# Reproducing a Study of Stochastic Volatility + Market Inefficiency

>>> Fun with Multi Linear Regression

Maks Pazuniak

# Original Study:

#### FEDERAL RESERVE BANK OF SAN FRANCISCO

WORKING PAPER SERIES

# Examining the Sources of Excess Return Predictability: Stochastic Volatility or Market Inefficiency?

Kevin J. Lansing Federal Reserve Bank of San Francisco

Stephen F. LeRoy University of California, Santa Barbara

> Jun Ma Northeastern University

> > December 2018

Working Paper 2018-14

https://www.frbsf.org/economic-research/publications/working-papers/2018/14/

### Stochastic Volatility

sto · chas · tic

/stə<sup>l</sup>kastik/ adjective TECHNICAL

> randomly determined; having a random probability distribution or pattern that may be analyzed statistically but may not be predicted precisely.

the volatility of asset prices is not constant ]

The efficient-market hypothesis is a theory that asset prices fully reflect all available information.

A direct implication is that it is impossible to "beat the market" consistently on a risk-adjusted basis since market prices should only react to new information.

# Findings:

>>> Not Investment
Advice

We show that the sentiment-momentum variable is positively correlated with fluctuations in Google searches for the term "stock market," suggesting that the sentiment-momentum variable helps to predict excess returns because it captures shifts in investor attention, particularly during stock market declines.

"

## Data Sources:

Variance Risk Premium: <a href="https://sites.google.com/site/haozhouspersonalhomepage">https://sites.google.com/site/haozhouspersonalhomepage</a>

EOM Nominal S&P, Nominal Dividends / Nominal Risk Free Rate: http://www.hec.unil.ch/agoyal/

University of Michigan Consumer Sentiment: <a href="http://www.sca.isr.umich.edu/">http://www.sca.isr.umich.edu/</a>

Google Trends: <a href="https://trends.google.com/trends/?geo=US">https://trends.google.com/trends/?geo=US</a>

Quand1 API: https://www.quandl.com/

Yahoo Finance: <a href="https://finance.yahoo.com/">https://finance.yahoo.com/</a>

Study Covers 1990-03 through 2017-12

# **Key Terms & Independent Variables:**

```
price-dividend ratio index closing value / cumulative nominal dividends >> " pd "
fed funds rate delta 12 month change in federal funds rate >> " ff12_D "
variance risk premium 3 month moving average in difference between implied volatility from option on the
index and realized volatility of the index >> " vrp3 "
fed funds rate delta 12 month change in federal funds rate >> " ff12_D "
consumer sentiment delta 12 month change in UM Consumer Sentiment >> " sent12_D "
excess stock return delta 1 month change in excess return (over the risk free rate) - a measure of return
momentum >> " ersf D "
interaction consumer sentiment delta X excess stock return delta >> " sent_x_ersf_D "
google search term momentum 1 month change in volume of google searches for the term "Stock
Market" >> " Google_D "
```

# Target Variable:

excess return in month t+1 12 month change in federal funds rate >> " ersf\_t1 "

#### Monthly Excess Returns over Risk Free Rate

#### Distribution of Monthly Returns



Mean: 0.65

Standard Deviation: 4.1

Minimum: -16.8% Maximum: 10.9%

Correlation Plots target variable vs. independent variables



## Baseline Model

price-dividend / federal funds rate / variance risk premium / sentiment change (12mo) X return momentum

**Kurtosis:** 

4.031

Cond. No.

| OLS (Statsmodel) |                  |                                |          |                  |                                      |                |
|------------------|------------------|--------------------------------|----------|------------------|--------------------------------------|----------------|
| Dep. Variable:   | ersf_t1          | R-squared:                     | 0.174    | <mark>0</mark> r | iginal Study R-S                     | Squared: 17.3% |
| Model:           | 0LS              | Adj. R-squared:                | 0.164    |                  |                                      |                |
| Method:          | Least Squares    | F-statistic:                   | 17.29    |                  | e original study<br>sf_D and sent12_ |                |
| Date:            | Sun, 21 Apr 2019 | <pre>Prob (F-statistic):</pre> | 6.93E-13 |                  | eir regression m                     |                |
| Time:            | 23:03:43         | Log-Likelihood:                | -913.55  | _                |                                      | _              |
| No. Observations | :334             | AIC:                           | 1837     |                  | cluded here as pairly high, with     |                |
| Df Residuals:    | 329              | BIC:                           | 1856     |                  | the R-Squared v                      | •              |
| Df Model:        | 4                |                                |          |                  | •                                    |                |
| Covariance Type: | nonrobust        |                                |          |                  |                                      |                |
|                  | coef             | std err                        | t        | P> t             | [0.025                               | 0.975]         |
| Intercept        | 1.914            | 0.831                          | 2.305    | 0.022            | 0.281                                | 3.548          |
| pd               | -0.057           | 0.015                          | -3.777   | 0.000            | -0.087                               | -0.027         |
| ff12_D           | 0.870            | 0.162                          | 5.352    | 0.000            | 0.550                                | 1.189          |
| vrp3             | 0.110            | 0.020                          | 5.391    | 0.000            | 0.070                                | 0.150          |
| sent_x_ersf_D    | -0.014           | 0.004                          | -3.844   | 0.000            | -0.021                               | -0.007         |
| Omnibus:         | 29.202           | Durbin-Watson:                 | 2.026    |                  |                                      |                |
| Prob(Omnibus):   | 0                | Jarque-Bera (JB):              | 38.189   |                  |                                      |                |
| Skew:            | -0.648           | <pre>Prob(JB):</pre>           | 5.10E-09 |                  |                                      |                |

238

#### Adding Change in Volume of Google Searches

google search term momentum 1 month change in volume of google searches for the term "Stock
Market" >> " Google\_D "





# Final Model

Model:

Method:

Date:

Time:

coef

pd

ff12 D

Google\_D

Omnibus:

Kurtosis:

Skew:

vrp3

No. Observations:

Covariance Type:

Df Residuals:

Df Model:

Intercept

sent\_x\_ersf\_D

Prob(Omnibus):

#### OLS (Statsmodel) Dep. Variable:

ersf\_t1

23:03:47

nonrobust

std err

6.3421

-0.1484

1.6608

0.1386

-0.0087

-0.0847

9.6

0.008

-0.589

3.138

Least Squares

Sun, 21 Apr 2019

0LS

168

162

5

price-dividend / federal funds rate / variance risk premium / sentiment change (12mo) X return momentum / Google Delta

[0.025

0.0440

0.0110

0.0000

0.0000

0.0580

0.0030

Original Study R-Squared: 29.1%

The original study included the

Excluded here as p-values were

fairly high, with minimal impact

12.508

-0.034

2,228

0.197

-0.03

0

Different

Timeframe:

Google Trends

not available

through 2017-12.

until 2004. Covers 2004-01

their regression model:

on the R-Squared value.

0.975]

0.177

-0.263

1.094

0.08

-0.018

-0.139

ersf D and sent12 D variables in

R-squared: 0.311

Adj. R-squai 0.29

F-statistic: 14.63

Prob (F-stat 7.89E-12

Log-Likelih -435.44

882.9

901.6

P>|t|

2.031

-2.557

5.784

4.649

-1.909

-3.066

0.00728

724

AIC:

BIC:

t

3.122

0.058

0.287

0.03

0.005

0.028

Prob(JB):

Cond. No.

Durbin-Wats(1.89

Jarque-Bera 9.844

#### Final Model - Residuals vs. Fitted Values



The residual plots are fairly well distributed around the horizontal line, with no discernible pattern; a linear regression model appears to be appropriate.

#### Final Model - QQ Plot



The QQ Plot shows indicates that the residuals are fairly normally distributed, with some significant outliers towards the tails.

#### Predicting 2018 Forward Month Stock Returns

#### Running the Final Model on Untrained 2018 Data:

Applying a simple "Buy / Sell" Signal. If the Predicted Return is > 0, Buy (or Hold), if Predicted Return is < 0, Sell. Following this signal would have resulted in a -1.6% return on the year versus a -6.3% return with a pure "Buy and Hold" strategy. The amount show the results of investing \$10,000 on 12/31/2017, and following the monthly signal. While this is a useful heuristic for applying the model, the actual model Root Mean Squared Error was fairly high, at 4.76% (compared to 3.23% on the Trained Dataset).

| actual   | model    | correct | invested | ersf  | pred_ret_next_mo | month   |
|----------|----------|---------|----------|-------|------------------|---------|
| \$10,566 | \$10,566 | TRUE    | TRUE     | 5.66  | 0.30             | 2018-01 |
| \$10,155 | \$10,566 | TRUE    | FALSE    | -3.88 | -0.32            | 2018-02 |
| \$9,884  | \$10,566 | TRUE    | FALSE    | -2.67 | -3.39            | 2018-03 |
| \$9,912  | \$10,595 | TRUE    | TRUE     | 0.28  | 3.78             | 2018-04 |
| \$10,126 | \$10,824 | TRUE    | TRUE     | 2.16  | 0.38             | 2018-05 |
| \$10,175 | \$10,877 | TRUE    | TRUE     | 0.49  | 1.56             | 2018-06 |
| \$10,541 | \$11,268 | TRUE    | TRUE     | 3.60  | 0.72             | 2018-07 |
| \$10,858 | \$11,607 | TRUE    | TRUE     | 3.01  | 0.85             | 2018-08 |
| \$10,902 | \$11,654 | TRUE    | TRUE     | 0.40  | 0.65             | 2018-09 |
| \$10,141 | \$10,840 | FALSE   | TRUE     | -6.98 | 0.89             | 2018-10 |
| \$10,319 | \$10,840 | FALSE   | FALSE    | 1.76  | -1.61            | 2018-11 |
| \$9,368  | \$9,842  | FALSE   | TRUE     | -9.21 | 2.10             | 2018-12 |

-1.58% -6.32%

#### Predicting 2018 Forward Month Stock Returns



The Model failed to predict some of the extreme market moves in 2018.

The negative 9.6% return in December has a Z-Score of -2.54 compared to the mean return from 2004 - 2017, with only a 1.1% probability of such an extreme move in either direction.

Date (month t+1)

#### Next Steps:

Incorporate Additional Variables:

- Volume Weighted Moving Average
- Twitter Sentiment
- Breadth Advance / Decline
- Sentiment Put / Call Ratios