Note Equilibria

Thomas de Graaff
June 10, 2015

Introduction

This progress report gives output for the property crime of youth

Preamble

First, we need to read in packages, my own functions and the two datasets

```
setwd("C:/Users/tgf200/Dropbox/Thomas/papers/Crime")
library(tidyr)
library(foreign)
library(ggplot2)
library(rootSolve)
library(AER)
library(dplyr)
library(reshape2)
source("./prog/R/iterationBayer.R")
source("./prog/R/CharacteristicsEq.R")
source("./prog/R/MakeFig.R")
source("./prog/R/FindEquilibria.R")
data <- read.table("./Data/GeneralData.csv", header=TRUE, sep=",")</pre>
data <- data %>% # fill in crime type
          filter(! is.na(alpha_crime)) %>%
          mutate(pfield = pfieldcrime,
                 interaction = pfield * addrdens,
                 alpha = alpha_crime,
                 se = sealpha_crime
dataind <- read.dta("./Data/hat_anyproperty2006_jongeren.dta")</pre>
```

We then specify the specifications:

```
forminit <- alpha~addrdens + oneperdens + oneparentdens + perperhh + opleiding + socklasse + k_tweever v_uit_perc + v_in_perc + schooldens + perchouseown + shops + polavail_mean_2005+pfield+interaction formcrime <- alpha~addrdens + oneperdens + oneparentdens + perperhh + opleiding + socklasse + k_tweever v_uit_perc + v_in_perc + schooldens + perchouseown + shops + polavail_mean_2005+pfield+interaction | addrdens + oneperdens + oneparentdens + perperhh + opleiding + socklasse + k_tweeverd + v_uit_perc + v_schooldens + perchouseown + shops + polavail_mean_2005+instrument+instrinter dataind$directions.foreign <- factor(dataind$foreign) dataind$foreign <- as.numeric(dataind$directions.foreign) - 1
```

And then the estimation procedure:

```
output <- iteration2sls(dataind, data, formcrime, forminit, youth=TRUE)
## [1] "
          Criterium 2 is now:
                                0.0253691120712322"
## [1] "
          Criterium 2 is now :
                                0.000208038568607519"
## [1] "
          Criterium 2 is now :
                                2.79754429491777e-06"
## [1] "
          Criterium 2 is now: 5.1246635843404e-08"
## [1] "Criterium 1 is now : 0.0304253501360187"
## [1] "
          Criterium 2 is now: 0.000643401574768949"
## [1] "
          Criterium 2 is now: 3.92328946934895e-06"
## [1] "
          Criterium 2 is now: 8.08037358454878e-08"
## [1] "Criterium 1 is now : 0.000673536109775938"
          Criterium 2 is now: 6.65638439724103e-06"
## [1]
## [1] "
          Criterium 2 is now: 4.09274313907392e-08"
## [1] "Criterium 1 is now : 7.45057687607576e-06"
## [1] "
          Criterium 2 is now: 8.66415782371779e-08"
## [1] "Criterium 1 is now : 8.66415782371779e-08"
summary(output$iv)
##
## Call:
## ivreg(formula = formiv, data = datahat, weights = 1/se)
##
## Residuals:
##
        Min
                  1Q
                      Median
                                    3Q
                                           Max
## -2.35174 -0.47812 -0.04963 0.38260
                                       2.81502
## Coefficients:
                      Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                      0.818426
                                 0.269298
                                            3.039 0.00240 **
## addrdens
                                 0.187975
                      0.476146
                                            2.533 0.01138 *
                                 0.193156 -4.193 2.86e-05 ***
## oneperdens
                     -0.809993
## oneparentdens
                      2.568445
                                 0.527437
                                            4.870 1.20e-06 ***
## perperhh
                     -0.362513
                                 0.081134 -4.468 8.31e-06 ***
## opleiding
                     -0.374817
                                 0.046235 -8.107 8.75e-16 ***
                                 0.025637
## socklasse
                      0.024768
                                            0.966 0.33410
## k_tweeverd
                      0.043937
                                 0.015812
                                           2.779 0.00551 **
## v_uit_perc
                      0.009179
                                 0.002036
                                            4.509 6.89e-06 ***
## v_in_perc
                      0.004731
                                 0.001957
                                            2.417 0.01574 *
## schooldens
                      0.006318
                                 0.003849
                                            1.642
                                                   0.10083
## perchouseown
                      -0.107966
                                 0.093713 -1.152
                                                   0.24942
## shops
                       0.019660
                                 0.007536
                                            2.609
                                                   0.00915 **
                                           -0.670 0.50283
## polavail_mean_2005 -0.005378
                                 0.008025
## pfield
                      0.095120
                                 0.024005
                                            3.962 7.67e-05 ***
## interaction
                     -0.134012
                                 0.047391
                                           -2.828 0.00473 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.6464 on 2089 degrees of freedom
## Multiple R-Squared: 0.4826, Adjusted R-squared: 0.4788
## Wald test: 70.83 on 15 and 2089 DF, p-value: < 2.2e-16
```

With final analysis of the output

We first want to find all equilibria for all iterations

```
matrices <- findequilibria(output)</pre>
```

Then we want to find the percentages of 3 equilibra occurring per iteration

```
counteq(matrices$cmat)
```

```
## [1] 0.6451306 0.6513064 0.6551069 0.6551069
```

Then we want to know the number of low equiblibra (smaller than 50%). This also indicates the number of equilibria changing from low to high (larger than 50%)

```
counteqlow(output$instrument)
```

```
##
## 1 1 1 1
```

And finally, we want to know whether our found equilibria are close (in this case the difference should be smaller than 2% in an absolute sence) to the real crime rates

```
percclose(output$alpha_est/100, output$instrument, 0.02)
```

```
##
## 0.9629454 0.9543943 0.9505938 0.9467933
```