retion Penchuelle: Hatistiques X_, X2, --, Xn 7.4 Th= g(X1,X2,---Xn) Un estimateur no Caractéristiques principales d'un estimateurs

To P O converge b(Tn) = E(Tn) -0 = 0 E[Tn-(E(Tn))2] = V(Tn) - b(Tn) * Estimation par intervalle: 0? a? b? P[a<0<b] = 1-2 NV NV de de risque confrance
Soit: X V Soit X2,... Xn n v.a indépendantes et suivants la m loi L(m, v) (L est une la quelconque) 9i n -> + 0: Xn = 1 = 1 Xi ~ N(n, 9m) Dans la réalité n>30 pour appliquer T.C.L. * $\times \cap Y = \emptyset$ → V(dx+BY) = 22V(x)+B2V(Y) $V(\bar{X}_n) = n \nabla^2 = \sqrt[n]{n}$ $Cas1: X \sim \sqrt[n]{N}(m, \nabla)$ le but: Estimation, de la majenne m

Test inconnue · v est connue a = Xn - Ma Stm 11×21---, Xn N N (m, J) b = Xn + M2 5*/17 $X_n = \frac{1}{n} \sum_i X_i \sim \mathcal{N}(m, \overline{Y_n})$ a <m< b - Hat Im < Xnt Ma. In in Théoreme: Soient X1, X2, ---, Xn n v.a indépendantes et suivant loi $N(m, \nabla)$: $R_n = \frac{X_n - m}{S^*/\sqrt{n}} = \frac{X_n - m}{S\sqrt{n}}$ And T(n-1)

na Rn est dite de Shubent an degres de liberte $R_n = \frac{nT}{VL_n}$ arec $T_N N(0,1)$ et $L_n N(0,1)$ $\frac{n}{\sqrt{2}} = \sum_{i} \left(\frac{x_{i}-m}{\sqrt{2}}\right)^{2} \sim N(0,1) \quad \text{d'an'} \quad \frac{n}{\sqrt{2}} \sim x_{(n)}^{2}$ $\frac{de \, \text{but'}}{\sqrt{2}} \in \text{Estimation de } \sqrt{2}$ $\frac{3i \, \text{m connue}}{\sqrt{2}} : \quad T_{n} = \frac{1}{n} \sum_{i=1}^{n} (x_{i}-m)^{2}$ $\frac{d' \, \text{hypothèse de risque symètrique }}{\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}$ P[nt]>ks]= /2 => P[nt] < ks]=1 - /2 intervalle de Confiance:

he valeur prise

ke part valeur prise

ke * si m inconnue: on utilise: $\frac{n}{\sqrt{2}} \sim \chi_{(n-1)}^{2}$ Demo: $\frac{n}{\sqrt{2}} = \sum_{i=1}^{n-1} U_{i}^{2} = R_{n} - L_{n}$ sù $R_{n} \sim \chi_{(n)}^{2}$ et $L_{n} \sim \chi_{(n)}^{2}$ avec plusieurs conditions $P[\frac{n}{\sqrt{2}} < \sqrt{2} < \frac{n}{\sqrt{2}}] = 1 - \lambda$ $S_{n}^{*2} = \frac{n}{n-1} S_{n}^{2}$

Who wa La est dite de this his Test d'hypothèses: * Contrôle de Qualité: Exemple Test unilatéral: - le fait de chercher qu'une seule valeur critique -> Quand l'hypothèse H1 est sous forme H1: m>m+ $m < m^*$ · Un téléviseur doit avoir une durée de vie de: m = 10 500 h

La norme

La norme

L'écart-type

* on prend un échantillon: X1, X2, ..., Xn avec n = 50 Xi: Durée de vie du téléviseur n° i" * on doit calculer: $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ * Le test d'hypothèse est composé de : · La taille de l'échantillon : n=50 · Ho: "m=10500" Conformité • H1: "m < 10500" Non Conformile" • d risque de 1^{ère} espèce. Réalite' · Best une err que consiste fermer la Ho Drai Hs Drai -chaine, de Décision l Ho acceptée Erreur de 2 espèce production Correcte (1-2 si l'échanti est conform Erreur de l'espèce Décision correcte Probabilité * d=0 est irréalisable. * Resolution du problème: d'après T.C.L $X = 1 \geq X_i \sim N(m, \sqrt{m})$

Generated by CamScanner from intsig.com

$$= \mathbb{P}\left[\frac{x-m}{\sqrt{n}} < -\frac{-\sqrt{n}}{\sqrt{n}}\right]$$
 Car $\sqrt{x} = m-r$

$$T(\sqrt{n}) = 1 - d = 0,95 \text{ avec } d = 5\%$$

$$T(1,64) = 0,9495$$
 $T\sqrt{n} \approx 1,645$ H_c rejetées $T(1,65) = 0,9505$

si à trouvé est supérieur, à v* alors le lot est acceptable, conforme. sinon, le lot est non conforme.

Exemple:
$$n = 16$$
 $X_i \sim \mathcal{N}(m, \nabla)$ or ∇ inconnue

$$\frac{\overline{X}_{n}-m}{S^{*}/\sqrt{n}} \sim T_{(n-2)}$$

$$S^* = \left[\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2\right]^{\frac{2}{2}}$$

