교과목: 디지털정보처리

5장. 파일 접근 권한 관리하기

2021학년도 1학기 옥수열

00 개요

그림 5-1 5장의 내용 구성

01 파일의 속성

■ 파일 접근 권한 보호

- 리눅스는 파일에 무단으로 접근하는 것을 방지하고 보호하는 기능을 제공
- 사용자는 자신의 파일과 디렉터리 중에서 다른 사용자가 접근해도 되는 것과 그렇지 않은 것을 구분하여 접근 권한을 제한

■ 파일의 속성

user1@myubuntu: ls -l /etc/hosts -rw-r--r-- 1 root root 223 11월 8 23:13 /etc/hosts user1@myubuntu:~\$

표 5-1 파일의 속성

번호	속성 값	의미		
0	_	파일의 종류(-: 일반 파일, d: 디렉터리)		
2	rw-rr	파일을 읽고 쓰고 실행할 수 있는 접근 권한 표시		
8	1	하드 링크의 개수		
4	root	파일 소유자의 로그인 ID		
6	root	파일 소유자의 그룹 이름		
6	223	파일의 크기(바이트 단위)		
0	11월 8 23:13	파일이 마지막으로 수정된 날짜와 시간		
8	/etc/hosts	파일명		

01 파일의 속성

■ 파일의 종류

- 파일 속성의 첫 번째 항목은 파일의 종류를 표시
- -는 일반 파일을, d는 디렉터리를 의미
- 파일의 종류를 알려주는 명령

file

- 기능 지정한 파일의 종류를 알려준다.
- 형식 file 파일
- · 사용 예 file /etc/services

user1@myubuntu:~\$ file /etc/hosts temp

/etc/hosts: ASCII text
temp: directory

user1@myubuntu:~\$

■ 파일의 접근 권한 표시

■ 파일의 소유자와 그룹이나 기타 사용자들이 파일에 대해 가지고 있는 접근 권한을 표시

■ 하드 링크의 개수

■ 하드 링크는 한 파일에 대해 여러 개의 파일명을 가질 수 있도록 하는 기능

01 파일의 속성

- 파일 소유자의 로그인 ID
 - 리눅스에서 모든 파일은 소유자가 있음
- 파일 소유자의 그룹 이름
 - Is -I 명령에서 출력되는 그룹명은 파일이 속한 그룹
 - 사용자가 속한 기본 그룹은 시스템 관리자가 사용자를 등록할 때 결정
 - 사용자가 속한 그룹을 알려주는 명령은 groups

groups

- 기능 사용자가 속한 그룹을 알려준다.
- 형식 groups [사용자명]

```
user1@myubuntu:~$ groups
user1 adm cdrom sudo dip plugdev lpadmin sambashare
user1@myubuntu:~$ groups root
root : root
user1@myubuntu:~$
```

- 파일의 크기: 바이트 단위
- 파일이 마지막으로 수정된 날짜

02 파일의 접근 권한

■ 접근 권한의 종류

■ 읽기 권한, 쓰기 권한, 실행 권한 등 세 가지로 구성

표 5-2 파일과 디렉터리의 접근 권한

권한	파일	디렉터리	
읽기	파일을 읽거나 복사할 수 있다.	ls 명령으로 디렉터리 목록을 볼 수 있다(ls 명령의 옵션은 실행 권한이 있어야 사용할 수 있다).	
쓰기	파일을 수정·이동·삭제할 수 있다(디렉터리에 쓰기 권한이 있어야 한다).	파일을 생성하거나 삭제할 수 있다.	
실행	파일을 실행할 수 있다(셸 스크립트나 실행 파일의 경우).	cd 명령을 사용할 수 있다. 파일을 디렉터리로 이동하 거나 복사할 수 있다.	

■ 접근 권한의 표기 방법

- 사용자 카테고리별로 누가 파일을 읽고 쓰고 실행할 수 있는지를 문자로 표현한 것
- 읽기 권한은 r, 쓰기 권한은 w, 실행 권한은 x로 나타내며, 해당 권한이 없는 경우에는 -로 표기
- 사용자 카테고리별로 세 가지 권한의 부여 여부를 rwx 세 문자를 묶어서 표기

```
user1@myubuntu:~$ ls -l /etc/hosts
-rw-r--r-- 1 root root 223 11월 8 23:13 /etc/hosts
user1@myubuntu:~$
```

02 파일의 접근 권한

■ 접근 권한의 표기 방법

그림 5-2 파일의 접근 권한 표기

표 5-3 다양한 접근 권한 조합의 예

접근 권한	의미	
rwxr-xr-x	소유자는 읽기·쓰기·실행 권한을 모두 가지고 그룹과 기타 사용자는 읽기·실행 권한을 가지고 있다.	
r-xr-xr-x	소유자, 그룹, 기타 사용자 모두 읽기 · 실행 권한을 가지고 있다.	
rw	소유자만 읽기·쓰기 권한을 가지고 그룹과 기타 사용자는 아무 권한이 없다.	
rw-rw-rw-	소유자, 그룹, 기타 사용자 모두 읽기 · 쓰기 권한을 가지고 있다.	
rwxrwxrwx	소유자, 그룹, 기타 사용자 모두 읽기 · 쓰기 · 실행 권한을 가지고 있다.	
rwx	소유자만 읽기·쓰기·실행 권한을 가지고 그룹과 기타 사용자는 아무 권한이 없다.	
ŗ	소유자만 읽기 권한을 가지고 있다.	

02 파일의 접근 권한

■ 접근 권한의 변경 명령

chmod

- 기능 파일이나 디렉터리의 접근 권한을 변경한다.
- 형식 chmod [옵션] 권한 모드 파일 또는 디렉터리
- 옵션 -R: 하위 디렉터리까지 모두 변경할 수 있다.
- 기호 모드 : 접근 권한을 변경하기 위해 문자와 기호를 사용하여 권한을 표시
- 숫자 모드 : 접근 권한을 변경하기 위해 숫자를 사용

■ 기호 모드

그림 5-3 기호 모드의 구성 요소

표 5-4 기호 모드에서 사용하는 문자와 기호

구분	문자/기호	의미
	u	파일 소유자
사용자 카테고리 문자	g	소유자가 속한 그룹
시용사 기대보다 문사	0	소유자와 그룹 이외의 기타 사용자
	a	전체 사용자
	+	권한 부여
연산자 기호	_	권한 제거
	=	접근 권한 설정
	r	읽기 권한
접근 권한 문자	W	쓰기 권한
	x	실행 권한

■ 기호 모드를 사용한 접근 권한 설정의 예

표 5-5 기호 모드를 이용한 접근 권한 설정의 예

권한 표기	의미	
u+w	소유자(u)에게 쓰기(w) 권한 부여(+)	
u–x	소유자(u)의 실행(x) 권한 제거(-)	
g+w	그룹(g)에 쓰기(w) 권한 부여(+)	
o-r	기타 사용자(o)의 읽기(r) 권한 제거(-)	
g+wx	그룹(g)에 쓰기(w)와 실행(x) 권한 부여(+)	
+wx	모든 사용자에게 umask에 따라 권한 부여(+)	
a+rwx	모든 사용자에게 읽기(r), 쓰기(w), 실행(x) 권한 부여(+)	
u⊐rwx	소유자(u)에게 읽기(r), 쓰기(w), 실행(x) 권한 부여(=)	
go+w	그룹(g)과 기타 사용자(o)에게 쓰기(w) 권한 부여(+)	
u+x,go+w	소유자(u)에게 실행(x) 권한을 부여하고(+) 그룹(g)과 기타 사용자(o)에게 쓰기(w) 권한 부여(+)	

■ 기회를 이용한 접근 권한 변경 예

① 현재 접근 권한 확인: rw-r--r—

```
user1@myubuntu:~/linux_ex/ch5$ ls -l
합계 4
-rw-r--r-- 1 user1 user1 223 11월 17 13:25 test.txt
user1@myubuntu:~/linux_ex/ch5
```

② 소유자의 쓰기 권한을 제거: u-w

```
user1@myubuntu:~/linux_ex/ch5$ chmod u-w test.txt
user1@myubuntu:~/linux_ex/ch5$ ls -l
합계 4
-r--r-- 1 user1 user1 223 11월 17 13:25 test.txt
user1@myubuntu:~/linux_ex/ch5$
```

■ 실습

- 그룹에 쓰기와 실행 권한을 부여한다 : g+wx
- 기타 사용자에게 실행 권한을 부여한다 : o+x
- 그룹과 기타 사용자의 실행 권한을 제거한다 : go-x
- 모두에게 실행 권한을 부여한다 : a+x
- 소유자에게 쓰기 권한을 부여하고 그룹의 쓰기 권한은 제거한다 : u+w ,g-w

숫자로 환산하기

- 숫자 모드에서는 각 권한이 있고 없고를 0과 1로 표기하고 이를 다시 환산하여 숫자로 표현
- 카테고리별로 권한의 조합에 따라 0부터 7로 나타내는 것

그림 5-4 숫자 모드의 구성 요소

그림 5-5 권한을 숫자로 환산하는 과정

■ 권한을 숫자로 환산하는 과정

- ① r-x라고 할 때 권한이 있는 것은 1로, 없는 것은 0으로 변환
- ② 2진수 1, 0, 1로 변환
- ③ 2진수를 각 자릿수별로 10진수로 환산하면 4, 0, 1이 된다.
- ④ 세 숫자를 더하면
- ⑤ 최종 권한 값은 5가 됨

표 5-6 접근 권한과 숫자의 대응 관계

접근 권한	환산	숫자	의미
rwx	111 → 4+2+1	7	읽기, 쓰기, 실행
rw-	110 → 4+2+0	6	읽기, 쓰기
r-x	101 → 4+0+1	5	읽기, 실행
r	100 → 4+0+0	4	읽기
-wx	011 → 0+2+1	3	쓰기, 실행
-w-	010 → 0+2+0	2	쓰기
x	001 → 0+0+1	1	실행
	000 → 0+0+0	0	권한이 없음

■ 전체 권한을 숫자로 표기

그림 5-6 전체 접근 권한을 숫자로 표기한 예

표 5-7 숫자로 표현한 접근 권한의 예

접근 권한	숫자모드	접근 권한	숫자모드
rwxrwxrwx	777	rw-rr	644
rwxr-xr-x	755	rwx	700
rw-rw-rw	666	rw-r	640
r-xr-xr-x	555	r	400

숫자 모드로 접근 권한 변경하기

- 숫자의 각 위치가 사용자 카테고리를 나타내기 때문에 사용자 카테고리를 따로 지정할 필요가 없다
- 항상 세 자리 수를 사용해야 하므로 변경하려는 사용자 카테고리의 권한뿐만 아니라 그룹과 기타 사용자의 권 한도 반드시 같이 명시

숫자 모드로 접근 권한 변경하기 예

- ① 현재 접근 권한: 644(rw-r--r--)
 user1@myubuntu:~/linux_ex/ch5\$ ls -l
 합계 4
 -rw-r--r-- 1 user1 user1 223 11월 17 13:25 test.txt
 user1@myubuntu:~/linux_ex/ch5\$
- ② 소유자의 쓰기 권한을 제거: r--r--이므로 444
 user1@myubuntu:~/linux_ex/ch5\$ chmod 444 test.txt
 user1@myubuntu:~/linux_ex/ch5\$ ls -l
 합계 4
 -r--r-- 1 user1 user1 223 11월 17 13:25 test.txt
 user1@myubuntu:~/linux_ex/ch5\$
- ③ 그룹에 쓰기와 실행 권한을 부여: r--rwxr--이므로 474
 user1@myubuntu:~/linux_ex/ch5\$ chmod 474 test.txt
 user1@myubuntu:~/linux_ex/ch5\$ ls -l
 합계 4
 -r--rwxr-- 1 user1 user1 223 11월 17 13:25 test.txt
 user1@myubuntu:~/linux_ex/ch5\$

■ 실습

- 기타 사용자에게 실행 권한을 부여한다 : o+x , r--rwxr-x → 475
- 그룹과 기타 사용자의 실행 권한을 제거한다 : qo-x, r--rw-r-- → 464
- 모두에게 실행 권한을 부여한다 : a+x, r-xrwxr-x → 575
- 소유자에게 쓰기 권한을 부여하고 그룹의 쓰기 권한은 제거한다 : u+w,g-w, rwxr-xr-x → 755
- 소유자의 권한만 남기고 나머지 사용자의 권한은 모두 제거: rwx----- → 700

■ 기본 접근 권한

- 리눅스에서는 파일이나 디렉터리를 생성할 때 기본 접근 권한이 자동적으로 설정
- 일반 파일의 경우 소유자는 읽기와 쓰기 권한이 설정되고 그룹과 기타 사용자는 읽기 권한만 설정
- 디렉터리의 경우 소유자는 읽기, 쓰기, 실행 권한이 설정되고 그룹과 기타 사용자는 읽기, 실행 권한만 설정

```
user1@myubuntu:~/linux_ex/ch5$ touch ubuntu.txt
user1@myubuntu:~/linux_ex/ch5$ mkdir temp
user1@myubuntu:~/linux_ex/ch5$ ls -l
합계 8
drwxrwxr-x 2 user1 user1 4096 11월 17 13:50 temp
-rwx----- 1 user1 user1 223 11월 17 13:25 test.txt
-rw-rw-r-- 1 user1 user1 0 11월 17 13:50 ubuntu.txt
user1@myubuntu:~/linux_ex/ch5$
```

■ 기본 접근 권한 확인하고 변경하기

umask

- 기능 기본 접근 권한을 출력하거나 변경한다.
- **형식** umask [옵션] [마스크 값]
- **옵션** -S: 마스크 값을 문자로 출력한다.
- · 사용 예 umask 022 umask
- 아무 인자 없이 umask 명령만 사용할 경우 기본 마스크 값 출력

user1@myubuntu:~/linux_ex/ch5\$ umask
0002
user1@myubuntu:~/linux_ex/ch5\$

■ 마스크 값의 의미

- 마스크 값은 파일이나 디렉터리 생성 시 부여하지 않을 권한을 지정해놓는 것
- 마스크 값이 022일 경우 이는 ----w--w-이고, 그룹과 기타 사용자에게 쓰기 권한은 부여하지 않겠다는 뜻

```
user1@myubuntu:~/linux_ex/ch5$ umask -S
u=rwx,g=rwx,o=rx
user1@myubuntu:~/linux_ex/ch5$
```

■ 마스크 값 변경하기

```
user1@myubuntu:~/linux_ex/ch5$ umask
user1@myubuntu:~/linux_ex/ch5$ umask
0077
user1@myubuntu:~/linux_ex/ch5
```

■ 마스크 값을 바꾸면 파일이나 디렉터리를 생성할 때 적용되는 기본 접근 권한도 변경

```
user1@myubuntu:~/linux_ex/ch5$ touch linux.txt
user1@myubuntu:~/linux_ex/ch5$ ls -l
합계 8
-rw------ 1 user1 user1 0 11월 17 13:57 linux.txt
drwxrwxr-x 2 user1 user1 4096 11월 17 13:50 temp
-rwx----- 1 user1 user1 223 11월 17 13:25 test.txt
-rw-rw-r-- 1 user1 user1 0 11월 17 13:50 ubuntu.txt
user1@myubuntu:~/linux_ex/ch5$
```

■ 마스크 값의 적용 과정

표 5-8 umask 진리표

요청 권한	1	1	0	0
마스크	1	0	1	0
부여된 권한	0	1	0	0

그림 5-9 마스크 값에 뺄셈을 적용하는 과정

그림 5-8 마스크 값을 적용하는 과정

■ 여러 가지 마스크 값

표 5-9 마스크 값의 의미

마스크 값	일반 파일	디렉터리	의미
022	644	755	그룹과 기타 사용자는 읽기만 가능하다.
077	600	700	그룹과 기타 사용자의 접근 권한을 모두 제거한다.
027	640	750	그룹은 읽기와 실행만 기능하고 기타 사용자의 접근 권한을 모두 제거한다.

- umask로 마스크 값을 바꿀 때 파일과 디렉터리에 모두 적용해봐야 함
- 마스크 값이 파일에는 적합하지만 디렉터리에는 적합하지 않을 수도 있음

06 특수 접근 권한

■ 특수 접근 권한

- 접근 권한은 원래 4자리
- 생략된 맨 앞자리는 특수 접근 권한 의미
- 맨 앞자리 숫자가 0이면 일반적인 접근 권한이지만 이 숫자가 1, 2, 4이면 특수 접근 권한이 설정

■ SetUID : 맨 앞자리가 4

■ SetGID : 맨 앞자리가 2

• 스티키 비트(sticky bit) : 맨 앞자리가 1

06 특수 접근 권한

SetUID

- 해당 파일이 실행되는 동안에는 파일을 실행한 사용자의 권한이 아니라 파일 소유자의 권한으로 실행
- 파일에 SetUID 설정: SetUID는 접근 권한에서 맨 앞자리에 4를 설정

```
user1@myubuntu:~/linux_ex/ch5$ touch set.exe
user1@myubuntu:~/linux_ex/ch5$ chmod 755 set.exe
→ 실행 권한을 부여한다.
user1@myubuntu:~/linux_ex/ch5$ ls -l set.exe
-rwxr-xr-x 1 user1 user1 0 11월 17 14:09 set.exe
user1@myubuntu:~/linux_ex/ch5$
user1@myubuntu:~/linux_ex/ch5$ chmod 4755 set.exe
user1@myubuntu:~/linux_ex/ch5$ ls -l set.exe
-rwsr-xr-x 1 user1 user1 0 11월 17 14:09 set.exe
user1@myubuntu:~/linux_ex/ch5$
```

- SetUID가 설정되면 소유자의 실행 권한에 's'가 표시
- set.exe를 실행하면 항상 user1의 권한을 가지고 실행된다는 의미
 user1@myubuntu:~/linux_ex/ch5\$ ls -l /usr/bin/passwd
 - -rwsr-xr-x 1 root root 54224 8월 21 08:56 /usr/bin/passwd user1@myubuntu:~/linux ex/ch5\$
- /etc/shadow 파일은 root 계정으로만 수정이 가능
- passwd 명령은 SetUID가 설정되어 있기 때문에 소유자인 root 권한으로 실행이 되어 암호 변경 가능
- SetUID를 이용한 해킹도 등장하여 보안에 신경을 써야

06 특수 접근 권한

SetGID

- SetGID가 설정된 파일을 실행하면 해당 파일이 실행되는 동안에는 파일 소유 그룹의 권한으로 실행
- SetGID는 2755와 같이 접근 권한에서 맨 앞자리에 2를 설정

■ 스티키 비트

- 스티키 비트는 디렉터리에 설정
- 디렉터리에 스티키 비트가 설정되어 있으면 이 디렉터리에는 누구나 파일을 생성 가능
- 파일은 파일을 생성한 계정으로 소유자가 설정되며, 다른 사용자가 생성한 파일은 삭제 불가
- /tmp 디렉터리가 대표적
- 스티키 비트는 접근 권한에서 맨 앞자리에 1을 설정

user1@myubuntu:~/linux_ex/ch5\$ ls -ld /tmp drwxrwxrwt 12 root root 4096 11월 17 13:36 /tmp user1@myubuntu:~/linux ex/ch5\$