The best and the worst Bucharest district to open a Pizzeria Liviu Leordeanu June 19, 2020

1. Introduction

1.1 Background

Data science can help businesses, this is common knowledge. Today the information is more and more accessible. It is easy to learn information about the number of restaurants opened in a district, the type of restaurants and the population density in a specific district

1.2 Problem

Data that might contribute to determine witch district is the best district to open a new pizza place

2. Data acquisition and cleaning

2.1 Data sources

I will use the following data sources:

- A. infos about other pizzerias in Bucharest from Foursquare API
- B. an cvs files that contains all the Postal codes in every district downloaded from: https://data.gov.ro/dataset/coduri-postale-romania/resource/29a5c89e-0f23-4a42-aa05-765ef04177b6
- C. https://en.wikipedia.org/wiki/Sectors of Bucharest

2.2 Data cleaning

A. infos about other pizzerias in Bucharest from Foursquare API First the data looked like this:

After:

- i kept only columns that include venue name, and anything that is associated with location,
- filtered the category for each row,
- cleaned column names by keeping only last term,
- droped the columns 'categories', 'lat', 'lng', 'labeledLatLngs', 'distance', 'cc', 'city', 'state', 'country', 'formattedAddress','crossStreet', 'neighborhood' and 'id'
- inserted the mising postal codes,
- droped the "adress" column,
- renamed columns 'postalCode' into 'Codpostal',
- The API file looked like this:

B. https://en.wikipedia.org/wiki/Sectors of Bucharest Initially the data look like this:

[40]:		Tip artera	Denumire artera	Numar	Codpostal	Sector	Oficiu distribuire	SIRUTA SECTOR	NIV	SIRSUP
	0	Stradă	Mincu Ion, arh.	nr. 21-T	11357	1	Bucureşti 2	179141	3	179132
	1	Stradă	Mincu Ion, arh.	nr. 14-T	11359	1	Bucureşti 2	179141	3	179132
	2	Stradă	Porumbaru Emanoil	nr. 1-25	11421	1	Bucureşti 2	179141	3	179132
	3	Stradă	Porumbaru Emanoil	nr. 27-45	11422	1	Bucureşti 2	179141	3	179132
	4	Stradă	Porumbaru Emanoil	nr. 47-69	11423	1	Bucureşti 2	179141	3	179132
	12395	Intrare	Stavru Tudor	NaN	14074	1	Bucureşti 18	179141	3	179132
	12396	Intrare	Talianu Ion	NaN	14075	1	București 18	179141	3	179132
	12397	Intrare	Atanasiu Niky	NaN	14076	1	București 18	179141	3	179132
	12398	Piaţă	Strasbourg	NaN	11818	1	București 63	179141	3	179132
	12399	Piaţă	Nicolau Irina	NaN	10226	1	Bucureşti 15	179141	3	179132

I began the cleaning of the data:

- dropping the unnecessary 'Tip artera', 'Denumire artera', 'Numar', 'Oficiu distribuire', 'SIRUTA SECTOR', 'NIV' and 'SIRSUP' columns
- turning df2.Codpostal and df1.Codpostal into the same format string in order to merge the 2 data sets. After the merger the data frame 3 looked like this:

Sector	Codpostal	name	
3	30119	Pizzeria Al Ritrovo	0
3	30821	Pizzeria Classic	1
1	10784	Pizzeria 3 Monelli	2
2	20082	Pizzeria Bellini	3
6	60286	Pizzeria Mamma Mia Crangasi - Giulesti	4
2	20616	Pizzeria da Michele	5
2	21151	Pizzeria David Obor	6
1	14453	Pizzeria Volare	7
2	21151	Pizzeria Firenze	8
4	40342	Pizzeria Due Amici	9
2	24102	Pizzeria Don Corleone	10
3	31623	Pizzeria Gili	11
4	41322	Pizzeria Athos 2	12
3	31281	Pizzeria Unirii	13
4	41322	Pizzeria Florina	14

It had the restaurants from the FOURSQUARE API and POSTAL CODE and the District from the cvs.

After some more cleaning:

- removing the NaN
- grouping by district and counting the restaurants in every district
- renaming the columns 'name' into 'Number of pizzeria' and 'Sector' into 'District'

The 3rd dataframe was like this:

5
5
7
6
4
1
2

C. https://en.wikipedia.org/wiki/Sectors of Bucharest After finding the Population density table in the page the dat frame look like this:

[30]:		Rank	District	Population density
	0	1\n	Sector 3	11,336\n
	1	2\n	Sector 2	10,793\n
	2	3\n	Sector 6	9,678\n
	3	4\n	Sector 5	9,053\n
	4	5\n	Sector 4	8,466\n
	5	6\n	Sector 1	3,340\n

The cleaning was:

- replacing /n with empy space
- deleting ',' from the Population density numbers
- dropping the unnecessary Rank column

3. Exploratory Data Analysis

3.1 Visualise the Italian restaurants that are in the 1500 radius of Bucharest on the map

I used a folium map to place a red dot for Bucharest, and blue circles for every pizzeria in Bucharest.

For the location of the Pizzerias i used the column Longitude and Latitude from the Foursquare API

3.2 Scraping a wiki page for data

On this web page https://en.wikipedia.org/wiki/Sectors_of_Bucharest, I found some relevant information for my project:

This needed to be scraped so i used the BeautifulSoup library.

After importing the library i parsed the HTML from our URL into the BeautifulSoup parse tree format. After looking at the html code i found that the fourth table is relevant for my project, the one with the population density.

Then I looped through the rows and i constructed a dataframe containing the rank, the district and the population density.

3.3 Data normalisation

The ideal district is one where the number of pizzerias is the lowest and where population density is at its heightist.

In order to manipulate the population density and the number of pizzerias in every district i normalise the data. So the minimum population density became 0 and the maximum became 1. Same for the number of pizzerias in every district.

Then I subtracted the normalised number of pizzerias from the normalised population density in order to establish the top of the best Pizzeria districts.

5. Conclusions

After doing all the calculation looks like the worst district to open a pizzeria in Bucharest is DISTRICT 1 because it has the lowest density of population and the second number of pizzerias per district. So there are to manny pizza places for a district with not so manny people.

The best district to open a pizzeria in Bucharest is DISTRICT 5. It has the lowest number of pizzerias and the 4th populations density per district. So there are not enough pizzerias for a district that has a high population density.