Procesy stochastyczne Zestaw zadań nr 4

Definicja 1. Niech $\{\mathcal{F}_t\}_{t\in T}$ będzie filtracją. Momentem stopu (momentem Markowa, momentem zatrzymania) nazywamy zmienną losową $\tau \colon T \to [0, +\infty]$ takq, $\dot{z}e \ \forall_{t \in T} \ \{\tau \leq t\} \in \mathcal{F}_t$. Domknięcie przeciwdziedziny w nieskończoności wyjątkowo nie jest literówką.

Definicja 2. Filtrację $\{\mathcal{F}_t\}_{t\in T}$ nazywamy prawostronnie ciągłą, jeżeli $\forall_{t\in T}$ $\mathcal{F}_{t+} =$ $\bigcap_{s>t} \mathcal{F}_s = \mathcal{F}_t$.

Definicja 3. Mówimy, że filtracja $\{\mathcal{F}_t\}_{t\in T}$ spełnia zwykłe (standardowe) warunki, jeżeli:

- jest prawostronnie ciągła,
- \mathcal{F}_0 zawiera wszystkie zbiory miary zero.

W dalszym ciągu rozważać będziemy tylko filtracje spełniające zwykłe warunki.

Definicja 4. Niech τ będzie momentem stopu względem filtracji $\{\mathcal{F}_t\}_{t\in T}$. σ ciałem zdarzeń obserwowanych do chwili au nazywamy zbiór

$$\mathcal{F}_{\tau} = \left\{ A \in \mathcal{F}_{\infty} = \bigcup_{t} \ \mathcal{F}_{t} \colon \forall_{t} \ A \cap \{ \tau \leq t \} \in \mathcal{F}_{t} \right\}$$

Zadanie 1. Udowodnij

- σ ciało zdarzeń obserwowanych do chwili τ jest σ ciałem,
- jeżeli $\sigma \leq \tau$, to $\mathcal{F}_{\sigma} \subset \mathcal{F}_{\tau}$,
- zmienna losowa τ jest \mathcal{F}_{τ} mierzalna.

Zadanie 2. Niech T będzie przedziałem. Wykaż, że jeżeli τ jest momentem stopu, to $\{\tau < t\} \in \mathcal{F}_t$ dla dowolonego t.

Zadanie 3. Niech $T = [0, \infty)$ oraz niech τ będzie momentem stopu. Czy momentem stopu jest

- $-\tau^{2}, \\ -\tau-1,$
- $-\tau + 1$,
- $-\tau + c, \ c > 0,$
- $-\tau c, \ c > 0.$

Zadanie 4. Niech $\{\tau_n\}$ będzie ciągiem momentów stopu. Udowodnij, że momentami stopu są również następujące zmienne losowe:

- $-\sup_{n} \tau_{n}$,
- $-\inf_n \tau_n$,
- $\liminf_n \tau_n$,
- $-\limsup_{n} \tau_{n}$.

Zadanie 5. Niech $T = [0, \infty)$, a X_t procesem \mathcal{F}_t -adaptowalnym o ciągłych trajektoriach. Wykaż, że dla A otwartego $\tau_A := \inf\{t: X_t \in A\}$ jest momentem zatrzymania względem \mathcal{F}_t .

Zadanie 6. Wykaż, że jeśli τ i σ są momentami zatrzymania, to zdarzenia $\{\tau < \sigma\}, \{\tau = \sigma\} \ i \ \{\tau \le \sigma\} \ należą do \mathcal{F}_{\tau}, \mathcal{F}_{\sigma} \ i \mathcal{F}_{\tau \wedge \sigma}.$

Zadanie 7. Niech będzie dana przestrzeń probabilistyczna $(\Omega, \mathcal{F}, \mathbb{P})$ z filtracją zupełną $\{\mathcal{F}_n\}$. Niech τ, σ będą dwoma momentami Markowa o skończonych wartościach takimi, że istnieje $t_0 \geq 0$, takie, że $\mathbb{P}(\tau \geq t_0) = \mathbb{P}(\sigma \geq t_0) = 1$. Niech $A \in \mathcal{F}_{t_0}$. Sprawdź, czy momentem stopu jest zmienna losowa

$$U = \tau \cdot \mathbf{1}_A + \sigma \cdot \mathbf{1}_{A'}$$

względem podanej filtracji.

Zadanie 8. Niech $0 < \tau_1 < \tau_2 < \cdots < \tau_n < \ldots$ będzie rosnącym do nieskończoności ciągiem momentów stopu o skończonych wartościach. Niech $N_t = \sum_{i=1}^{\infty} \mathbf{1}_{\{t \geq \tau_i\}}$. Niech ponadto $\{U_i\}_{i \in \mathbb{N}}$ będzie ciągiem niezależnych zmiennych losowych takim, że jest on niezależny od procesu N. Załóżmy, że $\sup_i \mathbb{E}|U_i| < \infty$ oraz $\mathbb{E}U_i = 0$ dla dowolnego i. Udowodnij, że wtedy proces

$$Z_t = \sum_{i=1}^{\infty} U_i \mathbf{1}_{\{t \ge \tau_i\}}$$

jest martyngałem.

Zadanie 9. Niech X będzie procesem adaptowanym. Udowodnij, że X jest martyngałem, jeżeli jest całkowalny i dla każdego ograniczonego momentu stopu τ zachodzi $\mathbb{E}X_{\tau} = \mathbb{E}_0$.

Zadanie 10. Niech proces X będzie martyngałem i niech τ będzie momentem stopu.

- Udowodnij, że proces zastopowany $X_t^{\tau} = X(\min\{t, \tau\})$ jest martyngałem.
- Niech σ będzie momentem stopu takim, że $\sigma \leq \tau$ i niech τ , σ będą ograniczone. Udowodnij, że $\mathbb{E}(X_{\tau}|\mathcal{F}_{\sigma}) = X_{\sigma}$ prawie na pewno.
- Przypuśćmy, że istnieje całkowalna zmienna losowa Y taka, że dla dowolnego $t, |X_t| \leq Y$ i niech τ będzie momentem stopu skończonym prawie wszędzie. Udowodnij, że $\mathbb{E}X_{\tau} = \mathbb{E}X_0$.
- Niech X będzie procesem takim, że istnieje stała M taka, że $|X_{n-1}-X_n| \leq M$ dla dowolnego n i niech τ będzie momentem stopu takim, że $\mathbb{E}\tau < \infty$. Udowodnij, że wtedy $\mathbb{E}X_{\tau} = \mathbb{E}X_0$.