

Can something as unpredictable as MMA fights be predicted?

- MMA is a complex combat sport
- Nearly everything is allowed (punches, kicks, takedowns, grappling, ...)
- Challenge: Create a machine learning model what predicts the Winner of a MMA fight as good as possible

</The data set

</Defining the machine learning problem

- Did the blue or the red fighter win?
 - Discrete target variable > classification
 - Labelled input and output data → supervised machine learning
- Draws are rare and ignored for the model

- What to consider for classification?
 - check data for imbalance
 - Normalize numerical features, one-hot-encode categorical features

Imbalance of the data

→ Slightly imbalanced data set

</Machine learning models used

Classification Models

</Logistic Regression

Random Forest Classifier

</XGBoost

Source: https://www.researchgate.net/figure/XGBoost-model-Source-Self fig2 350874464

</Accuracy score


```
Accuracy Score =
(TP + TN)/
(TP + FP + FN + TN)
```

</AUC-ROC Curve

The bigger the AUC (Area Under The Curve) the better the model

</AUC + accuracy score of my models

XGBoost V2

Random Forest

Accuracy: 0.6564

···· {2/4}

Logistic Regression :-- {4/4} XGBoost v1

Accuracy: 0.6596

Accuracy: 0.6453 AUC Score: 0.6515

</AUC-ROC curve

Source: Self

</Final evaluation

- Accuracy Score is around the probability of predicting the favored fighter (red fighter) will win
- Further feature engineering and model improvement is needed

</Feedback

- Things to in-/exclude for the future:
 - Explain the features, make it more tangible
 - Feature importance for the models
 - Shorten the part with the models. Maybe focus on one feature
 - Maybe exclude AUC