

General information

Designation

Betula alleghaniensis

Typical uses

Furniture; boxes; baskets; crates; woodenware; cooperage; interior finish; doors. As veneer in plywood: flush doors; furniture; paneling; radio & television cabinets; aircraft.

Composition overview

Compositional summary

Cellulose/Hemicellulose/Lignin/12%H2O		
Material family	Natural	
Base material	Wood (hardwood)	
Renewable content	100	%

Composition detail (polymers and natural materials)

Price		

100

Wood

Price	* 0.67	-	1.34	USD/kg
Price per unit volume	* 415	-	1.02e3	USD/m^3

Physical properties

Density	620	- 760	kg/m^3

Mechanical properties

Mechanical properties				
Young's modulus	* 2.01	-	2.24	GPa
Yield strength (elastic limit)	* 3.42	-	4.2	MPa
Tensile strength	5.7	-	7	MPa
Elongation	* 0.84	-	1.03	% strain
Compressive strength	6.02	-	7.36	MPa
Flexural modulus	1.83	-	2.04	GPa
Flexural strength (modulus of rupture)	* 5.7	-	7	MPa
Shear modulus	* 0.208	-	0.285	GPa
Shear strength	* 35.1	-	42.9	MPa
Rolling shear strength	* 1.3	-	3.9	MPa
Bulk modulus	* 1.03	-	1.15	GPa
Poisson's ratio	* 0.02	-	0.04	
Shape factor	5.6			
Hardness - Vickers	5.04	-	6.17	HV
Hardness - Brinell	* 27.3	-	33.3	HB

Birch (betula alleghaniensis) (t)

Hardness - Janka		5.04	-	6.17	kN
Fatigue strength at 10^7 cycles		1.71	-	2.1	MPa
Mechanical loss coefficient (tan delta)	*	0.017	-	0.021	
Differential shrinkage (radial)		0.18	-	0.24	%
Differential shrinkage (tangential)		0.26	-	0.31	%
Radial shrinkage (green to oven-dry)		6.6	-	8	%
Tangential shrinkage (green to oven-dry)		8.6	-	10.5	%
Volumetric shrinkage (green to oven-dry)		15.1	-	18.5	%
Work to maximum strength	*	12.9	-	15.8	kJ/m^3
Impact & fracture properties					
Fracture toughness	*	0.521	-	0.637	MPa.m^0.5
Thermal properties					
Glass temperature		77	-	102	$\mathcal C$
Maximum service temperature		120	-	140	$\mathcal C$
Minimum service temperature	*	-73	-	-23	$\mathcal C$
Thermal conductivity		0.12	-	0.14	W/m.℃
Specific heat capacity		1.66e3	-	1.71e3	J/kg.℃
Thermal expansion coefficient	*	31.2	-	41.8	µstrain/℃
Electrical properties					
Electrical resistivity	*	8.73e14	-	1.3e15	µohm.cm
Dielectric constant (relative permittivity)	*	3.87	-	4.74	
Dissipation factor (dielectric loss tangent)	*	0.054	-	0.065	
Dielectric strength (dielectric breakdown)	*	1	-	2	MV/m
Magnetic properties					
Magnetic type		Non-mag	netic	•	
Optical properties					
Transparency		Opaque			
Critical materials risk					
0 () 5 (0) (1) 1 1 (0)					

Durability

Contains >5wt% critical elements?

Water (fresh)	Limited use
Water (salt)	Limited use
Weak acids	Limited use
Strong acids	Unacceptable
Weak alkalis	Acceptable

No

Birch (betula alleghaniensis) (t)

Strong alkalis	Unacceptable
Organic solvents	Acceptable
Oxidation at 500C	Unacceptable
UV radiation (sunlight)	Good
Flammability	Highly flammable

Primary production energy, CO2 and water

Embodied energy, primary production	11.6	-	12.8	MJ/kg	

Sources

0.5 MJ/kg (Ximenes, 2006); 2 MJ/kg (Ximenes, 2006); 9.1 MJ/kg (Hammond and Jones, 2008); 11.6 MJ/kg (Hubbard and Bowe, 2010); 23.7 MJ/kg (Ecoinvent v2.2); 26 MJ/kg (Ecoinvent v2.2)

CO2 footprint, primary production	0.574	-	0.633	kg/kg

Sources

0.229 kg/kg (Ecoinvent v2.2); 0.412 kg/kg (Ecoinvent v2.2); 0.862 kg/kg (Hammond and Jones, 2008); 0.909 kg/kg (Hubbard and Bowe, 2010)

Processing energy, CO2 footprint & water

Coarse machining energy (per unit wt removed)	* 0.567	-	0.627	MJ/kg
Coarse machining CO2 (per unit wt removed)	* 0.0425	-	0.047	kg/kg
Fine machining energy (per unit wt removed)	* 1.4	-	1.54	MJ/kg
Fine machining CO2 (per unit wt removed)	* 0.105	-	0.116	kg/kg
Grinding energy (per unit wt removed)	* 2.32	-	2.56	MJ/kg
Grinding CO2 (per unit wt removed)	* 0.174	-	0.192	kg/kg

Recycling and end of life

Recycle	×			
Recycle fraction in current supply	8.55	-	9.45	%
Downcycle	✓			
Combust for energy recovery	✓			
Heat of combustion (net)	* 19.8	-	21.3	MJ/kg
Combustion CO2	* 1.69	-	1.78	kg/kg
Landfill	✓			
Biodegrade	✓			

Notes

Warning

All woods have properties which show variation; they depend principally on growth conditions and moisture

Links

LIIKS			
ProcessUniverse			
Reference			
Shape			

