(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開2001-251658 (P2001-251658A)

(43)公開日 平成13年9月14日(2001.9.14)

(51) Int.Cl. ⁷		識別記号	FΙ			テーマコード(参考)
H04Q	7/22		H 0 4 B	7/26	107	5 K 0 6 7
	7/28				108B	
			110.40	7/04	17	

審査請求 未請求 請求項の数42 OL (全 36 頁)

24(P2000-353524) (71)出願人	392026693	
	株式会社エヌ・ティ・ティ・ドコモ	
E (2000, 11, 20)	東京都千代田区永田町二丁目11番1号	
(72)発明者	高尾 俊明	
000	東京都千代田区永田町二丁目11番1号	ŧ
H (1999, 12, 28)	式会社エヌ・ティ・ティ・ドコモ内	·
(72)発明者	佐藤 嬉珍	
	東京都千代田区永田町二丁目11番1号	ŧ
(74) 代題人		
	日(2000, 11, 20) (72)発明者 (72)発明者 (72)発明者	株式会社エヌ・ティ・ティ・ドコモ 東京都千代旧区永田町二丁目11番1号 (72)発明者 高尾 俊明 の 東京都千代田区永田町二丁目11番1号 72)発明者 京本都千代田区永田町二丁目11番1号 式会社エヌ・ティ・ティ・ドコモ内

最終頁に続く

(54) 【発明の名称】 ハンドオーパ制御方法及びシステム (57) 【要約】

【課題】本発明の課題は、無線基地局が輻輳状態となったときにユーザが望む通信サービスの質をできるだけ確保するようにその輻輳状態となる無線基地局と通信を行う移動局のハンドオーバを可能にするようなハンドオーバシステムを提供することである。

【解決手段】上記課題は、移動局の通信相手となる無線 基地局を切替えるハンドオーバ制御方法及びシステムに おいて、無線基地局と通信中の移動局のうちのいずれか の移動局が予め定めた最低電機を確保した状態での通信 ができなくなったことを検出し、その検出がなされたと きに、上記無線基地局と通信を行う移動局の通信相手を 該無線基地局から他の無線基地局に切替えるようにし たハンドオーバ制御方法及びシステムにて解説される。

本発明のハンドオーバシステムの第一の例を表すブロック構成図

弁理士 伊東 忠彦

【特許請求の範囲】

【請求項1】移動局の通信相手となる無線基地局を切替 えるハンドオーバ制御方法において、

無線基地局と通信中の移動局のうちのいずれかの移動局 が予め定めた最低帯域を確保した状態での通信ができな くなったことを検出し、

その検出がなされたときに、上記無線基地局と通信を行 う移動局の通信相手を当該無線基地局から他の無線基地 局に切替えるようにしたハンドオーバ制御方法。

【請求項2】移動局の通信の相手方となる無線基地局を 切替えるハンドオーバ制御方法において、

無線基地局と通信中の移動局のうちのいずれかの移動局 が予め定めた最低帯域を確保した状態での通信ができな くなったことを検出し、

その検出がなされたときに、上記無線基地局と通信を行 う移動局の通信相手を複数の無線基地局に切替えるよう にしたハンドオーバ制御方法。

【請求項3】請求項1または2記載のハンドオーバ制御 方法において、

各移動局から符られる無線生態局の電界強度情報に基づ を、ハンドオーバの対象となる移動局とその通信相手と なる無線兼進局として、現在通信中の無線兼進局と移動 扇の組み合わせを除いたなかで電界強度の最も強い無線 基地局と、これを観測した移動局とを選択するようにし たハンドオーバ刺動方法。

【請求項4】請求項1または2記載のハンドオーバ制御 方法において、

ハンドオーバの対象となる移動局と無線基地局として、 無線リソースの割当て量が最低帯域に最も近い移動局 と、無線リソースが配も余っている無線基地局を選択す るようにしたハンドオーバ制御方法。

【請求項5】請求項1または2記載のハンドオーバ制御 方法において、

ハンドオーパの対象となる移動局と無線基地局として、 長佐帯城の低が最も高、無線リソースを多く必要として いる移動局と、無線リソースが最も余っている無線基地 馬を強択するようにしたハンドオーパ刺御方法。

【請求項6】請求項1乃至5いずれか記載のハンドオー パ制御方法において、

無線基地局と適信中の移動局のうちのいずれかの移動局 が予め定めた最低帯域を確保した状態での適信ができな くなったことの検囲は、電界地度、または各分割り率、 またはフレーム窓り率、またはバケット廃棄率、または これらのうちの複数の組み合わせを測定し、この測定結 果に基づいて行うようにしたハンドオーバ側前が法。

【請求項7】請求項1乃至6いずれか記載のハンドオー バ制御方法において、

上記切替え後の通信相手となる無線基地局を、上記移動 局が選択するようにしたハンドオーバ制御方法。

【請求項8】請求項1乃至6いずれか記載のハンドオー

バ制御方法において.

上記切替え後の通信相手となる無線基地局を、上記移動 局以外のノードにて選択し、

その選択された無線基地局の情報を当該ノードから当該 移動局に通知し、

当該移動局の通信相手となる無線基地局がその通知され た無線基地局に切替えられるようにしたハンドオーバ制 細方注

【請求項9】請求項1乃至8いずれか記載のハンドオー バ制御方法において、

第一の通信プロトコルを採用する第一の無線通信システ ムの無線基地局と通信中の移動局のうちいずれかの移動 局が予め定めた最低情域を確保した状態で通信ができな くなったことを検出し、

その検出がなされたときに、上記無線基地局と通信を行 う移動局の通信相手を第二の通信プロトコルを採用する 第二の無線通信システムの無線基地局に切替えるに際 し、

当該移動局についての無線リソースに関する情報を有線 区間を介して上記第一の無線通信システムから上記第二 の無線通信システムにプロトコル変換を行って転送する ようにしたハンドオーバ制御方法。

【請求項10】移動局の通信相手となる無線基地局を切替えるハンドオーバ制御方法において、

替えるハンドオーバ制御方法において、 無線基準局の通信が無棒状態になるか否かを判定し、

無線基地局の通信が輻輳状態になると判定されたとき に、当該無線基地局と通信を行ういずれかの移動局と該 移動局と通信が可能な一または複数の無線基地局との組 合せを所定の基準に従って選択し、

その選択された組合せにおける移動局の通信相手をその 組合せにおける一または複数の無線基地局に切替えるよ うにしたハンドオーバ制御方法。

【請求項11】請求項10記載のハンドオーバ制御方法 において、

上記移動局と無線基地局との組合せを選択するための所定の基準は、無線基地局での空を無線リソース量または 使用無線リソース量に基づいて定められるようにしたハ ンドオーバ制御方法。

【請求項12】請求項10または11記載のハンドオーバ制御方法において、

上記移動局と無線基地局との組合せを選択するための所 定の基準は、移動局と無線基地局との間の通信における 受信電界強度に基づいて定められるようにしたハンドオ ーパ制御方法

【請求項13】請求項10乃至12いずれか記載のハンドオーバ制御方法において、

上記移動局と無線基地局との組合せを選択するための所 定の基準は、移動局に許等された無線リソース量に対す る実際に使用されている無線リソース量との比率に基づ いて定められるようにしたハンドオーバ制御方法。 【請求項14】請求項10乃至13いずれか記載のハンドオーバ制御方法において、

上記移動局と無線基地局との組合せを選択するための所 定の基準は、移動局が通信相手の切替え後に同時通信を 行うべき無線基地局の数に基づいて定められるようにし たハンドオーバ制御方法。

【請求項15】請求項10乃至14いずれか記載のハンドオーバ制御方法において、

上記移動局と無線基地局との組合せを選択するための所 定の基準は、移動局が通信相手の切替え後に通信すべき 無線基地局に現在通信を行っている無線基地局を含むか 否かに基づいて定められるようにしたハンドオーバ制御 方法

【請求項16】請求項10乃至15いずれか記載のハンドオーバ制御方法において、

当該無線基地局と通信を行う各移動局と当該無線基地局 及びそれに隣接する無線基地局のうちの一または複数の 無線基地局との組合せに対して上記所定の基準に従って 相塞に通信を行うことの適切さに関する優先順位をつ け、

その優先順位のより高い移動局と無線基地局との組合せ を選択するようにしたハンドオーバ制御方法。

【請求項17】請求項10乃至16いずれか記載のハンドオーバ制御方法において、

当該無線基地局と通信を行ういずれかの移動局と当該移 動局と通信可能な一または複数の無線基地局との組合せ を選択するための処理が、各無線基地局と有線区間を介 して接続されたノードにてなされるようにしたハンドオ ーバ制御方法。

【請求項18】請求項10乃至16いずれか記載のハンドオーバ制御方法において、

当該無線基地局と通信を行う移動局が、当該移動局と当 該移動局と通信可能な一または複数の無線基地局との組 合せを上記所定の基準に従って選択するための処理を行 うようにしたヘンドオーバ制御方法。

【請求項19】請求項18記載のハンドオーバ制御方法 において、

当該無線基地局と通信を行う上記移動局が、当該無線基 地局が輻輳状態であるか否かを判定するようにしたハン ドオーバ制御方法。

【請求項20】請求項1乃至19いずれか記載のハンド オーバ制御方法において、

上記移動局の通信相手を上記一または複数の無線基地局 に切替えた後に、その移動局と一または複数の無線基地 局との間の通信状態を観測し、

その観測された通信状態が所定の基準状態より悪い状態 となるときに、当該移動局の通信相手を再度切替えるた めの処理を行うようにしたハンドオーバ制御方法。

【請求項21】請求項20記載のハンドオーバ制御方法 において、 移動局と一または複数の無線基地局との間の通信における誤り率を上記通信状態として観測するようにしたハンドオーバ制御方法。

【請求項22】移動局の通信相手となる無線基地局を切替えるハンドオーバシステムにおいて、

無線基地局と通信中の移動局のうちのいずれかの移動局が予め定めた最低帯域を確保した状態での通信ができなくなったことを検出する検出手段と、

議検出手段にていずれかの移動局が予め定めた最低帯域 を確保した状態での通信ができなくなったことが検出さ れたときに、上配網線基地局上通信を行う移動の通信 相手を当該無線基地局から他の無線基地局に切替えるた めの切替え制御手段とを有するハンドオーバ制御システ

【請求項23】移動局の通信の相手方となる無線基地局 を切替えるハンドオーバ制御システムにおいて、

無線基地局と通信中の移動局のうちのいずれかの移動局 が予め定めた最低帯域を強保した状態での通信ができな くなったことを検出する検出手段と、

該検出手段にていずれかの移動局が予め定めた最低帯域 を確保した状態での過程ができなくなったことが検出さ れたときに、上記無終基地局と通信を行う移動局の通信 相手を複数の無線基地局に切替えるための切替え側御手 段とを有するハンドオーバ削縮システム。

【請求項24】請求項22または23歳のハンドオーバ 制御システムにおいて、

上記切撃と制刺手段は、各移動局から得られる無線基地 局の電界強度情報に基づき、ハンドオーバの対象となる 移動局とその通信相手となる無線基地局として、現在通 信中の無線基地局と移動局の組み合わせを除いたなかで 電界独皮の最も強い無線基地局と、これを観測した移動 局とを選択する選択手限を有するハンドオーバ制御シス テム。

【請求項25】請求項22または23記載のハンドオーバ制御システムにおいて.

上記切替え制御手段は、ハンドオーバの対象となる移動 局と無線基地局として、無線リソースの割当て量が最低 帯域に最も近い移動局と、無線リソースが最も余ってい る無線基地局を選択する選択手段を有するハンドオーバ 制御システム。

【請求項26】請求項22または23記載のハンドオー バ制御システムにおいて、

上記切替え制御手段は、ハンドオーバの対象となる移動 局と無線基地局として、最低需核の値が最も高く無線リ ソースを多く必要としている移動局と、無線リソースが 最も余っている無線基地局を違択する選択手段を有する ハンドオーバ制輸システム

【請求項27】請求項22乃至26いずれか記載のハンドオーバ制御システムにおいて。

上記検出手段は、電界強度、または符号誤り率、または

フレーム誤り率、またはパケット廃棄率、またはこれら のうちの複数の組み合わせを削定する測定手段を有し、 その測定手段での測定結果に基づいて、無線基地局と通 信中の移動局のうちのいずれかの移動局が予め定めた最 低帯域を確保した状態での通信ができなくなったことの

検出を行うようにしたハンドオーバ制御システム。 【請求項28】請求項22万至27いずれか記載のハンドオーバ制御システムにおいて、

上記切替え後の通信相手となる無線基地局を、上記移動 局が選択するようにしたハンドオーバ制御システム。

【請求項29】請求項22万至27いずれか記載のハンドオーバ制御システムにおいて、

上記切替え後の通信相手となる無線基地局を、上記移動 局以外のノードにて選択し、

その選択された無線基地局の情報を当該ノードから当該 移動局に通知し、

当該移動局の通信相手となる無線基地局がその通知され た無線基地局に切替えられるようにしたハンドオーバ制 御システム。

【請求項30】請求項22万至29いずれか記載のハンドオーバ制御システムにおいて、

上記検出手段は、第一の通信プロトコルを採用する第一 の無線通信システムの無線基準局と通信中の移動局のう ちいずれかの移動局が予め定めた最低帯域を確保した状 能で消儀ができなくなったことを検出し、

上記検出手段での当該検出がなされたときに、上記切替 え制御手段により上記無検基地局と通信を行う移動局の 通信相手を第二の通信プロトコルを採用する第二の無線 通信シスチムの無線基地局に切替えるに際し、

当該移動局についての無線リソースに関する情報を有線 区間を介して上記第一の無線通信システムから上記第二 の無線通信システムにプロトコル変換を行って転送する 手段を有するハンドオーバ制御システム。

【請求項31】移動局の通信相手となる無線基地局を切替えるハンドオーバ制御システムにおいて、

無線基地局の通信が輻輳状態になるか否かを判定する輻 轉判定手段と、

該輻輳判定手段にて無終基地局の通信が輻輳状態になる と判定されたときに、当該無線基地局と通信を行ういず れかの移動局と該移動局と通信が可能な一または複数の 無線基地局との組合せを所定の基準に従って選択する選 知毛BPL

その選択された組合せにおける移動局の通信相手をその 組合せにおける一または複数の無線基地局に切替えるた めの切替え制御手段とを有するハンドオーバ制御システ ム

【請求項32】請求項31記載のハンドオーバ制御システムにおいて、

上記移動局と無線基地局との組合せを選択するための所 定の基準は、無線基地局での空き無線リソース量または 使用無線リソース量に基づいて定められるようにしたハ ンドオーバ制御システム。

【請求項33】請求項31または32記載のハンドオー バ制御システムにおいて、

上記移動局と無線基地局との組合せを選択するための所 定の基準は、移動局と無線基地局との間の通信における 受信電界強度に基づいて定められるようしたハンドオー バ制御システム。

【請求項34】請求項31乃至33いずれか記載のハン ドオーバ制御システムにおいて、

上記移動局と無線基地局との組合せを選択するための所 定の基準は、移動局に許容された無線リソース量に対す る実際に使用されている無線リソース量との比率に基づ いて定められるようにしたハンドオーバ前御システム。

【請求項35】請求項31乃至34いずれか記載のハンドオーバ制御システムにおいて、

上記移動局と無線基地局との組合せを選択するための所 定の基準は、移動局が通信相手の切替え後に同時通信を 行うべき無線基地局の数に基づいて定められるようにし たハンドオーバ制御システム。

【請求項36】請求項31万至35いずれか記載のハンドオーバ制御システムにおいて、

上記移動局と無線基地局との組合せを選択するための所 定の基準は、移動局が通信相手の切替え後に通信すべき 無線基地局に現在通信を行っている無線基地局を含むか 否かに基づいて定められるようにしたハンドオーバ制御 システム。

【請求項37】請求項31乃至36いずれか記載のハンドオーバ制御システムにおいて、

上記遵択手段は、当該無線基地局と通信を行う各移動局 と当該無線基地局及びそれに隣接する無線基地局のうち の一または複数の無線基地局との組合せに対して上記所 定の基準に従って相互に通信を行うことの適切さに関す る優先順位をつけ、

その優先順位のより高い移動局と無線基地局との組合せ を選択するようにしたハンドオーバ制御システム。

【請求項38】請求項31万至37いずれか記載のハンドオーバ制御システムにおいて、

上記選択手段が、各無線基地局と有線区間を介して接続 されたノードに設けられたハンドオーバ制御システム。 【請求項39】請求項31乃至37いずれか記載のハン

ドオーバ制御システムにおいて、

当該無線基地局と通信を行う移動局が、当該移動局と当 該移動局と通信可能な一または複数の無線基地局との組 合せを上記所定の基準に従って選択する選択手段を有す るハンドオーバ制御システム。

【請求項40】請求項39記載のハンドオーバ制御システムにおいて、

当該無線基地局と通信を行う上記移動局が、上記輻輳判 定手段を有するハンドオーバ制御システム。 【請求項41】請求項22乃至40いずれか記載のハンドオーバ制御システムにおいて、

上記移動局の通信相手を上記一または複数の無線基地局 に到替えた後に、その移動局と一または複数の無線基地 局との間の通信状態を観測する通信状態報測手段と、 該通信状態報測手段にて報測された通信状態が所定の基 準状態より悪い状態となるか否かを判定する状態判定手 段と、

該状態判定手段にて上記観測された通信状態が所定の基準状態より悪い状態であると判定されたときに、当該移 地が態より悪い状態であると判定されたときに、当該移 動御手段とを有するハンドオーバ制御システム。

【請求項42】請求項41記載のハンドオーバ制御システムにおいて、

上記通信状態観測手段は、移動局と一または複数の無線 基地局との間の通信における誤り率を上記通信状態とし て観測する誤り率検出手段を有するハンドオーバ制御シ ステム。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、携帯電話に代表される移動連信の移動局を削御する制御システムに採り、 特に、そのようなシステムにおいて移動局が通信の相手 方の無線基地局を切替える削御、すなわちハンドオーバ を行うシステムに関する。

[0002]

【従来の技術】携帯電話等の移動通信においては、移動 画の移動に伴って通信の相手方の無線基地局を切替える 制御、寸なむちハンドオーバが必須である。ハンドオー バを実現する従来システムを図21に示す。未システム は、移動局30、復数の無線基地局 (ここでは、無線基 地局が二つ有る場合を示す)21、22、RNC (Radi o Netvork Controller:無熱網側刺糞置)10から成 る。RNC10は、電界地圧削削費置11、無線リ ソース管理製蔵12及びスイッチ13から成る。

【0003】次に、本ハンドオーバの動作フローを図2 2に示す。移動局30は、無線基地局1(21)及びス イッチ13を介して基幹網に接続され、その基幹網を介 して当該基幹網を選営する移動体通信事業者以外の通信 事業者が運営するネットワークであるPSTN (Public Swi tohed Telephone Network)、ISBN (Integrated Servic e Digital Network)、あるいはインタネット内に存在 している端末と通信しているものとする。移動局30倍 数動に伴って、無線基地局1(21)からの選手機度は調ぐなり、速に無線基地局1(21)からの電界側度は弱くなり、速に無線基地局1(21)からの電界機度は強くなる。環境機度測に開発数1 1は移動局30に対し、無線基地局1(21)を含め周辺 無線基地局0電界強度を測定し、報告するように求めて いるため、像件ジョーのS1)、移動局30は自局周辺 の複数無線基地局の電界強度を測定し、通信中の無線制 地局1 (21)を介して、その情報を電界強度販送等 装置11~応送する(動作フローのS2、S3)。電界 強度測定制御装置11は、無線基地局1(21)の電界 強度150条線基地局2(22)の電界強度が強くなっ た場合、ハンドオーバを行う旨を無線リソース管理装置 12に伝える(動作フローのS4)。

【0004】無線リソース管理装置12は、移動局と無線基地局との通信に必要な無線リソースつ管理を行う。 無線リソースはいわば効理量であり、無線システムの多 元接続力式と提信方式によってその種類が決まる。具体 的には、FDMA(Frequency Division Multiple Access)の場合は、搬送波の背域幅及びある通信に対する線 送波の割当で時間であり、TDMA(Time Division Multiple Access)の場合は、搬送波の背地域をびある運作に対する線 必要が当て時間を一定の時間間隔で細分化した無線スロッの数である。更に、CDMA(Code Division Multiple Access)の場合は、搬送波の帯域幅及び接送波の割当の場合は、機送波の帯域幅及び送信電力無度であり、これは拡散率に依存する。これらの値の最大値は、各無線基地局及び移動両の最大伝送能力によって 決まる。

【0005】このような無線リソースの管理を行う無線 リソース管理装置は、移動局30と通信するために無線 基地局1 (21) へ割り当てていた無線リソースと同等 の無線リソース量を無線基地局2 (22) へ割り当て、 新しい無線チャネルを設定する(動作フローのS5)。 すなわち、無線基地局1 (21) から無線基地局2 (2 2) へ移動局30の通信の相手側が切替っても、移動局 30と無線基地局間の伝送容量は変化することはない。 しかしながら、切替え前と同等量の無線リソースが確保 できなかった場合と(動作フローのS6)、新しく設定 した無線チャネルの電界強度が不充分で通信に適さない 場合は(動作フローのS8)、無線リソースの再選択、 またはハンドオーバを中止する(動作フローのS1 1)。同時に、無線リソース管理装置12は、スイッチ 13を制御し、基幹網と無線基地局1(21)との接続 を基幹網と無線基地局2 (22) との接続へ切替える (動作フローのS9)。さらに、無線リソース管理装置 12は、無線基地局1(21)を介して、移動局30に 対し、無線基地局1 (21) から無線基地局2 (22) へ通信の相手方を切替えるように制御する(動作フロー のS10)。これらの切替え制御は同期を取って行うた め、ハンドオーバ中に通信が途切れることはほとんどな W.

【0006】前述の劇弾手順はMobile-Assisted Handov erと呼ばれ、PDC (Personal Digital Ceilular Telecom munication System)で用いられている手順である。本手 順の説明は、「デジタル方式自動車電話システム標準規 格ROKBTD-27H版」(付) 按産業会に詳しい。 【0007】

【発明が解決しようとする課題】前述の通り、従来のハ ンドオーバシステムにおいては、ハンドオーバを起動す る契機を電界強度または電波干渉量を観測して判断して いる。このため、従来システムにおいて、移動局30の ユーザ情報量が増えることで特定の無線基地局を経由す るトラヒックが増加した場合は、ハンドオーバが起動さ れることはない。このため、その無線基地局の無線リソ ースが不足し、使用可能な通信帯域か減少するという問 題が発生する。このようなシステムにおいて、伝送すべ きユーザ情報が発生した時だけパケット単位でユーザ情 報を通信するパケット通信サービスを提供する場合、例 えば、PDC-P (PDC mobile packet communications Syst ems) の場合、無線リソースが不足しても通信自体は確 保できるが、スループットの大幅な低下を招き、ユーザ の不使を生ずるおそれがある。また、ある無線基地局の 無線リソース不足を生じた場合、別の無線基地局の無線 リソースに余裕があったとしても、この無線基地局と移 動局とを通信させることで移動通信網全体として無線リ ソースを有効に活用することは困難であった。

【0008】さらに、現在、有線通信網における廉価な 通信サービスとして、スループットの下限のみを保証す る最低帯な候証型のIP (Internet Protocol) 通信サー ビスが提供をれている。しかしながら、従来の移動通信 においては、前途のとおりトラヒックの増加によりスル ープットの大幅低下を招くおそれがあるため、このよう な帯核保証サービスを移動通信に適用することは困難で あった。

【0009】また、従来、ある無線基地局での通信が輻 模状態となった場合に、その無線基地局と通信していた 移動局の通信相手を隣接する無線基地局に切換えるよう にしたハンドオーバシステムが提案されている(例え ば、特開2000-175243)。このようなハンド オーバシステムでは、輻輳状態となった無線基地局と通 信を行う全ての移動局に対してハンドオーバの指示がな される。そして、輻輳状態となった無線基地局に隣接す る各無線基地局と通信可能なすべての移動局がその隣接 する各無線基地局にハンドオーバするようにしている。 【0010】しかし、このように輻輳状態となる無線基 地局と通信を行う移動局のうち隣接する無線基地局と通 信可能な全ての移動局がその隣接無線基地局にハンドオ ーバするようにすると、その輻輳状態であった無線基地 局のトラフィックは低下するものの、ハンドオーバ先の 無線基地局の通信状況によっては、ハンドオーバした移 動局のいくつかは、元の無線基地局との通信を継続して いたほうが利用可能な帯域が大きいという状況が発生し うる。このような場合、その移動局にて受けられる通信 サービスの質が低下してしまう。

【0011】そこで、本発明の課題は、無線基地局が輻 核状態となったときにユーザが望む通信サービスの質を できるだけ確保するようにその輻輳状態となる無線基地 局と通信を行う移動局のハンドオーバを可能にするよう なハンドオーバ制御方法及びシステムを提供することで ある。

[0012]

うに構成される。

【課題を解決するための手段】上記課題を解決するため、本発明は、請求項1に記載されるように、移動局の通信相手となる無線基地局を切替えるハンドオーバ制卸方法において、無線基地局と通信中の移動局のうちのいずれかの移動局がチウルジルを低性物を確保した状態での通信ができなくなったことを検出し、その検出がなされたときに、上記無線基地局と通信を行う移動局の通信和事を当然整備基地局との必備を表出したといいます。

【0013】このようなハンドオーバ制御方法では、無 線基地局と通信中の移動局のうちいずれかの移動局が予 め定めた最低耐峻を確保したが電での通信ができなくな ったときに、その無線基地局と通信を行う移動局の通信 相手が当該無線基地局から他の無線基地局に切り替えら わえ

[0014] この通信相手となる無線基準局が切替えられる移動局は、上記最近希坡を確保した状態で通信ができなくなった移動局であっても他の移動局のいずれであってもよい。また、通信相手となる無線基準局が切替えられる移動局は、単数であっても複数であってもいずれでもよい。

【0015】上記長低弊故を確保した状態で適信ができなくなった移動局の通信相手が他の無線基準局にで使用されている無線リシース量によって、上記長低帯坡を確保した状態で通信ができるようになりうる。また、上記長低帯坡を確保した状態で適信ができなくなった移動局以外の移動局の遺信相手が他の無線基地局に切り替えられた場合、その移動局が使用していた無線リンー水上記長低帯域を確保した状態で適信ができなくなった移動局の通信相手が他の推りませない。最低帯域を確保した状態で適信ができなくなった移動局の通信に割当てることが可能となり、最低帯域を確保した状態で適信ができなくなった移動局の通信に割当てることが可能となり、最低帯域を確保した状態で適信ができるようによりうる。

【0016】また、上記課題を解決するため、本発明 は、請求項ごに記載されるように、移動局の適信の相手 力となる無線基地局を切替えるハンドオーバ制御方法に おいて、無線基地局と通信中の移動局のうちのいずれか の移動局が予め定めた最低帯域を確保した状態での通信 ができなくなったことを検出し、その検出がなされたと きに、上記無線基地局と通信を行う移動局の通信相手を 複数の無線建塊局に切替えるように構成される。

【0017】このようなハンドオーバ制御方法では、移 動局の通信相手が複数の無線基地局に切替えられる。そ の結果、移動局での通信に必要な無線リソースが複数の 無線基準局にて分相される。

【0018】上記無線基地局と通信を行う移動局の通信 相手として切替えられた複数の無線基地局は、切替えら れる前に当該移動局と通信を行っていた上記無線基地局 を含んでもよい。

【0019】移動局の逓信相手を受信電界強度がより大きくなる無線基地局に切替えることが好ましいという観点から、本等削は、前来項も記載されるように、上記各ハンドオーバの対象となる移動局とその進信相手となる無線基地局として、現在通信中の無線基地局と移動局の組み合わせを除いたなかで電界強度の最も強い無線基地局と、これを観測した移動局とを選択するように構成することができる。

【0020】できるだけ通信帯域が犠牲になっている移動局を無線リソースに余裕のある無線基地間に切替える 動局を無線リソースに余裕のある無線基地間に切替える とが好ましいという機成から、本発明は、前束項4に 記載されるように、上記をハンドオーバ制御が接におい て、ハンドオーバの対象となる移動局と無線基地局とし 、無線リソースの割当で重が基低倍極に応し近く、ユ ーザ情報振の増加に対して余裕のない移動局と、無線リ ソースが最も余っている無線基地局を選択するように構 成するとおできる。

【0021】同様の観点から、本発明は、請求項5に記載されるように、上記各ハンドオーバ削御方法において、ハンドオーバの対象となる勢助局と無線集地局として、最低帶域の値が最も高く無線リソースを多く必要としている移動局と、無線リソースが最も余っている無線基地局を選択するように構成することができる。 【0022】上記名ハンドオーバ削御方法において、最

低帯域を確保した状態での通信ができなくなったことを 検出するための具体的な手法を提供するという観点通 ら、請求項をに記載されるように、無縁基準の の移動局のうらのいずれかの移動局が予め定めた最低帯 域を確保した状態での通信ができなくなったことの検証 は、電界独重、または存得の事、またはフーム識り 率、またはたル院薬率、またはこれらのうちの複数の組 み合わせる測定し、この測定結果に基づいで行うように することができる。

【0023】また、本発明は、請求項7に記載されるように、上記をハンドオーバ制御方法において、上記切替え後の通信用すとなる無線注画を、上記を場合が高級するようにすることも、また、請求項8に記載されるように、上記切替え後の通信用手となる無線基場局を、上線記移動局以か0一ドにご避失し、その選供の一部分の一場に、当該移動局に通知し、当該移動局に通知付罪手となる無線基地局の時報を当該2一下から当該移動局に通知し、当該移動局の通信相手となる無線基地属に対していてきる。

【0024】異なったプロトコルを採用する無線通信システム間でハンドオーバを可能はするという観点から、本発明は、請求項9に記載されるように、上記各ハンドオーバ制御方法において、第一の通信プロトコルを採用

する第一の無線通信システムの無線基地局と通信中の移動局のうちいずれかの移動局が予め定めた最低帯域を確 機した状態で指ができなくなったことを検出し、その 検出がなされたときに、上記無線基地局と通信を行う移動局の通信相手を第二の通信プロトコルを採用する第二 の無線通信システムの無線基地局に切替えるに際し、 競移動局についての無線サリースに関する信能を有線区 関を介して上記第一の無線通信システムから上記第二の 無線通信システムにプロトコル変換を行って転送するよ に構成するとができる。

【0025】また、上記課題を解決するため、本発明 は、請求項10に記載されるように、移動局の通信相手 となる無線基地局を切替えるハンドオーバ制御方法にお いて、無線基地局の通信が輻輳状態になるか否かを判定 し、無線基地局の通信が輻輳状態になると判定されたと きに、当該無線基地局と通信を行ういずれかの移動局と 該移動局と通信が可能な一または複数の無線基地局との 組合せを所定の基準に従って選択し、その選択された組 合せにおける移動局の通信相手をその組合せにおける一 または複数の無線基地局に切替えるように構成される。 【0026】このようなハンドオーバ制御方法では、無 線基地局の通信が輻輳状態になると判定されると、当該 基地局と通信を行ういずれかの移動局と該移動局と通信 が可能な一または複数の無線基準局との組合せが所定の 基準に従って選択される。そして、その選択された組合 せにおける移動局の通信相手がその組合せにおける一ま たは複数の無線基地局に切替えられる。

【0027】移動局と一または複数の無線基地局との組合せは単一でも複数でも選択することが可能である。また、その複数の無線基地局に当該移動局と現在通信を行う上記無線基地局を含むこともできる。

【0028】上記無線基地局における解験状態は、当該 無線基地局での空き無線リソース量、当該無線基地局と 通信を行う移動局が使用する無線リソース量、通信にお ける誤り率、移動局が予め定められた最低帯域にで通信 が行われているか否かなど、種々の情報に基づいて判定 することができる。

【0029】移動局の通信相手をできるだけ無終リソースに余裕のある無線基地局に別替えることができるという視点から、本発明は、請求項11に配破されるように、上記ハンドオーバ制御力法において、上記移動局と無路へあるのの所定の基準は、無線基地局での空き無線リンース量または便用無線リソース量に基づいて定められるように構成することができ

【0030】移動局の通信相手をできるだけ通信状態の 良い無線基地局に同替えることができるという観点か ら、本発明は、請求項12に記載されるように、上記各 ハンドオーバ制御方法において、上記移動局と無線基地 局との組合せを選択するための所定の基準は、移動局と 無線基地局との間の通信における受信電界強度に基づいて定められるように構成できる。

【0031】要求されるデータ通信量が満足されていない移動局の通信相手をできるだけ切替えることができるという観点から、本発明は、請求項13に記載されるように、上記をハンドオーバ制御方法において、上記移動局と無線基地局との組合せを選択するための所定の基準は、移動局に許容された無線リソース量に対する実際に使用されている無線リソース量との比率に基づいて定められるように構成することができる。

【0032】移動局の通信相手の切替えをより容易でき るという観点から、本発明は、請求項14に記載される ように、上記をハンドオーバ制御方法において、上記移 動局と無線基地局との組合せを選択するための所定の基 準は、移動局が通信相手の切替え後に同時通信を行うべ き無線基準局の数に基づいて定められるように構成する ことができる。

【0033】このようなハンドオーバ制御方法では、例 えば、移動局の適信相手をより少ない数の無線基地局に 優先的に切替えるようにすることができる。この場合、 より少ない数の無線基地局への切替えは比較的容易に行 うことができる。

【0034】切替え後の移動局の通信相手としてできる だけ切替え前に通信を行っていた無線基地局を含めるこ とができるようにするという観点から、本来明は、請求 項15に記載されるように、上配各ハンドオーバ制御方 法において、上配移動局と無線基準局との組合せを選択 するための所定の基準は、移動局が通信相手の切替え後 に通信すべき無線基地局に現在通信を行っている無線基 地局を含むか否かに基づいて定められるように構成する ことができる。

【0035】本発明は、請求項 16に記載されるよう に、上記各ハンドオーバ制御方法において、当該無線基 地局と通信を行う各移動局と当該無線基地局及びそれに 隣接する無線基地局のうちの一または複数の無線基地局 との組合せに対して上記所定の基準に従って相互に通信 を行うことの適切さに関する優先順位をつけ、その優先 順位のより高い移動局と無線基地局との組合せを選択す るように構成することができる。

【0036】上記優先順位は、移動局と無線基地局が相 定に補信を行うことの適関さに関する順位であれば特に 限定されず、所定の基準に従って付与された点数で表さ れるものであっても、順位そのものにて表されるものであ あってもよい、即ち、より優先順位が高い移動局と無線 基地局との組合せが、より湖信を行うことに適している ことを表す。通信を行うことに適しているとは、より通 信品質が取り、実験で通信が行い得ること、及がヘンドオ 一パに必要な制御が容易に実行できることを意味する。 【0037】ハンドオーバに関する処理を集中してでき るという観点がら、本条明は、諸東項17に記載される ように、上記各ハンドオー/場別方法において、当該無線基地周と通信を行ういずれかの移動局と当該移動局と 通信可能な一業たは複数の無線基地局との組令せを選択 するための処理が、各無線基地局と有線区間を介して接 続されたノードにてなされるように構成することができ 2条

【0038】ハンドオーバに関する処理を分散してできるという視点から、本発明は、結束項18に電吹されるように、上記各ハンドオーバ制力方法において、当該無線基地局と通信を行う移動局が、当該移動局と当該移動局と通信可能な一または複数の無線基地局との組合せを上記所定の基準は近るで選択するための処理を行うように構成することができる。

【0039】更に、本発明は、請求項19に記載される ように、上記ハンドオーバ制御方法において、当該無線 基地局と通信を行う上記移動局が、当該無線基地局が輻 線状態であるか否かを判定するように構成することがで きる。

【0040】移動局の適倍品度をより高く、かつ確実に 維持できるという観点から、本発明は、請求項20に記 裁されるように、上記各ハンドオーバ制御力活におい て、上記移動局の通信相手を上記一または複数の無終基 地局に切替えた後に、その移動局と一または複数の無終基 基地局との開始信状態を観り、その報動でした通信 状態が所定の基準状態より悪い状態となるときに、当該 移動局の通信相手を再度切響えるための処理を行うよう に構成できる、

【0041】このようなハンドオーバ側刺方法では、移動局の通信相手を切替えた後に、その参加局と切替え後 動馬の通信相手を切替えた後に、その参加局と切替え後 合、その移動局の通信相手が再度切替えられる。このた め、当該移動局はより良い状態での通信をより確実に行 うことができるようになる。

【0042】請求項21に記載されるように、本発明 は、上記ハンドオーバ制御方法において、移動局と一ま たは複数の無線基地局との間の通信における限り率を上 拡複数が無線基地局との間の通信における限り率を上 ながき る。

【0043】上記課題を解決するため、本条明は、計次 項22に配載されるように、移動局の通信相手となる無 線基地砲長切替えるハンドオーパシステムにおいて、無 線基地島と通信中の移動局のうちのいずれかの移動局が 予め定めた最低情報を確保した状態での通信ができなく なったことを検出する検出手段と、該検出手段にていず れかの移動局が予め定めた最低居城を確保した状態での 通信ができなくなったことが検出されたときに、上記無 線基地砲と連信を行う移動局の通信相手を当該無線基地 局から他の無線基地局に切替えるための切替え制御手段 とを有すれまうに様成される。

【0044】また、本発明は、請求項23に記載される

ように、移動局の通信の相手方となる無線基場局を切除 えるハンドオーバ制御システムにおいて、無線基地局と 通信中の移動局のうちのいずれかの移動局がすめ定めた 最低帯域を確保した状態での通信ができなくなったこと を検出する検出手段と、抜検出手段にていずれかの移動 あが予め定めた最低帯域を確保した状態での通信ができ なくなったことが検出されたときに、上記無線基地局と 通信を行う移動局の通信相手を複数の無線基地局に切替 えるための切替え制御手段とを有するように構成され る。

【0045] 更に、本発明は、請求項31に記載されるように、移動局の通信相手となる無線基地局を切替える ハンドオーベ制御システムにおいて、無線基地局の通信が輻輳状態になるためである。 輻輳物定手段にて無線基地局の通信が輻輳状態になると、 解験物定手段にて無線基地局の通信が輻輳状態になると、 財産されたともに、当該無線基地局と通信を行ういずれ かの移動局と競移動局と通信が可能な一または複数変無 構築地局との組合せを形定の基準に従って選択する選択 手段と、その変形された組合でにおける移動の通信相 手をその組合せにおける予め、 着数にある場合を表現された組合を を表れたの切替え制御手段とを有するように構成される。

[0046]

【発明の実施の形態】以下、本発明の実施の形態を図面 に基づいて脱明する。

【0047】本発明の実施の形態に係るハンドオーパシ ステムの第一の例を示すプロック構成図を図1に示す。 [0048] 本システムは、移動局 (ここでは、1及び 2)31、32、複数の無線基地局 (ここでは、1及び 2)2,22、RNC10から成る、RNC10は、 最低帯域保証装置14、電界強度測定制連製置11、 最級等以9一次管理数量12度びイッチ13から成る。

【0049】本システムの動作フローを図2に示す。ま ず移動局1 (31) および移動局2 (32) は、無線基 地局1 (21)、スイッチ13及び基幹網を介してイン タネットやPSTN、ISDN内の別々の端末と通信しているも のとする。このとき、移動局1 (31) のユーザ情報量 が増加し、無線基地局1 (22) が輻輳状態となってき た場合について説明する。まず、最低帯域保証装置に1 4は、あらかじめ、ユーザ毎及び通信サービス毎に必要 なユーザ所望の最低帯域を記憶しておく(動作フローS 1) 。次に、この情報を基に、最低帯域保証装置14は ユーザ所望の最低帯域を満足するだけの無線リソース量 の下限値を設定する(動作フローのS2)。例えば最低 必要な無線キャリア数、またはスロット数、または拡散 コード数を単独で、または複数組合せて設定する。加え て、特定の無線チャネルにランダムアクセスする移動局 の数を制限することも可能である。

【0050】無線基地局1 (21) は自局を通過するトラヒック量を計測し、輻輳状態となってきたらその旨を

無線リソース管理装置12〜減知する。無線リソース管理装置12は、この無線基地局に関してトラヒックの増加に対応するため新たに無線リソースを削当てる必要がある。しかしながら、一つの無線基地局の無線リソースは限られており、無線リソースが不足する。すると、無線リソースが不足する。すると、無線リンースが不足する。かると、無線リンースが不足する。かると、大阪線別の通信が最低普減を満たしているかどうか、最低借城保証装置14〜間い合うせる(動作フローのS

- 3)。この問い合わせ時に (動作フローのS4)、最低 情報を満たしていない移動局が存在したら、無線リソー ス管理装置 12は、ハンドオーバする移動局 (こでは移 動局 (3 1) とする) その切替え先無線基地局 (ここ では無線基地局 2 (2 2) とする) を選択する。その選 択方法としては、
- (1) 電界強度測定制御装置11を通じて各移動局から 得られる無線基地局の電界強度情報に基づき、電界強度 の最も強い無線基地局と、これを観測した移動局とを選 決する方法
- (2) 無線リソースの管理情報に基づき、無線リソース の割当て量が最低帯域に最も近い移動局と、無線リソー スが最も余っている無線基地局を選択する方法
- (3)最低帯域の値が高く無線リソースを多く必要としている移動局と、無線リソースが最も余っている無線基地局を選択する方法

等が挙げられる。また、これらの複数を組み合わせても よい。さらに、本無線基地局に対し、最低帯域保証装置 14が設定した無線リソース量の下限値を下回らないよ うに無線リソースを無線基地局2 (22) へ割り当て、 新たに無線チャネルを設定する(動作フローのS6)。 次に、電界強度測定制御装置11は、新たに設定した無 線チャネルが通信に適しているかどうか移動局1 (3) 1) から観測するように、無線基地局1 (21) 経由で 指示する(動作フローのS7)。通信に適していれば、 電界強度測定制御装置11はハンドオーバの実行を無線 リソース管理装置12へ指示する。無線リソース管理装 置12はスイッチ13を制御し、基幹網と無線基準局1 (21) との接続を基幹網と無線基地局2(22)との 接続へ切替える(動作フローの89)。さらに、無線リ ソース管理装置12は、無線基地局1(21)から無線 基地局2(22)へ、移動局の通信の相手方を完全に切 替えるよう無線基地局1 (21)、無線基地局2 (2 2) 及び移動局1 (31) を制御する(作フローのS1 0)。これらの切替えは、同期を取って行う。

【0051】なお、このハンドオーバシステムは、従来 システムと同様、電界強度の低下や電波干渉の発生、フ ェージングの発生を観測してハンドオーバを行う機能も 備えている。

【0052】本発明の実施の形態に係るハンドオーバシステムの第二の例を図3に示す。本システムでは、無線基地局1(21)無線基地局2(22)にどちらも単独

では十分な無線リソースが確保できない場合に、無線基 地局1 (21) 及び無線基地局2 (22) の両方と通信 し、両方の通信における伝送容量を加算して最低帯域を 保証する。それでも不足する場合は、第3、第4の無線 基地局を選択し、多数の無線基地局と通信することで最 低帯域を保証する。本発明のシステムは、移動局(ここ では、1及び2)31、32、複数の無線基地局(ここ では、1及び2) 21、22、RNC10から成る。R NC10は、最低帯域保証装置14、信号分配/合成装 置15、電界強度測定制御装置11、無線リソース管理 装置12及びスイッチ13から成る。信号分配/合成装 置15の例を図4に示す。本装置では、上りの回路と下 りの回路に分けられる。上りの回路については無線基地 局から、下りの回路については交換機から信号が入力さ れる。これらの信号は、分配器151、152、16 1、162によって、上りについては移動局毎の、下り については無線基地局毎の信号に分配される。分配され た信号は、送信元で送信した順番に従って、合成器15 3、154、163、164によって合成され、出力さ れる。

【0053】一方、本システムに対応した移動局には、 権数の無線基地局と通信するための複数の送空信装置 と、ユーザ情報を複数の送受信装置へ分配するための信 号分配/合放装價を備える。なお、本信号分配/合成装 置の装置構成は前出の図4の構成において、上り側の回 路では合成器を、下り回路では分配器をそれぞれ取り除 き、かつ上り側では入力側を、下り側では出力側を1端 子の構成とすればよい。

【0054】次に、動作フローを図5に示す。本システ ムでは、ユーザ所望の最低帯域が満足できないと判断し た場合に(動作フローのS4)、無線リソース管理装置 12はハンドオーバする移動局と、その切替え先無線基 地局を複数選択する(動作フローのS5)。 具体的な選 択方法としては、移動局が測定した無線基地局の電界強 度が強い組合せを優先する方法、無線リソースの余りが 多い組合せを優先する方法、及びこれらの方法を組合せ た方法が挙げられる。次に、無線リソース管理装置12 は、選択した移動局1(31)と複数無線基地局につい て、移動局1 (31) が必要とする最低帯域を満たすよ うに無線リソースを割当て、新たに無線チャネルを設定 する(動作フローのS6)。次に、電界強度測定制御装 置11は、無線リソース管理装置12が新たに設定した 無線チャネルが通信に適しているかどうか判断するた め、電界強度を測定しその結果を報告するよう、移動局 1 (31) へ指示する。電界強度測定装置12は、新た に設定した無線チャネルが通信に適していると判断した ら、ハンドオーバする旨を無線リソース管理装置12へ 指示する。無線リソース管理装置12は信号分配/合成 装置15を制御し、各移動局毎の信号に分配/合成する (動作フローのS9)。 さらに、無線リソース管理装置 12はスイッチ13を制御し、移動局毎の信号のスイッ チングを行い、この信号を基幹網を介してインタネット 等へ送出する(動作フローのS10)。

【0055】上記ハンドオーバシステムに、各ユーザお よび各通信サービスの最低帯域が保証されているかどう か監視する最低帯域監視装置16を付加した第3の例を 図6に示す。また、動作フローを図7に示す。本発明の システムにおいては、例えば、最低帯域監視装置16を スイッチ13と基幹網との間に設置し、各ユーザおよび 各通信サービスの全て、またはいずれかについてスルー プットを測定する(動作フローのS12)。具体的に は、フレーム構成となっている情報信号について、各フ レームに誤り検出機能を設ける。この機能として、例え ば冗長符号を付加するCRC (Cyclic Redundancy Contro 1) が挙げられる。この機能を用い、例えば再送を行わ ない場合、フレーム誤りを検出したらそのフレームは伝 送されなかったとみなすことで、単位時間内のスループ ットを求める。さらに、最低帯域保証装置14では、そ の測定結果が最低帯域を満たしていない場合(動作フロ 一のS13)、無線リソースを再割り当てし、新たに無 線チャネルを設定する。

【0056】ハンドオーバシステムを、無線伝送路の通信プロトコルの異なるシステム間でのハンドオーバに適用した場合の第四の例を図8に示す。本システムは、従来例と同等な構成を持ち、同等な動作をするシステムとと、システム2を配下に収め、かつシステム2と通信プロトコルが異なる無線伝送路を持つンステム1から構成しれる。この場合の例として、システム1が10067】システム1は、移動局(ここでは、1及び2)31、32、複数の無線基地局(ここでは、1及び2)21、22、RNC10から成る。RNC10は、長低軒級保証差置14、プロトコル変換器17、18、電料強度網定制度が開発しませ、1、無線リソース管理装置12及びスイッチ13から成る。

【0058】本システムにおいて、システム1のスイッチ13とシステム2の交換機103は、プロトコル変換 8817を介して接続されている。またシステム1の最低 僭城保証装置14と、システム2の無線リシース管理装置102もプロトコル定換器18を介して接続されている。なお、本システムにおける解析伝送第の信信プロトコルは、システム1とシステム2では異なる。よって、移動局は両ガのシステムの連信プロトコルに対応するため、システム1用の送受信を置とシステム2円の送受信装置を内蔵する。また、システム1ないレシステム2からの制御により、二つの送受信装置を切替えるスイッチも内底している。

【0059】本システムの動作は、上述した第一の例で 説明した動作内容とほとんど等しいが、最低帯域保証装 置14はシステム2の無線リソース管理装置102へ、 プロトコル変換器18経由で通信することが異なる。また、システム1の無線リソース管理装置12とシステム 2の無線リソース管理装置102は、無線リソースの割当てのため、両者間で調整する場合、プロトコル変換器 18経由で情報の授受を行う。

【0060】また、更に、本発明の実施の形態に係るハンドオーバシステムの第五の例を説明する。この第五の 何では、ある無線基地局が帰転状態となったときに、その無線基地局と通信を行う各移動局から隣接する無線基 地局にハンドオーバさせるのに適した移動局を選択し、 その選択された移動局をその隣接する無線基地局にハンドオーバさせるようにしている。

【0061】この第五の例に係るハンドオーバシステム が適用される移動通信システムは、例えば、図9に示す ように構成されている。

【0062】 [例9において、無線基地局BS1、BS 2、BS3がRNC1のに接続されており、このRNC 1のが基幹網に接続されている。このようた構成により、各無線基地同BS1、BS2、BS3の連値エリア に任画する各移動同MS1万至MS5は、無線基地同BS1、BS2、BS3、RNC10及び基幹網を介して PSTN (Public Switched Telephone Network) やISDN (Integrated Service Digital Network) 、インタネット などに存在する電車と連信を行うことができる。なお、この第五の例は、3つの無線基地局BS1、BS2、BS3に対してこつの移動局MS1万至MSあが通信を行う構成を例示的に示すもので、特に、それに限定されるものではない。

【0063】上記のような移動通信システムに適用されるハンドオーバシステムは、例えば、図10に示すように構成される。

【0064】図10において、RNC10は、前途した 関と同様に、電界強度測定制御装置11、無線リソース 管理装置12及びスイッチ13を有する。このRNC1 0は更に移動局管理装置19を有する。この移動局管理 装置19は、後述するような受信電界強度、使用無線リ ソースなどの観点から予め座かた評価点表を用いて各移 動局とその移動局と通信を行うべき各無線基地馬との組 合士の評価を行う。そして、その評価結果に応じて、各 移動局と無基地局との組合せのなかから、移動局とハ ンドオーバ先の無線基地局との最適な組合せが遂択される。

【0065】例えば、図9及び図1のにおいて、無線基 地局BS1と通信を行う参動局MS1が当該無線基地局 BS1の通信エリアから無線基地局BS2の通信エリア に移動する際に行われるハンドオーバの処理について説 明する。

【0066】図9に示すように、無線基地局BS1はその通信エリアに在圏する各移動局MS1、MS5と通信を行い、また、無線基地局BS2はその通信エリアに在

圏する各移動局MS2、MS3、MS4と通信を行っている。特に、移動局MS1と移動局MS2について注目 なる。特に、移動局MS1と移動局MS2について注目 ようになっている。

【0067】図11(a)に示すように、移動局MS1 が無線基地周BS1と通信を行い、移動局MS2が無線 基地周BS2と通信を行り対像において、RNC10に おける電界強度測定制測装置11からの受信電界強度の 測定指示が条無線基地局BS1及びBS2を介して各移 動局MS1、MS2に送信される。その指示に径って、 各移動局MS1、MS2に送信される。その指示に径って、 各移動局MS1、MS2には、別囲に存在する各無線基地 局からの電界換度を測定してその測定値を無線基地局B S1、BS2を介してRNC10に報告する。

【0068】移動局MS1が無線基地局BS1と通信を 行いつつ無線基地局BS2の通信エリアに移動する。そ の際、図11 (b) に示すように、移動局MS1からR NC10の電界強度測定制御装置11に報告される無線 基地局BS1からの電界強度測定値と無線基地局BS2 からの電界強度測定値とが比較される。そして、無線基 地局BS2からの電界強度が無線基地局BS1からの電 界強度より所定量以上大きくなると、それを契機にRN C10は、移動局MS1の通信相手を無線基地局BS1 から無線基地局BS2に切替える (ハンドオーバ) ため の制御を開始する(ハンドオーバ1)。 しかし、この場 合、無線基地局BS2は移動局MS2、MS3、MS4 との通信で多くの無線リソースを使用している状況であ り、新たに移動局MS1との通信に割当てるための無線 リソースが不足している (輻輳する) と無線基地局BS 2が判断すると、その無線基地局BS2からRNC10 を介して無線基地局BS1に移動局MS1のハンドオー パを中断するよう指示がなされ、その指示が無線基地局 BS1から更に移動局MS1に転送される。

【0069】このようにハンドオーバの中肺の指示を受信した移動局MS1は無終基準局BS1との通信状態を維持する。この状態で、関11(c)に示きように、無終基地局BS2は、RNC10に無線リソースが不足している旨の報告を行う。この報告を受けたRNC10は、無線基地局BS2の通信エリアに移動してきた移動局MS1と当該無線基地局BS2との延信を行っている各移動局MS2、MS3、MS4のなから降後で行っている各移動局MS2、MS3、MS4のなかから降せる無線基地局にハンドオーバさせるのに選した移動局を選択するための処理を行う。この処理の詳細については後述する。

【0070】このようしてハンドオーバすべき移動局と そのハンドオーバ先となる無線基地局との組合せか選択 されると、その選択された組合せにおける移動局をその 組合せにおける無線基地局にハンドオーバさせる (ハン ドオーバ2)。例えば、ハンドオーバされる移動局M 2の適信金乗車基地局 BS 2 をBS 3 で分世するように 決められた場合(第二の例参照)、移動局MS2のハンドオーバ処理(電界強度測定、報告、基地周切替決制制 など)により、移動局MS2と無線基地局BS2及びBS3との間にリンクが要られる。そして、移動局MS2は無線参動局BS2、BS3と単列的に無線補信を行ない、更にRNC10及び基幹網を介して他の通信端末と通信を行なう。

【0071】このように移動局MS2の強信にて必要と
なる無線リソースの一部が無線基地局BS3にて分担さ
れるようにたると(移動局MS2の部分的なハンドオー
パ)、無線基地局BS2の部所にリアに移動してきた移 線リソースが確保できるようになる。このような状態に なると、RNC10は、上記のように中断していた移動 のMS1のハンドオー
が処理を行関する(図12におけ る(4)参照)。即ち、RNC10は、各無線基地局B S1、BS2及び移動局MS1で基地局側を1の場合である。このような状態に を3と、その結果、移動局MS1のが最初がある。

(ハンドオーバ)。以後、移動局MS1は、無線基地局 BS2、RNC10及び基幹網を介して他の端末と通信 を行かう。

【0072】このように、移動局MS1が無線基地周 S2の通信エリアに移動してきた際に、その無線基地局 BS2が解検状態となるような場合であっても、その無 線基地局BS2を既に通信を行なっている移動局を隣接 する無線基地局BS3にハンドオーバ(部分的なハンド オーバも含む)させることにより、その移動してきたか 新島MS1と無線基地局BS3とが通信を行なうための 無線リソースを確保できるようになる。そして、上述し たような処理が各無線基地同に対して連鎖的に行なわれ ることにより、より多くの移動局が確実に通信を行なう ことにより、より多くの移動局が確実に通信を行なう ことにより、より多くの移動局が確実に通信を行なう ことができるようになる。

【0073】上述したように、無線基地局BS2の通信 エリアに移動してきた移動局MS1と当該無線基地局B S2との通信を可能にするために、無線基地局BS2と 既に通信を行っている各移動局MS2、MS3、MS4 のなかから随場する無線基地局にヘンドオーパさせるの に適した移動局を選択するための処理が行なわれる(図 11(c)参照)が、その処理は、具体的に図12に示 す手順に従ってなされる。

【0074】図12において、RNC10の電界強度測 定制卸装置11は、配下の移動局のそれぞれに対して通 信相手となっている無線基地局及び隣接する無基地局 のそれぞれからの受情電界発度を測定するように指示す る。そして、各移動局MS1及びMS2は、それぞれの 電界独度測定値を無線基地局BS1、BS2を介してR NC10に郵序する(図)2における(1)

【0075】また、RNC10の無線リソース管理装置 12は、各無線基地局BS1、BS2、BS3に対して 無線リソースの使用状況を報告するよう指示する。そして、各無線基地局BS1、BS2、BS3はその指示に従って無線リソースの使用状況をRNC10の無線リソース管理装置12に報告する(図12における

(2))

【0076】にの無線リソースの使用状況を表す情報と して、例えば、各無線基地周と通信を行う各移動局に許 客されている最大の無線リソース量とその移動局が実際 の通信により占有している無線リソースとの比率、各無 線基地局での無線リソースの使用率などを用いることが できる。

【0077】上記のようにして電界強度測定制的装置 1 1が各移局局から電界地度の測定値の保存を受け、無線 リソース管理装置 12が各無線基地局から無線リソース の使用状況についての保存を受けると、RNC10の移 動局管理装置 19は、その報告された配界地度の測定値 及び無線リソースの使用状況に基づいて、移動局と通信 相手としての無線基地局との組合せに対する資配を行 う。そして、その評価に基づいてハンドオーバするのに 適した移動局とそのハンドオーバ先となる無線基地局と の組が課件される (図12における(3))

【0078】その選択結果、即ち、移動局とそのハンド オーパ先となる無線地間との組合が、RNC10か 6を無線兼地間881、BS2、BS3に適かされれる (図12における(4))。その後、その選択された移 動局がそれと組となる無線業地局にハンドオーパされる (図11(c)参照)。

【0079】上述した各移動局と通信相手としての無線 基地局との組合せの評価は、例えば、次のようにしてな される。

【0081】現在移動局MS」と通信を行っている無線 基地局(相手局)BS」からの受信電界の関定値P」」 が上記ダイナミックレンジ以下になる場合、評価点「 (P」」)が「0点」(最低点)であり、その電界強度 の測定値P」」が大きくなるに従って評価点「

 $(P_{i,j})$ が「1点」、「2点」、「3点」、「4点」 のように順大大きくなる。 ぞって、移動局MS₁、已れば信相手となる無終基地局BS₁との組合せに対する評価点が高ければ高いほど、移動局MS₁はこの無終基地 局BS₁との組信を維持することが好ましいことを表

す。

【0082】一方、移動局MS」と通信を行っている無 終基地局に隣接した無線基準局局(解接局)BS」から の受信電界の測定値P」。が「記述イナミックレンジ以 下となる場合、上述した通信相手となる無線基準局(相 手局)の場合と同様に、上述評価点f(P」。)が「0 点」(最低点)であり、その電界強度の測定量P」が 大きくなるに従って評価点f(P」。)が「1点」、 「2点」、「3点」、「4点」のように順次大きくな る。従って、移動局MS」を開発局BS」にの配合性に 対する評価点が高ければ高いほど、移動局MS」はこの 隣接局BS」にハンドオーバさせることが好ましいこと をます。

【0083】即ち、移動局MS」と無線基地局BS (相手局でも隣接局のいずれでもよい)との組合せに 対する評価点が高ければ高いほど、移動局MS」はその 組合せ先となる無線基地局BS」と通信を行うことが好 ましいことを要すことになる。

【0084】また、各物動向に対する適倍相手として、 左の移動局ができるだけ多くの無線リソースを占有でき る状況となる無線基地局が適している。従って、無線基 地局BS」と移動局MS」の組合せについて、移動局M 5」に許軽された数大無線リソースとの比率をすっとし、無 線塞地局BS」での無線リソースとの比率をすっとし、無 を、それぞれに対する評価点は対応する比率の関数を1 (r₃)及び82(R₃)で表される。この各評価点 1、(r₃)及び82(R₃)は、例えば、図14に示す ような評価点表は基づいて変される。

【0085】移動局MS」に許容された最大無線リソース量と無線基地局との実際の通信に占有されている無線 リソースとの比率「」(使用率)が0~60%となる場合、評価点g」(r」)が「4点」(最高点)であり、その使用率「」が大きくなるに従って評価点g」(c)が、5点に「4点」(6点に

1 (r_j) が「3点」、「2点」、「1点」、「0点」 のように順次小さくなる。移動局MS_jの現在の通信量 が少ない(使用率が小さい)場合には、隣接する無線表 地局でその分の無線リソースが空いている可能性が高

く、当該移動局MS」を隣接する無線基地局にハンドオーパさせ場いと考えられる。また、通信速度が速くなる (通信量が多くなる)に従って必要な送信電力も大きくなり、移動局MS」と遠方の無線基地局と通信することが難しくなる。従って、この評価点 g」(r」)が大きければ大きいほど、その移動局MS」を隣接する無線基地局ハンドオーパさせるのに適している状況であることを表す。

【0086】移動局と現在通信を行っている無線基地局 (相手局) BS₁での無線リソースの使用率R₁が0~ 20%となる場合、評価点_{B2}(R₁)が「4点」 (最 高点)であり、その使用率R₁が大きくなるに従って評 価点g 。(R 。) が「1点」、「2点」、「3点」、

「4点」のように順次大きくなる。従って、評価点 g_2 (R_j) が大きければ大きいほど、移動局と通信を行っている無線基地局(相手局) BS_1 における無線リソースに余裕があり、移動局とその無線基地局 BS_1 との組合せは通信に適している状況であることを表す。

【0087】一方、移動局と適信を行っている無線基地 局に隣接した無線基地局(隣接局) BS 、の場合も上記 と同様に、無線リソースの使用率 R, が0~20%とな る場合、評価点 g 2 (R ₁) が「4点」 (景高点) であ り、その使用率 R, が大きくなるに従って評価点 g 2 (R ₁) が 13点」、「2点」、「1点」、「0点」 のように順次小さくなる。従って、評価点 g 2 (R ₁) が大きければ大きいほど、移動局と通信を行っている無 樂基地局に呼波する無線基地局 BS 、における無線リソ クスに余格があり、移動局とその隣接局 BS 、との組合 せは通信に適している状況にあること、即ち、移動局を その現在通信を行っている無線基地局 S 、にハンドオーバら素料塞地のよりにから 変地局 BS、にハンドオーバらせることが即といす状況

【0088】移動局の逓信相手となる無線基地局 (相手 局) とその相手局に商技する無線基地局 (倒技局) の 力における無線 リノニスの運きが少ない場合には、のつ の移動局が複数の無線基地局とリンクを摂って通信を行 う場合がある。このような場合を考慮して、移動局管理 裁置19は、上述したような各移動局と無線基地局との 組合せについての評価に加えて、各移動局とリンクを張 る一または複数の無線基地局との組合せについての評価 よりな評価よりよ、図15に示す ような評価は条に基づいて定義される。

であることを表す。

【0089】移動局は、現在通信を行なっている無線差 地局との通信をできるだけ維持することが好ましく、そ の移動局の通信相手を他の無線差地局に変更する場合で あっても、制御のし易も等から変更先の無線差地局の数 はできるだけ少ないことが好ましい。このような観点か ら、図18に示す評価点が定められている。

【0090】図15において、移動局が現在通信を行なっている無線基地局(自周)との通信を維持する場合、即ち、移動局がハンドオーベを行なわない場合を最高評価点 「5点」が与えられる。そして、移動局との通信相手の変更後における無線基地局の数が多くなるにしたがってその評価点が小さくなる。そして、移動局での通信相手が複数(2つ、3つ及びそれ以上)の無線基地局に切替えられる場合、その切断え後の無線基地局に現在通信を行なっている無線基地局(自局)を含む場合は、それを含まない場合とより評価点が高くなっている無線

[0091] 移動局管理装置19は、上述したような移 動局と無線基地局との組合せに対する各評価点に基づい て、移動局とその移動局がハンドオーバして通信を新た に行なうのに適した無線基地局との組合せを選択するた めの処理を行なう。この処理は、例えば、次のようにし て行なわれる。

【0092】まず、移動局MS、がハンドオーバ後に無 線基地局BS。と通信を行うことについての評価点y

$$y_{ij} = \alpha f (P_{ij}) + \beta g_1 (r_j) + \gamma g_2 (R_i)$$
 (1)

に従って演算される。上記式 (1) において、 α 、 β 、 yは、重み定数であり、システムの要求条件に基づいて 予め設定されている。

$$z = y$$
, $+ \varepsilon D$

に従って演算される。

【0094】そして、例えば、図16に示すように、輻 棒状能となる無線基地局BS2と現在通信を行なってい る各移動局MS2、MS3、MS4及び該無線基地局B S2の通信エリアに進入してきた移動局MS1のそれぞ れと無線基地局BS2、BS1、BS3、…との組合せ

$$z = (y_{i1j} + y_{i2j}) / 2 + \varepsilon D \qquad \cdots (2 - 1)$$

$$z = (y_{i1j} + y_{i2j} + y_{i3j}) / 3 + \varepsilon D \qquad \cdots (2 - 1)$$
3)

に従って演算される。上記式 (2-2)、(2-3) に おいて、εは重み定数である。また、上記各無線基地局 BS, 1、BS, 2、BS, 3は、移動局MS, と組み 合わされる無線基地局に対して前述したように演算され た評価値 y , , の大きい順に選ばれる。

【0096】上記のようにして演算された各移動局MS 。と複数 (2つ及び3つ) の無線基地局との組合せに対 する評価点zが図16に示すような管理テーブルに追加

【0097】上記のようにて管理テーブルが完成する と、その管理テーブルを参照してハンドオーバすべき移 動局とそのハンドオーバ先の無線基地局との組合せが選 択される。

【0098】例えば、図16に示す管理テーブルを参照 して、評価点zの高い順に移動局BS,と無線基地局B S,との組合せを順次サーチし、現在通信している移動 局と無線基地局との組合せ以外の組合せのなかで最も評 信点の高い組合せが選択される。これは、現在通信を行 っている移動局と無線基地局との組合せ以外の組合せの なかで最も通信に適した移動局と無線基地局との組合せ が選択されることを意味する。上記のようにして移動局 と無線基地局との組合せが選択される結果、この例で は、移動局MS2と無線基地局BS2及びBS3との組 合せが選択される。

【0099】このようにして移動局MS2と無線基地局 BS2及びBS3との組合せが選択されると、前述した ようなRNC10からの指示に基づいたハンドオーバ処 理が実行される(図11(c)参照)。その結果、無線 基地局BS2と通信していた移動局MS2の通信相手が 無線基地局BS2及びBS3に切替えられる(部分的な

【0093】更に、上記評価点D(図15参照)を用い て、移動局MS、と無線基地局、との組合せの最終的な 評価点とが、

ii、即ち、移動局MSiと無線基地局BSiとの組合

せの評価点yiiが、上述した各評価点f(Pii)、

g₁ (r₁)、g₂ (R₁)を用いて、

について上記式 (2-1) に従って演算された各評価値 が管理テーブルの形式にまとめられる。

【0095】更に、移動局MS」と2つの無線基地局B S 1 1、B S 1 2 との組合せ、及び移動局M S 1 と3つ の無線基地局BSii、BSiz、BSiaとの組合せ についての評価点zがそれぞれ、

ハンドオーバ)。

【0100】上述した例では、移動局MS1が無線基地 局BS2の通信エリアに進入することにより、無線基地 局BS2での無線リソースが不足する(麒麟する)場合 について説明したが、無線基地局BS2と通信を行なっ ている移動局MS2、MS3、MS4のいずれかのデー 夕通信量が増大することにより、あるいは、新規に無線 基地局BS2と通信を開始する移動局が発生することに より無線基地局BS2での無線リソースが不足する場合 にも同様の処理を行なうことができる。

【0101】また、上述した例では、ハンドオーバのた めに選択される移動局と無線基地局との組合せは1つで あったが、それに限定されず、移動局と通信相手となる 無線基地局との組合せを複数選択することも可能であ る。この場合、上記評価点が高い順にその組合せが選択 される。その組合せの数は、無線基地局でまだ使用可能 な無線リソースの量と、その無線基地局と新たに通信を 開始する移動局 (ハンドオーバや発信による) や、その 無線基地局と通信においてデータ通信量が急増した移動 局がそれぞれ新たに必要とする無線リソースとの関係に 基づいて定めることができる。

【0102】更に、本発明の実施の形態に係るハンドオ ーパシステムの第六の例を説明する。この第六の例で は、各移動局が通信状況に基づいた自律制御により通信 相手となる無線基地局を切替える(ハンドオーバ)よう にしている。このため、各移動局は上述したRNC10 に設けられた移動局管理装置19と同様の機能を有す

【0103】このハンドオーバシステムの第六の例で は、例えば、図17に示すような手順に従って処理が行 なわれる.

【0104】図17において、RNC10の無線リソース管理装度12は、各無線基地局BS1、BS2、BS2、Bからそれでれた無線リソースの空き状態(あるいは、使用状態)についての報告を要求する(1)。各無線基地局BS1、BS2、BS3は、その要求に対して自局における無線リソースの空き状態をRNC10の無線リソース管理基値12に報告する(1)。

【0105】無線リソース管理装置12は、報告された 各無線基地局BS1、BS2、BS3での無線リソース の空き状態に関する情報を配下の移動局、例えば、移動 周MS1、MS2のそれぞれに無線基地局BS1、BS 2を介して通知する(2)。

【0106】各移動局MS1、MS2は、現在通信中の 無線基地局BS1、BS2及びそれに隣接する無線基地 局からの受信電界強度を測定する。そして、上記のよう に通知された現在通信中の無線基地局及びそれに隣接す 方無線基地局での無線リツースの空き状態及び制度され た上記受信電界強度に基づいて、各移動局MS1、MS 2は、前述上た例と同様に、各無線基地局の当該移動局 に対する通信相手としてのよさわしさの度合いを表す背 値点を演算する(3)。その演算手法は、上述した第五 の例で述べた手法と同様である(移動局管理機関19の 機能)。各移動局MS1、MS2は、更に、上記のよう にして演算された当該移動局と各無線基地局との組合せ に対する評価点を配述した図16に示すような管理テー ブルを作成する(4)。

【0107】上記各無線基地局での空き無線リソースに 関する情報の各移動局MS1、MS2への通知は、例え ば、所定規則程になされる。そして、各移動局MS1、 MS2は、その通知を受ける毎に、その通知された情報 及び各無線基地局からの受情電界強度の測度値に基づい て上記管理サーブルに記述される評価点を要すする。あ る無線基地局での通信量が増大して輻輳状態となると、 その無線基地局と通信を行なう移動局は、現在通信中の の無線基地局との組合せに対する評価点より申または複数 の無線基地局との組合せに対する評価点は、即または複数 の無線基地局との組合せに対する評価点が高く なり、かつ、それもの評価点の差が予め定めた基準値を 超えると、当該移動局の通信相手として当該中または複 数の無線基地局を選択する(3)。

【0108】そして、移動局は、通信相手を上記のよう にして選択した当該移動局との組合となる無線基地局に 自律的に切替える(ハンドオーバ)(4)。以後、この 移動局は、切替えられた無線基地局及びRNC10、更 に基幹網を小して他の端末に通信を行なう。

【0109】このようなハンドオーバシステムでは、各 移動局が現在通信中の無線基地局との組合せと一または 複数の無線基地局との他の組合せについての評価とを管 理し、その管理状況に基づいて各移動局が自律的に通信 相手を切替えるようにしている。後って、RNC10 は、配下の各移動局と無線基地局との組合せに対する評価点を一括して管理する必要がなくなり、RNC10での処理負担が軽減される。

【0110】また更に、本発明の実施の形態に係るハンドオーパシステムの第七の例を記明する。この第七の例も上述した第次の例と同様に、各移動局が通信状況に基づいた自律制制により通信相手となる無線基地局を切せる(ハンドオーツ、ようにしている。この例では、各移動局は、前述したように管理テーブル(図16参照)を作成することなく新たな通信相手となる無線基地局を避れてよりにしている。

【0111】例えば、ある無線基地局と通信を行なう移動局の通信データが急増して当該無線基地局が無較状態 となった場合を想定する。

【0112】各移動局は、例えば、図18に示す手順に 従って処理を行う。

【0113】例えば、無線基地同BS1と適信を行なう 移動局MS1の通信データが急増し、当該無線基地同B S1が輻射した場合を想使する。この場合、移動局MS 1は、通信データ量の増大により新たに必要となる無線 リソース量Ruと、上述したようにRNC10からの帳 行された無線基地局BS1での空きリソース量R1とを 比較する(S1)。その比較の結果、無線基地局BS1 での空き無線リソース量R1が上記新たに必要となる無 線リソース度以以上であればてS1でVPS)、移動 局MS1は、無線基地局BS1との通信状態を維持する (S2)。即ち、この場合、移動局MS1のハンドオー がはなされない

【0114】一方、上記無線基地局BS1での空きリソース量R1が上記のように移動局MS1でのデータ通信に新たに必要となる無線リソース量Ruより小さい状態であると(51でNO)、移動局MS1は、無線基地局BS1に隣接する無線基地局BS2、BS3、…からの受信電界検度を測定する(S3)。そして、その受信電界付けが行なまれる。

【0115】移動局MS1は、まず、最も優先順位の高い、(最も受信電界強度の強い)無線基地局、例えば、無 ・ 機基地局BS2からの電界強度が通信を行うために十分 なものであるか否かを判定する(S4)。その電界強度 が通信を行うために十分なものでなければ(S4でN

G)、移動局MS1は、無線基地局BS1との通信を維持する(ハンドオーバ中止)。この場合、無線基地局B S1は、空き無線リソースR1の範囲内で無線リソースを移動局MS1との通信に割当てる。

【0116】一方、無線基地局BS2からの電界強度が 通信を行うために十分なものであれば(S4でOK)、 移動局MS1は、更に、上述したようにRNC10から 報告された無線基地局BS2の空き無線リソース量R2 が当該移動局MS1で新元に必要となる無線リソース量 R u以上であるか否かを判定する(S5)。この無線基 地局BS2の空き無線リソース量R2が移動局MS1で 新たに必要となる無線リソース量Ru以上であれば(S 5でYES)、移動局MS1は、通信相手として無線基 地局BS2を相定する(S6)。この指定に基づかたR NC10の切替え制御により、移動局MS1の通信相手 が無線基地用BS1から無線東地局BS2に切替えられる の(ハンドオーバされる)。

【0117】また、無線基地局BS2の空き無線リソース量R2が移動局MS1で新たに必要となる無線リソース量R2よりたもといる場合(S6でNO)、移動局MS1は、無線基地局BS1とBS2の双方の空き無線リソース量R1及びR2の合計量(R1+R2)が当該移動局MS1で新たに必要となる無線リソース量R2以上である場合(S7でYES)、移動局MS1は、通信用上して2つの機能基地局BS1及びB2を指定する(S8)。この指定に基づいたRNC1の切替え制御により、移動局MS1の通信相手が無線基地局BS1及びB2を指定する(S8)。この指定に基づいたRNC1の切替え制御により、移動局MS1の通信相手が無線基地局BS1及びBS2を指定する(S8)。この指定に基づいたRNC1の切替え制御により、移動局MS1の通信相手が無線基地局BS1及びBS2の2局に切替えられる(一能ルンドオーバされる)。

【0118】一方、上記無線基地局BS1とBS2の双方の空き無線リソース量R1及びR2の合計量【R1 R2)が地球粉両MS1で前たに必要となる無線リソース量Ruより小さい場合(S7でNO)、移動局MS1は、無線基地局BS2の次に優先度が高い、侵債電影成立が高いの電界地度が通信を行うために十分なものであるか否かを判定する(S9)。その電界地度が通信を行うために十分なものでなければ(S9でNG)、移動局MS1は、上述の場合(S4でNG)と同様に、無線基地局BS1との通信を維持する(ハンドオーバ中止)。

【0119】上記無線基地局 PS3からの電界強度が勢動局MS1と通信を行うために十分なものであれば (S9でのK)、当該移動局MS1は、更に、上述したようにRNC10から報告された無線基地局 BS3での空き無線リソース量保3が新たに必要となる無線リソース量線 基地局 R3での空き無線リソース量線 基地局 R3での空き無線リソース量 R3が移動局MS1で新たに必要となる無線リソース量 Ru以上であると

(S10でYES)、移動局MS1は、通信相手として 無線基地局BS3を指定する(S11)。この指定に基 づいたRNC10の切替え制御により、移動局MS1の 値信相手が無線基地局BS1から無線基地局BS3に切 替えられる(ハンドオーパされる)。

【0120】一方、無線基地局BS3の空き無線リソー ス量R3が移動局MS1で新たに必要となる無線リソー ス量Ruより小さい場合(S10でNO)、移動局MS 1は、無線基地局BS1とBS3の双方の空き無線リソ

一ス量R1及びR2の合計量(R1+R3)が当該移動 局MS1で新たに必要となる無縁リソース量Ru以上と なるか否かを判定する (S12)。その合計量 (R1+ R3) が当該移動局MS1で新たに必要になる無線リソ ース量Ru以上である場合(S12でYES)、移動局 MS1は、通信相手として2つの無線基地局BS1及び BS3を指定する(S13)。この指定に基づいたRN C10の切替え制御により、移動局MS1の通信相手が 無線基地局BS1の1局から無線基地局BS1及びBS 3の2局に切替えられる(一部ハンドオーバされる)。 【0121】 上記無線基地局BS1とBS3の双方の空 き無線リソース量R1及びR3の合計量(R1+R3) が当該移動局MS1で新たに必要となる無線リソース量 Ruより小さい場合(S12でNO)、移動局MS1 は、無線基地局BS1に隣接する2つの無線基地局BS 2とBS3の双方の空き無線リソース量R2及びR3の 合計量(R2+R3) が当該移動局MS1で新たに必要 となる無線リソース量Ru以上となるか否かを判定する (S14)。この合計量(R2+R3)が上記新たに必 要となる無線リソース量Ru以上であれば(S14でY ES)、移動局MS1は、通信相手として2つの無線基 地局BS2及びBS3を指定する(S15)。この指定 に基づいたRNC10の団替制御により、移動局MS1 の通信相手が無線基地局 BS1から無線基地局 BS2及 びBS3の2局い切替られる(複数局へのハンドオー 水)。

【0122】上記無線基地局BS2とBS3の双方の空 き無線リソース量R2及びR3の合計量(R2+R3) が当該移動局MS1で新たに必要となる無線リソース量 Ruより小さい場合(S14でNO)、更に、移動局M S1は、3つの無線基地局BS1、BS2及びBS3の 空き無線リソースR1、R2及びR3の合計量(R1+ R2+R3) が当該移動局MS1で新たに必要となる無 繰りソース量Ru以上となるか否かを判定する(S1 6)。この合計量 (R1+R2+R3) が当該移動局M S1で新たに必要となる無線リソース量Ru以上であれ ば (S16でYES)、移動局MS1は、通信相手とし て3つの無線基地局BS1、BS2及びBS3を指定す る (S17)。この指定に基づいたRNC10の切替え 制御により、移動局MS1の通信相手が無線基地局BS 1の1局から無線基地局BS1、BS2及びBS3の3 局に切替えられる (一部ハンドオーバ)。

【0123】一方、上記無線リソースの合計量(R1+ R2+R3) が当該移動局NS1で新たに必要となる無 線リソース量Ruより小さい場合(S16でNO)、隣 接する他の無縁基地局がなければ、移動局NS1は、上 迷した場合(S4でNG、S9でNG)と同様に、無線 基地周B31との通信を維持する(ハンドオーパ中 け)。

【0124】上記のような処理は、無線基地局と通信を

行っている移動局のデータ連信量が急増した場合に、そ の移動局にて実行される。後って、ある無線基地局の通 信エリアに連信中の移動局が進入することにより当該無 線基地局が傾頼状態になる場合になった場合には、死手順 当該無線基地局と連信を行うどの移動局が上述した手順 (図18参照)に従ってハンドオーバに係る処理手順

(図18条所)に使ってハンドオーハに称る処理を実行 すべきかが明らない。そこで、RNC10が前途したよ うに移動局管理装置19を備えることにより、上記の場 合でも適当な移動局が通信状況に基づいた自律制御によ り通信相手となる無線基地局を切替えることができるよ うにかス

【0125】例えば、並信エリアに移動局が進入することにより解較状態となる無線基地局と既に通信を行っている全移動局が当該無線基地局からの受信電界強度を割定し、各移動局がその測定値をRNC10の移動局管理装置19に、各移動局に不必発生の企業を引き、その報告に表す信電界強度の弱い偏に各移動局に対してヘンドオーバに関する処理を行うことを指示する。この指示された移動局が図18に示す手順に従ってハンドオーバに関する処理を行うことを指示する。この指示された移動局が図18に示す手順に従ってハンドオーバに関する処理を行うことを指示する。この指示された移動局が別18に示す手順に従ってハンドオーバに関する処理を行う。その際、無線リンース量 Ruは、その指定された移動局が現在使用している無線リソース量となる、この指定された移動局が現在使用している無線リソース量となる。

【0126】上記移動局のハンドオーバによる無線リソースの減少量が適信エリアに進入する移動局の使用すべき無線リソース量に達しない場合、あるいは、上記指示された移動局のハンドオーバが可能でない場合、次の修手順位(次に受信電界強度の低い)の移動局に対して図18に示す手順に使ってハンドオーバに関する処理を行うことが指示される。そして、無線リソースの減少量が、その通信エリアに進入する移動局が使用すべき無線リソース量に達するまで、上述した移動局の指定及びその指定エリアに進入する移動局が使用すべき無線リソース量に達するまで、上述した移動局の指定及びその指定コウイけわれる。

【0127】次に、本発明の実施の形態に係るハンドオーバシステムの第人の何役長明する。 この何では、前途した各例のようにして移動局のハンドオーバがなされた後に、そのハンドオーバされた移動局での通信状況が適切なものか否かを検証するようにしている。

【0128】この例に係るハンドオーバシステムは、図 19に示すように構成されている。

【0129】図19において、RNC10は、前途した 第五の何と同様に(図10回参照)、電界製度測定制調 装置11、無線リソース管理装置12、スイッチ13及 び移動局障塞製置19を有している。RNC10は、更 に、BER (Bit Error Rate: 誤り率) 測定制衡装置2 0を有している。また、各移動局MS1、MS2、MS 3は、無線基地局との通信における誤り率(BER)を 測定するためのBER測定器を備えている。 【0130】この例では、図20に示す手順に従って処理が行われる。

【0131】無線基地局BS1と通信を行っていた移動 局MS1のハンドオーパにより無線基地局BS2が輻輳 状態となると、図11に示す手順と同様の手順(a)、

(b)、(c)に従って、輻輳状態となる無線基地局B S2と通信を行っていた移動局MS2がハンドオーパさ れる。その結果、移動局MS2の通信相手が無線基地局 BS2の1局から無線基地局BS2及びBS3の2局に 切替えられる。

【0132】このようにして移動局MS2の油信和手が 態線基地局BS2及びBS3に切替えられると、この移 動局MS2の地信における部り率の確認が行われる(図 20の(4)参照)。即ち、RNC10のBR2拠定制 野装置20は、各無線基準局BS2及びBS3を介して 移動局MS2に影り率を測定するように指示する。この 指示を移動局MS2が受信すると、BER刺定器がその 指示に教へ子無線基準局BS2、BS3との通信にお ける誤り率を測定する。そして、移動局MS2は、その 側定された認り率を不RC10のBER測定制御装置2 0に報告する。

【0133】BER測定制御装置20は、移動局MS2 から誤り率の報告を受けると、その誤り率が一定値以下 であるか否かを判定する。その繰り率が一定値以下であ れば、良好にハンドーバされた旨がBER測定制御装置 20から無線基地局BS2、BS3を介して移動局MS 2に通知される。一方、その誤り率が一定値を超える場 合、その移動局MS1とその通信相手となる無線基地局 との組合せが不適当であるとして、BER測定制御装置 20は、移動局管理装置19に対して再度ハンドオーバ すべき移動局とその通信相手となる無線基地局との組合 せを選択する手順を開始するように指示する。すると、 移動局管理装置19での制御のもと、前述したような手 順(図12参照)に従ってハンドオーバすべき移動局と そのハンドオーバ先となる無線基地局との組合せの選択 が再度行われる。そして、その選択された移動局がそれ と組になる無線基地局にハンドオーバされる。

【0134】上記のようにして無線基地局日S2と通信 を行っていた移動局の隣接する無線基地局へのハンドオ 一パに関する処理がなされ、そのハンドオーパ後の通信 が良好な状態であることが確認されると、移動局MS1 の無線基地間BS1から無線基地局BS2~のハンドオ 一パが両階は入る(図20の(e)参照)、

【0135】上記各例において、最低骨破保証を置14 (図2、図5、図7におけるS3での処理参照)が検出 手段に対応し、無線リソース管理装置12 (図2、図 5、図7におけるS5、S6での処理参照)が切替え制 郷手段に対応し、特に、図2、図5、図7におけるS5 での処理参照件段に対応じ、

【0136】図8に示すプロトコル変換器18を含む無

繰りソース管理装置12及び102とを結ぶ経路が、移 動局についての無線リソースに関する情報を有線区間を 介して第一の無線通信システムから第二の無線通信シス テムにプロトコル変換を行って転送する手段に対応す

【0137】各無線基地局や移動局の機能の一部が、輻 藤判定手段に対応1. 移動局管理装置19 (図12 図 17に示す手順(3)での処理、図18に示す手順での 処理参照) が選択手段に対応し、図11に示すハンドー バ2での処理の一部が切替え制御手段に対応する。ま た、BER測定制御装置20の機能が通信状態観測手段

及び状態判定手段、再切替制御手段に対応する。

[0138]

【発明の効果】 本発明のハンドオーバシステムでは、あ る無線基地局が輻輳しても、他の輻輳していない無線基 地局へ移動局をハンドオーバできるので移動通信網全体 において無線リソースの有効活用を図ることが可能にな る。また、ユーザ所望の最低限の伝送容量、ないしはス ループットを確保できるので、ユーザの利便性を図るこ とが可能となる。

【図面の簡単な説明】

- 【図1】 本発明のハンドオーバシステムの第一の例を表 すプロック構成図である。
- 【図2】 本発明のハンドオーバシステムの動作フローを 表す図である。
- 【図3】 本発明のハンドオーバシステムの第二の例を示 すブロック構成図である。
- 【図4】本発明の信号分配/合成装置の構成例を表す図 である。
- 【図5】本発明の第二の例の動作フローを表す図であ
- 【図6】本発明のハンドオーバシステムの第三の例を示 すブロック構成図である。
- 【図7】本発明の第三の例の動作フローを表す図であ
- 【図8】 本発明のハンドオーバシステムの第四の例を示 すプロック構成図である。
 - 図15]

【図9】 本発明のハンドオーバシステムの第五の例が適 用される移動通信システムの構成例を示す図である。

【図10】 本発明のハンドオーバシステムの第五の例を 示すブロック構成図である。

【図11】ハンドオーバ処理の手順の一例を示すシーケ ンス図である。

【図12】最適な移動局と無線基地局を選択するための 処理手順の一例を示すシーケンス図である。

【図13】評価点表の一例(その1)を示す図である。

【図14】評価点表の一例(その2)を示す図である。

【図15】評価点表の一例(その3)を示す図である。

【図16】評価点の管理テーブルの一例を示す図であ る。

【図17】 本発明のハンドオーバシステムの第六の例に おいて、最適な移動局と無線基地局を選択するための処 理手順の一例を示すシーケンス図である。

【図18】 本発明のハンドオーバシステムの第七の例に おいて、最適な移動局と無線基地局を選択するための処 理手順の一例を示すフローチャートである。

【図19】本発明のハンドオーバシステムの第八の例を 示すプロック構成図である。

【図20】ハンドオーバ処理の手順の一例を示すシーケ ンス図である。

【図21】従来例を示すプロック構成図である。

【図22】従来例の動作フローを表す図である。

【符号の説明】

10 RNC (Radio Network Controller:無線網制御 装置)

- 11 電界強度測定制御装置
- 12 無線リソース管理装置
- 13 交換機
- 14 最低带城保証装置
- 15 信号分配/合成装置
- 16 帯域測定装置(最低帯域監視装置)
- 17.18 プロトコル変換器
- 19 移動局管理装置
- 20 BER測定制御装置

評価点表の一例(その3)を示す図

	1つの無	熊線基地局	2つの無	線基地局	3つの無線基地局		
	自局	隣接局	自局を 含む	隣接局 のみ	自局を 含む	隣接局 のみ	
評価点	5点	4点	3点	2点	1点	0点	

【図1】

本発明のハンドオーバシステムの第一の例を表すブロック構成図

【図13】

評価点表の一例(その1)を示す図

電界 [dB /	強度 u V]	-10	0	10	20	30	40	50	60	70
ダイナミックレンジ										
47.7-	相手局	0点	1点	2点	3点		4点			
評価点	隣接局	0,4	惊	2点	4点		4点		 	

【図3】

本発明のハンドオーバシステムの第二の例を示すブロック構成図

【図4】

本発明の信号分配/合成装置の構成例を表す図

【図14】 評価点表の一例(その2)を示す図

無いの	練リン 使用準	ース E[%]	P	10	20	30	40	50	60	7	0 8	0 9	100
	移動局					4 ni	i		8	点	2点	1点	0点
評価点	無線	相手局		4,4		3点		2点		1,5	ē	t	凉
	基地局	隣接局		4 4 1		3,5		2.1		1,5	ā	C	点

本発明のハンドオーバシステムの第三の例を示すブロック構成図

【図8】

本発明のハンドオーバシステムの第四の例を示すブロック構成図

【図9】

本発明のハンドオーバシステムの第五の例が 適用される移動通信システムの構成例を示す図

【図10】

本発明のハンドオーバシステムの第五の例を示すブロック構成図

【図16】

評価点の管理テーブルの一例を示す図

		15						
	相手局		隣	2つのBS と通信	3つのBS と通信			
\	BS2	BS1	BS3	BS4	:			
MS1	y21+ € D	y11+€D				2		
MS2	y22+εD	y12+ ε D						
MS3	y23+ ε D	y13+ ε D						
MS4	y24+ € D	y14+ ε D	•••					
:								

【図11】

ハンドオーバ処理の手順の一例を示すシーケンス図

最適な移動局と無線基地局を選択するための 処理手順の一例を示すシーケンス図

本発明のハンドオーバシステムの第六の例において、最適な移動局と 無線基地局を選択するための処理手順の一例を示すシーケンス図

本発明のハンドオーバシステムの第七の例において、最適な移動局と無線基地局を選択するための処理手順の一例を示すフローチャート

【図19】

本発明のハンドオーバシステムの第八の例を示すブロック構成図

【図20】

ハンドオーバ処理の手順の一例を示すシーケンス図

【図21】

従来例を示すブロック構成図

[図22]

従来例の動作フローを表す図 START ①電界強度測定制御装置は、移動局へ、無線基地局1を含め周辺無線基 地局の電界強度を測定し、報告するよう求める。 ②移動局は、周辺無線基地局の電界 強度を繰り返し測定する。 移動局が移動し、無線基地局 2の通信エリア内に入る。 ③移動局は、無線基地局2の電界強度 が一定量、無線基地局1の電界強度を 越えたことを検出した場合、電界強度 測定制御装置へその旨を報告する。 ④ 東界強度別定制御装置はハンドオーバの実行を、無線リソース管理装置へ指示する。 ⑤ 無線リソース管理装置は、無線基 地局1へ割当てていた無線リソース 量と同等の無線リソースを無線基地 局2へ割当て、無線チャネルを決定 する。 **2.55** ──6無線リソースは十分かっ Yes . ⑦電界強度測定制御装置は、無線リ ゾース管理装置が割当てた無線チャ ネルが通信可能な電界強度を有して いるか測定するよう、無終基地局1 を介して移動局を指示する。 8 電界強度は十分か2 Yes 811 ⑨無線リソース管理装置は、インタ ネット等と無線基地局2を接続する よう、スイッチを制御する。 ①無線リソース再選択or ハンドオーバ中止の選択 √ S10 ⑩無線リソース管理装置は、無線基 地局1を介して、無線基地局2へハン ドオーバするよう移動局を指示する。 END

フロントページの続き

(72)発明者 梅田 成視 東京都千代田区永田町二丁目11番1号 株 式会社エヌ・ティ・ティ・ドコモ内 Fターム(参考) 5K067 AA12 AA23 BB04 DD44 DD46 EE02 EE10 EE16 FF16 JJ37 JJ39