Assignment 3

Question 1. [16 MARKS]

Given a list L, a contiguous sublist M of L is a sublist of L whose elements occur in immediate succession in L. For instance, [4,7,2] is a contiguous sublist of [0,4,7,2,4] but [4,7,2] is not a contiguous sublist of [0,4,7,1,2,4].

Due: August 3rd, 2018

We consider the problem of computing, for a list of integers L, a contiguous sublist M of L with maximum possible sum.

Algorithm 1 MaxSublist(L)

<*precondition>:* L is a list of integers.

< postcondition >: Return a contiguous sublist of L with maximum possible sum.

Part (1) [5 MARKS]

Using a divide-and-conquer approach, devise a recursive algorithm which meets the requirements of MaxSublist.

Part (2) [8 MARKS]

Give a complete proof of correctness for your algorithm. If you use an iterative subprocess, prove the correctness of this also.

Part (3) [3 MARKS]

Analyze the running time of your algorithm.

Question 2. [18 MARKS]

For a point $x \in \mathbb{Q}$ and a closed interval I = [a, b], $a, b \in \mathbb{Q}$, we say that I covers x if $a \le x \le b$. Given a set of points $S = \{x_1, \ldots, x_n\}$ and a set of closed intervals $Y = \{I_1, \ldots, I_k\}$ we say that Y covers S if every point x_i in S is covered by some interval I_i in Y.

In the "Interval Point Cover" problem, we are given a set of points S and a set of closed intervals Y. The goal is to produce a minimum-size subset $Y' \subseteq Y$ such that Y' covers S.

Consider the following greedy strategy for the problem.

Algorithm 2 Cover(S, Y)

< precondition>:

S is a finite collection of points in \mathbb{Q} . Y is finite set of closed intervals which covers S.

< postcondition >:

Return a subset Z of Y such that Z is the smallest subset of Y which covers S.

```
1: L = \{x_1, \dots, x_n\} \leftarrow S sorted in nondecreasing order

2: Z \leftarrow \emptyset

3: i \leftarrow 0

4: while i < n do

5: if x_{i+1} is not covered by some interval in Z then

6: I \leftarrow \text{interval } [a, b] in Y which maximizes b subject to [a, b] containing x_{i+1}

7: Z.\text{append}(I)

8: i \leftarrow i+1

9: return Z
```

Give a complete proof of correctness for Cover subject to its precondition and postcondition.

Question 3. [10 MARKS]

The first three parts of this question deals with properties of regular expressions (this is question 4 from section 7.7 of Vassos' textbook). Two regular expressions R and S are equivalent, written $R \equiv S$ if their underlying language is the same i.e. $\mathcal{L}(R) = \mathcal{L}(S)$. Let R, S, and T be arbitrary regular expression. For each assertion, state whether it is true or false and justify your answer.

Part (1) [2 MARKS]

If
$$RS \equiv SR$$
 then $R \equiv S$.

Part (2) [2 MARKS]

If
$$RS \equiv RT$$
 and $R \not\equiv \emptyset$ then $S \equiv T$.

Part (3) [2 MARKS]

$$(RS+R)^*R \equiv R(SR+R)^*.$$

Part (4) [4 MARKS]

Prove or disprove the following statement: for every regular expression R, there exists a FA M such that $\mathcal{L}(R) = \mathcal{L}(M)$. Note: even if you find the proof of this somewhere else, please try to write up the proof in your own words. Just citing the proof is NOT enough.

Question 4. [16 MARKS]

In the following, for each language L over the alphabet $\Sigma = \{0, 1\}$ construct a regular expression R and a DFA M such that $\mathcal{L}(R) = \mathcal{L}(M) = L$. Prove the correctness of your DFA.

Due: August 3rd, 2018

Part (1) [8 MARKS]

Let $L_1 = \{x \in \{0,1\}^* : \text{ the first and last charactes of } x \text{ are the same} \}$. Note: $\epsilon \notin L$ since ϵ does not have a first or last character.

Part (2) [8 MARKS]

Let a block be a maximal sequence of identical characters in a finite string. For example, the string 0010101111 can be broken up into blocks: 00, 1, 0, 1, 0, 1111. Let $L_2 = \{x \in \{0,1\}^* : x \text{ only contains blocks of length at least three}\}$.