# Limbaje formale, automate și compilatoare

Curs 8

## Recapitulare

- Analiza sintactică ascendentă
  - Parser ascendent general
- Gramatici LR(k)
  - Definiţie
  - Proprietăți
- Gramatici LR(0)
  - Teorema de caracterizare LR(0)
  - Automatul LR(0)
  - Parserul LR(0)

## Parser ascendent general



## Gramatici LR(0)

### Definiţie

• Fie G = (V, T, S, P) o gramatică independentă de context redusă. Să presupunem că simbolul • nu este în  $\Sigma$ . Un **articol** pentru gramatica G este o producție  $A \rightarrow \gamma$  în care s-a adăugat simbolul • într-o anume poziție din  $\gamma$ . Notăm un articol prin  $A \rightarrow \alpha \bullet \beta$  dacă  $\gamma = \alpha \beta$ . Un articol în care • este pe ultima poziție se numește **articol complet**.

### Definiţie

o Un **prefix viabil** pentru gramatica G este orice prefix al unui cuvânt  $\alpha\beta$  dacă  $S_{dr}$  ⇒\*  $\alpha$ Au  $_{dr}$  ⇒  $\alpha\beta$ u . Dacă  $\beta$ =  $\beta_1\beta_2$ şi  $\phi$ =  $\alpha\beta_1$ spunem că articolul A →  $\beta_1$ • $\beta_2$  este **valid** pentru **prefixul viabil**  $\phi$ .

## Gramatici LR(0)

### Lema

• Fie G o gramatică şi  $A \rightarrow \beta_1 \bullet B\beta_2$  un articol valid pentru prefixul viabil  $\gamma$ . Atunci, oricare ar fi producţia  $B \rightarrow \beta$ , articolul  $B \rightarrow \bullet \beta$  este valid pentru  $\gamma$ .

### ▶ **Teorema** (caracterizare LR(0))

- Gramatica G este gramatică LR(0) dacă şi numai dacă, oricare ar fi prefixul viabil γ, sunt îndeplinite condiţiile:
  - 1.nu există două articole complete valide pentru  $\gamma$ .
  - 2.dacă articolul  $A \rightarrow \beta \bullet$  este valid pentru  $\gamma$ , nu există nici un articol  $B \rightarrow \beta_1 \bullet a\beta_2$ , a $\in$ T, valid pentru  $\gamma$ .

## Automatul LR(0) - Exemplu

 $\rightarrow$  S'  $\rightarrow$  S, S  $\rightarrow$  aSa | bSb | c



## Algoritmul de analiză LR(0)

- Tabela de parsare coincide cu automatul LR(0),
   M.
- Configurație: (σ, u#,  $\pi$ ) unde σεt<sub>0</sub>T\*, uεT\*,  $\pi$ εP\*.
- Configurația inițială este  $(t_0, w#, \varepsilon)$ ,
- Tranziţiile:
  - Deplasare:  $(\sigma t, au\#, \pi) \vdash (\sigma tt', u\#, \pi) dacă g(t, a) = t'$ .
  - Reducere:  $(\sigma t \sigma' t', u \#, \pi) \vdash (\sigma t t'', u \#, \pi r) dacă A \rightarrow \beta \bullet \in t', r = A \rightarrow \beta, |\sigma' t'| = |\beta| si t'' = g(t, A).$
  - Acceptare:  $(t_0t_1, \#, \pi)$  este configurația de acceptare dacă  $S' \rightarrow S \bullet \in t1, \pi$  este parsarea acestuia.
  - Eroare: o configurație căreia nu i se poate aplica nici o tranziție

### Algoritmul de analiză LR(0)

```
char ps[]= "w#"; //ps este sirul de intrare w
 i = 0; // pozitia in sirul de intrare
> STIVA.push(t0); // se initializeaza stiva cu t0
while(true) { // se repeta pana la succes sau eroare
   o t = STIVA.top();
   o a = ps[i] // a este simbolul curent din intrare
   • if ( q(t, a) \neq \emptyset { //deplasare

    STIVA.push(q(t, a));

     • i++; //se inainteaza in intrare
     • }
   • else {
   \circ if (A \rightarrow X_1X_2...X_m \bullet E t) {
     • if (A == ...S'')
        • if (a == "#") exit( "acceptare");
        • else exit("eroare");

    else // reducere

        • for( i = 1; i <= m; i++) STIVA.pop();</pre>
           STIVA.push(q(top(STIVA), A));
      } //endif
   • else exit("eroare");
   • }//endelse
```

### Exemplu

 $\rightarrow$  S'  $\rightarrow$  S S  $\rightarrow$  E\$ E  $\rightarrow$  E+T T  $\rightarrow$  (E) E  $\rightarrow$  T T  $\rightarrow$  a 1  $S' \rightarrow \bullet S$  $E \rightarrow T \bullet$  $S' \rightarrow S \bullet$  $S \rightarrow \bullet E\$$ S  $E \rightarrow \bullet E + T$  $E \rightarrow \bullet T$ 2  $T \rightarrow \bullet(E)$  $S \rightarrow E \bullet \$$  $T \rightarrow \bullet a$  $T \rightarrow (\bullet E)$  $\mathsf{E} \to \mathsf{E} {\bullet} {+} \mathsf{T}$  $E \rightarrow \bullet E + T$  $E \rightarrow \bullet T$  $T \rightarrow \bullet(E)$  $T \rightarrow \bullet a$ \$ а 5  $T \rightarrow a \bullet$  $S \rightarrow E\$ \bullet$ Ε 8  $T \rightarrow (E \bullet)$  $E \rightarrow E \bullet + T$  $\mathsf{E} \to \mathsf{E}\text{+}{}_{\bullet}\mathsf{T}$ 9  $T \rightarrow \bullet(E)$  $T \rightarrow \bullet a$  $E \rightarrow E+T \bullet$ 10  $T \rightarrow (E) \bullet$ 

## Cuprins

- Mulţimile FIRST, FOLLOW
- Gramatici SLR(1)
  - Tabela de parsare SLR(1)
  - Analiza sintactică SLR(1)
- Gramatici LR(1)

### Gramatici SLR(1)

### Definiţie

- Fie G o gramatică pentru care automatul LR(0)
   conţine stări inconsistente (deci G nu este LR(0)).
   Gramatica G este gramatică SLR(1)dacă oricare ar fi
   starea t a automatului LR(0) sunt îndeplinite
   condiţiile:
- ∘ –Dacă A $\rightarrow \alpha$ •, B $\rightarrow \beta$  ∈ t atunci FOLLOW(A) ∩FOLLOW(B) =  $\emptyset$ ;
- ∘ –Dacă  $A \rightarrow \alpha \bullet$ ,  $B \rightarrow \beta \bullet a \gamma \in t$  atunci  $a \notin FOLLOW(A)$ .

## Mulţimile FIRST şi FOLLOW

► FIRST(α) = {a|a ∈ T, α  $_{st}$ ⇒\* au } ∪ if (α  $_{st}$  ⇒\* ε) then {ε} else ∅.

► FOLLOW(A) = {a|a ∈ T ∪ {ε}, S <sub>st</sub> ⇒\* uAγ, a ∈ FIRST (γ) }

### **Determinare FIRST**

```
▶ 1.for (X \in \Sigma)
   • 2.if (X \epsilon T) FIRST(X) = {X} else FIRST(X) = \emptyset;
 3. for (A→aβ  ∈  P)
   • 4.FIRST(A)=FIRST(A)∪{a};
5.FLAG=true;
6.while(FLAG){
   o 7.FLAG=false;
   • 8.for (A → X<sub>1</sub>X<sub>2</sub>...X<sub>n</sub> € P) {
       • 9.i=1;
       • 10.if((FIRST(X1) ⊈ FIRST(A)){
           • 11.FIRST(A)=FIRST(A) \cup (FIRST(X1)-{\epsilon});
           • 12.FLAG=true;
       • 13.}//endif
       • 14.while (i<n && X_{i,st} \Rightarrow * \epsilon)
           • 15.if((FIRST(X<sub>i+1</sub>) ⊈ FIRST(A)){
              • 16.FIRST(A)=FIRST(A) \cup FIRST(X<sub>i+1</sub>);
              • 17.FLAG=true; i++;
           }//endif
       }//endwhile
    o }//endfor
   }//endwhile
  for (A \in N)
   • if (A_{st} \Rightarrow^* \epsilon) FIRST (A) = FIRST(A) \cup \{\epsilon\};
```

### Determinare FIRST

```
Intrare: Gramatica G=(N,T,S,P).
                 Multimile FIRST(X), X \in \Sigma.
                 \alpha = X_1 X_2 ... X_n, X_i \in \Sigma, 1 \le i \le n.
  Ieşire: FIRST (\alpha).
▶ 1.FIRST (\alpha) =FIRST (X_1) - {\epsilon}; i=1;
▶ 2.while(i<n && X_i \Rightarrow^+ \epsilon) {
   • 3.FIRST (\alpha) =FIRST (\alpha) \cup (FIRST (X_{i+1}) - {\epsilon});
   • 4.i=i+1;
}//endwhile
▶ 5.if (i==n && X_n \Rightarrow^+ ε)
   • 6.FIRST (\alpha) =FIRST (\alpha) \cup {\epsilon};
```

## Exemplu

- Fie gramatica:
- S → E | B, E → ε, B → a | begin SC end, C → ε | ; SC
- ▶ FIRST(S) =  $\{a, begin, \epsilon\}$  FIRST(E) =  $\{\epsilon\}$
- ▶ FIRST(B) = {a, begin} FIRST(C) = {;,  $\varepsilon$ }.
- FIRST(SEC) =  $\{a, begin, ;, \epsilon\},\$
- FIRST(SB)= {a, begin},
- ▶ FIRST(;SC)= {;}.

### Determinarea FOLLOW

- $\epsilon \in FOLLOW(S)$ .
- Dacă A → αBβXγ ε P şi β ⇒ + ε, atunci FIRST(X)  $\{\epsilon\}$  ⊆ FOLLOW (B).
  - $S \Rightarrow^* \alpha_1 A \beta_1 \Rightarrow \alpha_1 \alpha B \beta X \gamma \beta_1 \Rightarrow^* \alpha_1 \alpha B X \gamma \beta_1$  şi atunci rezultă FIRST(X)- $\{\epsilon\} \subseteq$  FOLLOW (B).
- ▶ Dacă A →  $\alpha$ B $\beta$  ∈ P atunci FIRST( $\beta$ )–{ $\epsilon$ } ⊆ FOLLOW (B).
- Dacă A → αBβ ∈ P şi β ⇒ + ε, atunci FOLLOW(A) ⊆ FOLLOW(B).

### Determinarea FOLLOW

```
▶ 1. for (A \in \Sigma) FOLLOW (A) = \emptyset;
\triangleright 2.FOLLOW(S) = {\epsilon};
▶ 3.for (A \rightarrow X_1X_2...X_n) {
▶ 4.i=1;
   o 5.while(i<n){</pre>
     • 6.while (X_i \notin N) + +i;
     • 7.if(i<n){
        • 8. FOLLOW(Xi) = FOLLOW(X_i) \cup
                                (FIRST (X_{i+1}X_{i+2}...X_n) - \{\epsilon\});
        • 9.++i;
     }//endif

  }//endwhile

}//endfor
```

### Determinarea FOLLOW

```
▶ 10.FLAG=true;
11.while(FLAG){
   • 12.FLAG=false;
   • 13.for (A \rightarrow X_1X_2...X_n) {
     • 14.i=n;
     • 15.while (i>0 && X_i \in N) {
        • 16.if (FOLLOW(A) \not\subset FOLLOW(X_i)) {
          • 17.FOLLOW(Xi)=FOLLOW(X_i) \cup FOLLOW(A);
          • 18.FLAG=true;
        • 19.}//endif
        • 20.if (X_i \Rightarrow^+ \varepsilon) --i;
        • 21.else continue;
     • 22.}//endwhile
   23.}//endfor
▶ 24.}//endwhile
```

## Exemplu

- Fie gramatica:
- S → E | B, E → ε, B → a | begin SC end, C → ε | ; SC
- ▶ FOLLOW(S)=FOLLOW(E)=FOLLOW(B) = $\{\epsilon, ;, end\}$
- FOLLOW(C) = {end}.

### Gramatici SLR(1)

### Definiţie

 Fie G o gramatică pentru care automatul LR(0) conţine stări inconsistente (deci G nu este LR(0)). Gramatica G este gramatică SLR(1)dacă oricare ar fi starea t a automatului LR(0) sunt îndeplinite condiţiile:

```
∘ -Dacă A \rightarrow \alpha \bullet, B \rightarrow \beta \bullet \in t atunci FOLLOW(A) ∩FOLLOW(B) = \emptyset;
```

- ∘ -Dacă  $A \rightarrow \alpha \bullet$ ,  $B \rightarrow \beta \bullet a \gamma \in t$  atunci  $a \notin FOLLOW(A)$ .
- Analiza sintactică SLR(1) este similară cu cea LR(0); tabela de analiză sintactică are două componente:
  - -Prima, numită ACŢIUNE, determină dacă parserul va face deplasare respectiv reducere, în funcție de starea ce se află în topul stivei şi de simbolul următor din intrare
  - -Cea de a doua, numită GOTO, determină starea ce se va adăuga în stivă în urma unei reduceri.

## Construcția tabelei de parsare SLR(1)

### Intrare:

- Gramatica G = (N, T, S, P) augmentată cu S' → S;
- Automatul M = (Q,  $\Sigma$ , g, t<sub>0</sub>, Q);
- Mulţimile FOLLOW(A), A∈V

### leşire:

- Tabela de analiză SLR(1) compusă din două părţi:
- ACŢIUNE(t, a), t ∈ Q, a ∈ T ∪ { # },
- GOTO(t, A),  $t \in Q$ ,  $A \in N$ .

## Construcția tabelei de parsare SLR(1)

```
\rightarrow for (t \in Q)
  • for (a \in T) ACTIUNE(t, a) = "eroare";
  • for (A \in V) GOTO(t, A) = "eroare";
▶ for(t ∈ Q){
  • for (A \rightarrow \alpha \bullet a\beta \in t)
    ACTIUNE(t,a)="D g(t, a)";//deplasare in g(t, a)
  • for (B \rightarrow \gamma \bullet \in t) { // acceptare sau reducere
    • if(B == 'S') ACTIUNE(t, #) = "acceptare";
    • else
       • for (a \in FOLLOW(B)) ACTIUNE(t,a)="R B\rightarrow \gamma'';
  • }// endfor
  • for (A \in N) GOTO(t, A) = g(t, A);
} //endfor
```

### Parsarea SLR(1)

- **Deplasare**: ( $\sigma$ t, au#,  $\pi$ )⊢( $\sigma$ tt', u#,  $\pi$ ) dacă ACTIUNE(t, a)=Dt';
- ▶ Reducere: ( $\sigma$ t $\sigma$ 't', u#,  $\pi$ ) $\vdash$ (  $\sigma$ tt'', u#,  $\pi$ r) ACTIUNE(t, a) = Rp unde p= A → β,  $|\sigma$ 't'| =  $|\beta|$  şi t''= GOTO(t, A);
- Acceptare:  $(t_0t, \#, \pi)$  dacă ACTIUNE(t,a) = "acceptare"; Analizorul se oprește cu acceptarea cuvântului de analizat iar  $\pi$  este parsarea acestuia (șirul de reguli care s-a aplicat, în ordine inversă, în derivarea extrem dreaptă a lui w).
- Eroare: (σ t, au#, π) ⊢ eroare dacă ACTIUNE(t,a) = "eroare"; Analizorul se opreşte cu respingerea cuvântului de analizat.

### Parsarea SLR(1)

### Intrare:

- Gramatica G = (N, T, S, P) care este SLR(1);
- Tabela de parsare SLR(1) ( ACTIUNE, GOTO);
- Cuvântul de intrare w ∈ T\*.

### leşire:

- Analiza sintactică (parsarea) ascendentă a lui w dacă w ∈ L(G);
- eroare, în caz contrar.
- Se foloseşte stiva St pentru a implementa tranziţiile deplasare/reducere

### Parsarea SLR(1)

```
char ps[] = "w#"; //ps este cuvantul de intrare w
  int i = 0; // pozitia curenta in cuvantul de intrare
  St.push(t0); // se initializeaza stiva cu t0
while(true) { // se repeta pana la succes sau eroare
   \cdot t = St.top();
   a = ps[i] // a este simbolul curent din intrare
   if(ACTIUNE(t,a) == "acceptare") exit("acceptare");
   • if(ACTIUNE(t,a) == "Dt""){

    St.push(t");

      • i++; // se inainteaza in w
   }//endif
   • else {
      • if(ACTIUNE(t,a) == "R A \rightarrow X<sub>1</sub>X<sub>2</sub>...X<sub>m</sub>"){
         • for( i = 1; i \le m; i++) St.pop();
         St.push(GOTO(St.top, A));
      } //endif
      else exit("eroare");
   > }//endelse
   }//endwhile
```

### Exemplu

▶ 0.S  $\rightarrow$  E, 1.E  $\rightarrow$  E+T, 2.E  $\rightarrow$  T, 3.T  $\rightarrow$  T\*F, 4.T  $\rightarrow$  F, 5.F  $\rightarrow$ (E), 6.F  $\rightarrow$  a

 $S \rightarrow \bullet E$   $E \rightarrow \bullet E + T$   $E \rightarrow \bullet T$   $T \rightarrow \bullet T * F$   $T \rightarrow \bullet F$   $F \rightarrow \bullet (E)$   $F \rightarrow \bullet a$ 

 $\begin{array}{c|c}
1 & \\
S \to E \bullet \\
E \to E \bullet + T
\end{array}$ 

 $\begin{array}{c|c}
E \to T \bullet \\
T \to T \bullet^* F
\end{array}$ 

 $E \rightarrow E + \bullet T$   $T \rightarrow \bullet T * F$   $T \rightarrow \bullet F$   $F \rightarrow \bullet (E)$   $F \rightarrow \bullet a$ 

 $\begin{array}{c|c}
T \to T^* \bullet F \\
F \to \bullet (E) \\
F \to \bullet a
\end{array}$ 

 $\begin{array}{c|c}
3 \\
T \to F \bullet
\end{array}$ 

5 F → a•

 $F \rightarrow (\bullet E)$   $E \rightarrow \bullet E + T$   $E \rightarrow \bullet T$   $T \rightarrow \bullet T * F$   $T \rightarrow \bullet F$   $F \rightarrow \bullet (E)$   $F \rightarrow \bullet a$ 

10 T → T\*F•

 $F \to (E) \bullet$ 

### Tabela de tranziție a automatului LR(0)

| g  | a | + | * | ( | )  | E | T | F  |
|----|---|---|---|---|----|---|---|----|
| 0  | 5 |   |   | 4 |    | 1 | 2 | 3  |
| 1  |   | 6 |   |   |    |   |   |    |
| 2  |   |   | 7 |   |    |   |   |    |
| 3  |   |   |   |   |    |   |   |    |
| 4  | 5 |   |   | 4 |    | 8 | 2 | 3  |
| 5  |   |   |   |   |    |   |   |    |
| 6  | 5 |   |   | 4 |    |   | 9 | 3  |
| 7  | 5 |   |   | 4 |    |   |   | 10 |
| 8  |   |   |   |   | 11 |   |   |    |
| 9  |   |   | 7 |   |    |   |   |    |
| 10 |   |   |   |   |    |   |   |    |
| 11 |   |   |   |   |    |   |   |    |

## Tabela de analiză SLR(1)

|       | ACŢIUNE |    |            |    |     |         | GOTO |   |    |
|-------|---------|----|------------|----|-----|---------|------|---|----|
| STARE | a       | +  | *          | (  | )   | #       | Е    | Т | F  |
| 0     | D5      |    |            | D4 |     |         | 1    | 2 | 3  |
| 1     |         | D6 |            |    |     | accepta |      |   |    |
| 2     |         | R2 | <b>D</b> 7 |    | R2  | R2      |      |   |    |
| 3     |         | R4 | R4         |    | R4  | R4      |      |   |    |
| 4     | D5      |    |            | D4 |     |         | 8    | 2 | 3  |
| 5     |         | R6 | R6         |    | R6  | R6      |      |   |    |
| 6     | D5      |    |            | D4 |     |         |      | 9 | 3  |
| 7     | D5      |    |            | D4 |     |         |      |   | 10 |
| 8     |         | D6 |            |    | D11 |         |      |   |    |
| 9     |         | R1 | <b>D</b> 7 |    | R1  | R1      |      |   |    |
| 10    |         | R3 | R3         |    | R3  | R3      |      |   |    |
| 11    |         | R5 | R5         |    | R5  | R5      |      |   |    |

### Test SLR(1)

- G nu este LR(0) stările 1, 2, 9 conțin conflict de deplasare/reducere
- ▶ FOLLOW(S)={#}, FOLLOW(E)={#,+,)}
- Gramatica este SLR(1) pentru că:
  - în starea 1: + ∉ FOLLOW(S);
  - în starea 2: \* ∉ FOLLOW(E);
  - în starea 9: \* ∉ FOLLOW(E).

| Stiva | Intrare  | Actiune   | lesire  |  |
|-------|----------|-----------|---------|--|
| 0     | a*(a+a)# | deplasare |         |  |
| 05    | *(a+a)#  | reducere  | 6.F → a |  |
| 03    | *(a+a)#  | reducere  | 4.T → F |  |
| 02    | *(a+a)#  | deplasare |         |  |
| 027   | (a+a)#   | deplasare |         |  |
| 0274  | a+a)#    | deplasare |         |  |
| 02745 | +a)#     | reducere  | 6.F → a |  |
| 02743 | +a)#     | reducere  | 4.T → F |  |
| 02742 | +a)#     | reducere  | 2.E → T |  |
| 02748 | +a)#     | deplasare |         |  |

| Stiva     | Intrare | Actiune   | lesire    |  |
|-----------|---------|-----------|-----------|--|
| 027486    | a)#     | deplasare |           |  |
| 0274865   | )#      | reducere  | 6.F → a   |  |
| 0274863   | )#      | reducere  | 4.T → F   |  |
| 0274869   | )#      | reducere  | 1.E → E+T |  |
| 02748     | )#      | deplasare |           |  |
| 02748(11) | #       | reducere  | 5.F →(E)  |  |
| 027(10)   | #       | reducere  | 3.T → T*F |  |
| 02        | #       | reducere  | 2.E → T   |  |
| 01        | #       | acceptare |           |  |

### Gramatici LR(1)

### Definiţie

• Fie G = (V, T, S, P) o gramatică redusă. Un articol LR(1) pentru gramatica G este o pereche (A  $\rightarrow \alpha \bullet \beta$ , a), unde A  $\rightarrow \alpha \beta$  este un articol LR(0), iar a  $\in$ FOLLOW(A) (se pune # în loc de  $\epsilon$ ).

### Definiţie

- Articolul (A  $\rightarrow$   $\beta$ 1 • $\beta$ 2, a) este valid pentru prefixul viabil  $\alpha\beta$ 1 dacă are loc derivarea
  - S dr $\Rightarrow$ \* $\alpha$ Au  $\Rightarrow \alpha\beta1\beta2u$
  - iar a = 1:u (a = # dacă  $u = \varepsilon$ ).

#### Teorema

ο O gramatică G = (V, T, S, P) este gramatică LR(1) dacă şi numai dacă oricare ar fi prefixul viabil φ, nu există două articole distincte, valide pentru φ, de forma(A → α • , a), (B → β • γ, b) unde a ∈ FIRST(γb).

### Gramatici LR(1)

- Nu există conflict deplasare/reducere. Un astfel de conflict înseamnă două articole ( $A \rightarrow \alpha \bullet$ , a) şi ( $B \rightarrow \beta \bullet a\beta$ ', b) valide pentru același prefix.
- Nu există conflict reducere/reducere. Un astfel de conflict înseamnă două articole complete( $A \rightarrow \alpha \bullet$ , a) şi ( $B \rightarrow \beta \bullet$ , a) valide pentru același prefix
- Pentru a verifica dacă o gramatică este LR(1) se construiește automatul LR(1) în mod asemănător ca la LR(0):
  - Automatul are ca stări mulțimi de articole LR(1)
  - Tranzițiile se fac cu simboluri ce apar după punct
  - Închiderea unei mulțimi de articole se bazează pe faptul că dacă articolul ( $B \to \beta \bullet A\beta$ ', b) este valid pentru un prefix viabil atunci toate articolele de forma ( $A \to \bullet \alpha$ , a), unde a  $\in$ FIRTS( $\beta$ 'b) sunt valide pentru același prefix.

## Procedura de închidere LR(1)

```
flag= true;
while( flag) {
   • flag= false;
   ∘ for ( (A \rightarrow \alpha \bullet B\beta, a) ∈ I) {
     • for B \rightarrow Y \in P)
        • for ( b \in FIRST(\betaa)) {
          • if (B \rightarrow \bullet Y, b) \notin I) {
             \bullet I = IU\{(B \rightarrow \bullet \lor , b)\};
             flag= true;
          }//endif
        }//endforb
     }//endforB
     }//endforA
 }//endwhile
  return I;
```

## Automatul LR(1)

```
▶ t0 = închidere((S' \rightarrow \bulletS,#));T={t<sub>0</sub>};marcat(t<sub>0</sub>)=false;
\blacktriangleright while (\exists ters.\( \)! marcat(t)) \( \) // marcat(t) = false
   • for (X \in \Sigma) {
   \circ t' = \Phi;
      • for (A \rightarrow \alpha \bullet X\beta, a) \in t
          • t' = t' \cup \{ (B \rightarrow \alpha X \bullet \beta , a) \mid (B B \rightarrow \alpha \bullet X \beta, a) \in t \};
          • if (t' \neq \Phi) {
            • t' = închidere( t' );
            • if( t'T) {
               T= T U { t' };
               marcat( t' ) = false;
             }//endif
             • q(t, X) = t';
          } //endif
     } //endfor
   o marcat( t ) = true;
      endwhile
```

## Automatul LR(1)

#### Teorema

- Automatul M construit în algoritmul 2 este determinist şi L(M) coincide cu mulţimea prefixelor viabile ale lui G. Mai mult, pentru orice prefix viabil  $\gamma$ ,  $g(t_0,\gamma)$  reprezintă mulţimea articolelor LR(1) valide pentru  $\gamma$ .
- Automatul LR(1) pentru o gramatică G, se foloseşte pentru a verifica dacă G este LR(1)
  - Conflict reducere/reducere: Dacă în T există o stare ce conține articole de forma ( $A \rightarrow \alpha \bullet$ , a), ( $B \rightarrow \beta \bullet$ , a) atunci gramatica nu este LR(1);
  - Conflict deplasare/reducere: Dacă în Texistă o stare ce conține articole de forma ( $A \rightarrow \alpha \bullet$ , a) și ( $B \rightarrow \beta_1 \bullet a\beta_2$ , b), atunci G nu este LR(1).
  - O gramatică este LR(1) dacă orice stare t ∈Teste liberă de conflicte

 $\rightarrow$  S  $\rightarrow$  L=R|R, L  $\rightarrow$  \*R|a, R  $\rightarrow$  L

- 0
  (S'  $\rightarrow$  •S, #)
  (S  $\rightarrow$  •L=R, #)
  (S  $\rightarrow$  •R, #)
  (L  $\rightarrow$  •\*R, {=,#})
  (L  $\rightarrow$  •a, {=,#})
  (R  $\rightarrow$  •L, #)
- $(S \rightarrow L = \bullet R, \#)$   $(R \rightarrow \bullet L, \#)$   $(L \rightarrow \bullet * R, \#)$   $(L \rightarrow \bullet a, \#)$

- $\begin{array}{c|c}
  1 & \\
  \hline
   & (S' \to S \bullet, \#)
  \end{array}$
- $(S \to L \bullet = R, \#)$   $(R \to L \bullet, \#)$
- $(L \rightarrow *R\bullet, \{=,\#\})$
- $(L \rightarrow a \bullet, \#)$

- $\begin{array}{c|c}
  3 \\
  \hline
  (S \to R^{\bullet}, \#)
  \end{array}$
- $\begin{array}{c|c}
  5 \\
  \hline
  (L \rightarrow a \bullet, \{=,\#\})
  \end{array}$
- $\begin{array}{c|c}
  9 \\
  \hline
  (S \to L=R^{\bullet}, \#)
  \end{array}$
- $\begin{array}{|c|c|}
  \hline
   & 10 \\
  \hline
   & (R \to L^{\bullet}, \#)
  \end{array}$
- 13 (L → \*R•, #)

- 4  $(L \to *\bullet R, \{=, \#\})$   $(R \to \bullet L, \{=, \#\})$   $(L \to \bullet *R, \{=, \#\})$   $(L \to \bullet a, \{=, \#\})$
- 11 (L  $\rightarrow * \bullet R, \#$ ) (R  $\rightarrow \bullet L, \#$ ) (L  $\rightarrow \bullet * R, \#$ ) (L  $\rightarrow \bullet * A, \#$ )

# Tabela de tranziție

| g  | a  | Ш | *  | S | L  | R  |
|----|----|---|----|---|----|----|
| 0  | 5  |   | 4  | 1 | 2  | 3  |
| 1  |    |   |    |   |    |    |
| 2  |    | 6 |    |   |    |    |
| 3  |    |   |    |   |    |    |
| 4  | 5  |   | 4  |   | 8  | 7  |
| 5  |    |   |    |   |    |    |
| 6  | 12 |   | 11 |   | 10 | 9  |
| 7  |    |   |    |   |    |    |
| 8  |    |   |    |   |    |    |
| 9  |    |   |    |   |    |    |
| 10 |    |   |    |   |    |    |
| 11 | 12 |   | 11 |   | 10 | 13 |
| 12 |    |   |    |   |    |    |
| 13 |    |   |    |   |    |    |

### Construcția tabelei de analiză LR(1)

```
\rightarrow for (t \in T)
  o for (a ∈ T) ACTIUNE(t, a) = "eroare";
  • for (A \in V) GOTO(t, A) = "eroare";
▶ for(t ∈ T){
  • for ((A \rightarrow \alpha \bullet a\beta, L) \in t)
    ACTIUNE(t,a)="D g(t, a)";//deplasare in g(t, a)
  • for ((B \rightarrow \gamma \bullet, L) \in t) \{// \text{ acceptare sau reducere}\}
    • for (c \in L) {
       • if(B == 'S') ACTIUNE(t, #) = "acceptare";
       • else ACTIUNE(t,c)="R B\rightarrow \gamma'';//reducere cu B\rightarrow \gamma
       }//endfor
   } // endfor
  • for (A \in N) GOTO(t, A) = q(t, A);
}//endfor
```

▶ 0:S' $\rightarrow$ S, 1:S  $\rightarrow$ L=R, 2:S  $\rightarrow$ R, 3:L  $\rightarrow$ \*R, 4:L  $\rightarrow$ a, 5:R  $\rightarrow$ L

|       | ACŢIUNE    |            |             | GOTO      |   |    |    |
|-------|------------|------------|-------------|-----------|---|----|----|
| STARE | a          | =          | *           | #         | S | L  | R  |
| 0     | <b>D</b> 5 |            | <b>D</b> 4  |           | 1 | 2  | 3  |
| 1     |            |            |             | acceptare |   |    |    |
| 2     |            | <b>D</b> 6 |             | R5        |   |    |    |
| 3     |            |            |             | R2        |   |    |    |
| 4     | <b>D</b> 5 |            | <b>D</b> 4  |           |   | 8  | 7  |
| 5     |            | R4         |             | R4        |   |    |    |
| 6     | D12        |            | D11         |           |   | 10 | 9  |
| 7     |            | R3         |             | R3        |   |    |    |
| 8     |            | R5         |             | R5        |   |    |    |
| 9     |            |            |             | R1        |   |    |    |
| 10    |            |            |             | R5        |   |    |    |
| 11    | D12        |            | <b>D</b> 11 |           |   | 10 | 13 |
| 12    |            |            |             | R4        |   |    |    |
| 13    |            |            |             | R3        |   |    |    |

- Fie cuvintele
  - \*\*\*a
  - ∘ a=\*\*a
  - \*a=\*\*a
- Analiza LR(1)?

#### Gramatici LALR(1)

#### Definiţie

 Fie t o stare în automatul LR(1) pentru G. Nucleul acestei stări este mulţimea articolelor LR(0) care apar ca prime componente în articolele LR(1) din t.

#### Defininiţie

 Două stări t<sub>1</sub> şi t<sub>2</sub> ale automatului LR(1) pentru gramatica G sunt echivalente dacă au acelaşi nucleu.

### Gramatici LALR(1)

- Fiecare stare a automatului LR(1) este o mulţime de articole LR(1). Pornind de la două stări  $t_1$  şi  $t_2$  putem vorbi de starea t1  $\cup$  t2.
  - Fie  $t_1 = \{(L \rightarrow *R., \{=, \# \})\}, t_2 = \{(L \rightarrow *R., \#)\}, \text{ atunci}$  $t_1 \cup t_2 = t_1 \text{ pentru că } t_2 \subset t_1 \text{ .}$

#### Definiţie

• Fie G gramatică LR(1) şi M = (Q, Σ, g, t0, Q) automatul LR(1) corespunzător. Spunem că gramatica G este LALR(1) ( Look Ahead LR(1)) dacă oricare ar fi perechea de stări echivalente  $t_1$ ,  $t_2$  din automatul LR(1), starea  $t_1 \cup t_2$  este liberă de conflicte.

#### Tabela de analiză LALR(1)

- Intrare: Gramatica G = (N, T, S, P) augmentată cu S' → S;
- leşire: Tabela de analiză LALR(1) ( ACŢIUNE şi GOTO ).
- Algoritm:
  - 1. Se construiește automatul LR(1),  $M = (Q, \Sigma, g, t_0, Q)$  Fie  $Q = \{t_0, t_1, ..., t_n\}$ . Dacă toate stările din Q sunt libere de conflict, urmează 2, altfel algoritmul se oprește deoarece gramatica nu este LR(1).
  - 2. Se determină stările echivalente din Q şi, prin reuniunea acestora, se obţine o nouă mulţime de stări Q' = {t'<sub>0</sub>, t'<sub>1</sub>,..., t'<sub>m</sub>}
  - 3. Dacă în Q' există stări ce conțin conflicte, algoritmul se oprește deoarece gramatica G nu este LALR(1).

#### Tabela de analiză LALR(1)

- 4. Se construiește automatul M' = (Q',  $\Sigma$ , g', t'0, Q'), unde  $\forall$  t' $\in$ Q':
  - 5. Dacă t'  $\in$  Q atunci g'(t', X) = g(t, X),  $\forall$  X $\in$   $\Sigma$ ;
  - 6. Dacă t' =  $t_1 \cup t_2 \cup ..., t_1, t_2, ... \in \mathbb{Q}$ , atunci
    - 7.  $g'(t', X) = g(t1, X) \cup g(t2, X) \cup ....$
- 8. Se aplică algoritmul pentru construirea tabelei de parsare LR(1) pornind de la automatul M'. Tabela obţinută se numeşte tabela LALR(1) pentru gramatica G.

Pentru gramatica discutată anterior avem  $4 \cup 11 = 4$ ,  $5 \cup 12 = 5$ ,  $7 \cup 13 = 7$ ,  $8 \cup 10 = 8$ 

|      | ACŢIUNE   |            |            |           | GOTO |   |   |
|------|-----------|------------|------------|-----------|------|---|---|
| STAR | a         | =          | *          | #         | S    | L | R |
| E    |           |            |            |           |      |   |   |
| 0    | <b>D5</b> |            | <b>D</b> 4 |           | 1    | 2 | 3 |
| 1    |           |            |            | acceptare |      |   |   |
| 2    |           | <b>D</b> 6 |            | <b>R5</b> |      |   |   |
| 3    |           |            |            | R2        |      |   |   |
| 4    | <b>D5</b> |            | <b>D</b> 4 |           |      | 8 | 7 |
| 5    |           | R4         |            | R4        |      |   |   |
| 6    | <b>D5</b> |            | <b>D</b> 4 |           |      | 8 | 9 |
| 7    |           | R3         |            | R3        |      |   |   |
| 8    |           | R5         |            | R5        |      |   |   |
| 9    |           |            |            | R1        |      |   |   |

Există gramatici LR(1) care nu sunt LALR(1).

- $\circ$  S  $\rightarrow$  aAb | bAd | aBd | bBb
- A → e
- $\circ$  B  $\rightarrow$  e

# Bibliografie

Grigoraş Gh., Construcţia compilatoarelor.
 Algoritmi fundamentali, Editura Universităţii
 "Alexandru Ioan Cuza", Iaşi, 2005