Intelligent tutoring systems: a systematic review of characteristics, applications, and evaluation methods Intelligent tutoring systems: a systematic review of characteristics, app...





### **Interactive Learning Environments**



ISSN: 1049-4820 (Print) 1744-5191 (Online) Journal homepage: http://www.tandfonline.com/loi/nile20

# Intelligent tutoring systems: a systematic review of characteristics, applications, and evaluation methods

Elham Mousavinasab, Nahid Zarifsanaiey, Sharareh R. Niakan Kalhori, Mahnaz Rakhshan, Leila Keikha & Marjan Ghazi Saeedi

To cite this article: Elham Mousavinasab, Nahid Zarifsanaiey, Sharareh R. Niakan Kalhori, Mahnaz Rakhshan, Leila Keikha & Marjan Ghazi Saeedi (2018): Intelligent tutoring systems: a systematic review of characteristics, applications, and evaluation methods, Interactive Learning Environments, DOI: 10.1080/10494820.2018.1558257

To link to this article: <a href="https://doi.org/10.1080/10494820.2018.1558257">https://doi.org/10.1080/10494820.2018.1558257</a>







## Intelligent tutoring systems: a systematic review of characteristics, applications, and evaluation methods

Elham Mousavinasab <sup>1</sup> , Nahid Zarifsanaiey <sup>1</sup> , Sharareh R. Niakan Kalhori <sup>1</sup> , Mahnaz Rakhshan <sup>1</sup> , Leila Keikha and Marjan Ghazi Saeedi <sup>1</sup>

<sup>a</sup>Department of Health Information Management, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran; <sup>b</sup>Department of E-learning, Virtual School, Center of Excellence for e-Learning in Medical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran; <sup>c</sup>Department of Nursing, School of Nursing and Midwifery, Shiraz University of Medical Sciences, Shiraz, Iran

#### **ABSTRACT**

With the rapid growth of technology, computer learning has become increasingly integrated with artificial intelligence techniques in order to develop more personalized educational systems. These systems are known as Intelligent Tutoring systems (ITSs). This paper focused on the variant characteristics of ITSs developed across different educational fields. The original studies from 2007 to 2017 were extracted from the PubMed, ProQuest, Scopus, Google scholar, Embase, Cochrane, and Web of Science databases. Finally, 53 papers were included in the study based on inclusion criteria. The educational fields in the ITSs were mainly computer sciences (37.73%). Action-condition rule-based reasoning, data mining, and Bayesian network with 33.96%, 22.64%, and 20.75% frequency respectively, were the most frequent artificial intelligent techniques applied in the ITSs. These techniques enable ITSs to deliver adaptive guidance and instruction, evaluate learners, define and update the learner's model, and classify or cluster learners. Specifically, the performance of the system, learner's performance, and experiences were used for evaluation of ITSs. Most ITSs were designed for web user interfaces. Although these systems could facilitate reasoning in the learning process, these systems have rarely been applied in experimental courses including problem-solving, decisionmaking in physics, chemistry, and clinical fields. Due to the important role of a cell phone in facilitating personalized learning and given the low rate of using mobile-based ITSs, this study has recommended the development and evaluation of mobile-based ITSs.

#### ARTICLE HISTORY

Received 21 January 2018 Accepted 7 December 2018

#### **KEYWORDS**

Adaptive learning; artificial intelligent tutoring; intelligent learning; intelligent tutoring system; ITS

#### 1. Introduction

The SCHOLAR tutor system was the earliest intelligent tutoring system (ITS) introduced by Jaime R. Carbonell in 1970 (Woolf, 2010). This program system was developed for reviewing the student's knowledge in the geography of South America. Indeed, by using the semantic network of concepts and facts of knowledge to evaluate their knowledge in the context of geography, the SCHOLAR began a two-way interaction with the students (Carbonell, 1970). In the last decades, the use of artificial intelligent (AI) methods especially machine learning has grown in the instructional systems. ITSs are adaptive instructional systems which incorporate AI techniques with educational methods. The important feature of these systems is the ability to customize the instructional

activities and strategies based on the learner's characteristics and needs (Keleş, Ocak, Keleş, & Gülcü, 2009).

The ITSs have a classical architecture with four modules which are known by different names in studies. The first part is the expert module. This part includes the knowledge that the student wants to learn (domain knowledge) (Ma, Adesope, Nesbit, & Liu, 2014). Furthermore, the techniques of the problem-solving and analyzing the student's activities in the learning process are used in this module, similar to human experts (Carter, 2014). The second part is the student diagnosis module or student model, built by factors such as the level of knowledge, activities, responses, behaviors, learning styles, student's knowledge deficiency, and other information about learner gathered and updated in the process of learning in the system (Brown, 2009; Ma et al., 2014). The third part is known as instruction, tutor, or pedagogical module. It detects the knowledge deficiency in students and focuses on the strategies and methods of teaching for compensating the identified shortage of knowledge in a specific field (Polson & Richardson, 2013). Adaptive feedback, hint, and recommendation-generating, navigation of the learning path, and presenting adaptive educational content constitute the core of this module (Carter, 2014). The last module is the user interface which is communication part of ITS for controlling the interaction between user and system (Burns & Capps, 1989). There have been some reviews in e-learning systems which have been incorporated with AI techniques in order to improve the adaptive and customized learning (Drigas, Argyri, & Vrettaros, 2009; O'Donnell, Lawless, Sharp, & Wade, 2015). Further, other studies have reviewed the effectiveness and usability of these systems (Chughtai, Zhang, & Craig, 2015; Kulik & Fletcher, 2016). In addition, some papers examined the intelligent tutoring game system (Hooshyar, Yousefi, & Lim, 2017, 2018). After surveying the available review articles, we found that there are some guestions left unanswered. Therefore, the aim of this study was reviewing the ITSs developed across all educational fields, in order to gather comprehensive information about their characteristics, applications, and evaluation methods.

#### 2. Research questions

This systematic review responds to the following research questions:

- RQ 1. For which educational fields ITSs have been designed?
- RQ 2: Which AI techniques have been applied in the development of ITSs?
- RQ 3: What are the main purposes of using the AI techniques in ITSs?
- RQ 4: Which factors have been used for representing the adaptive or one-to-one instruction in ITSs?
- RQ5: What types of user-interface have been used for development of ITSs?
- RQ 6: Which methods have been employed for the evaluation of ITSs?

#### 3. Method

This systematic review was conducted based on the preferred reporting items for systematic reviews and meta-analysis (PRISMA) proposed by Moher et al. (2015). Figure 1 displays the process of PRISMA for data collection and analysis.

#### 3.1. Search strategy

The papers from PubMed, ProQuest, Scopus, Google scholar, Embase, Cochrane and Web of Science databases were searched within the period from 2007 to 2017 (10 October). The PICO criteria were used to define the search string: population (P), intervention (I), comparison (C), and outcome (O) (Stone, 2002). The population was ITSs, intelligent or intelligent adaptive educational systems, applications or software. Interventions included students' or staff education or training in any field. A comparison was excluded and the outcomes were the characteristics of developed ITSs and their



Figure 1. The process of PRISMA for data collection and analysis.

methods of evaluation. The search string was: (intelligent\* OR adaptive OR customized) AND (learning OR instruction OR education OR tutoring OR mentoring) AND (system OR software OR application) AND (evaluation).

#### 3.2. Inclusion criteria

Inclusion criteria were English language original papers evaluating the intelligent tutoring systems as training, education, or educational assistance tools for learners in any fields. We excluded the game-based education systems and non-intelligent adaptive education systems. Further, some educational systems were also excluded although they had been called ITS, as their structure was not consistent with the classical architecture of ITS or used commercial adaptive platforms for developing the educational systems.

#### 3.3. Selection process

In the initial screening, the papers were screened based on the title and abstract by two separate reviewers based on the research and PICO questions. In this phase, the reviewers read the title and abstract of all the papers and categorized them into three groups. The first group was the

papers which definitely had the inclusion criteria, which were assigned the number 1. The next group consisted of the papers that the reviewers were skeptical about their inclusion criteria, which were assigned the number 2. Finally, the last group was assigned the number 0 because it did not have inclusion criteria. Then, the papers were excluded if they receive the zero. The reviewers discussed the papers which did not receive the same number and decided about them. All the papers which receive the same number (one or two) were included for the next phase. Finally, the full-text of the included papers was obtained for the second-stage screening and then assessed by two reviewers.

#### 3.4. Data extraction

In this phase, eight variables were extracted in order to answer the research questions. These variables included the name of the system, study population, AI techniques and their purposes, learner's characteristics, types of evaluation, system performance criteria, and field of education.

#### 4. Results

The eight variables of the selected papers are presented in Table 1.

#### 4.1. Educational fields

The educational fields employed in the ITSs were health/medical, computer science, mathematics, Al, physics, language, and others (Table 1). Figure 2 demonstrates the frequency of each field in the selected papers.

#### 4.2. Al techniques

As presented in Table 1, various AI techniques were used in ITSs. The types of these techniques with their frequency (%) in the studies are reported in Figure 3. In 28.30% (N = 15) of studies, the combinations of these techniques have been used for developing ITSs.

#### 4.3. Purpose of AI technique

According to the seventh column of Table 1, Al techniques were used in ITSs for different purposes, as summarized in Table 2.

#### 4.4. Learners' characteristics

As represented in the eighth column of Table 1, an adaptive or customized learning was obtained in ITSs based on the several learners' characteristics, with Figure 4 revealing these characteristics with their frequency in the papers.

#### 4.5. Evaluation of ITS

The results of the study indicated that seven approaches were applied for the evaluation of ITSs, as depicted in Figure 5.

According to the last column of Table 1, the criteria used for evaluating the system performance included accuracy, precision, sensitivity, adaptively, reliability, recognition rate, usability, and mean square error (MSE).

**Table 1.** The variables of systems in the selected papers.

| Number | Title                                                     | Name of the system                   | Population                                               | Educational field                                                            | Al techniques                                                                                                   | Purposes of Al techniques                                                                                                              | Learner's<br>characteristics                                                                                   | Type of evaluation                                                                                                                                              | System performance<br>criteria                                                                                                                                      |
|--------|-----------------------------------------------------------|--------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1      | Harley, Bouchet,<br>Hussain, Azevedo,<br>and Calvo (2015) | -                                    | University students                                      | Human Circulatory                                                            | Intelligent Multi-agents                                                                                        | adaptive feedback<br>generation     adaptive<br>recommendation<br>generation     learner's knowledge<br>evaluation                     | emotional measurement methods (automatic facial expression recognition, self- report, electro dermal activity) | Correlation between emotional measurement methods                                                                                                               | -                                                                                                                                                                   |
| 2      | Jeon (2010)                                               | -                                    | Medical personnel                                        | Anesthesia<br>machines                                                       | Bayesian technique<br>(Bayesian decision<br>rules(condition-<br>action) with rule<br>engine)                    | Define, updating and<br>evaluating the<br>accuracy of the<br>learners performance<br>model     Presenting adaptive<br>learning content | Group learners profile     performance data     Previous learners data                                         | Simulative evaluation the system for decision making, handling the missing data and adaptation actions                                                          | -                                                                                                                                                                   |
| 3      | Costello (2012)                                           | -                                    | School Students                                          | Computer<br>programming                                                      | Data mining technique<br>(Intelligent clustering<br>algorithms)     Condition<br>action rule-based<br>reasoning | Presenting adaptive learning content  adaptive recommendation generation  defining and updating the learning style                     | amalgamated<br>learning style     Learner's<br>preference     Learner's<br>performance                         | Prototype evaluation: • System Performance measurement • User emotional responses measurement • System Analytical and Interactivity measurement • Effectiveness | Performance criteria:<br>(precision/recall/<br>complexity of<br>Algorithm<br>measurements)<br>Emotional criteria:<br>(analytical/<br>interactivity<br>measurements) |
| 4      | Grawemeyer et al.<br>(2016)                               | As a part of Italk2learn<br>platform | school students                                          | Mathematics                                                                  | Bayesian technique<br>(Bayesian network<br>classifying and<br>reasoning)                                        | Classifying the learners affect states     Adaptive feedback generation                                                                | Affect states     Reasoning stage     Learner Interaction     with system                                      | Case-control prepost evaluation (affect-non affect conditions):  Student performance  Students' task behavior  student's learning experience  Feedback type     | -                                                                                                                                                                   |
| 5      | El Ghouch, El<br>Mokhtar, and<br>Seghroucheni<br>(2017)   | -                                    | University students<br>(bachelor of<br>computer science) | Designed for<br>variant courses<br>(programming and<br>the MERISE<br>method) | Bayesian technique<br>(Bayesian network<br>classifying)                                                         | Classifying the learners<br>based on learning<br>styles                                                                                | • Learning style                                                                                               | Student performance                                                                                                                                             | -                                                                                                                                                                   |

Table 1. Continued.

| Number | Title                                                                        | Name of the system        | Population                                       | Educational field                                 | Al techniques                                                                                                        | Purposes of AI techniques                                                                                                                                                | Learner's<br>characteristics                                                                 | Type of evaluation                                                                                                                                                                       | System performance<br>criteria                                                                                                                                     |
|--------|------------------------------------------------------------------------------|---------------------------|--------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6      | Hsieh and Cheng<br>(2014)                                                    | -                         | School Students                                  | Logic Programming                                 | Case-based reasoning                                                                                                 | Learner's performance<br>Evaluation     Learners evaluation<br>(Matching learners<br>errors patterns with<br>existing errors in<br>case-base)                            |                                                                                              | system performance     system adaptively     Student performance                                                                                                                         | System Accuracy of<br>matching patterns<br>System adaptively<br>(relation between<br>number of errors in<br>case base with the<br>accuracy of<br>matching pattern) |
| 7      | Grivokostopoulou,<br>Perikos, and<br>Hatzilygeroudis<br>(2017)               | AITS                      | School students                                  | Al curriculum                                     | Condition action rule-based reasoning (Rule-based expert system)     Data mining techniques (decision tree analysis) | Presenting adaptive exercises     Learners evaluation (prediction the student performances)                                                                              | Learner's<br>knowledge level     Learner's<br>performance                                    | Student performance (pre-test/post-test and experimental/control group)     Pearson correlations between the marks (scores) of the tutor and the automated marker     System performance | average accuracy     precision     F-measure     Cohen's Kappa statistic                                                                                           |
| 8      | McDonald et al.<br>(2013)                                                    | -                         | University Students                              | Health sciences<br>(Cardiovascular<br>physiology) | NLP based techniques<br>(Statistical machine<br>learning classifier<br>based on NLP)                                 | Learners evaluation<br>(evaluation the<br>Student's responses<br>to lecture questions)     Classification the<br>learner's responses     Adaptive feedback<br>generation | • Students<br>responses to<br>lecture questions                                              | Learners     Performance     (pretest-posttest)     User experiences                                                                                                                     | -                                                                                                                                                                  |
| 9      | Grivokostopoulou,<br>Perikos, and<br>Hatzilygeroudis<br>(2013)               | FOL equivalence<br>system | School Students                                  | Al curriculum<br>(first order logic)              | Condition action rule-<br>based reasoning<br>(Rule-based reasoning)                                                  | learners evaluation (evaluation the learner's performance)  Adaptive feedback generation  Adaptive guidance qeneration                                                   | Learner's<br>knowledge level     Learner's actions                                           | Student performance (pre-test/post-test and experimental/control group)     User experiences                                                                                             | -                                                                                                                                                                  |
| 10     | Samarakou,<br>Prentakis,<br>Mitsoudis,<br>Karolidis, and<br>Athinaios (2017) | StuDiAsE                  | University students<br>(engineering<br>students) | Software design                                   | Fuzzy based technique<br>(Fuzzy rule-based<br>system)                                                                | Defining learning styles                                                                                                                                                 | Learning style     Learner's cognitive<br>profile     Learner's behavior<br>Learning ability | Testing the fuzzy classifier                                                                                                                                                             | -                                                                                                                                                                  |

| 11 | Dzikovska,<br>Steinhauser,<br>Farrow, Moore, and<br>Campbell (2014) | BEETLE II | School Students                                  | Physic (basic<br>electronics and<br>electricity)        | NLP based technique     Condition –action<br>rule-based reasoning                     | Adaptive feedback generation (NLP based feedback)     Adaptive hint and recommendation generation     Learners evaluation (interpretation learner's answer correctness)                                                                                  | • Students<br>responses to<br>lecture questions                                                                                                   | Student performance (pre-test/post-test and experimental/control group)     User experiences     System performance | Overall Accuracy     Macro average F1 score     Accept-reject accuracy     Misinterpreted frequency     Non-interpretable frequency |
|----|---------------------------------------------------------------------|-----------|--------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| 12 | Taele and Hammond<br>(2015)                                         | BopoNoto  | University students<br>(language student)        | Language<br>(the zhuyin<br>phonetic script<br>learning) | Data mining technique<br>(Naïve and modified<br>Euclidean distance<br>classification) | Language symbols classification     Learners evaluation (performance evaluation)     Adaptive feedback generation                                                                                                                                        | Student<br>performance                                                                                                                            | System     performance                                                                                              | Overall symbol recognition. Performance (classification accuracy) Comparison of recognition performance with another system         |
| 13 | Gómez et al. (2014)                                                 | UoLmp     | University students<br>(language student)        | English language                                        | Condition –action rule-<br>based reasoning<br>(if-then rule-based<br>reasoning)       | <ul><li>Adaptive learning<br/>content</li><li>Adaptive learning<br/>path</li></ul>                                                                                                                                                                       | <ul> <li>learner's<br/>preference</li> <li>current situation's<br/>properties</li> </ul>                                                          | User experiences                                                                                                    | <u>-</u> ′                                                                                                                          |
| 14 | Mohammed and<br>Mohan (2015)                                        | CRITS     | University Students                              | Solve Computer<br>Science<br>programming<br>problems    | Fuzzy based technique<br>(Fuzzy rule-based<br>reasoning)                              | Definition the membership of students in subcultural categories     Specification of the relevant subcultural to every student     Definitions of Cultural Formality for Text-based Content     Representing adaptive educational contents and feedbacks | cultural contextualization (geographical, religious, ethnic, education levels)     familiar particular physical environment settings and terrains | • User experiences                                                                                                  | -                                                                                                                                   |
| 15 | Chrysafiadi and<br>Virvou (2012)                                    | -         | University students<br>(Informatics<br>students) | Computer<br>Programming                                 | Fuzzy based technique<br>(Fuzzy rule-based<br>reasoning)                              | Define and update<br>students' knowledge<br>level                                                                                                                                                                                                        | Learner's cognitive<br>model     Learner's<br>knowledge level                                                                                     | Students     performance (experimental/     control group)     User experiences     System     performance          | System reliability (variable consolidation reliability) Navigation efficacy (variable Measuring navigation efficiency)              |
| 16 | Vinchurkar and<br>Sasikumar (2015)                                  | ITALIC    | School Students                                  | English language                                        | Condition-action rule-<br>based reasoning                                             | Generating the<br>meaningful<br>sentences                                                                                                                                                                                                                | • Learner's<br>responses to<br>learning activities                                                                                                | • Students<br>performance<br>(experimental/<br>control group)                                                       | -                                                                                                                                   |



Table 1. Continued.

| Number | Title                                                                 | Name of the system | Population                                        | Educational field            | Al techniques                                                                                         | Purposes of AI techniques                                                                                                                                                                                          | Learner's characteristics                                            | Type of evaluation                                                                                                                        | System performance<br>criteria                      |
|--------|-----------------------------------------------------------------------|--------------------|---------------------------------------------------|------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| 17     | Echeverría, Guamán,<br>and Chiluiza (2015)                            | -                  | University students<br>(Engineering<br>students)  | Slide presentation           | Data mining techniques (Feature extraction and Clustering)     Condition –action rule-based reasoning | Determining the relevant features for evaluation the presentation files     Clustering the grading categories evaluated presentation files     adaptive feedback generation     adaptive recommendation generation | Grading the presentation files                                       | • User experiences                                                                                                                        | -                                                   |
| 18     | Dolenc and Aberšek<br>(2015)                                          | TECH8              | school students                                   | Gear unit                    | Intelligent agents                                                                                    | adaptive learning<br>content and path     adaptive feedback<br>generation     adaptive<br>recommendation<br>generation                                                                                             | Learner's<br>knowledge     Learner's learning<br>capacity            | Students<br>performance<br>(experimental/<br>control group)                                                                               | -                                                   |
| 19     | El Saadawi et al.<br>(2008)                                           | Report Tutor       | University students<br>(Pathologist<br>residents) | Derma pathology              | NLP based technique                                                                                   | <ul> <li>parsing and evaluating<br/>the generated reports<br/>by learners</li> <li>adaptive feedback<br/>generation</li> </ul>                                                                                     | • Learner's<br>responses to<br>learning activities                   | <ul> <li>Students         performance         (pretest-posttest)</li> <li>User experiences</li> <li>System         performance</li> </ul> | NLP Precision (PPV)     NLP sensitivity<br>(recall) |
| 20     | Bulut Özek, Akpolat,<br>and Orhan (2013)                              | -                  | University Students                               | Basic control<br>system      | Fuzzy based technique<br>(Fuzzy rule-based<br>reasoning)                                              | Generating adaptive<br>learning content     Determining and<br>updating the learning<br>styles of learners                                                                                                         | Learning style     Learner's behavior                                | Student performance (pre-test/post-test and experimental/control group)                                                                   | -                                                   |
| 21     | Alobaidi, Crockett,<br>O'Shea, and Jarad<br>(2013)                    | Abdullah CITS      | School Students                                   | Essential topics in<br>Islam | Condition-action rule-<br>based reasoning     NLP based technique                                     | Classification of<br>learners utterance Generating adaptive<br>learning content Generation tutoring<br>dialogues with<br>Learners                                                                                  | • Learner's<br>knowledge                                             | User experiences     Evaluating the tutoring dialogues                                                                                    | -                                                   |
| 22     | Myneni, Narayanan,<br>Rebello, Rouinfar,<br>and Pumtambekar<br>(2013) | ViPS               | School Students                                   | Physic education             | Bayesian technique<br>(Bayesian network)                                                              | <ul> <li>Prediction adaptive<br/>learning content</li> <li>adaptive feedback and<br/>hint generation</li> </ul>                                                                                                    | Learner's knowledge     Learner's behavior     learner's performance | User experiences     Student     performance (pre-test/post-test     and experimental/     control group)                                 | -                                                   |

|    | Tijan (2015)                                           |            |                                                 |                                 | (Feature selection &<br>K-mean clustering<br>and Sequential<br>pattern mining) | recommendation • discovering high utility learning paths                                                                                                                                                 | knowledge • Learner's behavior • learner's performance               | functionality test                                                                                              | evaluation                                                                                                                                                      |
|----|--------------------------------------------------------|------------|-------------------------------------------------|---------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 24 | Jian-Min, Yu, and<br>Min-Hua (2017)                    | -          | School students                                 | Remote Sensing                  | ANN-based technique<br>(Forward propagation<br>neural network)                 | Classification the<br>learner's<br>performances                                                                                                                                                          | Learner's knowledge     Learner's behavior     learner's performance | <ul> <li>User experiences</li> <li>Student<br/>performance<br/>(pre-test/post-test)</li> </ul>                  | -                                                                                                                                                               |
| 25 | Payne et al. (2009)                                    | SlideTutor | University students<br>(Pathology<br>residents) | Derma pathology                 | Bayesian technique<br>(Bayesian network)                                       | Prediction The<br>learner's model                                                                                                                                                                        | <ul><li>Learner's behavior</li><li>learner's performance</li></ul>   | <ul> <li>Student<br/>performance<br/>(pre-test/post-test)</li> </ul>                                            | -                                                                                                                                                               |
| 26 | Munoz, Ortiz,<br>Gonzalez, Lopez,<br>and Blobel (2010) | -          | University students<br>(Medical students)       | Childhood disease<br>management | Bayesian technique<br>(Bayesian network)                                       | Define and update<br>student's knowledge<br>level                                                                                                                                                        | Learner's<br>knowledge learner's<br>performance                      | Student performance (pre-test/post-test and experimental/control group)     System performance                  | - System usability                                                                                                                                              |
| 27 | Kacalak, Majewski,<br>and Zurada (2010)                | -          | unknown                                         | -                               | NLP based technique     ANN-based technique     (Hybrid neural     network)    | Two-way communication between learner and system Biometric learner's identification Analysis of learner's knowledge Classification of words and sentences Identifying the meaning of words and sentences | • Learner's<br>knowledge                                             | Prototype testing                                                                                               | Recognition ability of<br>Neural network<br>the sensitivity of<br>spoken word<br>recognition<br>the sensitivity of<br>spoken sentence<br>meaning<br>recognition |
| 28 | Suebnukarn (2009)                                      | -          | University students<br>(Dental students)        | Clinical reasoning              | Bayesian technique<br>(Bayesian network)                                       | <ul> <li>Define and update<br/>students' knowledge<br/>and activities</li> <li>Modeling the clinical<br/>reasoning scenarios</li> </ul>                                                                  | Learner's<br>knowledge                                               | <ul> <li>Student<br/>performance<br/>(pre-test/post-test<br/>and experimental/<br/>control group)</li> </ul>    | -                                                                                                                                                               |
| 29 | Kose and Arslan<br>(2017)                              | -          | University students                             | Computer<br>engineering         | ANN-based technique     Swarm intelligent<br>algorithm (NOA)                   | Determine Learner's<br>intelligent level     Adaptive learning<br>material                                                                                                                               | • Learner's<br>intelligent level                                     | Student performance (experimental/control group)     User experiences     System performance (comparison study) | Evaluation of the<br>Training and<br>evaluation<br>performances of<br>ANN (MSE)                                                                                 |

III-defined domains Data mining techniques • adaptive

Learner's

Clustering

• Cluster ordering

23

Jugo, Kovačić, and

School Students

(Continued)

Table 1. Continued.

| Number | Title                                                          | Name of the system | Population                               | Educational field                                                                   | Al techniques                                                                                                     | Purposes of Al<br>techniques                                                                                                                                                                             | Learner's characteristics                                                                                                     | Type of evaluation                                                                                                                          | System performance<br>criteria                                                   |
|--------|----------------------------------------------------------------|--------------------|------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| 30     | Almohammadi,<br>Hagras,<br>Alghazzawi, and<br>Aldabbagh (2016) | IT2FLS             | University students                      | As a part of<br>e-learning<br>platform to teach<br>Microsoft word<br>and PowerPoint | Fuzzy based technique<br>(Type-2 fuzzy rule-<br>based reasoning)                                                  | adaptive learning<br>content     determining learner's<br>characteristics and<br>instructional needs                                                                                                     | learner's     preference     learner's behavior     in the system     Learner's     knowledge                                 | Student     performance     (comparison     study)     System     performance     (comparison     study)                                    | Average error of<br>system output                                                |
| 31     | Hao, Wang, and Zhao<br>(2009)                                  | SQL TUTOR          | University students                      | Structured Query<br>Language<br>(computer<br>programming)                           | Fuzzy based technique<br>(Fuzzy clustering)                                                                       | Updating the student<br>model     Adaptive learning<br>content     Adaptive learning<br>exercise                                                                                                         | <ul> <li>Learner's<br/>knowledge</li> <li>learner's<br/>performance</li> </ul>                                                | Student<br>performance<br>(experimental/<br>control group)                                                                                  | -                                                                                |
| 32     | Jia-Ke, Xuan, Wei,<br>Xian-Chun, and<br>Chao-Fu (2008)         | WITS               | University students                      | Introduction to computer                                                            | Intelligent multi-agents                                                                                          | Adaptive learning<br>content                                                                                                                                                                             | <ul> <li>learner's         preferences</li> <li>learner's         performance</li> <li>Learner's         knowledge</li> </ul> | <ul><li>Prototype testing:</li><li>Learners experiences</li></ul>                                                                           | -                                                                                |
| 33     | Hafidi and Bensebaa<br>(2013)                                  | -                  | University students<br>(Bachelor degree) | Mathematics and informatics                                                         | Condition-action rule-<br>based reasoning                                                                         | Adaptive learning content     Updating the student model                                                                                                                                                 | learner's     preferences     learner's     performance     Learner's     knowledge     Learner's behavior                    | Student     performance     (Pretest-posttest     experimental/     control group)     Learners     experiences                             | -                                                                                |
| 34     | Smith, Min, Mott, and<br>Lester (2015)                         | LEONARDO           | School Students                          | Physic science                                                                      | Data mining technique<br>(Clustering analysis)     ANN-based technique<br>(Machine learning<br>based on deep ANN) | Prediction level of<br>learner performance     Group the learners<br>based on answers     Evaluation of the<br>sequence of learners<br>drawing actions     Inferring learners<br>conceptual<br>knowledge | learner's     performance     Learner's     knowledge                                                                         | System     performance     (accuracy:     Comparison study)                                                                                 | Model Accuracy rate<br>Convergence rate<br>and convergence<br>point of<br>models |
| 35     | Jeremic et al. (2009)                                          | DEPTHS             | university students                      | Software design<br>pattern                                                          | Condition-action rule-<br>based reasoning<br>(rule-based expert<br>system)                                        | Adaptive learning content     Adaptive learning navigation     Adaptive feedback and recommendation generation                                                                                           | learner's performance     Learner's knowledge     learner's cognitive capacity                                                | Students     performance     (Pretest-posttest     experimental/     control group)     Learners     experiences     System     performance | Accuracy rate of student model                                                   |

| 36 | Lanzilotti and Roselli<br>(2007) | Logiocando                | School students     | Mathematics                                                 | Condition-action rule-<br>based reasoning<br>(rule-based expert<br>system)                                                             | <ul> <li>Adaptive learning content</li> <li>Calculate the level of difficulty of exercises</li> <li>Adaptive learning navigation</li> </ul>   | learner's     performance     Learner's     knowledge     Learner's behavior                                  | • Student<br>performance<br>(Pretest-posttest<br>experimental/<br>control group)                                  | -               |
|----|----------------------------------|---------------------------|---------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------|
| 37 | Carter (2014)                    | ITS-Debug                 | school students     | Computer<br>programming                                     | CBR technique                                                                                                                          | Diagnosis the learner's performance     Adaptive recommendation                                                                               | <ul> <li>learner's<br/>preferences</li> <li>Learner's behavior</li> <li>Learner's<br/>knowledge</li> </ul>    | <ul><li>Student<br/>performance<br/>(Pretest-posttest)</li><li>Students log<br/>evaluation</li></ul>              | -               |
| 38 | Fossati (2009)                   | iList                     | School Students     | Computer science                                            | Other techniques<br>Machine learning /<br>Procedural<br>knowledge modeling                                                             | Modeling the learner's<br>knowledge     Adaptive<br>recommendation<br>generation                                                              |                                                                                                               | Student performance (Pretest-posttest/ comparison the five versions of iList)     Learners experiences            | -               |
| 39 | Yarandi (2013)                   | Rule-PAdel                | School Students     | Applicable to<br>different domains<br>(Mathematics)         | Condition-action rule-<br>based reasoning<br>(Semantic rule-based<br>reasoning)                                                        | Adaptive learning content     Updating the student model     Adaptive learning navigation     Adaptive feedback and recommendation generation | learner's     performance     learner's learning     style     learner's language     Learner's     knowledge | Learners     experiences     Student     performance                                                              | -               |
| 40 | Bryfczynski (2012)               | BeSocratic                | University students | Chemistry,<br>molecular<br>biology, and<br>computer science | Condition-action rule-based reasoning (rule-based authoring system)     Data mining technique (Sequence clustering of learners action) | Learners Evaluation and clustering     Clustering log files     Discover learners problem-solving strategy     Adaptive feedback              | learner's<br>performance     Learner's behavior                                                               | • learners<br>performance<br>(Pretest-posttest<br>experimental/<br>control group)                                 | -               |
| 41 | Khachatryan et al.<br>(2014)     | Reasoning Mind Genie<br>2 | School Students     | Mathematics                                                 | Condition-action rule-<br>based reasoning                                                                                              | Adaptive learning content     Updating the student model     Adaptive learning navigation                                                     | learner's<br>knowledge     learner's behavior                                                                 | learners     performance     (RCT)     Learners     experiences     Teacher     experiences     Prototype testing | Panel of expert |
| 42 | Weragama and Reye<br>(2014)      | PHP ITS                   | university students | Computer<br>programming                                     | Bayesian-based<br>technique (Bayesian<br>network)                                                                                      | Determining and<br>updating the student<br>model                                                                                              | Learner's<br>responses to<br>learning activities                                                              | Students     performance     (Pretest-posttest     experimental/     control group)     Learners     experiences  | -               |

Table 1. Continued.

| Number | Title                                   | Name of the system | Population          | Educational field                                                        | Al techniques                                                                                                                                        | Purposes of Al<br>techniques                                                                                                                                             | Learner's<br>characteristics                                                                                         | Type of evaluation                                                                                                   | System performance<br>criteria |
|--------|-----------------------------------------|--------------------|---------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------|
| 43     | Walker, Rummel, and<br>Koedinger (2014) | APTA               | school students     | Algebra                                                                  | Data mining technique (SVM Classifier)     Condition-action rule-<br>based reasoning     Bayesian-based<br>technique (Bayesian knowledge<br>tracing) | Classification of help types and conceptual content skill mastery assessment Prediction the probability of mastering in the skills Adaptive feedback and hint generation | learners     performance in     solving problems     Learner's     performance in     helping to his/her     partner | Students performance (Pretest-posttest)     Learners experiences                                                     | -                              |
| 44     | Mostafavi and Barnes<br>(2017)          | Deep thought 4     | University students | Philosophy &<br>Computer<br>science<br>(solving logic proof<br>problems) | Bayesian-based<br>technique (Bayesian knowledge<br>tracing)     Data mining<br>technique (Cluster-based<br>classification)                           | Evaluation the<br>learner's performance     Prediction learners<br>performance     Classification the<br>learners based on<br>their performances                         | Student performance     Leaner's knowledge                                                                           | Learners     performance     (experimental/     control group)     System     performance     (comparison     study) | Prediction accuracy            |
| 45     | Keleş et al. (2009)                     | ZOSMAT system      | School students     | Mathematics                                                              | Condition-action rule-<br>based reasoning<br>(Rule-based expert<br>system)                                                                           | Adaptive learning content     Updating the student model     Adaptive learning navigation     Adaptive feedback and recommendation generation     Learners Evaluation    | learner's<br>performance     Learner's<br>knowledge                                                                  | Student<br>performance<br>(experimental/<br>control group)                                                           | -                              |
| 46     | Soh, Khandaker, and<br>Jiang (2008)     | I-MINDS            | University students | Computer<br>programming                                                  | Intelligent multi-agent     Condition-action rule-<br>based reasoning     Data mining<br>technique<br>(classification)                               |                                                                                                                                                                          | Learner's behavior     learner's     performance     Learner's     knowledge                                         | Student<br>performance<br>(Pretest-posttest<br>experimental/<br>control group)                                       | -                              |

| 47 | Latham, Crockett,<br>McLean, and<br>Edmonds (2012)      | Oscar                          | -                   | Computer<br>programming         | Condition-action rule-<br>based reasoning                                                                                                                                                                  | <ul> <li>predicting learning<br/>style</li> <li>Adaptive feedback<br/>and recommendation<br/>generation</li> <li>Adaptive learning<br/>navigation</li> </ul>                                  | Learner's<br>knowledge     Learner's behavior                                                                | Learner's     performance     (Pretest-posttest)     Systems     performance     Learner's     experiences                            | Accuracy of<br>prediction of<br>learning style                                                             |
|----|---------------------------------------------------------|--------------------------------|---------------------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| 48 | Hooshyar, Ahmad,<br>Yousefi, Yusop, and<br>Horng (2015) | FITS                           | University students | Computer<br>programming         | Intelligent multi-agent     Bayesian technique     (Bayesian network)     NLP based technique     (NLP algorithms)                                                                                         | Adaptive feedback and recommendation generation     Adaptive learning navigation     Updating the student model     Estimating the learner's level of knowledge     Adaptive learning content | Learner's knowledge     Learner's feedback                                                                   | learner's<br>knowledge<br>(Pretest-posttest<br>experimental/<br>control group)     Leaner's<br>performance                            | -                                                                                                          |
| 49 | Kazi, Haddawy, and<br>Suebnukarn (2012)                 | METEOR<br>(successor of COMET) | University students | Clinical reasoning              | Other technique<br>(Heuristic methods for<br>hint generation +<br>Semantic similarity or<br>distance calculation<br>algorithms for to<br>assess the correctness<br>of learner's responses<br>to questions) | Adaptive feedback<br>and recommendation<br>generation     Evaluation of learners                                                                                                              | learners<br>performance in<br>solving problems                                                               | System<br>performance                                                                                                                 | expert agreement<br>with system<br>generated hints<br>students agreement<br>with system<br>generated hints |
| 50 | Chen and Li (2010)                                      | PCULS                          | School students     | English language                | Intelligent agents ANN-based technique Fuzzy based technique (classification and rule-based)                                                                                                               | Adaptive recommendation generation     Evaluation of learners     Adaptive learning content     Adaptive learning navigation     Determining and updating the student model                   | current situation's<br>properties     learners<br>performance                                                | learner's<br>knowledge<br>(Pretest-posttest<br>experimental/<br>control group)     Learner's<br>experiences     System<br>performance | Accuracy of ANN-<br>based locating<br>system                                                               |
| 51 | Capuano et al. (2009)                                   | LIA integrated with<br>IWT     | -                   | Applicable to different domains | Other techniques<br>(Machine learning)                                                                                                                                                                     | Adaptive learning<br>navigation     Determining and<br>updating the student<br>model     Evaluation of learners                                                                               | Learner's     responses to     learning activities     Learner's     knowledge     learner's     preferences | Learners     performance     (experimental/     control group)     Learner's     experiences                                          | -                                                                                                          |

(Continued)

Table 1. Continued.

| Number | Title              | Name of the system | Population          | Educational field                                                | Al techniques                                                                 | Purposes of Al techniques                                                                                                                                                                                  | Learner's characteristics                                                                   | Type of evaluation                                                                                                       | System performance criteria |
|--------|--------------------|--------------------|---------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| 52     | Wang et al. (2015) | iTutor             | University students | Applicable to<br>different domains<br>(basic computer<br>skills) | • Intelligent multi-agent                                                     | Adaptive feedback<br>and recommendation<br>generation     Evaluation of learners     Adaptive learning<br>content     Adaptive learning<br>navigation     Determining and<br>updating the student<br>model | Learner's knowledge     Learner's responses to learning activities     learners performance | Learners     performance     (experimental/     control group)     learner's     knowledge                               | -                           |
| 53     | Chen (2008)        | -                  | School students     | Mathematics                                                      | Intelligent multi-agent     Data mining     technique (genetic     algorithm) | Evaluation of learners     Adaptive learning content     Adaptive learning navigation                                                                                                                      | Learner's<br>knowledge     Learner's<br>responses to<br>learning activities                 | Learners     performance     (experimental/     control group)     learner's     knowledge     Learner's     experiences | -                           |

Note: NLP, Natural Language Processing; ANN, Artificial Neural Network; CBR, Case-Based Reasoning; SVM, Support Vector Machine.



Figure 2. Frequency of educational fields in ITSs.



Figure 3. Frequencies of used AI techniques in the ITSs.

#### 4.6. User interface

The user interfaces of ITSs were mainly web-based, where 54.71% and 15.09% were client computers and mobile-based, respectively.

#### 5. Discussion

Having analyzed the different variables in ITSs, we answered some questions that were arisen in this field.

Table 2. The purposes of applying AI techniques in ITSs.

| The purposes of applying AI techniques in ITSs                      | Frequency (%) |
|---------------------------------------------------------------------|---------------|
| Adaptive feedback, hint or recommendation generation                | 52.83%        |
| Defining, classification, or updating the learner's characteristics | 56.60%        |
| Learner's evaluation                                                | 45.28%        |
| Presenting adaptive learning material or content                    | 41.50%        |
| Adaptive learning path navigation                                   | 28.30%        |
| Presenting adaptive test and exercises                              | 5.66%         |



Figure 4. The learner's characteristics for delivering the adaptive learning.



Figure 5. Methods of evaluation in the ITSs.

The studied ITSs were mainly used in the computer science education, where the computer programming (with 55% frequency) was the major educational field. The majority of the audiences in this field were university students (75%). Fuzzy-based techniques (20%) and condition-action rule-based reasoning (20%) were the most frequent AI techniques used for the education of computer programming. They were followed by the CBR (13.33%), the intelligent multi-agent (13.33%), and data mining methods (13.33%).

Health/medical and mathematics fields were in the second rank. ITSs mainly were used for theoretical education including anatomy, physiology, diagnosis in dermatopathology, childhood diseases management, introduction to the anesthesia machine, and clinical reasoning. Most of the audiences in these fields were university students (87.5%). The Bayesian-based techniques were used in 50% of these systems. Further, the NLP-based and intelligent multi-agent approaches were the other AI techniques in the health/medical educational filed.

The ITSs designed for school student education in mathematics was the third frequent systems. They were mainly designed by condition-action rule-based reasoning (83.77%).

Based on this review, condition-action rule-based reasoning was the most frequent technique in the designed ITSs, especially in computer programming and mathematics. As the mathematics is the

study of numbers, spaces, pattern, and structures (Graham, Knuth, Patashnik, & Liu, 1989), it seems that the rule-based reasoning could be an appropriate option for the problem-solving and decision-making in this field. Meanwhile, the critical thinking is one of the significant processes for problem-solving and decision-making in the health/medical fields. Therefore, the rule-based reasoning has the potential to be applied in the design of ITSs in these fields. However, according to the results of this study, this technique was not used in these fields.

Case-based reasoning is usually applied for solving new problems (cases) by finding the most similar problems and adopting a new case model with the model found and then updating it (Pantic, 2005). Although CBR is not a completely appropriate method for expert systems in non-explicit and non-structure educational domains (Pantic, 2005), there is a niche area for this method in the medical tutor systems (Holt, Bichindaritz, Schmidt, & Perner, 2005). It has been used only in two works (Carter, 2014; Hsieh & Cheng, 2014) for the education of computer programming, and there is a potential application for similar medical case reasoning tasks.

The type of student modeling is the determinant factor for categorizing the ITS types. According to (Ma et al., 2014), the learning outcomes are different when various types of ITSs have been used for the education. We know that the student modeling has mainly been developed by the learning characteristics (McDonald, Knott, Stein, & Zeng, 2013). It is concluded that most ITSs have used the combination of learners' characteristics for constructing the student models, while in the rest of ITSs, only one characteristic has been determinant of the student model.

In this study, the learner's performance was defined as the learner's ability or procedural knowledge (know-how) in learning activities such as problem-solving, decision-making, computer algorithm generation, etc. The learner's performance was the major characteristic applied to the development of the student model after the learner's knowledge (the theoretical knowledge /only know). The learner's behaviors in the learning process include the interaction or feedback with the system, time spent on studying, the number of clicking, and so on which were the second most frequent characteristics. It is obvious that using more information about the learner's current status will empower the student model thereby improving the customized learning.

In addition to the types of student modeling, ITSs could be categorized based on the AI techniques. According to the results of our review, AI techniques have been used in ITSs for various purposes; we categorized them in six groups. These categories and related sub-items have been presented in Table 3.

Table 3. The categorization of the purposes of applying AI techniques in ITSs.

| Purpose item                                      | Purpose sub-items                                                   |
|---------------------------------------------------|---------------------------------------------------------------------|
| Adaptive guidance                                 | Adaptive feedback generation                                        |
|                                                   | <ul> <li>Adaptive hint generation</li> </ul>                        |
|                                                   | <ul> <li>Adaptive recommendation generation</li> </ul>              |
| Adaptive instruction                              | <ul> <li>Presenting adaptive learning material</li> </ul>           |
|                                                   | <ul> <li>Adaptive learning path navigation</li> </ul>               |
|                                                   | <ul> <li>Presenting adaptive test and exercises</li> </ul>          |
| Learner's evaluation                              | <ul> <li>Knowledge evaluation</li> </ul>                            |
|                                                   | <ul> <li>Performance evaluation</li> </ul>                          |
|                                                   | <ul> <li>Skill evaluation</li> </ul>                                |
| Define and update the learner's model based on    | Learning style                                                      |
|                                                   | Knowledge level                                                     |
| Classification / clustering the learners based on | Affect                                                              |
|                                                   | Intelligent                                                         |
|                                                   | Learning style                                                      |
|                                                   | Learning needs                                                      |
|                                                   | Characteristics                                                     |
| Others                                            | <ul> <li>Communication</li> </ul>                                   |
|                                                   | <ul> <li>Calculation of level of difficulty of exercises</li> </ul> |
|                                                   | <ul> <li>Classification of learning materials</li> </ul>            |

Definitely, learners play an important role in the evaluation of ITSs, such that the learner's experience is one of the evaluation methods which could address the problems related to the system usability (Mulwa, Lawless, Sharp, & Wade, 2011). However, the results showed that only 5.66% of studies were evaluated only by the learner's experiences, and it has been used more in combination with learner's performance or system performance or both. Indeed, the learner's performance might be the determinant factor in the assessment of effectiveness. In this study, the majority of evaluations (22.64%) were learner-based (learner's performance). The system's performance tests the system by various measurements (part 4.5). Also, the learner's performance evaluation assesses the effectiveness of the system by testing the effect of ITSs on the level learner's knowledge or skill.

In addition, the user interface infrastructure has been an important part of an ITS. The results demonstrated that the web-based user interface is the most frequent (55.1%) infrastructure for the development of ITSs, while only 15.09% of ITSs are mobile-based. However, mobile devices are newly emerging technologies which could facilitate the implementation of instructional methods independent of time and place (Gómez, Zervas, Sampson, & Fabregat, 2014).

#### 6. Conclusion

Educational fields, applied AI techniques, the purpose of AI techniques, learners' characteristics, evaluation, and user interface of ITS were the major factors of ITSs examined by this review. Uses of ITSs as an adaptive learning tool are increasing significantly across different educational fields. Adaptive learning in ITSs has been achieved mainly based on the learner's knowledge and performance. Although ITSs could facilitate reasoning in the learning process, these systems are rarely applied in experimental courses including problem-solving and decision-making. Given the field of study entity, more structural frameworks and rules can become available and more ITSs might be developed to be effective.

Action-condition rule-based, Bayesian network, and data mining were the most frequent AI techniques applied in ITSs. ITSs were mainly evaluated by learner-based methods. In addition, system performance evaluation was the major method in evaluation of ITSs. As the number of mobile devices is increasing rapidly and due to the important role of mobile devices in facilitating personalized learning and also according to the low rate of usage of mobile-based ITSs, the result of this study has recommended development of mobile-based ITSs and evaluation of their implementation.

#### **Disclosure statement**

No potential conflict of interest was reported by the authors.

#### **Notes on contributors**

Elham Mousavinasab presently is PhD candidate in medical informatics at Tehran University of medical sciences, Iran. She received her BS in nursing at the University of Medical Sciences in Iran in 2006. She graduates in master degree of education in internal-medical nursing in 2012. She has developed an e-learning program based on learning management system. This program received an award of best e-learning program in the international congress of learning in medical sciences in Shiraz-Iran in 2012. Her current research interests are e-learning, intelligent learning and nursing informatics.

Nahid Zarifsanaiey is PhD in planning of distance education and faculty member of Shiraz University of Medical Sciences, Iran. She is an Associate professor and head of the department of E-learning, Virtual School, and Center of Excellence for e-Learning in Medical Sciences. Also, she is Editor-in-Chief of Interdisciplinary Journal of Virtual Learning in Medical Sciences (IJVLMS) and the reviewer of many journals of education. Dr Zarifsanaiey lectures on e-learning concepts and principles, designs multimedia courses and supporting systems, conducts student evaluation, quality control and assurance in e-learning subjects for graduate and postgraduate students of learning and medical education. Currently, she is doing several investigations into e-learning

Sharareh R. Niakan Kalhori is an Associate professor at the Department of Health Information Management at Tehran University of Medical Sciences/Iran; she did her PhD in Medical Informatics from the University of Manchester in UK,



2011. Her main Focus is on Information systems and intelligent systems especially mobile-based system development and evaluation.

Mahnaz Rakhshan has completed his Ph.D. from the Shahid Beheshtee University of Medical Science, School of Nursing and Midwifery. She is an Associate professor and the Director of the Medical-Surgical department. She has published more than 20 scholarly articles and presented more than 25 papers (oral and poster) in national and international congress.

Leila Keikha has graduated from bachelor and master degrees in the library and information science. She is PhD candidate in the health information management. She presented in the various educational workshop. E-learning is one of his research interests.

*Marjan Ghazi Saeedi* has PhD in Health Information Management (HIM) and is an Associate professor and faculty member and the head of the Department of Health Information Management at Tehran University of Medical Sciences/Iran. She has supervised several thesis and dissertation in the development of intelligent systems in health scope.

#### **ORCID**

Elham Mousavinasab http://orcid.org/0000-0002-0588-6758
Nahid Zarifsanaiey http://orcid.org/0000-0002-1297-8271
Sharareh R. Niakan Kalhori http://orcid.org/0000-0003-4563-5395
Mahnaz Rakhshan http://orcid.org/0000-0003-1687-5154
Marjan Ghazi Saeedi http://orcid.org/0000-0002-2400-209X

#### References

Almohammadi, K., Hagras, H., Alghazzawi, D., & Aldabbagh, G. (2016). Users-centric adaptive learning system based on interval type-2 fuzzy logic for massively crowded E-learning platforms. *Journal of Artificial Intelligence and Soft Computing Research*, 6(2), 81–101. doi:10.1515/jaiscr-2016-0008

Alobaidi, O. G., Crockett, K. A., O'Shea, J. D., & Jarad, T. M. (2013). *Abdullah: An intelligent Arabic conversational tutoring system for modern Islamic education*. Paper presented at the Lecture Notes in Engineering and Computer Science.

Brown, Q. (2009). Mobile intelligent tutoring system: Moving intelligent tutoring systems off the desktop. (Ph.D.), Drexel University, Ann Arbor. Retrieved from https://search.proquest.com/docview/304873382?accountid=41304 ProQuest Dissertations & Theses A&I; ProQuest Dissertations & Theses Global database

Bryfczynski, S. P. (2012). BeSocratic: An intelligent tutoring system for the recognition, evaluation, and analysis of free-form student input (Ph.D.), Clemson University, Ann Arbor. Retrieved from https://search.proquest.com/docview/ 1285527492?accountid=41304 ProQuest Dissertations & Theses A&I; ProQuest Dissertations & Theses Global database

Bulut Özek, M., Akpolat, Z. H., & Orhan, A. (2013). A web-based intelligent tutoring system for a basic control course. Computer Applications in Engineering Education, 21(3), 561–571. doi:10.1002/cae.20501

Burns, Hugh L., & Capps, Charles G. (1989). Foundations of intelligent tutoring systems: An introduction (pp. 11–12). Texas: S LABORATORfj.

Capuano, N., Gaeta, M., Marengo, A., Miranda, S., Orciuoli, F., & Ritrovato, P. (2009). LIA: An intelligent Advisor for e-learning. *Interactive Learning Environments*, 17(3), 221–239.

Carbonell, J. R. (1970). Al in CAI: An artificial-intelligence approach to computer-assisted instruction. *IEEE Transactions on Man Machine Systems*, 11(4), 190–202.

Carter, E. E. (2014). *An Intelligent Debugging Tutor For Novice Computer Science Students* (Ph.D.), Lehigh University, Ann Arbor. Retrieved from https://search.proquest.com/docview/1540757322?accountid=41304 ProQuest Dissertations & Theses A&I; ProQuest Dissertations & Theses Global database

Chen, C.-M. (2008). Intelligent web-based learning system with personalized learning path guidance. *Computers & Education*, *51*(2), 787–814.

Chen, C.-M., & Li, Y.-L. (2010). Personalised context-aware ubiquitous learning system for supporting effective English vocabulary learning. *Interactive Learning Environments*, 18(4), 341–364.

Chrysafiadi, K., & Virvou, M. (2012). Evaluating the integration of fuzzy logic into the student model of a web-based learning environment. *Expert Systems with Applications*, 39(18), 13127–13134. doi:10.1016/j.eswa.2012.05.089

Chughtai, R., Zhang, S., & Craig, S. D. (2015). *Usability evaluation of intelligent tutoring system: ITS from a usability perspective*. Paper presented at the Proceedings of the Human Factors and Ergonomics Society.

Costello, Robert. (2012). Adaptive intelligent personalised learning (aipl) environment (U621351 Ph.D.), University of Hull (United Kingdom), Ann Arbor. Retrieved from https://search.proquest.com/docview/1654740829?accountid=41304 ProQuest Dissertations & Theses A&I; ProQuest Dissertations & Theses Global database



- Dolenc, K., & Aberšek, B. (2015). TECH8 intelligent and adaptive e-learning system: Integration into technology and science classrooms in lower secondary schools. *Computers and Education, 82*, 354–365. doi:10.1016/j.compedu. 2014.12.010
- Drigas, A. S., Argyri, K., & Vrettaros, J. (2009). *Decade review (1999–2009): Artificial intelligence techniques in student modeling.* Paper presented at the World Summit on Knowledge Society.
- Dzikovska, M., Steinhauser, N., Farrow, E., Moore, J., & Campbell, G. (2014). BEETLE II: Deep natural language understanding and automatic feedback generation for intelligent tutoring in basic electricity and electronics. *International Journal of Artificial Intelligence in Education*, 24(3), 284–332. doi:10.1007/s40593-014-0017-9
- Echeverría, V., Guamán, B., & Chiluiza, K. (2015). *Mirroring teachers' assessment of novice students' presentations through an intelligent tutor system*. Paper presented at the Proceedings 2015 Asia-Pacific Conference on Computer-Aided System Engineering, APCASE 2015.
- El Ghouch, N., El Mokhtar, E.-N., & Seghroucheni, Y. Z. (2017). Analysing the outcome of a learning process conducted within the system ALS\_CORR [LP]. *International Journal of Emerging Technologies in Learning*, 12(3), 43–56.
- El Saadawi, G., Tseytlin, E., Legowski, E., Jukic, D., Castine, M., Fine, J., ... Crowley, R. (2008). A natural language intelligent tutoring system for training pathologists: Implementation and evaluation. *Advances in Health Sciences Education*, *13*(5), 709–722. doi:10.1007/s10459-007-9081-3
- Fossati, D. (2009). Automatic modeling of procedural knowledge and feedback generation in a computer science tutoring system (3380691 Ph.D.), University of Illinois at Chicago, Ann Arbor. Retrieved from https://search.proquest.com/docview/305121134?accountid=41304 ProQuest Dissertations & Theses A&I; ProQuest Dissertations & Theses Global database
- Gómez, S., Zervas, P., Sampson, D. G., & Fabregat, R. (2014). Context-aware adaptive and personalized mobile learning delivery supported by UoLmP. *Journal of King Saud University Computer and Information Sciences*, 26(1), 47–61. doi:10.1016/j.jksuci.2013.10.008
- Graham, R. L., Knuth, D. E., Patashnik, O., & Liu, S. (1989). Concrete mathematics: A foundation for computer science. *Computers in Physics*, 3(5), 106–107.
- Grawemeyer, B., Mavrikis, M., Holmes, W., Sergio, G. S., Wiedmann, M., & Rummel, N. (2016). *Affecting Off-task Behaviour: How affect-aware feedback can improve student learning*. Paper presented at the ACM international Conference Proceeding Series.
- Grivokostopoulou, F., Perikos, I., & Hatzilygeroudis, I. (2013). *An intelligent tutoring system for teaching FOL equivalence*. Paper presented at the CEUR workshop Proceedings.
- Grivokostopoulou, F., Perikos, I., & Hatzilygeroudis, I. (2017). An educational system for learning search algorithms and Automatically Assessing student performance. *International Journal of Artificial Intelligence in Education*, 27(1), 207–240. doi:10.1007/s40593-016-0116-x
- Hafidi, M., & Bensebaa, T. (2013). Design and evaluation of an adaptive and intelligent tutoring system by expert system. *Intelligent Decision Technologies, 7*(4), 253–264.
- Hao, Y.-J., Wang, J.-G., & Zhao, Q.-S. (2009). A dualistic and dynamic student model based on "Fuzzy Cluster". Paper presented at the Education Technology and Computer Science, 2009. ETCS'09. First International Workshop.
- Harley, J. M., Bouchet, F., Hussain, M. S., Azevedo, R., & Calvo, R. (2015). A multi-componential analysis of emotions during complex learning with an intelligent multi-agent system. *Computers in Human Behavior*, 48, 615–625. doi:10.1016/j. chb.2015.02.013
- Holt, A., Bichindaritz, I., Schmidt, R., & Perner, P. (2005). Medical applications in case-based reasoning. *The Knowledge Engineering Review*, 20(3), 289–292.
- Hooshyar, D., Ahmad, R. B., Yousefi, M., Yusop, F. D., & Horng, S.-J. (2015). A flowchart-based intelligent tutoring system for improving problem-solving skills of novice programmers. *Journal of Computer Assisted Learning*, 31(4), 345–361.
- Hooshyar, D., Yousefi, M., & Lim, H. (2017). A systematic review of data-driven approaches in player modeling of educational games. *Artificial Intelligence Review*, *30 December*, 1–21.
- Hooshyar, D., Yousefi, M., & Lim, H. (2018). Data-Driven approaches to game Player modeling: A systematic Literature review. ACM Computing Surveys (CSUR), 50(6), 90.
- Hsieh, S. J., & Cheng, Y. T. (2014). Algorithm and intelligent tutoring system design for programmable controller programming. *International Journal of Advanced Manufacturing Technology*, 71(5–8), 1099–1115. doi:10.1007/s00170-013-5539-z
- Jeon, S. S. (2010). Adaptive e-learning using ECpAA rules, Bayesian networks and group profile and performance data (3467675 Ph.D.), University of Florida, Ann Arbor. Retrieved from https://search.proquest.com/docview/881745516? accountid=41304 ProQuest Dissertations & Theses A&I; ProQuest Dissertations & Theses Global database
- Jeremic, Zoran, Jovanovic, Jelena, & Gasevic, Dragan. (2009). Evaluating an intelligent tutoring system for design patterns: The DEPTHS experience. *Journal of Educational Technology & Society*, *12*(2), 111.
- Jia-Ke, L., Xuan, W., Wei, J., Xian-Chun, Z., & Chao-Fu, W. (2008). *Design and evaluation of a multi-agent system for web intelligent tutoring*. Paper presented at the Computer Science and Software Engineering, 2008 International Conference.



- Jian-Min, L., Yu, X., & Min-Hua, Y. (2017). Construction and application of new intelligent MOOC teaching system based on deep learning neural network in remote sensing course. Paper presented at the Proceedings 2016 8th International Conference on Information Technology in Medicine and Education, ITME 2016.
- Jugo, I., Kovačić, B., & Tijan, E. (2015). Cluster analysis of student activity in a web-based intelligent tutoring system. *Pomorstvo*, 29(1), 80–88.
- Kacalak, W., Majewski, M., & Zurada, J. M. (2010). Intelligent E-learning systems for evaluation of User's knowledge and skills with Efficient information processing. In L. In, R. Rutkowski, R. Scherer, L. A. Tadeusiewicz, J. M. Zadeh, & Zurada (Eds.), *Artificial intelligence and Soft Computing* (Vol. 6114, pp. 508). Heidelberg, Berlin: Springer.
- Kazi, H., Haddawy, P., & Suebnukarn, S. (2012). Employing UMLS for generating hints in a tutoring system for medical problem-based learning. *Journal of Biomedical Informatics*, 45(3), 557–565. doi:10.1016/j.jbi.2012.02.010
- Keleş, A., Ocak, R., Keleş, Ali, & Gülcü, A. (2009). ZOSMAT: Web-based intelligent tutoring system for teaching–learning process. *Expert Systems with Applications*, *36*(2), 1229–1239.
- Khachatryan, G. A., Romashov, A. V., Khachatryan, A. R., Gaudino, S. J., Khachatryan, J. M., Guarian, K. R., & Yufa, N. V. (2014). Reasoning Mind Genie 2: An intelligent tutoring system as a vehicle for international transfer of instructional methods in mathematics. *International Journal of Artificial Intelligence in Education*, 24(3), 333–382.
- Kose, U., & Arslan, A. (2017). Optimization of self-learning in computer engineering courses: An intelligent software system supported by artificial neural network and Vortex Optimization algorithm. *Computer Applications in Engineering Education*, 25(1), 142–156. doi:10.1002/cae.21787
- Kulik, J. A., & Fletcher, J. D. (2016). Effectiveness of intelligent tutoring systems: A meta-analytic review. *Review of Educational Research*. 86(1), 42–78. doi:10.3102/0034654315581420
- Lanzilotti, R., & Roselli, T. (2007). An experimental evaluation of Logiocando, an intelligent tutoring hypermedia system. *International Journal of Artificial Intelligence in Education*, 17(1), 41–56.
- Latham, A., Crockett, K., McLean, D., & Edmonds, B. (2012). A conversational intelligent tutoring system to automatically predict learning styles. *Computers & Education*, *59*(1), 95–109.
- Ma, Wenting, Adesope, Olusola O, Nesbit, John C, & Liu, Qing. (2014). Intelligent tutoring systems and learning outcomes: A meta-analysis. *Journal of Educational Psychology*, 106(4), 901–918.
- McDonald, J., Knott, A., Stein, S., & Zeng, R. (2013). An empirically-based, Tutorial dialogue system: Design, implementation and evaluation in a first year health sciences course. Paper presented at the 30th Annual conference on Australian Society for computers in learning in Tertiary education, ASCILITE 2013.
- Mohammed, P., & Mohan, P. (2015). Dynamic cultural contextualisation of educational content in intelligent learning environments using ICON. *International Journal of Artificial Intelligence in Education*, *25*(2), 249–270. doi:10.1007/s40593-014-0033-9
- Moher, D., Shamseer, L., Clarke, M., Ghersi, D., Liberati, A., Petticrew, M., & PRISMA-P Group. (2015). Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Systematic Reviews, 4(1), 1.
- Mostafavi, B., & Barnes, T. (2017). Evolution of an intelligent deductive logic tutor using data-driven elements. *International Journal of Artificial Intelligence in Education*, 27(1), 5–36.
- Mulwa, C., Lawless, S., Sharp, M., & Wade, V. (2011). A web-based framework for user-centred evaluation of end-user experience in adaptive and personalized e-learning systems. Paper presented at the Proceedings of the 2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology-Volume 03.
- Munoz, D. C., Ortiz, A., Gonzalez, C., Lopez, D. M., & Blobel, B. (2010). Effective e-learning for health professional and medical students: The experience with SIAS-intelligent tutoring system. Studies in Health Technology and Informatics, 156, 89–102.
- Myneni, L. S., Narayanan, N. H., Rebello, S., Rouinfar, A., & Pumtambekar, S. (2013). An interactive and intelligent learning system for physics education. *IEEE Transactions on Learning Technologies*, 6(3), 228–239. doi:10.1109/TLT.2013.26
- O'Donnell, E., Lawless, S., Sharp, M., & Wade, V. (2015). A review of personalised e-learning: Towards supporting learner diversity. Hershey, Pennsylvania: IGI Global.
- Pantic, M. (2005). Introduction to machine learning & case-based reasoning. London: Imperial College London.
- Payne, V. L., Medvedeva, O., Legowski, E., Castine, M., Tseytlin, E., Jukic, D., & Crowley, R. S. (2009). Effect of a limited-enforcement intelligent tutoring system in dermatopathology on student errors, goals and solution paths. *Artificial Intelligence in Medicine*, 47(3), 175–197. doi:10.1016/j.artmed.2009.07.002
- Polson, M. C., & Richardson, J. J. (2013). Foundations of intelligent tutoring systems. New York: Psychology Press.
- Samarakou, M., Prentakis, P., Mitsoudis, D., Karolidis, D., & Athinaios, S. (2017). *Application of fuzzy logic for the assessment of engineering students*. Paper presented at the IEEE Global engineering education Conference, EDUCON.
- Smith, A., Min, W., Mott, B. W, & Lester, J. C. (2015). *Diagrammatic student models: Modeling student drawing performance with deep learning*. Paper presented at the international Conference on User modeling, adaptation, and Personalization.
- Soh, L.-K., Khandaker, N., & Jiang, H. (2008). I-MINDS: A multiagent system for intelligent computer-supported collaborative learning and classroom management. *International Journal of Artificial Intelligence in Education*, 18(2), 119–151.
- Stone, P. W. (2002). Popping the (PICO) question in research and evidence-based practice. *Applied Nursing Research*, 15(3), 197–198.



- Suebnukarn, S. (2009). Intelligent tutoring system for clinical reasoning skill acquisition in dental students. *Journal of Dental Education*, 73(10), 1178–1186.
- Taele, P., & Hammond, T. (2015). Boponoto: An intelligent sketch education application for learning zhuyin phonetic script. Paper presented at the Proceedings DMS 2015: 21st international Conference on Distributed multimedia systems.
- Vinchurkar, D. P., & Sasikumar, M. (2015). *Intelligent tutoring system for voice conversion in English*. Paper presented at the Proceedings IEEE 15th international Conference on Advanced learning technologies: Advanced technologies for supporting Open Access to Formal and Informal learning, ICALT 2015.
- Walker, E., Rummel, N., & Koedinger, K. R. (2014). Adaptive intelligent support to improve peer tutoring in algebra. *International Journal of Artificial Intelligence in Education*, 24(1), 33–61.
- Wang, D., Han, H., Zhan, Z., Xu, J., Liu, Q., & Ren, G. (2015). A problem solving oriented intelligent tutoring system to improve students' acquisition of basic computer skills. *Computers & Education*, 81, 102–112.
- Weragama, D., & Reye, J. (2014). Analysing student programs in the PHP intelligent tutoring system. *International Journal of Artificial Intelligence in Education*, 24(2), 162–188.
- Woolf, B. P. (2010). Building intelligent interactive tutors: Student-centered strategies for revolutionizing e-learning. Burlington: Morgan Kaufmann.
- Yarandi, M. (2013). Semantic rule-based approach for supporting personalised adaptive e-learning (10062198 Ph.D.), University of East London (United Kingdom), Ann Arbor. Retrieved from https://search.proquest.com/docview/1780279040?accountid=41304 ProQuest Dissertations & Theses A&I; ProQuest Dissertations & Theses Global database