

De novo genome assembly

Computational Genomics | Lecture 14

Tom Harrop

melbournebioinformatics.org.au

De novo genome assembly

- 1. Introduction to genome assemblies
- 2. Assembly software and algorithms
- 3. Assembly metrics and scaffolding
- 4. Live session: an example hybrid assembly

 compare differences between species

- compare differences between species
- compare variants of a species or population

- compare differences between species
- compare variants of a species or population
- research diseases

- compare differences between species
- compare variants of a species or population
- research diseases
- provide a reference for gene expression analysis

How is *de novo* assembly different to multiple sequence alignment?

- de novo: from scratch, without a reference
- literally: anew, over again from the beginning
- ullet sequencing reads \pm structural information \to genome sequence

Prokaryotic and eukaryotic genomes

In prokaryotes:

- chromosomes (usually one)
 - genes rarely have introns
 - coding dense
- plasmids
- bacteriophage

In eukaryotes:

- nuclear genome (chromosomes)
 - genes ± introns
 - non-coding elements
 - mobile elements
 - centromeres
 - telomeres
- mitochondria
- chloroplasts

Bacterial genomes can be dense

The nuclear genome of eukaryotes

The nuclear genome of eukaryotes

Pre-mRNA

Non-coding sequences

- Telomeres, centromeres
- Introns and untranslated regions
- Regulatory elements
- Pseudogenes
- Repetitive sequences e.g. mobile elements

Genome assembly concepts

- The genome is fragmented for sequencing
- The sequencing *reads* might be
 - 100-350 b long (Illumina)
 - ~20 kb long (PacBio HiFi)
 - up to a few hundred thousand bases long (Nanopore)
- Assembly is the process of reconstructing the genome from the sequenced reads
- It's not always possible to assemble the complete sequence

Sequencing coverage

- aim to cover each base > 30 times
- final sequence is the consensus of all the reads covering that base
- ullet 1 Gb imes 30× coverage = 30 Gb
- $\frac{30 \text{ Gb}}{150 \text{ b}} = 200 \text{ million reads}$
- using PacBio reads, with an average length of 20 kb?

Sequencing strategies for genome assembly

- Hierarchical shotgun Sanger sequencing
- Short read, Illumina sequencing
 - 100-350 b
 - sometimes called high-throughput, next-generation (!) or 2nd-generation sequencing
 - good for draft assemblies of eukaryote genomes
- Long read (third-generation) sequencing
 - PacBio: ~ 20 kb reads
 - Nanpore: up to 100s of kb, read N₅₀ usually
 20 kb
 - expect much better contiguity, but can have accuracy issues

Hybrid genome assembly

- hybrid assemblies combine long and short reads
- scaffolding the hybrid assembly can generate chromosome-level assemblies