PROJECT REPORT*

CUSTOMER SEGMENTATION

GOKAY BULUT

- Introduction
- Data Wrangling & EDA
- Cohort Analysis
- RFMT Analysis
- K-Means Clustering
- Conclusion

Introduction

Problem:

- group customers into segments
- to understand high level trends better
- by providing insights on metrics across product / service and customer lifecycle.

Introduction

Data set:

- 98,572 rows of customer transactions,
- provided by the company.

Introduction

Features:

- 'Inv_No' number for each transaction (integer).
- 'Inv_Date' time of the transaction (string).
- 'name' name of the customer (string).
- 'lastname' lastname of the customer (string).
- 'Cust_ID' unique number for identifying the customers (integer).
- 'Photo_Type' types of photos taken (string).
- 'Amount' amount paid by the customer for the transaction (float).
- 'Notes' notes on the transaction (string).

- Introduction
- Data Wrangling & EDA
- Cohort Analysis
- RFMT Analysis
- K-Means Clustering
- Conclusion

Data Wrangling & EDA

Notes	Amount	Photo_Type	Cust_ID	Inv_Date	Inv_No	
Co k acele	29.78	amatör	16106	01/01/2016	43891	0
Acele, bir an once yapilamli	32.94	pasaport	10570	01/01/2016	43892	1
Bizim	29.45	vesikalık.	13796	01/01/2016	43893	2
Liste oncelikli	23.94	Okul	10246	01/01/2016	43894	3
Tanidik	23.58	pasaport	5158	01/01/2016	43895	4

- Dropped redundant columns & rows,
- 'Photo_Type' column cleaned (lowercased & stripped dots),
- 'Inv_Date' column → datetime type for better analysis,

- Sales 'Amount' mean = 331.2.
- Returning customers.
- Invoice numbers are unique.
- Invoice dates cover 1 year.
- 7 unique photo types.

- Introduction
- Data Wrangling & EDA
- Cohort Analysis
- RFMT Analysis
- K-Means Clustering
- Conclusion

Retention

 While customer retention rate remains relatively constant around 40%,

Average Sales

 There is an increase in sales towards Christmas.

- Introduction
- Data Wrangling & EDA
- Cohort Analysis
- RFMT Analysis
- K-Means Clustering
- Conclusion

RFMT Analysis

- Recency → how recent
- Frequency \rightarrow how many times
- Monetary Value → how much
- Tenure → for how long

	Recency	Frequency	Monetary	_Value	Tenure
	mean	mean	mean	count	mean
_Segment					
1.Gold	25.7	8.6	3177.3	5197	344.8
2.Silver	74.3	5.0	1501.9	9207	302.3

	Recency	Frequency	Monetar	y_Value	Tenure
	mean	mean	mean	count	mean
_Segment				~	
1.Gold	25.7	8.6	3177.3	5197	344.8
2.Silver	48.9	6.1	1985.1	4494	321.2
3.Bronze	98.5	4.0	1041.2	4713	284.3

- segment 1 remained in both.
- segment $2 \rightarrow$ divided in 2

- Introduction
- Data Wrangling & EDA
- Cohort Analysis
- RFMT Analysis
- K-Means Clustering
- Conclusion

- Partitions n observations into k clusters,
- Each observation belongs to cluster with nearest mean.

- Assumptions:
 - variables symmetrically distributed,
 - have the same mean and variance.

- Log transformation to unskew the data
- Standardized to same mean
- Scaled to same std

k = Elbow point
 (where decrease in
 SSE slows down) &
 next point

• k=2, clusters more distinct, cluster 1 = 2x cluster 0 in size.

• k=3, clusters 0 and 2 F & M close.

• k=4, clusters 0 and 3 F & M very close.

Recency	Frequency	Monetar	y_Value
mean	mean	mean	count
101.0	4.0	952.0	4994
34.0	8.0	2719.0	9410
	mean 101.0	mean mean 101.0 4.0	101.0 4.0 952.0

		Frequency Monetary_Valu	
nean	mean	mean	count
112.0	3.0	699.0	3126
10.0	8.0	2972.0	4035
59.0	7.0	2232.0	7243
	112.0	112.0 3.0 10.0 8.0	112.0 3.0 699.0 10.0 8.0 2972.0

	Recency	Frequency	Monetar	y_Value
	mean	mean	mean	count
Cluster				
0	7.0	7.0	2699.0	2966
1	143.0	3.0	394.0	1331
2	76.0	5.0	1335.0	4984
3	45.0	8.0	2959.0	5123

Snake Plots

- Tool for visualizing clusters
- Some overlap with 3 clusters.

Relative Importance of Segment Attributes

- proportion of cluster average to population average
- indicates none of the attributes are important for defining Cluster 2, compared to the population average.

Silhouette Analysis

- measures how well each datapoint *xi* "fits" its assigned cluster,
- and also how poorly it fits into other clusters.
- axi = avg distance from xi to all other points within its own cluster k. The lower the value, the better.
- bxi = min avg distance from xi to points in a different cluster, minimized over clusters.

$$s(x_i) = \frac{b_{x_i} - a_{x_i}}{\max(a_{x_i}, b_{x_i})}$$

Range	Interpretation
0.71 - 1.0	A strong structure has been found.
0.51 - 0.7	A reasonable structure has been found.
0.26 - 0.5	The structure is weak and could be artificial.
< 0.25	No substantial structure has been found.

Silhouette Analysis

- n_clusters =2,Silhouette Score = 0.37.
- n_clusters =3,Silhouette Score = 0.3.

- Best score < 0.5 (with n_clusters=2),
- >Structure is weak & could be artificial

- Introduction
- Data Wrangling & EDA
- Cohort Analysis
- RFMT Analysis
- K-Means Clustering
- Conclusion

Conclusion

- Methods used:
 - RFMT Analysis,
 - K-Means clustering,
 - Snake Plots,
 - Relative Importance of Segment Attributes,
 - Silhouette scores.

Conclusion

- All methods identified two distinct clusters,
- While favoring 2 clusters, a 3 clusters option is also possible,
- RFMT Analysis → 3 almost equally distanced clusters feasable,

Conclusion

- For better capturing customer behavior,
- and more focused marketing to target diverse customers,
- suggest 3-clustered customer segmentation, pending managerial decision.