Grootte van cellen

eukaryote cellen 2-600 μm

Escherichia coli: 1 - 2 μm

→ Prokaryote cellen over algemeen veel kleiner dan eukaryote cellen, maar er zijn uitzonderingen:

Epulopiscium fishelsoni ~ 75 x 600 μm

Thiomargarita namibiensis ~ 400 – 750 μm

Kleine cel: oppervlakte-volume-ratio hoger

S/V ratio van invloed op b.v. snelheid uitwisseling stoffen (per 'cel volume eenheid')

Grootte van bacteriële cellen

TABLE 2.1 Cell size and volume of some cells of Bacteria, from the largest to the smallest

Organism	Characteristics	Morphology	Size ^a (µm) ³	Cell volume (µm)³	Volumes compared to <i>E. coli</i>
Thiomargarita namibiensis	Sulfur chemolithotroph	Cocci in chains	750	200,000,000	100,000,000×
Epulopiscium fishelsoni ^a	Chemoorganotroph	Rods with tapered ends	80×600	3,000,000	1,500,000×
Beggiatoa species ^a	Sulfur chemolithotroph	Filaments	50 × 160	1,000,000	500,000×
Achromatium oxaliferum	Sulfur chemolithotroph	Cocci	35 × 95	80,000	40,000×
Lyngbya majuscula	Cyanobacterium	Filaments	8×80	40,000	20,000×
Thiovulum majus	Sulfur chemolithotroph	Cocci	18	3,000	1,500×
Staphylothermus marinus ^a	Hyperthermophile	Cocci in irregular clusters	15	1,800	900×
Magnetobacterium bavaricum	Magnetotactic bacterium	Rods	2 × 10	30	15×
Escherichia coli	Chemoorganotroph	Rods	1×2	2	1×
Pelagibacter ubique ^a	Marine chemoorganotroph	Rods	0.2×0.5	0.014	0.007
Ultra-small bacteria	Uncultured, from groundwater	Variable	<0.2	0.009	0.0049
Mycoplasma pneumoniae	Pathogenic bacterium	Pleomorphic ^b	0.2	0.005	0.0025

^aWhere only one number is given, this is the diameter of spherical cells. The values given are for the largest cell size observed in each species. For example, for T. namibiensis, an average cell is only about 200 μm in diameter. But on occasion, giant cells of 750 µm are observed. Likewise, an average cell of S. marinus is about 1 µm in diameter. The species of Beggiatoa here is unclear and E. fishelsoni, M. bavaricum, and P. ubique are not formally recognized names in taxonomy.

bMycoplasma is a bacterium that lacks a cell wall and can thus take on many shapes (pleomorphic means "many shapes").

Source: Data obtained from Schulz, H.N., and B.B. Jørgensen. 2001. Annu. Rev. Microbiol. 55: 105-137, and Luef, B., et al. 2015. Nature Communications. doi:10.1038/ncomms7372.

^{© 2018} Pearson Education, Inc.

Grootte van (micro-)organismen

http://learn.genetics.utah.edu/content/cells/scale/

Microscoop: belangrijke parameters

Vergroting

Grootte beeld t.o.v. ware grootte

ons oog kan 0,05 mm nog net waarnemen

Resolutie

Mogelijkheid om dicht bij elkaar gelegen objecten van elkaar te onderscheiden (zichtbare afstand tussen 2 punten)

Contrast

- Hoe goed is iets (b.v. een organel) zichtbaar t.o.v. de achtergrond
- Verschil intensiteit tussen object en achtergrond/ ander object

Resolutie

 $d = 0.5 \lambda / NA$

(Formule hoef je je niet te onthouden. Wel weten dat de resolutie hoger wordt als de golflengte kleiner wordt)

Hoe kleiner d, hoe hoger de resolutie

 λ = golflengte van het licht (ondergrens zichtbaar licht ~ 390 nm)

NA = numerieke apertuur van de lens (onder welke uiterste hoeken licht opgevangen wordt, maximale NA olie lens = 1,5)

Theoretische limiet voor een licht microscoop: d = (390/(2*1.5)) = 130 nm

Lichtmicroscopie (max. resolutie ca. 200 nm)

Lichtmicroscopie-brightfield microscopie

Met brightfield zijn alleen micro-organismen met pigment te zien.

Bacteriën zonder pigment zijn niet/moeilijk te zien!

Nauwelijks contrast

Lichtmicroscopie – contrast verhogen

- kleuringen (b.v. Gram-kleuring, zie volgende les en figuur 1.23)
- fase contrast microscopie
- dark-field microscopie
- fluorescentie microscopie

Lichtmicroscopie – 3D plaatjes

Differential Interference Contrast (DIC)
microscopy (=Nomarski) versterking
variaties in dichtheid (3D perspectief)

- Confocal Scanning Laser Microscopy (CSLM)
 - Belichting fluorescente moleculen in een vlak van 1 μm, rest niet in focus
 - Computer -> 3D figuren

Elektronenmicroscopie

- Geen licht maar elektronen (→ kortere golflengte dan licht, dus hogere resolutie)
- Glazen lenzen vervangen door elektromagneten
- resolutie 2-0.2 nm (theoretisch)
- TEM of SEM

Transmissie elektronenmicroscopie (TEM)

Alle materie absorbeert electronen en electronen dringen niet ver materiaal in. Daarom:

- vacuum
- zeer dun preparaat (20-60 nm)
- niet geschikt voor levende cellen

Preparaten moeten worden gestabiliseerd en gekleurd (om contrast te verhogen)

Scanning elektronenmicroscopie (SEM)

Ook: elektronen, magnetisch veld, vacuum kolom

Maar: e⁻ straal <u>niet</u> door het preparaat

Straal scant oppervlak van een sample

- → vaak gecoat met metaal (goud)
- → niet geschikt voor levende cellen

Excitatie e aan het oppervlak

Detectie + 'vertaling' → 3D beeld

cl

Microscopie – wat wel/niet leren

Je hoeft de verschillende vormen van microscopie niet in detail uit te kunnen leggen. Wel moet je:

- weten voor welke monsters ze wel/niet geschikt zijn (en waarom)
- aan een plaatje kunnen zien welk vorm van microscopie gebruikt is
- theoretische resolutie van licht- en elektronenmicroscopie weten

Oefening Microscopie

Op Blackboard staat een kruiswoordpuzzel over microscopie (vanaf 18 februari)

Morfologie

Streptokokken: ketens

Diplokokken: two okaki

Diplokokken: twee kokken

Staphylokokken: 'druiventrosjes'

Morfologie

zegt eigenlijk heel weinig over een cel

Prokatyote cel

Grootte Prokaryoten:

 $0.1 - 1 \mu m$: mycoplasmas

1 – 10 μm: bacteriën

Figuur uit Campbell Biology, 10th edition

Fosfolipide bilaag

Vloeibaar mozaïek model

© 2018 Pearson Education, Inc.

Archaea - lipiden

Archaea - membranen

Lipide monolagen kunnen goed tegen extreem hoge temperaturen Mono-bilaag combinaties ook mogelijk

Functies cytoplasmatisch membraan

(a) Permeability barrier:

Prevents leakage and functions as a gateway for transport of nutrients into, and wastes out of, the cell

(b) Protein anchor:

Site of proteins that participate in transport, bioenergetics, and chemotaxis

(c) Energy conservation:

Site of generation and dissipation of the proton motive force

Diffusie

Door intrinsieke eigenschap moleculen (thermische beweging)

- → Gaat naar evenwicht = gelijkmatige verdeling
- → Spontaan proces
- → Richting: van <u>hoge</u> naar <u>lage</u> concentratie

Passief transport – gefaciliteerde diffusie

Gefaciliteerde diffusie: passief transport via eiwitten (kost geen energie)

Transport wordt versneld, maar gaat altijd van hoge naar lage conc.

Actief transport

Beweging tegen een concentration gradient in

(ionen: tegen een electrochemische gradient in)

Energie nodig:

- Primair actief transport → ATP hydrolysis
- Secundair actief transport → proton motive force

Proton motive force

Protonen gradiënt over het membraan

Buiten cel: positief, zuur

Binnen cel: negatief, basisch

verschil in boding } will protonon weer noon binnen duquen

= proton bewegende kracht

= proton motive force

Simpel transport

Gedreven door de pmf (→ secundair transport)

Sodium-proton antiporter

Lac permease (a symporter)

Antiport of symport

ABC transporter

ATP Binding Cassette

ABC transporter

Groepstranslocatie

b.v. het **fosfotransferase** systeem

Transportsystemen - overzicht

Alle figuren in deze PowerPoint zijn eigen werk of afkomstig uit Brock Biologiy of Microorganisms (16th edition, Pearson) tenzij anders vermeld.