

ALL RIGHTS RESERVED. NO PORTION OF THIS PUBLICATION, WHETHER IN WHOLE OR IN PART CAN BE REPRODUCED WITHOUT THE EXPRESS WRITTEN CONSENT OF SPC TECHNOLOGY.

C-F005.DWG		

REVISIONS			DOC. NO. SPC-F005 * Effective: 7/8/02 * DCP No: 1398							
DCP #	REV	DESCRIPTION		DATE	DATE CHECKD DATE AP		APPRVD	APPRVD DATE		
1262	Α	RELEASED	НО	9/5/02	JWM	9/5/02	DJC	9/6/06		
								·		

Description: A PN Unijunction Transistor designed for use in pulse and timing circuits, sensing circuits, and thyristor trigger circuits.

Max

Unit

Min Typ

Electrical Characteristics: $(T_A = +25^{\circ}C \text{ Unless otherwise specified})$

OFF Characteristics						
Intrinsic Standoff Ratio		V _{B2B1} = 10V, Note 3	0.56	_	0.75	_
Interbase Resistance	r _{BB}	$V_{B2B1} = 3V, I_{E} = 0$	4.7	7.0	9.1	k Ohms
Interbase Resistance Temperature Coefficient			0.1	-	0.9	%/°C
Emitter Saturation Voltage	V _{EB1(sat)}	V_{B2B1} = 10V, I_E = 50mA, Note 4	_	3.5	-	٧
Modulated Interbase Current	l B2(mod)	$V_{B2B1} = 10V, I_{E} = 50mA$	-	15	-	mA
Emitter Reverse Current	l _{EB20}	$V_{B2E} = 30V, I_{B1} = 0$	-	0.005	12	μΑ
Peak Point Emitter Current	l _P	V _{B2B1} = 25V	-	1	5	μΑ
Valley Point Current	l _V	V _{B2B1} = 20V, R _{B2} = 100 Ohms	4	6	ı	mA
Base—One Peak Pulse Voltage	V _{OB1}		3	5	_	٧

Symbol Test Conditions

Features:

Parameter

- low peak point current: 2μA (Max.)
- Low emitter reverse current: 200nA (Max.)
- Passivated surface for reliability and uniformity

ABSOLUTE MAXIMUM RATINGS: $(T_A = 25^{\circ}C \text{ Unless otherwise specified})$

- Power Dissipation (Note 1) Pn: 300 mW
- RMS Emitter Current | E(RMS): 50mA
- Peak Pulse Emitter Current (Note 2), i_E: 2 Amps
- Emitter Reverse Voltage V_{B2E}: 30 Volts
- Interbase Voltage V_{B2B} : 35 Volts Operating Junction Temperature Range T_J : -65°C \sim +125°C
- Storage Temperature Range T_{sta} : -65°C \sim +150°C

Dimensions Η 5.31 Min. 4.52 4.32 0.41 0.91 0.71 1.27 12.7 45° 4.95 5.33 0.48 Max. 5.84 1.17

1. EMITTER 2. BASE 1 3. BASE 2

Notes:

- 1. Derate 3mW/°C increase in ambient temperature. The total power dissipation (available power to Emitter and Base—Tow) must be limited by the external circuitry.
- 2. Capacitor discharge $-10\mu F$ or less, 30V or less.
- 3. Intrinsic standoff ration is defined by the equation: V_P V_F / V_{B2B1}
 - Where: V_P = peak Point Emitter Voltage; V_{B2B1} = Interbase Voltage; V_F = Emitter to Base-One Junction Diode Drop ($\sim 0.45 V$ @ 10 μ A)
- 4. Use pulse techniques: Pulse Width ~ 300μS, Duty Cycle ≤2% to avoid internal heating due to interbase modulation which may result in erroneous readings.

DISCLAIMER:	TOLERANCES:	DRAWN BY:	DATE:	DRAWING TITLE:						
ALL STATEMENTS AND TECHNICAL INFORMATION CONTAINED	UNLESS OTHERWISE SPECIFIED,	HISHAM ODISH	9/5/02	Transistor, Unijunction, TO—18, PN						
BELIEVE TO BE ACCURATE AND RELIABLE. SINCE		CHECKED BY:	DATE:	SIZE	SIZE DWG. NO.			ELECTRONIC FILE		
CONDITIONS OF USE ARE BEYOND OUR CONTROL, THE USER SHALL DETERMINE THE SUITABILITY OF THE PRODUCT	DIMENSIONS ARE	JEFF MCVICKER	9/5/02	A	2N2646			35C0693.DWG		
FOR THE INTENDED USE AND ASSUME ALL RISK AND LIABILITY WHATSOEVER IN CONNECTION THEREWITH.	PURPOSES ONLY.	APPROVED BY:	DATE:					SHEET: 1 OF 1		
		DANIEL CAREY	9/6/02	SCALE	E: NTS					