

Timers e Interrupções

Curso Superior de Tecnologia em Sistemas Embarcados

Professor: Fernando Silvano Gonçalves fernando.goncalves@ifsc.edu.br
Junho de 2023

Cronograma

Encontro	Data	Nº Aulas	Conteúdo
1	7-fev.	04	Recepção e Apresentação do Unidade / Apresentação do Plano de Ensino / Avaliação Diagnóstica / Introdução a sistemas embarcados / Conceitos, Características e Aplicações
2	14-fev.	04	Visita Tecnica Evoluma Sistemas
3	28-fev.	04	Histórico de Sistemas Embarcados / Conceitos de Projeto de Sistemas Embarcados
4	9-mar.	04	Conceitos de Projeto de Sistemas Embarcados / Projeto de Sistemas Embarcados
5	14-mar.	04	Microcontroladores e Microprocessadores / Introdução ao Arduino
6	21-mar.	04	Introdução à Linguagens de Programação
7	23-mar.	04	Entradas Digitais Arduino / Estruturas Condicionais
8	28-mar.	04	Display / Comunicação I2C / Estruturas Condicionais
9	04-abr.	04	Estruturas Condicionais / Estruturas de Repetição / Entradas Analógicas / Sensores e Display
10	03-jun.	04	Jogos Sedentários

Cronograma

Encontro	Data	Nº Aulas	Conteúdo
11	13-jun.	04	Revisão de Conceitos
12	15-jun.	04	Entradas Digitais / Conversor A/D
13	16-jun.	04	Avaliação 01
14	20-jun.	04	Timers e Interrupções
15	21-jun.	04	Sensores: Ultrasônico, Umidade e Temperatura
16	22-jun.	04	Sensores: Luminosidade, Bluetooth
17	23-jun.	04	PWM / Atuadores: Servomotor, Ponte H / Motor DC
18	27-jun.	04	Relés / Buzzer
19	28-jun.	04	Avaliação 02
20	4-jul.	04	Conselho de Classe / Atividades de Encerramento da UC
		80	

Pauta

- Timers;
- Interrupções;
- Práticas com Timers e Interrupções;

Timers

Timers

Timers

- Um timer nada mais é do que um contador que é incrementado a cada intervalo de tempo;
- Os timers funcionam como um relógio que pode ser usado para contar o tempo, medir a duração de certos eventos, entre outras aplicações;
- O Arduino Uno possuí os timers: timer0, timer1 e timer2;
 - ☐ Timer0 e timer2 são contadores de 8bits, ou seja, contam de 0 a 255;
 - ☐ **Timer1** é um contador de 16bits, conta de 0 a 65535.

Timers

- Timer0: Utilizado pelo Arduino para funções como delay(), millis() e micros(). Então não se deve utilizar esse timer para evitar comprometer essa funções;
- □ Timer1: No Arduino UNO esse é o timer utilizado pela biblioteca de controle de servos;
- Timer2: Esse timer é utilizado pela função tone();

Configurando Timers

- Para facilitar a configuração do timer vamos utilizar a biblioteca disponível em: http://playground.arduino.cc/Code/Timer1
- Primeiro passo é baixar as bibliotecas e colocá-las na pasta "Arduino/libraries";
- A partir daí o timer pode ser configurado e utilizado;


```
#include "TimerOne.h"
int i;
void setup() {
 pinMode(8, OUTPUT);
 pinMode(9, OUTPUT);
 Timer1.initialize(1000000);
 Timer1.attachInterrupt(processaTimer);
 i = 0;
```

```
void processaTimer(){
 switch(i){
  case 0:
   digitalWrite(8, HIGH);
  break;
  case 1:
   digitalWrite(8, LOW);
  break;
  case 2:
   digitalWrite(9, HIGH);
  break;
  case 3:
   digitalWrite(9, LOW);
   i = -1;
  break;
 i++;
```


Modificando a Prática do Semáforo

- Refaça o Exercício do semáforo de trânsito utilizando Timer. Esse deve obedecer os seguintes critérios:
 - A luz verde deve ficar acesa por 2 segundos;
 - A luz amarela deve ficar acesa por 1 segundo;
 - A luz vermelha deve ficar acesa por 3 segundos.

Não deve haver mais de um led acesso ao mesmo tempo.

Interrupções

Interrupções

Interrupções

- Quando estamos executando uma tarefa, algumas vezes temos que interromper a sua execução para resolver outra tarefa importante;
- Quando estamos monitorando um determinado componente, muitas vezes o que nos importa é a sua mudança de estado, como o clique de um botão;
- Nestes casos podemos fazer uma pausa em nossa aplicação e só depois retornar do ponto que se parou.
- Uma interrupção tem dois pontos chave:
 - Condição de interrupção;
 - Função a ser executada;

Interrupções - Sintaxe

attachInterrupt(digitalPinToInterrupt(pino), ISR, modo);

- Pino: número do pino para interrupção;
- ISR: função a ser chamada quando detectada a interrupção;
- Modo: modo de ativação da interrupção;
 - LOW: aciona a interrupção quando o estado do pino for LOW;
 - ☐ CHANGE: aciona a interrupção quando houver mudança no estado do pino;
 - RISING: aciona a interrupção quando o estado do pino for de HIGH para LOW apenas;
 - FALLING: aciona a interrupção quando o estado do pino for HIGH;

No Arduino UNO somente as portas 2 e 3 estão disponíveis para uso de interrupções.

Interrupções - Exemplo

Santa Catarina

```
#include "TimerOne.h"
                                                        void loop(){
                                                          if(i){
 #define pb 3
                                                           if(ledState == LOW){
 #define led 10
                                                            ledState = HIGH;
                                                           } else {
                                                            ledState = LOW;
 int ledState;
 int i;
                                                           digitalWrite(led, ledState);
 void interrupt(){
                                                           i = 0;
   Serial.println("Interrupção");
     j++;
 void setup() {
   Serial.begin(9600);
   attachInterrupt(digitalPinToInterrupt(pb), interrupt, RISING);
   pinMode(led, OUTPUT);
   ledState = LOW;
   i = 0;
INSTITUTO FEDERAL
```

Atividade Com Botão e Leds

- Modifique a atividade anterior para que a leitura do clique do botão seja realizada por meio do uso de interrupções.
- Adicione um segundo botão e utilize duas interrupções diferentes para acionar os leds.

Obrigado!

Fernando Silvano Gonçalves

fernando.goncalves@ifsc.edu.br

se.cst.tub@ifsc.edu.br