

Ferienkurs Experimentalphysik 2

Sommersemester 2015

Gabriele Semino, Alexander Wolf, Thomas Maier

Übungsblatt 3

Zeitlich veränderliche Felder und elektromagnetische Schwingungen

Aufgabe 1: Lenz Beschleunigung

Ein Metalldraht mit Masse m und Widerstand R gleitet reibungsfrei auf zwei parallelen Metallschienen in einem zeitlich konstanten homogenen Magnetfeld B, so wie in der Abbildung dargestellt. Die Batterie liefert die konstante Spannung U.

- a) Bestimmen Sie die im Draht induzierte Spannung und den Strom, wenn sich der Draht mit der Geschwindigkeit v entlang der Schienen bewegt.
- b) Stellen Sie die Bewegungsgleichung für den Draht auf und bestimmen Sie v(t), wenn der Draht anfänglich ruht. Was geschieht für $t \to \infty$?
- c) Bestimmen Sie den Grenzwert des Stroms für $t \to \infty$.

Aufgabe 2: Differentialgleichungen von Schaltungen

Eine Wechselspannungsquelle liefert die Effektivspannung U=6 V mit der Frequenz $\nu=50$ Hz. Zunächst wird ein Kondensator der Kapazität C angeschlossen und es fließt ein Effektivstrom $I_1=96$ mA. Dann wird statt des Kondensators eine Spule mit Induktivität L und Ohmschen Widerstand R angeschlossen, der Effektivstrom beträgt dann $I_2=34$ mA. Schließlich werden Kondensator und Spule hintereinandergeschaltet und es fließen $I_3=46$ mA.

a) Setzen Sie die Spannung der Stromquelle in komplexer Form als $U(t) = \hat{U}e^{i\omega t}$ an und leiten Sie aus den Differentialgleichungen allgemein den Scheinwiderstand (d.h. den Absolutbetrag des komplexen Widerstandes) her von:

- (a) einer Kapazität C,
- (b) einer reinen Induktivität L,
- (c) einer Spule mit L und R,
- (d) einer Reihenschaltung aus einer Kapazität C und einer Spule mit L und R.
- b) Berechnen Sie die Kapazität des Kondensators sowie die Induktivität und den Ohmschen Widerstand der Spule aus den oben angegebenen experimentellen Werten.

Aufgabe 3: LC-Schwingkreis

Gegeben sei ein LC-Schwingkreis, der mit einer Wechselspannung $U(t) = \hat{U}e^{iwt}$ angetrieben wird.

- a) Stellen Sie die Differentialgleichung des Systems auf. Berechnen Sie die allgemeine Lösung mithilfe der Ansätze $Q_h(t) = A\sin(w_0t) + B\cos(w_0t)$ für den homogenen Teil und $Q_i(t) = \hat{Q}e^{iwt}$ für den inhomogenen Teil. Berechnen Sie aus Ihrer Lösung den Strom I(t) als Funktion der Zeit im Schwingkreis.
- b) Berechnen Sie nun nochmals den Strom I(t) im Schwingkreis, jetzt direkt als komplexe Funktion mithilfe der Impedanz der Schaltung. Was fällt Ihnen auf im Vergleich zu a)?

Aufgabe 4: Allpass-Filter

In der folgenden Abbildung ist ein sogenannter Allpass-Filter dargestellt:

a) Berechnen Sie die Übertragungsfunktion $H(\omega) = \hat{U}_{out}/\hat{U}_{in}$.

Hinweis: Durch genaues Hinsehen erkennt man, dass die Schaltung auch in einer etwas einfacheren Form gezeichnet werden kann. Verwenden Sie den komplexen Ansatz $U_{\rm in}(t) = \hat{U}_{\rm in}e^{i\omega t}$ und rechnen Sie mit komplexen Widerständen, um die komplexen Amplituden \hat{I}_1 und \hat{I}_2 der Ströme $I_1(t) = \hat{I}_1e^{i\omega t}$ und $I_2(t) = \hat{I}_2e^{i\omega t}$ und daraus $\hat{U}_{\rm out}$ zu bestimmen. Das Endergebnis lautet: $H(\omega) = (1 - i\omega RC)/(1 + i\omega RC)$.

b) Wie groß ist der Verstärkungsfaktor und die Phasenverschiebung als Funktionen von ω ? Warum heißt die Schaltung 'Allpass-Filter'?