Feedback — Problem Set-5

You submitted this quiz on **Thu 28 Feb 2013 10:59 AM CET**. You got a score of **5.00** out of **5.00**.

Question 1

Consider a directed graph with distinct and nonnegative edge lengths and a source vertex s. Fix a destination vertex t, and assume that the graph contains at least one s-t path. Which of the following statements are true? [Check all that apply.]

✓ ✓	0.25	
✓	0.25	
✓	0.25	
✓	0.25	
	1.00 / 1.00	
•	/	1.00 /

Question 2

Consider a directed graph G=(V,E) and a source vertex s with the following properties: edges that leave the source vertex s have arbitrary (possibly negative) lengths; all other edge lengths are nonnegative; and there are no edges from any other vertex to the source s. Does Dijkstra's shortest-path algorithm correctly compute shortest-path distances (from s) in this graph?

Your Answer		Score	Explanation
Always	✓	1.00	One approach is to see that the proof of correctness from the videos still works. A slicker solution is to notice that adding a positive constant M to all edges incident to s increases the length of every $s\text{-}v$ path by exactly M , and thus preserves the shortest path.
Total		1.00 / 1.00	

Question 3

Suppose you implement the functionality of a priority queue using a *sorted* array (e.g., from biggest to smallest). What is the worst-case running time of Insert and Extract-Min, respectively? (Assume that you have a large enough array to accommodate the Insertions that you face.)

Your Answer		Score	Explanation
$oldsymbol{\mathfrak{G}}\Theta(n)$ and $\Theta(1)$	✓	1.00	
Total		1.00 / 1.00	

Question 4

Suppose you implement the functionality of a priority queue using an *unsorted* array. What is the worst-case running time of Insert and Extract-Min, respectively? (Assume that you have a large enough array to accommodate the Insertions that you face.)

Your Answer		Score	Explanation
$oldsymbol{\mathfrak{G}}\Theta(1)$ and $\Theta(n)$	✓	1.00	
Total		1.00 / 1.00	

Question 5

You are given a heap with n elements that supports Insert and Extract-Min. Which of the following tasks can you achieve in $O(\log n)$ time?

			Explanation
Find the fifth-smallest element stored in the heap.	✓	1.00	
Total		1.00 / 1.00	