

⑩ BUNDESREPUBLIK

DEUTSCHLAND

DEUTSCHES

PATENT- UND

MARKENAMT

Offenlegungsschrift

⑩ DE 198 51 978 A 1

⑪ Int. Cl. 7:

G 05 D 1/08

B 62 D 6/00

B 60 T 8/60

⑪ Aktenzeichen: 198 51 978.8

⑪ Anmeldetag: 11. 11. 1998

⑪ Offenlegungstag: 25. 5. 2000

5 4 6 7 8 7

⑦ Anmelder:

DaimlerChrysler AG, 70567 Stuttgart, DE

⑦ Erfinder:

Böttger, Friedrich, Dipl.-Ing., 73733 Esslingen, DE;
Suissa, Avshalom, Dipl.-Ing., 71272 Renningen, DE

⑮ Entgegenhaltungen:

DE 42 26 746 C1

DE 195 15 055 A1

DE 43 25 413 A1

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

Prüfungsantrag gem. § 44 PatG ist gestellt

④ Verfahren zur Regelung der Querdynamik eines Fahrzeugs mit Vorderachs-Lenkung

⑤ Bei einem Verfahren zur Regelung der Querdynamik eines Fahrzeugs mit Vorderachs-Lenkung, wobei die Regelung in Abhängigkeit von Abweichungen gemessener Ist-Werte der Giergeschwindigkeit von fortlaufend generierten Soll-Werten derselben erfolgt und die Nachführung der Ist-Werte durch Einstellung von Radlenkwinkeln (δ_i) und/oder Einstellung von Radbremskräften (P_i) erzielt wird, ist vorgesehen, daß anhand eines linearen Fahrzeugmodells, das ein dynamisches Wunsch-Verhalten des Fahrzeugs repräsentiert, ein erster Soll-Wert Ψ_{soll} (δ_i , v_x) für die Giergeschwindigkeit Ψ ermittelt wird, der dem durch Betätigung eines Steuerorgans eingesteuerten Fahrerwunsch entspricht; unter der Nebenbedingung, daß der Schwimmwinkel β_h im Bereich der nicht gelenkten Hinterräder des Fahrzeugs einen begrenzten Wert nicht überschreiten soll, wird ein weiterer Soll-Wert Ψ_{soll} (β) ermittelt, und es wird der dem Betrage nach kleinere dieser beiden Soll-Werte als der für die Regelung maßgebliche Soll-Wert der Giergeschwindigkeit genutzt und dadurch ein Schleudern des Fahrzeugs mit hoher Zuverlässigkeit vermieden.

DE 198 51 978 A 1

DE 198 51 978 A 1

Beschreibung

Die Erfindung betrifft ein Verfahren zur Regelung der Querdynamik eines Fahrzeuges mit Vorderachslenkung und den weiteren, im Oberbegriff des Patentanspruchs 1 genannten, gattungsbestimmenden Merkmalen.

5 Bei einem durch die DE 42 26 746 bekannten Verfahren dieser Art werden die Lenkwinkel der Vorderräder des Fahrzeugs fahrersituationsabhängig bestimmt, wobei diese Bestimmung unter Berücksichtigung sowohl der Giergeschwindigkeit ψ des Fahrzeuges als auch des Schwimmwinkels β erfolgt. Zusätzlich zu einer Beeinflussung der Querdynamik des Fahrzeuges durch die Lenkwinkeleinstellung kann auch ein Bremseneingriff an einzelnen Fahrzeugräder vorgenommen werden. Bei dem bekannten Verfahren wird sowohl das Gierverhalten des Fahrzeuges als auch der Schwimmwinkel 10 zur Bestimmung der Stellgrößen Rad-Lenkinkel und/oder Bremskraft herangezogen.

Bei dem bekannten Verfahren ist als nachteilig anzusehen, daß aufgrund einer permanenten Begrenzung des Schwimmwinkels und damit im Ergebnis auch des Schräglaufwinkels in zahlreichen Fahrsituationen die maximale Seitenführungskraft der Hinterräder des Fahrzeuges nicht ausnutzbar ist und dadurch Abweichungen der Bahnkurve des Fahrzeuges von dem Fahrerwunsch entsprechenden Sollkurve auftreten, auch wenn noch keinerlei Schleudertendenz 15 des Fahrzeuges gegeben ist und ein begrenztes Driften des Fahrzeuges – ein relativ hoher Schräglaufwinkel an der Hinterachse – zugelassen werden könnte.

Des weiteren ist durch die DB 43 25 413 A1 ein Verfahren zur Ermittlung des Schwimmwinkels bekannt und in Abhängigkeit von diesem die Querdynamik des Fahrzeuges durch Lenk- und Bremseneingriff so zu beeinflussen, daß ein Schleudern des Fahrzeuges weitgehend vermieden werden kann, jedoch hat es sich gezeigt, daß eine Querdynamik-Regelung allein in Abhängigkeit vom Schwimmwinkel nicht ausreichend ist, um in allen statistisch bedeutsamen Situationen ein Schleudern des Fahrzeuges zu vermeiden.

Aufgabe der Erfindung ist es daher, ein Verfahren der eingangs genannten Art anzugeben, das, unbeschadet weitgehender Freiheit hinsichtlich der Gestaltung der Fahrzeugreaktionen auf die Einstellung des Fahrerwunsches hinsichtlich des Bahnverlaufs des Fahrzeuges, mit hoher Zuverlässigkeit ein Schleudern des Fahrzeuges verhindert.

25 Diese Aufgabe wird, ausgehend von den gattungsgemäß zugrunde gelegten Verfahren durch die kennzeichnenden Merkmale des Patentanspruchs 1 dem Grundgedanken nach und in vorteilhaften Ausgestaltungen bzw. Durchführungsvarianten desselben durch die Merkmale der Unteransprüche 2 bis 6 gelöst.

Hierach wird unter Verarbeitung von den Bewegungszustand des Fahrzeuges repräsentierenden Größen, insbesondere des vom Fahrer vorgegebenen Lenkwinkels δ und der Fahrzeuglängsgeschwindigkeit v_x anhand eines linearisierten Fahrzeugmodells ein erster Sollwert $\psi_{soll}(\delta, v_x)$ für die Giergeschwindigkeit ψ ermittelt, der dem durch Betätigung eines Steuerorgans (Lenkrad, Joystick oder dergleichen) eingesteuerten Fahrerwunsch bezüglich der Bahnbewegung des Fahrzeugs entspricht; des weiteren wird unter der Nebenbedingung, daß der Schwimmwinkel β_h im Bereich der nicht gelenkten Hinterräder des Fahrzeuges einen begrenzten Wert nicht überschreiten soll, ein weiterer Sollwert $\psi_{soll}(\beta_h; \alpha_h)$ ermittelt, und es wird der jeweils kleinere der beiden Sollwerte dem ψ -Regler der Regelungseinrichtung als Sollwert-Eingabe zugeleitet, so daß die schwimmwinkel- bzw. schräglaufwinkel-abhängige Giergeschwindigkeitsregelung erst dann wirksam wird, wenn am Fahrzeug eine Schleudertendenz auftritt, die daran erkennbar ist, daß "unphysikalisch" hohe Istwerte der Giergeschwindigkeit bei gleichzeitig zu niedrigen Werten der Fahrzeug-Querbeschleunigung auftreten. Im übrigen, d. h. solange eine Schleudertendenz nicht gegeben ist, kann die Querdynamik-Regelung anhand der ψ -Sollwert-Ausgabe des Fahrzeugmodells mit im Prinzip beliebiger, einem erwünschten Fahrverhalten des Fahrzeuges entsprechender Charakteristik, z. B. "leicht" übersteuerndem oder untersteuerndem oder neutralem Fahrverhalten, erfolgen.

Der gemäß Anspruch 2 vorgesehenen Art der Sollwertbildung für den den Schwimmwinkel begrenzenden Regelungsmodus der Regelungseinrichtung entspricht in bevorzugter Durchführungsart das Verfahren gemäß Anspruch 3 gleichsam eine Entkopplung der Schwimmwinkel-Dynamik an der Hinterachse von derjenigen an der Vorderachse, dies jedenfalls dann, wenn das Trägheitsmoment J_z des Fahrzeuges um seine Hochachse in guter Näherung dem Wert $J_z = m \cdot l_v \cdot l_h$ entspricht, und es wird eine auf besonders einfache Weise implementierbare Art des ein Schleudern des Fahrzeuges verhindrenden Regelungsmodus erzielt.

Der Schwimm- bzw. Schräglaufwinkel-Grenzwert, der im schleuder-verhindrenden Regelungsmodus nicht überschritten werden darf, kann als Festwert vorgegeben werden und wird dann zweckmäßigerverweise gleich demjenigen Wert gewählt, bei dem größtmögliche Seitenführungskraft-Übertragungsfähigkeit der Fahrzeughinterräder gegeben ist.

50 Zur Berücksichtigung insbesondere des Fahrbahnzustandes kann es auch zweckmäßig sein, den Schwimmwinkel-Grenz-Wert aus geschätzten Werten \hat{v}_x und $\hat{\beta}$ der Fahrzeuggeschwindigkeit und v_x und des Kraftschlußbeiwertes μ zu ermitteln.

Zur Bestimmung des für die Regelung erforderlichen Ist-Wertes des Schwimmwinkels β_h sind Schätzwerte \hat{v}_y und \hat{v}_x der Fahrzeug-Quergeschwindigkeit v_y und der Fahrzeug-Längsgeschwindigkeit v_x geeignet, die z. B. als Ausgaben eines Kalman-Filters, wie aus der DE 43 25 413 A1 bekannt, gewinnbar sind, sowie Meßwerte der Fahrzeug-Giergeschwindigkeit.

Das erfindungsgemäße Verfahren wird nachfolgend anhand der Funktionsbeschreibung einer in der Zeichnung dargestellten Querdynamik-Regelungseinrichtung näher erläutert. Es zeigen:

60 Fig. 1 ein schematisch vereinfachtes Blockschaltbild einer nach dem erfindungsgemäßen Verfahren betreibbaren Einrichtung zur Regelung der Querdynamik eines Straßenfahrzeugs mit Vorderachs-Lenkung,

Fig. 2 eine Einspur-Modelldarstellung eines Fahrzeugs zu einer vereinfachenden Erläuterung seines Querdynamik-Verhaltens und

Fig. 3 ein Diagramm zur qualitativen Erläuterung der Sollwert-Vorgabe für den Schwimmwinkel-Begrenzungsmodus der Regelungseinrichtung gemäß Fig. 1.

65 Zweck der in der Fig. 1 insgesamt mit 10 bezeichneten Giergeschwindigkeits(ψ)-Regelungseinrichtung eines in der Fig. 2 durch ein Einspur-Modell repräsentierten Straßenfahrzeugs 11 ist, ein Schleudern desselben in einer Kurvenfahrt zu vermeiden.

Die Regelungseinrichtung 10 ist dahingehend ausgelegt, daß durch eine Regelung der mittels eines Giergeschwindig-

keits-Sensors 12 fortlaufend messbaren Giergeschwindigkeit ψ auch eine Begrenzung des bei einer Kurvenfahrt an den nicht gelenkten Fahrzeugrädern auftretenden Schräglauwinkels α_h auf einen mit dynamischer Stabilität des Fahrzeugs 11 verträglichen Wert erzielbar ist.

Bei dieser Art der Regelung wird der dynamischen Stabilität – Unterdrückung des Schleuderns – des Fahrzeuges gleichsam Priorität vor einer weitestmöglichen Angleichung der Fahrzeugbewegung an den Fahrerwunsch gegeben, mit der Folge, daß das Fahrzeug, wenn die Regelung aktiv ist, zwar nicht mehr "exakt" dem Fahrerwunsch folgt, den dieser mittels eines üblicherweise als Lenkrad ausgebildeten Steuerelements einsteuert, sondern nur noch angenähert, dafür jedoch dynamisch stabil und damit für den Fahrer in gleichsam gewohnter Weise beherrschbar bleibt.

Für das Fahrzeug 11 ist, zum Zweck der Erläuterung, vorausgesetzt, daß es eine Vorderachs-Lenkung hat, und daß die Hinterräder des Fahrzeugs nicht gelenkt sind.

Des Weiteren ist vorausgesetzt, daß das Fahrzeug 11 mit einer elektrisch gesteuerten SbW(Steer by Wire)-Lenkung ausgerüstet ist, bei der den beiden lenkbaren Vorderrädern des Fahrzeugs 11, die in dem Einspur-Modell der Fig. 2 lediglich durch ein Vorderrad 13 repräsentiert sind, einzeln zugeordnete, nicht dargestellte, elektrisch ansteuerbare Lenkwinkel-Stellorgane vorgesehen sind, mittels derer nach Maßgabe von Lenkwinkel-Sollwert-Signalen eines Giergeschwindigkeits-Reglers 14 der Regelungseinrichtung 10 die bei einer Kurvenfahrt erforderlichen Lenkwinkel δ_{vl} und δ_{vr} des linken und des rechten Vorderrades des Fahrzeugs 11 einstellbar sind. Als Stellglieder einer insgesamt mit 16 bezeichneten Querdynamik-Steuereinheit des Fahrzeugs 11, mittels derer die Giergeschwindigkeit ψ des Fahrzeugs 11 eingestellt wird, sind auch dessen nicht dargestellte Radbremsen ausgenutzt, die, angesteuert durch Sollwert-Ausgangssignale des ψ -Reglers 14, einzeln oder zu mehreren selbsttätig zur Entfaltung definierter Radbremskräfte aktivierbar und dadurch ebenfalls zur Beeinflussung des Gier-Verhaltens des Fahrzeugs ausnutzbar sind.

Je nach der Fahrsituation erfolgt die Einstellung der Giergeschwindigkeit ψ entweder durch Aktivierung der Lenkwinkel-Stellorgane allein oder durch eine kombinierte Aktivierung der Lenkwinkel-Stellorgane und einer oder mehrerer der Radbremsen des Fahrzeugs und kann unter bestimmten "extremen" Bedingungen auch allein durch Ansteuerung einer oder mehrerer Radbremsen des Fahrzeugs 11 erfolgen.

Zur Generierung von ψ -Sollwert-Signalen, die dem Sollwert-Signaleingang 17 des ψ -Reglers 14 zuführbar sind, ist ein durch einen elektronischen Rechner implementiertes, lineares Fahrzeug-Referenzmodell 18, das ein beliebiges "Wunsch"-Fahrzeug repräsentieren kann, vorgesehen, das anhand der den Fahrerwunsch repräsentierenden Lenkwinkel-Eingabe und modellspezifischer Parameter, die eine realistische Übertragungsfunktion ergeben, sowie geschätzter oder gemessener Werte der Fahrzeuggeschwindigkeit Sollwerte der Giergeschwindigkeit $\psi_{soll}(\delta, v)$ ermittelt, aus deren Vergleich mit dem gemessenen Wert der Giergeschwindigkeit der ψ -Regler 14 die Ansteuer-Signale für die Lenkwinkel-Stellorgane und/oder die Bremsen-Aktuatoren der Querdynamik-Steuereinheit 16 erzeugt.

Die ψ -Regelungseinrichtung 10 umfaßt weiter einen insgesamt mit 19 bezeichneten Schwimmwinkel(β_b)- bzw. Schräglauwinkel(α_h)-Regler, dessen Zweck es ist, im Falle einer Schleudertendenz des Fahrzeugs den Schwimmwinkel β_b im Bereich der hinteren – nicht gelenkten – Fahrzeugräder 21 auf einen mit dynamischer Stabilität im Sinne schleuderfreien Fahrens verträglichen Wert zu begrenzen, wobei, wenn die Regelungseinrichtung 10 in diesem Betriebsmodus arbeitet, der Begrenzung des Schwimmwinkels β_b bzw. des Schräglauwinkels α_h die Priorität vor einer Änderung der Giergeschwindigkeit des Fahrzeugs durch Vergrößerung des Schräglauwinkels α_v an den gelenkten Vorderrädern 13 des Fahrzeugs 11 eingeräumt ist.

Zur Erläuterung der Konzeption dieses Schwimmwinkel-Reglers 19 sei zunächst anhand des linearisierten Einspurmodells gemäß Fig. 2 auf die das Gierverhalten des Fahrzeugs 11 beschreibenden Bewegungsgleichungen eingegangen, die durch die folgenden Differentialgleichungen:

$$J_z \cdot \ddot{\psi} = S_v \cdot l_v - l_h \cdot S_h \quad (1),$$

die sich aus der Forderung der Ausgeglichenheit der Momente um die durch den Schwerpunkt (SP) gehende Hochachse 45 22 ergibt, sowie

$$m \cdot \dot{v}_y = S_v + S_h - m \cdot v_x \cdot \dot{\psi} \quad (2),$$

die sich aus der Forderung nach Ausgeglichenheit der Querkräfte am Fahrzeug ergibt, gegeben sind.

In dem für die Bewegungsgleichungen (1) und (2) vorausgesetzten fahrzeugfesten Koordinatensystem, in dem mit "x" die Fahrzeuggängrichtung und mit "y" die dazu rechtwinklige Querrichtung indiziert sind, ist der Schwimmwinkel β_{sp} im Schwerpunkt des Fahrzeugs durch die linearisierte Beziehung

$$\beta_{sp} = -\frac{v_y}{v_x}$$

gegeben.

In entsprechend linearisierter Betrachtung gilt für den Schwimmwinkel β_{sh} in einem Punkt hinter dem Schwerpunkt, d. h. einem Punkt, der zwischen dem Schwerpunkt und der Hinterachse oder jenseits derselben liegt und vom Schwerpunkt SP den Abstand l_{sh} hat, die Beziehung

$$\beta_{sh} = -\frac{v_y}{v_x} + \frac{\dot{\psi} \cdot l_{sh}}{v_x}$$

und demgemäß für den Schwimmwinkel β_h an der Hinterachse, wo der Schwimmwinkel gemäß dem Einspurmodell der Fig. 2 gleich dem Schräglauwinkel α_h ist, die Beziehung

$$\beta_h = -\frac{v_y}{v_x} + \frac{\dot{\psi} \cdot l_h}{v_x}$$

5 in der mit l_h der Abstand der Hinterachse vom Fahrzeugschwerpunkt bezeichnet ist.

Durch zeitliche Differenzierung dieser Beziehung folgt unter der Bedingung, daß die Fahrzeulgängsgeschwindigkeit v_x konstant ist, die Beziehung:

$$10 \quad \dot{\beta}_h = -\frac{\dot{v}_y}{v_x} + \frac{\ddot{\psi} \cdot l_h}{v_x} \quad (3)$$

Hieraus ergibt sich mit \dot{v}_y aus der Beziehung (2) und $\ddot{\psi}$ aus der Beziehung (1) für die zeitliche Änderung $\dot{\beta}_h$ des Schwimmwinkels β_h an der Hinterachse die folgende Beziehung:

$$15 \quad \dot{\beta}_h = S_v \left[\frac{l_v \cdot l_h}{v_x \cdot J_z} - \frac{1}{m \cdot v_x} \right] - S_h \left[\frac{l_h^2}{v_x \cdot J_z} + \frac{1}{m \cdot v_x} \right] + \dot{\psi}$$

20 (4).

Unter der Bedingung, daß das Trägheitsmoment J_z des Fahrzeuges 11 um seine Hochachse 22 der Beziehung

$$J_z \approx m \cdot l_v \cdot l_h$$

25 genügt, die z. B. bei Personenkraftwagen meist in sehr guter Näherung erfüllt ist oder leicht erfüllbar ist, ergibt sich aus der Beziehung (4), für die Schwimmwinkeländerung $\dot{\beta}_h$ die Beziehung

$$30 \quad \dot{\beta}_h = \dot{\psi} - \frac{S_h \cdot (l_v + l_h)}{l_v \cdot m \cdot v_x} = \dot{\psi} - \frac{S_h \cdot L}{l_v \cdot m \cdot v_x} \quad (5).$$

Aus dieser Beziehung ist ersichtlich, daß für

$$35 \quad \dot{\psi} = \frac{S_h \cdot L}{l_v \cdot m \cdot v_x}$$

die zeitliche Änderung $\dot{\beta}_h$ bzw. $\dot{\alpha}_h$ des Schwimmwinkels β_h an den Hinterrädern 21 bzw. des mit diesem identischen Schräglauftwinkels α_h verschwindet ($\dot{\alpha}_h = 0$), d. h. der Schwimmwinkel bzw. der Schräglauftwinkel konstant wird.

Dies wird zu einer Begrenzungsregelung des Schräglauftwinkels α_h durch Regelung der Giergeschwindigkeit $\dot{\psi}$ in der

40 Weise genutzt, daß der Schwimmwinkel-Regler 19 Sollwerte $\dot{\psi}_{\text{soll}}(\alpha_h)$ für die Giergeschwindigkeits ($\dot{\psi}$)-Regelung gemäß dem Regelungsansatz:

$$45 \quad \dot{\psi}_{\text{soll}}(\alpha_h) = \frac{L \cdot S_n(\alpha_h)}{l_v \cdot m \cdot v_x} - \lambda (\alpha_h - \alpha_{hsoll}) \quad (6)$$

generiert, die dem Sollwert-Eingang 17 des $\dot{\psi}$ -Reglers 14 zuführbar sind, wobei mit λ ein frei wählbarer Verstärkungsfaktor bezeichnet ist.

Die durch die $\dot{\psi}$ -Regelungseinrichtung 10 insgesamt repräsentierte Regelstrecke hat eine Kaskade-Struktur mit der Giergeschwindigkeit $\dot{\psi}$ als Stellgröße, wobei durch den Regleransatz gemäß der Beziehung (6) eine Linearisierung der

50 Querbewegung erzielt wird, gemäß der Beziehung

$$\dot{\alpha}_h = -\lambda(\alpha_h - \alpha_{hsoll}) \quad (7),$$

die sich unmittelbar aus einem Vergleich der Beziehungen (5) und (6) für den Fall, daß $\dot{\psi} = \dot{\psi}_{\text{soll}}(\alpha_h)$ ist, ergibt.

55 Die in den Beziehungen (1), (2), (4), sowie (5) und (6) auftretenden Seitenkräfte sind in dem linearisierten Einspurmodell des Fahrzeuges 11 durch die Beziehungen:

60

65

$$S_v = \frac{l_h \cdot m \cdot a_y + J_z \cdot \dot{\psi}}{l_v + l_h} \quad (8)$$

und

$$S_h = \frac{l_v \cdot m \cdot a_y - J_z \cdot \dot{\psi}}{l_v + l_h} \quad (9)$$

gegeben.

Den Seitenkräften gemäß den Beziehungen (8) und (9) entsprechen "Reifen"-Seitenkräfte, die in Abhängigkeit vom Schräglauwinkel $\alpha_{v,h}$ durch eine Beziehung der Form

$$S_{v,h} = c_{v,h} \cdot \alpha_{v,h} \quad (10)$$

angebar sind, in der mit $c_{v,h}$ reifencharakteristische Schräglaufstieigkeiten bezeichnet sind.

Der Verlaufskurve 23 der Fig. 3, die eine typische Form der Abhängigkeit der Seitenkräfte vom Schräglauwinkel repräsentiert, ist unmittelbar entnehmbar, daß durch dessen Vergrößerung ein Anwachsen der Seitenkräfte nur bis zu einem Maximalwert α_{hmax} des Schräglauwinkels möglich ist.

Dergemäß ist der Schräglauwinkel- bzw. Schwimmwinkelregler 19 dahingehend ausgelegt, daß der Schräglauwinkel α_h einen Wert α_{hbegr} nicht überschreiten kann und dieser als Sollwert für die Regelung gemäß der Beziehung (6) gewählt.

Der Wert α_{hbegr} kann fest vorgegeben sein, z. B. auf einen Wert um 10° , der etwa dem Wert α_{hmax} entspricht, der die obere Grenze des Schräglauwinkels markiert, bis zu der durch Lenkwinkel- bzw. Schräglauwinkelvergrößerung eine Steigerung der Seitenkräfte möglich ist, oder, wie in der Fig. 1 durch einen Grenzwertgeber 24 schematisch dargestellt, variabel vorgebbar sein, dessen Ausgabe als Sollwert-Eingabe einem $\psi_{soll}(\alpha_h)$ -Generator 26 zugeleitet ist, der die ψ_{soll} -Wertausgaben für den ψ -Regler 14 erzeugt, die über die ψ -Regelung die Schräglauwinkel-Regelung vermitteln.

Eine zweckmäßige Art der Vorgabe des Grenzwertes α_{hbegr} besteht darin, daß dieser Grenzwert gemäß einer Beziehung

$$\alpha_{hbegr} = a_{hmax} \cdot \mu + \alpha_{h0} \quad (11)$$

gebildet wird, in der a_{hmax} und α_{h0} konstante Parameter sind und μ den in der jeweiligen Kurvenfahrt-Situation genutzten Kraftschluß-Beiwert bezeichnet, der in Abhängigkeit von der Fahrbahnbeschaffenheit und von Witterungsbedingungen deutlich variieren kann. Eine zweckmäßiger Wahl der festen Parameter a_{hmax} und α_{h0} in Relation zu dem oberen Grenzwert α_{hmax} des Schräglauwinkels besteht darin, daß, wenn das Verhältnis $\alpha_{hmax}/\alpha_{h0}$ einen Wert q ($q < 1$) hat, für den Parameter a_{hmax} der Wert $(q - 1) \alpha_{h0}$ gewählt wird, so daß sich bei einem typischen Maximalbetrag des Kraftschlußbeiwertes μ um 1 der Wert α_{hmax} als Sollwert für die Schräglauwinkel-Regelung ergibt.

Die zur Generierung der für die Schräglauwinkel-Begrenzung geeigneten ψ_{soll} -Werte gemäß der Beziehung (6) erforderliche Seitenkraft $S_h(\alpha_h)$ wird gemäß der Beziehung (9) aus gemessenen oder geschätzten Werten der Querbeschleunigung a_y und der Gierbeschleunigung $\dot{\psi}$ ermittelt, wobei unterstellt wird, daß die Fahrzeuggmasse m , der Abstand l_v des Schwerpunktes SP von der Vorderachse, der Radstand $L = l_v + l_h$ und das Gier-Trägheitsmoment J_z als fahrzeugspezifische Größen konstant sind.

Die Fahrzeuglängsgeschwindigkeit v_x wird aus gemessenen Werten der Raddrehzahlen ω_i der Fahrzeugräder als Schätzwert ermittelt.

Der Ist-Wert α_h des Schräglauwinkels an der Hinterachse wird gemäß der linearisierten Beziehung

$$\alpha_h = - \frac{v_y}{v_x} + \frac{\dot{\psi} \cdot l_h}{v_x}$$

anhand geschätzter Werte der Fahrzeuglängsgeschwindigkeit v_x und der Fahrzeugquergeschwindigkeit v_y sowie des gemessenen Wertes $\dot{\psi}$ der Giergeschwindigkeit ermittelt. Ein diesbezüglich geeigneter Schätzwertgeber 27, der aus einer Verarbeitung von Meßwerten für die Giergeschwindigkeit $\dot{\psi}$, die Gierbeschleunigung $\ddot{\psi}$, die Fahrzeugquerbeschleunigung a_y , die Fahrzeulgängsbeschleunigung a_x , die Raddrehzahlen ω_i und die Vorderrad-Lenkinkel δ_i , die von dem ψ -Regler 14 bzw. vom α_h -Regler 26 zu verarbeitenden Schätzwerte \hat{v}_x , \hat{v}_y , sowie einen Schätzwert $\hat{\mu}$ für den Kraftschlußbeiwert generiert, die als Eingaben dem Grenzwert-Geber 24 zugeleitet sind, sowie gegebenenfalls eine a_y -Ausgabe für den α_h -Regler generiert, kann in der Art eines Kalman-Filters ausgebildet sein, wie z. B. in der DE 43 25 413 A1, auf die hiermit ausdrücklich Bezug genommen sei, für die Bestimmung des Schwimmwinkels eines Fahrzeuges im Detail näher erläutert.

Schätzwerte $\hat{\mu}$ des Kraftschlußbeiwertes können dadurch ermittelt werden, daß die Beträge der Seitenkräfte gemäß den Beziehungen (8) und (9) durch die jeweils gegebenen Normalkräfte F_z an der Vorderachse und der Hinterachse dividiert werden, die ihrerseits aus dem Fahrzeuggewicht und der Achs- bzw. Radlastverteilung schätzbar sind. Ein Schätzwert \hat{v}_y der Quergeschwindigkeit kann durch eine Integration der Querbeschleunigung a_y über die Zeitspanne Δt gewon-

nen werden, die bei einer Einstreuung einer Kurvenfahrt verstreicht, bis die Querbeschleunigung a_y konstant geworden ist.

Damit der zur Begrenzung des Schräglauwinkels α_h über eine Begrenzung der Giergeschwindigkeit ψ vorgeschene Regelungsmodus, der unter extremen Bedingungen zu einer signifikanten Abweichung der Fahrzeug-Bewegungsbahn

5 vom Fahrerwunsch führen kann, nur dann wirksam wird, wenn eine Schleudertendenz des Fahrzeugs gegeben ist, ist bei dem durch die Regelungseinrichtung 10 implementierten Regelungskonzept vorgesehen, daß der genannte Regelungsmodus nur dann gewählt wird, wenn der durch die Schräglauwinkel-Regelung gemäß der Beziehung (5) bedingte $\psi_{\text{soll}}(\alpha_h)$ -Wert kleiner als der vom Fahrzeug-Referenzmodell 18 ausgegebene $\psi(\delta, v_x)$ -Wert ist, der in Abhängigkeit vom Lenkwinkel δ und des Schätzwertes \hat{v}_x der Fahrzeuglängsgeschwindigkeit als variablen Größen bestimmt wird.

10 Demgemäß ist eine Umschalt-Einrichtung 28 vorgesehen, die die Sollwert-Ausgaben des Fahrzeug-Referenzmodells 18 und diejenigen des α_h -Reglers 19 entsprechend der genannten Umschaltstrategie, daß der dem Betrag nach jeweils kleinere der beiden Soll-Werte für die ψ -Regelung maßgeblich sein soll, alternativ dem Sollwert-Eingang 17 des ψ -Reglers 14 zuleitet.

15 Dadurch wird erreicht, daß das Fahrzeug in der überwiegenden Anzahl der statistisch bedeutsamen Kurvenfahrt-Situationen im wesentlichen über den Lenkungs-Eingriff gesteuert wird und sich somit auch weitestgehend dem Fahrerwunsch entsprechend verhält und die zu einem Abweichen der Bewegungsbahn des Fahrzeuges vom Fahrerwunsch führende Schräglauwinkel-bzw. Schwimmwinkel-Begrenzungsregelung nur in den extremen, "gefährlichen" Bedarfssituationen wirksam wird.

20

Patentansprüche

1. Verfahren zur Regelung der Querdynamik eines Fahrzeuges mit Vorderachs-Lenkung, wobei die Regelung in Abhängigkeit von Abweichungen gemessener Ist-Werte der Giergeschwindigkeit von fortlaufend generierten Soll-Werten derselben und die Nachführung der Ist-Werte durch Einstellung von Radlenkwinkeln (δ_i) und/oder Einstellung von Radbremskräften (P_i) erfolgt, dadurch gekennzeichnet, daß anhand eines linearen Fahrzeugmodells, das ein dynamisches Wunsch-Verhalten repräsentiert, ein erster Sollwert $\psi_{\text{soll}}(\delta, v_x)$ für die Giergeschwindigkeit ψ ermittelt wird, der dem durch Betätigung eines Steuerorgans (Lenkrad, Joystick, oder dergleichen) eingesteuerten Fahrerwunsch bezüglich der Bahnbewegung des Fahrzeuges entspricht, daß unter der Nebenbedingung, daß der Schwimmwinkel β_h im Bereich der nicht gelenkten Hinterräder des Fahrzeuges einen begrenzten Wert nicht überschreiten soll, ein weiterer Sollwert $\psi_{\text{soll}}(\beta)$ ermittelt wird, und daß der dem Betrage nach kleinere dieser beiden Soll-Werte als der für die Regelung maßgebliche Sollwert der Giergeschwindigkeit genutzt wird.

25 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der weitere Sollwert $\psi_{\text{soll}}(\beta)$ gemäß der Beziehung

$$\psi_{\text{soll}}(\beta) = \frac{K \cdot a_{ysh}}{v_x} - \lambda \cdot (\beta_{sh} - \beta_{sh\max})$$

30 gebildet wird, in der mit β_{sh} der Schwimmwinkel in einem in signifikantem Abstand vom Schwerpunkt im hinteren Bereich des Fahrzeuges liegenden Punkt, mit a_{ysh} die Querbeschleunigung in diesem Punkt mit K eine fahrzeugspezifische Konstante und mit λ ein wählbarer Verstärkungsfaktor bezeichnet sind.

35 3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß, für den Fall, daß das Gier-Trägheitsmoment J_z mindestens in guter Näherung durch die Beziehung

$$J_z = l_h \cdot l_v \cdot m$$

40 45 gegeben ist, in der mit m die Fahrzeuggmasse, mit l_v der Abstand des Schwerpunktes des Fahrzeuges von der Vorderachse und mit l_h der Abstand des Schwerpunktes von der Hinterachse bezeichnet sind, der weitere, für die Giergeschwindigkeits-Begrenzungsregelung benötigte Sollwert gemäß der Beziehung

$$\psi_{\text{soll}}(\alpha_h) = \frac{L \cdot S_h(\alpha_h)}{l_v \cdot v_x \cdot m} - \lambda \cdot (\alpha_h - \alpha_{h\max})$$

50 bestimmt wird, in der mit L der Achsabstand des Fahrzeuges und mit $S_h(\alpha_h)$ die bei einer Kurvenfahrt an der Hinterachse des Fahrzeuges auftretende Seitenkraft bezeichnet sind.

55 4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der Schwimmwinkel-Grenzwert β_{hmax} bzw. der Schräglauwinkel-Grenzwert α_{hmax} fest vorgegeben wird, vorzugsweise mit einem Wert um 10° .

5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der Schwimmwinkel-Grenzwert β_{hmax} unter Berücksichtigung geschätzter Werte \hat{v}_x sowie $\hat{\mu}$ der Fahrzeuglängsgeschwindigkeit v_x und des Kraftschlußbeiwertes μ ermittelt wird.

60 6. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der Ist-Wert des Schwimmwinkels β_h aus geschätzten Werten \hat{v}_y , \hat{v}_x der Fahrzeug-Quergeschwindigkeit (v_y) und der Fahrzeug-Längsgeschwindigkeit (v_x) ermittelt wird.

Hierzu 2 Seite(n) Zeichnungen

Fig. 1

Fig. 2

 $S_h(\alpha_h)$

Fig. 3

