Finding point-pairs

- Given an **a**, find a corresponding **b** on the surface.
- Then one approach would be to search every possible triangle or surface point and then take the closest point.
- The key is to find a more efficient way to do this

Copyright © CISST ERC, 2000

Engineering Research Center for Computer Integrated Surgical Systems and Technology

Suppose surface is represented by dense cloud of points

Copyright © CISST ERC, 2000

ingineering Research Center for Computer Integrated Surgical Systems and Technology

B

Find Closest Point from Dense Cloud

- Basic approach is to divide space into regions. Suppose that we have one point b_k* that is a possible match for a point a_k. The distance Δ*=|| b_k* a_k|| obviously acts as an upper bound on the distance of the closest point to the surface.
- Given a region R containing many possible points b_j, if we can compute a <u>lower</u> bound Δ_L on the distance from a to <u>any</u> point in R, then we need only consider points inside R if Δ_L < Δ*.

Copyright © CISST ERC, 2000

Find Closest Point from Dense Cloud

- There are many ways to implement this idea
 - Simply partitioning space into many buckets
 - Octrees, KD trees, covariance trees, etc.

Copyright © CISST ERC, 2000

Engineering Research Center for Computer Integrated Surgical Systems and Technology

Approaches to closest triangle finding

- 1. (Simplest) Construct linear list of triangles and search sequentially for closest triangle to each point.
- 2. (Only slightly harder) Construct bounding spheres around each triangle and use these to reduce the number of careful checks required.
- 3. (Faster if have lots of points) Construct hierarchical data structure to speed search.
- 4. (Better but harder) Rotate each level of the tree to align with data.

Copyright © CISST ERC, 2000

Simple Search

```
// Triangle i has corners [\vec{\mathbf{p}}_i, \vec{\mathbf{q}}_i, \vec{\mathbf{r}}_i]

// Surrounding sphere i has radius \rho_i center \vec{\mathbf{q}}_i

bound = \infty;

for i=1 to N do

{ if ||\vec{\mathbf{q}}_i - \vec{\mathbf{a}}|| - \rho_i \le bound then

{ \vec{\mathbf{h}} = \text{FindClosestPoint}(\vec{\mathbf{a}}, [\vec{\mathbf{p}}_i, \vec{\mathbf{q}}_i, \vec{\mathbf{r}}_i]);

if ||\vec{\mathbf{h}} - \vec{\mathbf{a}}|| < bound then

{ \vec{\mathbf{c}} = \vec{\mathbf{h}}; bound = ||\vec{\mathbf{h}} - \vec{\mathbf{a}}||; };
};
```

Copyright © CISST ERC, 2000

Engineering Research Center for Computer Integrated Surgical Systems and Technology

g

Bounding Sphere

Suppose you have a point $\vec{\mathbf{p}}$ and are trying to find the closest triangle $(\vec{\mathbf{a}}_k, \vec{\mathbf{b}}_k, \vec{\mathbf{c}}_k)$ to $\vec{\mathbf{p}}$. If you have already found a triangle $(\vec{\mathbf{a}}_j, \vec{\mathbf{b}}_j, \vec{\mathbf{c}}_j)$ with a point $\vec{\mathbf{r}}_j$ on it, when do you need to check carefully for some triangle k?

Answer: if $\vec{\mathbf{q}}_k$ is the center of a sphere of radius ρ_k enclosing $(\vec{\mathbf{a}}_k, \vec{\mathbf{b}}_k, \vec{\mathbf{c}}_k)$, then you only need to check carefully if $\|\vec{\mathbf{p}} - \vec{\mathbf{q}}_k\| - \rho_k < \|\vec{\mathbf{p}} - r_i\|$.

Copyright © CISST ERC, 2000

Bounding Sphere

Assume edge (\vec{a}, \vec{b}) is the longest.

Then the center \vec{q} of the sphere will obey

$$\left(\vec{\mathbf{b}} - \vec{\mathbf{q}}\right) \cdot \left(\vec{\mathbf{b}} - \vec{\mathbf{q}}\right) = \left(\vec{\mathbf{a}} - \vec{\mathbf{q}}\right) \cdot \left(\vec{\mathbf{a}} - \vec{\mathbf{q}}\right)$$

$$\left(\vec{\mathbf{c}} - \vec{\mathbf{q}}\right) \cdot \left(\vec{\mathbf{c}} - \vec{\mathbf{q}}\right) \leq \left(\vec{\mathbf{a}} - \vec{\mathbf{q}}\right) \cdot \left(\vec{\mathbf{a}} - \vec{\mathbf{q}}\right)$$

$$(\vec{\mathbf{b}} - \vec{\mathbf{a}}) \times (\vec{\mathbf{c}} - \vec{\mathbf{a}}) \cdot (\vec{\mathbf{q}} - \vec{\mathbf{a}}) = 0$$

Simple approach: Try $\vec{\mathbf{q}} = (\vec{\mathbf{a}} + \vec{\mathbf{b}}) / 2$.

If inequality holds, then done.

Else solve the system to get \vec{q} (next page).

The radius $\rho = \|\vec{\mathbf{q}} - \vec{\mathbf{a}}\|$.

Copyright © CISST ERC, 2000

Engineering Research Center for Computer Integrated Surgical Systems and Technology

Bounding Sphere

Assume edge (\vec{a}, \vec{b}) is the longest side of triangle.

Compute $\vec{\mathbf{f}} = (\vec{\mathbf{a}} + \vec{\mathbf{b}}) / 2$.

Define

$$\vec{\mathbf{u}} = \vec{\mathbf{a}} - \vec{\mathbf{f}} : \vec{\mathbf{v}} = \vec{\mathbf{c}} - \vec{\mathbf{f}}$$

$$\vec{\mathbf{d}} = (\vec{\mathbf{u}} \times \vec{\mathbf{v}}) \times \vec{\mathbf{u}}$$

Then the sphere center \vec{q} lies somewhere along the line

$$\vec{\mathbf{q}} = \vec{\mathbf{f}} + \lambda \vec{\mathbf{d}}$$

with $(\lambda \vec{\mathbf{d}} - \vec{\mathbf{v}})^2 \le (\lambda \vec{\mathbf{d}} - \vec{\mathbf{u}})^2$. Simplifying gives us

$$\lambda \ge \frac{\vec{\mathbf{u}}^2 - \vec{\mathbf{v}}^2}{2\vec{\mathbf{d}} \bullet (\vec{\mathbf{v}} - \vec{\mathbf{u}})} = \gamma$$

If $\gamma \le 0$, then just pick $\lambda = 0$. Else pick $\lambda = \gamma$.

Copyright © CISST ERC, 2000

FindClosestPoint(a,[p,q,r])

Many approaches. One is to solve the system

$$\mathbf{a} - \mathbf{p} \approx \lambda(\mathbf{q} - \mathbf{p}) + \mu(\mathbf{r} - \mathbf{p})$$

in a least squares sense for λ and μ . Then compute

$$\mathbf{c} = \mathbf{p} + \lambda(\mathbf{q} - \mathbf{p}) + \mu(\mathbf{r} - \mathbf{p})$$

If $\lambda \ge 0$, $\mu \ge 0$, $\lambda + \mu \le 1$, then **c** lies within the triangle and is the closest point. Otherwise, you need to find a point on the border of the triangle

Hint: For efficiency, work out the least squares problem explicitly. You will have to solve a 2 x 2 linear system for λ , μ

Copyright © CISST ERC, 2000

$$\lambda = \frac{(\mathbf{c} - \mathbf{p}) \bullet (\mathbf{q} - \mathbf{p})}{(\mathbf{q} - \mathbf{p}) \bullet (\mathbf{q} - \mathbf{p})}$$

$$\lambda^* = Max(0, Min(\lambda, 1))$$

$$\mathbf{c}^* = \mathbf{p} + \lambda^* (\mathbf{q} - \mathbf{p})$$

Copyright © CISST ERC, 2000

Engineering Research Center for Computer Integrated Surgical Systems and Technology

Hierarchical cellular decompositions

Copyright © CISST ERC, 2000

Hierarchical cellular decompositions

Copyright © CISST ERC, 2000

Engineering Research Center for Computer Integrated Surgical Systems and Technology

g

Constructing tree of bounding spheres

```
class BoundingSphere {
   public:
        Vec3 Center;  // Coordinates of center
        double Radius;  // radius of sphere
        Thing* Object;  // some reference to the thing
        // bounded
   };
```

Copyright © CISST ERC, 2000

Constructing octree of bounding spheres

```
class BoundingBoxTreeNode {
    Vec3 Center;
                        // splitting point
    Vec3 UB:
                       // corners of box
    Vec3 LB:
    int HaveSubtrees;
    int nSpheres;
    double MaxRadius;
                               // maximum radius of sphere in box
    BoundingBoxTreeNode* SubTrees[2][2][2];
    BoundingSphere** Spheres;
    BoundingBoxTreeNode(BoundingSphere** BS, int nS);
    ConstructSubtrees();
    void FindClosestPoint(Vec3 v, double& bound, Vec3& closest);
    };
Copyright © CISST ERC, 2000
```

Constructing octree of bounding spheres

```
BoundingBoxTreeNode(BoundingSphere** BS, int nS)
{    Spheres = BS;    nSpheres = nS;
    Center = Centroid(Spheres, nSpheres);
    MaxRadius = FindMaxRadius(Spheres,nSpheres);
    UB = FindMaxCoordinates(Spheres,nSpheres);
    LB = FindMinCoordinates(Spheres,nSpheres);
    ConstructSubtrees();
    };
```

Copyright © CISST ERC, 2000

Constructing octree of bounding spheres

Copyright © CISST ERC, 2000

Engineering Research Center for Computer Integrated Surgical Systems and Technology

8

Constructing octree of bounding spheres

Copyright © CISST ERC, 2000

Searching an octree of bounding spheres

9

Copyright © CISST ERC, 2000

Engineering Research Center for Computer Integrated Surgical Systems and Technology

13

Searching an octree of bounding spheres

Covariance Tree Construction

Form outer product matrix $A = \sum_{i} \vec{\mathbf{u}}_{i} \vec{\mathbf{u}}_{i}^{T}$

Compute eigenvalues $\{\lambda_1, \lambda_2 \lambda_3\}$ and

eigenvectors $Q = [\vec{\mathbf{q}}_1, \vec{\mathbf{q}}_2, \vec{\mathbf{q}}_3]$ of A

Find a rotation ${\bf R}$ such that ${\bf R}_{\scriptscriptstyle \chi}$ is the eigenvector corresponding to the largest eigenvalue.

(Depending on algorithm used, Q will be a rotation matrix, so all you may have to do is rotate Q)

Copyright © CISST ERC, 2000

Covariance Tree Construction

 $\vec{\mathbf{u}}_{i}$

Define a local node coordinate system $\mathbf{F}_{node} = [\mathbf{R}, \vec{\mathbf{p}}]$ and sort the surface points according to the sign of the x component of $\vec{\mathbf{b}}_i = \mathbf{R}^{-1} \bullet \vec{\mathbf{u}}_i$. Compute bounding box $\vec{\mathbf{b}}^{\min} \leq \mathbf{R}^{-1} \bullet \vec{\mathbf{u}}_i \leq \vec{\mathbf{b}}^{\max}$

Assign these points to "left" and

"right" subtree nodes.

Copyright © CISST ERC, 2000

Covariance tree search

Given

- node with associated \mathbf{F}_{node} and surface sample points $\vec{\mathbf{s}}_{i}$.
- sample point $\vec{\mathbf{a}}$, previous closest point $\vec{\mathbf{c}}$, $dist = \|\vec{\mathbf{a}} \vec{\mathbf{c}}\|$

Transform \vec{a} into local coordinate system $\vec{b} = \mathbf{F}_{node}^{-1} \vec{a}$

Check to see if the point $\vec{\mathbf{b}}$ is inside an enlarged bounding box $\vec{\mathbf{b}}^{min} - dist \le \vec{\mathbf{b}} \le \vec{\mathbf{b}}^{max} + dist$. If not, then quit.

Otherwise, if no subnodes, do exhaustive search for closest. Otherwise, search left and right subtrees.

Copyright © CISST ERC, 2000

Engineering Research Center for Computer Integrated Surgical Systems and Technology

9

Covariance Trees for Triangle Meshes

- One method is simply to place a bounding sphere around each triangle, and then use the method discussed previously
- However, this may be inconvenient if the mesh is deforming

Copyright © CISST ERC, 2000

Covariance Trees for Triangle Meshes

Observe that every point $\vec{\mathbf{v}}$ on a triangle $\left[\vec{\mathbf{v}}_1,\vec{\mathbf{v}}_2,\vec{\mathbf{v}}_3\right]$ can be expressed as a convex linear combination $\vec{\mathbf{v}} = \lambda_1 \vec{\mathbf{v}}_1 + \lambda_2 \vec{\mathbf{v}}_2 + \lambda_3 \vec{\mathbf{v}}_3$ with $\lambda_1 + \lambda_2 + \lambda_3 = 1$. Therefore, if $\left[\vec{\mathbf{v}}_1,\vec{\mathbf{v}}_2,\vec{\mathbf{v}}_3\right]$ are in some bounding box, then $\vec{\mathbf{v}}$ will also be in that bounding box

Copyright © CISST ERC, 2000

Engineering Research Center for Computer Integrated Surgical Systems and Technology

Ç

Covariance Trees for Triangle Meshes

- Select one point on the triangle to use as the "sort" point for selection of left/right subtrees.
- Good choices are centroid of triangle or just one of the vertices.
- However use <u>all</u> vertices of each triangle in determining the size of bounding boxes.
- Note this would work equally well for octrees.

Copyright © CISST ERC, 2000

