2008 Mathematical Methods 3/4 Trial Exam 2 Solutions Free download and print from www.itute.com Do not photocopy ©Copyright 2008 itute.com

SECTION 1

1										11
С	Α	Е	В	D	D	Е	D	В	D	Α
12	13	14	15	16	17	18	19	20	21	22
В	Е	A	В	A	A	С	A	A	D	C

Q1
$$f(x) = \tan\left(\frac{x}{2}\right)$$
 is defined over D .

Q2
$$b = 2\log_2\left(\frac{a}{2}\right), \ \frac{b}{2} = \log_2\left(\frac{a}{2}\right), \ \frac{a}{2} = 2^{\frac{b}{2}},$$

$$a = 2^{\frac{b}{2}} \times 2 = 2^{\frac{b}{2}+1} = 2^{\frac{1}{2}(b+2)} = \left(e^{\log_e 2}\right)^{\frac{1}{2}(b+2)} = e^{\frac{1}{2}(b+2)\log_e 2}.$$
 A

Q3
$$e^{2x} - 2e^x + k = 0$$
, $(e^x)^2 - 2(e^x) + k = 0$,
 $e^x = \frac{2 \pm \sqrt{4 - 4k}}{2} = 1 \pm \sqrt{1 - k}$.

Two solutions exist when $1-\sqrt{1-k} > 0$ and 1-k > 0. $\therefore 1 > \sqrt{1-k}$ and k < 1, i.e. 1 > 1-k and k < 1. Hence 0 < k < 1.

Q4
$$f(x) = 2\cos(3x)$$
, $\frac{1}{4}f\left(\frac{\pi}{6} - \frac{1}{3}x\right) = \frac{1}{4}\left(2\cos\left(3\left(\frac{\pi}{6} - \frac{1}{3}x\right)\right)\right)$,
= $\frac{1}{2}\cos\left(\frac{\pi}{2} - x\right) = \frac{1}{2}\sin x$. B

Q5 The graph is part of a circle centred at (0,0) and with a radius of 1 unit.

$$x^2 + y^2 = 1$$
, $y = \sqrt{1 - x^2}$, $\therefore a = 1$ and $b = 1$. D

Q6 Transform e^x to $|a-be^{-x}|-c$ graphically, or choose positive a, b and c values, and use graphics calculator to sketch graph. D

Q7
$$(3\sqrt{x} + x)(3\sqrt{x} - x) = 9x - x^2$$
,
 $(1 - x\sqrt{2})(2 + x\sqrt{2}) = 2 - x\sqrt{2} - 2x^2$,
 $\sqrt[3]{x^3 - 3x^2 + 3x - 1} = \sqrt[3]{(x - 1)^3} = x - 1$,
 $\frac{x^{\frac{3}{2}} - (2x)^{\frac{5}{2}}}{x^{-\frac{3}{2}}} = x^3 - 2^{\frac{5}{2}}x^4$. E

Q8 D

Q9 The range of g is (-1,0], : the range of $f \circ g$ is (0,1]. B

Q10
$$f\left(\frac{x}{y}\right) = 1 - \sqrt{\frac{x}{y}} = 1 - \frac{\sqrt{x}}{\sqrt{y}} = \frac{\sqrt{y} - \sqrt{x}}{\sqrt{y}}.$$

 $\frac{f(x) - f(y)}{1 - f(y)} = \frac{1 - \sqrt{x} - (1 - \sqrt{y})}{1 - (1 - \sqrt{y})} = \frac{\sqrt{y} - \sqrt{x}}{\sqrt{y}}.$ D

Q11 A

Q12 $P(x) = \frac{f(\log_e x)}{g(\sqrt{x})}$, use the quotient rule and the chain rule,

$$P'(x) = \frac{\left(g\left(\sqrt{x}\right)\left(\frac{1}{x}\right)(f'(\log_e x)) - (f(\log_e x))\left(\frac{1}{2\sqrt{x}}\right)(g'(\sqrt{x}))\right)}{\left[g\left(\sqrt{x}\right)\right]^2}$$
$$= \frac{2\sqrt{x}g\left(\sqrt{x}\right)f'(\log_e x) - xf(\log_e x)g'(\sqrt{x})}{2x\sqrt{x}\left[g\left(\sqrt{x}\right)\right]^2}. \quad B$$

Q13 $y = 2x^3 - 3ax^2 + 5$, $\frac{dy}{dx} = 6x^2 - 6ax = 6x(x - a)$. \therefore it is a stationary point at x = a. Equation of the normal at x = a is x = a.

Q14 Use graphics calculator, at $x = \frac{3}{4}$, $\frac{dy}{dx} = 2.373$. A

Q15
$$f(x) = \sqrt{1-x}$$
, $f'(x) = \frac{-1}{2\sqrt{1-x}}$. Let $x = -3$ and $h = -0.1$.
 $f(x+h) \approx f(x) + hf'(x)$
 $\therefore f(-3.1) \approx f(-3) + (-0.1)f'(-3)$
 $f(-3.1) \approx \sqrt{1-(-3)} + (-0.1)\left(\frac{-1}{2\sqrt{1-(-3)}}\right) = \frac{81}{40}$. B

Q16
$$3\times1+1.6\times1+0.5\times1+0.3\times1\approx5.4$$
 A

Q17 f(x) = (x+2)g(x) is a continuous decreasing function, .: it has only one x-intercept at x = -2.

Required area =
$$\int_{a}^{-2} f(x)dx - \int_{-2}^{b} f(x)dx = [F(x)]_{a}^{-2} - [F(x)]_{-2}^{b}$$

= $2F(-2) - F(a) - F(b)$. A

Q18
$$\frac{20}{36} = \frac{5}{9}$$
. C

(1,1)	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)
(2,1)	(2,2)	(2,3)	(2,4)	(2,5)	(2,6)
(3,1)	(3,2)	(3,3)	(3,4)	(3,5)	(3,6)
(4,1)	(4,2)	(4,3)	(4,4)	(4,5)	(4,6)
(5,1)	(5,2)	(5,3)	(5,4)	(5,5)	(5,6)
(6,1)	(6,2)	(6,3)	(6,4)	(6,5)	(6,6)

Q19
$$\overline{X} = \left(-1\right)\left(2 \times \frac{1}{30}\right) + 1\left(2 \times \frac{1}{10}\right) + 3\left(2 \times \frac{1}{6}\right) + 5\left(2 \times \frac{2}{15}\right) + 7\left(2 \times \frac{1}{15}\right)$$

$$= \frac{51}{15}. A$$

Q20

	X > 0.36	X < 0.36	
<i>X</i> > 0.64	0.19	0	0.19
<i>X</i> < 0.64	0.33	0.48	0.81
	0.52	0.48	1

$$\Pr(X > 0.36 \mid X < 0.64) = \frac{\Pr(0.36 < X < 0.64)}{\Pr(X < 0.64)} = \frac{0.33}{0.81} = \frac{11}{27}. \quad A$$

Q21
$$\mu = \frac{1.25 + 1.35}{2} = 1.30$$
 and $\sigma = \frac{1.35 - 1.30}{2} = 0.025$.

 $Pr(1.28 < X < 1.38) = normalcdf(1.28,1.38,1.30,0.025) \approx 0.79$.

Q22
$$\int_{0}^{M} \frac{1}{\sqrt{3}\cos^{2}t} dt = 0.5, \int_{0}^{M} \frac{1}{\sqrt{3}} \sec^{2}t dt = 0.5,$$
$$\therefore \left[\frac{1}{\sqrt{3}} \tan t \right]_{0}^{M} = 0.5, \frac{1}{\sqrt{3}} \tan M = 0.5, M = 0.714. \text{ C}$$

SECTION 2

Q1a
$$x = \frac{16}{y^4} - 1$$
, $x + 1 = \frac{16}{y^4}$, $y^4 = \frac{16}{x+1}$, $y = \pm \left(\frac{2^4}{x+1}\right)^{\frac{1}{4}}$, $y = \pm \frac{2}{(x+1)^{\frac{1}{4}}}$.

Q1c
$$L(x) = \frac{2}{(x+1)^{\frac{1}{4}}} - \frac{-2}{(x+1)^{\frac{1}{4}}} = \frac{4}{(x+1)^{\frac{1}{4}}}$$

Q1di
$$\frac{dL}{dt} = \frac{dL}{dx} \times \frac{dx}{dt} = -\frac{1}{4} \times 4(x+1)^{-\frac{5}{4}} \times 2 = -\frac{2}{(x+1)^{\frac{5}{4}}}$$

Rate of decrease of $L = \frac{2}{(x+1)^{\frac{5}{4}}}$.

Q1dii When t = 7.5, $x = vt = 2 \times 7.5 = 15$.

Rate of decrease of $L = \frac{2}{(15+1)^{\frac{5}{4}}} = \frac{1}{16}$.

Q1e
$$\Delta A = 2 \times \int_{0}^{15} \frac{2}{(x+1)^{\frac{1}{4}}} dx = 2 \times \left[\frac{8(x+1)^{\frac{3}{4}}}{3} \right]_{0}^{15} = \frac{112}{3}$$
.

Average rate of increase of the area = $\frac{\Delta A}{\Delta t} = \frac{\frac{112}{3}}{7.5} = \frac{224}{45}$.

Q2a
$$2\pi [1-(1-h)^2] = 2\pi (1-(1-h))(1+(1-h)) = 2\pi h(2-h)$$
.

Q2b
$$\frac{2}{3} - (1-h) + \frac{(1-h)^3}{3} = \frac{2}{3} - 1 + h + \frac{1 - 3h + 3h^2 - h^3}{3}$$

= $h^2 - \frac{h^3}{3}$.

Q2c When
$$h = 1$$
, max $V = 2\pi \left(\frac{2}{3}\right) = \frac{4\pi}{3} \text{ m}^3$.

Q2d
$$V = \frac{4\pi}{3} \text{ m}^3 = \frac{4\pi}{3} \times 10^6 \text{ cm}^3 = \frac{4\pi}{3} \times 10^3 \text{ litres.}$$

Time required =
$$\frac{\frac{4\pi}{3} \times 10^3}{2} = \frac{2\pi}{3} \times 10^3$$
 seconds.

Q2e 2 litres per second = 2×10^{-3} m³ per second.

$$V = 2\pi \left(h^2 - \frac{h^3}{3}\right), \ \frac{dV}{dt} = \frac{dV}{dh} \times \frac{dh}{dt},$$

$$\frac{dV}{dt} = 2\pi \left(2h - h^2\right) \frac{dh}{dt}, :: \frac{dh}{dt} = \frac{1}{2\pi \left(2h - h^2\right)} \times \frac{dV}{dt}.$$

When
$$h = 0.5$$
, $\frac{dh}{dt} = \frac{1}{2\pi(1 - 0.25)} \times (-2 \times 10^{-3}) = -1.82 \times 10^{-4}$

Rate of decrease = $1.82 \times 10^{-4} \text{ ms}^{-1}$.

Q2f
$$A = 2\pi (2h - h^2)$$
, $\frac{dA}{dt} = \frac{dA}{dh} \times \frac{dh}{dt} = 2\pi (2 - 2h) \frac{dh}{dt}$.

When
$$h = 0.5$$
, $\frac{dA}{dt} = 2\pi \times (-1.82 \times 10^{-4}) = -1.14 \times 10^{-3}$.

Rate of decrease = $1.14 \times 10^{-3} \text{ m}^2\text{s}^{-1}$.

Q2gi When h = 0.5,

volume of water =
$$2\pi \left(0.5^2 - \frac{0.5^3}{3}\right) = 1.309 \text{ m}^3$$
.

Volume of water plus pebbles = $1.309 + 0.831 = 2.140 \text{ m}^3$.

$$\therefore 2.140 = 2\pi \left(h^2 - \frac{h^3}{3}\right). \text{ Using graphics calculator, } h = 0.661 \text{ m}.$$

Q2gii Yes.
$$\frac{dh}{dt} = \frac{dV}{dt} \times \frac{1}{2\pi(2h-h^2)}$$
.

Since
$$\frac{dV}{dt}$$
 is constant, $\frac{dh}{dt} \propto \frac{1}{2h-h^2}$.

Q3a For
$$y = c - a\cos(bx)$$
, $\frac{T}{2} = 6$, $\therefore T = 12 = \frac{2\pi}{b}$, $\therefore b = \frac{\pi}{6}$

Its amplitude is 2, $\therefore a = 2$. $y = -2\cos\left(\frac{\pi}{6}x\right)$ is translated

upwards by 3, $\therefore c = 3$.

For semi-circle $(x-h)^2 + (y-k)^2 = 1.5^2$, $x \in [6.5,8]$, radius is 1.5. It is the translation of the semi-circle $x^2 + y^2 = 1.5^2$, $x \in [-1.5,0]$ to the right by 8 units and upwards by 2.5 units. $\therefore h = 8$ and k = 2.5.

O3b P(8,4)

Q3ci The semi-circle in the third wave crest is the translation of the semi-circle $x^2 + y^2 = 1.5^2$, $x \in [-1.5,0]$ to the right by 24 units and upwards by 2.5 units,

:its equation is
$$(x-24)^2 + (y-2.5)^2 = 1.5^2$$
, $x \in [22.5,24]$.

Q3cii The cosine curve in the fourth wave crest is the translation of $y = 3 - 2\cos\left(\frac{\pi}{6}x\right)$, $x \in [0,8]$, to the right by 24 units, \therefore its equation is $y = 3 - 2\cos\left(\frac{\pi}{6}(x - 24)\right)$, $x \in [24,32]$.

Q3di Same area as the first wave crest,

$$A = \int_{0}^{8} \left(3 - 2\cos\left(\frac{\pi}{6}x\right) - (-2) \right) dx - \frac{1}{2}\pi (1.5)^{2}$$

$$= \int_{0}^{8} \left(5 - 2\cos\left(\frac{\pi}{6}x\right) \right) dx - \frac{9\pi}{8} = \left[5x - \frac{12\sin\left(\frac{\pi}{6}x\right)}{\pi} \right]_{0}^{8} - \frac{9\pi}{8}$$

$$= 40 + \frac{6\sqrt{3}}{\pi} - \frac{9\pi}{8} \text{ m}^{2}.$$

Q3dii
$$V = A \times l = \left(40 + \frac{6\sqrt{3}}{\pi} - \frac{9\pi}{8}\right) \times 10 = 398 \text{ m}^3.$$

Q4a Inverse equation: $x = a \log_e y + \frac{1}{2}$, $\log_e y = \frac{x - \frac{1}{2}}{a}$, $y = e^{\frac{x - \frac{1}{2}}{a}} = e^{\frac{2x - 1}{2a}}$. $\therefore f^{-1}(x) = e^{\frac{2x - 1}{2a}}$.

Q4ci $y = a \log_e x + \frac{1}{2}$. At the contact point, $\frac{dy}{dx} = \frac{a}{x} = 1$ and y = x, $\therefore y = x = a$, $\therefore a = a \log_e a + \frac{1}{2}$, $\therefore a - a \log_e a - \frac{1}{2} = 0$. Using graphics calculator, a = 2.156.

Q4cii (2.156,2.156).

Q5a
$$1000 \times Pr(X > 375) = 1000 \times \int_{375}^{\infty} e^{-\pi(x-375.5)^2} dx = 895$$
. Note:

let ∞ be 380, use graphics calculator to evaluate the definite integral.

Q5b
$$1000 \times \Pr(X > 375.3) = 1000 \times \int_{375.3}^{\infty} e^{-\pi(x-375.5)^2} dx = 692$$
.

Translate the pdf and all x-values to the left by 0.3,

$$1000 \times \Pr(X > 375) = 1000 \times \int_{375}^{\infty} e^{-\pi(x-375.2)^2} dx = 692.$$

$$\therefore k = 375.2$$
.

Q5c Binomial,
$$n = 5$$
, $p = 1 - 0.692 = 0.308$, $Pr(X = 4) = binompdf(5, 0.308, 4) = 0.031$.

Q5d Since the machines are identical, it makes no difference to the probability which machine the cans are selected from. Pr(X = 8) = binompdf(10,0.308,8) = 0.002.

Q5e Given that 2 cans were under and 1 can was over 375 ml, ... the probability that 6 of the remaining 7 cans are under 375 ml = binompdf(7,0.308,6) = 0.004.

Q5fi Symmetric bell shape.

O5fi

If Y is normally distributed, then
$$\sigma_Y = \frac{376.85 - 375.5}{2} = 0.675$$
.

$$\Pr(\mu - \sigma < Y < \mu + \sigma)$$
= $\frac{normalcdf(374.825,376.175,375.5,0.3989) + normalcdf(374.825,376.175,375.5,0.7978)}{2}$

$$= 0.756 \neq 0.683$$
.

$$\Pr(\mu - 3\sigma < Y < \mu + 3\sigma)$$
= $\frac{normalcdf(373.475,377.525,375.5,0.3989) + normalcdf(373.475,377.525,375.5,0.7978)}{2}$
= $0.994 \approx 0.997$.

 \therefore *Y* is **not** exactly normally distributed.

Please inform mathline@itute.com re conceptual, mathematical and/or typing errors