Differential Equations

julia

Master's degree in economics

Jhon Roly Ordoñez Leon November 14, 2023

National University of Peru Faculty of Economic, Administrative and Accounting Sciences Professional School of Economics

Outline

1. Introduction to Differential Equations

 $2. \ \mathsf{First}\text{-}\mathsf{Order} \ \mathsf{Ordinary} \ \mathsf{Differential} \ \mathsf{Equations} \ (\mathsf{ODEs})$

Introduction to Differential

Equations

Definition of a Differential Equation

A differential equation is a mathematical equation that relates one or more functions and their derivatives. In other words, it describes the relationship between a function and its rate of change. The general form of a differential equation is:

$$F(x, y, y', y'', \dots, y^{(n)})$$
 (1)

Here:

- x is the independent variable.
- y is the dependent variable.
- y' is the first derivative of y with respect to x.
- y'' is the second derivative, and so on, up to the n-th derivative.

Types of Differential Equations

- Ordinary Differential Equations (ODEs): Ordinary Differential Equations (ODEs) can be classified into various types based on their properties, structure, and characteristics.
- Partial Differential Equations (PDEs): Partial Differential Equations (PDEs)
 are a type of differential equation that involves multiple independent variables and
 their partial derivatives with respect to those variables.

First-Order Ordinary Differential

Equations (ODEs)

illiary Billerential

Separable Equations

A separable ordinary differential equation (ODE) is a specific type of differential equation where the variables and their derivatives can be "separated" on each side of the equation. This type of equation can be expressed as:

$$\frac{dy}{dx} = g(x)h(y) \tag{2}$$

Here, y is the unknown function of x, $\frac{dy}{dx}$ is its derivate with respect to x, and g(x) and h(y) are known functions.

Linear Equations

A linear ordinary differential equation (ODE) is an ODE where the dependent variable and its derivatives appear as linear terms. The general form of a linear first-order ODE is:

$$\frac{dy}{dx} + P(x)y = Q(x) \tag{3}$$

Where y is the dependent variable, $\frac{dy}{dx}$ is its first derivate with respect to x, P(x) and Q(x) are known functions of x.

Bibliography i

Zill, D. G. (2012).

A first course in differential equations with modeling applications.

Cengage Learning.

Differential Equations

Master's degree in economics

Jhon Roly Ordoñez Leon

November 14, 2023

National University of Peru Faculty of Economic, Administrative and Accounting Sciences Professional School of Economics