武汉大学试卷纸

	专业软件2程	_年级_大	13	学号	-20	1730	188c	0166		名_	马草	被		
	科目网络及分布	成绩	总分	1	2	3	4	5	6	7	8	9	10	
	A= "20173 B= 580166	0258016	6 ''											
	Problem 1 Since B = 580/66 = (1000 1101 1010 0/00 0110),													
Thus, C= 1101 1010 0100 0110 1101 1010 0100 0000 11110 0000 0000 0001 1011 1010 0100 1000 Here is an overflow of					-			-/3					_	
					the result.									
订线内	The inverted code of this number is: 0/00 0/0/ 10/11 0/11													
※	Problem 2													
-	C1 = 0100 For adapter							= 7	0				_	
_	For adapter	- A-2,	K= (22=	=(110	1 10	10/2	= レ	18					
_	Tor a low the waiting	time t	br A	-1	Ĭ\$:	5	12 >	70	= {	3584	-ms	_	
_	the raiting											6 m	5	
2	For a loonly the naiting								350	8.4	ms		_	
=	the raiting	time fi	x A-	2 13	:	512	421	8	- 111	6.1	6 mi			

Problem The		as the follo	ming:	
	cs. whu. ea	lu.cn?id=20	173.2880166	
Problem 4				
	2400+70=24	70		
		20 bytes ZP	header.	
	Total length	data length	FF offset	
original	2470	2450	0 0	
gegment 1	7.00	680	1 0	
segment 2	700	980	1 85	
segment 3	700	680	1 170	
egment 4	430	410	0 755	
The re	lated fields o	ire as the fol		
egment 1	length=70	no 1D=x frag	Iflag=1 offset=0	
egment 2	length = 7 t	to 10=x frag	flag=1 offset=85	
egment 3	length = 70	2D-x trag	flag=1 offset=170]	
· ·				
ogment4	longth =4	30 D-X fray	gflag=0 offset=255	
J	1_0			

Problem 5
(x, w) = 2
C(x,y)=5
$C(x, u) = \infty$
b) give a change as: c(x, w) = 7
c) grea change as: c(x, w)=1
Problem 6
x+x+1 can be regarded as 10011.
- the result segmence is: 0100 0110 1001)
8 bits thits
The sequence the receiver received is: 1100 0110 10011.
Dis 1100 0110 Gis 10011
[0]0 0/10
10011 1100 0110 0000
10011
100011
10011
1000
1110,
R
Since this R is not equal to the remainder of D.2
the error 13 detected.

_							
Problem 7							
C: (10) (0/0 0/00 0/10							
Motching Principle:							
Of there is a mortch, the nonter forwards the packet to a							
Link associated with the match.							
1 Lf a prefix doesn't match any of these entries, the nauter							
forwards the packet to the default interface.							
3 longest prefix matching rule.							
	Since C doesn't match any of these entries, the router forwards						
_it to the defaul	t interface:	10 .					
Problem 8							
M-3 = DA46	15. 6D (1 N)	1					
	Mac-1 = 00 - 15 - 5D - 41 - DA - 46						
1) The creating and updating process:							
1) The suitch table is initially empty.							
2). For each incoming frame received on an interface, the switch							
stores in its table: of the Nac address, of the interface from							
which the frame arrived, 3 the current time.							
received with that address as the source address after some							
peroid of time.							
The final switch table will look like:							
Add res							
00-15-5D-41-80-A8	2	20:01					
00-15-5D-41-DA-46	1	20:02					
	cfor example)	cfor example)					

The hexadecimal variable is 0x0800, and the corresponding
upper layer protocol is 1Pu4.
Problem 9.
O. WiFi: 1) vide coverage:
2) no wiring required.
3) Fast transmission speed, the wreless standard
2 EEE 802.11 can reach 100Mbps.
Delive twoth: 1) global working frequency band
2) strong security and anti-interference ability
3) short transmission distance
4) Spread through FM spread spectrum technology.
3 46: 1) Fast communication
2) Adaptive resource allocation
3) communication technology is more intelligent
4) good compatibility.
My design:
This kind of technology must be unde spread and reliable.
dividing the network into multiple VLANs can reduce the number
I devices participating in broadcast storms. Assign a switch
port or user to a specific VLAN group. The VLAN group can be
m a switching network or span multiple switches. Broadcases in a
ma switching neighbor of span movery. Adding cent prote will not
MAN will not be sent outside the WAN. Adja cent ports will not
receive broadcosts from other WANs. This can reduce broadcast traffic,
release bandwith to user applications, and reduce the generation of
broadcasts.