Nonparametric Regression by Projection on Non-compactly Supported Bases

Florian Dussap

9e Rencontre des Jeunes Statisticien·ne·s Avril 2022

Regression model with random design

Let $A \subset \mathbb{R}^p$, we observe $n \geqslant 1$ r.v. $(X_i, Y_i) \in A \times \mathbb{R}$ given by:

$$Y_i = b(\boldsymbol{X}_i) + \varepsilon_i,$$

where:

- (X_i) are i.i.d. with unknown distribution μ .
- (ε_i) are i.i.d. with zero mean and known variance σ^2 .
- (X_i) and (ε_i) are independent.

Our goal is to estimate the regression function $b: A \to \mathbb{R}$. To quantify the error of an estimator, we consider two norms:

$$||t||_n^2 := \frac{1}{n} \sum_{i=1}^n t(\mathbf{X}_i)^2, \quad ||t||_\mu^2 := \int_A t(\mathbf{x})^2 d\mu(\mathbf{x}).$$

The error relative to the norm $\|\cdot\|_{\mu}$ can be viewed as a prediction error:

$$\forall \hat{b} \text{ estimator}, \ \|b - \hat{b}\|_{\mu}^2 = \mathbb{E}_{\boldsymbol{X} \sim \mu} \Big[\big(b(\boldsymbol{X}) - \hat{b}(\boldsymbol{X})\big)^2 \, \Big| \, \boldsymbol{X}_1, \dots, \boldsymbol{X}_n \Big].$$

Assumptions

- We assume that $\mu \ll \nu$ for a fixed measure ν , and that $\frac{d\mu}{d\nu}$ is bounded on A. Hence, we have $L^2(A,\mu) \subset L^2(A,\nu)$.
- 2 If A is compact, we assume that:

$$\forall \mathbf{x} \in A, \quad \frac{\mathrm{d}\mu}{\mathrm{d}\nu}(\mathbf{x}) \geqslant f_0 > 0.$$

Hence, the norms $\|\cdot\|_{\mu}$ and $\|\cdot\|_{\nu}$ are equivalent, and we have $L^2(A,\mu)=L^2(A,\nu)$.

- **3** We assume that $b \in L^{2r}(A, \mu)$ for some $r \in (1, +\infty]$. We consider $r' \in [1, +\infty)$ such that $\frac{1}{r} + \frac{1}{r'} = 1$.
- **3** We assume that $A = A_1 \times \cdots \times A_p$ and that $\nu = \nu_1 \otimes \cdots \otimes \nu_p$.

Projection estimator I

Let $(\varphi_k^i)_{k\in\mathbb{N}}$ be an orthonormal basis of $L^2(A_i,\nu_i)$. We construct a basis of $L^2(A,\nu)$ by tensorization. For all $\mathbf{k}=(k_1,\ldots,k_p)\in\mathbb{N}^p$ we define:

$$\varphi_{\mathbf{k}}(\mathbf{x}) := (\varphi_{k_1}^1 \otimes \cdots \otimes \varphi_{k_p}^p)(\mathbf{x}) := \varphi_{k_1}^1(x_1) \times \cdots \times \varphi_{k_p}^p(x_p).$$

For $\mathbf{m} \in \mathbb{N}_+^p$, we consider the model:

$$S_{m{m}} \coloneqq \operatorname{\mathsf{Span}} \left(arphi_{m{k}} : orall i, \ 0 \leqslant k_i < m_i
ight), \quad D_{m{m}} \coloneqq \dim(S_{m{m}}) = m_1 \cdots m_p,$$

and we estimate b by a least squares minimization on S_m :

$$\hat{b}_{\boldsymbol{m}} := \arg\min_{t \in S_{\boldsymbol{m}}} \frac{1}{n} \sum_{i=1}^{n} [Y_i - t(\boldsymbol{X}_i)]^2.$$

Example

- For $A = [-\pi, \pi]$ and $\nu = \text{Leb}$, we choose the trigonometric basis.
- ② For $A = \mathbb{R}$ and $\nu = \text{Leb}$, we choose $\varphi_k(x) = c_k H_k(x) e^{-x^2/2}$ with H_k the k-th Hermite polynomial.

This estimator can be computed using hypermatrix calculus:

$$\hat{b}_{m} = \sum_{\forall i, k_{i} < m_{i}} \hat{a}_{k}^{(m)} \varphi_{k}, \qquad \hat{a}^{(m)} := \underset{a \in \mathbb{R}^{m}}{\arg \min} \| \mathbf{Y} - \hat{\mathbf{\Phi}}_{m} \times_{p} \mathbf{a} \|_{\mathbb{R}^{n}}^{2}$$

$$= \hat{\mathbf{G}}_{m}^{-1} \times_{p} \hat{\mathbf{\Phi}}_{m}^{*} \times_{1} \mathbf{Y},$$

where $\mathbf{Y} \coloneqq (Y_1, \dots, Y_n) \in \mathbb{R}^n$, where:

$$\hat{\pmb{G}}_{\pmb{m}} \coloneqq \left[\langle \varphi_{\pmb{j}}, \varphi_{\pmb{k}} \rangle_n \right]_{\pmb{j}, \pmb{k}} \in \mathbb{R}^{\pmb{m} \times \pmb{m}}, \quad \hat{\pmb{\Phi}}_{\pmb{m}} \coloneqq \left[\varphi_{\pmb{k}}(\pmb{X}_i) \right]_{i, \pmb{k}} \in \mathbb{R}^{n \times \pmb{m}},$$

and where \times_p stands for the *p*-contracted product:

$$egin{aligned} egin{aligned} egin{aligned} oldsymbol{A} imes_{oldsymbol{
ho}} oldsymbol{B} oldsymbol{J}_{oldsymbol{j,k}} & oldsymbol{B}_{oldsymbol{k},\ell}. \end{aligned}$$

In the following, we will need to consider the expectation of \hat{G}_m :

$$G_{m} := \mathbb{E}[\hat{G}_{m}] = \left[\langle \varphi_{j}, \varphi_{k} \rangle_{\mu} \right]_{i,k} \in \mathbb{R}^{m \times m}.$$

Basic bound on the empirical risk

We recall the classical bias-variance decomposition of the empirical risk.

Proposition

If $\hat{\mathbf{G}}_{m}$ is invertible, then we have:

$$\mathbb{E}_{\boldsymbol{X}}\left[\|b-\hat{b}_{\boldsymbol{m}}\|_{n}^{2}\right] := \mathbb{E}\left[\|b-\hat{b}_{\boldsymbol{m}}\|_{n}^{2} \mid \boldsymbol{X}_{1}, \dots, \boldsymbol{X}_{n}\right]$$
$$= \inf_{t \in S_{\boldsymbol{m}}} \|b-t\|_{n}^{2} + \sigma^{2} \frac{D_{\boldsymbol{m}}}{n}.$$

If $\hat{\mathbf{G}}_{m}$ is invertible a.s., then we have:

$$\mathbb{E}\|b-\hat{b}_{\boldsymbol{m}}\|_n^2 \leqslant \inf_{t \in S_{\boldsymbol{m}}} \|b-t\|_{\mu}^2 + \sigma^2 \frac{D_{\boldsymbol{m}}}{n}.$$

From the empirical norm to the design norm

We introduce the event:

$$\Omega_{\boldsymbol{m}}(\delta) := \left\{ \sup_{t \in S_{\boldsymbol{m}} \setminus \{0\}} \frac{\|t\|_{\mu}^2}{\|t\|_{n}^2} \leqslant \frac{1}{1 - \delta} \right\}, \quad \delta \in (0, 1).$$

Lemma

For all $\delta \in (0,1)$ and all $\mathbf{m} \in \mathbb{N}_+^p$, we have:

$$\mathbb{P}\big[\Omega_{\boldsymbol{m}}(\delta)^{\mathrm{c}}\big] \leqslant D_{\boldsymbol{m}} \exp\left(-h(\delta) \frac{n}{L(\boldsymbol{m}) \|\boldsymbol{G}_{\boldsymbol{m}}^{-1}\|_{\mathrm{op}}}\right),$$

where $h(\delta) := (1 - \delta) \log(1 - \delta) + \delta$, and where:

$$L(\boldsymbol{m}) := \left\| \sum_{\forall i \ k_i < m_i} \varphi_{\boldsymbol{k}}^2 \right\|_{\infty} = \sup_{t \in S_{\boldsymbol{m}} \setminus \{0\}} \frac{\|t\|_{\infty}^2}{\|t\|_{\nu}^2}.$$

Remarks on the lemma

- For the trigonometric basis, we have $L(m) \leq m$.
- For the Hermite basis, we have $L(m) \leqslant C\sqrt{m}$.
- If A is compact, then we have $\|\boldsymbol{G}_{\boldsymbol{m}}^{-1}\|_{op} \leqslant 1/f_0$.
- If $A = \mathbb{R}$ and $(\varphi_k)_{k \in \mathbb{N}}$ is the Hermite basis, then we have $\|\mathbf{G}_{\mathbf{m}}^{-1}\|_{\text{op}} \ge C(\mu)\sqrt{m}$ [Comte and Genon-Catalot, 2020].

Sketch of the proof of the lemma

The proof is inspired by [Cohen et al., 2013]. Let $(\phi_1, \ldots, \phi_{D_m})$ be an orthonormal of S_m for the inner product $\langle \cdot, \cdot \rangle_{\mu}$, and let H_m be their Gram matrix relative to the empirical inner product, that is:

$$\mathbf{H}_{\mathbf{m}} \coloneqq \left[\langle \phi_j, \phi_k \rangle_n \right]_{j,k} \in \mathbb{R}^{D_{\mathbf{m}} \times D_{\mathbf{m}}}.$$

Then, we have:

$$\sup_{t \in S_{\boldsymbol{m}} \setminus \{0\}} \frac{\|t\|_{\mu}^2}{\|t\|_{\boldsymbol{n}}^2} = \|\boldsymbol{H}_{\boldsymbol{m}}^{-1}\|_{\mathrm{op}} = \frac{1}{\lambda_{\min}(\boldsymbol{H}_{\boldsymbol{m}})}.$$

Hence, we can rewrite the event as:

$$\Omega_{\boldsymbol{m}}(\delta)^{\mathsf{c}} = \big\{ \lambda_{\mathsf{min}}(\boldsymbol{H}_{\boldsymbol{m}}) < 1 - \delta \big\} = \big\{ \lambda_{\mathsf{min}}(\boldsymbol{H}_{\boldsymbol{m}}) < (1 - \delta)\lambda_{\mathsf{min}}(\mathbb{E}\boldsymbol{H}_{\boldsymbol{m}}) \big\},$$

since $\mathbb{E} \boldsymbol{H_m} = \boldsymbol{I_{D_m}}$.

We conclude using the following concentration inequality.

Theorem ([Gittens and Tropp, 2011], [Tropp, 2012])

Let $Z_1, ..., Z_n$ be independent random self-adjoint positive semi-definite matrices with dimension d, such that $\sup_k \lambda_{\max}(Z_k) \leqslant R$ a.s. If we define:

$$\mu_{\min} \coloneqq \lambda_{\min} \left(\sum_{k=1}^{n} \mathbb{E}[\mathbf{Z}_k] \right),$$

then we have:

$$\mathbb{P}\left[\lambda_{\min}\left(\sum_{k=1}^{n} \mathbf{Z}_{k}\right) \leqslant (1-\delta)\mu_{\min}\right] \leqslant d \times \left(\frac{\mathrm{e}^{-\delta}}{(1-\delta)^{(1-\delta)}}\right)^{\mu_{\min}/R},$$

$$\mathbb{P}\left[\lambda_{\min}\left(\sum_{k=1}^{n} \mathbf{Z}_{k}\right) \geqslant (1+\delta)\mu_{\min}\right] \leqslant \left(\frac{\mathrm{e}^{\delta}}{(1+\delta)^{(1+\delta)}}\right)^{\mu_{\min}/R}.$$

Bound on the prediction risk

Let us consider the collection:

$$\mathcal{M}_{n,\alpha} := \left\{ \boldsymbol{m} \in \mathbb{N}_+^p \, \middle| \, L(\boldsymbol{m}) \big(\| \boldsymbol{G}_{\boldsymbol{m}}^{-1} \|_{\mathsf{op}} \lor 1 \big) \leqslant \alpha \frac{n}{\log n} \right\}.$$

If $\mathbf{m} \in \mathcal{M}_{n,\alpha}$, then we have $\mathbb{P}[\Omega_{\mathbf{m}}(\delta)^{\mathsf{c}}] \leqslant D_{\mathbf{m}} \, n^{-\alpha} \leqslant n^{-\alpha+1}$.

Theorem

For all $\alpha \in (0, \frac{1}{2r'+1})$ and for all $\mathbf{m} \in \mathcal{M}_{n,\alpha}$ we have:

$$\mathbb{E}\|b-\hat{b}_{\boldsymbol{m}}\|_{\mu}^{2} \leqslant C_{\boldsymbol{n}}(\alpha,r')\inf_{t\in S_{\boldsymbol{m}}}\|b-t\|_{\mu}^{2}+C'(\alpha,r')\sigma^{2}\frac{D_{\boldsymbol{m}}}{n}+R_{\boldsymbol{n}},$$

with:

$$R_n = \frac{C''(\|b\|_{\mathsf{L}^{2r}(\mu)}, \sigma^2, \alpha)}{n \log n}.$$

A model selection result in a fixed design setting

Let $\widehat{\mathcal{M}}_n$ a model collection that may depend on the (\boldsymbol{X}_i) , and let:

$$\hat{\boldsymbol{m}} \coloneqq \arg\min_{\boldsymbol{m} \in \widehat{\mathcal{M}}_n} \left(-\|\hat{b}_{\boldsymbol{m}}\|_n^2 + \operatorname{pen}(\boldsymbol{m}) \right), \ \operatorname{pen}(\boldsymbol{m}) \coloneqq (1+\theta)\sigma^2 \frac{D_{\boldsymbol{m}}}{n}.$$

Theorem ([Baraud, 2000])

If $\mathbb{E}|\varepsilon_1|^q$ is finite for some q > 4, then the following upper bound holds:

$$\mathbb{E}_{\boldsymbol{X}}\|b-\hat{b}_{\widehat{\boldsymbol{m}}}\|_n^2 \leqslant C(\theta)\inf_{\boldsymbol{m}\in\widehat{\mathcal{M}}_n} \left(\inf_{t\in S_{\boldsymbol{m}}} \|b-t\|_n^2 + \sigma^2 \frac{D_{\boldsymbol{m}}}{n}\right) + \sigma^2 \frac{\sum_n (\theta,q)}{n},$$

with
$$\Sigma_n(\theta,q) := C'(\theta,q) \frac{\mathbb{E}|\varepsilon_1|^q}{\sigma^q} \sum_{\boldsymbol{m} \in \widehat{\mathcal{M}}_n} D_{\boldsymbol{m}}^{-(\frac{q}{2}-2)}$$
.

We choose the model collection:

$$\widehat{\mathcal{M}}_{n,\beta} := \left\{ \boldsymbol{m} \in \mathbb{N}_+^p \, \middle| \, L(\boldsymbol{m}) \big(\| \, \hat{\boldsymbol{G}}_{\boldsymbol{m}}^{-1} \|_{\mathsf{op}} \vee 1 \big) \leqslant \beta \frac{n}{\log n} \right\}.$$

Oracle bound for the empirical risk

Theorem

If $\mathbb{E}|\varepsilon_1|^q$ is finite for some q>6, then there exists a constant $\alpha_{\beta,r'}>0$ such that for all $\alpha\in(0,\alpha_{\beta,r'})$, we have:

$$\mathbb{E}\|b-\hat{b}_{\hat{\boldsymbol{m}}}\|_n^2 \leqslant C(\theta) \inf_{\boldsymbol{m}\in\mathcal{M}_{n,\alpha}} \left(\inf_{t\in\mathcal{S}_{\boldsymbol{m}}} \|b-t\|_{\mu}^2 + \sigma^2 \frac{D_{\boldsymbol{m}}}{n}\right) + \sigma^2 \frac{\Sigma(\theta,q)}{n} + R_n,$$

where:

$$R_n \coloneqq C'(\|b\|_{\mathsf{L}^{2r}(\mu)}, \sigma^2) rac{(\log n)^{(p-1)/r'}}{n^{\kappa(lpha,eta)/r'}}, \ \Sigma(heta,q) \coloneqq C''(heta,q) rac{\mathbb{E}|arepsilon_1|^q}{\sigma^q} \sum_{m{m} \in \mathbb{N}_+^p} D_{m{m}}^{-(rac{q}{2}-2)},$$

with $\kappa(\alpha, \beta)$ a positive constant satisfying $\frac{\kappa(\alpha, \beta)}{r'} > 1$ and $\frac{\kappa(\alpha, \beta)}{r'} \to 1$ as $\alpha \to \alpha_{\beta, r'}$.

Oracle bound for a compact domain

Theorem

We assume that A is compact. If $\mathbb{E}|\varepsilon_1|^q$ is finite for some q>6, then there exists $\beta_{f_0,r'}>0$ such that for all $\beta\in(0,\beta_{f_0,r'})$, there exists $\alpha_{\beta,r'}>0$ such that for all $\alpha\in(0,\alpha_{\beta,r'})$, we have:

$$\mathbb{E}\|b - \hat{b}_{\hat{m}}\|_{\mu}^{2} \leqslant C(\theta, \beta, r) \inf_{\boldsymbol{m} \in \mathcal{M}_{n,\alpha}} \left(\inf_{t \in S_{\boldsymbol{m}}} \|b - t\|_{\mu}^{2} + \sigma^{2} \frac{D_{\boldsymbol{m}}}{n} \right) + C'(\beta, r) \sigma^{2} \frac{\Sigma(\theta, q)}{n} + R_{n},$$

where the remainder term is given by:

$$R_n = C'' \big(\|b\|_{\mathsf{L}^{2r}(\mu)}, \sigma^2, \beta, r \big) \left(n^{-\frac{\kappa(\alpha,\beta)}{r'}} (\log n)^{\frac{\rho-1}{r'}} + n^{-\lambda(\beta,r,f_0)} (\log n)^{\frac{\rho-1}{r'}-1} \right)$$
 with $\lambda(\beta,r,f_0) > 1$ and $\frac{\kappa(\alpha,\beta)}{r'} > 1$.

Oracle bound in the general case I

The compact case result is proven using the concentration inequalities of [Gittens and Tropp, 2011]. But the proof relies critically on the lower bound of $\frac{\mathrm{d}\mu}{\mathrm{d}\nu}$. In the general case, we use the matrix Bernstein bound instead.

Lemma

For all x > 0 and all $\mathbf{m} \in \mathbb{N}_+^p$ we have:

$$\mathbb{P}\Big[\|\hat{\boldsymbol{G}}_{\boldsymbol{m}}-\boldsymbol{G}_{\boldsymbol{m}}\|_{\mathrm{op}}\geqslant x\Big]\leqslant D_{\boldsymbol{m}}\,\exp\left(-n\times\frac{x^2/2}{L(\boldsymbol{m})\big(\|\frac{\mathrm{d}\mu}{\mathrm{d}\nu}\|_{\infty}+\frac{2}{3}x\big)}\right).$$

To obtain an oracle bound, we need to restrict the model collections:

$$\begin{split} \mathcal{M}'_{n,\alpha} &:= \bigg\{ \boldsymbol{m} \in \mathbb{N}_+^p \ \bigg| \ L(\boldsymbol{m}) \left(\| \boldsymbol{G}_{\boldsymbol{m}}^{-1} \|_{\text{op}}^2 \vee 1 \right) \leqslant \alpha \frac{n}{\log n} \bigg\}, \\ \widehat{\mathcal{M}}'_{n,\beta} &:= \bigg\{ \boldsymbol{m} \in \mathbb{N}_+^p \ \bigg| \ L(\boldsymbol{m}) \left(\| \hat{\boldsymbol{G}}_{\boldsymbol{m}}^{-1} \|_{\text{op}}^2 \vee 1 \right) \leqslant \beta \frac{n}{\log n} \bigg\}. \end{split}$$

Oracle bound in the general case II

In the following, let $B := (\|\frac{d\mu}{d\nu}\|_{\infty} + \frac{2}{3})^{-1}$.

Theorem

If $\mathbb{E}|\varepsilon_1|^q$ is finite for some q>6, then there exists $\beta_{B,r'}>0$ such that for all $\beta\in(0,\beta_{B,r'})$, there exists $\alpha_{\beta,r'}>0$ such that for all $\alpha\in(0,\alpha_{\beta,r'})$, we have:

$$\mathbb{E}\|b - \hat{b}_{\hat{m}}\|_{\mu}^{2} \leqslant C(\theta, \beta, r) \inf_{\boldsymbol{m} \in \mathcal{M}'_{n,\alpha}} \left(\inf_{t \in S_{\boldsymbol{m}}} \|b - t\|_{\mu}^{2} + \sigma^{2} \frac{D_{\boldsymbol{m}}}{n} \right) + C'(\beta, r) \sigma^{2} \frac{\Sigma(\theta, q)}{n} + R_{n},$$

where the remainder term is given by:

$$R_n = C'' \left(\|b\|_{\mathsf{L}^{2r}(\mu)}, \sigma^2, \beta, r \right) \left(n^{-\frac{\kappa(\alpha,\beta)}{r'}} (\log n)^{\frac{p-1}{r'}} + n^{-\lambda(\beta,r,B)} \left(\log n \right)^{\frac{p-1}{r'}-1} \right)$$
 with $\lambda(\beta,r,B) > 1$ and $\frac{\kappa(\alpha,\beta)}{r'} > 1$.

Conclusion

- We obtain bounds for the empirical risk from the results for fixed design regression.
- To obtain a bound on the prediction risk, we need to study the minimum eigenvalue of a random matrix. We do so by using concentration inequalities of [Gittens and Tropp, 2011] and [Tropp, 2012].
- From these inequalities, we obtain a condition on the size of the models that entails that the prediction risk satisfies the same bound than the empirical risk.
- Even in the noiseless case ($\varepsilon_i = 0$), regularization is required [Cohen et al., 2013].

References

- Baraud, Y. (2000).
 - Model selection for regression on a fixed design. Probability Theory and Related Fields, 117(4):467–493.
- Cohen, A., Davenport, M. A., and Leviatan, D. (2013). On the Stability and Accuracy of Least Squares Approximations. Foundations of Computational Mathematics, 13(5):819–834.
- Comte, F. and Genon-Catalot, V. (2020).

 Regression function estimation as a partly inverse problem.

 Annals of the Institute of Statistical Mathematics, 72(4):1023–1054.
- Gittens, A. and Tropp, J. A. (2011).

 Tail bounds for all eigenvalues of a sum of random matrices.

 arXiv:1104.4513 [math].
- Tropp, J. A. (2012).
 User-Friendly Tail Bounds for Sums of Random Matrices.
 Foundations of Computational Mathematics, 12(4):389–434.