Indian Institute of Information Technology Vadodara Mid-semester Examination MA 101 (Mathematics I: Linear Algebra and Matrices)

1. Find the inverse of following matrix using block matrix inversion:

$$\left[\begin{array}{ccccc}
1 & 2 & 1 & 2 \\
0 & 3 & 1 & 2 \\
1 & 2 & -1 & 4 \\
1 & 1 & 2 & 4
\end{array}\right]$$

- 2. Is the next sentence true? If a vector w is a linear combination of $u, v \in \mathbb{R}^n$ then u is a linear combination of v, w. Give justification.
- 3. Let a_1, a_2, b be the vectors in \mathbb{R}^2 as shown in the figure and let $A = [a_1 \ a_2]$, here a_i are columns of A. Does the equation AX = b have a solution? If so, is the solution unique? Explain.

4. Let V be a vector space of all polynomials of degree ≤ 4 . Let $T: V \to V$ be defined by

$$T(p(x)) = \int_{1}^{x} p'(t)dt,$$

where $p(x) \in V$ and p'(t) is derivative of p(t).

- (a) Find a basis for V.
- (b) Check whether T is a linear transformation?
- (c) Find the matrix representing this linear transformation T with respect to the basis found in (a).

- 5. If $T: \mathbb{R}^3 \to \mathbb{R}^3$ is a linear transformation and $T(e_1) = e_3$, $T(e_2) = e_1$ and $T(e_3) = e_2$, where $e_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $e_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ $e_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$. Then prove that T is invertible and $T^2 = T^{-1}$.
- 6. Let $\{v_1, v_2,, v_n\}$ be a basis for \mathbb{R}^n . Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation which is one-one and onto.
 - (a) Prove that $\{Tv_1, Tv_2,, Tv_n\}$ is also a basis for \mathbb{R}^n .
 - (b) If T is only one-one but not onto then is $\{Tv_1, Tv_2,, Tv_n\}$ a basis for \mathbb{R}^n ? Explain.