13

What is claimed:

1	1. A method for screening for agents that affect protein degradation rates, the method				
2	comprising:				
3	taking a library of cells, the cells expressing a fusion protein comprising a reporte				
4	protein and a protein encoded by a sequence from a cDNA library derived from a sample				
5	of cells, the sequence from the cDNA library varying within the cell library;				
6	contacting the library of cells with a plurality of agents which may affect protein				
7	degradation rates;				
8	for each agent, selecting cells in the library which express short-lived proteins				
9	based on whether the cells have different reporter signal intensities than other cells in the				
10	library, the difference being indicative of the selected cells expressing shorter lived fusion				
11	proteins than the fusion proteins expressed by the other cells in the library; and				
12	characterizing the fusion proteins expressed by the selected cells for each agent.				
1	2. A method according to claim 1, wherein the method further comprises comparing				
2	which fusion proteins are expressed by the selected cells for each agent.				
1	3. A method for monitoring effects different growth conditions have on expression of				
2	short-lived proteins, the method comprising:				
3	exposing samples of cells to different growth conditions;				
4	forming cDNA libraries from the sample of cells after exposure to the different				
5	growth conditions;				
6	forming a library of cells for each cDNA library, the cells in the library expressing				
7	a fusion protein comprising a reporter protein and a protein encoded by a sequence from				
8	the cDNA library derived from a sample of cells, the sequence from the cDNA library				
9	varying within the cell library;				
10	for each library of cells,				
11	identifying cells within the library that express fusion proteins that are				
12	degraded in vivo more rapidly than other fusion proteins, and				

characterizing fusion proteins expressed by the identified cells; and

13

14

14	comparing which fusion proteins are characterized for each library of cells,		
15	differences in the characterized fusion proteins indicating differences in the short-lived		
16	proteins expressed by when the cells are exposed to the different agents.		
1	4. A method according to claim 3, wherein exposing the samples of cells to different		
2	conditions comprises exposing the cells to different agents.		
1	5. A method according to claim 3, wherein identifying cells within the library that		
2	express fusion proteins that are degraded in vivo more rapidly than other fusion proteins		
3	comprises		
4	modifying a rate of protein expression or degradation by the cells, and		
5	selecting a population of the cells based on whether the cells have different		
6	6 reporter signal intensities than other cells after the rate of protein expression or		
7	7 degradation has been modified, the difference being indicative of the selected populati		
8	of cells expressing shorter lived fusion proteins than the fusion proteins expressed by the		
9	9 other cells in the library.		
1	6. A method for monitoring effects different growth conditions have on expression of		
2	short-lived proteins, the method comprising:		
3	exposing samples of cells to different conditions;		
4	forming cDNA libraries from the sample of cells after exposure to the different		
5	growth conditions;		
6	forming a library of cells for each cDNA library, each cell in the library expressing		
7	-		
8	the cDNA library derived from a sample of cells, the sequence from the cDNA library		
9	varying within the cell library;		
10	for each library of cells,		
11	partitioning the library of cells into populations of cells based on an		
12	intensity of a reporter signal from the fusion protein such that cells partitioned into		

a given population have a reporter signal within a desired range of reporter signal

intensity,

15	modifying a rate of protein expression or degradation by the cells for a			
16	given population of cells,			
17	selecting a subpopulation of the cells from the given population of cells			
18	based on whether the cells have a different reporter signal intensity than the other cells in			
19	the given population, the difference being indicative of the selected subpopulation of cells			
20	expressing shorter lived fusion proteins than the fusion proteins expressed by the other			
21	cells in the given population			
22	characterizing fusion proteins expressed by at least a portion of the selected			
23	cells; and			
24	comparing which fusion proteins are characterized for each library of cells,			
25	differences in the characterized fusion proteins indicating differences in the short-lived			
26	proteins expressed by when the cells are exposed to the different agents.			
1	7. A method according to claim 6 wherein exposing the samples of cells to different			
2	conditions comprises exposing the cells to different agents.			
1	8. A method for screening for differences in short-lived proteins expressed by first			
2	and second cell samples, the method comprising:			
3	forming cDNA libraries for first and second samples of cells;			
4	forming a library of cells for each cDNA library, the cells in the library expressing			
5	a fusion protein comprising a reporter protein and a protein encoded by a sequence from			
6	the cDNA library derived from a sample of cells, the sequence from the cDNA library			
7	varying within the cell library;			
8	for each library of cells,			
9	identifying cells within the library that express fusion proteins that are			
10	degraded in vivo more rapidly than other fusion proteins, and			
11	characterizing fusion proteins expressed by the identified cells; and			
12	comparing which fusion proteins are characterized for each library of cells,			
13	differences in the characterized fusion proteins indicating differences in the short-lived			
14	proteins expressed by the first and second samples cells.			

1	9. A method for screening for differences in short-lived protein	ns expressed by first			
2	and second cell samples, the method comprising:				
3	forming cDNA libraries for first and second samples of cell	s;			
4	forming a library of cells for each cDNA library, the cells in	n the library expressing			
5	a fusion protein comprising a reporter protein and a protein encode	d by a sequence from			
6	the cDNA library derived from a sample of cells, the sequence from the cDNA library				
7	7 varying within the cell library;				
8	8 for each library of cells,				
9	9 partitioning the library of cells into populations of	cells based on an			
10	0 intensity of a reporter signal from the fusion protein such th	nat cells partitioned into			
11	a given population have a reporter signal within a desired ra	ange of reporter signal			
12	2 intensity,				
13	modifying a rate of protein expression or degradation	on by the cells for a			
14	4 given population of cells,				
15	selecting a subpopulation of the cells based on when	ther the cells have			
16	6 different reporter signal intensities than the other cells after the rate	e of protein expression			
17	7 or degradation has been modified, the difference being indicative of	of the selected			
18	8 subpopulation of cells expressing shorter lived fusion proteins than	n the fusion proteins			
19	9 expressed by the other cells in the given population, and				
20	characterizing fusion proteins expressed by at least	a portion of the selected			
21	cells; and				
22	comparing which fusion proteins are characterized for each	h library of cells,			
23	differences in the characterized fusion proteins indicating differen	ces in the short-lived			
24	proteins expressed by the first and second samples cells.				