

STIC-ILL

From: Wilson, Michael
Sent: Monday, August 18, 2003 4:03 PM
To: STIC-ILL
Subject: art req. 09/993159

460,347 AS1.69
NOS 8/19

TI Histamine receptors
AU Watanabe, Takehiko; Yanai, Kazuhiko; Fukui, Hiroyuki
SO Tanpakushitsu Kakusan Koso (1997), 42(3), 327-334
CODEN: TAKKAJ; ISSN: 0039-9450
PB Kyoritsu
LA Japanese

TI Histamine H1 receptor-mediated inhibition of potassium-evoked release of 5-hydroxytryptamine from mouse forebrains.
AU Son L Z; Yanai K; Mobarakeh J I; Kuramasu A; Li Z Y; Sakurai E; Hashimoto
SO BEHAVIOURAL BRAIN RESEARCH, (2001 Oct 15) 124 (2) 113-20.

TI IMPROGAN, A HISTAMINE DERIVATIVE, INDUCES ANTINOCICEPTION IN HISTAMINE RECEPTOR - DEFICIENT MUTANT MICE. [COLLECTED]
AU Hough, L. B. (1); Nalwalk, J. W. (1); Mobarakeh, J. I.; Yanai, K.; Stadel, J. M.
SO Society for Neuroscience Abstract Viewer and Itinerary Planner, (2002)
Vol. 2002, pp. Abstract No. 156.15. <http://sfn.scholarone.com>. cd-rom.
Meeting Info.: 32nd Annual Meeting of the Society for Neuroscience
Orlando, Florida, USA November 02-07, 2002 Society for Neuroscience.
DT Conference

TI Activation of spinal histamine H3 receptors inhibits mechanical nociception
AU Cannon, Keri E.; Nalwalk, Julia W.; Stadel, Rebecca; Ge, P.; Lawson, D.;
SO European Journal of Pharmacology (2003), 470(3), 139-147

Michael C. Wilson
CM1 12B05
AU 1632
703-305-0120

Activation of spinal histamine H₃ receptors inhibits mechanical nociception

Keri E. Cannon^a, Julia W. Nalwalk^a, Rebecca Stadel^a, P. Ge^b, D. Lawson^b, I. Silos-Santiago^b, Lindsay B. Hough^{a,*}

^aCenter for Neuropharmacology and Neuroscience, Albany Medical College MC-136, 47 New Scotland Ave., Albany, NY 12206, USA

^bMillennium Pharmaceuticals Inc., Cambridge, MA, USA

Received 12 December 2002; received in revised form 9 April 2003; accepted 15 April 2003

Abstract

Previous studies have suggested a possible pain-modulatory role for histamine H₃ receptors, but the localization of these receptors and nature of this modulation is not clear. In order to explore the role of spinal histamine H₃ receptors in the inhibition of nociception, the effects of systemically (subcutaneous, s.c.) and intrathecally (i.t.) administered histamine H₃ receptor agonists were studied in rats and mice. Immezipip (5 mg/kg, s.c.) produced robust antinociception in rats on a mechanical (tail pinch) test but did not alter nociceptive responses on a thermal (tail flick) test. In contrast, this treatment in mice (immezipip, 5 and 30 mg/kg, s.c.) did not change either mechanically or thermally evoked nociceptive responses. When administered directly into the spinal subarachnoid space, immezipip (15–50 µg, i.t.) and R-α-methylhistamine (50 µg, i.t.) had no effect in rats on the tail flick and hot plate tests, but produced a dose- and time-dependent inhibition (90–100%) of nociceptive responses on the tail pinch test. This attenuation was blocked by administration of thioperamide (10 mg/kg, s.c.), a histamine H₃ receptor antagonist. Intrathecally administered thioperamide also reversed antinociceptive responses induced by systemically administered immezipip, which demonstrates a spinal site of action for the histamine H₃ receptor agonist. In addition, intrathecally administered immezipip (25 µg) produced maximal antinociception on the tail pinch test in wild type, but not in histamine H₃ receptor knockout (H₃KO) mice. These findings demonstrate an antinociceptive role for spinal histamine H₃ receptors. Further studies are needed to confirm the existence of modality-specific (i.e. mechanical vs. thermal) inhibition of nociception by these receptors, and to assess the efficacy of spinally delivered histamine H₃ receptor agonists for the treatment for pain.

© 2003 Elsevier Science B.V. All rights reserved.

Keywords: H₃ receptor; Immezipip; Antinociception

1. Introduction

Histamine is released from neuronal and non-neuronal (i.e. mast cell) sources and exerts its actions through several receptors, including the histamine H₃ receptor (Hough, 2001). Although histamine H₃ receptors were initially discovered to be presynaptic inhibitory autoreceptors in the brain (Arrang et al., 1983), lesion studies revealed the majority of histamine H₃ receptors are inhibitory heteroreceptors located on postsynaptic neurons (Pollard et al., 1993). Biochemical studies confirmed that the histamine H₃ receptor is a pertussis toxin-sensitive, G_i/G_o-coupled, trans-

membrane receptor linked to the inhibition of adenylate cyclase and to other pathways (Clark and Hill, 1996; Morisset et al., 2000; Lovenberg et al., 1999; Drutel et al., 2001). Histamine H₃ receptor binding sites are found in high densities in the cerebral cortex, hippocampus, olfactory nucleus, and striatum, while lower binding densities are found in the noradrenergic and serotonergic neurons of the brainstem and superficial dorsal horn of the spinal cord (Pollard et al., 1993). The cloning of human (Lovenberg et al., 1999), rat (Lovenberg et al., 2000), and guinea pig (Tardivel-Lacome et al., 2000) histamine H₃ receptor genes has led to the discovery of multiple isoforms in each species (Drutel et al., 2001; Tardivel-Lacome et al., 2000; Cogé et al., 2001; Wellendorph et al., 2002).

Several pharmacological agents have allowed the role of histamine H₃ receptors in physiological processes to be elucidated. One such tool is thioperamide, the first selective

* Corresponding author. Tel.: +1-518-262-5785; fax: +1-518-262-5799.

E-mail address: houghl@mail.amc.edu (L.B. Hough).

antagonist developed for the histamine H₃ receptor (Arrang et al., 1987). Thioperamide inhibits radiolabeled histamine H₃ receptor binding in rat cerebral cortex membranes with a K_i of 2.1 nM (Arrang et al., 1987) and remains the prototypical histamine H₃ receptor antagonist used for in vivo and in vitro research (Hill et al., 1997). The first selective histamine H₃ receptor agonist R- α -methylhistamine has been widely used as a potent in vivo tool, as well as a useful radioligand for characterizing the role of histamine H₃ receptors in physiological processes (Hill et al., 1997). R- α -methylhistamine has high affinity for the histamine H₃ receptor, giving a pD₂ of 7.8 on electrically evoked twitches of the guinea pig jejunum (Vollinga et al., 1994). However, several limitations of R- α -methylhistamine exist, including poor blood–brain barrier penetration due to its highly polar structure (Taylor et al., 1992; Rouleau et al., 1997, 2000). In addition, at higher concentrations R- α -methylhistamine can act at histamine H₁ receptors (Hey et al., 1992). Finally, R- α -methylhistamine is also a substrate for histamine N-methyltransferase, the histamine-metabolizing enzyme, causing rapid inactivation of the drug in humans (Rouleau et al., 1997, 2000). Therefore, the pro-drug (*R*)-(–)-2-[[(*N*-(1-*H*-imidazol-4-yl)-2-propyl]imino]phenylmethyl]phenol (referred to as BP 2-94) was developed to slowly metabolize into the desired active metabolite, R- α -methylhistamine (Krause et al., 1995). BP 2-94 succeeded in achieving sustained plasma levels of R- α -methylhistamine in humans, but this drug failed to penetrate the brain in rodents (Rouleau et al., 1997).

Other highly selective histamine H₃ receptor agonists have been developed, including immezipip (Vollinga et al., 1994). Immezipip is a potent histamine H₃ receptor agonist (pD₂ of 8.0 on electrically evoked twitches of the guinea pig jejunum). Unlike R- α -methylhistamine, immezipip is not a substrate for histamine N-methyltransferase, and it lacks activity at the histamine H₁ receptor (Hough and Leurs, 2002). Furthermore, immezipip may penetrate the brain (Jansen et al., 1998) and spinal cord after systemic administration, thus providing a better tool for studying the role of histamine H₃ receptors in vivo.

Localization of histamine H₃ receptors on sensory fibers has been suggested by several laboratories (Imamura et al., 1996; Ohkubo et al., 1995; Delaunois et al., 1995; Nemmar et al., 1999). Imamura et al. (1996) demonstrated a histamine H₃ receptor-induced inhibition of bradykinin-induced or capsaicin-induced release of calcitonin gene-related peptide from cardiac tissues. Delaunois et al. (1995) showed that histamine H₃ receptor agonists inhibited acetylcholine- and capsaicin-induced edema in isolated rabbit lungs, thus suggesting the presence of prejunctional histamine H₃ receptors on C fibers. In addition, the histamine H₃ receptor agonist R- α -methylhistamine was shown to inhibit the release of substance P from peripheral sciatic nerve endings of rats (Ohkubo et al., 1995).

Since nociceptive (i.e. pain) transmission is conveyed by A_δ and C sensory fibers, and histamine H₃ receptors have

been suggested to inhibit the activity of sensory fibers, then histamine H₃ receptor agonists could inhibit nociceptive transmission and show promise as analgesics. However, relatively few studies (Rouleau et al., 1997, 2000) have focused on antinociceptive effects of histamine H₃ receptor agonists. Oral administration of the prodrug BP 2-94 in mice reduced capsaicin-induced licking in mice (Rouleau et al., 2000) and inhibited nociceptive responses on the phenylbenzoquinone writhing test and on both phases of the formalin test (Rouleau et al., 1997). However, BP 2-94 failed to produce antinociceptive effects on the hot plate test (Rouleau et al., 1997). Because neither BP 2-94 nor its active metabolite R- α -methylhistamine were detectable in the brain (Rouleau et al., 1997), the mixed antinociceptive actions of BP 2-94 could be due to poor central nervous system penetration or to a limited role for the histamine H₃ receptor in pain modulation. The present work addresses the blood–brain barrier problem by assessing the antinociceptive activity of intrathecally (i.t.) and systemically (subcutaneously, s.c.) administered histamine H₃ receptor agonists.

2. Methods and materials

2.1. Animals

All experiments were approved by the Institutional Animal Care and Use Committee of Albany Medical College. Male Sprague–Dawley rats (300–350 g, Taconic Farms, Germantown, NY), housed in groups of two or three per cage, and female wild type or histamine H₃ receptor knockout mice (H₃KO, 10–14 weeks old, 20–30 g), housed up to seven per cage, were maintained on a 12 h light/dark cycle (lights on from 7:00 to 19:00 h). Food and water were provided ad libitum.

Histamine H₃ receptor knockout (H₃KO) mice were generated by targeted deletion of exon 3 of the mouse histamine H₃ receptor gene. The H₃KO targeting vector, constructed by homologous recombination in yeast (Storck et al., 1996), consisted of a lacZ-neo-URA3 cassette that replaced all but the first 45 base pairs of exon 3 and 300 base pairs of the intronic sequence downstream of exon 3. The targeted embryonic stem cell clones (129/SvEv cells) were produced by electroporation, confirmed by Southern blots, and injected into C57BL/6J blastocysts to generate chimeras. Male chimeras were mated with C57BL/6J females, and their heterozygous offspring were interbred to generate F₂ progeny. Polymerase chain reaction (PCR) was performed to genotype the resulting progeny. Mendelian inheritance patterns were seen in offspring from heterozygous matings. H₃KO mice showed no detectable histamine H₃ receptor mRNA in the brain or the spinal cord by *in situ* hybridization. Brains from these subjects also had no detectable histamine H₃ receptor binding as assessed with [³H]R- α -methylhistamine (Harper et al.,

1999). Further characterization of these H₃KO mice is being reported elsewhere (manuscript in preparation). In addition, two other laboratories have recently generated and characterized H₃KO mice (Toyota et al., 2002; Takahashi et al., 2002).

2.2. Drugs

Immepip 2 HBr (kindly provided by Professor R. Leurs, Vrije University, Amsterdam, Netherlands), R- α -methylhistamine 2 HCl (kindly provided by Dr. C. Tedford, Gliatech, Cleveland, OH), and thioperamide maleate (Tocris, Ellisville, MO) were dissolved in saline and neutralized with 1 N NaOH to pH 6.5. All doses are expressed as bases.

2.3. Surgery

For rat intrathecal injections, the spinal subarachnoid space was chronically cannulated under general anesthesia as described previously by Yaksh and Rudy (1976) with modifications (Hammond, 1988). The animals were then placed in separate cages and allowed to recover for a minimum of 10 days.

2.4. Nociceptive tests

Three nociceptive tests were performed in rats. For the hot plate test (Eddy and Leimbach, 1953), the rats were placed on a 52 °C metal surface and the latency for a hind paw lift or lick was recorded. Baseline latencies were between 8 and 14 s. Animals not responding within 60 s (cutoff) were removed from the heat source. For the tail flick test (D'Amour and Smith, 1941), the ventral surface of the rat's tail (approximately 2–5 cm from the tip) was exposed to radiant heat and the latency of tail removal from the heat was recorded. Baseline latencies were between 3 to 4 s with a 15-s cutoff. For the tail pinch test (Bianchi and Franceschini, 1954), rats were placed in a clean cage and an alligator clip exerting force equal to 625 g of weight was placed on the tail towards the tip (approximately 5–10 cm from the tip). The latency for vocalization, biting, or flicking the clip was recorded. Baseline latencies fell between 15 and 25 s with a 90-s cutoff.

Two nociceptive tests were performed in mice. In the tail immersion test (Sewell and Spencer, 1976), mice were loosely restrained in a conical polypropylene tube. The tip (2–3 cm) of the tail was immersed into a 55 °C water bath and the latency to the flick or removal of the tail from the water was recorded. Baseline latencies fell between 1 and 3 s with an 8-s cutoff. For the tail pinch test (Bianchi and Franceschini, 1954), a microserrafine arterial clip (Fine Science Tools, Foster City, CA) was placed at the base of the tail. The latency for vocalization, biting, or flicking the clip was recorded. Baseline latencies fell between 0.5 and 2 s with a 30-s cutoff.

2.5. Rat test procedure

Rats were tested at 60 s intervals with a single hot plate test, three tail flick tests, and a single tail pinch test. The sequence of nociceptive tests was performed with 60 s intervals separating the tests. Subjects were then secured in a laboratory pad for intrathecal injection. The seal at the free ending of the chronic catheter was removed and a 10 μ l manual injection was made over 1 min followed by a 10 μ l flush of saline over 1 min. Movement of an air bubble between the tubing and the syringe, as well as absence of leakage, ensured successful intrathecal injections. Following intrathecal injection, the catheter was heat-sealed, and rats were tested at 60 s intervals with single hot plate, tail flick, and tail pinch tests. Following the experiments, successful cannulations were verified by observing cut-off responses on the tail flick test after a 10 μ g morphine sulfate intrathecal injection. Some rats were baseline tested and received systemically administered drug prior to intrathecal injection. For systemic injections in rats, subjects received a single baseline tail flick and tail pinch tests.

2.6. Mouse test procedure

Intrathecal injections were made exactly as described by Hylden and Wilcox (1980). Mice were first baseline tested on the tail immersion and tail pinch tests. Intrathecal injections were performed with a total of 5 μ l of solution injected over 30 s. Following injections, subjects were tested on the tail immersion and tail pinch test. The intrathecal method used presently was independently validated by demonstrating maximal nociceptive activity of intrathecal morphine in at least 95% of injected subjects.

2.7. Statistics

Results are expressed in latencies, mean \pm S.E.M. Repeated measures analysis of variance (ANOVA) and planned comparisons were used to analyze the data (Statistica, CSS, Tulsa, OK).

3. Results

3.1. Systemic studies

Systemically administered immepip (50 μ g or 5 mg/kg, s.c.) had no effect on tail flick latencies in rats (Fig. 1A). However, the larger dose (5 mg/kg) produced significant antinociception on the tail pinch test 30 and 60 min post-injection (Fig. 1B). The smaller dose (50 μ g), shown below to be active intrathecally, was inactive after subcutaneous administration. In mice, large systemic doses of immepip (5 and 30 mg/kg, s.c.) failed to alter nociceptive responses on

Fig. 1. Effect of systemically administered immeipip on nociceptive responses. Rats were tested for baseline responses (BL), then received immeipip (50 μ g or 5 mg/kg, s.c.) or saline vehicle. Tail flick (A) and tail pinch (B) latencies (ordinate, s, mean \pm S.E.M., number of subjects in parentheses) were recorded at the times shown after immeipip injection (abscissa, min). *** P <0.01, ** P <0.001 vs. saline at same time interval, respectively.

either the tail immersion or the tail pinch test (data not shown).

3.2. Rat intrathecal studies

When injected intrathecally, histamine H₃ receptor agonists did not change nociceptive responses to the tail flick

test (data not shown) or the hot plate test (data not shown). In contrast, intrathecal administration of immeipip (50 μ g) produced nearly maximal antinociception on the tail pinch test (Fig. 2). Significant effects, seen as early as 5 min post-injection, remained significant over the course of 60 min, and declined thereafter. A lower dose of immeipip (15 μ g) produced mean nociceptive responses greater than those produced by saline; however, this effect was not statistically significant. Similar to the effect of immeipip (50 μ g), R- α -methylhistamine (50 μ g), produced significant antinociception on the tail pinch test from 10 to 120 min post-injection.

In order to determine if the antinociceptive action of immeipip is mediated by the histamine H₃ receptor, the effect of the selective histamine H₃ receptor antagonist thioperamide was determined on immeipip antinociception (Fig. 3). Similar to what was seen in the previous experiment, nociceptive responses on the tail flick test were not altered by combinations of intrathecal immeipip and subcutaneous thioperamide (data not shown). However, intrathecal immeipip antinociception on the tail pinch test was abolished by subcutaneous pretreatment with thioperamide (Fig. 3A). In order to test the hypothesis that systemically administered immeipip induces mechanical antinociception

Fig. 2. Effect of intrathecal histamine H₃ receptor agonists on nociceptive responses. Rats were tested for baseline responses (BL) then received immeipip (15 μ g or 50 μ g, i.t.), R- α -methylhistamine (RAMH, 50 μ g), or saline vehicle. Tail pinch latencies (ordinate, s, mean \pm S.E.M., number of subjects in parentheses) were recorded at the times shown after histamine H₃ receptor agonist injection (abscissa, min). *** P <0.05, ** P <0.01 vs. saline at same time interval, respectively.

by action on spinal histamine H₃ receptors, the effects of intrathecal thioperamide were studied after subcutaneous administration of immeip. In these experiments, mechanical antinociception produced by systemically administered immeip was completely reversed by intrathecal thioperamide treatment (Fig. 3B). Thioperamide alone did not alter nociceptive responses on any test.

Fig. 4. Effect of intrathecal immeip on nociceptive responses in wild type (wt) and H₃ receptor knockout (ko) mice. Mice were tested for baseline responses (BL), then received immeip (imm, 10 or 25 µg) or saline vehicle. Tail pinch latencies (ordinate, s, mean ± S.E.M., number of subjects in parentheses) were recorded at the times shown after immeip injection (abscissa, min). **P<0.001 vs. saline of same genotype.

3.3. Mouse intrathecal studies

Intrathecal administration of immeip (25 µg) in wild type and histamine H₃ receptor knockout (H₃KO) mice produced no changes in nociceptive responses on the tail immersion test (data not shown). On the tail pinch test, however, this treatment produced maximal, reversible antinociception in wild type mice 5 and 10 min after administration (Fig. 4). On the same test, this treatment was completely without effect in H₃KO mice. A lower dose of immeip (10 µg) produced mean nociceptive latencies at 5 min post-injection in wild type mice that were greater than those produced by saline; however, this effect was not statistically significant.

Fig. 3. Effect of thioperamide, a histamine H₃ receptor antagonist, on immeip antinociception. Rats were tested for baseline responses (BL), then immediately received a subcutaneous injection of either thioperamide (A: thio, 10 mg/kg), immeip (B: imm, 5 mg/kg), or saline (A and B: sal). Thirty minutes later, baseline testing was repeated (A: 0; B: 30), followed by intrathecal injection of immeip (A: imm, 50 µg), thioperamide (B: thio, 20 µg), or saline (A and B: sal). Tail pinch latencies (ordinate, s, mean ± S.E.M., number of subjects in parentheses) were recorded at the times shown after immeip injection (abscissa, min). Data from A and B were from different subjects. *+*P<0.05, P<0.005 vs. sal/sal at the same time interval, respectively. +,++P<0.05, P<0.005 vs. imm+sal at same time interval, respectively.

4. Discussion

Several lines of evidence support the hypothesis that the activation of histamine H₃ receptors attenuates mechanical nociception. First, the antinociception was dose-dependent (Fig. 2). Second, the antinociception was reversible (Figs. 1B–4). Third, two structurally different histamine H₃ receptor agonists produced the effect (Fig. 2). Fourth, the antinociceptive effect of immepip was blocked by the selective histamine H₃ receptor antagonist thioperamide in rats (Fig. 3). Finally, wild type, but not H₃KO mice, demonstrated mechanical antinociception after intrathecal administration of immepip (Fig. 4).

Present results offer considerable proof for a spinal site of action for the pain-modulatory effects of histamine H₃ receptor agonists. Low doses of intrathecal immepip produced maximal mechanical antinociception in both rats (Figs. 2 and 3) and mice (Fig. 4). In rats, the intrathecal dose of immepip was not effective when administered systemically, suggesting that the effects of intrathecal immepip are localized to the spinal cord. In agreement with the idea of spinally located histamine H₃ receptors, autoradiography studies performed with [³H]R- α -methylhistamine showed low-density, specific labeling of histamine H₃ receptors in the superficial layers of the rat dorsal horn (Pollard et al., 1993). Also, in situ hybridization studies in rats revealed histamine H₃ receptor mRNA in the sensory neurons of the dorsal horn and dorsal root ganglia (Heron et al., 2001). In rat spinal cord slices pre-labeled with [³H]noradrenaline, R- α -methylhistamine caused a decrease in electrically evoked [³H]noradrenaline release (Celuch, 1995), also suggesting localization of functional histamine H₃ receptors in the spinal cord. Finally, unpublished immunohistochemical studies in our laboratory revealed intense histamine H₃ receptor-like immunofluorescence in both the spinal cord and the dorsal root ganglia of mice (Cannon et al., unpublished).

Based on the findings of Figs. 1 and 2, systemically administered immepip could have been exerting its antinociceptive effects in rats peripherally, spinally, or supraspinally. R- α -methylhistamine does not reach the brain in measurable concentrations after systemic administration in rats and mice (Rouleau et al., 1997, 2000; Yamasaki et al., 1994), but comparable studies have not been performed with immepip. Thus, the degree of brain and spinal penetration in our experiments is unknown. However, immepip (5 mg/kg, s.c.) was shown to reduce histamine release in the anterior hypothalamus after systemic administration in rats (Jansen et al., 1998). Therefore, additional experiments were performed to directly evaluate the role of spinal histamine H₃ receptors as a target for systemically administered immepip. When administered intrathecally, thioperamide completely reversed mechanical antinociception induced by systemically administered immepip (Fig. 3B). This experiment completely rules out peripheral and supraspinal sites of action since histamine H₃ receptors at these sites

could not to have been blocked by such a low intrathecal dose of thioperamide (20 μ g). In addition, because subcutaneous administration of immepip induces antinociception in rats but not mice (Fig. 1), yet the same compound is effective after intrathecal treatment in both species, it is likely that systemic treatment in mice does not result in appreciable drug levels in the spinal cord. Thus, systemic administration of immepip in rats appears to induce mechanical antinociception via activation of spinal histamine H₃ receptors.

Among many possible spinal sites of action, two targets for the inhibition of mechanical nociception by histamine H₃ receptor agonists can be considered. First, histamine H₃ receptors could be located on primary afferent fiber terminals, where they could inhibit the synthesis and/or release of neurotransmitters. Based upon the present results, histamine H₃ receptors may not be located on fibers mediating thermal nociceptive transmission [i.e. polymodal C, C heat, and A δ Type II mechanoheat fibers (Beck et al., 1974; Yeomans and Proudfoot, 1996; Ringkamp et al., 2001)]. Because recent studies suggest that mechanical nociception is mediated primarily by capsaicin-insensitive A δ high threshold mechanoreceptors and A δ Type I mechanoheat nociceptors (Magerl et al., 2001; Ringkamp et al., 2001; Szolcsanyi et al., 1988), histamine H₃ receptors might be localized on the central terminals of these types of nociceptive fibers.

The second possible spinal target for histamine H₃ receptor agonists may be histamine H₃ receptors on dendrites or soma of second order neurons. Current studies have revealed different types of modality-specific spinothalamic tract neurons originating from lamina I of the dorsal horn (Craig and Andrew, 2002). Lamina I is the region of the dorsal horn where A δ fibers primarily terminate. Histamine H₃ receptors may be located on mechano-specific lamina I spinothalamic neurons, but this localization has not yet been established.

The present results confirm and extend findings by Rouleau et al. (1997) showing that activation of histamine H₃ receptors does not attenuate thermal nociceptive responses. Based on the earlier findings, it seemed possible that poor penetration of the brain or spinal cord by orally administered histamine H₃ receptor agonists might account for the absence of activity on thermal nociceptive (i.e. hot plate) responses. However, the present results, showing the same absence of activity on thermal nociceptive responses after systemically and intrathecally administered histamine H₃ receptor agonists, indicate that the degree of penetration by these drugs into the spinal cord does not account for these findings.

The absence of histamine H₃ receptor agonist and antagonist actions on thermal nociception found presently and by Rouleau et al. (1997) is in apparent contradiction with other findings. Two studies reported hyperalgesia on the mouse hot plate test after administration of very high doses of R- α -methylhistamine (100 mg/kg, i.p.; Malmberg-Aiello et al., 1994) and imetit (50 mg/kg, i.p.; Farzin et al., 2002).

Table 1
Intrathecally administered drugs that inhibit acute mechanical and thermal nociceptive transmission in animals and humans

Class	Examples of drugs	References
μ-Opioid agonist	Morphine, Endomorphin-1 and 2	(Abram, 1999) ^{a,b} (Przewlocki et al., 1999) ^a
α ₂ -Adrenergic agonist	Clonidine, Oxymetazoline	(Abram, 1999) ^{a,b} (Sherman et al., 1987) ^a
Muscarinic agonist	Oxotremorine	(Machelska et al., 1999) ^a
Adenosine receptor agonist	N6-cyclohexyladenosine, <i>N</i> -ethylcarboxiamidoadenosine	(Gouarderes et al., 2000) ^a
Neuropeptide FF analog	F8Famide, FMRFamide	(Gouarderes et al., 1993) ^a
COX inhibitor	Ketorolac	(Abram, 1999) ^{a,b}
P2Y agonist	UTP, UDP	(Okada et al., 2002) ^a
AMPA/KA receptor antagonist	LY293558	(Von Bergen et al., 2002) ^a
Acetylcholinesterase inhibitor	Neostigmine	(Abram, 1999) ^{a,b}

^a Animals.^b Humans.

However, several studies have shown that much lower doses (e.g. 5 mg/kg, i.p.) of these histamine H₃ receptor agonists are sufficient to activate brain histamine H₃ receptors after systemic administration (Blandina et al., 1996; Farzin and Attarzadeh, 2000; Giovannini et al., 1999). Although the present studies did not measure hot plate latencies in mice after systemic administration of immepip, no effect of immepip was seen on another thermal assay (i.e. the mouse tail immersion test) after administration of histamine H₃ receptor-activating doses (5 and 30 mg/kg, s.c.). It is also noteworthy that the same studies (Malmborg-Aiello et al., 1994; Farzin et al., 2002) found slight antinociceptive activity on the mouse hot plate test after thioperamide treatment. We did not observe such effects with thioperamide in rats after systemic administration of a histamine H₃ receptor-blocking dose.

Many analgesics are effective after intrathecal administration in animals and man. A literature review of intrathecal drugs tested on both mechanical and thermal nociception has revealed that all are effective on both kinds of nociceptive stimuli in normal animals (Table 1). The present results suggest that histamine H₃ receptor agonists may differ from these other analgesics because they may attenuate mechanical but not thermal nociception. In fact, previous experiments indicate that separation of these modalities is possible (Kuraishi et al., 1985, 1991). However, results from studies with μ- and κ-opioid agonists suggest that alleged modality-specific inhibition may instead result from a difference in stimulus intensities used in the tests (Parsons and Headley, 1989). Therefore, further

studies involving varying mechanical and thermal stimulus intensities are needed to confirm or refute the possibility of modality-specific inhibition of nociceptive transmission by histamine H₃ receptor agonists. The effects of histamine H₃ receptor agonists on mechanical nociceptive responses produced in tissues other than the tail also require further study. A previous study reported that systemic administration of R-α-methylhistamine (20 mg/kg, i.p.) had no effect on the rat paw pressure test up to 3 h post-injection, but produced slight hyperalgesia 4 to 7 h later (Malmborg-Aiello et al., 1994). It is unclear if using a different histamine H₃ agonist (i.e. immepip) and/or a different route of administration (i.e. intrathecal) would produce different outcomes on the rat paw pressure test. Although histamine H₃ receptor agonists seem to show antinociceptive activity on some forms of mechanical nociception, further studies are needed to evaluate the pain-relieving potential of these drugs.

Acknowledgements

This work was supported by grants from the National Institute on Drug Abuse (DA-03816 and DA-07307). We thank Prof. Rob Leurs (Vrije University, Amsterdam, Netherlands) for the sample of immepip and Dr. Frank Rice (Albany Medical College, Albany, NY) for valuable discussions.

References

- Abram, S.E., 1999. Spinally delivered analgesic drugs. In: Yaksh, T. (Ed.), *Spinal Drug Delivery*. Elsevier, Amsterdam, pp. 457–476.
- Arrang, J.M., Garbarg, M., Schwartz, J.C., 1983. Auto-inhibition of brain histamine release mediated by a novel class (H₃) of histamine receptors. *Nature* 302, 832–837.
- Arrang, J.M., Garbarg, M., Lancelot, J., Lecomte, J.M., Pollard, H., Robba, M., Schunack, W., Schwartz, J.C., 1987. Highly potent and selective ligands for histamine H₃-receptors. *Nature* 327, 117–123.
- Beck, P.W., Handwerker, H.O., Zimmermann, M., 1974. Nervous outflow from the cat's foot during noxious radiant heat stimulation. *Brain Res.* 67, 373–386.
- Bianchi, C., Franceschini, J., 1954. Experimental observations on Haffner's method for testing analgesic drugs. *Br. J. Pharmacol.* 9, 280–284.
- Blandina, P., Giorgetti, M., Bartolini, L., Cecchi, M., Timmerman, H., Leurs, R., Pepeu, G., Giovannini, M.G., 1996. Inhibition of cortical acetylcholine release and cognitive performance by histamine H₃ receptor activation in rats. *Br. J. Pharmacol.* 119, 1656–1664.
- Celuch, S.M., 1995. Possible participation of histamine H₃ receptors in the modulation of noradrenaline release from rat spinal cord slices. *Eur. J. Pharmacol.* 287, 127–133.
- Clark, E.A., Hill, S.J., 1996. Sensitivity of histamine H₃ receptor agonist-stimulated [³⁵S]GTP gamma[S] binding to pertussis toxin. *Eur. J. Pharmacol.* 296, 223–225.
- Cogé, F., Guenin, S.P., Audinot, V., Renouard-Try, A., Beauverger, P., Macia, C., Ouvry, C., Nagel, N., Rique, H., Boutin, J.A., Galizzi, J.P., 2001. Genomic organization and characterization of splice variants of the human histamine H₃ receptor. *Biochem. J.* 355, 279–288.
- Craig, A.D., Andrew, D., 2002. Responses of spinothalamic lamina I neu-

- rons to repeated brief contact heat stimulation in the cat. *J. Neurophysiol.* 87, 1902–1914.
- D'Amour, F.E., Smith, D.L., 1941. A method for determining loss of pain sensation. *J. Pharmacol. Exp. Ther.* 72, 74–79.
- Delaunois, A., Gustin, P., Garbarg, M., Ansay, M., 1995. Modulation of acetylcholine, capsaicin and substance P effects by histamine H₃ receptors in isolated perfused rabbit lungs. *Eur. J. Pharmacol.* 277, 243–250.
- Drutel, G., Peitsaro, N., Karlstedt, K., Wieland, K., Smit, M.J., Timmerman, H., Panula, P., Leurs, R., 2001. Identification of rat H₃ receptor isoforms with different brain expression and signaling properties. *Mol. Pharmacol.* 59, 1–8.
- Eddy, N.B., Leimbach, D., 1953. Synthetic analgesics: II. Dithienylbutenyl and dithienylbutylamines. *J. Pharmacol. Exp. Ther.* 107, 385–393.
- Farzin, D., Attarzadeh, M., 2000. Influence of different histamine receptor agonists and antagonists on apomorphine-induced licking behavior in rat. *Eur. J. Pharmacol.* 404, 169–174.
- Farzin, D., Asghari, L., Nowrouzi, M., 2002. Rodent antinociception following acute treatment with different histamine receptor agonists and antagonists. *Pharmacol. Biochem. Behav.* 72, 751–760.
- Giovannini, M.G., Bartolini, L., Bacciottini, L., Greco, L., Blandina, P., 1999. Effects of histamine H₃ receptor agonists and antagonists on cognitive performance and scopolamine-induced amnesia. *Behav. Brain Res.* 104, 147–155.
- Gouarderes, C., Sutak, M., Zajac, J.M., Jhamandas, K., 1993. Antinociceptive effects of intrathecally administered F8Famide and FMRFamide in the rat. *Eur. J. Pharmacol.* 237, 73–81.
- Gouarderes, C., Sutak, M., Zajac, J.M., Jhamandas, K., 2000. Role of adenosine in the spinal antinociceptive and morphine modulatory actions of neuropeptide FF analogs. *Eur. J. Pharmacol.* 406, 391–401.
- Hammond, D.L., 1988. Intrathecal administration: methodological considerations. In: Besson, J.M. (Ed.), *Progress in Brain Research*. Elsevier, New York, pp. 313–320.
- Harper, E.A., Shankley, N.P., Black, J.W., 1999. Evidence that histamine homologues discriminate between H₃-receptors in guinea-pig cerebral cortex and ileum longitudinal muscle myenteric plexus. *Br. J. Pharmacol.* 128, 751–759.
- Heron, A., Rouleau, A., Cochois, V., Pillot, C., Schwartz, J.C., Arrang, J.M., 2001. Expression analysis of the histamine H(3) receptor in developing rat tissues. *Mech. Dev.* 105, 167–173.
- Hey, J.A., Del Prado, M., Egan, R.W., Kreutner, W., Chapman, R.W., 1992. (R)-alpha-methylhistamine augments neural, cholinergic bronchospasm in guinea pigs by histamine H₁ receptor activation. *Eur. J. Pharmacol.* 211, 421–426.
- Hill, S.J., Ganellin, C.R., Timmerman, H., Schwartz, J.C., Shankley, N.P., Young, J.M., Schunack, W., Levi, R., Haas, H.L., 1997. International Union of Pharmacology: XIII. Classification of histamine receptors. *Pharmacol. Rev.* 49, 253–278.
- Hough, L., 2001. Genomics meets histamine receptors: new subtypes, new receptors. *Mol. Pharmacol.* 59, 415–419.
- Hough, L., Leurs, R., 2002. Physiology and pharmacology of histamine receptors. In: Davis, C.H., Pangalos, M.N. (Eds.), *Structure and Function of GPCRs in the Nervous System*. Oxford Univ. Press, Oxford, pp. 307–348.
- Hylden, J.L., Wilcox, G.L., 1980. Intrathecal morphine in mice: a new technique. *Eur. J. Pharmacol.* 67, 313–316.
- Imamura, M., Smith, N.C., Garbarg, M., Levi, R., 1996. Histamine H₃-receptor-mediated inhibition of calcitonin gene-related peptide release from cardiac C fibers. A regulatory negative-feedback loop. *Circ. Res.* 78, 863–869.
- Jansen, F.P., Mochizuki, T., Yamamoto, Y., Timmerman, H., Yamatodani, A., 1998. In vivo modulation of rat hypothalamic histamine release by the histamine H₃ receptor ligands, immezipip and clobenpropipt. Effects of intrahypothalamic and peripheral application. *Eur. J. Pharmacol.* 362, 149–155.
- Krause, M., Rouleau, A., Stark, H., Luger, P., Lipp, R., Garbarg, M., Schwartz, J.C., Schunack, W., 1995. Synthesis, X-ray crystallography, and pharmacokinetics of novel azomethine prodrugs of (R)-alpha-methyhistamine: highly potent and selective histamine H₃ receptor agonists. *J. Med. Chem.* 38, 4070–4079.
- Kuraishi, Y., Hirota, N., Sato, Y., Hino, Y., Satoh, M., Takagi, H., 1985. Evidence that substance P and somatostatin transmit separate information related to pain in the spinal dorsal horn. *Brain Res.* 325, 294–298.
- Kuraishi, Y., Kawamura, M., Yamaguchi, T., Houtani, T., Kawabata, S., Futaki, S., Fujii, N., Satoh, M., 1991. Intrathecal injections of galanin and its antiserum affect nociceptive response of rat to mechanical, but not thermal, stimuli. *Pain* 44, 321–324.
- Lovenberg, T.W., Roland, B.L., Wilson, S.J., Jiang, X., Pyati, J., Huvar, A., Jackson, M.R., Erlander, M.G., 1999. Cloning and functional expression of the human histamine H₃ receptor. *Mol. Pharmacol.* 55, 1101–1107.
- Lovenberg, T.W., Pyati, J., Chang, H., Wilson, S.J., Erlander, M.G., 2000. Cloning of rat histamine H(3) receptor reveals distinct species pharmacological profiles. *J. Pharmacol. Exp. Ther.* 293, 771–778.
- Machelska, H., Pavone, F., Capone, F., Przewlocka, B., 1999. Antinociception after both peripheral and intrathecal injection of oxotremorine is modulated by spinal nitric oxide. *Eur. Neuropsychopharmacol.* 9, 213–217.
- Magerl, W., Fuchs, P.N., Meyer, R.A., Treede, R.D., 2001. Roles of capsaicin-insensitive nociceptors in cutaneous pain and secondary hyperalgesia. *Brain* 124, 1754–1764.
- Malmborg-Aiello, P., Lamberti, C., Ghelardini, C., Giotti, A., Bartolini, A., 1994. Role of histamine in rodent antinociception. *Br. J. Pharmacol.* 111, 1269–1279.
- Morisset, S., Rouleau, A., Ligneau, X., Ghahou, F., Tardivel-Lacombe, J., Stark, H., Schunack, W., Ganellin, C.R., Schwartz, J.C., Arrang, J.M., 2000. High constitutive activity of native H₃ receptors regulates histamine neurons in brain. *Nature* 408, 860–864.
- Nemmar, A., Delaunois, A., Beckers, J.F., Sulon, J., Bloden, S., Gustin, P., 1999. Modulatory effect of imetit, a histamine H₃ receptor agonist, on C-fibers, cholinergic fibers and mast cells in rabbit lungs in vitro. *Eur. J. Pharmacol.* 371, 23–30.
- Ohkubo, T., Shibata, M., Inoue, M., Kaya, H., Takahashi, H., 1995. Regulation of substance P release mediated via prejunctional histamine H₃ receptors. *Eur. J. Pharmacol.* 273, 83–88.
- Okada, M., Nakagawa, T., Minami, M., Satoh, M., 2002. Analgesic effects of intrathecal administration of P2Y nucleotide receptor agonists UTP and UDP in normal and neuropathic pain model rats. *J. Pharmacol. Exp. Ther.* 303, 66–73.
- Parsons, C.G., Headley, P.M., 1989. Spinal antinociceptive actions of mu- and kappa-opioids: the importance of stimulus intensity in determining 'selectivity' between reflexes to different modalities of noxious stimulus. *Br. J. Pharmacol.* 98, 523–532.
- Pollard, H., Moreau, J., Arrang, J.M., Schwartz, J.C., 1993. A detailed autoradiographic mapping of histamine H₃ receptors in rat brain areas. *Neuroscience* 52, 169–189.
- Przewlocki, R., Labuz, D., Mikal, J., Przewlocka, B., Tomboly, C., Toth, G., 1999. Pain inhibition by endomorphins. *Ann. N.Y. Acad. Sci.* 897, 154–164.
- Ringkamp, M., Peng, Y.B., Wu, G., Hartke, T.V., Campbell, J.N., Meyer, R.A., 2001. Capsaicin responses in heat-sensitive and heat-insensitive A-fiber nociceptors. *J. Neurosci.* 21, 4460–4468.
- Rouleau, A., Garbarg, M., Ligneau, X., Mantion, C., Lavie, P., Advenier, C., Lecomte, J.M., Krause, M., Stark, H., Schunack, W., Schwartz, J.C., 1997. Bioavailability, antinociceptive and antiinflammatory properties of BP 2-94, a histamine H₃ receptor agonist prodrug. *J. Pharmacol. Exp. Ther.* 281, 1085–1094.
- Rouleau, A., Stark, H., Schunack, W., Schwartz, J.C., 2000. Anti-inflammatory and antinociceptive properties of BP 2-94, a histamine H(3)-receptor agonist prodrug. *J. Pharmacol. Exp. Ther.* 295, 219–225.
- Sewell, R.D., Spencer, P.S., 1976. Antinociceptive activity of narcotic agonist and partial agonist analgesics and other agents in the tail-immersion test in mice and rats. *Neuropharmacology* 15, 683–688.
- Sherman, S., Loomis, C., Milne, B., Cervenko, F., 1987. Prolonged spinal

- analgesia in the rat with the alpha-adrenoceptor agonist oxymetazoline. *Eur. J. Pharmacol.* 140, 25–32.
- Storck, T., Kruth, U., Kolhekar, R., Sprengel, R., Seuberg, P.H., 1996. Rapid construction in yeast of complex targeting vectors for gene manipulation in the mouse. *Nucleic Acids Res.* 24, 4594–4596.
- Szolcsanyi, J., Anton, F., Reeh, P.W., Handwerker, H.O., 1988. Selective excitation by capsaicin of mechano-heat sensitive nociceptors in rat skin. *Brain Res.* 446, 262–268.
- Takahashi, K., Suwa, H., Ishikawa, T., Kotani, H., 2002. Targeted disruption of H₃ receptors results in changes in brain histamine tone leading to an obese phenotype. *J. Clin. Invest.* 110, 1791–1799.
- Tardivel-Lacourbe, J., Rouleau, A., Heron, A., Morisset, S., Pillot, C., Cochois, V., Schwartz, J.C., Arrang, J.M., 2000. Cloning and cerebral expression of the guinea pig histamine H₃ receptor: evidence for two isoforms. *Neuroreport* 11, 755–759.
- Taylor, S.J., Michel, A.D., Kilpatrick, G.J., 1992. In vivo occupancy of histamine H₁ receptors by thioperamide and (R)-alpha-methylhistamine measured using histamine turnover and an ex vivo labeling technique. *Biochem. Pharmacol.* 44, 1261–1267.
- Toyota, H., Dugovic, C., Kochl, M., Laposky, A.D., Weber, C., Ngo, K., Wu, Y., Lee, D.H., Yanai, K., Sakurai, E., Watanabe, T., Liu, C., Chen, J., Barbier, A.J., Turek, F.W., Fung-Leung, W.P., Lovenberg, T.W., 2002. Behavioral characterization of mice lacking histamine H(3) receptors. *Mol. Pharmacol.* 62, 389–397.
- Vollinga, R.C., de Koning, J.P., Jansen, F.P., Leurs, R., Menge, W.M., Timmerman, H., 1994. A new potent and selective histamine H₃ receptor agonist, 4-(1-H-imidazol-4-ylmethyl)piperidine. *J. Med. Chem.* 37, 332–333.
- Von Bergen, N.H., Subieta, A., Brennan, T.J., 2002. Effect of intrathecal non-NMDA EAA receptor antagonist LY293558 in rats: a new class of drugs for spinal anesthesia. *Anesthesiology* 97, 177–182.
- Wellendorph, P., Goodman, M.W., Burstein, E.S., Nash, N.R., Brann, M.R., Weiner, D.M., 2002. Molecular cloning and pharmacology of functionally distinct isoforms of the human histamine H(3) receptor. *Neuropharmacology* 42, 929–940.
- Yaksh, T., Rudy, T.A., 1976. Chronic catheterization of the spinal subarachnoid space. *Physiol. Behav.* 17, 1031–1036.
- Yamasaki, S., Sakurai, E., Hikichi, N., Sakai, N., Maeyama, K., Watanabe, T., 1994. The disposition of (R)-alpha-methylhistamine, a histamine H₃ receptor agonist, in rats. *J. Pharm. Pharmacol.* 46, 371–374.
- Yeomans, D.C., Proudfoot, H.K., 1996. Nociceptive responses to high and low rates of noxious cutaneous heating are mediated by different nociceptors in the rat: electrophysiological evidence. *Pain* 68, 141–150.