

Part IV Case studies

Fausto Carcassi

Intro & structure

We have seen how pLoT models work

This has been applied to many domains in the literature

Four examples today:

- Kinship
- Numerals
- Visual concepts
- Binary sequences

Part I	Introduction: On the very idea of an LoT
Part II	Technical background
Part III	Bayesian program induction (LOTlib3)
Part IV	Case studies
Part V	Summary & Future prospects

Kinship - Mollica & Piantadosi (2021)

Kinships terms

Mollica & Piantadosi (2021), *Logical word learning: The case of kinship*. Kinship terms express relative positioning in a family

Rich logical structure: they express complex relations.

Kinships terms – Data

A single datapoint is a collection of four objects:

• **Speaker** who uses the kinship word

• Word used by the speaker

• **Referent** identified by the word

Context consists of a family tree

The child sees datapoints & infers the meaning of kinship terms!

Kinships terms – Hypothesis space

Hypothesis: set of people in a family from the point of view of the speaker.

• 37 possible people

Numbered by rank of number of interactions with the speaker:

PCFG & induced prior

The PCFG contains the following primitives:

$SET \xrightarrow{1} union(SET,SET)$	$SET \xrightarrow{1} parent(SET)$	$SET \xrightarrow{1} generationO(SET)$	$SET \xrightarrow{1} male(SET)$
$SET \xrightarrow{1} intersection(SET, SET)$	$SET \xrightarrow{1} child(SET)$	$SET \xrightarrow{1} generation1(SET)$	$SET \xrightarrow{1} female(SET)$
$SET \xrightarrow{1} difference(SET, SET)$	$SET \xrightarrow{1} lateral(SET)$	$SET \xrightarrow{1} generation2(SET)$	$SET \xrightarrow{1} sameGender(SET)$
$SET \xrightarrow{1} complement(SET)$	$SET \xrightarrow{1} coreside(SET)$	$SET \xrightarrow{\frac{1}{37}} concreteReferent$	$SET \xrightarrow{1} all \qquad SET \xrightarrow{10} X$

female(difference(generation1(X), parent(X))) English PZ, PGW aunt E.g., male(child(parent(X))) brother В PGC, PGEC difference(generation0(X), child(parent(X))) cousin father male(parent(X))F female(parent(parent(X))) grandma PM male(parent(parent(X))) grandpa PF female(parent(X)) mother M female(child(parent(X))) sister Z male(difference(generation1(X), parent(X))) uncle PB, PGH

Likelihood function

The data is generated in one of two ways:

- With probability α , hypothesis generates the datapoint i.e., one of the people is sampled
- With probability 1α , data is random

Likelihood function:

$$P(d|h) = \delta_{d \in h} \cdot \frac{\alpha}{|h|} + \frac{1-\alpha}{|\mathcal{D}|}$$

$$\uparrow \qquad \uparrow$$
 Whether d belongs to h Size of h Size of domain

Results

Results

For few datapoints, preference for concrete reference (single individuals) over classes of individuals.

This is consistent with what children do!

Predicts overextension

• The phenomenon where children learn a larger category that includes more individuals than the word's true reference.

Characteristic-to-defining shift

• Young children over-extend with characteristic features ("robbers are mean") vs defining features ("robbers steal things").

Results

Order of acquisition in model mostly align with children:

Empirical Order	Word	Original H&C Order & Formalization	Log Prior	CHILDES Freq.
1	mother	Level I: [X PARENT Y][FEMALE]	-9.457	6812
1	father	Level I: [X PARENT Y][MALE]	-9.457	3605
2	brother	Level III: [X CHILD A][A PARENT Y][MALE]	-13.146	41
2	sister	Level III: [X CHILD A][A PARENT Y][FEMALE]	-13.146	89
3	grandma	Level II: [X PARENT A][A PARENT Y][FEMALE]	-13.146	526
3	grandpa	Level II: [X PARENT A][A PARENT Y][MALE]	-13.146	199
4	aunt	Level IV: [X SIB A][A PARENT Y][FEMALE]	-19.320	97
4	uncle	Level IV: [X SIB A][A PARENT Y][MALE]	-19.320	68
4	cousin	Level IV: [X CHILD A][A SIB B][B PARENT Y]	-18.627	14

Much more in paper (e.g. experimental results) but we do not have time!

Numbers - Piantadosi et al (2012)

Piantadosi et al (2012), Bootstrapping in a language of thought: A formal model of numerical concept learning.

Regular patterns in number systems acquisition.

The first learn to recognize small sets of size 1, then 2, then 3, etc.

At about 3;6 they learn the full recursive system

- Cardinal Principal learners
- Qualitative jump rather than smooth progress!

Can pLoT reproduce qualitative conceptual jumps?

Three choices for functions encoding meaning of number words:

- Number word to a predicate on sets $n \rightarrow$ "Are there n?"
- Set to a number word $S \rightarrow$ "How many are there?"
- Objects in the situation to set $n \rightarrow$ "Construct n"

Children can do all these three things; no clear empirical evidence. They go the second way: from a set to a number word.

Functions mapping sets to truth values

(singleton? X) Returns true iff the set X has exactly one element (doubleton? X) Returns true iff the set X has exactly two elements (tripleton? X) Returns true iff the set X has exactly three elements

Functions on sets

(set-difference X Y) Returns the set that results from removing Y from X

(union X Y) Returns the union of sets X and Y (intersection X Y) Returns the intersect of sets X and Y

(select X) Returns a set containing a single element from X

Logical functions

(and P Q)
Returns TRUE if P and Q are both true
(or P Q)
Returns TRUE if either P or Q is true

(not P) Returns TRUE iff P is false

(*if P X Y*) Returns *X* iff *P* is true, *Y* otherwise

Functions on the counting routine

(next W) Returns the word after W in the counting routine (prev W) Returns the word before W in the counting routine

(equal-word? W V) Returns TRUE if W and V are the same word

Recursion

(L S) Returns the result of evaluating the entire current lambda expression on set S

One-knower

λS . (if (singleton? S) "one" undef)

Three-knower

```
λ S . (if (singleton? S)

"one"

(if (doubleton? S)

"two"

(if (tripleton? S)

"three"

undef))
```

Two-knower

```
λ S . (if (singleton? S)

"one"

(if (doubleton? S)

"two"

undef))
```

CP-knower

Singular-Plural

```
λ S . (if (singleton? S)
"one"
"two")
```

2-not-1-knower

```
λ S . (if (doubleton? S)
"two"
undef)
```

Mod-5

2N-knower

Likelihood

A set of objects is chosen from the universe of object, e.g., 'cats'

The hypothesis is evaluated on the set.

This can result either in a number word or 'undef'

- If the result is 'undef', a random number word is produced
- If the result is a number word, the word is produced with probability α and with 1α a random word is picked.

$$P(w_i|t_i,c_i,L) = \begin{cases} \frac{1}{N} & \text{if } L \text{ yields } undef \\ \alpha + (1-\alpha)\frac{1}{N} & \text{if } L \text{ yields } w_i \\ (1-\alpha)\frac{1}{N} & \text{if } L \text{ does not yield } w_i \end{cases}$$

The model penalizes recursive functions with a parameter γ Results look strikingly like human learning patterns:

Note: many hypotheses are considered and then disregarded!

The same LoT on singular/plural morphology

And mod-n systems (e.g. days of the week)

Visual concepts - Overlan et al (2017)

Visual Concept Learning in an LoT

Overlan et al (2017), Learning abstract visual concepts via probabilistic program induction in a Language of Thought

pLoT model of 3-d objects


```
START \rightarrow let < BV\_PART > :x_1 = FIRST\_PART; EXPR
           \mathbf{EXPR} \rightarrow \mathbf{let} < \mathbf{BV\_PART} > : x_n = \mathbf{PART}; \mathbf{EXPR}
                       \rightarrow STRING
       STRING \rightarrow BV_{-}PART
                       \rightarrow STRING CONNECT STRING
                       \rightarrow \{ STRING \}
FIRST\_PART \rightarrow \texttt{sample}(FIRST\_SET)
                                                                                     1 - p_{single}
                       \rightarrow SINGLE
                                                                                     p_{single}
           PART \rightarrow BV\_PART
                                                                                     (1-p_{single})/2

ightarrow sample(SET)
                                                                                     (1-p_{single})/2
                       \rightarrow SINGLE
                                                                                     p_{single}
  \mathbf{FIRST\_SET} \to \Sigma
                                                                                     1 - p_{minus}
                       \rightarrow minus(FIRST_SET, FIRST_PART)
                                                                                     p_{minus}
              \mathbf{SET} \to \Sigma
                                                                                     1-p_{minus}
                       \rightarrow minus(SET, BV_PART)
                                                                                     p_{minus}
   \mathbf{CONNECT} \to `\uparrow` \ | \ `\downarrow` \ | \ `\leftarrow' \ | \ `\to'
        \mathbf{SINGLE} \rightarrow \text{`a'} \mid \dots \mid \text{`e'}
```

A derivation & some categories

Experimental design

120 participants

<u>Instruction stage</u>

Show all possible objects

<u>Training stage</u>

Show participants three *examples* of a concept

Testing stage

Show 24 new items

Ask whether the concept applies

Sequences - Planton et al (2021)

Sequence Learning in an LoT

Planton et al (2021), A theory of memory for binary sequences: Evidence for a mental compression algorithm in humans

New: Doesn't use natural language.

pLoT model of how humans deal with binary sequences

- E.g., {0,1}*
- But e.g. it can be two pitches (auditory stimuli)

Sequence Learning in an LoT

Staying ("+o")

Moving to the other item (here denoted 'b')

Repetition ("^n", where n is any number),

- Possibly with a variation in the starting point
- Denoted by <x> where x is an elementary instruction, either +o or b

Embedding of expressions is represented by...

- brackets ("[....]")
- concatenation by commas (",")

LoT program expression:

[[[+0]^2]^2,[b]^4]^2<+0>

LoT complexity = 12

Which set has most complex sequences?

Sequence Learning in an LoT

'Sequence violation' experimental paradigm:

Empirical hypothesis: for **equal sequence length**, **error rate and response time** in violation detection increase with sequence complexity.

Sequence Learning in an LoT

First experiment results (16-items sequences)

Deviants identification

- Sequence deviants
 - Switched note btw A and B
- Superdeviant
 - A new note is introduced

Participants' subjective complexity evaluations (left)

LISAS Linear Integrated Speed-Accuracy Score combines response times & error scores

Taking stock

Linguistic

Kinship

Visual concepts

Numerals

Binary sequences

Kinship

Visual concepts

Reflected

categorization

Numerals

Binary sequences

Lower-level cognition (Reaction times, errors)

Familiar New

Kinship Visual concepts

Numerals Binary sequences

Typological

Kinship

Visual concepts

Numerals

Binary sequences

Acquisition

Experimental

Abstract Visual

Kinship

Visual concepts

Numerals

Binary sequences

Auditory

Intro & structure

Four examples today:

- Kinship
- Numerals
- Visual concepts
- Binary sequences

Part I	Introduction: On the very idea of an LoT
Part II	Technical background
Part III	Bayesian program induction (LOTlib3)
Part IV	Case studies
Part V	Summary & Future prospects