Подборка задач №1.

Семинары: Погорелова П.В.

Вопросы по лекции.

- 1. С помощью метода наименьших квадратов найдите оценку параметра модели парной регрессии без константы.
- 2. Докажите несмещённость оценки МНК в модели парной регрессии без константы.
- 3. С помощью метода наименьших квадратов найдите оценки параметров в модели парной регрессии с константой.
- 4. Докажите несмещённость оценок МНК в модели парной регресии с константой.
- 5. Сформулируйте условия теоремы Гаусса—Маркова для модели парной регрессии.
- 6. Сформулируйте теорему Гаусса-Маркова для модели парной регрессии.

Задачи.

Примечание: Регрессор x во всех задачах блоках предполагается детерминированным.

1. Рассмотрим модель регрессии $y_i = \beta x_i + \varepsilon_i$, $\mathbb{E}(\varepsilon_i) = 0$, $\mathrm{Var}(\varepsilon_i) = \sigma^2$, $\mathrm{Cov}(\varepsilon_i, \varepsilon_j) = 0$ при $i \neq j$. При каких значениях параметров c_i несмещённая оценка

$$\hat{\beta} = \sum_{i=1}^{n} c_i y_i / \sum_{i=1}^{n} c_i x_i$$

имеет наименьшую дисперсию?

- 2. Рассмотрим модель $y_i = \mu + \varepsilon_i$, где $\mathbb{E}(\varepsilon_i) = 0$, $\mathrm{Var}(\varepsilon_i) = \sigma^2$ и $\mathrm{Cov}(\varepsilon_i, \varepsilon_j) = 0$ при $i \neq j$. При каких значениях параметров c_i несмещённая оценка $\hat{\mu} = \sum_{i=1}^n c_i y_i$ имеет наименьшую дисперсию?
- 3. Рассмотрим линейную модель $y_i = \beta_1 + \beta_2 x_i + \varepsilon_i$, где ошибки ε_i нормальны $N(0;\sigma^2)$ и независимы.
 - а) Верно ли, что y_i одинаково распределены?
 - b) Верно ли, что \bar{y} это несмещённая оценка для $\mathbb{E}(y_i)$?
 - с) Верно ли, что $\sum (y_i \bar{y})^2/(n-1)$ несмещённая оценка для σ^2 ? Если да, то докажите, если нет, то определите величину смещения.

Семинары: Погорелова П.В.

4. Мы предполагаем, что y_t растёт с линейным трендом, то есть

$$y_t = \beta_1 + \beta_2 t + \varepsilon_t,$$

где t — момент времени. Все предпосылки теоремы Гаусса—Маркова выполнены. В качестве оценки $\hat{\beta}_2$ предлагается

$$\hat{\beta}_2 = (y_T - y_1)/(T - 1),$$

где T – общее количество наблюдений.

- а) Найдите $\mathbb{E}(\hat{\beta}_2)$ и $\mathrm{Var}(\hat{\beta}_2)$.
- b) Совпадает ли оценка $\hat{\beta}_2$ с классической МНК-оценкой?
- c) У какой оценки дисперсия выше: у $\hat{\beta}_2$ или классической МНК-оценки?
- 5. Зависимая переменная в регрессии $y_i = \alpha + \beta x_i + \varepsilon_i$ разбивается на две компоненты:

$$y_i = y_{1i} + y_{2i}.$$

Рассмотрим две регрессии для компонент:

$$y_{1i} = \alpha_1 + \beta_1 x_i + \varepsilon_{1i},$$

$$y_{2i} = \alpha_2 + \beta_2 x_i + \varepsilon_{2i}.$$

Докажите следующие соотношения для МНК-оценок параметров трех регрессий:

$$\hat{\alpha} = \hat{\alpha}_1 + \hat{\alpha}_2, \quad \hat{\beta} = \hat{\beta}_1 + \hat{\beta}_2.$$

6. Проведены две регрессии:

$$y_i = \alpha + \beta x_i + \varepsilon_i$$
 и $y_i = \alpha' + \beta' x_i^* + \varepsilon_i'$, $i = 1, \dots, n$,

где $x_i^* = x_i - \overline{x}$.

- а) По известным МНК-оценкам $\hat{\alpha}, \hat{\beta}$ параметров α, β в первой регрессии найдите МНК-оценки $\hat{\alpha}', \hat{\beta}'$ параметров α', β' во второй регрессии.
- b) Найдите $Cov(\hat{\alpha}', \hat{\beta}')$.
- 7. Рассмотрим модель парной регрессии $y_i = \beta_1 + \beta_2 x_i + \varepsilon_i$. Пусть $z_i = x_i^2$. Рассмотрим следующую оценку параметра β_2 :

$$\tilde{\beta}_2 = \frac{\sum_{i=1}^n (z_i - \overline{z}) y_i}{\sum_{i=1}^n (z_i - \overline{z}) x_i}.$$

- Семинары: Погорелова П.В.
- а) Покажите, что оценка $\tilde{\beta}_2$ несмещенная.
- b) Найдите дисперсию оценки $\tilde{\beta}_2$.
- с) Не повторяя доказательство теоремы Гаусса—Маркова, непосредственно проверьте, что $Var(\tilde{\beta}_2) \ge Var(\hat{\beta}_2^{OLS})$.
- 8. Модель регрессии была оценена с помощью МНК: $\hat{y}_i = 3 2x_i$. Выборочная дисперсия x равна 9, выборочная дисперсия y равна 40. Найдите R^2 и выборочные корреляции $\widehat{\text{Corr}}(x,y)$, $\widehat{\text{Corr}}(y,\hat{y})$.
- 9. Рассмотрим классическую линейную регрессионную модель $y_i = \beta x_i + \varepsilon_i$ с неслучайными $x_i, i = 1, ..., n$. Какие из следующих оценок параметра β являются несмещёнными:
 - a) $\hat{\beta} = \frac{y_1}{x_1};$
 - b) $\hat{\beta} = \frac{1}{2} \frac{y_1}{x_1} + \frac{1}{2} \frac{y_n}{x_n};$
 - c) $\hat{\beta} = \frac{1}{n} \left(\frac{y_1}{x_1} + \dots + \frac{y_n}{x_n} \right);$
 - d) $\hat{\beta} = \frac{\bar{y}}{\bar{x}}$.
- 10. Рассмотрим классическую линейную регрессионную модель $y_i = \beta x_i + \varepsilon_i$ с неслучайными $x_i, i = 1, ..., n$. Найдите $\mathrm{Var}(\hat{\beta})$:
 - a) $\hat{\beta} = \frac{y_1}{x_1};$
 - b) $\hat{\beta} = \frac{1}{2} \frac{y_1}{x_1} + \frac{1}{2} \frac{y_n}{x_n}$;
 - c) $\hat{\beta} = \frac{1}{n} \left(\frac{y_1}{x_1} + \ldots + \frac{y_n}{x_n} \right);$
 - d) $\hat{\beta} = \frac{\bar{y}}{\bar{x}}$.
- 11. Рассмотрим модель парной регрессии с константой:

$$y_i = \beta_1 + \beta_2 x_i + \varepsilon_i, i = 1, ..., n.$$

Предполагается, что ошибки $\{\varepsilon_i\}$ являются независимыми случайными величинами с нулевым математическим ожиданием. При заданных предпосылках оценка МНК $\hat{\beta}_2$ для параметра β_2 является несмещённой. Рассмотрим альтернативные оценки параметра β_2 :

$$\tilde{\beta}_2 = \frac{\sum_{i=1}^n (v_i - \bar{v}) y_i}{\sum_{i=1}^n (v_i - \bar{v}) x_i}, \ \beta_2^* = \frac{\sum_{i=1}^n (v_i - \bar{v}) y_i}{\sum_{i=1}^n (v_i - \bar{v}) v_i},$$

где $v_i = \sqrt{x_i}, \bar{v} = \frac{1}{n} \sum_{i=1}^n v_i$.

(a) Является ли оценка $\tilde{\beta}_2$ несмещённой оценкой параметра β_2 ?

- Семинары: Погорелова П.В.
- (b) Является ли оценка β_2^* несмещённой оценкой параметра $\beta_2?$
- (c) Обсудите, как бы вы выбирали между оценками $\hat{\beta}_2$, $\tilde{\beta}_2$ и β_2^* ?

Список использованных источников

1. Катышев П.К., Магнус Я.Р., Пересецкий А.А., Головань С.В. Сборник задач к начальному курсу эконометрики: Учеб. пособие. — 4-е изд., перераб. и доп. — М.: Дело, 2007. - 368 с.