The Captcha Beater

Mauris, Nikhil, Randy & Srivatsan

Project Overview

- We will focus on text recognition for Captchas
- Implement a neural network on an FPGA to tackle the issue
- Potential applications:
 - Malicious captcha farms
 - Captcha solving assistant to individuals that are visually impaired
 - Converting handwriting to text
 - Finding vulnerabilities in captcha generators
 - Captcha avoidance for automated testing purposes

Challenges

- Finding a good quality dataset that is readily available
 - Possibly making our own dataset to circumvent this issue
- Coming up with an appropriate neural network structure
 - We need to consider hardware limitations
 - Should we used a "pre-trained" NN such as AlexNet and modify it?
- How do we handle the input images?
 - O Do we need to compress?
 - On the FPGA or in software?
- Fastest or most secure method of communicating with the FPGA?
- How do we train the model on the FPGA?

A CAPTCHA Recognition Technology Based on Deep Learning

- Contrast Normalization used to normalized the brightness of the pixels, biased by a certain constant.
- Multi Task Joint Training trains each task to identify a specific character and the whole NN is trained in parallel to maximize efficiency.
- VGG-net, NN based on Alex-Net, used to solve 5 letter CAPTCHAs.
- Results show the model has a 96.5% accuracy.

Y. Hu, L. Chen and J. Cheng, "A CAPTCHA recognition technology based on deep learning," 2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA), Wuhan, 2018, pp. 617-620, doi: 10.1109/ICIEA.2018.8397789. (https://ieeexplore.ieee.org/document/8397789)

CAPTCHA Recognition with Active Deep Learning

- Goal is to reduce training data size by using Active Deep Learning
- Train set formed by choosing most informative data based on uncertainty algorithm.
- 4-Layer CNN using 62 output neurons for each character in a 5 letter CAPTCHA
- Results show that a small train set was able to achieve 80% accuracy using active deep learning vs.
 60% accuracy when using traditional training

Stark, Fabian & Hazırbaş, Caner & Triebel, Rudolph & Cremers, Daniel. (2015). CAPTCHA Recognition with Active Deep Learning. (https://www.researchgate.net/publication/301620459_CAPTCHA_Recognition_with_Active_Deep_Learning)

A Multi-Label Neural Network Approach to Solving Connected CAPTCHAS

- Python Package "CAPTCHA 0.2.1" was used as part of training data
- Multi-Label Learning approach used to solve the whole image instead of each letter separately.
- Using separate adjacent layers for next layer input to represent character connections
- 4-Layer CNN used to classify 4 letter CAPTCHAs
- Results show 94.26% accuracy on "CAPTCHA 0.2.1" set

K. Qing and R. Zhang, "A Multi-Label Neural Network Approach to Solving Connected CAPTCHAs," 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), Kyoto, 2017, pp. 1313-1317, doi: 10.1109/ICDAR.2017.216. (https://ieeexplore-ieee-org.myaccess.library.utoronto.ca/document/8270147)

Verification CAPTCHA Based on Deep Learning

- Used PIL Library in Python to generate CAPTCHA images.
- The paper introduces concepts of CNN and Keras applied to CAPTCHAs
- Image Pre-Processed to remove color and split characters
- VGG-net based CNN used to solve 4-letter CAPTCHAs
- Results show 90% accuracy when solving CAPTCHAs with around 2 seconds of solve time

T. Zhang, H. Zheng and L. Zhang, "Verification CAPTCHA Based on Deep Learning," 2018 37th Chinese Control Conference (CCC), Wuhan, 2018, pp. 9056-9060, doi: 10.23919/ChiCC.2018.8482847. (https://ieeexplore-ieee-org.myaccess.library.utoronto.ca/document/8482847)

Proposed System

- Python program captures captcha and sends image to FPGA memory
- Softcore Microblaze conducts forward propagation to predict captcha
- Captcha prediction is sent back to PC and entered in
- Softcore MicroBlaze processor can be used to train neural network if time permits

Neural Net Design

- Planning on using a model that can splice each character in the captcha and classify them individually
- Model will have 'n' outputs for 'n' characters of the captcha
- Subset of characters to be used
 (19 total valid characters for now)

HLS Components

- Neural Network will be implemented in HLS
- What else is needed that is not HLS?
 - Softcore MicroBlaze
 - DDR4 Memory
 - Communication Components Use FPGA IP Cores for data transfer between PCIe/UART/Ethernet, Memory, Microprocessor & Neural Network Core

Hardware Requirements

- FPGA Board ADM-PCIE-8V3
 - O Xilinx Virtex® UltraScale™ XCVU095-2 FFVC1517
 - O 2x 100G Ethernet MACs (incl. KR4 RS-FEC)
 - 2x 150G Interlaken cores
 - 4x PCI Express x8 Gen3
- PC & FPGA communication through PCle Gen3? Ethernet? USB?
- Time permitting we would like to include multiple FPGAs to simulate a cloud infrastructure

Plan and Milestones

- 1. Get a software version working
 - Finding or creating an appropriate dataset
 - Using that dataset to train a neural network
 - Achieve reasonable results/accuracy
- 2. Get a neural net working on an FPGA through HLS
- 3. Developing a method to communicate with an external PC for data transfer (Images In, Results Out)
- 4. Integration
 - Send a picture to the FPGA
 - FPGA interprets picture and determines result
 - FPGA sends result back to PC
 - Make fixes as necessary
- 5. Test the application on a legitimate website or customized application
- 6. Complete the final report

Timeline (Ideal)

				WEEK 1	WEEK	2	WEEK 3	WEEK 4	WEEK 5	WEEK 6	WEEK 7	WEEK 8	WEEK 9	WEEK 10	WEEK 11	WEEK 12
Software Revision	Start	End	Duration													
Finding/creating dataset	2/8/21	2/20/21	2 weeks													
CNN research	2/8/21	2/20/21	2 weeks													
Prior work research	2/8/21	2/20/21	2 weeks													
Neural net initial training	2/21/21	2/27/21	1 week													
Neural net adjustments	2/28/21	3/6/21	1 week													
Testing	2/28/21	3/6/21	1 week													
Neural Network on FPGA																
Research	2/28/21	3/6/21	1 week													
Implementation	3/7/21	3/20/21	2 weeks													
Optimization	3/21/21	3/27/21	1 week													
Verification	3/21/21	3/27/21	1 week													
Communication																
Research	3/21/21	3/27/21	1 week													
Data transfer	3/28/21	4/3/21	1 week													
Screen recognition	3/28/21	4/10/21	2 weeks													
Integration																
Integrating all components	4/4/21	4/10/21														
Final Testing																
Testing on real use cases	4/11/21	4/21/21	1.5 weeks													
Final Adjustments	4/11/21	4/21/21	1.5 weeks													
Final Report																
Initial Draft	4/11/21	4/21/21	1.5 weeks													
Proofreading	4/21/21	4/24/21	0.5 weeks													

Progress to Date

- Currently on track with planned timeline
- Developed initial machine learning model in software
- Currently tuning machine learning model and modifying training parameters to improve performance
- Currently constructing a more complete dataset

