

IMPLEMENTACIÓN DE FUNCIONES SIMPLES Comenzamos con un repaso de Mapas de Karnaugh

Escribir las funciones simplificadas







Implementación de Funciones Simples

NAND

| а   | F = a.b   |
|-----|-----------|
| [0] | 1         |
| 1   | 1         |
| 0   | <u> 1</u> |
| 1   | 0         |
|     | [0]       |

| b | 0   | 1   | b | 0 | 1          |
|---|-----|-----|---|---|------------|
| 0 | 1 0 | 1 1 | 0 | 0 | 1          |
| 1 | 1 2 | 3   | 1 | 2 | <b>O</b> 3 |
|   |     |     |   |   |            |

$$f(b,a) = \bar{a} + \bar{b}$$



La salida es 1 cuando alguna de sus entradas es 0. Detecta presencia de 0.

Si las dos entradas son iguales(b=a), entonces Salida será su "negado". Cuando una entrada es 1, la otra se invierte. (3) b=1 F= a (~

**De Morgan** 

$$\frac{x+y=x\cdot y}{x\cdot y=x+y}$$

$$f(b,a) = \overline{a \cdot b}$$





## Implementación de Funciones Simples NOR

| b     | а   | F = a+b         |
|-------|-----|-----------------|
| (2)_0 | 0   | <b>1</b>        |
| 0     | 1 - | 0               |
| _1_   | 0   | $\Rightarrow$ 0 |
| 1     | _1  | $\rightarrow$ 0 |

 $\overline{b}$ .  $\overline{a}$ 

La salida es 0 si por lo menos una de sus entradas es 1.

La salida es 1 cuando todas sus entradas son 0 al vez.

$$f(b,a) = \bar{a}.\,\overline{b}$$

$$f(b,a) = \overline{a+b}$$



## Implementación de Funciones Simples





Existen muchos programas para dibujar circuitos

logisim



¿Hacemos los circuitos?





1 > 0

## Implementación de Funciones Simples XOR

#### 8.1.2 Compuerta XOR (Exclusive OR u "O Exclusiva")

La compuerta "O exclusiva" entrega un uno a su salida cuando una de sus dos entradas está en uno, pero no simultáneamente: se excluye esta condición. En forma de función lógica, esto sería:

Fundamentos de TICs

Unidad 3: Introducción al Análisis y Síntesis de Estructuras Lógicas



¿Si a=1 y b=1 cuanto da?

No corresponde a una XOR

Ahora sí .... ¿Porqué?

| b | а | <b>F</b> = a ⊕ b |
|---|---|------------------|
| 0 | 0 | 0                |
| 0 | 1 | 1                |
| 1 | 0 | 1                |
| 1 | 1 | 0                |

#### Minitérminos

$$f(b,a) = \overline{b}. \ a + b. \ \overline{a}$$

#### Maxitérminos

$$f(b,a) = (b + a). (\overline{b} + \overline{a})$$

## Ejercicio Adicional 1: XOR

| В | Α | F |
|---|---|---|
| 0 | 0 | 0 |
| 0 | 1 |   |
| 1 | 0 |   |
| 1 | 1 | 0 |

 $B \oplus A$ 







# Implementación de Funciones Simples NOT XOR ->XNOR

 $\overline{b}$ .  $\overline{a}$ 

**b**. *a* 

La salida es 1 cuando ambas entradas son iguales.

|   | b | a | F = afb |
|---|---|---|---------|
| 0 | 0 | 0 | 1 3     |
| ( | 0 | 1 | 0 2     |
| 2 | 1 | 0 | 0       |
| 3 | 1 | 1 | 1 0     |

$$f_{(b,a)=\Sigma_2(0,3)}^{Minitérminos}$$

$$f_{(b,a)} = \bar{b} \cdot \bar{a} + b \cdot a$$

Maxitérminos 
$$f(b,a) = \pi_2(1,2)$$

$$f_{(b,a)} = \left(\overline{b} + a\right) \cdot \left(b + \overline{a}\right)$$

**NOT XOR** 



#### Propiedad:

Una XOR NEGADA es igual a negar una de sus entradas.

## **EJERCICIO ADICIONAL 1**

|               | В | Α | В€ | A |
|---------------|---|---|----|---|
| 0             | 0 | 0 | 0  | 3 |
| 1             | 0 | 1 | 1  | 2 |
| 2             | 1 | 0 | 1  | ı |
| 3             | 1 | 1 | 0  | Q |
| Minitérminos: |   |   |    |   |

 $\overline{B}$ .A + B.  $\overline{A}$ 

Maxitérminos:

 $(B + A) \cdot (\overline{B} + \overline{A})$ 

| С                | В | Α | С⊕В⊕А |
|------------------|---|---|-------|
| 0                | 0 | 0 | 0 7   |
| 0                | 0 | 1 | 1 6   |
| 20               | 1 | 0 | 15    |
| 3 0              | 1 | 1 | 0 4   |
| 41               | 0 | 0 | 13    |
| 51               | 0 | 1 | 0 2   |
| 6 <sub>2</sub> 1 | 1 | 0 | 0 1   |
| 1                | 1 | 1 | 1 0   |

|   | Desarrollo    |
|---|---------------|
|   | f= b. 2 + p 2 |
| ı |               |
| l | f_ 5 2. b2    |
|   |               |
|   | f=(p+y)(p+y)  |
|   |               |
|   |               |

| ba  | 00 | 01 | 11 | 10  |
|-----|----|----|----|-----|
| 0   | 0  | 1  | 3  | (2) |
| 1 ( | 4  | 5  |    | 6   |

#### Forma Algebraica

| IVIII   | Miniterminos: |             |  |  |  |
|---------|---------------|-------------|--|--|--|
| Σ (     | ∑ (1,2)       |             |  |  |  |
| Ma      | xitérr        | ninos       |  |  |  |
| ∏ (0,3) |               |             |  |  |  |
| ab      | 0             | 1           |  |  |  |
| 0       | 0             | $\{ \}_{1}$ |  |  |  |

|                  | Torrita Aigebraica                |  |  |
|------------------|-----------------------------------|--|--|
| Minitérminos:    |                                   |  |  |
| C.B.A + C.B.A    | C.B.A + C.B.A + C.B.A + C.B.A     |  |  |
| Maxitérminos:    |                                   |  |  |
| (A+B+C). (A-     | + B +C) . (A + B +C) . (A + B +C) |  |  |
|                  |                                   |  |  |
| $\sum (1,2,4,7)$ | Forma Numérica                    |  |  |
| ∏ (1,2,4,7)      |                                   |  |  |

|    | D | С | В | Α | D⊕C⊕B⊕A           |
|----|---|---|---|---|-------------------|
| 0  | 0 | 0 | 0 | 0 | 0 5               |
| l  | 0 | 0 | 0 | 1 | 1 14              |
| 2  | 0 | 0 | 1 | 0 | 1 13              |
| 3  | 0 | 0 | 1 | 1 | 0 12              |
| 4  | 0 | 1 | 0 | 0 | 1 11              |
| 5  | 0 | 1 | 0 | 1 | 0 10              |
| 6  | 0 | 1 | 1 | 0 | 0 9               |
| 7  | 0 | 1 | 1 | 1 | 1 8               |
| 2  | 1 | 0 | 0 | 0 | 1 7 0 6           |
| 9  | 1 | 0 | 0 | 1 | 0 6               |
| 10 | 1 | 0 | 1 | 0 | 0 5               |
| IJ | 1 | 0 | 1 | 1 | 1 4<br>0 3<br>1 2 |
| 12 | 1 | 1 | 0 | 0 | 0 3               |
| 13 | 1 | 1 | 0 | 1 | 1 2               |
| \4 | 1 | 1 | 1 | 0 | 1                 |
| 12 | 1 | 1 | 1 | 1 | 0 0               |

#### Forma Numérica

 $\sum (1,2,4,7,8,11,13,14)$  $\prod (0,3,5,6,9,10,12,15)$ 



### ¿Preguntas?

## Pasar de Minitérminos a Maxitérminos\_



$$\Sigma_{3}(2,3,4,5,6)$$
  $\Pi_{3}(?$ 

1) Busco los que no están:



2) Complemento:

$$\Pi_3$$
 (0,6,7)

#### Pasar de Maxitérminos a Minitérminos



Mismo método de abajo a hacia arriba

- 1) Complemento
- 2) Busco los que faltan



## Circuitos combinacionales

Sus variables de SALIDA dependen exclusivamente de los valores de sus variables de ENTRADA.

O sea, la salida se obtiene como una combinación de sus variables de entrada.



UNLAM – 2020 Dra. Rocío Rodríguez

## Circuitos combinacionales

Decodificador



Multiplexor 🖵



Generador de bit de paridad





### Les pasamos los links por el foro











Circuitos Combinacionales -Parte V - Generador de Bit d...

12 vistas · Hace 3 semanas

Circuitos Combinacionales -Parte IV - Comparador

9 vistas • Hace 3 semanas

Circuitos Combinacionales -Parte III - Sumadores

11 vistas · Hace 3 semanas

Circuitos Combinacionales -Parte II - Multiplexor

13 vistas · Hace 3 semanas

Circuitos Combinacionales -Parte I - Decodificador

25 vistas · Hace 3 semanas

... Serie de Videos

... Antes haremos ejercicios extra de repaso

