	m	kg/L	m(w)	m(w)	m(w)	m(w)
		~~.						197	3 ME	ASUI	REMEN	T YEAR									
1600	0/10/73		68-21	(instal	led 1/26/68	3)															
M60C	8/18/72	5.44	1 1		Ice									4 2 4				0.00		0.00	
	9/22/72	(Minim		/	`									4.24	0.00			0.00		0.00	0.00
MOTI	10/01/72		ogic ye	ar begir			0.01			,	4.71	4.71	0.00	4.24	0.00	0.01	0.20 E	0.01		0.01	0.00
M68H	10/03/72	4.71			Snow	1.05	0.01	1.61	0.02	1	4.71	4.71	0.90	4.24	0.00	0.01	0.30 E	0.003		0.00	-0.01
M1A	1/04/73	Stake by			Snow	1.25	1.65	1.61	0.03	11		4.71	0.90	4.24	0.00	1.61	0.338 M	0.54		0.54	0.53
M17A	4/16/73	Stake by			Snow	3.30		3.30		1		4.71	0.90	4.24	0.00	3.30	0.371 M	1.22		1.22	1.21
M29D	6/01/73				Snow	3.19		3.19		1		4.71	0.90	4.24	0.00	3.19	0.445 M	1.42		1.42	1.41
T20A	7/07/73 8/24/73	Stake by 4.71	uriea.		Snow						4.71	4.71	0.90	4.24	0.00					0.00	0.01
M52D	9/20/73		1 1		Ice at SIc	e eage.					4.71	4./1	0.90	4.24	0.00					0.00	-0.01
		(Minim		/											-0.07 -0.07			0.04		-0.07	-0.08 -0.04
N 150 A	9/30/73 10/12/73	(Hydrol	ogic ye	ar ends)		0.38		0.20		1				4.17	-0.07	0.20	0.224.14	0.04			-0.04
M58A M60C	10/12/73	4.97			Snow Snow	0.38	0.34	0.38 0.34	0.01	1 8	4.63	4.63	0.90	4.17 4.17	-0.07	0.38	0.324 M 0.32 E	0.12			
MOOC	10/10/73	Stake al	nandone	-d	Silow		0.34	0.34	0.01	0	4.03	4.03	0.90	4.1/	-0.07	0.34	0.32 E	0.11			
		State at	Junaone	Ju																	
		STAKE	E 73-21	(install	ed 4/17/73	from reu	sed stal	kes; no 0-	to 3-m	secti	ion; 3- to	6-m labe	elled "72-	1"; 6- to	9-m sec	ction has	s no label)				
	9/22/72	(Minim	um bala	ince)														0.00		0.00	
	10/01/72	(Hydrol	ogic ye	ar begir	ns)										0.00			0.01		0.01	0.00
															Ice bala	nce con	tinued from	Stake 68-2	21.		
M19A	4/17/73	8.90			Snow		3.23	3.23	0.04	7	5.67	5.67	0.90	5.10	0.00	3.23	0.43 E	1.39		1.39	1.38
M29D	6/01/73	Stake by	uried		Snow	3.19		3.19		1		5.67	0.90	5.10	0.00	3.19	0.445 M	1.42		1.42	1.41
T19A	7/06/73	7.70			Snow							5.67	0.90	5.10	0.00	2.03	0.60 E	1.22		1.22	1.21
T20A	7/07/73	7.60			Snow							5.67	0.90	5.10	0.00	1.93	0.60 m	1.16		1.16	1.15
		Assume	ed <i>b'</i> .			Density n	neasure	to top of	transie	nt sup	perimpos	ed at dept	h of 1.59	m; densi	ty, 0.575	kg/L.					
T20E	7/09/73	7.50			Snow							5.67				1.83	0.60 E	1.10		1.10	1.09
M52A	8/24/73	5.79			SIce	0.12		0.12		1	5.67	5.67	0.90	5.10	0.00	0.12	0.90 E	0.11		0.11	0.10
	9/20/73	(Minim	um bala	ance)										4.95	-0.15			0.00		-0.15	-0.16
	10/01/73	(Hydrol	ogic ye	ar ends)										4.95	-0.15			0.04			-0.12
M58A	10/12/73	5.72			Snow	0.38	0.27	0.38		1	5.34	5.50	0.90	4.95		0.22	0.324 M	0.07			
						Pit to dirt	y 1972 s	summer su	rface.												

Probe stopped at top of a refrozen dense, wet, snow layer at the base of the snowpack, a false summer surface. See 1974 measurement year for average *b'ss*.

Average of 2 stakes: -0.11 -0.08

Table 3. Mass balance data from site B (1,070 meters altitude) on Wolverine Glacier, Alaska--Continued

<																	E MASS B				
		<	Stake	Readin	g>										Ice>	<	Snow and	New Firn-	>	Yearly	Results
Field	Date	Tape	Surv	-		Pit/Core	Probe	Average	s.e.	n	Obsvd.	Average	Density	Stake	Ice	Depth	Density	Snow	NFirn	Net	Annua
Notes		b'	b^*	b^{**}	Stratum	d	d	d			b'ss	b'ss	ρ	b'(i)	b(i)	d	ρ	b(s)	b(f)	b_n	b_a
	m/d/y	m	m	m		m	m	m	m		m	m	kg/L	m(w)	m(w)	m	kg/L	m(w)	m(w)	m(w)	m(w)
								197	4 ME	ASUI	REMEN	T YEAR									
		STAKI	E 73-21	(install	ed 4/17/73	from reu	sed stal	es; no 0-1	to 3-m	secti	on; 3- to	6-m labe	elled "72-	1"; 6- to	9-m sec	tion ha	s no label)				
M52A	8/24/73	5.79			SIce	0.12		0.12		1	5.67										
	9/20/73	(Minim	ium bala	nce)										4.95				0.00		0.00	
	10/01/73	(Hydro	logic yea	ar begir	ns)									4.95	0.00			0.04		0.04	0.00
M58A	10/12/73	5.72			Snow	0.38	0.27	0.38		1	5.34	5.50	0.90	4.95	0.00	0.22	0.324 M	0.07		0.07	0.03
						Pit to dirt	y 1972 s	ummer su	rface.												
							Probe s	topped at t	he top	of a f	rozen, d	ense, snov	v layer at	the base	of the sn	owpack	a false sum	mer surfac	e.		
M60C	10/16/73	5.92			Snow		0.34	0.34	0.01	8	5.58	5.50	0.90	4.95	0.00	0.42	0.33 E	0.14		0.14	0.10
M5D	3/06/74	Stake b	uried.		Snow	2.17		2.17		1						2.17	0.39 M	0.85		0.85	0.81
M23A	6/08/74	Stake b	uried.		Snow	2.39		2.39		1						2.39	0.579 M	1.38		1.38	1.34
						Wet snow	, 0.25 n	slush, 0.0)5 m su	iperir	nposed i	ce.									
T42D	8/04/74	5.05			SIce	0.05		0.05		1	5.00	5.50	0.90	4.95	0.00	0.05	0.90 E	0.05		0.05	0.01
											Rough g	lacier sur	face cause	s large u	ncertain	ty of the	summer sur	rface heigh	ıt.		
M50A	9/22/74	3.44			Ice								0.90	3.20	-1.75					-1.75	-1.79
	9/25/74	(Minim	um bala	nce)								3.56	0.90	3.20	-1.75			0.00		-1.75	-1.79
	9/30/74	(Hydro	logic yea	ar ends)										-1.75			0.00			-1.79
T4	2/07/75	Stake b	uried.		Snow	2.90		2.90		1		3.56	0.90	3.20	-1.75	2.90	0.411 M	1.19			
T32A	8/17/75	3.70			SIce	0.14		0.14		1	3.56	3.56	0.90	3.20	-1.75	0.14	0.90 E	0.13			
								197	5 ME	ASUI	REMEN	T YEAR									
		STAKI	E 75-B (installe	ed 2/06/75;	located 3	30 m N	NE of Site	B.)												
	9/25/74	(Minim	ıum bala	nce)										6.41				0.00		0.00	
	10/01/74	(Hydro	logic yea	ar begir	ıs)									6.41	0.00			0.00		0.00	0.00
T2	2/06/75	9.70			Snow							7.12	0.90	6.41	0.00	2.58	0.41 E	1.06		1.06	1.06
T4	2/07/75	9.70	Assume	ed <i>b'</i> .	SIce	2.90		2.90		1		7.12	0.90	6.41	0.00	2.58	0.411 M	1.06		1.06	1.06
						Ice (firn)	observe	d at 2.90-n	n depth	ı; ice	layer is ().32 m abo	ove the su	mmer su	rface obs	served 8	/17/75.				
M10D	6/03/75	10.62			Snow	4.31						7.12	0.90	6.41	0.00	3.50	0.56 M	1.96		1.96	1.96
						Snow pit	located	near Site E	3, 300 1	m fro	m this st	ake.									
						Transient	superin	posed ice	at base	e of si	nowpack	; thickness	s, 0.20 m;	dirt obse	erved at	1974 sur	nmer surfac	e.			
T32A	8/17/75	7.26			SIce	0.14		0.14		1	7.12	7.12	0.90	6.41	0.00	0.14	0.90 E	0.13		0.13	0.13
						Transient	superin	posed ice	thickn	ess ol	served a	it the stake	e.								
	9/27/75	(Minim	ium bala	nce)										5.66	-0.75			0.00		-0.75	-0.75
	10/01/75	(Hydro	logic yea	ar ends)									5.66	-0.75			0.06			-0.69
T50A	10/27/75	6.82			Snow	0.48	0.54	0.53	0.02	6	6.29	6.35	0.90	5.66		0.47	0.32 M	0.15			
						Upper 0.0	03 m of 1	rozen, old	firn is	dirty	; density	estimated	1, 0.9 kg/L	·•							
										•	•	See 1976	measuren	nent year	for aver	age b'ss	•				

Table 3. Mass balance data from site B (1,070 meters altitude) on Wolverine Glacier, Alaska--Continued

<																	CE MASS B				
			Stake l	Reading	g>										Ice>		Snow and			Yearly	Results
Field	Date	Tape	Surv	ey		Pit/Core	Probe	Average	s.e.	n (Obsvd.	Average	Density	Stake	Ice	Depth	Density	Snow	NFirn	Net	Annual
Notes		b'	b^*	b**	Stratum	d	d	d			b'ss	b'ss	ρ	b'(i)	b(i)	d	ρ	b(s)	b(f)	b_n	b_a
	m/d/y	m	m	m		m	m	m	m		m	m	kg/L	m(w)	m(w)	m	kg/L	m(w)	m(w)	m(w)	m(w)
								197	76 ME <i>A</i>	ASUR	EMEN	T YEAR									
			E 75-B (i	installe	d 2/06/75)																
T32A	8/17/75	7.26			SIce	0.14		0.14		1	7.12	7.12									
						Transient	t superim	posed ice	thickne	ess obs	served a	at the stake	e.								
	9/27/75	`	num balar											5.72				0.00		0.00	
	10/01/75	` •	logic yea	ır begin	/									5.72	0.00			0.06		0.06	0.00
T50A	10/27/75	6.82			Snow	0.48	0.54	0.53	0.02		6.29	6.35	0.90	5.72	0.00	0.47	0.32 M	0.15		0.15	0.09
T.50 .	10/00/55	. . .			~	Upper 0.0	03 m of t	rozen, olo	d firn is	dirty;	density	estimated	,				0.24				
T52A	10/28/75	6.79			Snow	2 11 - 117		31 .				6.35	0.90	5.72	0.00	0.44	0.31 E	0.14		0.14	0.08
146C T44	1/23/76	_	ine Volca	ano eru	ption; ashf				0.02	0	6.50	6.25	0.00	5 70	0.00	2.20	0.270.34	0.07		0.07	0.01
M6C,T4A	2/23/76	8.64			Snow	2.07	2.15	2.14	0.02		6.50	6.35	0.90	5.72	0.00	2.29	0.378 M	0.87		0.87	0.81
								-				in the snov	W.								
T.E	2/25/76	8.70			C		2.44	sity estim	0.05	_		(25	0.90	5.72	0.00	2.25	0.20 E	0.92		0.92	0.06
T5 M32	_,_,,		ot observ	rad.	Snow Snow	0.97	2.44	0.97	0.05	10	6.26	6.35	0.90	5.72	0.00	2.35 0.97	0.39 E 0.671 M	0.92			0.86
W132	//12//0	Stake II	iot observ	/eu	Show	0.97	0.25		and inc			5 annama am	aumfa a a			0.97	0.6/1 IVI	0.03		0.65	0.59
M35	7/19/76	5.15			Ice		0.23 III S	superimpo	osed ice	on an	rty 197.	5 summer	0.90	4.64	-1.08					-1.08	-1.14
IVISS	9/14/76		um balar	200)	ice								0.90	4.04	-1.42			0.00		-1.42	-1.14
			logic yea	/											-1.42			0.00		-1.42	-1.48
T33	10/15/76	5.58	logic yea	ii ciids)	Snow	0.80		0.80		1	4.78	4.78	0.90	4.30	-1.42	0.80	0.33 M	0.26			-1.20
133	10/13/70	5.56			Show	0.00		0.00		1	7.70	7.70	0.50	7.50	-1,72	0.00	0.55 IVI	0.20			
		STAKI	E 75-B2	(install	ed 10/27/7	5: inserte	ed in sno	w to ice s	surface)											
	9/27/75		num balar	`		,				,				0.05				0.00		0.00	
	10/01/75	`	logic yea		ıs)									0.05	0.00			0.06		0.06	0.00
T50A	10/27/75	0.60	- B - J		Snow	0.48	0.55	0.54	0.02	6	0.06	0.05	0.90	0.05	0.00	0.55	0.32 M	0.18			
							Top 0.0	3 m of un	derlying	g froze	en old f	irn is dirty	.; density	estimate	d 0.9 kg	L.					
T52	10/28/75	0.61			Snow		0.61	0.61		1	0.00	0.05	0.90	0.05	0.00	0.56	0.31 E	0.17		0.17	0.11
M6	2/23/76	2.20			Snow	2.07	2.15	2.14	0.02	9	0.06	0.05	0.90	0.05	0.00	2.15	0.378 M	0.81		0.81	0.75
							Volcani	c ash laye	er at dep	oth of (0.39 m.										
								-				estimated;	0.9 kg/L.								
M32	7/12/76	0.95			Snow	0.97	·	0.97		1	-0.02	0.05	0.90	0.05	0.00	0.90	0.671 M	0.60		0.60	0.54
							0.70 m	wet snow;	; 0.02 m	ı slush	; 0.25 r	n superim	posed ice	on 1975	summer	surface					
M33	7/13/76	0.85	0.88		Snow							0.05	0.90	0.05	0.00	0.80	0.70 E	0.56		0.56	0.50

(1976 measurement year continued next page)

Table 3. Mass balance data from site B (1,070 meters altitude) on Wolverine Glacier, Alaska--Continued

<					OBSERV.	ATIONS							<		S	URFAC	E MAS	S BALANCE			
		<	Stake	Readin	ıg>	<	Snow	Depth		-:	Summe	r Surface	<old< th=""><th>Firn and</th><th>Ice></th><th><</th><th>Snow a</th><th>and New Firn-</th><th>></th><th>Yearly</th><th>y Results</th></old<>	Firn and	Ice>	<	Snow a	and New Firn-	>	Yearly	y Results
Field	Date	Tape	Sur	vey		Pit/Core	Probe	Average	s.e.	n	Obsvd.	Average	Density	Stake	Ice	Depth	Density	Snow	NFirn	Net	Annual
Notes		b'	b^*	b^{**}	Stratum	d	d	d			b'ss	b'ss	ρ	b'(i)	b(i)	d	ρ	b(s)	<i>b(f)</i>	b_n	b_a
	m/d/y	m	m	m		m	m	m	m		m	m	kg/L	m(w)	m(w)	m	kg/L	m(w)	m(w)	m(w)	m(w)
								1976 MEA	SURE	ME	NT YEA	RConti	nued								
		STAKE	E 76-B	(install	ed 2/23/76)															
	9/27/75	(Minim	um bala	ance)										4.14				0.00			
	10/01/75	(Hydrol	ogic ye	ar begi	ns)									4.14	0.00			0.06		0.06	0.00
T52	10/28/75				Snow		0.61	0.61		1						0.61	0.31	E 0.19		0.19	0.13
M6C,T4	2/23/76	6.87			Snow	2.07	2.15	2.14	0.02	9	4.73	4.60	0.90	4.14	0.00	2.27	0.378	M 0.86		0.86	0.80
T5C	2/25/76	6.91			Snow		2.44	2.44	0.05	10	4.47	4.60	0.90	4.14	0.00	2.31	0.39	E 0.90		0.90	0.84
M32	7/12/76	5.70			Snow	0.97		0.97		1	4.73	4.60	0.90	4.14	0.00	1.10	0.671	M 0.74		0.74	0.68
							Superin	nposed ice	is 0.25	m th	nick on d	irty surfac	e.								
M33	7/13/76	5.55			Snow							4.60	0.90	4.14	0.00	0.95	0.671	E 0.64		0.64	0.58
	9/14/76	(Minim	um bala	ance)										2.58	-1.56			0.00		-1.56	-1.62
	9/30/76	(Hydrol	ogic ye	ar ends)									2.58	-1.56			0.20			-1.62
T32A	10/15/76	3.67			Snow	0.80		0.80		1	2.87	2.87	0.90	2.58	-1.56	0.80	0.33	M 0.26			
																		Average of 2	2 stakes:	-1.49	-1.45

Table 3. Mass balance data from site B (1,070 meters altitude) on Wolverine Glacier, Alaska--Continued

(-OBSERV	ATIONS																
		<	Stake	Readin	ng>	<						r Surface			Ice>				ew Firn	>	Yearly	Results
Field	Date	Tape	Sur	vey		Pit/Core	Probe	Average	s.e.	n	Obsvd.	Average	Density	Stake	Ice	Depth	Densit	У	Snow	NFirn	Net	Annua
Notes		b'	b^*	b^{**}	Stratum	d	d	d			b'ss	b'ss	ρ	b'(i)	b(i)	d	ρ		b(s)	<i>b(f)</i>	b_n	b_a
	m/d/y	m	m	m		m	m	m	m		m	m	kg/L	m(w)	m(w)	m	kg/L		m(w)	m(w)	m(w)	m(w)
								197	7 ME	ASU	REMEN	T YEAR										
			,		ed 2/23/76)																
	9/10/76	,		/										2.59					0.00		0.00	
	10/01/76	` •	logic yea	ar begii										2.59	0.00				0.20		0.20	0.00
T32A	10/15/76	3.67			Snow	0.80		0.80		1	2.87	2.88	0.90	2.59	0.00	0.79	0.33	M	0.26		0.26	0.06
T2 4 C	10/00/56	2.88			Ice						2.88	2.88	0.90	2.59	0.00	0.06	0.22	_	0.21		0.21	0.11
T34C	10/20/76	3.84			Snow		7.02	7.02	0.10	_		2.88	0.90	2.59	0.00	0.96	0.32		0.31		0.31	0.11
M4,T4	2/23/77	Stake b			Snow		7.03	7.03	0.10	5						7.03	0.45		3.16		3.16	2.96
M9	2/26/11	Stake b		41	_4_1 14		7.00	7.00	anth of	1		aa damaitr	r albarra 4	O ma dame	L 0 200	7.00	0.45	m	3.15		3.15	2.95
M26D	6/11/77	Snow p		matea	stake locat	ion. 5.90	Shovei	broke at de 5.90	epui oi	4.00	m, avera	ige density	above 4.	o-m depi	.11, 0.398	5.90	0.57	M	2 26		2 26	2 16
M36B	9/27/77	(Minim		maa)		5.90		5.90		1						5.90	0.57	IVI	3.36 0.13	0.13	3.36 0.13	3.16
	9/30/77	(Hydrol)														0.13	0.13	0.13	0.23
M82B	10/24/77	4.60	logic ye	ai ciius	Snow	1.52		1.52		1	3.08	3.08				1.52	0.294	L M	0.30	0.13		0.23
WIGZD	10/24///	3.08			NFirn	1.52		1.52		1	3.00	2.88				0.20	0.65		0.13	0.13		
		5.00			111 1111	0.09-m sa	imple de	pth in ext	emely	hard	frozen		density 0	65 kg/L		0.20	0.05			an 0.01 1	n is wat	er.
		2.88			Ice	0.00 111 00	pro u	pui iii viii	•••••		, 1102011,	2.88	0.90	2.59	0.00							
			e at stak	e meas	ured 10/15	5/76.																
		STAKE	E 77-B (install	ed 2/23/77	near site	B)															
	9/10/76	(Minim	um bala	ince)											0.00				0.00		0.00	
	10/01/76	(Hydrol	logic ye	ar begii	ns)										0.00				0.30		0.30	0.00
M4,T3	2/23/77	4.76			Snow		7.05	6.90	0.10	1	-2.14	-2.14			0.00	6.90	0.46	E	3.17		3.17	2.87
M8C	2/25/77	Stake by	uried.		Snow		7.00	7.00	0.00	2					0.00	7.00	0.46	E	3.22		3.22	2.92
M9	2/26/77	Stake b	uried.		Snow		7.00	7.00		1					0.00	7.00	0.46	m	3.22		3.22	2.92
						Pit to 4.0	m deptl	n near buri	ed stak	e 76	-B; stake	not found										
M32B	6/07/77	4.71			Snow							-1.41			0.00	6.12	0.51	Е	3.12		3.12	2.82
T33	6/08/77	4.65			Snow							-1.41			0.00	6.06	0.51	E	3.09		3.09	2.79
M36	6/11/77				Snow	5.90		5.90		1						5.90	0.57	M	3.36		3.36	3.06
						Pit to 1.0		to 5.9 m,				rface of d	irty, iced,	firn, the			ırface.					
M37B	6/12/77	4.50			Snow		5.91	5.91	0.01	3		-1.41			0.00		0.51	Е	3.01		3.01	2.71
											Base of	stake settl	ing with t	he snowp	oack as i	t compre	esses.					
		End of 1		•																		
M82B	10/24/77	Stake no	ot found	1.	Snow	1.52		1.52		1						1.52	0.294	ł M	0.45		0.45	0.15
						Snow slig	ghtly col	der than 0	C. M	odera	ately dirty	7 1976 sun	nmer surf	ace at top	of firn.							

(1977 measurement year continued next page)

Table 3. Mass balance data from site B (1,070 meters altitude) on Wolverine Glacier, Alaska--Continued

<				(OBSERVA	ATIONS							<		S	URFAC	CE MAS	SS BA	LANCE-			
		<	Stake R	eading	g>	<	Snow	Depth		:	Summe	r Surface	<old< th=""><th>Firn and</th><th>Ice></th><th><</th><th>Snow</th><th>and N</th><th>New Firn-</th><th>></th><th>Yearly</th><th>Results</th></old<>	Firn and	Ice>	<	Snow	and N	New Firn-	>	Yearly	Results
Field	Date	Tape	Surve	y		Pit/Core	Probe	Average	s.e.	n	Obsvd.	Average	Density	Stake	Ice	Depth	Densit	у	Snow	NFirn	Net	Annual
Notes		b'	b^*	b^{**}	Stratum	d	d	d			b'ss	b'ss	ρ	b'(i)	b(i)	d	ρ		b(s)	b(f)	b_n	b_a
	m/d/y	m	m	m		m	m	m	m		m	m	kg/L	m(w)	m(w)	m	kg/L		m(w)	m(w)	m(w)	m(w)
							•	1977 ME	SURE	ME	NT YEA	RConti	nued									
			,		ed 6/07/77	')																
	9/10/76	(Minimu	um balanc	ce)															0.00		0.00	
	10/01/76	(Hydrol	ogic year	begin	s)										0.00				0.30		0.30	0.00
M32B	6/07/77	10.00			Snow							3.85	0.90	3.47	0.00	6.15	0.51		3.14		3.14	2.84
T33A	6/08/77	9.94			Snow		6.74	6.74	0.25	4		3.85	0.90	3.47	0.00	6.09	0.51	E	3.11		3.11	2.81
							Probing	g 30 m dov	vn glaci	er fr	om the s	ake, prob	-	ınderlyin	g firn.							
M36B	6/11/77				Snow	5.90		5.90				3.85	0.90	3.47	0.00	5.90	0.57	M	3.36		3.36	3.06
						Pit to 1.0		to top of														
M37B	6/12/77	9.76			Snow		5.91	5.91	0.12	8	3.85	3.85	0.90	3.47	0.00	5.91	0.57	Е	3.37		3.37	3.07
	9/27/77	`	um baland		Snow/Fir	n													0.16	0.16	0.16	-0.14
	9/30/77	` •	ogic year	ends)															0.03	0.16		-0.11
M82B	10/24/77	5.62	5.62		Snow	1.52		1.52		1	4.10	4.10	_			1.52	0.294	· M	0.45			
						Snow slig	ghtly col	der than 0	°C. Mo	odera	tely dirt		nmer surf	ace at top	of firn.							
					NFirn							3.85				0.25	0.65	m	0.16	0.16		
						0.09-m sa	ımple de	epth in ext	remely	hard,	, frozen,	new firn;	density, 0.	65 kg/L.					Less th	an 0.01 ı	m is wa	ter.
																		Av	erage of 2	stakes:	0.15	0.06

Table 3. Mass balance data from site B (1,070 meters altitude) on Wolverine Glacier, Alaska--Continued

(E MASS B				
			Stake	Readin	g>	<		1				r Surface			Ice>	<	Snow and	New Firn	>	Yearly	Results
Field	Date	Tape	Sur	•				Average	s.e.	n	Obsvd.	Average	Density	Stake	Ice	Depth	Density	Snow	NFirn		Annua
Notes		b'	b^*	b^{**}	Stratum	d	d	d			b'ss	b'ss	ρ	b'(i)	b(i)	d	ρ	b(s)	b(f)	b_n	b_a
	m/d/y	m	m	m		m	m	m	m		m	m	kg/L	m(w)	m(w)	m	kg/L	m(w)	m(w)	m(w)	m(w)
								197	8 ME	ASUF	REMEN	T YEAR									
		STAKE	76-В ((installe	ed 2/23/76)															
	9/27/77	(Minim	um bala	ince)										0.00				0.00		0.00	
	10/01/77	(Hydrol	ogic ye	ar begin	ıs)									0.00	0.00			0.03		0.03	0.00
M82B	10/24/77	4.60			Snow	1.52		1.52		1	3.08	3.08		0.00	0.00	1.52	0.294 M	0.45		0.45	0.42
					OFirn			0.20			2.88	2.88	0.65	0.13							
					OTHI			0.09-m sa	mnle d	enth i					lensity () 65 kg/I					
		2.88			Ice			0.00	inpro c	op in i	0.10.01	.01) 11414,	0.90	2.59	,,	7.00 118/1	_,				
			e at stak	te measi	ared 10/15	/76.									ke sumn	narv					
																ld firn a	nd Ice				
M115	9/30/78	2.44			Ice								0.90	2.20	-0.52					-0.52	-0.55
		Stake be	ent at 3.	.3 m.																	
	9/30/78	(Hydrol	ogic ye	ar ends	and minin	num balanc	e)											0.00		-0.52	-0.55
		STAKE	77-B2	(install	led 6/07/7	7)															
	9/27/77																	0.00		0.00	
	10/01/77	(Hydrol	ogic ye	ar begin	ıs)									3.52	0.00			0.03		0.03	0.00
M82B	10/24/77	5.62			Snow	1.52		1.52		1	4.10	3.91	0.90	3.52	0.00	1.71	0.294 M	0.50		0.50	0.47
M2	2/28/78	8.23			Snow							3.91	0.90	3.52	0.00	4.32	0.37 E	1.60		1.60	1.57
M2B	3/01/78	8.18			Snow	4.03	4.31	4.29	0.04	13	3.89	3.91	0.90	3.52	0.00	4.27	0.374 M	1.60		1.60	1.57
T6						Pit to dirt	y 1977 s	summer su	rface.												
M22	6/02/78	8.68			Snow							3.91	0.90	3.52	0.00	4.77	0.51 E	2.43		2.43	2.40
M115	9/30/78	3.50		_	SFirn								0.90	3.15	-0.37					-0.37	-0.40
	0/20/50	Stake be																0.00		0.25	0.40
	9/30//8	(Hydrol	ogic ye	ar ends	and minin	num balanc	e)								-0.37			0.00		-0.37	-0.40
		CITE A TATE	. =0 2 =	m // /	11 1 2 /01	(=0)															
	0/27/77			` `	alled 3/01/	78)								5 12				0.00		0.00	
	9/27/77	(Minim			·a)									5.13 5.13	0.00			0.00 0.03		0.00	0.00
M2B	10/01/77 3/01/78	9.98	ogic ye	ar begin	Snow	4.03	4.31	4.28	0.04	1.1	5.70	5.70	0.90	5.13	0.00	4.28	0.374 M	1.60		1.60	0.00
IVIZD	3/01/78	9.98			Show			4.28 summer su		11	3.70	3.70	0.90	3.13	0.00	4.28	0.5/4 M	1.00		1.00	1.37
M22	6/02/78	10.30			Snow	THE TO UIT	y 19//:	summer su	i i acc.			5.70	0.90	5.13	0.00	4.60	0.51 E	2.35		2.35	2.32
T112	9/29/78	5.24			Sice	0.03		0.03			5.21	5.21	0.90	4.72	-0.41	0.03	0.90 E	0.03		-0.38	-0.41
1112	3123110	3.24			Sicc		ea is co	vered with	suneri	mnos				4.72	-0.41	0.03	0.90 E	0.03		-0.56	-0.41
								posed Mt.						er surfac	·e						
	9/30/78	(Hydrol	ogic ve	ar ends	and minin	num balanc		posed ivit.	rugus	tille v	oreanie (isii, tiic 12	70 Summ	4.67	-0.46			0.00		-0.46	-0.49
T1	3/07/79	7.94	ogic yo	ui ciido	Snow	2.67	2.76	2.75	0.01	11	5.19	5.19	0.90	4.67	0.70	2.75	0.404 M	1.11		0.40	0.47
	5,01117	,.,,			2110 11	2.07	,0	2.75	0.01		5.17	2.17	3.20	,		2.75	J J 1 171				
																	Λ,	erage of 3	etalzae:	0.45	-0.48

Table 3. Mass balance data from site B (1,070 meters altitude) on Wolverine Glacier, Alaska--Continued

<				OBSER	VATIONS							<		S	URFAC	E MASS BA	ALANCE-			
		<	Stake	Reading	.> <	Snow	Depth		-3	Summe	r Surface	<old< th=""><th>Firn and</th><th>Ice></th><th><</th><th>-Snow and I</th><th>New Firn-</th><th>></th><th>Yearly</th><th>Results</th></old<>	Firn and	Ice>	<	-Snow and I	New Firn-	>	Yearly	Results
Field	Date	Tape	Surv	vey	Pit/Core	Probe	Average	s.e.	n	Obsvd.	Average	Density	Stake	Ice	Depth	Density	Snow	NFirn	Net	Annua
Notes		b'	b^*	b** Stratu	m d	d	d			b'ss	b'ss	ρ	b'(i)	b(i)	d	ρ	b(s)	b(f)	b_n	b_a
	m/d/y	m	m	m	m	m	m	m		m	m	kg/L	m(w)	m(w)	m	kg/L	m(w)	m(w)	m(w)	m(w)
							197	9 ME	ASU	REMEN	T YEAR									
		STAKE	78-3.7	B (installed 3/	1/78)															
T112	9/29/78	5.24		SIce	0.03		0.03		1	5.21	5.21									
					75% of a	rea cove	red with su	iperim	posed	d ice that	is 0.05 m	thick.								
					25% of a	rea is ex	posed Mt.	Augus	tine v	olcanic	ash; 1976	SS.								
	10/01/78	(Hydrole	ogic yea	ar begins and m	inimum bala	nce)							4.67	0.00			0.00		0.00	0.00
T2	3/07/79	7.94		Snow	2.67	2.76	2.75	0.01	11	5.19	5.19	0.90	4.67	0.00	2.75	0.404 M	1.11		1.11	1.11
M101	8/06/79	4.83		SIce	0.03		0.03		1	4.80	4.80	0.90	4.32	-0.35	0.03	0.90 E	0.03		-0.32	-0.32
				This y	ar's superim	posed ic	e covers 3	0 % of	area.	. 70 % is	exposed "	superfirn"	, superin	posed io	ce in old	firn.				
		STAKE	79-3.7	B (installed 3/	7/79)															
	10/01/78	(Hydrole	:																	
			ogic yea	ar begins and m	inimum bala	nce)							5.66	0.00			0.00		0.00	0.00
T2	3/07/79	9.04	ogic yea	ar begins and m Snow	inimum bala 2.67	nce) 2.76	2.75	0.01	11	6.29	6.29	0.90	5.66 5.66	0.00	2.75	0.404 M	0.00 1.11		0.00 1.11	0.00 1.11
T2 M100	3/07/79 8/06/79	9.04 6.03	ogic yea				2.75 0.10	0.01	11 1	6.29 5.93	6.29 5.93	0.90 0.90			2.75 0.10	0.404 M 0.90 E				
				Snow SFirn	2.67			0.01	11 1				5.66	0.00			1.11		1.11	1.11
	8/06/79	6.03	ım bala	Snow SFirn	2.67			0.01	11 1				5.66	0.00 -0.32			1.11		1.11 -0.23	1.11 -0.23
	8/06/79 9/24/79	6.03 (Minimu	ım bala	Snow SFirn	2.67			0.01	11 1				5.66	0.00 -0.32 -2.38			1.11 0.09 0.00		1.11 -0.23	1.11 -0.23 -2.38
M100	8/06/79 9/24/79 9/30/79	6.03 (Minimu (Hydrole	ım bala	Snow SFirn ance) ar ends)	2.67 0.10		0.10	0.01	1	5.93	5.93	0.90	5.66 5.34	0.00 -0.32 -2.38 -2.38	0.10	0.90 E	1.11 0.09 0.00 0.11		1.11 -0.23	1.11 -0.23 -2.38
M100	8/06/79 9/24/79 9/30/79	6.03 (Minimu (Hydrole 6.75 3.97	ım bala ogic yea	Snow SFirn ence) ar ends) Snow	2.67 0.10 2.78	2.76	0.10		1	5.93 3.64 3.64	3.64 3.64	0.90 0.90 0.90	5.66 5.34 3.28 3.28	0.00 -0.32 -2.38 -2.38 -2.38	0.10	0.90 E	1.11 0.09 0.00 0.11		1.11 -0.23	1.11 -0.23 -2.38

Table 3. Mass balance data from site B (1,070 meters altitude) on Wolverine Glacier, Alaska--Continued

(
		<	Stake	Readir	ıg>								<old< th=""><th>Firn and</th><th>Ice></th><th><</th><th>Snow</th><th>and N</th><th>ew Firn-</th><th>></th><th>Yearly</th><th>Result</th></old<>	Firn and	Ice>	<	Snow	and N	ew Firn-	>	Yearly	Result
Field	Date	Tape	Sur	vey		Pit/Core	Probe	Average	s.e.	n	Obsvd.	Average	Density	Stake	Ice	Depth	Densi	ty	Snow	NFirn	Net	Annua
Notes		b'	b^*	b^{**}	Stratum	d	d	d			b'ss	b'ss	ρ	b'(i)	b(i)	d	ρ		b(s)	b(f)	b_n	b_a
	m/d/y	m	m	m		m	m	m	m		m	m	kg/L	m(w)	m(w)	m	kg/L		m(w)	m(w)	m(w)	m(w)
								198	0 ME	ASUF	REMEN	T YEAR										
			E 79-3. 7	7B (inst	alled 3/07/	,																
M100	8/06/79	6.03			SFirn	0.10		0.10		1	5.93	5.93										
	9/24/79	(Minim												3.28					0.00		0.00	
	10/01/79	(Hydrol	ogic ye	ar begi	ns)									3.28	0.00				0.11		0.11	0.00
T2	1/10/80	6.75			Snow	2.78		3.11		11	3.64	3.64	0.90	3.28		3.11	0.40	E	1.24			
		3.97			Ice						3.64	3.64	0.90	3.28								
		Ice surfa	ace obs	erved ii	n snow pit a	ıt stake.		Average d			clude the	e 1/11/80	probing d	ata.				_				
M3A	1/11/80				Snow		3.14	3.14	0.14	10						3.11	0.40	Е	1.24			
M38	6/05/80	Stake bu	uried		Snow		4.20	4.20		1						4.20	0.52	F	2.18		2.18	2.07
M87	9/05/80	5.86	arrea.		Snow		7.20	7.20				3.64	0.90	3.28	0.00	2.22	0.60		1.33	1.28	1.33	1.22
14107	2/03/00	5.00			Show	Pit to 0.60	0-m dep	th; density.	0.60	kg/L.		3.04	0.50	3.20	0.00	2,22	0.00	111	1.55	1.20	1.55	1.22
	9/30/80	(Hydrol	ogic ye	ar ends	and minim			,	,	<i>G</i> .									0.90	0.87	0.87	0.76
		` •					,												Differen	nce of 0.	.03 is wa	ater.
		STAKE	E 80-3.7	7B, also	referred t	o as STAl	KE 80-E	(installed	1/10/	/80)												
	9/24/79	(Minim	um bala	ance)										4.49					0.00		0.00	
	10/01/79	(Hydrol	ogic ye	ar begi	ns)									4.49	0.00				0.11		0.11	0.00
T2	1/10/80	8.10			Snow	2.78		2.78		1	5.32	4.99	0.90	4.49	0.00	3.11	0.40	E	1.24		1.24	1.13
M3A	1/11/80	8.10	(Assun	ned)	Snow		3.14	3.14	0.14	10	4.96	4.99	0.90	4.49	0.00	3.11	0.40		1.24		1.24	1.13
M38	6/05/80	Stake bu	uried.		Snow		4.20	4.20		1						4.20	0.52		2.18		2.18	2.07
M85	9/03/80	7.25			Snow							4.99	0.90	4.49	0.00	2.26	0.60	E	1.36		1.36	1.25
M87	9/05/80	7.34			Snow							4.99	0.90	4.49	0.00	2.35	0.60	m	1.41	1.36	1.41	1.30
								th; density		_												
	9/30/80	(Hydrol	ogic ye	ar ends	and minim	um balanc	e) Snov	v melt afte	r 9/05	/80 es	timated t	from weat	her data.						0.98	0.95	0.95	0.84
	0/04/00	2.50		2 ()	O.D.														Differen	nce of 0.	.03 is wa	ater.
M98, M102	9/01/82	3.70	. 00 Da		OFirn					c												
3.640	(10 (100		C 80-B2	(instal	led 6/06/80	by drivii	0		e ice s		,	0.00			0.00	5.61	0.51	-	2.06		2.06	2.75
M40	6/06/80	5.61			Snow		5.61	5.61		1	0.00	0.00			0.00	5.61	0.51		2.86		2.86	2.75
M85	9/03/80	1.66			Snow							0.00			0.00	1.66	0.60		1.00		1.00	0.89
M87	9/05/80	1.75			Snow	D' 0 (0 1	1 1 2	0.60	1 /r		0.00		C	0.00	1.75	0.60		1.05		1.05	0.94
	9/30/80	(Underal	ogio vo	or ondo	and minim			th; density		_	timated t	from woot	har data	Sr	now mel	t estima	tea iror	n weat	ner data.			
	9/30/80	(Hydror	ogic ye	ai ciius	NFirn	uiii baiaiic	Silov	v men ane	1 9/03/	/ 00 CS	iiiiaieu	0.00	iici data.		0.00	1.03	0.60	E	0.62	0.60	0.60	0.49
					INITIII								nated from	n naw fir			0.00	L		nce of 0.		
T100	9/01/81	2.62			Snow							1.03	nawu 1101	ii iiew iii	iii vaiail(1.59	0.60	E	0.95	01 0.	.02 18 W	atti.
M98, M102	9/01/81	1.10		1 11	OFirn							1.03				1.39	0.00	L	0.33			
14170, 141102	2/01/02	1.10		1.11	OFILI														rage of 3			0.70

Table 3. Mass balance data from site B (1,070 meters altitude) on Wolverine Glacier, Alaska--Continued

<				(OBSERV <i>A</i>	TIONS							<		S	URFAC	CE MAS	SS BA	ALANCE-			
		<	Stake I	Reading	g>	<	Snow	Depth		-:	Summe	r Surface	<old< th=""><th>Firn and</th><th>Ice></th><th><</th><th>Snow</th><th>and N</th><th>New Firn-</th><th>></th><th>Yearly</th><th>Results</th></old<>	Firn and	Ice>	<	Snow	and N	New Firn-	>	Yearly	Results
Field	Date	Tape	Surv	ey		Pit/Core	Probe	Average	s.e.	n	Obsvd.	Average	Density	Stake	Ice	Depth	Densit	ty	Snow	NFirn	Net	Annua
Notes		b'	b^*	b^{**}	Stratum	d	d	d			b'ss	b'ss	ρ	b'(i)	b(i)	d	ρ		b(s)	<i>b(f)</i>	b_n	b_a
	m/d/y	m	m	m		m	m	m	m		m	m	kg/L	m(w)	m(w)	m	kg/L		m(w)	m(w)	m(w)	m(w)
								198	1 ME	\SU	REMEN	T YEAR										
		STAKE	2 81-B (i	installe	d by poun	ding it th	rough t	he snow to	firn,	1/26/	81)											
	10/01/80	(Hydrol	ogic yea	ır begin	s and mini	mum bala	nce)							0.00	0.00				0.00		0.00	0.00
M6	1/26/81	5.33			Snow		5.11	5.11	0.10	17	0.22	0.23	0.60	0.14	0.00	5.10	0.42	E	2.14		2.14	2.14
M7	1/27/81	5.28			Snow		5.00	5.00	0.02	4	0.28	0.23	0.60	0.14	0.00	5.05	0.42	E	2.12		2.12	2.12
M40	6/02/81	5.48			Snow							0.23	0.60	0.14	0.00	5.25	0.50	E	2.63		2.63	2.63
RM13	6/03/81	5.48		5.42	Snow							0.23	0.60	0.14	0.00	5.25	0.50	m	2.63		2.63	2.63
						Pit in wet	snow to	1.20-m, d	epth;	lensi	ty, 0.58 k	g/L; snow	probably	not enti	rely wet.							
M42	6/07/81	5.50			Snow							0.23	0.60	0.14	0.00	5.27	0.50	E	2.64		2.64	2.64
T100	9/01/81	1.91		1.89	Snow ass	umed.						0.23	0.60	0.14	0.00	1.66	0.57	E	0.95		0.95	0.95
	9/24/81	(Minim	um balar	nce)															0.93	0.89	0.89	0.89
T103	9/25/81	Glacier	observe	d to be	covered w	ith fresh si	now abo	ve 900-m	altitude	e.									Differe	nce of 0	.05 m is	water.
	10/01/81	(Hydrol	ogic yea	r ends)															0.03	0.89		0.92
M8,T11	1/20/82	4.04		3.96	Snow	2.10		2.10		1	1.86	1.86				2.10	0.435	5 M	0.91			
					NFirn							0.23	0.90	0.21		1.63	0.57	Е	0.93	0.89		
						Pit to new	v firn; 0.	24-m thick	depth	-hoai	at base	of snow.										

Table 3. Mass balance data from site B (1,070 meters altitude) on Wolverine Glacier, Alaska--Continued

<				-OBSERV	ATIONS							-<		S	URFAC	CE MASS E	BALANCE-			
		<	Stake Readir	ıg	> <	Snow	Depth		-:	Summe	er Surface	<old< td=""><td>Firn and</td><td>Ice></td><td><</td><td>Snow and</td><td>New Firn-</td><td>></td><td>Yearly</td><td>Results</td></old<>	Firn and	Ice>	<	Snow and	New Firn-	>	Yearly	Results
Field	Date	Tape	Survey		Pit/Core	Probe	Average	s.e.	n	Obsvd.	Average	Density	Stake	Ice	Depth	Density	Snow	NFirn	Net	Annual
Notes		b'	b* b**	Stratun	d	d	d			b'ss	b'ss	ρ	b'(i)	b(i)	d	ρ	b(s)	b(f)	b_n	b_a
	m/d/y	m	m m		m	m	m	m		m	m	kg/L	m(w)	m(w)	m	kg/L	m(w)	m(w)	m(w)	m(w)
							198	2 ME	ASUI	REMEN	IT YEAR									
		STAKE	E 81-B (install	ed by pot	ınding thro	ugh sn	ow to ice, 1	1/26/81)			Stake su	mmary							
T100	9/01/81	1.91	1.89	Snow as	ssumed.						0.23	Firn	0.89							
	9/24/81	(Minim	um balance)									Ice	0.21				0.00		0.00	
												Total	1.10							
	10/01/81		ogic year begi	/									1.10	0.00			0.03		0.03	0.00
M9,T11	1/20/82	4.04	3.96	Snow	2.10		2.10		1	1.86		2 layers	1.10	0.00	2.10	0.435 M	0.91		0.91	0.88
					Pit to new	v firn; 0	.24-m thicl	_		at base of										
				OFirn			1.63	Firn de	pth		0.23									
M39	6/26/82			Snow								2 layers	1.10	0.00	1.82	0.51 E	0.93		0.93	0.90
M98	9/01/82	0.55		OFirn								2 layers	0.44	-0.66					-0.66	-0.69
			Wood	chips fou	nd on the su	ırface fi	rom installi	ng plug	g in t	he stake	bottom.									
		CT A TZT	9 01 D2 (11. 1.0/03/	04)															
RM33	9/02/81	3.80	E 81-B2 (instal	Snow as	,															
KWI33	9/02/81			Snow as	ssumed.								2.67	0.00			0.00		0.00	
	10/01/81	,	um balance) ogic year begi	ma)									2.67	0.00			0.00		0.00	0.00
M8,T11	1/20/82	5.73	\mathcal{C}	Snow	2.10		2.10		1	3.51	2 51	2 layers	2.67	0.00	2.10	0.435 M	0.03		0.03	0.00
M40	6/26/82	5.73	5.25		2.10		2.10		1	3.31		2 layers	2.67	0.00	1.74	0.433 M 0.53 E	0.91		0.91	0.89
M98	9/01/82	2.23	2.21									2 layers	2.02	-0.65	1./4	0.55 E	0.92		-0.65	-0.68
W190	9/01/62	2.23	2,21	Ice							1.86	2 layers	2.02	-0.03					-0.03	-0.08
	9/28/82	(Minim	um balance)	100							1.00		1.67	-1.00					-1.00	-1.03
	9/30/82	,	ogic year ends)									1.67	-1.00			0.02		1.00	-1.01
T54	11/06/82	2.73	ogic jeur chas	Snow		0.92	0.92	0.01	10	1.81	1.86	0.90	1.67	1.00	0.87	0.32 E	0.02			1.01
	11,00,02	2.,5		211011		V., 2	0.22	0.01				measuren		for aver			0.20			
											500 1705	incusuren	year	101 4701		•				

Table 3. Mass balance data from site B (1,070 meters altitude) on Wolverine Glacier, Alaska--Continued

						ATIONS																
					ıg>	<		-					<old< th=""><th></th><th></th><th></th><th></th><th></th><th>lew Firn</th><th></th><th>•</th><th></th></old<>						lew Firn		•	
Field	Date	Tape	Sur	-		Pit/Core		_	s.e.	n	Obsvd.	Average	Density	Stake	Ice		Densit	y	Snow	NFirn		Annu
Notes		b'	b^*	b^{**}	Stratum	d	d	d			b'ss	b'ss	ρ	b'(i)	b(i)	d	ρ		b(s)	b(f)	b_n	b_a
	m/d/y	m	m	m		m	m	m	m		m	m	kg/L	m(w)	m(w)	m	kg/L		m(w)	m(w)	m(w)	m(w)
								198	3 MEA	ASUR	EMEN	YEAR										
		STAKI	E 81-B2	(instal	led 9/02/8	1)																
M99	9/01/82	2.23		2.21	OFirn									2.02								
	9/28/82	(Minim	um bala	nce)										1.67					0.00		0.00	
	10/01/82	(Hydro	logic ye	ar begii										1.67	0.00				0.02		0.02	0.00
T54	11/06/82	2.73			Snow		0.92	0.92	0.01	10	1.81	1.86	0.90	1.67	0.00	0.87	0.32		0.28		0.28	0.26
M8	1/14/83	4.41		4.41	Snow		2.62	2.62		10	1.79	1.86	0.90	1.67	0.00	2.55	0.37	m	0.94		0.94	0.92
						Pit to 1.20	0 m.															
M24,M26	6/13/83	4.67	4.67	4.65	Snow		2.66	2.66	0.05	10	1.99	1.86	0.90	1.67	0.00	2.81	0.56	m	1.57		1.57	1.55
T69	9/01/83	1.01		1.12	OFirn		Magnet a	nd wood	chips 1	found	at surfac	e.	0.90	1.01	-0.66						-0.66	-0.68
T71	9/02/83	0.93		1.04	OFirn								0.90	0.94	-0.73						-0.73	-0.75
					Old firn	is water so	aked; den	sity assur	ned to	be 0.9	kg/L.											
			,		ed 6/13/83)																
	9/28/82	,																	0.00		0.00	
	10/01/82	\ \ \	logic ye	ar begii	ns)									5.36	0.00				0.02		0.02	0.00
M26	6/13/83	8.61		8.61	Snow		2.66	2.66	0.05		5.95	5.95	0.90	5.36	0.00	2.66	0.57	m	1.52		1.52	1.50
						Pit to 1.20	0-m depth	; slush b	elow; d	lensity	, 0.55 k	g/L.										
		0.23 m	superim	posed i																		
T69	9/01/83	5.00			SFirn								0.90	4.50	-0.86						-0.86	-0.88
T71	9/02/83	5.03			SFirn								0.90	4.53	-0.83						-0.83	-0.85
	9/22/83	`												4.35	-1.01				0.00		-1.01	-1.03
	9/30/83		logic ye	ar ends										4.35	-1.01				0.01			-1.02
M66	11/14/83	6.01			Snow							4.83	0.90	4.35			0.33	E	0.39			
												See 1984	measuren	nent year	for ave	rage b'ss.						
								198	4 MEA	ASUR	EMEN	YEAR										
	0.100.100		Е 83-В (installe	ed 6/13/83)								4.50								
T71	9/02/83	5.03		`	SFirn								0.90	4.53					0.00		0.00	
	9/22/83	(Minim												4.35	0.00				0.00		0.00	0.00
	10/01/83		logic ye	ar begii								4.02		4.35	0.00	1.10		_	0.01		0.01	0.00
M66	11/14/83	6.01			Snow							4.83	0.90	4.35	0.00	1.18	0.33		0.39		0.39	0.38
M7	1/18/84	7.45			Snow		2.55				4.0-	4.83	0.90	4.35	0.00	2.62	0.39		1.02		1.02	1.01
M7	1/19/84	7.41		7.38	Snow	2.58	2.53	2.55	0.01		4.83	4.83	0.90	4.35	0.00	2.55	0.39	M	0.99		0.99	0.98
M10	1/19/84	- -c			~	5 cores to	ice; pit to	o 1.20-m	depth;	densi	ty, 0.37 l	_	0.00		0.00	2.50	0.51	_				
M21	6/08/84	7.58	7.58		Snow							4.83	0.90	4.35	0.00	2.73	0.51	Е	1.39		1.39	1.38
M40	8/20/84	4.15		4.15									0.90	3.74	-0.61						-0.61	-0.62
	9/30/84	(Hydro)									3.17	-1.18				0.00		-1.18	-1.19
	10/02/84	(Minim	um bala	nce)										3.15	-1.20				0.00		-1.20	
T67	10/30/84	3.74			Snow		0.24	0.24	0.02	13	3.50	3.50	0.90	3.15		0.24	0.30	Е	0.07			

Table 3. Mass balance data from site B (1,070 meters altitude) on Wolverine Glacier, Alaska--Continued

<																					
			Stake	Readin	g>	<	Snow	Depth		-:	Summe	er Surface	<old< th=""><th>Firn and</th><th>Ice></th><th><</th><th>Snow</th><th>and New</th><th>Firn></th><th>Yearly</th><th>Results</th></old<>	Firn and	Ice>	<	Snow	and New	Firn>	Yearly	Results
Field	Date	Tape	Surv	vey		Pit/Core	Probe	Average	s.e.	n	Obsvd.	Average	Density	Stake	Ice	Depth	Densit	ty S	Snow NFirr	Net	Annua
Notes		b'	b^*	b**	Stratum	d	d	d			b'ss	b'ss	ρ	b'(i)	b(i)	d	ρ		b(s) $b(f)$	b_n	b_a
	m/d/y	m	m	m		m	m	m	m		m	m	kg/L	m(w)	m(w)	m	kg/L	1	m(w) m(w)	m(w)	m(w)
								198	5 ME	ASUI	REMEN	IT YEAR									
		STAKI	E 83-B (ed 6/13/83)	1															
M40	8/20/84	4.15		4.15									0.90	3.74							
	10/01/84	` '			ıs)									3.17	0.00				.00		0.00
	10/02/84	(Minim	um bala	nce)										3.13	-0.04				.00	0.00	-0.04
T67	10/30/84	3.74			Snow		0.24	0.24	0.02		3.50	3.48	0.90	3.13	-0.04	0.26	0.30		.08	0.08	0.04
RM6	1/12/85	5.55	5.56		Snow		2.05	2.05	0.02	15	3.51	3.48	0.90	3.13	-0.04	2.08	0.37		.77	0.77	0.73
RM12	1/13/85	5.41	5.44		Snow							3.48	0.90	3.13	-0.04	1.96	0.37		.73	0.73	0.69
M52	6/15/85	6.59	6.59		Snow							3.48	0.90	3.13	-0.04	3.06	0.51		.56	1.56	1.52
RM75	8/27/85	3.59	3.62		SFirn		0.19	0.19	0.02	12	3.42	3.48	0.90	3.13	-0.04	0.13	0.90		.12	0.12	0.08
	9/17/85		um bala	,										2.98	-0.19				.00	-0.15	-0.19
	9/30/85	(Hydro												2.98	-0.19				.23		0.04
M10	2/18/86		7.11	7.00	Snow			3.69	0.24		3.31	3.31	0.90	2.98		3.69	0.41	Е			
								Average of	of snow	/ dept	hs meas	sured at Sta	akes 85-B	BQ and 8	85-BP.						
		STAKI	E 85-BB	O (inst	talled 6/15	/85) Loca	ted 110	m east of	measu	ıreme	ent site.			Ice bala	nce cont	inued fr	om stak	te 83-B.			
M52	6/15/85	7.79	8.07		Snow	,						4.76	0.90	4.28	-0.04	3.03	0.51	E 1	.55	1.55	1.51
			Surveye	ed b* is	above th	e snow s	urface.														
RM76	8/27/85	4.95	•		SFirn		0.19	0.19	0.02	12	4.76	4.76	0.90	4.28	-0.04	0.19	0.90	E 0	.17	0.17	0.13
	9/17/85	(Minim	um bala	nce)										4.00	-0.32			0	.00	-0.28	-0.32
	10/01/85	(Hydro	logic yea	ar ends)										-0.32			0	.23		-0.09
M11	2/18/86	7.89			Snow		3.45	3.45		1	4.44	4.44	0.90	4.00		3.45	0.41	E 1	.41		
		Stake b	ent at 7.	5 m.																	
		STAKI	E 85-BP	(instal	led 6/14/8	5)								Ice bala	nce cont	inued fro	om stak	e 83-B.			
M52	6/14/85	7.77			Snow							4.66	0.90	4.19	-0.04	3.11	0.51	E 1	.59	1.59	1.55
M52	6/15/85	7.73	7.74	7.72	Snow							4.66	0.90	4.19	-0.04	3.06	0.51	E 1	.56	1.56	1.52
RM75	8/27/85	4.85	4.86	4.85	SFirn		0.19	0.19	0.02	12	4.66	4.66	0.90	4.19	-0.04	0.19	0.90	E 0	.17	0.17	0.13
	9/17/85	(Minim	um bala	nce)										4.03	-0.20			0	.00	-0.16	-0.20
	10/01/86	(Hydro	logic yea	ar ends)									4.03	-0.20			0	.23		0.03
M10	2/18/86		8.44	8.41	Snow		3.93	3.93	0.03	2	4.48	4.48	0.90	4.03		3.93	0.41	E 1	.61		
																		Averag	ge of 3 stakes	: -0.20	-0.01

Table 3. Mass balance data from site B (1,070 meters altitude) on Wolverine Glacier, Alaska--Continued

<																					
					g>			Depth										and New F		-	
Field	Date	Tape	Surv	,				Average	s.e.	n			Density		Ice	Depth	Densit	•	ow NFirn		Annua
Notes		b'	b^*	b**	Stratum	d	d	d			b'ss	b'ss	ρ	b'(i)	b(i)	d	ρ	b(s) b(f)	b_n	b_a
	m/d/y	m	m	m		m	m	m	m		m	m	kg/L	m(w)	m(w)	m	kg/L	m(w) m(w)	m(w)	m(w)
								198	6 MEA	SUI	REMEN	T YEAR									
			,		ed 6/13/83)															
RM75	8/27/85	3.59	3.62		SFirn		0.19	0.19	0.02	12	3.42										
		(Minim												2.98				0.00		0.00	
	10/01/85	(Hydrol		_										2.98	0.00			0.23		0.23	0.00
M10	2/18/86		7.11	7.00	Snow			3.69	_		3.31	3.31	0.90	2.98	0.00	3.69	0.41	E 1.5		1.51	1.28
					_			Average of	f snow	dept	hs meas			-							
T12	2/19/86		7.03		Snow							3.31	0.90	2.98	0.00	3.63	0.41			1.49	1.26
RM19	6/16/86	6.07	6.22	6.00								3.31	0.90	2.98	0.00	2.69	0.51	E 1.3	1	1.37	1.14
T50	8/20/86	2.18	2.79	2.81			_						0.90	1.96	-1.02					-1.02	-1.25
						the ice su	rface, w	hich was n	ot visil	ole fr	om the s	urvey inst	rument; u	se the b'	value.						
	9/30/86	(Hydrol	~ .)																
	10/03/86	1		nce)														0.00			
RM2	2/10/87	Stake b	uried		Snow		3.90	3.90	0.12	9						3.90	0.42	E 1.64			
		STAKI	E 85-BB	Q (inst	talled 6/15	/85)															
RM76	8/27/85	4.95			Snow		0.19	0.19	0.02	12	4.76										
	9/17/85	(Minim	um bala	nce)										4.00	0.00			0.00		0.00	
	10/01/85		logic yea	ar begir	ıs)									4.00	0.00			0.23		0.23	0.00
M11	2/18/86	7.89			Snow		3.45	3.45		1	4.44	4.44	0.90	4.00	0.00	3.45	0.41			1.41	1.18
RM20	6/16/86	7.20			Snow							4.44	0.90	4.00	0.00	2.76	0.51	E 1.4		1.41	1.18
T50	8/20/86	4.05	4.31		Ice								0.90	3.65	-0.35					-0.35	-0.58
		Surveye	ed b^* at	stake a	and b' diffe	erent by 0.2	26 m; di	stance of s	urvey v	vas 1	41 m; us	se <i>b'</i> .									
	9/30/86	` •	~ .)																
	10/03/86	,		nce)														0.00			
RM2	2/10/87	Stake b	uried.				3.90	3.90	0.12	9	Snow	hard belov	w depth of	f 3.0 m.		3.90	0.41	E 1.60)		
		STAKI	E 86-BL	(instal	lled 2/18/8	6)															
T11	2/18/86		3.93	3.93	Snow		No sno	w depth me	easuren	nent;	stake re	ading is lil	kely the si	now dept	h, but no	ot record	ed in th	e notes.			
RM19	6/16/86	2.90	3.03	3.03	Snow																
T155	10/03/89	1.25			Ice																
		STAKI	E 85-BP	(instal	lled 6/14/8	5)															
RM75	8/27/85	4.85	4.86	4.85	Snow		0.19	0.19	0.02	12	4.66										
	9/17/85	(Minim	um bala	nce)										4.03				0.00)	0.00	
	10/01/85	(Hydrol	logic yea	ar begir	ns)									4.03	0.00			0.23		0.23	0.00
M10	2/18/86		8.44	8.41	Snow		3.93	3.93	0.03	2	4.48	4.48	0.90	4.03	0.00	3.93	0.41	E 1.6		1.61	1.38
RM20	6/16/86	7.37	7.37	7.35	Snow							4.48	0.90	4.03	0.00	2.87	0.51	E 1.40	,	1.46	1.23
T49	8/20/86	4.00	3.99	3.98	SFirn								0.90	3.58	-0.45					-0.45	-0.68
T155	10/03/89	1.21			Ice																

(1986 measurement year continued next page)

Table 3. Mass balance data from site B (1,070 meters altitude) on Wolverine Glacier, Alaska--Continued

<					OBSERV	ATIONS							<		S	URFAC	E MASS	BALANCE-			
		<	-Stake	Readin	ıg>	· <	Snow	Depth		-3	Summe	r Surface	<old< th=""><th>Firn and</th><th>Ice></th><th><</th><th>Snow an</th><th>d New Firn-</th><th>></th><th>Yearly</th><th>Results</th></old<>	Firn and	Ice>	<	Snow an	d New Firn-	>	Yearly	Results
Field	Date	Tape	Surv	-		Pit/Core	Probe	Average	s.e.	n	Obsvd.	Average	Density	Stake	Ice	Depth	Density	Snow	NFirn	Net	Annua
Notes		b'	b^*	b**	Stratum	d	d	d			b'ss	b'ss	ρ	b'(i)	b(i)	d	ρ	b(s)	b(f)	b_n	b_a
-	m/d/y	m	m	m		m	m	m	m		m	m	kg/L	m(w)	m(w)	m	kg/L	m(w)	m(w)	m(w)	m(w)
								1986 ME	ASURE	MEN	IT YEA	RConti	nued								
			86-B (installe	ed 6/16/86)															
RM 20	6/16/86	8.69			Snow			2.77	a · a		5.92	5.92	0.90	5.33	0.00	2.77	0.51 E	E 1.41		1.41	1.18
T40	0/20/06	5 47	5 40	5 40	CE.			Snow dep	th is th	e aver	age of S	stakes 83-	-	~						0.40	0.62
T49	8/20/86	5.47	5.48		SFirn	0	J D-1		20/06	- 10/6	2/96	4: 4 - 4 1	0.90	4.93	-0.40		10/02/06		-4-1 07	-0.40	-0.63
		Mass bai	ance 8	/20/80	Date		Change		20/80 t	0 10/0)3/86 es	iimated by	/ subtracti	ing the to	otai baiai	ice after	10/03/80	measured at	stake 8/	-В.	
					Date	b'	b'	5 111													
					8/20/86		υ	Obsvd.													
					10.03.86		(1.81)														
					9/17/87	` /	0.72	(Curei)													
					9/21/88	,	0.65														
		STAKE	86-B (cont.)	10.03.89	2.48	-2.56					Summary	of the inf	formation	n needed	for the	1986 bala	nce estimate			
	9/30/86	(Hydrolc	gic ye	ar ends) Ice	(Calculat	ed using	weather d	lata)			·		3.33	-2.00					-2.00	-2.23
	10/03/86	(Minimu	m bala	ince)	Ice	(Calculat	ed from	the stake of	lata)			3.67	0.90	3.30	-2.03					-2.03	
		(Minimu	m bala	ince)	NFirn	`		firn meas				4.39				0.72			0.41		
M47,RM23	10/01/87				Snow	0.47	0.65	0.61	0.05	4						0.61	0.316 N	Л			
	0/24/00					ey of bent s			_			7 0.4				0.65			^ 2=		
90T155		(Minimu	m bala	ince)	NFirn	,		firn meas				5.04				0.65			0.37		
89T155	10/03/89	2.48			Ice	(Stake 87	-B; ice	loss measu	rea)												
								198	7 ME	SUR	EMEN	T YEAR									
		STAKE	87-B (installe	ed 6/13/87	")															
	10/01/86	(Hydrolc	gic ye	ar begii	ns)										0.00			0.00			0.00
	10/03/86	(Minimu	m bala	ince)											-0.03			0.00		0.00	-0.03
RM2	2/10/87	All stake	s burie	ed.	Snow		3.56	3.56	0.37	9					-0.03	3.56	0.41 E	E 1.46		1.46	1.43
T28	6/13/87	9.20			Snow		4.34	4.34	0.04	6	4.86	4.86	0.90	4.37	-0.03	4.34	0.55 E	E 2.39		2.39	2.36
	9/17/87	(Minimu	m bala	ince)											-0.03			0.43	0.41	0.41	0.38
																			nce of 0	.02 m is	
		(Hydrolo	~ .		,										-0.03			0.20	0.41		0.58
M47,RM23	10/01/87		6.22	6.21	Snow	0.47	0.65	0.61	0.05	4	5.60	5.58				0.63	0.316 N				
					NFirn							4.86	0.90	4.37		0.72	0.60 E	E 0.43	0.41		
												See 1988	measuren	nent year	for ave	rage <i>b'ss</i>					

Table 3. Mass balance data from site B (1,070 meters altitude) on Wolverine Glacier, Alaska--Continued

<					OBSERVA	ATIONS							<		S	URFAC	E MAS	SS BALA	ANCE-			
		<	Stake	Readin	ıg>	<	Snow	Depth		:	Summe	r Surface	<old< th=""><th>Firn and</th><th>Ice></th><th><</th><th>-Snow</th><th>and New</th><th>v Firn</th><th>></th><th>Yearly</th><th>Results</th></old<>	Firn and	Ice>	<	-Snow	and New	v Firn	>	Yearly	Results
Field	Date	Tape	Sur	vey		Pit/Core	Probe	Average	s.e.	n	Obsvd.	Average	Density	Stake	Ice	Depth	Densit	У	Snow	NFirn		Annua
Notes		b'	b^*	b**	Stratum	d	d	d			b'ss	b'ss	ρ	b'(i)	b(i)	d	ρ		b(s)	b(f)	b_n	b_a
	m/d/y	m	m	m		m	m	m	m		m	m	kg/L	m(w)	m(w)	m	kg/L		m(w)	m(w)	m(w)	m(w)
								198	8 MEA	SUF	REMEN	T YEAR		1	İ							
													Stake su	-								
													Firn	0.43								
		am . **	- 0 - -										Ice	4.37								
	0/10/07			`	ed 6/13/87)								Total	4.80					2.00		0.00	
	9/10/87	`			_									4.80	0.00				0.00		0.00	0.00
147	10/01/87	(Hydro		-		0.47	0.65	0.61	0.05	4	5.60	5.50	2.1	4.80	0.00	0.62	0.216		0.20		0.20	0.00
M47	10/01/87	11 45	6.22		Snow	0.47	0.65 6.09	0.61 6.09	0.05	4 7	5.60 5.31		2 layers 2 layers	4.80	0.00	0.63 5.82	0.316		0.20 2.62		0.20 2.62	0.00 2.42
M2	3/17/88	11.45	11.40	11.40	Snow	Dit due in							•	4.80	0.00		0.45				2.02	2.42
M5	3/18/88	11.35			Snow	Pit dug ii	i tile sho	w at the pr	earctea	Stak	e localic		2 layers	4.80	0.00	5.77	0.45		ompass 2.60		2.60	2.40
RM10	6/10/88	10.60		10.50	Snow								2 layers	4.80	0.00	5.02	0.43		2.96		2.96	2.76
KWITO	0/10/88	10.00		10.59	Show	McCall-ti	uhe core	to depth o	f 2 74 r	n: de	nsity 0		2 layers	4.00	0.00	3.02	0.59	111 2	2.90		2.90	2.70
M29.5	9/17/88	6.41	6.39	6.36	Snow		0.73		0.22		•	-	2 layers	4.80	0.00	0.78	0.60	m (0.47			0.27
10127.5	2/11/00	0.41	0.57	0.50	SHOW			0.32 0 m; densi				3.36	2 layers	7.00	0.00	0.76	0.00	111 ().T/			0.27
		Crevass	se measi	urement	t: 0.73 m sr				•	_	*	5 m Old	firn overl	avs glaci	er ice							
	9/21/88	(Minim			0175 111 61	ion on uo		. 014 11111,			110	J 1111 O1 u		ajo giaer				C).39	0.37	0.37	0.17
		(,																nce of 0.		
	9/30/88	(Hydro	logic ve	ar ends)														0.02	0.37		0.19
T8	2/16/89			8.52		2.36	2.22	2.23	0.01	11	6.29	6.23				2.94	0.452	. M 1	1.33			
					NFirn						5.58	5.58	2 layers	4.80		0.65	0.60	E 0	0.39	0.37		
												See 1989	measuren	nent year	for aver	age b'ss.						
								198	9 MEA	SUF	REMEN	T YEAR										
													Stake su	ımmary								
													Firn	0.80								
													Ice	4.37								
		STAK	E 87-B ((installe	ed 6/12/87)								Total	5.17								
M29.5	9/17/88	6.41	6.39	6.36	Snow	0.30	0.73	0.52	0.36	2	5.84	5.58										
		Crevass	se measi	urement	t: 0.73 m sr	now on ab	out 1.0 n	old firn;	local va	ıriabi	ility is 0	5 m. Old	firn overl	ays glaci	er ice.							
	9/21/88	(Minim	um bala	ance)										5.19	Total ol	d firn an	d ice.				0.00	
	10/01/88	(Hydro	logic ye	ar begir	ns)									5.19	0.00			C	0.02		0.02	0.00
T8	2/16/89	8.54		8.52		2.36	2.22	2.23	0.01	11	6.29	6.23	2 layers	5.19	0.00	2.29	0.452	2 M 1	1.04		1.04	1.02
T62	6/17/89	7.95	7.95	7.95	Snow		1.95	1.95	0.13	3	6.00	6.23	2 layers	5.19	0.00	1.72	0.50	E 0	0.86		0.86	0.84
	9/30/89	(Hydro	logic ye	ar ends))							3.32	0.90	2.99	-2.20			C	0.00		-2.20	-2.22
	10/03/89		3.22	3.21	Ice							3.30	0.90	2.97	-2.22						-2.22	
T154																						
T154	10/05/89	(Minim	um bala	ance)								3.27	0.90	2.94	-2.25			C	0.00		-2.25	

Table 3. Mass balance data from site B (1,070 meters altitude) on Wolverine Glacier, Alaska--Continued

<					-OBSERV	ATIONS							<		S	URFAC	E MASS BA	ALANCE-			
		<	Stake	Readin	ıg>	<	Snow	Depth		<u>-</u> :	Summe	r Surface	<old< th=""><th>Firn and</th><th>Ice></th><th><</th><th>Snow and I</th><th>New Firn-</th><th>></th><th>Yearly</th><th>Results</th></old<>	Firn and	Ice>	<	Snow and I	New Firn-	>	Yearly	Results
Field	Date	Tape	Surv	vey		Pit/Core	Probe	Average	s.e.	n	Obsvd.	Average	Density	Stake	Ice	Depth	Density	Snow	NFirn	Net	Annual
Notes		b'	b^*	b^{**}	Stratum	d	d	d			b'ss	b'ss	ρ	b'(i)	b(i)	d	ρ	b(s)	b(f)	b_n	b_a
	m/d/y	m	m	m		m	m	m	m		m	m	kg/L	m(w)	m(w)	m	kg/L	m(w)	m(w)	m(w)	m(w)
								199	0 ME	ASUF	REMEN	T YEAR									
				`	led 10/08/	89)															
	10/01/89	(Hydro			ins)									5.28	0.00			0.00			0.00
	10/05/89	(Minin												5.23	-0.05			0.00		0.00	-0.05
T160	10/08/89	6.38	6.41	6.41	Snow	0.45		0.45		1	5.96	5.81	0.90	5.23	-0.05	0.60	0.30 E	0.18		0.18	0.13
	12/14/89					Redoubt '	Volcano	began eru	pting;	ash fe	ll on W										
T47	2/14/90	8.40	8.40	8.35	Snow							5.81	0.90	5.23	-0.05	2.54	0.39 E	0.99		0.94	0.94
T63	3/17/90	8.95			Snow							5.81	0.90	5.23	-0.05	3.14	0.41 E	1.29		1.24	1.24
M25	6/03/90	7.79	7.78	7.76	Snow		1.97	1.97	0.05			5.81	0.90	5.23	-0.05	1.95	0.55 m	1.07		1.02	1.02
						Volcanic	ash laye	er at depth	of 0.24	-0.29	m in the	e snow.									
M32	9/06/90		2.53	2.48	SFirn								0.90	2.28	-3.00					-3.00	-3.00
M36	9/11/90	2.45			SFirn								0.90	2.21	-3.07					-3.07	-3.07
	9/28/90	(Minin										2.40	0.90	2.16	-3.12			0.00		-3.07	-3.12
	9/30/90	(Hydro												2.16	-3.12			0.03			-3.09
M3	1/06/91	3.88	3.60	3.52	Snow	1.12	1.12	1.12	0.03	11	2.40	2.40	0.90	2.40		1.12	0.364 M	0.41			
								199	1 ME	ASUF	REMEN	T YEAR									
			E 89-B2	(instal	led 10/08/	89)															
M36	9/11/90	2.45			SFirn																
	9/28/90	(Minim												2.16	0.00			0.00		0.00	
	10/01/90													2.16	0.00			0.03		0.03	0.00
M3	1/06/91	3.88	3.60	3.52	Snow	1.12	1.12	1.12	0.03		2.40	2.40	0.90	2.16	0.00	1.12	0.364 M	0.41		0.41	0.38
M17	5/13/91	Stake b				3.12	3.31	3.29	0.05	11						3.29	0.398 M	1.31		1.31	1.28
M30	9/12/91		1.38	1.28	Ice								0.90	1.15	-1.01					-1.01	-1.04
		Stake al	oandone	ed.																	
		STAKE	E 91-B (installe	ed 1/07/91)															
	9/28/90	(Minim	um bala	nce)										5.79				0.00		3.63	
	10/01/90	(Hydrol	ogic yea	ar begii	ns)									5.79	0.00			0.03		0.03	0.00
M6	1/07/91	7.07	· ·		Snow		0.68	0.68	0.07	10	6.39	6.43	0.90	5.79	0.00	0.64	0.364 E	0.23		0.23	0.20
M17	5/13/91	9.78	9.77	9.77	Snow	3.12	3.33	3.31	0.05	11	6.46	6.43	0.90	5.79	0.00	3.34	0.398 M	1.33		1.33	1.30
M30	9/12/91	5.02	5.02	5.02	Ice								0.90	4.52	-1.27					-1.27	-1.30
	9/23/91	(Minim	um bala	nce)										4.45	-1.34			0.00		-1.34	-1.37
	9/30/91	(Hydrol		/)									4.45	-1.34			0.24			-1.10
M1.M2	1/22/92	` •	~ ,		Snow	3.15	3.18	3.18	0.02	11	4.94	4.94	0.90	4.45		3.18	0.355 M	1.13			

Table 3. Mass balance data from site B (1,070 meters altitude) on Wolverine Glacier, Alaska--Continued

<					OBSERV	ATIONS							<		S	URFAC	E MAS	S BALA	NCE		
		<	Stake	Readin	ıg>	<	Snow l	Depth		-:	Summe	r Surface	<old< th=""><th>Firn and</th><th>Ice></th><th><</th><th>Snow</th><th>and New</th><th>Firn</th><th>> Yearly</th><th>y Results</th></old<>	Firn and	Ice>	<	Snow	and New	Firn	> Yearly	y Results
Field	Date	Tape	Sur	vey		Pit/Core	Probe	Average	s.e.	n	Obsvd.	Average	Density	Stake	Ice	Depth	Densit	y S	now NFir	n Net	Annual
Notes		b'	b*	b**	Stratum	d	d	d			b'ss	b'ss	ρ	b'(i)	b(i)	d	ρ	i	b(s) $b(f)$	b_n	b_a
	m/d/y	m	m	m		m	m	m	m		m	m	kg/L	m(w)	m(w)	m	kg/L	r	n(w) m(w) m(w)	m(w)
								199	2 ME	ASUF	REMEN	T YEAR									
		STAKI	E 91-B (installe	ed 1/07/91))	Merge v	vith same	stake d	ata b	elow										
M30	9/12/91	5.02	5.02	5.02	Ice																
	9/23/91	(Minim		/										4.45					00	0.00	
	10/01/91	(Hydro	logic ye	ar begii	ns)									4.45	0.00			0.	24	0.24	0.00
M2	1/22/92	8.08	8.12		Snow	3.15	3.18	3.18	0.02	11	4.94	4.94	0.90	4.45	0.00	3.18	0.355			1.13	0.89
M11	5/13/92	8.86	8.84	8.68	Snow							4.94	0.90	4.45	0.00	3.74	0.47	m 1.	76	1.76	1.52
						McCall-t	ube core	to depth of	of 2.51	m; de	ensity, 0.	_									
M13	5/14/92	8.86			Snow							4.94				3.74					
M59	9/03/92	3.74	3.74	3.74	Ice								0.90	3.37	-1.08					-1.08	-1.32
	9/17/92	(Minim												3.26	-1.19				00	-1.19	-1.43
2.00	9/30/92	\ \ \	logic ye	ar ends	•		2.50	2.50	0.00		2.02	2.02		3.26	-1.19	2.50	0.20		02		-1.41
M8	2/11/93	6.32			Snow		2.50	2.50	0.08	12	3.82	3.82				2.50	0.39	E 0.	98		
								400	2 ME	CIT		T YEAR									
		CT A IZI	F 01 D /	install	.d 1/07/01			199	IS IVIE	43Ur	KEIVIEIN	ITEAR									
M59	9/03/92	3.74	ц эт-ы (3.74		ed 1/07/91)	,															
10139	9/03/92	(Minim			ice									3.44				0	00	0.00	
	10/01/92			,	ne)									3.44	0.00				02	0.00	0.00
M8	2/11/93	6.32	logic ye	ai oegii	Snow		2.50	2.50	0.08	12	3.82	3.82	0.90	3.44	0.00	2.50	0.39		98	0.98	
M10	2/16/93	6.85	6.84	6.83	Snow		2.50	2.50	0.00	12	5.02	3.82	0.90	3.44	0.00	3.01	0.41		23	1.23	1.21
11110	2/10/93	0.05	0.01	0.05	Show	McCall-t	ube core	to depth o	of 2.51	m: de	ensity. 0.		0.70	5.11	0.00	5.01	0.11		23	1.23	1.21
M15	5/15/93		8.00	7.91	Snow					,	,,	3.82	0.90	3.44	0.00	4.09	0.50	E 2.	05	2.05	2.03
M30	9/10/93	2.28		,,,	Ice								0.90	2.05	-1.39					-1.39	-1.41
	.,,.														-107						
		STAKI	Е 93-В (installe	ed 5/15/93)															
	9/17/92	(Minim	um bala	ince)										4.47				0.	00	0.00	
	10/01/92	(Hydro	logic ye	ar begir	ns)									4.47	0.00			0.	02	0.02	0.00
M15	5/15/93	9.19	9.20	9.20	Snow							4.97	0.90	4.47	0.00	4.22	0.50	E 2.	11	2.11	2.09
M19	5/17/93	9.05			Snow		5.38	5.38	0.12	4		4.97	0.90	0.00	0.00	4.08	0.51	E 2.	08	2.08	2.06
							Probe in	ndicates sn	now dep	oth is	1.44 m	greater hei	re than at	stake 91-	B; probe	rod pro	bably a	ssembled	incorrectly		
											Summer	surface h	eight estir	nated ass	suming t	he ice m	elt at th	e two sta	kes was equ	al.	
													Ice balan	ce contin	ued fron	n stake 9	91-B.				
M30	9/10/93	3.43	3.43	3.43	Ice								0.90	3.09	-1.39					-1.39	-1.41
	10/01/93	(Hydro	logic ye	ar ends)									3.00	-1.48			0.	00	-1.48	-1.50
	10/10/93	(Minim	um bala	ince)										2.92				0.	00	-1.56	
M7	2/05/94	5.92	5.91	5.90	Snow		2.66	2.66	0.01	6	3.24	3.24	0.90	2.92		2.66	0.43	E 1.	14		

Table 3. Mass balance data from site B (1,070 meters altitude) on Wolverine Glacier, Alaska--Continued

<					OBSERV	ATIONS							<		S	URFAC	E MASS I	BALANCE-			
		<	Stake	Readin	g>	<	Snow	Depth		- :	Summe	r Surface	<old< th=""><th></th><th>Ice></th><th><</th><th>Snow and</th><th>l New Firn-</th><th>></th><th>Yearly</th><th>Results</th></old<>		Ice>	<	Snow and	l New Firn-	>	Yearly	Results
Field	Date	Tape	Sur	vey		Pit/Core	Probe	Average	s.e.	n	Obsvd.	Average	Density	Stake	Ice	Depth	Density	Snow	NFirn	Net	Annua
Notes		b'	b*	b^{**}	Stratum	d	d	d			b'ss	b'ss	ρ	b'(i)	b(i)	d	ρ	b(s)	b(f)	b_n	b_a
	m/d/y	m	m	m		m	m	m	m		m	m	kg/L	m(w)	m(w)	m	kg/L	m(w)	m(w)	m(w)	m(w)
								199	4 ME	ASU	REMEN	T YEAR									
			,	`	ed 5/15/93))															
M30	9/10/93	3.43	3.43	3.43																	
	10/01/93	(Hydro	~ ,	_	1S)									3.00	0.00			0.00			0.00
	10/10/93	,			~		2 / /	2	0.01		2.24	2.24	0.00	2.92	-0.08	2	0.42	0.00		0.00	
M7	2/05/94	5.92	5.91		Snow		2.66	2.66	0.01	6	3.24	3.24	0.90	2.92	-0.08	2.66	0.43 E	1.14		1.14	1.06
M13	5/13/94		6.98	6.95	Snow	M C 11 4	1	. 1 .1	CO 54	1	., 0	3.24	0.90	2.92	-0.08	3.71	0.43 m	1.60		1.60	1.52
1.120	0/10/04	1.05	1.05	1.05		McCall-ti	ube core	e to depth o	01 2.54	m; a	ensity, 0.	39 Kg/L.	0.00	1.76	1 24					1.16	1.24
M29	9/10/94	1.95	1.95	1.95	ice								0.90	1.76	-1.24			0.00		-1.16	
	9/16/94	(Minim			`									1.50	-1.50 -1.50			0.00 0.11		-1.42	-1.50 -1.39
M5	10/01/94 1/31/95	(пушо	4.92		Snow	3.26	3.25	3.25	0.02	11	1.67	1.67	0.90	1.50	-1.30	3.25	0.381 M				-1.39
M11	5/14/95	6.00	6.01		Snow	3.20	3.23	3.23	0.02	11	1.07	1.67	0.90	1.50		4.28	0.55 m				
IVI I I	3/14/93	0.00	0.01	3.93	Show	McCall-tr	nhe cor	e to depth o	£2.51	m: de	encity ()			1.50		4.20	0.55 11	2.33			
						Wiccan to	abe con	o to deptif c	71 2,51	111, G	Jiisity, 0.	323 Kg/L.									
		STAKI	F 04_R ((install	ed 5/13/94	`									Ice bala	ince con	tinued fron	ı stake 93-E	ł.		
M13	5/13/94	11.17	,			,		3.71		1	7.46	7.46	0.90	6.71	-0.08		0.43 m		,.	1.60	1.52
11115	3/13/71	11.17	11.17	11.17	Show			Snow dep	th mea	_	, , , ,		0.50	0.71	0.00	5.71	0.15	1.00		1.00	1.52
M29	9/10/94	6.15	6.14	6.13	Ice			ono w dep		.54100	. at starre	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.90	5.52	-1.27					-1.19	-1.27
	9/16/94													5.45	-1.34			0.00		-1.26	
	10/01/94	`			s)										-1.34			0.11			-1.23
M5	1/31/95	()			Snow	3.26	3.25	3.25	0.02	11	6.06	6.06	0.90	5.45		3.25	0.381 M	1.24			
																	A	Average of 2	stakes:	-1.34	-1.31
								199	5 ME	ASU	REMEN	T YEAR									
		STAKI	E 94-B ((installe	ed 5/13/94)															
M29	9/10/94	6.14	6.14	6.13	Ice																
	9/16/94	(Minim	um bala	ince)										5.45				0.00		0.00	
	10/01/94	(Hydro	ologic ye	ear begi	ns)									5.45	0.00			0.11		0.11	0.00
M5	1/31/95		9.34	9.31	Snow	3.26	3.25	3.25	0.02	11	6.06	6.06	0.90	5.45	0.00	3.25	0.381 M	1.24		1.24	1.13
M11	5/14/95	10.40	10.40	10.24	Snow							6.06	0.90	5.45	0.00	4.18	0.55 m	2.30		2.30	2.19
						McCall-to	ube core	e to depth o	of 2.51	m; d	ensity, 0.	525 kg/L.									
M30	9/15/95	5.08	5.07	5.07	Ice								0.90	4.56	-0.89						
	9/27/95	,												4.11	-1.34			0.00		-1.34	
	10/01/95	` •	ologic ye		/									4.11	-1.34			0.05			-1.40
T2, BK5	1/12/96	6.59	6.62	6.61	Snow		2.04	2.04	0.04		4.57	4.57	0.90	4.11	-1.34	2.04	0.39 m	0.80			
						McCall-to	ube core	e to depth o	of 1.82	m; d	ensity, 0.	385 kg/L;	3 samples	S.							

Table 4. Mass balance data from site C (1,290 meters altitude) on Wolverine Glacier, Alaska

Field Notes, locator for observation notebook entries; abbreviation methods are explained in the Mass balance data section. Stake reading, b', average height of the surface above a stake base within 3- to 5-m radius, measured by pocket tape; b^* , average surface height on a stake measured by surveying; b^{***} , average height on a leaning stake calculated (beginning in 1979) as the vertical distance between the stake base and the sloping glacier surface above it, and is the most accurate stake reading. *Stratum*, mass balance stratigraphic unit; Sice, superimposed ice; OFirn, old firn; SFirn, superimposed ice in old firn; NFirn, new firn. Snow Depth, d, measured vertically in pits and core holes and by probing. Average depth, d; standard error, s.e.; and number of observations, n, calculated from the pit, core, and probe data. Measured summer surface height between stratigraphic units, Obsvd. b'ss, is each stake reading minus the average snow or new firn depth at a pit or core hole measured at the same time. Average summer surface height at the stake, Average b'ss, is the average of the measured summer surfaces each season weighted by the number of measurements each observation. Old Firn and Ice Density, ρ, is estimated unless noted as measured. The water equivalent depth of old firn and ice above the stake base, b'(i), is used to calculate the old firn and ice loss, $b_a(i)$, since the beginning of the hydrologic year. Snow and New Firn Depth, d, listed under Surface Mass Balance, is the difference between the most accurate stake reading, b', b^* , or b^* , and the average summer surface height at the stake, Average b'ss. Snow and New Firn density, ρ, is measured, m; partially measured, m; or estimated, m; or estimated, m; or m is all the stake, and m is a surface height at the stake, and m is a surface height at the stake, and m is a surface height at the stake, and m is a surface height at m is a surface height at m is a surface height at m is a surface

<					OBSERVA	ATIONS							<		S	URFAC	CE MAS	SS BA	LANCE-			
		<	Stake	Reading	gs>	<	Snc	w Depth		>	Summe	er Surface	<old< th=""><th>Firn and</th><th>Ice></th><th><</th><th>Snow</th><th>and l</th><th>New Firn-</th><th>></th><th>Yearly</th><th>Results</th></old<>	Firn and	Ice>	<	Snow	and l	New Firn-	>	Yearly	Results
Field	Date	Tape	Sur	vey		Pit/Core	Probe	Average	s.e.	n	Obsvd.	Average	Density	Stake	Ice	Depth	Densi	ty	Snow	NFirn	Net	Annual
Notes		b'	b^*	b^{**}	Stratum	d	d	d			b'ss	b'ss	ρ	b'(i)	b(i)	d	ρ		b(s)	b(f)	b_n	b_a
	m/d/y	m	m	m		m	m	m	m		m	m	kg/L	m(w)	m(w)	m	kg/L	,	m(w)	m(w)	m(w)	m(w)
							19	66 MEAS	UREN	IEN.	T YEAR	}										
		No stak	e at sit	e C the	first year.																	
		(Minim	um bala	nce) D	ate unknov	vn; no wea	ather da	ta at the gla	acier.										0.00		0.00	
	10/01/65	(Hydrol	ogic ye	ar begir	ns) Initial b	alance co	nditions	for fixed-	date ye	ar no	t known	, no weath	er data at	the glacio	er.							0.00
M48D	4/23/66			-	Snow		4.58	4.58	0.12	5						4.58	0.45	E	2.06		2.06	
		Measur	ement is	s 1.5 kn	northeast	of site C.																
		(Minim	um bala	nce) D	ate unknov	vn; no wea	ather da	ta at the gla	acier.										0.61	0.58	0.58	
																			Differe	nce of 0	.03 m is	water.
	10/01/66	(Hydrol	ogic ye	ar ends	Final bala	ance cond	itions fo	r fixed-dat	e year ı	ınkn	own; no	weather da	ata at the	glacier.						0.58		
M163C	10/24/66				Snow		1.40	1.40		1						1.40	0.33	Е	0.46			
					NFirn		1.10	1.10		1						1.10	0.55	E	0.61	0.58		
							Measur	ement is 0.	.5 km v	vest o	of site C											

Table 4. Mass balance data from site C (1,290 meters altitude) on Wolverine Glacier, Alaska--Continued

<					OBSERV <i>A</i>	TIONS							<		S	URFAC	E MAS	S BA	LANCE			
		<	Stake	Reading	gs>	<	Sno	w Depth		>	Summe	r Surface	<old< th=""><th>Firn and</th><th>Ice></th><th><</th><th>Snow</th><th>and N</th><th>New Firn-</th><th>></th><th>Yearly</th><th>y Results</th></old<>	Firn and	Ice>	<	Snow	and N	New Firn-	>	Yearly	y Results
Field	Date	Tape	Sur	vey		Pit/Core	Probe	Average	s.e.	n	Obsvd.	Average	Density	Stake	Ice	Depth	Densit	y	Snow	NFirn	Net	Annua
Notes		b'	b^*	b^{**}	Stratum	d	d	d			b'ss	b'ss	ρ	b'(i)	b(i)	d	ρ		b(s)	b(f)	b_n	b_a
	m/d/y	m	m	m		m	m	m	m		m	m	kg/L	m(w)	m(w)	m	kg/L		m(w)	m(w)	m(w)	m(w)
								196	7 ME	ASU	REMEN	T YEAR										
				`	ed 4/02/67		•			on a	board a	t <i>b'ss</i>)										
		(Minim	um bala	ince) D	ate unknov	vn; no we	ather dat	a at the gl	acier.												0.00	
	10/01/66	(Hydrol	logic ye	ar begin	s) Initial b	alance co	nditions	not know	n.													0.00
M13A	4/02/67	4.38			Snow	4.38		4.38		1	0.00					4.38	0.446	M	1.95		1.95	
	9/15-21/67																					
PP715-B	9/17/67				stimate at r	neasurem	ent site	from mass	balanc	e ma	p (Tangb	orn and o	thers, 197	7).							-1.00	
	10/01/67	(Hydrol	~ ,																0.38			
M5C	1/30/68	Stake no	ot found	1.																		
0.00																						
								196	88 ME	ASU	REMEN	T YEAR										
(installed 1	1/30/68, no w		,		e sank du	ring the y	ear)															
		(Minim																	0.00		0.00	
		(Hydrol	logic ye	ar begir	/														0.38		0.38	0.00
M5C	1/30/68	3.05			Snow	3.04	3.00	3.02	0.02	2	0.03	0.03				3.02	0.428	M	1.29		1.29	0.91
M7F	3/30/68	4.70			Snow							0.08				4.62	0.43	Е	1.99		1.99	1.61
M27D	4/10/68	4.95			Snow		4.85	4.85		1	0.10	0.10				4.85	0.43	Е	2.09		2.09	1.71
M64B	6/06/68	4.67			Snow		ry wet sr					0.30				4.37	0.54	Е	2.36		2.36	1.98
M81A	7/19/68	3.64			Snow	3.00		3.00		1	0.64	0.64				3.00		M	1.68		1.68	1.30
M89C	8/22/68	2.60			Snow	1.21		1.21		1	1.39	1.39				1.21	0.536		0.65		0.65	0.27
									Rise of	f the	summer	surface on	the stake	indicates	s that the	e stake s	ank into	the u				
	9/18/68	(Minim	um bala	ince)															0.48	0.45	0.45	0.07
	9/30/68	(Hydrol	logic ye	ar ends)															0.19	0.45		0.26
M110C	10/10/68				Snow	0.91		0.91		1						0.91	0.326	M	0.30			
					NFirn	1.04	0.80	0.92	0.12	2						0.92	0.519	M	0.48	0.45		

Table 4. Mass balance data from site C (1,290 meters altitude) on Wolverine Glacier, Alaska--Continued

<				(OBSERVA	ATIONS							<		S	URFAC	E MAS	S BA	LANCE-			
		<	Stake R	eading	s>	<	Sno	w Depth		>	Summe	r Surface	<old< th=""><th>Firn and</th><th>Ice></th><th><</th><th>Snow</th><th>and l</th><th>New Firn-</th><th>></th><th>Yearly</th><th>y Result</th></old<>	Firn and	Ice>	<	Snow	and l	New Firn-	>	Yearly	y Result
Field	Date	Tape	Surve	ey		Pit/Core	Probe	Average	s.e.	n	Obsvd.	Average	Density	Stake	Ice	Depth	Densit	y	Snow	NFirn	Net	Annua
Notes		b'	b^*	b^{**}	Stratum	d	d	d			b'ss	b'ss	ρ	b'(i)	b(i)	d	ρ		b(s)	<i>b(f)</i>	b_n	b_a
	m/d/y	m	m	m		m	m	m	m		m	m	kg/L	m(w)	m(w)	m	kg/L		m(w)	m(w)	m(w)	m(w)
								196	9 ME	ASU	REMEN	T YEAR										
		STAKE	E 69-22A	(insta	lled 10/10/	/68; boar	d at bas	e of stake))													
	9/18/68	(Minim	um balan	ce)															0.00		0.00	
	10/01/68	(Hydrol	ogic year	begin	s)														0.19		0.19	0.00
M110C	10/10/68	0.91			Snow	0.91		0.91		1	0.00	-0.13				1.04	0.326	M	0.34		0.34	0.15
M114B	10/14/68	0.82			Snow							-0.13				0.95	0.33	E	0.31		0.31	0.12
M1A	1/25/69	2.35			Snow							-0.13				2.48	0.38	Е	0.94		0.94	0.75
M2A	1/26/69	2.35			Snow	2.40		2.40		1	-0.05	-0.13				2.48	0.410	M	1.02		1.02	0.83
						Dirt at the		ummer su	face.													
M22G	4/18/69	5.35			Snow		5.45	5.45		1	-0.10	-0.13				5.48	0.46	Е	2.52		2.52	2.33
M65A	6/03/69	5.26			Snow	5.78		5.78		1	-0.52	-0.13				5.39	0.518	M	2.79		2.79	2.60
								at Wolver														
						Snow col	der than	0°C excep	ot at the	sur	face. Ca		0/69 at dep	oth of 1.1	m.							
M78A	7/30/69	2.25			Snow							-0.13				2.38	0.56	Е	1.33		1.33	1.14
M79A	7/31/69				Snow	2.20		2.20		1		-0.13				0.13	0.560	M	0.07		0.07	-0.12
	9/7-26/69	1	um balan	/	,			olation app		•			eriod.)						0.00	1.03	1.03	0.84
M100D	9/13/69	1.90		New	Snow	0.30	0.35	0.34	0.02	6	1.56	1.62				0.28	0.430		0.12			1.15
					NFirn	1.60		1.60		1	0.00	-0.13				1.75	0.614	M	1.07	1.03		
																				nce of 0	.04 m is	
	9/30/69	()	ogic year	ends)															0.02	1.03		0.86
M109C	11/19/69	4.48			Snow	2.62		2.62		1	1.86	1.62				2.86	0.422	M	1.21			
M112	11/22/69	4.57			Snow	2.85	_	2.85		1	1.72	1.62				2.95	0.42	Е	1.24			
						Summer	surface of	dirt visible	in the	core	sample;	no snow d	ensity mea	asuremer	ıt.							

Table 4. Mass balance data from site C (1,290 meters altitude) on Wolverine Glacier, Alaska--Continued

<					OBSERV.	ATIONS							<		S	URFAC	E MAS	S BA	LANCE			
		<	Stake	Reading	gs>	· <	Snov	w Depth		>	Summe	r Surface	<old< th=""><th>Firn and</th><th>Ice></th><th><</th><th>Snow</th><th>and N</th><th>New Firn-</th><th>></th><th>Yearly</th><th>Result</th></old<>	Firn and	Ice>	<	Snow	and N	New Firn-	>	Yearly	Result
Field	Date	Tape	Sur	vey		Pit/Core	Probe	Average	s.e.	n	Obsvd.	Average	Density	Stake	Ice	Depth	Densit	ty	Snow	NFirn	Net	Annua
Notes		b'	b^*	b^{**}	Stratum	d	d	d			b'ss	b'ss	ρ	b'(i)	b(i)	d	ρ		b(s)	b(f)	b_n	b_a
	m/d/y	m	m	m		m	m	m	m		m	m	kg/L	m(w)	m(w)	m	kg/L		m(w)	m(w)	m(w)	m(w)
								197	0 ME	ASUI	REMEN	T YEAR										
		STAKI	E 70-22	A (insta	lled 11/22	2/69; plyw	ood bas	e on 1969	summ	er su	rface; n	label)										
	9/26/69	(Minim	um bala	ince)															0.00		0.00	
	10/01/69	(Hydrol	logic ye	ar begir	ıs)														0.02		0.02	0.00
M109C	11/19/69				Snow	2.62		2.62		1						2.62	0.422	M	1.11		1.11	1.09
M111D	11/22/69	2.85			Snow	2.85		2.85		1	0.00	0.01				2.84	0.42	E	1.19		1.19	1.17
						Summer	surface i	dentified i	n core	samp	le; no sn	ow densit	y measure	ement.								
						0.20 m ad	dditional	snow sinc	e 11/19	9/69.												
M25E,Z10	4/19/70	Stake b	uried.		Snow	8.48	8.60	8.54	0.06	2						8.54	0.472	M	4.03		4.03	4.01
						Steam dr	ill throug	gh ice laye	r at dep	oth of	5.5 m to	complete	the prob	e measure	ement.							
	9/18/70	(Minim	um bala	ince)															2.98	2.85	2.85	2.83
																				nce of 0.	13 m is	water.
M77B	9/29/70	5.40			Snow	0.28	0.28	0.28	0.00	2	5.12	5.12				0.28	0.291		0.08			2.83
					NFirn	5.11		5.11		1	0.01					5.11	0.584	M	2.98	2.85		
						Core to d	epth of 5	5.27 m in t	he firn:	dens	sity incre	ases from	0.61 to 0	.64 kg/L	at depth	of 5.11	m.					
	9/30/70	(Hydrol	logic ye	ar ends)															0.08	2.85		2.91
						_																
				•	ed 4/19/70	on wood	base in	core hole,	missir	1g 0-	to 3-m s	ection)										
	9/26/69	(Minim																	0.00		0.00	
	10/01/69	(Hydrol	logic ye	ar begir	′														0.02		0.02	0.00
M25E,Z10	4/19/70	11.49			Snow	8.48	8.54	8.52	0.04	3	2.97	3.06				8.43	0.472	M	3.98		3.98	3.96
71 (D	(/00/70	10.00			C	Steam dr	ill throug	gh ice laye	r at dep	oth of	5.5 m, t	_	lete the pr	obe.		7.04	0.50	г	2.02		2.02	2.00
Z16B	6/09/70	10.90			Snow	0.20		1				3.06				7.84	0.50	Е	3.92		3.92	3.90
M43D	7/24/70	9.90	1.1	\	Snow	0.20 m no	ew snow	last storm	١.			3.06				6.84	0.56	Е	3.83	2.05	3.83	3.81
	9/18/70	(Minim	um baia	ince)															2.98	2.85	2.85	2.83
1477D	0/20/70	0.71			C	0.20	0.22	0.26	0.02	2	0.45	0.45				0.26	0.201			nce of 0.	13 m is	water.
M77B	9/29/70	8.71			Snow	0.28 5.11	0.23	0.26 5.11	0.03	2	8.45	8.45 3.06				0.26	0.291		0.08	2.05		
					NFirn		anth of 6	5.11 5.27 m in t	ha fima	dom	3.34		0.61 to 0	6.4.1ra/I	at danth	5.11		IVI	2.98	2.85		
	0/20/70	(Hridual	la aia vya	on on da		Core to d	epin oi s	5.2/ m in t	ne mm;	dens	sity incre	ases from	0.61 to 0	.04 Kg/L	at deptn	01 5.11	m.		0.00	2 95		2.01
	9/30/70	(Hydrol	logic ye	ar ends,															0.08	2.85		2.91
																		۸) atalra	2 05	2.01
																		AV	erage of 2	stakes:	2.83	2.91

Table 4. Mass balance data from site C (1,290 meters altitude) on Wolverine Glacier, Alaska--Continued

<				OBSERV	ATIONS							<		S	URFAC	E MAS	S BA	LANCE-			
		<	-Stake Re	adings>	· <	Sno	w Depth		>	Summe	er Surface	<old< th=""><th>Firn and</th><th>Ice></th><th><</th><th>Snow</th><th>and N</th><th>New Firn-</th><th>></th><th>Yearly</th><th>y Results</th></old<>	Firn and	Ice>	<	Snow	and N	New Firn-	>	Yearly	y Results
Field	Date	Tape	Survey	7	Pit/Core	Probe	Average	s.e.	n	Obsvd.	Average	Density	Stake	Ice	Depth	Densit	ty	Snow	NFirn	Net	Annua
Notes		b'	b^*	b** Stratum	d	d	d			b'ss	b'ss	ρ	b'(i)	b(i)	d	ρ		b(s)	<i>b(f)</i>	b_n	b_a
	m/d/y	m	m	m	m	m	m	m		m	m	kg/L	m(w)	m(w)	m	kg/L		m(w)	m(w)	m(w)	m(w)
							197	71 ME	SU	REMEN	T YEAR										
		STAKE	71-22A (installed 1/08/	71 in pit v	vith woo	od base on	1970 s	umn	ner surf	ace)										
	9/18/70	(Minimu	ım balanc	e)														0.00		0.00	
M77B	9/29/70			Snow	0.28	0.23	0.26	0.03	2						0.26	0.291	M	0.08		0.08	
	10/01/70	(Hydrol	ogic year l	pegins)														0.08		0.08	0.00
M1B	1/08/71	2.70		Snow	2.70		2.70		1	0.00	0.25				2.45	0.361	M	0.88		0.88	0.80
M34H	4/27/71	5.63		Snow		5.55	5.55		1	0.08	0.25				5.38	0.48	E	2.58		2.58	2.50
M38V	5/04/71	5.79		Snow	0.35	m fresh	snow.				0.25				5.54	0.50	E	2.77		2.77	2.69
M67A	7/11/71	5.04		Snow	4.50	4.45	4.48	0.03	2	0.56	0.25				4.79	0.598	M	2.86		2.86	2.78
		Stake be	ent at 4 m.																		
M76E	8/13/71	3.20		Snow		2.93	2.93		1	0.27	0.25				2.95	0.60	E	1.77		1.77	1.69
		(Minimu	ım balanc	e) Date unknow	vn; no wea	ther dat	a at the gla	acier.										1.36	1.30	1.30	1.22
																		Differe	nce of 0	.06 m is	water.
	9/30/71	(Hydrol	ogic year	ends) Final bala	ance condi	tions no	t known.												1.30		
M101A	10/14/71	3.80		Snow							2.48				1.32	0.34	E	0.45			
					Gimballe	d precip	itation gag	ge (1.4 ı	n tal	l) protru	ding about	0.2 m abo	ove snow	·.							
M106H	10/19/71	3.95		Snow	1.59		1.59		1	2.36	2.48				1.47	0.351	M	0.52			
				NFirn	2.37		2.37		1	-0.01					2.37	0.573	M	1.36	1.30		
					Core from	n botton	n of snow	pit.			See 1972	measuren	nent year	for aver	rage b's.	S.					

Table 4. Mass balance data from site C (1,290 meters altitude) on Wolverine Glacier, Alaska--Continued

<					OBSERVA	ATIONS							<		SI	URFAC	E MAS	S BA	LANCE			:
		<	-Stake R		gs>														lew Firn-			Results
Field	Date	Tape	Surv	ey		Pit/Core	Probe	Average	s.e.	n	Obsvd.	Average	Density	Stake	Ice	Depth	Densit	y	Snow	NFirn	Net	Annual
Notes		<i>b'</i>	b^*	b**	Stratum	d	d	d			b'ss	b'ss	ρ	b'(i)	b(i)	d	ρ		b(s)	<i>b(f)</i>	b_n	b_a
	m/d/y	m	m	m		m	m	m	m		m	m	kg/L	m(w)	m(w)	m	kg/L		m(w)	m(w)	m(w)	m(w)
								197	72 ME	ASU	REMEN	IT YEAR										
		STAKE	71-22A	(insta	lled 1/08/	71 in pit w	vith woo	d base on	1970 s	sumn	ner surf	ace)										
		`		/	ite unknow	1		υ											0.00		0.00	
		` •	ogic yea	r begin	s) Initial l	oalance co	nditions	not know	n.													0.00
M101A	10/14/71	3.80			Snow							2.48	0.60	1.49	0.00	1.32	0.34	Е	0.45		0.45	
					_		d precip	~ ~	ge (1.4 i		/ 1	ding about										
M106H	10/19/71	3.95			Snow	1.59		1.59		1	2.36	2.48	0.60	1.49	0.00	1.47	0.351	M	0.52		0.52	
	10/01/51	4.05			~	Cored fro		m of snow	pit.			2.40	0.60	1.10	0.00			_	0.50		0.50	
M108C	10/21/71	4.05			Snow	2.15	1.50	1.50		1	2.55	2.48	0.60	1.49	0.00	1.57	0.33	E	0.52		0.52	
M3C	1/13/72	4.70			Snow	2.15	1.0	2.15		1	2.55	2.48	0.60	1.49	0.00	2.22	0.387	M	0.86		0.86	
241124	4/10/72	5.00			C			o dirt appa		2	2.47	2.40	0.60	1 40	0.00	2.70	0.204		1.07		1.07	
M11M	4/10/72	5.26			Snow		2.85	2.79 ner surfac	0.03	2	2.47	2.48	0.60	1.49	0.00	2.78	0.384	M	1.07		1.07	
M37A	6/21/72	5.35			Snow	Dirt at 19	/ I sumi	ner suriac	e.			2.48	0.60	1.49	0.00	2.87	0.50	Е	1.44		1.44	
M43B	7/12/72	3.33 4.74			Snow							2.48	0.60	1.49	0.00	2.26	0.55	E m	1.44		1.44	
M43D	//12//2	4./4			SHOW	Pit to ice	laver at	depth of 1	90 m·	dene	ity 0 54 i		0.00	1.49	0.00	2.20	0.55	111	1.24		1.24	
M60D	8/18/72	2.10			OFirn	111 10 100	layer at	depth of 1		uciis	ity 0.54	Kg/L.	0.60	1.26	-0.23						-0.23	
MOOD	0/10/72	2.10			OI IIII								0.00	1.20	0.23						0.23	
		STAKE	72-22A	(insta	lled in sno	ow near st	ake 71-	22A, 10/2	1/71)													
	10/01/71			`	s) Initial l																	0.00
M108C	10/21/71	1.40			Snow		1.50	1.50		1	-0.10	-0.12				1.52	0.33	Е	0.50		0.50	
M3C	1/13/72	2.05			Snow	2.15		2.15		1	-0.10	-0.12				2.17	0.387	M	0.84		0.84	
M11M	4/10/72	2.65			Snow	2.73	2.85	2.79	0.03	2	-0.14	-0.12				2.77	0.384	M	1.06		1.06	
M37A	6/21/72	2.72			Snow							-0.12				2.84	0.51	E	1.45		1.45	
M43B	7/12/72	1.85			Snow							-0.12				1.97	0.54	m	1.06		1.06	
							•	depth of 1	.90 m;	dens	ity 0.54	kg/L.										
M60D	8/18/72	Stake fo	und fall	en ovei	; reinstalla	ition on ne	xt line.							Old firn	balance	continu	ed from	Stak	e 71-22A			
		2.72			OFirn								0.60	1.63	-0.23						-0.23	
	9/13/72	(Minim																	0.00		-0.59	
	9/30/72	` •	ogic yea	r ends)															0.01			
M69H	10/03/72	2.15			Snow		0.03	0.03		1	2.12	2.12	0.60	1.27	-0.59	0.03	0.30	E	0.01			

Table 4. Mass balance data from site C (1,290 meters altitude) on Wolverine Glacier, Alaska--Continued

<					-OBSERV																	
					gs>			•											New Firn-		•	Result
Field	Date	Tape	Sur	-		Pit/Core	Probe	Average	s.e.	n	Obsvd.	Average	Density	Stake	Ice	Depth	Densi	ty	Snow	NFirn	Net	Annua
Notes		b'	b^*	b^{**}	Stratum	d	d	d			b'ss	b'ss	ρ	b'(i)	b(i)	d	ρ		b(s)	b(f)	b_n	b_a
	m/d/y	m	m	m		m	m	m	m		m	m	kg/L	m(w)	m(w)	m	kg/L		m(w)	m(w)	m(w)	m(w)
								197	73 ME	ASU	REMEN	IT YEAR										
				•	alled 1/08/	73)																
	9/13/72																		0.00		0.00	
	10/01/72	(Hydrol	logic ye	ar begii															0.01		0.01	0.00
M69H	10/03/72				Snow		0.03	0.03		1						0.03	0.30	Е	0.01		0.01	0.00
МЗВ	1/08/73	2.45			Snow	2.50	2.55	2.53	0.03	2	-0.08	-0.04				2.49	0.342	M	0.85		0.85	0.84
M19D	4/17/73	4.95			Snow		4.99	4.99		1	-0.04	-0.04				4.99	0.38	Е	1.90		1.90	1.89
M20C	4/18/73				Snow	4.87		4.87		1						4.87	0.376	M	1.83		1.83	1.82
M29E	6/02/73	Stake b	uried; 6	m long																		
M29G	6/03/73				Snow		4.70	4.70		1						4.70	0.51	Е	2.40		2.40	2.39
							o a false	summer s	surface.													
T19C	7/06/73	4.75			Snow	4.73		4.73		1	0.02	-0.04				4.79	0.552		2.64		2.64	2.63
M52B	8/24/73	2.95			Snow							-0.04				2.99	0.56	Е	1.67		1.67	1.66
	9/20/73	(Minim	um bala	ince)															1.54	1.47	1.47	1.46
																				nce of 0	.07 m is	
	9/30/73		logic ye	ar ends						_									0.05	1.47		1.51
M61A	10/16/73	3.82			Snow	1.06	1.09	1.09	0.01	7	2.73	2.73				1.09	0.325		0.35			
					NFirn	2.75		2.75		I	-0.02	-0.04				2.75	0.561	M	1.54	1.47		
								197	74 ME	ASU	REMEN	IT YEAR										
				` _	alled 1/08/	73)																
	9/20/73	(Minim	um bala	ance)															0.00		0.00	
	10/01/73	(Hydrol	logic ye	ar begii	ns)														0.05		0.05	0.00
M61A	10/16/73	3.82			Snow	1.06	1.09	1.09	0.01	7	2.73	2.73				1.09	0.325		0.35		0.35	0.30
M62A	10/21/73	4.25			Snow							2.73				1.52	0.34	E	0.52		0.52	0.47
M4C	3/05/74	6.90			Snow	3.41		3.41		1		2.73				4.17	0.372	M	1.55		1.55	1.50
						Pit did no	ot reach	1973 sumr	ner sur	face.												
T42C	8/04/74	5.19			Snow							2.73				2.46	0.55	Е	1.35		1.35	1.30
T46C	9/21/74	3.38			Snow							2.73				0.65	0.55	Е	0.36	0.34	0.34	0.29
																			Differe	nce of 0		water.
	9/25/74	(Minim																	0.33	0.32	0.32	0.27
	9/30/74	(Hydrol	logic ye	ar ends)														0.14	0.32		0.41
			E 74-C ((install	ed 3/12/74)		NOTE: S	ite C es	tablis	shed at 1	new location	on on long	itudinal o	enter li	ne, 3/12	/74.					
M8D	3/12/74	3.40			Snow							0.26				3.14	0.41	E	1.29		1.29	1.24
M23B	6/08/74	3.76			Snow	3.50		3.50		1	0.26	0.26				3.50	0.508	M	1.78		1.78	1.73
						Wet snov	v overlie	es dry snov	v in bot	tom	0.9 m of	f the snowp	oack.									
T42C	8/04/74	1.60			Snow							0.26				1.34	0.55	E	0.74		0.74	0.69
T46B	9/21/74	Stake fo	ound fal	len ove	r.																	

Table 4. Mass balance data from site C (1,290 meters altitude) on Wolverine Glacier, Alaska--Continued

\						ATIONS																
D: 11	ъ.			•	gs>	· <													ew Firn		•	
Field	Date	Tape	Surv	•	_			Average	s.e.	n		_	•		Ice	•	Densit	У		NFirn		Annua
Notes		b'	b^*	b**	Stratum	d	d	d			b'ss	b'ss	ρ	b'(i)	b(i)	d	ρ		b(s)	b(f)	b_n	b_a
	m/d/y	m	m	m		m	m	m	m		m	m	kg/L	m(w)	m(w)	m	kg/L		m(w)	m(w)	m(w)	m(w)
		OT . T.	. = = ~ .					197	5 MEA	SUF	REMEN	T YEAR										
	0.10.5.15.4				ed 2/06/75))													0.00		0.00	
	9/25/74	,		/															0.00		0.00	0.00
T2.4	10/01/74		ogic yea	ar begin		2.25		2.25			2.02	2.02				2.25	0.412		0.14		0.14	0.00
T3A	2/06/75	6.38			Snow	3.35		3.35		1	3.03	3.03				3.35	0.413		1.38		1.38	1.24
M10C	6/03/75	8.45			Snow	2.10		2.10			2 17	3.10				5.35	0.51	Е	2.73		2.73	2.59
M22C	8/19/75	5.35			Snow	2.18 Dieta 107	1	2.18	a la a a u u s		3.17	3.17				2.18	0.587	M	1.28		1.28	1.14
						Dirty 197 Masonite						_										
T34A	8/21/75	5.21			Snow	Masonite	board pi	aced on si	iow sui	Tace	at stake.	3.17				2.04	0.57	Е	1.16		1.16	1.02
134A	9/26/75		ım hala	nca)	Silow							3.17				2.04	0.57	E	1.01	0.97	0.97	0.83
	9/20/73	(willilli)	aiii baia	iicc)															Differe			
	9/30/75	(Hydrol	ogic ve	ar ende)															0.21	0.97	.04 111 15	1.04
T51A	10/27/75	6.00	ogic yea	ai ciius)	Snow	0.95		0.95		1	5.05	5.09				0.91	0.389	М	0.21	0.97		1.04
13174	10/27/13		e observ	zed at th	ne stake.	0.75		0.73			4.95	5.09				0.71	0.567	111	0.55			
		1.,,,	00501	ou ut ti	ie stake.							6 measure	ment vear	for aver	age h'ss							
T52B	10/28/75				NFirn	1.66		1.66			3.39	3.39	mem year	101 4 101	uge 0 55.	1 70	0.594	М	1.01	0.97		
						Pit in 197	5 firn to		1974 s				Stake san	k 0.36 m	during							
												T YEAR										
					ed 2/06/75)) Masonit	e board	placed or	surfac	ce 8/1	19/75.											
		(Minim																	0.00		0.00	
T.51.1	10/01/75		ogic yea	ar begin	/	0.05						7 .00				0.01	0.200		0.21		0.21	0.00
T51A	10/27/75	6.00	1	11	Snow	0.95		0.95			5.05	5.09				0.91	0.389	M	0.35		0.35	0.14
	1/22/76				ne stake.	1 0 11	XX 7 1			1	4.95											
T4D	2/23/76	Augusti 8.08	ne voica	ano beg		g; ashfall c 2.90	on Wolve	2.90	er.	1	£ 10	5.09				2.00	0.201	м	1.14		1 14	0.02
T4B	2/23/76	8.08			Snow	Augustine			versith on		5.18		+la			2.99	0.381	IVI	1.14		1.14	0.93
M9	2/25/76	8.19			Snow	Augustine	3.08	3.08	0.02		5.11	5.09	pui.			3 10	0.38	Е	1.18		1.18	0.97
M32A	7/12/76		ne volc	anic ach		from a 0.2							That is ea	uivalent	to 700 n					ar.	1.10	0.57
M32B	7/12/76	7.68	iic voice	anic asi	Snow	2.72	J-III arc	2.72	, weign		4.96	5.09	That is eq	uivaiciit	10 700 11		0.581		1.50		1.50	1.29
WIJZD	//13//0	7.00			Silow		ash mive	ed with we	t snow				2 m			2.39	0.561	171	1.50		1.50	1.29
	9/06/76	(Minim	ım hala	nce)		Voicame	usii iiiiA	ou with we	t SHOW	at ac	pin or o	.74 10 0.02	- III.						0.18	0.17	0.17	-0.04
	2100110	(1411111111	ann oun																Differer			
		(Hydrol	ogic ve	ar ends)															0.50	0.17	.01 111 15	0.46
	9/30/76			ar ciras,	·			1.84		1	5.53	5.09				2 28	0.365	М	0.83	0.17		0.10
T35A	9/30/76 10/20/76	` •			Snow	1 84																
T35A	9/30/76 10/20/76	7.37			Snow Augustin	1.84 e volcanic	ash (Jan		arks 19	-		ırface at d	epth of 1.	84 m: fai	ntlv dirt					h of 2.10	6 m.	
T35A		` •				1.84 e volcanic 0.32	ash (Jan		arks 19	-		ırface at d	lepth of 1.	84 m; fai	ntly dirt	y 1975		surfa		h of 2.10 0.17	6 m.	
T35A		` •			Augustin	e volcanic		. 1976) ma		76 su 1	immer s				ntly dirt	y 1975	summer	surfa	ce at dept		6 m.	

Table 4. Mass balance data from site C (1,290 meters altitude) on Wolverine Glacier, Alaska--Continued

<																						
				•	gs>			w Depth											New Firn-			
Field	Date	Tape	Sur	•		Pit/Core	Probe	Average	s.e.	n	Obsvd.	_	Density		Ice	Depth	Densit	У	Snow	NFirn	Net	Annua
Notes		b'	b^*	b**	Stratum	d	d	d			b'ss	b'ss	ρ	b'(i)	b(i)	d	ρ		b(s)	b(f)	b_n	b_a
	m/d/y	m	m	m		m	m	m	m		m	m	kg/L	m(w)	m(w)	m	kg/L		m(w)	m(w)	m(w)	m(w)
								197	7 ME	ASU	REMEN	T YEAR										
		STAKE	E 77-C (installe	ed 2/25/77	at origina	l site C)														
	9/06/76	(Minim	um bala	nce)															0.00		0.00	
	10/01/76	(Hydrol	ogic ye	ar begir	ıs)														0.50		0.50	0.00
T35A	10/20/76				Snow	1.84		1.84		1						1.84	0.365	M	0.67		0.67	0.17
1	Augustine v	olcanic a	sh (Jan.	1976)	marks 197	6 summer	surface	at depth of	1.84 r	n.												
M8A,T4B	2/25/77	4.63			Snow							-4.25				8.88	0.45	E	4.00		4.00	3.50
M32A	6/07/77	4.82			Snow							-4.25				9.07	0.536	m	4.86		4.86	4.36
T32A	6/08/77	4.76			Snow							-4.25				9.01	0.536	M	4.83		4.83	4.33
						Core to d	epth of 1	12.5 m. Co	arse g	raine	d with ic	e layers b	elow 8.0 r	n; volcan	ic ash o	n auger	flights a	it dep	th of 11.7	to 12.0	m.	
						Snow and	l firn de	nsity meas	uremei	nts to	depth of	12.5 m.	Average d	lensity to	depth o	f 9.01 n	is 0.53	6 kg/	L.			
M36A,37A	6/11/77	4.65			Snow	8.90		8.90		1	-4.25	-4.25				8.90	0.536	m	4.77		4.77	4.27
						Continue	d coring	the hole o	f 6/08/	77; n	o volcan	ic ash laye	er found.	Pit to dep	th of 1.3	30 m; de	ensity 0.	533 k	g/L.			
						Core at no	ew locat	ion. Dark	layer o	of vol	lcanic asl	h at depth	of 8.90 m									
		STAKE	E 77-C2	(instal	led 6/07/7	7, 100 m e	ast of in	nitial site (C)													
M32A	6/07/77	10.39			Snow							1.30				9.09	0.536	E	4.87		4.87	4.37
T32A	6/08/77	10.27			Snow							1.30				8.97	0.536	M	4.81		4.81	4.31
M36A,37A	6/11/77	10.20			Snow			8.90			1.30	1.30				8.90	0.536	m	4.77		4.77	4.27
and T35						Assume s	now dep	oth and der	sity ar	e the	same as	at Stake 7	77-C.	Pit to dep	th of 1.3	30 m; de	ensity 0.	533 k	g/L.			
	9/26/77	(Minim	um bala	nce)															3.43	3.38	3.38	2.88
																			Differe	nce of 0	.05 m is	water.
	9/30/77	(Hydrol	ogic ye	ar ends))														0.08	3.38		2.96
M82A,83A	10/24/77	8.90	8.80		Snow		2.82	2.82		1	5.98	5.81				2.99	0.26	Е	0.78			
		b' meas	ured ea	rlier in	day than b	*; soft nev	v snow o	compacting	ζ.		See 197	8 measure	ment year	r for aver	age b'ss.							
					NFirn							1.30	•			4.51	0.76	m	3.43	3.38		
					Core to d	epth of 3.0	2 m in 1	nard, froze	n, new	firn;	average	density, 0	.763 kg/L	; density	0.80 kg/	L at tor	; 0.63 k	g/L a	t depth of	3 m.		
									_	′	-	• /	U	,	-		*	_				
M84	10/25/77				Snow	2.50		2.50		1						2.50	0.308	M	0.77			

Table 4. Mass balance data from site C (1,290 meters altitude) on Wolverine Glacier, Alaska--Continued

Field Notes	Date m/d/y	Tape <i>b'</i>	-Stake Re Surve	adings	.> <	Snov	r. Donth			~	~ ^	011	r' 1	Y .		C	J NT	ew Firn	_	37 1	~ .
			Surve			5110	w Depm		>	Summe	er Surface	<old< th=""><th>Firn and</th><th>Ice></th><th><</th><th>Snow</th><th>and N</th><th>ew rim</th><th></th><th>y early</th><th>Results</th></old<>	Firn and	Ice>	<	Snow	and N	ew rim		y early	Results
Notes	m/d/y	b'		/	Pit/Core	Probe	Average	s.e.	n	Obsvd.	Average	Density	Stake	Ice	Depth	Densit	У	Snow	NFirn	Net	Annua
	m/d/y		b^*	b** Stratun	d	d	d			b'ss	b'ss	ρ	b'(i)	b(i)	d	ρ		b(s)	<i>b(f)</i>	b_n	b_a
		m	m	m	m	m	m	m		m	m	kg/L	m(w)	m(w)	m	kg/L		m(w)	m(w)	m(w)	m(w)
							197	78 ME	ASU	REMEN	IT YEAR										
			`	nstalled 6/07/	77, 100 m e	ast of in	itial site (C)													
		`	ım balanc	/														0.00		0.00	
	10/01/77	\ \ \	0 3	0 /														0.08		0.08	0.00
M82A,83A	10/24/77	8.90		Snow		2.82	2.82		1	5.98	5.81				2.99	0.26	Е	0.78			
		b' meas	ured earli	er in day than		v snow o	-	g.													
M84	10/25/77			Snow			2.50		1			_	_		2.50	0.308	M	0.77			
				_				_		_	ined, dense	e, frozen, 1	new firn.								
Т3В	2/28/78	12.29		Snow		6.51	6.51	0.05	6	5.78	5.81				6.48	0.45	E	2.92		2.92	2.84
		(Minim	ım balanc	e) Date not kr	nown; no we	ather da	ta at the g	lacier.										2.06		1.97	1.89
				-														Differen	nce of 0.	09 m is	
M113	9/29/78	9.57		Snow			0.15		1	9.42	9.42				0.15	0.390		0.06			1.95
				NFirn							5.81				3.61	0.57	Е	2.06	1.97		
	9/30/78	(Hydrol	ogic year	ends)														0.04	1.97		1.93
		CT A IZE	70 1 00	<i>(</i>	0/50			1. 1			00	. 6 1									
	0/06/77			(installed 2/2	8//8 at new	site C,	on longiti	uainai j	prom	ie iine 2	oo m east	oi initiai	site C)					0.00		0.00	
		`	ım balanc	1														0.00		0.00	0.00
T3A	10/01/77 2/28/78	9.76	ogic year	Snow		6.51	6.51	0.05	6	3.25	3.25				6.51	0.45	Е	2.93		0.08 2.93	0.00 2.85
T6A	3/01/78	9.76		Snow		0.31	0.31	0.03	O	3.23	3.25				6.43	0.45	E	2.93		2.93	2.83
10A	3/01/78	9.08		Show	Pit to 2-m	denth					3.23				0.43	0.43	E	2.89		2.89	2.81
T30B	6/02/78	11.01		Snow		гасриі.					3.25				7.76	0.51	F	3.96		3.96	3.88
1300			ım halanc	e) Date not kr		ather da	ta at the o	lacier			3.23				7.70	0.51	ь	2.21	2.11	2.11	2.03
		(WIIIIII)	ani baranc	c) Date not ki	iowii, iio wc	attici da	ta at the g	,iacici.										Differer			
M113A	9/29/78	7.28		Snow	0.15		0.15		1	7.13	7.13				0.15	0.390	М	0.06	nee 01 0.	10 111 13	2.09
W111371	2122110	7.20		Silow		the 197		· surface	-		n-size incre	ease			0.13	0.570	171	0.00			2.07
				NFirn		the 157	o sammer	Surrac	o, om	y a gran	3.25	ouse.			3.88	0.57	Е	2.21	2.11		
	9/30/78	(Hydrol	ogic year								5.25				2.00	3.07	_	0.05	2.11		2.08
T114	10/01/78	7.26	ogie jeur	Snow							7.13				0.13	0.39	Е	0.05	2.11		2.00
		0		211011							,				0.10	3.07	_	00			
																	Ave	rage of 2	stakes.	2.04	2.01

Table 4. Mass balance data from site C (1,290 meters altitude) on Wolverine Glacier, Alaska--Continued

<				()BSERV <i>A</i>	TIONS							<		SI	JRFAC	E MAS	S BA	LANCE-			
		<	-Stake I	Reading	s>	<	Sno	w Depth		>	Summe	r Surface	<old< th=""><th>Firn and</th><th>Ice></th><th><</th><th>Snow</th><th>and N</th><th>New Firn-</th><th>></th><th>Yearly</th><th>y Result</th></old<>	Firn and	Ice>	<	Snow	and N	New Firn-	>	Yearly	y Result
Field	Date	Tape	Surv	ey		Pit/Core	Probe	Average	s.e.	n	Obsvd.	Average	Density	Stake	Ice	Depth	Densi	ty	Snow	NFirn	Net	Annua
Notes		b'	b^*	b^{**}	Stratum	d	d	d			b'ss	b'ss	ρ	b'(i)	b(i)	d	ρ		b(s)	b(f)	b_n	b_a
	m/d/y	m	m	m		m	m	m	m		m	m	kg/L	m(w)	m(w)	m	kg/L		m(w)	m(w)	m(w)	m(w)
								197	9 ME	ASU	REMEN	T YEAR										
		STAKE	78-1.8	C (insta	lled 2/28/	78)																
		(Minima	um bala	nce) Dat	e not kno	wn. Insuf	ficient v	veather dat	a at the	e glac	eier.								0.00		0.00	
	10/01/78	(Hydrol	ogic yea	r begins	s)														0.05		0.05	0.00
T114	10/01/78	7.26			Snow							7.13				0.13	0.39	Е	0.05		0.05	0.00
M2	3/07/79	11.33			Snow							7.13				4.20	0.44	Е	1.85		1.85	1.80
T48	8/04/79	9.46			Snow							7.13				2.33	0.55	E	1.28		1.28	1.23
				`	lled 3/07/	,																
						wn. Insuf	ficient v	veather dat	a at the	glac	cier.								0.00		0.00	
	10/01/78	()	ogic yea	r begins															0.05		0.05	0.00
M2	3/07/79	7.31			Snow			4.20			3.11	3.14				4.17	0.44	Е	1.83		1.83	1.78
								Depth fro	m Stak	e 77-	·C2.											
M3	3/11/79	7.63			Snow							3.14				4.49	0.44	Е	1.98		1.98	1.93
						Coring at	iger con	tainer left	on 3/07	7/79 t			snow.									
T46	8/04/79	5.50			Snow			2.33			3.17	3.14				2.36	0.55	Е	1.30		1.30	1.25
								Depth fro	m Stak	e 77-	·C2.											
	9/23/79	(Minim		,																		
	9/30/79	(Hydrol		r ends)															0.45			
M4	1/12/80	Stake bu			Snow		4.88	4.88	0.04	4		3.14				4.88	0.40	Е	1.95			
		Snow pi	it dug at	expecte	d stake lo	cation; 9-1	m-long s	stake not fo	ound.													

Table 4. Mass balance data from site C (1,290 meters altitude) on Wolverine Glacier, Alaska--Continued

<				(DBSERVA	ATIONS							<		S	URFAC	E MASS BA	ALANCE-			
		<	Stake F	Reading	s>	<	Sno	w Depth		>	Summe	r Surface	<old< th=""><th>l Firn and</th><th>l Ice></th><th><</th><th>Snow and</th><th>New Firn-</th><th>></th><th>Yearly</th><th>y Results</th></old<>	l Firn and	l Ice>	<	Snow and	New Firn-	>	Yearly	y Results
Field	Date	Tape	Surv	ey		Pit/Core	Probe	Average	s.e.	n	Obsvd.	Average	Density	Stake	Ice	Depth	Density	Snow	NFirn	Net	Annual
Notes		b'	b^*	b^{**}	Stratum	d	d	d			b'ss	b'ss	ρ	b'(i)	b(i)	d	ρ	b(s)	b(f)	b_n	b_a
	m/d/y	m	m	m		m	m	m	m		m	m	kg/L	m(w)	m(w)	m	kg/L	m(w)	m(w)	m(w)	m(w)
								198	O ME	ASU	REMEN	T YEAR									
		STAKE	E 80-1.80	C (insta	lled 1/11/	80; lengtl	ı, 9.0 m)													
	9/23/79	(Minim	um balar	nce)														0.00		0.00	
	10/01/79	(Hydrol	logic yea	r begins	s)													0.45		0.45	0.00
M3B	1/11/80	6.50			Snow		4.88	4.88	0.04	4	1.62	1.62				4.88	0.40 m	1.95		1.95	1.50
														Pit to de	pth of 2.	00 m; d	ensity 0.355	kg/L.			
M41	6/06/80	Stake b	uemieslnot	possibl	e by probi	ng; too de	ep for re	eliable mea	asurem	ent.											
M88	9/05/80	Stake b	uried. S	now fro	zen; cann	ot probe.															
	9/30/80	(Minim	um balar	nce and	hydrologi	c year end	ls)														
T7	1/26/81	Stake b	uried.		Snow		Probe s	now to hai	rd layer	s at c	depths of	6.7 and 1	0.3 m.			Pit to c	depth of 3.00	m; density	0.329	κg/L.	
T8	1/27/81	Stake b	uried.		Snow	12.00		12.00		1						12.00	0.55 m	6.60			
					Core to d	epth of 13	.0 m; gr	ain size in	creases	fron	n 0.5- to	1.5-mm di	ameter at	depth of	12.0 m.		Density at	depth of 6.	0 m is 0	.56 kg/I	⊔.
		CT A IZI	7 90 C2	(install	ed 6/06/80																
M41	6/06/80			`		,	een for i	eliable me	acuren	ent											
M61	7/30/80	2.72	ciit by pi	oonig is	Snow	.bic, 100 u	сер юг г	chaoic inc	asurcii	iciit.											
M84	9/03/80	1.79				Snow fro	zen: can	not probe.													
M88	9/05/80	1.74			Snow	Show no	zen, can	not prooc.													
14100	2/03/00	1./-			Show	Sawdust	spread o	n the snow	v surfac	e 5 r	ท บท-ฮไล	cier from t	he stake								
	9/30/80	(Hydrol	logic vea	r ends a	ınd minim			ii tiie siio v	, surruc		ii up giu	orer monn	ne state.					0.00			
T7	1/26/81	Stake b		i ciids u	Snow	um outun		now to har	rd laver	s at o	lepths of	6.7 and 1	0.3 m.			Pit to o	lepth of 3.0		0.329 k	2/L.	
T8	1/27/81				Snow	12.00	110000	12.00	a laj el	1	acpuis of	orr unu 1	0.0			12.00	•	6.60	0.525 10	5, 2.	
10	1,27,01	Stare 0	arrod.				0 m: or	ain size in	creases	fron	0 5- to	1 5-mm di	ameter at	depth of	12.0 m		Density at		0 m is 0	56 kg/I	ſ.
							, 6.										_ 0110117 41	p 01 0.	0		

Table 4. Mass balance data from site C (1,290 meters altitude) on Wolverine Glacier, Alaska--Continued

\					OBSERVA																	
		<			gs>														ew Firn		Yearly	
Field	Date	Tape	Sur	vey		Pit/Core	Probe	Average	s.e.	n	Obsvd.	Average	Density	Stake	Ice	Depth	Densit	У	Snow	NFirn	Net	Annu
Notes		b'	b^*	b**	Stratum	d	d	d			b'ss	b'ss	ρ	b'(i)	b(i)	d	ρ		b(s)	b(f)	b_n	b_a
	m/d/y	m	m	m		m	m	m	m		m	m	kg/L	m(w)	m(w)	m	kg/L		m(w)	m(w)	m(w)	m(w)
								198	31 ME/	ASUI	REMEN	T YEAR										
				`	ed 1/26/81)			7 m above	e snow	pack	base.											
	10/01/80	(Hydro	logic ye	ar begin	ns and mini	imum bala	nce)												0.00		0.00	0.00
Γ7	1/26/81	5.00			Snow		6.70			1		-7.05				12.05	0.55	m	6.63		6.63	6.63
							10.34		0.08	2							Pit to 3	3.00 m	; density	0.45 kg/	L.	
				Prob	e to hard l	ayers in the	e snow;	lower laye	er feels	like 1	firn.											
Τ8	1/27/81	4.95			Snow	12.00				_	-7.05	-7.05					0.55	m	6.60		6.60	6.60
	Plywood p		snow su	ırface.	Core to d	epth of 13	.0 m; gra	in size in	creases	from	0.5- to		ameter at	depth of	12.0 m.			-	epth of 6.	0 m is 0.	56 kg/L	·•
M40	6/04/81	6.86		6.75	Snow							-6.82					0.57	Е	7.73		7.73	7.73
M41	6/05/81	6.84		6.73	Snow	13.55		13.55			-6.82	-6.82					0.57		7.72		7.72	7.72
					stimated.	Core at sa	awdust s	ite; vegeta	ation an	d thr	ee partic		dust foun	d betwee	n 13.4-					n; 0.490	kg/L.	
RM32	9/01/81		3.73	3.73	Snow							-5.92				9.65	0.600	Е	5.79		5.79	5.79
		3.55	t on 6/0		elted in 0.1		the sno															
RM34	9/02/81			3.73	Snow	9.65		9.65			-5.92	-5.92				9.65	0.600	M	5.79		5.79	5.79
					stimated.	Core to d	lepth of	12.65 m; <u>ք</u>	grain si	ze in	creases a	it depths o	f 9.65 m a	ınd 10.86	m.							
	9/11/81	(Minin	num bala	ance)															5.62	5.40	5.40	5.40
																			Differer	nce of 0.	22 m is	
T104	9/25/81	3.91			Snow							3.56				0.35	0.32	E	0.11			5.51
						Core to 0).09-m-tl	hick ice la	yer at o	lepth	of 5.73	m.										
	9/30/81		logic ye	ar ends)															0.21	5.40		5.61
M13	1/23/82	7.76		7.49	Snow		3.93	3.93	0.06	6	3.56	3.56				3.93	0.42	Е	1.65	5 40		
					NFirn							-5.80					0.60	E	5.62	5.40		
		OT 1 **	- 04 64							mpac	ction of	0.12 m est	imated be	low stake	after 9/	02/81.						
	C 10 7 10 4		E 81-C2	2 (instal	led 6/05/8		base in		2)		0.20	0.40				10.16	0.55		7 40		5 40	- 40
M41	6/05/81	13.94			Snow	13.55	1 4	13.55	,.		0.39	0.48	1	11 /	12.4		0.55		7.40	0.400	7.40	7.40
RM14	0/01/01	10.42	10.20	10.21	C	Core at sa	awaust s	ite; vegeta	ation an	a thr	ee partic	les of saw	aust toun	a betwee	n 13.4-					n; 0.4 90	-	5.70
RM32	9/01/81	10.43	10.39		Snow	0.65		0.65			0.56	0.56					0.600		5.79		5.79	5.79
RM34	9/02/81			10.21	Snow	9.65	1 41 6	9.65		-	0.56	0.56	50.65	1.10.00		9.65	0.600	M	5.79		5.79	5.79
	0/11/01	01: :			stimated.										m.				5.45	5.24	5.24	5.24
	9/11/81	(Minin	ium baia	ance)	Additiona	al 0.28 m s	snow me	it, 0.16 m	(w), an	er 9/0)2/81 es	imated fro	m weathe	er data.					5.45 D:ss	5.24	5.24	5.24
T104	0/25/01	10.50		10.20	C							0.65				0.24	0.22	г	Differen	nce of 0.	21 m is	
T104	9/25/81	10.50		10.28	Snow	C 4	0.00	41-1-1-1-1		4 41	6 5 72	9.65				0.34	0.32	E	0.11			5.35
	0/20/01	(11-, 1	1:		stimated.	Core to a	0.09-m-	tnick ice i	ayer at	aepu	1 01 5.73	m.							0.21	5 24		E E (
M13	9/30/81 1/23/82		logic ye	ar ends) 13.58	Snow		3.93	3.93	0.06		9.65	9.65				3.93	0.42	Е	0.21 1.65	5.24		5.56
IVI I 3	1/23/82	14.03		13.38			3.93	3.93	0.06	0	9.03									5.24		
					NFirn							0.56				9.09	0.60	E	5.45	5.24		
																				. 1	<i>5</i> 22	5.50
																		Ave	erage of 2	stakes:	5.32	5.59

Table 4. Mass balance data from site C (1,290 meters altitude) on Wolverine Glacier, Alaska--Continued

<				(OBSERVA	ATIONS							<		S	URFAC	E MAS	SS BA	LANCE-			
		<	-Stake	Reading	gs>	<	Sno	w Depth		>	Summe	er Surface	<old< th=""><th>Firn and</th><th>l Ice></th><th><</th><th>Snow</th><th>and N</th><th>New Firn-</th><th>></th><th>Yearly</th><th>Results</th></old<>	Firn and	l Ice>	<	Snow	and N	New Firn-	>	Yearly	Results
Field	Date	Tape	Sur	vey		Pit/Core	Probe	Average	s.e.	n	Obsvd.	Average	Density	Stake	Ice	Depth	Densi	ty	Snow	NFirn	Net	Annua
Notes		b'	b^*	b**	Stratum	d	d	d			b'ss	b'ss	ρ	b'(i)	b(i)	d	ρ		b(s)	b(f)	b_n	b_a
	m/d/y	m	m	m		m	m	m	m		m	m	kg/L	m(w)	m(w)	m	kg/L		m(w)	m(w)	m(w)	m(w)
								198	32 ME	\SUI	REMEN	IT YEAR										
				`	ed 1/26/81)	Stake sa	nk rela	tive to the	e 1981 s	umn	ier surf	ace becau	se of new	firn con	npactio	ı below	the sta	ke ba				
	9/11/81	(Minimu	um bala	ance)															0.00		0.00	
T104	9/25/81	3.91			Snow							3.56				0.35	0.32	Е	0.11		0.11	
	10/01/81	()	ogic ye		/														0.21		0.21	0.00
M13	1/23/82	7.76		7.49	Snow		3.93	3.93	0.06	6	3.56	3.56				3.93	0.42	Е	1.65		1.65	1.44
M38	6/26/82	8.59			Snow							3.56				5.03	0.53	Е	2.67		2.67	2.46
M47	6/28/82	8.50			Snow		3.60	3.60		1		3.56				4.94	0.55	E	2.72		2.72	2.51
									er interj			n ice layer	rather tha	ın the ply	/wood; a	false s	ummer	surfac	e.			
M105,108	9/01/82	6.28		6.28	Snow		1.95	1.95			4.33	3.56				2.72	0.57	E	1.55		1.55	1.34
		Stake fo	und be	nt at b'	of 6.35 m,	bowed be	low 6.00	0 m.	Probe	to hai	d layer;	a false sur	nmer surf	ace agair	n.							
				•	led 6/05/81	l on wood	base in	core hole	e)													
RM32	9/01/81	10.43			Snow														0.00		0.00	
T101	9/11/81	(Minimu	um bala	/	~							0.65				0.62		_	0.00		0.00	
T104	9/25/81	10.50		10.28	Snow							9.65				0.63	0.32	Е	0.20		0.20	0.00
2 (12	10/01/81		ogic ye	_			2.02	2.02	0.06		0.65	0.65				2.02	0.40	_	0.30		0.30	0.00
M13	1/23/82	14.03		13.58	Snow		3.93	3.93	0.06	6	9.65	9.65				3.93	0.42	Е	1.65		1.65	1.35
M104	9/01/82			12.05	Snow							9.65				2.40	0.57	E	1.37		1.37	1.07
		COT A TATE		n	1.1/22/02																	
	0/11/01			`	ed 1/23/82	by driving	g into ti	ne snow; 1	io labe	1)									0.00		0.00	
		(Minima			>														0.00 0.25		0.00 0.25	0.00
M14	10/01/81	3.70	ogic ye				3.93	3.93	0.06	6	-0.24	-0.24				2.02	0.42	Е	1.65		1.65	0.00
	1/23/82 6/26/82	3.70		3.69	Snow		3.93	3.93	0.06	0	-0.24	-0.24 -0.24				3.93			2.89		2.89	1.40 2.64
M38	0/20/82			4.58	Snow	Dit to dom	th of O	90 m; dens	it. 0.5	41 1.	~/T	-0.24				4.82	0.60	m	2.89		2.89	2.04
M108	9/01/82			2.29		rit to dep	011 01 0.5	90 III, ueiis	sity, 0.5	41 K	g/ L.	-0.24				2.52	0.57	Е	1.44		1.44	1.19
		2.20		2.29	Snow	D1				C_						2.53	0.57					
M110	9/04/82	2.28	11		Snow	Plyv	wood pi	aced on the	e snow	surra	ce.	-0.24				2.52	0.57	Е	1.44	1.20	1.44	1.19
	9/21/82	(Minim	um bala	ince)															1.36	1.30 nce of 0		1.05
	0/20/02	(111. 1		4 \																	.00 m 1s	
TC 4		(Hydrol	ogic ye	ar ends)			1.10	1.10	0.02	1.0	2.15	2.15				1.10	0.22	_	0.03	1.30		1.08
T54	11/06/82	3.34			Snow		1.19	1.19	0.02	10	2.15	2.15				1.19	0.33	Е	0.39	1.20		
					NFirn							-0.24				2.39	0.57	E	1.36	1.30		

Average of 2 stakes: 1.09 1.10

Table 4. Mass balance data from site C (1,290 meters altitude) on Wolverine Glacier, Alaska--Continued

		<	Stake	Reading	gs>										l Ice>				New Firn-	>	Yearly	/ Result
Field	Date	Tape	Sur	,		Pit/Core	Probe	Average	s.e.	n O	bsvd.	Average	Density	Stake	Ice	Deptl	Dens	ity	Snow	NFirn	Net	Annua
Notes		b'	b^*	b^{**}	Stratum	d	d	d			b'ss	b'ss	ρ	b'(i)	b(i)	d	ρ		b(s)	b(f)	b_n	b_a
	m/d/y	m	m	m		m	m	m	m		m	m	kg/L	m(w)	m(w)	m	kg/I		m(w)	m(w)	m(w)	m(w)
								198	83 ME	ASURE	MEN	ΓYEAR										
			E 82-C ((installe	ed 1/23/82 k	y drivin	_			•												
M110	9/04/82	2.28			Snow		Plywoo	d placed o	on the si	now sur	face.											
	9/21/82			/															0.00		0.00	
	10/01/82	` •	logic ye	ar begin	/														0.03		0.03	0.00
T54	11/06/82	3.34			Snow		1.19	1.19	0.02	10 2	2.15	2.15				1.19	0.33	Е	0.39		0.39	0.36
T7	1/14/83	6.31		6.16	Snow							2.67				3.49	0.41	E	1.43		1.43	1.40
												cause not	deep in t	firn.								
M27	6/15/83	8.26		8.26	Snow		5.55	5.55	0.00	2 2		2.67				5.59	0.56	m	3.13		3.13	3.10
									20 m; d	•		g/L; probe	e to plywo	ood at St	ake 82-C							
M60	9/02/83	4.85			Snow		2.25	2.25		1 2	2.60	2.67				2.18	0.57	Е	1.24	1.18	1.18	1.15
							e to plyv													nce of 0		
	9/13/83	(Minim	um bala	ince)	Snow mel	t, 0.14 m((w), from	1 9/02 to 9	9/13 est	imated	using v	veather da	ata.						1.10	1.03	1.03	1.00
																				nce of 0	.05 m is	
	9/30/83	(Hydro	logic ye	ar ends)															0.04	1.03		1.04
		COT A T C	5 02 G		1.1/1.1/02)																	
	10/01/02			`	ed 1/14/83)														0.02		0.02	0.00
T.7	10/01/82		logic ye		1							1.10				2 1 4	0.40		0.03		0.03	0.00
T7	1/14/83	4.26	6.57	4.26	Snow		5.55	5.55	0.00	2 1	. 02	1.12				3.14	0.40	Е	1.26		1.26	1.23
M27	6/15/83	6.57	6.57	6.57	Snow		5.55	5.55	0.00	2 1		1.12	. 41	4 - 4 C4	-1 92 (5.45	0.56	m	3.05		3.05	3.02
MCO	0/02/02	2.57	2.57	2 57	C				20 m; a			g/L; probe	to piywo	ood at St	ake 82-C		0.57	E	1.40		1.40	1 27
M60	9/02/83	3.5/	3.57	3.57	Snow		2.25	2.25		1 1	1.32	1.12				2.45	0.57	Е	1.40		1.40	1.37
		STAKI	E 92 C1	(install	led 6/15/83	`																
M27	6/15/83	SIAKI	L 65-C2	9.37		,	5.55	5.55	0.00	2 3	00	3.90				5.47	0.56	m	3.06		3.06	3.03
IVI 2 /	0/13/63			9.37	Snow							3.90 g/L; probe	to plyny	and at St	nka 82 C		0.50	111	3.00		3.00	3.03
M60	9/02/83	6.31	6.31	6.31	Snow		2.25	2.25	20 III, U	1 4		3.90	to prywi	oou at Su	akc 62-C	2.41	0.57	Е	1.37		1.37	1.34
WIOU	9/02/63	0.31	0.31	0.31	SHOW	Drob	e to plyv			1 -	1.00	3.90				2.41	0.57	Ľ	1.57		1.37	1.34
M63,T74	9/04/83	6.22			Snow/Nfirm		1 2	ywood pl	lagad at	the cur	face	2 00				2.32	0.57	Е	1.32	1.26	1.32	1.29
1005,174	9/04/63	0.22			SHOW/INITH	l.						3.90 ward surv	ay monu	ment CO	DD A	2.32	0.57	Ľ		nce of 0		
	9/14/83	(Minim	um bala	inca)	Estimate s	ince 0/04							Cy monu	mem co	DKA.				1.20	1.14	.00 m is	1.11
	9/14/03	(IVIIIIIII	uiii baia	ince)	Estimate s	11100 9/04	os using	g weather	uata, 0	.12 III(v	v) snov	viiicit.								nce of 0		
	9/30/83	(Hydro	logic va	or ande)															0.04	1.14	.00 111 18	1.15
M11	1/19/84	10.93			Snow	4.29	4.25	4.26	0.03	4 6	5.64	6.64				4 26	0.414	М	1.76	1.17		1.13
141 1	1/17/04	10.93	10.74	10.90								6.04 be to plyw	rood: 2 ==	robos to 1	and larva							
												tes that st			-		аоту 110	zen m	11.			
								U				w balanc										

Table 4. Mass balance data from site C (1,290 meters altitude) on Wolverine Glacier, Alaska--Continued

					OBSERVA	ATIONS							<		SI	URFAC	E MAS	S BA	LANCE-			;
		<	Stake	Reading	gs>	<	Sno	w Depth		>	Summe	er Surface	<old< td=""><td>Firn and</td><td>Ice></td><td><</td><td>Snow</td><td>and N</td><td>New Firn-</td><td>></td><td>Yearly</td><td>Results</td></old<>	Firn and	Ice>	<	Snow	and N	New Firn-	>	Yearly	Results
Field	Date	Tape	Sur	vey		Pit/Core	Probe	Average	s.e.	n	Obsvd.	Average	Density	Stake	Ice	Depth	Densit	y	Snow	NFirn	Net	Annual
Notes		b'	b*	b**	Stratum	d	d	d			b'ss	b'ss	ρ	b'(i)	b(i)	d	ρ		b(s)	<i>b(f)</i>	b_n	b_a
	m/d/y	m	m	m		m	m	m	m		m	m	kg/L	m(w)	m(w)	m	kg/L		m(w)	m(w)	m(w)	m(w)
								198	4 MEA	ASU	REMEN	T YEAR										
		STAK	E 83-C2	2 (instal	lled 6/15/83	3)																
T74	9/04/83	6.22			Nev	v plywood	placed	at the surf	ace.													
					e snow sur	face 10 m	from the	e stake tow	ard su	rvey	monume	ent COBRA	4.									
	9/22/83	`	num bal	/															0.00		0.00	
	10/01/83	(Hydro	logic ye	ear begii															0.04		0.04	0.00
M66	11/14/83	8.85			Snow							6.58				2.27	0.37	Е	0.84		0.84	0.80
					_							ınk at least	0.40 m.									
M11	1/19/84	10.93	10.94	10.90	Snow	4.29	4.34	4.32	0.01	2	6.58	6.58				4.32	0.414	M	1.79		1.79	1.75
						Core to sa					face; pro	be to plyw	vood.									
				D 1	. 1 11	0.12	4.20	4.20	0.00	2		6.58										
M10	6/08/84	12.41	12.42		e to hard la Snow	yer 0.12 n	1 above	tne sawau	st and p	oiywo	ooa.	(50				£ 01	0.52		3.08		2.00	2.04
M19	0/08/84	12.41	12.42	12.39	Snow	Dit to don	th of 1 °	20 m; dens	i+, 0.51	Λ 1 _c α	./T	6.58				5.81	0.53	m	3.08		3.08	3.04
M42	8/20/84	9.25		9.23	Snow	rit to dep	ui 01 1.2	to iii, uciis	ity 0.51	lo kg	,/L.	6.58				2.65	0.55	Е	1.46		1.46	1.42
IVI-42	0/20/04	9.23		9.23		zood and s	awdust	put on sur	ace			0.56				2.03	0.55	L	1.40		1.40	1.42
	9/27/84	(Minim	num hal:	ance)	1 1y v	vood and s	awaust	put on sur	acc.										1.33	1.27	1.27	1.23
	7/2//01	(11111111	rain oun	unce)																nce of 0		
	9/30/84	(Hydro	logic ve	ear ends)														0.17	1.27	.00 111 10	1.40
T68	10/30/84	10.26			Snow							8.92				1.34	0.35	Е	0.47			
RM5	1/12/85	12.57		12.53	Snow		3.65	3.65	0.03	4	8.88	8.92				3.61	0.40	E	1.46			
						Probe	e to plyv	vood.														
					NFirn							6.58				2.34	0.57	E	1.33	1.27		
												See 1985	measuren	nent year	for aver	rage b'ss	S.					

Table 4. Mass balance data from site C (1,290 meters altitude) on Wolverine Glacier, Alaska--Continued

<																						
		<	Stake	Readin	gs>	· <	Sno	w Depth-		>	Summe	er Surface	<old< th=""><th>l Firn and</th><th>l Ice></th><th><</th><th>Snow</th><th>and 1</th><th>New Firn-</th><th>></th><th>Yearly</th><th>Result</th></old<>	l Firn and	l Ice>	<	Snow	and 1	New Firn-	>	Yearly	Result
Field	Date	Tape	Sur	vey		Pit/Core	Probe	Average	s.e.	n	Obsvd.	Average	Density	Stake	Ice	Deptl	n Densi	ty	Snow	NFirn	Net	Annua
Notes		b'	b*	b**	Stratum	d	d	d			b'ss	b'ss	ρ	b'(i)	b(i)	d	ρ		b(s)	<i>b(f)</i>	b_n	b_a
	m/d/y	m	m	m		m	m	m	m		m	m	kg/L	m(w)	m(w)	m	kg/L	,	m(w)	m(w)	m(w)	m(w)
								19	85 MEA	SUR	REMEN	IT YEAR										
		STAK	E 83-C2	2 (instal	lled 6/15/8	3; plywoo	d and sa	awdust at	t 1983 aı	nd 19	84 sum	ımer surfa	ices)									
	9/27/84	(Minin	num bal	ance)															0.00		0.00	
	10/01/84	(Hydro	logic ye	ear begii	ns)														0.17		0.17	0.00
T68	10/30/84	10.26			Snow							8.92				1.34	0.35	E	0.47		0.47	0.30
RM5	1/12/84	12.57		12.53	Snow		3.65	3.65	0.03	4	8.88	8.92				3.61	0.40	E	1.44		1.44	1.27
RM11	1/13/85	12.53	12.54	12.54	Snow	3.60		3.60		1	8.94	8.92				3.62	0.375	M	1.36		1.36	1.19
M33	6/05/85	Stake b	ouried.		Snow		4.00	4.00	0.03	6												
						Pit to 1.2	0 m dep	th; densit	ty 0.46 k	g/L.	Probe t	o a false si	ımmer su	rface. Se	e Stake	85-C.						
M51	6/14/85	Stake b	ouried.		Snow	6.27	•	6.27	•	1						6.27	0.53	m	3.32		3.32	3.15
						Core to 1	984 saw	dust layer	r; 0.11 m	new	snow;	no snow d	ensity me	asuremei	nts.		Densi	ty esti	imated usi	ing 6/5/8	5 data.	
RM77	8/27/85	12.70	12.70	12.63	Snow			-	E			8.92	,			3.71	0.586	•	2.17	U	2.17	2.00
RM78	8/28/85			12.53	E Snow	3.51	3.57	3.56	0.02	3	8.97	8.92				3.61	0.586	M	2.12		2.12	1.95
						Core to th	ne sawdı	ust laver a	and 2 pro	bes to	o the pl	ywood at S	Stake 83-0	C2.								
	9/17/85	(Minin	num bal	ance)	Snowme	lt, 0.33 m(1.84	1.77	1.77	1.60
				,		,	,,												Differe	nce of 0		water.
	9/30/85	(Hydro	logic ve	ear ends)														0.36	1.77		1.96
		()	8 7 -	, , , , , , , , , , , , , , , , , , , ,	,																	
		STAK	E 85-C	(install	ed 6/05/85)																
	10/01/84			`		,													0.17		0.17	0.00
M35	6/05/85	()	8.34	8.33	Snow		4.00	4.00	0.03	6		1.94				6.39	0.54	m	3.45		3.45	3.28
						Pit to den	oth of 1.2	20 m; den			L.											
									•	_		this date a	re incorre	ect.								
M51	6/14/85				Snow	6.27	,, 1 1, 00 1	6.27	indi ono i	1	o c aaaa	1.94				6.27	0.54	Е	3.39		3.39	3.22
11101	0,11,00				5110 11		ne sawdi	ust layer;	0 11 m r	_	now	11,7 .				0.27	0.0 .	_	0.00		0.00	0.22
RM77	8/27/85		5.59	5.60	Snow	Core to ti	ie sawa	•	d estima		10 111.	1.94				3.66	0.586	F	2.14		2.14	1.97
RM78	8/28/85		3.37	5.50	E Snow	3 51	3.57	3.56			1.94	1.94					0.586		2.09		2.09	1.92
IXIVI / O	0/20/03			3.30	L Show							ywood at s	take 83-C	72		3.30	0.560	111	2.07		2.07	1.72
						New plyv		-	_		o uic pi	ywood at s	nake 65-e									
	9/17/85	Estimo	too	4.92	Cmarr	New pry	voou pia	iceu ai ilic	Surrace			1.94				2.00	0.59	Е	1.76	1.69		
					Snow	l+ 0.22 m/s	vv) fuom	0/20 aat:	matad u	aima t	ha rrrant					2.98	0.39	Е	1.76	1.69	1.69	1.52
	9/17/85	(MIIIIII	ium ban	ance)	Showine	lt, 0.33 m(w), Iron	1 6/26 ESH	mateu u	sing t	ne wear	mer data.										
	0/20/05	/TT 1		1	`															nce of 0	.0 / m 1s	
1.710	9/30/85	` •			<i>'</i>							.					0.44	_	0.36	1.69		1.88
M12	2/19/86	11.55	11.56				5.75	.1 1:			5.78	5.80			0.0		0.44	E	2.52			
				Stake 1	top found l	by digging						U		_			•					
							Probe to	o plywood	d. Appa	rent s	ummer	surface ris			•			the b	ent stake.			
												See 1986	measurer	nent year	for ave	rage b's	S.					1.92
														-		J		Av	erage of 2	2 stakes:	1.73	

Table 4. Mass balance data from site C (1,290 meters altitude) on Wolverine Glacier, Alaska--Continued

<					OBSERVA	ATIONS							<		SI	URFAC	E MAS	S BA	LANCE-			
		<	Stake	Reading	gs>	<	Snov	w Depth		>	Summe	r Surface	<old< th=""><th>Firn and</th><th>Ice></th><th><</th><th>Snow</th><th>and N</th><th>New Firn-</th><th>></th><th>Yearly</th><th>Results</th></old<>	Firn and	Ice>	<	Snow	and N	New Firn-	>	Yearly	Results
Field	Date	Tape	Sur	vey		Pit/Core	Probe	Average	s.e.	n	Obsvd.	Average	Density	Stake	Ice	Depth	Densit	у	Snow	NFirn	Net	Annual
Notes		b'	b^*	b^{**}	Stratum	d	d	d			b'ss	b'ss	ρ	b'(i)	b(i)	d	ρ		b(s)	b(f)	b_n	b_a
	m/d/y	m	m	m		m	m	m	m		m	m	kg/L	m(w)	m(w)	m	kg/L		m(w)	m(w)	m(w)	m(w)
								198	6 ME	ASUR	REMEN	T YEAR										
					ed 6/05/85)																	
	9/16/85	(measuren	nent year	for estim	ate of the	he init	tial bala	nce condit	ions at the	e stake.					0.00		0.00	
		(Hydro	logic ye	ar begir			_						_		_				0.36		0.36	0.00
M9	2/18/86					Core to 7	_	ain size in	creases		_		10 sawdus	t layer fo	ound.							
M12	2/19/86	11.55	11.56		Snow		5.75				5.78	5.80					0.44	E	2.52		2.52	2.16
				Stake t	op found b		a pit at t e to plyv		ed stak	e loca	ition. L	eaning stal	ke bent sti	raight at	9.2 m be	fore the	survey	•				
RM17	6/15/86		11.59	11.59	Snow							5.80				5.79	0.55	m	3.18		3.18	2.82
								0 m; dens	•	_			_		nic ash la	ıyer.						
						Base of fi		w at depth			•	_	snow belo	w.								
T54	8/20/86	8.95		8.65	Snow		2.83	2.83		2		5.80				2.85	0.57	E	1.62		1.62	1.26
								hard laye				1 2										
		Surface	1S 60%	covered	d with large	e melt pits	, 0./-m c	ieep, caus	ed by A	Augus	tine vol	canic ash;	average s	urface is	0.24 m t	below th	ie flat u	pper s	surface.			
		STAKI	E 86-C (installe	ed 2/18/86))																
				•	endent ob		of snow	depth obt	ained a	t this	stake: tł	erefore. o	nly the sta	ake readi	ngs are 1	isted.						
M9	2/18/86	3.28	3.27	3.27	Snow							, .	,		8							
RM17	6/15/86	3.42	3.40	3.40	Snow																	
T53	8/20/86	0.40			Snow																	
		STAKI	E 86-C1	(instal	led 6/15/80	6)																
	C /1 E /0 C					,																
RM17	6/15/86		8.65	8.66	Snow							2.87				5.79	0.55	E	3.18		3.18	2.82
RM17	6/15/86		8.65	8.66	Snow	Pit to dep		0 m; dens	•	_		m depth to	_		nic ash la		0.55	Е	3.18		3.18	2.82
			8.65	8.66		Pit to dep	resh snov	w at depth	of 0.85	5 m; v	ery wet.	m depth to	_		nic ash la	iyer.		E	3.18		3.18	
RM17 T54	8/20/86	5.70		8.66	Snow	Pit to dep			•	5 m; v		m depth to	_		nic ash la	iyer.	0.55	E E	3.18 1.61		3.18 1.61	2.82
		6.12	6.13	6.14	Snow Snow	Pit to dep Base of fi	resh snov 2.83	w at depth 2.83	of 0.85	5 m; v 2	ery wet, 2.87	m depth to granular 2.87	snow belo	w.		2.83	0.57					
		6.12 Surface	6.13 is 60%	6.14 covered	Snow Snow d with melt	Pit to dep Base of fi	2.83 t 0.7 m d	w at depth 2.83 leep.	of 0.85 0.02	5 m; v 2	ery wet, 2.87	m depth to granular	snow belo	w.		2.83	0.57					
		6.12 Surface First sta	6.13 is 60% ake read	6.14 covered	Snow Snow d with melt	Pit to dep Base of fi	2.83 t 0.7 m d	w at depth 2.83 leep. ace height	of 0.85 0.02	5 m; v 2	ery wet, 2.87	m depth to granular 2.87	snow belo	w.		2.83	0.57					
	8/20/86	6.12 Surface First sta Second	6.13 is 60% ake read set of re	6.14 covered ing is an	Snow Snow d with melt n estimate are observ	Pit to dep Base of fit t pits about of the averations at the	2.83 t 0.7 m c rage surf	w at depth 2.83 deep. Cace height oper surface	of 0.85 0.02	5 m; v 2 Prob	ery wet, 2.87	m depth to granular 2.87	snow belo	w.		2.83 od at 2.	0.57 83 m.	E	1.61		1.61	1.25
	8/20/86	6.12 Surface First sta Second	6.13 is 60% ake read set of re	6.14 covered ing is an	Snow Snow d with melt	Pit to dep Base of fit t pits about of the averations at the	2.83 t 0.7 m c rage surf	w at depth 2.83 deep. Cace height oper surface	of 0.85 0.02	5 m; v 2 Prob	ery wet, 2.87	m depth to granular 2.87	snow belo	w.		2.83 od at 2.	0.57		0.90	0.86	0.86	0.50
	8/20/86 9/20/86	6.12 Surface First sta Second	6.13 is 60% ike read set of re um bala	6.14 covered ing is at eadings nce)	Snow Snow d with melt n estimate are observ Mass bala	Pit to dep Base of fit t pits about of the averations at the	2.83 t 0.7 m c rage surf	w at depth 2.83 deep. Cace height oper surface	of 0.85 0.02	5 m; v 2 Prob	ery wet, 2.87	m depth to granular 2.87	snow belo	w.		2.83 od at 2.	0.57 83 m.	E	0.90	0.86 nce of 0.	0.86	0.50

Table 4. Mass balance data from site C (1,290 meters altitude) on Wolverine Glacier, Alaska--Continued

<					OBSERVA	ATIONS							<		S	URFAC	E MAS	SS BA	LANCE-			
		<	-Stake	Reading	gs>	<	Sno	w Depth		>	Summe	r Surface	<old< th=""><th>Firn and</th><th>Ice></th><th><</th><th>Snow</th><th>and 1</th><th>New Firn-</th><th>></th><th>Yearly</th><th>Results</th></old<>	Firn and	Ice>	<	Snow	and 1	New Firn-	>	Yearly	Results
Field	Date	Tape	Sur	vey		Pit/Core	Probe	Average	s.e.	n	Obsvd.	Average	Density	Stake	Ice	Depth	Densi	ty	Snow	NFirn	Net	Annual
Notes		b'	b^*	b^{**}	Stratum	d	d	d			b'ss	b'ss	ρ	b'(i)	b(i)	d	ρ		b(s)	<i>b(f)</i>	b_n	b_a
	m/d/y	m	m	m		m	m	m	m		m	m	kg/L	m(w)	m(w)	m	kg/L		m(w)	m(w)	m(w)	m(w)
								198	7 ME	ASU	REMEN	T YEAR										
		STAKE	E 87-C ((installe	ed 6/13/87)																	
	9/20/86	(Minim	um bala	ince)															0.00		0.00	
	10/01/86	(Hydrol	ogic ye	ar begir	ns)														0.04		0.04	0.00
T27	6/12/87	No stak	es visib	le.																		
M31	6/13/87	8.04	8.00	7.81	Snow	8.25		8.25		1	-0.44	-0.44				8.25	0.54	m	4.46		4.46	4.42
								ould not be						_								
								th of 0.85		-	_	•	~ ~			•				61 kg/L.		
						Coring au	iger flig	hts retrieve	d volc	anic	ash from	a depth b	etween 8.2	2 and 8.5	m, the	1986 su	mmer s	urface				
	9/08/86	(Minim	um bala	ince)															3.14	3.00	3.00	2.96
																				nce of 0	.14 m is	
	9/30/87	(Hydrol																	0.50	3.00		3.46
RM22	10/01/87	6.52	6.47	6.42	Snow	1.36		1.36		1	5.06	5.06				1.46	0.34	Е	0.50			
		5.06			NFirn							-0.44	_			5.50	0.57	Е	3.14	3.00		
				87 b'ss	observed.		•	d placed o	n stake	on t	he 1987 s		ırface; sav	vdust spr	ead on t	he snow	surfac	e.				
M10	3/11/88	Stake by			Snow		7.80			1		5.06										
			Stear	m drille	d to the ply	wood at t	he predi	cted location	on for	the b	uried stal	ke.										

Table 4. Mass balance data from site C (1,290 meters altitude) on Wolverine Glacier, Alaska--Continued

<					-OBSERVA	ATIONS							<		S	URFAC	E MAS	S BA	LANCE-			
		<	Stake	Readin	gs>	<	Sno	w Depth		>	Summe	er Surface	<old< th=""><th>Firn and</th><th>Ice></th><th><</th><th>Snow</th><th>and N</th><th>New Firn-</th><th>></th><th>Yearly</th><th>Results</th></old<>	Firn and	Ice>	<	Snow	and N	New Firn-	>	Yearly	Results
Field	Date	Tape	Sui	vey		Pit/Core	Probe	Average	s.e.	n	Obsvd.	Average	Density	Stake	Ice	Depth	Densi	ty	Snow	NFirn	Net	Annua
Notes		b'	b^*	b**	Stratum	d	d	d			b'ss	b'ss	ρ	b'(i)	b(i)	d	ρ		b(s)	<i>b(f)</i>	b_n	b_a
	m/d/y	m	m	m		m	m	m	m		m	m	kg/L	m(w)	m(w)	m	kg/L		m(w)	m(w)	m(w)	m(w)
								198	38 MEA	SUF	REMEN	T YEAR										
		STAK	E 88-C	(install	ed 3/19/88	with wood	d base i	n core hol	le; see f	ield 1	notes for	r addition	al labelin	g inform	ation.)							
	9/08/86	(Minin	num bal	ance)															0.00		0.00	
	10/01/87	(Hydro	logic ye	ar begi	ns)														0.50		0.50	0.00
M7	3/18/88	No stak	ces visit	ole.		Core to 1	0.25 m	without fin	nding th	e sun	nmer su	rface.										
M9	3/19/88	10.08		10.08			7.80	7.80		1	2.28	2.25				7.83	0.46	m	3.60		3.60	3.10
						h steam di						tion for bu	ıried Stak	e 87-C; p	it to dep			•	_	:/L.		
M17	6/10/88	9.89	9.87	9.87	Snow		7.65	7.65	0.00		2.24	2.25					0.51	m	3.89		3.89	3.39
												he 1987 su				C.						
							Measur	e snow wi	th McC	all tu	ibe to de	pth of 2.36	6 m; densi	ty 0.500	kg/L.							
	9/08/88	(Minin	num bal	ance)															2.60	2.50	2.50	2.00
																				nce of 0	.10 m is	
M29.5 and	9/18/88		6.72	6.72	Snow	0.20		0.20		1	6.52	6.52				0.20	0.35	Е	0.07	2.50		2.07
RM14								_				as no dirt;	new firn l	has ice la	yers; the	snow	does not	t.				
						Plywood		on the snov			the stake											
					NFirn		4.28	4.28	0.03	2	210	2.25				4.27	0.61	m	2.60	2.50		
					Probe to p	olywood 7	m from	the stake.	Pit to	depth	1 01 1.0 1	n; snow do	ensity not	measure	d; densi	y of the	e new fi	rn 0.6	01 kg/L.			
	0/20/00	(111	1:		`														0.21	2.50		2.21
	9/30/88 Note: The	\	0 ,		,	at aita C	on 0/19/	00 to man	a +la a	dont	h of war	r daam ama	****** o oleo #o	liobles					0.21	2.50		2.21
	Note: The				e mesh on t						•		wpacks re	madry.								
			•		e to mark si				_			JI III.										
					ter with a to							ation and	gummar g	urface ter	nnaratu	a manc	uramani	te				
					for location	•		-							прегаси	c meas	urcincil	٠.				
		iviagile	i pui on	surrace	101 10catio	ii oi stake	ana sun	mici sulla	cc iocai	.1011 1	ound us	ing a magi	icionneiti.									

Table 4. Mass balance data from site C (1,290 meters altitude) on Wolverine Glacier, Alaska--Continued

				•	gs>	<									l Ice>				New Firn-		•	
Field	Date	Tape		vey		Pit/Core	Probe	Average	s.e.	n	Obsvd.	Average	Density	Stake	Ice	Depth	Densi	ty	Snow	NFirn	Net	Annua
Notes		b'	b^*	b^{**}	Stratum	d	d	d			b'ss	b'ss	ρ	b'(i)	b(i)	d	ρ		b(s)	b(f)	b_n	b_a
	m/d/y	m	m	m		m	m	m	m		m	m	kg/L	m(w)	m(w)	m	kg/L		m(w)	m(w)	m(w)	m(w)
								198	39 ME	SUR	REMEN	T YEAR										
		STAK	E 88-C	(installe	d 3/19/88	with wood	d base i	n core ho	le; see f	ield n	otes for	r addition:	al labelin	g inforn	nation.)							
	9/08/88	(Minin	num bal	ance)															0.00			
RM14	9/18/88		6.72	6.72	Snow	0.20		0.20		1	6.52					0.20	0.35	Е	0.07			
						Summer s	surface a	it depth of	f 0.20 m	is cle	ean, it h	as no dirt;	new firn	dentified	d by the	resence	e of its	ice lay	ers.			
						Plywood	placed o	n the sno	w surfac	e at t	he stake	, 0.20 m al	bove the	summer s	surface.							
	10/01/88	(Hydro	logic ye	ar begin	s)														0.21		0.21	0.00
Г9	2/16/89	10.71	10.69	10.67	Snow		3.42	3.52	0.00	6		6.52				4.15	0.47	m	1.95		1.95	1.74
					Probes to	"plywood	" probał	oly an ice	layer; a	false	summe	r surface.		Core wi	th McCa	ll tube t	o depth	of 2	36 m; den	sity 0.45	kg/L.	
						Plywood	estimate	d to be 0.	10 m ab	ove t	he sumr	ner surface	at this ti	ne; see 9	/18/88.							
Т60	6/17/89	11.27	11.28	11.23	Snow		3.84	3.94	0.01	4		6.52				4.71	0.51	E	2.40		2.40	2.19
						Probes to	"plywo	od" proba	bly an i	e lay	er; a fal	se summer	surface.									
	9/29/89	(Minin	num bal	ance)															0.13	0.13	0.13	-0.08
	9/30/89	(Hydro	ologic y	ear ends)														0.01	0.13		0.06
Т162	10/08/89	7.47	7.48	7.41	Snow		0.68	0.68	0.01	7	6.73	6.73				0.68	0.31	E	0.21			
							Probes	to "plywo	od" and	a ver	y hard f	irn surface	e. Plywoo	d in hard	l, frozen,	new fin	rn; not o	bserv	ed directl	y.		
																	0 (0	-	0.10	0.10		
					NFirn							6.52				0.21	0.60	Е	0.13	0.13		
					NFirn 			199	90 ME		REMEN	6.52 T YEAR				0.21	0.60	E	0.13	0.13		
Γ40	6/17/90				ed 3/19/88	 with wood		n core ho	le; see f	ield n		T YEAR	al labelin	g inforn	nation.)	0.21	0.60	Е	0.13	0.13		
Г60	6/17/89	11.27	11.28	11.23	·	with wood	d base in			ield n		T YEAR	al labelin	g inforn	nation.)	0.21	0.60	Е		0.13	0.00	
Г60	9/29/89	11.27 (Minim	11.28 num bal	11.23 ance)	ed 3/19/88 Snow	with wood		n core ho	le; see f	ield n		T YEAR	al labelin		•	0.21	0.60	Е	0.00	0.13	0.00	0.00
	9/29/89 10/01/89	11.27 (Minim (Hydro	11.28 num bal ologic y	11.23 ance) ear begin	ed 3/19/88 Snow	with wood	3.84	n core ho	le; see f 0.01	ield n 4	otes fo	T YEAR r addition:		4.04	0.00				0.00 0.01	0.13	0.01	0.00
	9/29/89	11.27 (Minim (Hydro	11.28 num bal ologic y	11.23 ance)	ed 3/19/88 Snow	with wood	0.68	3.84 0.68	0.01 0.01	ield n 4	6.73	T YEAR r addition:	0.60	4.04 4.04	0.00	0.68	0.31	E	0.00 0.01 0.21			0.00
T60 T162	9/29/89 10/01/89 10/08/89	11.27 (Minim (Hydro 7.47	11.28 num bal ologic y	11.23 ance) ear begin	od 3/19/88 Snow Snow	with wood	0.68	3.84 0.68	0.01 0.01	ield n 4	6.73	T YEAR r addition:	0.60 e. Plywoo	4.04 4.04 od in hard	0.00 0.00 l, frozen,	0.68	0.31	E	0.00 0.01 0.21		0.01 0.21	0.20
Г162	9/29/89 10/01/89	11.27 (Minim (Hydro	11.28 num bal ologic y	11.23 ance) ear begin	ed 3/19/88 Snow	with wood	0.68	3.84 0.68	0.01 0.01	ield n 4	6.73	T YEAR r addition:	0.60	4.04 4.04	0.00	0.68	0.31	E	0.00 0.01 0.21		0.01	
Г162	9/29/89 10/01/89 10/08/89	11.27 (Minim (Hydro 7.47 5.55	11.28 num bal ologic y 7.48	11.23 ance) ear begin 7.41	Snow Snow OFirn		0.68	3.84 0.68	0.01 0.01	ield n 4	6.73	T YEAR r addition:	0.60 e. Plywoo	4.04 4.04 od in hard	0.00 0.00 l, frozen,	0.68	0.31	E	0.00 0.01 0.21		0.01 0.21	0.20
Г162	9/29/89 10/01/89 10/08/89 9/06/90	11.27 (Minim (Hydro 7.47 5.55	11.28 num bal- ologic y 7.48 E 89-C	11.23 ance) ear begin 7.41	od 3/19/88 Snow Snow		0.68	3.84 0.68	0.01 0.01	ield n 4	6.73	T YEAR r addition: 6.73 irn surface	0.60 e. Plywoo	4.04 4.04 od in hard	0.00 0.00 l, frozen,	0.68	0.31	E	0.00 0.01 0.21 red directl		0.01 0.21 -0.71	0.20
Γ162	9/29/89 10/01/89 10/08/89 9/06/90	11.27 (Minim (Hydro 7.47 5.55 STAK) (Minim	11.28 num bala blogic y 7.48 E 89-C num ba	11.23 ance) ear begin 7.41 (installe	od 3/19/88 Snow ns) Snow OFirn		0.68	3.84 0.68	0.01 0.01	ield n 4	6.73	T YEAR r addition:	0.60 e. Plywoo	4.04 4.04 od in hard 3.33	0.00 0.00 d, frozen, -0.71	0.68	0.31	E	0.00 0.01 0.21 ved directh		0.01 0.21 -0.71 0.00	0.20 -0.72
Г162 М32	9/29/89 10/01/89 10/08/89 9/06/90 9/29/89 10/01/89	11.27 (Minim (Hydro 7.47 5.55 STAK (Minim (Hydro	11.28 num bala blogic y 7.48 E 89-C num bala blogic y	11.23 ance) ear begin 7.41 (installedance) ear begin	od 3/19/88 Snow ns) Snow OFirn od 10/08/8		3.84 0.68 Probes	0.68 to "plywo	0.01 0.01 0.01 od" and	ield n 4 7 a ver	6.73 ry hard f	T YEAR r addition: 6.73 irn surface	0.60 e. Plywoo 0.60	4.04 4.04 d in hard 3.33	0.00 0.00 1, frozen, -0.71	0.68 new fir	0.31 rn; not c	E observ	0.00 0.01 0.21 ved directl		0.01 0.21 -0.71 0.00 0.01	0.20 -0.72
Г162 M32 Г162	9/29/89 10/01/89 10/08/89 9/06/90 9/29/89 10/01/89 10/08/89	11.27 (Minim (Hydro 7.47 5.55 STAK (Minim (Hydro 5.80	11.28 num baldologic y 7.48 E 89-C num baldologic y 5.80	11.23 ance) ear begin 7.41 (installe lance) ear begin 5.80	od 3/19/88 Snow Snow OFirn od 10/08/8		0.68	3.84 0.68	0.01 0.01	ield n 4 7 a ver	6.73	T YEAR r addition: 6.73 irn surface 5.12 5.12	0.60 c. Plywood 0.60	4.04 4.04 din hard 3.33	0.00 0.00 1, frozen, -0.71 0.00	0.68 new fir	0.31 rn; not o	E bbserv E	0.00 0.01 0.21 ved directl		0.01 0.21 -0.71 0.00 0.01 0.21	0.20 -0.72 0.00 0.20
Г162 M32 Г162 Г60	9/29/89 10/01/89 10/08/89 9/06/90 9/29/89 10/01/89 10/08/89 2/14/90	11.27 (Minim (Hydro 7.47 5.55 STAK (Minim (Hydro 5.80 8.63	11.28 num bala blogic y 7.48 E 89-C num bala blogic y	11.23 ance) ear begin 7.41 (installedance) ear begin	od 3/19/88 Snow Snow OFirn od 10/08/8 ns) Snow Snow		3.84 0.68 Probes	0.68 to "plywo	0.01 0.01 0.01 od" and	ield n 4 7 a ver	6.73 ry hard f	T YEAR raddition: 6.73 irn surface 5.12 5.12 5.12 5.12	0.60 Plywood 0.60	4.04 4.04 din haro 3.33 4.10 4.10 4.10	0.00 0.00 1, frozen, -0.71 0.00 0.00	0.68 new fin	0.31 cm; not c	E E E	0.00 0.01 0.21 ved directl		0.01 0.21 -0.71 0.00 0.01 0.21 1.43	0.20 -0.72 0.00 0.20 1.42
Г162 M32 Г162 Г60 Г63	9/29/89 10/01/89 10/08/89 9/06/90 9/29/89 10/01/89 10/08/89 2/14/90 3/17/90	11.27 (Minim (Hydro 7.47 5.55 STAK (Minim (Hydro 5.80 8.63 9.30	11.28 num bala blogic y 7.48 E 89-C num bala blogic y 5.80 8.61	11.23 ance) ear begin 7.41 (installedance) ear begin 5.80 8.60	od 3/19/88 Snow Snow OFirn od 10/08/8 ns) Snow Snow Snow		3.84 0.68 Probes	0.68 to "plywo	0.01 0.01 0.01 od" and	ield n 4 7 a ver	6.73 ry hard f	6.73 Firn surface 5.12 5.12 5.12 5.12 5.12	0.60 Plywood 0.60	4.04 4.04 din hard 3.33 4.10 4.10 4.10 4.10	0.00 0.00 1, frozen, -0.71 0.00 0.00 0.00 0.00	0.68 new fin 0.68 3.48 4.18	0.31 0.31 0.31 0.41 0.44	E E E E	0.00 0.01 0.21 ved directl 0.00 0.01 0.21 1.43 1.84		0.01 0.21 -0.71 0.00 0.01 0.21 1.43 1.84	0.20 -0.72 0.00 0.20 1.42 1.83
Γ162 M32 Γ162 Γ60 Γ63 RM2	9/29/89 10/01/89 10/08/89 9/06/90 9/29/89 10/01/89 10/08/89 2/14/90 3/17/90 6/02/90	11.27 (Minim (Hydro 7.47 5.55 STAK (Minim (Hydro 5.80 8.63	11.28 num ballologic y 7.48 E 89-C num ballologic y 5.80 8.61	11.23 ance) ear begin 7.41 (installedance) ear begin 5.80 8.60	ord 3/19/88 Snow Snow OFirn ord 10/08/8 Snow Snow Snow Snow Snow Snow Snow Sno		3.84 0.68 Probes	0.68 to "plywo	0.01 0.01 0.01 od" and	ield n 4 7 a ver	6.73 ry hard f	T YEAR raddition: 6.73 irn surface 5.12 5.12 5.12 5.12	0.60 Plywood 0.60 0.80 0.80 0.80 0.80	4.04 4.04 din hard 3.33 4.10 4.10 4.10 4.10 4.10	0.00 0.00 1, frozen, -0.71 0.00 0.00 0.00 0.00 0.00	0.68 new fin	0.31 0.31 0.31 0.41 0.44	E E E	0.00 0.01 0.21 ved directl		0.01 0.21 -0.71 0.00 0.01 0.21 1.43 1.84 1.77	0.20 -0.72 0.00 0.20 1.42 1.83 1.76
T162 M32 T162 T60 T63 RM2 M31	9/29/89 10/01/89 10/08/89 9/06/90 9/29/89 10/01/89 10/08/89 2/14/90 3/17/90 6/02/90 9/06/90	11.27 (Minim (Hydro 7.47 5.55 STAK) (Minim (Hydro 5.80 8.63 9.30 8.72	11.28 num bala blogic y 7.48 E 89-C num bala blogic y 5.80 8.61	11.23 ance) ear begin 7.41 (installedance) ear begin 5.80 8.60	ord 3/19/88 Snow OFirn ord 10/08/8 Snow Snow Snow Snow Snow Snow Snow OFirn	9)	3.84 0.68 Probes 0.68	0.68 0.68 0.68	0.01 0.01 0.01 od" and	ield n 4 7 a ver	6.73 ry hard f	6.73 Firn surface 5.12 5.12 5.12 5.12 5.12	0.60 Plywood 0.60 0.80 0.80 0.80 0.80 0.80	4.04 4.04 di in haro 3.33 4.10 4.10 4.10 4.10 4.10 3.42	0.00 0.00 1, frozen, -0.71 0.00 0.00 0.00 0.00 0.00 0.00 -0.68	0.68 new fin 0.68 3.48 4.18	0.31 0.31 0.31 0.41 0.44	E E E E	0.00 0.01 0.21 ved directl 0.00 0.01 0.21 1.43 1.84		0.01 0.21 -0.71 0.00 0.01 0.21 1.43 1.84 1.77 -0.68	0.20 -0.72 0.00 0.20 1.42 1.83 1.76 -0.69
Γ162 M32 Γ162 Γ60 Γ63 RM2 M31	9/29/89 10/01/89 10/08/89 9/06/90 9/29/89 10/01/89 10/08/89 2/14/90 3/17/90 6/02/90 9/06/90 9/11/90	11.27 (Minim (Hydro 7.47 5.55 STAK) (Minim (Hydro 5.80 8.63 9.30 8.72 4.20	11.28 num ballologic y 7.48 E 89-C num ballologic y 5.80 8.61 8.71 4.29	11.23 ance) ear begin 7.41 (installe lance) ear begin 5.80 8.60 8.66 4.28	ord 3/19/88 Snow OFirn ord 10/08/8 Snow Snow Snow Snow Snow Snow Snow OFirn		3.84 0.68 Probes 0.68	0.68 0.68 0.68	0.01 0.01 0.01 od" and	ield n 4 7 a ver	6.73 ry hard f	6.73 Firn surface 5.12 5.12 5.12 5.12 5.12	0.60 Plywood 0.60 0.80 0.80 0.80 0.80	4.04 4.04 di in haro 3.33 4.10 4.10 4.10 4.10 4.10 3.42 3.36	0.00 0.00 1, frozen, -0.71 0.00 0.00 0.00 0.00 0.00 -0.68 -0.74	0.68 new fin 0.68 3.48 4.18	0.31 0.31 0.31 0.41 0.44	E E E E	0.00 0.01 0.21 red directl 0.00 0.01 0.21 1.43 1.84 1.77		0.01 0.21 -0.71 0.00 0.01 0.21 1.43 1.84 1.77 -0.68 -0.74	0.20 -0.72 0.00 0.20 1.42 1.83 1.76 -0.69 -0.75
T162 M32 T162 T60 T63 RM2	9/29/89 10/01/89 10/08/89 9/06/90 9/29/89 10/01/89 10/08/89 2/14/90 3/17/90 6/02/90 9/06/90 9/11/90	11.27 (Minim (Hydro 7.47 5.55 STAK) (Minim (Hydro 5.80 8.63 9.30 8.72 4.20 (Minim	11.28 num ballologic y 7.48 E 89-C num ballologic y 5.80 8.61 8.71 4.29	11.23 ance) ear begin 7.41 (installe lance) ear begin 5.80 8.60 8.66 4.28	od 3/19/88 Snow OFirn od 10/08/8 ns) Snow Snow Snow OFirn OFirn	9)	3.84 0.68 Probes 0.68	0.68 0.68 0.68	0.01 0.01 0.01 od" and	ield n 4 7 a ver	6.73 ry hard f	6.73 Firn surface 5.12 5.12 5.12 5.12 5.12	0.60 Plywood 0.60 0.80 0.80 0.80 0.80 0.80	4.04 4.04 di in haro 3.33 4.10 4.10 4.10 4.10 4.10 3.42 3.36 3.24	0.00 0.00 1, frozen, -0.71 0.00 0.00 0.00 0.00 0.00 -0.68 -0.74 -0.86	0.68 new fin 0.68 3.48 4.18	0.31 0.31 0.31 0.41 0.44	E E E E	0.00 0.01 0.21 red directl 0.00 0.01 0.21 1.43 1.84 1.77		0.01 0.21 -0.71 0.00 0.01 0.21 1.43 1.84 1.77 -0.68	0.20 -0.72 0.00 0.20 1.42 1.83 1.76 -0.69 -0.75
Γ162 M32 Γ162 Γ60 Γ63 RM2 M31	9/29/89 10/01/89 10/08/89 9/06/90 9/29/89 10/01/89 10/08/89 2/14/90 3/17/90 6/02/90 9/06/90 9/11/90	11.27 (Minim (Hydro 7.47 5.55 STAK) (Minim (Hydro 5.80 8.63 9.30 8.72 4.20 (Minim (Hydro (Minim (Hydro)	11.28 num ballologic y 7.48 E 89-C num ballologic y 5.80 8.61 8.71 4.29	11.23 ance) ear begin 7.41 (installe lance) ear begin 5.80 8.60 8.66 4.28	od 3/19/88 Snow OFirn od 10/08/8 ns) Snow Snow Snow OFirn OFirn	9)	0.68 Probes 0.68	0.68 0.68 0.68	0.01 0.01 0.01 0.01 0.01	7 a ver	6.73 ry hard f	6.73 Firn surface 5.12 5.12 5.12 5.12 5.12	0.60 Plywood 0.60 0.80 0.80 0.80 0.80 0.80	4.04 4.04 di in haro 3.33 4.10 4.10 4.10 4.10 4.10 3.42 3.36	0.00 0.00 1, frozen, -0.71 0.00 0.00 0.00 0.00 0.00 -0.68 -0.74	0.68 new fin 0.68 3.48 4.18 3.54	0.31 0.31 0.31 0.41 0.44	E E E E E	0.00 0.01 0.21 red directl 0.00 0.01 0.21 1.43 1.84 1.77		0.01 0.21 -0.71 0.00 0.01 0.21 1.43 1.84 1.77 -0.68 -0.74	0.20 -0.72 0.00 0.20 1.42 1.83 1.76

Table 4. Mass balance data from site C (1,290 meters altitude) on Wolverine Glacier, Alaska--Continued

<					OBSERVA	ATIONS							<		S	URFAC	E MAS	SS BA	LANCE-			
		<	Stake R	eading	gs>	<	Sno	w Depth		>	Summe	er Surface	<old< th=""><th>Firn and</th><th>Ice></th><th><</th><th>Snow</th><th>and N</th><th>New Firn-</th><th>></th><th>Yearly</th><th>y Results</th></old<>	Firn and	Ice>	<	Snow	and N	New Firn-	>	Yearly	y Results
Field	Date	Tape	Surve	ey	-	Pit/Core	Probe	Average	s.e.	n	Obsvd.	Average	Density	Stake	Ice	Depth	Densi	ty	Snow	NFirn	Net	Annual
Notes		b'	b^*	b^{**}	Stratum	d	d	d			b'ss	b'ss	ρ	b'(i)	b(i)	d	ρ		b(s)	b(f)	b_n	b_a
	m/d/y	m	m	m		m	m	m	m		m	m	kg/L	m(w)	m(w)	m	kg/L	,	m(w)	m(w)	m(w)	m(w)
								199	91 ME	ASU	REMEN	IT YEAR										
		STAKE	E 89-C (iı	nstalle	ed 10/08/89	9)																
M36	9/11/90	4.20			OFirn	wood plac	ed at the	e firn surfa	ace.													
	9/16/90	`	ıum balar																0.00		0.00	
	10/01/90	` •	logic yea	_															0.14		0.14	0.00
M2	1/06/91	6.08		6.07	Snow	1.93	2.03	2.02	0.04	11	4.05	4.06				2.01	0.408	M	0.82		0.82	0.68
M18	5/13/91	Stake bu	uried.				4.85	4.85	0.05	2		4.06				6.30	0.46	E	2.90		2.90	2.76
							Probe 1	kely did n	ot reac	h to	the sumr	ner surface	; see note	for 5/16	/91.							
M19	5/16/91	Stake bu										4.06										
					e altitude r	neasureme			ımmer				1/6/91 an	d 9/18/91	l indicat							
M37	9/18/91	5.93	5.93	5.92	Snow		1.75	1.75		1	4.17	4.06				1.86	0.57	Е	1.06	1.01	1.01	0.87
	0/22/01					Prob	e to plyv	vood.												nce of 0.		
	9/22/91	`	um balar		`														1.03	0.98	0.98	0.84
	9/30/91	` •	logic yea	r ends	5)														0.39	0.98		1.23
M1	1/22/92						4.00	4.00								4.00	0.42	г	2.14			
M6	1/25/92			4:	11 41		4.98	4.98	_4:	1:	-1-1 - 1	.1				4.98	0.43	Е	2.14			
	P				ill to plywo ed 5/16/91		oreaicte	i stake ioc	ation; a	ren	abie dep	in measure	ment.									
	9/16/90		um balar		eu 5/10/91)													0.00		0.00	
	10/01/90		lum balar logic yea	/	na)														0.00		0.00	0.00
M19	5/16/91	7.96	logic yea	ı begi	Snow		5.15	5.15		1	2.81	1.99				5.97	0.44	m	2.63		2.63	2.49
IVI I 9	3/10/91	7.90	ŗ	Probe (depth and	calculated			eight <i>l</i>	•			measurem	ent of 9/	18/91 1					·e	2.03	2.49
				1000	deptir and	McCall s				-		•	incasaren	icht of 57	10//1.	1000 111	t a raise	Julii	ner surrac	ж.		
M37	9/18/91			3.74	Snow	ivic cum s	now cor	1.75	01 2.77	, 、	1.99	1.99				1 75	0.57	Е	1.00		1.00	0.86
	2,10,21	Stake	e reinstall			now depth	from pr		wood a	ıt Sta						11,75	0.27	_	1.00		1.00	0.00
		4.78		4.78	Snow	io ii dopiii	mom pr	1.75			3.03	3.03				1.75	0.57	Е	1.00		1.00	0.86
						Plywood p	laced at	the surface	e.													
	9/22/91	(Minim	um balar	nce)		, I													0.97	0.93	0.93	0.79
		`																	Differe	nce of 0.	.04 m is	water.
	9/30/91	(Hydro	logic yea	r ends	3)														0.39	0.93		1.18
																		Av	erage of 2	stakes.	0.96	1.21

Table 4. Mass balance data from site C (1,290 meters altitude) on Wolverine Glacier, Alaska--Continued

Field	Data				gs>			w Deptn Average														
	Date	Tape		rvey	~			_	s.e.	11		_	•	Stake	Ice	_	Densi	ιy		NFirn		Annua
Notes		b'	b^*	b**	Stratum	d	d	d			b'ss	b'ss	ρ	b'(i)	b(i)	d	ρ		b(s)	b(f)	b_n	b_a
	m/d/y	m	m	m		m	m	m	m		m	m	kg/L	m(w)	m(w)	m	kg/L	,	m(w)	m(w)	m(w)	m(w)
							_			ASUI	REMEN	T YEAR										
	0/10/01		£ 91-C		illed 9/18/9	01). Plywo	ood put		·•		2.02											
M37	9/18/91	4.78		4.78	Snow	_		1.75		~	3.03											
	0/22/01	0						th from Sta				•		TD (1	1 /-	1			0.00		0.00	
	9/22/91	(Minin				Estimated	1 0.05 m	melt after	9/18/9	1, us	ing weat	ner data.		Est	imated b	rss.			0.00		0.00	
	10/01/91			ear begi	,														0.39		0.39	0.00
М6	1/25/92	Stake b	uried.		Snow		4.98	4.98		1		3.03				4.98	0.43	Е	2.14		2.14	1.75
	0.10.1.10.2				Steam	drilled to	the plyw	ood at the	stake.													
	9/01/92	(Minin	num ba	lance)															1.31	1.25	1.25	0.86
					_															nce of 0	.11 m is	
M57	9/03/92	5.35			Snow	0.03		0.03		1	5.32	5.32				0.03	0.30	Е	0.01			0.87
					NFirn		1.85	1.85		. 1		3.03				2.29	0.57	Е	1.31	1.25		
	0/20/02	(TT 1			`		Probe a	bove the p	lywood	l; pro	bably hi	an ice lay	yer.						0.06	1.05		0.00
	9/30/92	` •	~ .	ear ends	s)														0.06	1.25		0.92
		Stake al	bandon	ed.																		
		COT A TOT	7 0 2 G	<i>.</i>	1 1 (00 (00)																	
	0/22/01			`	ed 1/23/92))													0.00		0.00	
	9/22/91	(Minin			`														0.00		0.00	0.00
) 15	10/01/91	` •	ologic y	ear begi								0.00				5.02	0.42	F	0.39		0.39	0.00
M5	1/23/92	5.83		5.83	Snow		4.00	4.00		1	0.00	0.80				5.03	0.43	Е	2.16		2.16	1.77
M6	1/25/92	5.78		1.1	Snow		4.98	4.98	1.		0.80	0.80	1, 1			4.98	0.43	Е	2.14		2.14	1.75
M10	5/12/02		_	•	now compa	ction.	Snow d	epth measu	area at	Stake	e 91-C, s		ea to piyw	vooa.		(25	0.44		2.70		2.70	2.40
M10	5/13/92	7.15	/.14	7.15	Snow	M C 11		. 2.64	, ,		40.1 /T	0.80				6.35	0.44	m	2.79		2.79	2.40
M13	5/14/92	O.C	1	1 \		McCall s	now core	e to 2.64 m	i; aensi	ty 0.	42 Kg/L.								1 24	1.20	1.20	0.00
	9/01/92	(Minin	ium ba	lance)															1.34	1.28	1.28	0.89
150	0/02/02	2.20	2.10	2.10	C	0.02		0.02		1	2.15	2 15				0.02	0.20	Б		nce of 0	.06 m is	
M56	9/03/92	3.20	3.19	3.18	Snow	0.03		0.03	۳ 11		3.15	3.15	11. 4			0.03	0.30	Е	0.01			0.90
		2.15			> TE:	1992 sum	imer sur	face identi	nea by	gran	n-size cn	-	e; no dirt	visible.		2.25	0.57	_	1.24	1.20		
***	0/07/02	3.15			NFirn		DI.		1	c		0.80				2.35	0.57	Е	1.34	1.28		0.02
M64	9/07/92	3.24			Snow		Plywoo	d placed at	t the su	rtace		3.15				0.09	0.30	Е	0.03	1.00		0.92
	9/30/92			ear ends	-		2.55	2.55	0.00	_	2.15	2.15				2.55	0.41	_	0.06	1.28		0.95
M4	2/08/93	6.76	6.74	6.72	Snow	, ,	3.57	3.57	0.00			3.15				3.57	0.41	E	1.46			
				Probe	to plywoo	d; snow de	epth esti	mated to b	e 0.05	m de	eper.											
																		A۱	erage of 2	d stakes.	1.27	0.94

Table 4. Mass balance data from site C (1,290 meters altitude) on Wolverine Glacier, Alaska--Continued

·																						
E: 11	D /			_	'S>			•				er Surface							New Firn-		,	Results
Field	Date	Tape		vey	~			_	s.e.	n		Average	•		Ice	-	Densi	ıty		NFirn		Annua
Notes		b'	b^*	b**	Stratum	d	d	d			b'ss	b'ss	ρ	b'(i)	b(i)	d	ρ		b(s)	b(f)	b_n	b_a
	m/d/y	m	m	m		m	m	m	m		m	m	kg/L	m(w)	m(w)	m	kg/L	-	m(w)	m(w)	m(w)	m(w)
								199	3 ME	ASUF	REMEN	IT YEAR										
	0/01/02				d 1/23/92)													0.00		0.00	
M56	9/01/92	(Minin	num bal	/	Snow	0.03		0.03		1	3.15	2 15				0.03	0.30	E	0.00		0.00	
	9/03/92	2.24	3.19	3.18		0.03	D1		4 41			3.15 3.15				0.03		Е			0.01	
M64	9/07/92	3.24	.1	1	Snow		Plywoo	d placed a	t the su	iriace.		3.13				0.09	0.30	Е	0.03			0.00
14	9/30/92			ear begin			2.57	2.57	0.00	2	2.15	2.15				2.57	0.41	E	0.06		0.06	0.00
M4	2/08/93	0.70	6.74	0.72	Snow		3.57	3.57	0.00			3.15	05 m daa			3.37	0.41	Е	1.46		1.46	1.40
M10	2/16/93	7.40			Snow		Probe to	piywood	; snow	aepun	estima	ted to be 0 3.15	.05 m dee	per.		4.25	0.42	Е	1.79		1.79	1.73
WHO	2/10/93			abt at 7								3.13				4.25	0.42	E	1.79		1.79	1./3
M13	5/15/93		10.02	ight at 7.	0 m. Snow							3.15				6.83	0.40		2 25		3.35	2 20
WHI	3/13/93	10.04	10.02	9.98	Show	MaCall a		la ta 2 6	5 m. d.		0.201.0					0.83	0.49	m	3.35		3.33	3.29
M36	9/13/93	4.57	4.54	4.53	Snow	McCall s	now sam	ipie to 2.6.	o m; de	insity	0.39 Kg	7L. 3.15				1 20	0.55	Е	0.76	0.72	0.76	0.70
MISO	9/13/93	4.37	4.34	4.33	Show		Dlynygo	d installad	at ano		face	3.13				1.36	0.55	E	Differe			
	9/15/93	(Minin	num bal	langa)			Plywoo	d installed	at sno	w sur	race.								0.71	0.67	0.67	0.61
	9/30/93	`		ear ends															0.71	0.67	0.07	0.88
M6	2/05/94	Stake b	~ ,	cai ciius,)														0.27	0.07		0.00
M12	5/13/94	10.48	uricu.		Snow		5.95	5.95		1	4.53	4.53				5.05	0.50	Е	2.98			
IVI I Z	3/13/94		ulated fi	rom snov				lrilled to p	1,,,,,,,,,,				Summer	surface o	hearvad			L	2.90			
			urated I					ппіса ю р	1y w 000	1 at tii			Summer				'. 					
								199	4 ME	ASUF	REMEN	IT YEAR										
		STAK	E 94-C2	2 (install	ed 2/05/9	4)																
	9/15/93	(Minin	num bal	lance)															0.00		0.00	
	10/01/93	(Hydro	ologic y	ear begir	ns)														0.27		0.27	0.00
M2	2/04/94		ned <i>b**</i>	6.30	Snow		4.00	4.00		1	2.30	2.36				3.94	0.41	E	1.62		1.62	1.35
M6	2/05/94	6.33	6.30	6.29	Snow							2.36				3.93	0.41	E	1.61		1.61	1.34
M12	5/13/94	8.32	8.33	8.32	Snow		5.95	5.95		1	2.37	2.36				5.96	0.50	E	2.98		2.98	2.71
							Steam d	lrilled to p	lywood	d at St	take 92-	C.										
M25	9/07/94	4.19	4.18	4.17	Snow		1.75	1.75		1	2.42	2.36				1.81	0.55	E	1.00		1.00	0.73
							Steam d	lrilled to p	lywood	d at St	take 92-	C.										
							Plywoo	d placed o	n surfa	ce.												
	9/16/94	(Minin	num bal	lance)															1.35	1.29	1.29	1.02
																			Differen	nce of 0.	06 m is	water.
	9/30/94	•		ar ends)															0.23	1.29		1.25
M7	2/01/95	8.90	8.84	8.78	Snow		4.60	4.60		1	4.18	4.18				4.60	0.42	E	1.93			
						Prob	e to plyv	vood.														
					NFirn							1.82				2.36	0.57	Е	1.35	1.29		

Table 4. Mass balance data from site C (1,290 meters altitude) on Wolverine Glacier, Alaska--Continued

<					OBSERVA	TIONS							<		S	URFAC	E MAS	S BA	LANCE-			;
		<	Stake	Reading	gs>	<	Sno	w Depth		>	Summe	er Surface	<old< td=""><td>Firn and</td><td>Ice></td><td><</td><td>Snow</td><td>and l</td><td>New Firn-</td><td>></td><td>Yearly</td><td>y Results</td></old<>	Firn and	Ice>	<	Snow	and l	New Firn-	>	Yearly	y Results
Field	Date	Tape	Sur	vey		Pit/Core	Probe	Average	s.e.	n	Obsvd.	Average	Density	Stake	Ice	Depth	Densi	ty	Snow	NFirn	Net	Annual
Notes		b'	b^*	b^{**}	Stratum	d	d	d			b'ss	b'ss	ρ	b'(i)	b(i)	d	ρ		b(s)	b(f)	b_n	b_a
	m/d/y	m	m	m		m	m	m	m		m	m	kg/L	m(w)	m(w)	m	kg/L		m(w)	m(w)	m(w)	m(w)
								199	5 ME	\SU	REMEN	T YEAR										
		STAK	E 94-C2	2 (instal	led 2/05/94	l)																
M25	9/07/94	4.19	4.18	4.17	Snow		1.75	1.75		1												
						Plywood 1	placed o	n surface.														
	9/16/94	(Minim	ıum bal	ance)															0.00		0.00	
	10/01/94	(Hydro	ologic y	ear begi	ns)														0.23		0.23	0.00
M4	1/31/95	9-m sta	ke not f	found.	Snow		4.50	4.50	0.00	2						4.50	0.42	Е	1.89		1.89	1.66
M7	2/01/95	8.90	8.84	8.78	Snow		4.60	4.60		1	4.18	4.34				4.44	0.42	E	1.86		1.86	1.63
							Probe to	o plywood														
M10	5/14/95	10.66	10.74	10.69	Snow							4.34				6.35	0.50	Е	3.18		3.18	2.95
						McCall sı	now san	ple to 2.6	7 m; de	nsity	0.44 kg	L.										
M28	9/14/95	6.79			Snow		2.42	2.42	0.02	5	4.37	4.34				2.45	0.57	Е	1.40		1.40	1.17
						Probe	e to plyv	vood.														
	9/26/95	(Minim	ıum bal	ance)															1.09	1.04	1.04	0.81
																			Differe	nce of 0	.05 m is	s water.
	10/01/95	(Hydro	logic ye	ear ends)															0.11	1.04		0.92
T7	1/13/96	9.25	9.23	9.22	Snow	2.97		2.97		1	6.25	6.25				2.97	0.397	M	1.18			
					NFirn							4.34				1.91	0.57	Е	1.09	1.04		

Table 5. Daily and monthly average air temperature at the weather station located at 990 meters altitude in Wolverine Glacier Basin, Alaska, during the 1995 hydrologic year and October 1995, the first month of the 1996 hydrologic year

[Average temperature measured each day starting at midnight Alaska Standard Time from the continuous record of air temperature; data in degrees Celsius]

Day	Oct. 94	Nov. 94	Dec. 94	Jan. 95	Feb. 95	Mar. 95	Apr. 95	May 95	Jun. 95	Jul. 95	Aug. 95	Sep. 95	Oct. 95
1	-1.0	-5.1	-9.4	-2.5	-4.7	-5.9	-0.4	6.9	0.8	4.9	4.5	5.4	1.7
2	0.4	-1.6	-8.0	-2.7	-4.5	-2.5	-1.1	6.0	1.8	8.2	4.6	4.5	3.6
3	4.2	-2.9	-4.5	-0.4	-2.8	2.6	-1.2	1.3	2.1	6.2	5.5	4.9	0.7
4	4.1	-4.8	-2.7	-2.1	-1.7	-0.2	-2.2	1.0	2.5	9.6	7.5	4.4	1.1
5	1.8	-6.2	-11.2	-1.3	-1.4	-3.6	-2.8	-1.7	2.5	11.9	7.4	4.5	-0.5
6	0.9	-5.7	-14.2	-2.9	-4.5	-4.5	-1.1	-2.1	1.0	10.6	6.7	5.2	0.5
7	-0.1	-8.2	-9.5	-3.5	-3.9	-2.9	0.1	-1.0	0.9	5.1	4.8	6.2	0.5
8	0.1	-9.1	-7.7	-3.4	-2.3	-3.7	-1.2	1.5	2.4	8.0	7.1	5.0	2.0
9	-2.4	-5.9	-6.6	-4.0	-3.4	-5.8	-2.2	5.9	6.4	11.7	5.2	4.8	1.4
10	-1.4	-3.5	-5.9	-8.4	-3.1	-11.5	-0.7	4.9	15.6	6.4	6.7	5.2	-2.0
11	-1.0	-6.0	-4.2	-11.9	-0.7	-15.6	1.0	5.8	15.3	7.5	7.2	4.3	-4.0
12	0.8	-9.0	-2.8	-14.0	-3.4	-16.3	-3.2	5.1	11.8	6.5	4.3	4.7	-4.7
13	2.2	-10.0	-4.5	-12.0	-5.5	-19.4	-2.2	0.8	6.8	7.3	4.8	4.6	-4.5
14	0.6	-9.9	-5.9	-13.6	-6.7	-22.3	-2.9	1.9	4.4	5.5	7.5	5.9	-2.8
15	0.0	-6.3	-5.3	-9.7	-10.6	-16.2	-4.4	0.5	2.3	5.0	9.6	6.7	-1.0
16	-0.2	-5.1	-5.6	-5.6	-11.3	-5.9	-3.4	-0.5	5.0	5.9	10.0	8.5	-1.8
17	-5.4	-4.9	-4.7	-4.4	-12.6	-7.6	-1.9	1.0	8.6	7.5	11.8	6.3	-2.2
18	-5.9	-10.2	-3.5	-4.6	-11.4	-9.9	-4.2	1.1	8.4	7.6	12.8	5.6	-0.4
19	-3.6	-9.8	-3.0	-3.5	-11.9	-8.7	-1.9	0.9	4.2	7.2	11.8	6.8	0.2
20	-5.7	-8.1	-5.9	-3.3	-8.6	-13.5	-1.9	1.5	3.2	9.7	11.9	6.7	-1.8
21	-9.4	-10.1	-4.4	-2.6	-10.8	-16.9	-2.2	1.1	4.1	10.7	12.8	4.4	-0.7
22	-7.9	-16.3	-6.3	-9.1	-14.1	-15.9	-1.5	1.9	7.2	8.8	11.9	5.3	-0.6
23	-2.8	-17.4	-10.0	-10.2	-15.3	-16.3	0.0	0.9	2.4	4.9	10.1	5.9	-1.9
24	-1.6	-17.3	-11.0	-13.8	-17.0	-13.6	-0.7	1.8	3.8	3.7	7.4	5.3	-0.7
25	-2.3	-13.5	-8.9	-17.1	-10.7	-8.8	-0.9	2.0	3.4	4.5	6.8	4.4	-2.4
26	-4.9	-7.4	-6.8	-12.9	-8.6	-5.1	1.4	-0.1	4.3	7.3	8.1	4.2	-4.8
27	-5.5	-10.0	-6.6	-6.7	-4.3	-2.7	2.1	1.1	3.3	6.5	5.4	3.1	-2.9
28	-5.6	-12.1	-4.5	-1.2	-4.6	-2.8	0.6	-0.3	4.5	5.6	6.6	0.7	-2.5
29	-3.4	-14.1	-3.5	-1.8		-2.1	5.8	-0.1	4.7	5.1	6.5	0.4	-1.5
30	-5.0	-12.9	-3.3	-3.6		0.3	7.1	0.9	4.4	5.2	5.1	0.5	-1.4
31	-6.7		-3.5	-4.9		-1.5		1.4		5.8	5.4		-2.1
Month:	-2.2	-8.8	-6.3	-6.4	-7.2	-8.3	-0.9	1.7	4.9	7.1	7.7	4.8	-1.1
										1995 Hyd	rologic Yea	r: -1.1	

Table 6. Differences in air temperature, precipitation gage catch, and snow accumulation between measurement sites and the weather station located at 990 meters altitude in the Wolverine Glacier Basin, Alaska

[Z, altitude of measurement site in meters (m); δT , average difference in air temperature between the weather station and the glacier observation sites, A, B, and C calculated using the measured average air temperature gradient of -0.0058°C/m for the area (see End-of-year estimates section); °C degrees Celsius; $\delta b(s)/P$, ratio of snow accumulation measured at a site, divided by the precipitation gage catch for the same period, see table 7]

Site	Altitude Z (m)	Air Temperature Difference δT (°C)	Snow Accumulation/ Gage Catch Ratio $\delta b(s)/P$
С	1290	-1.6	3.69
В	1070	-0.5	2.71
Weather Station	990		
A	590	2.2	1.41

Table 7. Ratio between snow accumulation at the measurement sites and the gage catch of precipitation recorded during winter at the weather station located at 990 meters altitude in the Wolverine Glacier Basin, Alaska

[Precipitation gage catch, P, since the previous snow balance measurement; snow balance, b(s), in meters water equivalent, m(w); s.e., standard error of the mean; $\delta b(s)/P$, ratio between the increase in snow mass balance measured at a site, divided by the precipitation gage catch for the same period; m/d/y, month/day/year. Daily values of precipitation gage catch from Mayo and others, 1992]

Date	Site A Snow b(s)	Gage Catch P	Ratio $\delta b(s)/P$	Date	Site B Snow b(s)	Gage Catch P	Ratio $\delta b(s)/P$	Date	Site C Snow b(s)	Gage Catch P	Ratio $\delta b(s)/P$
m/d/y	m(w)	m(w)		m/d/y	m(w)	m(w)		m/d/y	m(w)	m(w)	
10/09/68	0.01			10/05/68	0.13			10/10/68	0.32		
1/28/69	0.24	0.185	1.2	1/27/69	0.67	0.185	2.9	1/25/69	0.94	0.163	3.8
4/13/69	0.62	0.225	1.7	4/12/69	1.42	0.212	3.5	4/18/69	2.52	0.228	6.9
11/23/69	0.03			11/19/69	0.50			6/03/69	2.79	0.102	2.6
4/18/70	1.54	0.698	2.2	4/11/70	2.63	0.658	3.2	9/29/70	0.08		
4/10/70	1.54	0.070	2.2	4/11/70	2.03	0.050	3.2	1/08/71	0.88	0.358	2.2
1/09/71	0.24			1/11/71	0.65			4/27/71	2.58	0.364	4.7
4/27/71	0.87	0.422	1.5	4/27/71	2.13	0.419	3.5	7/2///1	2.30	0.504	7.7
1/11/72	0.10			1/13/72	0.65			10/19/71	0.52		
4/08/72	0.10	0.084	0.2	4/10/72	0.03	0.084	1.7	1/13/72	0.86	0.182	1.9
4/06/72	0.12	0.064	0.2	4/10/72	0.79	0.064	1./	4/10/72	1.07	0.084	2.5
10/01/72	0.003			10/03/72	0.003			10/03/72	0.01		
1/06/73	0.23	0.211	1.1	1/04/73	0.54	0.206	2.6	1/08/73	0.01	0.211	4.0
4/19/73	0.75	0.268	1.9	4/16/73	1.22	0.266	2.6				
10/15/50	0.02			10/10/50	0.07			4/17/73 6/03/73	1.90 2.40	0.264	4.0 4.3
10/15/73	0.02	0.210	4.0	10/12/73	0.07	0.204		0/03/73	2.40	0.115	4.3
3/09/74	0.33	0.310	1.0	3/06/74	0.85	0.301	2.6			A	2.60
10/01/74	0.00			10/01/74	0.00					Average	3.69
2/08/75	0.58	0.426	1.4	2/07/75	1.06	0.425	2.5			s.e.	0.50
10/25/75	0.06			10/27/75	0.15						
2/25/76	0.47	0.281	1.5	2/25/76	0.87	0.280	2.6				
10/24/77	0.19			10/24/77	0.45						
3/02/78	1.17	0.548	1.8	3/01/78	1.60	0.548	2.1				
		Average	1.41			Average	2.71				
		s.e.	0.16			s.e.	0.17				

Table 8. Daily and monthly precipitation gage catch at the weather station located at 990 meters altitude in Wolverine Glacier Basin, Alaska, during the 1995 hydrologic year and October 1995, the first month of the 1996 hydrologic year

[Total gage catch measured daily starting at midnight Alaska Standard Time from the continous record of precipitation; data in millimeters water equivalent; gage catch may not equal actual precipitation because of precipitation catch efficiency errors caused by wind]

Day	Oct. 94	Nov. 94	Dec. 94	Jan. 95	Feb. 95	Mar. 95	Apr. 95	May 95	Jun. 95	Jul. 95	Aug. 95	Sep. 95	Oct. 95
1	0	0	0	0	0	1	0	0	2	3	0	1	1
2	15	8	0	2	3	0	2	0	2	0	0	0	0
3	3	9	26	47	0	5	1	0	1	5	0	1	0
4	0	2	7	2	0	3	1	0	0	0	1	1	0
5	5	1	5	0	16	2	1	0	1	0	7	4	1
6	5	0	0	1	10	0	3	0	2	0	1	8	0
7	6	2	0	1	3	0	3	15	8	5	3	33	0
8	4	1	4	0	19	0	1	5	1	0	0	23	0
9	2	1	0	0	2	0	0	1	0	0	0	3	0
10	0	4	0	3	0	2	1	1	0	5	0	12	1
11	5	0	1	3	7	0	0	0	0	0	0	6	1
12	6	2	3	1	3	2	3	1	0	4	16	0	1
13	2	0	1	0	2	2	2	3	1	0	2	3	2
14	1	1	1	0	1	2	0	0	1	0	0	0	1
15	0	5	0	0	3	0	15	0	0	0	0	0	3
16	5	1	6	0	1	14	2	0	0	2	0	8	0
17	3	8	0	1	1	32	8	0	0	0	0	0	0
18	0	1	5	0	0	1	5	0	0	0	0	9	5
19	0	0	2	3	0	2	1	0	1	0	0	113	0
20	0	5	2	4	0	3	5	0	0	0	0	16	1
21	0	1	1	3	0	3	3	0	0	0	0	21	2
22	0	4	4	5	1	0	2	2	0	0	0	4	4
23	0	0	3	2	1	0	0	1	2	1	0	4	1
24	7	0	1	2	0	0	3	5	0	16	2	27	4
25	1	0	0	4	0	0	1	11	0	4	0	0	1
26	2	0	0	0	0	0	7	2	0	1	0	0	2
27	1	1	3	0	6	0	0	2	0	0	3	2	1
28	1	1	7	0	0	3	0	2	0	3	0	7	0
29	0	0	8	1		5	0	0	12	10	0	8	8
30	0	0	0	5		5	0	0	7	3	11	13	6
31	1		5	5		1		0		11	3		0
Total:	75	58	95	95	79	88	70	51	41	73	49	327	46
									19	95 Hydro	logic Year:	1,101	

Table 9. Icemelt rate in late summer at site A on Wolverine Glacier, Alaska, as a function of air temperature in degree-days above 0 degrees Celsius

[Calculated from data in tables 2 and 5 of this report, and Appendix 1 in Mayo and others (1992); b'(i), ice balance referenced to the bottom of the stake; $\delta b(i)$, change in old firn and ice balance caused by melt; ${}^{\circ}d>0$ ${}^{\circ}C$, Celsius degree-days above $0{}^{\circ}C$ at site A during the icemelt period; m/d/y, month/day/year; m(w), meters water equivalent, s.e., standard error of the mean]

Date	Ice balance	Icemelt	Degree-days	Icemelt rate
	b'(i)	$\delta b(i)$	°d>0°C	$\delta b(i)/^{\circ}d$
m/d/y	m(w)	m(w)	°d	m(w)/°d
	Stake 67-4			
9/18/67	2.03			
10/14/67	1.77	-0.26	115	-0.0023
	Stake 68-4			
8/20/68	1.89			
9/29/68	1.08	-0.81	390	-0.0021
	Stake 70-4			
7/22/70	6.48			
9/27/70	4.23	-2.25	399	-0.0056
	Stake 72-4			
8/19/72	5.40			
9/29/72	4.30	-1.10	215	-0.0051
	Stake 73-4			
8/25/73	1.62			
10/01/73	0.85	-0.77	163	-0.0047
	Stake 74-4			
9/22/74	0.45			
9/30/74	0.36	-0.09	25	-0.0035
	Stake 75-A2			
8/20/75	7.61			
10/08/75	5.32	-2.29	304	-0.0075
	Stake 75-A2			
7/12/76	4.08			
9/27/76	0.72	-3.36	516	-0.0065
	Stake 79-6.9A			
8/11/79	3.96			
10/27/79	1.65	-2.31	557	-0.0041
	Stake 80-A			
9/02/80	7.33			
9/19/80	7.20	-0.13	43	-0.0030
			Average	-0.0045
			s.e.	0.0005

Table 10. Summary of yearly surface net mass balance and annual mass balance measured at sites A, B, and C on Wolverine Glacier, Alaska from 1996 to 1995

 $[b_n$, yearly net balance, and b_a , annual balance, in meters water equivalent, m(w); --- indicates no year-end results]

			Glacier M	ass Balance		
Measurement	Sit	e A	Sit	te B	Sit	e C
Year	Net	Annual	Net	Annual	Net	Annual
	b_n	b _a	b _n	b_a	b _n	b _a
	m(w)	m(w)	m(w)	m(w)	m(w)	m(w)
1966	-4.92		-1.00		0.58	
1967	-5.09		-2.00		-1.00	
1968	-3.89	-4.02	-1.44	-1.48	0.45	0.26
1969			-0.94	-0.91	1.03	0.86
1970	-2.63	-2.83	0.87	0.82	2.85	2.91
1971	-2.70		-0.19		1.30	
1972	-4.30		-1.34		-0.59	
1973	-3.59	-3.59	-0.11	-0.08	1.47	1.51
1974	-5.21	-5.21	-1.75	-1.79	0.32	0.41
1975	-4.27	-4.00	-0.75	-0.69	0.97	1.04
1976	-4.60	-4.83	-1.49	-1.45	0.17	0.46
1977	-3.19	-2.93	0.15	0.06	3.38	2.96
1978	-3.86	-4.08	-0.45	-0.48	2.04	2.01
1979	-5.89	-5.67	-2.38	-2.27		
1980	-1.96	-2.16	0.81	0.70		
1981	-2.65	-2.63	0.89	0.92	5.32	5.59
1982	-4.70	-4.81	-1.00	-1.01	1.30	1.08
1983	-4.19	-4.12	-1.01	-1.02	1.09	1.10
1984	-5.32	-5.20	-1.20	-1.19	1.27	1.40
1985	-3.18	-3.27	-0.20	-0.01	1.73	1.92
1986	-4.45	-4.24	-2.03	-2.23	0.86	0.54
1987	-3.30	-3.55	0.41	0.58	3.00	3.46
1988	-2.58	-2.48	0.37	0.19	2.50	2.21
1989			-2.25	-2.22	0.13	0.06
1990	-6.18	-6.26	-3.07	-3.09	-0.86	-0.73
1991	-4.04	-4.12	-1.34	-1.10	0.96	1.21
1992	-3.24	-3.14	-1.19	-1.41	1.81	1.48
1993	-4.35	-4.13	-1.56	-1.50	0.67	0.88
1994	-5.33	-5.37	-1.34	-1.31	1.29	1.25
1995	-4.67	-4.71	-1.34	-1.40	1.04	0.92

Average:

-4.08

-4.06

-0.93

-0.90

1.25

1.45

Table 11. Evolution of the project grid coordinates of survey monumnets in Wolverine Glacier Basin, Alaska, and coordinate changes to Net79, the coordinate system used to report the glacier data

[Coordinates, X, Y, and Z, and their changes, δX , δY , and δZ , in meters (m), shown only for those monuments defined in two or more networks "Nets". Project grid projection at sea level; origin and azimuths based on the UTM system, see equations 2 and 3 for conversion to UTM coordinates]

	F	Project Grid N	let76	1	Project Grid N	Vet79		Co	ordinate Cha	nge
MONUMENT	X	Υ	Z	X	Y	Z	_	δ X	δΥ	δ
	(m)	(m)	(m)	(m)	(m)	(m)		(m)	(m)	(m
COBRA	2853.61	8110.09	1468.72	2857.46	8097.24	1468.32		3.85	-12.85	-0.4
USS	753.10	7351.78	1499.83	757.47	7339.35	1499.40		4.37	-12.43	-0.4
BLEW IT	5820.51	6530.66	1653.70	5823.96	6517.39	1653.26		3.45	-13.27	-0.4
STYLUS	5066.45	5444.01	1509.37	5069.55	5431.17	1508.95		3.10	-12.84	-0.4
ICHEN	1670.26	5156.90	1289.74	1673.69	5144.69	1289.44		3.43	-12.21	-0.3
MOON	3963.02	3841.91	1065.31	3965.83	3829.29	1065.16		2.81	-12.62	-0.1
VINDY	1637.10	2795.30	952.84	1640.23	2783.40	952.61		3.13	-11.90	-0.2
PRECIP	1343.36	2931.46	991.34	1346.61	2919.58	991.11		3.25	-11.88	-0.2
/IBRATIONS	1860.43	1618.99	775.00	1863.29	1607.22	774.80		2.86	-11.77	-0.2
MEADOW	2878.30	1921.43	637.16	2880.67	1909.74	637.14		2.37	-11.69	-0.0
after 2/25/76	2070.00	1021.40	638.50	2000.07	1000.74	638.48		2.07	11.00	-0.0
SPREAD	3903.60	752.61	412.21	3905.89	740.80	412.13		2.29	-11.81	-0.0
DENLAD	3903.00	732.01	412.21	3903.09	740.00	412.13	Average:	3.17	-12.30	-0.2
	I	Project Grid N			Project Grid N	let79	Trenage.		ordinate Cha	
MONUMENT	X	Y	Z	X	Y	Z		δΧ	δΥ	δ.
	(m)	(m)	(m)	(m)	(m)	(m)		(m)	(m)	(m
OBRA	2853.19	8108.89	1468.12	2857.46	8097.24	1468.32		4.27	-11.65	0.2
USS	752.99	7350.53	1499.21	757.47	7339.35	1499.40		4.48	-11.18	0.
BLEW IT	5819.65	6529.69	1653.03	5823.96	6517.39	1653.26		4.31	-12.30	0.2
STYLUS	5065.70	5443.20	1508.70	5069.55	5431.17	1508.95		3.85	-12.03	0.2
ICHEN	1670.01	5156.14	1289.15	1673.69	5144.69	1289.44		3.68	-11.45	0.
MOON	3962.43	3841.34	1064.85	3965.83	3829.29	1065.16		3.40	-12.05	0.
VINDY	1636.85	2794.89	952.42	1640.23	2783.40	952.61		3.38	-11.49	0.
PRECIP	1343.17	2931.03	990.92	1346.61	2919.58	991.11		3.44	-11.45	0.
IBRATIONS	1860.15	1618.74	774.57	1863.29	1607.22	774.80		3.14	-11.52	0.2
MEADOW	2877.87	1921.15	638.18	2880.67	1909.74	638.48		2.80	-11.41	0.:
PREAD	3903.02	752.52	411.73	3905.89	740.80	412.13		2.87	-11.72	0.4
7 112/13	0000.02	702.02		0000.00	7 10.00	112.10	Average:	3.60	-11.66	0.2
	I	Project Grid N	et78.04]	Project Grid N	let79		Co	ordinate Cha	nge
MONUMENT	X	Y	Z	X	Y	Ζ	_	δ X	δΥ	δ
	(m)	(m)	(m)	(m)	(m)	(m)		(m)	(m)	(m
COBRA	2853.13	8108.63	1468.10	2857.46	8097.24	1468.32		4.33	-11.39	0.2
USS	753.38	7350.44	1499.18	757.47	7339.35	1499.40		4.09	-11.09	0.2
BLEW IT	5819.71	6529.37	1653.03	5823.96	6517.39	1653.26		4.25	-11.98	0.2
STYLUS	5065.53	5443.08	1508.70	5069.55	5431.17	1508.95		4.02	-11.91	0.2
ICHEN	1669.93	5156.05	1289.20	1673.69	5144.69	1289.44		3.76	-11.36	0.2
MOON	3962.15	3841.11	1064.97	3965.83	3829.29	1065.16		3.68	-11.82	0.
VINDY		2794.89	952.42	1640.23	2783.40	952.61		3.38	-11.49	0.
PRECIP	1636.85 1343.21		990.92		2919.58			3.40	-11.45	0
	1343.21	2931.03	990.92 774.60	1346.61	2919.58 1607.22	991.11		3.40 3.18	-11.45 -11.42	
/IBRATIONS	1343.21 1860.11	2931.03 1618.64	774.60	1346.61 1863.29	1607.22	991.11 774.80		3.18	-11.42	0.2
/IBRATIONS /IEADOW	1343.21	2931.03	774.60 636.91	1346.61		991.11 774.80 637.14				0.:
/IBRATIONS /IEADOW after 2/25/76	1343.21 1860.11 2877.56	2931.03 1618.64 1921.35	774.60 636.91 638.25	1346.61 1863.29 2880.67	1607.22 1909.74	991.11 774.80 637.14 638.48		3.18 3.11	-11.42 -11.61	0.2 0.2 0.2
IBRATIONS IEADOW after 2/25/76	1343.21 1860.11	2931.03 1618.64	774.60 636.91	1346.61 1863.29	1607.22	991.11 774.80 637.14	Average:	3.18	-11.42	0.: 0.: 0.: 0.
PRECIP //BRATIONS MEADOW after 2/25/76 SPREAD	1343.21 1860.11 2877.56 3902.85	2931.03 1618.64 1921.35	774.60 636.91 638.25 411.94	1346.61 1863.29 2880.67 3905.89	1607.22 1909.74	991.11 774.80 637.14 638.48 412.13	Average:	3.18 3.11 3.04 3.66	-11.42 -11.61 -11.87	0.2 0.2 0.2 0.2 0.2 nge
IBRATIONS MEADOW after 2/25/76 PREAD	1343.21 1860.11 2877.56 3902.85	2931.03 1618.64 1921.35 752.67 Project Grid N	774.60 636.91 638.25 411.94	1346.61 1863.29 2880.67 3905.89	1607.22 1909.74 740.80 Project Grid N	991.11 774.80 637.14 638.48 412.13	Average:	3.18 3.11 3.04 3.66	-11.42 -11.61 -11.87 -11.58	0.2 0.2 0.3 0.3 nge
IBRATIONS MEADOW after 2/25/76 SPREAD	1343.21 1860.11 2877.56 3902.85	2931.03 1618.64 1921.35 752.67 Project Grid N Y (m)	774.60 636.91 638.25 411.94	1346.61 1863.29 2880.67 3905.89	1607.22 1909.74 740.80 Project Grid N Y (m)	991.11 774.80 637.14 638.48 412.13 Net79 Z (m)	Average:	3.18 3.11 3.04 3.66 Co	-11.42 -11.61 -11.87 -11.58 coordinate Cha δ Y (m)	0.2 0.2 0.2 0.3 nge δ (n
MEADOW after 2/25/76 PREAD MONUMENT	1343.21 1860.11 2877.56 3902.85 	2931.03 1618.64 1921.35 752.67 Project Grid N Y (m) 8108.94	774.60 636.91 638.25 411.94 (et78.06 Z (m) 1468.13	1346.61 1863.29 2880.67 3905.89 X (m) 2857.46	1607.22 1909.74 740.80 Project Grid N Y (m) 8097.24	991.11 774.80 637.14 638.48 412.13 Net79 Z (m) 1468.32	Average:	3.18 3.11 3.04 3.66 Co δX (m) 4.26	-11.42 -11.61 -11.87 -11.58 ordinate Cha δ <i>Y</i> (m) -11.70	0.3 0.3 0.3 0.3 nge δ (n
MERATIONS MEADOW after 2/25/76 MERAD MONUMENT COBRA USS	1343.21 1860.11 2877.56 3902.85 I X (m) 2853.20 753.34	2931.03 1618.64 1921.35 752.67 Project Grid N (m) 8108.94 7350.70	774.60 636.91 638.25 411.94 (et78.06 Z (m) 1468.13 1499.21	1346.61 1863.29 2880.67 3905.89 X (m) 2857.46 757.47	1607.22 1909.74 740.80 Project Grid N (m) 8097.24 7339.35	991.11 774.80 637.14 638.48 412.13 Net79 Z (m) 1468.32 1499.40	Average:	3.18 3.11 3.04 3.66 Co 8X (m) 4.26 4.13	-11.42 -11.61 -11.87 -11.58 ordinate Cha δ <i>Y</i> (m) -11.70 -11.35	0.5 0.5 0.5 0.5 nge δ (n
MONUMENT COBRA USS ELEW IT	1343.21 1860.11 2877.56 3902.85 X (m) 2853.20 753.34 5819.96	2931.03 1618.64 1921.35 752.67 Project Grid N (m) 8108.94 7350.70 6529.58	774.60 636.91 638.25 411.94 (et78.06 Z (m) 1468.13 1499.21 1653.07	1346.61 1863.29 2880.67 3905.89 X (m) 2857.46 757.47 5823.96	1607.22 1909.74 740.80 Project Grid N (m) 8097.24 7339.35 6517.39	991.11 774.80 637.14 638.48 412.13 Net79 Z (m) 1468.32 1499.40 1653.26	Average:	3.18 3.11 3.04 3.66 Co δX (m) 4.26 4.13 4.00	-11.42 -11.61 -11.87 -11.58 ordinate Cha δ <i>Y</i> (m) -11.70 -11.35 -12.19	0.5 0.5 0.5 0.5 nge δ (n
IBRATIONS IEADOW after 2/25/76 PREAD IONUMENT COBRA USS LEW IT	1343.21 1860.11 2877.56 3902.85 I X (m) 2853.20 753.34	2931.03 1618.64 1921.35 752.67 Project Grid N (m) 8108.94 7350.70	774.60 636.91 638.25 411.94 (et78.06 Z (m) 1468.13 1499.21	1346.61 1863.29 2880.67 3905.89 X (m) 2857.46 757.47	1607.22 1909.74 740.80 Project Grid N Y (m) 8097.24 7339.35 6517.39 5431.17	991.11 774.80 637.14 638.48 412.13 Net79 Z (m) 1468.32 1499.40	Average:	3.18 3.11 3.04 3.66 Co 8X (m) 4.26 4.13	-11.42 -11.61 -11.87 -11.58 ordinate Cha δ <i>Y</i> (m) -11.70 -11.35	0.: 0.: 0.: 0.: nge δ (n 0.:
IBRATIONS IEADOW after 2/25/76 PREAD IONUMENT OBRA USS LEW IT TYLUS	1343.21 1860.11 2877.56 3902.85 X (m) 2853.20 753.34 5819.96	2931.03 1618.64 1921.35 752.67 Project Grid N (m) 8108.94 7350.70 6529.58	774.60 636.91 638.25 411.94 (et78.06 Z (m) 1468.13 1499.21 1653.07	1346.61 1863.29 2880.67 3905.89 X (m) 2857.46 757.47 5823.96	1607.22 1909.74 740.80 Project Grid N (m) 8097.24 7339.35 6517.39	991.11 774.80 637.14 638.48 412.13 Net79 Z (m) 1468.32 1499.40 1653.26	Average:	3.18 3.11 3.04 3.66 Co δX (m) 4.26 4.13 4.00	-11.42 -11.61 -11.87 -11.58 ordinate Cha δ <i>Y</i> (m) -11.70 -11.35 -12.19	0.: 0.: 0.: 0.: nge δ (n 0.: 0.:
MONUMENT COBRA USS ELEW IT ETYLUS IGADOW After 2/25/76 PREAD MONUMENT	1343.21 1860.11 2877.56 3902.85 X (m) 2853.20 753.34 5819.96 5065.73	2931.03 1618.64 1921.35 752.67 Project Grid N (m) 8108.94 7350.70 6529.58 5443.23	774.60 636.91 638.25 411.94 (et78.06 Z (m) 1468.13 1499.21 1653.07 1508.76	1346.61 1863.29 2880.67 3905.89 X (m) 2857.46 757.47 5823.96 5069.55	1607.22 1909.74 740.80 Project Grid N Y (m) 8097.24 7339.35 6517.39 5431.17	991.11 774.80 637.14 638.48 412.13 Net79 Z (m) 1468.32 1499.40 1653.26 1508.95	Average:	3.18 3.11 3.04 3.66 Co δX (m) 4.26 4.13 4.00 3.82	-11.42 -11.61 -11.87 -11.58 cordinate Cha δ <i>Y</i> (m) -11.70 -11.35 -12.19 -12.06	0.: 0.: 0.: 0.: 0.: 0.: 0.: 0.: 0.: 0.:
MERATIONS MEADOW after 2/25/76 SPREAD MONUMENT COBRA CUSS SLEW IT STYLUS ICHEN FALL	1343.21 1860.11 2877.56 3902.85 X (m) 2853.20 753.34 5819.96 5065.73 1669.92	2931.03 1618.64 1921.35 752.67 Project Grid N (m) 8108.94 7350.70 6529.58 5443.23 5156.19	774.60 636.91 638.25 411.94 (et78.06 Z (m) 1468.13 1499.21 1653.07 1508.76 1289.25	1346.61 1863.29 2880.67 3905.89 X (m) 2857.46 757.47 5823.96 5069.55 1673.69	1607.22 1909.74 740.80 Project Grid N Y (m) 8097.24 7339.35 6517.39 5431.17 5144.69	991.11 774.80 637.14 638.48 412.13 Net79 Z (m) 1468.32 1499.40 1653.26 1508.95 1289.44	Average:	3.18 3.11 3.04 3.66 Co 8X (m) 4.26 4.13 4.00 3.82 3.77	-11.42 -11.61 -11.87 -11.58 cordinate Cha δ Y (m) -11.70 -11.35 -12.19 -12.06 -11.50	0. 0. 0. 0. 0. nge 6 (r 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
MERATIONS MEADOW after 2/25/76 SPREAD MONUMENT COBRA EUSS BLEW IT STYLUS LICHEN FALL MOON	1343.21 1860.11 2877.56 3902.85 I X (m) 2853.20 753.34 5819.96 5065.73 1669.92 4517.74 3962.28	2931.03 1618.64 1921.35 752.67 Project Grid N Y (m) 8108.94 7350.70 6529.58 5443.23 5156.19 5524.35	774.60 636.91 638.25 411.94 //et78.06 //m 1468.13 1499.21 1653.07 1508.76 1289.25 1362.24 1064.97	1346.61 1863.29 2880.67 3905.89 X (m) 2857.46 757.46 75823.96 5069.55 1673.69 4521.57 3965.83	1607.22 1909.74 740.80 Project Grid N Y (m) 8097.24 7339.35 6517.39 5431.17 5144.69 5512.38	991.11 774.80 637.14 638.48 412.13 Net79 Z (m) 1468.32 1499.40 1508.95 1289.44 1362.43 1065.16	Average:	3.18 3.11 3.04 3.66 Co δX (m) 4.26 4.13 4.00 3.82 3.77 3.83	-11.42 -11.61 -11.87 -11.58 cordinate Cha δ <i>Y</i> (m) -11.70 -11.35 -12.19 -12.06 -11.50 -11.97	0.: 0.: 0.: 0.: nge δ (n 0. 0. 0. 0. 0.
MERATIONS MEADOW after 2/25/76 SPREAD MONUMENT COBRA FUSS BLEW IT STYLUS LICHEN FALL MOON SNOWY	1343.21 1860.11 2877.56 3902.85 X (m) 2853.20 753.34 5819.96 5065.73 1669.92 4517.74 3962.28 1760.39	2931.03 1618.64 1921.35 752.67 Project Grid N Y (m) 8108.94 7350.70 6529.58 5443.23 5156.19 5524.35 3841.17 3156.24	774.60 636.91 638.25 411.94 // (et78.06 // (m) 1468.13 1499.21 1653.07 1508.76 1289.25 1362.24 1064.97 933.34	1346.61 1863.29 2880.67 3905.89 X (m) 2857.46 757.47 5823.96 5069.55 1673.69 4521.57 3965.83 1763.83	1607.22 1909.74 740.80 Project Grid N Y (m) 8097.24 7339.35 6517.39 5431.17 5144.69 5512.38 3829.29 3144.73	991.11 774.80 637.14 638.48 412.13 Net79 Z (m) 1468.32 1499.40 1653.26 1508.95 1289.44 1362.43 1065.16 933.53	Average:	3.18 3.11 3.04 3.66 Co	-11.42 -11.61 -11.87 -11.58 ordinate Cha δ Y (m) -11.70 -11.35 -12.19 -12.06 -11.50 -11.97 -11.88 -11.51	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0
MERATIONS MEADOW after 2/25/76 SPREAD MONUMENT COBRA FUSS BLEW IT STYLUS IICHEN FALL MOON SNOWY VINDY	1343.21 1860.11 2877.56 3902.85 X (m) 2853.20 753.34 5819.96 5065.73 1669.92 4517.74 3962.28 1760.39 1636.85	2931.03 1618.64 1921.35 752.67 Project Grid N Y (m) 8108.94 7350.70 6529.58 5443.23 5156.19 5524.35 3841.17 3156.24 2794.89	774.60 636.91 638.25 411.94 (et78.06 Z (m) 1468.13 1499.21 1653.07 1508.76 1289.25 1362.24 1064.97 933.34 952.42	1346.61 1863.29 2880.67 3905.89 X (m) 2857.46 757.47 5823.96 5069.55 1673.69 4521.57 3965.83 1763.83 1640.23	1607.22 1909.74 740.80 Project Grid N Y (m) 8097.24 7339.35 6517.39 5431.17 5144.69 5512.38 3829.29 3144.73 2783.40	991.11 774.80 637.14 638.48 412.13 Net79 Z (m) 1468.32 1499.40 1653.26 1508.95 1289.44 1362.43 1065.16 933.53 952.61	Average:	3.18 3.11 3.04 3.66 Co 8X (m) 4.26 4.13 4.00 3.82 3.77 3.83 3.55 3.44 3.38	-11.42 -11.61 -11.87 -11.58 ordinate Cha δ Y (m) -11.70 -11.35 -12.19 -12.06 -11.50 -11.97 -11.88 -11.51 -11.49	00.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.
MERATIONS MEADOW after 2/25/76 SPREAD MONUMENT COBRA FUSS BLEW IT STYLUS LICHEN FALL MOON SNOWY MINDY FOGGY	1343.21 1860.11 2877.56 3902.85 X (m) 2853.20 753.34 5819.96 5065.73 1669.92 4517.74 3962.28 1760.39 1636.85 1484.21	2931.03 1618.64 1921.35 752.67 Project Grid N Y (m) 8108.94 7350.70 6529.58 5443.23 5156.19 5524.35 3841.17 3156.24 2794.89 2599.75	774.60 636.91 638.25 411.94 (et78.06 Z (m) 1468.13 1499.21 1653.07 1508.76 1289.25 1362.24 1064.97 933.34 952.42 933.93	1346.61 1863.29 2880.67 3905.89 X (m) 2857.46 757.47 5823.96 5069.55 1673.69 4521.57 3965.83 1763.83 1640.23 1487.55	1607.22 1909.74 740.80 Project Grid N Y (m) 8097.24 7339.35 6517.39 5431.17 5144.69 5512.38 3829.29 3144.73 2783.40 2588.28	991.11 774.80 637.14 638.48 412.13 Net79 Z (m) 1468.32 1499.40 1653.26 1508.95 1289.44 1362.43 1065.16 933.53 952.61 934.12	Average:	3.18 3.11 3.04 3.66 Co 8X (m) 4.26 4.13 4.00 3.82 3.77 3.83 3.55 3.44 3.38 3.34	-11.42 -11.61 -11.87 -11.58 ordinate Cha δ Y (m) -11.70 -11.35 -12.19 -12.06 -11.50 -11.97 -11.88 -11.51 -11.49 -11.47	$\begin{array}{c} \text{0.0.3}\\
MBRATIONS MEADOW after 2/25/76 SPREAD MONUMENT COBRA FUSS BLEW IT STYLUS LICHEN FALL MOON SNOWY WINDY FOGGY PRECIP	1343.21 1860.11 2877.56 3902.85 X (m) 2853.20 753.34 5819.96 5065.73 1669.92 4517.74 3962.28 1760.39 1636.85 1484.21 1343.21	2931.03 1618.64 1921.35 752.67 Project Grid N Y (m) 8108.94 7350.70 6529.58 5443.23 5156.19 5524.35 3841.17 3156.24 2794.89 2599.75 2931.02	774.60 636.91 638.25 411.94 (et78.06 Z (m) 1468.13 1499.21 1653.07 1508.76 1289.25 1362.24 1064.97 933.34 952.42 933.93 990.92	X (m) 2857.46 757.47 5823.96 5069.55 1673.69 4521.57 3965.83 1763.83 1640.23 1487.55 1346.61	1607.22 1909.74 740.80 Project Grid N (m) 8097.24 7339.35 6517.39 5431.17 5144.69 5512.38 3829.29 3144.73 2783.40 2588.28 2919.58	991.11 774.80 637.14 638.48 412.13 Net79 Z (m) 1468.32 1499.40 1653.26 1508.95 1289.44 1362.43 1065.16 933.53 952.61 934.12 991.11	Average:	3.18 3.11 3.04 3.66 Co	-11.42 -11.61 -11.87 -11.58 ordinate Cha δ Y (m) -11.70 -11.35 -12.19 -12.06 -11.50 -11.97 -11.88 -11.51 -11.49 -11.47	$\begin{array}{c} \text{0.0.3}\\
MBRATIONS MEADOW after 2/25/76 SPREAD MONUMENT COBRA FUSS BLEW IT STYLUS LICHEN FALL MOON SNOWY VINDY FOGGY PRECIP //BRATIONS	1343.21 1860.11 2877.56 3902.85 X (m) 2853.20 753.34 5819.96 5065.73 1669.92 4517.74 3962.28 1760.39 1636.85 1484.21 1343.21 1860.11	2931.03 1618.64 1921.35 752.67 Project Grid N Y (m) 8108.94 7350.70 6529.58 5443.23 5156.19 5524.35 3841.17 3156.24 2794.89 2599.75 2931.02 1618.75	774.60 636.91 638.25 411.94 (et78.06 Z (m) 1468.13 1499.21 1653.07 1508.76 1289.25 1362.24 1064.97 933.34 952.42 933.93 990.92 774.61	1346.61 1863.29 2880.67 3905.89 X (m) 2857.46 757.47 5823.96 5069.55 1673.69 4521.57 3965.83 1763.83 1640.23 1487.55 1346.61 1863.29	1607.22 1909.74 740.80 Project Grid N (m) 8097.24 7339.35 6517.39 5431.17 5144.69 5512.38 3829.29 3144.73 2783.40 2588.28 2919.58 1607.22	991.11 774.80 637.14 638.48 412.13 Net79 Z (m) 1468.32 1499.40 1653.26 1508.95 1289.44 1362.43 1065.16 933.53 952.61 934.12 991.11 774.80	Average:	3.18 3.11 3.04 3.66 Co	-11.42 -11.61 -11.87 -11.58 ordinate Cha δ Y (m) -11.70 -11.35 -12.19 -12.06 -11.50 -11.97 -11.88 -11.51 -11.49 -11.47 -11.44 -11.53	0.3.0 0.3.0
MERATIONS MEADOW after 2/25/76 SPREAD MONUMENT COBRA FUSS BLEW IT STYLUS LICHEN FALL MOON SNOWY WINDY FOGGY PRECIP	1343.21 1860.11 2877.56 3902.85 X (m) 2853.20 753.34 5819.96 5065.73 1669.92 4517.74 3962.28 1760.39 1636.85 1484.21 1343.21	2931.03 1618.64 1921.35 752.67 Project Grid N Y (m) 8108.94 7350.70 6529.58 5443.23 5156.19 5524.35 3841.17 3156.24 2794.89 2599.75 2931.02	774.60 636.91 638.25 411.94 (et78.06 Z (m) 1468.13 1499.21 1653.07 1508.76 1289.25 1362.24 1064.97 933.34 952.42 933.93 990.92	X (m) 2857.46 757.47 5823.96 5069.55 1673.69 4521.57 3965.83 1763.83 1640.23 1487.55 1346.61	1607.22 1909.74 740.80 Project Grid N (m) 8097.24 7339.35 6517.39 5431.17 5144.69 5512.38 3829.29 3144.73 2783.40 2588.28 2919.58	991.11 774.80 637.14 638.48 412.13 Net79 Z (m) 1468.32 1499.40 1653.26 1508.95 1289.44 1362.43 1065.16 933.53 952.61 934.12 991.11	Average:	3.18 3.11 3.04 3.66 Co	-11.42 -11.61 -11.87 -11.58 ordinate Cha δ Y (m) -11.70 -11.35 -12.19 -12.06 -11.50 -11.97 -11.88 -11.51 -11.49 -11.47	0.2 0.2 0.2 0.2

Table 12. Glacier motion and surface altitude data from site A (590 meters altitude) on Wolverine Glacier, Alaska

[X, Y, and Z, coordinates of the stake base, E indicates estimate using measurement of a nearby stake, see Glacier motion section for method; S, average speed; θ, horizontal glacier surface motion direction, positive counterclockwise from grid East; φ, dip of glacier surface motion, positive up from hoizontal; Z_I , glacier surface altitude at fixed-location measurement site; d snow depth; Z_{ss} , summer surface altitude at the fixed-location site; b', stake reading (either b', b*, or b** from tables 2, 3, and 4), height of glacier surface above the stake base; e, glacier motion emergence, the amount of ice motion rise (+) upward toward the surface; submergence (-) downward, the amount a glacier would change in thickness at a site with a mass balance of zero; S_e , emergence speed; motion terminology after Meier, 1960; ---, no data available. See Glacier motion and surface altitudes section for method of measurement. Abbreviations: m/d/y, month/day/year, yr, year; m, meter; grad, a measure of angle, a right angle is 100 grad]

	Period		ke Locatio			er Motion \		Surface	Snow	Summer Surface	Stake	Eme	rgence
Date	Since Last		Grid Coord			Direction		Altitude	Depth	Altitude	Reading		Speed
Bute	Survey	X	<i>Y</i>	Z	S	θ	φ	Z_I	d	Z_{ss}	b'	e	S_e
m/d/y	yr	m	m	m	m/yr	grad	grad	m	m	m	m	m	m/yr
		S	TAKE 75-	A									
2/08/75		2465.1	1726.7	590.2				600.5	1.6	598.9	7.8		
5/31/75	0.307	2469.9	1714.9	590.6	41.6	-75.4	2.0	601.4	1.3	600.1	7.6	1.1	3.6
8/17/75	0.214	2474.5	1705.7	589.6	48.4	-70.5	-6.2	597.8	0.0	597.8	3.5	0.5	2.3
		CI	DATZE 55										
2/08/75			Г АКЕ 75- 1771.8	592.1				600.5	1.6	598.9	12.2		
5/31/75		2447.2 2452.0	17/1.8	592.1 592.5 E	41.6	-75.4	2.0	600.3	1.6 1.3	600.1	12.2 12.0 E	1.1	3.6
10/25/75		2452.0	1742.3	589.9		-73. 4 -79.2	-8.8	596.0	0.2	595.8	6.1	0.5	0.7
2/25/76			1742.3	590.5	26.6 38.3	-79.2 -67.0	3.0	599.3				2.2	6.5
		2464.4				-07.0 -72.7	-0.8		1.3	598.0	7.2 E	2.2	5.3
7/12/76 10/19/76		2470.7	1717.3 1706.3	590.3	40.2 45.5	-72.7 -71.9		598.6	0.0	598.6	4.5 0.9	-0.4	
10/19/70	0.271	2475.9	1700.5	588.3	43.3	-/1.9	-10.4	594.6	0.1	594.5	0.9	-0.4	-1.5
		S	TAKE 77-	A									
2/23/77		2468.1	1797.2	602.0				602.6	4.7	597.9	5.0 E		
6/10/77	0.293	2472.7	1783.9	602.7 E	48.1	-78.8	3.2	603.5	3.3	600.2	3.6 E	2.3	7.9
		Stake slip	ped down	1.69 m, see	balance	e data; stake	altitude,	Z, and stal	ke reading	g, b', adjusted for the	ne measured	l stake	slip.
		CI								•			•
C/10/77			TAKE 77-A					602.5	2.5	(00.0	10.6		
6/10/77		2477.7	1797.7	597.2	540	00.2	12.5	603.5	3.5	600.0	10.6	1.0	2.7
10/24/77		2483.8	1778.6	593.2	54.9	-80.3	-12.5	596.0	0.6	595.4	4.1	-1.0	-2.7
3/02/78		2489.3	1765.4	593.4	40.5	-74.9	0.9	600.6	3.0	597.6	6.5	2.2	6.2
6/04/78	0.257	2494.0	1755.6	593.5	42.2	-71.5	0.6	601.3	1.8	599.5	5.3	1.9	7.4
		ST	AKE 78-6.	9A									
3/02/78		2492.2	1802.1	594.3				600.6	3.2	597.4	10.8		
6/04/78	0.257	2497.0	1791.3	594.7	46.0	-73.4	2.2	601.3	1.9	599.4	9.5	2.0	7.8
9/28/78	0.318	2503.6	1774.7	590.8	57.5	-75.9	-13.7	593.9	0.0	593.9	3.4	-1.3	-4.1
			take reset.										
9/28/78		2503.5	1773.6	592.6				593.9	0.0	593.9	1.4		
3/14/79	0.457	2510.3	1757.6	592.3	38.0	-74.4	-1.1	598.3	1.9	596.4	3.2	2.6	5.7
		STA	AKE 78-6.9	9A2									
3/02/78		2493.5	1800.5	595.4				600.6	3.2	597.4	10.1		
6/04/78	0.257	2497.8	1789.4	595.1	46.3	-76.5	-1.6	601.3	1.9	599.4	8.8	2.0	7.8
9/28/78	0.318	2503.4	1772.5	591.2	57.3	-79.6	-13.7	593.9	0.0	593.9	2.7	-1.3	-4.1
		ST	AKE 79-6.	94									
3/14/79		2485.4	1800.1	592.4				598.3	2.0	596.3	10.4		
	0.411	2492.0		589.8	51.4	-79.6	-7.9	592.9	0.0	592.9	4.4	0.6	1.5
	0.419	2497.9	1763.2	587.3	43.4	-78.7	-8.8	591.9	1.4	590.5	3.2	0.2	0.5
	0.397	2503.8	1749.7	588.0	37.2	-73.8	3.0	596.1	3.3	592.8	5.1	2.3	5.8
			TAKE 80-										
1/11/80		2482.7	1792.7	584.3				591.9	1.4	590.5	10.9		
	0.397	2488.6	1779.2	585.0 E		-73.8	3.0	596.1	3.3	592.8	12.8 E	2.3	5.8
9/02/80		2494.0	1765.3	582.6	61.4	-76.4	-10.2	591.9	0.0	591.9	8.3	0.3	1.2
	0.400	2499.7	1752.1	581.8	36.0	-74.0	-3.5	594.3	2.2	592.1	9.6	1.1	2.8
6/02/81		2505.6	1737.4	581.8	45.5	-75.7	0.0	596.9	2.3	594.6	9.6	2.6	7.5
	0.249	2509.9	1727.1	579.8	45.5	-74.8	-11.3	592.2	0.0	592.2	5.1	-0.2	-0.8
	0.392	2518.2	1710.5	578.6	47.4	-70.5	-4.1	593.8	1.0	592.8	5.4	1.3	3.3
6/25/82	0.422	2527.0	1693.6	579.0	45.2	-69.4	1.3	596.4	0.0	596.4	3.9	4.1	9.7

Table 12. Glacier motion and surface altitude data from site A (590 meters altitude) on Wolverine Glacier, Alaska--Continued

	Period		ake Location			er Motion		Surface Snow	Summer Surface	Stake	Emergence		
Date	Since Last	-	Grid Coord		•	Direction	-	Altitude	Depth	Altitude	Reading		Speed
,,,	Survey	X	Y	Z	S	θ,	φ.	Z_{I}	d	Z_{ss}	b'	e	S_e
m/d/y	yr	m	m	m	m/yr	grad	grad	m	m	m	m	m	m/yr
		ST	Γ ΑΚΕ 82- Α										
6/25/82	!	2502.8	1747.1	584.0				596.4	0.0	596.4	7.1		
9/02/82	0.189	2506.2	1738.1	582.2	51.8	-77.0	-11.8	590.9	0.0	590.9	3.3	-1.7	-9.0
1/14/83		2512.8	1724.3	581.7	41.7	-71.6	-2.1	594.0	1.6	592.4	4.1	2.3	6.3
6/11/83	0.405	2521.5	1707.4	581.8	46.9	-69.7	0.3	596.5	0.8	595.7	3.3	3.3	8.1
		ST	ГАКЕ 83-A										
6/11/83	1	2456.6	1790.7	591.2				596.5	0.8	595.7	8.1		
9/02/83		2460.7	1777.2	588.4	63.4	-81.2	-12.5	590.9	0.0	590.9	3.5	-1.0	-4.4
1/18/84		2466.6	1761.8	588.5	43.6	-76.7	0.4	594.6	1.8	592.8	4.4	2.8	7.4
6/10/84	0.394	2475.1	1742.4	588.6	53.8	-73.7	0.3	595.7	0.6	595.1	3.2	2.3	5.8
		ST	Γ AKE 84-A										
6/10/84		2494.5	1789.8	589.3				595.7	0.6	595.1	9.3		
8/17/84		2499.0	1778.5	587.0	66.6	-75.9	-11.9	590.9	0.0	590.9	4.8	-0.3	-1.6
1/12/85		2509.0	1755.0	583.7	63.6	-74.4	-8.2	591.3	1.5	589.8	4.3	0.9	2.2
6/08/85		2515.0	1741.2	584.7	37.5	-73.9	4.2	595.3	2.0	593.3	4.7	3.6	9.0
8/27/85	0.219	2519.5	1729.9	583.2	56.0	-75.9	-7.8	593.2	0.0	593.2	0.5	2.1	9.6
		ST	ΓΑΚΕ 85-A										
6/08/85	i	2465.6	1815.0	594.2				595.3	1.8	593.5	8.7		
8/27/85	0.219	2469.0	1802.1	592.0	61.7	-83.6	-10.4	593.2	0.0	593.2	4.4	2.2	10.0
2/17/86		2478.1	1779.3	591.0	51.6	-75.8	-2.6	596.5	2.7	593.8	6.1	1.6	3.4
6/14/86	0.320	2484.6	1762.4	591.1	56.6	-76.6	0.4	596.2	0.9	595.3	4.3	1.5	4.7
		ST	Γ AKE 86-A										
6/14/86		2481.8	1790.1	590.9				596.2	0.8	595.4	8.7		
8/20/86	0.183	2485.7	1777.8	588.6	71.6	-80.5	-11.2	591.7	0.0	591.7	4.5	-0.3	-1.6
6/14/87	0.816	2503.4	1737.4	586.6	54.1	-73.7	-2.9	597.0	1.7	595.3	4.7 E	5.1	6.3
		ST	CAKE 87-A										
6/15/87		2453.8	1827.4	601.7				597.0	1.7	595.3	6.6		
10/01/87	0.296	2459.7	1807.0	596.3	74.0	-82.1	-15.9	590.9	0.0	590.9	1.3	-0.8	-2.7
		ST	AKE 87-A2	2									
10/01/87		2452.0	1856.9	600.4				590.9	0.0	590.9	6.1		
3/19/88	0.465	2461.8	1828.2	598.3 E	65.4	-79.1	-4.4	599.7	4.1	595.6	9.9 E	5.0	10.8
6/09/88	0.225	2467.3	1813.2	598.5	71.0	-77.6	0.8	599.6	2.6	597.0	8.4	1.4	6.2
9/18/88	0.277	2473.0	1793.9	595.1	73.7	-81.7	-10.7	593.9	0.0	593.9	3.2	-0.5	-1.8
6/15/89	0.739	2491.1	1750.7	594.0	63.4	-74.7	-1.5	599.2	0.0	599.2	2	6.5	8.8
		ST	TAKE 88-A										
3/19/88		2459.4	1833.8	605.0				599.7	4.9	594.8	4.9		
6/09/88	0.225	2464.9	1818.8	605.2	71.0	-77.6	0.8	599.6	2.6	597.0	2.6	2.2	9.8
		ST	TAKE 89-A										
10/03/89	1	2474.7	1823.5	593.3				592.2	0.0	592.2	7.9		
2/14/90		2481.4	1804.9	592.5	53.9	-78.0	-2.6	596.4	1.7	594.7	9.4	2.7	7.4
6/02/90		2487.8	1788.1	591.7	60.8	-76.8	-2.8	597.0	0.0	597.0	7.8	2.2	7.4
9/07/90	0.266	2492.8	1771.3	588.3	67.1	-81.6	-12.2	590.1	0.0	590.1	1.4	-0.5	-1.9
			TAKE 90-A										
9/10/90)	2492.8	1771.3	581.4				590.1	0.0	590.1	8.1		
1/07/91		2497.9	1757.8	580.7	44.3	-77.0	-3.1	590.9	0.1	590.8	7.8	1.1	3.4
5/13/91		2504.2	1743.5	580.8	45.3	-73.6	0.4	594.8	1.8	593.0	9.4	2.3	6.7
	0.350	2512.6	1726.1	578.1	55.7	-71.4	-8.8	588.6	0.0	588.6	3.2	0.0	0.0

Table 12. Glacier motion and surface altitude data from site A (590 meters altitude) on Wolverine Glacier, Alaska--Continued

	Period Stake Location			n	Glaci	er Motion V	Vector	Surface	Snow	Summer Surface	Stake	Stake Emerg	
Date S	Since Last	Project	Grid Coord	linates	Speed	Direction	Slope	Altitude	Depth	Altitude	Reading	Rise	Speed
	Survey	X	Y	Z	S	θ	φ	Z_{I}	d	Z_{ss}	b'	e	S_e
m/d/y	yr	m	m	m	m/yr	grad	grad	m	m	m	m	m	m/yr
		ST	AKE 91-A										
9/18/91		2453.1	1813.5	585.7				588.6	0.0	588.6	8.9		
1/23/92	0.348	2458.4	1798.5	585.0	45.8	-78.4	-2.8	591.5	1.8	589.7	10.7	1.1	3.2
5/13/92	0.304	2463.7	1784.8	585.2	48.3	-76.5	0.9	593.6	1.9	591.7	10.8	2.0	6.6
9/06/92	0.318	2469.3	1767.4	582.0	58.4	-80.2	-11.0	588.0	0.0	588.0	5.7	-0.5	-1.6
2/09/93	0.427	2476.4	1751.0	582.1	41.9	-74.0	0.4	591.5	1.6	589.9	6.9	2.3	5.4
5/16/93	0.263	2481.6	1739.4	582.2	48.3	-73.2	0.5	594.3	1.9	592.4	7.2	2.5	9.5
		ST	AKE 92-A										
9/07/92		2463.3	1839.4	589.6				588.0	0.0	588.0	8		
2/09/93	0.424	2469.4	1818.9	588.8 E	50.5	-81.6	-2.4	591.5	1.6	589.9	9.6 E	1.9	4.5
5/16/93		2474.6	1807.3	588.9	48.3	-73.2	0.5	594.3	1.8	592.5	9.3	3.1	11.8
9/10/93		2480.9	1788.7	584.9	62.6	-79.2	-12.8	585.9	0.0	585.9	3.7	-2.8	-8.8
2/05/94	0.405	2487.5	1772.5	584.2	43.2	-75.4	-2.5	588.7	2.0	586.7	4.7	1.8	4.4
5/14/94	0.268	2492.0	1761.8	584.3	43.3	-74.7	0.5	590.6	1.8	588.8	4.6	2.0	7.5
		ST	AKE 93-A										
9/13/93		2492.8	1797.2	580.5				585.9	0.0	585.9	9.1		
2/05/94	0.397	2499.6	1780.6	579.5	45.3	-75.2	-3.5	588.7	1.7	587.0	10.6	1.3	3.3
5/14/94		2504.3	1770.4	579.5	41.9	-72.5	0.0	590.6	1.8	588.8	10.6	1.9	7.1
9/09/94		2509.3	1754.1	577.1	53.3	-81.1	-8.9	583.3	0.0	583.3	3.2	0.1	0.3
1/31/95		2514.9	1741.9	576.7	34.1	-72.6	-1.9	586.5	1.9	584.6	4.8	1.6	4.1
5/14/95		2520.6	1730.6	576.3	44.9	-70.3	-2.0	588.1	1.9	586.2	4.7	1.7	6.0
		СT	AKE 94-A										
9/09/94		2487.2	4 KE 94- A 1798.6	577.7				583.3	0.0	583.3	9.9		
1/31/95	0.394	2492.4	1798.6	577.3	37.9	-77.4	-1.7	586.5	1.9	584.6	11.2	1.9	4.8
5/14/95		2492.4	1772.2	576.8	37.9 47.7	-77. 4 -74.7	-2.4	588.1	1.9	586.2	11.2	1.6	5.7
9/14/95		2503.4	1772.2	574.1	49.8	-74.7	-10.3	581.9	0.0	581.9	5.2	-0.2	-0.6
1/12/96		2508.5	1745.6	573.2	37.2	-72.6	-4.7	583.0	1.0	582.0	5.1	1.2	3.6
			A	Average:	50.0	-75.7	-4.1	594.2	1.2	593.0	6.5	1.4	3.6

Table 13. Glacier motion and surface altitude data from site B (1,070 meters altitude) on Wolverine Glacier, Alaska

 $[X, Y, \text{ and } Z, \text{ coordinates of the stake base, E indicates estimate using measurement of a nearby stake, see Glacier motion section for method; <math>S$, average speed; θ , horizontal glacier surface motion direction, positive counterclockwise from grid East; ϕ , dip of glacier surface motion, positive up from hoizontal; Z_I , glacier surface altitude at fixed-location measurement site; d snow depth; Z_{ss} , summer surface altitude at the fixed-location site; b', stake reading (either b', b^* , or b^{**} from tables 2, 3, and 4), height of glacier surface above the stake base; e, glacier motion emergence, the amount of ice motion rise (+) upward toward the surface; submergence (-) downward, the amount a glacier would change in thickness at a site with a mass balance of zero; S_e , emergence speed; motion terminology after Meier, 1960; ---, no data available. See Glacier motion and surface altitudes section for method of measurement. Abbreviations: m/d/y, month/day/year, yr, year; m, meter; grad, a measure of angle, a right angle is 100 grad]

	Period		ake Locatio			er Motion V		Surface	Snow	Summer Surface	Stake	Emergeno	
Date	Since Last		Grid Coord			Direction		Altitude	Depth	Altitude	Reading		Speed
	Survey	X	Y	Z	S	θ	φ	Z_I	d	Z_{ss}	b'	e	S_e
m/d/y	yr	m	m	m	m/yr	grad	grad	m	m	m	m	m	m/yr
					0-400 r	n northeast	t of site I	3.					
2/07/75		3169.8	5113.9	1063.9					2.6		9.7		
6/03/75		3178.9	5095.4	1062.7	65.0	-70.9	-3.7		3.5		10.6		
10/27/75		3187.8	5073.8	1061.1	58.6	-75.1	-4.4		0.5		6.8		
2/23/76		3194.2	5055.8	1060.9	58.6	-78.3	-0.7		2.3		8.6		
10/15/76	0.643	3209.0	5015.4	1059.1	66.9	-77.6	-2.7		0.8		5.6		
			AKE 75-B										
10/27/75		3059.9	4873.2	1068.2				1064.6	0.6	1064.0	0.6		
2/23/76		3068.7	4850.5	1067.7	74.6	-76.5	-1.2	1066.6	2.2	1064.4	2.2	0.4	1.2
7/13/76	0.386	3082.0	4819.4	1066.7	87.7	-74.3	-1.9	1066.3	0.9	1065.4	0.9	1.0	2.6
		ST	AKE 76-B										
2/23/76)	3068.7	4850.2	1063.0				1066.6	2.3	1064.3	6.9		
7/13/76	0.386	3081.9	4819.4	1062.0	86.8	-74.2	-1.9	1066.3	1.0	1065.3	5.6	1.0	2.6
10/15/76	0.257	3088.1	4801.7	1060.4	73.1	-78.6	-5.4	1064.0	0.8	1063.2	3.7	-0.4	-1.6
10/24/77	1.024	3111.8	4727.5	1056.4	76.2	-80.3	-3.3	1065.3	1.5	1063.8	4.6	0.4	0.4
		ST	AKE 77-B										
2/23/77	,	3036.9	4842.5	1067.4				1070.1	6.9	1063.2	4.8		
		Stake l	base in the s	snow above	the sun	nmer surface	e.						
6/08/77	0.287	3045.9	4819.9	1066.3	84.7	-75.9	-2.9	1069.5	5.9	1063.6	4.7	-0.5	-1.7
		ST	AKE 77-B	2									
6/08/77	•	3063.1	4823.2	1061.0				1069.5	6.1	1063.4	9.9		
10/24/77		3073.6	4794.5	1059.6	81.0	-77.7	-2.9	1065.3	1.5	1063.8	5.6	0.1	0.3
3/01/78		3081.3	4769.1	1058.7	75.8	-81.3	-2.2	1068.5	4.3	1064.2	8.2	0.6	1.7
6/02/78	0.255	3088.5	4747.8	1057.6	88.4	-79.2	-3.1	1068.4	4.8	1063.6	8.7	-0.6	-2.4
		ST	AKE 78-3.	7R									
3/01/78	!	3068.0	4809.4	1059.3				1068.5	4.3	1064.2	10.0		
6/02/78		3075.8	4788.9	1058.6	86.1	-76.9	-2.0	1069.4	4.6	1064.8	10.3	0.6	2.4
9/29/78		3085.0	4761.8	1055.4	87.9	-79.2	-2.7	1064.5	0.0	1064.5	5.2	0.2	0.6
3/07/79		3094.2	4730.0	1055.5	76.2	-82.1	-3.6	1067.3	2.8	1064.5	7.9	0.1	0.2
8/06/79		3103.4	4697.0	1053.8	82.5	-82.7	-3.2	1064.7	0.0	1064.7	4.8	0.5	1.2
			AKE 79-3.										
3/07/79)	3082.3	4829.4	1059.8				1067.3	2.8	1064.5	9.0		
8/06/79		3094.0	4796.4	1058.5	84.2	-78.3	-2.4	1064.7	0.1	1064.6	6.0	0.4	1.0
1/10/80		3103.7	4766.3	1056.8	73.7	-80.2	-3.4	1065.7	3.1	1062.6	6.8	0.2	0.5
1,10,00	0.150				,	00.2	· · ·	100011	0.1	1002.0	0.0	0.2	0.0
1/10/80			AKE 80-3.					1065.7	3.1	1062.6	8.1		
6/06/80		3079.5	4827.7	1059.2	70 1	92.1	20	1063.7	4.2	1064.9	9.2 E	2.3	57
9/05/80		3087.8 3095.1	4797.2 4776.9	1057.8 E 1056.7	78.1 86.7	-83.1 -78.0	-2.8 -3.2	1069.1	2.4	1064.9	9.2 E 7.3	-0.9	5.7 -3.6
9/03/80		3135.4	4615.5	1050.7	83.7	-78.0 -84.4	-3.2	1066.5	0.0	1067.6	3.6	5.0	2.5
2101102	1.700				03.7	-0	-2.0	1007.0	0.0	1007.0	5.0	5.0	4.3
			AKE 80-B										
6/06/80		3065.4	4821.5	1065.2				1069.1	5.6	1063.5	5.6		
9/05/80		3072.7	4801.2	1064.1	86.7	-78.0	-3.2	1066.3	1.8	1064.5	1.8	1.0	4.0
9/01/81		3098.2	4716.7	1062.7	89.3	-81.3	-1.0	1068.1	1.6	1066.5	2.6	1.0	1.0
9/01/82	0.999	3116.2	4637.4	1055.6	81.7	-85.8	-5.5	1067.6	0.0	1067.6	1.1	1.0	1.0

Table 13. Glacier motion and surface altitude data from site B (1,070 meters altitude) on Wolverine Glacier, Alaska--Continued

	Period Stake Location			n	Glaci	er Motion V	Vector	Surface	Snow	Summer Surface	Stake	Emergence		
Date	Since Last		Grid Coord			Direction		Altitude	Depth	Altitude	Reading		Speed	
	Survey	X	Y	Z	S	θ	φ	Z_{I}	d	Z_{ss}	b'	e	S_e	
m/d/y	yr	m	m	m	m/yr	grad	grad	m	m	m	m	m	m/yr	
	<u> </u>	ST	TAKE 81-B											
1/27/81		3028.9	4862.5	1070.0				1070.6	5.1	1065.5	5.3			
6/03/81	0.348	3041.1	4831.9	1068.8	94.7	-75.8	-2.3	1071.7	5.3	1066.4	5.4	1.0	2.9	
9/01/81	0.246	3048.3	4808.4	1067.3	100.1	-81.1	-3.9	1068.1	1.7	1066.4	1.9	-0.1	-0.4	
1/20/82	0.386	3061.0	4777.8	1065.6	85.9	-75.0	-3.3	1070.2	2.1	1068.1	4.0	0.0	0.0	
6/26/82	0.430	3070.5	4740.4	1063.3	89.9	-84.2	-3.8	1070.3	1.8	1068.5	3.7	0.4	0.9	
9/01/82	0.183	3075.4	4726.1	1062.7	82.7	-79.0	-2.5	1067.6	0.0	1067.6	0.6 E	0.4	2.2	
		ST	AKE 81-B2	2										
9/02/81		3025.0	4868.0	1068.9				1068.1	1.7	1066.4	3.8			
1/20/82	0.383	3037.4	4837.3	1067.2	86.6	-75.6	-3.3	1070.2	2.1	1068.1	5.6	0.3	0.8	
6/26/82	0.430	3050.2	4801.1	1065.6	89.4	-78.4	-2.7	1070.3	1.7	1068.6	5.3	0.4	0.9	
9/01/82	0.183	3056.0	4785.0	1064.9	93.6	-78.0	-2.6	1067.6	0.0	1067.6	2.2	0.4	2.2	
1/14/83	0.370	3065.9	4755.7	1063.3	83.7	-79.3	-3.3	1070.0	2.6	1067.4	4.4	0.2	0.5	
6/13/83	0.411	3075.2	4719.7	1061.5	90.6	-83.9	-3.1	1070.5	2.8	1067.7	4.7	0.2	0.5	
9/02/83	0.222	3080.2	4700.8	1060.5	88.2	-83.5	-3.3	1067.5	0.0	1067.5	1.0	0.7	3.2	
		ST	ГАКЕ 83-В											
6/13/83		3059.6	4882.2	1066.5				1070.5	2.7	1067.8	8.6			
9/02/83	0.222	3067.0	4862.8	1065.7	93.6	-76.8	-2.5	1067.5	0.0	1067.5	5.0	0.6	2.7	
1/19/84	0.381	3078.4	4832.5	1065.1	85.0	-77.1	-1.2	1070.9	2.6	1068.3	7.4	1.0	2.6	
6/08/84	0.386	3090.0	4799.3	1064.0	91.2	-78.6	-2.0	1071.7	2.7	1069.0	7.6	0.6	1.6	
8/20/84	0.200	3096.2	4781.4	1062.7	94.9	-78.8	-4.4	1068.1	0.0	1068.1	4.2	-0.2	-1.0	
1/13/85	0.400	3105.0	4751.6	1060.9	77.8	-81.7	-3.7	1069.2	2.0	1067.2	5.4	-0.1	-0.3	
6/15/85	0.419	3114.7	4717.3	1059.1	85.2	-82.5	-3.2	1070.8	3.1	1067.7	6.5	0.5	1.2	
8/27/85	0.200	3118.5	4700.4	1058.2	86.7	-85.9	-3.3	1068.2	0.1	1068.1	3.6	0.3	1.5	
2/18/86	0.479	3126.9	4662.2	1056.7	81.7	-86.2	-2.4	1072.5	3.7	1068.8	7.0	0.9	1.9	
		STA	KE 85-BB	Q										
6/15/85		3152.2	4893.5	1064.8				1070.8	3.0	1067.8	8.1			
8/27/85	0.200	3157.7	4877.6	1064.6	84.1	-78.8	-0.8	1068.2	0.2	1068.0	5.0	0.5	2.5	
2/18/86	0.479	3170.0	4842.7	1064.1	77.3	-78.4	-0.9	1072.5	3.5	1069.0	7.9	1.4	2.9	
6/16/86	0.323	3178.2	4817.3	1063.3	82.7	-80.1	-1.9	1071.9	2.8	1069.1	7.2	0.1	0.3	
8/20/86	0.178	3182.7	4802.6	1062.4	86.5	-81.1	-3.7	1068.5	0.0	1068.5	4.3	-0.5	-2.8	
10/03/89	3.121	3229.0	4558.8	1052.7	79.6	-88.1	-2.5	1069.9	0.0	1069.9	1.3	4.4	1.4	
		ST	AKE 85-BI	P										
6/15/85		3009.2	4883.0	1068.2				1070.8	3.1	1067.7	7.7			
8/27/85	0.200	3016.6	4865.1	1067.5	96.9	-75.0	-2.3	1068.2	0.2	1068.0	4.9	0.2	1.0	
2/18/86	0.479	3032.0	4825.8	1066.6	88.1	-76.2	-1.4	1072.5	3.9	1068.6	8.4	0.8	1.7	
6/16/86	0.323	3042.3	4797.2	1065.4	94.2	-78.0	-2.5	1071.9	2.7	1069.2	7.4	0.4	1.2	
8/20/86	0.178	3048.1	4780.4	1064.4	100.0	-78.8	-3.6	1068.5	0.0	1068.5	4.0	0.0	0.0	
10/03/89	3.121	3099.0	4505.5	1049.9	89.7	-88.3	-3.3	1069.9	0.0	1069.9	1.2	4.2	1.3	
		C7	ГАКЕ 86-В											
6/16/86		3030.2	4906.2	1069.3				1071.9	2.8	1069.1	8.7			
8/20/86		3037.2	4889.8	1068.3	100.3	-74.3	-3.6	1068.5	0.0	1068.5	5.5	-0.2	-1.1	
10/01/87		3072.0	4794.2	1070.6	91.3	-77.8	1.4	1070.6	0.6	1070.0	5.5	2.1	1.9	
10/03/89		3117.6	4618.0	1056.0	91.0	-81.7	-2.8	1069.9	0.0	1069.9	5.5	-0.7	-0.3	
					10	2 = 1 7								
2/10/07			AKE 86-BI					1072 5	2.0	1069.6	2.0			
2/18/86 6/16/86		3126.1 3131.1	4661.3 4634.2	1059.6	05 1	00 1	20	1072.5	3.9 3.0	1068.6 1068.9	3.9	0.2	0.9	
0/10/80	0.323	3131.1	4034.2	1058.4	85.4	-88.4	-2.8	1071.9	5.0	1008.9	3.0 E	0.3	0.9	

Table 13. Glacier motion and surface altitude data from site B (1,070 meters altitude) on Wolverine Glacier, Alaska--Continued

	Period		ike Locati			ier Motion V		Surface	Snow	Summer Surface	Stake		rgence
Date	Since Last	Project	Grid Coor	dinates	Speed	Direction	Slope	Altitude	Depth	Altitude	Reading	Rise	Speed
	Survey	X	Y	Z	S	θ	$\boldsymbol{\phi}$	Z_{I}	d	Z_{ss}	b'	e	S_e
m/d/y	yr	m	m	m	m/yr	grad	grad	m	m	m	m	m	m/yr
		ST	AKE 87-1	В									
6/13/87	1	3039.7	4850.6	1066.9				1073.4	4.3	1069.1	9.2		
10/01/87	0.301	3049.6	4823.9	1065.7	94.7	-77.4	-2.7	1070.7	0.6	1070.1	6.2	0.3	1.0
3/17/88	0.460	3063.8	4782.8	1064.5	94.6	-78.8	-1.8	1076.3	5.8	1070.5	11.4	0.4	0.9
6/10/88	0.233	3070.5	4760.7	1063.5	99.2	-81.3	-2.8	1075.8	5.0	1070.8	10.6	0.3	1.3
9/17/88	3 0.271	3077.1	4736.9	1062.1	91.3	-82.8	-3.6	1071.5	0.8	1070.7	6.4	-0.1	-0.4
2/16/89		3088.1	4699.5	1060.4	93.8	-81.8	-2.8	1074.8	2.9	1071.9	8.5	1.2	2.9
6/17/89		3094.9	4669.3	1059.0	93.6	-85.9	-2.9	1074.7	1.7	1073.0	8.0	0.4	1.2
10/03/89	0.296	3100.0	4644.0	1057.0	87.5	-87.3	-4.9	1069.9	0.0	1069.9	3.2	0.0	0.0
		ST	'AKE 89-1	B2									
10/08/89)	3053.8	4902.7	1068.1				1069.9	0.6	1069.3	6.4		
2/14/90	0.353	3063.6	4875.2	1066.9	82.8	-78.2	-2.6	1072.2	2.5	1069.7	8.4	0.3	0.8
6/03/90	0.298	3072.9	4850.7	1065.9	88.0	-76.9	-2.4	1071.0	2.0	1069.0	7.8	-0.6	-2.0
9/06/90	0.260	3080.6	4831.2	1064.7	80.8	-76.1	-3.6	1066.0	0.0	1066.0	2.5	0.3	1.2
1/06/91	0.334	3088.9	4808.1	1063.4	73.6	-78.0	-3.4	1066.3	1.1	1065.2	3.5	-0.7	-2.1
5/13/91	0.348	3096.4	4780.7	1062.1 E	81.7	-83.0	-2.9	1069.5	3.3	1066.2	5.7 E	1.0	2.9
9/12/91	0.334	3107.2	4754.5	1060.8	84.9	-75.1	-2.9	1064.6	0.0	1064.6	1.3	-0.5	-1.5
		ST	'AKE 91-1	В									
5/13/91		3046.5	4884.9	1064.3				1069.5	3.3	1066.2	9.8		
9/12/91	0.334	3057.3	4858.6	1063.0	85.2	-75.2	-2.9	1064.6	0.0	1064.6	5.0	-0.1	-0.3
1/22/92	0.361	3066.6	4833.9	1061.8	73.2	-77.1	-2.9	1067.8	3.2	1064.6	8.1	0.1	0.3
5/13/92	0.307	3075.6	4811.2	1060.0	79.8	-76.0	-4.7	1069.0	3.7	1065.3	8.7	0.6	2.0
9/03/92	0.309	3083.6	4786.7	1059.7	83.4	-79.9	-0.7	1064.1	0.0	1064.1	3.7	0.1	0.3
2/16/93	0.454	3094.0	4754.9	1057.9	73.8	-79.9	-3.4	1067.2	3.0	1064.2	6.8	0.0	0.0
5/15/93	0.241	3099.1	4737.1	1056.9	76.9	-82.2	-3.4	1068.6	4.1	1064.5	7.9	0.3	1.2
		ST	'AKE 93-1	В									
5/15/93	3	3024.9	4898.8	1065.3				1068.6	4.2	1064.4	9.2		
9/10/93		3036.6	4872.7	1064.3	88.6	-73.2	-2.2	1063.5	0.0	1063.5	3.4	0.7	2.2
2/05/94	0.405	3048.5	4844.3	1063.1	76.1	-74.7	-2.5	1066.1	2.7	1063.4	5.9	0.1	0.2
5/13/94	0.266	3056.3	4825.0	1062.4	78.3	-75.5	-2.1	1067.5	3.7	1063.8	7.0	0.3	1.1
9/10/94	0.329	3065.7	4799.8	1061.2	81.8	-77.3	-2.8	1062.3	0.0	1062.3	2.0	-0.2	-0.6
1/31/95	0.392	3075.0	4773.4	1059.8	71.5	-78.4	-3.2	1065.9	3.3	1062.6	4.9	0.7	1.8
5/14/95	0.282	3081.6	4753.4	1058.8	74.8	-79.7	-3.0	1067.1	4.3	1062.8	6.0	0.1	0.4
		ST	'AKE 94-1	R									
5/13/94	Į.	3054.0	4874.3	1060.4				1067.5	3.7	1063.8	11.2		
	0.329	3064.5	4849.0	1059.3	83.3	-75.0	-2.6	1062.3	0.0	1062.3	6.1	-0.1	-0.3
	0.392	3074.6	4822.6	1058.0	72.2	-76.7	-2.9	1065.9	3.3	1062.6	9.3	0.4	1.0
	5 0.282	3081.8	4802.7	1057.1	75.1	-77.9	-2.7	1067.1	4.2	1062.9	10.2	0.3	1.1
	5 0.339	3090.8	4777.8	1055.8	78.2	-77.9	-3.1	1062.2	0.0	1062.2	5.1	0.2	0.6
	0.326	3097.5	4756.9	1054.5	67.4	-80.3	-3.8	1063.3	2.0	1061.3	6.6	-0.4	-1.2
				Average:	83.7	-79.3	-2.8	1068.6	2.2	1066.4	5.9	0.5	0.8

Table 14. Glacier motion and surface altitude data from site C (1,290 meters altitude) on Wolverine Glacier, Alaska

 $[X, Y, \text{ and } Z, \text{ coordinates of the stake base, E indicates estimate using measurement of a nearby stake, see Glacier motion section for method; <math>S$, average speed; θ , horizontal glacier surface motion direction, positive counterclockwise from grid East; ϕ , dip of glacier surface motion, positive up from hoizontal; Z_P , glacier surface altitude at fixed-location measurement site; d snow depth; Z_{ss} , summer surface altitude at the fixed-location site; d0, stake reading (either d0, d0, d0, d0, d0, height of glacier surface above the stake base; d0, glacier motion emergence, the amount of ice motion rise (+) upward toward the surface; submergence (-) downward, the amount a glacier would change in thickness at a site with a mass balance of zero; S_P 0, emergence speed; motion terminology after Meier, 1960; ---, no data available. See Glacier motion and surface altitudes section for method of measurement. Abbreviations: m/d/y, month/day/year, yr, year; m, meter; grad, a measure of angle, a right angle is 100 grad]

-	Period		ake Locatio			ier Motion V		Surface	Snow	Summer Surface	Stake		rgence
Date 3	Since Last		Grid Coord			Direction		Altitude	Depth	Altitude	Reading		Speed
	Survey	X	Y	Z	S	θ	ϕ	Z_{I}	d	Z_{ss}	b'	e	S_e
m/d/y	yr	m	m	m	m/yr	grad	grad	m	m	m	m	m	m/yr
					,160.5 n	n and Y=64	173.6 m.						
			AKE 75-C										
2/06/75		2095.2	6500.5	1278.1				1283.8	3.4	1280.4	6.4		
5/03/75		2095.4	6489.6	1277.7	34.1	-98.8	-2.3	1285.8	5.4	1280.4	8.5	-0.1	-0.3
	0.216	2096.3	6481.4	1277.2	38.2	-93.0	-3.9	1281.9	2.0	1279.9	5.2	-0.6	-2.8
	0.183	2096.5	6475.6	1276.8	31.7	-97.8	-4.4	1282.5	0.9	1281.6	6.0	-0.2	-1.1
	0.326	2097.4	6464.6	1276.3	33.9	-94.8	-2.9	1284.3	3.0	1281.3	8.1	-0.3	-0.9
//13/76	0.386	2097.9	6450.7	1275.8	36.1	-97.7	-2.3	1283.9	2.6	1281.3	7.7	0.0	0.0
0/20/76	0.271	2098.9	6441.1	1274.9	35.8	-93.4	-5.9	1283.1	2.3	1280.8	7.4	-0.5	-1.8
		ST	AKE 77-C	2									
2/25/77		2161.4	6472.8	1284.6				1289.2	8.9	1280.3	4.6		
5/08/77	0.282	2162.2	6462.5	1283.5	36.8	-95.1	-6.8	1288.7	9.0	1279.7	4.8	-0.7	-2.5
		ST	AKE 77-0	2: 100 m	east of i	nitial meası	urement	site.					
5/08/77		2263.2	6515.5	1278.5				1288.7	9.0	1279.7	10.3		
)/24/77	0.378	2262.2	6501.3	1278.4	37.7	-104.5	-0.4	1285.5	3.0	1282.5	8.9	-1.8	-4.8
2/28/78		2260.9	6487.7	1277.0	39.5	-106.1	-6.5	1288.4	6.5	1281.9	12.3		-1.4
9/29/78		2260.1	6463.0	1275.0	42.5	-102.1	-5.1	1284.1	0.2	1283.9	9.6		-2.7
	Site CLo	ocation m	oved on 2/2	28/78 to gla	acier cei	nterline; X=	=2,353.1	m and Y=6	,553.2 m	about 200 m east	of the initi	al loca	tion.
		ST	AKE 78-1	.8C									
2/28/78		2363.2	6563.4	1285.5				1294.7	6.5	1288.2	9.8		
	0.257	2363.2 2363.0	6563.4 6553.3	1285.5 1284.5	39.4	-101.3	-6.3	1294.7 1295.1	6.5 7.8	1288.2 1287.3	9.8 11.0	-0.8	-3.1
6/02/78					39.4 37.8	-101.3 -108.9	-6.3 -8.3					-0.8 -1.1	-3.1 -3.4
/02/78 /29/78	0.326	2363.0	6553.3	1284.5				1295.1	7.8	1287.3	11.0		
6/02/78 9/29/78	0.326	2363.0 2361.3 2359.1	6553.3 6541.2 6526.2	1284.5 1282.9 1280.9	37.8	-108.9	-8.3	1295.1 1290.3	7.8 0.2	1287.3 1290.1	11.0 7.3	-1.1	-3.4
5/02/78 9/29/78 3/07/79	0.326	2363.0 2361.3 2359.1 ST	6553.3 6541.2 6526.2 AKE 79-1.	1284.5 1282.9 1280.9 8C	37.8	-108.9	-8.3	1295.1 1290.3 1293.2	7.8 0.2 4.2	1287.3 1290.1 1289.0	11.0 7.3 11.3	-1.1	-3.4
6/02/78 9/29/78 8/07/79 8/07/79	0.326 0.435	2363.0 2361.3 2359.1 ST 2379.3	6553.3 6541.2 6526.2 AKE 79-1. 6588.3	1284.5 1282.9 1280.9 8C 1288.4	37.8 35.1	-108.9 -109.3	-8.3 -8.4	1295.1 1290.3 1293.2	7.8 0.2 4.2	1287.3 1290.1 1289.0	11.0 7.3 11.3	-1.1 -1.1	-3.4 -2.5
6/02/78 9/29/78 8/07/79 8/07/79	0.326 0.435	2363.0 2361.3 2359.1 ST 2379.3 2376.5	6553.3 6541.2 6526.2 AKE 79-1. 6588.3 6573.1	1284.5 1282.9 1280.9 8C 1288.4 1286.5	37.8	-108.9	-8.3	1295.1 1290.3 1293.2	7.8 0.2 4.2	1287.3 1290.1 1289.0	11.0 7.3 11.3	-1.1 -1.1	-3.4
6/02/78 9/29/78 3/07/79 3/07/79 8/04/79	0.326 0.435	2363.0 2361.3 2359.1 ST 2379.3 2376.5	6553.3 6541.2 6526.2 AKE 79-1. 6588.3 6573.1 AKE 80-1.	1284.5 1282.9 1280.9 8C 1288.4 1286.5	37.8 35.1	-108.9 -109.3	-8.3 -8.4	1295.1 1290.3 1293.2 1293.2 1290.3	7.8 0.2 4.2 4.2 2.4	1287.3 1290.1 1289.0 1289.0 1287.9	11.0 7.3 11.3 7.3 5.5	-1.1 -1.1	-3.4 -2.5
6/02/78 9/29/78 8/07/79 8/07/79 8/04/79	0.326 0.435	2363.0 2361.3 2359.1 ST 2379.3 2376.5 ST 2356.6	6553.3 6541.2 6526.2 AKE 79-1. 6588.3 6573.1 AKE 80-1. 6577.3	1284.5 1282.9 1280.9 8C 1288.4 1286.5 8C 1286.3	37.8 35.1	-108.9 -109.3	-8.3 -8.4	1295.1 1290.3 1293.2	7.8 0.2 4.2	1287.3 1290.1 1289.0	11.0 7.3 11.3	-1.1 -1.1	-3.4 -2.5
6/02/78 9/29/78 3/07/79 3/07/79 8/04/79	0.326 0.435	2363.0 2361.3 2359.1 ST 2379.3 2376.5 ST 2356.6	6553.3 6541.2 6526.2 AKE 79-1. 6588.3 6573.1 AKE 80-1.	1284.5 1282.9 1280.9 8C 1288.4 1286.5 8C 1286.3	37.8 35.1	-108.9 -109.3	-8.3 -8.4	1295.1 1290.3 1293.2 1293.2 1290.3	7.8 0.2 4.2 4.2 2.4	1287.3 1290.1 1289.0 1289.0 1287.9	11.0 7.3 11.3 7.3 5.5	-1.1 -1.1	-3.4 -2.5
6/02/78 9/29/78 3/07/79 3/07/79 8/04/79	0.326 0.435	2363.0 2361.3 2359.1 ST 2379.3 2376.5 ST 2356.6	6553.3 6541.2 6526.2 AKE 79-1. 6588.3 6573.1 AKE 80-1. 6577.3	1284.5 1282.9 1280.9 8C 1288.4 1286.5 8C 1286.3	37.8 35.1	-108.9 -109.3	-8.3 -8.4	1295.1 1290.3 1293.2 1293.2 1290.3	7.8 0.2 4.2 4.2 2.4	1287.3 1290.1 1289.0 1289.0 1287.9	11.0 7.3 11.3 7.3 5.5	-1.1 -1.1	-3.4 -2.5
6/02/78 6/29/78 8/07/79 8/07/79 8/04/79 1/11/80 6/06/80	0.326 0.435	2363.0 2361.3 2359.1 ST 2379.3 2376.5 ST 2356.6	6553.3 6541.2 6526.2 AKE 79-1. 6588.3 6573.1 AKE 80-1. 6577.3 Stake buried	1284.5 1282.9 1280.9 8C 1288.4 1286.5 8C 1286.3	37.8 35.1	-108.9 -109.3	-8.3 -8.4	1295.1 1290.3 1293.2 1293.2 1290.3	7.8 0.2 4.2 4.2 2.4	1287.3 1290.1 1289.0 1289.0 1287.9	11.0 7.3 11.3 7.3 5.5	-1.1 -1.1	-3.4 -2.5
5/02/78 5/29/78 8/07/79 8/07/79 8/04/79 1/11/80 5/06/80	0.326 0.435 0.411	2363.0 2361.3 2359.1 ST 2379.3 2376.5 ST 2356.6	6553.3 6541.2 6526.2 AKE 79-1. 6588.3 6573.1 AKE 80-1. 6577.3 Stake buried	1284.5 1282.9 1280.9 8C 1288.4 1286.5 8C 1286.3	37.8 35.1	-108.9 -109.3	-8.3 -8.4	1295.1 1290.3 1293.2 1293.2 1290.3	7.8 0.2 4.2 4.2 2.4	1287.3 1290.1 1289.0 1289.0 1287.9	7.3 11.3 7.3 5.5 6.5	-1.1 -1.1	-3.4 -2.5
/02/78 //29/78 //07/79 /07/79 /04/79 /11/80 //06/80 //06/80 //30/80	0.326 0.435 0.411	2363.0 2361.3 2359.1 ST 2379.3 2376.5 ST 2356.6 ST 2355.2	6553.3 6541.2 6526.2 AKE 79-1. 6588.3 6573.1 AKE 80-1. 6577.3 Stake buried	1284.5 1282.9 1280.9 8C 1288.4 1286.5 8C 1286.3 1	37.8 35.1 37.9	-108.9 -109.3 -111.6	-8.3 -8.4	1295.1 1290.3 1293.2 1293.2 1290.3 1291.6	7.8 0.2 4.2 4.2 2.4 4.9	1287.3 1290.1 1289.0 1289.0 1287.9 1286.7	11.0 7.3 11.3 7.3 5.5 6.5	-1.1 -1.1	-3.4 -2.5 -2.7
5/02/78 9/29/78 8/07/79 8/07/79 8/04/79 1/11/80 6/06/80 6/06/80 7/30/80	0.326 0.435 0.411	2363.0 2361.3 2359.1 ST 2379.3 2376.5 ST 2356.6 ST 2355.2 2354.1 2353.6	6553.3 6541.2 6526.2 AKE 79-1. 6588.3 6573.1 AKE 80-1. 6577.3 Stake buried 6570.3 6564.7 6560.8	1284.5 1282.9 1280.9 8C 1288.4 1286.5 8C 1286.3 d 22 1291.5 1290.6 1289.9	37.8 35.1 37.9	-108.9 -109.3 -111.6	-8.3 -8.4 -7.8	1295.1 1290.3 1293.2 1293.2 1290.3 1291.6	7.8 0.2 4.2 4.2 2.4 4.9	1287.3 1290.1 1289.0 1289.0 1287.9 1286.7	11.0 7.3 11.3 7.3 5.5 6.5	-1.1 -1.1 -1.1	-3.4 -2.5 -2.7
6/02/78 9/29/78 3/07/79 3/07/79 8/04/79 1/11/80 6/06/80 6/06/80 7/30/80 9/05/80	0.326 0.435 0.411	2363.0 2361.3 2359.1 ST 2379.3 2376.5 ST 2356.6 ST 2355.2 2354.1 2353.6	6553.3 6541.2 6526.2 AKE 79-1. 6588.3 6573.1 AKE 80-1. 6577.3 Stake buried FAKE 80-C 6570.3 6564.7 6560.8	1284.5 1282.9 1280.9 8C 1288.4 1286.5 8C 1286.3 1 22 1291.5 1290.6 1289.9	37.8 35.1 37.9	-108.9 -109.3 -111.6	-8.3 -8.4 -7.8	1295.1 1290.3 1293.2 1293.2 1290.3 1291.6	7.8 0.2 4.2 4.2 2.4 4.9	1287.3 1290.1 1289.0 1289.0 1287.9 1286.7	11.0 7.3 11.3 7.3 5.5 6.5 5.0 2.7 1.7	-1.1 -1.1 -1.1	-3.4 -2.5 -2.7
6/02/78 9/29/78 3/07/79 3/07/79 8/04/79 1/11/80 6/06/80 6/06/80 7/30/80 9/05/80	0.326 0.435 0.411 0.148 0.101	2363.0 2361.3 2359.1 ST 2379.3 2376.5 ST 2356.6 ST 2355.2 2354.1 2353.6 ST 2356.2	6553.3 6541.2 6526.2 AKE 79-1. 6588.3 6573.1 AKE 80-1. 6577.3 6take buried FAKE 80-0 6570.3 6564.7 6560.8	1284.5 1282.9 1280.9 8C 1288.4 1286.5 8C 1286.3 1 22 1291.5 1290.6 1289.9	37.8 35.1 37.9 39.0 39.5	-108.9 -109.3 -111.6 -112.3 -108.1	-8.3 -8.4 -7.8	1295.1 1290.3 1293.2 1293.2 1290.3 1291.6 1295.7 1292.8 1291.4	7.8 0.2 4.2 4.2 2.4 4.9	1287.3 1290.1 1289.0 1289.0 1287.9 1286.7	11.0 7.3 11.3 7.3 5.5 6.5 5.0 2.7 1.7	-1.1 -1.1 -1.1 -0.6 -0.4	-3.4 -2.5 -2.7 -4.1 -4.0
5/02/78 9/29/78 3/07/79 3/07/79 8/04/79 1/11/80 6/06/80 6/06/80 7/30/80 9/05/80 1/26/81 6/04/81	0.326 0.435 0.411 0.148 0.101	2363.0 2361.3 2359.1 ST 2379.3 2376.5 ST 2356.6 S1 2355.2 2354.1 2353.6 ST 2356.2 2353.6	6553.3 6541.2 6526.2 AKE 79-1. 6588.3 6573.1 AKE 80-1. 6577.3 6564.7 6560.8 FAKE 81-0 6569.1 6555.0	1284.5 1282.9 1280.9 8C 1288.4 1286.5 8C 1286.3 1 22 1291.5 1290.6 1289.9 2 1293.3 1291.4	37.8 35.1 37.9 39.0 39.5	-108.9 -109.3 -111.6 -112.3 -108.1	-8.3 -8.4 -7.8 -10.0 -11.2	1295.1 1290.3 1293.2 1293.2 1290.3 1291.6 1295.7 1292.8 1291.4	7.8 0.2 4.2 4.2 2.4 4.9	1287.3 1290.1 1289.0 1289.0 1287.9 1286.7	11.0 7.3 11.3 7.3 5.5 6.5 5.0 2.7 1.7	-1.1 -1.1 -1.1 -0.6 -0.4	-3.4 -2.5 -2.7 -4.1 -4.0
5/02/78 5/02/78 8/07/79 8/07/79 8/07/79 8/04/79 1/11/80 6/06/80 7/30/80 9/05/80 1/26/81 6/04/81 9/01/81	0.326 0.435 0.411 0.148 0.101 0.353 0.244	2363.0 2361.3 2359.1 ST 2379.3 2376.5 ST 2356.6 SS 2355.2 2354.1 2353.6 ST 2356.2 2353.6 2352.4	6553.3 6541.2 6526.2 AKE 79-1. 6588.3 6573.1 AKE 80-1. 6577.3 6564.7 6560.8 FAKE 81-0 6569.1 6555.0 6544.7	1284.5 1282.9 1280.9 8C 1288.4 1286.5 8C 1286.3 1 122 1291.5 1290.6 1289.9 2 1293.3 1291.4 1289.8	37.8 35.1 37.9 39.0 39.5 41.0 43.0	-108.9 -109.3 -111.6 -112.3 -108.1 -111.6 -107.4	-8.3 -8.4 -7.8 -10.0 -11.2	1295.1 1290.3 1293.2 1293.2 1290.3 1291.6 1295.7 1292.8 1291.4 1297.6 1298.1 1293.9	7.8 0.2 4.2 4.2 2.4 4.9	1287.3 1290.1 1289.0 1289.0 1287.9 1286.7	11.0 7.3 11.3 7.3 5.5 6.5 5.0 2.7 1.7 5.0 6.8 3.7	-1.1 -1.1 -1.1 -0.6 -0.4	-3.4 -2.5 -2.7 -4.1 -4.0 -3.7 -4.5
5/02/78 5/02/78 5/07/79 5/07/79 5/04/79 5/06/80 5/06/80 6/06/80 6/05/80 6/05/80	0.326 0.435 0.411 0.148 0.101 0.353 0.244 0.394	2363.0 2361.3 2359.1 ST 2379.3 2376.5 ST 2356.6 S1 2355.2 2354.1 2353.6 S1 2356.2 2353.6 2352.4 2351.1	6553.3 6541.2 6526.2 AKE 79-1. 6588.3 6573.1 AKE 80-1. 6577.3 6564.7 6560.8 FAKE 81-0 6569.1 6555.0 6544.7 6530.2	1284.5 1282.9 1280.9 8C 1288.4 1286.5 8C 1286.3 1 122 1291.5 1290.6 1289.9 2 1293.3 1291.4 1289.8 1287.4	37.8 35.1 37.9 39.0 39.5 41.0 43.0 37.4	-108.9 -109.3 -111.6 -112.3 -108.1 -111.6 -107.4 -105.7	-8.3 -8.4 -7.8 -10.0 -11.2 -8.4 -9.7 -10.4	1295.1 1290.3 1293.2 1293.2 1290.3 1291.6 1295.7 1292.8 1291.4 1297.6 1298.1 1293.9 1295.9	7.8 0.2 4.2 4.2 2.4 4.9 12.1 13.6 9.7 3.9	1287.3 1290.1 1289.0 1289.0 1287.9 1286.7 1285.5 1284.5 1284.2 1292.0	11.0 7.3 11.3 7.3 5.5 6.5 5.0 2.7 1.7 5.0 6.8 3.7 7.5	-1.1 -1.1 -1.1 -0.6 -0.4 -1.3 -1.1 -1.8	-3.4 -2.5 -2.7 -4.1 -4.0 -3.7 -4.5 -4.6
5/02/78 5/02/78 8/07/79 8/07/79 8/07/79 8/04/79 1/11/80 6/06/80 7/30/80 9/05/80 1/26/81 6/04/81 9/01/81 1/23/82 6/26/82	0.326 0.435 0.411 0.148 0.101 0.353 0.244 0.394 0.422	2363.0 2361.3 2359.1 ST 2379.3 2376.5 ST 2356.6 S3 2355.2 2354.1 2353.6 ST 2356.2 2353.6 2352.4 2351.1 2347.8	6553.3 6541.2 6526.2 AKE 79-1. 6588.3 6573.1 AKE 80-1. 6577.3 6564.7 6560.8 FAKE 81-0 6569.1 6555.0 6544.7 6530.2 6511.6	1284.5 1282.9 1280.9 8C 1288.4 1286.5 8C 1286.3 1 122 1291.5 1290.6 1289.9 2 1293.3 1291.4 1289.8 1287.4 1285.5	37.8 35.1 37.9 39.0 39.5 41.0 43.0 37.4 45.0	-108.9 -109.3 -111.6 -112.3 -108.1 -111.6 -107.4 -105.7 -111.2	-8.3 -8.4 -7.8 -10.0 -11.2 -8.4 -9.7 -10.4 -6.4	1295.1 1290.3 1293.2 1293.2 1290.3 1291.6 1295.7 1292.8 1291.4 1297.6 1298.1 1293.9 1295.9 1295.8	7.8 0.2 4.2 4.2 2.4 4.9 12.1 13.6 9.7 3.9 5.0	1287.3 1290.1 1289.0 1289.0 1287.9 1286.7 1285.5 1284.5 1284.2 1292.0 1290.8	11.0 7.3 11.3 7.3 5.5 6.5 5.0 2.7 1.7 5.0 6.8 3.7 7.5 8.6	-1.1 -1.1 -1.1 -0.6 -0.4 -1.3 -1.1 -1.8 -1.2	-3.4 -2.5 -2.7 -4.1 -4.0 -3.7 -4.5 -4.6 -2.8
6/02/78 9/29/78 3/07/79 3/07/79 8/04/79 1/11/80 6/06/80 6/06/80 7/30/80 9/05/80 1/26/81 6/04/81 9/01/81 1/23/82 6/26/82	0.326 0.435 0.411 0.148 0.101 0.353 0.244 0.394 0.422	2363.0 2361.3 2359.1 ST 2379.3 2376.5 ST 2356.6 ST 2355.2 2354.1 2353.6 ST 2356.2 2353.6 2352.4 2351.1 2347.8 2347.5	6553.3 6541.2 6526.2 AKE 79-1. 6588.3 6573.1 AKE 80-1. 6577.3 Stake buried 6570.3 6564.7 6560.8 FAKE 81-0 6569.1 6555.0 6544.7 6530.2 6511.6 6504.9	1284.5 1282.9 1280.9 8C 1288.4 1286.5 8C 1286.3 d 122 1291.5 1290.6 1289.9 C 1293.3 1291.4 1289.8 1287.4 1285.5 1284.5	37.8 35.1 37.9 39.0 39.5 41.0 43.0 37.4	-108.9 -109.3 -111.6 -112.3 -108.1 -111.6 -107.4 -105.7	-8.3 -8.4 -7.8 -10.0 -11.2 -8.4 -9.7 -10.4	1295.1 1290.3 1293.2 1293.2 1290.3 1291.6 1295.7 1292.8 1291.4 1297.6 1298.1 1293.9 1295.9	7.8 0.2 4.2 4.2 2.4 4.9 12.1 13.6 9.7 3.9	1287.3 1290.1 1289.0 1289.0 1287.9 1286.7 1285.5 1284.5 1284.2 1292.0	11.0 7.3 11.3 7.3 5.5 6.5 5.0 2.7 1.7 5.0 6.8 3.7 7.5	-1.1 -1.1 -1.1 -0.6 -0.4 -1.3 -1.1 -1.8	-3.4 -2.5 -2.7 -4.1 -4.0 -3.7 -4.5 -4.6
5/02/78 9/29/78 3/07/79 3/07/79 8/04/79 1/11/80 6/06/80 6/06/80 1/26/81 6/04/81 9/01/81 1/23/82 6/26/82 9/01/82	0.326 0.435 0.411 0.148 0.101 0.353 0.244 0.394 0.422	2363.0 2361.3 2359.1 ST 2379.3 2376.5 ST 2356.6 ST 2355.2 2354.1 2353.6 ST 2356.2 2353.6 2352.4 2351.1 2347.8 2347.5	6553.3 6541.2 6526.2 AKE 79-1. 6588.3 6573.1 AKE 80-1. 6577.3 Stake buried 6570.3 6564.7 6560.8 FAKE 81-0 6569.1 6555.0 6544.7 6530.2 6511.6 6504.9 FAKE 81-0	1284.5 1282.9 1280.9 8C 1288.4 1286.5 8C 1286.3 1 1291.5 1290.6 1289.9 2 1293.3 1291.4 1289.8 1287.4 1285.5 1284.5	37.8 35.1 37.9 39.0 39.5 41.0 43.0 37.4 45.0	-108.9 -109.3 -111.6 -112.3 -108.1 -111.6 -107.4 -105.7 -111.2	-8.3 -8.4 -7.8 -10.0 -11.2 -8.4 -9.7 -10.4 -6.4	1295.1 1290.3 1293.2 1293.2 1290.3 1291.6 1295.7 1292.8 1291.4 1297.6 1298.1 1293.9 1295.9 1295.8 1292.8	7.8 0.2 4.2 2.4 4.9 12.1 13.6 9.7 3.9 5.0 2.7	1287.3 1290.1 1289.0 1289.0 1287.9 1286.7 1285.5 1284.5 1284.2 1292.0 1290.8 1290.1	11.0 7.3 11.3 7.3 5.5 6.5 5.0 2.7 1.7 5.0 6.8 3.7 7.5 8.6 6.3	-1.1 -1.1 -1.1 -0.6 -0.4 -1.3 -1.1 -1.8 -1.2	-3.4 -2.5 -2.7 -4.1 -4.0 -3.7 -4.5 -4.6 -2.8
5/02/78 9/29/78 3/07/79 3/07/79 8/04/79 1/11/80 6/06/80 6/06/80 1/26/81 6/04/81 9/01/81 1/23/82 6/05/82	0.326 0.435 0.411 0.148 0.101 0.353 0.244 0.394 0.422 0.183	2363.0 2361.3 2359.1 ST 2379.3 2376.5 ST 2356.6 S1 2355.2 2354.1 2353.6 S1 2356.2 2353.6 2352.4 2351.1 2347.8 2347.5 ST 2350.0	6553.3 6541.2 6526.2 AKE 79-1. 6588.3 6573.1 AKE 80-1. 6577.3 Stake buried FAKE 80-C 6570.3 6564.7 6560.8 FAKE 81-C 6569.1 6555.0 6544.7 6530.2 6511.6 6504.9 FAKE 81-C 6536.2	1284.5 1282.9 1280.9 8C 1288.4 1286.5 8C 1286.3 1 22 1291.5 1290.6 1289.9 2 1293.3 1291.4 1289.8 1287.4 1285.5 1284.5	37.8 35.1 37.9 39.0 39.5 41.0 43.0 37.4 45.0 37.1	-108.9 -109.3 -111.6 -112.3 -108.1 -111.6 -107.4 -105.7 -111.2 -102.8	-8.3 -8.4 -7.8 -10.0 -11.2 -8.4 -9.7 -10.4 -6.4 -9.4	1295.1 1290.3 1293.2 1293.2 1290.3 1291.6 1295.7 1292.8 1291.4 1297.6 1298.1 1293.9 1295.9 1295.8 1292.8	7.8 0.2 4.2 2.4 4.9 12.1 13.6 9.7 3.9 5.0 2.7	1287.3 1290.1 1289.0 1289.0 1287.9 1286.7 1285.5 1284.5 1284.2 1292.0 1290.8 1290.1	11.0 7.3 11.3 7.3 5.5 6.5 5.0 2.7 1.7 5.0 6.8 3.7 7.5 8.6 6.3	-1.1 -1.1 -1.1 -0.6 -0.4 -1.3 -1.1 -1.8 -1.2 -0.7	-3.4 -2.5 -2.7 -4.1 -4.0 -3.7 -4.5 -4.6 -2.8 -3.8
5/02/78 9/29/78 8/07/79 8/07/79 8/04/79 1/11/80 6/06/80 6/06/80 1/26/81 6/04/81 9/01/81 1/23/82 5/26/82 9/01/82	0.326 0.435 0.411 0.148 0.101 0.353 0.244 0.394 0.422 0.183	2363.0 2361.3 2359.1 ST 2379.3 2376.5 ST 2356.6 ST 2355.2 2354.1 2353.6 ST 2356.2 2353.6 2352.4 2351.1 2347.8 2347.5 ST 2350.0 2348.6	6553.3 6541.2 6526.2 AKE 79-1. 6588.3 6573.1 AKE 80-1. 6577.3 Stake buried FAKE 80-C 6570.3 6564.7 6560.8 FAKE 81-C 659.1 6555.0 6544.7 6530.2 6511.6 6504.9 FAKE 81-C 6536.2 6524.2	1284.5 1282.9 1280.9 8C 1288.4 1286.5 8C 1286.3 1 22 1291.5 1290.6 1289.9 2 1293.3 1291.4 1289.8 1287.4 1285.5 1284.5 22 1283.3 1282.3	37.8 35.1 37.9 39.0 39.5 41.0 43.0 37.4 45.0 37.1	-108.9 -109.3 -111.6 -112.3 -108.1 -111.6 -107.4 -105.7 -111.2 -102.8	-8.3 -8.4 -7.8 -10.0 -11.2 -8.4 -9.7 -10.4 -6.4 -9.4	1295.1 1290.3 1293.2 1293.2 1290.3 1291.6 1295.7 1292.8 1291.4 1297.6 1298.1 1293.9 1295.9 1295.8 1292.8	7.8 0.2 4.2 2.4 4.9 12.1 13.6 9.7 3.9 5.0 2.7	1287.3 1290.1 1289.0 1289.0 1287.9 1286.7 1285.5 1284.5 1284.2 1292.0 1290.8 1290.1	11.0 7.3 11.3 7.3 5.5 6.5 5.0 2.7 1.7 5.0 6.8 3.7 7.5 8.6 6.3	-1.1 -1.1 -1.1 -0.6 -0.4 -1.3 -1.1 -1.8 -1.2 -0.7	-3.4 -2.5 -2.7 -4.1 -4.0 -3.7 -4.5 -4.6 -2.8 -3.8
2/28/78 6/02/78 9/29/78 3/07/79 3/07/79 3/07/79 3/07/79 1/11/80 6/06/80 6/06/80 6/06/80 1/26/81 9/01/81 1/23/82 6/05/81 9/01/81 1/23/82 9/01/82	0.326 0.435 0.411 0.148 0.101 0.353 0.244 0.394 0.422 0.183	2363.0 2361.3 2359.1 ST 2379.3 2376.5 ST 2356.6 S1 2355.2 2354.1 2353.6 S1 2356.2 2353.6 2352.4 2351.1 2347.8 2347.5 ST 2350.0	6553.3 6541.2 6526.2 AKE 79-1. 6588.3 6573.1 AKE 80-1. 6577.3 Stake buried FAKE 80-C 6570.3 6564.7 6560.8 FAKE 81-C 6569.1 6555.0 6544.7 6530.2 6511.6 6504.9 FAKE 81-C 6536.2	1284.5 1282.9 1280.9 8C 1288.4 1286.5 8C 1286.3 1 22 1291.5 1290.6 1289.9 2 1293.3 1291.4 1289.8 1287.4 1285.5 1284.5	37.8 35.1 37.9 39.0 39.5 41.0 43.0 37.4 45.0 37.1	-108.9 -109.3 -111.6 -112.3 -108.1 -111.6 -107.4 -105.7 -111.2 -102.8	-8.3 -8.4 -7.8 -10.0 -11.2 -8.4 -9.7 -10.4 -6.4 -9.4	1295.1 1290.3 1293.2 1293.2 1290.3 1291.6 1295.7 1292.8 1291.4 1297.6 1298.1 1293.9 1295.9 1295.8 1292.8	7.8 0.2 4.2 2.4 4.9 12.1 13.6 9.7 3.9 5.0 2.7	1287.3 1290.1 1289.0 1289.0 1287.9 1286.7 1285.5 1284.5 1284.2 1292.0 1290.8 1290.1	11.0 7.3 11.3 7.3 5.5 6.5 5.0 2.7 1.7 5.0 6.8 3.7 7.5 8.6 6.3	-1.1 -1.1 -1.1 -0.6 -0.4 -1.3 -1.1 -1.8 -1.2 -0.7	-3.4 -2.5 -2.7 -4.1 -4.0 -3.7 -4.5 -4.6 -2.8 -3.8

Table 14. Glacier motion and surface altitude data from site C (1,290 meters altitude) on Wolverine Glacier, Alaska--Continued

	Period St		ake Locatio	n	Glacier Motion Vector		Surface	Snow	w Summer Surface	Stake	Emergence		
Date	Since Last		Grid Coord			Direction	Slope	Altitude	Depth	Altitude	Reading		Speed
	Survey	X	Y	Z	S	θ	φ	Z_{I}	d	Z_{ss}	b'	e	S_e
m/d/y	yr	m	m	m	m/yr	grad	grad	m	m	m	m	m	m/yr
		S	ΓΑΚΕ 82- (
1/23/82		2355.6	6581.2	1293.4				1295.9	3.9	1292.0	3.7		
6/26/82	0.422	2353.1	6564.9	1291.7	39.3	-109.7	-6.5	1295.8	4.8	1291.0	4.6	-1.0	-2.4
9/01/82	0.183	2352.0	6557.9	1290.6	39.2	-109.9	-9.8	1292.8	2.5	1290.3	2.3	-0.7	-3.8
1/14/83	0.370	2350.3	6544.8	1289.1	35.9	-108.2	-7.2	1295.7	3.5	1292.2	6.2	-1.0	-2.7
6/15/83	0.416	2347.4	6527.5	1286.9	42.5	-110.6	-7.9	1296.5	5.6	1290.9	8.3	-1.3	-3.1
		ST	ГАКЕ 83-C	C									
1/14/83		2363.4	6574.6					1295.7	3.1	1292.6	4.3		
6/15/83	0.416	2361.4	6558.3		39.9	-107.8	-9.6	1296.5	5.5	1291.0	6.6	-1.5	-3.6
9/02/83	0.216	2359.9	6550.1		38.9	-111.5	-8.4	1292.6	2.5	1290.1	3.6	-0.9	-4.2
		ST	ГАКЕ 83-0	72									
6/15/83		2364.9	6627.2	1290.8				1296.5	5.5	1291.0	9.4		
9/02/83	0.216	2363.3	6619.7	1289.6	35.9	-113.4	-9.9	1292.6	2.4	1290.2	6.3	-0.8	-3.7
1/19/84	0.381	2360.8	6605.9	1287.6	37.2	-111.4	-9.0	1296.6	4.3	1292.3	10.9	-0.6	-1.6
6/08/84	0.386	2358.2	6592.4	1285.7	36.0	-112.1	-8.7	1296.3	5.8	1290.5	12.4	-1.8	-4.7
8/20/84	0.200	2357.3	6585.2	1284.6	36.7	-107.9	-9.6	1292.3	2.7	1289.6	9.2	-0.8	-4.0
1/13/85	0.400	2354.9	6571.7	1282.8	34.6	-111.2	-8.3	1294.5	3.6	1290.9	12.5	-1.1	-2.8
6/05/85	0.392	2352.8	6557.1	1281.5 E	37.8	-109.1	-5.6	1296.7	6.4	1290.3	15.2 E	-0.5	-1.3
8/27/85	0.227	2351.6	6548.9	1280.2	37.0	-109.3	-9.9	1293.1	3.6	1289.5	12.6	-1.0	-4.4
		ST	ГАКЕ 85-С										
6/05/85		2349.6	6587.3	1289.6				1296.7	6.4	1290.3	8.3		
8/27/85	0.227	2348.4	6579.1	1288.3	37.0	-109.3	-9.9	1293.1	3.7	1289.4	5.6	-0.9	-4.0
2/19/86	0.482	2345.8	6562.1	1286.0	36.0	-109.7	-8.5	1297.5	5.7	1291.8	11.5	-1.5	-3.1
6/15/86	0.318	2344.3	6550.3	1284.5	37.7	-108.0	-8.0	1296.6	5.8	1290.8	11.6	-1.0	-3.1
8/20/86	0.181	2344.1	6543.6	1283.6	37.4	-101.9	-8.5	1293.3	2.9	1290.4	8.7	-0.4	-2.2
		ST	ΓΑΚΕ 86-C	,									
2/18/86		2350.1	6571.4	1294.9				1297.5	5.8	1291.7	3.3		
6/15/86	0.320	2348.4	6559.6	1293.3	37.6	-109.1	-8.5	1296.6	5.8	1290.8	3.4	-1.0	-3.1
(11510)			ΓAKE 86-0					1207.7	<i>5</i> 0	1200.9	0.7		
6/15/86	0.181	2354.1	6572.8	1288.8	40.2	100.0	0.7	1296.6	5.8	1290.8	8.7	0.2	1.7
8/20/86	0.181	2353.0	6565.7	1287.7	40.2	-109.8	-9.7	1293.3	2.8	1290.5	5.7	-0.3	-1.7
			ГАКЕ 87-0										
6/13/87		2338.0	6542.0	1289.4				1298.3	8.3	1290.0	7.8		
10/01/87		2336.3		1287.6		-109.3	-9.7	1295.5	1.5	1294.0	6.4	-1.4	
3/19/88	0.465	2334.4	6511.4	1285.8	41.2	-106.3	-6.0	1300.8	7.8	1293.0	12.9	-1.2	-2.6
		S	ΓΑΚΕ 88- (C									
3/19/88		2340.8	6508.6	1288.6				1300.8	7.8	1293.0	10.1		
6/10/88		2340.0	6498.6	1287.6	44.4	-105.1	-6.3	1300.0	7.6	1292.4	9.9	-0.6	-2.6
9/18/88	0.274	2339.3	6486.2	1286.0	45.7	-103.6	-8.2	1295.7	0.2	1295.5	6.7	-1.1	-4.0
2/16/89		2338.4	6469.4	1283.6	41.1	-103.4	-9.0	1297.9	4.2	1293.7	10.7	-1.8	-4.4
6/17/89		2337.3	6454.7	1282.1 E		-104.8	-6.5	1297.8	4.7	1293.1	11.2	-0.6	-1.8
10/08/89	0.309	2337.0	6441.7	1280.5	42.4	-101.5	-7.8	1292.8	0.7	1292.1	7.4	-1.2	-3.9
		S	ГАКЕ 89-0	C									
10/08/89		2364.4	6576.2	1288.4				1292.8	0.7	1292.1	5.8		
2/14/90		2362.6	6563.9	1287.3	35.4	-109.3	-5.6	1295.0	3.5	1291.5	8.6	-0.6	-1.7
6/02/90		2361.0	6553.4	1286.0	36.2	-109.6	-7.8	1294.5	3.5	1291.0	8.7	-0.6	-2.0
9/06/90		2358.9	6544.8	1284.8	34.0	-115.2	-8.6	1289.2	0.0	1289.2	4.3	-0.9	-3.4
1/06/91	0.334	2358.1	6534.2	1283.7	32.0	-104.8	-6.6	1290.3	2.0	1288.3	6.1	-0.7	-2.1
5/16/91	0.356	2358.0	6521.5	1283.1 E		-100.5	-3.0	1294.1	6.3	1287.8	10.4 E	-0.5	-1.4
9/18/91	0.342	2355.1	6509.5	1281.5	36.4	-115.1	-8.2	1289.2	1.9	1287.3	5.9	-0.4	-1.2

Table 14. Glacier motion and surface altitude data from site C (1,290 meters altitude) on Wolverine Glacier, Alaska--Continued

	Period	Sta	ake Locati	on	Glaci	er Motion V	ector	Surface	Snow	Summer Surface	Stake	Eme	rgence
Date	Since Last	Project	Grid Coor	dinates	Speed	Direction	Slope	Altitude	Depth	Altitude	Reading	Rise	Speed
	Survey	X	Y	Z	S	θ	ϕ	Z_{I}	d	Z_{ss}	b'	e	S_e
m/d/y	yr	m	m	m	m/yr	grad	grad	m	m	m	m	m	m/yr
		ST	TAKE 91-0	C									
5/16/91		2352.5	6590.9	1287.7				1294.1	6.0	1288.1	8.0		
9/18/91	0.342	2349.6	6579.0	1286.2	36.1	-115.2	-7.8	1289.2	1.8	1287.4	3.7	-0.6	-1.8
9/18/91		2352.8	6673.8	1289.5				1289.2	1.8	1287.4	4.8		
1/25/92	0.353	2350.6	6664.5	1288.3	27.3	-114.8	-8.0	1293.4	5.0	1288.4	8.0	1.0	2.8
		ST	TAKE 92-0	C									
1/25/92		2350.9	6661.0	1292.1				1293.4	5.0	1288.4	5.8		
5/13/92	0.298	2349.3	6651.5	1290.9	32.6	-110.6	-7.9	1293.7	6.4	1287.3	7.2	-1.1	-3.7
9/03/92	0.309	2347.1	6641.4	1289.0	34.0	-113.7	-11.6	1289.1	0.0	1289.1	3.2	-0.6	-1.9
2/08/93	0.433	2344.8	6628.6	1287.3	30.3	-111.3	-8.3	1291.4	3.6	1287.8	6.7	-1.2	-2.8
5/15/93	0.263	2343.6	6620.2	1286.6	32.4	-109.0	-5.2	1294.3	6.8	1287.5	10.0	-0.4	-1.5
9/13/93	0.331	2341.7	6609.4	1285.1	33.4	-111.1	-8.7	1287.8	1.4	1286.4	4.5	-1.0	-3.0
2/05/94	0.397	2340.6	6597.3	1285.2 E	30.6	-105.8	0.5	1291.1	3.9	1287.2	6.3 E	1.5	3.8
5/13/94	0.266	2339.1	6588.8	1284.4	32.6	-111.1	-5.9	1292.7	6.0	1286.7	10.5	-2.6	-9.8
		ST	TAKE 94-0	C 2									
2/05/94		2347.4	6590.5	1285.9				1291.1	4.0	1287.1	6.3		
5/13/94	0.266	2345.8	6582.1	1285.2	32.3	-112.0	-5.2	1292.7	6.0	1286.7	8.3	-0.4	-1.5
9/07/94	0.320	2344.3	6571.2	1283.8	34.7	-108.7	-8.1	1287.6	1.8	1285.8	4.2	-1.0	-3.1
2/01/95	0.402	2342.5	6558.8	1282.4	31.4	-109.2	-7.1	1291.4	4.6	1286.8	8.8	-0.8	-2.0
5/14/95		2340.5	6549.9	1281.5	32.9	-114.1	-6.3	1292.9	6.4	1286.5	10.7	-0.4	-1.4
9/14/95		2339.9	6537.4	1280.3	37.3	-103.1	-6.1	1288.2	2.5	1285.7	6.8	-0.8	-2.4
1/13/96	0.331	2338.8	6526.4	1279.0	33.6	-106.3	-7.5	1289.8	3.0	1286.8	9.2	-0.8	-2.4
				Average:	37.2	-107.3	-7.3	1292.8	4.6	1288.2	7.7	-0.8	-2.7