

ACCURATE FORMULAS OF HYPER-WIENER INDICES OF SIERPIŃSKI SKELETON NETWORKS

Qin Wang*,‡ and Qingcheng Zeng^{†,§}
*College of Big Data and Software Engineering
Zhejiang Wanli University
315101 Ningbo, P. R. China

†School of Mathematics and Statistics
Ningbo University
315211 Ningbo, P. R. China

‡qinwang@126.com
§2111071003@nbu.edu.cn

Received February 16, 2023 Accepted April 26, 2023 Published July 27, 2023

Abstract

The hyper-Wiener index on a graph is an important topological invariant that is defined as one half of the sum of the distances and square distances between all pairs of vertices of a graph. In this paper, we develop the discrete version of finite pattern to compute the accurate formulas of the hyper-Wiener indices of the Sierpiński skeleton networks.

Keywords: Fractal Network; Hyper-Wiener Index; Discrete Version of Finite Pattern.

[‡]Corresponding author.

1. INTRODUCTION

Many mathematical works are devoted to the complex network in which the small-world model and scale-free model were proposed by Watts and Strogatz, Barabási and Albert, respectively, refer also to Newman's works. 4,4

The small-world effect describes the feature on the average shortest path length among vertices of networks. The average shortest path length is related to the Wiener index (by Wiener in 1947)⁵ that is the most earliest and studied topological index in *Chemical Graph Theory*. Afterward, the hyper-Wiener index⁶ was introduced by Randić in 1993. Suppose G = (V(G), E(G)) is a connected graph, and d(x, y) denotes the minimum length of all paths from x to y on G, then the hyper-Wiener index WW(G) of G is defined by

$$WW(G) = \sum_{x,y \in V(G)} \frac{1}{2} (d(x,y) + (d(x,y))^2).$$

Recently, the hyper-Wiener index has gained plenty of attention. For example, Cash, Klavzar and Petkovsek⁷ investigated three methods for computing the hyper-Wiener index of molecular graphs; Feng, Liu and Xu⁸ discussed the hyper-Wiener index of bicyclic graphs. See Refs. 9 and 10.

The Sierpiński gasket \mathcal{K} is a classical fractal of Hausdorff dimension $\log 3/\log 2$ proposed by Sierpiński in 1915. Suppose

$$\left\{ S_i(x) = \frac{x + a_i}{2} : \mathbb{R}^2 \to \mathbb{R}^2 \right\}_{i=1}^3 \text{ with } a_1 = (0, 0),$$

$$a_2 = (1,0), \ a_3 = (1/2, \sqrt{3}/2)$$

is an *Iterated Function System* (IFS) of planar similitudes. Then the Sierpiński gasket $\mathcal{K} = \mathcal{J}(\mathcal{K})$ is the fixed point of the operator $\mathcal{J}(A) = \bigcup_{i=1}^3 S_i(A)$ for non-empty compact set A. See Fig. 1 for the first two iterations of the Sierpiński gasket.

In 2017, Wang, Yu and Xi¹¹ provided a new technique named **finite pattern** to compute the average geodesic distance on the Sierpiński gasket \mathcal{K} . For self-similar fractals, Xi *et al.*, ^{12–17} Wang

Fig. 1 The initial (solid) triangle $\Delta a_1 a_2 a_3$ and the first two constructions of the Sierpiński gasket.

Fig. 2 The Sierpiński skeleton networks G_0, G_1, G_2 .

et~al., 18,19 Deng et~al., 20,21 Xue et~al., $^{22-26}$ Niu and Li²⁷ and Dai et~al. 28,29 discussed the average geodesic distances by using this technique.

In this paper, we use **discrete version of finite pattern** to obtain the accurate formula of the hyper-Wiener indices of the Sierpiński skeleton networks. For $n \geq 0$, let $G_n = (V_n, E_n)$ be the skeleton of the *n*th construction of the Sierpiński gasket with $V_n \subset \mathbb{R}^2$ and $d_n(x,y)$ the shortest path length between $x,y \in G_n$. For example, we can see the Sierpiński skeleton networks in Fig. 2. Then we have

$$\Gamma_n = \sharp V_n = \frac{3}{2}(1+3^n).$$
 (1.1)

It is worth mentioning that the Sierpiński skeleton networks differ significantly from the Hanoi graphs³⁰ in that the former has three overlapping points. See Fig. 3 for the comparison of Sierpiński skeleton networks and Hanoi graphs.

Using the self-similar structure of Sierpiński skeleton networks and the idea of discrete version of finite pattern, we obtain

Theorem 1. Suppose G_n is the nth Sierpiński skeleton network with $n \geq 0$. Then

 $WW(G_n)$

$$= \frac{1664639}{4353492} 2^{2n} 3^{2n} + \frac{699}{1180} 2^{n} 3^{2n} + \frac{7}{6} 2^{2n} 3^{n}$$
$$+ \frac{1}{3} 3^{2n} + \frac{3}{2} 2^{n} 3^{n} + \frac{3}{4} 2^{2n} + \frac{3593}{4290} 3^{n} + \frac{3}{4} 2^{n}$$
$$- \left(\frac{72717}{527696} + \frac{116067}{8970832} \sqrt{17}\right) \left(\frac{5 + \sqrt{17}}{2}\right)^{n}$$

(a) The Sierpiński skeleton networks

(b) The Hanoi graphs

Fig. 3 The comparison of networks.

$$+ \left(-\frac{72717}{527696} + \frac{116067}{8970832} \sqrt{17} \right) \left(\frac{5 - \sqrt{17}}{2} \right)^{n}$$
$$- \left(\frac{225}{12272} + \frac{14409}{208624} \sqrt{17} \right) (5 + \sqrt{17})^{n}$$
$$+ \left(-\frac{225}{12272} + \frac{14409}{208624} \sqrt{17} \right) (5 - \sqrt{17})^{n}.$$

We organize the paper as follows. In Sec. 2, we will develop the finite pattern¹¹ to the *discrete version* and state Lemmas 1–5. In Sec. 3, we shall give the proofs of Lemmas 1–5 listed in Sec. 2. Finally, we will prove Theorem 1 in Sec. 4.

2. PRELIMINARIES

2.1. Notations

Recall an isomorphism of graphs G and H is a bijection $f: V(G) \to V(H)$ between the vertex sets of G and H such that $u_1 \stackrel{G}{\sim} u_2$ if and only if $f(u_1) \stackrel{H}{\sim} f(u_2)$. We denote

$$G \stackrel{f}{\simeq} H$$
 or $H = f(G)$.

Specifically, suppose $V(G), V(H) \subset \mathbb{R}^2$ and H = f(G) with a translation $f: x \mapsto x + b$ $(b \in \mathbb{R}^2)$, we denote

$$H = G + b$$
.

Furthermore, if H = f(G) and $f(u^*) = v^*$ for some $u^* \in V(G)$, $v^* \in V(H)$, we denote it by $(G, u^*) \stackrel{f}{\simeq} (H, v^*)$ or $(G, u^*) \simeq (H, v^*)$. If $(G, a) \simeq (G, b)$, then we say that G is symmetric with respect to a and b

For each $n \geq 1$ and $j \in \{1, 2, 3\}$, let

$$G^{(n,j)} = S_j(G_{n-1}).$$

Fix $b \in \mathbb{R}^2$, let

$$H_n = G_n + b$$
 and $H^{(n,j)} = G^{(n,j)} + b$
 $\forall j \in \{1, 2, 3\}.$

For simplicity of notation, we continue to write $d_n(x,y)$ for the shortest path length between $x,y \in V(H_n)$. See Fig. 4 for the structures of G_2 and H_2 .

We write $\sigma_i^{(0)} = a_i$ for any $i \in \{1, 2, 3\}$. By induction, we let $\sigma_i^{(n)}$ denote $S_i(\sigma_i^{(n-1)})$ and $\sigma_i^{(n,j)}$ denote $S_i(\sigma_i^{(n-1)})$, then we have $\sigma_i^{(n)} = \sigma_i^{(n,i)}$. See Fig. 5 for

Fig. 4 The structures of G_2 and H_2 .

Fig. 5 $\{\sigma_i^{(1)}\}_i$ and $\{\sigma_i^{(2,j)}\}_{i,j}$ in G_1 and G_2 , respectively.

 $\{\sigma_i^{(1)}\}_i$ and $\{\sigma_i^{(2,j)}\}_{i,j}$ in the Sierpiński skeleton networks. Then we have the following *self-similarity*:

$$(G^{n,j}, \sigma_i^{(n,j)}) \simeq (G_{n-1}, \sigma_i^{(n-1)})$$
 for any i and j .
(2.1)

Notice for any $n \geq 0$, the graph G_n is symmetric with respect to $\sigma_i^{(n)}$ and $\sigma_j^{(n)}$ for any distinct $i, j \in \{1, 2, 3\}$, i.e.

$$(G_n, \sigma_i^{(n)}) \simeq (G_n, \sigma_i^{(n)}).$$
 (2.2)

2.2. Discrete Patterns and $r_n^{(k)}, q_n^{(k)}, \alpha_n^{(k)}, \beta_n^{(k)}, \gamma_n^{(k)}$

For abbreviation, we write $x \in G$ to represent $x \in V(G)$. We let

$$r_n^{(k)} = \sum_{x \in G_n} (d_n(x, \sigma_i^{(n)}))^k \quad \forall k \ge 1 \text{ and}$$

 $\forall i \in \{1, 2, 3\},$

independent of the choice of i, and

$$q_n^{(k)} = \sum_{x \in G_n} \min\{d_n(x, \sigma_i^{(n)}), d_n(x, \sigma_{i'}^{(n)})\}\$$

$$\forall k \geq 1 \text{ and } \forall i \neq i' \in \{1, 2, 3\},\$$

independent of the choice of (i, i') with $i \neq i'$. We also write $r_n = r_n^{(1)}, q_n = q_n^{(1)}$.

Inspired by the idea of finite pattern on fractals,¹¹ we define three *discrete* patterns as follows.

Fig. 6 Discrete Pattern I for n = 2.

Fig. 7 Discrete Pattern II for n=2.

As in Fig. 6, suppose $H_n = G_n + \sigma_3^{(n)} = G_n + a_3$. For $x \in G_n, y \in H_n$, we let

$$D_{1}^{(n)}(x,y) = d_{n}(x,\sigma_{3}^{(n)}) + d_{n}(\sigma_{3}^{(n)},y)$$

and

$$\alpha_n^{(k)} = \sum_{x \in G_n, y \in H_n} (D_{\mathrm{I}}^{(n)}(x, y))^k, \quad \forall k \ge 1.$$

As in Fig. 7, suppose $K_n = G_n + 2\sigma_2^{(n)} = G_n + a_2$ (satisfying $V(G_n) \cap V(K_n) = \emptyset$). Denote $\tau_i^{(n)} = \sigma_i^{(n)} + 2\sigma_2^{(n)}$ for any $i \in \{1, 2, 3\}$. For $x \in G_n, y \in K_n$, we let

$$D_{\text{II}}^{(n)}(x,y)$$

$$= \min\{d_n(x,\sigma_2^{(n)}) + d_n(\tau_1^{(n)},y), d_n(x,\sigma_3^{(n)}) + d_n(\tau_3^{(n)},y)\}$$

and

$$\beta_n^{(k)} = \sum_{x \in G_n, y \in K_n} (D_{\text{II}}^{(n)}(x, y))^k, \quad \forall k \ge 1.$$

Fig. 8 Discrete Pattern III for n = 2.

As in Fig. 8, suppose $L_n = G_n + \sigma_2^{(n)}$. For $x \in G_n, y \in L_n$, we let

$$D_{\text{III}}^{(n)}(x,y)$$

$$= \min\{d_n(x,\sigma_2^{(n)}) + d_n(\sigma_2^{(n)},y), d_n(x,\sigma_3^{(n)}) + d_n(\sigma_3^{(n)} + \sigma_2^{(n)},y) + 2^n\}$$

and

$$\gamma_n^{(k)} = \sum_{x \in G_n, y \in L_n} (D_{\text{III}}^{(n)}(x, y))^k, \quad \forall k \ge 1.$$

To shorten notation, we write $\alpha_n = \alpha_n^{(1)}$, $\beta_n = \beta_n^{(1)}$ and $\gamma_n = \gamma_n^{(1)}$.

2.3. Lemmas 1–5

To prove Theorem 1, we need the following Lemmas 1–5.

Lemma 1. For $n \ge 1$, we have recursions

$$r_n = 3r_{n-1} + 3 \cdot 2^{n-1} \cdot 3^{n-1} - 2^{n-1}$$

and

$$r_n^{(2)} = 3r_{n-1}^{(2)} + 7 \cdot 2^{2(n-1)}3^{n-1} + 2^{2(n-1)}.$$

As consequences, for $n \ge 0$, we have

$$r_n = 2^n 3^n + 2^n (2.3)$$

and

$$r_n^{(2)} = \frac{7}{9} 2^{2n} 3^n + 2^{2n} + \frac{2}{9} 3^n.$$
 (2.4)

Lemma 2. For $n \geq 1$, we have recursions

$$q_n = q_{n-1} + \frac{7}{2}2^{n-1}3^{n-1} + \frac{1}{2}2^{n-1}$$

and

$$\begin{split} q_n^{(2)} &= q_{n-1}^{(2)} + \frac{401}{90} 2^{2(n-1)} 3^{n-1} + \frac{3}{2} 2^{2(n-1)} \\ &\quad + \frac{4}{9} 3^{n-1} - \frac{2}{5} 2^{n-1}. \end{split}$$

As consequences, for $n \geq 0$, we have

$$q_n = \frac{7}{10}2^n 3^n + \frac{1}{2}2^n - \frac{1}{5}$$
 (2.5)

and

$$q_n^{(2)} = \frac{401}{990} 2^{2n} 3^n + \frac{2}{9} 3^n + \frac{1}{2} 2^{2n} - \frac{2}{5} 2^n + \frac{3}{11}.$$

Lemma 3. For $n \geq 0$, we have

$$\alpha_n = 3 \cdot 2^n 3^{2n} + 6 \cdot 2^n 3^n + 3 \cdot 2^n \tag{2.6}$$

and

$$\alpha_n^{(2)} = \frac{2}{3}3^n + \frac{2}{3}3^{2n} + 5 \cdot 2^{2n} + \frac{13}{3}2^{2n}3^n + \frac{13}{3}2^{2n}3^{2n} + 5 \cdot 2^{2n}3^n.$$
 (2.7)

Lemma 4. We have recursions

$$\beta_n = 3\beta_{n-1} + 4\gamma_{n-1} + 24 \cdot 2^{n-1} 3^{2(n-1)}$$
$$-\frac{51}{5} 2^{n-1} 3^{n-1} - 13 \cdot 2^{n-1} + \frac{6}{5}$$

and

$$\gamma_n = \beta_{n-1} + 2\gamma_{n-1} + 45 \cdot 2^{n-1} 3^{2(n-1)} + \frac{93}{5} 2^{n-1} 3^{n-1} - 2 \cdot 2^{n-1} + \frac{2}{5}.$$

As consequences, for $n \geq 0$, we have

$$\beta_n = \frac{141}{59} 2^n 3^{2n} + \frac{21}{5} 2^n 3^n + 2 \times 2^n - \frac{1}{5}$$
$$- \left(\frac{391}{2006} + \frac{123}{2006} \sqrt{17}\right) \left(\frac{5 + \sqrt{17}}{2}\right)^n$$
$$+ \left(-\frac{391}{2006} + \frac{123}{2006} \sqrt{17}\right) \left(\frac{5 - \sqrt{17}}{2}\right)^n$$

and

$$\gamma_n = \frac{699}{236} 2^n 3^{2n} + \frac{57}{10} 2^n 3^n + \frac{11}{4} \times 2^n - \frac{1}{5}$$

$$-\left(\frac{425}{4012} + \frac{67}{4012}\sqrt{17}\right) \left(\frac{5+\sqrt{17}}{2}\right)^n$$

$$+\left(-\frac{425}{4012} + \frac{67}{4012}\sqrt{17}\right) \left(\frac{5-\sqrt{17}}{2}\right)^n.$$
(2.8)

Lemma 5. We have recursions

$$\begin{split} \beta_n^{(2)} &= 3\beta_{n-1}^{(2)} + 4\gamma_{n-1}^{(2)} + \frac{26189}{354} 2^{2(n-1)} 3^{2(n-1)} \\ &+ \frac{340}{33} 2^{2(n-1)} 3^{n-1} + \frac{4}{3} 3^{2(n-1)} - \frac{29}{2} 2^{2(n-1)} \\ &- \frac{8}{3} 3^{n-1} + 4 \cdot 2^{n-1} - \frac{18}{11} \\ &- \left(\frac{142}{59} + \frac{626}{1003} \sqrt{17} \right) (5 + \sqrt{17})^{n-1} \\ &+ \left(-\frac{142}{59} + \frac{626}{1003} \sqrt{17} \right) (5 - \sqrt{17})^{n-1} \end{split}$$

and

$$\begin{split} \gamma_n^{(2)} &= \beta_{n-1}^{(2)} + 2\gamma_{n-1}^{(2)} + \frac{8275}{59} 2^{2(n-1)} 3^{2(n-1)} \\ &+ \frac{4331}{55} 2^{2(n-1)} 3^{n-1} + 4 \cdot 3^{2(n-1)} \\ &+ 6 \cdot 2^{2(n-1)} + \frac{4}{5} 2^{n-1} - \frac{6}{11} \\ &- \left(\frac{96}{59} + \frac{380}{1003} \sqrt{17}\right) (5 + \sqrt{17})^{n-1} \\ &+ \left(-\frac{96}{59} + \frac{380}{1003} \sqrt{17}\right) (5 - \sqrt{17})^{n-1}. \end{split}$$

As consequences, for $n \geq 0$, we have

$$\begin{split} \beta_n^{(2)} &= \frac{544513}{197886} 2^{2n} 3^{2n} + \frac{802}{165} 2^{2n} 3^n + \frac{2}{3} 3^{2n} \\ &+ \frac{5}{2} 2^{2n} + \frac{2}{3} 3^n - \frac{4}{5} 2^n + \frac{3}{11} \\ &+ \left(\frac{25}{2236} + \frac{1675}{38012} \sqrt{17} \right) \left(\frac{5 + \sqrt{17}}{2} \right)^n \\ &+ \left(\frac{25}{2236} - \frac{1675}{38012} \sqrt{17} \right) \left(\frac{5 - \sqrt{17}}{2} \right)^n \\ &- \left(\frac{111}{236} + \frac{727}{4012} \sqrt{17} \right) (5 + \sqrt{17})^n \\ &+ \left(-\frac{111}{236} + \frac{727}{4012} \sqrt{17} \right) (5 - \sqrt{17})^n \end{split}$$

and

$$\gamma_n^{(2)} = \frac{1664639}{395772} 2^{2n} 3^{2n} + \frac{2759}{330} 2^{2n} 3^n + \frac{2}{3} 3^{2n} + \frac{17}{4} 2^{2n} + \frac{2}{3} 3^n - \frac{4}{5} 2^n + \frac{3}{11} + \left(\frac{825}{8944} - \frac{625}{152048} \sqrt{17}\right) \left(\frac{5 + \sqrt{17}}{2}\right)^n$$

Q. Wang & Q. Zeng

$$+\left(\frac{825}{8944} + \frac{625}{152048}\sqrt{17}\right)\left(\frac{5-\sqrt{17}}{2}\right)^{n}$$

$$-\left(\frac{381}{944} + \frac{837}{16048}\sqrt{17}\right)(5+\sqrt{17})^{n}$$

$$+\left(-\frac{381}{944} + \frac{837}{16048}\sqrt{17}\right)(5-\sqrt{17})^{n}.$$
(2.9)

3. PROOFS OF LEMMAS 1-5

Denote

$$\partial_n = \{ \sigma_1^{(n,2)} (= \sigma_2^{(n,1)}), \sigma_2^{(n,3)} (= \sigma_3^{(n,2)}), \\ \sigma_3^{(n,1)} (= \sigma_1^{(n,3)}) \} (\subset G_n).$$

Moreover, we denote

$$\partial_n' = \partial_n + 2\sigma_2^{(n)} (\subset K_n)$$

and

$$\partial_n'' = \partial_n + \sigma_2^{(n)} (\subset L_n).$$

Due to the isomorphisms (2.1) and (2.2) of graphs, we have the following claims.

Claim 1. For any $i \in \{1, 2, 3\}$ and $k \ge 1$, we have

$$\sum_{x,y \in G^{(n,i)}} d_n(x,y) = \xi_{n-1}^{(k)}.$$

Claim 2. For any $i, j \in \{1, 2, 3\}$ and $k \geq 1$, we have

$$\sum_{x \in G^{(n,j)}} (d_n(x, \sigma_i^{(n,j)}))^k = r_{n-1}^{(k)}.$$

Claim 3. For any $i, i', j \in \{1, 2, 3\}$ with $i \neq i'$ and k > 1, we have

$$\sum_{x \in G^{(n,j)}} (\min\{d_n(x,\sigma_i^{(n,j)}), d_n(x,\sigma_{i'}^{(n,j)})\})^k = q_{n-1}^{(k)}.$$

Claim 4. For any distinct vertexes $u, v \in \{\sigma_1^{(n)}, \sigma_2^{(n)}, \sigma_3^{(n)}\}$, we have

$$d_n(u,v) = \operatorname{diam}(G_n) = 2^n$$

For any $j \in \{1,2,3\}$ and distinct vertexes $x,y \in \{\sigma_1^{(n,j)}, \sigma_2^{(n,j)}, \sigma_3^{(n,j)}\}$, we have

$$d_n(x,y) = \operatorname{diam}(G^{n,j}) = 2^{n-1}.$$

As a result of Claim 4, we have the following:

Claim 5. For each $i \in \{1, 2, 3\}$, we have $d_n(u, \sigma_i^{(n)})$

$$= \begin{cases} d_n(u, \sigma_i^{(n)}) & \text{if } u \in V(G^{n,i}), \\ d_n(u, \sigma_i^{(n,j)}) + 2^{n-1} & \text{if } u \in V(G^{n,j}), \ j \neq i. \end{cases}$$
(3.1)

For any distinct $i, i' \in \{1, 2, 3\}$, we also have $\min\{d_n(x, \sigma_i^{(n)}), d_n(x, \sigma_{i'}^{(n)})\}$

$$= \begin{cases} d_n(x, \sigma_i^{(n)}) & \text{if } u \in V(G^{n,i}), \\ d_n(x, \sigma_{i'}^{(n)}) & \text{if } u \in V(G^{n,i'}), \\ \min\{d_n(x, \sigma_i^{(n,j)}), d_n(x, \sigma_{i'}^{(n,j)})\} + 2^{n-1} \\ & \text{if } u \in V(G^{n,j}), \ j \notin \{i, i'\}. \end{cases}$$

$$(3.2)$$

Proof of Lemma 1. By (3.1) of Claim 5, the symmetry (2.2), Claim 2 and (1.1), we have

$$r_{n} = \sum_{x \in G_{n}} d_{n}(x, \sigma_{1}^{(n)})$$

$$= \sum_{x \in G^{n,1}} d_{n}(x, \sigma_{1}^{(n)})$$

$$+ 2 \sum_{x \in G^{n,2}} (d_{n}(x, \sigma_{1}^{(n,2)}) + 2^{n-1})$$

$$- \sum_{x \in \partial_{n}} d_{n}(x, \sigma_{1}^{(n)})$$

$$= 3r_{n-1} + 3 \cdot 2^{n-1}3^{n-1} - 2^{n-1}. \tag{3.3}$$

Iterating (3.3) and using $r_0 = 2$, we can obtain that

$$r_n = 2^n 3^n + 2^n. (3.4)$$

In the same way, we get

$$\begin{split} r_n^{(2)} &= \sum_{x \in G_n} (d_n(x, \sigma_1^{(n)}))^2 \\ &= \sum_{x \in G^{n,1}} (d_n(x, \sigma_1^{(n)}))^2 \\ &+ 2 \sum_{x \in G^{n,2}} (d_n(x, \sigma_1^{(n,2)}) + 2^{n-1})^2 \\ &- \sum_{x \in \partial_n} (d_n(x, \sigma_1^{(n)}))^2 \\ &= 3r_{n-1}^{(2)} + 4 \cdot 2^{n-1} r_{n-1} + 3 \cdot 2^{2(n-1)} 3^{n-1} \\ &- 3 \cdot 2^{2(n-1)}. \end{split}$$

By the result (3.4) of r_n , we have

$$r_n^{(2)} = 3r_{n-1}^{(2)} + 7 \cdot 2^{2(n-1)}3^{n-1} + 2^{2(n-1)}.$$
 (3.5)

Iterating (3.5) and using $r_0^{(2)} = 14$, we can obtain that

$$r_n^{(2)} = \frac{7}{9}2^{2n}3^n + 2^{2n} + \frac{2}{9}3^n.$$

Proof of Lemma 2. We first calculate q_n . By (3.2) of Claim 5, the symmetry (2.2), Claims 2 and 3 and (1.1), we have

$$\begin{split} q_n &= \sum_{x \in G_n} \min\{d_n(x, \sigma_1^{(n)}), d_n(x, \sigma_2^{(n)})\} \\ &= \sum_{x \in G^{(n,3)}} (\min\{d_n(x, \sigma_1^{(n,3)}), d_n(x, \sigma_2^{(n,3)})\} + 2^{n-1}) \\ &+ 2 \sum_{x \in G^{(n,1)}} d_n(x, \sigma_1^{(n)}) \\ &- \sum_{x \in \partial_n} \min\{d_n(x, \sigma_1^{(n,3)}), d_n(x, \sigma_2^{(n,3)})\} \\ &= q_{n-1} + 2r_{n-1} + \frac{3}{2} 2^{n-1} 3^{n-1} - \frac{3}{2} 2^{n-1}. \end{split}$$

Using the result $r_n = 2^n 3^n + 2^n$ (formula (2.3)) we have

$$q_n = q_{n-1} + \frac{7}{2}2^{n-1}3^{n-1} + \frac{1}{2}2^{n-1}.$$
 (3.6)

Iterating (3.6) and using $q_0 = 1$, we obtain that

$$q_n = \frac{7}{10}2^n 3^n + \frac{1}{2}2^n - \frac{1}{5}.$$

In the same way, we have

$$\begin{split} q_n^{(2)} &= \sum_{x \in G_n} (\min\{d_n(x,\sigma_1^{(n)}), d_n(x,\sigma_2^{(n)})\})^2 \\ &= \sum_{x \in G^{(n,3)}} (\min\{d_n(x,\sigma_1^{(n,3)}), d_n(x,\sigma_2^{(n,3)})\} \\ &+ 2^{n-1})^2 + 2 \sum_{x \in G^{(n,1)}} (d_n(x,\sigma_1^{(n)}))^2 \\ &- \sum_{x \in \partial_n} (\min\{d_n(x,\sigma_1^{(n,3)}), d_n(x,\sigma_2^{(n,3)})\})^2 \\ &= q_{n-1}^{(2)} + 2 \cdot 2^{n-1} q_{n-1} + 2r_{n-1}^{(2)} + \frac{3}{2} 2^{2(n-1)} 3^{n-1} \\ &- \frac{3}{2} 2^{2(n-1)}. \end{split}$$

Using the results (2.4) and (2.5) on $r_n^{(2)}$ and q_n , we get

$$q_n^{(2)} = q_{n-1}^{(2)} + \frac{401}{90} 2^{2(n-1)} 3^{n-1} + \frac{3}{2} 2^{2(n-1)} + \frac{4}{9} 3^{n-1} - \frac{2}{5} 2^{n-1}.$$
 (3.7)

Iterating (3.7) and using $q_0^{(2)} = 1$, we obtain that

$$q_n^{(2)} = \frac{401}{990} 2^{2n} 3^n + \frac{2}{9} 3^n + \frac{1}{2} 2^{2n} - \frac{2}{5} 2^n + \frac{3}{11}. \quad \Box$$

Proof of Lemma 3. Using Claim 2, (1.1) and the result of $r_n = 2^n 3^n + 2^n$ (formula (2.3)), we can obtain that

$$\alpha_n = \sum_{x \in G_n, y \in H_n} (d_n(x, \sigma_3^{(n)}) + d_n(\sigma_1^{(n)}, y - \sigma_3^{(n)}))$$

$$= 2 \cdot \Gamma_n \cdot r_n$$

$$= 3 \cdot 2^n 3^{2n} + 6 \cdot 2^n 3^n + 3 \cdot 2^n.$$

In the same way, we have

$$\alpha_n^{(2)} = \sum_{x \in G_n, y \in H_n} (d_n(x, \sigma_3^{(n)}) + d_n(\sigma_1^{(n)}, y - \sigma_3^{(n)}))^2$$

$$= 2 \cdot \Gamma_n \cdot r_n^{(2)} + 2(r_n)^2$$

$$= \frac{2}{3}3^n + \frac{2}{3}3^{2n} + 5 \cdot 2^{2n}$$

$$+ \frac{13}{3}2^{2n}3^n + \frac{13}{3}2^{2n}3^{2n} + 5 \cdot 2^{2n}3^n.$$

Next we will prove Lemmas 4 and 5.

Note that for any distinct $j, j' \in \{1, 2, 3\}$, the subgraphs $G^{(n,j)}$ and $G^{(n,j')}$ of G_n share one vertex, i.e.

$$\{\sigma_{i'}^{(n,j)}(=\sigma_{i}^{(n,j')})\} = G^{(n,j)} \cap G^{(n,j')} \subset G_n$$

Hence we have

$$\beta_n^{(k)} = \sum_{x \in G_n, y \in K_n} (D_{\text{II}}^{(n)}(x, y))^k$$

$$= \sum_{j,j'=1}^3 \sum_{\substack{x \in G^{(n,j)} \\ y \in K^{(n,j')}}} (D_{\text{II}}^{(n)}(x, y))^k$$

$$-2 \sum_{\substack{x \in \partial_n \\ y \in K_n}} (D_{\text{II}}^{(n)}(x, y))^k + \sum_{\substack{x \in \partial_n \\ y \in \partial'_n}} (D_{\text{II}}^{(n)}(x, y))^k$$
(3.8)

and

$$\gamma_n^{(k)} = \sum_{x \in G_n, y \in L_n} (D_{\text{III}}^{(n)}(x, y))^k
= \sum_{j,j'=1}^3 \sum_{\substack{x \in G^{(n,j)} \\ y \in L^{(n,j')}}} (D_{\text{III}}^{(n)}(x, y))^k
-2 \sum_{\substack{x \in \partial_n \\ y \in L_n}} (D_{\text{III}}^{(n)}(x, y))^k
+ \sum_{\substack{x \in \partial_n \\ y \in \partial''_n}} (D_{\text{III}}^{(n)}(x, y))^k.$$
(3.9)

Proof of Lemma 4. To deal with $\sum_{j,j'=1}^{3} \times$ $\sum_{x \in G^{(n,j)}, y \in K^{(n,j')}} D_{\text{II}}^{(n)}(x,y)$, we have Table 1, e.g.

$$\sum_{x \in G^{(n,1)}, y \in K^{(n,1)}} D_{\mathrm{II}}^{(n)}(x,y) = \gamma_{n-1} + 2^{n-1} (\Gamma_{n-1})^2. \qquad \sum_{x \in G^{(n,1)}, y \in L^{(n,1)}} D_{\mathrm{III}}^{(n)}(x,y) = \alpha_{n-1} + 2^{n-1} (\Gamma_{n-1})^2.$$

For $\sum_{x \in \partial_n, y \in K_n} D_{\text{II}}^{(n)}(x, y)$, we also have Table 2,

$$\sum_{y \in K^{(n,1)}} D_{\mathrm{II}}^{(n)}(\sigma_1^{(n,2)}, y) = r_{n-1} + 2^{n-1} \Gamma_{n-1}.$$

Therefore, using Tables 1 and 2 and (3.8), we have

$$\beta_n = 2\alpha_{n-1} + 3\beta_{n-1} + 4\gamma_{n-1} + 8 \cdot 2^{n-1} \cdot (\Gamma_{n-1})^2$$
$$-2(6r_{n-1} + 3q_{n-1} + 14 \cdot 2^{n-1}\Gamma_{n-1})$$
$$+20 \cdot 2^{n-1}.$$

By (1.1) and the results (2.3), (2.5) and (2.6) on r_n , q_n and α_n , we obtain that

$$\beta_n = 3\beta_{n-1} + 4\gamma_{n-1} + 24 \cdot 2^{n-1} 3^{2(n-1)}$$
$$-\frac{51}{5} 2^{n-1} 3^{n-1} - 13 \cdot 2^{n-1} + \frac{6}{5}. \quad (3.10)$$

For $\sum_{j,j'=1}^{3} \sum_{x \in G^{(n,j)}, y \in L^{(n,j')}} D_{\text{III}}^{(n)}(x,y)$, we have Table 3, e.g.

$$\sum_{x \in G^{(n,1)}, y \in L^{(n,1)}} D_{\text{III}}^{(n)}(x,y) = \alpha_{n-1} + 2^{n-1} (\Gamma_{n-1})^2.$$

To deal with $\sum_{x \in \partial_n, y \in L_n} D^{(n)}_{\text{III}}(x, y)$, we also have Table 4, e.g.

$$\sum_{y \in L^{(n,1)}} D_{\text{III}}^{(n)}(\sigma_1^{(n,2)}, y) = r_{n-1} + 2^{n-1} \Gamma_{n-1}.$$

Table 1 Calculation of $\sum_{j,j'=1}^{3} \sum_{x \in G^{(n,j)}, y \in K^{(n,j')}} D_{\text{II}}^{(n)}(x,y)$.

	$G^{(n,1)}$	$G^{(n,2)}$	$G^{(n,3)}$
$K^{(n,1)}$	$\gamma_{n-1} + 2^{n-1} (\Gamma_{n-1})^2$	α_{n-1}	$\beta_{n-1} + 2^{n-1} (\Gamma_{n-1})^2$
$K^{(n,2)}$	$\beta_{n-1} + 2 \cdot 2^{n-1} (\Gamma_{n-1})^2$	$\gamma_{n-1} + 2^{n-1} (\Gamma_{n-1})^2$	$\gamma_{n-1} + 2^{n-1} (\Gamma_{n-1})^2$
$K^{(n,3)}$	$\gamma_{n-1} + 2^{n-1} (\Gamma_{n-1})^2$	$\beta_{n-1} + 2^{n-1} (\Gamma_{n-1})^2$	α_{n-1}

Table 2 Calculation of $\sum_{x \in \partial_n, y \in K_n} D_{II}^{(n)}(x, y)$.

	$\sigma_1^{(n,2)}$	$\sigma_2^{(n,3)}$	$\sigma_3^{(n,1)}$
$K^{(n,1)}$	$r_{n-1} + 2^{n-1} \Gamma_{n-1}$	$r_{n-1} + 2^{n-1} \Gamma_{n-1}$	$q_{n-1} + 2 \cdot 2^{n-1} \Gamma_{n-1}$
$K^{(n,2)}$	$r_{n-1} + 2 \cdot 2^{n-1} \Gamma_{n-1}$	$q_{n-1} + 2 \cdot 2^{n-1} \Gamma_{n-1}$	$r_{n-1} + 2 \cdot 2^{n-1} \Gamma_{n-1}$
$K^{(n,3)}$	$q_{n-1} + 2 \cdot 2^{n-1} \Gamma_{n-1}$	$r_{n-1} + 2^{n-1} \Gamma_{n-1}$	$r_{n-1} + 2^{n-1} \Gamma_{n-1}$

Table 3 Calculation of $\sum_{j,j'=1}^{3} \sum_{x \in G^{(n,j)}, y \in L^{(n,j')}} D_{\text{III}}^{(n)}(x,y)$.

	$G^{(n,1)}$	$G^{(n,2)}$	$G^{(n,3)}$
$L^{(n,1)}$	$\alpha_{n-1} + 2^{n-1} (\Gamma_{n-1})^2$	α_{n-1}	$\alpha_{n-1} + 2^{n-1} (\Gamma_{n-1})^2$
$L^{(n,2)}$	$\alpha_{n-1} + 2 \cdot 2^{n-1} (\Gamma_{n-1})^2$	$\alpha_{n-1} + 2^{n-1} (\Gamma_{n-1})^2$	$\gamma_{n-1} + 2 \cdot 2^{n-1} (\Gamma_{n-1})^2$
$L^{(n,3)}$	$\gamma_{n-1} + 2 \cdot 2^{n-1} (\Gamma_{n-1})^2$	$\alpha_{n-1} + 2^{n-1} (\Gamma_{n-1})^2$	$\beta_{n-1} + 2 \cdot 2^{n-1} (\Gamma_{n-1})^2$

Table 4 Calculation of $\sum_{x \in \partial_n, y \in L_n} D_{\text{III}}^{(n)}(x, y)$.

Table 5 Calculation of $\sum_{j,j'=1}^{3} \sum_{x \in G^{(n,j)}, y \in K^{(n,j')}} (D_{\mathrm{II}}^{(n)}(x,y))^2$.

	$G^{(n,1)}$	$G^{(n,2)}$	$G^{(n,3)}$
$K^{(n,1)}$	$\gamma_{n-1}^{(2)} + 2 \cdot 2^{n-1} \gamma_{n-1} + 2^{2(n-1)} (\Gamma_{n-1})^2$	$\alpha_{n-1}^{(2)}$	$\beta_{n-1}^{(2)} + 2 \cdot 2^{n-1} \beta_{n-1} + 2^{2(n-1)} (\Gamma_{n-1})^2$
$K^{(n,2)}$	$\beta_{n-1}^{(2)} + 4 \cdot 2^{n} \beta_{n-1} + 4 \cdot 2^{2(n-1)} (\Gamma_{n-1})^{2}$	$\gamma_{n-1}^{(2)} + 2 \cdot 2^{n-1} \gamma_{n-1} + 2^{2(n-1)} (\Gamma_{n-1})^2$	$\gamma_{n-1}^{(2)} + 2 \cdot 2^{n-1} \gamma_{n-1} + 2^{2(n-1)} (\Gamma_{n-1})^2$
$K^{(n,3)}$	$\gamma_{n-1}^{(2)} + 2 \cdot 2^{n-1} \gamma_{n-1} + 2^{2(n-1)} (\Gamma_{n-1})^2$	$\beta_{n-1}^{(2)} + 2 \cdot 2^{n-1} \beta_{n-1} + 2^{2(n-1)} (\Gamma_{n-1})^2$	$\alpha_{n-1}^{(2)}$

Therefore, using Tables 3 and 4 and (3.9), we have

$$\gamma_n = 6\alpha_{n-1} + \beta_{n-1} + 2\gamma_{n-1} + 12 \cdot 2^{n-1} \cdot (\Gamma_{n-1})^2$$
$$-2(8r_{n-1} + q_{n-1} + 18 \cdot 2^{n-1}\Gamma_{n-1})$$
$$+24 \cdot 2^{n-1}$$

By (1.1) and the results (2.3), (2.5) and (2.6) on r_n , q_n and α_n , we obtain that

$$\gamma_n = \beta_{n-1} + 2\gamma_{n-1} + 45 \cdot 2^{n-1} 3^{2(n-1)} + \frac{93}{5} 2^{n-1} 3^{n-1} - 2 \cdot 2^{n-1} + \frac{2}{5}.$$
 (3.11)

Iterating (3.10) and (3.11), and using $\beta_0 = 8$ and $\gamma_0 = 11$, we can obtain that

$$\beta_n = \frac{141}{59} 2^n 3^{2n} + \frac{21}{5} 2^n 3^n + 2 \times 2^n - \frac{1}{5}$$
$$- \left(\frac{391}{2006} + \frac{123}{2006} \sqrt{17}\right) \left(\frac{5 + \sqrt{17}}{2}\right)^n$$
$$+ \left(-\frac{391}{2006} + \frac{123}{2006} \sqrt{17}\right) \left(\frac{5 - \sqrt{17}}{2}\right)^n$$

and

$$\gamma_n = \frac{699}{236} 2^n 3^{2n} + \frac{57}{10} 2^n 3^n + \frac{11}{4} \times 2^n - \frac{1}{5}$$
$$-\left(\frac{425}{4012} + \frac{67}{4012} \sqrt{17}\right) \left(\frac{5 + \sqrt{17}}{2}\right)^n$$

$$+\left(-\frac{425}{4012} + \frac{67}{4012}\sqrt{17}\right)\left(\frac{5-\sqrt{17}}{2}\right)^n$$
.

Proof of Lemma 5. For the sum $\sum_{j,j'=1}^{3} \times \sum_{x \in G^{(n,j)}, y \in K^{(n,j')}} (D_{\mathrm{II}}^{(n)}(x,y))^2$, we have Table 5, e.g.

$$\sum_{x \in G^{(n,1)}, y \in K^{(n,1)}} (D_{\mathrm{II}}^{(n)}(x,y))^{2}$$

$$= \gamma_{n-1}^{(2)} + 2 \cdot 2^{n-1} \gamma_{n-1} + 2^{2(n-1)} (\Gamma_{n-1})^{2}.$$

To deal with $\sum_{x \in \partial_n, y \in K_n} (D_{\text{II}}^{(n)}(x, y))^2$, we also have Table 6, for example,

$$\begin{split} \sum_{y \in K^{(n,1)}} (D_{\mathrm{II}}^{(n)}(\sigma_1^{(n,2)}, y))^2 \\ &= r_{n-1}^{(2)} + 2 \cdot 2^{n-1} r_{n-1} + 2^{2(n-1)} \Gamma_{n-1}. \end{split}$$

Therefore, using Tables 5 and 6 and (3.8), we have

$$\begin{split} \beta_n^{(2)} &= 2\alpha_{n-1}^{(2)} + 3\beta_{n-1}^{(2)} + 4\gamma_{n-1}^{(2)} + 8\cdot 2^{n-1}\beta_{n-1} \\ &\quad + 8\cdot 2^{n-1}\gamma_{n-1} + 10\cdot 2^{2(n-1)}(\Gamma_{n-1})^2 \\ &\quad - 2(6r_{n-1}^{(2)} + 16\cdot 2^{n-1}r_{n-1} + 3q_{n-1}^{(2)} \\ &\quad + 12\cdot 2^{n-1}q_{n-1} + 24\cdot 2^{2(n-1)}\Gamma_{n-1}) \\ &\quad + 46\cdot 2^{2(n-1)}. \end{split}$$

		- C = 10/9 C 10 ==	
	$\sigma_1^{(n,2)}$	$\sigma_2^{(n,3)}$	$\sigma_3^{(n,1)}$
$K^{(n,1)}$	$r_{n-1}^{(2)} + 2 \cdot 2^{n-1} r_{n-1}$	$r_{n-1}^{(2)} + 2 \cdot 2^{n-1} r_{n-1}$	$q_{n-1}^{(2)} + 4 \cdot 2^{n-1} q_{n-1}$
	$+2^{2(n-1)}\Gamma_{n-1}$	$+2^{2(n-1)}\Gamma_{n-1}$	$+4\cdot 2^{2(n-1)}\Gamma_{n-1}$
$K^{(n,2)}$	$r_{n-1}^{(2)} + 4 \cdot 2^{n-1} r_{n-1}$	$q_{n-1}^{(2)} + 4 \cdot 2^{n-1} q_{n-1}$	$r_{n-1}^{(2)} + 4 \cdot 2^{n-1} r_{n-1}$
TX ·	$+4 \cdot 2^{2(n-1)} \Gamma_{n-1}$	$+4 \cdot 2^{2(n-1)} \Gamma_{n-1}$	$+4\cdot 2^{2(n-1)}\Gamma_{n-1}$
$K^{(n,3)}$	$q_{n-1}^{(2)} + 4 \cdot 2^{n-1} q_{n-1}$	$r_{n-1}^{(2)} + 2 \cdot 2^{n-1} r_{n-1}$	$r_{n-1}^{(2)} + 2 \cdot 2^{n-1} r_{n-1}$
$K \setminus f$	$+4 \cdot 2^{2(n-1)} \Gamma_{n-1}$	$+2^{2(n-1)}\Gamma_{n-1}$	$+2^{2(n-1)}\Gamma_{n-1}$

Table 6 Calculation of $\sum_{x \in \partial_n, y \in K_n} (D_{II}^{(n)}(x, y))^2$.

Table 7 Calculation of $\sum_{j,j'=1}^{3} \sum_{x \in G^{(n,j)}, y \in L^{(n,j')}} (D_{\text{III}}^{(n)}(x,y))^2$.

	$G^{(n,1)}$	$G^{(n,2)}$	$G^{(n,3)}$
$L^{(n,1)}$	$\alpha_{n-1}^{(2)} + 2 \cdot 2^{n-1} \alpha_{n-1} + 2^{2(n-1)} (\Gamma_{n-1})^2$	$\alpha_{n-1}^{(2)}$	$\alpha_{n-1}^{(2)} + 2 \cdot 2^{n-1} \alpha_{n-1} + 2^{2(n-1)} (\Gamma_{n-1})^2$
$L^{(n,2)}$	$\alpha_{n-1}^{(2)} + 4 \cdot 2^{n-1} \alpha_{n-1} + 4 \cdot 2^{2(n-1)} (\Gamma_{n-1})^2$	$\alpha_{n-1}^{(2)} + 2 \cdot 2^{n-1} \alpha_{n-1} + 2^{2(n-1)} (\Gamma_{n-1})^2$	$\gamma_{n-1}^{(2)} + 4 \cdot 2^{n-1} \gamma_{n-1} + 4 \cdot 2^{2(n-1)} (\Gamma_{n-1})^2$
$L^{(n,3)}$	$\gamma_{n-1}^{(2)} + 4 \cdot 2^{n-1} \gamma_{n-1} + 4 \cdot 2^{2(n-1)} (\Gamma_{n-1})^2$	$\alpha_{n-1}^{(2)} + 2 \cdot 2^{n-1} \alpha_{n-1} + 2^{2(n-1)} (\Gamma_{n-1})^2$	$\beta_{n-1}^{(2)} + 4 \cdot 2^{n-1} \beta_{n-1} + 4 \cdot 2^{2(n-1)} (\Gamma_{n-1})^2$

By (1.1), the result of $\alpha_n^{(2)}$ (formula (2.7)), Lemmas 1, 2 and 4, we can obtain

$$\begin{split} \beta_n^{(2)} &= 3\beta_{n-1}^{(2)} + 4\gamma_{n-1}^{(2)} + \frac{26189}{354} 2^{2(n-1)} 3^{2(n-1)} \\ &+ \frac{340}{33} 2^{2(n-1)} 3^{n-1} + \frac{4}{3} 3^{2(n-1)} - \frac{29}{2} 2^{2(n-1)} \\ &- \frac{8}{3} 3^{n-1} + 4 \cdot 2^{n-1} - \frac{18}{11} \\ &- \left(\frac{142}{59} + \frac{626}{1003} \sqrt{17} \right) (5 + \sqrt{17})^{n-1} \\ &+ \left(-\frac{142}{59} + \frac{626}{1003} \sqrt{17} \right) (5 - \sqrt{17})^{n-1}. \end{split} \tag{3.12}$$

To deal with $\sum_{j,j'=1}^{3} \sum_{x \in G^{(n,j)}, y \in L^{(n,j')}} (D_{\text{III}}^{(n)}(x, y))^2$, we have Table 7, e.g.

$$\sum_{x \in G^{(n,1)}, y \in L^{(n,1)}} (D_{\Pi}^{(n)}(x,y))^{2}$$

$$= \alpha_{n-1}^{(2)} + 2 \cdot 2^{n-1} \alpha_{n-1} + 2^{2(n-1)} (\Gamma_{n-1})^{2}.$$

For the sum $\sum_{x \in \partial_n, y \in L_n} (D_{\text{III}}^{(n)}(x, y))^2$, we also have Table 8, e.g.

$$\sum_{y \in L^{(n,1)}} (D_{\text{II}}^{(n)}(\sigma_1^{(n,2)}, y))^2$$

$$= r_{n-1}^{(2)} + 2 \cdot 2^{n-1} r_{n-1} + 2^{2(n-1)} \Gamma_{n-1}.$$

Therefore, using Tables 7 and 8 and (3.9), we have

$$\gamma_n^{(2)} = 6\alpha_{n-1}^{(2)} + \beta_{n-1}^{(2)} + 2\gamma_{n-1}^{(2)} + 12 \cdot 2^{n-1}\alpha_{n-1}$$

$$+ 4 \cdot 2^{n-1}\beta_{n-1} + 8 \cdot 2^{n-1}\gamma_{n-1}$$

$$+ 20 \cdot 2^{2(n-1)}(\Gamma_{n-1})^2 - 2(8r_{n-1}^{(2)} + q_{n-1}^{(2)}$$

$$+ 30 \cdot 2^{n-1}r_{n-1} + 6 \cdot 2^{n-1}q_{n-1}$$

$$+ 40 \cdot 2^{2(n-1)}\Gamma_{n-1}) + 68 \cdot 2^{2(n-1)}.$$

By (1.1) and Lemmas 1–4, we have

$$\begin{split} \gamma_n^{(2)} &= \beta_{n-1}^{(2)} + 2\gamma_{n-1}^{(2)} + \frac{8275}{59} 2^{2(n-1)} 3^{2(n-1)} \\ &+ \frac{4331}{55} 2^{2(n-1)} 3^{n-1} + 4 \cdot 3^{2(n-1)} \\ &+ 6 \cdot 2^{2(n-1)} + \frac{4}{5} 2^{n-1} - \frac{6}{11} \end{split}$$

	$\sigma_1^{(n,2)}$	$\sigma_2^{(n,3)}$	$\sigma_3^{(n,1)}$
$L^{(n,1)}$	$r_{n-1}^{(2)} + 2 \cdot 2^{n-1} r_{n-1}$	$r_{n-1}^{(2)} + 2 \cdot 2^{n-1} r_{n-1}$	$r_{n-1}^{(2)} + 4 \cdot 2^{n-1} r_{n-1}$
	$+2^{2(n-1)}\Gamma_{n-1}$	$+2^{2(n-1)}\Gamma_{n-1}$	$+4 \cdot 2^{2(n-1)} \Gamma_{n-1}$
$L^{(n,2)}$	$r_{n-1}^{(2)} + 4 \cdot 2^{n-1} r_{n-1}$	$r_{n-1}^{(2)} + 4 \cdot 2^{n-1} r_{n-1}$	$r_{n-1}^{(2)} + 6 \cdot 2^{n-1} r_{n-1}$
	$+4 \cdot 2^{2(n-1)} \Gamma_{n-1}$	$+4\cdot 2^{2(n-1)}\Gamma_{n-1}$	$+9 \cdot 2^{2(n-1)} \Gamma_{n-1}$
$L^{(n,3)}$	$r_{n-1}^{(2)} + 4 \cdot 2^{n-1} r_{n-1}$	$r_{n-1}^{(2)} + 4 \cdot 2^{n-1} r_{n-1}$	$q_{n-1}^{(2)} + 6 \cdot 2^{n-1} q_{n-1}$
	$+4 \cdot 2^{2(n-1)} \Gamma_{n-1}$	$+4 \cdot 2^{2(n-1)} \Gamma_{n-1}$	$+9 \cdot 2^{2(n-1)} \Gamma_{n-1}$

Table 8 Calculation of $\sum_{x \in \partial_n, y \in L_n} (D_{\text{III}}^{(n)}(x, y))^2$.

$$-\left(\frac{96}{59} + \frac{380}{1003}\sqrt{17}\right)(5+\sqrt{17})^{n-1} + \left(-\frac{96}{59} + \frac{380}{1003}\sqrt{17}\right)(5-\sqrt{17})^{n-1}.$$
(3.13)

Iterating (3.12) and (3.13), and using $\beta_0^{(2)} = 10$ and $\gamma_0^{(2)} = 17$, we can obtain that

$$\beta_n^{(2)} = \frac{544513}{197886} 2^{2n} 3^{2n} + \frac{802}{165} 2^{2n} 3^n + \frac{2}{3} 3^{2n}$$

$$+ \frac{5}{2} 2^{2n} + \frac{2}{3} 3^n - \frac{4}{5} 2^n + \frac{3}{11}$$

$$+ \left(\frac{25}{2236} + \frac{1675}{38012} \sqrt{17}\right) \left(\frac{5 + \sqrt{17}}{2}\right)^n$$

$$+ \left(\frac{25}{2236} - \frac{1675}{38012} \sqrt{17}\right) \left(\frac{5 - \sqrt{17}}{2}\right)^n$$

$$- \left(\frac{111}{236} + \frac{727}{4012} \sqrt{17}\right) (5 + \sqrt{17})^n$$

$$+ \left(-\frac{111}{236} + \frac{727}{4012} \sqrt{17}\right) (5 - \sqrt{17})^n$$

and

$$\gamma_n^{(2)} = \frac{1664639}{395772} 2^{2n} 3^{2n} + \frac{2759}{330} 2^{2n} 3^n + \frac{2}{3} 3^{2n}$$

$$+ \frac{17}{4} 2^{2n} + \frac{2}{3} 3^n - \frac{4}{5} 2^n + \frac{3}{11}$$

$$+ \left(\frac{825}{8944} - \frac{625}{152048} \sqrt{17}\right) \left(\frac{5 + \sqrt{17}}{2}\right)^n$$

$$+ \left(\frac{825}{8944} + \frac{625}{152048} \sqrt{17}\right) \left(\frac{5 - \sqrt{17}}{2}\right)^n$$

$$-\left(\frac{381}{944} + \frac{837}{16048}\sqrt{17}\right)(5+\sqrt{17})^n + \left(-\frac{381}{944} + \frac{837}{16048}\sqrt{17}\right)(5-\sqrt{17})^n.$$

4. PROOF OF THEOREM 1

For any $k \geq 1$, we let

$$\xi_n^{(k)} = \sum_{x,y \in G_n} (d_n(x,y))^k.$$

Write $\xi_n = \xi_n^{(1)}$ for simplicity of notation. To obtain Theorem 1, it is sufficient to calculate ξ_n and $\xi_n^{(2)}$.

4.1. Calculation of ξ_n

Recall $\xi_n = \sum_{x,y \in G_n} d_n(x,y)$. Using the symmetry (2.2) and Claims 1-3, we obtain that

$$\xi_{n} = \sum_{x,y \in G_{n}} d_{n}(x,y)$$

$$= 3 \sum_{x,y \in G^{(n,1)}} d_{n}(x,y)$$

$$+ 6 \left(\sum_{x \in G^{(n,1)}, y \in G^{(n,2)}} d_{n}(x,y) - \sum_{x \in G^{(n,1)}} d_{n}(x,\sigma_{1}^{(n,2)}) - \sum_{y \in G^{(n,2)}} d_{n}(y,\sigma_{1}^{(n,2)}) \right)$$

$$- 6 \sum_{x \in G^{(n,3)}} (d_{n}(x,\sigma_{1}^{(n,2)}) + 2^{n-1})$$

$$+ \sum_{x,y \in \partial_{n}} d(x,y)$$

$$= 3\xi_{n-1} + 6\gamma_{n-1} - 12r_{n-1} - 6q_{n-1}$$

$$- 6 \cdot 2^{n-1}\Gamma_{n-1} + 6 \cdot 2^{n-1}.$$

By (1.1) and the results (2.3), (2.5) and (2.8) on r_n , q_n and γ_n , we have

$$\xi_n = 3\xi_{n-1} + \frac{2097}{118} 2^{n-1} 3^{2(n-1)} + 9 \cdot 2^{n-1} 3^{n-1}$$

$$-\frac{3}{2} 2^{n-1} - \left(\frac{75}{118} + \frac{201}{2006} \sqrt{17}\right) 2^{-(n-1)}$$

$$\times (\sqrt{17} + 5)^{n-1} + \left(-\frac{75}{118} + \frac{201}{2006} \sqrt{17}\right)$$

$$\times 2^{-(n-1)} (5 - \sqrt{17})^{n-1}. \tag{4.1}$$

Iterating (4.1) and using $\xi_0 = 6$, we can obtain that

$$\xi_n = \frac{699}{590} 2^n 3^{2n} + 3 \times 2^n 3^n + \frac{9}{10} 3^n + \frac{3}{2} 2^n$$

$$- \left(\frac{1173}{4012} + \frac{369}{4012} \sqrt{17} \right) \left(\frac{5 + \sqrt{17}}{2} \right)^n$$

$$+ \left(-\frac{1173}{4012} + \frac{369}{4012} \sqrt{17} \right) \left(\frac{5 - \sqrt{17}}{2} \right)^n.$$

$$(4.2)$$

4.2. Calculation of $\xi_n^{(2)}$

Recall $\xi_n^{(2)} = \sum_{x,y \in G_n} (d_n(x,y))^2$. Using the symmetry (2.2) and Claims 1–3, we obtain that

$$\begin{split} \xi_n^{(2)} &= \sum_{x,y \in G_n} (d_n(x,y))^2 \\ &= 3 \sum_{x,y \in G^{(n,1)}} (d_n(x,y))^2 \\ &+ 6 \left(\sum_{\substack{x \in G^{(n,1)} \\ y \in G^{(n,2)}}} (d_n(x,y))^2 \right. \\ &- \sum_{x \in G^{(n,1)}} (d_n(x,\sigma_1^{(n,2)}))^2 \\ &- \sum_{y \in G^{(n,2)}} (d_n(y,\sigma_1^{(n,2)}))^2 \right) \\ &- 6 \sum_{x \in G^{(n,3)}} (d_n(x,\sigma_1^{(n,2)}) + 2^{n-1})^2 \\ &+ \sum_{x,y \in \partial_n} (d(x,y))^2 \\ &= 3\xi_{n-1}^{(2)} + 6\gamma_{n-1}^{(2)} - 12r_{n-1}^{(2)} - 6q_{n-1}^{(2)} \end{split}$$

$$-12 \cdot 2^{n-1} q_{n-1} - 6 \cdot 2^{2(n-1)} \Gamma_{n-1}$$

+ 6 \cdot 2^{2(n-1)}.

By (1.1), Lemma 2 and the results (2.4) and (2.9) on $r_n^{(2)}$ and $\gamma_n^{(2)}$, we have

$$\begin{split} \xi_n^{(2)} &= 3\xi_{n-1}^{(2)} + \frac{1664639}{65962} 2^{2(n-1)} 3^{2(n-1)} \\ &+ 21 \cdot 2^{2(n-1)} 3^{n-1} + 4 \cdot 3^{2(n-1)} + \frac{3}{2} 2^{2(n-1)} \\ &+ \left(\frac{2475}{4472} - \frac{1875}{76024} \sqrt{17} \right) \left(\frac{5 + \sqrt{17}}{2} \right)^{n-1} \\ &+ \left(\frac{2475}{4472} + \frac{1875}{76024} \sqrt{17} \right) \left(\frac{5 - \sqrt{17}}{2} \right)^{n-1} \\ &- \left(\frac{1143}{472} + \frac{2511}{8024} \sqrt{17} \right) (5 + \sqrt{17})^{n-1} \\ &+ \left(-\frac{1143}{472} + \frac{2511}{8024} \sqrt{17} \right) (5 - \sqrt{17})^{n-1}. \end{split}$$

Iterating (4.3) and using $\xi_0^{(2)} = 6$, we can obtain that

$$\xi_n^{(2)} = \frac{1664639}{2176746} 2^{2n} 3^{2n} + \frac{7}{3} 2^{2n} 3^n$$

$$+ \frac{2}{3} 3^{2n} + \frac{3}{2} 2^{2n} + \frac{665}{858} 3^n$$

$$+ \left(\frac{75}{4472} + \frac{5025}{76024} \sqrt{17}\right) \left(\frac{5 + \sqrt{17}}{2}\right)^n$$

$$+ \left(\frac{75}{4472} - \frac{5025}{76024} \sqrt{17}\right) \left(\frac{5 - \sqrt{17}}{2}\right)^n$$

$$- \left(\frac{225}{6136} + \frac{14409}{104312} \sqrt{17}\right) (5 + \sqrt{17})^n$$

$$+ \left(-\frac{225}{6136} + \frac{14409}{104312} \sqrt{17}\right) (5 - \sqrt{17})^n.$$

$$(4.4)$$

4.3. Proof of Theorem 1

Finally, using (4.2) and (4.4), we can obtain

$$\sum_{x,y \in G_n} \frac{1}{2} (d_n(x,y) + (d_n(x,y))^2)$$
$$= \frac{1}{2} (\xi_n + \xi_n^{(2)})$$

$$= \frac{1664639}{4353492} 2^{2n} 3^{2n} + \frac{699}{1180} 2^{n} 3^{2n} + \frac{7}{6} 2^{2n} 3^{n}$$

$$+ \frac{1}{3} 3^{2n} + \frac{3}{2} 2^{n} 3^{n} + \frac{3}{4} 2^{2n} + \frac{3593}{4290} 3^{n} + \frac{3}{4} 2^{n}$$

$$- \left(\frac{72717}{527696} + \frac{116067}{8970832} \sqrt{17} \right) \left(\frac{5 + \sqrt{17}}{2} \right)^{n}$$

$$+ \left(-\frac{72717}{527696} + \frac{116067}{8970832} \sqrt{17} \right) \left(\frac{5 - \sqrt{17}}{2} \right)^{n}$$

$$- \left(\frac{225}{12272} + \frac{14409}{208624} \sqrt{17} \right) (5 + \sqrt{17})^{n}$$

$$+ \left(-\frac{225}{12272} + \frac{14409}{208624} \sqrt{17} \right) (5 - \sqrt{17})^{n}.$$

Theorem 1 is proved.

ACKNOWLEDGMENT

The work is supported by the National Natural Science Foundation of China (No. 12171259).

REFERENCES

- D. Watts and S. Strogatz, Collective dynamics of 'small-world' networks, Nature 393 (1998) 440– 442
- 2. A. Barabási and R. Albert, Emergence of scaling in random networks, *Science* **286** (1999) 509–512.
- 3. M. Newman, The structure and function of complex networks, SIAM Rev. 45 (2003) 167–256.
- 4. M. Newman, *Networks: An Introduction* (Oxford University Press, New York, 2010).
- 5. H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc. 69 (1947) 17–20.
- M. Randić, Novel molecular descriptor for structure property studies, Chem. Phys. Lett. 211 (1993) 478–483.
- G. Cash, S. Klavzar and M. Petkovsek, Three methods for calculation of the hyper-Wiener index of molecular graphs, *J. Chem. Inf. Comput. Sci.* 42 (2002) 571–576.
- 8. L. Feng, W. Liu and K. Xu, The hyper-Wiener index of bicyclic graphs, *Util. Math.* **84** (2011) 97–104.
- N. Tratnik, A method for computing the edge-hyper-Wiener index of partial cubes and an algorithm for benzenoid systems, Appl. Anal. Discrete Math. 12 (2018) 126–142.

- T. Wu and H. Lu, Hyper-Wiener indices of polyphenyl chains and polyphenyl spiders, *Open Math.* 17 (2019) 668–676.
- 11. S. Wang, Z. Yu and L. Xi, Average geodesic distance of Sierpinski gasket and Sierpinski networks, *Fractals* **25** (2017) 1750044.
- 12. L. Zhao, S. Wang and L. Xi, Average geodesic distance of Sierpinski carpet, *Fractals* **25** (2017) 1750061.
- 13. T. Li, K. Jiang and L. Xi, Average distance of self-similar fractal trees, *Fractals* **26** (2018) 1850016.
- J. Yang, S. Wang, L. Xi and Y. Ye, Average geodesic distance of skeleton networks of Sierpinski tetrahedron, *Physica A* 495 (2018) 269–277.
- 15. Q. Ye and L. Xi, Average distance of substitution networks, *Fractals* **27** (2019) 1950097.
- B. Zhao, J. Fan and L. Xi, Average distances of lindstrom snowflake networks, Fractals 29 (2021) 2150067.
- Y. Li, J. Fan and L. Xi, Average geodesic distance on stretched Sierpinski gasket, *Chaos Solitons Fractals* 150 (2021) 111120.
- J. Zhu, L. Tian and Q. Wang, Average geodesic distance on Sierpinski hexagon and Sierpinski hexagon networks, Fractals 27 (2019) 1950077.
- J. Chen, L. He and Q. Wang, Eccentric distance sum of Sierpinski gasket and Sierpinski network, *Fractals* 27 (2019) 1950016.
- J. Deng, Q. Ye and Q. Wang, Weighted average geodesic distance of Vicsek network, *Physica A* 527 (2019) 121327.
- 21. J. Deng and Q. Wang, Asymptotic formula of average distances on fractal networks modeled by Sierpinski tetrahedron, *Fractals* **27** (2019) 1950120.
- 22. Y. Xue and D. Zhou, Asymptotic formula on average path length of a special network based on Sierpinski carpet, *Fractals* **26** (2018) 1850039.
- 23. Q. Zhang, Y. Xue, D. Wang and M. Niu, Asymptotic formula on average path length in a hierarchical scale-free network with fractal structure, *Chaos Solitons Fractals* **122** (2019) 196–201.
- 24. D. Wang and Y. Xue, Average path length and degree distribution of networks generated by random sequence, *Mod. Phys. Lett. B* **35** (2021) 2150347.
- C. Zeng, Y. Huang and Y. Xue, Fractal networks with hierarchical structure: Mean fermat distance and small-world effect, Mod. Phys. Lett. B 36 (2022) 2250109.
- C. Zeng, Y. Huang and Y. Xue, Average geodesic distance of Sierpinski-type networks, Fractals 30 (2022) 2250088.
- 27. M. Niu and R. Li, The average weighted path length for a class of hierrchical networks, *Fractals* **28** (2020) 2050073.

- Q. Wang & Q. Zeng
- 28. F. Huang, M. Dai, J. Zhu and W. Su, Scaling of average shortest distance of two colored substitution networks, *IEEE Trans. Network Sci. Eng.* **7** (2020) 3067–3073.
- 29. M. Dai, F. Huang, J. Zhu, Y. Guo, Y. Li, H. Qiu and W. Su, Structure properties and weighted average
- geodesic distances of the Sierpinski carpet fractal networks, *Phys. Scr.* **95** (2020) 065210.
- 30. T. Chan, A statistical analysis of the towers of Hanoi problem, *Int. J. Comput. Math.* **28** (1989) 57–65.