Σημειώσεις Διαφορικές Εξισώσεις

Καναβούρας Κωνσταντίνος http://users.auth.gr/konkanant

2016, Εαρινό εξάμηνο

Μέρος Ι

Σεβαστιάδης

Χρήστος Σεβαστιάδης

Κεφάλαιο 1

Ορισμός: Διαφορική εξίσωση

Μια εξίσωση που αποτελείται από μια συνάςτηση και τις παραγώγους της

Langrange's $x', x'', x''', x^{(4)}, \dots$

Newton's $\dot{x}, \ddot{x}, \ddot{x}$

Leibniz' $\frac{dx}{dt}$, $\frac{d^2x}{dt^2}$, $\frac{d^3x}{dt^3}$

π.χ.

$$x(t)\frac{\mathrm{d}^2 x(t)}{\mathrm{d}t^2} + 2\frac{\mathrm{d}x(t)}{\mathrm{d}t} = x(t)\sin(t)$$

Ορισμός 1.1: Τάξη

Τάξη ονομάζεται ο μεγαλύτερος βαθμός παραγώγου που εμφανίζεται στην εξίσωση

Ορισμός 1.2: Βαθμός

Βαθμός ονομάζεται η μεγαλύτερη δύναμη παραγώγου που εμφανίζεται στην εξίσωση

Κεφάλαιο 2 Διαφορική εξίσωση 1ης τάξης

Ορισμός

$$\frac{\mathrm{d}x}{\mathrm{d}t} = f(t, x)$$

2.1 Χωριζόμενες διαφορικές εξισώσεις

Τυπική μορφή:

$$f(t,x) = \frac{-M(t,x)}{N(t,x)} = \frac{\mathrm{d}x}{\mathrm{d}t} \implies \underbrace{N(t,x)}_{N(x)} \mathrm{d}x + \underbrace{M(t,x)}_{M(t)} \mathrm{d}t = 0$$

Αν δηλαδή τα N(t,x), M(t,x) εξαρτώνται μόνο από τα x και t αντίστοιχα, η εξίσωση ονομάζεται χωριζόμενη, και το αποτέλεσμά της μπορεί να βρεθεί με ολοκληρώματα:

$$\int N(x) \, \mathrm{d}x + \int M(t) \, \mathrm{d}t = c$$

1

$$x \, \mathrm{d}x - t^2 \, \mathrm{d}t = 0$$

$$N(x) = x$$
, $M(t) = -t^2$

$$\int x \, dx + \int (-t^2) \, dt = c \implies$$

$$\frac{1}{2}x^2 - \frac{1}{3}t^3 = c \implies$$

$$x = \pm \sqrt{\frac{2}{3}t^3 + 2c} \implies$$

$$x = \pm \sqrt{\frac{2}{3}t^3 + \kappa}$$

$$με κ = 2c$$

Άσκηση: 2.2

$$x' = x^2 t^3$$

$$\Rightarrow \frac{dx}{dt} = x^{2}t^{3}$$

$$\Rightarrow \frac{1}{x^{2}} dx - t^{3} dt = 0$$

$$\Rightarrow \int \frac{1}{x^{2}} dx + \int (-t^{3}) dt = c$$

$$\Rightarrow -\frac{1}{x} - \frac{t^{4}}{4} = c$$

$$\Rightarrow -\frac{1}{x} = c + \frac{t^{4}}{4}$$

$$\Rightarrow -\frac{4}{x} = 4c + t^{4}$$

$$\Rightarrow x = \frac{-4}{t^{4} + \kappa}, \quad \text{ue } \kappa = 2c$$

Άσκηση: 2.3

$$x' = \frac{t+1}{x^4+1}$$

$$\Rightarrow \frac{dx}{dt} = \frac{t+1}{x^4+1}$$

$$\Rightarrow (x^4+1) dx + (-t-1) dt = 0$$

$$\Rightarrow \int (x^4+1) dx + \int (-t-1) dt = c$$

$$\Rightarrow \frac{x^5}{5} + x - \frac{t^2}{2} - t = c$$

Παρατηρούμε ότι, χωρίς αρχική συνθήκη, βρίσκουμε γενικές λύσεις ως αποτέλεσμα. Με τη χρήση μιας αρχικής συνθήκης, μπορούμε να βρούμε και την ειδική λύση της εξίσωσης.

$$e^t dt - x dx = 0$$
; $x(0) = 1 \leftarrow$ αρχική συνθήκη

$$\implies \int x \, dx + \int (-e^t) \, dt = c$$

$$\implies \frac{x^2}{2} - e^t = c$$

$$\implies x^2 = 2e^t + 2c$$

$$\implies x^2 = 2e^t + \kappa, \quad \text{ue } \kappa = 2c$$

Όμως x(0) = 1, άρα:

$$\begin{cases} x^2 = 2e^t + \kappa \\ x(0) = 1 \end{cases} \implies x(0)^2 = 2e^0 + \kappa \implies \boxed{\kappa = -1}$$

Επομένως τελικά:

$$x^2 = 2e^t - 1 \implies x = \pm \sqrt{2e^t - 1} \implies \boxed{x = \sqrt{2e^t - 1}}$$

Η αρχική συνθήκη πράγματι επαληθεύει το αποτέλεσμα x. Πρέπει όμως και $x \in \mathbb{R}, \ 2e^t - 1 \ge 0$.

Από τη διαφορική εξίσωση έχουμε $x' = \frac{e^t}{x}$, άρα πρέπει $2e^t - 1 > 0 \implies t > \ln \frac{1}{2}$

$$\int_{x_0}^x N(x) \, \mathrm{d}x + \int_{t_0}^t M(t) \, \mathrm{d}t = 0, \quad x(t_0) = x_0$$

Άσκηση: 2.5

$$x \cos x \, dx + (1 - 6t^5) \, dt = 0; \quad t(\pi) = 0$$

$$x_0 = \pi, \ t_0 = 0$$

$$\implies \int_{\pi}^{x} x \cos x \, dx + \int_{0}^{t} (1 - 6t^{5}) \, dt = 0$$

$$\implies x \sin x \Big|_{\pi}^{x} + \cos x \Big|_{\pi}^{x} + (t - t^{6}) \Big|_{0}^{t} = 0$$

$$\implies x \sin x + \cos x + 1 + t - t^{6}$$

$$\implies \left[x \sin x + \cos x + 1 = t - t^{6} \right]$$

2.2 Ομοιογενείς

$$f(t, x) = \frac{-M(t, x)}{N(t, x)}$$

Ορισμός 2.1

An $\forall a \in \mathbb{R} : f(at, ax) = f(t, x)$, léme óti n exíswsn eínsi omoiogenás.

Θεώοημα

Αν μια εξίσωση είναι ομοιογενής, μπορούμε να την λύσουμε μειώνοντάς/μετατρέποντάς την σε χωριζόμενη, εφαρμόζοντας το μαθηματικό κόλπο που ονομάζεται "αντικατάσταση μεταβλητής", δηλαδή, όπου u συνάρτηση:

$$x = ut \implies \frac{\mathrm{d}x}{\mathrm{d}t} = \frac{\mathrm{d}u}{\mathrm{d}t}t + u$$

Аσкпоп: 2.6

$$x' = \frac{x+t}{t}$$

$$\implies \frac{\mathrm{d}x}{\mathrm{d}t} = \frac{x+t}{t}$$
, μη χωριζόμενη.

$$f(t,x) = \frac{\mathrm{d}x}{\mathrm{d}t}$$
, $f(at,ax) = \frac{ax+at}{at} = \frac{x+t}{t}$ ομοιογενής

Θέτω $x=ut, \ \frac{\mathrm{d}x}{\mathrm{d}t}=\frac{\mathrm{d}u}{\mathrm{d}t}t+u,$ άρα
 η διαφορική εξίσωση γίνεται:

$$\frac{du}{dt}t + u = \frac{ut + t}{t}$$

$$\Rightarrow \frac{du}{dt}t + u = u + 1$$

$$\Rightarrow t \frac{du}{dt} = 1$$

$$\Rightarrow \frac{1}{t}dt - du = 0 \text{ councy of the norm}$$

$$\Rightarrow \int \frac{1}{t}dt + \int (-1) du = c$$

$$\Rightarrow \ln|t| - u = c$$

$$\Rightarrow u = \ln|t| - c \text{ the } c = -\ln|\kappa|$$

$$\Rightarrow u = \ln|\kappa t|$$

$$\Rightarrow \frac{x}{t} = \ln|\kappa t| \Rightarrow x = t \ln|\kappa t|$$

$$x' = \frac{2x^4 + t^4}{tx^3}$$

$$\implies \frac{\mathrm{d}x}{\mathrm{d}t} = \frac{2x^4 + t^4}{tx^3}$$
, μη χωριζόμενη.

$$f(t,x) = \frac{\mathrm{d}x}{\mathrm{d}t}, \quad f(at,ax) = \frac{2(ax)^4 + (at)^4}{(at)(ax)^3} = \frac{a^42x^4 + a^4t^4}{a^4tx^3} = \frac{2x^4 + t^4}{tx^3} \text{ omogenés}$$

Θέτω $x=ut, \ \frac{\mathrm{d}x}{\mathrm{d}t}=\frac{\mathrm{d}u}{\mathrm{d}t}t+u,$ άρα η διαφορική εξίσωση γίνεται:

$$\frac{du}{dt}t + u = \frac{2(ut)^4 + t^4}{t(ut)^3}$$

$$\Rightarrow \frac{du}{dt}t + u = \frac{2u^4t^4 + t^4}{u^3t^4}$$

$$\Rightarrow \frac{du}{dt}t + u = \frac{2u^4 + 1}{u^3}$$

$$\Rightarrow \frac{du}{dt}t = \frac{2u^4 + 1}{u^3} - u = \frac{u^4 + 1}{u^3}$$

$$\Rightarrow \frac{u^3}{u^4 + 1} du - \frac{1}{t} dt = 0 \text{ gargisomen}$$

$$\Rightarrow \int \frac{u^3}{u^4 + 1} du + \int \frac{-1}{t} dt = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln($$

$$x' = \frac{t^2 + x^2}{tx}$$
; $x(1) = -2$

 $\implies \frac{\mathrm{d}x}{\mathrm{d}t} = \frac{t^2 + x^2}{tx}$, μη χωριζόμενη.

$$f(t,x) = \frac{\mathrm{d}x}{\mathrm{d}t}, \quad f(at,ax) = \frac{(at)^2 + (ax)^2}{(at)(ax)} = \frac{\cancel{a}^2 t^2 + \cancel{a}^2 x^2}{\cancel{a}^2 tx} = \frac{t^2 + x^2}{tx}$$
 ομοιογενής

Θέτω $x=ut, \ \frac{\mathrm{d}x}{\mathrm{d}t}=\frac{\mathrm{d}u}{\mathrm{d}t}t+u,$ άρα η διαφορική εξίσωση γίνεται:

$$\frac{du}{dt}t + u = \frac{t^2 + (ut)^2}{t(ut)}$$

$$\Rightarrow \frac{du}{dt}t + u = \frac{t^2 + t^2u^2}{t^2u}$$

$$\Rightarrow \frac{du}{dt}t + u = \frac{1 + u^2}{u}$$

$$\Rightarrow \frac{du}{dt}t = \frac{1 + u^2 - u^2}{u} = \frac{1}{u}$$

$$\Rightarrow u \, du - \frac{1}{t} \, dt = 0 \, \text{constant}$$

$$\Rightarrow \int u \, du + \int \frac{-1}{t} \, dt = c$$

$$\Rightarrow \frac{u^2}{2} - \ln|t| = c$$

$$\Rightarrow u^2 = 2\ln|t| + 2c$$

$$\Rightarrow u^2 = 2\ln|t| + 2c$$

$$\Rightarrow u^2 = \ln t^2 + \kappa \text{ we } \kappa = 2c$$

$$x = ut \implies u = \frac{x}{t} \implies \frac{x^2}{t^2} = \ln t^2 + \kappa$$

$$\Rightarrow x^2 = t^2 \ln t^2 + \kappa t^2$$

Επειδή x(1) = 2, έχουμε:

$$(-2)^2 = 1^2 \ln 1^2 + \kappa 1^2 \implies 4 = 0 + \kappa \implies \kappa = 4$$

Επομένως τελικά:

$$x^2 = t^2 \ln t^2 + 4t^2 \implies \boxed{x = -\sqrt{t^2 \ln t^2 + 4t^2}}$$

2.3 Ακριβείς

Ορισμός

Όταν:

$$\frac{\partial M(t,x)}{\partial x} = \frac{\partial N(t,x)}{\partial t}$$

τότε η εξίσωση λέγεται ακριβής η πλήρης.

Υπάρχει dF(t, x) = N(t, x) dx + M(t, x) dt με Γενική Λύση F(t, x) = c.

$$(t + \sin x) dt + (t \cos x - 2x) dx = 0$$

$$\underbrace{(t+\sin x)\,\mathrm{d}t}_{M(t,x)\,\mathrm{d}t} + \underbrace{(t\cos x - 2x)\,\mathrm{d}x}_{N(t,x)\,\mathrm{d}x} = 0$$

Δοκιμή:

$$\begin{cases} M(t,x) &= t + \sin x \\ N(t,x) &= t \cos x - 2x \end{cases} \implies \frac{\partial M(t,x)}{\partial x} = \cos x = \frac{\partial N(t,x)}{\partial t} = \cos x$$

Άρα

 ΔΕ είναι ακριβής, επομένως υπάρχει F(t,x) τέτοια ώστε:

$$dF = N(t,x) \, \mathrm{d}x + M(t,x) \, \mathrm{d}t$$

$$dF = \frac{\partial F}{\partial x} \, \mathrm{d}x + \frac{\partial F}{\partial t} \, \mathrm{d}t \qquad \leftarrow \quad \text{ολικό διαφοφικό της } F$$

$$\frac{\partial F(t,x)}{\partial x} = N(t,x), \quad \frac{\partial F(t,x)}{\partial t} = M(t,x) \xrightarrow{\text{olokliqwan ws pags } t} F(t,x)$$

$$\implies \int \frac{\partial F(t,x)}{\partial t} \, \mathrm{d}t \qquad = \int (t+\sin x) \, \mathrm{d}t \implies 0$$

$$\implies \int \frac{\partial F(t,x)}{\partial t} \, \mathrm{d}t \qquad = \int (t+\sin x) \, \mathrm{d}t \implies 0$$

$$\Rightarrow \int \frac{\partial F(t,x)}{\partial t} \, \mathrm{d}t \qquad = \int (t+\sin x) \, \mathrm{d}t \implies 0$$

Έχουμε:

$$\frac{\partial F(t,x)}{\partial x} = t \cos x + h'(x)$$

$$\implies t \cos x - 2x = t \cos x + h'(x)$$

$$\implies h'(x) = -2x$$

$$\implies \int h'(x) \, dx = \int (-2x) \, dx$$

$$\implies h(x) = -x^2 + c_1$$

Επομένως:

$$F(t,x) = \frac{1}{2}t^2 + t\sin x - x^2 + c_1 = c \xrightarrow{c_2 = c - c_1}$$

$$\implies \boxed{\frac{1}{2}t^2 + t\sin x - x^2 = c_2}$$
 Γενική λύση

$$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{2 + xe^{tx}}{2x - te^{tx}}$$

$$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{2 + xe^{tx}}{2x - te^{tx}} \xrightarrow{\text{διαφορική μορφή}} \underbrace{(2 + xe^{tx})}_{M(t,x) = 2 + xe^{tx}} \mathrm{d}t + \underbrace{(te^{tx} - 2x)}_{N(t,x) = te^{tx} - 2x} \mathrm{d}x = 0$$

Δοκιμή:

$$\frac{\partial M(t,x)}{\partial x} = e^{tx} + xte^{tx} = \frac{\partial N(t,x)}{\partial t} = xte^{tx} + e^{tx}$$

συνεπώς είναι ακριβής, οπότε υπάρχει F(t,x), με $dF=M(t,x)\,\mathrm{d}t+N(t,x)\,\mathrm{d}x$, με λύση F(t,x)=c.

Ολικό διαφοφικό
$$\rightarrow dF = \frac{\partial F}{\partial x} dx + \frac{\partial F}{\partial t} dt$$

Άρα:

$$\frac{\partial F(t,x)}{\partial x} = N(t,x), \quad \frac{\partial F(t,x)}{\partial t} = M(t,x) = 2 + xe^{tx} \xrightarrow{\text{ολοκλήρωση ως προς } t}$$

$$\implies \int \frac{\partial F(t,x)}{\partial t} \, \mathrm{d}t = \int \left(2 + xe^{tx}\right) \mathrm{d}t \implies$$

$$\implies F(t,x) = 2t + e^{tx} + h(x)$$

Παραγώγιση ως προς
$$x \to \frac{\partial F(t,x)}{\partial x} = te^{tx} + h'(x) \implies te^{tx} + h'(x) = te^{tx} - 2x \implies$$

$$\implies h'(x) = -2x \implies$$

$$\implies h(x) = \int (-2x) \, \mathrm{d}x \implies$$

$$\implies h(x) = -x^2 + c_1$$

Άρα τελικά:

$$F(t,x) = 2t + e^{tx} - x^2 + c_1$$

$$\implies 2t + e^{tx} - x^2 + c_1 = c$$

$$\implies 2t + e^{tx} - x^2 = c_2, \qquad c_2 = c - c_1$$

$$(2x^{2}t - 2x^{3}) dt + (4x^{3} - 6x^{2}t + 2xt^{2}) dx = 0$$

$$\underbrace{\left(2x^2t - 2x^3\right)}_{M(t,x) = 2x^2t - 2x^3} dt + \underbrace{\left(4x^3 - 6x^2t + 2xt^2\right)}_{N(t,x) = 4x^3 - 6x^2t + 2xt^2} dx = 0$$

 $\frac{\partial M(t,x)}{\partial x}=4xt-6x^2=\frac{\partial N(t,x)}{\partial t}=0-6x^2+4xt$, ΔΕ ακριβής, οπότε υπάρχει F(t,x) με $\mathrm{d}F(t,x)=M(t,x)\,\mathrm{d}t+N(t,x)\,\mathrm{d}x$ με λύση F(t,x)=c.

$$dF(t,x) = \frac{\partial F(t,x)}{\partial t} dt + \frac{\partial F(t,x)}{\partial x} dx$$

$$\frac{\partial F(t,x)}{\partial x} = N(t,x), \quad \frac{\partial F(t,x)}{\partial t} = M(t,x) = 2x^2t - 2x^3 \qquad \Longrightarrow$$

$$\implies \int \frac{\partial F(t,x)}{\partial t} dt = \int (2x^2t - 2x^3) dt \qquad \Longrightarrow$$

$$\implies F(t,x) = x^2t^2 - 2x^3t + h(x)$$

$$\frac{\partial F(t,x)}{\partial x} = 2xt^2 - 6x^2t + h'(x) \implies$$

$$\implies 2xt^2 - 6x^2t + h'(x) = 4x^3 - 6x^2t + 2x + 2 \implies$$

$$\implies h'(x) = 4x^3 \xrightarrow{\text{олокл.}} h(x) = x^4 + c_1$$

Άρα:

$$F(t,x) = x^{2}t^{2} - 2x^{3}t + x^{4} + c_{1} \implies$$

$$\implies x^{2}t^{2} - 2^{3}t + x^{4} + c_{1} = c \implies$$

$$\implies x^{2}t^{2} - 2x^{3}t + x^{4} = c - c_{1} \implies$$

$$\implies \begin{cases} (x^{2} - xt)^{2} &= c_{2} \\ c_{2} &= c - c_{1} \end{cases}$$

$$\stackrel{c_{3}=\pm\sqrt{c_{2}}}{\longrightarrow} x^{2} - xt = c_{3} \xrightarrow{\frac{ax^{2} + bx + c = 0}{2a}}$$

$$\implies x = \frac{t \pm \sqrt{t^2 + 4c_3}}{2}, \qquad c_3 = \pm \sqrt{c_2}$$

$$2tx dt + (1 + t^2) dx = 0; \quad x(2) = -5$$

$$\underbrace{2tx}_{M(t,x)} dt + \underbrace{(1+t^2)}_{N(t,x)} dx = 0; \quad x(2) = -5$$

$$M(t, x) = 2tx, \quad N(t, x) = 1 + t^2$$
 (1)

F(t, x), $\mu \varepsilon dF(t, x) = \frac{\partial F}{\partial x} dx + \frac{\partial F}{\partial t} dt$. dF(t, x) = N(t, x) dx + M(t, x) dt

$$\frac{\partial F(t,x)}{\partial x} = N(t,x) \tag{2}$$

$$\frac{\partial F(t,x)}{\partial t} = M(t,x) = 2tx \implies$$

$$\implies \int \frac{\partial F(t,x)}{\partial t} dt = \int (2tx) dt \implies$$

$$\implies F(t,x) = t^2 x + h(x)$$
(3)

$$\Rightarrow \begin{cases} h(x) = x + c_1 \\ (3) \end{cases} \Rightarrow \begin{cases} F(t, x) = t^2 x \\ (4) \end{cases} \Rightarrow t^2 + x + c_1 \Rightarrow t^2 x + x = c_2(c_2 = c - c_1) \Rightarrow x = \frac{c_2}{t^2 + 1} \Rightarrow (x/2) \end{cases}$$

$$\Rightarrow F(t, x) = t^2 x + x + c_1 \Rightarrow t^2 x + x = c_2(c_2 = c - c_1) \Rightarrow x = \frac{c_2}{t^2 + 1} \Rightarrow (x/2) \Rightarrow f(t, x) = t^2 x + x + c_1 \Rightarrow t^2 x + x = c_2(c_2 = c - c_1) \Rightarrow x = \frac{c_2}{t^2 + 1} \Rightarrow (x/2) \Rightarrow f(t, x) = t^2 x + x + c_1 \Rightarrow t^2 x + x = c_2(c_2 = c - c_1) \Rightarrow x = \frac{c_2}{t^2 + 1} \Rightarrow (x/2) \Rightarrow f(t, x) = t^2 x + x + c_1 \Rightarrow t^2 x + x = c_2(c_2 = c - c_1) \Rightarrow x = \frac{c_2}{t^2 + 1} \Rightarrow (x/2) \Rightarrow f(t, x) = t^2 x + x + c_1 \Rightarrow t^2 x + x = c_2(c_2 = c - c_1) \Rightarrow x = \frac{c_2}{t^2 + 1} \Rightarrow (x/2) \Rightarrow f(t, x) = t^2 x + x + c_1 \Rightarrow t^2 x + x = c_2(c_2 = c - c_1) \Rightarrow x = \frac{c_2}{t^2 + 1} \Rightarrow (x/2) \Rightarrow f(t, x) = t^2 x + x + c_1 \Rightarrow t^2 x + x + t^2 \Rightarrow t^2 x + t^2 \Rightarrow t^$$

Κεφάλαιο 3 Overview

3.1 Συνήθεις Διαφορικές Εξισώσεις (ΣΔΕ - Ordinary Differential Equations)

Ορισμός 3.1

Εμπλέκουν:

- μία ανεξάρτητη μεταβλητή (π.χ. t, x)
- μια εξαρτημένη και τις παραγώγους της (π.χ. i, y, u)

$$F(t, x, x', \dots, x^{(n)}) = 0$$

Μη συνήθεις είναι οι Μερικές Διαφορικές Εξισσώεις (Partial Differential Equations - PDE) που εμπλέκουν:

- πολλές ανεξάρτητες μεταβλητές (π.χ. x, y, z)
- μία εξαρτημένη μεταβλητή και τις μερικές παραγώγους της

3.2 1ης τάξης ΔΕ

Ορισμός 3.2

όταν

$$x' = \frac{\mathrm{d}x}{\mathrm{d}t} = f(t, x)$$

Ορισμός 3.3: Τυπικής μορφής

$$f(t, x) = \frac{-M(t, x)}{N(t, x)}$$

Διαφορική μορφή

$$N(t, x) dx + M(t, x) dt = 0$$

Ορισμός 3.4: Χωριζόμενη

όταν

$$\begin{cases} N(t, x) &= N(x) \\ M(t, x) &= M(t) \end{cases}$$

τότε

$$N(x) dx + M(t) dt = 0$$

με λύση

$$\int N(x) \, \mathrm{d}x + \int M(t) \, \mathrm{d}t = c$$

ń

$$\int_{x_0}^{x} N(x) \, \mathrm{d}x + \int_{t_0}^{t} M(t) \, \mathrm{d} = 0$$

Ορισμός 3.5: Ομογενής - Ομοιογενής

όταν ∀a ∈ ℝ

$$F(at, ax) = f(t, x)$$

τότε θέτω x=ut, άρα $\frac{\mathrm{d}x}{\mathrm{d}t}=\frac{\mathrm{d}u}{\mathrm{d}t}t+u$

Μέρος ΙΙ

Κεχαγιάς: Ολοκληρωτικοί μετασχηματισμοί

(Fourier, Laplace) Τετάρτη 17:00-18:30

Κεφάλαιο 4 Κεφάλαιο 7: Εισαγωγή στην ανάλυση του Φουριερ

Η συμπεριφορά του κυκλώματος μπορεί να περιγραφεί με μια διαφορική εξίσωση. Q(t): Το φορτίο του πυκνωτή σε χρονική στιγμή t

$$v_1 = R \cdot i(t) = \frac{\mathrm{d}Q}{\mathrm{d}t}$$

$$v_2 = \frac{Q(t)}{C}$$

$$v_1 + v_2 = V(t) \implies \frac{\mathrm{d}Q}{\mathrm{d}t} + \frac{Q(t)}{RC} = \frac{1}{R}V(t), \quad \text{με αρχική συνθήκη } Q(0) = 0$$

Θα προσπαθήσω να λύσω την εξίσωση για τρεις περιπτώσεις:

4.0.1
$$V(t) = V_0$$

$$\frac{\mathrm{d}x}{\mathrm{d}t} + ax = b$$

Θα εξετάσω τη γενική λύση $x_0(t)$ της ομογενούς ΔΕ, και θα ψάξω μία ειδική λύση της μη ομογενούς ΔΕ.

Omogenic:
$$b = 0 \implies \frac{dx}{dt} = -ax \implies x(t) = ce^{-at}$$
. $x(0) = 0 \implies c = 0 \implies x_0(t) = 0$.

Mn ομογενής: $\frac{dx}{dt} + ax = b$.

$$x(t) = k \implies \frac{\mathrm{d}x}{\mathrm{d}t} + ak = b \implies k = \frac{b}{a} \implies x(t) = k = \frac{b}{a}$$

Θεώοημα

Η γενική λύση της μη ομογενούς είναι:

$$x(t) = x_h(t) + x_i(t)$$

Άρα

$$\begin{cases} x(t) = ce^{-at} - \frac{b}{a} \\ x(0) = 0 \end{cases} \implies 0 = x(0) = c + \frac{b}{a} \implies x(t) = \frac{b}{a} - \frac{b}{a}e^{-at} \text{ if } \ker x(t) = \frac{b}{a}(1 - e^{-at})$$

$$a = \frac{1}{RC}, \quad b = \frac{V_0}{R}$$

4.0.2 $V(t) = V_0 \sin(nt)$

$$\frac{\mathrm{d}x}{\mathrm{d}t} + ax = b\sin(nt)$$

Eívou $x_h(t) = ce^{-at}$.

Υποθέτω $x(t) = c_2 \sin(nt) + c_3 \cos(nt)$. Τότε $\frac{dx}{dt} = nc_2 \cos(nt) - nc_3 \sin(nt)$:

$$\frac{\mathrm{d}x}{\mathrm{d}t} + ax = (ac_2 - nc_3)\sin(nt) + (ac_3 + nc_2)\cos(nt) = b\sin(nt) \implies$$

$$\Longrightarrow \begin{cases} ac_2 - nc_3 &= b \\ nc_2 + ac_3 &= 0 \end{cases} \Longrightarrow \cdots \Longrightarrow \begin{cases} c_2 &= \frac{ab}{a^2 + n^2} \\ c_3 &= -\frac{bn}{a^2 + n^2} \end{cases}$$

Θυμάμαι ότι $x(t) = x_h(t) + x_i(t) = c_1 e^{-at} + \frac{ab}{a^2 + n^2} \sin(nt) - \frac{bn}{a^2 + n^2} \cos(nt)$ και από το x(0) = 0 βρίσκω $c_1 = \frac{bn}{a^2 + n^2}$ Aga:

$$x(t) = \frac{bn}{a^2 + n^2} + \frac{ab}{a^2 + n^2}\sin(nt) - \frac{bn}{a^2 + n^2}\cos(nt)$$

Για το RC κύκλωμα, $a=\frac{1}{RC}$ \leftarrow χρονική σταθερά κυκλώματος, $b=\frac{V_0}{R}$, άρα:

$$Q(t) = \frac{V_0 C^2 R n}{C^2 R^2 n^2 + 1} e^{-\frac{t}{RC}} + \frac{C V_0 \sin(nt) - C^2 R n V_0 \cos(nt)}{C^2 R^2 n^2 + 1}$$

$$p\cos(\omega t) + q\sin(\omega t) =$$

$$\sqrt{p^2 + q^2} \left(\frac{p}{\sqrt{p^2 + q^2}} \cos \omega t + \frac{q}{\sqrt{p^2 + q^2}} \sin \omega t \right) =$$

$$\sqrt{p^2 + q^2} \left(\sin \phi \cos \omega + \cos \phi \sin \omega t \right) =$$

$$\sqrt{p^2 + q^2} \sin(\omega t + \phi), \quad \phi = \arctan \frac{p}{q}$$

Παρατηρούμε ότι ο πυκνωτής φορτίζει περισσότερο αν είναι μικρότερη η συχνότητα του εναλλασσόμενου ρεύματος.

4.0.3 V(t) = square(t)

$$V(t) = \sum_{n=(1,3,5,\dots)} \frac{4}{n\pi} \sin(nt) = \frac{4}{\pi} \sin(nt) + \frac{4}{3\pi} \sin(3t) + \frac{4}{5\pi} \sin(5t) \frac{4}{7\pi} \sin(7t) + \cdots$$

Έτσι γίνεται η ανάλυση Fourier, και αυτό θα το δούμε την επόμενη Τετάρτη, που θα πάμε στο Κεφάλαιο 8, που λέει σειρές Fourier.

$$V_N(t) = \sum_{n=(1,3,5,...)}^{N} \frac{4}{n\pi} \sin(nt)$$

$$V(t) = \sum_{n=(1,3,5,...)}^{\infty} \frac{4}{n\pi} \sin(nt) = \lim_{t \to \infty} V_N(t)$$

Άρα:

$$\frac{dR}{dt} + \frac{1}{RC}Q(t) = \frac{V_0 \sin(nt)}{R} \implies Q_n(t) = \frac{V_0 C^2 R n}{C^2 R^2 n^2 + 1} e^{\frac{t}{RC}} + \frac{C V_0 \sin(nt) - C^2 R n V_0 \cos(nt)}{C^2 R^2 n^2 + 1}$$

Οπότε αν:

$$\frac{dR}{dt} + \frac{1}{RC}Q(t) = \frac{4}{\pi} \frac{\sin(nt)}{R} \implies Q_1(t) = \frac{4}{\pi} \left(\frac{C^2R}{C^2R^1 + 1} e^{-\frac{1}{RC}} + \cdots \right)$$

$$\frac{dR}{dt} + \frac{1}{RC}Q(t) = \frac{4}{3\pi} \frac{\sin(3t)}{R} \implies Q_3(t) = \frac{4}{3\pi} \left(\frac{3C^2R}{9C^2R^1 + 1} e^{-\frac{1}{RC}} + \cdots \right)$$

$$\frac{dR}{dt} + \frac{1}{RC}Q(t) = \frac{4}{5\pi} \frac{\sin(5t)}{R} \implies Q_5(t) = \cdots$$

Άρα:

$$Q(t) = \sum_{n \in \{1,3,5,\dots\}} Q_n(t)$$

Γιατί όμως, αν $V_1(t) \to Q_1(t)$, $V_2(t) \to Q_2(t)$, τότε $k_1V_1 + k_2V_2 = k_1Q_1 + k_2Q_2$ σε αυτό το κύκλωμα (αρχή επαλληλίας/γραμμικότητα);

Κεφάλαιο 5 Κεφάλαιο 8: Σειρές Φουριερ

Ορισμός

Μία συνάςτηση f(t) λέγεται τμηματικά συνεχής στο $[t_1,t_2]$ ανν μπορώ να διαμερίσω:

$$[t_1, t_2] = [\tau_0, \tau_1] \cup [\tau_1, \tau_2] \cup \cdots \cup [\tau_{n-1}, \tau_n]$$

όπου $\tau_0=t_1$, $\tau_n=t_2$, τέτοια ώστε f(t) συνεχής στο κάθε (τ_{i-1},τ_i) , και υπάρχουν $\lim_{t\to \tau_i^+} f(t)$, $\lim_{t\to \tau_i^+} f(t) \forall i$

π.χ

Η f(t) είναι τμηματικά συνεχής στο $[-\pi, 3\pi]$, επειδή, για $t_1 = -\pi, t_2 = 3\pi$:

$$[-\pi, 3\pi] = [-\pi, 0] \cup [0, \pi] \cup [\pi, 2\pi] \cup [2\pi, 3\pi]$$

Στα $(-\pi,0)$, $(0,\pi)$, $(\pi,2\pi)$, $(2\pi,3\pi)$ n f είναι συνεχής, και υπάρχουν τα αντίστοιχα πλευρικά όρια, άρα n f είναι τμηματικά συνεχής.

5.0.4 Συνθήκες του Dirichlet

- 1. Η f(t) είναι ορισμένη στο (-L, L)
- 2. Η f(t) είναι τμηματικά συνεχής στο (-L, L)
- 3. Η f(t) είναι περιοδική με περίοδο 2L.

Θεώρημα

Έστω f(t) η οποία ικανοποιεί τις συνθήκες Dirichlet στο (-L, L). Τότε:

1. Για κάθε σημείο συνέχειας της f(t):

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi t}{L} + \sum_{n=1}^{\infty} b_n \sin \frac{n\pi t}{L}$$

όπου:

$$a_n = \frac{1}{L} \int_{-L}^{L} f(t) \cos \frac{n\pi t}{L} dt$$

$$b_n = \frac{1}{L} \int_{-L}^{L} f(t) \sin \frac{n\pi t}{L} dt$$

2. Σε κάθε σημείο ασυνέχειας τ:

$$\frac{1}{2} \left(\lim_{t \to \tau^{-}} f(t) + \lim_{t \to \tau^{+}} f(t) \right) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi t}{L} + \sum_{n=1}^{\infty} b_n \sin \frac{n\pi t}{L}$$

Παρ. f(t) = τετραγωνικός παλμός

Λύση Η f(t) ικανοποιεί τις Σ.D με $L = \pi$

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) dt = \frac{1}{\pi} \int_{-\pi}^{0} (-1) dt + \frac{1}{\pi} \int_{-\pi}^{0} 1 dt = -1 + 1 = 0$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin \frac{n\pi t}{\pi} dt = \frac{2}{\pi} \int_{0}^{\pi} 1 \sin(nt) dt$$

$$= \frac{2}{\pi} \cdot \left(\frac{-\cos nt}{n}\right)_{t=0}^{\pi} = \frac{2}{\pi} \cdot \left(\frac{1 - \cos n\pi}{\pi}\right) = \frac{2}{\pi} \left(\frac{1 - (-1)^n}{n}\right) = \frac{2}{n\pi} \text{ yia áqtia } n$$

Άρα:

$$a_0 = a_1 = a_2 = \dots = 0$$

 $b_1 = \frac{4}{\pi}, \quad b_3 = \frac{4}{3\pi}$
 $b_2 = 0, \quad b_4 = 0, \dots$

Απόδειξη (Μερική)

Θα δεχτούμε ότι n f(t) γράφεται στη μορφή $f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi t}{L} + \sum_{n=1}^{\infty} b_n \sin \frac{n\pi t}{L}$, και θα δείξουμε τους τύπους $a_n = \frac{1}{L} \int_{-L}^{L} f(t) \cos \frac{n\pi t}{L} \, \mathrm{d}t$, $b_n = \frac{1}{L} \int_{-L}^{L} f(t) \sin \frac{n\pi t}{L} \, \mathrm{d}t$ Έστω $f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi t}{L} + \sum_{n=1}^{\infty} b_n \sin \frac{n\pi t}{L}$. Τότε:

$$\int_{-L}^{L} f(t) dt = \int_{-L}^{L} f(t) \cdots t = \int_{-L}^{L} \frac{a_0}{2} dt + \int_{-L}^{L} a_1 \cos \frac{\pi t}{L} dt + \int_{-L}^{L} a_2 \cos \frac{2\pi t}{L} + \cdots = a_0 \cdot L + 0 + 0 + \dots$$

Άρα:

$$a_0 = \frac{1}{L} \int_{-L}^{L} f(t) \, \mathrm{d}t$$

Συνέχεια αόδειξης Υποθέτω ότι υπάρχει κάποια σειρά της μορφής *, θα δείξω ότι οι συντελεστές δίνονται από τους τύπους **. ίό Παρνω τυχόν $m \in \mathbb{N}$ και εξετάζω το

$$\begin{split} \int_{-L}^{L} f(t) \cos \frac{m\pi t}{L} \, \mathrm{d}t &= \\ &= \int_{-L}^{L} \left(\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi t}{L} + \sum_{n=1}^{\infty} b_n \sin \frac{n\pi t}{L} \right) \cos \frac{m\pi t}{L} \, \mathrm{d}t \\ &= \underbrace{\int_{-L}^{L} \frac{a_0}{2} \cos \frac{m\pi t}{L} \, \mathrm{d}t}_{=0 \text{ olokangónu tatwo se } m \text{ tregiódous}}_{=0 \text{ olokangónu tatwo se } m \text{ tregiódous}} + \sum_{n=1}^{\infty} \int_{-L}^{L} a_n \cos \frac{n\pi t}{L} \cos \frac{m\pi t}{L} \, \mathrm{d}t + \sum_{n=1}^{\infty} \int_{-L}^{L} b_n \sin \frac{n\pi t}{L} \cos \frac{m\pi t}{L} \, \mathrm{d}t \\ &= \sum_{n=1}^{\infty} \left(\int_{-L}^{L} \sin \frac{n\pi t + m\pi t}{L} \, \mathrm{d}t + \int_{-L}^{L} \sin \frac{n\pi t - m\pi t}{L} \, \mathrm{d}t \right) = 0 \end{split}$$

$$&= \sum_{n=1}^{\infty} a_n \int_{-L}^{L} \cos \frac{n\pi t}{L} \cos \frac{m\pi t}{L} \, \mathrm{d}t$$

$$&= \sum_{n=1}^{\infty} \left\{ \sum_{n=1}^{\infty} a_n \int_{-L}^{L} \left(\cos \frac{(n+m)\pi t}{L} + \cos \frac{(n-m)\pi t}{L} \right) \right\} \, \mathrm{d}t$$

$$&= \sum_{n=1}^{\infty} \left\{ 0, \quad n \neq m \right\}$$

$$&= \sum_{n=1}^{\infty} \left\{ 0, \quad n \neq m \right\}$$

$$&= a_n L, \quad n = m \end{split}$$

Επομένως:

$$a_m = \frac{1}{L} \int_{-L}^{L} f(t) \cos \frac{n\pi t}{L} dt$$

Αντιστοίχως αποδεικνύεται και η σχέση για το b_m .

Να σημειωθεί ότι οι συνθήκες του Dirichlet είναι ικανές, αλλά όχι αναγκαίες.

5.0.5

$$f(t) = \sum_{-\infty}^{\infty} c_n e^{\frac{in\pi t}{L}}$$
$$c_n = \frac{1}{2L} \int_{-L}^{L} e^{-in\pi t} L \, dt$$

Απόδειξη

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi t}{L} + \sum_{n=1}^{\infty} b_n \sin \frac{n\pi t}{L} = \frac{a_0}{2} +$$

$$= \frac{a_0}{2} + \sum_{n=1}^{\infty} \cdots e^{\frac{in\pi t}{L}} + \sum_{n=1}^{\infty} \frac{a_n - ib_n}{2} e^{\frac{in\pi t}{L}} + + \sum_{n=-1}^{-\infty} \frac{a_{-n} + ib_{-n}}{2} e^{\frac{in\pi t}{L}}$$

Άρα

$$f(t) = \sum_{n = -\infty}^{\infty} c_n e^{\frac{in\pi t}{L}}$$

όπου:

$$c_n = \begin{cases} \frac{a_n - ib_n}{2}, & n \in \mathbb{Z}^+ \\ \frac{a_{-n} + ib_{-n}}{2}, & n \in \mathbb{Z}^- \\ \frac{a_0 + ib_0}{2}, & n = 0 \end{cases}$$

Αφήνεται ως άσκηση για τον αναγνώστη να αποδειχθεί ότι:

$$c_n = \frac{1}{2L} \int_{-L}^{L} f(t) e^{\frac{-in\pi t}{L}} dt$$

5.1 Παράδειγμα

V(t) τετραγωνική συνάρτηση

Θα βρω την εκθετική σειρά της f(t).

$$c_{n} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t)e^{-int} dt$$

$$= \frac{1}{2\pi} \int_{-\pi}^{0} (-1) \cdot e^{-int} dt + \int_{0}^{0} (\pi)1 \cdot e^{-int} dt$$

$$= \frac{1}{2\pi} \left(-\int_{-\pi}^{0} e^{-int} dt + \int_{0}^{\pi} e^{-int} dt \right)$$

$$= \frac{1}{2\pi} \left(\frac{e^{-int}}{in} \Big|_{-\pi}^{0} + \frac{e^{-int}}{in} \Big|_{0}^{\pi} \right)$$

$$= \frac{1}{2\pi} \left(\frac{1}{in} - \frac{e^{-in\pi}}{in} - \frac{e^{-in\pi}}{in} + \frac{1}{in} \right)$$

$$= \frac{1}{2\pi} \left(\frac{2}{in} - \frac{2\cos(n\pi)}{in} \right)$$

$$c_{n} = \frac{i}{n\pi} \cdot (1 - \cos n\pi)$$

$$\begin{array}{c|cc}
n & c_n \\
-2 & 0 \\
-1 & \frac{2i}{\pi} \\
0 & 0 \\
1 & \frac{-2}{\pi} \\
2 & 0 \\
3 & \frac{-2i}{2\pi}
\end{array}$$

Άρα:

$$f(t) = \cdots + \frac{2i}{3\pi}e^{i3t} + \frac{2i}{\pi}e^{-it} - \frac{2i}{\pi}e^{it} - \frac{2i}{3\pi}e^{i3t} + \cdots$$

Ερωτήματα για τον αναγνώστη:

- 1. Πότε έχει η τριγωνομετρική σειρά μόνο ημίτονα/μόνο συνημίτονα;
- 2. Πότε έχει η εκθετική σειρά μόνο πραγματικούς/μόνο εκθετικούς όρους;

5.2

Ορισμός

Συμβολίζω με \mathfrak{F}_L το σύνολο των συναφτήσεων που ικανοποιούν τις συνθήκες Dirichlet (με ημιπερίοδο L)

Θεώρημα

Το \mathfrak{F}_L είναι διανυσματικός χώρος.

Απόδειξη Έστω $f, g \in \mathfrak{F}_L$ και $\kappa, \lambda \in \mathbb{C}$. Θα δείξω ότι $\kappa f + \lambda g \in \mathfrak{F}_L$.

Πράγματι

1. An oi f,g eínai origiénes sto [-L,L] tóte kai n $\kappa f + \lambda g$ eínai origién sto [-L,L].

2.

$$(\kappa f + \lambda g)(t + 2L) = \kappa f(t + 2L) + \lambda g(t + 2L)$$
$$= \kappa f(t) + \lambda g(t)$$
$$= (\kappa f + \lambda g)(t)$$

Άρα n $\kappa f + \lambda g$ έχει περίοδο 2L.

3. An n f kai n g eínai t μ . suneceís sto [-1,1], tóte kai n $\kappa f + \lambda g$ eínai t μ . suneceís.

Από τα 1,2,3, n $\kappa f + \lambda g \in \mathfrak{F}_L$.

Θεώοημα

Το σύνολο $\left\{e^{\frac{in\pi t}{L}}\right\}_{-\infty}^{\infty}$ είναι μια ορθογώνια βάση του \mathfrak{F}_L .

Δηλαδή κάθε $f(t) \in \mathfrak{F}_L$ μπορεί να γραφεί:

$$f(t) = \sum_{n = -\infty}^{\infty} c_n e^{\frac{in\pi t}{L}}$$

Επιπλέον $\forall n, m, m \neq n e^{\frac{in\pi t}{L}} \perp e^{\frac{im\pi t}{L}}$

Δηλαδή:

$$e^{\frac{im\pi t}{L}} \cdot e^{\frac{in\pi t}{L}} = 0$$

Δηλαδή:

$$\int_{-L}^{L} e^{\frac{im\pi t}{L}} \cdot e^{\frac{in\pi t}{L}} dt = 0$$

Για να ορίσω το εσωτερικό γινόμενο, θέλω $\|\vec{x}\|^2 = \vec{x} \cdot \vec{x} = \sum_n x_n \bar{x_n} = \sum_n (x_n)^2$

$$f \cdot g = \int_{-L}^{L} f(t) \overline{g(t)} \, \mathrm{d}t$$

Άρα

$$e^{\frac{im\pi t}{L}} \cdot e^{\frac{in\pi t}{L}} = \int_{-L}^{L} e^{\frac{im\pi t}{L}} e^{\frac{im\pi t}{L}} dt = \int_{-L}^{L} e^{\frac{i(m-n)\pi t}{L}} dt = \begin{cases} 2L, & m=n \\ 0, & m\neq n \end{cases}$$