Box plot of heights >boxplot(class621\$height)

Box plot of weights >boxplot(class621\$weight)

>class621bmi = mutate(class621, bmi=(weight/height^2)*704.5) >class621filtered = filter(class621bmi, bmi < 40, bmi > 15)

BMI values > 40 or <15 are implausible. These BMI values may have been from wrongly entered weight for that given height or wrongly entered height for the given weight. I decided to remove these individuals from the analysis.

```
li
```

>class621filtered.F = filter(class621filtered, gender==2) >class621filtered.M = filter(class621filtered, gender==1)

>stem(class621filtered.M\$bmi)

For gender = 1 (male)

The decimal point is at the |

- 16 | 8
- 18 | 5802266
- 20 | 24445678013577889
- 22 | 134125788
- 24 | 23344444588001112349
- 26 | 2346666713456
- 28 | 0569905669
- 30 | 02993
- 32 | 2
- 34 | 59
- 36 |
- 38 | 4

>summary(class621filtered.M\$bmi)

summary

Min.	1st Qu.	Median	<mark>Mean</mark>	3rd Qu.	Max.
17.79	21.75	24.62	<mark>24.97</mark>	27.36	38.43

> sd(class621filtered.M\$bmi)

Sd = 4.084464

>stem(class621filtered.F\$bmi)

For gender = 2 (female)

The decimal point is at the |

- 16 | 9
- 17 | 01334556889
- 18 | 0334555666999
- 19 | 000001112222333344455566788888889
- 20 | 0000001112222334444566667778888889999
- 21 | 00000001122223333455555555555777888888
- 22 | 00012222334456666777778899999999
- 23 | 012222333333345555567777778889
- 24 | 0011112223333445799
- 25 | 0223444456678899999
- 26 | 124677778
- 27 | 345555
- 28 | 004448
- 29 | 238
- 30 | 133578
- 31 | 5
- 32 | 1
- 33 | 89
- 34 |
- 35 | 06
- 36 | 7
- 37 | 48

> summary(class621filtered.F\$bmi)

Summary

Min.	1st Qu.	Median	<mark>Mean</mark>	3rd Qu.	Max.
16.91	20.16	22.05	<mark>22.76</mark>	24.22	37.84

> sd(class621filtered.F\$bmi)

Sd = 3.704175

Assuming the distribution is a normal distribution

For males

Mean = 24.97, sd = 4.084464

Using the normal distribution applet, <u>Middle 50% of people</u>

Mean +/- 0.67(sd)

24.97 +/- 0.67(4.084464)

22.215 – 27.725

Middle 95% of people

Mean +/- 1.96(sd) 24.97 +/- 1.96(4.084464) 16.964 – 32.975

For females

Mean = 22.76, sd = 3.704175

Using the normal distribution applet Middle 50% of people
Mean +/- 0.67(sd)
22.76 +/- 0.67(3.704175)
20.262 – 25.258

Middle 95% of people

Mean +/- 1.96(sd) 22.76 +/- 1.96(3.704175) 15.500 – 30.020 >quantile(class621filtered.F\$bmi, c(.005, .025, .25, .75, .975, .995))

Quantiles for females

0.5%	2.5%	25%	75%	97.5%	99.5%
17.01178	17.53750	20.15999	24.22376	32.37530	37.09679

Middle 50%

20.160 - 24.224

Middle 95%

17.538 - 32.375

Middle 99%

17.012 - 37.097

>quantile(class621filtered.M\$bmi, c(.005, .025, .25, .75, .975, .995))

Quantiles for males

0.5%	2.5%	25%	75%	97.5%	99.5%
18.09055	18.85091	21.75464	27.36358	34.34723	36.94747

Middle 50%

21.755 - 27.364

Middle 95%

18.851 - 34.347

Middle 99%

18.091 - 36.947

Comparison of Empirical Intervals With Normal Distribution Intervals

	m	nale	female		
	Normal dist Actual dist		Normal dist	Actual dist	
Middle 50%	22.215 – 27.725	21.755 – 27.364	20.262 – 25.258	20.160 – 24.224	
Middle 95%	16.964 – 32.975	18.851 – 34.347	15.500 – 30.020	17.538 – 32.375	

iv

For both males and females, the normal distribution slightly overestimates the middle 50% and slightly underestimates the middle 95%.

Assuming normal distribution

Using the normal distribution applet

For males

Pr(BMI < 25) = 0.50293 Pr(25 < BMI < 29.9) = 0.388 Pr(BMI > 30) = 0.10907

for females

Pr(BMI < 25) = 0.72732 Pr(25 < BMI < 29.9) = 0.24736 Pr(BMI > 30) = 0.02532

Using actual distribution

For males

Pr(BMI < 25) = 0.51807229 Pr(25 < BMI < 29.9) = 0.37349398 Pr(BMI >= 30) = 0.10843373

For females

Pr(BMI < 25) = 0.78571429 Pr(25 < BMI < 29.9) = 0.15714286 Pr(BMI >= 30) = 0.05714286

	males	males		
	Model based	Actual	Model based	Actual
Pr(BMI < 25)	0.503	0.518	0.727	0.786
Pr(25 < BMI < 29.9)	0.388	0.373	0.247	0.157
Pr(BMI >= 30)	0.109	0.108	0.025	0.057

>qqnorm(class621filtered\$bmi)
>qqline(class621filtered\$bmi)
>abline(h=quantile(class621filtered\$bmi, c(.25,.5,.75), na.rm=TRUE), lty=2)
>abline(v=qnorm(c(.25,.5,.75)), lty=2)

Normal Q-Q Plot

The normal distribution approximates the distribution of the BMI mainly in the middle 50% but underestimates the BMI values in the lower and upper extremes

Vii

>qqnorm(class621filtered.F\$bmi)

>qqline(class621filtered.F\$bmi)

>abline(h=quantile(class621filtered.F\$bmi, c(.25,.5,.75), na.rm=TRUE), lty=2)

>abline(v=qnorm(c(.25,.5,.75)), lty=2)

For females (gender=2)

Normal Q-Q Plot

>qqnorm(class621filtered.M\$bmi)
>qqline(class621filtered.M\$bmi)
>abline(h=quantile(class621filtered.M\$bmi, c(.25,.5,.75), na.rm=TRUE), lty=2)
>abline(v=qnorm(c(.25,.5,.75)), lty=2)

For males (gender=1)

The male BMI values are more well-approximated by the normal distribution for the middle 95% as compared to the female BMI values which are well-approximated by the normal distribution in the middle 50% of the distribution.

viii.
>qqplot(class621filtered.F\$bmi, class621filtered.M\$bmi, xlim=c(15,40), ylim=c(15,40), xlab = "females",
ylab = "males")
>abline(a=0, b=1)

The values of BMI for males are consistently larger than the BMI values for females across the distribution of the sample.

Problem 2

ii.

The sampling distribution takes the shape of a normal distribution with a mean of 16.02 and a standard deviation of 6.74. It has a very broad base signifying a lot of variability.

iii.

sample size n=5

The sampling distribution takes the shape of a normal distribution with a mean of 16.01 and a standard deviation of 4.26. It has a small base signifying less variability.

iv.

sample size n=25

The sampling distribution takes the shape of a normal distribution with a mean/median of 16 and a standard deviation of 1.91. It has a very narrow base signifying minimal variability.

v. Estimated Means and Standard Deviations Of The Sampling Distribution(μ =16, var=90)

	Observed statistic for 100,000		Theoretical values for infinite replicates		
Size (n)	Mean	Standard deviation	Mean	Standard deviation	
2	16.02	6.74	16	$\sqrt{\frac{90}{2}} = 6.708$	
5	16.01	4.26	16	$\sqrt{\frac{90}{5}} = 4.243$	
25	16.00	1.91	16	$\sqrt{\frac{90}{25}} = 1.897$	
100	NA	NA			

vi.

The sample means are relatively close to the population mean but approach the exact population mean as the sample size increases. The sample mean is directly proportional to the population variance and inversely proportional to the sample size(n)

The central limit theorem states that if you take a sample of size "n" from a population(mean= μ , s.d= σ , whether it is gaussian or not), the sampling distribution assumes a normal distribution if the sample (of size n) is large enough.