EE 735: ASSIGNMENT 3

Deep Kumar Pal, 23M1135 September 05, 2023

PROBLEM 1

(i) Abrupt Junction

SIMULATION APPROACH

Given,

Length of p-type region = 1.5×10^{-4} cm, Length of n-type region = 1.5×10^{-4} cm

N-type region doping concentration (N_d) = $6 \times 10^{15} / cm^3$

P-type region doping concentration $(N_a) = 4 \times 10^{15} / cm^3$

$$\epsilon_{Si}~=~11.8,\, \epsilon_0 = 8.85 \times 10^{-14}~{
m F/cm},\, n_i = 1.5 \times 10^{10}~{
m /cm^3},\, {
m q} = 1.6 \times 10^{-19}~{
m C}$$

Temperature (T) = 300 K and Thermal voltage (V_t) = 0.026 V, E $_{
m g}$ = 1.12 eV

The following profiles are simulated with depletion approximation and without depletion approximation:

- 1. Potential (V)
- 2. Electric Field (E)
- 3. Charge concentration (ρ/q) (where q is electron charge)

The following plots are simulated without depletion approximation:

- 1. Electron (n) and Hole (p) concentrations
- 2. Energy band diagram depicting conduction band minimum (E_C), Valence band maximum (E_V), mid gap energy level (E_{mid}) and Fermi energy level (E_F).

RESULT

The plots of the various profiles are given below,

CONCLUSION

The built-in potential obtained for both cases are almost same as given below,

Built-in potential (with depletion approximation) = 0.660795 V

Built-in potential (without depletion approximation) = 0.660217 V

The charge distribution profile and electric field profile without depletion approximation maintains smoother transitions at the depletion edges from their approximated counterpart.

(ii) Linear Junction

SIMULATION APPROACH

Length of p-type region, $L=1.5\times 10^{-4}~cm$, Length of n-type region, $L=1.5\times 10^{-4}~cm$

$$\epsilon_{Si}~=~11.8,\, \epsilon_0=8.85\times 10^{-14}~{
m F/cm},\, n_i=1.5\times 10^{10}~{
m /cm^3},\, {
m q}=1.6\times 10^{-1}~{
m C}$$

Temperature (T) = 300 K and Thermal voltage (V_t) = 0.026 V, E $_{
m g}$ = 1.12 eV

The doping profile is given as,

N-type region doping concentration (N_d) = $6 \times 10^{15} / cm^3$

P-type region doping concentration (N_a) = $6 \times 10^{15} / cm^3$

Impurity gradient close to the junction region, $m = \frac{N_d + N_a}{L} = \frac{6 \times 10^{15} + 6 \times 10^{15}}{1.5 \times 10^{-4}} = 8 \times 10^{19} \ / cm^4$

The following profiles are simulated with depletion approximation and without depletion approximation:

- 4. Potential (V)
- 5. Electric Field (E)
- 6. Charge concentration (ρ/q) (where q is electron charge)

The following plots are simulated without depletion approximation:

- 3. Electron (n) and Hole (p) concentrations
- 4. Energy band diagram depicting conduction band minimum (E_C), Valence band maximum (E_V), mid gap energy level (E_{mid}) and Fermi energy level (E_F).

RESULT

The plots of the various profiles are given below,

CONCLUSION

The built-in potential obtained for both cases are almost same as given below,

Built-in potential (with depletion approximation) = 0.670984 V

Built-in potential (without depletion approximation) = 0.670759 V

The charge distribution profile and electric field profile without depletion approximation maintains smoother transitions at the depletion edges from their approximated counterpart.

PROBLEM 2

SIMULATION APPROACH

Given,

Length of p-plus region = 0.5×10^{-4} cm

Length of n-plus region = 0.5×10^{-4} cm

P-plus type region doping concentration $(N_{a1}) = 10^{17} / cm^3$

N type region doping concentration (N_d) = $10^{15} / cm^3$

N-plus type region doping concentration (N_{d1}) = 10^{17} / cm^3

$$\epsilon_{Si}~=~11.8,\, \varepsilon_0 = 8.85 \times 10^{-14}~{\rm F/cm},\, n_i = 1.5 \times 10^{10}~/{\rm cm}^3,\, {\rm q} = 1.6 \times 10^{-19}~{\rm C}$$

Temperature (T) = 300 K and Thermal voltage $(V_t) = 0.026 V$

The Potential profile for length of n region $1 \mu m$, $2 \mu m$ and $3 \mu m$ are plotted in same plot.

The following profiles are simulated for by taking length of n region $2 \mu m$

- 1. Potential (V)
- 2. Electric Field (E)
- 3. Charge concentration (ρ/q) (where q is electron charge)
- 4. Electron (n) and Hole (p) concentration.
- 5. Energy band diagram depicting conduction band minimum (E_C), Valence band maximum (E_V), mid gap energy level (E_{mid}) and Fermi energy level (E_F).

RESULT AND CONCLUSION

The plots of the various potential profiles are given below,

The plots of the various profiles are given below,

PROBLEM 3

SIMULATION APPROACH

Given,

$$\epsilon_{Si}~=~11.8,\, \epsilon_0 = 8.85 \times 10^{-1}~{
m F/cm},\, n_i = 1.5 \times 10^{10}\,{
m /cm^3},\, {
m q} = 1.6 \times 10^{-19}\,{
m C}$$

Temperature (T) = 300 K and Thermal voltage (V_t) = 0.026 V, ${
m E_g}$ = 1.12 eV

Built-in potential,
$$V_{bi} = 0.06 + \frac{3 \times 5}{300} = 0.11 \text{ V}$$

Length of both N-plus and N region, $L=1.4~\mu m$

N-plus type region doping concentration ($N_{\rm d2}$) = $6.877 \times 10^{15} \ /cm^3$

N type region doping concentration ($N_{d1}) = ~10^{14} \ /cm^3$

RESULT AND DISCUSSION

The profiles obtained are shown below,

The voltage profile for T = 300 K and T = 304.5 K is given below,

