Campbell & Fiske (1959)

Rafael Garcia

Critical Multiplism

- Applies the notion of multiple operations to all facets of research
 - Stimuli
 - Methods
 - Measures
 - Variables
 - Hypotheses

- About generalizability and discriminability
 - Bounds

MTM...wha?!?

- Multitrait-multimethod matrix
 - Just as it sounds
 - Independent traits & Independent methods

- Allows us to parse out effects
 - True commonalities (reliabilities)
 - Method effects
 - Response bias, factors inherent to the testing form, etc.

Ideal scenario

- Reliability diagonals should be close to 1.0
- Validities should be much greater than zero
- Reliabilities > Validities > Heterotrait-heteromethod triangles
- Trait measured by different method > Different trait measured by same method
- Pattern should be consistent among heteromethod blocks

Reliability diagonals should be close to 1.0

Validities should be much greater than zero

Reliabilities > Validities > Heterotrait-heteromethod triangles

What goes into a score?

Observed Score = True Score + Error

Also true that:

$$\sigma_{Observed}^2 = \sigma_{True}^2 + \sigma_{Error}^2$$

- If our method is attempting to measure σ^2_{True}
 - The error/bias of our method is within σ_{Error}^2
 - So:

$$\sigma_{Observed}^2 = \sigma_{True}^2 + \sigma_{Method}^2 + \sigma_{Error}^2$$

• If we are measuring a trait $\sigma_{Observed}^2 = \sigma_{Trait}^2 + \sigma_{Method}^2 + \sigma_{Error}^2$

• And:

Pearson's r
$$\propto \sigma^2$$

• So:

$$r_{Observed} \propto r_{Trait} + r_{Method} + r_{Error}$$

Reliabilities: same trait, same method

$$r_{observed} \propto r_{Trait} + r_{Method} + r_{Error}$$

Validities: same trait, different method

$$r_{Observed} \propto r_{Trait} + r_{Method} + r_{Error}$$

• Heterotrait-heteromethod: different trait, different method

$$r_{Observed} \propto r_{Trait} + r_{Method} + r_{Error}$$

Trait measured by different method > Different trait measured by same method

We want to validate the trait, not the method, so:

$$r_{Trait} > r_{Method}$$

$$r_{Trait} + r_{Method} + r_{Error} > r_{Trait} + r_{Method} + r_{Error}$$

Pattern should be consistent among heteromethod blocks

Table 5
Results of the 6 Traits × 2 Methods MTMM Analyses in Sample 1 of Study 2

Method and trait	М	SD	Self-rating						Parent rating					
			EI	NEURO	EXTRA	OPEN	ANT	CON	EI	NEURO	EXTRA	OPEN	ANT	CON
Self-rating EI	3.60	0.46	(.78)											==
NEURO	3.67	0.93	39	(.77)										
EXTRA	4.74	0.94	.15	08	(.80)									
OPEN	4.93	0.95	.30	12	.45	(.82)								
ANT	5.21	0.74	.26	36	.29	.14	(.83)							
CON	5.04	0.77	.55	46	.10	.27	.47	(.86)						
Parent rating EI	3.57	0.45	.28	12	.00	.01	.02	.22	(.81)					
NEURO	3.56	0.98	18	.34	.04	02	18	20	30	(.79)				
EXTRA	4.65	1.04	.06	02	.37	.21	.02	02	.00	.08	(.83)			
OPEN	4.28	1.10	.15	04	.14	.32	10	.08	.15	.08	.55	(.85)		
ANT	5.34	0.88	.07	14	.01	02	.20	.14	.16	16	.28	.09	(.85)	
CON	5.13	0.95	.17	<u>11</u>	13	02	.05	.34	.42	21	.11	.24	.58	(.90)

Note. The six traits are emotional intelligence (EI), neuroticism (NEURO), extraversion (EXTRA), openness (OPEN), antagonism (ANT), and conscientiousness (CON). The two methods are self-rating and parent rating. The numbers on the diagonal are the coefficient alphas. Numbers in italics are in the heterotrait–monomethod analyses; numbers underlined are in the heterotrait–heteromethod analyses; numbers in bold are the results of the monotrait–heteromethod analyses. MMTM = multitrait–multimethod. Numbers in solid triangles are heterotrait–monomethod correlations; numbers in dotted triangle are heterotrait–heteromethod correlations.

Law, K. S., Wong, C., & Song, L. J. (2004). The Construct and Criterion Validity of Emotional Intelligence and Its Potential Utility for Management Studies. *Journal of Applied Psychology*, 89(3), 483-496.