Exercise 05

5.1 Which occurrences are bound and which are free?

5.1.1 $(\lambda x.x) y (\lambda y.yx) x$

The first x (This does not count the λx so for me the first one is always without the λ) is bound by the lambda calculus, the first y is free, the second y is bound by the lambda calculus, and both last x are free.

5.1.2
$$((\lambda x.\lambda y.\lambda z.xyz)(\lambda x.yx)y(\lambda x.zx)))$$

The first x, y, z are bounded by the lambda calculus, the second x is bounded, the second and third y are free, the third x is bounded and the second z is free.

5.1.3
$$\lambda y.(\lambda x. z (x (\lambda x. y (z)))) (\lambda z. y(x (z)))$$

All x except the last one and all y are bounded, whereas the last x and the first two z are free, and the last z is bounded.

5.2 Reducing lambda-expressions to their normal form

5.2.1 $(\lambda x.(\lambda z. zy) x) (\lambda x. x)$

$$(\lambda x.(\lambda z. zy) x) (\lambda x. x) = (\lambda z. zy) (\lambda x. x)$$
 β -reduction
= $(\lambda x. xy)$ β -reduction
= xy

5.2.2 $(\lambda x. xxy) (\lambda x. xxy)$

$$(\lambda x. xxy) (\lambda x. xxy) = (\lambda x. xxy) (\lambda x. xxy)y \qquad \beta - reduction$$

$$= ((\lambda x. xxy) (\lambda x. xxy)y)y \qquad \beta - reduction$$

$$= ((\lambda x. xxy) (\lambda x. xxy)y)y)y \qquad \beta - reduction$$

$$= ad infinum \Rightarrow no normal form available$$

5.2.3 $P \equiv (\lambda x. x (xy))I$ where $I \equiv \lambda u. u$

$$(\lambda x. \ x \ (xy)) \ (\lambda u. \ u) = (\lambda u. \ u)(\lambda u. \ uy)$$
 β -reduction
= $(\lambda u. \ uy)$ β -reduction
= uy β -reduction