## **Other Relational Languages**

## **Tuple Relational Calculus**

- A nonprocedural query language, where each query is of the form
  {t | P(t) }
- It is the set of all tuples t such that predicate P is true for t
- t is a tuple variable, t[A] denotes the value of tuple t on attribute A
- $t \in r$  denotes that tuple t is in relation r
- P is a formula similar to that of the predicate calculus

## **Predicate Calculus Formula**

- 1. Set of attributes and constants
- 2. Set of comparison operators: (e.g.,  $\langle$ ,  $\leq$ , =,  $\neq$ ,  $\rangle$ ,  $\geq$ )
- 3. Set of connectives: and  $(\land)$ , or  $(\lor)$ , not  $(\neg)$
- 4. Implication  $(\Rightarrow)$ :  $x \Rightarrow y$ , if x if true, then y is true

$$x \Rightarrow y \equiv \neg x \lor y$$

- 5. Set of quantifiers:
  - Existential quantifier:
    - ▶  $\exists t \in r(Q(t)) \equiv$  "there exists" a tuple in t in relation r such that predicate Q(t) is true
  - Universal quantifier:
    - ▶  $\forall t \in r(Q(t)) \equiv Q$  is true "for all" tuples t in relation r

- University Example:
  - instructor(ID, name, dept\_name, salary)
  - section(course\_id, semester, year, sec\_id)
- Find the *ID*, name, dept\_name, salary for instructors whose salary is greater than \$80,000

```
\{t \mid t \in instructor \land t [salary] > 80000\}
```

■ As in the previous query, but output only the *ID* attribute value

```
\{t \mid \exists s \in \text{instructor} (t[ID] = s[ID] \land s[salary] > 80000)\}
```

Notice that a relation on schema (*ID*) is *implicitly* defined by the query

Find the names of all instructors whose department is in the Watson building

```
\{t \mid \exists s \in instructor (t [name] = s [name] \land \exists u \in department (u [dept_name] = s[dept_name] \land u [building] = "Watson"))\}
```

■ Find the set of all courses taught in the Fall 2009 semester, or in the Spring 2010 semester, or both

```
\{t \mid \exists s \in section \ (t [course\_id] = s [course\_id] \land s [semester] = "Fall" \land s [year] = 2009 \ \lor \exists u \in section \ (t [course\_id] = u [course\_id] \land u [semester] = "Spring" \land u [year] = 2010)\}
```

■ Find the set of all courses taught in the Fall 2009 semester, and in the Spring 2010 semester

```
\{t \mid \exists s \in section (t [course\_id] = s [course\_id] \land s [semester] = "Fall" \land s [year] = 2009 \land \exists u \in section (t [course\_id] = u [course\_id] \land u [semester] = "Spring" \land u [year] = 2010)\}
```

■ Find the set of all courses taught in the Fall 2009 semester, but not in the Spring 2010 semester

```
\{t \mid \exists s \in section (t [course\_id] = s [course\_id] \land s [semester] = "Fall" \land s [year] = 2009 \land \neg \exists u \in section (t [course\_id] = u [course\_id] \land u [semester] = "Spring" \land u [year] = 2010)\}
```

## **Safety of Expressions**

- It is possible to write tuple calculus expressions that generate infinite relations.
- For example,  $\{t \mid \neg t \in r\}$  results in an infinite relation if the domain of any attribute of relation r is infinite
- To guard against the problem, we restrict the set of allowable expressions to safe expressions.
- An expression  $\{t \mid P(t)\}$  in the tuple relational calculus is *safe* if every component of t appears in dom(P): the relations, tuples, or constants that appear in P
  - NOTE: this is more than just a syntax condition.
    - ▶ E.g. {  $t \mid t[A] = 5 \lor \text{true}$  } is not safe --- it defines an infinite set with attribute values that do not appear in any relation or tuples or constants in P.

## **Universal Quantification**

■ Find all students who have taken all courses offered in the Biology department, and the courses they took:

```
    {t | ∀ u ∈ course [u [dept_name]="Biology" ⇒]
    ∃ s ∈ takes (t [ID] = s [ID] ∧
    s [course_id] = u [course_id] ∧
    t[course_id] = s[course_id])}
```

- Note the schema on r is (ID, course\_id) here.
- What's the problem with this query?
- The above query would be unsafe if the Biology department has not offered any courses.

## **Universal Quantification**

Find all students who have taken all courses offered in the Biology department, and the courses they took:

```
• \{t \mid \exists r \in student (t [ID] = r [ID]) \land 

(\forall u \in course (u [dept_name] = "Biology" \Rightarrow 

\exists s \in takes (t [ID] = s [ID] \land 

s [course_id] = u [course_id] \land 

t [course_id] = s [course_id]))\}
```

Add the existential quantification on student.

## **Domain Relational Calculus**

- A nonprocedural query language equivalent in power to the tuple relational calculus
- Each query is an expression of the form:

$$\{ \langle x_1, x_2, ..., x_n \rangle \mid P(x_1, x_2, ..., x_n) \}$$

- $x_1, x_2, ..., x_n$  represent domain variables
- Gives the schema of the output relation explicitly
- P represents a formula similar to that of the predicate calculus

- Find the *ID*, *name*, *dept\_name*, *salary* for instructors whose salary is greater than \$80,000
  - $\{ < i, n, d, s > | < i, n, d, s > \in instructor \land s > 80000 \}$
- As in the previous query, but output only the ID attribute value
  - $\{ \langle i \rangle \mid \exists n, d, s \ (\langle i, n, d, s \rangle \in instructor \land s > 80000) \}$
- Find the names of all instructors whose department is in the Watson building

```
\{ \langle n \rangle \mid \exists i, d, s \ (\langle i, n, d, s \rangle \in instructor \land \exists b, a \ (\langle d, b, a \rangle \in department \land b = "Watson") \} \}
```

Find the set of all courses taught in the Fall 2009 semester, or in the Spring 2010 semester, or both

$$\{  \mid \exists \ a, \ s, \ y, \ b, \ t \ ( < c, \ a, \ s, \ y, \ b, \ t > \in \ section \land s = "Fall" \land y = 2009 \}$$
  
v \(\frac{\pi}{a}\), s, y, b, t \(\left( < c, \ a, \ s, \ y, \ b, \ t \right) \in \ s = "Spring" \(\lambda\) y = 2010)\}

This case can also be written as

$$\{  \mid \exists \ a, \ s, \ y, \ b, \ t \ (  \in section \land ( (s = "Fall" \land y = 2009)) \lor (s = "Spring" \land y = 2010)) \}$$

■ Find the set of all courses taught in the Fall 2009 semester, and in the Spring 2010 semester

## **Safety of Expressions**

The expression:

$$\{ \langle x_1, x_2, ..., x_n \rangle \mid P(x_1, x_2, ..., x_n) \}$$

is safe if all of the following hold:

- All values that appear in tuples of the expression are values from dom (P) (that is, the values appear either in P or in a tuple of a relation mentioned in P).
- 2. For every "there exists" subformula of the form  $\exists x (P_1(x))$ , the subformula is true if and only if there is a value of x in  $dom(P_1)$  such that  $P_1(x)$  is true.
- 3. For every "for all" subformula of the form  $\forall x (P_1(x))$ , the subformula is true if and only if  $P_1(x)$  is true for all values x from  $dom(P_1)$ .

## **Universal Quantification**

- Find all students who have taken all courses offered in the Biology department
  - {< i > | ∃ n, d, tc ( < i, n, d, tc > ∈ student ∧
     (∀ ci, ti, dn, cr ( < ci, ti, dn, cr > ∈ course ∧ dn = "Biology"
     ⇒ ∃ si, se, y, g ( <i, ci, si, se, y, g > ∈ takes ))}
  - Note that without the existential quantification on student, the above query would be unsafe if the Biology department has not offered any courses.

## **Datalog**

- Non-procedural query language based on Prolog.
- A Datalog program consists of a set of *rules*, each defines a *view*.
  - v1(A, B) :- account (A, "Perryridge", B), B > 700.
  - ✓ Commas "," read as "AND".

Body

- Head To retrieve the balance of account A-314:
  - ?- v1("A-314", B).
  - Answer: ("A-314", 780).
  - To get the account number and balance of all accounts in v1 with balance more than 1000:
    - ?- v1(A, B), B > 1000.
    - Answer: ("A-205", 1200).

## **Syntax of Datalog Rules**

- Uppercase letters or words starting with uppercase letters as variables
- Lowercase letters and words starting with lowercase letter as relation names and attribute names.
- Positive literal:  $p(t_1, t_2, ..., t_n)$ 
  - $t_1, t_2, ..., t_n$  are either constants or variables.
  - p is the predicate symbol.
- Negative literal: **not**  $p(t_1, t_2, ..., t_n)$
- B > 700 can be understand as a literal, too: > (B, 700)
- $p(v_1, v_2, ..., v_n)$  is a fact, where  $v_1, ..., v_n$  are constants.
  - Tuple (v<sub>1</sub>, v<sub>2</sub>, ..., v<sub>n</sub>) is in relation p.
- A rule is expressed as:

$$p(t_1, t_2, ..., t_n) := L_1, L_2, ..., L_m$$
  
( $L_1, L_2, ..., L_m$  are literals.)

## **Semantic of Rules**

- The set of facts that can be inferred from a given set of facts *I*, given a rule *R*:
  - infer(R, I) = {p(t1, ..., tn) | there is an instantiation R' of R, where p(t1, ..., tn) is the head of R', and the body of R' is satisfied by I.}
- Given a set of rules ≈ = {R1, R2, ..., Rn},
  - infer (₱, I) = infer (R1, I) U infer (R2, I) U ... U infer (Rn, I)
  - This set of rules is basically the Datalog program
- Non-recursive Datalog without arithmetics have equivalent expressive power to basic relational algebra
  - Try this: Find the set of all courses taught in the Fall 2009 semester, but not in the Spring 2010 semester?

## **Recursion in Datalog**

- Deals with recursive data structure, e.g. lists and trees.
- Report\_Schema = (employee\_name, manager\_name)
- Supposed we want to find all employees managed by a person X.

```
managed_by (Y, X) :- report (Y, X).
managed_by (Y, X) :- report(Y, Z), managed_by (Z, X).
```

- Recursive Datalog contains no negative literals.
- Recursive rules are evaluated by *iteratively* computing the *fix point* or the condition under which no new facts can be inferred → termination.

## E-R Model (I)

## Modeling

- A database can be modeled as:
  - a collection of entities,
  - relationship among entities.
- An entity is an object that exists and is distinguishable from other objects.
  - Example: specific person, company, event, plant
- Entities have attributes
  - Example: people have names and addresses
- An entity set is a set of entities of the same type that share the same properties.
  - Example: set of all persons, companies, trees, holidays

## Entity Sets instructor and student

#### instructor\_ID instructor\_name

| 76766 | Crick      |
|-------|------------|
| 45565 | Katz       |
| 10101 | Srinivasan |
| 98345 | Kim        |
| 76543 | Singh      |
| 22222 | Einstein   |

instructor

#### student-ID student\_name

| 98988 | Tanaka  |
|-------|---------|
| 12345 | Shankar |
| 00128 | Zhang   |
| 76543 | Brown   |
| 76653 | Aoi     |
| 23121 | Chavez  |
| 44553 | Peltier |

student

## **Relationship Sets**

A relationship is an association among several (typically two) entities Example:

```
44553 (Peltier) <u>advisor</u> 22222 (<u>Einstein</u>) 
student entity relationship set instructor entity
```

A **relationship set** is a mathematical relation among  $n \ge 2$  entities, each taken from entity sets

$$\{(e_1, e_2, \dots e_n) \mid e_1 \in E_1, e_2 \in E_2, \dots, e_n \in E_n\}$$

where  $(e_1, e_2, ..., e_n)$  is a relationship

Example:

$$(44553,22222) \in advisor$$

Bascially, a relationship is a tuple, while a relationship set is a set of tuples

## Relationship Set advisor



## Relationship Sets (Cont.)

- An attribute can also be property of a relationship set.
- For instance, the advisor relationship set between entity sets instructor and student may have the attribute date which tracks when the student started being associated with the advisor



## Degree of a Relationship Set

#### binary relationship

- involve two entity sets (or degree two).
- most relationship sets in a database system are binary.
- Relationships between more than two entity sets are rare. Most relationships are binary. (More on this later.)
  - Example: *students* work on research *projects* under the guidance of an *instructor*.
  - relationship proj\_guide is a ternary relationship between instructor, student, and project

## **Attributes**

- An entity is represented by a set of attributes, that is descriptive properties possessed by all members of an entity set.
  - Example:

```
instructor = (ID, name, street, city, salary)
course= (course_id, title, credits)
```

- Domain the set of permitted values for each attribute
- Attribute types:
  - Simple and composite attributes.
  - Single-valued and multivalued attributes
    - Example: multivalued attribute: phone\_numbers
  - Derived attributes
    - Can be computed from other attributes
    - Example: age, given date\_of\_birth

## **Composite Attributes**



## **Mapping Cardinality Constraints**

- Express the number of entities to which another entity can be associated via a relationship set.
- Most useful in describing binary relationship sets.
- For a binary relationship set the mapping cardinality must be one of the following types:
  - One to one
  - One to many
  - Many to one
  - Many to many

## **Mapping Cardinalities**



Note: Some elements in *A* and *B* may not be mapped to any elements in the other set (partial mapping)

## **Mapping Cardinalities**



Note: Some elements in A and B may not be mapped to any elements in the other set (partial mapping)

## **Keys**

- A super key of an entity set is a set of one or more attributes whose values uniquely determine each entity.
- A candidate key of an entity set is a minimal super key
  - ID is candidate key of instructor
  - course\_id is candidate key of course
- Although several candidate keys may exist, one of the candidate keys is selected to be the **primary key**.

## **Keys for Relationship Sets**

- The combination of primary keys of the participating entity sets forms a super key of a relationship set.
  - (s\_id, i\_id) is the super key of advisor
  - NOTE: this means a pair of entities can have at most one relationship in a particular relationship set.
    - Example: if we wish to track multiple meeting dates between a student and her advisor, we cannot assume a relationship for each meeting. We can use a multivalued attribute though.
- Must consider the mapping cardinality of the relationship set when deciding what are the candidate keys
- Need to consider semantics of relationship set in selecting the primary key in case of more than one candidate key

## **Redundant Attributes**

- Suppose we have entity sets
  - instructor, with attributes including dept\_name
  - departmentand a relationship
  - inst\_dept relating instructor and department
- Attribute dept\_name in entity instructor is redundant since there is an explicit relationship inst\_dept which relates instructors to departments
  - The attribute replicates information present in the relationship, and should be removed from instructor
  - BUT: when converting back to tables, in some cases the attribute gets reintroduced, as we will see.

## **E-R Diagrams**



- Rectangles represent entity sets.
- Diamonds represent relationship sets.
- Attributes listed inside entity rectangle
- Underline indicates primary key attributes
- Note: we use a slight different (and simplified) notation for entity sets and attributes here!

## Entity With Composite, Multivalued, and Derived Attributes

#### instructor

```
ID
name
  first_name
   middle initial
   last name
address
   street
      street_number
      street_name
      apt_number
   city
   state
   zip
{ phone_number }
date_of_birth
age()
```

## **Relationship Sets with Attributes**



## Roles

- Entity sets of a relationship need not be distinct
  - Each occurrence of an entity set plays a "role" in the relationship
- The labels "course\_id" and "prereq\_id" are called roles.



## **Cardinality Constraints**

- We express cardinality constraints by drawing either a directed line (→), signifying "one," or an undirected line (—), signifying "many," between the relationship set and the entity set.
- One-to-one relationship:
  - A student is associated with at most one instructor via the relationship advisor
  - A student is associated with at most one department via stud\_dept

## **One-to-One Relationship**

- one-to-one relationship between an *instructor* and a *student* 
  - an instructor is associated with at most one student via advisor.
  - and a student is associated with at most one instructor via advisor



## **One-to-Many Relationship**

- one-to-many relationship between an instructor and a student
  - an instructor is associated with several (including 0) students via advisor
  - a student is associated with at most one instructor via advisor,



## **Many-to-One Relationships**

- In a many-to-one relationship between an *instructor* and a *student*,
  - an instructor is associated with at most one student via advisor,
  - and a student is associated with several (including 0) instructors via advisor



## Many-to-Many Relationship

- An instructor is associated with several (possibly 0) students via advisor
- A student is associated with several (possibly 0) instructors via advisor



## Participation of an Entity Set in a Relationship Set

- Total participation (indicated by double line): every entity in the entity set participates in at least one relationship in the relationship set
  - E.g., participation of section in sec\_course is total
    - every section must have an associated course
- Partial participation: some entities may not participate in any relationship in the relationship set
  - Example: participation of instructor in advisor is partial



Note: doubly outlined diamond is a relationship set that identifies a weak entity set

# Alternative Notation for Cardinality Limits

Cardinality limits can also express participation constraints



## E-R Diagram with a Ternary Relationship



# Cardinality Constraints on Ternary Relationship

- We allow at most one arrow out of a ternary (or greater degree)
   relationship to indicate a cardinality constraint
- E.g., an arrow from *proj\_guide* to *instructor* indicates each student has at most one guide for a project
- If there is more than one arrow, there are two ways of defining the meaning.
  - E.g., a ternary relationship R between A, B and C with arrows to B and C could mean
    - 1. each A entity is associated with a unique entity from B and C or
    - 2. each pair of entities from (A, B) is associated with a unique C entity, and each pair (A, C) is associated with a unique B
  - Each alternative has been used in different formalisms
  - To avoid confusion we outlaw more than one arrow

## **End**