assignment 3

Raul Rodriguez 2023-07-05

Question 1

```
df <- read.csv('homework3Data.csv')</pre>
# a)
# Load the ggplot2 library
library(ggplot2)
ggplot_factory <- function(df, df_col, title_name) {</pre>
  ggplot(data = df, aes(x = .data[[df_col]])) +
    geom_histogram(fill = 'gray', color = 'black') +
    geom_vline(aes(xintercept = mean(.data[[df_col]])), color = 'red') +
    geom_vline(aes(xintercept = median(.data[[df_col]])), color = 'blue') +
    geom_density(color = 'green') +
    labs(title = title_name)
}
a_plot <- ggplot_factory(</pre>
  df,
  df_col = 'A',
  title name = 'Column A')
b_plot <- ggplot_factory(</pre>
  df,
  df col = 'B',
  title_name = 'Column B')
c_plot <- ggplot_factory(</pre>
  df,
  df_{col} = 'C',
  title_name = 'Column C')
c_plot <- ggplot_factory(</pre>
  df,
  df_{col} = 'C',
  title_name = 'Column C')
x_plot <- ggplot_factory(</pre>
  df,
  df_col = 'X',
  title_name = 'Column X')
y_plot <- ggplot_factory(</pre>
  df,
  df_{col} = 'Y',
  title_name = 'Column Y')
z_plot <- ggplot_factory(</pre>
  df,
  df_{col} = 'Z',
  title_name = 'Column Z')
```

a_plot

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

b_plot

c_plot

x_plot

y_plot

z_plot

Column Z


```
#b)
# answered in text

#c)

mean_X <- mean(df$X)
sd_X <- sd(df$X)

interval_68 <- c(mean_X - sd_X, mean_X + sd_X)
interval_95 <- c(mean_X - 2 * sd_X, mean_X + 2 * sd_X)
interval_997 <- c(mean_X - 3 * sd_X, mean_X + 3 * sd_X)

interval_68</pre>
```

```
## [1] 78.28366 121.71634
```

interval_95

```
## [1] 56.56733 143.43267
```

interval_997

[1] 34.85099 165.14901

```
# d)
quantiles <- quantile(df$X, c(0.003, 0.025, 0.1587, 0.5, 0.8413, 0.975, 0.997))
quantiles
##
        0.3%
                   2.5%
                           15.87%
                                         50%
                                                 84.13%
                                                             97.5%
                                                                       99.7%
##
   47.68037 57.93873 79.17083 99.70620 121.58789 141.58849 166.42299
# e)
intervals_qnorm <- qnorm(c(0.0015, 0.025, 0.1587, 0.5, 0.8413, 0.975, 0.9985), mean =
mean_X, sd = sd_X)
intervals_qnorm
## [1] 35.55160 57.43676 78.28768 100.00000 121.71232 142.56324 164.44840
# f)
#pop mean estimate
sample_mean <- mean(df$X)</pre>
sample_mean
## [1] 100
#sd
sample_sd <- sd(df$X)</pre>
sample_size <- length(df$X)</pre>
#estimated error
estimated_se <- sample_sd / sqrt(sample_size)</pre>
estimated se
## [1] 0.704571
#critical value
diff <- sample_size - 1</pre>
critical_value_t <- qt(0.86, diff)</pre>
critical_value_t
## [1] 1.080936
confidence_interval_lower <- sample_mean - (critical_value_t * estimated_se)</pre>
confidence_interval_upper <- sample_mean + (critical_value_t * estimated_se)</pre>
confidence_interval_lower
## [1] 99.2384
```

confidence_interval_upper

```
## [1] 100.7616
```

- b. Without any formal tests and purely based on visual aid, column x appears to be normally distributed because the graph closely conforms with the normal distribution bell curve.
- c. comparing these intervals, we can see that the intervals obtained from part (e) using qnorm() are closest to the intervals from part (c) calculated using the mean and standard deviation.

Question 2

```
library(dplyr)
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
##
       intersect, setdiff, setequal, union
# a)
names <- starwars$name</pre>
# b)
nchar(names[c(7, 19, 31)])
## [1] 18 4 12
# c)
num_char <- numeric(length(names))</pre>
for (i in 1:length(names)) {
  num_char[i] <- nchar(names[i])</pre>
}
# d)
num_char <- sapply(names[c(7, 19, 31)], nchar)</pre>
```

Question 3

```
library(ggplot2)
data <- read.csv("homework3Data.csv")</pre>
set.seed(123)
# a)
n_bootstrap <- 10000</pre>
sample_size <- 250</pre>
n_replicate <- 10000
bootstrap_medians <- numeric(n_bootstrap)</pre>
for (i in 1:n_bootstrap) {
  bootstrap_sample <- sample(data$Y, size = sample_size, replace = TRUE)</pre>
  bootstrap_medians[i] <- median(bootstrap_sample)</pre>
}
# b)
ggplot(data.frame(bootstrap_medians), aes(x = bootstrap_medians)) +
  geom_histogram(fill = "gray", color = "black", bins = 30) +
  labs(x = "Median of Y", y = "Frequency", title = "Sampling Distribution of Median")
```

Sampling Distribution of Median


```
# c)
estimated_median <- median(data$Y)

# d)
lower_ci <- quantile(bootstrap_medians, 0.025)
upper_ci <- quantile(bootstrap_medians, 0.975)</pre>
```