CHAPITRE 5 FILTRES ET APPLICATIONS

A. FILTRES PASSE-BAS

A.1. Filtre passe-bas idéal

Caractéristiques

$$\underline{H} = \begin{cases} H_0 & \text{pour } \boldsymbol{\omega} < \boldsymbol{\omega}_c \\ \mathbf{0} & \boldsymbol{\omega} > \boldsymbol{\omega}_c \end{cases}$$

 $\omega_{\rm c}$: pulsation de coupure

Approximation : filtre passe-bas réel

$$\underline{H} = \begin{cases} \approx \text{ constant} & \text{pour } \omega \lesssim \omega_{\text{c}} \\ \text{décroissante avec } \omega & \omega \gtrsim \omega_{\text{c}} \end{cases}$$

$$(\frac{1}{\omega} : \text{ filtre du } \mathbf{1}^{\text{er}} \text{ ordre}, \frac{1}{\omega^{2}} : \text{ filtre du } \mathbf{2}^{\text{ème}} \text{ ordre})$$

A.2. Applications

A.2.a. Obtention de la valeur moyenne

- Signal d'entrée
- $oldsymbol{\omega}_{
 m c}<\omega$: filtre idéal, $\omega_{
 m c}\ll\omega$: filtre réel
- @ Sortie: $s(t) = H_0 \langle e \rangle$

A.2.b. Utilisations courantes

- Redressement : transformer un signal variant du temps en un signal continu (ex 5-1)
- Modulation et démodulation : ex 5-4

Mesure de déphasage

Exercice: question 5-1

```
e1 = E1cos(w1t) , e2=E2cos(w2t) 
|w_1 - w_2|< w_c < w_1+w_2 
e1e2 = \frac{E1E2}{2} [\cos(w1+w2)t + \cos(w1-w2)t]
```


A.3. Filtre passe-bas du 1er ordre

A.3.a. Fonction de transfert (FDT) et équation différentielle caractéristique (EDC)

$$\underline{H} = \frac{H_0}{1 + jx}$$

 H_0 : gain statique, $x = \omega/\omega_0$: pulsation réduite, ω_0 : pulsation caractéristique du filtre

$$\Rightarrow RSE : \left(1 + j\frac{\omega}{\omega_0}\right)\underline{s} = H_0\underline{e}$$

$$\Rightarrow \frac{1}{\omega_0}\frac{\mathrm{d}s(t)}{\mathrm{d}t} + s(t) = H_0\underline{e}(t)$$

$$\begin{cases} j\omega \to \frac{\mathrm{d}}{\mathrm{d}t} \\ \underline{e} \to e(t) \\ \underline{s} \to s(t) \end{cases}$$

A.3.b.c. Diagramme de Bode

$$H(x) = |\underline{H}| = \frac{|H_0|}{\sqrt{1+x^2}}, \varphi(x) = \arg(\underline{H}) = \arg(H_0) - \arctan x$$

Courbe de gain

$$G_{\text{dB}} = 20\log\left(\frac{|H_0|}{\sqrt{1+x^2}}\right) = 20\log|H_0| - 10\log(1+x^2)$$

- 1. Asymptotes : $x \ll 1$: $G_{dB} \approx 20 \log |H_0|$ $x \gg 1$: $G_{dB} \approx 20 \log |H_0| - 20 \log x$
- 2. Point : choisir la pulsation de coupure à -3dB ω_c $G_{\rm dB}(\omega_c) = G_{\rm dB,max} 3$ dB = 20log $|H_0| 20$ log $(\sqrt{2})$ $\Leftrightarrow H(\omega_c) = H_{\rm max}/\sqrt{2} = |H_0|/\sqrt{2}$, alors

3. Tracer la courbe

© Courbe de phase (supposons $H_0 > 0$)

$$x \ll 1 : \varphi \approx 0$$

$$x \gg 1 : \varphi \approx -\pi/2$$

$$x = 1 : \varphi = -\pi/4$$

A.3.d. Caractère intégrateur à HF

$$\underline{H} \approx \frac{H_0 \omega_0}{j \omega} = \frac{\underline{s}}{\underline{e}} \implies \frac{\mathrm{d}s(t)}{\mathrm{d}t} = H_0 \omega_0 e(t)$$

Remarque : e(t) T-périodique

•
$$n\omega \gg \omega_0, \forall n \Longrightarrow \omega = \frac{2\pi}{T} \gg \omega_0$$

•
$$\langle e \rangle = 0$$

A.3.e. Exemples de réalisations pratiques

$$H = \frac{Z_C}{Z_C + Z_R} = \frac{1}{1 + jRC\omega}$$

$$u_e \downarrow u_s \qquad H = \frac{Z_C}{Z_C + Z_R} = \frac{1}{1 + jRC\omega}$$

$$lci, H_0 = 1, \omega_0 = \omega_c = \frac{1}{RC}$$

$$\underline{H} = \frac{Z_c}{Z_c + Z_R} = \frac{1}{1 + jRC\omega}$$

Ici,
$$H_0 = 1$$
, $\omega_0 = \omega_{\rm c} = \frac{1}{RG}$

SJTU

A.3.f. Exemple d'utilisation : extraction d'une valeur moyenne speit

On veut $s(t) = \langle e \rangle = u_0/2$. s(t)? Supposons $\omega = 10\omega_c$

$$e(t) = \frac{u_0}{2} + \frac{2u_0}{\pi} \left[\sin(\omega t) + \frac{1}{3}\sin(3\omega t) + \frac{1}{5}\sin(5\omega t) + \cdots \right]$$

$$s(t) = \langle s \rangle + \sum_{n \ge 1} C_n' \cos(n\omega t + \varphi_n')$$

•
$$\langle s \rangle = H_0 \langle e \rangle = \frac{u_0}{2}$$

•
$$C_n' = C_n H(n\omega) = C_n \frac{1}{\sqrt{1+x^2}} = C_n \frac{1}{\sqrt{1+100n^2}}$$

Amplitude **maximale** :
$$C_1' = \frac{1}{\sqrt{1+100}} \frac{2u_0}{\pi} \approx \frac{2u_0}{10\pi} = 0.064u_0$$

Pour **améliorer** :
$$\downarrow$$
 $oldsymbol{\mathcal{C}_n}' \implies oldsymbol{\omega}_c \downarrow$

A.4. Filtre passe-bas du 2^{ème} ordre A.4.a. FDT et EDC

$$\underline{H} = \frac{H_0}{1 + j\frac{x}{Q} + (jx)^2}$$

$$\Rightarrow \text{RSE} : \left[1 + \frac{j\omega}{\omega_0 Q} + \left(\frac{j\omega}{\omega_0}\right)^2\right] \underline{s} = H_0 \underline{e}$$

$$\Rightarrow \frac{1}{\omega_0^2} \frac{d^2 s(t)}{dt^2} + \frac{1}{\omega_0 Q} \frac{ds(t)}{dt} + s(t) = H_0 e(t)$$

$$\Rightarrow \frac{d^2 s(t)}{dt^2} + \frac{\omega_0}{Q} \frac{ds(t)}{dt} + \omega_0^2 s(t) = \omega_0^2 H_0 e(t)$$

A.4.b.c. Diagramme de Bode

$$H(x) = \frac{|H_0|}{\sqrt{(1-x^2)^2 + \left(\frac{x}{Q}\right)^2}}, \varphi(x) = \arg(H_0) - \arg\left(1 - x^2 + j\frac{x}{Q}\right)$$

Courbe de gain

$$G_{\text{dB}} = 20\log|H_0| - 10\log\left[(1-x^2)^2 + \left(\frac{x}{Q}\right)^2\right]$$

1.
$$\mathbf{x} \ll \mathbf{1} : \mathbf{x}^4 \ll \mathbf{x}^2 \ll 1 \Longrightarrow G_{\mathrm{dB}} \approx 20 \log |H_0|$$

 $\mathbf{x} \gg \mathbf{1} : G_{\mathrm{dB}} \approx 20 \log |H_0| - 40 \log \mathbf{x}$

Remarque: amplitude décroit plus rapidement $(1/\omega^2) \Rightarrow$ plus efficace qu'un filtre du 1^{er} ordre à HF

2. $\omega_{\rm c}$ dépend de Q (voir résonance en $u_{\rm c}$ RLC)

Choix optimal :
$$Q = \frac{1}{\sqrt{2}}$$

$$H(x) = \frac{|H_0|}{\sqrt{1 + x^4}}$$
 et $\omega_c = \omega_0$

Courbe de phase

- Méthode 1: $\varphi(x) = \arg(H_0) \arg(1 x^2 + j\frac{x}{\rho})$ (voir CH2: A.1.f)
- Méthode 2 :

$$\underline{H} = \frac{H_0\left(-\frac{jQ}{x}\right)}{1 + jQ\left(x - \frac{1}{x}\right)} \Longrightarrow \varphi = \arg\left(-\frac{jH_0Q}{x}\right) - \arctan Q\left(x - \frac{1}{x}\right)$$

A.4.d. Exemple

$$\frac{H}{is} = \frac{\frac{1}{jC\omega}}{\frac{1}{jC\omega} + R + jL\omega} = \frac{1}{1 + jRC\omega + (j\omega)^2 LC}$$

Mise sous forme canonique :
$$\underline{H} = \frac{H_0}{1 + j\frac{x}{Q} + (jx)^2}$$

Ici,
$$H_0 = 1$$
, $\omega_0 = \frac{1}{\sqrt{LC}}$, $\frac{1}{\omega_0 Q} = RC \Longrightarrow Q = \frac{1}{R} \sqrt{\frac{L}{C}}$

B. FILTRES PASSE-HAUT

B.1. Filtre passe-haut idéal

$$\underline{H} = \left\{ egin{matrix} H_0 & \mathsf{pour} \ \pmb{\omega} > \pmb{\omega}_{\mathsf{c}} \\ \mathbf{0} & \mathsf{sinon} \end{matrix} \right.$$

B.2. Application : suppression de valeur moyenne

$$e(t)$$
 périodique $\xrightarrow{\omega_{c} \ll \omega = \frac{2\pi}{T}} s(t) = e(t) - \langle e \rangle$

B.3. Filtre passe-haut du 1^{er} ordre B.3.a. FDT et EDC

$$\underline{H} = \frac{H_0}{1 + \frac{1}{jx}}$$
 $H_0 : \text{gain à HF. } \left(jx \to \frac{1}{jx}\right)$

$$\longrightarrow RSE : \frac{\underline{s}}{\underline{e}} = \frac{H_0 j x}{1 + j x}$$

$$\Rightarrow \left(1 + \frac{j\omega}{\omega_0}\right)\underline{s} = H_0 \frac{j\omega}{\omega_0}\underline{e}$$

$$\Rightarrow \frac{1}{\omega_0} \frac{\mathrm{d}s(t)}{\mathrm{d}t} + s(t) = \frac{H_0}{\omega_0} \frac{\mathrm{d}e(t)}{\mathrm{d}t}$$

B.3.b.c. Diagramme de Bode

$$H = \frac{|H_0|}{\sqrt{1 + \frac{1}{x^2}}}, \varphi = \arg(H_0) - \arg\left(1 + \frac{1}{jx}\right) = \arg(H_0) + \arctan\left(\frac{1}{x}\right)$$

$$G_{\text{dB}} = 20\log|H_0| - 10\log\left(1 + \frac{1}{x^2}\right)$$

1.
$$x \ll 1 : G_{dB} \approx 20 \log |H_0| + 20 \log x$$

 $x \gg 1 : G_{dB} \approx 20 \log |H_0|$

$$2. \omega_{\rm c} = \omega_{\rm 0}$$

1.
$$x \ll 1 : \varphi \approx \pi/2$$

 $x \gg 1 : \varphi \approx 0$

2.
$$x = 1$$
: $\varphi = \pi/4$

B.3.d. Caractère dérivateur à BF

$$\underline{H} \approx H_0 \frac{j\omega}{\omega_0} = \frac{\underline{s}}{\underline{e}} \implies s(t) = \frac{H_0}{\omega_0} \frac{\mathrm{d}e(t)}{\mathrm{d}t}$$

B.3.e. Exemple

$$\underline{H} = \frac{Z_R}{Z_C + Z_R} = \frac{R}{\frac{1}{jC\omega} + R} = \frac{1}{1 + \frac{1}{jRC\omega}}$$

$$\omega_0 = \frac{1}{RC}$$

B.4. Filtre passe-haut du 2^{ème} ordre B.4.a. FDT

$$\underline{H} = \frac{H_0}{1 + \frac{1}{Q} \frac{1}{jx} + \left(\frac{1}{jx}\right)^2}$$

B.4.b.c. Diagramme de Bode

$$H = \frac{|H_0|}{\sqrt{\left(1 - \frac{1}{x^2}\right)^2 + \frac{1}{Q^2 x^2}}}$$

$$\underline{H} = \frac{H_0 jQx}{1 + jQ\left(x - \frac{1}{x}\right)} \Longrightarrow \varphi = \arg(H_0 jQx) - \arctan\left(Q\left(x - \frac{1}{x}\right)\right)$$

$$G_{\text{dB}} = 20\log|H_0| - 10\log\left[\left(1 - \frac{1}{x^2}\right)^2 + \frac{1}{Q^2x^2}\right]$$

- $x \ll 1 : G_{dB} \approx 20 \log |H_0| + 40 \log x$
- $x \gg 1 : G_{\mathrm{dB}} \approx 20 \log |H_0| + G_{\mathrm{dB}}$
- © Coube de phase

B.4.d. Exemple

$$\underline{H} = \frac{jL\omega}{\frac{1}{jC\omega} + R + jL\omega} = \frac{1}{1 + \frac{R}{jL\omega} + \frac{1}{(j\omega)^2LC}}$$

$$H_0 = 1$$
, $\omega_0 = \frac{1}{\sqrt{LC}}$, $\frac{R}{L} = \frac{\omega_0}{Q} \Longrightarrow Q = \frac{1}{R}$

Q = 0.1

log(x)

 G_{dB} †

40 dB/décade

 $Q = 10 \leftarrow$

C. FILTRES PASSE-BANDE

C.1. Filtre passe-bande idéal

$$\underline{H} = \begin{cases} H_0 & \text{si } \boldsymbol{\omega} \in [\boldsymbol{\omega}_1, \boldsymbol{\omega}_2] \\ \mathbf{0} & \text{sinon} \end{cases}$$

 $[\boldsymbol{\omega_1}, \boldsymbol{\omega_2}]$: bande passante du filtre

 $\omega_m = \frac{\omega_1 + \omega_2}{2}$: pulsation centrale (centre de bande)

 $\Delta \omega = \omega_2 - \omega_1$: largeur de bande

C.2. Applications

Selectivité : si $\Delta \omega/\omega_m \ll 1$: selectif
si $\Delta \omega/\omega_m \gg 1$: à bande large (non selectif)

C.2.a. Filtrage selectif

- ② Laisser passer une harmonique ⇒ obtenir un signal sinusoïdal
- Walidité :
 - $\Delta \omega \leq 2\pi/T$
 - $\omega_m = n \frac{2\pi}{T}$

Exemple : Fig. 5-21 (P111 du poly)

C.2.b. Amplificateur large bande

- But : amplifier un signal du spectre large sans le déformer
- @ Exemple : signaux sonores $f \in [20, 2 \times 10^4] \text{ Hz}$

C.3. Filtre passe-bande du 2^{ème} ordre

C.3.a. FDT

$$\underline{H} = \frac{H_0}{1 + jQ\left(x - \frac{1}{x}\right)}$$

 G_{dB}

C.3.b. Courbe de gain

$$H = \frac{|H_0|}{\sqrt{1 + Q^2(x - 1/x)^2}}, G_{\text{dB}} = 20\log|H_0| - 10\log[1 + Q^2(x - 1/x)^2]$$

1.
$$x \ll 1 : G_{dB} \approx 20 \log \frac{|H_0|}{Q} + 20 \log x, \ x \gg 1 : G_{dB} \approx 20 \log \frac{|H_0|}{Q} - 20 \log x$$

$$2. x = 1 : H_{\text{max}} = |H_0|, G_{\text{dB}} = 20 \log |H_0|$$

- Fig. 5-22 (P112 du poly)
 - $Q \gg 1$: maximum aigu (résonance très fine)
 - $Q \ll 1$: maximum large

C.3.c. Bande passante à -3dB

$$H(\omega_{1,2}) \geq \frac{H_{\max}}{\sqrt{2}}, [\omega_1, \omega_2]$$

$$\Delta\omega = \omega_2 - \omega_1, \quad \Delta\omega = \frac{\omega_0}{Q}$$
 (voir CH2. A.2.b)

C.3.d. Courbe de phase

$$\varphi = \arg(H_0) - \arctan\left(Q\left(x - \frac{1}{x}\right)\right) \ (H_0 > 0)$$

- ② $x \ll 1 : \varphi \approx -\arctan(-Q/x) = \pi/2$ $x \gg 1 : \varphi \approx -\arctan(Qx) = -\pi/2$
- **@** $x = 1 : \varphi = 0$

C.3.f. Exemple

$$C.5.1. Exemple$$

$$\begin{vmatrix} C & C & I_s = 0 \\ R & I_s = 0 \\ R & R \end{vmatrix}$$

Exemple
$$\frac{H}{c} = \frac{R}{\frac{1}{jC\omega} + R + jL\omega} = \frac{1}{1 + j\frac{L}{R}\omega - j\frac{1}{\omega RC}}$$

$$u_s = 0, \quad u_s = 0, \quad u$$

C.3.g. Utilisation :
$$RLC$$
 ($Q = 10$)

$$u_e(t) = \frac{u_0}{2} + \frac{2u_0}{\pi} \left[\sin(\omega t) + \frac{1}{3}\sin(3\omega t) + \frac{1}{5}\sin(5\omega t) + \cdots \right]$$

$$\xrightarrow{t} u_s(t) = \alpha \sin(\omega t)$$

$$C_1' = H(\omega)C_1 = 1 \times \frac{2u_0}{\pi} \approx 0.64u_0$$

$$C_1' = H(\omega)C_1 = 1 \times \frac{2u_0}{\pi} \approx 0.64u_0$$

$$C_3' = H(3\omega)C_3 = \frac{1}{\sqrt{1 + 10^2(3 - 1/3)^2}} \times \frac{2u_0}{\pi} \times \frac{1}{3} \approx 0.80 \times 10^{-2}u_0$$