Definizione di Trasformata unilatera di Laplace $\mathcal L$

$$\mathcal{L}\left\{f\left(t\right)\right\} \doteq \int_{0_{-}}^{\infty} f(t) \, \mathrm{e}^{-st} dt = F\left(s\right), \quad s \in \mathbf{C}; \qquad f\left(t\right) \xleftarrow{\mathcal{L}} \underbrace{\mathcal{L}}_{\mathbf{R} \to \mathbf{R}} \xrightarrow{\mathbf{C} \to \mathbf{C}} F\left(s\right)$$

Proprietà fondamentali della Trasformata unilatera di Laplace

$egin{array}{c c c c c c c c c c c c c c c c c c c $		
Froprieta	Tempo ι	rrequenza s
Linearità	$k_1 f_1(t) + k_2 f_2(t)$	$k_1F_1\left(s\right) + k_2F_2\left(s\right)$
Amplificazione	f(at)	$\frac{1}{a}F\left(\frac{s}{a}\right)$
Traslazione nel tempo	f(t- au)	$e^{-\tau s}F(s)$
Traslazione nella frequenza	$e^{at}f(t)$	$F\left(s-a\right)$
Derivazione	$\dot{f}(t) = \frac{df(t)}{dt}$	$sF\left(s\right) - f(t=0_{-})$
Doppia derivazione	$\ddot{f}(t) = \frac{d^2 f(t)}{dt^2}$	$s^{2}F(s) - s f(t = 0_{-}) - \dot{f}(t = 0_{-})$
Integrazione	$\int_{0_{-}}^{t} f(\tau) d\tau$	$\frac{1}{s} \cdot F(s)$
Convoluzione	f(t) * g(t)	$F\left(s\right) \cdot G\left(s\right)$
Teorema del valore iniziale	$f(t=0_+)$	$\lim_{s\to\infty}s\cdot F\left(s\right)$
Teorema del valore finale	$f(t \to \infty)$	$\lim_{s\to 0} s \cdot F(s)$

Tabella delle principali Trasformate unilatere di Laplace

impulso unitario gradino unitario segnale polinomiale o canonico esponenziale associato al polo semplice p di F(s)esponenziale associato al polo multiplo p di F(s)

$f(t), t \geq 0_{-}$	$F(s), s \in \mathbf{C}$
$\delta\left(t\right)$	1
$\varepsilon\left(t ight)$	$\frac{1}{s}$
$\frac{t^k}{k!}, \ k \ge 0$	$\frac{1}{s^{k+1}}$
$e^{pt}, p \in \mathbf{C}$	$\frac{1}{s-p}$
$\frac{t^k}{k!}e^{pt}, \ k > 0, \ p \in \mathbf{C}$	$\frac{1}{(s-p)^{k+1}}$
$\sin\left(\omega_{0}t\right),\;\omega_{0}\in\mathbf{R}$	$\frac{\omega_0}{s^2 + \omega_0^2}$
$\cos\left(\omega_{0}t\right),\ \omega_{0}\in\mathbf{R}$	$\frac{s}{s^2 + \omega_0^2}$
$e^{At}, A \in \mathbf{R}^{n \times n}$	$(sI_n - A)^{-1}$

esponenziale di matrice

$$F\left(s\right) = \frac{N\left(s\right)}{D\left(s\right)} = \frac{N\left(s\right)}{a_{n}s^{n} + a_{n-1}s^{n-1} + \ldots + a_{1}s + a_{0}} = \frac{N\left(s\right)/a_{n}}{D\left(s\right)/a_{n}} = \frac{N'\left(s\right)}{D'\left(s\right)} = \frac{N'\left(s\right)}{s^{n} + a'_{n-1}s^{n-1} + \ldots + a'_{1}s + a'_{0}} = \frac{N'\left(s\right)}{\prod_{i=1}^{n}\left(s - p_{i}\right)} = \frac{N'\left(s\right)}{\prod_{i=1}^{n'}\left(s - p_{i}\right)^{\mu_{i}}} = \sum_{i=1}^{n'}\sum_{k=1}^{\mu_{i}} \frac{R_{ik}}{\left(s - p_{i}\right)^{k}}$$

N(s), D(s): polinomi in s, di grado m ed n rispettivamente (m < n)

n: numero di radici di D(s) e D'(s) = numero di poli di F(s)

 n^{\prime} : numero di radici distinte di $D\left(s\right)$ e $D^{\prime}\left(s\right)=$ numero di poli non coincidenti di $F\left(s\right)$

 p_i : *i*-esima radice di D(s) e D'(s) = i-esimo polo di F(s)

 μ_{i} : molteplicità dell'i-esimo polo di $F\left(s\right)$

 $R_{ik}: k\text{-esimo residuo associato a } p_i \text{ mediante il fratto semplice } \frac{R_{ik}}{(s-p_i)^k}, \text{ dato da}$ $R_{ik} = \lim_{s \to p_i} \frac{1}{(\mu_i - k)!} \; \frac{\partial^{\mu_i - k}}{\partial s^{\mu_i - k}} \left[(s-p_i)^{\mu_i} \, F(s) \right], \quad 1 \le k \le \mu_i$

$$R_{ik} = \lim_{s \to r} \frac{1}{(\mu_i - k)!} \frac{\partial^{\mu_i - k}}{\partial s^{\mu_i - k}} [(s - p_i)^{\mu_i} F(s)], \quad 1 \le k \le \mu_i$$

Se p_i è un polo semplice $(\mu_i = 1)$, allora ha associato soltanto il fratto semplice $\frac{R_i}{s - p_i}$, con $R_i = \lim_{s \to p_i} (s - p_i) F(s)$

Antitrasformata unilatera di Laplace di funzioni razionali fratte
$$\mathcal{L}^{-1}\left\{\frac{N\left(s\right)}{D\left(s\right)}\right\} = \mathcal{L}^{-1}\left\{\sum_{i=1}^{n'}\sum_{k=1}^{\mu_{i}}\frac{R_{ik}}{\left(s-p_{i}\right)^{k}}\right\} = \sum_{i=1}^{n'}\sum_{k=1}^{\mu_{i}}\frac{R_{ik}}{\left(k-1\right)!}\,t^{k-1}\,\mathrm{e}^{p_{i}t}\,\varepsilon\left(t\right)$$

Se $F\left(s\right)$ ha un polo complesso $p_{i}=\sigma_{i}+j\omega_{i}$ con molteplicità μ_{i} , allora $F\left(s\right)$ presenta anche il polo complesso $p_{l}=p_{i}^{*}=\sigma_{i}-j\omega_{i}$ con molteplicità $\mu_l = \mu_i$. In tal caso, è opportuno antitrasformare a coppie i fratti semplici di F(s) associati a p_i e p_l , poiché

$$\mathcal{L}^{-1} \left\{ \frac{R_{ik}}{(s-p_i)^k} + \frac{R_{lk}}{(s-p_l)^k} \right\} = \mathcal{L}^{-1} \left\{ \frac{R_{ik}}{(s-p_i)^k} + \frac{R_{ik}^*}{(s-p_i^*)^k} \right\} = \frac{2|R_{ik}|}{(k-1)!} t^{k-1} e^{\sigma_i t} \sin\left(\omega_i t + \angle R_{ik} + \frac{\pi}{2}\right) \varepsilon(t)$$

con
$$\angle R_{ik} = \arctan\left(\frac{\Im m\left(R_{ik}\right)}{\Re e\left(R_{ik}\right)}\right)$$