Formelark Fys-mek1100

$$\sum \vec{F} = m\vec{a} = \frac{d\vec{p}}{dt}$$
, hvor $\vec{p} = m\vec{v} = m\frac{d\vec{r}}{dt}$, og $\vec{a} = \frac{d\vec{v}}{dt} = \frac{d^2\vec{r}}{dt^2}$.

Konstant
$$\vec{a}$$
: $\vec{v} = \vec{v}_0 + \vec{a}t$, $\vec{r} = \vec{r}_0 + \vec{v}_0 t + \frac{1}{2} \vec{a} t^2$, $v^2 - v_0^2 = 2\vec{a} \cdot (\vec{r} - \vec{r}_0)$.

Konstant
$$\alpha$$
: $\omega = \omega_0 + \alpha t$, $\theta = \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2$, $\omega^2 - \omega_0^2 = 2\alpha \cdot (\theta - \theta_0)$.

Baneakselerasjon: $\vec{a} = \frac{dv}{dt}\hat{u}_T + \frac{v^2}{a}\hat{u}_N$.

Rotasjon: $\vec{v} = \vec{\omega} \times \vec{r}$, $\vec{a} = \vec{\alpha} \times \vec{r} + \vec{\omega} \times (\vec{\omega} \times \vec{r})$.

Galilei-trans.: $\vec{r} = \vec{R} + \vec{r}'$, $\vec{v} = \vec{V} + \vec{v}'$.

Fjærkraft: $F(x) = -k(x - x_0)$. Luftmotstand: $\vec{F}_v = -k\vec{v}$ eller $\vec{F}_v = -Dv\vec{v}$.

Friksjon: $|F_s| \le \mu_s N$ eller $|F_d| = \mu_d N$.

Arbeid: $W_{AB} = \int_A^B \vec{F} \cdot d\vec{r} = K_B - K_A$, Kinetisk energi: $K = \frac{1}{2}mv^2$.

Potensiell energi: $U(\vec{r})$. Tyngdekraft: U=mgy. Fjærkraft: $U=\frac{1}{2}k(x-x_0)^2$.

Konservativ kraft: $\vec{F} = -\nabla U(\vec{r})$.

Impuls: $\vec{J} = \int_{t_0}^{t_1} \vec{F} dt = \Delta \vec{p} = \vec{p}(t_1) - \vec{p}(t_0)$.

Rakett-likningen: $\vec{F}^{\rm ext} + \vec{v}_{\rm rel} \frac{dm}{dt} = m\vec{a}$.

Massesenter: $\vec{R} = \frac{1}{M} \sum_{i} m_i \vec{r}_i = \frac{1}{M} \int_M \vec{r} dm$, $M = \sum_{i} m_i = \int_M dm$.

Kraftmoment: $\vec{\tau} = \vec{r} \times \vec{F}$. Spinn: $\vec{L} = \vec{r} \times \vec{p}$.

Spinnsats: $\vec{\tau} = \frac{d\vec{L}}{dt}$. Stive legemer: $L_z = I_z \omega_z$, $\tau_z = I_z \alpha_z$.

Kinetisk energi: $K = \frac{1}{2}I\omega^2, I = \sum_i m_i \rho_i^2 = \int_M \rho^2 dm.$

Parallellakseteoremet: $I = I_{\rm cm} + Md^2$.

Rullebetingelse: $V = \omega R$.

Fiktive krefter: $m\vec{a}' = \sum \vec{F}^{\text{ext}} - m\vec{A} - m\frac{d\vec{\omega}}{dt} \times \vec{r}' - 2m\vec{\omega} \times \vec{v}' - m\vec{\omega} \times (\vec{\omega} \times \vec{r}').$

Gravitasjon: $\vec{F}(\vec{r}) = -G \frac{m_1 m_2}{r^2} \hat{u}_r$, $U(r) = -G \frac{m_1 m_2}{r}$.

Spenning og tøyning: $\sigma_{xx} = \frac{F_x}{A_x} = E \frac{\Delta x}{x} = E \epsilon_{xx}, \frac{\Delta y}{y} = -\nu \frac{\Delta x}{x}.$

Lorentz-trans.: $x' = \gamma(x - ut), y' = y, z' = z, t' = \gamma(t - \frac{u}{c^2}x), \gamma = \frac{1}{\sqrt{1 - \frac{u^2}{c^2}}}$

Relativistisk: $m = \gamma m_0$, $\vec{p} = m\vec{v}$, $E = mc^2$.