Chapter 6

A brief introduction to find zeros of functions

Definition of convex sets in \mathbb{R}^n

Definition. We say that $\mathcal{C} \subset \mathbb{R}^n$ is a **convex set** if for any two points $u_1, u_2 \in \mathcal{C}$ we have

$$\alpha \mathbf{u}_1 + (1 - \alpha)\mathbf{u}_2 \in \mathcal{C}, \ \alpha \in [0, 1]$$

Exercise. Any (open and closed) hyper-cube and any (open and closed) hyper-ball in \mathbb{R}^n are convex sets.

$$Q := \{ \mathbf{x} \in \mathbb{R}^n \mid 0 < |x_j| < 1, \ j = 1, \dots n \}$$

$$B := \{ \mathbf{x} \in \mathbb{R}^n \mid ||x|| < 1 \}$$

Hyperplanes

Definition. Let $\mathbf{a} \in \mathbb{R}^n \setminus \{\vec{0}\}$, and let $b \in \mathbb{R}$. The set

$$\mathbb{H}_{a} := \mathbb{H} = \left\{ \boldsymbol{x} \mid \boldsymbol{a}^{T} \boldsymbol{x} = b \right\}$$

is called a hyperplane of \mathbb{R}^n . Alternatively, \mathbb{H} is the set of all all the vectors $\mathbf{x} \in \mathbb{R}^n$ such that its scalar product with $\mathbf{a} \in \mathbb{R}^n \setminus \{\vec{0}\}$ is constant.

Hyperplanes

Exercise. If x_0 i x_1 are two points in \mathbb{H}_a , then

$$\boldsymbol{a}^T(\boldsymbol{x}_1-\boldsymbol{x}_0)=0$$

Definition. The vector \mathbf{a} is called the normal vector of \mathbb{H}_a .

Exercise. The set \mathbb{H}_a is a convex set. Moreover the set \mathbb{H}_a defines two convex open half-spaces and two closed half-spaces given by

$$\begin{split} \mathbb{H}_{\boldsymbol{a}}^{+} &= \{ \boldsymbol{x} \mid \boldsymbol{a}^{T} \boldsymbol{x} > b \}, \ \mathbb{H}_{\boldsymbol{a}}^{-} &= \{ \boldsymbol{x} \mid \boldsymbol{a}^{T} \boldsymbol{x} < b \}, \quad \text{and} \\ \overline{\mathbb{H}}_{\boldsymbol{a}}^{+} &= \{ \boldsymbol{x} \mid \boldsymbol{a}^{T} \boldsymbol{x} \geq b \}, \ \overline{\mathbb{H}}_{\boldsymbol{a}}^{-} &= \{ \boldsymbol{x} \mid \boldsymbol{a}^{T} \boldsymbol{x} \leq b \} \end{split}$$

The convex hull

Lemma. The intersection of an arbitrary family of convex sets is also a convex set.

Definition. Let $G \subset \mathbb{R}^n$ be an arbitrary set. The intersection of all convex sets containing G is called the convex hull of A, and it will be denoted by C(G).

Corollary. For any given $G \subset \mathbb{R}^n$, the set $\mathcal{C}(G)$ is a convex set.

Exercise. Compute C(G) for

$$G = \{ \cup_{n=1}^3 (x_n, y_n) \} \subset \mathbb{R}^2.$$

Separating hyperplanes

Let G_1 and G_2 be nonempty subsets of \mathbb{R}^n .

Definition. We say that \mathbb{H}_a separates G_1 from/and G_2 if

$$G_1 \subset \left\{ \boldsymbol{x} \mid \boldsymbol{a}^T \boldsymbol{x} \geq b \right\} \quad \text{ and } \quad G_2 \subset \left\{ \boldsymbol{x} \mid \boldsymbol{a}^T \boldsymbol{x} \leq b \right\}$$

The set \mathbb{H}_a strictly separates G_1 and G_2 if the inequalities are strict.

Theorem (separation theorem). Let $G_j \in \mathbb{R}^n$, j=1,2 be two **disjoint** nonempty convex sets. Then there exists a hyperplane that separates them. Moreover, if we assume that C_2 is compact then there exists a hyperplane that strictly separates them.

Farkas Lemma

Theorem (Farkas' Lemma). Let A be an $m \times n$ real matrix and let $\mathbf{b} \in \mathbb{R}^n$. The inequality $\mathbf{b}^T \mathbf{y} \geq 0$ holds for all vectors $\mathbf{y} \in \mathbb{R}^n$ satisfying $A\mathbf{y} \geq 0$ if and only if there exists a vector $\boldsymbol{\rho} \in \mathbb{R}^m$ with $\boldsymbol{\rho} \geq 0$, such that $A^T \boldsymbol{\rho} = \mathbf{b}$

Proof. The statement is equivalent to

$$\begin{array}{ccc} A y & \geq & 0 \\ \boldsymbol{b}^T y & < & 0 \end{array} \right\} \text{ has a solution if and only if } \begin{array}{ccc} A^T \boldsymbol{\rho} & = & \boldsymbol{b} \\ \boldsymbol{\rho} & \geq & 0 \end{array} \right\} \text{ has no solution}$$

←) Then, the nonempty convex sets

$$C_1 = \left\{ \boldsymbol{x} \in \mathbb{R}^n \mid \boldsymbol{x} = \boldsymbol{A}^T \boldsymbol{\rho}, \, \boldsymbol{\rho} \geq 0 \right\} \quad \text{and} \quad C_2 = \left\{ \boldsymbol{b} \right\}$$

are disjoint. Note that C_2 is compact. According to the Strict Separation Theorem, there exist $c \in \mathbb{R}^n$, $c \neq 0$ and $\alpha \in \mathbb{R}$ such that the hyperplane $H = \{x \in \mathbb{R}^n \mid c^T x = \alpha\}$ separates them. This is

$$\left\{ \begin{array}{cccc} \boldsymbol{c}^{\mathsf{T}}\boldsymbol{b} & < & \alpha \\ \forall \boldsymbol{x} \in C_1, & \boldsymbol{c}^{\mathsf{T}}\boldsymbol{x} & > & \alpha & \Leftrightarrow & \forall \boldsymbol{\rho} \geq 0, & \boldsymbol{c}^{\mathsf{T}}\boldsymbol{A}^{\mathsf{T}}\boldsymbol{\rho} > \alpha \end{array} \right.$$

Farkas Lemma

Proof (continue). This is

$$\left\{ \begin{array}{cccc} \boldsymbol{c}^T \boldsymbol{b} & < & \alpha \\ \forall \boldsymbol{x} \in C_1, & \boldsymbol{c}^T \boldsymbol{x} & > & \alpha & \Leftrightarrow & \forall \boldsymbol{\rho} \geq 0, & \boldsymbol{c}^T A^T \boldsymbol{\rho} > \alpha \end{array} \right.$$

- (a) Claim: $\mathbf{c}^T \mathbf{b} = \mathbf{b}^T \mathbf{c} < 0$. To see this claim, take $\boldsymbol{\rho} = 0$ above. Then $\alpha < 0$.
- (b) Claim: $\mathbf{c}^T A^T \geq \mathbf{0}$. To this this claim notice that if for a certain k we have that $(\mathbf{c}^T A^T)_k < 0$, then, choosing $\boldsymbol{\rho} = (0,...,0,\rho_k,0,...,0)$ with $\rho_k \to +\infty$, we have that $\mathbf{c}^T A^T \boldsymbol{\rho} \to -\infty$, in contradiction with $\mathbf{c}^T A^T \boldsymbol{\rho} > \alpha$.

Accordingly the vector c is a solution of

$$\begin{bmatrix} \mathbf{A}\mathbf{y} & \geq \\ \mathbf{b}^T \mathbf{y} & < & 0 \end{bmatrix}$$

as desired.

Farkas Lemma

Proof (continue).

 \Rightarrow) We should prove that

$$\begin{array}{ccc} A \mathbf{y} & \geq & 0 \\ \mathbf{b}^T \mathbf{y} & < & 0 \end{array} \right\} \text{ has a solution implies } \begin{array}{ccc} A^T \boldsymbol{\rho} & = & \mathbf{b} \\ \boldsymbol{\rho} & \geq & 0 \end{array} \right\} \text{ has no solution }$$

(We prove the negative version.) Assume there are ho and ho such that:

$$A^T \rho = \boldsymbol{b}, \ \rho \geq 0 \ (\text{and} \ A\boldsymbol{y} \geq 0). \ \text{Then} \ \boldsymbol{b}^T \boldsymbol{y} = \rho^T A \boldsymbol{y} \geq 0. \ \text{So}$$

Convex functions: The epigraf of f.

Definition. Let $D \subset \mathbb{R}^n$ and let $f: D \to \mathbb{R}$ be a function defined on D with values in the extended reals $\overline{\mathbb{R}}$; this is, $f(\mathbf{x}), \mathbf{x} \in D$, is either a real number or it is $\pm \infty$. The subset of \mathbb{R}^{n+1} defined as

$$P(f) = \{(\mathbf{x}, \alpha) \in D \times \mathbb{R} \mid f(\mathbf{x}) \leq \alpha\} \subset \mathbb{R}^{n+1}$$

is called the epigraf of f. We say f is a convex function if P(f) is a convex set.

Convex functions: The epigraf of f.

Consider a convex function f defined in a subset $D \subset \mathbb{R}^n$. Let

$$f_1(\mathbf{x}) = \begin{cases} f(\mathbf{x}) & \text{if } \mathbf{x} \in D \\ +\infty & \text{if } \mathbf{x} \notin D \end{cases}$$

The epigraph of $f|_D$ is identical to the one of $f_1|_{\mathbb{R}^n}$. Hence we can always extend a convex function f (over D), to be a convex function defined throughout all \mathbb{R}^n .

Remark. Let $a \in \mathbb{R}$, $\boldsymbol{b} \in \mathbb{R}^n$. Then

$$f_1(\mathbf{x}) = \begin{cases} a & \text{if } \mathbf{x} = \mathbf{b} \\ +\infty & \text{if } \mathbf{x} \neq \mathbf{b} \end{cases}$$

is a convex (not continuous) function defined over all \mathbb{R}^n .

Convex functions: The effective domain of f.

Definition. Let $f: \mathbb{R}^n \to \mathbb{R}$. The effective domain of f is the set

$$\mathsf{ED}(f) = \{ \boldsymbol{x} \in \mathbb{R}^n \mid f(\boldsymbol{x}) < +\infty \}$$

Exercises.

- (a) Show that ED(f) is the projection of P(f) over \mathbb{R}^n (the first component).
- (b) If f is a convex function, then ED(f) is a convex set.
- (c) Show that the converse (of statement (b)) is not necessarily true.

Definition. We say that f is a proper convex function if f is convex, $f(x) > -\infty$ for every x, and $ED(f) \neq \emptyset$.

An equivalent definition for convexity

Theorem. Let $q_1, \ldots, q_s \in \mathbb{R}$ with $q_j \geq 0$, $j = 1, \ldots, s$ and $\sum_{j=1}^s q_j = 1$.

Then, f is a (proper) convex function on \mathbb{R}^n if and only if for all $\mathbf{x}_1, \dots, \mathbf{x}_s \in \mathbb{R}^n$ we have

$$f(q_1x_1 + ... + q_sx_s) \le q_1f(x_1) + ... + q_sf(x_s)$$
 (1)

Proof (\Rightarrow)).

- (a) If $f(x_j) = +\infty$ for some j = 1, ..., s, then (1) trivially holds.
- (b) Assume now that $f(x_j) < +\infty$ for all j = 1, ..., s. Since f is convex, then P(f) is a convex set. That is,

$$(\mathbf{x_1},\alpha_{\mathbf{1}}) \in P(f),\ldots,(\mathbf{x_s},\alpha_{\mathbf{s}}) \in P(f) \ \Rightarrow \ (q_{\mathbf{1}}\mathbf{x_1}+\ldots+q_{\mathbf{s}}\mathbf{x_s},q_{\mathbf{1}}\alpha_{\mathbf{1}}+\ldots+q_{\mathbf{s}}\alpha_{\mathbf{s}}) \in P(f).$$

This is to say that

$$f(q_1x_1 + ... + q_sx_s) \leq q_1\alpha_1 + ... + q_s\alpha_s$$

(c) Since $(\mathbf{x}_i, \alpha_i) \in P(f) \Rightarrow f(\mathbf{x}_i) \leq \alpha_i$, we can take $\alpha_i = f(\mathbf{x}_i)$, for i = 1, ..., n, and (1) follows.

Linear combinations of convex functions

Lemma. Let f and g be convex functions. Let $\lambda \in \mathbb{R}_+$. Then the functions λf and f+g are also convex functions (provided that the operation $+\infty+(-\infty)$ is avoided).

In particular, every linear combination $\lambda_1 f_1 + \cdots + \lambda_k f_k$ of convex functions with $\lambda_j \geq 0$ for all $j = 1, \dots, k$ is also a convex function.

Exercise. Prove the above statements.

Composition and convex functions

Definition. Let $\Psi: \mathbb{R} \to \overline{\mathbb{R}}$ be a function defined on \mathbb{R} with values in the extended reals. We say that Ψ is non-decreasing if for every $x_1 < x_2$ we have $\Psi(x_1) \le \Psi(x_2)$.

Theorem. Let f be a real convex function defined on \mathbb{R}^n , and let Ψ be a non-decresing proper convex function defined on \mathbb{R} . Then $\Psi \circ f$ is convex on \mathbb{R}^n .

Proof. Since f is convex and Ψ is non-decresing we have $(0 \le q_1 \le 1)$

$$f(q_1x_1 + (1 - q_1)x_2) \le q_1f(x_1) + (1 - q_1)f(x_2)$$
, and $\Psi(f(q_1x_1 + (1 - q_1)x_2)) \le \Psi(q_1f(x_1) + (1 - q_1)f(x_2))$

Finally by the convexity of Ψ we have

$$\Psi\left(f(q_{1}x_{1}+(1-q_{1})x_{2})\right) \leq \Psi\left(q_{1}f(x_{1})+(1-q_{1})f(x_{2})\right) \leq q_{1}\Psi\left(f\left(x_{1}\right)\right)+(1-q_{1})\Psi\left(f\left(x_{2}\right)\right).$$

The maximum of convex functions

Theorem. Let f_j , j = 1, ..., m be a finite collection of convex functions on \mathbb{R}^n . Then the function

$$F(x) := \max_{j} f_{j}(x)$$

is a convex function (i.e., P(F) is a convex set).

Proof. The sets $P(f_j)$, $j=1,\ldots m$ (epigrafs) are convex sets and so their intersection is convex as well. By definition

$$\bigcap_{j} P(f_{j}) = \{(x, \alpha) \in \mathbb{R}^{n} \times \mathbb{R} \mid \max_{j} f_{j}(x) \leq \alpha, \text{ for all } j = 1, \dots m\} =$$

$$= \{(x, \alpha) \in \mathbb{R}^{n} \times \mathbb{R} \mid \max_{j} f_{j}(x) = F(x) \leq \alpha\} = P(F).$$

Two important results

Theorem A. A real valued function f defined on \mathbb{R}^n is convex if and only if for every \mathbf{x}_1 , $\mathbf{x}_2 \in \mathbb{R}^n$, the function $\phi : [0,1] \to \mathbb{R}$ defined by

$$\phi(\lambda) = f(\lambda \mathbf{x}_1 + (1 - \lambda)\mathbf{x}_2)$$

is convex.

Theorem. A real-valued convex function on \mathbb{R}^n is continuous everywhere.

Convex differentiable functions

Definition. Let $D \in \mathbb{R}^n$ an open set and let $\mathbf{x}_0 \in D$. Let $f: D \to \mathbb{R}$. Let $\mathbf{v} \in \mathbb{R}^n$ a unitary vector. We define the \mathbf{v} -directional derivative of f at the point \mathbf{x}_0 by

$$Df(\mathbf{x}_0, \mathbf{v}) := \lim_{t \to 0} \frac{f(\mathbf{x}_0 + t\mathbf{v}) - f(\mathbf{x}_0)}{t}.$$

When we consider the above limit with $t \to 0^+$ and $t \to 0^-$ we denote them by $D^+f(\mathbf{x}_0,\mathbf{v})$ and $D^-f(\mathbf{x}_0,\mathbf{v})$ and we called them right-sided (left-sided) \mathbf{v} -directional derivative of f at the point \mathbf{x}_0 , respectively.

Remark. According to previous notation and results we have

$$Df(\mathbf{x}_0; \mathbf{v}) = \mathbf{v}^T \nabla f(\mathbf{x}_0) = \nabla f(\mathbf{x}_0)^T \mathbf{v}$$

Convex differentiable functions

Definition. A function f is said to be positively homogeneous of degree $k \geq 1$ if for every $x \in \mathbb{R}^n$ and every $t \in \mathbb{R}^+$ we have

$$f(t\mathbf{x})=t^kf(\mathbf{x})$$

Theorem. Let $f: \mathbb{R}^n \to \mathbb{R}$ be a convex (finite) function. Then

- (a) For any unitary $\mathbf{v} \in \mathbb{R}^n$ there exist the right-sided and left-sided derivatives of f at every \mathbf{x} .
- (b) D^+f and D^-f are positively homogeneous convex functions of \mathbf{v} of degree one; i.e., $D^\pm f(\mathbf{x}, \lambda \mathbf{v}) = \lambda D^\pm f(\mathbf{x}, \mathbf{v})$.
- (c) The following inequality holds:

$$D^+f(\mathbf{x};\mathbf{v}) \geq D^-f(\mathbf{x};\mathbf{v})$$

Definition. Let $f: \mathbb{R}^n \to \mathbb{R}$ be a convex function. A subgradient of f at a point $\mathbf{x}_0 \in \mathbb{R}^n$, is a vector $\boldsymbol{\xi} \in \mathbb{R}^n$ such that

$$f(\mathbf{y}) \ge f(\mathbf{x}_0) + \boldsymbol{\xi}^T(\mathbf{y} - \mathbf{x}) \tag{2}$$

for every $\mathbf{y} \in \mathbb{R}^n$.

Remark. A subgradient of a convex function $f : \mathbb{R}^n \to \mathbb{R}$ at a $x_0 \in \mathbb{R}^n$ may be a unique vector or several (infinitely many) vectors.

Notation and definition. We denote by $\partial f(x)$ the set of all subgradients of a convex function f at a given point x. In some books $\partial f(x)$ is called subdifferential.

Theorem. Let f be a convex function. A vector $\boldsymbol{\xi} \in \partial f(\boldsymbol{x})$ if and only if

$$D^+ f(\mathbf{x}; \mathbf{v}) \ge \boldsymbol{\xi}^T \mathbf{v} \quad \forall \mathbf{v} \in \mathbb{R}^n$$
 (3)

Proof. If $\xi \in \partial f(x)$, then it satisfies $f(y) \ge f(x) + \xi^T(y-x)$ for all $y \in \mathbb{R}^n$. If we write y = x + tz, with t > 0, then the previous inequality writes as

$$f(x+tz) \ge f(x) + t\xi^T z$$
 or $\frac{f(x+tz) - f(x)}{t} \ge \xi^T z$

for every $z \in \mathbb{R}^n$ and t > 0. We deduce from above that $D^+ f(x; z) \ge \xi^T z$ since $D^+ f(x; z)$ is the right-sidded limit of the incremental quotients (t > 0).

The other implication follows similarly.

Lemma. Let f be a convex function on \mathbb{R}^n . Then

$$f(\mathbf{y}) \geq f(\mathbf{x}) + D^+ f(\mathbf{x}; \mathbf{y} - \mathbf{x})$$

for every $\mathbf{y} \in \mathbb{R}^n$. In particular, if f is differentiable at \mathbf{x} , then

$$f(\mathbf{y}) \geq f(\mathbf{x}) + (\mathbf{y} - \mathbf{x})^T \nabla f(\mathbf{x})$$

Proof. (We use the notion of inf).

$$D^+f(x;y-x) = \inf_{t\geq 0} \frac{f(x+t(y-x))-f(x)}{t} = \inf_{t\geq 0} \frac{f(ty+(1-t)x)-f(x)}{t} \leq \inf_{t\geq 0} \frac{tf(y)+(1-t)f(x)-f(x)}{t} = \inf_{t\geq 0} \frac{t(f(y)-f(x))}{t} = f(y)-f(x),$$
 where the inequality follows from f being convex.

Remark. From Theorem A (above) we may study the convexity of a function f in \mathbb{R}^n by studding the convexity of its restriction to any line segment in \mathbb{R}^n .

So, in some cases it is sufficient to study the behaviour of convex functions on \mathbb{R} . In particular because of the homogeneity of $D^{\pm}f$ with respect to v it is enough to consider $D^{\pm}f(x,1)$.

Proposition. Let f be a convex function on \mathbb{R} and let $x_2 > x_1$ be two points such that $f(x_1)$ and $f(x_2)$ are both finite. Then

$$D^+f(x_2;1) \ge D^-f(x_2;1) \ge D^+f(x_1;1) \ge D^-f(x_1;1)$$

An example

$$f(x) = \begin{cases} +\infty & \text{if} & x < -1\\ 2 & \text{if} & x = -1\\ x^2 & \text{if} & -1 < x \le 0\\ x & \text{if} & 0 \le x \le 1\\ +\infty & \text{if} & 1 < x \end{cases}$$

Using the definitions we can compute

$$D^+f(x;1) = \left\{ \begin{array}{ll} \text{undefined} & x < -1 \\ -\infty & x = -1 \\ 2x & -1 < x < 0 \\ 1 & 0 \leq x < 1 \\ +\infty & x = 1 \\ \text{undefined} & 1 < x \end{array} \right. \quad D^-f(x;1) = \left\{ \begin{array}{ll} \text{undefined} & x < -1 \\ -\infty & x = -1 \\ 2x & -1 < x \leq 0 \\ 1 & 0 < x \leq 1 \\ \text{undefined} & 1 < x \end{array} \right.$$

Final comments on differentiable convex functions

Theorem. Let f be a real-valued differentiable function on \mathbb{R}^n . If

$$f(\mathbf{x}_2) \geq f(\mathbf{x}_1) + (\mathbf{x}_2 - \mathbf{x}_1)^T \nabla f(\mathbf{x}_1)$$

for every two points \mathbf{x}_1 , $\mathbf{x}_2 \in \mathbb{R}^n$, then f is convex on \mathbb{R}^n .

Final comments on differentiable convex functions

Theorem. Let $D \subset \mathbb{R}^n$ open. Let $f: D \to \mathbb{R}$ be a real-valued function of class $\mathcal{C}^2(D)$. Then f is convex on D if and only if the Hessian of f evaluated at every $\mathbf{x} \in D$ is positive semidefinite. That is, for each $\mathbf{x} \in D$

$$\mathbf{y}^T \nabla^2 f(\mathbf{x}) \mathbf{y} \geq 0, \quad \forall \mathbf{y} \in \mathbb{R}^n.$$

Optimality of convex functions

Theorem. Let f be a (proper) convex function on \mathbb{R}^n . Then every local minimum x^* of f is a global minimum of f in \mathbb{R}^n .

Proof. We have $f(x) \ge f(x^*)$ for all $x \in B(x, \varepsilon)$. Let $z \in \mathbb{R}^n$. Then

$$((1-\lambda)x^{\star}+\lambda z)\in B(x,\varepsilon)$$

if $0 < \lambda < 1$ is small enough. Moreover for those small λ 's we have

$$\begin{split} f\left((1-\lambda)x^{\star}+\lambda z\right) &\geq f\left(x^{\star}\right) & \left(x^{\star} \text{ is local minimum}\right) \\ \left(1-\lambda\right)f\left(x^{\star}\right) + \lambda f(z) &\geq f\left((1-\lambda)x^{\star}+\lambda z\right) & \left(f \text{convex}\right) \end{split}$$

Direct computations give

$$f(z) \geq f(x^*)$$
.

Optimality of convex functions

Theorem. Let f be a convex function on \mathbb{R}^n and let α be a real number. Then, the sets

$$S(f,\alpha) := \{ \mathbf{x} \in \mathbb{R}^n | | f(\mathbf{x}) \le \alpha \}$$

are convex sets for any α .

Proof. Let $x_j \in S(f, \alpha)$, j = 1, 2. Let $q_1 \in [0, 1]$. We have

$$f(q_1x_1 + (1-q_1)x_2) \le q_1f(x_1) + (1-q_1)f(x_2) \le q_1\alpha + (1-q_1)\alpha = \alpha,$$

where the first inequality follows from convexity and the second from $x_j \in S(f, \alpha)$, j = 1, 2. So, $S(f, \alpha)$ is convex.

Corollary. Let f be a convex function on \mathbb{R}^n . The set of points at which f attains its minimum is convex.

Optimality of convex functions

Lemma. Let f be a convex function on \mathbb{R}^n . Then, $0 \in \partial f(x^*)$ if and only if f attains its minimum at x^* .

Proof. By definition $0 \in \partial f(x^*)$ if and only if $f(y) \geq f(x^*)$ for all $y \in \mathbb{R}^n$.

Corollary. Let f be a convex differentiable function on \mathbb{R}^n . Then, $\nabla f(x^*) = 0$ if and only if f attains its global minimum at x^* .