MATH 318, Assignment 3

Due date: October 11

- 1. (4 points) Write truth tables of the following formulas. Which of them are tautologies?

- $\begin{array}{ll} \text{(A) } (\neg p) \rightarrow q, \\ \text{(C) } p \rightarrow ((\neg p) \rightarrow q), \end{array} \\ \begin{array}{ll} \text{(B) } (p \wedge q) \vee (\neg p), \\ \text{(D) } q \vee (p \rightarrow (q \wedge (p \rightarrow q))). \end{array}$
- 2. (2 points) Devise formulas (using connectives amongst \vee , \wedge and ¬) and switching circuits (using gates amongst OR, AND and NOT) which realize each of the following Boolean functions:
 - $(A) \begin{array}{c|c} \left| \begin{array}{c|c} q \\ \hline 0 & 1 & 1 \\ \hline 1 & 0 & 1 \end{array} \right|$
- (B) $\begin{array}{c|c|c} q \\ \hline 0 & 0 & 1 \\ \hline 1 & 1 & 1 \\ \hline \end{array}$
- 3. (2 points) Write DNF and CNF formulas equivalent to the for- $\mathrm{mula}\ ((p \vee \neg q) \wedge (r \vee p)) \vee r.$
- 4. (1) (1 point) Write a formula equivalent to $p \to q$ using only the connective NAND,
 - (2) (1 point) Write a formula equivalent to $(p \land q) \lor \neg p$ using only the connective NOR,
- (2 points) Consider the formula

$$(\dots((p \to p) \to p) \to \dots) \to p,$$

where the variable p occurs n many times. For which n is the above formula a tautology? Justify your answer.

(4 points) Suppose φ is a formula written using only the biconditional connective \leftrightarrow (besides variables and parentheses). Show that φ is a tautology if and only if every variable occurs in φ an even number of times.

7. (2 points) Using Karnaugh maps, find a formula realizing the following Boolean function f with 4 variables p,q,r,s:

p	q	r	s	f(p,q,r,s)
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	0
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	0
1	1	1	1	0

The following problems are for extra credit.

- 8*. (4 points) Show that the set $\{\vee,\wedge\}$ is not complete.
- 9*. (4 points) Show that the set {XOR} is not complete.