Augmenting Physical Safety by Modifying Vehicular Networking Communication Methods

Eric Newberry, Hsun-Wei Cho, Richard Higgins University of Michigan

Key Components/Challenges

- 1. Understanding physical safety from real network traces
 - a. Incident and situation analysis
- 2. Augmenting physical safety
 - a. How can we measure this?
 - b. What choices could improve it?
- 3. Modifying vehicular networking
 - a. Current Basic Safety Messages (BSMs) communicate every 100ms
 - b. BSMs include basic information about the vehicle
 - c. Certain situations may benefit from faster or different inter-vehicle communication
- 4. Combining simulation with reinforcement learning
 - a. Allows experimentation with a multi-vehicle interactive environment
 - b. Understanding how differently constrained network situations can impact vehicle safety

Related Work: Physical Safety

- 1. How do you evaluate physical safety (instead of a derived measure)?
 - a. A paper [1] by Intel/Mobieye formulates a mathematical model for driving behavior and safety
 - b. Derives the model from 5 basic driving principles
 - c. Longitudinal and lateral safe distances
 - d. Longitudinal and lateral evasive manoeuvres
 - e. Also considers multiple lanes, winding roads, priorities of routes
 - f. Each car is an RL agents. These mathematical results are used by agents to make a driving decision.
 - g. Mathematically, each agent tries to maximize a *Q function*, which measures the physical safety
 - h. The Q function is a summation of instantaneous rewards, which may depend on:
 - i. Relative position/velocities/acceleration to other cars
 - ii. The difference of the current speed and the desired speed
 - iii. Route selection, level of comfort ...

[1] Shai Shalev-Shwartz, Shaked Shammah, and Amnon Shashua. 2017. On a Formal Model of Safe and Scalable Self-driving Cars. arXiv:1708.06374. Retrieved from https://arxiv.org/abs/1708.06374

Related Work: DSRC, BSMs, and CAMs

- Connected vehicles will communicate with each other and infrastructure
- Dedicated Short-Range Communications (DSRC)
 - WiFi-like (802.11p) protocol
 - Theoretical maximum range of 1km
 - Entirely ad-hoc
- Basic Safety Messages (BSMs)
 - American protocol for communicating (standardized by SAE [1])
 - o Includes info such as position, heading, speed, acceleration, vehicle size, path
 - Broadcasted on a static interval (100ms) -- is this frequency enough or unnecessarily high?
- Cooperative Awareness Messages (CAMs)
 - Like BSMs, but European (standardized by ETSI [2])
 - Dynamic interval (between 100ms and 1s) -- much more complex than BSMs...
 - [1] SAE International, Dedicated Short Range Communications (DSRC) Message Set Dictionary, March 2016.
 - [2] European Telecommunications Standards Institute, *Intelligent Transportation Systems (ITS); Vehicular Communications; Basic Set of Applications; Part 2: Specification of Cooperative Awareness Basic Service*, January 2019.

Related Work: CAMs

- Two alternate conditions to broadcast a CAM
- Time since default interval and congestion-set minimum both exceeded:
 - Default interval defaults to 1s, but can be adjusted based upon "environmental conditions" [1]
 - Default interval must still be in range [100ms, 1s]
- Change in vehicle status:
 - When heading changes by >4°
 - When distance traveled since last CAM >4m
 - When speed since last CAM changes by >0.5m/s
 - But only if time since last CAM tx >= congestion-set minimum
 - This value must be in range [100ms, default interval]

Step 1: Exploratory Data Analysis

1. Safety Pilot Dataset

- a. Consists of traces from vehicles recorded driving around Ann Arbor
- Includes 100s of Gb of data, around a Tb
- c. Includes vehicles and their location, headings, speed, communications

Attribute

Attribute Label: MsgCount (column F)

Attribute Definition: This field contains a message ID that gets incremented by one with each

BSM.

Attribute Domain Values: Integer

Attribute

Attribute Label: DSecond (column G)

Attribute Definition: This field contains the time in deciseconds since ignition started.

Attribute Domain Values: Integer

Attribute

Attribute Label: Latitude (column H)

Attribute Definition: This field contains the current latitude, in degrees, of the vehicle.

Attribute Domain Values: Float

Attribute

Attribute Label: Longitude (column I)

Attribute Definition: This field contains the current longitude, in degrees, of the vehicle.

Attribute Domain Values: Float

Attribute

Attribute Label: Elevation (column J)

Attribute Definition: This field contains the current elevation, in meters, of vehicle according to GPS.

Attribute Domain Values: Float

Attribute

Attribute Label: Speed (column K)

Attribute Definition: This field contains the vehicle speed in m/sec.

Attribute Domain Values: Peal

Results: Exploratory Data Analysis

Step 2: Vehicular Networking Simulation

- 1. Each RL agent drives a car on a real street map
- Each agent makes accelerate/decelerate decisions to maximize the Q function
- 3. V2V Communication: Each agent may not have all states of other cars, or states at the finest time granularity
- 4. Different communication pattern affects the quality of the decisions made
- 5. Evaluate the overall safety of the system

Will handle details like transmission range of BSMs

Step 2: Vehicular Networking Simulation

- Selecting a Q function:
- The paper derives the safety distances each car should maintain:
 - Q = The time percentage where safety distances are violated
- Alternatively, we can use relative position/velocities/acceleration information:

For example, the kinetic energy in a collision \propto (relative velocity)²

Therefore, we can set
$$Q = \sum_{\text{cars expected to collide in near future}} (\text{relative velocity})^2$$

Step 2: Vehicular Networking Simulation

- The simulation program uses the real map of Ann Arbor as the input
- Parse the input shape file/SVG into a roads structure
- Analyze the endpoints of roads to find intersections
- Each car is driven along the piecewise linear segments of a road. When reaching the end:
 - Dead-end: Turn around
 - Only one connecting road: Drive to this road
 - Multiple connecting road: Stop at the intersection and inform the agent
- The simulator is written is Python and renders the map and cars by OpenGL
- For the scope of this project, we assume each road is single-lane and bidirectional

Current: Vehicular Networking Simulation

- 1. Currently our state contains:
 - a. Available directions to turn
 - b. Location
 - c. Position/velocity/acceleration
- 2. For evaluation we also measure the minimum distance to another vehicle
- 3. We need to next include the network information

Step 3: Next Experiments

- 1. Varying Sensor Fidelity
 - a. Sensor Rich
 - b. Sensor Poor
 - c. Autonomous
- 2. Varying Communication Frequency
 - a. 10ms
 - b. 100ms,
 - c. 500ms,
 - d. 1000ms
 - e. 2000ms
 - f. 5000ms