

This Evening's Agenda

- 1. Introduction and what does a Telecommunications engineer study?
- 2. Limited Highschool Revision and background
- 3. The Time Domain
- 4. The Frequency Domain
- 5. Filtering
- 6. Modulation

/whois @beLarge

- Graduated Bachelor Engineering (Telecommunications) First Class Honours at QUT in
 2009
- Worked as a telecommunications engineer at QR (QR National -> Aurizon) for 7 and a bit years – as a Data Communications Engineer (IP Route & Switch, Network Security & Network Monitoring)
- Did some other stuff went back to Uni and studied a Master of Business in Applied
 Finance and I am now interested in engineering Asset Management
- You might know me from events such as the MC For BSides Brisbane!
- Committee Member of the College of Information Technology, Telecommunications and Electronics Engineers (ITEE), Engineers Australia
- Involved with the Brisbane Branch of the International Society of Automation (ISA)

What is Telecommunications?

Telecommunications is the body of knowledge that enables the transmission of data (information?) between participants over distances by manipulating the properties of a transmission medium, for example:

- visual signals (signs, semaphore flags, signal lamps, rude hand gestures)
- written symbols (e.g. letters, books, memes)
- air (sound, yelling, music)
- smoke signals
- electromagnetic radiation (e.g. Electrical, Optical)
- Quantum?

What does a Telecomms Engineer Study?

- Telecommunications
 - Introduction to Telecommunications
 - Classical Signal Processing
 - Digital Communications
 - Digital Signal Processing
 - Modern Signal Processing (elective)
- Wireless
 - Fields, Transmission and Propagation
 - Wireless Communications
 - RF Communication Technologies
 - Wireless and Mobile Networks (IT)
- Analogue and Digital Electronics
 - Electrical Circuits and Measurements
 - Analogue and Digital Electronics
 - Advanced Electronics and Embedded Systems
 - Introduction to Design
 - Advanced Design

- Computer Networking
 - Networking Systems (IT)
 - Internet Protocols and Services (IT)
 - Network Planning and Deployment (IT)
- Programming and Real Time Computing
 - Problem Solving and Programming (IT)
 - Object Orientated Programming (IT)
 - Programming Abstraction (IT)
 - Real-Time Computer Based Systems
 - Communication Environments for Embedded Systems
- Elective (yes, 1 haha)
 - Lasers and Photonics
- Core Units
 - Engineering Mathematics (1A, 1B, 3, 4)
 - Physics
 - "Professional Studies" units x2
- Final year project!

Highschool Revision

- Periodic Functions
 - A Amplitude
 - Period (T in seconds)
 - Wavelength (λ) (meters) denoted as $c = \lambda$.f where c is the speed of light in a vacuum
 - f Frequency (Hz)
 - Frequency (cycle per second) is $\frac{1}{Period}$
 - Phase Offset how signals of the same frequency can be offset from each other
- Trigonometric Functions (periodic functions)
 - Cosine (cos)
 - Sine (sin)
 - Tangent (tan) (Also, $tan = \frac{sin}{cos}$)

Source - https://www.sengpielaudio.com/calculator-wavegraphs.htm & https://www.sengpielaudio.com/calculator-wavegraphs.htm & https://www.sengpielaudio.com/calculator-wavegraphs.htm & https://www.iflscience.com/brain/math-gifs-will-help-you-understand-these-concepts-better-your-teacher-ever-did/page-2/

1ucasyb.tumblr.com

Highschool Revision (pt 2)

- You can have a square root (two even) of a negative number; it's defined as an imaginary number
 - $\sqrt{-1}=i; i^2=-1; i=\frac{1}{-i};$ (but we use j in electrical engineering because I denotes Current)
- Electrical engineering uses complex numbers for:
 - The conversion from the time domain to the frequency domain (Fourier Transform, Fourier Series)
 - As a vector notation to denote in phase and out of phase (quadrature) signals
 - Phasor Notation it allows phase offsets to be considered in circuit calculations
- Euler's Expansion
 - $e^{jwt} = \cos(wt) + j\sin(wt)$ this is really useful we will come back to this

Octave (Open Source MATLAB)

- In my degree I spent <u>a lot of time</u> in MATLAB
- Octave is an open source MATLAB project!
 - https://www.gnu.org/software/octave/
- You can follow along with my code if you would like

https://github.com/belarge/loT-SCADAHackersBNE

The Time Domain

- Everyone understands and has used the time domain!
- Measured using an oscilloscope
- Think in Winamp it's the oscilloscope

Image Source https://www.kitplanes.com/aero-lectrics13/

The Time Domain (cont.)

https://en.wikipedia.org/wiki/Waveform https://en.wikipedia.org/wiki/Pulse (signal processing) (Thanks Wikipedia! youshould donate!)

The Time Domain (cont.)

- A time signal, s (t) can be made by adding many periodic signals together
- The Classic Example is the Square wave - the source of this image is a cool visualisation tool

Demo Time (Octave)

Questions?

The Frequency domain

- The frequency domain is the most important concept to understand for telecommunications!
- Think of the VU meter setting in Winamp

Image source

 $\frac{\text{https://ez.analog.com/adieducation/university-}}{\text{program/f/q-a/77831/generating-cw-tones-with-}} \\ \frac{\text{pluto-in-matlab}}{\text{pluto-in-matlab}}$

The Frequency domain (cont.)

// y2 = cos(2*pi*f*t) + 0.6*cos(2*pi*f*t*3) + 0.2*sin(2*pi*f*t*5); %f = 40Hz

The Fourier Transform

 To convert between the Time domain (t) and the Frequency domain (f) we use a Fourier Transform

$$s(t) \xrightarrow{\mathscr{F}} S(f)$$

Because we are using discrete
mathematics we are going to use a
discrete Fourier transform tonight and a
cial one at that – the Fast Fourier
ansform (FFT)

$$s(t) = \int_{-\infty}^{+\infty} S(f)e^{-2\pi i f t} df$$

$$S(f) = \int_{-\infty}^{+\infty} s(t)e^{2\pi i f t} dt$$

<u>Image Source - https://towardsdatascience.com/fun-with-fourier-591662576a77</u> &

The Fourier Transform (the hard bit)

¿Some sort of elvish?

$$S(f) = \int_{-\infty}^{\infty} s(t) \cdot e^{j2\pi ft} dt \qquad (Remember \omega = 2\pi f)$$

$$S(f) = \int_{-\infty}^{\infty} s(t).Z(t)dt$$

$$S(f) = \int_{-\infty}^{\infty} s(t) \cdot (\cos(2\pi f t) + j \sin(2\pi f t)) dt$$

"This integral finds the inner product of a sweep of sinusoids from –infinity to +infinity with the inputted signal"

Demo Time (Octave)

Questions?

TITE AN

Filtering

At the core of telecommunications systems is the ability to filter signals

Filtering (cont.)

To understand how to apply filters you need to understand the Input and the System Response (system transfer function)

 $Output(f) = Input(f).System\ Response(f)$

Great! Life is easy and I am happy normal person!

 $Output(t) = Input(t) \otimes System Response(t)$

Suffering, Pain, Despair!

Convolution – definition

Image Source - https://en.wikipedia.org/wiki/Convolution

$$(f*g)(t) \triangleq \int_{-\infty}^{\infty} f(\tau)g(t-\tau) d\tau.$$

- 1. Take two functions, f(t), g(t) figure out which is the easiest to flip
- 2. Then, move the flipped function back to —infinity, then move it forwards (i.e. to the right) to its first overlap position with the other function.
- 3. Define the integral of those two functions multiplied start integrating until the waveform changes the overlap
- 4. Take note of where it changes, break the integral, start the process at step 3 again
- 5. Repeat until you get to + infinity

If the lecture is nice, they will give you at least one function where it is constant ²⁶ (This is why you <u>never</u> take the second exam — sit the exam even if you are dead!)

Convolution - GIF

<u>Image source</u>

https://commons.wikimedia.org/wiki/File:Convolution Animation (Exponential and Gaussian).gif

Convolution - what if there was another way?

Convolution in one domain, is the same as multiplication in the other domain!

i.e.

OUPTUT (†) = INPUT (†)
$$\circledast$$
 FILTER (†)

Is the same result as

OUTPUT
$$(F) = OUTPUT (F) \times FILTER (F)$$

Similarly,

$$OUTPUT(t) = INPUT(t) \times FILTER(T)$$

$$OUTPUT(F) = INPUT(F) \otimes FILTER(F)$$

More on this later!

Demo Time (Octave)

Questions?

Modulation

Frequency (rad/s)

Frequency (rad/s)

Frequency (rad/s)

- How to encode (modulate) one signal onto another
- You will be familiar with:
 - Amplitude Modulation (AM)
 - Frequency Modulation (FM)
- Think back to multiplication in one domain is convolution in another ...

Amplitude Modulation

- Take your signal you want to transmit (for example voice bandwidth 4000 Hz) – called the baseband signal
- Modulate onto a Carrier Signal (Something in the Hundreds of KHz (i.e. 100,000 times higher)
- Multiple the two together in the time domain convolve in frequency

Frequency (rad/s)

Frequency (rad/s)

https://www.allaboutcircuits.com/textbook/radio-frequency-analysis-design/radio-frequency-modulation/amplitude-modulation-theory-time-domain-frequency-domain/

Demo Time (Octave)

Questions?

