ന	ลผ	NIA.	ΠИ	a

В заданиях для простоты вычислений предполагать, что гага=гиби=gibi= 2^{30} , мега=меби =mebi= 2^{20} , число секунд в году $\sim 2^{23}$.

1. В некоторой криптосистеме используется поточный блочный шифр в детерминированном режиме CTR.

Ответе на вопросы ниже

Nº	Задание	Ответ	
а	Предполагая стойкость блочного шифра с функцией		
	зашифрования E , является ли описанная криптосистема стойкой		
	при одноразовом использовании ключа в теоретическом		
	(предельном) смысле? (записать в ответ да или нет) Почему? (на		
	доп листах)		
b	Предполагая стойкость блочного шифра с функцией		
	зашифрования E , является ли описанная криптосистема стойкой		
	при многоразовом использовании ключа (ключ используется		
	для шифрования нескольких сообщений) в теоретическом		
	(предельном) смысле? (записать в ответ да или нет) Почему? (на		
	доп листах)		
С	Пусть в качестве $\it E$ используется PRP, с длинной ключа 128 бит,		
	размер блока 128 бит, параметр стойкости принять равным 128		
	бит.		
	Пусть имеется защищенный канал связи с пропускной		
	способностью 100 mebibit, в котором непрерывно шифруются		
	сообщения. Оценить вероятность атаки на криптосистему в		
	течении одного года, при условии что симметричный ключ не		
	меняется.		
d	Пусть в качестве E используется PRP, с длинной ключа 128 бит,		
	размер блока 64 бит, параметр стойкости принять равным 120		
	бит.		
	Пусть имеется защищенный канал связи с пропускной		
	способностью 100 mebibit, в котором непрерывно шифруются		
	сообщения. Оценить необходимую частоту смены симметричного		
	ключа, при заданной вероятности атаки равной 2^{-7} .		T
	Не заполнять!	/8	/8

2. После анализа симметричной криптосистемы была получена следующая оценка стойкости в сведении к псевдослучайной функции $Adv[A,C] \leq \frac{tn}{N}(\frac{tQ}{N} + Adv_{prf}[B,E])$, где E – функция зашифрования блочного шифра, Q – максимальное число обращений к криптосистеме при фиксированном ключе, $N=2^n,n$ – размер блока PRF, t – размер выхода криптосистемы. Ответе на вопросы ниже

Nº	Задание	Ответ
а	Предполагая стойкость блочного шифра с функцией	
	зашифрования E , является ли описанная криптосистема стойкой в	
	теоретическом (предельном) смысле? (записать в ответ да или	
	нет) Почему? (на доп листах)	

Не заполнять!	/1	/ 1
	, –	/ -

3. Выберите верные утверждения:

Nº	Задание	Ответ
а	Любая PRP является PRF	
b	Любая PRF является PRP	
С	Любая стойкая PRF является PRP	
d	Любая стойкая PRP является стойкой PRF	
е	Любая стойкая PRP с суперполиномиальным образом является	
	стойкой PRF	
f	Любой стойкий блочный шифр является стойкой PRF	
g	Любой семантически стойкий шифр (одноразовое использование	
	ключа) должен быть детерминированным	
h	Любой СРА стойкий шифр является семантически стойким при	
	одноразовом использовании ключа.	
	Не заполнять!	/8

4. Пусть (E, D) шифр на (K, M, C).

Nº	Задание	Ответ
а	Пусть длина сообщений и длины соответствующих шифртекстов	
	совпадают для всех ключей. Показать, что (E,D) – не CPA стойкий.	
b	Пусть длина шифртекстов больше длины соответствующих	
	открытых текстов на l бит. Показать, что существует атака на СРА	
	стойкость сложностью $2^{l/2}$ с преимуществом $\frac{1}{2}$.	
	Не заполнять!	/ 6

5. Рассмотрим следующую игру. Пусть шифр (E,D) определён на (K,M,C), где множество сообщений такое, что можно эффективно выбрать случайное сообщение с равномерным распределением. Показать, что если (E,D) СРА стойкий, тогда невозможно выиграть игру на генерацию двух одинаковых шифртекстов. Оценить преимущества в игре на генерацию одинаковых шифртекстов для СРА стойкого шифра. Игра на генерацию выглядит следующим образом — претендент генерирует случайный ключ, противник отправляет q откртых текстов, получая q шифртекстов на ключе претендента. Если хотя бы одна пара шифртекстов совпадает — противник выигрывает игру.

Не заполнять!	/ 4	/ 4
---------------	-----	-----

n. Hard mode on. **Опционально (т.е. можно не делать).**

Решить задачу 4.2. на странице 165 книги A Graduate Course in Applied Cryptography v0.4

+ 10 к итоговой оценке за семестр.