Discrete Structures

Functions

Today's Lecture

- Relations and Functions
- Definition of Function
- Examples of Functions
- One-to-One Function
- Onto Function
- Bijective Function (One-to-One correspondence)
- Inverse Functions

If we want to describe a relationship between elements of two sets A and B, we can use **ordered pairs** with their first element taken from A and their second element taken from B.

Since this is a relation between **two sets**, it is called a **binary relation**.

Definition: Let A and B be sets. A binary relation R from A to B is a subset of A×B.

In other words, for a binary relation R we have $R \subseteq A \times B$. We use the notation aRb to denote that (a, b) $\in R$ and aRb to denote that (a, b) $\notin R$.

If we have two sets $A = \{1,2,3,4,5\}$ and $B = \{5,6,7,8,9\}$

The cartesian product of A and B is

```
A \times B = \{ (1,5), (1,6), (1,7), (1,8), (1,9), (2,5), (2,6), (2,7), (2,8), (2,9), (3,5), (3,6), (3,7), (3,8), (3,9), (4,5), (4,6), (4,7), (4,8), (4,9), (5,5), (5,6), (5,7), (5,8), (5,9) \}.
```

The rule is to add 4:

$$R = \{ (1,5), (2,6), (3,7), (4,8), (5,9) \}.$$

The **domain** is the set of all values which are first members of the ordered pairs in the relation, i.e.,

Dom
$$(R) = \{1, 2, 3, 4, 5\}$$

The **range** is the set of all values which are second members of the ordered pairs in the relation, i.e.,

Range
$$(R) = \{5, 6, 7, 8, 9\}$$

One to One Relations

Dom $(R) = \{1, 2, 3, 4, 5\}$

Range $(R) = \{5, 6, 7, 8, 9\}$

Many to Many relation

Dom (R) = {Ahmad, Peter, Jaweria, Hamad}

Range (R) = {Paris, London, Dubai, New York, Cyprus}

Note That: Ali is not in the Domain

Relations (Many to One relation)

Dom (R) = {Bilal, Peter, Salman, Ali, George, Aziz}

Range $(R) = \{62, 64, 66\}$

Relations (One to Many relation)

Range $(R) = \{14, 30\}$

Range (R) = {Pen, Pencil, Ruler, Needle, Stick}

Many to One Relationship

One to One Relationship

One to Many Relationship

Many to Many Relationship

Function

A function *f* from set A to set B is a relation (rule of correspondence) that assigns each element *x* in the set A to exactly one element *y* in the set B.

Set A is the domain

1). Must use all the x's in A.

Set B is the Codomain

2). The x value can only be assigned to one y in B.

Function (Definition)

Definition

A function f from a set X to a set Y, denoted $f: X \to Y$, is a relation from X, the domain, to Y, the co-domain, that satisfies two properties: (1) every element in X is related to some element in Y, and (2) no element in X is related to more than one element in Y. Thus, given any element x in X, there is a unique element in Y that is related to x by f. If we call this element y, then we say that "f sends x to y" or "f maps x to y" and write $x \to y$ or $f: x \to y$. The unique element to which f sends x is denoted

```
f(x) and is called f of x, or the output of f for the input x, or the value of f at x, or the image of x under f.
```

The set of all values of f taken together is called the range of f or the image of X under f. Symbolically,

range of $f = \text{image of } X \text{ under } f = \{y \in Y \mid y = f(x), \text{ for some } x \text{ in } X\}.$

Function (Arrow diagrams)

If X and Y are finite sets, you can define a function f from X to Y by drawing an arrow diagram. You make a list of elements in X and a list of elements in Y, and draw an arrow from each element in X to the corresponding element in Y.

This arrow diagram does define a function because

- 1. Every element of X has an arrow coming out of it.
- 2. No element of *X* has two arrows coming out of it that point to two different elements of *Y*.

Functions and non functions

Which of the arrow diagrams define functions from $X = \{a, b, c\}$ to $Y = \{1, 2, 3, 4\}$?

Function (Inverse Image)

Definition

Given an element y in Y, there may exist elements in X with y as their image. If f(x) = y, then x is called a **preimage of** y or an **inverse image of** y. The set of all inverse images of y is called *the inverse image of* y. Symbolically,

the inverse image of
$$y = \{x \in X \mid f(x) = y\}.$$

Let $X = \{1, 2, 3, 4\}$ and $Y = \{a, b, c, d, e\}$, and define $F: X \to Y$ by the following arrow diagram:

Let $A = \{1, 4\}, C = \{a, b\}, \text{ and } D = \{c, e\}. \text{ Find } F(A), F(X), F^{-1}(C), \text{ and } F^{-1}(D).$

Functions defined by Arrow diagrams

Let $X = \{a, b, c\}$ and $Y = \{1, 2, 3, 4\}$. Define a function f from X to Y by the arrow diagram in Figure 7.1.3.

- a. Write the domain and co-domain of f.
- b. Find f(a), f(b), and f(c).
- c. What is the range of f?
- d. Is c an inverse image of 2? Is b an inverse image of 3?
- e. Find the inverse images of 2, 4, and 1.
- f. Represent f as a set of ordered pairs.

Examples of Functions

The Identity Function on a Set

Given a set X, define a function I_X from X to X by $I_X(x) = x$, for all x in X.

The function I_X is called the **identity function on** X because it sends each element of X to the element that is identical to it. Thus the identity function can be pictured as a machine that sends each piece of input directly to the output chute without changing it in any way.

Sum/difference of Functions

Let $F: \mathbb{R} \to \mathbb{R}$ and $G: \mathbb{R} \to \mathbb{R}$ be functions. Define new functions $F + G: \mathbb{R} \to \mathbb{R}$: For all $x \in \mathbb{R}$,

$$(F + G)(x) = F(x) + G(x)$$

F and G must have same Domains and Codomains.

Equality of Functions

Theorem: If $F: X \to Y$ and $G: X \to Y$ are functions, then F = G if, and only if, F(x) = G(x) for all $x \in X$.

Example

Let $J_3 = \{0, 1, 2\}$, and define functions f and g from J_3 to J_3 as follows: For all x in J_3 ,

$$f(x) = (x^2 + x + 1) \mod 3$$
 and $g(x) = (x + 2)^2 \mod 3$.

Does f = g?

x	$x^2 + x + 1$	$f(x) = (x^2 + x + 1) \bmod 3$	$(x + 2)^2$	$g(x) = (x+2)^2 \bmod 3$
0	1	$1 \ mod \ 3 = 1$	4	$4 \mod 3 = 1$
1	3	$3 \mod 3 = 0$	9	$9 \ mod \ 3 = 0$
2	7	$7 \ mod \ 3 = 1$	16	$16 \ mod \ 3 = 1$

One-to-One Functions

Definition

Let F be a function from a set X to a set Y. F is one-to-one (or injective) if, and only if, for all elements x_1 and x_2 in X,

if
$$F(x_1) = F(x_2)$$
, then $x_1 = x_2$,

or, equivalently, if $x_1 \neq x_2$, then $F(x_1) \neq F(x_2)$.

Symbolically,

 $F: X \to Y \text{ is one-to-one} \Leftrightarrow \forall x_1, x_2 \in X, \text{ if } F(x_1) = F(x_2) \text{ then } x_1 = x_2.$

One-to-One Functions

Dom
$$(R) = \{1, 2, 3, 4, 5\}$$

Codomain(R)={5, 6, 7, 8, 9,10}

One-to-One Functions

Identifying One-to-One functions defined on sets

Now suppose f is a function defined on an infinite set X. By definition, f is one-to-one if, and only if, the following universal statement is true:

$$\forall x_1, x_2 \in X$$
, if $f(x_1) = f(x_2)$ then $x_1 = x_2$.

Thus, to prove f is one-to-one, you will generally use the method of direct proof:

suppose x_1 and x_2 are elements of X such that $f(x_1) = f(x_2)$

and show that $x_1 = x_2$.

To show that f is *not* one-to-one, you will ordinarily

find elements x_1 and x_2 in X so that $f(x_1) = f(x_2)$ but $x_1 \neq x_2$.

Define $f: \mathbf{R} \to \mathbf{R}$ and $g: \mathbf{Z} \to \mathbf{Z}$ by the rules

$$f(x) = 4x - 1$$
 for all $x \in \mathbf{R}$

and

$$g(n) = n^2$$
 for all $n \in \mathbb{Z}$.

- a. Is f one-to-one? Prove or give a counterexample.
- b. Is *g* one-to-one? Prove or give a counterexample.

If the function $f: \mathbf{R} \to \mathbf{R}$ is defined by the rule f(x) = 4x - 1, for all real numbers x, then f is one-to-one.

Proof:

Suppose x_1 and x_2 are real numbers such that $f(x_1) = f(x_2)$. [We must show that $x_1 = x_2$.] By definition of f,

$$4x_1 - 1 = 4x_2 - 1$$
.

Adding 1 to both sides gives

$$4x_1 = 4x_2$$

and dividing both sides by 4 gives

$$x_1 = x_2$$

which is what was to be shown.

If the function $g: \mathbb{Z} \to \mathbb{Z}$ is defined by the rule $g(n) = n^2$, for all $n \in \mathbb{Z}$, then g is not one-to-one.

Counterexample:

Let
$$n_1=2$$
 and $n_2=-2$. Then by definition of g ,
$$g(n_1)=g(2)=2^2=4 \quad \text{and also}$$

$$g(n_2)=g(-2)=(-2)^2=4.$$
 Hence
$$g(n_1)=g(n_2) \quad \text{but} \quad n_1\neq n_2,$$

and so g is not one-to-one.

Onto Functions on Sets

Definition

Let F be a function from a set X to a set Y. F is **onto** (or **surjective**) if, and only if, given any element y in Y, it is possible to find an element x in X with the property that y = F(x).

Symbolically:

 $F: X \to Y \text{ is onto } \Leftrightarrow \forall y \in Y, \exists x \in X \text{ such that } F(x) = y.$

 $F: X \to Y \text{ is } not \text{ onto } \Leftrightarrow \exists y \text{ in } Y \text{ such that } \forall x \in X, F(x) \neq y.$

Onto Functions on Sets

Each element y in Y equals F(x) for at least one x in X.

A Function That Is Onto

At least one element in Y does not equal F(x) for any x in X.

A Function That Is Not Onto

Onto Functions on Sets

Identifying Onto Functions

Domain of G Co-domain of G

Now suppose F is a function from a set X to a set Y, and suppose Y is infinite. By definition, F is onto if, and only if, the following universal statement is true:

$$\forall y \in Y, \exists x \in X \text{ such that } F(x) = y.$$

Thus to prove F is onto, you will ordinarily use the method of generalizing from the generic particular:

suppose that y is any element of Y

and show that there is an element X of X with F(x) = y.

To prove *F* is *not* onto, you will usually

find an element y of Y such that $y \neq F(x)$ for any x in X.

Define $f: \mathbf{R} \to \mathbf{R}$ and $h: \mathbf{Z} \to \mathbf{Z}$ by the rules

$$f(x) = 4x - 1$$
 for all $x \in \mathbf{R}$

and

$$h(n) = 4n - 1$$
 for all $n \in \mathbb{Z}$.

- a. Is f onto? Prove or give a counterexample.
- b. Is *h* onto? Prove or give a counterexample.

If $f: \mathbf{R} \to \mathbf{R}$ is the function defined by the rule f(x) = 4x - 1 for all real numbers x, then f is onto.

Proof:

Let $y \in \mathbb{R}$. [We must show that $\exists x \text{ in } \mathbb{R}$ such that f(x) = y.] Let x = (y + 1)/4. Then x is a real number since sums and quotients (other than by 0) of real numbers are real numbers. It follows that

$$f(x) = f\left(\frac{y+1}{4}\right)$$
 by substitution
 $= 4 \cdot \left(\frac{y+1}{4}\right) - 1$ by definition of f
 $= (y+1) - 1 = y$ by basic algebra.

[This is what was to be shown.]

If the function $h: \mathbb{Z} \to \mathbb{Z}$ is defined by the rule h(n) = 4n - 1 for all integers n, then h is not onto.

If the function $h: \mathbb{Z} \to \mathbb{Z}$ is defined by the rule h(n) = 4n - 1 for all integers n, then h is not onto.

Counterexample:

The co-domain of h is **Z** and $0 \in \mathbf{Z}$. But $h(n) \neq 0$ for any integer n. For if h(n) = 0, then

$$4n - 1 = 0$$
 by definition of h

which implies that

$$4n = 1$$
 by adding 1 to both sides

and so

$$n = \frac{1}{4}$$
 by dividing both sides by 4.

But 1/4 is not an integer. Hence there is no integer n for which f(n) = 0, and thus f is not onto.

One-to-One Correspondence (Bijection)

Definition

A one-to-one correspondence (or bijection) from a set X to a set Y is a function $F: X \to Y$ that is both one-to-one and onto.

An Arrow Diagram for a One-to-One Correspondence

One-to-One Correspondence (Bijection)

Inverse Functions

Theorem

Suppose $F: X \to Y$ is a one-to-one correspondence; that is, suppose F is one-to-one and onto. Then there is a function $F^{-1}: Y \to X$ that is defined as follows:

Given any element y in Y,

 $F^{-1}(y)$ = that unique element x in X such that F(x) equals y.

In other words,

$$F^{-1}(y) = x \Leftrightarrow y = F(x).$$

The function F^{-1} is called inverse function.

Finding an Inverse Function

The function $f: \mathbf{R} \to \mathbf{R}$ defined by the formula

$$f(x) = 4x - 1$$
, for all real numbers x

Solution For any [particular but arbitrarily chosen] y in **R**, by definition of f^{-1} ,

$$f^{-1}(y)$$
 = that unique real number x such that $f(x) = y$.

But f(x) = y $\Leftrightarrow 4x - 1 = y \qquad \text{by definition of } f$ $\Leftrightarrow x = \frac{y+1}{4} \qquad \text{by algebra.}$

Hence
$$f^{-1}(y) = \frac{y+1}{4}$$
.

Theorem

If X and Y are sets and $F: X \to Y$ is one-to-one and onto, then $F^{-1}: Y \to X$ is also one-to-one and onto.

Proof:

 F^{-1} is one-to-one: Suppose y_1 and y_2 are elements of Y such that $F^{-1}(y_1) = F^{-1}(y_2)$. [We must show that $y_1 = y_2$.] Let $x = F^{-1}(y_1) = F^{-1}(y_2)$. Then $x \in X$, and by definition of F^{-1} ,

$$F(x) = y_1$$
 since $x = F^{-1}(y_1)$

and

$$F(x) = y_2$$
 since $x = F^{-1}(y_2)$.

Consequently, $y_1 = y_2$ since each is equal to F(x). This is what was to be shown.

 F^{-1} is onto: Suppose $x \in X$. [We must show that there exists an element y in Y such that $F^{-1}(y) = x$.] Let y = F(x). Then $y \in Y$, and by definition of F^{-1} , $F^{-1}(y) = x$. This is what was to be shown.

Lecture Summery

- Properties of relations
- Reflexive, Symmetric and Transitive Relations
- Equivalence Relations
- Properties of Congruence Modulo n
- Transitive closure of a relations
- Combining Relations
- Partial Order Relations
- Hasse Diagrams