Interro 3 le 26/09/2021.

Question 1. Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites réelles. Donner la **définition** de « $(u_n)_{n\in\mathbb{N}}$ est négligeable devant $(v_n)_{n\in\mathbb{N}}$ au voisinage de $+\infty$ ».

Question 2. Soit $(u_n)_{n\in\mathbb{N}}$ une suite qui tend vers 0. Donner un équivalent au voisinage de $+\infty$ de $e^{u_n}-1$.

Exercice 1. Comparer les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ suivantes :

$$\forall n \in \mathbb{N}, \quad u_n = n^4 + n^2 \quad \text{et} \quad v_n = e^n - n^2.$$

Exercice 2. Déterminer un équivalent simple de la suite définie par

$$\forall n \in \mathbb{N}^* \quad u_n = \ln\left(1 + e^{-n}\right).$$

Exercice 3. Déterminer un équivalent simple de la suite définie par

$$\forall n \in \mathbb{N}^* \quad u_n = e^{\frac{\ln n}{n}} - 2.$$

Réponses.

Question 1. Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites réelles. Donner la définition de $(u_n)_{n\in\mathbb{N}}$ est équivalente à $(v_n)_{n\in\mathbb{N}}$ au voisinage de $+\infty$ ».

Question 2. Soit $(u_n)_{n\in\mathbb{N}}$ une suite qui tend vers 0 et soit $a\in\mathbb{R}^*$. Donner un équivalent au voisinage de $+\infty$ de $(1+u_n)^a-1$.

Exercice 1. Comparer les suites $(u_n)_{n\in\mathbb{N}^*}$ et $(v_n)_{n\in\mathbb{N}^*}$ suivantes :

$$\forall n \in \mathbb{N}^*, \quad u_n = \sqrt{n} \quad \text{et} \quad v_n = \frac{n}{\ln(n)}.$$

Exercice 2. Déterminer un équivalent simple de la suite définie par

$$\forall n \in \mathbb{N}^* \quad u_n = \ln(2 + e^{-n}).$$

Exercice 3. Déterminer un équivalent simple de la suite définie par

$$\forall n \in \mathbb{N}^* \quad u_n = u_n = \sqrt{1 + \frac{3}{n\sqrt{n}}} - 1.$$

Réponses.