પ્રશ્ન 1(અ) [3 ગુણ]

માઇક્રોપ્રોસેસર ની વ્યાખ્યા આપો.

જવાબ:

માઇક્રોપ્રોસેસર એ એક સિંગલ ચિપ CPU છે જેમાં digital computer ના central processing unit ના કાર્યો કરવા માટે જરૂરી બધા arithmetic, logic અને control circuits હોય છે.

કોષ્ટક: માઇક્રોપ્રોસેસર ની મુખ્ય વિશેષતાઓ

વિશેષતા	વર્ણન	
Single Chip	એક integrated circuit પર સંપૂર્ણ CPU	
Processing Unit	instructions execute કરે છે અને calculations કરે છે	
Control Logic	system operations અને data flow ને manage કરે છે	

- Central Processing Unit: મુખ્ય component જે instructions execute કરે છે
- Integrated Circuit: બધા functions એક જ silicon chip પર combined
- **Programmable Device**: stored instructions આધારે વિવિધ programs execute કરી શકે છે

મેમરી ટ્રીક: "Single Chip CPU = Smart Computer Processor Unit"

પ્રશ્ન 1(બ) [4 ગુણ]

માઇક્રોપ્રોસેસર ના ફ્લેગ રેજિસ્ટર ને સમજાવો.

જવાબ:

Flag register માં ALU દ્વારા કરવામાં આવેલા arithmetic અને logical operations ના result વિશે status information store થાય છે.

ຣາຂະ: 8085 Flag Register Bits

Flag	Position	હેતુ
S (Sign)	Bit 7	Result નું sign દશાર્વે છે (1=negative, 0=positive)
Z (Zero)	Bit 6	Result zero હોય ત્યારે set થાય છે
AC (Auxiliary Carry)	Bit 4	Bit 3 થી bit 4 માં carry
P (Parity)	Bit 2	Even parity flag
CY (Carry)	Bit 0	MSB માંથી carry

- **Status Indicator**: છેલ્લા operation result ની condition બતાવે છે
- Conditional Instructions: Branching અને decision making માટે ઉપયોગ થાય છે

• **5 Active Flags**: Sign, Zero, Auxiliary Carry, Parity ਅਜੇ Carry flags

મેમરી ટ્રીક: "Flags Show Zero, Sign, Parity, Auxiliary, Carry"

પ્રશ્ન 1(ક) [7 ગુણ]

માઇક્રોપ્રોસેસર નું instruction format ઉદાહરણ સાથે સમજાવો.

જવાબ:

Microprocessor instructions માં opcode અને operand fields હોય છે જે operation અને data locations specify કરે છે.

ຣາເຣຣ: 8085 Instruction Format Types

Format	Size	Structure	Example
1-Byte	8 bits	Opcode only	MOV A,B
2-Byte	16 bits	Opcode + 8-bit data	MVI A,05H
3-Byte	24 bits	Opcode + 16-bit address	LDA 2000H

ડાયાગ્રામ:

- **Opcode Field**: કયું operation કરવું છે તે define કરે છે (ADD, MOV, JMP)
- Operand Field: Data, register અથવા memory address information હોય છે
- Variable Length: Instructions 1, 2 અથવા 3 bytes ની હોઈ શકે છે
- Addressing Modes: Operand location specify કરવાની વિવિધ રીતો

મેમરી ટ્રીક: "Opcode Operations + Operand Objects = Complete Commands"

પ્રશ્ન 1(ક OR) [7 ગુણ]

માઇક્રોપ્રોસેસરમાં ALU, Control Unit અને CPU સમજાવો.

જવાબ:

CPU માં ત્રણ મુખ્ય functional units છે જે instructions execute કરવા માટે સાથે મળીને કામ કરે છે.

કોષ્ટક: CPU Components અને Functions

Component	Primary Function	Key Operations
ALU	Arithmetic & Logic Operations	ADD, SUB, AND, OR, XOR
Control Unit	Instruction Control	Fetch, Decode, Execute
СРИ	Overall Processing	બધા operations coordinate કરે છે

ડાયાગ્રામ:

- **ALU Functions**: બધા arithmetic calculations અને logical operations કરે છે
- **Control Unit Tasks**: Instruction execution cycle manage કરે છે અને control signals generate કરે છે
- **CPU Coordination**: Complete processing માટે ALU અને Control Unit ને integrate કરે છે

મેમરી ટ્રીક: "ALU Adds, Control Commands, CPU Coordinates"

પ્રશ્ન 2(અ) [3 ગુણ]

ALE signal નું કાર્ય સમજાવો.

જવાબ:

ALE (Address Latch Enable) signal નો ઉપયોગ lower-order address અને data lines ને demultiplex કરવા માટે થાય છે.

કોષ્ટક: ALE Signal Functions

Function	વર્ણન
Address Latching	Lower 8-bit address capture કરે છે
Demultiplexing	Address ને data થી separate કરે છે
Timing Control	Timing reference પ્રદાન કરે છે

ડાયાગ્રામ:

- Active High Signal: T1 state દરમિયાન ALE high જાય છે
- External Latching: Address hold કરવા માટે 74373 latch સાથે ઉપયોગ થાય છે
- System Timing: External devices માટે reference પ્રદાન કરે છે

મેમરી ટ્રીક: "ALE Always Latches External Addresses"

પ્રશ્ન 2(બ) [4 ગુણ]

માઇક્રોપ્રોસેસર અને માઇક્રોકંટ્રોલર ની સરખામણી કરો

જવાબ:

ടിയട: Microprocessor vs Microcontroller Comparison

Parameter	Microprocessor	Microcontroller
Design	General purpose	Application specific
Memory	External RAM/ROM	Internal RAM/ROM
I/O Ports	External interface	Built-in I/O ports
Timers	External	Built-in timers
Cost	વધુ system cost	ઓછો system cost
Power	વધુ consumption	ઓછો consumption

- Integration Level: Microcontroller માં વધુ integrated components હોય છે
- **Application Focus**: Microprocessor computing หเว้, microcontroller control หเว้
- System Complexity: Microprocessor ને વધુ external components જોઈએ છે

• **Design Flexibility**: Microprocessor વધુ expandability આપે છે

મેમરી ટ્રીક: "Microprocessor = More Power, Microcontroller = More Control"

પ્રશ્ન 2(ક) [7 ગુણ]

માઇક્રોપ્રોસેસરનો બ્લોક ડાયાગ્રામ દોરો અને સમજાવો.

જવાબ:

8085 microprocessor માં કેટલાક functional blocks છે જે સાથે મળીને કામ કરે છે.

ડાયાગ્રામ:

કોષ્ટક: Block Functions

Block	Function
ALU	Arithmetic અને logical operations
Register Array	Temporary data storage (B,C,D,E,H,L)
Control Unit	Instruction execution control
Address Buffer	Address bus lines drive કરે છે

- Data Path: Internal bus દ્વારા registers વચ્ચે information flow થાય છે
- Control Signals: Timing અને control unit દ્વારા generate થાય છે
- Bus Interface: External memory અને I/O devices સાથે connect કરે છે
- Register Operations: Operands અને results માટે temporary storage

મેમરી ટ્રીક: "Blocks Build Better Processing Systems"

પ્રશ્ન 2(અ OR) [3 ગુણ]

માઇક્રોપ્રોસેસરના 16 bits registers સમજાવો.

જવાબ:

8085 માં 8-bit register pairs ને combine કરીને બનેલા ત્રણ 16-bit registers છે.

ຣາເພຣະ 16-bit Registers

Register	Formation	Purpose
PC	Single 16-bit	Program Counter - next instruction address
SP	Single 16-bit	Stack Pointer - stack ના top નું address
HL	H + L registers	Memory pointer - data address

• **Program Counter**: આપમેળે next instruction પર increment થાય છે

• **Stack Pointer**: Stack પર last pushed data તરફ point કરે છે

• HL Pair: Memory addressing માટે સૌથી વધુ વપરાતું

મેમરી ટ્રીક: "PC Points Program, SP Stacks Properly, HL Holds Location"

પ્રશ્ન 2(બ OR) [4 ગુણ]

માઇક્રોપ્રોસેસર માં lower order address અને data lines ને de-multiplexing કરવાનું સમજાવો.

જવાબ:

8085 pin count ઘટાડવા માટે lower 8-bit address ને data lines સાથે multiplex કરે છે.

ടിയട: Multiplexed Lines

Lines	T1 State	T2-T4 States
AD0-AD7	Lower Address A0-A7	Data D0-D7
ALE Signal	High	Low

ડાયાગ્રામ:

• Time Division: સમાન lines પહેલા address પછી data carry કરે છે

• **External Latch**: ALE high હોય ત્યારે 74373 address capture કરે છે

• Signal Separation: અલગ address અને data buses બનાવે છે

મેમરી ટ્રીક: "ALE Always Latches External Address Elegantly"

પ્રશ્ન 2(ક OR) [7 ગુણ]

8085 નો pin diagram દોરો અને સમજાવો.

જવાબ:

8085 એ multiplexed address/data bus વાળું 40-pin microprocessor છે.

ડાયાગ્રામ:

3	3085 Pin Diag	ram
+		+
X1 1	40	V
X2 2	39	HOL
RST 3	38	HLDA
SOD 4	37	CLK
SID 5	36	RESET
TRAP 6	35	READY
RST7 7	34	IO/M*
RST6 8	33	S1
RST5 9	32	RD*
INTR 10	31	WR*
INTA 11	30	ALE
AD0 12	29	S0
AD1 13	28	A15
AD2 14	27	A14
AD3 15	26	A13
AD4 16	25	A12
AD5 17	24	A11
AD6 18	23	A10
AD7 19	22	
Vss 20	21	
+		+

કોષ્ટક: Pin Groups

Group	Pins	Function
Address/Data	AD0-AD7, A8-A15	Memory addressing અને data transfer
Control	ALE, RD, WR, IO/M*	Bus control signals
Interrupts	INTR, RST7-RST5, TRAP	Interrupt handling
Power	Vcc, Vss	Power supply connections

- **Multiplexed Bus**: AD0-AD7 address અને data બંને carry કરે છે
- Active Low Signals: * ଦାળା signals active low છે
- Crystal Connections: Clock generation หเร้ X1, X2

મેમરી ટ્રીક: "Forty Pins Provide Perfect Processing Power"

પ્રશ્ન 3(અ) [3 ગુણ]

માઇક્રોકંટ્રોલર ની clock અને reset circuit નો diagram દોરો

જવાબ:

8051 ને proper operation માટે external clock અને reset circuits જોઈએ છે.

ડાયાગ્રામ:

ടിയട: Circuit Components

Component	Value	Purpose
Crystal	11.0592 MHz	Clock generation
Capacitors	30pF εὲs	Crystal stabilization
Reset Resistor	10ΚΩ	Reset માટે pull-up
Reset Capacitor	10μF	Power-on reset delay

- Clock Frequency: Serial communication માટે સામાન્ય રીતે 11.0592 MHz
- Reset Duration: ઓછામાં ઓછા 2 machine cycles માટે high હોવું જોઈએ
- **Power-on Reset**: Power apply થાય ત્યારે automatic reset

મેમરી ટ્રીક: "Crystals Create Clock, Resistors Reset Reliably"

પ્રશ્ન 3(બ) [4 ગુણ]

માઇક્રોકંટ્રોલર ની આંતરીક RAM સમજાવો.

જવાબ:

8051 માં વિવિધ sections માં organize થયેલા 256 bytes નો internal RAM છે.

ടിയട: Internal RAM Organization

Address Range	Size	Purpose
00H-1FH	32 bytes	Register Banks (4 banks × 8 registers)
20H-2FH	16 bytes	Bit-addressable area
30H-7FH	80 bytes	General purpose RAM
80H-FFH	128 bytes	Special Function Registers (SFRs)

ડાયાગ્રામ:

- Register Banks: દરેકમાં 8 registers (RO-R7) વાળા ચાર banks
- **Bit Addressing**: 20H-2FH area માં individual bits address કરી શકાય છે
- Stack Area: સામાન્ય રીતે general purpose RAM area માં હોય છે
- **Direct Access**: બધા locations direct addressing દ્વારા accessible છે

મેમરી ટ્રીક: "RAM Registers, Bits, General, Special Functions"

પ્રશ્ન 3(ક) [7 ગુણ]

8051 નો બ્લોક ડાયાગ્રામ સમજાવો.

જવાબ:

8051 microcontroller એક જ chip પર CPU, memory અને I/O integrate કરે છે.

ડાયાગ્રામ:

કોષ્ટક: મુખ્ય Blocks

Block	Function
CPU	Instruction execution અને control
Memory	4KB ROM + 256B RAM
Timers	બે 16-bit timer/counters
I/O Ports	યાર 8-bit bidirectional ports
Serial Port	Full-duplex UART
Interrupts	5-source interrupt system

- Harvard Architecture: અલગ program અને data memory spaces
- Built-in Peripherals: Timers, serial port, interrupts integrated
- Expandable: External memory અને I/O add કરી શકાય છે
- Control Applications: Embedded control tasks หเ2 optimized

મેમરી ટ્રીક: "Complete Control Chip Contains CPU, Memory, I/O"

પ્રશ્ન 3(અ OR) [3 ગુણ]

DPTR અને PC નું કાર્ય સમજાવો.

જવાબ:

DPTR અને PC એ memory addressing માટે 8051 માં મહત્વપૂર્ણ 16-bit registers છે.

કોષ્ટક: DPTR અને PC Functions

Register	Full Form	Function
DPTR	Data Pointer	External data memory તરફ point કરે છે
PC	Program Counter	Next instruction address તરફ point કરે છે

- **DPTR Usage**: External RAM અને lookup tables access કરવા માટે
- **PC Function**: Instruction fetch પછી આપમેળે increment થાય છે
- **16-bit Addressing**: બંને 64KB memory space address કરી શકે છે

મેમરી ટ્રીક: "DPTR Data Pointer, PC Program Counter"

પ્રશ્ન 3(બ OR) [4 ગુણ]

માઇક્રોકંટ્રોલરમાં timer ના અલગ અલગ modes સમજાવો.

જવાબ:

8051 માં ચાર અલગ operating modes સાથે બે timers છે.

કોષ્ટક: Timer Modes

Mode	Configuration	Purpose
Mode 0	13-bit timer	8048 સાથે compatible
Mode 1	16-bit timer	Maximum count capability
Mode 2	8-bit auto-reload	Constant time intervals
Mode 3	બે 8-bit timers	Timer 0 split operation

• Mode Selection: TMOD register bits દ્વારા control થાય છે

• **Timer 0/1**: બંને timers modes 0, 1, 2 support કરે છે

• Mode 3 Special: ફક્ત Timer 0 જ mode 3 માં operate કરી શકે છે

• Applications: Delays, baud rate generation, event counting

મેમરી ટ્રીક: "Modes Make Timers Tremendously Versatile"

પ્રશ્ન 3(ક OR) [7 ગુણ]

માઇક્રોકંટ્રોલર ની interrupts સમજાવો.

જવાબ:

8051 માં external events handle કરવા માટે 5-source interrupt system છે.

ຣາ້າຮະ: 8051 Interrupt Sources

Interrupt	Vector Address	Priority	Trigger
Reset	0000H	સૌથી વધુ	Power-on/External
External 0	0003H	વધુ	INT0 pin
Timer 0	000BH	મધ્યમ	Timer 0 overflow
External 1	0013H	મધ્યમ	INT1 pin
Timer 1	001BH	ઓછું	Timer 1 overflow
Serial	0023H	સૌથી ઓછું	Serial communication

ડાયાગ્રામ:

• **Priority Control**: IP register interrupt priorities set ອ ຂ છે

• Vector Addresses: εὲs interrupt નું fixed vector location છે

• **Nested Interrupts**: વધુ priority ઓછી priority ને interrupt કરી શકે છે

મેમરી ટ્રીક: "Five Interrupt Sources Serve System Efficiently"

પ્રશ્ન 4(અ) [3 ગુણ]

8051 ની data transfer instruction ઉદાહરણ આપી સમજાવો.

જવાબ:

Data transfer instructions registers, memory અને I/O ports વચ્ચે data move કરે છે.

នាំមន: Data Transfer Instructions

Instruction	Example	Function
MOV	MOV A,#55H	Immediate data ને accumulator માં move કરે છે
MOVX	MOVX A,@DPTR	External RAM ને accumulator માં move કરે છે
MOVC	MOVC A,@A+PC	Code memory ને accumulator માં move કરે છે

• MOV Variants: Register to register, immediate to register

• External Access: External RAM operations หเล้ MOVX

• Code Access: Program memory tables read કરવા માટે MOVC

મેમરી ટ્રીક: "MOV Moves data, MOVX eXternal, MOVC Code"

પ્રશ્ન 4(બ) [4 ગુણ]

માઇક્રોકેટ્રોલરના addressing modes નું list બનાવી સમજાવો.

જવાબ:

8051 flexible data access માટે કેટલાક addressing modes support કરે છે.

ຣາ້ພຣ: 8051 Addressing Modes

Mode	Example	વર્ણન
Immediate	MOV A,#55H	Instruction માં data specify કર્યો છે
Register	MOV A,R0	Register contents ઉપયોગ કરે છે
Direct	MOV A,30H	Direct memory address
Indirect	MOV A,@R0	Register માં stored address
Indexed	MOVC A,@A+DPTR	Base address plus offset

- Immediate Mode: Instruction ਮi constant data included છੇ
- Register Mode: Register file ઉપયોગ કરીને સૌથી ઝડપી execution
- **Direct Mode**: ອາຍິນຍາ internal RAM location access ອ ຂ છે
- Indirect Mode: Arrays भा2 pointer-based addressing
- Indexed Mode: Table lookup અને array access

મેમરી ટ્રીક: "Immediate, Register, Direct, Indirect, Indexed Addressing"

પ્રશ્ન 4(ક) [7 ગુણ]

8 data block ને શરૂઆત ના address location 100h થી 200h માં copy કરવાનો program લખો.

જવાબ:

Assembly Program:

```
ORG 0000H
                    ; Start address
MOV R0,#100H
                  ; Source address pointer
MOV R1,#200H
                   ; Destination address pointer
                    ; 8 bytes HIZ counter
MOV R2,#08H
LOOP:
                   ; Source માંથી data read કરો
MOV A, @RO
                   ; Destination Hi data write Sel
MOV @R1,A
                   ; Source pointer increment Sel
INC RO
INC R1
                   ; Destination pointer increment sel
DJNZ R2,LOOP
                    ; Counter decrement sei अने zero नथी di jump
END
                    ; Program dì end
```

ടിയട: Register Usage

Register	Purpose
R0	Source address pointer (100H)
R1	Destination address pointer (200H)
R2	Loop counter (8 bytes)
Α	Temporary data storage

- Indirect Addressing: Memory access માટે @R0 અને @R1
- **Loop Control**: DJNZ instruction decrements અને tests કરે છે
- Block Transfer: 8 consecutive bytes efficiently copy ອ ຂ છે

મેમરી ટ્રીક: "Read, Write, Increment, Decrement, Jump Loop"

પ્રશ્ન 4(અ OR) [3 ગુણ]

બે data bytes ને ઉમેરો અને result ને R0 register માં save કરો.

જવાબ:

Assembly Program:

```
ORG 0000H ; Start address

MOV A,#25H ; ਮ਼ੁੰਪਮ byte load sci

ADD A,#35H ; બੀજો byte add sci

MOV RO,A ; Result ਜੇ RO ਮi store sci

END ; Program end
```

ຣາເຣຣ: Operation Steps

Step	Instruction	Result
1	MOV A,#25H	A = 25H
2	ADD A,#35H	A = 5AH
3	MOV R0,A	R0 = 5AH

• Addition Result: 25H + 35H = 5AH

• Flag Effects: Result > FFH હોય તો carry flag set થાય છે

ਮੇਮરੀ ਟ੍ਰੀs: "Move, Add, Move = Simple Addition"

પ્રશ્ન 4(બ OR) [4 ગુણ]

Indexed addressing mode ઉદાહરણ સાથે સમજાવો.

જવાબ:

Indexed addressing memory access માટે base address plus offset ઉપયોગ કરે છે.

sìଧ୍ୱ: Indexed Addressing Details

Component	વર્ણન	Example
Base Address	DPTR અથવા PC register	DPTR = 1000H
Index	Accumulator contents	A = 05H
Effective Address	Base + Index	1000H + 05H = 1005H

Example:

```
MOV DPTR,#1000H ; Base address
MOV A,#05H ; Index value
MOVC A,@A+DPTR ; Address 1005H 4iell read ระโ
```

- Table Access: Lookup tables અને arrays માટે આદર્શ
- Program Memory: MOVC ફક્ત code memory માંથી જ read કરે છે
- Dynamic Indexing: Execution દરમિયાન index બદલાઈ શકે છે

ਮੇਮਣੀ ਟ੍ਰੀਡ: "Base + Index = Dynamic Access"

પ્રશ્ન 4(ક OR) [7 ગુણ]

માઇક્રોકંટ્રોલરનું stack operation, PUSH અને POP instruction સમજાવો.

જવાબ:

Stack એ temporary data storage માટે ઉપયોગમાં લેવાતું LIFO memory structure છે.

ടിയട: Stack Operations

Operation	Instruction	Function
PUSH	PUSH 30H	Stack પર data store કરે છે
POP	POP 30H	Stack માંથી data retrieve કરે છે
Stack Pointer	SP register	Stack ના top તરફ point કરે છે

ડાયાગ્રામ:

```
Stack Operation:

PUSH પહેલાં: PUSH 30H પછી: POP 30H પછી:

SP → 07H SP → 08H SP → 07H

06H 08H: 30H 06H

05H 07H: old 05H

Stack memory Ҹi upward grow St છે
```

Example Program:

```
MOV SP,#30H ; Stack pointer initialize Stì

PUSH ACC ; Accumulator save Stì

PUSH B ; B register save Stì

POP B ; B register restore Stì

POP ACC ; Accumulator restore Stì
```

- LIFO Structure: Last In, First Out data organization
- SP Auto-increment: Stack pointer આપમેળે adjust થાય છે

- Subroutine Calls: Stack return addresses save ອ ຂໍ છે
- **Register Preservation**: Register contents save/restore ອ₂ છે

મેમરી ટ્રીક: "PUSH Puts Up, Stack Holds, POP Pulls Out"

પ્રશ્ન 5(અ) [3 ગુણ]

Branching instruction ઉદાહરણ સાથે સમજાવો.

જવાબ:

Branching instructions conditions આધારે અથવા unconditionally program flow alter કરે છે.

કોષ્ટક: Branching Instructions

Туре	Instruction	Example
Unconditional	LJMP address	LJMP 2000H
Conditional	JZ address	JZ ZERO_LABEL
Call/Return	LCALL address	LCALL SUBROUTINE

Example:

```
MOV A,#00H ; Zero load Stì

JZ ZERO_FOUND ; A zero છે dì jump Stì

LJMP CONTINUE ; Continue dts jump Stì

ZERO_FOUND:

MOV R0,#01H ; Flag set Stì

CONTINUE:

NOP ; Execution continue Stì
```

- **Program Control**: Execution sequence બદલે છે
- Conditional Jumps: Flag register status આધારે
- Address Range: કોઈપણ program memory location પર jump કરી શકે છે

भेभरी ट्रीड: "Jump Changes Control Flow"

પ્રશ્ન 5(બ) [4 ગુણ]

માઇક્રોકંટ્રોલર સાથે 8 LEDs ને interface કરો અને તેને on અને off કરવા માટેનો program લખો.

જવાબ:

Circuit Diagram:

```
8051 LEDS

P1.0 ----[330\Omega]-----LED1----+5V

P1.1 ----[330\Omega]-----LED2----+5V

P1.2 ----[330\Omega]-----LED3----+5V

P1.3 ----[330\Omega]-----LED4----+5V

P1.4 ----[330\Omega]-----LED5----+5V

P1.5 ----[330\Omega]-----LED6----+5V

P1.6 ----[330\Omega]-----LED7-----+5V

P1.7 ----[330\Omega]-----LED8----+5V
```

Program:

```
ORG 0000H
MAIN:
   MOV P1,#0FFH
                      ; બધા LEDs ON કરો
   CALL DELAY
                       ; Wait sel
                      ; બધા LEDs OFF કરો
   MOV P1,#00H
                       ; Wait કરો
   CALL DELAY
   SJMP MAIN
                      ; Repeat કरो
DELAY:
   MOV RO, #0FFH
                     ; Outer loop counter
LOOP1:
   MOV R1,#0FFH
                     ; Inner loop counter
LOOP2:
   DJNZ R1,LOOP2
                     ; Inner delay loop
   DJNZ RO,LOOP1
                       ; Outer delay loop
   RET
                       ; Return Sei
END
```

કોષ્ટક: Components

Component	Value	Purpose
Resistor	330Ω	Current limiting
LEDs	8 pieces	Visual indicators
Port	P1	8-bit output port

- Current Limiting: Resistors LEDs ને overcurrent થી protect કરે છે
- Port Configuration: LED control માટે P1 ને output port તરીકે ઉપયોગ
- **Delay Routine**: Visible ON/OFF timing બનાવે છે

મેમરી ટ્રીક: "Port Controls LEDs with Resistance and Delay"

પ્રશ્ન 5(ક) [7 ગુણ]

માઇક્રોકંટ્રોલર સાથે LCD ને interface કરો અને "welcome" display કરવાનો program લખો.

જવાબ:

Circuit Connections:

```
8051 16x2 LCD

P2.0 -----> D4

P2.1 ----> D5

P2.2 ----> D6

P2.3 ----> D7

P1.0 ----> RS (Register Select)

P1.1 ----> EN (Enable)

GND ----> R/W (Write mode)
```

Program:

```
ORG 0000H
                   ; LCD initialize sरो
   CALL LCD_INIT
   CALL DISPLAY_MSG ; Message display Sti
                     ; અહીં stop કરો
   SJMP $
LCD INIT:
   MOV P2,#38H
                  ; Function set: 8-bit, 2-line
   CALL COMMAND
   MOV P2,#0EH
                     ; Display ON, Cursor ON
   CALL COMMAND
   MOV P2,#01H
                     ; Display clear કरो
   CALL COMMAND
   MOV P2,#06H
                     ; Entry mode set
   CALL COMMAND
   RET
DISPLAY_MSG:
   MOV DPTR, #MESSAGE ; Message d? point s?
NEXT_CHAR:
   CLR A
   MOVC A, @A+DPTR ; Character read Stì
   JZ DONE
                     ; Zero હોય તો string end
   CALL SEND_CHAR ; LCD 42 character send S2
   INC DPTR
                     ; Next character
   SJMP NEXT_CHAR
DONE:
   RET
COMMAND:
                     ; Command भारे RS = 0
   CLR P1.0
   SETB P1.1
                     ; EN = 1
                     ; EN = 0 (pulse)
   CLR P1.1
   CALL DELAY
   RET
SEND_CHAR:
```

```
MOV P2,A
                        ; Data lines 42 character put Sel
                        ; Data 412 RS = 1
    SETB P1.0
    SETB P1.1
                        ; EN = 1
    CLR P1.1
                        ; EN = 0 (pulse)
    CALL DELAY
    RET
DELAY:
                  ; Delay routine
   MOV R0,#50
DELAY_LOOP:
   MOV R1,#255
DELAY INNER:
    DJNZ R1, DELAY_INNER
    DJNZ RO, DELAY LOOP
    RET
MESSAGE:
   DB "WELCOME", 0
                         ; Null terminator સાથે message string
END
```

ຣາເຣຣ: LCD Interface Pins

8051 Pin	LCD Pin	Function
P2.0-P2.3	D4-D7	4-bit data lines
P1.0	RS	Register select (0=command, 1=data)
P1.1	EN	Enable pulse
GND	R/W	Read/Write (write માટે ground સાથે tied)

- 4-bit Mode: Pins save કરવા માટે ફક્ત upper 4 data lines ઉપયોગ કરે છે
- **Control Signals**: RS command/data select કરે છે, EN timing pulse આપે છે
- Character Display: દરેક character ASCII code તરીકે send થાય છે
- Initialization: Proper operation માટે જરૂરી command sequence

મેમરી ટ્રીક: "LCD Displays Characters with Commands and Data"

પ્રશ્ન 5(અ OR) [3 ગુણ]

Logical instruction ઉદાહરણ સાથે સમજાવો.

જવાબ:

Logical instructions data પર bitwise operations કરે છે.

કોષ્ટક: Logical Instructions

Instruction	Example	Function
ANL	ANL A,#0FH	Bitwise AND operation
ORL	ORL A,#F0H	Bitwise OR operation
XRL	XRL A,#FFH	Bitwise XOR operation

Example:

```
      MOV A,#55H
      ; A = 01010101B

      ANL A,#0FH
      ; A = 00000101B (upper bits mask St)

      ORL A,#F0H
      ; A = 11110101B (upper bits set St)

      XRL A,#FFH
      ; A = 00001010B (GUI bits complement St)
```

- Bit Manipulation: Bits setting, clearing અને testing માટે ઉપયોગ થાય છે
- Masking Operations: ANL unwanted bits clear કરે છે
- Flag Effects: Result આધારે parity flag update થાય છે

મેમરી ટ્રીક: "AND Masks, OR Sets, XOR Toggles"

પ્રશ્ન 5(બ OR) [4 ગુણ]

માઇક્રોકંટ્રોલર સાથે 7 segment ને interface કરો.

જવાબ:

Circuit Diagram:

```
8051 7-Segment Display P1.0 ----[330\Omega]----a P1.1 ----[330\Omega]----b P1.2 ----[330\Omega]----c P1.3 ----[330\Omega]----d P1.4 ----[330\Omega]----e P1.5 ----[330\Omega]----e P1.5 ----[330\Omega]----f P1.6 ----[330\Omega]----d (decimal point)
```

Program to Display 0-9:

```
ORG 0000H

MOV DPTR,#DIGIT_TABLE ; Lookup table d2\(\xi\) point S2\(\text{i}\)

MOV R0,#0 ; Digit 0 \(\xi\) start S2\(\text{i}\)

MAIN_LOOP:

MOV A,R0 ; Current digit get S2\(\text{i}\)

MOVC A,@A+DPTR ; 7-segment code get S2\(\text{i}\)

MOV P1,A ; 7-segment V2 display S2\(\text{i}\)

CALL DELAY ; 1 second wait S2\(\text{i}\)
```

```
INC R0 ; Next digit

CJNE R0,#10,MAIN_LOOP ; 10 reached & scheck Sti

MOV R0,#0 ; 0 4t reset Sti

SJMP MAIN_LOOP ; Repeat Sti

DIGIT_TABLE:

DB 3FH, 06H, 5BH, 4FH, 66H ; 0,1,2,3,4

DB 6DH, 7DH, 07H, 7FH, 6FH ; 5,6,7,8,9

END
```

કોષ્ટક: 7-Segment Codes

Digit	Hex Code	Binary	Segments Lit
0	3FH	00111111	a,b,c,d,e,f
1	06H	00000110	b,c
2	5BH	01011011	a,b,g,e,d

- Common Cathode: Port pin high હોય ત્યારે segments light થાય છે
- Current Limiting: Resistors segment damage અટકાવે છે
- Lookup Table: Segment patterns j efficient storage

મેમરી ટ્રીક: "Seven Segments Show Digits Clearly"

પ્રશ્ન 5(ક OR) [7 ગુણ]

માઇક્રોકંટ્રોલર સાથે LM 35 ને interface કરો અને temperature controller નો block diagram સમજાવો.

જવાબ:

Circuit Diagram:

```
LM35 Temperature Sensor Interface:

+5V ----+ LM35 ----+ ADC0804 ----+ 8051

| (Vout) | (Vin) | (P1)

GND | GND |

GND | Relay Control:

8051 P3.0 ----[ULN2003]---- Relay -----+

Load (Heater/Fan)
```

Temperature Controller Block Diagram:

Control Program:

```
ORG 0000H
MAIN:
                      ; ADC मांथी temperature read Sरो
   CALL READ TEMP
   CALL DISPLAY_TEMP ; Display 42 temperature show Sel
   CALL TEMP_CONTROL ; Heating/cooling control sel
   CALL DELAY
                  ; Next reading પહેલાં wait કરો
   SJMP MAIN
READ TEMP:
                     ; ADC conversion start Sel
   CLR P2.0
   SETB P2.0
                      ; Start भारे pulse
                      ; Conversion complete થવાની wait કરો
   JNB P2.1,$
   MOV A,P1
                      ; Temperature data read Sel
   RET
TEMP CONTROL:
   CJNE A,#30,CHECK HIGH ; Setpoint (30°C) साथे compare sel
CHECK HIGH:
                     ; A < 30 હોય dì temperature low છે
   JC TEMP_LOW
                          ; Cooling (fan) ON Sel
   SETB P3.0
                           ; Heating OFF Sel
   CLR P3.1
   RET
TEMP LOW:
                          ; Cooling OFF કરો
   CLR P3.0
                          ; Heating ON Sei
   SETB P3.1
   RET
END
```

ទាំមន: System Components

Component	Function
LM35	Temperature sensor (10mV/°C)
ADC0804	Analog to digital converter
8051	Main controller
Relay	High power loads switch કરે છે
Display	Current temperature show કરે છે

- Temperature Sensing: LM35 દરેક degree Celsius માટે 10mV આપે છે
- **ADC Conversion**: Analog voltage ને digital value માં convert કરે છે
- **Control Logic**: Setpoint સાથે compare કરે છે અને relays control કરે છે
- Feedback System: Continuous monitoring અને adjustment
- **Safety Features**: Over-temperature protection શક્ય છે

મેમરી ટ્રીક: "Sense, Convert, Compare, Control Temperature Automatically"