

Software Regression Testing

Speaker: Jerry Gao Ph.D.

Computer Engineering Department San Jose State University

email: jerry.gao@sjsu.edu

URL: http://www.engr.sjsu.edu/gaojerry

Presentation Outline

- What is Software Regression Testing?
- Basic Software Regression Problems
- Software Regression Testing Process
- Regression Strategies for Traditional Software
- Basic Solutions to Software Regression Problems
- Regression Strategies for Object-Oriented Software

What is Software Regression Testing?

What is Software Regression Testing?

- Testing activities occur after software changes.
- Regression testing usually refers to testing activities during software maintenance phase.

Major testing objectives:

- Retest changed components (or parts)
- Check the affected parts (or components)

Regression testing at different levels:

- Regression testing at the unit level
- Re-integration
- Regression testing at the function level
- Regression testing at the system level

What is Software Regression Testing?

Who perform software Regression:

Developers - regression testing at the unit level or integration Test engineers - regression testing at the function level QA and test engineers - regression testing at the system level

What do you need to perform software regression testing?

- Software change information (change notes).
- Updated software REQ and Design specifications, and user manuals.
- Software regression testing process and strategy.
- Software regression testing methods and criteria.

Problems and Challenges in Software Regression Testing

Major problems in software regression testing:

- How to identify software changes in a systematic way?
 - REQ. specification changes
 - Design specification changes
 - Implementation (or source code) changes
 - User manual changes
 - Environment or technology changes
 - Test changes
- How to identify software change impacts in a systematic way?
 - REQ impacts
 - Design impacts
 - Implementation impacts
 - User impacts
 - Test impacts

Problems and Challenges in Software Regression Testing

Major regression testing problems:

- How to use a systematic method or tool to identify changed software parts?
- How to use a systematic method or tool to identify software change impacts?
- How to use a systematic method or tool to identify affected software test cases?
- How to reduce the re-test suites?
- How to select the test cases in a test suite?

Major challenge in software regression testing:

- How to minimize re-testing efforts, and achieve the adequate testing coverage?

Software Regression Process

Software Regression Process:

- Step #1: Software Change Analysis
 - Understand and analyze various software changes.
- Step #2: Software Change Impact Analysis
 - Understand and analyze software change impacts
- Step #3: Define Regression Test Strategy and Criteria
- Step #4: Define, select, and reuse test cases to form a regression test suite
- Step #5: Perform re-testing at the different levels.
 - re-testing at the unit level
 - re-testing at integration level
 - re-testing at the function level
 - re-testing at the system level

Step #6: Report and analyze regression test results

Different Types of Software Changes

Requirements analysis	Requirements Spec. Changes -> add new functional features -> change current function features -> delete existing function features
System Design	System architecture changes -> change component interactions -> add new components/subsystems -> update existing components -> delete existing components
	High-level design doc. Changes -> change state-based behaviors -> change component interfaces -> change database design -> change GUI design -> change function design

Jerry Gao Ph.D.

All Rights Reserved 9

Different Types of Software Changes

System Design Changes	- Low-level design doc. Changes -> change algorithm logic -> change component structure
- System implementation	- Component changes - internal data types and names - internal structures, such as> class relationships> control flow and data flow - internal functions
	- Component interface changes - call signatures - message interactions - protocol messages and formats
	- Technology and/or language changes

Software Changes Impacts

Types of system changes	Types of product impacts
Requirements changes	Affect design, coding, and testing
	Document update
Design changes	Affect coding and tests
	Affect associated components
	Affect system architecture
	Affect related component interactions
Implementation changes	Affect test cases, test data, test scripts
	Affect test specification.
	Code change impact s
Test changes	Affect other tests.
	Affect test documentation
Document changes	Affect other documents.

Jerry Gao Ph.D.

All Rights Reserved 11

Software Regression Strategy

What is a software Regression strategy?

Software test strategy provides the basic strategy and guidelines to test engineers to perform software regression testing activities in a rational way.

Software Regression strategy usually refers to
--> a rational way to define regression testing scope, coverage
criteria, re-testing sequence (or order) and re-integration orders.

Software regression test models are needed to support the definition of software regression test strategy, test cases, and coverage criteria.

Typical regression test models:

control flow graph, state-based behavior diagram object-oriented class diagram scenario-based model component-based Regression model

<u>Traditional Software Regression Strategy Based on</u> <u>The Firewall Concept</u>

A Module-Based Firewall Concept for Software Regression Testing:

A module firewall in a program refers to a changed software module and a closure of all possible affected modules and related integration links in a program based on a control-flow graph.

With this firewall concept, we can reduce the software regression testing to a smaller scope -->

All modules and related integration links inside the firewall.

This implies that:

- re-test of the changed module and its affected modules
- re-integration for all of related integration links

Similarly, we can come out different kinds of firewalls based on various test models.

- data firewall, function firewall

- class firewall, state/transaction firewall

An Object-Oriented Software Regression Strategy

An OO Software Regression Testing Strategy Based on the Class Firewall Concept:

- Identify changed classes
- Identify affected classes using the concept of Class Firewall
- Apply the Class Test Order strategy to classes in a class firewall to perform class re-testing at the unit level
- Use the Class Test Order to re-integrate classes together.
- Select, reuse, and define test cases based on the class firewall and change information.

The Class Firewall Concept

A class firewall concept in OO Software is very useful for OO regression testing.

What is a class firewall?

- A class firewall is a closure set of all classes that are directly or indirectly dependent on the changed class in an OO program.
- The class firewall provides the safe scope of regression testing for an OO software after changing a class.
- Similarly, we can apply to many changed classes.

Class Firewall Application:

- With this class firewall concept, we can narrow down the class regression testing scope, including unit re-testing, and re-integration.
- Based on the class firewall and changed information, we can select, define, and reuse class test cases for regression testing.

Jerry Gao Ph.D.

Jerry Gao Ph.D.

Jerry Gao Ph.D.