PROPRIETÀ delle POTENZE

Per risolvere le equazioni e disequazioni esponenziali sarà necessario applicare le *proprietà delle potenze con esponente reale* che troviamo nello schema riassuntivo sottostante.

È importante ricordare che **NON** si definiscono:

- le potenze con base zero ed esponente nullo o negativo;
- le potenze con base un numero reale negativo.

Ci limitiamo a studiare le *potenze* a^x *con base reale* a > 0, che sono le sole a essere definite con esponente x reale qualsiasi. Essendo la base a positiva, il valore della potenza a^x è sempre positivo:

$$a > 0 \implies a^x > 0 \quad \forall x \in \mathbb{R}$$

DEFINIZIONE $(a, b > 0)$	Esempio
$a^0 = 1$	$3^0 = 1$, $(1/2)^0 = 1$
$a^{-r} = \left(\frac{1}{a}\right)^r$	$2^{-2} = \left(\frac{1}{2}\right)^2 = \frac{1}{4}$
$a^{\frac{r}{s}} = \sqrt[s]{a^r}$	$5^{\frac{3}{4}} = \sqrt[4]{5^3} = \sqrt[4]{125}$
$a^x \cdot a^y = a^{x+y}$	$6^{4\sqrt{3}} \cdot 6^{-3\sqrt{3}} = 6^{\sqrt{3}}$
a^x : $a^y = a^{x-y}$	$\left(\frac{1}{4}\right)^3: \left(\frac{1}{4}\right)^{-2} = \left(\frac{1}{4}\right)^5$
$(a^x)^y = a^{x \cdot y}$	$\left(7^{-\sqrt{2}}\right)^{\sqrt{2}} = 7^{-2} = \frac{1}{49}$
$a^x \cdot b^x = (a \cdot b)^x$	$\left(\frac{2}{3}\right)^{\pi} \cdot \left(\frac{9}{4}\right)^{\pi} = \left(\frac{3}{2}\right)^{\pi}$
a^x : $b^x = \left(\frac{a}{b}\right)^x$	$\left(\frac{81}{5}\right)^{1/3}: \left(\frac{3}{5}\right)^{1/3} = (27)^{1/3} = 3$

