無窮小量與無窮大量

在高等數學,對於無窮的討論,一般從無窮小量開始。何爲無窮小量?即一個非常接近0的變量不斷向零靠近,而永遠無法到達0,即爲無窮小量。

我們可以考慮數列 $\{a_n\}$, 其中對於任意整數n, $a_n = \frac{1}{10^n}$ 。則當n越大時, a_n 越靠近0。對此,記

$$a_n \to 0$$

考慮對任意n,均有 $\varepsilon > 0$ 使得 $0 < \varepsilon < a_n$,則稱變量 ε 為無窮小量。記 $\varepsilon \to 0$ 。

相對的,考慮數列 $\{A_n\}$, 其中對於任意整數n, $A_n = 10^n$ 。則當n越大時, A_n 越靠近 ∞ 。對此,記

$$A_n \to \infty$$

考慮對任意n,均有N > 0使得 $A_n < N$,則稱變量N為無窮大量。記 $N \to \infty$ 。 由此發現,無窮小量與無窮大量互相關聯:

$$\lim_{A_n \to \infty} a_n = 0$$

以上亦可簡記為 $\lim_{x\to\infty} \frac{1}{x} = 0$.

極限的幾何概念

想象一個漩渦,然後有一個點p在漩渦裏漂浮,其結果就是p會不斷沿著漩渦中心繞圈,無限接近漩渦中心,但永遠不會到達中心。此刻,我們稱p所走的路綫為p的軌跡,記p(t)並以t>0作時間變數,而漩渦中心 p_0 則爲p的軌跡的極限,記

$$p_0 = \lim_{t \to \infty} p(t)$$

留意上圖,p的軌跡從外圍開始,不斷趨近於 p_0 。可見對於任何圓心為 p_0 且半徑 爲r > 0的圓形,均有p(t)位於圓形內。

定義 1 (極限). 設p(t)為趨向於q的軌跡,

$\varepsilon - \delta$ 定義-於無窮小的極限

極限的性質

特殊的極限

於無窮大的極限

連續函數

連續函數的性質

介值定理

單調函數與逆函數