10 5.104
14 zaaw
16 s.139
ej wpisz
J
R to w
zystkich
ępująca poniżej
a "NIE
$O \times B$, barach,
formułę ających
formułę
formułę

Numer indeksu:

¹Proszę zakreślić dzień tygodnia, godzinę i numer sali, w której odbywają się ćwiczenia.

		Numer indeksu:
Wersja:	$oxed{\mathbf{A}}$	

Grupa ⁻ :		
8–10 s. 5	8–10 s.103	8–10 s.104
8 10 s. 105	8–10 s.140	12–14 zaaw
12–14 LPA	14–16 s.105	14–16 s.139

Zadanie 6 (5 punktów). Rozważmy funkcję $F:\{2n\mid n\in\mathbb{N}\}^{\{1,3,5\}}\to\{2n+1\mid n\in\mathbb{N}\}^{\{3,5,7\}}$ zdefiniowaną w następujący sposób: dla $f:\{1,3,5\}\to\{2n\mid n\in\mathbb{N}\}$ funkcja $F(f):\{3,5,7\}\to\{2n+1\mid n\in\mathbb{N}\}$ jest zadana wzorem (F(f))(x)=f(x-2)+1. Udowodnij, że F jest różnowartościowa. Czy F jest bijekcją? Uzasadnij odpowiedź (tzn. udowodnij, że F jest bijekcją lub udowodnij, że F nie jest bijekcją).

Zadanie 7 (5 punktów). Niech R i S będą symetrycznymi relacjami na zbiorze A. Udowodnij, że jeśli SR = RS to relacja RS jest symetryczna.

Zadanie 8 (5 punktów). Na zbiorze $\mathbb{N}^{\mathbb{N}}$ wszystkich funkcji z \mathbb{N} w \mathbb{N} wprowadzamy relację binarną R wzorem

$$R(f,g) \iff \exists m \forall n > m \ f(n) = g(n).$$

Udowodnij, że relacja R jest przechodnia.

¹Proszę zakreślić dzień tygodnia, godzinę i numer sali, w której odbywają się ćwiczenia.

	_						-	10 5. 5	0 10 5.100	0 10 5.101
Wersja:	$oxed{B}$						_	-10 s.105 -14 LPA	8-10 s.140 14-16 s.105	12–14 zaaw 14–16 s.139
				Logika	dla infor] motyk		14 B171	14 10 5.100	14 10 5.100
			Ko	olokwium czas pis	nr 2, 12 sania: 30+			014		
). Rozważi ych na zbie		dwueleme	entowy	· A =	$= \{a, b\}.$	W prostokąt p	ooniżej wpisz
									$A \times A$, że R . wpisz słowo "	
Zadanie	3 (2 1	ounkty)		że rodzir	na zhioróv	v { A}	L	iest zsten	<i>ująca</i> , jeżeli dl	a wszystkich
$n \in \mathbb{N}$ za	chodzi	inkluzja	$A_n \supseteq A_n$	+1. Jeżeli	istnieje t	aka nie	eskoń	iczona, zs	tępująca rodz	ina $\{A_n\}_{n\in\mathbb{N}}$
			$ \dot{z}e \bigcap_{i=0}^{\infty} A_i $ su wpisz sł				ej wp	isz przykł	ad takiej rodz	$\inf \{A_n\}_{n\in\mathbb{N}}.$
,, binesi		p12) paa1		3 T C 3,1 T L	- 10 11 (12)					
Zadanie	4 (2 1	ounkty)	. Niech fu	nkcia $f: \mathbb{N}$	$\mathbb{N} \times \mathbb{N} \to \mathbb{N}$	N bedz	zie da	ına wzore	m	
	\ .	, ,		$f(\langle n, m \rangle)$						
33 7	1 ,					4				
W prosto	kąt po	nızej wpi	.sz obliczon	ny przeciw	obraz zbi	oru {20	014}	w odwzo	rowaniu f .	
	-								raz relacje <i>By</i>	
					_			=	oy bywają w ja poniżej wpisz	
					achunku o	dziedzii	n ozr	naczający	m wykaz osób	bywających
tyrko w b	aracn]	pouający	rch sok Ma	лтошу.						

¹Proszę zakreślić dzień tygodnia, godzinę i numer sali, w której odbywają się ćwiczenia.

		Numer indeksu:	_	Grupa ¹ :		
				8–10 s. 5	8–10 s.103	8-10 s. 104
Wersja:	$ \mathbf{B} $			8–10 s.105	8–10 s.140	12–14 zaaw
				12–14 LPA	14–16 s.105	14-16 s. 139

Zadanie 6 (5 punktów). Rozważmy funkcję $F:\{1,3,5\}^{\{2n|n\in\mathbb{N}\}}\to\{2,4,6\}^{\mathbb{N}}$ zdefiniowaną w następujący sposób: dla $f:\{2n\mid n\in\mathbb{N}\}\to\{1,3,5\}$ funkcja $F(f):\mathbb{N}\to\{2,4,6\}$ jest zadana wzorem (F(f))(x)=f(2x)+1. Udowodnij, że F jest "na". Czy F jest bijekcją? Uzasadnij odpowiedź (tzn. udowodnij, że F jest bijekcją lub udowodnij, że F nie jest bijekcją).

Zadanie 7 (5 punktów). Niech R i S będą przechodnimi relacjami na zbiorze A. Udowodnij, że jeśli SR = RS to relacja RS jest przechodnia

Zadanie 8 (5 punktów). Na zbiorze $\mathcal{P}(\mathbb{N})$ wszystkich podzbiorów zbioru liczb naturalnych wprowadzamy relację binarną R wzorem

$$R(X,Y) \iff \exists m \forall n > m \ n \in X \Leftrightarrow n \in Y.$$

Udowodnij, że relacja R jest przechodnia.

¹Proszę zakreślić dzień tygodnia, godzinę i numer sali, w której odbywają się ćwiczenia.