Nome: Andrea Mara Weber

RA: 2079852

Turma: Engenharia Mecânica

Aula prática II: Obter experimentalmente a constante elástica de uma mola

Parte I

Tabela 1

(Δx ± 0,5) cm	(M ± <mark>%⊙</mark> g
17,2	103
24,3	147
41,3	248
49, 0	296

Tabela 2

$(\Delta x \pm 0,005) \text{ m}$	(M ± 0,005) kg	K /		
0,172	0,103	5,87 ± 0,455		
0,243	0,147	5,93 ± 0,323		
0,413	0,248	5,88 ± 0,1 <mark>8</mark> 9		
0,49 D	0,296	5,9 ± 0,160		
	Média:	5,90 ± 0,282		

Even 5 medidos ($\Delta x = 0,334 m$) M = 0,202 Kg

Análise estática da elasticidade de uma mola

Comparando as variáveis da equação gerada por regressão linear com a equação teórica k = mg/x temos que: O valor de m é igual ao valor de y, e o coeficiente angular b é igual a k/g. Portanto:

E ao considerarmos a imprecisão calculada através da média das imprecisões na Tabela 2 temos que:

$$k = 5.92 \pm 0.282$$

Parte II

Tabela 3

(M ± 0,5) g	(T ± 0,2)		
103	8,2		
147	9,8		
202	12,		
248	12,7		
296	14		

Tabela 4

(M ± 0,005) kg	(T ± 0,02)s	T ²	K
0,103	0,82	(0.67 ± 0.70) s ²	6,05 ± 1,09
0,147	0,98	(0,96 ± 1,00s²	6,04 ± 1,07
0,202	1,2 🔾	44 (1,4±1)(s²	5,5 ± 1,02
0,248	1,27	(1,61 ± 1,66)s²	6,07 ± 1,05
0,296	1,4 🔘	9 6 (19 ± 20)s ²	5,9 ± 1,06
		Média:	5,91 ± 1,06

Lavilarfingir

Análise do período de uma força elástica

Comparando as variáveis da equação gerada por regressão linear com a equação teórica $t^2 = 4\pi^2 m/k$, temos que o valor de y é igual ao valor de t^2 , x é igual ao valor de m, e o coeficiente angular b é igual a $4\pi^2/k$. Portanto:

$$b = 4\pi^{2}/k$$

$$k = 4\pi^{2}/b$$

$$k = 4\pi^{2}/6,64110064535697$$

$$k = 5,94$$

E ao considerarmos a imprecisão calculada através da média das imprecisões na Tabela 4 temos que:

$$k = 5,94 \pm 1,08$$