MAREK POLEWSKI MECHANIKA LOTU 2 CESSNA 150M PROWADZĄCY: DR INŻ. MACIEJ LASEK

WTOREK 14:15-16:00

Projekt 10

"Podłużna statyczna stateczność i sterowność samolotu"

DATA ODDANIA PROJEKTU:	OCENA:

Spis treści

1	Wstęp	1
2	Środki statecznej stateczności i sterowności podłużnej	1
3	Zapasy podłużnej stateczności i sterowności samolotu	3
4	Kryterium sterowności podłużnej samolotu	4
	4.1 Względem prędkości lotu	4
	4.2 Względem przeciążenia	5
	4.3 Podsumowanie	6

1 Wstęp

Celem projektu jest sprawdzenie statycznej stateczności i sterowności podłużnej. Obliczenia zostały wykonane w język Python.

Podsatawowe zmienne wykorzystane do obliczeń:

- powierzchnia nośna $S = 15.0 m^2$,
- powierzchnia steru wysokości $S_H = 2.2 m^2$,
- Średnia cięciwa aerodynamiczna $C_a = 1.5 m$,
- wydłużenie płata $\Lambda = 6.59$,
- średnia cięciwa steru wysokości $C_{sH} = 0.803 m$,

Ponaddto zostało założone przełożenie kątowe drążka $K_{dh}=1.0$

	$\bar{x}_c[-]$
\bar{x}_{c_1}	0.12
\bar{x}_{c_2}	0.25
\bar{x}_{c_3}	0.38

Tab. 1: Położenia środka ciężkości samolotu

2 Środki statecznej statecznosci i sterowności podłużnej

$$\bar{x}_N = \left(\bar{x}_{SA} + \sum_j \Delta \bar{x}_{SA_j} + \bar{z}_s \left(2 \cdot C_z \left(\frac{1}{\pi \Lambda} - \frac{1}{a}\right) - \alpha_0\right) + \kappa_H^{\prime 0} \cdot \frac{a_1}{a} \cdot \left(1 - \frac{\partial \varepsilon}{\partial \alpha}\right)\right) \cdot K_{gHN}$$
(1)

$$\bar{x}_{N'} = \left(\bar{x}_{SA} + \sum_{j} \Delta \bar{x}_{SA_{j}} + \bar{z}_{s} \left(2 \cdot C_{z} \left(\frac{1}{\pi \Lambda} - \frac{1}{a}\right) - \alpha_{0}\right) + \kappa_{H}'^{0} \cdot \frac{a_{1}}{a} \cdot \left(1 - \frac{\partial \varepsilon}{\partial \alpha}\right) \cdot \left(1 - \frac{a_{2}}{a_{1}} \cdot \frac{b_{1}}{b_{2}}\right)\right) \cdot K_{gHN'}$$

$$(2)$$

$$\bar{x}_{M} = \left(\bar{x}_{SA} + \sum_{j} \Delta \bar{x}_{SA_{j}} + \bar{z}_{s} \left(2 \cdot C_{z} \left(\frac{1}{\pi \Lambda} - \frac{1}{a}\right) - \alpha_{0}\right) + \kappa_{H}^{\prime 0} \cdot \frac{a_{1}}{a} \cdot \left(\left(1 - \frac{\partial \varepsilon}{\partial \alpha}\right) + \frac{a}{\mu_{1}^{0}}\right)\right) \cdot K_{gHM}$$
(3)

$$\bar{x}_{M'} = \left(\bar{x}_{SA} + \sum_{j} \Delta \bar{x}_{SA_{j}} + \bar{z}_{s} \left(2 \cdot C_{z} \left(\frac{1}{\pi \Lambda} - \frac{1}{a}\right) - \alpha_{0}\right) + \kappa_{H}'^{0} \cdot \frac{a_{1}}{a} \cdot \left(1 - \frac{a_{2}}{a_{1}} \cdot \frac{b_{1}}{b_{2}}\right) \cdot \left(\left(1 - \frac{\partial \varepsilon}{\partial \alpha}\right) + \frac{a}{\mu_{1}^{0}}\right)\right) \cdot K_{gHM'}$$

$$\tag{4}$$

$$K_{gHN} = \frac{1}{1 + \frac{S_H}{S} \cdot \frac{a_1}{a} \cdot \left(\frac{V_{H\infty}}{V_{\infty}}\right)^2 \cdot \left(1 - \frac{\partial \varepsilon}{\partial a}\right)} = 0.9528$$
 (5)

$$K_{gHN'} = \frac{1}{1 + \frac{S_H}{S} \cdot \frac{a_1}{a} \cdot \left(\frac{V_{H\infty}}{V_{\infty}}\right)^2 \cdot \left(1 - \frac{\partial \varepsilon}{\partial a}\right) \cdot \left(1 - \frac{a_2}{a_1} \cdot \frac{b_1}{b_2}\right)} = 0.9761 \tag{6}$$

$$K_{gHN} = \frac{1}{1 + \frac{S_H}{S} \cdot \frac{a_1}{a} \cdot \left(\frac{V_{H\infty}}{V_{\infty}}\right)^2 \cdot \left(1 - \frac{\partial \varepsilon}{\partial \alpha}\right)} = 0.9528$$

$$K_{gHN'} = \frac{1}{1 + \frac{S_H}{S} \cdot \frac{a_1}{a} \cdot \left(\frac{V_{H\infty}}{V_{\infty}}\right)^2 \cdot \left(1 - \frac{\partial \varepsilon}{\partial \alpha}\right) \cdot \left(1 - \frac{a_2}{a_1} \cdot \frac{b_1}{b_2}\right)} = 0.9761$$

$$K_{gHN} = \frac{1}{1 + \frac{S_H}{S} \cdot \frac{a_1}{a} \cdot \left(\frac{V_{H\infty}}{V_{\infty}}\right)^2 \cdot \left(\left(1 - \frac{\partial \varepsilon}{\partial \alpha}\right) + \frac{2a}{\mu_1^0}\right)} = 0.9478$$

$$(5)$$

$$(6)$$

$$K_{gHM'} = \frac{1}{1 + \frac{S_H}{S} \cdot \frac{a_1}{a} \cdot \left(\frac{V_{H\infty}}{V_{\infty}}\right)^2 \cdot \left(\left(1 - \frac{\partial \varepsilon}{\partial a}\right) + \frac{2a}{\mu_1^0}\right) \cdot \left(1 - \frac{a_2}{a_1} \cdot \frac{b_1}{b_2}\right)} = 0.9636$$
(8)

$$\mu_1^0 = \frac{m}{\frac{1}{2} \cdot \rho S x_{SAH}} = 16.45 \tag{9}$$

$$\kappa_H^{\prime 0} = \frac{S_H x_{SAH}}{S \cdot c_a} \cdot \left(\frac{V_{H\infty}}{V_{\infty}}\right) = 0.3573 \tag{10}$$

•	<i>V</i> [m/s]	C_z	x_n	x'_n	x_m	x'_m
	20.000	1.805	0.526	0.494	0.587	0.532
	23.684	1.287	0.485	0.452	0.546	0.490
	27.368	0.964	0.459	0.426	0.521	0.464
	31.053	0.749	0.442	0.408	0.504	0.447
	34.737	0.598	0.430	0.396	0.492	0.435
	38.421	0.489	0.421	0.387	0.483	0.426
	42.105	0.407	0.415	0.380	0.477	0.420
	45.789	0.344	0.410	0.375	0.472	0.415
	49.474	0.295	0.406	0.371	0.468	0.411
	53.158	0.255	0.403	0.368	0.465	0.407
	56.842	0.223	0.400	0.366	0.462	0.405
	60.526	0.197	0.398	0.363	0.460	0.403
	64.211	0.175	0.396	0.362	0.458	0.401
	67.895	0.157	0.395	0.360	0.457	0.399
	71.579	0.141	0.394	0.359	0.455	0.398
	75.263	0.127	0.393	0.358	0.454	0.397
	78.947	0.116	0.392	0.357	0.454	0.396
	82.632	0.106	0.391	0.356	0.453	0.395
	86.316	0.097	0.390	0.355	0.452	0.395
	90.000	0.089	0.390	0.355	0.451	0.394

Tab. 2: Tablica z danymi do obliczeń.

Rys. 1: Wykresy w funkcji Cz

Rys. 2: Wykresy w funkcji V

3 Zapasy podłużnej stateczności i sterowności samolotu

Kryteria sterownoci podłunej względem prędkoci definiowane jako pochodne kąta wychylenia steru wysokoci oraz siły na drążku (wolancie) względem prędkoci lotu dane są następującymi zależnościami:

• Zapas stateczności ze sterem trzymanym:

$$\bar{h_N} = \bar{x_N} - \bar{x_c}$$

• Zapas stateczności ze sterem puszczonym:

$$\bar{h_N} = \bar{x_N} - \bar{x_c}$$

• Zapas sterowności ze sterem trzymanym:

$$\bar{h_N} = \bar{x_N} - \bar{x_c}$$

• Zapas sterowności ze sterem puszczonym:

$$\bar{h_N} = \bar{x_N} - \bar{x_c}$$

Rys. 3: Zapas stateczności i sterowności w funkcji prędkości

4 Kryterium sterowności podłużnej samolotu

4.1 Względem prędkości lotu

Kryteria sterowności podłunej względem prędkoci definiowane jako pochodne kąta wychylenia steru wysokoci oraz siły na drążku (wolancie) względem prędkoci. Wyniki zostały przedstawione w

$$\frac{\delta_H}{dV} = \frac{4mg}{\rho S \kappa_H^{\prime 0} \cdot a_2} \cdot \frac{1}{V^3} \cdot \bar{h}_N \tag{11}$$

$$\frac{\delta_H}{dV} = \frac{4 \cdot 670.0 \cdot 9.81}{1.225 \cdot 15.0 \cdot 0.3573 \cdot 2.218} \cdot \frac{1}{V^3} \cdot \bar{h}_N$$

$$\frac{dP_{dH}}{dV} = -2mgK_{dH} \cdot \frac{S_{Sh} \cdot c_{SH}}{S_H \cdot x_{SAH}} \cdot \frac{c_a}{l_{dH}} \cdot \frac{1}{V} \cdot \bar{h}_{N'}$$
 (12)

$$\frac{dP_{dH}}{dV} = -2 \cdot 670.0 \cdot 9.81 \cdot 1.0 \cdot \frac{2.2 \cdot 0.803}{15.0 \cdot 4.29} \cdot \frac{1.5}{1.0} \cdot \frac{1}{V} \cdot \bar{h}_{N'}$$

Rys. 4: Kryteria sterowności podłużnej w funkcji prędkości

4.2 Względem przeciążenia

Kryteria sterowności podłużnej względem przeciążenia: przyrost kąta wychylenia względem współczynnika przeciążeń i przyrost siły na drążku odniesiony do współczynnika przeciążeń

$$\frac{\Delta \delta_H}{m_g - 1} = -2 \cdot m \cdot g \cdot \frac{c_a}{\rho \cdot S_H \cdot x_{SAH} \cdot a_2} \cdot \frac{1}{V^2} \cdot \bar{h}_M \tag{13}$$

$$\frac{\Delta \delta_H}{m_g - 1} = -2 \cdot 670.0 \cdot 9.81 \cdot \frac{1.5}{1.225 \cdot 2.2 \cdot 4.29 \cdot 2.218} \cdot \frac{1}{V^2} \cdot \bar{h}_M$$

$$\frac{\Delta P_{dH}}{m_g - 1} = m \cdot g \cdot K_{dH} \cdot \frac{c_a}{l_{dH}} \cdot \frac{S_{SH} \cdot c_{SH}}{S_H \cdot x_{SAH} \cdot \frac{b_2}{a_2}} \cdot \bar{h}_{M'}$$

$$\frac{\Delta P_{dH}}{m_g - 1} = 670.0 \cdot 9.81 \cdot 1.0 \cdot \frac{1.5}{1.0} \cdot \frac{2.2 \cdot 0.803}{15.0 \cdot 4.29 \cdot \frac{-0.322}{2.218}} \cdot \bar{h}_{M'}$$
(14)

Rys. 5: Kryteria sterowności podłużnej w funkcji przeciążenia

4.3 Podsumowanie

Na podsatwie warunków zawartych w poniżej można swierdzić, że samolot jest sterowny podłużnie.

$$\frac{d\delta_H}{dV} > 0 \quad \frac{dP_{dH}}{dV} < 0 \quad \frac{\Delta\delta_H}{m_g - 1} < 0 \quad \frac{\Delta P_{dH}}{m_g - 1} > 0$$