Name: Jerry Jiang

1. Let $f: [-\frac{\pi}{2}, \frac{\pi}{2}] \to [-5, 3]$ be the function with rule $f(x) = 4\sin x - 1$. Give the full function definition for f^{-1} .

$$y = 4\sin x - 1$$

$$y = 4\sin y - 1$$

$$\sin y = \frac{x+1}{4}$$

$$y = \arccos\left(\frac{x+1}{4}\right)$$

$$\int_{-1}^{-1} \left[-5,3\right] \rightarrow \left[-\frac{\pi}{2},\frac{\pi}{2}\right], \quad \int_{-1}^{\pi}(x) = \arccos\left(\frac{x+1}{4}\right)$$

2. Let z = 3 - 7i and w = -4 + 6i. Find real numbers p and q so that pz + qw = 6.5 - 11i.

$$3p-7pi + (-4e) + bei = b. 5-11i$$

 $(3p-4e) + (-7p+be) i = b.5-11i$
 $5p-4e = b.5$
 $-7p+be = -11$
 $-5p = -2.5$
 $5p = \frac{1}{2}$
 $6p = \frac{1}{2}$

3. Let $f: \mathbb{R} \to \mathbb{R}$ be the function with rule f(x) = 5x - 3. Prove that f is one-to-one. A continuous function of f(x) = 5x - 3.

for
$$\chi_1$$
 $\frac{f(x)}{f}$ $5\chi_1-3$

if there's an χ_2 that make $5\chi_1-3$

then χ_2 $\frac{f(\chi)}{f(\chi)}$ $5\chi_2-3$, so $\chi_1=\chi_2$.

So f must be injective.

4. Solve
$$3\sin^2 x = 4\cos x - 1$$
 for $0 \le x < 2\pi$.

x = 0.841/5.44 tzkn

$$cos x = \frac{2}{3} \text{ or } ^{2}$$
 (inadmissable)

5. The curve
$$y = \sin x$$
 is stretched scale factor a in the y-direction, then stretched scale factor b in the x-direction, then translated by $\binom{h}{k}$. The resulting curve has equation $y = 3\sin(2x + \pi) + 7$. Find the values of a , b , h and k .

$$h = -\frac{1}{\lambda}$$

$$\frac{y-7}{3} = \sin\left(\frac{x+\frac{\pi}{2}}{\frac{1}{2}}\right)$$

6. One solution of the equation
$$3w^3 + aw^2 - 3w + 10 = 0$$
 where a is a constant is $w = -2$. Find the other two solutions.

7. Solve the inequality $\frac{2+x}{5x-3} \ge 8$. Give your answer in interval notation. $f(x) = \frac{\chi+2}{\int x-\zeta}$

according to the graph on the right,

8. Give a proof by contradiction to show that the sum of a rational number and an irrational number must be irrational.

$$\frac{a}{b} - \frac{c}{d} = IR$$

since IR number can't be written in fractional form, hypothesis fails.

. . the sum of a rational and an irrational number must be irrational.

9. The first three terms of an arithmetic sequence are $2\sin\theta$, $3\cos\theta$ and $(\sin\theta + 2\cos\theta)$ respectively, where θ is an acute angle. The sum of the first twenty terms of this sequence is an integer. Find its value.

$$c = 2 sin \theta$$

$$tan \theta = \frac{4}{3}$$

$$\theta = \frac{1}{3}$$
 $\theta = \frac{1}{3}$
 $\theta =$

10. Solve the simultaneous equations $z^2 + w^2 + 3z + 3w = 8$ and zw + 4z + 4w = 2 for $z, w \in \mathbb{C} \setminus \mathbb{R}$.

2 (~ + 4) + 4 (~ + +) = 18

$$(1-w)w + 4 + 2 = 0$$

$$w^{2} - w - 2 = 0$$

$$(w^{2} - 1)(w + 1) = 0$$

$$w_{1} = 2$$

$$w_{2} = -1$$

$$(inadmisskyble).$$

$$-12w - w^{2} - 48 - 4w + 4w = 2$$

$$w^{2} + 12w + 4k = 0$$

$$0 = 144 - 84 + 200$$

$$= -40 - 56$$

$$w_{1} = -1$$

$$(inadmisskyble).$$

Solutions to HL1 Assignment #15

- 1. The required inverse function is $f^{-1}: [-5,3] \to [-\frac{\pi}{2},\frac{\pi}{2}]$ with rule $f^{-1}(x) = \arcsin(\frac{x+1}{4})$.
- 2. Equating real and imaginary parts gives the simultaneous equations 3p-4q=6.5 and -7p+6q=-11, whence p=0.5 and q=-1.25.
- 3. Let $f(x_1) = f(x_2)$. So $5x_1 3 = 5x_2 3$, whence $x_1 = x_2$. Hence f is injective.
- 4. Let $c = \cos x$. Then we have the equation $3 3c^2 = 4c 1$, or equivalently $3c^2 + 4c 4 = 0$, whence c = -2 or $c = \frac{2}{3}$. Hence x = 0.841, 5.44.
- 5. $a = 3, b = \frac{1}{2}, h = -\frac{\pi}{2}, k = 7.$
- 6. By the factor theorem p(-2) = 0, hence -24 + 4a + 6 + 10 = 0, whence a = 2. Dividing p(x) by x 2 gives the quadratic factor $3w^2 4w + 5$, whose roots $(2 \pm i\sqrt{11})/3$ are the required solutions.
- 7. One approach that builds on our knowledge of the bilinear function is to draw the graph of $y = \frac{2+x}{5x-3}$ and see where this graph intersects or lies above the line y = 8. Doing so gives $x \in \left[\frac{3}{5}, \frac{2}{3}\right]$.
- 8. Suppose to the contrary that the sum of a rational number r_1 and an irrational number x is a rational number r_2 . Then $r_1 + x = r_2$, or equivalently $x = r_2 r_1$. But the set of rational numbers is closed under subtraction, so x must also be rational. This contradiction, namely x is both rational and irrational, means that what we supposed is false, which completes the proof.
- 9. Let $c = \cos \theta$ and $s = \sin \theta$. Then 3c 2s = s c, or equivalently 4c = 3s, whence $\tan \theta = \frac{4}{3}$. Since θ is acute we conclude $c = \frac{3}{5}$ and $s = \frac{4}{5}$. Hence our arithmetic sequence has first term $\frac{8}{5}$ and common difference $\frac{1}{5}$. So

$$S_{20} = 10\left(\frac{16}{5} + \frac{19}{5}\right) = 70.$$

10. Add twice the second equation to the first to give $(z+w)^2 + 11(z+w) - 12 = 0$, whence z+w=1 or z+w=-12, or equivalently w=1-z or w=-12-z. Substituting the first of these in zw+4z+4w=2 gives only real solutions. Substituting the second gives -z(12+z)-48=2, or equivalently $z^2+12z+50=0$, whence

$$z = \frac{-12 \pm \sqrt{-56}}{2} = -6 \pm i\sqrt{14}.$$

Finally, $(z, w) = (-6 + i\sqrt{14}, -6 - i\sqrt{14})$ or $(z, w) = (-6 - i\sqrt{14}, -6 + i\sqrt{14})$.