

A Time-predictable TTEthernet Node

Maja Lund, <u>Luca Pezzarossa</u>, Jens Sparsø, and Martin Schoeberl

DTU Compute

Department of Applied Mathematics and Computer Science

Overview

- Distributed real-time systems
 - Set of real-time computing systems
 - Communication fabric
- Deterministic networks
 - TTCAN, Flexray, etc.
 - EtherCAT, Ethernet Powerlink, TSN, <u>TTEthernet</u>
- Time-predictable TTEthernet node based on the Patmos processor
 - Open-source
 - No proprietary hardware in the node

Outline

- 1) Background on TTEthernet
- 2) Our TTEthernet node
- 3) Functionality
- 4) Evaluation
- 5) Summary

DTU

Background on TTEthernet

- Time-triggered Ethernet
- Deterministic extension of Ethernet (OSI data link layer)
 - Best effort traffic
 - Critical traffic: rate-constrained and time-triggered
- Time-triggered traffic
 - Virtual links between nodes
 - Static schedule (for nodes and for switch)
 - Switch enforce the schedule

DTU

Background on TTEthernet

- Global notion of time
 - Periodic synchronization (integration cycle)
 - Periodic schedule (cluster cycle)
- Synchronization using protocol control frames from sync-master

DTU

Our TTEthernet Node

- Based on the Patmos processor (T-CREST platform) and the EthMac controller
 - Open source
 - Software tools for WCET analysis (platin and aiT)

All the rest is software

Functionality

- Set of functions for sending, receiving, managing
 - tte_receive
 - tte schedule send
 - tte_send_data
 - handle_integration_frame
 - Others...

- Sending according to schedule is managed by the library
 - Data placed in a buffer send is scheduled
 - Uses timer interrupts

Worst-case execution time

• All functions are analyzable and have bounded WCET

Function	WCET (clock cycles)
tte_clear_free_rx_buffer	10
tte_receive	3028
tte_receive_log	3216
handle_integration_frame	2573
handle_integration_frame_log	2732
tte_prepare_test_data	39138
tte_schedule_send	244
tte_send_data	289
tte_clock_tick	1641
tte_clock_tick_log	1824
tte_code_int	392419
tte_code_tt	40156

Evaluation

- Our node implemented on FPGA using the Altera DE2-115 board
- Setup for the test
 - TTEthernet switch by TTTech
 - FPGA board implementing our node
 - 4 Linux PC (AS, AC, VS, VC)
 - 1 Monitor Windows PC

Clock synchronization

- 10ms integration period
- Error ranges between 2787 ns and 3225 ns -> 300ppm clock drift

Latency and jitter

- Measuring the loopback latency
 - Duplicated controller
 - Board -> Switch -> Board

Latency and jitter

• Jitter of around 4.6µs

- TTEthernet node based on the Patmos processor and the EthMac controller
- Time-predictable and fully-analyzable software stack
- Implemented on FPGA and evaluated in real-world setup
- Open-source and no use of proprietary hardware in our node