1 Review

• The **tangent plane** is the analogy of tangent line in single variable calculus, explicitly it is the first order approximation by partial derivatives given by:

$$P(\mathbf{x}) = f(\mathbf{x}_0) + \sum_{i=1}^n f_{x_i}(\mathbf{x}_0) \Delta x_i.$$

The idea of **total differential** $(df = \sum_{i=1}^{n} f_{x_i} \Delta x_i)$ is derived based on linear approximation.

- **Theorem**: Normal vector of the surface defined by $x_{n+1} = f(\mathbf{x})$ is $(f_{x_1}, \dots, f_{x_n}, -1)$.
- FYI: In analytical aspects, a function $f: \mathbb{R}^n \to \mathbb{R}$ is **first order differentiable** if for any $\epsilon > 0$, there exist δ_{ϵ} such that $\|\mathbf{x} \mathbf{x}_0\| < \delta_{\epsilon} \Longrightarrow |f(\mathbf{x}) P(\mathbf{x})| < \epsilon \|\mathbf{x} \mathbf{x}_0\|$.
- The directional derivative of $f(\mathbf{x})$ in the direction of $\hat{\mathbf{v}}$ by definition is

$$D_{\hat{\mathbf{v}}}f(\mathbf{x}) := \lim_{t \to 0} \frac{f(\mathbf{x} + t\hat{\mathbf{v}}) - f(\mathbf{x})}{t}$$

It represent the derivative of the curve of cross section if we "cut" the surface from above by the line passing through the origin and in the direction of $\hat{\mathbf{v}}$.

• The **gradient operator** is an operator which maps a function into a vector by

$$\nabla f := \left(\frac{\partial f}{\partial x_1}, \cdots, \frac{\partial f}{\partial x_n}\right).$$

Indeed, the directional derivative can be rewritten as:

$$D_{\hat{\mathbf{v}}}f(\mathbf{x}) = \nabla f \cdot \hat{\mathbf{v}}$$

• Suppose $\mathbf{x} \in \mathbb{R}^n$ are set of variables which depends on $\mathbf{t} \in \mathbb{R}^m$, then the **chain rule** in multivariable case is given by

$$\frac{\partial f}{\partial t_i} = \nabla f \cdot \frac{\partial \mathbf{x}}{\partial t_i}.$$

we can draw *tree diagram* for the chain relation.

• Given the relation $F(\mathbf{x}) = C$, we can find the dependence of x_j on x_i by **implicit** differentiation. The process of implicit differentiation is carried as follows:

- 1. Take the partial derivative $F(\mathbf{x}) = C$ with respect to x_i , then we obtain the relation $\nabla F \cdot \frac{\partial \mathbf{x}}{\partial x_i} = 0$.
- 2. Find the expression $\nabla F \cdot \frac{\partial \mathbf{x}}{\partial x_i} = 0$ with $\frac{\partial x_j}{\partial x_i}$ on left hand side.
- 3. Integrate the expression of $\frac{\partial x_j}{\partial x_i}$ with respect to x_i .

2 **Problems**

- 1. True or False
 - (a) True or False. If $f(x,y) = \ln y$, then $\nabla f(x,y) = 1/y$.
 - (b) Give the rationale for ∇f being the direction of steepest ascent/descent.
- 2. Find $\frac{\partial f(x/y)}{\partial y}$ and $\frac{\partial f(x/y)}{\partial x}$. f'(\f)(\f) $\left(\frac{\lambda}{\lambda}\right)\left(-\frac{\lambda}{\lambda}\right)$
- 3. Find the tangent plane of the surface $f(x,y) = \frac{1}{x^2 + y^2 + 1}$ at (1,1,1/3).

$$\nabla f = \langle \frac{-2x}{9}, \frac{-2y}{9}, \frac$$

4. Find the directional derivative of $f(x,y) = \frac{1}{x^2 + y^2 + 1}$ in the direction of (1,1) at (1,1).

5. Draw the tree diagram for u = f(x, y), where x = x(r, s, t), y = y(r, s).

f(x,y,2)= 03 (x+y+2) - xy=

6. Find $\frac{\partial z}{\partial x}$ for z satisfying $xyz = \cos(x + y + z)$.

7. If z = f(x - y), show that $z_x + z_y = 0$.