Seminarieuppgift 3 - Gränsvärden

Emma Bastås

September 28, 2022

Uppgiften är att finna följande gränsvärde:

$$\lim_{x \to (-8)} f(x),\tag{*}$$

där:

$$f(x) = \frac{\sqrt{1-x} - 3}{2 + \sqrt[3]{x}}.$$

Enligt definitionen av gränsvärden* så gäller det att om en funktion g(x) är kontinuerlig i området runt a och a tillhör definitionsmängden av g(x) så medför det att $\lim_{x\to a} g(x) = g(a)$. Betraktar vi (\star) ser vi att denna metod inte är direkt tillämpningsbar då f(x) för x=-8 är odefinierat och således inte ingår i definitionsmängden. Det vi får gör istället är att omarbeta uttrycket i f(x) så att f(-8) är definierat, och därefter finna gränsvärdet.

Innan vi påbörjar bearbetningen så substituerar vi $\sqrt[3]{x}$ för t, så blir uttrycket enklare att arbeta med:

$$\frac{\sqrt{1-t^3}-3}{2+t}. (1)$$

Nu förlänger vi bråket med täljarens konjugat och förenklar:

$$(1) = \frac{\sqrt{1-t^3}+3}{\sqrt{1-t^3}+3} \cdot \frac{\sqrt{1-t^3}-3}{2+t} = \frac{-(t^3+8)}{(\sqrt{1-t^3}+3)(2+t)}.$$
 (2)

Att förlänga bråket är inte problematiskt i detta fall då täljarens konjugat aldrig

^{*}Så som den är given i Persson och Böiers $Analys\ i\ en\ variabel,$ sida 139

är 0, och är odefinierat i exakt de värden för x där täljaren själv är odefinierad. Nu förlänger vi bråket med $4-2t+t^{2\dagger}$:

$$(2) = \frac{-(t^3+8)}{(\sqrt{1-t^3}+3)(2+t)} \cdot \frac{4-2t+t^2}{4-2t+t^2} = \frac{-(t^3+8)(4-2t+t^2)}{(\sqrt{1-t^3}+3)(8+t^3)}.$$
 (3)

Även denna gång visar det sig vara oproblematiskt att förlänga bråket då det inte finns några värden på x för vilket $4-2t+t^2=0$.

Nu kan faktorn $t^3 + 8$ förkortas bort ur bråket:

$$(3) = \frac{t^3 + 8}{t^3 + 8} \cdot \frac{-(4 - 2t + t^2)}{\sqrt{1 - t^3} + 3} = \frac{-(4 - 2t + t^2)}{\sqrt{1 - t^3} + 3}.$$
 (4)

Att förkorta med t^3+8 blir lite knivigare då t^3+8 faktiskt är odefinierat i x=-8. Men nu tar vi ett steg tillbaka; denna algebraiska bearbetning sker inuti gränsvärdesuttrycket $\lim_{x\to(-8)}$ och i detta gränsvärdesuttryck $n\ddot{a}rmar$ vi oss gränsvärdet -8, men vi kommer faktiskt aldrig att anlända dit, så att t^3+8 är odefinierat i den punkt vi närmar oss men aldrig når är inga problem. Med andra ord:

Vi sätter $f^*(x)$ till uttrycket i (4), det är då sant att:

$$f(x) \neq f^*(x),$$

Men det är samtidigt sant att:

$$\lim_{x \to (-8)} f(x) = \lim_{x \to (-8)} f^*(x) = f^*(-8) = -2.$$

[†]Varför just detta magiska uttryck? Vi använder identiteten $(a-b)(a^3+ab+b^3)=a^3+b^3$ med avsikt att bli av med kubikroten i nämnaren.