- 1. Напоминание / Recap
- 2. Естественные и искусственные нейронные сети (ИНС)/ Natural and artificial neural networks (ANNs)
- 3. Прямые вычисления в ИНС / Forward propagation
- 4. Обратные вычисления в ИНС/ Back propagation

Напоминание / Recap

Машинное обучение / Machine Learning (ML): задача «З», в ходе решения которой программа обучается из опыта «О» и повышает меру качества «К»

The main idea is to modeling the relationship between two sets: a scalar response (y) and independent variable (x) by minimizing the cost function:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h^{(i)} - y^{(i)})^2 \Rightarrow \min.$$

using gradient descent method, for instance.

Training data

Learning Algorithm

h

Gradient descent intuition

Hапоминание / Contents of the previous lecture

Логистическая р. / Logistic r.

1 перем. x / 1 variable x

Mh.nepem. x_k / Multiple var. x_k (k = 1 ... n)

Полином. / Polynomial

$$\mathbf{x} = \begin{pmatrix} \begin{pmatrix} x_1^{(1)} & x_2^{(1)} \\ \dots & \dots \\ x_1^{(m)} & x_2^{(m)} \end{pmatrix}; \mathbf{y} = \begin{pmatrix} \begin{pmatrix} y^{(1)} \\ \dots \\ y^{(m)} \end{pmatrix} \end{pmatrix};$$

$$x = \begin{pmatrix} \begin{pmatrix} x_1^{(1)} & x_2^{(1)} \\ \dots & \dots \\ x_1^{(m)} & x_2^{(m)} \end{pmatrix}; y = \begin{pmatrix} \begin{pmatrix} y^{(1)} \\ \dots \\ y^{(m)} \end{pmatrix}; \rightarrow x = \begin{pmatrix} \begin{pmatrix} 1 & x_1^{(1)} & x_2^{(1)} \\ \dots & \dots & \dots \\ 1 & x_1^{(m)} & x_2^{(m)} \end{pmatrix}; \theta = \begin{pmatrix} \begin{pmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \end{pmatrix}; z = x\theta; \rightarrow x = \begin{pmatrix} \begin{pmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \end{pmatrix} \end{pmatrix}; x = x\theta; \rightarrow x = \begin{pmatrix} \begin{pmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \end{pmatrix} \end{pmatrix}; x = x\theta; \rightarrow x = \begin{pmatrix} \begin{pmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \end{pmatrix} \end{pmatrix}; x = x\theta; \rightarrow x = \begin{pmatrix} \begin{pmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \end{pmatrix} \end{pmatrix}; x = x\theta; \rightarrow x = \begin{pmatrix} \begin{pmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \end{pmatrix} \end{pmatrix}; x = x\theta; \rightarrow x = \begin{pmatrix} \begin{pmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \end{pmatrix} \end{pmatrix}; x = x\theta; \rightarrow x = \begin{pmatrix} \begin{pmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \end{pmatrix} \end{pmatrix}; x = x\theta; \rightarrow x = \begin{pmatrix} \begin{pmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \end{pmatrix} \end{pmatrix}; x = x\theta; \rightarrow x = \begin{pmatrix} \begin{pmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \end{pmatrix} \end{pmatrix}; x = x\theta; \rightarrow x = \begin{pmatrix} \begin{pmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \end{pmatrix} \end{pmatrix}; x = x\theta; \rightarrow x = \begin{pmatrix} \begin{pmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \end{pmatrix} \end{pmatrix}; x = x\theta; \rightarrow x = \begin{pmatrix} \begin{pmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \end{pmatrix} \end{pmatrix}; x = x\theta; \rightarrow x = \begin{pmatrix} \begin{pmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \end{pmatrix} \end{pmatrix}; x = x\theta; \rightarrow x = \begin{pmatrix} \begin{pmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \end{pmatrix} \end{pmatrix}; x = x\theta; \rightarrow x = \begin{pmatrix} \begin{pmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \end{pmatrix} \end{pmatrix}; x = x\theta; \rightarrow x = \begin{pmatrix} \begin{pmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \end{pmatrix} \end{pmatrix}; x = x\theta; \rightarrow x = \begin{pmatrix} \begin{pmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \end{pmatrix} \end{pmatrix}; x = x\theta; \rightarrow x = \begin{pmatrix} \begin{pmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \end{pmatrix} \end{pmatrix}; x = x\theta; \rightarrow x = \begin{pmatrix} \begin{pmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \end{pmatrix} \end{pmatrix}; x = x\theta; \rightarrow x = \begin{pmatrix} \begin{pmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \end{pmatrix} \end{pmatrix}; x = x\theta; \rightarrow x = \begin{pmatrix} \begin{pmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \end{pmatrix} \end{pmatrix}; x = x\theta; \rightarrow x = \begin{pmatrix} \begin{pmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \end{pmatrix} \end{pmatrix}; x = x\theta; \rightarrow x = \begin{pmatrix} \begin{pmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \end{pmatrix} \end{pmatrix}; x = x\theta; \rightarrow x = \begin{pmatrix} \begin{pmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \end{pmatrix} \end{pmatrix}; x = x\theta; \rightarrow x = \begin{pmatrix} \begin{pmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \end{pmatrix} \end{pmatrix}; x = x\theta; \rightarrow x = \begin{pmatrix} \begin{pmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \end{pmatrix} \end{pmatrix}; x = x\theta; \rightarrow x = \begin{pmatrix} \begin{pmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \end{pmatrix} \end{pmatrix}; x = x\theta; \rightarrow x = \begin{pmatrix} \begin{pmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \end{pmatrix} \end{pmatrix}; x = x\theta; \rightarrow x = \begin{pmatrix} \begin{pmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \end{pmatrix} \end{pmatrix}; x = x\theta; \rightarrow x = \begin{pmatrix} \begin{pmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \end{pmatrix} \end{pmatrix}; x = x\theta; \rightarrow x = x\theta; \rightarrow$$

$$L(\mathbf{\Theta}) = -\frac{1}{m} \sum_{i=1}^{m} (y^{(i)} \ln(h^{(i)}) + (1 - y^{(i)}) (\ln(1 - h^{(i)})) \Rightarrow \min.$$

Алгоритм поиска минимума функции качества.

- 1. Задать начальные значения компонент матрицы Θ случайным образом
- 2. Рассчитать $\mathbf{z} = \mathbf{x}\mathbf{0}$, $\mathbf{h} = \text{sigm}(\mathbf{z})$ и $\nabla L = \frac{1}{m}\mathbf{x}^T(\mathbf{h} \mathbf{y})$.
- 3. Найти новые значения компонент матриц $\boldsymbol{\theta}^H: \boldsymbol{\theta}^H = \boldsymbol{\theta}^C \alpha \nabla L$.
- 4. Повторять пункты 2-3 до выполнения одного из условий: $L^{\rm H}-L^{\rm C}<\delta$, #итер. $>N_{max}$.
- 5. Вывод результатов: Θ .

Напоминание / Contents of the previous lecture

$$X = \begin{pmatrix} 1 & \chi^{(1)} \\ \frac{1}{2} & \chi^{(1)} \end{pmatrix} \qquad A = \begin{pmatrix} 0 \\ 0 \\ \frac{1}{2} & \chi^{(1)} \end{pmatrix} \qquad A = \begin{pmatrix} 0 \\ 0 \\ \frac{1}{2} & \chi^{(1)} \end{pmatrix} \qquad A = \begin{pmatrix} 0 \\ 0 \\ \frac{1}{2} & \chi^{(1)} \end{pmatrix} \qquad A = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \qquad A = \begin{pmatrix} 0 \\ 0 \\$$

Вопросы:

- 1. Почему не рекомендуется дифференцировать функции, полученные в результате регрессионного анализа данных?
- 2. Почему нельзя сокращать «d» в выражении «dy/dx»?
- 3. Каким образом можно улучшить метод градиентного спуска, чтобы находить с его помощью глобальные минимумы, вместо локальных?
- (4.) Можно ли рассмотренные задачи линейной регрессии решить аналитически, без применения метода градиентного спуска?
- 5. Почему при построении регрессионных моделей обычно не рекомендуется применение полиномов высоких степеней?

- 1. Напоминание / Recap
- 2. Естественные и искусственные нейронные сети (ИНС)/ Natural and artificial neural networks (ANNs)
- 3. Прямые вычисления в ИНС / Forward propagation
- 4. Обратные вычисления в ИНС/ Back propagation

Естественные и искусственные нейронные сети /

Natural and artificial neural networks

Искусственный нейрон

1) Тело клетки – обрабатывает информацию;

Естественный нейрон

- 2) аксон передает обработанную информацию другим нейронам;
- 3) дендриты получают информацию от других нейронов;
- 4) синапсы соединяют аксон и дендриты других нейронов.

Естественные и искусственные нейронные сети / Natural and artificial neural networks

Функции активации / Activation functions

$$a = z$$

$$a = \frac{1}{1 + e^{-z}}$$
 $a = \frac{e^{z} - e^{-z}}{e^{z} + e^{-z}}$ $a = ln(1 + e^{z})$ $a = max(0, z)$

$$a = ln(1 + e^z)$$
 $a = max(0, z)$

$$a_j = \frac{e^{z_j}}{\sum_i e^{z_i}}$$

Identity

Logistic

Hyperbolic tangent

Softplus

Rectified linear Unit (ReLU)

Softmax

Eстественные и искусственные нейронные сети / Natural and artificial neural networks

Архитектура сетей прямого распространения / Feed forward neural network

Входной слой: каждый нейрон имеет ровно один вход от внешней среды.

Eстественные и искусственные нейронные сети / Natural and artificial neural networks

Архитектура сетей прямого распространения / Feed forward neural network

Нейроны слоя не связаны.

Нейроны передают информацию только нейронам следующего слоя.

Перепрыгивание через слои запрещено.

Настройка сети

Входы: x_i Выход: h

Задаваемые и не варьируемые параметры нейронной сети:

- кол-во входных нейронов;
- кол-во скрытых слоев;
- кол-во нейронов в скрытых слоях;
- количество выходных нейронов;
- активац. ф-я нейронов;

- ..

Варьируемые параметры нейронной сети:

- веса каждого соединения.

Направление потока информации

Естественные и искусственные нейронные сети /

Natural and artificial neural networks

- 1) Тело клетки обрабатывает информацию;
- 2) аксон передает обработанную информацию другим нейронам;
- 3) дендриты получают информацию от других нейронов;
- 4) синапсы соединяют аксон и дендриты других нейронов.

Длительность 1 операции (с):

10⁻³ 10⁻⁹

Архитектура нейронной сети:

В коре головного мозга порядка 10^9 нейронов и 10^{12} синаптических связей. Каждый нейрон связан с 10^4 соседних нейронов.

Уже довольно близко.

Энергозатраты на выполнение 1 операции в секунду:

10⁻¹⁶ Дж

10⁻⁶ Дж

- 1. Напоминание / Recap
- 2. Естественные и искусственные нейронные сети (ИНС)/ Natural and artificial neural networks (ANNs)
- 3. Прямые вычисления в ИНС / Forward propagation
- 4. Обратные вычисления в ИНС/ Back propagation

Обучение с учителем подразумевает наличие правильных ответов (labeled data), которые можно сравнить с результатами вычислений ИНС.

Задача распознавания (классификации) рукописных чисел

Архитектура ИНС: количество слоев - l; количество нейронов в k-ом слое - n_k (n_l - количество классов); логистическая функция активации в скрытых слоях и функция активации «софтмакс» в выходном слое.

Gray scale picture of "Nine"

$$x = (x_1 \ x_2 \dots x_{n_1}) \rightarrow \lim_{\stackrel{\longleftarrow}{}} \frac{1}{x_1} \xrightarrow{\stackrel{\longleftarrow}{}} \frac{1}{$$

Вычисления в прямом направлении ИНС, расчет матриц $A^{(k)}$ результатов в каждом слое / Forward propagation

Сл.1 (входной). На вход слоя подается дополненная единицей матрица x. На выходе то же: $A^{(1)} = (1 \quad x)$.

Сл.2 (скрытый). Данные с 1^{го} слоя умнож. на веса $\Theta^{(1)}$ и сумм.: $\mathbf{z}^{(2)} = \mathbf{A}^{(1)} \widetilde{\Theta}^{(1)}$, Затем прим. ф-я актив.: $\mathbf{A}^{(2)} = \begin{pmatrix} 1 & sigmoid(\mathbf{z}^{(2)}) \end{pmatrix}$.

Сл.3 (скрытый). $\mathbf{z}^{(3)} = \mathbf{A}^{(2)}\mathbf{\Theta}^{(2)}, \ \mathbf{A}^{(3)} = (1 \ sigmoid(\mathbf{z}^{(3)})).$

Сл.4 (выходной). $\mathbf{z}^{(4)} = \mathbf{A}^{(3)}\mathbf{\Theta}^{(3)}, \quad \mathbf{A}^{(4)} = softmax(\mathbf{z}^{(4)}) = \mathbf{h}.$

Напоминание. Вычисления в задаче логистической регрессии и бинарной классификации:

$$\mathbf{x} = \begin{pmatrix} x_1^{(1)} & x_2^{(1)} \\ \dots & \dots \\ x_1^{(m)} & x_2^{(m)} \end{pmatrix}; \ \mathbf{y} = \begin{pmatrix} y^{(1)} \\ \dots \\ y^{(m)} \end{pmatrix} \rightarrow \mathbf{x} = \begin{pmatrix} 1 & x_1^{(1)} & x_2^{(1)} \\ \dots & \dots & \dots \\ 1 & x_1^{(m)} & x_2^{(m)} \end{pmatrix}; \ \boldsymbol{\theta} = \begin{pmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \end{pmatrix}; \ \underline{\mathbf{z} = \mathbf{x}\boldsymbol{\theta}}; \rightarrow \mathbf{h} = \underline{sigm}(\mathbf{z}).$$

Вычисления в ИНС. Количество слоев - l; количество нейронов в k-ом слое - n_k (n_l - количество классов); логистическая функция активации в скрытых слоях и функция активации «softmax» в выходном слое.

Сл.1 (входной). На вход слоя подается дополненная единицей матрица \mathbf{x} . На выходе то же: $\mathbf{A}^{(1)} = (1 \quad \mathbf{x})$.

Сл.2 (скрытый). Данные с 1^{го} слоя умнож. на веса
$$\Theta^{(1)}$$
и сумм.: $\mathbf{z}^{(2)} = \mathbf{A}^{(1)}\Theta^{(1)}$. Затем прим. ф-я актив.: $\mathbf{A}^{(2)} = (1 \quad sigm(\mathbf{z}^{(2)}))$.

Сл.3 (скрытый).
$$\mathbf{z}^{(3)} = \mathbf{A}^{(2)}\mathbf{\Theta}^{(2)}, \ \mathbf{A}^{(3)} = (1 \ sigm(\mathbf{z}^{(3)})).$$

Сл.4 (выходной).
$$\mathbf{z}^{(4)} = \mathbf{A}^{(3)}\mathbf{\Theta}^{(3)}, \quad \mathbf{A}^{(4)} = softmax(\mathbf{z}^{(4)}) = \mathbf{h}.$$

$$\mathbf{x}, \mathbf{y}; \rightarrow \mathbf{A}^{(1)} = (1 \ x_1 \dots x_{n_1}), \mathbf{\Theta}^{(1)} = \begin{pmatrix} \theta_{01}^{(1)} \ \theta_{02}^{(1)} \\ \theta_{11}^{(1)} \ \theta_{12}^{(1)} \\ \dots \\ \theta_{n_11}^{(1)} \theta_{n_12}^{(1)} \\ \theta_{n_1n_2}^{(1)} \end{pmatrix}; \ \mathbf{z}^{(2)} = \underline{\mathbf{A}^{(1)}} \mathbf{\Theta}^{(1)} \text{ или } \mathbf{z}_j^{(2)} = a_i^{(1)} \theta_{ij}^{(1)}; \rightarrow \mathbf{A}^{(2)} = (1 \ \ \text{sigmoid}(\mathbf{z}^{(2)}))$$
или $a_0^{(2)} = 1, a_j^{(2)} = \frac{1}{1+e^{-z_j^{(2)}}}, (j = 1, \dots n_2).$

$$ightarrow$$
 $m{A}^{(2)} = ig(1 \quad sigmoidig(\mathbf{z}^{(2)}ig)ig)$ или $a_0^{(2)} = 1$, $a_j^{(2)} = rac{1}{1+e^{-z_j^{(2)}}}$, $(j=1,...n_2)$

$$ightarrow A^{(4)} = softmax(\mathbf{z}^{(4)})$$
 или $a_j^{(4)} = \frac{e^{z_j^{(4)}}}{\sum_{i=1}^{(n_4+1)} e^{z_i^{(4)}}}.$

Напоминание. Функция качества в задаче логистической регрессии.

$$L(\boldsymbol{\theta}) = -\frac{1}{m} \sum_{i=1}^{m} (y^{(i)} \ln(h^{(i)}) + (1 - y^{(i)}) (\ln(1 - h^{(i)})) + \frac{\lambda}{2m} \sum_{j=1}^{n} \theta_j^2 \Rightarrow \min.$$

Функция качества в ИНС. Количество слоев - l; количество нейронов в k-ом слое - n_k (n_l - количество классов); логистическая функция активации в скрытых слоях и функция активации «софтмакс» в выходном слое.

$$\leftrightarrow \mathbf{y} \begin{pmatrix} 0 \\ 0 \\ \dots \\ 1 \end{pmatrix}$$
.

Animations from "3Blue1Brown"

$$L(\boldsymbol{\Theta}^{(k)}) = -\frac{1}{m} \sum_{i=1}^{m} \sum_{j=1}^{n_l} \left(y_j^{(i)} \ln(h_j^{(i)}) \right) + \frac{\lambda}{2m} \sum_{k=1}^{l-1} \sum_{i=1}^{n_k} \sum_{j=1}^{n_{k+1}} \left(\theta_{ij}^{(k)} \right)^2 \Rightarrow \min.$$

Пример. ИНС содержит 3 вх. нейр., 2 нейр. в скр. слое с лин. функ. активации и 1 вых. нейрон с логист. ф-ей активации. На вход подается м-ца x = (1, 2, 3), все веса сети равны единице.

Прямые вычисления в ИНС с количеством нейронов N = [3, 2, 1], все синаптические веса равны единице $\theta_{ij}^{(k)} = 1$.

$$\mathbf{x} = (1, 2, 3); \rightarrow \mathbf{A}^{(1)} = (1, 1, 2, 3), \mathbf{\Theta}^{(1)} = \begin{pmatrix} \theta_{01}^{(1)} \theta_{02}^{(1)} \\ \theta_{11}^{(1)} \theta_{12}^{(1)} \\ \theta_{21}^{(1)} \theta_{22}^{(1)} \\ \theta_{31}^{(1)} \theta_{32}^{(1)} \end{pmatrix}; \ \mathbf{z}^{(2)} = \mathbf{A}^{(1)} \mathbf{\Theta}^{(1)}$$
 или $\mathbf{z}_{j}^{(2)} = a_{i}^{(1)} \theta_{ij}^{(1)};$ $\rightarrow \mathbf{A}^{(2)} = (1 \quad \mathbf{z}^{(2)})$ или $a_{0}^{(2)} = 1, a_{j}^{(2)} = \mathbf{z}_{j}^{(2)}, size(\mathbf{\Theta}^{(2)}) = [3, 1]; \rightarrow$

Пример. ИНС содержит 3 вх. нейр., 2 нейр. в скр. слое с лин. функ. активации и 1 вых. нейрон с логист. ф-ей активации. На вход подается м-ца x = (1, 2, 3), все веса сети равны единице.

Прямые вычисления в ИНС с количеством нейронов $N = [3\ 2\ 1]$, все синаптические веса равны единице $\theta_{ij}^{(k)} = 1$.

- 1. Напоминание / Recap
- 2. Естественные и искусственные нейронные сети (ИНС)/ Natural and artificial neural networks (ANNs)
- 3. Прямые вычисления в ИНС / Forward propagation
- 4. Обратные вычисления в ИНС/ Back propagation

Обратный расчет и обучение ИНС / Backpropagation

Обратный расчет выполняется с целью определения компонент градиента функции качества и является этапом процесса обучения:

$$L(\mathbf{\Theta}^{(k)}), \rightarrow \left[\partial L/\partial \theta_{ij}^{(k)}\right], \rightarrow \theta_{ij}^{(k)} \rightarrow L(\mathbf{\Theta}^{(k)}), \rightarrow \dots$$

Пример. ИНС с 2 входными нейронами и 1 выходным нейроном с логистической функцией активации для бинарной классификации. Функция качества для дата сета из m образцов имеет вид:

Обратный расчет и обучение ИНС / Backpropagation

Обратный расчет выполняется с целью определения компонент градиента функции качества и является этапом процесса обучения:

$$L(\mathbf{\Theta}^{(k)}), \rightarrow \left[\left[\partial L/\partial \theta_{ij}^{(k)}\right]\right], \rightarrow \theta_{ij}^{(k)} \rightarrow L(\mathbf{\Theta}^{(k)}), \rightarrow \dots$$

Пример. ИНС с 2 входными нейронами и 1 выходным нейроном с логистической функцией активации для бинарной классификации. Функция качества для дата сета из m образцов имеет вид:

$$L(\boldsymbol{\theta}^{(1)}) = -\sum_{i=1}^{m} \left(y^{(i)} \ln(h^{(i)}) \right) \Rightarrow \min.$$

$$\boldsymbol{x} = (x_1 x_2)$$

- Задать начальные значения компонент матрицы $\Theta^{(k)}$ случайным образом.
- Рассчитать вектор градиента $\nabla \mathbf{L} = \left[\partial L / \partial \theta_{ij}^{(k)} \right]$ методом обратного распр. ошибки.
- Найти новые значения компонент $\mathbf{\Theta}^{(k)}: \theta_{ij}^{(k)}^H = \theta_{ij}^{(k)}^C \alpha \frac{\partial L}{\partial \theta_{ii}^{(k)}}$.
- Повторять пп. 2-3 до достижения минимума L: $L^{\rm H} L^{\rm C} < \delta$ или #итерации $> N_{max}$.
- Вывод результатов: $\mathbf{\Theta}^{(k)}$.

- 1. Напоминание / Recap
- 2. Естественные и искусственные нейронные сети (ИНС)/ Natural and artificial neural networks (ANNs)
- 3. Прямые вычисления в ИНС / Forward propagation
- 4. Обратные вычисления в ИНС/ Back propagation

Настройка моделей MO/ ML settings

Параметры модели определяются в ходе решения задачи МО.

Гиперпараметры задаются пользователем, как правило не единственным образом, и их значения влияют на значения искомых параметров.

- 1. Масштабирование признаков / Feature Scaling
- 2. Скорость обучения α / Learning rate
- 3. Погрешность δ и количество итераций $N_{\rm max}$ / Error and # of iterations
- 4. Количество данных для градиентного метода / Batch gradient descent (GD) Mini-Batch GD. Stochastic GD
- 5. Регуляризация / Regularization

https://dragonnotes.org/MachineLearning/Optimization

Hастройка моделей MO/ ML settings

Параметры модели определяются в ходе решения задачи МО.

Гиперпараметры задаются пользователем, как правило не единственным образом, и их значения влияют на значения искомых параметров.

. . .

5. Регуляризация / Regularization

$$J(\Theta^{(k)}) = -\frac{1}{m} \sum_{i=1}^{m} \sum_{j=1}^{n_l} \left(y_j^{(i)} \ln(h_j^{(i)}) \right) + \frac{\lambda}{2m} \sum_{k=1}^{l-1} \sum_{i=1}^{n_k} \sum_{j=1}^{n_{k+1}} \left(\theta_{ij}^{(k)} \right)^2 \Rightarrow \min.$$

Самостоятельная работа / Homework

Вопросы и задания.

- 1. Изобразите архитектуры простейших нейронных сетей, вычисления в которых идентичны вычислениям при линейной и логистической регрессии.
- 2. Каким образом в ИНС хранятся знания и как они из ИНС извлекаются?
- 3. Позволяет ли применение метода Mini-Batch GD решить проблему поиска глобального экстремума при наличии локальных?