Formelsammlung Statistik

Andrey Behrens

August 2009

Teil I.

Begriffe

Statistische Masse Umfang der Einheiten einer statistischen Untersuchung

Statistische Einheit Untersuchungsobjekt einer statistischen Untersuchung. Träger der

interessanten Informationen.

Merkmal Zu betrachtendes Attribut einer Einheit. Etwa Einkommen,

Altern, ...

Merkmalstypen

diskrete Merksmaltypen bestehen aus einer überschaubare,

endliche Menge (etwa Geschlecht),

stetige Merksmaltypen können in einem bestimmten Bereich

jeden reelen Wert annehmen,

quasi-stetige Merksmaletypen sind eigentlich diskret, enthalten aber sehr grosse Menge von möglichen Merkmalen

Merkmalsausprägung

Gruppierung Sortierung, gleiche Merkmalsausprägung

Klassifizierung benachbarte Ausprägungen werden zu einer Klasse zusammengefasst. Übliche Schreibweise [200; 400) mit der

Bedeutung $200 \le x < 400$.

Skalenniveau

nominal qualitativ (also keine Zahlen), etwa Geschlecht oder

Studiengang. Darstellung als gruppierter Wert.

ordinal Merkmalsausprägung mit objektiver Rangordnung,

Abstände sind aber nicht bezifferbar (etwa Noten).

Darstellung als gruppierter Wert.

metrisch Interval quantitativ: reele Zahlen, natürliche Rangfolge,

eindeutige Abstände, etwa Sparsumme,

Verhältnis quantitativ: reele Zahlen, natürliche Rangfolge, eindeutige Abstände, absoluter Bezugspunkt (etwa Nullpunkt). Beispiel: Alter.

Darstellung als klassierter Wert.

Teil II.

Univariante Datenanalyse

Auto^1	x_i	h_i	H_i	f_i	F_{i}	$x_i h_i$	$x_i \cdot f_i$	$(x_i)^2 \cdot f_i$
BMW	342	1	1	0,167	0,167	342	57,00	19494
Mercedes	549	1	2	$0,\!167$	$0,\!333$	549	$91,\!50$	50234
VW/Audi	1501	1	5	$0,\!167$	0,833	1501	$250,\!17$	$3{,}76E5$
Sonstige	1713	1	6	$0,\!167$	1,000	1713	$285,\!50$	$4,\!89\mathrm{E}5$

Tabelle 0.1.: Beispiel gruppierter, nominaler Werte

x_i	h_i	H_i	f_i	F_i	$x_i h_i$	$x_i \cdot f_i$	$(x_i)^2 \cdot f_i$
280	1	1	0,1	0,1	280		
340	2	3	0,2	0,3	680		
740	1	9	0,1	0,9	740		
1180	1	10	0,1	1,0	1180		

Tabelle 0.2.: Beispiel gruppierter, ordinaler Werte

x_i	h_i	H_i	f_i	F_i	$\triangle x_i$	f_i^*	h_i^*
[200;400)	21	21	0,21	0,21	200	0,00105	0,1050
[700;1000)	19	96	$0,\!19$	$0,\!96$	300	$0,\!00063$	$0,\!0633$
[1000;1500)	2	98	$0,\!02$	$0,\!98$	500	$0,\!00004$	0,0040
[1500;2000)	2	100	$0,\!02$	1,00	500	$0,\!00004$	0,0040

Tabelle 0.3.: Beispiel klassierter, metrischer Werte

Math	$_{ m TR}$	Formel	Erläuterung
h_i	li:d		abs. Häufigkeit
H_i	shi	$h_1++h_i=\sum_{j=1}^i h_j$	abs. Summenhäufigkeitcusum(hi)
£.,	ij	$rac{h_i}{N} ext{ mit } \sum_{i=1}^k f_i$	relative Häufigkeit gruppiert Stabdiagramm siehe Abbildung 0.3 auf Seite 13 klassiert Histogramm, siehe Abbildung 0.4 auf Seite 14
F_i	$_{ m lg}$	$f_1 + \ldots + f_i = \sum_{j=1}^i f_j$	abs. Summenhäufigkeit
Z	n	$\sum_{i=-1}^k h_i$	Stat Masse
h_i^* f_i^* $F(x)$	his fix f(x)	Gruppe $F(x) = \begin{cases} 0 & x < x_1 \\ F_i & x_i \le x < x_{i+1} \\ 1 & x \ge x_k \end{cases}$ Klasse $F(x) = \begin{cases} 0 & x < x_1 \\ 1 & x \ge x_k \\ 1 & x \ge x_k \end{cases}$ $\begin{cases} 0 & x < x_1 \\ 1 & x \ge x_k \\ 1 & x \ge x_k \end{cases}$ $\begin{cases} 0 & x < x_1 \\ 1 & x \ge x_k \\ 0 & x < x_1^u \\ 1 & x \ge x_i^o \end{cases}$	abs Häufigkeitsdichte rel Häufigkeitsdichte Verteilungsfunktion, Funktion der relativen Summenhäufigkeit Als Beispiel für gruppierte Daten: $F(500)=0,30$ -> Es wird nicht gerechnet, sondern aus dem Diagramm abgelesen, da es sich um gruppierte Werte handelt! Als grafische Lösung (Treppendiagramm, keine Zwischenwerte!) siehe Abbildung 0.1 auf Seite 13 Bei klassierten Daten: Klasse aus Diagramm ablesen (H_i) , untere und obere Grenzen der Klasse herauslesen, in Formel einsetzen: $F(500) = 0.21 + \frac{0.56}{300}(500 - 400) = 0,397 = 39,7\%$ als grafische Lösung siehe Funktionsdiagramm 0.2 auf Seite 13

Tabelle 0.4.: Überblick Häufigkeiten

Name	Math	TR	nominal	ordinal	metrisch	Math TR nominal ordinal metrisch Vor- und Nachteile
Modal	x_D	px	ja	ja	ja	Ist die Merkmalsausprägung, die am häufigsten vorkommt. Es kann mehrere Modalwerte geben.
Median	x^z	X	c-·	Ja	i	Mitte aller Merkmalsträger, bzw. welcher Merkmalswert wird von der Hälfte aller Merkmalsträger nicht überschritten. Vorteil: Robust gegen Ausreißer.
Quantil	x^{b}	dx	c-·	c·	c·	ein Teil aller Merkmalsträger (etwa 0,25x oder 0,75x) bzw. welcher Merkmalswert wird von einem Teil aller Merkmalsträger nicht überschritten. Dabe ist das $x_p = x_{0.5} = x_z$
Arith. Mittelw.	\bar{x}	XS	nein	nein	ja	Der Durchschnitt oder Mittelwert aller Merkmale
Geom Mittelw.	$\mathcal{D}x$	Xg	<i>د</i> ٠	<i>د</i> ٠	ef.	Mittelwert für Produkte, etwa bei Verhältnissen oder Wachstumswerten. Nur für Zahlen>0 sinnvoll.

Tabelle 0.5.: Überblick Lageparameter

Math	$_{ m TR}$	Formel		Erläuterung
x_D	px	Gruppen	da x_i wo f_i am größsten ist	Ist die Merkmalsausprägung, die am häufigsten vorkommt. Es
		Klassen	Mitte der modalen Klasse $x_D = \frac{x_i^u + x_i^o}{2} = x_i'$	kann mehrere Modalwerte geben.
x_z	X			Median bzw. Zentralwert ist der Wert, der in der Mitte der
		Gruppe	$x_z = 0.5N$	Variantsreihe liegt. Ist N gerade, wird der Mittelwert der zwei mittelsten Werte ermittelt. Beispiel: Zuerst Klasse bestimmen
		Klasse	$x_z = x_i^u + \frac{0.5 - F(x_i^u)}{f_i} * \Delta x_i$	und dann $400 + \frac{0.5 - 0.21}{0.56} * 300 = 555.36$
x_p	dx			Wird eine Variationsreihe in gleich große Teile zerlegt, entstehen
		Gruppe	$x_p = p \cdot N$	Quantile. Typisch sind 0,25, 05, 0,75. Der Quantilabstand ist $Q = x_{0.75} - x_{0.25}$. Das 0,5-Quantil ist gleich dem Median.
		Klasse	$x_p = x_i^u + \frac{p - F(x_i^u)}{f_i} * \Delta x_i$	Quantil ist gewissermaßen das Gegenüber der Verteilungsfunktion!
x	xa			Arithmetischer Mittelwert bzw. Durchschnitt. Durchschnitte
		Gruppe	$\bar{x} = \sum_{i=1}^k x_i f_i$	werden mit dieser Formel addiert: $\bar{x} = \frac{\sum\limits_{m=1}^{N_m * x_m^-}}{\sum\limits_{m=1}^{N_m} N_m}$
		Klasse	$\bar{x} = \sum_{i=1}^k x_i' f_i$	
Sx	Xg			Der Geometrische Mittelwert wird bei der Mittelung von
		$x_G = \bigvee_{i=1}^{N} \frac{1}{i}$	$\frac{k}{1}x$	Wachstumsraten oder multiplikativ verknüpften Daten angewendet.

Tabelle 0.6.: Lageparameter

Erläuterung	Die Spannweite ist die Differenz zwischen größtem und kleinstem Merkmalswert.	Der Quantilsabstand ist der Abstand zwischen oberem und unterem Quantil. Die Varianz ist die mittlere quadratische Abweichung aller Merkmalsausprägungen vom arith. Mittelwert. Alternative Zeichen der Varianz sind $s_x^2=s^2=\sigma^2$	Varianz der Grundgesamtheit. Gleichungsbeispiel bei der Annahme, dass es zwei Teilmengen gibt und die jeweils die Varianzen und Mittelwerte bekannt sind.	Standardabweichung mittlere Abweichung vom Mittelwert. Nachteil: Bei großen Merkmalsmengen nimmt die Schwankungsbreite zu. Ein Vergleich zwischen Messreihen mit großen und kleinen Verteilungen ist daher ggf. nicht mehr sinnvoll. Statt dessen: Variationskoeffizient. Hinweis: Bei $s_x = 0$ gibt es einen eindeutigen Hinweis auf Konzentration. Ansonsten nicht.	Variationskoeffizient = Auf den Mittelwert bezogenes relatives Streuungsmaß, sofern nur positive Werte auftreten.
Math TR Formel	R r Gruppe $R = x_{max} - x_{min}$ Klasse $R = x_k^o - x_1^u$	$Q \text{q} Q = x_{0.75} - x_{0.25}$ $s_x^2 \text{s2x}$ $\text{Gruppe} s_x^2 = \left\{ \sum_{i=1}^k \left[(x_i)^2 \cdot f_i \right] \right\} - \overline{x}$ $\text{Klasse} s_x^2 = \left\{ \sum_{i=1}^k \left[(x_i')^2 \cdot f_i \right] \right\} - \overline{x}^2$	$s^{2} = \frac{N_{1}s_{1}^{2} + N_{2}s_{2}^{2}}{N_{1} + N_{2}} + \frac{N_{1}(\bar{x_{1}} - \bar{x})^{2} + N_{2}(\bar{x_{2}} - \bar{x})^{2}}{N_{1} + N_{2}}$	s_x $s_x = \sqrt{s_x^2}$	$v = v = \frac{s_{\overline{x}}}{\bar{x}}$

Tabelle 0.7.: Streuungsparameter

Math	$\overline{\Gamma R}$	Math TR Formel	Erläuterung
Id	pi	pi Gruppe $p_i = \frac{x_i \cdot hi}{N \cdot \bar{x}}$	Konzentrationskoeffizient berechnet den Anteil eines
		Klasse $p_i = \frac{x_i' \cdot hi}{N \cdot \bar{x}}$	prozentualen Anteil an der Gesamtsumme.
P_i	spi	$\mathrm{spi} P_i = \sum_{j=1}^i p_j$	Das Konzentrationsmaß beschreibt die relative Merkmalssumme. Die Lorenzkurve veranschaulicht das Konzentrationsmaß grafisch.
ı	I	1	Die Fläche zwischen Gleichverteilung und Lorenzkurve wird als Lorenzfläche bezeichnet und ist ein weiteres Konzentrationsmaß.
			Je größer die Fläche, desto größer die Konzentration. Beispiel zur Lorenzkurve siehe 0.5 auf Seite 14
\mathcal{G}	ත	$G = \frac{0.5 - A(L)}{0.5}$	Der Gini-Koeffizient misst die Höhe der relatitiven Konzentration über das Verhältnis der Lorenzfläche zur Fläche bei maximaler Konzentration mit 0.5
A(L) al	al	$A(L) = \sum_{i=1}^{k} \frac{P_{i-1} + P_i}{2} \cdot f_i \text{ mit } P_0 = 0$	Fläche unter der Trapezkurve Hinweis: Sind großgeschriebene P's also spi.
			Lorenzkurve: Welchen Anteil haben Merkalsträger an Merkmalen. Etwa $0.5=50\%$ der Autohersteller (F_i) haben Anteil von $0.25=25\%$ P_i der Produktion

Tabelle 0.8.: Relative Konzentration

Abbildung 0.1.: Funktion relativer Sumenhäufigkeit F(x) bei gruppierten Daten

Abbildung 0.2.: Funktion F(x) relativer Summenhäufigkeit bei klass. Daten

Abbildung 0.3.: Darstellung rel Häufigkeit von Gruppen: Stabdiagramm

Abbildung 0.4.: Darstellung rel. Häufigkeit von Klassen: Histogramm

Abbildung 0.5.: Lorenzkurve

Teil III.

Formblätter

x_d	xd	Modalwert, der Wert mit der häufigsten Merkmalsausprägung
x_z	XZ	Median, Mitte aller Merkmalsausprägungen, d.h. nach oben und unten gleich viele Merkmalsausprägungen
x_p	хp	Quantile überschreiten einen gewissen Anteil von Merkmalsausprägungen $nicht$
$x_{i}^{'}$		Klassenmitte der <i>i</i> -ten Klasse
$x_i^u x_i^o$		untere bzw. obere Grenze der i -ten Klasse
h	h	Anzahl von Einheiten innerhalb einer Gruppe oder Klasse. Tiefgestellte Zeichen gleiche Bedeutung wie bei x Die Summe aller h ist die statistische Masse
H_i	shi	absolute Summenhäufigkeit, wie h_i aber aufsteigend addiert. Der größte Wert= N
f_i	fi	relative Häufigkeit. Summe aller $f_i=1$ Entspricht dem prozentualen Anteil an der statistischen Masse.
F_{i}	sfi	relative Summenhäufigkeit. Wie f_i aber aufsummiert. Der größte Wert $=1$
Δx_i	dxi	Klassenbreite der <i>i</i> -ten Klasse
s_i	$_{ m si}$	relative Summenhäufigkeit einer Klasse
N	n	Statistische Masse, also die Menge aller Merkmalsausprägungen.
		

Klasse oder Gruppe einer statistischen Zählung. Variable kann Zeichen

haben wie 1, i, k die für das 1-te, i-te oder letzte Gruppe/Klasse stehen.

 \boldsymbol{x}

Table .9.: Überblick Variablen

Figure .6.: Zusammenhänge von Variablen

Fläche unter Lorenzkurve	A(L)						II
Konz- maß	P_i						1
Konz- koeff. Konz- maß	p_i						1
	$(x_i)^2 \cdot f_i \qquad p_i$						II
	$x_i \cdot f_i$						$\bar{x} =$
	$x_i h_i$						II
rel. Summen- häufig	F_i						ī
rel. Häufig	f_i						=1
abs. Summen- rel. Häufig häufig	H_i						ı
abs. Häufig	h_i						N =
Gruppe	x_i						\square

Gruppe			abs. Häufig	abs. Sum- menhäufig	rel. Häufig rel. Sum- menhäufig	rel. Sum- menhäufig					Konz- koeff.	Konz- maß	Fläche unter Lo-
x_i	x_i^{\prime}	$\triangle x_i$	h_i	H_i	f_i	F_i	$x_i'f_i$	$x_i' \cdot h_i$	$x_i' \cdot h_i = \left(x_i'\right)^2 h_i - h_i^*$	h_i^*	p_i	P_i	renzkurve $A(L)$
\square			N =	1	= 1	ı	$ar{x}=$	II	II		ı	ı	II

																	\Box
																	\neg
																	\dashv
																	\dashv
																	\dashv
																	\Box
																	\Box
																	\dashv
									\vdash								\dashv
																	\dashv
																	\dashv
																	\dashv
																	\square
																	\Box
																	\exists
																	\dashv
																	\dashv
																	\dashv
																	\dashv
			L	L_													
																	\exists
																	\dashv
						\vdash			\vdash								\dashv
																	\dashv
						\vdash			\vdash								\dashv
																	\dashv
L																	
Щ.		 l		L										l	L		