Лекция 3. Импликанта функции. Сокращенная ДНФ. Построение сокращенной ДНФ по КНФ.

Лектор — Селезнева Светлана Николаевна selezn@cs.msu.ru

факультет ВМК МГУ имени М.В. Ломоносова

Лекции на сайте https://mk.cs.msu.ru

Уменьшение ЭК

Если K_1 , K — ЭК, то K_1 называется **уменьшением** K, если каждый литерал ЭК K_1 входит в ЭК K.

Например, ЭК $K_1 = x_1 \cdot \bar{x}_2$ является уменьшением ЭК $K = x_1 \cdot \bar{x}_2 \cdot \bar{x}_3 \cdot x_4$.

Уменьшение называется *собственным*, если ЭК при этом не совпадают.

Уменьшение ЭК

Отметим, что ЭК K_1 является уменьшением ЭК K тогда и только тогда, когда

- 1) для любого $\alpha \in E_2^n$ из $K(\alpha) = 1$ следует $K_1(\alpha) = 1$;
- 2) $K_1 \vee K = K_1$ (выполняется **правило поглощения**).

Правило поглощения

Правилом поглощения назовем тождество

$$K_1 \vee K_1 \cdot K_2 = K_1$$
.

Пример применения правила поглощения:

$$\bar{x}_1 \cdot x_2 \cdot x_3 \vee \bar{x}_1 \cdot x_3 \vee \bar{x}_2 \cdot \bar{x}_3 = \bar{x}_1 \cdot x_3 \vee \bar{x}_2 \cdot \bar{x}_3.$$

Импликанта функции

Импликантой функции $f \in P_2^{(n)}$ называется такая ЭК K, что для любого набора $\alpha \in E_2^n$ из $K(\alpha) = 1$ следует $f(\alpha) = 1$.

Если никакое собственное уменьшение импликанты K не является импликантой функции f, то ЭК K называется **простой импликантой** функции f.

Отметим, что ЭК K является импликантой функции $f \in P_2$ тогда и только тогда, когда верно тождество $K \vee f = f$.

Пример. Проверим, какие из ЭК $K_1=x_1\cdot \bar{x}_2\cdot x_3$, $K_2=x_1\cdot \bar{x}_2$ и $K_3=x_1\cdot x_3$ являются импликантами или простыми импликантами функции $f(x_1,x_2,x_3)$:

X_1	<i>x</i> ₂	<i>X</i> ₃	f	K_1	K_2	<i>K</i> ₃
0	0	0	0	0	0	0
0	0	1	0	0	0	0
0	1	0	0	0	0	0
0	1	1	1	0	0	0
1	0	0	0	0	1	0
1	0	1	1	1	1	1
1	1	0	1	0	0	0
1	1	1	1	0	0	1

Получаем, что K_1 — импликанта f, но не простая импликанта; K_2 — не импликанта f, т. к. $K_2(1,0,0)=1$, но f(1,0,0)=0; и K_3 — простая импликанта f.

Свойство импликант

Предложение 3.1. Если ЭК K содержится в некоторой ДНФ функции $f \in P_2$, то K — импликанта функции f.

Доказательство. Пусть ЭК K содержится в ДНФ D функции $f \in P_2^{(n)}$.

Если $\alpha \in E_2^n$ и $K(\alpha) = 1$, то $D(\alpha) = 1$, т. е. $f(\alpha) = 1$.

Значит, K — импликанта f.

Следствие. Если ЭК K не является импликантой функции $f \in P_2$, то K не содержится ни в одной ДНФ функции f.

Дизъюнкция всех простых импликант функции

Предложение 3.2. Дизъюнкция D_f всех простых импликант функции $f \in P_2$ является ДНФ, которая представляет эту функцию f.

Доказательство. Пусть $\alpha \in E_2^n$.

1. Если $D_f(\alpha)=1$, то найдется такая ЭК K в ДНФ D_f , что $K(\alpha)=1$.

Ho K — импликанта f, значит $f(\alpha) = 1$.

2. Если $f(\alpha)=1$, то ЭК $x_1^{\alpha_1}\cdot\ldots\cdot x_n^{\alpha_n}$ является импликантой f.

Значит, эта импликанта может быть уменьшена до некоторой простой импликанты K, при этом $K(\alpha)=1$.

Но ЭК K содержится в ДНФ D_f , значит $D_f(\alpha) = 1$.

Сокращенная ДНФ

Дизъюнкция D_f всех простых импликант функции $f \in P_2$ называется ее сокращенной ДНФ.

По определению для каждой функции ее сокращенная ДНФ единственна.

А как находить сокращенную ДНФ для заданной функции?

Правила упрощения конъюнкций литералов и констант

Назовем правилами упрощения конъюнкций литералов и констант тождества о коммутативности и ассоциативности конъюнкции и тождества

$$x \cdot x = x$$
, $x \cdot \overline{x} = 0$, $x \cdot 0 = 0$, $x \cdot 1 = x$.

При помощи этих правил любую конъюнкцию литералов и констант можно привести либо некоторой ЭК, либо к константе 0.

Например,

$$x_1 \cdot x_3 \cdot x_3 \cdot x_2 = x_1 \cdot x_2 \cdot x_3, \quad x_1 \cdot x_2 \cdot \bar{x}_1 = 0, \quad x_2 \cdot 1 \cdot \bar{x}_1 = \bar{x}_1 \cdot x_2.$$

Правила упрощения дизъюнкций ЭК и констант

Назовем *правилами упрощения дизъюнкций ЭК и констант* тождества о коммутативности и ассоциативности дизъюнкции и тождества

$$K \vee 0 = K, \quad K \vee 1 = 1,$$

а также правило поглощения:

$$K_1 \vee K_1 \cdot K_2 = K_1$$
.

При помощи этих правил любую дизъюнкцию ЭК и констант можно привести некоторой ДНФ, в которой никакая ЭК не является уменьшением никакой другой ЭК.

Например,

$$\bar{x}_1 \cdot x_2 \cdot x_3 \vee 0 \vee \bar{x}_1 \cdot x_3 \vee x_1 \cdot x_2 = \bar{x}_1 \cdot x_3 \vee x_1 \cdot x_2.$$

Упрощение дизъюнктивных форм

Назовем дизъюнктивной формой выражение, являющееся дизъюнкцией конъюнкций литералов и констант.

Как показано выше, применением перечисленных правил любая дизъюнктивная форма может быть приведена к ДНФ, в которой никакая ЭК не является уменьшением никакой другой ЭК.

Назовем это приведение упрощением дизъюнктивных форм с выполнением поглощений.

Теорема 3.1. Если $D_i = \bigvee_{j_i=1}^{l_i} K_{i,j_i}$ — сокращенные ДНФ функций $f_i \in P_2$ при $i=1,\ldots,m$, где $m\geqslant 1$, то ДНФ D, полученная упрощением с выполнением поглощений дизъюнктивной формы

$$F = \bigvee_{j_1=1}^{l_1} \dots \bigvee_{j_m=1}^{l_m} K_{1,j_1} \cdot \dots \cdot K_{m,j_m},$$

является сокращенной ДНФ функции $f = f_1 \cdot \ldots \cdot f_m \in P_2$.

Доказательство. Отметим, что $f = f_1 \cdot \ldots \cdot f_m$, значит, функция f задается формулой $D_1 \cdot \ldots \cdot D_m$.

Кроме того,

$$D_1 \cdot \ldots \cdot D_m = (K_{1,1} \vee \ldots \vee K_{1,l_1}) \cdot \ldots \cdot (K_{m,1} \vee \ldots \vee K_{m,l_m}).$$

Заметим, что дизъюнктивная форма F получена из формулы $D_1\cdot\ldots\cdot D_m$ применением тождества о дистрибутивности

$$(x \lor y) \cdot z = x \cdot z \lor y \cdot z.$$

Значит, дизъюнктивная форма F задает функцию f.

Пусть D - ДНФ, полученная упрощением с выполнением поглощений дизъюнктивной формы F.

Значит, ДНФ D задает функцию f, в частности, может содержать только импликанты функции f.

Покажем, что ДНФ D содержит любую простую импликанту функции f.

Пусть K — простая импликанта функции $f = f_1 \cdot \ldots \cdot f_m$.

Значит, для любого набора $lpha \in \mathcal{E}_2^n$ из $\mathcal{K}(lpha) = 1$ следует

$$f(\alpha) = f_1(\alpha) \cdot \ldots \cdot f_m(\alpha) = 1.$$

Следовательно,

$$f_1(\alpha)=1,\ldots,f_m(\alpha)=1,$$

т.е. K является импликантой функции f_i для всех $i=1,\ldots,m$.

Т.к. D_i — сокращенная ДНФ функции f_i , в D_i содержится некоторая простая импликанта K_i функции f_i , являющаяся уменьшением импликанты K, $i=1,\ldots,m$.

Следовательно, выражение $K_1 \cdot ... \cdot K_m$ содержится в дизъюнктивной форме F.

Но выражение $K_1 \cdot \ldots \cdot K_m$ состоит только из литералов, содержащихся в ЭК K, поэтому либо совпадает с K, либо является собственным уменьшением K.

Но ЭК K является простой импликантой функции f, поэтому уменьшена быть не может, откуда $K = K_1 \cdot \ldots \cdot K_m$.

Значит, ЭК K содержится в ДНФ D.

Если какая-то не простая импликанта функции f содержится в F, то она поглотится соответствующей ей простой импликантой функции f при упрощении F с выполнением поглощений.

Следовательно, D — сокращенная ДНФ функции f.

ЭД — сокращенная ДНФ

Предложение 3.3. Любая ЭД является сокращенной ДНФ функции, которую она задает.

Построение сокращенной ДНФ по КНФ

Алгоритм: построение сокращенной ДНФ по КНФ.

 $\mathit{Вход}$: произвольная КНФ K функции $\mathit{f} \in \mathit{P}_2$.

Выход: сокращенная ДНФ D_f функции f.

Описание алгоритма.

1. Преобразовать КНФ K в дизъюнктивную форму F, применяя правило дистрибутивности (перемножить скобки):

$$(x \lor y) \cdot z = x \cdot z \lor y \cdot z.$$

- 2. Преобразовать дизъюнктивную форму F в ДНФ D, применяя упрощение с выполнением поглощений.
- 3. Выдать D сокращенную ДНФ функции f.

Окончание описания алгоритма

Литература к лекции

- 1. Алексеев В.Б. Дискретная математика. М.: Инфра-М, 2021.
- 2. Гаврилов Г. П., Сапоженко А. А. Задачи и упражнения по дискретной математике. М.: Физматлит, 2004. С. 297. Гл. ІХ 2.1, 2.3.