Problem (1.25).

$$\frac{1}{2} +_1 \frac{7}{8} = \frac{4}{8} +_1 \frac{7}{8} = \frac{3}{8}.$$

Problem (1.26).

$$\frac{3\pi}{4} +_{2\pi} \frac{3\pi}{2} = \frac{3\pi}{4} +_{2\pi} \frac{6\pi}{4} = \frac{\pi}{4}.$$

Problem (1.31). Given the small set, we would like to find the solution exhaustively:

If x = 0, $0 +_7 0 = 0 \neq 3$.

If x = 1, $1 +_7 1 = 2 \neq 3$.

If x = 2, $2 +_7 2 = 4 \neq 3$.

If x = 3, $3 +_7 3 = 6 \neq 3$.

If x = 4, $4 +_7 4 = 1 \neq 3$.

If x = 5, $5 +_7 5 = 3$.

If x = 6, $6 +_7 6 = 5 \neq 3$.

We have covered all cases of $x \in \mathbb{Z}_7$, and have found that x = 5 is the only solution.

Problem (1.32). Again using exhaustive search:

If x = 0, $0 +_{7} 0 +_{7} 0 = 0 \neq 5$.

If x = 1, $1 +_7 1 +_7 1 = 3 \neq 5$.

If x = 2, $2 +_7 2 +_7 2 = 6 \neq 5$.

If x = 3, $3 +_7 3 +_7 3 = 2 \neq 5$.

If x = 4, 4 + 74 + 74 = 5.

If x = 5, $5 +_7 5 +_7 5 = 1 \neq 5$.

If x = 6, $6 + 76 + 76 = 4 \neq 5$.

Hence, x = 4 is the only solution.

Problem (1.35). Due to isomorphism, we know that $\zeta \times \zeta = \zeta^2$ is isomorphic

to $5 +_8 5 = 2$. Repeating this process yields:

$$5 +_8 5 = 2 \qquad \zeta^2 \leftrightarrow 2$$

$$2 +_8 +_5 = 7 \qquad \zeta^3 \leftrightarrow 7$$

$$7 +_8 5 = 4 \qquad \zeta^4 \leftrightarrow 4$$

$$4 +_8 5 = 1 \qquad \zeta^5 \leftrightarrow 1$$

$$1 +_8 5 = 6 \qquad \zeta^6 \leftrightarrow 6$$

$$6 +_8 5 = 3 \qquad \zeta^7 \leftrightarrow 3$$

$$3 +_8 5 = 0 \qquad \zeta^0 \leftrightarrow 0$$

$$0 +_8 5 = 5 \qquad \zeta^1 \leftrightarrow 5$$

Problem (1.37). Because $\zeta \leftrightarrow 4$ implies that $\zeta \times \zeta \leftrightarrow 4 +_8 4 = 0$, and $\zeta \times \zeta \times \zeta \leftrightarrow 4 +_8 4 +_8 4 = 4$. And since isomorphism requires an one-to-one mapping between U_6 and \mathbb{R}_6 , yet both ζ and ζ^3 map to 4, the mapping cannot be one-to-one and therefore isomorphism doesn't exist.

Problem (2.1). Table 2.26 tells us that b*d = e, c*c = b, and

$$[(a*c)*e]*a = [c*e]*a$$

= $a*a$
= a

Problem (2.5). For * to be commutative, we require the table to be symmetric about the diagonal. Note that answers are bolded.

*	a	b	c	d
a	a	b	С	d
b	b	d	a	С
c	c	a	d	b
d	d	c	b	a

Problem (2.6). The missing entries represents d*a, d*b, d*c, and d*d. Since we have the complete information of how the operation is defined among pairs

consisting of the other three elements, we can replace d with the other elements. Notice that there is only one such pair that engendered d: c * b = d. Now let's consider each entry and apply associativity:

$$d * a = (c * b) * a = c * (b * a) = c * b = d.$$

$$d * b = (c * b) * b = c * (b * b) = c * a = c.$$

$$d * c = (c * b) * c = c * (b * c) = c * c = c.$$

$$d * d = (c * b) * d = c * (b * d) = c * d = d.$$

Hence, the missing entires are

Problem (2.7).

- 1) Commutativity: Let a=1,b=2, it is easy to see that $a*b=1-2 \neq 2-1=b*a$. Hence * is not commutative.
- 2) Associativity: Let a = 1, b = 2, c = 3. Since (a * b) * c = (a b) c = (1 2) 3 = -4 and a * (b * c) = a (b c) = 1 (2 3) = 2, clearly $(a * b) * c \neq a * (b * c)$ so * is not associative.

Problem (2.8).

- 1) Commutativity: Given $a, b \in \mathbb{Q}$, we have a * b = ab + 1 = ba + 1 = b * a since scalar multiplication is commutative. Hence * is commutative.
- 2) Associativity: Let $a = 1, b = \frac{1}{2}, c = \frac{1}{3}, (a*b)*c = (1 \times \frac{1}{2} + 1) \times \frac{1}{3} + 1 = \frac{3}{2}$ and $a*(b*c) = 1 \times (\frac{1}{2} \times \frac{1}{3} + 1) + 1 = \frac{13}{6}$. Hence $(a*b)*c \neq a*(b*c)$ and * is not associative.

Problem (2.24).

- a) True. Consider $S_0 = \{a\}$. Since * is a binary operation on any arbitrary set, it is defined on S_0 as well. It follows that $a * a \in S_0$. Since there is only one element in S_0 , this forces a * a = a.
- b) True. Since * is a commutative binary operation on S, given $a, b, c \in S$, we know that $b*c \in S$, and thus a*(b*c) = (b*c)*a by commutativity.

c) False. Consider S as the set of all 3×3 permutation matrices and * is the matrix multiplication, which we know is associative but not commutative. Let $a = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, $b = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$, and $c = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$.

LHS yields:

$$a*(b*c) = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}.$$

However, the RHS yields:

$$(b*c)*a = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}.$$

LHS and RHS do not equal so the statement is false.

- d) False. The more abstract math gets the less important numbers are...
- e) False. It should be for all $a, b \in S$.
- f) True. It is easy to see that given $S_0 = \{a\}$, a * a = a * a = a, and (a * a) * a = a * a = a = a * (a * a).
- g) True. Because at least one includes exactly one.
- h) True. Because at most one includes exactly one.
- i) True. Because binary operation is a function and can only have one output.
- j) False. As above.