2023 Differential Geometry- TD 2

- (B) Soit f une application de \mathbb{R}^n dans \mathbb{R}^n . On suppose que f est propre et que df(x) est inversible pour tout x. Montrer que f est un difféomorphisme. On pourra commencer par montrer que $x \mapsto \#f^{-1}(x)$ est constante. On considérera alors une préimage u_0 de 0, et on montrera que pour chaque segment [0,x] il existe un unique relèvement continu $u_x(t)$ tel que $f(u_x(t)) = tx$ et donc $f(u_x(1)) = x$. Montrer que $x \mapsto u_x(1)$ est continu. En déduire qu'il existe une application g inverse continue à droite de f, puis que f est bijective. (voir aussi l'exercice E).
- (C) **Théorème d'Hadamard** (Il s'agit d'une version du théorème précédent où la propreté de f est remplacée par une hypothèse sur df(z). Il nécessite la connaissance du lemme de Gronwall).

Soit $f: \mathbb{R}^n \to \mathbb{R}^n$ telle que f(0) = 0 et qu'il existe des constantes A, B telle que pour tout z dans \mathbb{R}^n la matrice df(z) satisfait l'inégalité

$$|df(z)^{-1}| \le A|z| + B$$

(a) Soit $x \in \mathbb{R}^n$ $\gamma_x(t)$. On cherche un chemin de classe C^1 , $\gamma_x(t)$, $t \in [0, 1]$ tel que $f(\gamma_x(t)) = tx$ Montrer que cela équivaut à $df(\gamma_x(t))\dot{\gamma}_x(t) = x$, soit

$$\dot{\gamma}_x(t) = df(\gamma_x(t))^{-1}x$$

(b) Montrer que sous l'hypothèse faite sur f, le flot de

$$\dot{\gamma}_x(t) = df(\gamma_x(t))^{-1}x$$

est défini sur [0,1], et que g est de classe C^1 .

- (c) En déduire que si g(x) est l'image de 0 par le flot au temps 1 de $\dot{\gamma}(t) = df(\gamma(t))^{-1}x$ on a f(g(z)) = z.
- (d) Montrer que l'image de g est ouverte.
- (e) Montrer que $z \in \text{Im}(g)$ si et seulement si g(f(z)) = z. En déduire que cette image est fermée, puis que g est surjective.
- (f) Montrer que si g vérifie $f \circ g = Id$ on a aussi $g \circ f = Id$.
- (g) Démontrer le théorème suivant

Théorème (Hadamard). Soit $f: \mathbb{R}^n \to \mathbb{R}^n$ telle que f(0) = 0 et qu'il existe une constante A telle que pour tout z dans \mathbb{R}^n on ait l'inégalité

$$|df(z)^{-1}| \le A|z| + B$$

1

Alors f est un difféomorphisme de \mathbb{R}^n

(E) Théorème de relèvement

(a) Soit f une application continue de [0,1] dans le cercle unité. Montrer qu'il existe $\varphi:[0,1]\to\mathbb{R}$ telle que $f(t)=e^{i\varphi(t)}$, et que φ est unique une fois fixé $\varphi(0)$.

Indication : On découpera [0,1] en intervalles assez petits sur lesquels φ est définie facilement, et on recollera convenablement sur l'intersection de ces intervalles.

- (b) Montrer qu'il en est de même pour $[0,1]^2$ au lieu de [0,1] Indication : Utiliser a) pour le faire sur $[0,1] \times \{y\}$ puis étendre aux bandes $[0,1] \times [y-\varepsilon,y+\varepsilon]$. Terminer en recouvrant $\{0\} \times [0,1]$ par compacité, et en utilisant le a) pour les intersections des bandes.
- (c) De même pour $[0,1]^k$ pour k quelconque
- (d) Montrer que si f est de classe C^k alors ϕ est de classe C^k .
- (F) Soit f une application de \mathbb{R} dans S^1 continue (ou de classe C^{∞} si on préfère) et périodique de période 2π (i.e. $f(t+2\pi)=f(t)$).
 - (a) Montrer que si $\phi(t)$ est le relèvement défini à l'exercice précédent, $\frac{1}{2\pi} \left(\phi(t+2\pi) \phi(t) \right)$ est un entier appelé degré de f et noté $\deg(f)$. Montrer que cet enter ne dépend pas du choix de ϕ .
 - (b) Montrer que si f_s est une famille continue de telles applications, $\deg(f_s)$ ne dépend pas de s.
 - (c) Calculer le degré d'une application constante. De l'application $f(x) = e^{2ix}$