Levi Waldron

Learning objectives and outline

Intro: hierarchical and longitudinal data

Fecal Fat example

Correlations within subjects

Random and fixed effects

Session 9: Repeated Measures and Longitudinal Analysis I

Levi Waldron

CUNY SPH Biostatistics 2

Levi Waldron

Learning objectives and outline

Intro: hierarchical and longitudinal data

Fecal Fat example

Correlations within subjects

Random and fixed effects

Learning objectives and outline

Levi Waldron

Learning objectives and outline

Intro: hierarchical and longitudinal data

Fecal Fat example

Correlations within subjects (ICC)

Random and fixed effects

Learning objectives

Learning objectives:

- 1 Identify and define hierarchical and longitudinal data
- 2 Analyze correlated data using Analysis of Variance
- 3 Define and calculate Intraclass Correlation
- 4 Identify and define random and fixed effects

Textbook sections:

• Vittinghoff sections 7.1 (7.2-7.3 next class)

Levi Waldron

Learning objectives and outline

Intro: hierarchical and longitudinal data

Fecal Fat example

Correlations within subjects (ICC)

Random and fixed effects

Outline

- 1 Introduction to hierarchical and longitudinal data
- 2 Fecal Fat example
- 3 Correlations within subjects (ICC)
- 4 Random and fixed effects

Levi Waldron

Learning objectives and outline

Intro: hierarchical and longitudinal data

Fecal Fat example

Correlations within subjects

Random and fixed effects

Intro: hierarchical and longitudinal data

Levi Waldron

Learning objectives and outline

Intro: hierarchical and longitudinal data

Fecal Fat example

Correlations within subjects (ICC)

Random and fixed effects

What are hierarchical and longitudinal data?

- Knee radiographs are taken yearly in order to understand the onset of osteoarthritis
- An indicator of heart damage is measured at 1, 3, and 6 days following a brain hemorrhage.
- Groups of patients in a urinary incontinence trial are assembled from different treatment centers
- Susceptibility to tuberculosis is measured in family members
- A study of the choice of type of surgery to treat a brain aneurysm either by clipping the base of the aneurysm or implanting a small coil. The study is conducted by measuring the type of surgery a patient receives from a number of surgeons at a number of different institutions.

Levi Waldron

Learning objectives and outline

Intro: hierarchical and longitudinal data

Fecal Fat example

Correlations within subjects (ICC)

Random and fixed effects

What is the distinction between hierarchical and longitudinal data?

- Longitudinal data are repeated measures over time
- Longitudinal data are a type of hierarchical data
 - repeated measures are correlated, and nested within the observational unit (individual)
- Other non-longitudinal data can also be hierarchical

Definition: Hierarchical data are data (responses or predictors) collected from or specific to different levels within a study.

Levi Waldron

Learning objectives and outline

Intro: hierarchical and longitudinal data

Fecal Fat example

Correlations within subjects (ICC)

Random and fixed effects

Important features of this type of data

- 1 The outcomes are correlated across observations
- 2 The predictor variables can be associated with different levels of a hierarchy. *e.g.* we might be interested in:
 - the volume of operations at the hospital,
 - whether it is a for-profit or not-for-profit hospital,
 - years of experience of the surgeon or where surgeons were trained,
 - how the choice of surgery type depends on the age and gender of the patient.

Levi Waldron

Learning objectives and outline

Intro: hierarchical and longitudinal data

Fecal Fat example

Correlations within subjects (ICC)

Random and fixed effects

Fecal Fat example

Levi Waldron

Learning objectives and outline

Intro: hierarchical and longitudinal data

Fecal Fat example

Correlations within subjects (ICC)

Random and fixed effects

A Repeated Measures Example

- Lack of digestive enzymes in the intestine can cause bowel absorption problems.
 - This will be indicated by excess fat in the feces.
 - Pancreatic enzyme supplements can alleviate the problem.
 - fecfat.csv: a study of fecal fat quantity (g/day) for individuals given each of a placebo and 3 types of pills

Table 7.1 Fecal fat (g/day) for six subjects

number None Tablet Capsule Coated Average 1 44.5 7.3 3.4 12.4 16.9 2 33.0 21.0 23.1 25.4 25.6 3 19.1 5.0 11.8 22.0 14.5 4 9.4 4.6 4.6 5.8 6.1 5 71.3 23.3 25.6 68.2 47.1 6 51.2 38.0 36.0 52.6 44.5	ct
2 33.0 21.0 23.1 25.4 25.6 3 19.1 5.0 11.8 22.0 14.5 4 9.4 4.6 4.6 5.8 6.1 5 71.3 23.3 25.6 68.2 47.1 6 51.2 38.0 36.0 52.6 44.5	age
3 19.1 5.0 11.8 22.0 14.5 4 9.4 4.6 4.6 5.8 6.1 5 71.3 23.3 25.6 68.2 47.1 6 51.2 38.0 36.0 52.6 44.5	
4 9.4 4.6 4.6 5.8 6.1 5 71.3 23.3 25.6 68.2 47.1 6 51.2 38.0 36.0 52.6 44.5	
5 71.3 23.3 25.6 68.2 47.1 6 51.2 38.0 36.0 52.6 44.5	
6 51.2 38.0 36.0 52.6 44.5	
D111 .	
Pill type	
average 38.1 16.5 17.4 31.1 25.8	

Levi Waldron

Learning objectives and outline

Intro: hierarchical and longitudinal data

Fecal Fat example

Correlations within subjects (ICC)

Random and fixed effects

Option 1: non-hierarchical analysis (wrong)

Levi Waldron

Learning objectives and outline

Intro: hierarchical and longitudinal data

Fecal Fat example

Correlations within subjects (ICC)

Random and fixed effects

Option 1: non-hierarchical analysis (wrong)

fit1way <- lm(fecfat ~ pilltype, data=dat)</pre>

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
pilltype	3	2008.60	669.53	1.86	0.1687
Residuals	20	7193.36	359.67		

Table 1: One-way analysis of variance table for fecal fat dataset

- Does not account for similarity of measurements within individual
- Would be correct if each treatment were given to a different individual

Levi Waldron

Learning objectives and outline

Intro: hierarchical and longitudinal data

Fecal Fat example

Correlations within subjects (ICC)

Random and fixed effects

Option 2: 2-way AOV

- Accounts for individual differences in mean fecal fat
- Fits a coefficient for mean fecal fat per individual
- Getting closer

Levi Waldron

Learning objectives and outline

Intro: hierarchical and longitudinal data

Fecal Fat example

Correlations within subjects (ICC)

Random and fixed effects

Option 2: 2-way AOV

fit1way <- lm(fecfat ~ pilltype, data=dat)</pre>

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
pilltype	3	2008.60	669.53	1.86	0.1687
Residuals	20	7193.36	359.67		

Table 2: One-way analysis of variance table for fecal fat dataset

fit2way <- lm(fecfat ~ subject + pilltype, data=dat)</pre>

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
subject	5	5588.38	1117.68	10.45	0.0002
pilltype	3	2008.60	669.53	6.26	0.0057
Residuals	15	1604.98	107.00		

Table 3: Two-way analysis of variance table. Note the similarity of the pilltype row.

Levi Waldron

Learning objectives and outline

Intro: hierarchical and longitudinal data

Fecal Fat example

Correlations within subjects (ICC)

Random and fixed effects

What happened??

- 1-way ANOVA correctly estimates the effect of pill type
- However, 1-way ANOVA fails to accommodate the correlation within subjects
- 1-way ANOVA over-estimates the residual variance
 - under-estimates the significance of pill type

Levi Waldron

Learning objectives and outline

hierarchical and longitudinal data

Fecal Fat example

Correlations within subjects (ICC)

Random and fixed effects

Regression models for 1 and 2-way ANOVA

Recall for ordinary multiple linear regression:

$$E[y|x] = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p$$

- x_p are the predictors or independent variables
- *y* is the outcome, response, or dependent variable
- E[y|x] is the expected value of y given x
- β_p are the regression coefficients

Levi Waldron

Learning objectives and outline

Intro: hierarchical and longitudinal data

Fecal Fat example

Correlations within subjects (ICC)

Random and fixed effects

Regression models for 1 and 2-way ANOVA

One-way ANOVA (person i with pill type j):

$$FECFAT_{ij} = \text{fecal fat measurement for person i with pill typ}$$

= $\mu + PILLTYPE_j + \epsilon_{ij}$

Two-way ANOVA:

$$FECFAT_{ij} = \mu + SUBJECT_i + PILLTYPE_j + \epsilon_{ij}$$

Assumption: $\epsilon_{ij} \stackrel{iid}{\sim} N(0, \sigma_{\epsilon}^2)$

Levi Waldron

Learning objectives and outline

Intro: hierarchical and longitudinal data

Fecal Fat example

Correlations within subjects (ICC)

Random and fixed effects

Correlations within subjects (ICC)

Levi Waldron

Learning objectives and outline

Intro: hierarchical and longitudinal data

Fecal Fat example

Correlations within subjects (ICC)

Random and fixed effects

Correlations within subjects

- One-way ANOVA fails because it does not account for the correlation of measurements within-person
- How highly correlated are measurements on the same person? Consider subject i, pill types j and k:

$$corr(FECFAT_{ij}, FECFAT_{ik}) = \frac{cov(FECFAT_{ij}, FECFAT_{ik})}{sd(FECFAT_{ij})sd(FECFAT_{ik})}$$

* This is a measure of how large the subject effect is, in relation to the error term

Levi Waldron

Learning objectives and outline

Intro: hierarchical and longitudinal data

Fecal Fat example

Correlations within subjects (ICC)

Random and fixed effects

Correlation within subjects

$$cov(FECFAT_{ij}, FECFAT_{ik}) = cov(SUBJECT_i, SUBJECT_i)$$

= $var(SUBJECT_i)$
= $\sigma_{subject}^2$.(definition)

- Equality 1:
 - ullet μ and $\emph{pilltype}$ terms are assumed to be constant, so do not enter into covariance calculation
 - ullet residuals ϵ are assumed to be independent
- Equality 2:
 - covariance with self is variance

Recall $SUBJECT_i$ is the term for individual in 2-way AOV. Now $\beta_i * subjectID$, will later be treated as a **random variable**

Levi Waldron

Learning objectives and outline

Intro: hierarchical and longitudinal data

Fecal Fat example

Correlations within subjects (ICC)

Random and fixed effects

Correlation within subjects

Previous slide calculated *covariance* for numerator of correlation. Now calculate *variance* for the denominator $(sd(FECFAT_{ij}) * sd(FECFAT_{ik}) = var(FECFAT_{ij}))$

$$var(FECFAT_{ij}) = var(SUBJECT_i, SUBJECT_i) + var(\epsilon_{ij})$$

= $\sigma_{subject}^2 + \sigma_{\epsilon}^2$.(definition)

- Difference is that the independent residuals do contribute to var(FECFAT_{ii})
- Variance is broken into componenets due to subject and residual variance

Levi Waldron

Learning objectives and outline

Intro: hierarchical and longitudinal data

Fecal Fat example

Correlations within subjects (ICC)

Random and fixed effects

Intraclass Correlation

The correlation between two treatments j and k across subjects i is:

$$corr(FECFAT_{ij}, FECFAT_{ik}) = \frac{cov(FECFAT_{ij}, FECFAT_{ik})}{sd(FECFAT_{ij})sd(FECFAT_{ik})}$$

$$= \frac{\sigma_{subj}^{2}}{\sigma_{subj}^{2} + \sigma_{\epsilon}^{2}}$$

$$ICC = \frac{\tau_{00}^{2}}{\tau_{00}^{2} + \sigma_{\epsilon}^{2}}$$

Levi Waldron

Learning objectives and outline

Intro: hierarchical and longitudinal data

Fecal Fat example

Correlations within subjects (ICC)

Random and fixed effects

Intuition behind correlations within subjects

Table 7.1 Fecal fat (g/day) for six subjects

Subject	Pill type				Cubicat
Subject number	None	Tablet	Capsule	Coated	Subject Average
1	44.5	7.3	3.4	12.4	16.9
2	33.0	21.0	23.1	25.4	25.6
3	19.1	5.0	11.8	22.0	14.5
4	9.4	4.6	4.6	5.8	6.1
5	71.3	23.3	25.6	68.2	47.1
6	51.2	38.0	36.0	52.6	44.5
Pill type					
average	38.1	16.5	17.4	31.1	25.8

Figure 2: Fecal Fat dataset

Variance of the subject averages (279.4) is increased by correlation of measurements within individual

Levi Waldron

Learning objectives and outline

Intro: hierarchical and longitudinal data

Fecal Fat example

Correlations within subjects (ICC)

Random and fixed effects

[1] 106.9989

Calculation of correlations within subjects (ICC)

What is your estimate of the variability due to subjects, from the 2-way ANOVA?

```
sum(residuals(fit2way)^2) / 15 / 4 #df=15, divided by 4 pilltypes
## [1] 26.74972
279.419 - 26.75 #var(SUBJECT_i)
## [1] 252.669
Residual variance is:
sum(residuals(fit2way)^2) / 15 #df=15
```

Levi Waldron

Learning objectives and outline

Intro: hierarchical and longitudinal data

Fecal Fat example

Correlations within subjects (ICC)

Random and fixed effects

Calculation of correlations within subjects (ICC)

Finally calculate ICC:

$$ICC = \frac{\sigma_{subj}^2}{\sigma_{subj}^2 + \sigma_{\epsilon}^2}$$
$$= \frac{253}{253 + 107} = 0.70$$

This calculation will become easier when we learn to estimate *random coefficients* in directly in the regression model.

Levi Waldron

Learning objectives and outline

Intro: hierarchical and longitudinal data

Fecal Fat example

Correlations within subjects (ICC)

Random and fixed effects

Random and fixed effects

Levi Waldron

Learning objectives and outline

Intro: hierarchical and longitudinal data

Fecal Fat example

Correlations within subjects (ICC)

Random and fixed effects

The next step: a mixed effects model

• Two-way ANOVA is a fixed effects model:

$$FECFAT_{ij} = \beta_0 + \beta_{subjecti}SUBJECT_i + \beta_{pilltypej}PILLTYPE_j + \epsilon_{ij}$$

- Assumption: $\epsilon_i \stackrel{iid}{\sim} N(0, \sigma_{\epsilon}^2)$
- Instead of fitting a $\beta_{subjecti}$ to each individual, assume that subject effects are selected from a distribution of possible subject effects:

$$FECFAT_{ij} = \mu + SUBJECT_i + \beta_{pilltypej}PILLTYPE_j + \epsilon_{ij}$$

where $SUBJECT_i \stackrel{iid}{\sim} N(0, \sigma_{cubi}^2)$

- Here subject is a *random* effect, and pill type is a *fixed* effect.
- This is also a random intercept model

Learning objectives and outline

Intro: hierarchical and longitudinal data

Fecal Fat example

Correlations within subjects

Random and fixed effects

Random and fixed effects

7.6 Re-Analysis of the Georgia Babies Data Set

Table 7.14 Decision tree for deciding between fixed and random

Is it reasonable to assume levels of the factor come from a probability distribution?

Estimate parameters of the distribution of the random effects

Levi Waldron

Learning objectives and outline

Intro: hierarchical and longitudinal data

Fecal Fat example

Correlations within subjects (ICC)

Random and fixed effects

Summary: correlations within subjects

- Subject-to-subject variability simultaneously raises or lowers all the observations on a subject
 - induces correlation of within-subject measurements
- Variability of individual measurements can be separated into that due to subjects and that left to residual variance.
 - $var(FECFAT_{ij}) = \sigma_{subj}^2 + \sigma_{\epsilon}^2$
- 2-way ANOVA does not directly estimate variability due to subjects
 - variance of coefficients for individual is not too far off

Levi Waldron

Learning objectives and outline

Intro: hierarchical and longitudinal data

Fecal Fat example

Correlations within subjects (ICC)

Random and fixed effects

Summary: hierarchical data

- Estimates of coefficients (or "effect sizes") are unchanged by hierarchical modeling
- Ignoring within-subject correlations results in incorrect estimates of variance, F statistics, p-values
 - not always "conservative"
- Intraclass Correlation (ICC) provides a measure of correlation induced by grouping
- Should be able to recognize fixed and random effects