《拓扑学基础》HW 4 提交时间: 04/9/2019, 周二

1. 设 \mathbb{Z}^+ 是全体正整数的集合,令 \mathcal{T} 表示满足如下条件的集合 U 构成的集族 \mathcal{T} "若 $n\in U$,则 n 的每个因数都在 U 中"

是 Z+ 上的一个拓扑. (见 HW#3)

- (a). 设集合 $B = \{3, 8\}$, 求: d(B),
- (b). 求 {1} 的聚点.
- 2. 设 \mathbb{N} 为可数补实数空间 (\mathbb{R} , \mathcal{T}_c) 中的全体非负整数集,求 $d(\mathbb{N})$.
- 3. 设 X 是一个拓扑空间,则对于任意 $A,B \subset X$ 有:
 - (a). $(A \cap B)^{\circ} = A^{\circ} \cap B^{\circ}$
 - (b). $A^{\circ \circ} = A^{\circ}$
- 4. 证明:每一个离散拓扑空间都是可度量化的。(提示:注意到离散拓扑空间的任意子集都是 开集,要证明其可度量化,只需说明存在一个度量,使得空间的任意一个子集都可以表示成一些由 该度量定义的开球的并.)