

Content

- Why SuperMUC-NG?
- Specifications & Analysis
- Comparison
- Conclusions

Why SuperMUC-NG?

- Based on Lenovo and manufactured in Germany
- Energy efficiency
- Singular refrigeration: Hot Water to cool the nodes
- Xeon Platinum & Intel Omni-Path
- "Meta-Heuristics for Scheduling in Cluster Federated Env."
 Thesis by Eloi Gabaldon

Specifications & Analysis

Manufactured by Lenovo and located in Garching, Germany.

Processor: Xeon Platinum 8174 24C 3.1GHz

Internal Interconnection: Omni-Path network of 100 Gbit/s

Cooler System: Direct Warm Water Cooling

Total Compute Nodes: 9 Islands, 6.480 Nodes, 311,040 Cores

- Thin Nodes: 8 Islands, 6.336 Nodes, 304.128 Cores
- Fat Nodes: 1 Island, 144 Nodes, 6.912 Cores

Memory (TByte): 719

Nodes

144 Fat nodes

- Single node performance
- Ultra-high reliability
- High memory capacity

6336 Thin nodes

- Inexpensive
- High-speed CPU
- Well-suited for sequential workloads

XEON Platinum

XEON Platinum 8174

- 24C 3.10Ghz
- 33MB Cache DDR4-2666
- 6 Memory Channels
- Scalability s8s 3 QPI-Links
- UPI Links
- PCI Express 3.0

Intel Omni-Path

Intel Omni-Path

- High-performance communication
 - Low latency
 - Low power consumption
 - High throughput
- For small and large scale

Intel OPA Performance

Intel OPA to Enhanced Data Rate (EDR) InfiniBand (IF)
Ohio State University (OSU) OMB osu_latency benchmark

- 8 bytes message
- 11% lower

Intel OPA Performance

Ohio State University (OSU) OMB osu_bw benchmark

- 1MB messages
- Both full wire rate

of 100Gbps

MPI Bandwidth b

Intel OPA Performance

Ohio State University (OSU) OMB osu_mbw_mr benchmark

- 32 MPI rank pairs
- 64% higher

Comparison

- With the first 4 current supercomputers
 - Fugaku, Summit, Sierra, and Sunway TaihuLight
- Based on
 - Cores
 - Rpeak / Rmax
 - Nmax

Comparison - Cores

- Clear difference
- But, it really affects directly the performance?

Comparison - Rpeak

- LINPACK benchmark
- Theoretical peak performance

Comparison - Rmax

- LINPACK benchmark
- Maximal achieved performance

Comparison - Nmax

- Problem size
- To achieve Rmax

Cooling System

- Warm water
- 97% heat removal efficiency
- Aquasar by IBM
- Water 4000 times efficient than air
- The waste heat produced is recycled
- Renewable energy sources

https://www.youtube.com/watch?v=FbGyAXsLzIc

CONCLUSIONS

- Deepen in the Supercomputers' world
- Supercomputer vs Home Computer
- Architectures
- Energy Efficiency
- Cooling systems

Many thanks

Any questions?