# Санкт-Петербургский политехнический университет Институт компьютерных наук и технологий

## ПРОЕКТИРОВАНИЕ ИНТЕЛЛЕКТУАЛЬНЫХ СИСТЕМ УПРАВЛЕНИЯ

VII CEMECTP

Лектор: Кожсубаев Юрий Нургачиевич



Автор: Шкалин Кирилл

# Содержание

| 1 | Лекция от 13.09.2022 |                             | 2 |
|---|----------------------|-----------------------------|---|
|   | 1.1                  | Человеческий мозг           | 2 |
|   | 1.2                  | Нейронная организация мозга | 2 |

### 1 Лекция от 13.09.2022

#### 1.1 Человеческий мозг

Человеческий мозг весит в среднем 1.3 кг.

**Нейрон** — особый вид клеток, который обладает электрической активностью. Он получает информацию при помощи сильно разветвленных отростков, называемых **дендритами**. И передает информацию вдоль тонкого волокна, называемого **аксоном**.

**Аксон** имеет множество ответвлений, на конце каждого из которых есть область, называемая **синопсом**. С помощью синопсов осуществляется связь между нейронами.

Каждый нейрон имеет тысячи связей с соседними нейронами. Информация по асонам передается в виде коротких импульсов. На участках контактов мужду нейронами (синопсисами) электрические импульсы превращаются в химические сигналы, которые стимулируют проникновения в клетку положительных зарядов.

Когда достигается критческие значения потенциала, называемого **пороговым**, в ядре нейрона возникает электрический импульс, распространяемый как волна по аксону на следующий нейрон. Вклад одного синопса в установление соответствующего потенциала на выходе нейрона незначительно, поэтому для возникновения электрического импульса необходимо, чтобы нейрон непрерывно интегрировал множество синапсических входов. Такая интеграция является нелинейным преобразованием.

Существуют:

- Пирамидальные нейроны;
- Нейроны Таламуса;
- Нейроны Пуркинье;
- . . .

Всего около 50 видов нейронов. Совокупность нейронов и связей между ними образуют нейронную сеть.

### 1.2 Нейронная организация мозга

Анатомически мозг разделен на ряд зон, выполняющих разные функции:

- префронтальная кора;
- гипокамп;
- гипоталамус;
- зрительна кора;
- мембическая система.

Каждая область представляет собой гуппу нейронов различных типов, соединенных между собой и другими частями мозга разнообразными связями.

**Лимбическая** система учавствует в эмоциональном поведении и долговременной памяти, которая хранит длительное время цифры, факты, правила и события. Чтобы записи в этой памяти не забывались, необходимо через определенное время активизировать

соответствующую нейронную структуру этой памяти. При повреждении нейронов долговременной памяти, человек утрачивает связь со своим прошлым.

**Гипокамп** выполняет функции кратковременной памяти, которая хранит информацию без реактивации соответствующей нейронной сети от нескольких минут до нескольких часов. Нейронная структура гипокампа перерабатывает и хранит новую информацию, полученную в результате обучения и при соответствующей реактивации.

**Префронтальная кора** участвует в образовании оперативной памяти, которая необходима для извлечения фактов, событий и правил из долговременной памяти и манипулирования ими или промежуточными результатами в соответствии с обстоятельствами.

Из разделения мозга на различные зоны вытекает концепция функций организации нейронных структур головного мозга. Согласно ей, различная информация обрабатывается и хранится в разных нейронных сетях головного мозга. Так некоторые исследователи считают, что префронтальная кора представляет собой совокупность участков памяти, каждый из которых специализируется на информации определенного рода. Например, цвет, размер объекта, семантические и математические значения. При этом разные характеристики одного объекта восприятия обрабатываются параллельно.