Extending the capability of TOUGHREACT simulator using parallel computing

Application to environmental problems

What is TOUGHREACT?

Coupled Process in porous media simulator, developed in Lawrence Berkley Lab.

Multi-phase flow

Solute transport

Geochemical reaction

Motivation of the work

Lab code constraints:

- Developed for testing the model
- Running on workstation or laptop
- Numerical model can not scaling (8000 discrete grids limited)

Engineering requirements:

- Carrying the simulation of site-scale model involved complex processes
- Improve the speed in numerical solving.

Method

 Redevelop the software package using parallel computing schema.

Domain Decomposition.

Communication between divided subdomains(MPI)

Domain Partition

ELEME			
A11 1	10.2000E+000.4000E+00	0.1000E+000.5000E+005000E+00	
A11 2	10.2000E+000.4000E+00	0.3000E+000.5000E+005000E+00	
A11 3	10.2000E+000.4000E+00	0.5000E+000.5000E+005000E+00	
A11 4	10.2000E+000.4000E+00	0.7000E+000.5000E+005000E+00	
CONNE			
04440440	10 10005 : 000 10005 : 000 10005 : 01		

10.1000E+000.1000E+000.1000E+01

10.1000E+000.1000E+000.1000E+01

Multi-level Graph Partition:

Metis

A11 2A11 3

A11 3A11 4

Parallel Linear Solver

$$\sum_{i} \frac{\partial R_{n}^{\kappa,k+1}}{\partial x_{i}} \Big|_{p} \left(x_{i,p+1} - x_{i,p} \right) = R^{\kappa,k+1} \left(x_{i,p} \right)$$

Large Sparse Linear System iterative

solving

Aztec

Module organization

Application: Carbon dioxide sequestration

INNER: 320 * 320 m Block size: 5m

Fine grid model:

Total: 37824 grids

Hydrogeological parameters for the model.

Layer name	Thickness (m)	Porosity (%)	Permeability (mD)
Zone 2 upper	5.5	22.5	2.92
Zone 2 middle	5.5	22.5	10.44
Zone 2 lower	1.0	22.5	1.486
Zone 3 upper	10.0	20.4	0.33
Zone 3 lower	10.0	20.4	0.33
Zones 4 and 5	25.0	23.4	0.46

Mid-term behavior prediction

Serial computing

Parallel Computing

Runtime Statistics

What we've gained from work

 A new software package running on parallel computing facility (Cluster ...)

Speed up (20 X – 40 X in test case)

 Simulation model scaling up (100,000 grids have been tested)

Thanks for your attention!