(19) 中华人民共和国国家知识产权局

(12) 发明专利申请

(10)申请公布号 CN 102030764 A (43)申请公布日 2011.04.27

- (21)申请号 201010547766.3
- (22)申请日 2010.11.12
- (71) 申请人 中国医学科学院医药生物技术研究 所

地址 100050 北京市崇文区天坛西里 1号

- (72) 发明人 武临专 赫卫清 王以光 林灵 倪四阳 陶佩珍 王红远
- (74) 专利代理机构 北京华科联合专利事务所 11130

代理人 杨厚 王为

(51) Int. CI.

CO7D 513/08 (2006.01)

C12P 17/18 (2006.01)

C12N 1/21 (2006.01)

A61K 31/542 (2006.01)

A61P 31/12(2006.01)

A61P 31/22 (2006. 01)

C12R 1/55 (2006.01)

权利要求书 1 页 说明书 6 页 序列表 2 页 附图 4 页

(54) 发明名称

4,5 双氢噻嗪酮格尔德霉素及其制备方法

(57) 摘要

本发明涉及利用基因工程技术获得格尔德霉素新衍生物 4,5 双氢噻嗪酮格尔德霉素及其制备方法,所述新衍生物是通过构建格尔德霉素产生菌吸水链霉菌 17997 P450 单加氧酶基因 (gdmP)阻断变株,并经发酵、提取获得;研究结果表明,4,5 双氢噻嗪酮格尔德霉素具有抗病毒活性和非常好的水溶性,有望开发成为临床有用的抗病毒药物。

1. 一种格尔德霉素基因工程衍生物,其特征是,所述衍生物 4,5 双氢噻嗪酮格尔德霉素的化学结构如式(1) 所示:

- 2. 制备权利要求 1 所述衍生物的方法,其特征是,该方法的主要步骤依次为: 吸水链霉菌 17997 P450 单加氧酶基因 (gdmP) 阻断变株的构建;
- 4,5 双氢噻嗪酮格尔德霉素的发酵、提取。
- 3. 权利要求 2 所述的制备方法, 其特征是, 产生 4,5 双氢噻嗪酮格尔德霉素所用变株的构建是, 根据 GenBank DQ914285 gdmP 基因序列设计引物, 以吸水链霉菌 17997 基因组为模板, 进行 PCR, 分别获得与 gdmP 基因同源的两个片段, 在其中间以相应的酶切位点插入选择性标记基因, 并通过构建大肠杆菌/链霉菌穿梭质粒获得用于 gdmP 基因阻断的重组载体;将重组载体导入吸水链霉菌 17997 中, 根据选择性标记筛选转化子;利用 PCR 方法鉴定确认, gdmP 基因序列中插入了选择性标记基因, 从而获得吸水链霉菌 17997 gdmP 基因阻断变株。
- 4. 权利要求 2 或 3 所述的制备方法,其特征是,在新鲜培养的吸水链霉菌 17997gdmP 基因阻断变株斜面或平板培养基中加入卡那霉素,挖块接种于液体种子培养基中,28℃振荡培养 24-48h;5%转种量接种于液体发酵培养基,28℃继续振荡培养,至 120-144h,获得吸水链霉菌 17997gdmP 基因阻断变株的发酵培养液;发酵液过滤后,用滤液二分之一体积的乙酸乙酯提取,薄膜浓缩后上硅胶柱,以二氯甲烷:甲醇 19:1进行洗脱,分部收集洗脱液,用岛津 LC-10Avp 高压液相色谱仪,SPD-M10AvP 二极管阵列检测器,CLASS-VP 工作站,以 254nm 进行 HPLC 检测,汇总含 4,5 双氢噻嗪酮格尔德霉素化合物部分洗脱液,浓缩后用制备型 HPLC,0DS-C18 柱,甲醇:水 9 : 11(v/v),流量每分钟 5 毫升,获得 4,5 双氢噻嗪酮格尔德霉素纯品。
 - 5. 权利要求 1 所述衍生物在制备抗病毒药物中的应用。
- 6. 权利要求1 所述衍生物的药物组合物,系以所述衍生物为有效成分,与药学上可接受的一种或多种载体所组成。
 - 7. 权利要求 6 所述组合物在制备抗病毒药物中的应用。

4,5 双氢噻嗪酮格尔德霉素及其制备方法

技术领域:

[0001] 本发明涉及利用基因工程技术改造制备抗生素的新衍生物,具体而言,涉及利用基因工程技术获得格尔德霉素新衍生物4,5双氢噻嗪酮格尔德霉素及其制备方法和应用。

技术背景:

[0002] 吸水链霉菌 17997 (Streptomyces hygrocopicus 17997) 是中国医学科学院医药生物技术研究所从我国土壤中分离到的,经鉴定其可以产生格尔德霉素 (geldanamycin, Gdm)。Gdm具有抗原虫、抗肿瘤、抗病毒以及免疫调节等多种生物学活性 [Sasaki K et al. J Antibiot (Tokyo) 1979,32 (8) :849-51]; [中国专利 ZL97100523.0]; [陶佩珍等,中国抗生素杂志,1997,22:368-372]。根据最近报道,Gdm 还具有调节上皮氮氧合酶活性以及抗炎等作用 [Murphy P et al. Journal of Ncuroscience Research,2002,67 (4):461-470]。研究证明,格尔德霉素的特异性作用靶点是热休克蛋白 90 (heat shock protein 90, Hsp90)。Hsp90 是许多信号蛋白的伴侣分子,Gdm 通过对 Hsp90 的抑制,可以间接影响细胞内信号蛋白的功能,因此,有望成为一种颇具潜力的抗肿瘤和抗病毒药物。但是 Gdm 还存在毒性大及水溶性差等缺点,水溶性差会影响其生物利用度。这些缺陷限制了其开发成为有效药物。所以,寻找一种毒性低、水溶性好的衍生物,已成为其深入研究的主要目标。目前,已有两个在 C17 位进行取代的 Gdm 衍生物 17-AAG 和 17-DMAG,相继在美国进行 II 期和 I 期临床试验 [Goetz MP et al J Clin Oncol,2005,23(6):1078-1087]; [Glaze ER et al., Cancer Chemother Pharmacol. 2005,56 (6):637-647]。

[0003] Gdm 的生物合成,是以 3-氨基-5-羟基苯甲酸为起始物,2C 单位为延伸单位,包括 1 个丙二酰,4 个甲基丙二酰和 2 个甲氧基丙二酰,在荷载域和 7 个聚酮合酶 (polyketide synthase, PKS) 模块,顺序进行碳链的延伸反应形成聚酮链骨架,再经过酰胺合酶的环化,形成格尔德霉素前体 -原 Gdm (ProGdm)。继而通过后修饰过程,包括:C17 位的羟基化及氧甲基化、C21 位的氧化、C7 位的氨甲酰 基化和 C4,5 位的氧化,最终形成 Gdm。为了实现对 Gdm 生物学方法的改造,本实验室从 Streptomyces hygroscopicus 17997 基因文库中克隆了与 Gdm 生物合成相关的基因簇[高群杰等,中国抗生素杂志,2002,27(1):13-27];[赫卫清,王以光,中国生物工程学报,2006,22:902-906]。本发明通过阻断吸水链霉菌 17997 中格尔德霉素生物合成基因 -P450 单加氧酶基因 (gdmP) 的方法,获得一种新的格尔德霉素衍生物 4,5-双氢噻嗪酮格尔德霉素 (4,5-dihydro-thiazinogeldanamycin)。4,5-双氢噻嗪酮格尔德霉素具抗病毒活性,其水溶性比 Gdm 提高了 33 倍。本发明所述通过基因工程技术获得的 Gdm 新衍生物及其制备方法,为制备水溶性好的 Gdm 衍生物提供了新的途径。

[0004] 利用生物学方法获得 4,5-双氢噻嗪酮格尔德霉素的研究,迄今为止,尚未见有国内外的相关报道。

发明内容:

[0005] 本发明提供了 4,5 双氢噻嗪酮格尔德霉素新化合物,其结构如式 (1) 所示:

[0006]

[0007] 本发明还提供了制备 4,5 双氢噻嗪酮格尔德霉素新化合物的方法,具体步骤依次为:

[0008] 1、P450 单加氧酶基因 (gdmP) 阻断变株的构建

[0009] 采用大肠杆菌和链霉菌的穿梭载体构建基因阻断载体,以吸水链霉菌 17997 基因 组为模板进行 PCR,分别获得与 gdmP 基因同源的两个片段,在其中间以相应的酶切位点插入选择性标记如卡那霉素 (kanamycin, Km) 抗性基因,并与穿梭载体进行连接,转化大肠杆菌 DH5 α,获得用于目的基因阻断的重组载体;

[0010] 通过接合转移,将重组载体导入吸水链霉菌 17997 中,获得接合转移子进行传 代培养,利用 PCR 方法鉴定确认 gdmP 基因阻断变株;

[0011] 2、4,5 双氢噻嗪酮格尔德霉素新化合物的发酵、提取

[0012] 将 gdmP 基因阻断变株进行发酵培养,用等量乙酸乙酯萃取发酵液上清,乙酸乙酯萃取液经薄膜浓缩获得粗品,以 TLC 或 HPLC 进行检测,通过硅胶柱初步分离目的产物,再经制备型 HPLC 获得纯品。

[0013] 3、4,5 双氢噻嗪酮格尔德霉素的结构鉴定

[0014] 经高分辨质谱确定 4,5 双氢噻嗪酮格尔德霉素分子量和分子式,经元素分析并通过 HRFAB-MS、¹H-NMR and ¹³C-NMR 的解析,确定其结构。

[0015] 本发明还提供了 4,5 双氢噻嗪酮格尔德霉素的生物活性试验,具体采用疱疹病毒 HSV-1 感染猴肾细胞,实验以 Gdm 为对照,评价了 4,5 双氢噻嗪酮格尔德霉素的抗病毒活性,结果表明,4,5 双氢噻嗪酮格尔德霉素具有抗病毒活性。

[0016] 本发明以光吸收值为基准,建立了 4,5 双氢噻嗪酮格尔德霉素浓度标准曲线,测定了其在水中的溶解度,并与 Gdm 进行了比较。

[0017] 发明效果:

[0018] 本发明通过同源基因双交换阻断技术,破坏吸水链霉菌 17997 中的格尔德霉素生物合成基因 gdmP,在其变株发酵液中获得了 Gdm 新衍生物 4,5 双氢噻嗪酮格尔德霉素,所说衍生物不仅具有抗病毒活性,且水溶性比格尔德霉素提高 33 倍,显示其可望开发成为临床有应用前景的药物。

附图说明:

[0019] 图 1:gdmP 基因阻断载体的构建

- [0020] 其中:P1-P6 PCR 引物
- [0021] oriT/RK2- 大肠杆菌质粒 RK2 转移起始位点
- [0022] SCP2*/ori-SCP2* 质粒复制起始位点
- [0023] Amp-氨苄青霉素抗性基因;
- [0024] tsr-硫链丝菌素抗性基因;
- [0025] km-卡那霉素抗性基因。
- [0026] 图 2:PCR产物电泳
- [0027] 其中:M-\(\lambda\) DNA Hind III 酶切 Maker;1-17997 原株;2-gdmP 基因阻断变株。
- [0028] 图 3:gdmP 变株发酵产生 4,5 双氢噻嗪酮格尔德霉素的 HPLC 检测
- [0029] 其中: A-吸水链霉菌 17997; 1-格尔德霉素出峰保留时间为 26.6 分钟;
- [0030] B-gdmP 变株;2-4,5 双氢噻嗪酮格尔德霉素出峰保留时间为 12.2 分钟;3-4,5 双 氢格尔德霉素出峰保留时间为 26.3 分钟。
- [0031] 图 4:4,5 双氢噻嗪酮格尔德霉素高分辨质谱图谱
- [0032] 图 5:4,5 双氢噻嗪酮格尔德霉素 ¹H 氢谱
- [0033] 图 6:4,5 双氢噻嗪酮格尔德霉素 ¹³C 碳谱
- [0034] 实施方案:
- [0035] 以下所列实施例是为帮助本领域技术人员更好地理解本发明,但不以任何方式限制本发明。
- [0036] 〈实施例 1〉gdmP 基因阻断重组载体的构建
- [0037] 根据 gdm 基因序列 (Genbank DQ914285) 设计引物 (P1-P4),提取吸水链霉菌 17997 (中国微生物菌种保藏委员会药学微生物菌种保藏中心,保藏号 CPHCC200178) 基因组 DNA,以此作为模板进行常规 PCR。在本实验中,设计采用但不限于以下的引物序列和酶切位点:
- [0038] 上游引物 (P1):5'-CCGGAATTCCGACGAGGGCACTTT-3',带有 EcoRI 酶切位点;
- [0039] 下游引物 (P2):5'-CGGGGTACCCGAGACCACGGCCAACATG-3',带有 Kpn I 酶切位点;扩增 1031bp 片段 1。
- [0040] 上游引物 (P3):5'-AAAACTGCAGGCCGTTGAGGCTGGAGTT-3',带有 PstI 酶切位点;
- [0041] 下游引物 (P4):5'-CTAG<u>TCTAGA</u>GGTATCTGCGTTACTGGGTG-3',带有 XbaI 酶切位点; 扩增 1236bp 片段 2。
- [0042] 回收 PCR 产物片段 1 和 2,在其中间插入选择性标记,如以 kpnI-PstI 酶切位点插入 Km 抗性基因,其来源于质粒载体 pUC119[李开等微生物学报 2007,47(2):191-196],并以 EcoRI-XbaI 酶切位点与携带硫链丝菌素抗性的 pGH112 载体[莫宏波等,生物工程学报,2004;20:662-666] 相应酶切位点进行连接。连接产物转化大肠杆菌 DH5 α,提取转化子DNA,经酶切证明,获得基因阻断重组载体 pGHEXP(图 1)。
- [0043] 〈实施例 2>gdmP 阻断变株的构建及鉴定
- [0044] gdmP 变株的筛选按照文献 [赫卫清等中国抗生素杂志,2006,31(3):168-171] 进行。将构建的基因阻断重组载体 pGHEXP,通过能与吸水链霉菌进行接合转移的大肠杆菌 E. coil ET12567/pUZ8002 [Kieser T. et al. practical Streptomycesgenetics. Norwich: John Innes Foundation. 2000] 导入到吸水链霉菌 17997 中,并在 MY 培养基 [赫卫清等中

[0045] P5 上游引物:5'-CCCTCGGGCAGATTCAC-3,

[0046] P6 下游引物:5'-GTCGCACTCCAACCATTTC-3,

[0047] PCR 结果揭示,在同源基因片段之间,插入了 0.8kb 左右的 Km 抗性基因,符合预期结果。gdmP 变株在不加药连续传代中, Km 抗性表型很稳定,说明该变株中确实发生了 DNA 同源重组双交换所造成的 Km 抗性基因插入,并使 gdmP 基因受到破坏。

[0048] 〈实施例 3〉 4,5 双氢噻嗪酮格尔德霉素的制备

[0049] gdmP 变株在 MY 固体培养基(酵母粉 0.4%,麦芽提取物 1.0%,葡萄糖 0.4%,琼脂粉 1.5%。并加入卡那霉素至终浓度 $50 \mu g/ml$))上培养 7 天,接种种子培养基(葡萄糖 0.5%,酵母提取物 0.4%,玉米浆 0.5%,棉子饼粉 0.25%,KH $_2$ PO $_4$ 0.05%,MgSO $_4$ 0.05%,CaCO $_3$ 0.3%)50ml 于 250ml 三角瓶,28°C摇床 200rpm 振荡培养 2 天,以 5-10%接种量转种发酵培养基(淀粉 2%,棉子饼粉 0.5%,葡萄糖 0.5%,玉米浆 1.0%,酵母粉 0.5%,CaCO $_3$ 0.2%)50ml (500ml 三角瓶)或 1000ml (5000ml) 28°C摇床 200rpm 振荡培养 3 天 [赫卫清等中国抗生素杂志,2006,31 (3):168-171]。发酵液过滤后,用滤液二分之一体积的乙酸乙酯提取,薄膜浓缩后上硅胶柱,以二氯甲烷:甲醇 19:1进行洗脱,分部收集洗脱液,用岛津LC-10Avp 高压液相色谱仪,SPD-10AvP 二极管阵列检测器,CLASS-VP 工作站,以 254nm 进行 104PLC 检测(图 103),汇总含 105 106 105

[0050] 〈实施例 4〉4,5 双氢噻嗪酮格尔德霉素结构的确定

[0051] ESI-MS给出该新化合物的分子量为 635 [(M+Na) $^+$ 为 658 ; (M+K) $^+$ 为 674] ; 硫元素测试实验确证,该化合物含硫为 4.65%,理论计算值为 5.04%,误差主要是由于一般样品含有结晶水造成的影响,可以确定该化合物含有一个硫原子;HR-ESIMS 给出的精确分子量为 658.2963 (含钠,理论计算值为 635.2877) (图 4),初步确定其分子式为 C31H43N309SNa,较 4,5 双氢 -GDM 多出 C2H30NS 部分。本发明分别用 d6-DMS0 和 CD₃0D 作为溶剂,进行 NMR 测试 [NMR 数据见表 1,图谱见图 5、6 (CD₃0D)]。综合分析获得的 NMR 谱图,发现该化合物的结构较 4,5- 双氢 GDM 变化只发生在苯醌环上,多出 2 个碳原子的 C22 和 C23 化学位移值分别为 30.50ppm 和 166.85ppm。C18 和 C21 的化学位移有通常的 184.02ppm 和 184.87ppm 明显位移至高场,分别为 120.67 和 150.08;亚甲基蓝显色反应提示该化合物含有酚羟基,初步推测 C21 由原来的羰基变成了羟基。在 HMBC 谱上,C22 上的两个氢原子(δ H 3.21/3.45)与 C19 和 C23 存在明显相关性;同时,一个重要的活泼氢信号(δ H 9.51)与 C22、C23,C18、C17 和 C19 存在相关性;综合以上信息,可以断定,C19 和一个 S 原子直接相连,而 C21 则与一个 N 原子直接相连,这两者之间形成了一个噻嗪酮环,所以,该新化合物的结构式为 4,5 双氢噻嗪酮格尔德霉素。

[0052] 表 1 4,5 双氢噻嗪酮格尔德霉素的 1 H 和 13 C NMR 数据

[0053]

位置	δ_{H}	$oldsymbol{\delta}_{\mathrm{C}}$	
	4,5 双氢噻嗪酮格尔	4,5 双氡噻嗪酮格	
	德霉素	尔德霉素	
	(CD ₃ OD)	(CD ₃ OD)	
1	_	177.62	
2		131.31	
2-CH3	1.73	13.57	
3	5.51	134.49	
4	1.93/2.04	24.53	
5	0.85/0.98	31.08	
6	2.98	82.49	
6-OCH3	3.35	59.39	
7	4.85	81.57	
8	_	131.14	
8-CH3	1.38	12.37	
9	5.05	133.99	
10	2.35	36.24	
10-CH3	0.99	18.78	
11	3.50	74.02	
12	2.47	82.05	
12-OCH3	3.25	56.78	
13	1.73/0.87	33.22	
14	1.92	32.36	
14-CH3	0.61	17.18	
15	2.97/2.50	31.45	
16	_	121.22	
17		148.09	
17-OCH3	3.57	61.41	
18		121.67	
19		119.08	
20		124.69	
21	of third Market I	150.04	
7-OCONH2	_	159.02	
22	3.45/3.21	30.50	
23		166.85	

[0054]

[0055] 〈实施例 5>4,5 双氢噻嗪酮格尔德霉素的抗病毒活性测定

[0056] 1. 细胞培养:在长满猴肾细胞 (VERO,上海坤肯生物化工有限公司) 的培养瓶内加 0. 25%胰酶 0. 1m1, 0. 02% EDTA 5m1, 37℃消化 $20\sim 25$ min,废弃消化液,加 Eagle's MEM 培养液(上海典微生物技术公司)吹打,1: 3 传代,3d 长满,配制成每毫升 $20\sim 30$ 万个细胞,接种 96 孔细胞培养板,每孔 0. 1m1, 37℃,5% CO_2 培养 24h,细胞长成单层后进行实验。

[0057] 2. 对疱疹病毒的抑制试验:以每毫升 $20 \sim 30$ 万个 VERO 细胞接种 96 孔细胞培养

板,每孔 0.1m1,37°C,5% CO_2 培养 24 小时,弃培养液,加入适量病毒,吸附 1h 后,弃病毒液,加入样品,进行 3 倍系列稀释,设 8 个稀释度,每浓度 2 孔,37°C 5% CO_2 培养。48h 观察细胞病变,完全破坏 100%为 4;75%为 3;50%为 2;25%为 1;无病变为 0。设细胞对照、病毒对照和阳性对照(阿西洛韦 ACV)。按 Reed & Muench 法计算样品半数有效浓度(IC_{50})。

[0058] 4,5 双氢噻嗪酮格尔德霉素的抗疱疹病毒 HSV-1 活性 IC_{50} (μ mo1/L) 为 0. 2520,结果见表 2。

[0059] 〈实施例 6>4,5 双氢噻嗪酮格尔德霉素的水溶性测定

[0061] 表 2 4,5 双氢噻嗪酮格尔德霉素抗病毒活性及水溶性 [0062]

化合物	水溶解度	抗 HSV-1 病毒活性	
化宣制	(mg/ml)	IC ₅₀ (μmol/L)	
格尔德霉素	0.017	0.1464	
4,5 双氢噻嗪酮格尔德霉素	0.573	0.2520	

[0001]

序 列 表

<110> 中国医学科学院医药生物技术研究所

<120> 4,5 双氢噻嗪酮格尔德霉素及其制备方法

<160> 6

<210>1

<211> 28

<212> DNA

<213> 人工序列

<220>

<223> P1

<400> ceggaattee gaegagegag ggeacttt

28

<210> 2

<211>28

<212> DNA

<213> 人工序列

<220>

<223> P2

<400> cggggtaccc gagaccacgg ccaacatg 28

<210> 3

<211>28

<212> DNA

<213> 人工序列

<220>

<223> P3

<400> 28 aaaactgcag gccgttgagg ctggagtt

<210>4

<211>30

<212> DNA

<213> 人工序列

<220>

[0002]

<223> P4

<400> ctagtctaga ggtatctgcg ttactgggtg 30

<210> 5

<211>17

<212> DNA

<213> 人工序列

<220>

<223> P5

<400> ccctcgggca gattcac 17

<210>6

<211>19

<212> DNA

<213> 人口序列

<220>

<223> P6

<400> gtegeactee aaccattte 19

图 1

图 2

图 3

图 4

图 5

图 6