

Si5338 REFERENCE MANUAL: CONFIGURING THE Si5338 WITHOUT CLOCKBUILDER DESKTOP

THIS DOCUMENT REPLACES "AN411: CONFIGURING THE Si5338 WITHOUT CLOCKBUILDER DESKTOP"

TABLE OF CONTENTS

<u>Section</u>	<u>Page</u>
1. Introduction	4
2. Overview of Configuring the Si5338	
3. Configuring the Si5338	
3.1. Example Method for Finding MultiSynth Values for an Si5338 Frequency Plan	6
3.2. Calculating MultiSynth Values	
4. Configuring The Input Selection	
4.1. Reference Clock Select	
4.2. Feedback Clock Select	
5. Configuring PLL Parameters	
6. Configuring the Frequency Increment/Decrement	
6.1. Step Size Resolution of 1 ppm	
6.2. Step Size as Small as .931 ppb	
7. Configuring Initial Phase Offset and Phase Step Size	
7.1. Initial Phase Offset	
7.2. Phase Step Size	
8. Configuring Spread Spectrum	
8.1. Down Spread	
8.2. Center Spread	
8.3. Spread Spectrum Register Precision	
9. Configuring the Output Drivers	
9.1. Output Signal Type	
9.2. Output Voltage	
9.3. Output Driver Trim	
9.4. Output Driver Powerup/Powerdown	
9.5. Output Driver Enable/Disable	
9.6. Output Drive State When Disabled	
9.7. Output Clock Invert	
9.8. Output Clock Select	
9.9. Output Clock Dividers	
10. Si5338 Registers	
10.1. Assembling the Si5338 Register Map	
10.2. Miscellaneous Register Writes	
10.3. Register Write-Allowed Mask	
10.4. Register Categories	
10.5. Register Summary	
10.6. Register Descriptions	
Document Change List	
Contact Information	164

1. Introduction

The Si5338 is a highly flexible and configurable clock generator/buffer. A block diagram of the Si5338 programmable clock IC is shown in Figure 1.

To support the flexibility, Silicon Labs has created ClockBuilder Desktop to create register maps automatically and easily for a given configuration. Since programming with ClockBuilder Desktop may not always be well suited to every system's requirements, this document presents the procedures and equations for determining a complete register set from a frequency plan.

Figure 1. Si5338 Block Diagram

The device may have a factory defined default configuration stored in non-volatile memory (NVM). During powerup, the default configuration is copied into random access memory (RAM). Having its working configuration stored in RAM allows in-system configuration changes through the I²C port. The memory configuration of the Si5338 is shown in Figure 2.

Figure 2. Si5338 Memory Configuration

This application note provides details on configuring the Si5338 by accessing its RAM space through the I²C bus.

2. Overview of Configuring the Si5338

In order to replicate the functionality of ClockBuilder Desktop, a full register map must be created for all desired features. To create the register map, the programmer must perform the following steps:

- 1. Configure the clock multiplexors.
 - See "4. Configuring The Input Selection" on page 12.
- 2. Determine the divider values for the desired input and output frequencies.
 - See "5. Configuring PLL Parameters" on page 15.
- 3. Configure the frequency and/or phase inc/dec feature (if needed).
 - See "6. Configuring the Frequency Increment/Decrement" on page 16.
 - See "7. Configuring Initial Phase Offset and Phase Step Size" on page 17.
- 4. Configure spread spectrum (if needed).
 - See "8. Configuring Spread Spectrum" on page 19.
- 5. Set the output driver format and supply voltage.
 - See "9. Configuring the Output Drivers" on page 22.
- 6. Assemble the register map.
 - See "10. Si5338 Registers" on page 28.
- 7. See "10.2. Miscellaneous Register Writes" on page 28 for additional registers that need to be set.

With the assembled register map, follow the procedure in Figure 9 of the Si5338 data sheet.

3. Configuring the Si5338

For the Si5338, the frequency plan is derived from the desired input/output frequencies and desired performance. Once the frequencies are known, one can use the following example method for determining the frequency divider ratios. Once the divider ratios are determined, use the equations to convert the divider ratios into values the device can understand. Silicon Labs strongly suggests that the fully-configured register map be loaded into an Si5338 device and fully tested before ordering pre-programmed devices.

3.1. Example Method for Finding MultiSynth Values for an Si5338 Frequency Plan

The following procedure finds all combinations of MultiSynth values that satisfy the frequency plan.

- 1. Select a lowest P1 ratio that divides the input frequency (CLKIN) to 40 MHz or less. This is the phase detector input frequency. If the input frequency is from a crystal, the P1 divider is 1.
- For all the output frequencies, if an output frequency is less than 5 MHz, find the lowest R divider value that increases the output frequency of the MultiSynth to greater than or equal to 5 MHz. Keep these R values. The goal is to get the actual MultiSynth output frequencies and ensure they are in range.
- 3. Calculate the output frequency of the MultiSynth for the highest performance frequency: MultiSynth output frequency = corresponding R value × desired output frequency
 - a. The highest performance frequency refers to the clock output where jitter must have the lowest value. The procedure assumes that an integer divider from the VCO will produce the best performance.
- 4. Collect divider ratios for that yield an integer ratio for the highest performance MultiSynth output. Iterate over all even-numbered divider values between 4 and 568:
 - a. Calculate possible f_{vco} : f_{vco} = highest performance MultiSynth output frequency × current integer divider
 - b. If the f_{vco} value is in range, keep the divider value.
- 5. Calculate remaining divider ratios for all the solutions found in Step 4.
 - a. f_{vco} = Highest-performance MultiSynth output frequency × current divider value
 - b. $MSn = f_{vco} \div phase detector frequency$
 - c. For all the other MultiSynth output frequencies:
 - i. Calculate the corresponding MultiSynth value:
 MultiSynth = f_{vco} ÷ (MultiSynth output frequency × corresponding R divider value)
 - ii. If the current MultiSynth value is less than 8 and not 4 or 6, then this plan is invalid. Do not keep. Otherwise, it is a valid plan.

3.1.1. VCO Limitations Impact Achievable Output Frequencies

The range of the f_{vco} is 2.2 to 2.84 GHz. The valid output frequency ranges above f_{vco} divided by 8 are set by the dividers of 4 and 6 and the f_{vco} range such that:

- 2.2 GHz ÷ 6 = 366 2/3 MHz
- 2.84 GHz ÷ 6 = 473 1/3 MHz
- 2.2 GHz ÷ 4 = 550 MHz
- 2.84 GHz ÷ 4 = 710 MHz

There is only one f_{vco} available that can produce the frequencies in the given ranges. For example, to get 600 MHz output use:

 f_{vco} = output frequency × MultiSynth divider

 $f_{vco} = 600 \text{ MHz} \times 4 = 2.4 \text{ GHz}$

If the MultiSynth divider is 6, then the f_{vco} is out of range at 3.6 GHz. So 4 is the only valid divider. The procedure in the previous section comprehends these restrictions.

Note: Spread spectrum clocking and phase and frequency adjustments cannot be used on output frequencies greater than f_{vco} divided by 8.

3.1.2. Sorting the Frequency Plans to Minimize Jitter

The following guidelines help to sort the frequency plans:

- 1. Use MSn divider values that are integers as much as possible.
- 2. Look for a MultiSynth value that is an integer on important output channels or frequencies.
- 3. Pick plans with VCO frequencies (f_{vco}) close to 2.5 GHz.

3.1.3. Using Fractions to Store the MultiSynth Values

One possible problem, when implementing this algorithm, is losing precision or introducing rounding errors in the calculations. To prevent this and to better model the operation of the MultiSynths, use a data structure where the type will have three parts: integer or whole number, numerator and denominator. Using 64-bit unsigned numbers yields high precision in the fraction and more than what the Si5338 supports. Additionally, use this data structure to store the input and output frequencies, MultiSynth values, VCO frequency, and phase detector frequency. Operations like addition, subtraction, division, multiplication, simplifying the fraction, and even comparisons like equal-to, greater-than and less-than are necessary to implement the algorithm.

3.1.4. Truncating MultiSynth Values

If the MultiSynth reduced fractional values (numerator and denominator) do not fit in the corresponding bit fields in the register map, truncation is necessary. Truncation implies that some of the desired frequencies are not achievable with the specified precision.

First check if the MSn divider needs to be truncated (that is, the numerator or denominator of MSn is greater than $2^{30} - 1$). If it does, truncate the f_{vco} and recalculate the MSn. The f_{vco} should stay within the allowed range.

When the MultiSynth dividers (MSx) are calculated after the f_{VCO} is calculated with the above procedure, check if the dividers need to be truncated (the numerator or denominator is greater than $2^{30}-1$). If so, divide the numerator and denominator of the affected MultiSynth by 2 until both the numerator and denominator fit (this is equivalent to bit-shifting to reduce the length of the variable to 30 bits). The division can be done on the actual MultiSynth values, not the P2 or P3 numbers for the registers. Of course, the denominator should not be zero.

3.2. Calculating MultiSynth Values

Because of its flexibility, the Si5338 uses several parameters to determine the final output frequency. A summary of these parameters is shown in Figure 3.

Figure 3. Frequency Plan Parameters

When the MS0,1,2,3 output is $f_{vco}/4$ or $f_{vco}/6$ the following functions are not available:

- 1. Frequency Increment/Decrement
- 2. Phase Increment/Decrement
- 3. Spread Spectrum

In order for an output to be at a frequency of fvco/4 or fvco/6, a bit in Register51[7:4] must be set. See the description for these bits in "10. Si5338 Registers" on page 28. In some cases, a very slight improvement in output jitter may be obtained by setting MSn (feedback MultiSynth) to an integer value. All the output jitter specifications in the data sheet were based upon characterization data with a 25 MHz PFD input. In general, the higher the PFD input frequency the lower the jitter on the output clock.

Once MSn and MSx values have been determined, they must be converted to their digital representations and written to the appropriate registers. The conversion for these are shown in Equation 1.

Let MSn or MSx =
$$a + \frac{b}{c}$$
 Where $a = 4, 6, 8, 9 ... 567$
 $b = 0 ... (2^{30} -1)$
 $c = 1 ... (2^{30} -1)$

Note: When MSn or MSx is an integer, you must set b = 0 and c = 1

$$MSx_P1 = Floor \left(\frac{(a * c + b) * 128}{c} - 512 \right)$$
$$MSx_P2 = Mod \left(b * 128, c \right)$$

 $MSx_P3 = c$

Note: The Floor function rounds down to the closest integer value. Mod(b*128,c) returns the remainder of b*128/c

Example:

$$a + b/c = 99.5328$$
 $a = 99, b=333, c=625$

$$MSx P1 = 12228 (0x02FC4)$$

 $MSx_P2 = 124 (0x0000007C)$

 $MSx_P3 = 625 (0x00000271)$

Alternately let a = 99, b = 5328, c=10000

MSx P1 = 12228 (0x02FC4)

 $MSx_P2 = 1984 (0x0000007C0)$

 $MSx_P3 = 10000 (0x000002710)$

Both results can be used to program the Si5338 because in both cases b/c = .5328

Equation 1. Frequency Programming

Register values for MSx_P1, MSx_P2, and MSx_P3 must be written to the appropriate registers as shown in Figure 4 and Figure 5. To ensure that the MultiSynth is properly configured, it is recommended to write all bytes (even ones that are zero) associated with MSx_P1, MSx_P2, and MSx_P3. This will ensure that previous configurations are completely overwritten.

Note: MSx_P1, MSx_P2, and MSx_P3 were named INT, NUM, and DEN in an earlier version of this document. Because the values are not equal to the integer, numerator, and denominator, the names have been changed. The equations are identical.

MS0_P1 [17:0]		55[1:0] 1	54[7:0] 5 4 3 2 1 0 13 12 11 10 9 8	53[7:0] 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
MS0_P2 [29:0]	58[7:0] 7 6 5 4 3 2 1 0 29 28 27 26 25 24 23 22	57[7:0] 7 6 5 4 3 2 1 0 21 20 19 18 17 16 15 14	56[7:0] 7 6 5 4 3 2 13 12 11 10 9 8	55[7:2] 1 0 7 6 5 4 3 2 1 0
MS0_P3 [29:0]	62[5:0] 7 6 5 4 3 2 1 0 7 6 29 28 27 26 25 24 23 22	61[7:0] 5 4 3 2 1 0 7 6 21 20 19 18 17 16 15 14	60[7:0] 5 4 3 2 1 0 13 12 11 10 9 8	59[7:0] 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
		66[1:0]	65[7:0]	64[7:0]

		66[1:0]	65[7:0]	64[7:0]
MS1_P1 [17:0]		1 0 7	6 5 4 3 2 1 0	7 6 5 4 3 2 1 0
		17 16 15 1	14 13 12 11 10 9 8	7 6 5 4 3 2 1 0
	69[7:0]	68[7:0]	67[7:0]	66[7:2]
MS1_P2 [29:0]	7 6 5 4 3 2 1 0	7 6 5 4 3 2 1	0 7 6 5 4 3 2	1 0 7 6 5 4 3 2
	29 28 27 26 25 24 23 22	21 20 19 18 17 16 15	14 13 12 11 10 9 8	7 6 5 4 3 2 1 0
	73[5:0]	72[7:0]	71[7:0]	70[7:0]
MS1_P3 [29:0]	7 6 5 4 3 2 1 0 7 6	5 4 3 2 1 0 7	6 5 4 3 2 1 0	7 6 5 4 3 2 1 0
	29 28 27 26 25 24 23 22	21 20 19 18 17 16 15	14 13 12 11 10 9 8	7 6 5 4 3 2 1 0

⁼ Leave as default

Figure 4. MultiSynth Registers (MS0, MS1)

= Leave as default

Figure 5. MultiSynth Registers (MS2, MS3, MSN)

4. Configuring The Input Selection

The Si5338 is capable of locking to a single-ended clock, a differential clock, or an external crystal resonator (XTAL). The XTAL allows the Si5338 to generate its own free-running reference clock. A block diagram of the input configuration of the Si5338 is shown in Figure 6. The Si5338 uses pins IN1/IN2, or IN3 as its main input. Inputs IN5/IN6, and IN4 can serve as an external feedback path for zero delay mode, or as additional clock inputs if the device is operating in internal feedback mode.* The following sections describe how each of the inputs are configured.

*Note: Only Si5338N/P/Q devices allow IN4 to be used as a single-ended clock input.

Figure 6. Si5338 Input Selection Block Diagram

4.1. Reference Clock Select

In this section, the configurations for all the muxes within the Reference Select area of Figure 6 are described.

Crystal Frequency	XTAL_FREQ[1:0]
26 MHz < Fxtal <= 30 MHz	11
19 MHz < Fxtal <= 26 MHz	10
11 MHz < Fxtal <= 19 MHz	01
8 MHz < Fxtal <= 11 MHz	00

Reference Clock	P1DIV_IN[4:3]	P1DIV_IN[2:0]
IN1/IN2 (differential)	00	000
IN1/IN2 (XTAL)*	10	101
IN3 (single-ended)	01	010

^{*} If IN1/IN2 (XTAL) is selected, XTAL_FREQ must be configured. Otherwise XTAL_FREQ is a don't care

Input to PFD Reference Side	PFD_IN_REF[2:0]
p1div_in (refclk)	000
p2div_in (fbclk)	001
p1div_out (divrefclk)	010
p2div_out (divfbclk)	011
xoclk	100
noclk	101

Input to PFD Feedback Side	PFD_IN_FB[2:0]
p2div_in (fbclk)	000
p1div_in (refclk)	001
p2div_out (divfbclk)	010
p1div_out (divrefclk)	011
reserved	100
noclk	101

P1 divider setting	P1DIV[2:0]
/1	000
/2	001
/4	010
/8	011
/16	100
/32	101

P2 divider setting	P2DIV[2:0]
/1	000
/2	001
/4	010
/8	011
/16	100
/32	101

Figure 7. Reference Input Configuration Registers

4.2. Feedback Clock Select

The feedback pins (IN4, IN5/IN6) can be used in external feedback mode (for zero delay applications), or as alternate reference inputs. The IN5/IN6 pins provide a differential input and IN4 accepts a single-ended input. Only the Si5338N/P/Q devices allow IN4 to be used as a single-ended clock input. The registers responsible for selecting/configuring external feedback clock inputs are shown in Figure 8.

Figure 8. Feedback Input Configuration Registers

When the Si5338 is used in the zero delay mode, set the PFD_EXTFB bit = 1 (register 48[7] = 1). When the Si5338 is not in the zero delay mode, set the PFD_EXTFB bit = 0 (register 48[7] = 0).

5. Configuring PLL Parameters

Once the MultiSynth registers (MS0,1,2,3, and MSn) have been calculated, the PLL parameters PLL_Kphi, VCO_GAIN, RSEL, BWSEL, MSCAL, and MS_PEC need to be calculated according to the information in the figure below. These PLL parameters depend on the values of f_{vco} and f_{pfd} which were calculated in "5. Configuring PLL Parameters".

f _{pfd}	K	RSEL[1:0]	BWSEL[1:0]
f _{pfd} >= 15 MHz	925	00	00
8 MHz <= f _{pfd} < 15 MHz	325	01	01
5 MHz <= f _{pfd} < 8 MHz	185	11	10

f _{vco}	Q	VCO_GAIN[2:0]
f _{vco} -> 2.425 GHz	3	000
f _{vco} < 2.425 GHz	4	001

PLL_KPHI[6:0] = Round
$$\left(\frac{K}{533 \cdot Q} \cdot \frac{f_{VCO \text{ (MHz)}}}{f_{pfd \text{ (MHz)}}} \cdot \left(\frac{2500}{f_{VCO \text{ (MHz)}}}\right)^3\right)$$

Notes: 1. PLL_KPHI should always be at least 1 and no more than 127

Register 48[7] sets internal or external feedback mode. See note in figure 6 for more details. Also see Section 4.2.

MSCAL[5:0] = ROUND
$$\left[-6.67 + \frac{f_{VOO (MHz)}}{1000} + 20.67 \right]$$

Set MS_PEC[2:0] to 111

Figure 9.

6. Configuring the Frequency Increment/Decrement

The Si5338 has a glitchless frequency increment/decrement (Finc/Fdec) feature that allows each output MultiSynth frequency to be independently stepped up or down in predefined steps. Finc/Fdec is not provided on the feedback MultiSynth. When using the Finc/Fdec feature, care must be taken to ensure that the resulting MultiSynth0,1,2,3 output frequency (Fout) stays in the range of 5 MHz to Fvco/8. The divider values, a, b, and c, in "3.2. Calculating MultiSynth Values" on page 8 are used to calculate the Finc/Fdec parameters. Note that the Fout term in Equations 2 and 3 is a constant as defined by the equations in "3. Configuring the Si5338" on page 6. In other words, if a step size (Fstep) of 10 kHz is programmed, the step size will stay 10 kHz regardless of the number of increments or decrements that have occurred. The control of Finc/Fdec can be via external pins or internal register bits. See Registers 52, 63, 74, and 85 for more information.

6.1. Step Size Resolution of 1 ppm

Under all conditions, a step size resolution as small as 1 ppm can be achieved. The actual step size would then be an integer multiple of 1 ppm. Equation 2 shows how to configure the Si5338 with a 1 ppm step size resolution.

$$MSx_FIDP1 = 10^{6} \times c$$

$$MSx_FIDP2 = 10^{6} \times c \times \left(\frac{F_{step}}{F_{out}}\right)$$

$$MSx_FIDP3 = 10^{6} \times (a \times c + b)$$

Where Fstep/Fout must be an integer multiple of 1 ppm.

Equation 2. Frequency Increment/Decrement for 1 ppm Resolution

6.2. Step Size as Small as .931 ppb

The divider parameter c (= MSx_P3) can be up to 30 bits wide as needed to define the fractional part of the MultiSynth output divider value. When the divider parameter c is limited to < 22 bits the Si5338 can achieve increment/decrement step size as small as .931 ppb (2^{-30}). Limiting the c parameter to < 22 bits has the effect of limiting the precision of the MultiSynth output divider. However in practice it is extremely rare that more than 22 bits are needed for the divider parameter c, hence in most cases this limitation of 22 bits for the c parameter will not be an issue.

The following three conditions must be met for step sizes down to .931 ppb.

- 1. $c < 2^{22}$; c is from "3.2. Calculating MultiSynth Values" on page 8.
- 2. Fout/Fstep $< 2^{30}$; Fout is the frequency out of the MultiSynth.
- 3. Fout/Fstep is an integer.

The MSx_FIDPx parameters can be calculated as follows:

$$\begin{split} & \text{MSx_FIDP1} \ = \ c \times \left(\frac{F_{out}}{F_{step}}\right) \\ & \text{MSx_FIDP2} \ = \ c \\ & \text{MSx_FIDP3} \ = \ (a \times c + b) \times \left(\frac{F_{out}}{F_{step}}\right) \end{split}$$

Equation 3. Frequency Increment/Decrement for Step Size >0.931 ppb

7. Configuring Initial Phase Offset and Phase Step Size

7.1. Initial Phase Offset

Each output of the Si5338 can be programmed with an independent initial phase offset. The phase offset parameter is represented as a 2s complement integer and is calculated as follows:

MSx_PHOFF = Round (Phase Offset in Seconds) × 128 × Fvco

Where: Fvco is in Hz

Equation 4. Phase Offset

Make sure to convert MSx_PHOFF to a 2s complement number if a negative value is required. The initial phase offset adjustment has a range of ±45 ns. For the initial phase offset to work properly, the R divider must be set to 1. A soft reset must be applied for the phase offset value to take effect.

7.2. Phase Step Size

Additionally, each output can have its phase stepped up and down in predefined steps. The phase step size has an inc/dec range of ±45 ns and an accuracy of better than 20 ps. The phase step convention is that a positive value will delay the output in time. A phase step increment or decrement is controlled by the Pinc/Pdec pins or register bits. See bits [1:0] of Registers 52, 63, 74, and 85 for more information. The phase step size register parameter is an unsigned integer calculated as follows:

 $MSx_PHSTEP = Round (Desired Phase Step Size in seconds) \times 128 \times Fvco$

Where: Fvco is in Hz

Equation 5. Phase Inc/Dec

Multisynth 0		
	108[6:0]	107[7:0]
MS0_PHOFF[14:0]	7 6 5 4 3 2 1 0 14 13 12 11 10 9 8	7 6 5 4 3 2 1 0
MS0_PHSTEP[13:0]	110[5:0]	109[7:0]
	13 12 11 10 9 8	7 6 5 4 3 2 1 0
Multisynth 1		
	112[6:0]	111[7:0]
MS1_PHOFF[14:0]	7 6 5 4 3 2 1 0 14 13 12 11 10 9 8	7 6 5 4 3 2 1 0
	114[5:0]	113[7:0]
MS1_PHSTEP[13:0]	5 4 3 2 1 0 13 12 11 10 9 8	7 6 5 4 3 2 1 0
Multisynth 2		
	116[6:0]	115[7:0]
MS2_PHOFF[14:0]	7 6 5 4 3 2 1 0 14 13 12 11 10 9 8	7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
	118[5:0]	117[7:0]
MS2_PHSTEP[13:0]	5 4 3 2 1 0 13 12 11 10 9 8	7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
Multiquath 2		
Multisynth 3	120[6:0]	119[7:0]
MS3_PHOFF[14:0]	7 6 5 4 3 2 1 0	7 6 5 4 3 2 1 0
	14 13 12 11 10 9 8	7 6 5 4 3 2 1 0 121[7:0]
MS3_PHSTEP[13:0]	5 4 3 2 1 0 13 12 11 10 9 8	7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Figure 10. PINC_PDEC Registers

8. Configuring Spread Spectrum

Spread spectrum is available on each of the clock outputs. The device can be set up in down- or center-spread mode. The Si5338 supports spread spectrum under the following conditions:

- 1. MultiSynth output frequencies \geq 5 MHz and \leq $f_{vco}/8$
- 2. Spreading rates from 31.5 to 63 kHz
- 3. Down spread from 0.1 to 5% in 0.01% steps
- 4. Center spread from ±0.1 to ±2.5% in .01% steps

If your spread spectrum requirements are outside of these parameters, contact Silicon Labs.

8.1. Down Spread

To configure down spread, use the following equations:

Up/Down Parameter:

$$MSx_SSUDP1 = Floor \left(\frac{F_{out}}{4 \times sscFreq} \right)$$

where

Fout = MultiSynthx output frequency in Hz) sscFreq = spreading frequency in Hz

Down Parameters:

Let x and y be defined as:

$$x = Floor(1e12 \times (64 \times sscAmp \times (a + b/c)))$$

$$y = Floor(1e12 \times (1 - sscAmp) \times MSx SSUDP1)$$

where

sscAmp = spread amplitude (e.g, for 1.3 % down spread, sscAmp = .013) a +b/c is the MultiSynth divider ratio from section 5

$$MSx_SSDNP1 = Floor\left(\frac{x}{V}\right)$$

$$MSx_SSDNP2 = \frac{Mod(x,y)}{GCD(x,y)}$$

GCD (x,y) returns the greatest common denominator of x and y Mod(x,y) returns the remainder of x/y

$$MSx_SSDNP3 = \frac{y}{GCD(x, y)}$$

Up Parameters:

 $MSx_SSUPP1 = 0$

MSx SSUPP2 = 0

MSx SSUPP3 = 1

Equation 6. SSC Down-Spread Equations

8.2. Center Spread

Rev B devices do not provide native support for center-spread clocking. Center-spread clocks must be implemented as modified down-spread clocks. For example, to implement 100 MHz ±1% on CLKx, you must modify the associated Multisynth and R dividers to output 101 MHz (see "3.2. Calculating MultiSynth Values" on page 8) and configure the device for 2% down-spread according to the equations in "8.1. Down Spread". Note that ClockBuilder Desktop 6.0 (or later) takes care of configuring the registers properly for center spread operation on rev B devices.

8.2.1. Center Spread Equations for Rev A Devices

The part can be configured for this mode using the following equations. The Spread Spectrum parameters are located within Registers 288–347.

Up/Down Parameter:

$$MSx_SSUDP1 = Floor \left(\frac{F_{out}}{4 \text{ x sscFreq}} \right)$$

where

Fout = MultiSynthx output frequency in Hz) sscFreq = spreading frequency in Hz

Down Parameters:

Let x and y_{down} be defined as:

$$x = Floor(1e12 \times (128 \times sscAmp \times (a + b/c)))$$

 $y_{down} = Floor(1e12 \times (1 - sscAmp) \times MSx_SSUDP1)$

where

sscAmp = spread amplitude (e.g, for +-1.3 % center spread, sscAmp = .013) a +b/c is the MultiSynth divider ratio from section 5

$$MSx_SSDNP1 = Floor \left(\frac{X}{y_{down}}\right)$$

$$MSx_SSDNP2 = \frac{Mod(x,y_{down})}{GCD(x,y_{down})}$$

$$MSx_SSDNP3 = \frac{y_{down}}{GCD(x, y_{down})}$$

Up Parameters:

Let y_{up} be defined as:

$$MSx_SSUPP1 = Floor \left(\frac{x}{y_{up}} \right)$$

$$MSx_SSUPP2 = \frac{Mod(x,y_{up})}{GCD(x,y_{up})}$$

$$MSx_SSUPP3 = \frac{y_{up}}{GCD(x, y_{up})}$$

Equation 7. SSC Center-Spread Equations

8.3. Spread Spectrum Register Precision

The parameters MSx_SSUPP2, MSx_SSUPP3, MSx_SSDNP2, and MSx_SSDNP3 can each be no more than 15 bits in length. For most combinations of output frequencies and spread profiles, the equations above will yield values greater than $(2^{15} - 1)$. If either MSx_SSUPP2 or MSx_SSUPP3 is greater than $(2^{15} - 1)$, both MSx_SSUPP2 and MSx_SSUPP3 values must be truncated to fit in 15-bits. Similarly, if either MSx_DNPP2 or MSx_DNPP3 is greater than $(2^{15} - 1)$, both must be truncated to fit in 15-bits.

Use the following algorithm to truncate the length of these parameters:

Note: Truncation of the SSC values will not change the reduction in measurable carrier power.

9. Configuring the Output Drivers

The output drivers offer several programmable features which are configured or controlled with register access through the I²C serial port. The following sections describe each of these features.

9.1. Output Signal Type

Each of the outputs can be configured as CMOS, SSTL, HSTL, LVDS, LVPECL, HSCL. Registers 36-39 define the output type as shown in Figure 11.

Output Signal Type	DRVx_FMT x=0,1,2,3
Reserved	000
CMOS/SSTL/HSTL. A enabled, B disabled.	001
CMOS/SSTL/HSTL. A disabled, B enabled.	010
CMOS/SSTL/HSTL. A enabled, B enabled.	011
LVPECL	100
LVDS	110
CML	101
HCSL	111

Figure 11. Setting Output Signal Type

The Si5338 has a CML driver that can be used to replace an LVPECL driver in AC coupled applications and save ~15 mA for each output driver in the process. The output voltage swing of the CML driver is very similar to the LVPECL driver. When using the CML driver, no external bias resistors to ground or Vtt should be connected. The CML driver can be used anytime a large swing AC coupled output is needed. The CML driver is individually available for all 4 differential outputs.

The Si5338 CML output driver can be used as long as the following conditions are met

- 1. Both pins of the differential output pair are ac coupled to the load
- 2. The load at the receiver is effectively 100 Ω differential
- 3. The Si5338 PLL is not bypassed
- 4. The VDDOx supply voltage is 3.3 V or 2.5 V

The CML driver has the following output swing specifications:

- 1. Max Vsepp = 1.07 V
- 2. Min Vsepp = 0.67 V
- 3. Typ Vsepp = 0.85 V

Figure 11 shows the selection of the CML driver and Figure 13 shows the driver trim settings for the CML driver. The output common mode voltage of the CML driver is not specified.

SILICON LABS

9.2. Output Voltage

Each of the output drivers can operate from a different VDDO supply. See Register 35 in the Si5338 Data Sheet to know which supply voltage settings can be used with each output driver format. Register 35 is used to configure VDDO as 3.3_V, 2.5_V, 1.8_V, or 1.5_V as shown in Figure 12. The actual VDDOx supply voltage needs to agree to within 10% of the settings in Register 35.

Supply Voltage	DRVx_VDDO[1:0] x=0,1,2,3
3.3V	00
2.5V	01
1.8V	10
1.5V	11

Figure 12. Supply Voltage Programming

9.3. Output Driver Trim

Once the signal types and VDDO of the output drivers have been configured, the outputs must be trimmed using registers 40-42 as shown in the table in Figure 13.

Driver Type	DRVx_Trim[4:0] x=0,1,2,3
3.3V CMOS	10111
2.5V CMOS	10011
1.8V CMOS	10101
1.5V HSTL	11111
3.3V SSTL	00100
2.5V SSTL	01101
1.8V SSTL	10111
3.3V LVPECL	01111
2.5V LVPECL	10000
3.3V LVDS	00011
2.5V or 1.8V LVDS	00100
3.3V HCSL	00111
2.5V HCSL	00111
1.8V HCSL	00111
3.3V CML	01000
2.5V CML	01001

Figure 13. Setting Output Driver Trim

9.4. Output Driver Powerup/Powerdown

The device allows powering down unused output clocks (CLK_n) to save on overall power consumption. Register 31[0] controls this function for CLK0, 32[0] controls CLK1, 33[0] controls CLK2, and 34[0] controls CLK3. Setting the register bit to 0 enables power to the CLK output; setting it to 1 powers it down. The default value is set to 0.

9.5. Output Driver Enable/Disable

Each of the output clocks (CLK_n) can be enabled or disabled once they have been powered up as described in Section 9.4. Register 230 controls this function as shown in Figure 14. Drivers are enabled by default. Register 230[4] disables/enables all outputs simultaneously, and, when disabled, overrides the effect of OEB_0,1,2,3. Set each OEB x to 0 to enable.

Figure 14. Setting Output Driver Enable/Disable

9.6. Output Drive State When Disabled

When an output is disabled, its state is configurable as Hi-Z, Low, High, or Always On. Any output clock that is fed back to IN4,5,6 (for zero delay mode) must have its output disable state set to always on. Registers 110[7:6], 114[7:6], 118[7:6], and 122[7:6] control this feature as shown in Figure 15.

Driver State When Disabled	CLKx_DISST[1:0]
	x=0,1,2,3
Hi-Z	00
Disables Low	01
Disables High	10
Always On	11

Figure 15. Setting Output Drive State

9.7. Output Clock Invert

An output configured as CMOS/SSTL/HSTL will have both of its outputs (A/B) in phase by default, but, by using the invert bits, one or both outputs can be inverted. The invert feature allows a CMOS/SSTL/HSTL output to have complimentary outputs. Differential outputs (LVPECL, LVDS, HCSL, CML) are always complimentary even when inverted.

Upon power up or a soft_reset, the Si5338 synchronizes the output clocks. With normal output polarity (no output clock inversion), the Si5338 synchronizes the output clocks to the falling, not rising, edge. Synchronization at the rising edge can be done by inverting all the clocks that are to be synchronized.

Inversion	DRVx_INV[1:0] x=0,1,2,3
No inversion	00
Invert A side (CMOS/SSTL/HSTL only)	01
Invert B side (CMOS/SSTL/HSTL only)	10
Invert both A and B sides	11

Figure 16. Setting Output Clock Inversion

9.8. Output Clock Select

The source of each of the clock outputs (CLKx) can be selected as shown in Figure 17. This level of flexibility allows the drivers to output any of the synthesized clocks (MSx) or bypass the PLL and output any of the input clocks directly. This allows the Si5338 to operate as a PLL, a clock buffer, or a combination of both. Any active output buffer that does not receive its clock from the PLL should have its disable state ("9.6. Output Drive State When Disabled") set to "always on". The register settings are shown in Figure 17.

Figure 17. Selecting the Output Clock Source

9.9. Output Clock Dividers

The output clock dividers (R_x) allow a final stage of division. The division ratio is configurable using registers 31-34 as shown in Figure 18. These dividers can be useful for generating clocks below the 5_MHz frequency limit of the MultiSynth dividers (M_x) . Note that when using a division value other than 1, the outputs may not be in phase. If using the part in zero delay mode then make sure all Rx dividers for all outputs that are to be zero delay, as well as the divider for the feedback output, are set to 1.

Output Divider Value	RxDIV[2:0] x=0,1,2,3
1	000
2	001
4	010
8	011
16	100
32	101
Reserved	110
Reserved	111

Figure 18. Setting Output Clock Dividers

10. Si5338 Registers

This section describes the registers and their usage in detail. These values are easily configured using the ClockBuilder Desktop (see "3.1.1. ClockBuilder™ Desktop Software in the Si5338 data sheet). See AN428 for a working example using Silicon Labs' F301 MCU.

10.1. Assembling the Si5338 Register Map

Once all of the desired features have been configured, the values should be collected into a single list in order to write to the device. Collect register values for the required registers:

- 1. All MultiSynth, R, and P divider ratios
- 2. PLL parameters
- 3. Output driver parameters and multiplexors
- 4. Input multiplexors
- 5. Miscellaneous register values

And any additional/optional features:

- 6. Frequency inc/dec
- 7. Phase inc/dec
- 8. Initial phase offset
- 9. Spread spectrum

10.2. Miscellaneous Register Writes

The following register bits must also be written to ensure proper device functionality.

- Register 47[7:2] = 000101b
- Register 106[7] = 1b
- Register 116[7] = 1b
- Register 42[5] = 1b
- Register 6[7:5] = 000b
- Register 6[1] = 0b
- Register 28[7:6] = 00b

With the register information from 10.1 and 10.2, assemble the register map, and follow the procedure in Figure 9 of the Si5338 data sheet.

10.3. Register Write-Allowed Mask

The masks listed in Table 1 indicate which bits in each register of the Si5338 can be modified and which bits cannot. Therefore, these masks are write-allowed or write-enabled bits. These masks must be used to perform a read-modify-write on each register.

If a mask is 0x00, all bits in the associated register are reserved and must remain unchanged. If the mask is 0xFF, all the bits in the register can be changed. All other registers require a read-modify-write procedure to write to the registers. ClockBuilder Desktop can be used to create ANSI C code (Options \rightarrow Save C code header file) with the register contents and mask values. AN428 demonstrates the usage of this header file and the read-modify-write procedure.

The following code demonstrates the application of the above write allowed mask.

- Let addr be the address of the register to access.
- Let data be the data or value to write to the register located at addr.
- Let mask be the write-allowed bits defined for the corresponding register.

```
// ignore registers with masks of 0x00
if(mask != 0x00){
       if(mask == 0xFF){
               // do a regular I2C write to the register
               // at addr with the desired data value
               write Si5338 (addr, data);
        } else {
               // do a read-modify-write using I2C and
               // bit-wise operations
               // get the current value from the device at the
               // register located at addr
               curr_val = read_Si5338(addr);
               // clear the bits that are allowed to be
               // accessed in the current value of the register
               clear curr val = curr val AND (NOT mask);
               // clear the bits in the desired data that
               // are not allowed to be accessed
               clear new val = data AND mask;
               // combine the cleared values to get the new
               // value to write to the desired register
               combined = clear curr val OR clear new val;
               write Si5338 (addr, combined);
}
```


Table 1. Register Write-Allowed Masks

Address (Decimal)	Mask (Hex)
0	0x00
1	0x00
2	0x00
3	0x00
4	0x00
5	0x00
6	0x1D
7	0x00
8	0x00
9	0x00
10	0x00
11	0x00
12	0x00
13	0x00
14	0x00
15	0x00
16	0x00
17	0x00
18	0x00
19	0x00
20	0x00
21	0x00
22	0x00
23	0x00
24	0x00
25	0x00
26	0x00
27	0x80
28	0xFF
29	0xFF

Table 1. Register Write-Allowed Masks (Continued)

Address (Decimal)	Mask (Hex)
30	0xFF
31	0xFF
32	0xFF
33	0xFF
34	0xFF
35	0xFF
36	0x1F
37	0x1F
38	0x1F
39	0x1F
40	0xFF
41	0x7F
42	0x3F
43	0x00
44	0x00
45	0xFF
46	0xFF
47	0xFF
48	0xFF
49	0xFF
50	0xFF
51	0xFF
52	0x7F
53	0xFF
54	0xFF
55	0xFF
56	0xFF
57	0xFF
58	0xFF
59	0xFF
60	0xFF

Table 1. Register Write-Allowed Masks (Continued)

Address (Decimal)	Mask (Hex)
61	0xFF
62	0x3F
63	0x7F
64	0xFF
65	0xFF
66	0xFF
67	0xFF
68	0xFF
69	0xFF
70	0xFF
71	0xFF
72	0xFF
73	0x3F
74	0x7F
75	0xFF
76	0xFF
77	0xFF
78	0xFF
79	0xFF
80	0xFF
81	0xFF
82	0xFF
83	0xFF
84	0x3F
85	0x7F
86	0xFF
87	0xFF
88	0xFF
89	0xFF
90	0xFF
91	0xFF

Table 1. Register Write-Allowed Masks (Continued)

Address (Decimal)	Mask (Hex)
92	0xFF
93	0xFF
94	0xFF
95	0x3F
96	0x00
97	0xFF
98	0xFF
99	0xFF
100	0xFF
101	0xFF
102	0xFF
103	0xFF
104	0xFF
105	0xFF
106	0xBF
107	0xFF
108	0x7F
109	0xFF
110	0xFF
111	0xFF
112	0x7F
113	0xFF
114	0xFF
115	0xFF
116	0xFF
117	0xFF
118	0xFF
119	0xFF
120	0xFF
121	0xFF
122	0xFF

Table 1. Register Write-Allowed Masks (Continued)

Mask (Hex)
0xFF
0x0F
0x0F
0xFF
0x00
0xFF
0xFF

Table 1. Register Write-Allowed Masks (Continued)

Mask (Hex)
0xFF
0xFF
0xFF
0xFF
0x0F
0x0F
0xFF
0x0F
0xFF
0xFF
0xFF

Table 1. Register Write-Allowed Masks (Continued)

Address (Decimal)	Mask (Hex)
185	0xFF
186	0xFF
187	0xFF
188	0xFF
189	0xFF
190	0xFF
191	0xFF
192	0xFF
193	0xFF
194	0xFF
195	0xFF
196	0xFF
197	0xFF
198	0xFF
199	0xFF
200	0xFF
201	0xFF
202	0xFF
203	0x0F
204	0xFF
205	0xFF
206	0xFF
207	0xFF
208	0xFF
209	0xFF
210	0xFF
211	0xFF
212	0xFF
213	0xFF
214	0xFF
215	0xFF
*Note: See Figure 9 in the Si5338 data sheet for the correct usage of	

Table 1. Register Write-Allowed Masks (Continued)

Address (Decimal)	Mask (Hex)						
216	0xFF						
217	0xFF						
218	0x00						
219	0x00						
220	0x00						
221	0x00						
222	0x00						
223	0x00						
224	0x00						
225	0x00						
226	0x04						
227	0x00						
228	0x00						
229	0x00						
230*	0xFF						
231	0x00						
232	0x00						
233	0x00						
234	0x00						
235	0x00						
236	0x00						
237	0x00						
238	0x00						
239	0x00						
240	0x00						
241*	0xFF						
242	0x02						
243	0x00						
244	0x00						
245	0x00						
246*	0xFF						
*Note: See Figure 9 in the Si5338 data sheet for the correct usage of							

Table 1. Register Write-Allowed Masks (Continued)

Table 1. Register Write-Allowed Masks (Continued)

Address (Decimal)	Mask (Hex)
278	0x00
279	0x00
280	0x00
281	0x00
282	0x00
283	0x00
284	0x00
285	0x00
286	0x00
287	0xFF
288	0xFF
289	0xFF
290	0xFF
291	0xFF
292	0xFF
293	0xFF
294	0xFF
295	0xFF
296	0xFF
297	0xFF
298	0xFF
299	0x0F
300	0x00
301	0x00
302	0x00
303	0xFF
304	0xFF
305	0xFF
306	0xFF
307	0xFF
308	0xFF
*** 4 0 5: 0: 4 0:5000	

Table 1. Register Write-Allowed Masks (Continued)

Address (Decimal)	Mask (Hex)
309	0xFF
310	0xFF
311	0xFF
312	0xFF
313	0xFF
314	0xFF
315	0x0F
316	0x00
317	0x00
318	0x00
319	0xFF
320	0xFF
321	0xFF
322	0xFF
323	0xFF
324	0xFF
325	0xFF
326	0xFF
327	0xFF
328	0xFF
329	0xFF
330	0xFF
331	0x0F
332	0x00
333	0x00
334	0x00
335	0xFF
336	0xFF
337	0xFF
338	0xFF
339	0xFF
*Note: See Figure 9 in the Si5338 d	

Table 1. Register Write-Allowed Masks (Continued)

Address (Decimal)	Mask (Hex)			
340	0xFF			
341	0xFF			
342	0xFF			
343	0xFF			
344	0xFF			
345	0xFF			
346	0xFF			
347	0x0F			
348	0x00			
349	0x00			
350	0x00			

10.4. Register Categories

This is a list of registers needed to define the Configuration of a device. Set the PAGEBIT to access registers with addresses greater than 255.

Address (Decimal)	Bits	Function				
0	2:0	Rev ID				
2	7:0					
3	7:0	De les Conformities				
4	7:0	Device Configuration				
5	7:0					
6	4:0	Mask bits for LOS_CLKIN,LOS_FB, LOL, SYS_CAL				
27	7:6	120 0 - 1 1				
27	7	I ² C Configuration				
28–30	7:0	Input Mux Configuration				
31–39	7:0	Output Configuration				
40	7:0					
41	6:0	utput Driver Trim Bits				
42	4:0					
47	5:2	nput Configuration				
48	7:0					
49	6:0	DIL Configuration				
50	7:0	PLL Configuration				
51	7:4, 2:0					
52	6:0	MultiSynth0 Freq inc/dec, SS, Phase inc/dec Configuration				
53–61	7:0	MultiSynth0 frequency Configuration				
62	5:0	MultiSyntho frequency Configuration				
63	6:0					
64–72	7:0	MultiSynth1 frequency Configuration				
73	5:0					
74	6:0					
75–83	7:0	MultiSynth2 frequency Configuration				
84	5:0					
85	6:0					
86–94	7:0	MultiSynth3 frequency Configuration				
95	5:0					

Address (Decimal)	Bits	Function		
97–105	7:0			
106	5:0	MultiSynthN Feedback divider Configuration		
107–110	7:0	MultiSynth0 Phase inc/dec, SS Configuration, drive state		
111–114	7:0	MultiSynth1 Phase inc/dec, SS Configuration, drive state		
115–118	7:0	MultiSynth2 Phase inc/dec, SS Configuration, drive state		
119	7:0			
120	6:0	MultiSynth3 Phase inc/dec, SS Configuration, drive state		
121–122	7:0			
123–128	7:0			
129	3:0	No. 16: Country Office as in a /dea Counting unation 15 and 5		
130	6:0	MultiSynth0 freq inc/dec Configuration, ID config		
131–144	7:0			
152–173	7:0	MultiSynth1 freq inc/dec Configuration		
174–195	7:0	MultiSynth2 freq inc/dec Configuration		
196–216	7:0	M. It's all of the invited On the parties		
217	6:0	MultiSynth3 freq inc/dec Configuration		
241	7:0	Reserved - set to 0x65 if not factory-programmed.		
287	7:0			
288	6:0			
289	7:0			
290	6:0			
291	7:0]		
292	7:0			
293	7:0	MultiSynth0 spread spectrum Configuration		
294	7:0]		
295	6:0			
296	7:0			
297	6:0			
298	7:0			
299	7:0			

Address (Decimal)	Bits	Function		
303	7:0			
304	6:0			
305	7:0			
306	6:0			
307	7:0			
308	7:0			
309	7:0	MultiSynth1 spread spectrum Configuration		
310	7:0			
311	6:0			
312	7:0			
313	6:0			
314	7:0			
315	7:0			
319	7:0			
320	6:0			
321	7:0			
322	6:0			
323	7:0			
324	7:0	1		
325	7:0	MultiSynth2 spread spectrum Configuration		
326	7:0	1		
327	6:0	1		
328	7:0	1		
329	6:0			
330	7:0			
331	7:0			

Address (Decimal)	Bits	Function		
335	7:0			
336	6:0			
337	7:0			
338	6:0			
339	7:0			
340	7:0			
341	7:0	MultiSynth3 spread spectrum Configuration		
342	7:0			
343	6:0			
344	7:0	1		
345	6:0	1		
346	7:0			
347	7:0	1		

10.5. Register Summary

Table 2. Register Summary

Register	7	6	5	4	3	2	1	0		
0						REVID[2:0]				
2	Dev_Config2[7:0]									
3	Dev_Config3[7:0]									
4	Dev_Config4[7:0]									
5			Dev_Config5[7:0]							
6				PLL_LOL_ MASK	LOS_FDBK_ MASK	LOS CLKIN_MASK		SYS_CAL_ MASK		
27	I2C_1P8_SEL				12C_ADDR[6:0]					
28			P2DIV_IN[0]	P	1DIV_IN[2:0]		XTAL_F	REQ[1:0]		
29	PFD	_IN_REF[2:0)]	P1DIV_IN	[4:3]		P1DIV[2:0]			
30	PFI	D_IN_FB[2:0]		P2DIV_IN	[2:1]		P2DIV[2:0]			
31	RO	DIV_IN[2:0]			R0DIV[2:0]		MS0_PDN	DRV0_PDN		
32	R1	DIV_IN[2:0]			R1DIV[2:0]		MS1_PDN	DRV1_PDN		
33	R2	2DIV_IN[2:0]			R2DIV[2:0]		MS2_PDN	DRV2_PDN		
34	R3	BDIV_IN[2:0]			R3DIV[2:0]	MS3_PDN DRV3_				
35	DRV3_VDD	O[1:0]	DRV2	_VDDO[1:0]	DRV1_V	1_VDDO[1:0] DRV0_VDDO[1:0				
36				DRV0_IN\	/[1:0]		DRV0_FMT[2:0]			
37				DRV1_IN\	/[1:0]		DRV1_FMT[2:0]			
38				DRV2_IN\	/[1:0]		DRV2_FMT[2:0]			
39				DRV3_IN\	/[1:0]		DRV3_FMT[2:0]			
40	DR	V1_TRIM[2:0]			Di	RV0_TRIM[4:0]				
41				DRV2_TRIM[4:0]			DRV1_T	RIM[4:3]		
42					Di	RV3_TRIM[4:0]				
45				FCAL_OVF	RD[7:0]					
46				FCAL_OVR	D[15:8]					
47							FCAL_OV	RD[17:16]		
48	PFD_EXTFB				PLL_KPHI[6:0]					
49	FCAL_OVRD_EN		VCO_GAIN	[2:0]	RSE	L[1:0]	BWSE	EL[1:0]		
50	PLL_ENABL	E[1:0]			MSCAL	[5:0]				
51	MS3_HS	MS2_HS	MS1_HS	MS0_HS			MS_PEC[2:0]			
52		MS0_F	IDCT[1:0]	MS0_FIDDIS	MS0_SSM	MODE[1:0]	MS0_PH	IDCT[1:0]		
53				MS0_P1	[7:0]					
54				MS0_P1[15:8]					
55		MS0_P2[5:0] MS0_P1[17:16]								
56		MS0_P2[13:6]								
57	MS0_P2[21:14]									

Table 2. Register Summary (Continued)

Register	7	6	5	4	3	2	1	0			
58	MS0_P2[29:22]										
59	MS0_P3[7:0]										
60	MS0_P3[15:8]										
61	MS0_P3[23:16]										
62		MS0_P3[29:24]									
63		MS1_FIDCT[1:0] MS1_FIDDIS MS1_SSMODE[1:0] MS1_PHIDCT[1:0]									
64		MS1_P1[7:0]									
65	MS1_P1[15:8]										
66			MS1	I_P2[5:0]			MS1_P	1[17:16]			
67				MS1_P2[13:6]						
68				MS1_P2[2	21:14]						
69				MS1_P2[2	29:22]						
70				MS1_P3	[7:0]						
71				MS1_P3[15:8]						
72				MS1_P3[2	23:16]						
73		MS1_P3[29:24]									
74		MS2_FRCTL[1:0] MS2_FIDDIS MS2_SSMODE[1:0] MS2_PHIDCT[1:0]									
75		MS2_P1[7:0]									
76		MS2_P1[15:8]									
77			MS2	2_P2[5:0]			MS2_P	1[17:16]			
78				MS2_P2[13:6]						
79				MS2_P2[2	21:14]						
80				MS2_P2[2	29:22]						
81				MS2_P3	[7:0]						
82				MS2_P3[15:8]						
83		T	T	MS2_P3[2	23:16]						
84				,	MS2_P3[29:24]	1				
85		MS3_F	IDCTL[1:0]	MS3_FIDDIS	MS3_SSM	//ODE[1:0]	MS3_PHI	DCTL[1:0]			
86				MS3_P1							
87				MS3_P1[15:8]		I				
88			MS3	3_P2[5:0]			MS3_P1I	DIV[17:16]			
89				MS3_P2[
90				MS3_P2[2							
91				MS3_P2[2							
92				MS3_P3							
93				MS3_P3[
94		T	T	MS3_P3[2							
95	MS3_P3[29:24]										

Table 2. Register Summary (Continued)

Register	7	6	5	4	3	2	1	0		
97	MSN_P1[7:0]									
98	MSN_P1[15:8]									
99	MSN_P2[5:0] MSN_P1[17:16]									
100				MSN_P2	2[13:6]					
101	MSN_P2[21:14]									
102	MSN_P2[29:22]									
103	MSN_P3[7:0]									
104				MSN_P	3[15:8]					
105				MSN_P3	[23:16]					
106					MSN_P3	[29:24]				
107				MS0_PH0	DFF[7:0]					
108				N	/IS0_PHOFF[14:	8]				
109				MS0_PHS	TEP[7:0]					
110	CLK0_DISS	ST[1:0]			MS0_PHST	EP[13:8]				
111				MS1_PHO	DFF[7:0]					
112				N	/IS1_PHOFF[14:	8]				
113				MS1_PHS	TEP[7:0]					
114	CLK1_DISS	ST[1:0]			MS1_PHST	EP[13:8]				
115	MS2_PHOFF[7:0]									
116				N	/IS2_PHOFF[14:	8]				
117				MS2_PHS	TEP[7:0]					
118	CLK2_DISST[1:0] MS2_PHSTEP[13:8]									
119		_		MS3_PHO	OFF[7:0]					
120				N	/IS3_PHOFF[14:	8]				
121			T	MS3_PHS	TEP[7:0]					
122	CLK3_DISS	ST[1:0]			MS3_PHST	EP[13:8]				
123				MS0_FID						
124				MS0_FID						
125				MS0_FIDF						
126				MS0_FIDF						
127				MS0_FIDF						
128		T	Г	MS0_FIDF	21[47:40]					
129							DP1[51:48]			
130						MS0_FI	DP2[51:48]			
131				MS0_FIDF						
132		MS0_FIDP2[39:32]								
133	MS0_FIDP2[31:24]									
134	MS0_FIDP2[23:16]									

Table 2. Register Summary (Continued)

Register	7	6	5	4	3	2	1	0		
135				MS0_FIDP	2[15:8]					
136				MS0_FIDF	2[7:0]					
137		MS0_FIDP3[7:0]								
138		MS0_FIDP3[15:8]								
139		MS0_FIDP3[23:16]								
140		MS0_FIDP3[31:24]								
141				MS0_FIDP3	3[39:32]					
142				MS0_FIDP3	3[47:40]					
143				MS0_FIDP3	B[55:48]					
144	MS0_ALL			M	S0_FIDP3[62:56	6]				
152				MS1_FIDF	1[7:0]					
153				MS1_FIDP	1[15:8]					
154				MS1_FIDP1	[23:16]					
155				MS1_FIDP1	[31:24]					
156				MS1_FIDP1	[39:32]					
157		MS1_FIDP1[47:40]								
158			MS1_FIDP1[51:48]							
159		MS1_FIDP2[51:48]								
160	MS1_FIDP2[47:40]									
161	MS1_FIDP2[39:32]									
162				MS1_FIDP2	2[31:24]					
163				MS1_FIDP2	2[23:16]					
164				MS1_FIDP	2[15:8]					
165				MS1_FIDF	2[7:0]					
166				MS1_FIDF	23[7:0]					
167				MS1_FIDP	3[15:8]					
168				MS1_FIDP3	8[23:16]					
169				MS1_FIDP3	3[31:24]					
170				MS1_FIDP3	3[39:32]					
171				MS1_FIDP3	8[47:40]					
172				MS1_FIDP3	3[55:48]					
173				M	S1_FIDP3[62:56	6]				
174				MS2_FIDF	71[7:0]					
175				MS2_FIDP	1[15:8]					
176				MS2_FIDP1	[23:16]					
177				MS2_FIDP1	[31:24]					
178				MS2_FIDP1	[39:32]					
179				MS2_FIDP1	[47:40]					

Table 2. Register Summary (Continued)

Register	7	6	5	4	3	2	1	0							
180						MS2_FII	DP1[51:48]	l							
181						MS2_FII	DP2[51:48]								
182		MS2_FIDP2[47:40]													
183		MS2_FIDP2[39:32]													
184		MS2_FIDP2[31:24]													
185		MS2_FIDP2[23:16]													
186		MS2_FIDP2[15:8]													
187				MS2_FIDF	2[7:0]										
188				MS2_FIDF	23[7:0]										
189				MS2_FIDP	3[15:8]										
190				MS2_FIDP3	3[23:16]										
191				MS2_FIDP3	3[31:24]										
192				MS2_FIDP3	3[39:32]										
193				MS2_FIDP3	3[47:40]										
194				MS2_FIDP3	8[55:48]										
195					S2_FIDP3[62:50	6]									
196		MS3_FIDP1[7:0]													
197		MS3_FIDP1[15:8]													
198		MS3_FIDP1[23:16]													
199				MS3_FIDP1											
200				MS3_FIDP1											
201				MS3_FIDP1	[47:40]										
202							DP1[51:48]								
203						MS3_FII	DP2[51:48]								
204				MS3_FIDP2											
205				MS3_FIDP2											
206				MS3_FIDP2											
207				MS3_FIDP2											
208				MS3_FIDP											
209				MS3_FIDF											
210		MS3_FIDP3[7:0]													
211		MS3_FIDP3[15:8]													
212 213		MS3_FIDP3[23:16]													
213		MS3_FIDP3[31:24]													
214		MS3_FIDP3[39:32] MS3_FIDP3[47:40]													
216				MS3_FIDP3											
217						31									
211				IVI	JJ_1 IDF3[02:30	~]		MS3_FIDP3[62:56]							

Table 2. Register Summary (Continued)

Register	7	6	5	4	3	2	1	0		
218				PLL_LOL	LOS_FDBK	LOS_CLKIN		SYS_CAL		
226						MS_RESET				
230				OEB_ALL	OEB_3	OEB_2	OEB_1	OEB_0		
235		-	•	FCAL[7:0]		•			
236				FCAL[1	5:8]					
237							FCAL[17:16]			
241	DIS_LOL									
242							DCLK_DIS			
246							SOFT_RESET			
247				PLL_LOL_STK	LOS_FDBK_ STK	LOS CLKIN_STK		SYS_CAL_STK		
255								PAGE_SEL		
287				MS0_SSUF	PP2[7:0]					
288				M	S0_SSUPP2[14	:8]				
289				MS0_SSUF	PP3[7:0]					
290		MS0_SSUPP3[14:8]								
291		MS0_SSUPP1[7:0]								
292	MS0_SSUDP1[3:0] MS0_SSUPP1[11:8]									
293	MS0_SSUDP1[11:4]									
294				MS0_SSDI	NP2[7:0]					
295				M	S0_SSDNP2[14	:8]				
296				MS0_SSDN	NP3[7:0]					
297				M	S0_SSDNP3[14	:8]				
298		- '		MS0_SSDN	NP1[7:0]					
299						MS0_SS	DNP1[11:8]			
303				MS1_SSUF	PP2[7:0]					
304				M	S1_SSUPP2[14	:8]				
305				MS1_SSUF	PP3[7:0]					
306				M	S1_SSUPP3[14	:8]				
307				MS1_SSUF	PP1[7:0]					
308		MS1_S	SUDP1[3:0]			MS1_SS	UPP1[11:8]			
309				MS1_SSUD						
310				MS1_SSDN						
311					S1_SSDNP2[14	:8]				
312		_		MS1_SSDN						
313					S1_SSDNP3[14	:8]				
314				MS1_SSDN	NP1[7:0]					
315						MS1_SS	DNP1[11:8]			

Table 2. Register Summary (Continued)

Register	7	6	5	4	3	2	1	0			
319		_ I	<u> </u>	MS2_SSUF	PP2[7:0]			1			
320				MS	S2_SSUPP2[14:	8]					
321		MS2_SSUPP3[7:0]									
322		MS2_SSUPP3[14:8]									
323	MS2_SSUPP1[7:0]										
324		MS2_S	SUDP1[3:0]			MS2_S	SUPP1[11:8]				
325				MS2_SSUD	P1[11:4]						
326				MS2_SSDN	IP2[7:0]						
327		MS2_SSDNP2[14:8]									
328				MS2_SSDN	IP3[7:0]						
329		MS2_SSDNP3[14:8]									
330		MS2_SSDNP1[7:0]									
331		MS2_SSDNP1[11:8]									
335				MS3_SSUF	PP2[7:0]						
336				M	S3_SSUPP2[14:	8]					
337		-		MS3_SSUF	PP3[7:0]						
338				M	S3_SSUPP3[14:	8]					
339				MS3_SSUF	PP1[7:0]						
340		MS3_S	SUDP1[3:0]			MS3_S	SUPP1[11:8]				
341				MS3_SSUD	P1[11:4]						
342				MS3_SSDN	IP2[7:0]						
343				MS	S3_SSDNP2[14:	8]					
344		•		MS3_SSDN	IP3[7:0]						
345				MS	S3_SSDNP3[14:	8]					
346				MS3_SSDN	IP1[7:0]						
347		MS3_SSDNP1[11:8]									

10.6. Register Descriptions

In many registers, the byte reset value contains one or more "x"s because a factory-programmed device can have multiple values for these bits.

Register 0.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name							REVID[2:0]	
Туре						R		

Reset value = xxxx xxxx

Bit	Name	Function
7:3	Reserved	
2:0	REVID[2:0]	Device Revision ID. Rev A = 000b Rev B = 001b

Register 2.

Bit	D7	D6	D5	D4	D3	D2	D1	D0	
Name			Dev_Config2[5:0]						
Туре			R						

Reset value = xxxx xxxx

Bit	Name	Function
7:6	Reserved	
5:0	Dev_Config2[5:0]	Bits 5:0 represent the last two digits of the base part number: "38" for Si5338. See "10.6.1. Example Part Number for Device ID Registers" on page 55 for complete part number example.

Register 3.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		De	ev_Config3[7			Dev_Config3		
Туре			R			R		

Reset value = xxxx xxxx

Bit	Name	Function
7:3	Dev_Config3[7:3]	Bits 7:3 represent the device grade: 1 through 24 = A thorugh Z. See "10.6.1. Example Part Number for Device ID Registers" on page 55 for complete part number example.
2:1	Reserved	
0	Dev_Config3[0]	Bit 0 represents bit 16 of the NVM code assigned by Silicon Labs: 00000 through 99999. See "10.6.1. Example Part Number for Device ID Registers" on page 55 for complete part number example.

Register 4.

Bit	D7	D6	D5	D4	D3	D2	D1	D0	
Name		Dev_Config4[7:0]							
Туре		R							

Reset value = xxxx xxxx

Bit	Name	Function
7:0	Dev_Config4[7:0]	Bits 7:0 represent bits 15:8 of the NVM code assigned by Silicon Labs: 00000 through 99999. See "10.6.1. Example Part Number for Device ID Registers" on page 55 for complete part number example.

Register 5.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		Dev_Config5[7:0]						
Туре					R			

Reset value = xxxx xxxx

Bit	Name	Function
7:0	Dev_Config5[7:0]	Bits 7:0 represent bits 7:0 of the NVM code assigned by Silicon Labs: 00000 through 99999. See "10.6.1. Example Part Number for Device ID Registers" on page 55 for complete part number example.

10.6.1. Example Part Number for Device ID Registers

Device ID register contents for an example part number Si5338N-B12345-GM:

Register 0[2:0] = 001

Register 2 = 66h = 0110 0110

Register 3 = 72h = 0111 0010

Register 4 = 30h = 0011 0000

Register 5 = 39h = 0011 1001

REVID = B

Dev_Config2[5:0] = 10 0110 = 38 (base part number).

Dev_Config3[7:3] = 0.1110 = 14 = N (device grade).

Dev_Config3[0], Dev_Config4[7:0], Dev_Config5[7:0] = 0 0011 0000 0011 1001 = 12345 (NVM code number).

Please refer to the Si5338 data sheet's Ordering Guide section for detailed information about ordering part numbers.

Register 6.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name				PLL_LOL_MASK	LOS_FDBK_MASK	LOS_CLKIN_MASK		SYS_CAL_MASK
Туре				R/W	R/W	R/W		R/W

Reset value = xxxx xxxx

Bit	Name	Function
7:5	Reserved	Must only write 000b to these bits.
4	PLL_LOL_MASK	Mask Bit for PLL_LOL. When true, the PLL_LOL bit (Register 218) will not cause an interrupt. See also Register 247. 0: PLL Loss of Lock (LOL) triggers active interrupt on INTR output pin. 1: PLL Loss of Lock (LOL) ignored in generating interrupt output.
3	LOS_FDBK_MASK	Mask Bit for Loss of Signal on IN4 or IN5,6. When true, the LOS_FDBK bit (Register 218) will not cause an interrupt. See also Register 247. 0: FDBK LOS triggers active interrupt on INTR output pin. 1: FDBK LOS ignored in generating interrupt output.
2	LOS_CLKIN_MASK	Mask Bit for Loss of Signal on IN1,2 or IN3. When true, the LOS_CLKIN bit (Register 218) will not cause an interrupt. See also Register 247. 0: CLKIN LOS triggers active interrupt on INTR output pin. 1: CLKIN LOS ignored in generating interrupt output.
1	Reserved	Must only write 0 to this bit.
0	SYS_CAL_MASK	Chip Calibration Mask Bit. When true, the SYS_CAL bit (Register 218) will not cause an interrupt. See also Register 247. 0:PLL self-calibration triggers active interrupt on INTR output pin. 1:PLL self-calibration ignored in generating interrupt output.

Register 27.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	I2C_1P8_SEL		I2C_ADDR[6:0]					
Туре	R/W		R/W*					

Reset value = xxxx xxxx

Bit	Name	Function
7	I2C_1P8_SEL	I ² C Reference V _{DD} . External I2C VDD 0 = 3.3 V/2.5 V, 1 = 1.8 V. 0: 3.3 V/2.5 V (default) 1: 1.8 V
6:0*		7-Bit I ² C Address. If and only if there is an I2C_LSB pin, the actual I ² C LSB address is the logical "or" of the bit in position 0 with the state of the I2C_LSB pin. Otherwise, the actual I2C_LSB is the LSB of this 7-bit address. Custom 7-bit I ² C addresses may be requested but must be even numbers if pin control of the I ² C address is to be implemented. For example, if the I ² C address = 70h, the I2C_LSB pin can change the LSB from 0 to 1. However, if the I ² C address = 71h, the I2C_LSB pin will have no effect upon the I ² C address.

*Note: Although these bits are R/W, writing them is not supported. Custom I²C addresses can be set at the factory. Contact your local sales office for details.

Register 28.

Bit	D7	D6	D5	D4	D4 D3 D2		D1	D0
Name			P2DIV_IN[0]	V[0] P1DIV_IN[2:0]		XTAL_F	REQ[1:0]	
Туре	R/W		R/W	R/W			R/	W

Reset value = xxxx xxxx

Bit	Name	Function
7:6	Reserved	Must only write a 00 to these bits.
5	P2DIV_IN[0]	This bit and Register 30[4:3] create a 3-bit field that selects the input to the P2 divider [reg30[4:3] reg28[5]] = P2DIV_IN[2:0]. 000b: Clock from IN5,IN6 is input to P2 divider 011b: Clock from IN4 is input to P2 100b: No clock is input to P2 All other bit values are reserved.
4:2	P1DIV_IN[2:0]	These three bits are combined with Register 29[4:3] and create a 5-bit field that selects the input to the P1 divider [reg29[4:3] reg28[4:2]] = P1DIV_IN[4:0]. 00000b: Clock from IN1,IN2 selected 01010b: Clock from IN3 selected 10101b: Crystal oscillator selected All other bit values are reserved and should not be written.
1:0	XTAL_FREQ[1:0]	Crystal Frequency Range. Select Xtal Frequency that you are using. For more information on using crystals, see "AN360: Crystal Selection Guide for Si533x/5x Devices". 00b: 8–11 MHz 01b: 11–19 MHz 10b: 19–26 MHz 3: 26–30 MHz

Register 29.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	PF	PFD_IN_REF[2:0]			_IN[4:3]	P1DIV[2:0]		
Туре		R/W			W	R/W R/W		

Reset value = xxxx xxxx

Bit	Name	Function
7:5	PFD_IN_REF[2:0]	Selects the input clock to be provided to the reference input of PLL Phase Frequency Detector (PFD). 000b: P1DIV_IN selected 001b: P2DIV_IN selected 010b: P1DIV_OUT (P1 divider output) selected 011b: P2DIV_OUT (P2 divider output) selected 100b: XOCLK selected 101b: No Clock selected 110b: Reserved
4:3	P1DIV_IN[4:3]	These two bits along with reg28[4:2] create a 5-bit field that selects the input to the P1 divider [reg29[4:3] reg28[4:2]] = P1DIV_IN[4:0]. 00000b: Clock from IN,2 selected 01010b: Clock from IN3 selected 10101b: Crystal oscillator selected All other bit values are reserved
2:0	P1DIV[2:0]	Sets the value of the P1 divider. 000b: Divide by 1 001b: Divide by 2 010b: Divide by 4 011b: Divide by 8 100b: Divide by 16 101b: Divide by 32 All other bit values are reserved.

Register 30.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	Р	PFD_IN_FB[2:0]		P2DIV_IN[2:1]		P2DIV[2:0]		
Туре		R/W			W		R/W	

Reset value = xxxx xxxx

Bit	Name	Function
7:5	PFD_IN_FB[2:0]	Selects the external input applied to the PFD feedback input. See also Register 48[7]. 000b: P2DIV_IN (fbclk) 001b: P1DIV_IN (refclk) 010b: P2DIV_OUT (P2 divider output) selected 011b: P1DIV_OUT (P1 divider output) selected 100b: Reserved 101b: No Clock selected 110b: Reserved
4:3	P2DIV_IN[2:1]	These two bits and Register 28[5] create a 3-Bit field that selects the input to the P2 divider [reg30[4:3] reg28[5]] = P2DIV_IN[2:0]. 000b: Clock from IN5,IN6 is input to P2 divider 011b: Clock from IN4 is input to P2 100b: No clock is input to P2 All other bit values are reserved.
2:0	P2DIV[2:0]	Sets the value of the P2 the divider. 000b: Divide by 1 001b: Divide by 2 010b: Divide by 4 011b: Divide by 8 100b: Divide by 16 101b: Divide by 32 All other bit values are reserved.

Register 31.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	F	R0DIV_IN[2:0]			R0DIV[2:0]			DRV0_PDN
Туре		R/W			R/W		R/W	R/W

Reset value = xxxx xxxx

Bit	Name	Function
7:5	R0DIV_IN[2:0]	Selects the input to the R0 divider. R0 divider output goes to CLK0. 000b: P2DIV_IN (fbclk) selected 001b: P1DIV_IN (refclk) selected 010b: P2DIV_OUT (P2 divider output) selected 011b: P1DIV_OUT (P1 divider output) selected 100b: XOCLK selected 101b: MultiSynth0 output selected 110b: MultiSynth0 output selected 111b: No Clock selected
4:2	R0DIV[2:0]	CLK0 R0 Output Divider. 000b: Divide by 1 001b: Divide by 2 010b: Divide by 4 011b: Divide by 8 100b: Divide by 16 101b: Divide by 32 All other bit values are reserved.
1	MS0_PDN	MultiSynth0 Power Down. 0: MS0 MultiSynth powered up 1: MS0 MultiSynth powered down
0	DRV0_PDN	R0 and CLK0 Power Down. 0: R0 output divider and CLK0 driver powered up 1: R0 output divider and CLK0 driver powered down

Register 32.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	F	R1DIV_IN[2:0]			R1DIV[2:0]			DRV1_PDN
Туре	R/W				R/W		R/W	R/W

Reset value = xxxx xxxx

Bit	Name	Function
7:5	R1DIV_IN[2:0]	Selects the input to the R1 divider. R1 divider output goes to CLK1. 000b: P2DIV_IN (fbclk) selected 001b: P1DIV_IN (refclk) selected 010b: P2DIV_OUT (P2 divider output) selected 011b: P1DIV_OUT (P1 divider output) selected 100b: XOCLK selected 101b: MultiSynth0 output selected 110b: MultiSynth1 output selected 111b: No Clock selected
4:2	R1DIV[2:0]	CLK1 R1 Output Divider. 000b: Divide by 1 001b: Divide by 2 010b: Divide by 4 011b: Divide by 8 100b: Divide by 16 101b: Divide by 32 All other bit values are reserved.
1	MS1_PDN	MultiSynth1 Power Down. 0: MultiSynth1 is powered up 1: MultiSynth1 is powered down
0	DRV1_PDN	R1 and CLK1 Power Down. 0: R1 output divider and CLK1 driver powered up 1: R1 output divider and CLK1 driver powered down

Register 33.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	F	R2DIV_IN[2:0]			R2DIV[2:0]			DRV2_PDN
Туре	R/W				R/W		R/W	R/W

Reset value = xxxx xxxx

Bit	Name	Function
7:5	R2DIV_IN[2:0]	Selects the input to the R2 divider. R2 divider output goes to CLK2. 000b: P2DIV_IN (fbclk) selected 001b: P1DIV_IN (refclk) selected 010b: P2DIV_OUT (P2 divider output) selected 011b: P1DIV_OUT (P1 divider output) selected 100b: XOCLK selected 101b: MultiSynth0 output selected 110b: MultiSynth2 output selected 111b: No Clock selected
4:2	R2DIV[2:0]	CLK2 R2 Output Divider. 000b: Divide by 1 001b: Divide by 2 010b: Divide by 4 011b: Divide by 8 100b: Divide by 16 101b: Divide by 32 All other bit values are reserved.
1	MS2_PDN	MultiSynth2 Power Down. 0: MultiSynth2 powered up 1: MultiSynth2 powered down
0	DRV2_PDN	R2 and CLK2 Power Down. 0: R2 output divider and CLK2 driver powered up 1: R2 output divider and CLK2 driver powered down

Register 34.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	F	R3DIV_IN[2:0]			R3DIV[2:0]			DRV3_PDN
Туре	R/W				R/W		R/W	R/W

Reset value = xxxx xxxx

Bit	Name	Function
7:5	R3DIV_IN[2:0]	Selects the input to the R3 divider. R3 divider output goes to CLK3. 000b: P2DIV_IN (fbclk) selected 001b: P1DIV_IN (refclk) selected 010b: P2DIV_OUT (P2 divider output) selected 011b: P1DIV_OUT (P1 divider output) selected 100b: XOCLK selected 101b: MultiSynth0 output selected 110b: MultiSynth3 output selected 111b: No Clock selected
4:2	R3DIV[2:0]	CLK3 R3 Output Divider. 000b: Divide by 1 001b: Divide by 2 010b: Divide by 4 011b: Divide by 8 100b: Divide by 16 101b: Divide by 32 All other bit values are reserved.
1	MS3_PDN	MultiSynth3 Powerdown. 0: MultiSynth3 is power up 1: MultiSynth3 powered down
0	DRV3_PDN	R3 and CLK3 Powerdown. 0: R3 output divider and CLK3 driver powered up 1: R3 output divider and CLK3 driver powered down

Register 35.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	DRV3_V	DDO[1:0]	DRV2_VDDO[1:0]		DRV1_VDDO[1:0]		DRV0_VDDO[1:0]	
Туре	R/	R/W		W	R	W	R/	W

Reset value = xxxx xxxx

Bit	Name	Function
7:6	DRV3_VDDO[1:0]	VDDO Setting for CLK3. 00b: VDDO3 = 3.3 V (not for HSTL) 01b: VDDO3 = 2.5 V (not for HSTL) 10b: VDDO3 = 1.8 V (not for HSTL or LVPECL) 11b: VDDO3 = 1.5 V (HSTL only)
5:4	DRV2_VDDO[1:0]	VDDO Setting for CLK2. 00b: VDDO2 = 3.3 V (not for HSTL) 01b: VDDO2 = 2.5 V (not for HSTL) 10b: VDDO2 = 1.8 V (not for HSTL or LVPECL) 11b: VDDO2 = 1.5 V (HSTL only)
3:2	DRV1_VDDO[1:0]	VDDO Setting for CLK1. 00b: VDDO1 = 3.3 V (not for HSTL) 01b: VDDO1 = 2.5 V (not for HSTL) 10b: VDDO1 = 1.8 V (not for HSTL or LVPECL) 11b: VDDO1 = 1.5 V (HSTL only)
1:0	DRV0_VDDO[1:0]	VDDO Setting for CLK0. 00b: VDDO0 = 3.3 V (not for HSTL) 01b: VDDO0 = 2.5 V (not for HSTL) 10b: VDDO0 = 1.8 V (not for HSTL or LVPECL) 11b: VDDO0 = 1.5 V (HSTL only)

Note: If the VDDOx voltage is more than 15% below the programmed voltage setting in Register 35, the output driver may not turn on.

Register 36.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name				DRV0_I	NV[1:0]	D	RV0_FMT[2:0	0]
Туре				R/W R/W				

Reset value = xxxx xxxx

Bit	Name	Function
7:5	Reserved	
4:3	DRV0_INV[1:0]	Output Driver Invert for CLK0. 00b: No inversion from default setting 01b: CLK0A inverted (use only for CMOS/SSTL/HSTL) 10b: CLK0B inverted (use only for CMOS/SSTL/HSTL) 11b: CLK0A,B inverted from default setting
2:0	DRV0_FMT[2:0]	CLK0 Signal Format. 000b: Reserved 001b: CLK0A = (CMOS/SSTL/HSTL), CLK0B = off 010b: CLK0B = (CMOS/SSTL/HSTL), CLK0A = off 011b: CLK0A,B = (CMOS/SSTL/HSTL) A,B outputs are in phase by default. 100b: LVPECL 101b: CML 110b: LVDS 111b: HCSL

Register 37.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name				DRV1_I	NV[1:0]	D	RV1_FMT[2:0	0]
Туре				R/	W		R/W	

Reset value = xxxx xxxx

Bit	Name	Function
7:5	Reserved	
4:3	DRV1_INV[1:0]	Output Driver Invert for CLK1. 00b: No inversion from default setting 01b: CLK1A inverted (use only for CMOS/SSTL/HSTL) 10b: CLK1B inverted (use only for CMOS/SSTL/HSTL) 11b: CLK1A,B inverted from default setting
2:0	DRV1_FMT[2:0]	CLK1 Signal Format. 000b: Reserved 001b: CLK1A = (CMOS/SSTL/HSTL), CLK1B = off 010b: CLK1B = (CMOS/SSTL/HSTL), CLK1A = off 011b: CLK1A,B = (CMOS/SSTL/HSTL) A,B outputs are in phase by default. 100b: LVPECL 101b: CML 110b: LVDS 111b: HCSL

Register 38.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name				DRV2_I	NV[1:0]	D	RV2_FMT[2:0	0]
Туре				R/	R/W		R/W	

Reset value = xxxx xxxx

Bit	Name	Function
7:5	Reserved	
4:3	DRV2_INV[1:0]	Output Driver Invert for CLK2. 00b: No inversion from default setting 01b: CLK2A inverted (use only for CMOS/SSTL/HSTL) 10b: CLK2B inverted (use only for CMOS/SSTL/HSTL) 11b: CLK2A,B inverted from default setting
2:0	DRV2_FMT[2:0]	CLK2 Signal Format. 000b: Reserved 001b: CLK2A = (CMOS/SSTL/HSTL), CLK2B = off 010b: CLK2B = (CMOS/SSTL/HSTL), CLK2A = off 011b: CLK2A,B = (CMOS/SSTL/HSTL) A,B outputs are in phase by default. 100b: LVPECL 101b: CML 110b: LVDS 111b: HCSL

Register 39.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name				DRV3_I	NV[1:0]	D	RV3_FMT[2:0	0]
Туре				R/W			R/W	

Reset value = xxxx xxxx

Bit	Name	Function
7:5	Reserved	
4:3	DRV3_INV[1:0]	Output Driver Invert for CLK3. 00b: No inversion from default setting 01b: CLK3A inverted (use only for CMOS/SSTL/HSTL) 10b: CLK3B inverted (use only for CMOS/SSTL/HSTL) 11b: CLK3A,B inverted from default setting
2:0	DRV3_FMT[2:0]	CLK3 Signal Format. 000b: Reserved 001b: CLK3A = (CMOS/SSTL/HSTL), CLK3B = off 010b: CLK3B = (CMOS/SSTL/HSTL), CLK3A = off 011b: CLK3A,B = (CMOS/SSTL/HSTL) A,B outputs are in phase by default. 100b: LVPECL 101b: CML 110b: LVDS 111b: HCSL

Register 40.

Bit	D7	D6	D5	D4	D3	D2	D1	D0	
Name	DRV1_TRIM [2:0]			DRV0_TRIM [4:0]					
Туре	R/W					R/W			

Reset value = xxxx xxxx

Bit	Name	Function			
7:5	DRV1_TRIM [2:0]	Trim Bits for CLK1 Driver. Clockbuilder Desktop sets these values automatically.			
4:3	DRV0_TRIM [4:0]	Trim Bits for CLK0 Driver. Clockbuilder Desktop sets these values automatically.			

Register 41.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name			DI	DRV1_T	RIM [4:3]			
Туре				R/	W			

Reset value = xxxx xxxx

Bit	Name	Function
7	Reserved	
6:2	DRV2_TRIM [4:0]	Trim Bits for CLK2 Driver. Clockbuilder Desktop sets these values automatically.
1:0	DRV1_TRIM [4:3]	Trim Bits for CLK1 Driver. Clockbuilder Desktop sets these values automatically.

Register 42.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name					D	RV3_TRIM [4	:0]	
Туре						R/W		

Reset value = 00xx xxxx

Bit	Name	Function
7:6	Reserved	Must only write 00b to these bits.
5	Reserved	Must write 1b to this bit.
4:0	DRV3_TRIM [4:0]	Trim Bits for CLK3. Clockbuilder Desktop sets these values automatically.

Register 45.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		FCAL_OVRD[7:0]						
Туре		R/W						

Reset value = xxxx xxxx

Bit	Name	Function
7:0	FCAL_OVRD[7:0]	Bits 7:0 of the Override Frequency Calibration for the VCO.

Register 46.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		FCAL_OVRD[15:8]						
Туре		R/W						

Reset value = xxxx xxxx

Bit	Name	Function
7:0	FCAL_OVRD[15:8]	Bits 15:8 of the Override Frequency Calibration for the VCO.

Register 47.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name							FCAL_OV	RD[17:16]
Туре	R/W							

Reset value = xxxx xxxx

Bit	Name	Function
7:2	Reserved	Must write 000101b to these bits if the device is not factory programmed.
1:0	FCAL_OVRD[17:16]	Bits 17:16 of the Override Frequency Calibration for the VCO.

Register 48.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	PFD_EXTFB	PLL_KPHI[6:0]						
Туре	R/W	R/W						

Reset value = xxxx xxxx

Bit	Name	Function
7	PFD_EXTFB	Selects PFD feedback input from internal (see Register 30[7:5]) or external source. 0: Internal feedback path 1: External feedback path (zero delay mode)
6:0	PLL_KPHI[6:0]	Sets the charge pump current for the PFD. Clockbuilder Desktop sets these values automatically.

Register 49.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	FCAL_OVRD_EN	VCO_GAIN[2:0]			RSEL[1:0]		BWSEL[1:0]	
Туре	R/W		R/W		R/	W	R	W

Reset value = xxxx xxxx

Bit	Name	Function
7	FCAL_OVRD_EN	FCAL Override Enable. 0: Do not use FCAL value in registers 45,46,47 1: Use FCAL value in registers 45,46,47 Once a part is programmed and calibrated (FCAL), this bit must be set. See Si5338 data sheet for more information.
6:4	VCO_GAIN[2:0]	Sets the VCO Gain. Clockbuilder Desktop sets these values automatically.
3:2	RSEL[1:0]	Loop Filter Resistor Select. Clockbuilder Desktop sets these values automatically.
1:0	BWSEL[1:0]	Select the PLL Loopfilter. Clockbuilder Desktop sets these values automatically.

Register 50.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	PLL_ENABLE[1:0]				MSC	AL[5:0]		
Туре					R	/W		

Reset value = xxxx xxxx

Bit	Name	Function
7:6	IPII ENARIEI1:01	00: Disable PLL. 11: Enable PLL. It is expected that all Si5338 applications will need to have the PLL enabled; however, the PLL may be disabled when the Si5338 is set up in buffer mode.
5:0	MSCAL[5:0]	MultiSynth Calibration Value for Optimum Performance. Clockbuilder Desktop sets these values automatically.

Register 51.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	MS3_HS	MS2_HS	MS1_HS	MS0_HS			MS_PEC[2:0]	
Туре	R/W	R/W	R/W	R/W				

Reset value = xxxx x111

Bit	Name	Function
7	MS3_HS	MultiSynth3 High Speed Mode. This bit must be asserted to enable MultiSynth3 to divide by 4 or 6. When this bit is asserted, MultiSynth3 will only accept divide ratios of 4.0 or 6.0. Increment/decrement, SSC, and all phase functions are not available when this bit is set. 0: MultiSynth3 implements fractional divide ratios between 8 and 568 1: MultiSynth3 can only implement 4.0 or 6.0 divide ratio.
6	MS2_HS	MultiSynth2 High Speed Mode. This bit must be asserted to enable MultiSynth2 to divide by 4 or 6. When this bit is asserted, MultiSynth2 will only accept divide ratios of 4.0 or 6.0. Increment/decrement, SSC, and all phase functions are not available when this bit is set. 0: MultiSynth2 implements fractional divide ratios between 8 and 568. 1: MultiSynth2 can only implement 4.0 or 6.0 divide ratio.
5	MS1_HS	MultiSynth1 High Speed Mode. This bit must be asserted to enable MultiSynth1 to divide by 4 or 6. When this bit is asserted, MultiSynth1 will only accept divide ratios of 4.0 or 6.0. Increment/decrement, SSC, and all phase functions are not available when this bit is set. 0: MultiSynth1 implements fractional divide ratios between 8 and 568. 1: MultiSynth1 can only implement 4.0 or 6.0 divide ratio.
4	MS0_HS	MultiSynth0 High Speed Mode. This bit must be asserted to enable MultiSynth0 to divide by 4 or 6. When this bit is asserted, MultiSynth0 will only accept divide ratios of 4.0 or 6.0. Increment/decrement, SSC, and all phase functions are not available when this bit is set. 0: MultiSynth0 implements fractional divide ratios between 8 and 568. 1: MultiSynth0 can only implement 4.0 or 6.0 divide ratio.
3	Unused	
2:0	MS_PEC[2:0]	MultiSynth Phase Error Correction. All non-factory programmed devices must have 111b written to these bits.

Register 52.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS0_FI	DCT[1:0]	MS0_FIDDIS	MS0_SSN	/IODE[1:0]	MS0_PHIDCT[1:0]	
Туре		R/W		R/W	R/W		R/W	

Reset value = xxxx xxxx

Bit	Name	Function
7	Reserved	
6:5	MS0_FIDCT[1:0]	MultiSynth0 Frequency Increment/Decrement Control. Bit 4 (disable) must be 0 before writing an increment or decrement to these bits. Only MS0 can have pin control of Frequency Increment/Decrement. 00b: No frequency inc/dec on MS0 01b: Enable pin control of frequency inc/dec 10b: Frequency increment on MS0, self-clearing 11b: Frequency decrement on MS0, self-clearing
4	MS0_FIDDIS	MultiSynth0 Frequency Increment/Decrement Disable (see also Register 242[1]). 0: Frequency inc/dec enabled on MS0 1: Frequency inc/dec disabled on MS0 Set MS0_FIDDIS = 0 prior to writing a frequency increment/decrement command to register 52[6:5]. Writing MS0_FIDDIS back to a 1 (disabled) will cause the MS0 output frequency to go back to its initial programmed frequency.
3:2	MS0_SSMODE[1:0]	MultiSynth0 Spread Spectrum Mode Select. 00b: No SSC on MS0 01b or 10b or 11b: Down spread on MS0
1:0	MS0_PHIDCT[1:0]	MultiSynth0 Phase Increment/Decrement Control. 00b: No phase inc/dec on MS0 01b: Enable pin control of phase inc/dec 10b: Phase increment on MS0, self clearing 11b: Phase decrement on MS0, self clearing

Si5338-RM

Register 53.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS0_P1[7:0]						
Туре				R	/W			

Reset value = xxxx xxxx

Bit	Name	Function
7:0	MS0_P1[7:0]	MultiSynth0 Parameter 1. This 18-bit number is an encoded representation of the integer part of the Multi-Synth0 divider.

Register 54.

Bit	D7	D6	D5	D4	D3	D2	D1	D0						
Name		MS0_P1[15:8]												
Туре				R	/W			R/W						

Reset value = xxxx xxxx

Bit	Name	Function
15:8	MS0_P1[15:8]	MultiSynth0 Parameter 1. This 18-bit number is an encoded representation of the integer part of the Multi-Synth0 divider.

Register 55.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS0_P2[5:0] N						1[17:16]
Туре		R/W R/W						W

Reset value = xxxx xxxx

Bit	Name	Function
7:2	MS0_P2[5:0]	MultiSynth0 Parameter 2. This 30-bit number is an encoded representation of the numerator for the fractional part of the MultiSynth0 Divider.
1:0	MS0_P1[17:16]	MultiSynth0 Parameter 1. This 18-bit number is an encoded representation of the integer part of the Multi-Synth0 divider.

Register 56.

Bit	D7	D6	D5	D4	D3	D2	D1	D0	
Name		MS0_P2[13:6]							
Туре				R	/W				

Reset value = xxxx xxxx

Bit	Name	Function
7:0	MS0_P2[13:6]	MultiSynth0 Parameter 2. This 30-bit number is an encoded representation of the numerator for the fractional part of the MultiSynth0 Divider.

Si5338-RM

Register 57.

Bit	D7	D6	D5	D4	D3	D2	D1	D0	
Name		MS0_P2[21:14]							
Туре				R	/W				

Reset value = xxxx xxxx

Bit	Name	Function
7:0	MS0_P2[21:14]	MultiSynth0 Parameter 2. This 30-bit number is an encoded representation of the numerator for the fractional part of the MultiSynth0 Divider.

Register 58.

Bit	D7	D6	D5	D4	D3	D2	D1	D0	
Name		MS0_P2[29:22]							
Туре				R	/W				

Reset value = xxxx xxxx

Bit	Name	Function
7:0	MS0_P2[29:22]	MultiSynth0 Parameter 2. This 30-bit number is an encoded representation of the numerator for the fractional part of the MultiSynth0 Divider.

Register 59.

Bit	D7	D6	D5	D4	D3	D2	D1	D0	
Name		MS0_P3[7:0]							
Туре				R	/W				

Reset value = xxxx xxxx

Bit	Name	Function
7:0	MS0_P3[7:0]	MultiSynth0 Parameter 3. This 30-bit number is an encoded representation of the denominator for the fractional part of the MultiSynth0 divider.

Register 60.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	MS0_P3[15:8]							
Туре				R	/W			

Reset value = xxxx xxxx

Bit	Name	Function
7:0		MultiSynth0 Parameter 3. This 30-bit number is an encoded representation of the denominator for the fractional part of the MultiSynth0 divider.

Register 61.

Bit	D7	D6	D5	D4	D3	D2	D1	D0	
Name		MS0_P3[23:16]							
Туре				R	/W				

Reset value = xxxx xxxx

Bit	Name	Function
7:0	MS0_P3[23:16]	MultiSynth0 Parameter 3. This 30-bit number is an encoded representation of the denominator for the fractional part of the MultiSynth0 divider.

Si5338-RM

Register 62.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name					MS0_P	3[29:24]		
Туре					R	/W		

Reset value = xxxx xxxx

Bit	Name	Function
7:6	Reserved	
5:0	MS0_P3[29:24]	MultiSynth0 Parameter 3. This 30-bit number is an encoded representation of the denominator for the fractional part of the MultiSynth0 divider.

Register 63.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS1_FIDCT[1:0]		MS1_FIDDIS	MS1_SSMODE[1:0]		MS1_PHIDCT[1:0]	
Туре		R/W		R/W	R/	W	R/W	

Reset value = xxxx xxxx

Bit	Name	Function
7	Reserved	
6:5	MS1_FIDCT[1:0]	MultiSynth1 Frequency Increment/Decrement Control. Bit 4 (disable) must be 0 before writing an increment or decrement to these bits. 00b: No frequency inc/dec on MS1 01b: Reserved 10b: Frequency increment on MS1, self-clearing 11b: Frequency decrement on MS1, self-clearing
4	MS1_FIDDIS	MultiSynth1 Frequency Increment/Decrement Disable. See also Register 242[1]. 0: Frequency inc/dec enabled on MS1 1: Frequency inc/dec disabled on MS1 Set MS1_FIDDIS = 0 prior to writing a frequency increment/decrement command to register 63[6:5]. Writing MS1_FIDDIS back to a 1 (disabled) will cause the MS1 output frequency to go back to its initial programmed frequency.
3:2	MS1_SSMODE[1:0]	MultiSynth1 Spread Spectrum Mode Select. 00b: No SSC on MS1 01b or 10b or 11b: Down spread on MS1
1:0	MS1_PHIDCT[1:0]	MultiSynth1 Phase Increment/Decrement Control. Writing a 10 or 11 will self clear back to 0. 00b: No phase inc/dec on MS1 01b: Enable pin control of phase inc/dec 10b: Phase increment on MS1, self clearing 11b: Phase decrement on MS1, self clearing

Si5338-RM

Register 64.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS1_P1[7:0]						
Туре				R	/W			

Reset value = xxxx xxxx

Bit	Name	Function
7:0	MS1_P1[7:0]	MultiSynth1 Parameter 1. This 18-bit number is an encoded representation of the integer part of the Multi-Synth1 divider.

Register 65.

Bit	D7	D6	D5	D4	D3	D2	D1	D0	
Name		MS1_P1[15:8]							
Туре				R/W					

Reset value = xxxx xxxx

Bit	Name	Function			
7:0	MS1_P1[15:8]	MultiSynth1 Parameter 1. This 18-bit number is an encoded representation of the integer part of the Multi-Synth1 divider.			

Register 66.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS1_P2[5:0] MS1_P1[17:1						1[17:16]
Туре		R/W R/W					/W	

Reset value = xxxx xxxx

Bit	Name	Function
7:2	MS1_P2[5:0]	MultiSynth1 Parameter 2. This 30-bit number is an encoded representation of the numerator for the fractional part of the MultiSynth1 Divider.
1:0	MS1_P1[17:16]	MultiSynth1 Parameter 1. This 18-bit number is an encoded representation of the integer part of the Multi-Synth1 divider.

Register 67.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS1_P2[13:6]						
Туре				R	/W			

Reset value = xxxx xxxx

Bit	Name	Function
7:0	MS1_P2[13:6]	MultiSynth1 Parameter 2. This 30-bit number is an encoded representation of the numerator for the fractional part of the MultiSynth1 Divider.

Register 68.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS1_P2[21:14]						
Туре				R	/W			

Reset value = xxxx xxxx

Bit	Name	Function
7:0	MS1_P2[21:14]	MultiSynth1 Parameter 2. This 30-bit number is an encoded representation of the numerator for the fractional part of the MultiSynth1 Divider.

Register 69.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS1_P2[29:22]						
Туре				R	/W			

Reset value = xxxx xxxx

Bit	Name	Function
7:0	MS1_P2[29:22]	MultiSynth1 Parameter 2. This 30-bit number is an encoded representation of the numerator for the fractional part of the MultiSynth1 Divider.

Register 70.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS1_P3[7:0]						
Туре				R	/W			

Reset value = xxxx xxxx

Bit	Name	Function
7:0	MS1_P3[7:0]	MultiSynth1 Parameter 3. This 30-bit number is an encoded representation of the denominator for the fractional part of the MultiSynth1 Divider.

Register 71.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS1_P3[15:8]						
Туре				R	/W			

Reset value = xxxx xxxx

Bit	Name	Function
7:0	MS1_P3[15:8]	MultiSynth1 Parameter 3. This 30-bit number is an encoded representation of the denominator for the fractional part of the MultiSynth1 Divider.

Register 72.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS1_P3[23:16]						
Туре				R	/W			

Reset value = xxxx xxxx

Bit	Name	Function
7:0	MS1_P3[23:16]	MultiSynth1 Parameter 3. This 30-bit number is an encoded representation of the denominator for the fractional part of the MultiSynth1 Divider.

Register 73.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name					MS1_P	3[29:24]		
Туре					R	/W		

Reset value = xxxx xxxx

Bit	Name	Function
7:6	Reserved	
5:0	MS1_P3[29:24]	MultiSynth1 Parameter 3. This 30-bit number is an encoded representation of the denominator for the fractional part of the MultiSynth1 Divider.

Register 74.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS2_FII	OCT[1:0]	MS2_FIDDIS	MS2_SSN	MODE[1:0]	MS2_PH	IDCT[1:0]
Туре		R/W		R/W	R	/W	R/W	

Reset value = xxxx xxxx

Bit	Name	Function
7	Reserved	
6:5	MS2_FIDCT[1:0]	MultiSynth2 Frequency Increment/Decrement Control. Bit 4 (disable) must be 0 before writing an increment or decrement to these bits. 00b: No frequency inc/dec on MS2 01b: Reserved 10b: Frequency increment on MS2, self-clearing 11b: Frequency decrement on MS2, self-clearing
4	MS2_FIDDIS	MultiSynth2 Frequency Increment/Decrement Disable (see also Register 242[1]). 0: Frequency inc/dec enabled on MS2 1: Frequency inc/dec disabled on MS2 Set MS2_FIDDIS = 0 prior to writing a frequency increment/decrement command to register 74[6:5]. Writing MS2_FIDDIS back to a 1 (disabled) will cause the MS2 output frequency to go back to its initial programmed frequency.
3:2	MS2_SSMODE[1:0]	MultiSynth2 Spread Spectrum Mode Select. 00b: No SSC on MS2 01b or 10b or 11b: Down spread on MS2
1:0	MS2_PHIDCT[1:0]	MultiSynth2 Phase Increment/Decrement Control. 00b: No phase inc/dec on MS2 01b: Enable pin control of phase inc/dec 10b: Phase increment on MS2, self clearing 11b: Phase decrement on MS2, self clearing

Register 75.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS2_P1[7:0]						
Туре				R	/W			

Reset value = xxxx xxxx

Bit	Name	Function
7:0		MultiSynth2 Parameter 1. This 18-bit number is an encoded representation of the integer part of the Multi-Synth2 divider.

Register 76.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		•		MS2_F	P1[15:8]			
Туре				R	/W			

Reset value = xxxx xxxx

Bit	Name	Function
7:0	MS2_P1[15:8]	MultiSynth2 Parameter 1. This 18-bit number is an encoded representation of the integer part of the Multi-Synth2 divider.

Register 77.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS2_P2[5:0]					MS2_P	1[17:16]
Туре		R/W					R/	/W

Reset value = xxxx xxxx

Bit	Name	Function
7:2	MS2_P2[5:0]	MultiSynth2 Parameter 2. This 30-bit number is an encoded representation of the numerator for the fractional part of the MultiSynth2 Divider.
1:0	MS2_P1[17:16]	MultiSynth2 Parameter 1. This 18-bit number is an encoded representation of the integer part of the Multi-Synth2 divider.

Register 78.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name				MS2_F	P2[13:6]			
Туре				R	/W			

Reset value = xxxx xxxx

Ī	Bit	Name	Function
	7:0	MS2_P2[13:6]	MultiSynth2 Parameter 2. This 30-bit number is an encoded representation of the numerator for the fractional part of the MultiSynth2 Divider.

Register 79.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS2_P2[21:14]						
Туре				R	/W			

Reset value = xxxx xxxx

Bit	Name	Function
7:0		MultiSynth2 Parameter 2. This 30-bit number is an encoded representation of the numerator for the fractional part of the MultiSynth2 Divider.

Register 80.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS2_P2[29:22]						
Туре		R/W						

Reset value = xxxx xxxx

Bit	Name	Function
7:0	MS2_P2[29:22]	MultiSynth2 Parameter 2. This 30-bit number is an encoded representation of the numerator for the fractional part of the MultiSynth2 Divider.

Si5338-RM

Register 81.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS2_P3[7:0]						
Туре		R/W						

Reset value = xxxx xxxx

Bit	Name	Function			
	MS2_P3[7:0]	MultiSynth2 Parameter 3. This 30-bit number is an encoded representation of the denominator for the fractional part of the MultiSynth2 Divider.			

Register 82.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS2_P3[15:8]						
Туре		R/W						

Reset value = xxxx xxxx

Bit	Name	Function
7:0	MS2_P3[15:8]	MultiSynth2 Parameter 3. This 30-bit number is an encoded representation of the denominator for the fractional part of the MultiSynth2 Divider.

Register 83.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS2_P3[23:16]						
Туре		R/W						

Reset value = xxxx xxxx

Bit	Name	Function
7:0	MS2_P3[23:16]	MultiSynth2 Parameter 3. This 30-bit number is an encoded representation of the denominator for the fractional part of the MultiSynth2 Divider.

Register 84.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name				•	MS2_P	3[29:24]	•	
Туре					R	/W		

Reset value = xxxx xxxx

Bit	Name	Function
7:6	Reserved	
	MS2_P3[29:24]	MultiSynth2 Parameter 3. This 30-bit number is an encoded representation of the denominator for the fractional part of the MultiSynth2 Divider.

Register 85.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS3_FIDCT[1:0]		MS3_FIDDIS	MS3_SSMODE[1:0]		MS3_PHIDCT[1:0]	
Туре		R/W		R/W	R	W	R/W	

Reset value = xxxx xxxx

Bit	Name	Function
7	Reserved	
6:5	MS3_FIDCT[1:0]	MultiSynth3 Frequency Increment/Decrement Control. Bit 4 (disable) must be 3 before writing an increment or decrement to these bits. 00b: No frequency inc/dec on MS3 01b: Reserved 10b: Frequency increment on MS3, self-clearing 11b: Frequency decrement on MS3, self-clearing
4	MS3_FIDDIS	MultiSynth3 Frequency Increment/Decrement Disable (see also Register 242[1]). 0: Frequency inc/dec enabled on MS3 1: Frequency inc/dec disabled on MS3 Set MS3_FIDDIS = 0 prior to writing a frequency increment/decrement command to register 85[6:5]. Writing MS3_FIDDIS back to a 1 (disabled) will cause the MS3 output frequency to go back to its initial programmed frequency.
3:2	MS3_SSMODE[1:0]	MultiSynth3 Spread Spectrum Mode Select. 00b: No SSC on MS3 01b or 10b or 11b: Down spread on MS3
1:0	MS3_PHIDCT[1:0]	MultiSynth3 Phase Increment/Decrement Control. 00b: No phase inc/dec on MS3 01b: Enable pin control of phase inc/dec 10b: Phase increment on MS3 11b: Phase decrement on MS3

Register 86.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS3_P1[7:0]						
Туре		R/W						

Reset value = xxxx xxxx

Bit	Name	Function
7:0	MS3_P1[7:0]	MultiSynth3 Parameter 1. This 18-bit number is an encoded representation of the integer part of the Multi-Synth3 divider.

Register 87.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS3_P1[15:8]						
Туре		R/W						

Reset value = xxxx xxxx

Bit	Name	Function
7:0	MS3_P1[15:8]	MultiSynth3 Parameter 1. This 18-bit number is an encoded representation of the integer part of the Multi-Synth3 divider

Register 88.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS3_P2[5:0]						1[17:16]
Туре		R/W R/W						W

Reset value = xxxx xxxx

Bit	Name	Function
7:2	MS3_P2[5:0]	MultiSynth3 Parameter 2. This 30-bit number is an encoded representation of the denominator for the fractional part of the MultiSynth3 Divider.
1:0	MS3_P1[17:16]	MultiSynth3 Parameter 1. This 18-bit number is an encoded representation of the integer part of the Multi-Synth3 divider.

Register 89.

Bit	D7	D6	D5	D4	D3	D2	D1	D0	
Name		MS3_P2[13:6]							
Туре				R	/W				

Reset value = xxxx xxxx

Bit	Name	Function
7:0		MultiSynth3 Parameter 2. This 30-bit number is an encoded representation of the denominator for the fractional part of the MultiSynth3 Divider.

Register 90.

Bit	D7	D6	D5	D4	D3	D2	D1	D0					
Name		MS3_P2[21:14]											
Туре				R	/W			R/W					

Reset value = xxxx xxxx

Bit	Name	Function
7:0	MS3_P2[21:14]	MultiSynth3 Parameter 2. This 30-bit number is an encoded representation of the denominator for the fractional part of the MultiSynth3 Divider.

Register 91.

Bit	D7	D6	D5	D4	D3	D2	D1	D0	
Name		MS3_P2[29:22]							
Туре				R	/W				

Reset value = xxxx xxxx

Bit	Name	Function
7:0		MultiSynth3 Parameter 2. This 30-bit number is an encoded representation of the denominator for the fractional part of the MultiSynth3 Divider.

Register 92.

Bit	D7	D6	D5	D4	D3	D2	D1	D0	
Name		MS3_P3[7:0]							
Туре				R	/W				

Reset value = xxxx xxxx

Bit	Name	Function
7:0	MS3_P3[7:0]	MultiSynth3 Parameter 3. This 30-bit number is an encoded representation of the denominator for the fractional part of the MultiSynth3 Divider.

Register 93.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS3_P3[15:8]						
Туре				R	/W			

Reset value = xxxx xxxx

	Bit	Name	Function
-	7:0	MS3_P3[15:8]	MultiSynth3 Parameter 3. This 30-bit number is an encoded representation of the denominator for the fractional part of the MultiSynth3 Divider

Register 94.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS3_P3[23:16]						
Туре				R	/W			

Reset value = xxxx xxxx

Bit	Name	Function
7:0	MS3_P3[23:16]	MultiSynth3 Parameter 3. This 30-bit number is an encoded representation of the denominator for the fractional part of the MultiSynth3 Divider

Register 95.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name					MS3_F	3[29:24]		
Туре					R	/W		

Reset value = xxxx xxxx

Bit	Name	Function
7:6	Reserved	
5:0	MS3_P3[29:24]	MultiSynth3 Parameter 3. This 30-bit number is an encoded representation of the denominator for the fractional part of the MultiSynth3 Divider.

Register 97.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MSN_P1[7:0]						
Туре				R	/W			

Reset value = xxxx xxxx

Bit	Name	Function
7:0		Feedback MultiSynthN Parameter 1. This 18-bit number is an encoded representation of the integer part of the MultiSynth Feedback divider.

Register 98.

Bit	D7	D6	D5	D4	D3	D2	D1	D0	
Name		MSN_P1[15:8]							
Туре		R/W							

Reset value = xxxx xxxx

Bit	Name	Function
7:0		Feedback MultiSynthN Parameter 1. This 18-bit number is an encoded representation of the integer part of the MultiSynth Feedback divider.

Register 99.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MSN_P2[5:0] MSN_P1[17:						1[17:16]
Туре		R/W R/W						W

Reset value = xxxx xxxx

Bit	Name	Function					
7:2	MSN_P2[5:0]	Feedback MultiSynthN Parameter 2. This 18-bit number is an encoded representation of the numerator for the fractional part of the MultiSynth Feedback divider.					
1:0	MSN_P1[17:16]	Feedback MultiSynthN Parameter 1. This 18-bit number is an encoded representation of the integer part of the Multi-Synth Feedback divider.					

Register 100.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MSN_P2[13:6]						
Туре				R	/W			

Reset value = xxxx xxxx

Bit	Name	Function
7:0		Feedback MultiSynthN Parameter 2. This 18-bit number is an encoded representation of the numerator for the fractional part of the MultiSynth Feedback divider.

Register 101.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MSN_P2[21:14]						
Туре				R	/W			

Reset value = xxxx xxxx

Bit	Name	Function
7:0		Feedback MultiSynthN Parameter 2. This 18-bit number is an encoded representation of the numerator for the fractional part of the MultiSynth Feedback divider.

Register 102.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MSN_P2[29:22]						
Туре				R	/W			

Reset value = xxxx xxxx

Bit	Name	Function			
7:0	MSN_P2[29:22]	Feedback MultiSynthN Parameter 2. This 18-bit number is an encoded representation of the numerator for the fractional part of the MultiSynth Feedback divider.			

Register 103.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MSN_P3[7:0]						
Туре				R	/W			

Reset value = xxxx xxxx

Bit	Name	Function
7:0		Feedback MultiSynthN Parameter 3. This 18-bit number is an encoded representation of the denominator for the fractional part of the MultiSynth Feedback divider.

Register 104.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MSN_P3[15:8]						
Туре				R	/W			

Reset value = xxxx xxxx

Bit	Name	Function
7:0	MSN_P3[15:8]	Feedback MultiSynthN Parameter 3. This 18-bit number is an encoded representation of the denominator for the fractional part of the MultiSynth Feedback divider

Register 105.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MSN_P3[23:16]						
Туре				R	/W			

Reset value = xxxx xxxx

E	Bit	Name	Function			
7	7:0	MSN_P3[23:16]	Feedback MultiSynthN Parameter 3. This 18-bit number is an encoded representation of the denominator for the fractional part of the MultiSynth Feedback divider.			

Register 106.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name					MSN_F	23[29:24]		
Туре	R/W				R	/W		

Reset value = xxxx xxxx

Bit	Name	Function
7	Reserved	Must write 1b to this bit.
6	Reserved	
5:0	MSN_P3[29:24]	Feedback MultiSynthN Parameter 3. This 18-bit number is an encoded representation of the denominator for the fractional part of the MultiSynth Feedback divider.

Register 107.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS0_PHOFF[7:0]						
Туре				R	/W			

Reset value = xxxx xxxx

Bit	Name	Function
7:0	MS0_PHOFF[7:0]	MultiSynth0 Initial Phase Offset. MS0_PHOFF[14:0] is a 2s complement number. See Register 108 for the upper byte. The initial phase offset in seconds is MS0_PHOFF[14:0] x Tvco/128 where Tvco is the period of the VCO in seconds.

Register 108.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name			MS0_PHOFF[14:8]					
Туре					R/W			

Reset value = xxxx xxxx

Bit	Name	Function
7	Reserved	
6:0	MS0_PHOFF[14:8]	MultiSynth0 Initial Phase Offset. MS0_PHOFF[14:0] is a 2s complement number. See Register 107 for the lower byte. The initial phase offset in seconds is MS0_PHOFF[14:0]*Tvco/128 where Tvco is the period of the VCO in seconds.

Register 109.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS0_PHSTEP[7:0]						
Туре		R/W						

Reset value = xxxx xxxx

Bit	Name	Function
		MultiSynth0 Phase Step Size.
7:0	MS0_PHSTEP[7:0]	The phase step size is MS0_PHSTEP[13:0]*Tvco/128 where Tvco is the period of the VCO in seconds. See Register 110 for the upper bits. Either the phase inc/dec pins (if available) or register 52[1:0] will control the stepping of phase. A phase increment will delay the clock edge.

Register 110.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	CLK0_DISST[1:0]				MS0_PHS	STEP[13:8]		
Туре	R/	R/W			R	/W		

Reset value = xxxx xxxx

Bit	Name	Function
7:6	CLK0_DISST[1:0]	CLK0 Output Driver State When Disabled. 00: High impedance 01: Logic low 10: Logic high 11: Always on even if disabled
5:0	MS0_PHSTEP[13:8]	MS0 Phase Step Size. The phase step size is MS0_PHSTEP[13:0]*Tvco/128 where Tvco is the period of the VCO in seconds. See Register 109 for the lower byte. Either the phase inc/dec pins (if available) or register 52[1:0] will control the stepping of phase. A phase increment will delay the clock edge.

Register 111.

Bit	D7	D6	D5	D4	D3	D2	D1	D0	
Name		MS1_PHOFF[7:0]							
Туре		R/W							

Reset value = xxxx xxxx

Bit	Name	Function
7:0	MS1_PHOFF[7:0]	MultiSynth1 Initial Phase Offset. MS1_PHOFF[14:0] is a 2s complement number. See Register 112 for the upper byte. The initial phase offset in seconds is MS1_PHOFF[14:0] x Tvco/128 where Tvco is the period of the VCO in seconds.

Register 112.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name			MS1_PHOFF[14:8]					
Туре					R/W			

Reset value = xxxx xxxx

Bit	Name	Function
7	Reserved	
6:0	MS1_PHOFF[14:8]	MultiSynth1 Initial Phase Offset. MS1_PHOFF[14:0] is a 2s complement number. See Register 111 for the lower byte. The initial phase offset in seconds is MS1_PHOFF[14:0] x Tvco/128 where Tvco is the period of the VCO in seconds.

Register 113.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS1_PHSTEP[7:0]						
Туре		R/W						

Reset value = xxxx xxxx

Bit	Name	Function
7:0	MS1_PHSTEP[7:0]	MultiSynth1 Phase Step Size. The phase step size in seconds is MS1_PHSTEP[13:0] x Tvco/128 where Tvco is the period of the VCO in seconds. See Register 114 for the upper bits. Either the phase inc/dec pins (if available) or register 63[1:0] will control the stepping of phase. A phase increment will delay the clock edge.

(5)

Register 114.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	CLK1_DISST[1:0]				MS1_PHS	STEP[13:8]		
Туре	R/	W			R	/W		

Reset value = xxxx xxxx

Bit	Name	Function
7:6	CLK1_DISST[1:0]	MultiSynth1 Output Driver State When Disabled. 00: High impedance 01: Logic low 10: Logic high 11: Always on even if disabled
5:0	MS1_PHSTEP[13:8]	MultiSynth1 Phase Step Size. The phase step size in seconds is MS1_PHSTEP[13:0]*Tvco/128 where Tvco is the period of the VCO in seconds. See Register 113 for the lower byte. Either the phase inc/dec pins (if available) or register 63[1:0] will control the stepping of phase. A phase increment will delay the clock edge.

Register 115.

Bit	D7	D6	D5	D4	D3	D2	D1	D0	
Name		MS2_PHOFF[7:0]							
Туре		R/W							

Reset value = xxxx xxxx

Bit	Name	Function
7:0	7:0 MS2 PHOFF[7:0]	MultiSynth2 Initial Phase Offset. MS2_PHOFF[14:0] is a 2s complement number. See Register 116 for
7.0	M32_F11011 [1.0]	the upper byte. The initial phase offset in seconds is MS2_PHOFF[14:0] x Tvco/128 where Tvco is the period of the VCO in seconds.

Register 116.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS2_PHOFF[14:8]						
Туре	R/W				R/W			

Reset value = xxxx xxxx

Bit	Name	Function
7	Reserved	Must write 1b to this bit.
6:0	MS2_PHOFF[14:8]	MultiSynth2 Initial Phase Offset. MS2_PHOFF[14:0] is a 2s complement number. See Register 115 for the lower byte. The initial phase offset is MS2_PHOFF[14:0] x Tvco/128 where Tvco is the period of the VCO in seconds.

Register 117.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS2_PHSTEP[7:0]						
Туре	R/W							

Reset value = xxxx xxxx

Bit	Name	Function
7:0	MS2_PHSTEP[7:0]	MultiSynth2 Phase Step Size. The phase step size in seconds is MS2_PHSTEP[13:0] x Tvco/128 where Tvco is the period of the VCO in seconds. See Register 118 for the upper bits. Either the phase inc/dec pins (if available) or register 74[1:0] will control the stepping of phase. A phase increment will delay
		the clock edge.

(5)

Register 118.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	CLK2_DISST[1:0]		MS2_PHSTEP[13:8]					
Туре	R/W				R	/W		

Reset value = xxxx xxxx

Bit	Name	Function
7:6	CLK2_DISST[1:0]	MultiSynth2 Output Driver State When Disabled. 00: High impedance 01: Logic low 10: Logic high 11: Always on even if disabled
5:0	MS2_PHSTEP[13:8]	MultiSynth2 Phase Step Size. The phase step size in seconds is MS2_PHSTEP[13:0]*Tvco/128 where Tvco is the period of the VCO in seconds. See Register 117 for the lower byte. Either the phase inc/dec pins (if available) or register 74[1:0] will control the stepping of phase. A phase increment will delay the clock edge.

Register 119.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	MS3_PHOFF[7:0]							
Туре	R/W							

Reset value = xxxx xxxx

Bit	Name	Function
7:0	MS3_PHOFF[7:0]	MultiSynth3 Initial Phase Offset. MS3_PHOFF[14:0] is a 2s complement number. The initial phase offset in seconds is MS3_PHOFF[14:0] x Tvco/128 where Tvco is the period of the VCO in seconds.

Register 120.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name			MS3_PHOFF[14:8]					
Туре		R/W						

Reset value = xxxx xxxx

Bit	Name	Function
7	Unused	
6:0	MS3_PHOFF[14:8]	MultiSynth3 Initial Phase Offset. MS3_PHOFF[14:0] is a 2s complement number. The initial phase offset in seconds is MS3_PHOFF[14:0] x Tvco/128 where Tvco is the period of the VCO in seconds.

Register 121.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS3_PHSTEP[7:0]						
Туре	R/W							

Reset value = xxxx xxxx

Bit	Name	Function
		MultiSynth3 Phase Step Size.
7:0	MS3_PHSTEP[7:0]	The phase step size in seconds is MS3_PHSTEP[13:0] x Tvco/128 where Tvco is the period of the VCO in seconds. See Register 122 for the upper bits. Either the phase inc/dec pins (if available) or register 85[1:0] will control the stepping of phase. A phase increment will delay the clock edge.

Register 122.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	CLK3_DISST[1:0]				MS3_PH	STEP[13:8]		
Туре	R/W				R	/W		

Reset value = xxxx xxxx

Bit	Name	Function
7:6	CLK3_DISST[1:0]	MultiSynth3 Output Driver State When Disabled. 00: High impedance 01: Logic low 10: Logic high 11: Always on even if disabled
5:0	MS3_PHSTEP[13:8]	MultiSynth3 Phase Step Size. The phase step size in seconds is MS3_PHSTEP[13:0] x Tvco/128 where Tvco is the period of the VCO in seconds. See Register 121 for the lower byte. Either the phase inc/dec pins (if available) or register 85[1:0] will control the stepping of phase. A phase increment will delay the clock edge.

Register 123.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS0_FIDP1[7:0]						
Туре		R/W						

Reset value = xxxx xxxx

Bit	Name	Function
7:0	MS0_FIDP1[7:0]	MultiSynth0 Frequency Increment/Decrement Parameter 1.

Register 124.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS0_FIDP1 [15:8]						
Туре		R/W						

Reset value = xxxx xxxx

Bit	Name	Function
7:0	MS0_FIDP1 [15:8]	MultiSynth0 Frequency Increment/Decrement Parameter 1.

Register 125.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS0_FIDP1 [23:16]						
Туре		R/W						

Reset value = xxxx xxxx

Bit	Name	Function
7:0	MS0_FIDP1 [23:16]	MultiSynth0 Frequency Increment/Decrement Parameter 1.

Register 126.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS0_FIDP1 [31:24]						
Туре		R/W						

Reset value = xxxx xxxx

Bit	Name	Function
7:0	MS0_FIDP1 [31:24]	MultiSynth0 Frequency Increment/Decrement Parameter 1.

Register 127.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS0_FIDP1 [39:32]						
Туре				R	/W			

Reset value = xxxx xxxx

Bit	Name	Function
7:0	MS0_FIDP1 [39:32]	MultiSynth0 Frequency Increment/Decrement Parameter 1.

Register 128.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS0_FIDP1 [47:40]						
Туре				R	/W			

Reset value = xxxx xxxx

Bit	Name	Function
7:0	MS0_FIDP1 [47:40]	MultiSynth0 Frequency Increment/Decrement Parameter 1.

Register 129.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name						MS0_FID	P1 [51:48]	
Туре						R	W	

Reset value = 001x xxxx

Bit	Name	Function
7:4	Reserved	
3:0	MS0_FIDP1[51:48]	MultiSynth0 Frequency Increment/Decrement Parameter 1.

Register 130.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name						MS0_FID	P2 [51:48]	
Туре						R	W	

Reset value = xxxx xxxx

	Bit	Name	Function
	7:4	Reserved	
ĺ	3:0	MS0_FIDP2[51:48]	MultiSynth0 Frequency Increment/Decrement Parameter 2.

Register 131.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS0_FIDP2 [47:40]						
Туре				R	/W			

Reset value = xxxx xxxx

Bit	Name	Function
7:0	MS0_FIDP2 [47:40]	MultiSynth0 Frequency Increment/Decrement Parameter 2.

Register 132.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS0_FIDP2 [39:32]						
Туре				R	/W			

Reset value = xxxx xxxx

Bit	Name	Function
7:0	MS0_FIDP2 [39:32]	MultiSynth0 Frequency Increment/Decrement Parameter 2.

Register 133.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS0_FIDP2 [31:24]						
Туре				R	/W			

Reset value = xxxx xxxx

Bit	Name	Function
7:0	MS0_FIDP2 [31:24]	MultiSynth0 Frequency Increment/Decrement Parameter 2.

Register 134.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS0_FIDP2 [23:16]						
Туре		R/W						

Reset value = xxxx xxxx

Bit	Name	Function
7:0	MS0_FIDP2 [23:16]	MultiSynth0 Frequency Increment/Decrement Parameter 2.

Register 135.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS0_FIDP2 [15:8]						
Туре				R	/W			

Reset value = xxxx xxxx

Bit	Name	Function
7:0	MS0_FIDP2 [15:8]	MultiSynth0 Frequency Increment/Decrement Parameter 2.

Register 136.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS0_FIDP2 [7:0]						
Туре		R/W						

Reset value = xxxx xxxx

Bit	Name	Function
7:0	MS0_FIDP2 [7:0]	MultiSynth0 Frequency Increment/Decrement Parameter 2.

Register 137.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS0_FIDP3 [7:0]						
Туре		R/W						

Reset value = xxxx xxxx

Bit	Name	Function
7:0	MS0_FIDP3 [7:0]	MultiSynth0 Frequency Increment/Decrement Parameter 3.

Register 138.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS0_FIDP3 [15:8]						
Туре		R/W						

Reset value = xxxx xxxx

Bit	Name	Function
7:0	MS0_FIDP3 [15:8]	MultiSynth0 Frequency Increment/Decrement Parameter 3.

Register 139.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS0_FIDP3 [23:16]						
Туре		R/W						

Reset value = xxxx xxxx

Bit	Name	Function
7:0	MS0_FIDP3 [23:16]	MultiSynth0 Frequency Increment/Decrement Parameter 3.

Register 140.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name				MS0_FID	P3 [31:24]			
Туре				R	/W			

Reset value = xxxx xxxx

Bit	Name	Function
7:0	MS0_FIDP3 [31:24]	MultiSynth0 Frequency Increment/Decrement Parameter 3.

Register 141.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS0_FIDP3 [39:32]						
Туре				R	/W			

Reset value = xxxx xxxx

Bit	Name	Function
7:0	MS0_FIDP3 [39:32]	MultiSynth0 Frequency Increment/Decrement Parameter 3.

Register 142.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS0_FIDP3 [47:40]						
Туре		R/W						

Reset value = xxxx xxxx

Bit	Name	Function
7:0	MS0_FIDP3 [47:40]	MultiSynth0 Frequency Increment/Decrement Parameter 3.

Register 143.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS0_FIDP3 [55:48]						
Туре		R/W						

Reset value = xxxx xxxx

Bit	Name	Function
7:0	MS0_FIDP3 [55:48]	MultiSynth0 Frequency Increment/Decrement Parameter 3.

Register 144.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	MS0_ALL			MS	80_FIDP3[62	:56]		
Туре	R/W							

Reset value = xxxx xxxx

Bit	Name	Function
7	MS0_ALL	Use MultiSynth0 for All Outputs. If set, the MultiSynth0 output is routed to the mux at the input of each R divider. Unused MultiSynths should be powered down to save power.
6:0	MS0_FIDP3[62:56]	MultiSynth0 Frequency Increment/Decrement Parameter 3.

Register 152.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS1_FIDP1[7:0]						
Туре		R/W						

Reset value = 0000 0000

Bit	Name	Function
7:0	MS1_FIDP1[7:0]	MultiSynth1 Frequency Increment/Decrement Parameter 1.

Register 153.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS1_FIDP1[15:8]						
Туре		R/W						

Reset value = 0000 0000

Bit	Name	Function
7:0	MS1_FIDP1[15:8]	MultiSynth1 Frequency Increment/Decrement Parameter 1.

Register 154.

Bit	D7	D7 D6 D5 D4 D3 D2 D1 D0						
Name		MS1_FIDP1[23:16]						
Туре				R	/W			

Reset value = 0000 0000

Bit	Name	Function
7:0	MS1_FIDP1[23:16]	MultiSynth1 Frequency Increment/Decrement Parameter 1.

Register 155.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS1_FIDP1[31:24]						
Туре				R	/W			

Reset value = 0000 0000

Bit	Name	Function
7:0	MS1_FIDP1[31:24]	MultiSynth1 Frequency Increment/Decrement Parameter 1.

Register 156.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS1_FIDP1[39:32]						
Туре		R/W						

Reset value = 0000 0000

Bit	Name	Function
7:0	MS1_FIDP1[39:32]	MultiSynth1 Frequency Increment/Decrement Parameter 1.

Register 157.

Bit	D7	D7 D6 D5 D4 D3 D2 D1 D0									
Name		MS1_FIDP1[47:40]									
Туре				R	/W		R/W				

Reset value = 0000 0000

Bit	Name	Function
7:0	MS1_FIDP1[47:40]	MultiSynth1 Frequency Increment/Decrement Parameter 1.

Register 158.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name						MS1_FID	P1[51:48]	
Туре						R	/W	

Reset value = 0000 0000

Bit	Name	Function
7:4	Reserved	
3:0	MS1_FIDP1[51:48]	MultiSynth1 Frequency Increment/Decrement Parameter 1.

Register 159.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name						MS1_FID	P2[51:48]	
Туре						R	/W	

Reset value = 0000 0000

Bit	Name	Function
7:4	Reserved	
3:0	MS1_FIDP2[51:48]	MultiSynth1 Frequency Increment/Decrement Parameter 2.

Register 160.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	MS1_FIDP2[47:40]							
Туре			R/W					

Reset value = 0000 0000

Bit	Name	Function
7:0	MS1_FIDP2[47:40]	MultiSynth1 Frequency Increment/Decrement Parameter 2.

Register 161.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS1_FIDP2[39:32]						
Туре				R	/W			

Reset value = 0000 0000

Bit	Name	Function
7:0	MS1_FIDP2[39:32]	MultiSynth1 Frequency Increment/Decrement Parameter 2.

Register 162.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS1_FIDP2[31:24]						
Туре		R/W						

Reset value = 0000 0000

Bit	Name	Function
7:0	MS1_FIDP2[31:24]	MultiSynth1 Frequency Increment/Decrement Parameter 2.

Register 163.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS1_FIDP2[23:16]						
Туре		R/W						

Reset value = 0000 0000

Bit	Name	Function
7:0	MS1_FIDP2[23:16]	MultiSynth1 Frequency Increment/Decrement Parameter 2.

Register 164.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS1_FIDP2[15:8]						
Туре				R	/W			

Reset value = 0000 0000

Bit	Name	Function
7:0	MS1_FIDP2[15:8]	MultiSynth1 Frequency Increment/Decrement Parameter 2.

Register 165.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	MS1_FIDP2[7:0]							
Туре				R	/W			

Reset value = 0000 0000

Bit	Name	Function
7:0	MS1_FIDP2[7:0]	MultiSynth1 Frequency Increment/Decrement Parameter 2.

Register 166.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS1_FIDP3[7:0]						
Туре		R/W						

Reset value = 0000 0000

Bit	Name	Function
7:0	MS1_FIDP3[7:0]	MultiSynth1 Frequency Increment/Decrement Parameter 3.

Register 167.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name				MS1_FII	DP3[15:8]			
Туре				R	/W			

Reset value = 0000 0000

Bit	Name	Function
7:0	MS1_FIDP3[15:8]	MultiSynth1 Frequency Increment/Decrement Parameter 3.

Register 168.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS1_FIDP3[23:16]						
Туре				R	/W			

Reset value = 0000 0000

Bit	Name	Function
7:0	MS1_FIDP3[23:16]	MultiSynth1 Frequency Increment/Decrement Parameter 3.

Register 169.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS1_FIDP3[31:24]						
Туре				R	/W			

Reset value = 0000 0000

Bit	Name	Function
7:0	MS1_FIDP3[31:24]	MultiSynth1 Frequency Increment/Decrement Parameter 3.

Register 170.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS1_FIDP3[39:32]						
Туре				R	/W			

Reset value = 0000 0000

Bit	Name	Function
7:0	MS1_FIDP3[39:32]	MultiSynth1 Frequency Increment/Decrement Parameter 3.

Register 171.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS1_FIDP3[47:40]						
Туре		R/W						

Reset value = 0000 0000

Bit	Name	Function
7:0	MS1_FIDP3[47:40]	MultiSynth1 Frequency Increment/Decrement Parameter 3.

Register 172.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS1_FIDP3[55:48]						
Туре		R/W						

Reset value = 0000 0000

Bit	Name	Function
7:0	MS1_FIDP3[55:48]	MultiSynth1 Frequency Increment/Decrement Parameter 3.

Register 173.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name			MS1_FIDP3[62:56]					
Туре			R/W					

Reset value = 0000 0000

Bit	Name	Function
7	Unused	
6:0	MS1_FIDP3[62:56]	MultiSynth1 Frequency Increment/Decrement Parameter 3.

Register 174.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS2_FIDP1[7:0]						
Туре		R/W						

Reset value = 0000 0000

Bit	Name	Function
7:0	MS2_FIDP1[7:0]	MultiSynth2 Frequency Increment/Decrement Parameter 1.

Register 175.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS2_FIDP1[15:8]						
Туре		R/W						

Reset value = 0000 0000

Bit	Name	Function
7:0	MS2_FIDP1[15:8]	MultiSynth2 Frequency Increment/Decrement Parameter 1.

Register 176.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS2_FIDP1[23:16]						
Туре				R	/W			

Reset value = 0000 0000

Bit	Name	Function
7:0	MS2_FIDP1[23:16]	MultiSynth2 Frequency Increment/Decrement Parameter 1.

Register 177.

Bit	D7	D6	D5	D4	D3	D2	D1	D0				
Name		MS2_FIDP1[31:24]										
Туре				R	/W			R/W				

Reset value = 0000 0000

Bit	Name	Function
7:0	MS2_FIDP1[31:24]	MultiSynth2 Frequency Increment/Decrement Parameter 1.

Register 178.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS2_FIDP1[39:32]						
Туре				R	/W			

Reset value = 0000 0000

Bit	Name	Function
7:0	MS2_FIDP1[39:32]	MultiSynth2 Frequency Increment/Decrement Parameter 1.

Register 179.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS2_FIDP1[47:40]						
Туре				R	/W			

Reset value = 0000 0000

Bit	Name	Function
7:0	MS2_FIDP1[47:40]	MultiSynth2 Frequency Increment/Decrement Parameter 1.

Register 180.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name						MS2_FID	P1[51:48]	
Туре						R	/W	

Reset value = 0000 0000

Bit	Name	Function
7:4	Unused	
3:0	MS2_FIDP1[51:48]	MultiSynth2 Frequency Increment/Decrement Parameter 1.

Register 181.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name						MS2_FID	P2[51:48]	
Туре						R	/W	

Reset value = 0000 0000

Bit	Name	Function
7:4	Reserved	
3:0	MS2_FIDP2[51:48]	MultiSynth2 Frequency Increment/Decrement Parameter 2.

Register 182.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS2_FIDP2[47:40]						
Туре				R	/W			

Reset value = 0000 0000

Bit	Name	Function
7:0	MS2_FIDP2[47:40]	MultiSynth2 Frequency Increment/Decrement Parameter 2.

Register 183.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS2_FIDP2[39:32]						
Туре		R/W						

Reset value = 0000 0000

Bit	Name	Function
7:0	MS2_FIDP2[39:32]	MultiSynth2 Frequency Increment/Decrement Parameter 2.

Register 184.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS2_FIDP2[31:24]						
Туре				R	/W			

Reset value = 0000 0000

Bit	Name	Function
7:0	MS2_FIDP2[31:24]	MultiSynth2 Frequency Increment/Decrement Parameter 2.

Register 185.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS2_FIDP2[23:16]						
Туре				R	/W			

Reset value = 0000 0000

Bit	Name	Function
7:0	MS2_FIDP2[23:16]	MultiSynth2 Frequency Increment/Decrement Parameter 2.

Register 186.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS2_FIDP2[15:8]						
Туре		R/W						

Reset value = 0000 0000

Bit	Name	Function
7:0	MS2_FIDP2[15:8]	MultiSynth2 Frequency Increment/Decrement Parameter 2.

Register 187.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS2_FIDP2[7:0]						
Туре		R/W						

Reset value = 0000 0000

Bit	Name	Function
7:0	MS2_FIDP2[7:0]	MultiSynth2 Frequency Increment/Decrement Parameter 2.

Register 188.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS2_FIDP3[7:0]						
Туре				R	/W			

Reset value = 0000 0000

Bit	Name	Function
7:0	MS2_FIDP3[7:0]	MultiSynth2 Frequency Increment/Decrement Parameter 3.

Register 189.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS2_FIDP3[15:8]						
Туре		R/W						

Reset value = 0000 0000

Bit	Name	Function
7:0	MS2_FIDP3[15:8]	MultiSynth2 Frequency Increment/Decrement Parameter 3.

Register 190.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS2_FIDP3[23:16]						
Туре		R/W						

Reset value = 0000 0000

Bit	Name	Function
7:0	MS2_FIDP3[23:16]	MultiSynth2 Frequency Increment/Decrement Parameter 3.

Register 191.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS2_FIDP3[31:24]						
Туре				R	/W			

Reset value = 0000 0000

Bit	Name	Function
7:0	MS2_FIDP3[31:24]	MultiSynth2 Frequency Increment/Decrement Parameter 3.

Register 192.

Bit	D7	D6	D5	D4	D3	D2	D1	D0	
Name		MS2_FIDP3[39:32]							
Туре				R	R/W				

Reset value = 0000 0000

Bit	Name	Function
7:0	MS2_FIDP3[39:32]	MultiSynth2 Frequency Increment/Decrement Parameter 3.

Register 193.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS2_FIDP3[47:40]						
Туре		R/W						

Reset value = 0000 0000

Bit	Name	Function
7:0	MS2_FIDP3[47:40]	MultiSynth2 Frequency Increment/Decrement Parameter 3.

Register 194.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS2_FIDP3[55:48]						
Туре				R	/W			

Reset value = 0000 0000

Bit	Name	Function
7:0	MS2_FIDP3[55:48]	MultiSynth2 Frequency Increment/Decrement Parameter 3.

Register 195.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name			MS2_FIDP3[62:56]					
Туре					R/W			

Reset value = 0000 0000

Bit	Name	Function
7	Unused	
6:0	MS2_FIDP3[62:56]	MultiSynth2 Frequency Increment/Decrement Parameter 3.

Register 196.

Bit	D7	D6	D5	D4	D3	D2	D1	D0					
Name	MS3_FIDP1[7:0]												
Туре				R	/W			R/W					

Reset value = 0000 0000

Bit	Name	Function
7:0	MS3_FIDP1[7:0]	MultiSynth3 Frequency Increment/Decrement Parameter 1.

Register 197.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS3_FIDP1[15:8]						
Туре				R	/W			

Reset value = 0000 0000

Bit	Name	Function
7:0	MS3_FIDP1[15:8]	MultiSynth3 Frequency Increment/Decrement Parameter 1.

Register 198.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS3_FIDP1[23:16]						
Туре				R	/W			

Reset value = 0000 0000

Bit	Name	Function
7:0	MS3_FIDP1[23:16]	MultiSynth3 Frequency Increment/Decrement Parameter 1.

Register 199.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS3_FIDP1[31:24]						
Туре				R	/W			

Reset value = 0000 0000

Bit	Name	Function
7:0	MS3_FIDP1[31:24]	MultiSynth3 Frequency Increment/Decrement Parameter 1.

Register 200.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS3_FIDP1[39:32]						
Туре				R	/W			

Reset value = 0000 0000

Bit	Name	Function
7:0	MS3_FIDP1[39:32]	MultiSynth3 Frequency Increment/Decrement Parameter 1.

Register 201.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS3_FIDP1[47:40]						
Туре				R	/W			

Reset value = 0000 0000

Bit	Name	Function
7:0	MS3_FIDP1[47:40]	MultiSynth3 Frequency Increment/Decrement Parameter 1.

Register 202.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name						MS3_FID	P1 [51:48]	
Туре						R	/W	

Reset value = 0000 0000

Bit	Name	Function
7:4	Unused	
3:0	MS3_FIDP1 [51:48]	MultiSynth3 Frequency Increment/Decrement Parameter 1.

Register 203.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name						MS3_FID	P2[51:48]	
Туре						R	/W	

Reset value = 0000 0000

	Bit	Name	Function
Ī	7:4	Reserved	
Ī	3:0	MS3_FIDP2[51:48]	MultiSynth3 Frequency Increment/Decrement Parameter 2.

Register 204.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS3_FIDP2[47:40]						
Туре				R	/W			

Reset value = 0000 0000

Bit	Name	Function
7:0	MS3_FIDP2[47:40]	MultiSynth3 Frequency Increment/Decrement Parameter 2.

Register 205.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	MS3_FIDP2[39:32]							
Туре				R	/W			

Reset value = 0000 0000

Bit	Name	Function
7:0	MS3_FIDP2[39:32]	MultiSynth3 Frequency Increment/Decrement Parameter 2.

Register 206.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS3_FIDP2[31:24]						
Туре				R	/W			

Reset value = 0000 0000

Bit	Name	Function
7:0	MS3_FIDP2[31:24]	MultiSynth3 Frequency Increment/Decrement Parameter 2.

Register 207.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS3_FIDP2[23:16]						
Туре				R	/W			

Reset value = 0000 0000

Bit	Name	Function
7:0	MS3_FIDP2[23:16]	MultiSynth3 Frequency Increment/Decrement Parameter 2.

Register 208.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name				MS3_FII	DP2[15:8]			
Туре				R	/W			

Reset value = 0000 0000

Bit	Name	Function
7:0	MS3_FIDP2[15:8]	MultiSynth3 Frequency Increment/Decrement Parameter 2.

Register 209.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS3_FIDP2[7:0]						
Туре				R	/W			

Reset value = 0000 0000

Bit	Name	Function
7:0	MS3_FIDP2[7:0]	MultiSynth3 Frequency Increment/Decrement Parameter 2.

Register 210.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name				MS3_FI	DP3[7:0]			
Туре				R	/W			

Reset value = 0000 0000

Bit	Name	Function
7:0	MS3_FIDP3[7:0]	MultiSynth3 Frequency Increment/Decrement Parameter 3.

Register 211.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS3_FIDP3[15:8]						
Туре				R	/W			

Reset value = 0000 0000

Bit	Name	Function
7:0	MS3_FIDP3[15:8]	MultiSynth3 Frequency Increment/Decrement Parameter 3.

Register 212.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS3_FIDP3[23:16]						
Туре				R	/W			

Reset value = 0000 0000

Bit	Name	Function
7:0	MS3_FIDP3[23:16]	MultiSynth3 Frequency Increment/Decrement Parameter 3.

Register 213.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS3_FIDP3[31:24]						
Туре				R	/W			

Reset value = 0000 0000

Bit	Name	Function
7:0	MS3_FIDP3[31:24]	MultiSynth3 Frequency Increment/Decrement Parameter 3.

Register 214.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS3_FIDP3[39:32]						
Туре				R	/W			

Reset value = 0000 0000

Bit	Name	Function
7:0	MS3_FIDP3[39:32]	MultiSynth3 Frequency Increment/Decrement Parameter 3.

Register 215.

Bit	D7	D7 D6 D5 D4 D3 D2 D1 D0						D0
Name		MS3_FIDP3[47:40]						
Туре				R	/W			

Reset value = 0000 0000

Bit	Name	Function
7:0	MS3_FIDP3[47:40]	MultiSynth3 Frequency Increment/Decrement Parameter 3.

Register 216.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS3_FIDP3[55:48]						
Туре				R	/W			

Reset value = 0000 0000

Bit	Name	Function
7:0	MS3_FIDP3[55:48]	MultiSynth3 Frequency Increment/Decrement Parameter 3.

Register 217.

Bit	D7	D6	D6 D5 D4 D3 D2 D1 D0					D0
Name			MS3_FIDP3[62:56]					
Туре			R/W					

Reset value = 0000 0000

Bit	Name	Function
7	Unused	
6:0	MS3_FIDP3[62:56]	MultiSynth3 Frequency Increment/Decrement Parameter 3.

Register 218.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name				PLL_LOL	LOS_FDBK	LOS_CLKIN		SYS_CAL
Туре				R	R	R		R

Reset value = 0000 0000

Bit	Name	Function
7:5	Reserved	
		PLL Loss of Lock (LOL).
4	PLL_LOL	Asserts when the two PFD inputs have a frequency difference > 1000 ppm. This bit is held high during a POR_reset until the PLL has locked. This bit will not chatter while the PLL is locking. PLL_LOL does not assert when the external input reference clock is lost. When PLL_LOL asserts, the part will automatically try to re-acquire to the input clock. See Register 241[7].
3	LOS_FDBK	Loss of Signal on Feedback Clock from IN5,6 or IN4.
2	LOS_CLKIN	Loss of Signal on Input Clock from IN1,2 or IN3.
1	Reserved	
0	SYS_CAL	Device Calibration in Process.

Register 226.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name						MS_RESET		
Туре						R		

Reset value = 0000 0000

Bit	Name	Function
7:3	Reserved	
2	MS_RESET	Multisynth Master Reset. This reset will disable all clock outputs, reset all Multisynth blocks, and then enable all the clock outputs. Retains device configuration stored in RAM. Do not use read-modify-write procedure to perform soft reset. Instead, write reg242 = 0x04 or 0x00. All Multisynth blocks will remain in reset until a 0 is written to this bit.
1:0	Reserved	

Register 230.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name				OEB_ALL	OEB_3	OEB_2	OEB_1	OEB_0
Туре				R/W	R/W	R/W	R/W	R/W

Reset value = 0000 0000

Bit	Name	Function
7:5	Unused	
4	OEB_ALL	Output Enable Low for All Clock Outputs 0: All output clocks are enabled, OEB_3,2,1,0 can still disable each clock. 1: All output clocks are disabled regardless of the state of OEB_3,2,1,0.
3	OEB_3	Output Enable Low for CLK3 0: CLK3 output is enabled 1: CLK3 output is disabled
2	OEB_2	Output Enable Low for CLK2 0: CLK2 output is enabled 1: CLK2 output is disabled
1	OEB_1	Output Enable Low for CLK1 0: CLK1 output is enabled 1: CLK1 output is disabled
0	OEB_0	Output Enable Low for CLK0 0: CLK0 output is enabled 1: CLK0 output is disabled

Register 235.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		FCAL[7:0]						
Туре		R						

Reset value = xxxx xxxx

Bit	Name	Function
7:0	FCAL[7:0]	Bits 7:0 of the Frequency Calibration for the VCO.

Register 236.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		FCAL[15:8]						
Туре		R						

Reset value = xxxx xxxx

Bit	Name	Function
7:0	FCAL[15:8]	Bits 15:8 of the Frequency Calibration for the VCO.

Register 237.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		Reserved						[17:16]
Туре			F		F	₹		

Reset value = xxxx xxxx

	Bit	Name	Function
	7:2	Reserved	
-	1:0	FCAL[17:16]	Bits 17:16 of the Frequency Calibration for the VCO.

Register 241.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	DIS_LOL	Reserved. Write to 0x65.						
Туре				R/W	I			

Reset value = xxxx xxxx

Bit	Name	Function
7	DIS_LOL	When asserted, the PLL_LOL status in register 218 is prevented from asserting.
6:0	Reserved	On a non-factory-programmed device this register must be set to 0x65. On a factory programmed device, this register must stay 0x65. See the I ² C Programming Procedure in the Si5338 data sheet for when to write this register.

Register 242.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name							DCLK_DIS	
Туре		R/W						

Reset value = xxxx xxxx

Bit	Name	Function
7:2	Reserved	
1	DCLK_DIS	Disable Clock to INC/DEC State Machine. When true, the frequency inc/dec logic is disabled, which saves about 2 mA of current. See also Registers 52[4], 63[4], 74[4], 85[4].
0	Reserved	

Register 246.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name							SOFT_RESET	
Туре							R/W	R/W

Reset value = xxxx xxxx

Bit	Name	Function
7:2	Reserved	
1	SOFT_RESET	Soft Reset. This reset will disable all clock outputs, then re-acquire the PLL to the input clock and then enable all the clock outputs. Retains device configuration stored in RAM. Do not use read-modify-write procedure to perform soft reset. Instead, write reg246=0x02, regardless of the current value of this bit. Reading this bit after a soft reset will return a 1.
0	Reserved	

Register 247.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name				PLL_LOL_STK	LOS_FDBK_STK	LOS_CLKIN_STK		SYS_CAL_STK
Туре				R/W	R/W	R/W		R/W

Reset value = xxxx xxxx

Bit	Name	Function
7:5	Reserved	
4	PLL_LOL_STK	PLL Loss of Lock Sticky Bit. Sticky version of PLL_LOL. See also Registers 6 and 218. Only a soft or POR reset or writing a "0" to this bit will clear it.
3	LOS_FDBK_STK	Feedback Clock Loss of Signal Sticky Bit. Sticky version of LOS_FDBK. See also Registers 6 and 218. Only a soft or POR reset or writing a "0" to this bit will clear it.
2	LOS_CLKIN_STK	Input Clock Loss of Signal Sticky Bit. Sticky version of LOS_CLKIN_STK. See also Registers 6 and 218. Only a soft or POR reset or writing a "0" to this bit will clear it.
1	Reserved	
0	SYS_CAL_STK	System Calibration in Process Sticky Bit. Sticky version of SYS_CAL. See also Registers 6 and 218. Only a soft or POR reset or writing a "0" to this bit will clear it.

Register 255.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name								PAGE_SEL
Туре								R/W

Reset value = xxxx xxxx

	Bit	Name	Function
	7:1	Unused	
ĺ	0	PAGE_SEL	Set to 0 to access registers 0–254, set to 1 to access register 256 to 347.

Register 287.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	MS0_SSUPP2[7:0]							
Туре		R/W						

Reset value = 0000 0000

Bit	Name	Function
7:0	MS0_SSUPP2[7:0]	MultiSynth0 Spread Spectrum Up Parameter 2.

Register 288.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name				MS	0_SSUPP2[1	14:8]		
Туре					R/W			

Reset value = 0000 0000

Bit	Name	Function
7	Unused	
6:0	MS0_SSUPP2[14:8]	MultiSynth0 Spread Spectrum Up Parameter 2.

Register 289.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS0_SSUPP3[7:0]						
Туре				R	/W			

Reset value = 0000 0001

Bit	Name	Function
7:0	MS0_SSUPP3[7:0]	MultiSynth0 Spread Spectrum Up Parameter 3.

Register 290.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name				MS	0_SSUPP3[1	14:8]		
Туре					R/W			

Reset value = 0000 0000

Bit	Name	Function
7	Unused	
6:0	MS0_SSUPP3[14:8]	MultiSynth0 Spread Spectrum Up Parameter 3.

Register 291.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name				MS0_SS	UPP1[7:0]			
Туре				R	/W			

Reset value = 0000 0000

Bit	Name	Function
7:0	MS0_SSUPP1[7:0]	MultiSynth0 Spread Spectrum Up Parameter 1.

Register 292.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS0_SSU	JDP1[3:0]			MS0_SSL	JPP1[11:8]	
Туре		R/W				R	/W	

Reset value = 1001 0000

Bit	Name	Function
7:4	MS0_SSUDP1[3:0]	MultiSynth0 Spread Spectrum Up/Down Parameter 1.
3:0	MS0_SSUPP1[11:8]	MultiSynth0 Spread Spectrum Up Parameter 1.

Register 293.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	MS0_SSUDP1[11:4]							
Туре				R	/W			

Reset value = 0011 0001

Bit	Name	Function
7:0	MS0_SSUDP1[11:4]	MultiSynth0 Spread Spectrum Up/Down Parameter 1.

Register 294.

Bit	D7	D6	D5	D4	D3	D2	D1	D0				
Name		MS0_SSDNP2[7:0]										
Туре				R	/W		R/W					

Reset value = 0000 0000

Bit	Name	Function
7:0	MS0_SSDNP2[7:0]	MultiSynth0 Spread Spectrum Down Parameter 2.

Register 295.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name			MS0_SSDNP2[14:8]					
Туре					R/W			

Reset value = 0000 0000

Bit	Name	Function
7	Unused	
6:0	MS0_SSDNP2[14:8]	MultiSynth0 Spread Spectrum Down Parameter 2.

Register 296.

Bit	D7	D6	D5	D4	D3	D2	D1	D0		
Name		MS0_SSDNP3[7:0]								
Туре				R	/W	R/W				

Reset value = 0000 0001

Bit	Name	Function
7:0	MS0_SSDNP3[7:0]	MultiSynth0 Spread Spectrum Down Parameter 3.

Register 297.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name			MS0_SSDNP3[14:8]					
Туре					R/W			

Reset value = 0000 0000

Bit	Name	Function
7	Unused	
6:0	MS0_SSDNP3[14:8]	MultiSynth0 Spread Spectrum Down Parameter 3.

Register 298.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS0_SSDNP1[7:0]						
Туре		R/W						

Reset value = 0000 0000

Bit	Name	Function
7:0	MS0_SSDNP1[7:0]	MultiSynth0 Spread Spectrum Down Parameter 1.

Register 299.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name						MS0_SSE	DNP1[11:8]	
Туре		R/	W			R	/W	

Reset value = 0011 0001

Bit	Name	Function
7:4	Reserved	
3:0	MS0_SSDNP1[11:8]	MultiSynth0 Spread Spectrum Down Parameter 1.

Register 303.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS1_SSUPP2[7:0]						
Туре				R	/W			

Reset value = 0000 0000

Bit	Name	Function
7:0	MS1_SSUPP2[7:0]	MultiSynth1 Spread Spectrum Up Parameter 2.

Register 304.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name			MS1_SSUPP2[14:8]					
Туре			R/W					

Reset value = 0000 0000

Bit	Name	Function
7	Unused	
6:0	MS1_SSUPP2[14:8]	MultiSynth1 Spread Spectrum Up Parameter 2.

Register 305.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS1_SSUPP3[7:0]						
Туре				R	/W			

Reset value = 0000 0001

Bit	Name	Function
7:0	MS1_SSUPP3[7:0]	MultiSynth1 Spread Spectrum Up Parameter 3.

Register 306.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name			MS1_SSUPP3[14:8]					
Туре					R/W			

Reset value = 0000 0000

Bit	Name	Function
7	Unused	
6:0	MS1_SSUPP3[14:8]	MultiSynth1 Spread Spectrum Up Parameter 3.

Register 307.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS1_SSUPP1[7:0]						
Туре				R	/W			

Reset value = 0000 0000

Bit	Name	Function
7:0	MS1_SSUPP1[7:0]	MultiSynth1 Spread Spectrum Up Parameter 1.

Register 308.

Bit	D7	D6	D5	D4	D3	D2	D1	D0		
Name		MS1_SSUDP1[3:0]				MS1_SSUPP1[11:8]				
Туре	R/W					R	/W			

Reset value = 1001 0000

Bit	Name	Function
7:4	MS1_SSUDP1[3:0]	MultiSynth1 Spread Spectrum Up/Down Parameter 1.
3:0	MS1_SSUPP1[11:8]	MultiSynth1 Spread Spectrum Up Parameter 1.

Register 309.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS1_SSUDP1[11:4]						
Туре				R	/W			

Reset value = 0011 0001

Bit	Name	Function
7:0	MS1_SSUDP1[11:4]	MultiSynth1 Spread Spectrum Up/Down Parameter 1.

Register 310.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS1_SSDNP2[7:0]						
Туре				R	/W			

Reset value = 0000 0000

Bit	Name	Function
7:0	MS1_SSDNP2[7:0]	MultiSynth1 Spread Spectrum Down Parameter 2.

Register 311.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name				MS	1_SSDNP2[1	14:8]		
Туре					R/W			

Reset value = 0000 0000

Bit	Name	Function
7	Unused	
6:0	MS1_SSDNP2[14:8]	MultiSynth1 Spread Spectrum Down Parameter 2.

Register 312.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS1_SSDNP3[7:0]						
Туре				R	/W			

Reset value = 0000 0001

Bit	Name	Function
7:0	MS1_SSDNP3[7:0]	MultiSynth1 Spread Spectrum Down Parameter 3.

Register 313.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name				MS	1_SSDNP3[14:8]		
Туре					R/W			

Reset value = 0000 0000

Bit	Name	Function
7	Unused	
6:0	MS1_SSDNP3[14:8]	MultiSynth1 Spread Spectrum Down Parameter 3.

Register 314.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	MS1_SSDNP1[7:0]							
Туре				R	/W			

Reset value = 0000 0000

Bit	Name	Function
7:0	MS1_SSDNP1[7:0]	MultiSynth1 Spread Spectrum Down Parameter 1.

Register 315.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name						MS1_SSE	NP1[11:8]	
Туре		R/W				R	/W	

Reset value = 0000 0000

Bit	Name	Function
7:4	Reserved	
3:0	MS1_SSDNP1[11:8]	MultiSynth1 Spread Spectrum Down Parameter 1.

Register 319.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS2_SSUPP2[7:0]						
Туре				R	/W			

Reset value = 0000 0000

Bit	Name	Function
7:0	MS2_SSUPP2[7:0]	MultiSynth2 Spread Spectrum Up Parameter 2.

Register 320.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name				MS	2_SSUPP2[1	14:8]		
Туре					R/W			

Reset value = 0000 0000

Bit	Name	Function
7	Unused	
6:0	MS2_SSUPP2[14:8]	MultiSynth2 Spread Spectrum Up Parameter 2.

Si5338-RM

Register 321.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name				MS2_SS	UPP3[7:0]			
Туре				R	/W			

Reset value = 0000 0001

Bit	Name	Function
7:0	MS2_SSUPP3[7:0]	MultiSynth2 Spread Spectrum Up Parameter 3.

Register 322.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name				MS	2_SSUPP3[1	14:8]		
Туре					R/W			

Reset value = 0000 0000

	Bit	Name	Function
	7	Unused	
ĺ	6:0	MS2_SSUPP3[14:8]	MultiSynth2 Spread Spectrum Up Parameter 3.

Register 323.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS2_SSUPP1[7:0]						
Туре				R	/W			

Reset value = 0000 0000

Bit	Name	Function
7:0	MS2_SSUPP1[7:0]	MultiSynth2 Spread Spectrum Up Parameter 1.

Register 324.

Bit	D7	D6	D5	D4	D3	D2	D1	D0	
Name		MS2_SSUDP1[3:0]			MS2_SSUPP1[11:8]				
Туре		R/W				R	/W		

Reset value = 1001 0000

Bit	Name	Function
7:4	MS2_SSUDP1[3:0]	MultiSynth2 Spread Spectrum Up/Down Parameter 1.
3:0	MS2_SSUPP1[11:8]	MultiSynth2 Spread Spectrum Up Parameter 1.

Register 325.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS2_SSUDP1[11:4]						
Туре				R	/W			

Reset value = 0011 0001

Bit	Name	Function
7:0	MS2_SSUDP1[11:4]	MultiSynth2 Spread Spectrum Up/Down Parameter 1.

Register 326.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS2_SSDNP2[7:0]						
Туре				R	/W			

Reset value = 0000 0000

Bit	Name	Function
7:0	MS2_SSDNP2[7:0]	MultiSynth2 Spread Spectrum Down Parameter 2.

Register 327.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name				MS	2_SSDNP2[14:8]		
Туре					R/W			

Reset value = 0000 0000

Bit	Name	Function
7	Unused	
6:0	MS2_SSDNP2[14:8]	MultiSynth2 Spread Spectrum Down Parameter 2.

Register 328.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS2_SSDNP3[7:0]						
Туре				R	/W			

Reset value = 0000 0001

Bit	Name	Function
7:0	MS2_SSDNP3[7:0]	MultiSynth2 Spread Spectrum Down Parameter 3.

Register 329.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name			MS2_SSDNP3[14:8]					
Туре			R/W					

Reset value = 0000 0000

Bit	Name	Function
7	Unused	
6:0	MS2_SSDNP3[14:8]	MultiSynth2 Spread Spectrum Down Parameter 3.

Register 330.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS2_SSDNP1[7:0]						
Туре				R	/W			

Reset value = 0000 0000

Bit	Name	Function
7:0	MS2_SSDNP1[7:0]	MultiSynth2 Spread Spectrum Down Parameter 1.

Register 331.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name						MS2_SSE	NP1[11:8]	
Туре		R/	W			R	/W	

Reset value = 0000 0000

	Bit	Name	Function
	7:4	Reserved	
ĺ	3:0	MS2_SSDNP1[11:8]	MultiSynth2 Spread Spectrum Down Parameter 1.

Register 335.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS3_SSUPP2[7:0]						
Туре				R	/W			

Reset value = 0000 0000

Bit	Name	Function
7:0	MS3_SSUPP2[7:0]	MultiSynth3 Spread Spectrum Up Parameter 2.

Register 336.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name				MS	3_SSUPP2[1	14:8]		
Туре					R/W			

Reset value = 0000 0000

Bit	Name	Function
7	Unused	
6:0	MS3_SSUPP2[14:8]	MultiSynth3 Spread Spectrum Up Parameter 2.

Register 337.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS3_SSUPP3[7:0]						
Туре				R	/W			

Reset value = 0000 0001

Bit	Name	Function
7:0	MS3_SSUPP3[7:0]	MultiSynth3 Spread Spectrum Up Parameter 3.

Register 338.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name				MS	3_SSUPP3[1	14:8]		
Туре					R/W			

Reset value = 0000 0000

	Bit	Name	Function
	7	Unused	
ĺ	6:0	MS3_SSUPP3[14:8]	MultiSynth3 Spread Spectrum Up Parameter 3.

Register 339.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS3_SSUPP1[7:0]						
Туре				R	/W			

Reset value = 0000 0000

Bit	Name	Function
7:0	MS3_SSUPP1[7:0]	MultiSynth3 Spread Spectrum Up Parameter 1.

Register 340.

Bit	D7	D6	D5	D4	D3	D2	D1	D0	
Name	MS3_SSUDP1[3:0]				MS3_SSUPP1[11:8]				
Туре	R/W					R	/W		

Reset value = 1001 0000

Bit	Name	Function
7:4	MS3_SSUDP1[3:0]	MultiSynth3 Spread Spectrum Up/Down Parameter 1.
3:0	MS3_SSUPP1[11:8]	MultiSynth3 Spread Spectrum Up Parameter 1.

Register 341.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS3_SSUDP1[11:4]						
Туре				R	/W			

Reset value = 0011 0001

Bit	Name	Function
7:0	MS3_SSUDP1[11:4]	MultiSynth3 Spread Spectrum Up/Down Parameter 2.

Si5338-RM

Register 342.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS3_SSDNP2[7:0]						
Туре				R	/W			

Reset value = 0000 0000

Bit	Name	Function
7:0	MS3_SSDNP2[7:0]	MultiSynth3 Spread Spectrum Down Parameter 2.

Register 343.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name			MS3_SSDNP2[14:8]					
Туре					R/W			

Reset value = 0000 0000

	Bit	Name	Function
	7	Unused	
ĺ	6:0	MS3_SSDNP2[14:8]	MultiSynth3 Spread Spectrum Down Parameter 2.

Register 344.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS3_SSDNP3[7:0]						
Туре				R	/W			

Reset value = 0000 0001

Bit	Name	Function
7:0	MS3_SSDNP3[7:0]	MultiSynth3 Spread Spectrum Down Parameter 3.

Register 345.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MS3_SSDNP3[14:8]						
Туре		R/W						

Reset value = 0000 0000

Bit	Name	Function
7	Unused	
6:0	MS3_SSDNP3[14:8]	MultiSynth3 Spread Spectrum Down Parameter 3.

Register 346.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	MS3_SSDNP1[7:0]							
Туре	R/W							

Reset value = 0000 0000

Bit	Name	Function
7:0	MS3_SSDNP1[7:0]	MultiSynth3 Spread Spectrum Down Parameter 1.

Register 347.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name						MS3_SSE	DNP1[11:8]	
Туре	R/W					R	/W	

Reset value = 0000 0000

Bit	Name	Function
7:4	Reserved	
3:0	MS3_SSDNP1[11:8]	MultiSynth3 Spread Spectrum Down Parameter 1.

DOCUMENT CHANGE LIST

Revision 0.3 to Revision 0.4

- Updated "1. Introduction" on page 4.
 - Replaced summary register map with detailed register map.
- Updated "3. Configuring the Si5338" on page 6 for clarity.
- Updated Figure 7 for clarity and correctness.
- Updated Figure 3 to agree with register field names.
- Moved Section 4.3 to 4.1.
- Updated "5. Configuring PLL Parameters" on page 15.
 - · Added text for clarity.
- Updated Equation 1 for clarity.
- Consolidated Sections 6.1, 6.2, 6.3, and 6.4 into Section 6.0.
- Updated "5. Configuring PLL Parameters" on page 15 for clarity.
- Added "6. Configuring the Frequency Increment/ Decrement" on page 16.
- Added "7. Configuring Initial Phase Offset and Phase Step Size" on page 17.
- Added "8. Configuring Spread Spectrum" on page 19.
- Removed Section 8.
- Added "10. Si5338 Registers" on page 28, which includes all the registers.
- Added "Table of Contents" on page 3.
- Removed "12. Read Modify Write Requirement" section.
- Removed "13. VCO Calibration and Soft Reset" section.

Revision 0.4 to Revision 0.5

- Added CML driver to 9.2 and 9.3.
- Updated Figure 3 and Equation 1.
- Updated Figure 7 on page 13.
 - Changed the default value of register 28[7] from 0 to 1.
- Updated Figure 8 on page 14.
 - Changed the default value of register 28[7] from 0 to 1 and removed the default values from register 30[7:5].
- Updated "5. Configuring PLL Parameters" on page 15.
 - · Added figure number.
 - Added "round()" to the first equation in this section.

Revision 0.5 to Revision 0.6

- Updated "3.2. Calculating MultiSynth Values" on page 8.
 - Added information about Register 51[7:4].

- Updated Equation 1 on page 9.
 - "Note:...to 1" was changed to be a more accurate statement.
- Updated Figure 9 on page 15.
 - Reg50[7:6] changed from 0 to 1.
- Updated "6. Configuring the Frequency Increment/ Decrement" on page 16.
 - Added reference to register locations of Finc/Fdec.
- Updated "7.2. Phase Step Size" on page 17.
 - Added reference to registers for Pinc/Pdec.
- Updated "9.3. Output Driver Trim" on page 23.
 - Specified register42[7:5] = 001b.
 - Added 1.8 V LVDS to Driver type and trim table.
- Updated "10.2. Miscellaneous Register Writes" on page 28.
 - Changed register 47[5:2] = 0101b to Register 47[7:2] = 000101b.
 - Removed Register 241 = 0x65 as this is already detailed in the 5338 data sheet Figure 9.
 - Changed Register 28[7:6] = 10b to 00b.
- Updated Register 42.
 - Changed reset value of bits 7:6 to 00.
- Updated Register 51.
 - Clarified that bits 7:4 must be set to achiev /4 or /6 from the respective MultiSynth.

Revision 0.6 to Revision 1.0

- Changed document type from application note (AN411) to reference manual (Si5338-RM Reference Manual).
- Added information on registers 2–5.
- Corrected register 47 read-modify-write mask to allow writes to bits 7:6.
- Corrected reset value of register 289 from 0x00 to 0x01.
- Corrected reset value of register 292 from 0x30 to 0x90.

Revision 1.0 to Revision 1.1

- Updated "10. Si5338 Registers" on page 28.
 - Added information on Multisynth Reset (MS_RESET) register bit.

Revision 1.1 to Revision 1.2

- Updated "8.2. Center Spread" on page 20 and added "8.2.1. Center Spread Equations for Rev A Devices".
- Updated descriptions on Registers 0, 52, 63, 74, and 85.
- Updated section 10.6.1. Example Part Number for Device ID Registers to include Rev B information.

Revision 1.2 to Revision 1.3

■ Fixed typos in Up Parameters in "8.1. Down Spread" on page 19.

Disclaimer

Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific written consent of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Laboratories products are generally not intended for military applications. Silicon Laboratories products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

Trademark Information

Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®, EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISOmodem ®, Precision32®, ProSLIC®, SiPHY®, USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.

Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA