Determining Boltzmann constant and an absolute temperature scale from Johnson-Nyquist noise

Laura Cui

November 2021

MIT Department of Physics

Introduction

- Fundamental sources of noise due to probabilistic microscopic processes
- Johnson-Nyquist noise due to thermal excitations of electrons at equilibrium
- Classical effect which is distinct from shot noise due to quantization of electron charge and uncertainty in number states
- Experiments provided verification of parameters in statistical mechanics
- Boltzmann constant is one of seven fundamental constants in modern SI system

Motivation

- Measure Johnson-Nyquist noise in resistors at three temperatures
- Determine the Boltzmann constant k_B and an absolute temperature scale by fitting to theoretical statistical model

Statistical thermodynamics

- Macroscopic quantities in thermodynamics arise from microscopic properties
- Fundamental entropy given by logarithm of number of microstates

$$\sigma = \log g$$

• Related to fundamental temperature via transfer of heat

$$\frac{1}{\tau} = \frac{\partial \sigma}{\partial Q} = \left(\frac{\partial \sigma}{\partial U}\right)_{N,V}$$

- Thermometric temperature requires constant with dimensions of joules \cdot Kelvin $^{-1}$

3

Nyquist theory

- Relates mean square noise to resistance and absolute temperature
- In regime $hf \ll k_BT$, can be derived from classical statistical mechanics without directly referencing properties of microscopic electrons

$$dV^2 = \frac{4Rk_BTdf}{1 + (2\pi fRC)^2}$$

• In high frequency and low temperature regimes must use Planck's law

Experimental setup

Experimental setup (cont.)

- Measured RMS amplitude of Johnson noise from metal oxide resistors rated at 10, 22, 100, 200, 475, 500, and 806 k Ω , and shorted box at 296 K
- Also measured RMS amplitude of Johnson noise from 475 k Ω metal oxide resistor at around 77 K using liquid nitrogen and 450 K using oven
- Arduino thermocouple system used to determine temperature of oven
- Measured capacitance of system as $79.9 \pm 0.6 \ pF$

Experimental setup (cont.)

- Preamplifier allows for more precise measurement of μV signal
- Band-pass filter selects for classical theory regime but produces non-uniform gain
- Trapezoidal integration technique used to calibrate gain curve of setup

$$G = \int \frac{g^2(f) df}{1 + (2\pi fRC)^2}$$

Calibration setup

Calibration setup (cont.)

Figure 1: Example with $g^2(f)$ in black and gain integral curve $R=100~\text{k}\Omega$ in red

Results and analysis

• For each resistor we use the measured resistance and voltage to compute

$$k_B = \frac{V^2}{4RTG} = \frac{V_R^2 - V_S^2}{4RTG}$$

- Statistical error determined from measurement uncertainty on V_R , V_S , R, C, g(f)
- Systematic error estimated due to calibration cutoff at 1e-5, trapezoidal integration at 1e-6, measurement readings at 1e-5, and temperature fluctuations of 3 K at 296 K

Results and analysis (cont.)

Table 1: Calculated value of k_B for each resistor. Accepted value is $1.38 \times 10^{-23} \text{ J} \cdot \text{K}^{-1}$.

Resistance ($k\Omega$)	$k_B (10^{-23} \mathrm{J\cdot K^{-1}})$
10.0088	1.26 \pm 0.05 (stat) \pm 0.01 (sys)
22.268	1.29 \pm 0.05 (stat) \pm 0.01 (sys)
99.988	$1.56 \pm 0.06 \text{ (stat)} \pm 0.02 \text{ (sys)}$
199.03	1.51 ± 0.06 (stat) \pm 0.02 (sys)
478.53	$2.51\pm0.11~\text{(stat)}\pm0.03~\text{(sys)}$
498.09	$2.57 \pm 0.11~\textrm{(stat)} \pm 0.03~\textrm{(sys)}$
815.68	$3.41\pm0.14~\textrm{(stat)}\pm0.03~\textrm{(sys)}$

Results and analysis (cont.)

Figure 2: Relationship between Johnson noise and temperature for 475 k Ω resistor. Line of best fit gives absolute zero at -77 \pm 12 K or -350 \pm 12 °C.

Time constant dependence

- Positive trend in calculated value of k_B for increasing resistance
- May be accounted for by discrepancies in measurement of capacitance
- Determined that capacitance of approximately 37 pF minimized spread of log $\frac{(k_B)_{\text{exp}}}{k_B}$
- Average adusted value of k_B is $1.11 \times 10^{-23} \ \mathrm{J\cdot K^{-1}}$, relative error of 0.193

Conclusions

- Possible to estimate k_B and thermodynamic absolute zero using Johnson noise
- Requires reliable temperature control and measurement
- Demonstrates validity of classical statistical mechanics approximation in this regime

Acknowledgements

- · Richard Luhtaru
- Andres "Andy" Reyna
- Michal Szurek
- · Prof. Gunther Roland
- Junior Lab course staff