Содержание

1	Задание 1 от 14.09.2022							
	1.1	Расчёт давления по формуле Дюпюи	3					
	1.2	График зависимости давления от расстояния	3					
	1.3	Код для вывода графика	3					
	1.4	Анализ чувствительности формулы Дюпюи	3					
	1.5	Вывод уравнения Дарси и формулы Дюпюи	3					
2	Задание 2 от 14.09.2022							
	2.1	Радиус исследований	4					
	2.2	2 Решение обратной задачи						
	2.3	Вывод уравнения пьезопроводности без упругости пласта	5					
		2.3.1 В векторной форме (быстрый, но не совсем строгий вывод)	5					
		2.3.2 В покомпонентной форме с обезразмериванием (от Шеля Е.В.)	6					
	2.4	Вывод уравнения пьезопроводности с упругостью пласта	9					
3	Задание от 21.09.2022							
4	Задание от 28.09.2022							
5. Запания от 05 10 2022								

Гидродинамическое моделирование Решение задач

Муравцев А.А. (вариант $16)^1$ 7 октября 2022 г.

1 Задание 1 от 14.09.2022

дача 1									
1,1	Определить давление на расстоянии x1 (м) и x2 (м) от скважины при плоско-радиальном движении несжимаемой жидоксти по линейному закону фильтрации, считая, что проницаемость пласта k(Да), мощность пласта h (м), давление на забое скважины pw (атм), радиус скважины гw (см), вязкость нефти mu0 (сПз), объемный дебит скважины в пластовых условиях q (м3/сут)								
1,2	Построить зависимость давления от расстояния	-				ļ			
1.3*	Написать макрос/скрипт, который при запуске будет выводить построенный выше график								
1,4	Сделать анализ чувствительности закона Дарси-Дюпюи								
1,5	Вывод уравнений Дарси, Дарси-Дюпюи								
	Вариант	х1, м	х2, м	к, Да	h, м	рw, атм	rw, cm	ти0, сПз	q, м3/cy
	1	6	40	10	11	85	9	1	249
	2	67	21	4	12	74	13	3	61
	3	24	35	8	14	69	13	9	232
	4	77	89	4	28	59	18	9	211
	5	93	61	7	15	75	17	9	87
	6	6	32	8	12	100	15	. 1	114
	7	86	61	4	8	56	11	9	184
	8	57	54	8	18	63	16	10	204
	9	32	32	6	6	77	14	8	124
	10	45	56	10	5	90	16	10	256
	11	52	20	7	26	82	13	9	118
	12	46	35	1	20	77	17	10	135
	13	33	8	10	7	53	12	6	176
	14	78	40	6	15	71	12	7	53
	15	22	41	9	5	81	10	9	193
	16	73	83	9	13	71	10	3	65
	17	53	23	7	14	98	19	9	158
	18	94	87	9	14	63	12	9	231
	19	18	49	1	9	99	14	3	118
	20	37	10	10	14	61	15	9	73
	21	97	50	9	17	93	15	7	264
	22	54	68	5	26	62	12	8	68
	23	14	19	2	8	89	14	8	93
	24	30	17	4	30	96	18	8	214
	25	57	80	4	24	66	9	10	250

¹студент группы 5040103/10401; email: almuravcev@yandex.ru

1.1 Расчёт давления по формуле Дюпюи

Давление на расстоянии x_1 :

$$\begin{split} P_{x_1} &= P_w + \frac{18.41 \cdot Q\mu}{kh} \left(\ln \left(\frac{x_1}{r_w} \right) + S \right) = \\ &= 71 \text{ atm} + \frac{18.41 \cdot 65 \frac{\text{M}^3}{\text{cyt}} \cdot 3 \text{ cH}_3}{9000 \text{ mJ} \cdot 13 \text{ m}} \left(\ln \left(\frac{73 \text{ m}}{0.1 \text{ m}} \right) + 0 \right) \approx 71.2023 \text{ atm} \quad (1) \end{split}$$

Давление на расстоянии x_2 :

$$\begin{split} P_{x_1} &= P_w + \frac{18.41 \cdot Q\mu}{kh} \left(\ln \left(\frac{x_2}{r_w} \right) + S \right) = \\ &= 71 \text{ атм} + \frac{18.41 \cdot 65 \frac{\text{M}^3}{\text{сут}} \cdot 3 \text{ с}\Pi_3}{9000 \text{ мД} \cdot 13 \text{ м}} \left(\ln \left(\frac{83 \text{ м}}{0.1 \text{ м}} \right) + 0 \right) \approx 71.2062 \text{ атм} \quad (2) \end{split}$$

1.2 График зависимости давления от расстояния

1.3 Код для вывода графика

1.4 Анализ чувствительности формулы Дюпюи

Вид формулы Дюпюи на установившемся режиме в промысловых единицах со скин-фактором:

$$Q = \frac{kh}{18.41 \cdot \mu} \frac{P_e - P_w}{\ln\left(\frac{r_e}{r_w}\right) + S} \tag{3}$$

Jupyter-тетрадь с кодом для построения графика и проведения анализа чувствительности доступна по ссылке: OPEN IN COLAB.

1.5 Вывод уравнения Дарси и формулы Дюпюи

Приравнивая значение потоковой скорости, найденное из геометрии пласта, к значению, найденному из закона Дарси, получим дифференциальное уравнение притока флюида к скважине. Дюпюи составил и решил это дифференциальное уравнение для случая границы в виде цилиндрической области (для радиального режима течения).

$$\frac{Q}{A} = \frac{k}{\mu} \frac{dP}{dx} \Rightarrow \frac{Q}{2\pi h} \int_{r_w}^{r_e} \frac{dr}{r} = \frac{k}{\mu} \int_{P_w}^{P_e} dp \Rightarrow Q = \frac{2\pi kh}{\mu} \frac{P_e - P_w}{\ln\left(\frac{r_e}{r_w}\right)}$$
(4)

Формула получена в СИ. При пересчёте в промысловые единицы измерения формула Дюпюи примет следующий вид:

$$Q = \frac{kh}{18.41 \cdot \mu} \frac{P_e - P_w}{\ln\left(\frac{r_e}{r_w}\right)} \tag{5}$$

2 Задание 2 от 14.09.2022

адача 2						
1,1	Определите радиус исследований					
1,2	Решить обратную задачу. Задать начальный радиус исследований (более приближенный к реальности), приблизиться к решению, меняя параметры.					
1.3*	Решить обратную задачу. Задать начальный радиус исследований (более приближенный к реальности), приблизиться к решению, меняя параметры, используя методы оптимизации					
1,4	Вывод уравнения пьезопроводности без упругости пласта					
1.5*	Вывод уравнения пьезопроводности с упругостью пласта					
	Вариант	к, мДа	t, мин	kp, %	mu0, cПз	ct, 10^(-4) атм^(-1)
	1	86	1781	22	4	13
	2	30	3984	17	6	3
	3	91	9682	17	5	15
	4	60	2775	21	1	20
	5	70	1305	26	3	6
	6	7	887	23	10	5
	7	3	1520	20	2	4
	8	73	8261	22	4	5
	9	25	54	26	8	20
	10	64	1423	30	9	14
	11	71	7600	23	7	10
	12	59	5890	. 11	5	5
	13	12	9645	21	9	11
	14	85	97	. 21	1	16
	15	49	9645	. 11	4	2
	16	32	7343	. 14	10	20
	17	14	465	19	4	1
	18	99	4763	20	8	9
	19	94	7593	14	8	3
	20	82	8266	13	4	1
	21	48	7462	22	8	14
	22	74	1046	26	1	16
	23	73	8173	19	1	13
	24	42	1202	28	10	19
	25	11	1841	18	1	10

2.1 Радиус исследований

$$r_{inv} = 0.037 \sqrt{\frac{kt}{\varphi\mu c_t}} = 0.037 \sqrt{\frac{32 \text{ мДа} \cdot 7343 \text{ мин}}{0.14 \cdot 10 \text{ c}\Pi_3 \cdot 20 \cdot 10^{-4} \frac{1}{\text{атм}}}} \approx 338.95 \text{ м} \tag{6}$$

График зависимости радиуса исследования от произведения проницаемости и времени построен по ссылке: OPEN IN COLAB.

2.2 Решение обратной задачи

Зададим радиус исследования $r_{inv}=100\ {\rm M},$ тогда:

$$kt = arphi \mu c_t \left(rac{r_{inv}}{0.037}
ight)^2 = 0.14 \cdot 10 \ \mathrm{c} \Pi$$
 з $\cdot 20 \cdot 10^{-4} rac{1}{\mathrm{arm}} \cdot \left(rac{100 \ \mathrm{m}}{0.037}
ight)^2 pprox 20452.89 \ \mathrm{мД}$ а · мин (7)

При проницаемости k=32 мДа, время исследования будет составлять:

$$t pprox rac{20452.89 \text{ мДа} \cdot \text{мин}}{32 \text{ мДа}} pprox 639 \text{ мин} pprox 10.65 \text{ ч.}$$
 (8)

2.3 Вывод уравнения пьезопроводности без упругости пласта

- 1) Набор уравнений:
 - неразрывность потока

$$\frac{\partial \left(\rho_f \varphi\right)}{\partial t} + \nabla \cdot \left(\rho_f \varphi \boldsymbol{v_f}\right) = q_f(\boldsymbol{x}) \tag{9}$$

• закон Дарси

$$\boldsymbol{W} = -\frac{k}{\mu_f} \cdot \boldsymbol{\nabla} p \tag{10}$$

• сжимаемость флюида

$$p - p_0 = K_f \frac{\rho_f - \rho_f^0}{\rho_f^0} \tag{11}$$

На этих уравнениях строится основное уравнение гидродинамики пласта – уравнение пьезопроводности.

- 2) Насыщенности и относительные фазовые проницаемости (для нескольких флюидов)
- 3) Геометрия (сложное строение пласта)

2.3.1 В векторной форме (быстрый, но не совсем строгий вывод)

В предположении неподвижности скелета ($v_s \approx 0$ и $\varphi(t) = \text{const}$) верно равенство $W \approx \varphi v_f$. Подставляя в закон Дарси (10), получаем:

$$\varphi \boldsymbol{v_f} = -\frac{k}{\mu_f} \cdot \nabla p \tag{12}$$

Условие сжимаемости флюида (11) перепишем в дифференциальной форме:

$$\frac{\partial p}{\partial t} = \frac{K_f}{\rho_f^0} \frac{\partial \rho_f}{\partial t} \tag{13}$$

Учитывая предположение о неподвижности скелета, перепишем уравнение неразрывности потока:

$$\varphi \frac{\partial \rho_f}{\partial t} + \nabla \cdot \left(\rho_f \varphi \boldsymbol{v_f} \right) = q_f(\boldsymbol{x}) \tag{14}$$

Подставляя (12) и (13) в (14), при отсутствии источникового слагаемого ($q_f(\boldsymbol{x})=0$) получаем:

$$\varphi \frac{\rho_f^0}{K_f} \frac{\partial p}{\partial t} - \nabla \cdot \left(\rho_f \frac{k}{\mu_f} \nabla p \right) = 0 \tag{15}$$

При дополнительном условии слабосжимаемости флюида ($ho_f pprox
ho_f^0 = {
m const}$) получаем:

$$\frac{\partial p}{\partial t} = \frac{kK_f}{\mu_f \varphi} \nabla^2 p \tag{16}$$

Это уравнение пьезопроводности (без упругости пласта), полученное в приближении слабосжимаемого флюида, неподвижного и недеформируемого пласта.

2.3.2 В покомпонентной форме с обезразмериванием (от Шеля Е.В.)

Запишем ЗСМ для флюида:

$$\frac{\partial r_f}{\partial t} + \partial_i \left(r_f v_i^f \right) = 0 \tag{17}$$

Закон Дарси в «школьной» форме:

$$Q = -\frac{\Delta p}{L} \frac{k}{\mu} S \tag{18}$$

Закон Дарси в дифференциальной форме:

$$W_i = -\frac{k_{ij}}{\mu} \partial_j p, \tag{19}$$

где $W_i = \varphi v_i^f$ – потоковая относительная скорость флюида.

Учитывая связь эффективной и истинной плотностей ($r_f = \varphi \rho_f$), перепишем ЗСМ для флюида:

$$\frac{\partial \left(\rho_f \varphi\right)}{\partial t} + \partial_i \left(\rho_f \varphi v_i^f\right) = 0 \tag{20}$$

Подставляя (19) в (20), получаем:

$$\frac{\partial \left(\rho_f \varphi\right)}{\partial t} - \partial_i \left(\rho_f \frac{k_{ij}}{\mu} \partial_j p\right) = 0 \tag{21}$$

Замыкающее соотношение (связь плотности флюида и давления):

$$\rho_f = \rho_f^0 \left(1 + c_f \left(p - p_0 \right) \right), \tag{22}$$

где c_f – сжимаемость флюида (1/Па).

Замыкающее соотношение (связь пористости и давления):

$$\varphi = \varphi^0 + c_{\scriptscriptstyle \Pi} \left(p - p_0 \right), \tag{23}$$

где $c_{\rm II}$ — сжимаемость пор (не равно сжимаемости породы).

Продифференцируем по времени замыкающее соотношение (22):

$$\frac{\partial \rho_f}{\partial t} = c_f \rho_f^0 \frac{\partial p}{\partial t} \tag{24}$$

Продифференцируем по пространству замыкающее соотношение (22):

$$\partial_i \rho_f = c_f \rho_f^0 \partial_i p \tag{25}$$

Продифференцируем по времени замыкающее соотношение (23):

$$\frac{\partial \varphi}{\partial t} = c_{\Pi} \frac{\partial p}{\partial t} \tag{26}$$

Продифференцируем по пространству замыкающее соотношение (23):

$$\partial_i \varphi = c_{\mathbf{n}} \partial_i p \tag{27}$$

Раскрывая производные произведений в (21), получаем:

$$\frac{\partial \rho_f}{\partial t} \varphi + \rho_f \frac{\partial \varphi}{\partial t} - \frac{k_{ij}}{\mu} \partial_j p \, \partial_i \rho_f - \rho_f \partial_j p \, \partial_i \left(\frac{k_{ij}}{\mu} \right) - \rho_f \frac{k_{ij}}{\mu} \left(\partial_i \partial_j p \right) = 0 \tag{28}$$

Подставляя (24), (25), (26) и (27) в (28), получаем:

$$c_{f}\rho_{f}^{0}\frac{\partial p}{\partial t}\varphi + \rho_{f}c_{\pi}\frac{\partial p}{\partial t} - \frac{k_{ij}}{\mu}\partial_{j}p\,c_{f}\rho_{f}^{0}\,\partial_{i}p - \frac{\rho_{f}}{\mu}\partial_{j}p\,\partial_{i}k_{ij} + \\ + \rho_{f}\,\partial_{j}p\,k_{ij}\frac{\partial\mu}{\partial p}\frac{1}{\mu^{2}}\partial_{i}p - \rho_{f}\frac{k_{ij}}{\mu}\left(\partial_{i}\partial_{j}p\right) = 0 \quad (29)$$

Перед анализом физических уравнений всегда делают масштабный анализ, чтобы понять, какие слагаемые в уравнении важны, а какие не важны (пример: уравнение Навье-Стокса с числами Струхаля, Эйлера, Рейнольдса, Фруда).

Спойлер: ГДМ симуляторы не решают уравнение пьезопроводности в классическом виде, а решают закон сохранения массы, в который они подставляют закон Дарси.

Далее необходимо выделить характерные масштабные факторы, обезразмерив каждую из функций в уравнении.

Введём безразмерное давление \tilde{p} такое, что:

$$p = \tilde{p} \cdot p_0, \tag{30}$$

где p_0 – пластовое давление.

Введём безразмерное расстояние \tilde{r} такое, что:

$$\vec{r} = \tilde{r} \cdot L,\tag{31}$$

где L – некое характерное расстояние (например, между скважинами).

Введём безразмерную проницаемость \tilde{k}_{ij} такую, что:

$$k_{ij} = \tilde{k}_{ij} \cdot k_0, \tag{32}$$

где k_0 – некая характерная проницаемость.

Введём безразмерную вязкость $\tilde{\mu}$ такую, что:

$$\mu = \tilde{\mu} \cdot \mu_0,\tag{33}$$

где μ_0 – некая характерная вязкость.

Все безразмерные функции (с волной) порядка единицы.

Перепишем (29) в введённых безразмерных величинах, разделив обе части этого уравнения на ρ_f^0 :

$$\begin{split} \frac{\partial p}{\partial t} \left(\varphi c_f + \frac{\rho_f}{\rho_f^0} \cdot c_{\scriptscriptstyle \Pi} \right) - \frac{k_0}{\mu_0} \frac{p_0^2}{L^2} c_f \frac{\tilde{k}_{ij}}{\tilde{\mu}} \, \tilde{\partial}_i \tilde{p} \, \tilde{\partial}_j \tilde{p} - \frac{\rho_f}{\rho_f^0} \frac{k_0 \, p_0}{\mu_0 L^2} \frac{\tilde{k}_{ij}}{\tilde{\mu}} \, \tilde{\partial}_j \tilde{p} \, \tilde{\partial}_i \tilde{k}_{ij} + \\ + \frac{\rho_f}{\rho_f^0} \frac{p_0 \, k_0}{L^2 \mu_0} \, \tilde{\partial}_j \tilde{p} \, \tilde{k}_{ij} \frac{\partial \tilde{\mu}}{\partial \tilde{p}} \frac{1}{\tilde{\mu}^2} \, \tilde{\partial}_i \tilde{p} - \frac{\rho_f}{\rho_f^0} \frac{k_0}{\mu_0} \frac{p_0}{L^2} \frac{\tilde{k}_{ij}}{\tilde{\mu}} \left(\tilde{\partial}_i \tilde{\partial}_j \tilde{p} \right) = 0 \quad (34) \end{split}$$

Вынесли все масштабные множители. Далее делим обе части уравнения на множитель перед старшей производной $\left(\text{на } \frac{k_0\,p_0}{\mu_0\,L^2}\right)$, т.е. обезразмериваем уравнение:

$$\begin{split} \frac{\mu_0 L^2}{k_0 p_0} \cdot \frac{\partial p}{\partial t} \left(\varphi c_f + \frac{\rho_f}{\rho_f^0} \cdot c_{\scriptscriptstyle \Pi} \right) - p_0 c_f \frac{\tilde{k}_{ij}}{\tilde{\mu}} \, \tilde{\partial}_i \tilde{p} \, \tilde{\partial}_j \tilde{p} - \frac{\rho_f}{\rho_f^0} \frac{\tilde{k}_{ij}}{\tilde{\mu}} \, \tilde{\partial}_j \tilde{p} \, \tilde{\partial}_i \tilde{k}_{ij} + \\ + \frac{\rho_f}{\rho_f^0} \frac{\partial \tilde{\mu}}{\partial \tilde{p}} \frac{1}{\tilde{\mu}^2} \tilde{k}_{ij} \, \tilde{\partial}_j \tilde{p} \, \tilde{\partial}_i \tilde{p} - \frac{\rho_f}{\rho_f^0} \frac{\tilde{k}_{ij}}{\tilde{\mu}} \left(\tilde{\partial}_i \tilde{\partial}_j \tilde{p} \right) = 0 \quad (35) \end{split}$$

Сделаем 3 важных приближения:

- 1. $p_0c_f\ll 1$ (прикинем: сжимаемость воды порядка 10^{-5} атм $^{-1}=10^{-10}$ Па $^{-1}$; характерные значения давлений на глубинах, равных нескольким километрам, составляют сотни атмосфер; таким образом, произведение порядка 10^{-3} , что много меньше единицы; но такое приближение не работает для газа: для него рассматриваемое произведение порядка единицы); это приближение фактически равносильно приближению $\rho_f\approx \rho_f^0$;
- 2. $\tilde{\partial}_i \tilde{k}_{ij} \ll 1$ (считаем, что на характерном масштабе задачи по данному направлению проницаемость изменяется незначительно, не больше 10 процентов);

3. $\frac{\partial \tilde{\mu}}{\partial \tilde{p}} \ll 1$ (считаем, что отмасштабированный график проницаемости от давления пологий – этот факт подтверждается экспериментально – вязкость слабо зависит от давления)

Тогда уравнение (35) перепишется в следующем виде (убрали слагаемые с пренебрежимо малыми множителями в рамках сделанных приближений и вернулись от безразмерных функций с волной к обычным функциям):

$$\frac{\partial p}{\partial t} \underbrace{\left(\varphi c_f + c_{\mathbf{n}}\right)}_{c_t} - \frac{k_{ij}}{\mu} \partial_i \partial_j p = 0 \tag{36}$$

(заметим, что если есть анизотропия проницаемости, то лапласиана в уравнении не будет). Получаем классическое уравнение пьезопроводности:

$$\frac{\partial p}{\partial t} - \frac{k_{ij}}{\mu c_t} \partial_i \partial_j p = 0, \tag{37}$$

где c_t – это полная сжимаемость.

Замечание. Но есть литература, в которой $c_t=c_f+\frac{c_\pi}{\varphi}$, тогда уравнение пьезопроводности будет выглядеть так:

$$\frac{\partial p}{\partial t} - \frac{k_{ij}}{\mu \varphi c_t} \partial_i \partial_j p = 0 \tag{38}$$

Пусть тензор проницаемости изотропен $k_{ij} = k_0 \cdot \delta_{ij}$, тогда:

$$\frac{\partial p}{\partial t} - \frac{k_0}{\mu c_t} \delta_{ij} \, \partial_i \partial_j p = 0 \Leftrightarrow \frac{\partial p}{\partial t} - \frac{k_0}{\mu c_t} \Delta p = 0 \tag{39}$$

(получили всем известный вид уравнения пьезопроводности).

2.4 Вывод уравнения пьезопроводности с упругостью пласта

Задача со звёздочкой. Ещё думаю.

3 Задание от 21.09.2022

Jupyter-тетрадь с кодом обработки ОФП доступна по ссылке: OPEN IN GITHUB.

4 Задание от 28.09.2022

5 Задание от 05.10.2022