Thời gian: 150 phút không kể thời gian phát đề.

$$($$
Đề số $1)$

Câu 1. (2 điểm).

1. Cho hàm số

$$f(x,y) = \begin{cases} \frac{x^2y}{x^4 + y^2} & \text{n\'eu} & x^2 + y^2 \neq 0\\ 0 & \text{n\'eu} & x^2 + y^2 = 0. \end{cases}$$

Khảo sát tính liên tục của f(x, y).

2. Tìm giá trị lớn nhất, nhỏ nhất của hàm số $z=x^2+y^2-12x+16y \,$ trong miền $x^2+y^2\leq 25.$

Câu 2. (2 điểm).

- 1. Đổi thứ tự tích phân trong tích phân lặp sau: $I = \int_0^2 dx \int_{\sqrt{8x-x^2}}^{\sqrt{16-x^2}} f(x,y) dy$.
- 2. Tính tích phân trên với f(x,y) = 3xy.

Câu 3. (2 điểm). Tính tích phân:

$$\int_{I} \left(\frac{x^3}{1+x^2} - \frac{y^3}{3} \right) dx + \left(e^y \cos y + \frac{x^3}{3} \right) dy,$$

trong đó L là nửa trên đường tròn $x^2+y^2=4$, đi từ A(2,0) đến B(-2,0).

Câu 4. (2 điểm). Áp dụng công thức Ostrogradski tính tích phân mặt loại II sau:

$$\iint\limits_{S_{\vec{N}}} x^2 dy dz + y^2 dz dx + z^2 dx dy.$$

trong đó $S: \ x^2+y^2=z^2, \ ext{với} \ \ 0 \leq z \leq h, \ \vec{N}$ là véc tơ pháp tuyến ngoài.

Câu 5. (2 điểm). Giải các phương trình vi phân thường sau:

- 1. $x^2dy (2xy + 3)dx = 0$.
- 2. $y^{(4)} + 3y$ " = $9x^2$.

Thời gian: 150 phút không kể thời gian phát đề.

$$($$
Đề số $2)$

Câu 1. (2 điểm).

- 1. Cho hàm số: $z = (x + y)e^{x+y}$. Tính d^2z .
- 2. Tìm cực trị của hàm số: $z = x^3 + y^3 15xy$.

Câu 2. (2 điểm).

1. Đổi thứ tự tích phân trong tích phân lặp sau:

$$\int_{-1}^{0} dx \int_{-x}^{\sqrt{2-x^2}} f(x,y)dy + \int_{0}^{\sqrt{2}} dx \int_{0}^{\sqrt{2}-x} f(x,y)dy.$$

2. Tính thể tích của phần vật thể giới han bởi các mặt $x^2 + y^2 + z = 8$; z = 4.

Câu 3. (2 điểm). Cho tích phân đường $I=\int\limits_{OCD}x^2ydy-xy^2dx$. Tính I với OC là phần thuộc nửa dưới đường tròn $x^2+y^2=2ax,\ a>0,$ nối O(0,0),C(a,-a);CD là đoan thẳng nối C với D(a,0).

Câu 4. (2 điểm). Tính diện tích phần mặt $z = \sqrt{x^2 + y^2}$ nằm trong hình trụ lemniscat $(x^2 + y^2)^2 = 2a^2xy$. (Gợi ý: chuyển sang tọa độ cực).

Câu 5. (2 điểm). Giải các phương trình vi phân thường sau:

- 1. $x^2y' = y(x+y)$.
- 2. $y'' 2y' 3y = xe^{4x} + x^2$.