FPTAS für das Restricted Shortest Path-Problem

Rasmus Diederichsen Sebastian Höffner

Universität Osnabrück

6. Dezember 2015

Inhalt

- Das Problem
- Exakte Lösung Algorithmus Laufzeit Terminierung Beispiel
- O Das FPTAS

Test für Grenzen von *OPT*Laufzeit von des Tests
Verbesserte Grenzen von *OPT*Algorithmus
Laufzeit des FPTAS

Problemstellung

Gegeben

- azyklischer Graph G = (V, E)
- $(u, v) \in E$ hat Gewicht c und Verzögerung t

Single Source Shortest Path

Berechne vom Startknoten aus alle nach Kosten kürzesten Wege zu allen anderen ▶ Dijkstra

All Pairs Shortest Path

Kürzeste Wege zwischen allen Knotenpaaren ► Floyd

Das Problem

Gegeben

- azyklischer Graph G = (V, E)
- $(u, v) \in E$ hat gewicht c und Verzögerung t

Restricted Shortest Path

Finde nach Kosten kürzesten Weg von a nach b mit Verzögerung $\leq T$. **NP**-schwer.

Algorithmus

Dynamische Programmierung (ähnlich wie Knapsack). Kanten (i,j) mit i < j, da azyklisch.

Algorithmus

$$\begin{split} g_1(c) &= 0, \; \text{Für } c = 0, \dots, \textit{OPT}, \\ g_j(0) &= \infty, \; \text{Für } j = 2, \dots, n, \\ g_j(c) &= \min \left\{ g_j(c-1), \min_{k \mid c_{kj} \leq c} \left\{ g_k(c-c_{kj}) + t_{kj} \right\} \right\} \\ &\quad \text{Für } j = 2, \dots, n; \; c = 1, \dots, \textit{OPT} \end{split}$$

Laufzeit

$$g_1(c) = 0$$
, Für $c = 0, ..., OPT$, $g_j(0) = \infty$, Für $j = 2, ..., n$, $g_j(c) = \min \left\{ g_j(c-1), \min_{k \mid c_{kj} \le c} \left\{ g_k(c-c_{kj}) + t_{kj} \right\} \right\}$ Für $j = 2, ..., n$; $c = 1, ..., OPT$

- $\mathcal{O}(OPT \cdot n \cdot Aufwand pro(c, j))$
 - ▶ Pro (c,j) evtl. alle Vorgänger betrachten
 - $\triangleright \mathcal{O}(n^2OPT) = \mathcal{O}(|E|OPT)$
- Pseudopolynomiell

Terminierung

$$g_1(c) = 0$$
, Für $c = 0, ..., OPT$, $g_j(0) = \infty$, Für $j = 2, ..., n$, $g_j(c) = \min \left\{ g_j(c-1), \min_{k \mid c_{kj} \le c} \left\{ g_k(c-c_{kj}) + t_{kj} \right\} \right\}$ Für $j = 2, ..., n$; $c = 1, ..., OPT$

Man weiß $OPT = \min\{c \mid g_n(c) \leq T\}$

• Setze *OPT*, sobald erstes c mit $g_n(c) \leq T$ gefunden.

Beispiel

Exakte Lösung Beispiel

$j \backslash c$	0	1	2	3	4	5
1	0	0	0	0	0	0
2	∞	∞	0 ∞ ∞ ∞ ∞ ∞ ∞	∞	∞	∞
3	∞	∞	∞	∞	∞	∞
4	∞	∞	∞	∞	∞	∞
5	∞	∞	∞	∞	∞	∞
6	∞	∞	∞	∞	∞	∞

Beispiel

$$g_2(1) = \min \left\{ g_2(0), \min_{k \mid c_{kj} \le c} \left\{ g_k \left(c - c_{kj} \right) + t_{kj} \right\} \right\}$$
 $g_2(1) = \min \left\{ \infty, \min \left\{ g_1 \left(1 - 1 \right) + 1 \right\} \right\}$
 $g_2(1) = 1$

Exakte Lösung Beispiel

j∖c	0	1	2	3	4	5
1	0	0	0	0	0	0
2	∞	1	1	1	1	1
3	∞	∞	3	0 1 3 2 4 ∞	3	3
4	∞	∞	∞	2	2	2
5	∞	∞	∞	4	3	3
6	∞	∞	∞	∞	5	4

Test für Grenzen von OPT

Wir suchen zunächst ein Verfahren, dass untere und obere Schranken für *OPT* findet.

• Wünsch-dir-was: Polynomieller Algorithmus TEST(k), sodass

$$TEST_{magic}(k) = egin{cases} 1 & \text{falls } OPT \geq k \\ 0 & \text{falls } OPT < k \end{cases}$$

- ▶ Binäre Suche auf 0, . . . , *UB*
- ► Leider **NP**-schwer

Test für Grenzen von OPT Laufzeit von des Tests Verbesserte Grenzen von OPT Algorithmus Laufzeit des FPTAS

Das FPTAS

Test für Grenzen von OPT

 $TEST_{magic}(k)$ kann nicht existieren, also schwächer:

Eigenschaften von TEST(k)

$$TEST(k) = egin{cases} 1 & ext{falls } OPT \geq k \ 0 & ext{falls } OPT < k(1+\epsilon) \end{cases}$$

Test für Grenzen von OPT

 $TEST_{magic}(k)$ kann nicht existieren, also schwächer:

TEST(k)

- ullet Skaliere und runde Kantengewichte als $\hat{c}_{ij}=\left|rac{c_{ij}(n-1)}{k\epsilon}
 ight|$
- Wende exakten Algorithmus an, bis $g_n(c) \leq T$ gefunden ist oder $c \geq \frac{n-1}{\epsilon}$.

Test für Grenzen von OPT Laufzeit von des Tests Verbesserte Grenzen von OP Algorithmus Laufzeit des FPTAS

Das FPTAS

Test für Grenzen von OPT

TEST(k) erfüllt seinen Zweck:

$$c < rac{n-1}{\epsilon} o \mathsf{Es} \; \mathsf{gibt} \; \mathsf{Pfad} < k(1+\epsilon)$$

$$\frac{k \le k}{n-1} \frac{n-1}{\epsilon} \le k$$

Durch Einsetzen folgt:

$$\frac{k\epsilon}{n-1}c < k$$

$$\frac{k\epsilon}{n-1}c + k\epsilon < k + k\epsilon$$

$$\frac{k\epsilon}{n-1}c + k\epsilon < k(1+\epsilon)$$

Test für Grenzen von OPT

TEST(k) erfüllt seinen Zweck:

$$c \geq \frac{n-1}{\epsilon} \rightarrow \text{Jeder } T\text{-Pfad hat Länge} \geq k$$

$$c \geq \frac{n-1}{\epsilon}$$
 $c \frac{k\epsilon}{n-1} \geq \frac{k\epsilon}{n-1} \frac{n-1}{\epsilon}$ $c \frac{k\epsilon}{n-1} \geq k$

Test für Grenzen von OPT Laufzeit von des Tests Verbesserte Grenzen von OPT Algorithmus Laufzeit des FPTAS

Das FPTAS

Test für Grenzen von OPT

Test-Algorithmus

```
Setze c \leftarrow 0
 2 Für alle (i,j) \in E:
         Falls c_{ii} > k, entferne (i, j)
        Sonst c_{ii} \leftarrow |c_{ii}(n-1)/k\epsilon|
     Falls c > (n-1)/\epsilon, return true
     Sonst:
         Wende Algorithmus B an und berechne g_i(c) für
             i=2,\ldots,n
         Falls g_n(c) \leq T, return false
         Sonst:
             Setze c \leftarrow c + 1
12
             Goto Zeile 6
```

Laufzeit von des Tests

- Runden: in $\mathcal{O}(\log n)$ durch binäre Suche, falls nach oben beschränkt $\mathcal{O}\left(|E|\log\frac{n-1}{\epsilon}\right)$
- Exakter Algorithmus führt $\leq \frac{n-1}{\epsilon}$ Iterationen durch, $\mathcal{O}(|E|)$ pro Iteration
 - ▶ Insgesamt $\mathcal{O}\left(|E|\log\frac{n-1}{\epsilon} + |E|\frac{n-1}{\epsilon}\right) = \mathcal{O}\left(|E|\frac{n-1}{\epsilon}\right)$

Test für Grenzen von *OPT*Laufzeit von des Tests **Verbesserte Grenzen von** *OPT*Algorithmus
Laufzeit des FPTAS

Das FPTAS

Verbesserte Grenzen von OPT

Wir benötigen obere und untere Schranken $LB \leq OPT \leq UB$.

Lower Bound

- LB = 1
- LB = kürzester Pfad nach Kosten

Test für Grenzen von OPT Laufzeit von des Tests Verbesserte Grenzen von OPT Algorithmus Laufzeit des FPTAS

Das FPTAS

Verbesserte Grenzen von OPT

Wir benötigen obere und untere Schranken $LB \leq OPT \leq UB$.

Upper Bound

- $UB = \sum (n-1)$ längste Kanten
- UB = Kosten schnellster Pfad von 1 nach n.

Algorithmus

Approximationsschema-Algorithmus

```
UB := \sum (n-1) größte Kosten
   IB := 1
    Falls UB \leq 2LB, Goto Zeile 11
     Sonst:
        k := \sqrt{UB \cdot LB}
        Falls TEST(k) == true, LB := k
        Sonst UB := k(1 + \epsilon)
        Goto Zeile 4
11
     Setze c_{ii} \leftarrow c_{ii}(n-1)/LB\epsilon
    Berechne optimale Lösung
```

Das Problem Exakte Lösung Das FPTAS Test für Grenzen von *OPT*Laufzeit von des Tests
Verbesserte Grenzen von *OPT*Algorithmus
Laufzeit des FPTAS

Das FPTAS

Laufzeit des FPTAS

• Wie für TEST kann Abweichung vom OPT nicht größer als $k\epsilon$ sein, hier mit k=LB, die Abweichung ist also $\leq OPT\epsilon$

- Wie für TEST kann Abweichung vom OPT nicht größer als $k\epsilon$ sein, hier mit k=LB, die Abweichung ist also $\leq OPT\epsilon$
- Rundung der Kantenkosten: Laufzeit letzte Anwendung des exkaten Algorithmus' ist $\mathcal{O}\left(|E|OPT\frac{(n-1)}{LB\epsilon}\right)$

- Wie für TEST kann Abweichung vom OPT nicht größer als $k\epsilon$ sein, hier mit k=LB, die Abweichung ist also $\leq OPT\epsilon$
- Rundung der Kantenkosten: Laufzeit letzte Anwendung des exkaten Algorithmus' ist $\mathcal{O}\left(|E|OPT\frac{(n-1)}{LB\epsilon}\right)$
- $OPT \le 2LB$: $\mathcal{O}(|E|2LB\frac{(n-1)}{LB\epsilon}) = \mathcal{O}(|E|2\frac{(n-1)}{\epsilon}) = \mathcal{O}\left(|E|\frac{n-1}{\epsilon}\right)$

- Wie für TEST kann Abweichung vom OPT nicht größer als $k\epsilon$ sein, hier mit k=LB, die Abweichung ist also $\leq OPT\epsilon$
- Rundung der Kantenkosten: Laufzeit letzte Anwendung des exkaten Algorithmus' ist $\mathcal{O}\left(|E|OPT\frac{(n-1)}{LB\epsilon}\right)$
- $OPT \le 2LB$: $\mathcal{O}(|E|2LB\frac{(n-1)}{LB\epsilon}) = \mathcal{O}(|E|2\frac{(n-1)}{\epsilon}) = \mathcal{O}\left(|E|\frac{n-1}{\epsilon}\right)$
- Laut Hassin log log $\frac{\mathit{UB}}{\mathit{LB}}$ Tests, bis $\frac{\mathit{UB}}{\mathit{LB}} \leq 2$ \updelta

- Wie für TEST kann Abweichung vom OPT nicht größer als $k\epsilon$ sein, hier mit k=LB, die Abweichung ist also $\leq OPT\epsilon$
- Rundung der Kantenkosten: Laufzeit letzte Anwendung des exkaten Algorithmus' ist $\mathcal{O}\left(|E|OPT\frac{(n-1)}{LB\epsilon}\right)$
- $OPT \le 2LB$: $\mathcal{O}(|E|2LB\frac{(n-1)}{LB\epsilon}) = \mathcal{O}(|E|2\frac{(n-1)}{\epsilon}) = \mathcal{O}\left(|E|\frac{n-1}{\epsilon}\right)$
- Laut Hassin log log $\frac{\mathit{UB}}{\mathit{LB}}$ Tests, bis $\frac{\mathit{UB}}{\mathit{LB}} \leq 2$ \updelta
- Wurzeln evtl. teuer, es reicht aber log log $\frac{UB}{LB}$ $\stackrel{.}{\circ}$

- Wie für TEST kann Abweichung vom OPT nicht größer als $k\epsilon$ sein, hier mit k=LB, die Abweichung ist also $\leq OPT\epsilon$
- Rundung der Kantenkosten: Laufzeit letzte Anwendung des exkaten Algorithmus' ist $\mathcal{O}\left(|E|OPT\frac{(n-1)}{LB\epsilon}\right)$
- $OPT \le 2LB$: $\mathcal{O}(|E|2LB\frac{(n-1)}{LB\epsilon}) = \mathcal{O}(|E|2\frac{(n-1)}{\epsilon}) = \mathcal{O}\left(|E|\frac{n-1}{\epsilon}\right)$
- Laut Hassin log log $\frac{UB}{LB}$ Tests, bis $\frac{UB}{LB} \leq 2$ \Diamond
- Wurzeln evtl. teuer, es reicht aber log log $\frac{UB}{LB}$ $\overset{}{\circ}$
- Einzelne Aufrufe von TEST: $\mathcal{O}\left(|E|\frac{n-1}{\epsilon}\right)$

- Wie für TEST kann Abweichung vom OPT nicht größer als $k\epsilon$ sein, hier mit k=LB, die Abweichung ist also $\leq OPT\epsilon$
- Rundung der Kantenkosten: Laufzeit letzte Anwendung des exkaten Algorithmus' ist $\mathcal{O}\left(|E|OPT\frac{(n-1)}{LB\epsilon}\right)$
- $OPT \le 2LB$: $\mathcal{O}(|E|2LB\frac{(n-1)}{LB\epsilon}) = \mathcal{O}(|E|2\frac{(n-1)}{\epsilon}) = \mathcal{O}\left(|E|\frac{n-1}{\epsilon}\right)$
- Laut Hassin log log $\frac{\mathit{UB}}{\mathit{LB}}$ Tests, bis $\frac{\mathit{UB}}{\mathit{LB}} \leq 2$ \updelta
- Wurzeln evtl. teuer, es reicht aber $\log \log \frac{UB}{LB}$ \Diamond
- Einzelne Aufrufe von TEST: $\mathcal{O}\left(|E|\frac{n-1}{\epsilon}\right)$
- Insgesamt $\mathcal{O}(\log\log\frac{UB}{LB}\cdot(|E|\frac{n-1}{\epsilon}+\log\log\frac{UB}{LB}))$

Das Problem Exakte Lösung Das FPTAS Test für Grenzen von *OPT* Laufzeit von des Tests Verbesserte Grenzen von *OP*^{*} Algorithmus Laufzeit des FPTAS

Fin.