0

If $H(n) \in O(g(n))$ and $t_2(n) \in (g_2(n))$, then $t_1(n) + t_2(n) \in O(man eg_1(n))$; $g_2(n)$.) Prove that assertions.

513

we need to show that $t_1(n)+t_2(n) \in O(\max\{g_1(n)\};g_2(n)\}$ This means there exists a positive constant cand no such that $t_1(n)+t_2(n) \leq C$.

 $t_1(n) \leq c_1g_1(n)$, for all $n \geq n$, $t_2(n) \leq c_2g_2(n)$, for all $n \geq n_2$ let $n_0 = \max \{n_1, n_2\}$ for all $n \geq n_0$

Consider $t(n) + t_2(n)$ for all $n \ge n_0$ $t(n) + t_2(n) \le c_1g_1(n) + c_2g_2(n)$

we need to relate $g_i(n)$ and $g_i(n)$ to man $\{g_i(n); g_i(n)\}$. $g_i(n) \leq \max \{g_i(n): g_i(n)\}$ and

92(n) < man {9,(n);92(n)}

Thus, $c_1g_1(n) \le c_1 \max \{g_1(n); g_2(n)\}$ $c_1g_2(n) \le c_2 \max \{g_1(n); g_2(n)\}$

 $c_{1}g_{1}(n) + c_{2}g_{2}(n) \leq c_{1} \max \{g_{1}(n); g_{2}(n)\} + c_{2}g_{2}(n) \leq c_{1}+c_{2} \max \{g_{1}(n); g_{2}(n)\}$ $c_{1}g_{1}(n) + c_{2}g_{2}(n) \leq (c_{1}+c_{2}) \max \{g_{1}(n); g_{2}(n)\}$ $c_{1}(n) + c_{2}g_{2}(n) \leq (c_{1}+c_{2}) \max \{g_{1}(n); g_{2}(n)\}$ for all $n \geq n_{0}$

By the defination of Big-O Notation $t_i(n) + t_2(n) \in O(man \{g_i(n); g_2(n)\}, then \\ t_i(n) + t_2(n) \in O(man \{g_i(n); g_2(n)\}$

Find the terme Complexity of the recurrence equation.

Let us consider such that the recurrence for merge Sort. T(n) = 2T(n/2) + nBy using the master's theorem T(n) = aT(n/6) + f(n)

where, azi; bzi and fin es a poseteve constant function.

Ex= T(n)=2T(1/2)+n

a=2; b=2; for=n

By comparing of f(n) with hugea

logba = log2 = 1

compose for with higher

for=n

n'0918 = n'=n

 $+f(n)=O(n^{\log 6a})$ then $+f(n)=O(n^{\log 6a}\log n)$

In own case:

1096=1

T(n) = 0 (n'cogn) = 0 (nlogn)

Then terme complexity of the recurrence relation T(n) = 2T(n/2) + n 95 $O(n \log n)$.

```
T(n) = { 27(n/2)+1 of n>1
      By applying of master's theorem
          T(n)=at(n/b)+f(n) where az1
                                150
           TO)= 27(1/2)+1
        Here
          a=2; b=2; f(n)=1
```

By companies on of f(n) and h(g)ba of $f(n) = O(n^c)$ where $c < log_b a$, then $T(n) = O(n^l g)ba$ of $f(n) = O(n^l g)ba$, then $T(n) = O(n^l g)ba$ of $f(n) = -1-(n^c)$, where $c > log_b a$ then T(n) = o(f(n))Let us calculate $log_b a$: $log_b a = log_b^2 = 1$ f(n) = 1

f(n)= $O(n^4)$ with $c \ge log_{8a}$ (case1)

In this case c=0 and $log_{8a}=1$ c<1, so $\tau(n)=O(n^408^4)=O(n^4)=O(n^4)$ The time complexity of recurrence relation is $\tau(n)=a\tau(n/2)+1$ is o(n).

 $T(n) = \begin{cases} 2T(n-1) & \text{if } n>0 \\ 1 & \text{otherwise} \end{cases}$

Here, where n=0 7(0)=1

recurrance relation analysis

for noo!

T(n)= 2T(n-1) T(n)= 2T(n-1)

T(n-2) = 2T(n-3)

7(1) = 27(0)

From thes above pattern

T(n)=.2.2.2 __ _ 2. T(0) = 2. T(0)

Since

7(6) = 1; we have

T(n)= 2"

.. The recurrance relation es

T(n)= 2T(n-1) for n>0 and T(0)=1 ?5

The same of the sa

761=2

Big-0-Notation Show that $f(n) = n^2 + 3n + 5$ PS $O(n^2)$ f(n) = O(g(n)) means too and $n \ge 0$ f(n) = O(g(n)) for all $n \ge n$ $f(n) \le c \cdot g(n)$ for all $n \ge n$ $f(n) = n^2 + 3n + 5$ $f(n) = n^2 + 3n + 5$ (ets choose c = 2 $f(n) = n^2 + 3n + 5 \le n^2 + 3n^2 + 5n^2$ $f(n) = n^2 + 3n + 5 \le n^2 + 3n + 5 \le n^2$ $f(n) = n^2 + 3n + 5 \le n^2$ $f(n) = n^2 + 3n$

f(n) = n2+3n+5 95 O(n2)