Unidad III

Analítica de Procesos de Negocio - Cuantitativo

iicg

IICG140 - Gestión de Procesos de Negocio - Prof. Alejandro Robles S.

54

Análisis de Flujo

- Técnica que permite estimar el rendimiento total de un proceso dado el conocimiento del rendimiento de sus actividades.
- Se puede utilizar para calcular el tiempo de ciclo promedio del proceso.
- Se puede utilizar para calcular el costo promedio de una instancia del proceso.
- Se puede utilizar para calcular la tasa de error de un proceso.

iicg

IICG140 - Gestión de Procesos de Negocio - Prof. Alejandro Robles S.

- Tiempo de Ciclo
 - Tiempo promedio de un proceso desde que comienza hasta que termina.
 - Actividad → tiempo promedio desde que comienza hasta que termina.

- ¿Cuánto sería el tiempo de ciclo del proceso anterior?
 - 10 + 20 = 30 horas.

iicg

IICG140 - Gestión de Procesos de Negocio - Prof. Alejandro Robles S.

56

Análisis de Flujo

• En un proceso secuencial, el tiempo medio de duración es igual a la suma de los tiempos medios de duración de sus actividades.

$$-CT = \sum_{i=1}^{n} T_i$$

iicg

IICG140 - Gestión de Procesos de Negocio - Prof. Alejandro Robles S.

¿Cuál sería el tiempo de ciclo del siguiente proceso?

• Si se ejecuta B, el tiempo será de 30h, si se ejecuta C será de 20h.

iicg

IICG140 - Gestión de Procesos de Negocio - Prof. Alejandro Robles S.

58

Análisis de Flujo

■ ¿Y ahora?

■ 10 h + 50% * 20h + 50% * 10h = 25h

İİCG

IICG140 - Gestión de Procesos de Negocio - Prof. Alejandro Robles S.

■ ¿Y ahora?

iicg

IICG140 - Gestión de Procesos de Negocio - Prof. Alejandro Robles S.

60

Análisis de Flujo

 Entonces para calcular el tiempo de ciclo incorporando la probabilidad de los gateways exclusivos.

 $CT = \sum_{i=1}^n p_i * T_i$

iicg

IICG140 - Gestión de Procesos de Negocio - Prof. Alejandro Robles S.

• ¿Y si en vez de gateways exclusivos tenemos gateways paralelos?

• El tiempo de ciclo esta determinado por la actividad más lenta, entre aquellas que se ejecutan en paralelo.

iicg

IICG140 - Gestión de Procesos de Negocio - Prof. Alejandro Robles S.

62

Análisis de Flujo

Entonces para calcular el tiempo de ciclo incorporando gateways paralelos.

• $CT = Max(T_1, T_2, \dots, T_n)$

iicg

IICG140 - Gestión de Procesos de Negocio - Prof. Alejandro Robles S.

64

Análisis de Flujo

• ¿En el caso de incluir el proceso un gateway inclusivo, como se calcularía el tiempo de ciclo?

İİCO

IICG140 - Gestión de Procesos de Negocio - Prof. Alejandro Robles S.

• Otro caso común de analizar es el retrabajo.

- La probabilidad que B se repita una vez es 0,2
- La probabilidad que B se repita dos veces es 0,2 * 0,2
- La probabilidad que B se repita dos veces es 0,2 * 0,2 * 0,2

iicg

IICG140 - Gestión de Procesos de Negocio - Prof. Alejandro Robles S.

66

Análisis de Flujo

- \blacksquare La probabilidad de que la actividad B sea repetida N veces es 0.2^N
- Este comportamiento es similar a una serie geométrica $\frac{T}{(1-r)}$
- La r corresponde a la probabilidad de retrabajo del bloque de repetición del proceso.

İİCG

IICG140 - Gestión de Procesos de Negocio - Prof. Alejandro Robles S.

• Otro caso común de analizar es el retrabajo.

- Entonces el tiempo total de B es
 - 20/(1-0.2) = 25
- Tiempo total es 10 + 25 = 35

iicg

IICG140 - Gestión de Procesos de Negocio - Prof. Alejandro Robles S.

68

