Section Handout 11 Solutions

CS188 Spring 2019 Section 11: Perceptrons and Logistic Regression

1 Perceptron

The Algorithm The perceptron algorithm works as follows:

- 1. Initialize all weights to 0: $\mathbf{w} = \mathbf{0}$
- 2. For each training sample, with features $\mathbf{f}(x)$ and class label $y^* \in \{-1, 1\}$, do:
 - (a) Take the dot product, s, between the sample features and the current weights: $s = \mathbf{w}^{\top} \mathbf{f}(x)$
 - (b) Predict a class, \hat{y} for the sample as follows: $\hat{y} = +1$ if $s \ge 0$, $\hat{y} = -1$ otherwise.
 - (c) Compare the predicted label \hat{y} to the true label y^* :
 - If $\hat{y} = y^*$, do nothing
 - Otherwise, if $\hat{y} \neq y^*$, then update your weights: $\mathbf{w} \leftarrow \mathbf{w} + y^* * f(x)$
- 3. If you went through every training sample without having to update your weights (all samples predicted correctly), then terminate. If any at least one sample was predicted incorrectly, then repeat step 2

Updating weights

Let us now examine and justify the procedure for updating our weights.

Recall that in step 2b above, we assigned our predicted label \hat{y} to be either 1 or -1. To update the weights, we first check if the predicted label is correct. If it is, i.e. $\hat{y} = y^*$, then do nothing—"don't fix what's not broken", as they say. When they are not equal, then update the weight vector as follows:

$$\mathbf{w} \leftarrow \mathbf{w} + y^* * \mathbf{f}(x)$$

where y^* is the true label, which is either 1 or -1, and x the training sample which we mis-classified.

One way to look at this is to see it as a balancing act. If our weights, when multiplied by our sample's features, give us a negative score s when we wanted a positive score (i.e. $y^* = 1$), then our weights are probably too small (for positive-valued features, or too large for negative-valued). Since $y^* = 1$, we, according to this update rule, will add the feature values to our weights to try and make them closer to an optimal set of weights. If our product yields a positive score, where we wanted a negative score, then our weights are probably too big, and so we would like to decrease them. To do so, noting that $y^* = -1$, we will subtract our mis-classified sample from our weight vector.

2 Perceptron

You want to predict if movies will be profitable based on their screenplays. You hire two critics A and B to read a script you have and rate it on a scale of 1 to 4. The critics are not perfect; here are five data points including the critics' scores and the performance of the movie:

#	Movie Name	A	В	Profit?
1	Pellet Power	1	1	-
2	Ghosts!	3	2	+
3	Pac is Bac	2	4	+
4	Not a Pizza	3	4	+
5	Endless Maze	2	3	-

- (a) First, you would like to examine the linear separability of the data. Plot the data on the 2D plane above; label profitable movies with + and non-profitable movies with and determine if the data are linearly separable. The data are linearly separable.
- (b) Now you decide to use a perceptron to classify your data. Suppose you directly use the scores given above as features, together with a bias feature. That is $f_0 = 1$, $f_1 =$ score given by A and $f_2 =$ score given by B.

Run one pass through the data with the perceptron algorithm, filling out the table below. Go through the data points in order, e.g. using data point #1 at step 1.

step	Weights	Score	Correct?
1	[-1, 0, 0]	$-1 \cdot 1 + 0 \cdot 1 + 0 \cdot 1 = -1$	yes
2	[-1, 0, 0]	$-1 \cdot 1 + 0 \cdot 3 + 0 \cdot 2 = -1$	no
3	[0, 3, 2]	$0 \cdot 1 + 3 \cdot 2 + 2 \cdot 4 = 14$	yes
4	[0, 3, 2]	$0 \cdot 1 + 3 \cdot 3 + 2 \cdot 4 = 17$	yes
5	[0, 3, 2]	$0 \cdot 1 + 3 \cdot 2 + 2 \cdot 3 = 12$	no

Final weights: [-1, 1, -1]

(c) Have weights been learned that separate the data? With the current weights, points will be classified as positive if $-1 \cdot 1 + 1 \cdot A + -1 \cdot B \ge 0$, or $A - B \ge 1$. So we will have incorrect predictions for data points 3:

$$-1 \cdot 1 + 1 \cdot 2 + -1 \cdot 4 = -3 < 0$$

and 4:

$$-1 \cdot 1 + 1 \cdot 3 + -1 \cdot 4 = -2 < 0$$

Note that although point 2 has $w \cdot f = 0$, it will be classified as positive (since we classify as positive if $w \cdot f \ge 0$).

- (d) More generally, irrespective of the training data, you want to know if your features are powerful enough to allow you to handle a range of scenarios. Circle the scenarios for which a perceptron using the features above can indeed perfectly classify movies which are profitable according to the given rules:
 - (a) Your reviewers are awesome: if the total of their scores is more than 8, then the movie will definitely be profitable, and otherwise it won't be. Can classify (consider weights [-8,1,1])
 - (b) Your reviewers are art critics. Your movie will be profitable if and only if each reviewer gives either a score of 2 or a score of 3. Cannot classify
 - (c) Your reviewers have weird but different tastes. Your movie will be profitable if and only if both reviewers agree. Cannot classify

2

Q3. Optimization

We would like to classify some data. We have N samples, where each sample consists of a feature vector $\mathbf{x} = \{x_1, \dots, x_k\}$ and a label $y = \{0, 1\}$.

We introduce a new type of classifier called logistic regression, which produces predictions as follows:

$$P(Y = 1|X) = h(\mathbf{x}) = s\left(\sum_{i} w_{i}x_{i}\right) = \frac{1}{1 + \exp(-(\sum_{i} w_{i}x_{i}))}$$
$$s(\gamma) = \frac{1}{1 + \exp(-\gamma)}$$

where $s(\gamma)$ is the logistic function, $\exp x = e^x$, and $\mathbf{w} = \{w_1, \dots, w_k\}$ are the learned weights.

Let's find the weights w_j for logistic regression using stochastic gradient descent. We would like to minimize the following loss function for each sample:

$$L = -[y \ln h(\mathbf{x}) + (1 - y) \ln(1 - h(\mathbf{x}))]$$

(a) Find dL/dw_i . Hint: $s'(\gamma) = s(\gamma)(1 - s(\gamma))$.

Use chain rule:

$$\frac{dL}{dw_i} = -\left[\frac{y}{h(\mathbf{x})}s'(\sum_i w_i x_i)x_i - \frac{1-y}{1-h(\mathbf{x})}s'(\sum_i w_i x_i)x_i\right]$$

Use hint:

$$\frac{dL}{dw_i} = -\left[\frac{y}{h(\mathbf{x})}h(\mathbf{x})(1 - h(\mathbf{x}))x_i - \frac{1 - y}{1 - h(\mathbf{x})}h(\mathbf{x})(1 - h(\mathbf{x}))x_i\right]$$

Simplify:

$$\frac{dL}{dw_i} = -\left[y(1 - h(\mathbf{x}))x_i - (1 - y)h(\mathbf{x})x_i\right]$$
$$= -x_i[y - yh(\mathbf{x}) - h(\mathbf{x}) + yh(\mathbf{x})]$$
$$= -x_i(y - h(\mathbf{x}))$$

(b) Write the stochastic gradient descent update for w_i . Our step size is η .

$$w_i \leftarrow w_i + \eta x_i (y - h(\mathbf{x}))$$