ALGORITHMIQUE DISTRIBUÉE MIF12

ALGORITHMES DISTRIBUÉS SUR LES GRAPHES

Isabelle GUERIN LASSOUS

perso.ens-lyon.fr/isabelle.guerin-lassous/index-M1if12.htm

isabelle.guerin-lassous@univ-lyon1.fr

Hypothèses de ce cours

- Graphe représentant le système distribué
 - Graphe connexe
 - Liens de communication bidirectionnels
 - *n* nœuds et *m* liens
 - D diamètre du graphe
 - d(u): degré du nœud u
- Nœuds / entités / processus statiques
- Chaque nœud a un identifiant unique
- Messages toujours correctement reçus
 - Mais il peut y avoir un délai dans la transmission du message
- Canal FIFO

Algorithme synchrone

- Gouverné par une horloge globale externe
- Chaque nœud exécute une suite de rondes
- Le début de chaque ronde est déterminé par l'horloge globale
- Dans une ronde
 - Chaque nœud envoie un message à chacun de ses voisins
 - Tous les messages envoyés dans une ronde sont reçus et traités dans la même ronde

Algorithme partiellement synchrone

- Il n'y a pas d'horloge globale, mais
- dans une ronde, chaque nœud envoie un message à chacun de ses voisins
 - Un nœud peut passer à la ronde r+1 s'il a reçu un message de chacun de ses voisins de la ronde r

Algorithme asynchrone

- Pas d'horloge globale externe
- L'avancement d'un nœud est lié à ses propres calculs et aux messages qu'il reçoit

Dans ce cours

- on va principalement étudier des algorithmes asynchrones
- parfois des algorithmes partiellement synchrones

Apprendre le graphe sous-jacent au système distribué 1^{er} algorithme

- Objectif
 - Que chaque nœud connaisse le graphe du système
- Initialisation
 - Chaque nœud connaît son ID et celles de ses voisins
- Principe
 - · Chaque nœud envoie, à tous ses voisins, son ID et celles de ses voisins
 - Quand un nœud reçoit, pour la 1ère fois, la paire (ID(k); ID-voisins(k))
 - Il met à jour le graphe appris
 - Liste de nœuds mise à jour avec ID(k)
 - Liste de liens mise à jour avec les liens de ID(k)
 - Il retransmet le message à tous ses voisins (sauf à celui qui lui a envoyé ce message)

Discussion

- Principe de retransmission / abandon des messages
- Algorithme qui termine
- Quand un nœud sait qu'il a terminé ?
 - Sans connaître au départ le nombre de nœuds et leur ID
- Complexité
 - Nombre de messages transmis ≤ 2nm

Apprendre le graphe sous-jacent : exemple

À partir de là...

- Une fois le graphe connu par tous les nœuds du système, on peut imaginer
 - Choisir un nœud particulier (leader) dans le système
 - Résoudre les problèmes avec des algorithmes séquentiels sur ce leader
 - Le leader envoie les résultats aux nœuds du réseau
- Faiblesses de l'approche
 - Peu robuste envers la dynamique (topologie, données d'entrées, ...)
 - Peut être coûteux en temps
 - Peu tolérant aux pannes

Ou encore

- Une fois le graphe connu par tous les nœuds du système, on peut imaginer que
 - chaque nœud exécute l'algorithme séquentiel sur le graphe appris
- Il faut s'assurer que les exécutions séquentielles sur les différents nœuds vont donner un résultat cohérent
 - Par ex. : algorithme de Dijkstra utilisé pour le routage ne donne pas de boucle de routage
- Peut être coûteux en temps
- Peu robuste envers la dynamique

Opération de diffusion

Diffusion / Broadcast

 Un nœud (source) veut envoyer un message à tous les autres nœuds du système

Hypothèses

- Chaque nœud connaît son ID
- Le nombre de nœuds dans le système n'est pas connu
- Le graphe sous-jacent au système n'est pas connu

Algorithme d'inondation

- Utilisation du principe de retransmission / abandon des messages
 - avec une seule source

Terminaison

- mais la source ne sait pas que et quand l'algorithme a terminé
- Complexité
 - Au moins m envois du message & au plus 2m-d(source) envois
 - Comment réduire ce nombre d'envois du message ?

Notion d'arbre : rappel

- Arbre
 - Graphe non orienté, acyclique et connexe
- Arbre couvrant d'un graphe non orienté et connexe
 - Arbre qui connecte tous les sommets du graphe

Arbre couvrant enraciné

a une racine unique

u -> v: u est parent de v et v est fils de u

: représente la descendance mais

lien bidirectionnel

Opération de diffusion sur un arbre

- Algorithme d'inondation sur un arbre enraciné (connu)
 - Racine envoie son message à ses fils
 - Nœuds qui reçoivent le message le retransmettent à leurs fils
 - Etc.
- Terminaison de l'algorithme quand les feuilles reçoivent le message
 - Mais la racine ne sait pas que l'algorithme est terminé
- Complexité
 - *n-1* envois du message
- Si de nombreux messages à envoyer dans le fonctionnement du système distribué
 - Rentable de construire un arbre couvrant
 - Et de diffuser les messages sur cet arbre

Opération de convergecast sur un arbre

Convergecast

- Inverse de la diffusion
- Chaque nœud veut envoyer un message à un nœud spécifique (par ex. la racine de l'arbre)

Hypothèse

- Arbre enraciné connu
- Algorithme Echo
 - · Initié par les feuilles de l'arbre
 - Feuilles envoient leur message à leur parent
 - Une fois les messages reçus de tous leurs fils, chaque nœud transmet un message à son parent; message = données du nœud + données des fils
 - Une fois que la racine a reçu un message de chacun de ses fils, l'algorithme Echo est terminé

Terminaison

- Et la racine sait que l'algo est terminé, mais les autres nœuds de l'arbre ne le savent pas
- Complexité
 - *n-1* messages

Utilisation de l'algorithme Echo

Pour

- La détection de terminaison, par la racine, d'algorithmes distribués
- Calculer le nombre de nœuds dans le système
- Calculer la valeur maximale/minimale d'un paramètre dans le système
- Calculer la somme des valeurs d'un paramètre

• ...

Première conclusion

- Utilisation des arbres permet
 - De communiquer (efficacement) de un vers tous
 - De communiquer (efficacement) de tous vers un
 - De récupérer des valeurs/paramètres de tous les nœuds
 - Et d'en faire des calculs
 - De savoir si tous les nœuds ont terminé

• ...

 Comment construire des arbres couvrants de manière distribuée ?

Construction d'un arbre couvrant Algorithme basé sur la diffusion et le convergecast

Initialisation

- Racine connue dans le graphe (seulement par la racine)
- Chaque nœud connaît tous ses voisins

Algorithme

- 1. Racine envoie un message Join à ses voisins pour rejoindre l'arbre
- 2. Pour chaque nœud u recevant un message Join du nœud v
 - 1ère fois qu'un message Join est reçu

 $P\`{e}re(u) := v$

Enregistre qu'il a reçu un message de *v*

S'il n'a pas reçu un message de tous ses voisins Envoi d'un message *Join* à tous ses voisins sauf *v*

- Sinon (message *Join* déjà reçu) Indique à *v* qu'il a déjà un père via un message *Back(no)*
- S'il a reçu un message de tous ses voisins Envoi d'un message Back(u) à son père
- 3. Pour chaque nœud *u* recevant un message *Back* de *v*
 - Si v indique qu'il n'avait pas de père (Back(v)) : Fils(u) := Fils(u) + {v}
 - Enregistre qu'il a reçu un message de v
 - Si *u* (non racine) a reçu un message de tous ses voisins Envoi d'un message *Back(u)* à son père

Construction d'un arbre couvrant : exemple

Construction d'un arbre couvrant Algorithme basé sur la diffusion et le convergecast

- Terminaison
 - Quand la racine reçoit un message Back de chacun de ses voisins
- Plusieurs arbres peuvent être construits
 - Dépend de la vitesse des messages
- On peut vouloir construire des arbres avec des propriétés spécifiques
 - comme ?

Arbre couvrant en largeur Algorithme sans contrôle centralisé

- Algorithme de Cheung « à la Bellman-Ford »
 - Utilisation de la distance à la racine
 - d_u = distance de u à la racine déterminée par u
- Initialisation
 - Initialisation identique à l'algorithme précédent
 - $d_{racine} = 0$ et $d_v = \infty$ pour v différent de la racine
- Algorithme
 - Assez proche de l'algorithme précédent
 - Utilisation de d_u dans les messages échangés
 - Racine envoie Join(1) à tous ses voisins
 - Si un nœud u reçoit, d'un voisin v, un message Join(y) avec y < d_u
 alors
 - d_u := y
 - Nœud u envoie le message Join(y+1) à tous ses voisins sauf à v
 - Il faut aussi gérer les mises à jour sur les variables Père et Fils
 - Et ne pas oublier les messages Back pour la détection de terminaison!
 - Pas si simple

Arbre couvrant en largeur Algorithme avec contrôle centralisé

- Algorithme de Zhu & Cheung « à la Dijkstra »
 - Ajouter les nœuds les plus proches de la partie de l'arbre déjà construite
- Exécution par vagues
 - Le démarrage d'une vague est contrôlé par la racine
 - Vague 1 va inclure les voisins de la racine dans la racine
 - Vague 2 va inclure les voisins des voisins de la racine dans l'arbre
 - Etc.

Attention

Une vague n'est pas une ronde

Arbre couvrant en largeur Algorithme avec contrôle centralisé

Phase 1

Phase 2

Arbre couvrant en largeur Algorithme avec contrôle centralisé

- 1. T_0 = arbre contenant la racine
- 2. p=1
- 3. Répéter (jusqu'à ne plus découvrir de nouveaux nœuds)
 - Racine démarre la vague p en diffusant le message Vague(p) dans l'arbre T_{p-1}
 - Pour chaque feuille u de T_{p-1} recevant le message Vague(p)
 - u envoie un message Join(p) à tous ses voisins v sauf son père
 - Pour chaque nœud v recevant un message Join(p) de u
 - Si c'est le 1^{er} message *Join* reçu, v envoie un message ACK à u et devient feuille de l'arbre T_p et $P\`{e}re(v)$:=u
 - Sinon v envoie un message NACK à u
 - Pour chaque feuille u de T_{p-1}
 - À la réception d'un message ACK envoyé par v
 - Fils(u) := Fils(u) + {v}
 - Quand tous les voisins de u (sauf son père) ont envoyé à u les messages ACK ou NACK, alors u démarre l'algorithme Echo
 - Algorithme Echo dans l'arbre T_{p-1}
 - Quand la racine reçoit un message Echo de chacun de ses fils
 - p := p+1 // Passage à la vague suivante

Arbre couvrant en largeur Algorithme avec contrôle centralisé : début de l'algorithme

Arbre couvrant en largeur Algorithme avec contrôle centralisé : suite de l'algorithme

Arbre couvrant en largeur Algorithme avec contrôle centralisé : suite de l'algorithme

Arbre couvrant en largeur Algorithme avec contrôle centralisé : suite de l'algorithme

Complexité des deux algorithmes de construction d'un arbre couvrant en largeur

	Complexité temps	Nombre messages
À la Dijkstra	O(D ²)	O(m+nD)
À la Bellman-Ford	O(D)	O(nm)

- Analyse au TD2
- Peut-on faire mieux ?
 - Oui, mais pas le temps pour ce cours ...

Arbre couvrant en profondeur Algorithme simple

Initialisation

- Racine connue (seulement par elle-même); chaque nœud connaît ses voisins
- Visités(u) initialisée à vide pour chaque nœud // liste des voisins visités

Algorithme

- 1. Racine envoie un message Join à un de ses voisins
- 2. Chaque nœud *u* recevant un message Join de *v*
 - S'il n'a pas encore de parent
 - Parent(u) := v
 - Visités(u) := {v}
 - Si tous ses voisins ont été visités
 - u envoie un message Back(yes) à v
 - Sinon u envoie un message Join à un de ses voisins non encore visités
 - Sinon u envoie un message Back(no) à v
- 3. Chaque nœud *u* recevant un message *Back* de *v*
 - Si yes, Fils(u) := Fils(u) + {v}
 - Visités(u) := Visités(u) + {v}
 - Si tous ses voisins ont été visités
 - u envoie un message Back(yes) à son père si u n'est pas racine
 - · Sinon u envoie un message Join à un de ses voisins non encore visités

Terminaison

Quand la racine sait que tous ses voisins ont été visités

Arbre couvrant minimum

- Métriques autres que la distance peuvent être intéressantes
- Liens peuvent avoir des métriques différentes
- Graphe pondéré
 - Graphe avec des poids sur les arêtes
- Arbre couvrant minimum
 - Minimise Somme_{e arête de l'arbre} poid(e)
- Hypothèse
 - Deux arêtes n'ont pas le même poids
 - Arbre couvrant minimum est unique

Arbre couvrant minimum Arête bleue

- T arbre couvrant
- T' sous-graphe de T
- L'arête e=(u,v) est une arête sortante si u dans T' et v dans T\T'
- L'arête sortante de poids minimal est appelée l'arête bleue

Arbre couvrant minimum Lemme

- Si T est un arbre couvrant minimum et T' un sous-graphe
 - Alors l'arête bleue de T' fait partie de T
- Esquisse de preuve par contradiction ?

Arbre couvrant minimum Idées

- Arêtes bleues sont la clé
- Construction par fragments correspondant au sousgraphe de l'arbre de poids minimum
 - À l'initialisation chaque fragment est un nœud
 - Fusion des fragments reliés par les arêtes bleues
 - On est sûr qu'aucun cycle n'est créé
 - Arrêt quand il n'y a plus de fragment isolé
- Version distribuée de l'algorithme de Kruskal

Arbre couvrant minimum Fusion des fragments

Au maximum log₂(n) phases

Arbre couvrant minimum Algorithme de Gallager-Humblet-Spira

- 1. Chaque nœud est la racine de son propre fragment
- 2. ID du fragment = ID de la racine
- 3. Répéter jusqu'à ce que tous les nœuds soient dans le même fragment
 - Chaque nœud apprend les ID des fragments de ses voisins
 - La racine de chaque fragment trouve l'arête bleue b=(u,v) du fragment avec une diffusion et un convergecast au sein du fragment
 - Inversion de la relation parent fils sur le chemin racine u au sein de chaque fragment
 - Et *u* devient la racine du fragment
 - u envoie une requête de fusion à v
 - Si v a aussi envoyé une requête de fusion sur la même arête b
 - Alors fusion des fragments et celui qui a le plus petit ID devient la racine du fragment fusionné
 - Sinon v devient le parent de u
 - La nouvelle racine informe tous les nœuds de son fragment sur son ID

Arbre couvrant minimum Algorithme de Gallager-Humblet-Spira : exemple

So we can do it in parallel!

Arbre couvrant minimum Algorithme de Gallager-Humblet-Spira : exemple

Arbre couvrant minimum Algorithme de Gallager-Humblet-Spira : exemple

Coloriage de graphe

- Problème du coloriage d'un graphe
 - Colorier tous les nœuds du graphe tel que deux sommets voisins n'ont pas la même couleur
 - On cherche souvent à avoir un petit nombre de couleurs
- Applications variées
 - Allocation de ressources
 - Ordonnancement
 - Compilation

Coloriage glouton distribué

Hypothèse

- Chaque nœud a un unique ID
- Algorithme partiellement synchrone
 - Fonctionnement par rondes (non synchronisées sur un temps global)

Initialisation

- Chaque nœud connaît tous ses voisins
- Chaque nœud v
 - Couleur[v] := indécis
 - Envoie Couleur[v] et son ID à tous ses voisins
 - Attend un message de chacun de ses voisins
 - Tant que le nœud v a des voisins indécis et d'ID plus élevée
 - Envoie Couleur[v] et son ID à tous ses voisins indécis
 - Attend un message de chacun de ses voisins indécis
 - Choisit la plus petite couleur libre possible
 - Couleur[v]:=couleur-choisie
 - Envoie Couleur[v] à chacun de ses voisins

Coloriage glouton distribué

- Terminaison
 - Quand il n'y a plus de nœud indécis
 - Un nœud ne sait pas si l'algorithme a terminé
 - Il sait seulement s'il a terminé et si ses voisins ont terminé
- Complexité
 - Au plus n rondes
- Nombre de couleurs
 - au plus ∆ + 1
 - Δ = degré du graphe (max des degrés)

Coloriage distribué d'un arbre

- Arbre enraciné
- Algorithme très simple mais lent
 - Racine prend la couleur C_p=0 et envoie cette couleur à ses fils
 - Chaque nœud v exécute l'algorithme suivant
 - Si le nœud v reçoit la couleur C_p (de son parent), alors
 - Le nœud v prend la couleur $C_v = 1 C_p$
 - Il envoie cette couleur à ses fils

Coloriage distribué d'un arbre : exemple

Ronde 1

Ronde 2

Ronde 3

Ronde 4

Coloriage distribué d'un arbre

- Terminaison
 - Quand les feuilles choisissent leur couleur
 - Mais les nœuds, autres que les feuilles, ne savent pas si l'algorithme a terminé
- Complexité
 - En temps
 - Proportionnel à la profondeur de l'arbre
 - Un nœud à l'étage i doit attendre que les nœuds précédents dans l'arbre aient choisi leur couleur
 - Profondeur de n pour des arbres déséquilibrés
 - En messages
 - n-1 messages envoyés
- Nombre de couleurs : 2
- Peut-on faire plus rapide ?
 - Idée : utiliser les IDs pour construire les couleurs

Coloriage distribué rapide d'un arbre

Hypothèses

- Nœuds ont un ID encodé sur log n bits (n = nombre de nœuds)
- Initialement, couleur d'un nœud = ID
- Racine prend la couleur 0
- Chaque nœud v exécute l'algorithme suivant
 - Nœud v envoie sa couleur C_v à tous ses fils
 - Nœud v répète les instructions suivantes
 - recevoir la couleur C_p de son parent
 - exprimer C_p et C_v en binaire
 - i := le plus petit indice où C_v et C_p diffèrent
 - C_v := i (exprimé en binaire).i^e bit de C_v
 - Jusqu'à ce que tous les nœuds aient une couleur dans l'ensemble {0, ..., 5}

Coloriage distribué rapide d'un arbre : exemple

Coloriage distribué rapide d'un arbre

- Algorithme faiblement synchrone
 - À chaque ronde
 - Chaque nœud attend un message de son parent (sauf la racine)
 - Chaque nœud envoie un message à ses fils (sauf les feuilles)
 - Tous les nœuds participent à l'algorithme à chaque ronde
- Complexité
 - Le nombre de bits / couleurs est diminué d'un facteur log₂ à chaque ronde
 - Le nombre de rondes est proportionnel à log₂*n
 - Log*n = nombre de fois où il faut appliquer le log à n avant d'obtenir une valeur <= 2
 - n-1 messages envoyés à chaque ronde
- Nombre de couleurs : 6
- Intuition sur pourquoi le coloriage est valide ?
- Possible de réduire le nombre de couleurs

Ce qu'il faut retenir

- Notions d'algorithmes synchrone, partiellement synchrone et asynchrone
- Propriétés des arbres
- Principe de retransmission / abandon des messages
- Algorithmes d'inondation sur un graphe / arbre
- Principe de l'algorithme Echo et son utilité
- Algorithmes de construction d'un arbre couvrant et leurs spécificités
- Principe des messages retour pour que la racine détermine la terminaison de l'algorithme
- Principe des algorithmes par vague
- Algorithme pour construire un arbre couvrant minimum & notion d'arête bleue
- Algorithmes de coloriage de graphe et d'arbre
- Technique pour diminuer la taille de l'encodage
 - donc pour réduire la valeur d'un paramètre