12.06.2012 Abgabe: 19.06.2012 10.00 Uhr, Tutorenfächer

Aufgabenblatt 8

zur Analysis II

24. Stetige Abbildungen auf Punktmengen

(4+2+2 Punkte)

(i) Sei $f: \mathbb{R}^n \to \mathbb{R}^m$ stetig. Zeigen Sie, dass für jede Menge $A \subset \mathbb{R}^n$ gilt

$$f(\overline{A}) \subset \overline{f(A)}$$
.

- (ii) Ist das stetige Bild f(M) einer beliebigen offenen bzw. abgeschlossenen Menge $M \subset \mathbb{R}^n$ wieder offen bzw. abgeschlossen? Geben Sie Beispiele an!
- (iii) Sei $f: \mathbb{R}^n \to \mathbb{R}^m$ stetig. Erfülle $M \subset \mathbb{R}^n$ die Heine-Borel-Eigenschaft. Dann erfüllt auch f(M) die Heine-Borel-Eigenschaft. (Benutzung von Folgen nicht erlaubt!)
- 25. Wachstum spezielle Funktionen

(8 Punkte)

Sei $f: \mathbb{R}^n \to \mathbb{R}$ stetig mit folgenden Eigenschaften

$$f(x) > 0$$
 für alle $x \neq 0$,
 $f(cx) = cf(x)$ für alle $x \in \mathbb{R}^n$ und alle $c > 0$.

Zeigen Sie, dass es Konstanten a, b > 0 gibt, so dass

$$a|x| \le f(x) \le b|x|$$
 für alle $x \in \mathbb{R}^n$.

26. Wegzusammenhang

(4+2+2 Punkte)

Eine Menge $A \subset \mathbb{R}^n$ heißt wegzusammenhängend, wenn es für je zwei Punkte $x, y \in A$ eine stetige Funktion $\gamma \colon [0,1] \to A$ gibt mit $\gamma(0) = x$ und $\gamma(1) = y$. Man nennt γ einen stetigen Weg von x nach y.

- (i) Seien $f:A\subset\mathbb{R}^n\to\mathbb{R}^m$ stetig und A wegzusammenhängend. Zeigen Sie, dass dann auch f(A) wegzusammenhängend ist.
- (ii) Zeigen Sie, dass genau dann $A \subset \mathbb{R}$ wegzusammenhängend ist, wenn A ein Intervall ist, d.h. wenn für alle $x, y \in A$, $x \leq y$, gilt $[x, y] \subset A$.
- (iii) Können Sie den bekannten Zwischenwertsatz aus der Analysis I auch auf Funktionen $f: A \subset \mathbb{R}^n \to \mathbb{R}$ verallgemeinern?

Bitte wenden!

(i) Zeigen Sie, dass die Funktion

$$f \colon (-1,1) \longrightarrow \mathbb{R}, \quad x \mapsto \frac{x}{1-x^2},$$

einen Homöomorphismus von (0,1) nach \mathbb{R}^+ definiert, d.h. f ist invertierbar zwischen den angegebenen Mengen und sowohl f als auch f^{-1} sind stetig.

(ii) Sei die Funktion $f \colon [0,1) \cup [2,3] \to [0,2]$ gegeben durch

$$f(x) = \begin{cases} x, & x \in [0, 1) \\ x - 1, & x \in [2, 3]. \end{cases}$$

Zeigen Sie, dass f stetig ist und invertierbar, aber die Umkehrfunktion $f^{-1}: [0,2] \to [0,1) \cup [2,3]$ nicht stetig ist.