

wenn Zahl rechts unten lesbar dann ist beschichtete Seite oben SQIB in Gewichtsprozent relativ zu PMMA Anteil

No1 No2 No3 No4	10% 4% 15min Trocknen bei 60°C 1%
No6 No7	10% 90min bei 180°C 4% 90min bei 180°C
No8	nur SQIB keine Temperaturbehandlung 30 nm Schichtdicke
No9	nur SQIB keine Temperaturbehandlung 50 nm Schichtdicke
NoP	nur PMMA, ergibt etwa 650 nm Schicht

Die "festen Lösungen" von SQIB sollten dem hier diskutierten Squarain: https://pubs.acs.org/doi/abs/10.1021/acs.jpcc.9b11816 sehr ähnlich sein, da das Grundgerüst der Moleküle gleich ist, unterscheiden sich nur in den Seitenketten "R".

Seitenketten R steuern die Aggregation, beim SQIB R = iso-butyl, sind aber nicht an Absorption beteiligt. Erst bei der Aggregation ergibt sich das charakteristische Davydov-Splitting, Kopplung der TDMs entlang des Grundgerüstes.

Proben werden mit Halogen-Lampen-Lichtspot eines Mikroskops beleuchtet zunehmende PL (pink) mit abnehmender Konzentration

0.5%

10% 4%

2%

1%

180°C Temperaturbehandlung Kristallite zeigen goldfarbene Reflexion

nur SQIB => keine PL

SQIB "feste Lösung" in PMMA eingebettet keine Aggregation

absorbance = -log(transmission)

gekreuzte Polarisatoren, nur Aggregate sichtbar.

bunte Fasern wahrscheinlich monokliner Polymorph,
goldene Büschel orthorhombischer Polymorph (also wie die Plättchen)

Mikroskopie-Bilder Probe No6 10% SQIB @ 180°C

