ALGEBRAIC GEOMETRY

ZIWEI WEI

ABSTRACT. This is my personal note of course Advanced Geometry 3 taught by Prof. Fabio Perroni in spring 2024 at University of Trieste. And as the title, this course is focused on algebraic geometry, especially on algebraic varieties over $\mathbb C$. The latest version can be found on my website:

This note is not completely following what's on the blackbord. The materials might be re-organized or have some slightly changes. I will also add some supplementary materials which will be marked by *.

Attention: there are definitely a considerable number of mistakes in this note, and all due to me. If you have any comments, corrections or suggestions, please send them to zwei@sissa.it. Any feedback is appreciated!

Contents

0.	Preface	4
1.	Affine algebraic varieties	4
1.1.	Algebraic subsets	-
1.2.	Affine varieties	
1.3.	Tangent spaces of affine varieties	ļ
1.4.	Tangent spaces and derivations	(
1.5.	Appendix. primary decomposition	1
1.6.	Appendix. transcendental extension	8
Refe	References	

0. Preface

The main reference is [4].

1. Affine algebraic varieties

1.1. Algebraic subsets. All ring will be assumed as commutative ring with unit.

Definition 1.1.1. A closed algebraic subset $X \subset \mathbb{C}^n$ is the set of zeroes of a finite numbers of polynomials

$$X = \{a = (a_1, \dots, a_n) \mid f_i(a_1, \dots, a_n) = 0, \forall i = 1, \dots, m\}$$

where $f_i \in \mathbb{C}[x_1, \ldots, x_n]$.

It is also denoted by $V(f_1, \ldots, f_m)$.

Remark 1.1. The ideal generated by f_1, \ldots, f_m is

$$I = (f_1, \dots, f_m) = \{ \sum g_i f_i \mid g_i \in \mathbb{C}[x_1, \dots, x_n] \}.$$

And the set of zeroes of I is $X = V(I) = \{a \in \mathbb{C}^n \mid f(a) = 0, \forall f \in I\}.$

By Hilbert basis theorem, every ideal $I \subset \mathbb{C}[x_1, \dots, x_n]$ is f.g., i.e., $\exists f_1, \dots, f_m$ s.t. $I = (f_1, \ldots, f_m)$. Hence we will talk about $V(I), I \subset \mathbb{C}[x_1, \ldots, x_n]$.

Proposition 1.1.1. Let $I_1, I_2, \{I_\alpha\}_{\alpha \in A}$ be ideas of $\mathbb{C}[x_1, \ldots, x_n]$. a = $(a_1,\ldots,a_n)\in\mathbb{C}^n$. Then the following hold true.

- (1) If $I_1 \subset I_2$, then $V(I_2) \subset V(I_1)$,
- (2) $V(I_1 \cup I_2) = V(I_1 \cap I_2) = V(I_1 \cdot I_2) \ (I_1I_2 = \{fg | f \in I_1, g \in I_2\}),$
- (3) $V(\sum_{\alpha \in A} I_{\alpha}) = \bigcap_{\alpha \in A} V(I_{\alpha}),$ (4) If $\mathfrak{m}_a := (x_1 a_1, \dots, x_n a_n), \text{ then } V(\mathfrak{m}_a) = \{a\},$
- (5) $V(\sqrt{I}) = V(I)$

$$(\sqrt{I} = \{ f \in \mathbb{C}[x_1, \dots, x_n] \mid f^K \in I \text{ for some } K > 0 \}).$$

Proof. (1) evident.

(2) Since $I_1I_2 \subset I_1 \cap I_2 \subset I_1, I_2$, (1) implies that

$$V(I_1I_2)\supset V(I_1\cap I_2)\supset V(I_1),V(I_2).$$

Conversely, let $a \in V(I_1I_2)$. If $a \notin V(I_1 \cap I_2)$, then $\exists f \in I_1 \cap I_2$ s.t. $f(1) \neq 0$. Then $f^2(a) \neq 0$, but $f^2 \in I_1I_2$. The remain is similar.

- (3) (\subset) $I_{\alpha} \subset \sum I_{\alpha} \forall \alpha$, hence $V(\sum I_{\alpha}) \subset V(I_{\alpha}) \forall \alpha$.
 - (\supset) Immediately.
- (4) $b \in V_{\mathfrak{m}_a}$ iff $b_i a_i = 0$, $\forall i$.
- (5) (\subset) $\sqrt{I} \supset I$
 - (\supset) Let $a \in V(I)$. If $a \notin V(\sqrt{I})$, then $\exists f \in \sqrt{I}$ s.t. $f(a) \neq 0$. Hence $f^K(a) \neq 0$. contradiction.

(1) It can happen that $I_1I_2 \subsetneq I_1 \cap I_2$, Remark 1.2.

(2) \sqrt{I} is an ideal and it is called the radical of I,

(3) **Proposition 1.1.1**(2), (3) implies that algebraic subsets of \mathbb{C}^n satisfy the axiom of closed sets of a topology on \mathbb{C}^n and it is called **Zariski topology**.

Remark 1.3. The Zariski topology is not Hausdorff in general. However, if the base field k is finite, then the Zariski topology is Hausdorff.

1.2. Affine varieties.

Definition 1.2.1. An **affine variety** is a closed algebraic set $X \subset \mathbb{C}^n$ of the form X = V(P) with P prime ideal.

Example 1.2.1. Let $f \in \mathbb{C}[x_1, \dots, x_n]$ be irrd. Then $V(f) = V((f)) \subset \mathbb{C}^n$ is an affine variety and it is called an hypersurface of \mathbb{C}^n .

Note that if f is not irrd then (f) is not prime.

Example 1.2.2. Let $g_2, \ldots, g_n \in \mathbb{C}[x_1]$. Consider $X := \{(a, g_2(a), \ldots, g_n(a)) \in \mathbb{C}^n \mid a \in \mathbb{C}\}.$

It is a closed algebraic subset by $X = V(x_2 - g_2(x_1), \dots, x_n - g_n(x_1))$. And since $\mathbb{C}[x_1, \dots, x_n]/(x_2 - g_2(x_1), \dots, x_n - g_n(x_1)) \cong \mathbb{C}[x_1]$ which is a integral domain. Hence X is an affine variety and it is called rational space curve.

Exercise 1.2.1. Let $\varphi_1, \ldots, \varphi_k \subset \mathbb{C}[x_1, \ldots, x_n]$ be homogeneous polynomials of degree 1. Suppose that $\{\varphi_i\}$ are linearly independent as elements of $(\mathbb{C}^n)^*$. Then for any $b_1, \ldots, b_k \in \mathbb{C}$, fixed $X = V(\varphi_1 - b_1, \ldots, \varphi_k - b_k)$, which is the set of solutions of the linear system $\varphi_i = b_i$.

Prove that X is an affine variety. It is called a linear subspace of \mathbb{C}^n of dimension n-k.

Now for any subset $S \subset \mathbb{C}^n$, we can define

$$I(S) := \{ f \in \mathbb{C}[x_1, \dots, x_n] \mid f(a) = 0, \forall a \in S \}.$$

We have the following amazing theorem.

Theorem 1.2.1 (Hilbert's Nullstellensatz). For any ideal $J \subset \mathbb{C}[x_1, \dots, x_n]$,

$$I(V(J)) = \sqrt{J}.$$

In particular, if the ideal J is prime, then I(V(J)) = J.

Remark 1.4. (1) The theorem holds true for any algebraic closed field (See [1]).

- (2) It fails if the field is not algebraic closed. For example, take $\mathbb{k} = \mathbb{R}$, $I(V(x^2 + y^2 + 1)) = \mathbb{R}[x, y]$ where $V(x^2 + y^2 + 1)$ is actually empty.
- (3) (Study's lemma) Let $\mathbb{k} = \overline{\mathbb{k}}$. If $f \in \mathbb{k}[x_1, \dots, x_n]$ is irrd, then I(V(f)) = (f)

Lemma* 1.2.1. If $Y_1 \subset Y_2$ are algebraic subsets of \mathbb{C}^n , then $I(Y_1) \supset I(Y_2)$.

Proposition* 1.2.1. $V(I(S)) = \bar{S}$

ZIWEI WEI

4

Proof. On the one hand we have $S \subset V(I(S))$ where by definition S is closed. Hence $\bar{S} \subset V(I(S))$. On the other hand, recall that the closure

$$\bar{S} = \bigcap W$$

where W runs over all algebraic subsets of \mathbb{C}^n that contain S. And we can write W = V(J) for some ideal J. Then $S \subset V(J)$ and by **Lemma* 1.2.1**, we have $I(S) \supset I(V(J)) \supset J$. Then by **Proposition 1.1.1**(1), $W = V(J) \subset V(I(S))$ for any such W. It follows the statement.

Definition 1.2.2. Let $V(P) \subset \mathbb{C}^n$ be an affine variety. And let $\mathbb{k} \subset \mathbb{C}$ be a subfield. A point $a \in V(P)$ is called a \mathbb{k} -generic point if the following condition holds true: $\forall f \in \mathbb{k}[x_1, \dots, x_n]$, if f(a) = 0, then $f \in P$.

Example 1.2.3. Consider $g_2, \ldots, g_n \in \mathbb{Q}[x_1]$ and let $X = V(x_2 - g_2(x_1), \ldots, x_n - g_n(x_1))$ be the rational space curve. Let $a := (\pi, g_2(pi), \ldots, g_n(\pi)) \in X$. Then a is \mathbb{Q} -generic.

Indeed, let $f \in \mathbb{Q}[x_1, \ldots, x_n]$ is s.t. f(a) = 0. But $\varphi := f(x_1, x_2 - g_2(x_1), \ldots, x_n - g_n(x_1)) \in \mathbb{Q}[x_1]$, hence $\varphi = 0$. It follows that $\varphi \in P$.

Proposition 1.2.1. Let V(P) be an affine variety. Let $\mathbb{k} \subset \mathbb{C}$ be a subfield s.t. $tr. \deg \mathbb{C} | \mathbb{k} = \infty$. Then there exists $a \in V(P)$ a \mathbb{k} -generic point.

Proof. Let $P = (f_1, \ldots, f_m)$ and, WLOG, assume that $f_1, \ldots, f_m \in \mathbb{k}[x_1, \ldots, x_n]$ (Otherwise let \mathbb{k}' be the minimal subfield of \mathbb{C} containing \mathbb{k} and the coefficients of f_1, \ldots, f_m . Then $tr. \deg \mathbb{C}|\mathbb{k}' = \infty$ and any \mathbb{k}' -generic point is also a \mathbb{k} -generic point).

Let $P_0 = P \cap \mathbb{k}[x_1, \dots, x_n]$, which is prime. And let K be the fraction field of $\mathbb{k}[x_1, \dots, x_n]/P_0$.

Since for any $f/g \in K$, it is a root of $gy - f \in \mathbb{k}(\bar{x}_1, \dots, \bar{x}_n)[y]$, where $\bar{x}_1, \dots, \bar{x}_n$ is the isomorphic class in $\mathbb{k}[x_1, \dots, x_n]/P_0$. We have that $K|\mathbb{k}(\bar{x}_1, \dots, \bar{x}_n)$ is algebraic. Hence tr. deg $K|\mathbb{k} \leq n < \infty$.

In this situation, there exists a field homomorphism

$$\phi:K\to\mathbb{C}$$

s.t. $\phi|_K = \mathrm{id}_K(\mathrm{Indeed}, \mathrm{let} \ \lambda_1, \ldots, \lambda_\delta \in K \mathrm{ be a transcendence basis for } K|_{\mathbb{k}}.$ Let $z_1, \ldots, z_\delta \in \mathbb{C}$ be algebraically independent over $_{\mathbb{k}}$. The map $\lambda_i \mapsto z_i, \ \forall i \mathrm{ extends}$ to a unique field homomorphism from $K \to \mathbb{C}$. See [5] Thm33 p.102).

Let $a_i := \phi(\bar{x}_i) \in \mathbb{C}$.

Claim. $a = (a_1, \ldots, a_n) \in X$ is a k-generic point.

Indeed. First we have that $f_i(\bar{x}_1,\ldots,\bar{x}_n)=0$ $i=1,\ldots,m$ in $\mathbb{k}[x_1,\ldots,x_n]/P_0$. It follows that

$$0 = \phi(f_i(\bar{x}_1, \dots, \bar{x}_n)) = f_i(\phi(\bar{x}_1), \dots, \phi(\bar{x}_n)) = f_i(a_1, \dots, a_n) \ i = 1, \dots, m.$$
 Hence $a \in X$.

Now let $f \in \mathbb{k}[x_1, \dots, x_n]$ s.t. f(a) = 0. If $f \notin P_0$, then $[f] \in \mathbb{k}[x_1, \dots, x_n]$ is nonzero. Applying ϕ to this class we get that f(a) = 0, which is contradiction.

Remark 1.5. One could have defined \mathbb{k} -generic point for all V(I) where $I \subset \mathbb{C}[x_1, \ldots, x_n]$ is any ideal. But in the following case, it doesn't exist.

Let $I = (xy) \subset \mathbb{C}[x,y]$ be an ideal and $a = (a_1, a_2)$. If $a_2 = 0$, then for $y \subset \mathbb{k}[x,y], \ \forall \mathbb{k} \subset \mathbb{C}, \ y(a) = a_2 = 0$, but $y \notin I$. It is similar when $a_1 = 0$.

Now we can give a proof of **Theorem 1.2.1**.

Proof. **Step 1.** Let J = P be prime. Let $f \in I(V(P))$ and k be the minimal subfield of \mathbb{C} containing \mathbb{Q} and the coefficients of f. Then $tr. \deg \mathbb{C}/k = \infty$ and by **Proposition 1.2.1**, there exists a k-generic point $a \in X$. And since $f \in I(X)$, f(a) = 0, then $f \in P$.

Step 2. Not let J be any ideal and $f \in I(V(J))$. Consider the primary rep

$$\sqrt{J} = P_1 \cap \dots \cap P_N.$$

Then $V(J) = V(\sqrt{J}) = V(P_1) \cup \cdots \cup V(P_N)$. So $f \in I(V(P_i))$ $i = 1, \dots, N$. Then by **Step 1.**, $f \in P_i$ $i = 1, \dots, N$, and $f \in \sqrt{I}$.

Corollary 1.2.1. There is an order-reversing correspondence

$$\{J \subset \mathbb{C}[x_1, \dots, x_n] \mid J = \sqrt{J}\} \leftrightarrow \{\text{closed algebraic subset of } \mathbb{C}^n\}$$

$$J \mapsto V(J)$$

$$I(X) \longleftrightarrow X$$

Definition 1.2.3. Let $X = V(P) \subset \mathbb{C}^n$ be an affine variety with $P \subset \mathbb{C}[x_1, \ldots, x_n]$ prime ideal. The ring $R_X := \mathbb{C}[x_1, \ldots, x_n]/P$ is the **affine coordinate ring** of X.

Corollary 1.2.2. In this situation, R_X is isomorphic to the ring of functions $X \to \mathbb{C}$ which are restrictions of polynomials in $\mathbb{C}[x_1, \ldots, x_n]$.

Proof. Let $\mathcal{F}(X) := \{F : X \to \mathbb{C} \mid \text{ s.t. } \exists f \in \mathbb{C}[x_1, \dots, x_n] \text{ s.t. } F(a) = f(a), \forall a.$

Restriction yields an surjective homomorphism

$$\mathbb{C}[x_1,\ldots,x_n]\to\mathcal{F}(X)\to 0$$

and its kernel is P. Then we have the isomorphism.

1.3. Tangent spaces of affine varieties.

Definition 1.3.1. Let X = V(P) be an affine variety with $P \in \mathbb{C}[x_1, \ldots, x_n]$ prime. Let $a \in X$, the **Zariski tangent space** of X at a is the linear subspace of \mathbb{C}^n given by the equations

$$\sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(a)(x_i - a_i) = 0, \quad \forall f \in P$$

and denoted by $T_{X,a}^{-1}$.

¹I prefer T_aX so I might change this symbol hereafter

ZIWEI WEI

Remark 1.6. (1) If $P = (f_1, ..., f_m)$, then

$$T_a X = V(\{\sum_{i=0}^m \frac{\partial f_j}{\partial x_i}(a)(x_i - a_i) = 0 \mid j = 1, \dots, m\}).$$

Indeed, (\subset) is obvious. (\supset) If $(b_1, \ldots, b_n) \in \mathbb{C}^n$ is s.t.

$$\sum_{i=0}^{n} \frac{\partial f_j}{\partial x_i}(a)(b_i - a_i) = 0, \ \forall j = 1, \dots, m.$$

Let $f \in P$, we can write $f = \sum_{i=1}^{m} f_i g_i$ for some $g_i \in \mathbb{C}[x_1, \dots, x_n]$. Then

$$\sum_{i=0}^{n} \frac{\partial f}{\partial x_i}(a)(b_i - a_i) = \sum_{i=0}^{n} \sum_{i=1}^{m} \frac{\partial f_i g_i}{\partial x_i}(a)(b_i - a_i) = 0.$$

- (2) $T_aX \subset \mathbb{C}^n$ is an affine subspace passing through a.
- 1.4. Tangent spaces and derivations. Let $R := R_X$ be the affine coordinate ring of X.

Recall that a **derivation** of R (centered) at $a \in X$ is a \mathbb{C} -linear map

$$D:R\to\mathbb{C}$$

s.t.

6

- (1) $D(fg) = f(a)D(g) + g(a)D(f), \forall f, g \in R,$
- (2) $D(\lambda) = 0, \ \forall \lambda \in \mathbb{C}.$

Let $Der_{R,a}$ be the set of such derivations.

Remark 1.7. $Der_{R,a}$ is a vector space over \mathbb{C} .

Proposition 1.4.1. Let $\bar{x}_1, \ldots, \bar{x}_n \in R$ be the classes of x_1, \ldots, x_n . Then the map

$$\varphi: Der_{R,a} \to \mathbb{C}^n$$

 $D \mapsto (D(\bar{x}_1), \dots, D(\bar{x}_n))$

is an injective linear map and its image is $T_aX - a$.

Proof. (exer.)

1.5. **Appendix. primary decomposition.** Now We recall some commutative algebra [5].

Definition 1.5.1. Let R be a ring and $I \subset R$ be an ideal of R. I is called **primary** if whenever $a, b \in R$ are such that $ab \in I$ and $a \notin I$, then $b \in \sqrt{I}$.

We have immediately that the radical of a primary ideal is prime.

Theorem 1.5.1 (Lasker-Noether decomposition theorem).

(1) Let R be a Noetherian ring, then every ideal $I \subset R$ admits the so called primary representation as

$$I = Q_1 \cap \cdots \cap Q_N$$

where Q_i 's are primary ideals of R.

Moreover, we can find Q_1, \ldots, Q_N s.t.no Q_i contains $\bigcap_{j \neq i} Q_j$ and the associated prime ideals $\sqrt{Q_1}, \ldots, \sqrt{Q_n}$ are distinct. In this case it is called irredundant primary representation.

(2) Let R be a ring and $I \subset R$ be an ideal that admits an irredundant primary representation

$$I = Q_1 \cap \cdots \cap Q_N$$
.

Then $I = \sqrt{I}$ iff Q_1, \ldots, Q_N are prime.

Theorem 1.5.2. Let R be a ring and $I \subset R$ be an ideal admitting an irreduandant primary representation

$$I = Q_1 \cap \cdots \cap Q_N$$
.

Then the prime ideals $P_i := \sqrt{Q_i}$ are uniquely determined by I. And they are called the associated primes of I.

Example 1.5.1. Let $I = (x^2, y) \subset \mathbb{C}[x, y]$ be an ideal. It has an irreduandant primary representation

$$I = (x^2) \cap (y).$$

And its radical is

$$\sqrt{I} = (x) \cap (y).$$

More generally, let $f \in \mathbb{C}[x_1,\ldots,x_n]$ and write $f=g_1^{k_1}\cdots g_N^{k_N}$ where g_i are irrd and not associated to each other. Then we have

$$(f)=(g_1^{k_1})\cap\cdots\cap(g_N^{k_N}).$$

And its radical is

$$\sqrt{(f)} = (g_1) \cap \cdots \cap (g_N) = (g_1 \cdot g_N).$$

Example 1.5.2. Let \mathbb{k} be any field. Consider the polynomial ring $\mathbb{k}[x,y]$ and ideal $I = (x^2, xy)$. Then for any $c \in \mathbb{k}$,

$$I = (x) \cap (y - cx, x^2)$$

is an irredundant primary representation of I.

ZIWEI WEI

Question 1.5.1. What are the associated primes of I?

Corollary 1.5.1. Let $I \subset \mathbb{C}[x_1, \dots, x_n]$ be a radical ideal. Then there exists unique prime ideals $P_1, \dots, P_N \subset \mathbb{C}[x_1, \dots, x_n]$ s.t.

$$I = P_1 \cap \cdots \cap P_N$$

and $P_i \neq P_j$, $\forall i \neq j$.

8

1.6. Appendix. transcendental extension.

Definition 1.6.1. An extension $K|\mathbb{k}$ is **transcendental** if it is not algebraic (i.e. if $\exists \alpha \in K$ not algebraic over \mathbb{k}).

Example 1.6.1. (1) $\mathbb{Q}(\pi)|\mathbb{Q}$ is transcendental.

- (2) $\mathbb{Q}(i)|\mathbb{Q}$ is algebraic.
- (3) Let \mathbb{k} be any field and K be the fraction field of $\mathbb{k}[x_1, \ldots, x_n]$, which is $K = \mathbb{k}(x_1, \ldots, x_n)$. Then $K | \mathbb{k}$ is transcendental.

Definition 1.6.2. Let $K|\mathbb{k}$ be a field extension. Let $L \subset K$. The elements of L are said to be **algebraically independent** over \mathbb{k} if $\forall \alpha_1, \ldots, \alpha_N \in L$, there is no $f \in \mathbb{k}[x_1, \ldots, x_n]$ s.t. $f(\alpha_1, \ldots, \alpha_N) = 0$. In this case, L is called a **transcendental set** over \mathbb{k} .

Definition 1.6.3. A transcendental basis for $K|\mathbb{k}$ is a transcendental set $L \subset K$ over \mathbb{k} that is not contained in any bigger transcendental set.

Remark 1.8. $L \subset K$ is a transcendental basis for $K|\mathbb{k}$ iff $K|\mathbb{k}(L)$ is algebraic.

Example 1.6.2. $\{x_1,\ldots,x_n\}\in \mathbb{k}(x_1,\ldots,x_n)$ form a transcendental basis for $\mathbb{k}(x_1,\ldots,x_n)|\mathbb{k}$.

Theorem 1.6.1. There exists a transcendental basis for any field extension. Moreover, any two transcendental basis have the same cardinality.

See Chapter II Sec. 12 in [5] for the proof.

Definition 1.6.4. The cardinality of any transcendental basis for $K|\mathbb{k}$ is called the **transcendental degree** of $K|\mathbb{k}$, denoted by $tr. \deg(K|\mathbb{k})$.

Remark 1.9. $tr. \deg \mathbb{R}|\mathbb{Q} = tr. \deg \mathbb{C}|\mathbb{Q} = \infty$

References

- [1] M. F. Atiyah, I. G. MacDonald, *Introduction to Commutative Algebra*, Addison-Wesley, 1969.
- [2] R. Hartshorne *Algebraic geometry*, Graduate Texts in Mathematics, No. 52. Springer-Verlag, New York-Heidelberg, 1977.
- [3] I.R. Shafarevich, Basic Algebraic Geometry 1: Varieties in Projective Space, Third edition. Springer, Heidelberg, 2013.
- $[4]\,$ D. Mumford, Algebraic Geometry I, Complex Projective Varieties, Springer Berlin, Heidelberg, 1995
- [5] O. Zariski, P. Samuel, Commutative Algebra, Volume I, Springer, 1958.