

'ower

Boot Configuration Configuration

	AWG	Diameter		Turns of wire, without Ar insulation		Area		Copper wire							
								Resistance/length ^[6]		Ampacity, ^[7] at 20 °C insulation material temperature rating, or 16 AWG and smaller for single unbundled wires in equipment: ^[8]			Fusing current ^{[9][10]}		
							60 °C			75 °C	90 °C	Preece ^{[11][12][13][14]}	Onderde	onk ^{[15][14]}	
		(in)	(mm)	(per in)	(per cm)	(kemil)	(mm ²)	(mΩ/m ^{[40})	(mΩ/ft ^[b])	(A)		~10 s	1 s	32 ms	
	16	0.0508	1.291	19.7	7.75	2.58	1.31	13.17	4.016	22*free air	13*enclosed	18	117 A	398 A	2.2 kA

Voltage Drop Calculator by Gerald Newton http://www.electrician/2.com

The following calculator calculates the voltage drop, and voltage at the end of the wire for American Wire grow for Alor AWG to 30 AWG, aluminum or copper wire. (Note: it just calculates the voltage drop, consult the above table for rules-of-thumb, or your local or national electrical code or your electric to decide what is legably Note that the voltage drop, consult the above table for rules-of-thumb, or your local or national electrical code or your electric to decide what is legably Note that the voltage drop does not depend on the input voltage, just on the resistance of the wire and the load in areps.

Select Opper or Aluminum (Copper)

Select American Wire Gauge (AWG) Size

[ISAND]

Select Voltage

44 VDC or I-phase AC

Enter I-way or cuttle length in feet (the calculation is for the round trip detance)

1,80446

Enter Load
in amps

13.5

Circk to Calculate

Voltage drop

0.203

Voltage at load and of circuit
2,377

Per Cent voltage drop

0.85

Wire cross section in circular mils

Sheet: /Power/Input/
File: input.sch

Title:
Size: A3 Date: Rev:
KiCad E.D.A. kicad 4.0.5+dfsg1-4 Id: 4/25

Unused

DIL OSD3358

B1 NC_B1 EXTL3B Y19

B2 NC_B2 EXTL3A Y17

C1 NC_C1 EXTL2A Y16

C2 NC_C2 EXTL1B Y14

C3 NC_C3 EXTL1A Y13

C4 NC_C4 NC_V11 Y10

D1 NC_D1 NC_V10 U11

D2 NC_D2 NC_U11 V10

D2 NC_D3 NC_P4

D4 NC_D4 NC_P3 NC_P4

NC_D5 NC_P2 P2

E1 NC_E1 NC_P1 P1

E2 NC_E2 NC_N4 NC_P4

NC_E4 NC_E4 NC_N2 N2

NC_E4 NC_E4 NC_N2 N2

NC_E5 NC_E5 NC_M3 N3

NC_E6 NC_E6 NC_M4 N3

NC_E7 NC_M4 N4

NC_E8 NC_M3 N3

NC_E9 NC_M4 N4

NC_E9 NC_M4 N2

NC_E9 NC_M5 N2

NC_E9 NC_E9 NC_M4

NC_E9 NC_E9 NC_E9 NC_E9

NC_E9 NC_E

Sheet: /Microprocessor/
File: mpu.sch

Title:
Size: A3 Date: Rev:
KiCad E.D.A. kicad 4.0.5+dfsg1-4 Id: 5/25

Removed OSC1, description for BBB (it is not applicable to Cimarron):

GPI03_21 has a 24.576 MHZ clock on it.

o This is required by the HDMI Framer for Audio purposes. We needed to run a clock into the processor to generate the correct clock frequency. The pin on the processor was already routed to the expansion header. In order not to remove this feature on the expansion header, it was left connected. In order to use the pin as a GPIO pin, you need to disable the clock. While this disables audio to the HDMI, the fact that you want to use this pin for something else, does the same thing.

See Chapter 29 of the datasheet for layout

Place sense resistors and all filter capacitors as close as possible to the related IC pins. Use a solid common GND for all GND connections, also for sense resistor GND. Connect 5VOUT filtering capacitor directly to 5VOUT and GNDA pin. See layout hints for more details. Low ESR electrolytic capacitors are récommended for VS filtering.

Choose sense resistors in a way, that normal IRUN is 16 to 31 for best microstep performance.

For best precision, choose the sense resistors in a way that the desired maximum current is reached with AIN in the range 2V to $2.4\mathrm{V}$

Vain = 2.379759519V

Rsense = 220m0hm: Vsense = 1 : 15.775726mA res : 236.635888mA range : 0.26818734A to 0.504823228A Vsense = 0 : 28.483949mA res : 427.259243mA range : 0.484227141A to 0.911486384A

Sense input tolerance / motor current full scale tolerance -using internal reference	I _{COIL}	I_scale_analog=0, vsense=0	-5	+5	%
Sense input tolerance / motor current full scale tolerance -using external reference voltage	I _{COIL}	I_scale_analog=1, V _{AIN} =2V, vsense=0 Vain = 2.379759	-2 519V	+2	%

The sense resistor voltage range can be selected by the vsense bit in CHOPCONF. The low sensitivity setting (high sense resistor voltage, vsense=0) brings *best and most robust current regulation*, while high sensitivity (low sense resistor voltage, vsense=1) reduces power dissipation in the sense resistor. The high sensitivity setting reduces the power dissipation in the sense resistor by nearly half.

vsense	Allows control of the sense resistor voltage range	0	V _{FS} = 0.32 V	Vsrtl=325mV	
	for full scale current.	1	V _{FS} = 0.18 V		

Sheet: /Stepper Drivers/E Stepper Driver/ File: e_stepper.sch Title: KiCad E.D.A. kicad 4.0.5+dfsg1-4

Sheet: /Heaters/ File: heater.sch Title: Size: A3 Date: KiCad E.D.A. kicad 4.0.5+dfsg1-4

-60 -20 20

60 100 140 180

T , [°C]

180

-/ _D [A]

270

