Why, oh why?

Schnute et al. (2007 and 1998) compared the number of software tools and languages currently available for stock assessments with the Babel tower myth and concluded that: "The cosmic plan for **confounding software languages** seems to be working remarkably well among the community of quantitative fishery scientists!"

A brief history of FLR

- Started by FEMS FP5, COMMIT & EFIMAS FP6
- $\bullet\,$ Beta ICES WG Methods 2004
- \bullet FLCore version 1.0 2005

• FLCore version 1.4 The Golden Jackal - 2007

 $\bullet\,$ FLC ore version 2.2 $Swordfish\,$ Polka - 2010

• FLR 2.4 The Duke of Prawns - 2011

Current

 $\bullet~{\rm FLR}~2.5.^*,$ in continuous development

- Main packages are stable
- Keep track of versions you used: local copies, github or packrat

• FLR 2.6 - Black Swan

FLR development

- Collaborative development
- Informal team
- Indirect funding
- Open Source

GNU project (http://gnu.org)

Free software is a matter of liberty, not price

free = free speech

free != free beer

Mission statement

The FLR project provides a **platform for quantitative fisheries science** based on the R statistical language. The guiding principles of FLR are:

• openness - through community involvement and the open source ethos

- **flexibility** through a design that does not constrain the user to a given paradigm
- **extendibility** through the provision of tools that are ready to be personalized and adapted.

Really, what is FLR?

- Extendable toolbox for implementing bioeconomic simulation models of fishery systems
- Tools used by managers (hopefully) as well as scientists
- With many applications including:
 - Fit stock-recruitment relationships,
 - Model fleet dynamics (including economics),
 - -Simulate and evaluate management procedures and HCRs,
 - -More than just stock assessment (VPA, XSA, ICES uptake)

- A software platform for quantitative fisheries science
- A collection of R packages
- A team of devoted developers
- A community of active users

Design principles

- OOP S4
- Classes: elements in system
 - -FLStock, fish stock
 - * FLBRP inputs for BRP calc
- Methods: link objects
- Mid-steepenes learning curve

Packages

a4a - Assessment for All

Long term vision

- Standard methods to apply rapidly to a large number of stocks
- No strong statistical technical background
- Using technical knowledge on the fisheries, stocks and ecosystem

Why

• Demand for abundance and exploitation estimates

- Large investments in collecting information
- Scientific advice for fisheries management.

a4a - Sampled species (PT)

What if we have to assess hundreds of stocks? Estimate what you know, simulate what you don't

a4a Initiative EC JRC

- 1. Develop a4a SA method
- 2. Discussion on massive stock assessment

3. Capacity building (this course) https://fishreg.jrc.ec.europa.eu/web/a4a

a4a SA model

- Moderate data stock (Catch, Survey/CPUE, little bio)
- NL CaA model, R/FLR/ADMB
- Simple syntax

```
> fmodel = separable()
> qmodel = trawl(techcreep=0.03)
> rmodel = beverton(a=s(NAO))
```

a4a MSE

Building an STANDARD MSE

- 1. OM uncertainty in growth, S/R and selectivity
- 2. HCRs based on catch, surveys, assessments
- 3. Assessment models of increasing complexity

4. OE for catch and index

5. IE in F or catch

MSE - The Lego block approach

More information

- FLR Project @ http://flr-project.org
- Source code @ http://github.com/flr/

• a4a Initiative @ https://fishreg.jrc.ec.europa.eu/web,

