Sintesi dei principali teoremi (Analisi 1)

YouActuary

Argomenti

Premessa

Tratteremo funzioni con una sola variabile!

- Nuove notazioni
- Teor. singola successione
- Teor. più successioni
- Teor. continuità per un singolo pt x_0
- Teor, continuità su un intervallo
- Teor. derivabilità per un singolo pt x_0
- Teor. derivabilità per un intervallo (da capire)
- Teor. integrabilità (solo intervalli)
- nb omessi: Teor. sui limiti, tecniche e formule di derivazione ed integrazione

Nuove notazioni per punti

```
I_{x_0} intorno del pt x_0
        f_{x_0} funzione f(\cdot) definita sul pt x_0
  f_{x_0} > 0 significa f(x_0) > 0, funzione positiva nel pt x_0
  f_{x_0} < 0 significa f(x_0) < 0, funzione negativa nel pt x_0
  f_{x_0} = 0 significa f(x_0) = 0, funzione nulla nel pt x_0
  f_{\rm cresc, x_0} significa funzione crescente (derivata nel pt > 0)
f_{\text{decresc xo}} significa funzione decrescente (derivata nel pt < 0)
\max(f_{x_0}) (inutile) il massimo della funzione f(\cdot) nel pt x_0 è f(x_0)
   \sup_{I} f estremo superiore della funzione f sull'intervallo I
  F.C. x<sub>0</sub> generica funzione continua nel pt x_0
        f'_{x_0} funzione f(\cdot) derivabile nel pt x_0
  f'_{x_0} = 0 funzione f(\cdot) con derivata nulla nel pt x_0
(g(f_{x_0}))' derivata della funzione composta g'(f(x_0)) \cdot g'(x_0)
       f_{\chi} (non ha senso l'integrale in un pt x_0)
```

Nuove notazioni per intervalli

```
I_{x_0} intorno del pt x_0
            intervallo limitato aperto, limitato chiuso
    ]], [[ intervallo limitato aperto a sx, limitato aperto a dx
 [-\infty, \cdot] intervallo illimitato aperto a, intervallo illimitato aperto a sx
-\infty, +\infty[ intervallo illimitato aperto a dx e sx
         f_{||} funzione f(\cdot) definita sull'intervallo ||
         f_{[]} funzione f(\cdot) definita sull'intervallo []
   f_{||} > 0 significa f(x) > 0 \ \forall x \in ][, funzione positiva sull'intervallo ][
   f_{||} < 0 significa f(x) < 0 \ \forall x \in ][, funzione negativa sull'intervallo ][
   f_{||} = 0 significa f(x) = 0 \ \forall x \in ][, funzione nulla sull'intervallo ][
   f_{\text{crescl}} significa funzione crescente: f(x_1) < f(x_2) con x_1 < x_2
 f_{\text{decresc}} significa funzione decrescente: f(x_1) > f(x_2) con x_1 < x_2
```

Nuove notazioni per intervalli

```
f_{\mathrm{mon}} \quad \text{funzione monotona} f_{\mathrm{limitata}} \quad \text{funzione limitata} \max(f_{][}) \quad \text{il massimo della funzione } f(\cdot) \quad \text{sull'intervallo }][ F.C._{][} \quad \text{generica funzione continua sull'intervallo }][ f'_{][} \quad \text{funzione } f(\cdot) \quad \text{derivabile nell'intervallo }][ f'_{][} = 0 \quad \text{derivata funzione } f(x) = 0 \quad \forall x \in ][ (g(f_{][}))' \quad \text{derivata della funzione composta } g'(f(][)) \cdot g'x \forall x \in ][ f_{][} \quad \text{funzione integrabile sull'intervallo aperto }][
```

Una sola successione

ipotesi	teor	tesi
a_n succ. convergente al limite $l \neq 0$	3.4 della permanenza del segno	segno di a _n ed / è lo stesso
an succ. ammette limite	3.8	è limit at a
a _n succ. monotona	3.16	ammette limite: finito se limitata. ∞ se illimitata: sup an se an crescente
		∞ se illimitata: sup a _n se a _n crescente, e inf a _n se a _n decrescente
$\exists \lim_{n \to +\infty} \frac{a_{n+1}}{a_n} = I$	3.17	$ge \ l < 1 \rightarrow (a_n \rightarrow 0)$
n→+∞ ***		se $l>1$ (anche $+\infty$) $ o$ $(a_n o+\infty)$
an succ. convergente	3.21	a _n è infinitesima
a _n succ. a termini non negativi	3.22	$\sum_{k=0}^{+\infty} a_k = \sup \left\{ \sum_{k=0}^{n} a_k \right\}$
$a_n > 0 \forall n$	3.25 criterio del rapporto	se $\exists 0 \le r < 1 \mid \frac{a_{n+1}}{a_n} \le 1 \forall n \to \sum_{k=1}^{+\infty} a_k \le \frac{a_1}{1-r}$
		se $\exists \ 0 \le r < 1 \mid \frac{s_{n+1}}{s_n} \le 1 \ \forall n \to \sum_{k=1}^{+\infty} a_k \ \text{diverge}$
$a_n \ge 0 \forall n$	3.26 criterio della radice	
		$ \mathfrak{D} \equiv 0 \leq r < 1 \mid \sqrt{a_n} \leq r \forall n \rightarrow \sum_{k=1}^{+\infty} a_k \text{diverge} $
$a_n > 0 \forall n \lim_{n \to +\infty} \frac{a_{n+1}}{a_n} = R$	3.27 criterio del rapporto asintotico	se $R < 1 \rightarrow \sum_{k=1}^{+\infty} a_k$ converge
		se $R > 1$ (anche $+\infty$) $\rightarrow \sum_{k=1}^{+\infty} a_k$ diverge
$a_n \ge 0 \forall n \exists \lim_{n \to +\infty} \sqrt[n]{a_n} = R$	3.28 criterio della radice asintotico	se $R < 1 \sum_{k=1}^{+\infty} a_k$ converge
		se $R > 1$ incluso $(+\infty)$ $\sum_{k=1}^{+\infty} a_k \sum_{k=1}^{+\infty} a_k$ diverge
$a_n>0$, decrescente e $ \lim_{n\to+\infty}a_n=0 $	3.31 criterio di Leibnitz	se $\sum_{k=1}^{+\infty} (-1)^k a_k$ converge

Più successioni

Ciurado:		Taux T
ipotesi	teor	tesi
3 succ. a_n, b_n, c_n , $a_n \leq b_n \leq c_n \forall n \mid$	3.6 del confronto	$\lim_{n \to +\infty} b_n \text{ (converge)}$
$\lim_{n\to+\infty} a_n = I = \lim_{n\to+\infty} c_n$		
$a_n \leq b_n \forall n$	3.10 del confronto	$\lim_{n\to+\infty} a_n = +\infty \to \lim_{n\to+\infty} b_n = +\infty$
		$\lim_{n\to+\infty}b_n=-\infty\to\lim_{n\to+\infty}a_n=-\infty$
$a_n \rightarrow l_1 \in b_n \rightarrow l_2$	3.11	$a_n + b_n \rightarrow l_1 + l_2, \ a_b \cdot b_n \rightarrow l_1 \cdot l_2$
		Se $b_n \neq 0 \ \forall n \ \text{e} \ l_2 \neq 0 \ \frac{a_n}{b_n} \rightarrow \frac{l_1}{b}$
$a_n \mid \lim_{n \to +\infty} a_n = 0, \ b_n \text{ limitata}$	3.12	$\lim_{n\to+\infty} a_n \cdot b_n = 0$
$a_n \to +\infty, b_n \to I \text{ (finito } 0+\infty)$	3.13	$a_n + b_n \to +\infty$
$a_n \to -\infty, b_n \to I \text{ (finito } 0 - \infty)$		$a_n + b_n \to -\infty$
$a_n \to +\infty, \ b_n \to l(>0+\infty)$		$a_n \cdot b_n \to +\infty$
$a_n \to +\infty, \ b_n \to I(< 0 - \infty)$		$a_n \cdot b_n \to -\infty$
$a_n o \pm \infty$		$1/a_n \rightarrow 0$
$a_n \rightarrow 0, \ a_n > 0$		$1/a_n \to +\infty$
$a_n \to 0, \ a_n > 0$		$1/a_n \to +\infty$
$a_n o +\infty, b_n$ (infer. limitata)	3.14	$a_n + b_n \to +\infty$
$a_n o -\infty, b_n$ (super limitata)		$a_n + b_n \to -\infty$
$a_n \to +\infty \ b_n \le \delta < 0$		$a_n \cdot b_n \to +\infty$
$a_n \to +\infty \ b_n \le \delta < 0$		$a_n \cdot b_n \to -\infty$

Più successioni

ipotesi	teor	tesi
$\begin{array}{c} \sum_{k=1}^{+\infty} a_k \text{ converge e} \sum_{k=1}^{+\infty} b_k \text{ converge} \\ \sum_{k=1}^{+\infty} a_k \text{ converge} \end{array}$	3.20	$\sum_{k=1}^{+\infty} (a_k + b_k) = \sum_{k=1}^{+\infty} a_k + \sum_{k=1}^{+\infty} b_k$ $\sum_{k=1}^{+\infty} c(a_k) = c \sum_{k=1}^{+\infty} a_k \text{ converge}$
$0 \le a_n \le b_n \ \forall n$	3.23 del confronto fra serie	$\begin{array}{l} \text{se} \sum_{k=0}^{+\infty} (b_k) \text{ converge}, \ \rightarrow \\ \rightarrow \sum_{k=0}^{+\infty} a_k \text{ converge} \colon \sum_{k=0}^{+\infty} (a_k) \le \sum_{k=0}^{+\infty} (b_k) < +\infty \\ \text{se} \sum_{k=0}^{+\infty} (a_k) \text{ diverge}, \ \rightarrow \\ \rightarrow \sum_{k=0}^{+\infty} b_k \text{ diverge} \end{array}$
$ a_n,b_n \lim_{n\to+\infty}\frac{a_n}{b_n}=I(\neq 0)$	3.24 del cfr. asintotico fra serie	$\sum_{k=0}^{+\infty} (b_k)$ converge $\leftrightarrow \sum_{k=0}^{+\infty} a_k$ converge
$\sum_{k=0}^{+\infty} (a_k) \text{ converge assol.} \qquad \text{(serie ê axx conv} \\ \text{se serie dei val.axx. associata ê conv.)}$	3.30	$\left \sum_{k=0}^{+\infty} (a_k) \text{ converge e vale che } \sum_{k=0}^{+\infty} a_k \leq \sum_{k=0}^{+\infty} a_k \right $

Schema continuità (punto x_0)

hip I funz	teor	tesi	
funzioni razionali, potenza, esponenziali, logaritmi trigonometriche et arcsin, arccos, arctan, val. ass.	4.21	F.C. su propio dominio	
$f \ F.C._{]x_1,x_2[} \ f'_{]x_1,x_2[}$	4.11	$f_{]y_1,y_2}^{-1}$ F.C.	
F.C.[]	4.32 Weierstrass	f limitata, ∃ max e min assoluti	
$\int F.C._{[a,b]} f(a) \cdot f(b) < 0$	4.29 degli zeri	$\exists x_0 f_{x_0} = 0$	
F.C.[]	4.30	assume tutti valori di []	
f F.C., g F.C.		$(f+g)$, $(f-g)$, $(f \cdot g)$, $(\frac{f}{g})$, $(f \circ g)$ F.C.	
f F.C. f _{iniettiva}		f^{-1} F.C.	

Schema continuità (per intervalli)

hip funz	teor	tesi
funzioni razionali, potenza,	4.21	F.C. su propio dominio
esponenziali, logaritmi		
trigonometriche et arcsin,		
arccos, arctan , val. ass.		
F.C $_{]x_1,x_2}[, f'_{]x_1,x_2}[$	4.11	f_{y_1,y_2}^{-1} F.C.
F.C.[]	4 32 Weierstrass	$f_{ }$ limitata, \exists max e min assoluti
$FC_{[a,b]} f(a)\cdot f(b)<0$	4.29 degli zeri	$\exists x_0 f_{x_0} = 0$
F.C.[]	4.30	assume tutti valori di []

Continuità e monotonia

hip I funz	teor	tesi
f_{mon} strett. cresc	4.2	f invertibile
f_{mon} strett. decresc		f invertibile
$f_{]a,b[}$ e f_{mon}	4.20	\exists sempre (finiti o ∞):
		se $f_{cresc} \lim_{x \to a^+} f = \inf_{]a,b[} f$
		se $f_{cresc} \lim_{x \to b^-} f = \sup_{a,b[} f$
		se $f_{decresc} \lim_{x \to a^+} f = \sup_{a,b[} f$
		se $f_{decresc} \lim_{x \to b^{-}} f = \inf_{]a,b[} f$

Schema derivabilità (per x_0)

ipotesi	teor	tesi	
f'_{x_0}	5.2	f F.C. _{x0}	
$\max(f_{][})$		se $\exists f'_{x_0} \to f'_{x_0} = 0$	

Schema derivabilità (per intervalli)

		_	
hip I funz	teor	Ш	tesi
f' _[, f _{asc][}	5.6	П	$\begin{cases} f'_{1} \ge 0 \\ f'_{1} \le 0 \end{cases}$
f_{\parallel}^{f} , f_{decresc}	5.6		
F.C. _{]a,b[} , f' _{a,b]}	5.9 teor Lagrange	П	$\epsilon \in]a, b[f'(\epsilon) = \frac{f(b)-f(a)}{b-a}$
$F.C{[a,b]}.f'_{[a,b]} f(a) = f(b)$	5.10 teor Rolle	П	$\epsilon \in]a, b[f'(\epsilon) = 0$
$F.C{[\cdot]}, f'_{ \cdot }, f'_{x_1} = 0$	5.11	П	f cost.
F.C.[], f][5.12	П	$f'_{\parallel} > 0 \ (< 0) \rightarrow f_{cresc. \ stret.} \ [(f_{decresc. \ stret.})]$
			$f'_{\parallel} \ge 0 \ (\le 0) \rightarrow f_{cresc.} \ [(f_{decresc.})]$
$f'_{[a,b]}, f''_{[a,b]}$ F.C. _(a←da) (oppure da sx→b)	5.15 generaliz. Lagrange	П	$\exists \epsilon f(b) = f(a) + f'(a)(b - a) + \frac{f''(\epsilon)}{2}(b - a)^2$
$f'_{[a,b]}, f''_{[a,b]} F.C{(a\leftarrow da)} (\text{oppure } da \text{ sx} \rightarrow b)$	5.16 corollario	П	$\exists x_0 f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2}(x - x_0)^2 + o(x - x_0)^2$
$f_{[a,b]}^{(n)}$, F.C $_{[a,b]}^{(n)}$	5.18 Formula di Taylor (resto Lagrange)		$\exists \epsilon \in [a, b] f(b) = \sum_{k=0}^{n-1} \frac{f^{(k)}(a)}{k!} (b-a)^k + \frac{f^{(n)}(\epsilon)}{n!} (b-a)^n$
f(n), F.C.(n)	5.19 Formula di Taylor (resto Peano) all'ordine n		$\exists x_0 \in]a, b[f(x) = \sum_{k=0}^{n-1} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + o((x - x_0)^n)$
f", F.C.", (< 0)	5.21	П	se $f_{x_0}'' > 0 \rightarrow f$ è convessa in x_0
		Ш	se $f_{x_0}'' < 0 \rightarrow f$ è concava in x_0
f''', F.C.''	5.23	П	se $x_0 \in][$ è pt di fesso $\rightarrow f''(x_0) = 0$
f_{11}'' , F.C. $_{11}''$, $f_{sq}'' = 0$, $f_{l_0}'' < 0$ e $f_{l_0}'' > 0$ (oppure	5.24	П	x ₀ è pt di flesso
$\begin{array}{c} f_{11}^{\prime\prime},\; \text{F.C.}_{11}^{\prime\prime},\; f_{x_1}^{\prime\prime\prime} = 0,\; f_{l_{x_1}}^{\prime\prime\prime} < 0\; \text{e}\; f_{l_{x_1}}^{\prime\prime\prime} > 0\; \left(\text{oppure}\right. \\ f_{11}^{\prime\prime},\; \text{F.C.}_{11}^{\prime\prime},\; f_{x_1}^{\prime\prime\prime} = 0,\; f_{l_{x_1}}^{\prime\prime\prime} > 0\; \text{e}\; f_{1}^{\prime\prime\prime} < 0\right) \end{array}$			

Integrabilità (solo intervalli)

hip I funz	hip II funz	teor	tesi
$f_{f_{[1]}}$	$g_{\int_{[\cdot]}}$	6.9	$\int_{I} (f + g) = \int_{I} f + \int_{I} g$ $\int_{I} \lambda f = \lambda \int_{I} f$
$f_{f_{[1]}}$	$g_{[l]}$	6.10	$\begin{aligned} &\int_{\Pi} \lambda f = \lambda \int_{\Pi} f \\ &\text{se } f \leq g \to \int_{\Pi} f \leq \int_{\Pi} g \\ &\text{se } f \leq g \to \left \int_{\Pi} f \right \leq \int_{\Pi} f \end{aligned}$
$F.C{][}, f_{\int_{[i \times \cdot]}} e f_{f_{[\cdot]}}$		6.11	$\int_{][} f = \int_{]sx\cdot[} f + \int_{]\cdot dx[} f$
F.C. _[a,b]		6.13 med ia integrale	$\exists c \int_{[} f = (b - a) \cdot f(c)$
$f_{[]} = g_{[]}$ (a - di n' finito pt.)		6.14	$\int_{[]} f \leftrightarrow \int_{[]} g$. Se si $\rightarrow \int_{[]} f = \int_{[]} g$
f _[] f _{m on et limitata}		6.15	$f_{f_{i,1}}$
f _{F.C.}		6.16	$F(x) = \int_{[a,x]} f dt, (F(x))'_{[]} = f_{[]}$
f[] F.C.	G primitiva di f	6.17 corollario	$\int_{[]} f dt = G(b) - G(a)$
$f_{[a,b]}F.C{[a,b]}$	$\phi F.C{]\alpha,\beta[}, \phi'_{]\alpha,\beta[}, \phi :]\alpha. \beta[\rightarrow]a,b[$	6.18 cambiamento di variabile	$\int_{ f } f dt = \int_{\phi^{-1}(b), \phi^{-1}(a)} f(\phi(t)) \cdot \phi'(t) dt$
$f_{\int_{[,\infty[}}$	$g_{\int_{[,\infty[}}$	7.3	$\int_{[,\infty[} (f+g) = \int_{[,\infty[} f + \int_{[,\infty[} g$
			$\lambda \int_{[,\infty[} f = \int_{[,\infty[} \lambda f$
$f_{\int_{[a,\infty[}}$		7.4	$\int_{[a,\infty[} = \int_{[a,c[} f + \int_{]c,\infty[} f (2 \text{ pd v})$
$f_{\int_{[a,+\infty]}}$	$g_{\int_{[a,+\infty]}}$, $0 \le f \le g \forall x > a$	7.5 del confronto	se $g_{\int_{[a,\infty]}} \to \int_{[a,\infty[} f \le \int_{[a,\infty[} g$ se invece $\int_{[a,\infty]} f = +\infty \to \int_{[a,\infty[} g = +\infty$
$f_{]a,+\infty[}$ $f_{]_{]a,b[}}$, $f>0$	$g_{]a,+\infty[},g_{\int_{]a,b[}},g>0,\lim_{x\to+\infty}\frac{f}{g}=I>0$	7.6 cfr asintotico	$f_{\int_{[a,\infty[}} \leftrightarrow g_{\int_{[a,\infty[}}$

Integrabilità (solo intervalli)

$f_{\text{decresc }]0,+\infty[}, f \ge 0$		7.7	$\begin{array}{c} f_{\int_{[0,\infty[}} \operatorname{e} \sum_{k=0}^{+\infty} f(k) \text{ converge a } f_{\int_{[0,\infty[}} \\ \operatorname{inoltre} \sum_{k=1}^{+\infty} f(k) \leq \int_{[0,+\infty[} f \leq \sum_{k=0}^{+\infty} f(k) \end{array} \end{array}$
$f_{\text{assol } \int_{[a,+\infty[} f[a,b[} \text{F.C.}$		7.9	$\left \int_{]a,+\infty[} f \right \leq \int_{]a,+\infty[} f $
f _{[a,b[} F.C.	est ensibile in b : $(\forall x \in [a, b[f_{[[} =)\tilde{f}_{[]} F.C.)]$	7.12	$\int_{[]} f = \int_{[]} \tilde{f}$
$f_{\int_{[[}$	g _{[[}	7.13	$\int_{[[}(f+g)) = \int_{[[}f + \int_{[[}g$ $\int_{[]}\lambda f = \lambda \int_{[]}f$
$f_{\int_{[a,b[}]} a < c < b$		7.14	$\int_{[a,b[} f = \int_{[a,c[} f + \int_{[c,b[} f (2 p dv)]$
$f_{\int_{[a,l_{b-\epsilon}]}} > 0$	$g_{\int_{[a,l_{b-e}]}} > 0 \mid \lim_{x \to b^{-}} \frac{f(x)}{g(x)} = l > 0$	7.16	$f_{\int_{[a,b[}} \leftrightarrow g_{\int_{[a,b[}}$
f_{ass}		7.18	$\left \int_{[[} f] \right \le \int_{[[} f $

