AEP Project: PRESENT Block Cipher

TEAM MEMBERS	STUDENT ID				
Marius-Mihail Gurgu	453084				
Alexandre Thomas Janin	454457				
Tamil Selvi Pandiyan	453060				
Matteo Spallanzani	454451				
Wei-Heng Ke	454447				

Table of Contents

- 1. Overview
- 2. Working Process
- 3. Hardware Schemes
- 4. Implementation Challenges and Bugs
- 5. Vivado Report

PRESENT Overview

- Standardized by ISO in 2012
- 64-bit blocks processed with 80 or 128 bit keys
- Good level of security
- Small amount of resources needed

Structure

Bit substitution

Non-linear substitution through 4-bits S-box

Х	0	1	2	3	4	5	6	7	8	9	Α	В	O	D	Е	F
S[x]	С	5	6	В	9	0	Α	D	3	Е	F	8	4	7	1	2

Bit permutation

Linear permutation with the following order

Р	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
i	0	4	8	12	16	20	24	28	32	36	40	44	48	52	56	60
Р	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
i	1	5	9	13	17	21	25	29	33	37	41	45	49	53	57	61
Р	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47
i	2	6	10	14	18	22	26	30	34	38	42	46	50	54	58	62
Р	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63
i	3	7	11	15	19	23	27	31	35	39	43	47	51	55	59	63

Motivation

- Adequate size
- Popularity makes research easy
- We liked it

Working Process

Technical part + Organization part


```
😸 pyPresent.py 🗵
    -class Present:
 41
          def init (self, key, rounds=32):
              """Create a PRESENT cipher object
 43
 44
                      the key as a 128-bit or 80-bit rawstring
              rounds: the number of rounds as an integer, 32 by default
              self.rounds = rounds
              if len(key) * 8 == 80:
                  self.roundkeys = generateRoundkeys80(string2number(key), self.rounds)
              elif len(key) * 8 == 128:
                  self.roundkeys = generateRoundkeys128(string2number(key), self.rounds)
              else:
                  raise ValueError, "Key must be a 128-bit or 80-bit rawstring"
54
          def encrypt (self, block):
              """Encrypt 1 block (8 bytes)
              Input: plaintext block as raw string
              Output: ciphertext block as raw string
              state = string2number(block)
              for i in xrange(self.rounds - 1):
                  state = addRoundKey(state, self.roundkeys[i])
64
                  state = sBoxLayer(state)
                  state = pLayer(state)
              cipher = addRoundKey(state, self.roundkeys[-1])
              return number2string N(cipher, 8)
          def decrypt (self, block):
              """Decrypt 1 block (8 bytes)
              Input: ciphertext block as raw string
              Output: plaintext block as raw string
```

A part of the reference python code

Data set 1:

Roundkey 0: 0000000000000000

Roundkey 31: 6dab31744f41d700

*************Encryption**************

Round 0

sBoxLayer OUTPUT: cccccccccccccccccccccccccccccpLayer OUTPUT: fffffff00000000

...

Round 30

sBoxLayer INPUT: c19abfeebafbc168

 sBoxLayer
 OUTPUT:
 45ef82118f2845a3

 pLayer
 OUTPUT:
 38d2f04c34635345

Ciphertext: 5579c1387b228445

************Decryption*************

Round 0

 pLayer_dec
 INPUT:
 38d2f04c34635345

 pLayer_dec
 OUTPUT:
 45ef82118f2845a3

 sBoxLayer_dec
 OUTPUT:
 c19abfeebafbc168

Round 30

 pLayer_dec
 INPUT:
 fffffff00000000

 pLayer_dec
 OUTPUT:
 cccccccccccccccccccccccccccccccccssBoxLayer_dec

 sBoxLayer_dec
 OUTPUT:
 00000000000000000

Decrypted text: 00000000000000000

Data set 2... Data set 3... Data set 4... Data set 5...

Hardware Schemes

Python flowchart v.s. Hardware schemes

Python flowchart v.s. Hardware schemes

Python flowchart v.s Hardware schemes

Implementation Challenges and Bugs

A Confusing Bug (Vivado 2020.2)

Console message:

ERROR: [Simulator 45-7] No such file

'F:/Vivado_Projects/aep_project/PRESENT_Cipher_Verilog/decrypt/decrypt.srcs/sources_1/new/decrypt.vF:/Vivado_Projects/aep_project/PRESENT_Cipher_Verilog/decrypt/decrypt.srcs/sources_1/new/decrypt.v' in the design.

What causes the bug?

- Reason: Setting multiple breakpoints
- Tried updating Vivado to v2021.1 -> has no support for our board
- Solution: Delete "TempBreakPointFile.txt"
- Path:

F:\Vivado_Projects\aep_project\PRESENT_Cipher_Verilog\decrypt\decrypt.si m\sim_1\behav\xsim\xsim.dir\decrypt_tb_behav

Combinatorial Loop Problem

 Solution: Break the loop by providing the updated key at the input of the module

```
always @ (round counter)
   begin: GENERATE
       if (enable in == 1'b1) begin
           round out = aux[79:16];
           aux = \{aux[18:0], aux[79:19]\}; //rotate left by 61 bits
           case (aux[79:76])
                4'h0: aux[79:76] = 4'hc;
                4'h1: aux[79:76] = 4'h5;
                4'h2: aux[79:76] = 4'h6;
                4'h3: aux[79:76] = 4'hb;
                4'h4: aux[79:76] = 4'h9;
                4'h5: aux[79:76] = 4'h0;
                4'h6: aux[79:76] = 4'ha;
                4'h7: aux[79:76] = 4'hd;
                4'h8: aux[79:76] = 4'h3;
                4'h9: aux[79:76] = 4'he;
                4'ha: aux[79:76] = 4'hf;
                4'hb: aux[79:76] = 4'h8;
                4'hc: aux[79:76] = 4'h4;
                4'hd: aux[79:76] = 4'h7;
                4'he: aux[79:76] = 4'h1;
                4'hf: aux[79:76] = 4'h2;
           endcase
           aux[19:15] = aux[19:15] ^ round_counter;
       end
       else begin
           aux = key;
        end
```

```
always @ (round_counter)
   begin: GENERATE
       if (enable in == 1'b0) begin
           aux = key;
           round out = aux;
       else begin
           aux = {key[18:0], key[79:19]}; //rotate left by 61 bits
           case (key[18:15])
                4'h0: aux[79:76] = 4'hc;
                4'h1: aux[79:76] = 4'h5;
                4'h2: aux[79:76] = 4'h6;
                4'h3: aux[79:76] = 4'hb;
                4'h4: aux[79:76] = 4'h9;
                4'h5: aux[79:76] = 4'h0;
                4'h6: aux[79:76] = 4'ha;
                4'h7: aux[79:76] = 4'hd;
                4'h8: aux[79:76] = 4'h3;
                4'h9: aux[79:76] = 4'he;
                4'ha: aux[79:76] = 4'hf;
                4'hb: aux[79:76] = 4'h8;
                4'hc: aux[79:76] = 4'h4;
                4'hd: aux[79:76] = 4'h7;
                4'he: aux[79:76] = 4'h1;
                4'hf: aux[79:76] = 4'h2;
           endcase
           aux[19:15] = key[38:34] ^ round counter;
           round out = aux;
       end
```

1 a

Not a bug, but still a challenge: integrating modules

Vivado Report

Results from Vivado- Encryption

Results from Vivado- Decryption

Power consumption- Encryption/decryption

Power analysis from Implemented netlist. Activity derived from constraints files, simulation files or vectorless analysis.

Total On-Chip Power: 0.068 W

Design Power Budget: Not Specified

Power Budget Margin: N/A

Junction Temperature: 25.3°C

Thermal Margin: 59.7°C (11.9 W)

Effective θJA: 5.0°C/W

Power supplied to off-chip devices: 0 W

Confidence level: High

<u>Launch Power Constraint Advisor</u> to find and fix invalid switching activity

Basys3 ideal power supplies

Supply	Circuits	Device	Current (max/typical)
3.3V	FPGA I/O, USB ports, Clocks, Flash, PMODs	IC10: LTC3633	2A/0.1 to 1.5A
1.0V	FPGA Core	IC10: LTC3633	2A/ 0.2 to 1.3A
1.8V	FPGA Auxiliary and Ram	IC11: LTC3621	300mA/ 0.05 to 0.15A

hank you!