Implicit Differentiation

Dylan: Woah! What's up with this?

Julia: I didn't know functions were explicit!

Dylan: The x and y are on the same side of the equation! I can't deal with

James: Functions can be explicit or implicit! And it not the way you're thinking Julia...

Introduction

So far we have dealt only with explicitly defined functions, where y = f(x). Functions where there are both x and y on one side or both sides of the equation are called implicit functions.

Guided Example

Question 1 Give an example of an explicit function and an implicit function, making sure your implicit function is not easily solvable for y.

Free Response:

Question 2 Take the implicit function you defined in part one, and graph it. What do you notice?

Graph of

Free Response:

Now, using your CAS, solve the function for y, and graph the resulting equation(s). What do you notice?

```
SAGE
define(['canvas'],function(canvas) {
    var ctx = canvas.getContext('2d');
    ctx.fillRect(0, 0, 200, 200);
    ctx.clearRect(30, 30, 140, 140);
    ctx.strokeRect(45, 45, 110, 110);
};
```

Using the function(s) you found, find the slope of the tangent lines at a point with two values on your graph.

Implicit Differentiation Using Substitution

Consider the equation $-x^2 * y^3 + y^5 - 32 = 0$.

- (a) Using the method shown in the previous section, evaluate the function for y. Does this equation look easy to differentiate?
- (b) Instead, let's treat our equation as an expression because it equals zero, we don't have to worry about moving anything over. Now consider y as y(x), a function of x, and differentiate with respect to x. Each y term will gain $\frac{dy}{dx}$. Then, set the expression equal to zero, and solve for $\frac{dy}{dx}$. What does this represent?
- (c) Using your result in the previous section, evaluate $\frac{dy}{dx}$ at x=3 and x=7.
- (d) Using the same strategy, find the slope of $\sin(x^2) = \cos(xy^2)$ at any point.

Perpendicular at a Point

Julia: Wow, implicit differentiation is rough.

Dylan: You're telling me... I've been doing this for hours! I wish we could at least do a little more with it if I have to learn it.

James: Did I hear that you guys want to know more about using implicit differentiation?

Julia and Dylan: James! Tell us more!

James: Alright guys, you can use implicit differentiation with implicit functions to tell if two functions are perpendicular at a point!

Julia: But how?

Dylan: Yeah, I don't see how that helps.

James: It's easy - all we have to do is see if the tangent lines are perpendicular at that point, and if they are, then so are the curves!

- (a) Graph $3x-2y+x^3-x^2y=0$ and $x^2-2x+y^2-3y=0$ on the same set of axes. Do they look perpendicular anywhere?
- (b) Prove the two curves are (or are not) perpendicular at the origin. Remember, two perpendicular lines will have their slopes be the negative inverse of one another.

In Summary

There are two main methods to solve implicit equations

- (a) Solve for y and then differentiate.
- (b) Treat y as y(x) and differentiate for x, eventually solving for $\frac{dy}{dx}$ to give the value of the derivative at any point.