MAT-255- Number Theory	Spring 2024	In Class Work January 24
Your Name:	Group Members:	
Problem 1 Let n be a positive integer form $4k + 1$ with $k \in \mathbb{Z}$.	with $n \neq 1$. Prove that if $n^2 + 1$	is prime, then $n^2 + 1$ can be written in the
Problem 2 Prove or disprove the follow		
Conjecture 1. There are infinitely many	y prime number p for which $p+1$	2 and $p+4$ are also prime numbers.

Problem 3 Without looking up the proof, prove Proposition 1.10: Let $a, b \in \mathbb{Z}$ with (a, b) = d. Then $\left(\frac{a}{d}, \frac{b}{d}\right) = 1$.