Computação gráfica

Processamento digital de imagens

UERN - Curso de Ciência da Computação Prof. Dr.: Wilfredo Blanco Figuerola

Outline

- Introdução
 - Revisão da última aula
- Transformações no domínio espacial.
 - Transformações de escala
 - Realce de imagens
 - Manipulação ponto a ponto
 - Contrast Stretching (Alargamento de contraste)
 - Equalização do histograma
 - Média de imagens
 - Filtragem espacial

Introdução: Revisão da última aula

- Representação matricial: forma mais intuitiva e simples de representação de uma imagem.
- Região retangular no espaço de R2, onde cada ponto representa uma cor ou intensidade de cinza.

$$f(x,y) \rightarrow c$$

- x [0 .. w-1], onde w é largura da imagem
- y [0 .. h-1], onde h é altura da imagem
- O espaço ocupado depende diretamente das dimensões da imagem.

 $f(x,y) \rightarrow c$

 $f(x,y) \rightarrow [r g b]$

Transformações de escala (aumentar/diminuir)

- Transformações no domínio espacial.
 - Refere-se à representação matricial da imagem em que cada pixel representa um ponto visual desta.
 - Por oposição: Domínio das frequências.
 - Operações neste domínio
 - Podem ser expressas por:

$$g(x, y) = T[f(x, y)]$$

Quando o valor transformado é independente do valor dos vizinhos, então temos uma Manipulação ponto a ponto

- Transformações no domínio espacial.
 - Contrast Stretching (Alargamento de contraste)

$$S=T[f(x,y)] = (\underbrace{max - min) (f(x,y) - A)}_{B - A} + min$$

Para min = 0

$$S=T[f(x,y)]= max \frac{f(x,y) - A}{B - A}$$

$$S < 0 -> S = 0$$

$$S > 255 -> S = 255$$

- Transformações no domínio espacial.
 - Contrast Stretching (Alargamento de contraste)

Transformações no domínio espacial.

Limiarização Cria uma imagem binária

Enfatiza o intervalo [A, B] enquanto reduz todas as outras intensidades

Enfatiza o intervalo [A, B], preservando todos os demais.

- Transformações no domínio espacial.
 - Processamento de histograma

Níveis de cinza [0,L-1]

$$p(r_k) = n_k/n -> PDF$$

r_k - k-ésimo nivel de cinza

n_k - é o número de pixels na imagem com esse nível de cinza.

n - número total de pixels na imagem

$$k = 0,1,2,3 ..., L-1$$

PDF Função densidade de probabilidade (Probability Density Function)

- Transformações no domínio espacial.
 - Processamento de histograma

- Transformações no domínio espacial.
 - Processamento de histograma

r_k	$P_f(r_k)$	$g(r_k)$
1	3	1
2	8	2
3	14	4
4	21	6
5	26	8
6	29	8
7	31	9
8	33	10
9	35	10
10	38	11
11	41	12
12	46	13
13	49	14
14	51	15
15	52	15

$$g(r_k) = NINT(min+(max-min)*P_f(r_k)/n)$$

- Transformações no domínio espacial.
 - Processamento de histograma


```
Algoritmo
//calcular P[f(x,y)]
For x=1:w-1
    For y=1:h-1
        p = P[f(x,y)]/n;
        g = round(min+(max-min)*p/n);
        end
end
```

- Transformações no domínio espacial.
 - Equalização de histograma

Imagem exemplo do imageJ http://rsbweb.nih.gov/ij/

- Transformações no domínio espacial.
 - Média de imagens
 - Considere uma imagem ruidosa g(x,y)

$$g(x,y) = f(x,y) + \eta(x,y)$$

- Para cada f(x,y) temos um ruído η(x,y)
- η(x,y) assumimos que não é correlacionado e sua media é zero.

mean(g(x,y)) =
$$1/M(\sum_{i=1}^{|V|} g_i(x,y)) \sim f(x,y)$$

- Transformações no domínio espacial.
 - Filtragem espacial (máscaras/filtros espaciais)
 - Os vizinhos de um pixel <u>p</u> de coordenadas (x,y)

Possui quatro vizinhos horizontais e verticais N₄(p) Possui quatro vizinhos diagonais N_D(p)

Vizinhança N₈(p)

- Transformações no domínio espacial.
 - Filtragem espacial (máscaras/filtros espaciais)
 - Modificar o valor do pixel em função de seu próprio nível de cinza e o de seus vizinhos

$$z_5 = 1/9(w_1z_1 + w_2z_1 + ... + w_9z_9)$$

 $z_5 = 1/9\sum_{i=1}^{9} w_iz_i$

- Filtragem espacial (máscaras/filtros espaciais)
 - Filtros passa-baixas (medias)

W ₁	W ₂	W ₃
W ₄	W ₅	W ₆
W ₇	W ₈	W ₉

Máscara
$$3x3$$

 $w_1 = w_2 = ...w_9 = 1/9$ (pesos)
Media da Vizinhança
 $N_8(p)$

Borra a borda e outros detalhes

Máscara
$$7x7$$
 $w_1 = w_2 = ...w_{49} = 1/49 \text{ (pesos)}$
Media da Vizinhança
 $N_{49}(p)$

- Filtragem espacial (máscaras/filtros espaciais)
 - Filtros passa-baixas (medias)

Máscara 3x3

- Filtragem espacial (máscaras/filtros espaciais)
 - Filtros passa-baixas (mediana)

z ₁	Z ₂	Z ₃
Z ₄	Z ₅	z ₆
Z ₇	Z ₈	Z ₉

Máscara 3x3 $sv = SORT([z_1, z_2, ..., z_9])$ $z_5 = sv(5)$ Mediana da Vizinhança $N_8(p)$

preserva a agudeza das bordas

- Filtragem espacial (máscaras/filtros espaciais)
 - Filtros passa-altas (detecção de bordas)

-1	-1	-1
-1	8	-1
-1	-1	-1

-1	-2	-1
0	0	0
1	2	1

-1	0	1
-2	0	2
-1	0	1

Seminário e trabalho prático

- Trabalho prático (Unidade 1 Processamento de Imagem)
 - Implementar Equalização do histograma.
 - Implementar e filtros espaciais.

Referencias

- Gonzales R. C & Woods R. E. <u>Processamento de imagens digitais</u>. S. Paulo: Editora Edgard Blucher, 1^a edição 2000. (Capitulo 4. Realce de imagens)
- Tomas Akenine-Moller & Eric Haines <u>Real-Time</u> <u>Rendering</u>: A K Peters Ltd. USA., second edition, 2002.
- WIKIPÉDIA. Imagem digital. Disponível em: http://en.wikipedia.org/wiki/Imagem_digital