CUADERNOS DE MATEMÁTICA DE LA ESCUELA POLITÉCNICA NACIONAL

HOLGER CAPA SANTOS

SERIES TEMPORALES

La ciencia y el arte de los pronósticos

Cuaderno de Matemática No. 10

SERIES TEMPORALES: LA CIENCIA Y EL ARTE DE LOS PRONÓSTICOS HOLGER CAPA SANTOS

Responsable de la Edición: ? Revisión técnica: ?

Asistentes: Andrés Merino **Portada**: Andrés Merino

Registro de derecho autoral No. ISBN:

Publicado por la Unidad de Publicaciones de la Facultad de Ciencias de la Escuela Politécnica Nacional, Ladrón de Guevara E11-253, Quito, Ecuador.

Primera edicion: 2015 Primera impresion: 2015

© Escuela Politécnica Nacional 2015

Índice general

1	Ana	alisis a traves de procesos estacionarios	3
	1.1	Introducción	3
	1.2	Procesos Estacionarios	5
	1.3	Representación Espectral de un Proceso Débilmente Estacionario	12
		1.3.1 Representación espectral de $(\gamma_t)_{t\in\mathbb{Z}}$	12
		1.3.2 Representación espectral de (X_t)	13
	1.4	Teoremas Límites	18
		1.4.1 Teorema Central del Límite	20
	1.5	Predicción de un Proceso Estacionario y Descomposición de Wold	20
		1.5.1 Predicción de un Proceso Estacionario	20
		1.5.2 Descomposición de Wold	21
	1.6	Ejercicios Propuestos	21
2	Proc	cesos Linealies, Modelos ARMA	25
	2.1	Procesos Lineales	25
	2.2	Funciones de Autorrelación Simple y Parcial de un P.E.S.O	28
	2.3	Procesos Autoregresivos	29
		2.3.1 El caso del modelo $AR(1)$	29
		2.3.2 Unicidad de la descomposición para el caso del $AR(p)$:	30
		2.3.3 Autocorrelación asintótica de un proceso $AR(p)$	32
		2.3.4 Autorrelación parcial asintótica de un proceso $AR(p)$	33
	2.4	Procesos Medias Móviles	38
		2.4.1 Autocorrelación de un $MA(q)$	39
		2.4.2 Autocorrelación Parcial de un $MA(q)$	39
	2.5	Procesos ARMA (Autoregresivos – Medias Móviles)	40
	2.6	Procesos ARIMA (Autoregressive Integrates Moving Avarage)	43
		2.6.1 Representación MA de un ARIMA	45
		2.6.2 Representación AR de un ARIMA:	45
	2.7	Ejercicios Propuestos	54
3	Esti	mación, Verificación y Predicción en un Modelo ARIMA	57
	3.1	Metodología Box-Jenkins	57
	3.2	Identificación A Priori	58
		3.2.1 Elección de <i>d</i>	58
		3.2.2 Elección de <i>p</i> y <i>q</i>	59
	3.3	Estimación de un Modelo ARIMA	60

iv Índice general

		3.3.1	Procedimiento condicional	61
		3.3.2	Procedimiento no condicional	63
	3.4	Identi	ficación A Posteriori	65
		3.4.1	Fase de verificación	65
		3.4.2	Utilización de los residuos estimados para modificar el Modelo	69
		3.4.3	Pruebas de estabilidad	69
		3.4.4	Elección del Modelo	71
	3.5	Predic	cción de los Modelos ARIMA	72
		3.5.1	Cálculo de las predicciones óptimas en un modelo ARIMA	72
		3.5.2	Intervalos de predicción	76
		3.5.3	Funciones de predicción	77
		3.5.4	Contraste de la estabilidad estructural en la predicción	78
	3.6	Transf	formación de Datos	79
	3.7	Raíces	Unitarias	81
		3.7.1	La prueba de Dickey-Fuller	82
		3.7.2	Extensiones de la prueba de Dickey-Fuller	83
	3.8	Mode	los Estacionales	86
	3.9	Ejercio	cios Propuestos	90
1	Mod	delos d	e Heteroscedasticidad Condicional	3
	1.1	Mode	los Arch–Garch Simétricos	3
	1.2	Mode	los GARCH asimétricos	5
	1.3	Metoc	lología de la Modelición	7
	1.4	Ejemp	olos con Heteroscedasticidad Condicional	8
Ín	dica	A lfabái	rico	11

Índice de figuras

1.1	Ajuste adecuado de datos de tendencia cuadratica por una curva polinomiai.	4
1.2	Ajuste no adecuado de una serie de ventas a través de una curva cuadrática .	4
1.3	Modelación de una serie de ventas a través de un modelo SARIMA (se estu-	
	diará más adelante)	5
1.4	Ruido blanco fuerte simulado con distribución $N(0,1)$	7
1.5	Proceso estacionario	8
1.6	Proceso no estacionario: Tendencia creciente	9
1.7	Proceso no estacionario: Varianza no homogénea	10
1.8	Proceso no estacionario: Tendencia decreciente y varianza no homogénea	10
2.1	Modelo simulado $AR(eq4)$	34
2.2	Comportamiento de $r(\ell)$	34
2.3	Comportamiento de $r(\ell)$	34
2.4	Modelo $MA(1)$	40
2.5	Comportamiento de $ ho(l)$	40
2.6	Comportamiento asintótico de $r(l)$	40
2.7	Modelo <i>ARMA</i> (1,1)	42
2.8	Comportamiento de $ ho(l)$	42
2.9	Comportamiento de $r(l)$	42
2.10	Efecto de la diferenciación en una tendencia lineal	43
	Efecto de la diferenciación de una tendencia cuadrática	43
	Efecto de la diferenciación de una tendencia exponencial	44
2.13	Efecto de la transformación logarítmica en una tendencia exponencial	44
3.1	Serie de un Índice Bursátil (SIB)	58
3.2	Función de autocorrelación de la SIB	58
3.3	Serie estacionaria obtenida a partir de la SIB	58
3.4	FAC estimada del modelo $ARIMA(0,1,0)$, para la SIB	60
3.5	FACP estimada del modelo $ARIMA(0,1,0)$, para la SIB en primera diferencia	60
3.6	FAC residual estimada del Modelo $ARIMA(2,1,2)$ de la SIB	68
3.7	FACP residual estimada del Modelo $ARIMA(2,1,2)$ de la SIB	68
3.8	FAC residual estimada del Modelo $ARIMA(2,1,1)$ de la SIB	68
3.9	FACP residual estimada del Modelo $ARIMA(2,1,1)$ de la SIB	68
3.10	(, , ,	68
3.11	FACP residual estimada del Modelo $ARIMA(1,1,1)$ de la SIB	68

vi Índice de figuras

3.12	FAC y FACP residuales estimadas del Modelo <i>ARIMA</i> (1,1,1) de la SIB en	
	EViews	69
3.13	Prueba de Chow para el punto de quiebre	70
3.14	Prueba de predicciones de Chow	79
3.15	Grafico de SVM	87
3.16	FAC y FACP estimadas de SVM	87
3.17	FAC Y FACP estimadas de la SVM con una diferencia estacional	88
3.18	FAC y FACP residuales estimadas del Modelo 1 para SVM	89
3.19	FAC y FACP estimadas del Modelo 3 para la SVM	90
3.20	Prueba de Chow para las predicciones	90
3.21	Comparación de predicciones con valores reales (2015)	90
1.1	FAC y FACP estimadas residuales del Modelo 3 para la SVM	8
1.2	FAC y FACP estimadas de los residuos cuadráticos del Modelo 3 para la SVM	8
1.3	FAC y FACP estimadas residuales del Modelo 3-ARCH(1) para la SVM	9
1.4	FAC y FACP estimadas de los residuos cuadráticos del Modelo 3-ARCH(1)	
	para la SVM	9

Índice de tablas

3.1	Cálculos para el caso condicionado	62
3.2	Cálculos para el caso no condicionado	64
3.3	Resumen estadístico para el modelo $ARIMA(2,1,2)$ de la SIB	65
3.4	Resumen estadístico para el modelo $ARIMA(2,1,2)$ de la SIB	66
3.5	Resumen estadístico para el modelo ARIMA(2,1,1) de la SIB	67
3.6	Resumen estadístico para el modelo $ARIMA(1,1,1)$ de la SIB	67
3.7	Resumen estadístico para el modelo $ARIMA(1,1,1)$ de la SIB sin constante $$.	67
3.8	Información estadística para la prueba ADF de la SIB	85
3.9	Información estadística para la prueba ADF de la SIB diferenciada	86
3.10	Información estadística del Modelo 1	88
3.11	Información estadística del Modelo 2	89
3.12	Información estadística del Modelo 3 para la SVM	90
1.1	Información sobre los coeficientes del Modelo 3 para la SVM	8
1.2	nformación estadística para el Modelo 3-ARCH(1) para la SVM	9

Notaciones

E(.) : Esperanza matemática de una variable aleatoria.

V(.): Varianza de una variable aleatoria.

Cov(.,.): Covarianza de dos variables aleatorias.

 $N(\mu, \sigma^2)$: Distribución normal con media μ y varianza σ^2 .

: Denota un estimador del parámetro estadístico que se encuentra bajo el

símbolo.

c : De manera general, representa a una constante numérica.

i.i.d : Representa a la frase: independientes e idénticamente distribuidas.

i.i.d (0,1): Variables aleatorias independientes e idénticamente distribuidas con esperan-

za matemática 0 y varianza 1.

 $\gamma(l)$: Función de autocovarianza de orden l.

 $\rho(l)$: Función de autocorrelación de orden l.

r(l): Función de autocorrelación parcial de orden l.

 1_A : Función indicatriz sobre el conjunto A.

 $L_c^2(\Omega)$: Espacio de variables aleatorias de Ω en C, de cuadrado integrable.

 $L_c^2(E)$: Espacio de funciones medibles de E en C, de cuadrado integrable.

 Σ : Matriz de varianzas - covarianzas

 Σ_u : Matriz de varianzas – covarianzas residuales

: Significa: por tanto

Capítulo 4

Modelos de Heteroscedasticidad Condicional

4.1 Modelos Arch-Garch Simétricos

En esta sección, se presentará un breve resumen de la teoría desarrollada alrededor de los modelos ARCH – GARCH, los cuales determinan un patrón de comportamiento estadístico para la varianza condicional, denominados modelos Auto-Regresivos con Heteroscedasticidad Condicional.

El análisis de series temporales económicas, tradicionalmente se ha centrado en el estudio de modelos para la media condicional en los que se asume que la varianza condicional es constante; en este caso se dice que existe homoscedasticidad. Si este no fuera el caso, se estaría enfrentado un problema de no estacionariedad de la serie.

En 1982, Robert Engle revolucionó los modelos de volatilidad introduciendo el estudio de las estructuras cuadráticas, ampliando así la visión de la metodología Box–Jenkins, en la cual los modelos lineales de tipo ARIMA admiten que las innovaciones son un ruido blanco, con media cero y varianza constante.

Los modelos de volatilidad condicional son importantes por el papel que juega el riesgo y el concepto de incertidumbre en el desarrollo de las teorías modernas de modelos financieros, que relacionan de forma directa el riesgo con la volatilidad. Estos modelos permiten relacionar el valor de la varianza condicional (no constante) en función del conjunto de información disponible en periodos anteriores; están específicamente diseñados para modelar y pronosticar varianzas condicionales.

Definición 4.1. *Un Modelo ARCH*(r) *se define por:*

$$Z_t = \sqrt{h_t} u_t$$

$$h_t = \alpha_0 + \alpha_1 Z_{t-1}^2 + \ldots + \alpha_r Z_{t-r}^2$$

donde los (u_t) son independientes e idénticamente distribuidos con media cero y varianza uno $(i.i.d.\ (0,1))$, $\alpha_0 > 0$ y $\alpha_i \ge 0$ para i > 0.

En la práctica se supone que $u_t \sim N(0,1)$ o que siguen una distribución t-student. Los coeficientes α_i deben satisfacer ciertas condiciones (en general no negatividad: $\alpha_0 > 0$ y

 $\alpha_i \ge 0$ para i > 0 y $\sum_{i=1}^r \alpha_i < 1$), dependiendo del tipo de restricciones que se coloquen sobre el proceso Z_t .

Las restricciones de signo de los coeficientes de la ecuación de varianza garantizan que la varianza condicional sea positiva en todos los períodos. Lo que se necesita es que, una vez que se haya estimado el modelo, genere una serie de varianzas positiva, lo que puede suceder aún si algunos de los coeficientes α_i fueran negativos. Esto se puede considerar como un contraste de validez del modelo.

Por la propia definición, a valores grandes de Z_t les siguen otros valores grandes de la serie.

 h_t es la varianza condicional de Z_t dado Z_s , s < t.

Observación 4.1. Se puede demostrar que un proceso ARCH(r) implica que se puede representar X_t^2 como un proceso AR(r), con residuos que no son gaussianos. Además, el coeficiente de apuntamiento (curtosis) es mayor que 3, por lo cual las colas de la distribución serán más pesadas que en la distribución normal.

Definición 4.2. *Un modelo* GARCH(r,s), está definido por:

$$Z_t = \sqrt{h_t} u_t$$

$$h_t = \alpha_0 + \sum_{i=1}^r \alpha_i Z_{t-i}^2 + \sum_{i=1}^s \beta_i h_t$$

donde los u_t son i.i.d. (0,1) con $\alpha_0 > 0$, $\alpha_i \ge 0$, $\beta_i \ge 0$ para i > 0 y

$$\sum_{i=1}^{r} \alpha_i + \sum_{i=1}^{s} \beta_i < 1$$

Como en el caso de los modelos ARCH, usualmente se supone que los u_t son normales o siguen una distribución t-student.

Las restricciones de no negatividad impuestas sobre los coeficientes en la definición son para asegurarse que la varianza no llegue a tomar un valor negativo. Además, en algunos casos se pueden encontrar condiciones menos restrictivas para estos coeficientes, que aseguren que la varianza sea positiva.

Observación 4.2. Se puede demostrar que un proceso GARCH(rs) implica que se puede representar Z_t^2 como un proceso ARMA(rs), con residuos que no son gaussianos (más precisamente con residuos que representan una diferencia martingala). También, en este caso, el coeficiente de apuntamiento (curtosis) es mayor que 3, por lo cual las colas de la distribución serán más pesadas que en la distribución normal.

Modelos IGARCH

Este modelo fue descrito originalmente por Engle y Bollerslev (1986). Si el modelo polinomial AR del modelo GARCH tiene una raíz unitaria, se tiene un modelo IGARCH. Los modelos IGARCH son modelos GARCH con una raíz unitaria. Estos modelos tienen la característica que los impactos de los choques al cuadrado sobre Z_t^2 son persistentes; esto se

puede expresare por:

$$\eta_{t-i} = Z_{t-i}^2 - h_{t-i}, \quad \text{para } i > 0$$

Definición 4.3. *Un modelo IGARCH*(r,s), se define por:

$$Z_{t} = \sqrt{h_{t}} u_{t}$$

$$h_{t} = \alpha_{0} + \sum_{i=1}^{r} \alpha_{i} Z_{t-i}^{2} + \sum_{j=1}^{s} (1 - \beta_{j}) h_{t-j}$$

tal que,

$$\sum_{j=1}^{s} \beta_j + \sum_{i=1}^{r} \alpha_i = 1$$

Como en el caso de los modelos ARCH, usualmente se supone que los u_t son normales o siguen una distribución t-student.

Los modelos IGARCH son un caso específico dentro de la familia de los "modelos con varianza persistente" en los que la información actual (en el instante "t") es importante para realizar predicciones óptimas con cualquier horizonte temporal.

4.2 Modelos GARCH asimétricos

Una característica de los modelos GARCH, dado que la varianza depende fundamentalmente de valores cuadráticos pasados, es que la volatilidad que generan frente a cambios positivos o negativos inesperados de la variable (piénsese en retornos de inversiones), dan una respuesta simétrica a estos. Sin embargo, se ha probado empíricamente que la reacción que tiene la volatilidad o varianza condicional de muchas variables financieras a este tipo de cambios es asimétrica; es decir, existe diferencia en la respuesta de la volatilidad de la variable, dependiendo de si el cambio es positivo o negativo.

Con el fin de modelar esta respuesta asimétrica se han desarrollado una variedad de modelos asimétricos; los más representativos son los modelos EGARCH, TARCH, PARCH.

Modelos EGARCH

Las restricciones de no negatividad para asegurar la positividad de la varianza en los modelos GARCH en muchas ocasiones son difíciles de lograr. Nelson (1991) propuso los modelos EGARCH (*Exponential GARCH*), como solución a este problema; éstos, además, incorporan efectos asimétricos.

Definición 4.4. *Un modelo* EGARCH(r, s), se define por:

$$Z_{t} = \sqrt{h_{t}} u_{t}$$

$$\ln (h_{t}) = \alpha_{0} + \sum_{j=1}^{s} \beta_{j} \ln (h_{t-j}) + \sum_{i=1}^{r} (\alpha_{i} |u_{t}| + \gamma_{i} u_{t})$$

Nótese que el lado izquierdo de la ecuación es el logaritmo de la varianza condicional; esto implica que su efecto es exponencial y garantiza que las predicciones de ésta serán no

negativas. Cuando $\gamma_i \neq 0$, el efecto asimétrico deber incorporarse al Modelo GARCH.

Obsérvese también que se puede escribir $\frac{Z_t}{\sqrt{h_t}}$ en lugar de u_t , en las fórmulas anteriores.

Como en el caso de los modelos ARCH, usualmente se supone que los u_t son normales o siguen una distribución t-student.

Modelos TARCH

Los modelos TARCH (*Threshold ARCH*) fueron introducidos independientemente por Zakoian (1990) y Glosten, Jaganathan y Runklen (1993), por lo que también se conocen como GJR–GARCH. Estos modelos incluyen una variable adicional d_t , que determina el carácter asimétrico del modelo.

Definición 4.5. *Un modelo* TARCH(r,s)*, se define por:*

$$Z_{t} = \sqrt{h_{t}} u_{t}$$

$$h_{t} = \alpha_{0} + \sum_{i=1}^{r} \alpha_{i} Z_{t-i}^{2} + \gamma Z_{t-1}^{2} d_{t-1} + \sum_{j=1}^{s} \beta_{j} h_{t-j}$$

donde los u_t son i.i.d. (0,1) con $\alpha_0 > 0$, $\alpha_i \ge 0$, $\beta_j \ge 0$ para i,j > 0 y $\gamma \ne 0$

$$d_t = \begin{cases} 1, & \text{si } Z_t < 0 \\ 0, & \text{si } Z_t \ge 0 \end{cases}$$

 $Si \gamma = 0$ se pierde el efecto asimétrico del modelo.

En este modelo, las malas noticias ($Z_t < 0$) y las buenas noticias ($Z_t \ge 0$) (piénsese otra vez en retornos), tienen efectos diferentes sobre la varianza condicional.

Modelos PARCH

Los modelos PARCH (*Power* ARCH) desarrollados independientemente por Taylor (1986) y Schwert (1989), introducen la desviación estándar a los modelos ARCH; donde se modela la desviación estándar en lugar de la varianza. Este modelo fue generalizado por Ding y otros (1993).

En el modelo PARCH, el parámetro de potencia δ de la desviación estándar puede ser estimado antes que impuesto y los parámetros opcionales γ se agregan para capturar la asimetría dentro de los datos.

Definición 4.6. *Un modelo* PARCH(r,s)*, se define por:*

$$Z_t = \sqrt{h_t} u_t$$

$$h_t^{\delta} = \alpha_0 + \sum_{i=1}^r \alpha_i (|u_{t-i}| - \gamma_i u_{t-i})^{\delta} + \sum_{j=1}^s \beta_j h_{t-j}^{\delta}$$

donde $\delta > 0$, es el parámetro del término de la potencia. γ_i se dicen los parámetros de apalancamiento.

En series de valores simétricos $\gamma_i=0$ para todo i. Nótese que si $\delta=1$ y $\gamma_i=$ para todo i, el modelo PARCH es simplemente una especificación GARH estándar. Si los $\gamma_i=0$ se pierde el efecto asimétrico del modelo.

Los modelos GARCH asimétricos, se estiman por el método de máxima verosimilitud condicional, por lo cual se requiere de ciertos supuestos acerca del comportamiento de los errores. Por lo general, se suponen i.i.d con distribución normal o incluso con una distribución t-student.

4.3 Metodología de la Modelición

El objetivo es encontrar un modelo que represente adecuadamente a los datos históricos de una determinada variable, combinando especificaciones tanto para la media como para la varianza condicional. Los tipos de modelos que se considerarán serán los ARIMA – GARCH, de tal manera que la media condicional de la serie sea descrita por un modelo del tipo ARIMA y su varianza condicional por uno de la familia de modelos ARCH – GARCH o de sus extensiones asimétricas PARCH, TARCH y EGARCH. La modelación se realizará utilizando el paquete EViews.

El primer paso es, por tanto, modelar la serie de datos por un modelo del tipo ARIMA o incluso SARIMA, con lo que se obtiene un modelo para la media condicional de la serie.

Luego de haberse eliminado toda correlación lineal en la serie, se debe indagar si existe heteroscedasticidad condicional residual, para lo cual deben analizarse los residuos estandarizados estimados al cuadrado; el correleograma correspondiente, permite llevar a cabo un análisis gráfico de identificación, para ver si algún valor es estadísticamente diferente de cero, y por tanto, existe autocorrelación en su forma residual cuadrática.

Si se verifica la existencia de heteroscedasticadad condicional en los residuos, se rechaza el supuesto de la varianza constante; se intentará entonces obtener una especificación para la varianza condicional, a través de la modelación de los residuos estimados obtenidos por el modelo ARIMA, mediante un modelo del tipo ARCH – GARCH o sus extensiones asimétricas.

Inicialmente se mantiene la estructura para la media condicional, obtenida por el modelo ARIMA, pero esta puede modificarse con la nueva especificación. Los residuos estimados deben analizarse, tanto en su forma simple como en la cuadrática, para eliminar toda evidencia de autocorrelación lineal (deben aceptarse como un ruido blanco).

La estimación y verificación permiten encontrar uno o varios modelos que cumplan las condiciones que se impusieron en la modelación ARIMA; es decir, todos los coeficientes deben ser significativos; las raíces de los polinomios característicos, tanto de la parte autoregresiva como de la media móvil, deben estar fuera del círculo unidad, para así asegurar la estacionariedad e invertibilidad del proceso. Además, los coeficientes de la ecuación de la varianza condicional deben satisfacer las restricciones de no negatividad para la varianza (modelos ARCH – GARCH).

Para la verificación de la presencia de una estructura ARIMA en los residuos (simples o cuadráticos) pueden utilizarse la FAC y la FACP; además, también se debe realizar la prueba global (estadístico *Q*) de Box – Pierce – Ljung.

Una vez que un modelo ha sido estimado y ha superado las diversas verificaciones, se convierte en un instrumento útil para las predicciones de valores futuros. Como en la modelación ARIMA, si varios modelos son plausibles, se elige entre estos al mejor, mediante

los criterios ya citados previamente.

4.4 Ejemplos con Heteroscedasticidad Condicional

Aunque los datos de las ventas que se vienen utilizando no corresponden al ámbito financiero, sirven muy bien para ilustrar la modelación para la varianza condicional. En esta ocasión se adoptará el Modelo 3 con el cual se modeló la media condicional (SARIMA). La Figura 4.2 no permite aceptar la hipótesis de que la serie tenga una varianza constante.

Una posibilidad para amortiguar los efectos de varianza no constante es utilizar la transformación logaritmo o, en general, la transformación de Box y Cox; sin embargo, en esta ocasión se tratará de modelar directamente la varianza a través de los Modelos ARCH-GARCH o sus extensiones asimétricas.

En la Tabla 4.1 y en las figuras 4.1 y 4.2 se presentan la información estadística y residual para el Modelo 3 de la SVM:

Variable	Coefficient	Std. Error	<i>t-</i> Statistic	Prob.
С	156.1661	34.82541	4.484257	0.0000
AR(1)	0.325909	0.107494	3.031876	0.0033

0.114892

0.111556

-2.924008

4.307611

0.0045

0.0000

-0.335945

0.480540

AR(12)

MA(13)

Tabla 4.1: Información sobre los coeficientes del Modelo 3 para la SVM

Figura 4.1: FAC y FACP estimadas residuales del Modelo 3 para la SVM

Figura 4.2: FAC y FACP estimadas de los residuos cuadráticos del Modelo 3 para la SVM

Se observan fuertes correlaciones entre los residuos cuadráticos estandarizados estimados, por lo cual se hace necesaria la modelación de la varianza condicional del Modelo 3.

En general, es difícil establecer el orden para los modelos ARCH-GARCH. Lo usual es probar los modelos con parámetros (1,0), (1,1), (1,2) o (2,2). Para este caso se empezó probando con el modelo ARCH(1); los resultados aparecen en la Tabla 4.2 y el las Figuras 4.3 y 4.4.

Variable	Coefficient	Std. Error	z-Statistic	Prob.
<i>C</i>	115.3958	36.57140	3.155355	0.0016
AR(1)	0.483776	0.103019	4.695993	0.0000
AR(12)	-0.449722	0.078830	-5.704935	0.0000
MA(13)	0.798959	0.041313	19.33915	0.0000
	Varianc	e Equation		
C	16129.50	3530.889	4.568113	0.0000
$RESID(-1)^2$	0.610436	0.249248	2.449115	0.0143
R-squared	0.335639	Mean de	pendent var	157.1548
Adjusted R-square	ed 0.310726	S.D. dep	endent var	258.2531
S.E. of regression	a 214.4082	Akaike ii	nfo criterion	13.23093
Sum squared resi	d 3677671.	Schwar	z criterion	13.40456
Log likelihood	-549.6992	Hannan-	Quinn criter.	13.30073
Durbin-Watson st	at 2.201103			
nverted AR Roots	,96 — ,24 <i>i</i>	,96 + ,24 <i>i</i>	,71 + ,65 <i>i</i>	,71 – ,6
	,28 — ,89i	,28 + ,89i	-,21+,90i	-,21-,
	-,63 $-$,66 i	-,63+,66i	-,87 + ,24 i	-,87-,
nverted MA Roots	.9524i	.95 + .24i	.7465i	.74 + .6
	,35 + ,92i	,35 — ,92 <i>i</i>	-,12-,98i	-,12+,
	-,56-,81i	-,56+,81i	-,87 $+$,46 i	-,87-
	,98			

Tabla 4.2: nformación estadística para el Modelo 3-ARCH(1) para la SVM

Figura 4.3: FAC y FACP estimadas residuales del Modelo 3-ARCH(1) para la SVM

Figura 4.4: FAC y FACP estimadas de los residuos cuadráticos del Modelo 3-ARCH(1) para la SVM

Las Figuras 4.3 y 4.4 evidencian que existen problemas ya no solo en los residuos cuadráticos, sino también en los residuos simples. En la figura 4.4, la FACP en el orden 13 es significativo (y cercano a la estacionalidad 12); por lo cual, se decidió incluir un término AR(13) en el Modelo 3; esto tampoco solucionó totalmente la falta de independencia de los residuos cuadráticos. Luego, de algunas pruebas se encontró como modelo final aquel que contiene términos c, SAR(12), MA(12) y AR(13) para la media (se lo llamará Modelo 4) y ARCH(1) para la varianza. Los resultados se muestran en la Tabla 4.3 y en las Figuras 4.5 y 4.6.

Índice alfabético

ARCH

Definición, 3 Restricciones, 4

EGARCH

Definición, 5

GARCH

Definición, 4

IGARCH

Definición, 4

PARCH

Definición, 6

TARCH

Definición, 6