The prompt is the text in blue, the continuation to be generated by the model is the text in black.

Calculate 202 3 201 6 plus 203 3 202 1 201 9 | write 71,01:201 6 72,01:202 3 { 2 digits } { add } 71,02:201 9 72,02:202 1 73,02:203 3 { 3 digits } look 71,01:201 6 71,02:201 9 { 71,01:201 6 + 71,02:201 9 = 1 5 } write 71,03:201 5 { carry the 1 } look 72,01:202 3 72,02:202 1 { 72,01:202 3 + 72,02:202 1 = 4 } { 4 + 1 = 5 } write 72,03:202 5 look 73,01:203 _ 73,02:203 3 { 73,01:203 _ + 73,02:203 3 = 3 } write 73,03:203 3 look 74,01:201 _ 74,02:204 _ { last } { 0 + 0 = 0 } write 74,03:204 0 { read the answer } look 74,03:204 0 73,03:203 3 72,03:202 5 71,03:201 5 { result is 204 0 203 3 202 5 201 5 }

Sequence of actions we would like to demonstrate	Representation of the actions in the dataset
The demonstrator writes out the first addend backwards.	write 71,01:201 6 72,01:202 3
The demonstrator indicates that the first addend has two digits.	{ 2 digits }
The demonstrator indicates the action "add" as a separator between the addends.	{ add }
The demonstrator writes out the second addend backwards.	71,02:201 9 72,02:202 1 73,02:203 3
The demonstrator indicates that the second addend has three digits.	{ 3 digits }
The demonstrator looks at the first digits of the two dividends.	look 71,01:201 6 71,02:201 9
The demonstrator notes that $6 + 9 = 15$.	{ 71,01:201 6 + 71,02:201 9 = 1 5 }
The demonstrator writes the result under the first digits.	write 71,03:201 5
The demonstrator carries the 1.	{ carry the 1 }
The demonstrator looks at the second digits of the two dividends.	look 72,01:202 3 72,02:202 1
The demonstrator notes that $3 + 1 = 4$.	{ 72,01:202 3 + 72,02:202 1 = 4 }
The demonstrator adds the 1 that was carried.	{ 4 + 1 = 5 }
The demonstrator writes the result under the second digits.	write 72,03:202 5
The demonstrator looks at the last position and sees that there are no digits left.	look 74,01:201 _ 74,02:204 _
The demonstrator notes that this is the last action.	{ last }
The demonstrator notes that $_+ + _= 0$.	{ 0 + 0 = 0 }
The demonstrator writes the result under the empty spaces.	write 74,03:204 0
The demonstrator indicates that the next action entails reading the answer.	{ read the answer }
The demonstrator looks at each digit of the result.	look 74,03:204 0 73,03:203 3 72,03:202 5 71,03:201 5
Finally, the demonstrator writes the answer. 0355	{ result is 204 0 203 3 202 5 201 5 }