Elastische Elektronen-Streuung

Differentieller Wirkungsquerschnitt für die Streuung von Elektronen an einem Atomkern mit Kernladungszahl Z (magn. Moment vernachlässigt)

$$\left(\frac{d\sigma}{d\Omega}\right) = \frac{Z^2 \alpha^2 (\hbar c)^2 \cos^2 \frac{\theta}{2}}{4E^2 \sin^4 \frac{\Theta}{2} \left[1 + \frac{2E}{M_A c^2} \sin^2 \frac{\theta}{2}\right]} \cdot |F(\vec{q})|^2$$

Formfaktor: $F(\vec{q}) = \int e^{(i\vec{q}\vec{r})/\hbar} \cdot f(\vec{r}) d^3r$

= Fourier-Transformierte der Ladungsverteilung

Streuung eines Elektrons an einem (ausgedehntem) Nukleon

$$\left(\frac{d\sigma}{d\Omega}\right) = \left(\frac{d\sigma}{d\Omega}\right)_{Mott} \cdot \left\lceil \frac{G_E^2(Q^2) + \tau G_M^2(Q^2)}{1 + \tau} + 2\tau G_M^2(Q^2) \tan^2\frac{\Theta}{2} \right\rceil \,, \qquad \tau = \frac{Q^2}{4M^2c^2}$$

 \Rightarrow Rosenbluth Separation \Rightarrow Bestimmung der Q 2 -Abhängigkeit der Formfaktoren:

$$G_E^2(Q^2)$$
, $G_M^2(Q^2)$

Proton:

 $\Leftrightarrow G_E^2(Q^2)$, $G_M^2(Q^2)$: Dipol-Formfaktor \Rightarrow Exponentielle Ladungsverteilung (diffuses Objekt \leftrightarrow weder punktförmig noch homogen geladene Kugel)

209

Zusammenfassung: Fermi-Gas-Modell

(VL1, KW 48)

Fermi-Gas-Modell

Überlagerung der WW aller Nukleonen kann als mittleres Kernpotential zusammengefasst werden

Protonen und Neutronen als unabhängige Systeme von Spin-1/2 Teilchen (Pauli-Prinzip) Nukleonen bewegen sich im Potential ohne zu wechselwirken

- \Rightarrow Für Kerne mit Z=N=A/2: p_F =250 MeV/c, E_F =33 MeV (kin. Energie), mit $B'\approx$ 7-8 MeV \Rightarrow Potentialwall \approx 40 MeV
- ⇒ Kerne sind relativ schwach gebundene Systeme

schwere Kerne: Neutronenüberschuss (Neutronen-Potentialtopf: tiefer)

Fermi-Gas-Modell → Abhängigkeit der Bindungsenergie vom Neutronenüberschuss

1) Mittlere kinetische Energie pro Nukleon:

$$< E_{kin}> = rac{\int_{0}^{p_{f}} E_{kin} p^{2} dp}{\int_{0}^{p_{f}} p^{2} dp} = rac{3}{5} \cdot rac{p_{f}^{2}}{2M} = rac{3}{10\,M} \cdot p_{f}^{2} = 20\,MeV$$

2) Totale kinetische Energie des Kernes

$$egin{split} E_{kin}(N,Z) &= N \cdot < E_n > + Z \cdot < E_p > = rac{3}{10\,M} \left(N \cdot (p_f^n)^2 + Z \cdot (p_f^p)^2
ight) \ E_{kin}(N,Z) &= rac{3}{10\,M} rac{\hbar^2}{R_0^2} \left(rac{9\pi}{4}
ight)^{2/3} \cdot rac{N^{5/3} + Z^{5/3}}{A^{2/3}} \end{split}$$

$$\label{eq:mit} \begin{split} \text{mit } A &= N + Z, \, N = A - Z \Rightarrow E_{\mathrm{kin}}(N,Z) \text{-Minimum für } N = Z \leftrightarrow B = max. \\ \text{für } N &\neq Z \rightarrow E_{\mathrm{kin}}(N,Z) \text{ größer} \leftrightarrow B \text{ kleiner} \end{split}$$

Entwickeln nach N-Z:

$$E_{kin}(N,Z) = rac{3}{10\,M}rac{\hbar^2}{R_0^2}\left(rac{9\pi}{8}
ight)^{2/3}\cdot\left[A + rac{5}{9}rac{(N-Z)^2}{A} +
ight]$$

211

Fermi-Gas-Modell

Beitrag zum Volumenterm

Asymmetrieterm: damit auch quantitativ o.k. muss die Änderung des Potentials für $N \neq Z$ berücksichtigt werden

Viele Eigenschaften der Atomkerne noch nicht erklärt:

z.B. Magische Zahlen ...

⇒ Experimentelle Beobachtungen ...

213

Das Schalenmodell des Atomkerns

Viele Eigenschaften der Atomkerne werden durch das Tröpfchenmodell beschrieben.

Bei genauerer Messung gibt es jedoch Abweichungen bei bestimmten Nukleonenzahlen.

Bindungsenergien der Kerne sind für bestimmte Kernmassenzahlen A größer als vom Tröpfchenmodell erwartet.

Differenz zu Kernmassen im Tröpfchenmodell

magische Zahlen deuten auf Schalenstruktur hin, wie bei Atomen

besonders stabile Konfiguration (hohe Bindungsenergie) bei gefüllter Schale

Unterschied zur Atomphysik:

- kein Zentralpotential
- 2 Teilchensorten; Neutronen + Protonen

215

Magische Zahlen

Energie des ersten angeregten Zustands in gerade-gerade -Kernen:

- Kerne mit magischen Zahlen:
- ⇒ Besonders hohe Anregungsenergie
- ⇒ Besonders viele stabile und langlebige Nuklide

Viele Eigenschaften der Atomkerne noch nicht erklärt:

Magische Zahlen:

Zum Vergleich: Atom

(Im Coulombpotential des Kernes füllen die Elekronen die Zustände niedrigster Energie)

 \Rightarrow Schalen:

K (l=0), L (l=0,1), M (l=0,1,2) gefüllte Schalen => hohes Ionisationspotential

Im Kern: etwas ähnliches beobachtet: magische Zahlen

- ⇒ Nukleonen im Kern befinden sich ebenfalls in definierten Energieniveaus
 => Schalen Struktur
- ⇒ Schalenmodell: Ein einzelnes Nukleon bewegt sich in einem Potential was durch alle anderen Nukleonen erzeugt wird (mittleres Feld)
 - diskrete Energieniveaus

Das Schalenmodell des Atomkerns - Magische Zahlen -

- ⇔ Erklärung der magischen Zahlen:
- Startpunkt (Näherung):

Zentral-symmetrisches "mean-field" – Potential

- Teilchen werden als unabhängig behandelt
- Wellenfunktion der Teilchen im Potential

$$\begin{aligned} \psi &= R_{nl}(r) \cdot Y_l^m(\Theta, \phi) & P &= (-1)^l \\ \text{radial} & \text{winkel-abhängigen Teil} \end{aligned}$$

- Quantenzahlen (spektroskopische Nomenklatur)

nl mit
$$\begin{cases} n=1,2,3,4..... & = Zahl der Knoten +1 \\ l=s,p,d,e,f,g,...... & = Bahndrehimpuls \end{cases}$$

n,l-Niveaus sind ursprünglich 2*(2l+1)-mal entartet Spin $m = -1 \dots + l$

Wie sieht das Potential aus?

- kurze Reichweite der starken Wechselwirkung
 - => Man würde eine Form erwarten, die der Dichteverteilung im Kern entspricht
- ⇒ Lösen der Schrödingergleichung für verschiedene Potentialformen
 ⇔ Vergleich mit dem Experiment

Spezialfall: Leichte Kerne ($\approx A \le 7$): gaußförmige Verteilung

- \Rightarrow Potential kann man durch das eines 3-dim. Harmon. Oszillators annähern
 - Schrödingergleichung analytisch lösbar

$$\mathbf{E}_{\mathbf{H.O.}} = (\mathbf{N} + \frac{3}{2}) \cdot \hbar \boldsymbol{\omega} = (\mathbf{N}_{\mathbf{x}} + \mathbf{N}_{\mathbf{y}} + \mathbf{N}_{\mathbf{z}} + \frac{3}{2}) \cdot \hbar \boldsymbol{\omega}$$
$$\mathbf{N} = 2(\mathbf{n} - 1) + \mathbf{I}$$

 $N : gerade \rightarrow P = +, N : ungerade \rightarrow P = -$

219

Energieniveaus - harmonischer Oszillator

$$E_{
m harm.oz.} = (N+3/2)\hbar\omega, \quad N=2\cdot(n-1)+\ell$$

$\mathbf{Q}\mathbf{N}$		number	Σ
N = 0	n = 1, $l = 0$, $m = 0$	2	
		65 v	2
N = 1	$n = 1, l = 1, m = -1 \dots + 1$	6	
			8
N = 2	n = 1 , l = 2, m = -2 + 2	10	
	n = 2, l = 0, m = 0	2	
			20
N = 3	n = 1, $l = 3$, $m = -3$ $+3$	14	
	$n = 2, l = 1, m = -1 \dots + 1$	6	
			40
N = 4		30	
			70

Reproduziert nur die ersten drei magischen Zahlen

Oszillator-QZ: N, Hauptquantenzahl n (n=Zahl der Knoten+1), Drehimpuls: ℓ

Schwere Kerne: Dichteverteilung ≈ Fermi-Verteilung

⇒ Woods-Saxon-Potential

$$\mathbf{V}_{\mathbf{Zentral}}(\mathbf{r}) = \frac{-\mathbf{V}_0}{1 + \mathbf{e}^{(\mathbf{r} - \mathbf{R})/\mathbf{a}}}$$

(Zustände mit gleichem N aber unterschiedlichen nl sind nicht mehr entartet)

Reproduziert auch nur die ersten drei magischen Zahlen (2, 8, 20)

221

Spektrum der Nukleonenniveaus

Zusätzlich zum Zentralpotential

- Spin-Bahn-Wechselwirkung $\sim \vec{l} \cdot \vec{s}$ benötigt

Kopplung von

$$\vec{\mathbf{l}}, \vec{\mathbf{s}}$$
 zu $\vec{\mathbf{j}}$ mit $\mathbf{j} = \mathbf{l} \pm \frac{1}{2}$

Potential:

$$\mathbf{V}(\mathbf{r}) = \mathbf{V}_{\mathbf{Zentral}}(\mathbf{r}) + \mathbf{V}_{\mathbf{ls}}(\mathbf{r}) \frac{\langle \vec{\mathbf{l}} \vec{\mathbf{s}} \rangle}{\hbar^2} \longrightarrow \dots \text{ Tafel } \dots$$

=> Magische Zahlen

Bezeichnung der Einteilchenzustände wie in Atomphysik: n, l, j

n,l,j-Niveaus: (2j+1)-fach entartet

Spektrum der Nukleonenniveaus

Zusätzlich zum Zentralpotential

- Spin-Bahn-Wechselwirkung $\sim \vec{l} \cdot \vec{s}$ benötigt

Kopplung von

$$\vec{\mathbf{l}}, \vec{\mathbf{s}} \ \mathbf{zu} \ \vec{\mathbf{j}} \qquad \mathbf{mit} \ \mathbf{j} = \mathbf{l} \pm \frac{1}{2}$$

Potential:

$$\mathbf{V(r)} = \mathbf{V_{Zentral}(r)} + \mathbf{V_{ls}(r)} \frac{\langle \vec{\mathbf{l}} \vec{\mathbf{s}} \rangle}{\hbar^2}$$

=> Magische Zahlen

Bezeichnung der Einteilchenzustände wie in Atomphysik: n, l, j

n,l,j-Niveaus: (2j+1)-fach entartet

Ein-Teilchen- und Ein-Lochzustände im Schalenmodell

Idee: Die Eigenschaften der Kerne (Quantenzahlen) werden durch die Eigenschaften einzelner überzähliger Nukleonen bestimmt

=> Nur Valenz-Nukleonen und Valenz-Löcher tragen zu den Quantenzahlen bei

- wie in Atomphysik koppeln die Drehimpulse einer voll besetzten Schale zu 0
- 2n oder 2p in der gleichen Schale: kein Beitrag zum Kernspin

Idee: Die Eigenschaften der Kerne (Quantenzahlen) werden durch die Eigenschaften einzelner überzähliger Nukleonen bestimmt

=> Nur Valenz-Nukleonen und Valenz-Löcher tragen zu den Quantenzahlen bei

- wie in Atomphysik koppeln die Drehimpulse einer voll besetzten Schale zu 0
- 2n oder 2p in der gleichen Schale: kein Beitrag zum Kernspin

Ein-Teilchen- und Ein-Lochzustände im Schalenmodell

Idee: Die Eigenschaften der Kerne (Quantenzahlen) werden durch die Eigenschaften einzelner überzähliger Nukleonen bestimmt

=> Nur Valenz-Nukleonen und Valenz-Löcher tragen zu den Quantenzahlen bei

- wie in Atomphysik koppeln die Drehimpulse einer voll besetzten Schale zu 0
- 2n oder 2p in der gleichen Schale: kein Beitrag zum Kernspin

Ein-Teilchen- und Ein-Lochzustände im Schalenmodell

Beobachtung:

- ähnliche Anregungsspektren für Spiegelkerne
- Energie des ersten angeregten Zustande für A=15, 16 viel größer als für A=17

=>
$${}^{16}_{8}$$
O₈ 8p, 8n
1s_{1/2}, 1p_{3/2}, 1p_{1/2}
Niveaus für p, n
vollständig gefüllt
1d_{5/2} leer

Drehimpulse von komplett gefüllten Schalen koppeln zu 0 wie im Atom $\mathbf{J}^P = 0^+$

Ein-Teilchen- und Ein-Lochzustände im Schalenmodell

Aus Elektron-Streuexperimenten:

Unterschied in der Ladungsverteilung der beiden Kerne Unterschied = 82. Proton in Pb