Rules without Commitment: Reputation and Incentives

Alessandro Dovis U Penn and NBER Rishabh Kirpalani Wisconsin

November 2019 LAEF, UC Santa Barbara

This Paper

- Rules often proposed as solution to time inconsistency problem
 Society can credibly impose rules on policy makers
- In reality substantial *uncertainty* about whether policy makers can resist temptation to deviate
- How to design rules when there is uncertainty about the ability of policy makers to enforce the rule ex-post?

Our Approach

- Rule designer chooses rules (policy recommendation)
 - EU design fin. regulation, gov't chooses central bank's mandate
- *Policy maker* implement policy
 - Single Resolution Board/ Central banker
- Policy maker can be one of two (hidden) types
 - Commitment type: always follows rule
 - Optimizing type: chooses policy sequentially

Reputation = probability policy maker is commitment type

- Private agents make decisions given
 - Announced rule
 - Expectations about whether rule will be followed

Our Approach

- Rule designer chooses rules (policy recommendation)
 - EU design fin. regulation, gov't chooses central bank's mandate
- *Policy maker* implement policy
 - Single Resolution Board/ Central banker
- Policy maker can be one of two (hidden) types
 - Commitment type: always follows rule
 - Optimizing type: chooses policy sequentially

Reputation = probability policy maker is commitment type

- Private agents make decisions given
 - Announced rule
 - Expectations about whether rule will be followed
- Study optimal rule design problem
 - o Provide incentives to private agents and policy makers

More Lenient Rules to Preserve Reputation

- If reputation low: preserve uncertainty over time
 - Most stringent rule that will be followed by optimizing type
 - Rules more lenient than in static setting
 - Uncertainty about policy maker's type beneficial
 - Decreasing returns to reputation
- If reputation high: separation
 - Same as static setting
 - Dynamic losses (uncertainty beneficial) but static benefits

Role for Opaque Rules

- When policy maker's type known:
 - Ability to monitor policy makers supports better outcomes
 - o Atkeson-Chari-Kehoe (2007) and Piguillem-Schneider (2017)
- When policy maker's type uncertain and reputation high: Opaque rules optimal
 - Want rules hard to monitor (hard to detect deviation)
 - Complicated rules contingent on irrelevant contingencies

Preserve uncertainty w/out static losses associated w/ leniency

Environment

- t = 0, 1, ..., T
- Rule designer
- Private agents
- Policy maker
 - Commitment type
 - Optimizing type
- \bullet Common prior of commitment type is ρ (reputation)

Timing

- Rule designer announces a rule
 - $\circ \ \ A \ rule \ is \ a \ policy \ recommendation \ \pi_r \in [\underline{\pi}, \overline{\pi}]$
- Private agents take their action $x = \phi(\mathbb{E}\pi)$
- Policy maker chooses policy π
 - Commitment type always follows recommendation: $\pi = \pi_r$
 - $\circ~$ Optimizing type chooses its policy sequentially : $\pi \in [\underline{\pi}, \overline{\pi}]$

• Social welfare function: $w(x, \pi)$

Timing

- Rule designer announces a rule
 - A rule is a policy recommendation $\pi_r \in [\underline{\pi}, \overline{\pi}]$
- Private agents take their action $x = \phi(\mathbb{E}\pi), \phi' < 0$
- Policy maker chooses policy π
 - Commitment type always follows recommendation: $\pi = \pi_r$
 - Optimizing type chooses its policy sequentially : $\pi \in [\underline{\pi}, \overline{\pi}]$
- Social welfare function: $w(x, \pi), w_x > 0, w_{x\pi} < 0$
- $\pi < \pi' \iff \pi$ more stringent than π'

Time Inconsistency

• Let $(x_{ramsey}, \pi_{ramsey})$ be the Ramsey outcome:

$$(x_{\texttt{ramsey}}, \pi_{\texttt{ramsey}}) = \arg\max_{x, \pi} w\left(x, \pi\right) \quad \text{subject to} \quad x = \varphi\left(\pi\right)$$

- Normalize $\pi_{ramsey} = \underline{\pi}$
- Let $\pi^*(x)$ be best response to x

$$\pi^*\left(x\right) = \arg\max_{\pi} w\left(x, \pi\right)$$

• Assume that the Ramsey policy is not time-consistent:

$$\pi_{\text{ramsey}} = \underline{\pi} < \pi^* \left(x_{\text{ramsey}} \right)$$

Examples

- Barro-Gordon (Barro-Gordon)
 - \circ x: wage inflation set by unions
 - \circ π : inflation rate
- Bank-Bailout a la Kareken-Wallace (Bailout
 - \circ x: bankers' effort
 - \circ π : bailout to lenders
- Capital taxation ...

Statically Optimal Rule

The optimal rule solves

$$W_{0}\left(\rho\right)=\max_{\pi_{c},\pi_{o},\mathbf{x}}\rho w\left(\mathbf{x},\pi_{c}\right)+\left(1-\rho\right)w\left(\mathbf{x},\pi_{o}\right)$$

subject to

$$\begin{split} x &= \varphi \left(\rho \pi_c + \left(1 - \rho \right) \pi_o \right) \\ \pi_o &= \pi^* \left(x \right) \end{split}$$

Statically Optimal Rule

The optimal rule solves

$$W_{0}\left(\rho\right) = \max_{\pi_{c}, \pi_{o}, \mathbf{x}} \rho w\left(\mathbf{x}, \pi_{c}\right) + \left(1 - \rho\right) w\left(\mathbf{x}, \pi_{o}\right)$$

subject to

$$\begin{split} \mathbf{x} &= \varphi \left(\rho \pi_{c} + \left(1 - \rho \right) \pi_{o} \right) \\ \pi_{o} &= \pi^{*} \left(\mathbf{x} \right) \end{split}$$

- Solution: $(\pi_0(\rho), x_0(\rho))$
- Assume that $\pi_0(\rho) = \underline{\pi}$ (holds in our examples)
- Value for the optimizing type:

$$V_{0}\left(\rho\right)=w\left(x_{0}\left(\rho\right)\text{, }\pi^{*}\left(x_{0}\left(\rho\right)\right)\right).$$

Uncertainty Beneficial

Sufficient condition: $W_0(\rho)$ is concave

When is Uncertainty Beneficial?

Sufficient conditions for $W_0(\rho)$ to be concave

- $w(x, \pi)$ jointly concave
- $w_{\pi}(x,\pi)$ is convex
- φ is concave
- $1 > \pi_{x}^{*}(x) \Phi'(\pi) > A$
- $\pi_c(\rho) = \underline{\pi}$

Satisfied by a large class of environments including both examples

Intuition

- There are decreasing returns to reputation
 - Reputation is more valuable when there is less of it
 - \circ Increase in reputation increases x more when reputation in low

Intuition

- There are decreasing returns to reputation
 - Reputation is more valuable when there is less of it
 - \circ Increase in reputation increases x more when reputation in low
- Recall $x = \phi \left(\rho \underline{\pi} + (1 \rho) \pi^*(x)\right)$
 - $\circ~$ An increase in ρ increases x through a direct and indirect channel
- x is concave if
 - φ is concave
 - $\circ \pi^*$ is convex (follows from $w_{\pi}(x,\pi)$ convex)
- Concavity of w and $x(\rho) \Rightarrow w(x, \underline{\pi})$ and $w(x, \pi^*(x))$ are concave
- Show $W_0(\rho) = \rho w(x, \underline{\pi}) + (1 \rho)w(x, \pi^*(x))$ concave

Dynamically Optimal Rule (Twice Repeated)

The optimal rule solves

$$W(\rho) = \max_{\mathbf{x}, \pi_{c}, \pi_{o}} \rho \left[w(\mathbf{x}, \pi_{c}) + \beta W_{0}(\rho_{c}') \right] + (1 - \rho) \left[w(\mathbf{x}, \pi_{o}) + \beta W_{0}(\rho_{o}') \right]$$

subject to

$$\boldsymbol{x} = \boldsymbol{\varphi} \left(\rho \boldsymbol{\pi}_c + \left(1 - \boldsymbol{\rho} \right) \boldsymbol{\pi}_o \right)$$
 ,

the incentive compatibility constraint for the optimizing type,

$$w\left(x,\pi_{c}\right)+\beta_{o}V_{0}\left(\rho_{o}'\right)\geqslant w\left(x,\pi^{*}(x)\right)+\beta_{o}V_{0}\left(0\right)$$
 ,

and the law of motion for beliefs,

$$\rho_c' = \begin{cases} 1 & \mathrm{if} \; \pi_o \neq \pi_c \\ \rho & \mathrm{o/w} \end{cases} \text{,} \quad \rho_o' = \begin{cases} 0 & \mathrm{if} \; \pi_o \neq \pi_c \\ \rho & \mathrm{o/w} \end{cases} \text{.}$$

Optimizing Type Never Randomizes

- Suppose optimizing type mixes between rule and best response
- This is welfare dominated by case in which it follows rule for sure
- Two reasons
 - Introduces volatility in posterior without affecting its mean
 - Lowers continuation value since uncertainty beneficial
 - Tightens the optimizing type's incentive constraint
 - Since w is concave in π and V_0 is concave in ρ

Main Result

Suppose β_o is small enough

 \bullet Ramsey outcome is not IC for the optimizing type for all ρ

Proposition

Under conditions for which uncertainty is beneficial:

- For ρ close to 1, it is optimal to separate, $\pi_c \neq \pi_o = \pi^*(x)$ • Same outcome as in static setting, $\pi_c = \underline{\pi}$
- For ρ close to 0, it is optimal to pool
 - $\circ~$ Rule is less stringent than in static setting, $\pi_c = \pi_o > \underline{\pi}$
 - Most stringent rule consistent with IC for optimizing type

Pooling vs. Separation

- If there is separation:
 - First period outcome solves static problem:
 - $\pi_{c}=\pi_{0}=\underline{\pi}$ and $\pi_{o}=\pi^{*}\left(x_{0}\right)$
 - Expected continuation value is $\rho W_0(1) + (1-\rho) W_0(0)$
- If there is pooling:
 - $\circ \pi_o = \pi_c = \pi_{ico}(\rho)$ most stringent rule consistent with IC for optimizing type

$$w\left(x_{\text{ico}},\pi_{\text{ico}}\right) + \beta_{o}V_{0}\left(\rho\right) = w\left(x_{\text{ico}},\pi^{*}\left(x_{\text{ico}}\right)\right) + \beta_{o}V_{0}\left(0\right)$$

where
$$x_{ico}(\rho) = \phi(\pi_{ico}(\rho))$$

 \circ Expected continuation value is $W_0(\rho)$

Pooling vs. Separation

Define

• Dynamic benefits of pooling

$$\Delta\Omega\left(\rho\right)\equiv W_{0}\left(\rho\right)-\left[\rho W_{0}\left(1\right)+\left(1-\rho\right)W_{0}\left(0\right)\right]$$

- Always positive since uncertainty is beneficial
- Static benefits of pooling

$$\Delta\omega\left(\rho\right)\equiv w\left(\mathbf{x}_{\text{ico}}\left(\rho\right),\mathbf{\pi}_{\text{ico}}\left(\rho\right)\right)-W_{0}\left(\rho\right)$$

- + Optimizing type follows tougher policy (closer to Ramsey)
- — Commitment type follows lenient policy (further from Ramsey)

Optimal to pool iff

$$\Delta\omega\left(\rho\right)+\beta\Delta\Omega\left(\rho\right)\geqslant0$$

Dynamic Benefits

•
$$\Delta\Omega(\rho) \geqslant 0$$
 with $\Delta\Omega(0) = \Delta\Omega(1) = 0$

Static Benefits

•
$$\Delta \omega (0) = 0$$
 and $\Delta \omega (1) < 0$

Static Benefits

• $\Delta \omega (\rho) > 0$ for ρ close to zero

Low Reputation ⇒ Lenient Rule with Pooling

$High\ Reputation \Rightarrow Stringent\ Rule\ with\ Separation$

In Barro-Gordon model: Cutoff Rule

Optimal Dynamic Rule

Result in the Context of our Two Examples

In the Bailout example

- $\pi_{ramsey} = \pi_0 = \underline{\pi} = 0$
 - Statically optimal rule is a strict no-bailout policy
 - o Incentivizes maximal effort (minimal risk taking)
- Proposition 1: if reputation low allow for partial bailouts
 - On path-bailouts necessary to discipline future risk taking by banks

In the Barro-Gordon example

- $\pi_{\text{ramsey}} = \pi_0 = \underline{\pi} = 0$
 - Statically optimal rule is strict zero inflation target
- Proposition 1: if reputation low relaxed target is optimal

Extensions

- Insights from two period model extend to any finite horizon
 - Including the limit as $T \to \infty$ picture
- We also consider an extension in which the rules are "sticky"
 - \circ Rule can be revised with probability $\alpha < 1$
 - \circ As $T \to \infty$ main results unchanged
- Optimal rules when rule designer can commit
 - Rule designer also suffers from time inconsistency problem
 - There exists an interval of intermediate priors such that
 - Rule designer in period t wants to impose stringent rules in t+1
 - Rule designer in period t + 1 chooses lenient rules

The Benefits of Opaque Rules

Role for Opaque Rules

When policy maker's type known:

- Transparent rules optimal because enable better monitoring
 - o Provide incentives to policy-makers to not deviate
 - Avoid punishment on path

When policy makers's type uncertain:

- Opaque rules optimal because they help preserve uncertainty
 - Want rules that are hard to monitor (hard to detect deviation)
 - Complicated rules that have irrelevant contingencies

Optimal Degree of Monitoring

- Suppose private agents cannot observe π
- Observe a signal $\tilde{\pi} = \pi + \epsilon$ where $\epsilon \sim N\left(0, \sigma_{\epsilon}^{2}\right)$
- Rule designer chooses σ_{ε}^2 as part of the optimal rule design
 - Rule is transparent if $\sigma_{\varepsilon}^2 = 0$
 - Rule is opaque if $\sigma_{\epsilon}^2 > 0$
- The law of motion for beliefs is

$$\begin{split} \rho'\left(\tilde{\pi},\rho\right) &= \frac{\rho \Pr\left(\tilde{\pi}|\pi_{c}\right)}{\rho \Pr\left(\tilde{\pi}|\pi_{c}\right) + \left(1-\rho\right) \Pr\left(\tilde{\pi}|\pi_{o}\right)} \\ &= \frac{\rho g\left(\tilde{\pi}-\pi_{c}|\sigma_{\epsilon}\right)}{\rho g\left(\tilde{\pi}-\pi_{c}|\sigma_{\epsilon}\right) + \left(1-\rho\right) g\left(\tilde{\pi}-\pi_{o}|\sigma_{\epsilon}\right)} \end{split}$$

Opaque Rules Are Optimal for High Reputation

Proposition

- For ρ close to zero, it is optimal to pool and set σ_ϵ to zero;
- For ρ close to 1, it is optimal to separate and set $\sigma_{\epsilon} > 0$

Opaque Rules Are Optimal for High Reputation

Proposition

- For ρ close to zero, it is optimal to pool and set σ_{ϵ} to zero;
- For ρ close to 1, it is optimal to separate and set $\sigma_{\epsilon}>0$
- Low $\rho \Rightarrow$ optimal to pool:
 - $\circ \ \sigma_{\varepsilon} = 0$ to relax IC for optimizing type
 - Same logic as in ACK
- High $\rho \Rightarrow$ optimal to separate
 - Spse for contradiction $\sigma_{\epsilon} = 0 \Rightarrow \rho' \in \{0, 1\}$ and $\pi_o = \pi^*(x)$
 - Can support same policies by choosing $\sigma_{\epsilon} = \infty \Rightarrow \rho' = \rho$
 - Since $W(\rho) > \rho W(1) + (1 \rho) W(0)$ have an improvement. Contradiction.

Opaque Rules Are Optimal for High Reputation

With opaque rules no trade-off b/w dynamic and static benefits

Optimal Tenure

- Replacing policy maker:
 - \circ Get the static benefits of separation without the dynamic losses
- Equivalent to choosing a perfectly opaque rule with $\sigma_{\epsilon} = \infty$
- \bullet Rule designer's problem as before w/ restriction $\sigma_\epsilon \in \{0,\infty\}$

Proposition

In the Barro-Gordon model, there exists $\rho^{**}<\rho_1^*$ such that:

- For $\rho \leqslant \rho^{**}$ do not terminate and pool
- \bullet For $\rho \geqslant \rho^{**}$ terminate and separate

Random Rules are Optimal for High Reputation

- Allow for randomization in π_c
 - Make rules contingent on irrelevant details

Proposition

In our two examples:

- For ρ close to 0, a deterministic rule is optimal
 - $\circ \ \pi_{c} = \pi_{\text{ico}} \left(\rho \right) \ \textit{with probability one}$
- For ρ close to 1, it is optimal to have stochastic rules.

Random Rules are Optimal for High Reputation, cont.

- Consider ρ close to 1
- Spse optimal to separate and no randomization
- Consider the perturbation

$$\pi_c^{de\nu} = \begin{cases} \pi_c & \mathrm{with \ pr} \ 1 - \epsilon \\ \pi_o & \mathrm{with \ pr} \ \epsilon \end{cases} \Rightarrow \rho' = \begin{cases} \frac{\rho\epsilon}{\rho\epsilon + (1-\rho)} > 0 & \mathrm{if } \ \pi = \pi_o \\ 1 & \mathrm{if } \ \pi = \pi_c \end{cases}$$

with value
$$W^{\text{dev}}(\varepsilon) - W \approx [(1 - \beta) \Delta \omega'(\varepsilon) + \beta \Delta \Omega'(\varepsilon)] \varepsilon$$

- Since $\lim_{\rho \to 1} \lim_{\epsilon \to 0} \Delta\Omega'(\epsilon) \to \infty$ while $|\Delta\omega'(\epsilon)| < M$ \Rightarrow the perturbation is profitable
- Key inputs

$$O W_0' > 0$$

$$O \lim_{n \to 1} \lim_{\epsilon \to 0} \partial \rho' / \partial \epsilon = \infty$$

Conclusion

- Optimal design of rules when uncertain about whether policy maker follows the rule ex-post
- If reputation low optimal to design lenient rules which help preserve uncertainty
- Opaque/complicated rules desirable as they preserve reputation without the static costs of leniency

Example 1: Barro-Gordon

• π : inflation rate

• \tilde{x} : wage inflation set by unions as

$$\tilde{\mathbf{x}} = \mathbf{\phi} \left(\mathbb{E} \mathbf{\pi} \right) = \mathbb{E} \mathbf{\pi}$$

and $x = -\tilde{x}$

• Preferences

$$w(x, \pi) = -\frac{1}{2} \left[(\psi - x - \pi)^2 + \pi^2 \right]$$

with inflation bias $\psi > 0$

Example 2: Bank-Bailout a la Kareken-Wallace

- Private agents: bank, lenders
- Bank:
 - Raise 1 to finance an investment opportunity
 - \circ Promises to repay R but there is limited liability
 - $\circ~$ Chooses effort e, disutility $\nu(e)$ w/ $\nu'>0,$ $\nu''>0$
- Returns from investment are
 - R_H with probability p(e) w/ p' > 0, p'' < 0
 - \circ 0 with probability 1 p(e)
- Social cost of default given by $\psi(1-\pi)$
- Policy maker can avoid defaults w/ transfer to bank/lenders
 - \circ $\pi \in [0, 1]$: recovery rate after a bad realization
 - $\circ~$ Taxation cost associated with transfers $c(\pi),\,c^{\,\prime}\geqslant 0,c^{\,\prime\prime}\geqslant 0$

Example 2: Bank-Bailout a la Kareken-Wallace, cont.

• π : recovery rate

$$\begin{aligned} \bullet & x=e, \\ & \varphi(\mathbb{E}\pi) = \text{arg} \max_e -\nu(e) + p(e)(R_H-R(e)) \\ & \text{subject to} \\ & R(e) = \frac{1-(1-p(e))\mathbb{E}\pi}{p(e)} \end{aligned}$$

• Social welfare function

$$w\left(x,\pi\right)=-v(x)+p(x)R_{H}+(1-p(x))\psi(1-\pi)-c(\pi)$$

Infinite Horizon

Rule Designer's Problem

$$\begin{split} \max_{\mathbf{x}, \pi_{\mathbf{c}}, \pi_{\mathbf{o}}, \sigma_{\epsilon}} & \rho \left[w \left(\mathbf{x}, \pi_{\mathbf{c}} \right) + \beta \int W_{0} \left(\rho' \left(\pi_{\mathbf{c}} + \epsilon, \rho \right) \right) g \left(\epsilon | \sigma_{\epsilon} \right) \mathrm{d} \epsilon \right] \\ & + \left(1 - \rho \right) \left[w \left(\mathbf{x}, \pi_{\mathbf{o}} \right) + \beta \int W_{0} \left(\rho' \left(\pi_{\mathbf{o}} + \epsilon, \rho \right) \right) g \left(\epsilon | \sigma_{\epsilon} \right) \mathrm{d} \epsilon \right] \end{split}$$

subject to

$$x = \phi \left(\rho, \rho \pi_c + (1 - \rho) \pi_o \right),$$

$$\begin{split} & w\left(x,\pi_{o}\right) + \beta_{o} \int V_{0}\left(\rho'\left(\pi_{o} + \varepsilon,\rho\right)\right) g\left(\varepsilon|\sigma_{\varepsilon}\right) d\varepsilon \geqslant \\ & \geqslant w\left(x,\pi\right) + \beta_{o} \int V_{0}\left(\rho'\left(\pi + \varepsilon,\rho\right)\right) g\left(\varepsilon|\sigma_{\varepsilon}\right) d\varepsilon \quad \forall \pi \end{split}$$

and

$$\rho'\left(\tilde{\pi},\rho\right) = \frac{\rho g\left(\tilde{\pi} - \pi_{c}|\sigma_{\epsilon}\right)}{\rho g\left(\tilde{\pi} - \pi_{c}|\sigma_{\epsilon}\right) + \left(1 - \rho\right)g\left(\tilde{\pi} - \pi_{o}|\sigma_{\epsilon}\right)}$$

