Probability Notes

Duncan MacIntyre

September 26, 2023

Contents

1 Measure theory 2

1 Measure theory

Definition 1.1. Let Ω be a set. A <u>topology</u> on Ω is a collection $\mathcal{A} \subset P(\Omega)$ that is closed under unions and finite intersections with $\Omega, \emptyset \in \mathcal{A}$. For $E \subset \Omega$, if $E \in \mathcal{A}$, we call E open, and if $E^C \in \mathcal{A}$, we call E closed.

For example, if (X, d) is a metric space, $\mathcal{A} = \{E | E = \bigcup_i N_{r_i}(x_i)\}$ is a topology on X.

Gap!!! The example should be proven.

Definition 1.2. Let Ω be a set and $S \subset P(\Omega)$. Then the topology generated by S is

 $\mathcal{A} = \{E \subset \Omega | E \text{ is a union of finite intersections of sets in } \mathcal{S}.\}$

Gap!!! The definition should be more explicit.

Gap!!! Examples and Furstenberg's theorem should be added here

Definition 1.3. Let Ω be a set. An <u>algebra</u> is a collection $A \subset P(\Omega)$ that is closed under finite unions and compliments with $\Omega \in A$. If an <u>algebra</u> is also closed under countable unions, we call it a σ -algebra.

Theorem 1.4. Algebras are closed under finite intersections and σ -algebras are closed under countable intersections.

Proof. Let \mathcal{A} be an algebra and let $A_1, \ldots, A_n \in \mathcal{A}$. Then $A_1^C, \ldots, A_n^C \in \mathcal{A}$, so $(\cap_{i=1}^n A_i)^C = \cup_{i=1}^n A_i^C \in \mathcal{A}$, so $\cap_{i=1}^n A_i \in \mathcal{A}$. The proof for σ -algebras is similar.

Definition 1.5. Let f be a σ -algebra on a set Ω . A <u>measure</u> on f is a function $\mu: f \to [0, \infty]$ such that $\mu(\emptyset) = 0$ and for all disjoint $(A_i)_{i \in \mathbb{N}} \in f$ we have $\mu(\cup_i A_i) = \sum_i \mu(A_i)$. We call (Ω, f, μ) a measure space.

Definition 1.6. Let (Ω, f, \mathbb{P}) be a measure space. If $\mathbb{P}(f) = 1$, we call μ a <u>probability measure</u>, we call (Ω, f, \mathbb{P}) a probability space, and we call an element of f an <u>event</u>.

Gap!!! Add examples of measures and probability measures.

Theorem 1.7. An intersection of σ -algebras is also a σ -algebra.

Proof. Let (\mathcal{A}_i) be uncountably many σ -algebras. Let $A \in \cap \mathcal{A}_i$. Then $A^C \in \mathcal{A}_i$ for all \mathcal{A}_i , so $A^C \in \cap \mathcal{A}_i$. Similarly, let $(A_i)_{i \in \mathbb{N}} \in \cap \mathcal{A}_i$. Then $\cup_i A_i \in \mathcal{A}_i$ for all \mathcal{A}_i , so $\cup_i A_i \in \cap \mathcal{A}_i$.

Definition 1.8. Let $\mathcal{A} \subset \Omega$. The $\underline{\sigma}$ -algebra generated by $\underline{\mathcal{A}}$ is the intersection of all σ -algebras that contain \mathcal{A} . We denote it by $\sigma(\mathcal{A})$.

Due to Theorem 1.7, we can think of $\sigma(\mathcal{A})$ as the smallest σ -algebra containing \mathcal{A} .

Notation 1.9. A Borel σ -algebra is a σ -algebra generated by a topology. We will use \mathfrak{B} to denote the Borel σ -algebra of \mathbb{R} that is generated by the usual open set topology.

Theorem 1.10. Let (Ω, f, μ) be a measure space. TBC