โปรแกรม MIB Browser ใช้สำหรับเรียกดูค่าของอุปกรณ์ที่ต้องการตรวจสอบโอไอดี ใน การดึงข้อมูลจะต้องใส่หมายเลข IP Address ของเอเจนต์ ใส่ค่าคอมมิวนิตี้สตริงให้ตรงกับที่เอเจนต์ กำหนดไว้และเครื่องเอเจนต์จะต้องเปิด Service SNMP โปรแกรม MIN Browser ถึงจะสามารถเข้า ไปดึงข้อมูลจากเครื่องเอเจนต์ได้

ผลการเรียกค่าโอไอดีที่ได้จากการทดลอง

1) ค่าปริมาณการใช้งานซีพียู (CPU Usage)

Name: cpmCPUTotal5min

OID: .1.3.6.1.4.1.9.9.109.1.1.1.1.5.1

2) ค่าปริมาณการใช้งานเมมโมรี่ (Memory Usage)

Name: ciscoMemoryPoolUsed OID: .1.3.6.1.4.1.9.9.48.1.1.1.5.1

3) ค่าข้อมูลรายละเอียดของอุปกรณ์

Name: sysDescr

OID: .1.3.6.1.2.1.1.1.0

4) ค่าของการเปิดใช้งานของอุปกรณ์

Name: sysUpTime

OID: .1.3.6.1.2.1.1.3.0

5) ค่าของการเปิดใช้งานของอุปกรณ์

Name : sysUpTime

OID: .1.3.6.1.2.1.1.3.0

6) ค่าการใช้งาน Traffic ขาเข้า

Name: ifInOctets

OID: .1.3.6.1.2.1.2.2.1.10.1

7) ค่าการใช้งาน Traffic ขาเข้า

Name: ifOutOctets

OID: .1.3.6.1.2.1.2.2.1.16.1

8) ค่าอุณหภูมิของอุปกรณ์

Name: cisco EnvMon Temperature Status Value

OID: .1.3.6.1.4.1.9.9.13.1.3.1.3

ข้อมูลที่ยังไม่ผ่านการแปลงข้อมูล

ตารางที่ 4-1 ตัวอย่างของข้อมูล System

Name/OID	Value	OID
sysDescr	Cisco IOS Software, Catalyst 4500 L3 Switch Software (cat4500e-LANBASEK9-M), Version 15.0(2)SG1, RELEASE SOFTWARE (fc4) Technical Support: http://www.cisco.com/techsupp ort Copyright (c) 1986-2011 by Cisco Systems, Inc. Compiled Thu 25-Aug-11 09:27 by p	.1.3.6.1.2.1.1.1.0
sysUpTime	1434 hours 44 minutes 38 seconds (516507837)	.1.3.6.1.2.1.1.3.0
sysName	SW4503	.1.3.6.1.2.1.1.5.0
cpmCPUTotal5	5	.1.3.6.1.4.1.9.9.109.1.1.1.1.5.1
ciscoMemoryPo olUsed	194108612	.1.3.6.1.4.1.9.9.48.1.1.1.5.1
ciscoEnvMonTe mperatureStatus Value	26	1.3.6.1.4.1.9.9.13.1.3.1.3

ตารางที่ 4-2 ตัวอย่างของข้อมูล Traffic Inbound

Name/OID	Value	OID
ifInOctets.1	0	.1.3.6.1.2.1.2.2.1.10.1
ifInOctets.51	116575506	.1.3.6.1.2.1.2.2.1.10.1
ifInOctets.52	2789121378	.1.3.6.1.2.1.2.2.1.10.1
ifInOctets.53	87404303	.1.3.6.1.2.1.2.2.1.10.1
ifInOctets.54	320120017	.1.3.6.1.2.1.2.2.1.10.1
ifInOctets.55	211044208	.1.3.6.1.2.1.2.2.1.10.1
ifInOctets.56	0	.1.3.6.1.2.1.2.2.1.10.1
ifInOctets.57	29195075	.1.3.6.1.2.1.2.2.1.10.1
ifInOctets.58	637365144	.1.3.6.1.2.1.2.2.1.10.1
ifInOctets.59	0	.1.3.6.1.2.1.2.2.1.10.1
ifInOctets.88	343565568	.1.3.6.1.2.1.2.2.1.10.1
ifInOctets.99	0	.1.3.6.1.2.1.2.2.1.10.1
ifInOctets.100	0	.1.3.6.1.2.1.2.2.1.10.1
ifInOctets.10101	3302340847	.1.3.6.1.2.1.2.2.1.10.1
ifInOctets.10102	0	.1.3.6.1.2.1.2.2.1.10.1
ifInOctets.10103	382648916	.1.3.6.1.2.1.2.2.1.10.1
ifInOctets.10104	0	.1.3.6.1.2.1.2.2.1.10.1
ifInOctets.10105	4084194297	.1.3.6.1.2.1.2.2.1.10.1
ifInOctets.10106	0	.1.3.6.1.2.1.2.2.1.10.1
ifInOctets.10107	2657447915	.1.3.6.1.2.1.2.2.1.10.1

ตารางที่ 4-3 ตัวอย่างของข้อมูล Traffic Outbound

T	1	
Name/OID	Value	OID
ifOutOctets.1	0	.1.3.6.1.2.1.2.2.1.16.1
ifOutOctets.51	116656529	.1.3.6.1.2.1.2.2.1.16.1
ifOutOctets.52	1496371872	.1.3.6.1.2.1.2.2.1.16.1
ifOutOctets.53	120398715	.1.3.6.1.2.1.2.2.1.16.1
ifOutOctets.54	362527249	.1.3.6.1.2.1.2.2.1.16.1
ifOutOctets.55	253503850	.1.3.6.1.2.1.2.2.1.16.1
ifOutOctets.56	678	.1.3.6.1.2.1.2.2.1.16.1
ifOutOctets.57	133813753	.1.3.6.1.2.1.2.2.1.16.1
ifOutOctets.58	431768585	.1.3.6.1.2.1.2.2.1.16.1
ifOutOctets.59	0	.1.3.6.1.2.1.2.2.1.16.1
ifOutOctets.88	149157043	.1.3.6.1.2.1.2.2.1.16.1
ifOutOctets.99	0	.1.3.6.1.2.1.2.2.1.16.1
ifOutOctets.100	678	.1.3.6.1.2.1.2.2.1.16.1
ifOutOctets.10101	1995310172	.1.3.6.1.2.1.2.2.1.16.1
ifOutOctets.10102	0	.1.3.6.1.2.1.2.2.1.16.1
ifOutOctets.10103	2832577732	.1.3.6.1.2.1.2.2.1.16.1
ifOutOctets.10104	0	.1.3.6.1.2.1.2.2.1.16.1
ifOutOctets.10105	3431308899	.1.3.6.1.2.1.2.2.1.16.1
ifOutOctets.10106	0	.1.3.6.1.2.1.2.2.1.16.1
ifOutOctets.10107	794595360	.1.3.6.1.2.1.2.2.1.16.1

ตารางที่ 4-4 ตัวอย่างของข้อมูล Interface

Name/OID	Value	OID
ifDescr.1	Vlan1	.1.3.6.1.2.1.2.2.1.2.1
ifDescr.51	Vlan51	.1.3.6.1.2.1.2.2.1.2.1
ifDescr.52	Vlan52	.1.3.6.1.2.1.2.2.1.2.1
ifDescr.53	Vlan53	.1.3.6.1.2.1.2.2.1.2.1
ifDescr.54	Vlan54	.1.3.6.1.2.1.2.2.1.2.1
ifDescr.55	Vlan55	.1.3.6.1.2.1.2.2.1.2.1
ifDescr.56	Vlan56	.1.3.6.1.2.1.2.2.1.2.1
ifDescr.57	Vlan57	.1.3.6.1.2.1.2.2.1.2.1
ifDescr.58	Vlan58	.1.3.6.1.2.1.2.2.1.2.1
ifDescr.59	Vlan59	.1.3.6.1.2.1.2.2.1.2.1
ifDescr.88	Vlan88	.1.3.6.1.2.1.2.2.1.2.1
ifDescr.99	Vlan99	.1.3.6.1.2.1.2.2.1.2.1
ifDescr.100	Vlan100	.1.3.6.1.2.1.2.2.1.2.1
ifDescr.10101	GigabitEthernet0/1	.1.3.6.1.2.1.2.2.1.2.1
ifDescr.10102	GigabitEthernet0/2	.1.3.6.1.2.1.2.2.1.2.1
ifDescr.10103	GigabitEthernet0/3	.1.3.6.1.2.1.2.2.1.2.1
ifDescr.10104	GigabitEthernet0/4	.1.3.6.1.2.1.2.2.1.2.1
ifDescr.10105	GigabitEthernet0/5	.1.3.6.1.2.1.2.2.1.2.1
ifDescr.10106	GigabitEthernet0/6	.1.3.6.1.2.1.2.2.1.2.1
ifDescr.10107	GigabitEthernet0/7	.1.3.6.1.2.1.2.2.1.2.1

ตารางที่ 4-5 ตัวอย่างของข้อมูลสถานะ Interface

Name/OID	Value	OID
ifOperStatus.1	down (2)	.1.3.6.1.2.1.2.2.1.8.1
ifOperStatus.51	down (2)	.1.3.6.1.2.1.2.2.1.8.1
ifOperStatus.52	up (1)	.1.3.6.1.2.1.2.2.1.8.1
ifOperStatus.53	up (1)	.1.3.6.1.2.1.2.2.1.8.1
ifOperStatus.54	up (1)	.1.3.6.1.2.1.2.2.1.8.1
ifOperStatus.55	up (1)	.1.3.6.1.2.1.2.2.1.8.1
ifOperStatus.56	down (2)	.1.3.6.1.2.1.2.2.1.8.1
ifOperStatus.57	up (1)	.1.3.6.1.2.1.2.2.1.8.1
ifOperStatus.58	up (1)	.1.3.6.1.2.1.2.2.1.8.1
ifOperStatus.59	down (2)	.1.3.6.1.2.1.2.2.1.8.1
ifOperStatus.88	up (1)	.1.3.6.1.2.1.2.2.1.8.1
ifOperStatus.99	down (2)	.1.3.6.1.2.1.2.2.1.8.1
ifOperStatus.100	down (2)	.1.3.6.1.2.1.2.2.1.8.1
ifOperStatus.10101	down (2)	.1.3.6.1.2.1.2.2.1.8.1
ifOperStatus.10102	down (2)	.1.3.6.1.2.1.2.2.1.8.1
ifOperStatus.10103	up (1)	.1.3.6.1.2.1.2.2.1.8.1
ifOperStatus.10104	down (2)	.1.3.6.1.2.1.2.2.1.8.1
ifOperStatus.10105	up (1)	.1.3.6.1.2.1.2.2.1.8.1
ifOperStatus.10106	down (2)	.1.3.6.1.2.1.2.2.1.8.1
ifOperStatus.10107	up (1)	.1.3.6.1.2.1.2.2.1.8.1

4.1.2 ขั้นตอนการค้นคว้าข้อมูลเกี่ยวกับการพัฒนาแบบแอพพลิเคชั่น

ขั้นตอนการค้นคว้าข้อมูลเกี่ยวกับการพัฒนาแบบแอพพลิเคชั่น ศึกษาค้นคว้าเกี่ยวกับ ภาษา PHP เพื่อใช้เก็บ Log จากอุปกรณ์ และใช้ PHP เป็นส่วนที่ใช้ในการคำนวณ ประมวลผลเก็บ ค่า และทำตามคำสั่งต่าง ๆ และเก็บไว้เพื่อนำมาแสดงผลต่อไป PHP เป็นภาษาที่สามารถศึกษาได้ ง่าย และทำงานได้มีประสิทธิภาพ ทำให้เป็นที่นิยมอย่างยิ่งในปัจจุบัน และศึกษาเพิ่มเติมเกี่ยวกับการ ใช้ ภาษาJava Script เพื่อใช้พัฒนาเว็บในส่วนของหน้าเว็บแอพพลิเคชั่นที่ใช้แสดงข้อมล เพื่อให้ เว็บไซต์ดมีการเคลื่อนไหว สามารถตอบสนองผ์ใช้งานได้มากขึ้น และเป็นภาษาที่ใช้ทรัพยากรเครื่อง น้อยมาก ใช้งานร่วมกับภาษา HTML ภาษาหลักที่ใช้ในการเขียนเว็บแอพพลิเคชั่น โดยใช้ Tag ใน การกำหนดการแสดงผล HTML ย่อมาจากคำว่า Hypertext Markup Language โดย Hypertext หมายถึง ข้อความที่เชื่อมต่อกันผ่านลิ้ง (Hyperlink) Markup language หมายถึงภาษาที่ใช้ Tag ใน การกำหนดการแสดงผลสิ่งต่าง ๆ ที่แสดงอยู่บนเว็บบราวเซอร์ และศึกษาการใช้ CSS สำหรับตกแต่ง HTML ให้มีหน้าตา สีสัน ตัวอักษร เส้นขอบ พื้นหลัง ระยะห่าง ฯลฯ อย่างที่เราต้องการ ด้วยการ กำหนดคุณสมบัติให้กับ Element ต่าง ๆ และใช้ jquery เพื่อให้การเขียน JavaScript นั้นมีความ สะดวกและง่ายขึ้น เพราะว่าการนำ JavaScript เอาไปประยุกต์กับงานจำพวกเว็บ (Client-side JavaScript) นั้น เป็นสิ่งที่ยุ่งยาก ไม่ว่าจะเป็นเรื่องความไม่เข้ากันของ Web Browser,DOM หรือ API เป็นต้น jquery จึงรวมเอา Object และ Function ต่าง ๆ ที่จำเป็นมารวบรวมไว้ในรูปแบบของ Library ช่วยให้เขียน Java Script ได้ง่ายและสั้นลง

4.1.3 ขั้นตอนการวิเคราะห์ข้อมูล

ในขั้นตอนการวิเคราะห์ข้อมูลนั้นได้ศึกษาถึงระบบ Monitoring ในรูปแบบต่าง ๆ ศึกษา ถึงข้อดีข้อเสียของระบบ Monitoring แต่ละตัว และปรับเอาข้อดีข้อเสียของระบบ Monitoring ที่มี อยู่แล้วนำมาเป็นแนวทางในการพัฒนาโครงงานพิเศษให้มีประสิทธิภาพสูงสุดและใช้งานได้จริงอย่าง สมบูรณ์แบบและมีการทดลองเขียนโปรแกรมในภาษา PHP ในการเก็บข้อมูลต่าง ๆ และทดสอบ API ที่ถูกสร้างขึ้นในรูปแบบ JSON อย่างละเอียด ก่อนนำมาพัฒนาเว็บแอพพลิเคชั่น โดยข้อมูลที่ได้จาก อุปกรณ์จะถูกวิเคราะห์และคัดเอาข้อมูลที่มีประโยชน์และน่านำมาเสนอหน้าเว็บบราวเซอร์

ภาพที่ 4-1 ข้อมูลการใช้งาน Traffic ของทุกอุปกรณ์ ที่ผ่านการแปลงข้อมูลเป็น API

```
+ - View source 尊
- {
- 0: {
            ip: "10.77.4.1",
            ios: ""Cisco IOS Software, Catalyst 4500 L3 Switch Software (cat4500e-LANBASEK9-M),
            Version 15.0(2)SG1, RELEASE SOFTWARE (fc4).. Technical Support:
            http://www.cisco.com/techsupport..Copyright (c) 1986-2011 by Cisco Systems,
            Inc...Compiled Thu 25-Aug-11 09:27 by p"",
            uptime: " 59 days, 20:10:33.07",
            cpu: "5",
            mem: "185.12 MB",
            temp: "43"
       },
     - 1: {
            ip: "10.77.1.2",
            ios: ""Cisco IOS Software, C3560 Software (C3560-IPSERVICES-M), Version 12.2(50)SE5,
            RELEASE SOFTWARE (fc1)..Technical Support:
            http://www.cisco.com/techsupport..Copyright (c) 1986-2010 by Cisco Systems,
            Inc...Compiled Tue 28-Sep-10 13:21 by prod_rel_team"",
            uptime: " 59 days, 20:09:34.81",
            cpu: "7",
            mem: "19.64 MB",
            temp: "48"
       },
     - 2: {
            ip: "10.77.6.2",
            ios: ""Cisco IOS Software, C3560 Software (C3560-IPSERVICES-M), Version 12.2(50)SE5,
            RELEASE SOFTWARE (fc1)..Technical Support:
            http://www.cisco.com/techsupport..Copyright (c) 1986-2010 by Cisco Systems,
            Inc...Compiled Tue 28-Sep-10 13:21 by prod_rel_team"",
            uptime: " 48 days, 11:54:53.40",
            cpu: "7",
            mem: "19.53 MB",
            temp: "46"
       },
```

ภาพที่ 4-2 ตัวอย่างข้อมูล System ที่ผ่านการแปลงข้อมูลเป็น API

```
- 10.77.4.1: {
    - inbound: {
            2: "0.00",
            3: "0.00",
            4: "0.00",
            5: "0.00",
            6: "0.00",
            7: "0.00",
            8: "0.00",
            9: "3,836.31",
            10: "2,300.62",
            11: "1,348.90",
            12: "2,302.36",
            13: "886.51",
            14: "670.55",
            15: "0.00",
            16: "0.00",
            17: "1,902.96",
            18: "0.00",
            19: "0.00",
            20: "0.00",
            21: "0.00",
            22: "0.00",
            23: "0.00",
            24: "0.00",
            25: "0.00",
            26: "0.00",
            27: "630.66",
            28: "700.67",
            29: "0.00",
            30: "425.78",
            31: "90.95",
            32: "435.54",
            33: "1.76",
            34: "0.00",
            35: "0.00",
            36: "5.39",
            37: "11.36",
            38: "0.10",
            39: "0.00".
```

ภาพที่ 4-3 ตัวอย่างข้อมูล Traffic Inbound ที่ผ่านการแปลงข้อมูลเป็น API

```
+ - View source 尊
- 10.77.4.1: {
    - outbound: {
            2: "0.00",
            3: "0.00",
            4: "0.00",
            5: "0.00",
            6: "0.00",
            7: "0.00",
            8: "0.00",
            9: "1,976.74",
            10: "2,323.81",
            11: "890.01",
            12: "1,943.10",
            13: "2,963.94",
            14: "1,223.72",
            15: "0.00",
            16: "0.00",
            17: "2,297.93",
            18: "0.00",
            19: "0.00",
            20: "0.00",
            21: "0.00",
            22: "0.00",
            23: "0.00",
            24: "0.00",
            25: "0.00",
            26: "0.00",
            27: "2,170.90",
            28: "1,932.08",
            29: "0.00",
            30: "1,976.04",
            31: "1,725.82",
            32: "2,131.97",
            33: "5.57",
            34: "0.00",
            35: "0.00",
            36: "566.85",
            37: "1,602.17",
            38: "1,529.41",
            39: "0.00",
```

ภาพที่ 4-4 ตัวอย่างข้อมูล Traffic Outbound ที่ผ่านการแปลงข้อมูลเป็น API

```
- 10.77.4.1: {
    - interface: {
            2: ""FastEthernet1"",
            3: ""TenGigabitEthernet1/1"",
            4: ""TenGigabitEthernet1/2"",
            5: ""GigabitEthernet1/3"",
            6: ""GigabitEthernet1/4"",
            7: ""GigabitEthernet1/5"",
            8: ""GigabitEthernet1/6"",
            9: ""GigabitEthernet2/1"",
            10: ""GigabitEthernet2/2"",
            11: ""GigabitEthernet2/3"",
            12: ""GigabitEthernet2/4"",
            13: ""GigabitEthernet2/5"",
            14: ""GigabitEthernet2/6"",
            15: ""GigabitEthernet3/1"",
            16: ""GigabitEthernet3/2"",
            17: ""GigabitEthernet3/3"",
            18: ""GigabitEthernet3/4"",
            19: ""GigabitEthernet3/5"",
            20: ""GigabitEthernet3/6"",
            21: ""GigabitEthernet3/7"",
            22: ""GigabitEthernet3/8"",
            23: ""GigabitEthernet3/9"",
            24: ""GigabitEthernet3/10"",
            25: ""GigabitEthernet3/11"",
            26: ""GigabitEthernet3/12"",
            27: ""GigabitEthernet3/13"",
            28: ""GigabitEthernet3/14"",
            29: ""GigabitEthernet3/15"",
            30: ""GigabitEthernet3/16"",
            31: ""GigabitEthernet3/17"",
            32: ""GigabitEthernet3/18"",
            33: ""GigabitEthernet3/19"",
            34: ""GigabitEthernet3/20"",
            35: ""GigabitEthernet3/21"",
            36: ""GigabitEthernet3/22"",
            37: ""GigabitEthernet3/23"",
            38: ""GigabitEthernet3/24"",
            39: ""GigabitEthernet3/25"",
```

ภาพที่ 4-5 ตัวอย่างข้อมูล Interface ที่ผ่านการแปลงข้อมูลเป็น API

```
- 10.77.4.1: {
      "FastEthernet1": "Down",
      "TenGigabitEthernet1/1": "Down",
      "TenGigabitEthernet1/2": "Down",
      "GigabitEthernet1/3": "Down",
      "GigabitEthernet1/4": "Down",
      "GigabitEthernet1/5": "Down",
      "GigabitEthernet1/6": "Down",
      "GigabitEthernet2/1": "Up",
      "GigabitEthernet2/2": "Up",
      "GigabitEthernet2/3": "Up",
      "GigabitEthernet2/4": "Up",
      "GigabitEthernet2/5": "Up",
      "GigabitEthernet2/6": "Up",
      "GigabitEthernet3/1": "Down",
      "GigabitEthernet3/2": "Down",
      "GigabitEthernet3/3": "Up",
      "GigabitEthernet3/4": "Down",
      "GigabitEthernet3/5": "Down",
      "GigabitEthernet3/6": "Down",
      "GigabitEthernet3/7": "Down",
      "GigabitEthernet3/8": "Down",
      "GigabitEthernet3/9": "Down",
      "GigabitEthernet3/10": "Down",
      "GigabitEthernet3/11": "Down",
      "GigabitEthernet3/12": "Down",
      "GigabitEthernet3/13": "Up",
      "GigabitEthernet3/14": "Up",
      "GigabitEthernet3/15": "Down",
      "GigabitEthernet3/16": "Up",
      "GigabitEthernet3/17": "Up",
      "GigabitEthernet3/18": "Up",
      "GigabitEthernet3/19": "Down",
      "GigabitEthernet3/20": "Down",
      "GigabitEthernet3/21": "Down",
      "GigabitEthernet3/22": "Down",
      "GigabitEthernet3/23": "Down",
      "GigabitEthernet3/24": "Down",
      "GigabitEthernet3/25": "Down",
      "GigabitEthernet3/26": "Down",
```

ภาพที่ 4-6 ตัวอย่างข้อมูลสถานะ Interface ที่ผ่านการแปลงข้อมูลเป็น API

```
- {
     - 10.77.4.1: {
           inbound: {
                  B401A 10.4.101.0/24: "2.63",
                  B401B 10.4.201.0/24: "178.89",
                  B402 10.4.2.0/24: "40.55"
             },
          - outbound: {
B401A 10.4.101.0/24: "290.94",
B401B 10.4.201.0/24: "168.31",
                  B402 10.4.2.0/24: "301.91"
        10.77.1.2: {
             inbound: {
                  B101A 10.1.201.0/24: "322.43"
          - outbound: {
B101A 10.1.201.0/24: "213.17"
        10.77.6.2: {
           inbound: {
                  B101C 10.1.101.0/24: "0.22"
          - outbound: {
B101C 10.1.101.0/24: "9.97"
       10.77.3.2: {
             inbound: {
                  B324 10.3.24.0/24: "11.28",
                  B325 10.3.25.0/24: "0.01",
B327 10.3.27.0/24: "5.87",
                  B330B 10.3.230.0/24: "17.12",
                  B332 10.3.32.0/24: "0.24",
B329 10.3.91.0/24: "32.53"
          - outbound: {
                  B324 10.3.24.0/24: "29.96",
                  B325 10.3.25.0/24: "28.98",
B327 10.3.27.0/24: "30.99",
                  B330B 10.3.230.0/24: "31.83",
                  B332 10.3.32.0/24: "3.95",
B329 10.3.91.0/24: "37.95"
       10.77.5.2: {
             inbound: {
                  B408 10.4.8.0/24: "6.24",
B409 10.4.9.0/24: "0.00",
                  B411 10.4.11.0/24: "0.00",
B415 10.4.15.0/24: "200.40",
                  B416 10.4.16.0/24: "0.29",
                  B417 10.4.17.0/24: "0.00"
          - outbound: {
                  B408 10.4.8.0/24: "15.59",
                  B409 10.4.9.0/24: "0.00",
                  B411 10.4.11.0/24: "0.00",
                  B415 10.4.15.0/24: "218.85",
B416 10.4.16.0/24: "29.82",
                  B417 10.4.17.0/24: "0.00"
       10.77.8.2: {
             inbound: {},
             outbound: {}
  }
```

ภาพที่ 4-7 ข้อมูลการใช้งาน Traffic ที่แบ่งตาม Network ID ที่ผ่านการแปลงข้อมูลเป็น API

4.1.4 ขั้นตอนการออกแบบระบบ

ขั้นตอนการออกแบบระบบนั้นเริ่มจากการออกแบบเมนู ฟังก์ชั่นการใช้งานที่มีประโยชน์ สูงสุดต่อผู้ดูแลระบบ และให้มีส่วนติดต่อกับผู้ใช้อย่างเข้าใจง่าย ด้วยการแทนความหมายด้วยรูปภาพ และสีที่แตกต่างอย่างชัดเจนเป็นหลัก จากนั้นเป็นการออกแบบการคำนวณค่าของ Traffic และค่า สมรรถนะการทำงานของอุปกรณ์ให้มีความถูกต้อง จากนั้นเป็นการออกแบบโครงสร้างการเขียน โปรแกรมเพื่อพัฒนาเว็บแอพพลิเคชั่นให้มีการทำงานสอดคล้องกับสิ่งที่ความคาดหวังของโครงงาน พิเศษได้

4.1.5 รายละเอียดการทำงานของหน้าเว็บแอพพลิเคชั่น

เว็บแอพพลิเคชั่นสามารถทำงานได้ดังต่อไปนี้

1. หน้าจอเมนู Dashboard

เป็นหน้าจอเว็บแอพพลิเคชั่นแรก เมื่อเปิดเว็บเข้ามาจะพบข้อมูลที่แสดงภาพรวมของ สถานะของดเรือข่าย โดยจะมีรายละเอียดดังนี้ เมนูด้านบน เป็นเมนูที่จะนำไปสู่หน้าต่างอื่น ๆ เพื่อ แสดงข้อมูลโดยละเอียดมากขึ้น โดยจะแบ่งเมนูออกเป็น 3 เมนูหลัก โดยแบ่งเป็นเมนูทางด้านซ้ายจะ แสดงรายชื่ออุปกรณ์พร้อม แสดงหมายเลขไอพีของแต่ละอุปกรณ์ ทั้งหมด 6 อุปกรณ์ และแสดงรูป อุปกรณ์ชัดเจน ส่วนกลางเป็นข้อมูล Traffic โดยรวมของเครือข่าย โดยจะแสดงข้อมูลในรูปแบบของ กราฟเส้น แบ่งเป็น ข้อมูล Inbound ที่แสดงเป็นเส้นสีฟ้า และ Outbound แสดงเป็นเส้นสีแดง เพื่อให้ดูง่ายยิ่งขึ้น ด้านล่างกราฟจะแสดงข้อมูล Traffic สูงสุดต่ำสุดและ ค่าเฉลี่ยของ Traffic ต่อมา ทางด้านขวาเป็นส่วนที่แสดง Traffic Ratio หรือ อัตราส่วนของการใช้ Traffic เพื่อแสดงเน็ตเวิร์คแต่ ละเน็ตเวิร์คมีการใช้งานเป็นอย่างไร โดยแสดงผลออกมาในรูปแบบของกราฟวงกลม และมีการใช้สี แทนแต่ละNetwork โดยมีการแสดงค่า Traffic โดยรวมของแต่ละอุปกรณ์

ส่วนแสดงหน้าจอเมนู Dashboard

ภาพที่ 4-8 หน้าจอ Dashboard ของเว็บแอพพลิเคชั่น

จากภาพที่ 4-8 รายละเอียดการทำงานของหน้าเว็บแอพพลิเคชั่นมีดังนี้ หน้า Dashboard สามรถแสดงรายละเอียดตามที่ออกแบบไว้ในบทที่ 3 ได้อย่างครบถ้วน อาทิเช่น แสดง รายการอุปกรณ์แสดงปริมาณข้อมูล Traffic ที่ผ่าน Core Switch 4503 ได้ สามารถแสดงรายการ ข้อมูลเป็นแผนภูมิวงกลมอธิบายข้อมูล Traffic Ratio ที่แสดง Traffic โดยรวมของแต่ละอุปกรณ์

2. หน้าจอเมนู Device

2.1 แสดงหน้าจออุปกรณ์ที่มีการทำงานปกติ

ภาพที่ 4-9 หน้าจอ Device ที่อุปกรณ์ทำงานปกติ ของเว็บแอพพลิเคชั่น

จากภาพที่ 4-9 รายละเอียดการทำงานของหน้าเว็บแอพพลิเคชั่นมีดังนี้ หน้าเว็บ แอพพลิเคชั่นสามารถแสดงผลจำเพาะของอุปกรณ์เครือข่ายได้ อาทิเช่น ชื่ออุปกรณ์ รุ่นของอุปกรณ์ รายละเอียดของอุปกรณ์ และหมายเลขไอพีของอุปกรณ์ และยังสามารถแสดงข้อมูลทางด้านฮาร์ดแวร์ ของอุปกรณ์ได้ เช่น ปริมาณการใช้งานของหน่วยประมวลผลหน่วยความจำ อุณหภูมิ ค่าเวลาตั้งแต่ เปิดอุปกรณ์ และสามารถแสดงกราฟบ่งบอกปริมาณ Traffic ของแต่ละอุปกรณ์ได้ตรงตามที่ออกแบบ ไว้ข้างต้นในบทที่ 3 ครบถ้วน

2.2 แสดงหน้าจออุปกรณ์ที่มีการทำงานผิดปกติ

ภาพที่ 4-10 หน้าจอ Device ที่อุปกรณ์ทำงานผิดปกติ ของเว็บแอพพลิเคชั่น จากภาพที่ 4-10 รายละเอียดการทำงานของหน้าเว็บแอพพลิเคชั่นที่มีค่าการทำงานของ CPU Usage เกิดการทำงานที่สูงกว่าเกณฑ์จึงมีการแจ้งความผิดปกติโดยการ เปลี่ยนสีจากสีฟ้า ที่แสดง ถึงการทำงานปกติ เป็นสีแดงหมายถึง อุปกรณ์นั้นมีการทำงานที่ผิดปกติ

3. หน้าจอเมนู Interface

3.1 แสดงหน้าจอ Interface ที่ขา Interface ใช้งานปกติ

ภาพที่ 4-11 แสดงหน้าจอ Interface ที่ขา Interface ใช้งานปกติ

จากภาพที่ 4-11 รายละเอียดการทำงานของหน้าเว็บมีดังนี้ เว็บแอพพลิเคชั่นสามารถ แสดงข้อมูลจำเพาะของอินเตอร์เฟสได้ อาทิเช่น ชื่ออินเตอร์เฟส สถานะอินเตอร์เฟส แสดงข้อมูลใน รูปแบบกราฟปริมาณ Traffic ได้ สามารถแสดงข้อมูลสรุปทั้ง inbound outbound ได้ สามารถ แสดงผลข้อมูลและการทำงานได้ตามที่ออกแบบไว้ข้างต้น ในบทที่ 3 ครบถ้วน ทำให้เกิด ประโยชน์ ต่อผู้ดูแลระบบในการดูข้อมูลปริมาณ Traffic ภายใน 1 ชั่วโมงที่ผ่านมาและสามารถดูค่าที่ เปลี่ยนแปลงไปได้

FITM Monitoring v1.0 Top 10 Ranking SW4503 R101C R330A RSHOP R415 Interface Fa 1 Ten 1/1 Ten 1/2 Gi 1/3 FastEthernet1 **(a)** Gi 1/4 **(b)** Gi 1/5 **(c)** Gi 1/6 **(c)** Gi 2/1 GI 2/2 GI 2/3 GI 2/4 GI 2/5 Min: 0Mbps. Max: 0Mbps. **ভ** Gi 2/6 **ভ** Gi 3/1 **ভ** Gi 3/2 **ভ** Gi 3/3 Outbound Min: 0Mbps. Max: 0Mbps. **(** Gi 3/4 **(** Gi 3/5 **(** Gi 3/6 **(** Gi 3/7 Gi 3/16 Gi 3/17 Gi 3/18 Gi 3/19 Gi 3/20 Gi 3/21 Gi 3/22 Gi 3/23 Gi 3/28 Gi 3/29 Gi 3/30 Gi 3/31 4:50 5:00 5:05 5:10 5:20 5:25 5:30 5:40 5:45 5:50 6:00 6:05 **(** Gi 3/40 **(** Gi 3/41 **(** Gi 3/42 **(** Gi 3/43 **(** G

3/44 📦 Gi 3/45 📦 G

3.2 แสดงหน้าจอ Interface ที่ขา Interface ไม่มีการใช้งาน

ภาพที่ 4-12 แสดงหน้าจอ Interface ที่ขา Interface ไม่มีการใช้งาน จากภาพที่ 4-12 รายละเอียดการทำงานของหน้าเว็บแอพพลิเคชั่นมีดังนี้ เมื่อกดเลือก เมนูรายชื่อ Interface จะแสดงข้อมูลจำเพาะของแต่ละ Interface และเมื่อ Interface ไม่มีการใช้ งานจะเปลี่ยนสถานะเป็น Down และแสดงผลรูปภาพเป็นสีแดง

FITM Monitoring v1.0 Top 10 Ranking Inbound Outbound 350 300 250 200 150 100 B401A Network ID Inbound Vlan Name Outbound B415 10.4.15.0/24 317.89 Mbps 349.55 Mbps 10.1.201.0/24 332.24 Mbps B101A 216.14 Mbps

4. หน้าจอเมนู Top 10 Ranking

ภาพที่ 4-13 หน้าจอ Top 10 Ranking ของเว็บแอพพลิเคชั่น

จากภาพที่ 4-13 รายละเอียดการทำงานของหน้าเว็บแอพพลิเคชั่นมีดังนี้ เว็บ แอพพลิเคชั่นสามารถแสดงข้อมูลของห้องที่มีการใช้งานสูงสุดได้ สามารถระบุ VLAN ID Network ID Inbound และ Outbound ทำให้ง่ายและสะดวกต่อการตรวจสอบ และสามารถรายงานผลให้ดูง่าย ขึ้นด้วยแผนภูมิแท่ง เป็นประโยชน์มากต่อผู้ดูแลระบบในการตรวจสอบ VLAN ที่มีการใช้งานสูงสุด