

Deep Learning Meets Data Privacy

Presenter: Sharika Loganathan

Data Scientist,

University of Pittsburgh

Agenda

Why Privacy Matters in the Age of Al

Limitations of Traditional Anonymization

From Anonymization to Computable Privacy

Understanding Differential Privacy

Rethinking the Machine Learning Pipeline

Differential Privacy in Practice

Q&A, Feedback, and References

Why Privacy Matters in the Age of Big Data & Al

Massive Data
Collection

Al Models Learn from Us Risk of Reidentification

Trust & Transparency

Legal & Ethical Imperatives

Sustainable Al Development

According to Statista, the global data volume was 149 zettabytes in 2024 and is projected to reach 181 zettabytes by the end of 2025

The Problem: Why Traditional Anonymization Fails

Linkage Attacks - Netflix's anonymized movie ratings were deanonymized using IMDb reviews.

A dataset with **Date of Birth, Sex, and ZIP code** can re-identify most U.S. citizens.

In fact, **87%** of Americans can be uniquely identified using just these three attributes

Traditional anonymization techniques fail against modern data linkage and Al-driven inference attacks — demanding stronger privacy guarantees like **Differential Privacy**.

Need for Computational Privacy

GOAL: Privacy Preserving Data Analysis

- Obtain answers or usefulness in surveys, but at the same time maintain the privacy or "plausible deniability
- Provides privacy guarantees
- Protects against a wide range of attacks even unforeseen ones
- Ensures trustworthy data analysis in deep learning and Al

What is Differential Privacy

Definition:

Differential privacy (DP) is a mathematically rigorous framework for releasing statistical information about datasets while protecting the privacy of individual data subjects.

Key Idea (Cynthia Dwork, 2016):

"The outcome of any analysis is essentially equally likely, independent of whether any individual joins or refrains from joining the dataset."

Core Principle (Kearns & Roth, 2020):

"Adding or removing the data record of a single individual does not change the probability of any result too much".

Google receives only noisy data and aggregates it...

Browser	True Count	Private Count	Error		
Chrome	6,483	6,956	7.3	%	
Safari	2,055	2,799	36.2	%	
Edge	753	1,622	115.4	%	
Firefox	505	1,590	214.9	%	
Other	204	1,202	489.2	%	

KEY INSIGHTS

- ☑ Individual Privacy: No one (not even Google) knows your actual browser
- ☑ Useful Statistics: Aggregate trends are preserved with high accuracy
- ☑ Mathematical Guarantee: ε-differential privacy ensures plausible deniability

\bigcirc With $\epsilon=1.0$:

- Any individual can deny their true browser choice
- Aggregate statistics have ~1.0% statistical error

PRIVACY GUARANTEE DEMONSTRATION

Example: Alice uses Firefox, but reports 'Chrome' due to randomization

Alice's TRUE browser: firefox

Alice's 10 reports: ['safari', 'firefox', 'chrome', 'safari', 'other', 'chrome', 'edge', 'chrome', 'firefox', 'safari']

→ Even if someone intercepts Alice's report, they can't be sure of her actual browser because randomization provides plausible deniability!

BONUS: RAPPOR - GOOGLE'S ACTUAL CHROME IMPLEMENTATION

```
Browser: chrome
5 RAPPOR-encoded reports (each is a bit vector):
Report 1: [1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0]
Report 2: [0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1]
Report 3: [1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1]
Report 4: [0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1]
Report 5: [0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1]
```

Note: RAPPOR provides even stronger privacy by:

- Using Bloom filters for efficient encoding
- Adding multiple layers of randomization
- Enabling longitudinal privacy (multiple reports from same user)

Mathematics Behind Differential Privacy


```
Mathematical Formula:
```

Metric	Value
True 'Yes' Rate	70.00%
Observed 'Yes' Rate	60.10%
Estimated 'Yes' Rate	70.20%
Estimation Error	0.20%

Press ENTER to verify privacy guarantees...

DIFFERENTIAL PRIVACY VERIFICATION

₫ Testing the mathematical guarantee:

$$Pr[K(D_1) \in S] \le exp(\epsilon) \times Pr[K(D_2) \in S] + \delta$$

Dataset D₁: 600 'Yes' \rightarrow Pr = 0.6000

Dataset D₂: 601 'Yes' \rightarrow Pr = 0.6010

Privacy Loss: $ln(0.6010/0.6000) = 0.0017$

Required Bound: $\epsilon + \delta = 1.0000 + 1e-05 = 1.0000$

✓ SATISFIES (ϵ, δ) -Differential Privacy

Privacy Budget Epsilon

Initial suspicion was 50%,

Updated suspicion = range of

Machine Learning Pipeline

Differential Privacy Pipeline

Data privacy at different stages in deep learning network

Differential Privacy in Practice

Government, Healthcare and Technology

	Local Differential Privacy (LDP)	Central Differential Privacy (CDP)	Differentially Private SGD (DP-SGD)
Definition	Each user's data is randomized before it is sent to the server. The server never sees the raw data.	Raw data is collected and stored by a trusted server, and noise is added when releasing aggregate results.	A training algorithm where noise is added to gradients during model training to ensure privacy.
Noise	At the client/user side (before data collection).	At the server/output side (after data collection).	During model training, to the gradients and clipped updates.
Privacy Parameter (ε)	Typically larger ε (less accuracy) because each user adds noise individually.	Smaller ϵ possible with the same privacy level — better accuracy since aggregation reduces noise.	ε controlled via gradient clipping and noise multiplier; balance between model utility and privacy.

	Local Differential Privacy (LDP)	Central Differential Privacy (CDP)	Differentially Private SGD (DP-SGD)
Key Trade-off	Strongest privacy, weakest accuracy	Balanced privacy and accuracy	Moderate privacy, good accuracy for ML
Example Use Cases	 Google Chrome's RAPPOR for user telemetry Apple's iOS keyboard data Privacy-preserving analytics without raw data sharing 	- Census data release (e.g., US Census Bureau) - Aggregate statistics and queries on sensitive datasets	- Training privacy-preserving ML models - Used in Google's and OpenAI's research for differentially private training
Frameworks / Tools	OpenDP / Google's RAPPOR / Apple LDP framework	TensorFlow Privacy (for central DP queries) / OpenDP	TensorFlow Privacy, PyTorch Opacus, Diffpr ivlib

Diffprivlib: The IBM Differential Privacy Library

279 ·

Stars

¥ 207 Forks 0

meta-pytorch/ opacus

Training PyTorch models with differential privacy

A 64

☆ 11

☆ 2k

2k

앟 382

Differential Privacy Framework and Tools

OpenMined/**PyDP**

The Python Differential Privacy Library. Built on top of: https://github.com/google/differential-privacy

Rx 54 Contributors

₩ 13 Used

☆ 54 d by St

양 141 Forks

LIBRARIES FOR PRODUCTION USE

- 1. Google's PipelineDP:
 pip install pipeline-dp
 - → Production-ready, used internally at Google
- 2. OpenMined's PyDP:
 pip install python-dp
 - → Python bindings for Google's differential-privacy library
- 3. IBM's diffprivlib:

 pip install diffprivlib
 - → Scikit-learn compatible, easy to use

References

Google

https://github.com/sharikalog7/Differential-Privacy