

AMENDMENTS TO THE CLAIMS:

Claims 2-16, 18-27 and 44-47 are pending in this application. Claims 28 and 30-43 are cancelled herein without prejudice or disclaimer. Claims 9-11, 14, 15, 25-27 and 44-46 are amended herein. This listing of claims will replace all prior versions, and listings of claims, in the application.

LISTING OF CLAIMS:

1. (Cancelled).
2. (Previously presented) A compound according to any one of claims 44, 45 or 46, wherein R¹ is selected from the group of hydrogen, C₁-C₄ alkyl, COR¹¹, SO₂R¹¹, and CONR¹¹R¹².
3. (Previously presented) A compound according to any one of claims 44, 45 or 46, wherein R² and R³ each independently is selected from the group of C₁-C₄ alkyl, and C₁-C₄ haloalkyl.
4. (Previously presented) A compound according to any one of claims 44, 45 or 46, wherein:
 - R⁵ and R⁷ taken together form a bond;
 - R⁴ and R⁶ each independently is selected from the group of hydrogen, F, Cl, Br, CN, OR¹¹, C₁-C₄ alkyl, and C₁-C₄ haloalkyl.
5. (Previously presented) A compound according to any one of claims 44, 45 or 46, wherein:
 - R⁶ and R⁷ taken together are selected from the group of methyldene, and carbonyl;
 - R⁴ and R⁵ each independently is selected from the group of hydrogen, F, and C₁-C₄ alkyl.
6. (Previously presented) A compound according to any one of claims 44, 45 or 46, wherein R⁸ through R¹⁰ each independently is selected from the group of hydrogen, F, Cl, Br, NO₂, CN, OR¹¹, SR¹¹, C₁-C₆ alkyl, C₁-C₆ heteroalkyl, and C₁-C₆ haloalkyl.
7. (Original) A compound according to claim 6, wherein R⁸ through R¹⁰ each independently is selected from the group of hydrogen, F, and OR¹¹.

8. (Previously presented) A compound according to any one of claims 44, 45 or 46, wherein R¹¹ through R¹² each independently is selected from the group of hydrogen, and C₁–C₄ alkyl.

9. (Currently amended) A compound of the formula:

(I)

wherein:

R¹ is selected from the group of hydrogen, C₁–C₄ alkyl, C₁–C₄ haloalkyl, C₁–C₄ heteroalkyl, COR¹¹, CO₂R¹¹, SO₂R¹¹, and CONR¹¹R¹²;

R² and R³ each independently is selected from the group of hydrogen, C₁–C₆ alkyl, and C₁–C₆ haloalkyl; or

R² and R³ taken together form a cycloalkyl ring of from three to twelve carbons;

R⁴ through R⁷ each independently is selected from the group of hydrogen, F, Cl, Br, CN, OR¹¹, C₁–C₄ alkyl, C₁–C₄ haloalkyl, and C₁–C₄ heteroalkyl; or

R⁵ and R⁷ taken together form a bond; or

R⁶ and R⁷ taken together are selected from the group of methyldene, mono-substituted methyldene, di-substituted methyldene and carbonyl;

R⁸ through R¹⁰ each independently is selected from the group of hydrogen, F, Cl, Br, I, NO₂, CN, OR¹¹, NR¹¹R¹², SR¹¹, COR¹¹, CO₂R¹¹, CONR¹¹R¹², C₁–C₈ alkyl, C₁–C₈ heteroalkyl, C₁–C₈ haloalkyl, allyl, C₂–C₈ alkenyl and C₂–C₈ alkynyl;

R¹¹ and R¹² each is independently selected from the group of hydrogen, C₁–C₄ alkyl, C₁–C₄ heteroalkyl, and C₁–C₄ haloalkyl;

R¹³ is hydrogen;

R¹⁴ and R¹⁶ taken together form a bond or “–O–” bridge;

R¹⁵, R¹⁷, R¹⁸, R¹⁹, R²⁰ each independently is selected from the group of hydrogen, F, Cl, C₁–C₄ alkyl, and C₁–C₄ haloalkyl.

R²¹ is hydrogen; and

n is 0, 1, 2, or 3;

or a pharmaceutically acceptable salt or prodrug thereof.

10. (Currently amended) A compound of the formula:

wherein:

R¹ is selected from the group of hydrogen, C₁–C₄ alkyl, C₁–C₄ haloalkyl, C₁–C₄ heteroalkyl, COR¹¹, CO₂R¹¹, SO₂R¹¹, and CONR¹¹R¹²;

R² and R³ each independently is selected from the group of hydrogen, C₁–C₆ alkyl, and C₁–C₆ haloalkyl; or

R² and R³ taken together form a cycloalkyl ring of from three to twelve carbons;

R⁴ through R⁷ each independently is selected from the group of hydrogen, F, Cl, Br, CN, OR¹¹, C₁–C₄ alkyl, C₁–C₄ haloalkyl, and C₁–C₄ heteroalkyl; or

R⁵ and R⁷ taken together form a bond; or

R⁶ and R⁷ taken together are selected from the group of methylidene, mono-substituted methylidene, di-substituted methylidene and carbonyl;

R⁸ through R¹⁰ each independently is selected from the group of hydrogen, F, Cl, Br, I, NO₂, CN, OR¹¹, NR¹¹R¹², SR¹¹, COR¹¹, CO₂R¹¹, CONR¹¹R¹², C₁–C₈ alkyl, C₁–C₈ heteroalkyl, C₁–C₈ haloalkyl, allyl, C₂–C₈ alkenyl and C₂–C₈ alkynyl;

R¹¹ and R¹² each is independently selected from the group of hydrogen, C₁–C₄ alkyl, C₁–C₄ heteroalkyl, and C₁–C₄ haloalkyl;

R¹³ is hydrogen;

R¹⁴, R¹⁵, R¹⁸, R¹⁹, R²⁰ each independently is selected from the group of hydrogen, F, Cl, C₁–C₄ alkyl, and C₁–C₄ haloalkyl.

R¹⁶ and R¹⁷ taken together are selected from the group of methylidene, mono-substituted methylidene, and di-substituted methylidene;

R²¹ is hydrogen; or

R²¹ and R²⁰ taken together form a bond;
n is 0, 1, 2, or 3;
or a pharmaceutically acceptable salt or prodrug thereof.

11. (Currently amended) A compound of the formula:

wherein:

R¹ is selected from the group of hydrogen, C₁–C₄ alkyl, C₁–C₄ haloalkyl, C₁–C₄ heteroalkyl, COR¹¹, CO₂R¹¹, SO₂R¹¹, and CONR¹¹R¹²;

R² and R³ each independently is selected from the group of hydrogen, C₁–C₆ alkyl, and C₁–C₆ haloalkyl; or

R² and R³ taken together form a cycloalkyl ring of from three to twelve carbons;

R⁴ through R⁷ each independently is selected from the group of hydrogen, F, Cl, Br, CN, OR¹¹, C₁–C₄ alkyl, C₁–C₄ haloalkyl, and C₁–C₄ heteroalkyl; or

R⁵ and R⁷ taken together form a bond; or

R⁶ and R⁷ taken together are selected from the group of methyldene, mono-substituted methyldene, di-substituted methyldene and carbonyl;

R⁸ through R¹⁰ each independently is selected from the group of hydrogen, F, Cl, Br, I, NO₂, CN, OR¹¹, NR¹¹R¹², SR¹¹, COR¹¹, CO₂R¹¹, CONR¹¹R¹², C₁–C₈ alkyl, C₁–C₈ heteroalkyl, C₁–C₈ haloalkyl, allyl, C₂–C₈ alkenyl and C₂–C₈ alkynyl;

R¹¹ and R¹² each is independently selected from the group of hydrogen, C₁–C₄ alkyl, C₁–C₄ heteroalkyl, and C₁–C₄ haloalkyl;

R¹³ is hydrogen;

R¹⁴, R¹⁵, R¹⁷, R²⁰ each independently is selected from the group of hydrogen, F, Cl, C₁–C₄ alkyl, and C₁–C₄ haloalkyl R¹⁶ and R¹⁸ taken together form a bond when n is 1;

R¹⁶ and R¹⁹ taken together form a bond when n is 0;

R²¹ is hydrogen; and

n is 0, 1, 2, or 3;

or a pharmaceutically acceptable salt or prodrug thereof.

12. (Previously presented) A compound selected from the group of:

(±)-(5*l*, 1'*l*)-5-(3-methyl-2-cyclohexenyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 24);

(±)-(5*l*, 1'*u*)-5-(3-methyl-2-cyclohexenyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 25);

(+)-(5*l*, 1'*l*)-5-(3-methyl-2-cyclohexenyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 27);

(-)-(5*l*, 1'*l*)-5-(3-methyl-2-cyclohexenyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 28);

(±)-(5*l*, 1'*l*)-5-(3-methyl-2-cyclohexenyl)-9-hydroxy-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 29);

(±)-(5*l*, 1'*u*)-5-(3-methyl-2-cyclohexenyl)-9-hydroxy-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 30);

(+)-(5*l*, 1'*l*)-5-(3-methyl-2-cyclohexenyl)-9-hydroxy-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 32);

(-)-(5*l*, 1'*l*)-5-(3-methyl-2-cyclohexenyl)-9-hydroxy-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 33);

(±)-(5*l*, 1'*l*)-5-(3-methyl-2-cyclohexenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 34);

(±)-(5*l*, 1'*u*)-5-(3-methyl-2-cyclohexenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 35);

(+)-(5*l*, 1'*l*)-5-(3-methyl-2-cyclohexenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 37);

(-)-(5*l*, 1'*l*)-5-(3-methyl-2-cyclohexenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 38);

(±)-(5*l*, 1'*l*)-5-(3-methyl-2-cyclohexenyl)-9-methoxy-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 39);

(±)-(5*l*, 1'*l*)-5-(3-methyl-2-cyclohexenyl)-9-fluoro-1,2-dihydro-2,2-dimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 41);

(\pm)-(5*I*, 1'*u*)-5-(3-methyl-2-cyclohexenyl)-9-fluoro-1,2-dihydro-2,2-dimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 42);

(\pm)-(5*I*, 1'*I*)-5-(3-methyl-2-cyclopentenyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 44);

(\pm)-(5*I*, 1'*u*)-5-(3-methyl-2-cyclopentenyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 45);

(\pm)-(5*I*, 1'*I*)-5-(3,5,5-trimethyl-2-cyclohexenyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 47);

(\pm)-(5*I*, 1'*u*)-5-(3,5,5-trimethyl-2-cyclohexenyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 48);

(\pm)-(5*I*, 1'*I*)-5-(3-methyl-2-cyclopentenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 50);

(\pm)-(5*I*, 1'*u*)-5-(3-methyl-2-cyclopentenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 51);

(\pm)-5-(3-methyl-3-cyclopentenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 52);

(\pm)-5-(2-cyclopenta-1,3-dienyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 53);

(\pm)-(5*I*, 1'*I*)-5-(3-ethyl-2-cyclohexenyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 55);

(\pm)-(5*I*, 1'*u*)-5-(3-ethyl-2-cyclohexenyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 56);

(\pm)-(5*I*, 1'*I*)-5-(3-methyl-2-cyclohexenyl)-7-fluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 58);

(\pm)-(5*I*, 1'*u*)-5-(3-methyl-2-cyclohexenyl)-7-fluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 59);

(\pm)-(5*I*, 1'*I*)-5-(3-ethyl-2-cyclohexenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 61);

(\pm)-(5*I*, 1'*I*)-5-(3-ethylidene cyclohexyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 62);

(\pm)-(5*I*, 1'*I*)-5-(3-methyl-3-cyclohexenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 63);

(\pm)-(5*I*, 1'*I*)-5-(3-methyl-2-cyclohexenyl)-9-fluoro-1,2-dihydro-8-methoxy-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 64);

(\pm)-(5*I*, 1'*u*)-5-(3-methyl-2-cyclohexenyl)-9-fluoro-1,2-dihydro-8-methoxy-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 65);

(\pm)-(5*I*, 1'*I*)-5-(2-cyclopentenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 67);

(\pm)-(5*I*, 1'*u*)-5-(2-cyclopentenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 68);

(\pm)-5-(1-cyclopentenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 69);

(\pm)-(5*I*, 1'*I*)-5-(2,3-dimethyl-2-cyclopentenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 71);

(+)-(5*I*, 1'*I*)-5-(2,3-dimethyl-2-cyclopentenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 73);

(-)-(5*I*, 1'*I*)-5-(2,3-dimethyl-2-cyclopentenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 74);

(\pm)-(5*I*, 1'*I*)-5-(2-cyclohexenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 75);

(\pm)-(5*I*, 1'*u*)-5-(2-cyclohexenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 76);

(\pm)-(5*I*, 1'*I*)-5-(2-cyclohexenyl)-7,9-difluoro-1,2,3,4-tetrahydro-2,2-dimethyl-4-methylidene-5*H*-chromeno[3,4-*f*]quinoline (compound 77);

(\pm)-(5*I*, 1'*I*)-5-(2-methylidenecyclohexyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 79);

(\pm)-(5*I*, 1'*u*)-5-(2-methylidenecyclohexyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 80);

(\pm)-(5*I*, 1'*I*)-5-(2-oxocyclohexyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 81);

(\pm)-(5*I*, 1'*u*)-5-(2-oxocyclohexyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 82);

(\pm)-(5*I*, 1'*I*)-5-(3-methyl-2-cyclohexenyl)-9-methoxy-1,2-dihydro-1,2,2,4-tetramethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 83);

(\pm)-5-(2-cyclohexenyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]-quinoline (compound 84);

(\pm)-(5*I*, 1'*I*)-5-(2,3-dimethyl-2-cyclohexenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 85);

(\pm)-5-(3-methylidene-cyclohexyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 87);

(\pm)-(5*I*, 1'*u*)-5-(3-ethylidenecyclohexyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 88);

(\pm)-(5*I*, 1'*I*)- 5-(2-cycloheptenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (Compound 89);

(\pm)-(5*I*, 1'*I*)- 5-(2-cyclooctenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (Compound 91);

(\pm)-(5*I*, 1'*u*)- 5-(2-cyclooctenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (Compound 92);

(\pm)-(5*I*, 1'*I*)- 5-(2,3-epoxy-3-methylcyclohexyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (Compound 94);

(\pm)-(5*I*, 1'*I*)- 5-(3-methyl-2-cyclohexenyl)-7,9-difluoro-1,2,3,4-tetrahydro-2,2-dimethyl-4-methylene-5*H*-chromeno[3,4-*f*]quinolin-3-ol (Compound 95);

(\pm)-(5*I*, 1'*I*)- 5-(2,3-epoxy-2,3-dimethylcyclopentyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (Compound 96);

(\pm)-(5*I*, 1'*u*)- 5-(2,3-epoxy-3-methylcyclohexyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (Compound 97); and

(\pm)-(5*I*, 1'*I*)- 5-(3-methyl-2-cyclohexenyl)-7,9-difluoro-1,2,3,4-tetrahydro-2,2-dimethyl-5*H*-chromeno[3,4-*f*]quinolin-4-one (Compound 98).

13. (Previously presented) A compound selected from the group of:

(\pm)-(5*I*, 1'*I*)-5-(3-methyl-2-cyclohexenyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 24);

(-)-(5*I*, 1'*I*)-5-(3-methyl-2-cyclohexenyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 28);

(-)-(5*I*, 1'*I*)-5-(3-methyl-2-cyclohexenyl)-9-hydroxy-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 33);

(\pm)-(5*I*, 1'*I*)-5-(3-methyl-2-cyclohexenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 34);
(\pm)-(5*I*, 1'*u*)-5-(3-methyl-2-cyclohexenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 35);
(-)-(5*I*, 1'*I*)-5-(3-methyl-2-cyclohexenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 38);
(\pm)-(5*I*, 1'*I*)-5-(3-methyl-2-cyclopentenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 50);
(\pm)-(5*I*, 1'*u*)-5-(3-methyl-2-cyclopentenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 51);
(\pm)-(5*I*, 1'*I*)-5-(2,3-dimethyl-2-cyclopentenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 71);
(-)-(5*I*, 1'*I*)-5-(2,3-dimethyl-2-cyclopentenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 74); and
(\pm)-(5*I*, 1'*I*)-5-(3-methyl-2-cyclohexenyl)-7,9-difluoro-1,2,3,4-tetrahydro-2,2-dimethyl-5*H*-chromeno[3,4-*f*]quinolin-4-one (Compound 98).

14. (Currently amended) A compound of the formula:

wherein:

R² and R³ each independently is selected from the group of hydrogen, C₁–C₄ alkyl, and C₁–C₄ haloalkyl;

R⁶ is selected from the group of hydrogen, F, Cl, Br, CN, OR¹¹, C₁–C₄ alkyl, and C₁–C₄ haloalkyl;

R⁸ and R¹⁰ each independently is selected from the group consisting of hydrogen, F, Cl, Br, CN, OR¹¹, NR¹¹R¹², SR¹¹, COR¹¹, C₁–C₄ alkyl, C₁–C₄ heteroalkyl, C₁–C₄ haloalkyl, allyl, and C₂–C₄ alkenyl;

R¹¹ and R¹² each is independently selected from the group of hydrogen, C₁–C₄ alkyl, C₁–C₄ heteroalkyl, and C₁–C₄ haloalkyl;

R¹⁴, R¹⁵, R¹⁸, R²², R²³, R²⁴ each independently is selected from the group of hydrogen, F, Cl, OR¹¹, C₁–C₄ alkyl, C₁–C₄ haloalkyl, and C₁–C₄ heteroalkyl;

R²², R²³, R²⁴ together consists of not more than 3 carbon atoms;

R¹⁶ taken together with one of R¹⁴, R¹⁸, and R²² form a bond or “—O—” bridge;

n is 0, 1, 2, or 3;

or a pharmaceutically acceptable salt or prodrug thereof.

15. (Currently amended) A compound of the formula:

wherein:

R² and R³ each independently is selected from the group of C₁–C₄ alkyl;

R⁶ is selected from the group of F, Cl, Br, C₁–C₄ alkyl, and C₁–C₄ haloalkyl;

R⁸ and R¹⁰ each independently is selected from the group of hydrogen, F, Cl, Br, CN, OR¹¹, C₁–C₄ alkyl, and C₁–C₄ haloalkyl;

R¹¹ and R¹² each is independently selected from the group of hydrogen, C₁–C₄ alkyl;

R¹⁴, R¹⁵, R¹⁸, R²², R²³, R²⁴ each independently is selected from the group of hydrogen, F, C₁–C₄ alkyl;

R¹⁶ taken together with one of R¹⁴, R¹⁸, and R²² form a bond or “—O—” bridge;

R²², R²³, R²⁴ together consists of not more than 3 carbon atoms; and

n is 0, 1, or 2;

or a pharmaceutically acceptable salt or prodrug thereof.

16. (Original) A compound according to claim 15, wherein

R² and R³ each independently is CH₃;

R⁶ is selected from the group of F, Cl, Br, CH₃, CH₂CH₃, and CF₃;

R⁸ is hydrogen or F;

R¹⁰ is selected from the group of hydrogen, F, Cl, Br, CN, OH, OCH₃, CH₃, CH₂CH₃, and CF₃;

R¹⁴ and R¹⁶ taken together form a bond or “—O—” bridge;

R¹⁵, R¹⁸, R²², R²³, and R²⁴ each independently is hydrogen or CH₃.

17. (Cancelled).

18. (Previously presented) A pharmaceutical composition according to any one of claims 47, 48 or 49, wherein R¹ is selected from the group of hydrogen, C₁–C₄ alkyl, COR¹¹, SO₂R¹¹, and CONR¹¹R¹².

19. (Previously presented) A pharmaceutical composition according to any one of claims 47, 48 or 49, wherein R² and R³ each independently is selected from the group of C₁–C₄ alkyl, and C₁–C₄ haloalkyl.

20. (Previously presented) A pharmaceutical composition according to any one of claims 47, 48 or 49, wherein

R⁵ and R⁷ taken together form a bond;

R⁴ and R⁶ each independently is selected from the group of hydrogen, F, Cl, Br, CN, OR¹¹, C₁–C₄ alkyl, and C₁–C₄ haloalkyl.

21. (Previously presented) A pharmaceutical composition according to any one of claims 47, 48 or 49, wherein

R⁶ and R⁷ taken together are selected from the group of methylidene, and carbonyl;

R⁴ and R⁵ each independently is selected from the group of hydrogen, F, and C₁–C₄ alkyl.

22. (Previously presented) A pharmaceutical composition according to any one of claims 47, 48 or 49, wherein R⁸ through R¹⁰ each independently is selected from the group of hydrogen, F, Cl, Br, NO₂, CN, OR¹¹, SR¹¹, C₁–C₆ alkyl, C₁–C₆ heteroalkyl, and C₁–C₆ haloalkyl.

23. (Original) A pharmaceutical composition according to claim 22, wherein R⁸ through R¹⁰ each independently is selected from the group of hydrogen, F, and OR¹¹.

24. (Previously presented) A pharmaceutical composition according to any one of claims 47, 48 or 49, wherein R¹¹ through R¹² each independently is selected from the group of hydrogen, and C₁–C₄ alkyl.

25. (Currently amended) A pharmaceutical composition, comprising a pharmaceutically acceptable carrier and a compound of formula:

wherein:

R¹ is selected from the group of hydrogen, C₁–C₄ alkyl, C₁–C₄ haloalkyl, C₁–C₄ heteroalkyl, COR¹¹, CO₂R¹¹, SO₂R¹¹, and CONR¹¹R¹²;

R² and R³ each independently is selected from the group of hydrogen, C₁–C₆ alkyl, and C₁–C₆ haloalkyl; or

R² and R³ taken together form a cycloalkyl ring of from three to twelve carbons;

R⁴ through R⁷ each independently is selected from the group of hydrogen, F, Cl, Br, CN, OR¹¹, C₁–C₄ alkyl, C₁–C₄ haloalkyl, and C₁–C₄ heteroalkyl; or

R⁵ and R⁷ taken together form a bond; or

R⁶ and R⁷ taken together are selected from the group of methylidene, mono-substituted methylidene, di-substituted methylidene and carbonyl;

R⁸ through R¹⁰ each independently is selected from the group of hydrogen, F, Cl, Br, I, NO₂, CN, OR¹¹, NR¹¹R¹², SR¹¹, COR¹¹, CO₂R¹¹, CONR¹¹R¹², C₁–C₈ alkyl, C₁–C₈ heteroalkyl, C₁–C₈ haloalkyl, allyl, C₂–C₈ alkenyl and C₂–C₈ alkynyl;

R¹¹ and R¹² each is independently selected from the group of hydrogen, C₁–C₄ alkyl, C₁–C₄ heteroalkyl, and C₁–C₄ haloalkyl;

R¹³ is hydrogen;

R¹⁴ and R¹⁶ taken together form a bond or “–O–” bridge;

R¹⁵, R¹⁷, R¹⁸, R¹⁹, R²⁰ each independently is selected from the group of hydrogen, F, Cl, C₁–C₄ alkyl, and C₁–C₄ haloalkyl;

R²¹ is hydrogen; or
R²¹ and R²⁰ taken together form a bond; and
n is 0, 1, 2, or 3;
or a pharmaceutically acceptable salt or prodrug thereof.

26. (Currently amended) A pharmaceutical composition, comprising a pharmaceutically acceptable carrier and a compound of formula:

wherein:

R¹ is selected from the group of hydrogen, C₁–C₄ alkyl, C₁–C₄ haloalkyl, C₁–C₄ heteroalkyl, COR¹¹, CO₂R¹¹, SO₂R¹¹, and CONR¹¹R¹²;

R² and R³ each independently is selected from the group of hydrogen, C₁–C₆ alkyl, and C₁–C₆ haloalkyl; or

R² and R³ taken together form a cycloalkyl ring of from three to twelve carbons;

R⁴ through R⁷ each independently is selected from the group of hydrogen, F, Cl, Br, CN, OR¹¹, C₁–C₄ alkyl, C₁–C₄ haloalkyl, and C₁–C₄ heteroalkyl; or

R⁵ and R⁷ taken together form a bond; or

R⁶ and R⁷ taken together are selected from the group of methyldene, mono-substituted methyldene, di-substituted methyldene and carbonyl;

R⁸ through R¹⁰ each independently is selected from the group of hydrogen, F, Cl, Br, I, NO₂, CN, OR¹¹, NR¹¹R¹², SR¹¹, COR¹¹, CO₂R¹¹, CONR¹¹R¹², C₁–C₈ alkyl, C₁–C₈ heteroalkyl, C₁–C₈ haloalkyl, allyl, C₂–C₈ alkenyl and C₂–C₈ alkynyl;

R¹¹ and R¹² each is independently selected from the group of hydrogen, C₁–C₄ alkyl, C₁–C₄ heteroalkyl, and C₁–C₄ haloalkyl;

R¹³ is hydrogen;

R¹⁴, R¹⁵, R¹⁸, R¹⁹, R²⁰ each independently is selected from the group of hydrogen, F, Cl, C₁–C₄ alkyl, and C₁–C₄ haloalkyl;

R¹⁶ and R¹⁷ taken together are selected from the group of methyldene, mono-substituted methyldene, and di-substituted methyldene;

R²¹ is hydrogen; or

R²¹ and R²⁰ taken together form a bond; and

n is 0, 1, 2, or 3;

or a pharmaceutically acceptable salt or prodrug thereof.

27. (Currently amended) A pharmaceutical composition, comprising a pharmaceutically acceptable carrier and a compound of formula:

(I)

wherein:

R¹ is selected from the group of hydrogen, C₁–C₄ alkyl, C₁–C₄ haloalkyl, C₁–C₄ heteroalkyl, COR¹¹, CO₂R¹¹, SO₂R¹¹, and CONR¹¹R¹²;

R² and R³ each independently is selected from the group of hydrogen, C₁–C₆ alkyl, and C₁–C₆ haloalkyl; or

R² and R³ taken together form a cycloalkyl ring of from three to twelve carbons;

R⁴ through R⁷ each independently is selected from the group of hydrogen, F, Cl, Br, CN, OR¹¹, C₁–C₄ alkyl, C₁–C₄ haloalkyl, and C₁–C₄ heteroalkyl; or

R⁵ and R⁷ taken together form a bond; or

R⁶ and R⁷ taken together are selected from the group of methyldene, mono-substituted methyldene, di-substituted methyldene and carbonyl;

R⁸ through R¹⁰ each independently is selected from the group of hydrogen, F, Cl, Br, I, NO₂, CN, OR¹¹, NR¹¹R¹², SR¹¹, COR¹¹, CO₂R¹¹, CONR¹¹R¹², C₁–C₈ alkyl, C₁–C₈ heteroalkyl, C₁–C₈ haloalkyl, allyl, C₂–C₈ alkenyl and C₂–C₈ alkynyl;

R¹¹ and R¹² each is independently selected from the group of hydrogen, C₁–C₄ alkyl, C₁–C₄ heteroalkyl, and C₁–C₄ haloalkyl;

R¹³ is hydrogen;

R¹⁴, R¹⁵, R¹⁷, R²⁰ each independently is selected from the group of hydrogen, F, Cl, C₁–C₄ alkyl, and C₁–C₄ haloalkyl;

R¹⁶ and R¹⁸ taken together form a bond when n is 1; or

R¹⁶ and R¹⁹ taken together form a bond when n is 0;

R²¹ is hydrogen; and

n is 0, 1, 2, or 3;

or a pharmaceutically acceptable salt or prodrug thereof.

28. (Cancelled)

29. (Cancelled)

30. through 43. (Cancelled)

44. (Currently amended) A compound of the formula:

wherein:

R¹ is selected from the group of hydrogen, C₁–C₄ alkyl, C₁–C₄ haloalkyl, C₁–C₄ heteroalkyl, COR¹¹, CO₂R¹¹, SO₂R¹¹, and CONR¹¹R¹²;

R² and R³ each independently is selected from the group of hydrogen, C₁–C₆ alkyl, and C₁–C₆ haloalkyl; or

R² and R³ taken together form a cycloalkyl ring of from three to twelve carbons;

R⁴ through R⁷ each independently is selected from the group of hydrogen, F, Cl, Br, CN, OR¹¹, C₁–C₄ alkyl, C₁–C₄ haloalkyl, and C₁–C₄ heteroalkyl; or

R⁵ and R⁷ taken together form a bond; or

R⁶ and R⁷ taken together are selected from the group of methylidene, mono-substituted methylidene, di-substituted methylidene and carbonyl;

R⁸ through R¹⁰ each independently is selected from the group of hydrogen, F, Cl, Br, I, NO₂, CN, OR¹¹, NR¹¹R¹², SR¹¹, COR¹¹, CO₂R¹¹, CONR¹¹R¹², C₁–C₈ alkyl, C₁–C₈ heteroalkyl, C₁–C₈ haloalkyl, allyl, C₂–C₈ alkenyl and C₂–C₈ alkynyl;

R¹¹ and R¹² each is independently selected from the group of hydrogen, C₁–C₄ alkyl, C₁–C₄ heteroalkyl, and C₁–C₄ haloalkyl;

R¹³ is hydrogen;

R¹⁴ through R²⁰ each independently is selected from the group of hydrogen, F, Cl, Br, OR¹¹, C₁–C₄ alkyl, C₁–C₄ haloalkyl, and C₁–C₄ heteroalkyl; or

R¹⁴ and R¹⁵ taken together are selected from the group of methylidene, carbonyl and thiocarbonyl; or

R¹⁶ and R¹⁷ taken together are selected from the group of methylidene, mono-substituted methylidene, di-substituted methylidene, carbonyl and thiocarbonyl; or

R¹⁴ and R¹⁶ taken together form a bond or “–O–” bridge; or

R¹⁶ and R¹⁸ taken together form a bond when n is 1; or

R¹⁶ and R¹⁹ taken together form a bond when n is 0;

R²¹ is hydrogen; or

R²¹ and R²⁰ taken together form a bond;

n is 0, 1, 2, or 3;

or a pharmaceutically acceptable salt or ~~prodrug~~ thereof.

45. (Currently amended) A compound of the formula:

wherein:

R¹ is selected from the group of hydrogen, C₁–C₄ alkyl, C₁–C₄ haloalkyl, C₁–C₄ heteroalkyl, COR¹¹, CO₂R¹¹, SO₂R¹¹, and CONR¹¹R¹²;

R² and R³ each independently is selected from the group of hydrogen, C₁–C₆ alkyl, and C₁–C₆ haloalkyl; or

R² and R³ taken together form a cycloalkyl ring of from three to twelve carbons;

R⁴ through R⁷ each independently is selected from the group of hydrogen, F, Cl, Br, CN, OR¹¹, C₁–C₄ alkyl, C₁–C₄ haloalkyl, and C₁–C₄ heteroalkyl; or

R⁵ and R⁷ taken together form a bond; or

R⁶ and R⁷ taken together are selected from the group of methyldene, mono-substituted methyldene, di-substituted methyldene and carbonyl;

R⁸ through R¹⁰ each independently is selected from the group of hydrogen, F, Cl, Br, I, NO₂, CN, OR¹¹, NR¹¹R¹², SR¹¹, COR¹¹, CO₂R¹¹, CONR¹¹R¹², C₁-C₈ alkyl, C₁-C₈ heteroalkyl, C₁-C₈ haloalkyl, allyl, C₂-C₈ alkenyl and C₂-C₈ alkynyl;

R¹¹ and R¹² each is independently selected from the group of hydrogen, C₁-C₄ alkyl, C₁-C₄ heteroalkyl, and C₁-C₄ haloalkyl;

R¹³ is hydrogen; or

R¹³ and R¹⁴ taken together form a bond;

R¹⁴ through R²⁰ each independently is selected from the group of hydrogen, F, Cl, Br, OR¹¹, C₁-C₄ alkyl, C₁-C₄ haloalkyl, and C₁-C₄ heteroalkyl; or

R¹⁴ and R¹⁵ taken together are selected from the group of methyldene, carbonyl and thiocarbonyl; or

R¹⁶ and R¹⁷ taken together are selected from the group of methyldene, mono-substituted methyldene, di-substituted methyldene, carbonyl and thiocarbonyl; or

R¹⁴ and R¹⁶ taken together form a bond or “-O-” bridge;

R¹⁶ and R¹⁹ taken together form a bond when n is 0;

R²¹ is hydrogen; or

R²¹ and R²⁰ taken together form a bond;

n is 0, 1, 2, or 3;

or a pharmaceutically acceptable salt or prodrug thereof.

46. (Currently amended) A compound of the formula:

(I)

wherein:

R¹ is selected from the group of hydrogen, C₁–C₄ alkyl, C₁–C₄ haloalkyl, C₁–C₄ heteroalkyl, COR¹¹, CO₂R¹¹, SO₂R¹¹, and CONR¹¹R¹²;

R² and R³ each independently is selected from the group of hydrogen, C₁–C₆ alkyl, and C₁–C₆ haloalkyl; or

R² and R³ taken together form a cycloalkyl ring of from three to twelve carbons;

R⁴ through R⁷ each independently is selected from the group of hydrogen, F, Cl, Br, CN, OR¹¹, C₁–C₄ alkyl, C₁–C₄ haloalkyl, and C₁–C₄ heteroalkyl; or

R⁵ and R⁷ taken together form a bond; or

R⁶ and R⁷ taken together are selected from the group of methyldene, mono-substituted methyldene, di-substituted methyldene and carbonyl;

R⁸ through R¹⁰ each independently is selected from the group of hydrogen, F, Cl, Br, I, NO₂, CN, OR¹¹, NR¹¹R¹², SR¹¹, COR¹¹, CO₂R¹¹, CONR¹¹R¹², C₁–C₈ alkyl, C₁–C₈ heteroalkyl, C₁–C₈ haloalkyl, allyl, C₂–C₈ alkenyl and C₂–C₈ alkynyl;

R¹¹ and R¹² each is independently selected from the group of hydrogen, C₁–C₄ alkyl, C₁–C₄ heteroalkyl, and C₁–C₄ haloalkyl;

R¹³ is hydrogen; or

R¹³ and R¹⁴ taken together form a bond;

R¹⁴ through R²⁰ each independently is selected from the group of hydrogen, F, Cl, Br, OR¹¹, C₁–C₄ alkyl, C₁–C₄ haloalkyl, and C₁–C₄ heteroalkyl; or

R¹⁴ and R¹⁵ taken together are selected from the group of methyldene, carbonyl and thiocarbonyl; or

R¹⁶ and R¹⁷ taken together are selected from the group of methyldene, mono-substituted methyldene, di-substituted methyldene, carbonyl and thiocarbonyl; or

R¹⁴ and R¹⁶ taken together form a bond or “–O–” bridge; or

R¹⁶ and R¹⁸ taken together form a bond when n is 1; or

R¹⁶ and R¹⁹ taken together form a bond when n is 0;

R²¹ is hydrogen;

n is 0, 1, 2, or 3;

or a pharmaceutically acceptable salt or prodrug thereof.

47. (Previously presented) A pharmaceutical composition, comprising a pharmaceutically acceptable carrier and a compound of any one of claims 44-46.