

TD n°1: Analyse Mathématique

SEG - S1 - 2022/2023 - Pr. Hamza El Mahjour

Fonctions réelles : Limites, dérivées , Rolle et TAF

Exercice 1

Donner le domaine de définition de chacune des fonctions suivantes :

Donner le domaine de definition de chacune des fonctions suivantes :
$$1.f_1(x) = Ln(x+1), \qquad 2.f_2(x) = \sqrt{x-3},$$
$$3.f_3(x) = (x-2)^2(x+\sqrt{2}), \quad 4.f_4(x) = \sqrt{-x^2+3x+1},$$
$$5.f_5(x) = \frac{\sin(x)}{(1+x)(x-\sqrt{3})}, \quad 6.f_6(x) = \frac{1}{x^2-4x-1},$$
$$7.f_7(x) = \frac{x}{\cos(x)}.$$

Exercice 2

Dites, à partir de chaque graphe \mathscr{C}_f , si les fonctions qui sont inversibles et dessiner ensuite le graphe de leurs fonctions inverses $\mathscr{C}_{f^{-1}}$.

Correction ▼ [03]

Exercice 3

Soit f la fonction

$$f(x) = \frac{3x - 1}{(x - \sqrt{3})^2} + 2.$$

- (a) Calculez les limites $\lim_{x \to \sqrt{3}^-} f(x)$, $\lim_{x \to \sqrt{3}^+} f(x)$, $\lim_{x \to -\infty} f(x)$ et $\lim_{x \to +\infty} f(x)$.
- (c) Interprétez les limites précédentes et tracez (approximativement) le graphe de la fonction au voisinage de $\sqrt{3}$, $-\infty$ et $+\infty$.

Correction ▼ [03]

Exercice 4

Dérivez les fonctions suivantes :

$$h_1(x) = 3x^2 + 2x h_2(x) = x^4 \sin(x) + 1 h_3(x) = \cos(4x^2) - x h_4(x) = x \log(x) + \exp(-3x + 1) h_5(x) = \frac{1}{\arctan(x-1)} h_6(x) = \frac{-1}{x+1} + 8x + 2$$
Correction \blacktriangledown

Exercice 5

Soit la fonction $f(x) = \sin(x)e^x$.

- 1. Justifier pourquoi f est continue.
- 2. Donner le signe des deux valeurs $f(-\pi/4)$ et $f(\pi/2)$ (sans calculer de façon précise).
- 3. En déduire que f admet un zéro sur l'intervalle $]-\pi/4,\pi/2[$.

En utilisant les techniques précédentes, l'étude des limites en $\pm \infty$ et de la monotonie, étudier la fonction $p: x \mapsto x^5 - 5x + 1$ sur \mathbb{R} et en déduire que l'équation $x^5 - 5x + 1 = 0$ admet trois solutions réelles.

Correction ▼ [05]

Exercice 6

Soit f une fonction n fois dérivable sur]a,b[s'annulant en n+1 points de]a,b[. Montrer que si $f^{(n)}$ est continue, il existe un point x_0 de]a,b[tel que $f^{(n)}(x_0)=0$.

Correction ▼ [06]

Exercice 7

On veut montrer, grâce au théorème des accroissements finis, que :

$$\forall x > 0, \qquad \frac{1}{x+1} < \ln\left(1 + \frac{1}{x}\right) < \frac{1}{x}.$$

Pour celà on passera par les étapes suivantes.

- 1. Appliquer le T.A.F sur la fonction $x \mapsto ln(x)$ sur l'intervalle]x, x+1[pour x>0.
- 2. Utiliser le résultat précédent et le fait que $c \in]x, x+1[\Longrightarrow \frac{1}{c} \in]\frac{1}{x+1}, \frac{1}{x}[$ pour en déduire le résultat demandé.

Correction ▼ [07]

Correction de l'exercice 3 ▲

- $\lim_{x \to \sqrt{3}^-} \frac{3x-1}{(x-\sqrt{3})^2} = \frac{3\sqrt{3}-1}{0^+} + 2 = \frac{\text{positif}}{0^+} = +\infty = \lim_{x \to \sqrt{3}^+} f(x).$
- $\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{3x 1}{x^2 2\sqrt{3}x + 3} + 2 = \lim_{x \to -\infty} \frac{3x}{x^2} + 2 = \lim_{x \to -\infty} \frac{3}{x} + 2 = \frac{3}{-\infty} + 2 = 0 + 2 = 2$. De même, $\lim_{x \to +\infty} f(x) = 2$
- On a $\lim_{x \to \sqrt{3}^-} f(x) = \lim_{x \to \sqrt{3}^+} f(x) = +\infty$, donc f admet une asymptote verticale d'équation de $x = \sqrt{3}$ vers $+\infty$. On a $\lim_{x \to +\infty} f(x) = \lim_{x \to -\infty} f(x) = 2$, donc f admet une asymptote horizontale d'équation y = 2 au voisinage de $+\infty$ et $-\infty$.
- Notons que $f(0) \simeq 1.6 < 2$, donc l'asymptote vers y = 2 vers $-\infty$ doit être placée au-dessus du graphe.

Correction de l'exercice 4 A

- $h'_1(x) = 6x + 2$.
- $h_2'(x) = (x^4)'\sin(x) + x^4(\sin(x))' + 1' = 4x^3\sin(x) + x^4\cos(x) + 0.$
- $h_3'(x) = (4x^2)' \cdot \cos'(4x^2) x' = 8x \cdot (-\sin(4x^2)) 1 = -8x\sin(4x^2) 1$.
- $h'_4(x) = x' \log(x) + x \log'(x) + (-3x+1) \exp'(-3x+1) = \log(x) + x/x 3 \exp(-3x+1) = \log(x) + 1 3 \exp(-3x+1)$.
- $(1/f)' = -f'/f^2$. Donc, $h'_5(x) = \frac{-\arctan'(x)}{\arctan(x)^2} = \frac{1/(x^2+1)}{\arctan(x)^2} = \frac{1}{(x^2+1)\arctan(x)^2}$.
- $h_6'(x) = 1/(x+1)^2 + 8$.

Correction de l'exercice 5

- 1. f est continue car c'est un produit de deux fonctions continues sur \mathbb{R} : $x \mapsto \sin(x)$ et $x \mapsto \exp(x)$.
- 2. On sait que $\forall x \in \mathbb{R}$, $\exp(x) > 0$ donc le signe de f est le signe de $\sin(x)$. On a $f(-\pi/4) < 0$ car $\sin(-\pi/4) = -\frac{\sqrt{2}}{2} < 0$. Et $f(\pi/2) > 0$ car $\sin(\pi/2) = 1 > 0$.
- 3. En utilisant le théorème des valeurs intermédiaires, puisque f est continue sur $[-\pi/4,\pi/2]$ et $f(-\pi/4)\cdot f(\pi/2)>0$ alors il existe un $c\in]-\pi/4,\pi/2[$ tel que f(c)=0.

On a $\lim_{x\to +\infty} p(x) = \lim_{x\to +\infty} x^5 = +\infty$ et $\lim_{x\to -\infty} x^5 = -\infty$ et $p'(x) = 5x^4 - 5 = 5(x^4 - 1) = 5(x^2 + 1)(x^2 - 1) = \underbrace{5(x^2 + 1)(x - 1)(x + 1)}_{>0}$. Pour déterminer le signe de p' il suffit donc d'étudier le signe

de
$$(x-1)(x+1)$$
.

x	-∞		-1		1		+∞
p'(x)		+	0	_	0	+	
p(x)			5		-3		+∞

Donc en utilisant le théorème

des valeurs intermédiaires et la monotonie de p on en déduit que :

• Sur $]-\infty,-1]$, p est strictement croissante et continue et $p(-\infty)<0$ et p(-1)>0 donc p admet une unique racine $p(x_1)=0$ avec $x_1\in]-\infty,-1[$.

- Sur [-1,1], p est strictement décroissante et continue et p(-1) > 0 et p(1) < 0 donc p admet une unique racine $p(x_2) = 0$ avec $x_2 \in]-1,1[$.
- Sur $[1, +\infty[$, p est strictement croissante et continue et p(1) < 0 et $p(+\infty) > 0$ donc p admet une unique racine $p(x_3) = 0$ avec $x_3 \in]1, +\infty[$.

Correction de l'exercice 6 A

Puisque f est dérivable n fois donc toutes ses fonctions dérivées jusqu'à $f^{(n-1)}$ sont continues. De plus, f s'annule n+1 fois donc il existe $x_1, x_2, \ldots, x_{n+1}$ tels que $f(x_1) = f(x_2) = \ldots = f(x_{n+1}) = 0$. On a $f(x_1) = f(x_2)$ alors par le théorème de Rolle $\exists c_{1,1} \in]x_1, x_2[$ tel que $f'(c_{1,1}) = 0$. On répète le même processus pour trouver que $f'(c_{1,2}) = 0$, $f'(c_{1,3}) = 0 \ldots f'(c_{1,n}) = 0$. Alors de la même façon nous allons appliquer le théorème de Rolle avec la dérivée de f' c'est à dire $f^{(2)}$. On donne un exemple de la procédure; on a $f'(c_{1,1}) = f'(c_{1,2})$ donc par le théorème de Rolle, il existe $c_{2,1} \in [c_{1,1}, c_{1,2}]$ tel que $(f'(c_{2,1}))' = f^{(2)}(c_{2,1}) = 0$. Comme ça, en répétant, on trouvera $f^{(2)}(c_{2,1}) = f^{(2)}(c_{2,2}) = f^{(2)}(c_{2,3}) = \ldots = f^{(2)}(c_{n-1,2}) = 0$. On reprenant la même idée pour les dérivées supérieur on aboutira à la fin à un nombre $c_{1,n} \in [c_{1,n}, c_{2,n}]$ tel que $f^{(n)}(c_{1,n}) = 0$.

Correction de l'exercice 7 A

- posons g(t) = ln(t). Et soit x > 0, la fonction g est dérivable sur [x,x+1] pour tout choix de x. Appliquons le théorème des accroissements finis sur [x,x+1], on obtient, qu'il existe un c_x dans]x,x+1[tel que : g(x+1)-g(x)/(x+1-x) = g'(c_x) = ln(x+1)-ln(x). Rappelons que ln(a/b) = ln(a)-ln(b). C'est à dire, g'(c_x) = ln(x+1)/x = ln(1+1/x) = 1/c_x, car g'(t) = 1/t.
- 2. On a $c_x \in]x, x+1[$ donc $\frac{1}{c_x} \in]\frac{1}{x+1}, \frac{1}{x}[$ et $\frac{1}{c_x} = ln(1+\frac{1}{x})$ donc

$$\frac{1}{x+1} < \ln(1+\frac{1}{x}) < \frac{1}{x}$$

pour tout x > 0.