Programação Linear - Simplex tabular

• Considere o seguinte PPL.

$$\min z = c^T x$$
$$Ax = b$$
$$x \ge 0$$

onde $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $c \in \mathbb{R}^n$ e $x \in \mathbb{R}^n$.

- Suponha que existe uma solução básica viável $\overline{x} = (x_B, x_N)$ associada a uma base B.
- O PPL pode ser escrito como

$$\min z$$

$$z - c_B x_B - c_N x_N = 0 (1)$$

$$Bx_B + Nx_N = b (2)$$

$$x_B, x_N \geq 0$$
 (3)

• Da equação (2) usando B^{-1} temos que

$$x_B + B^{-1} N x_N = B^{-1} b (4)$$

 Multiplicando (4) por c_B e adicionando o resultado a equação (1) obtemos

$$z + 0x_B + (c_B B^{-1} N - c_N)x_N = c_B B^{-1} b$$
 (5)

• Tomando $x_N = 0$ nas equações (4) e (5) temos,

$$x_B = B^{-1}b \ e \ z = c_B B^{-1}b$$

 Das equações (4) e (5) podemos representar a corrente solução básica viável associada a base B na tabela a seguir,

	z	x_B	x_N	RHS
Z	1	0	$c_B B^{-1} N - c_N$	$c_B B^{-1} b$
ΧB	0	I	$B^{-1} N$	$B^{-1}b$

- O tabular não somente nos dar o valor da função objetivo c_BB⁻¹b e uma solução básica B⁻¹b no RHS, ele também nos dar todas as informações necessárias para proceder com o método simplex.
- A linha 0 nos dar o valor de $c_B B^{-1} N c_N$ (custo reduzido), o qual corresponde a $z_i c_i$ para $j \in J$.
- A linha 0 deverá nos dizer se estamos ou não em uma solução ótima, ou qual variável não básica deverá crescer em caso contrário.

- Se x_k cresce, então o vetor $y_k = B^{-1}a_k$, armazenado nas linhas 1 a m e na coluna de x_k deverá nos ajudar a determinar o quanto x_k pode crescer.
- Se $y_k \le 0$, então x_k poderá crescer indefinidamente, e a solução será ilimitada.
- Se y_k possui no mínimo um componente estritamente positivo, então o crescimento de x_k é limitado por alguma variável básica corrente, a qual pode cair a zero.
- A variável que sairá da base na próxima iteração será determinada pela fórmula

$$\min_{1 \le i \le m} \left\{ \frac{\overline{b}_i}{y_{ik}} : y_{ik} > 0 \right\}$$

- Passos a serem seguido:
 - Atualize as variáveis básicas e seus valores.
 - 2 Atualize os $z_j c_j$ para $j \in J$.
 - **3** Atualize as colunas y_j para $j \in J$.
- Todas as operações citadas anteriomente podem ser simultaneamente executadas por operações denominadas pivoteamento.
- Se x_k entra na base e x_{Bs} deixa a base em uma dada iteração, então o pivoteamento em y_{sk} pode ser estabelecido como segue:
 - ① Divida a linha s por y_{sk} .
 - ② Para i = 1, ..., m e $i \neq s$, atualize a i-ésima linha pela adição de $-y_{ik}$ vezes a nova s-ésima linha.
 - **3** Atualize a linha 0 pela adição de $-(z_k c_k)$ vezes a nova s-ésima linha.

- Passo inicial:
 - Encontre uma solução viável básica inicial associada a uma base B, o forme o tabular

	Z	ΧB	x_N	RHS
z	1	0	$c_B B^{-1} N - c_N$	$c_B B^{-1} b$
ΧB	0	1	$B^{-1}N$	$B^{-1}b$

- Passo principal
 - Seja $z_k c_k = \max \{z_j c_j : j \in J\}$. Se $z_k c_k \le 0$ então PARE, a corrente solução é ótima.
 - ② Caso contrário, examine a coluna y_k . Se $y_k \le 0$, então PARE, a solução é ilimitada.
 - **3** Se existe pelo menos um item estritamente positivo em y_k , determine o indice s a sair da base, utilizando a fórmula

$$\frac{\overline{b}_s}{y_{sk}} = \min_{1 \le i \le m} \left\{ \frac{\overline{b}_i}{y_{ik}} : y_{ik} > 0 \right\}$$

- 4 Atualize o tabular por pivoteamento em y_{sk} .
- Atualize as variáveis básicas e não-básicas onde x_k entrará na base e x_{Bs} deixará a base na próxima iteração.
- Repita o passo inicial.

Antes do pivoteamento

	Z	X _{B1}		x_{Bs}		x_{Bm}		x_j		x_k	 RHS
Z	1	0		0		0		$z_j - c_j$		$z_k - c_k$	 $c_B \overline{b}$
X _{B1}	0	1		0		0		<i>Y</i> 1 <i>j</i>		<i>Y</i> 1 <i>k</i>	 \overline{b}_1
:	:	:	٠.	:	:	:	· · .	:	:	٠	 :
x_{Bs}	0	0		1		0		y_{sj}		y_{sk}	 \overline{b}_s
:	:	:	٠.	:	:	:		÷	:	٠.	 :
x_{Bm}	0	0		0		1		y_{mj}		y_{mk}	 \overline{b}_m

Após o pivoteamento

	z	XB1		XBs		χ_{Bm}		x_j		x_k	 RHS
z	1	0		$\frac{z_k - c_k}{v_{sk}}$		0		$(z_j-c_j)-\frac{y_{sj}}{ysk}(z_k-c_k)$		0	 $c_B \overline{b} - (z_k - c_k) \frac{\overline{b}_s}{v_{sk}}$
x_{B1}	0	1		<u> y_{1k}</u> y _{sk}		0		$y_{1j} - \frac{\dot{y}_{sk}}{y_{sk}}(y_{1k})$		0	 $\overline{b}_1 - \frac{y_{1k}}{y_{sk}} \overline{b}_s$
:	:	:	٠.,	:	:	:	٠	:	:	٠.,	 :
XBs	0	0		$\frac{1}{y_{sk}}$		0		<u>Ysj</u> Ysk		1	 <u>B</u> s ysk
:	:	:	٠.,	:	:	:	1.	:	:	٠.,	 :
x_{Bm}	0	0		$\frac{-y_{mk}}{y_{sk}}$		1		$y_{mj} - \frac{y_{sj}}{y_{sk}} y_{mk}$		0	 $\overline{b}_m - \frac{y_{mk}}{y_{1k}} \overline{b}_s$