Query-driven compaction in LSM-trees

Kaushik Shubham . Agrawal Nishil . Karatsenidis Kostas

Background

Possible Solutions

Smart Iterator

Optimized

High Complexity

Eager Compaction

Slower

Low Complexity

Implementation

Implementation

Filter(files, start, end)

SelectToCompact(files, start, end)

Implementation

Filter(files, start, end)

SelectToCompact(files, start, end)

Compact(files)

Challenges

Challenges

Exploring and Understanding RocksDB

Generating Optimal Workloads

Running Expensive Workloads

Configuration

Intel Core i7-7700HQ CPU @ 2.8GHz x 4

16GB RAM

512GB SSD

4M Inserts
6M Updates
10K Deletes
500 Range Queries
40% Selectivity

4M Inserts
6M Updates
10K Deletes
500 Range Queries
40% Selectivity

10M Inserts0 Updates0 Deletes1000 Range Queries

Conclusion and Future Work

Write Amplification

Space Amplification

Read Amplification

Thank You

Query: (12, 20)

