	Property	Sequence	Transform	ROC
		x[n]	X(z)	R_{x}
		$x_1[n]$	$X_1(z)$	R_{x_1}
		$x_2[n]$	$X_2(z)$	R_{x_2}
1.	Linearity	$a_1x_1[n] + a_2x_2[n]$	$a_1 X_1(z) + a_2 X_2(z)$	At least $R_{x_1} \cap R_{x_2}$
2.	Time shifting	x[n-k]	$z^{-k}X(z)$	R_x except $z = 0$ or ∞
3.	Scaling	$a^n x[n]$	$X(a^{-1}z)$	$ a R_x$
4.	Differentation	nx[n]	$-z\frac{dX(z)}{dz}$	R_X
5.	Conjugation	$x^*[n]$	$X^*(z^*)$	R_X
6.	Real-part	$Re\{x[n]\}$	$\frac{1}{2}[X(z) + X^*(z^*)]$	At least R_x
7.	Imaginary part	$Im\{x[n]\}$	$\frac{1}{2}[X(z) - X^*(z^*)]$	At least R_x
8.	Folding	x[-n]	X(1/z)	$1/R_x$
9.	Convolution	$x_1[n] * x_2[n]$	$X_1(z)X_2(z)$	At least $R_{x_1} \cap R_{x_2}$
10.	Initial-value theorem	x[n] = 0 for n < 0	$x[0] = \lim_{z \to \infty} X(z)$	

	Sequence $x[n]$	z-Transform $X(z)$	ROC
1.	$\delta[n]$	1	All z
2.	u[n]	$\frac{1}{1-z^{-1}}$	z > 1
3.	$a^nu[n]$	$\frac{1-z^{-1}}{1\over 1-az^{-1}}$	z > a
4.	$-a^nu[-n-1]$	$\frac{1}{1 - az^{-1}}$	z < a
5.	$na^nu[n]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z > a
5.	$-na^nu[-n-1]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a
7.	$(\cos \omega_0 n) u[n]$	$\frac{1 - (\cos \omega_0)z^{-1}}{1 - 2(\cos \omega_0)z^{-1} + z^{-2}}$	z > 1
8.	$(\sin \omega_0 n) u[n]$	$\frac{(\sin \omega_0)z^{-1}}{1 - 2(\cos \omega_0)z^{-1} + z^{-2}}$	z > 1
9.	$(r^n\cos\omega_0 n)u[n]$	$\frac{1 - (r\cos\omega_0)z^{-1}}{1 - 2(r\cos\omega_0)z^{-1} + r^2z^{-2}}$	z > r
0.	$(r^n \sin \omega_0 n) u[n]$	$\frac{(r\sin\omega_0)z^{-1}}{1 - 2(r\cos\omega_0)z^{-1} + r^2z^{-2}}$	z > r

Modulat KM

$$x(t) = m(t) cos(V^{\pi}f_0 b)$$

 $X(f) = \frac{1}{2}(M(f_0 f_0) + M(f_0 f_0))$

Magnitude
$$|Y(f)| = |X(f)||H(f)|$$

Phase $LY(f) = LX(f) + LH(f)$

Eular's Formula

$$\sin x = \frac{1}{\dot{\phi}^2} \left(e^{\dot{\phi}^2 x} - e^{-\dot{\phi}^2 x} \right) \quad e^{\dot{\phi}^2 x} - e^{-\dot{\phi}^2 x} = \dot{\phi}^2 \sin(x)$$

$$\cos x = \frac{1}{2} \left(e^{\dot{\phi}^2 x} + e^{-\dot{\phi}^2 x} \right) \quad e^{\dot{\phi}^2 x} + e^{-\dot{\phi}^2 x} = 2\cos(x)$$

$$e^{\dot{\phi}^2 x} = \cos x + \dot{\phi} \sin x$$

$$e^{-\dot{\phi}^2 x} = \cos x - \dot{\phi} \sin x$$

Sampling x(+) -> x[n]

than: sampling freq.
$$T = \frac{1}{f_0} \leftarrow$$
 channel freq where $X(f)$ lies ideal LPF $h(t) = 2BT$ sinc $(2Bt)$

$$h(t) = 2bT \text{ sinc } (2i3t)$$
where Bm $tB = fo/2$

TABLE 3.1 Short Table of Fourier Transforms

_	g(t)	G(f)	
	$e^{-at}u(t)$	$a+j2\pi f$	a >
2	$e^{at}u(-t)$		a >
3	$e^{-a t }$	$\frac{a - j2\pi f}{2a}$ $\frac{a^2 + (2\pi f)^2}{a^2 + (2\pi f)^2}$	
4	$te^{-at}u(t)$	$\frac{1}{(a+j2\pi f)^2}$	a >
5	$t^n e^{-at} u(t)$	$\frac{n!}{(a+j2\pi f)^{n+1}}$	
6	$\delta(t)$	(a +)2i()	
7	1	$\delta(f)$	
8	$e^{j2\pi f_0t}$	$\delta(f-f_0)$	
9	$\cos 2\pi f_0 t$	$0.5[\delta(f+f_0)+\delta(f-f_0)]$	
10	$\sin 2\pi f_0 t$	$j0.5[\delta(f+f_0)-\delta(f-f_0)]$	
11	u(t)	$\frac{1}{2}\delta(f) + \frac{1}{j2\pi f}$	
12	sgn t	$\frac{2}{i2\pi f}$	
	$\cos 2\pi f_0 t u(t)$	$\frac{1}{4}[\delta(f - f_0) + \delta(f + f_0)] + \frac{j2\pi f}{(2\pi f_0)^2 - (2\pi f)^2}$ $\frac{1}{4j}[\delta(f - f_0) - \delta(f + f_0)] + \frac{2\pi f_0}{(2\pi f_0)^2 - (2\pi f)^2}$	
14	$\sin 2\pi f_0 t u(t)$	$\frac{1}{4j}[\delta(f-f_0)-\delta(f+f_0)]+\frac{2\pi f_0}{(2\pi f_0)^2-(2\pi f)^2}$	
15	$e^{-at}\sin2\pi f_0tu(t)$	$\frac{2\pi f_0}{(a+j2\pi f)^2 + 4\pi^2 f_0^2}$ $\frac{a+j2\pi f}{a+j2\pi f}$	
16	$e^{-at}\cos 2\pi f_0tu(t)$	$\frac{a+j2\pi f}{(a+j2\pi f)^2+4\pi^2 f_0^2}$	
	$\Pi\left(\frac{t}{t}\right)$	$\tau \operatorname{sinc}(\pi f \tau)$	
18	$2B\operatorname{sinc}(2\pi Bt)$	$\Pi\left(\frac{f}{2B}\right)$	
19	$\Delta\left(\frac{t}{\tau}\right)$	$\frac{r}{2}$ sinc ² $\left(\frac{\pi f \tau}{2}\right)$	
20	$B\operatorname{sinc}^2(\pi Bt)$	$\Delta \left(\frac{f}{2B}\right)$	
21			
22	$e^{-t^2/2\sigma^2}$	$\sigma\sqrt{2\pi}e^{-2(\sigma\pi f)^2}$	

forward #T

$$F(f) = \int_{-\infty}^{\infty} f(t) z^{-j2\pi f t} dt \qquad F(ej^{m}) = \sum_{n=-\infty}^{\infty} f(n) e^{-jmn}$$

inverse FT

- continuous

$$f(k) = \int_{-\infty}^{\infty} F(f) e^{\frac{i}{2\pi n}ft} df \qquad f(n) = \frac{i}{2\pi} \int_{-\pi}^{\pi} F(e^{\frac{i}{2\pi n}}) e^{\frac{i}{2\pi n}n} dn$$

ideal LPF $h(t) = 2BT \operatorname{sinc}(2Bt)$ where $Bm \leq B \leq fo/2$

Sinusoid Sin(x)/cos(x)

CSFT of a sinusoid - impulse @ that frequency

pulse signal 17(6)

$$x(t) = \Pi(\frac{t}{2}) = u(t-T) - u(t+T)$$

 $X(t) = 2Tsinc(2fT)$

$$T=0.5 \rightarrow \Pi(t) = u(t-0.5) - u(t+0.5)$$

CSFT $\{\Pi(t)\} = \text{snc}(t)$

sinc signal sinc(t)

$$x(t) = sinc(\frac{t}{T}) = \frac{sin(\frac{Tt}{T})}{Tt/T}$$

 $x(t) = a pulse signal$

sinc(0) = 1

impulse signal &(t)

$$\delta(t) = \begin{cases} \infty, t=0 \\ 0, \text{ atm} \end{cases} \text{ FT} \{\delta(t)\} = 1$$

impulse train

$$\chi(t) = \sum_{k=-\infty}^{\infty} \delta(t - kT)$$

$$X(t) = \sum_{n=-\infty}^{\infty} \frac{1}{7} \delta(f - nf_0), f_0 = \frac{1}{7}$$

- FT of an impulse train is an impulse train

55B-SC - Single sideband suppressed corrier

DSB-SC - Double Sideband Suppressed Cornicr

-transmits in lower and upper sidebands (LSB/USB) 100 for for formal for

-fo fo

$$x(t) = Am(t)cos(2\pi f.t)$$
 modulates $m(t)$ to lie at fo

644

x(t) carries info of two message signals mi(t), mz(t)

$$x(t) = m_1(t) cos(2\pi fob) + m_2(t) sin(2\pi fob)$$

$$\uparrow \qquad \uparrow$$
in phase term out-of-phase term