AI1103:Assignment 2

Gowri Govindaraj, EP20BTECH11007

Download all python codes from

https://github.com/gowrigovindaraj/AI/ Assignment2/codes

and latex-tikz codes from

https://github.com/gowrigovindaraj/AI/ Assignment2.tex

1 GATE CS 2020 Question 45

For n > 2, let $a \in \{0, 1\}^n$ be a non-zero vector. Suppose that x is chosen uniformly at random from $\{0, 1\}^n$. Then, the probability that $\sum_{i=1}^n a_i x_i$ is an odd number is ____?

2 Solution

Consider

$$a = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}$$

Fixed non-zero $a_i = 0, 1$

$$x = \begin{bmatrix} x_1 \\ x_3 \\ \vdots \\ x_n \end{bmatrix}$$

$$x_i = 0, 1$$

 $\sum_{i=1}^{n} a_i x_i \text{ lies between } 0 \text{ to } n$ Total number of cases=2ⁿ

TABLE 0: Values

$\sum_{i=1}^n a_i x_i$	0	1	2	 n
number	$\binom{n}{0}$	$\binom{n}{1}$	$\binom{n}{2}$	 $\binom{n}{n}$

$$P\left[\sum_{i=1}^{n} a_i x_i \text{ is odd }\right]$$
$$= \frac{\binom{n}{1} + \binom{n}{3} + \dots}{2^n}$$

$$=\frac{2^{n-1}}{2^n}$$
$$=\frac{1}{2}$$
$$=0.5$$