REGRESIÓN

MODELO TEÓRICO	MODELO ESTADÍSTICO	MODELO ESTIMADO
E (Y/x) = μ _{Y/x} = α +β x E (Y/x): valor esperado de Y para un valor fijo de x. α y β parámetros poblacionales α:ordenada al origen poblacional β: Pendiente poblacional	Y = α +β x + e Y : variable respuesta e : error aleatorio	$\hat{Y}=a+b\ x$ $\hat{y}: \text{valor estimado de la variable}$ respuesta Y $\text{a y b son los estimadores de los}$ parámetros α y β

$$b = \frac{S_{xy}}{S_{xx}} = \frac{\sum (x_{i} - \overline{x})(y_{i} - \overline{y})}{\sum (x_{i} - \overline{x})^{2}} = \frac{\left(\sum x_{i}y_{i} - \frac{\sum x_{i}\sum y_{i}}{n}\right)}{\left(\sum x_{i}^{2} - \frac{\left(\sum x_{i}\right)^{2}}{n}\right)}$$

$$a = \overline{y} - b \overline{x}$$

ESTADÍSTICA

PARAMETROS A ESTIMAR	VARIABLE A UTILIZAR	LIMITES DEL INTERVALO
μ _{Y/x}	$t_{n-2} = \frac{\hat{y} - \mu_{Y/x}}{S_{y}}$	$\hat{\mathbf{y}} \pm \mathbf{t}_{(\mathbf{n}-2;1-\alpha/2)} \mathbf{S}_{\mathbf{y}}$
β	$t_{n-2} = \frac{b - \beta}{S_b}$	$b \pm t_{(n-2;1-\alpha/2)}S_b$
α	$t_{n-2} = \frac{a - \alpha}{S_a}$	$a \pm t_{(n-2;1-\alpha/2)} S_a$
ρ	$t_{n-2} = \frac{r\sqrt{n-2}}{\sqrt{1-r^2}}$	Se hace una transformación

ESTADÍSTICA

VARIANZA	FORMULA TEÓRICA	FORMULA DE TRABAJO
S ² _e	$= \frac{1}{n-2} \left[\sum (y_i - \overline{y})^2 - b \sum (x_i - \overline{x})(y_i - \overline{y}) \right]$	$= \frac{1}{n-2} \left[\sum y_i^2 - \frac{(\sum y_i)^2}{n} - b \left(\sum x_i y_i - \frac{\sum x_i \sum y_i}{n} \right) \right]$
	$= \frac{1}{n-2} \left[\sum_{i} (y_i - \overline{y})^2 - b^2 \sum_{i} (x_i - \overline{x})^2 \right]$	$= \frac{1}{n-2} \left[\sum_{i} y_{i}^{2} - \frac{\left(\sum_{i} y_{i}\right)^{2}}{n} - b^{2} \left(\sum_{i} x_{i}^{2} - \frac{\left(\sum_{i} x_{i}\right)^{2}}{n}\right) \right]$
S ² _b	$=\frac{S^{2}_{e}}{\sum (x_{i}-\overline{x})^{2}}$	$= \frac{S^{2}_{e}}{\sum_{i} x_{i}^{2} - \frac{(\sum_{i} x_{i})^{2}}{n}}$
S ² a	$=S^{2}e\left(\frac{1}{n}+\frac{\overline{x}^{2}}{\sum(x_{i}-\overline{x})^{2}}\right)$	$= S^{2} e^{\left(\frac{1}{n} + \frac{\overline{x}^{2}}{\sum_{i} x_{i}^{2} - \frac{(\sum_{i} x_{i})^{2}}{n}}\right)}$
S ² y	$=S^{2}e\left(\frac{1}{n}+\frac{(X_{0}-\overline{X})^{2}}{\sum(X_{i}-\overline{X})^{2}}\right)$	$= S^{2} e^{\left(\frac{1}{n} + \frac{(x_{0} - \overline{x})^{2}}{\sum x_{i}^{2} - \frac{(\sum x_{i})^{2}}{n}}\right)}$

COEFICIENTES

REGRESIÓN	FORMULA TEÓRICA	FORMULA DE TRABAJO
b	$= \frac{S_{xy}}{S_{xx}} = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sum (x_i - \overline{x})^2}$	$= \frac{\left(\sum x_i y_i - \frac{\sum x_i \sum y_i}{n}\right)}{\left(\sum x_i^2 - \frac{\left(\sum x_i\right)^2}{n}\right)}$
R ² Coeficiente de Determinación	$=1-\frac{SC_{e}}{S_{yy}}=1-\frac{\sum(y_{i}-\hat{y}_{i})^{2}}{\sum(y_{i}-\overline{y})^{2}}$	$=b^{2}\frac{\sum_{i}x_{i}^{2}-\frac{(\sum_{i}x_{i})^{2}}{n}}{\sum_{i}y_{i}^{2}-\frac{(\sum_{i}y_{i})^{2}}{n}}$ ó
		$= b \frac{\sum_{i} x_{i} y_{i} - \frac{\sum_{i} x_{i} \sum_{i} y_{i}}{n}}{\sum_{i} y_{i}^{2} - \frac{(\sum_{i} y_{i})^{2}}{n}}$
r Coeficiente de Correlación	$= \frac{S_{xy}}{\sqrt{S_{xx}} \sqrt{S_{yy}}} = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum (x_i - \overline{x})^2} \sqrt{\sum (y_i - \overline{y})^2}}$	$= \frac{\left(\sum x_{i} y_{i} - \frac{\sum x_{i} \sum y_{i}}{n}\right)}{\sqrt{\left(\sum x_{i}^{2} - \frac{\left(\sum x_{i}\right)^{2}}{n}\right)} \sqrt{\left(\sum y_{i}^{2} - \frac{\left(\sum y_{i}\right)^{2}}{n}\right)}}$