Structure des données en R

Joël Kazadi

2022-09-13

Cette section aborde les différentes structures de données disponibles sous le langage R. On énumère principalement les classes suivantes :

- les vecteurs ;
- les matrices;
- les arrays;
- les dataframes.

1 Création d'un vecteur

Un vecteur est un objet de dimension égale à 1 (ligne ou colonne). Les éléments d'un vecteur doivent nécessairement être de nature identique, i.e. de même mode.

1.1 Données numériques

L'objet vector1 est de la classe "vecteur". Il est de taille égale à 3 et est composé des données de mode "numérique".

```
vector1 <- c(1,2,3)
print(vector1)

## [1] 1 2 3
is.vector(vector1)

## [1] TRUE
length(vector1)

## [1] 3
str(vector1)</pre>
```

1.2 Chaînes de caractères

num [1:3] 1 2 3

L'objet vector2 est de la classe "vecteur". Il est de taille égale à 2 et est composé des données de mode "chaîne de caractères".

```
vector2 <- c("Joe","Kaz")
print(vector2)
## [1] "Joe" "Kaz"</pre>
```

```
is.vector(vector2)
## [1] TRUE
length(vector2)
## [1] 2
str(vector2)
## chr [1:2] "Joe" "Kaz"
```

2 Création d'une matrice

Une matrice est un objet de dimension égale à 2 (lignes et colonnes). Comme pour les vecteurs, les éléments d'une matrice doivent nécessairement être de même mode.

2.1 Opérations sur les matrices

Créons une matrice carrée de taille égale à 3.

```
matrix1 <- matrix(1:9, nrow=3, ncol=3, byrow = TRUE)
print(matrix1)</pre>
```

```
## [,1] [,2] [,3]
## [1,] 1 2 3
## [2,] 4 5 6
## [3,] 7 8 9
```

Créons une matrice unitaire de taille égale à 3.

```
identite <- diag(x = 1, nrow = 3)
print(identite)</pre>
```

```
## [,1] [,2] [,3]
## [1,] 1 0 0
## [2,] 0 1 0
## [3,] 0 0 1
```

Effectuons le produit matriciel des deux précédentes matrices.

matrix1%*%identite

```
## [,1] [,2] [,3]
## [1,] 1 2 3
## [2,] 4 5 6
## [3,] 7 8 9
```

Trouvons la transposée de la matrice matrix1.

t(matrix1)

```
## [,1] [,2] [,3]
## [1,] 1 4 7
## [2,] 2 5 8
## [3,] 3 6 9
```

Calcul des sommes et des moyennes à partir d'une matrice par ligne et par colonne.

```
matrix2 <- matrix(c(25,7,6,13), nrow=2, ncol=2, byrow = FALSE)
print(matrix2)</pre>
```

```
##
        [,1] [,2]
## [1,]
          25
## [2,]
           7
                13
rowSums(matrix2)
## [1] 31 20
colSums(matrix2)
## [1] 32 19
rowMeans(matrix2)
## [1] 15.5 10.0
colMeans(matrix2)
## [1] 16.0 9.5
Calcul du déterminant, de l'inverse, de la décomposition de Cholesky ainsi que des valeurs propres et vecteurs
propres de la matrice matrix2.
det(matrix2)
## [1] 283
solve(matrix2)
                             [,2]
##
                [,1]
## [1,] 0.04593640 -0.02120141
## [2,] -0.02473498 0.08833922
chol(matrix2)
##
        [,1] [,2]
## [1,]
           5 1.2
## [2,]
           0 3.4
eigen(matrix2)
## eigen() decomposition
## $values
## [1] 27.83176 10.16824
##
## $vectors
##
              [,1]
                          [,2]
## [1,] 0.9043401 -0.3750138
## [2,] 0.4268125 0.9270192
```

2.2 Manipulation des matrices

Créons une matrice de dimension 3x2 dont les entrées sont du mode "chaîne de caractères".

```
matrix3 <- matrix(c("A","B","C","d","e","f"), nrow=3, ncol=2)
print(matrix3)</pre>
```

```
## [,1] [,2]
## [1,] "A" "d"
## [2,] "B" "e"
```

```
## [3,] "C" "f"
dim(matrix3)

## [1] 3 2

Renommons les lignes et les colonnes de la matrice matrix3.

rownames(matrix3)=c("L1", "L2", "L3")
colnames(matrix3)=c("C1", "C2")
print(matrix3)

## C1 C2
## L1 "A" "d"
## L2 "B" "e"
## L3 "C" "f"

Extrayons les éléments des deux dernières lignes sur la première colonne de la matrice matrix3 suivant des approches:

• Approche par "index";
```

```
• Approche par "étiquette".
matrix3[c(2,3),1]
                                #approche par index
## L2 L3
## "B" "C"
matrix3[c("L2", "L3"),"C1"]
                                #approche par etiquette
## L2 L3
## "B" "C"
Modifions toutes les entrées sur la dernière colonne de la matrice matrix3.
matrix3[c(1:3),2]=c("D","E","F")
print(matrix3)
##
      C1 C2
## L1 "A" "D"
## L2 "B" "E"
```

3 Création d'un array

L3 "C" "F"

[1,]

[2,]

[3,]

##

0

0

0

0

0

0

0

0

0

0

0

0

Un array est un objet de dimension égale à n > 2. Comme pour les vecteurs et les matrices, les éléments d'un array doivent nécessairement être de même mode, i.e. soit numérique, soit chaîne de caractère.

```
## , , 2
##
##
         [,1] [,2] [,3] [,4]
## [1,]
            0
                  0
                        0
## [2,]
            0
                  0
                        0
                              0
## [3,]
            0
                  0
                        0
                              0
```

4 Création d'un dataframe

Dans les vecteurs ou les matrices, les éléments doivent être de même nature, i.e. il y a homogéneité des données. Les dataframes permettent d'avoir des données de nature variée, i.e. à la fois de mode numerique et de mode caractère.

```
Econometrie Statistique
                                        Niveau
## Kadima
                     18
                                  14
                                            Bon
## Kazadi
                     16
                                  13
                                         Moyen
## Nsamba
                     17
                                  15
                                          <NA>
## Malu
                     18
                                  19 Excellent
```

Réalisons le résumé statistique du dataframe, puis inspectons la présence de valeurs manquantes dans ce dataframe.

```
summary(data)
```

```
##
     Econometrie
                     Statistique
                                        Niveau
                            :13.00
##
    Min.
           :16.00
                    Min.
                                     Length:4
##
    1st Qu.:16.75
                    1st Qu.:13.75
                                     Class :character
   Median :17.50
                    Median :14.50
                                     Mode :character
           :17.25
                            :15.25
##
   Mean
                    Mean
##
    3rd Qu.:18.00
                    3rd Qu.:16.00
           :18.00
   Max.
                    Max.
                            :19.00
summary(is.na(data))
```

```
## Econometrie Statistique Niveau
## Mode :logical Mode :logical Mode :logical
## FALSE:4 FALSE:3
## TRUE :1
```