微分積分II春課題

平成 27 年 3 月 19 日

1

(1)

$$\lim_{x \to -1} \frac{x^2 + 3x + 2}{x^3 + x^2 + 3x + 3}$$

$$= \lim_{x \to -1} \frac{(x+2)(x+1)}{(x+1)(x^2+3)}$$

$$= \lim_{x \to -1} \frac{x+2}{x^2+3}$$

$$= \frac{1}{4}$$

(2)

$$\lim_{x \to \infty} \frac{2x^2 + 9x - 5}{3x^2 - x - 2}$$

$$= \lim_{x \to \infty} \frac{2 + \frac{9}{x} - \frac{5}{x^2}}{3 - \frac{1}{x} - \frac{2}{x^2}}$$

$$= \frac{2 + 0 - 0}{3 - 0 - 0} = \frac{2}{3}$$

(3)

$$\lim_{x \to \infty} \frac{1 - 3^x}{3^{x+1} + 2^x}$$

$$= \lim_{x \to \infty} \frac{3^{-x} - 1}{3 + \frac{2^x}{3^x}}$$

$$= \frac{0 - 1}{3 + 0} = -\frac{1}{3}$$

(4)

$$\lim_{x \to 3-0} \frac{|x-3|}{x^2 - x + 6}$$

$$= \lim_{x \to 3-0} \frac{1}{-x - 2}$$

$$= -\frac{1}{5}$$

(5)

$$\lim_{x \to 0} \frac{\sin 5x}{4x}$$

$$= \lim_{x \to 0} \left(\frac{\sin 5x}{5x} \frac{5x}{4x}\right)$$

$$= 1 \cdot \frac{5}{4} = \frac{5}{4}$$

(6)
$$\lim_{x \to 0} \frac{1 - \cos x}{x^2}$$

$$= \lim_{x \to 0} \frac{\sin x^2}{x^2 (1 + \cos x)}$$

$$= \lim_{x \to 0} \frac{\sin x}{x} \lim_{x \to 0} \frac{\sin x}{x} \lim_{x \to 0} \frac{1}{1 + \cos x}$$

$$= 1 \cdot 1 \cdot \frac{1}{2} = \frac{1}{2}$$

(7) $\lim_{x \to 2} \frac{x - 2}{\sqrt{x^2 + 1} - \sqrt{5}}$ $= \lim_{x \to 2} \frac{(x - 2)(\sqrt{x^2 + 1} + \sqrt{5})}{x^2 - 4}$ $= \lim_{x \to 2} \frac{\sqrt{x^2 + 1} + \sqrt{5}}{x + 2}$ $= \frac{2\sqrt{5}}{4} = \frac{\sqrt{5}}{4}$

(8)

$$\lim_{h \to 0} (1+3h)^{\frac{1}{h}}$$

$$= \lim_{h \to 0} (1+3h)^{\frac{3}{3h}}$$

$$= e^{3}$$