self_casestdu1

June 12, 2021

BUSINESS PROBLEM Statement- Predict material backorder in inventory management using machine learning. The task is to classify the whether a particular product would go to backorder or not. **ML Formulation-** Classify if the product would go into backorder or not. The output of the variable is Yes/No problem. So the problem is best framed as a 2-class, single label prediction problem that predicts Yes or No i.e a binary classification problem. Yes- The product will go into backorder. No- The product won't go into backorder.

Metrics

- Confusion matrix
- Precision-Recall precision recall works well with imbalanced data and usually the focus would be on the positive class i.e Went on backorder.
- Micro-f1 score- Micro f1 score gives weightage to imbalance data unlike macro-f1. But for a binary classification problem it doesn't usually matter.
- AUC-ROC curve

```
[1]: import os
   import time
   import datetime
   import json
   import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   from matplotlib import rcParams
   import seaborn as sns
   from tqdm.notebook import tqdm, trange
   import warnings
   warnings.filterwarnings('ignore')
   plt.style.use('fivethirtyeight')
   rcParams['axes.spines.right'] = False
   rcParams['axes.spines.top'] = False
   plt.rc('xtick', labelsize=11)
   plt.rc('ytick', labelsize=11)
   custom_colors = ['#74a09e','#86c1b2','#98e2c6','#f3c969','#f2a553', '#d96548',<sub>U</sub>
     →'#c14953']
   sns.set_palette(custom_colors)
   %config InlineBackend.figure_format = 'retina'
   pd.set_option('max_colwidth', 40)
   pd.options.display.max_columns = None # Possible to limit
```

```
from IPython.core.interactiveshell import InteractiveShell
   InteractiveShell.ast_node_interactivity = 'all'
   from sklearn.ensemble import RandomForestClassifier
   from sklearn.tree import DecisionTreeClassifier
   from sklearn.preprocessing import MinMaxScaler
   from matplotlib import pyplot
   from sklearn.linear_model import LogisticRegression
   from sklearn.metrics import accuracy_score
   from sklearn.pipeline import Pipeline
   from scipy.stats import randint
   from sklearn.tree import DecisionTreeClassifier
   from sklearn.model_selection import RandomizedSearchCV
   from sklearn.model_selection import train_test_split
   from sklearn.metrics import classification_report
   from sklearn import metrics
   from sklearn.svm import SVC
   from sklearn.ensemble import
    →BaggingClassifier,RandomForestClassifier,ExtraTreesClassifier,AdaBoostClassifier
   from sklearn.preprocessing import RobustScaler
   from pandas.plotting import scatter_matrix
   from sklearn.manifold import TSNE
   np.random.seed(42)
[2]: from google.colab import drive
   drive.mount('/content/drive')
```

Mounted at /content/drive

```
[55]: data=pd.read_csv('/content/drive/MyDrive/train_data.csv')
  test_data=pd.read_csv('/content/drive/MyDrive/test_data.csv')

frames = [data,test_data]
  merged = pd.concat(frames)

print(len(merged)==(len(test_data)+len(data)))
```

True

Sku(Stock Keeping unit): The product id — Unique for each row so can be ignored

National_inv: The present inventory level of the product

Lead_time: Transit time of the product

In_transit_qty : The amount of product in transit

Forecast_3_month , **Forecast_6_month** , **Forecast_9_month** : Forecast of the sales of the product for coming 3 , 6 and 9 months respectively

Sales_1_month, **sales_3_month**, **sales_6_month**. Actual sales of the product in last 1, 3, 6 and 9 months respectively

Min_bank: Minimum amount of stock recommended

Potential_issue: Any problem identified in the product/part

Pieces_past_due: Amount of parts of the product overdue if any

Perf_6_month_avg , perf_12_month_avg : Product performance over past 6 and 12
months respectively

Local_bo_qty : Amount of stock overdue

Went_on_backorder: Target variable

- []: data.shape []: (1687861, 23)
- []: data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1687861 entries, 0 to 1687860

Data columns (total 23 columns):

#	Column	Non-Null Count	n-Null Count Dtype	
0	sku	1687861 non-null	object	
1	national_inv	1687860 non-null	float64	
2	<pre>lead_time</pre>	1586967 non-null	float64	
3	in_transit_qty	1687860 non-null	float64	
4	forecast_3_month	1687860 non-null	float64	
5	forecast_6_month	1687860 non-null	float64	
6	forecast_9_month	1687860 non-null	float64	
7	sales_1_month	1687860 non-null	float64	
8	sales_3_month	1687860 non-null	float64	
9	sales_6_month	1687860 non-null	float64	
10	sales_9_month	1687860 non-null	float64	
11	min_bank	1687860 non-null	float64	
12	potential_issue	1687860 non-null	object	
13	<pre>pieces_past_due</pre>	1687860 non-null	float64	
14	perf_6_month_avg	1687860 non-null	float64	
15	perf_12_month_avg	1687860 non-null	float64	
16	local_bo_qty	1687860 non-null	float64	
17	deck_risk	1687860 non-null	object	
18	oe_constraint	1687860 non-null	object	
19	ppap_risk	1687860 non-null	object	

20 stop_auto_buy 1687860 non-null object 21 rev_stop 1687860 non-null object 22 went_on_backorder 1687860 non-null object

dtypes: float64(15), object(8)

memory usage: 296.2+ MB

3-+	:1()							
data.tai								
	sku	_	_	_	_transit_q	•		
1687856	1373987	-1.0		NaN		.0		
1687857	1524346	-1.0		9.0		.0		
1687858	1439563	62.0		9.0	16			
1687859	1502009	19.0	0	4.0	0.0			
1687860	(1687860 rows)	Nal	N	NaN	N	aN		
	forecast_3_mon	th forecast_	6_month	forecast	t_9_month	sales_:	1_month	\
1687856	5	.0	7.0		9.0		1.0	
1687857	7	.0	9.0		11.0		0.0	
1687858	39	.0	87.0		126.0		35.0	
1687859	0	.0	0.0		0.0		2.0	
1687860	N	aN	NaN		NaN		NaN	
	sales_3_month	sales 6 mont	h sales	9 month	min_bank	\		
1687856	3.0	3.0	_	8.0	0.0			
1687857	8.0	11.0		12.0	0.0			
1687858	63.0	153.0		205.0	12.0			
1687859	7.0	12.0		20.0	1.0			
1687860	NaN	Nal		NaN	NaN			
	potential_issue	pieces past	due pei	rf 6 mont	th avg pe	rf 12 m	onth avg	. \
1687856	No No	1 =1	0.0		-99.00		-99.00	
1687857	No		0.0		0.86		0.84	
1687858	No		0.0		0.86		0.84	
1687859	No		0.0		0.73		0.78	
1687860	NaN		NaN		NaN		NaN	
	local_bo_qty d	eck_risk oe_c	onstraint	ppap_r	isk stop_a	uto_buy	\	
1687856	1.0	No	No		No	Yes		
1687857	1.0	Yes	No)	No	No		
1687858	6.0	No	No)	No	Yes		
1687859	1.0	No	No		No	Yes		
1687860	NaN	NaN	Nal		NaN	NaN		
	rev_stop went_or	n backorder						
1687856	No	No						
1687857	No	Yes						
1687858	No	No						
1687859	No	No						
1001003	110	110						

1687860 NaN NaN data.skew(axis=0) national_inv 340.285800 lead_time 4.556295 in_transit_qty 166.183404 forecast_3_month 138.968325 forecast_6_month 138.961427 forecast_9_month 143.298875 sales 1 month 196.119990 sales_3_month 141.286380 sales_6_month 139.176712 sales_9_month 135.054191 min_bank 131.212649 pieces_past_due 412.391900 perf_6_month_avg -3.180622 perf_12_month_avg -3.302181 local_bo_qty 165.190548 dtype: float64 data.describe() []: national_inv forecast_3_month lead_time in_transit_qty 1.687860e+06 1.586967e+06 1.687860e+06 1.687860e+06 count 1.781193e+02 mean 4.961118e+02 7.872267e+00 4.405202e+01 std 2.961523e+04 7.056024e+00 1.342742e+03 5.026553e+03 min -2.725600e+04 0.000000e+00 0.000000e+00 0.000000e+00 4.000000e+00 0.000000e+00 0.000000e+00 25% 4.000000e+00 50% 1.500000e+01 8.000000e+00 0.000000e+00 0.000000e+00 75% 8.000000e+01 9.000000e+00 0.000000e+00 4.000000e+00 1.233440e+07 5.200000e+01 4.894080e+05 1.427612e+06 maxforecast_6_month forecast_9_month sales_1_month sales_3_month 1.687860e+06 1.687860e+06 1.687860e+06 count 1.687860e+06 mean 3.449867e+02 5.063644e+02 5.592607e+01 1.750259e+02 std 9.795152e+03 1.437892e+04 1.928196e+03 5.192378e+03 min 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 25% 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 50% 0.000000e+00 0.000000e+00 0.000000e+00 1.000000e+00 75% 1.200000e+01 2.000000e+01 4.000000e+00 1.500000e+01 2.461360e+06 3.777304e+06 7.417740e+05 1.105478e+06 max sales_6_month sales_9_month min_bank pieces_past_due 1.687860e+06 1.687860e+06 1.687860e+06 1.687860e+06 count 3.417288e+02 5.252697e+02 5.277230e+01 2.043724e+00 mean std 9.613167e+03 1.483861e+04 1.254983e+03 2.360165e+02 min 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

0.00000e+00

0.000000e+00

0.000000e+00

25%

0.000000e+00

```
50%
                           4.000000e+00 0.000000e+00
                                                           0.000000e+00
           2.000000e+00
   75%
            3.100000e+01
                           4.700000e+01
                                          3.000000e+00
                                                           0.000000e+00
   max
            2.146625e+06
                           3.205172e+06
                                         3.133190e+05
                                                            1.464960e+05
          perf_6_month_avg perf_12_month_avg
                                                 local_bo_qty
                                  1.687860e+06
                                                 1.687860e+06
   count
               1.687860e+06
   mean
              -6.872059e+00
                                 -6.437947e+00
                                                 6.264507e-01
                                                 3.372224e+01
   std
               2.655636e+01
                                  2.584333e+01
   min
              -9.900000e+01
                                 -9.900000e+01
                                                 0.000000e+00
   25%
               6.300000e-01
                                  6.600000e-01
                                                 0.000000e+00
   50%
               8.200000e-01
                                  8.100000e-01
                                                 0.000000e+00
   75%
               9.700000e-01
                                  9.500000e-01
                                                 0.000000e+00
   max
               1.000000e+00
                                  1.000000e+00
                                                 1.253000e+04
[]: data.describe(include=['0'])
[]:
                sku potential_issue deck_risk oe_constraint ppap_risk
                            1687860
                                       1687860
                                                     1687860
                                                                1687860
   count
           1687861
   unique
           1687861
                                  2
                                             2
                                                           2
                                                                      2
   top
            3282082
                                 No
                                            No
                                                          No
                                                                     No
                                       1300377
   freq
                            1686953
                                                     1687615
                                                                1484026
          stop_auto_buy rev_stop went_on_backorder
   count
                 1687860
                         1687860
                                             1687860
                       2
                                2
                                                   2
   unique
   top
                     Yes
                               No
                                                  No
   freq
                 1626774
                         1687129
                                             1676567
[]: missing=data.isnull().sum().sort_values(ascending=False)
   missing
[]: lead_time
                         100894
   went_on_backorder
                              1
   sales_9_month
                              1
   national inv
                              1
                              1
   in_transit_qty
   forecast 3 month
                              1
   forecast_6_month
                              1
   forecast_9_month
                              1
   sales_1_month
                              1
   sales_3_month
                              1
   sales_6_month
                              1
   min_bank
                              1
                              1
   rev_stop
   potential_issue
                              1
   pieces_past_due
                              1
   perf_6_month_avg
                              1
   perf_12_month_avg
                              1
   local_bo_qty
                              1
```

```
oe_constraint
                              1
   ppap_risk
                              1
   stop_auto_buy
                              1
   sku
                              0
   dtype: int64
[]: np.round(data.isnull().mean() * 100,1)
                         0.0
: sku
   national_inv
                         0.0
   lead_time
                         6.0
   in_transit_qty
                         0.0
   forecast_3_month
                         0.0
   forecast_6_month
                         0.0
   forecast_9_month
                         0.0
   sales_1_month
                         0.0
   sales_3_month
                         0.0
   sales_6_month
                         0.0
   sales_9_month
                         0.0
   min_bank
                         0.0
   potential_issue
                         0.0
                         0.0
   pieces_past_due
   perf_6_month_avg
                         0.0
   perf_12_month_avg
                         0.0
   local_bo_qty
                         0.0
   deck_risk
                         0.0
   oe_constraint
                         0.0
   ppap_risk
                         0.0
   stop_auto_buy
                         0.0
   rev_stop
                         0.0
   went_on_backorder
                         0.0
   dtype: float64
[]: data['went_on_backorder'].value_counts()
           1676567
[]: No
   Yes
            11293
   Name: went_on_backorder, dtype: int64
[]: 1676567/11293
[]: 148.46072788453023
[]: ax = sns.countplot(x="went_on_backorder", data=data)
   plt.show()
```

deck_risk

1


```
[3]: quantvars=['national_inv',
                'lead_time',
               'in_transit_qty',
                'forecast_3_month',
               'forecast_6_month',
               'forecast_9_month',
                'sales_1_month',
                'sales_3_month',
                'sales_6_month',
               'sales_9_month',
                'min_bank',
               'pieces_past_due',
                'perf_6_month_avg',
                'perf_12_month_avg',
                'local_bo_qty']
    catpred=['potential_issue','deck_risk','oe_constraint','ppap_risk','stop_auto_buy','rev_stop']
    categorical_list=catpred+['went_on_backorder']
```

- 1. There are 1.6 million entries and 23 columns (dtypes: float64(15), object(8))
- 2. There is no null value in the dataset
- 3. There is 1 missing value in every column except Lead_time,which has 100894(6%) missing values.

- 4. The last row should be eliminated as it only contains Nan values.
- 5. SKU row is an unique identifier and it serves no purpose.
- 6. The data mostly is positively skewed.
- 7. The skew values show that we have to normalize the data.
- 8. Most the categorical values are boolean values and can be changed to 1/0 along with the y(went_on_backorder)
- 9. The data is imbalanced as top element of **went_on_backorder** is **No** with 1676567 frequency.

```
[]: for i in range(len(quantvars)):
    sns.boxplot(x = 'went_on_backorder', y = quantvars[i], data = 
    →data, showfliers=False)
    plt.title('box plot of '+quantvars[i])
    plt.show()
```

- []: <matplotlib.axes._subplots.AxesSubplot at 0x7f4102267f90>
- []: Text(0.5, 1.0, 'box plot of national_inv')

- []: <matplotlib.axes._subplots.AxesSubplot at 0x7f410226d710>
- []: Text(0.5, 1.0, 'box plot of lead_time')

- []: <matplotlib.axes._subplots.AxesSubplot at 0x7f410226c910>
- []: Text(0.5, 1.0, 'box plot of in_transit_qty')

- []: <matplotlib.axes._subplots.AxesSubplot at 0x7f410222d510>
- []: Text(0.5, 1.0, 'box plot of forecast_3_month')

- []: <matplotlib.axes._subplots.AxesSubplot at 0x7f410219b310>
- []: Text(0.5, 1.0, 'box plot of forecast_6_month')

- []: <matplotlib.axes._subplots.AxesSubplot at 0x7f4102125fd0>
- []: Text(0.5, 1.0, 'box plot of forecast_9_month')

- []: <matplotlib.axes._subplots.AxesSubplot at 0x7f41020934d0>
- []: Text(0.5, 1.0, 'box plot of sales_1_month')

- []: <matplotlib.axes._subplots.AxesSubplot at 0x7f41020176d0>
- []: Text(0.5, 1.0, 'box plot of sales_3_month')

- []: <matplotlib.axes._subplots.AxesSubplot at 0x7f4101f80050>
- []: Text(0.5, 1.0, 'box plot of sales_6_month')

- []: <matplotlib.axes._subplots.AxesSubplot at 0x7f4101efee90>
- []: Text(0.5, 1.0, 'box plot of sales_9_month')

- []: <matplotlib.axes._subplots.AxesSubplot at 0x7f4101ee9c90>
- []: Text(0.5, 1.0, 'box plot of min_bank')

- []: <matplotlib.axes._subplots.AxesSubplot at 0x7f4101e06290>
- []: Text(0.5, 1.0, 'box plot of pieces_past_due')

- []: <matplotlib.axes._subplots.AxesSubplot at 0x7f4101dd3a90>
- []: Text(0.5, 1.0, 'box plot of perf_6_month_avg')

- []: <matplotlib.axes._subplots.AxesSubplot at 0x7f4101cfab10>
- []: Text(0.5, 1.0, 'box plot of perf_12_month_avg')

- []: <matplotlib.axes._subplots.AxesSubplot at 0x7f4101ceff10>
- []: Text(0.5, 1.0, 'box plot of local_bo_qty')

- 1. All the quant variables have extreme values so i plotted without outliers
- 2. Whenever there is less inventory, the product is going into backorder
- 3. Its the same case for lead_time
- 4. There are many outliers present in the data(i have taken it off).
- 5. in_transit_qty,pieces_past_due,local_bo_qty almost have zero as their values
- 6. The box plot for perf_x_months and sales_6/9_months are similar
- 7. The Data is highly positively skewed.

```
[]: for i in quantvars[12:14]:
    sns.distplot(data[i],kde = True)
    plt.title('Histogram plot of '+i)
    plt.show()
```

- []: <matplotlib.axes._subplots.AxesSubplot at 0x7f4101df6990>
- []: Text(0.5, 1.0, 'Histogram plot of perf_6_month_avg')

- []: <matplotlib.axes._subplots.AxesSubplot at 0x7f4105ff9c10>
- []: Text(0.5, 1.0, 'Histogram plot of perf_12_month_avg')

• Both the plots look similar and are skewed

```
[]: for i in quantvars[3:6]:
    sns.distplot(data[i],kde = True)
    plt.title('Histogram plot of '+i)
    plt.show()
```

- []: <matplotlib.axes._subplots.AxesSubplot at 0x7f4101e412d0>
- []: Text(0.5, 1.0, 'Histogram plot of forecast_3_month')

- []: $\mbox{\em subplots.AxesSubplot}$ at $\mbox{\em 0x7f4101cad0d0}$
- []: Text(0.5, 1.0, 'Histogram plot of forecast_6_month')

- []: <matplotlib.axes._subplots.AxesSubplot at 0x7f4101f4b5d0>
- []: Text(0.5, 1.0, 'Histogram plot of forecast_9_month')


```
[]: for i in quantvars[6:11]:
    sns.distplot(data[i],kde = True)
    plt.title('Histogram plot of '+i)
    plt.show()
```

- []: <matplotlib.axes._subplots.AxesSubplot at 0x7f410217c250>
- []: Text(0.5, 1.0, 'Histogram plot of sales_1_month')

- []: <matplotlib.axes._subplots.AxesSubplot at 0x7f4101be1ad0>
- []: Text(0.5, 1.0, 'Histogram plot of sales_3_month')

- []: <matplotlib.axes._subplots.AxesSubplot at 0x7f4101b7ddd0>
- []: Text(0.5, 1.0, 'Histogram plot of sales_6_month')

- []: <matplotlib.axes._subplots.AxesSubplot at 0x7f40f61b4310>
- []: Text(0.5, 1.0, 'Histogram plot of sales_9_month')

- []: <matplotlib.axes._subplots.AxesSubplot at 0x7f40f6165c10>
- []: Text(0.5, 1.0, 'Histogram plot of min_bank')

- The above plots dont give a clear idea of shape of the data but might be positively skewed.
- Most of the values are near zero

[]: <matplotlib.axes._subplots.AxesSubplot at 0x7f40f605e810>

- forecast_3/6/9_month are highly correlated with eachother
- sales_1/3/6/9_ are highly correlated with each other
- forecast and sales columns are correlated.
- perf_6/12_month_avg are highly correlated with each other
- min_bank and sales_3/6/9_month are higly correlated
- min_bank also has good correlation with forecast columns
- in_transit is correlated to min_bank and moderately correlated to forecast and sales

```
[]: sns.pairplot(data=data,vars=['forecast_3_month','forecast_6_month',

→'forecast_9_month'], hue='went_on_backorder', dropna=True)

plt.show()
```

: <seaborn.axisgrid.PairGrid at 0x7f4101e3c050>

- There is a clear relationship between these forecasts and i believe only of these features is enough
- The backorder occurs when the forecast is low

```
[]: sns.pairplot(data=data,vars=['sales_1_month', 'sales_3_month', 'sales_6_month', \
\[ \times' \text{ sales_9_month'} \], hue='went_on_backorder', \text{ size=5, dropna=True} \]
plt.show()
```

[]: <seaborn.axisgrid.PairGrid at 0x7f40f4702790>

- sales_3/6/9_month form almost a perfect linear relationship. There are lot of outliers in the data so disregarding them they form a perfect linear relationship. So one of the feature is sufficient
- When sales are low there is a chance of backorder

```
[]: notbo = data.loc[data['went_on_backorder'] == 'No']
    isbo = data.loc[data['went_on_backorder'] == 'Yes']

[]: sales=['sales_1_month', 'sales_3_month', 'sales_6_month', 'sales_9_month']

for sale in sales:

    plt.close('all')
    fig = plt.figure(figsize=(6, 6))
    ax = fig.gca()
```

- []: <matplotlib.axes._subplots.AxesSubplot at 0x7f4101d49550>
- []: <matplotlib.axes._subplots.AxesSubplot at 0x7f4101d49550>
- []: Text(0.5, 1.0, 'Scatter plot between forecast and sales')

- []: <matplotlib.axes._subplots.AxesSubplot at 0x7f40f40088d0>
- []: <matplotlib.axes._subplots.AxesSubplot at 0x7f40f40088d0>
- []: Text(0.5, 1.0, 'Scatter plot between forecast and sales')

- []: <matplotlib.axes._subplots.AxesSubplot at 0x7f40f3f99e50>
- []: <matplotlib.axes._subplots.AxesSubplot at 0x7f40f3f99e50>
- []: Text(0.5, 1.0, 'Scatter plot between forecast and sales')

- []: <matplotlib.axes._subplots.AxesSubplot at 0x7f40f3fc2b10>
- []: <matplotlib.axes._subplots.AxesSubplot at 0x7f40f3fc2b10>
- []: Text(0.5, 1.0, 'Scatter plot between forecast and sales')

- There is linear relationship between them.
- correlation occurs when forecast and sales are low which is a logical explanation

[]: <matplotlib.axes._subplots.AxesSubplot at 0x7f40f3f0ae90>

- : <matplotlib.axes._subplots.AxesSubplot at 0x7f40f3f0ae90>
- []: Text(0.5, 1.0, 'Scatter plot between perf_6_month_avg and perf_12_month_avg ')

• Perf_12_month_avg and aPerf_6_month_avg are highly correlated in the heatmap but the above graph is not showing any linear relationship

```
plt.close('all')
  fig = plt.figure(figsize=(6, 6))
  ax = fig.gca()
  notbo.plot(kind='scatter', x=sale, y='min_bank', ax=ax, color='DarkBlue')
  isbo.plot(kind='scatter', x=sale, y='min_bank', ax=ax, color='Red')
  plt.title('Scatter plot between min_bank and sales')
  plt.show()
```

- []: <matplotlib.axes._subplots.AxesSubplot at 0x7f40f3e60290>
- []: <matplotlib.axes._subplots.AxesSubplot at 0x7f40f3e60290>
- []: Text(0.5, 1.0, 'Scatter plot between min_bank and sales')

- []: <matplotlib.axes._subplots.AxesSubplot at 0x7f40f3dcef50>
- []: <matplotlib.axes._subplots.AxesSubplot at 0x7f40f3dcef50>
- []: Text(0.5, 1.0, 'Scatter plot between min_bank and sales')

- []: <matplotlib.axes._subplots.AxesSubplot at 0x7f40f3d3bf10>
- []: <matplotlib.axes._subplots.AxesSubplot at 0x7f40f3d3bf10>
- []: Text(0.5, 1.0, 'Scatter plot between min_bank and sales')

- []: <matplotlib.axes._subplots.AxesSubplot at 0x7f40f3ef0b90>
- []: <matplotlib.axes._subplots.AxesSubplot at 0x7f40f3ef0b90>
- []: Text(0.5, 1.0, 'Scatter plot between min_bank and sales')

- There is a linear relationship between them as expected
- Backorder occur when min bank and sales are low

```
[]: forecasts=['forecast_3_month','forecast_6_month', 'forecast_9_month']
for forecast in forecasts:
    plt.close('all')
    fig = plt.figure(figsize=(6, 6))
    ax = fig.gca()
    notbo.plot(kind='scatter', x=forecast, y='min_bank', ax=ax, color='DarkBlue')
    isbo.plot(kind='scatter', x=forecast, y='min_bank', ax=ax, color='Red')
    plt.title('Scatter plot between min_bank and forecasts')
    plt.show()
```

- []: <matplotlib.axes._subplots.AxesSubplot at 0x7f40f3d0a690>
-]: <matplotlib.axes._subplots.AxesSubplot at 0x7f40f3d0a690>
- []: Text(0.5, 1.0, 'Scatter plot between min_bank and forecasts')

- []: <matplotlib.axes._subplots.AxesSubplot at 0x7f40f3c16650>
- []: <matplotlib.axes._subplots.AxesSubplot at 0x7f40f3c16650>
- []: Text(0.5, 1.0, 'Scatter plot between min_bank and forecasts')

- []: <matplotlib.axes._subplots.AxesSubplot at 0x7f40f3bf74d0>
- []: <matplotlib.axes._subplots.AxesSubplot at 0x7f40f3bf74d0>
- []: Text(0.5, 1.0, 'Scatter plot between min_bank and forecasts')

- There is a linear relationship between them
- Backorder occur when min bank and forecasts are low

- []: <matplotlib.axes._subplots.AxesSubplot at 0x7f40f3b7eed0>
- []: <matplotlib.axes._subplots.AxesSubplot at 0x7f40f3b7eed0>
-]: Text(0.5, 1.0, 'Scatter plot between min_bank and in_transit_qty ')

- Linear relationship exists between them
- Backorder occurs when min_bank and in_transit_qty are low

Now we have clean data []: X_trainn=data.drop(['went_on_backorder','sku'],axis=1) : X_trainn []: national_inv lead_time in_transit_qty forecast_3_month \ 0 0.0 8.0 0.0 0.0 1 2.0 9.0 0.0 0.0 2 2.0 8.0 0.0 0.0 3 7.0 8.0 0.0 0.0 4 8.0 8.0 0.0 0.0 . . . 1687855 0.0 2.0 0.0 10.0 -1.0 8.0 0.0 5.0 1687856 1687857 -1.0 9.0 0.0 7.0 9.0 16.0 39.0 1687858 62.0 4.0 0.0 1687859 19.0 0.0

```
forecast_6 month forecast_9 month sales_1 month sales_3 month \
                        0.0
                                             0.0
                                                                               0.0
0
                                                              0.0
                        0.0
                                             0.0
                                                              0.0
                                                                               0.0
1
2
                        0.0
                                             0.0
                                                              0.0
                                                                               0.0
3
                        0.0
                                             0.0
                                                              0.0
                                                                               0.0
4
                        0.0
                                             0.0
                                                              0.0
                                                                               0.0
                         . . .
                                                                               . . .
                                             . . .
                                                              . . .
                                            10.0
                                                                               5.0
1687855
                       10.0
                                                              0.0
1687856
                        7.0
                                             9.0
                                                              1.0
                                                                               3.0
                                            11.0
                                                                               8.0
1687857
                        9.0
                                                              0.0
1687858
                       87.0
                                           126.0
                                                             35.0
                                                                              63.0
                                                                               7.0
1687859
                        0.0
                                             0.0
                                                              2.0
          sales_6_month sales_9_month min_bank potential_issue
0
                     0.0
                                      0.0
                                                 0.0
                     0.0
                                      0.0
                                                 0.0
                                                                       0
1
2
                     0.0
                                      0.0
                                                 0.0
                                                                       0
3
                     0.0
                                                                       0
                                      0.0
                                                 1.0
                     0.0
                                      4.0
                                                                       0
4
                                                 2.0
                     . . .
                                      . . .
                                                 . . .
. . .
                     7.0
                                      7.0
                                                 0.0
                                                                       0
1687855
1687856
                     3.0
                                      8.0
                                                 0.0
                                                                       0
                    11.0
                                                                       0
1687857
                                     12.0
                                                 0.0
1687858
                   153.0
                                    205.0
                                                12.0
                                                                       0
                                                                       0
                    12.0
1687859
                                     20.0
                                                 1.0
          pieces_past_due perf_6_month_avg perf_12_month_avg local_bo_qty \
0
                       0.0
                                          0.85
                                                                0.83
                                                                                 0.0
                       0.0
                                          0.99
                                                                0.99
                                                                                 0.0
1
2
                       0.0
                                          0.85
                                                                0.83
                                                                                 0.0
3
                                                                0.13
                       0.0
                                          0.10
                                                                                 0.0
4
                       0.0
                                          0.85
                                                                0.83
                                                                                 0.0
                       . . .
                                            . . .
                                                                 . . .
                                                                                 . . .
. . .
1687855
                       0.0
                                          0.69
                                                                0.69
                                                                                 5.0
1687856
                       0.0
                                          0.85
                                                                0.83
                                                                                 1.0
                                          0.86
                                                                0.84
                                                                                 1.0
1687857
                       0.0
1687858
                       0.0
                                          0.86
                                                                0.84
                                                                                 6.0
                       0.0
                                          0.73
                                                                0.78
                                                                                 1.0
1687859
          deck risk
                      oe constraint
                                       ppap_risk stop_auto_buy rev_stop
0
                                    0
                   0
                                                0
                                                                 1
                                    0
                                                0
                                                                 1
                                                                            0
1
                   0
2
                   1
                                    0
                                                0
                                                                 1
                                                                            0
                                                                 1
3
                   0
                                    0
                                                0
                                                                            0
4
                                    0
                                                0
                                                                 1
                                                                            0
                   1
                                                               . . .
```

```
1687855
                    1
                                   0
                                               0
                                                                        0
                                                              1
   1687856
                    0
                                    0
                                               0
                                                              1
                                                                        0
   1687857
                                   0
                                               0
                                                              0
                                                                        0
   1687858
                    0
                                   0
                                               0
   1687859
                                                              1
                                                                        0
   [1687860 rows x 21 columns]
[]: y=data['went_on_backorder']
   у
[]: 0
              0
   1
              0
   2
              0
   3
              0
              0
   1687855
              0
   1687856
   1687857
              1
   1687858
   1687859
   Name: went_on_backorder, Length: 1687860, dtype: int64
[]: model = RandomForestClassifier()
   model.fit(X_trainn, y)
]: RandomForestClassifier(bootstrap=True, ccp_alpha=0.0, class_weight=None,
                          criterion='gini', max_depth=None, max_features='auto',
                          max_leaf_nodes=None, max_samples=None,
                          min_impurity_decrease=0.0, min_impurity_split=None,
                          min_samples_leaf=1, min_samples_split=2,
                          min_weight_fraction_leaf=0.0, n_estimators=100,
                          n_jobs=None, oob_score=False, random_state=None,
                          verbose=0, warm start=False)
[]: |fig = plt.figure(figsize=(14, 14))
   ax = fig.gca()
   feats = {}
   for feature, importance in zip(data.columns, model.feature_importances_):
       feats[feature] = importance
   importances = pd.DataFrame.from_dict(feats, orient='index').rename(columns={0:__
```

[]: <matplotlib.axes._subplots.AxesSubplot at 0x7f725a4a5190>

importances.sort_values(by='Gini-importance').plot(kind='bar', rot=45,ax=ax)

[]: importances.sort_values(by='Gini-importance',ascending=False)

[]:		Gini-importance
	perf_6_month_avg	0.102489
	sku	0.098738
	pieces_past_due	0.098358
	sales_6_month	0.089072
	forecast_6_month	0.084700
	forecast_3_month	0.077614
	sales_3_month	0.075895
	in_transit_qty	0.074761
	sales_1_month	0.066119
	sales_9_month	0.054434
	forecast_9_month	0.051858
	national_inv	0.041252
	<pre>lead_time</pre>	0.026725

```
oe_constraint
                           0.014186
perf_12_month_avg
                           0.014025
potential_issue
                           0.012200
local_bo_qty
                           0.011855
ppap_risk
                           0.004390
min_bank
                           0.000976
deck_risk
                           0.000296
                           0.000059
stop_auto_buy
```

[4]: feature=['perf_6_month_avg', 'pieces_past_due', 'sales_6_month', 'forecast_6_month', 'in_transit_cast_6_month', 'in_transit_cast_6_month', 'in_transit_cast_6_month', 'in_transit_cast_6_month', 'in_transit_cast_6_month', 'in_transit_cast_6_month', 'in_transit_cast_6_month', 'in_transit_cast_6_month', 'in_transit_cast_6_month', 'in_transit_6_month', 'in_transit_6_month

[]: <matplotlib.axes._subplots.AxesSubplot at 0x7f7258df0350>


```
[]: print("The below features can be used for final analysis ")
   for i in feature:t
     print(i)
  The below features can be used for final analysis
  perf_6_month_avg
  pieces_past_due
  sales_6_month
  forecast_6_month
  in_transit_qty
  potential_issue
  national_inv
  lead_time
  oe_constraint
  min_bank
  went_on_backorder
[]: data.isin([-99]).any(axis=0)
sku
                         False
   national_inv
                          True
   lead_time
                         False
   in_transit_qty
                         False
   forecast_3_month
                         False
   forecast_6_month
                         False
   forecast_9_month
                         False
   sales_1_month
                         False
   sales_3_month
                         False
   sales_6_month
                         False
   sales_9_month
                         False
   min_bank
                         False
   potential_issue
                         False
   pieces_past_due
                         False
   perf_6_month_avg
                          True
   perf_12_month_avg
                          True
   local_bo_qty
                         False
   deck_risk
                         False
   oe_constraint
                         False
   ppap_risk
                         False
   stop_auto_buy
                         False
   rev_stop
                         False
   went_on_backorder
                         False
   dtype: bool
[]: inf=data[data.isin([-99]).any(axis=1)]
[]: notbo=inf.loc[inf['went_on_backorder']=='No']
   isbo=inf.loc[inf['went_on_backorder']=='Yes']
```

- []: <matplotlib.axes._subplots.AxesSubplot at 0x7f8d8e605650>
- []: <matplotlib.axes._subplots.AxesSubplot at 0x7f8d8e605650>

- []: <matplotlib.axes._subplots.AxesSubplot at 0x7f8da5867550>
- []: <matplotlib.axes._subplots.AxesSubplot at 0x7f8da5867550>

- []: <matplotlib.axes._subplots.AxesSubplot at 0x7f8daf726f90>
- []: <matplotlib.axes._subplots.AxesSubplot at 0x7f8daf726f90>

Feature Engineering

```
[8]: #dropping last column
data = data[:-1]

#replacing No/Yes to O/1
data=data.replace({'No': 0, 'Yes': 1})
#replacing infinity values to Nan
data['perf_6_month_avg']=data['perf_6_month_avg'].replace(-99, np.NaN)
data['perf_12_month_avg']=data['perf_12_month_avg'].replace(-99, np.NaN)
#filling Nan values with column median
data[data.columns] = data[data.columns].apply(pd.to_numeric, errors='coerce')
data = data.fillna(data.median())
```

```
#changing datatypes to int
    data[categorical_list]=data[categorical_list].astype('int64')
    data['reorder_point']=((data['sales_3_month']/
     →3)*data['lead_time'])+data['national_inv']
    data.head()
[8]:
           sku national inv
                               lead_time in_transit_qty
                                                            forecast 3 month
    0 1026827
                          0.0
                                      8.0
                                                       0.0
                                                                          0.0
    1 1043384
                          2.0
                                      9.0
                                                       0.0
                                                                          0.0
                                      8.0
    2 1043696
                          2.0
                                                       0.0
                                                                          0.0
    3 1043852
                          7.0
                                      8.0
                                                       0.0
                                                                          0.0
    4 1044048
                          8.0
                                      8.0
                                                       0.0
                                                                          0.0
       forecast_6_month
                          forecast_9_month
                                            sales_1_month
                                                             sales_3_month \
    0
                     0.0
                                        0.0
                                                        0.0
                                                                        0.0
                     0.0
                                        0.0
                                                        0.0
                                                                        0.0
    1
    2
                     0.0
                                        0.0
                                                        0.0
                                                                        0.0
    3
                     0.0
                                        0.0
                                                        0.0
                                                                        0.0
    4
                     0.0
                                        0.0
                                                        0.0
                                                                        0.0
       sales_6_month sales_9_month min_bank potential_issue
                                                                   pieces_past_due
    0
                  0.0
                                  0.0
                                            0.0
                                                                 0
                                                                                 0.0
                  0.0
                                                                                 0.0
    1
                                  0.0
                                            0.0
                                                                 0
    2
                  0.0
                                  0.0
                                            0.0
                                                                 0
                                                                                 0.0
    3
                  0.0
                                  0.0
                                            1.0
                                                                 0
                                                                                 0.0
    4
                  0.0
                                  4.0
                                            2.0
                                                                                 0.0
                                                                 0
       perf_6_month_avg perf_12_month_avg local_bo_qty
                                                             deck_risk
                                        0.83
    0
                    0.85
                                                        0.0
                    0.99
                                        0.99
                                                        0.0
                                                                      0
    1
    2
                    0.85
                                        0.83
                                                        0.0
                                                                      1
                                                        0.0
                                                                      0
    3
                    0.10
                                        0.13
    4
                    0.85
                                        0.83
                                                        0.0
                                                                      1
       oe constraint
                      ppap_risk
                                  stop_auto_buy
                                                  rev_stop
                                                             went on backorder
    0
                                0
                                                1
                                                                               0
    1
                    0
                                0
                                                1
                                                          0
                                                                               0
    2
                    0
                                0
                                                1
                                                          0
                                                                               0
                    0
                                0
                                                1
                                                          0
                                                                               0
    3
                    0
                                0
                                                1
                                                          0
                                                                               0
       reorder_point
    0
                  0.0
                  2.0
    1
    2
                  2.0
    3
                  7.0
                  8.0
```

```
[9]: X,y=data[feature].
      -drop('went on backorder', axis=1), data[feature]['went on backorder']
[10]: #dropping last column
     test_data = test_data[:-1]
     #replacing No/Yes to 0/1
     test_data=test_data.replace({'No': 0, 'Yes': 1})
     #replacing infinity values to Nan
     test_data['perf_6_month_avg']=test_data['perf_6_month_avg'].replace(-99, np.NaN)
     test_data['perf_12_month_avg']=test_data['perf_12_month_avg'].replace(-99, np.
      →NaN)
     #filling Nan values with column median
     test_data[test_data.columns] = test_data[test_data.columns].apply(pd.
      →to_numeric, errors='coerce')
     test_data = test_data.fillna(test_data.median())
     #changing test data types to int
     test_data[categorical_list]=test_data[categorical_list].astype('int64')
     test_data['reorder_point']=((test_data['sales_3_month']/
      →3)*test_data['lead_time'])+test_data['national_inv']
     test_data.head()
[10]:
            sku national_inv lead_time in_transit_qty
                                                           forecast_3_month \
     0 3285085
                         62.0
                                     8.0
                                                      0.0
                                                                        0.0
     1 3285131
                          9.0
                                     8.0
                                                      0.0
                                                                        0.0
     2 3285358
                         17.0
                                     8.0
                                                      0.0
                                                                        0.0
     3 3285517
                          9.0
                                     2.0
                                                      0.0
                                                                        0.0
     4 3285608
                          2.0
                                     8.0
                                                      0.0
                                                                        0.0
        forecast_6_month forecast_9_month sales_1_month sales_3_month \
     0
                     0.0
                                       0.0
                                                       0.0
                                                                      0.0
                     0.0
                                       0.0
                                                                      0.0
     1
                                                       0.0
     2
                     0.0
                                       0.0
                                                       0.0
                                                                      0.0
     3
                     0.0
                                       0.0
                                                       0.0
                                                                      0.0
     4
                     0.0
                                       0.0
                                                       0.0
                                                                      0.0
        sales_6_month sales_9_month min_bank potential_issue pieces_past_due \
     0
                  0.0
                                 0.0
                                            1.0
                                                               0
                                                                              0.0
     1
                  0.0
                                 0.0
                                            1.0
                                                               0
                                                                              0.0
                  0.0
     2
                                 0.0
                                           0.0
                                                               0
                                                                              0.0
     3
                  0.0
                                 2.0
                                           0.0
                                                               0
                                                                              0.0
     4
                  0.0
                                 0.0
                                           0.0
                                                               0
                                                                              0.0
        perf_6_month_avg perf_12_month_avg local_bo_qty deck_risk \
     0
                    0.85
                                       0.83
                                                       0.0
                                                                    1
                                                       0.0
     1
                    0.85
                                       0.83
                                                                    0
                                                       0.0
                                                                    0
     2
                    0.92
                                       0.95
```

```
3
                    0.78
                                        0.75
                                                        0.0
                                                                      0
     4
                    0.54
                                        0.71
                                                        0.0
                                                                      0
        oe_constraint
                       ppap_risk
                                  stop_auto_buy
                                                  rev_stop
                                                             went_on_backorder
     0
                    0
                                0
                                                1
                    0
     1
                                1
                                                0
                                                          0
                                                                              0
     2
                    0
                                0
                                                1
                                                          0
                                                                              0
     3
                    0
                                1
                                                1
                                                          0
                                                                              0
     4
                    0
                                0
                                                1
                                                          0
                                                                              0
        reorder_point
     0
                 62.0
     1
                  9.0
                 17.0
     2
     3
                  9.0
     4
                  2.0
[11]: X_test,y_test=test_data[feature].

¬drop('went_on_backorder',axis=1),test_data[feature]['went_on_backorder']

 []: X_train, X_cv, y_train, y_cv=train_test_split(X, y, test_size=.
      →2,random_state=100,stratify=y)
 []: D1,D2,y_D1,y_D2=train_test_split(X_train,y_train,test_size=0.
      →5, random state=100, stratify=y train)
[12]: import imblearn
     from imblearn.over_sampling import SMOTE,ADASYN
     from sklearn.model_selection import RepeatedStratifiedKFold,cross_val_score
     from xgboost import XGBClassifier
     from collections import Counter
     from sklearn.metrics import f1_score, precision_recall_curve, auc_roc_auc_score
     print(imblearn.__version__)
     import tqdm
    0.4.3
 []: count=Counter(y_train)
     print(count)
    Counter({0: 1341254, 1: 9034})
       Scaling the data
 []: scale=RobustScaler()
     XX_train=scale.fit_transform(X_train)
     #X train=pd.DataFrame(X train)
 : XX cv=scale.transform(X cv)
     \#X_cv=pd.DataFrame(X_cv)
```

```
[]: XX_test=scale.transform(X_test)
   #X test=pd.DataFrame(X test)
     Decision Tree Classifier
param dist = {"max depth": randint(1,9),
                  "max features": randint(1, 9),
                  "min_samples_leaf": randint(1, 5),
                  "criterion": ["gini", "entropy"]}
[]: tree = DecisionTreeClassifier()
[]: | %%time
   tree_cv = RandomizedSearchCV(tree, param_dist, cv=10,n_jobs=-1)
   tree_cv.fit(X_train,y_train)
  CPU times: user 1.54 s, sys: 317 ms, total: 1.86 s
  Wall time: 1min 27s
[]: tree_cv.best_estimator_
]: DecisionTreeClassifier(ccp_alpha=0.0, class_weight=None, criterion='gini',
                           max depth=4, max features=5, max leaf nodes=None,
                           min_impurity_decrease=0.0, min_impurity_split=None,
                           min_samples_leaf=3, min_samples_split=2,
                           min_weight_fraction_leaf=0.0, presort='deprecated',
                           random_state=None, splitter='best')
[]: print("Tuned Decision Tree Parameters: {}".format(tree_cv.best_params_))
  Tuned Decision Tree Parameters: {'criterion': 'gini', 'max_depth': 1,
   'max_features': 7, 'min_samples_leaf': 2}
[]: | %%time
   clf =
    →DecisionTreeClassifier(criterion='gini', max_depth=1, max_features=7, min_samples_leaf=2)
   clf.fit(X_train,y_train)
  CPU times: user 394 ms, sys: 3.44 ms, total: 398 ms
  Wall time: 398 ms
[]: y_cv_pred=clf.predict(X_cv)
   confusion_matrix = metrics.confusion_matrix(y_cv,
                                                y_cv_pred)
   matrix_df = pd.DataFrame(confusion_matrix)
   ax = plt.axes()
   sns.set(font_scale=1.3)
```

```
plt.figure(figsize=(10,7))
sns.heatmap(matrix_df, annot=True, fmt="g", ax=ax, cmap="magma")
plt.show()
```

- []: <Figure size 720x504 with 0 Axes>
- []: <matplotlib.axes._subplots.AxesSubplot at 0x7f84f0be7690>


```
[]: f1_score(y_cv, y_cv_pred, zero_division=1)
```

support

[]: 0.0

[]: print("Classification report - \n", classification_report(y_cv,y_cv_pred))

Classification report precision recall f1-score

0	0.99	1.00	1.00	335313
1	0.00	0.00	0.00	2259
-	0.00	0.00	0.00	2200
accuracy			0.99	337572
macro avg	0.50	0.50	0.50	337572
weighted avg	0.99	0.99	0.99	337572

- []: <Figure size 720x504 with 0 Axes>
- []: <matplotlib.axes._subplots.AxesSubplot at 0x7f84f31d7890>


```
[]: print("Classification report - \n", classification_report(y_test,y_test_pred))

Classification report - precision recall f1-score support

0 0.99 1.00 0.99 239387
1 0.00 0.00 0.00 2688
```

```
macro avg
                                           0.50
                                                   242075
  weighted avg
                      0.98
                                0.99
                                           0.98
                                                   242075
[]: grid = {'base_estimator_max_depth' : [1, 2, 3, 4, 5], 'max_samples' : [0.05, 0.
    \rightarrow 1, 0.2, 0.5
[]: grid
[]: {'base_estimator__max_depth': [1, 2, 3, 4, 5],
    'max_samples': [0.05, 0.1, 0.2, 0.5]}
[]: clf = BaggingClassifier(base_estimator=DecisionTreeClassifier(random_state=0))
[]: | %%time
   bagging_cv = RandomizedSearchCV(clf, grid, cv=5,n_jobs=-1)
   bagging_cv.fit(X_train,y_train)
  CPU times: user 4.79 s, sys: 333 ms, total: 5.12 s
  Wall time: 3min 32s
[]: print("Tuned Bagging classigier Parameters: {}".format(bagging_cv.best_params_))
   print("Best score is {}".format(bagging_cv.best_score_))
  Tuned Bagging classigier Parameters: {'max_samples': 0.05,
   'base_estimator__max_depth': 1}
  Best score is 0.9933095754403446
[]: | %%time
   clf = BaggingClassifier(base_estimator=DecisionTreeClassifier(max_depth=_
    -1), max_samples= 0.05,n_jobs=-1,n_estimators=10,random_state=0)
   clf.fit(X train,y train)
  CPU times: user 136 ms, sys: 129 ms, total: 265 ms
  Wall time: 2.42 s
[]: y_cv_pred=clf.predict(X_cv)
   confusion_matrix = metrics.confusion_matrix(y_cv, y_cv_pred)
   matrix_df = pd.DataFrame(confusion_matrix)
   ax = plt.axes()
   sns.set(font_scale=1.3)
   plt.figure(figsize=(10,7))
   sns.heatmap(matrix_df, annot=True, fmt="g", ax=ax, cmap="magma")
   plt.show()
[]: <Figure size 720x504 with 0 Axes>
```

0.99

accuracy

0.49

0.50

242075

[]: <matplotlib.axes._subplots.AxesSubplot at 0x7f07f2e39d10>

<Figure size 720x504 with 0 Axes>

```
[]: f1_score(y_cv, y_cv_pred, zero_division=1,average='macro')
[]: 0.49832140707550326
[]: print("Classification report - \n", classification_report(y_cv,y_cv_pred))
  Classification report -
                  precision
                               recall f1-score
                                                   support
              0
                      1.00
                                0.83
                                           0.90
                                                   335313
              1
                      0.03
                                 0.87
                                           0.06
                                                      2259
                                           0.83
                                                   337572
       accuracy
                                           0.48
     macro avg
                      0.52
                                 0.85
                                                   337572
  weighted avg
                      0.99
                                 0.83
                                           0.90
                                                   337572
```

```
[]: #test_data prediction

y_test_pred=clf.predict(X_test)
confusion_matrix = metrics.confusion_matrix(y_test, y_test_pred)
```

```
matrix_df = pd.DataFrame(confusion_matrix)
ax = plt.axes()
sns.set(font_scale=1.3)
plt.figure(figsize=(10,7))
sns.heatmap(matrix_df, annot=True, fmt="g", ax=ax, cmap="magma")
plt.show()
```

- []: <Figure size 720x504 with 0 Axes>
- []: <matplotlib.axes._subplots.AxesSubplot at 0x7f07f2d8a050>


```
[]: f1_score(y_test, y_test_pred, zero_division=1,average='macro')
```

[]: 0.49720850243632936

Random Forest

```
[]: # # Number of trees in random forest
# n_estimators = [200,500,1000,1500,2000]
# # Number of features to consider at every split
# max_features = ['auto', 'sqrt']
# # Maximum number of levels in tree
# max_depth = [10,20,30,40,50]
# max_depth.append(None)
# # Minimum number of samples required to split a node
# min_samples_split = [2, 5, 10]
```

```
# # Minimum number of samples required at each leaf node
   # min_samples_leaf = [1, 2, 4]
   # # Method of selecting samples for training each tree
   # bootstrap = [True, False]
   # # Create the random grid
   # random_grid = {'n_estimators': n_estimators,
                     'max_features': max_features,
   #
                     'max_depth': max_depth,
                     'min samples split': min samples split,
                     'min_samples_leaf': min_samples_leaf,
                     'bootstrap': bootstrap}
   random_grid = {
            'n_estimators': randint(low=100, high=300),
            'max_features': randint(low=8, high=17),
       }
[]: | %%time
   rf_clf = RandomForestClassifier(random_state=1)
   rf_cv = RandomizedSearchCV(rf_clf,__
    →random_grid,random_state=42,verbose=2,n_jobs=-1)
   rf_cv.fit(X_train,y_train)
[]: print(rf_cv.best_estimator_)
   print("Tuned random forest classifier Parameters: {}".format(rf_cv.
    →best_params_))
   print("Best score is {}".format(rf_cv.best_score_))
[]: | %%time
   rf_clf = RandomForestClassifier(random_state=42)
   rf_clf.fit(X_train,y_train)
  CPU times: user 2min 42s, sys: 262 ms, total: 2min 42s
  Wall time: 2min 42s
[]: y_cv_pred=rf_clf.predict(X_cv)
   confusion_matrix = metrics.confusion_matrix(y_cv, y_cv_pred)
   matrix_df = pd.DataFrame(confusion_matrix)
   ax = plt.axes()
   sns.set(font_scale=1.3)
   plt.figure(figsize=(10,7))
   sns.heatmap(matrix_df, annot=True, fmt="g", ax=ax, cmap="magma")
   plt.show()
[]: <Figure size 720x504 with 0 Axes>
]: <matplotlib.axes._subplots.AxesSubplot at 0x7f84f31611d0>
```


y_test_pred=rf_clf.predict(X_test)

ax = plt.axes()

matrix_df = pd.DataFrame(confusion_matrix)

```
[]: print("Classification report - \n", classification_report(y_cv,y_cv_pred))
   Classification report -
                  precision
                               recall f1-score
                                                    support
                      0.99
                                 1.00
                                           1.00
                                                   335313
              0
              1
                      0.77
                                 0.25
                                           0.37
                                                      2259
       accuracy
                                           0.99
                                                   337572
                                           0.69
                                                   337572
      macro avg
                      0.88
                                 0.62
                                                    337572
  weighted avg
                      0.99
                                 0.99
                                           0.99
[]: f1_score(y_cv,y_cv_pred,average='macro')
[]: 0.68575399174886
[]: | #test_data prediction
```

confusion_matrix = metrics.confusion_matrix(y_test, y_test_pred)

```
sns.set(font_scale=1.3)
plt.figure(figsize=(10,7))
sns.heatmap(matrix_df, annot=True, fmt="g", ax=ax, cmap="magma")
plt.show()
```

- []: <Figure size 720x504 with 0 Axes>
- []: <matplotlib.axes._subplots.AxesSubplot at 0x7f84c3983450>


```
rf_cv = RandomizedSearchCV(ext_clf,__
    →random_grid,random_state=42,verbose=2,n_jobs=-1)
   rf_cv.fit(X_train,y_train)
[]: ext_clf.fit(X_train,y_train)
]: ExtraTreesClassifier(bootstrap=False, ccp_alpha=0.0, class_weight=None,
                        criterion='gini', max_depth=None, max_features='auto',
                        max_leaf_nodes=None, max_samples=None,
                        min_impurity_decrease=0.0, min_impurity_split=None,
                        min_samples_leaf=1, min_samples_split=2,
                        min_weight_fraction_leaf=0.0, n_estimators=100,
                        n_jobs=None, oob_score=False, random_state=None, verbose=0,
                        warm start=False)
[]: y_cv_pred=ext_clf.predict(X_cv)
   confusion_matrix = metrics.confusion_matrix(y_cv, y_cv_pred)
   matrix_df = pd.DataFrame(confusion_matrix)
   ax = plt.axes()
   sns.set(font_scale=1.3)
   plt.figure(figsize=(10,7))
```

plt.show()

[]: <matplotlib.axes._subplots.AxesSubplot at 0x7f07f1c2ed50>

sns.heatmap(matrix_df, annot=True, fmt="g", ax=ax, cmap="magma")


```
[]: f1_score(y_cv, y_cv_pred,average='macro')
[]: 0.7267929220522737
[]: #test_data prediction

y_test_pred=ext_clf.predict(X_test)
confusion_matrix = metrics.confusion_matrix(y_test, y_test_pred)
matrix_df = pd.DataFrame(confusion_matrix)
ax = plt.axes()
sns.set(font_scale=1.3)
plt.figure(figsize=(10,7))
```

plt.show()

[]: <matplotlib.axes._subplots.AxesSubplot at 0x7f07f1c5ec50>

sns.heatmap(matrix_df, annot=True, fmt="g", ax=ax, cmap="magma")

<Figure size 720x504 with 0 Axes>

```
[]: f1_score(y_test, y_test_pred, zero_division=1,average='macro')
```

[]: 0.5036279962827686

AdaBoost

```
[]: | %%time
   param_grid = {
                  "n_estimators": [100, 200],
                  'learning_rate':[0.001,0.01,0.1,0.2,0.5
                                   1
                }
   clf = DecisionTreeClassifier(random_state = 11)
   ab = AdaBoostClassifier(base_estimator = clf)
   ab_cv = RandomizedSearchCV(ab, param_grid, scoring = 'accuracy')
   ab_cv.fit(X_train,y_train)
[]: print("Tuned random forest classifier Parameters: {}".format(ab_cv.
    →best_params_))
   print("Best score is {}".format(ab_cv.best_score_))
[]: | %%time
   ada_clf=AdaBoostClassifier()
   ada_clf.fit(X_train,y_train)
  CPU times: user 44.7 s, sys: 137 ms, total: 44.8 s
  Wall time: 44.7 s
[]: y_cv_pred=ada_clf.predict(X_cv)
   confusion_matrix = metrics.confusion_matrix(y_cv, y_cv_pred)
   matrix_df = pd.DataFrame(confusion_matrix)
   ax = plt.axes()
   sns.set(font_scale=1.3)
   plt.figure(figsize=(10,7))
   sns.heatmap(matrix_df, annot=True, fmt="g", ax=ax, cmap="magma")
   plt.show()
[]: <Figure size 720x504 with 0 Axes>
[]: <matplotlib.axes._subplots.AxesSubplot at 0x7f07f1a6a650>
```



```
[]: #test_data prediction

y_test_pred=ada_clf.predict(X_test)
confusion_matrix = metrics.confusion_matrix(y_test, y_test_pred)
matrix_df = pd.DataFrame(confusion_matrix)
ax = plt.axes()
sns.set(font_scale=1.3)
plt.figure(figsize=(10,7))
sns.heatmap(matrix_df, annot=True, fmt="g", ax=ax, cmap="magma")
plt.show()
```

- []: <Figure size 720x504 with 0 Axes>
- []: <matplotlib.axes._subplots.AxesSubplot at 0x7f07f19a65d0>


```
[]: f1_score(y_cv, y_cv_pred, zero_division=1,average='macro')
    print('\n')
    f1_score(y_test, y_test_pred, zero_division=1,average='macro')
[]: 0.5321251114738115
```

[]: 0.524836757478196

```
[]: print("Classification report - \n", classification_report(y_cv,y_cv_pred))
```

Classification	report -			
	precision	recall	f1-score	support
	_			
0	0.99	1.00	1.00	335313
1	0.34	0.04	0.07	2259
accuracy			0.99	337572
macro avg	0.67	0.52	0.53	337572
weighted avg	0.99	0.99	0.99	337572

Custom Model Implementation

```
train,cv,train_y,cv_y=train_test_split(X,y,test_size=.
    →2, random state=100, stratify=y)
   %%time
   sample data=[]
   sample_targets =[]
   selected_row= []
   selected_columns=[]
   for i in range(10):
       a,b,c,d = generating_samples(D1, y_D1)
       a=a.values.tolist()
       c=c.values.tolist()
       sample data.append(a)
       sample_targets.append(b)
       selected row.append(c)
       selected_columns.append(d)
   models=[]
   for i,j in zip(sample_data,sample_targets):
       model=ExtraTreesClassifier()
       model.fit(i,j)
       models.append(model)
   D2=pd.DataFrame(D2)
   y_D2=pd.DataFrame(y_D2)
   predictions=[]
   i = 0
   for model in models:
     y_D2_pred=model.predict(D2[selected_columns[i]])
     predictions.append(y_D2_pred)
   j=0
   for i in predictions:
     print("Model",j," ",f1_score(y_D2,i))
   pred=np.transpose(predictions)
   ext_clf = ExtraTreesClassifier()
   ext_clf.fit(pred,y_D2)
   X_cv=pd.DataFrame(X_cv)
   y_cv=pd.DataFrame(y_cv)
   test_predictions=[]
   i=0
   for model in models:
     y_cv_pred=model.predict(X_cv[selected_columns[i]])
```

```
test_predictions.append(y_cv_pred)
   j=0
   for i in test_predictions:
     j+=1
     print("Model",j," ",f1_score(y_cv,i))
   meta_predictions=ext_clf.predict(np.transpose(test_predictions))
   print("The F1 score of metaclassifier is %.
    →6f"%f1_score(y_cv,meta_predictions,zero_division=1))
   X_test=pd.DataFrame(X_test)
   y_test=pd.DataFrame(y_test)
   tests_predictions=[]
   i=0
   for model in models:
     y_test_pred=model.predict(X_test[selected_columns[i]])
     i+=1
     tests_predictions.append(y_test_pred)
   j=0
   for i in tests_predictions:
     print("Model",j," ",f1_score(y_test,i))
   meta_test_predictions=ext_clf.predict(np.transpose(tests_predictions))
   print("The f1 score of metaclassifier is %.
    →6f"%f1_score(y_test,meta_test_predictions))
[]: import random
   import math
   def create_base_models(sample_data,sample_targets,base_model):
     models=[]
     for i,j in zip(sample_data,sample_targets):
       model=base model
       model.fit(i,j)
       models.append(model)
     return models
   def samples(n_estimators,data,y_data):
     sample_data=[]
     sample_targets =[]
     selected_row= []
```

i+=1

```
selected_columns=[]
     for i in range(n_estimators):
       a,b,c,d = generating_samples(data, y_data)
       a=a.values.tolist()
       c=c.values.tolist()
       sample_data.append(a)
       sample_targets.append(b)
       selected row.append(c)
       selected_columns.append(d)
     return sample_data,sample_targets,selected_row,selected_columns
   def baseModel predictions(models,data,selected columns):
     predictions=[]
     i=0
     for model in models:
       y_data_pred=model.predict(data[selected_columns[i]])
       predictions.append(y_data_pred)
     return predictions
   def get_f1Score(true,pred):
     return f1_score(true,pred,zero_division=1)
[]: def custom_ensemble(X_train,y_train,X_test,n_estimators):
     #Splitting Data
     D1,D2,y_D1,y_D2=train_test_split(X_train,y_train,test_size=0.
    →5, random_state=100, stratify=y_train)
     #Creating samples
    →sample_data, sample_targets, selected_row, selected_columns=samples(n_estimators, D1, y_D1)
     #Creating Base Models
     models=create_base_models(sample_data,sample_targets,DecisionTreeClassifier())
     #D2 prediction
     predictions=baseModel_predictions(models,D2,selected_columns)
     #f1 score of D2
     D2 f1=[]
     for i in predictions:
       D2_f1.append(get_f1Score(y_D2,i))
     # meta classifier
     pred=np.transpose(predictions)
     meta_model = XGBClassifier()
     meta_model.fit(pred,y_D2)
     X_test=pd.DataFrame(X_test)
     test_predictions=baseModel_predictions(models, X_test, selected_columns)
```

```
meta_test_predictions=meta_model.predict(np.transpose(tests_predictions))
       return meta_test_predictions,test_predictions,D2_f1
     test_pred, test_predictions, D2_f1=custom_ensemble(train, train_y, X_test, 40)
 []: train,cv,train_y,cv_y=train_test_split(X,y,test_size=.
      →2,random_state=100,stratify=y)
[13]: %%time
     def custom_ensemble(train,train_y,X_test,y_test,n_estimators):
         D1,D2,y_D1,y_D2=train_test_split(train,train_y,test_size=0.
      →5,random_state=100,stratify=train_y)
         sample_data=[]
         sample_targets =[]
         selected_columns=[]
         for i in range(n_estimators):
             sample_rows=D1.sample(frac=.8)
             sample_columns=D1.sample(n=6,axis=1)
             selected_columns.append(sample_columns.columns.values)
             sample_data.append(sample_rows[sample_columns.columns.values])
             sample_targets.append(y_D1[sample_rows.index.values])
         models=[]
         for i,j in zip(sample_data,sample_targets):
             model=DecisionTreeClassifier()
             model.fit(i,j)
             models.append(model)
         predictions=[]
         i=0
         for model in models:
             y_D2_pred=model.predict(D2[selected_columns[i]])
             predictions.append(y_D2_pred)
         d2 f1=[]
         for i in predictions:
             d2_f1.append(f1_score(y_D2,i))
         pred=np.transpose(predictions)
         meta_clf = XGBClassifier()
         meta_clf.fit(pred,y_D2)
         test_predictions=[]
```

```
i=0
    for model in models:
      y_test_pred=model.predict(X_test[selected_columns[i]])
      test_predictions.append(y_test_pred)
    test_f1=[]
    for i in test_predictions:
        test_f1.append(f1_score(y_test,i))
    meta_test_predictions=meta_clf.predict(np.transpose(test_predictions))
    return d2_f1,test_f1,meta_clf,meta_test_predictions
d2 f1, test_f1, meta_clf, meta_test_predictions=custom_ensemble(X, y, X_test, y_test, 100)
CPU times: user 7min 43s, sys: 5.75 s, total: 7min 49s
```

Wall time: 7min 47s

```
[14]: #test_data prediction
     confusion_matrix = metrics.confusion_matrix(y_test, meta_test_predictions)
    matrix_df = pd.DataFrame(confusion_matrix)
     ax = plt.axes()
     sns.set(font_scale=1.3)
     plt.figure(figsize=(10,7))
     sns.heatmap(matrix_df, annot=True, fmt="g", ax=ax, cmap="magma")
     plt.show()
```

- [14]: <Figure size 720x504 with 0 Axes>
- [14]: <matplotlib.axes._subplots.AxesSubplot at 0x7f5653d45a90>


```
[15]: f1_score(y_test,meta_test_predictions,average='macro')
[15]: 0.5268321609967183
       BALANCED DATA
[23]: oversample = SMOTE()
     X_train, y_train = oversample.fit_resample(X, y)
     counter = Counter(y_train)
     print(counter)
    Counter({0: 1676567, 1: 1676567})
 []: model = DecisionTreeClassifier()
     cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=3, random_state=1)
     scores = cross_val_score(model, X_train, y_train, scoring='f1_macro', cv=cv,_
      \rightarrown_jobs=-1)
     print('ROC AUC %.3f' % np.mean(scores))
    ROC AUC 0.989
       Decision Tree Classifier
 []: param_dist = {"max_depth": randint(1,9),
```

"max_features": randint(1, 9),

```
"min_samples_leaf": randint(1, 5),
                  "criterion": ["gini", "entropy"]}
[]: tree = DecisionTreeClassifier()
: | %%time
   tree_cv = RandomizedSearchCV(tree, param_dist, cv=10,n_jobs=-1)
   tree_cv.fit(X_train,y_train)
  CPU times: user 12.1 s, sys: 335 ms, total: 12.5 s
  Wall time: 4min 10s
: tree_cv.best_estimator_
]: DecisionTreeClassifier(ccp_alpha=0.0, class_weight=None, criterion='gini',
                           max_depth=4, max_features=5, max_leaf_nodes=None,
                           min_impurity_decrease=0.0, min_impurity_split=None,
                           min_samples_leaf=3, min_samples_split=2,
                           min_weight_fraction_leaf=0.0, presort='deprecated',
                           random_state=None, splitter='best')
[]: print("Tuned Decision Tree Parameters: {}".format(tree_cv.best_params_))
  Tuned Decision Tree Parameters: {'criterion': 'gini', 'max_depth': 7,
   'max_features': 7, 'min_samples_leaf': 3}
[]: | %%time
   clf =
    →DecisionTreeClassifier(criterion='gini', max_depth=1, max_features=7, min_samples_leaf=3)
   clf.fit(X_train,y_train)
  CPU times: user 1.59 s, sys: 14.3 ms, total: 1.6 s
  Wall time: 1.59 s
[]: y_cv_pred=clf.predict(X_cv)
   confusion_matrix = metrics.confusion_matrix(y_cv,
                                                y_cv_pred)
   matrix_df = pd.DataFrame(confusion_matrix)
   ax = plt.axes()
   sns.set(font_scale=1.3)
   plt.figure(figsize=(10,7))
   sns.heatmap(matrix_df, annot=True, fmt="g", ax=ax, cmap="magma")
   plt.show()
[]: <Figure size 720x504 with 0 Axes>
]: <matplotlib.axes._subplots.AxesSubplot at 0x7f2543d0ce10>
```



```
[]: print("Classification report - \n", classification_report(y_cv,y_cv_pred))
```

```
Classification report -
               precision
                            recall f1-score
                                                support
           0
                   1.00
                              0.90
                                        0.95
                                                335313
           1
                   0.03
                              0.53
                                        0.06
                                                   2259
    accuracy
                                        0.90
                                                337572
                              0.71
                                        0.51
                                                337572
   macro avg
                   0.52
weighted avg
                   0.99
                              0.90
                                        0.94
                                                337572
```

```
sns.heatmap(matrix_df, annot=True, fmt="g", ax=ax, cmap="magma")
plt.show()
```

- []: <Figure size 720x504 with 0 Axes>
- []: <matplotlib.axes._subplots.AxesSubplot at 0x7f2542f7bad0>


```
[]: print("Classification report - \n", classification_report(y_test,y_test_pred))
```

```
Classification report -
               precision
                             recall f1-score
                                                 support
           0
                    0.99
                              0.91
                                         0.95
                                                 239387
           1
                    0.05
                              0.46
                                         0.09
                                                    2688
                                         0.90
                                                 242075
    accuracy
                              0.68
                                         0.52
                                                 242075
   macro avg
                    0.52
weighted avg
                    0.98
                              0.90
                                         0.94
                                                 242075
```

```
[]: print(roc_auc_score(y_test, clf.predict_proba(X_test)[:, 1]))
print(roc_auc_score(y_cv, clf.predict_proba(X_cv)[:, 1]))
```

- 0.6822593575813779
- 0.7129935848842331

```
[]: grid = {'base_estimator_max_depth' : [1, 2, 3, 4, 5], 'max_samples' : [0.05, 0.
    \rightarrow 1, 0.2, 0.5
[]: clf = BaggingClassifier(base_estimator=DecisionTreeClassifier(random_state=0))
bagging_cv = RandomizedSearchCV(clf, grid, cv=5,n_jobs=-1)
   bagging_cv.fit(X_train,y_train)
  CPU times: user 30.7 s, sys: 587 ms, total: 31.3 s
  Wall time: 8min 49s
[]: print("Tuned Bagging classigier Parameters: {}".format(bagging_cv.best_params_))
   print("Best score is {}".format(bagging_cv.best_score_))
  Tuned Bagging classigier Parameters: {'max_samples': 0.2,
   'base_estimator__max_depth': 5}
  Best score is 0.8648242612049968
[]: | %%time
   clf = BaggingClassifier(base_estimator=DecisionTreeClassifier(max_depth=_
    →5),max_samples= 0.2,n_jobs=-1,random_state=0)
   clf.fit(X train,y train)
  CPU times: user 260 ms, sys: 109 ms, total: 368 ms
  Wall time: 17.6 s
[]: y_cv_pred=clf.predict(X_cv)
   confusion_matrix = metrics.confusion_matrix(y_cv, y_cv_pred)
   matrix_df = pd.DataFrame(confusion_matrix)
   ax = plt.axes()
   sns.set(font_scale=1.3)
   plt.figure(figsize=(10,7))
   sns.heatmap(matrix_df, annot=True, fmt="g", ax=ax, cmap="magma")
   plt.show()
[]: <Figure size 720x504 with 0 Axes>
: <matplotlib.axes._subplots.AxesSubplot at 0x7f2542eef950>
```



```
[]: f1_score(y_cv, y_cv_pred, zero_division=1,average='macro')
[]: 0.48381617838406404
[]: print("Classification report - \n", classification_report(y_cv,y_cv_pred))
  Classification report -
                  precision
                               recall f1-score
                                                   support
              0
                      1.00
                                0.83
                                           0.90
                                                   335313
              1
                      0.03
                                0.87
                                           0.06
                                                     2259
                                           0.83
                                                   337572
      accuracy
     macro avg
                      0.52
                                0.85
                                           0.48
                                                   337572
  weighted avg
                      0.99
                                0.83
                                           0.90
                                                   337572
```

```
[]: #test_data prediction

y_test_pred=clf.predict(X_test)
confusion_matrix = metrics.confusion_matrix(y_test, y_test_pred)
matrix_df = pd.DataFrame(confusion_matrix)
ax = plt.axes()
```

```
sns.set(font_scale=1.3)
plt.figure(figsize=(10,7))
sns.heatmap(matrix_df, annot=True, fmt="g", ax=ax, cmap="magma")
plt.show()
```

- []: <Figure size 720x504 with 0 Axes>
- []: <matplotlib.axes._subplots.AxesSubplot at 0x7f2542df7610>


```
[]: f1_score(y_test, y_test_pred, zero_division=1,average='macro')
[]: 0.5048374012369944
```

- []: print(roc_auc_score(y_test, clf.predict_proba(X_test)[:, 1]))
 print(roc_auc_score(y_cv, clf.predict_proba(X_cv)[:, 1]))
 - 0.9052303282210198
 - 0.9133020960626392

Random Forest

```
[]: # # Number of trees in random forest

# n_estimators = [200,500,1000,1500,2000]

# Number of features to consider at every split

# max_features = ['auto', 'sqrt']
```

```
# # Maximum number of levels in tree
     \# \max_{depth} = [10, 20, 30, 40, 50]
     # max_depth.append(None)
     # # Minimum number of samples required to split a node
     \# min\_samples\_split = [2, 5, 10]
     # # Minimum number of samples required at each leaf node
     # min_samples_leaf = [1, 2, 4]
     # # Method of selecting samples for training each tree
     # bootstrap = [True, False]
     # # Create the random grid
     # random_grid = {'n_estimators': n_estimators,
                      'max_features': max_features,
     #
                      'max depth': max depth,
                       'min_samples_split': min_samples_split,
     #
                      'min_samples_leaf': min_samples_leaf,
                      'bootstrap': bootstrap}
     random_grid = {
             'n_estimators': randint(low=100, high=300),
             'max_features': randint(low=8, high=17),
         }
 []: | %%time
     rf_clf = RandomForestClassifier(random_state=1)
     rf_cv = RandomizedSearchCV(rf_clf,__
      →random_grid,random_state=42,verbose=2,n_jobs=-1)
     rf_cv.fit(X_train,y_train)
 []: print(rf_cv.best_estimator_)
     print("Tuned random forest classifier Parameters: {}".format(rf_cv.
      →best_params_))
     print("Best score is {}".format(rf_cv.best_score_))
[24]: %%time
     rf_clf = RandomForestClassifier(random_state=42)
     rf_clf.fit(X_train,y_train)
    CPU times: user 24min 8s, sys: 2.09 s, total: 24min 10s
    Wall time: 24min 3s
 []: y_cv_pred=rf_clf.predict(X_cv)
     confusion_matrix = metrics.confusion_matrix(y_cv, y_cv_pred)
     matrix_df = pd.DataFrame(confusion_matrix)
     ax = plt.axes()
     sns.set(font_scale=1.3)
     plt.figure(figsize=(10,7))
     sns.heatmap(matrix_df, annot=True, fmt="g", ax=ax, cmap="magma")
```

plt.show()

- []: <Figure size 720x504 with 0 Axes>
- []: <matplotlib.axes._subplots.AxesSubplot at 0x7f2542bead90>


```
[]: print("Classification report - \n", classification_report(y_cv,y_cv_pred))
```

```
Classification report -
               precision
                             recall f1-score
                                                 support
           0
                    1.00
                              0.99
                                         0.99
                                                 335313
           1
                    0.31
                              0.46
                                         0.37
                                                    2259
                                         0.99
                                                 337572
    accuracy
   macro avg
                   0.65
                              0.73
                                         0.68
                                                 337572
weighted avg
                   0.99
                              0.99
                                         0.99
                                                 337572
```

```
[25]: #test_data prediction

y_test_pred=rf_clf.predict(X_test)
confusion_matrix = metrics.confusion_matrix(y_test, y_test_pred)
```

```
matrix_df = pd.DataFrame(confusion_matrix)
ax = plt.axes()
sns.set(font_scale=1.3)
plt.figure(figsize=(10,7))
sns.heatmap(matrix_df, annot=True, fmt="g", ax=ax, cmap="magma")
plt.show()
```

- [25]: <Figure size 720x504 with 0 Axes>
- [25]: <matplotlib.axes._subplots.AxesSubplot at 0x7f564eb21c50>


```
random_grid = {"max_depth": [None],
                  "max_features": [10, 17],
                  "min_samples_split": [2, 3, 10],
                  "min_samples_leaf": [1, 3, 10],
                  "n_estimators" : [50,100,200],
                  "criterion": ["gini"]}
[]: %%time
   rf_cv = RandomizedSearchCV(ext_clf,__
    →random_grid,random_state=42,verbose=2,n_jobs=-1)
   rf_cv.fit(X_train,y_train)
[]: ext_clf.fit(X_train,y_train)
: ExtraTreesClassifier(bootstrap=False, ccp alpha=0.0, class weight=None,
                        criterion='gini', max_depth=None, max_features='auto',
                        max_leaf_nodes=None, max_samples=None,
                        min_impurity_decrease=0.0, min_impurity_split=None,
                        min_samples_leaf=1, min_samples_split=2,
                        min_weight_fraction_leaf=0.0, n_estimators=100,
                        n_jobs=None, oob_score=False, random_state=None, verbose=0,
                        warm_start=False)
[]: y_cv_pred=ext_clf.predict(X_cv)
   confusion_matrix = metrics.confusion_matrix(y_cv, y_cv_pred)
   matrix_df = pd.DataFrame(confusion_matrix)
   ax = plt.axes()
   sns.set(font_scale=1.3)
   plt.figure(figsize=(10,7))
   sns.heatmap(matrix_df, annot=True, fmt="g", ax=ax, cmap="magma")
   plt.show()
[]: <Figure size 720x504 with 0 Axes>
: <matplotlib.axes._subplots.AxesSubplot at 0x7f2516012290>
```



```
[]: f1_score(y_cv, y_cv_pred,average='macro')
[]: 0.7038945908276472
[]: #test_data prediction

y_test_pred=ext_clf.predict(X_test)
    confusion_matrix = metrics.confusion_matrix(y_test, y_test_pred)
    matrix_df = pd.DataFrame(confusion_matrix)
    ax = plt.axes()
    sns.set(font_scale=1.3)
    plt.figure(figsize=(10,7))
    sns.heatmap(matrix_df, annot=True, fmt="g", ax=ax, cmap="magma")
    plt.show()
[]: <Figure size 720x504 with 0 Axes>
```

[]: <matplotlib.axes._subplots.AxesSubplot at 0x7f25427dfe50>

[]: f1_score(y_test, y_test_pred, zero_division=1,average='macro')

```
clf = DecisionTreeClassifier(random_state = 11)
   ab = AdaBoostClassifier(base_estimator = clf)
   ab_cv = RandomizedSearchCV(ab, param_grid, scoring = 'accuracy')
   ab_cv.fit(X_train,y_train)
[]: print("Tuned random forest classifier Parameters: {}".format(ab_cv.
    →best_params_))
   print("Best score is {}".format(ab_cv.best_score_))
[]: | %%time
   ada_clf=AdaBoostClassifier()
   ada_clf.fit(X_train,y_train)
  CPU times: user 2min 55s, sys: 333 ms, total: 2min 55s
  Wall time: 2min 54s
[]: y_cv_pred=ada_clf.predict(X_cv)
   confusion_matrix = metrics.confusion_matrix(y_cv, y_cv_pred)
   matrix_df = pd.DataFrame(confusion_matrix)
   ax = plt.axes()
   sns.set(font_scale=1.3)
   plt.figure(figsize=(10,7))
   sns.heatmap(matrix_df, annot=True, fmt="g", ax=ax, cmap="magma")
   plt.show()
```

- []: <Figure size 720x504 with 0 Axes>
- []: <matplotlib.axes._subplots.AxesSubplot at 0x7f2529c8e350>


```
[]: #test_data prediction

y_test_pred=ada_clf.predict(X_test)
confusion_matrix = metrics.confusion_matrix(y_test, y_test_pred)
matrix_df = pd.DataFrame(confusion_matrix)
ax = plt.axes()
sns.set(font_scale=1.3)
plt.figure(figsize=(10,7))
sns.heatmap(matrix_df, annot=True, fmt="g", ax=ax, cmap="magma")
plt.show()
```

- []: <Figure size 720x504 with 0 Axes>
- []: <matplotlib.axes._subplots.AxesSubplot at 0x7f253eb03190>


```
[]: f1_score(y_cv, y_cv_pred, zero_division=1,average='macro')
print('\n')
f1_score(y_test, y_test_pred, zero_division=1,average='macro')
```

[]: 0.5009158546126591

```
[]: print(roc_auc_score(y_test, rf_clf.predict_proba(X_test)[:, 1]))
   print(roc_auc_score(y_cv, rf_clf.predict_proba(X_cv)[:, 1]))
  0.8226988437555884
  0.9513865829457709
[]: print("Classification report - \n", classification_report(y_test,y_test_pred))
  Classification report -
                  precision
                               recall f1-score
                                                   support
              0
                      1.00
                                0.87
                                          0.93
                                                   239387
              1
                      0.06
                                0.82
                                           0.12
                                                     2688
                                          0.87
                                                   242075
      accuracy
                                          0.52
                                                   242075
     macro avg
                      0.53
                                0.84
                                                   242075
  weighted avg
                      0.99
                                0.87
                                          0.92
     Custom Model Implementation
train,cv,train_y,cv_y=train_test_split(X,y,test_size=.
    →2,random_state=100,stratify=y)
[]: X_test.columns
[]: Index(['perf_6_month_avg', 'pieces_past_due', 'sales_6_month',
           'forecast_6_month', 'in_transit_qty', 'potential_issue', 'national_inv',
          'lead_time', 'oe_constraint', 'min_bank', 'reorder_point'],
         dtype='object')
[]: X_train=pd.DataFrame(X_train,columns=X_test.columns)
[]: y_train=pd.DataFrame(y_train)
[]: | %%time
   def custom_ensemble(train,train_y,X_test,y_test,n_estimators):
       D1,D2,y_D1,y_D2=train_test_split(train,train_y,test_size=0.
    →5, random_state=100, stratify=y_train)
       sample_data=[]
       sample_targets =[]
       selected_columns=[]
       i=0
       for i in range(n_estimators):
```

[]: 0.5230236130282219

```
sample_rows=D1.sample(frac=.8)
        sample_columns=D1.sample(n=6,axis=1)
        selected_columns.append(sample_columns.columns.values)
        sample_data.append(sample_rows[sample_columns.columns.values])
        sample_targets.append(y_D1.loc[sample_rows.index.values])
    models=[]
    for i,j in zip(sample_data,sample_targets):
        model=DecisionTreeClassifier()
        model.fit(i,j)
        models.append(model)
    predictions=[]
    i=0
    for model in models:
        y_D2_pred=model.predict(D2[selected_columns[i]])
        predictions.append(y_D2_pred)
    d2_f1=[]
    for i in predictions:
        d2_f1.append(f1_score(y_D2,i))
    pred=np.transpose(predictions)
    meta_clf = XGBClassifier()
    meta_clf.fit(pred,y_D2)
    test_predictions=[]
    i = ()
    for model in models:
      y_test_pred=model.predict(X_test[selected_columns[i]])
      test_predictions.append(y_test_pred)
    test_f1=[]
    for i in test_predictions:
        test_f1.append(f1_score(y_test,i))
    meta_test_predictions=meta_clf.predict(np.transpose(test_predictions))
    return d2_f1,test_f1,meta_clf,meta_test_predictions
d2 f1, test f1, meta_clf, meta_test_predictions=custom_ensemble(X_train, y_train, X_test, y_test, 2)
```

CPU times: user 44.3 s, sys: 225 ms, total: 44.5 s Wall time: 44.3 s

```
[]: #test_data prediction

confusion_matrix = metrics.confusion_matrix(y_test, meta_test_predictions)
matrix_df = pd.DataFrame(confusion_matrix)
ax = plt.axes()
sns.set(font_scale=1.3)
plt.figure(figsize=(10,7))
sns.heatmap(matrix_df, annot=True, fmt="g", ax=ax, cmap="magma")
plt.show()
```

- []: <Figure size 720x504 with 0 Axes>
- []: <matplotlib.axes._subplots.AxesSubplot at 0x7f251611ee50>


```
[]: f1_score(y_test,meta_test_predictions,average='macro')
[]: 0.5215121814232936
          unbalanced data test f1 score
[]: from prettytable import PrettyTable
```

```
# Specify the Column Names while initializing the Table
myTable = PrettyTable(["Model","F1 Score"])

# Add rows
myTable.add_row(["Decision Treee","0.50"])
myTable.add_row(["Extra Trees","0.503"])
myTable.add_row(["Random Forest","0.516"])
myTable.add_row(["AdaBoost","0.524"])
myTable.add_row(["Ensemble","0.530"])
print(myTable)
```

```
+-----+
| Model | F1 Score |
+-----+
| Decision Treee | 0.50 |
| Extra Trees | 0.503 |
| Random Forest | 0.516 |
| AdaBoost | 0.524 |
| Ensemble | 0.530 |
```

Balanced data test f1 score

```
[]: from prettytable import PrettyTable

# Specify the Column Names while initializing the Table
myTable = PrettyTable(["Model","F1 Score"])

# Add rows
myTable.add_row(["Decision Treee","0.52"])
myTable.add_row(["Extra Trees","0.54"])
myTable.add_row(["Random Forest","0.56"])
myTable.add_row(["AdaBoost","0.52"])
myTable.add_row(["Ensemble","0.52"])
print(myTable)
```

FINAL FUNCTIONS

```
[61]: test_row=test_data.iloc[0]
     test_row2=test_data.iloc[1]
     test_row3=test_data.iloc[2]
[62]: test_row=pd.DataFrame(test_row)
     test_row2=pd.DataFrame(test_row2)
     test row3=pd.DataFrame(test row3)
[63]: test_row=test_row.transpose()
     test_row2=test_row2.transpose()
     test_row3=test_row3.transpose()
[28]: rf_clf
[28]: RandomForestClassifier(bootstrap=True, ccp_alpha=0.0, class_weight=None,
                            criterion='gini', max_depth=None, max_features='auto',
                            max_leaf_nodes=None, max_samples=None,
                            min_impurity_decrease=0.0, min_impurity_split=None,
                            min_samples_leaf=1, min_samples_split=2,
                            min_weight_fraction_leaf=0.0, n_estimators=100,
                            n_jobs=None, oob_score=False, random_state=42, verbose=0,
                            warm_start=False)
[44]: def Function1(point):
       if not isinstance(point,pd.DataFrame):
         point=pd.DataFrame(point)
      -categorical_list=['potential_issue', 'deck_risk', 'oe_constraint', 'ppap_risk', 'stop_auto_buy'
      →features=['perf_6_month_avg','pieces_past_due','sales_6_month','forecast_6_month','in_trans
      point['reorder_point']=((point['sales_3_month']/
      →3)*point['lead_time'])+point['national_inv']
       #Preprocess
       point=point.replace({'No':0,'Yes':1})
      point['perf_6_month_avg']=point['perf_6_month_avg'].replace(-99, np.NaN)
      point[data.columns] = point[point.columns].apply(pd.to_numeric,_
      →errors='coerce')
      point = point.fillna(0)
       #changing datatypes to int
       point[categorical_list]=point[categorical_list].astype('int64')
       point=point[features]
       prediction=rf_clf.predict(point)
       return prediction
     prediction=Function1(test_row3)
```

[0]

```
[64]: X_test_row,y_test_row=test_row.
      -drop('went_on_backorder',axis=1),test_row['went_on_backorder']
[65]: X_test_row2, y_test_row2=test_row2.

¬drop('went_on_backorder',axis=1),test_row2['went_on_backorder']

[66]: X_test_row3,y_test_row3=test_row3.
      →drop('went_on_backorder',axis=1),test_row3['went_on_backorder']
[76]: def final_fun_2(X,y):
       if not isinstance(X,pd.DataFrame):
         X=pd.DataFrame(X)

→categorical_list=['potential_issue', 'deck_risk', 'oe_constraint', 'ppap_risk', 'stop_auto_buy']
      -features=['perf_6_month_avg','pieces_past_due','sales_6_month','forecast_6_month','in_trans
      X['reorder_X']=((X['sales_3_month']/3)*X['lead_time'])+X['national_inv']
       #Preprocess
       X=X.replace({'No':0,'Yes':1})
       y=y.replace({'No':0,'Yes':1})
       X['perf_6_month_avg']=X['perf_6_month_avg'].replace(-99, np.NaN)
       X[data.columns] =X[X.columns].apply(pd.to numeric, errors='coerce')
       X = X.fillna(0)
       #changing datatypes to int
       X[categorical_list] = X[categorical_list].astype('int64')
       X=X[features]
       prediction=rf_clf.predict(X)
       f1=f1_score(prediction,y,average='macro')
       return [prediction,f1]
     pred,f1=final_fun_2(X_test_row,y_test_row)
 []:
```