1 The population total, population mean, and population variance of a population characteristic

Let $n, N \in \mathbb{N}$, with $n \leq N$. Let $\mathcal{U} = \{1, 2, ..., N\}$, which represents the finite population, or universe, of N elements.

Definition 1.1 A population characteristic is an \mathbb{R} -valued function $y: \mathcal{U} \longrightarrow \mathbb{R}$ defined on the population \mathcal{U} . We denote the value of y evaluated at $i \in \mathcal{U}$ by y_i . The population total, denoted by t, of y is defined:

$$t := \sum_{i=1}^{N} y_i \in \mathbb{R}.$$

The population mean, denoted by \overline{y} , of y is defined by:

$$\overline{y} := \frac{1}{N} \sum_{i=1}^{N} y_i \in \mathbb{R}.$$

The population variance, denoted by S^2 , of y is defined by:

$$S^{2} := \frac{1}{N-1} \sum_{i=1}^{N} (y_{i} - \overline{y})^{2} = \frac{1}{N-1} \left\{ \left(\sum_{i=1}^{N} y_{i}^{2} \right) - N \cdot \overline{y}^{2} \right\} \in \mathbb{R}.$$

In survey sampling, we seek to estimate population total t and population mean \overline{y} of a population characteristic $y: \mathcal{U} \longrightarrow \mathbb{R}$ by making observations of values of y on only a (usually proper) subset of \mathcal{U} , and extrapolate from these observations. The subset on which observations of values of y are made is called a *sample*.

2 Simple Random Sampling (SRS)

Definition 2.1 Let \mathcal{U} be a nonempty finite set, $N := \#(\mathcal{U}) \in \mathbb{N}$, and let $n \in \{1, 2, ..., N\}$ be given. We define the probability space $\Omega_{SRS}(\mathcal{U}, n)$ as follows: Let $\Omega(\mathcal{U}, n)$ be the set of all subsets of \mathcal{U} with n elements, i.e.

$$\Omega(\mathcal{U}, n) := \{ \omega \subset \mathcal{U} \mid \#(\omega) = n \}.$$

Note that $\#(\Omega(\mathcal{U},n)) = \binom{N}{n}$. Let $\mathcal{P}(\Omega(\mathcal{U},n))$ be the power set of $\Omega(\mathcal{U},n)$. Define $\mu: \Omega \longrightarrow \mathbb{R}$ to be the "uniform" probability measure on the (finite) σ -algebra $\mathcal{P}(\Omega(\mathcal{U},n))$ determined by:

$$\mu(\omega) = \frac{1}{\binom{N}{n}} = \frac{n!(N-n)!}{N!}, \text{ for each } \omega \in \Omega(\mathcal{U}, n).$$

Then, $\Omega_{SRS}(\mathcal{U}, n)$ is defined to be the probability space ($\Omega(\mathcal{U}, n)$, $\mathcal{P}(\Omega(\mathcal{U}, n))$, μ).

Definition 2.2 The simple-random-sampling sample total \hat{t}_{SRS} of the population characteristic y is, by definition, the random variable $\hat{t}_{SRS}: \Omega_{SRS}(\mathcal{U}, n) \longrightarrow \mathbb{R}$ defined by

$$\hat{t}_{SRS}(\omega) := \frac{N}{n} \sum_{i \in \omega} y_i$$
, for each $\omega \in \Omega$.

The simple-random-sampling sample mean $\widehat{\overline{y}}_{SRS}$ of the population characteristic y is, by definition, the random variable $\widehat{\overline{y}}_{SRS}: \Omega_{SRS}(\mathcal{U}, n) \longrightarrow \mathbb{R}$ defined by

$$\widehat{\overline{y}}_{\mathrm{SRS}}(\omega) \; := \; \frac{1}{n} \sum_{i \in \omega} y_i \,, \quad \text{for each } \; \omega \in \Omega.$$

The simple-random-sampling sample variance \hat{s}^2_{SRS} of the population characteristic y is, by definition, the random variable $\hat{s}^2_{SRS}: \Omega_{SRS}(\mathcal{U}, n) \longrightarrow \mathbb{R}$ defined by

$$\widehat{s}_{SRS}(\omega) := \frac{1}{n-1} \sum_{i \in \omega} \left(y_i - \widehat{\overline{y}}_{SRS}(\omega) \right)^2, \text{ for each } \omega \in \Omega.$$

Proposition 2.3

- 1. $\widehat{\overline{y}}_{SRS}$ is an unbiased estimator of the population mean \overline{y} , and $Var\left[\widehat{\overline{y}}_{SRS}\right] = \left(1 \frac{n}{N}\right) \frac{S^2}{n}$.
- 2. \hat{t}_{SRS} is an unbiased estimator of the population total t, and $Var\left[\hat{t}_{SRS}\right] = N^2\left(1 \frac{n}{N}\right)\frac{S^2}{n}$.
- 3. $\hat{s^2}_{SRS}$ is an unbiased estimator of the population variance S^2 .
- 4. $\widehat{\operatorname{Var}}\left[\widehat{\overline{y}}_{\operatorname{SRS}}\right] := \left(1 \frac{n}{N}\right) \frac{\widehat{s^2}_{\operatorname{SRS}}}{n}$ is an unbiased estimator of $\operatorname{Var}\left[\widehat{\overline{y}}_{\operatorname{SRS}}\right]$.
- 5. $\widehat{\operatorname{Var}}\left[\widehat{t}_{\operatorname{SRS}}\right] := N^2 \left(1 \frac{n}{N}\right) \frac{\widehat{s^2}_{\operatorname{SRS}}}{n}$ is an unbiased estimator of $\operatorname{Var}\left[\widehat{t}_{\operatorname{SRS}}\right]$.

A quote from Lohr [2], p.37: $H\'{ajek}$ [1] proves a central limit theorem for simple random sampling without replacement. In practical terms, $H\'{ajek}$'s theorem says that if certain technical conditions hold, and if n, N, and N-n are all "sufficiently large," then the sampling distribution of

$$\frac{\widehat{\overline{y}}_{SRS} - \overline{y}}{\sqrt{\left(1 - \frac{n}{N}\right) \frac{S^2}{n}}}$$

is "approximately" normal (Gaussian) with mean 0 and variance 1.

Corollary 2.4 (to Hájek's theorem) For a simple random sampling procedure, an approximate $(1-\alpha)$ -confidence interval, $0 < \alpha < 1$, for the population mean \overline{y} is given by:

$$\widehat{\overline{y}}_{\mathrm{SRS}} \, \pm \, z_{\alpha/2} \cdot \sqrt{\left(1 - \frac{n}{N}\right) \frac{S^2}{n}}$$

For sufficiently large samples, the above approximate confidence interval can itself be estimated from observations by:

$$\widehat{\overline{y}}_{SRS} \pm SE \left[\widehat{\overline{y}}_{SRS} \right] = \widehat{\overline{y}}_{SRS} \pm \sqrt{\left(1 - \frac{n}{N}\right) \frac{\widehat{s}^2_{SRS}}{n}}$$

where

$$\mathrm{SE}\left[\:\widehat{\overline{y}}_{\mathrm{SRS}}\:\right] \:\: := \:\: \sqrt{\widehat{\mathrm{Var}}\left[\:\widehat{\overline{y}}_{\mathrm{SRS}}\:\right]} \:\: = \:\: \sqrt{\left(1-\frac{n}{N}\right)\frac{\widehat{s^2}_{\mathrm{SRS}}}{n}}$$

In order to prove Proposition 2.3, we introduce some auxiliary random variables:

Definition 2.5 Let $n, N \in \mathbb{N}$, with n < N, $\mathcal{U} := \{1, 2, ..., N\}$, and $\Omega := \{\omega \subset \mathcal{U} \mid \#(\omega) = n\}$. For each $i \in \mathcal{U} = \{1, 2, ..., N\}$, we define the random variable $Z_i : \Omega \longrightarrow \{0, 1\}$ as follows:

$$Z_i(\omega) = \begin{cases} 1, & \text{if } i \in \omega, \\ 0, & \text{if } i \notin \omega \end{cases}.$$

Immediate observations:

• $\hat{t}_{SRS} = \frac{N}{n} \sum_{i=1}^{N} Z_i y_i$, as random variables on (Ω, P) , i.e.

$$\widehat{t}_{SRS}(\omega) = \frac{N}{n} \sum_{i=1}^{N} Z_i(\omega) y_i, \text{ for each } \omega \in \Omega.$$

• $\widehat{\overline{y}}_{SRS} = \frac{1}{n} \sum_{i=1}^{N} Z_i y_i$, as random variables on (Ω, P) , i.e.

$$\widehat{\overline{y}}_{SRS}(\omega) = \frac{1}{n} \sum_{i=1}^{N} Z_i(\omega) y_i$$
, for each $\omega \in \Omega$.

• $E[Z_i] = \frac{n}{N}$. Indeed,

$$E[\ Z_i\] = 1 \cdot P(Z_i = 1) + 0 \cdot P(Z_i = 0) = P(Z_i = 1) = \frac{\text{number of samples containing } i}{\text{number of all possible samples}} = \frac{\left(\begin{array}{c} N-1\\ n-1 \end{array}\right)}{\left(\begin{array}{c} N\\ n \end{array}\right)} = \frac{n}{N}$$

• $Z_i^2 = Z_i$, since range $(Z_i) = \{0, 1\}$. Consequently,

$$E[Z_i^2] = E[Z_i] = \frac{n}{N}.$$

• $\operatorname{Var}[Z_i] = \frac{n}{N} \left(1 - \frac{n}{N}\right)$. Indeed,

$$\operatorname{Var}[Z_{i}] := E\left[\left(Z_{i} - E[Z_{i}]\right)^{2}\right] = E\left[Z_{i}^{2}\right] - \left(E[Z_{i}]\right)^{2}$$

$$= E[Z_{i}] - \left(\frac{n}{N}\right)^{2} = \frac{n}{N} - \left(\frac{n}{N}\right)^{2}$$

$$= \frac{n}{N}\left(1 - \frac{n}{N}\right).$$

• For $i \neq j$, we have $E[Z_i \cdot Z_j] = \left(\frac{n-1}{N-1}\right) \cdot \left(\frac{n}{N}\right)$. Indeed,

$$E[Z_i \cdot Z_j] = 1 \cdot P(Z_i = 1 \text{ and } Z_j = 1) + 0 \cdot P(Z_i = 0 \text{ or } Z_j = 0)$$

$$= P(Z_i = 1 \text{ and } Z_j = 1) = P(Z_j = 1 | Z_i = 1) \cdot P(Z_i = 1)$$

$$= \left(\frac{n-1}{N-1}\right) \cdot \left(\frac{n}{N}\right)$$

• For $i \neq j$, we have $\operatorname{Cov}(Z_i, Z_j) = -\frac{1}{N-1} \left(1 - \frac{n}{N}\right) \left(\frac{n}{N}\right) \leq 0$. Indeed,

$$Cov(Z_{i}, Z_{j}) := E[(Z_{i} - E[Z_{i}]) \cdot (Z_{j} - E[Z_{j}])] = E[Z_{i} Z_{j}] - E[Z_{i}] \cdot E[Z_{j}]$$

$$= \left(\frac{n-1}{N-1}\right) \cdot \left(\frac{n}{N}\right) - \left(\frac{n}{N}\right)^{2} = \frac{n}{N} \left(\frac{nN-N-nN+n}{N(N-1)}\right)$$

$$= -\frac{1}{N-1} \left(1 - \frac{n}{N}\right) \left(\frac{n}{N}\right)$$

Proof of Proposition 2.3

$$\begin{split} E\left[\widehat{y}_{\text{SRS}}\right] &= E\left[\frac{1}{n}\sum_{i=1}^{N} Z_{i} y_{i}\right] = \frac{1}{n}\sum_{i=1}^{N} E\left[Z_{i}\right] \cdot y_{i} = \frac{1}{n}\sum_{i=1}^{N} \left(\frac{n}{N}\right) \cdot y_{i} = \frac{1}{N}\sum_{i=1}^{N} y_{i} =: \bar{y}. \end{split}$$

$$\operatorname{Var}\left[\widehat{y}_{\text{SRS}}\right] &= \operatorname{Var}\left[\frac{1}{n}\sum_{i=1}^{N} Z_{i} y_{i}\right] = \frac{1}{n^{2}} \operatorname{Var}\left[\sum_{i=1}^{N} Z_{i} y_{i}\right] = \frac{1}{n^{2}} \operatorname{Cov}\left[\sum_{i=1}^{N} Z_{i} y_{i}, \sum_{j=1}^{N} Z_{j} y_{j}\right] \\ &= \frac{1}{n^{2}} \left\{\sum_{i=1}^{N} y_{i}^{2} \operatorname{Var}(Z_{i}) + \sum_{i=1}^{N} \sum_{i \neq j=1}^{N} y_{i} y_{j} \operatorname{Cov}(Z_{i}, Z_{j})\right\} \\ &= \frac{1}{n^{2}} \left\{\sum_{i=1}^{N} y_{i}^{2} \frac{n}{N} \left(1 - \frac{n}{N}\right) - \sum_{i=1}^{N} \sum_{i \neq j=1}^{N} y_{i} y_{j} \frac{1}{N-1} \left(1 - \frac{n}{N}\right) \left(\frac{n}{N}\right)\right\} \\ &= \frac{1}{n^{2}} \frac{n}{N} \left(1 - \frac{n}{N}\right) \left\{\sum_{i=1}^{N} y_{i}^{2} - \frac{1}{N-1} \sum_{i=1}^{N} \sum_{i \neq j=1}^{N} y_{i} y_{j}\right\} \\ &= \frac{1}{n} \left(1 - \frac{n}{N}\right) \frac{1}{N(N-1)} \left\{(N-1) \sum_{i=1}^{N} y_{i}^{2} - \sum_{i=1}^{N} \sum_{j \neq j=1}^{N} y_{i} y_{j} + \sum_{i=1}^{N} y_{i}^{2}\right\} \\ &= \frac{1}{n} \left(1 - \frac{n}{N}\right) \frac{1}{N(N-1)} \left\{N \sum_{i=1}^{N} y_{i}^{2} - \left(\sum_{i=1}^{N} y_{i}\right) \left(\sum_{j=1}^{N} y_{j}\right)\right\} \\ &= \frac{1}{n} \left(1 - \frac{n}{N}\right) \frac{1}{N-1} \left\{\sum_{i=1}^{N} y_{i}^{2} - N \left(\frac{1}{N} \sum_{i=1}^{N} y_{i}\right)^{2}\right\} \\ &= \frac{1}{n} \left(1 - \frac{n}{N}\right) \frac{1}{N-1} \left\{\sum_{i=1}^{N} y_{i}^{2} - N \cdot \bar{y}^{2}\right\} \\ &= \left(1 - \frac{n}{N}\right) \frac{S}{n^{2}} \end{split}$$

2.

$$E\left[\widehat{t}_{\mathrm{SRS}}\right] = E\left[N \cdot \widehat{\overline{y}}_{\mathrm{SRS}}\right] = N \cdot E\left[\widehat{\overline{y}}_{\mathrm{SRS}}\right] = N \cdot \overline{y} = N \cdot \left(\frac{1}{N} \sum_{i=1}^{N} y_i\right) = \sum_{i=1}^{N} y_i =: t.$$

$$\operatorname{Var}\left[\widehat{t}_{\mathrm{SRS}}\right] = \operatorname{Var}\left[N \cdot \widehat{\overline{y}}_{\mathrm{SRS}}\right] = N^2 \cdot \operatorname{Var}\left[\widehat{\overline{y}}_{\mathrm{SRS}}\right] = N^2 \left(1 - \frac{n}{N}\right) \frac{S^2}{n}$$

Study Notes October 5, 2014 Kenneth Chu

3.

$$\begin{split} E\left[\,\widehat{s^2}_{\rm SRS}\,\right] &= E\left[\,\frac{1}{n-1} \sum_{i \in \omega} \left(y_i - \widehat{\overline{y}}_{\rm SRS}\right)^2\,\right] \,=\, \frac{1}{n-1} \,E\left[\,\sum_{i \in \omega} \left((y_i - \overline{y}) - (\widehat{\overline{y}}_{\rm SRS} - \overline{y})\right)^2\,\right] \\ &= \frac{1}{n-1} \,E\left[\,\left(\sum_{i \in \omega} (y_i - \overline{y})^2\right) - n\left(\widehat{\overline{y}}_{\rm SRS} - \overline{y}\right)^2\,\right] \\ &= \frac{1}{n-1} \,\left\{\,E\left[\,\sum_{i = 1}^N Z_i (y_i - \overline{y})^2\,\right] - n \,\mathrm{Var}\left[\,\widehat{\overline{y}}_{\rm SRS}\,\right]\,\right\} \\ &= \frac{1}{n-1} \,\left\{\,\sum_{i = 1}^N E[\,Z_i\,]\,(y_i - \overline{y})^2 - n\left(1 - \frac{n}{N}\right)\,\frac{S^2}{n}\,\right\} \\ &= \frac{1}{n-1} \,\left\{\,\sum_{i = 1}^N \frac{n}{N} (y_i - \overline{y})^2 - \left(1 - \frac{n}{N}\right)\,S^2\,\right\} \\ &= \frac{1}{n-1} \,\left\{\,\frac{n(N-1)}{N} \frac{1}{N-1} \sum_{i = 1}^N (y_i - \overline{y})^2 - \left(1 - \frac{n}{N}\right)\,S^2\,\right\} \\ &= \frac{1}{n-1} \,\left\{\,\frac{n(N-1)}{N} - \left(1 - \frac{n}{N}\right)\,\right\} S^2 \\ &= \frac{1}{n-1} \,\left\{\,\frac{nN-n-N+n}{N}\,\right\} S^2 \,=\, S^2 \end{split}$$

- 4. Immediate from preceding statements.
- 5. Immediate from preceding statements.

3 Stratified Simple Random Sampling

Let $\mathcal{U} = \{1, 2, \dots, N\}$ be the population, as before. Let

$$\mathcal{U} = \bigsqcup_{h=1}^{H} \mathcal{U}_h$$

be a partition of \mathcal{U} . Such a partition is called a *stratification* of the population \mathcal{U} . Each of $\mathcal{U}_1, \mathcal{U}_2, \dots, \mathcal{U}_H$ is called a *stratum*. Let $N_h := \#(\mathcal{U}_h)$, for $h = 1, 2, \dots, H$. Note that $N_1 + N_2 + \dots + N_H = N$.

In stratified simple random sampling, an SRS is taken within each stratum \mathcal{U}_h , h = 1, 2, ..., H. Let n_h , h = 1, 2, ..., H, be the number elements in the simple random sample taken in the stratum \mathcal{U}_h . In other words, a stratified simple random sample ω of the stratified population $\mathcal{U} = \bigsqcup_{h=1}^{H} \mathcal{U}_h$ has the form:

$$\omega = \bigsqcup_{h=1}^{H} \omega_h$$
, where $\omega_h \in \Omega_{SRS}(\mathcal{U}_h, n_h)$, for each $h = 1, 2, \dots, h$.

Note that $n_1 + n_2 + \cdots + n_H =: n = \#(\omega)$.

We now give unbiased estimators, and their variances, of the population total and population mean of a population characteristic under stratified simple random sampling. Let $y: \mathcal{U} \longrightarrow \mathbb{R}$ be a population characteristic. Define:

$$\widehat{t}_{Str} := \sum_{h=1}^{H} N_h \cdot \widehat{\overline{y}}_{h,SRS}$$

$$\widehat{\overline{y}}_{\mathrm{Str}} := \frac{1}{N} \cdot \widehat{t}_{\mathrm{Str}} = \sum_{h=1}^{H} \frac{N_h}{N} \cdot \widehat{\overline{y}}_{h,\mathrm{SRS}}$$

Study Notes October 5, 2014 Kenneth Chu

Here,

$$\widehat{\overline{y}}_{h,\mathrm{SRS}} : \Omega_{\mathrm{SRS}}(\mathcal{U}_h, n_h) \longrightarrow \mathbb{R} : \omega_h \longmapsto \frac{1}{n_h} \sum_{i \in \omega_h} y_i$$

is the SRS estimator of

$$\overline{y}_h := \overline{y|u_h} = \frac{1}{N_h} \sum_{i \in \mathcal{U}_h} y_i \in \mathbb{R},$$

the "stratum mean" of the "stratum characteristic" $y|_{\mathcal{U}_h}:\mathcal{U}_h\longrightarrow\mathbb{R}$, the restriction of the population characteristic $y:\mathcal{U}\longrightarrow\mathbb{R}$ to the stratum \mathcal{U}_h . Then,

$$E[\widehat{t}_{Str}] = t := \sum_{i=1}^{N} y_i, \text{ and } E[\widehat{\overline{y}}_{Str}] = \overline{y} := \frac{1}{N} \sum_{i=1}^{N} y_i.$$

In other words, \hat{t}_{Str} and $\hat{\overline{y}}_{Str}$ are unbiased estimators of the population total t and population mean \overline{y} of the population characteristic $y: \mathcal{U} \longrightarrow \mathbb{R}$, respectively. Indeed,

$$E[\widehat{t}_{Str}] = E\left[\sum_{h=1}^{H} N_h \cdot \widehat{\overline{y}}_{h,SRS}\right] = \sum_{h=1}^{H} N_h E[\widehat{\overline{y}}_{h,SRS}] = \sum_{h=1}^{H} N_h \overline{y}_h$$
$$= \sum_{h=1}^{H} N_h \left(\frac{1}{N_h} \sum_{i \in \mathcal{U}_h} y_i\right) = \sum_{h=1}^{H} \left(\sum_{i \in \mathcal{U}_h} y_i\right) = \sum_{i=1}^{N} y_i =: t.$$

And,

$$E\left[\,\widehat{\overline{y}}_{\mathrm{Str}}\,\right] \;=\; E\left[\,\frac{1}{N}\cdot\widehat{t}_{\mathrm{Str}}\,\right] \;=\; \frac{1}{N}\,E\left[\,\widehat{t}_{\mathrm{Str}}\,\right] \;=\; \frac{1}{N}\,\sum_{i=1}^{N}\,y_{i} \;=:\; \overline{y}\,.$$

Furthermore,

$$\operatorname{Var}\left[\widehat{t}_{\operatorname{Str}}\right] = \operatorname{Var}\left[\sum_{h=1}^{H} N_h \cdot \widehat{\overline{y}}_{h,\operatorname{SRS}}\right] = \sum_{h=1}^{H} N_h^2 \cdot \operatorname{Var}\left[\widehat{\overline{y}}_{h,\operatorname{SRS}}\right] = \sum_{h=1}^{H} N_h^2 \left(1 - \frac{n_h}{N_h}\right) \frac{S_h^2}{n_h}.$$

$$\operatorname{Var}\left[\widehat{\overline{y}}_{\operatorname{Str}}\right] = \operatorname{Var}\left[\frac{1}{N} \cdot \widehat{t}_{\operatorname{Str}}\right] = \frac{1}{N^2} \cdot \operatorname{Var}\left[\widehat{t}_{\operatorname{Str}}\right] = \sum_{h=1}^{H} \left(\frac{N_h}{N}\right)^2 \left(1 - \frac{n_h}{N_h}\right) \frac{S_h^2}{n_h}.$$

Comparing variances of SRS and stratified simple random sampling with proportional allocation via ANOVA (analysis of variance):

By definition, in stratified simple random sampling with proportional allocation, the stratum sample size n_h , for each h = 1, 2, ..., H, is chosen such that $n_h/N_h = n/N$. Consequently,

$$\operatorname{Var}\left[\hat{t}_{\text{PropStr}}\right] = \sum_{h=1}^{H} N_{h}^{2} \left(1 - \frac{n_{h}}{N_{h}}\right) \frac{S_{h}^{2}}{n_{h}} = \frac{N}{n} \left(1 - \frac{n}{N}\right) \sum_{h=1}^{H} N_{h} S_{h}^{2}$$

$$= \frac{N}{n} \left(1 - \frac{n}{N}\right) \left\{\sum_{h=1}^{H} (N_{h} - 1) S_{h}^{2} + \sum_{h=1}^{H} S_{h}^{2}\right\}$$

$$= \frac{N}{n} \left(1 - \frac{n}{N}\right) \left\{\operatorname{SSW} + \sum_{h=1}^{H} S_{h}^{2}\right\},$$

where

SSW :=
$$\sum_{h=1}^{H} \sum_{i \in \mathcal{U}_h} (y_i - \overline{y}_{\mathcal{U}_h})^2 = \sum_{h=1}^{H} (N_h - 1) S_h^2$$
.

is called the inter-strata squared deviation (or within-strata squared deviation), and

$$S_h^2 := \frac{1}{N_h - 1} \sum_{i \in \mathcal{U}_h} (y_i - \overline{y}_{\mathcal{U}_h})^2$$

is the stratum variance of the population characteristic $y: \mathcal{U} \longrightarrow \mathbb{R}$ over the stratum \mathcal{U}_h . The following relation between $\operatorname{Var}\left[\hat{t}_{SRS}\right]$ and $\operatorname{Var}\left[\hat{t}_{PropStr}\right]$ always holds (see [2], p.106):

$$\operatorname{Var}\left[\,\widehat{t}_{\mathrm{SRS}}\,\right] \;=\; \operatorname{Var}\left[\,\widehat{t}_{\mathrm{PropStr}}\,\right] \,+\, \left(1 - \frac{n}{N}\right) \frac{N}{n} \frac{N}{N-1} \left\{\,\operatorname{SSB} - \sum_{h=1}^{H} \left(1 - \frac{N_h}{N}\right) S_h^2\,\right\},$$

where

$$SSB := \sum_{h=1}^{H} N_h (\overline{y}_{\mathcal{U}_h} - \overline{y}_{\mathcal{U}})^2 = \sum_{h=1}^{H} \sum_{i \in \mathcal{U}_h} (\overline{y}_{\mathcal{U}_h} - \overline{y}_{\mathcal{U}})^2$$

is the *inter-strata squared deviation* (or *between-strata squared deviation*). It is also an easily established fact that the sum of the inter-strata squared deviation SSB and the intra-strata squared deviation SSW is always the total population squared deviation SSTO:

SSTO :=
$$\sum_{i=1}^{N} (y_i - \overline{y}_{\mathcal{U}})^2 = \sum_{h=1}^{H} \sum_{i \in \mathcal{U}_h} (y_i - \overline{y}_{\mathcal{U}})^2$$
.

Most importantly, we see from above that, for stratified simple random sampling with proportional allocation, the following implication holds:

$$\sum_{h=1}^{H} \left(1 - \frac{N_h}{N} \right) S_h^2 \le \text{SSB} \implies \text{Var} \left[\hat{t}_{\text{PropStr}} \right] \le \text{Var} \left[\hat{t}_{\text{SRS}} \right].$$

In heuristic terms, in proportional-allocation stratification for which each stratum is relatively homogeneous and the strata are relatively dissimilar to each other (intra-strata variation being smaller than inter-strata variation), then the unbiased estimator for the population total from the proportional-allocation stratified simple random sampling is more precise than that from SRS.

4 Two-stage Cluster Sampling

The universe $\mathcal{U} = \bigsqcup_{i=1}^{N} \mathcal{C}_i$ of observation units is partitioned into N clusters (or primary sampling units, psu's) \mathcal{C}_i . In two-stage cluster sampling, the secondary sampling units (or ssu's) are the observation units. Let M_i be the number of ssu's in the ith psu; in other words, $M_i := \#(\mathcal{C}_i)$.

First Stage: Select a simple random sample (SRS) $\omega_1 = \{C_{i_1}, C_{i_2}, \dots, C_{i_n}\}\$ of n psu's from the collection of N psu's.

Second Stage: From each psu $C \in \omega_1$ selected in the First Stage, select a simple random sample (SRS) ω_C of m_i secondary sampling units (ssu's) from the collection of M_i ssu's in C.

The sample is then $\omega := \bigsqcup_{\mathcal{C} \in \omega_1} \omega_{\mathcal{C}}$. In other words, the sample ω consists of all the secondary sampling units (or observation units) selected (during the Second Stage) from all the primary sampling units selected in the First Stage.

The Horvitz-Thompson estimator \hat{t}_{HT} , as defined below, is an unbiased estimator for the total of an \mathbb{R} -valued population characteristic $y: \mathcal{U} \longrightarrow \mathbb{R}$.

$$\widehat{t}_{\mathrm{HT}} := \sum_{k \in \omega} \left(\frac{N}{n} \frac{M_{y_k}}{m_{y_k}} \right) y_k = \sum_{k \in \omega} \left(\frac{1}{\pi_k} \right) y_k = \sum_{C \in \omega_1} \sum_{k \in \omega_C} \left(\frac{N}{n} \frac{M_{y_k}}{m_{y_k}} \right) y_k,$$

where $M_{y_k} := M_i := \#(\mathcal{C}_i)$ and $m_{y_k} := m_i := \#(\omega_{\mathcal{C}_i})$ such that \mathcal{C}_i is the unique psu containing the ssu $k \in \mathcal{U} = \bigsqcup_{i=1}^{N} \mathcal{C}_i$. The variance of the Horvitz-Thompson estimator \hat{t}_{HT} is given by:

$$Var(\hat{t}_{HT}) = N^{2} \left(1 - \frac{n}{N}\right) \frac{S_{t}^{2}}{n} + \sum_{i=1}^{N} \frac{N}{n} \cdot M_{i}^{2} \left(1 - \frac{m_{i}}{M_{i}}\right) \frac{S_{i}^{2}}{m_{i}},$$

where

$$S_t^2 := \frac{1}{N-1} \sum_{i=1}^N \left(t_i - \frac{t}{N} \right)^2, \quad S_i^2 := \frac{1}{M_i - 1} \sum_{j=1}^{M_i} \left(y_j - \frac{t_i}{M_i} \right)^2, \quad t := \sum_{k \in \mathcal{U}} y_k, \quad \text{and} \quad t_i := \sum_{k \in \mathcal{C}_i} y_k$$

IMPORTANT OBSERVATION: The first summand in the expression of $Var(\hat{t}_{HT})$ is due to variability in the First-Stage sampling, whereas the second summand is due to variability in the Second-Stage sampling.

5 One-stage Cluster Sampling

One-stage cluster sampling is a special form of two-stage cluster sampling in which all second-stage samples are censuses. In other words, following the notation introduced for two-stage cluster sampling, in one-stage cluster sampling, we have $\omega_{\mathcal{C}} = \mathcal{C}$, for each first-stage-selected $\mathcal{C} \in \omega_1$. This also implies $m_i = M_i$ for each i = 1, 2, ..., N.

Then, the Horvitz-Thompson estimator \hat{t}_{HT} and its variance reduces to:

$$\widehat{t}_{\text{HT}} := \sum_{\mathcal{C} \in \omega_1} \sum_{k \in \mathcal{C}} \left(\frac{N}{n} \frac{M_{y_k}}{m_{y_k}} \right) y_k = \frac{N}{n} \cdot \sum_{\mathcal{C} \in \omega_1} \sum_{k \in \mathcal{C}} y_k = \frac{N}{n} \cdot \sum_{\mathcal{C} \in \omega_1} t_{\mathcal{C}}, \text{ where } t_{\mathcal{C}} := \sum_{k \in \mathcal{C}} y_k$$

$$\text{Var}(\widehat{t}_{\text{HT}}) = N^2 \left(1 - \frac{n}{N} \right) \frac{S_t^2}{n} + \sum_{i=1}^N \frac{N}{n} \cdot M_i^2 \left(1 - \frac{m_i}{M_i} \right) \frac{S_i^2}{m_i}$$

$$= N^2 \left(1 - \frac{n}{N} \right) \frac{S_t^2}{n} + \sum_{i=1}^N \frac{N}{n} \cdot M_i^2 \left(1 - 1 \right) \frac{S_i^2}{m_i} = N^2 \left(1 - \frac{n}{N} \right) \frac{S_t^2}{n}$$

6 Stratified Simple Random Sampling as a special case of Two-stage Cluster Sampling

Stratified simple random sampling is a special case of two-stage cluster sampling in which the first-stage sampling is a census. In other words, if $\mathcal{U} = \bigsqcup_{i=1}^{N} \mathcal{C}_i$, then $\omega_1 = \{\mathcal{C}_1, \mathcal{C}_2, \dots, \mathcal{C}_N\}$. In particular, n = N.

Then, the Horvitz-Thompson estimator \hat{t}_{HT} and its variance reduces to:

$$\widehat{t}_{\text{HT}} := \sum_{C \in \omega_{1}} \sum_{k \in \omega_{C}} \left(\frac{N}{n} \frac{M_{y_{k}}}{m_{y_{k}}} \right) y_{k} = \sum_{i=1}^{N} M_{i} \left(\frac{1}{m_{i}} \sum_{k \in \omega_{C_{i}}} y_{k} \right) = \sum_{i=1}^{N} M_{i} \, \overline{y}_{\omega_{C_{i}}}$$

$$\text{Var}(\widehat{t}_{\text{HT}}) = N^{2} \left(1 - \frac{n}{N} \right) \frac{S_{t}^{2}}{n} + \sum_{i=1}^{N} \frac{N}{n} \cdot M_{i}^{2} \left(1 - \frac{m_{i}}{M_{i}} \right) \frac{S_{i}^{2}}{m_{i}}$$

$$= N^{2} \left(1 - 1 \right) \frac{S_{t}^{2}}{n} + \sum_{i=1}^{N} 1 \cdot M_{i}^{2} \left(1 - \frac{m_{i}}{M_{i}} \right) \frac{S_{i}^{2}}{m_{i}} = \sum_{i=1}^{N} M_{i}^{2} \left(1 - \frac{m_{i}}{M_{i}} \right) \frac{S_{i}^{2}}{m_{i}}$$

The above formula agree exactly with those derived earlier for stratified simple random sampling (apart from obvious notational changes).

7 General linear estimators for (multivariate) population totals

Let $U = \{1, 2, ..., N\}$ be a finite population. Let $\mathbf{y} : U \longrightarrow \mathbb{R}^m$ be an \mathbb{R}^m -valued function defined on U (commonly called a "population parameter"). We will use the common notation \mathbf{y}_k for $\mathbf{y}(k)$. We wish to estimate $\mathbf{T}_{\mathbf{y}} := \sum_{k \in U} \mathbf{y}_k \in \mathbb{R}^m$ via survey sampling. Let $p : \mathcal{S} \longrightarrow (0,1]$ be our chosen sampling design, where $\mathcal{S} \subseteq \mathcal{P}(U)$ is the set of all possible samples in the design, and $\mathcal{P}(U)$ is the power set of U.

Definition 7.1

A random variable $\widehat{\mathbf{T}}_{\mathbf{y}}: \mathcal{S} \longrightarrow \mathbb{R}^m$ is said to be linear in the population parameter $\mathbf{y}: U \longrightarrow \mathbb{R}$ if it has the following form:

where, for each $k \in U$, $w_k : \mathcal{S} \longrightarrow \mathbb{R}$ is itself an \mathbb{R} -valued random variable, and $I_k : \mathcal{S} \longrightarrow \{0,1\}$ is the indicator random variable defined by:

$$I_k(s) = \begin{cases} 1, & \text{if } k \in s, \\ 0, & \text{otherwise} \end{cases}$$

We call the w_k 's the weights of $\widehat{\mathbf{T}}_{\mathbf{y}}$, and we use the notation $\widehat{\mathbf{T}}_{\mathbf{y};w}$ to indicate that the random variable depends on the weights w_k .

Nomenclature In the context of finite-population probability sampling, under a design $p: \mathcal{S} \longrightarrow (0,1]$, an "estimator" is precisely just a random variable defined on the space \mathcal{S} of all admissible samples in the design.

Proposition 7.2

Let $\widehat{\mathbf{T}}_{\mathbf{y};w}: \mathcal{S} \longrightarrow \mathbb{R}^m$, with $\widehat{\mathbf{T}}_{\mathbf{y};w}(s) = \sum_{k \in U} I_k(s) w_k(s) \mathbf{y}_k = \sum_{k \in s} w_k(s) \mathbf{y}_k$, be a random variable linear in the population parameter $\mathbf{y}: U \longrightarrow \mathbb{R}$. Then,

$$E\left[\widehat{\mathbf{T}}_{\mathbf{y};w}\right] = \mathbf{T}_{\mathbf{y}}, \text{ for arbitrary } \mathbf{y} \iff E\left[I_k w_k\right] = 1, \text{ for each } k \in U.$$

PROOF Note:

$$E\left[\widehat{\mathbf{T}}_{\mathbf{y};w}\right] = E\left[\sum_{k \in s} w_k \mathbf{y}_k\right] = E\left[\sum_{k \in I} I_k w_k \mathbf{y}_k\right] = \sum_{k \in I} E[I_k w_k] \mathbf{y}_k$$

Hence, since $\mathbf{y}:U\longrightarrow\mathbb{R}$ is arbitrary,

$$E\left[\begin{array}{c} \widehat{\mathbf{T}}_{\mathbf{y};w} \end{array}\right] \ = \ \mathbf{T}_{\mathbf{y}} \ := \ \sum_{k \in U} \mathbf{y}_k \quad \Longleftrightarrow \quad \sum_{k \in U} \left(E\left[I_k \ w_k \ \right] - 1\right) \cdot \mathbf{y}_k \ = \ \mathbf{0} \quad \Longleftrightarrow \quad E\left[\left.I_k \ w_k \ \right] \ = \ 1, \text{ for each } k \in U.$$

The proof of the Proposition is now complete.

Corollary 7.3

Let $U = \{1, 2, ..., N\}$ be a finite population. For any fixed but arbitrary population parameter $\mathbf{y} : U \longrightarrow \mathbb{R}^m$ and for any sampling design $p : \mathcal{S} \longrightarrow (0, 1]$ such that each of its first-order inclusion probabilities is strictly positive, the Horvitz-Thompson estimator $\widehat{\mathbf{T}}_{\mathbf{y}}^{\mathrm{HT}}$ is well-defined and it is the unique unbiased estimator for $\mathbf{T}_{\mathbf{y}}$, which is linear in \mathbf{y} and whose weights are constant in \mathbf{s} .

PROOF Recall that the Horvitz-Thompson estimator is defined as:

$$\widehat{\mathbf{T}}_{\mathbf{y}}^{\mathrm{HT}}(s) \ := \ \sum_{k \in s} \frac{1}{\pi_k} \, \mathbf{y}_k \ := \ \sum_{k \in U} I_k(s) \, \frac{1}{\pi_k} \, \mathbf{y}_k,$$

where $\pi_k := E[I_k] = \sum_{k \in U} p(s) I_k(s) = \sum_{s \ni k} p(s)$ is the inclusion probability of $k \in U$ under the sampling design $p : \mathcal{S} \longrightarrow (0,1]$. Clearly, $\widehat{\mathbf{T}}_{\mathbf{v}}^{\mathrm{HT}}$ is linear in \mathbf{y} with weights constant in s. Next, note that:

$$E\left[\widehat{\mathbf{T}}_{\mathbf{y}}^{\mathrm{HT}}\right] = E\left[\sum_{k \in s} \frac{1}{\pi_{k}} \mathbf{y}_{k}\right] = E\left[\sum_{k \in U} I_{k} \frac{\mathbf{y}_{k}}{\pi_{k}}\right] = \sum_{k \in U} E\left[I_{k}\right] \frac{\mathbf{y}_{k}}{\pi_{k}} = \sum_{k \in U} \pi_{k} \frac{\mathbf{y}_{k}}{\pi_{k}} = \sum_{k \in U} \mathbf{y}_{k} = \mathbf{T}_{y}$$

Hence, $\widehat{\mathbf{T}}_{\mathbf{y}}^{\mathrm{HT}}$ is an unbiased estimator for $\mathbf{T}_{\mathbf{y}}$. Conversely, let

$$\widehat{\mathbf{T}}_{y;w}(s) = \sum_{k \in s} w_k \, \mathbf{y}_k$$

be any unbiased estimator for $\mathbf{T}_{\mathbf{v}}$ which linear in \mathbf{y} with weights w_k constant in s. Thus,

$$\sum_{k \in U} \mathbf{y}_k = \mathbf{T}_{\mathbf{y}} = E \left[\widehat{\mathbf{T}}_{\mathbf{y};w} \right] = E \left[\sum_{k \in s} w_k \mathbf{y}_k \right] = E \left[\sum_{k \in U} I_k w_k \mathbf{y}_k \right] = \sum_{k \in U} E[I_k] w_k \mathbf{y}_k = \sum_{k \in U} \pi_k w_k \mathbf{y}_k.$$

Since y is arbitrary, the above equation immediately implies that

$$\pi_k w_k - 1 = 0,$$

or equivalently, $w_k = \frac{1}{\pi_k}$; in other words, $\widehat{\mathbf{T}}_{\mathbf{y};w}$ is in fact equal to the Horvitz-Thompson estimator. The proof of the Corollary is now complete.

Lemma 7.4

Let (Ω, \mathcal{A}, p) be a probability space, $X, Y : \Omega \longrightarrow \mathbb{R}$ be two \mathbb{R} -valued random variables defined on Ω , and $\mathbf{u}, \mathbf{v} \in \mathbb{R}^m$ be two fixed vectors in \mathbb{R}^m . Then,

$$\operatorname{Cov}(X \cdot \mathbf{u}, Y \cdot \mathbf{v}) = \operatorname{Cov}(X, Y) \cdot \mathbf{u} \cdot \mathbf{v}^T \in \mathbb{R}^{m \times m}$$

Proof Note:

$$\operatorname{Cov}(X \cdot \mathbf{u}, Y \cdot \mathbf{v}) := E[(X \mathbf{u} - \mu_X \mathbf{u}) \cdot (Y \mathbf{v} - \mu_Y \mathbf{v})^T] = E[(X - \mu_X) \mathbf{u} \cdot (Y - \mu_Y) \mathbf{v}^T]$$

$$= E[(X - \mu_X) (Y - \mu_Y) \cdot \mathbf{u} \cdot \mathbf{v}^T] = E[(X - \mu_X) (Y - \mu_Y)] \cdot \mathbf{u} \cdot \mathbf{v}^T$$

$$= \operatorname{Cov}(X, Y) \cdot \mathbf{u} \cdot \mathbf{v}^T,$$

as required.

Proposition 7.5

Let $\widehat{\mathbf{T}}_{\mathbf{y};w}: \mathcal{S} \longrightarrow \mathbb{R}$, with $\widehat{\mathbf{T}}_{\mathbf{y};w}(s) = \sum_{k \in s} w_k(s) \mathbf{y}_k = \sum_{k \in U} I_k(s) w_k(s) \mathbf{y}_k$, be a random variable linear in the population parameter $\mathbf{y}: U \longrightarrow \mathbb{R}$. Then, the covariance matrix of $\widehat{\mathbf{T}}_{\mathbf{y};w}$ is given by:

$$\operatorname{Var}\left[\widehat{\mathbf{T}}_{\mathbf{y};w}\right] = \sum_{i \in U} \sum_{k \in U} \operatorname{Cov}\left[I_{i} w_{i}, I_{k} w_{k}\right] \mathbf{y}_{i} \cdot \mathbf{y}_{k}^{T} \in \mathbb{R}^{m \times m}$$

Furthermore, if the first-order and second-order inclusion probabilities of the sampling design $p: \mathcal{S} \longrightarrow (0,1]$ are all strictly positive, i.e. $\pi_k = \pi_{kk} := \sum_{s \ni k} p(s) > 0$, for each $k \in U$, and $\pi_{ik} := \sum_{s \ni i,k} p(s) > 0$, for any distinct $i,k \in U$, then an unbiased estimator for $\operatorname{Var}\left[\widehat{\mathbf{T}}_{y;w}\right]$ is given by:

$$\widehat{\operatorname{Var}}\Big[\;\widehat{\mathbf{T}}_{y;w}\;\Big](s)\;:=\;\sum_{i,k\in s}\frac{\operatorname{Cov}(I_iw_i,I_kw_k)}{\pi_{ik}}\,\mathbf{y}_i\cdot\mathbf{y}_k^T\;=\;\sum_{k\in s}\frac{\operatorname{Var}(I_kw_k)}{\pi_k}\,\mathbf{y}_k\cdot\mathbf{y}_k^T+\sum_{i,k\in s}\frac{\operatorname{Cov}(I_iw_i,I_kw_k)}{\pi_{ik}}\,\mathbf{y}_i\cdot\mathbf{y}_k^T,\;\;\text{for each}\;s\in\mathcal{S}.$$

PROOF First, note that Lemma 7.4 implies:

$$\operatorname{Var}\left[\widehat{\mathbf{T}}_{\mathbf{y};w}\right] = \operatorname{Cov}\left[\sum_{i \in U} I_i w_i \mathbf{y}_i, \sum_{k \in U} I_k w_k \mathbf{y}_k\right] = \sum_{i \in U} \sum_{k \in U} \operatorname{Cov}\left[I_i w_i, I_k w_k\right] \cdot \mathbf{y}_i \cdot \mathbf{y}_k^T \in \mathbb{R}^{m \times m}$$

Next,

$$E\left(\widehat{\operatorname{Var}}\left[\widehat{\mathbf{T}}_{\mathbf{y};w}\right]\right) = \sum_{s \in \mathcal{S}} p(s) \cdot \widehat{\operatorname{Var}}\left[\widehat{\mathbf{T}}_{\mathbf{y};w}\right](s) = \sum_{s \in \mathcal{S}} p(s) \cdot \left(\sum_{i,k \in s} \frac{\operatorname{Cov}(I_{i}w_{i}, I_{k}w_{k})}{\pi_{ik}} \cdot \mathbf{y}_{i} \cdot \mathbf{y}_{k}^{T}\right)$$

$$= \sum_{s \in \mathcal{S}} p(s) \cdot \left(\sum_{i,k \in U} I_{i}(s)I_{k}(s) \cdot \frac{\operatorname{Cov}(I_{i}w_{i}, I_{k}w_{k})}{\pi_{ik}} \cdot \mathbf{y}_{i} \cdot \mathbf{y}_{k}^{T}\right)$$

$$= \sum_{i,k \in U} \left(\sum_{s \in \mathcal{S}} p(s)I_{i}(s)I_{k}(s)\right) \cdot \frac{\operatorname{Cov}(I_{i}w_{i}, I_{k}w_{k})}{\pi_{ik}} \cdot \mathbf{y}_{i} \cdot \mathbf{y}_{k}^{T}$$

$$= \sum_{i,k \in U} \left(\sum_{s \ni i,k} p(s)\right) \cdot \frac{\operatorname{Cov}(I_{i}w_{i}, I_{k}w_{k})}{\pi_{ik}} \cdot \mathbf{y}_{i} \cdot \mathbf{y}_{k}^{T}$$

$$= \sum_{i,k \in U} \pi_{ik} \cdot \frac{\operatorname{Cov}(I_{i}w_{i}, I_{k}w_{k})}{\pi_{ik}} \cdot \mathbf{y}_{i} \cdot \mathbf{y}_{k}^{T} = \sum_{i,k \in U} \operatorname{Cov}(I_{i}w_{i}, I_{k}w_{k}) \cdot \mathbf{y}_{i} \cdot \mathbf{y}_{k}^{T}$$

$$= \operatorname{Var}\left[\widehat{\mathbf{T}}_{y;w}\right]$$

Lastly, recall that $\pi_{kk} = \pi_k$ and $Cov(I_k w_k, I_k w_k) = Var[I_k w_k]$, and the validity of the following identity is thus trivial:

$$\sum_{i,k \in s} \frac{\operatorname{Cov}(I_i w_i, I_k w_k)}{\pi_{ik}} \cdot \mathbf{y}_i \cdot \mathbf{y}_k^T = \sum_{k \in s} \frac{\operatorname{Var}(I_k w_k)}{\pi_k} \cdot \mathbf{y}_k \cdot \mathbf{y}_k^T + \sum_{\substack{i,k \in s \\ i \neq k}} \frac{\operatorname{Cov}(I_i w_i, I_k w_k)}{\pi_{ik}} \cdot \mathbf{y}_i \cdot \mathbf{y}_k^T$$

The proof of the Proposition is complete.

8 Unbiased variance estimators for the Horvitz-Thompson Estimator

Let $U = \{1, 2, ..., N\}$ be a finite population. Let $\mathbf{y} = (y_1, y_2, ..., y_m) : U \longrightarrow \mathbb{R}^m$ be an \mathbb{R}^m -valued function defined on U (commonly called a "population parameter"). We will use the common notation \mathbf{y}_k for $\mathbf{y}(k)$. We wish to estimate $\mathbf{T}_{\mathbf{y}} := \sum_{k \in U} \mathbf{y}_k \in \mathbb{R}^m$ via survey sampling. Let $p : \mathcal{S} \longrightarrow (0,1]$ be our chosen sampling design, where $\mathcal{S} \subseteq \mathcal{P}(U)$ is the set of all possible samples in the design, and $\mathcal{P}(U)$ is the power set of U.

Proposition 8.1

Suppose the first-order and second-order inclusion probabilities of $p: \mathcal{S} \longrightarrow (0,1]$ are all strictly positive, i.e.

$$\pi_k := \sum_{s \ni k} p(s) = \sum_{k \in U} I_k(s) p(s) > 0 \quad \text{and} \quad \pi_{ik} := \sum_{s \ni i, k} p(s) = \sum_{i, k \in U} I_i(s) I_k(s) p(s) > 0,$$

for any $i, k \in U$. Then, an unbiased estimator for the covariance matrix of the Horvitz-Thompson estimator

$$\widehat{\mathbf{T}}_{\mathbf{y}}^{\mathrm{HT}}(s) \ := \ \sum_{k \in \mathbb{Z}} rac{1}{\pi_k} \, \mathbf{y}_k$$

is given by:

$$\widehat{\operatorname{Var}}\left[\widehat{\mathbf{T}}_{\mathbf{y}}^{\operatorname{HT}}\right](s) = \sum_{i,k \in s} \left(\frac{\pi_{ik} - \pi_{i}\pi_{k}}{\pi_{ik}}\right) \cdot \left(\frac{\mathbf{y}_{i}}{\pi_{i}}\right) \cdot \left(\frac{\mathbf{y}_{k}}{\pi_{k}}\right)^{T}, \text{ for each } s \in \mathcal{S}.$$

PROOF By Proposition 7.5, for any random variable (a.k.a. estimator) $\widehat{\mathbf{T}}_{\mathbf{y};w}$ linear in the population parameter $\mathbf{y}: \mathcal{S} \longrightarrow \mathbb{R}^m$ with weights $w_k: \mathcal{S} \longrightarrow \mathbb{R}$, $k \in U$, the following

$$\widehat{\operatorname{Var}}\left[\widehat{\mathbf{T}}_{y;w}\right](s) := \sum_{i,k \in s} \frac{\operatorname{Cov}(I_i w_i, I_k w_k)}{\pi_{ik}} \, \mathbf{y}_i \cdot \mathbf{y}_k^T$$
(8.1)

always gives an unbiased estimator for the covariance matrix of $\widehat{\mathbf{T}}_{y;w}$. For the Horvitz-Thompson estimator, the weights are $w_k = 1/\pi_k$, for each $k \in U$, and the weights are independent of the sample $s \in \mathcal{S}$. Thus, for the Horvitz-Thompson estimator, the right-hand side of equation (8.1) becomes:

$$\begin{split} \sum_{i,k \in s} \frac{\operatorname{Cov}(I_i w_i, I_k w_k)}{\pi_{ik}} \, \mathbf{y}_i \cdot \mathbf{y}_k^T &= \sum_{i,k \in s} \frac{\operatorname{Cov}(I_i, I_k)}{\pi_{ik}} \left(\frac{\mathbf{y}_i}{\pi_i} \right) \cdot \left(\frac{\mathbf{y}_k}{\pi_k} \right)^T \\ &= \sum_{i,k \in s} \frac{E(I_i I_k) - E(I_i) E(I_k)}{\pi_{ik}} \left(\frac{\mathbf{y}_i}{\pi_i} \right) \cdot \left(\frac{\mathbf{y}_k}{\pi_k} \right)^T \\ &= \sum_{i,k \in s} \frac{\pi_{ik} - \pi_i \pi_k}{\pi_{ik}} \left(\frac{\mathbf{y}_i}{\pi_i} \right) \cdot \left(\frac{\mathbf{y}_k}{\pi_k} \right)^T, \end{split}$$

which coincides with the right-hand side of the equation of the conclusion of the present Proposition. Thus this present Proposition is but a special case of Proposition 7.5, specialized to the Horvitz-Thompson estimator, and the proof is now complete.

9 Estimation of Domain Totals

10 Calibrated linear estimators for (multivariate) population totals

Definition 10.1

Let $\widehat{\mathbf{T}}_{\mathbf{y};w}: \mathcal{S} \longrightarrow \mathbb{R}^m$ be an \mathbb{R}^m -valued random variable which is linear in the \mathbb{R}^m -valued population parameter $\mathbf{y}: U \longrightarrow \mathbb{R}^m$, i.e.

$$\widehat{\mathbf{T}}_{\mathbf{y};w}: \quad \mathcal{S} \longrightarrow \mathbb{R}^m \\
s \longmapsto \sum_{k \in s} w_k(s) \cdot \mathbf{y}_k = \sum_{k \in U} I_k(s) w_k(s) \cdot \mathbf{y}_k,$$

where, for each $k \in U$, $w_k : \mathcal{S} \longrightarrow \mathbb{R}$ is itself an \mathbb{R} -valued random variable, and $I_k : \mathcal{S} \longrightarrow \{0,1\}$ is the indicator random variable defined by:

$$I_k(s) = \begin{cases} 1, & \text{if } k \in s, \\ 0, & \text{otherwise} \end{cases}$$

Let $x: U \longrightarrow \mathbb{R}$ be an \mathbb{R} -valued population parameter and $T_x := \sum_{k \in U} x_k$.

Then, $\widehat{\mathbf{T}}_{\mathbf{y};w}$ is said to be calibrated with respect to \underline{x} if

$$\sum_{k \in s} w_k(s) x_k = T_x, \text{ for each } s \in \mathcal{S}.$$

Example 10.2

If the sampling design has fixed sample size and each of its first-order inclusion probabilities is strictly positive, then Horvitz-Thompson estimator is calibrated with respect to the first-order inclusion probabilities.

To see this, let $U = \{1, 2, ..., N\}$ be a finite population, $\mathbf{y} : U \longrightarrow \mathbb{R}^m$ a population parameter, and $p : \mathcal{S} \subset \mathcal{P}(U) \longrightarrow \{0, 1\}$ a sampling design such that $\pi_k := \sum_{s \ni k} p(s) > 0$, for each $k \in U$. The Horvitz-Thompson estimator $\widehat{\mathbf{T}}_{\mathbf{y}}^{\mathrm{HT}} : \mathcal{S} \longrightarrow \mathbb{R}$ is then well-defined and is given by:

$$\widehat{\mathbf{T}}_{\mathbf{y}}^{\mathrm{HT}}\!(s) \ := \ \sum_{k \in s} rac{\mathbf{y}_k}{\pi_k}$$

Let $x: U \longrightarrow \mathbb{R}$ be defined by

$$x_k = \pi_k$$
, for each $k \in U$,

i.e. x_k is simply the inclusion probability of $k \in U$ under the sampling design $p: \mathcal{S} \longrightarrow (0,1]$.

Now, suppose that the sampling design has a fixed sample size n, and we shall show that $\widehat{\mathbf{T}}_{\mathbf{y}}^{\mathrm{HT}}$ is consequently calibrated with respect to $x: U \longrightarrow \mathbb{R}$. Indeed, recall that the weights of the Horvitz-Thompson estimator are simply $w_k(s) = 1/\pi_k$, for each $k \in U$ and each $s \in \mathcal{S}$. Hence,

$$\sum_{k \in s} w_k(s) x_k = \sum_{k \in s} \frac{1}{\pi_k} \pi_k = \sum_{k \in s} 1 = \begin{pmatrix} \text{sample} \\ \text{size of } s \end{pmatrix} = n,$$

since the sampling design has fixed size n. On the other hand,

$$T_x = \sum_{k \in U} x_k = \sum_{k \in U} \pi_k = \sum_{k \in U} E[I_k] = E\left[\sum_{k \in U} I_k\right] = E\left[\begin{array}{c} \text{sample} \\ \text{size} \end{array}\right] = n,$$

again since the sample size is fixed and equals n. Therefore, we have, for any $s \in \mathcal{S}$,

$$\sum_{k \in s} w_k(s) x_k = n = T_x$$

Therefore, the Horvitz-Thompson estimator, under the assumption of fixed sample size, is indeed calibrated with respect to the inclusion probabilities $x: U \longrightarrow \mathbb{R}$, $x_k = \pi_k := \sum_{s \ni k} p(s)$, for each $k \in U$.

Proposition 10.3

Let $\widehat{\mathbf{T}}_{\mathbf{y};w,x}: \mathcal{S} \longrightarrow \mathbb{R}^m$ be an \mathbb{R}^m -valued random variable which is linear in the \mathbb{R}^m -valued population parameter $\mathbf{y}: U \longrightarrow \mathbb{R}^m$ and calibrated with respect to the population parameter $x: U \longrightarrow \mathbb{R}$, with $x_k \neq 0$ for each $k \in U$. Then, the mean squared error matrix of $\widehat{\mathbf{T}}_{\mathbf{y};w,x}$ as an estimator of $\mathbf{T}_{\mathbf{y}}$ is given by:

$$MSE\left[\widehat{\mathbf{T}}_{\mathbf{y};w,x}\right] = -\frac{1}{2} \sum_{\substack{i,k \in U \\ i \neq k}} a_{ik} \left(\frac{\mathbf{y}_i}{x_i} - \frac{\mathbf{y}_k}{x_k}\right) \cdot \left(\frac{\mathbf{y}_i}{x_i} - \frac{\mathbf{y}_k}{x_k}\right)^T x_i x_k \in \mathbb{R}^{m \times m}, \text{ where } a_{ik} := E\left[\left(I_i w_i - 1\right)\left(I_k w_k - 1\right)\right].$$

Proof

$$\operatorname{MSE}\left[\widehat{\mathbf{T}}_{\mathbf{y};w,x}\right] = E\left[\left(\widehat{\mathbf{T}}_{\mathbf{y};w,x} - \mathbf{T}_{\mathbf{y}}\right) \cdot \left(\widehat{\mathbf{T}}_{\mathbf{y};w,x} - \mathbf{T}_{\mathbf{y}}\right)^{T}\right] = E\left[\left(\sum_{i \in U} (I_{i}w_{i} - 1)\,\mathbf{y}_{i}\right) \cdot \left(\sum_{k \in U} (I_{k}w_{k} - 1)\,\mathbf{y}_{k}\right)^{T}\right] \\
= \sum_{i \in U} \sum_{k \in U} E\left[\left(I_{i}w_{i} - 1\right)\left(I_{k}w_{k} - 1\right)\right] \cdot \mathbf{y}_{i} \cdot \mathbf{y}_{k}^{T} = \sum_{k \in U} a_{kk} \cdot \mathbf{y}_{k} \cdot \mathbf{y}_{k}^{T} + \sum_{\substack{i,k \in U \\ i \neq k}} a_{ik} \cdot \mathbf{y}_{i} \cdot \mathbf{y}_{k}^{T}\right] \\
= \sum_{k \in U} a_{kk} \left(\frac{\mathbf{y}_{k} \cdot \mathbf{y}_{k}^{T}}{x_{k}^{2}}\right) x_{k}^{2} + \sum_{\substack{i,k \in U \\ i \neq k}} a_{ik} \left(\frac{\mathbf{y}_{i}}{x_{i}}\right) \cdot \left(\frac{\mathbf{y}_{k}}{x_{k}}\right)^{T} x_{i} x_{k}$$

On the other hand,

$$-\frac{1}{2} \sum_{\substack{i,k \in U \\ i \neq k}} a_{ik} \left(\frac{\mathbf{y}_i}{x_i} - \frac{\mathbf{y}_k}{x_k} \right) \cdot \left(\frac{\mathbf{y}_i}{x_i} - \frac{\mathbf{y}_k}{x_k} \right)^T x_i x_k$$

$$= -\frac{1}{2} \sum_{\substack{i,k \in U \\ i \neq k}} a_{ik} \left[\left(\frac{\mathbf{y}_i}{x_i} \right) \left(\frac{\mathbf{y}_i}{x_i} \right)^T - \left(\frac{\mathbf{y}_i}{x_i} \right) \left(\frac{\mathbf{y}_k}{x_k} \right)^T - \left(\frac{\mathbf{y}_k}{x_k} \right) \left(\frac{\mathbf{y}_i}{x_i} \right)^T + \left(\frac{\mathbf{y}_k}{x_k} \right) \left(\frac{\mathbf{y}_k}{x_k} \right)^T \right] x_i x_k$$

$$= -\frac{1}{2} \sum_{\substack{i,k \in U \\ i \neq k}} a_{ik} \left[\left(\frac{\mathbf{y}_i}{x_i} \right) \left(\frac{\mathbf{y}_i}{x_i} \right)^T + \left(\frac{\mathbf{y}_k}{x_k} \right) \left(\frac{\mathbf{y}_k}{x_k} \right)^T \right] x_i x_k + \sum_{\substack{i,k \in U \\ i \neq k}} a_{ik} \left(\frac{\mathbf{y}_i}{x_i} \right) \left(\frac{\mathbf{y}_k}{x_k} \right)^T x_i x_k$$

Thus, the proof of the present Proposition will be complete once we show:

$$\underbrace{\sum_{k \in U} a_{kk} \left(\frac{\mathbf{y}_{k}}{x_{k}}\right) \left(\frac{\mathbf{y}_{k}}{x_{k}}\right)^{T} x_{k}^{2}}_{1 \le i \le k} = -\frac{1}{2} \sum_{\substack{i,k \in U \\ i \ne k}} a_{ik} \left[\left(\frac{\mathbf{y}_{i}}{x_{i}}\right) \left(\frac{\mathbf{y}_{i}}{x_{i}}\right)^{T} + \left(\frac{\mathbf{y}_{k}}{x_{k}}\right) \left(\frac{\mathbf{y}_{k}}{x_{k}}\right)^{T} \right] x_{i} x_{k},$$

which is equivalent to:

$$\sum_{i \in U} \sum_{k \in U} a_{ik} \left[\left(\frac{\mathbf{y}_i}{x_i} \right) \left(\frac{\mathbf{y}_i}{x_i} \right)^T + \left(\frac{\mathbf{y}_k}{x_k} \right) \left(\frac{\mathbf{y}_k}{x_k} \right)^T \right] x_i x_k = 0.$$
 (10.2)

Observe that

LHS(10.2) =
$$\sum_{i \in U} \sum_{k \in U} a_{ik} \left(\frac{\mathbf{y}_i}{x_i}\right) \left(\frac{\mathbf{y}_i}{x_i}\right)^T x_i x_k + \sum_{i \in U} \sum_{k \in U} a_{ik} \left(\frac{\mathbf{y}_k}{x_k}\right) \left(\frac{\mathbf{y}_k}{x_k}\right)^T x_i x_k$$

$$= 2 \sum_{i \in U} \sum_{k \in U} a_{ik} \left(\frac{\mathbf{y}_i}{x_i}\right) \left(\frac{\mathbf{y}_i}{x_i}\right)^T x_i x_k = 2 \sum_{i \in U} x_i \left(\frac{\mathbf{y}_i}{x_i}\right) \left(\frac{\mathbf{y}_i}{x_i}\right)^T \left(\sum_{k \in U} a_{ik} x_k\right).$$

Hence, (10.2) follows once we show

$$\sum_{k \in U} a_{ik} x_k = 0, \quad \text{for each } i \in U.$$
 (10.3)

Lastly, we now claim that (10.3) follows from the hypothesis that $\widehat{T}_{y;w;x}$ is calibrated with respect to x. Indeed,

$$\sum_{k \in U} a_{ik} x_{k} = \sum_{k \in U} E[(I_{i}w_{i} - 1)(I_{k}w_{k} - 1)] x_{k} = \sum_{k \in U} \left[\sum_{s \in S} p(s)(I_{i}(s)w_{i}(s) - 1)(I_{k}(s)w_{k}(s) - 1) \right] x_{k}$$

$$= \sum_{s \in S} p(s) \cdot (I_{i}(s)w_{i}(s) - 1) \cdot \left[\sum_{k \in U} (I_{k}(s)w_{k}(s) - 1) \cdot x_{k} \right]$$

$$= \sum_{s \in S} p(s) \cdot (I_{i}(s)w_{i}(s) - 1) \cdot \left[\underbrace{\left(\sum_{k \in S} w_{k}(s) x_{k} \right) - T_{x}}_{0} \right]$$

$$= 0$$

The proof of the present Proposition is now complete.

Proposition 10.4 (The Yates-Grundy-Sen Variance Estimator for calibrated linear population total estimators)

Let $p: \mathcal{S} \longrightarrow (0,1]$ be a sampling design each of whose first-order and second-order inclusion probabilities is strictly positively. Let $\widehat{\mathbf{T}}_{\mathbf{y};w,x}: \mathcal{S} \longrightarrow \mathbb{R}^m$ be a random variable which is linear in the population parameter $\mathbf{y}: U \longrightarrow \mathbb{R}^m$ and calibrated with respect to the population parameter $x: U \longrightarrow \mathbb{R}$, with $x_k \neq 0$ for each $k \in U$. Suppose that $\widehat{\mathbf{T}}_{\mathbf{y};w,x}$ is an unbiased estimator for $\mathbf{T}_{\mathbf{y}} := \sum_{k \in U} \mathbf{y}_k$, for arbitrary \mathbf{y} . Then, the following is an unbiased estimator of the variance

 $\operatorname{Var}\left[\widehat{\mathbf{T}}_{\mathbf{y};w,x}\right] \ of \ \widehat{\mathbf{T}}_{\mathbf{y};w,x} \colon For \ each \ s \in \mathcal{S} \ admissible \ in \ the \ sampling \ design \ p : \mathcal{S} \longrightarrow (0,1],$

$$\widehat{\operatorname{Var}}\left[\ \widehat{\mathbf{T}}_{\mathbf{y};w,x} \ \right](s) \ := \ -\frac{1}{2} \sum_{\substack{i,k \in s \\ i \neq k}} \left(w_i(s) w_k(s) - \frac{1}{\pi_{ik}} \right) \left(\frac{\mathbf{y}_i}{x_i} - \frac{\mathbf{y}_k}{x_k} \right) \cdot \left(\frac{\mathbf{y}_i}{x_i} - \frac{\mathbf{y}_k}{x_k} \right)^T x_i \, x_k$$

Terminology: $\widehat{\operatorname{Var}} \left[\widehat{\mathbf{T}}_{\mathbf{y};w,x} \right]$ is called the Yates-Grundy-Sen Variance Estimator.

PROOF Since $\widehat{\mathbf{T}}_{\mathbf{y};w,x}$ is an unbiased estimator for $\mathbf{T}_{\mathbf{y}}$ by hypothesis, we have $\operatorname{Var}\left[\widehat{\mathbf{T}}_{\mathbf{y};w,x}\right] = \operatorname{MSE}\left[\widehat{\mathbf{T}}_{\mathbf{y};w,x}\right]$. By Proposition 10.3, we thus have:

$$\operatorname{Var}\left[\widehat{\mathbf{T}}_{\mathbf{y};w,x}\right] = -\frac{1}{2} \sum_{\substack{i,k \in U \\ i \neq k}} a_{ik} \left(\frac{\mathbf{y}_i}{x_i} - \frac{\mathbf{y}_k}{x_k}\right)^2 x_i x_k, \text{ where } a_{ik} := E\left[\left(I_i w_i - 1\right)\left(I_k w_k - 1\right)\right].$$

On the other hand,

$$E\left(\widehat{\operatorname{Var}}\left[\widehat{\mathbf{T}}_{\mathbf{y};w,x}\right]\right) = -\frac{1}{2} \sum_{\substack{i,k \in U\\i \neq k}} E\left[I_i I_k \left(w_i w_k - \frac{1}{\pi_{ik}}\right)\right] \left(\frac{\mathbf{y}_i}{x_i} - \frac{\mathbf{y}_k}{x_k}\right) \cdot \left(\frac{\mathbf{y}_i}{x_i} - \frac{\mathbf{y}_k}{x_k}\right)^T x_i x_k$$

Thus, it remains only to show:

$$a_{ik} = E \left[I_i I_k \left(w_i w_k - \frac{1}{\pi_{ik}} \right) \right].$$

Now,

$$E\left[\ I_{i}I_{k} \left(w_{i}w_{k} - \frac{1}{\pi_{ik}} \right) \ \right] \ = \ E[\ I_{i}I_{k}w_{i}w_{k} \] - \frac{1}{\pi_{ik}}E[\ I_{i}I_{k} \] \ = \ E[\ I_{i}I_{k}w_{i}w_{k} \] - \frac{1}{\pi_{ik}}\pi_{ik} \ = \ E[\ I_{i}I_{k}w_{i}w_{k} \] - 1,$$

and

$$\begin{array}{rcl} a_{ik} & = & E[\; (I_i\,w_i-1)\,(I_k\,w_k-1)\;] & = & E[\; I_i\,I_k\,w_i\,w_k\;] - E[\; I_i\,w_i\;] - E[\; I_k\,w_k\;] + 1 \\ & = & E[\; I_i\,I_k\,w_i\,w_k\;] - 1 - 1 + 1 \; = \; E[\; I_i\,I_k\,w_i\,w_k\;] - 1 \\ & = & E\left[\; I_iI_k\left(w_iw_k - \frac{1}{\pi_{ik}}\right)\;\right], \end{array}$$

where third last equality follows from Proposition 7.2 and the unbiasedness hypothesis on $\widehat{\mathbf{T}}_{\mathbf{y};w,x}$ as an estimator for $\mathbf{T}_{\mathbf{v}}$. The proof of the present Proposition is now complete.

11 Conditional inference in finite-population sampling

In this section, we give a justification for making inference conditional on the observed sample size for sampling designs with random sample size.

Observation ("mixture" of experiments) [see [3], p.15.]

Consider a population \mathcal{U} of 1000 units. We wish to estimate the total T_y of a certain population characteristic $\mathbf{y} = (y_1, y_2, \dots, y_{1000})$. Suppose we use the following two-step sampling scheme:

- Step 1: We first flip a fair coin. Define the random variable X by letting X = 1 if the coin lands heads, and X = 0 if it lands tails.
- Step 2: If X=1, we select an SRS from \mathcal{U} of size 100. If X=0, we take a census on all of \mathcal{U} .

Let $\mathcal{S} \subset \mathcal{P}(\mathcal{U})$ denote the probability space of all possible samples induced by the (two-step) sampling design above. Note that $\mathcal{S} = \mathcal{S}_0 \sqcup \mathcal{S}_1$, where $\mathcal{S}_0 = \{ \mathcal{U} \}$ and \mathcal{S}_1 is the set of all subsets of \mathcal{U} of size 100. The sampling design is determined by the following probability distribution on \mathcal{S} :

$$P(\mathcal{U}) = \frac{1}{2}$$
 and $P(s) = \frac{1}{2\begin{pmatrix} 1000 \\ 100 \end{pmatrix}}$, for each $s \in \mathcal{S}_1$.

Let $\widehat{T}_y: \mathcal{S} \longrightarrow \mathbb{R}$ denote our chosen estimator for T_y . Then the (unconditional) probability distribution of \widehat{T}_y can be "decomposed" as follows:

$$P\left(\widehat{T}_{y}=t \mid \mathbf{y}\right) = P\left(\widehat{T}_{y}=t, X=0 \mid \mathbf{y}\right) + P\left(\widehat{T}_{y}=t, X=1 \mid \mathbf{y}\right)$$

$$= P\left(\widehat{T}_{y}=t \mid X=0, \mathbf{y}\right) \cdot P\left(X=0 \mid \mathbf{y}\right) + P\left(\widehat{T}_{y}=t \mid X=1, \mathbf{y}\right) \cdot P\left(X=1 \mid \mathbf{y}\right)$$

$$= P\left(\widehat{T}_{y}=t \mid X=0, \mathbf{y}\right) \cdot P\left(X=0\right) + P\left(\widehat{T}_{y}=t \mid X=1, \mathbf{y}\right) \cdot P\left(X=1\right),$$

where the last equality follows because the distribution of X is independent of \mathbf{y} . Suppose the observation we make consists of (\hat{T}_y, X) . The unconditional probability distribution of \hat{T}_y , given by $P(\hat{T}_y = t \mid \mathbf{y})$ above, describes of course the randomness of the estimator \hat{T}_y as induced by both the randomness of the sample $s \in \mathcal{S} = \mathcal{S}_0 \sqcup \mathcal{S}_1$ as well as that of X (the outcome of the coin flip in Step 1). Now, suppose we have indeed carried out the sampling procedure and have obtained an observation of (\hat{T}_y, X) . Suppose it happened that X = 1. Hence, we know that the estimate $\hat{T}_y(s)$ we actually obtained was generated from an SRS of size 100 (rather than a census). Note also that the probability distribution of X is independent of \mathbf{y} and the observation of X gives no information about \mathbf{y} . One school of thought therefore argues that downstream inferences about \mathbf{y} should be carried out using the conditional probability $P(\hat{T}_y = t \mid X = 1, \mathbf{y})$, rather than the unconditional probability $P(\hat{T}_y = t \mid \mathbf{y})$. In other words, in the present example, as far as making inferences about \mathbf{y} is concerned, only the randomness in Step 2 is relevant, and the randomness in Step 1 (i.e. the randomness of X, the outcome of the coin flip) is irrelevant to any inference about \mathbf{y} . Consequently randomness of X "should" be removed in any inference procedure for \mathbf{y} , and this is achieved by conditioning on the observed value of X.

Conditioning on obtained sample size for sample designs with random sample size

Suppose \mathcal{U} is a finite population. We wish to estimate the total $T_y = \sum_{i \in \mathcal{U}} y_i$ of a population characteristic $\mathbf{y} : \mathcal{U} \longrightarrow \mathbb{R}$, using a sample design $p : \mathcal{S} \longrightarrow [0,1]$ and a estimator $\widehat{T} : \mathcal{S} \longrightarrow \mathbb{R}$. We make the assumption that the sampling design p is independent of \mathbf{y} . Let $N : \mathcal{S} \longrightarrow \mathbb{N} \cup \{0\}$ be the random variable of sample size, i.e. N(s) = number of elements in s, for each possible sample $s \in \mathcal{S}$. Then,

$$P(\widehat{T} = t \mid \mathbf{y}) = \sum_{n} P(\widehat{T} = t, N = n \mid \mathbf{y})$$

$$= \sum_{n} P(\widehat{T} = t \mid N = n, \mathbf{y}) \cdot P(N = n \mid \mathbf{y})$$

$$= \sum_{n} P(\widehat{T} = t \mid N = n, \mathbf{y}) \cdot P(N = n),$$

where the last equality follows from the assumed independence of the probability distribution $p: \mathcal{S} \longrightarrow [0,1]$ (hence that of N) from \mathbf{y} . The key observation to make now is that: Although the actual sampling procedure operationally may or may not have been a two-step procedure, the independence of p from \mathbf{y} makes it probabilistically equivalent to a two-step procedure, as shown by the above decomposition of $P(\widehat{T} = t \mid \mathbf{y})$ — Step (1): randomly select a sample size N = n according to the distribution P(N = n), and then Step (2): randomly select a sample s of size s chosen in Step (1) according to the distribution $P(s \mid N = n)$. By the statistical reasoning explained in the preceding observation, it follows that post-sampling inference about \mathbf{y} should be made based on the conditional distribution $P(\widehat{T} = t \mid \mathbf{y})$, rather than the unconditional distribution $P(\widehat{T} = t \mid \mathbf{y})$. This is because the sampling scheme is probabilistically equivalent to a two-step procedure, with the probability distribution of the first step (choosing a sample size) independent of the parameters of interest (T_y) , and thus only the probability distribution of the second step (choosing a sample of the size chosen in first step) should be used to make inference about T_y .

Caution

In more formal parlance, the random variable $N: \mathcal{S} \longrightarrow \mathbb{N} \cup \{0\}$ is <u>ancillary</u> to the parameter **y**. Thus, conditioning on sample size, for finite-population sampling schemes with random sample size, partially conforms to the **Conditionality**

Survey Sampling Theory

Study Notes October 5, 2014 Kenneth Chu

Principle, which states that statistical inference about a parameter should be made conditioned on observed values of statistics ancillary to that parameter. The conformance is only partial due to the (obvious) fact that it is the sample s itself which is ancillary to the parameter of interest \mathbf{y} , not just its sample size N(s). Thus, full conformance to the Conditionality Principle would require inference about \mathbf{y} be made conditioned on the observed sample s itself (rather than its size N(s)). However, if we did condition on the obtained sample s itself, the domain of the estimator \widehat{T} would be restricted to the singleton $\{s\}$, and \widehat{T} could then attain only one value under conditioning on s, and no randomization-based (i.e. design-based) inference — apart from the observed value of $\widehat{T}(s)$ — could be made any longer.

References

- [1] HÁJEK, J. Limiting distributions in simple random sampling from a finite population. Publication of the Mathematical Institute of the Hungarian Academy of Sciences 5 (1960), 361–374.
- [2] LOHR, S. L. Sampling: Design and Analysis, first ed. Duxbury Press, 1999.
- [3] VALLIANT, R., DORFMAN, A. H., AND ROYALL, R. M. Finite Population Sampling and Inference, first ed. John-Wiley & Sons, 2000.