Graph Optimization Problems and Greedy Algorithms

- · Greedy Algorithms
 - → // Make the best choice now!
- Optimization Problems
 - ➤ Minimizing Cost or Maximizing Benefits
 - → Minimum Spanning Tree
 - ➤ Minimum cost for connecting all vertices
 - **→** Single-Source Shortest Paths
 - ➤ Shortest Path between two vertices

Greedy Algorithms:

Make the best choice now!

- · Making choices in sequence such that
 - → each individual choice is best
 - ≻ according to some limited "short-term" criterion,
 - ≻ that is not too expensive to evaluate
 - → once a choice is made, it cannot be undone!
 - ≻ even if it becomes evident later that it was a poor choice
- Make progress by choosing an action that
 - +incurs the minimum short-term cost,
 - in the hope that a lot of small short-term costs add up to small overall cost.
- Possible drawback:
 - actions with a small short-term cost may lead to a situation, where further large costs are unavoidable.

Optimization Problems

- Minimizing the total cost or Maximizing the total benefits
 - → Analyze all possible outcomes and find the best, or
 - → Make a series of choices whose overall effect is to achieve the optimal.
- Some optimization problems can be solved exactly by greedy algorithms
 - → Minimum cost for connecting all vertices
 - ➤ Minimum Spanning Tree Algorithm
 - → Shortest Path between two vertices
 - ➤ Single-Source Shortest Paths Algorithm

Minimum Spanning Tree

- A spanning tree for a connected, undirected graph, G=(V,E) is
 - → a subgraph of G that is
 - > an undirected tree and contains
 - + all the vertices of G.
- In a weighted graph G=(V,E,W), the weight of a subgraph is
 - the sum of the weights of the edges in the subgraph.
- A minimum spanning tree for a weighted graph is
 - a spanning tree with the minimum weight.

Prim's Minimum Spanning Tree Algorithm

- Select an arbitrary starting vertex, (the root)
- branches out from the tree constructed so far by
 - → choosing an edge at each iteration
 - + attach the edge to the tree
 - ≻ that edge has minimum weight among all edges that can be attached
 - → add to the tree the vertex associated with the edge
- During the course of the algorithm, vertices are divided into three disjoint categories:
 - → Tree vertices: in the tree constructed so far,
 - Fringe vertices: not in the tree, but adjacent to some vertex in the tree,
 - → Unseen vertices: all others

Prim's Minimum Spanning Trees: Outline

primMST(G, n) // OUTLINE

Initialize all vertices as unseen.

Select an arbitrary vertex s to start the tree; reclassify it as tree.

Reclassify all vertices adjacent to s as fringe.

While there are fringe vertices:

Select an edge of minimum weight between a tree vertex t and a fringe vertex v;

Reclassify v as tree; add edge to to the tree;

Reclassify all unseen vertices adjacent to v as fringe.

Properties of Minimum Spanning Trees

- Definition: Minimum spanning tree property
 - → Let a connected, weighted graph G=(V,E,W) be given, and let T be any spanning tree of G.
 - → Suppose that for every edge vw of G that is **not** in T,
 - if uv is added to T, then it creates a cycle
 - → such that uv is a maximum-weight edge on that cycle.
 - → The the tree T is said to have the *minimum spanning tree* property.

Properties of Minimum Spanning Trees ...

- Lemma
 - → In a connected, weighted graph G = (V, E, W),
 - if T1 and T2 are two spanning trees that have the MST property,
 - + then they have the same total weight.
- · Theorem:
 - → In a connected, weighted graph G=(V,E,W)
 - + a tree T is a minimum spanning tree if and only if
 - T has the MST property.

Correctness of Prim's MST Algorithm

- Lemma:
 - → Let G = (V, E, W) be a connected, weighted graph with n = |V|;
 - Iet T_k be the tree with k vertices constructed by Prim's algorithm, for k = 1, ..., n; and
 - → let G_k be the subgraph of G induced by the vertices of T_k (i.e., uv is an edge in G_k if it is an edge in G and both u and v are in T_k).
 - → Then T_k has the MST property in G_k.
- Theorem:
 - → Prim's algorithm outputs a minimum spanning tree.

Problem: Single-Source Shortest Paths

- · Problem:
 - → Finding a minimum-weight path between two specified vertices
 - It turns out that, in the worst case, it is no easier to find a minimum-weight path between a specified pair of nodes s and t than
 - it is to find minimum-weight path between s and every vertex reachable from s. (single-source shortest paths)

Shortest-Path

- Definition: shortest path
 - → Let P be a nonempty path
 - → in a weighted graph G=(V,E,W)
 - \rightarrow consisting of k edges $xv_1, v_1v_2,v_{k-1}y$ (possibly $v_1=y$).
 - \rightarrow The weight of P, denoted as W(P) is
 - \rightarrow the sum of the weights, $W(xv_1)$, $W(v_1v_2)$,... $W(v_{k-1}y)$.
 - → If x=y, the empty path is considered to be a path from x to y. The weight of the empty path is zero.
 - → If no path between x and y has weight less than W(P),
 - then P is called a **shortest path**, or minimum-weight path.

Properties of Shortest Paths

- Lemma: Shortest path property
 - → In a weighted graph G,
 - > suppose that a shortest path from x to z consist of
 - → path P from x to y followed by
 - path Q from y to z.
 - → Then P is a shortest path from x to y, and
 - → Q is a shortest path form y to z.

Dijkstra's Shortest-Path Algorithm

- ≻ Greedy Algorithm
- → weights are nonnegative

dijkstraSSSP(G, n) // OUTLINE

Initialize all vertices as unseen.

Start the tree with the specified source vertex s; reclassify it as tree;

define d(s,s) = 0.

Reclassify all vertices adjacent to s as fringe.

While there are fringe vertices:

Select an edge between a tree vertex t and a fringe vertex v such that

(d(s,t) + W(tv)) is minimum;

Reclassify v as tree; add edge tv to the tree;

define d(s, v) = (d(s, t) + W(tv)).

Reclassify all unseen vertices adjacent to v as fringe.

The Algorithm in action, e.g.

Correctness of

Dijkstra's Shortest-Path Algorithm

· Theorem:

- → Let G=(V,E,W) be a weighted graph with nonnegative weights.
- → Let V' be a subset of V and
- → let s be a member of V'.
- → Assume that d(s,y) is the shortest distance in G from s to y, for each y ∈ V'.
- If edge yz is chosen to minimize d(s,y)+W(yz) over all edges with one vertex y in V' and one vertex z in V-V',
- → then the path consisting of a shortest path from s to y followed by the edge yz is a shortest path from s to z.
- · Theorem:
 - → Given a directed weighted graph G with a nonnegative weights and a source vertex s, Dijkstra's algorithm computes the shortest distance from s to each vertex of G that is reachable from s.