Practica 2

1)

Construir MT:		
a)	Construir una máquina de Turing que haga un corrimiento a derecha de la cadena binaria en la cinta, marcando con un símbolo especial '#' la celda que corresponde al primer símbolo desplazado. Γ = {B, #, 0, 1}. q0, 0 q1, #, D	
	q0, 1	
	q2, #, D	
	q0, B	
	qd, B, D	
	q1, 1	
	q2, 0, D	
	q1, 0	
	q1, 0, D	
	q1, B	
	qd, 0, D	
	q2, 0	
	q1, 1, D	
	q2, 1	
	q2, 1, D	
	q2, B	
	qd, 1, D	

b) Y otra que haga un corrimiento a izquierda.

q0, 0 q0, 0, D

- q0, 1 q0, 1, D q0, B q1, B, I q1, 0 q2, #, I q1, 1 q3, #, I q2, 0 q2, 0, I q2, 1 q3, 0, I
- q3, 1
- q3, 1, I

qd, 0, I

- q3, 0
- q2, 1, I
- q3, B
- qd, 1, I

2) Construir MT:

a) Construir una máquina de Turing M tal que L(M) = {0n1 n / n ≥ 1} y mostrar
 la traza de computación de M para las entradas w1 = 0011 y w2 = 011.

q0, 1

- qR, 1, D
- q0, 0
- q1, B, D
- q0, B
- qR, B, D
- q1, 0
- q1, 0, D
- q1, 1
- q11, 1, D
- q1, B
- qR, B, D
- q11, 1
- q11, 1, D
- q11, 0
- qR, 0, D
- q11, B
- q10, B, I
- q10, 1
- q12, B, I
- q12, 1
- q12, 1, I
- q12, 0
- q2, 0, I
- q12, B
- q5, B, D

```
q2, 0
q2, 0, I
q2, B
q0, B, D
q11, 0
qR, 0, D
q5, B
qA, B, D
q5, 1
qR, 1, D
a) Traza
     w0 = 0011
     q_00011 \, \vdash \, Bq_1011 \, \vdash^* B01q_{11}1 \, \vdash \, B011q_{11}B \, \vdash \, B01q_{10}1B \, \vdash \, B0q_{12}1BB \, \vdash
     Bq_{12}01BB \vdash q_{2}B01BB \vdash Bq_{0}01BB \vdash BB\,q_{1}1BB \vdash BB1q_{11}BB \vdash BBq_{10}1BB
     \vdash B q<sub>12</sub>BBBB \vdash BB q<sub>5</sub>BBB \vdash BB q<sub>A</sub> BBB
     w0 = 011
     q_0011 \vdash Bq_111 \vdash B1q_{11}1B \vdash B11 q_{11}B \vdash B1q_{10}1B \vdash Bq_{12}1BB \vdash q_{12}B1BB
     \vdash Bq<sub>5</sub>1BB \vdash Bq<sub>R</sub>1BB
b) Construir una máquina de Turing que busque en la cinta el patrón
     "abab" y se detenga si y sólo si encuentra ese patrón. \Gamma = \{a, b, c, B\}
     q0, a
     q1, a, D
     q1, b
     q2, b, D
```

- q2, a
- q3, a, D
- q3, b
- qA, b, D
- q0, b
- q0, b, D
- q0, c
- q0, c, D
- q1, a
- q0, a, D
- q1, c
- q0, c, D
- q2, b
- q0, b, D
- q3, a
- q0, a, D
- q3, c
- q0, c, D
- q0, B
- qR, B, D
- q1, B
- qR, B, D
- q2, B
- qR, B, D

- 3) Construir máquinas de Turing para computar las siguientes funciones:
 - a) Suma unaria. $\Sigma = \{+, 1\}$.
 - q0, 1
 - q0, 1, D
 - q0, +
 - q1, 1, I
 - q1, 1
 - q1, 1, I
 - q1, B
 - q2, B, D
 - q2, 1
 - q0, B, D
 - q0, B
 - qd, B, S
 - b) Resta unaria a b con a > b Σ = {-, 1}.
 - q0, 1
 - q0, 1, D
 - q0, -
 - q5, -, D
 - q5, B
 - q5, B, I
 - q5, -
 - qd, B, D

	q5, 1
	q1, 1, D
	q0, B
	qd, B, D
	q1, 1
	q1, 1, D
	4 D
	q1, B q2, B, I
	4 2, 5, 1
	q2, 1
	q3, B, I
	q2, -
	q3, -, I
	q3, 1 q3, 1, I
	40, 1, 1
	q3, -
	q3, -, I
	q3, B
	q4, B, D
	q4, 1 q0, B, D
	40, <i>D</i> , <i>D</i>
c)	Calcular el complemento a 2 de un número binario de 8 bits Σ = {0, 1}
	q0, 1
	q0, 1, D
	q0, 0
	q0, 0, D

```
q0, B
q1, B, I
q1, 0
q1, 0, I
q1, 1
q2, 1, I
q2, 0
q2, 1, I
q2, 1
q2, 0, I
```

4) Sea Σ = {a} y w = a. Decir cuáles son las palabras que se obtienen como resultado de aplicar las siguientes operaciones: ww, www, w³, w⁵, w⁰ ¿Cuáles son sus longitudes? Definir Σ *.

```
ww = aa. Longitud 2

www = aaa. Longitud 3

w^3 = aaa. Longitud 3

w^5 = aaaaa. Longitud 5

w^0 = \lambda. Longitud 0

\Sigma^* = { \lambda, a, aa, aaa, aaaa, aaaaa, ...}
```

5) Idem al ejercicio anterior, pero con $\Sigma = \{a, b\}$ y w = aba.

```
ww = abaaba. Longitud 6

www = abaabaaba. Longitud 9

w^3 = abaabaabaaba. Longitud 9

w^5 = abaabaabaabaabaaba. Longitud 15

w^0 = \lambda. Longitud 0
```

 Σ^* = { λ , a, b, aa, bb, ab, ba, aaa, bbb, abb, aab, ...}

6) Sea Σ = {a, b, c}, escriba las 13 cadenas más cortas de Σ^* .

λ, a, b, c, aa, bb, cc, ab, ba, ac, ca, cb, bc

7) Dar tres ejemplos de lenguajes basados en el alfabeto {0,1}.

$$\emptyset \Sigma * \{\lambda\}$$

8) ¿Cuántas cadenas de longitud 3 hay en {0,1, 2}*, y cuántas de longitud n?

Hay 3³ cadenas de longitud 3 y 3ⁿ de longitud n

9) Explicar la diferencia -si la hay- entre los lenguajes L1 y L2.

a)
$$L1 = \emptyset L2 = \{\lambda\}$$

L1 es un conjunto vacio (sin elementos) y L2 es el conjunto cuyo elemento es una cadena vacia (que es un elemento valido)

b) L1 = $\Sigma^* \cup \{\lambda\}$ L2 = $\emptyset \cup \Sigma^*$

Son iguales ya que Σ^* contiene a λ y $\Sigma^* \cup \emptyset$ es igual a Σ^*

c) L1 = $\Sigma^* - \emptyset$ L2 = Σ^*

 Σ^* - \emptyset sigue siendo Σ^* , por lo que L1 y L2 son iguales

d) $L1 = \Sigma^* - \{\lambda\} L2 = \Sigma^*$

Son distintas ya que si a L1 no tiene la cadena vacia y L2 si

10) Mostrar que Σ^* es infinito contable.

 $|\Sigma^*| \le |N|$ se puede probar con la función inyectiva f: $\Sigma^* \to N$ en donde se le asigna a cada cadena de Σ^* a un número natural ordenándolas primero por su longitud y luego enumerando las cadenas de la misma longitud en orden lexicográfico (orden alfabético).

- 11) Indicar cuál es el lenguaje que se obtiene al intersectar los siguientes lenguajes:
 - a) L1 = $\{a^n c^m d^n / n \ge 0, m \ge 0\}$ con L2 = $\{c^n / n \ge 0\}$

$$L1 \cap L2 = L2$$

b) L1 = $\{a^n c^m d^n / n > 0, m \ge 0\}$ con L2 = $\{c^n / n \ge 0\}$

$$L1 \cap L2 = \emptyset$$

c) L1 = $\{a^n c^m d^n / n \ge 0, m > 10\}$ con L2 = $\{c^n / n > 5\}$

$$L1 \cap L2 = \{ c^m / m > 10 \}$$

d) L1 = $\{1^n 2^m / n, m \ge 0, n \text{ par, } m \text{ impar}\} \text{ con } L2 = \{2^n / n \ge 0\}$

$$L1 \cap L2 = \{2^n / n \ge 0, n \text{ impar}\}\$$

e) L1 = $\{1^n 2^m / n, m \ge 0, n \text{ par, } m \text{ impar}\} \text{ con L2} = \{1^n / n \ge 0\}$

L1 \cap L2 = \emptyset , al ser 2^m con $m \ge 0$ e impar, el primer entero positivo que es impar es el 0, así que 2 siempre va a estar.

- 12) Encontrar si es posible un lenguaje L1 que cumpla:
 - a) L1 \cap {1^k 2^m 3ⁿ / m = k+n+1 y n, k \geq 0} = {1ⁿ 2ⁿ⁺¹ / n \geq 0}

L1 =
$$\{ 1^n 2^{n+1} / n \ge 0 \}$$

Ejemplo:

Un elemento de L1 podría ser

11222

Un elemento de L2 podría también ser este mismo 11222 (en este caso k = 2, n = 0 y m = (k + n + 1) 3.

Notar como 11222 cumple con $\{1^n 2^{n+1} / n \ge 0\}$. Lo mismo sucede para 1112222 y así siguiendo.

b) L1
$$\cap$$
 {1ⁿ 2^m / n \neq m y n, m \geq 0} = {1ⁿ 2ⁿ / n $>$ 0}

No es posible, ya que en L2 los exponentes de 1 y 2 nunca serán iguales por lo que nunca se podrá cumplir $\{1^n 2^n / n > 0\}$ haciendo intersección con algún lenguaje.

- 13) Conteste las siguientes preguntas sobre Máquinas de Turing
 - a) ¿Puede el alfabeto de la cinta (Γ) ser el mismo que el alfabeto de entrada (Σ)?

No, ya que el alfabeto de la cinta siempre tiene un elemento de mas que es B y Σ no puede tenerlo

b) ¿Puede una máquina de Turing tener un único estado?

Si, q0.

c) ¿Cuántos lenguajes existen definidos sobre el alfabeto $\Sigma = \{0,1\}$? ¿y sobre $\Sigma = \{1\}$?

Infinitos incontables

d) ¿Cuáles de los siguientes conjuntos son lenguajes definidos sobre Σ ? \emptyset , Σ , Σ^* , $\{\lambda\}$, $\{\lambda\} \cup \Sigma$, $\{\emptyset\}$

Todos menos $\{\emptyset\}$ ya que este no es un subconjunto de Σ^*

e) Sea la siguiente máquina de Turing:

$$M = \langle Q, \Sigma, \Gamma, \delta, q0, qA, qR \rangle$$

Con Q = {q0, q1, q2, q3}, Σ = {a, b, c}, Γ = {a, b, c, B} y δ (q, s) = (q', s', m) tal que q \in Q q' \in Q \cup {qR} s, s' \in Γ m \in {D, I} \in Reconoce el lenguaje { λ }? Si no es así indique cuál es el lenguaje que reconoce.

Nunca habrá una transición a qA, por lo tanto, el único lenguaje que reconoce es el conjunto vacío \emptyset .

- 14) Sea M = < Q, Σ , Γ , δ , q0, qA, qR>, en cada caso asumir que los δ () no especificados son los que hacen detener la MT en qR, determinar L(M)
 - a) $Q = \{q0, q1\}; \Sigma = \{0,1\}; \Gamma = \{0, 1, B\}$ $\delta(q0, 0) = (q0, 0, I)$

 $\delta(q0, B) = (q0, B, D)$

 $\delta(q0, 1) = (q1, 1, D)$

 $L(M) = \emptyset$

b) $Q = \{q0, q1\}; \Sigma = \{0,1\}; \Gamma = \{0, 1, B\}$

 $\delta(q0, 0) = (q1, B, D)$

 $\delta(q1, B) = (qA, B, D)$

 $\delta(q1, 0) = (qA, 0, D)$

 $\delta(q1, 1) = (qA, 1, D)$

 $L(M) = \{w \mid w \text{ empieza con } 0\}$

c) $Q = \{q0, q1\}; \Sigma = \{0,1\}; \Gamma = \{0, 1, B\}$

 $\delta(q0, 0) = (q0, 0, 1)$

 $\delta(q0, B) = (q0, B, D)$

 $\delta(q0, 1) = (q1, 1, D)$

 $\delta(q1, 0) = (q0, B, I)$

 $\delta(q1, B) = (q0, B, D)$

 $L(M) = \emptyset$

d)
$$Q = \{q0\}; \Sigma = \{0,1\}; \Gamma = \{0, 1, B\}$$

$$\delta(q0, 1) = (q0, B, I)$$

$$\delta(q0, 0) = (qA, B, I)$$

$$\delta(q0,\,B)=(\,q0,\,B,\,D\,\,)$$

$$L(M) = \{w \mid w \text{ contiene } 0\}$$

e)
$$Q = \{q0, q1\}; \Sigma = \{0,1\}; \Gamma = \{0, 1, B\}$$

$$\delta(q0, 0) = (q1, B, D)$$

$$\delta(q1, 0) = (q1, 1, D)$$

$$\delta(q1, 1) = (q1, 0, D)$$

$$\delta(q1, B) = (qA, 1, D)$$