Fahrzeugmechatronik I Einführung

Prof. Dr.-Ing. Steffen Müller M. Sc. Jochen Gallep et al.

Fachgebiet Kraftfahrzeuge • Technische Universität Berlin

Seite 2

Vorstellung des Fachgebietes

Fachgebiet Kraftfahrzeuge • Fakultät Verkehrs- und Maschinensysteme • Technische Universität Berlin

Seite 3

Organisatorisches Übersicht

Anmeldung, Vorlesungs- und Übungstermine Namen und Einführung Kontakte Literatur Sprechzeiten Fahrzeugmechatronik I Internet Prüfung Gastvortrag Studien- und Abschlussarbeiten

Organisatorisches Anmeldung, Vorlesung- und Übungstermine

- ➤ Anmeldung in ISIS bis spätestens 23.10.18 und über Anmeldeliste in der 3. VL-Woche.
- > Vorlesung und Übung finden im Wechsel statt.

Vorlesung: Di, 14.15 – 15.45 Uhr, TIB13.5, Raum 353 Übung: Di, 16.00 – 17.30 Uhr, TIB13.5, Raum 353

➤ Die aktuellen Vorlesungs- und Übungsinhalte sind im Zeitplan zu finden.

Seite 5

Organisatorisches Namen und Kontakte

Vorlesung Prof. Dr.-Ing. Steffen Müller

Geb. TIB13, Raum 341

Tel.: -72970

Email: steffen.mueller@tu-berlin.de

Homepage: http://www.kfz.tu-berlin.de/menue/home/

Übung M. Sc. Jochen Gallep

Geb. TIB13, Raum 348

Tel.: -72990

Email: Jochen.Gallep@tu-berlin.de

Sekretariat Frau Kerstin Ipta

Geb. TIB13, Raum 342

Tel.: -72970

Email: kerstin.ipta@tu-berlin.de

Seite 7

Organisatorisches Sprechzeiten

Prof. Dr.-Ing. Steffen Müller Vorbeikommen oder per Email über Sekretariat

M. Sc. Jochen Gallep et al. Vorbeikommen oder Termin per Email

Seite 9

Organisatorisches Prüfung

- Prüfungsvoraussetzung ist das Bestehen von 60% der Projektaufgaben (entspricht 3 von 5 Aufgaben).
- Die VL wird nur als Ganzes (Fahrzeugmechatronik I und II) geprüft, d. h. 8 SWS bzw. 12 ECTS.
- Die Prüfung findet schriftlich statt. Termin wird noch bekannt gegeben.

Seite 11

Organisatorisches Studien- und Abschlussarbeiten

- ➤ Themen für Studien- und Abschlussarbeiten werden auf der Homepage, am Schwarzen Brett und in der Lehrveranstaltung bekannt gegeben.
- Es werden Studien- und Abschlussarbeiten auch auf Anfrage vergeben.

Seite 13

Seite 14

Organisatorisches Gastvortrag

Vortragender:

Firma:

Titel:

Datum:

Raum:

Seite 15

Seite 16

Organisatorisches Internet

- > ISIS2-Kurs "FaMe 18/19"
- > Password für Studenten: fame1819

Seite 17

Organisatorisches Literatur

- [1] Heimann, Gerth, Popp: Mechatronik. 3. Auflage, Hanser, 2007.
- [2] Nordmann, Birkhofer: Maschinenelemente und Mechatronik I, Shaker Verlag, 2001.
- [3] Bolton: Bausteine mechatronischer Systeme.3. Auflage. Pearson Studium, 2004.
- [4] Isermann: Mechatronische Systeme Grundlagen. Springer Verlag, 1999.
- [5] Gerthsen, Kneser, Vogel: *Physik*, Springer-Verlag, 1986.
- [6] Findeisen: Ölhydraulik, Springer-Verlag, 5. Auflage, 2006.
- [7] Ruschmeyer: *Piezokeramik*, Expert Verlag, 1995.
- [8] Dresig, H. und F. Holzweißig. *Machinendynamik*. 8. Auflage, Springer, 2007.
- [3] Hauger, Schnell und Gross. *Technische Mechanik, Band 3: Kinetik.* Springer Verlag, 1999.

Seite 19

Einführung Motivation

Einführung Was versteht man unter Fahrzeugmechatronik?

Yaskawa Electric Cooperation, 1969: Mechanik und Elektronik in der Gerätetechnik

Seit 1982: Bezeichnung für eine Ingenieurwissenschaft

Einführung Was versteht man unter Fahrzeugmechatronik?

"Mechatronik bezeichnet eine interdisziplinäre Entwicklungsmethodik, die **überwiegend mechanisch ausgerichtete Produktaufgaben** durch die synergetische räumliche und funktionelle Integration von **mechanischen**, **elektrischen** und **informationsverarbeitenden Teilsystemen** löst." (VDI/VDE GMA Fachausschuss 4.15)

Einführung "Software gibt den Takt vor"

Quelle: [me] 2.2010

Seite 24

Einführung "Software gibt den Takt vor"

Quelle: VDMA, Zukunftsprognose von ITQ auf Basis von Marktdaten

Einführung "Industrie 4.0" - Cybertronik

Einführung Räumliche und funktionale Integration

Konventionelle Vorgehensweise

Mechatronische Vorgehensweise

Räumliches und funktionelles Gesamtsystem ("Simultaneous Engineering")

Einführung

Räumliche und funktionale Integration

Herkömmliches mechanisches System

Seite 28

Einführung Online-Informationsverarbeitung

Einführung Entwicklung fahrzeugmechatronischer Systeme

(Nach VDI-Richtlinie 2206: "Entwicklungsmethodik für mechatronische Systeme", "V-Modell")

Einführung Entwicklung fahrzeugmechatronischer Systeme Modellbildung und -analyse

Einführung

Nutzen fahrzeugmechatronischer Systeme

"Mechatronik ermöglicht neue Produktaufgaben oder kann bisherige Aufgaben besser lösen"

z.B. durch

- > Vereinfachung des mechanischen Aufbaus (z.B. Lenkungsrückstellung)
- verstärkten Einsatz von Leichtbau (z.B. Adaptronik)
- Auflösen von Zielkonflikten (z.B. Aktive Dämpfung)
- > Erhöhung des Bedienkomforts (z.B. X-By-Wire)
- > Erhöhung der Bediensicherheit (z.B. ABS, ESP)
- Bestimmung nichtmessbarer Größen (z.B. Kalman-Filter)
- > Parameteradaption und Überwachung mit Fehlerdiagnose
- **>**...

Einführung Mechatronischer Systementwurf - Beispiel

Entwicklungsaufgabe

Entwickle eine Lenkung so, dass die Lenkkräfte eine situationsangepasst komfortable und sichere Fahrzeugführung ermöglichen.

Zahnstangenlenkung (um 1950)

Einführung Mechatronischer Systementwurf

Seite 34

Einführung Mechatronischer Systementwurf

Seite 35

Einführung Inhalte

Fahrzeugmechatronik I

Zeitplan

- > Aktoren
- > Sensoren
- Signal- und Prozessdatenverarbeitung
- Modellierung

Fahrzeugmechatronik II

> Regelung

Seite 36

Vielen Dank für Ihre Aufmerksamkeit!