Fiche d'exercices n° 3

1 Formes linéaires et espace dual

Ex 1.1 Dans \mathbb{R}^2 , on considère la base $v_1 = \binom{2}{1}$, $v_2 = \binom{5}{3}$. Calculer la base duale.

Ex 1.2 Donner une base de l'espace des matrices $M_2(\mathbb{R})$ et sa duale.

Ex 1.3 On considère l'espace vectoriel des polynômes réels $E = \mathbb{R}_2[X]$. On définit trois fonctions f_0, f_1, f_2 de E vers \mathbb{R} par $f_i(P) = P(i)$ pour tout P dans E.

- 1. Montrer que les f_i sont des applications linéaires.
- 2. Montrer que $\{f_0, f_1, f_2\}$ est une base de E^* .
- 3. Trouver la base préduale $\{e_0, e_1, e_2\}$ de E, c'est-à-dire la base telle que $e_i^* = f_i, i = 0, 1, 2$.

Ex 1.4 Si H est un sous-espace vectoriel d'un espace vectoriel E, on pose $H^{\perp} := \{ \varphi \in E^* \mid \varphi_{|H} = 0 \}$. Soient F et G deux sous-espaces d'un espace vectoriel E. Montrer que :

- 1. $F \subset G \Rightarrow G^{\perp} \subset F^{\perp}$,
- 2. $(F+G)^{\perp} = F^{\perp} \cap G^{\perp}$
- 3. $(F \cap G)^{\perp} = F^{\perp} + G^{\perp}$,
- 4. $E = F \oplus G \Rightarrow E^* = F^{\perp} \oplus G^{\perp}$.

Ex 1.5 Calcul du dual de $M_n(\mathbb{C})$.

- 1. Soit $A \in M_n(\mathbb{C})$. Montrer que l'application $\varphi_A : M_n(\mathbb{C}) \to \mathbb{C}, M \mapsto \operatorname{tr}(AM)$ est un élément de $M_n(\mathbb{C})^*$.
- 2. Montrer alors que l'application $\varphi: M_n(\mathbb{C}) \to M_n(\mathbb{C})^*, A \mapsto \varphi_A$ est linéaire et injective.
- 3. En déduire que tout élément de $M_n(\mathbb{C})^*$ s'écrit φ_A pour un unique $A \in M_n(\mathbb{C})$.

2 Formes bilinéaires

Ex 2.1 Soit E un **K**-espace vectoriel ($\mathbf{K} = \mathbb{R}$ ou \mathbb{C}). On note $\mathcal{S}_2(E)$ (resp. $\mathcal{A}_2(E)$) l'espace des formes bilinéaires symétriques (resp. antisymétriques) de E. Montrer que :

$$\mathcal{L}_2(E) = \mathcal{S}_2(E) \oplus \mathcal{A}_2(E).$$

Ex 2.2 Dans chacun des exemples suivants, montrer que φ est un produit scalaire sur E.

- 1. $E = \mathbb{R}^n$, $n \geqslant 2$ et $\varphi(x,y) = \sum_{i=1}^n x_i y_i$
- 2. $E = M_n(\mathbb{R}), n \geqslant 2 \text{ et } \varphi(A, B) = \operatorname{tr}({}^t AB),$
- 3. $E = \mathbb{R}_n[X], \ n \geqslant 2$ et $\varphi(P,Q) = \int_0^1 P(t)Q(t)dt$,
- 4. $E = \ell^2(\mathbb{N}) = \{ u = (u_n)_n \in \mathbb{R}^{\mathbb{N}} \mid \sum_{n \ge 0} u_n^2 < +\infty \} \text{ et } \varphi(u, v) = \sum_{n=0}^{\infty} u_n v_n.$

[Dans le 4., commencer par montrer que φ est bien définie.]

Ex 2.3 Soient A et B deux matrices de $M_n(\mathbb{R})$, on pose

$$\varphi(A, B) = \operatorname{tr}(AB).$$

1. Si $A = ((a_{ij}))_{1 \leq i,j \leq n}$ et $B = ((b_{ij}))_{1 \leq i,j \leq n}$, montrer que :

$$\operatorname{tr}(AB) = \sum_{1 \leqslant i, j \leqslant n} a_{ij} b_{ji}.$$

- 2. La forme φ est-elle bilinéaire? symétrique?
- 3. Supposons à présent, A symétrique et B antisymétrique. Montrer alors :
 - $-\varphi(A,A)\geqslant 0,$
 - $-\varphi(B,B)\leqslant 0,$
 - $-\varphi(A,B)=0.$
- 4. La forme φ est-elle dégénérée? Est-elle un produit scalaire?
- 5. On note S_n , resp. AS_n , le s.e.v des matrices symétriques, resp. anti-symétriques. Donner S_n^{\perp} et AS_n^{\perp} .

Ex 2.4 On considère l'application suivante définie sur $\mathbb{R}^3 \times \mathbb{R}^3$:

$$\left((x,y,z),(x',y',z')\right) \mapsto \left(\begin{vmatrix} y & z \\ y' & z' \end{vmatrix}, \begin{vmatrix} z & x \\ z' & x' \end{vmatrix}, \begin{vmatrix} x & y \\ x' & y' \end{vmatrix} \right) = (x,y,z) \wedge (x',y',z').$$

- 1. Montrer qu'elle est bilinéaire alternée.
- 2. Montrer que si e_1 et e_2 sont deux vecteurs de \mathbb{R}^3 , alors :

$$(e_1 \wedge e_2) \cdot e_1 = 0, \qquad (e_1 \wedge e_2) \cdot e_2 = 0.$$

3. En déduire que, si e_1 et e_2 sont linéairement indépendants,

$$Vect(e_1, e_2) = Vect(e_1 \wedge e_2)^{\perp} = \{x \in \mathbb{R}^3 \mid (e_1 \wedge e_2) \cdot x = 0\}$$

Application. Déterminer une équation du plan engendré par les vecteurs $e_1 = (1, 2, -3)$ et $e_2 = (-2, 0, 1)$.

Ex 2.5 On reprend le produit scalaire 3. de l'exercice 2.2 avec n=2:

$$\forall P, Q \in \mathbb{R}_2[X], \quad \varphi(P,Q) = \int_0^1 P(t)Q(t)dt.$$

Écrire la matrice de φ dans la base canonique de $\mathbb{R}_2[X]$. Faire de même dans la base $\mathcal{B} = (1, X, X^2 - X + \frac{1}{6})$.

Ex 2.6 On considère la forme bilinéaire $b: \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$ dont la matrice dans la base canonique est

$$B = \frac{1}{9} \begin{pmatrix} 2 & -2 & 10 \\ -2 & 11 & 8 \\ 10 & 8 & 5 \end{pmatrix}$$

- 1. La forme b est-elle symétrique? Que vaut $b((1,1,1),(-1,-1,-1)), b((x_1,x_2,x_3),(x_1,x_2,x_3))$?
- 2. Montrer que 1 et -1 sont des valeurs propres pour B. Pouvez-vous trouver une autre valeur propre pour B?
- 3. Montrer que la matrice B est diagonalisable et donner une matrice P telle que $P^{-1}BP$ soit diagonale.
- 4. Vérifier que pour la matrice P trouvée ^tPP est diagonale à coefficients strictement positifs.
- 5. Construire à partir de P une matice P' telle que ${}^tP'P'=I$.
- 6. En déduire une base de \mathbb{R}^3 dans laquelle la matrice de b est diagonale.