People Analytics: Previsão de desligamento de funcionários

APLICATIVO DE MACHINE LEARNING RANDOM FOREST

VANESSA SANTANA DO AMARAL

Desafio

Analisar dados de recursos humanos para desenvolver um modelo de machine learning supervisionado, capaz de prever a probabilidade de desligamento de funcionários, antecipando e mitigando a perda de talentos críticos e otimizando processos de pessoas com base em dados.

Linguagens e tecnologias:

Python Ambiente Google Colab para projeto Visual Studio Code para criação do aplicativo Chat GPT e Gemini para validação de códigos

Metodologia do projeto

Limpeza e preparação dos dados:

Tratamento, correção de nulidades e padronização

Análise exploratória (EDA):

Correlação entre variáveis Seleção de variáveis relevantes e não discriminatórias

Feature engineering:

Transformação em one-hot encoding (Dummy) Divisão entre treino e teste

Aplicação de Machine Learning:

Treinamento dos modelos (regressão logística, XGBoost e Random Forest) Avaliação e comparação dos modelos

Bônus:

Aplicativo Streamlit

O que influencia a saída de um funcionário?

De acordo com os modelos XGBoost e Random Forest*

Idade e renda:

colaboradores mais jovens e com rendas menores apresentam maior tendência a deixar a empresa precocemente.

Liderança e tempo de empresa:

colaboradores com menos experiência, histórico de mudanças frequentes de emprego ou pouco tempo com o gestor atual apresentam maior risco de desligamento.

Deslocamento e viagens:

colaboradores com longos trajetos diários ou viagens frequentes têm maior risco de desligamento.

Estratégias para retenção

Mentoria e desenvolvimento:

oferecer programas de desenvolvimento de carreira para colaboradores mais jovens.

Revisão de salário e benefícios:

garantir remuneração competitiva, bônus e incentivos.

Programas de engajamento:

criar grupos ou eventos que reforcem pertencimento e reconhecimento.

Integração com o gestor:

check-ins regulares e feedback contínuo para quem tem pouco tempo com o gestor atual.

Planos de carreira claros:

definir trajetórias internas (PDI) e oportunidades de promoção.

Treinamento de liderança:

capacitar gestores para aumentar retenção da equipe.

Flexibilidade de jornada:

home office ou horários flexíveis para quem mora longe.

Revisão de viagens:

reduzir viagens excessivas ou oferecer suporte logístico e financeiro.

Benefícios de mobilidade:

transporte ou subsídios que minimizem impacto do deslocamento.

Diferenças entre os modelos

01

Regressão logística:

modelo estatístico que estima a probabilidade de um evento ocorrer.

Resultado: acurácia razoável, mas recall e F1 muito baixos, ou seja, quase não consegue identificar os funcionários que vão sair. 02

XGBoost:

algoritmo de boosting que combina várias árvores de decisão de forma sequencial para melhorar a previsão.

Resultado: excelente acurácia e recall, detecta a maioria dos funcionários com risco de desligamento. 03

Random Forest:

combina várias árvores de decisão em paralelo (ensemble) para gerar previsões robustas.

Resultado: desempenho ainda melhor que o XGBoost, com quase 100% de precisão e recall, detectando com confiabilidade os casos de desligamento.

Aplicativo Streamlit

Criação de um aplicativo interativo no Streamlit que utiliza o modelo Random Forest para estimar a probabilidade de desligamento de colaboradores e sugerir ações de retenção.

Aplicativo

Obrigada!

Estou em busca de uma oportunidade para colocar minhas habilidades em prática, aprender e construir resultados.

Tenho muita determinação, vontade e atitude para fazer acontecer!

Agradeço a atenção e até breve!

- https://www.linkedin.com/in/vanessasantanadoamaral/
- https://github.com/vanessasantanadoamaral