Elements of Econometrics. 2022-2023. Class 3. Properties of Regression Estimators

Class Teacher: Elena Semerikova esemerikova@hse.ru

Let
$$Y_i = \beta_1 + \beta_2 X_i + u_i$$
 as we know $b_2 = \hat{\beta}_2 = \frac{\sum (X_i - \overline{X})(Y_i - \overline{Y})}{\sum (X_i - \overline{X})^2}$

Decomposition
$$b_2 = \beta_2 + \frac{\sum (X_i - \overline{X})(u_i - \overline{u})}{\sum (X_i - \overline{X})^2} = \beta_2 + \sum a_i u_i$$

Where
$$a_i = \frac{X_i - \overline{X}}{\sum_{j=1}^n (X_j - \overline{X})^2}$$
 are 'magic coefficients'

the properties of 'magic coefficients'

1)
$$\sum_{i=1}^{n} a_i = 0$$

2)
$$\sum_{i=1}^{n} a_i^2 = \frac{1}{\sum_{i=1}^{n} (X_i - \overline{X})^2} = \frac{1}{\sum_{i=1}^{n} x_i^2}$$
 where $x_i = X_i - \overline{X}$

3)
$$\sum_{i=1}^{n} a_i X_i = 1$$

Problem 2. Let the regression be $Y_t = \beta_1 + \beta_2 X_t + u_t$; t = 1, 2, ..., T where $E(u_t) = 0$; $E(u_t^2) = \sigma^2$ and $E(u_s u_t) = 0$ if $s \neq t$. Prove that $b_2 = \hat{\beta}_2 = \frac{\sum (X_i - \overline{X})(Y_i - \overline{Y})}{\sum (X_i - \overline{X})^2}$ is unbiased estimator of β_2

Now the same in concise form $b_2 = \frac{\text{Cov}(X,Y)}{\text{Var}(X)}$

Problem 3. Let the regression be $Y_t = \beta_1 + \beta_2 X_t + u_t$; t = 1, 2, ..., T where $E(u_t) = 0$; $E(u_t^2) = \sigma^2$ and $E(u_s u_t) = 0$ if $s \neq t$. Derive formula for decomposition of regression estimator $b_2 = \frac{\text{Cov}(X, Y)}{\text{Var}(X)}$ into fixed and

random components: $b_2 = \beta_2 + \frac{\text{Cov}(X, u)}{\text{Var}(X)}$

Problem 4. Under the same assumptions prove that OLS estimator of the slope coefficient is unbiased.

Properties of estimators of the constant term

Problem 5. Demonstrate that $b_1 = \beta_1 + \sum_{i=1}^n c_i u_i$, where $c_1 = \frac{1}{n} - a_i \overline{X}$ and a_i is 'magic coefficients' (see above)

Problem 6 Prove that OLS estimator of the intercept b_1 is unbiased estimator of β_1 .

Variance of regression estimators

Problem 7. Prove that the variance of OLS estimator of the slope coefficient is $\sigma_{b_2}^2 = \frac{\sigma_u^2}{\sum (X_i - \overline{X})^2}$

Problem 8. Prove that the variance of OLS estimator of the intercept is $\sigma_{b_1}^2 = \sigma_u^2 \left\{ \frac{1}{n} + \frac{\overline{X}^2}{\sum (X_i - \overline{X})^2} \right\}$