MAT02023 - Inferência A

Lista 5 - Família Exponencial e Suficiência

Exercício 1 Seja X_1, \ldots, X_n uma amostra aleatória obtida a partir da distribuição $f(x) = \theta x^{\theta-1} I_{(0,1)}(x)$ com $\theta > 0$. Encontre uma estatítica suficiente para θ . Calcule o valor esperado desta estatística.

Exercício 2 Seja X_1, X_2 uma amostra aleatória da variável $X \sim Poisson(\theta)$. Mostre que $T = X_1 + 2X_2$ não é suficiente para θ .

Exercício 3 Seja X_1, \ldots, X_n uma amostra aleatória obtida a partir da distribuição $f(x) = \exp\{-(x-\theta)\}I_{(\theta,\infty)}(x) \text{ com } \theta > 0$. Encontre uma estatística suficiente para θ .

Exercício 4

Mostre que a distribuição indicada em cada um dos itens abaixo pertence à família exponencial.

- a) Gama (α, β) com α e β desconhecidos.
- b) Gama (α, β) com α conhecido e β desconhecido.
- c) Beta (α, β) com α e β desconhecidos.
- d) Beta (α, β) com α conhecido e β desconhecido.
- e) Poisson (λ) .
- f) Normal (μ, σ^2) com μ e σ^2 desconhecidos.
- g) Binomial Negativa com número de sucessos r conhecido e 0 desconhecido.
- h) Uniforme $(0, \theta)$.

Exercício 5 Para cada um dos itens do exercício 4, encontre uma estatística suficiente para o(s) parâmetro(s) de interesse.

Exercício 6 Seja X_1, X_2, \dots, X_n uma a.a., onde $X_j \sim Exp(\lambda)$, para $j = 1 \dots, n$. Encontre uma estatística suficiente para λ .

Exercício 7 Seja X_1, X_2, \dots, X_n uma a.a. pertencente a família exponencial com função densidade de probabilidade

$$f(x, \boldsymbol{\eta}) = h(x)b(\boldsymbol{\eta}) \exp \left[\sum_{j=1}^{k} \eta_j T_j(x) \right].$$

Seja $T(X) = (\sum_{i=1}^n T_1(X_i), \dots, \sum_{i=1}^n T_k(X_i))$. Use o Teorema da Fatoração para mostrar que T(X) é uma estatística suficiente k-dimensional para η .

Exercício 8 Seja X_1, X_2, \dots, X_n uma a.a. onde uma das v.a.'s possui função densidade de probabilidade

$$f_X(x) = \frac{2}{\sqrt{2\pi}\sigma} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right],$$

onde $\sigma > 0$ e $x > \mu$ e μ é real. Encontre uma estatística suficiente para (μ, σ) .

Exercício 9 Seja X_1, X_2, \dots, X_n uma a.a., onde $X_j \sim U(\theta - 1, \theta + 2)$, para $j = 1 \dots, n$. Encontre uma estatística suficiente para θ .

Exercício 10 Mostre que para uma distribuição $f_{\theta}(x)$ de X pertencente à família exponencial, então:

- a) E(U) = 0, em que $U = \frac{\partial}{\partial \theta} \log f_{\theta}(\boldsymbol{x})$.
- b) $Var(U) = -E\left(\frac{\partial^2}{\partial \theta^2} \log f_{\theta}(\boldsymbol{x})\right)$.

Exercício 11 Nos Exercícios (1) e (3) determine se a estatística suficiente encontrada pode ser classificada como minimal.

Exercício 12 Faça os seguintes exercícios do livro 'Statistical Inference' de Casella e Berger:

a) 6.3 e 6.9 (a), (b) e (c).

Exercício 13 Seja X_1, X_2, \dots, X_n uma a.a. onde $X_j \sim N(\mu, \gamma_o^2 \mu^2)$, para $j = 1 \dots, n$, onde $\gamma_o^2 > 0$ é conhecido e $\mu > 0$.

- a) Encontre uma estatística suficiente para μ ;
- b) Mostre que $(\sum_{i=1}^{n} X_i, \sum_{i=1}^{n} X_i^2)$ é uma estatística suficiente e minimal;
- c) Encontre $E[\sum_{i=1}^{n} X_i^2];$
- d) Encontre $E[(\sum_{i=1}^{n} X_i)^2];$

e) Encontre

$$E\left[\frac{n+\gamma_o^2}{1+\gamma_o^2}\sum_{i=1}^n X_i^2 - \left(\sum_{i=1}^n X_i\right)^2\right].$$

Exercício 14 Encontre uma estatística suficiente minimal e completa quando X_1, X_2, \dots, X_n é uma a.a. seguindo as distribuições a seguir.

- a) $X_1 \sim Binomial(k, p)$, com k conhecido;
- b) $X_1 \sim Exponencial(\lambda);$
- c) $X_1 \sim \Gamma(\alpha, \beta)$, com α conhecido;
- d) $X_1 \sim Geomtrica(p)$;
- e) $X_1 \sim Binomial Negativa(r, \rho)$, com r conhecido;
- f) $X_1 \sim Normal(\mu, \sigma^2)$, com σ^2 conhecido;
- g) $X_1 \sim Normal(\mu, \sigma^2)$, com μ conhecido;
- h) $X_1 \sim Poisson(\theta)$.

Exercício 15 Encontre uma estatística suficiente minimal e completa quando X_1, X_2, \dots, X_n é uma a.a. seguindo as distribuições a seguir.

- a) $X_1 \sim Normal(\mu, \sigma^2);$
- b) $X_1 \sim Beta(\alpha, \beta);$
- c) $X_1 \sim chi(p, \sigma);$
- d) $X_1 \sim \Gamma(\alpha, \beta)$;
- e) $X_1 \sim Log Normal(\mu, \sigma^2)$.