Calcolo numerico e Matlab

Minimi quadrati, autovalori e valori singolari

Claudio Canuto
Dipartimento di Scienze Matematiche - Politecnico di Torino

claudio.canuto@polito.it

Indice

1 Sistemi sovra-determinati e minimi quadrati

2 Autovalori e autovettori

3 La decomposizione ai valori singolari di una matrice

4. Sistemi sovra-determinati e minimi quadrati

Un esempio

Il consumo di carburante C di un'auto dipende dalla velocità V in modo bi-monotono: inizialmente decresce, poi cresce (Fig. sinistra). In prima approssimazione, possiamo ipotizzare una dipendenza quadratica, del tipo

$$C = \alpha_0 + \alpha_1 V + \alpha_2 V^2.$$

Un esempio

Il consumo di carburante C di un'auto dipende dalla velocità V in modo bi-monotono: inizialmente decresce, poi cresce (Fig. sinistra). In prima approssimazione, possiamo ipotizzare una dipendenza quadratica, del tipo

$$C = \alpha_0 + \alpha_1 V + \alpha_2 V^2.$$

Fig. 8. Fuel Consumption vs. RPM

Una legge di tipo quadratico potrebbe descrivere anche la dipendenza di ${\cal C}$ dal numero di giri del motore (Fig. destra).

Se la legge fosse effettivamente quadratica, e se le misurazioni fossero esatte, basterebbero tre misurazioni diverse per individuare i coefficiente della parabola:

$$\begin{array}{rcl} \alpha_0 + \alpha_1 V_1 + \alpha_2 V_1^2 & = & C_1 \\ \alpha_0 + \alpha_1 V_2 + \alpha_2 V_2^2 & = & C_2 \\ \alpha_0 + \alpha_1 V_3 + \alpha_2 V_3^2 & = & C_3 \end{array}$$

ossia

$$\left(\begin{array}{ccc} 1 & V_1 & V_1^2 \\ 1 & V_2 & V_2^2 \\ 1 & V_3 & V_3^2 \end{array}\right) \left(\begin{array}{c} \alpha_0 \\ \alpha_1 \\ \alpha_2 \end{array}\right) = \left(\begin{array}{c} C_1 \\ C_2 \\ C_3 \end{array}\right).$$

Se la legge fosse effettivamente quadratica, e se le misurazioni fossero esatte, basterebbero tre misurazioni diverse per individuare i coefficiente della parabola:

$$\begin{array}{rcl} \alpha_0 + \alpha_1 V_1 + \alpha_2 V_1^2 & = & C_1 \\ \alpha_0 + \alpha_1 V_2 + \alpha_2 V_2^2 & = & C_2 \\ \alpha_0 + \alpha_1 V_3 + \alpha_2 V_3^2 & = & C_3 \end{array}$$

ossia

$$\begin{pmatrix} 1 & V_1 & V_1^2 \\ 1 & V_2 & V_2^2 \\ 1 & V_3 & V_3^2 \end{pmatrix} \begin{pmatrix} \alpha_0 \\ \alpha_1 \\ \alpha_2 \end{pmatrix} = \begin{pmatrix} C_1 \\ C_2 \\ C_3 \end{pmatrix}.$$

In realtà così non è, e quindi effettuiamo parecchie misurazioni cercando i coefficienti di quella parabola che meglio descrive il comportamento osservato:

$$\alpha_0 + \alpha_1 V_i + \alpha_2 V_i^2 = C_i, \quad 1 \le i \le m, \quad (\text{con } m \gg 3).$$

Otteniamo in questo modo un sistema sovra-determinato.

Claudio Canuto ()

Se la legge fosse effettivamente quadratica, e se le misurazioni fossero esatte, basterebbero tre misurazioni diverse per individuare i coefficiente della parabola:

$$\begin{array}{rcl} \alpha_0 + \alpha_1 V_1 + \alpha_2 V_1^2 & = & C_1 \\ \alpha_0 + \alpha_1 V_2 + \alpha_2 V_2^2 & = & C_2 \\ \alpha_0 + \alpha_1 V_3 + \alpha_2 V_3^2 & = & C_3 \end{array}$$

ossia

$$\left(\begin{array}{ccc} 1 & V_1 & V_1^2 \\ 1 & V_2 & V_2^2 \\ 1 & V_3 & V_3^2 \end{array}\right) \left(\begin{array}{c} \alpha_0 \\ \alpha_1 \\ \alpha_2 \end{array}\right) = \left(\begin{array}{c} C_1 \\ C_2 \\ C_3 \end{array}\right).$$

In realtà così non è, e quindi effettuiamo parecchie misurazioni cercando i coefficienti di quella parabola che meglio descrive il comportamento osservato:

$$\alpha_0 + \alpha_1 V_i + \alpha_2 V_i^2 = C_i, \qquad 1 \le i \le m, \quad (\text{con } m \gg 3).$$

Otteniamo in questo modo un sistema sovra-determinato.

- Cosa intendiamo per soluzione di un tale sistema?
- Come la calcoliamo?

Sistemi sovra-determinati

Scriviamo (formalmente) un generico sistema sovra-determinato come

$$\sum_{i=1}^{n} a_{ij} x_j = b_i, \qquad 1 \le i \le m, \quad (\text{con } m > n),$$

ossia

$$Ax = b$$

con ${\pmb A}$ matrice rettangolare avente m righe ed n colonne, ${\pmb x}$ vettore colonna di ordine n, e ${\pmb b}$ vettore colonna di ordine m.

Sistemi sovra-determinati

Scriviamo (formalmente) un generico sistema sovra-determinato come

$$\sum_{i=1}^{n} a_{ij} x_j = b_i, \qquad 1 \le i \le m, \quad (\text{con } m > n),$$

ossia

$$Ax = b$$

con ${\boldsymbol A}$ matrice rettangolare avente m righe ed n colonne, ${\boldsymbol x}$ vettore colonna di ordine n, e ${\boldsymbol b}$ vettore colonna di ordine m.

ullet Nel seguito, supponiamo che la matrice A abbia rango massimo n.

Ciò significa che i suoi n vettori colonna sono linearmente indipendenti.

Equivalentemente, dalla matrice A è possibile estrarre una sottomatrice quadrata \bar{A} di ordine n non-singolare. Dunque, esistono n equazioni del sistema linearmente indipendenti fra loro.

Per un termine noto b generico, non possiamo aspettarci che esista un vettore x tale che l'uguaglianza Ax=b sia soddisfatta. Ma se ciò accade, allora il vettore Ax-b è nullo.

Possiamo dunque cercare di minimizzare lo scarto tra i vettori Ax e b.

Per un termine noto b generico, non possiamo aspettarci che esista un vettore x tale che l'uguaglianza Ax = b sia soddisfatta. Ma se ciò accade, allora il vettore Ax - b è nullo.

Possiamo dunque cercare di minimizzare lo scarto tra i vettori Ax e b.

Per essere chiari, per ogni vettore $oldsymbol{y} \in \mathbb{R}^n$ consideriamo il vettore

$$r(y) = b - Ay,$$

che chiamiamo il residuo dell'equazione associato a y.

Claudio Canuto () Calcolo numerico e Matlab

Per un termine noto b generico, non possiamo aspettarci che esista un vettore x tale che l'uguaglianza Ax = b sia soddisfatta. Ma se ciò accade, allora il vettore Ax - b è nullo.

Possiamo dunque cercare di minimizzare lo scarto tra i vettori Ax e b.

Per essere chiari, per ogni vettore $oldsymbol{y} \in \mathbb{R}^n$ consideriamo il vettore

$$r(y) = b - Ay,$$

che chiamiamo il residuo dell'equazione associato a y.

Noi *vogliamo rendere piccolo il residuo*, e pertanto introduciamo una *norma* $\|\cdot\|$ in \mathbb{R}^m al fine di misurare la grandezza di tale vettore.

Claudio Canuto () Calcolo numerico e Matlab

Per un termine noto b generico, non possiamo aspettarci che esista un vettore x tale che l'uguaglianza Ax = b sia soddisfatta. Ma se ciò accade, allora il vettore Ax - b è nullo.

Possiamo dunque cercare di minimizzare lo scarto tra i vettori Ax e b.

Per essere chiari, per ogni vettore $oldsymbol{y} \in \mathbb{R}^n$ consideriamo il vettore

$$r(y) = b - Ay,$$

che chiamiamo il residuo dell'equazione associato a y.

Noi *vogliamo rendere piccolo il residuo*, e pertanto introduciamo una *norma* $\|\cdot\|$ in \mathbb{R}^m al fine di misurare la grandezza di tale vettore.

Diciamo che $x \in \mathbb{R}^n$ è soluzione del sistema sovra-determinato, rispetto a tale norma, se

$$\|\boldsymbol{r}(\boldsymbol{x})\| = \min_{\boldsymbol{y} \in \mathbb{R}^n} \|\boldsymbol{r}(\boldsymbol{y})\|.$$

vale a dire

$$||Ax - b|| = \min_{\boldsymbol{y} \in \mathbb{R}^n} ||Ay - b||.$$

Claudio Canuto ()

Per un termine noto b generico, non possiamo aspettarci che esista un vettore x tale che l'uguaglianza Ax=b sia soddisfatta. Ma se ciò accade, allora il vettore Ax-b è nullo.

Possiamo dunque cercare di minimizzare lo scarto tra i vettori Ax e b.

Per essere chiari, per ogni vettore $oldsymbol{y} \in \mathbb{R}^n$ consideriamo il vettore

$$r(y) = b - Ay,$$

che chiamiamo il residuo dell'equazione associato a y.

Noi *vogliamo rendere piccolo il residuo*, e pertanto introduciamo una *norma* $\|\cdot\|$ in \mathbb{R}^m al fine di misurare la grandezza di tale vettore.

Diciamo che $x \in \mathbb{R}^n$ è soluzione del sistema sovra-determinato, rispetto a tale norma, se

$$\|\boldsymbol{r}(\boldsymbol{x})\| = \min_{\boldsymbol{y} \in \mathbb{R}^n} \|\boldsymbol{r}(\boldsymbol{y})\|.$$

vale a dire

$$||Ax - b|| = \min_{y \in \mathbb{R}^n} ||Ay - b||.$$

Osservazione. Se il sistema è quadrato, m=n, ritroviamo in tal modo la soluzione "classica" del sistema Ax=b, in quanto si ha

$$\|\boldsymbol{A}\boldsymbol{x} - \boldsymbol{b}\| = 0.$$

Claudio Canuto () Calcolo numerico e Matlab

Il problema di minimizzare il residuo può essere risolto facilmente, come vedremo, se si sceglie la norma euclidea.

Se $oldsymbol{x} \in \mathbb{R}^n$ soddisfa

$$\|{m A}{m x} - {m b}\|_2 = \min_{{m y} \in {\mathbb R}^n} \|{m A}{m y} - {m b}\|_2$$

diciamo che x è soluzione del sistema sovra-determinato nel senso dei minimi quadrati.

Il problema di minimizzare il residuo può essere risolto facilmente, come vedremo, se si sceglie la norma euclidea.

Se $\boldsymbol{x} \in \mathbb{R}^n$ soddisfa

$$\|Ax - b\|_2 = \min_{y \in \mathbb{R}^n} \|Ay - b\|_2$$

diciamo che x è soluzione del sistema sovra-determinato nel senso dei minimi quadrati.

In tal caso, $oldsymbol{x}$ è il vettore che minimizza lo scarto quadratico medio

$$\left(\frac{1}{m}\sum_{i=1}^{m}\left|(\boldsymbol{A}\boldsymbol{y})_{i}-b_{i}\right|^{2}\right)^{1/2}$$

tra le componenti dei vettori $\boldsymbol{A}\boldsymbol{y}$ e \boldsymbol{b} .

Claudio Canuto ()

Il problema di minimizzare il residuo può essere risolto facilmente, come vedremo, se si sceglie la norma euclidea.

Se $\boldsymbol{x} \in \mathbb{R}^n$ soddisfa

$$\|Ax - b\|_2 = \min_{y \in \mathbb{R}^n} \|Ay - b\|_2$$

diciamo che x è soluzione del sistema sovra-determinato nel senso dei minimi quadrati.

In tal caso, $oldsymbol{x}$ è il vettore che minimizza lo scarto quadratico medio

$$\left(\frac{1}{m}\sum_{i=1}^{m}\left|(\boldsymbol{A}\boldsymbol{y})_{i}-b_{i}\right|^{2}\right)^{1/2}$$

tra le componenti dei vettori Ay e b.

Osservazione. Se si usa la norma 1, si ha il problema di minimo

$$\sum_{i=1}^{m} |(\bm{A}\bm{x})_i - b_i| = \min_{\bm{y} \in \mathbb{R}^n} \sum_{i=1}^{m} |(\bm{A}\bm{y})_i - b_i|$$

mentre se si usa la norma ∞ si ha

$$\max_{1 \leq i \leq m} |(\boldsymbol{A}\boldsymbol{x})_i - b_i| = \min_{\boldsymbol{y} \in \mathbb{R}^n} \max_{1 \leq i \leq m} |(\boldsymbol{A}\boldsymbol{y})_i - b_i|.$$

Tali problemi possono essere riformulati come problemi di *programmazione lineare*, e in genere sono computazionalmente più onerosi rispetto al problema dei minimi quadrati.

Variando tra le norme 1, 2 e ∞ , aumenta il peso che si dà alle componenti in cui si ha lo scarto maggiore tra $(Ay)_i$ e b_i .

Vogliamo ora mostrare che il problema dei minimi quadrati ammette una e una sola soluzione, e caratterizzarla anche come soluzione di un sistema quadrato di n equazioni in n incognite.

Vogliamo ora mostrare che il problema dei minimi quadrati ammette una e una sola soluzione, e caratterizzarla anche come soluzione di un sistema quadrato di n equazioni in n incognite.

Osserviamo che minimizzare la quantità $\| {m A} {m y} - {m b} \|_2$ equivale a minimizzare la quantità

$$\Phi(y) = \frac{1}{2} ||Ay - b||_2^2 = \frac{1}{2} (Ay - b)^T (Ay - b).$$

e dunque $oldsymbol{x}$ soddisfa

$$\Phi(\boldsymbol{x}) = \min_{\boldsymbol{y} \in \mathbb{R}^n} \Phi(\boldsymbol{y}).$$

Vogliamo ora mostrare che il problema dei minimi quadrati ammette una e una sola soluzione, e caratterizzarla anche come soluzione di un sistema quadrato di n equazioni in n incognite.

Osserviamo che minimizzare la quantità $\| {m A} {m y} - {m b} \|_2$ equivale a minimizzare la quantità

$$\Phi(y) = \frac{1}{2} ||Ay - b||_2^2 = \frac{1}{2} (Ay - b)^T (Ay - b).$$

e dunque $oldsymbol{x}$ soddisfa

$$\Phi(\boldsymbol{x}) = \min_{\boldsymbol{y} \in \mathbb{R}^n} \Phi(\boldsymbol{y}).$$

Per capire come è fatto il funzionale $\Phi: \mathbb{R}^n \to \mathbb{R}_+$, diamo un generico incremento δy all'argomento y. Con semplici passaggi (esercizio) si ottiene

$$\Phi(\boldsymbol{y} + \boldsymbol{\delta} \boldsymbol{y}) = \Phi(\boldsymbol{y}) + (\boldsymbol{A} \boldsymbol{y} - \boldsymbol{b})^T (\boldsymbol{A} \boldsymbol{\delta} \boldsymbol{y}) + \frac{1}{2} (\boldsymbol{A} \boldsymbol{\delta} \boldsymbol{y})^T (\boldsymbol{A} \boldsymbol{\delta} \boldsymbol{y})$$
$$= \Phi(\boldsymbol{y}) + (\boldsymbol{A}^T \boldsymbol{A} \boldsymbol{y} - \boldsymbol{A}^T \boldsymbol{b})^T \boldsymbol{\delta} \boldsymbol{y} + \frac{1}{2} \boldsymbol{\delta} \boldsymbol{y}^T (\boldsymbol{A}^T \boldsymbol{A}) \boldsymbol{\delta} \boldsymbol{y}.$$

Vogliamo ora mostrare che il problema dei minimi quadrati ammette una e una sola soluzione, e caratterizzarla anche come soluzione di un sistema quadrato di n equazioni in n incognite.

Osserviamo che minimizzare la quantità $\| {m A} {m y} - {m b} \|_2$ equivale a minimizzare la quantità

$$\Phi(y) = \frac{1}{2} ||Ay - b||_2^2 = \frac{1}{2} (Ay - b)^T (Ay - b).$$

e dunque $oldsymbol{x}$ soddisfa

$$\Phi(\boldsymbol{x}) = \min_{\boldsymbol{y} \in \mathbb{R}^n} \Phi(\boldsymbol{y}).$$

Per capire come è fatto il funzionale $\Phi: \mathbb{R}^n \to \mathbb{R}_+$, diamo un generico incremento δy all'argomento y. Con semplici passaggi (esercizio) si ottiene

$$\Phi(\boldsymbol{y} + \boldsymbol{\delta} \boldsymbol{y}) = \Phi(\boldsymbol{y}) + (\boldsymbol{A} \boldsymbol{y} - \boldsymbol{b})^T (\boldsymbol{A} \boldsymbol{\delta} \boldsymbol{y}) + \frac{1}{2} (\boldsymbol{A} \boldsymbol{\delta} \boldsymbol{y})^T (\boldsymbol{A} \boldsymbol{\delta} \boldsymbol{y})$$
$$= \Phi(\boldsymbol{y}) + (\boldsymbol{A}^T \boldsymbol{A} \boldsymbol{y} - \boldsymbol{A}^T \boldsymbol{b})^T \boldsymbol{\delta} \boldsymbol{y} + \frac{1}{2} \boldsymbol{\delta} \boldsymbol{y}^T (\boldsymbol{A}^T \boldsymbol{A}) \boldsymbol{\delta} \boldsymbol{y}.$$

Da ciò deduciamo che

$$\operatorname{grad}\Phi(\boldsymbol{y}) = \boldsymbol{A}^T \! \boldsymbol{A} \boldsymbol{y} - \boldsymbol{A}^T \boldsymbol{b}, \qquad \operatorname{Hess}\Phi(\boldsymbol{y}) = \boldsymbol{A}^T \! \boldsymbol{A}.$$

 ✓ □ ▷ ✓ □ ▷ ✓ □ ▷ ✓ □ ▷ ✓ □ ▷ ✓ □ ▷ ✓ □ ▷

 Claudio Canuto ()
 Calcolo numerico e Matlab

 9 / 58

Proprietà. Sia A una matrice di ordine $m \times n$ con $m \ge n$, avente rango massimo. Allora, la matrice A^TA è simmetrica e definita positiva.

Proprietà. Sia A una matrice di ordine $m \times n$ con $m \ge n$, avente rango massimo. Allora, la matrice A^TA è simmetrica e definita positiva.

Infatti, $\left(m{A}^T m{A} \right)^T = m{A}^T \left(m{A}^T \right)^T = m{A}^T m{A}$, dunque la matrice è simmetrica. Inoltre, per ogni $m{y} \in \mathbb{R}^n$

$$\boldsymbol{y}^T (\boldsymbol{A}^T \boldsymbol{A}) \boldsymbol{y} = (\boldsymbol{A} \boldsymbol{y})^T (\boldsymbol{A} \boldsymbol{y}) = \|\boldsymbol{A} \boldsymbol{y}\|_2^2 \ge 0,$$

e $||Ay||_2 = 0$ implica Ay = 0, che a sua volta implica y = 0 in quanto la matrice A ha rango massimo (i vettori colonna sono linearmente indipendenti).

Claudio Canuto () Calcolo numerico e Matlab 10 / 58

Proprietà. Sia A una matrice di ordine $m \times n$ con $m \ge n$, avente rango massimo. Allora, la matrice A^TA è simmetrica e definita positiva.

Infatti, $\left(m{A}^T m{A} \right)^T = m{A}^T \left(m{A}^T \right)^T = m{A}^T m{A}$, dunque la matrice è simmetrica. Inoltre, per ogni $m{y} \in \mathbb{R}^n$

$$\boldsymbol{y}^{T}(\boldsymbol{A}^{T}\boldsymbol{A})\boldsymbol{y} = (\boldsymbol{A}\boldsymbol{y})^{T}(\boldsymbol{A}\boldsymbol{y}) = \|\boldsymbol{A}\boldsymbol{y}\|_{2}^{2} \geq 0,$$

e $\|Ay\|_2 = 0$ implica Ay = 0, che a sua volta implica y = 0 in quanto la matrice A ha rango massimo (i vettori colonna sono linearmente indipendenti).

In base a questi risultati, se poniamo uguale a zero il gradiente di Φ ,

$$\operatorname{grad} \Phi(\boldsymbol{x}) = \boldsymbol{A}^T \boldsymbol{A} \boldsymbol{x} - \boldsymbol{A}^T \boldsymbol{b} = \boldsymbol{0},$$

otteniamo l'unico punto di minimo (stretto) di Φ , in quanto dalla formula della slide precedente si ha

$$\Phi(\boldsymbol{x} + \boldsymbol{\delta} \boldsymbol{x}) = \Phi(\boldsymbol{x}) + \frac{1}{2} \boldsymbol{\delta} \boldsymbol{x}^T (\boldsymbol{A}^T \boldsymbol{A}) \boldsymbol{\delta} \boldsymbol{x} > \Phi(\boldsymbol{x})$$

per ogni $\delta x
eq 0$.

Abbiamo dunque stabilito la seguente

Proprietà. La soluzione del problema dei minimi quadrati coincide con la soluzione del sistema quadrato di ordine n

$$\boldsymbol{A}^T \boldsymbol{A} \boldsymbol{x} = \boldsymbol{A}^T \boldsymbol{b}$$

detto sistema delle equazioni normali.

Possiamo dunque calcolare x risolvendo le equazioni normali. Ciò ha dei pro e dei contro:

- La matrice A^TA è facilmente calcolabile. Essendo simmetrica e definita positiva, possiamo applicare il metodo di Choleski $R = \text{chol}(A^**A)$ per fattorizzarla.
- Il sistema delle equazioni normali può essere fortemente malcondizionato. Infatti il numero di condizionamento della matrice A^TA è il quadrato del numero di condizionamento della matrice A.

Per calcolare la soluzione x in modo numericamente più stabile, è preferibile seguire un'altra via, ricorrendo alla fattorizzazione QR della matrice A.

La fattorizzazione ${\it QR}$ esiste anche per le matrici ${\it A}$, non quadrate, di ordine $m \times n$. L'algoritmo che la produce è del tutto simile a quello descritto in precedenza per matrici quadrate.

La fattorizzazione ${\it QR}$ esiste anche per le matrici ${\it A}$, non quadrate, di ordine $m \times n$. L'algoritmo che la produce è del tutto simile a quello descritto in precedenza per matrici quadrate.

• Caso m > n:

La fattorizzazione ${\it QR}$ esiste anche per le matrici ${\it A}$, non quadrate, di ordine $m \times n$. L'algoritmo che la produce è del tutto simile a quello descritto in precedenza per matrici quadrate.

• Caso m > n:

• Caso m < n:

La fattorizzazione ${\it QR}$ esiste anche per le matrici ${\it A}$, non quadrate, di ordine $m \times n$. L'algoritmo che la produce è del tutto simile a quello descritto in precedenza per matrici quadrate.

• Caso m > n:

• Caso m < n:

Se la matrice ${m A}$ ha rango massimo, gli elementi che stanno sulla diagonale principale di ${m R}$ sono tutti $\neq 0$.

Risoluzione del problema dei minimi quadrati

Mediante la fattorizzazione QR della nostra matrice A (di ordine $m \times n$ con m > n), possiamo dare una formulazione equivalente al problema di minimo

$$\|Ax - b\|_2 = \min_{y \in \mathbb{R}^n} \|Ay - b\|_2.$$

ullet Ricordando che $oldsymbol{Q}$ è una matrice ortogonale $oldsymbol{(Q^TQ=QQ^T=I)}$, scriviamo

$$Ay-b = QRy-b = QRy-QQ^Tb = Q(Ry-Q^Tb) = Q(Ry-c)$$

avendo posto $\boldsymbol{c} = \boldsymbol{Q}^T \boldsymbol{b}$.

ullet Ricordando che $oldsymbol{Q}$ conserva la norma euclidea ($\|oldsymbol{Q}oldsymbol{z}\|_2=\|oldsymbol{z}\|_2$ per ogni $oldsymbol{z}$), abbiamo

$$||Ay - b||_2 = ||Q(Ry - c)||_2 = ||Ry - c||_2.$$

Il problema di minimo si scrive quindi equivalentemente come

$$\|Rx - c\|_2 = \min_{y \in \mathbb{R}^n} \|Ry - c\|_2.$$

Decomponiamo la matrice rettangolare $oldsymbol{R}$ nella forma a blocchi

$$oldsymbol{R} = \left(egin{array}{c} \widetilde{oldsymbol{R}} \ oldsymbol{O} \end{array}
ight)$$

con \widetilde{R} matrice quadrata di ordine n, triangolare superiore e con elementi diagonali tutti diversi da 0, e O matrice nulla di ordine $(m-n)\times n$.

Claudio Canuto () Calcolo numerico e Matlab

Decomponiamo la matrice rettangolare $oldsymbol{R}$ nella forma a blocchi

$$oldsymbol{R} = \left(egin{array}{c} \widetilde{oldsymbol{R}} \ oldsymbol{O} \end{array}
ight)$$

con \widetilde{R} matrice quadrata di ordine n, triangolare superiore e con elementi diagonali tutti diversi da 0, e O matrice nulla di ordine $(m-n)\times n$.

Dunque

$$oldsymbol{R}oldsymbol{y}=\left(egin{array}{c} \widetilde{oldsymbol{R}}oldsymbol{y}\ 0 \end{array}
ight).$$

Decomponiamo la matrice rettangolare $oldsymbol{R}$ nella forma a blocchi

$$m{R}=\left(egin{array}{c} \widetilde{m{R}} \ m{O} \end{array}
ight)$$

con \widetilde{R} matrice quadrata di ordine n, triangolare superiore e con elementi diagonali tutti diversi da 0, e O matrice nulla di ordine $(m-n)\times n$.

Dunque

$$oldsymbol{R} oldsymbol{y} = \left(egin{array}{c} \widetilde{oldsymbol{R}} oldsymbol{y} \ 0 \end{array}
ight).$$

Similmente, decomponiamo il vettore $oldsymbol{c}$ nella forma a blocchi

$$oldsymbol{c} = \left(egin{array}{c} \widetilde{oldsymbol{c}} \ \widetilde{oldsymbol{d}} \end{array}
ight)$$

con $\widetilde{m{c}} \in \mathbb{R}^n$ e $\widetilde{m{d}} \in \mathbb{R}^{m-n}$.

Claudio Canuto ()

Si ha quindi

$$Ry-c \ = \ \left(egin{array}{c} \widetilde{R}y-\widetilde{c} \ -\widetilde{d} \end{array}
ight).$$

Si ha quindi

$$Ry-c = \left(egin{array}{c} \widetilde{R}y-\widetilde{c} \ -\widetilde{d} \end{array}
ight).$$

Prendendo il quadrato della norma euclidea di tale vettore, otteniamo

$$\|\mathbf{R}\mathbf{y} - \mathbf{c}\|_{2}^{2} = \|\widetilde{\mathbf{R}}\mathbf{y} - \widetilde{\mathbf{c}}\|_{2}^{2} + \|\widetilde{\mathbf{d}}\|_{2}^{2}.$$

Claudio Canuto ()

Si ha quindi

$$Ry-c = \left(egin{array}{c} \widetilde{R}y-\widetilde{c} \ -\widetilde{d} \end{array}
ight).$$

Prendendo il quadrato della norma euclidea di tale vettore, otteniamo

$$\|\mathbf{R}\mathbf{y} - \mathbf{c}\|_{2}^{2} = \|\widetilde{\mathbf{R}}\mathbf{y} - \widetilde{\mathbf{c}}\|_{2}^{2} + \|\widetilde{\mathbf{d}}\|_{2}^{2}.$$

Notiamo che il secondo addendo a secondo membro non dipende da ${\pmb y}$, mentre il primo addendo può essere reso =0 scegliendo come ${\pmb y}$ la soluzione ${\pmb x}$ del sistema lineare quadrato

$$\widetilde{R}x = \widetilde{c}.$$

Si ha quindi

$$Ry-c \ = \ \left(egin{array}{c} \widetilde{R}y-\widetilde{c} \ -\widetilde{d} \end{array}
ight).$$

Prendendo il quadrato della norma euclidea di tale vettore, otteniamo

$$\|\mathbf{R}\mathbf{y} - \mathbf{c}\|_{2}^{2} = \|\widetilde{\mathbf{R}}\mathbf{y} - \widetilde{\mathbf{c}}\|_{2}^{2} + \|\widetilde{\mathbf{d}}\|_{2}^{2}.$$

Notiamo che il secondo addendo a secondo membro non dipende da $m{y}$, mentre il primo addendo può essere reso =0 scegliendo come $m{y}$ la soluzione $m{x}$ del sistema lineare quadrato

$$\widetilde{R}x = \widetilde{c}$$
.

Abbiamo dunque ottenuto il seguente risultato.

Proprietà. La soluzione del problema dei minimi quadrati

$$\|Ax - b\|_2 = \min_{y \in \mathbb{R}^n} \|Ay - b\|_2.$$

coincide con la soluzione del sistema quadrato di ordine n

$$\widetilde{R}x = \widetilde{c}$$
.

Inoltre si ha

$$\|\boldsymbol{A}\boldsymbol{x} - \boldsymbol{b}\|_2 = \|\widetilde{\boldsymbol{d}}\|_2.$$

In pratica, i passi necessari per calcolare la soluzione $m{x}$ del problema dei minimi quadrati sono i seguenti:

ullet calcolare i fattori Q ed R della matrice A;

- ullet calcolare i fattori Q ed R della matrice A;
- isolare \hat{R} , il blocco quadrato superiore di ordine n della matrice R;

- ullet calcolare i fattori Q ed R della matrice A;
- isolare \widetilde{R} , il blocco quadrato superiore di ordine n della matrice R;
- eseguire la moltiplicazione $c = Q^T b$;

- ullet calcolare i fattori $oldsymbol{Q}$ ed $oldsymbol{R}$ della matrice $oldsymbol{A}$;
- isolare \widetilde{R} , il blocco quadrato superiore di ordine n della matrice R;
- ullet eseguire la moltiplicazione $oldsymbol{c} = oldsymbol{Q}^T oldsymbol{b}$;
- isolare \widetilde{c} , la parte superiore di ordine n del vettore c;

- ullet calcolare i fattori Q ed R della matrice A;
- isolare \widetilde{R} , il blocco quadrato superiore di ordine n della matrice R;
- ullet eseguire la moltiplicazione $oldsymbol{c} = oldsymbol{Q}^T oldsymbol{b};$
- isolare \widetilde{c} , la parte superiore di ordine n del vettore c;
- ullet risolvere il sistema lineare $\widetilde{R}x=\widetilde{c}$ mediante sostituzione all'indietro.

In pratica, i passi necessari per calcolare la soluzione $m{x}$ del problema dei minimi quadrati sono i seguenti:

- ullet calcolare i fattori Q ed R della matrice A;
- isolare \widetilde{R} , il blocco quadrato superiore di ordine n della matrice R;
- eseguire la moltiplicazione $c = Q^T b$;
- isolare \widetilde{c} , la parte superiore di ordine n del vettore c;
- ullet risolvere il sistema lineare $\widetilde{R}x=\widetilde{c}$ mediante sostituzione all'indietro.

Comandi MATLAB

La fattorizzazione QR di una matrice rettangolare A si ottiene ancora con il comando Matlab $[Q\ R] = qr(A)$.

Si noti però che per ottenere \widetilde{c} è sufficiente moltiplicare le prime n righe di Q^T per il vettore b. In altri termini, per risolvere il problema dei minimi quadrati, si usano solo le prime n colonne della matrice Q (così come le prime n righe della matrice R).

Claudio Canuto () Calcolo numerico e Matlab 16 / 58

Per questo, Matlab ha predisposto il comando [Q R] = qr(A,0), che fornisce la forma economica della fattorizzazione QR, ossia precisamente le prime n colonne della matrice Q e le prime n righe della matrice R.

$$\begin{bmatrix} X \\ \end{bmatrix} = \begin{bmatrix} Q \\ \end{bmatrix} \begin{bmatrix} R \\ \end{bmatrix}$$

$$\begin{bmatrix} X \\ \end{bmatrix} = \begin{bmatrix} Q \\ \end{bmatrix} \begin{bmatrix} R \\ \end{bmatrix}$$

Figure: Forma piena ed economica della fattorizzazione $m{Q}m{R}$ di una matrice $m{X}$ (da C. Moler)

Claudio Canuto () Calcolo numerico e Matlab

Per questo, Matlab ha predisposto il comando [Q R] = qr(A,0), che fornisce la forma economica della fattorizzazione QR, ossia precisamente le prime n colonne della matrice Q e le prime n righe della matrice R.

$$\begin{bmatrix} X \\ \end{bmatrix} = \begin{bmatrix} Q \\ \end{bmatrix} \begin{bmatrix} R \\ \end{bmatrix}$$

$$\begin{bmatrix} X \\ \end{bmatrix} = \begin{bmatrix} Q \\ \end{bmatrix} \begin{bmatrix} R \\ \end{bmatrix}$$

Figure: Forma piena ed economica della fattorizzazione QR di una matrice X (da C. Moler)

Osservazione. Il sistema sovra-determinato Ax=b, con A matrice di rango massimo, può essere direttamente risolto mediante il comando Matlab $x=A \setminus b$, che calcola la soluzione nel senso dei minimi quadrati descritta sopra.

Il metodo dei minimi quadrati pesati

Talvolta, è opportuno attribuire dei pesi diversi alle varie equazioni che compongono il sistema sovra-determinato: alcune equazioni sono più importanti, e quindi devono essere risolte "meglio", altre sono meno significative, e quindi possiamo accettare un errore maggiore su di esse.

Il metodo dei minimi quadrati pesati

Talvolta, è opportuno attribuire dei pesi diversi alle varie equazioni che compongono il sistema sovra-determinato: alcune equazioni sono più importanti, e quindi devono essere risolte "meglio", altre sono meno significative, e quindi possiamo accettare un errore maggiore su di esse.

Per tenere conto di ciò, si introducono m pesi $w_i>0, \ 1\leq i\leq m$, e si minimizza lo scarto quadratico pesato

$$\left(\sum_{i=1}^m |(\boldsymbol{A}\boldsymbol{y})_i - b_i|^2 \, \boldsymbol{w_i}\right)^{1/2}$$

Equivalentemente, posto $oldsymbol{W} = \mathsf{diag}(w_1, w_2, \dots, w_m)$, si minimizza la quantità

$$\frac{1}{2}(\boldsymbol{A}\boldsymbol{y}-\boldsymbol{b})^T\boldsymbol{W}(\boldsymbol{A}\boldsymbol{y}-\boldsymbol{b}).$$

Il metodo dei minimi quadrati pesati

Talvolta, è opportuno attribuire dei pesi diversi alle varie equazioni che compongono il sistema sovra-determinato: alcune equazioni sono più importanti, e quindi devono essere risolte "meglio", altre sono meno significative, e quindi possiamo accettare un errore maggiore su di esse.

Per tenere conto di ciò, si introducono m pesi $w_i>0$, $1\leq i\leq m$, e si minimizza lo scarto quadratico pesato

$$\left(\sum_{i=1}^m |(\boldsymbol{A}\boldsymbol{y})_i - b_i|^2 \, \boldsymbol{w_i}\right)^{1/2}$$

Equivalentemente, posto $oldsymbol{W} = \operatorname{diag}(w_1, w_2, \dots, w_m)$, si minimizza la quantità

$$\frac{1}{2}(\mathbf{A}\mathbf{y}-\mathbf{b})^T\mathbf{W}(\mathbf{A}\mathbf{y}-\mathbf{b}).$$

Il problema dei minimi quadrati pesati può ancora essere risolto mediante una delle tecniche illustrate precedentemente (equazioni normali oppure fattorizzazione QR): è sufficiente sostituire alla matrice A e al vettore b rispettivamente la matrice $W^{1/2}A$ e il vettore $W^{1/2}b$, dove $W^{1/2}=\operatorname{diag}(\sqrt{w_1},\sqrt{w_2},\ldots,\sqrt{w_m})$.

4□ > 4回 > 4 = > 4 = > = 900

5. Calcolo di autovalori e autovettori

Un esempio

Molte situazioni di interesse portano alla necessità di calcolare autovalori di una matrice quadrata.

• Consideriamo un sistema meccanico di N masse mobili collegate tra loro da molle. Sia m_i la massa della particella che al tempo t occupa la posizione $x_i=x_i(t)$ nello spazio, e sia $k_{ij}\geq 0$ la costante di rigidità della molla che collega la massa m_i con la massa m_j ($k_{ij}=0$ se le due masse non sono collegate da una molla).

Un esempio

Molte situazioni di interesse portano alla necessità di calcolare autovalori di una matrice quadrata.

• Consideriamo un sistema meccanico di N masse mobili collegate tra loro da molle. Sia m_i la massa della particella che al tempo t occupa la posizione $\boldsymbol{x}_i = \boldsymbol{x}_i(t)$ nello spazio, e sia $k_{ij} \geq 0$ la costante di rigidità della molla che collega la massa m_i con la massa m_j ($k_{ij} = 0$ se le due masse non sono collegate da una molla).

Allora, l'evoluzione nel tempo delle masse è descritta dal sistema di equazioni differenziali del secondo ordine

$$m_i oldsymbol{x}_i'' = \sum_{j=1}^N k_{ij} (oldsymbol{x}_j - oldsymbol{x}_i) \qquad 1 \leq i \leq N.$$

Un esempio

Molte situazioni di interesse portano alla necessità di calcolare autovalori di una matrice quadrata.

• Consideriamo un sistema meccanico di N masse mobili collegate tra loro da molle. Sia m_i la massa della particella che al tempo t occupa la posizione $\boldsymbol{x}_i = \boldsymbol{x}_i(t)$ nello spazio, e sia $k_{ij} \geq 0$ la costante di rigidità della molla che collega la massa m_i con la massa m_j ($k_{ij} = 0$ se le due masse non sono collegate da una molla).

Allora, l'evoluzione nel tempo delle masse è descritta dal sistema di equazioni differenziali del secondo ordine

$$m_i oldsymbol{x}_i'' = \sum_{j=1}^N k_{ij} (oldsymbol{x}_j - oldsymbol{x}_i) \qquad 1 \leq i \leq N.$$

• Indicato con ${m x}$ il vettore di dimensione n=3N che raccoglie le coordinate di tutte le masse, tale sistema può essere scritto in forma compatta come

$$x'' = Ax$$
.

 Se ora cerchiamo le oscillazioni libere del sistema, ossia i moti periodici descritti dalla legge

$$\boldsymbol{x}(t) = e^{i\omega t} \boldsymbol{w}$$

con ω reale e $w \neq 0$, vediamo facilmente che w soddisfa

$$\lambda \boldsymbol{w} = \boldsymbol{A} \boldsymbol{w}, \quad \text{con } \lambda = \omega^2.$$

Dunque esistono moti periodici se e solo se la matrice A ammette autovalori λ reali e non negativi.

 Se ora cerchiamo le oscillazioni libere del sistema, ossia i moti periodici descritti dalla legge

$$\boldsymbol{x}(t) = e^{i\omega t} \boldsymbol{w}$$

con ω reale e $w \neq 0$, vediamo facilmente che w soddisfa

$$\lambda \boldsymbol{w} = \boldsymbol{A} \boldsymbol{w}, \qquad \text{con } \lambda = \omega^2.$$

Dunque esistono moti periodici se e solo se la matrice A ammette autovalori λ reali e non negativi.

Per ogni tale autovalore, la frequenza di oscillazione del sistema è data da

$$\phi_{\lambda} = \frac{\sqrt{\lambda}}{2\pi}.$$

 Se ora cerchiamo le oscillazioni libere del sistema, ossia i moti periodici descritti dalla legge

$$\boldsymbol{x}(t) = e^{i\omega t} \boldsymbol{w}$$

con ω reale e $w \neq 0$, vediamo facilmente che w soddisfa

$$\lambda \boldsymbol{w} = \boldsymbol{A} \boldsymbol{w}, \quad \text{con } \lambda = \omega^2.$$

Dunque esistono moti periodici se e solo se la matrice A ammette autovalori λ reali e non negativi.

Per ogni tale autovalore, la frequenza di oscillazione del sistema è data da

$$\phi_{\lambda} = \frac{\sqrt{\lambda}}{2\pi}.$$

 Possiamo essere interessati a calcolare tutte le frequenze, oppure solo alcune (ad esempio, quella più bassa, o quella più vicina a una frequenza assegnata).

Il condizionamento del problema del calcolo degli autovalori

Supponiamo che A sia una matrice reale quadrata di ordine n, diagonalizzabile.

Siano $\lambda_p,\ p=1,2,\ldots,n$, i suoi autovalori e sia \pmb{W} la matrice non-singolare le cui colonne sono i corrispondenti autovettori \pmb{w}_p .

Il condizionamento del problema del calcolo degli autovalori

Supponiamo che A sia una matrice reale quadrata di ordine n, diagonalizzabile.

Siano λ_p , $p=1,2,\ldots,n$, i suoi autovalori e sia W la matrice non-singolare le cui colonne sono i corrispondenti autovettori w_p .

Proprietà. Sia \widetilde{A} una perturbazione di A, e sia $\widetilde{\lambda}$ un suo autovalore. Allora

$$\min_{1 \leq p \leq n} |\widetilde{\lambda} - \lambda_p| \leq \mathsf{cond}(\boldsymbol{W}) \, \|\widetilde{\boldsymbol{A}} - \boldsymbol{A}\|.$$

Dunque, il condizionamento del problema del calcolo degli autovalori dipende non dal numero di condizionamento della matrice A bensì da quello della $matrice\ degli$ autovettori.

Il condizionamento del problema del calcolo degli autovalori

Supponiamo che A sia una matrice reale quadrata di ordine n, diagonalizzabile.

Siano λ_p , $p=1,2,\ldots,n$, i suoi autovalori e sia W la matrice non-singolare le cui colonne sono i corrispondenti autovettori w_p .

Proprietà. Sia \hat{A} una perturbazione di A, e sia $\hat{\lambda}$ un suo autovalore. Allora

$$\min_{1 \leq p \leq n} |\widetilde{\lambda} - \lambda_p| \leq \mathsf{cond}(\boldsymbol{W}) \, \|\widetilde{\boldsymbol{A}} - \boldsymbol{A}\|.$$

Dunque, il condizionamento del problema del calcolo degli autovalori dipende non dal numero di condizionamento della matrice A bensì da quello della $matrice\ degli$ autovettori.

Se ${\pmb A}$ è simmetrica, allora ${\pmb W}$ è ortogonale e quindi $\mbox{cond}_2({\pmb W})=1.$ In tal caso, il problema è sempre bencondizionato.

Claudio Canuto ()

Possiamo a grandi linee suddividere gli algoritmi di calcolo di autovalori (e autovettori) di una matrice quadrata in due famiglie:

Possiamo a grandi linee suddividere gli algoritmi di calcolo di autovalori (e autovettori) di una matrice quadrata in due famiglie:

 Algoritmi che calcolano simultaneamente tutti gli autovalori della matrice (ad esempio, il metodo QR);

Possiamo a grandi linee suddividere gli algoritmi di calcolo di autovalori (e autovettori) di una matrice quadrata in due famiglie:

- Algoritmi che calcolano simultaneamente tutti gli autovalori della matrice (ad esempio, il metodo QR);
- Algoritmi mirati che calcolano autovalori aventi specifiche proprietà (ad esempio, il metodo della potenza, o quello della potenza inversa con shift).

Possiamo a grandi linee suddividere gli algoritmi di calcolo di autovalori (e autovettori) di una matrice quadrata in due famiglie:

- Algoritmi che calcolano simultaneamente tutti gli autovalori della matrice (ad esempio, il metodo QR);
- Algoritmi mirati che calcolano autovalori aventi specifiche proprietà (ad esempio, il metodo della potenza, o quello della potenza inversa con shift).

In genere, gli algoritmi sono di tipo *iterativo*, cioè generano una successione (di scalari, o di vettori, o di matrici) che converge verso un limite, che è la quantità cercata, o dal quale si può facilmente ottenere la quantità cercata.

Si pone quindi il problema della convergenza di tale successione.

Trasformazioni di similitudine

I metodi globali (che calcolano simultaneamente tutti gli autovalori) si basano su opportune *trasformazioni di similitudine*

$$A \rightarrow B = S^{-1}AS$$

(con S invertibile), le quali lasciano invariati gli autovalori della matrice.

Trasformazioni di similitudine

I metodi globali (che calcolano simultaneamente tutti gli autovalori) si basano su opportune *trasformazioni di similitudine*

$$A \rightarrow B = S^{-1}AS$$

(con ${m S}$ invertibile), le quali lasciano invariati gli autovalori della matrice.

Infatti, se λ è autovalore di A con autovettore w,

$$\boldsymbol{A}\boldsymbol{w} = \lambda \boldsymbol{w},$$

allora si ha

$$S^{-1}Aw = \lambda S^{-1}w,$$

che equivale a

$$S^{-1}ASS^{-1}w = \lambda S^{-1}w,$$

da cui

$$\boldsymbol{B}\boldsymbol{z} = \lambda \boldsymbol{z}$$
 con $\boldsymbol{z} = \boldsymbol{S}^{-1}\boldsymbol{w}$.

Trasformazioni di similitudine

I metodi globali (che calcolano simultaneamente tutti gli autovalori) si basano su opportune trasformazioni di similitudine

$$A \rightarrow B = S^{-1}AS$$

(con S invertibile), le quali lasciano invariati gli autovalori della matrice.

Infatti, se λ è autovalore di A con autovettore w.

$$Aw = \lambda w$$
,

allora si ha

$$S^{-1}Aw = \lambda S^{-1}w,$$

che equivale a

$$S^{-1}ASS^{-1}w = \lambda S^{-1}w,$$

da cui

$$oldsymbol{B}oldsymbol{z}=\lambdaoldsymbol{z}\qquad ext{con }oldsymbol{z}=oldsymbol{S}^{-1}oldsymbol{w}.$$

 Di particolare importanza sono le trasformazioni di similitudine generate da una matrice ortogonale Q,

$$A \rightarrow B = Q^T A Q$$

Combinando opportune trasformazioni di Householder, è possibile costruire una matrice ortogonale Q_H tale che $B = Q_H^T A Q_H$ sia in forma di Hessemberg, ossia tale che tutti i suoi elementi posti al di sotto della prima sotto-diagonale siano nulli.

$$\boldsymbol{B} = \left(\begin{array}{cccccc} * & * & * & * & * \\ * & * & * & * & * \\ 0 & * & * & * & * \\ 0 & 0 & * & * & * \\ 0 & 0 & 0 & * & * \end{array}\right)$$

Combinando opportune trasformazioni di Householder, è possibile costruire una matrice ortogonale Q_H tale che $B=Q_H^TAQ_H$ sia in forma di Hessemberg, ossia tale che tutti i suoi elementi posti al di sotto della prima sotto-diagonale siano nulli.

$$\boldsymbol{B} = \begin{pmatrix} * & * & * & * & * \\ * & * & * & * & * \\ 0 & * & * & * & * \\ 0 & 0 & * & * & * \\ 0 & 0 & 0 & * & * \end{pmatrix}$$

Se A è simmetrica, anche B risulta simmetrica, e dunque tridiagonale.

$$\boldsymbol{B} = \left(\begin{array}{cccc} * & * & 0 & 0 & 0 \\ * & * & * & 0 & 0 \\ 0 & * & * & * & 0 \\ 0 & 0 & * & * & * \\ 0 & 0 & 0 & * & * \end{array}\right)$$

Combinando opportune trasformazioni di Householder, è possibile costruire una matrice ortogonale Q_H tale che $B=Q_H^TAQ_H$ sia in forma di Hessemberg, ossia tale che tutti i suoi elementi posti al di sotto della prima sotto-diagonale siano nulli.

$$\boldsymbol{B} = \begin{pmatrix} * & * & * & * & * \\ * & * & * & * & * \\ 0 & * & * & * & * \\ 0 & 0 & * & * & * \\ 0 & 0 & 0 & * & * \end{pmatrix}$$

Se A è simmetrica, anche B risulta simmetrica, e dunque tridiagonale.

$$\boldsymbol{B} = \left(\begin{array}{cccc} * & * & 0 & 0 & 0 \\ * & * & * & 0 & 0 \\ 0 & * & * & * & 0 \\ 0 & 0 & * & * & * \\ 0 & 0 & 0 & * & * \end{array}\right)$$

Il comando MATLAB che realizza la trasformazione di Hessemberg è B=hess(A).

Claudio Canuto () Calcolo numerico e Matlab 25 / 5

Combinando opportune trasformazioni di Householder, è possibile costruire una matrice ortogonale Q_H tale che $B=Q_H^TAQ_H$ sia in forma di Hessemberg, ossia tale che tutti i suoi elementi posti al di sotto della prima sotto-diagonale siano nulli.

$$\boldsymbol{B} = \begin{pmatrix} * & * & * & * & * \\ * & * & * & * & * \\ 0 & * & * & * & * \\ 0 & 0 & * & * & * \\ 0 & 0 & 0 & * & * \end{pmatrix}$$

Se A è simmetrica, anche B risulta simmetrica, e dunque tridiagonale.

$$\boldsymbol{B} = \left(\begin{array}{cccc} * & * & 0 & 0 & 0 \\ * & * & * & 0 & 0 \\ 0 & * & * & * & 0 \\ 0 & 0 & * & * & * \\ 0 & 0 & 0 & * & * \end{array}\right)$$

Il comando MATLAB che realizza la trasformazione di Hessemberg è B=hess(A).

La riduzione a forma di Hessemberg costituisce un indispensabile *preprocessing* al fine di ridurre il costo delle successive trasformazioni per il calcolo degli autovalori.

Claudio Canuto () Calcolo numerico e Matlab 25 / 58

Il metodo QR (cenni)

Il metodo QR (e le sue molte varianti) è la procedura generalmente più efficiente e diffusa per il calcolo simultaneo di tutti gli autovalori di una matrice quadrata A.

Il $metodo\ QR\ (e$ le sue molte varianti) è la procedura generalmente più efficiente e diffusa per il calcolo simultaneo di tutti gli autovalori di una matrice quadrata A.

Partendo dalla matrice $A=A_0$ (preliminarmente ridotta in forma di Hessemberg per maggiore efficienza), l'algoritmo genera una successione di matrici A_k , $k=1,2,\ldots$, simili ad A, con la seguente legge:

$$A_k =: Q_k R_k,$$

$$\mathbf{A}_{k+1} := \mathbf{R}_k \mathbf{Q}_k.$$

Il metodo QR (e le sue molte varianti) è la procedura generalmente più efficiente e diffusa per il calcolo simultaneo di tutti gli autovalori di una matrice quadrata A.

Partendo dalla matrice $A=A_0$ (preliminarmente ridotta in forma di Hessemberg per maggiore efficienza), l'algoritmo genera una successione di matrici A_k , $k=1,2,\ldots$ simili ad A, con la seguente legge:

$$egin{array}{lll} oldsymbol{A}_k &=: & oldsymbol{Q}_k oldsymbol{R}_k, \ oldsymbol{A}_{k+1} &:= & oldsymbol{R}_k oldsymbol{Q}_k. \end{array}$$

$$\mathbf{A}_{k+1} := \mathbf{R}_k \mathbf{Q}_k.$$

Proprietà:

• A_{k+1} è simile ad A_k : infatti

$$\boldsymbol{Q}_k^T \boldsymbol{A}_k \boldsymbol{Q}_k = \boldsymbol{Q}_k^T \boldsymbol{Q}_k \boldsymbol{R}_k \boldsymbol{Q}_k = \boldsymbol{R}_k \boldsymbol{Q}_k = \boldsymbol{A}_{k+1}.$$

Il metodo QR (e le sue molte varianti) è la procedura generalmente più efficiente e diffusa per il calcolo simultaneo di tutti gli autovalori di una matrice quadrata A.

Partendo dalla matrice $A = A_0$ (preliminarmente ridotta in forma di Hessemberg per maggiore efficienza), l'algoritmo genera una successione di matrici A_k , $k=1,2,\ldots$, simili ad A, con la seguente legge:

$$egin{array}{lll} oldsymbol{A}_k &=: & oldsymbol{Q}_k oldsymbol{R}_k, \ oldsymbol{A}_{k+1} &:= & oldsymbol{R}_k oldsymbol{Q}_k. \end{array}$$

$$A_{k+1} := R_k Q_k$$
.

Proprietà:

• A_{k+1} è simile ad A_k : infatti

$$\boldsymbol{Q}_k^T \boldsymbol{A}_k \boldsymbol{Q}_k = \boldsymbol{Q}_k^T \boldsymbol{Q}_k \boldsymbol{R}_k \boldsymbol{Q}_k = \boldsymbol{R}_k \boldsymbol{Q}_k = \boldsymbol{A}_{k+1}.$$

• Se A è in forma di Hessemberg, tutte le A_k lo sono.

Il metodo QR (e le sue molte varianti) è la procedura generalmente più efficiente e diffusa per il calcolo simultaneo di tutti gli autovalori di una matrice quadrata A.

Partendo dalla matrice $A = A_0$ (preliminarmente ridotta in forma di Hessemberg per maggiore efficienza), l'algoritmo genera una successione di matrici A_k , $k=1,2,\ldots$, simili ad A, con la seguente legge:

$$egin{array}{lll} oldsymbol{A}_k &=: & oldsymbol{Q}_k oldsymbol{R}_k, \ oldsymbol{A}_{k+1} &:= & oldsymbol{R}_k oldsymbol{Q}_k. \end{array}$$

$$A_{k+1} := R_k Q_k$$
.

Proprietà:

• A_{k+1} è simile ad A_k : infatti

$$\boldsymbol{Q}_k^T \boldsymbol{A}_k \boldsymbol{Q}_k = \boldsymbol{Q}_k^T \boldsymbol{Q}_k \boldsymbol{R}_k \boldsymbol{Q}_k = \boldsymbol{R}_k \boldsymbol{Q}_k = \boldsymbol{A}_{k+1}.$$

- Se A è in forma di Hessemberg, tutte le A_k lo sono.
- Se A è simmetrica, tutte le A_k lo sono.

27 / 58

ullet se la matrice A è simmetrica, allora A_{∞} è diagonale; gli elementi sulla diagonale sono gli autovalori di A;

- ullet se la matrice A è simmetrica, allora A_{∞} è diagonale; gli elementi sulla diagonale sono gli autovalori di A;
- se la matrice A non è simmetrica ma ha autovalori tutti reali, allora A_{∞} è triangolare superiore; gli elementi sulla diagonale sono gli autovalori di A;

- ullet se la matrice A è simmetrica, allora A_∞ è diagonale; gli elementi sulla diagonale sono gli autovalori di A;
- se la matrice A non è simmetrica ma ha autovalori tutti reali, allora A_{∞} è triangolare superiore; gli elementi sulla diagonale sono gli autovalori di A;
- se la matrice A non è simmetrica e ha alcuni autovalori complessi (coniugati), allora A_{∞} è quasi triangolare superiore, ossia triangolare superiore a blocchi; precisamente, i blocchi diagonali sono o matrici 1×1 contenenti gli autovalori reali di A, oppure matrici 2×2 , i cui autovalori sono una coppia di autovalori complessi coniugati di A.

- ullet se la matrice A è simmetrica, allora A_{∞} è diagonale; gli elementi sulla diagonale sono gli autovalori di A;
- se la matrice A non è simmetrica ma ha autovalori tutti reali, allora A_{∞} è triangolare superiore; gli elementi sulla diagonale sono gli autovalori di A;
- se la matrice A non è simmetrica e ha alcuni autovalori complessi (coniugati), allora A_{∞} è quasi triangolare superiore, ossia triangolare superiore a blocchi; precisamente, i blocchi diagonali sono o matrici 1×1 contenenti gli autovalori reali di A, oppure matrici 2×2 , i cui autovalori sono una coppia di autovalori complessi coniugati di A.

Gli autovettori di $m{A}$ possono essere calcolati a partire dalle matrici di trasformazione $m{Q}_k$.

 L'implementazione effettiva dell'algoritmo è ad oggi molto sofisticata. L'illustrazione fatta nelle slides precedenti vuole solo dare un'idea generale dei fondamenti del metodo.

- L'implementazione effettiva dell'algoritmo è ad oggi molto sofisticata. L'illustrazione fatta nelle slides precedenti vuole solo dare un'idea generale dei fondamenti del metodo.
- Ad esempio, per accelerare la convergenza, si includono delle opportune traslazioni (shifts) degli autovalori, ossia il passo k-esimo può diventare

$$A_k - s_k I =: Q_k R_k,$$

 $A_{k+1} := R_k Q_k + s_k I,$

con s_k scalari opportunamente scelti.

- L'implementazione effettiva dell'algoritmo è ad oggi molto sofisticata. L'illustrazione fatta nelle slides precedenti vuole solo dare un'idea generale dei fondamenti del metodo.
- Ad esempio, per accelerare la convergenza, si includono delle opportune traslazioni (shifts) degli autovalori, ossia il passo k-esimo può diventare

$$A_k - s_k I =: Q_k R_k,$$

 $A_{k+1} := R_k Q_k + s_k I,$

con s_k scalari opportunamente scelti.

Non tutti gli autovalori convergono con la stessa velocità. Se un autovalore è giunto
a convergenza (rispetto a una tolleranza prefissata), è possibile "toglierlo dalla
matrice", continuando l'algoritmo con una matrice di ordine ridotto (processo di
deflazione).

- L'implementazione effettiva dell'algoritmo è ad oggi molto sofisticata. L'illustrazione fatta nelle slides precedenti vuole solo dare un'idea generale dei fondamenti del metodo.
- Ad esempio, per accelerare la convergenza, si includono delle opportune traslazioni (shifts) degli autovalori, ossia il passo k-esimo può diventare

$$A_k - s_k I =: Q_k R_k,$$

 $A_{k+1} := R_k Q_k + s_k I,$

con s_k scalari opportunamente scelti.

- Non tutti gli autovalori convergono con la stessa velocità. Se un autovalore è giunto a convergenza (rispetto a una tolleranza prefissata), è possibile "toglierlo dalla matrice", continuando l'algoritmo con una matrice di ordine ridotto (processo di deflazione).
- ullet Il metodo può non convergere. Ad esempio, cosa succede se la matrice $oldsymbol{A}$ è ortogonale...?

- L'implementazione effettiva dell'algoritmo è ad oggi molto sofisticata. L'illustrazione fatta nelle slides precedenti vuole solo dare un'idea generale dei fondamenti del metodo.
- Ad esempio, per accelerare la convergenza, si includono delle opportune traslazioni (shifts) degli autovalori, ossia il passo k-esimo può diventare

$$A_k - s_k I =: Q_k R_k,$$

 $A_{k+1} := R_k Q_k + s_k I,$

con s_k scalari opportunamente scelti.

- Non tutti gli autovalori convergono con la stessa velocità. Se un autovalore è giunto a convergenza (rispetto a una tolleranza prefissata), è possibile "toglierlo dalla matrice", continuando l'algoritmo con una matrice di ordine ridotto (processo di deflazione).
- ullet Il metodo può non convergere. Ad esempio, cosa succede se la matrice $oldsymbol{A}$ è ortogonale...?
- I comandi MATLAB sono d=eig(A) per ottenere un vettore d contenente gli autovalori di A, e [V D]=eig(A) per ottenere una matrice V le cui colonne sono gli autovettori e una matrice diagonale D contenente gli autovalori di A.

4□ > 4回 > 4 回 > 4 回 > 1 回 9 9 0 0

Metodi per il calcolo di alcuni autovalori. Il metodo della potenza

Il prototipo degli algoritmi "mirati" al calcolo di specifici autovalori di una matrice A è il metodo della potenza.

Esso genera una successione di numeri che, sotto opportune ipotesi, converge verso *l'autovalore di modulo massimo* della matrice, e una successione di vettori che converge verso il *corrispondente autovettore*.

Metodi per il calcolo di alcuni autovalori. Il metodo della potenza

Il prototipo degli algoritmi "mirati" al calcolo di specifici autovalori di una matrice A è il metodo della potenza.

Esso genera una successione di numeri che, sotto opportune ipotesi, converge verso *l'autovalore di modulo massimo* della matrice, e una successione di vettori che converge verso il *corrispondente autovettore*.

Supponiamo che gli autovalori di A siano ordinati in senso decrescente di modulo, e che il primo autovalore in questo ordinamento abbia modulo strettamente maggiore di tutti gli altri:

$$|\lambda_1| > |\lambda_2| \ge |\lambda_3| \ge \cdots \ge |\lambda_n|.$$

Metodi per il calcolo di alcuni autovalori. Il metodo della potenza

Il prototipo degli algoritmi "mirati" al calcolo di specifici autovalori di una matrice A è il metodo della potenza.

Esso genera una successione di numeri che, sotto opportune ipotesi, converge verso *l'autovalore di modulo massimo* della matrice, e una successione di vettori che converge verso il *corrispondente autovettore*.

Supponiamo che gli autovalori di A siano ordinati in senso decrescente di modulo, e che il primo autovalore in questo ordinamento abbia modulo strettamente maggiore di tutti gli altri:

$$|\lambda_1| > |\lambda_2| \ge |\lambda_3| \ge \cdots \ge |\lambda_n|.$$

Supponiamo inoltre che la matrice sia diagonalizzabile, e indichiamo con w_p l'autovettore corrispondente all'autovalore λ_p , per $1 \leq p \leq n$. Essi dunque formano una base in \mathbb{C}^n , e quindi ogni vettore z in tale spazio si rappresenta come

$$\boldsymbol{z} = \alpha_1 \boldsymbol{w}_1 + \alpha_2 \boldsymbol{w}_2 + \dots + \alpha_n \boldsymbol{w}_n$$

per opportuni coefficienti α_p .

Nota. Essendo ${m A}$ reale per ipotesi, λ_1 è reale e ${m w}_1$ può essere scelto reale.

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ 釣魚@

29 / 58

Claudio Canuto () Calcolo numerico e Matlab

Applicando la matrice A, abbiamo

$$Az = \alpha_1 A w_1 + \alpha_2 A w_2 + \cdots + \alpha_n A w_n = \alpha_1 \lambda_1 w_1 + \alpha_2 \lambda_2 w_2 + \cdots + \alpha_n \lambda_2 w_n.$$

30 / 58

Applicando la matrice A, abbiamo

$$Az = \alpha_1 A w_1 + \alpha_2 A w_2 + \cdots + \alpha_n A w_n = \alpha_1 \lambda_1 w_1 + \alpha_2 \lambda_2 w_2 + \cdots + \alpha_n \lambda_2 w_n.$$

Una seconda applicazione di $oldsymbol{A}$ fornisce

$$\mathbf{A}^2 \mathbf{z} = \mathbf{A}(\mathbf{A}\mathbf{z}) = \alpha_1 \lambda_1^2 \mathbf{w}_1 + \alpha_2 \lambda_2^2 \mathbf{w}_2 + \dots + \alpha_n \lambda_n^2 \mathbf{w}_n.$$

30 / 58

Claudio Canuto () Calcolo numerico e Matlab

Applicando la matrice $oldsymbol{A}$, abbiamo

$$Az = \alpha_1 A w_1 + \alpha_2 A w_2 + \cdots + \alpha_n A w_n = \alpha_1 \lambda_1 w_1 + \alpha_2 \lambda_2 w_2 + \cdots + \alpha_n \lambda_2 w_n.$$

Una seconda applicazione di $oldsymbol{A}$ fornisce

$$\mathbf{A}^2 \mathbf{z} = \mathbf{A}(\mathbf{A}\mathbf{z}) = \alpha_1 \lambda_1^2 \mathbf{w}_1 + \alpha_2 \lambda_2^2 \mathbf{w}_2 + \dots + \alpha_n \lambda_n^2 \mathbf{w}_n.$$

Iterando, dopo k applicazioni di ${m A}$ otteniamo

$$\boldsymbol{z}^{(k)} := \boldsymbol{A}^k \boldsymbol{z} = \alpha_1 \lambda_1^k \boldsymbol{w}_1 + \alpha_2 \lambda_2^k \boldsymbol{w}_2 + \dots + \alpha_n \lambda_n^k \boldsymbol{w}_n.$$

Applicando la matrice $oldsymbol{A}$, abbiamo

$$Az = \alpha_1 A w_1 + \alpha_2 A w_2 + \cdots + \alpha_n A w_n = \alpha_1 \lambda_1 w_1 + \alpha_2 \lambda_2 w_2 + \cdots + \alpha_n \lambda_2 w_n.$$

Una seconda applicazione di $oldsymbol{A}$ fornisce

$$\mathbf{A}^2 \mathbf{z} = \mathbf{A}(\mathbf{A}\mathbf{z}) = \alpha_1 \lambda_1^2 \mathbf{w}_1 + \alpha_2 \lambda_2^2 \mathbf{w}_2 + \dots + \alpha_n \lambda_n^2 \mathbf{w}_n.$$

Iterando, dopo k applicazioni di ${m A}$ otteniamo

$$\boldsymbol{z}^{(k)} := \boldsymbol{A}^k \boldsymbol{z} = \alpha_1 \lambda_1^k \boldsymbol{w}_1 + \alpha_2 \lambda_2^k \boldsymbol{w}_2 + \dots + \alpha_n \lambda_n^k \boldsymbol{w}_n.$$

Scriviamo tale vettore come

$$\boldsymbol{z}^{(k)} = \lambda_1^k \left(\alpha_1 \boldsymbol{w}_1 + \alpha_2 \left(\frac{\lambda_2}{\lambda_1} \right)^k \boldsymbol{w}_2 + \dots + \alpha_n \left(\frac{\lambda_n}{\lambda_1} \right)^k \boldsymbol{w}_n \right) =: \lambda_1^k \boldsymbol{y}^{(k)}$$

Claudio Canuto () Calcolo numerico e Matlab

Applicando la matrice $oldsymbol{A}$, abbiamo

$$Az = \alpha_1 A w_1 + \alpha_2 A w_2 + \cdots + \alpha_n A w_n = \alpha_1 \lambda_1 w_1 + \alpha_2 \lambda_2 w_2 + \cdots + \alpha_n \lambda_2 w_n.$$

Una seconda applicazione di $oldsymbol{A}$ fornisce

$$\mathbf{A}^2 \mathbf{z} = \mathbf{A}(\mathbf{A}\mathbf{z}) = \alpha_1 \lambda_1^2 \mathbf{w}_1 + \alpha_2 \lambda_2^2 \mathbf{w}_2 + \dots + \alpha_n \lambda_n^2 \mathbf{w}_n.$$

Iterando, dopo k applicazioni di \boldsymbol{A} otteniamo

$$\boldsymbol{z}^{(k)} := \boldsymbol{A}^k \boldsymbol{z} = \alpha_1 \lambda_1^k \boldsymbol{w}_1 + \alpha_2 \lambda_2^k \boldsymbol{w}_2 + \dots + \alpha_n \lambda_n^k \boldsymbol{w}_n.$$

Scriviamo tale vettore come

$$\boldsymbol{z}^{(k)} = \lambda_1^k \left(\alpha_1 \boldsymbol{w}_1 + \alpha_2 \left(\frac{\lambda_2}{\lambda_1} \right)^k \boldsymbol{w}_2 + \dots + \alpha_n \left(\frac{\lambda_n}{\lambda_1} \right)^k \boldsymbol{w}_n \right) =: \lambda_1^k \boldsymbol{y}^{(k)}$$

Osserviamo ora che, essendo per ipotesi $|\lambda_1|>|\lambda_p|$ per ogni p>1, si ha

$$\left|\alpha_p\left(\frac{\lambda_p}{\lambda_1}\right)^k\right| = |\alpha_p| \ \left| \ \frac{\lambda_p}{\lambda_1} \ \right|^k \to 0 \qquad \text{per} \ \ k \to \infty.$$

Claudio Canuto () Calcolo numerico e Matlab

Ciò significa che

$$\boldsymbol{y}^{(k)} \to \alpha_1 \boldsymbol{w}_1 \quad \text{per } k \to \infty,$$

cioè, supponendo $\alpha_1 \neq 0$, il vettore ${\pmb y}^{(k)}$ tende ad allinearsi al primo autovettore ${\pmb w}_1$ della matrice ${\pmb A}$.

31 / 58

Ciò significa che

$$\boldsymbol{y}^{(k)} \to \alpha_1 \boldsymbol{w}_1 \qquad \text{per } k \to \infty,$$

cioè, supponendo $\alpha_1 \neq 0$, il vettore ${m y}^{(k)}$ tende ad allinearsi al primo autovettore ${m w}_1$ della matrice ${m A}$.

Corrispondentemente, anche il vettore calcolato $z^{(k)} = \lambda_1^k y^{(k)}$ tende ad allinearsi a w_1 , ma la sua lunghezza tende a 0 oppure a ∞ nel caso in cui $|\lambda_1|$ sia rispettivamente minore o maggiore di 1.

È quindi opportuno *normalizzare* tale vettore, riportandolo ad ogni iterazione ad avere lunghezza unitaria.

Ciò significa che

$$\boldsymbol{y}^{(k)} \to \alpha_1 \boldsymbol{w}_1 \qquad \text{per } k \to \infty,$$

cioè, supponendo $\alpha_1 \neq 0$, il vettore ${m y}^{(k)}$ tende ad allinearsi al primo autovettore ${m w}_1$ della matrice ${m A}$.

Corrispondentemente, anche il vettore calcolato $\boldsymbol{z}^{(k)} = \lambda_1^k \, \boldsymbol{y}^{(k)}$ tende ad allinearsi a \boldsymbol{w}_1 , ma la sua lunghezza tende a 0 oppure a ∞ nel caso in cui $|\lambda_1|$ sia rispettivamente minore o maggiore di 1.

È quindi opportuno *normalizzare* tale vettore, riportandolo ad ogni iterazione ad avere lunghezza unitaria.

Partendo da un vettore iniziale $\boldsymbol{z}^{(0)}$, costruiamo per $k=1,2,\ldots$ iterativamente la successione di vettori

$$m{x}^{(k)} = rac{m{z}^{(k)}}{\|m{z}^{(k)}\|_2} \ m{z}^{(k+1)} = m{A}m{x}^{(k)}$$

Per quanto riguarda l'approssimazione dell'autovalore, osserviamo che se $\boldsymbol{x}^{(k)}$ approssima l'autovettore \boldsymbol{w}_1 relativo all'autovalore λ_1 , e dunque

$$\boldsymbol{A}\boldsymbol{x}^{(k)} \sim \lambda_1 \boldsymbol{x}^{(k)}$$

allora

$$(\boldsymbol{x}^{(k)})^T \boldsymbol{A} \boldsymbol{x}^{(k)} \sim \lambda_1 (\boldsymbol{x}^{(k)})^T \boldsymbol{x}^{(k)} = \lambda_1.$$

Per quanto riguarda l'approssimazione dell'autovalore, osserviamo che se $x^{(k)}$ approssima l'autovettore w_1 relativo all'autovalore λ_1 , e dunque

$$\boldsymbol{A}\boldsymbol{x}^{(k)} \sim \lambda_1 \boldsymbol{x}^{(k)}$$

allora

$$(\boldsymbol{x}^{(k)})^T \boldsymbol{A} \boldsymbol{x}^{(k)} \sim \lambda_1 (\boldsymbol{x}^{(k)})^T \boldsymbol{x}^{(k)} = \lambda_1.$$

Appare quindi naturale calcolare il quoziente di Rayleigh

$$\lambda_1^{(k)} = \frac{(\boldsymbol{x}^{(k)})^T A \boldsymbol{x}^{(k)}}{(\boldsymbol{x}^{(k)})^T \boldsymbol{x}^{(k)}} = (\boldsymbol{x}^{(k)})^T A \boldsymbol{x}^{(k)} = (\boldsymbol{x}^{(k)})^T \boldsymbol{z}^{(k+1)}$$

e prenderlo come approssimazione dell'autovalore λ_1 al passo k dell'iterazione.

Claudio Canuto ()

Per quanto riguarda l'approssimazione dell'autovalore, osserviamo che se $x^{(k)}$ approssima l'autovettore w_1 relativo all'autovalore λ_1 , e dunque

$$\boldsymbol{A}\boldsymbol{x}^{(k)} \sim \lambda_1 \boldsymbol{x}^{(k)}$$

allora

$$(\boldsymbol{x}^{(k)})^T \boldsymbol{A} \boldsymbol{x}^{(k)} \sim \lambda_1 (\boldsymbol{x}^{(k)})^T \boldsymbol{x}^{(k)} = \lambda_1.$$

Appare quindi naturale calcolare il quoziente di Rayleigh

$$\lambda_1^{(k)} = \frac{(\boldsymbol{x}^{(k)})^T A \boldsymbol{x}^{(k)}}{(\boldsymbol{x}^{(k)})^T \boldsymbol{x}^{(k)}} = (\boldsymbol{x}^{(k)})^T A \boldsymbol{x}^{(k)} = (\boldsymbol{x}^{(k)})^T \boldsymbol{z}^{(k+1)}$$

e prenderlo come approssimazione dell'autovalore λ_1 al passo k dell'iterazione.

Proprietà. La velocità con cui $\lambda_1^{(k)}$ converge a λ_1 è espressa da queste stime dell'errore:

$$|\lambda_1^{(k)} - \lambda_1| \le C \left| \frac{\lambda_2}{\lambda_1} \right|^k$$
 se A non è simmetrica,

oppure

$$|\lambda_1^{(k)}-\lambda_1| \leq C \left|\frac{\lambda_2}{\lambda_1}\right|^{2k} \qquad \text{se } \ \, \boldsymbol{A} \ \, \text{\`e simmetrica}.$$

• L'ipotesi che il vettore iniziale $x^{(0)}$ abbia componente non nulla rispetto al primo autovettore $(\alpha_1 \neq 0)$ non è restrittiva nella pratica, perchè gli errori di arrotondamento introducono dopo poche iterazioni una (piccola) componente, che poi viene amplificata.

- L'ipotesi che il vettore iniziale $x^{(0)}$ abbia componente non nulla rispetto al primo autovettore $(\alpha_1 \neq 0)$ non è restrittiva nella pratica, perchè gli errori di arrotondamento introducono dopo poche iterazioni una (piccola) componente, che poi viene amplificata.
- Se λ_1 ha molteplicità geometrica m>1, il metodo genera ancora una approssimazione di tale autovalore, e genera una approssimazione di uno degli autovettori relativo a λ_1 , dipendente dal vettore iniziale scelto.

- L'ipotesi che il vettore iniziale $x^{(0)}$ abbia componente non nulla rispetto al primo autovettore $(\alpha_1 \neq 0)$ non è restrittiva nella pratica, perchè gli errori di arrotondamento introducono dopo poche iterazioni una (piccola) componente, che poi viene amplificata.
- Se λ_1 ha molteplicità geometrica m>1, il metodo genera ancora una approssimazione di tale autovalore, e genera una approssimazione di uno degli autovettori relativo a λ_1 , dipendente dal vettore iniziale scelto.
- Se invece $|\lambda_1|=|\lambda_2|$ ma $\lambda_1 \neq \lambda_2$, allora in generale il metodo non converge. Un esempio è dato dalla matrice

$$\boldsymbol{A} = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)$$

che ha autovalori $\lambda_1=1$ e $\lambda_2=-1$, e che semplicemente scambia tra loro le due componenti del vettore a cui è applicata.

- L'ipotesi che il vettore iniziale $x^{(0)}$ abbia componente non nulla rispetto al primo autovettore $(\alpha_1 \neq 0)$ non è restrittiva nella pratica, perchè gli errori di arrotondamento introducono dopo poche iterazioni una (piccola) componente, che poi viene amplificata.
- Se λ_1 ha molteplicità geometrica m>1, il metodo genera ancora una approssimazione di tale autovalore, e genera una approssimazione di uno degli autovettori relativo a λ_1 , dipendente dal vettore iniziale scelto.
- Se invece $|\lambda_1|=|\lambda_2|$ ma $\lambda_1 \neq \lambda_2$, allora in generale il metodo non converge. Un esempio è dato dalla matrice

$$\boldsymbol{A} = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)$$

che ha autovalori $\lambda_1=1$ e $\lambda_2=-1$, e che semplicemente scambia tra loro le due componenti del vettore a cui è applicata.

 Una volta calcolato l'autovalore di modulo più grande di A, si possono adottare tecniche di deflazione per ridurre l'ordine della matrice e calcolare il secondo autovalore di modulo più grande, e così via.

←□ → ←□ → ← = → ← = → へ

Ricordando che

$$\boldsymbol{A}\boldsymbol{w} = \lambda \boldsymbol{w} \qquad \text{ equivale a} \qquad \boldsymbol{A}^{-1}\boldsymbol{w} = \frac{1}{\lambda}\boldsymbol{w},$$

Ricordando che

$$oldsymbol{A}oldsymbol{w} = \lambda oldsymbol{w} \qquad ext{equivale a} \qquad oldsymbol{A}^{-1}oldsymbol{w} = rac{1}{\lambda}oldsymbol{w},$$

possiamo applicare il metodo della potenza alla matrice inversa A^{-1} per calcolare l'autovalore di modulo minimo di A, nell'ipotesi che

$$|\lambda_1| < |\lambda_2| \le |\lambda_3| \le \cdots \le |\lambda_n|.$$

Ricordando che

$$oldsymbol{A}oldsymbol{w} = \lambda oldsymbol{w} \qquad ext{equivale a} \qquad oldsymbol{A}^{-1}oldsymbol{w} = rac{1}{\lambda}oldsymbol{w},$$

possiamo applicare il metodo della potenza alla matrice inversa $m{A}^{-1}$ per calcolare l'autovalore di modulo minimo di $m{A}$, nell'ipotesi che

$$|\lambda_1| < |\lambda_2| \le |\lambda_3| \le \cdots \le |\lambda_n|.$$

Il passo $z^{(k+1)} = A^{-1}x^{(k)}$ equivale a $Az^{(k+1)} = x^{(k)}$, e dunque non si inverte la matrice A, bensì la si fattorizza una volta per tutte.

Ricordando che

$$oldsymbol{A}oldsymbol{w} = \lambda oldsymbol{w} \qquad ext{equivale a} \qquad oldsymbol{A}^{-1}oldsymbol{w} = rac{1}{\lambda}oldsymbol{w},$$

possiamo applicare il metodo della potenza alla matrice inversa ${m A}^{-1}$ per calcolare l'autovalore di modulo minimo di ${m A}$, nell'ipotesi che

$$|\lambda_1| < |\lambda_2| \le |\lambda_3| \le \cdots \le |\lambda_n|.$$

Il passo $z^{(k+1)} = A^{-1}x^{(k)}$ equivale a $Az^{(k+1)} = x^{(k)}$, e dunque non si inverte la matrice A, bensì la si fattorizza una volta per tutte.

Il metodo della potenza inversa si esplicita in questo modo: partendo da un vettore iniziale $z^{(0)}$, costruiamo per $k=1,2,\ldots$ iterativamente la successione di vettori

$$egin{aligned} m{x}^{(k)} &= rac{m{z}^{(k)}}{\|m{z}^{(k)}\|_2} \ m{z}^{(k+1)} & ext{ soluzione di } m{A}m{z}^{(k+1)} &= m{x}^{(k)} \ \lambda_1^{(k)} &= rac{1}{(m{x}^{(k)})^T m{z}^{(k+1)}} \end{aligned}$$

Il metodo della potenza inversa

Ricordando che

$$oldsymbol{A}oldsymbol{w} = \lambda oldsymbol{w} \qquad ext{equivale a} \qquad oldsymbol{A}^{-1}oldsymbol{w} = rac{1}{\lambda}oldsymbol{w},$$

possiamo applicare il metodo della potenza alla matrice inversa ${m A}^{-1}$ per calcolare l'autovalore di modulo minimo di ${m A}$, nell'ipotesi che

$$|\lambda_1| < |\lambda_2| \le |\lambda_3| \le \cdots \le |\lambda_n|.$$

Il passo $z^{(k+1)} = A^{-1}x^{(k)}$ equivale a $Az^{(k+1)} = x^{(k)}$, e dunque non si inverte la matrice A, bensì la si fattorizza una volta per tutte.

Il metodo della potenza inversa si esplicita in questo modo: partendo da un vettore iniziale $\boldsymbol{z}^{(0)}$, costruiamo per $k=1,2,\ldots$ iterativamente la successione di vettori

$$egin{aligned} m{x}^{(k)} &= rac{m{z}^{(k)}}{\|m{z}^{(k)}\|_2} \ m{z}^{(k+1)} & ext{ soluzione di } m{A}m{z}^{(k+1)} &= m{x}^{(k)} \ m{\lambda}_1^{(k)} &= rac{1}{(m{x}^{(k)})^T m{z}^{(k+1)}} \end{aligned}$$

Per $k o \infty$ abbiamo $\lambda_1^{(k)} o \lambda_1$ e ${m x}^{(k)} o {m w}_1$, con ${m A}{m w}_1 = \lambda_1 {m w}_1$.

Una variante del metodo della potenza inversa può essere utilizzato per calcolare l'autovalore di ${\bf A}$ più vicino a un valore assegnato $\sigma.$

Infatti un tale autovalore, sia esso λ_p , soddisfa per definizione

$$|\lambda_p - \sigma| \le |\lambda_q - \sigma|$$
 per ogni $q \ne p$.

Una variante del metodo della potenza inversa può essere utilizzato per calcolare l'autovalore di ${\bf A}$ più vicino a un valore assegnato $\sigma.$

Infatti un tale autovalore, sia esso λ_p , soddisfa per definizione

$$|\lambda_p - \sigma| \le |\lambda_q - \sigma|$$
 per ogni $q \ne p$.

Se vale la disuguaglianza stretta, allora siamo nelle ipotesi di applicazione del metodo della potenza inversa alla matrice

$$\boldsymbol{A} - \sigma \boldsymbol{I}$$
,

i cui autovalori sono dati precisamente da $\lambda_q - \sigma$ al variare di $q = 1, 2, \dots, n$.

Una variante del metodo della potenza inversa può essere utilizzato per calcolare l'autovalore di ${\bf A}$ più vicino a un valore assegnato $\sigma.$

Infatti un tale autovalore, sia esso λ_p , soddisfa per definizione

$$|\lambda_p - \sigma| \le |\lambda_q - \sigma|$$
 per ogni $q \ne p$.

Se vale la disuguaglianza stretta, allora siamo nelle ipotesi di applicazione del metodo della potenza inversa alla matrice

$$\boldsymbol{A} - \sigma \boldsymbol{I}$$
,

i cui autovalori sono dati precisamente da $\lambda_q - \sigma$ al variare di $q = 1, 2, \dots, n$.

Il comando MATLAB [V D]=eigs(A,K,SIGMA) fornisce k autovalori e autovettori di A individuati dal parametro SIGMA. Se questo è un numero reale o complesso σ , otteniamo i k autovalori più vicini a σ .

Una variante del metodo della potenza inversa può essere utilizzato per calcolare l'autovalore di A più vicino a un valore assegnato σ .

Infatti un tale autovalore, sia esso λ_p , soddisfa per definizione

$$|\lambda_p - \sigma| \le |\lambda_q - \sigma|$$
 per ogni $q \ne p$.

Se vale la disuguaglianza stretta, allora siamo nelle ipotesi di applicazione del metodo della potenza inversa alla matrice

$$\boldsymbol{A} - \sigma \boldsymbol{I}$$
,

i cui autovalori sono dati precisamente da $\lambda_q - \sigma$ al variare di $q = 1, 2, \dots, n$.

Il comando MATLAB [V D]=eigs(A,K,SIGMA) fornisce k autovalori e autovettori di A individuati dal parametro SIGMA. Se questo è un numero reale o complesso σ , otteniamo i k autovalori più vicini a σ .

Osservazione. L'idea di applicare traslazioni successive alla matrice \boldsymbol{A} può essere usata nel metodo della potenza inversa per *accelerare la convergenza* verso un autovalore. Nelle iterazioni, si usano matrici di tipo

$$\boldsymbol{A} - \sigma^{(k)} \boldsymbol{I}$$
,

dove $\boldsymbol{\sigma}^{(k)}$ sono successive approssimazioni dell'autovalore cercato.

5. La decomposizione ai valori singolari di una matrice

36 / 58

Presentazione

La decomposizione ai valori singolari (SVD - Singular Value Decomposition) di una generica matrice reale ${m A}$ di ordine $m \times n$ ha la seguente forma

$$A = U\Sigma V^T$$

dove

- ullet U è una matrice quadrata di ordine m, ortogonale;
- Σ è una matrice di ordine $m \times n$, diagonale;
- ullet V è una matrice quadrata di ordine n, ortogonale.

Presentazione

La decomposizione ai valori singolari (SVD - Singular Value Decomposition) di una generica matrice reale ${m A}$ di ordine $m \times n$ ha la seguente forma

$$A = U\Sigma V^T$$

dove

- ullet $oldsymbol{U}$ è una matrice quadrata di ordine m, ortogonale;
- Σ è una matrice di ordine $m \times n$, diagonale;
- ullet V è una matrice quadrata di ordine n, ortogonale.

Mediante la SVD, possiamo effettuare svariate operazioni di Algebra Lineare Numerica nel modo numericamente più stabile, quali ad esempio:

- o calcolare il rango di una matrice
- decidere se una famiglia di vettori sono linearmente indipendenti
- risolvere un sistema lineare sovra- o sotto-determinato
- calcolare una "inversa" di una matrice rettangolare.

Sia ${m B}$ una matrice reale quadrata di ordine n, avente rango $r \le n$, simmetrica e semi-definita positiva, cioè tale che

$$oldsymbol{x}^T oldsymbol{B} oldsymbol{x} \geq 0 \qquad \text{per ogni} \ \ oldsymbol{x} \in \mathbb{R}^n.$$

Sia ${\pmb B}$ una matrice reale quadrata di ordine n, avente rango $r \le n$, simmetrica e semi-definita positiva, cioè tale che

$$oldsymbol{x}^T oldsymbol{B} oldsymbol{x} \geq 0 \qquad ext{per ogni} \ \ oldsymbol{x} \in \mathbb{R}^n.$$

Allora

• B ha r autovalori reali strettamente positivi e n-r autovalori nulli (contati con la loro molteplicità), che possiamo ordinare in modo decrescente:

$$\lambda_1 \ge \lambda_2 \cdots \ge \lambda_r > \lambda_{r+1} = \cdots = \lambda_n = 0.$$

Sia ${\pmb B}$ una matrice reale quadrata di ordine n, avente rango $r \le n$, simmetrica e semi-definita positiva, cioè tale che

$$\boldsymbol{x}^T \boldsymbol{B} \boldsymbol{x} \geq 0$$
 per ogni $\boldsymbol{x} \in \mathbb{R}^n$.

Allora

• B ha r autovalori reali strettamente positivi e n-r autovalori nulli (contati con la loro molteplicità), che possiamo ordinare in modo decrescente:

$$\lambda_1 \ge \lambda_2 \cdots \ge \lambda_r > \lambda_{r+1} = \cdots = \lambda_n = 0.$$

• B è diagonalizzabile nella forma $B = W \Lambda W^T$, con Λ matrice diagonale degli autovalori e W matrice ortogonale i cui vettori colonna sono gli autovettori di B, soddisfacenti

$$\boldsymbol{B}\boldsymbol{w}_i = \lambda_i \boldsymbol{w}_i, \qquad 1 \leq i \leq n.$$

Sia ${\pmb B}$ una matrice reale quadrata di ordine n, avente rango $r \le n$, simmetrica e semi-definita positiva, cioè tale che

$$\boldsymbol{x}^T \boldsymbol{B} \boldsymbol{x} \geq 0$$
 per ogni $\boldsymbol{x} \in \mathbb{R}^n$.

Allora

• B ha r autovalori reali strettamente positivi e n-r autovalori nulli (contati con la loro molteplicità), che possiamo ordinare in modo decrescente:

$$\lambda_1 \ge \lambda_2 \cdots \ge \lambda_r > \lambda_{r+1} = \cdots = \lambda_n = 0.$$

• B è diagonalizzabile nella forma $B = W \Lambda W^T$, con Λ matrice diagonale degli autovalori e W matrice ortogonale i cui vettori colonna sono gli autovettori di B, soddisfacenti

$$\boldsymbol{B}\boldsymbol{w}_i = \lambda_i \boldsymbol{w}_i, \qquad 1 \leq i \leq n.$$

ullet L'insieme degli autovettori $oldsymbol{w}_i$ di $oldsymbol{B}$ forma dunque una base ortonormale di \mathbb{R}^n .

イロト 4回 ト 4 恵 ト 4 恵 ト 「恵 ・ 夕久で」

Claudio Canuto () Calcolo numerico e Matlab

$$\boldsymbol{x} = \alpha_1 \boldsymbol{w}_1 + \alpha_2 \boldsymbol{w}_2 + \dots + \alpha_n \boldsymbol{w}_n = \sum_{i=1}^n \alpha_i \boldsymbol{w}_i$$

Claudio Canuto ()

$$\mathbf{x} = \alpha_1 \mathbf{w}_1 + \alpha_2 \mathbf{w}_2 + \dots + \alpha_n \mathbf{w}_n = \sum_{i=1}^n \alpha_i \mathbf{w}_i$$

e poichè la base è ortonormale $(oldsymbol{w}_j^Toldsymbol{w}_i=\delta_{ij})$ si ha

$$\alpha_i = \boldsymbol{w}_i^T \boldsymbol{x}, \qquad 1 \le i \le n,$$

$$\mathbf{x} = \alpha_1 \mathbf{w}_1 + \alpha_2 \mathbf{w}_2 + \dots + \alpha_n \mathbf{w}_n = \sum_{i=1}^n \alpha_i \mathbf{w}_i$$

e poichè la base è ortonormale $(oldsymbol{w}_j^Toldsymbol{w}_i=\delta_{ij})$ si ha

$$\alpha_i = \boldsymbol{w}_i^T \boldsymbol{x}, \qquad 1 \le i \le n,$$

da cui otteniamo la "classica" rappresentazione di un vettore rispetto a una base ortonormale

$$oldsymbol{x} = \sum_{i=1}^n (oldsymbol{w}_i^T oldsymbol{x}) oldsymbol{w}_i.$$

$$x = \alpha_1 w_1 + \alpha_2 w_2 + \dots + \alpha_n w_n = \sum_{i=1}^n \alpha_i w_i$$

e poichè la base è ortonormale $(oldsymbol{w}_j^Toldsymbol{w}_i=\delta_{ij})$ si ha

$$\alpha_i = \boldsymbol{w}_i^T \boldsymbol{x}, \qquad 1 \le i \le n,$$

da cui otteniamo la "classica" rappresentazione di un vettore rispetto a una base ortonormale

$$oldsymbol{x} = \sum_{i=1}^n (oldsymbol{w}_i^T oldsymbol{x}) oldsymbol{w}_i.$$

Si noti che possiamo scrivere

$$oldsymbol{x} = oldsymbol{W} oldsymbol{lpha}$$
 con $oldsymbol{lpha} = oldsymbol{W}^T oldsymbol{x}$

$$\boldsymbol{x} = \alpha_1 \boldsymbol{w}_1 + \alpha_2 \boldsymbol{w}_2 + \dots + \alpha_n \boldsymbol{w}_n = \sum_{i=1}^n \alpha_i \boldsymbol{w}_i$$

e poichè la base è ortonormale $(oldsymbol{w}_j^Toldsymbol{w}_i=\delta_{ij})$ si ha

$$\alpha_i = \boldsymbol{w}_i^T \boldsymbol{x}, \qquad 1 \le i \le n,$$

da cui otteniamo la "classica" rappresentazione di un vettore rispetto a una base ortonormale

$$oldsymbol{x} = \sum_{i=1}^n (oldsymbol{w}_i^T oldsymbol{x}) oldsymbol{w}_i.$$

Si noti che possiamo scrivere

$$oldsymbol{x} = oldsymbol{W} oldsymbol{lpha} \qquad ext{con} \qquad oldsymbol{lpha} = oldsymbol{W}^T oldsymbol{x}$$

e dunque la rappresentazione precedente non è altro che l'identità

$$x = WW^Tx$$

conseguenza della proprietà di ortogonalità $oldsymbol{W}oldsymbol{W}^T = oldsymbol{I}$ della matrice $oldsymbol{W}.$

Claudio Canuto ()

Il rango di una matrice

Ricordiamo che per un generica matrice ${\bf A}$ di ordine $m \times n$, definiamo il rango $r = {\sf rank}({\bf A})$ come la *dimensione della sua immagine*

$$rank(\mathbf{A}) = \dim Im \mathbf{A} = \dim \{ \mathbf{A} \mathbf{x} : \mathbf{x} \in \mathbb{R}^n \},$$

cioè il massimo numero di colonne linearmente indipendenti di $oldsymbol{A}$.

Il rango di una matrice

Ricordiamo che per un generica matrice ${\bf A}$ di ordine $m \times n$, definiamo il rango $r = {\rm rank}({\bf A})$ come la dimensione della sua immagine

$$rank(\mathbf{A}) = dim Im \mathbf{A} = dim \{ \mathbf{A} \mathbf{x} : \mathbf{x} \in \mathbb{R}^n \},$$

cioè il massimo numero di colonne linearmente indipendenti di $oldsymbol{A}$.

Si dimostra che

$$\mathsf{rank}(\boldsymbol{A}) = \mathsf{rank}(\boldsymbol{A}^T),$$

dunque il rango è anche il massimo numero di righe linearmente indipendenti di $oldsymbol{A}.$

Il rango di una matrice

Ricordiamo che per un generica matrice ${\bf A}$ di ordine $m \times n$, definiamo il rango $r = {\sf rank}({\bf A})$ come la dimensione della sua immagine

$$rank(\mathbf{A}) = \dim Im \mathbf{A} = \dim \{ \mathbf{A} \mathbf{x} : \mathbf{x} \in \mathbb{R}^n \},$$

cioè il massimo numero di colonne linearmente indipendenti di $oldsymbol{A}$.

Si dimostra che

$$\mathsf{rank}(\boldsymbol{A}) = \mathsf{rank}(\boldsymbol{A}^T),$$

dunque il rango è anche il massimo numero di righe linearmente indipendenti di $oldsymbol{A}.$

Inoltre, vale la relazione fondamentale tra le dimensioni del nucleo e dell'immagine di $oldsymbol{A}$

$$\operatorname{rank}(\boldsymbol{A}) = n - \dim \operatorname{Ker} \boldsymbol{A},$$

dove $\operatorname{Ker} A = \{ x \in \mathbb{R}^n : Ax = 0 \}.$

Proprietà. Per ogni matrice A, si ha

$$\operatorname{rank}(\boldsymbol{A}^T\boldsymbol{A}) = \operatorname{rank}(\boldsymbol{A}\boldsymbol{A}^T) = \operatorname{rank}(\boldsymbol{A}).$$

Proprietà. Per ogni matrice A, si ha

$$\mathsf{rank}(\boldsymbol{A}^T\!\boldsymbol{A}) = \mathsf{rank}(\boldsymbol{A}\boldsymbol{A}^T) = \mathsf{rank}(\boldsymbol{A}).$$

Infatti, scriviamo la relazione fondamentale per A e A^TA :

$$\begin{aligned} & \operatorname{rank}(\boldsymbol{A}) &= & n - \dim \operatorname{Ker} \boldsymbol{A}, \\ & \operatorname{rank}(\boldsymbol{A}^T \! \boldsymbol{A}) &= & n - \dim \operatorname{Ker} (\boldsymbol{A}^T \! \boldsymbol{A}). \end{aligned}$$

Proprietà. Per ogni matrice A, si ha

$$\mathsf{rank}(\boldsymbol{A}^T\!\boldsymbol{A}) = \mathsf{rank}(\boldsymbol{A}\boldsymbol{A}^T) = \mathsf{rank}(\boldsymbol{A}).$$

Infatti, scriviamo la relazione fondamentale per A e A^TA :

$$\begin{aligned} \operatorname{rank}(\boldsymbol{A}) &= n - \dim \operatorname{Ker} \boldsymbol{A}, \\ \operatorname{rank}(\boldsymbol{A}^T \boldsymbol{A}) &= n - \dim \operatorname{Ker} (\boldsymbol{A}^T \boldsymbol{A}). \end{aligned}$$

Ma si ha

$$Ker A = Ker(A^T A),$$

in quanto se Ax=0, anche $A^TAx=0$, e viceversa se $A^TAx=0$ allora $0=x^TA^TAx=(Ax)^TAx=\|Ax\|_2^2$, da cui Ax=0.

Proprietà. Per ogni matrice A, si ha

$$\mathsf{rank}(\boldsymbol{A}^T\!\boldsymbol{A}) = \mathsf{rank}(\boldsymbol{A}\boldsymbol{A}^T) = \mathsf{rank}(\boldsymbol{A}).$$

Infatti, scriviamo la relazione fondamentale per A e A^TA :

$$\begin{aligned} & \operatorname{rank}(\boldsymbol{A}) &= & n - \dim \operatorname{Ker} \boldsymbol{A}, \\ & \operatorname{rank}(\boldsymbol{A}^T \! \boldsymbol{A}) &= & n - \dim \operatorname{Ker} (\boldsymbol{A}^T \! \boldsymbol{A}). \end{aligned}$$

Ma si ha

$$Ker A = Ker(A^T A),$$

in quanto se Ax=0, anche $A^TAx=0$, e viceversa se $A^TAx=0$ allora $0=x^TA^TAx=(Ax)^TAx=\|Ax\|_2^2$, da cui Ax=0.

Concludiamo che

$$\mathsf{rank}(\boldsymbol{A}) = \mathsf{rank}(\boldsymbol{A}^T \boldsymbol{A}).$$

L'altra relazione si ottiene in modo analogo.

Claudio Canuto ()

Calcolo numerico e Matlab

Autovalori e autovettori delle matrici $oldsymbol{A}oldsymbol{A}^T$ e $oldsymbol{A}^Toldsymbol{A}$

ullet Consideriamo la matrice quadrata ${m A}{m A}^T$, di ordine m e rango r.

Autovalori e autovettori delle matrici $m{A}m{A}^T$ e $m{A}^Tm{A}$

- ullet Consideriamo la matrice quadrata AA^T , di ordine m e rango r.
 - ullet I suoi autovalori λ_i soddisfano

$$\lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_r > 0, \qquad \lambda_{r+1} = \lambda_{r+2} = \dots = \lambda_m = 0.$$

Autovalori e autovettori delle matrici $oldsymbol{A}oldsymbol{A}^T$ e $oldsymbol{A}^Toldsymbol{A}$

- ullet Consideriamo la matrice quadrata ${m A}{m A}^T$, di ordine m e rango r.
 - ullet I suoi autovalori λ_i soddisfano

$$\lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_r > 0, \qquad \lambda_{r+1} = \lambda_{r+2} = \dots = \lambda_m = 0.$$

ullet I corrispondenti autovettori $oldsymbol{u}_i \in \mathbb{R}^m$ soddisfano

$$\mathbf{A}\mathbf{A}^T\mathbf{u}_i = \lambda_i\mathbf{u}_i, \qquad 1 \le i \le m,$$

e formano la matrice ortogonale $oldsymbol{U}$.

Autovalori e autovettori delle matrici $m{A}m{A}^T$ e $m{A}^Tm{A}$

- ullet Consideriamo la matrice quadrata ${m A}{m A}^T$, di ordine m e rango r.
 - ullet I suoi autovalori λ_i soddisfano

$$\lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_r > 0, \qquad \lambda_{r+1} = \lambda_{r+2} = \dots = \lambda_m = 0.$$

ullet I corrispondenti autovettori $oldsymbol{u}_i \in \mathbb{R}^m$ soddisfano

$$\mathbf{A}\mathbf{A}^T\mathbf{u}_i = \lambda_i\mathbf{u}_i, \qquad 1 \le i \le m,$$

- e formano la matrice ortogonale $oldsymbol{U}$.
- ullet Similmente, consideriamo la matrice quadrata $oldsymbol{A}^T oldsymbol{A}$, di ordine n e rango r.

Autovalori e autovettori delle matrici $m{A}m{A}^T$ e $m{A}^Tm{A}$

- ullet Consideriamo la matrice quadrata ${m A}{m A}^T$, di ordine m e rango r.
 - ullet I suoi autovalori λ_i soddisfano

$$\lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_r > 0, \qquad \lambda_{r+1} = \lambda_{r+2} = \dots = \lambda_m = 0.$$

ullet I corrispondenti autovettori $oldsymbol{u}_i \in \mathbb{R}^m$ soddisfano

$$\mathbf{A}\mathbf{A}^T\mathbf{u}_i = \lambda_i\mathbf{u}_i, \qquad 1 \le i \le m,$$

- e formano la matrice ortogonale $oldsymbol{U}$.
- Similmente, consideriamo la matrice quadrata A^TA , di ordine n e rango r.
 - ullet I suoi autovalori μ_j soddisfano

$$\mu_1 \ge \mu_2 \ge \dots \ge \mu_r > 0, \qquad \mu_{r+1} = \mu_{r+2} = \dots = \mu_n = 0.$$

Autovalori e autovettori delle matrici $oldsymbol{A}oldsymbol{A}^T$ e $oldsymbol{A}^Toldsymbol{A}$

- ullet Consideriamo la matrice quadrata ${m A}{m A}^T$, di ordine m e rango r.
 - ullet I suoi autovalori λ_i soddisfano

$$\lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_r > 0, \qquad \lambda_{r+1} = \lambda_{r+2} = \dots = \lambda_m = 0.$$

ullet I corrispondenti autovettori $oldsymbol{u}_i \in \mathbb{R}^m$ soddisfano

$$\mathbf{A}\mathbf{A}^T\mathbf{u}_i = \lambda_i\mathbf{u}_i, \qquad 1 \le i \le m,$$

- e formano la matrice ortogonale $oldsymbol{U}$.
- Similmente, consideriamo la matrice quadrata A^TA , di ordine n e rango r.
 - ullet I suoi autovalori μ_j soddisfano

$$\mu_1 \ge \mu_2 \ge \dots \ge \mu_r > 0, \qquad \mu_{r+1} = \mu_{r+2} = \dots = \mu_n = 0.$$

ullet I corrispondenti autovettori $oldsymbol{v}_j \in \mathbb{R}^n$ soddisfano

$$\mathbf{A}^T \mathbf{A} \mathbf{u}_j = \mu_j \mathbf{v}_j, \qquad 1 \le j \le n,$$

e formano la matrice ortogonale V.

Proprietà. Valgono i seguenti risultati:

• Gli autovalori > 0 di AA^T e A^TA coincidono:

$$\lambda_i = \mu_i, \qquad 1 \le j \le r.$$

ullet I corrispondenti autovettori $oldsymbol{u}_i$ e $oldsymbol{v}_i$ possono essere scelti in modo da soddisfare le relazioni

$$egin{aligned} m{A}m{v}_i &= \sigma_im{u}_i, \ m{A}^Tm{u}_i &= \sigma_im{v}_i, \end{aligned}$$

avendo posto

$$\sigma_i = \sqrt{\lambda_i} = \sqrt{\mu_i}.$$

Proprietà. Valgono i seguenti risultati:

• Gli autovalori > 0 di AA^T e A^TA coincidono:

$$\lambda_i = \mu_i, \qquad 1 \le j \le r.$$

ullet I corrispondenti autovettori $oldsymbol{u}_i$ e $oldsymbol{v}_i$ possono essere scelti in modo da soddisfare le relazioni

$$egin{aligned} m{A}m{v}_i &= \sigma_im{u}_i, \ m{A}^Tm{u}_i &= \sigma_im{v}_i, \end{aligned}$$

avendo posto

$$\sigma_i = \sqrt{\lambda_i} = \sqrt{\mu_i}.$$

Infatti, se ad esempio fissiamo gli autovettori u_i e poniamo $\sigma_i = \sqrt{\lambda_i}$, possiamo definire

$$oldsymbol{v}_i := rac{1}{\sigma_i} oldsymbol{A}^T oldsymbol{u}_i, \qquad 1 \leq i \leq r.$$

Proprietà. Valgono i seguenti risultati:

• Gli autovalori > 0 di AA^T e A^TA coincidono:

$$\lambda_i = \mu_i, \qquad 1 \le j \le r.$$

ullet I corrispondenti autovettori $oldsymbol{u}_i$ e $oldsymbol{v}_i$ possono essere scelti in modo da soddisfare le relazioni

$$egin{aligned} m{A}m{v}_i &= \sigma_im{u}_i, \ m{A}^Tm{u}_i &= \sigma_im{v}_i, \end{aligned}$$

avendo posto

$$\sigma_i = \sqrt{\lambda_i} = \sqrt{\mu_i}.$$

Infatti, se ad esempio fissiamo gli autovettori u_i e poniamo $\sigma_i = \sqrt{\lambda_i}$, possiamo definire

$$oldsymbol{v}_i := rac{1}{\sigma_i} oldsymbol{A}^T oldsymbol{u}_i, \qquad 1 \leq i \leq r.$$

Allora si ha

$$oldsymbol{A}oldsymbol{v}_i = rac{1}{\sigma_i}oldsymbol{A}oldsymbol{A}^Toldsymbol{u}_i = rac{\lambda_i}{\sigma_i}oldsymbol{u}_i = \sigma_ioldsymbol{u}_i$$

Proprietà. Valgono i seguenti risultati:

• Gli autovalori > 0 di AA^T e A^TA coincidono:

$$\lambda_i = \mu_i, \qquad 1 \le j \le r.$$

ullet I corrispondenti autovettori $oldsymbol{u}_i$ e $oldsymbol{v}_i$ possono essere scelti in modo da soddisfare le relazioni

$$egin{aligned} m{A}m{v}_i &= \sigma_im{u}_i, \ m{A}^Tm{u}_i &= \sigma_im{v}_i, \end{aligned}$$

avendo posto

$$\sigma_i = \sqrt{\lambda_i} = \sqrt{\mu_i}.$$

Infatti, se ad esempio fissiamo gli autovettori u_i e poniamo $\sigma_i = \sqrt{\lambda_i}$, possiamo definire

$$oldsymbol{v}_i := rac{1}{\sigma_i} oldsymbol{A}^T oldsymbol{u}_i, \qquad 1 \leq i \leq r.$$

Allora si ha

$$oldsymbol{A}oldsymbol{v}_i = rac{1}{\sigma_i}oldsymbol{A}oldsymbol{A}^Toldsymbol{u}_i = rac{\lambda_i}{\sigma_i}oldsymbol{u}_i = \sigma_ioldsymbol{u}_i$$

e quindi

$$\mathbf{A}^T \mathbf{A} \mathbf{v}_i = \sigma_i \mathbf{A}^T \mathbf{u}_i = \sigma_i^2 \mathbf{v}_i = \lambda_i \mathbf{v}_i.$$

Proprietà. Valgono i seguenti risultati:

• Gli autovalori > 0 di AA^T e A^TA coincidono:

$$\lambda_i = \mu_i, \qquad 1 \le j \le r.$$

ullet I corrispondenti autovettori $oldsymbol{u}_i$ e $oldsymbol{v}_i$ possono essere scelti in modo da soddisfare le relazioni

$$egin{aligned} m{A}m{v}_i &= \sigma_im{u}_i, \ m{A}^Tm{u}_i &= \sigma_im{v}_i, \end{aligned}$$

avendo posto

$$\sigma_i = \sqrt{\lambda_i} = \sqrt{\mu_i}.$$

Infatti, se ad esempio fissiamo gli autovettori u_i e poniamo $\sigma_i = \sqrt{\lambda_i}$, possiamo definire

$$\boldsymbol{v}_i := \frac{1}{\sigma_i} \boldsymbol{A}^T \boldsymbol{u}_i, \qquad 1 \le i \le r.$$

Allora si ha

$$oldsymbol{A}oldsymbol{v}_i = rac{1}{\sigma_i}oldsymbol{A}oldsymbol{A}^Toldsymbol{u}_i = rac{\lambda_i}{\sigma_i}oldsymbol{u}_i = \sigma_ioldsymbol{u}_i$$

e quindi

$$\mathbf{A}^T \mathbf{A} \mathbf{v}_i = \sigma_i \mathbf{A}^T \mathbf{u}_i = \sigma_i^2 \mathbf{v}_i = \lambda_i \mathbf{v}_i.$$

Dunque v_i è autovettore di A^TA , con autovalore $\mu_i=\lambda_i$.

Verso la decomposizione ai valori singolari di $oldsymbol{A}$

Usando la proprietà che U e V sono matrici ortogonali, e dunque

$$oldsymbol{U}oldsymbol{U}^T = oldsymbol{I}_m, \qquad oldsymbol{V}oldsymbol{V}^T = oldsymbol{I}_n$$

(dove I_k indica la matrice identità di ordine k), possiamo scrivere

$$A = I_m A I_n = UU^T A VV^T = U(U^T A V)V^T = U\Sigma V^T,$$

avendo introdotto la matrice di ordine $m \times n$

$$\mathbf{\Sigma} = \boldsymbol{U}^T \boldsymbol{A} \boldsymbol{V}.$$

Verso la decomposizione ai valori singolari di $oldsymbol{A}$

Usando la proprietà che U e V sono matrici ortogonali, e dunque

$$UU^T = I_m, \qquad VV^T = I_n$$

(dove I_k indica la matrice identità di ordine k), possiamo scrivere

$$\boldsymbol{A} = \boldsymbol{I}_m \boldsymbol{A} \, \boldsymbol{I}_n = \boldsymbol{U} \boldsymbol{U}^T \boldsymbol{A} \, \boldsymbol{V} \boldsymbol{V}^T = \boldsymbol{U} (\boldsymbol{U}^T \boldsymbol{A} \boldsymbol{V}) \boldsymbol{V}^T = \boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^T,$$

avendo introdotto la matrice di ordine $m \times n$

$$\mathbf{\Sigma} = \boldsymbol{U}^T \boldsymbol{A} \boldsymbol{V}.$$

Dobbiamo ora capire come è fatta la matrice Σ ...

Claudio Canuto ()

Definizione. Chiamiamo valori singolari della matrice A i numeri

$$\sigma_i = \sqrt{\lambda_i}, \qquad 1 \le i \le \min(m, n).$$

Se r è il rango della matrice, essi soddisfano

$$\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_r > 0, \qquad \sigma_{r+1} = \sigma_{r+2} = \cdots = \sigma_{\min(m,n)} = 0.$$

Definizione. Chiamiamo valori singolari della matrice A i numeri

$$\sigma_i = \sqrt{\lambda_i}, \qquad 1 \le i \le \min(m, n).$$

Se r è il rango della matrice, essi soddisfano

$$\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_r > 0,$$
 $\sigma_{r+1} = \sigma_{r+2} = \cdots = \sigma_{\min(m,n)} = 0.$

Vale allora il seguente risultato.

Proprietà. La matrice Σ è diagonale, e contiene i valori singolari sulla diagonale principale:

$$(\mathbf{\Sigma})_{ij} = \begin{cases} \sigma_i & \text{per } 1 \leq i = j \leq \min(m, n), \\ 0 & \text{altrimenti.} \end{cases}$$

Ad esempio

$$(oldsymbol{\Sigma})_{ij} = oldsymbol{u}_i^T oldsymbol{A} oldsymbol{v}_j.$$

Claudio Canuto ()

$$(\mathbf{\Sigma})_{ij} = \boldsymbol{u}_i^T \boldsymbol{A} \boldsymbol{v}_j.$$

Distinguiamo due casi, a seconda che $\sigma_j > 0$ oppure $\sigma_j = 0$.

ullet Se $\sigma_j>0$, allora $oldsymbol{A}oldsymbol{v}_j=\sigma_joldsymbol{u}_j$, dunque

$$\boldsymbol{u}_i^T \boldsymbol{A} \boldsymbol{v}_j = \sigma_j \boldsymbol{u}_i^T \boldsymbol{u}_j = \sigma_j \delta_{ij}.$$

$$(\mathbf{\Sigma})_{ij} = \boldsymbol{u}_i^T \boldsymbol{A} \boldsymbol{v}_j.$$

Distinguiamo due casi, a seconda che $\sigma_j > 0$ oppure $\sigma_j = 0$.

ullet Se $\sigma_j>0$, allora $oldsymbol{A}oldsymbol{v}_j=\sigma_joldsymbol{u}_j$, dunque

$$\boldsymbol{u}_i^T \boldsymbol{A} \boldsymbol{v}_j = \sigma_j \boldsymbol{u}_i^T \boldsymbol{u}_j = \sigma_j \delta_{ij}.$$

• Se $\sigma_j = 0$, dobbiamo ricordare che possiamo decomporre \mathbb{R}^m come

$$\mathbb{R}^m = \operatorname{Im} \boldsymbol{A} +_{\perp} (\operatorname{Im} \boldsymbol{A})^{\perp} = \operatorname{Im} \boldsymbol{A} +_{\perp} \operatorname{Ker} \boldsymbol{A}^T.$$

$$(\mathbf{\Sigma})_{ij} = \mathbf{u}_i^T \mathbf{A} \mathbf{v}_j.$$

Distinguiamo due casi, a seconda che $\sigma_j > 0$ oppure $\sigma_j = 0$.

ullet Se $\sigma_j>0$, allora $oldsymbol{A}oldsymbol{v}_j=\sigma_joldsymbol{u}_j$, dunque

$$\boldsymbol{u}_i^T \boldsymbol{A} \boldsymbol{v}_j = \sigma_j \boldsymbol{u}_i^T \boldsymbol{u}_j = \sigma_j \delta_{ij}.$$

• Se $\sigma_j = 0$, dobbiamo ricordare che possiamo decomporre \mathbb{R}^m come

$$\mathbb{R}^m = \operatorname{Im} \boldsymbol{A} +_{\perp} (\operatorname{Im} \boldsymbol{A})^{\perp} = \operatorname{Im} \boldsymbol{A} +_{\perp} \operatorname{Ker} \boldsymbol{A}^T.$$

Dunque scriviamo

$$oldsymbol{u}_i = oldsymbol{y}_i + oldsymbol{z}_i \qquad ext{con} \quad oldsymbol{y}_i = oldsymbol{A} oldsymbol{w}_i \in \operatorname{\mathsf{Im}} oldsymbol{A} \quad \operatorname{\mathsf{e}} \quad oldsymbol{z}_i \in \operatorname{\mathsf{Ker}} oldsymbol{A}^T,$$

$$(\mathbf{\Sigma})_{ij} = \mathbf{u}_i^T \mathbf{A} \mathbf{v}_j.$$

Distinguiamo due casi, a seconda che $\sigma_j > 0$ oppure $\sigma_j = 0$.

ullet Se $\sigma_j>0$, allora $oldsymbol{A}oldsymbol{v}_j=\sigma_joldsymbol{u}_j$, dunque

$$\boldsymbol{u}_i^T \boldsymbol{A} \boldsymbol{v}_j = \sigma_j \boldsymbol{u}_i^T \boldsymbol{u}_j = \sigma_j \delta_{ij}.$$

• Se $\sigma_j = 0$, dobbiamo ricordare che possiamo decomporre \mathbb{R}^m come

$$\mathbb{R}^m = \operatorname{Im} \mathbf{A} +_{\perp} (\operatorname{Im} \mathbf{A})^{\perp} = \operatorname{Im} \mathbf{A} +_{\perp} \operatorname{Ker} \mathbf{A}^T.$$

Dunque scriviamo

$$oldsymbol{u}_i = oldsymbol{y}_i + oldsymbol{z}_i \qquad ext{con} \quad oldsymbol{y}_i = oldsymbol{A} oldsymbol{w}_i \in \operatorname{\mathsf{Im}} oldsymbol{A} \quad \operatorname{\mathsf{e}} \quad oldsymbol{z}_i \in \operatorname{\mathsf{Ker}} oldsymbol{A}^T,$$

da cui

$$\boldsymbol{u}_i^T \boldsymbol{A} \boldsymbol{v}_j = (\boldsymbol{A} \boldsymbol{w}_i + \boldsymbol{z}_i)^T \boldsymbol{A} \boldsymbol{v}_j = \boldsymbol{w}_i^T \boldsymbol{A}^T \boldsymbol{A} \boldsymbol{v}_j + (\boldsymbol{A}^T \boldsymbol{z}_i)^T \boldsymbol{v}_j = \boldsymbol{w}_i^T \boldsymbol{0} + \boldsymbol{0}^T \boldsymbol{v}_j = 0.$$

Claudio Canuto () Calcolo numerico e Matlab

La decomposizione ai valori singolari di ${\it A}$

Abbiamo dunque stabilito il seguente risultato.

Proprietà. Ogni matrice reale A, di ordine $m \times n$ e di rango r, può essere fattorizzata nella forma

$$A = U\Sigma V^T$$

dove

- ullet $oldsymbol{U}$ è una matrice quadrata di ordine m, ortogonale; precisamente, $oldsymbol{U}$ è formata dagli autovettori della matrice $oldsymbol{A}oldsymbol{A}^T$.
- Σ è una matrice di ordine $m \times n$, diagonale; essa contiene i valori singolari di A, ordinati in senso decrescente e tali che r di essi sono strettamente positivi, mentre i rimanenti sono nulli.
- V è una matrice quadrata di ordine n, ortogonale; precisamente, V è formata dagli autovettori della matrice A^TA .

Più precisamente, possiamo dire che:

• Le prime r colonne di $m{U}$, ossia $m{u}_1, \, \dots, \, m{u}_r$, formano una base ortonormale dello spazio vettoriale

$$\operatorname{Im} \mathbf{A} = \{ \mathbf{A} \mathbf{x} : \mathbf{x} \in \mathbb{R}^n \}.$$

• Le prime r colonne di $m{V}$, ossia $m{v}_1, \, \dots, \, m{v}_r$, formano una base ortonormale dello spazio vettoriale

$$\operatorname{Im} \boldsymbol{A}^T = \{\boldsymbol{A}^T \boldsymbol{y} \, : \, \boldsymbol{y} \in \mathbb{R}^m\}.$$

Più precisamente, possiamo dire che:

ullet Le prime r colonne di $oldsymbol{U}$, ossia $oldsymbol{u}_1,\,\ldots,\,oldsymbol{u}_r$, formano una base ortonormale dello spazio vettoriale

$$\operatorname{Im} \boldsymbol{A} = \{\boldsymbol{A}\boldsymbol{x} \, : \, \boldsymbol{x} \in \mathbb{R}^n\}.$$

• Le rimanenti m-r colonne di U, ossia u_{r+1}, \ldots, u_m , formano una base ortonormale dello spazio vettoriale

$$\operatorname{Ker} \boldsymbol{A}^T = \{\boldsymbol{y} \in \mathbb{R}^m \, : \, \boldsymbol{A}^T \boldsymbol{y} = \boldsymbol{0}\}.$$

• Le prime r colonne di V, ossia v_1, \ldots, v_r , formano una base ortonormale dello spazio vettoriale

$$\operatorname{Im} \boldsymbol{A}^T = \{\boldsymbol{A}^T \boldsymbol{y} \, : \, \boldsymbol{y} \in \mathbb{R}^m\}.$$

• Le rimanenti n-r colonne di V, ossia v_{r+1}, \ldots, v_n , formano una base ortonormale dello spazio vettoriale

$$\operatorname{Ker} \boldsymbol{A} = \{ \boldsymbol{x} \in \mathbb{R}^n : \boldsymbol{A} \boldsymbol{x} = \boldsymbol{0} \}.$$

Comandi MATLAB

I principali comandi relativi alla decomposizione ai valori singolari sono:

- s=svd(A) per ottenere un vettore contenente i valori singolari di A;
- [U S V]=svd(A) per ottenere le tre matrici che compongono la fattorizzazione.

Comandi MATLAB

I principali comandi relativi alla decomposizione ai valori singolari sono:

- s=svd(A) per ottenere un vettore contenente i valori singolari di A;
- [U S V]=svd(A) per ottenere le tre matrici che compongono la fattorizzazione.

Dal punto di vista numerico, la SVD può essere calcolata riducendo dapprima la matrice a forma bidiagonale, e poi applicando un metodo iterativo basato su trasformazioni QR. Il numero di operazioni richieste è $O(mn^2)$.

L'applicazione della matrice A a un vettore $x \in \mathbb{R}^n$ per ottenere un vettore $y \in \mathbb{R}^m$,

$$y = Ax$$

può essere "letta" nel seguente modo:

L'applicazione della matrice A a un vettore $x \in \mathbb{R}^n$ per ottenere un vettore $y \in \mathbb{R}^m$,

$$y = Ax$$

può essere "letta" nel seguente modo:

ullet esprimiamo il vettore x nella base ortonormale v_1,\ldots,v_n di \mathbb{R}^n , come

$$x = V\alpha$$
, mediante i coefficienti $\alpha = V^Tx$;

L'applicazione della matrice A a un vettore $x \in \mathbb{R}^n$ per ottenere un vettore $y \in \mathbb{R}^m$,

$$y = Ax$$

può essere "letta" nel seguente modo:

ullet esprimiamo il vettore $oldsymbol{x}$ nella base ortonormale $oldsymbol{v}_1,\ldots,oldsymbol{v}_n$ di \mathbb{R}^n , come

$$x = V\alpha$$
, mediante i coefficienti $\alpha = V^Tx$;

ullet esprimiamo il vettore $oldsymbol{y}$ nella base ortonormale $oldsymbol{u}_1,\ldots,oldsymbol{u}_m$ di \mathbb{R}^m , come

$$y = U\beta$$
, mediante opportuni coefficienti β ;

L'applicazione della matrice A a un vettore $x \in \mathbb{R}^n$ per ottenere un vettore $y \in \mathbb{R}^m$,

$$y = Ax$$

può essere "letta" nel seguente modo:

ullet esprimiamo il vettore $oldsymbol{x}$ nella base ortonormale $oldsymbol{v}_1,\ldots,oldsymbol{v}_n$ di \mathbb{R}^n , come

$$x = V\alpha$$
, mediante i coefficienti $\alpha = V^Tx$;

ullet esprimiamo il vettore $oldsymbol{y}$ nella base ortonormale $oldsymbol{u}_1,\ldots,oldsymbol{u}_m$ di \mathbb{R}^m , come

$$y = U\beta$$
, mediante opportuni coefficienti β ;

ullet rispetto alle basi ortonormali, l'applicazione della matrice $oldsymbol{A}$ diventa una semplice trasformazione diagonale dei coefficienti (scaling):

$$\beta = \Sigma \alpha$$
.

Applicazioni. I - Calcolo del rango (numerico) di una matrice

Abbiamo visto che il numero di valori singolari di A è pari al rango di A. Dunque, una volta effettuata la decomposizione ai valori singolari di A, potremmo porre

$$rank(A) = \#\{ \sigma_i > 0, 1 \le i \le \min(m, n) \}.$$

Applicazioni. I - Calcolo del rango (numerico) di una matrice

Abbiamo visto che il numero di valori singolari di A è pari al rango di A. Dunque, una volta effettuata la decomposizione ai valori singolari di A, potremmo porre

$$rank(A) = \#\{ \sigma_i > 0, 1 \le i \le \min(m, n) \}.$$

Tuttavia, lavorando in aritmetica con precisione finita, si preferisce selezionare i valori singolari sulla base di una soglia, diciamo $\tau>0$, che viene scelta in base alla precisione di macchina e anche alla "accuratezza" con cui è stata calcolata la matrice ${\bf A}$.

Si definisce quindi il rango numerico, (o rango effettivo) di A la quantità

$$\operatorname{rank}_{\tau}(\boldsymbol{A}) = \#\{ \ \sigma_i > \tau, \ 1 \le i \le \min(m, n) \}.$$

Applicazioni. I - Calcolo del rango (numerico) di una matrice

Abbiamo visto che il numero di valori singolari di A è pari al rango di A. Dunque, una volta effettuata la decomposizione ai valori singolari di A, potremmo porre

$$rank(A) = \#\{ \sigma_i > 0, 1 \le i \le \min(m, n) \}.$$

Tuttavia, lavorando in aritmetica con precisione finita, si preferisce selezionare i valori singolari sulla base di una soglia, diciamo $\tau>0$, che viene scelta in base alla precisione di macchina e anche alla "accuratezza" con cui è stata calcolata la matrice ${\bf A}$.

Si definisce quindi il rango numerico, (o rango effettivo) di A la quantità

$$\operatorname{rank}_{\tau}(\boldsymbol{A}) = \#\{ \ \sigma_i > \tau, \ 1 \le i \le \min(m, n) \}.$$

Osservazione. Il rango della matrice potrebbe anche essere calcolato mediante un metodo di fattorizzazione di tipo PA=LU, contando dopo quanti passi si trovano tutti elementi pivot uguali a 0 (oppure al di sotto di una certa soglia τ). Però, l'uso della SVD, per quanto più costoso, fornisce in genere risultati numericamente più affidabili.

Claudio Canuto () Calcolo numerico e Matlab

Supponiamo di avere n vettori a_1, \ldots, a_n di ordine m.

Ci poniamo le seguenti domande:

Supponiamo di avere n vettori a_1, \ldots, a_n di ordine m.

Ci poniamo le seguenti domande:

Qual è il numero massimo di vettori linearmente indipendenti tra loro?

Supponiamo di avere n vettori a_1, \ldots, a_n di ordine m.

Ci poniamo le seguenti domande:

- Qual è il numero massimo di vettori linearmente indipendenti tra loro?
- 2 Come selezioniamo un sottoinsieme di vettori linearmente indipendenti?

Supponiamo di avere n vettori a_1, \ldots, a_n di ordine m.

Ci poniamo le seguenti domande:

- Qual è il numero massimo di vettori linearmente indipendenti tra loro?
- 2 Come selezioniamo un sottoinsieme di vettori linearmente indipendenti?
- Ome esprimiamo i rimanenti vettori in termini di questi?

Supponiamo di avere n vettori a_1, \ldots, a_n di ordine m.

Ci poniamo le seguenti domande:

- Qual è il numero massimo di vettori linearmente indipendenti tra loro?
- 2 Come selezioniamo un sottoinsieme di vettori linearmente indipendenti?
- Ome esprimiamo i rimanenti vettori in termini di questi?

Vediamo le risposte.

1. Numero massimo di vettori linearmente indipendenti

Scrivendo i vettori come vettori colonna, è sufficiente formare la matrice di ordine m imes n

$$\mathbf{A} = \begin{pmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \dots & \mathbf{a}_n \end{pmatrix}$$

e calcolarne il rango

$$r = \operatorname{rank}(\boldsymbol{A}).$$

Questo è il numero cercato.

2. Selezione di un sottoinsieme di r vettori linearmente indipendenti

Ovviamente, il problema è non banale solo se r < n. Eseguiamo la fattorizzazione SVD di ${m A}$

$$A = U\Sigma V^T$$

e ricordiamo che le ultime n-r colonne di ${\bf V}$ formano una base ortonormale di Ker ${\bf A}$. Ciò implica che

$$AV_{n-r} = O$$

dove ${m V}_{n-r}$ è la sottomatrice di ${m V}$ di ordine n imes (n-r) che ne raccoglie le ultime n-r colonne.

Claudio Canuto () Calcolo numerico e Matlab 53 / 58

◆□ > ◆□ > ◆□ > ◆□ > ◆□ ≥

 $^{^1}$ Ad esempio, mediante una fattorizzazione di tipo $m{L}m{U}$ della matrice rettangolare $m{V}_{n-r}.$

2. Selezione di un sottoinsieme di r vettori linearmente indipendenti

Ovviamente, il problema è non banale solo se r < n. Eseguiamo la fattorizzazione SVD di ${m A}$

$$A = U\Sigma V^T$$

e ricordiamo che le ultime n-r colonne di ${\bf V}$ formano una base ortonormale di Ker ${\bf A}$. Ciò implica che

$$AV_{n-r} = O$$

dove ${m V}_{n-r}$ è la sottomatrice di ${m V}$ di ordine n imes (n-r) che ne raccoglie le ultime n-r colonne.

Poichè le colonne di V_{n-r} sono ortogonali, tale matrice ha rango massimo n-r. Dunque possiamo trovare n-r righe di V_{n-r} linearmente indipendenti.¹

Siano i_1, \ldots, i_r gli indici delle rimanenti r righe.

《□》《圖》《意》《意》。意

53 / 58

 $^{^1}$ Ad esempio, mediante una fattorizzazione di tipo $m{L}m{U}$ della matrice rettangolare $m{V}_{n-r}$.

2. Selezione di un sottoinsieme di r vettori linearmente indipendenti

Ovviamente, il problema è non banale solo se r < n. Eseguiamo la fattorizzazione SVD di A

$$A = U\Sigma V^T$$

e ricordiamo che le ultime n-r colonne di $oldsymbol{V}$ formano una base ortonormale di Ker $oldsymbol{A}$. Ciò implica che

$$AV_{n-r} = O$$

dove V_{n-r} è la sottomatrice di V di ordine $n \times (n-r)$ che ne raccoglie le ultime n-rcolonne.

Poichè le colonne di V_{n-r} sono ortogonali, tale matrice ha rango massimo n-r. Dunque possiamo trovare n-r righe di V_{n-r} linearmente indipendenti. 1

Siano i_1, \ldots, i_r gli indici delle rimanenti r righe.

Proprietà. Gli r vettori

$$\boldsymbol{a}_{i_1},\ldots,\boldsymbol{a}_{i_r}$$

formano un insieme massimale di vettori linearmente indipendenti.

Claudio Canuto () Calcolo numerico e Matlab

 $^{^1}$ Ad esempio, mediante una fattorizzazione di tipo $m{L} U$ della matrice rettangolare $m{V}_{n-r}$.

Applicando una permutazione di righe, non è restrittivo supporre che le n-r righe linearmente indipendenti di ${\bf V}_{n-r}$ siano le prime:

$$oldsymbol{PV}_{n-r} = \left(egin{array}{c} oldsymbol{W}_{n-r} \ oldsymbol{W}_r \end{array}
ight)$$

con P matrice $n \times n$ di permutazione, W_{n-r} matrice quadrata di ordine n-r non-singolare, e W_r matrice di ordine $r \times (n-r)$.

Applicando una permutazione di righe, non è restrittivo supporre che le n-r righe linearmente indipendenti di ${m V}_{n-r}$ siano le prime:

$$oldsymbol{PV}_{n-r} = \left(egin{array}{c} oldsymbol{W}_{n-r} \ oldsymbol{W}_r \end{array}
ight)$$

con P matrice $n \times n$ di permutazione, W_{n-r} matrice quadrata di ordine n-r non-singolare, e W_r matrice di ordine $r \times (n-r)$.

La matrice $\widetilde{\pmb{A}} = \pmb{A} \pmb{P} = \left(\begin{array}{cc} \widetilde{\pmb{A}}_{n-r} & \widetilde{\pmb{A}}_r \end{array} \right)$

ottenuta da $m{A}$ mediante una permutazione di colonne, contiene gli r vettori indipendenti selezionati nelle ultime r colonne, e i rimanenti vettori nelle prime n-r colonne.

Applicando una permutazione di righe, non è restrittivo supporre che le n-r righe linearmente indipendenti di ${\bf V}_{n-r}$ siano le prime:

$$oldsymbol{PV}_{n-r}=\left(egin{array}{c} oldsymbol{W}_{n-r} \ oldsymbol{W}_r \end{array}
ight)$$

con P matrice $n \times n$ di permutazione, W_{n-r} matrice quadrata di ordine n-r non-singolare, e W_r matrice di ordine $r \times (n-r)$.

La matrice

$$\widetilde{m{A}} = m{A}m{P} = \left(egin{array}{cc} \widetilde{m{A}}_{n-r} & \widetilde{m{A}}_r \end{array}
ight)$$

ottenuta da ${m A}$ mediante una permutazione di colonne, contiene gli r vettori indipendenti selezionati nelle ultime r colonne, e i rimanenti vettori nelle prime n-r colonne. Allora

$$O = AV_{n-r} = AP\,PV_{n-r} = \left(egin{array}{c} \widetilde{A}_{n-r} & \widetilde{A}_r \end{array}
ight) \left(egin{array}{c} W_{n-r} \ W_r \end{array}
ight)$$

da cui

$$\widetilde{A}_{n-r}W_{n-r} + \widetilde{A}_rW_r = O.$$

Applicando una permutazione di righe, non è restrittivo supporre che le n-r righe linearmente indipendenti di ${\bf V}_{n-r}$ siano le prime:

$$oldsymbol{PV_{n-r}} = \left(egin{array}{c} oldsymbol{W_{n-r}} \ oldsymbol{W_r} \end{array}
ight)$$

con P matrice $n \times n$ di permutazione, W_{n-r} matrice quadrata di ordine n-r non-singolare, e W_r matrice di ordine $r \times (n-r)$.

La matrice

$$\widetilde{\pmb{A}} = \pmb{A} \pmb{P} = \left(egin{array}{c} \widetilde{\pmb{A}}_{n-r} & \widetilde{\pmb{A}}_r \end{array}
ight)$$

ottenuta da ${m A}$ mediante una permutazione di colonne, contiene gli r vettori indipendenti selezionati nelle ultime r colonne, e i rimanenti vettori nelle prime n-r colonne. Allora

$$O = AV_{n-r} = AP\,PV_{n-r} = \left(egin{array}{c} \widetilde{A}_{n-r} & \widetilde{A}_r \end{array}
ight) \left(egin{array}{c} W_{n-r} \ W_r \end{array}
ight)$$

da cui

$$\widetilde{A}_{n-r}W_{n-r} + \widetilde{A}_rW_r = O.$$

Di qui otteniamo la rapresentazione cercata

$$\widetilde{\boldsymbol{A}}_{n-r} = -\widetilde{\boldsymbol{A}}_r(\boldsymbol{W}_r \boldsymbol{W}_{n-r}^{-1}).$$

Applicazioni. III - Definizione della pseudo-inversa di una matrice

Se \boldsymbol{A} è una matrice quadrata, che si fattorizza come

$$A = U\Sigma V^T$$

con U, V ortogonali e Σ quadrata invertibile, allora A è invertibile e si ha

$$A^{-1} = (V^T)^{-1} \Sigma^{-1} U^{-1} = V \Sigma^{-1} U^T.$$

Applicazioni. III - Definizione della pseudo-inversa di una matrice

Se $oldsymbol{A}$ è una matrice quadrata, che si fattorizza come

$$A = U\Sigma V^T$$

con U, V ortogonali e Σ quadrata invertibile, allora A è invertibile e si ha

$$A^{-1} = (V^T)^{-1} \Sigma^{-1} U^{-1} = V \Sigma^{-1} U^T.$$

Questa osservazione motiva la seguente definizione di *pseudo-inversa* di una qualunque matrice A di ordine $m \times n$, a partire dalla sua decomposizione ai valori singolari $A = U \Sigma V^T$.

Applicazioni. III - Definizione della pseudo-inversa di una matrice

Se $oldsymbol{A}$ è una matrice quadrata, che si fattorizza come

$$A = U\Sigma V^T$$

con U, V ortogonali e Σ quadrata invertibile, allora A è invertibile e si ha

$$A^{-1} = (V^T)^{-1} \Sigma^{-1} U^{-1} = V \Sigma^{-1} U^T.$$

Questa osservazione motiva la seguente definizione di *pseudo-inversa* di una qualunque matrice A di ordine $m \times n$, a partire dalla sua decomposizione ai valori singolari $A = U \Sigma V^T$.

Definizione. La pseudo-inversa di A (detta anche inversa di Moore-Penrose) è la matrice di ordine $n \times m$

$$\boldsymbol{A}^\dagger = \boldsymbol{V} \boldsymbol{\Sigma}^\dagger \boldsymbol{U}^T$$

dove $\mathbf{\Sigma}^{\dagger}$ è la matrice diagonale di ordine $n \times m$ i cui elementi diagonali sono

$$(\mathbf{\Sigma}^{\dagger})_{ii} = \begin{cases} rac{1}{\sigma_i} & \text{se } \sigma_i > 0, \\ 0 & \text{se } \sigma_i = 0. \end{cases}$$

Proprietà

ullet La pseudo-inversa $oldsymbol{A}^\dagger$ è caratterizzata dalla seguenti proprietà:

$$oldsymbol{A}oldsymbol{A}^{\dagger}$$
 è simmetrica, e soddisfa $(oldsymbol{A}oldsymbol{A}^{\dagger})oldsymbol{A}=oldsymbol{A},$

$$m{A}^\dagger m{A}$$
 è simmetrica, e soddisfa $(m{A}^\dagger m{A}) \, m{A}^\dagger = m{A}^\dagger.$

ullet Se A è quadrata non-singolare, allora

$$\boldsymbol{A}^{\dagger} = \boldsymbol{A}^{-1}.$$

ullet Se $oldsymbol{A}$ è di ordine m imes n con n < m, e ha rango massimo r = n, allora

$$\boldsymbol{A}^{\dagger} = (\boldsymbol{A}^T \boldsymbol{A})^{-1} \boldsymbol{A}^T.$$

Proprietà

ullet La pseudo-inversa A^\dagger è caratterizzata dalla seguenti proprietà:

$${m A}{m A}^{\dagger}$$
 è simmetrica, e soddisfa $({m A}{m A}^{\dagger}){m A}={m A},$

$$m{A}^\dagger m{A}$$
 è simmetrica, e soddisfa $(m{A}^\dagger m{A}) \, m{A}^\dagger = m{A}^\dagger.$

ullet Se $oldsymbol{A}$ è quadrata non-singolare, allora

$$\boldsymbol{A}^{\dagger} = \boldsymbol{A}^{-1}.$$

• Se A è di ordine $m \times n$ con n < m, e ha rango massimo r = n, allora

$$\boldsymbol{A}^{\dagger} = (\boldsymbol{A}^T \boldsymbol{A})^{-1} \boldsymbol{A}^T.$$

Comandi MATLAB

- X=pinv(A) fornisce la pseudo-inversa di A, a partire dalla sua SVD.
 I valori singolari al di sotto di una tolleranza di default sono trattati come zeri.
- X=pinv(A,tol) permette di specificare la tolleranza tol.

Finora, abbiamo visto come risolvere il sistema lineare

$$Ax = b$$

Finora, abbiamo visto come risolvere il sistema lineare

$$Ax = b$$

ullet quando $oldsymbol{A}$ è una matrice quadrata invertibile: la soluzione si esprime (formalmente) come

$$\boldsymbol{x} = \boldsymbol{A}^{-1} \boldsymbol{b}$$
;

Finora, abbiamo visto come risolvere il sistema lineare

$$Ax = b$$

ullet quando $oldsymbol{A}$ è una matrice quadrata invertibile: la soluzione si esprime (formalmente) come

$$\boldsymbol{x} = \boldsymbol{A}^{-1} \boldsymbol{b}$$
;

• quando ${\bf A}$ è una matrice di ordine $m \times n$ con n < m, e ha rango massimo r = n: la soluzione nel senso dei minimi quadrati si esprime (formalmente) come

$$\boldsymbol{x} = (\boldsymbol{A}^T \boldsymbol{A})^{-1} \boldsymbol{A}^T \boldsymbol{b} ;$$

Finora, abbiamo visto come risolvere il sistema lineare

$$Ax = b$$

ullet quando $oldsymbol{A}$ è una matrice quadrata invertibile: la soluzione si esprime (formalmente) come

$$\boldsymbol{x} = \boldsymbol{A}^{-1}\boldsymbol{b} \; ;$$

• quando ${m A}$ è una matrice di ordine $m \times n$ con n < m, e ha rango massimo r = n: la soluzione nel senso dei minimi quadrati si esprime (formalmente) come

$$\boldsymbol{x} = (\boldsymbol{A}^T \boldsymbol{A})^{-1} \boldsymbol{A}^T \boldsymbol{b} ;$$

Possiamo parlare di soluzione nel senso dei minimi quadrati del sistema lineare anche nei rimanenti casi, ossia quando ${m A}$ è una matrice di ordine $m \times n$

- $\bullet \ \ {\rm con} \ \ n \leq m \ , \ {\rm ma} \ \ {\rm avente} \ \ {\it rango} \ \ {\it non} \ \ {\it massimo} \ \ r < n; \ {\rm oppure}$
- con m < n (sistema lineare sotto-determinato).

Notiamo che in entrambi i casi, si ha r < n.

Claudio Canuto () Calcolo numerico e Matlab

Definizione. Chiamiamo **soluzione nel senso dei minimi quadrati** del sistema lineare Ax = b, con A matrice di ordine $m \times n$ arbitraria e b vettore di ordine m, ogni vettore x di ordine n che soddisfa

$$\|Ax - b\|_2 = \min_{y \in \mathbb{R}^n} \|Ay - b\|_2.$$

Definizione. Chiamiamo **soluzione nel senso dei minimi quadrati** del sistema lineare Ax = b, con A matrice di ordine $m \times n$ arbitraria e b vettore di ordine m, ogni vettore x di ordine n che soddisfa

$$\|Ax - b\|_2 = \min_{y \in \mathbb{R}^n} \|Ay - b\|_2.$$

Nota. Se la matrice ha rango r < n, allora il problema ammette *infinite soluzioni*. Infatti, il nucleo Ker A contiene infiniti vettori non nulli z, tali che Az = 0; dunque se x è soluzione del senso dei minimi quadrati del sistema, anche x + z lo è, in quanto A(x + z) - b = Ax - b.

Definizione. Chiamiamo **soluzione nel senso dei minimi quadrati** del sistema lineare Ax = b, con A matrice di ordine $m \times n$ arbitraria e b vettore di ordine m, ogni vettore x di ordine n che soddisfa

$$\|Ax - b\|_2 = \min_{y \in \mathbb{R}^n} \|Ay - b\|_2.$$

Nota. Se la matrice ha rango r < n, allora il problema ammette *infinite soluzioni*. Infatti, il nucleo Ker A contiene infiniti vettori non nulli z, tali che Az = 0; dunque se x è soluzione del senso dei minimi quadrati del sistema, anche x + z lo è, in quanto A(x + z) - b = Ax - b.

Proprietà. Il vettore

$$x = A^{\dagger}b$$

è soluzione del sistema lineare Ax = b nel senso dei minimi quadrati; precisamente, è la soluzione avente la minima norma euclidea $||x||_2$.