Time Value of Money: Inflation

Michael R. Roberts

William H. Lawrence Professor of Finance

The Wharton School, University of Pennsylvania

Last Time Time Value of Money

This Time Time Value of Money

Inflation

Inflation

Inflation

How does inflation impact our returns?

Example – Savings (Account)

		Pre-Withdrawal		Post-Withdrawal
Year	Interest	Balance	Withdrawal	Balance
0				\$354.60
1	\$17.73	\$372.32	\$100.00	\$272.32
2	\$13.62	\$285.94	\$100.00	\$185.94
3	\$9.30	\$195.24	\$100.00	\$95.24
4	\$4.76	\$100.00	\$100.00	\$0.00 *

Example – Savings (Account)

		Pre-Withdrawal		Post-Withdrawa	λĺ
Year	Interest	Balance	Withdrawal	Balance	
0		1		\$354.60	
1	\$17.73	\$372.32	\$100.00	\$272.32	
2	\$13.62	\$285.94	\$100.00	\$185.94	
3	\$9.30	\$195.24	\$100.00	\$95.24	
4	\$4.76	\$100.00	\$100.00	\$0.00 *	

Lesson: Inflation won't affect the money we earn

Example – Savings (Account)

		Pre-Withdrawal		Post-Withdraw	val
Year	Interest	Balance	Withdrawal	Balance	
0				\$354.60	
1	\$17.73	\$372.32	\$100.00	\$272.32	
2	\$13.62	\$285.94	\$100.00	\$185.94	
3	\$9.30	\$195.24	\$100.00	\$95.24	
4	\$4.76	\$100.00	\$100.00	\$0.00	

Lesson: Inflation will affect what we can buy with the money

Real Discount Rate

$$1 + RR = (1 + R) / (1 + \pi)$$

RR is the real discount rate π is expected inflation

Real Discount Rate

$$1 + RR = (1 + R) / (1 + \pi)$$

RR is the real discount rate π is expected inflation

Commonly used approximation:

$$RR = R - \pi$$

Real Discount Rate

$$1 + RR = (1 + R) / (1 + \pi)$$

RR is the real discount rate π is expected inflation

Commonly used approximation:

$$RR = R - \pi$$

For our example:

$$RR = (1+0.05) / (1+0.025) - 1 = 2.44\%$$

- Difference:
 - -taxes affect \$
 - –Inflation affects consumption, not \$
 - Earn nominal return but can't buy as much

		Pre-Withdrawal		Post-Withdrawal
Year	Interest	Balance	Withdrawal	Balance
0				\$376.75
1	\$18.84	\$395.59	\$100.00	\$295.59
2	\$14.78	\$310.37	\$100.00	\$210.37
3	\$10.52	\$220.89	\$100.00	\$120.89
4	\$6.04	\$126.93	\$100.00	\$26.93

		Pre-Withdrawal		Post-Withdrawal
Year	Interest	Balance	Withdrawal	Balance
0				\$376.75
1	\$18.84	\$395.59	\$100.00	\$295.59
2	\$14.78	\$310.37	\$100.00	\$210.37
3	\$10.52	\$220.89	\$100.00	\$120.89
4	\$6.04	\$126.93	\$100.00	\$26.93

Implication: We have extra money(?). We need to change withdrawal amount. (Increase to buy costlier goods.)

What is *CF*, the amount of money we can withdraw each year?

Use nominal rate since that reflects \$ we earn

$$\$376.75 = \frac{CF}{(1+0.05)} + \frac{CF}{(1+0.05)^2} + \frac{CF}{(1+0.05)^3} + \frac{CF}{(1+0.05)^4}$$

$$CF = \$376.75 \left(\frac{1}{(1+0.05)} + \frac{1}{(1+0.05)^2} + \frac{1}{(1+0.05)^3} + \frac{1}{(1+0.05)^4} \right)^{-1}$$

$$= \$106.25$$

		Pre-Withdrawal		Post-Withdrawal
Year	Interest	Balance	Withdrawal	Balance
0				\$376.75
1	\$18.84	\$395.59	\$106.25	\$289.34
2	\$14.47	\$303.81	\$106.25	\$197.56
3	\$9.88	\$207.44	\$106.25	\$101.19
4	\$5.06	\$106.25	\$106.25	\$0.00

		Pre-Withdrawal		Post-Withdrawal
Year	Interest	Balance	Withdrawal	Balance
0				\$376.75
1	\$18.84	\$395.59	\$106.25	\$289.34
2	\$14.47	\$303.81	\$106.25	\$197.56
3	\$9.88	\$207.44	\$106.25	\$101.19
4	\$5.06	\$106.25	\$106.25	\$0.00

Ideally withdrawals grow each year to accommodate inflation

Year	Withdrawal
0	
1	$100 \times (1 + 0.025)^1 = 102.50
2	$100 \times (1 + 0.025)^2 = 105.06
3	$100 \times (1 + 0.025)^3 = 107.69
4	$100 \times (1 + 0.025)^4 = \110.38

This sequence of withdrawals maintains purchasing power of \$100 in today's terms

Year	Withdrawal
0	
1	$100 \times (1 + 0.025)^{1} = 102.50
2	$100 \times (1 + 0.025)^2 = 105.06
3	$100 \times (1 + 0.025)^3 = 107.69
4	$100 \times (1 + 0.025)^4 = \110.38

These are "nominal" values corresponding to the real \$100 purchasing power in year 0.

Year	Withdrawal
U	
1	\$102.50
2	\$105.06
3	\$107.69
4	\$110.38
	PV at 5% discount rate = \$376.75
	We discount nominal cash flows by the nominal rate to get the price.

Year	Withdrawal
0	
1	\$102.50
2	\$105.06
3	\$107.69
4	\$110.38
	PV at 5% discount rate = \$376.75

Note: PV of nominal CFs at nominal discount rate = PV of real cash flows at real rate

Year	Withdrawal
0	
1	\$102.50
2	\$105.06
3	\$107.69
4	\$110.38
	PV at 5% discount rate = \$376.75

Intuition: The inflation term in the numerator and denominator cancel

		Pre-Withdrawal		Post-Withdrawal
Year	Interest	Balance	Withdrawal	Balance
0				\$376.75
1	\$18.84	\$395.59	\$102.50	\$293.09
2	\$14.65	\$307.74	\$105.06	\$202.68
3	\$10.13	\$212.81	\$107.69	\$105.13
4	\$5.26	\$110.38	\$110.38	\$0.00

Lessons

- Inflation does not affect \$ return
- Inflation does purchasing power of \$
- Real return, RR

$$RR = \frac{1+R}{1+\pi} - 1 \simeq R - \pi$$

where R is the nominal return and π is the rate of inflation

Lessons

 Discount real cash flows by the real rate of return, nominal cash flows by the nominal rate of return.

Coming up next

- Interest Rates
 - How do we value non-annual and irregular cash flows streams?
 - How do different compounding periods affect our valuations?