1 Wiederholung?

Wir starten mit einer kurzen Wiederholung zur Fixpunktiteration zum Lösen von Gleichungen der Form Tx = x durch $x_{n+1} = Tx_n$.

Satz 1.1 (Banach 1922). Sei M eine abgeschlossene nichtleere Teilmenge in einem vollständig metrischem Raum (X,d). Sei $T:M\to M$ eine Selbstabbildung und k-kontraktiv, d.h. $d(Tx,Ty)\leq k\cdot d(x,y) \ \forall x,y\in M$ mit $0\leq k<1$. Dann folgt:

- 1. Existenz und Eindeutigkeit: die Gleichung Tx = x hat genau eine Lösung, d.h. T hat genau einen Fixpunkt in M.
- 2. Konvergenz der Iteration $x_{k+1} = Tx_k$. Die Folge $(x_k)_{k \in \mathbb{N}}$ konvergiert gegen den Fixpunkt x^* für einen beliebigen Startpunkt $x_0 \in M$.
- 3. Fehlerabschätzung: Für alle $n = 0, 1, \dots$ gilt
 - a-priori: $d(x_n, x^*) \le k^n (1 k)^{-1} d(x_0, x_1)$
 - a-posteriori: $d(x_{n+1}, x^*) \le k(1-k)^{-1}d(x_n, x_{n+1})$
- 4. Konvergenzrate: Für alle $n \in \mathbb{N}$ gilt $d(x_{n+1}, x^*) \leq k \cdot d(x_n, x^*)$

Beweis.

2. Wir zeigen, dass (x_n) eine Cauchy-Folge ist. Für den Abstand zweier benachbarter Folgeglieder x_n und x_{n+1} gilt

$$d(x_n, x_{n+1}) = d(Tx_{n-1}, Tx_n) \le k \cdot d(x_{n-1}, x_n) \le \ldots \le k^n \cdot d(x_0, x_1)$$

Mehrfache Anwendung der Dreiecksungleichung liefert daher für $n, m \in \mathbb{N}$:

$$d(x_n, x_{n+m}) \le d(x_n, x_{n+1}) + d(x_{n+1}, x_{n+2}) + \dots + d(x_{n+m-1}, x_{n+m})$$

$$\le (k^n + k^{n+1} + \dots + k^{n+m}) \cdot d(x_0, x_1)$$

$$\le k^n (1 + k + k^2 + \dots) \cdot d(x_0, x_1)$$

$$= k^n \cdot (1 - k)^{-1} d(x_0, x_1)$$

Demnach folgt $d(x_n, x_{n+m}) \to 0$ für $n \to \infty$ und da X vollständig ist konvergiert (x_n) gegen ein $x^* \in X$.

1. Da T stetig ist (aufgrund k-Kontraktivität) folgt für die konvergente Folge (x_n) , dass

$$x^* = \lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} Tx_n = Tx^*$$

Da M abgeschlossen ist existiert also ein Fixpunkt in M.

Dieser ist eindeutig, denn für x, y mit Tx = x und Ty = y gilt $d(x, y) = d(Tx, Ty) \le kd(x, y)$, also d(x, y) = 0.

3. Aus dem Beweis zu 2. haben wir $d(x_n, x_{n+m}) \leq k^n (1-k)^{-1} d(x_0, x_1)$, wegen der Stetigkeit der Metrik folgt die a-priori-Fehlerabschätzung aus $m \to \infty$.

Die a-posteriori-Fehlerabschätzung folgt analog aus dem Ansatz

$$d(x_{n+1}, x_{n+1+m}) \le d(x_{n+1}, x_{n+2}) + \dots + d(x_{n+m}, x_{n+1+m})$$

$$\le (k + \dots + k^m) \cdot d(x_n, x_{n+1})$$

$$\le k \cdot (1 - k)^{-1} d(x_n, x_{n+1})$$

4. Folgt direkt durch $d(x_{n+1}, x^*) = d(Tx_n, Tx^*) \le k \cdot d(x_n, x^*)$

Beispiel 1.2. Wir betrachten das Nullstellenproblem
$$f: \mathbb{R} \to \mathbb{R}, x \mapsto \cos x - x = 0$$
. Umformung ergibt $\underbrace{\cos x}_{Tx} = x$ und somit die Fixpunktiteration $x_{k+1} = Tx_k = \cos(x_k)$

Abb. 1.1

Prüfung der Voraussetzungen des Banach'schen FP-Satzes:

Wir wählen als Einschränkung M = [0, 1], dies liefert uns eine Selbstabbildung auf einer abgeschlossenen Teilmenge M des vollständig metrischen Raum \mathbb{R} mit der Abstandsfunktion d(x, y) = |x - y|. Weiter ist die Abbildung k-kontraktiv: Nach Mittelwertsatz der Differentialrechnung gilt

$$|\cos x - \cos y| = \underbrace{|\sin \xi|}_{\leq \sin(1)} \cdot |x - y| \leq \underbrace{0, 85}_{=:k} \cdot |x - y|, \quad \text{für } \xi \in [0, 1]$$

Wir können also nach Banach die Existenz und Eindeutigkeit eines Fixpunkt x^* folgern, diesen Fixpunkt finden wir durch die konvergente Folge $x_{k+1} = \cos x_k$.

Wir betrachten im folgenden die Idee der Umwandlung eines Nullstellenproblems in Fixpunkt-Gleichung noch etwas allgemeiner. Für eine Gleichung f(x)=0 mit $f:\mathbb{R}\to\mathbb{R}$ haben wir verschiedene Möglichkeiten zur Umformung:

- a) Betrachte Tx := x f(x) gefolgert aus $f(x) = 0 \Leftrightarrow -f(x) = 0 \Leftrightarrow x f(x) = x$.
- b) Betrachte $Tx := x \omega \cdot f(x)$ mit $\omega \neq 0$ (lineare Relaxation)
- c) Betrachte $Tx := x \omega \cdot g(f(x))$ mit $\omega \neq 0$ und geeigneter Funktion g (nichtlineare Relaxation). Wenn $g(0) \neq 0$ dann betrachte $Tx := x \omega \cdot (g(f(x)) + g(0))$
- d) Betrachte $Tx := x (f'(x))^{-1} f(x)$ (Newtonverfahren) Newton hat teils Probleme, bei falschen Startwerten: Abb 1.2
- e) Betrachte $Tx := h^{-1}(f(x) g(x))$, wobei f(x) = h(x) + g(x) (Splitting-Verfahren)

2 Iteratives Vorgehen zur Lösung linearer Gleichungssysteme

2.1 Splittingverfahren

Gegeben sei das LGS Ax = b für $A \in \mathbb{K}^{n \times n}, b \in \mathbb{K}^n, x \in \mathbb{K}^n$, wobei $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$. Wir wollen dieses LGS nun in ein FP-Problem umformen, sei hierfür A nicht singulär (sonst nicht lösbar).

Wir schreiben A = M - N, wobei M invertierbar und häufig sogar eine Diagonalmatrix ist (damit M leicht zu invertieren ist). Dies liefert:

$$Ax = b \Leftrightarrow (M - N)x = b \Leftrightarrow Mx = Nx + bx = \underbrace{M^{-1} \cdot (Nx + b)}_{\widehat{T}_{T}}$$

 \tilde{T} ist affin-linear. Wir erhalten also unser FP-Problem $x=\tilde{T}x=Tx+c$ mit $T=M^{-1}N$ und $c=M^{-1}b$

Algorithmus 1: Splittingverfahren

Initialisierung: : A = M - N mit $N \in GL(n, \mathbb{K})$

- 1 Wähle $x^{(0)} \in \mathbb{K}^n$ beliebig
- 2 for k = 0, 1, ...
- $\mathbf{3} \quad | \quad \text{l\"ose } Mx^k = Nx^{k-1} + b$
- 4 until stop (beliebiges Stopkriterium)

Konvergenz dieses Algorithmus folgt aus Banachschen Fixpunktsatz.

Bemerkung 2.1. Nach gleicher Überlegung lässt sich auch unser obiges Splittingverfahren für Nullstellenbestimmung herleiten:

$$f(x) = 0 \Leftrightarrow h(x) + g(x) := f(x) = 0 \Leftrightarrow h(x) = f(x) - g(x) \Leftrightarrow x = h^{-1}(f(x) - g(x))$$

Wiederholung: Eine Matrixnorm ist eine Norm auf dem Vektorraum der Matrizen, d.h. $\|\cdot\|: \mathbb{K}^{n\times n} \to \mathbb{R}$, bereits bekannte Matrixnormen sind:

- Frobenius norm: $\|A\|_F := \left(\sum_{i,j} |a_{ij}|^2\right)^{1/2}$
- Spaltensummennorm $||A||_1 := \max_j \sum_i |a_{ij}|$
- Zeilensumennorm $||A||_{\infty} := \max_{i} \sum_{j} |a_{ij}|$
- Spektralnorm $||A||_2 := \sqrt{\lambda_{max}(A^H A)}, \qquad (A^H := \overline{A}^T)$

Im allgemeinen induziert eine Vektornorm auch immer eine Matrixnorm, diese nennen wir auch Operatornorm:

$$||A|| := \max_{||x||=1} ||Ax||$$

Die oben aufgelisteten Normen $\|\cdot\|_1, \|\cdot\|_2$ und $\|\cdot\|_{\infty}$ sind die Operatornormen zu der jeweiligen p-Normen.

Eine Norm $\|\cdot\|$ auf $\mathbb{K}^{n\times n}$ heißt submultiplikativ, falls $\|AB\| \le \|A\|\cdot\|B\|$ und sie heißt verträglich mit einer Vektornorm $\|\cdot\|_V$, falls $\|Ax\|_V \le \|A\|\cdot\|x\|_V$.

Operatornormen sind immer submultiplikativ und verträglich zu der Vektorrnorm, aus welcher sie abgeleitet wurden.

Satz 2.2. Ist $\| \cdot \|$ eine Norm auf $\mathbb{K}^{n \times n}$, die mit einer Vektornorm verträglich ist, und ist $\| M^{-1}N \| < 1$, dann konvergiert der Algorithmus für jedes für jedes $x^{(0)} \in \mathbb{K}^n$ gegen $A^{-1}b$, d.h. gegen die Lösung des linearen Gleichungssystems Ax = b.

Beweis. Sei $\tilde{T}(x) := Tx + c$ mit $T = M^{-1}N$ und $c = M^{-1}b$. Offensichtlich gilt $\tilde{T} : \mathbb{K}^n \to \mathbb{K}^n$, sowie

$$\|\tilde{T}(x) - \tilde{T}(y)\| = \|Tx - Ty\| \le \|T\| \cdot \|x - y\|$$

Da $||T|| = ||M^{-1}N|| < 1$ ist \tilde{T} eine k-kontraktive Selbstabbildung und somit konvergiert die Folge (x^k) aus dem Algorithmus gegen den eindeutigen Fixpunkt x^* mit $\tilde{T}(x^*) = x^*$. Einsetzen der Definition von \tilde{T} liefert:

$$x^* = Tx + c = M^{-1}(Nx + b) \Rightarrow Mx = Nx + b \Rightarrow Ax = (M - N)x = b$$

Korollar 2.3. Sei A invertierbar, so konvergiert der obige Algorithmus genau dann für alle Startwerte $x^{(0)} \in \mathbb{K}^n$ gegen $x^* = A^{-1}b$, wenn für den Spektralradius $\rho(T) = \max\{|\lambda| : \lambda \in \sigma(T)\}$ die Ungleichung $\rho(T) < 1$ erfüllt ist.

Beweis.

 \Leftarrow : Falls $\rho(T) < 1$ dann existiert eine Norm $\|\cdot\|_{\varepsilon}$ auf \mathbb{K}^n und eine dadurch induzierte Operatornorm $\|\cdot\|_{\varepsilon}$ auf $\mathbb{K}^{n\times n}$ mit $\|T\|_{\varepsilon} \leq \rho(T) + \varepsilon < 1$ Warum? Satz 2.2 liefert dann die Konvergenz des Algorithmus.

 \Rightarrow : Angenommen $\rho(T) \geq 1$, d.h. es existiert ein Eigenwert λ von T mit $|\lambda| \geq 1$ und zugehörigem Eigenvektor z. Für $x^{(0)} = x^* + z$ und festes k sich der Iterationsfehler

$$x^{(k)} - x^* = Tx^{(k-1)} + c - x^* = Tx^{(k-1)} - Tx^* = T(x^{(k-1)} - x^*)$$

Induktiv folgt dann $x^{(k)} - x^* = T^k(x^0 - x^*) = T^k z = \lambda^k z$, demnach gilt $||x^{(k)} - x^*|| = |\lambda^k| \cdot ||z||$. Für größer werdendes k kann $x^{(k)}$ also nicht gegen x^* konvergieren.

Satz 2.4. Unter gleichen Voraussetzungen des obigen Korollars gilt

$$\max_{x^{(0)} \in \mathbb{K}^n} \limsup_{k \to \infty} ||x^* - x^{(k)}||^{1/k} = \rho(T)$$

Beweis. Aus dem Beweis von Korollar 2.3 sehen wir

$$\max_{x^{(0)} \in \mathbb{K}^n} \limsup_{k \to \infty} \|x^* - x^{(k)}\|^{1/k} \ge \limsup_{k \to \infty} \|T^k z\|^{1/k} = \limsup_{k \to \infty} |\lambda| \cdot \|z\|^{1/k} = |\lambda| = \rho(T)$$

Für jeden Startwert $x^{(0)} \in \mathbb{K}^n$ gilt nun

$$||x^{(k)} - x^*||_{\varepsilon} = ||T^k(x^{(0)} - x^*)||_{\varepsilon} \le ||T||_{\varepsilon}^k \cdot ||x^{(0)} - x^*||_{\varepsilon}$$

Da im \mathbb{K}^n alle Normen äquivalent sind, also inbesondere auch $\|\cdot\|_{\varepsilon}$ und $\|\cdot\|$, exisitert eine Konstante $c_{\varepsilon} > 0$, so dass

$$||x^{(k)} - x^*||^{1/k} \le \left(c_{\varepsilon} \cdot ||x^{(k)} - x^*||_{\varepsilon}\right)^{1/k} \le ||T||_{\varepsilon} \cdot \left(c_{\varepsilon} \cdot ||x^{(0)} - x^*||_{\varepsilon}\right)^{1/k} \xrightarrow{k \to \infty} ||T||_{\varepsilon}$$

Folglich ist

$$\varrho(T) \le \max_{x^{(0)}} \limsup_{k \to \infty} \|x^{(k)} - x^*\|^{1/k} \le \|T\|_{\varepsilon}$$

□Dieser Satz ermöglicht es nun einen sinnvollen Begriff der Konvergenzrate zu definieren:

Definition 2.5.

Die Zahl $\rho(T)$ heißt (asymptotischer) Konvergenzfaktor von der Iteration $x^{(k)} = Tx^{(k-1)} + c$. Die (asymptotische) Konvergenzrate lässt sich dadurch ausdrücken mit $r = -\log_{10} \varrho(T)$

Mittels der Zerlegung A = D + L + R, wobei D die Dianale, L die untere (linke) Hälfte und R die obere (rechte) Hälfte der Matrix A sind, erhalten wir einen Spezialfall der Splitting-Vefahren. Durch die Wahl M=D und N=L+R ergibt sich $x^{(k+1)}=D^{-1}(b-(L+R)x^{(k)})$, bzw. in algorithmischer Form:

Algorithmus 2: Jacobi / Gesamtschritt Verfahren

Gegeben sei das Lineare Gleichungssystem Ax = b mit $a_{ii} \neq 0$.

Initialisierung: : Wähle beliebigen Startvektor $x^{(0)} \in \mathbb{K}^n$

1 for k = 1, 0, ...

$$\begin{array}{c|c} \mathbf{z} & \mathbf{for} \ i = 1, \dots, n \\ \mathbf{z}_i^{(k+1)} \leftarrow \frac{1}{a_{ii}} \left(b_i - \sum_{i \neq j} a_{ij} x_j^{(k)} \right) \end{array}$$

5 until stop (beliebiges Stopkriterium)

Die zugehörige Iterationsmatrix ist hierbei $J = M^{-1}N = D^{-1}(L+R)$ und nennt sich (beim Jacobi Verfahren) Gesamtschrittoperator.

Einen weitere Version des Splitting-Verfahren ergibt sich durch die Wahl M=D-L und N=R. Hierbei bildet D-L eine obere Dreiecksmatrix und die Inversion ergibt sich mittels Vorwärtssubstitution:

Algorithmus 3: Gauss-Seidel / Einzelschritt Verfahren

Gegeben sei das Lineare Gleichungssystem Ax = b mit $a_{ii} \neq 0$.

Initialisierung: : Wähle beliebigen Startvektor $x^{(0)} \in \mathbb{K}^n$

1 for k = 1, 0, ...

$$\mathbf{a} \quad \begin{vmatrix} \mathbf{for} \ i = 1, \dots, n \\ \\ \mathbf{a} \quad \end{vmatrix} \quad x_i^{(k+1)} \leftarrow \frac{1}{a_{ii}} \left(b_i - \sum_{j < i} a_{ij} x_j^{(k+1)} - \sum_{j > i} a_{ij} x_j^{(k)} \right)$$

end

5 until stop (beliebiges Stopkriterium)

Die hier erhaltene Iterationsmatrix nennen wir Einzelschrittoperator $L = (D-L)^{-1}R$ Mittels der Zeilensumennorm erhalten wir nun ein leicht prüfbares Konvergenzkriterium:

Satz 2.6. Ist $A \in GL_n(\mathbb{K})$ strikt diagonaldominant, d.h. $|a_{ii}| > \sum_{j \neq i} |a_{ij}|$, dann konvergieren Jordan und Gauss-Seidel Verfahren für alle Startwerte $x^{(0)} \in \mathbb{K}^n$ gegen die eindeutige Lösung von Ax = b.

Beweis.

Da A strikt diagonaldominant ist, muss $a_i i \neq 0$ und damit sind beide Verfahren wohldefiniert.

a) Jacobi Verfahren: Für die Iterationsmatrix gilt

$$||J||_{\infty} = ||D^{-1}(L+R)||_{\infty} = \max_{i \in [n]} \frac{1}{|a_{ii}|} \sum_{j \neq i} |a_{ij}| =: q < 1$$

Nach Satz 2.2 folgt damit die Konvergenz des Jacobi Verfahren.

b) Gauss-Seidel Verfahren: Um $||L||_{\infty} < 1$ zu zeigen, nutzen wir, dass die Zeilensumennorm die Operatornorm induziert durch die Maximumsnorm ist, d.h.

$$||L||_{\infty} = \max_{||x||_{\infty} = 1} ||Lx||_{\infty}$$

Sei nun y = Lx für ein $x \in \mathbb{K}^n$ mit $||x||_{\infty} = 1$.

Induktiv folgt nun $y_i \leq q < 1$, der Induktionsanfang folgt dabei aus dem Beweisteil a).

Unter der Induktionsvoraussetzung gilt für j < i, dass $|y_j| \le q$ und damit:

$$||y_{i}|| \leq \frac{1}{|a_{ii}|} \left(\sum_{j < i} |a_{ij}| \cdot \underbrace{|y_{j}|}_{\leq q} + \sum_{j > i} |a_{ij}| \cdot \underbrace{|x_{j}|}_{\leq ||x||_{\infty}} \right)$$

$$\leq \frac{1}{|a_{ii}|} \left(\sum_{j < i} |a_{ij}| \cdot q + \sum_{j > i} |a_{ij}| \cdot ||x||_{\infty} \right)$$

$$< \frac{1}{|a_{ii}|} \left(\sum_{j < i} |a_{ij}| + \sum_{j > i} |a_{ij}| \right)$$

$$= \frac{1}{|a_{ii}|} \sum_{j \neq i} |a_{ij}|$$

$$= a$$

Da dies für alle Einträge von y gilt folgt $||y||_{\infty} = ||Lx||_{\infty} \le q$ für alle x mit $||x||_{\infty} = 1$ und damit $||L||_{\infty} \le q < 1$

Beispiel 2.7. Gegeben sei das LGS Ax = b mit

$$A = \begin{pmatrix} 2 & 0 & 1 \\ 1 & -4 & 1 \\ 0 & -1 & 2 \end{pmatrix}, \quad b = \begin{pmatrix} 1 \\ 4 \\ -1 \end{pmatrix}$$

Dieses System hat die eindeutige Lösung $x^* = (1, -1, -1)^T$.

Durch die Wahl $x^{(0)} = (1,1,1)^T$ erhalten wir beim Jacobi Verfahren:

$$x^{(1)} = D^{-1}(b - (L + R)x^{(0)}) = \begin{pmatrix} \frac{1}{2} & 0 & 0 \\ 0 & -\frac{1}{4} & 0 \\ 0 & 0 & \frac{1}{2} \end{pmatrix} \cdot \begin{bmatrix} \begin{pmatrix} 1 \\ 4 \\ -1 \end{pmatrix} - \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \end{bmatrix} = \begin{pmatrix} 0 \\ -\frac{1}{2} \\ 0 \end{pmatrix}$$

$$x^{(2)} = D^{-1}(b - (L + R)x^{(1)}) = \begin{pmatrix} \frac{1}{2} & 0 & 0 \\ 0 & -\frac{1}{4} & 0 \\ 0 & 0 & \frac{1}{2} \end{pmatrix} \cdot \begin{bmatrix} \begin{pmatrix} 1 \\ 4 \\ -1 \end{pmatrix} - \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ -\frac{1}{2} \\ 0 \end{pmatrix} \end{bmatrix} = \begin{pmatrix} \frac{1}{2} \\ -1 \\ -\frac{3}{4} \end{pmatrix}$$

2.2 Gradientenverfahren

Motivation: Eine Funtion $f: \mathbb{K}^n \to \mathbb{K}$ soll minimiert werden. Von einem Startpunkt $x^{(0)}$ ausgehen bewegen wir uns nun Stück für Stück in Richtung des steilsten Abstiegs, intuitiv sollten wir so ein

Minimum finden.

Als Iterationsvorschrift ergibt sich $x^{(k+1)} = x^{(k)} + \alpha^{(k)} \cdot d^{(k)}, \quad k = 0, 1, \dots$

dabei ist $\alpha^{(k)} > 0$ die Schrittweite und Abstriegsrichtung $d^{(k)} \in \mathbb{K}^n$. (Eine typische Wahl der Abstriegsrichtung ist $d^{(k)} = -\partial f/\partial x(x^{(k)}) = -\nabla f(x^{(k)})$)

Das Ziel ist des Verfahren ist es, dass sich der Wert von f in jedem Schritt verbessert, d.h. $f(x^{(k+1)}) < f(x^{(k)})$. Es ergibt sich ein 1-dim. Optimierungsproblem für die Schrittweite $\alpha^{(k)}$:

$$\alpha^{(k+1)} = \min_{\alpha \neq 0} \{ f(x^{(k)} + \alpha \cdot d^{(k)}) \}$$

Ein Nachteil des Verfahren ist, dass ein sogenannter "Zick-Zack-Kurs" entstehen kann.

Verfahren der konjugierten Gradienten: Die obige Idee kann zur effizienten Lösung linearer Gleichungssysteme genutzt werden. Gegeben sei das LGS Ax = b mit $A \in \mathbb{K}^{n \times n}$ hermitisch, d.h. $a_{ij} = \overline{a_{ji}}$ (hieraus folgt inbesondere, dass die Hauptdiagonale reell ist). Zur Lösung wird hierbei die Minimierung des quaratischen Funktionals

$$\phi(x) = \frac{1}{2}x^*Ax - x^*b$$

Sollte eine Lösung $\hat{x} = A^{-1}b$ des LGS Ax = b exisitieren, so gilt für alle $x \in \mathbb{K}^{n \times n}$:

$$\phi(x) - \phi(\hat{x}) = \frac{1}{2}x^*Ax - x^*b - (\frac{1}{2}\hat{x}^*A\hat{x} - \hat{x}^*b)$$

$$\vdots$$

$$= \frac{1}{2}(x - \hat{x})^*A(x - \hat{x}) \ge 0$$

Die Funktion hat demnach ein eindeutiges Minimum bei \hat{x} .

Definition 2.8. Ist $A \in \mathbb{K}^{n \times n}$ hermitisch und pos. definitiv, dann wird durch $\|x\|_A = \sqrt{x^*Ax}, x \in \mathbb{K}^{n \times n}$ eine Norm in \mathbb{K}^n definiert, die sogenannte Energienorm. Zur Energienorm gehört ein inneres Produkt, nämlich $\langle x,y\rangle_A = x^*Ay, x,y \in \mathbb{K}^n$. Mithilfe dieser Definition und obiger Erkentniss ergibt sich die Abweichung des Funktionals von seinem Minimum:

$$\phi(x) - \phi(\hat{x}) = \frac{1}{2} ||x - \hat{x}||_A^2$$

geometrische Interpretation: Der Graph von ϕ bezüglich der Energienorm ist ein kreisförmiger Parabloid, welcher über dem Mittelpunkt \hat{x} liegt.

Idee: Konstruktion eines Verfahrens, welches die Lösung \hat{x} von Ax = b iterativ approximiert, indem das Funktional ϕ zukzessiv minimiert wird:

Zur aktuellen Iteration $x^{(k)}$ wird die Suchrichtung $d^{(k)} \neq 0$ bestimmt, und die neue Iterierte $x^{(k+1)}$ über den Ansatz

$$x^{(k+1)} = x^{(k)} + \alpha \cdot d^{(k)} \tag{3}$$

bestimmt. Es gilt

$$\phi(x^{(k)} + \alpha d^{(k)}) = \phi(x^{(k)}) + \alpha d^{(k)} A x^{(k)} + \frac{1}{2} \alpha^2 d^{(k)} A d^{(k)} - 2 d^{(k)} \cdot b$$
(4)

Durch Differentiation und Null setzen der Ableitung ergibt sich die Schrittweite $\alpha^{(k)}$:

$$\alpha^{(k)} = \frac{r^{(k)} d^{(k)}}{d^{(k)} A d^{(k)}}, \quad \text{mit } r^{(k)} = b - A x^{(k)}$$
(5)

Weiter ergibt sich die Suchrichtung $d^{(k+1)}$:

$$d^{(k+1)} = r^{(k+1)} + \beta^{(k)}d^{(k)}, \quad \langle d^{(k+1)}, d^{(k)} \rangle_A = 0$$
(6)

mit
$$\beta^{(k)} = -\frac{r^{(k+1)}Ad^{(k)}}{d^{(k)}Ad^{(k)}}$$
 (7)

Die Gleichungen (5) und (7) sind wohldefiniert, wenn $d^{(k)} A d^{(k)} \neq 0$, aufgrund der positiv Definitheit von A ist dies genau dann der Fall wenn $d^{(k)} \neq 0$. Nach (6) ist $d^{(k)} = 0$ jedoch nur dann möglich, wenn $r^{(k)}$ und $d^{(k-1)}$ linear abhängig sind, doch nach Definition verläuft die Suchrichtung tangential zur Niveaufläche von ϕ , also orthogonal zum Gradienten $r^{(k)}$. Somit folgt $d^{(k)} = 0$ nur wenn $r^{(k)} = 0$, was $x^{(k)} = \hat{x}$ implizieren würde.

Wegen der zusätzlichen Orthogonalitätsbedingung $\langle d^{(k+1)}, d^{(k)} \rangle_A = 0$ nennt man die Suchrichtungen zueinander A-konjugiert und das Verfahren, Verfahren der konjugierten Gradienten (CG-Verfahren).

Lemma 2.9. Sei $x^{(0)}$ ein beliebiger Startvektor und $d^{(0)}=r^{(0)}=b-Ax^{(0)}$. Wenn $x^{(k)}\neq\hat{x}$ mit $A\hat{x}=b$ für $k=0,1,\ldots,m$ dann gilt:

a)
$$r^{(m)*}d^{(j)} = 0$$
 für $0 \le j \le m$

b)
$$r^{(m)*}r^{(j)} = 0$$
 für $0 < j < m$

a)
$$r^{(m)*}d^{(j)} = 0$$
 für $0 \le j \le m$
b) $r^{(m)*}r^{(j)} = 0$ für $0 \le j \le m$
b) $\langle d^{(m)}, d^{(j)} \rangle_A = 0$ für $0 \le j \le m$

Beweis. Für $k \geq 0$ gilt mit (3) $Ax^{(k+1)} = Ax^{(k)} + \alpha^{(k)}Ad^{(k)}$ und somit

$$r^{(k+1)} = r^{(k)} - \alpha^{(k)} A d^{(k)}$$
(8)

die nach (5) definierte optimale Wahl für α bewirkt dann:

$$r^{(k+1)*}d^{(k)} = (r^{(k)} - \alpha^{(k)}Ad^{(k)})*d^{(k)}$$

$$= r^{(k)*}d^{(k)} - \alpha^{(k)}d^{(k)*}\underbrace{A^*}_{=A}d^{(k)}$$

$$\stackrel{(5)}{=} 0$$
(9)

Weiter gilt nach Induktion über m:

Induktionsanfang: m=1. Setzung von k=0 in (9) entspricht der Behauptung (a) und nach Start $d^{(0)} = r(0)$ auch die Behauptung (b). (c) folgt im Fall m = 1 direkt aus (6).

Induktionsschritt: $m \to m+1$. Wir nehmen an, dass die Aussagen (a), (b) und (c) für $\overline{m} < m$ richtig sind und zeigen damit die Gültigkeit für m+1.

Zunächt folgt aus (9) mit k=m, dass $r^{(m+1)^*}d^{(m)}=0$, sowie aus (6) mit der Induktionsannahme (a und c):

$$r^{(m+1)}d^{(j)} = {r^{(m)}}^*d^{(j)} - \alpha^{(m)}\langle d^{(m)}, d^{(j)}\rangle_A = 0$$
 für $0 \leq j \leq m$

Dies zeigt (a) gilt auch für m+1.

Weiter ergibt (6) umgestellt $r^{(j)} = d^{(j)} - \beta^{(j-1)}d^{(j-1)}$ und mit $r^{(0)} = d^{(0)}$ folgt daher (b) rekursiv aus (a):

$$r^{(m+1)*}r^{(j)} = r^{(m+1)*}d^{(j)} - \beta^{(j-1)} \cdot r^{(m+1)*}d^{(j-1)} = 0 - \beta^{(j-1)} \cdot 0 = 0$$

Damit (c) gilt muss noch $\alpha^{(j)} \neq 0$ sein, denn dann ergibt (8):

$$\langle d^{(m+1)}, d^{(j+1)} \rangle_A = d^{(m+1)*} A d^{(j)} = \frac{1}{\alpha^j} \cdot \left(d^{(j)*} r^{(k)} - d^{(j)*} r^{(k+1)} \right) = 0$$

Angenommen $\alpha(j) = 0$, dann folgt aus (5) auch dass $r^{(j)*}d^{(j)} = 0$ und mit (6)

$$0 = r^{(j)*} \left(r^{(j)} + \beta^{j-1} d^{(j-1)} \right) = r^{(j)*} r^{(j)} + \beta^{(j-1)} r^{(j)*} d^{(j-1)}$$

Nach Induktionsannahme ist aber $r^{(j)}d^{(j-1)}=0$, was $||r^{(j)}||_2^2=0$ und somit $r^{(j)}=0$ implizieren würde, dann wäre aber $x^{(j)} = \hat{x}$ (Widerspruch).

Das Lemma sagt inbesondere aus, dass alle Suchrichtungen paarweise A-konjugiert alle Residuen linear unabhängig sind. Es muss sich daher nach spätestens n (Dimension) Schritten $r^{(n)} = 0$, also $x^{(n)} = \hat{x}$ ergeben.

Korollar 2.10. Für $A \in \mathbb{K}^{n \times n}$ hermitisch und positiv definit findet das CG-Verfahren nach höchstens n Schritten die exakte Lösung $x^{(n)} = \hat{x}$.

In der Praxis ist dieses Korollar nicht relevant, da häufig wesentlich weniger Schritte benötigt werden oder die Orthogonalitätsbedingung aufgrund von Rundingsfehlern verloren gehen.

Definition 2.11. Sei $A \in \mathbb{K}^{n \times n}$ und $y \in \mathbb{K}^n$. Dann heißt der Unterraum

$$\mathcal{K}_k(A, y) = \operatorname{span}\{y, Ay, \dots, A^{k-1}y\}$$

Krylow-Raum der Dimension k von A bezüglich y.

Satz 2.12. Sei $A \in \mathbb{K}^{n \times n}$ hermitisch und positiv definit, $d^{(0)} = r^{(0)}$, und $x^{(k)} \neq \hat{x}$ die k-te Iterierte des CG-Verfahrens. Dann gilt $x^{(k)} \in x^{(0)} + \mathcal{K}_k(A, r^{(0)})$ und $x^{(k)}$ ist in diesem affinen Raum die eindeutige Minimalstelle der Zielfunktion ϕ . (Optimalitätseigenschaft)

Beweis.

a) Wir beginnen damit induktiv zu zeigen, dass $d^{(j)} \in \operatorname{span}\{r^{(0)}, \dots, r^{(j)}\}$ für $j = 0, \dots, k+1$ (11): Induktionsanfang: j = 0. Wegen $d^{(0)} = r^{(0)}$ offensichtlich erfüllt. Induktionsschritt: $j \to j+1$. Folgt direkt aus (6). Es folgt damit $\operatorname{span}\{d^{(0)}, \dots, r^{(k-1)}\} \subset \operatorname{span}\{r^{(0)}, \dots, r^{(k-1)}\}$ Zusammen mit dem Lemma 2.9 folgt dass die beiden Systeme linear unabhängig sind, also gilt Gleichheit:

$$\operatorname{span}\{d^{(0)}, \dots, r^{(k-1)}\} = \operatorname{span}\{r^{(0)}, \dots, r^{(k-1)}\}$$
(12)

Aus (3) folgt damit:

$$x^{(k)} = x^{(0)} + \sum_{j=0}^{k-1} \alpha^{(j)} \cdot d^{(j)} \in x^{(0)} + \operatorname{span}\{r^{(0)}, \dots, r^{(k-1)}\}, \quad \text{für } j = 0, \dots, k-1$$

Im nächsten Schritt wird induktiv gezeigt, dass $r^{(j)} \in \mathcal{K}_j(A, r^{(0)})$: Induktionsanfang: j = 0. offensichtlich gilt $r^{(0)} \in \text{span}\{r^{(0)}\}$.

 $\overline{\text{Induktionsschritt:}}$ $j-1 \to j$. Aus (11) und der Induktionsannahme folgt

$$\begin{split} d^{(j-1)} \in \operatorname{span}\{r^{(0)}, \dots, r^{(j-1)}\} \subset \operatorname{span}\{r^{(0)}, \dots, A^{j-1}r^{(0)}\} \\ &\stackrel{\$}{\Rightarrow} \quad r^{(j)} = r^{(j-1)} - \alpha^{(j-1)}Ad^{(j-1)} \in \operatorname{span}\{r^{(0)}, \dots, A^{j}r^{(0)}\} \end{split}$$

Damit folgt span $\{r^{(0)}, \ldots, r^{(k-1)}\}\subset \mathcal{K}_j(A, r^{(0)})$. Die Vektoren $r^{(j)}$ sind linear unabhängig und daher hat der linke Unterraum die Dimension k, es folgt Gleichheit (13) und damit auch $x^{(k)}\in x^{(0)}+\mathcal{K}_k(A, r^{(0)})$.

b) Aus Korollar 2.10 folgt die Existenz eines Iterationsindex $m \leq n$ mit

$$\hat{x} = x^{(0)} + \sum_{j=0}^{m-1} \alpha^{(j)} \cdot d^{(j)}$$

Für ein $0 \le k \le m$ gilt dann nach (3):

$$\hat{x} - x^{(k)} = \sum_{j=k}^{m-1} \alpha^{(j)} \cdot d^{(j)}$$

Und für ein beliebiges $x \in x^{(0)} + \mathcal{K}_k(A, r^{(0)})$ gilt wegen (13)

$$\hat{x} - x = \hat{x} - x^{(k)} + x^{(k)} - x = \sum_{j=k}^{m-1} \alpha^{(j)} \cdot d^{(j)} + \sum_{j=0}^{k-1} \delta_j \cdot d^{(j)}$$

für $\delta_j \in \mathbb{K}$. Da die Suchrichtungen nach Lemma 2.9 A-konjugiert sind folgt:

$$\phi(\hat{x}) - \phi(x) = \frac{1}{2} \|\hat{x} - x\|_A^2$$

$$= \frac{1}{2} \|\hat{x} - x^{(k)}\|_A^2 + \frac{1}{2} \left\| \sum_{j=0}^{k-1} \delta_j \cdot d^{(j)} \right\| \ge \phi(\hat{x}) - \phi(x^{(k)})$$

Inbesondere gilt Gleichheit bei $x = x^{(k)}$.

Bemerkung 2.13. Für eien Implementierung des CG-Verfahren sollte man nicht die Gleichungen (5) und (7) für $\alpha^{(k)}$ und $\beta^{(k)}$ verwenden, sondern lieber folgende Darstellungen, welche numerisch stabiler sind:

$$\alpha^{(k)} = \frac{\|r^{(k)}\|_2^2}{d^{(k)*}Ad^{(k)}} \tag{5'}$$

$$\beta^{(k)} = \frac{\|r^{(k+1)}\|_2^2}{\|r^{(k)}\|_2^2} \tag{7'}$$

Diese Gleichung (5') folgt aus Lemma 2.9 a) und b), nach welchen

$$r^{(k)} d^{(k)} = r^{(k)} r^{(k)} + \beta^{(k)} \cdot r^{(k)} d^{(k-1)} = r^{(k)} r^{(k)}$$

(7') folgt dann aus (8), (5') und dem Lemma 2.9 b):

$$r^{(k+1)*}Ad^{(k)} = \frac{1}{\alpha^{(k)}} \left(r^{(k+1)*}r^{(k)} - r^{(k+1)*}r^{(k+1)} \right) = \frac{-\|r^{(k+1)}\|_2^2}{\alpha^{(k)}} = -\frac{\|r^{(k+1)}\|_2^2}{\|r^{(k)}\|_2^2} d^{(k)*}Ad^{(k)}$$

Algorithmus 4: CG-Verfahren

Initialisierung: : $A \in \mathbb{K}^{n \times n}$ sei hermitisch und positiv definit.

Ergebnis: : $x^{(k)}$ als Approximation für $A^{-1}b$, $r^{(k)} = b - Ax^{(k)}$ als zugehöriges Residuum.

- ı Wähle $x^{(0)} \in \mathbb{K}^n$ beliebig
- $r^{(0)} \leftarrow b Ax^{(0)}$
- **3** $d^{(0)} \leftarrow r^{(0)}$

$$\begin{array}{lll} \textbf{4 for } k = 0, 1, \dots, \\ \textbf{5} & \alpha^{(k)} \leftarrow \frac{\|r^{(k)}\|_2^2}{d^{(k)^*}Ad^{(k)}} \\ \textbf{6} & x^{(k+1)} \leftarrow x^{(k)} + \alpha^{(k)}Ad^{(k)} \\ \textbf{7} & r^{(k+1)} \leftarrow r^{(k)} - \alpha^{(k)}d^{(k)} \\ \textbf{8} & \beta^{(k)} \leftarrow \frac{\|r^{(k+1)}\|_2^2}{\|r^{(k)}\|_2^2} \\ \textbf{9} & d^{(k+1)} \leftarrow r^{(k+1)} + \beta^{(k)}d^{(k)} \end{array}$$

10 until stop (beliebiges Stopkriterium)

Der Aufwand des CG-Verfahrens ergibt sich aus einer Matrix-Vektor Multiplikation in jedem Iterationsschritt und ist damit vergleichbar mit dem Gesamt -und Einzelschritt.

2.2 Gradientenverfahren

Bemerkung 2.14. Das CG-Verfahren ist typischerweise wesentlich schneller als das Gesamt bzw. Einzelschrittverfahren, **aber** verlangt, dass die vorausgesetzte Matrix hermitisch ist. Ein schnelles und einfaches Verfahren für allgemeine Matrixzen ist derzeit nicht bekannt. Ein komplizierteres Verfahren mit ähnlicher Konvergenzgeschwindigkeit ist das GMRES-Verfahren.