

Online Advanced Methods for Cost-Effectiveness Analysis

Presentation 3: Populating decision models: effectiveness evidence 3.5: Meta-analysis: Exploring between-study heterogeneity

Objectives

- Using subgroup analysis and meta-regression to investigate heterogeneity
- Problems with exploring heterogeneity

Subgroup analysis

- Split evidence base into subgroups, according to some relevant factor (binary, categorical or continuous), e.g. high risk vs low risk (patient-level), high quality vs low quality studies (study-level)
- Perform a meta-analysis within each subgroup a subgroup analysis
- Assess evidence within and across subgroups, comparing metaanalysis subgroup results

Example: Amiodarone for Conversion of Atrial Fibrillation (AF)

- 21 randomised or quasi-randomised controlled trials with AF patients
- Amiodarone compared with placebo, digoxin, CCB, or no treatment
- Primary outcome: conversion to sinus rhythm within 4 weeks (binary outcome)
- A priori specified subgroup analysis: mean duration of the current AF episode (<=48 vs > 48 hours)

Source: Letelier et al. (2003), Arch Intern Med; 163: 777-85

Example: Amiodarone for Conversion of AF – forest plot with subgroups study Risk Ratio RR 95%-CI

Source: Letelier et al. (2003),

Arch Intern Med; 163: 777-85

Meta-regression model

$$Y_i = \theta_i + \beta x_i + e_i$$
 $\theta_i \sim N(\theta, \tau^2),$

- Study level covariates may be included in meta-analysis models to explore and adjust for systematic differences between studies
- β is the regression coefficient for the covariate included, x_i is the value of the covariate for the *i*th study
- This is a random effects model with a study level covariate added
- Similar in principle to standard linear regression, but regression is weighted to take into account the different sizes of studies
- Extends naturally to multiple covariates

Example: Primary angioplasty for AMI

- Previous meta-analyses that compare thrombolysis and primary angioplasty (PCI) following acute MI have shown significant clinical benefits from angioplasty in terms of reducing major adverse clinical events
- Thrombolytic treatment remains the default treatment option in many countries (including the UK).
- Possible reasons include additional delay in initiating reperfusion treatment through angioplasty
- Meta-regression to evaluate the relationship between treatment effect and the time delay involving initiation of angioplasty

Source: Asseburg et al. Heart 2007; 93: 1244-1254

Example: Meta-Regression Results

	Alternative time delays				
	30 minutes	60 minutes	90 minutes		
Endpoint	Odds ratio	Odds ratio	Odds ratio		
Death	0.54	0.77	1.15		
	(0.29, 0.92)	(0.44, 1.29)	(0.49, 2.36)		
Non-fatal	0.30	0.39	0.55		
re-infarction	(0.14, 0.59)	(0.21, 0.72)	(0.2,9 1.27)		
Non-fatal	0.47	0.56	0.79		
stroke	(0.05, 0.69)	(0.09, 0.75)	(0.08, 1.43)		

Example: Cost-effectiveness results (ICERs)

Base case: 'AVERAGE' DELAY

Time delay	Treatment	Mean costs	Mean QALYs	ICER
Average trials (54.3 minutes)	Primary PCI	£12,760	7.12	£9,241
	Thrombolytics	£10,080	6.83	NA

Scenario analysis: ALTERNATIVE DELAYS

Time delay	Treatment	Mean costs	Mean QALYs	ICER
30 minutes	Primary PCI	£12,820	7.23	£6,850
	Thrombolytics	£10,080	6.83	NA
60 minutes	Primary PCI	£12,750	7.09	£10,269
	Thrombolytics	£10,080	6.83	NA
90 minutes	Primary PCI	£12,670	6.87	£64,750
	Thrombolytics	£10,080	6.83	NA

Problems with subgroup-analysis / metaregression

- Often too few studies: insufficient data to detect relationships
- Post hoc conclusions, inflation of type I error, low power and spurious findings
- Statistically non-significant relationships should not be equated to absence of true relationships.
- Observational relationships aggregation or ecological bias
- Only subset of trials may have covariate information potentially biasing results.

Summary points

- Subgroup analysis and meta-regression may be used to investigate heterogeneity
- Applying these approaches may present several problems and results should be interpreted with caution