Section 9.5: Composition of Functions

Juan Patricio Carrizales Torres

Aug 1, 2022

We have previously defined operations on sets such as the integers modulo n. Some sets of functions are no exception. Let A, B', B and C be nonempty sets and consider the functions $f: A \to B'$ and $g: B \to C$. If $B' \subseteq B$, namely, if range $(f) \subseteq \text{dom}(g)$, then it is possible to create a new function from A to C called the composition of f and g. This composition $g \circ f$ is defined by

$$(g \circ f)(x) = g(f(x))$$
 for all $x \in A$.

Furthermore, it has some useful properties. Consider two functions f and g such that their composition $g \circ f$ is defined, then

(a) If both g and f are injective (surjective), then the composition $g \circ f$ is injective (surjective).

Clearly, one can further conclude that if g and f are bijective, then their composition $g \circ f$ is bijective. Keep in mind that in the beginning of the paragraph we assumed that their composition $g \circ f$ is defined. However, this is not a sufficient condition for $f \circ g$ to be defined. This depends on whether range $(g) \subset \text{dom}(f)$ is true or not.

Also, for nonempty functions f, g, h, if the compositions $g \circ f$ and $h \circ g$ are defined, then $h \circ (g \circ f)$ and $(h \circ g) \circ f$ are defined. Furthermore, $h \circ (g \circ f) = (h \circ g) \circ f$ and so the composition of f, g, h is **associative**.

Lastly, let's prove the following theorem.

Theorem 9.5.1. Let g and f be nonempty functions. If range $(f) \subseteq \text{dom}(g)$ then $g \circ f$ is a function.

Proof. Assume that range $(f) \subseteq \text{dom}(g)$. Consider some $(x,y) \in f$. Then, $(y,z) \in g$ and so $(x,z) \in g \circ f$. Hence, for any $x \in \text{dom}(f) = \text{dom}(g \circ f)$, there is an image $g(f(x)) = (g \circ f)(x)$ defined. We now prove that $g \circ f$ is well-defined. Consider two $a,b \in \text{dom}(g \circ f) = \text{dom}(f)$ such that a = b. Then, $f(a) = f(b) \in \text{dom}(g)$ and so g(f(a)) = g(f(b)). Hence, $(g \circ f)(a) = (g \circ f)(b)$.

Problem 38. Two functions $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$ are defined by $f(x) = 3x^2 + 1$ and g(x) = 5x - 3 for all $x \in \mathbb{R}$. Determine $(g \circ f)(1)$ and $(f \circ g)(1)$.

Solution The composition functions $g \circ f : \mathbb{R} \to \mathbb{R}$ and $f \circ g : \mathbb{R} \to \mathbb{R}$ are defined by $g(f(x)) = 5(3x^2 + 1) - 3 = 15x^2 + 2$ and $f(g(x)) = 3(5x - 3)^2 + 1 = 75x^2 - 90x + 28$ for all $x \in \mathbb{R}$.

Hence, $(g \circ f)(1) = 17$ and $(f \circ g)(1) = 13$.

Problem 39. Two functions $f: \mathbb{Z}_{10} \to \mathbb{Z}_{10}$ and $g: \mathbb{Z}_{10} \to \mathbb{Z}_{10}$ are defined by f([a]) = [3a] and g([a]) = [7a].

(a) Determine $g \circ f$ and $f \circ g$.

Solution The composition functions $g \circ f : \mathbb{Z}_{10} \to \mathbb{Z}_{10}$ and $f \circ g : \mathbb{Z}_{10} \to \mathbb{Z}_{10}$ are defined by g(f([x])) = [21a] = [21][a] = [1][a] = [a] and f(g([x])) = [21a] = [a] for every $[a] \in \mathbb{Z}_{10}$. Therefore, $g \circ f = f \circ g$.

(b) What can be concluded as a result of (a)?

Solution Both $g \circ f$ and $f \circ g$ are identity functions on \mathbb{Z}_{10} .

Problem 40. Let A and B be nonempty sets. Prove that if $f: A \to B$, then $f \circ i_A = f$ and $i_B \circ f = f$.

Proof. Note that range $(i_A) = A = \text{dom}(f)$ and range $(f) \subseteq \text{dom}(i_B) = B$. Hence, both functions $f \circ i_A : A \to B$ and $i_B \circ f : A \to B$ are defined by $(f \circ i_A)(x) = f(i_A(x)) = f(x)$ and $(i_B \circ f)(x) = i_B(f(x)) = f(x)$ for every $x \in A$. Both have the same Dominion and rule as f. Hence, $f \circ i_A = i_B \circ f = f$.