

Step 1

Choose $a_j, b_j \in \mathbb{Z}_q^*$, $RID_j \in \{0,1\}^*$ and $Ch_{uj,1} \in \mathbb{Z}_q^*$ Calculate $PK_j = T_{\varrho^{a_j}}(\omega) \ mod \ q$ and ensure the confidentiality of its private key a_j via PUF(.) and $FE.\ Gen(.)$: $Res_{uj,1} = PUF_{uj,1}(Ch_{uj,1}), \\ (K_{uj,1}, hd_{uj,1}) = FE.\ Gen(Res_{uj,1}), \\ B_{uj,1} = H(Ch_{uj,1}||K_{uj,1}||hd_{uj,1}||PK_j) \oplus a_j, \\ Check_{uj,1} = H(a_j||B_{uj,1}). \text{ Then compute:} \\ A_j = RID_j \oplus H(T_{\varrho^{a_j}}(PK_i), B_j = T_{\varrho^{b_j}}(\omega) \ mod \ q \\ \text{Store } \{Ch_{uj,1}, hd_{uj,1}, B_{uj,1}, Check_{uj,1}, PK_j\} \text{ locally.} \\ \text{Retrieve the current timestamp } VT_1 \text{ and send the message } M_1.$

Step 2

Choose current timestamp T_{cur}^0 and check if $|VT_1-T_{cur}^0|<\Delta t$? If yes, then choose $c_i\in\mathbb{Z}_q^*$ and compute: $RID_j^*=A_j\oplus H(T_{\varrho^{a_i}}(PK_j)),$ $C_i=T_{\varrho^{c_i}}(\omega)\ mod\ q,\ \sigma_j=H(RID_j^*||C_i||PK_i|),$ $PID_j=H(RID_j^*||C_i||PK_i||\sigma_j).$ Generate a valid time slot $[ST_j,ET_j]$ for $PID_j.$ Choose K challenges $Ch_1,Ch_2,\ldots,Ch_K.$ Retrieve the current timestamp VT_2 and send the message $M_2.$

$$M_1 = \{PK_j, A_i, B_i, VT_1\}$$

$$M_2 = \{PID_j, VT_2, Ch_1, \dots, Ch_K, RID_i, ET_j\}$$

Step 3

Choose current timestamp T_{cur}^1 and check if: $|VT_2 - T_{cur}^1| < \triangle t$?

$$|ET_j - T_{cur}^1| < \triangle t$$
? If yes, then

 U_i generate the response for its own challenges:

$$Ch_K^{j,j} = H(RID_j||Ch_K||PK_j), R_K^j = PUF(Ch_K^j).$$

Then retrieve the current timestamp VT_3 and calculate:

$$wt_j = H(PID_j||\sigma_j||B_j||Ch_1||\dots||Ch_K||VT_0||RID_i||VT_3||H(T_{arrho^{a_j}}(PK_i))), \ VP_j = T_{o^{b_j-wt_j}}(\omega) \ mod \ q. \ ext{Sed the message} \ M_3.$$

$$M_3 = \{PID_j, R_1^j, \ldots, R_K^j, VT_3, VP_j\}$$