Geometria Analítica

Pedro H A Konzen

19 de maio de 2021

Licença

Este trabalho está licenciado sob a Licença Atribuição-Compartilha Igual 4.0 Internacional Creative Commons. Para visualizar uma cópia desta licença, visite http://creativecommons.org/licenses/by-sa/4.0/deed.pt_BR ou mande uma carta para Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Prefácio

Nestas notas de aula são abordados tópicos sobre geometria analítica no espaço euclidiano tridimensional. Mais especificamente, discute-se sobre sistemas de coordenadas, estudo de retas, planos e cônicas.

Agradeço a todos e todas que de modo assíduo ou esporádico contribuem com correções, sugestões e críticas. :)

Pedro H A Konzen

Sumário

Capítulo 1

Sistema de coordenadas

A geometria analítica é uma área interdisciplinar da matemática que faz o estudo de objetos da geometria através de estruturas algébricas (equações e inequações algébricas). Para tanto, o primeiro passo é a construção (definição) de um sistema de coordenadas, no qual os objetos geométricos serão referenciados.

1.1 Sistema de coordenadas no espaço

► Vídeo disponível!

Um sistema de coordenadas no espaço (euclidiano) é constituído de um ponto O e uma base de vetores $B=(\vec{e_1},\vec{e_2},\vec{e_3})$ no espaço. Dado um tal sistema, temos que cada ponto P determina de forma única um vetor $\overrightarrow{OP}=(x,y,z)$ e vice-versa. Assim sendo, definimos que o ponto P tem coordenadas (x,y,z). Veja a figura abaixo.

Figura 1.1: Ilustração de um sistema de coordenadas no espaço.

O ponto O é chamado de **origem** (do sistema de coordenadas) e tem coordenadas O = (0,0,0). Dado um ponto P = (x,y,z), chama-se x de sua **abscissa**, y de sua **ordenada** e z de sua **cota**. As retas que passam por O e têm, respectivamente, as mesmas direções de $\vec{e_1}$, $\vec{e_2}$ e $\vec{e_3}$ são chamadas de **eixo das abscissas**, **eixo das ordenadas** e **eixo das cotas**. Os planos que contém O e representantes de dois vetores da base B são chamados de **planos coordenados**.

Figura 1.2: Ilustração de um sistema de coordenadas ortonormal.

Salvo explicitado diferente, trabalharemos com um sistema de coordenadas ortonormal, i.e. sistema cuja base $B = (\vec{i}, \vec{j}, \vec{k})$ seja ortonormal. Mais ainda, estaremos assumindo que a base é positiva. Veja a Figura ??.

Observação 1.1.1. (Relação entre pontos e vetores) (\triangleright Vídeo disponível!) Seja dado um vetor \overrightarrow{AB} . Sabendo as coordenadas dos pontos $A = (x_A, y_A, z_A)$ e $B = (x_B, y_B, z_B)$, temos que as coordenadas do vetor \overrightarrow{AB} são:

$$\overrightarrow{AB} = \overrightarrow{AO} + \overrightarrow{OB} \tag{1.1}$$

$$= -\overrightarrow{OA} + \overrightarrow{OB} \tag{1.2}$$

$$= -(x_A, y_A, z_A) + (x_B, y_B, z_B)$$
(1.3)

$$= (x_B - x_A, y_B - y_A, z_B - z_A). (1.4)$$

Em uma linguagem menos formal, podemos dizer que as coordenadas de \overrightarrow{AB} é a resultante das coordenadas do ponto final menos as coordenadas do ponto de partida. Veja a figura abaixo.

$$B = (x_B, y_B, z_B)$$

$$A = (x_A, y_A, z_A)$$

$$\overrightarrow{AB} = (x_B - x_A, y_B - y_A, z_B - z_A)$$

Figura 1.3: Relação entre as coordenadas dos pontos de partida e de chegada de um vetor.

Exemplo 1.1.1. Dados os pontos A = (-1,1,2) e B = (3, -1,0), temos que o vetor \overrightarrow{AB} tem coordenadas:

$$\overrightarrow{AB} = (3 - (-1), -1 - 1, 0 - 2) = (4, -2, -2).$$
 (1.5)

Observação 1.1.2. (Ponto médio de um segmento) (\triangleright Vídeo disponível!) Dados os pontos $A = (x_A, y_A, z_A)$ e $B = (x_B, y_B, z_B)$, podemos calcular as coordenadas do ponto médio $M = (x_M, y_M, z_M)$ do segmento AB. Veja a figura abaixo.

Figura 1.4: Coordenadas do ponto médio de um segmento.

Do fato de que $\overrightarrow{AM} = \overrightarrow{MB}$, temos

$$(x_M - x_A, y_M - y_A, z_M - z_A) = (x_B - x_M, y_B - y_M, z_B - z_M),$$
(1.6)

Logo, segue que

$$x_M - x_A = x_B - x_M \tag{1.7}$$

$$y_M - y_A = y_B - y_M (1.8)$$

$$z_M - z_A = z_B - z_M \tag{1.9}$$

ou, equivalentemente,

$$2x_M = x_A + x_B \tag{1.10}$$

$$2y_M = y_A + y_B \tag{1.11}$$

$$2z_M = z_A + z_B \tag{1.12}$$

Portanto, concluímos que

$$x_M = \frac{x_A + x_B}{2} (1.13)$$

$$y_M = \frac{y_A + y_B}{2} {(1.14)}$$

$$z_M = \frac{z_A + z_B}{2} (1.15)$$

Logo, temos

$$M = \left(\frac{x_A + x_B}{2}, \frac{y_A + y_B}{2}, \frac{z_A + z_B}{2}\right) \tag{1.16}$$

Exemplo 1.1.2. Dados os pontos A = (-1,1,2) e B = (3, -1,0), temos que o ponto médio do segmento AB tem coordenadas:

$$M = \left(\frac{-1+3}{2}, \frac{1+(-1)}{2}, \frac{2+0}{2}\right) \tag{1.17}$$

$$= (1,0,1). (1.18)$$

Exercícios resolvidos

ER 1.1.1. Sejam A = (-1,2,1), B = (1, -2,0) e C = (x,2,2) vértices consecutivos de um triângulo isósceles, cujos lados AC e BC são congruentes. Determine o valor de x.

Solução. Sendo os lados AC e BC congruentes, temos $|\overrightarrow{AC}| = |\overrightarrow{BC}|$. As coordenadas de \overrightarrow{AC} são

$$\overrightarrow{AC} = (x - (-1), 2 - 2, 2 - 1) = (x + 1, 0, 1)$$
 (1.19)

e as coordenadas de \overrightarrow{BC} são

$$\overrightarrow{BC} = (x - 1, 2 - (-2), 2 - 0) = (x - 1, 4, 2).$$
 (1.20)

Então, temos

$$|\overrightarrow{AC}| = |\overrightarrow{BC}| \Rightarrow \sqrt{(x+1)^2 + 0^2 + 1^2} = \sqrt{(x-1)^2 + 4^2 + 2^2}$$
 (1.21)

$$\Rightarrow (x+1)^2 + 0^2 + 1^2 = (x-1)^2 + 4^2 + 2^2 \tag{1.22}$$

$$\Rightarrow x^2 + 2x + 1 + 1 = x^2 - 2x + 1 + 16 + 4 \tag{1.23}$$

$$\Rightarrow 4x = 19 \tag{1.24}$$

$$\Rightarrow x = \frac{19}{4}.\tag{1.25}$$

 \Diamond

ER 1.1.2. Sejam A = (-1,2,1), B = (1, -2,0) e M o ponto médio do intervalo AB. Determine as coordenadas do ponto P de forma que 2AP = AM.

Solução. As coordenadas do ponto médio são

$$M = \left(\frac{-1+1}{2}, \frac{2+(-2)}{2}, \frac{1+0}{2}\right) = \left(0, 0, \frac{1}{2}\right). \tag{1.26}$$

Agora, denotando $P = (x_P, y_P, z_P)$, temos

$$2AP = AM \Rightarrow 2(x_P - (-1), y_P - 2, z_P - 1) = \left(0 - (-1), 0 - 2, \frac{1}{2} - 1\right)$$
(1.27)

$$\Rightarrow (2x_p + 2, 2y_P - 4, 2z_P - 2) = \left(1, -2, -\frac{1}{2}\right). \tag{1.28}$$

Portanto

$$2x_P + 2 = 1 \Rightarrow x_P = -\frac{1}{2} \tag{1.29}$$

$$2y_P - 4 = -2 \Rightarrow y_P = 1 \tag{1.30}$$

$$2z_P - 2 = -\frac{1}{2} \Rightarrow z_P = \frac{3}{4}. (1.31)$$

Logo, P = (-1/2, 1, 3/4).

Exercícios

- **E 1.1.1.** Sejam dados os pontos A = (1, -1, 2) e B = (0, 1, -2). Determine as coordenadas do vetor $\vec{v} = \overrightarrow{BA}$.
- **E 1.1.2.** Sejam dados os pontos E = (-1,2,0) e F = (2,-1,1). Calcule o ponto médio do segmento EF.
- **E 1.1.3.** Sejam dados os pontos A = (-1,1,-1) e M = (0,1,3). Determine o ponto B tal que M seja o ponto médio do segmento AB.
- **E 1.1.4.** Sejam dados os pontos A = (1, -1, 1), B = (2, 1, 0) e C = (x, 2, 1). Determine x tal que ABC forme um triângulo retângulo com hipotenusa BC.
- **E 1.1.5.** Determine a distância entre os pontos C=(2,-1,0) e D=(1,1,1).

Capítulo 2

Estudo de retas

Neste capítulo, vamos estudar retas no espaço (euclidiano) tridimensional. Salvo explicitado diferente, iremos trabalhar sobre o sistema de coordenadas canônico, i.e. um sistema de coordenadas ortonormal (veja Seção ??).

2.1 Equações da reta

Nesta seção, vamos desenvolver equações para a representação de retas no espaço tridimensional.

Figura 2.1: Ilustração de uma reta r em um sistema de coordenadas ortonormal.

2.1.1 Equação vetorial de uma reta

Seja r uma reta dada, \vec{v} um vetor paralelo a r e A um ponto de r (veja a Figura \ref{AP}). Assim sendo, P=(x,y,z) é um ponto de r se, e somente se, o vetor \overrightarrow{AP} tem a mesma direção de \vec{v} . i.e. existe $\lambda \in \mathbb{R}$ tal que

$$\overrightarrow{AP} = \lambda \vec{v}. \tag{2.1}$$

Esta é chamada equação vetorial da reta r.

Figura 2.2: Equação vetorial de uma reta.

Observe que para obtermos uma equação vetorial de uma dada reta, podemos escolher qualquer ponto $A \in r$ e qualquer vetor $\vec{v} \parallel r, \vec{v} \neq \vec{0}$. O vetor \vec{v} escolhido é chamado de **vetor diretor**.

Exemplo 2.1.1. Seja r a reta que passa pelos pontos A = (-1, -1, -2) e B = (2,1,3) (veja a Figura ??). O vetor

$$\vec{v} = \overrightarrow{AB} = (2 - (-1), 1 - (-1), 3 - (-2)) = (3, 2, 5)$$
 (2.2)

é um vetor diretor de r. Desta forma, uma equação vetorial da reta r é

$$\overrightarrow{AP} = \lambda \vec{v}. \tag{2.3}$$

Figura 2.3: Esboço da reta discutida no Exemplo ??.

2.1.2 Equações paramétricas de uma reta

Seja r uma reta que passa pelo ponto $A = (x_A, y_A, z_A)$ e tenha vetor diretor $\vec{v} = (v_1, v_2, v_3)$. Da equação vetorial, temos que $P = (x, y, z) \in r$ se, e somente

se, existe $\lambda \in \mathbb{R}$ tal que

$$\overrightarrow{AP} = \lambda \vec{v}. \tag{2.4}$$

Equivalentemente,

$$\underbrace{(x - x_A, y - y_A, z - z_A)}_{\overrightarrow{AP}} = \lambda \underbrace{(v_1, v_2, v_3)}_{\overrightarrow{v}}.$$
 (2.5)

Então,

$$x - x_A = \lambda v_1, \tag{2.6}$$

$$y - y_A = \lambda v_2, \tag{2.7}$$

$$z - z_A = \lambda v_3, \tag{2.8}$$

donde

$$x = x_A + \lambda v_1, \tag{2.9}$$

$$y = y_A + \lambda v_2, \tag{2.10}$$

$$z = z_A + \lambda v_3, \tag{2.11}$$

as quais são chamadas de equações paramétricas da reta r.

Exemplo 2.1.2. A reta r discutida no Exemplo $\ref{eq:continuous}$ tem equações paramétricas

$$x = -1 + 3\lambda, \tag{2.12}$$

$$y = -1 + 2\lambda, \tag{2.13}$$

$$z = -2 + 5\lambda. \tag{2.14}$$

De fato, tomando $\lambda=0$, temos $(x,y,z)=(-1,-1,-2)=A\in r$. E, tomado $\lambda=1$, temos $(x,y,z)=(-1+3,-1+2,-2+5)=(2,1,3)=B\in r$. Ou seja, as equações paramétricas acima representam a reta que passa pelos pontos $A\in B$.

Com o Sympy, podemos plotar o gráfico de r usando o seguinte código:

var('lbda',real=True)
plot3d_parametric_line(-1+3*lbda,-1+2*lbda,-2+5*lbda,(lbda,-1,2))

2.1.3 Equações da reta na forma simétrica

Seja r uma reta que passa pelo ponto $A = (x_A, y_A, z_A)$ e tem $\vec{v} = (v_1, v_2, v_3)$ como vetor diretor. Então, r tem as equações paramétricas

$$x = x_A + v_1 \lambda, \tag{2.15}$$

$$y = y_A + v_2 \lambda, \tag{2.16}$$

$$z = z_A + v_3 \lambda. \tag{2.17}$$

Isolando λ em cada uma das equações, obtemos

$$\lambda = \frac{x - x_A}{v_1},\tag{2.18}$$

$$\lambda = \frac{y - y_A}{v_2},\tag{2.19}$$

$$\lambda = \frac{z - z_A}{v_3}.\tag{2.20}$$

Daí, temos

$$\frac{x - x_A}{v_1} = \frac{y - y_A}{v_2} = \frac{z - z_A}{v_3},\tag{2.21}$$

as quais são as equações da reta na forma simétrica.

Exemplo 2.1.3. No Exemplo $\ref{eq:consideramos}$ a reta $\ref{eq:consideramos}$ a reta $\ref{eq:consideramos}$ de equações paramétricas

$$x = -1 + 3\lambda, \tag{2.22}$$

$$y = -1 + 2\lambda, \tag{2.23}$$

$$z = -2 + 5\lambda. \tag{2.24}$$

Para obtermos as equações de r na forma simétrica, basta isolarmos λ em cada equação. Com isso, obtemos

$$\frac{x+1}{3} = \frac{y+1}{2} = \frac{z+2}{5}. (2.25)$$

Exercícios resolvidos

ER 2.1.1. Seja r a reta que passa pelo ponto A=(-1,-1,-2) e tem $\vec{v}=(3,2,5)$ como vetor diretor. Determine o valor de x de forma que $P=\left(x,0,\frac{1}{2}\right)$ seja um ponto de r.

Solução. Da equação vetorial da reta r, temos que $P=\left(x,0,\frac{1}{2}\right)$ é um ponto de r se, e somente se, existe $\lambda\in\mathbb{R}$ tal que

$$\overrightarrow{AP} = \lambda \vec{v}. \tag{2.26}$$

Ou seja,

$$\left(x - (-1), 0 - (-1), \frac{1}{2} - (-2)\right) = \lambda(3, 2, 5). \tag{2.27}$$

Ou, equivalentemente,

$$\left(x+1,1,\frac{5}{2}\right) = \lambda(3,2,5). \tag{2.28}$$

Usando a segunda coordenada destes vetores, temos

$$1 = \lambda \cdot 2 \tag{2.29}$$

$$\lambda = \frac{1}{2}.\tag{2.30}$$

Assim, da primeira coordenada dos vetores, temos

$$x + 1 = \lambda \cdot 3 \tag{2.31}$$

$$x + 1 = \frac{1}{2} \cdot 3 \tag{2.32}$$

$$x = \frac{3}{2} - 1\tag{2.33}$$

$$x = \frac{1}{2}. (2.34)$$

 \Diamond

ER 2.1.2. Seja r a reta de equações paramétricas

$$x = 1 - \lambda, \tag{2.35}$$

$$y = \lambda, \tag{2.36}$$

$$z = -3. (2.37)$$

Determine uma equação vetorial de r.

Solução. Nas equações paramétricas de uma reta, temos que os coeficientes constantes estão associados a um ponto da reta. Os coeficientes do

parâmetro λ estão associados a um vetor diretor. Assim sendo, das equações paramétricas da reta r, temos que

$$A = (1,0,-3) \in r \tag{2.38}$$

e

$$\vec{v} = (-1,1,0) \tag{2.39}$$

é um vetor diretor. Logo, temos que a reta r tem equação vetorial

$$\overrightarrow{AP} = \lambda \overrightarrow{v}, \tag{2.40}$$

com A = (1,0,3) e $\vec{v} = (-1,1,0)$.

 \Diamond

ER 2.1.3. Sabendo que r é uma reta que passa pelos pontos A = (2, -3, 1) e B = (-1, 1, 0), determine o valor de t tal que

$$x = 2 + t\lambda, \tag{2.41}$$

$$y = -2 + 4\lambda, \tag{2.42}$$

$$z = 1 - \lambda, \tag{2.43}$$

sejam equações paramétricas de r.

Solução. Para que estas sejam equações paramétricas de r, é necessário que $\vec{v} = (t,4,-1)$ seja um vetor diretor de r. Em particular, $\vec{v} \parallel \overrightarrow{AB}$. Logo, existe $\beta \in \mathbb{R}$ tal que

$$\vec{v} = \beta \overrightarrow{AB} \tag{2.44}$$

$$(t,4,-1) = \beta(-1-2,1-(-3),0-1)$$
 (2.45)

$$(t,4,-1) = \beta(-3,4,-1). \tag{2.46}$$

Das segunda e terceira coordenadas, temos $\beta=1$. Daí, comparando pela primeira coordenada, temos

$$t = -3\beta \tag{2.47}$$

$$t = -3. (2.48)$$

 \Diamond

ER 2.1.4. Seja r uma reta de equações na forma simétrica

$$\frac{x+1}{2} = \frac{y-2}{3} = \frac{1-z}{2}. (2.49)$$

Determine equações paramétricas para esta reta e faça um esboço de seu gráfico.

Solução. Podemos obter equações paramétricas desta reta a partir de suas equações na forma simétrica. Para tanto, basta tomar o parâmetro λ tal que

$$\lambda = \frac{x+1}{2},\tag{2.50}$$

$$\lambda = \frac{y-2}{3},\tag{2.51}$$

$$\lambda = \frac{1-z}{2}.\tag{2.52}$$

Daí, isolando $x, y \in z$ em cada uma destas equações, obtemos

$$x = -1 + 2\lambda, \tag{2.53}$$

$$y = 2 + 3\lambda, \tag{2.54}$$

$$z = 1 - 2\lambda. \tag{2.55}$$

Para fazermos um esboço do gráfico desta reta, basta traçarmos a reta que passa por dois de seus pontos. Por exemplo, tomando $\lambda = 0$, temos $A = (-1,2,1) \in r$. Agora, tomando $\lambda = 1$, temos $B = (1,5,-1) \in r$. Desta forma, obtemos o esboço dado na Figura ??.

Figura 2.4: Esboço do gráfico da reta r do Exercício Resolvido $\ref{eq:continuous}$.

\Diamond

Exercícios

E 2.1.1. Seja a reta que passa pelos pontos A=(1,-2,0) e B=(-1,-1,1). Determine:

- a) sua equação vetorial.
- b) suas equações paramétricas.
- c) suas equações na forma simétrica.
- **E 2.1.2.** Seja a reta que passa pelo ponto A=(0,1,-1) e tem vetor diretor $\vec{v}=(2,-1,1)$. Determine x tal que $B=(1,x,-\frac{1}{2})$.

E 2.1.3. Considere a reta de equações na forma simétrica

$$\frac{x-1}{-2} = \frac{y+1}{3} = z - 1. {(2.56)}$$

Encontre um ponto e um vetor diretor desta reta.

\mathbf{E} 2.1.4. Seja a reta r de equações paramétricas

$$x = \lambda \tag{2.57}$$

$$y = 2 - \lambda \tag{2.58}$$

$$z = -1 + \lambda \tag{2.59}$$

Determine as equações na forma simétrica da reta que passa pelo ponto A=(1,-1,0) e é paralela a reta r.

\mathbf{E} 2.1.5. Seja a reta r de equações paramétricas

$$x = \lambda \tag{2.60}$$

$$y = 2 - \lambda \tag{2.61}$$

$$z = -1 + \lambda \tag{2.62}$$

Determine as equações paramétricas da reta que passa pelo ponto A=(1,-1,0) e é perpendicular a reta r.

Capítulo 3

Estudo de planos

Neste capítulo, temos uma introdução ao estudo de planos no espaço tridimensional.

3.1 Equações do plano

Um plano π fica unicamente determinado por um ponto $A \in \pi$ e dois vetores linearmente independentes $\vec{u}, \vec{v} \in \pi^1$. Veja a Figura ??.

 $^{^{1}}$ No sentido que \vec{u} e \vec{v} têm representantes no plano $\pi.$

Figura 3.1: Ilustração de um plano no espaço tridimensional.

Os chamados **vetores diretores** \vec{u} e \vec{v} determinam infinitos planos paralelos entre si. O chamado **ponto de ancoragem** A fixa um destes planos.

3.1.1 Equação vetorial do plano

Consideremos um plano π determinado pelo ponto de ancoragem A e os vetores diretores \vec{u} e \vec{v} (veja a Figura ??). Então, um ponto $P \in \pi$ se, e somente se, \overrightarrow{AP} é coplanar a \vec{u} e \vec{v} , i.e. \overrightarrow{AP} , \vec{u} e \vec{v} são linearmente dependentes. Ou seja, $P \in \pi$ se, e somente se, \overrightarrow{AP} pode ser escrito como combinação linear de \vec{u} e \vec{v} . Isto nos fornece a chamada **equação vetorial do plano**

$$P \in \pi \Leftrightarrow \overrightarrow{AP} = \lambda \overrightarrow{u} + \beta \overrightarrow{v}, \quad \lambda, \beta \in \mathbb{R}.$$
 (3.1)

Figura 3.2: Ilustração sobre a equação vetorial de um plano.

Exemplo 3.1.1. Consideremos o plano π determinado pelo ponto A=(1,-1,1) e pelos vetores $\vec{u}=(2,-1,0)$ e $\vec{v}=(0,1,1)$ (Veja a Figura ??. Desta forma, uma equação vetorial para este plano é

$$\overrightarrow{AP} = \lambda \vec{u} + \beta \vec{v}, \tag{3.2}$$

para $\lambda, \beta \in \mathbb{R}$.

Figura 3.3: Esboço do plano π discutido no Exemplo ??.

Tomando, por exemplo, $\lambda=-1$ e $\beta=1,$ obtemos

$$\overrightarrow{AP} = \lambda \vec{u} + \beta \vec{v} \tag{3.3}$$

$$= -(2, -1,0) + (0,1,1) \tag{3.4}$$

$$= (-2,2,1). (3.5)$$

Observando que as coordenadas do ponto P são iguais as coordenadas do vetor \overrightarrow{OP} , temos

$$\overrightarrow{OP} = \overrightarrow{OA} + \overrightarrow{AP} \tag{3.6}$$

$$= (1, -1, 1) + (-2, 2, 1) \tag{3.7}$$

$$= (1, -1,1) + (-2,2,1)$$

$$= (-1,1,2).$$
(3.7)
$$= (3.8)$$

Ou seja, $P = (-1,1,2) \in \pi$.

3.1.2 Equações paramétricas do plano

Seja um plano π com ponto de ancoragem $A=(x_A,y_A,z_A)\in \pi$ e vetores diretores $\vec{u}=(u_1,u_2,u_3)$ e $\vec{v}=(v_1,v_2,v_3)$. Então, todo o ponto P=(x,y,z) neste plano π satisfaz a equação vetorial

$$\overrightarrow{AP} = \lambda \vec{u} + \beta \vec{v},\tag{3.9}$$

para dados parâmetros $\lambda, \beta \in \mathbb{R}$. Assim, temos

$$(x - x_A, y - y_A, z - z_A) = \lambda(u_1, u_2, u_3) + \beta(v_1, v_2, v_3)$$
(3.10)

$$= (\lambda u_1 + \beta v_1, \lambda u_2 + \beta v_2, \lambda u_3 + \beta v_3). \tag{3.11}$$

Portanto, temos

$$x - x_A = \lambda u_1 + \beta v_1, \tag{3.12}$$

$$y - y_A = \lambda u_2 + \beta v_2, \tag{3.13}$$

$$z - z_A = \lambda u_3 + \beta v_3. \tag{3.14}$$

Ou, equivalentemente,

$$x = x_A + \lambda u_1 + \beta v_1, \tag{3.15}$$

$$y = y_A + \lambda u_2 + \beta v_2, \tag{3.16}$$

$$z = z_A + \lambda u_3 + \beta v_3, \tag{3.17}$$

as quais são chamadas de equações paramétricas do plano.

Exemplo 3.1.2. No Exemplo ??, discutimos sobre o plano π determinado pelo ponto A = (1, -1, 1) e os vetores $\vec{u} = (2, -1, 0)$ e $\vec{v} = (0, 1, 1)$. Do que vimos acima, temos que

$$x = 1 + 2\lambda,\tag{3.18}$$

$$y = -1 - \lambda + \beta, \tag{3.19}$$

$$z = 1 + \beta, \tag{3.20}$$

são equações paramétricas deste plano.

Podemos usar as equações paramétricas do plano para plotá-lo usando o SymPy. Para tanto, podemos usar os seguintes comandos:

3.1.3 Equação geral do plano

Seja π o plano determinado pelo ponto de ancoragem $A=(x_A,y_A,z_A)$ e pelos vetores diretores $\vec{u}=(u_1,u_2,u_3)$ e $\vec{v}=(v_1,v_2,v_3)$. Sabemos que $P=(x,y,z)\in\pi$ se, e somente se, \overrightarrow{AP} , \vec{u} e \vec{v} são linearmente dependentes. Ou, equivalentemente, o produto misto $[\overrightarrow{AP},\vec{u},\vec{v}]=0$. Logo,

$$0 = [\overrightarrow{AP}, \overrightarrow{u}, \overrightarrow{v}] \tag{3.21}$$

$$= \begin{vmatrix} x - x_A & y - y_A & z - z_A \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}$$
 (3.22)

$$= -u_1 v_2 z_A + u_1 v_3 y_A + u_2 v_1 z_A (3.23)$$

$$-u_2v_3x_A - u_3v_1y_A + u_3v_2x_A (3.24)$$

$$+x(u_2v_3-u_3v_2)+y(-u_1v_3+u_3v_1)+z(u_1v_2-u_2v_1). (3.25)$$

Observamos que a equação acima tem a forma geral

$$ax + by + cz + d = 0, (3.26)$$

com a,b,c,d não todos nulos ou, equivalentemente, $a^2+b^2+c^2+d^2\neq 0$. Esta última é chamada **equação geral do plano**.

Exemplo 3.1.3. No Exemplo ??, discutimos sobre o plano π determinado pelo ponto A=(1,-1,1) e os vetores $\vec{u}=(2,-1,0)$ e $\vec{v}=(0,1,1)$. Para encontrarmos a equação geral deste plano, tomamos P=(x,y,z) e calculamos

$$0 = [\overrightarrow{AP}, \overrightarrow{u}, \overrightarrow{v}] \tag{3.27}$$

$$= \begin{vmatrix} x-1 & y+1 & z-1 \\ 2 & -1 & 0 \\ 0 & 1 & 1 \end{vmatrix}$$
 (3.28)

$$= -x - 2y + 2z - 3. (3.29)$$

Ou seja, a equação geral deste plano é

$$-x - 2y + 2z - 3 = 0. (3.30)$$

3.1.4 Exercícios resolvidos

ER 3.1.1. Seja π um plano tal que $A=(2,0,-1)\in\pi$, $P=(0,1,-1)\in\pi$ e $\vec{u}=(1,0,1)\in\pi$. Determine uma equação vetorial para π .

Solução. Para obtermos uma equação vetorial do plano π , precisamos de um ponto e dois vetores l.i. em π . Do enunciado, temos o ponto $A=(2,0,-1)\in\pi$ e o vetor \vec{u} . Portanto, precisamos encontrar um vetor $\vec{v}\in\pi$ tal que \vec{u} e \vec{v} sejam l.i.. Por sorte, temos $P=(0,1,-1)\in\pi$ e, portanto $\overrightarrow{AP}\in\pi$. Podemos tomar

$$\vec{v} = \overrightarrow{AP} \tag{3.31}$$

$$= (-2,1,0), (3.32)$$

pois \vec{v} e \vec{u} são l.i.. Logo, uma equação vetorial do plano π é

$$\overrightarrow{AP} = \lambda \vec{u} + \beta \vec{v},\tag{3.33}$$

$$= \lambda(1,0,1) + \beta(-2,1,0), \tag{3.34}$$

 $com \lambda, \beta \in \mathbb{R}.$

 \Diamond

ER 3.1.2. Seja π o plano de equações paramétricas

$$x = -1 + \lambda, \tag{3.35}$$

$$y = \beta, \tag{3.36}$$

$$z = 1 - \lambda + \beta. \tag{3.37}$$

Determine o valor de z_P de forma que $P=(-1,2,z_P)\in\pi$.

Solução. Para que $P=(-1,2,z_P)$ pertença ao plano, devemos ter

$$-1 = -1 + \lambda, \tag{3.38}$$

$$2 = \beta, \tag{3.39}$$

$$z_P = 1 - \lambda + \beta. \tag{3.40}$$

Das duas primeiras equações, obtemos $\lambda=0$ e $\beta=2$. Daí, da terceira equação, temos

$$z_P = 1 - 0 + 2 = 3. (3.41)$$

 \Diamond

Exercícios

E 3.1.1. Determine a equação vetorial do plano com ponto de ancoragem A = (-1,0,2) e vetores diretores $\vec{u} = (2,-1,1)$ e $\vec{v} = (-1,1,2)$.

E 3.1.2. Seja o plano de equação vetorial $\overrightarrow{AP} = \lambda(2, -1, 1) + \beta(-1, 1, 2)$, $\lambda, \beta \in \mathbb{R}$, com ponto de ancoragem A = (-1, 0, 2). Determine x tal que P = (x, 3, 0) pertença a este plano.

E 3.1.3. Determine as equações paramétricas do plano com ponto de ancoragem A = (-1,0,2) e vetores diretores $\vec{u} = (2,-1,1)$ e $\vec{v} = (-1,1,2)$.

E 3.1.4. Considere o plano de equações paramétricas

$$x = -1 + 2\lambda - \beta,\tag{3.42}$$

$$y = -\lambda + \beta, \tag{3.43}$$

$$z = 2 + \lambda + 2\beta. \tag{3.44}$$

Determine y tal que P = (-6, y, 2) pertença a este plano.

E 3.1.5. Determine a equação geral do plano com ponto de ancoragem A = (-1,0,2) e vetores diretores $\vec{u} = (2, -1,1)$ e $\vec{v} = (-1,1,2)$.

E 3.1.6. Considere o plano de equação geral -3x - 5y + z - 5 = 0. Determine z tal que o ponto P = (0,0,z) pertença a este plano.

26

E 3.1.7. Considere o plano π de equações paramétricas

$$x = -1 + \lambda \tag{3.45}$$

$$y = \beta \tag{3.46}$$

$$z = 1 - \lambda + \beta \tag{3.47}$$

A reta r de equação paramétricas

$$x = 2 \tag{3.48}$$

$$y = -1 + 2\lambda \tag{3.49}$$

$$z = 2\lambda \tag{3.50}$$

é paralela ao plano π ? Justifique sua resposta.

E 3.1.8. Considere o plano π de equação geral

$$6x - 7y - 5z = -6. (3.51)$$

Determine uma equação paramétrica para a reta r que é perpendicular ao plano π e passa pelo ponto A=(2,-1,0).

Capítulo 4

Outros sistemas de coordenadas

Neste capítulo, vamos introduzir outros sistemas de coordenadas no plano e no espaço tridimensional.

4.1 Sistema de coordenadas polares

No plano, o sistema de coordenadas polares é definido por um ponto de origem (chamado de **polo**) e um eixo orientado Ox (chamado de **eixo polar**). Veja a Figura \ref{figura} .

Figura 4.1: Sistema de coordenadas polares.

Neste sistema, um ponto P de coordenadas polares $P = (r, \theta)$ é tal que |OP| = r (i.e. a distância do polo ao ponto é r) e θ é o ângulo de Ox com

OP, medido positivamente no sentido anti-horário.

Exemplo 4.1.1. Na Figura ??, temos a representação dos pontos $P=(2\sqrt{2},\frac{\pi}{4})$, $A=(2,\frac{2\pi}{3})$ e $B=(\sqrt{2},\frac{5\pi}{4})$ no sistema de coordenadas polares.

Figura 4.2: Sistema de coordenadas polares.

Observação 4.1.1. Por convenção, as coordenadas polares $(r, \pi + \theta) = (-r, \theta), r > 0$. Por exemplo, $B = (\sqrt{2}, \frac{5\pi}{4}) = (-\sqrt{2}, \frac{\pi}{4})$. Veja na Figura ??.

4.1.1 Coordenadas cartesianas x polares

Aqui, vamos estudar como podemos converter as coordenadas de um ponto P de coordenadas cartesianas para coordenadas polares e vice-versa. Vamos denotar as coordenadas cartesianas do ponto P por $P=(x_P,y_P)$ e suas coordenadas polares por $P=(r,\theta)$. Veja a Figura ??.

Figura 4.3: Sistema de coordenadas polares.

Na Figura ??, vamos nos concentrar no triângulo retângulo de vértices O, $(x_P,0)$ e P. Das relações trigonométricas e do teorema de Pitágoras, temos que

$$\cos \theta = \frac{x_P}{r} \tag{4.1}$$

$$\cos \theta = \frac{x_P}{r}$$

$$\sin \theta = \frac{y_P}{r}$$

$$r^2 = x_P^2 + y_P^2$$
(4.1)
$$(4.2)$$

$$r^2 = x_P^2 + y_P^2 (4.3)$$

$$tg \theta = \frac{y_P}{x_P} \tag{4.4}$$

ou, equivalentemente,

$$x_P = r\cos\theta\tag{4.5}$$

$$y_P = r \operatorname{sen} \theta \tag{4.6}$$

$$r = \sqrt{x_P^2 + y_P^2} (4.7)$$

$$\theta = \arctan\left(\frac{y_P}{x_P}\right) \tag{4.8}$$

Exemplo 4.1.2. Vejamos os seguintes casos:

a) Conversão de $P=(2\sqrt{2},\frac{\pi}{4})$ em coordenadas polares para coordenadas cartesianas.

No caso de $P=(2\sqrt{2},\frac{\pi}{4}$ temos $r=2\sqrt{2}$ e $\theta=\frac{\pi}{4}$. Desta forma, as coordenadas cartesianas de P=(x,y) são dadas por

$$x = r\cos\theta\tag{4.9}$$

$$=2\sqrt{2}\cos\frac{\pi}{4}\tag{4.10}$$

$$=2\sqrt{2}\cdot\frac{\sqrt{2}}{2}\tag{4.11}$$

$$=2 \tag{4.12}$$

$$y = r \operatorname{sen} \theta \tag{4.13}$$

$$=2\sqrt{2}\operatorname{sen}\frac{\pi}{4}\tag{4.14}$$

$$=2\sqrt{2}\cdot\frac{\sqrt{2}}{2}\tag{4.15}$$

$$=2 \tag{4.16}$$

Logo, P = (2,2) em coordenadas cartesianas. Veja a Figura ??.

b) Conversão de $B=(-\sqrt{3},-1)$ de coordenadas cartesianas para coorde

nadas polares. Neste caso, temos $x=-\sqrt{3}$ e y=-1 e

$$r = \sqrt{x^2 + y^2} \tag{4.17}$$

$$=\sqrt{(-\sqrt{3})^2 + (-1)^2} \tag{4.18}$$

$$=\sqrt{4}\tag{4.19}$$

$$=2 \tag{4.20}$$

$$\theta = \arctan\left(\frac{y}{x}\right) \tag{4.21}$$

$$= \operatorname{arctg}\left(\frac{-1}{-\sqrt{3}}\right) \tag{4.22}$$

$$= \operatorname{arctg}\left(\frac{\sqrt{3}}{3}\right) \tag{4.23}$$

$$=\frac{7\pi}{6}.\tag{4.24}$$

Desta forma, temos que $P=(2,\frac{7\pi}{6})$ em coordenadas polares. Ou, equivalentemente, $P=(-2,\frac{\pi}{6})$.

Equação de reta que passa pela origem

Em coordenadas polares, uma reta que passa pela origem e tem ângulo de declividade θ_0 tem equação

$$\theta = \theta_0, \tag{4.25}$$

 $com r \in \mathbb{R}$.

Exemplo 4.1.3. Seja a reta y=x em coordenadas cartesianas. Em coordenadas polares, a equação desta reta é

$$\theta = \frac{\pi}{4}.\tag{4.26}$$

Equação de circunferência com centro na origem

Em coordenadas polares, a circunferência com centro na origem e raio r_0 tem equação

$$r = r_0. (4.27)$$

Exemplo 4.1.4. Seja a circunferência $x^2 + y^2 = 4$ em coordenadas cartesianas. Em coordenadas polares, a equação desta circunferência é

$$r = 2. (4.28)$$

4.1.2 Exercícios resolvidos

ER 4.1.1. Obtenha duas representações em coordenadas polares do ponto A = (-1,0) dado em coordenadas cartesianas.

Solução. O ponto A = (-1,0) tem coordenadas cartesianas x = -1 e y = 0. Para converter em coordenadas polares $A = (r, \theta)$, podemos usar

$$r^2 = x^2 + y^2 (4.29)$$

$$r^2 = 1^2 + 0^2 (4.30)$$

$$r = \pm 1 \tag{4.31}$$

e

$$\theta = \operatorname{arctg}\left(\frac{y}{x}\right) \tag{4.32}$$

$$= \operatorname{arctg}(0) \tag{4.33}$$

$$= \pi \text{ ou } 0.$$
 (4.34)

Ou seja, em coordenadas polares, temos as representações $A=(1,\pi)$ ou A=(-1,0).

 \Diamond

ER 4.1.2. Obtenha a representação em coordenadas cartesianas do ponto $B = (2, \frac{\pi}{2})$ dado em coordenadas polares.

Solução. O ponto $B=(2,\frac{\pi}{2})$ tem coordenadas polares r=2 e $\theta=\frac{\pi}{2}$. Para converter em coordenadas cartesianas B=(x,y), podemos usar

$$x = r\cos\theta\tag{4.35}$$

$$=2\cos\frac{\pi}{2}\tag{4.36}$$

$$=0 (4.37)$$

е

$$y = r \operatorname{sen} \theta \tag{4.38}$$

$$=2\sin\frac{\pi}{2}\tag{4.39}$$

$$= 2 \tag{4.40}$$

Ou seja, em coordenadas cartesianas, temos a representação B = (0, 2).

Exercícios

E 4.1.1. Obtenha uma representação em coordenadas polares dos seguintes pontos dados em coordenadas cartesianas:

- a) A = (-3, 3)
- b) $B = (\frac{3}{2}, \frac{\sqrt{3}}{2})$
- c) $C = (\frac{3}{2}, -\frac{\sqrt{3}}{2})$

E 4.1.2. Obtenha uma representação em coordenadas cartesianas dos seguintes pontos dados em coordenadas polares:

- a) $A = (2, \frac{\pi}{6})$
- b) $B = (1, \frac{5\pi}{6})$
- c) $C = (-2, \frac{3\pi}{4})$

E 4.1.3. Considere a reta de equação x=0 em coordenadas cartesianas. Escreva a equação desta reta em coordenadas polares.

E 4.1.4. Considere a reta de equação $\theta = \frac{3\pi}{4}$ em coordenadas polares. Escreva a equação desta reta em coordenadas cartesianas.

E 4.1.5. Considere a circunferência de equação $x^2 + y^2 = 1$ em coordenadas cartesianas. Escreva a equação desta circunferência em coordenadas polares.

E 4.1.6. Considere a circunferência de equação $r=\sqrt{2}$ em coordenadas polares. Escreva a equação desta circunferência em coordenadas cartesianas.

Capítulo 5

Cônicas

Neste capítulo, fazemos um estudo introdutório sobre cônicas no plano cartesiano. Mais precisamente, vamos estudar as equações de elipses, hipérboles e parábolas.

5.1 Elipse

Sejam F_1 , F_2 pontos sobre um plano π , $c=\frac{1}{2}|F_1F_2|$ e a>c. Chama-se **elipse** de **focos** F_1 e F_2 ao conjunto de pontos P tais que

$$|PF_1| + |PF_2| = 2a. (5.1)$$

Veja a Figura ??.

5.1. ELIPSE 36

Figura 5.1: Ilustração de uma elipse de focos F_1 e F_2 .

Dada uma tal elipse, identificamos $2c = |F_1F_2|$ como a **distância focal**. Os pontos A_1 e A_2 de interseção da elipse com a reta que passa pelos focos são chamados de **vértices** da elipse. O segmento A_1A_2 é chamado de **eixo maior** da elipse. Observamos que

$$|A_1 A_2| = 2a. (5.2)$$

O ponto médio do segmento F_1F_2 é chamado de **centro** da elipse. Sejam B_1 e B_2 os pontos de interseção da elipse com a reta que passa pelo centro da elipse e é perpendicular ao segmento A_1A_2 . Assim sendo, o segmento B_1B_2 é chamado de **eixo menor** da elipse. Vamos denotar

$$2b = |B_1 B_2|. (5.3)$$

Chamamos de **excentricidade** da elipse o número

$$e = -\frac{c}{a}. (5.4)$$

Notemos que $0 \le e < 1$. Para e = 0, temos c = 0 e, portanto $F_1 = F_2$. Neste caso, a elipse é a circunferência de centro em F_1 (ou F_2) e diâmetro 2a. No que e tende a 1, a elipse tende ao segmento A_1A_2 .

Por fim, notamos que o triângulo B_1OF_2 é retângulo, $|OF_2|=c, |F_2B_1|=a$ e $|OB_1|=b$. Do teorema de Pitágoras segue

$$b^2 + c^2 = a^2. (5.5)$$

5.1.1 Equação reduzida da elipse

Consideremos o sistema de coordenadas cartesianas. Sejam $F_1 = (-c,0)$ e $F_2 = (c,0)$, $c \ge 0$, os focos de uma dada elipse (veja a Figura ??). Se P = (x,y) é um ponto da elipse, então

$$|PF_1| + |PF_2| = 2a. (5.6)$$

Como

$$|PF_1| = \sqrt{(x+c)^2 + y^2},$$
 (5.7)

$$|PF_2| = \sqrt{(x-c)^2 + y^2},$$
 (5.8)

temos

$$\sqrt{(x+c)^2 + y^2} + \sqrt{(x-c)^2 + y^2} = 2a,$$
(5.9)

ou, equivalentemente,

$$\sqrt{(x+c)^2 + y^2} = 2a - \sqrt{(x-c)^2 + y^2}.$$
 (5.10)

Elevando ao quadrado, obtemos

$$(x+c)^2 + y^2 = 4a^2 - 4a\sqrt{(x-c)^2 + y^2} + (x-c)^2 + y^2.$$
 (5.11)

Por cancelamento e rearranjo dos termos, obtemos

$$a\sqrt{(x-c)^2 + y^2} = a^2 - cx. (5.12)$$

Elevando novamente ao quadrado, temos

$$a^{2}(x-c)^{2} + a^{2}y^{2} = a^{4} - 2a^{2}cx + c^{2}x^{2},$$
(5.13)

5.1. ELIPSE 38

donde

$$a^{2}x^{2} - 2a^{2}cx + a^{2}c^{2} + a^{2}y^{2} = a^{4} - 2a^{2}cx + c^{2}x^{2}.$$
 (5.14)

Por cancelamento e rearranjo dos termos, obtemos

$$x^{2}(a^{2}-c^{2}) + a^{2}y^{2} = a^{2}(a^{2}-c^{2}). (5.15)$$

Como a>c, dividimos por a^2-c^2 e depois por a^2 para obtemos

$$\frac{x^2}{a^2} + \frac{y^2}{a^2 - c^2} = 1. (5.16)$$

Por fim, da equação (??), temos $a^2 - c^2 = b^2$, o que nos leva a **equação** reduzida da elipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1. (5.17)$$

Exemplo 5.1.1. A Figura ?? é um esboço do gráfico da elipse de equação reduzida

$$\frac{x^2}{25} + \frac{y^2}{16} = 1. (5.18)$$

Figura 5.2: Esboço do gráfico da elipse $\frac{x^2}{25} - \frac{y^2}{16} = 1$.

Exercícios resolvidos

ER 5.1.1. Determine a equação reduzida da elipse de focos $F_1 = (-3,0)$, $F_2 = (3,0)$ e vértices $A_1 = (-5,0)$ e $A_2 = (5,0)$.

Solução. A equação reduzida tem a forma

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, (5.19)$$

onde

$$b^2 + c^2 = a^2. (5.20)$$

Dos focos temos c=3 e dos vértices temos a=5. Logo,

$$b^2 = a^2 - c^2 (5.21)$$

$$=5^2 - 3^2 \tag{5.22}$$

$$= 25 - 9 \tag{5.23}$$

$$= 16.$$
 (5.24)

Concluímos que a elipse em questão tem equação

$$\frac{x^2}{25} - \frac{y^2}{16} = 1. ag{5.25}$$

 \Diamond

ER 5.1.2. Determine os focos da elipse de equação

$$\frac{x^2}{16} + \frac{y^2}{25} = 1. (5.26)$$

Solução. Começamos lembrando que os focos de uma elipse estão localizados sobre seu eixo maior. No caso deste exercício, temos a=4 e b=5, logo o eixo maior é B_1B_2 , na mesma direção do eixo das ordenadas Oy. Do triângulo retângulo OA_2F_1 temos

$$b^2 = a^2 + c^2, (5.27)$$

veja a Figura??.

5.1. ELIPSE 40

Figura 5.3: Esboço do gráfico de uma elipse com eixo maior sobre o eixo das ordenadas Oy.

Daí, temos

$$c^2 = b^2 - a^2 (5.28)$$

$$= 25 - 16 \tag{5.29}$$

$$=9\tag{5.30}$$

$$c = 3. (5.31)$$

Concluímos que os focos são $F_1=(0,-3)$ e $F_2=(0,3)$.

 \Diamond

Exercícios

E 5.1.1. Faça um esboço da elipse de equação reduzida

$$\frac{x^2}{9} + \frac{y^2}{4} = 1. (5.32)$$

E 5.1.2. Faça um esboço da elipse de equação reduzida

$$\frac{x^2}{4} + \frac{y^2}{9} = 1. (5.33)$$

E 5.1.3. Determine os vértices (sobre o eixo maior) das seguintes elipses:

a)
$$\frac{x^2}{9} + \frac{y^2}{4} = 1$$

b)
$$x^2 + \frac{y^2}{16} = 1$$

E 5.1.4. Determine os focos das seguintes elipses:

a)
$$\frac{x^2}{9} + \frac{y^2}{4} = 1$$

b)
$$x^2 + \frac{y^2}{16} = 1$$

E 5.1.5. Forneça a equação reduzida da elipse de focos $F_1=(-1,0),$ $F_2=(1,0)$ e vértices $A_1=(-\sqrt{2},0),$ $A_2=(\sqrt{2},0).$

E 5.1.6. Forneça a equação reduzida da elipse de focos $F_1=(0,-2),$ $F_2=(0,2)$ e vértices $B_1=(0,-\sqrt{5}),$ $B_2=(0,\sqrt{5}).$

5.2 Hipérbole

Sejam F_1 e F_2 pontos sobre um plano π . Sejam, também, c tal que $|F_1F_2|=2c$ e a< c. O lugar geométrico dos pontos P tais que

$$||PF_1| - |PF_2|| = 2a, (5.34)$$

chama-se hipérbole. Veja Figura ??.

Figura 5.4: Ilustração de uma hipérbole de focos F_1 e F_2 .

Os pontos F_1 e F_2 são chamados de **focos** da hipérbole e $2c = |F_1F_2|$ é chamada de **distância focal**. O ponto médio entre os pontos F_1 e F_2 é chamado de centro da hipérbole. São chamados **vértices** da hipérbole os pontos A_1 e A_2 , sendo que o segmento A_1A_2 é chamado de **eixo real** (ou transverso) da hipérbole. O comprimento deste eixo é $|A_1A_2| = 2a$.

Sejam B_1 e B_2 pontos c distantes de A_1 e A_2 e pertencentes a reta que passa pelo centro da hipérbole e é perpendicular ao seu eixo real. O segmento B_1B_2 é chamado de **eixo imaginário** (transverso ou conjugado). Denotando $2b = |B_1B_2|$, temos do triângulo retângulo B_1OA_1 que

$$c^2 = a^2 + b^2. (5.35)$$

5.2.1 Equação reduzida da hipérbole

Assumimos um sistema de coordenadas cujo centro coincida com o centro de uma dada hipérbole e o eixo das abscissas seja coincidente com o eixo

real da hipérbole. Desta forma, temos $F_1 = (-c,0)$ e $F_2 = (c,0)$. Então, P = (x,y) é um ponto da hipérbole quando

$$||PF_1| - |PF_2|| = 2a. (5.36)$$

Daí, segue que

$$|PF_1| - |PF_2| = \pm 2a \tag{5.37}$$

$$\sqrt{(x+c)^2 + y^2} - \sqrt{(x-c)^2 + y^2} = \pm 2a \tag{5.38}$$

$$\sqrt{(x+c)^2 + y^2} = \pm 2a + \sqrt{(x-c)^2 + y^2}$$
 (5.39)

Elevando ao quadrado ambos os lados desta última equação, obtemos

$$(x+c)^2 + y^2 = 4a^2 \pm 4a\sqrt{(x-c)^2 + y^2}$$
 (5.40)

$$+(x-c)^2 + y^2 (5.41)$$

ou, equivalentemente,

$$x^{2} + 2cx + c^{2} + y^{2} = 4a^{2} \pm 4a\sqrt{(x-c)^{2} + y^{2}}$$
 (5.42)

$$+x^2 - 2cx + c^2 + y^2 (5.43)$$

Simplificando e rearranjando os termos, temos

$$cx - a^2 = \pm a\sqrt{(x-c)^2 + y^2}$$
. (5.44)

Elevando novamente ao quadrado, obtemos

$$c^{2}x^{2} - 2a^{2}cx + a^{4} = a^{2}x^{2} - 2a^{2}cx + a^{2}c^{2} + a^{2}y^{2}.$$
 (5.45)

Simplificando e rearranjando os termos, obtemos

$$(c^2 - a^2)x^2 - a^2y^2 = a^2(c^2 - a^2). (5.46)$$

Lembrando que $c^2 = a^2 + b^2$, temos

$$b^2x^2 - a^2y^2 = a^2b^2. (5.47)$$

Dividindo por a^2b^2 , obtemos

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1, (5.48)$$

a qual é chamada de **equação reduzida da hipérbole**.

Exemplo 5.2.1. A Figura ?? é um esboço do gráfico da hipérbole de equação reduzida

$$\frac{x^2}{16} - \frac{y^2}{9} = 1. (5.49)$$

Figura 5.5: Esboço do gráfico da hipérbole de equação $\frac{x^2}{16} - \frac{y^2}{9} = 1$.

Exercícios resolvidos

ER 5.2.1. Obtenha a equação reduzida da hipérbole centrada na origem e de eixo real $|A_1A_2| = 8$ e eixo imaginário $|B_1B_2| = 4$.

Solução. A equação reduzida de uma hipérbole centrada na origem tem a forma

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1, (5.50)$$

onde $2a = |A_1A_2|$ e $2b = |B_1B_2|$. No caso deste exercício, temos

$$2a = 8 \Rightarrow a = 4 \tag{5.51}$$

e

$$2b = 4 \Rightarrow b = 2 \tag{5.52}$$

Logo, a equação buscada é

$$\frac{x^2}{4^2} - \frac{y^2}{2^2} = 1\tag{5.53}$$

ou, equivalentemente,

$$\frac{x^2}{16} - \frac{y^2}{4} = 1. ag{5.54}$$

 \Diamond

ER 5.2.2. Faça o esboço da hipérbole de equação reduzida

$$\frac{y^2}{16} - \frac{x^2}{9} = 1. (5.55)$$

Solução. Observe que nesta equação, o termo contendo x tem sinal negativo e o termo contendo y tem sinal positivo (compare com (??)). Isto nos indica que o eixo real desta hipérbole está na direção das ordenadas Oy e, consequentemente, o eixo imaginário na direção das abscissas Ox.

Da equação, temos $a^2 = 9$ e $b^2 = 16$, donde a = 3 e b = 4. Neste caso, os vértices que definem o eixo real são $A_1 = (0, -b) = (0, -4)$ e $A_2 = (0, b) = (0, 4)$. Os focos $F_1 = (0, -c)$ e $F_2 = (0, c)$ são tais que

$$c^2 = a^2 + b^2 (5.56)$$

$$=9+16$$
 (5.57)

$$a = 25 \tag{5.58}$$

$$c = 5. (5.59)$$

Com estas informações, traçamos o esboço dado na Figura ??.

 \Diamond

Figura 5.6: Esboço do gráfico da hipérbole de equação $\frac{y^2}{16} - \frac{x^2}{9} = 1$.

ER 5.2.3. Mostre que uma hipérbole de equação reduzida

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\tag{5.60}$$

tem assíntotas

$$y = \pm \frac{b}{a}x. \tag{5.61}$$

 ${\bf Solução}.$ De fato, ao isolarmos yna equação reduzida, obtemos

$$y = \pm \sqrt{\frac{b^2}{a^2}x^2 - b^2} \tag{5.62}$$

Logo, para $x \to \infty$, temos

$$y \to \pm \sqrt{\frac{b^2}{a^2} x^2} \tag{5.63}$$

$$y \to \pm \sqrt{\frac{b^2}{a^2}} \sqrt{x^2} \tag{5.64}$$

$$y \to \pm \frac{b}{a}x\tag{5.65}$$

De forma análoga, quando $x \to -\infty$, temos

$$y \to \pm \sqrt{\frac{b^2}{a^2} x^2} \tag{5.66}$$

$$y \to \pm \sqrt{\frac{b^2}{a^2}} \sqrt{x^2} \tag{5.67}$$

$$y \to \mp \frac{b}{a}x\tag{5.68}$$

Ambos os resultados mostram que $y=\pm \frac{b}{a}x$ são assíntotas da hipérbole.

 \Diamond

Exercícios

ER 5.2.4. Faça o esboço da hipérbole de equação reduzida

$$\frac{x^2}{9} - \frac{y^2}{4} = 1\tag{5.69}$$

ER 5.2.5. Faça o esboço da hipérbole de equação reduzida

$$\frac{y^2}{9} - \frac{x^2}{4} = 1\tag{5.70}$$

E 5.2.1. Determine os vértices do eixo real das seguintes hipérboles:

a)
$$\frac{x^2}{9} - \frac{y^2}{4} = 1$$

b)
$$y^2 - \frac{x^2}{16} = 1$$

E 5.2.2. Determine os focos das seguintes hipérboles:

a)
$$\frac{x^2}{9} - \frac{y^2}{4} = 1$$

b)
$$y^2 - \frac{x^2}{16} = 1$$

E 5.2.3. Forneça a equação reduzida da hipérbole de focos $F_1 = (-2, 0)$, $F_2 = (2, 0)$ e de vértices do eixo real $A_1 = (-1, 0)$ e $A_2 = (1, 0)$.

E 5.2.4. Forneça a equação reduzida da hipérbole de distância focal $|F_1F_2| = 2\sqrt{6}$ e de vértices do eixo imaginário $A_1 = (-2,0)$ e $A_2 = (2,0)$.

5.3 Parábola

Em um plano, consideramos uma reta d e um ponto F não pertencente a d. Chamamos de **parábola** o conjunto de pontos P do plano que são equidistantes de F e de d, i.e.

$$dist(P, F) = dist(P, d). \tag{5.71}$$

Veja a Figura ??.

Figura 5.7: Ilustração de uma parábola.

O ponto F é chamado de **foco** da parábola. A reta d é chamada de **diretriz** da parábola. A reta perpendicular a d e que passa pelo ponto F é chamada de **eixo** da parábola. O ponto V de interseção entre a parábola e seu eixo é chamado de **vértice** da parábola.

5.3.1 Equação reduzida de uma parábola

Tomamos o sistema cartesiano de coordenadas com origem no vértice da parábola e eixo das abscissas paralelo à diretriz. Seja p tal que

$$F = (0, p/2). (5.72)$$

Logo, a diretriz tem equação y=-p/2. Da definição de parábola, P=(x,y) pertence a parábola quando

$$dist(P, F) = dist(P, d). \tag{5.73}$$

Segue que

$$\sqrt{x^2 + \left(y - \frac{p}{2}\right)^2} = y + \frac{p}{2}.\tag{5.74}$$

Elevando ao quadrado e expandindo, obtemos

$$x^{2} + y^{2} - py + \frac{p^{2}}{4} = y^{2} + py + \frac{p^{2}}{4}.$$
 (5.75)

Cancelando e rearranjando termos, obtemos

$$x^2 = 2py, (5.76)$$

a chamada equação reduzida da parábola.

Exemplo 5.3.1. A Figura ?? é um esboço do gráfica da parábola de equação reduzida

$$x^2 = 4y. (5.77)$$

Figura 5.8: Esboço do gráfico da parábola de equação $y^2 = 4x$.

Observação 5.3.1. Uma parábola com vértice na origem do sistema cartesiano e foco F = (p/2, 0), tem equação reduzida

$$y^2 = 2px. (5.78)$$

Exercícios resolvidos

ER 5.3.1. Determine a equação reduzida da parábola de diretriz y=2 e vértice na origem do sistema cartesiano. Por fim, faça o esboço de seu gráfico.

Solução. Uma parábola de equação reduzida

$$x^2 = 2py (5.79)$$

tem diretriz $y=-\frac{p}{2}$. Logo, sabendo que a diretriz é y=2, temos p=-4. Então, concluímos que a equação reduzida da parábola é

$$x^2 = -8y (5.80)$$

A Figura ?? é o esboço do gráfico desta parábola.

Figura 5.9: Esboço do gráfico da parábola de equação $y^2 = -8x$.

 \Diamond

ER 5.3.2. Determine a equação reduzida da parábola de diretriz x=2 e vértice na origem do sistema cartesiano. Por fim, faça o esboço de seu gráfico.

Solução. Uma parábola de equação reduzida

$$y^2 = 2px (5.81)$$

tem diretriz $x=-\frac{p}{2}$. Logo, sabendo que a diretriz é x=2, temos p=-4. Então, concluímos que a equação reduzida da parábola é

$$y^2 = -8x \tag{5.82}$$

A Figura ?? é o esboço do gráfico desta parábola.

Figura 5.10: Esboço do gráfico da parábola de equação $y^2 = -8x$.

\Diamond

52

Exercícios

E 5.3.1. Faça o esboço do gráfico da parábola de equação reduzida

$$x^2 = 2y. (5.83)$$

Identifique no esboço a reta diretriz, o foco e o vértice da parábola.

E 5.3.2. Faça o esboço do gráfico da parábola de equação reduzida

$$x^2 = -2y. (5.84)$$

Identifique no esboço a reta diretriz, o foco e o vértice da parábola.

E 5.3.3. Faça o esboço do gráfico da parábola de equação reduzida

$$y^2 = 2x. (5.85)$$

Identifique no esboço a reta diretriz, o foco e o vértice da parábola.

E 5.3.4. Faça o esboço do gráfico da parábola de equação reduzida

$$y^2 = -2x. (5.86)$$

Identifique no esboço a reta diretriz, o foco e o vértice da parábola.

E 5.3.5. Determine o foco de cada uma das seguintes parábolas:

- a) $y = 2x^2$
- b) $y + 2x^2 = 0$
- c) $y^2 + 4x = 0$
- d) $\frac{1}{4}y^2 = x$

Capítulo 6

Superfícies Quádricas

Neste capítulo, fazemos um estudo introdutório sobre superífices quádricas.

6.1 Introdução a superfícies quádricas

Superfícies no espaço que podem ser descritas por equações da forma

$$ax^{2} + by^{2} + cz^{2} + 2dxy + 2exz + 2fyz + mx + ny + pz + q = 0$$
 (6.1)

são chamadas de **superfícies quádricas**, sendo a, b, c, d, e, f, m, n, p e q coeficientes dados.

6.1.1 Elipsoides

Um elipsoide centrado na origem é uma superfície quádrica de equação

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1. ag{6.2}$$

Exemplo 6.1.1. A Figura ?? é um esboço do gráfico da elipsoide de equação

$$\frac{x^2}{9} + \frac{y^2}{4} + z^2 = 1. ag{6.3}$$

Figura 6.1: Esboço do elipsoide de equação (??).

Observamos que a interseção deste elipsoide com o plano X-Y (z=0) é a elipse de equação

$$\frac{x^2}{9} + \frac{y^2}{4} = 1. ag{6.4}$$

Ou seja, é a elipse de vértice sobre o eixo maior $A_1=(-3,0)$ e $A_2=(3,0)$ e vértices sobre o eixo menor $B_1=(-2,0)$ e $B_2=(2,0)$.

De forma análoga, temos que a interseção do elipsoide (??) com o plano X-Z (y=0) é a elipse de equação reduzida

$$\frac{x^2}{9} + z^2 = 1. ag{6.5}$$

Também, temos associada a elipse de equação reduzida

$$\frac{y^2}{4} + z^2 = 1 \tag{6.6}$$

que é obtida da interseção do elipsoide (??) com o plano Y-Z (x=0).

6.1.2 Hiperboloides

Hiperboloides de uma folha

Um hiperboloide de uma folha centrado na origem é uma superfície quádrica de equação

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1 \tag{6.7}$$

ou

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 ag{6.8}$$

ou

$$-\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 \tag{6.9}$$

Exemplo 6.1.2. Vamos considerar o hiperboloide de equação

$$\frac{x^2}{9} + \frac{y^2}{4} - z^2 = 1. ag{6.10}$$

Sua interseção com o plano X-Y (z=0) é a elipse

$$\frac{x^2}{9} + \frac{y^2}{4} = 1. ag{6.11}$$

Sua interseção com o plano X-Z (y=0) é a hipérbole de equação reduzida

$$\frac{x^2}{9} - z^2 = 1. ag{6.12}$$

E, a interseção do hiperbol
oide com o plano $Y-Z\ (x=0)$ é a hipérbole de equação

$$\frac{y^2}{4} - z^2 = 1. ag{6.13}$$

A Figura ?? é o esboço do gráfico do hiperboloide de equação (??).

Figura 6.2: Esboço do hiperboloide de equação (??).

Exemplo 6.1.3. A Figura \ref{figura} é o esboço do gráfico do hiperboloide de equação

$$-\frac{x^2}{9} + \frac{y^2}{4} + z^2 = 1. ag{6.14}$$

Figura 6.3: Esboço do hiperboloide de equação (??).

Sua interseção com o plano $X-Y\ (z=0)$ é a hipérbole

$$-\frac{x^2}{9} + \frac{y^2}{4} = 1. ag{6.15}$$

Sua interseção com o plano X-Z (y=0) é a hipérbole de equação reduzida

$$-\frac{x^2}{9} + z^2 = 1. (6.16)$$

E, a interseção do hiperboloide com o plano Y-Z (x=0) é a elipse de equação

$$\frac{y^2}{4} + z^2 = 1. ag{6.17}$$

Hiperboloides de duas folhas

Hiperboloides de duas folhas têm equações

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1 \tag{6.18}$$

ou

$$-\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1 ag{6.19}$$

ou

$$-\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 ag{6.20}$$

Exemplo 6.1.4. Vamos considerar o hiperboloide de equação

$$\frac{x^2}{9} - \frac{y^2}{4} - z^2 = 1. ag{6.21}$$

Sua interseção com o plano $X-Y\ (z=0)$ é a hipérbole

$$\frac{x^2}{9} - \frac{y^2}{4} = 1. ag{6.22}$$

Sua interseção com o plano X-Z (y=0) é a hipérbole de equação reduzida

$$\frac{x^2}{9} - z^2 = 1. ag{6.23}$$

E, a interseção do hiperboloide com o plano Y-Z (x=0) é vazia, pois não existem y e z que satisfazem a equação

$$-\frac{y^2}{4} - z^2 = 1, (6.24)$$

A Figura ?? é o esboço do gráfico do hiperboloide de equação (??).

Figura 6.4: Esboço do hiperboloide de equação (??).

6.1.3 Paraboloide elíptico

Um paraboloide elíptico tem equação

$$\pm z = \frac{x^2}{a^2} + \frac{y^2}{b^2} \tag{6.25}$$

ou

$$\pm y = \frac{x^2}{a^2} + \frac{z^2}{c^2} \tag{6.26}$$

ou

$$\pm x = \frac{y^2}{b^2} + \frac{z^2}{c^2} \tag{6.27}$$

Exemplo 6.1.5. Vamos considerar o paraboloide elíptico de equação

$$z = \frac{x^2}{9} + \frac{y^2}{4} \tag{6.28}$$

Não há valor z < 0 que satisfaça a equação (??). Sua interseção com o plano X - Y (z = 0) é o ponto (0,0,0). Agora, sua interseção com cada plano paralelo ao plano X - Y e com $z = z_0 > 0$ é a elipse de equação

$$z_0 = \frac{x^2}{9} + \frac{y^2}{4} \tag{6.29}$$

ou, equivalentemente,

$$\frac{x^2}{9z_0} + \frac{y^2}{4z_0} = 1. ag{6.30}$$

A Figura ?? é o esboço do gráfico do paraboloide elíptico de equação (??).

Figura 6.5: Esboço do paraboloide elíptico de equação (??).

Exemplo 6.1.6. O esboço do gráfico de paraboloide elíptico de equação

$$-x = \frac{y^2}{4} + z^2 \tag{6.31}$$

é dado na Figura ??. Verifique!

Figura 6.6: Esboço do paraboloide elíptico de equação (??).

6.1.4 Paraboloide hiperbólico

Um paraboloide elíptico tem equação

$$\pm z = \frac{x^2}{a^2} - \frac{y^2}{b^2} \tag{6.32}$$

ou

$$\pm y = \frac{x^2}{a^2} - \frac{z^2}{c^2} \tag{6.33}$$

ou

$$\pm x = \frac{y^2}{b^2} - \frac{z^2}{c^2} \tag{6.34}$$

Exemplo 6.1.7. Vamos considerar o paraboloide hiperbólico de equação

$$z = \frac{x^2}{9} - \frac{y^2}{4}. (6.35)$$

Sua interseção com o plano $X-Y\ (z=0)$ são retas que satisfazem a equação

$$\frac{x^2}{9} - \frac{y^2}{4} = 0. ag{6.36}$$

De fato, isolando y, obtemos as equações destas retas

$$y = \pm \frac{2}{3}x. (6.37)$$

Sua interseção com o plano X-Z (y=0) é a parábola de equação

$$z = \frac{x^2}{9}. (6.38)$$

E, a interseção do paraboloide hiperbólico com o plano Y-Z (x=0) é a parábola de equação

$$z = -\frac{y^2}{4}. (6.39)$$

A Figura ?? é o esboço do gráfico do paraboloide hiperbólico de equação (??).

Figura 6.7: Esboço do paraboloide hiperbólico de equação (??).

Exercícios resolvidos

ER 6.1.1. Escreva a equação do elipsoide que tem como interseções

a) com o plano z=0 a elipse

$$\frac{x^2}{4} + \frac{y^2}{16} = 1\tag{6.40}$$

b) com o plano y = 0 a elipse

$$\frac{x^2}{4} + \frac{z^2}{9} = 1\tag{6.41}$$

Solução. Um elipsoide tem equação

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1. ag{6.42}$$

Sua interseção com o plano $X-Y\ (z=0)$ é a elipse de equação

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1. ag{6.43}$$

Logo, do item a), temos $a^2 = 4$ e $b^2 = 16$.

Agora, a interseção com o plano $X-Z\ (y=0)$ é a elipse de equação

$$\frac{x^2}{a^2} + \frac{z^2}{c^2} = 1. (6.44)$$

Assim, do item b), obtemos $c^2 = 9$.

Desta forma, concluímos que o elipsoide de equação

$$\frac{x^2}{4} + \frac{y^2}{16} + \frac{z^2}{9} = 1. ag{6.45}$$

 \Diamond

ER 6.1.2. Encontre a equação do paraboloide elíptico que contem a circunferência

$$x^2 + z^2 = 1, \quad y = -2.$$
 (6.46)

64

Solução. Para que o paraboloide contenha a circunferência

$$x^2 + z^2 = 1, \quad y = -2, \tag{6.47}$$

ele precisa abrir-se no sentido negativo na direção y. Logo, tem equação

$$-y = \frac{x^2}{a^2} + \frac{z^2}{b^2}. (6.48)$$

Fixado y = -2, a equação fica restrita a

$$2 = \frac{x^2}{a^2} + \frac{z^2}{b^2}. (6.49)$$

Notamos que para esta equação coincida com a circunferência $x^2+z^2=1$, devemos escolher $a^2=b^2=1/2$. Logo, concluímos que o paraboloide elíptico tem equação

$$-y = \frac{x^2}{\frac{1}{2}} + \frac{z^2}{\frac{1}{2}}. (6.50)$$

 \Diamond

Exercícios

E 6.1.1. Classifique cada uma das seguintes superfícies quádricas:

a)
$$\frac{x^2}{2} - y^2 + \frac{z^2}{4} = 1$$

b)
$$x^2 + \frac{y^2}{9} + \frac{z^2}{4} = 1$$

c)
$$z = -x^2 - \frac{y^2}{9}$$

d)
$$x^2 + y^2 + z^2 = 0$$

E 6.1.2. Forneça a equação do elipsoide que contem os pontos P=(0,2,0), Q=(-1,0,0) e R=(0,0,1).

E 6.1.3. Forneça a equação do hiperboloide de duas folhas que tem interseções:

a) com o eixo X-Y igual a hipérbole

$$-\frac{x^2}{16} + \frac{y^2}{4} = 1\tag{6.51}$$

b) com o eixo Y-Z igual a hipérbole

$$\frac{y^2}{4} - \frac{z^2}{9} = 1\tag{6.52}$$

E 6.1.4. Forneça a equação do paraboloide elíptico que contem a elipse

$$\frac{x^2}{2} + z^2 = 1, \quad y = 2. \tag{6.53}$$

E 6.1.5. Considere o hiperboloide de uma folha de equação

$$\frac{x^2}{9} - \frac{y^2}{4} + z^2 = 1. ag{6.54}$$

Classifique o lugar geométrico de sua interseção com cada um dos seguintes planos

- 1. X Y
- 2. X Z
- 3. Y Z

Resposta dos Exercícios

E 1.1.1.
$$\vec{v} = (1, -2,4)$$

E 1.1.2.
$$M = \left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$$

E 1.1.3.
$$B = (1,1,7)$$

E 1.1.4.
$$x = -5$$

E 1.1.5.
$$|CD| = \sqrt{6}$$

E 2.1.1. a)
$$\overrightarrow{AP} = \lambda \vec{v}$$
, $\vec{v} = (-2,1,1)$; b) $x = 1 - 2\lambda$, $y = -2 + \lambda$, $z = \lambda$; c) $\frac{x-1}{-2} = y + 2 = z$

E 2.1.2.
$$x = \frac{1}{2}$$

E 2.1.3.
$$A = (1, -1, 1), \vec{v} = (-2, 3, 1)$$

E 2.1.4.
$$x-1=\frac{y+1}{-1}=z$$

E 2.1.5.
$$x = 1 - \lambda$$
, $y = -1 - 2\lambda$, $z = -\lambda$

E 3.1.1.
$$\overrightarrow{AP} = \lambda(2, -1, 1) + \beta(-1, 1, 2), \quad \lambda, \beta \in \mathbb{R}$$

E 3.1.2.
$$x = 5$$

E 3.1.3.
$$x = -1 + 2\lambda - \beta$$
, $y = -\lambda + \beta$, $z = 2 + \lambda + 2\beta$

E 3.1.4.
$$y = 3$$

E 3.1.5.
$$-3x - 5y + z - 5 = 0$$

E 3.1.6.
$$z = 5$$

E 3.1.8.
$$x = 2 + 6\lambda$$
, $y = -1 - 7\lambda$, $z = -5\lambda$

E 4.1.1. a)
$$A = (3\sqrt{2}, \frac{3\pi}{4})$$
; b) $B = (\sqrt{3}, \frac{\pi}{6})$; c) $C = (\sqrt{3}, \frac{11\pi}{6})$

E 4.1.2. a)
$$A = (\sqrt{3}, 1)$$
; b) $B = (-\frac{\sqrt{3}}{2}, \frac{1}{2})$; c) $C = (\sqrt{2}, -\sqrt{2})$

E 4.1.3.
$$\theta = \frac{\pi}{2}$$

E 4.1.4.
$$y = -x$$

E 4.1.5.
$$r = 1$$

E 4.1.6.
$$x^2 + y^2 = 2$$

E 5.1.1.

E 5.1.2.

E 5.1.3. a)
$$(-3,0)$$
, $(3,0)$; b) $(0,-4)$, $(0,4)$

E 5.1.4. a)
$$(-\sqrt{5}, 0)$$
, $(\sqrt{5}, 0)$; b) $(0, \sqrt{15})$, $(0, \sqrt{15})$

E 5.1.5.
$$\frac{x^2}{2} + y^2 = 1$$

E 5.1.6.
$$x^2 + \frac{y^2}{5} = 1$$

E 5.2.0.

E 5.2.0.

E 5.2.1. a)
$$A_1 = (-3,0), A_2 = (3,0);$$
 b) $B_1 = (0,-1), B_2 = (0,1)$

E 5.2.2. a)
$$F_1 = (-\sqrt{13}, 0), F_2 = (\sqrt{13}, 0);$$
 b) $F_1 = (0, -\sqrt{17}), F_2 = (0, \sqrt{17})$

E 5.2.3.
$$x^2 - \frac{y^2}{3} = 1$$

E 5.2.4.
$$\frac{y^2}{2} - \frac{x^2}{4} = 1$$

E 5.3.1.

Notas de Aula - Pedro Konzen $^*/^*$ Licença CC-BY-SA 4.0

E 5.3.3.

E 5.3.4.

E 5.3.5. a)
$$F = (0, \frac{1}{8})$$
; b) $F = (0, -\frac{1}{8})$; c) $F = (-1, 0)$; d) $F = (1, 0)$

E 6.1.1. a) hiperboloide de uma folha; b) elipsoide; c) paraboloide elíptico;

d) ponto (0, 0, 0)

E 6.1.2.
$$x^2 + \frac{y^2}{4} + z^2 = 1$$

E 6.1.3.
$$-\frac{x^2}{16} + \frac{y^2}{4} - \frac{z^2}{9} = 1$$

E 6.1.4.
$$y = x^2 + \frac{z^2}{\frac{1}{2}}$$

E 6.1.5. a) hipérbole; b) elipse; c) hipérbole