SM500 4-Bit Microcomputer (LCD Driver)

Description

The SM500 is a CMOS 4-bit microcomputer which integrates a 4-bit parallel processing function, a 1,197-byte ROM, a 40-word RAM, a 15-stage divider and a 56-segment LCD driver circuit in a single chip. This microcomputer is applicable to LCD systems with low power consumption and reduced cost.

Features

- 1. CMOS process
- 2. ROM capacity: 1,197×8 bits
- 3. RAM capacity: 40×4 bits
- 4. Instruction set: 52
- 5. Subroutine nesting: 1 level
- 6. Instruction cycle: $61 \mu s$ (TYP.)
- 7. Input/output ports

I/O ports: 8

(for switching with segment pin)

Input ports: 6

Output ports: 4

LCD output ports: 28 for segment

(including 8 I/O ports)

:2 for common

- 8. On-chip divider circuit for clock
- 9. On-chip crystal oscillator circuit
- 10. LCD driver circuit

(56-segment, 1/2 bias, 1/2 duty)

- 11. Standby function
- 12. Single power supply: -3V or -5V (TYP.)
- 13. 48-pin QFP (QFP48-P-1010)

Pin Connections

Block Diagram

2

Pin Description

Symbol	I/O	Circuit type	Function		
K ₁ -K ₄	I	Pull down	Acc←K ₁ -K ₄		
α, β	1	Pull up	Independent test possible		
O ₁₁ -O ₄₁	I/O		W and W' registers output or input/output to/from K _F regis		
O _{S1} -O _{S4}	I/O		W and W' registers output or input/output to/from K _S register		
O ₁₂ -O ₄₆	0		W and W' registers output; used for LCD segment output		
H ₁ , H ₂	0		3-state level output possible; used for LCD common output		
R ₁ -R ₄	0		R_1 - R_4 \leftarrow Acc		
	I	Pull up	For test (Connected to GND normally)		
ACL	I	pull down	Auto clear		
OSC _{IN} , OSC _{OUT}			For clock oscillation		
V _M			Power supply for LCD driver		
V _{DD} , GND			Power supply for logic circuit		

Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit	Note
Tarameter	V _{DD}	-6.0 to +0.3	V	
Pin voltage	V _M	$V_{\rm DD}$ to ± 0.3		1
	V _{IN}	$V_{\rm DD} = 0.3 \text{ to } \pm 0.3$	V	1
	V _{OUT}	$V_{\rm DD} = 0.3$ to $+0.3$	V	<u> </u>
Operating temperature	Topr	-20 to +70	°C	
Storage temperature	Tstg	-55 to +150	C	

Note 1: The maximum applicable voltage on any pin with respect to GND.

■ Recommended Operating Conditions

(1) 3V power supply specification

(GND=0V)

Parameter	Symbol	Rating	Unit	Note
	V _{DD}	-2.7 to -3.3	V	L
Supply voltage	V _M	V _{DD} /2 (TYP.)	V	
Oscillator frequency	fosc	32.768 (TYP.)	kHz	
Oscillation start voltage	V _{osc}	-2.7	V	1

(2) 5V power supply specification

(GND = 0V)

	[C -1-1	Rating	Unit	Note
Parameter	Symbol	Katting	- Cilit	11000
	V_{DD}	-4.5 to -5.5	<u>v</u>	
Supply voltage	V _M	V _{DD} /2 (TYP.)	V	
Oscillator frequency	f _{OSC}	32.768 (TYP.)	kHz	
Oscillation start voltage	V _{OSC}	-4.5	V	1

Note 1: The oscillation start time should be within 10 sec.

■ Electrical Characteristics

(1) 3V power supply specification

$(V_{DD} = -3.0V \pm 10\%,$	GND = 0V	$T_{a} = -20 \text{ to}$	+70°C)
$(VDD - 3.0 V \pm 10.0)$	OND OV,	14 20 K	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit	Note	
.	V _{IH}		-0.6			V	1	
Input voltage	V _{IL}				$V_{DD} + 0.6$	V	1	
	I _{H1}	$V_{IN} = 0V$			15	μΑ	2	
Input current	I _{H2}	$V_{IN} = 0V$			3	μΑ	3	
	I_{L3}	$V_{IN} = V_{DD}$			1	μΑ	4	
Output voltage	V _{OA}		-0.3			V	5	
	V_{OB}	No load $V_{\rm M} = V_{\rm DD}/2$	$V_{\rm M}$ -0.3		$V_{\rm M} + 0.3$	V		
	V _{oc}				$V_{\rm DD} + 0.3$	V		
	I _{OH1}	$V_{OUT} = -0.5V$	30			μΑ	6	
	I _{OL1}	$V_{OUT} = V_{DD} + 0.5V$	10			μΑ	7 6	
Outt	I_{OH2}	$V_{OUT} = -0.5V$	100			μΑ	7	
Output current	I_{OL2}	$V_{OUT} = V_{DD} + 0.5V$	10			μ A	7 ′	
	I_{O3}	$V_{DS} = 0.3V$	100			μΑ	8	
	I_{O4}	$V_{DS} = 0.5V$	100			μΑ	9	
C1	I_{DA}	During full-range operation		20		μΑ	10	
Supply current	I _{DS}	When system clock is stationary		3		μΑ	10	

(2) 5V power supply specification

$$(V_{DD} = -5.0V \pm 10\%, GND = 0V, Ta = -20 \text{ to } +70\%)$$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit	Note
T . 1.	V _{IH}		-0.6			V	,
Input voltage	V _{II} .				$V_{\rm DD} + 0.6$	V	1
Input current	I _{H1}	$V_{IN} = 0V$		-	50	μΑ	2
	I_{H2}	$V_{IN} = 0V$			10	μΑ	3
	I_{L3}	$V_{IN} = V_{DD}$			3	μΑ	4
Output voltage	V_{OA}		-0.3			V	
	V_{OB}	No load $V_M = V_{DD}/2$	$V_{\rm M} = 0.3$		$V_{\rm M} + 0.4$	V	5
	V _{OC}				$V_{\rm DD} + 0.4$	V	
· · · · · · · · · · · · · · · · · · ·	I _{OH1}	$V_{OUT} = -0.5V$	35			μΑ	6
	I _{OL1}	$V_{OUT} = V_{DD} + 0.5V$	12			μΑ	
0.4	I_{OH2}	$V_{OUT} = -0.5V$	120			μΑ	7
Output current	I_{OL2}	$V_{OUT} = V_{DD} + 0.5V$	12			μΑ	_ ′
	I_{O3}	$V_{DS} = 0.3V$	120			μ A	8
	I _{O4}	$V_{DS} = 0.5V$	120			μΑ	9
Supply current	I_{DA}	During full-range operation		50	100	μΑ	10
	Ips	When system clock is stationary		10	30	μΑ	10

Note 1: Applied to pins K_1 - K_4 , α , β , ACL, O_{11} , O_{21} , O_{31} , O_{41} , O_{S1} - O_{S4}

Note 2: Applied to pins K_1 - K_4 , O_{11} , O_{21} , O_{31} , O_{41} , O_{S1} - O_{S4}

Note 3: Applied to pin ACL Note 4: Applied to pins α , β

Note 5: Applied to pins H₁, H₂

Note 6: Applied to pins O_{ij} (i=1 to 4, j=2 to 6)

Note 7: Applied to pins O₁₁-O₄₁, O_{S1}-O_{S4}

Note 8: Applied to pin R₁

Note 9: Applied to pins R2, R3, R4

Note 10: $f_{OSC} = 32.768 \text{kHz}$, supply current with no load, oscillator circuit parameter: $C_D = C_G = 22 \text{pF}$

Fig. 1 H1, H2 waveforms

Fig. 2 Oscillator circuit

Fig. 3 ACL circuit

Pin Functions

(1) K₁-K₄ (Inputs)

The K_1 - K_4 are 4-bit parallel input ports which are connected to the accumulator Acc. The contents of the K_1 - K_4 are loaded into the A_{CC} by the KTA instruction.

When a system clock is inactivated, if a High level signal is input to any one bit of ports K_1 - K_4 , the system clock restarts, and the program counter starts at page 0, step 0.

(2) α , β (Inputs)

The input ports α and β can be independently tested by the TA and TB instructions respectively.

These ports are pulled-up to the High level within a chip.

(3) R₁-R₄ (Outputs)

The R_1 - R_4 are 4-bit parallel output ports which generate the data stored in the R register.

The R register is connected to the accumulator A_{CC} . The contents of the Acc are loaded into the R register by the ATR instruction, which can be output at ports R_1 - R_4 .

The R_1 of the R register performs, in conjunction with the f_1 , f_4 or f_{12} of a divider, the logical product, It can also provide an alarm output.

(4) H₂, H₁ (LCD common outputs)

The H_2 and H_1 pins are used to drive the common of an LCD with a 1/2 duty, 1/2 bias scheme, and provide a 3-level output.

The display can be turned on or off by the common outputs with the BP register.

(5) Oii (Segment output ports)

The segment output ports O_{ij} (i=1 to 4, j=2 to 6) consist of 20 bits, which are used to output the contents of W' and W registers for the display on or off with the BP register.

(6) O_{11} , O_{21} , O_{31} , O_{41} (Input/output ports)

The I/O ports O_{11} – O_{41} are used as segment output ports to generate the contents of W' and W registers with the S register. The I/O ports can also be used as output ports as well as input ports for the K_F register. After ACL operation, it should be input ports with pull-down resistors.

(7) O_{S1} , O_{S2} , O_{S3} , O_{S4} (Input/output ports)

The I/O ports O_{S1} - O_{S4} are used as segment output ports to generate the contents of W' and W registers with the S register. The I/O ports can also be used for output ports as well af input ports for the K_S register. After ACL operation, it should be input ports with pull-down resistor.

Hardware Configuration

(1) Program memory (ROM)

The on-chip ROM has 1,197 bytes organized as 19 pages × 63 steps × 8 bits. Fig. 1 shows the ROM configuration.

The program counter consists of a 1-bit C_A , C_B , a 4-bit page address counter P_U register and a 6-bit polynomial counter P_L (inhibit code: P_L = 111111).

The C_A is used to specify the field, the P_U for the page, P_L for the steps within a page and the C_B for the case where the field boundary is crossed.

(2) Data memory (RAM)

The data memory has 160 bits organized as $4 \times 10 \times 4$ bits. Fig. 2 shows the RAM configuration.

The RAM address is specified by a 2-bit B_M register for the file specification, and a 4-bit B_L register for the word (4-bit) specification.

(3) Crystal oscillator and Divider (DIV)

The device contains a crystal oscillator circuit for the system clock and timer oscillator. A 16.384kHz system clock can be provided and 1 sec signal can be obtained from the final stage of a divider by connecting an external 32.768kHz crystal oscillator between the oscillator pins.

The divider consists of 15 stages, and lower 4 stages can be loaded into the accumulator by the DTA instruction. The lowest 9 stages (f_9-f_1) can be reset with the IDIV instruction or an ACL operation.

(4) Segment decoder

The SM500 contains an on-chip LCD driver which can directly drive an LCD with a 3V, 1/2 duty, 1/2 bias scheme. The device also contains a segment decoder which helps the software to be reduced.

The truth table of a segment decoder is shown in Fig. 5, the LCD segments relative to the decoder shown in Fig. 4, and the LCD driving signal waveform shown in Fig. 6. The display characters other than those described in Fig. 5 are available by directly setting data to W' with the WR or WS instruction.

(5) Standby mode

The SM500 is a low power consumption design due to CMOS process. For further low power requirement, executing the CEND instruction places the device in standby mode. To reduce power consumption, the system clock is inactivated.

	←	$C_A = 0$	Field →←	$C_A = 1$	\rightarrow
	0		10		
	1		11		
	2		12		
	3			_	
l	4				
	5				
1	6				
Page ←	7				
Fag	8				
	9				
	A				
	В				
	С				
	D				
	Е				
	F				

Fig. 1 ROM configuration

Fig. 2 RAM configuration

Fig. 3 Crystal oscillator circuit

Fig. 4 LCD segment layout for segment decoders

While in standby mode, if more than one input of K_1 - K_4 goes High, or γ F/F is reset, the device exits standby mode and starts execution of the program at address 0000 (C_A =0, P_U =0, P_L =0).

(6) Reset function

Connecting a capacitor between the ACL pin and the GND activates the ACL circuit when it is po-

Acc	Display character	Acc	Display character
0	G	6	8
1	1	7	7
2	2	8	8
3	3	9	9
4	1-1	A	_
5	5	В	Blank

wered up. The ACL is cleared in about 0.5 sec from a crystal oscillator circuit starts oscillation after power on, and starts execution of the program at C_A =0, P_U = F_H , P_L =0.

While in power on, applying a High level signal to the ACL pin activates the ACL operation. However, it takes about 0.5 sec to start execution of the program after the ACL goes Low. The lowest 9 stages of a divider are reset during the ACL goes High.

Fig. 7 ACL external circuit

Fig. 6 LCD driving signal waveforms

Instruction Set

(1) RAM address instructions

Mnemonic	Machine code	Operation
LB xy	40-4F	$B_L \leftarrow x (I_3, I_2), B_M \leftarrow y (I_1, I_0)$
LBL xy	5F	$B_{M} \leftarrow x (I_{5}, I_{4}), B_{L} \leftarrow y (I_{3}, I_{0})$
(2 step)	00-FF	D _M - x (1 ₅ , 1 ₄), D _L - y (1 ₃ , 1 ₀)
EXBLA	OB	$Acc \longleftrightarrow B_L$
INCB	64	$B_L \leftarrow B_L + 1$, Skip if $B_L = 7$
DECB	6C	$B_L \leftarrow B_L - 1$, Skip if $B_L = 0$

(2) ROM address instructions

Mnemonic	Machine code	Operation
COMCB	6D	$C_B \leftarrow C_B$
RTN	6E	$C_A \leftarrow C_S$, $P_U \leftarrow S_U$, $P_L \leftarrow S_L$, $R \leftarrow 0$
RTNS	6F	$C_A \leftarrow C_S$, $P_U \leftarrow S_U$, $P_L \leftarrow S_L$
		R←0, skip the next step
SSRx	70-7F	$S_U \leftarrow x (I_3 - I_0), E \leftarrow 1$ next step
JUNA		only
		if $R=0$;
TRx	80-BE	$P_L \leftarrow X (I_5 - I_0), P_U \leftarrow S_U, C_A \leftarrow C_B$
		if $R=1$; $P_L \leftarrow I_5 - I_0$
		if $R = 0$, $E = 0$; $P_L \leftarrow x (I_5 - I_0)$
		$P_{U3}\leftarrow 1$, P_{U2} - $P_{U0}\leftarrow 0$, $S_L\leftarrow P_L+1$,
TRSx	CO-FF	$S_U \leftarrow P_U$, $C_S \leftarrow C_A \leftarrow 0$, $R \leftarrow 1$
		if $R = 0$, $E = 1$; $P_L \leftarrow x (I_5, I_0)$,
		$P_U \leftrightarrow S_U$, $S_L \leftarrow P_L + 1$, $C_S \leftarrow C_A \leftarrow C_B$
		R←1
mpc.	GO FF	if $R = 1$; P_{U1} , $P_{U0} \leftarrow x (I_5, I_4)$
TRSAxy	C0-FF	$P_{L3}-P_{L0} \leftarrow y (I_3-I_0), P_{L5}, P_{L4} \leftarrow 0$

(3) Arithmetic instructions

Mnemonic	Machine code	Operation
ADD	08	Acc←Acc+M
1000		$Acc \leftarrow Acc + M + C$,
ADDC	09	$C \leftarrow C_Y$, Skip if $C_Y = 1$
		$Acc \leftarrow Acc + x (I_3 - I_0)$
ADX x	31-3F	Skip if $C_Y = 1$
	1	No skip if $I_3I_2I_1I_0 = 1010$ (30 de-
		fines inhibit)
COMA	0A	Acc←Ācc

(4) Data transfer instruction

Mnemonic	Machine code	Operation
EXCx	10-13	$Acc \leftrightarrow M$, $B_M \leftarrow B_M \oplus x$ (I_1 , I_0)
EXClx	14-17	Acc \rightarrow M, B _M \leftarrow B _M \oplus x (I ₁ , I ₀) B _L \leftarrow B _L +1, Skip if B _L =7
EXCDx	1C-1F	Acc \leftarrow M, B _M \leftarrow B _M \oplus x (I ₁ , I ₀) B _L \leftarrow B _L -1, Skip if B _L =0

Mnemonic	Machine code	Operation
LAXx	20-2F	
LAAX		$Acc \leftarrow x (I_3 - I_0)$
LDAx	18-1B	$Acc \leftarrow M, B_M \oplus x (I_1, I_0)$
ATBP	03	B _P ←Acc
PTW	59	$W_{i6} \leftarrow W'_{i6}, W_{i5} \leftarrow W'_{i5} \ (i = 1 \text{ to } 4)$
PDTW	61	$W'_{15} \leftarrow W'_{16} \leftarrow DECi (i=1 \text{ to } 4)$
TW	5C	$W_{ij} \leftarrow W'_{ij}$ (i=1, j=0 to 6)
DTW	5D	$W'_{i6} \leftarrow DEC_i$ W'_{ij} write shift (i=1 to 4, j=0 to 6)
WR	62	$W'_{46} \leftarrow 0$, $W'_{36} \leftarrow Acc_2$, $W'_{26} \leftarrow Acc_1$ $W'_{16} \leftarrow Acc_0$, W'_{ij} write shift (i=1 to 4, j=0 to 6)
WS	63	$W'_{46} \leftarrow 1$, $W'_{36} \leftarrow Acc_2$ $W'_{26} \leftarrow Acc_1$, $W'_{16} \leftarrow Acc_0$ W'_{ij} write shift (i=1 to 4, j=0 to 6)

(5) I/O control instructions

Mnemonic	Machine code	Operation
ATR	01	R←Acc
KTA	6A	Acc←K
ATS	30	S←Acc
EXKSA	02	if $S_2=1$; $Acc \leftarrow K_S$ if $S_2=0$; $K_S \leftarrow Acc$
EXKFA	6B	if $S_4 = 1$; $Acc \leftarrow K_F$ if $S_4 = 0$; $K_F \leftarrow Acc$

(6) Divider manipulation instructions

Mnemonic	Machine code	Operation
DTA	5E	$Acc_3 \leftarrow f_1, Acc_2 \leftarrow f_2$
(2 step)	04	$Acc_1 \leftarrow f_3$, $Acc_0 \leftarrow f_4$
IDIV	65	f ₉ -f ₁ ←0

(7) Bit manipulation instructions

Mnemonic	Machine code	Operation
RMx	04-07	Mx ← 0
SMx	0C-0F	Mx←1
RMF	68	m'←0, Acc←0
SMF	69	m'←1
COMCN	60	$C_N \leftarrow \overline{C_N}$
RC	66	C ← 0
SC	67	C ← 1

(8) Test instructions

Mnemonic	Machine code	Operation
TA	50	Skip if $\alpha = 1$
ТВ	51	Skip if $\beta = 1$
TC	52	Skip if C=0
TAM	53	Skip if Acc=M
TMx	54-57	Skip if $Mx = 1$
TG	58	Skip if $\gamma = 0$, $\gamma \leftarrow 0$
TA0	5A	Skip if Acc=0
TABL	5B	Skip if Acc=B _L

(9) Clock control instruction

Mnemonic	Machine code	Operation
GEND	5E	clock stop
(2 step)	00	

(10) Special instruction

Mnemonic	Machine code	Operation
SKIP	00	No operation

■ System Configuration Example (Digital watch)

