Section 1.1: Sets, Intervals, and Absolute Value

- 1. Find the union and the intersection of $A = \{1, 3, 8, 9, 10, 101\}$ and $B = \{-1, 2, 3, 8, 101, 120\}$.
- 2. In the set $\{-7, \frac{2}{5}, -0.7, \sqrt{7}, 0, \pi, -\sqrt{100}\}$, list all numbers that are A) integers, B) rational, and C) irrational.
- 3. Rewrite the expression in an equivalent form without absolute value bars.

(a)
$$|\sqrt{3} - 5|$$

(b)
$$|2x - 1|$$

- 4. What are the possible values of $\frac{|2x+1|}{2x+1}$?
- 5. Using the absolute value symbol, express each statement:
 - (a) the distance between x and 1
 - (b) the distance between x and 1 is more than 5 units
- 6. Interpret $|x| \le 2$ as distance from the origin. Draw this set on a number line. Express this set using interval notation.
- 7. Express the graphed set using interval notation.
- 8. Represent the solution graph using absolute value.

Section 1.2: Exponents and Radicals

1. Simplify. Write all answers using positive exponents only.

(a)
$$-6^0$$
 (b) $\frac{5^{-3}}{5}$

(c)
$$3(2x^{-2}y^3)^5$$
 (c)

(a)
$$-6^0$$
 (b) $\frac{5^{-3}}{5}$ (c) $3(2x^{-2}y^3)^5$ (d) $\frac{36x^4y^9}{64x^{-5}y^{12}}$ (e) $\frac{\sqrt[3]{54x^5y}}{\sqrt[3]{2x^2y^{-5}}}$ (f) $\left(\frac{27x^{-4}y^2}{8x^2y^{-1}}\right)^{\frac{-2}{3}}$

(f)
$$\left(\frac{27x^{-4}y^2}{8x^2y^{-1}}\right)^{\frac{-2}{3}}$$

2. Simplify the following expressions. Assume all variables represent non-negative numbers.

(a)
$$\sqrt{75x^4}$$

(b)
$$\frac{\sqrt{80x^5}}{\sqrt{5x}}$$

(c)
$$\sqrt{63x} - \sqrt{28x}$$

(a)
$$\sqrt{75x^4}$$
 (b) $\frac{\sqrt{80x^5}}{\sqrt{5x}}$ (c) $\sqrt{63x} - \sqrt{28x}$ (d) $\sqrt{(-11)^2} + \sqrt[3]{64}$

(e)
$$\left(\sqrt[5]{x^2y}\right)^{\frac{1}{2}}$$

(f)
$$\sqrt{18xy^3} \cdot \sqrt[3]{2^4x^4y^3}$$

(e)
$$\left(\sqrt[5]{x^2y}\right)^{\frac{5}{2}}$$
 (f) $\sqrt{18xy^3} \cdot \sqrt[3]{2^4x^4y^7}$ (g) $\left(8x^{-6}y^3\right)^{\frac{1}{3}} \left(x^{\frac{5}{6}}y^{\frac{-1}{3}}\right)^6$

Section 1.3: Algebra and Polynomials

1. Simplify

(a)
$$-6^2 + 4$$

(a)
$$-6^2 + 4$$
 (b) $3(10 - 2(1 - 4)^2)^2$ (c) $2(3xy)4(xy)$

(c)
$$2(3xy)4(xy)$$

2. Multiply the following and simplify.

(a)
$$(2x-3)(x^2-4x+3)$$
 (b) $(3x-2)^2$ (c) $(2\sqrt{x}-1)^2$ (d) $(3x-4)^3$

(b)
$$(3x-2)^2$$

(c)
$$(2\sqrt{x}-1)^2$$

(d)
$$(3x-4)^3$$

(e)
$$[8y + (7-3x)][8y - (7-3x)]$$
 (f) $(x-y-3)(x-y+3)$ (g) $(3x+1)(x^2+9)(3x-1)$

f)
$$(x-y-3)(x-y+3)$$

1

(g)
$$(3x+1)(x^2+9)(3x-1)$$

3. Factor completely.

(a)
$$12x^4 - 18x^3 - 54x^2$$
 (b) $8x^2 + 33x + 4$ (c) $6x^4 + 6x^2 - 12$ (d) $16x^4 - 81$

(b)
$$8x^2 + 33x + 4$$

(c)
$$6x^4 + 6x^2 - 12$$

(d)
$$16x^4 - 81$$

(e)
$$(5x+2y)^2 - (5x-2y)^2$$

(f)
$$125x^6 - 27$$

(e)
$$(5x+2y)^2 - (5x-2y)^2$$
 (f) $125x^6 - 27$ (g) $2(x+3)^{\frac{1}{2}} - 10(x+3)^{\frac{5}{2}}$

(h)
$$3(x+1)(2x+3)^2 - 9(x+1)^2(2x+3)$$
 (i) $(x+1)^{\frac{1}{3}} + x(x+1)^{\frac{-2}{3}}$ (j) $2(x+3)^{\frac{-1}{2}} - 5(x+3)^{\frac{1}{2}}$

(i)
$$(x+1)^{\frac{1}{3}} + x(x+1)^{\frac{-2}{3}}$$

(i)
$$2(x+3)^{\frac{-1}{2}} - 5(x+3)^{\frac{1}{2}}$$

(k)
$$(x^2-3)^2-4(x^2-3)+3$$

Section 1.4: Rational Expressions

1. Perform the indicated operations. Also state any values that should be excluded from the domain of each expressions.

(a)
$$\frac{2x^2 + 8x}{8x}$$

(b)
$$\frac{2}{5x+1} + \frac{3}{5x}$$

(a)
$$\frac{2x^2 + 8x}{8x}$$
 (b) $\frac{2}{5x+1} + \frac{3}{5x}$ (c) $\frac{x^2 - 25}{x^2 + 3x - 10} \div \frac{x^2 + 7x + 10}{x^2 + 8x + 15}$ (d) $\frac{1 + x^{-1}}{1 - x^{-2}}$

(d)
$$\frac{1+x^{-1}}{1-x^{-2}}$$

(e)
$$\frac{3}{5x+2} + \frac{5x}{25x^2-4}$$

(e)
$$\frac{3}{5x+2} + \frac{5x}{25x^2-4}$$
 (f) $\frac{2(x+1)^{\frac{1}{2}} - x(x+1)^{\frac{-1}{2}}}{x+1}$ (g) $\frac{\frac{3}{h+1}-3}{h}$ (h) $\frac{\frac{1}{2+x}-\frac{1}{2}}{x}$

$$(g) \frac{\frac{3}{h+1} - 3}{h}$$

(h)
$$\frac{\frac{1}{2+x} - \frac{1}{2}}{x}$$

(i)
$$\frac{15x^4(x^2-1)^2+12x^2(x^2-1)}{x^4(x^2-1)(3x+2)}$$

(j)
$$\frac{8x(x+2)^2 - 6x^2(x+2)^6}{6x^3(x+2)^6}$$

(i)
$$\frac{15x^4(x^2-1)^2+12x^2(x^2-1)^3}{x^4(x^2-1)(3x+2)}$$
 (j)
$$\frac{8x(x+2)^2-6x^2(x+2)}{6x^3(x+2)^6}$$
 (k)
$$\frac{x-3}{x^2-4}-\frac{x+2}{x^2-4x+4}-\frac{2}{2-x}$$

- (a) Rationalize the denominator $\frac{23}{5+\sqrt{2}}$ (b) Rationalize the numerator $\frac{\sqrt{x+3}-\sqrt{x}}{5}$ 2.

Section 1.5: Solving equations

1. Solve the following equations for the unknown.

(a)
$$\frac{3}{x+3} = \frac{3}{2x+6}$$

(a)
$$\frac{3}{x+3} = \frac{5}{2x+6} + \frac{1}{x-2}$$
 (b) $\frac{1}{y-3} - \frac{2}{y+1} = \frac{8}{y^2 - 2y - 3}$ (c) $-\frac{9}{x^2} + 8 = -\frac{1}{x^4}$

$$(d) \sqrt{20 - 8a} = a$$

(e)
$$\sqrt{x+5} - \sqrt{x-3} = 2$$

(d)
$$\sqrt{20-8a} = a$$
 (e) $\sqrt{x+5} - \sqrt{x-3} = 2$ (f) $(2x+7)(x-6) = -39$

(g)
$$w^2 - 13w = -36$$

(g)
$$w^2 - 13w = -36$$
 (h) $3(y+4)^2 - 5 = 22$ (i) $2c^2 + c - 5 = 0$ (j) $x^{-2} - 3x^{-1} - 4 = 0$

(i)
$$2c^2 + c - 5 = 0$$

(i)
$$x^{-2} - 3x^{-1} - 4 = 0$$

2. Solve by completing the square.

(a)
$$6x^2 - 12x - 3 = 0$$
 (b) $3x^2 + x - 2 = 0$

(b)
$$3x^2 + x - 2 = 0$$

Section 1.6: Modeling with Equations

See text # 25, 27, 29, 61, 63, 67, 69. Monday's worksheet will emphasize such problems.

Section 1.7: Inequalities

1. Solve

(a)
$$\frac{3x}{10} + 1 \ge \frac{1}{5} - \frac{x}{10}$$

(a)
$$\frac{3x}{10} + 1 \ge \frac{1}{5} - \frac{x}{10}$$
 (b) $-5 \le \frac{1}{2}x - 4 < -3$ (c) $3x^2 < 8x$ (d) $\frac{x^2 - 4}{x^2 - 2x - 3} \le 0$

(c)
$$3x^2 < 8x^2$$

2

(d)
$$\frac{x^2 - 4}{x^2 - 2x - 3} \le 0$$

(e)
$$\frac{4}{x} \le x$$
 (f) $-\frac{1}{x} \le x - 2$ (g) $x + 2 \le \frac{3}{x}$

$$\leq x - 2$$
 (g) $x +$

2. Find the domain of $\frac{\sqrt{x+3}}{\sqrt{x-1}}$.

Section 1.8 and 1.10: Symmetries, Lines and Circles

1. Determine any symmetry. Prove your answers by applying the appropriate symmetry test.

(a)
$$y = x^4 + \frac{|x|}{x^4 + x^2 + 2}$$
 (b) $y = 2x^7 - 3x + 1$ (c) $x = y^4 - 5y^2$

- 2. Find the equation of the line
 - (a) passing through the points P(1,2) and Q(5,-2)
 - (b) passing through P(1,3) and parallel to 3x-6y=2
 - (c) passing through P(1,3) and perpendicular to 3x-6y=2
- 3. Find x such that (x,4) is 5 units from (3,1).
- 4. Find the equation of the circle that
 - (a) has center (2,1) and radius r=3
 - (b) has center (2, -3) and passes through the point P(1, 1)
- 5. Find the center and radius of the circle with equation $2x^2 + 2y^2 + 20x 36y 30 = 0$