MLR and You Tube Videos

Xinyi Lu and Daiyan Zhang

Introduction

Response:

Views: number of views of the video

Predictors:

Subscribers: number of subscribers of the channel

CC: manual subtitles (0 means the transcript is auto-generated, 1 means manual

subtitles)

Released: time of the video released

Category: Category of the channel

Transcripts: subtitles for the video

Length: duration of the video

Dimation:

Rows: 2098

Columns: 11

Sources: https://www.kaggle.com/datasets/praneshmukhopadhyay/youtubers-saying-things

Data cleaning and manipulation

	URL <chr></chr>	Views <chr></chr>	Subscribers <chr></chr>	Released <chr></chr>	Length <chr></chr>
1	https://www.youtube.com/watch?v=FozCkl1xj-w	7.9M views	6.28M subscribers	2 years ago	13:32
2	https://www.youtube.com/watch?v=RN8yoi-e2yc	2.7M views	1.9M subscribers		24:26
3	https://www.youtube.com/watch?v=lugcIAAZJ2M	11M views	4.59M subscribers	2 years ago	7:51
4	https://www.youtube.com/watch?v=JiEO6F8i0eU	2.3M views	282K subscribers	3 years ago	10:06
5	https://www.youtube.com/watch?v=1T4XMNN4bNM	21M views	17.4M subscribers	9 years ago	9:29
6	https://www.youtube.com/watch?v=0ZWGeidvrJw	8.5M views	1.59M subscribers	7 years ago	4:20
7	https://www.youtube.com/watch?v=YiEj9mrqTN0	14M views	7.93M subscribers	2 years ago	20:54
8	https://www.youtube.com/watch?v=PZFLM2DVQHs	502K views	389K subscribers	6 years ago	33:13
9	https://www.youtube.com/watch?v=CoDpjqZpAh0	583K views	216K subscribers	6 months ago	7:17
10	https://www.youtube.com/watch?v=VT128ElBWkM	2.2M views	1.62M subscribers	4 years ago	4:20

	URL <chr></chr>	Views <dbl></dbl>	Subscribers <dbl></dbl>	Released <dbl></dbl>	Length <dbl></dbl>
1	https://www.youtube.com/watch?v=FozCkl1xj-w	7900	6280	24	14
2	https://www.youtube.com/watch?v=lugcIAAZJ2M	11000	4590	24	8
3	https://www.youtube.com/watch?v=JiEO6F8i0eU	2300	282	36	11
4	https://www.youtube.com/watch?v=1T4XMNN4bNM	21000	17400	108	10
5	https://www.youtube.com/watch?v=0ZWGeidvrJw	8500	1590	84	5
6	https://www.youtube.com/watch?v=YiEj9mrqTN0	14000	7930	24	21
7	https://www.youtube.com/watch?v=PZFLM2DVQHs	502	389	72	34
8	https://www.youtube.com/watch?v=CoDpjqZpAh0	583	216	6	8
9	https://www.youtube.com/watch?v=VT128ElBWkM	2200	1620	48	5
10	https://www.youtube.com/watch?v=AmKX9tCVtUE	5500	5720	36	23

Sentiment Analysis

- Tokenize the word in Transcript, anti join the stop words, and use get_sentiments("afinn") to get the afinn value.
 Note: afinn is from -5 to 5.
- Do tf-idf of words to give a weight of a word's importance in a viedo transcript.
 I.e. bind tf idf(word, Id, n), outcome is tf idf and n
- 3. **afinn_score = sum (**<u>value</u> * <u>tf idf</u>) same as Title's afinn score: **afinn title score**

n: Column containing document-term counts

```
> glimpse(df1)
Rows: 2,098
Columns: 13
                                                     <chr> "FozCkl1xj-w", "IuqcIAAZJ2M", "JiE06F8i0eU", "1T4XMNN4bNM", "0ZWGeidvrJw'
$ Id
$ Channel
                                                     <chr> "JRE Clips", "Munchies", "Parks and Recreation", "Vsauce", "Doctor Who",
$ Subscribers
                                                     <dbl> 6280, 4590, 282, 17400, 1590, 7930, 389, 216, 1620, 5720, 4010, 847, 3936
$ Title
                                                     <chr> "Former CIA Agent Breaks Down Jeffrey Epstein Case", "The Iconic $1 Pizzo
$ CC
                                                     <fct> 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 6
                                                     <chr> "https://www.youtube.com/watch?v=FozCkl1xj-w", "https://www.youtube.com/w
$ URL
$ Released
                                                     <dbl> 24, 24, 36, 108, 84, 24, 72, 6, 48, 36, 24, 24, 72, 36, 48, 24, 72, 60, 2
$ Views
                                                     <dbl> 7900, 11000, 2300, 21000, 8500, 14000, 502, 583, 2200, 5500, 38000, 3300.
                                                     <fct> "Blog", "Food", "Entertainment, Comedy", "Science", "Entertainment", "News
$ Category
$ Transcript
                                                     "the Joe Rogan experience well how about the other so you gotta go to oke
$ Length
                                                     <db/>dbl> 14, 8, 11, 10, 5, 21, 34, 8, 5, 23, 24, 11, 11, 16, 7, 3, 13, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37, 14, 37
                                                     <dbl> -0.157162956, -0.019053874, 0.027645884, -0.454690380, 0.227942565, -0.12
$ afinn_score
$ afinn_title_score <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 3.0189355, 0.0000000, 0.00000
```

stop_words

_	word	lexicon
1	a	SMART
2	a's	SMART
3	able	SMART
4	about	SMART
5	above	SMART
6	according	SMART
7	accordingly	SMART
8	across	SMART
9	actually	SMART
10	after	SMART
11	afterwards	SMART
12	again	SMART
13	against	SMART
14	ain't	SMART
15	all	SMART
16	allow	SMART

Clean Data Frame and Variables

Response:

Views: number of views of the video (unit: thousand)

Predictors:

Subscribers: number of subscribers of the channel (unit: thousand)

CC: manual subtitles (0 means the transcript is auto-generated, 1 means manual subtitles)

Released: time of the video released (unit: month)

Category: Category of the channel

afinn_score: afinn value of video subtitles

afinn_title_score: afinn value of video Title

Length: duration of the video (unit: minute)

Dimation:

Rows: 2098 Columns: 13

Goal:

Find the best model to predict the number of YouTube video Views using Subscribers, CC, Released, Category, afinn_score, afinn_title_score and Length.

Diagnostics for MLR

pairs(Views ~ CC + Released + Length + Subscribers + Category + afinn_score + afinn_title_score, data=df1)

Diagnostics for MLR

pairs(Views ~ CC + Released + Length + Subscribers + Category + afinn_score + afinn_title_score, data=df1)

pairs(log(Views) ~

CC + log(Released) + log(Length) + log(Subscribers) + Category + afinn_score + afinn_title_score, data=df1)

Multicollinearity?

##		Subscribers	Released	Length	afinn_score	afinn_title_score
##	Subscribers	1.00	0.09	0.02	-0.02	0.01
##	Released	0.09	1.00	-0.18	-0.05	0.03
##	Length	0.02	-0.18	1.00	0.03	0.03
##	afinn_score	-0.02	-0.05	0.03	1.00	0.22
##	afinn_title_score	0.01	0.03	0.03	0.22	1.00

From the matrix of scatterplots and correlation table, we didn't see any obvious strong correlation between the predictors.

MLR modeling

Im full <- Im(Views ~ CC + Released + Length + Subscribers + Category + afinn score+ afinn title score, data=df1) summary(lm full)

```
Call:
lm(formula = Views ~ CC + Released + Length + Subscribers + Category +
    afinn_score + afinn_title_score, data = df1)
Residuals:
  Min
           10 Median
                               Max
-25663
       -4088
                -883
                       1907 299360
```

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	5.013e+02	1.034e+03	0.485	0.627801	
CC1	5.904e+02	5.813e+02	1.016	0.309909	
Released	1.656e+00	9.779e+00	0.169	0.865512	
Length	-2.443e+01	1.587e+01	-1.539	0.123935	
Subscribers	1.489e+00	4.445e-02	33.487	< 2e-16	***
CategoryAutomobile,Comedy	5.772e+03	1.647e+03	3.504	0.000468	***
CategoryBlog	-8.700e+02	1.362e+03	-0.639	0.522927	
CategoryBlog,Comedy	-2.030e+03	1.975e+03	-1.028	0.304224	
CategoryBlog,Entertainment	-1.060e+04	4.895e+03	-2.165	0.030486	*
CategoryBlog,Science	-3.780e+02	3.591e+03	-0.105	0.916190	
CategoryComedy	1.086e+04	2.341e+03	4.637	3.75e-06	***
CategoryComedy,Entertainment	9.045e+03	1.555e+03	5.815	7.02e-09	***
CategoryComedy,Informative	1.114e+04	1.946e+03	5.725	1.19e-08	***
CategoryEntertainment	3.926e+03	1.848e+03	2.124	0.033754	*
CategoryEntertainment,Blog	2.765e+03	2.393e+03	1.156	0.247943	

```
CategoryEntertainment,Comedy
                             6.283e+03 1.564e+03
                                                   4.017 6.12e-05 ***
CategoryFood
                             2.560e+03 1.180e+03
                                                   2.170 0.030109 *
CategoryFood, Entertainment
                             8.604e+03 2.548e+03
                                                   3.377 0.000745 ***
CategoryInformative
                             2.401e+02 1.251e+03
                                                   0.192 0.847864
                                                   1.002 0.316437
CategoryNews
                             1.351e+03 1.348e+03
CategoryScience
                                                   1.667 0.095759 .
                             1.968e+03 1.181e+03
CategoryTech
                            -3.942e+03 1.274e+03 -3.094 0.002001 **
CategoryTech, Comedy
                            -6.025e+02 2.617e+03 -0.230 0.817916
CategoryTech,Informative
                            -4.183e+02 2.813e+03 -0.149 0.881818
CategoryTech, News
                            -1.998e+03 2.942e+03 -0.679 0.497212
CategoryVideoGames
                            -1.694e+03 1.239e+03 -1.367 0.171766
                                                   1.189 0.234713
afinn score
                             1.187e+03 9.982e+02
afinn_title_score
                            -1.251e+02 1.167e+02 -1.073 0.283554
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 11470 on 2070 degrees of freedom Multiple R-squared: 0.5998. Adjusted R-squared: 0.5946 F-statistic: 114.9 on 27 and 2070 DF, p-value: < 2.2e-16

R squared: 0.5998

Adjusted R squared: 0.5946

MLR modeling

summary(lm1)

```
Call:
lm(formula = log(Views) \sim CC + log(Released) + log(Length) +
    log(Subscribers) + Category + afinn_score + afinn_title_score,
    data = df1)
Residuals:
     Min
               10
                    Median
                                 30
-1.28291 -0.34836 -0.06359 0.29517 2.62433
Coefficients:
                              Estimate Std. Error t value Pr(>|t|)
(Intercept)
                                         0.115062 17.332 < 2e-16 ***
                              1.994258
                              0.061293
                                         0.027270
CC1
                                                    2.248 0.024702 *
log(Released)
                              0.010325
                                         0.016986
                                                    0.608 0.543333
log(Length)
                             -0.081625
                                         0.016780
                                                   -4.864 1.23e-06 ***
log(Subscribers)
                              0.828092
                                         0.012171
                                                   68.038 < 2e-16 ***
CategoryAutomobile,Comedy
                                         0.076396
                                                    5.292 1.34e-07 ***
                              0.404303
CategoryBlog
                             -0.218388
                                         0.063018
                                                   -3.465 0.000540 ***
CategoryBlog, Comedy
                             -0.133908
                                         0.091557
                                                   -1.463 0.143737
CategoryBlog,Entertainment
                              0.458470
                                         0.147371
                                                    3.111 0.001890 **
CategoryBlog, Science
                             -0.626816
                                         0.167315
                                                   -3.746 0.000184 ***
CategoryComedy
                              0.950982
                                         0.108783
                                                    8.742 < 2e-16 ***
CategoryComedy,Entertainment
                              0.832074
                                         0.072040 11.550 < 2e-16 ***
CategoryComedy,Informative
                              0.785949
                                         0.089692
                                                    8.763 < 2e-16 ***
CategoryEntertainment
                              0.393832
                                         0.085010
                                                    4.633 3.83e-06 ***
CategoryEntertainment,Blog
                              0.321985
                                         0.110675
                                                    2.909 0.003661 **
```

```
CategoryEntertainment,Comedy
                              0.904802
                                         0.072662
                                                   12.452 < 2e-16 ***
                              0.295938
                                         0.054581
                                                     5.422 6.58e-08 ***
CategoryFood
                                         0.118622
                                                    4.312 1.69e-05 ***
CategoryFood, Entertainment
                              0.511487
CategoryInformative
                              0.040345
                                         0.057819
                                                     0.698 0.485392
                                         0.062303
                                                     3.207 0.001362 **
CategoryNews
                              0.199804
CategoryScience
                                         0.054384
                             -0.049413
                                                    -0.909 0.363669
CategoryTech
                             -0.583077
                                         0.058816
                                                   -9.914 < 2e-16 ***
                                         0.120859
CategoryTech, Comedy
                             -0.381650
                                                   -3.158 0.001612 **
CategoryTech, Informative
                             -1.785302
                                         0.132530 -13.471 < 2e-16 ***
CategoryTech, News
                             -1.015799
                                         0.136331
                                                   -7.451 1.35e-13 ***
CategoryVideoGames
                             -0.202371
                                         0.056352
                                                   -3.591 0.000337 ***
afinn_score
                             -0.057197
                                         0.046152
                                                   -1.239 0.215366
afinn title score
                             -0.006662
                                         0.005383
                                                   -1.238 0.215996
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.5293 on 2070 degrees of freedom Multiple R-squared: 0.8154, Adjusted R-squared: 0.813 F-statistic: 338.7 on 27 and 2070 DF, p-value: < 2.2e-16

R squared: 0.8154

Adjusted R squared: 0.813

Assumption?

Variances are not constant Right skewed. Normality isn't okay too.

Stepwise Selection

 $Im1 <- Im(log(Views) \sim CC + log(Released) + log(Length) + log(Subscribers) + Category + afinn_score + afinn_title_score) \\ Im4 <- step(Im1)$

log(Views) ~ CC + log(Length) + log(Subscribers) + Category + afinn_score

```
Call:
                                                                   CategoryEntertainment,Comedy
                                                                                                    0.90616
                                                                                                                 0.07233 12.528 < 2e-16 ***
lm(formula = log(Views) ~ CC + log(Length) + log(Subscribers) +
   Category + afinn_score, data = df1)
                                                                   CategoryFood
                                                                                                     0.29563
                                                                                                                 0.05435
                                                                                                                             5.439 5.98e-08 ***
                                                                   CategoryFood, Entertainment
                                                                                                     0.51036
                                                                                                                 0.11860
                                                                                                                            4.303 1.76e-05 ***
Residuals:
                                                                                                                            0.753 0.451476
                                                                   CategoryInformative
                                                                                                     0.04349
                                                                                                                 0.05775
    Min
             10 Median
-1.30364 -0.34696 -0.06379 0.29275 2.63096
                                                                   CategoryNews
                                                                                                     0.20090
                                                                                                                 0.06208
                                                                                                                            3.236 0.001230 **
                                                                   CategoryScience
                                                                                                    -0.04915
                                                                                                                 0.05430
                                                                                                                           -0.905 0.365534
Coefficients:
                                                                                                    -0.58233
                                                                                                                 0.05878
                                                                                                                           -9.908 < 2e-16 ***
                                                                   CategoryTech
                         Estimate Std. Error t value Pr(>|t|)
                                                                   CategoryTech, Comedy
                                                                                                    -0.38563
                                                                                                                 0.12048
                                                                                                                          -3.201 0.001391 **
(Intercept)
                          2.01453
                                   0.10738 18.761 < 2e-16 ***
                          0.06063
                                   0.02711
CC1
                                          2.237 0.025411 *
                                                                   CategoryTech, Informative
                                                                                                    -1.79659
                                                                                                                 0.13119 -13.695 < 2e-16 ***
loa(Lenath)
                         -0.08380
                                   0.01647 -5.087 3.97e-07 ***
                                                                   CategoryTech, News
                                                                                                                 0.13520 -7.526 7.74e-14 ***
                                                                                                    -1.01754
log(Subscribers)
                          0.83081
                                   0.01169 71.084 < Ze-16 ***
                                                                                                                           -3.517 0.000446 ***
                                                                   CategoryVideoGames
                                                                                                    -0.19716
                                                                                                                 0.05606
                          0.39759
                                   0.07622 5.216 2.01e-07 ***
CategoryAutomobile.Comedy
                                                                                                    -0.06743
                                                                                                                           -1.489 0.136523
CategoryBlog
                         -0.21831
                                   0.06273 -3.480 0.000512 ***
                                                                   afinn_score
                                                                                                                 0.04527
CategoryBlog, Comedy
                         -0.13598
                                   0.09120 -1.491 0.136110
CategoryBlog,Entertainment
                          0.43821
                                   0.14538
                                           3.014 0.002608 **
                                                                   Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
                         -0.63493
                                   0.16621 -3.820 0.000137 ***
CategoryBlog, Science
                          0.95713
                                   0.10866
                                            8.808 < 2e-16 ***
CategoryComedy
CategoryComedy, Entertainment 0.83664
                                   0.07187 11.641 < 2e-16 ***
                                                                   Residual standard error: 0.5293 on 2072 degrees of freedom
CategoryComedy,Informative
                          0.79422
                                   0.08926
                                            8.898 < 2e-16 ***
                                                                   Multiple R-squared: 0.8153.
                                                                                                       Adjusted R-squared: 0.813
CategoryEntertainment
                          0.39775
                                   0.08487
                                            4.686 2.96e-06 ***
                                                                   F-statistic: 365.8 on 25 and 2072 DF, p-value: < 2.2e-16
CategoryEntertainment,Blog
                          0.32099
                                   0.11049 2.905 0.003710 **
```

R squared: 0.8154 Adjusted R squared: 0.813

Assumption?

Variances not constant Right skewed. Normality isn't okay too.

Cross-Validation

Randomly split the data set in a 70% training and 30% test set. Use set.seed() so that your results are reproducible

fit lm4 (the final model in MLR part) to df_train:

make prediction
pred1 <- predict(lm5, newdata = df_test)
pred_lm5 <- exp(pred1); length(pred_lm5)</pre>

Compute the RMSE
Im_RMSE <- RMSE(df_test\$Views, pred_lm5);</pre>

Im_RMSE = 7618.171

Multiple R-squared: 0.8162 Adjusted R-squared: 0.813

Decision Tree

Decision Tree

Decision Tree Interpretation

Subscribers: 15K Category: Tech Length: 57min

Views: 20855

Predicted Views: 16000

Decision Tree Performance

```
```{r}
Make prediction
pred_tree <- predict(t1, newdata = df_test)</pre>
Compute the RMSE
t1_RMSE <- RMSE(df_test$Views, pred_tree); t1_RMSE
Compute R^2
t1_R2 <- cor(df_test$Views, pred_tree)^2; t1_R2
 [1] 7977.73
 [1] 0.7801641
```

### **Random Forest**

```
Fit random forest mode using the training set
 rf1 <- randomForest(Views ~ CC + Released + Category +
 Length + Subscribers + afinn_score +
 afinn_title_score, importance = TRUE,
 data = df_train
 rf1
 # Make a variable importance plot
 vip(rf1, num_features = 14, include_type = TRUE)
Call:
randomForest(formula = Views ~ CC + Released + Category + Length +
 Subscribers +
afinn_score + afinn_title_score, data = df_train,
 importance = TRUE)
 Type of random forest: regression
 Number of trees: 500
No. of variables tried at each split: 2
 Mean of squared residuals: 154686582
 % Var explained: 55.62
```

# **Random Forest Interpretation**



#### **Random Forest Performance**

```
```{r}
# Make prediction
pred_rf <- predict(rf1, newdata = df_test);</pre>
# Compute the RMSE
rf1_RMSE <- RMSE(df_test$Views, pred_rf); rf1_RMSE
# Compute R^2
rf1_R2 <- cor(df_test$Views, pred_rf)^2; rf1_R2
 [1] 6660.282
 [1] 0.836752
```

Comparing models and conclusions

Model <chr></chr>	R_squared <dbl></dbl>	adj_R_squared <dbl></dbl>	formula <chr></chr>
full model without transformation	0.5998046	0.5945846	Im(Views ~ CC + Released + Length + Subscribers + Category + afinn_score+ afinn_title_score, data=df1)
lm1	0.8154339	0.8130265	Im(log(Views) ~ CC + log(Released) + log(Length) + log(Subscribers) + Category + afinn_score+ afinn_title_score, data=df1)
lm2	0.8154009	0.8130834	Im(log(Views) ~ CC + log(Length) + log(Subscribers) + Category + afinn_score + afinn_title_score, data=df1)
lm3	0.8150697	0.8129286	Im(log(Views) ~ CC + log(Length) + log(Subscribers) + Category, data=df1)
lm4	0.8152674	0.8130385	$Im(log(Views) \sim CC + log(Length) + log(Subscribers) + Category + afinn_score, data = df1)$
lm5	0.8162162	0.8130322	Im(log(Views) ~ CC + log(Length) + log(Subscribers) + Category + afinn_score, data = df_train)

82% of the variability observed in the Views is explained by the regression model

Model <chr></chr>	R_squared <dbl></dbl>	RMSE <dbl></dbl>	
linear regression	0.8162162	7618.171	
regression tree	0.7801641	7977.730	
random forest	0.8367520	6660.282	

Something Interesting!

- Blog, Entertainment has the highest median of Views
- 2. VideoGames has a extreme high Views viedo

Entertainment, Comedy

Food Entertainment

Tech

Tech Comedy

Tech News

VideoGames

Tech_Informative

https://www.youtube.com/watch?v=ndsaoMFz9J4

Difficulty in research

- 1. Data wrangling: convert unit of string variables to number
- Sentiment analysis: being creative and find the best way to represent the score/ value of video transcript sentiment
- 3. MLR: scatter plot matrix, transformation, variable selection (i.e. insignificant predictors, but high R square)

Question?

Thank You!