Práctica Dirigida 4

Marcelo Gallardo

Junio 2024

Pontificia Universidad Católica del Perú

marcelo.gallardo@pucp.edu.pe

1. Ejercicios Topología Débil y Débil Estrella

1. Considere el funcional lineal $\varphi: \ell_1 \to \mathbb{K}$, $\varphi((a_n)_{n \in \mathbb{N}}) = \sum_{n=1}^{\infty} a_n$. Muestre que φ es continuo con la norma pero no es continuo con la topología débil estrella de $\ell_1 = (c_0)'$.

Veamos que φ es continuo con la norma. Notemos que por la desigualdad triangular, dada $x=(a_n)_{n\in\mathbb{N}}$:

$$|\varphi(x)| = |\varphi((a_n)_{n \in \mathbb{N}})|$$

$$= \left| \sum_{n=1}^{\infty} a_n \right| \le \underbrace{\sum_{n=1}^{\infty} |a_n|}_{=||x||_{\ell_1}} < \infty.$$

Así, φ lleva acotados en acotados (C=1).

Analicemos ahora la situación en el contexto de la topología débil estrella. Para esto, establezcamos el escenario. Tenemos $E=c_0$ y $E'=\ell_1$. Luego, por la Proposición 6.3.2 (c), tenemos que, si $(\psi)_{n\in\mathbb{N}}$ es una secuencia en E', entonces $\psi_n \xrightarrow[w]{} \psi$ si y solamente si $\psi_n(x) \to \psi(x)$ para todo $x \in E$. En este caso,

identificamos ψ con elementos de ℓ_1 . En particular, consideremos $(e_n)_{n\in\mathbb{N}}\subset\ell_1$. Entonces, usando los teoremas de dualidad $(e_n)\circ\underbrace{(b_n)}$, tenemos

$$(e_n) \circ (b_n) \triangleq b_n \to 0$$

pues $c_0 = \{(b_n)_{n \in \mathbb{N}} : \lim_n b_n = 0\}$. Así, $e_n \xrightarrow{g_n^*} 0$. Ahora bien, φ no es continuo

con esta topología pues, de serlo, dado que una sucesión es en particular una red $(a_{\lambda})_{\lambda \in \Lambda}$, tendríamos $\varphi(e_n) \to \varphi(0) = 0$. No obstante, $\varphi(e_n) = 1$ para todo $n \in \mathbb{N}$: φ no es continuo respecto a la topología débil $\sigma(E, E') = \sigma(c_0, \ell_1)$.

- **2.** Considere el funcional lineal C[-2,2] que satisface las propiedades
 - a) $f_n(t) = 0 \text{ para } |t| > 1/n$
 - b) $f_n(t) \ge 0$ para $|t| \le 1/n$
 - c) $\int_{-2}^{2} f_n(t) = 1$.

Defina los funcionales

$$\varphi_n(x) = \int_{-2}^{2} f_n(t)x(t)dt, \ x \in C[-2, 2].$$

Pruebe:

- a) que los funcionales φ_n son continuos con la topología de la norma de C[-2,2]
- b) la convergencia $\varphi_n \xrightarrow{} \delta$ con la topología débil estrella.
- a) Recordemos que $||\cdot||$ en C[-2,2] es $\sup_{[-2,2]}|x(t)|$. Dada la continuidad de x y el hecho que [-2,2] es un compacto usual de la recta, por Weierstrass, existe M tal que ||x|| = M. Luego,

$$|\varphi_n(x)| = \left| \int_{-2}^2 f_n(t)x(t)dt \right|$$

$$\leq \int_{-2}^2 |f_n(t)x(t)|dt$$

$$\leq M \int_{-2}^2 |\underbrace{f_n(t)}_{\geq 0}|dt$$

$$= M \int_{-2}^2 f_n(t)dt = M = ||x||.$$

Así, φ_n es continuo con la topología de la norma.

b) Veamos ahora que $\varphi_n \underbrace{\longrightarrow}_{w^*} \delta$. Nuevamente, recordemos que esta situación acontece si $\forall \ x \in E = C[-2,2], \ \varphi_n(x) \to \varphi(x)$. Tomemos $x \in C[-2,2]$. Entonces, como $f_n(t) \geq 0$ sobre [-1/n,1/n] y $f_n(t) = 0$ para $t \in [-2,1/n) \cup (1/n,2]$, en particular, $\int_{-2}^2 f_n(t) dt = \int_{-1/n}^{1/n} f_n(t) dt = 1$. Luego,

$$|\varphi_n(x) - \delta(x)| = |\varphi_n(x) - x(0)|$$
$$= \left| \int_{-2}^2 f_n(t)x(t)dt - x(0) \right|$$

$$= \left| \int_{-1/n}^{1/n} f_n(t)x(t)dt - x(0) \right|$$

$$= \left| \int_{-1/n}^{1/n} f_n(t)x(t)dt - x(0) \int_{-1/n}^{1/n} f_n(t)dt \right|$$

$$= \left| \int_{-1/n}^{1/n} f_n(t)(x(t) - x(0))dt \right|$$

$$\leq \int_{-1/n}^{1/n} |f_n(t)| \cdot |x(t) - x(0)|dt$$

$$\leq \sup_{x \in [-1/n, 1/n]} |x(t) - x(0)| \int_{-1/n}^{1/n} f_n(t)dt$$

$$= \sup_{x \in [-1/n, 1/n]} |x(t) - x(0)|.$$

Finalmente, dada la continuidad de x, haciendo $n \to \infty$,

$$\lim_n \sup_{x \in [-1/n, 1/n]} |x(t) - x(0)| = 0.$$

Así, $\varphi_n(x) \to \delta(x)$, $\forall x \in C[-2,2]$, i.e., (Proposición 6.3.2 (c) Botelho), $\varphi_n \xrightarrow{*} \delta$.

3. Pruebe que, para $1 , el espacio <math>\ell_p$ no contiene una copia isomorfa de ninguno de los siguientes espacios: c_0, ℓ_∞ y ℓ_1 .

Para este ejercicio, recordemos lo siguientes resultados:

- 1. Todo espacio normado que es isomorfo a un espacio reflexivo también es reflexivo.
- 2. c_0, ℓ_∞ y ℓ_1 no son reflexivos pero sí son de Banach.
- 3. Si E es reflexivo, entonces todo subespacio cerrado de E es reflexivo. (Proposición 6.4.6 del Botelho).
- 4. Un subespacio de Banach de un espacio de Banach es cerrado.
- 5. ℓ_p es reflexivo para 1 .
- 6. Todo espacio reflexivo es de Banach.
- 7. $T:E\to F$ es un isomorfismo si T es continuo, biyectivo y T^{-1} es continuo también. En particular, por el Teorema de la Aplicación Abierta T es abierta.
- 8. La imagen de un espacio de Banach de un operador lineal continuo abierto es un espacio de Banach. En efecto, un isomorfismo topológico manda cerrados en cerrados y cerrado en un espacio de Banach es de Banach.

Con estos insumos ya podemos abordar el problema. Supongamos por contradicción que ℓ_p contiene una copia isomorfa, digamos a c_0 . Existe $T:c_0\to\ell_p$ isomorfismo. Por (2), (7) y (8), $T(c_0)$ sería de Banach. Luego, al ser ℓ_p de Banach, por (6), es cerrado. Como ℓ_p es reflexivo (5), por (3), $T(c_0)$ sería reflexivo. Finalmente, por (1), c_0 sería reflexivo. Sin embargo, debido a (2), esto es una contradicción. El argumento es el mismo considerando, en vez de c_0 , ℓ_1 o ℓ_∞ . En efecto, estos dos últimos siguen siendo de Banach y no son reflexivos.

4. Pruebe que ℓ_1 no tiene un subespacio reflexivo de dimensión infinita.

Supongamos por contradicción que fuese el caso. Si ℓ_1 contiene un subespacio reflexivo de dimensión infinita, digamos F. Por el Teorema de Kakutani, B_F es compacta en la topología $\sigma(E, E')$, donde acá $\ell_1 = E$. O sea,

$$B_F = \{x \in F : ||x|| \le 1\} = B_{\ell_1} \cap F$$

sería compacta. La caracterización de sub-sucesiones garantiza que dada (x_n) en B_F , existe $x_{n_k} \to x \in B_F$. Por el Teorema de Schur, si $(x_n) \xrightarrow{} x$, entonces

 $x_n \underbrace{\to}_{||\cdot||} x$. En efecto, $B_F \subset \ell_1$. Pero entonces, B_F sería compacta con la topología

de la norma: $(x_n) \subset F$, $\exists x_{n_k} \to x \in B_F$. Esto es imposible pues F se supone de dimensión infinita y la bola unitaria no es compacta en dimensión infinita (contradicción). Así, ℓ_1 no contiene un subespacio reflexivo de dimensión infinita.

5. Pruebe que si $x_n \xrightarrow{} x$ y $y_n \rightarrow y$ en un espacio con producto interno, real,

entonces $\langle x_n, y_n \rangle \to \langle x, y \rangle$. ¿Vale si la convergencia de y_n es en la topología débil?

La situación es la siguiente,

$$\begin{split} \langle x_n, y_n \rangle - \langle x, y \rangle &= \langle x_n, y_n \rangle - \langle x, y \rangle + \langle x_n, y \rangle - \langle x_n, y \rangle \\ &= \langle x_n, y_n - y \rangle - \langle x - x_n, y \rangle \\ &\leq ||x_n|| \cdot ||y - y_n|| - \varphi_y(x - x_n). \end{split}$$

Como $x_n \to x$ débilmente, $||x_n|| < \infty^2$ y $y_n \to y$, concluimos.

2. Operadores compactos

1. Muestre que el operador $T: \ell_2 \to \ell_2$ dado por $T((a_j)_{j=1}^{\infty}) = \left(\frac{a_j}{j}\right)_{j=1}^{\infty}$ es compacto más no de rango finito.

Definamos

$$(T_n(x))_j = \begin{cases} x_j/j, & \text{si } 1 \le j \le n \\ 0, & \text{caso contrario.} \end{cases}$$

¹Compacidad por sub-sucesiones: Eberlei-Smulian (Brezis) o Botelho: combinar Lema 6.4.1. con la Proposición 6.3.2.

²Se debe a la convergencia en $\sigma(E, E')$.

Como T_n tiene rango finito, es compacto. Luego,

$$||Tx - T_n x||_{\ell_2}^2 \sum_{j=n+1}^{\infty} \frac{|x_j|^2}{j^2} \le \frac{1}{(n+1)^2} ||x||_{\ell_2} \to 0.$$

Así, como ℓ_2 es de Banach, $T_n \to T \implies T \in \mathcal{K}(\ell_2, \ell_2)$. Finalmente, ciertamente no tiene rango finito pues $(e_j)/j \in \text{range}(T)$.

2. Pruebe que el operador

$$T_1: L_2[0,1] \to L_2[0,1]$$

definido por $T_1(f) = xf(x)$ es continuo, autoadjunto y no tiene autovalores.

Es continuo pues

$$\sup_{||f|| \leq 1} ||T_1(f)|| = \sup_{||f|| \leq 1} \sup_{||x|| \leq 1} \sqrt{\int_0^1 x^2 f^2(x) dx} \leq \sup_{||f|| \leq 1} \sup_{||x|| \leq 1} \sqrt{\int_0^1 f^2(x) dx} = 1.$$

Ahora bien, si T_1 es autoadjunto, $\langle T_1 f, g \rangle = \langle f, T_1 g \rangle$:

$$\langle T_1(f), (g) \rangle = \int_0^1 x f(x) \overline{g(x)} dx = \int_0^1 f(x) \overline{x} \overline{g(x)} dx = \int_0^1 f(x) x \overline{g(x)} dx = \langle f, T_1(g) \rangle.$$

Finalmente, no tiene autovalores pues $T_1(f) = \lambda f$, con λ no nulo implica que $T_1(f)(x) = \lambda_1 f(x) = x f(x)$ para todo x (contradicción).

3. Considere el espacio C[0,1] con la norma $||\cdot||_{\infty}$. Pruebe que el operador

$$T_2: C[0,1] \to C[0,1], \ T_2(f)(x) = \int_0^x f(s)ds$$

es compacto y no tiene autovalores.

Lema 1. Arzelá-Ascoli. Dado K compacto y $A\subset C(K)$. Entonces, \overline{A} es compacto en C(K) si

a) A es equicontinuo, i.e., $\forall t_0 \in K \ y \ \varepsilon > 0, \ \exists \ \delta > 0 \ tal \ que$

$$|f(t) - f(t_0)| < \varepsilon, \ \forall \ t \in K, \ d(t, t_0) < \delta, \ f \in A.$$

b) El conjunto $\{f(t): f \in A\}$ es limitado $\forall t \in K$.

El operador es compacto por Arzelá-Ascoli.

$$|T_2(f)(x) - T_2(f)(x_0)| = \left| \int_{x_0}^x f(s)ds \right| \le M|x - x_0| < \varepsilon$$

para $\delta = \frac{\varepsilon}{M}$. Por otro lado, $|T_2(f)(x)| < xM$.

Concluyamos que no posee autovalores. De tenerlos,

$$\int_0^x f(s)ds = \lambda f(x) \implies Ce^{x/\lambda} = f(x), \ C \neq 0.$$

Sin embargo, $T(f)(0) = 0 \neq C$.