ГУАП

КАФЕДРА № 52

ОТЧЕТ ЗАЩИЩЕН С ОЦЕНКОЙ

		ЗАЩИЩЕН С ОЦЕНКО	Й				
ПРЕПОДАВАТЕЛ	ПЬ						
доцент, канд.т	ех.наук		Марковская Н.В.				
должность, уч. стег	іень, звание	подпись, дата	инициалы, фамилия				
	ОТЧЕТ О	ЛАБОРАТОРНОЙ РА	АБОТЕ № 1				
Определение то	очного значения	вероятности существован	ния пути между вершинами графа				
РАБОТУ ВЫПОЛ		дежность инфокоммуникаг	ционных систем				
СТУДЕНТ ГР.	5911		Бенцлер А.А.				

подпись, дата

инициалы, фамилия

Цель работы

Вычислить вероятность $P_{w}(x_{i},x_{j}) = \rho_{ij}$ существования пути между заданной парой вершин x_{i} , x_{i} в графе δ^{k} .

Построить зависимость $\rho_{i}(p)$ вероятности существования пути в случайном графе от вероятности существования ребра.

Теоретический материал

Рис.1 – пример случайного графа

Рассмотрим две ситуации. Для первой будем полагать, что ребро 2-3 всегда существует. Для второй ситуации будем полагать, что ребро 2-3 не существует. В этом случае можно перейти к рассмотрению двух новых случайных графов: $\tilde{G}^{^{1}}$, появление которого возможно с вероятностью $P(\tilde{G}^{^{1}})=P_{_{32}}$, и $\tilde{G}^{^{2}}$, который может появиться с вероятностью $P(\tilde{G}^{^{2}})=(1-P_{32})$.

Рис.2 – декомпозиция случайного графа

Поскольку ребро 2-3 для случайного графа \tilde{G}^2 существует всегда, то вершины 2 и 3 можно объединить в одну. Для G2 же ребро 2-3 просто отсутствует.

Такую процедуру получения более простых случайных графов на основе одного сложного будем называть декомпозицией.

Для полученных с помощью декомпозиции случайных графов определим вероятность связности вершин 1 и 2:

$$P_{ce}(1,2|\tilde{G}^{1}) = P_{12} + P_{13} - P_{12} * P_{13}$$
 (2)

$$P_{ce}(1,2|\tilde{G}^2) = P_{12}$$
 (3)

Теперь, чтобы получить вероятность связности для случайного графа \tilde{G} воспользуемся формулами (2) и (3):

$$P_{ce}(1,2) = P_{ce}(1,2|\tilde{G}^{1}) * P_{32} + P_{ce}(1,2|\tilde{G}^{2}) * (1-P_{32})$$
(4)

Декомпозицию для новых графов можно продолжать. При этом в узлы построенного таким образом «двоичного дерева» будут отображаться случайные графы. Существенно то, что случайные графы, находящиеся на нижних ярусах, будут иметь более простую топологию по сравнению с графами на вышестоящих ярусах.

Основная цель процедуры декомпозиции состоит в замене одного сложного графа на несколько простых, для которых проще произвести расчет вероятности связности.

Ход работы

1. Вывод формулы вероятности существования пути в случайном графе

$$P_{11} = P_5 + P_4 P_{10} - P_4 P_5 P_{10} = P + P(P + P^2 - P^3) - P^2 (P + P^2 - P^3)$$

$$= P + P^2 + P^3 - P^4 - P^3 - P^4 + P^5 =$$

$$= P^5 - 2 P^4 + P^2 + P$$

$$P_{n} \{ n_{g} m_{e} |_{1,3} \} \mid \text{Herm } 6, 2 \} = \{ n_{1} \vee n_{2} \} = = (P_{n} + P_{e} - P_{e} P_{n}) (P_{3} + P_{3} - P_{3} P_{3})$$

$$P_{e} n_{1} \} \{ P_{e} \} = P_{e} P_{3} P_{3} P_{n}$$

$$P_{n} P_{3} + P_{6} P_{3} - P_{6} P_{3} P_{3} P_{n}$$

n, p. Ope n2
n3 P8 P3 ny

Pr Sigmb 133 lecone 6,2 = Pr Eni M23 Pr En3 M4f =
= (Pu+P6-P6Pu) (P2+P2-P2P3)

Paringme 1,33 = Paringme 1,3 [Hem 6,2] · (1-P4) + Paringme 1,3 [ecre 6,2] · P4 = (P11P8+P6 P3-P6P8P9R1)(1-P4) + (P11+P6-P6P1)(P8+P3-P3P3)P4 = (P11P8+P^2-P11P^3)(1-P4) + (P11+P-P11P)(2P-P^2)P = P11P+P^2-P11P^3-P11P^2-P^3+P11P^4+2P11P^2+2P^3-2P11P^3-P11P^3-P^4+P11P^4 = 2P11P^4-4P11P^3+P11P^4+P11P

 $= 2p^{4}(p^{5}-2p^{4}+p^{2}+p) - 4p^{3}(p^{5}-2p^{4}+p^{2}+p) + p^{2}(p^{5}-2p^{4}+p^{2}+p) + p(p^{5}-2p^{4}+p^{3}+p)$ $-p^{4}+p^{3}+p^{2}=2p^{5}-4p^{8}+2p^{6}+2p^{5}-4p^{8}+3p^{7}-4p^{5}-4p^{4}$ $+p^{7}-2p^{6}+4p^{4}+p^{3}+p^{6}-2p^{5}+p^{3}+p^{2}-p^{4}+p^{3}+p^{2}=$ $2p^{9}-8p^{8}+9p^{7}+p^{6}-4p^{5}-4p^{4}+3p^{3}+2p^{2}$

1. Разработка программы вычисления вероятности существования пути в случайном графе

Результаты расчетов:

P	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
Pr(p)-	0.022	0.096	0.221	0.382	0.558	0.722	0.854	0.942	0.987	1
полный	5618	4797	092	763	594	945	681	719	856	
перебор										
Pr(p)-	0.022	0.096	0.221	0.382	0.558	0.722	0.854	0.942	0.987	1
аналитич	5618	4797	092	763	594	945	681	719	856	
еская										

Таблица 1 – результаты расчетов вероятностей

2. Графики полученных зависимостей

Рис.3 – график зависимости вероятности существования пути от вероятности существования ребра (р)

3. Вывод

В ходе выполнения данной лабораторной работы были изучены основные способы получения точного значения вероятности существования пути между вершинами случайного графа.