Control y Optimización

Optimización y Matlab

Toolboxes para la Optimizacion

Hay muchas librerías con rutinas para optimizar:

- Optimization Toolbox para Matlab
- Optimization and Simulation para Scilab
- Optimization para Octave
- Scypy.optimize para Phyton
-

¡Y no hay que programarlas!. También hay generadores de código (i.e. optimtool para Matlab)

Solvers en la Optimization Toolbox de Matlab

Tipo de problema / Tipo de restricción	Lineal	Cuadratico	Mínimos cuadrados	No lineal	No suave
Ninguna	No hay mínimo o es constante	quadprog	\ lsqcurvefit lsqnonlin	fminsearch fminunc	fminsearch
Bound	linprog	quadprog	lsqcurvefitlsqlin lsqnonlin lsqnonneg	fminbnd fmincon fseminf	*
Lineal	linprog	quadprog	lsqlin	fmincon fseminf	*
No-lineal	fmincon	fmincon	fmincon	fmincon fseminf	*
Discreto	bintprog	*	*	*	*

Matlab. Ej: Mínimo local sin restricciones

```
[x,fval,exitflag,output,grad,hessian] = fminunc(FUN,X0,OPTIONS))

Ejemplos:

X = fminunc(@(x)3*sin(x(1))+exp(x(2)),[1;1])

al=2;
X = fmincon(@(x)myfun(x,a1),[1;1])

function f = myfun(x,a1)
    f = x(1)^2 + al*x(2)^2;
```

Matlab. Ej: Mínimo local con restricciones

```
X = fmincon(FUN, X0, A, B, Aeq, Beq, LB, UB, NONLCON, OPTIONS)
Ejemplo:
X = fmincon(\theta(x)3*sin(x(1))+exp(x(2)),[1;1],[],[],[],[],[0 0])
a1=1;a2=1;
X = fmincon(@(x) myfun(x,a1),[1;1],[],[],[],[],[],[],[],@(x) mycon(x,a2))
function f = myfun(x,a1)
   f = x(1)^2 + a1*x(2)^2;
function [c,ceq] = mycon(x,a2)
   c = a2/x(1) - x(2);
   ceq = [];
```

Optimización Local y Global

Los métodos anteriores (basados en la exploración en la dirección del gradiente), encuentran soluciones locales.

¿Qué ocurre si hay mas de un óptimo local?

¿Es factible encontrar el óptimo global (el óptimo de los óptimos?

Función 'dificil' de encontrar el óptimo global

$$Ras(x) = 20 + x_1^2 + x_2^2 - 10(\cos 2\pi x_1 + \cos 2\pi x_2)$$

Comparación de resultados

Resultados	fminunc	patternsearch	ga	globalsearch
solucion	[19.9 29.9]	[19.9 -9.9]	[9.94 -0.01]	[0 0]
Función obj.	12.9	4.97	0.99	0
# Fevals	15	174	1040	2312

Dominios de atracción

¿Por qué depende el resultado del punto de partida?

