Name	Date
. 16.1.10	24.0

LAB 4G: Growing trees Response Sheet

Directions: Record your responses to the lab questions in the spaces provided.

Trees vs. Lines

Our first tree

• Why can't we just use a *linear model* to predict whether a passenger on the Titanic survived or not based on their sex?

Viewing trees

- Write down the labels of the two branches.
- Write down the labels of the two leaves.
- Answer the following, based on the treeplot:
 - Which sex does the model predict will survive?
 - Where does the plot tell you the number of people that get sorted into each leaf? How do you know?
 - Where does the plot tell you the number of people that have been sorted incorrectly in each leaf?

Name Date
Tullio Balo

LAB 4G: Growing trees Response Sheet

Leafier trees

 Create a treeplot for this model and answer the following 	g questions	3:
---	-------------	----

- Mrs. Cumings was a 38-year-old female with a 1st class ticket from Cherbourg. Does the model predict that she survived?
- Which variable ended up not being used by tree2?

Tree complexity

– How is tree3 different from tree2?

Predictions and Cross-validation Measuring model performance

· Where does the first misclassification occur?

Misclassification rate

On your own

• In your own words, explain what the misclassification rate is.

- Which model (tree1, tree2 or tree3) had the lowest misclassification rate for the titanic_test data?
 - Does creating a more complex classification tree always lead to better predictions? Why not?