Interval Estimation Continued

- ▶ Point estimators are not perfect!
- ► An **interval estimate** is used to hopefully capture the true value

Point estimate ± Margin of error

 $\overline{x} \pm \text{Margin of error}$

 $\overline{p} \pm Margin of error$

Interval Estimation

Interval Estimation of the Population Mean (cont.):

For any normally distributed random variable:

- ▶ 90% of the values lie within 1.645 standard deviations of the mean.
- ▶ 95% of the values lie within 1.960 standard deviations of the mean.
- ▶ 99% of the values lie within 2.576 standard deviations of the mean.

EAI Managers

- Recall:
 - ► N = 30 managers
 - ▶ Sample mean salary (\bar{x}) = \$71,814
 - ► Sample SD (s) = \$3,340
- $\bar{x} \pm 1.699(3340/\sqrt{30})$
 - ► = \$70,778 to \$72,850
- ► The True Population Mean = \$71,800

Another Example

Table 6.5: Credit Card Balances for a Sample of 70 Households

9,430	14,661	7,159	9,071	9,691	11,032
7,535	12,195	8,137	3,603	11,448	6,525
4,078	10,544	9,467	16,804	8,279	5,239
5,604	13,659	12,595	13,479	5,649	6,195
5,179	7,061	7,917	14,044	11,298	12,584
4,416	6,245	11,346	6,817	4,353	15,415
10,676	13,021	12,806	6,845	3,467	15,917
1,627	9,719	4,972	10,493	6,191	12,591
10,112	2,200	11,356	615	12,851	9,743
6,567	10,746	7,117	13,627	5,337	10,324
13,627	12,744	9,465	12,557	8,372	
18,719	5,742	19,263	6,232	7,445	

Interval Estimation

Figure 6.13: 95% Confidence Interval for Credit Card Balances

1	A	В	C	D	4	A	В	C	D	Е	F
1	NewBalance		NewBalance		1	NewBalance		NewBalance			
2	9430				2	9430				Point Es	timata
3	7535		Mean	9312	3	7535		Mean	9312	FOIR ES	timate
4	4078		Standard Error	478.9281	4	4078		Standard Error	478.9281		
5	5604		Median	9466	5	5604		Median	9466		
6	5179		Mode	13627	6	5179		Mode	13627		
7	4416		Standard Deviation	4007	7	4416		Standard Deviation	4007		
8	10676		Sample Variance	16056048	8	10676		Sample Variance	16056048		
9	1627		Kurtosis	-0.2960	9	1627		Kurtosis	-0.2960		
10	10112		Skewness	0.1879	10	10112		Skewness	0.1879		
11	6567		Range	18648	11	6567		Range	18648		
12	13627		Minimum	615	12	13627		Minimum	615		
13	18719		Maximum	19263	13	18719		Maximum	19263		
14	14661		Sum	651840	14	14661		Sum	651840		
15	12195		Count	70	15	12195		Count	70	Margin o	f Error
16	10544		Confidence Level(95.0%)	955	16	10544		Confidence Level(95.0%)	955	iviargiire	LIIO
17	13659				17	13659					
18	7061		Point Estimate	=D3	18	7061		Point Estimate	9312		
19	6245		Lower Limit	=D18-D16	19	6245		Lower Limit	8357		
20	13021		Upper Limit	=D3+D16	20	13021		Upper Limit	10267		
70	9743				70	9743					
71	10324				71	10324					
72					72						

Interval Estimation

Interval Estimation of the Population Proportion:

$\overline{p} \pm Margin of error$

The sampling distribution of \overline{p} plays a key role in computing the margin of error in the interval estimate.

INTERVAL ESTIMATE OF A POPULATION PROPORTION

$$\overline{p} \pm z_{\alpha/2} \sqrt{\frac{\overline{p}(1-\overline{p})}{n}}, \tag{6.10}$$

where α is the level of significance and $z_{\alpha/2}$ is the z value providing an area of $\alpha/2$ in the upper tail of the standard normal distribution.

Interval Estimation

Figure 6.14: Normal Approximation of the Sampling Distribution of \overline{p}

Interval Estimation

Figure 6.15: 95% Confidence Interval for Survey of 900 Women Golfers Are you satisfied with your tee times?

4	A	В	C	D
1	Response		Interval Estimate of a	Population Proportion
2	Yes			
3	No		Sample Size	=COUNTA(A2:A901)
4	Yes		Response of Interest	Ye:
5	Yes		Count for Response	=COUNTIF(A2:A901,D4)
6	No		Sample Proportion	=D5/D3
7	No			
8	No		Confidence Coefficient	0.95
9	Yes		Level of Significance (alpha)	=1-D8
10	Yes		z Value	=NORM.S.INV(1-D9/2)
11	Yes			
12	No		Standard Error	=SQRT(D6*(1-D6)/D3)
13	No		Margin of Error	=D10*D12
14	Yes			
15	No		Point Estimate	=D6
16	No		Lower Limit	=D15-D13
17	Yes		Upper Limit	=D15+D13
18	No			
900				
901	Yes			
902				

1	A	В	C	D	E	F	G		
1	Response		Interval Estimate of	Interval Estimate of a Population Proportion					
2	Yes								
3	No		Sample Size	900	Ento	Yes as t	ho		
4	Yes		Response of Interest	Yes		onse of Ir			
5	Yes		Count for Response	396	Поор	01100 01 11	110100		
6	No		Sample Proportion	0.44					
7	No								
8	No		Confidence Coefficient	0.95					
9	Yes		Level of Significance	0.05					
10	Yes		z Value	1.96					
11	Yes								
12	No		Standard Error	0.0165					
13	No		Margin of Error	0.0324					
14	Yes								
15	No		Point Estimate	0.44					
16	No		Lower Limit	0.4076					
17	Yes		Upper Limit	0.4724					
18	No								
900	Yes								
901	Yes								
902									

Hypothesis Tests

Developing Null and Alternative Hypothesis

Type I and Type II Errors

Hypothesis Test of the Population Mean

Hypothesis Test of the Population Proportion

- Statistically deciding if a statement about a parameter should be accepted or rejected
 - ► The average mpg of a vehicle is <= 24
 - ▶ The average Gatorade in a bottle is at least (>=) 67.6 ounces
- ► Null hypothesis
 - ► The tentative conjecture
- Alternative hypothesis
 - ▶ The opposite of what is stated in the null hypothesis
- ▶ Using data from a sample, we can test the validity of the two competing statements about a population.

Hypothesis Tests

Developing Null and Alternative Hypotheses:

- ► Context is KEY!
 - ▶ The context determines how the hypotheses should be stated
- Ask:
 - ▶ What is the purpose of collecting the sample?
 - ▶ What conclusions are we hoping to make?

- ► The Alternative as a Research Hypothesis
 - ► Current car gets 24 mpg
 - ▶ New fuel system
 - ▶ Better than 24 mpg
 - Several cars are built with new fuel system and tested

 $H_0: \mu \le 24$ $H_a: \mu > 24$ ► Make the alternative the conclusion the research hopes to support

Hypothesis Tests

- ► The Null Hypothesis as a Conjecture to be Challenged
 - ▶ Bottle label states: 67.6 fl ounces
 - ► Assume correct if average fill is at least 67.6 fl ounces
 - ► Gather sample and test

 $H_0: \mu \ge 67.6$

 $H_a: \mu < 67.6$

- The Null Hypothesis as a Conjecture to be Challenged
 - ► (From Company Perspective)
 - ▶ Bottle label states: 67.6 fl ounces
 - Don't want to underfill or overfill bottles
 - ► Gather sample and test

$$H_0$$
: $\mu = 67.6$
 H_a : $\mu \neq 67.6$

Hypothesis Tests

▶ Depending upon the situation, hypothesis tests about a population parameter may take one of three forms:

$$H_0: \mu \geq \mu_0$$

$$H_0: \mu \leq \mu_0$$

$$H_0: \mu \ge \mu_0$$
 $H_0: \mu \le \mu_0$ $H_0: \mu = \mu_0$

$$H_a$$
: $\mu < \mu_0$

$$H_a$$
: $\mu > \mu_a$

$$H_a$$
: $\mu < \mu_0$ H_a : $\mu > \mu_0$ H_a : $\mu \neq \mu_0$

- ▶ First two forms are called one-tailed tests.
- ► Third form is called a two-tailed test.

Type I and Type II Errors:

	H₀ True	<i>H_a</i> True
Do Not Reject H_{0}	Correct Conclusion	Type II Error
Reject H_0	Type I Error	Correct Conclusion

Example: $H_0: \mu \leq 24$ $H_a: \mu > 24$

Type 1: Responshers ear, then MPG on the nerve system is the present an 24, when its really not.

Type 2: Researchers, say, the yels optnewe system is no better than the old, when it really is.

Hypothesis Tests

- ► Level of Significance:
 - Probability of making a Type 1 Error
 - ► The level of significance (Alpha) or if Confidence level 95%
 - ▶ Alpha = 5%
 - ▶ Usually, hypothesis tests control for Type I errors
 - ► Potentially Worse conclusion
 - ▶ Type II errors can be controlled for
 - ► Usually just say "Fail to Reject Ho"

Hypothesis Test of the Population Mean:

▶ One tailed tests about a population mean take one of the following forms:

Lower-Tail Test

Upper-Tail Test

 $H_0: \mu \ge \mu_0$

$$H_0$$
: $\mu \leq \mu_0$

 H_{a} : $\mu < \mu_{0}$

$$H_{a}^{\circ}: \mu > \mu_{0}^{\circ}$$

- 1. Develop the null and alternative hypothesis for the test.
- 2. Specify the level of significance for the test.
- 3. Collect the sample data and compute the value of what is called a test statistic.

Example

- ▶ Hilltop Coffee
 - States each can of coffee contains 3 lbs of coffee
- ► Federal Trade Commission (FTC) wants to check
 - ► Alpha = 0.01 (1%)

$$H_0: \mu \geq 3$$

$$H_a: \mu < 3$$

- ► Test Statistic for Hypothesis Test About a Population Mean
 - ▶ Does \bar{x} deviate from the hypothesized μ enough to justify rejecting the Null Hypothesis?

$$t = \frac{\overline{x} - \mu_0}{s / \sqrt{n}}$$

$$t = \frac{\overline{x} - \mu_0}{s_{\overline{x}}} = \frac{\overline{x} - \mu_0}{s / \sqrt{n}} = \frac{\overline{x} - 3}{0.028}$$

Example

▶ We find out our sample mean is 2.92

$$t = \frac{\overline{x} - \mu_0}{s/\sqrt{n}} = \frac{2.92 - 3}{0.17/\sqrt{36}} = -2.824$$

- ► Test Statistic = -2.824
- Is this small enough to lead us to reject the Null?
 - ► Is there support that the cans of coffee do not have 3lbs of coffee?

How small must the test statistic t be before we choose to reject the null hypothesis?

- ▶ P Value:
 - Probability, assuming the Null is true, of obtaining a random sample of size n that results in a test statistic at least as extreme as the one observed in the current sample

Hypothesis Tests

Figure 6.19: p Value for the Hilltop Coffee Study When $\bar{x} = 2.92$ and s = 0.17

- ► The probability of obtaining a value of 2.92 lbs or less when the null hypothesis is true is 0.0039 (.39%)
- ► Since this is less than 0.01, we reject the Null.
- ► There is statistical evidence that the cans of coffee do not have 3lbs in them

Figure 6.18: Hypothesis Test about a Population Mean

CoffeeTest.xlsx

= T.DIST(test statistic, degrees of freedom, cumulative).

	D		С		В	A	4
_		Population Mean	Fest about	Hypothesis		Weight	1
_						3.15	2
						2.76	3
	=COUNT(A2:A37)	Sample Size				3.18	4
_	=AVERAGE(A2:A37)					2.77	5
	=STDEV.S(A2:A37)	Standard Deviation	Sampl			2.86	6
_						2.66	7
	3	Typothesized Value				2.86	8
						2.54	9
	=D6/SQRT(D4)	Standard Error				3.02	10
	=(D5-D8)/D10	Test Statistic t				3.13	11
_	=D4-1	Degrees of Freedom				2.94	12
						2.74	13
	=T.DIST(D11,D12,TRUE)	value (Lower Tail)				2.84	14
A	=1-D14	value (Upper Tail)				2.6	15
	=2*MIN(D14,D15)	p value (Two Tail)				2.94	16
						2.93	17
						3.18	18
D			A	4		2.95	19
	s Test about a Population Mean	Hypothesis	Weight	1		2.86	20
			3.15	2		2.91	21
			2.76	3		2.96	22
36	Sample Size		3.18	4		3.14	23
2.92			2.77	5		2.65	24
0.170	Sample Standard Deviation 0		2.86	6		2.77	25
			2.66	7		2.96	26
3	Hypothesized Value		2.86	8		3.1	27
			2.54	9		2.82	28
0.028			3.02	10		3.05	29
-2.824			3.13	11		2.94	30
35	Degrees of Freedom		2.94	12		2.82	31
			2.74	13		3.21	32
0.0039			2.84	14		3.11	33
0.9961			2.60	15		2.9	34
0.0078	p value (Two Tail) 0.		2.94	16		3.05	35
						2.93	36

Hypothesis Tests

► The level of significance indicates the strength of evidence that is needed in the sample data before rejection of the null hypothesis.

REJECTION RULE

Reject H_0 if p value $\leq \alpha$

- ▶ Different decision makers may express different opinions concerning the cost of making a Type I error and may choose a different level of significance.
- ▶ Providing the *p* value as part of the hypothesis testing results allows decision makers to compare the reported *p* value to his or her own level of significance.
 - ► Typically less than 0.1 (10%) is widely accepted.

- ▶ Upper-tail test:
 - ▶ Using the *t* distribution
 - ▶ Compute the probability that *t* is greater than or equal to the value of the test statistic (area in the upper tail).

Upper-Tail Test

 H_0 : $\mu \leq \mu_0$

 $H_a: \mu > \mu_0$

In hypothesis testing, the general form for a two-tailed test about population mean is:

$$H_0$$
: $\mu = \mu_0$

$$H_a$$
: $\mu \neq \mu_0$

Example

- ► Holiday Toys
 - Expected demand for new toy
 - ▶ 40 units per retail outlet
 - Survey 25 retailers anticipated order quantity

$$H_0$$
: $\mu=40$

$$H_a$$
: $\mu \neq 40$

► If Null rejected - reevaluate production plan

- ▶ From the sample
 - $\bar{x} = 37.4$ and SD = 11.79 units
- ► Test Statistic

$$t = \frac{\overline{x} - \mu_0}{s/\sqrt{n}} = \frac{37.4 - 40}{11.79/\sqrt{25}} = -1.10$$

- ▶ Two-Tailed Test
 - Must find the probability of obtaining a value for test statistic that is at least as likely as -1.10

$$P(t \le -1.10) + P(t \ge 1.10).$$

Figure 6.20: *p* Value for the Holiday Toys Two-Tailed Hypothesis Test

- Computation of p Values for Two-Tailed Tests:
 - 1. Compute the value of the test statistic.
 - 2. Compute the p value for one of the tail areas.
 - 3. Double the probability (or tail area) from step 2 to obtain the final *p* value.
- Conclusion:
 - **▶** 0.2812 > 0.05
 - ► Fail to Reject the Null -
 - Holiday Toys can make 40 toys for each retail location

Hypothesis Tests

Figure 6.21: Two-Tailed Hypothesis Test for Holiday Toys

OrdersTest.xlsx

Table 6.7: Summary of Hypothesis Tests About a Population Mean

	Lower-Tail Test	Upper-Tail Test	Two-Tailed Test
Hypotheses	H_0 : $\mu \geq \mu_0$	H_0 : $\mu \leq \mu_0$	H_0 : $\mu = \mu_0$
	$H_{ extsf{a}}$: $\mu<\mu_0$	$H_{ extsf{a}}$: $\mu>\mu_0$	H_a : $\mu \neq \mu_0$
Test Statistic	$t = \frac{\overline{x} - \mu_0}{s / \sqrt{n}}$	$t = \frac{\overline{x} - \mu_0}{s / \sqrt{n}}$	$t = \frac{\overline{x} - \mu_0}{s/\sqrt{n}}$
p Value	=T.DIST(t,n - 1, TRUE)	=1 - T.DIST(t,n - 1, TRUE)	= 2 *MIN(T.DIST(t,n - 1, TRUE),1 - T.DIST(t,n - 1, TRUE))

Hypothesis Tests

Steps of Hypothesis Testing:

- **Step 1.** Develop the null and alternative hypotheses.
- **Step 2.** Specify the level of significance.
- **Step 3.** Collect the sample data and compute the value of the test statistic.
- **Step 4.** Use the value of the test statistic to compute the p value.
- Step 5. Reject

$$H_0$$
 if the $p \le \alpha$.

Step 6. Interpret the statistical conclusion in the context of the application.

A CONFIDENCE INTERVAL APPROACH TO TESTING A HYPOTHESIS OF THE FORM

$$H_0$$
: $\mu = \mu_0$

$$H_a$$
: $\mu \neq \mu_0$

1. Select a simple random sample from the population and use the value of the sample mean \bar{x} to develop the confidence interval for the population mean μ .

$$\overline{x} \pm t_{\alpha/2} \frac{s}{\sqrt{n}}$$

2. If the confidence interval contains the hypothesized value μ_0 , do not reject H_0 . Otherwise, reject³ H_0 .

Hypothesis Tests

Hypothesis Test of the Population Proportion:

▶ The three forms for a hypothesis test about a population proportion are:

$$H_0: p \geq p_0$$

$$H_0: p \ge p_0$$
 $H_0: p \le p_0$

$$H_0: p = p_0$$

$$H_a$$
: $p < p_0$

$$H_a: p > p_0$$

$$H_a$$
: $p \neq p_0$

- ▶ The first form is called a lower-tail test.
- ▶ The second form is called an upper-tail test.
- ▶ The third form is called a two-tailed test.

Table 6.8: Summary of Hypothesis Tests About a Population Proportion

	Lower-Tail Test	Upper-Tail Test	Two-Tailed Test
Hypotheses	$H_0: p \ge p_0$ $H_a: p < p_0$	$H_0: p \le p_0$ $H_a: p > p_0$	$H_0: p = p_0$ $H_a: p \neq p_0$
Test Statistic	$z = \frac{\overline{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$	$z = \frac{\overline{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$	$z = \frac{\overline{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$
p Value	=NORM.S.DIST (z,TRUE)	=1 - NORM.S.DIST (z,TRUE)	2*MIN(NORM.S.DIST(z, TRUE), 1 – NORM.S.DIST(z, TRUE))