

Mathematik 1 Infotronik (5) Gerald Kupris

Vorlesungsinhalte Vektorrechnung

- 1. Definition von Vektoren
- 2. Einfache Rechenregeln
- 3. Koordinatendarstellung von Vektoren
- 4. Beträge von Vektoren
- 5. Rechenregeln in der Koordinatendarstellung
- 6. Koordinatendarstellung mit Winkelfunktionen
- 7. Skalarprodukt
- 8. Vektorprodukt
- 9. Spatprodukt

Darstellung einer Geraden

Punktrichtungsform:

Eine Gerade g kann durch einen Richtungsvektor $a \neq 0$ und durch einen Punkt P_0 mit dem Ortsvektor x_0 festgelegt werden:

$$g: \mathbf{x} = \mathbf{x}_0 + \lambda \mathbf{a}, \quad \lambda \in \mathbb{R}.$$

Zweipunktform:

Eine Gerade g kann durch zwei verschiedene Punkte P_0 und P_1 mit den Ortsvektoren x_0 und x_1 festgelegt werden:

$$g: \quad x = x_0 + \lambda (x_1 - x_0), \quad \lambda \in \mathbb{R}.$$

Zwei Geraden im Raum

Zwei Geraden im Raum können:

- identisch sein
- parallel sein
- sich schneiden
- aneinander vorbei gehen (windschief sein)

Schnitt zweier Geraden

Die Schnittpunkte zweier Geraden g_1 und g_2 in Parameterdarstellung bestimmt man aus dem linearen Gleichungssystem

$$g_1: \quad \boldsymbol{x} = \boldsymbol{x}_1 + \lambda_1 \, \boldsymbol{a}_1 \\ g_2: \quad \boldsymbol{x} = \boldsymbol{x}_2 + \lambda_2 \, \boldsymbol{a}_2$$
 $\Longrightarrow \quad g_1 \cap g_2: \quad \boldsymbol{x}_1 + \lambda_1 \, \boldsymbol{a}_1 = \boldsymbol{x}_2 + \lambda_2 \, \boldsymbol{a}_2$

mit den beiden Unbekannten λ und μ . Falls das Gleichungssystem

- genau eine Lösung hat, dann besitzen die beiden Geraden einen Schnittpunkt,
- unendlich viele Lösungen hat, dann sind die beiden Geraden identisch,
- keine Lösung hat, dann sind die Geraden parallel oder windschief.

Aufgabe: Schnittpunkt zweier Geraden

Berechnen Sie, ob sich die beiden Geraden g₁ und g₂ schneiden, die von den folgenden Parametergleichungen beschrieben werden:

$$g_1: x = \begin{pmatrix} -1\\3\\-1 \end{pmatrix} + \lambda \cdot \begin{pmatrix} -2\\3\\1 \end{pmatrix}$$

$$g_2: x = \begin{pmatrix} 5 \\ -2 \\ -3 \end{pmatrix} + \mu \cdot \begin{pmatrix} -8 \\ 4 \\ 2 \end{pmatrix}$$

Schnittwinkel

Den Winkel zwischen den beiden Geraden g_1 und g_2 in der Darstellung

$$g_1: \quad x = x_1 + \lambda_1 a_1, \quad g_2: \quad x = x_2 + \lambda_2 a_2$$

kann man mit folgender Formel berechnen:

$$\cos \angle (g_1, g_2) = \frac{a_1 \cdot a_2}{|a_1| |a_2|}.$$

Aufgabe: Schnittwinkel zweier Geraden

Berechnen Sie den Winkel zwischen den beiden Geraden g₁ und g₂, die von den folgenden Parametergleichungen beschrieben werden:

$$g_1: x = \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix}$$

$$g_2: x = \begin{pmatrix} -4 \\ 5 \\ 6 \end{pmatrix} + \mu \cdot \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}$$

Darstellung einer Ebene

Punktrichtungsform:

Eine Ebene E kann durch zwei linear unabhängige Richtungsvektoren a und b und durch einen Punkt P_0 mit dem Ortsvektor x_0 festgelegt werden:

$$E: \mathbf{x} = \mathbf{x}_0 + \lambda \mathbf{a} + \mu \mathbf{b}, \quad \lambda, \mu \in \mathbb{R}.$$

Die Parameter λ und μ sind unabhängig voneinander.

Darstellung einer Ebene

Dreipunkteform:

Eine Ebene E kann durch drei Punkte P_0 , P_1 und P_2 , die nicht alle auf einer Geraden liegen, mit den Ortsvektoren x_0 , x_1 und x_2 festgelegt werden:

$$E: \mathbf{x} = \mathbf{x}_0 + \lambda (\mathbf{x}_1 - \mathbf{x}_0) + \mu (\mathbf{x}_2 - \mathbf{x}_0),$$

$$\lambda, \mu \in \mathbb{R}.$$

Die Parameter λ und μ sind unabhängig voneinander.

Parameterfreie Darstellung einer Ebene

Eine Ebene E durch den Punkt P_0 mit dem Ortsvektor x_0 und dem Normalenvektor $n \neq 0$ kann man in Form einer Gleichung darstellen:

$$E: (\boldsymbol{x} - \boldsymbol{x}_0) \cdot \boldsymbol{n} = 0.$$

Ein Punkt P mit dem Ortsvektor x liegt genau dann in der Ebene, wenn die Gleichung erfüllt ist.

Bei der parameterfreien Darstellung einer Ebene

$$E: \quad n_x x + n_y y + n_z z = d$$

sind die Faktoren n_x , n_y und n_z die Koordinaten des Normalenvektors $n \neq 0$. Falls der Normalenvektor n ein Einheitsvektor ist, bezeichnet man die Darstellung als Hessesche Normalenform.

Darstellung einer Ebene mit und ohne Parameter

Die Umrechnung zwischen einer Parameterdarstellung und einer parameterfreien Darstellung einer Ebene

$$E: \mathbf{x} = \mathbf{x}_0 + \lambda \mathbf{a} + \mu \mathbf{b} \iff (\mathbf{x} - \mathbf{x}_0) \cdot \mathbf{n} = 0$$

erfolgt mittels der Beziehung $n = a \times b$.

Schnittpunkt einer Gerade mit einer Ebene

Die Schnittpunkte einer Geraden g mit einer Ebene E bestimmt man, indem man

- lacktriangle eine Parameterdarstellung der Geraden g und eine Parameterdarstellung der Ebene E gleichsetzt oder
- eine Parameterdarstellung der Geraden g in eine parameterfreie Gleichung der Ebene
 E einsetzt.

Aufgabe: Schnittpunkt einer Gerade mit einer Ebene

Bestimmen Sie den Schnittpunkt der Gerade g und der Ebene E:

$$g: x = \begin{pmatrix} 0 \\ 2 \\ -2 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$$

$$E:5x+2y+4z-6=0$$

Schnitt zweier Ebenen

Die Schnittpunkte zweier Ebenen E_1 und E_2 bestimmt man, indem man

- die Parameterdarstellungen der beiden Ebenen gleichsetzt oder
- das Gleichungssystem aus den beiden Ebenengleichungen löst oder
- eine Parameterdarstellung einer Ebene in eine parameterfreie Gleichung der anderen Ebene einsetzt.

Aufgabe: Schnitt zweier Ebenen

Bestimmen Sie die Gerade g, die den Schnitt der Ebenen E₁ und E₂ darstellt:

$$E_1: x-2y+4z+2=0$$

$$E_2: 2x-3y+z-5=0$$

Senkrechte Projektion

Die senkrechte Projektion des Vektors b in Richtung des Vektors a ist definiert durch

$$b_a = |b| \cos \angle (a, b) \frac{a}{|a|} = \frac{a \cdot b}{|a|^2} a.$$

Diese Projektion ist ein Vektor in Richtung des Vektors a mit der Länge $|b| \cos \angle (a, b)$.

Abstand eines Punktes zu einer Geraden

Der Abstand des Punktes P mit dem Ortsvektor x_P zur Geraden g

$$g: \mathbf{x} = \mathbf{x}_0 + \lambda \mathbf{a}$$

ist die Entfernung zwischen dem Punkt P und seinem Lotfußpunkt:

$$d_P = \left| \boldsymbol{x}_P - \left(\boldsymbol{x}_0 + \frac{(\boldsymbol{x}_P - \boldsymbol{x}_0) \cdot \boldsymbol{a}}{\boldsymbol{a} \cdot \boldsymbol{a}} \, \boldsymbol{a} \right) \right|.$$

Aufgabe: Abstand eines Punktes zu einer Geraden

Bestimmen Sie den Abstand des Punktes P (3; 2; 1) zu der Geraden, die mit folgender

Parametergleichung beschrieben wird:

$$g: x = \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$$

Abstand eines Punktes zu einer Ebene

Mit der Hesseschen Normalenform einer Ebene

E:
$$n_x x + n_y y + n_z z + d = 0$$
,
 $\sqrt{n_x^2 + n_y^2 + n_z^2} = 1$

berechnet man den Abstand eines Punktes P mit dem Ortsvektor x_P zur Ebene E durch Einsetzen von P in die Ebenengleichung:

$$d_P = \left| n_x x_P + n_y y_P + n_z z_P + d \right|.$$

Aufgabe: Abstand eines Punktes zu einer Ebene

Berechnen Sie den Abstand des Punktes P (1; -2; 4) zur Ebene E mit der Gleichung:

$$E:-2x+2y-z+4=0$$

Windschiefe Geraden

Den Abstand der beiden windschiefen Geraden

$$g_1: \mathbf{x} = \mathbf{x}_1 + \lambda_1 \mathbf{a}_1$$

 $g_2: \mathbf{x} = \mathbf{x}_2 + \lambda_2 \mathbf{a}_2$

kann man durch folgende Formel berechnen:

$$d = \frac{|(\boldsymbol{a}_1 \times \boldsymbol{a}_2) \cdot (\boldsymbol{x}_2 - \boldsymbol{x}_1)|}{|\boldsymbol{a}_1 \times \boldsymbol{a}_2|}.$$

Den Winkel zwischen den beiden Geraden g_1 und g_2 in der Darstellung

$$g_1: x = x_1 + \lambda_1 a_1, g_2: x = x_2 + \lambda_2 a_2$$

kann man mit folgender Formel berechnen:

$$\cos \angle (g_1, g_2) = \frac{a_1 \cdot a_2}{|a_1| |a_2|}.$$

Winkel zwischen Gerade und Ebene

Den Winkel zwischen der Geraden g und der Ebene E in der Darstellung

$$g: \quad \boldsymbol{x} = \boldsymbol{x}_0 + \lambda \boldsymbol{a}, \qquad E: \quad n_x x + n_y y + n_z z + d = 0$$

kann man mit folgender Formel berechnen:

$$\sin \angle (g, E) = \frac{|\boldsymbol{a} \cdot \boldsymbol{n}|}{|\boldsymbol{a}| |\boldsymbol{n}|}.$$

Bestimmung des Winkels eines Vektors zu einer Ebenen

Aufgabenstellung:

Die Vektoren *a* und *b* definieren eine Ebene. Der Vektor *x* schneidet diese Ebene. Berechnen Sie den Schnittwinkel α des Vektors *x* mit der Ebene.

Vorgehensweise:

Der resultierende Vektor einer Vektormultiplikation $c = a \times b$ steht immer senkrecht auf der Ebene, die von den Vektoren a und b gebildet wird. Einen Vektor, der senkrecht auf einer Ebene steht, nennt man auch Normalenvektor.

Mit Hilfe des Skalarprodukts kann man den Winkel β des Vektors \boldsymbol{x} zu der Normale der Ebene \boldsymbol{c} berechnen. Der Schnittwinkel α ist dann (90° - β).

Winkel zwischen zwei Ebenen

Den Winkel zwischen den beiden Ebenen E_1 und E_2 in der Darstellung

$$E_1: n_{1x}x + n_{1y}y + n_{1z}z + d_1 = 0,$$
 $E_2: n_{2x}x + n_{2y}y + n_{2z}z + d_2 = 0$

kann man mit folgender Formel berechnen:

$$\cos \angle (E_1, E_2) = \frac{n_1 \cdot n_2}{|n_1| |n_2|}.$$

Aufgabe: Winkel zwischen zwei Ebenen

Bestimmen Sie den Winkel zwischen den beiden Ebenen E₁ und E₂.

$$E_1: x-2y+4z+2=0$$

$$E_2: 2x-3y+z-5=0$$

Aufgaben

1. Gegeben seien die drei Vektoren $\mathbf{a} = \begin{bmatrix} 1 \\ 4 \\ 2 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} 0 \\ -1 \\ 3 \end{bmatrix}$, $\mathbf{c} = \begin{bmatrix} 2 \\ 5 \\ 13 \end{bmatrix}$

Sind die Vektoren a, b und c komplanar?

2. Wie muss man den Parameter x wählen, damit die drei Vektoren

$$\mathbf{a} = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} x \\ -1 \\ 1 \end{bmatrix} \text{ und } \mathbf{c} = \begin{bmatrix} 1 \\ 3 \\ -1 \end{bmatrix} \text{ in einer Ebene liegen?}$$

Aufgaben

- 1. Beweisen Sie, dass die drei Einheitsvektoren \mathbf{e}_{x} , \mathbf{e}_{y} und \mathbf{e}_{z} jeweils senkrecht aufeinander stehen.
- 2. Bestimmen Sie den Flächeninhalt des von den Vektoren $\mathbf{a} = \begin{bmatrix} 4 \\ -10 \\ 5 \end{bmatrix}$ und $\mathbf{b} = \begin{bmatrix} -3 \\ -1 \\ -3 \end{bmatrix}$ aufgespannten Parallelogramms.

3. Berechnen Sie den Flächeninhalt eines Dreiecks mit den Eckpunkten (1; 2; -2), (2; 3; -1) und (4; 0; 1).

Quellen

Peter Hartmann: Mathematik für Informatiker, Vieweg Verlag, Wiesbaden 2006

Manfred Brill: Mathematik für Informatiker, Hanser Verlag, München 2005

Thomas Rießinger: Mathematik für Ingenieure, Springer Verlag, Berlin 2009

Lothar Papula: Mathematik für Ingenieure und Naturwissenschaftler, Vieweg+Teubner Verlag, 2009

Jürgen Koch, Martin Stämpfle: Mathematik für das Ingenieurstudium, Hanser Verlag, München 2010

Hochschule Deggendorf – Edlmairstr. 6 und 8 – 94469 Deggendorf