Imperial College London

Reduced-Dimension Multigroup Neutron Transport Code for ICF Experiments

Laboratory Astrophysics with ICF technology

- ICF is a unique platform for fundamental science
 - High energy density environment
 - Large neutron flux [1]
- Particularly suited to s-process experiments [2]
 - excited nuclear states present in HED environment [3]

Fig.1 (top) Beryllium capsule, taken from [4] (bottom) SRC from NIF, taken from [5]

Fig.2 Chart of Nuclides, taken from [6]

Aims

- Develop a neutron transport code
 - Focus on low energy
 - Customisable capsule structure and composition
 - Computational Simplicity is prioritised
- Validate model
 - Comparison with analytic solution and other simulation results
- Use the model
 - Investigate neutron moderation for use in nucleosynthesis experiments
 - Test assumptions required for nucleosynthesis experimental process

$$\frac{1}{v}\frac{\partial \psi}{\partial t} + \mathbf{\Omega} \cdot \nabla \psi + n\sigma \psi = n \iint \frac{d^2\sigma}{dEd\mathbf{\Omega}} \psi dEd\mathbf{\Omega} + \mathbf{Q}$$
 Standard Form

$$\frac{1}{v}\frac{\partial \varphi}{\partial t} + \iint \mathbf{\Omega} \cdot \nabla \psi dV d\mathbf{\Omega} + n\sigma \phi = n \int \frac{d\sigma}{dE} \phi dE + S$$

$$\iint \mathbf{\Omega} \cdot \nabla \psi dV d\mathbf{\Omega} = \frac{1}{L}$$

$$\frac{d\phi}{dt} = \left[-\frac{v}{L} - n\sigma v + nv \right] \frac{d\sigma}{dE} dE \phi + vS$$

$$\frac{1}{n}\frac{\partial \psi}{\partial t} + \mathbf{\Omega} \cdot \nabla \psi + n\sigma \psi = n \iint \frac{d^2\sigma}{dEd\mathbf{\Omega}} \psi dEd\mathbf{\Omega} + Q$$

$$\frac{1}{v}\frac{\partial\phi}{\partial t} + \iint \mathbf{\Omega} \cdot \nabla\psi dV d\mathbf{\Omega} + n\sigma\phi = n\int \frac{d\sigma}{dE}\phi dE + S$$

$$\iint \mathbf{\Omega} \cdot \nabla \psi dV d\mathbf{\Omega} = \frac{1}{L}$$

$$\frac{d\phi}{dt} = \left[-\frac{v}{L} - n\sigma v + nv \right] \frac{d\sigma}{dE} dE \phi + vS$$

$$\frac{1}{v}\frac{\partial\psi}{\partial t} + \mathbf{\Omega} \cdot \nabla\psi + n\sigma\psi = n\iint \frac{d^2\sigma}{dEd\mathbf{\Omega}}\psi dEd\mathbf{\Omega} + Q$$

$$\frac{1}{v}\frac{\partial\phi}{\partial t} + \iint \mathbf{\Omega} \cdot \nabla\psi dV d\mathbf{\Omega} + n\sigma\phi = n\int \frac{d\sigma}{dE}\phi dE + S$$

$$\iint \mathbf{\Omega} \cdot \nabla\psi dV d\mathbf{\Omega} = \frac{1}{L} \qquad \text{Apply Approximation}$$

$$\frac{d\phi}{dt} = \left[-\frac{v}{L} - n\sigma v + nv \int \frac{d\sigma}{dE} dE \right] \phi + vS$$

$$\frac{1}{v}\frac{\partial \psi}{\partial t} + \mathbf{\Omega} \cdot \nabla \psi + n\sigma \psi = n \iint \frac{d^2\sigma}{dEd\mathbf{\Omega}} \psi dEd\mathbf{\Omega} + Q$$

$$\frac{1}{v}\frac{\partial \phi}{\partial t} + \iint \mathbf{\Omega} \cdot \nabla \psi dV d\mathbf{\Omega} + n\sigma \phi = n \int \frac{d\sigma}{dE} \phi dE + S$$

$$\iint \mathbf{\Omega} \cdot \nabla \psi dV d\mathbf{\Omega} = \frac{1}{\mathbf{I}}$$

$$\frac{d\phi}{dt} = \left[-\frac{v}{L} - n\sigma v + nv \right] \frac{d\sigma}{dE} dE \phi + vS$$

1. Capsule Layers

2. Outside Layer

Fig.2 Scattering matrix for deuterium

1. Capsule Layers

2. Outside Layer

Fig.2 Scattering matrix for deuterium

1. Capsule Layers

2. Outside Layer

Fig.2 Scattering matrix for deuterium

1. Capsule Layers

2. Outside Layer

Fig.2 Scattering matrix for deuterium

1. Capsule Layers

2. Outside Layer

Fig.2 Scattering matrix for deuterium

1. Capsule Layers

2. Outside Layer

Model Validation: High-Energy Behaviour

Fig.4 Neutron spectrum predicted by Minotaur, taken from [6]

Fig.5 High-energy spectrum prediction

Model Validation: High-Energy Behaviour

Fig.4 Neutron spectrum predicted by Minotaur, taken from [6]

Fig.5 High-energy spectrum prediction

Model Validation: High-Energy Behaviour

Fig.4 Neutron spectrum predicted by Minotaur, taken from [6]

Fig.5 High-energy spectrum prediction

Results: Example Nucleosynthesis Experiment

- Measurement of capture cross-section of excited nuclear states
- Use ground-state capture cross-section as a first guess
- Perform two separate experiments:
 - 1. Neutron moderation
 - 2. Target mixing

Fig.6 Schematic of PDXP capsule

Fig.7 Ground-state neutron capture crosssection of ¹⁷¹Tm

Investigating Neutron Moderation

Fig.9 Spectrum of neutron capture events

Fig.8 Effect of moderation by addition of hydrogen on low-energy neutron flux

Investigating Neutron Moderation

Fig.9 Spectrum of neutron capture events

 10^{0}

 10^1

Fig.8 Effect of moderation by addition of hydrogen on low-energy neutron flux

 10^{20} hydrogen atoms

Investigating Experimental Procedure

Fig.10 Schematic of experiment design

Fig.11 Ratio of neutron captures for an increasingly well-mixed species with a poorly-mixed species

Investigating Experimental Procedure

Fig.12 Dissection of well-mixed captures by layer

Fig.11 Ratio of neutron captures for an increasingly well-mixed species with a poorly-mixed species

Investigating Experimental Procedure

Fig.13 Dissection of captures in ablator by species

Fig.11 Ratio of neutron captures for an increasingly well-mixed species with a poorly-mixed species

Conclusions & Future Work

- Moderation of neutron spectrum by hydrogen is not effective enough.
- Understanding target mixing is important for nucleosynthesis experiments

- Extend investigation with additional moderators and target ions
- Use results to inform more powerful simulations such as Minotaur

Conclusions & Future

Moderation of neutron

Understanding targ

- Extend investi
- Use results to

J۲

Conclusions & Future

- Moderation of neutron
- Understanding targ

- Extend investi
- Use results to

Energy [MeV]

ctive enough is experiments

J٢

Model Validation: Analytic vs Numerical

 Elastic scattering of a monoenergetic neutron source by a uniform cross-section in an infinite volume

• NTE:
$$\frac{1}{v}\frac{d\phi}{dt} = -nv\sigma + n\int \frac{d\sigma}{dE}\phi dE$$

- Analytic Solution : $\phi_S = \frac{1}{\sigma} \int \frac{d\sigma}{dE} \phi_{S-1} dE$
- Numerical Solution: $\phi_{s+1} = \phi_s + \frac{d\phi}{dt}|_{\phi = \phi_s}$

Fig.3 Comparison with analytic as verification of scattering implementation

Appendices: Minotaur Comparison

Appendices: Fuel Comparison

Appendices: Flux varying by layer

Appendices: moderation in a cryogenic capsule

Appendices: streaming term