

Screen clipping taken: 14/07/2023 10:50 am

Constraints (Conditions)

Example:

Screen clipping taken: 14/07/2023 11:08 am

Screen clipping taken: 14/07/2023 11:08 am

Screen clipping taken: 14/07/2023 11:08 am

Screen clipping taken: 14/07/2023 11:09 am

Screen clipping taken: 14/07/2023 11:09 am

Screen clipping taken: 14/07/2023 11:09 am

Screen clipping taken: 14/07/2023 11:11 am

Screen clipping taken: 14/07/2023 11:12 am

Screen clipping taken: 14/07/2023 11:13 am

Screen clipping taken: 14/07/2023 11:13 am

Finding Maxes/Mins Using Lagrange Multipliers

$$\nabla f = \lambda \nabla g$$

$$\left\langle \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right\rangle = \left\langle \lambda \frac{\partial g}{\partial x}, \lambda \frac{\partial g}{\partial y} \right\rangle$$

$$\begin{cases} \frac{\partial f}{\partial x} = \lambda \frac{\partial g}{\partial x} \\ \frac{\partial f}{\partial y} = \lambda \frac{\partial g}{\partial y} \\ g(x, y) = k \end{cases}$$

Example 1 Find the maximum and minimum values of x + y on the circle $x^2 + y^2 = 4$.

The objective function is

$$f(x,y) = x + y,$$

$$g(x,y) = x^2 + y^2 = 4x$$

 $g(x,y)=x^2+y^2=4.$ Since grad $f=f_x\vec{i}+f_y\vec{j}=\vec{i}+\vec{j}$ and grad $g=g_x\vec{i}+g_y\vec{j}=2x\vec{i}+2y\vec{j}$, the condition grad $f=\lambda \operatorname{grad} g$ gives

$$1 = 2\lambda x$$
 and $1 = 2\lambda y$,

SO

$$x = y$$
.

We also know that

$$x^2 + y^2 = 4$$
.

giving $x = y = \sqrt{2}$ or $x = y = -\sqrt{2}$. The constraint has no endpoints (it's a circle) and grad $g \neq \vec{0}$ on the circle, so we compare values of f at $(\sqrt{2},\sqrt{2})$ and $(-\sqrt{2},-\sqrt{2})$. Since f(x,y)=x+y, the maximum value of f is $f(\sqrt{2},\sqrt{2})=2\sqrt{2}$; the minimum value is $f(-\sqrt{2},-\sqrt{2})=-2\sqrt{2}$. (See Figure 15.29.)

Figure 15.29: Maximum and minimum values of f(x, y) = x + y on the circle $x^2 + y^2 = 4$ are at points where contours of f are tangent to the circle

Figure 15.28: Maximum and minimum values of f(x, y) on g(x, y) = c are at points where $\operatorname{grad} f$ is parallel to $\operatorname{grad} g$

Find the maximum and minimum values of $f(x,y) = (x-1)^2 + (y-2)^2$ subject to the constraint Example 2 $x^2 + y^2 \le 45$.

Practice Questions

$$f(x,y) = x^3 + y, \quad x + y \ge 1$$

$$f(x_1, x_2) = x_1^2 + x_2^2, \quad x_1 + x_2 = 1$$

Example: Fined the extreme various of (x,y) = x2+2y2

on the windle x+y2=1.

Example: Find the points on the sphere

-that are chosest to and forthest from

(3,1,-1) -