BU CS 332 – Theory of Computation

Lecture 2: Assignment Project Exam Helpig:

- Parts of a Th Computatio https://eduassistpro.githsets.fch/ 0
- Sets, Strings, And Wanghat edu_assist_pro

Mark Bun January 27, 2021

What makes a good theory?

- General ideas that apply to many different systems
- Expressed simply, abstractly, and precisely

Assignment Project Exam Help

Parts of a Theory https://eduassistpro.github.io/

- Models for machines (Voormat edu_assistices)
- Models for the problems machines can be used to solve
- Theorems about what kinds of machines can solve what kinds of problems, and at what cost

What is a (Computational) Problem?

For us: A problem will be the task of recognizing whether a *string* is in a *language*

- Alphabet: Afissignment Project Exam Helpb}
- - Σ^* = set of all strings using symbols from Σ Ex. $\{a, b\}^* = \{\varepsilon, a, b, aa, ab, ba, bb, ... \}$
- Language: A set $L \subseteq \Sigma^*$ of strings

Examples of Languages

Parity: Given a string consisting of a's and b's, does it contain an even number of a's?

$$\Sigma = L =$$

Assignment Project Exam Help

Primality: Given a resented in binary), is https://eduassistpro.github.io/

$$\Sigma$$
 = L = Add WeChat edu_assist_pro

Halting Problem: Given a C program, can it ever get stuck in an infinite loop?

$$\Sigma = L =$$

Machine Models

Computation is the processing of information by the **unlimited application** of a **finite set** of operations or rules

<u>Abstraction:</u> We don't care how the control is implemented. We just require it to have a finite number of states, and to transition between states using fixed rules.

Machine Models

• <u>Finite Automata (FAs)</u>: Machine with a finite amount of unstructured memory

Useful for modeling chips, simple control systems, choose-yourown adventure games...

Machine Models

• <u>Turing Machines (TMs):</u> Machine with unbounded, unstructured memory

Model for general sequential computation Church-Turing Thesis: Everything we intuitively think of as "computable" is computable by a Turing Machine

What theorems would we like to prove?

We will define classes of languages based on which machines can recognize them

```
Inclusion: Every language recognizable by a PA is also recognizable by a https://eduassistpro.github.io/
Non-inclusion: There exist lang gnizable by TMs which are not recognizable by the edu_assist_pro
```

Completeness: Identify a "hardest" language in a class

Robustness: Alternative definitions of the same class

Ex. Languages recognizable by FAs = regular expressions

Why study theory of computation?

- You'll learn how to formally reason about computation
- You'll learn the technology-independent foundations of CS

Assignment Project Exam Help

Philosophically in https://eduassistpro.github.io/

- Are there well-defined problet edu_assist_problet solved by computers?
- Can we always find the solution to a puzzle faster than trying all possibilities?
- Can we say what it means for one problem to be "harder" than another?

Why study theory of computation?

- You'll learn how to formally reason about computation
- You'll learn the technology-independent foundations of CS

Assignment Project Exam Help

Connections to othttps://eduassistpro.github.io/

- Finite automata anise in compi edu_assiste phemistry https://cstheory.stackexchange.
- Hard problems are essential to cryptography
- Computation occurs in cells/DNA, the brain, economic systems, physical systems, social networks, etc.

What appeals to you about the theory of computation?

- 1. I want to learn new ways of thinking about computation
- 2. I like math and want to see how it's used in computer science

Assignment Project Exam Help

- 3. I'm excited abo estions about computation https://eduassistpro.github.io/
- 4. I want to practice problems edu_assistentimic thinking
- 5. I want to develop a "computational perspective" on other areas of math/science
- 6. I actually wanted to take CS 320 or 350 but they were full

Why study theory of computation?

Practical knowledge for developers

"Boss, I can't find an efficient algorithm.

Assignment Project Exemplified to dumb."

https://eduassistpro.github.io/

Add WeChat edu_assist_epront algorithm because no such algorithm exists."

Will you be asked about this material on job interviews? No promises, but a true story...

More about strings and languagement Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

String Theory

• **Symbol:** Ex. a, b, 0, 1

Alphabet: A finite set Σ
 Assignment Project Exam Help
 bet symbols
 Ex. Σ = {a, b}
 Assignment Project Exam Help
 bet symbols
 Ex. bba, ab https://eduassistpro.github.io/

 ε denotes empty string ledu_assist_pro Σ^* = set of all strings using symbols from Σ Ex. $\{a,b\}^* = \{\varepsilon,a,b,aa,ab,ba,bb,...\}$

• Language: A set $L \subseteq \Sigma^*$ of strings

String Theory

• Length of a string, written |x|, is the number of symbols

Ex.
$$|abba| = |\epsilon| =$$

• Concatenations is symbols from x ols from y ols from y ols from y the symbols from y ols from y the example of the example of

• **Reversal** of string x, written x^R , consists of the symbols of x written backwards

Ex.
$$x = aab$$
 \Rightarrow $x^R =$

Fun with String Operations

What is $(xy)^R$?

Ex.
$$x = aba$$
, $y = bba$ $\Rightarrow xy =$

$$\Rightarrow (xy)^R =$$
Assignment Project Exam Help

1. $x^R y^R$

https://eduassistpro.github.io/

 $2. \quad y^R x^R$

Add WeChat edu_assist_pro

- 3. $(yx)^R$
- 4. xy^R

Fun with String Operations

Claim: $(xy)^R =$

Proof: Let $x = x_1 x_2 ... x_n$ and $y = y_1 y_2 ... y_m$

Then $(xy)^R =$

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Not even the most formal way to do this:

- 1. Define string length recursively
- 2. Prove by induction on |y|

Languages

A language L is a set of strings over an alphabet Σ i.e., $L \subseteq \Sigma^*$

Assignment Project Exam Help Languages = com roblems

Input: String $x \in \frac{\text{https://eduassistpro.github.io/}}{\text{toput:}}$

Output: Is $x \in L$? AYES We DOWN edu_assist_pro

Some Simple Languages

$$\Sigma = \{0, 1\}$$

$$\Sigma = \{a, b, c\}$$

Ø (Empty set)

Assignment Project Exam Help

 Σ^* (All strings)

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

$$\Sigma^n = \{x \in \Sigma^* \mid |x| = n\}$$
(All strings of length n)

Some More Interesting Languages

• L_1 = The set of strings $x \in \{a, b\}^*$ that have an equal number of a's and b's

Assignment Project Exam Help

• L_2 = The set of arbitron and arbitron the start with (0 or more) are and arbitron arbit

Add WeChat edu_assist_pro

• $L_3 =$ The set of strings $x \in \{0, 1\}^*$ that contain the substring '0100'

Some More Interesting Languages

• L_4 = The set of strings $x \in \{a, b\}^*$ of length at most 4

Assignment Project Exam Help

• $L_5=$ The set of two a's $\{ \}$ t contain at least two a's $\{ \}$ through the through the two algorithms and the two algorithms are the two algorithms and the two algorithms are the

Add WeChat edu_assist_pro

New Languages from Old

 L_6 = The set of strings $x \in \{a, b\}^*$ that have an equal number of a's and b's and length greater than 4

```
Since languages are just sets of strings, can build them using set operati https://eduassistpro.github.io/ A \cup B "union" Add WeChat edu_assist_pro
```

 $A \cap B$ "intersection"

 \bar{A} "complement"

New Languages from Old

 L_6 = The set of strings $x \in \{a, b\}^*$ that have an equal number of a's and b's and have length greater than 4

- L_1 = The set of strings x^{Peoject} $f^{\text{Extinat Halve}}$ an equal number of a's a https://eduassistpro.github.io/
- L_4 = The set of strings $x \in \{a\}$ gth at most 4 Add WeChat edu_assist_pro

$$\Rightarrow L_6 =$$

Operations Specific to Languages

• Reverse: $L^R = \{x^R | x \in L\}$ Ex. $L = \{\varepsilon, a, ab, aab\}$ $\Rightarrow L^R =$

Assignment Project Exam Help

• Concatenation: https://eduassistpro.github.jo/

Ex.
$$L_1 = \{ab, aab\}dd \ WelGhat edu_assist_pro$$

 $\Rightarrow L_1 \circ L_2 =$

A Few "Traps"

String, language, or something else?

 ${\cal E}$

Assignment Project Exam Help

()

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

.)

 $\{\mathcal{E}\}$

 $\{\emptyset\}$

Languages

Languages = computational (decision) problems

Input: String $x \in \Sigma^*$

Output: Is $x \in L$? (YES or NO?)

Assignment Project Exam Help

The language **rec** https://eduassistpro.githus.sot of strings $x \in \Sigma^*$ that it acc

Add WeChat edu_assist_pro

What Language Does This Program Recognize?

Alphabet $\Sigma = \{a, b\}$


```
On input x = x_1 x_2 \dots x_n:

Assignment Project*Exam Help 4}

count = 0

* |x| = 4}

For i = 1, ..., n: https://eduassistpro.githlus.ing/re than 4 a's}

If x_i = a:

Add WeChat.edu_assishap@actly 4 a's}

count = count + 1

If count \leq 4: accept

Else: reject
```