Congestion Minimization − 1 שאלה

- - $S_i \leadsto t_i$ הוא מסלולים שבה P_i שבה $\mathcal{P} \coloneqq \{P_1, ... P_k\}$ מערכת מסלולים

 $\mathcal P$ אם מחוך מסלולים מחוך לכל שיש שוכנת על על אם מחוך מסלולים מחוך מסלולים מחוך C (גודש) מסלולים מחוך מאמר שיש ל

. בעיית congestion minimization בהינתן גרף וזוגות של קודקודים כמתואר, נרצה למצוא מערכת מסלולים שמחברת את הזוגות עם מינימלי

0.1 - o(1) אלגוריתם מקרי שנותן קירוב $0(\log n)$, בהסתברות לפחות אלגוריתם מקרי שנותן מטרת השאלה היא

G-ב שיש $s_i \leadsto t_i$ שיש ב-את קבוצת כל את \mathcal{P}_i נסמן $t \in [k]$ עבור

 $\min C$

$$\sum_{P \in \mathcal{P}_i}$$
? = 1 for every $i \in [k]$

$$\sum_{P \in \mathcal{P}_i} ? = 1 \text{ for every } i \in [k]$$

$$\sum_{?=1}^{?} \sum_{? \in \mathcal{P}_i : e \in ?} ? \le C \text{ for every } e \in E(G)$$

$$C > 1$$

 $? \in \{0,1\}$ for every? and every?

פתרון

:מזער את C, תחת האילוצים

$$\sum_{P \in \mathcal{P}_i} x_{P,i} = 1, \qquad \forall i \in [k]$$

$$\sum_{P \in \mathcal{P}_i} x_{P,i} = 1, \quad \forall i \in [k]$$

$$\sum_{i=1}^k \sum_{P \in \mathcal{P}_i: e \in P} x_{P,i} \le C, \quad \forall e \in E(G)$$

$$C \ge 1$$
, $\forall i \in [k], P \in \mathcal{P}_i$: $x_{P,i} \in \{0,1\}$

נסביר:

i את מחבר את מחבר אם המסלול אם יהיה $x_{P,i}$ המשתנה

. אותו. שמחבר שמחבר דיך שלכל צריך צריך צריך אותו. $\sum_{P \in \mathcal{P}_i} x_{P,i} = 1$

יהיו e אריך שלכל אחד את ממכילים שמכילים על כל אחד נעבור על כל הזוגות, לכל מעבור על כל הזוגות. צריך שלכל $\sum_{i=1}^k \sum_{P\in\mathcal{P}_i:e\in P} x_{P,i} \leq C$ מתקיים: $e\in E(G)$ מתקיים: e אריהם.

. אם לא נדרוש מסלולים האין האופטימלי האופטימלי הפיתרון אז הפיתרון אז הפיתרון אז לא נדרוש $\mathcal{C} \geq 1$

בצעו רילקסציה ל-LP.

 $x_{P,i} \geq 0$ פתרון: השינוי היחיד השינוי

:congestion minimization -ל מוצע אלגוריתם ל-

 $(s_1,t_1),...(s_k,t_k)$ קלט: גרף G וזוגות של קודקודים

- . בשברים, אופטימלי, בישברים. x^* יהי יהי בערסת גרסת נפתור או
- \mathcal{P}_i על קובע ש*-ש ההתפלגות לפי מתוך מתוך מתוך מחלול מתוך (s_i,t_i), לכל גדגום לכל לכל מתוך מתוך מתוך מחלגוריתם קופסה שחורה שעושה את זה בזמן פולינומי).
 - $\{P_1, ... P_k\}$ נחזיר את אוסף המסלולים .3

ינדיקטור: את אינדיקטור, ועבור עבור , $i \in [k]$ ועבור אועבור אינדיקטור, אועבור אינדיקטור

$$Y_i^{(e)} := \begin{cases} 1, & e \in E(P_i) \\ 0, & e \notin E(P_i) \end{cases}$$

. מספר e-ש חלק מספר המסלולים מספר . $Y_e \coloneqq \sum_{i=1}^k Y_i^{(e)}$ מספר את המשתנה ונגדיר את מהאלגוריתם. ונגדיר את המשתנה המקרי

נתון משפט:

יהיו המקיימים מקריים בלתי משתנים משתנים X_1, \dots, X_n יהיו

$$\mathbb{P}[X_i = 1] = p_i, \qquad \mathbb{P}[X_i = 0] = 1 - p_i$$

ונגדיר:

$$S := \sum_{i=1}^{n} a_i X_i$$
, $0 \le a_i, \dots, a_n \le 1 \in \mathbb{R}$

אזי לכל $\beta < 1$ ממשי:

$$\mathbb{P}[S \ge (1+\beta)\mathbb{E}[S]] \le \exp\left(-\frac{\beta^2}{3}\mathbb{E}[S]\right)$$

 $r \geq 6\mathbb{E}[S]$ בנוסף, אם בנוסף,

$$\mathbb{P}[S \geq r] \leq 2^{-r}$$

השתמשו במשפט כדי להראות שבהינתן $e \in E(G)$ מתקיים:

$$\mathbb{P}\left[Y_e \geq \max\left\{\frac{6\cdot 3\cdot 3}{(1/2)^2}\log n, \left(1+\frac{1}{2}\right)\mathbb{E}[Y_e]\right\}\right] \leq \frac{1}{n^3}$$

רמזים:

- שימו לב שבמשפט יש שתי טענות, ובאי-שוויון שצריך להוכיח, המקסימום הוא בין שני דברים.
- $\log n$ את האלה נקבל המקרים אותה) ודרך התוחלת (ולא לחשב אותה) אלה נקבל את מקרים לשני מקרים לשני מקרים עבור התוחלת (ולא לחשב אותה) $1/n^3$

פתרון

נחלק לשני מקרים:

אז: $\mathbb{E}[Y_e] \geq \frac{3\cdot 3}{(1/2)^2} \log n$ אז

$$\mathbb{P}\left[Y_e \ge \left(1 + \frac{1}{2}\right) \frac{3 \cdot 3}{(1/2)^2} \log n\right] \le \exp\left(-\frac{(1/2)^2}{3} \frac{3 \cdot 3}{(1/2)^2} \log n\right) = \exp(-3\log n) \le \frac{1}{n^3}$$

:נקבל $r \geq 6 \cdot \frac{3\cdot 3}{(1/2)^2} \log n$ אז עבור אז א $\mathbb{E}[Y_e] < \frac{3\cdot 3}{(1/2)^2} \log n$ אם

$$\mathbb{P}\left[Y_e \ge 6 \cdot \frac{3 \cdot 3}{(1/2)^2} \log n\right] \le 2^{-6 \cdot \frac{3 \cdot 3}{(1/2)^2} \log n} \le 2^{-3 \log n} \le \frac{1}{n^3}$$

כנדרש.

LP- של האופטימלי האופטימלי הפיתרון א לכל פאשר פאר א לכל א לכל בא לכל $\mathbb{E}[Y_e] \leq OPT_f$ הוכיחו של הוכיחו של האופטימלי לכל פאשר א לכל האופטימלי של האומטימלי של האומטימלי של האומטימלי של האומטימלי של האומטימלי

פתרוז

מתקיים:

$$\mathbb{E}[Y_e] = \sum_{i=1}^k \mathbb{E}\left[Y_i^{(e)}\right] = \sum_{i=1}^k \sum_{P \in \mathcal{P}_i} x_{P,i} \le^{\aleph} OPT_f$$

LPב- $\sum_{i=1}^k \sum_{P \in \mathcal{P}_i: e \in P} x_{P,i} \leq C$ א. לפי ההגבלה

סעיף ד: הוכיחו:

$$\mathbb{P}\left[\exists e \in E(G) \colon Y_e \geq \max\left\{\frac{6 \cdot 3 \cdot 3}{(1/2)^2} \log n, \left(1 + \frac{1}{2}\right) OPT_f\right\}\right] \leq \frac{1}{n}$$

. אפשריות אפשריות אפשריות ולפי ולפי ולפי אפשריות, $\mathbb{E}[Y_e] \leq \mathit{OPT}_f$ כתקיים מתקיים פתרון:

0.1 - o(1) הוכיחו שהאלגוריתם המוצע מהווה $O(\log n)$ -קירוב הסתברות שהאלגוריתם שהאלגוריתם המוצע

רמז: מה יחס הקירוב בכל אחד מהמקרים של המקסימום?

פתרון

אם (1/n) אומר היא לכל היותר $(1+\frac{1}{2})$ מסלולים, היא לכל היותר $(1+\frac{1}{2})$ מסלולים, היא לכל היותר אומר שקיימת אומר של אומר של אומר שקיימת אומר של אומר של אומר של אומר של אומר שקיימת אומר של אומר של

אם 1/n אומר היא לכל היותר מ $\frac{6\cdot 3\cdot 3}{(1/2)^2}\log n$ מסלולים, היא לכל היותר אומר שקיימת אומר שקיימת אומר מההסתברות שקיימת אומר אומר שההסתברות שקיימת אומר אומר מומר ווער מ $\frac{6\cdot 3\cdot 3}{(1/2)^2}\log n > \left(1+\frac{1}{2}\right)OPT_f$ אם בהסתברות ווער מומר ווער אומר שקיימת אומר שקיימת אומר ווער מומר ווער ווער שקיימת אומר של אומר שקיימת אומר של אומר שליימת אומר של אומר של

Van der Waerden Numbers – 2 שאלה

נפתח שני חסמים תחתונים על המספרים. אחד בלי הלמה הלוקאלית של לובאס והשנייה (טובה יותר) עם הלמה.

יהי (kAP-k-term arithmetic progression נקרא לה (נקרא באורך k באורך). נקרא לה סדרה מדור $k \in \mathbb{N}$

$$x, x + d, x + 2d, ..., x + (k-1)d$$

. של הסדרה של $common\ gap$ - נקרא הסדרה d

3AP נקראים מספרי W(k) לדוגמה, אביעות עם ובלי W(k) מספרי

המטרה הראשונה היא להוכיח ללא הלמה של לובאס את המשפט הבא:

$$\forall k \in \mathbb{N}, \qquad W(k) = \Omega(\sqrt{k} \cdot 2^{k/2})$$

כתות: (ח] הוא ב-ותות שמספר הוכיחו שמספר ב-kAP כך ש-kAP ב-ותות א: בהינתן א $k \leq n \in \mathbb{N}$ ב-

$$\frac{n^2}{2k} \left(1 + \frac{1}{n} - \left(\frac{k}{n} \right)^2 + \frac{k}{n^2} \right) = \frac{n^2}{2k} \left(1 \pm o(1) \right)$$

רמזים:

- ?[n]ב- kAP של של האיבר הראשון של לבחור אפשר בכמה דרכים \bullet
- יהיה kAP בהינתן m שאפשר לבחור כך שה-kAP בהינתן שווה למספר הפרמטרים m שעבורן m בהינתן m בהינתן m בהינתן m בהינתן m בהינתן m בהינתן m בחור כך שה-m בורן m בורן m בהינתן m בורן m בהינתן m בורן m
 - $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$ מתקיים
 - החלק השמאלי של השוויון הוא רק בתור כיוון. ההוכחה עצמה נדרשת רק עבור החלק הימני.

פתרון

 $\lfloor (n-k+1 \rfloor -$ האיבר ב- להיות יכול יכול יכול האיבר האשון

d-ם מספר הל אז זה גם האיבר הראשון, הסדרה תעבור על $i \in [n]$ מספרים, ב-k קפיצות. כלומר ה-d שיהיה האיבר הראשון, הסדרה תעבור על $i \in [n]$ מספרים, ב-i אז זה גם מספר האפשריים.

נרצה לסכום את:

$$\sum_{i=1}^{n-k+1} \frac{n-i+1}{k} = \frac{1}{k} \sum_{i=1}^{n-k+1} (n-i+1) =$$

j=k מתקיים i=n-k+1 מתקיים , מתקיים מתקיים האטi=1 מתקיים . כאשר וכא

$$=\frac{1}{k}\sum_{j=n}^{k}j=\frac{1}{k}\sum_{i=k}^{n}i=\frac{1}{k}\left(\sum_{i=1}^{n}i-\sum_{i=1}^{k-1}i\right)=\frac{1}{k}\left(\frac{n(n+1)}{2}-\frac{(k-1)k}{2}\right)=\frac{1}{2k}(n^2+n-k^2+k)=\frac{n^2}{2k}\left(1+\frac{1}{n}-\frac{k^2}{n^2}+\frac{k}{n^2}\right)$$

כנדרש.

. סעיף של הלמה הלוקאלית של לא אל $k\in\mathbb{N},\;W(k)=\Omegaig(\sqrt{k}\cdot2^{k/2}ig)$ מעיף ב: הוכיחו את המשפט:

רמזים:

- . נייצר את φ , 2-צביעה של [n] שנבחר באופן מקרי ואחיד (הטלת מטבע לכל מספר).
- . נסמן φ את המאורע ש-kAP כלשהו $S\subseteq [n]$ היא מונוכרומטית תחת \mathcal{E}_S את המאורע ש-
 - אם ההסתברות ש"משהו" קורה היא גדולה ממש מ-0, אז המשהו הזה קיים.
 - . חסם האיחוד מסופק ע"י סעיף א

פתרון

. מתקיים: W(k)>n אומר שקיימת. אז W(k)>n האפשריות הן לא מונוכרומטיות. אז W(k)>n אם מתקיים אומר מתקיים: פר

$$\mathbb{P}[\mathcal{E}_{s}] = 2 \cdot 2^{-k} = 2^{1-k}$$

כי פשוט צריך שכל אחד מהאיברים יהיה באותו צבע. אז לפי חסם איחוד נקבל:

$$\mathbb{P}[\wedge_S \bar{\mathcal{E}}_S] = 1 - \mathbb{P}[\vee_S \mathcal{E}_S] \ge 1 - \frac{n^2}{2k} (1 \pm o(1)) 2^{1-k}$$

:1-ממש מחלק השני הייה קטן נדרוש ברוש (ברוש $\mathbb{P}[\Lambda_S \, ar{\mathcal{E}}_S] > 0$ כדי שיתקיים

אלגוריתמים 2 -מבחן 2023, סמסטר ב, מועד ב

$$\frac{n^2}{2k} \left(1 \pm o(1) \right) 2^{1-k} < 1 \Longrightarrow n^2 < \frac{2k}{\left(1 \pm o(1) \right) 2^{1-k}} = \frac{2k \cdot 2^{k-1}}{1 \pm o(1)} = 2k \cdot 2^{k-1} \cdot \left(1 \pm o(1) \right)$$

כלומר:

$$n < 2^{k/2} \sqrt{k} \left(1 \pm o(1) \right)$$

כנדרש.

סעיף ג: כתבו (ללא הוכחה) את הלמה הלוקאלית של לובאס.

פתרון

בקורס למדנו את הגרסה הסימטרית. בגדול, אם יש לנו הרבה אירועים שכולם לא "יותר מדי" סבירים, והם לא "יותר מדי" קשורים, אז ההסתברות שלא כולם קורים גדולה ממש מ-0.

. כלשהו עבור $0 \leq p \leq 1$ עבור ו $i \in [n]$ לכל $\mathbb{P}[\mathcal{E}_i] \leq p$ שמתקיים כך אירועים ב $\mathcal{E}_1, \dots \mathcal{E}_n$ יהיו פורמלית: יהיו

. $\mathbb{P}[\Lambda_{i\in[n]}|ar{\mathcal{E}}_i]>0$ אזי $4pd\leq 1$ ומתקיים, ומתקיים שלו ההדרגה שהדרגה עד שהדרגה אזי של המאורעות כך אזי

 $.\mathcal{E}_1,...\,\mathcal{E}_n$ שבו גרף תלויות של צלע, הוא שני מאורעות שני שני שני שבו אבו ה $\mathcal{E}_1,...\,\mathcal{E}_n$ שבו כל גרף על המאורעות של

. סעיף אלית הלמה הלוקאלית בעזרת ,ל $k\in\mathbb{N},\;W(k)=\Omega\left(rac{2^{k-3}}{k}
ight)$ בעזרת הלמה הלוקאלית של לובאס.

רמז: הקודקודים של גרף התלויות כבר הוגדרו ברמז של סעיף ב.

פתרון

.[n]-ב אנחנו אמש שאין אראית ממש שיש הסתברות הוצים להראות רוצים אנחנו אקראית. אקראית. אקראית. אנחנו רוצים שיש איז אנחנו בעצם עובדים עם צביעה ϕ

שכנים שלא שכנים בח"ל מכל $S \cap S' \neq \emptyset$ אם $\mathcal{E}_S \mathcal{E}_{S'}$ אם לשהי הקודקודים שלא שכנים בל אחד מייצג אין קשר בין הצביעה שלהן). עלה (כי אם אין איברים משותפים, אין קשר בין הצביעה שלהן).

 $\mathbb{.P}[\mathcal{E}_S] \leq 2^{1-k}$ הוא שמתקיים: הראינו האקראית. תחת מונוכרומטית S -ש הוא המאורע המאורע המאורע

הדרגה המקסימום בגרף: לכל איבר ב-S, נבדוק בכמה kAP אחרים הוא יכול להופיע: נבנה אותם. יש לכל היותר kAP מקומות לשים בהם את האיבר, ומספר הוער kAP האפשריים הוא לכל היותר kAP איברים ב-S, בסה"כ יש לכל היותר kAP דרכים לבנות kAP שיכיל את האיבר. אז לכל kAP יש לכל היותר שכנים.

אם זה, כלומר שיש אמקיימת ב-[n], כלומר ב-kAP מונוכרומטית ממש שאין אומר שיש הסתברות את אומר שה אומר של kAP מונוכרומטית. או זה אומר שה n אומר שה n אומר שה אומר של n אומר של n אומר של של n אומר שה אומ

$$4 \cdot 2^{1-k} \cdot nk \le 1 \Longrightarrow n \le \frac{1}{k \cdot 2^2 \cdot 2^{1-k}} = \frac{1}{k \cdot 2^{3-k}} = \frac{2^{k-3}}{k}$$

. כנדרש, $\frac{2^{k-3}}{k}$ חייב להיות לפחות הייב n

NP-Hardness – 3 שאלה

סעיף א: בהינתן גרף G, זוג $(S,V(G)\setminus S)$ שמקיים $S\subseteq V(G), |S|=|V(G)\setminus S|$ שמקיים שמקיים $S\subseteq V(G), |S|=|V(G)\setminus S|$ שמקיים אודל של ב-S. מספר הצלעות שעוברות מ-S ל-S (S) את הגודל של ה-S את הגודל של ה-S, מספר הצלעות שעוברות מ-S (S) את הגודל של ה-S

 $B := \{(G, k): \beta(G) \ge k\} \in NPH$:הוכיחו

.bisection-ל max cut-רמז: עשינו רדוקציה מ

פתרון

. בהינתן בעיית v(G) קודקודים את גדיר את נגדיר (G,k) max-cut בהינתן בעיית

$$f((G,k)) := (G',2k), \qquad G' := (V(G) \cup \{x_v : v \in V(G)\}, E(G))$$

המבנה של הרדוקציה תקין לפי תהליך הבניה, והפונקציה פולינומית. נוכיח נכונות:

. גודל. באותו התך ב-G' יהיו באותו התך ב-G' יהיה בגודל לקחת כמה קודקודים שצריך כדי שהצדדים יהיו באותו גודל.

G-ב גודל א ב-G, זה אומר שיש א צלעות שחוצות את החתך הזה ב-G, אז אותו חתך (בלי הקודקודים הנוספים) הוא חתך בגודל שיש א צלעות שחוצות את החתך הזה ב-G, אז אותו חתך (בלי הקודקודים הנוספים) הוא חתך בגודל אם יש

סעיף ב: נוסחת CNF תיקרא מאוזנת אם לכל משתנה x, מספר המופעים החיוביים והשליליים של x שווים. הוכיחו:

BALANCED-CNF-SAT := $\{\varphi : \varphi \text{ is a satisfiable balanced CNF formula}\} \in NPH$

פתרון

.CNF-SAT-מ

משתנה: גאדג'ט של מדיים והשליליים החיוביים המפעים את מספר אדג'ט את נסמן p_x, n_x נסמן לכל משתנה לכל

$$g(x) \coloneqq \begin{cases} \left(\underbrace{x \vee ... \vee x}_{n_x - p_x + 1} \vee \bar{x}\right), & p_x < n_x \\ \left(\underbrace{\bar{x} \vee ... \vee \bar{x}}_{p_x - n_x + 1} \vee x\right), & p_x > n_x \end{cases}$$
$$f(\varphi) \coloneqq \varphi \wedge \bigwedge_{x \in \varphi} g(x)$$

שאלה Matchings in Bipartite Graphs – 4 שאלה

סעיף א: כתבו, ללא הוכחה, את משפט קניג ומשפט הול על שידוכים בגרפים דו"צ.

פתרון

 $. au(G) = \nu(G)$ משפט קניג: בגרף דו"צ,

 $|N_G(v)| \geq |S|$ מתקיים $S \subseteq A$ אמ"מ לכל B אמ"ה משתדכת A אזי, A אזי, $G \coloneqq (A \cup B, E)$ מתקיים משפט הול: יהי גרף דו"צ

סעיף ב: הוכיחו שמשפט קניג גורר את משפט הול.

פתרון

גרף דו"צ. $G\coloneqq (A\cup B,E)$ יהי au(G)=
u(G) גרף דו"צ מתקיים שבכל גרף דו"צ משפט הול. נניח שמשפט קניג נכון ונוכיח את משפט הול.

 $A \circlearrowleft B \Longrightarrow \forall S \subseteq A, |N_G(v)| \geq |S|$ ראשית, נוכיה

. סתירה. אי אפשר לשדך לתוך אי את אותה הקבוצה אי את אותה אותה אי אר כך ש- |S| כך ש- $S\subseteq A$ כך אבל קיימת אותה אי אפשר לשדך לתוך אותה הקבוצה אי אפשר לתוך אותרה.

 $A \cup B \Longleftrightarrow \forall S \subseteq A, |N_G(v)| \ge |S|$ עכשיו, נוכיה

A אם נוכיח ש- מקסימום חופס את כל שידוך מקסימום נוכיח ש- $|A| \leq \nu(G)$ אם נוכיח ש- $|A| \leq \tau(G)$, לפי משפט קניג נקבל

 $|A| \leq |C|$ יהי להוכיח בגודל בגודל בגודל בגודל בגודל יהי כיסוי קודקודים בגודל רב

 $|N_G(A\setminus C)|\leq |B\cap C|$ כלומר, אוז אולכת ל- $B\cap C$, כלומר, אוז אחרת הצלע הזאת לא מכוסה. אוז אולכת ל- $B\cap C$, כלומר אחרת הצלע הזאת לא מכוסה. או

: אז: $|A \setminus C| \leq |N_G(A \setminus C)| \leq |B \cap C|$ אז: אז הול את תנאי מקיימת את מקיימת אז אז

$$\tau(G) = |C| = |A \cap C| + |B \cap C| \ge |A \cap C| + |A \setminus C| = |A|$$

כנדרש.

אלגוריתמים 2 מבחן 2023, סמסטר ב, מועד ב

Light-Hall-set מעיף ג: יהי $|N_G(Z)|=|Z|$ שמקיימת על על תת-קבוצה תת-קבוצה גרף דו"צ. תת-קבוצה $G\coloneqq (X \cup Y, E)$

.tight-Hall-set איז גם $S \cap T$ אז גם $S \cap T$ הוכיחו שאם יש ב-S את את את את את את גוב אונכיחו שאם יש ב-S איז אם אידוך שמספק את את אונכיחו

$$|X \cup Y| + |X \cap Y| = |X| + |Y|$$
 הכלה והדחה: רמז:

. |S \cup T| + |S \cap T| \leq |N_G(S \cup T)| + |N_G(S \cap T)| \leq ... = |S| + |T| -- בהוכחה נשתמש ב-

נסו לפתח את זה מהכיוון השני ולהשלים את החלקים החסרים.

פתרון

מתקיים:

$$|S| + |T| = {}^{\aleph} |N_G(S)| + |N_G(T)| = {}^{\beth} |N_G(S) \cup N_G(T)| + |N_G(S) \cap N_G(T)| = {}^{\gimel} |N_G(S \cup T)| + |N_G(S \cap T)| \ge {}^{\gimel} |S \cup T| + |S \cap T|$$

- .tight-Hall-sets הן T,S -ש.
 - ב. הכלה והדחה.
- . קודקוד נמצא באיחוד של קבוצות השכנים אמ"מ הוא נמצא בשכנים של איחוד הקבוצות. כנ"ל לחיתוך.
 - X את שמספק שידוך שיש ב-G את הנתון שיש הול, מהנתון את לפי

בנוסף, מהכלה והדחה נקבל ש- $|S|+|S\cap T|=|S|+|T|+|S\cap T|$. כלומר בביטוי שקיבלנו, הכל שוויון. אז:

$$|N_G(S \cup T)| + |N_G(S \cap T)| = |S \cup T| + |S \cap T|$$

וכבר נתון לנו ש:

$$|N_G(S \cup T)| \ge |S \cup T|, \qquad |N_G(S \cap T)| \ge |S \cap T|$$

. כנדרש. $|N_G(S \cap T)| = |S \cap T|$ מתוך מתקיים מחויון מתקיים אז שוויון מתקיים מחוד מתוך מתוך מתוך מ