8.4

D. Does $\sum_{n=1}^{\infty} \frac{1}{x^2+n^2}$ converge uniformly on the whole real line?

We know $0 \le \sum_{n=1}^{\infty} \frac{1}{x^2 + n^2} < \sum_{n=1}^{\infty} \frac{1}{n^2}$. Because $\frac{1}{n^2}$ is convergent, then $\frac{1}{x^2 + n^2}$ must also be convergent.

This also gives us uniform convergence, because for every $\varepsilon>0$ there exists an N such that $0\leq ||\sum\limits_{i=k+1}^{l}\frac{1}{x^2+i^2}\leq ||\sum\limits_{i=k+1}^{l}\frac{1}{i^2}\leq \varepsilon$ for every $l>k\geq N$ regardless of our choice of x.

E. Show that if $\sum_{n=1}^{\infty} |a_n| < \infty$, then $\sum_{n=1}^{\infty} a_n \cos nx$ converges uniformly on \mathbb{R} .

Because $0 \le |\cos nx| \le 1$ then $|a_n \cos nx| \le |a_n|$. Now we know that $|a_n|$ converges and so then for any $\varepsilon > 0$ there exists an N such that $\sum_{i=k+1}^l |a_n| < \varepsilon$ for any $l > k \ge N$. But $\sum_{i=k+1}^l |a_n \cos nx| \le \sum_{i=k+1}^l |a_n| < \varepsilon$ regardless of our choice of x. And since $|a_n \cos nx|$ converges uniformly, then we get $a_n \cos nx$ converging uniformly for free.

F. (a) Let $f_n(x) = \frac{x^2}{(1+x^2)^n}$ for $x \in \mathbb{R}$. Evaluate the sum $S(x) = \sum_{n=0}^{\infty} f_n(x)$.

At x=0 the sum is 0. At all other values we have a geometric series which converges to $\frac{x^2}{1-(\frac{1}{1+x^2})}=\frac{x^2}{\frac{x^2}{1+x^2}}=1+x^2$

(b) Is this convergence uniform? For which values a < b does this series converge uniformly on [a, b]?

The convergence is not uniform. Our series converges to a discontinuous function $(0 < 1 < 1 + x^2)$, and so it is not uniformly continuous, by theorem 8.4.4.

We take the derivative

$$\frac{\partial}{\partial x} \frac{x^2}{(1+x^2)^n} = 2x(1+x^2)^{-n} - nx^2(1+x^2)^{-n-1}2x$$

$$= \frac{2x(1+x^2)}{(1+x^2)(1+x^2)^n} - \frac{2nx^3}{(1+x^2)(1+x^2)^n}$$

$$= \frac{2x(1+x^2-nx^2)}{(1+x^2)(1+x^2)^n}$$

$$= \frac{2x(1+x^2(1-n))}{(1+x^2)(1+x^2)^n}$$

So the denominator of our derivative has no zeros, and our numerator has zeros at x=0 at $x=\pm\frac{1}{\sqrt{n-1}}$. Zero is obviously a minimum

because the function has no negative terms. And $\frac{1}{\sqrt{n-1}}$ is less than 1 for all n > 2. So if comparing $x = \frac{1}{\sqrt{n-1}}$ and x = 1 when n = 3 we see that

$$\frac{\frac{1}{n-1}}{(1+\frac{1}{n-1})^3}? \frac{1}{(1+1)^3}$$

$$\frac{\frac{1}{n-1}}{(\frac{n}{n})^3}? \frac{1}{2^3}$$

$$\frac{1}{n-1} \left(\frac{n-1}{n}\right)^3? \frac{1}{8}$$

$$\frac{(n-1)^2}{n^3}? \frac{1}{8}$$

$$\frac{2^2}{3^3}? \frac{1}{8}$$

$$0.148 > .125$$

And so $\frac{1}{\sqrt{n-1}}$ is a maximum. Observe that

$$\frac{\frac{1}{n-1}}{\left(1+\frac{1}{n-1}\right)^n} = \frac{1}{n-1} \left(\frac{n-1}{n}\right)^n = \frac{(n-1)^{n-1}}{n^n}$$

We have a higher degree on the bottom, so this will converge to zero. And so we have uniform convergence on $[a, \infty)$ for all a > 0. And of course $(-\infty, -a]$ or any subinterval of these.

H. Suppose that $a_k(x)$ are continuous functions on [0,1], and define $s_n(x) = \sum_{k=1}^n a_k(x)$. Show that if (s_n) converges uniformly on [0,1], then (a_n) converges uniformly to 0.

If we assume that (a_n) does not converge uniformly to 0. We know that (a_n) converges to zero at least pointwise, else (s_n) would not converge for some x. And so we assume that (a_n) converges but not uniformly. Now (s_n) must be uniformly Cauchy and so given any $\varepsilon>0$ there exists some N large enough that $||\sum\limits_{i=k+1}^l a_i(x)||_\infty \le \varepsilon$ for all $l>k\ge N$ We take l=k+1 and obtain $||a_l(x)||_\infty \le \varepsilon \forall l\ge N$. But we are assuming that (a_n) does not converge uniformly. Therefore $\lim\limits_{k\to\infty}||a_k||_\infty=L$ for some L>0. If we choose $\varepsilon=\frac{L}{2}$, then we have $||a_l||_\infty>\varepsilon$ for some N and all l>N. Thus we have a contradiction, and (a_n) must converge uniformly.

J. Let (f_n) be a sequence of functions defined on \mathbb{N} such that $\lim_{k\to\infty} f_n(k) = L_n$ exists for each $n \geq 0$. Suppose that $||f_n||_{\infty} \leq M_n$, where $\sum_{n=0}^{\infty} M_n < \infty$.

Define a function $F(k) = \sum_{n=0}^{\infty} f_n(k)$. Prove that $\lim_{k \to \infty} F(k) = \sum_{n=0}^{\infty} L_n$. Hint: Think of f_n as a function g_n on $\{\frac{1}{k} : k \ge 1\} \cup 0$. How will you define $g_n(0)$?

We define $g_n(x) = f_n(\frac{1}{x})$. Because $\lim_{k \to \infty} \frac{1}{k} = 0$ and $\lim_{k \to \infty} f_n(k) = L_n$ then it makes sense to define $g_n(0) = L_n$. Further, the Weierstrass M-Test tells us that the series converges uniformly and so G(x) is continuous. Thus $g_n(x)$ is defined for all $x \in [0,1]$.

Now we define
$$G(x) = \sum_{n=0}^{\infty} g_n(x)$$
 and $\lim_{k \to \infty} F(k) = G(0) = \sum_{n=0}^{\infty} L_n$

8.5

A. Determine the interval of convergence of the following power series:

- (a) $\sum_{n=0}^{\infty} n^3 x^n$ We have $\lim_{n\to\infty} \left| \frac{(n+1)^3}{n^3} \right| = 1$. Obviously $\sum_{n=0}^{\infty} n^3$ and $\sum_{n=0}^{\infty} (-1)^n n^3$ diverge, and so our interval of convergence is (-1,1)
- (b) $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} x^n$. So $\lim_{n \to \infty} \left| \frac{(-1)^{n+1} n^2}{(-1)^n (n+1)^2} \right| = 1$. But $\sum (-1)^n / n^2$ and $\sum_{n=0}^{\infty} 1 / n^2$ both converge, and so our interval of convergence is [-1,1].
- (c) $\sum_{n=0}^{\infty} \frac{n^2}{2^n} x^n$

The limit of $\left|\frac{(n+1)^2 2^n}{2^{n+1} n^2}\right|$ as $n\to\infty$ is 1/2. Now $\sum_{n=0}^\infty \frac{n^2}{2^n} (\pm 2)^n = \sum_{n=0}^\infty (-1)^n n^2$ or $\sum_{n=0}^\infty n^2$ and $\lim_{n\to\infty}$ which obvious diverge, so our interval of convergence is (-2,2)

- (d) $\sum_{n=0}^{\infty} \sqrt{n} x^n$. Now $\lim_{n\to\infty} \frac{\sqrt{n+1}}{\sqrt{n}} = \sqrt{1} + \lim_{n\to\infty} \frac{1}{\sqrt{n}} = 1$. Of course $\sum_{n=0}^{\infty} \sqrt{n}$ diverges along with $\sum_{n=0}^{\infty} (-1)^n \sqrt{n}$ and so our interval is (-1,1)
- (e) $\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$. So we define $a_{2k+1} = 0$ and $a_{2k} = (-1)^k/(2k)!$. And $\lim_{n \to \infty} \left| \frac{(2k)!}{(2k+2)!} \right| = \lim_{n \to \infty} \frac{1}{(2k+2)(2k+1)} = 0$. And so our sum only for any interval in \mathbb{R} .
- (f) $\sum_{n=0}^{\infty} x^{n!}.$

Let us say $g(x) = x^{n!}$ and $g'(x) = n!x^{n!-1}$. Then xg'(x) = n!g(x) and g(0) = 0. Now we assume there is a power series $f(x) = \sum_{n=0}^{\infty} a_n x^n$ that satisfies this DE. Then $x \sum_{n=1}^{\infty} n a_n x^{n-1} = n! \sum_{n=0}^{\infty} a_n x^n$.

(g)
$$\sum_{n=0}^{\infty} \frac{n!}{n^n} x^n \text{ Now } \lim_{n \to \infty} \frac{(n+1)! n^n}{n!(n+1)^{n+1}} = \lim_{n \to \infty} \frac{(n+1)n^n}{(n+1)(n+1)^n} = \lim_{n \to \infty} \left(\frac{n+1}{n}\right)^{-n} = \frac{1}{e}. \text{ And } \lim \left| (-1)^n \frac{n!}{e/n} \right| \neq 0 \text{ because factorials grow faster than exponentials. And so our interval it } (-e,e)$$

(h)
$$\sum_{n=0}^{\infty} \frac{(n!)^2}{(2n)!} x^n$$

$$\lim \frac{((n+1)!)^2 (2n)!}{(2n+2)!(n!)^2} = \lim \frac{(n+1)^2}{(2n+2)(2n+1)} = \frac{1}{4}. \text{ And } \sum \frac{(n!)^2}{(2n)!} 4^n = \sum \frac{n!4^n}{(n+1)...(n+n)}.$$
 The computer claims this diverges, and so our interval of convergence is $(-4,4)$

(i)
$$\sum_{n=0}^{\infty} \frac{1}{n} x^n$$
 $\lim \frac{n}{n+1} = 1$ but $\frac{1}{n}$ diverges while $\frac{(-1)^n}{n}$ converges, so our interval is $[-1,1)$

В.