IP Protocol Stack

Application

Transport

Network

Link

Physical

Application

Transport

Network

Link

Physical

Application Layer

- The applications we run
 - e-mail
 - web browsing
 - instant messaging
 - P2P file sharing
 - multi-user network games
 - video streaming
 - video conferencing
 - Voice over IP
- Runs in hosts

Application architectures

Client-server

- HTTP
- DNS

Peer-to-peer (P2P)

Application

Transport

Network

Link

Physical

Transport layer

 provides for logical communication between applications (processes) running on different hosts

Functions

- Multiplexing/Demultiplexing
- Error Detection
- Reliable Data Transfer
- Flow Control
- Congestion Control
- Connection Management

Transport-layer protocols

User Datagram Protocol (UDP)

- simple extension of IP in network layer
- includes error detection
- segments passed to receiver may be missing or out of order

Transmission Control Protocol (TCP)

- segments passed to receiver reliably and in order
- additional services

Multiplexing/Demultiplexing

Send host transport layer gathers messages from multiple sockets Receive host transport layer delivers segments to correct sockets

Process P

Socket c

Door between application (process) and transport layer

Reliable Transport

Application

Transport

Network

Link

Physical

Network layer

- delivers packets from source to destination over a network
- e.g. Internet Protocol (IP)

Functions

- Encapsulation
- Addressing
- Forwarding
- Routing

IP Addresses

- An IP (Internet Protocol) address is a unique global address for a network interface
- Network interface: connection between host/router and physical link
 - routers typically have many interfaces
 - host typically has one or two interface (e.g. wired/wireless)

Forwarding

Given best path from node C to every other node

Find forwarding table for node C

dest	A	В	C	D	Е	F	G	Н	1	J	K	L
output	L1	L1	-	L2	L2	L3	L4	L3	L3	L4	L4	L4

Routing

Find best path from node A to every other node

Distance Vector Algorithm

- Decentralized
- Iterative computation via message passing between nearest neighbors

Link State Algorithm

- Global
- All nodes have estimate of network topology
- Message flooding

Application

Transport

Network

Link

Physical

Link layer

- handles data transfer from one node to a physically adjacent node
- e.g. 802.11 (WiFi)

Services

- framing
- error detection/correction
- flow control
- media access control (MAC)

The Aloha Protocol

Simple example of a randomized contention protocol.

Each node executes

- If have packet, then transmit.
- If a collision is detected, each node waits a random amount of time before re-transmitting the packet.
 - These nodes are said to be backlogged.

Efficiency of Slotted Aloha

Efficiency:
The fraction
of time slots
with a
successful
transmission

N = # of nodes

For max efficiency, p = 1/N

As N $\rightarrow \infty$, efficiency $\rightarrow 37\%$

Application

Transport

Network

Link

Physical

- Application layer runs applications,
 e.g. email, web browser, messaging
- Transport layer provides for logical communication between applications
- Network layer delivers packets from source to destination over a network
- Link layer handles data transfer from between adjacent nodes
- Physical layer deals with properties of medium (e.g. wired/wireless)