Maximum Marks: 100

USN	

RV COLLEGE OF ENGINEERING®

(An Autonomous Institution affiliated to VTU)
III Semester B. E. Fast Track Examinations Oct-2020
Computer Science and Engineering
DISCRETE MATHEMATICAL STRUCTURES

Time: 03 Hours Instructions to candidates:

1. Answer all questions from Part A. Part A questions should be answered in first three pages of the answer book only.

2. Answer FIVE full questions from Part B. In Part B question number 2, 7 and 8 are compulsory. Answer any one full question from 3 and 4 & one full question from 5 and 6

PART-A

1 1.	How many even 4 digit whole numbers are there?	02
1.	2 bytes are required to encode 2000 bits of data.	01
1.	A function is said to be if and only if $f(a) = f(b)$ implies that	
	a = b for all a and b in the domain of f .	
1.	A group $(M,*)$ is said to be abelian if property holds in a	
	group.	01
1.	The set of complex numbers $\{1, i, -i, -1\}$ under multiplication	
	operation is a group.	01
1.	The number of words of 4 consonnats and 3 vowels can be made from	
	15 consonants and 5 vowels, if all the letters are different is	02
1.	A head boy, two deputy head boys, a head girl and 3 deputy head	
	girls must be chosen out of a student council consisting of 14 girls	
	and 16 boys. In how many ways can they be chosen?	02
1.	There are 15 people in a committee. How many ways are there to	
	group these 15 people into 3,5, and 4?	02
1.	Find the coefficient of x^8 in the expansion of $(x+2)^{11}$.	02
1.	Write the type of the binary relation	
	$\{(1,1),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2)\}$ on the set $\{1,2,3\}$.	02
1.	11 For the given statement write converse and contra-positive.	
	"if $5x - 1 = 9$, then $x = 2$ "	02
1.	12 Verify the given statement is tautology or not using truth table:	
	a) $[(p \rightarrow q) \land p] \rightarrow p$	
	b) $(r \to s) \leftrightarrow (s \to r)$	02

PART-B

2	а	How	many	solutions	are	there	to	equ	ation	
				$x5 + x6 = 29$, where $x1 \le 1$		x1, x2, x3, x4	, <i>x</i> 5, <i>x</i> 6	are	non	06
	h	0				. + . [2 dimida	. (3	\1 \	c N I	04
	b	_		al induction sl		_		-		04
	С	The Fib	onacci seq	uence F_0, F_1, F_2 ,	S	atisfies the 1	recurre	nce rel	ation	
				r all integers k						
		with in	itial condi	tions $F_0 = F_1 =$: 1. Fin	d an explic	it form	ula foı	r this	
		sequen	ce.	-		_				06

			1
3	a	Convert the following sentences to quantified statements using Universal quantifiers only. Assume Domain <i>D</i> contains only humans.	
		i) No one who runs walks	
		ii) If anyone cheats, he suffers.	0.6
		iii) If anyone cheats, everyone suffers.	06
	b	Consider the following hypotheses:	
		"It is not sunny this afternoon and it is colder than yesterday".	
		"We will go swimming only is it is sunny".	
		"If we do not go swimming, then we will take a canoe trip".	
		"If we take a canoe trip, then we will be home by sunset".	
		Using the interference rules, prove that the following given conclusion	
		is valid:	0.0
		"We will be home by sunset".	06
	С	Write each of these statements in the form "if p, then q" in English.	
		i) It snows whenever the wind blows from the northeast	
		ii) It is necessary to walk 8 miles to get to the top of Long's Peak.	
		iii) To get tenure as a professor, it is sufficient to be world-famous.	04
		iv) You can access the website only if you pay a subscription fee. OR	04
4	a	Apply rules of inference to prove the following argument is valid for	
		the quantified premises.	
		A student in this class has not read the book.	
		Everyone in this class passed the first exam.	
	1.	: Someone who passed the first exam has not read the book.	06
	b	Using laws of logic prove the following:	
		i) $[p \land (\neg r \lor q \lor \neg q)] \lor [r \lor t \lor \neg r) \land \neg q] \Leftrightarrow p \lor \neg q$ ii) $(p \land \neg q) \lor (p \land q) \Leftrightarrow (p \lor \neg q)$	
		ii) $(p \land \neg q) \lor (\neg p \land q) \Leftrightarrow \neg (p \leftrightarrow q)$ iii) $(p \to q) \land (p \to \neg q) \Leftrightarrow \neg p$	06
	С	Let p, q , and r be the propositions	00
	C	p: You get an A on the final exam	
		q: You do every exercise in this book.	
		r: You get an A in this class.	
		write these propositions using p, q and r and logical connectives.	
		i) You get an A on the final, but you don't do every exercise in this	
		book; nevertheless, you get an A in this class.	
		ii) Getting an A on the final and doing every exercise in this book	
		is sufficient for getting an A in this class.	
		iii) You will get an A in this class if and only if you either do every	
		exercise in this book or you get an A on the final.	
		iv) To get an A in this class, it is necessary for you to get an A on	
		the final.	04
		V-1V 1111011	
5	a	Let $A = \{a, b, c, d, e\}$ and $B = \{1,2,3,4,5,6,7,8\}$	
		i) Determine the number of functions from A to B. How many of	
		them are one to one and onto.	
		ii) Determine the number of functions from <i>B</i> to <i>A</i> . How many of	
		them are one to one and onto.	04
	b	Let f and g be functions from $R \to R$ defined by $f(x) = ax + b$ and	
	•	g(x) = cx + d. What relationship must be satisfied by a, b, c, d if	
		$g \circ f = f \circ g$	06
	С	Let $A = \{1,2,3,4,5,$	
	-	on A defined by aRb if and only if $a - b$ is divisible by 5. Find the	
		partition of A induced by R .	06
		<u> </u>	

		OR					
6	a b	Consider <i>A</i> as finite set of ' <i>n</i> ' elements then determine the following: i) Number of Anti-symmetric relations. ii) Number of reflexive and symmetric relations Consider the poset <i>A</i> = {2,3,4,6,18,24} with the divisibility relation defined on it.					
		i) Draw its Hasse diagram.					
		ii) Find its maximal, minimal, greatest and least elements.iii) Find upper bounds, <i>GLB</i>, <i>LUB</i> and lower bounds for the subset					
		$M = \{2,3,6\}.$	06				
-	С	Explain about different types of functions with neat diagram.	04				
7	a	Define the following terms:					
		i) ∈ −closure of a state					
		ii) Extended transition function $\delta * \text{for } \epsilon - NFA$.					
		iii) NFA and its language. iv) Extended transition function δ *for DFA.	08				
	b	Design a deterministic and non-deterministic finite automate with					
		transition table which accept 00 and 11 ath the end of a string over					
		the alphabet set $\Sigma(0,1)$.	08				
8	а	Prove that $(Z_{5,}^{*}*)$ is a cyclic group. Find all its generators.	04				
	b	If \circ is an operation on set of integers Z defined by $x \circ y = x + y + 1$,					
	0	Prove that (Z, \circ) is a group.	06				
	С	The generator matrix for an encoding function $E: \mathbb{Z}_2^2 \to \mathbb{Z}_2^5$ is given by					
		$G = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{bmatrix}$					
		20 1 0 1 12					
		i) Determine all the code words	06				
		ii) obtain the associated parity check matrix.	06				