More on Tree Based Methodss

ISLR Chapter 8

April 24, 2017

Ways to improving trees through a multiple trees in some ensemble:

Bagging

Ways to improving trees through a multiple trees in some ensemble:

- Bagging
- Boosting

Ways to improving trees through a multiple trees in some ensemble:

- Bagging
- Boosting
- Random Forests

Ways to improving trees through a multiple trees in some ensemble:

- Bagging
- Boosting
- Random Forests
- ► BART (Bayesian Additive Regression Trees)

Ways to improving trees through a multiple trees in some ensemble:

- Bagging
- Boosting
- Random Forests
- BART (Bayesian Additive Regression Trees)

Combining trees will yield improved prediction accuracy, but with loss of interpretability.

Tree with Random Split of Data

Tree with another Random Split of Data

 Splitting data into random partitions and fitting a tree model on each half may lead to very different predictions (high variability)

- Splitting data into random partitions and fitting a tree model on each half may lead to very different predictions (high variability)
- ► Reduce variability by averaging over multiple training sets!

- Splitting data into random partitions and fitting a tree model on each half may lead to very different predictions (high variability)
- ► Reduce variability by averaging over multiple training sets!
- do not have access to multiple training sets so create them via bootstrap samples (sample of size n with replacement)

- Splitting data into random partitions and fitting a tree model on each half may lead to very different predictions (high variability)
- Reduce variability by averaging over multiple training sets!
- do not have access to multiple training sets so create them via bootstrap samples (sample of size n with replacement)
 - Generate B bootstrap sample of observations from the single training data

- Splitting data into random partitions and fitting a tree model on each half may lead to very different predictions (high variability)
- Reduce variability by averaging over multiple training sets!
- do not have access to multiple training sets so create them via bootstrap samples (sample of size n with replacement)
 - Generate B bootstrap sample of observations from the single training data
 - Calculate predictions for the *b*th sample $\hat{f}^b(x)$

- Splitting data into random partitions and fitting a tree model on each half may lead to very different predictions (high variability)
- Reduce variability by averaging over multiple training sets!
- do not have access to multiple training sets so create them via bootstrap samples (sample of size n with replacement)
 - Generate B bootstrap sample of observations from the single training data
 - Calculate predictions for the *b*th sample $\hat{f}^b(x)$
 - ▶ Bagging (Bootstrap Aggregation) estimate is

$$\hat{f}_{\mathsf{bag}}(x) = \frac{1}{B} \sum \hat{f}^b(x)$$

► Trees are grown deep so little bias (although could prune)

- Splitting data into random partitions and fitting a tree model on each half may lead to very different predictions (high variability)
- Reduce variability by averaging over multiple training sets!
- do not have access to multiple training sets so create them via bootstrap samples (sample of size n with replacement)
 - Generate B bootstrap sample of observations from the single training data
 - Calculate predictions for the *b*th sample $\hat{f}^b(x)$
 - Bagging (Bootstrap Aggregation) estimate is

$$\hat{f}_{\mathsf{bag}}(x) = \frac{1}{B} \sum \hat{f}^b(x)$$

- ► Trees are grown deep so little bias (although could prune)
- ► Reduce variance by averaging many trees across the bootstrap samples

- Splitting data into random partitions and fitting a tree model on each half may lead to very different predictions (high variability)
- Reduce variability by averaging over multiple training sets!
- do not have access to multiple training sets so create them via bootstrap samples (sample of size n with replacement)
 - Generate B bootstrap sample of observations from the single training data
 - Calculate predictions for the *b*th sample $\hat{f}^b(x)$
 - Bagging (Bootstrap Aggregation) estimate is

$$\hat{f}_{\mathsf{bag}}(x) = \frac{1}{B} \sum \hat{f}^b(x)$$

- ► Trees are grown deep so little bias (although could prune)
- ► Reduce variance by averaging many trees across the bootstrap samples

Closely related to Bagging, but attempts to de-correlate the trees used in the average

▶ take B bootstrap samples

- take B bootstrap samples
- Each time a split in a tree is considered, a random sample of m predictors is chosen as split candidates from the set of p predictors.

- take B bootstrap samples
- Each time a split in a tree is considered, a random sample of m predictors is chosen as split candidates from the set of p predictors.
- ▶ a new sample is taken at each split

- ▶ take B bootstrap samples
- Each time a split in a tree is considered, a random sample of m predictors is chosen as split candidates from the set of p predictors.
- ▶ a new sample is taken at each split
- Recommended m around \sqrt{p}

- ▶ take B bootstrap samples
- Each time a split in a tree is considered, a random sample of m predictors is chosen as split candidates from the set of p predictors.
- ▶ a new sample is taken at each split
- Recommended m around \sqrt{p}
- ▶ Random Forests with m = p is Bagging

- ▶ take B bootstrap samples
- Each time a split in a tree is considered, a random sample of m predictors is chosen as split candidates from the set of p predictors.
- ▶ a new sample is taken at each split
- Recommended m around \sqrt{p}
- ▶ Random Forests with m = p is Bagging
- ▶ Predictions are based on average over the bootstrap samples

- ▶ take B bootstrap samples
- Each time a split in a tree is considered, a random sample of m predictors is chosen as split candidates from the set of p predictors.
- ▶ a new sample is taken at each split
- Recommended m around \sqrt{p}
- ▶ Random Forests with m = p is Bagging
- ▶ Predictions are based on average over the bootstrap samples

Bagging Example

```
suppressMessages(library(randomForest))
bag.carseats = randomForest(High ~ . -Sales,
                           data=Carseats, subset = train,
                           mtry=10, importance =TRUE)
# mtry = 10 (the number of predictors)
yhat.bag = predict(bag.carseats,newdata = Carseats.test)
tab = table(yhat.bag, Carseats.test$High)
tab
##
## yhat.bag No Yes
      No 96 16
##
## Yes 20 68
CE.tab["RandomForests", 1] = (tab[1,1] + tab[2,2])/sum(tab)
CE.tab["RandomForests".]
```

```
rf.carseats = randomForest(High ~ . -Sales, data=Carseats,
                            subset =train.
                            mtry=3, importance =TRUE)
yhat.rf= predict(rf.carseats ,newdata =Carseats.test)
tab = table(yhat.rf, Carseats.test$High)
tab
##
## yhat.rf No Yes
## No 99 23
## Yes 17 61
CE.tab["RandomForests", 1] = (tab[1,1] + tab[2,2])/sum(tab)
# (101+63)/200
CE.tab["RandomForests".]
## [1] 0.8
```

► For Regression Trees use the total reduction in Sum of Squares Error due to splits with that variable averaged over all trees

- ► For Regression Trees use the total reduction in Sum of Squares Error due to splits with that variable averaged over all trees
- For Classification Trees use the total reduction in Gini Index due to splits of the that variable averaged over all trees. Gini Index is defined as

$$G = \sum_{k=1}^K \hat{\pi}_{mk} (1 - \hat{\pi}_{mk})$$

where K is the number of classes for region m or use the reduction in deviance

- ► For Regression Trees use the total reduction in Sum of Squares Error due to splits with that variable averaged over all trees
- For Classification Trees use the total reduction in Gini Index due to splits of the that variable averaged over all trees. Gini Index is defined as

$$G = \sum_{k=1}^K \hat{\pi}_{mk} (1 - \hat{\pi}_{mk})$$

where K is the number of classes for region m or use the reduction in deviance

Out of Bag Prediction Error

- ► For Regression Trees use the total reduction in Sum of Squares Error due to splits with that variable averaged over all trees
- For Classification Trees use the total reduction in Gini Index due to splits of the that variable averaged over all trees. Gini Index is defined as

$$G = \sum_{k=1}^K \hat{\pi}_{mk} (1 - \hat{\pi}_{mk})$$

where K is the number of classes for region m or use the reduction in deviance

- Out of Bag Prediction Error
- ▶ May be normalized by dividing by the maximum

Variable Importance Measures in RandomForests

varImpPlot(rf.carseats)

rf.carseats

Algorithm 8.2 Boosting for Regression Trees

- Set f(x) = 0 and r_i = y_i for all i in the training set.
- 2. For b = 1, 2, ..., B, repeat:
 - (a) Fit a tree f^b with d splits (d+1 terminal nodes) to the training data (X, r).
 - (b) Update f by adding in a shrunken version of the new tree:

$$\hat{f}(x) \leftarrow \hat{f}(x) + \lambda \hat{f}^b(x)$$
. (8.10)

(c) Update the residuals,

$$r_i \leftarrow r_i - \lambda \hat{f}^b(x_i)$$
. (8.11)

Output the boosted model,

$$\hat{f}(x) = \sum_{b=1}^{B} \lambda \hat{f}^{b}(x).$$
 (8.12)

► Mean is a sum of B trees

- Mean is a sum of B trees
- ▶ Boosting can over-fit if *B* is too large

- Mean is a sum of B trees
- Boosting can over-fit if B is too large
- ► The number of splits, d, in each tree controls the complexity of the boosted ensemble; d = 1 corresponds to models of stumps

- Mean is a sum of B trees
- ▶ Boosting can over-fit if *B* is too large
- The number of splits, d, in each tree controls the complexity of the boosted ensemble; d=1 corresponds to models of stumps
- ▶ d is the interaction depth; d splits can involve d variables. (default in gbm package is 4)

Boosting

- Mean is a sum of B trees
- ▶ Boosting can over-fit if *B* is too large
- The number of splits, d, in each tree controls the complexity of the boosted ensemble; d=1 corresponds to models of stumps
- ▶ d is the interaction depth; d splits can involve d variables. (default in gbm package is 4)

Boosting Example

```
suppressMessages(library(gbm))
boost.car =gbm(I(as.numeric(High)-1) ~ . -Sales,
               data=Carseats[train ,],
               distribution="bernoulli",
               n.trees =5000, interaction.depth =4)
yhat.boost = ifelse(predict(boost.car,
                      newdata=Carseats.test,
                      n.trees=5000,
                      type="response") > .5, 1, 0)
tab =table(yhat.boost, Carseats.test$High)
tab = table(yhat.boost, Carseats.test$High)
tab
##
## yhat.boost No Yes
##
            0 100 16
            1 16 68
##
```

Variable Importance: Boosting

```
summary(boost.car, plotit=FALSE)
##
                      var rel.inf
## Price
                    Price 27.1860994
## ShelveLoc
                ShelveLoc 20.9558458
## Advertising Advertising 14.3652543
## Age
                      Age 13.0972300
                CompPrice 8.6307712
## CompPrice
## Income
                   Income 6.6391956
## Population Population 6.1235720
## Education Education 1.6769694
## Urban
                    Urban 0.8472994
## US
                       US 0.4777628
```

Variable Importance: summary(boost.car)

Gaussian Model: Single Tree model

$$Y = g(x, T, M) + \epsilon$$

Where T is a tree and $M = (\mu_1, \dots \mu_b)^T$ is the vector of means at the terminal nodes of the tree given by T

Gaussian Model: Single Tree model

$$Y = g(x, T, M) + \epsilon$$

Where T is a tree and $M = (\mu_1, \dots \mu_b)^T$ is the vector of means at the terminal nodes of the tree given by T

BART represents the mean function as

$$Y = \sum_{j} g(x, T_{j}, M_{j}) + \epsilon$$

as a sum of trees.

Gaussian Model: Single Tree model

$$Y = g(x, T, M) + \epsilon$$

Where T is a tree and $M = (\mu_1, \dots \mu_b)^T$ is the vector of means at the terminal nodes of the tree given by T

BART represents the mean function as

$$Y = \sum_{j} g(x, T_{j}, M_{j}) + \epsilon$$

as a sum of trees.

Priors control the complexity of each tree; back-fitting as in boosting.

Gaussian Model: Single Tree model

$$Y = g(x, T, M) + \epsilon$$

Where T is a tree and $M = (\mu_1, \dots \mu_b)^T$ is the vector of means at the terminal nodes of the tree given by T

BART represents the mean function as

$$Y = \sum_{j} g(x, T_{j}, M_{j}) + \epsilon$$

as a sum of trees.

Priors control the complexity of each tree; back-fitting as in boosting.

```
library(BayesTree)
## Error in library(BayesTree): there is no package
called 'BayesTree'
set.seed(42)
bart.carseats = bart(x.train=Carseats[train, -c(1,12)],
                   v.train=Carseats$High[train],
                   x.test=Carseats[-train,-c(1,12)],
                   verbose=FALSE )
## Error in eval(expr, envir, enclos): could not
find function "bart"
pihat.bart = apply(pnorm(bart.carseats$yhat.test), 2, mean)
## Error in pnorm(bart.carseats$yhat.test): object
'bart.carseats' not found
```

Uncertainty in Mean Function

```
plot(bart.carseats)
## Error in plot(bart.carseats): object
'bart.carseats' not found
```

Partial Dependendence (computationally intensive!)

BartMachine

```
suppressMessages(library(bartMachine))
set.seed(42)
bart.carseats = bartMachine(X=Carseats[train,-c(1,12)],
                            y=Carseats$High[train],
                            verb=FALSE, serialize=TRUE)
## serializing in order to be saved for future R sessions.
yhat.bart = predict(bart.carseats,
                    Carseats.test[, -c(1,12)],
                    type="class")
table(vhat.bart, Carseats.test$High)
##
## yhat.bart No Yes
##
       No 103 20
   Yes 13 64
##
                                    4□ > 4□ > 4 = > 4 = > = 900
```

Variable Importance

```
## Error in library(bartMachine): there is no
package called 'bartMachine'
```

```
investigate_var_importance(bart.carseats)

## Error in eval(expr, envir, enclos): could not
find function "investigate_var_importance"
```

GLMs and Bayesian Variable Selection

```
set.seed(42); library(BAS)
bas.carseats = bas.glm(High ~ . - Sales, data=Carseats,
                       subset=train, family=binomial(),
                       method="MCMC", n.models=10000,
                       betaprior=bic.prior(n=200))
yhat = predict(bas.carseats, newdata=Carseats[-train,])
tab = table(ifelse(yhat$fit > .5, 1, 0), Carseats.test$High
CE.tab["BMA", 1] = (tab[1,1] + tab[2,2])/sum(tab)
CE.tab["BMA",]
## [1] 0.905
\#(107 + 74)/200
```

LASSO Variable Selection

```
set.seed(42); library(glmnet)
## Loading required package: Matrix
## Loading required package: foreach
## Loaded glmnet 2.0-5
glmnet.carseats = cv.glmnet(
  x=model.matrix(High ~ . - Sales, data=Carseats[train,]),
  y=(as.numeric(Carseats$High[train]) - 1), family="binomia"
yhat = predict(glmnet.carseats,
               newx=model.matrix(High ~ . - Sales, data=Car
tab = table(ifelse(yhat > .0, 1, 0), Carseats.test$High)
CE.tab["LASSO", 1] = (tab[1,1] + tab[2,2])/sum(tab)
CE.tab["LASSO",]
## [1] 0.89
```

▶ Trees are simple to understand, but have high variability

- ▶ Trees are simple to understand, but have high variability
- ► Bagging (Averaging) reduces variability

- Trees are simple to understand, but have high variability
- Bagging (Averaging) reduces variability
- Random Forests adds additional constraints to average trees that are different (reduced correlation leads to reduction in variance).

- Trees are simple to understand, but have high variability
- Bagging (Averaging) reduces variability
- Random Forests adds additional constraints to average trees that are different (reduced correlation leads to reduction in variance).
- Boosting builds a mean function that uses multiple trees where the growth takes into account the previous trees.
 Smaller trees can be used (larger trees can overfit)

- Trees are simple to understand, but have high variability
- Bagging (Averaging) reduces variability
- Random Forests adds additional constraints to average trees that are different (reduced correlation leads to reduction in variance).
- Boosting builds a mean function that uses multiple trees where the growth takes into account the previous trees.
 Smaller trees can be used (larger trees can overfit)
- ▶ BART is similar to Boosting in that the mean function is a sum of trees, but uses a Bayesian approach to control complexity. Trees can be of different sizes and the number of trees can be large without overfitting

- Trees are simple to understand, but have high variability
- Bagging (Averaging) reduces variability
- Random Forests adds additional constraints to average trees that are different (reduced correlation leads to reduction in variance).
- Boosting builds a mean function that uses multiple trees where the growth takes into account the previous trees.
 Smaller trees can be used (larger trees can overfit)
- ▶ BART is similar to Boosting in that the mean function is a sum of trees, but uses a Bayesian approach to control complexity. Trees can be of different sizes and the number of trees can be large without overfitting
- Plots may suggest that a (generalized) linear model may be appropriate!

- Trees are simple to understand, but have high variability
- Bagging (Averaging) reduces variability
- Random Forests adds additional constraints to average trees that are different (reduced correlation leads to reduction in variance).
- Boosting builds a mean function that uses multiple trees where the growth takes into account the previous trees.
 Smaller trees can be used (larger trees can overfit)
- ▶ BART is similar to Boosting in that the mean function is a sum of trees, but uses a Bayesian approach to control complexity. Trees can be of different sizes and the number of trees can be large without overfitting
- Plots may suggest that a (generalized) linear model may be appropriate!

Interpretability? For which methods can you explain how changes in a predictor change the response?

save(CE.tab, file="OoS.accuracy")