25

5

TARGETED CHROMOSOMAL GENOMIC ALTERATIONS WITH MODIFIED SINGLE STRANDED OLIGONUCLEOTIDES

Field Of The Invention

The technical field of the invention is oligonucleotide-directed repair or alteration of genetic information using novel chemically modified oligonucleotides. Such genetic information is preferably from a eukaryotic organism, i.e. a plant, animal or fungus.

Background Of The Invention

A number of methods have been developed specifically to alter the sequence of an isolated DNA in addition to methods to alter directly the genomic information of various plants, fungi and animals, including humans ("gene therapy"). The latter methods generally include the use of viral or plasmid vectors carrying nucleic acid sequences encoding partial or complete portions of a particular protein which is expressed in a cell or tissue to effect the alteration. The expression of the particular protein then results in the desired phenotype. For example, retroviral vectors containing a transgenic DNA sequence allowing for the production of a normal CFTR protein when administered to defective cells are described in U.S. Patent 5,240,846. Others have developed different "gene therapy vectors" which include, for example, portions of adenovirus (Ad) or adeno-associated virus (AAV), or other viruses. The virus portions used are often long terminal repeat sequences which are added to the ends of a transgene of choice along with other necessary control sequences which allow expression of the transgene. See U.S. Patents 5,700,470 and 5,139,941. Similar methods have been developed for use in plants. See, for example, U.S. Patent 4,459,355 which describes a method for transforming plants with a DNA vector and U.S. Patent 5,188,642 which describes cloning or expression vectors containing a transgenic DNA sequence which when expressed in plants confers resistance to the herbicide glyphosate. The use of such transgene vectors in any eukaryotic organism adds one or more exogenous copies of a gene, which gene may be foreign to the host, in a usually random fashion at one or more integration sites of the organism's genome at some frequency. The gene which was originally present in the genome, which may be a normal allelic variant, mutated, defective, and/or functional, is retained in the genome of the host.

18 leaf tark and their fact at man (ii) that are their and their are their a

5

10

These methods of gene correction are problematic in that complications which can compromise the health of the recipient, or even lead to death, may result. One such problem is that insertion of exogenous nucleic acid at random location(s) in the genome can have deleterious effects. Another problem with such systems includes the addition of unnecessary and unwanted genetic material to the genome of the recipient, including, for example, viral or other vector remnants, control sequences required to allow production of the transgene protein, and reporter genes or resistance markers. Such remnants and added sequences may have presently unrecognized consequences, for example, involving genetic rearrangements of the recipient genomes. Other problems associated with these types of traditional gene therapy methods include autoimmune suppression of cells expressing an inserted gene due to the presence of foreign antigens. Concerns have also been raised with consumption, especially by humans, of plants containing exogenous genetic material.

More recently, simpler systems involving poly- or oligo- nucleotides have been described for use in the alteration of genomic DNA. These chimeric RNA-DNA oligonucleotides, requiring contiguous RNA and DNA bases in a double-stranded molecule folded by complementarity into a double hairpin conformation, have been shown to effect single basepair or frameshift alterations, for example, for mutation or repair of plant or animal genomes. See, for example, WO 99/07865 and U.S. Patent 5,565,350. In the chimeric RNA-DNA oligonucleotide, an uninterrupted stretch of DNA bases within the molecule is required for sequence alteration of the targeted genome while the obligate RNA residues are involved in complex stability. Due to the length, backbone composition, and structural configuration of these chimeric RNA-DNA molecules, they are expensive to synthesize and difficult to purify. Moreover, if the RNA-containing strand of the chimeric RNA-DNA oligonucleotide is designed so as to direct gene conversion, a series of mutagenic reactions resulting in nonspecific base alteration can result. Such a result compromises the utility of such a molecule in methods designed to alter the genomes of plants and animals, including in human gene therapy applications.

25

30

Alternatively, other oligo- or poly- nucleotides have been used which require a triplex forming, usually polypurine or polypyrimidine, structural domain which binds to a DNA helical duplex through Hoogsteen interactions between the major groove of the DNA duplex and the oligonucleotide. Such oligonucleotides may have an additional DNA reactive moiety, such as psoralen, covalently linked to the oligonucleotide. These reactive moieties function as effective intercalation agents, stabilize the formation of a triplex and can be mutagenic. Such agents may be required in order to stabilize the triplex forming domain of the oligonucleotide with the DNA double helix if the Hoogsteen interactions from the oligonucleotide/target base composition are insufficient. See, e.g., U.S. Patent 5,422,251. The utility of

30

5

10

these oligonucleotides for directing gene conversion is compromised by a high frequency of nonspecific base changes.

In more recent work, the domain for altering a genome is linked or tethered to the triplex forming domain of the bi-functional oligonucleotide, adding an additional linking or tethering functional domain to the oligonucleotide. See, e.g., Culver et al., Nature Biotechnology 17: 989-93 (1999). Such chimeric or triplex forming molecules have distinct structural requirements for each of the different domains of the complete poly- or oligo-nucleotide in order to effect the desired genomic alteration in either episomal or chromosomal targets.

Other genes, e.g. CFTR, have been targeted by homologous recombination using duplex fragments having several hundred basepairs. See, e.g., Kunzelmann et al., Gene Ther. 3:859-867 (1996). Early experiments to mutagenize an antibiotic resistance indicator gene by homologous recombination used an unmodified DNA oligonucleotide with no functional domains other than a region of complementary sequence to the target. See Campbell et al., New Biologist 1: 223-227 (1989). These experiments required large concentrations of the oligonucleotide, exhibited a very low frequency of episomal modification of a targeted exogenous plasmid gene not normally found in the cell and have not been reproduced. However, as shown in the examples herein, we have observed that an unmodified DNA oligonucleotide can convert a base at low frequency which is detectable using the assay systems described herein.

Artificial chromosomes can be useful for the screening purposed identified herein. These molecules are man-made linear or circular DNA molecules constructed from essential cis-acting DNA sequence elements that are responsible for the proper replication and partitioning of natural chromosomes (Murray et al., 1983). The essential elements are: (1) Autonomous Replication Sequences (ARS), (2) Centromeres, and (3) Telomeres.

Yeast artificial chromosomes (YACs) allow large genomic DNA to be modified and used for generating transgenic animals [Burke et al., Science 236:806; Peterson et al., Trends Genet. 13:61 (1997); Choi, et al., Nat. Genet., 4:117-223 (1993), Davies, et al., Biotechnology 11:911-914 (1993), Matsuura, et al., Hum. Mol. Genet., 5:451-459 (1996), Peterson et al., Proc. Natl. Acad. Sci., 93:6605-6609 (1996); and Schedl, et al., Cell, 86:71-82 (1996)]. Other vectors also have been developed for the cloning of large segments of mammalian DNA, including cosmids, and bacteriophage P1 [Sternberg et al., Proc. Natl. Acad. Sci. U.S.A., 87:103-107 (1990)]. YACs have certain advantages over these alternative large capacity cloning vectors [Burke et al., Science, 236:806-812 (1987)]. The

An alternative to YACs are E. coli based cloning systems based on the E. coli fertility factor that have been developed to construct large genomic DNA insert libraries. They are bacterial artificial chromosomes (BACs) and P-1 derived artificial chromosomes (PACs) [Mejia et al., Genome Res. 7:179-186 (1997); Shizuya et al., Proc. Natl. Acad. Sci. 89:8794-8797 (1992); Ioannou et al., Nat. Genet., 6:84-89 (1994); Hosoda et al., Nucleic Acids Res. 18:3863 (1990)]. BACs are based on the E. coli fertility plasmid (F factor); and PACs are based on the bacteriophage P1. These vectors propagate at a very low copy number (1-2 per cell) enabling genomic inserts up to 300 kb in size to be stably maintained in recombination deficient hosts. Furthermore, the PACs and BACs are circular DNA molecules that are readily isolated from the host genomic background by classical alkaline lysis [Birnboim et al., Nucleic Acids Res. 7:1513-1523 (1979].

Oligonucleotides designed for use in the alteration of genetic information are significantly different from oligonucleotides designed for antisense approaches. For example, antisense oligonucleotides are perfectly complementary to and bind an mRNA strand in order to modify expression of a targeted mRNA and are used at high concentration. As a consequence, they are unable to produce a gene conversion event by either mutagenesis or repair of a defect in the chromosomal DNA of a host genome. Furthermore, the backbone chemical composition used in most oligonucleotides designed for use in antisense approaches renders them inactive as substrates for homologous pairing or mismatch repair enzymes and the high concentrations of oligonucleotide required for antisense applications can be toxic with some types of nucleotide modifications. In addition, antisense oligonucleotides must be complementary to the mRNA and therefore, may not be complementary to the other DNA strand or to genomic sequences that span the junction between intron sequence and exon sequence.

A need exists for simple, inexpensive oligonucleotides capable of producing targeted alteration of genetic material such as those described herein as well as methods to identify optimal oligonucleotides that accurately and efficiently alter target DNA.

Summary Of The Invention

Novel, modified single-stranded nucleic acid molecules that direct gene alteration in plants, fungi and animals are identified and the efficiency of alteration is analyzed both <u>in vitro</u> using a cell-free extract assay and <u>in vivo</u> using a yeast cell system. The alteration in an oligonucleotide of the invention may comprise an insertion, deletion, substitution, as well as any combination of these. Site

10

5

30

5

10

specific alteration of DNA is not only useful for studying function of proteins in vivo, but it is also useful for creating animal models for human disease, and in gene therapy. As described herein, oligonucleotides of the invention target directed specific gene alterations in genomic double-stranded DNA cells. The target DNA can be normal, cellular chromosomal DNA, extrachromosomal DNA present in cells in different forms including, e.g., mammalian artificial chromosomes (MACs), PACs from P-1 vectors, yeast artificial chromosomes (YACs), bacterial artificial chromosomes (BACs), plant artificial chromosomes (PLACs), as well as episomal DNA, including episomal DNA from an exogenous source such as a plasmid or recombinant vector. Many of these artificial chromosome constructs containing human DNA can be obtained from a variety of sources, including, e.g., the Whitehead Institute, and are described, e.g., in Cohen et al., Nature 336:698-701 (1993) and Chumakov, et al., Nature 377:174-297 (1995). The target DNA may be transcriptionally silent or active. In a preferred embodiment, the target DNA to be altered is the non-transcribed strand of a genomic DNA duplex.

The low efficiency of gene alteration obtained using unmodified DNA oligonucleotides is believed to be largely the result of degradation by nucleases present in the reaction mixture or the target cell. Although different modifications are known to have different effects on the nuclease resistance of oligonucleotides or stability of duplexes formed by such oligonucleotides (see, e.g., Koshkin et al., J. Am. Chem. Soc., 120:13252-3), we have found that it is not possible to predict which of any particular known modification would be most useful for any given alteration event, including for the construction of gene conversion oligonucleotides, because of the interaction of different as yet unidentified proteins during the gene alteration event. Herein, a variety of nucleic acid analogs have been developed that increase the nuclease resistance of oligonucleotides that contain them, including, e.g., nucleotides containing phosphorothicate linkages or 2'-O-methyl analogs. We recently discovered that single-stranded DNA oligonucleotides modified to contain 2'-O-methyl RNA nucleotides or phosphorothioate linkages can enable specific alteration of genetic information at a higher level than either unmodified single-stranded DNA or a chimeric RNA/DNA molecule. See priority applications incorporated herein in their entirety; see also Gamper et al., Nucleic Acids Research 28: 4332-4339 (2000). We also found that additional nucleic acid analogs which increase the nuclease resistance of oligonucleotides that contain them, including, e.g., "locked nucleic acids" or "LNAs", xylo-LNAs and L-ribo-LNAs; see, for example, Wengel & Nielsen, WO 99/14226; Wengel, WO 00/56748 and Wengel, WO 00/66604; also allow specific targeted alteration of genetic information.

The assay allows for determining the optimum length of the oligonucleotide, optimum sequence of the oligonucleotide, optimum position of the mismatched base or bases, optimum chemical

25

30

5

modification or modifications, optimum strand targeted for identifying and selecting the most efficient oligonucleotide for a particular gene alteration event by comparing to a control oligonucleotide. Control oligonucleotides may include a chimeric RNA-DNA double hairpin oligonucleotide directing the same gene alteration event, an oligonucleotide that matches its target completely, an oligonucleotide in which all linkages are phosphorothiolated, an oligonucleotide fully substituted with 2'-O-methyl analogs or an RNA oligonucleotide. Such control oligonucleotides either fail to direct a targeted alteration or do so at a lower efficiency as compared to the oligonucleotides of the invention. The assay further allows for determining the optimum position of a gene alteration event within an oligonucleotide, optimum concentration of the selected oligonucleotide for maximum alteration efficiency by systematically testing a range of concentrations, as well as optimization of either the source of cell extract by testing different organisms or strains, or testing cells derived from different organisms or strains, or cell lines. Using a series of single-stranded oligonucleotides, comprising all RNA or DNA residues and various mixtures of the two, several new structures are identified as viable molecules in nucleotide conversion to direct or repair a genomic mutagenic event. When extracts from mammalian, plant and fungal cells are used and are analyzed using a genetic readout assay in bacteria, single-stranded oligonucleotides having one of several modifications are found to be more active than a control RNA-DNA double hairpin chimera structure when evaluated using an in vitro gene repair assay. Similar results are also observed in vivo using yeast, mammalian, rodent, monkey, human and embryonic cells, including stem cells. Molecules containing various lengths of modified bases were found to possess greater activity than unmodified single-stranded DNA molecules.

<u>Detailed Description Of The Invention</u>

The present invention provides oligonucleotides having chemically modified, nuclease resistant residues, preferably at or near the termini of the oligonucleotides, and methods for their identification and use in targeted alteration of genetic material, including gene mutation, targeted gene repair and gene knockout. The oligonucleotides are preferably used for mismatch repair or alteration by changing at least one nucleic acid base, or for frameshift repair or alteration by addition or deletion of at least one nucleic acid base. The oligonucleotides of the invention direct any such alteration, including gene correction, gene repair or gene mutation and can be used, for example, to introduce a polymorphism or haplotype or to eliminate ("knockout") a particular protein activity.

The oligonucleotides of the invention are designed as substrates for homologous pairing and repair enzymes and as such have a unique backbone composition that differs from chimeric RNA-

30

5

DNA double hairpin oligonucleotides, antisense oligonucleotides, and/or other poly- or oligo-nucleotides used for altering genomic DNA, such as triplex forming oligonucleotides. The single-stranded oligonucleotides described herein are inexpensive to synthesize and easy to purify. In side-by-side comparisons, an optimized single-stranded oligonucleotide comprising modified residues as described herein is significantly more efficient than a chimeric RNA-DNA double hairpin oligonucleotide in directing a base substitution or frameshift mutation in a cell-free extract assay.

We have discovered that single-stranded oligonucleotides having a DNA domain surrounding the targeted base, with the domain preferably central to the poly- or oligo-nucleotide, and having at least one modified end, preferably at the 3' terminal region are able to alter a target genetic sequence and with an efficiency that is higher than chimeric RNA-DNA double hairpin oligonucleotides disclosed in US Patent 5,565,350. Oligonucleotides of the invention can efficiently be used to introduce targeted alterations in a genetic sequence of DNA in the presence of human, animal, plant, fungal (including yeast) proteins and in cultured cells of human liver, lung, colon, cervix, kidney, epethelium and cancer cells and in monkey, hamster, rat and mouse cells of different types, as well as embryonic stem cells. Cells for use in the invention include, e.g., fungi including S. cerevisiae, Ustillago maydis and Candida albicans, mammalian, mouse, hamster, rat, monkey, human and embryonic cells including stem cells. The DNA domain is preferably fully complementary to one strand of the gene target, except for the mismatch base or bases responsible for the gene alteration or conversion events. On either side of the preferably central DNA domain, the contiguous bases may be either RNA bases or, preferably, are primarily DNA bases. The central DNA domain is generally at least 8 nucleotides in length. The base(s) targeted for alteration in the most preferred embodiments are at least about 8, 9 or 10 bases from one end of the oligonucleotide.

According to certain embodiments, the termini of the oligonucleotides of the present invention comprise phosphorothicate modifications, LNA backbone modifications, or 2'-O-methyl base analogs, or any combination of these modifications. Oligonucleotides comprising 2'-O-methyl or LNA analogs are a mixed DNA/RNA polymer. These oligonucleotides are, however, single-stranded and are not designed to form a stable internal duplex structure within the oligonucleotide. The efficiency of gene alteration is surprisingly increased with oligonucleotides having internal complementary sequence comprising phosphorothicate modified bases as compared to 2'-O-methyl modifications. This result indicates that specific chemical interactions are involved between the converting oligonucleotide and the proteins involved in the conversion. The effect of other such chemical interactions to produce nuclease resistant termini using modifications other than LNA, phosphorothicate linkages, or 2'-O-methyl analog

incorporation into an oligonucleotide can not yet be predicted because the proteins involved in the alteration process and their particular chemical interaction with the oligonucleotide substituents are not yet known and cannot be predicted.

10

5

20

In the examples, correcting oligonucleotides of defined sequence are provided for correction of genes mutated in human diseases. In the tables of these examples, the oligonucleotides of the invention are not limited to the particular sequences disclosed. The oligonucleotides of the invention include extensions of the appropriate sequence of the longer 120 base oligonucleotides which can be added base by base to the smallest disclosed oligonucleotides of 17 bases. Thus the oligonucleotides of the invention include for each correcting change, oligonucleotides of length 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, or 120 with further single-nucleotide additions up to the longest sequence disclosed. Moreover, the oligonucleotides of the invention do not require a symmetrical extension on either side of the central DNA domain. Similarly, the oligonucleotides of the invention as disclosed in the various tables for correction of human diseases contain phosphorothioate linkages, 2'-O-methyl analogs or LNAs or any combination of these modifications just as the assay oligonucleotides do.

The present invention, however, is not limited to oligonucleotides that contain any particular nuclease resistant modification. Oligonucleotides of the invention may be altered with any combination of additional LNAs, phosphorothioate linkages or 2'-O-methyl analogs to maximize conversion efficiency. For oligonucleotides of the invention that are longer than about 17 to about 25 bases in length, internal as well as terminal region segments of the backbone may be altered. Alternatively, simple fold-back structures at each end of a oligonucleotide or appended end groups may be used in addition to a modified backbone for conferring additional nuclease resistance.

30

25

The different oligonucleotides of the present invention preferably contain more than one of the aforementioned backbone modifications at each end. In some embodiments, the backbone modifications are adjacent to one another. However, the optimal number and placement of backbone modifications for any individual oligonucleotide will vary with the length of the oligonucleotide and the particular type of backbone modification(s) that are used. If constructs of identical sequence having phosphorothioate linkages are compared, 2, 3, 4, 5, or 6 phosphorothioate linkages at each end are preferred. If constructs of identical sequence having 2'-O-methyl base analogs are compared, 1, 2, 3 or 4

analogs are preferred. The optimal number and type of backbone modifications for any particular oligonucleotide useful for altering target DNA may be determined empirically by comparing the alteration efficiency of the oligonucleotide comprising any combination of the modifications to a control molecule of comparable sequence using any of the assays described herein. The optimal position(s) for oligonucleotide modifications for a maximally efficient altering oligonucleotide can be determined by testing the various modifications as compared to control molecule of comparable sequence in one of the assays disclosed herein. In such assays, a control molecule includes, e.g., a completely 2'-O-methyl substituted molecule, a completely complementary oligonucleotide, or a chimeric RNA-DNA double hairpin.

Increasing the number of phosphorothioate linkages, LNAs or 2'-O-methyl bases beyond the preferred number generally decreases the gene repair activity of a 25 nucleotide long oligonucleotide. Based on analysis of the concentration of oligonucleotide present in the extract after different time periods of incubation, it is believed that the terminal modifications impart nuclease resistance to the oligonucleotide thereby allowing it to survive within the cellular environment. However, this may not be the only possible mechanism by which such modifications confer greater efficiency of conversion. For example, as disclosed herein, certain modifications to oligonucleotides confer a greater improvement to the efficiency of conversion than other modifications.

Efficiency of conversion is defined herein as the percentage of recovered substate molecules that have undergone a conversion event. Depending on the nature of the target genetic material, e.g. the genome of a cell, efficiency could be represented as the proportion of cells or clones containing an extrachromosomal element that exhibit a particular phenotype. Alternatively, representative samples of the target genetic material can be sequenced to determine the percentage that have acquired the desire change. The oligonucleotides of the invention in different embodiments can alter DNA one, two, three, four, five, six, seven, eight, nine, ten, twelve, fifteen, twenty, thirty, and fifty or more fold more than control oligonucleotides. Such control oligonucleotides are oligonucleotides with fully phosphorothiolated linkages, oligonucleotides that are fully substituted with 2'-O-methyl analogs, a perfectly matched oligonucleotide that is fully complementary to a target sequence or a chimeric DNA-RNA double hairpin oligonucleotide such as disclosed in US Patent 5,565,350.

In addition, for a given oligonucleotide length, additional modifications interfere with the ability of the oligonucleotide to act in concert with the cellular recombination or repair enzyme machinery which is necessary and required to mediate a targeted substitution, addition or deletion event in DNA. For

30

30

5

example, fully phosphorothiolated or fully 2-O-methylated molecules are inefficient in targeted gene alteration.

The oligonucleotides of the invention as optimized for the purpose of targeted alteration of genetic material, including gene knockout or repair, are different in structure from antisense oligonucleotides that may possess a similar mixed chemical composition backbone. The oligonucleotides of the invention differ from such antisense oligonucleotides in chemical composition, structure, sequence, and in their ability to alter genomic DNA. Significantly, antisense oligonucleotides fail to direct targeted gene alteration. The oligonucleotides of the invention may target either the Watson or the Crick strand of DNA and can include any component of the genome including, for example, intron and exon sequences. The preferred embodiment of the invention is a modified oligonucleotide that binds to the non-transcribed strand of a genomic DNA duplex. In other words, the preferred oligonucleotides of the invention target the sense strand of the DNA, i.e. the oligonucleotides of the invention are complementary to the non-transcribed strand of the target duplex DNA. The sequence of the non-transcribed strand of a DNA duplex is found in the mRNA produced from that duplex, given that mRNA uses uracil-containing nucleotides in place of thymine-containing nucleotides.

Moreover, the initial observation that single-stranded oligonucleotides comprising these modifications and lacking any particular triplex forming domain have reproducibly enhanced gene repair activity in a variety of assay systems as compared to a chimeric RNA-DNA double-stranded hairpin control or single-stranded oligonucleotides comprising other backbone modifications was surprising. The single-stranded molecules of the invention totally lack the complementary RNA binding structure that stabilizes a normal chimeric double-stranded hairpin of the type disclosed in U.S. Patent 5,565,350 yet is more effective in producing targeted base conversion as compared to such a chimeric RNA-DNA doublestranded hairpin. In addition, the molecules of the invention lack any particular triplex forming domain involved in Hoogsteen interactions with the DNA double helix and required by other known oligonucleotides in other oligonucleotide dependant gene conversion systems. Although the lack of these functional domains was expected to decrease the efficiency of an alteration in a sequence, just the opposite occurs: the efficiency of sequence alteration using the modified oligonucleotides of the invention is higher than the efficiency of sequence alteration using a chimeric RNA-DNA hairpin targeting the same sequence alteration. Moreover, the efficiency of sequence alteration or gene conversion directed by an unmodified oligonucleotide is many times lower as compared to a control chimeric RNA-DNA molecule or the modified oligonucleotides of the invention targeting the same sequence alteration. Similarly,

molecules containing at least 3 2'-O-methyl base analogs are about four to five fold less efficient as compared to an oligonucleotide having the same number of phosphorothioate linkages.

The oligonucleotides of the present invention for alteration of a single base are about 17 to about 121 nucleotides in length, preferably about 17 to about 74 nucleotides in length. Most preferably, however, the oligonucleotides of the present invention are at least about 25 bases in length, unless there are self-dimerization structures within the oligonucleotide. If the oligonucleotide has such an unfavorable structure, lengths longer than 35 bases are preferred. Oligonucleotides with modified ends both shorter and longer than certain of the exemplified, modified oligonucleotides herein function as gene repair or gene knockout agents and are within the scope of the present invention.

Once an oligomer is chosen, it can be tested for its tendency to self-dimerize, since self-dimerization may result in reduced efficiency of alteration of genetic information. Checking for self-dimerization tendency can be accomplished manually or, more preferably, by using a software program. One such program is Oligo Analyzer 2.0, available through Integrated DNA Technologies (Coralville, IA 52241) (http://www.idtdna.com); this program is available for use on the world wide web at

http://www.idtdna.com/program/oligoanalyzer/

oligoanalyzer.asp.

For each oligonucleotide sequence input into the program, Oligo Analyzer 2.0 reports possible self-dimerized duplex forms, which are usually only partially duplexed, along with the free energy change associated with such self-dimerization. Delta G-values that are negative and large in magnitude, indicating strong self-dimerization potential, are automatically flagged by the software as "bad". Another software program that analyzes oligomers for pair dimer formation is Primer Select from DNASTAR, Inc., 1228 S. Park St., Madison, WI 53715, Phone: (608) 258-7420 (http://www.dnastar.com/products/PrimerSelect.html).

If the sequence is subject to significant self-dimerization, the addition of further sequence flanking the "repair" nucleotide can improve gene correction frequency.

Generally, the oligonucleotides of the present invention are identical in sequence to one strand of the target DNA, which can be either strand of the target DNA, with the exception of one or more targeted bases positioned within the DNA domain of the oligonucleotide, and preferably toward the middle between the modified terminal regions. Preferably, the difference in sequence of the oligonucleotide as compared to the targeted genomic DNA is located at about the middle of the oligonucleotide sequence. In a preferred embodiment, the oligonucleotides of the invention are complementary to the non-transcribed strand of a duplex. In other words, the preferred oligonucleotides target the sense strand of the DNA, i.e.

Mark and the Mark that the Mar

10

5

in the life of the second of t

25

30

5

the oligonucleotides of the invention are preferably complementary to the strand of the target DNA the sequence of which is found in the mRNA.

The oligonucleotides of the invention can include more than a single base change. In an oligonucleotide that is about a 70-mer, with at least one modified residue incorporated on the ends, as disclosed herein, multiple bases can be simultaneously targeted for change. The target bases may be up to 27 nucleotides apart and may not be changed together in all resultant plasmids in all cases. There is a frequency distribution such that the closer the target bases are to each other in the central DNA domain within the oligonucleotides of the invention, the higher the frequency of change in a given cell. Target bases only two nucleotides apart are changed together in every case that has been analyzed. The farther apart the two target bases are, the less frequent the simultaneous change. Thus, oligonucleotides of the invention may be used to repair or alter multiple bases rather than just one single base. For example, in a 74-mer oligonucleotide having a central base targeted for change, a base change event up to about 27 nucleotides away can also be effected. The positions of the altering bases within the oligonucleotide can be optimized using any one of the assays described herein. Preferably, the altering bases are at least about 8 nucleotides from one end of the oligonucleotide.

The oligonucleotides of the present invention can be introduced into cells by any suitable means. According to certain preferred embodiments, the modified oligonucleotides may be used alone. Suitable means, however, include the use of polycations, cationic lipids, liposomes, polyethylenimine (PEI), electroporation, biolistics, microinjection and other methods known in the art to facilitate cellular uptake. According to certain preferred embodiments of the present invention, the isolated cells are treated in culture according to the methods of the invention, to mutate or repair a target gene. Modified cells may then be reintroduced into the organism as, for example, in bone marrow having a targeted gene. Alternatively, modified cells may be used to regenerate the whole organism as, for example, in a plant having a desired targeted genomic change. In other instances, targeted genomic alteration, including repair or mutagenesis, may take place in vivo following direct administration of the modified, single-stranded oligonucleotides of the invention to a subject.

The single-stranded, modified oligonucleotides of the present invention have numerous applications as gene repair, gene modification, or gene knockout agents. Such oligonucleotides may be advantageously used, for example, to introduce or correct multiple point mutations. Each mutation leads to the addition, deletion or substitution of at least one base pair. The methods of the present invention offer distinct advantages over other methods of altering the genetic makeup of an organism, in that only the individually targeted bases are altered. No additional foreign DNA sequences are added to the

genetic complement of the organism. Such agents may, for example, be used to develop plants or animals with improved traits by rationally changing the sequence of selected genes in cultured cells. Modified cells are then cloned into whole plants or animals having the altered gene. See, e.g., U.S. Patent 6,046,380 and U.S. Patent 5,905,185 incorporated hererin by reference. Such plants or animals produced using the compositions of the invention lack additional undesirable selectable markers or other foreign DNA sequences. Targeted base pair substitution or frameshift mutations introduced by an oligonucleotide in the presence of a cell-free extract also provides a way to modify the sequence of extrachromosomal elements, including, for example, plasmids, cosmids and artificial chromosomes. The oligonucleotides of the invention also simplify the production of transgenic animals having particular modified or inactivated genes. Altered animal or plant model systems such as those produced using the methods and oligonucleotides of the invention are invaluable in determining the function of a gene and in evaluating drugs. The oligonucleotides and methods of the present invention may also be used for gene therapy to correct mutations causative of human diseases.

The purified oligonucleotide compositions may be formulated in accordance with routine procedures as a pharmaceutical composition adapted for bathing cells in culture, for microinjection into cells in culture, and for intravenous administration to human beings or animals. Typically, compositions for cellular administration or for intravenous administration into animals, including humans, are solutions in sterile isotonic aqueous buffer. Where necessary, the composition may also include a solubilizing agent and a local anaesthetic such as lignocaine to ease pain at the site of the injection. Generally, the ingredients will be supplied either separately or mixed together in unit dosage form, for example, as a dry, lyophilized powder or water-free concentrate. The composition may be stored in a hermetically sealed container such as an ampule or sachette indicating the quantity of active agent in activity units. Where the composition is administered by infusion, it can be dispensed with an infusion bottle containing sterile pharmaceutical grade "water for injection" or saline. Where the composition is to be administered by injection, an ampule of sterile water for injection or saline may be provided so that the ingredients may be mixed prior to administration.

Pharmaceutical compositions of this invention comprise the compounds of the present invention and pharmaceutically acceptable salts thereof, with any pharmaceutically acceptable ingredient, excipient, carrier, adjuvant or vehicle.

The oligonucleotides of the invention are preferably administered to the subject in the form of an injectable composition. The composition is preferably administered parenterally, meaning intravenously, intraarterially, intrathecally, interstitially or intracavitarilly. Pharmaceutical compositions of

30

30

5

this invention can be administered to mammals including humans in a manner similar to other diagnostic or therapeutic agents. The dosage to be administered, and the mode of administration will depend on a variety of factors including age, weight, sex, condition of the subject and genetic factors, and will ultimately be decided by medical personnel subsequent to experimental determinations of varying dosage as described herein. In general, dosage required for correction and therapeutic efficacy will range from about 0.001 to 50,000 µg/kg, preferably between 1 to 250 µg/kg of host cell or body mass, and most preferably at a concentration of between 30 and 60 micromolar.

For cell administration, direct injection into the nucleus, biolistic bombardment, electroporation, liposome transfer and calcium phosphate precipitation may be used. In yeast, lithium acetate or spheroplast transformation may also be used. In a preferred method, the administration is performed with a liposomal transfer compound, e.g., DOTAP (Boehringer-Mannheim) or an equivalent such as lipofectin. The amount of the oligonucleotide used is about 500 nanograms in 3 micrograms of DOTAP per 100,000 cells. For electroporation, between 20 and 2000 nanograms of oligonucleotide per million cells to be electroporated is an appropriate range of dosages which can be increased to improve efficiency of genetic alteration upon review of the appropriate sequence according to the methods described herein.

Another aspect of the invention is a kit comprising at least one oligonucleotide of the invention. The kit may comprise an addition reagent or article of manufacture. The additional reagent or article of manufacture may comprise a cell extract, a cell, or a plasmid, such as one of those disclosed in the Figures herein, for use in an assay of the invention.

Brief Description Of The Drawings

Figure 1. Flow diagram for the generation of modified single-stranded oligonucleotides. The upper strands of chimeric oligonucleotides I and II are separated into pathways resulting in the generation of single-stranded oligonucleotides that contain (A) 2'-O-methyl RNA nucleotides or (B) phosphorothioate linkages. Fold changes in repair activity for correction of kan^s in the HUH7 cell-free extract are presented in parenthesis. HUH7 cells are described in Nakabayashi et al., Cancer Research 42: 3858-3863 (1982). Each single-stranded oligonucleotide is 25 bases in length and contains a G residue mismatched to the complementary sequence of the kan^s gene. The numbers 3, 6, 8, 10, 12 and 12.5 respectively indicate how many phosphorothioate linkages (S) or 2'-O-methyl RNA nucleotides (R) are at each end of the molecule. Hence oligo 12S/25G contains an all phosphorothioate backbone, displayed as a dotted line. Smooth lines indicate DNA residues, wavy lines indicate 2'-O-methyl RNA

25

30

5

residues and the carat indicates the mismatched base site (G). Figure 1(C) provides a schematic plasmid indicating the sequence of the kan chimeric double-stranded hairpin oligonucleotide (left) and the sequence the tet chimeric double-stranded hairpin oligonucleotide used in other experiments. Figure 1(D) provides a flow chart of a kan experiment in which a chimeric double-stranded hairpin oligonucleotide is used.

Figure 2. Genetic readout system for correction of a point mutation in plasmid pKsm4021.

A mutant kanamycin gene harbored in plasmid pKsm4021 is the target for correction by oligonucleotides.

The mutant G is converted to a C by the action of the oligo. Corrected plasmids confer resistance to kanamycin in *E.coli* (DH10B) after electroporation leading to the genetic readout and colony counts.

Figure 3: Target plasmid and sequence correction of a frameshift mutation by chimeric and single-stranded oligonucleotides. (A) Plasmid pT^sΔ208 contains a single base deletion mutation at position 208 rendering it unable to confer tet resistance. The target sequence presented below indicates the insertion of a T directed by the oligonucleotides to re-establish the resistant phenotype. (B) DNA sequence confirming base insertion directed by Tet 3S/25G; the yellow highlight indicates the position of frameshift repair.

Figure 4. DNA sequences of representative kan^r colonies. Confirmation of sequence alteration directed by the indicated molecule is presented along with a table outlining codon distribution. Note that 10S/25G and 12S/25G elicit both mixed and unfaithful gene repair. The number of clones sequenced is listed in parentheses next to the designation for the single-stranded oligonucleotide. A plus (+) symbol indicates the codon identified while a figure after the (+) symbol indicates the number of colonies with a particular sequence. TAC/TAG indicates a mixed peak. Representative DNA sequences are presented below the table with yellow highlighting altered residues.

Figure 5. Gene correction in HeLa cells. Representative oligonucleotides of the invention are co-transfected with the pCMVneo(')FlAsH plasmid (shown in Figure 9) into HeLa cells. Ligand is diffused into cells after co-transfection of plasmid and oligonucleotides. Green fluorescence indicates gene correction of the mutation in the antibiotic resistance gene. Correction of the mutation results in the expression of a fusion protein that carries a marker ligand binding site and when the fusion protein binds the ligand, a green fluorescence is emitted. The ligand is produced by Aurora Biosciences and can readily diffuse into cells enabling a measurement of corrected protein function; the protein must bind the ligand directly to induce fluorescence. Hence cells bearing the corrected plasmid gene appear green while "uncorrected" cells remain colorless.

Figure 6. Z-series imaging of corrected cells. Serial cross-sections of the HeLa cell represented in Figure 5 are produced by Zeiss 510 LSM confocal microscope revealing that the fusion protein is contained within the cell.

Figure 7. Hygromycin-eGFP target plasmids. (A) Plasmid pAURHYG(ins)GFP contains a single base insertion mutation between nucleotides 136 and 137, at codon 46, of the Hygromycin B coding sequence (cds) which is transcribed from the constitutive ADH1 promoter. The target sequence presented below indicates the deletion of an A and the substitution of a C for a T directed by the oligonucleotides to re-establish the resistant phenotype. (B) Plasmid pAURHYG(rep)GFP contains a base substitution mutation introducing a G at nucleotide 137, at codon 46, of the Hygromycin B coding sequence (cds). The target sequence presented below the diagram indicates the amino acid conservative replacement of G with C, restoring gene function.

Figure 8. Oligonucleotides for correction of hygromycin resistance gene. The sequence of the oligonucleotides used in experiments to assay correction of a hygromycin resistance gene are shown. DNA residues are shown in capital letters, RNA residues are shown in lowercase and nucleotides with a phosphorothioate backbone are capitalized and underlined.

Figure 9. *pAURNeo(-)FIAsH plasmid*. This figure describes the plasmid structure, target sequence, oligonucleotides, and the basis for detection of the gene alteration event by fluorescence.

Figure 10. pYESHyg(x)eGFP plasmid. This plasmid is a construct similar to the pAURHyg(x)eGFP construct shown in Figure 7, except the promoter is the inducible GAL1 promoter. This promoter is inducible with galactose, leaky in the presence of raffinose, and repressed in the presence of dextrose.

The following examples are provided by way of illustration only, and are not intended to limit the scope of the invention disclosed herein.

EXAMPLE 1 Assay Method For Base Alteration And Preferred Oligonucleotide Selection

In this example, single-stranded and double-hairpin oligonucleotides with chimeric backbones (see Figure 1 for structures (A and B) and sequences (C and D) of assay oligonucleotides) are used to correct a point mutation in the kanamycin gene of pK s m4021 (Figure 2) or the tetracycline gene of pT s Δ 208 (Figure 3). All kan oligonucleotides share the same 25 base sequence surrounding t target base identified for change, just as all tet oligonucleotides do. The sequence is given in Figures 1C and Figure 1D. Each plasmid contains a functional ampicillin gene. Kanamycin gene function is restored

30

30

5

when a G at position 4021 is converted to a C (via a substitution mutation); tetracycline gene function is restored when a deletion at position 208 is replaced by a C (via frameshift mutation). A separate plasmid, pAURNeo(-)FIAsH (Figure 9), bearing the kan^s gene is used in the cell culture experiments. This plasmid was constructed by inserting a synthetic expression cassette containing a neomycin phosphotransferase (kanamycin resistance) gene and an extended reading frame that encodes a receptor for the FIAsH ligand into the pAUR123 shuttle vector (Panvera Corp., Madison, WI). The resulting construct replicates in *S. cerevisiae* at low copy number, confers resistance to aureobasidinA and constitutively expresses either the Neo+/FIAsH fusion product (after alteration) or the truncated Neo-/FIAsH product (before alteration) from the ADH1 promoter. By extending the reading frame of this gene to code for a unique peptide sequence capable of binding a small ligand to form a fluorescent complex, restoration of expression by correction of the stop codon can be detected in real time using confocal microscopy. Additional constructs can be made to test additional gene alteration events.

We also construct three mammalian expression vectors, pHyg(rep)eGFP,

pHyg(Δ)eGFP, pHyg(ins)eGFP, that contain a substitution mutation at nucleotide 137 of the hygromycin-B coding sequence. (rep) indicates a T137 \Longrightarrow G replacement, (Δ) represents a deletion of the G137 and (ins) represents an A insertion between nucleotides 136 and 137. All point mutations create a nonsense termination codon at residue 46. We use pHygEGFP plasmid (Invitrogen, CA) DNA as a template to introduce the mutations into the hygromycin-eGFP fusion gene by a two step site-directed mutagenesis PCR protocol. First, we generate overlapping 5' and a 3' amplicons surrounding the mutation site by PCR for each of the point mutation sites. A 215 bp 5' amplicon for the (rep), (Δ) or (ins) was generated by polymerization from oligonucleotide primer HygEGFPf (5'-AATACGACTCACTATAGG-3') to primer Hygrepr (5'GACCTATCCACGCCCTCC-3'), Hyg∆r (5'-GACTATCCACGCCCTCC-3'), or Hyginsr (5'-GACATTATCCACGCCCTCC-3'), respectively. We generate a 300bp 3' amplicon for the (rep), (Δ) or (ins) by polymerization from oligonucleotide primers Hygrepf (5'-CTGGGATAGGTCCTGCGG-3'), Hyg Δ f (5'-CGTGGATAGTCCTGCGG-3'), Hyginsf (5'-CGTGGATAATGTCCTGCGG-3'), respectively to primer HygEGFPr (5'-AAATCACGCCATGTAGTG-3'). We mix 20 ng of each of the resultant 5' and 3' overlapping amplicon mutation sets and use the mixture as a template to amplify a 523 bp fragment of the Hygromycin gene spanning the KpnI and RsrII restriction endonuclease sites. We use the Expand PCR system (Roche) to generate all amplicons with 25 cycles of denaturing at 94°C for 10 seconds, annealing at 55°C for 20 seconds and elongation at 68°C for 1 minute. We digest 10 µg of vector pHygEGFP and 5 µg of the resulting fragments for each mutation with Kpnl and Rsrll (NEB) and gel purify the fragment for enzymatic ligation. We ligate each mutated insert into pHygEGFP vector at 3:1 molar ration using T4

30

5

10

DNA ligase (Roche). We screen clones by restriction digest, confirm the mutation by Sanger dideoxy chain termination sequencing and purify the plasmid using a Qiagen maxiprep kit.

Oligonucleotide synthesis and cells. Chimeric oligonucleotides and single-stranded oligonucleotides (including those with the indicated modifications) are synthesized using available phosphoramidites on controlled pore glass supports. After deprotection and detachment from the solid support, each oligonucleotide is gel-purified using, for example, procedures such as those described in Gamper et al., Biochem. 39, 5808-5816 (2000) and the concentrations determined spectrophotometrically (33 or 40 µg/ml per A₂₆₀ unit of single-stranded or hairpin oligomer). HUH7 cells are grown in DMEM, 10% FBS, 2mM glutamine, 0.5% pen/strep. The *E.coli* strain, DH10B, is obtained from Life Technologies (Gaithersburg, MD); DH10B cells contain a mutation in the RECA gene (recA).

Cell-free extracts. We prepare cell-free extracts from HUH7 cells or other mammalian cells, as follows. We employ this protocol with essentially any mammalian cell including, for example, H1299 cells (human epithelial carcinoma, non-small cell lung cancer), C127I (immortal murine mammary epithelial cells), MEF (mouse embryonic fibroblasts), HEC-1-A (human uterine carcinoma), HCT15 (human colon cancer), HCT116 (human colon carcinoma), LoVo (human colon adenocarcinoma), and HeLa (human cervical carcinoma). We harvest approximately 2x108 cells. We then wash the cells immediately in cold hypotonic buffer (20 mM HEPES, pH7.5; 5 mM KCl; 1.5 mM MgCl₂; 1 mM DTT) with 250 mM sucrose. We then resuspend the cells in cold hypotonic buffer without sucrose and after 15 minutes we lyse the cells with 25 strokes of a Dounce homogenizer using a tight fitting pestle. We incubate the lysed cells for 60 minutes on ice and centrifuge the sample for 15 minutes at 12000xg. The cytoplasmic fraction is enriched with nuclear proteins due to the extended co-incubation of the fractions following cell breakage. We then immediately aliquote and freeze the supernatant at -80°C. We determine the protein concentration in the extract by the Bradford assay.

We also perform these experiments with cell-free extracts obtained from fungal cells, including, for example, *S. cerevisiae* (yeast), *Ustilago maydis*, and *Candida albicans*. For example, we grow yeast cells into log phase in 2L YPD medium for 3 days at 30°C. We then centrifuge the cultures at 5000xg, resuspend the pellets in a 10% sucrose, 50 mM Tris, 1mM EDTA lysis solution and freeze them on dry ice. After thawing, we add KCl, spermidine and lyticase to final concentrations of 0.25 mM, 5 mM and 0.1 mg/ml, respectively. We incubate the suspension on ice for 60 minutes, add PMSF and Triton X100 to final concentrations of 0.1 mM and 0.1% and continue to incubate on ice for 20 minutes. We centrifuge the lysate at 3000xg for 10 minutes to remove larger debris. We then remove the supernatant and clarify it by centrifuging at 30000xg for 15 minutes. We then add glycerol to the clarified extract to a

30

5

concentration of 10% (v/v) and freeze aliquots at -80°C. We determine the protein concentration of the extract by the Bradford assay.

Reaction mixtures of 50 µl are used, consisting of 10-30 µg protein of cell-free extract, which can be optionally substituted with purified proteins or enriched fractions, about 1.5 µg chimeric double-hairpin oligonucleotide or 0.55 µg single-stranded molecule (3S/25G or 6S/25G, see Figure 1), and 1 µg of plasmid DNA (see Figures 2 and 3) in a reaction buffer of 20 mM Tris, pH 7.4, 15 mM MgCl₂, 0.4 mM DTT, and 1.0 mM ATP. Reactions are initiated with extract and incubated at 30°C for 45 min. The reaction is stopped by placing the tubes on ice and then immediately deproteinized by two phenol/chloroform (1:1) extractions. Samples are then ethanol precipitated. The nucleic acid is pelleted at 15,000 r.p.m. at 4°C for 30 min., is washed with 70% ethanol, resuspended in 50 µl H₂0, and is stored at -20°C. 5 μ l of plasmid from the resuspension (~100 ng) was transfected in 20 μ l of DH10B cells by electroporation (400 V, 300 μ F, 4 k Ω) in a Cell-Porator apparatus (Life Technologies). After electroporation, cells are transferred to a 14 ml Falcon snap-cap tube with 2 ml SOC and shaken at 37°C for 1 h. Enhancement of final kan colony counts is achieved by then adding 3 ml SOC with 10 µg/ml kanamycin and the cell suspension is shaken for a further 2 h at 37°C. Cells are then spun down at 3750 x g and the pellet is resuspended in 500 µl SOC. 200 µl is added undiluted to each of two kanamycin (50 µg/ml) agar plates and 200 µl of a 105 dilution is added to an ampicillin (100 µg/ml) plate. After overnight 37°C incubation, bacterial colonies are counted using an Accucount 1000 (Biologics). Gene conversion effectiveness is measured as the ratio of the average of the kan colonies on both plates per amp colonies multiplied by 10⁻⁵ to correct for the amp dilution.

The following procedure can also be used. 5 μl of resuspended reaction mixtures (total volume 50 μl) are used to transform 20 μl aliquots of electro-competent ΔH10B bacteria using a Cell-Porator apparatus (Life Technologies). The mixtures are allowed to recover in 1 ml SOC at 37°C for 1 hour at which time 50 μg/ml kanamycin or 12 μg/ml tetracycline is added for an additional 3 hours. Prior to plating, the bacteria are pelleted and resuspended in 200 μ1 of SOC. 100 μl aliquots are plated onto kan or tet agar plates and 100 μl of a 10⁻⁴ dilution of the cultures are concurrently plated on agar plates containing 100 μg/ml of ampicillin. Plating is performed in triplicate using sterile Pyrex beads. Colony counts are determined by an Accu-count 1000 plate reader (Biologics). Each plate contains 200-500 ampicillin resistant colonies or 0-500 tetracycline or kanamycin resistant colonies. Resistant colonies are selected for plasmid extraction and DNA sequencing using an ABI Prism kit on an ABI 310 capillary sequencer (PE Biosystems).

Chimeric single-stranded oligonucleotides. In Figure 1 the upper strands of chimeric oligonucleotides I and II are separated into pathways resulting in the generation of single-stranded oligonucleotides that contain (Figure 1A) 2'-O-methyl RNA nucleotides or (Figure 1B) phosphorothioate linkages. Fold changes in repair activity for correction of kan^s in the HUH7 cell-free extract are presented in parenthesis. Each single-stranded oligonucleotide is 25 bases in length and contains a G residue mismatched to the complementary sequence of the kan^s gene.

Molecules bearing 3, 6, 8, 10 and 12 phosphorothioate linkages in the terminal regions at each end of a backbone with a total of 24 linkages (25 bases) are tested in the kan^s system. Alternatively, molecules bearing 2, 4, 5, 7, 9 and 11 in the terminal regions at each end are tested. The results of one such experiment, presented in Table 1 and Figure 1B, illustrate an enhancement of correction activity directed by some of these modified structures. In this illustrative example, the most efficient molecules contained 3 or 6 phosphorothioate linkages at each end of the 25-mer; the activities are approximately equal (molecules IX and X with results of 3.09 and 3.7 respectively). A reduction in alteration activity may be observed as the number of modified linkages in the molecule is further increased. Interestingly, a single-strand molecule containing 24 phosphorothioate linkages is minimally active suggesting that this backbone modification when used throughout the molecule supports only a low level of targeted gene repair or alteration. Such a non-altering, completely modified molecule can provide a baseline control for determining efficiency of correction for a specific oligonucleotide molecule of known sequence in defining the optimum oligonucleotide for a particular alteration event.

The efficiency of gene repair directed by phosphorothioate-modified, single-stranded molecules, in a length dependent fashion, led us to examine the length of the RNA modification used in the original chimera as it relates to correction. Construct III represents the "RNA-containing" strand of chimera I and, as shown in Table 1 and Figure 2A, it promotes inefficient gene repair. But, as shown in the same figure, reducing the RNA residues on each end from 10 to 3 increases the frequency of repair. At equal levels of modification, however, 25-mers with 2'-O-methyl ribonucleotides were less effective gene repair agents than the same oligomers with phosphorothioate linkages. These results reinforce the fact that an RNA containing oligonucleotide is not as effective in promoting gene repair or alteration as a modified DNA oligonucleotide.

Repair of the kanamycin mutation requires a G→C exchange. To confirm that the specific desired correction alteration was obtained, colonies selected at random from multiple experiments are processed and the isolated plasmid DNA is sequenced. As seen in Figure 4, colonies generated through the action of the single-stranded molecules 3S/25G (IX), 6S/25G (X) and 8S/25G (XI) respectively

30

30

25

contained plasmid molecules harboring the targeted base correction. While a few colonies appeared on plates derived from reaction mixtures containing 25-mers with 10 or 12 thioate linkages on both ends, the sequences of the plasmid molecules from these colonies contain nonspecific base changes. In these illustrative examples, the second base of the codon is changed (see Figure 3). These results show that modified single-strands can direct gene repair, but that efficiency and specificity are reduced when the 25-mers contain 10 or more phosphorothioate linkages at each end.

In Figure 1, the numbers 3, 6, 8, 10, 12 and 12.5 respectively indicate how many phosphorothioate linkages (S) or 2'-O-methyl RNA nucleotides (R) are at each end of the examplified molecule although other molecules with 2, 4, 5, 7, 9 and 11 modifications at each end can also be tested. Hence oligo 12S/25G represents a 25-mer oligonucleotide which contains 12 phosphorothioate linkages on each side of the central G target mismatch base producing a fully phosphorothioate linked backbone, displayed as a dotted line. The dots are merely representative of a linkage in the figure and do not depict the actual number of linkages of the oligonucleotide. Smooth lines indicate DNA residues, wavy lines indicate 2'-O-methyl RNA residues and the carat indicates the mismatched base site (G).

Correction of a mutant kanamycin gene in cultured mammalian cells. The experiments are performed using different mammalian cells, including, for example, 293 cells (transformed human primary kidney cells), HeLa cells (human cervical carcinoma), and H1299 (human epithelial carcinoma, non-small cell lung cancer). HeLa cells are grown at 37°C and 5% CO2 in a humidified incubator to a density of 2 x 10⁵ cells/ml in an 8 chamber slide (Lab-Tek). After replacing the regular DMEM with Optimem, the cells are co-transfected with 10 µg of plasmid pAURNeo(-)FIAsH and 5 µg of modified single-stranded oligonucleotide (3S/25G) that is previously complexed with 10 µg lipofectamine, according to the manufacturer's directions (Life Technologies). The cells are treated with the liposome-DNA-oligo mix for 6 hrs at 37°C. Treated cells are washed with PBS and fresh DMEM is added. After a 16-18 hr recovery period, the culture is assayed for gene repair. The same oligonucleotide used in the cell-free extract experiments is used to target transfected plasmid bearing the kan^s gene. Correction of the point mutation in this gene eliminates a stop codon and restores full expression. This expression can be detected by adding a small non-fluorescent ligand that bound to a C-C-R-E-C-C sequence in the genetically modified carboxy terminus of the kan protein, to produce a highly fluorescent complex (FIAsH system, Aurora Biosciences Corporation). Following a 60 min incubation at room temperature with the ligand (FIAsH-EDT2), cells expressing full length kan product acquire an intense green fluorescence detectable by fluorescence microscopy using a fluorescein filter set. Similar experiments are performed using the HygeGFP target as described in Example 2 with a variety of mammalian cells, including, for

example, COS-1 and COS-7 cells (African green monkey), and CHO-K1 cells (Chinese hamster ovary). The experiments are also performed with PG12 cells (rat pheochromocytoma) and ES cells (human embryonic stem cells).

Summary of experimental results. Tables 1, 2 and 3 respectively provide data on the efficiency of gene repair directed by single-stranded oligonucleotides. Table 1 presents data using a cell-free extract from human liver cells (HUH7) to catalyze repair of the point mutation in plasmid pkan^sm4021 (see Figure 1). Table 2 illustrates that the oligomers are not dependent on MSH2 or MSH3 for optimal gene repair activity. Table 3 illustrates data from the repair of a frameshift mutation (Figure 3) in the tet gene contained in plasmid pTetΔ208. Table 4 illustrates data from repair of the pkan^sm4021 point mutation catalyzed by plant cell extracts prepared from canola and musa (banana). Colony numbers are presented as kan^r or tet and fold increases (single strand versus double hairpin) are presented for kan^r in Table 1.

Figure 5A is a confocal picture of HeLa cells expressing the corrected fusion protein from an episomal target. Gene repair is accomplished by the action of a modified single-stranded oligonucleotide containing 3 phosphorothicate linkages at each end (3S/25G). Figure 5B represents a "Z-series" of HeLa cells bearing the corrected fusion gene. This series sections the cells from bottom to top and illustrates that the fluorescent signal is "inside the cells".

Results. In summary, we have designed a novel class of single-stranded oligonucleotides with backbone modifications at the termini and demonstrate gene repair/conversion activity in mammalian and plant cell-free extracts. We confirm that the all DNA strand of the RNA-DNA double-stranded double hairpin chimera is the active component in the process of gene repair. In some cases, the relative frequency of repair by the novel oligonucleotides of the invention is elevated approximately 3-4-fold when compared to frequencies directed by chimeric RNA-DNA double hairpin oligonucleotides.

25

30

20

This strategy centers around the use of extracts from various sources to correct a mutation in a plasmid using a modified single-stranded or a chimeric RNA-DNA double hairpin oligonucleotide. A mutation is placed inside the coding region of a gene conferring antibiotic resistance in bacteria, here kanamycin or tetracycline. The appearance of resistance is measured by genetic readout in *E.coli* grown in the presence of the specified antibiotic. The importance of this system is that both phenotypic alteration and genetic inheritance can be measured. Plasmid pK⁵m4021 contains a mutation (T→G) at residue 4021 rendering it unable to confer antibiotic resistance in *E.coli*. This point mutation is targeted for repair by oligonucleotides designed to restore kanamycin resistance. To avoid concerns of

30

5

plasmid contamination skewing the colony counts, the directed correction is from $G \rightarrow C$ rather than $G \rightarrow T$ (wild-type). After isolation, the plasmid is electroporated into the DH10B strain of *E.coli*, which contains inactive RecA protein. The number of kanamycin colonies is counted and normalized by ascertaining the number of ampicillin colonies, a process that controls for the influence of electroporation. The number of colonies generated from three to five independent reactions was averaged and is presented for each experiment. A fold increase number is recorded to aid in comparison.

The original RNA-DNA double hairpin chimera design, e.g., as disclosed in U.S. Patent 5,565,350, consists of two hybridized regions of a single-stranded oligonucleotide folded into a double hairpin configuration. The double-stranded targeting region is made up of a 5 base pair DNA/DNA segment bracketed by 10 base pair RNA/DNA segments. The central base pair is mismatched to the corresponding base pair in the target gene. When a molecule of this design is used to correct the kan^s mutation, gene repair is observed (I in Figure 1A). Chimera II (Figure 1B) differs partly from chimera I in that only the DNA strand of the double hairpin is mismatched to the target sequence. When this chimera was used to correct the kan^s mutation, it was twice as active. In the same study, repair function could be further increased by making the targeting region of the chimera a continuous RNA/DNA hybrid.

Frame shift mutations are repaired. By using plasmid pTsΔ208, described in Figure 1(C) and Figure 3, the capacity of the modified single-stranded molecules that showed activity in correcting a point mutation, can be tested for repair of a frameshift. To determine efficiency of correction of the mutation, a chimeric oligonucleotide (Tet I), which is designed to insert a T residue at position 208, is used. A modified single-stranded oligonucleotide (Tet IX) directs the insertion of a T residue at this same site. Figure 3 illustrates the plasmid and target bases designated for change in the experiments. When all reaction components are present (extract, plasmid, oligomer), tetracycline resistant colonies appear. The colony count increases with the amount of oligonucleotide used up to a point beyond which the count falls off (Table 3). No colonies above background are observed in the absence of either extract or oligonucleotide, nor when a modified single-stranded molecule bearing perfect complementarity is used. Figure 3 represents the sequence surrounding the target site and shows that a T residue is inserted at the correct site. We have isolated plasmids from fifteen colonies obtained in three independent experiments and each analyzed sequence revealed the same precise nucleotide insertion. These data suggest that the single-stranded molecules used initially for point mutation correction can also repair nucleotide deletions.

Comparison of phosphorothioate oligonucleotides to 2'-O-methyl substituted oligonucleotides. From a comparison of molecules VII and XI, it is apparent that gene repair is more

30

5

subject to inhibition by RNA residues than by phosphorothioate linkages. Thus, even though both of these oligonucleotides contain an equal number of modifications to impart nuclease resistance, XI (with 16 phosphorothioate linkages) has good gene repair activity while VII (with 16 2'-O-methyl RNA residues) is inactive. Hence, the original chimeric double hairpin oligonucleotide enabled correction directed, in large part, by the strand containing a large region of contiguous DNA residues.

Oligonucleotides can target multiple nucleotide alterations within the same template. The ability of individual single-stranded oligonucleotides to correct multiple mutations in a single target template is tested using the plasmid pKsm4021 and the following single-stranded oligonucleotides modified with 3 phosphorothioate linkages at each end (indicated as underlined nucleotides): Oligo1 is a 25-mer with the sequence TTCGATAAGCCTATGCTGACCCGTG corrects the original mutation present in the kanamycin resistance gene of pKsm4021 as well as directing another alteration 2 basepairs away in the target sequence (both indicated in boldface); Oligo2 is a 70-mer with the 5'-end sequence TTCGGCTACGACTGGGCACAACAGACAATTGGC with the remaining nucleotides being completely complementary to the kanamycin resistance gene and also ending in 3 phosphorothioate linkages at the 3' end. Oligo2 directs correction of the mutation in pKsm4021 as well as directing another alteration 21 basepairs away in the target sequence (both indicated in boldface).

We also use additional oligonucleotides to assay the ability of individual oligonucleotides to correct multiple mutations in the pKsM4021 plasmid. These include, for example, a second 25-mer that alters two nucleotides that are three nucleotides apart with the sequence 5'-

TTGTGCCCAGTCGTATCCGAATAGC-3'; a 70-mer that alters two nucleotides that are 21 nucleotides apart with the sequence 5'-CATCAGAGCAGCCAATTGTCTGTTGTGCCCAGTCGTAGCCGAA TAGCCTCTCCACCCAAGCGGCCGGAGA-3'; and another 70-mer that alters two nucleotides that are 21 nucleotides apart with the sequence 5'-

GCTGACAGCCGGAACACGGCGGCATCAGAGCAGCCAATTGTCTGTTGTGCCCAGTCGTAGCCGAAT AGCCT-3'. The nucleotides in the oligonucleotides that direct alteration of the target sequence are underlined and in boldface. These oligonucleotides are modified in the same way as the other oligonucleotides of the invention.

We assay correction of the original mutation in pKsm4021 by monitoring kanamycin resistance (the second alterations which are directed by Oligo2 and Oligo3 are silent with respect to the kanamycin resistance phenotype). In addition, in experiments with Oligo2, we also monitor cleavage of the resulting plasmids using the restriction enzyme Tsp509I which cuts at a specific site present only when the second alteration has occurred (at ATT in Oligo2). We then sequence these clones to

	Oligo1 (25-mer)	Oligo2 (70-mer)
Clones with both sites changed	9	7
Clones with a single site changed	0	2
Clones that were not changed	4	1

Nuclease sensitivity of unmodified DNA oligonucleotide. Electrophoretic analysis of nucleic acid recovered from the cell-free extract reactions conducted here confirm that the unmodified single-stranded 25-mer did not survive incubation whereas greater than 90% of the terminally modified oligos did survive (as judged by photo-image analyses of agarose gels).

Plant extracts direct repair. The modified single-stranded constructs can be tested in plant cell extracts. We have observed gene alteration using extracts from multiple plant sources, including, for example, Arabidopsis, tobacco, banana, maize, soybean, canola, wheat, spinach as well as spinach chloroplast extract. We prepare the extracts by grinding plant tissue or cultured cells under liquid nitrogen with a mortar and pestle. We extract 3 ml of the ground plant tissue with 1.5 ml of extraction buffer (20 mM HEPES, pH7.5; 5 mM Kcl; 1.5 mM MgCl₂; 10 mM DTT; 10% [v/v] glycerol; and 1 % [w/v] PVP). We then homogenize the samples with 15 strokes of a Dounce homogenizer. Following homogenization, we incubate the samples on ice for 1 hour and centrifuge at 3000xg for 5 minutes to remove plant cell debris. We then determine the protein concentration in the supernatants (extracts) by Bradford assay. We dispense 100 μg (protein) aliquots of the extracts which we freeze in a dry iceethanol bath and store at -80°C.

We describe experiments using two sources here: a dicot (canola) and a monocot (banana, *Musa acuminata* cv. Rasthali). Each vector directs gene repair of the kanamycin mutation (Table 4); however, the level of correction is elevated 2-3 fold relative to the frequency observed with the chimeric oligonucleotide. These results are similar to those observed in the mammalian system wherein a significant improvement in gene repair occurred when modified single-stranded molecules were used.

Tables are attached hereto.

25

Table I

Gene repair activity is directed by single-stranded oligonucleotides.

Oligonucleotide	Plasmid	Extract (ug)	kan ^r colonies	Fold increase
I	pK ^s m4021	10	300	
Ι		20	418	1.0x
II		10	537	
II		20	748	1.78x
III		10	3	
III		20	5	0.01x
IV		10	112	
IV		20	96	0.22x
V	l	10	217	
V		20	342	0.81x
VI		10	6	
VI		20	39	0.093x
VII		10	0	
VII	1	20	0	0x
VIII		10	3	
VIII		20	5	0.01x
IX		10	936	
IX		20	1295	3.09x
X		10	1140	
X		20	1588	3.7x
XI		10	480	
XI		20	681	1.6x
XII	ľ	10	18	
XII		20	25	0.059x
XIII		10	0	
XIII]	20	4	0.009x
-		20	0	
I	▼	-	0	

Plasmid pK^sm4021 (1μg), the indicated oligonucleotide (1.5 μg chimeric oligonucleotide or 0.55 μg single-stranded oligonucleotide; molar ratio of oligo to plasmid of 360 to 1) and either 10 or 20 μg of HUH7 cell-free extract were incubated 45 min at 37°C. Isolated plasmid DNA was electroporated into *E. coli* (strain DH10B) and the number of kan^r colonies counted. The data represent the number of kanamycin resistant colonies per 10⁶ ampicillin resistant colonies generated from the same reaction and is the average of three

experiments (standard deviation usually less than +/- 15%). Fold increase is defined relative to 418 kan^r colonies (second reaction) and in all reactions was calculated using the 20µg sample.

Table II

Modified single-stranded oligomers are not dependent on MSH2 or MSH3 for optimal gene repair activity.

A. Oligonucleotide	Plasmid	Extract	kan ^r colonies
IX (3S/25G)		HUH7	637
X (6S/25G)		HUH7	836
IX	1	MEF2 ^{-/-}	781
X		MEF2 ^{-/-}	676
IX		MEF3 ^{-/-}	582
X		MEF3 ^{-/-}	530
IX	Į	MEF ^{+/+}	332
X		MEF ^{+/+}	497
•		MEF2 ^{-/-}	10
-		MEF3 ^{-/-}	5
-	. ↓	MEF ^{+/+}	14

Chimeric oligonucleotide (1.5 µg) or modified single-stranded oligonucleotide (0.55 µg) was incubated with 1µg of plasmid pKsm4021 and 20µg of the indicated extracts. MEF represents mouse embryonic fibroblasts with either MSH2 (2-1-) or MSH3 (3-1-) deleted. MEF+1+ indicates wild-type mouse embryonic fibroblasts. The other reaction components were then added and processed through the bacterial readout system. The data represent the number of kanamycin resistant colonies per 10⁶ ampicillin resistant colonies.

Table III

Frameshift mutation repair is directed by single-stranded oligonucleotides

Oligonucleotide	Plasmid	Extract	tet ^r colonies
Tet IX (3S/25A; 0.5 μg)	pT ^s Δ208 (1μg)		- 0
-	1	20μg	0
Tet IX (0.5 μg)		1	48
Tet IX (1.5 μg)		İ	130
Tet IX (2.0 μg)			68
Tet I (chimera; 1.5 μg)	★	\psi	48

Each reaction mixture contained the indicated amounts of plasmid and oligonucleotide. The extract used for these experiments came from HUH7 cells. The data represent the number of tetracycline resistant colonies per 10⁶ ampicillin resistant colonies generated from the same reaction and is the average of 3 independent experiments. Tet I is a chimeric oligonucleotide and Tet IX is a modified single-stranded oligonucleotide that are designed to insert a T residue at position 208 of pT^sΔ208. These oligonucleotides are equivalent to structures I and IX in Figure 2.

Table IV

Plant cell-free extracts support gene repair by single-stranded oligonucleotides

Oligonucleotide	Plasmid	Extract	kan ^r colonies
II (chimera)	pK ^S m4021	30µg Canola	337
IX (3S/25G)	Î	Canola	763
X (6S/25G)		Canola	882
II		Musa	203
IX		Musa	343
X		Musa	746
-		Canola	0
-		Musa	0
IX		 Canola 	0
X	↓	- Musa	0

Canola or Musa cell-free extracts were tested for gene repair activity on the kanamycin-sensitive gene as previously described in (18). Chimeric oligonucleotide II (1.5 μ g) and modified single-stranded oligonucleotides IX and X (0.55 μ g) were used to correct pK^Sm4021. Total number of kan^r colonies are present per 10⁷ ampicillin resistant colonies and represent an average of four independent experiments.

Table V

Gene repair activity in cell-free extracts prepared from yeast (Saccharomyces cerevisiae)

SS Oligo kan'/amp' x 10°	0.36	17.41	3.23
SS Oligo	1µ8	βήľ	1µg
Chimeric Oligo	BHI	g#[lμβ
Plasmid	pKan³m4021 I		
Cell-type	Wild type	ARADS2 ARADS2	APMS1 APMS1

In this experiment, the kan' gene in pKan'4021 is corrected by either a chimeric double-hairpin oligonucleotide or a single-stranded oligonucleotide containing three thioate linkages at each end (3S/25G).

EXAMPLE 2 Yeast Cell Targeting Assay Method for Base Alteration and Preferred Oligonucleotide Selection

In this example, single-stranded oligonucleotides with modified backbones and double-hairpin oligonucleotides with chimeric, RNA-DNA backbones are used to measure gene repair using two episomal targets with a fusion between a hygromycin resistance gene and eGFP as a target for gene repair. These plasmids are pAURHYG(rep)GFP, which contains a point mutation in the hygromycin resistance gene (Figure 7), pAURHYG(ins)GFP, which contains a single-base insertion in the hygromycin resistance gene (Figure 7) and pAURHYG(Δ)GFP which has a single base deletion. We also use the plasmid containing a wild-type copy of the hygromycin-eGFP fusion gene, designated pAURHYG(wt)GFP, as a control. These plasmids also contain an aureobasidinA resistance gene. In pAURHYG(rep)GFP, hygromycin resistance gene function and green fluorescence from the eGFP protein are restored when a G at position 137, at codon 46 of the hygromycin B coding sequence, is converted to a C thus removing a premature stop codon in the hygromycin resistance gene coding region. In pAURHYG(ins)GFP, hygromycin resistance gene function and green fluorescence from the eGFP protein are restored when an A inserted between nucleotide positions 136 and 137, at codon 46 of the hygromycin B coding sequence, is deleted and a C is substituted for the T at position 137, thus correcting a frameshift mutation and restoring the reading frame of the hygromycin-eGFP fusion gene.

We synthesize the set of three yeast expression constructs pAURHYG(rep)eGFP, pAURHYG(Δ)eGFP, pAURHYG(ins)eGFP, that contain a point mutation at nucleotide 137 of the hygromycin-B coding sequence as follows. (rep) indicates a T137→G replacement, (Δ) represents a deletion of the G137 and (ins) represents an A insertion between nucleotides 136 and 137. We construct this set of plasmids by excising the respective expression cassettes by restriction digest from pHyg(x)EGFP and ligation into pAUR123 (Panvera, CA). We digest 10 μg pAUR123 vector DNA, as well as, 10 μg of each pHyg(x)EGFP construct with KpnI and Sall (NEB). We gel purify each of the DNA fragments and prepare them for enzymatic ligation. We ligate each mutated insert into pHygEGFP vector at 3:1 molar ration using T4 DNA ligase (Roche). We screen clones by restriction digest, confirm by Sanger dideoxy chain termination sequencing and purify using a Qiagen maxiprep kit.

We use this system to assay the ability of five oligonucleotides (shown in Figure 8) to support correction under a variety of conditions. The oligonucleotides which direct correction of the nutation in pAURHYG(rep)GFP can also direct correction of the mutation in pAURHYG(ins)GFP. Three of the four oligonucleotides (HygE3T/25, HygE3T/74 and HygGG/Rev) share the same 25-base sequence surrounding the base targeted for alteration. HygGG/Rev is an RNA-DNA chimeric double hairpin

Han han

5

10

25

30

5

oligonucleotide of the type described in the prior art. One of these oligonucleotides, HygE3T/74, is a 74-base oligonucleotide with the 25-base sequence centrally positioned. The fourth oligonucleotide, designated HygE3T/74 α , is the reverse complement of HygE3T/74. The fifth oligonucleotide, designated Kan70T, is a non-specific, control oligonucleotide which is not complementary to the target sequence. Alternatively, an oligonucleotide of identical sequence but lacking a mismatch to the target or a completely thioate modified oligonucleotide or a completely 2-0-methylated modified oligonucleotide may be used as a control.

Oligonucleotide synthesis and cells. We synthesized and purified the chimeric, doublehairpin oligonucleotides and single-stranded oligonucleotides (including those with the indicated modifications) as described in Example 1. Plasmids used for assay were maintained stably in yeast (Saccharomyces cerevisiae) strain LSY678 MAT α at low copy number under aureobasidin selection. Plasmids and oligonucleotides are introduced into yeast cells by electroporation as follows: to prepare electrocompetent yeast cells, we inoculate 10 ml of YPD media from a single colony and grow the cultures overnight with shaking at 300 rpm at 30°C. We then add 30 ml of fresh YPD media to the overnight cultures and continue shaking at 30°C until the OD₆₀₀ was between 0.5 and 1.0 (3-5 hours). We then wash the cells by centrifuging at 4°C at 3000 rpm for 5 minutes and twice resuspending the cells in 25 ml ice-cold distilled water. We then centrifuge at 4°C at 3000 rpm for 5 minutes and resuspend in 1 ml ice-cold 1M sorbitol and then finally centrifuge the cells at 4°C at 5000 rpm for 5 minutes and resuspend the cells in 120 µl 1M sorbitol. To transform electrocompetent cells with plasmids or oligonucleotides, we mix 40 µl of cells with 5 µg of nucleic acid, unless otherwise stated, and incubate on ice for 5 minutes. We then transfer the mixture to a 0.2 cm electroporation cuvette and electroporate with a BIO-RAD Gene Pulser apparatus at 1.5 kV, 25 μF , 200 Ω for one five-second pulse. We then immediately resuspend the cells in 1 ml YPD supplemented with 1M sorbitol and incubate the cultures at 30°C with shaking at 300 rpm for 6 hours. We then spread 200 µI of this culture on selective plates containing 300 µg/ml hygromycin and spread 200 µl of a 10⁵ dilution of this culture on selective plates containing 500 ng/ml aureobasidinA and/or and incubate at 30°C for 3 days to allow individual yeast colonies to grow. We then count the colonies on the plates and calculate the gene conversion efficiency by determining the number of hygromycin resistance colonies per 10⁵ aureobasidinA resistant colonies.

Frameshift mutations are repaired in yeast cells. We test the ability of the oligonucleotides shown in Figure 8 to correct a frameshift mutation in vivo using LSY678 yeast cells containing the plasmid pAURHYG(ins)GFP. These experiments, presented in Table 6, indicate that these oligonucleotides can support gene correction in yeast cells. These data reinforce the results described in

30

5

Example 1 indicating that oligonucleotides comprising phosphorothioate linkages facilitate gene correction much more efficiently than control duplex, chimeric RNA-DNA oligonucleotides. This gene correction activity is also specific as transformation of cells with the control oligonucleotide Kan70T produced no hygromycin resistant colonies above background and thus Kan70T did not support gene correction in this system. In addition, we observe that the 74-base oligonucleotide (HygE3T/74) corrects the mutation in pAURHYG(ins)GFP approximately five-fold more efficiently than the 25-base oligonucleotide (HygE3T/25). We also perform control experiments with LSY678 yeast cells containing the plasmid pAURHYG(wt)GFP. With this strain we observed that even without added oligonucleotides, there are too many hygromycin resistant colonies to count.

We also use additional oligonucleotides to assay the ability of individual oligonucleotides to correct multiple mutations in the pAURHYG(x)eGFP plasmid. These include, for example, one that alters two basepairs that are 3 nucleotides apart is a 74-mer with the sequence 5'-CTCGTGCTTCGATGTAGGAGGGCGTGGGTACGTCCTGCGGGTAAATAGCTGCGCCGATGGTTCTAC-3'; a 74-mer that alters two basepairs that are 15 nucleotides apart with the sequence 5'-CTCGTGCTTTCAGCTTCGATGTAGGAGGGCGTGGATACGTCCTGCGGGTAAACACAGCTGCGCCGATGGTTCTAC-3'; and a 74-mer that alters two basepairs that are 27 nucleotides apart with the sequence 5'-CTCGTGCTTTCAGCTTCGATGTAGGAGGGCGTGGATACGTCCTGCGGGTAAATAGCTGCGCCGACGGTTCCTTCAGCTTCGATGTAGGAGGGCGTGGATACGTCCTGCGGGTAAATAGCTGCGCCGACGGTTTCTAC. The nucleotides in these oligonucleotides that direct alteration of the target sequence are underlined and in boldface. These oligonucleotides are modified in the same ways as the other oligonucleotides of the invention.

Compare the ability of single-stranded oligonucleotides to target each of the two strands of the target sequence of both pAURHYG(ins)GFP and pAURHYG(rep)GFP. These experiments, presented in Tables 7 and 8, indicate that an oligonucleotide, HygE3T/74 α , with sequence complementary to the sense strand (i.e. the strand of the target sequence that is identical to the mRNA) of the target sequence facilitates gene correction approximately ten-fold more efficiently than an oligonucleotide, HygE3T/74, with sequence complementary to the non-transcribed strand which serves as the template for the synthesis of RNA. As indicated in Table 7, this effect was observed over a range of oligonucleotide concentrations from 0-3.6 μ g, although we did observe some variability in the difference between the two oligonucleotides (indicated in Table 7 as a fold difference between HygE3T/74 α and HygE3T/74 α . Furthermore, as shown in Table 8, we observe increased efficiency of correction by HygE3T/74 α relative to HygE3T/74 regardless of whether the oligonucleotides were used to correct the base substitution

mutation in pAURHYG(rep)GFP or the insertion mutation in pAURHYG(ins)GFP. The data presented in Table 8 further indicate that the single-stranded oligonucleotides correct a base substitution mutation more efficiently than an insertion mutation. However, this last effect was much less pronounced and the oligonucleotides of the invention are clearly able efficiently to correct both types of mutations in yeast cells. In addition, the role of transcription is investigated using plasmids with inducible promoters such as that described in Figure 10.

Optimization of oligonucleotide concentration. To determine the optimal concentration of oligonucleotide for the purpose of gene alteration, we test the ability of increasing concentrations of Hyg3T/74 α to correct the mutation in pAURHYG(rep)GFP contained in yeast LSY678. We chose this assay system because our previous experiments indicated that it supports the highest level of correction. However, this same approach could be used to determine the optimal concentration of any given oligonucleotide. We test the ability of Hyg3T/74 α to correct the mutation in pAURHYG(rep)GFP contained in yeast LSY678 over a range of oligonucleotide concentrations from 0-10.0 μ g. As shown in Table 9, we observe that the correction efficiency initially increases with increasing oligonucleotide concentration, but then declines at the highest concentration tested.

Tables are attached hereto.

15

5

Table 6
Correction of an insertion mutation in pAURHYG(ins)GFP by HygGG/Rev, HygE3T/25 and HygE3T/74

Oligonucleotide Tested	Colonies on Hygromycin	Colonies on Aureobasidin (/10 ⁵)	Correction Efficiency
HygGG/Rev	3	157	0.02
HygE3T/25	64	147	0.44
HygE3T/74	280	174	1.61
Kan70T	0	_	

Table 7

An oligonucleotide targeting the sense strand of the target sequence corrects more efficiently.

Amount of Oligonucleotide (µg)	Colonies per hygromycin plate		
	HygE3T/74	HygE3T/74α	
0	0	0	
0.6	24	128 (8.4x)*	
1.2	69	140 (7.5x)*	
2.4	62	167 (3.8x)*	
3.6	29	367 (15x)*	

^{*} The numbers in parentheses represent the fold increase in efficiency for targeting the non-transcribed strand as compared to the other strand of a DNA duplex that encodes a protein.

03/27/01 08:20 pm 03132.001 — [NY]727604.1

Table 8

Correction of a base substitution mutation is more efficient than correction of a frame shift mutation.

Oligonucleotide Tested (5 µg)	Plasmid tested (contained in LSY678)	
	pAURHYG(ins)GFP	pAURHYG(rep)GFP
HygE3T/74	72	277
HygE3T/74α	1464	2248
Kan70T	0	0

Table 9

Optimization of oligonucleotide concentration in electroporated yeast cells.

Amount (µg)	Colonies on	Colonies on	Correction efficiency
	hygromycin	aureobasidin (/105)	
0	0	67	0
1.0	5	64	0.08
2.5	47	30	1.57
5.0	199	33	6.08
7.5	383	39	9.79
10.0	191	33	5.79

Example 3 Cultured Cell Manipulation

Mononuclear cells are isolated from human umbilical cord blood of normal donors using Ficoll Hypaque (Pharmacia Biotech, Uppsala, Sweden) density centrifugation. CD34+ cells are immunomagnetically purified from mononuclear cells using either the progenitor or Multisort Kits (Miltenyi Bio.ec, Auburn, CA). Lin⁻CD38⁻ cells are purified from the mononuclear cells using negative selection with StemSep system according to the manufacturer's protocol (Stem Cell Technologies, Vancouver, CA).

5

1 10

15

30

5

Cells used for microinjection are either freshly isolated or cryopreserved and cultured in Stem Medium (S Medium) for 2 to 5 days prior to microinjection. S Medium contains Iscoves' Modified Dulbecco's Medium without phenol red (IMDM) with 100 µg/ml glutamine/penicillin/streptomycin, 50 mg/ml bovine serum albumin, 50 µg/ml bovine pancreatic insulin, 1 mg/ml human transferrin, and IMDM; Stem Cell Technologies), 40 µg/ml low-density lipoprotein (LDL; Sigma, St. Louis, MO), 50 mM HEPEs buffer and 50 µM 2-mercaptoethanol, 20 ng/ml each of thrombopoietin, flt-3 ligand, stem cell factor and human IL-6 (Pepro Tech Inc., Rocky Hill, NJ). After microinjection, cells are detached and transferred in bulk into wells of 48 well plates for culturing.

35 mm dishes are coated overnight at 4° C with 50 μg/ml Fibronectin (FN) fragment CH-296 (Retronectin; TaKaRa Biomedicals, Panvera, Madison, WI) in phosphate buffered saline and washed with IMDM containing glutamine/penicillin/streptomycin. 300 to 2000 cells are added to cloning rings and attached to the plates for 45 minutes at 37° C prior to microinjection. After incubation, cloning rings are removed and 2 ml of S Medium are added to each dish for microinjection. Pulled injection needles with a range of 0.22 μ to 0.3 μ outer tip diameter are used. Cells are visualized with a microscope equipped with a temperature controlled stage set at 37° C and injected using an electronically interfaced Eppendorf Micromanipulator and Transjector. Successfully injected cells are intact, alive and remain attached to the plate post injection. Molecules that are flourescently labeled allow determination of the amount of oligonucleotide delivered to the cells.

For in vitro erythropoiesis from Lin^CD38 $^-$ cells, the procedure of Malik, 1998 can be used. Cells are cultured in ME Medium for 4 days and then cultured in E Medium for 3 weeks. Erythropoiesis is evident by glycophorin A expression as well as the presence of red color representing the presence of hemoglobin in the cultured cells. The injected cells are able to retain their proliferative capacity and the ability to generate myeloid and erythoid progeny. CD34+ cells can convert a normal A (β^A) to sickle T (β^S) mutation in the β -globin gene or can be altered using any of the oligonucleotides of the invention herein for correction or alteration of a normal gene to a mutant gene. Alternatively, stem cells can be isolated from blood of humans having genetic disease mutations and the oligonucleotides of the invention can be used to correct a defect or to modify genomes within those cells.

Alternatively, non-stem cell populations of cultured cells can be manipulated using any method known to those of skill in the art including, for example, the use of polycations, cationic lipids, liposomes, polyethylenimine (PEI), electroporation, biolistics, calcium phophate precipitation, or any other method known in the art.

5

Notes on the tables presented below:

Each of the following tables presents, for the specified human gene, a plurality of mutations that are known to confer a clinically-relevant phenotype and, for each mutation, the oligonucleotides that can be used to correct the respective mutation site-specifically in the human genome according to the present invention.

The left-most column identifies each mutation and the clinical phenotype that the mutation confers.

For most entries, the mutation is identified at both the nucleic acid and protein level. At the amino acid level, mutations are presented according to the following standard nomenclature. The centered number identifies the position of the mutated codon in the protein sequence; to the left of the number is the wild type residue and to the right of the number is the mutant codon. Codon numbering is according to the Human Gene Mutation Database, Cardiff, Wales, UK (http://archive.uwcm.ac.uk/search/mg/allgenes). Terminator codons are shown as "TERM". At the nucleic acid level, the entire triplet of the wild type and mutated codons is shown.

The middle column presents, for each mutation, four oligonucleotides capable of repairing the mutation site-specifically in the human genome or in cloned human DNA including human DNA in artificial chromosomes, episomes, plasmids, or other types of vectors. The oligonucleotides of the invention, however, may include any of the oligonucleotides sharing portions of the sequence of the 121 base sequence. Thus, oligonucleotides of the invention for each of the depicted targets may be 18, 19, 20 up to about 121 nucleotides in length. Sequence may be added non-symmetrically.

All oligonucleotides are presented, per convention, in the 5' to 3' orientation. The nucleotide that effects the change in the genome is underlined and presented in bold.

The first of the four oligonucleotides for each mutation is a 121 nt oligonucleotide centered about the repair nucleotide. The second oligonucleotide, its reverse complement, targets the opposite strand of the DNA duplex for repair. The third oligonucleotide is the minimal 17 nt domain of the first oligonucleotide, also centered about the repair nucleotide. The fourth oligonucleotide is the reverse complement of the third, and thus represents the minimal 17 nt domain of the second.

The third column of each table presents the SEQ ID NO: of the respective repair oligonucleotide.

20

5

EXAMPLE 4Adenosine Deaminase (ADA)

Adenosine deaminase (ADA, EC 3.5.4.4) catalyses the deamination of adenosine and 2'-deoxyadenosine to inosine or 2'-deoxyinosine respectively. ADA deficiency has been identified as the metabolic basis for 20-30% of cases with recessively inherited severe combined immunodeficiency (SCID). Affected infants are subject to recurrent chronic viral, fungal, protozoal, and bacterial infections and frequently present with persistent diarrhea, failure to thrive and candidiasis. In patients homozygous for ADA deficiency, 2'-deoxyadenosine accumulating during the rapid turnover of cells rich in DNA is converted back to dATP, either by adenosine kinase or deoxycytidine kinase. Many hypotheses have been advanced to explain the specific toxicity to the immune system in ADA deficiency. The apparently selective accumulation of dATP in thymocytes and peripheral blood B cells, with resultant inhibition of ribonucleotide reductase and DNA synthesis is probably the principal mechanism.

The structural gene for ADA is encoded as a single 32 kb locus containing 12 exons. Studies of the molecular defect in ADA-deficient patients have shown that mRNA is usually detectable in normal or supranormal amounts. Specific base substitution mutations have been detected in the majority of cases with the complete deficiency. A C-to-T base substitution mutation in exon 11 accounts for a high proportion of these, whilst a few patients are homozygous for large deletions encompassing exon l. A common point mutation resulting in a heat-labile ADA has been characterised in some patients with partial ADA deficiency, a disorder with an apparently increased prevalence in the Caribbean.

As yet no totally effective therapy for ADA deficiency has been reported, except in those few cases where bone marrow from an HLA/MLR compatible sibling donor was available.

Two therapeutic approaches have provided long-term benefit in specific instances. First, reconstitution using T cell depleted mismatched sibling marrow has been encouraging, particularly in early presenters completely deficient in ADA. Secondly, therapy with polyethylene glycol-modified adenosine deaminase (PEG-ADA) for more than 5 years has produced a sustained increase in lymphocyte numbers and mitogen responses together with evidence of in vivo B cell function. Success has generally been achieved in late presenters with residual ADA activity in mononuclear cells.

ADA deficiency has been chosen as the candidate disease for gene replacement therapy, and the first human experiment commenced in 1990. The clinical consequences of overexpression of ADA activity - one of the potential hazards of gene implant - are known and take the form of an hereditary haemolytic anaemia associated with a tissue-specific increase in ADA activity. The genetic basis for the

25

latter autosomal dominant disorder seemingly relates to markedly increased levels of structurally normal ADA mRNA.

Table 10
ADA Mutations and Genome-Correcting Oligos

Clinical Phenotype & Mutation	Correcting Oligos	SEQ ID NO:
Adenosine deaminase deficiency GLN3TERM	AGAGACCCACCGAGCGCGCGCGGAGGAGCAGCGCCGGGG CGCACGAGGGCACCATGGCC <u>C</u> AGACGCCCGCCTTCGACAAG CCCAAAGTGAGCGCGCGGGGGGCTCCGGGGACGGGGTC	1
CAG to TAG	GACCCCGTCCCCGGAGCCCCCGCGCGCGCTCACTTTGGG CTTGTCGAAGGCGGCGTCT <u>G</u> GGCCATGGTGCCCTCGTGCG CCCCGGCGCTCCCCCCCCCC	2
	CCATGGCC <u>C</u> AGACGCCC	3
	GGGCGTCT G GGCCATGG	4
Adenosine deaminase deficiency HIS15ASP	TATTTGTTCTCTCTCTCCCTTTCTCTCTCTCTCCCCCTGCCC CCTTGCAGGTAGAACTG <u>C</u> ATGTCCACCTAGACGGATCCATCA AGCCTGAAACCATCTTATACTATGGCAGGTAAGTCC	5
CAT to GAT	GGACTTACCTGCCATAGTATAAGATGGTTTCAGGCTTGATGGA TCCGTCTAGGTGGACAT <u>G</u> CAGTTCTACCTGCAAGGGGGCAG GGGGAAGAGAGAGAAAAGGGAGAGAGA	6
	TAGAACTG <u>C</u> ATGTCCAC	7
	GTGGACAT <u>G</u> CAGTTCTA	8
Adenosine deaminase deficiency GLY20ARG	TCCCTTTCTCTCTCTCTCCCCCTGCCCCCTTGCAGGTAGAA CTGCATGTCCACCTAGACGGATCCATCAAGCCTGAAACCATC TTATACTATGGCAGGTAAGTCCATACAGAAGAGCCCT	9
GGA to AGA	AGGGCTCTTCTGTATGGACTTACCTGCCATAGTATAAGATGGT TTCAGGCTTGATGGATCCGTCTAGGTGGACATGCAGTTCTAC CTGCAAGGGGGCAGGGGGAAGAGAGAGAGAAAGGGA	10
	ACCTAGAC <u>G</u> GATCCATC	11
	GATGGATC <u>C</u> GTCTAGGT	12
Adenosine deaminase deficiency GLY74CYS	CCTGGAGCTCCCAAGGGACTTGGGGAAGGTTGTTCCCAACC CCTTTCTTCCCTTCC	13

5

10

doub the dest in the state sta

15

Clinical Phenotype & Mutation	Correcting Oligos	SEQID NO:
	CCTCTTTGGCCTTCATCTCTACAAACTCATAGGCGATCCTTTT GATAGCCTCCCGGCAGC <u>C</u> CCTGGGAAGGAAGAAAGGGGTT GGGAACAACCTTCCCCAAGTCCCTTGGGAGCTCCAGG	14
	CTATCGCG <u>G</u> GCTGCCGG	15
	CCGGCAGC <u>C</u> CGCGATAG	16
Adenosine Deaminase Deficiency ARG76TRP	GCTCCCAAGGGACTTGGGGAAGGTTGTTCCCAACCCCTTTCT TCCCTTCCCAGGGGCTGCCGGGGGGGCTATCAAAAGGATCGC CTATGAGTTTGTAGAGATGAAGGCCAAAGAGGGCGTGG	17
CGG to TGG	CCACGCCTCTTTGGCCTTCATCTCTACAAACTCATAGGCGAT CCTTTTGATAGCCTCCC G GCAGCCCCTGGGAAGGGAAGAAA GGGGTTGGGAACAACCTTCCCCAAGTCCCTTGGGAGC	18
	GGGGCTGC <u>C</u> GGGAGGCT	19
	AGCCTCCC G GCAGCCCC	20
Adenosine Deaminase Deficiency LYS80ARG	TTGGGGAAGGTTGTTCCCAACCCCTTTCTTCCCTTCCCAGGG GCTGCCGGGAGGCTATCAAAAGGATCGCCTATGAGTTTGTAG AGATGAAGGCCAAAGAGGGCGTGGTGTATGTGGAGGT	21
AAA to AGA	ACCTCCACATACACCACGCCCTCTTTGGCCTTCATCTCTACAA ACTCATAGGCGATCCTTTTGATAGCCTCCCGGCAGCCCCTGG GAAGGGAAGAAAGGGGTTGGGAACAACCTTCCCCAA	22
	GGCTATCA A AAGGATCG	23
	CGATCCTTTTGATAGCC	24
Adenosine deaminase deficiency ALA83ASP	GTTGTTCCCAACCCCTTTCTTCCCTTCCCAGGGGCTGCCGGG AGGCTATCAAAAGGATCGCCTATGAGTTTGTAGAGATGAAGG CCAAAGAGGGCGTGGTGTATGTGGAGGTGCGGTACAG	25
GCC to GAC	CTGTACCGCACCTCCACATACACCACGCCCTCTTTGGCCTTC ATCTCTACAAACTCATAGGCGATCCTTTTGATAGCCTCCCGGC AGCCCCTGGGAAGGAAGAAAGGGGTTGGGAACAAC	26
	AAGGATCG <u>C</u> CTATGAGT	27
	ACTCATAG G CGATCCTT	28
Adenosine deaminase deficiency TYR97CYS	AGGCTATCAAAAGGATCGCCTATGAGTTTGTAGAGATGAAGG CCAAAGAGGGCGTGGTGTATGTGGAGGTGCGGTACAGTCCG CACCTGCTGGCCAACTCCAAAGTGGAGCCAATCCCCTG	29
TalitoTGT	CAGGGGATTGGCTCCACTTTGGAGTTGGCCAGCAGGTGCGG ACTGTACCGCACCTCCACATACACCACGCCCTCTTTGGCCTT CATCTCTACAAACTCATAGGCGATCCTTTTGATAGCCT	30

Clinical Phenotype & Mutation	Correcting Oligos	SEQID NO:
	CGTGGTGT <u>A</u> TGTGGAGG	31
	CCTCCACA <u>T</u> ACACCACG	32
Adenosine deaminase deficiency ARG101GLN	GGATCGCCTATGAGTTTGTAGAGATGAAGGCCAAAGAGGGCG TGGTGTATGTGGAGGTGCGGTACAGTCCGCACCTGCTGGCC AACTCCAAAGTGGAGCCAATCCCCTGGAACCAGGCTGA	33
CGG to CAG	TCAGCCTGGTTCCAGGGGATTGGCTCCACTTTGGAGTTGGCC AGCAGGTGCGGACTGTAC <u>C</u> GCACCTCCACATACACCACGCC CTCTTTGGCCTTCATCTCTACAAACTCATAGGCGATCC	34
	GGAGGTGC <u>G</u> GTACAGTC	35
	GACTGTAC <u>C</u> GCACCTCC	36
Adenosine deaminase deficiency ARG101LEU	GGATCGCCTATGAGTTTGTAGAGATGAAGGCCAAAGAGGGCG TGGTGTATGTGGAGGTGCGGTACAGTCCGCACCTGCTGGCC AACTCCAAAGTGGAGCCAATCCCCTGGAACCAGGCTGA	37
CGG to CTG	TCAGCCTGGTTCCAGGGGATTGGCTCCACTTTGGAGTTGGCC AGCAGGTGCGGACTGTAC <u>C</u> GCACCTCCACATACACCACGCC CTCTTTGGCCTTCATCTCTACAAACTCATAGGCGATCC	38
	GGAGGTGC <u>G</u> GTACAGTC	39
	GACTGTAC C GCACCTCC	40
Adenosine deaminase deficiency ARG101TRP	AGGATCGCCTATGAGTTTGTAGAGATGAAGGCCAAAGAGGGC GTGGTGTATGTGGAGGTGCGGTACAGTCCGCACCTGCTGGC CAACTCCAAAGTGGAGCCAATCCCCTGGAACCAGGCTG	41
CGG to TGG	CAGCCTGGTTCCAGGGGATTGGCTCCACTTTGGAGTTGGCCA GCAGGTGCGGACTGTACCGCACCTCCACATACACCACGCCC TCTTTGGCCTTCATCTCTACAAACTCATAGGCGATCCT	42
	TGGAGGTG <u>C</u> GGTACAGT	43
	ACTGTACC <u>G</u> CACCTCCA	44
Adenosine deaminase deficiency PRO104LEU	ATGAGTTTGTAGAGATGAAGGCCAAAGAGGGCGTGGTGTATG TGGAGGTGCGGTACAGTCCGCCCTGCTGGCCAACTCCAAA GTGGAGCCAATCCCCTGGAACCAGGCTGAGTGAGTGAT	45
CCG to CTG	ATCACTCACCCAGCCTGGTTCCAGGGGATTGGCTCCACTTTG GAGTTGGCCAGCAGGTGCGGACTGTACCGCACCTCCACATA CACCACGCCCTCTTTGGCCTTCATCTCTACAAACTCAT	46
	GTACAGTC <u>C</u> GCACCTGC	47
	GCAGGTGC G GACTGTAC	48

Clinical Phenotype & Mutation	Correcting Oligos	SEQID NO:
Adenosine deaminase deficiency LEU106VAL	TTTGTAGAGATGAAGGCCAAAGAGGGCGTGGTGTATGTGGAG GTGCGGTACAGTCCGCAC <u>C</u> TGCTGGCCAACTCCAAAGTGGA GCCAATCCCCTGGAACCAGGCTGAGTGAGTGATGGGCC	49
CTG to GTG	GGCCCATCACTCAGCCTGGTTCCAGGGGATTGGCTCCA CTTTGGAGTTGGCCAGCA <u>G</u> GTGCGGACTGTACCGCACCTCC ACATACACCACGCCCTCTTTGGCCTTCATCTCTACAAA	50
	GTCCGCAC <u>C</u> TGCTGGCC	51
	GGCCAGCA <u>G</u> GTGCGGAC	52
Adenosine deaminase deficiency LEU107PRO	TAGAGATGAAGGCCAAAGAGGGCGTGGTGTATGTGGAGGTG CGGTACAGTCCGCACCTGC <u>T</u> GGCCAACTCCAAAGTGGAGCC AATCCCCTGGAACCAGGCTGAGTGAGTGATGGGCCTGGA	53
CTG to CCG	TCCAGGCCCATCACTCACTCAGCCTGGTTCCAGGGGATTGGC TCCACTTTGGAGTTGGCCAGCAGGTGCGGACTGTACCGCAC CTCCACATACACCACGCCCTCTTTGGCCTTCATCTCTA	54
	GCACCTGC <u>T</u> GGCCAACT	55
	AGTTGGCC <u>A</u> GCAGGTGC	56
Adenosine deaminase deficiency PRO126GLN	GCCTTCCTTTTGCCTCAGGCCCATCCCTACTCCTCAC ACAGAGGGGACCTCACCC <u>C</u> AGACGAGGTGGTGGCCCTAGTG GGCCAGGGCCTGCAGGAGGGGGAGACCTTCGGGGT	57
CCA to CAA	ACCCGAAGTCTCGCTCCCCCTCCTGCAGGCCCTGGCCCAC TAGGGCCACCACCTCGTCTGGGGGTGAGGTCCCCTCTGTGTG AGGAGAGGAG	58
	CCTCACCC <u>C</u> AGACGAGG	59
	CCTCGTCT G GGGTGAGG	60
Adenosine deaminase deficiency VAL129MET	TTTGCCTCAGGCCCATCCCTACTCCTCTCCTCACACAGAGGG GACCTCACCCCAGACGAGGTGGTGGCCCTAGTGGGCCAGGG CCTGCAGGAGGGGGAGCGAGACTTCGGGGTCAAGGCCC	61
GTG to ATG	GGGCCTTGACCCCGAAGTCTCGCTCCCCCTCCTGCAGGCCC TGGCCCACTAGGGCCACCACCTCGTCTGGGGTGAGGTCCCC TCTGTGTGAGGAGAGAGGAGTAGGGATGGGCCTGAGGCAAA	62
	CAGACGAG <u>G</u> TGGTGGCC	63
	GGCCACCA <u>C</u> CTCGTCTG	64

Clinical Phenotype & Mutation	Correcting Oligos	SEQ ID NO:
Adenosine deaminase deficiency GLY140GLU	ACAGAGGGGACCTCACCCCAGACGAGGTGGTGGCCCTAGTG GGCCAGGGCCTGCAGGAGGGGGGAGACTTCGGGGTCA AGGCCCGGTCCATCCTGTGCTGCATGCGCCACCAGCCCAG	65
GGG to GAG	CTGGGCTGGTGCGCATGCAGCACAGGATGGACCGGGCCTT GACCCGAAGTCTCGCTCCCCCTCCTGCAGGCCCTGGCCCA CTAGGGCCACCACCTCGTCTGGGGTGAGGTCCCCTCTGT	66
	GCAGGAGG <u>G</u> GGAGCGAG	67
	CTCGCTCC <u>C</u> CCTCCTGC	68
Adenosine deaminase deficiency ARG142GLN	GGGACCTCACCCCAGACGAGGTGGTGGCCCTAGTGGGCCAG GGCCTGCAGGAGGGGGAGC <u>G</u> AGACTTCGGGGTCAAGGCCC GGTCCATCCTGCTGCATGCGCCACCAGCCCAGTGAGTA	69
CGA to CAA	TACTCACTGGGCTGGTGGCGCATGCAGCACAGGATGGACCG GGCCTTGACCCCGAAGTCTCGCCCCCCCCCC	70
	GGGGGAGC <u>G</u> AGACTTCG	71
	CGAAGTCT <u>C</u> GCTCCCCC	72
Adenosine deaminase deficiency ARG142TERM	GGGGACCTCACCCCAGACGAGGTGGTGGCCCTAGTGGGCCA GGGCCTGCAGGAGGGGGAGCGAGACTTCGGGGTCAAGGCC CGGTCCATCCTGTGCTGCATGCGCCACCAGCCCAGTGAGT	73
CGA to TGA	ACTCACTGGGCTGGTGGCGCATGCAGCACAGGATGGACCGG GCCTTGACCCCGAAGTCTCGCTCCCCCTCCTGCAGGCCCTG GCCCACTAGGGCCACCACCTCGTCTGGGGTGAGGTCCCC	74
	AGGGGGAG <u>C</u> GAGACTTC	75
	GAAGTCTC <u>G</u> CTCCCCCT	76
Adenosine deaminase deficiency ARG149GLN	TGGTGGCCCTAGTGGGCCAGGGCCTGCAGGAGGGGAGCG AGACTTCGGGGTCAAGGCCC <u>G</u> GTCCATCCTGTGCTGCATGC GCCACCAGCCCAGTGAGTAGGATCACCGCCCTGCCCAGGG	77
CGG to CAG	CCCTGGGCAGGGCGGTGATCCTACTCACTGGGCTGGTGGCG CATGCAGCACAGGATGGACCCGGGGCCTTGACCCCGAAGTCTC GCTCCCCCTCCTGCAGGCCCTGGCCCACTAGGGCCACCA	78
	CAAGGCCC G GTCCATCC	79
	GGATGGAC C GGGCCTTG	80

Clinical Phenotype & Mutation	Correcting Oligos	SEQ ID NO:
Adenosine deaminase deficiency ARG149TRP	GTGGTGGCCCTAGTGGGCCAGGGCCTGCAGGAGGGGGAGC GAGACTTCGGGGTCAAGGCCCGGGTCCATCCTGTGCTGCATG CGCCACCAGCCCAGTGAGTAGGATCACCGCCCTGCCCAGG	81
CGG to TGG	CCTGGGCAGGGCGGTGATCCTACTCACTGGGCTGGTGGCGC ATGCAGCACAGGATGGACCGGGCCTTGACCCCGAAGTCTCG CTCCCCCTCCTGCAGGCCCTGGCCCACTAGGGCCACCAC	82
	TCAAGGCC <u>C</u> GGTCCATC	83
	GATGGACC <u>G</u> GGCCTTGA	84
Adenosine deaminase deficiency LEU152MET	CTAGTGGGCCAGGGCCTGCAGGAGGGGGAGCGAGACTTCG GGGTCAAGGCCCGGTCCATCCTGTGCTGCATGCGCCACCAG CCCAGTGAGTAGGATCACCGCCCTGCCCAGGGCCGCCCGT	85
CTG to ATG	ACGGGCGCCCTGGGCAGGGCGGTGATCCTACTCACTGGG CTGGTGGCGCATGCAGCACAGGATGGACCGGGCCTTGACCC CGAAGTCTCGCTCCCCCTCCTGCAGGCCCTGGCCCACTAG	86
	GGTCCATC <u>C</u> TGTGCTGC	87
	GCAGCACA <u>G</u> GATGGACC	88
Adenosine deaminase deficiency ARG156CYS	GGCCTGCAGGAGGGGGAGCGAGACTTCGGGGTCAAGGCCC GGTCCATCCTGTGCTGCATGCCACCAGCCCAGTGAGTAG GATCACCGCCCTGCCCAGGGCCGCCCGTCTCACCCTGGCC	89
CGC to TGC	GGCCAGGGTGAGACGGGCGGCCCTGGGCAGGGCGGTGATC CTACTCACTGGGCTGGTGGCGCATGCAGCACAGGATGGACC GGGCCTTGACCCCGAAGTCTCGCTCCCCCTCCTGCAGGCC	90
	GCTGCATG <u>C</u> GCCACCAG	91
	CTGGTGGC G CATGCAGC	92
Adenosine deaminase deficiency ARG156HIS	GCCTGCAGGAGGGGAGCGAGACTTCGGGGTCAAGGCCCG GTCCATCCTGTGCTGCATGCGCCAGCCCAGTGAGTAGG ATCACCGCCCTGCCCAGGGCCGCCCGTCTCACCCTGGCCC	93
CGC to CAC	GGGCCAGGGTGAGACGGGCGGCCCTGGGCAGGGCGGTGAT CCTACTCACTGGGCTGGTGGCGCATGCAGCACAGGATGGAC CGGGCCTTGACCCCGAAGTCTCGCTCCCCCTCCTGCAGGC	94
	CTGCATGC <u>G</u> CCACCAGC	95
	GCTGGTGG C GCATGCAG	96

Clinical Phenotype & Mutation	Correcting Oligos	SEQ ID NO:
Adenosine deaminase deficiency VAL177MET	CTGCCCACAGACTGGTCCCCCAAGGTGGTGGAGCTGTGTAA GAAGTACCAGCAGCAGACCGTGGTAGCCATTGACCTGGCTG GAGATGAGACCATCCCAGGAAGCAGCCTCTTGCCTGGAC	97
GTG to ATG	GTCCAGGCAAGAGGCTGCTTCCTGGGATGGTCTCATCTCCAG CCAGGTCAATGGCTACCA <u>C</u> GGTCTGCTGCTGGTACTTCTTAC ACAGCTCCACCACCTTGGGGGACCAGTCTGTGGGCAG	98
	AGCAGACC <u>G</u> TGGTAGCC	99
	GGCTACCA <u>C</u> GGTCTGCT	100
Adenosine deaminase deficiency ALA179ASP	CAGACTGGTCCCCCAAGGTGGTGGAGCTGTGTAAGAAGTAC CAGCAGCAGACCGTGGTAGCCATTGACCTGGCTGGAGATGA GACCATCCCAGGAAGCAGCCTCTTGCCTGGACATGTCCA	101
GCC to GAC	TGGACATGTCCAGGCAAGAGGCTGCTTCCTGGGATGGTCTCA TCTCCAGCCAGGTCAATGGCTACCACGGTCTGCTGGTAC TTCTTACACAGCTCCACCACCTTGGGGGACCAGTCTG	102
	CGTGGTAG C CATTGACC	103
	GGTCAATG <u>G</u> CTACCACG	104
Adenosine deaminase deficiency GLN199PRO	CCATTGACCTGGCTGGAGATGAGACCATCCCAGGAAGCAGC CTCTTGCCTGGACATGTCCAGGCCTACCAGGTGGGTCCTGT GAGAAGGAATGGAGAGGCTGGCCCTGGGTGAGCTTGTCT	105
CAG to CCG	AGACAAGCTCACCCAGGGCCAGCCTCTCCATTCCTTCTCACA GGACCCACCTGGTAGGCCTGGACATGTCCAGGCAAGAGGCT GCTTCCTGGGATGGTCTCATCTCCAGCCAGGTCAATGG	106
	ACATGTCC <u>A</u> GGCCTACC	107
	GGTAGGCCTGGACATGT	108
Adenosine deaminase deficiency ARG211CYS	GCTAGGGCACCCATGACCTGGCTCTCCCCCTTCCAGGAGGC TGTGAAGAGCGGCATTCACCGTACTGTCCACGCCGGGGAGG TGGGCTCGGCCGAAGTAGTAAAAGAGGTGAGGGCCTGGG	109
CGT to TGT	CCCAGGCCCTCACCTCTTTTACTACTTCGGCCGAGCCCACCT CCCCGGCGTGGACAGTACGGTGAATGCCGCTCTTCACAGCC TCCTGGAAGGGGGAGAGCCAGGTCATGGGTGCCCTAGC	110
	GCATTCAC <u>C</u> GTACTGTC	111
	GACAGTAC <u>G</u> GTGAATGC	112

Clinical Phenotype & Mutation	Correcting Oligos	SEQ ID NO:
Adenosine deaminase deficiency ARG211HIS	CTAGGGCACCCATGACCTGGCTCTCCCCCTTCCAGGAGGCT GTGAAGAGCGGCATTCACC <u>G</u> TACTGTCCACGCCGGGGAGGT GGGCTCGGCCGAAGTAGTAAAAGAGGTGAGGGCCTGGGC	113
CGT to CAT	GCCCAGGCCCTCACCTCTTTTACTACTTCGGCCGAGCCCACC TCCCCGGCGTGGACAGTACGGGTGAATGCCGCTCTTCACAGC CTCCTGGAAGGGGGAGAGCCAGGTCATGGGTGCCCTAG	114
	CATTCACC G TACTGTCC	115
	GGACAGTA <u>C</u> GGTGAATG	116
Adenosine deaminase deficiency ALA215THR	ATGACCTGGCTCTCCCCCTTCCAGGAGGCTGTGAAGAGCGG CATTCACCGTACTGTCCAC <u>G</u> CCGGGGAGGTGGGCTCGGCCG AAGTAGTAAAAGAGGTGAGGGCCTGGGCCATGGGG	117
GCC to ACC	CCCCATGGCCAGCCCAGGCCCTCACCTCTTTTACTACTTCGG CCGAGCCCACCTCCCCGGCGTGGACAGTACGGTGAATGCCG CTCTTCACAGCCTCCTGGAAGGGGGAGAGCCAGGTCAT	118
	CTGTCCAC <u>G</u> CCGGGGAG	119
	CTCCCCGG <u>C</u> GTGGACAG	120
Adenosine deaminase deficiency GLY216ARG	ACCTGGCTCTCCCCCTTCCAGGAGGCTGTGAAGAGCGGCAT TCACCGTACTGTCCACGCC <u>G</u> GGGAGGTGGGCTCGGCCGAAG TAGTAAAAGAGGTGAGGGCCTGGGCTGGCCATGGGGTCC	121
GGG to AGG	GGACCCCATGGCCAGCCCAGGCCCTCACCTCTTTTACTACTT CGGCCGAGCCCACCTCCCCGGCGTGGACAGTACGGTGAATG CCGCTCTTCACAGCCTCCTGGAAGGGGGAGAGCCAGGT	122
	TCCACGCC <u>G</u> GGGAGGTG	123
	CACCTCCC <u>C</u> GGCGTGGA	124
Adenosine deaminase deficiency GLU217LYS	TGGCTCTCCCCCTTCCAGGAGGCTGTGAAGAGCGGCATTCA CCGTACTGTCCACGCCGGGGAGGTGGGCTCGGCCGAAGTAG TAAAAGAGGTGAGGGCCTGGGCTGGCCATGGGGTCCCTC	125
GAG to AAG	GAGGGACCCCATGGCCAGCCCAGGCCCTCACCTCTTTTACTA CTTCGGCCGAGCCCACCTCCCGGCGTGGACAGTACGGTGA ATGCCGCTCTTCACAGCCTCCTGGAAGGGGGAGAGCCA	126
	ACGCCGGG <u>G</u> AGGTGGGC	127
	GCCCACCT C CCCGGCGT	128

Clinical Phenotype & Mutation	Correcting Oligos	SEQ ID NO:
Adenosine deaminase deficiency THR233ILE	CTGCCTCCCCATACTTGGCTCTATTCTGCTTCTCTACAGGC TGTGGACATACTCAAGA C AGAGCGGCTGGGACACGGCTACC ACACCCTGGAAGACCAGGCCCTTTATAACAGGCTGCG	129
ACA to ATA	CGCAGCCTGTTATAAAGGGCCTGGTCTTCCAGGGTGTGGTAG CCGTGTCCCAGCCGCTCTGTCTTGAGTATGTCCACAGCCTGT AGAGAAGCAGAATAGAGCCAAGTATGGGAGGAGGCAG	130
	ACTCAAGA C AGAGCGGC	131
	GCCGCTCT G TCTTGAGT	132
Adenosine deaminase deficiency ARG253PRO	CAGAGCGGCTGGGACACGGCTACCACACCCTGGAAGACCAG GCCCTTTATAACAGGCTGCGGCAGGAAAACATGCACTTCGAG GTAAGCGGGCCAGGGAGTGGGGAGGAACCATCCCCGGC	133
CGG to CCG	GCCGGGGATGGTTCCTCCCCACTCCCTGGCCCGCTTACCTC GAAGTGCATGTTTTCCTGCCGCACCCTGTTATAAAGGGCCTG GTCTTCCAGGGTGTGGTAGCCGTGTCCCAGCCGCTCTG	134
	CAGGCTGC <u>G</u> GCAGGAAA	135
	TTTCCTGC <u>C</u> GCAGCCTG	136
Adenosine deaminase deficiency GLN254TERM	GAGCGGCTGGGACACGGCTACCACACCCTGGAAGACCAGGC CCTTTATAACAGGCTGCGGCAGGAAAACATGCACTTCGAGGT AAGCGGGCCAGGGAGTGGGGAGGAACCATCCCCGGCTG	137
CAG to TAG	CAGCCGGGGATGGTTCCTCCCCACTCCCTGGCCCGCTTACC TCGAAGTGCATGTTTTCCTGCCGCAGCCTGTTATAAAGGGCC TGGTCTTCCAGGGTGTGGTAGCCGTGTCCCAGCCGCTC	138
	GGCTGCGG C AGGAAAAC	139
	GTTTTCCT G CCGCAGCC	140
Adenosine deaminase deficiency PRO274LEU	CCACACACCTGCTCTTCCAGATCTGCCCCTGGTCCAGCTACC TCACTGGTGCCTGGAAGCCGGAGCATGCAGTCATT CGGTGAGCTCTGTTCCCCTGGGCCTGTTCAATTTTGTT	141
CCG to CTG	AACAAAATTGAACAGGCCCAGGGGAACAGAGCTCACCGAATG ACTGCATGCTCCGTGTCCGGCTTCCAGGCACCAGTGAGGTA GCTGGACCAGGGGCAGATCTGGAAGAGCAGGTGTGTGG	142
	CTGGAAGC <u>C</u> GGACACGG	143
	CCGTGTCC <u>G</u> GCTTCCAG	144

Clinical Phenotype & Mutation	Correcting Oligos	SEQID NO:
Adenosine deaminase deficiency SER291LEU	GGAGGCTGATTCTCCTCCTCCTCCTCTTCTGCAGGCTCAAAA ATGACCAGGCTAACTACTCGCTCAACACAGATGACCCGCTCA TCTTCAAGTCCACCCTGGACACTGATTACCAGATGAC	145
TCG to TTG	GTCATCTGGTAATCAGTGTCCAGGGTGGACTTGAAGATGAGC GGGTCATCTGTTGAGC G AGTAGTTAGCCTGGTCATTTTTGA GCCTGCAGAAGAGGGAGGAGGAGAATCAGCCTCC	146
	TAACTACT C GCTCAACA	147
	TGTTGAGC G AGTAGTTA	148
Adenosine deaminase deficiency PRO297GLN	CCTCCCTCTTCTGCAGGCTCAAAAATGACCAGGCTAACTACT CGCTCAACACAGATGACCCCGGCTCATCTTCAAGTCCACCCTGG ACACTGATTACCAGATGACCAAACGGGACATGGGCTT	149
CCG to CAG	AAGCCCATGTCCCGTTTGGTCATCTGGTAATCAGTGTCCAGG GTGGACTTGAAGATGAGCGGGGTCATCTGTGTTGAGCGAGTAG TTAGCCTGGTCATTTTTGAGCCTGCAGAAGAGGGAGG	150
	AGATGACC C GCTCATCT	151
	AGATGAGC G GGTCATCT	152
Adenosine deaminase deficiency LEU304ARG	AAAATGACCAGGCTAACTACTCGCTCAACACAGATGACCCGC TCATCTTCAAGTCCACCC <u>T</u> GGACACTGATTACCAGATGACCAA ACGGGACATGGGCTTTACTGAAGAGGAGTTTAAAAG	153
CTG to CGG	CTTTTAAACTCCTCTTCAGTAAAGCCCATGTCCCGTTTGGTCA TCTGGTAATCAGTGTCCAGGGGTGGACTTGAAGATGAGCGGGT CATCTGTTGAGCGAGTAGTTAGCCTGGTCATTTT	154
	GTCCACCC <u>T</u> GGACACTG	155
	CAGTGTCC <u>A</u> GGGTGGAC	156
Adenosine deaminase deficiency ALA329VAL	GCCTTCTTTGTTCTCTGGTTCCATGTTGTCTGCCATTCTGGCC TTTCCAGAACATCAATGCGGCCAAATCTAGTTTCCTCCCAGAA GATGAAAAGAGGGAGCTTCTCGACCTGCTCTATAA	157
C-to-T at base 1081	TTATAGAGCAGGTCGAGAAGCTCCCTCTTTTCATCTTCTGGGA GGAAACTAGATTTGGCCGCATTGATGTTCTGGAAAGGCCAGA ATGGCAGACAACATGGAACCAGAGAACAAAGAAGGC	158
	CATCAATG C GGCCAAAT	159
	ATTTGGCC G CATTGATG	160

EXAMPLE 5 P53 Mutations

The p53 gene codes for a protein that acts as a transcription factor and serves as a key regulator of the cell cycle. Mutation in this gene is probably the most significant genetic change characterizing the transformation of cells from normalcy to malignancy.

Inactivation of p53 by mutation disrupts the cell cycle which, in turn, sets the stage for tumor formation. Mutations in the p53 gene are among the most commonly diagnosed genetic disorders, occuring in as many as 50% of cancer patients. For some types of cancer, most notably of the breast, lung and colon, p53 mutations are the predominant genetic alternations found thus far. These mutations are associated with genomic instability and thus an increased susceptibility to cancer. Some p53 lesions result in malignancies that are resistant to the most widely used therapeutic regimens and therefore demand more aggressive treatment.

That p53 is associated with different malignant tumors is illustrated in the Li-Fraumeni autosomal dominant hereditary disorder characterized by familial multiple tumors due to mutation in the p53 gene. Affected individuals can develop one or more tumors, including: brain (12%); soft-tissue sarcoma (12%); breast cancer (25%); adrenal tumors (1%); bone cancer (osteosarcoma) (6%); cancer of the lung, prostate, pancreas, and colon as well as lymphoma and melanoma can also occur.

Certain of the most frequently mutated codons are codons 175, 248 and 273, however a variety of oligonucleotides are described below in the atttached table.

Table 11 p53 Mutations and Genome-Correcting Oligos

Clinical Phenotype & Mutation	Correcting Oligos	SEQ ID NO:
In 2 families with Li-Fraumeni syndrome, there was a C-to-T mutation at the first nucleotide of codon 248 which changed arginine to tryptophan.	GACTGTACCACCATCCACTACAACTACATGTGTAACAGTTCCT GCATGGGCGGCATGAAC C GGAGGCCCATCCTCACCATCATC ACACTGGAAGACTCCAGGTCAGGAGCCACTTGCCACC	161
	GGTGGCAAGTGGCTCCTGACCTGGAGTCTTCCAGTGTGATGA TGGTGAGGATGGGCCTCC <u>G</u> GTTCATGCCGCCCCATGCAGGAA CTGTTACACATGTAGTTGTAGTGGATGGTGGTACAGTC	162
	GCATGAAC <u>C</u> GGAGGCCC	163

10

5

<u>L</u>ei ١....

20

25

Clinical Phenotype & Mutation	Correcting Oligos	SEQ ID NO:
	GGGCCTCC <u>G</u> GTTCATGC	164
In a family with the Li-Fraumeni syndrome, a G-to-A	TGTAACAGTTCCTGCATGGGCGGCATGAACCGGAGGCCCAT CCTCACCATCATCACACTGGAAGACTCCAGGTCAGGAGCCAC TTGCCACCCTGCACACTGGCCTGCTGCCCCAGCCTC	165
mutation at the first nucleotide of codon 258 resulting in the substitution of lysine	GAGGCTGGGGCACAGCAGGCCAGTGTGCAGGGTGGCAAGT GGCTCCTGACCTGGAGTCTT <u>C</u> CAGTGTGATGATGGTGAGGAT GGGCCTCCGGTTCATGCCGCCCATGCAGGAACTGTTACA	166
for glutamic acid.	TCACACTG <u>G</u> AAGACTCC	167
	GGAGTCTT <u>C</u> CAGTGTGA	168
In a family with the Li-Fraumeni syndrome, a G-to-T mutation at the first nucleotide of codon 245 resulting in the substitution of cysteine for glycine.	GTTGGCTCTGACTGTACCACCATCCACTACAACTACATGTGTA ACAGTTCCTGCATGGGCGGCCATCCTC ACCATCATCACACTGGAAGACTCCAGGTCAGGAGCCA	169
A gly245-to-ser, GGC-to-AGC, mutation was found in	TGGCTCCTGACCTGGAGTCTTCCAGTGTGATGATGGTGAGGA TGGGCCTCCGGTTCATGC <u>C</u> GCCCATGCAGGAACTGTTACACA TGTAGTTGTAGTGGATGGTGGTACAGTCAGAGCCAAC	170
a patient in whom osteosarcoma was diagnosed at the age	GCATGGGC <u>G</u> GCATGAAC	171
of 18 years.	GTTCATGC <u>C</u> GCCCATGC	172
In a family with the Li-Fraumeni syndrome, a germline mutation at codon 252: a T-to-C change at the second position resulted in substitution of proline for leucine.	TCCACTACAACTACATGTGTAACAGTTCCTGCATGGGCGGCA TGAACCGGAGGCCCATCC <u>T</u> CACCATCATCACACTGGAAGACT CCAGGTCAGGAGCCACTTGCCACCCTGCACACTGGCC	173
	GGCCAGTGTGCAGGGTGGCAAGTGGCTCCTGACCTGGAGTC TTCCAGTGTGATGATGGTGAGGGCCTCCGGTTCATGCC GCCCATGCAGGAACTGTTACACATGTAGTTGTAGTGGA	174
	GCCCATCC <u>T</u> CACCATCA	175
	TGATGGTG <u>A</u> GGATGGGC	176

	Clinical Phenotype & Mutation	Correcting Oligos	SEQ ID NO:
	Researchers analyzed for mutations in p53 hepatocellular carcinomas from	TACCACCATCCACTACAACTACATGTGTAACAGTTCCTGCATG GGCGGCATGAACCGGAGGCCCATCCTCACCATCATCACACT GGAAGACTCCAGGTCAGGAGCCACTTGCCACCCTGCA	177
5	patients in Qidong, an area of high incidence in China, in which both hepatitis B virus and aflatoxin B1 are risk	TGCAGGGTGGCAAGTGGCTCCTGACCTGGAGTCTTCCAGTG TGATGATGGTGAGGATGGGCCTCCGGTTCATGCCGCCCATG CAGGAACTGTTACACATGTAGTTGTAGTGGATGGTGGTA	178
10	factors. Eight of 16 tumors had a point mutation at the third base position of codon 249. The G-to-T	AACCGGAG <u>G</u> CCCATCCT	179
5	mutation at codon 249 led to a change from arginine to serine (AGG to AGT).	AGGATGGG <u>C</u> CTCCGGTT	180
± 20	In cases of hepatocellular carcinoma in southern	CTGGCCAAGACCTGCCCTGTGCAGCTGTGGGTTGATTCCACA CCCCGCCCGGCACCCGCGTCCGCGCCATGGCCATCTACAA GCAGTCACAGCACATGACGGAGGTTGTGAGGCGCTGCC	181
25	Africa, a G-to-T substitution in codon 157 resulting in a change from valine to	GGCAGCGCCTCACAACCTCCGTCATGTGCTGTGACTGCTTGT AGATGGCCATGGCGCGGACGGCGGGGGGGTGT GGAATCAACCCACAGCTGCACAGGGCAGGTCTTGGCCAG	182
<u></u>	phenylalanine.	GCACCCGCGTCCGCGCC	183
		GGCGCGGA <u>C</u> GCGGGTGC	184
	In a family with Li-Fraumeni in which noncancerous skin	TTGGCTCTGACTGTACCACCATCCACTACAACTACATGTGTAA CAGTTCCTGCATGGGCGGCATGAACCGGAGGCCCATCCTCA CCATCATCACACTGGAAGACTCCAGGTCAGGAGCCAC	185
30	fibroblasts from affected individuals showed an unusual radiation-resistant	GTGGCTCCTGACCTGGAGTCTTCCAGTGTGATGATGGTGAGG ATGGGCCTCCGGTTCATGCCCCCCATGCAGGAACTGTTACAC ATGTAGTTGTAGTGGATGGTGGTACAGTCAGAGCCAA	186
35	phenotype, a point mutation in codon 245 of the P53 gene. A change from GGC to	CATGGGCG <u>G</u> CATGAACC	187
40	GAC predicted substitution of aspartic acid for glycine.	GGTTCATGCCCCCATG	188

25

in i

30

Clinical Phenotype & Mutation	Correcting Oligos	SEQ ID NO:
	TAACAGTT <u>C</u> CTGCATGG	203
	CCATGCAG <u>G</u> AACTGTTA	204
An AAG-to-TAG change of codon 120, resulting in conversion	CAGAAAACCTACCAGGGCAGCTACGGTTTCCGTCTGGGCTTC TTGCATTCTGGGACAGCC <u>A</u> AGTCTGTGACTTGCACGGTCAGT TGCCCTGAGGGGCTGGCTTCCATGAGACTTCAATGCC	205
from lysine to a stop codon, was found in a patient with osteosarcoma and	GGCATTGAAGTCTCATGGAAGCCAGCCCCTCAGGGCAACTG ACCGTGCAAGTCACAGACT <u>T</u> GGCTGTCCCAGAATGCAAGAAG CCCAGACGGAAACCGTAGCTGCCCTGGTAGGTTTTCTG	206
adenocarcinoma of the lung at age 18 and brain tumor (glioma) at	GGACAGCC <u>A</u> AGTCTGTG	207
the age of 27.	CACAGACT <u>T</u> GGCTGTCC	208
A CGG-to-TGG change at codon 282, resulting in the substitution of tryptophan for arginine, was found in a patient who developed	GGTAATCTACTGGGACGGAACAGCTTTGAGGTGCGTGTTTGT GCCTGTCCTGGGAGAGACCCGGCGCACAGAGGAAGAGAATCT CCGCAAGAAAGGGGAGCCTCACCACGAGCTGCCCCCAG	209
	CTGGGGGCAGCTCGTGGTGAGGCTCCCCTTTCTTGCGGAGA TTCTCTTCCTCTGTGCGCCGGTCTCCCCAGGACAGGCACAA ACACGCACCTCAAAGCTGTTCCGTCCCAGTAGATTACC	210
osteosarcoma at the age of 10 years.	GGAGAGAC <u>C</u> GGCGCACA	211
	TGTGCGCC <u>G</u> GTCTCTCC	212
In 5 of 6 anaplastic carcinomas of the thyroid and in an anaplastic carcinoma thyroid cell line ARO, a CGT-to-CAT mutation converted arginine-273 to histidine.	GCTTCTCTTTTCCTATCCTGAGTAGTGGTAATCTACTGGGACG GAACAGCTTTGAGGTGCGTGTTTGTGCCTGTCCTGGGAGAGA CCGGCGCACAGAGGAAGAATCTCCGCAAGAAAGG	213
	CCTTTCTTGCGGAGATTCTCTTCCTCTGTGCGCCGGTCTCTC CCAGGACAGGCACAAACA <u>C</u> GCACCTCAAAGCTGTTCCGTCCC AGTAGATTACCACTACTCAGGATAGGAAAAGAGAAGC	214
	TGAGGTGC <u>G</u> TGTTTGTG	215
	CACAAACA <u>C</u> GCACCTCA	216

SEQ ID Clinical Phenotype & **Correcting Oligos** NO: Mutation 217 TCCTAGCACTGCCCAACACACCCAGCTCCTCTCCCCAGCCAA A germline AGAAGAAACCACTGGATGGAGAATATTTCACCCTTCAGGTACT GGA-to-GTA mutation AAGTCTTGGGACCTCTTATCAAGTGGAAAGTTTCCA resulting in a change of TGGAAACTTTCCACTTGATAAGAGGTCCCAAGACTTAGTACCT 218 5 glycine-325 to valine GAAGGGTGAAATATTCTCCATCCAGTGGTTTCTTCTTTGGCTG was found in a patient GGGAGAGGAGCTGGTGTTGTTGGGCAGTGCTAGGA who had non-Hodgkin lymphoma diagnosed 219 ACTGGATGGAGAATATT at age 17 and colon carcinoma at age 26. 10 220 **AATATTCTCCATCCAGT** AATGGTTCACTGAAGACCCAGGTCCAGATGAAGCTCCCAGAA 221 ### ### CGC-CCC ų. TGCCAGAGGCTGCTCCCC<u>G</u>CGTGGCCCCTGCACCAGCAGCT Arg-72 to Pro M CCTACACCGGCGCCCCTGCACCAGCCCCCTCCTGGCC association with Lung cancer 222 GGCCAGGAGGGGCTGGTGCAGGGGCCGCCGGTGTAGGAG CTGCTGGTGCAGGGGCCACGCGGGGGGGGCAGCCTCTGGCATT CTGGGAGCTTCATCTGGACCTGGGTCTTCAGTGAACCATT 223 TGCTCCCC**G**CGTGGCCC 224 GGGCCACGCGGGGAGCA AAGCTCCCAGAATGCCAGAGGCTGCTCCCCGCGTGGCCCCT 225 CCG-CTG GCACCAGCAGCTCCTACACCGGCGGCCCCTGCACCAGCCCC Pro-82 to Leu CTCCTGGCCCCTGTCATCTTCTGTCCCTTCCCAGAAAAC Breast cancer GTTTTCTGGGAAGGGACAGAAGATGACAGGGGCCAGGAGGG 226 GGCTGGTGCAGGGGCCGCCGGTGTAGGAGCTGCTGGTGCA GGGGCCACGCGGGAGCAGCCTCTGGCATTCTGGGAGCTT 227 TCCTACACCGGCGGCCC 228 GGGCCGCC**G**GTGTAGGA 229 TTCAACTCTGTCTCCTTCCTTCCTACAGTACTCCCCTGCCC cCAA-TAA TCAACAAGATGTTTTGCCAACTGGCCAAGACCTGCCCTGTGC Gln-136 to Term AGCTGTGGGTTGATTCCACACCCCCGCCCGGCACCC 20 Li-Fraumeni syndrome 230 GGGTGCCGGGCGGGGGTGTGGAATCAACCCACAGCTGCACA GGGCAGGTCTTGGCCAGTTGGCAAAACATCTTGTTGAGGGCA GGGGAGTACTGTAGGAAGAGGAGGAGACAGAGTTGAA 231 TGTTTTGC**C**AACTGGCC 232 GGCCAGTT**G**GCAAAACA

ļ. Eij. M ٦... Ļ LJ PI. 15

Clinical Phenotype & Mutation	Correcting Oligos	SEQID NO:
TGC-TAC Cys-141 to Tyr Li-Fraumeni syndrome	TCCTCTTCCTACAGTACTCCCCTGCCCTCAACAAGATGTTTTG CCAACTGGCCAAGACCTGCCCTGTGCAGCTGTGGGTTGATTC CACACCCCCGCCCGGCACCCGCGTCCGCGCCATGGC	233
	GCCATGGCGCGGACGCGGGTGCCGGGGGGGGTGTGGAAT CAACCCACAGCTGCACAGGG <u>C</u> AGGTCTTGGCCAGTTGGCAA AACATCTTGTTGAGGGCAGGGGGAGTACTGTAGGAAGAGA	234
	CAAGACCT <u>G</u> CCCTGTGC	235
	GCACAGGG <u>C</u> AGGTCTTG	236
aCCC-TCC Pro-151 to Ser Li-Fraumeni syndrome	AACAAGATGTTTTGCCAACTGGCCAAGACCTGCCCTGTGCAG CTGTGGGTTGATTC C ACA <u>C</u> CCCCGCCCGGCACCCGCGTCCG CGCCATGGCCATCTACAAGCAGTCACAGCACATGACGG	237
	CCGTCATGTGCTGTGACTGCTTGTAGATGGCCATGGCGCGG ACGCGGGTGCCGGGCGGGGGGTGTGGAATCAACCCACAGCT GCACAGGGCAGGTCTTGGCCAGTTGGCAAAACATCTTGTT	238
	ATTCCACA <u>C</u> CCCCGCCC	239
	GGGCGGGG <u>G</u> TGTGGAAT	240
CCG-CTG Pro-152 to Leu Adrenocortical	AGATGTTTTGCCAACTGGCCAAGACCTGCCCTGTGCAGCTGT GGGTTGATTCCACACCCCCGCGCCCGCGCACCCGCGCCC ATGGCCATCTACAAGCAGTCACAGCACATGACGGAGGT	241
carcinoma	ACCTCCGTCATGTGCTGTGACTGCTTGTAGATGGCCATGGCG CGGACGCGGGTGCCGGGCGGGGGGTGTGGAATCAACCCACA GCTGCACAGGGCAGGTCTTGGCCAGTTGGCAAAACATCT	242
,	CACACCCC C GCCCGGCA	243
	TGCCGGGC <u>G</u> GGGGTGTG	244
GGC-GTC Gly-154 to Val Glioblastoma	TTTGCCAACTGGCCAAGACCTGCCCTGTGCAGCTGTGGGTTG ATTCCACACCCCCGCCCCG	245
	CTCACAACCTCCGTCATGTGCTGTGACTGCTTGTAGATGGCC ATGGCGCGGACGCGGGTGCCCGGGCGGGGTGTGGAATCAA CCCACAGCTGCACAGGGCAGGTCTTGGCCAGTTGGCAAA	246
	CCCGCCCG G CACCCGCG	247
	CGCGGGTG <u>C</u> CGGGCGGG	248
CGC-UAC Arg-175 to His Li-Fraumeni syndrome	CCCGCGTCCGCGCCATGGCCATCTACAAGCAGTCACAGCAC ATGACGGAGGTTGTGAGGCGCTGCCCCCACCATGAGCGCTG CTCAGATAGCGATGGTGAGCAGCTGGGGCTGGAGAGACG	249

Clinical Phenotype & Mutation	Correcting Oligos	SEQ ID NO:
	CGTCTCTCCAGCCCCAGCTGCTCACCATCGCTATCTGAGCAG CGCTCATGGTGGGGGCAG <u>C</u> GCCTCACAACCTCCGTCATGTG CTGTGACTGCTTGTAGATGGCCATGGCGCGGACGCGGG	250
	TGTGAGGC <u>G</u> CTGCCCCC	251
	GGGGCAG <u>C</u> GCCTCACA	252
tGAG-AAG Glu-180 to Lys Li-Fraumeni syndrome	ATGGCCATCTACAAGCAGTCACAGCACATGACGGAGGTTGTG AGGCGCTGCCCCCACCAT <u>G</u> AGCGCTGCTCAGATAGCGATGG TGAGCAGCTGGGGCTGGAGAGACGACAGGGCTGGTTGC	253
	GCAACCAGCCCTGTCGTCTCTCCAGCCCCAGCTGCTCACCAT CGCTATCTGAGCAGCGCTCACA ACCTCCGTCATGTGCTGTGACTGCTTGTAGATGGCCAT	254
	CCCACCAT <u>G</u> AGCGCTGC	255
	GCAGCGCT <u>C</u> ATGGTGGG	256
gCGC-TGC Arg-181 to Cys Breast cancer	GCCATCTACAAGCAGTCACAGCACATGACGGAGGTTGTGAGG CGCTGCCCCACCATGAG <u>C</u> GCTGCTCAGATAGCGATGGTGA GCAGCTGGGGCTGGAGAGACGACAGGGCTGGTTGCCCA	257
	TGGGCAACCAGCCCTGTCGTCTCTCCAGCCCCAGCTGCTCA CCATCGCTATCTGAGCAGCGCTCATGGTGGGGGGCAGCGCCT CACAACCTCCGTCATGTGCTGTGACTGCTTGTAGATGGC	258
	ACCATGAG <u>C</u> GCTGCTCA	259
	TGAGCAGC <u>G</u> CTCATGGT	260
CGC-CAC Arg-81 to His Breast cancer	CCATCTACAAGCAGTCACAGCACATGACGGAGGTTGTGAGGC GCTGCCCCACCATGAGC <u>G</u> CTGCTCAGATAGCGATGGTGAG CAGCTGGGGCTGGAGAGACGACAGGGCTGGTTGCCCAG	261
	CTGGGCAACCAGCCCTGTCGTCTCTCCAGCCCCAGCTGCTC ACCATCGCTATCTGAGCAGCGCCCTCATGGTGGGGGCAGCGCC TCACAACCTCCGTCATGTGCTGTGACTGCTTGTAGATGG	262
	CCATGAGC <u>G</u> CTGCTCAG	263
	CTGAGCAG <u>C</u> GCTCATGG	264
CAT-CGT His-193 to Arg Li-Fraumeni syndrome	CCAGGGTCCCCAGGCCTCTGATTCCTCACTGATTGCTCTTAG GTCTGGCCCCTCCTCAGCATCTTATCCGAGTGGAAGGAAATT TGCGTGTGGAGTATTTGGATGACAGAAACACTTTTCG	265
	CGAAAAGTGTTTCTGTCATCCAAATACTCCACACGCAAATTTC CTTCCACTCGGATAAGATGCTGAGGAGGGGCCAGACCTAAGA GCAATCAGTGAGGAATCAGAGGCCTGGGGACCCTGG	266

Clinical Phenotype & Mutation	Correcting Oligos	SEQ ID NO:
	TCCTCAGC <u>A</u> TCTTATCC	267
	GGATAAGA <u>T</u> GCTGAGGA	268
cCGA-TGA Arg-196 to Term Adrenocortical	CCCAGGCCTCTGATTCCTCACTGATTGCTCTTAGGTCTGGCC CCTCCTCAGCATCTTATCCGAGTGGAAGGAAATTTGCGTGTG GAGTATTTGGATGACAGAAACACTTTTCGACATAGTG	269
carcinoma	CACTATGTCGAAAAGTGTTTCTGTCATCCAAATACTCCACACG CAAATTTCCTTCCACTC <u>G</u> GATAAGATGCTGAGGAGGGGCCAG ACCTAAGAGCAATCAGTGAGGAATCAGAGGCCTGGG	270
	ATCTTATC C GAGTGGAA	271
	TTCCACTC G GATAAGAT	272
cAGA-TGA Arg-209 to Term Li-Fraumeni syndrome	GCCCCTCCTCAGCATCTTATCCGAGTGGAAGGAAATTTGCGT GTGGAGTATTTGGATGAC <u>A</u> GAAACACTTTTCGACATAGTGTG GTGGTGCCCTATGAGCCGCCTGAGGTCTGGTTTGCAA	273
	TTGCAAACCAGACCTCAGGCGGCTCATAGGGCACCACCACA CTATGTCGAAAAGTGTTTC <u>T</u> GTCATCCAAATACTCCACACGCA AATTTCCTTCCACTCGGATAAGATGCTGAGGAGGGGC	274
	TGGATGAC <u>A</u> GAAACACT	275
	AGTGTTTC <u>T</u> GTCATCCA	276
tCGA-TGA Arg-213 to Term Li-Fraumeni syndrome	CATCTTATCCGAGTGGAAGGAAATTTGCGTGTGGAGTATTTG GATGACAGAAACACTTTT <u>C</u> GACATAGTGTGGTGGTGCCCTAT GAGCCGCCTGAGGTCTGGTTTGCAACTGGGGTCTCTG	277
	CAGAGACCCCAGTTGCAAACCAGACCTCAGGCGGCTCATAG GGCACCACCACACTATGTCGAAAAGTGTTTCTGTCATCCAAAT ACTCCACACGCAAATTTCCTTCCACTCGGATAAGATG	278
	ACACTTTT C GACATAGT	279
	ACTATGTC G AAAAGTGT	280
gCCC-TCC Pro-219 to Ser Adrenocortical carcinoma	GGAAATTTGCGTGTGGAGTATTTGGATGACAGAAACACTTTTC GACATAGTGTGGTGGTGCCCTATGAGCCGCCTGAGGTCTGG TTTGCAACTGGGGTCTCTGGGAGGAGGGGTTAAGGGT	281
	ACCCTTAACCCCTCCCCAGAGACCCCAGTTGCAAACCAGA CCTCAGGCGGCTCATAGGGCACCACCACCACTATGTCGAAAAG TGTTTCTGTCATCCAAATACTCCACACGCAAATTTCC	282
	TGGTGGTG <u>C</u> CCTATGAG	283
	CTCATAGG <u>G</u> CACCACCA	284

Clinical Phenotype & Mutation	Correcting Oligos	SEQ ID NO:
TAT-TGT Tyr-220 to Cys Li-Fraumeni syndrome	ATTTGCGTGTGGAGTATTTGGATGACAGAAACACTTTTCGACA TAGTGTGGTGCCCCT <u>A</u> TGAGCCGCCTGAGGTCTGGTTTG CAACTGGGGTCTCTGGGAGGAGGGGGTTAAGGGTGGTT	285
	AACCACCCTTAACCCCTCCTCCCAGAGACCCCAGTTGCAAAC CAGACCTCAGGCGGCTCA <u>T</u> AGGGCACCACCACACTATGTCG AAAAGTGTTTCTGTCATCCAAATACTCCACACGCAAAT	286
	GGTGCCCT <u>A</u> TGAGCCGC	287
	GCGGCTCA <u>T</u> AGGGCACC	288
cTCT-ACT Ser-227 to Thr Rhabdomyosarcoma	CACAGGTCTCCCCAAGGCGCACTGGCCTCATCTTGGGCCTG TGTTATCTCCTAGGTTGGCTCTGACTGTACCACCATCCACTAC AACTACATGTGTAACAGTTCCTGCATGGGCGGCATGA	289
	TCATGCCGCCCATGCAGGAACTGTTACACATGTAGTTGTAGT GGATGGTGGTACAGTCAGAGCCAACCTAGGAGATAACACAG GCCCAAGATGAGGCCAGTGCGCCTTGGGGAGACCTGTG	290
	AGGTTGGC <u>T</u> CTGACTGT	291
	ACAGTCAG <u>A</u> GCCAACCT	292
cCAC-AAC His-233 to Asn Glioma	GCACTGGCCTCATCTTGGGCCTGTGTTATCTCCTAGGTTGGC TCTGACTGTACCACCATCCACTACAACTACATGTGTAACAGTT CCTGCATGGGCGGCATGAACCGGAGGCCCATCCTCA	293
	TGAGGATGGGCCTCCGGTTCATGCCGCCCATGCAGGAACTG TTACACATGTAGTTGTAGTGGATGGTGGTACAGTCAGAGCCA ACCTAGGAGATAACACAGGCCCCAAGATGAGGCCAGTGC	294
	CCACCATC <u>C</u> ACTACAAC	295
	GTTGTAGT G GATGGTGG	296
cAAC-GAC Asn-235 to Asp Adrenocortical	GCCTCATCTTGGGCCTGTGTTATCTCCTAGGTTGGCTCTGAC TGTACCACCATCCACTACAACTACATGTGTAACAGTTCCTGCA TGGGCGGCATGAACCGGAGGCCCATCCTCACCATCA	297
carcinoma	TGATGGTGAGGATGGGCCTCCGGTTCATGCCGCCCATGCAG GAACTGTTACACATGTAGTTGTAGTGGATGGTGGTACAGTCA GAGCCAACCTAGGAGATAACACAGGCCCAAGATGAGGC	298
	TCCACTAC <u>A</u> ACTACATG	299
	CATGTAGT <u>T</u> GTAGTGGA	300
AAC-AGC Asn-235 to Ser Rhabdomyosarcoma	CCTCATCTTGGGCCTGTGTTATCTCCTAGGTTGGCTCTGACT GTACCACCATCCACTACAACTGTGTAACAGTTCCTGCAT GGGCGGCATGAACCGGAGGCCCATCCTCACCATCAT	301

Clinical Phenotype & Mutation	Correcting Oligos	SEQ ID NO:
	ATGATGGTGAGGATGGGCCTCCGGTTCATGCCGCCCATGCA GGAACTGTTACACATGTAGTTGTAGTGGATGGTGGTACAGTC AGAGCCAACCTAGGAGATAACACAGGCCCAAGATGAGG	302
	CCACTACA <u>A</u> CTACATGT	303
	ACATGTAG <u>T</u> TGTAGTGG	304
ATCc-ATG Ile-251 to Met Glioma	CATCCACTACAACTACATGTGTAACAGTTCCTGCATGGGCGG CATGAACCGGAGGCCCAT <u>C</u> CTCACCATCATCACACTGGAAGA CTCCAGGTCAGGAGCCACTTGCCACCCTGCACACTGG	305
	CCAGTGTGCAGGGTGGCAAGTGGCTCCTGACCTGGAGTCTT CCAGTGTGATGATGGTGAGGATGGCCG CCCATGCAGGAACTGTTACACATGTAGTTGTAGTGGATG	306
	AGGCCCAT <u>C</u> CTCACCAT	307
	ATGGTGAG <u>G</u> ATGGGCCT	308
ACA-ATA Thr-256 to Ile Glioblastoma	ACATGTGTAACAGTTCCTGCATGGGCGGCATGAACCGGAGG CCCATCCTCACCATCATCACACTGGAAGACTCCAGGTCAGGA GCCACTTGCCACCCTGCACACTGGCCTGTGCCCCA	309
	TGGGGCACAGCAGGCCAGTGTGCAGGGTGGCAAGTGGCTCC TGACCTGGAGTCTTCCAGTGTGATGATGGTGAGGATGGGCCT CCGGTTCATGCCGCCCATGCAGGAACTGTTACACATGT	310
	CATCATCA C ACTGGAAG	311
	CTTCCAGT G TGATGATG	312
CTG-CAG Leu-257 to Gln Li-Fraumeni syndrome	TGTGTAACAGTTCCTGCATGGGCGGCATGAACCGGAGGCCC ATCCTCACCATCATCACACTGGAAGACTCCAGGTCAGGAGCC ACTTGCCACCCTGCACACTGGCCTGCTGTGCCCCAGCC	313
	GGCTGGGGCACAGCAGGCCAGTGTGCAGGGTGGCAAGTGG CTCCTGACCTGGAGTCTTCCAGTGTGATGATGGTGAGGATGG GCCTCCGGTTCATGCCGCCCATGCAGGAACTGTTACACA	314
	CATCACAC <u>T</u> GGAAGACT	315
	AGTCTTCC A GTGTGATG	316
CTG-CCG Leu-265 to Pro Li-Fraumeni syndrome	GACCTGATTTCCTTACTGCCTCTTGCTTCTCTTTTCCTATCCT GAGTAGTGGTAATCTACTGGGACGGAACAGCTTTGAGGTGCG TGTTTGTGCCTGTCCTGGGAGAGACCGGCGCACAGA	317
	TCTGTGCGCCGGTCTCTCCCAGGACAGGCACAAACACGCAC CTCAAAGCTGTTCCGTCCCAGTAGATTACCACTACTCAGGAT AGGAAAAGAGAAGCAAGAGGCAGTAAGGAAATCAGGTC	318

Clinical Phenotype & . Mutation	Correcting Oligos	SEQ ID NO:
	TAATCTAC <u>T</u> GGGACGGA	319
	TCCGTCCC <u>A</u> GTAGATTA	320
gCGT-TGT Arg-273 to Cys Li-Fraumeni syndrome	TGCTTCTCTTTTCCTATCCTGAGTAGTGGTAATCTACTGGGAC GGAACAGCTTTGAGGTGCGTGTTTGTGCCTGTCCTGGGAGA GACCGGCGCACAGAGGAAGAGAATCTCCGCAAGAAAG	321
	CTTTCTTGCGGAGATTCTCTTCCTCTGTGCGCCGGTCTCTCC CAGGACAGGCACAAACAC <u>G</u> CACCTCAAAGCTGTTCCGTCCCA GTAGATTACCACTACTCAGGATAGGAAAAGAGAAGCA	322
	TTGAGGTG <u>C</u> GTGTTTGT	323
	ACAAACAC <u>G</u> CACCTCAA	324
TGT-TAT Cys-275 to Tyr Li-Fraumeni syndrome	CTTTTCCTATCCTGAGTAGTGGTAATCTACTGGGACGGAACA GCTTTGAGGTGCGTGTTTGTGCCTGTCCTGGGAGAGACCGG CGCACAGAGGAAGAAGAAAGGGGAGCC	325
	GGCTCCCCTTTCTTGCGGAGATTCTCTTCCTCTGTGCGCCGG TCTCTCCCAGGACAGGCACACACGCACCTCAAAGCTGTTC CGTCCCAGTAGATTACCACTACTCAGGATAGGAAAAG	326
	GCGTGTTT <u>G</u> TGCCTGTC	327
	GACAGGCA <u>C</u> AAACACGC	328
CCT-CTT Pro-278 to Leu Breast cancer	TCCTGAGTAGTGGTAATCTACTGGGACGGAACAGCTTTGAGG TGCGTGTTTGTGCCTGTCCTGGGAGAGACCGGCGCACAGAG GAAGAGAATCTCCGCAAGAAAGGGGAGCCTCACCACGA	329
	TCGTGGTGAGGCTCCCCTTTCTTGCGGAGATTCTCTTCCTCT GTGCGCCGGTCTCTCCCAGGACAGGCACAAACACGCACCTC AAAGCTGTTCCGTCCCAGTAGATTACCACTACTCAGGA	330
	TGCCTGTC <u>C</u> TGGGAGAG	331
	CTCTCCCA G GACAGGCA	332
AGA-AAA Arg-280 to Lys Glioma	GTAGTGGTAATCTACTGGGACGGAACAGCTTTGAGGTGCGTG TTTGTGCCTGTCCTGGGAGAGACCGGCGCACAGAGGAAGAG AATCTCCGCAAGAAAGGGGAGCCTCACCACGAGCTGCC	333
	GGCAGCTCGTGGTGAGGCTCCCCTTTCTTGCGGAGATTCTCT TCCTCTGTGCGCCGGTCTCCCCAGGACAGGCACAAACACG CACCTCAAAGCTGTTCCGTCCCAGTAGATTACCACTAC	334
	TCCTGGGA <u>G</u> AGACCGGC	`335
	GCCGGTCT <u>C</u> TCCCAGGA	336

Clinical Phenotype & Mutation	Correcting Oligos	SEQ ID NO:
GAA-GCA Glu-286 to Ala Adrenocortical	GGAACAGCTTTGAGGTGCGTGTTTGTGCCTGTCCTGGGAGA GACCGGCGCACAGAGGGAAG <u>A</u> GAATCTCCGCAAGAAAGGGGA GCCTCACCACGAGCTGCCCCCAGGGAGCACTAAGCGAGG	337
carcinoma	CCTCGCTTAGTGCTCCCTGGGGGCAGCTCGTGGTGAGGCTC CCCTTTCTTGCGGAGATTCTCTTCCTCTGTGCGCCGGTCTCT CCCAGGACAGGCACAAACACGCACCTCAAAGCTGTTCC	338
	AGAGGAAG <u>A</u> GAATCTCC	339
	GGAGATTC <u>T</u> CTTCCTCT	340
CGA-CCA Arg-306 to Pro Rhabdomyosarcoma	AAGAGAATCTCCGCAAGAAAGGGGAGCCTCACCACGAGCTG CCCCCAGGGAGCACTAAGC G AGGTAAGCAAGCAAGA AGCGGTGGAGGAGACCAAGGGTGCAGTTATGCCTCAGAT	341
	ATCTGAGGCATAACTGCACCCTTGGTCTCCTCCACCGCTTCT TGTCCTGCTTGCTTACCTCGCGCTTAGTGCTCCCTGGGGGCAGC TCGTGGTGAGGCTCCCCTTTCTTGCGGAGATTCTCTT	342
	CACTAAGC G AGGTAAGC	343
	GCTTACCT C GCTTAGTG	344
gCGA-TGA Arg-306 to Term Li-Fraumeni syndrome	GAAGAGAATCTCCGCAAGAAAGGGGAGCCTCACCACGAGCT GCCCCCAGGGAGCACTAAGCGAGGTAAGCAAGCAGGACAAG AAGCGGTGGAGGAGACCAAGGGTGCAGTTATGCCTCAGA	345
	TCTGAGGCATAACTGCACCCTTGGTCTCCTCCACCGCTTCTT GTCCTGCTTGCTTACCTCGCTTAGTGCTCCCTGGGGGCAGCT CGTGGTGAGGCTCCCCTTTCTTGCGGAGATTCTCTTC	346
	GCACTAAG C GAGGTAAG	347
	CTTACCTC G CTTAGTGC	348
gCGC-TGC Arg-337 to Cys Osteosarcoma	GGTACTGTGAATATACTTACTTCTCCCCCTCCTCTGTTGCTGC AGATCCGTGGGCGTGAGCCGCTCGAGATGTTCCGAGAGCTG AATGAGGCCTTGGAACTCAAGGATGCCCAGGCTGGGA	349
	TCCCAGCCTGGGCATCCTTGAGTTCCAAGGCCTCATTCAGCT CTCGGAACATCTCGAAGCGCTCACGCCCACGGATCTGCAGC AACAGAGGAGGGGGAGAAGTAAGTATATTCACAGTACC	350
	GGCGTGAG <u>C</u> GCTTCGAG	351
	CTCGAAGC <u>G</u> CTCACGCC	352
CTG-CCG Leu-344 to Pro Li-Fraumeni syndrome	CTCCCCCTCTGTTGCTGCAGATCCGTGGGCGTGAGCGC TTCGAGATGTTCCGAGAGC <u>T</u> GAATGAGGCCTTGGAACTCAAG GATGCCCAGGCTGGGAAGGAGCCAGGGGGAGCAGGGC	353

EXAMPLE 6 beta globin

Hemoglobin, the major protein in the red blood cell, binds oxygen reversibly and is responsible for the cells' capacity to transport oxygen to the tissues. In adults, the major hemoglobin is hemoglobin A, a tetrameric protein consisting of two identical alpha globin chains and two beta globin chains. Disorders involving hemoglobin are among the most common genetic disorders worldwide, with approximately 5% of the world's population being carriers for clinically important hemoglobin mutations. Approximately 300,000 severely affected homozygotes or compound heterozygotes are born each year.

Mutation of the glutamic acid at position 7 in beta globin to valine causes sickle cell anemia, the clinical manifestations of which are well known. Mutations that cause absence of beta chain cause beta-zero-thalassemia. Reduced amounts of detectable beta globin causes beta-plus-thalassemia. For clinical purposes, beta-thalassemia is divided into thalassemia major (transfusion dependent), thalassemia intermedia (of intermediate severity), and thalassemia minor (asymptomatic). Patients with thalassemia major present in the first year of life with severe anemia; they are unable to maintain a hemoglobin level about 5 gm/dl.

The beta-thalassemias were among the first human genetic diseases to be examined by means of recombinant DNA analysis. Baysal et al., *Hemoglobin* 19(3-4):213-36 (1995) and others provide a compendium of mutations that result in beta-thalassemia.

Hemoglobin disorders were among the first to be considered for gene therapy.

Transcriptional silencing of genes transferred into hematopoietic stem cells, however, poses one of the most significant challenges to its success. If the transferred gene is not completely silenced, a progressive decline in gene expression is often observed. Position effect variegation (PEV) and silencing mechanisms may act on a transferred globin gene residing in chromatin outside of the normal globin locus during the important terminal phases of erythroblast development when globin transcripts normally

15

accumulate rapidly despite heterochromatization and shutdown of the rest of the genome. The attached table discloses the correcting oligonucleotide base sequences for the beta globin oligonucleotides of the invention.

Table 12
Beta Globin Mutations and Genome-Correcting Oligos

Clinical Phenotype & Mutation	Correcting Oligos	SEQ ID NO:
Sickle Cell Anemia GLU-7-VAL GAG to GTG	TCTGACACAACTGTGTTCACTAGCAACCTCAAACAGACACCA TGGTGCACCTGACTCCTGAGGAGAAGTCTGCCGTTACTGCC CTGTGGGGCAAGGTGAACGTGGATGAAGTTGGTGGTGA	357
	TCACCACCAACTTCATCCACGTTCACCTTGCCCCACAGGGCA GTAACGGCAGACTTCTCCTCAGGAGTCAGGTGCACCATGGT GTCTGTTTGAGGTTGCTAGTGAACACAGTTGTGTCAGA	358
	GACTCCTG <u>A</u> GGAGAAGT	359
	ACTTCTCC <u>T</u> CAGGAGTC	360
Thalassaemia Beta MET-0-ARG ATG to AGG	CTATTGCTTACATTTGCTTCTGACACAACTGTGTTCACTAGCA ACCTCAAACAGACACCA <u>T</u> GGTGCACCTGACTCCTGAGGAGA AGTCTGCCGTTACTGCCCTGTGGGGCAAGGTGAACGT	361
	ACGTTCACCTTGCCCCACAGGGCAGTAACGGCAGACTTCTC CTCAGGAGTCAGGTGCACCATGGTGTCTGTTTGAGGTTGCT AGTGAACACAGTTGTGTCAGAAGCAAATGTAAGCAATAG	362
	AGACACCA <u>T</u> GGTGCACC	363
	GGTGCACC <u>A</u> TGGTGTCT	364
Thalassaemia Beta MET-0-ILE ATG to ATA	TATTGCTTACATTTGCTTCTGACACAACTGTGTTCACTAGCAA CCTCAAACAGACACCATGGTGCACCTGACTCCTGAGGAGAA GTCTGCCGTTACTGCCCTGTGGGGCAAGGTGAACGTG	365
	CACGTTCACCTTGCCCCACAGGGCAGTAACGGCAGACTTCT CCTCAGGAGTCAGGTGCAC <u>C</u> ATGGTGTCTGTTTGAGGTTGC TAGTGAACACAGTTGTGTCAGAAGCAAATGTAAGCAATA	366
	GACACCAT <u>G</u> GTGCACCT	367
	AGGTGCAC <u>C</u> ATGGTGTC	368
Thalassaemia Beta MET-0-ILE ATG to ATT	TATTGCTTACATTTGCTTCTGACACAACTGTGTTCACTAGCAA CCTCAAACAGACACCATGGTGCACCTGACTCCTGAGGACAA GTCTGCCGTTACTGCCCTGTGGGGCAAGGTGAACGTG	369

Clinical Phenotype & Mutation	Correcting Oligos	SEQ ID NO:
	CACGTTCACCTTGCCCCACAGGGCAGTAACGGCAGACTTCT CCTCAGGAGTCAGGTGCAC <u>C</u> ATGGTGTCTGTTTGAGGTTGC TAGTGAACACAGTTGTGTCAGAAGCAAATGTAAGCAATA	370
	GACACCAT <u>G</u> GTGCACCT	371
	AGGTGCAC <u>C</u> ATGGTGTC	372
Thalassaemia Beta MET-0-LYS ATG to AAG	CTATTGCTTACATTTGCTTCTGACACAACTGTGTTCACTAGCA ACCTCAAACAGACACCATGGTGCACCTGACTCCTGAGGAGA AGTCTGCCGTTACTGCCCTGTGGGGCAAGGTGAACGT	373
	ACGTTCACCTTGCCCCACAGGGCAGTAACGGCAGACTTCTC CTCAGGAGTCAGGTGCACCATGGTGTCTGTTTGAGGTTGCT AGTGAACACAGTTGTGTCAGAAGCAAATGTAAGCAATAG	374
	AGACACCA <u>T</u> GGTGCACC	375
	GGTGCACC <u>A</u> TGGTGTCT	376
Thalassaemia Beta MET-0-THR ATG to ACG	CTATTGCTTACATTTGCTTCTGACACAACTGTGTTCACTAGCA ACCTCAAACAGACACCA <u>T</u> GGTGCACCTGACTCCTGAGGAGA AGTCTGCCGTTACTGCCCTGTGGGGCAAGGTGAACGT	377
	ACGTTCACCTTGCCCCACAGGGCAGTAACGGCAGACTTCTC CTCAGGAGTCAGGTGCACCATGGTGTCTGTTTGAGGTTGCT AGTGAACACAGTTGTGTCAGAAGCAAATGTAAGCAATAG	378
	AGACACCA <u>T</u> GGTGCACC	379
	GGTGCACC <u>A</u> TGGTGTCT	380
Thalassaemia Beta MET-0-VAL ATG to GTG	TCTATTGCTTACATTTGCTTCTGACACAACTGTGTTCACTAGC AACCTCAAACAGACACCATGGTGCACCTGACTCCTGAGGAG AAGTCTGCCGTTACTGCCCTGTGGGGCAAGGTGAACG	381
	CGTTCACCTTGCCCCACAGGGCAGTAACGGCAGACTTCTCC TCAGGAGTCAGGTGCACCATGGTGTCTGTTTGAGGTTGCTAG TGAACACAGTTGTGTCAGAAGCAAATGTAAGCAATAGA	382
	CAGACACC <u>A</u> TGGTGCAC	383
	GTGCACCA <u>T</u> GGTGTCTG	384
Thalassaemia Beta TRP-16-Term TGG to TGA	TCAAACAGACACCATGGTGCACCTGACTCCTGAGGAGAAGT CTGCCGTTACTGCCCTGTGGGGCAAGGTGAACGTGGATGAA GTTGGTGGTGAGGCCCTGGGCAGGTTGGTATCAAGGTTA	385
	TAACCTTGATACCAACCTGCCCAGGGCCTCACCACCAACTTC ATCCACGTTCACCTTGCCCCCACAGGGCAGTAACGGCAGACT TCTCCTCAGGAGTCAGGTGCACCATGGTGTCTGTTTGA	386

Clinical Phenotype & Mutation	Correcting Oligos	SEQ ID NO:
	GCCCTGTG <u>G</u> GGCAAGGT	387
	ACCTTGCC <u>C</u> CACAGGGC	388
Thalassaemia Beta TRP-16-Term TGG to TAG	CTCAAACAGACACCATGGTGCACCTGACTCCTGAGGAGAAG TCTGCCGTTACTGCCCTGTGGGGCAAGGTGAACGTGGATGA AGTTGGTGGTGAGGCCCTGGGCAGGTTGGTATCAAGGTT	389
	AACCTTGATACCAACCTGCCCAGGGCCTCACCACCAACTTCA TCCACGTTCACCTTGCCCCACAGGGCAGTAACGGCAGACTT CTCCTCAGGAGTCAGGTGCACCATGGTGTCTGTTTGAG	390
	TGCCCTGT <u>G</u> GGGCAAGG	391
	CCTTGCCC <u>C</u> ACAGGGCA	392
Thalassaemia Beta LYS-18-Term AAG to TAG	ACAGACACCATGGTGCACCTGACTCCTGAGGAGAAGTCTGCCGTTACTGCCCTGTGGGGCAAGGTGAACGTGGATGAAGTTGGTGGTGAGGCCCTGGGCAGGTTGGTATCAAGGTTACAAG	393
	CTTGTAACCTTGATACCAACCTGCCCAGGGCCTCACCACAA CTTCATCCACGTTCACCT <u>T</u> GCCCCACAGGGCAGTAACGGCA GACTTCTCCTCAGGAGTCAGGTGCACCATGGTGTCTGT	394
	TGTGGGGC <u>A</u> AGGTGAAC	395
	GTTCACCT <u>T</u> GCCCCACA	396
Thalassaemia Beta ASN-20-SER AAC to AGC	CCATGGTGCACCTGACTCCTGAGGAGAAGTCTGCCGTTACT GCCCTGTGGGGCAAGGTGAACGTGGATGAAGTTGGTGGTGA GGCCCTGGGCAGGTTGGTATCAAGGTTACAAGACAGGTT	397
	AACCTGTCTTGTAACCTTGATACCAACCTGCCCAGGGCCTCA CCACCAACTTCATCCACGTTCACCTTGCCCCACAGGGCAGTA ACGGCAGACTTCTCCTCAGGAGTCAGGTGCACCATGG	398
	CAAGGTGA <u>A</u> CGTGGATG	399
	CATCCACGTTCACCTTG	400
Thalassaemia Beta GLU-23-ALA GAA to GCA	ACCTGACTCCTGAGGAGAAGTCTGCCGTTACTGCCCTGTGG GGCAAGGTGAACGTGGATGAAGTTGGTGGTGAGGCCCTGG GCAGGTTGGTATCAAGGTTACAAGACAGGTTTAAGGAGAC	401
	GTCTCCTTAAACCTGTCTTGTAACCTTGATACCAACCTGCCC AGGGCCTCACCACCAACTTCATCCACGTTCACCTTGCCCCAC AGGGCAGTAACGGCAGACTTCTCCTCAGGAGTCAGGT	402
	CGTGGATG <u>A</u> AGTTGGTG	403
	CACCAACT <u>T</u> CATCCACG	404

Clinical Phenotype & Mutation	Correcting Oligos	SEQ ID NO:
Thalassaemia Beta GLU-23-term GAA to TAA	CACCTGACTCCTGAGGAGAAGTCTGCCGTTACTGCCCTGTG GGGCAAGGTGAACGTGGAT <u>G</u> AAGTTGGTGGTGAGGCCCTG GGCAGGTTGGTATCAAGGTTACAAGACAGGTTTAAGGAGA	405
	TCTCCTTAAACCTGTCTTGTAACCTTGATACCAACCTGCCCA GGGCCTCACCACCAACTT <u>C</u> ATCCACGTTCACCTTGCCCCACA GGGCAGTAACGGCAGACTTCTCCTCAGGAGTCAGGTG	406
	ACGTGGAT <u>G</u> AAGTTGGT	407
	ACCAACTT <u>C</u> ATCCACGT	408
Thalassaemia Beta GLU-27-LYS GAG to AAG	GAGGAGAAGACTGCTGTCAATGCCCTGTGGGGCAAAGTGAA CGTGGATGCAGTTGGTGGT <u>G</u> AGGCCCTGGGCAGGTTGGTAT CAAGGTTATAAGAGAGGCTCAAGGAGGCAAATGGAAACT	409
	AGTTTCCATTTGCCTCCTTGAGCCTCTCTTATAACCTTGATAC CAACCTGCCCAGGGCCTCACCAACTGCATCCACGTTCACTTTGCCCCACAGGGCATTGACAGCAGTCTTCTCCTC	410
	TTGGTGGT <u>G</u> AGGCCCTG	411
	CAGGGCCT <u>C</u> ACCACCAA	412
Thalassaemia Beta GLU-27-Term GAG to TAG	GAGGAGAAGACTGCTGTCAATGCCCTGTGGGGCAAAGTGAA CGTGGATGCAGTTGGTGGTGAGGCCCTGGGCAGGTTGGTAT CAAGGTTATAAGAGAGGCTCAAGGAGGCAAATGGAAACT	413
	AGTTTCCATTTGCCTCCTTGAGCCTCTCTTATAACCTTGATAC CAACCTGCCCAGGGCCTCACCACCAACTGCATCCACGTTCA CTTTGCCCCACAGGGCATTGACAGCAGTCTTCTCCTC	414
	TTGGTGGT <u>G</u> AGGCCCTG	415
	CAGGGCCT <u>C</u> ACCACCAA	416
Thalassaemia Beta ALA-28-SER GCC to TCC	GAGAAGACTGCTGTCAATGCCCTGTGGGGCAAAGTGAACGT GGATGCAGTTGGTGGTGAGGCCCTGGGCAGGTTGGTATCAA GGTTATAAGAGAGGCTCAAGGAGGCAAATGGAAACTGGG	417
	CCCAGTTTCCATTTGCCTCCTTGAGCCTCTCTTATAACCTTGA TACCAACCTGCCCAGGGCCTCACCACCAACTGCATCCACGT TCACTTTGCCCCACAGGGCATTGACAGCAGTCTTCTC	418
	GTGGTGAG <u>G</u> CCCTGGGC	419
	GCCCAGGG <u>C</u> CTCACCAC	420

Clinical Phenotype & Mutation	Correcting Oligos	SEQ ID NO:
Thalassaemia Beta ARG-31-THR AGG to ACG	CTGTCAATGCCCTGTGGGGCAAAGTGAACGTGGATGCAGTT GGTGGTGAGGCCCTGGGCA <u>G</u> GTTGGTATCAAGGTTATAAGA GAGGCTCAAGGAGGCAAATGGAAACTGGGCATGTGTAGA	421
	TCTACACATGCCCAGTTTCCATTTGCCTCCTTGAGCCTCTCTT ATAACCTTGATACCAACCTGCCCAGGGCCTCACCACCAACTG CATCCACGTTCACTTTGCCCCACAGGGCATTGACAG	422
	CCTGGGCA <u>G</u> GTTGGTAT	423
	ATACCAAC <u>C</u> TGCCCAGG	424
Thalassaemia Beta Leu-33-GLN CTG to CAG	TGGGTTTCTGATAGGCACTGACTCTCTGTCCCTTGGGCTGTT TTCCTACCCTCAGATTACTGGTGGTCTACCCTTGGACCCAGA GGTTCTTTGAGTCCTTTGGGGATCTGTCCTCTCA	425
	TCAGGAGAGGACAGATCCCCAAAGGACTCAAAGAACCTCTG GGTCCAAGGGTAGACCACCAGTAATCTGAGGGTAGGAAAAC AGCCCAAGGGACAGAGAGTCAGTGCCTATCAGAAACCCA	426
	CAGATTAC <u>T</u> GGTGGTCT	427
	AGACCACC <u>A</u> GTAATCTG	428
Thalassaemia Beta TYR-36-Term TAC to TAA	ATAGGCACTGACTCTCTGTCCCTTGGGCTGTTTTCCTACCCT CAGATTACTGGTGGTCTACCCTTGGACCCAGAGGTTCTTTGA GTCCTTTGGGGATCTGTCCTCTCCTGATGCTGTTATG	429
	CATAACAGCATCAGGAGAGGACAGATCCCCAAAGGACTCAAA GAACCTCTGGGTCCAAGGGTAGACCACCAGTAATCTGAGGG TAGGAAAACAGCCCAAGGGACAGAGAGTCAGTGCCTAT	430
	GTGGTCTA <u>C</u> CCTTGGAC	431
	GTCCAAGG <u>G</u> TAGACCAC	432
Thalassaemia Beta TRP-38-Term TGG to TGA	ACTGACTCTCTGTCCCTTGGGCTGTTTTCCTACCCTCAGATT ACTGGTGGTCTACCCTTGGACCCAGAGGTTCTTTGAGTCCTT TGGGGGATCTGTCCTCCTGATGCTGTTATGGGCAAC	433
	GTTGCCCATAACAGCATCAGGAGAGGACAGATCCCCAAAGG ACTCAAAGAACCTCTGGGT <u>C</u> CAAGGGTAGACCACCAGTAATC TGAGGGTAGGAAAACAGCCCAAGGGACAGAGAGTCAGT	434
	TACCCTTG <u>G</u> ACCCAGAG	435
	CTCTGGGT <u>C</u> CAAGGGTA	436
Thalassaemia Beta TRP-38-Term TGG to TAG	CACTGACTCTCTGTCCCTTGGGCTGTTTTCCTACCCTCAGAT TACTGGTGGTCTACCCTTGGACCCAGAGGTTCTTTGAGTCCT TTGGGGATCTGTCCTCCTGATGCTGTTATGGGCAA	437

Clinical Phenotype & Mutation	Correcting Oligos	SEQ ID NO:
-	TTGCCCATAACAGCATCAGGAGAGGACAGATCCCCAAAGGA CTCAAAGAACCTCTGGGTCCAAGGGTAGACCACCAGTAATCT GAGGGTAGGAAAACAGCCCAAGGGACAGAGAGTCAGTG	438
	CTACCCTT G GACCCAGA	439
	TCTGGGTC <u>C</u> AAGGGTAG	440
Thalassaemia Beta GLN-40-Term CAG-TAG	ACTCTCTGTCCCTTGGGCTGTTTTCCTACCCTCAGATTACTG GTGGTCTACCCTTGGACC <u>C</u> AGAGGTTCTTTGAGTCCTTTGGG GATCTGTCCTCCTGATGCTGTTATGGGCAACCCTA	441
	TAGGGTTGCCCATAACAGCATCAGGAGAGGACAGATCCCCA AAGGACTCAAAGAACCTCTGGGTCCAAGGGTAGACCACCAG TAATCTGAGGGTAGGAAAACAGCCCAAGGGACAGAGAGT	442
	CTTGGACC <u>C</u> AGAGGTTC	443
l	GAACCTCT G GGTCCAAG	444
Thalassaemia Beta GLU-44-Term GAG to TAG	TTGGGCTGTTTTCCTACCCTCAGATTACTGGTGGTCTACCCT TGGACCCAGAGGTTCTTT <u>G</u> AGTCCTTTGGGGATCTGTCCTCT CCTGATGCTGTTATGGGCAACCCTAAGGTGAAGGCTC	445
	GAGCCTTCACCTTAGGGTTGCCCATAACAGCATCAGGAGAG GACAGATCCCCAAAGGACTCAAAGAACCTCTGGGTCCAAGG GTAGACCACCAGTAATCTGAGGGTAGGAAAACAGCCCAA	446
	GGTTCTTT G AGTCCTTT	447
	AAAGGACT <u>C</u> AAAGAACC	448
Thalassaemia Beta LYS-62-Term AAG to TAG	TTCTTTGAGTCCTTTGGGGATCTGTCCTCTCCTGATGCTGTTA TGGGCAACCCTAAGGTGAAGGCTCATGGCAAGAAGGTGCTA GGTGCCTTTAGTGATGGCCTGGCTCACCTGGACAACC	449
	GGTTGTCCAGGTGAGCCAGGCCATCACTAAAGGCACCTAGC ACCTTCTTGCCATGAGCCT <u>T</u> CACCTTAGGGTTGCCCATAACA GCATCAGGAGAGGACAGATCCCCAAAGGACTCAAAGAA	450
	CTAAGGTG <u>A</u> AGGCTCAT	451
	ATGAGCCT <u>T</u> CACCTTAG	452
Thalassaemia Beta SER-73-ARG AGT to AGA	TGCTGTTATGGGCAACCCTAAGGTGAAGGCTCATGGCAAGA AGGTGCTAGGTGCCTTTAGTGATGGCCTGGCTCACCTGGAC AACCTCAAGGGCACTTTTTCTCAGCTGAGTGAGCTGCAC	453
	GTGCAGCTCACTCAGCTGAGAAAAAGTGCCCTTGAGGTTGTC CAGGTGAGCCAGGCCATCACTAAAGGCACCTAGCACCTTCT TGCCATGAGCCTTCACCTTAGGGTTGCCCATAACAGCA	454

Clinical Phenotype & Mutation	Correcting Oligos	SEQ ID NO:
	GCCTTTAG <u>T</u> GATGGCCT	455
	AGGCCATC <u>A</u> CTAAAGGC	456
Haemolytic Anaemia GLY-75-VAL GGC to GTC	TTATGGGCAACCCTAAGGTGAAGGCTCATGGCAAGAAGGTG CTAGGTGCCTTTAGTGATGGCCTGGCTCACCTGGACAACCT CAAGGGCACTTTTTCTCAGCTGAGTGAGCTGCACTGTGA	457
	TCACAGTGCAGCTCACTCAGCTGAGAAAAAGTGCCCTTGAG GTTGTCCAGGTGAGCCAGGCCATCACTAAAGGCACCTAGCA CCTTCTTGCCATGAGCCTTCACCTTAGGGTTGCCCATAA	458
	TAGTGATG G CCTGGCTC	459
	GAGCCAGG <u>C</u> CATCACTA	460
Thalassaemia Beta GLU-91-Term GAG to TAG	GCCTTTAGTGATGGCCTGGCTCACCTGGACAACCTCAAGGG CACCTTTGCCACACTGAGTGAGCTGCACTGTGACAAGCTGC ACGTGGATCCTGAGAACTTCAGGGTGAGTCTATGGGACC	461
	GGTCCCATAGACTCACCCTGAAGTTCTCAGGATCCACGTGCA GCTTGTCACAGTGCAGCTCACTCAGTGTGGCAAAGGTGCCC TTGAGGTTGTCCAGGTGAGCCAGGCCATCACTAAAGGC	462
	CACTGAGT <u>G</u> AGCTGCAC	463
	GTGCAGCT <u>C</u> ACTCAGTG	464
Thalassaemia Beta VAL-99-MET GTG to ATG	CTGGACAACCTCAAGGGCACTTTTTCTCAGCTGAGTGAGCTG CACTGTGACAAGCTGCACGTGGATCCTGAGAACTTCAGGGT GAGTCCAGGAGATGCTTCACTTTTCTCTTTTTACTTTC	465
	GAAAGTAAAAAGAGAAAAGTGAAGCATCTCCTGGACTCACCC TGAAGTTCTCAGGATCCA <u>C</u> GTGCAGCTTGTCACAGTGCAGCT CACTCAGCTGAGAAAAAGTGCCCTTGAGGTTGTCCAG	466
	AGCTGCAC <u>G</u> TGGATCCT	467
	AGGATCCA <u>C</u> GTGCAGCT	468
Thalassaemia Beta LEU-111-PRO CTG-CCG	CCCTTTTGCTAATCATGTTCATACCTCTTATCTTCCTCCCACA GCTCCTGGGCAACGTGC <u>T</u> GGTCTGTGCTGGCCCATCACT TTGGCAAAGAATTCACCCCACCAGTGCAGGCTGCCTA	469
	TAGGCAGCCTGCACTGGTGGGGTGAATTCTTTGCCAAAGTG ATGGGCCAGCACACAGACCAGGCGTTGCCCAGGAGCTGTG GGAGGAAGATAAGAGGTATGAACATGATTAGCAAAAGGG	470
	CAACGTGC <u>T</u> GGTCTGTG	471
	CACAGACC <u>A</u> GCACGTTG	472

Correcting Oligos

GCTAATCATGTTCATACCTCTTATCTTCCTCCCACAGCTCCTG

 ${\tt GGCAACGTGCTGGTCTG}{\underline{\bf T}{\tt GTGCTGGCCCATCACTTTGGCAA}$

TTTCTGATAGGCAGCCTGCACTGGTGGGGTGAATTCTTTGCC AAAGTGATGGGCCAGCACACAGCACGCACGTTGCCCAGGA GCTGTGGGAGGAAGATAAGAGGTATGAACATGATTAGC

AGAATTCACCCCACCAGTGCAGGCTGCCTATCAGAAA

CTGGTCTGTGTGCTGGC

GCCAGCACACAGACCAG

Clinical Phenotype &

Mutation

Thalassaemia Beta

CYS-113-Term

TGT to TGA

CTG to CCG	ACGTGCTGGTCTGTGCCTGGCCCATCACTTTGGCAAAGAAT TCACCCCACCAGTGCAGGCTGCCTATCAGAAAGTGGT	
	ACCACTTTCTGATAGGCAGCCTGCACTGGTGGGGTGAATTCT TTGCCAAAGTGATGGGCCAGCACAGACCAGCACGTTGCC CAGGAGCTGTGGGAAGAAGATAAGAGGTATGAACATGA	478
	CTGTGTGC <u>T</u> GGCCCATC	479
	GATGGGCC <u>A</u> GCACACAG	480
Thalassaemia Beta ALA-116-ASP GCC to GAC	TGTTCATACCTCTTATCTTCCTCCCACAGCTCCTGGGCAACG TGCTGGTCTGTGTGCTGGCCCACCTTTGGCAAAGAATTCA CCCCACCAGTGCAGGCTGCCTATCAGAAAGTGGTGGC	481
	GCCACCACTTTCTGATAGGCAGCCTGCACTGGTGGGGTGAA TTCTTTGCCAAAGTGATGG <u>G</u> CCAGCACACAGACCAGCACGTT GCCCAGGAGCTGTGGGAGGAAGATAAGAGGTATGAACA	482
	TGTGCTGG <u>C</u> CCATCACT	483
	AGTGATGG <u>G</u> CCAGCACA	484
Thalassaemia Beta GLU-122-Term GAA to TAA	TTCCTCCCACAGCTCCTGGGCAACGTGCTGGTCTGTGTGCT GGCCCATCACTTTGGCAAAGAATTCACCCCACCAGTGCAGG CTGCCTATCAGAAAGTGGTGGCTGGTGTGGCTAATGCCC	485
	GGGCATTAGCCACACCAGCCACCACTTTCTGATAGGCAGCC TGCACTGGTGGGGTGAATTCTTTGCCAAAGTGATGGGCCAG CACACAGACCAGCACGTTGCCCAGGAGCTGTGGGAGGAA	486
	TTGGCAAA G AATTCACC	487
	GGTGAATT <u>C</u> TTTGCCAA	488
Thalassaemia Beta GLN-128-PRO CAG to CCG	GCAACGTGCTGGTCTGTGCTGGCCCATCACTTTGGCAAA GAATTCACCCCACCAGTGC <u>A</u> GGCTGCCTATCAGAAAGTGGT GGCTGGTGTGGCTAATGCCCTGGCCCACAAGTATCACTA	489
	Thalassaemia Beta GLU-122-Term GAA to TAA Thalassaemia Beta GLN-128-PRO	TTGCCAAAGTGATGGGCCAGCACAGACCAGCACGTTGCC CAGGAGCTGTGGGAGGAAGATAAGAGGTATGAACATGA CTGTGTGCTGGCCCATC GATGGCCAGCACACAG Thalassaemia Beta LL-116-ASP GCC to GAC GCCACCACTTTCTGATAGGCACACAGCTCCTGGGCAACG TCTTTTGCCAAAGTGATGACTTTTGCTCCCACAGCTCCTGGGCAACG TCTTTTTGCCAAAGTGATGAGCACACAGCTCCTGGGCAACG GCCACCACTTTCTGATAGGCAGCCTGCACTGGTGGGGTGAA TTCTTTGCCAAAGTGATGGGCCAGCACACAGACCAGCACGTT GCCCAGGAGCTGTGGGAGGAAGATAAGAGGTATGAACA TGTGCTGGCCCATCACT AGTGATGGCCCATCACT AGTGATGGGCCAACACAGACCAGCACAGCA

SEQ ID

NO:

473

474

475

476

Clinical Phenotype & Mutation	Correcting Oligos	SEQ ID NO:
	TAGTGATACTTGTGGGCCAGGGCATTAGCCACACCAGCCAC CACTTTCTGATAGGCAGCCTGCACTGGTGGGGTGAATTCTTT GCCAAAGTGATGGGCCAGCACACACAGACCAGCACGTTGC	490
	ACCAGTGC <u>A</u> GGCTGCCT	491
	AGGCAGCC <u>T</u> GCACTGGT	492
Thalassaemia Beta GLN-128-Term CAG to TAG	GGCAACGTGCTGGTCTGTGCTGGCCCATCACTTTGGCAA AGAATTCACCCCACCAGTGCAGGCTGCCTATCAGAAAGTGGT GGCTGGTGTGGCTAATGCCCTGGCCCACAAGTATCACT	493
	AGTGATACTTGTGGGCCAGGGCATTAGCCACACCAGCCACC ACTTTCTGATAGGCAGCCTGCACTGGTGGGGTGAATTCTTTG CCAAAGTGATGGGCCAGCACACAGACCAGCACGTTGCC	494
	CACCAGTG <u>C</u> AGGCTGCC	495
	GGCAGCCT <u>G</u> CACTGGTG	496
Thalassaemia Beta GLN-132-LYS CAG to AAG	GTCTGTGTGCCGCCCATCACTTTGGCAAAGAATTCACCCCA CCAGTGCAGGCTGCCTAT <u>C</u> AGAAAGTGGTGGCTGGTGTGGC TAATGCCCTGGCCCACAAGTATCACTAAGCTCGCTTTC	497
	GAAAGCGAGCTTAGTGATACTTGTGGGCCAGGGCATTAGCC ACACCAGCCACCACTTTCTGATAGGCAGCCTGCACTGGTGG GGTGAATTCTTTGCCAAAGTGATGGGCCAGCACACAGAC	498
	CTGCCTAT C AGAAAGTG	499
	CACTITCT G ATAGGCAG	500

EXAMPLE 7 Retinoblastoma

Retinoblastoma (RB) is an embryonic neoplasm of retinal origin. It almost always presents in early childhood and is often bilateral. The risk of osteogenic sarcoma is increased 500-fold in bilateral retinoblastoma patients, the bone malignancy being at sites removed from those exposed to radiation treatment of the eye tumor.

The retinoblastoma susceptibility gene (pRB; pRb) plays a pivotal role in the regulation of the cell cycle. pRB restrains cell cycle $_{P^1}$ ogression by maintaining a checkpoint in late G_1 that controls commitment of cells to enter S phase. The critical role that pRB plays in cell cycle regulation explains its

status as archetypal tumor suppressor: loss of pRB function results in an inability to maintain control of the G₁ checkpoint; unchecked progression through the cell cycle is, in turn, a hallmark of neoplasia.

Blanquet *et al.*, *Hum. Molec. Genet.* 4: 383-388 (1995) performed a mutation survey of the RB1 gene in 232 patients with hereditary or nonhereditary retinoblastoma. They systematically explored all 27 exons and flanking sequences, as well as the promoter. All types of point mutations were represented and found to be unequally distributed along the RB1 gene sequence. In the population studied, exons 3, 8, 18, and 19 were preferentially altered. The attached table discloses the correcting oligonucleotide base sequences for the retinoblastoma oligonucleotides of the invention.

Table 13
pRB Mutations and Genome-Correcting Oligos

Clinical Phenotype & Mutation	Correcting Oligos	SEQ ID NO:
Retinoblastoma Trp99Term TGG-TAG	AATATTTGATCTTTATTTTTTGTTCCCAGGGAGGTTATATTCAA AAGAAAAAGGAACTGT <u>G</u> GGGAATCTGTATCTTTATTGCAGCA GTTGACCTAGATGAGATG	501
	TCAGTAAAAGTGAACGACATCTCATCTAGGTCAACTGCTGCA ATAAAGATACAGATTCCC <u>C</u> ACAGTTCCTTTTTCTTTTGAATATA ACCTCCCTGGGAACAAAAAAAAAA	502
	GGAACTGT G GGGAATCT	503
	AGATTCCC <u>C</u> ACAGTTCC	504
Retinoblastoma Glu137Asp GAA-GAT	ATTTACTTTTTCTATTCTTTCCTTTGTAGTGTCCATAAATTCTT TAACTTACTAAAAGA <u>A</u> ATTGATACCAGTACCAAAGTTGATAAT GCTATGTCAAGACTGTTGAAGAAGTATGATGTA	505
	TACATCATACTTCTTCAACAGTCTTGACATAGCATTATCAACTT TGGTACTGGTATCAATTTCTTTTAGTAAGTTAAAGAATTTATGG ACACTACAAAGGAAAGAATAGAAAAAAGTAAAT	506
	CTAAAAGA A ATTGATAC	507
	GTATCAAT <u>T</u> TCTTTTAG	508
Retinoblastoma Glu137Term GAA-TAA	TGATTTACTTTTTCTATTCTTTCCTTTGTAGTGTCCATAAATT CTTTAACTTACTAAAA G AAATTGATACCAGTACCAAAGTTGAT AATGCTATGTCAAGACTGTTGAAGAAGTATGATG	509

Clinical Phenotype & Mutation	Correcting Oligos	SEQ ID NO:
-	CATCATACTTCTTCAACAGTCTTGACATAGCATTATCAACTTT GGTACTGGTATCAATTT C TTTTAGTAAGTTAAAGAATTTATGG ACACTACAAAGGAAAGAATAGAAAAAAGTAAATCA	510
	TACTAAAA G AAATTGAT	511
	ATCAATIT C TTTTAGTA	512
Retinoblastoma Gln176Term CAA-TAA	AAAATGTTAAAAAGTCATAATGTTTTTCTTTTCAGGACATGTGA ACTTATATTTTGACA <u>C</u> AACCCAGCAGTTCGTAAGTAGTTCAC AGAATGTTATTTTTCACTTAAAAAAAAAA	513
	AAAATCTTTTTTTTAAGTGAAAAATAACATTCTGTGAACTACT TACGAACTGCTGGGTT <u>G</u> TGTCAAATATATAAGTTCACATGTCC TGAAAAGAAAAACATTATGACTTTTTAACATTTT	514
	ATTTGACA <u>C</u> AACCCAGC	515
	GCTGGGTT G TGTCAAAT	516
Retinoblastoma lle185Thr ATA-ACA	TGATACATTTTTCCTGTTTTTTTTCTGCTTTCTATTTGTTTAATA GGATATCTACTGAAATAAAATTCTGCATTGGTGCTAAAAGTTTC TTGGATCACATTTTTATTAGCTAAAGGTAAGTT	517
	AACTTACCTTTAGCTAATAAAAATGTGATCCAAGAAACTTTTA GCACCAATGCAGAATTT <u>A</u> TTTCAGTAGATATCCTATTAAACAA ATAGAAAGCAGAAAAAAAACAGGAAAAATGTATCA	518
	TACTGAAA <u>T</u> AAATTCTG	519
	CAGAATTT <u>A</u> TTTCAGTA	520
Retinoblastoma Gln207Term CAA-TAA	AAAGATCTGAATCTCTAACTTTCTTTAAAAATGTACATTTTTTT TTCAGGGGAAGTATTA <u>C</u> AAATGGAAGATGATCTGGTGATTTC ATTTCAGTTAATGCTATGTGTCCTTGACTATTTTA	521
	TAAAATAGTCAAGGACACATAGCATTAACTGAAATGAAA	522
	AAGTATTA <u>C</u> AAATGGAA	523
	TTCCATTT G TAATACTT	524
Retinoblastoma Arg251Term CGA to TGA	GTTCTTATCTAATTTACCACTTTTACAGAAACAGCTGTTATACC CATTAATGGTTCACCTCGAACACCCCAGGCGAGGTCAGAACA GGAGTGCACGGATAGCAAAACAACTAGAAAATGATA	525
	TATCATTTCTAGTTGTTTTGCTATCCGTGCACTCCTGTTCTG ACCTCGCCTGGGTGTTC <u>G</u> AGGTGAACCATTAATGGGTATAAC AGCTGTTTCTGTAAAAGTGGTAAATTAGATAAGAAC	526

Clinical Phenotype & Mutation	Correcting Oligos	SEQ ID NO:
	GTTCACCT <u>C</u> GAACACCC	527
	GGGTGTTC G AGGTGAAC	528
Retinoblastoma Arg255Term CGA to TGA	TTTACCACTTTTACAGAAACAGCTGTTATACCCATTAATGGTT CACCTCGAACACCCAGGCGAGGTCAGAACAGGAGTGCACG GATAGCAAAACAACTAGAAAATGATACAAGAATTATTG	529
	CAATAATTCTTGTATCATTTTCTAGTTGTTTTGCTATCCGTGCA CTCCTGTTCTGACCTCGCCTGGGTGTTCGAGGTGAACCATTA ATGGGTATAACAGCTGTTTCTGTAAAAGTGGTAAA	530
	CACCCAGG C GAGGTCAG	531
	CTGACCTC <u>G</u> CCTGGGTG	532
Retinoblastoma Gln266Term CAA to TAA	ATTAATGGTTCACCTCGAACACCCAGGCGAGGTCAGAACAG GAGTGCACGGATAGCAAAA <u>C</u> AACTAGAAAATGATACAAGAAT TATTGAAGTTCTCTGTAAAGAACATGAATGTAATATAG	533
	CTATATTACATTCATGTTCTTTACAGAGAACTTCAATAATTCTT GTATCATTTTCTAGTT G TTTTGCTATCCGTGCACTCCTGTTCT GACCTCGCCTGGGTGTTCGAGGTGAACCATTAAT	534
	TAGCAAAA <u>C</u> AACTAGAA	535
	TTCTAGTT <u>G</u> TTTTGCTA	536
Retinoblastoma Arg320Term CGA to TGA	TGACATGTAAAGGATAATTGTCAGTGACTTTTTTCTTTCAAGG TTGAAAATCTTTCTAAA <u>C</u> GATACGAAGAAATTTATCTTAAAAAT AAAGATCTAGATGCAAGATTATTTTTGGATCATG	537
	CATGATCCAAAAATAATCTTGCATCTAGATCTTTATTTTTAAGA TAAATTTCTTCGTATC G TTTAGAAAGATTTTCAACCTTGAAAGA AAAAAGTCACTGACAATTATCCTTTACATGTCA	538
	TTTCTAAA C GATACGAA	539
	TTCGTATC <u>G</u> TTTAGAAA	540
Retinoblastoma Gln354Term CAG to TAG	ACAAATTGTAAATTTTCAGTATGTGAATGACTTCACTTATTGTT ATTTAGTTTTGAAACA <u>C</u> AGAGAACACCACGAAAAAGTAACCTT GATGAAGAGGTGAATGTAATTCCTCCACACACTC	541
	GAGTGTGGAGGAATTACATTCACCTCTTCATCAAGGTTAC TTTTTCGTGGTGTTCTCTGTGTTTCAAAACTAAATAACAATAA GTGAAGTCATTCACATACTGAAAATTTACAATTTGT	542
	TTGAAACA <u>C</u> AGAGAACA	543
	TGTTCTCT G TGTTTCAA	544

Clinical Phenotype & Mutation	Correcting Oligos	SEQ ID NO:
Retinoblastoma Arg358Gly CGA to GGA	TTTTCAGTATGTGAATGACTTCACTTATTGTTATTTAGTTTTGA AACACAGAGAACACCA <u>C</u> GAAAAAGTAACCTTGATGAAGAGGT GAATGTAATTCCTCCACACACTCCAGTTAGGTATG	545
	CATACCTAACTGGAGTGTGTGGAGGAATTACATTCACCTCTT CATCAAGGTTACTTTTTC G TGGTGTTCTCTGTGTTTCAAAACT AAATAACAATAAGTGAAGTCATTCACATACTGAAAA	546
	GAACACCA <u>C</u> GAAAAAGT	547
MATERIAL STATE OF THE STATE OF	ACTITITC G TGGTGTTC	548
Retinoblastoma Arg358Term CGA to TGA	TTTTCAGTATGTGAATGACTTCACTTATTGTTATTTAGTTTTGA AACACAGAGAACACCA <u>C</u> GAAAAAGTAACCTTGATGAAGAGGT GAATGTAATTCCTCCACACACTCCAGTTAGGTATG	549
	CATACCTAACTGGAGTGTGTGGAGGAATTACATTCACCTCTT CATCAAGGTTACTTTTTC G TGGTGTTCTCTGTGTTTCAAAACT AAATAACAATAAGTGAAGTCATTCACATACTGAAAA	550
	GAACACCA C GAAAAAGT	551
	ACTITITC G TGGTGTTC	552
Retinoblastoma Ser397Term TCA to TAA	CTGTTATGAACACTATCCAACAATTAATGATGATTTTAAATTCA GCAAGTGATCAACCTT <u>C</u> AGAAAATCTGATTTCCTATTTTAACG TAAGCCATATATGAAACATTATTTATTGTAATAT	553
	ATATTACAATAAATAATGTTTCATATATGGCTTACGTTAAAATA GGAAATCAGATTTTCT G AAGGTTGATCACTTGCTGAATTTAAA ATCATCATTAATTGTTGGATAGTGTTCATAACAG	554
	TCAACCTT <u>C</u> AGAAAATC	555
	GATTITCT G AAGGTTGA	556
Retinoblastoma Arg445Term CGA to TGA	TTTCATAATTGTGATTTTCTAAAATAGCAGGCTCTTATTTTCT TTTTGTTTGTTTGTAG <u>C</u> GATACAAACTTGGAGTTCGCTTGTAT TACCGAGTAATGGAATCCATGCTTAAATCAGTAA	557
	TTACTGATTTAAGCATGGATTCCATTACTCGGTAATACAAGCG AACTCCAAGTTTGTATC G CTACAAACAAACAAAAAAAAAAAAAAAAAAAAAAAAAA	558
	GTTTGTAG C GATACAAA	559
	TTTGTATC G CTACAAAC	560
Retinoblastoma Arg455Term CGA to TGA	GCTCTTATTTTCTTTTTGTTTGTTTGTAGCGATACAAACTTGG AGTTCGCTTGTATTACCGAGTAATGGAATCCATGCTTAAATCA GTAAGTTAAAAAACAATATAAAAAAAATTTCAGCCG	561

Clinical Phenotype & Mutation	Correcting Oligos	SEQ ID NO:
	CGGCTGAAATTTTTTTATATTGTTTTTAACTTACTGATTTAAGC ATGGATTCCATTACTC G GTAATACAAGCGAACTCCAAGTTTGT ATCGCTACAAACAAACAAAAAGAAAAATAAGAGC	562
	TGTATTAC C GAGTAATG	563
	CATTACTC G GTAATACA	564
Retinoblastoma Arg552Term CGA to TGA	ATCGAAAGTTTTATCAAAGCAGAAGGCAACTTGACAAGAGAA ATGATAAAACATTTAGAA <u>C</u> GATGTGAACATCGAATCATGGAAT CCCTTGCATGGCTCTCAGTAAGTAGCTAAATAATTG	565
	CAATTATTTAGCTACTTACTGAGAGCCATGCAAGGGATTCCAT GATTCGATGTTCACATC <u>G</u> TTCTAAATGTTTTATCATTTCTCTTG TCAAGTTGCCTTCTGCTTTGATAAAACTTTCGAT	566
	ATTTAGAA C GATGTGAA	567
	TTCACATC <u>G</u> TTCTAAAT	568
Retinoblastoma Cys553Term TGT to TGA	AAGTTTTATCAAAGCAGAAGGCAACTTGACAAGAGAAATGATA AAACATTTAGAACGATG <u>T</u> GAACATCGAATCATGGAATCCCTTG CATGGCTCTCAGTAAGTAGCTAAATAATTGAAGAA	569
	TTCTTCAATTATTTAGCTACTTACTGAGAGCCATGCAAGGGAT TCCATGATTCGATGTTCACATCGTTCTAAATGTTTTATCATTTC TCTTGTCAAGTTGCCTTCTGCTTTGATAAAACTT	570
	GAACGATG <u>T</u> GAACATCG	571
	CGATGTTC <u>A</u> CATCGTTC	572
Retinoblastoma Glu554Term GAA to TAA	AGTTTTATCAAAGCAGAAGGCAACTTGACAAGAGAAATGATAA AACATTTAGAACGATGT G AACATCGAATCATGGAATCCCTTG CATGGCTCTCAGTAAGTAGCTAAATAATTGAAGAAA	573
	TTTCTTCAATTATTTAGCTACTTACTGAGAGCCATGCAAGGGA TTCCATGATTCGATGTT <u>C</u> ACATCGTTCTAAATGTTTTATCATTT CTCTTGTCAAGTTGCCTTCTGCTTTGATAAAACT	574
	AACGATGT G AACATCGA	575
	TCGATGTT <u>C</u> ACATCGTT	576
Retinoblastoma Ser567Leu TCA to TTA	TACCTGGGAAAATTATGCTTACTAATGTGGTTTTAATTTCATC ATGTTTCATATAGGATTCACCTTTATTTGATCTTATTAAACAAT CAAAGGACCGAGAAGGACCAACTGATCACCTTGA	577
	TCAAGGTGATCAGTTGGTCCTTCTCGGTCCTTTGATTGTTTAA TAAGATCAAATAAAGGTGAATCCTATATGAAACATGATGAAAT TAAAACCACATTAGTAAGCATAATTTTCCCAGGTA	578

Clinical Phenotype & Mutation	Correcting Oligos	SEQ ID NO:
	ATAGGATT <u>C</u> ACCTTTAT	579
	ATAAAGGT <u>G</u> AATCCTAT	580
Retinoblastoma Gln575Term CAA to TAA	AATGTGGTTTTAATTTCATCATGTTTCATATAGGATTCACCTTT ATTTGATCTTATTAAA C AATCAAAGGACCGAGAAGGACCAACT GATCACCTTGAATCTGCTTGTCCTCTTAATCTTC	581
	GAAGATTAAGAGGACAAGCAGATTCAAGGTGATCAGTTGGTC CTTCTCGGTCCTTTGATT <u>G</u> TTTAATAAGATCAAATAAAGGTGA ATCCTATATGAAACATGATGAAATTAAAACCACATT	582
	TTATTAAA <u>C</u> AATCAAAG	583
	CTTTGATT G TTTAATAA	584
Retinoblastoma Arg579Term CGA to TGA	ATTTCATCATGTTTCATATAGGATTCACCTTTATTTGATCTTAT TAAACAATCAAAGGACCGAGAAGGACCAACTGATCACCTTGA ATCTGCTTGTCCTCTTAATCTTCCTCTCCAGAATA	585
	TATTCTGGAGAGGAAGATTAAGAGGACAAGCAGATTCAAGGT GATCAGTTGGTCCTTCTC G GTCCTTTGATTGTTTAATAAGATC AAATAAAGGTGAATCCTATATGAAACATGATGAAAT	586
	CAAAGGAC <u>C</u> GAGAAGGA	587
	TCCTTCTC <u>G</u> GTCCTTTG	588
Retinoblastoma Glu580Term GAA to TAA	TCATCATGTTTCATATAGGATTCACCTTTATTTGATCTTATTAA ACAATCAAAGGACCGA <u>G</u> AAGGACCAACTGATCACCTTGAATC TGCTTGTCCTCTTAATCTTCCTCTCCAGAATAATC	589
	GATTATTCTGGAGAGGAAGATTAAGAGGACAAGCAGATTCAA GGTGATCAGTTGGTCCTTCTCGGTCCTTTGATTGTTTAATAAG ATCAAATAAAGGTGAATCCTATATGAAACATGATGA	590
	AGGACCGA <u>G</u> AAGGACCA	591
	TGGTCCTTCTCGGTCCT .	592
Retinoblastoma Ser634Term TCA to TGA	AGAAAAAAGGTTCAACTACGCGTGTAAATTCTACTGCAAATG CAGAGACACAAGCAACCT <u>C</u> AGCCTTCCAGACCCAGAAGCCA TTGAAATCTACCTCTTTCACTGTTTTATAAAAAAAGG	593
	CCTTTTTATAAAACAGTGAAAGAGAGGTAGATTTCAATGGCT TCTGGGTCTGGAAGGCT <u>G</u> AGGTTGCTTGTGTCTCTGCATTTG CAGTAGAATTTACACGCGTAGTTGAACCTTTTTTCT	594
	AGCAACCT <u>C</u> AGCCTTCC	595
	GGAAGGCT <u>G</u> AGGTTGCT	596

1	5

Clinical Phenotype & Mutation	Correcting Oligos	SEQ ID NO:
Retinoblastoma Ala635Pro GCC to CCC	AAAAAAGGTTCAACTACGCGTGTAAATTCTACTGCAAATGCA GAGACACAAGCAACCTCAGCCTTCCAGACCCAGAAGCCATT GAAATCTACCTCTTTCACTGTTTTATAAAAAAAGGTT	597
	AACCTTTTTTATAAAACAGTGAAAGAGAGGTAGATTTCAATGG CTTCTGGGTCTGGAAGGCTGAGGTTGCTTGTGTCTCTGCATT TGCAGTAGAATTTACACGCGTAGTTGAACCTTTTTT	598
	CAACCTCA G CCTTCCAG	599
	CTGGAAGG <u>C</u> TGAGGTTG	600
Retinoblastoma Gln639Term CAG to TAG	ACTACGCGTGTAAATTCTACTGCAAATGCAGAGACACAAGCA ACCTCAGCCTTCCAGACC <u>C</u> AGAAGCCATTGAAATCTACCTCT CTTTCACTGTTTTATAAAAAAAGGTTAGTAGATGATTA	601
	TAATCATCTACTAACCTTTTTTATAAAACAGTGAAAGAGAGGT AGATTTCAATGGCTTCT G GGTCTGGAAGGCTGAGGTTGCTTG TGTCTCTGCATTTGCAGTAGAATTTACACGCGTAGT	602
	TCCAGACC <u>C</u> AGAAGCCA	603
	TGGCTTCT G GGTCTGGA	604
Retinoblastoma Leu657Pro CTA to CCA	TTGTAATTCAAAATGAACAGTAAAAATGACTAATTTTTCTTATT CCCACAGTGTATCGGC <u>T</u> AGCCTATCTCCGGCTAAATACACTT TGTGAACGCCTTCTGTCTGAGCACCCAGAATTAGA	605
	TCTAATTCTGGGTGCTCAGACAGAGGCGTTCACAAAGTGTA TTTAGCCGGAGATAGGCT <u>A</u> GCCGATACACTGTGGGAATAAG AAAAATTAGTCATTTTTACTGTTCATTTTGAATTACAA	606
	GTATCGGC <u>T</u> AGCCTATC	607
	GATAGGCT <u>A</u> GCCGATAC	608
Retinoblastoma Arg661Trp CGG to TGG	AATGAACAGTAAAAATGACTAATTTTCTTATTCCCACAGTGTA TCGGCTAGCCTATCTCCGGCTAAATACACTTTGTGAACGCCT TCTGTCTGAGCACCCAGAATTAGAACATATCATCT	609
	AGATGATATGTTCTAATTCTGGGTGCTCAGACAGAAGGCGTT CACAAAGTGTATTTAGCC G GAGATAGGCTAGCCGATACACTG TGGGAATAAGAAAAATTAGTCATTTTTACTGTTCATT	610
	CCTATCTC <u>C</u> GGCTAAAT	611
	ATTTAGCC G GAGATAGG	612
Retinoblastoma Leu662Pro CTA to CCA	AACAGTAAAAATGACTAATTTTTCTTATTCCCACAGTGTATCG GCTAGCCTATCTCCGGCTAAATACACTTTGTGAACGCCTTCT GTCTGAGCACCCAGAATTAGAACATATCATCTGGAC	613

Clinical Phenotype & Mutation	Correcting Oligos	SEQ ID NO:
	GTCCAGATGATATGTTCTAATTCTGGGTGCTCAGACAGAAGG CGTTCACAAAGTGTATTT A GCCGGAGATAGGCTAGCCGATAC ACTGTGGGAATAAGAAAAATTAGTCATTTTTACTGTT	614
	TCTCCGGC <u>T</u> AAATACAC	615
	GTGTATTT A GCCGGAGA	616
Retinoblastoma Glu675Term GAA to TAA	TATCGGCTAGCCTATCTCCGGCTAAATACACTTTGTGAACGC CTTCTGTCTGAGCACCCAGAATTAGAACATATCATCTGGACC CTTTTCCAGCACACCCTGCAGAATGAGTATGAACTCA	617
	TGAGTTCATACTCATTCTGCAGGGTGTGCTGGAAAAGGGTCC AGATGATATGTTCTAATTCTGGGTGCTCAGACAGAAGGCGTT CACAAAGTGTATTTAGCCGGAGATAGGCTAGCCGATA	618
	AGCACCCA <u>G</u> AATTAGAA	619
	TTCTAATT C TGGGTGCT	620
Retinoblastoma Gln685Pro CAG to CCG	TTTGTGAACGCCTTCTGTCTGAGCACCCAGAATTAGAACATA TCATCTGGACCCTTTTCCAGCACACCCTGCAGAATGAGTATG AACTCATGAGAGACAGCATTTGGACCAAGTAAGAAA	621
	TTTCTTACTTGGTCCAAATGCCTGTCTCTCATGAGTTCATACT CATTCTGCAGGGTGTGCTGGAAAAGGGTCCAGATGATATGTT CTAATTCTGGGTGCTCAGACAGACGCGTTCACAAA	622
	CCTTTTCC <u>A</u> GCACACCC	623
	GGGTGTGC <u>T</u> GGAAAAGG	624
Retinoblastoma Cys706Tyr TGT to TAT	AAAACCATGTAATAAAATTCTGACTACTTTTACATCAATTTATT TACTAGATTATGATGTGTTCCATGTATGGCATATGCAAAGTGA AGAATATAGACCTTAAATTCAAAATCATTGTAAC	625
	GTTACAATGATTTTGAATTTAAGGTCTATATTCTTCACTTTGCA TATGCCATACATGGAACACATCATAATCTAGTAAATAAAT	626
	TATGATGT G TTCCATGT	627
	ACATGGAA <u>C</u> ACATCATA	628
Retinoblastoma Cys712Arg TGC to CGC	TTCTGACTACTTTTACATCAATTTATTTACTAGATTATGATGTG TTCCATGTATGGCATATGCCAAAGTGAAGAATATAGACCTTAAA TTCAAAATCATTGTAACAGCATACAAGGATCTTC	629
	GAAGATCCTTGTATGCTGTTACAATGATTTTGAATTTAAGGTC TATATTCTTCACTTTGCATATGCCATACATGGAACACATCATA ATCTAGTAAATAAATTGATGTAAAAGTAGTCAGAA	630

Clinical Phenotype & Mutation	Correcting Oligos	SEQ ID NO:
	ATGGCATA <u>T</u> GCAAAGTG	631
	CACTITGC <u>A</u> TATGCCAT	632
Retinoblastoma Tyr728Term TAC to TAA	GTATGGCATATGCAAAGTGAAGAATATAGACCTTAAATTCAAA ATCATTGTAACAGCATA C AAGGATCTTCCTCATGCTGTTCAG GAGGTAGGTAATTTTCCATAGTAAGTTTTTTTGATA	633
	TATCAAAAAACTTACTATGGAAAATTACCTACCTCCTGAACA GCATGAGGAAGATCCTT G TATGCTGTTACAATGATTTTGAATT TAAGGTCTATATTCTTCACTTTGCATATGCCATAC	634
	ACAGCATA C AAGGATCT	635
	AGATCCTT G TATGCTGT	636
Retinoblastoma Glu748Term GAG to TAG	TTTTTTTTTTTTACTGTTCTTCCTCAGACATTCAAACGTGT TTTGATCAAAGAAGAG <u>G</u> AGTATGATTCTATTATAGTATTCTATA ACTCGGTCTTCATGCAGAGACTGAAAACAAATA	637
	TATTTGTTTTCAGTCTCTGCATGAAGACCGAGTTATAGAATAC TATAATAGAATCATACT C CTCTTCTTTGATCAAAACACGTTTGA ATGTCTGAGGAAGAACAGTAAAAAAAAAA	638
	AAGAAGAG <u>G</u> AGTATGAT	639
	ATCATACT <u>C</u> CTCTTCTT	640
Retinoblastoma Gln762Term CAG to TAG	GTTTTGATCAAAGAAGAGGGGGTATGATTCTATTATAGTATTCT ATAACTCGGTCTTCATG C AGAGACTGAAAACAAATATTTTGCA GTATGCTTCCACCAGGGTAGGTCAAAAGTATCCTT	641
	AAGGATACTTTTGACCTACCCTGGTGGAAGCATACTGCAAAA TATTTGTTTTCAGTCTCTGCATGAAGACCGAGTTATAGAATAC TATAATAGAATCATACTCCTCTTCTTTGATCAAAAC	642
	TCTTCATG <u>C</u> AGAGACTG	643
	CAGTCTCT G CATGAAGA	644
Retinoblastoma Arg787Term CGA-TGA	TAATCTACTITTTTGTTTTTGCTCTAGCCCCCTACCTTGTCAC CAATACCTCACATTCCTCGAAGCCCTTACAAGTTTCCTAGTTC ACCCTTACGGATTCCTGGAGGGAACATCTATATTT	645
	AAATATAGATGTTCCCTCCAGGAATCCGTAAGGGTGAACTAG GAAACTTGTAAGGGCTTC <u>G</u> AGGAATGTGAGGTATTGGTGACA AGGTAGGGGGCTAGAGCAAAAACAAAAAGTAGATTA	646
	ACATTCCT <u>C</u> GAAGCCCT	647
	AGGGCTTC G AGGAATGT	648

Clinical Phenotype & Mutation	Correcting Oligos	SEQ ID NO:
Retinoblastoma Ser816Term TCA to TGA	CCTTACGGATTCCTGGAGGGAACATCTATATTTCACCCCTGA AGAGTCCATATAAAATTTCAGAAGGTCTGCCAACACAA AAATGACTCCAAGATCAAGGTGTGTTTTCTCTTTA	649
	TAAAGAGAAAACACACCCTTGATCTTGGAGTCATTTTTGTTG GTGTTGGCAGACCTTCT G AAATTTTATATGGACTCTTCAGGG GTGAAATATAGATGTTCCCTCCAGGAATCCGTAAGG	650
	TAAAATTT C AGAAGGTC	651
	GACCTTCT G AAATTTTA	652

EXAMPLE 8 BRCA1 and BRCA2

Breast cancer is the second major cause of cancer death in American women, with an estimated 44,190 lives lost (290 men and 43,900 women) in the US in 1997. While ovarian cancer accounts for fewer deaths than breast cancer, it still represents 4% of all female cancers. In 1994, two breast cancer susceptibility genes were identified: BRCA1 on chromosome 17 and BRCA2 on chromosome 13. When a woman carries a mutation in either BRCA1 or BRCA2, she is at increased risk of being diagnosed with breast or ovarian cancer at some point in her life.

Ford et al., Am. J. Hum. Genet. 62: 676-689 (1998) assessed the contribution of BRCA1 and BRCA2 to inherited breast cancer by linkage and mutation analysis in 237 families, each with at least 4 cases of breast cancer. Families were included without regard to the occurrence of ovarian or other cancers. Overall, disease was linked to BRCA1 in an estimated 52% of families, to BRCA2 in 32% of families, and to neither gene in 16%, suggesting other predisposition genes. The majority (81%) of the breast-ovarian cancer families were due to BRCA1, with most others (14%) due to BRCA2. Conversely, the majority (76%) of families with both male and female breast cancer were due to BRCA2. The largest proportion (67%) of families due to other genes were families with 4 or 5 cases of female breast cancer only.

More than 75% of the reported mutations in the BRCA1 gene result in truncated proteins. Couch et al., Hum. Mutat. 8: 8-18, 1996. (1996) reported a total of 254 BRCA1 mutations, 132 (52%) of which were unique. A total of 221 (87%) of all mutations or 107 (81%) of the unique mutations are small deletions, insertions, nonsense point mutations, splice variants, and regulatory mutations that result in

5

10

truncation or absence of the BRCA1 protein. A total of 11 disease-associated missense mutations (5 unique) and 21 variants (19 unique) as yet unclassified as missense mutations or polymorphisms had been detected. Thirty-five independent benign polymorphisms had been described. The most common mutations were 185delAG and 5382insC, which accounted for 30 (11.7%) and 26 (10.1%), respectively, of all the mutations.

Most BRCA2 mutations are predicted to result in a truncated protein product. The smallest known cancer-associated deletion removes from the C terminus only 224 of the 3,418 residues constituting BRCA2, suggesting that these terminal amino acids are critical for BRCA2 function. Studies (Spain *et al.*, Proc. Natl. Acad. Sci. 96:13920-13925 (1999)) suggest that such truncations eliminate or interfere with 2 nuclear localization signals that reside within the final 156 residues of BRCA2, suggesting that the vast majority of BRCA2 mutants are nonfunctional because they are not translocated into the nucleus.

The attached table discloses the correcting oligonucleotide base sequences for the BRACA1 and BRACA2 oligonucleotides of the invention.

Table 14
BRCA1 Mutations and Genome-Correcting Oligos

Clinical Phenotype & Mutation	Correcting Oligos	SEQ ID NO:
Breast Cancer Met-1-lle ATG to ATT	CTGCGCTCAGGAGGCCTTCACCCTCTGCTCTGGGTAAAGTT CATTGGAACAGAAAGAAATGGATTTATCTGCTCTTCGCGTTG AAGAAGTACAAAATGTCATTAATGCTATGCAGAAAATC	653
	GATTTTCTGCATAGCATTAATGACATTTTGTACTTCTTCAACG CGAAGAGCAGATAAATC <u>C</u> ATTTCTTTCTGTTCCAATGAACTTT ACCCAGAGCAGAGGGTGAAGGCCTCCTGAGCGCAG	654
	AAAGAAAT G GATTTATC	655
,	GATAAATC <u>C</u> ATTTCTTT	656
Breast Cancer Val-11-Ala GTA to GCA	CTGGGTAAAGTTCATTGGAACAGAAAGAAATGGATTTATCTG CTCTTCGCGTTGAAGAAGTACAAAATGTCATTAATGCTATGCA GAAAATCTTAGAGTGTCCCATCTGTCTGGAGTTGAT	657
	ATCAACTCCAGACAGATGGGACACTCTAAGATTTTCTGCATA GCATTAATGACATTTTGTACTTCTAACGCGAAGAGCAGATA AATCCATTTCT. TUTGTTCCAATGAACTTTACCCAG	658
	TGAAGAAG <u>T</u> ACAAAATG	659

Clinical Phenotype & Mutation	Correcting Oligos	SEQ ID NO:
	CATTITGT <u>A</u> CTTCTTCA	660
Breast Cancer Ile-21-Val ATC to GTC	ATGGATTTATCTGCTCTTCGCGTTGAAGAAGTACAAAATGTCA TTAATGCTATGCAGAAAAATCTTAGAGTGTCCCATCTGTCTG	661
	GGTCACACTTTGTGGAGACAGGTTCCTTGATCAACTCCAGAC AGATGGGACACTCTAAGA <u>T</u> TTTCTGCATAGCATTAATGACATT TTGTACTTCTTCAACGCGAAGAGCAGATAAATCCAT	662
	TGCAGAAA <u>A</u> TCTTAGAG	663
	CTCTAAGAŢTTTCTGCA	664
Breast Cancer Leu-22-Ser TTA to TCA	ATTTATCTGCTCTTCGCGTTGAAGAAGTACAAAATGTCATTAA TGCTATGCAGAAAATCT <u>T</u> AGAGTGTCCCATCTGTCTGGAGTT GATCAAGGAACCTGTCTCCACAAAGTGTGACCACAT	665
	ATGTGGTCACACTTTGTGGAGACAGGTTCCTTGATCAACTCC AGACAGATGGGACACTCTAAGATTTTCTGCATAGCATTAATG ACATTTTGTACTTCTTCAACGCGAAGAGCAGATAAAT	666
	GAAAATCT <u>T</u> AGAGTGTC	667
	GACACTCT <u>A</u> AGATTTTC	668
Breast Cancer Cys-39-Tyr TGT to TAT	AGAAAATCTTAGAGTGTCCCATCTGTCTGGAGTTGATCAAGG AACCTGTCTCCACAAAGT <u>G</u> TGACCACATATTTTGCAAATTTTG CATGCTGAAACTTCTCAACCAGAAGAAAGGGCCCTTC	669
	GAAGGCCCTTTCTTCTGGTTGAGAAGTTTCAGCATGCAAAAT TTGCAAAATATGTGGTCA <u>C</u> ACTTTGTGGAGACAGGTTCCTTG ATCAACTCCAGACAGATGGGACACTCTAAGATTTTCT	670
	CACAAAGT <u>G</u> TGACCACA	671
	TGTGGTCA <u>C</u> ACTTTGTG	672
Breast Cancer Cys-61-Gly TGT to GGT	CACATATTTTGCAAATTTTGCATGCTGAAACTTCTCAACCAGA AGAAAGGGCCTTCACAGTGTCCTTTATGTAAGAATGATATAAC CAAAAGGAGCCTACAAGAAAGTACGAGATTTAGTC	673
	GACTAAATCTCGTACTTTCTTGTAGGCTCCTTTTGGTTATATC ATTCTTACATAAAGGACAACTGTGAAGGCCCTTTCTTCTGGTT GAGAAGTTTCAGCATGCAAAATTTGCAAAATATGTG	674
	CTTCACAG <u>T</u> GTCCTTTA	675
	TAAAGGAC A CTGTGAAG	676

Clinical Phenotype & Mutation	Correcting Oligos	SEQ ID NO:
Breast Cancer Leu-63-Stop TTA to TAA	TTTGCAAATTTTGCATGCTGAAACTTCTCAACCAGAAGAAAGG GCCTTCACAGTGTCCTT <u>T</u> ATGTAAGAATGATATAACCAAAAGG AGCCTACAAGAAAGTACGAGATTTAGTCAACTTGT	677
	ACAAGTTGACTAAATCTCGTACTTTCTTGTAGGCTCCTTTTGG TTATATCATTCTTACAT A AAGGACACTGTGAAGGCCCTTTCTT CTGGTTGAGAAGTTTCAGCATGCAAAATTTGCAAA	678
	GTGTCCTT <u>T</u> ATGTAAGA	679
	TCTTACAT <u>A</u> AAGGACAC	680
Breast Cancer Cys-64-Arg TGT to CGT	TGCAAATTTTGCATGCTGAAACTTCTCAACCAGAAGAAAGGG CCTTCACAGTGTCCTTTA <u>T</u> GTAAGAATGATATAACCAAAAGGA GCCTACAAGAAAGTACGAGATTTAGTCAACTTGTTG	681
Breast Cancer Cys-64-Gly TGT to GGT	CAACAAGTTGACTAAATCTCGTACTTTCTTGTAGGCTCCTTTT GGTTATATCATTCTTACATAAAGGACACTGTGAAGGCCCTTTC TTCTGGTTGAGAAGTTTCAGCATGCAAAATTTGCA	682
101 10 001	GTCCTTTA <u>T</u> GTAAGAAT	683
	ATTCTTAC <u>A</u> TAAAGGAC	684
Breast Cancer Cys-64-Tyr TGT to TAT	GCAAATTTTGCATGCTGAAACTTCTCAACCAGAAGAAAGGGC CTTCACAGTGTCCTTTATGTAAGAATGATATAACCAAAAGGAG CCTACAAGAAAGTACGAGATTTAGTCAACTTGTTGA	685
	TCAACAAGTTGACTAAATCTCGTACTTTCTTGTAGGCTCCTTT TGGTTATATCATTCTTACATAAAGGACACTGTGAAGGCCCTTT CTTCTGGTTGAGAAGTTTCAGCATGCAAAATTTGC	686
	TCCTTTAT G TAAGAATG	687
	CATTCTTA C ATAAAGGA	688
Breast Cancer Gln-74-Stop CAA to TAA	CAGAAGAAAGGCCTTCACAGTGTCCTTTATGTAAGAATGAT ATAACCAAAAGGAGCCTA <u>C</u> AAGAAAGTACGAGATTTAGTCAA CTTGTTGAAGAGCTATTGAAAATCATTTGTGCTTTTC	689
	GAAAAGCACAAATGATTTTCAATAGCTCTTCAACAAGTTGACT AAATCTCGTACTTTCTT G TAGGCTCCTTTTGGTTATATCATTCT TACATAAAGGACACTGTGAAGGCCCTTTCTTCTG	690
	GGAGCCTA C AAGAAAGT	691
	ACTITCTT G TAGGCTCC	692

TCTCCTGAACATCTAAAAGATGAAGTTTCTATCAT

Correcting Oligos

AGCTATTGAAAATCATTTGTGCTTTTCAGCTTGACACAGGTTT

 ${\sf GGAGTATGCAAACAGCT} \underline{\textbf{A}} {\sf TAATTTTGCAAAAAAGGAAAATAAC}$

ATGATAGAAACTTCATCTTTTAGATGTTCAGGAGAGTTATTTT

Clinical Phenotype &

Mutation

Breast Cancer

Tyr-105-Cys

TAT to TGT

	CCTTTTTTGCAAAATTA <u>T</u> AGCTGTTTGCATACTCCAAACCTGT GTCAAGCTGAAAAGCACAAATGATTTTCAATAGCT	OS
	AAACAGCT <u>A</u> TAATTTTG	69
	CAAAATTA <u>T</u> AGCTGTTT	69
Breast Cancer Asn-158-Tyr AAC to TAC	CTACAGAGTGAACCCGAAAATCCTTCCTTGCAGGAAACCAGT CTCAGTGTCCAACTCTCTAACCTTGGAACTGTGAGAACTCTG AGGACAAAGCAGCGGATACAACCTCAAAAGACGTCTG	69
	CAGACGTCTTTTGAGGTTGTATCCGCTGCTTTGTCCTCAGAG TTCTCACAGTTCCAAGGTTAGAGAGTTGGACACTGAGACTGG TTTCCTGCAAGGAAGGATTTTCGGGTTCACTCTGTAG	69
	AACTCTCT A ACCTTGGA	69
	TCCAAGGT <u>T</u> AGAGAGTT	70
Breast Cancer Gln-169-Stop CAG to TAG	GAAACCAGTCTCAGTGTCCAACTCTCTAACCTTGGAACTGTG AGAACTCTGAGGACAAAG <u>C</u> AGCGGATACAACCTCAAAAGAC GTCTGTCTACATTGAATTGGGATCTGATTCTTCTGAAG	70
	CTTCAGAAGAATCAGATCCCAATTCAATGTAGACAGACGTCTT TTGAGGTTGTATCCGCTGCTTTGTCCTCAGAGTTCTCACAGT TCCAAGGTTAGAGAGTTGGACACTGAGACTGGTTTC	70
	GGACAAAG <u>C</u> AGCGGATA	70
	TATCCGCT <u>G</u> CTTTGTCC	7(
Breast Cancer Trp-353-Stop TGG to TAG	CTCCCAGCACAGAAAAAAAGGTAGATCTGAATGCTGATCCCC TGTGTGAGAGAAAAGAAT <u>G</u> GAATAAGCAGAAACTGCCATGCT CAGAGAATCCTAGAGATACTGAAGATGTTCCTTGGAT	7(
	ATCCAAGGAACATCTTCAGTATCTCTAGGATTCTCTGAGCAT GGCAGTTTCTGCTTATTCCATTCTTTTCTCACACAGGGGAT CAGCATTCAGATCTACCTTTTTTTCTGTGCTGGGAG	7(
	AAAAGAAT <u>G</u> GAATAAGC	70
	GCTTATTC <u>C</u> ATTCTTTT	7(
Breast Cancer Ile-379-Met ATT to ATG	ATGCTCAGAGAATCCTAGAGATACTGAAGATGTTCCTTGGAT AACACTAAATAGCAGCAT <u>T</u> CAGAAAGTTAATGAGTGGTTTTCC AGAAGTGATGAACTGTTAGGTTCTGATGACTCACAT	70

SEQ ID

NO:

693

Clinical Phenotype & Mutation	Correcting Oligos	SEQ ID NO:
	ATGTGAGTCATCAGAACCTAACAGTTCATCACTTCTGGAAAACCACTCATTAACTTTCTGAATGCTGCTATTTAGTGTTATCCAAGGAACATCTTCAGTATCTCTAGGATTCTCTGAGCAT	710
	AGCAGCAT <u>T</u> CAGAAAGT	711
	ACTITCTG <u>A</u> ATGCTGCT	712
Breast Cancer Glu-421-Gly GAA to GGA	GGGAGTCTGAATCAAATGCCAAAGTAGCTGATGTATTGGACG TTCTAAATGAGGTAGATGAATATTCTGGTTCTTCAGAGAAAAT AGACTTACTGGCCAGTGATCCTCATGAGGCTTTAAT	713
	ATTAAAGCCTCATGAGGATCACTGGCCAGTAAGTCTATTTTCT CTGAAGAACCAGAATAT <u>T</u> CATCTACCTCATTTAGAACGTCCAA TACATCAGCTACTTTGGCATTTGATTCAGACTCCC	714
	GGTAGATG <u>A</u> ATATTCTG	715
	CAGAATAT <u>T</u> CATCTACC	716
Breast Cancer Phe-461-Leu TTT to CTT	ATATGTAAAAGTGAAAGAGTTCACTCCAAATCAGTAGAGAGTA ATATTGAAGACAAAATA <u>T</u> TTGGGAAAACCTATCGGAAGAAGG CAAGCCTCCCCAACTTAAGCCATGTAACTGAAAATC	717
	GATTTTCAGTTACATGGCTTAAGTTGGGGAGGCTTGCCTTCT TCCGATAGGTTTTCCCAAATATTTTGTCTTCAATATTACTCTCT ACTGATTTGGAGTGAACTCTTTCACTTTTACATAT	718
	ACAAAATA <u>T</u> TTGGGAAA	719
	TTTCCCAAATATTTTGT	720
Breast Cancer Tyr-465-Leu TAT to GAT	GAAAGAGTTCACTCCAAATCAGTAGAGAGTAATATTGAAGAC AAAATATTTGGGAAAACC <u>T</u> ATCGGAAGAAGGCAAGCCTCCCC AACTTAAGCCATGTAACTGAAAATCTAATTATAGGAG	721
	CTCCTATAATTAGATTTCAGTTACATGGCTTAAGTTGGGGAG GCTTGCCTTCTTCCGAT <u>A</u> GGTTTTCCCAAATATTTTGTCTTCA ATATTACTCTCTACTGATTTGGAGTGAACTCTTTC	722
	GGAAAACC <u>T</u> ATCGGAAG	723
	CTTCCGAT <u>A</u> GGTTTTCC	724
Breast Cancer Gly-484-Stop GGA to TGA	ACCTATCGGAAGAAGGCAAGCCTCCCCAACTTAAGCCATGTA ACTGAAAATCTAATTATA G GAGCATTTGTTACTGAGCCACAGA TAATACAAGAGCGTCCCCTCACAAATAAATTAAAGC	725
	GCTTTAATTTATTTGTGAGGGGACGCTCTTGTATTATCTGTGG CTCAGTAACAAATGCTCCTATAATTAGATTTTCAGTTACATGG CTTAAGTTGGGGAGGCTTGCCTTCTTCCGATAGGT	726

Clinical Phenotype & Mutation	Correcting Oligos	SEQ ID NO:
	TAATTATA G GAGCATTT	727
	AAATGCTC C TATAATTA	728
Breast Cancer Arg-507-lle AGA to ATA	TTACTGAGCCACAGATAATACAAGAGCGTCCCCTCACAAATA AATTAAAGCGTAAAAGGA <u>G</u> ACCTACATCAGGCCTTCATCCTG AGGATTTTATCAAGAAAGCAGATTTGGCAGTTCAAAA	729
	TTTTGAACTGCCAAATCTGCTTTCTTGATAAAATCCTCAGGAT GAAGGCCTGATGTAGGTCTCTTTTACGCTTTAATTTATTT	730
	TAAAAGGA <u>G</u> ACCTACAT	731
	ATGTAGGT <u>C</u> TCCTTTTA	732
Breast Cancer Ser-510-Stop TCA to TGA	CACAGATAATACAAGAGCGTCCCCTCACAAATAAATTAAAGC GTAAAAGGAGACCTACAT <u>C</u> AGGCCTTCATCCTGAGGATTTTA TCAAGAAAGCAGATTTGGCAGTTCAAAAGACTCCTGA	733
	TCAGGAGTCTTTTGAACTGCCAAATCTGCTTTCTTGATAAAAT CCTCAGGATGAAGGCCT <u>G</u> ATGTAGGTCTCCTTTTACGCTTTA ATTTATTTGTGAGGGGACGCTCTTGTATTATCTGTG	734
	ACCTACAT <u>C</u> AGGCCTTC	735
	GAAGGCCT <u>G</u> ATGTAGGT	736
Breast Cancer Gln-526-Stop CAA to TAA	AGGAGACCTACATCAGGCCTTCATCCTGAGGATTTTATCAAG AAAGCAGATTTGGCAGTT <u>C</u> AAAAGACTCCTGAAATGATAAATC AGGGAACTAACCAAACGGAGCAGAATGGTCAAGTGA	737
	TCACTTGACCATTCTGCTCCGTTTGGTTAGTTCCCTGATTTAT CATTTCAGGAGTCTTTTGAACTGCCAAATCTGCTTTCTTGATA AAATCCTCAGGATGAAGGCCTGATGTAGGTCTCCT	738
	TGGCAGTT <u>C</u> AAAAGACT	739
	AGTCTTTT G AACTGCCA	740
Breast Cancer Gln-541-Stop CAG to TAG	AGGAGACCTACATCAGGCCTTCATCCTGAGGATTTTATCAAG AAAGCAGATTTGGCAGTT <u>C</u> AAAAGACTCCTGAAATGATAAATC AGGGAACTAACCAAACGGAGCAGAATGGTCAAGTGA	741
	TCACTTGACCATTCTGCTCCGTTTGGTTAGTTCCCTGATTTAT CATTTCAGGAGTCTTTTGAACTGCCAAATCTGCTTTCTTGATA AAATCCTCAGGATGAAGGCCTGATGTAGGTCTCCT	742
	AAACGGAG C AGAATGGT	743
	ACCATTCT G CTCCGTTT	744

Clinical Phenotype & Mutation	Correcting Oligos	SEQ ID NO:
Breast Cancer Gly-552-Val GGT to GTT	TAAATCAGGGAACTAACCAAACGGAGCAGAATGGTCAAGTGA TGAATATTACTAATAGTGGTCATGAGAATAAAACAAAAGGTGA TTCTATTCAGAATGAGAAAAATCCTAACCCAATAGA	745
	TCTATTGGGTTAGGATTTTTCTCATTCTGAATAGAATCACCTTT TGTTTTATTCTCATGACCACTATTAGTAATATTCATCACTTGAC CATTCTGCTCCGTTTGGTTAGTTCCCTGATTTA	746
	TAATAGTG G TCATGAGA	747
	TCTCATGA <u>C</u> CACTATTA	748
Breast Cancer Gln-563-Stop CAG to TAG	GGTCAAGTGATGAATATTACTAATAGTGGTCATGAGAATAAAA CAAAAGGTGATTCTATT <u>C</u> AGAATGAGAAAAATCCTAACCCAAT AGAATCACTCGAAAAAGAATCTGCTTTCAAAACGA	749
	TCGTTTTGAAAGCAGATTCTTTTTCGAGTGATTCTATTGGGTT AGGATTTTTCTCATTCT <u>G</u> AATAGAATCACCTTTTGTTTTATTCT CATGACCACTATTAGTAATATTCATCACTTGACC	750
	ATTCTATT C AGAATGAG	751
	CTCATTCT G AATAGAAT	752
Ovarian Cancer Lys-607-Stop AAA to TAA	ATAAGCAGCAGTATAAGCAATATGGAACTCGAATTAAATATCC ACAATTCAAAAGCACCT A AAAAGAATAGGCTGAGGAGGAAGT CTTCTACCAGGCATATTCATGCGCTTGAACTAGTAG	753
	CTACTAGTTCAAGCGCATGAATATGCCTGGTAGAAGACTTCC TCCTCAGCCTATTCTTTTTAGGTGCTTTTGAATTGTGGATATT TAATTCGAGTTCCATATTGCTTATACTGCTGCTTAT	754
	AAGCACCT <u>A</u> AAAAGAAT	755
	ATTCTTTT <u>T</u> AGGTGCTT	756
Breast Cancer Leu-639-Stop TTG to TAG	ATATTCATGCGCTTGAACTAGTAGTCAGTAGAAATCTAAGCCC ACCTAATTGTACTGAATTGCAAATTGATAGTTGTTCTAGCAGT GAAGAGATAAAGAAAAAAAAGTACAACCAAATGCC	757
	GGCATTTGGTTGTACTTTTTTTTCTTTATCTCTTCACTGCTAGA ACAACTATCAATTTGC <u>A</u> ATTCAGTACAATTAGGTGGGCTTAGA TTTCTACTGACTACTAGTTCAAGCGCATGAATAT	758
	TACTGAAT T GCAAATTG	759
	CAATTTGC A ATTCAGTA	760
Breast Cancer Asp-693-Asn GAC to AAC	GAACCTGCAACTGGAGCCAAGAAGAGTAACAAGCCAAATGAA CAGACAAGTAAAAGACAT <u>G</u> ACAGCGATACTTTCCCAGAGCTG AAGTTAACAAATGCACCTGGTTCTTTTACTAAGTGTT	761

Clinical Phenotype & Mutation	Correcting Oligos	SEQ ID NO:
	AACACTTAGTAAAAGAACCAGGTGCATTTGTTAACTTCAGCTC TGGGAAAGTATCGCTGT <u>C</u> ATGTCTTTTACTTGTCTGTTCATTT GGCTTGTTACTCTTCTTGGCTCCAGTTGCAGGTTC	762
	AAAGACAT <u>G</u> ACAGCGAT	763
	ATCGCTGT <u>C</u> ATGTCTTT	764
Ovarian Cancer Glu-720-Stop GAA to TAA	CTGAAGTTAACAAATGCACCTGGTTCTTTTACTAAGTGTTCAA ATACCAGTGAACTTAAA G AATTTGTCAATCCTAGCCTTCCAAG AGAAGAAAAAGAAGAAGAAACTAGAAACAGTTAAAG	765
	CTTTAACTGTTTCTAGTTTCTCTTCTTTTCTTCTTTGGAAGG CTAGGATTGACAAATT <u>C</u> TTTAAGTTCACTGGTATTTGAACACT TAGTAAAAGAACCAGGTGCATTTGTTAACTTCAG	766
	AACTTAAA <u>G</u> AATTTGTC	767
	GACAAATT <u>C</u> TTTAAGTT	768
Breast Cancer Glu-755-Stop GAA to TAA	CTAGAAACAGTTAAAGTGTCTAATAATGCTGAAGACCCCAAA GATCTCATGTTAAGTGGA <u>G</u> AAAGGGTTTTGCAAACTGAAAGA TCTGTAGAGAGTAGCAGTATTTCATTGGTACCTGGTA	769
	TACCAGGTACCAATGAAATACTGCTACTCTCTACAGATCTTTC AGTTTGCAAAACCCTTTCCTCCACTTAACATGAGATCTTTGGGG TCTTCAGCATTATTAGACACTTTAACTGTTTCTAG	770
	TAAGTGGA <u>G</u> AAAGGGTT	771
	AACCCTTT <u>C</u> TCCACTTA	772
Breast Cancer Ser-770-Stop TCA to TAA	TCATGTTAAGTGGAGAAAGGGTTTTGCAAACTGAAAGATCTG TAGAGAGTAGCAGTATTT <u>C</u> ATTGGTACCTGGTACTGATTATG GCACTCAGGAAAGTATCTCGTTACTGGAAGTTAGCAC	773
	GTGCTAACTTCCAGTAACGAGATACTTTCCTGAGTGCCATAA TCAGTACCAGGTACCAAT G AAATACTGCTACTCTCTACAGAT CTTTCAGTTTGCAAAACCCTTTCTCCACTTAACATGA	774
	CAGTATTT C ATTGGTAC	775
	GTACCAAT G AAATACTG	776
Breast Cancer Val-772-Ala GTA to GCA	TAAGTGGAGAAAGGGTTTTGCAAACTGAAAGATCTGTAGAGA GTAGCAGTATTTCATTGG <u>T</u> ACCTGGTACTGATTATGGCACTC AGGAAAGTATCTCGTTACTGGAAGTTAGCACTCTAGG	777
	CCTAGAGTGCTAACTTCCAGTAACGAGATACTTTCCTGAGTG CCATAATCAGTACCAGGTACCAATGAAATACTGCTACTCTCTA CAGATCTTTCAGTTTGCAAAACCCTTTCTCCACTTA	778

1	ሰ
ı	U

Clinical Phenotype & Mutation	Correcting Oligos	SEQ ID NO:
	TTCATTGG <u>T</u> ACCTGGTA	779
	TACCAGGT <u>A</u> CCAATGAA	780
Breast Cancer Gin-780-Stop CAG to TAG	ACTGAAAGATCTGTAGAGAGTAGCAGTATTTCATTGGTACCT GGTACTGATTATGGCACT C AGGAAAGTATCTCGTTACTGGAA GTTAGCACTCTAGGGAAGGCAAAAAACAGAACCAAATA	781
	TATTTGGTTCTGTTTTTGCCTTCCCTAGAGTGCTAACTTCCAG TAACGAGATACTTTCCT G AGTGCCATAATCAGTACCAGGTAC CAATGAAATACTGCTACTCTCTACAGATCTTTCAGT	782
	ATGGCACT <u>C</u> AGGAAAGT	783
	ACTITICCT G AGTGCCAT	784
Breast Cancer Glu-797-Stop GAA to TAA	TATGGCACTCAGGAAAGTATCTCGTTACTGGAAGTTAGCACT CTAGGGAAGGCAAAAACA <u>G</u> AACCAAATAAATGTGTGAGTCAG TGTGCAGCATTTGAAAACCCCCAAGGGACTAATTCATG	785
	CATGAATTAGTCCCTTGGGGTTTTCAAATGCTGCACACTGAC TCACACATTTATTTGGTTCTGTTTTTTGCCTTCCCTAGAGTGCT AACTTCCAGTAACGAGATACTTTCCTGAGTGCCATA	786
	CAAAAACA <u>G</u> AACCAAAT	787
	ATTTGGTTCTGTTTTTG	788
Breast Cancer Lys-820-Glu AAA to GAA	AAATGTGTGAGTCAGTGTGCAGCATTTGAAAACCCCAAGGGA CTAATTCATGGTTGTTCC <u>A</u> AAGATAATAGAAATGACACAGAAG GCTTTAAGTATCCATTGGGACATGAAGTTAACCACA	789
	TGTGGTTAACTTCATGTCCCAATGGATACTTAAAGCCTTCTGT GTCATTTCTATTATCTTTGGAACAACCATGAATTAGTCCCTTG GGGTTTTCAAATGCTGCACACTGACTCACACATTT	790
	GTTGTTCC A AAGATAAT	791
	ATTATCTT T GGAACAAC	792
Breast Cancer Thr-826-Lys ACA to AAA	CAGCATTTGAAAACCCCAAGGGACTAATTCATGGTTGTTCCA AAGATAATAGAAATGACA <u>C</u> AGAAGGCTTTAAGTATCCATTGG GACATGAAGTTAACCACAGTCGGGAAACAAGCATAGA	793
	TCTATGCTTGTTTCCCGACTGTGGTTAACTTCATGTCCCAATG GATACTTAAAGCCTTCTGTGTCATTTCTATTATCTTTGGAACA ACCATGAATTAGTCCCTTGGGGTTTTCAAATGCTG	794
	AAATGACA <u>C</u> AGAAGGCT	795
	AGCCTTCT G TGTCATTT	796

Clinical Phenotype & Mutation	Correcting Oligos	SEQ ID NO:
Breast Cancer Arg-841-Trp CGG to TGG	GATAATAGAAATGACACAGAAGGCTTTAAGTATCCATTGGGA CATGAAGTTAACCACAGTCGGGGAAACAAGCATAGAAATGGAA GAAAGTGAACTTGATGCTCAGTATTTGCAGAATACAT	797
	ATGTATTCTGCAAATACTGAGCATCAAGTTCACTTTCTTCCAT TTCTATGCTTGTTTCCC G ACTGTGGTTAACTTCATGTCCCAAT GGATACTTAAAGCCTTCTGTGTCATTTCTATTATC	798
	ACCACAGT <u>C</u> GGGAAACA	799
	TGTTTCCC G ACTGTGGT	800
Breast Cancer Pro-871-Leu CCG to CTG	AACTTGATGCTCAGTATTTGCAGAATACATTCAAGGTTTCAAA GCGCCAGTCATTTGCTCCGTTTTCAAATCCAGGAAATGCAGA AGAGGAATGTGCAACATTCTCTGCCCACTCTGGGTC	801
	GACCCAGAGTGGGCAGAGAATGTTGCACATTCCTCTTCTGCA TTTCCTGGATTTGAAAAC G GAGCAAATGACTGGCGCTTTGAA ACCTTGAATGTATTCTGCAAATACTGAGCATCAAGTT	802
	ATTTGCTC C GTTTTCAA	803
	TTGAAAAC G GAGCAAAT	804
Breast Cancer Leu-892-Ser TTA to TCA	TTTCAAATCCAGGAAATGCAGAAGAGGAATGTGCAACATTCT CTGCCCACTCTGGGTCCT <u>T</u> AAAGAAACAAAGTCCAAAAGTCA CTTTTGAATGTGAACAAAAGGAAGAAAATCAAGGAAA	805
·	TTTCCTTGATTTTCTTCCTTTTGTTCACATTCAAAAGTGACTTT TGGACTTTGTTTCTTT A AGGACCCAGAGTGGGCAGAGAATGT TGCACATTCCTCTTCTGCATTTCCTGGATTTGAAA	806
	TGGGTCCT <u>T</u> AAAGAAAC	807
	GTTTCTTT A AGGACCCA	808
Breast Cancer Glu-908-Stop GAA to TAA	CACTCTGGGTCCTTAAAGAAACAAAGTCCAAAAGTCACTTTTG AATGTGAACAAAAGGAA <u>G</u> AAAATCAAGGAAAGAATGAGTCTA ATATCAAGCCTGTACAGACAGTTAATATCACTGCAG	809
	CTGCAGTGATATTAACTGTCTGTACAGGCTTGATATTAGACTC ATTCTTTCCTTGATTTTCTTCCTTTTGTTCACATTCAAAAGTGA CTTTTGGACTTTGTTTCTTTAAGGACCCAGAGTG	810
	AAAAGGAA G AAAATCAA	811
	TTGATTIT <u>C</u> TTCCTTTT	812
Breast Cancer Gly-960-Asp GGC to GAC	ATAATGCCAAATGTAGTATCAAAGGAGGCTCTAGGTTTTGTCT ATCATCTCAGTTCAGAG G CAACGAAACTGGACTCATTACTCC AAATAAACATGGACTTTTACAAAACCCATATCGTAT	813

Clinical Phenotype & Mutation	Correcting Oligos	SEQ ID NO:
	ATACGATATGGGTTTTGTAAAAGTCCATGTTTATTTGGAGTAA TGAGTCCAGTTTCGTTG <u>C</u> CTCTGAACTGAGATGATAGACAAA ACCTAGAGCCTCCTTTGATACTACATTTGGCATTAT	814
	GTTCAGAG <u>G</u> CAACGAAA	815
	TTTCGTTG <u>C</u> CTCTGAAC	816
Breast Cancer Met-1008-lle ATG to ATA	ATTTGTTAAAACTAAATGTAAGAAAAATCTGCTAGAGGAAAAC TTTGAGGAACATTCAAT G TCACCTGAAAGAGAAATGGGAAAT GAGAACATTCCAAGTACAGTGAGCACAATTAGCCGT	817
	ACGGCTAATTGTGCTCACTGTACTTGGAATGTTCTCATTTCCC ATTTCTCTTTCAGGTGACATGTTCCTCAAAGTTTTCCT CTAGCAGATTTTTCTTACATTTAGTTTTAACAAAT	818
	CATTCAAT G TCACCTGA	819
	TCAGGTGA <u>C</u> ATTGAATG	820
Breast Cancer Thr-1025-lle ACA to ATA	ACTTTGAGGAACATTCAATGTCACCTGAAAGAGAAATGGGAA ATGAGAACATTCCAAGTA <u>C</u> AGTGAGCACAATTAGCCGTAATA ACATTAGAGAAAATGTTTTTAAAGAAGCCAGCTCAAG	821
	CTTGAGCTGGCTTCTTTAAAAACATTTTCTCTAATGTTATTACG GCTAATTGTGCTCACT G TACTTGGAATGTTCTCATTTCCCATT TCTCTTTCAGGTGACATTGAATGTTCCTCAAAGT	822
li li	TCCAAGTA <u>C</u> AGTGAGCA	823
	TGCTCACT <u>G</u> TACTTGGA	824
Breast Cancer Glu-1038-Gly GAA to GGA	ACATTCCAAGTACAGTGAGCACAATTAGCCGTAATAACATTAG AGAAAATGTTTTTAAAGAAGCCAGCTCAAGCAATATTAATGAA GTAGGTTCCAGTACTAATGAAGTGGGCTCCAGTAT	825
	ATACTGGAGCCCACTTCATTAGTACTGGAACCTACTTCATTAA TATTGCTTGAGCTGGCT <u>T</u> CTTTAAAAAACATTTTCTCTAATGTTA TTACGGCTAATTGTGCTCACTGTACTTGGAATGT	826
	TTTTAAAG <u>A</u> AGCCAGCT	827
	AGCTGGCT <u>T</u> CTTTAAAA	828
Breast Cancer Ser-1040-Asn AGC to AAC	CAAGTACAGTGAGCACAATTAGCCGTAATAACATTAGAGAAA ATGTTTTTAAAGAAGCCA <u>G</u> CTCAAGCAATATTAATGAAGTAGG TTCCAGTACTAATGAAGTGGGCTCCAGTATTAATGA	829
	TCATTAATACTGGAGCCCACTTCATTAGTACTGGAACCTACTT CATTAATATTGCTTGAGCTGGCTTCTTTAAAAACATTTTCTCTA ATGTTATTACGGCTAATTGTGCTCACTGTACTTG	830

Clinical Phenotype & Mutation	Correcting Oligos	SEQ ID NO:
	AGAAGCCA <u>G</u> CTCAAGCA	831
	TGCTTGAG C TGGCTTCT	832
Breast Cancer Val-1047-Ala GTA to GCA	GCCGTAATAACATTAGAGAAAATGTTTTTAAAGAAGCCAGCTC AAGCAATATTAATGAAG <u>T</u> AGGTTCCAGTACTAATGAAGTGGG CTCCAGTATTAATGAAATAGGTTCCAGTGATGAAAA	833
	TTTTCATCACTGGAACCTATTTCATTAATACTGGAGCCCACTT CATTAGTACTGGAACCTACTTCATTAATATTGCTTGAGCTGGC TTCTTTAAAAACATTTTCTCTAATGTTATTACGGC	834
	TAATGAAG <u>T</u> AGGTTCCA	835
	TGGAACCT <u>A</u> CTTCATTA	836
Breast Cancer Leu-1080-Stop TTG to TAG	AAATAGGTTCCAGTGATGAAAACATTCAAGCAGAACTAGGTA GAAACAGAGGGCCAAAATTGAATGCTATGCT	837
	CCAGGAAGACTTTGTTTATAGACCTCAGGTTGCAAAACCCCT AATCTAAGCATAGCAT	838
	GCCAAAAT <u>T</u> GAATGCTA	839
	TAGCATTC A ATTTTGGC	840
Breast Cancer Leu-1086-Stop TTA to TGA	AAAACATTCAAGCAGAACTAGGTAGAAACAGAGGGCCAAAAT TGAATGCTATGCT	841
	GGATGCTTACAATTACTTCCAGGAAGACTTTGTTTATAGACCT CAGGTTGCAAAACCCCT <u>A</u> ATCTAAGCATAGCATTCAATTTTG GCCCTCTGTTTCTACCTAGTTCTGCTTGAATGTTTT	842
	GCTTAGAT <u>T</u> AGGGGTTT	843
	AAACCCCT <u>A</u> ATCTAAGC	844
Breast Cancer Ser-1130-Stop TCA to TGA	AGCAAGAATATGAAGAAGTAGTTCAGACTGTTAATACAGATTT CTCTCCATATCTGATTT <u>C</u> AGATAACTTAGAACAGCCTATGGGA AGTAGTCATGCATCTCAGGTTTGTTCTGAGACACC	845
	GGTGTCTCAGAACAAACCTGAGATGCATGACTACTTCCCATA GGCTGTTCTAAGTTATCT <u>G</u> AAATCAGATATGGAGAGAAATCT GTATTAACAGTCTGAACTACTTCTTCATATTCTTGCT	846
	TCTGATTT C AGATAACT	847
	AGTTATCT G AAATCAGA	848

Clinical Phenotype & Mutation	Correcting Oligos	SEQ ID NO:
Breast Cancer Lys-1183-Arg AAA to AGA	CTAGTTTTGCTGAAAATGACATTAAGGAAAGTTCTGCTGTTTT TAGCAAAAGCGTCCAGA A AGGAGAGCTTAGCAGGAGTCCTA GCCCTTTCACCCATACACATTTGGCTCAGGGTTACCG	849
	CGGTAACCCTGAGCCAAATGTGTATGGGTGAAAGGGCTAGG ACTCCTGCTAAGCTCTCCTTTCTGGACGCTTTTGCTAAAAACA GCAGAACTTTCCTTAATGTCATTTTCAGCAAAACTAG	850
	CGTCCAGA <u>A</u> AGGAGAGC	851
	GCTCTCCTTCTGGACG	852
Breast Cancer Gln-1200-Stop CAG to TAG	AGCGTCCAGAAAGGAGAGCTTAGCAGGAGTCCTAGCCCTTT CACCCATACACATTTGGCTCAGAGGGTTACCGAAGAGAGGGCCA AGAAATTAGAGTCCTCAGAAGAGAACTTATCTAGTGAGG	853
	CCTCACTAGATAAGTTCTCTTCTGAGGACTCTAATTTCTTGGC CCCTCTTCGGTAACCCT G AGCCAAATGTGTATGGGTGAAAGG GCTAGGACTCCTGCTAAGCTCTCCTTTCTGGACGCT	854
	ATTTGGCT <u>C</u> AGGGTTAC	855
	GTAACCCT G AGCCAAAT	856
Breast Cancer Arg-1203-Stop CGA to TGA	AAAGGAGAGCTTAGCAGGAGTCCTAGCCCTTTCACCCATACA CATTTGGCTCAGGGTTAC <u>C</u> GAAGAGGGGCCAAGAAATTAGA GTCCTCAGAAGAGAACTTATCTAGTGAGGATGAAGAGC	857
	GCTCTTCATCCTCACTAGATAAGTTCTCTTCTGAGGACTCTAA TTTCTTGGCCCCTCTTCGGTAACCCTGAGCCAAATGTGTATG GGTGAAAGGGCTAGGACTCCTGCTAAGCTCTCCTTT	858
	AGGGTTAC <u>C</u> GAAGAGGG	859
	CCCTCTTC G GTAACCCT	860
Breast Cancer Glu-1214-Stop GAG to TAG	ACCCATACACATTTGGCTCAGGGTTACCGAAGAGGGGCCAA GAAATTAGAGTCCTCAGAA <u>G</u> AGAACTTATCTAGTGAGGATGA AGAGCTTCCCTGCTTCCAACACTTGTTATTTGGTAAAG	861
	CTTTACCAAATAACAAGTGTTGGAAGCAGGGAAGCTCTTCAT CCTCACTAGATAAGTTCTCTTCTGAGGACTCTAATTTCTTGGC CCCTCTTCGGTAACCCTGAGCCAAATGTGTATGGGT	862
	CCTCAGAA <u>G</u> AGAACTTA	863
	TAAGTTCT C TTCTGAGG	864
Breast Cancer Glu-1219-Asp GAG to GAC	TCAGGGTTACCGAAGAGGGGCCAAGAAATTAGAGTCCTCAG AAGAGAACTTATCTAGTGA <u>G</u> GATGAAGAGCTTCCCTGCTTCC AACACTTGTTATTTGGTAAAGTAAA	865

Clinical Phenotype & Mutation	Correcting Oligos	SEQ ID NO:
	AGAAGGTATATTGTTTACTTTACCAAATAACAAGTGTTGGAAG CAGGGAAGCTCTTCATCCCTCACTAGATAAGTTCTCTTCTGAG GACTCTAATTTCTTGGCCCCCTCTTCGGTAACCCTGA	866
	TCTAGTGA G GATGAAGA	867
	TCTTCATC C TCACTAGA	868
Breast Cancer Glu-1221-Stop GAA to TAA	GGTTACCGAAGAGGGGCCAAGAAATTAGAGTCCTCAGAAGA GAACTTATCTAGTGAGGAT <u>G</u> AAGAGCTTCCCTGCTTCCAACA CTTGTTATTTGGTAAAGTAAA	869
	ACTGAGAAGGTATATTGTTTACTTTACCAAATAACAAGTGTTG GAAGCAGGGAAGCTCTTCATCCTCACTAGATAAGTTCTCTTC TGAGGACTCTAATTTCTTGGCCCCTCTTCGGTAACC	870
•	GTGAGGAT <u>G</u> AAGAGCTT	871
	AAGCTCTT <u>C</u> ATCCTCAC	872
Breast Cancer Glu-1250-Stop GAG to TAG	TTATTTGGTAAAGTAAACAATATACCTTCTCAGTCTACTAGGC ATAGCACCGTTGCTACC <u>G</u> AGTGTCTGTCTAAGAACACAGAGG AGAATTTATTATCATTGAAGAATAGCTTAAATGACT	873
	AGTCATTTAAGCTATTCTTCAATGATAATAAATTCTCCTCTGTG TTCTTAGACAGACACTCGGTAGCAACGGTGCTATGCCTAGTA GACTGAGAAGGTATATTGTTTACTTTAC	874
	TTGCTACC <u>G</u> AGTGTCTG	875
	CAGACACT <u>C</u> GGTAGCAA	876
Breast Cancer Ser-1262-Stop TCA to TAA	CTAGGCATAGCACCGTTGCTACCGAGTGTCTGTCTAAGAACA CAGAGGAGAATTTATTAT <u>C</u> ATTGAAGAATAGCTTAAATGACTG CAGTAACCAGGTAATATTGGCAAAGGCATCTCAGGA	877
	TCCTGAGATGCCTTTGCCAATATTACCTGGTTACTGCAGTCAT TTAAGCTATTCTTCAAT <u>G</u> ATAATAAATTCTCCTCTGTGTTCTTA GACAGACACTCGGTAGCAACGGTGCTATGCCTAG	878
	TTTATTAT C ATTGAAGA	879
	TCTTCAAT G ATAATAAA	880
Breast Cancer Gln-1281-Stop CAG to TAG	TTATCATTGAAGAATAGCTTAAATGACTGCAGTAACCAGGTAA TATTGGCAAAGGCATCTCAGGAACATCACCTTAGTGAGGAAA CAAAATGTTCTGCTAGCTTGTTTTCTTCACAGTGCA	881
	TGCACTGTGAAGAAAACAAGCTAGCAGAACATTTTGTTTCCTC ACTAAGGTGATGTTCCT G AGATGCCTTTGCCAATATTACCTG GTTACTGCAGTCATTTAAGCTATTCTTCAATGATAA	882

Clinical Phenotype & Mutation	Correcting Oligos	SEQ ID NO:
	AGGCATCT <u>C</u> AGGAACAT	883
	ATGTTCCT G AGATGCCT	884
Breast Cancer Gln-1313-Stop CAG to TAG	GCTAGCTTGTTTTCTTCACAGTGCAGTGAATTGGAAGACTTG ACTGCAAATACAAACACC <u>C</u> AGGATCCTTTCTTGATTGGTTCTT CCAAACAAATGAGGCATCAGTCTGAAAGCCAGGGAG	885
	CTCCCTGGCTTTCAGACTGATGCCTCATTTGTTTGGAAGAAC CAATCAAGAAAGGATCCTGGGTGTTTGTATTTGCAGTCAAGT CTTCCAATTCACTGCACTG	886
	CAAACACC <u>C</u> AGGATCCT	887
	AGGATCCT G GGTGTTTG	888
Breast Cancer lle-1318-Val ATT to GTT	TCACAGTGCAGTGAATTGGAAGACTTGACTGCAAATACAAAC ACCCAGGATCCTTTCTTGATTGGTTCTTCCAAACAAATGAGG CATCAGTCTGAAAGCCAGGGAGTTGGTCTGAGTGACA	889
	TGTCACTCAGACCAACTCCCTGGCTTTCAGACTGATGCCTCA TTTGTTTGGAAGAACCAATCAAGAAAGGATCCTGGGTGTTTG TATTTGCAGTCAAGTCTCCAATTCACTGCACTG	890
	CTTTCTTG <u>A</u> TTGGTTCT	891
	AGAACCAA <u>T</u> CAAGAAAG	892
Breast Cancer Gln-1323-Stop CAA to TAA	TTGGAAGACTTGACTGCAAATACAAACACCCAGGATCCTTTC TTGATTGGTTCTTCCAAACAACACACACCCAGGATCCTTTC CAGGGAGTTGGTCTGAGTGACAAGGAATTGGTTTCAG	893
	CTGAAACCAATTCCTTGTCACTCAGACCAACTCCCTGGCTTT CAGACTGATGCCTCATTTGTTTGGAAGAACCAATCAAGAAAG GATCCTGGGTGTTTGTATTTGCAGTCAAGTCTTCCAA	894
	CTTCCAAA <u>C</u> AAATGAGG	895
	CCTCATTT <u>G</u> TTTGGAAG	896
Breast Cancer Arg-1347-Gly AGA to GGA	CAGTCTGAAAGCCAGGGAGTTGGTCTGAGTGACAAGGAATT GGTTTCAGATGATGAAGAAAGAGGAACGGGCTTGGAAGAAA ATAATCAAGAAGAGCAAAGCATGGATTCAAACTTAGGTA	897
	TACCTAAGTTTGAATCCATGCTTTGCTCTTCTTGATTATTTTCT TCCAAGCCCGTTCCTCTTTCTTCATCATCTTGAAACCAATTCCT TGTCACTCAGACCAACTCCCTGGCTTTCAGACTG	898
•	ATGAAGAA A GAGGAACG	899
	CGTTCCTC <u>T</u> TTCTTCAT	900

Clinical Phenotype & Mutation	Correcting Oligos	SEQ ID NO:
Breast Cancer Gln-1395-Stop CAG to TAG	GAAACAAGCGTCTCTGAAGACTGCTCAGGGCTATCCTCTCAG AGTGACATTTTAACCACTCAGGTAAAAAGCGTGTGTGTGT	901
	CTACTGAATGCAAAGGACACCACACACACGCATGTGCACACACA	902
	TAACCACT <u>C</u> AGGTAAAA	903
	TTTTACCT G AGTGGTTA	904
Breast Cancer Gln-1408-Stop CAG to TAG	TGGTGCCATTTATCGTTTTTGAAGCAGAGGGATACCATGCAA CATAACCTGATAAAGCTC <u>C</u> AGCAGGAAATGGCTGAACTAGAA GCTGTGTTAGAACAGCATGGGAGCCAGCCTTCTAACA	905
	TGTTAGAAGGCTGGCTCCCATGCTGTTCTAACACAGCTTCTA GTTCAGCCATTTCCTGCTGGAGCTTTATCAGGTTATGTTGCAT GGTATCCCTCTGCTTCAAAAACGATAAATGGCACCA	906
	TAAAGCTC C AGCAGGAA	907
	TTCCTGCT G GAGCTTTA	908
Breast Cancer Arg-1443-Gly CGA to GGA	AGCCAGCCTTCTAACAGCTACCCTTCCATCATAAGTGACTCT TCTGCCCTTGAGGACCTGCGAAATCCAGAACAAAGCACATCA GAAAAAGGTGTGTATTGTTGGCCAAACACTGATATCT	909
Arg-1443-Stop CGA to TGA	AGATATCAGTGTTTGGCCAACAATACACACCTTTTTCTGATGT GCTTTGTTCTGGATTTCGCAGGGTCCTCAAGGGCAGAAGAGTC ACTTATGATGGAAGGGTAGCTGTTAGAAGGCTGGCT	910
	AGGACCTG <u>C</u> GAAATCCA	911
	TGGATTTC <u>G</u> CAGGTCCT	912
Breast Cancer Ser-1512-Ile AGT to ATT	CAGAATAGAAACTACCCATCTCAAGAGGAGCTCATTAAGGTT GTTGATGTGGAGGAGCAA <u>C</u> AGCTGGAAGAGTCTGGGCCACA CGATTTGACGGAAACATCTTACTTGCCAAGGCAAGATC	913
,	GATCTTGCCTTGGCAAGTAAGATGTTTCCGTCAAATCGTGTG GCCCAGACTCTTCCAGCTGTTGCTCCTCCACATCAACAACCT TAATGAGCTCCTCTTGAGATGGGTAGTTTCTATTCTG	914
	AGGAGCAA <u>C</u> AGCTGGAA	915
	TTCCAGCT <u>G</u> TTGCTCCT	916
Breast Cancer Gln-1538-Stop CAG to TAG	ATCTTTCTAGGTCATCCCCTTCTAAATGCCCATCATTAGATGA TAGGTGGTACATGCACAGTTGCTCTGGGAGTCTTCAGAATAG AAACTACCCATCTCAAGAGGAGCTCATTAAGGTTGT	917

Clinical Phenotype & Mutation	Correcting Oligos	SEQ ID NO:
	ACAACCTTAATGAGCTCCTCTTGAGATGGGTAGTTTCTATTCT GAAGACTCCCAGAGCAACTGTGCATGTACCACCTATCATCTA ATGATGGGCATTTAGAAGGGGGATGACCTAGAAAGAT	918
	CATGCACA <u>G</u> TTGCTCTG	919
	CAGAGCAA <u>C</u> TGTGCATG	920
Breast Cancer Glu-1541-Stop GAG to TAG	CAGAATAGAAACTACCCATCTCAAGAGGAGCTCATTAAGGTT GTTGATGTGGAGGAGCAA <u>C</u> AGCTGGAAGAGTCTGGGCCACA CGATTTGACGGAAACATCTTACTTGCCAAGGCAAGATC	921
	GATCTTGCCTTGGCAAGTAAGATGTTTCCGTCAAATCGTGTG GCCCAGACTCTTCCAGCTGTTGCTCCTCCACATCAACAACCT TAATGAGCTCCTCTTGAGATGGGTAGTTTCTATTCTG	922
	AGGAGCAA <u>C</u> AGCTGGAA	923
	TTCCAGCT <u>G</u> TTGCTCCT	924
Breast Cancer Thr-1561-lle ACC to ATC	AACTACCCATCTCAAGAGGAGCTCATTAAGGTTGTTGATGTG GAGGAGCAACAGCTGGAAGAGTCTGGGCCACACGATTTGAC GGAAACATCTTACTTGCCAAGGCAAGATCTAGGTAATA	925
	TATTACCTAGATCTTGCCTTGGCAAGTAAGATGTTTCCGTCAA ATCGTGTGGCCCAGACTCTTCCAGCTGTTGCTCCTCCACATC AACAACCTTAATGAGCTCCTCTTGAGATGGGTAGTT	926
	AGCTGGAA <u>G</u> AGTCTGGG	927
	CCCAGACT <u>C</u> TTCCAGCT	928
Breast Cancer Tyr-1563-Stop TAC to TAG	TTTGTAATTCAACATTCATCGTTGTGTAAATTAAACTTCTCCCA TTCCTTTCAGAGGGAACCCCTTACCTGGAATCTGGAATCAGC CTCTTCTCTGATGACCCTGAATCTGATCCTTCTGA	929
	TCAGAAGGATCAGATTCAGGGTCATCAGAGAAGAGGCTGATT CCAGATTCCAGGTAAGGGGTTCCCTCTGAAAGGAATGGGAG AAGTTTAATTTACACAACGATGAATGTTGAATTACAAA	930
	AGAGGGAA <u>C</u> CCCTTACC	931
	GGTAAGGG <u>G</u> TTCCCTCT	932
Breast Cancer Leu-1564-Pro CTG to CCG	CAACATTCATCGTTGTGTAAATTAAACTTCTCCCATTCCTTTC AGAGGGAACCCCTTACCTGGAATCTGGAATCAGCCTCTTCTC TGATGACCCTGAATCTGATCCTTCTGAAGACAGAGC	933
	GCTCTGTCTTCAGAAGGATCAGATTCAGGG+CATCAGAGAAG AGGCTGATTCCAGATTCCAGGTAAGGGGTTCCCTCTGAAAG GAATGGGAGAAGTTTAATTTACACAACGATGAATGTTG	934

Clinical Phenotype & Mutation	Correcting Oligos	SEQ ID NO:
	CCCTTACC <u>T</u> GGAATCTG	935
	CAGATTCC A GGTAAGGG	936
Breast Cancer Gln-1604-Stop CAA to TAA	GCCCCAGAGTCAGCTCGTGTTGGCAACATACCATCTTCAACC TCTGCATTGAAAGTTCCC <u>C</u> AATTGAAAGTTGCAGAATCTGCC CAGAGTCCAGCTGCTCATACTACTGATACTGCTG	937
	CAGCAGTATCAGTAGTATGAGCAGCAGCTGGACTCTGGGCA GATTCTGCAACTTTCAATTGGGGAACTTTCAATGCAGAGGTT GAAGATGGTATGTTGCCAACACGAGCTGACTCTGGGGC	938
	AAGTTCCC <u>C</u> AATTGAAA	939
	TTTCAATT G GGGAACTT	940
Breast Cancer Lys-1606-Glu AAA to GAA	GAGTCAGCTCGTGTTGGCAACATACCATCTTCAACCTCTGCA TTGAAAGTTCCCCAATTGAAAGTTGCAGAATCTGCCCAGAGT CCAGCTGCTGCTCATACTACTGATACTGCTGGGTATA	941
	TATACCCAGCAGTATCAGTAGTATGAGCAGCAGCTGGACTCT GGGCAGATTCTGCAACTTTCAATTGGGGAACTTTCAATGCAG AGGTTGAAGATGGTATGTTGCCAACACGAGCTGACTC	942
·	CCCAATTG A AAGTTGCA	943
	TGCAACTT <u>T</u> CAATTGGG	944
Breast Cancer Met-1628-Thr ATG to ACG	CAGAATCTGCCCAGAGTCCAGCTGCTGCTCATACTACTGATA CTGCTGGGTATAATGCAA <u>T</u> GGAAGAAAGTGTGAGCAGGGAG AAGCCAGAATTGACAGCTTCAACAGAAAGGGTCAACAA	945
	TTGTTGACCCTTTCTGTTGAAGCTGTCAATTCTGGCTTCTCCC TGCTCACACTTTCTTCCATTGCATTATACCCAGCAGTATCAGT AGTATGAGCAGCAGCTGGACTCTGGGCAGATTCTG	946
	TAATGCAA <u>T</u> GGAAGAAA	947
	TTTCTTCC <u>A</u> TTGCATTA	948
Breast Cancer Met-1628-Val ATG to GTG	GCAGAATCTGCCCAGAGTCCAGCTGCTGCTCATACTACTGAT ACTGCTGGGTATAATGCA A TGGAAGAAAGTGTGAGCAGGGA GAAGCCAGAATTGACAGCTTCAACAGAAAGGGTCAACA	949
	TGTTGACCCTTTCTGTTGAAGCTGTCAATTCTGGCTTCTCCCT GCTCACACTTTCTTCCATTGCATTATACCCAGCAGTATCAGTA GTATGAGCAGCAGCTGGACTCTGGGCAGATTCTGC	950
	ATAATGCA <u>A</u> TGGAAGAA	951

Clinical Phenotype & Mutation	Correcting Oligos	SEQ ID NO:
	TTCTTCCATTGCATTAT	952
Breast Cancer Pro-1637-Leu CCA to CTA	CTCATACTACTGATACTGCTGGGTATAATGCAATGGAAGAAA GTGTGAGCAGGGAGAAGC <u>C</u> AGAATTGACAGCTTCAACAGAA AGGGTCAACAAAAGAATGTCCATGGTGGTGTCTGGCCT	953
	AGGCCAGACACCACCATGGACATTCTTTTGTTGACCCTTTCT GTTGAAGCTGTCAATTCT G GCTTCTCCCTGCTCACACTTTCTT CCATTGCATTATACCCAGCAGTATCAGTAGTATGAG	954
	GGAGAAGC <u>C</u> AGAATTGA	955
	TCAATTCT G GCTTCTCC	956
Breast Cancer Met-1652-Ile ATG to ATA	GAGCAGGGAGAAGCCAGAATTGACAGCTTCAACAGAAAGGG TCAACAAAAGAATGTCCATGGTGTGTCTGGCCTGACCCCAG AAGAATTTGTGAGTGTATCCATATGTATCTCCCTAATG	957
	CATTAGGGAGATACATATGGATACACTCACAAATTCTTCTGG GGTCAGGCCAGACACCAC <u>C</u> ATGGACATTCTTTTGTTGACCCT TTCTGTTGAAGCTGTCAATTCTGGCTTCTCCCTGCTC	958
	ATGTCCAT G GTGGTGTC	959
	GACACCAC <u>C</u> ATGGACAT	960
Breast Cancer Glu-1694-Stop GAG to TAG	CACTTCCTGATTTTGTTTTCAACTTCTAATCCTTTGAGTGTTTT TCATTCTGCAGATGCT G AGTTTGTGTGTGAACGGACACTGAA ATATTTTCTAGGAATTGCGGGAGGAAAATGGGTAG	961
	CTACCCATTTTCCTCCCGCAATTCCTAGAAAATATTTCAGTGT CCGTTCACACACAAACT <u>C</u> AGCATCTGCAGAATGAAAAACACT CAAAGGATTAGAAGTTGAAAACAAAATCAGGAAGTG	962
	CAGATGCT <u>G</u> AGTTTGTG	963
	CACAAACT <u>C</u> AGCATCTG	964
Breast Cancer Gly-1706-Glu GGA to GAA	GTGTTTTCATTCTGCAGATGCTGAGTTTGTGTGAACGGA CACTGAAATATTTTCTAG <u>G</u> AATTGCGGGAGGAAAATGGGTAG TTAGCTATTTCTGTAAGTATAATACTATTTCTCCCCT	965
	AGGGGAGAAATAGTATTATACTTACAGAAATAGCTAACTACCC ATTITCCTCCCGCAATT <u>C</u> CTAGAAAATATTTCAGTGTCCGTTC ACACACAAACTCAGCATCTGCAGAATGAAAAAACAC	966
_	TTTTCTAG <u>G</u> AATTGCGG	967
	CCGCAATT <u>C</u> CTAGAAAA	968

Clinical Phenotype & Mutation	Correcting Oligos	SEQ ID NO:
Breast Cancer Ala-1708-Glu GCG to GAG	TTCATTCTGCAGATGCTGAGTTTGTGTGTGAACGGACACTGA AATATTTTCTAGGAATTGCGGGAGGAAAATGGGTAGTTAGCT ATTTCTGTAAGTATAATACTATTTCTCCCCTCCC	969
	GGGAGGAGGAGAAATAGTATTATACTTACAGAAATAGCTA ACTACCCATTTTCCTCCC <u>G</u> CAATTCCTAGAAAATATTTCAGTG TCCGTTCACACACACACCCAGCATCTGCAGAATGAA	970
	AGGAATTG <u>C</u> GGGAGGAA	971
	TTCCTCCC <u>G</u> CAATTCCT	972
Breast Cancer Val-1713-Ala GTA to GCA	CTGAGTTTGTGTGAACGGACACTGAAATATTTTCTAGGAAT TGCGGGAGGAAAATGGG <u>T</u> AGTTAGCTATTTCTGTAAGTATAA TACTATTTCTCCCCTCCC	973
	TTCTGAGGTGTTAAAGGGAGGAGGGGGAGAAATAGTATTATAC TTACAGAAATAGCTAACTACCCATTTTCCTCCCGCAATTCCTA GAAAATATTTCAGTGTCCGTTCACACACAAACTCAG	974
	AAAATGGG <u>T</u> AGTTAGCT	975
	AGCTAACT <u>A</u> CCCATTTT	976
Breast Cancer Trp-1718-Stop TGG to TAG	AACGGACACTGAAATATTTTCTAGGAATTGCGGGAGGAAAAT GGGTAGTTAGCTATTTCT <u>G</u> TAAGTATAATACTATTTCTCCCCT CCTCCCTTTAACACCTCAGAATTGCATTTTTACACC	977
	GGTGTAAAAATGCAATTCTGAGGTGTTAAAGGGAGGAGGGG AGAAATAGTATTATACTTA <u>C</u> AGAAATAGCTAACTACCCATTTTC CTCCCGCAATTCCTAGAAAATATTTCAGTGTCCGTT	978
	CTATTTCT G TAAGTATA	979
	TATACTTA C AGAAATAG	980
Breast Cancer Glu-1725-Stop GAA to TAA	TTCTGCTGTATGTAACCTGTCTTTTCTATGATCTCTTTAGGGG TGACCCAGTCTATTAAA G AAAGAAAAATGCTGAATGAGGTAA GTACTTGATGTTACAAACTAACCAGAGATATTCATT	981
	AATGAATATCTCTGGTTAGTTTGTAACATCAAGTACTTACCTC ATTCAGCATTTTTCTTTCTTTAATAGACTGGGTCACCCCTAAA GAGATCATAGAAAAGACAGGTTACATACAGCAGAA	982
	CTATTAAA G AAAGAAAA	983
	TTTTCTTT <u>C</u> TTTAATAG	984
Breast Cancer Lys-1727-Stop AAA to TAA	TGTATGTAACCTGTCTTTTCTATGATCTCTTTAGGGGTGACCC AGTCTATTAAAGAAAGA <u>A</u> AAATGCTGAATGAGGTAAGTACTTG ATGTTACAAACTAACCAGAGATATTCATTCAGTCA	985

Clinical Phenotype & Mutation	Correcting Oligos	SEQ ID NO:
	TGACTGAATGAATATCTCTGGTTAGTTTGTAACATCAAGTACT TACCTCATTCAGCATTT <u>T</u> TCTTTCTTTAATAGACTGGGTCACC CCTAAAGAGATCATAGAAAAGACAGGTTACATACA	986
	AAGAAAGA A AAATGCTG	987
	CAGCATTI <u>T</u> TCTTTCTT	988
Breast Cancer Pro-1749-Arg CCA to CGA	TCTTTCAGCATGATTTTGAAGTCAGAGGAGATGTGGTCAATG GAAGAAACCACCAAGGTC <u>C</u> AAAGCGAGCAAGAGAATCCCAG GACAGAAAGGTAAAGCTCCCTCCCTCAAGTTGACAAAA	989
	TTTTGTCAACTTGAGGGAGGGAGCTTTACCTTTCTGTCCTGG GATTCTCTTGCTCGCTTT <u>G</u> GACCTTGGTGGTTTCTTCCATTGA CCACATCTCCTCTGACTTCAAAATCATGCTGAAAGA	990
	CCAAGGTC <u>C</u> AAAGCGAG	991
	CTCGCTTT G GACCTTGG	992
Breast Cancer Arg-1751-Stop CGA to TGA	CAGCATGATTTTGAAGTCAGAGGAGATGTGGTCAATGGAAGA AACCACCAAGGTCCAAAGCGAGCAAGAGAAATCCCAGGACAG AAAGGTAAAGCTCCCTCCCTCAAGTTGACAAAAATCTC	993
	GAGATTTTTGTCAACTTGAGGGAGGGAGCTTTACCTTTCTGT CCTGGGATTCTCTTGCTC G CTTTGGACCTTGGTGGTTTCTTC CATTGACCACATCTCCTCTGACTTCAAAATCATGCTG	994
	GTCCAAAG C GAGCAAGA	995
	TCTTGCTC G CTTTGGAC	996
Breast Cancer Gln-1756-Stop CAG to TAG	GTCAGAGGAGATGTGGTCAATGGAAGAAACCACCAAGGTCC AAAGCGAGCAAGAGAATCC <u>C</u> AGGACAGAAAGGTAAAGCTCC CTCCCTCAAGTTGACAAAAATCTCACCCCACCACTCTGT	997
	ACAGAGTGGTGGGGTGAGATTTTTGTCAACTTGAGGGAGG	998
	GAGAATCC <u>C</u> AGGACAGA	999
	TCTGTCCT G GGATTCTC	1000
Breast Cancer Met-1775-Arg ATG to AGG	CTCTCTTCTCCAGATCTTCAGGGGGGCTAGAAATCTGTTGCT ATGGGCCCTTCACCAACATGCCCACAGGTAAGAGCCTGGGA GAACCCCAGAGTTCCAGCACCAGCCTTTGTCTTACATA	1001
	TATGTAAGACAAAGGCTGGTGCTGGAACTCTGGGGTTCTCCC AGGCTCTTACCTGTGGGCATGTTGGTGAAGGGCCCCATAGCA ACAGATTTCTAGCCCCCTGAAGATCTGGAAGAAGAGAG	1002

Clinical Phenotype & Mutation	Correcting Oligos	SEQ ID NO:
-	CACCAACA <u>T</u> GCCCACAG	1003
	CTGTGGGCATGTTGGTG	1004
Breast Cancer Trp-1782-Stop TGG to TGA	AGTATGCAGATTACTGCAGTGATTTTACATCTAAATGTCCATT TTAGATCAACTGGAATG G ATGGTACAGCTGTGTGGTGCTTCT GTGGTGAAGGAGCTTTCATCATTCACCCTTGGCACA	1005
	TGTGCCAAGGGTGAATGATGAAAGCTCCTTCACCACAGAAGC ACCACAGCTGTACCAT C CATTCCAGTTGATCTAAAATGGA CATTTAGATGTAAAATCACTGCAGTAATCTGCATACT	1006
	CTGGAATG <u>G</u> ATGGTACA	1007
	TGTACCAT C CATTCCAG	1008
Breast Cancer Gln-1785-His CAG to CAT	ATTACTGCAGTGATTTTACATCTAAATGTCCATTTTAGATCAAC TGGAATGGATGGTACA <u>G</u> CTGTGTGGTGCTTCTGTGGTGAAG GAGCTTTCATCATTCACCCTTGGCACAGTAAGTATT	1009
	AATACTTACTGTGCCAAGGGTGAATGATGAAAGCTCCTTCAC CACAGAAGCACCACACAG <u>C</u> TGTACCATCCATTCCAGTTGATC TAAAATGGACATTTAGATGTAAAAATCACTGCAGTAAT	1010
	ATGGTACA <u>G</u> CTGTGTGG	1011
	CCACACAG <u>C</u> TGTACCAT	1012
Breast Cancer Glu-1794-Asp GAG to GAT	GTCCATTTTAGATCAACTGGAATGGATGGTACAGCTGTGTGG TGCTTCTGTGGTGAAGGAGCTTTCATCATTCACCCTTGGCAC AGTAAGTATTGGGTGCCCTGTCAGAGAGGGAGGACAC	1013
	GTGTCCTCCCTCTGACAGGGCACCCAATACTTACTGTGCC AAGGGTGAATGATGAAAGCTCCTTCACCACAGAAGCACCACA CAGCTGTACCATCCATTCCAGTTGATCTAAAATGGAC	1014
	GTGAAGGA <u>G</u> CTTTCATC	1015
	GATGAAAG <u>C</u> TCCTTCAC	1016
Breast Cancer Arg-1835-Stop CGA to TGA	CTCTGCTTGTGTTCTCTGTCTCCAGCAATTGGGCAGATGTGT GAGGCACCTGTGGTGACCCGGAGAGTGGGTGTTGGACAGTGT AGCACTCTACCAGTGCCAGGAGCTGGACACCTACCTGA	1017
	TCAGGTAGGTGTCCAGCTCCTGGCACTGGTAGAGTGCTACA CTGTCCAACACCCACTCTCGGGTCACCACAGGTGCCTCACA CATCTGCCCAATTGCTGGAGACAGAGAACACAAGCAGAG	1018
	TGGTGACC C GAGAGTGG	1019
	CCACTCTC G GGTCACCA	1020

Clinical Phenotype & Mutation	Correcting Oligos	SEQ ID NO:
Breast Cancer Trp-1837-Arg TGG to CGG	TTGTGTTCTCTGTCTCCAGCAATTGGGCAGATGTGTGAGGCA CCTGTGGTGACCCGAGAG <u>T</u> GGGTGTTGGACAGTGTAGCACT CTACCAGTGCCAGGAGCTGGACACCTACCTGATACCCC	1021
	GGGGTATCAGGTAGGTGTCCAGCTCCTGGCACTGGTAGAGT GCTACACTGTCCAACACCCACTCTCGGGTCACCACAGGTGC CTCACACATCTGCCCAATTGCTGGAGACAGAGAACACAA	1022
	CCCGAGAG <u>T</u> GGGTGTTG	1023
	CAACACCC <u>A</u> CTCTCGGG	1024
Breast Cancer Trp-1837-Stop TGG to TAG	TGTGTTCTCTGTCTCCAGCAATTGGGCAGATGTGTGAGGCAC CTGTGGTGACCCGAGAGTGGGGCACTTGGACAGTGTAGCACTC TACCAGTGCCAGGAGCTGGACACCTACCTGATACCCCA	1025
	TGGGGTATCAGGTAGGTGTCCAGCTCCTGGCACTGGTAGAG TGCTACACTGTCCAACACC <u>C</u> ACTCTCGGGTCACCACAGGTG CCTCACACATCTGCCCAATTGCTGGAGACAGAGAACACA	1026
	CCGAGAGT <u>G</u> GGTGTTGG	1027
	CCAACACC C ACTCTCGG	1028

Table 15
BRCA2 Mutations and Genome-Correcting Oligos

Clinical Phenotype & Mutation	Correcting Oligos	SEQ ID NO:
Breast cancer PHE32LEU TTT to CTT	GTTAAAACTAAGGTGGGATTTTTTTTTAAATAGATTTAGGAC CAATAAGTCTTAATTGG <u>T</u> TTGAAGAACTTTCTTCAGAAGCTCC ACCCTATAATTCTGAACCTGCAGAAGAATCTGAAC	1029
	GTTCAGATTCTTCTGCAGGTTCAGAATTATAGGGTGGAGCTT CTGAAGAAAGTTCTTCAA <u>A</u> CCAATTAAGACTTATTGGTCCTAA ATCTATTTAAAAAAAAAA	1030
	TTAATTGG <u>T</u> TTGAAGAA	1031
	TTCTTCAA A CCAATTAA	1032
Breast cancer TYR42CYS TAT to TGT	TAGATTTAGGACCAATAAGTCTTAATTGGTTTGAAGAACTTTC TTCAGAAGCTCCACCCT A TAATTCTGAACCTGCAGAAGAATC TGAACATAAAAACAACAATTACGAACCAAACCTATT	1033

Clinical Phenotype & Mutation	Correcting Oligos	SEQ ID NO:
	AATAGGTTTGGTTCGTAATTGTTGTTTTATGTTCAGATTCTTC TGCAGGTTCAGAATTA <u>T</u> AGGGTGGAGCTTCTGAAGAAAGTTC TTCAAACCAATTAAGACTTATTGGTCCTAAATCTA	1034
	TCCACCCT <u>A</u> TAATTCTG	1035
	CAGAATTA <u>T</u> AGGGTGGA	1036
Breast cancer LYS53ARG AAA to AGA	AAGAACTTTCTTCAGAAGCTCCACCCTATAATTCTGAACCTGC AGAAGAATCTGAACATAAAACAACAATTACGAACCAAACCTA TTTAAAACTCCACAAAGGAAACCATCTTATAATCA	1037
	TGATTATAAGATGGTTTCCTTTGTGGAGTTTTAAATAGGTTTG GTTCGTAATTGTTGTTTTTATGTTCAGATTCTTCTGCAGGTTC AGAATTATAGGGTGGAGCTTCTGAAGAAAGTTCTT	1038
	TGAACATA <u>A</u> AAACAACA	1039
	TGTTGTTT <u>T</u> TATGTTCA	1040
Breast cancer Phe81Leu TTC to CTC	CTATTTAAAACTCCACAAAGGAAACCATCTTATAATCAGCTGG CTTCAACTCCAATAATA <u>T</u> TCAAAGAGCAAGGGCTGACTCTGC CGCTGTACCAATCTCCTGTAAAAGAATTAGATAAAT	1041
	ATTTATCTAATTCTTTTACAGGAGATTGGTACAGCGGCAGAGT CAGCCCTTGCTCTTTGAATATTATTGGAGTTGAAGCCAGCTG ATTATAAGATGGTTTCCTTTGTGGAGTTTTAAATAG	1042
	CAATAATA <u>T</u> TCAAAGAG	1043
	CTCTTTGA <u>A</u> TATTATTG	1044
Breast cancer TRP194TERM TGG to TAG	GTCAGACACCAAAACATATTTCTGAAAGTCTAGGAGCTGAGG TGGATCCTGATATGTCTT <u>G</u> GTCAAGTTCTTTAGCTACACCACC CACCCTTAGTTCTACTGTGCTCATAGGTAATAATAG	1045
	CTATTATTACCTATGAGCACAGTAGAACTAAGGGTGGGTG	1046
	TATGTCTT <u>G</u> GTCAAGTT	1047
	AACTTGAC <u>C</u> AAGACATA	1048
Breast cancer PRO201ARG CCA to CGA	CTGAAAGTCTAGGAGCTGAGGTGGATCCTGATATGTCTTGGT CAAGTTCTTTAGCTACAC <u>C</u> ACCCACCCTTAGTTCTACTGTGCT CATAGGTAATAATAGCAAATGTGTATTTACAAGAAA	1049
	TTTCTTGTAAATACACATTTGCTATTATTACCTATGAGCACAGT AGAACTAAGGGTGGGT G GTGTAGCTAAAGAACTTGACCAAGA CATATCAGGATCCACCTCAGCTCCTAGACTTTCAG	1050

Clinical Phenotype & Mutation	Correcting Oligos	SEQ ID NO:
	AGCTACAC <u>C</u> ACCCACCC	1051
	GGGTGGGT <u>G</u> GTGTAGCT	1052
Breast cancer Pro222Ser CCT to TCT	ACAATACACATAAATTTTTATCTTACAGTCAGAAATGAAGAAG CATCTGAAACTGTATTT <u>C</u> CTCATGATACTACTGCTGTAAGTAA ATATGACATTGATTAGACTGTTGAAATTGCTAACA	1053
	TGTTAGCAATTTCAACAGTCTAATCAATGTCATATTTACTTAC	1054
	CTGTATTT C CTCATGAT	1055
	ATCATGAG <u>G</u> AAATACAG	1056
Breast cancer Leu-414-Term TTG to TAG	AATGGTCTCAACTAACCCTTTCAGGTCTAAATGGAGCCCAGA TGGAGAAAATACCCCTAT <u>T</u> GCATATTTCTTCATGTGACCAAAA TATTTCAGAAAAAGACCTATTAGACACAGAGAACAA	1057
	TTGTTCTCTGTGTCTAATAGGTCTTTTTCTGAAATATTTTGGTC ACATGAAGAAATATGCAATAGGGGTATTTTCTCCATCTGGGC TCCATTTAGACCTGAAAGGGTTAGTTGAGACCATT	1058
	ACCCCTAT <u>T</u> GCATATTT	1059
	AAATATGC <u>A</u> ATAGGGGT	1060
Breast cancer, male Cys554Trp TGT to TGG	AGCCTCTGAAAGTGGACTGGAAATACATACTGTTTGCTCACA GAAGGAGGACTCCTTATG <u>T</u> CCAAATTTAATTGATAATGGAAG CTGGCCAGCCACCACACAGAATTCTGTAGCTTTG	1061
	CAAAGCTACAGAATTCTGTGTGGTGGTGGCTGGCCAGCTTC CATTATCAATTAAATTTGGACATAAGGAGTCCTCCTTCTGTGA GCAAACAGTATGTATTTCCAGTCCACTTTCAGAGGCT	1062
	TCCTTATG <u>T</u> CCAAATTT	1063
	AAATTTGG <u>A</u> CATAAGGA	1064
Breast cancer Lys944Term AAA to TAA	AACTCTACCATGGTTTTATATGGAGACACAGGTGATAAACAA GCAACCCAAGTGTCAATT A AAAAAGATTTGGTTTATGTTCTTG CAGAGGAGAACAAAAATAGTGTAAAGCAGCATATAA	1065
	TTATATGCTGCTTTACACTATTTTTGTTCTCCTCTGCAAGAAC ATAAACCAAATCTTTTTTAATTGACACTTGGGTTGCTTGTTTAT CACCTGTGTCTCCATATAAAACCATGGTAGAGTT	1066
	TGTCAATT <u>A</u> AAAAAGAT	1067
	ATCTTTTTAATTGACA	1068_

Clinical Phenotype & Mutation	Correcting Oligos	SEQ ID NO:
Breast cancer, male Glu1320Term GAA to TAA	ATGACTACTGGCACTTTTGTTGAAGAAATTACTGAAAATTACA AGAGAAATACTGAAAAT G AAGATAACAAATATACTGCTGCCAG TAGAAATTCTCATAACTTAGAATTTGATGGCAGTG	1069
	CACTGCCATCAAATTCTAAGTTATGAGAATTTCTACTGGCAGC AGTATATTTGTTATCTTCATTTTCAGTATTTCTCTTGTAATTTTC AGTAATTTCTTCAACAAAAGTGCCAGTAGTCAT	1070
	CTGAAAAT G AAGATAAC	1071
	GTTATCTT C ATTTTCAG	1072
Breast cancer Glu1876Term GAA to TAA	CATGAAACAATTAAAAAAGTGAAAGACATATTTACAGACAG	1073
	CCTCGTAACAACCTGCCATAATTTTCGTTTGGCAAATTTTTGA TTTATTCTCGTTGTTTT <u>C</u> CTTAATTACTTTACTGAAACTGTCTG TAAATATGTCTTTCACTTTTTTAATTGTTTCATG	1074
	TAATTAAG <u>G</u> AAAACAAC	1075
	GTTGTTTT <u>C</u> CTTAATTA	1076
Breast cancer Ser1882Term TCA to TAA	TGAAAGACATATTTACAGACAGTTTCAGTAAAGTAATTAAGGA AAACAACGAGAATAAAT <u>C</u> AAAAATTTGCCAAACGAAAATTATG GCAGGTTGTTACGAGGCATTGGATGATTCAGAGGA	1077
	TCCTCTGAATCATCCAATGCCTCGTAACAACCTGCCATAATTT TCGTTTGGCAAATTTTTGATTTATTCTCGTTGTTTTCCTTAATT ACTTTACTGAAACTGTCTGTAAATATGTCTTTCA	1078
	GAATAAAT <u>C</u> AAAAATTT	1079
	AAATTTTT G ATTTATTC	1080
Breast cancer Glu1953Term GAA to TAA	AACCAAAATATGTCTGGATTGGAGAAAGTTTCTAAAATATCAC CTTGTGATGTTAGTTTG G AAACTTCAGATATATGTAAATGTAG TATAGGGAAGCTTCATAAGTCAGTCTCATCTGCAA	1081
	TTGCAGATGAGACTGACTTATGAAGCTTCCCTATACTACATTT ACATATATCTGAAGTTTCCCAAACTAACATCACAAGGTGATATTTTAGAAACTTTCCCCAATCCAGACATATTTTGGTT	1082
	TTAGTTTG G AAACTTCA	1083
	TGAAGTTT C CAAACTAA	1084
Breast cancer Ser1970Term TCA to TAA	TTAGTTTGGAAACTTCAGATATATGTAAATGTAGTATAGGGAA GCTTCATAAGTCAGTCT <u>C</u> ATCTGCAAATACTTGTGGGATTTTT AGCACAGCAAGTGGAAAATCTGTCCAGGTATCAGA	1085

Clinical Phenotype & Mutation	Correcting Oligos	SEQ ID NO:
	TCTGATACCTGGACAGATTTTCCACTTGCTGTGCTAAAAATCC CACAAGTATTTGCAGAT G AGACTGACTTATGAAGCTTCCCTAT ACTACATTTACATATATCTGAAGTTTCCAAACTAA	1086
	GTCAGTCT <u>C</u> ATCTGCAA	1087
	TTGCAGAT <u>G</u> AGACTGAC	1088
Breast cancer Gln1987Term CAG to TAG	AAGTCAGTCTCATCTGCAAATACTTGTGGGATTTTTAGCACAG CAAGTGGAAAATCTGTC <u>C</u> AGGTATCAGATGCTTCATTACAAAA CGCAAGACAAGTGTTTTCTGAAATAGAAGATAGTA	1089
	TACTATCTTCTATTTCAGAAAACACTTGTCTTGCGTTTTGTAAT GAAGCATCTGATACCT <u>G</u> GACAGATTTTCCACTTGCTGTGCTA AAAATCCCACAAGTATTTGCAGATGAGACTGACTT	1090
	AATCTGTC C AGGTATCA	1091
	TGATACCT G GACAGATT	1092
Breast cancer Ala2466Val GCA to GTA	AAAATAAGATTAATGACAATGAGATTCATCAGTTTAACAAAAA CAACTCCAATCAAGCAGCAGCTGTAACTTTCACAAAGTGTGA AGAAGAACCTTTAGGTATTGTATGACAATTTGTGTG	1093
	CACACAAATTGTCATACAATACCTAAAGGTTCTTCTTCACACT TTGTGAAAGTTACAGCT <u>G</u> CTGCTTGATTGGAGTTGTTTTTGTT AAACTGATGAATCTCATTGTCATTAATCTTATTTT	1094
	TCAAGCAG <u>C</u> AGCTGTAA	1095
	TTACAGCT G CTGCTTGA	1096
Breast cancer Arg2520Term CGA to TGA	AGGCAACGCGTCTTTCCACAGCCAGGCAGTCTGTATCTTGCA AAAACATCCACTCTGCCTCGGAATCTCTCTGAAAGCAGCAGTA GGAGGCCAAGTCCCCTCTGCGTGTCCTCATAAACAGG	1097
	CCTGTTTATGAGGACACGCAGAGGGGACTTGGCCTCCTACT GCTGCTTTCAGAGAGATTC G AGGCAGAGTGGATGTTTTTGCA AGATACAGACTGCCTGGCTGTGGAAAGACGCGTTGCCT	1098
	CTCTGCCT <u>C</u> GAATCTCT	1099
	AGAGATTC G AGGCAGAG	1100
Breast cancer Gin2714Term CAA to TAA	ATTTCATTGAGCGCAAATATATCTGAAACTTCTAGCAATAAAA CTAGTAGTGCAGATACC <u>C</u> AAAAAGTGGCCATTATTGAACTTA CAGATGGGTGGTATGCTGTTAAGGCCCAGTTAGATC	1101
	GATCTAACTGGGCCTTAACAGCATACCACCCATCTGTAAGTT CAATAATGGCCACTTTTTGGGTATCTGCACTACTAGTTTTATT GCTAGAAGTTTCAGATATATTTGCGCTCAATGAAAT	1102

Clinical Phenotype & Mutation	Correcting Oligos	SEQ ID NO:
	CAGATACC <u>C</u> AAAAAGTG	1103
	CACTTTTT G GGTATCTG	1104
Breast cancer Leu2776Term TTA to TGA	CAGAACTGGTGGGCTCTCCTGATGCCTGTACACCTCTTGAAG CCCCAGAATCTCTTATGT <u>T</u> AAAGGTAAATTAATTTGCACTCTT GGTAAAAATCAGTCATTGATTCAGTTAAATTCTAGA	1105
	TCTAGAATTTAACTGAATCAATGACTGATTTTTACCAAGAGTG CAAATTAATTTACCTTT A ACATAAGAGATTCTGGGGCTTCAAG AGGTGTACAGGCATCAGGAGAGCCCACCAGTTCTG	1106
	TCTTATGT <u>T</u> AAAGATTT	1107
	AAATCTTT <u>A</u> ACATAAGA	1108
Breast cancer Gln2893Term CAG to TAG	CCTTTTGTTTTCTTAGAAAACACAACAAAACCATATTTACCATC ACGTGCACTAACAAGACAGAGCAGTTCGTGCTTTGCAAGATGG TGCAGAGCTTTATGAAGCAGTGAAGAATGCAGCAG	1109
	CTGCTGCATTCTTCACTGCTTCATAAAGCTCTGCACCATCTTG CAAAGCACGAACTTGCTGTTGTTAGTGCACGTGATGGTAA ATATGGTTTTGTTGTTTTTCTAAGAAAACAAAAGG	1110
	TAACAAGA <u>C</u> AGCAAGTT	1111
	AACTTGCT <u>G</u> TCTTGTTA	1112
Breast cancer Ala2951Thr GCC to ACC	AATCACAGGCAAATGTTGAATGATAAGAAACAAGCTCAGATC CAGTTGGAAATTAGGAAGGCCATGGAATCTGCTGAACAAAAG GAACAAGGTTTATCAAGGGATGTCACAACCGTGTGGA	1113
	TCCACACGGTTGTGACATCCCTTGATAAACCTTGTTCCTTTTG TTCAGCAGATTCCATGGCCTTCCTAATTTCCAACTGGATCTGA GCTTGTTTCTTATCATTCAACATTTGCCTGTGATT	1114
	TTAGGAAG <u>G</u> CCATGGAA	1115
	TTCCATGG <u>C</u> CTTCCTAA	1116
Breast cancer Met3118Thr ATG to ACG	ACAATTTACTGGCAATAAAGTTTTGGATAGACCTTAATGAGGA CATTATTAAGCCTCATA <u>T</u> GTTAATTGCTGCAAGCAACCTCCAG TGGCGACCAGAATCCAAATCAGGCCTTCTTACTTT	1117
	AAAGTAAGAAGGCCTGATTTGGATTCTGGTCGCCACTGGAG GTTGCTTGCAGCAATTAACATATGAGGCTTAATAATGTCCTCA TTAAGGTCTATCCAAAACTTTATTGCCAGTAAATTGT	1118
	GCCTCATA <u>T</u> GTTAATTG	1119
	CAATTAAC <u>A</u> TATGAGGC	1120

15

EXAMPLE 9 Cystic Fibrosis - CFTR

Cystic fibrosis is a lethal disease affecting approximately one in 2,500 live Caucasian births and is the most common autosomal recessive disease in Caucasians. Patients with this disease have reduced chloride ion permeability in the secretory and absorptive cells of organs with epithelial cell linings, including the airways, pancreas, intestine, sweat glands and male genital tract. This, in turn, reduces the transport of water across the epithelia. The lungs and the GI tract are the predominant organ systems affected in this disease and the pathology is characterized by blocking of the respiratory and GI tracts with viscous mucus. The chloride impermeability in affected tissues is due to mutations in a specific chloride channel, the cystic fibrosis transmembrane conductance regulator protein (CFTR), which prevents normal passage of chloride ions through the cell membrane (Welsh et al., Neuron, 8:821-829 (1992)). Damage to the lungs due to mucus blockage, frequent bacterial infections and inflammation is the primary cause of morbidity and mortality in CF patients and, although maintenance therapy has improved the quality of patients' lives, the median age at death is still only around 30 years. There is no effective treatment for the disease, and therapeutic research is focused on gene therapy using

exogenous transgenes in viral vectors and/or activating the defective or other chloride channels in the cell membrane to normalize chloride permeability (Tizzano et al., J. Pediat., 120:337-349 (1992)). However, the death of a teenage patient treated with an adenovirus vector carrying an exogenous CFTR gene in clinical trials in the late 1990's has impacted this area of research.

The oligonucleotides of the invention for correction of the CFTR gene are attached as a table.

Table 16
CFTR Mutations and Genome-Correcting Oligos

Clinical Phenotype & Mutation	Correcting Oligos	SEQ ID NO:
Cystic fibrosis Ala46Asp GCT to GAT	AAGGATACAGACAGCGCCTGGAATTGTCAGACATATACCAAA TCCCTTCTGTTGATTCTGCTGACAATCTATCTGAAAAATTGGA AAGGTATGTTCATGTACATTGTTTAGTTGAAGAGAG	1129
	CTCTCTTCAACTAAACAATGTACATGAACATACCTTTCCAATTT TTCAGATAGATTGTCA G CAGAATCAACAGAAGGGATTTGGTA TATGTCTGACAATTCCAGGCGCTGTCTGTATCCTT	1130
	TGATTCTG <u>C</u> TGACAATC	1131
	GATTGTCA G CAGAATCA	1132
Cystic fibrosis Ser50Tyr TCT to TAT	AGCGCCTGGAATTGTCAGACATATACCAAATCCCTTCTGTTG ATTCTGCTGACAATCTATCTGAAAAATTGGAAAGGTATGTTCA TGTACATTGTTTAGTTGAAGAGAGAAATTCATATTA	1133
	TAATATGAATTTCTCTCTCAACTAAACAATGTACATGAACATA CCTTTCCAATTTTTCA G ATAGATTGTCAGCAGAATCAACAGAA GGGATTTGGTATATGTCTGACAATTCCAGGCGCT	1134
	CAATCTAT <u>C</u> TGAAAAAT	1135
	ATTTTTCA G ATAGATTG	1136
Congenital absence of vas deferens Glu56Lys GAA-AAA	AGGACAACTAAAATATTTGCACATGCAACTTATTGGTCCCACT TTTTATTCTTTTGCAGA G AATGGGATAGAGAGCTGGCTTCAAA GAAAAATCCTAAACTCATTAATGCCCTTCGGCGAT	1137
	ATCGCCGAAGGGCATTAATGAGTTTAGGATTTTTCTTTGAAGC CAGCTCTCTATCCCATT <u>C</u> TCTGCAAAAGAATAAAAAGTGGGA CCAATAAGTTGCATGTGCAAATATTTTAGTTGTCCT	1138
	TITGCAGA <u>G</u> AATGGGAT	1139
	ATCCCATT C TCTGCAAA	1140

Clinical Phenotype & Mutation	Correcting Oligos	SEQ ID NO:
Cystic fibrosis Trp57Gly TGG to GGG	AGGACAACTAAAATATTTGCACATGCAACTTATTGGTCCCACT TTTTATTCTTTTGCAGA <u>G</u> AATGGGATAGAGAGCTGGCTTCAAA GAAAAATCCTAAACTCATTAATGCCCTTCGGCGAT	1141
	ATCGCCGAAGGGCATTAATGAGTTTAGGATTTTTCTTTGAAGC CAGCTCTCTATCCCATTCTCTGCAAAAGAATAAAAAGTGGGA CCAATAAGTTGCATGTGCAAATATTTTAGTTGTCCT	1142
	TTTGCAGA G AATGGGAT	1143
	ATCCCATT <u>C</u> TCTGCAAA	1144
Cystic fibrosis Trp57Term TGG to TGA	AACTAAAATATTTGCACATGCAACTTATTGGTCCCACTTTTAT TCTTTTGCAGAGAATG <u>G</u> GATAGAGAGCTGGCTTCAAAGAAAA ATCCTAAACTCATTAATGCCCTTCGGCGATGTTTT	1145
	AAAACATCGCCGAAGGGCATTAATGAGTTTAGGATTTTTCTTT GAAGCCAGCTCTCTATC <u>C</u> CATTCTCTGCAAAAGAATAAAAAGT GGGACCAATAAGTTGCATGTGCAAATATTTTAGTT	1146
,	AGAGAATG G GATAGAGA	1147
	TCTCTATC <u>C</u> CATTCTCT	1148
Congenital absence of vas deferens Asp58Asn	ACTAAAATATTTGCACATGCAACTTATTGGTCCCACTTTTATT CTTTTGCAGAGAATGG <u>G</u> ATAGAGAGCTGGCTTCAAAGAAAAA TCCTAAACTCATTAATGCCCTTCGGCGATGTTTTT	1149
GAT to AAT	AAAAACATCGCCGAAGGGCATTAATGAGTTTAGGATTTTTCTT TGAAGCCAGCTCTCTAT <u>C</u> CCATTCTCTGCAAAAGAATAAAAAG TGGGACCAATAAGTTGCATGTGCAAATATTTTAGT	1150
	GAGAATGG <u>G</u> ATAGAGAG	1151
	CTCTCTAT <u>C</u> CCATTCTC	1152
Cystic fibrosis Glu60Term GAG to TAG	ATATTTGCACATGCAACTTATTGGTCCCACTTTTTATTCTTTTG CAGAGAATGGGATAGAGAGGCTGGCTTCAAAGAAAAATCCTAA ACTCATTAATGCCCTTCGGCGATGTTTTTTCTGGA	1153
	TCCAGAAAAACATCGCCGAAGGGCATTAATGAGTTTAGGAT TTTTCTTTGAAGCCAGCT <u>C</u> TCTATCCCATTCTCTGCAAAAGAA TAAAAAGTGGGACCAATAAGTTGCATGTGCAAATAT	1154
	GGGATAGA <u>G</u> AGCTGGCT	1155
	AGCCAGCTCTCTATCCC	1156

Clinical Phenotype & Mutation	Correcting Oligos	SEQ ID NO:
Cystic fibrosis Pro67Leu CCT to CTT	GGTCCCACTTTTTATTCTTTTGCAGAGAATGGGATAGAGAGC TGGCTTCAAAGAAAAATC <u>C</u> TAAACTCATTAATGCCCTTCGGC GATGTTTTTTCTGGAGATTTATGTTCTATGGAATCTT	1157
	AAGATTCCATAGAACATAAATCTCCAGAAAAAACATCGCCGAA GGGCATTAATGAGTTTA <u>G</u> GATTTTTCTTTGAAGCCAGCTCTCT ATCCCATTCTCTGCAAAAGAATAAAAAGTGGGACC	1158
	GAAAAATC <u>C</u> TAAACTCA	1159
	TGAGTTTA G GATTTTTC	1160
Cystic fibrosis Arg74Trp CGG to TGG	TGCAGAGAATGGGATAGAGAGCTGGCTTCAAAGAAAAATCCT AAACTCATTAATGCCCTTCGGCGATGTTTTTTCTGGAGATTTA TGTTCTATGGAATCTTTTTATATTTAGGGGTAAGGA	1161
	TCCTTACCCCTAAATATAAAAAGATTCCATAGAACATAAATCT CCAGAAAAAACATCGCC <u>G</u> AAGGGCATTAATGAGTTTAGGATT TTTCTTTGAAGCCAGCTCTCTATCCCATTCTCTGCA	1162
	ATGCCCTT C GGCGATGT	1163
	ACATCGCC G AAGGGCAT	1164
Congenital absence of vas deferens ARG75GLN	GAGAATGGGATAGAGAGAGCTGGCTTCAAAGAAAAATCCTAAAC TCATTAATGCCCTTCGGC <u>G</u> ATGTTTTTTCTGGAGATTTATGTT CTATGGAATCTTTTTATATTTAGGGGTAAGGATCTC	1165
CGA to CAA	GAGATCCTTACCCCTAAATATAAAAAGATTCCATAGAACATAA ATCTCCAGAAAAAACAT <u>C</u> GCCGAAGGGCATTAATGAGTTTAG GATTTTTCTTTGAAGCCAGCTCTCTATCCCATTCTC	1166
	CCTTCGGC <u>G</u> ATGTTTTT	1167
	AAAAACAT <u>C</u> GCCGAAGG	1168
Cystic fibrosis Arg75Leu CGA to CTA	GAGAATGGGATAGAGAGCTGGCTTCAAAGAAAAATCCTAAAC TCATTAATGCCCTTCGGC <u>G</u> ATGTTTTTTCTGGAGATTTATGTT CTATGGAATCTTTTTATATTTAGGGGTAAGGATCTC	1169
	GAGATCCTTACCCCTAAATATAAAAAGATTCCATAGAACATAA ATCTCCAGAAAAAACAT <u>C</u> GCCGAAGGGCATTAATGAGTTTAG GATTTTTCTTTGAAGCCAGCTCTCTATCCCATTCTC	1170
	CCTTCGGC <u>G</u> ATGTTTTT	1171
	AAAAACAT C GCCGAAGG	1172
Cystic fibrosis Arg75Term CGA to TGA	AGAGAATGGGATAGAGAGCTGGCTTCAAAGAAAAATCCTAAA CTCATTAATGCCCTTCGG C GATGTTTTTTCTGGAGATTTATGT TCTATGGAATCTTTTTATATTTAGGGGTAAGGATCT	1173

Clinical Phenotype & Mutation	Correcting Oligos	SEQ ID NO:
	AGATCCTTACCCCTAAATATAAAAAGATTCCATAGAACATAAA TCTCCAGAAAAAACATC <u>G</u> CCGAAGGGCATTAATGAGTTTAGG ATTTTTCTTTGAAGCCAGCTCTCTATCCCATTCTCT	1174
	CCCTTCGG <u>C</u> GATGTTTT	1175
	AAAACATC <u>G</u> CCGAAGGG	1176
Cystic fibrosis Gly85Glu GGA to GAA	AAAATCCTAAACTCATTAATGCCCTTCGGCGATGTTTTTCTG GAGATTTATGTTCTATG <u>G</u> AATCTTTTTATATTTAGGGGTAAGG ATCTCATTTGTACATTCATTATGTATCACATAACT	1177
	AGTTATGTGATACATAATGAATGTACAAATGAGATCCTTACCC CTAAATATAAAAAGATT <u>C</u> CATAGAACATAAATCTCCAGAAAAA ACATCGCCGAAGGGCATTAATGAGTTTAGGATTTT	1178
	GTTCTATG G AATCTTTT	1179
	AAAAGATT C CATAGAAC	1180
Cystic fibrosis Gly85Val GGA to GTA	AAAATCCTAAACTCATTAATGCCCTTCGGCGATGTTTTTCTG GAGATTTATGTTCTATGGAATCTTTTTATATTTAGGGGTAAGG ATCTCATTTGTACATTCATTATGTATCACATAACT	1181
	AGTTATGTGATACATAATGAATGTACAAATGAGATCCTTACCC CTAAATATAAAAAGATTCCATAGAACATAAATCTCCAGAAAAA ACATCGCCGAAGGGCATTAATGAGTTTAGGATTTT	1182
	GTTCTATG <u>G</u> AATCTTTT	1183
	AAAAGATT C CATAGAAC	1184
Cystic fibrosis Leu88Ser TTA to TCA	AACTCATTAATGCCCTTCGGCGATGTTTTTCTGGAGATTTAT GTTCTATGGAATCTTTTTATATTTAGGGGTAAGGATCTCATTT GTACATTCATTATGTATCACATAACTATATGCATT	1185
	AATGCATATAGTTATGTGATACATAATGAATGTACAAATGAGA TCCTTACCCCTAAATAT <u>A</u> AAAAGATTCCATAGAACATAAATCT CCAGAAAAAACATCGCCGAAGGGCATTAATGAGTT	1186
	AATCTTTT <u>T</u> ATATTTAG	1187
	CTAAATAT A AAAAGATT	1188
Cystic fibrosis Phe87Leu TTT to CTT	CCTAAACTCATTAATGCCCTTCGGCGATGTTTTTTCTGGAGAT TTATGTTCTATGGAATC <u>T</u> TTTTATATTTAGGGGTAAGGATCTC ATTTGTACATTCATTATGTATCACATAACTATATG	1189
	CATATAGTTATGTGATACATAATGAATGTACAAATGAGATCCT TACCCCTAAATATAAAAAAGATTCCATAGAACATAAATCTCCAG AAAAAACATCGCCGAAGGGCATTAATGAGTTTAGG	1190

Clinical Phenotype & Mutation	Correcting Oligos	SEQ ID NO:
-	ATGGAATC <u>T</u> TTTTATAT	1191
	ATATAAAA A GATTCCAT	1192
Cystic fibrosis Leu88Term TTA to TGA	AACTCATTAATGCCCTTCGGCGATGTTTTTTCTGGAGATTTAT GTTCTATGGAATCTTTTATATTTAGGGGTAAGGATCTCATTT GTACATTCATTATGTATCACATAACTATATGCATT	1193
,	AATGCATATAGTTATGTGATACATAATGAATGTACAAATGAGA TCCTTACCCCTAAATAT A AAAAGATTCCATAGAACATAAATCT CCAGAAAAAACATCGCCGAAGGGCATTAATGAGTT	1194
	AATCTTTT <u>T</u> ATATTTAG	1195
	CTAAATAT <u>A</u> AAAAGATT	1196
Cystic fibrosis Leu88Term TTA to TAA	AACTCATTAATGCCCTTCGGCGATGTTTTTTCTGGAGATTTAT GTTCTATGGAATCTTTTTATATTTAGGGGTAAGGATCTCATTT GTACATTCATTATGTATCACATAACTATATGCATT	1197
	AATGCATATAGTTATGTGATACATAATGAATGTACAAATGAGA TCCTTACCCCTAAATAT <u>A</u> AAAAGATTCCATAGAACATAAATCT CCAGAAAAAACATCGCCGAAGGGCATTAATGAGTT	1198
	AATCTTTT <u>T</u> ATATTTAG	1199
	CTAAATAT A AAAAGATT	1200
Cystic fibrosis Gly91Arg GGG to AGG	AATGCCCTTCGGCGATGTTTTTTCTGGAGATTTATGTTCTATG GAATCTTTTTATATTTAGGGGTAAGGATCTCATTTGTACATTC ATTATGTATCACATAACTATATGCATTTTTGTGAT	1201
	ATCACAAAAATGCATATAGTTATGTGATACATAATGAATG	1202
	TATATTTA G GGGTAAGG	1203
	CCTTACCC <u>C</u> TAAATATA	1204
Cystic fibrosis Gln98Arg CAG to CGG	AATAAATGAAATTTAATTTCTCTGTTTTTCCCCTTTTGTAGGAA GTCACCAAAGCAGTACAAGCCTCTCTTACTGGGAAGAATCATA GCTTCCTATGACCCGGATAACAAGGAGGAACGCTC	1205
	GAGCGTTCCTCCTTGTTATCCGGGTCATAGGAAGCTATGATT CTTCCCAGTAAGAGAGGCTGTACTGCTTTGGTGACTTCCTAC AAAAGGGGAAAAACAGAGAAATTAAATT	1206
, 	AGCAGTAC <u>A</u> GCCTCTCT	1207
	AGAGAGGC <u>T</u> GTACTGCT	1208

Clinical Phenotype & Mutation	Correcting Oligos	SEQ ID NO:
Cystic fibrosis Gln98Term CAG-TAG	AAATAAATGAAATTTAATTTCTCTGTTTTTCCCCTTTTGTAGGA AGTCACCAAAGCAGTA <u>C</u> AGCCTCTCTTACTGGGAAGAATCAT AGCTTCCTATGACCCGGATAACAAGGAGGAACGCT	1209
	AGCGTTCCTCCTTGTTATCCGGGTCATAGGAAGCTATGATTC TTCCCAGTAAGAGAGGCTGTACTGCTTTGGTGACTTCCTACA AAAGGGGAAAAACAGAGAAATTAAATT	1210
	AAGCAGTA C AGCCTCTC	1211
	GAGAGGCT <u>G</u> TACTGCTT	1212
Cystic fibrosis Ser108Phe TCC to TTC	CCCTTTTGTAGGAAGTCACCAAAGCAGTACAGCCTCTCTTAC TGGGAAGAATCATAGCTTCCTATGACCCGGATAACAAGGAGG AACGCTCTATCGCGATTTATCTAGGCATAGGCTTATG	1213
	CATAAGCCTATGCCTAGATAAATCGCGATAGAGCGTTCCTCC TTGTTATCCGGGTCATAGGAAGCTATGATTCTTCCCAGTAAG AGAGGCTGTACTGCTTTGGTGACTTCCTACAAAAGGG	1214
	CATAGCTT C CTATGACC	1215
	GGTCATAG <u>G</u> AAGCTATG	1216
Cystic fibrosis Tyr109Cys TAT to TGT	TTTTGTAGGAAGTCACCAAAGCAGTACAGCCTCTCTTACTGG GAAGAATCATAGCTTCCTATGACCCGGATAACAAGGAGGAAC GCTCTATCGCGATTTATCTAGGCATAGGCTTATGCCT	1217
	AGGCATAAGCCTATGCCTAGATAAATCGCGATAGAGCGTTCC TCCTTGTTATCCGGGTCA <u>T</u> AGGAAGCTATGATTCTTCCCAGT AAGAGAGGCTGTACTGCTTTGGTGACTTCCTACAAAA	1218
	AGCTTCCT <u>A</u> TGACCCGG	1219
	CCGGGTCA <u>T</u> AGGAAGCT	1220
Cystic fibrosis Asp110His GAC to CAC	TTGTAGGAAGTCACCAAAGCAGTACAGCCTCTCTTACTGGGA AGAATCATAGCTTCCTATGACCCGGATAACAAGGAGGAACGC TCTATCGCGATTTATCTAGGCATAGGCTTATGCCTTC	1221
	GAAGGCATAAGCCTATGCCTAGATAAATCGCGATAGAGCGTT CCTCCTTGTTATCCGGGT <u>C</u> ATAGGAAGCTATGATTCTTCCCA GTAAGAGAGGCTGTACTGCTTTGGTGACTTCCTACAA	1222
	CTTCCTAT <u>G</u> ACCCGGAT	1223
	ATCCGGGT <u>C</u> ATAGGAAG	1224

Clinical Phenotype & Mutation	Correcting Oligos	SEQ ID NO:
Congenital absence of vas deferens Pro111Leu	AGGAAGTCACCAAAGCAGTACAGCCTCTCTTACTGGGAAGAA TCATAGCTTCCTATGACCCGGGATAACAAGGAGGAACGCTCTA TCGCGATTTATCTAGGCATAGGCTTATGCCTTCTCTT	1225
CCG to CTG	AAGAGAAGGCATAAGCCTATGCCTAGATAAATCGCGATAGAG CGTTCCTCCTTGTTATCCGGGTCATAGGAAGCTATGATTCTT CCCAGTAAGAGAGGCTGTACTGCTTTGGTGACTTCCT	1226
	CTATGACC C GGATAACA	1227
	TGTTATCC <u>G</u> GGTCATAG	1228
Cystic fibrosis Arg117Cys CGC to TGC	GTACAGCCTCTCTTACTGGGAAGAATCATAGCTTCCTATGAC CCGGATAACAAGGAGGAA <u>C</u> GCTCTATCGCGATTTATCTAGGC ATAGGCTTATGCCTTCTCTTTATTGTGAGGACACTGC	1229
	GCAGTGTCCTCACAATAAAGAGAAGGCATAAGCCTATGCCTA GATAAATCGCGATAGAGC <u>G</u> TTCCTCCTTGTTATCCGGGTCAT AGGAAGCTATGATTCTTCCCAGTAAGAGAGGCTGTAC	1230
	AGGAGGAA <u>C</u> GCTCTATC	1231
	GATAGAGC <u>G</u> TTCCTCCT	1232
Cystic fibrosis Arg117His CGC to CAC	TACAGCCTCTCTTACTGGGAAGAATCATAGCTTCCTATGACC CGGATAACAAGGAGGAACGCTCTATCGCGATTTATCTAGGCA TAGGCTTATGCCTTCTCTTTATTGTGAGGACACTGCT	1233
	AGCAGTGTCCTCACAATAAAGAGAAGGCATAAGCCTATGCCT AGATAAATCGCGATAGAG <u>C</u> GTTCCTCCTTGTTATCCGGGTCA TAGGAAGCTATGATTCTTCCCAGTAAGAGAGGCTGTA	1234
	GGAGGAAC G CTCTATCG	1235
	CGATAGAG <u>C</u> GTTCCTCC	1236
Cystic fibrosis Arg117Leu CGC to CTC	TACAGCCTCTCTTACTGGGAAGAATCATAGCTTCCTATGACC CGGATAACAAGGAGGAAC <u>G</u> CTCTATCGCGATTTATCTAGGCA TAGGCTTATGCCTTCTTTATTGTGAGGACACTGCT	1237
	AGCAGTGTCCTCACAATAAAGAGAAGGCATAAGCCTATGCCT AGATAAATCGCGATAGAGCGTTCCTCCTTGTTATCCGGGTCA TAGGAAGCTATGATTCTTCCCAGTAAGAGAGGCTGTA	1238
	GGAGGAAC <u>G</u> CTCTATCG	1239
	CGATAGAG <u>C</u> GTTCCTCC	1240

Clinical Phenotype & Mutation	Correcting Oligos	SEQ ID NO:
Cystic fibrosis Arg117Pro CGC to CCC	TACAGCCTCTCTTACTGGGAAGAATCATAGCTTCCTATGACC CGGATAACAAGGAGGAAC <u>G</u> CTCTATCGCGATTTATCTAGGCA TAGGCTTATGCCTTCTCTTTATTGTGAGGACACTGCT	1241
	AGCAGTGTCCTCACAATAAAGAGAAGGCATAAGCCTATGCCT AGATAAATCGCGATAGAG <u>C</u> GTTCCTCCTTGTTATCCGGGTCA TAGGAAGCTATGATTCTTCCCAGTAAGAGAGGCTGTA	1242
	GGAGGAAC <u>G</u> CTCTATCG	1243
	CGATAGAG <u>C</u> GTTCCTCC	1244
Cystic fibrosis Ala120Thr GCG-ACG	CTCTTACTGGGAAGAATCATAGCTTCCTATGACCCGGATAAC AAGGAGGAACGCTCTATC G CGATTTATCTAGGCATAGGCTTA TGCCTTCTTTTATTGTGAGGACACTGCTCCTACACC	1245
	GGTGTAGGAGCAGTGTCCTCACAATAAAGAGAAGGCATAAG CCTATGCCTAGATAAATCG C GATAGAGCGTTCCTCCTTGTTA TCCGGGTCATAGGAAGCTATGATTCTTCCCAGTAAGAG	1246
	GCTCTATC G CGATTTAT	1247
	ATAAATCG C GATAGAGC	1248
Cystic fibrosis Tyr122Term TAT to TAA	GGGAAGAATCATAGCTTCCTATGACCCGGATAACAAGGAGGA ACGCTCTATCGCGATTTA <u>T</u> CTAGGCATAGGCTTATGCCTTCT CTTTATTGTGAGGACACTGCTCCTACACCCAGCCATT	1249
	AATGGCTGGGTGTAGGAGCAGTGTCCTCACAATAAAGAGAA GGCATAAGCCTATGCCTAGATAAATCGCGATAGAGCGTTCCT CCTTGTTATCCGGGTCATAGGAAGCTATGATTCTTCCC	1250
	GCGATTTA <u>T</u> CTAGGCAT	1251
	ATGCCTAG <u>A</u> TAAATCGC	1252
Cystic fibrosis Gly126Asp GGC-GAC	TAGCTTCCTATGACCCGGATAACAAGGAGGAACGCTCTATCG CGATTTATCTAGGCATAGGCTTATGCCTTCTCTTTATTGTGAG GACACTGCTCCTACACCCAGCCATTTTTGGCCTTCA	1253
-	TGAAGGCCAAAAATGGCTGGGTGTAGGAGCAGTGTCCTCAC AATAAAGAGAAGGCATAAGCCTATGCCTAGATAAATCGCGAT AGAGCGTTCCTCCTTGTTATCCGGGTCATAGGAAGCTA	1254
	AGGCATAG <u>G</u> CTTATGCC	1255
	GGCATAAG <u>C</u> CTATGCCT	1256

Clinical Phenotype & Mutation	Correcting Oligos	SEQ ID NO:
Cystic fibrosis His139Arg CAC to CGC	TCGCGATTTATCTAGGCATAGGCTTATGCCTTCTCTTTATTGT GAGGACACTGCTCCTACACCCAGCCATTTTTGGCCTTCATCA CATTGGAATGCAGATGAGAATAGCTATGTTTAGTTT	1257
	AAACTAAACATAGCTATTCTCATCTGCATTCCAATGTGATGAA GGCCAAAAATGGCTGGG <u>T</u> GTAGGAGCAGTGTCCTCACAATA AAGAGAAGGCATAAGCCTATGCCTAGATAAATCGCGA	1258
	GCTCCTAC <u>A</u> CCCAGCCA	1259
	TGGCTGGG <u>T</u> GTAGGAGC	1260
Cystic fibrosis Ala141Asp GCC to GAC	TTTATCTAGGCATAGGCTTATGCCTTCTCTTTATTGTGAGGAC ACTGCTCCTACACCCAGCCATTTTTGGCCTTCATCACATTGG AATGCAGATGAGAATAGCTATGTTTAGTTTGATTTA	1261
	TAAATCAAACTAAACATAGCTATTCTCATCTGCATTCCAATGT GATGAAGGCCAAAAATG G CTGGGTGTAGGAGCAGTGTCCTC ACAATAAAGAGAAGGCATAAGCCTATGCCTAGATAAA	1262
	ACACCCAG <u>C</u> CATTTTTG	1263
	CAAAAATG G CTGGGTGT	1264
Cystic fibrosis Ile148Thr ATT to ACT	GCCTTCTCTTTATTGTGAGGACACTGCTCCTACACCCAGCCA TTTTTGGCCTTCATCACATTGGAATGCAGATGAGAATAGCTAT GTTTAGTTTGATTTATAAGAAGGTAATACTTCCTTG	1265
	CAAGGAAGTATTACCTTCTTATAAATCAAACTAAACATAGCTA TTCTCATCTGCATTCCAATGTGATGAAGGCCAAAAATGGCTG GGTGTAGGAGCAGTGTCCTCACAATAAAGAGAAGGC	1266
	TCATCACA <u>T</u> TGGAATGC	1267
	GCATTCCA <u>A</u> TGTGATGA	1268
Cystic fibrosis Gly149Arg GGA to AGA	CTTCTCTTTATTGTGAGGACACTGCTCCTACACCCAGCCATTT TTGGCCTTCATCACATTGGAATGCAGATGAGAATAGCTATGTT TAGTTTGATTTATAAGAAGGTAATACTTCCTTGCA	1269
	TGCAAGGAAGTATTACCTTCTTATAAATCAAACTAAACATAGC TATTCTCATCTGCATTC <u>C</u> AATGTGATGAAGGCCAAAAATGGCT GGGTGTAGGAGCAGTGTCCTCACAATAAAGAGAAG	1270
	ATCACATT G GAATGCAG	1271
	CTGCATTC <u>C</u> AATGTGAT	1272

Clinical Phenotype & Mutation	Correcting Oligos	SEQ ID NO:
Cystic fibrosis Gln151Term CAG to TAG	TTTATTGTGAGGACACTGCTCCTACACCCAGCCATTTTTGGC CTTCATCACATTGGAATGCAGATGAGAATAGCTATGTTTAGTT TGATTTATAAGAAGGTAATACTTCCTTGCACAGGCC	1273
	GGCCTGTGCAAGGAAGTATTACCTTCTTATAAATCAAACTAAA CATAGCTATTCTCATCT <u>G</u> CATTCCAATGTGATGAAGGCCAAAA ATGGCTGGGTGTAGGAGCAGTGTCCTCACAATAAA	1274
	TTGGAATG <u>C</u> AGATGAGA	1275
	TCTCATCTGCATTCCAA	1276
Cystic fibrosis Lys166Glu AAG-GAG	AATATATTTGTATTTTGTTTGTTGAAATTATCTAACTTTCCATTT TTCTTTTAGACTTTA <u>A</u> AGCTGTCAAGCCGTGTTCTAGATAAAA TAAGTATTGGACAACTTGTTAGTCTCCTTTCCA	1277
	TGGAAAGGAGACTAACAAGTTGTCCAATACTTATTTTATCTAG AACACGGCTTGACAGCT <u>T</u> TAAAGTCTAAAAGAAAAATGGAAA GTTAGATAATTTCAACAAACAAAATACAAATATATT	1278
	AGACTTTA A AGCTGTCA	1279
	TGACAGCTTTAAAGTCT	1280
Cystic fibrosis Ile175Val ATA-GTA	TTATCTAACTTTCCATTTTTCTTTTAGACTTTAAAGCTGTCAAG CCGTGTTCTAGATAAAAATAAGTATTGGACAACTTGTTAGTCTC CTTTCCAACAACCTGAACAAATTTGATGAAGTAT	1281
	ATACTTCATCAAATTTGTTCAGGTTGTTGGAAAGGAGACTAAC AAGTTGTCCAATACTTATTTTATCTAGAACACGGCTTGACAGC TTTAAAGTCTAAAAGAAAAATGGAAAGTTAGATAA	1282
	TAGATAAA A TAAGTATT	1283
	AATACTTA <u>T</u> TTTATCTA	1284
Cystic fibrosis Gly178Arg GGA to AGA	TTTCCATTTTCTTTTAGACTTTAAAGCTGTCAAGCCGTGTTCT AGATAAAATAAGTATT G GACAACTTGTTAGTCTCCTTTCCAAC AACCTGAACAAATTTGATGAAGTATGTACCTATT	1285
	AATAGGTACATACTTCATCAAATTTGTTCAGGTTGTTGGAAAG GAGACTAACAAGTTGTC <u>C</u> AATACTTATTTTATCTAGAACACGG CTTGACAGCTTTAAAGTCTAAAAGAAAAATGGAAA	1286
	TAAGTATT G GACAACTT	1287
	AAGTTGTC <u>C</u> AATACTTA	1288
Cystic fibrosis His199Gln CAT to CAG	AAGATACAATGACACCTGTTTTTGCTGTGCTTTTATTTTCCAG GGACTTGCATTGGCACATTTCGTGTGGATCGCTCCTTTGCAA GTGGCACTCCTCATGGGGCTAATCTGGGAGTTGTTA	1289

Clinical Phenotype & Mutation	Correcting Oligos	SEQ ID NO:
-	TAACAACTCCCAGATTAGCCCCCATGAGGAGTGCCACTTGCAA AGGAGCGATCCACACGAA <u>A</u> TGTGCCAATGCAAGTCCCTGGA AAATAAAAGCACAGCAAAAACAGGTGTCATTGTATCTT	1290
	TTGGCACATTTCGTGTG	1291
	CACACGAA <u>A</u> TGTGCCAA	1292
Cystic fibrosis His199Tyr CAT to TAT	GGAAGATACAATGACACCTGTTTTTGCTGTGCTTTTATTTTCC AGGGACTTGCATTGGCACATTTCGTGTGGATCGCTCCTTTGC AAGTGGCACTCCTCATGGGGCTAATCTGGGAGTTGT	1293
	ACAACTCCCAGATTAGCCCCCATGAGGAGTGCCACTTGCAAAG GAGCGATCCACACGAAAT <u>G</u> TGCCAATGCAAGTCCCTGGAAA ATAAAAGCACAGCAAAAACAGGTGTCATTGTATCTTCC	1294
	CATTGGCA <u>C</u> ATTTCGTG	1295
	CACGAAAT G TGCCAATG	1296
Cystic fibrosis Pro205Ser CCT to TCT	TGTTTTTGCTGTGCTTTTATTTTCCAGGGACTTGCATTGGCAC ATTTCGTGTGGATCGCTCCTTTGCAAGTGGCACTCCTCATGG GGCTAATCTGGGAGTTGTTACAGGCGTCTGCCTTCT	1297
	AGAAGGCAGACGCCTGTAACAACTCCCAGATTAGCCCCATG AGGAGTGCCACTTGCAAAGGAGCGATCCACACGAAATGTGC CAATGCAAGTCCCTGGAAAATAAAAGCACAGCAAAAACA	1298
	GGATCGCT <u>C</u> CTTTGCAA	1299
	TTGCAAAG <u>G</u> AGCGATCC	1300
Cystic fibrosis Leu206Trp TTG to TGG	TTTGCTGTGCTTTTATTTTCCAGGGACTTGCATTGGCACATTT CGTGTGGATCGCTCCTT <u>T</u> GCAAGTGGCACTCCTCATGGGGC TAATCTGGGAGTTGTTACAGGCGTCTGCCTTCTGTGG	1301
	CCACAGAAGGCAGACGCCTGTAACAACTCCCAGATTAGCCC CATGAGGAGTGCCACTTGC <u>A</u> AAGGAGCGATCCACACGAAAT GTGCCAATGCAAGTCCCTGGAAAATAAAAGCACAGCAAA	1302
	CGCTCCTT <u>T</u> GCAAGTGG	1303
	CCACTTGC <u>A</u> AAGGAGCG	1304
Cystic fibrosis Gln220Term CAG to TAG	TTCGTGTGGATCGCTCCTTTGCAAGTGGCACTCCTCATGGG GCTAATCTGGGAGTTGTTACAGGCGTCTGCCTTCTGTGGACT TGGTTTCCTGATAGTCCTTGCCCTTTTTCAGGCTGGGC	1305
	GCCCAGCCTGAAAAAGGGCAAGGACTATCAGGAAACCAAGT CCACAGAAGGCAGACGCCTGTAACAACTCCCAGATTAGCCC CATGAGGAGTGCCACTTGCAAAGGAGCGATCCACACGAA	1306

Clinical Phenotype & Mutation	Correcting Oligos	SEQ ID NO:
	AGTTGTTA C AGGCGTCT	1307
	AGACGCCT G TAACAACT	1308
Cystic fibrosis Cys225Arg TGT-CGT	CCTTTGCAAGTGGCACTCCTCATGGGGCTAATCTGGGAGTT GTTACAGGCGTCTGCCTTCTGTGGACTTGGTTTCCTGATAGT CCTTGCCCTTTTTCAGGCTGGGCTAGGGAGAATGATGA	1309
	TCATCATTCTCCCTAGCCCAGCCTGAAAAAGGGCAAGGACTA TCAGGAAACCAAGTCCACAAGAAGGCAGACGCCTGTAACAAC TCCCAGATTAGCCCCATGAGGAGTGCCACTTGCAAAGG	1310
	CTGCCTTC <u>T</u> GTGGACTT	1311
	AAGTCCAC <u>A</u> GAAGGCAG	1312
Cystic fibrosis Val232Asp GTC to GAC	TGGGGCTAATCTGGGAGTTGTTACAGGCGTCTGCCTTCTGT GGACTTGGTTTCCTGATAG <u>T</u> CCTTGCCCTTTTTCAGGCTGGG CTAGGGAGAATGATGATGAAGTACAGGTAGCAACCTAT	1313
	ATAGGTTGCTACCTGTACTTCATCATCATCTCCCTAGCCCA GCCTGAAAAAGGGCAAGGACTATCAGGAAACCAAGTCCACA GAAGGCAGACGCCTGTAACAACTCCCAGATTAGCCCCA	1314
	CCTGATAGTCCTTGCCC	1315
	GGGCAAGG <u>A</u> CTATCAGG	1316
Cystic fibrosis Gly239Arg GGG to AGG	GTTACAGGCGTCTGCCTTCTGTGGACTTGGTTTCCTGATAGT CCTTGCCCTTTTTCAGGCTGGGCTAGGGAGAATGATGAA GTACAGGTAGCAACCTATTTTCATAACTTGAAAGTTT	1317
	AAACTTTCAAGTTATGAAAATAGGTTGCTACCTGTACTTCATC ATCATTCTCCCTAGCCCAGCCTGAAAAAGGGCAAGGACTATC AGGAAACCAAGTCCACAGAAGGCAGACGCCTGTAAC	1318
	TTTCAGGC <u>T</u> GGGCTAGG	1319
	CCTAGCCC A GCCTGAAA	1320

EXAMPLE 10 Cyclin-dependent kinase inhibitor 2A - CDKN2A

The human CDKN2A gene was also designated MTS-1 for multiple tumor suppressor-1 and has been implicated in multiple cancers including, for example, malignant melanoma. Malignant melanoma is a cutaneous neoplasm of melanocytes. Melanomas generally have features of asymmetry, irregular border, variegated color, and diameter greater than 6 mm. The precise cause of melanoma is

The CDKN2A gene has been found to be homozygously deleted at high frequency in cell lines derived from tumors of lung, breast, brain, bone, skin, bladder, kidney, ovary, and lymphocyte.

Melanoma cell lines carried at least one copy of CDKN2A in combination with a deleted allele. Melanoma cell lines that carried at least 1 copy of CDKN2A frequently showed nonsense, missense, or frameshift mutations in the gene. Thus, CDKN2A may rival p53 (see Example 5) in the universality of its involvement in tumorigenesis. The attached table discloses the correcting oligonucleotide base sequences for the CDKN2A oligonucleotides of the invention.

Table 17
CDKN2A Mutations and Genome-Correcting Oligos

Clinical Phenotype & Mutation	Correcting Oligos	SEQ ID NO:
Melanoma Trp15Term TGG-TAG	GGGCGGCGGGAGCAGCATGGAGCCGGCGGCGGGGAGCAG CATGGAGCCTTCGGCTGACT <u>G</u> GCTGGCCACGGCCGCCGCCC GGGGTCGGGTAGAGGAGGTGCGGGCGCTGCTGGAGGCGGG	1321
	CCCGCCTCCAGCAGCGCCCGCACCTCCTCTACCCGACCCCG GGCCGCGGCCGTGGCCAGCCAGCCGAAGGCTCCATGC TGCTCCCCGCCGCCGCCGCCCCCCCCCC	1322
	GGCTGACT <u>G</u> GCTGGCCA	1323
	TGGCCAGC <u>C</u> AGTCAGCC	1324
Melanoma Leu16Pro CTG-CCG	CGGCGGGAGCAGCATGGAGCCGGCGGCGGGAGCAGCAT GGAGCCTTCGGCTGACTGGCTGGCCACGGCCGGGCCCGG GGTCGGGTAGAGGAGGTGCGGGCGCTGCTGGAGGCGGGG C	1325
	GCCCCGCCTCCAGCAGCGCCCGCACCTCCTCTACCCGACC CCGGGCCGCGGCCGTGGCCAGCCAGTCAGCCGAAGGCTCC ATGCTGCTCCCCGCCGCCGGCTCCATGCTGCTCCCCGCCG	1326
	TGACTGGC <u>T</u> GGCCACGG	1327
	CCGTGGCCAGCCAGTCA	1328
Melanoma Gly23Asp GGT-GAT	CGGCGGGGGGGGCAGCATGGAGCCTTCGGCTGACTGGCTG GCCACGGCCGCGGCCCGGGGTCGGGTAGAGGAGGTGCGGG CGCTGCTGGAGGCGGGGGGCGCTGCCCAACGCACCGAATAG	1329
	CTATTCGGTGCGTTGGGCAGCGCCCCCGCCTCCAGCAGCGC CCGCACCTCCTCTACCCGACCCCGGGCCGGCCGGGCCA GCCAGTCAGCCGAAGGCTCCATGCTGCTCCCCGCCGCCG	1330
	GGCCCGGG <u>G</u> TCGGGTAG	1331

20

Clinical Phenotype & Mutation	Correcting Oligos	SEQ ID NO:
	CTACCCGACCCCGGGCC	1332
Melanoma Arg24Pro CGG-CCG	CGGCGGGAGCAGCATGGAGCCTTCGGCTGACTGGCC ACGGCCGCGCCCGGGGTCGGGTAGAGGAGGTGCGGGCGC TGCTGGAGGCGGGGGCGCTGCCCAACGCACCGAATAGTTA	1333
	TAACTATTCGGTGCGTTGGGCAGCGCCCCCGCCTCCAGCAGC GCCCGCACCTCCTCTACCCGACCCCGGGCCGGCCGTGGC CAGCCAGTCAGCCGAAGGCTCCATGCTGCTCCCCGCCG	1334
	CCGGGGTCGGGTAGAGG	1335
	CCTCTACCCGACCCCGG	1336
Melanoma Leu32Pro CTG-CCG	CGGCTGACTGGCCACGGCCGCGGCCCGGGGTCGGGT AGAGGAGGTGCGGGCGCTGCCC AACGCACCGAATAGTTACGGTCGGAGGCCGATCCAGGTGGG	1337
	CCCACCTGGATCGGCCTCCGACCGTAACTATTCGGTGCGTTG GGCAGCGCCCCGCCTCCAGCAGCGCCCGCACCTCCTCTAC CCGACCCCGGGCCGCGCCGTGGCCAGCCAGTCAGCCG	1338
	GGCGCTGC <u>T</u> GGAGGCGG	1339
	CCGCCTCC <u>A</u> GCAGCGCC	1340
Melanoma Gly35Ala GGG-GCG	GGCTGGCCACGGCCGGGCCCGGGGTCGGGTAGAGGAGGT GCGGGCGCTGCTGGAGGCGGGGGGGCGCTGCCCAACGCACCG AATAGTTACGGTCGGAGGCCGATCCAGGTGGGTAGAGGGTC	1341
	GACCCTCTACCCACCTGGATCGGCCTCCGACCGTAACTATTC GGTGCGTTGGGCAGCGCCCCCCCCCC	1342
	GGAGGCGG G GGCGCTGC	1343
	GCAGCGCCCCCCCCCC	1344
Melanoma Tyr44Term TACg-TAA	GGTAGAGGAGGTGCGGGGCGCTGCTGGAGGCGGGGGGCGCTGCCCAACGCACCGAATAGTTACGGTCGGAGGCCGATCCAGGTGGGTAGAGGGTCTGCAGCGGGAGCAGGGGATGGCGGGCG	1345
	TCGCCCGCCATCCCCTGCTCCCGCTGCAGACCCTCTACCCAC CTGGATCGGCCTCCGACCGTAACTATTCGGTGCGTTGGGCAG CGCCCCGCCTCCAGCAGCGCCCGCACCTCCTCTACC	1346
	AATAGTTA <u>C</u> GGTCGGAG	1347
	CTCCGACC <u>G</u> TAACTATT	1348
Melanoma Met53lle ATGa-ATC	TCTCCCATACCTGCCCCCACCCTGGCTCTGACCACTCTGCTC TCTCTGGCAGGTCATGATGATGGCAGCGCCCGCGTGGCGG AGCTGCTGCTCCACGGCGCGCGAGCCCAACTGCGCA	1349
	TGCGCAGTTGGGCTCCGCGCCGTGGAGCAGCAGCAGCTCCG CCACGCGGGCGCTGCCCATCATCATGACCTGCCAGAGAGAG	1350
	GTCATGAT <u>G</u> ATGGGCAG	1351

Clinical Phenotype & Mutation	Correcting Oligos	SEQ ID NO:
	CTGCCCAT <u>C</u> ATCATGAC	1352
Melanoma Met54lle ATGg-ATT	CCCATACCTGCCCCCACCCTGGCTCTGACCACTCTGCTCTCT CTGGCAGGTCATGATGATGGGGCAGCCCCGCGTGGCGGAGC TGCTGCTGCTCCACGGCGCGGAGCCCAACTGCGCAGAC	1353
	GTCTGCGCAGTTGGGCTCCGCGCGCGTGGAGCAGCAGCT CCGCCACGCGGGCGCTGCCCATCATCATGACCTGCCAGAGA GAGCAGAGTGGTCAGAGCCAGGGTGGGGGCAGGTATGGG	1354
	ATGATGAT G GGCAGCGC	1355
	GCGCTGCC C ATCATCAT	1356
Melanoma Ser56ile AGC-ATC	GCCGGCCCCACCCTGGCTCTGACCATTCTGTTCTCTCTGGC AGGTCATGATGATGGGCAGCGCCGAGTGGCGGAGCTGCTG CTGCTCCACGGCGCGGAGCCCAACTGCGCCGACCCCGC	1357
	GCGGGGTCGGCGCAGTTGGGCTCCGCGCCGTGGAGCAGCA GCAGCTCCGCCACTCGGGCGCCTGCCATCATCATGACCTGCC AGAGAAACAGAATGGTCAGAGCCAGGGTGGGGGCCGGC	1358
	GATGGGCA <u>G</u> CGCCCGAG	1359
	CTCGGGCGCTGCCCATC	1360
Melanoma Ala57Val GCC-GTC	GGCCCCACCCTGGCTCTGACCATTCTGTTCTCTCTGGCAGG TCATGATGATGGGCAGCGCCCGAGTGGCGGAGCTGCTGCTG CTCCACGGCGCGGAGCCCAACTGCGCCGACCCCGCCAC	1361
	GTGGCGGGTCGCCGCGCGTGGAGCA GCAGCAGCTCCGCCACTCGGGCGCGCCATCATCATGACCT GCCAGAGAGAACAGAATGGTCAGAGCCAGGGTGGGGGCC	1362
	GGGCAGCG <u>C</u> CCGAGTGG	1363
	CCACTCGG G CGCTGCCC	1364
Melanoma Arg58Term cCGA-TGA	CCCCACCTGGCTCTGACCATTCTGTTCTCTCTGGCAGGTC ATGATGATGGCAGCGCCCGGAGCTGCTGCT CCACGGCGCGGAGCCCAACTGCGCCGACCCCGCCACTC	1365
	GAGTGGCGGGGTCGGCGCAGTTGGGCTCCGCGCCGTGGAG CAGCAGCAGCTCCGCCACTCGGGGCGCTGCCCATCATCATGAC CTGCCAGAGAGAACAGAATGGTCAGAGCCAGGGTGGGGG	1366
	GCAGCGCC C GAGTGGCG	1367
	CGCCACTC G GGCGCTGC	1368
Melanoma Val59Gly GTG-GGG	CACCCTGGCTCTGACCATTCTGTTCTCTCTGGCAGGTCATGAT GATGGGCAGCCCGAGTGGCGGAGCTGCTGCTCCACG GCGCGGAGCCCAACTGCGCCGACCCCGCCACTCTCAC	1369
	GTGAGAGTGGCGGGGTCGGCGCAGTTGGGCTCCGCGCCGTGGAGCAGCAGCAGCTCCGCCAGCTCGGGCGCGCTGCCCATCATCATGACCTGCCAGAGAGAACAGAATGGTCAGAGCCAGGGTG	1370
	CGCCCGAG <u>T</u> GGCGGAGC	1371

Clinical Phenotype & Mutation	Correcting Oligos	SEQ ID NO:
*****	GCTCCGCC <u>A</u> CTCGGGCG	1372
Melanoma Leu62Pro CTG-CCG	TCTGACCACTCTGCTCTCTCTGGCAGGTCATGATGATGGGCA GCGCCCGCGTGGCGGAGCTGCTGCTCCACGGCGCGGA GCCCAACTGCGCAGACCCTGCCACTCTCACCCGACCGGT	1373
	ACCGGTCGGGTGAGAGTGGCAGGGTCTGCGCAGTTGGGCTC CGCGCCGTGGAGCAGCAGCAGCCACGCGGGCGCTG CCCATCATCATGACCTGCCAGAGAGAGAGCAGAGTGGTCAGA	1374
	GGCGGAGC <u>T</u> GCTGCTGC	1375
	GCAGCAGCAGCTCCGCC	1376
Melanoma Ala68Val GCG-GTG	TCTGGCAGGTCATGATGATGGGCAGCGCCCGCGTGGCGGAGCTGCTGCTGCTCCACGGCGCGGGAGCCCAACTGCGCAGACCCTGCCACTCTCACCCGACCGGTGCATGATGCTGCCCGGGA	1377
	TCCCGGGCAGCATCATGCACCGGTCGGGTGAGAGTGGCAGG GTCTGCGCAGTTGGGCTCCGCCGTGGAGCAGCAGCAGCT CCGCCACGCGGGCGCTGCCCATCATCATGACCTGCCAGA	1378
	CCACGGCG <u>C</u> GGAGCCCA	1379
	TGGGCTCC G CGCCGTGG	1380
Melanoma Asn71Lys AACt-AAA	CATGATGATGGCAGCGCCCGAGTGGCGGAGCTGCTGCTCCCACGGCGCGGAGCCCAACTGCGCCGACCCGCCACTCTCACCCGACCCGTGCACGACGCTGCCCGGGAGGGCTTCCTG	1381
	CAGGAAGCCCTCCCGGGCAGCGTCGTGCACGGGTCGGGT	1382
	GAGCCCAA <u>C</u> TGCGCCGA	1383
	TCGGCGCA <u>G</u> TTGGGCTC	1384
Melanoma Asn71Ser AAC-AGC	TCATGATGATGGGCAGCGCCCGAGTGGCGGAGCTGCTGCTGCTCCACGGCGCGCGAGCCCAACTGCGCCGACCCCGCCACTCTCACCCGACCCGTGCACGACGCTGCCCGGGAGGGCTTCCT	1385
	AGGAAGCCCTCCCGGGCAGCGTCGTGCACGGGTCGGGTGAG AGTGGCGGGGTCGGCGCAGTTGGGCTCCGCGCCGTGGAGCA GCAGCAGCTCCGCCACTCGGGCGCTGCCCATCATCATGA	
	GGAGCCCA <u>A</u> CTGCGCCG	1387
	CGGCGCAG <u>T</u> TGGGCTCC	1388
Melanoma Pro81Leu CCC-CTC	AGCTGCTGCTCCACGGCGCGGAGCCCAACTGCGCCGACCCCGCCACTCTCACCCGACCCGTGCACGACGCTGCCCGGGAGGCTTCCTGGACACGCTGGTGGTGCTGCACCGGGCCGG	1389
	CCGCCCGGTGCAGCACCACCAGCGTGTCCAGGAAGCCCTCCCGCGCAGCAGCGTCGTGCACGGGTGAGAGTGGCGGGGGTCGGCGCAGTTGGGCTCCGCGCGCG	1390
	CACCCGAC <u>C</u> CGTGCACG	1391

Clinical Phenotype & Mutation	Correcting Oligos	SEQID NO:
	CGTGCACG G GTCGGGTG	1392
Melanoma Asp84Tyr cGAC-TAC		1393
	GCCGCGCCCGGCCCGGTGCAGCACCACCAGCGTGTCCAGG AAGCCCTCCCGGGCAGCGTCGTGCACGGGTCGGGT	1394
	CCGTGCAC <u>G</u> ACGCTGCC	1395
	GGCAGCGT C GTGCACGG	1396
Melanoma Ala85Thr cGCT-ACT	CTCCACGGCGCGAGCCCAACTGCGCCGACCCCGCCACTCT CACCCGACCCG	1397
	CCAGCCGCCCCGGCCCGGTGCAGCACCACCAGCGTGTCC AGGAAGCCCTCCCGGGCAGCGTCGTGCACGGGTCGGGT	1398
	TGCACGAC <u>G</u> CTGCCCGG	1399
	CCGGGCAG C GTCGTGCA	1400
Melanoma Arg87Pro CGG-CCG	GCGCGAGCCCAACTGCGCCGACCCCGCCACTCTCACCCGA CCCGTGCACGACGCTGCCCGGGGAGGGCTTCCTGGACACGCT GGTGGTGCTGCACCGGGCCGGG	1401
	CGCACGTCCAGCCGCCCCGGCCCGGTGCAGCACCACCAG CGTGTCCAGGAAGCCCTCCCGGGCAGCGTCGTGCACGGGTC GGGTGAGAGTGGCGGGGTCGGCGCAGTTGGGCTCCGCGC	1402
	CGCTGCCC G GGAGGGCT	1403
	AGCCCTCC <u>C</u> GGGCAGCG	1404
Melanoma Arg87Trp cCGG-TGG	GGCGCGAGCCCAACTGCGCCGACCCCGCCACTCTCACCCG ACCCGTGCACGACGCTGCCCGGGAGGGCTTCCTGGACACGC TGGTGGTGCTGCACCGGGCCGGG	1405
	GCACGTCCAGCCGCCCCGGCCCGGTGCAGCACCACCAGC GTGTCCAGGAAGCCCTCCCGGGCAGCGTCGTGCACGGGTCG GGTGAGAGTGGCGGGGTCGGCGCAGTTGGGCTCCGCGCC	1406
	ACGCTGCC <u>C</u> GGGAGGGC	1407
	GCCCTCCC G GGCAGCGT	1408
Melanoma Leu97Arg CTG-CGG	CTCTCACCCGACCGGTGCATGATGCTGCCCGGGAGGGCTTC CTGGACACGCTGGTGGTGCTGCACCGGGCCGGG	1409
	AAGTCCACGGCAGACGACCCCAGGCATCGCGCACGTCCAGCCCGCCC	1410
	GGTGGTGC <u>T</u> GCACCGGG	1411

Clinical Phenotype & Mutation	Correcting Oligos	SEQ ID NO:
	CCCGGTGCAGCACCACC	1412
Melanoma Arg99Pro CGG-CCG		1413
	TCGGCCAAGTCCACGGGCAGACGACCCCAGGCATCGCGCAC GTCCAGCCGCGCCCCGGCCCGG	1414
	GCTGCACC G GGCCGGGG	1415
	CCCCGGCCCGGTGCAGC	1416
Melanoma Gly101Trp cGGG-TGG	CCGGTGCATGATGCTGCCCGGGAGGGCTTCCTGGACACGCT GGTGGTGCTGCACCGGGCCGGG	1417
	GCTCCTCGGCCAAGTCCACGGGCAGACGACCCCAGGCATCG CGCACGTCCAGCCGCGCCCCGGGCCCGGTGCAGCACCACCAG CGTGTCCAGGAAGCCCTCCCGGGCAGCATCATGCACCGG	1418
	ACCGGGCCGGGGCGCGG	1419
	CCGCGCCCGGGCCCGGT	1420
Melanoma Arg107Cys gCGC-TGC	CGGGAGGCTTCCTGGACACGCTGGTGGTGCTGCACCGGGC CGGGGCGCGGCTGGACGTGCGCGATGCCTGGGGTCGTCTGC CCGTGGACTTGGCCGAGGAGCGGGGCCACCGCGACGTTG	1421
	CAACGTCGCGGTGGCCCCGCTCCTCGGCCAAGTCCACGGGC AGACGACCCCAGGCATCGCGCACGTCCAGCCGCCCCCGGC CCGGTGCAGCACCACCAGCGTGTCCAGGAAGCCCTCCCG	1422
	TGGACGTGCGCGATGCC	1423
	GGCATCGC G CACGTCCA	1424
Melanoma Ala118Thr gGCT-ACT	CACCGGGCCGGGCGGCGGCTGGACGTGCCGATGCCTGGG GCCGTCTGCCCGTGGACCTGGCTGAGGAGCTGGGCCATCGC GATGTCGCACGGTACCTGCGCGCGGCTGCGGGGGGCACCA	1425
	TGGTGCCCCCGCAGCCGCGCGCAGGTACCGTGCGACATCG CGATGGCCCAGCTCCTCAGCCAGGTCCACGGGCAGACGGCC CCAGGCATCGCGCACGTCCAGCCGCCCCCGGCCCGG	1426
	TGGACCTG G CTGAGGAG	1427
	CTCCTCAG C CAGGTCCA	1428
Melanoma Val126Asp GTC-GAC	TGCGCGATGCCTGGGGCCGTCTGCCCGTGGACCTGGCTGAG GAGCTGGGCCATCGCGATGTCGCACGGTACCTGCGCGCGGC TGCGGGGGGCACCAGAGGCAGTAACCATGCCCGCATAGA	1429
	TCTATGCGGGCATGGTTACTGCCTCTGGTGCCCCCCGCAGCCGCGCGCAGCCGCCAGGCAGG	
	TCGCGATG <u>T</u> CGCACGGT	1431

Clinical Phenotype & Mutation	Correcting Oligos	SEQ ID NO:
	ACCGTGCG <u>A</u> CATCGCGA	1432

EXAMPLE 11 Adenomatous polyposis of the colon - APC

Adenomatous polyposis of the colon is characterized by adenomatous polyps of the colon and rectum; in extreme cases the bowel is carpeted with a myriad of polyps. This is a viciously premalignant disease with one or more polyps progressing through dysplasia to malignancy in untreated gene carriers with a median age at diagnosis of 40 years.

Mutations in the APC gene are an initiating event for both familial and sporadic colorectal tumorigenesis and many alleles of the APC gene have been identified. Carcinoma may arise at any age from late childhood through the seventh decade with presenting features including, for example, weight loss and inanition, bowel obstruction, or bloody diarrhea. Cases of new mutation still present in these ways but in areas with well organized registers most other gene carriers are detected. The attached table discloses the correcting oligonucleotide base sequences for the APC oligonucleotides of the invention.

Table 18
APC Mutations and Genome-Correcting Oligos

Clinical Phenotype & Mutation	Correcting Oligos	SEQ ID NO:
Adenomatous polyposis coli Arg121Term	GGATCTGTATCAAGCCGTTCTGGAGAGTGCAGTCCTGTTCCT ATGGGTTCATTTCCAAGAAGAGGGGTTTGTAAATGGAAGCAGA GAAAGTACTGGATATTTAGAAGAACTTGAGAAAGAGA	1433
AĞA-TGA	TCTCTTTCTCAAGTTCTTCTAAATATCCAGTACTTTCTCTGCTT CCATTTACAAACCCTCTTCTTGGAAATGAACCCATAGGAACAG GACTGCACTCTCCAGAACGGCTTGATACAGATCC	1434
	TTCCAAGA <u>A</u> GAGGGTTT	1435
	AAACCCTCTTCTTGGAA	1436
Adenomatous polyposis coli Trp157Term	AAAAAAAAATAGGTCATTGCTTCTTGCTGATCTTGACAAAGAA GAAAAGGAAAAAGACT <u>G</u> GTATTACGCTCAACTTCAGAATCTCA CTAAAAGAATAGATAGTCTTCCTTTAACTGAAAA	1437
TGG-TAG	TTTTCAGTTAAAGGAAGACTATCTATTCTTTTAGTGAGATTCTG AAGTTGAGCGTAATACCAGTCTTTTTCCTTTTCTTCTTGTCAA GATCAGCAAGAAGCAATGACCTATTTTTTTTTT	1438
	AAAAGACT <u>G</u> GTATTACG	1439
	CGTAATAC <u>C</u> AGTCTTTT	1440
Adenomatous polyposis coli Tyr159Term	AAATAGGTCATTGCTTGCTGATCTTGACAAAGAAGAAAAG GAAAAAGACTGGTATTA <u>C</u> GCTCAACTTCAGAATCTCACTAAAA GAATAGATAGTCTTCCTTTAACTGAAAATGTAAGT	1441
TAC-TAG	ACTTACATTTTCAGTTAAAGGAAGACTATCTATTCTTTTAGTGA GATTCTGAAGTTGAGC G TAATACCAGTCTTTTTCCTTTTCTTCT TTGTCAAGATCAGCAAGAAGCAATGACCTATTT	1442
	TGGTATTA C GCTCAACT	1443
	AGTTGAGC G TAATACCA	1444
Adenomatous polyposis coli Gln163Term	TTGCTTCTTGCTGATCTTGACAAAGAAGAAAAGGAAAAAGACT GGTATTACGCTCAACTTCAGAAATCTCACTAAAAGAATAGATAG	1445
CAG-TAG	ACTGCCAGTTACTTACATTTTCAGTTAAAGGAAGACTATCTAT	1446
	CTCAACTT <u>C</u> AGAATCTC	1447
	LGAGATTCT G AAGTTGAG	1448
Adenomatous polyposis coli Arg168Term	CTTGACAAAGAAAAAGGAAAAAGACTGGTATTACGCTCAAC TTCAGAATCTCACTAAAAGAATAGATAGTCTTCCTTTAACTGAA AATGTAAGTAACTGGCAGTACAACTTATTTGAAA	1449
AGA-TGA	TTTCAAATAAGTTGTACTGCCAGTTACTTACATTTTCAGTTAAA GGAAGACTATCTATTCTTTTAGTGAGATTCTGAAGTTGAGCGT AATACCAGTCTTTTTCCTTTTCTTCTTTGTCAAG	1450

Clinical Phenotype & Mutation	Correcting Oligos	SEQ ID NO:
	TCACTAAA <u>A</u> GAATAGAT	1451
	ATCTATTC <u>T</u> TTTAGTGA	1452
Adenomatous polyposis coli Ser171lle	AAGAAAAGGAAAAAGACTGGTATTACGCTCAACTTCAGAATCT CACTAAAAGAATAGATAGTCTTCCTTTAACTGAAAATGTAAGTA ACTGGCAGTACAACTTATTTGAAACTTTAATAAC	1453
AGT-ATT	GTTATTAAAGTTTCAAATAAGTTGTACTGCCAGTTACTTAC	1454
	AATAGATA <u>G</u> TCTTCCTT	1455
	AAGGAAGACTATCTATT	1456
Adenomatous polyposis coli Gln181Term	GATTAACGTAAATACAAGATATTGATACTTTTTTATTATTTGTGG TTTTAGTTTTCCTTACAAACAGATATGACCAGAAGGCAATTGG AATATGAAGCAAGGCAAATCAGAGTTGCGATGG	1457
CAA-TAA	CCATCGCAACTCTGATTTGCCTTGCTTCATATTCCAATTGCCT TCTGGTCATATCTGTTTGTAAGGAAAACTAAAACCACAAATAAT AAAAAAGTATCAATATCTTGTATTTACGTTAATC	1458
	TTTCCTTACAAACAGAT	1459
	ATCTGTTT G TAAGGAAA	1460
Adenomatous polyposis coli Glu190Term	CTTTTTTATTATTTGTGGTTTTAGTTTTCCTTACAAACAGATATG ACCAGAAGGCAATTG <u>G</u> AATATGAAGCAAGGCAAATCAGAGTT GCGATGGAAGAACAACTAGGTACCTGCCAGGATA	1461
GAA-TAA	TATCCTGGCAGGTACCTAGTTGTTCTTCCATCGCAACTCTGAT TTGCCTTGCTTCATATTCCAATTGCCTTCTGGTCATATCTGTTT GTAAGGAAAACTAAAACCACAAATAATAAAAAAAG	1462
	GGCAATTG G AATATGAA	1463
	TTCATATT <u>C</u> CAATTGCC	1464
Adenomatous polyposis coli Gln208Term	CAATTGGAATATGAAGCAAGGCAAATCAGAGTTGCGATGGAA GAACAACTAGGTACCTGCCAGGATATGGAAAAACGAGCACAG GTAAGTTACTTGTTTCTAAGTGATAAAACAGCGAAGA	1465
CAG-TAG	TCTTCGCTGTTTTATCACTTAGAAACAAGTAACTTACCTGTGCT CGTTTTTCCATATCCT <u>G</u> GCAGGTACCTAGTTGTTCTTCCATCG CAACTCTGATTTGCCTTGCTTCATATTCCAATTG	1466
	GTACCTGC C AGGATATG	1467
	CATATCCT G GCAGGTAC	1468
Adenomatous polyposis coli Arg213Term	GCAAGGCAAATCAGAGTTGCGATGGAAGAACAACTAGGTACC TGCCAGGATATGGAAAAACGAGCACAGGTAAGTTACTTGTTTC TAAGTGATAAAACAGCGAAGAGCTATTAGGAATAAA	1469
CGA-TGA	TTTATTCCTAATAGCTCTTCGCTGTTTTATCACTTAGAAACAAG TAACTTACCTGTGCTCGTTTTTCCATATCCTGGCAGGTACCTA GTTGTTCTTCCATCGCAACTCTGATTTGCCTTGC	1470
	TGGAAAAA <u>C</u> GAGCACAG	1471
	CTGTGCTC <u>G</u> TTTTTCCA	1472

Clinical Phenotype & Mutation	Correcting Oligos	SEQ ID
Adenomatous polyposis	GTTTTATTTTAGCGAAGAATAGCCAGAATTCAGCAAATCGAAA	1473
coli	AGGACATACTTCGTATACGACAGCTTTTACAGTCCCAAGCAAC	
Arg232Term	AGAAGCAGAGGTTAGTAAATTGCCTTTCTTGTTTG	
CGA-TGA	CAAACAAGAAAGGCAATTTACTAACCTCTGCTTCTGTTGCTTG	1474
	GGACTGTAAAAGCTGTC <u>G</u> TATACGAAGTATGTCCTTTTCGATT	
	TGCTGAATTCTGGCTATTCTTCGCTAAAATAAAAC	
	TTCGTATA C GACAGCTT	1475
	AAGCTGTC G TATACGAA	1476
Adenomatous polyposis	TTATTTTAGCGAAGAATAGCCAGAATTCAGCAAATCGAAAAGG	1477
coli	ACATACTTCGTATACGA <u>C</u> AGCTTTTACAGTCCCAAGCAACAGA	
Gln233Term	AGCAGAGGTTAGTAAATTGCCTTTCTTGTTTGTGG	
CAG-TAG	CCACAAACAAGAAAGGCAATTTACTAACCTCTGCTTCTGTTGC	1478
	TTGGGACTGTAAAAGCT <u>G</u> TCGTATACGAAGTATGTCCTTTTCG	
	ATTTGCTGAATTCTGGCTATTCTTCGCTAAAATAA	
	GTATACGA C AGCTTTTA	1479
	TAAAAGCT G TCGTATAC	1480
Adenomatous polyposis	AGAAAGCCTACACCATTTTTGCATGTACTGATGTTAACTCCAT	1481
coli	CTTAACAGAGGTCATCT <u>C</u> AGAACAAGCATGAAACCGGCTCAC	
Gln247Term	ATGATGCTGAGCGGCAGAATGAAGGTCAAGGAGTGG	
CAG-TAG	CCACTCCTTGACCTTCATTCTGCCGCTCAGCATCATGTGAGC	1482
	CGGTTTCATGCTTGTTCT G AGATGACCTCTGTTAAGATGGAGT	
	TAACATCAGTACATGCAAAAATGGTGTAGGCTTTCT	
	GGTCATCT C AGAACAAG	1483
	CTTGTTCT G AGATGACC	1484
Adenomatous polyposis	CAGAACAAGCATGAAACCGGCTCACATGATGCTGAGCGGCAG	1485
coli	AATGAAGGTCAAGGAGTG G GAGAAATCAACATGGCAACTTCT	
Gly267Term	GGTAATGGTCAGGTAAATAAATTATTTTATCATATTT	
GGA-TGA	AAATATGATAAAATAATTTATTTACCTGACCATTACCAGAAGTT	1486
	GCCATGTTGATTTCTCCCCACTCCTTGACCTTCATTCTGCCGCT	
	CAGCATCATGTGAGCCGGTTTCATGCTTGTTCTG	
	AAGGAGTG G GAGAAATC	1487
	GATTTCTCCCCACTCCTT	1488
Adenomatous polyposis	CTTCAAATAACAAAGCATTATGGTTTATGTTGATTTTATTTTTCA	1489
coli	GTGCCAGCTCCTGTTGAACATCAGATCTGTCCTGCTGTGTGT	
Glu443Term	GTTCTAATGAAACTTTCATTTGATGAAGAGCATA	
GAA-TAA	TATGCTCTTCATCAAATGAAAGTTTCATTAGAACACACAC	1490
	GGACAGATCTGATGTTCAACAGGAGCTGGCACTGAAAAATAA	
	AATCAACATAAACCATAATGCTTTGTTATTTGAAG	
	CTCCTGTT G AACATCAG	1491
	CTGATGTT C AACAGGAG	1492
Adenomatous polyposis	CAGTGCCAGCTCCTGTTGAACATCAGATCTGTCCTGCTGTGT	1493
coli	GTGTTCTAATGAAACTTTCATTTGATGAAGAGCATAGACATGC	
SER457TER	AATGAATGAACTAGGTAAGACAAAAATGTTTTTTAA	
TCA-TAA		L

Clinical Phenotype & Mutation	Correcting Oligos	SEQ ID NO:
	TTAAAAAACATTTTTGTCTTACCTAGTTCATTCATTGCATGTCTA	1494
	TGCTCTTCATCAAAT G AAAGTTTCATTAGAACACACACAGCAG	
	GACAGATCTGATGTTCAACAGGAGCTGGCACTG	
	GAAACTTT <u>C</u> ATTTGATG	1495
-	CATCAAAT <u>G</u> AAAGTTTC	1496
Adenomatous polyposis	AGTTGTTTTATTTTAGATGATTGTCTTTTTCCTCTTGCCCTTTTT	1497
coli	AAATTAGGGGGACTA <u>C</u> AGGCCATTGCAGAATTATTGCAAGTG	
GIn473Term	GACTGTGAAATGTACGGGCTTACTAATGACCACT	4.400
CAG-TAG	AGTGGTCATTAGTAAGCCCGTACATTTCACAGTCCACTTGCAA	1498
	TAATTCTGCAATGGCCTGTAGTCCCCCTAATTTAAAAAGGGCA	
	AGAGGAAAAAGACAACT	1499
	GGGGACTACAGGCCATT	
	AATGGCCTGTAGTCCCC TTTTAAATTAGGGGGACTACAGGCCATTGCAGAATTATTGCAA	1500 1501
Adenomatous polyposis		1001
Coli	GTGGACTGTGAAATGTA <u>C</u> GGGCTTACTAATGACCACTACAGTA TTACACTAAGACGATATGCTGGAATGGCTTTGACA	
Tyr486Term TAC-TAG	TGTCAAAGCCATTCCAGCATATCGTCTTAGTGTAATACTGTAG	1502
TAU-TAU	TGGTCATTAGTAAGCCCGTACATTTCACAGTCCACTTGCAATA	1302
	ATTCTGCAATGGCCTGTAGTCCCCCTAATTTAAAA	
	GAAATGTA C GGGCTTAC	1503
	GTAAGCCCGTACATTTC	1504
Adenomatous polyposis	TTGCAAGTGGACTGTGAAATGTATGGGCTTACTAATGACCACT	1505
coli	ACAGTATTACACTAAGACGATATGCTGGAATGGCTTTGACAAA	
Arg499Term	CTTGACTTTTGGAGATGTAGCCAACAAGGTATGTT	
CGA-TGA	AACATACCTTGTTGGCTACATCTCCAAAAGTCAAGTTTGTCAA	1506
	AGCCATTCCAGCATATCGTCTTAGTGTAATACTGTAGTGGTCA	
	TTAGTAAGCCCATACATTTCACAGTCCACTTGCAA	
	CACTAAGA C GATATGCT	1507
	AGCATATC G TCTTAGTG	1508
Adenomatous polyposis	AGTGGACTGTGAAATGTATGGGCTTACTAATGACCACTACAGT	1509
coli	ATTACACTAAGACGATA <u>T</u> GCTGGAATGGCTTTGACAAACTTGA	
Tyr500Term	CTTTTGGAGATGTAGCCAACAAGGTATGTTTTAT	
TAT-TAG	ATAAAAACATACCTTGTTGGCTACATCTCCAAAAGTCAAGTTTG	1510
	TCAAAGCCATTCCAGCATATCGTCTTAGTGTAATACTGTAGTG	
	GTCATTAGTAAGCCCATACATTTCACAGTCCACT	
	AGACGATA T GCTGGAAT	1511
	ATTCCAGC <u>A</u> TATCGTCT	1512
Adenomatous polyposis	GACAAATTCCAACTCTAATTAGATGACCCATATTCTGTTTCTTA	1513
coli	CTAGGAATCAACCCTCAAAAGCGTATTGAGTGCCTTATGGAAT	
Lys586Term	TTGTCAGCACATTGCACTGAGAATAAAGCTGATA	
AAA-TAA	TATCAGCTTTATTCTCAGTGCAATGTGCTGACAAATTCCATAA	1514
	GGCACTCAATACGCTTT <u>T</u> GAGGGTTGATTCCTAGTAAGAAACA	
	GAATATGGGTCATCTAATTAGAGTTGGAATTTGTC	
	CAACCCTC <u>A</u> AAAGCGTA	1515

Clinical Phenotype & Mutation	Correcting Oligos	SEQ ID NO:
	TACGCTTT <u>T</u> GAGGGTTG	1516
Adenomatous polyposis	TAGATGACCCATATTCTGTTTCTTACTAGGAATCAACCCTCAAA	1517
coli	AGCGTATTGAGTGCCT <u>T</u> ATGGAATTTGTCAGCACATTGCACTG	
Leu592Term	AGAATAAAGCTGATATATGTGCTGTAGATGGTGC	
TTA-TGA	GCACCATCTACAGCACATATATCAGCTTTATTCTCAGTGCAAT	1518
	GTGCTGACAAATTCCAT <u>A</u> AGGCACTCAATACGCTTTTGAGGGT	
	TGATTCCTAGTAAGAAACAGAATATGGGTCATCTA	
	GAGTGCCT <u>T</u> ATGGAATT	1519
	AATTCCAT <u>A</u> AGGCACTC	1520
Adenomatous polyposis	ATGACCCATATTCTGTTTCTTACTAGGAATCAACCCTCAAAAG	1521
coli	CGTATTGAGTGCCTTAT G GAATTTGTCAGCACATTGCACTGAG	
Trp593Term	AATAAAGCTGATATATGTGCTGTAGATGGTGCACT	
TGG-TAG	AGTGCACCATCTACAGCACATATATCAGCTTTATTCTCAGTGC	1522
	AATGTGCTGACAAATTC <u>C</u> ATAAGGCACTCAATACGCTTTTGAG	
	GGTTGATTCCTAGTAAGAAACAGAATATGGGTCAT	
	TGCCTTAT G GAATTTGT	1523
	ACAAATTC C ATAAGGCA	1524
Adenomatous polyposis	TGACCCATATTCTGTTTCTTACTAGGAATCAACCCTCAAAAGC	1525
coli	GTATTGAGTGCCTTATG <u>G</u> AATTTGTCAGCACATTGCACTGAGA	
Trp593Term	ATAAAGCTGATATATGTGCTGTAGATGGTGCACTT	
TGG-TGA	AAGTGCACCATCTACAGCACATATATCAGCTTTATTCTCAGTG	1526
	CAATGTGCTGACAAATT <u>C</u> CATAAGGCACTCAATACGCTTTTGA	
	GGGTTGATTCCTAGTAAGAAACAGAATATGGGTCA	
	GCCTTATG G AATTTGTC	1527
	GACAAATT <u>C</u> CATAAGGC	1528
Adenomatous polyposis	TAAAGCTGATATATGTGCTGTAGATGGTGCACTTGCATTTTTG	1529
coli	GTTGGCACTCTTACTTA <u>C</u> CGGAGCCAGACAAACACTTTAGCC	
Tyr622Term	ATTATTGAAAGTGGAGGTGGGATATTACGGAATGTG	
TAC-TAA	CACATTCCGTAATATCCCACCTCCACTTTCAATAATGGCTAAA	1530
	GTGTTTGTCTGGCTCCG <u>G</u> TAAGTAAGAGTGCCAACCAAAAAT	
	GCAAGTGCACCATCTACAGCACATATATCAGCTTTA	
	CTTACTTA <u>C</u> CGGAGCCA	1531
	TGGCTCCG G TAAGTAAG	1532
Adenomatous polyposis	GATATATGTGCTGTAGATGGTGCACTTGCATTTTTGGTTGG	1533
coli	CTCTTACTTACCGGAGC <u>CAGACAACACTTTAGCCATTATTGA</u>	
Gln625Term	AAGTGGAGGTGGGATATTACGGAATGTGTCCAGCT	
CAG-TAG	AGCTGGACACATTCCGTAATATCCCACCTCCACTTTCAATAAT	1534
	GGCTAAAGTGTTTGTCT G GCTCCGGTAAGTAAGAGTGCCAAC	
	CAAAAATGCAAGTGCACCATCTACAGCACATATATC	
	ACCGGAGC <u>C</u> AGACAAAC	1535
	GTTTGTCT G GCTCCGGT	1536

Clinical Phenotype & Mutation	Correcting Oligos	SEQ ID NO:
Adenomatous polyposis	TAGATGGTGCACTTGCATTTTTGGTTGGCACTCTTACTTA	1537
coli	GAGCCAGACAAACACTT <u>T</u> AGCCATTATTGAAAGTGGAGGTGG	
Leu629Term	GATATTACGGAATGTGTCCAGCTTGATAGCTACAAA	
TTA-TAA		
	TTTGTAGCTATCAAGCTGGACACATTCCGTAATATCCCACCTC	1538
	CACTTTCAATAATGGCT <u>A</u> AAGTGTTTGTCTGGCTCCGGTAAGT	
	AAGAGTGCCAACCAAAAATGCAAGTGCACCATCTA	
	AAACACTTTAGCCATTA	1539
	TAATGGCT <u>A</u> AAGTGTTT	1540
Adenomatous polyposis	GCCATTATTGAAAGTGGAGGTGGGATATTACGGAATGTGTCC	1541
coli	AGCTTGATAGCTACAAAT G AGGACCACAGGTATATATAGAGTT	
Glu650Term	TTATATTACTTTTAAAGTACAGAATTCATACTCTCA	
GAG-TAG	TGAGAGTATGAATTCTGTACTTTAAAAGTAATATAAAACTCTAT	1542
	ATATACCTGTGGTCCT <u>C</u> ATTTGTAGCTATCAAGCTGGACACAT	
	TCCGTAATATCCCACCTCCACTTTCAATAATGGC	
	CTACAAAT G AGGACCAC	1543
	GTGGTCCT C ATTTGTAG	1544
Adenomatous polyposis	TGCATGTGGAACTTTGTGGAATCTCTCAGCAAGAAATCCTAAA	1545
coli	GACCAGGAAGCATTATG G GACATGGGGGCAGTTAGCATGCTC	
Trp699Term	AAGAACCTCATTCATTCAAAGCACAAAATGATTGCT	
TGG-TGA	AGCAATCATTTTGTGCTTTGAATGAATGAGGTTCTTGAGCATG	1546
	CTAACTGCCCCCATGTCCCCATAATGCTTCCTGGTCTTTAGGAT	
	TTCTTGCTGAGAGATTCCACAAAGTTCCACATGCA	
	GCATTATG G GACATGGG	1547
	CCCATGTCCCATAATGC	1548
Adenomatous polyposis	AAGACCAGGAAGCATTATGGGACATGGGGGCAGTTAGCATGC	1549
coli	TCAAGAACCTCATTCATT <u>C</u> AAAGCACAAAATGATTGCTATGGG	
Ser713Term	AAGTGCTGCAGCTTTAAGGAATCTCATGGCAAATAG	
TCA-TGA	CTATTTGCCATGAGATTCCTTAAAGCTGCAGCACTTCCCATAG	1550
	CAATCATTTTGTGCTTT G AATGAATGAGGTTCTTGAGCATGCT	
	AACTGCCCCATGTCCCATAATGCTTCCTGGTCTT	
	CATTCATT C AAAGCACA	1551
	TGTGCTTT G AATGAATG	1552
Adenomatous polyposis	GGGGCAGTTAGCATGCTCAAGAACCTCATTCATTCAAAGCAC	1553
coli	AAAATGATTGCTATGGGAAGTGCTGCAGCTTTAAGGAATCTCA]
Ser722Gly	TGGCAAATAGGCCTGCGAAGTACAAGGATGCCAATA	
AGT-GGT	TATTGGCATCCTTGTACTTCGCAGGCCTATTTGCCATGAGATT	1554
	CCTTAAAGCTGCAGCACTTCCCATAGCAATCATTTTGTGCTTT	
	GAATGAATGAGGTTCTTGAGCATGCTAACTGCCCC	1
	CTATGGGA <u>A</u> GTGCTGCA	1555
	TGCAGCACTTCCCATAG	1556

Clinical Phenotype & Mutation	Correcting Oligos	SEQ ID NO:
Adenomatous polyposis	TCTCCTGGCTCAGCTTGCCATCTCTTCATGTTAGGAAACAAAA	1557
coli	AGCCCTAGAAGCAGAAT <u>T</u> AGATGCTCAGCACTTATCAGAAACT	
Leu764Term	TTTGACAATATAGACAATTTAAGTCCCAAGGCATC	
TTA-TAA	GATGCCTTGGGACTTAAATTGTCTATATTGTCAAAAGTTTCTGA	1558
	TAAGTGCTGAGCATCT A ATTCTGCTTCTAGGGCTTTTTGTTTC	
	CTAACATGAAGATGGCAAGCTGAGCCAGGAGA	
	AGCAGAATTAGATGCTC	1559
	GAGCATCT <u>A</u> ATTCTGCT	1560
Adenomatous polyposis	TTAGATGCTCAGCACTTATCAGAAACTTTTGACAATATAGACAA	1561
coli	TTTAAGTCCCAAGGCA <u>T</u> CTCATCGTAGTAAGCAGAGACACAG	
Ser784Thr	CAAGTCTCTATGGTGATTATGTTTTTGACACCATC	
TCT-ACT	GATGGTGTCAAAAACATAATCACCATAGAGACTTGCTGTGTCT	1562
	CTGCTTACTACGATGAG <u>A</u> TGCCTTGGGACTTAAATTGTCTATA	
	TTGTCAAAAGTTTCTGATAAGTGCTGAGCATCTAA	
	CCAAGGCA <u>T</u> CTCATCGT	1563
	ACGATGAG <u>A</u> TGCCTTGG	1564
Adenomatous polyposis	CTCATCGTAGTAAGCAGAGACACAGCAAGTCTCTATGGTGATT	1565
coli	ATGTTTTTGACACCAAT C GACATGATGATAATAGGTCAGACAT	
Arg805Term	TTTAATACTGGCACATGACTGTCCTTTCACCATAT	
CGA-TGA	ATATGGTGAAAGGACAGTCATGTGCCAGTATTAAAATGTCTGA	1566
	CCTATTATCATCATGTC G ATTGGTGTCAAAAACATAATCACCAT	
	AGAGACTTGCTGTGTCTCTGCTTACTACGATGAG	
	ACACCAAT C GACATGAT	1567
,	ATCATGTC GATTGGTGT	1568
Adenomatous polyposis	GGTCTAGGCAACTACCATCCAGCAACAGAAAATCCAGGAACT	1569
coli	TCTTCAAAGCGAGGTTTGCAGATCTCCACCACTGCAGCCCAG	
GIn879Term	ATTGCCAAAGTCATGGAAGAAGTGTCAGCCATTCATA	
CAG-TAG	TATGAATGGCTGACACTTCTTCCATGACTTTGGCAATCTGGGC	1570
	TGCAGTGGTGGAGATCTGCAAACCTCGCTTTGAAGAAGTTCC	
	TGGATTTTCTGTTGCTGGATGGTAGTTGCCTAGACC	
	GAGGTTTG C AGATCTCC	1571
	GGAGATCT G CAAACCTC	1572
Adenomatous polyposis	TACATTGTGTGACAGATGAGAGAATGCACTTAGAAGAAGCTC	1573
coli	TGCTGCCCATACACATTCAAACACTTACAATTTCACTAAGTCG	
Ser932Term	GAAAATTCAAATAGGACATGTTCTATGCCTTATGC	
TCA-TAA	GCATAAGGCATAGAACATGTCCTATTTGAATTTTCCGACTTAG	1574
	TGAAATTGTAAGTGTTT G AATGTGTATGGGCAGCAGAGCTTCT]
	TCTAAGTGCATTTCTCTCATCTGTCACACAATGTA	
	TACACATT CAAACACTT	1575
	AAGTGTTT G AATGTGTA	1576
Adenomatous polyposis	TACATTGTGTGACAGATGAGAGAAATGCACTTAGAAGAAGCTC	1577
coli	TGCTGCCCATACACATTCAAACACTTACAATTTCACTAAGTCG	1077
Ser932Term	GAAAATTCAAATAGGACATGTTCTATGCCTTATGC	

TCA-TGA