Assessment Schedule – 2021

Calculus: Apply integration methods in solving problems (91579)

Evidence Statement

	Expected coverage	Achievement (u)	Merit (r)	Excellence (t)
ONE (a)	$\frac{x^2}{6} + 3\ln x + c$	Correct integral + c not required.		
(b)(i)	$\frac{dy}{dx} = \frac{8}{x^3}$ $y = \int 8x^{-3} dx$ $y = -4x^{-2} + c$ $3 = -4 + c$ $c = 7$ $y = -4x^{-2} + 7$	Correct solution with correct integral.		
(ii)	$y = -4x^{-2} + 7$ Area = $\int_{1}^{2} (-4x^{-2} + 7) dx$ = $\left[4x^{-1} + 7x \right]_{1}^{2}$ = $\left(\frac{4}{2} + 14 \right) - \left(\frac{4}{1} + 7 \right)$ = 5	Correct integral. (Limits not needed) CC: Integration of $y = -4x^{-2} + c$ From (b)(i).	Correct solution with correct integral. CC: Accept if correct solution for curve with any $+ c$ $y = -4x^{-2} + c$ From (b)(i).	
(c)	$a(t) = 2 - \sin 2t$ $v(t) = \int (2 - \sin 2t) dt$ $= 2t + \frac{\cos 2t}{2} + c$ $1 = 0 + \frac{\cos 0}{2} + c$ $c = 0.5$ $v(t) = 2t + \frac{\cos 2t}{2} + 0.5$ $s(t) = \int \left(2t + \frac{\cos 2t}{2} + 0.5\right)$ $s(t) = t^2 + \frac{\sin 2t}{4} + 0.5t + k$ $t = 0, s = 3 \Rightarrow k = 3$ $s(5) = 5^2 + \frac{\sin 10}{4} + 0.5 \times 5 + 3$ $= 30.5 + \frac{1}{4}\sin 10$ $= 30.36$	Correct expression for $v(t)$.	Correct solution with correct integrals.	

(d)	$\frac{dV}{dt} = k\sqrt{V}$ $\int \frac{1}{\sqrt{V}} dv = \int k dt$ $\int V^{-0.5} dv = \int k dt$	Correct general solution to DE. + c not required.	Correct general solution to DE plus correct values of <i>c</i> and <i>k</i> .	Correct solution (units not required)
	$\int V^{-0.5} dv = \int k dt$ $2\sqrt{V} = kt + c$ $T = 6, V = 400, 40 = 6k + c$ $T = 10, V = 256, 32 = 10k + c$			
	$k = -2 c = 52$ $\therefore 2\sqrt{V} = -2t + 52$ $t = 0$ $2\sqrt{V} = 52$			
	$\sqrt{V} = 26$ $V = 676 \text{ (litres)}$			

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	ONE partial solution.	1u	2u	3u	1r	2r	1t with minor error(s).	1t

	Expected coverage	Achievement (u)	Merit (r)	Excellence (t)
TWO (a)	$\frac{e^{4x}}{4} + \frac{8}{3}x^{\frac{3}{2}} + c$	Correct integral $+ c$ not required.		
(b)	14	Correct solution.		
(c)	$\int_{0}^{\frac{\pi}{8}} \sin 6x \cdot \sin 2x dx = \frac{1}{2} \int_{0}^{\frac{\pi}{8}} (\cos 4x - \cos 8x) dx$ $= \frac{1}{2} \left[\frac{\sin 4x}{4} - \frac{\sin 8x}{8} \right]_{0}^{\frac{\pi}{8}}$	Correct integration. (Limits not needed)	Correct solution with correct integration.	
	$= \frac{1}{2} \left[\left(\frac{\sin \frac{\pi}{2}}{4} - \frac{\sin \pi}{8} \right) - 0 \right]$ $= \frac{1}{8}$			
(d)	$\int_{2}^{k} \frac{6}{3x - 4} dx = \left[2 \ln(3x - 4) \right]_{2}^{k}$ $= 2 \ln(3k - 4) - 2 \ln(2) = 4$ $2 \ln(3k - 4) = 4 + 2 \ln(2)$ $\ln(3k - 4) = 2 + \ln(2)$ $3k - 4 = e^{2 + \ln 2}$ $3k - 4 = 2e^{2}$ $k = \frac{2e^{2} + 4}{3}$ $k = 6.26$	Correct integration. (Limits not needed)	Correct solution with correct integration. Accept $k = \frac{2e^{2+\ln 2} + 4}{3}$	
(e)	$\frac{dy}{dx} = \frac{2}{ye^{0.5x}}$ $\int y dy = \int 2e^{-0.5x} dx$ $\frac{y^2}{2} = -4e^{-0.5x} + c$ $x = 0 \text{ and } y = 1$ $\frac{1}{2} = -4 + c$ $c = 4.5$ $\frac{y^2}{2} = -4e^{-0.5x} + 4.5$ At $x = 3$: $\frac{y^2}{2} = -4e^{-1.5} + 4.5$ $y = 2.686$ Distance = 5.372	Correct integration with correct rearrangement of both sides. + c not required.	Correct solution of DE.	Correct solution with correct integrations shown. E7 $y = \pm 2.686$

NCEA Level 3 Calculus (91579) 2021 — page 4 of 6

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	ONE partial solution.	1u	2u	3u	1r	2r	1t with minor error(s).	1t

	Expected coverage	Achievement (u)	Merit (r)	Excellence (t)
THREE (a)	$\int (x + \sqrt{x})^2 dx$ = $\int (x^2 + 2x\sqrt{x} + x) dx$ = $\int (x^2 + 2x^{\frac{3}{2}} + x) dx$ = $\frac{x^3}{3} + \frac{4}{5}x^{\frac{5}{2}} + \frac{x^2}{2} + c$	Correct integral + c not required.		
(b)	2.6	Correct solution.		
(c)	$\frac{dy}{dx} = \frac{\sec^2 2x}{y}$ $\int y dy = \int \sec^2 2x dx$ $\frac{y^2}{2} = \frac{\tan 2x}{2} + c$ $x = \frac{3\pi}{4}, y = 2$ $\frac{2^2}{2} = \frac{\tan \frac{3\pi}{4}}{2} + c$ $2 = \frac{-1}{2} + c$ $c = 2.5$ $\frac{y^2}{2} = \frac{\tan 2x}{2} + 2.5$ $x = \pi$ $\frac{y^2}{2} = \frac{\tan 2\pi}{2} + 2.5$ $y = \pm \sqrt{5} = \pm 2.236$	Correct integration after correct separation of both sides. (+ c not required)	Correct solution with correct integration after correct separation of both sides (± not required)	
(d)	$y = \frac{3x - 2}{x + 2}$ $y = 1 \Rightarrow x = 2 y = 2 \Rightarrow x = 6$ $\frac{3x - 2}{x + 2} = 3 - \frac{8}{x + 2}$ $\int_{2}^{6} \left(3 - \frac{8}{x + 2}\right) dx$ $= \left[3x - 8\ln(x + 2)\right]_{2}^{6}$ $= (18 - 8\ln 8) - (6 - 8\ln 4)$ $= 12 + 8\ln 0.5 \text{ (or } 12 - 8\ln 2)$ $= 6.455$	Correct integration. (Limits not needed.)	Correct solution with correct integration.	

(e)	$(ke^{x})^{2} = k$ $k^{2}e^{2x} = k$ $e^{2x} = \frac{1}{k}$ $x = \frac{\ln\frac{1}{k}}{2}$ Area = $k^{2} \int_{\frac{\ln\frac{1}{k}}{2}}^{0} e^{2x} dx - \int_{\frac{\ln\frac{1}{k}}{2}}^{0} k dx$ $= \frac{k^{2}}{2} \left[e^{2x} \right]_{\frac{\ln\frac{1}{k}}{2}}^{0} - \left[kx \right]_{\frac{\ln\frac{1}{k}}{2}}^{0}$ $= \frac{k^{2}}{2} \left(1 - e^{2x - \frac{\ln\frac{1}{k}}{2}} \right) - \left(0 - k \cdot \frac{\ln\frac{1}{k}}{2} \right)$ $= \frac{k^{2}}{2} \left(1 - \frac{1}{k} \right) + \frac{k}{2} \cdot \ln\frac{1}{k}$ $= \frac{k^{2}}{2} - \frac{k}{2} + \frac{k}{2} \cdot \ln\frac{1}{k}$ $= \frac{k^{2}}{2} \left(k - 1 + \ln\frac{1}{k} \right)$ OR Area = $\int_{\frac{\ln\frac{1}{k}}{2}}^{0} \left(k^{2}e^{2x} - k \right) dx$ $= \left[\frac{k^{2}}{2}e^{2x} - kx \right]_{\frac{\ln\frac{1}{k}}{2}}^{0}$	Correct integration. (Limits not needed.)	Correct integration with correct limits substituted in.	Correct solution with steps clearly shown.
	$= \left[\frac{k^2}{2} e^{2x} - kx \right]_{\ln \frac{1}{k}}^{0}$			

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	ONE partial solution.	1u	2u	3u	1r	2r	1t with minor error(s).	1t

Cut Scores

Not Achieved	Achievement	Achievement with Merit	Achievement with Excellence	
0 – 6	7 – 13	14 – 19	20 – 24	