

SENIOR CERTIFICATE EXAMINATIONS/ NATIONAL SENIOR CERTIFICATE EXAMINATIONS SENIORSERTIFIKAAT-EKSAMEN/ NASIONALE SENIORSERTIFIKAAT-EKSAMEN

TECHNICAL MATHEMATICS P1/TEGNIESE WISKUNDE V1

2021

MARKING GUIDELINES/NASIENRIGLYNE

MARKS/PUNTE: 150

	Marking Codes/Nasienkodes
A	Accuracy/Akkuraatheid
CA	Consistent Accuracy/Volgehoue Akkuraatheid
M	Method/ <i>Metode</i>
R	Rounding/Afronding
NPR	No Penalty for Rounding/Geen Penalisering vir Afronding
NPU	No Penalty for Units omitted/Geen Penaliseering vir Eenhede Weggelaat
S	Simplification/Vereenvoudiging
SF	Substitution in Correct Formula/Vervanging in Korrekte Formule
AO	Answer only/Slegs antwoord

These marking guidelines consist of 17 pages./ Hierdie nasienriglyne bestaan uit 17 bladsye.

QUES	STION/VRAAG 1		
1.1.1	(3-x)(x+1)=0	✓ <i>x</i> = 3	A
	x=3 or $/of$ $x=1$	$\checkmark x = -1$	A
	OR/OF	OR/OF	
	$x^2 - 2x - 3 = 0$		
	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$		
	$= \frac{-(-2) \pm \sqrt{(-2)^2 - 4(1)(-3)}}{2(1)}$		
	x = 3 or/of x = -1	$\checkmark x = 3$ $\checkmark x = -1$	A A
			(2)
1.1.2	$2x^2 = 3x + 7$	✓ standard form/ standaardvorm	A
	$2x^2 - 3x - 7 = 0$ OR/ OF $-2x^2 + 3x + 7 = 0$	standard form/ standaaravorm	A
	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$		
	$= \frac{-(-3) \pm \sqrt{(-3)^2 - 4(2)(-7)}}{2(2)} = \frac{3 \pm \sqrt{65}}{4}$	✓ SF	CA
	2(2) 4		
	$x \approx 2,77 \ or/of \ x \approx -1,27$	✓ positive x value/ postiewe waarde ✓ negative x value/ negatiewe waarde	CA CA
		AO: Full marks/Volpunte NPR	

1.1.3	$x(x-5) \le 0$	
	Critical values/ kritiese waardes: 0 and/en 5	✓ both critical values/ A
	$\therefore 0 \le x \le 5 \mathbf{OR}/\mathbf{OF} x \in [0;5] \mathbf{OR}/\mathbf{OF} x \ge 0 \text{and/en } x \le 5$	beide kritiese waardes ✓ notation/notasie A (2)
1.2	2 2 2 2 00	
1.2	$y + x = 3$ and $/ en$ $x^2 + y^2 = 89$ y = 3 - x	✓ y subject of formula/
	$\begin{vmatrix} y - 3 - x \\ x^2 + (3 - x)^2 = 89 \end{vmatrix}$	onderwerp van formule A
	$x^2 + 9 - 6x + x^2 - 89 = 0$	✓ SF CA
	$2x^2 - 6x - 80 = 0$	✓ correct standard form/
	$x^2 - 3x - 40 = 0$	korrekte standaardvorm CA
	$(x-8)(x+5) = 0 OR/OF x = \frac{-(-3) \pm \sqrt{(-3)^2 - 4(1)(-40)}}{2(1)}$	✓ factors/formula/ faktore/formule CA
	$\therefore x = 8 \qquad or / of \qquad x = -5$	✓ x-values/-waardes CA
	$y = 3 - 8 = -5 \qquad or / of \qquad y = 3 - (-5) = 8$	✓ y-values/-waardes CA
	\mathbf{OR}/OF	OR/OF
		OR/OF
	$\mathbf{OR/OF}$ $y + x = 3 \text{and } / en x^2 + y^2 = 89$	OR/OF
		$\checkmark x$ subject of formula/ A
	$y + x = 3$ and $/en$ $x^2 + y^2 = 89$	✓ x subject of formula/ A onderwerp van formule
	$y+x=3$ and $/en$ $x^2 + y^2 = 89$ x = 3 - y $(3-y)^2 + y^2 = 89$	$\checkmark x$ subject of formula/ A
	$y+x=3 \text{and } / en x^2 + y^2 = 89$ $x=3-y$ $(3-y)^2 + y^2 = 89$ $9-6y+y^2+y^2-89=0$	✓ x subject of formula/ A onderwerp van formule
	$y+x=3 \text{and } / en x^2 + y^2 = 89$ $x=3-y$ $(3-y)^2 + y^2 = 89$ $9-6y+y^2+y^2-89=0$ $2y^2-6y-80=0$	✓ x subject of formula/ A onderwerp van formule
	$y+x=3 \text{and } / en x^2 + y^2 = 89$ $x=3-y$ $(3-y)^2 + y^2 = 89$ $9-6y+y^2+y^2-89=0$	✓ x subject of formula/ A onderwerp van formule ✓ substitution/ vervanging CA
	$y+x=3 \text{and } / en x^2 + y^2 = 89$ $x=3-y$ $(3-y)^2 + y^2 = 89$ $9-6y+y^2+y^2-89=0$ $2y^2-6y-80=0$	✓ x subject of formula/ A onderwerp van formule ✓ substitution/ vervanging CA ✓ correct standard form/
	$y+x=3 \text{and } / en x^2 + y^2 = 89$ $x=3-y$ $(3-y)^2 + y^2 = 89$ $9-6y+y^2+y^2-89=0$ $2y^2-6y-80=0$ $y^2-3y-40=0$	✓ x subject of formula/ A onderwerp van formule ✓ substitution/ vervanging CA ✓ correct standard form/ korrekte standaardvorm CA

1.3.1
$$F = \frac{K Q_r Q_2}{r^2}$$

 $F \cdot r^2 = K Q_r Q_2$
 $r = \sqrt{\frac{K Q_r Q_2}{F}}$
 $r = \sqrt{\frac{K Q_r Q_2}{F}}$
 $r = \sqrt{\frac{(9 \times 10^9)(0.5 \times 10^{-6})(0.2 \times 10^{-6})}{2.25 \times 10^{-4}}}$ \checkmark r subject/ onderwerp CA

1.3.2 $r = \sqrt{\frac{K Q_r Q_2}{F}}$

$$r = \sqrt{\frac{(9 \times 10^9)(0.5 \times 10^{-6})(0.2 \times 10^{-6})}{2.25 \times 10^{-4}}}$$
 \checkmark SF CA

OR/OF

 $F = \frac{K Q_r Q_2}{r^2}$

$$2.25 \times 10^{-4} = \frac{(9 \times 10^9)(0.5 \times 10^{-6})(0.2 \times 10^{-6})}{r^2}$$

$$r = \sqrt{\frac{(9 \times 10^9)(0.5 \times 10^{-6})(0.2 \times 10^{-6})}{2.25 \times 10^{-4}}}$$
 \checkmark SF A

OR/OF

1.4 $1101_2 + 111_2$
 1101_2

$$+ 111_2$$
 1101_2

$$+ 111_2$$
 1101_2
OR/OF

OR/OF

1.3 + 7 = 20
2.0 = 10100₂

AO: Full marks/ Volpunte

OR/OF

(2)

AO: Full marks/ Volpunte

OR/OF

(2)

QUE	STION/VRAAG 2	
2.1	$x = -3$ or/of $x = 0$ OR/OF $\Delta = 9$	✓ roots or discriminant/ wortels of diskriminant A
	Roots are rational/Wortels is rasionaal	✓ rational/rasionaal A
		(2)
2.2	$x^2 + px - 2p^2 = 0$	
	$\Delta = b^2 - 4ac$	✓ F
	$=(p)^2-4(1)(-2p^2)$	✓ SF A
	$= p^2 + 8p^2$	✓ S CA
	$= 9p^2$	✓ perfect square/ Volkome vierkant
		CA
	∴ Roots are rational/Wortels is rasionaal	(4)
		[6]

QUES'	ΓΙΟΝ/VRAAG 3			
3.1.1	$\sqrt{16a^6}$			
	$= \sqrt{(4^2) \cdot (a^6)} \text{ OR } /OF \left(2^4 a^6\right)^{\frac{1}{2}}$	√ 4		A
	$\begin{vmatrix} \sqrt{1} & \sqrt{1} & \sqrt{1} & \sqrt{1} & \sqrt{1} & \sqrt{1} & \sqrt{1} \\ = 4a^3 & \sqrt{1} & \sqrt{1} & \sqrt{1} & \sqrt{1} & \sqrt{1} \end{vmatrix}$	$\checkmark 4$ $\checkmark a^3$		A
	10			(2)
3.1.2	$\sqrt{\log_2 32 + \log 100 + 9}$			
	$= \sqrt{5\log_2 2 + \log 100 + 9}$	$\checkmark 5\log_2 2$		A
	$=\sqrt{5+2+9}$	√ 2		A
	= 4	✓ S		CA
		AO: 0 m	arks/ <i>punte</i>	
				(3)
3.1.3	$(4\sqrt{5} + \sqrt{2})(\sqrt{2} - 4\sqrt{5})$			
	$=4\sqrt{10}-80+2-4\sqrt{10}$	✓ product/p	produk	A
	=-78	✓ S	OR/OF	CA
	$\begin{vmatrix} \mathbf{OR}/\mathbf{OF} \\ = -(4\sqrt{5} - \sqrt{2})(4\sqrt{5} + \sqrt{2}) \end{vmatrix}$			
	= -80 + 2	✓ product/p	produk 	A
	= -78	✓ S	AO: 0 marks/punte	CA (2)
3.2	$\log_3 x = 3 - \log_3 (x+6)$			
	$\log_3 x + \log_3 (x+6) = 3$			
#	$\log_3(x^2 + 6x) = 3$	✓ log prope	erty/log-eienskap	A
	$x^2 + 6x = 3^3$ OR/OF $\log_3(x^2 + 6x) = 3\log_3 3$	✓ exponent	ial form/ <i>eksponensiële v</i>	orm A
	$x^2 + 6x = 27$		form/ s <i>tandaardvorm</i>	CA
	$x^2 + 6x - 27 = 0$	• Standard	101111/ Standadravorm	CA
	(x+9)(x-3)=0		ormula/faktore/formule waarde van x	CA CA
	$x \neq -9$ or f $x=3$	✓ validity/g		CA
	OR/OF		OD/OF	
	$\log_3 x = 3 - \log_3(x+6)$		OR/OF	
	$\log_3 x = 3\log_3 3 - \log_3 (x+6)$	✓ log prope	erty/log-eienskap	A
	$\log_3 x = \log_3 27 - \log_3 (x+6)$		· - •	
	$\log_3 x = \log_3 \frac{27}{(x+6)}$	✓ log prope	erty/log-eienskap	A
	$x = \frac{27}{}$			
	x+6 $x^2+6x-27=0$,		~ .
	(x+6)(x-2)=0		form/ s <i>tandaardvorm</i> ormula/ <i>faktore</i>	CA CA
	$x \neq -9$ or of $x = 3$	✓ value of/	waarde van x	CA
		✓ restriction	n/ beperking	CA (6)

3.3.1	$z = 2\left(\frac{1}{2} + 3i\right) - 7i = 1 + 6i - 7i$ $= 1 - 1i$	✓ substitution/vervanging w A ✓ S A
	- 1 - 1 <i>t</i>	AO: Full marks/ Volpunte (2)
3.3.2	$ z = r = \sqrt{x^2 + y^2} = \sqrt{(1)^2 + (-1)^2} = \sqrt{2}$	✓ modulus CA from/vanaf Q/V 3.3.1
#	$\tan \theta = -\frac{1}{1} = -1$ $\text{ref. angle } / \text{verw. hoek} = 45^{\circ}$ $\theta = 360^{\circ} - 45^{\circ} = 315^{\circ}$ $\therefore z = \sqrt{2} \text{ cis } 315^{\circ}$	 ✓ value of/waarde van tan θ CA from/vanaf Q/V 3.3.1 ✓ ref angle/verw. hoek ✓ angle in the correct quadrant/hoek in die regte kwadrant ✓ polar form/polere vorm
		AO: Full marks/ Volpunte
		(5)
3.4	a+b+ia-bi = 5-3i a+b+(a-b)i = 5-3i a+b=5	✓ equation/vergelyking A ✓ equation/vergelyking CA
	a+b=3 $a-b=-3$ $2a=2$ $a=5-b$ $a-b=-3$ $(5-b)-b=-3$ $-2b=-8$ $b=4$ $a=5-4$ $a=5-4$ $a=1$	✓ value of/waarde van a ✓ value of/waarde van b CA CA
	OR/	OR/OF
	a+b-5 = bi - ai - 3i $a+b-5 = 0$ $-a+b-3 = 0$ $(1)-(2): 2b-8 = 0$	 ✓ equation/vergelyking ✓ equation/vergelyking CA
	2b = 8 $b = 4$ $a + 4 - 5 = 0$	✓ value of/waarde van b CA
	a + 4 - 3 = 0 $a = 1$	✓ value of/waarde van a CA (4) [24]

QUESTI	ON/VRAAG 4	
4.1.1	$x \in \square$ $x \neq 0$ OR/OF $x \in (-\infty; 0) \cup (0; \infty)$ OR/OF $-\infty < x < 0$ \cup $0 < x < \infty$	✓ domain/gebied A (1)
4.1.2	P(-4;0)	✓ coordinates of/ koordinate van P A (1)
4.1.3(a)	P(-4; 0), $S(2; 0)$ and/en $U(1; 10)y = a(x-x_1)(x-x_2)$	
#	y = a (x+4) (x-2) 10=a (1+4)(1-2) ∴ a=-2	✓ subst. roots/verv wortels A ✓ subst/verv U ✓ $a = -2$ CA CA
	$\therefore f(x) = -2(x+4)(x-2) \text{ OR/OF } f(x) = -2x^2 - 4x + 16$	
	\mathbf{OR}/\mathbf{OF} $y = a(x+1)^2 + q$	OR/OF
	$ \begin{vmatrix} y - a(x + 1) + q \\ 10 = a(1 + 1)^2 + q \\ 10 = 4a + q \end{vmatrix} $	✓ subt./ verv (1;10) A
	$0 = a(2+1)^2 + q$ $q = -9a$ $\therefore 10 = 4a - 9a$	✓ subt./verv (2;0) A
	$\therefore a = -2$ $\therefore q = -9(-2) = 18$	✓ values of a and q / waardes van a en q CA
	$\therefore f(x) = -2(x+1)^2 + 18$	\checkmark eq. of/verg van f CA (4)
4.1.3(b)	$h(x) = \frac{k}{x} + q$	
	$=\frac{k}{x}+9$	✓ SF (asymptote/assimptoot)) A
	$10 = \frac{k}{1} + 9$	✓ subst./ verv (1; 10) A
	$\therefore k = 1$ $\therefore h(x) = \frac{1}{x} + 9$	\checkmark eq. of/verg. van h CA (3)

4.1.4	At/by R: $y = -2(-1)^2 - 4(-1) + 16 = 18$	✓ y value/waarde	CA
		from Q/vanaf V 4.1.3(a	1)
	$At/by \text{ V:} y = \frac{1}{(-1)} + 9 = 8$	✓ y value/waarde	CA
	(-1)	from Q/ vanaf V 4.1.3()	b)
	\therefore RV = 18 - 8= 10 <i>units</i> / eenhede	✓ length/ lengte	CA
	OR/OF	OR/OF	
	RV = f(x) - h(x)		
		$\checkmark f(x)$ value/waarde	CA
	$=-2(-1)^2-4(-1)+16-\left(\frac{1}{(-1)}+9\right)$	from Q/ vanaf V 4.1.3()	
	(-1)	$\checkmark h(x) \text{ value/}waarde$	CA
	=18-8	from Q/ vanaf V 4.1.3()	1
	=10	✓ length/ lengte	CA
			(3)
4.1.5	x = -4	$\checkmark x = -4$	CA
	or/ of	from/vanaf Q/V4.1.2	
	x = 2	$\checkmark x = 2$	A
	or/ of	, Z	11
	x = 0	$\checkmark x = 0$	A
			(3)
4.2.1	$y = (1,495)^0 - 5 = -4$ OR/OF $(0; -4)$	√ − 4	A
(a)	y = (1,493) - 3 = -4 OR/OF $(0,-4)$		(1)
4.2.1	$0 = (1,495)^x - 5$	$\checkmark y = 0$	A
(b)	$x = \log_{1,495} 5$	√log form/ vorm	A
	$\therefore x \approx 4$		
	x ~ ¬	√R	CA
			(3)

SC/NSC/SS/NSS – Marking Guidelines/Nasienriglyne 4.2.2 g: ✓ all intercepts/alle CA afsnitte ✓ shape/ *vorm* A ✓ asymptote/asimptote A 4 p: ✓ all intercepts/*alle* afsnitte A ✓ shape/vorm A (5) $-4 \le y \le 0$ 4.2.3 ✓ both endpoints/ beide CA OR/OF eindpunte (a) $y \in [-4;0]$ from Q/vanaf V 4.2.1(b)✓ notation/*notasie* OR/OF (2) $-4 \le y \text{ and/} en \quad y \le 0$ 4.2.3 ✓ gradient/gradient CA (b) y = mx + c **OR/OF** $y - y_1 = m(x - x_1)$ y = 1x + (-4) y - 0 = 1(x - (-4)) $\therefore y = x - 4$ ✓ equation/vergelyking CA OR/OF OR/OF $\frac{x}{4} + \frac{y}{-4} = 1$ **✓** M x - y = -4✓ equation/vergelyking $\therefore y = x - 4$ CA AO: Full marks/ Volpunte (2) 4.2.3 0 < x < 4✓ both endpoints/beide (c) OR/OF eindpunte CA ✓ notation/*notasie* CA $x \in (0; 4)$ (2) OR/OF 0 < x and en x < 4 $-4 < x \le 0$ 4.2.3 ✓ both endpoints/ beide (d) OR/OF eindpunte CA ✓ notation/*notasie* CA $x \in (-4;0]$ OR/OF -4 < x and en x < 0(2)

QUE	STION/VRAAG 5		
5.1	$i_{eff} = \left(1 + \frac{i_n}{m}\right)^m - 1$	✓ formula	CA
	$8,5\% = \left(1 + \frac{i_n}{4}\right)^4 - 1$ $i = 4\left(\sqrt[4]{1,085} - 1\right)$	✓ <i>m</i> = 4	CA
	≈ 0,0824	✓ rate/ koers	CA
	nominal interest rate /		
	nominale rentekoers $\approx 8,24\%$ OR/OF (i) $^{n \times m}$	OR / <i>OF</i> ✓ formula	CA
	$A = P\left(1 + \frac{i}{m}\right)^{n \times m}$ $108,50 = 100\left(1 + \frac{i}{4}\right)^{1 \times 4}$ $\left(\sqrt{108,50}\right)$	$\checkmark m = 4$	CA
	$i = 4 \left(\sqrt[4]{\frac{108,50}{100}} - 1 \right) \approx 0,082417$ nominal interest rate / nominale rentekoers \approx 8,24\%	✓ rate/ koers NPR	CA (3)
5.2	$A = P (1-i)^{n}$ $152 523 = P (1-0.11)^{3}$ $152 523 = 0.704969 P$ $P \approx R216 354, 19$	✓ SF ✓ 152 523 = 0,704969 P ✓ value of/ waarde van P AO: Full marks/ Volpunte	A CA CA
		NPR	(3)

5.3.2 $A_{\text{Nosizwe}} = P(1+i)^n$ $= 8\ 000 \left(1 + \frac{0,0764}{12}\right)^{24} \left(1 + 0,0812\right)^{3} + 5\ 000 \left(1 + 0,0812\right)^{3}$ A # ✓ R18 094,50 A = R 18 094,50✓ calculating interest after adding $A_{Martin} + A_{Nosizwe} = R16 770, 00 + R18 094, 50$ R5000 at 8,12%/ bereken rente na = R 34 864,50byvoeg van R5000 teen 8,12% \mathbf{M} R 34 864,50 < R 35 000 ✓ R 34 864,50 CA They will **NOT** have enough/ Hulle sal **NIE** genoeg ✓ conclusion/gevolgtrekking CA hê nie OR/OF $\mathbf{A}_{\text{Nosizwe}} = \mathbf{P}(1+i)^n$ $\left(1+\frac{0,0764}{12}\right)^{24}$ $=8\ 000\left(1+\frac{0,0764}{12}\right)^{24}$ A = R9316,222013New P = R 9 316,222013 + R 5 000 = R 14 316,22 $A_{\text{Nosizwe}} = R14316,222013(1+0,0812)^3$ ✓ calculating interest after adding R5000 at 8,12%/ bereken rente na = R18094.50byvoeg van R5000 teen 8,12% \mathbf{M} $A_{Martin} + A_{Nosizwe} = R16 770, 00 + R18 094, 50$ CA $\sqrt{R18094,50}$ = R 34 864,50✓ R 34 864,50 CA R 34 864,50 < R 35 000 They will **NOT** have enough/ Hulle sal **NIE** genoeg ✓ conclusion/gevolgtrekking CA hê nie **NPR**

If a candidate indicate only conclusion without calculation: 0 marks

Indien 'n kandidaat net die gevolgtrekking sonder berekeninge gee: 0 punte

[13]

(5)

QUESTION/VRAAG 6

Penalty (1 mark) for incorrect notation only in QUESTION 6.1 Penaliseer (1 punt) vir verkeerde notasie slegs in VRAAG 6.1

6.1	f(x) = 2x + 3		
0.1	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	✓ definition/definisie	A
	• •	✓ SF	CA
	$= \lim_{h \to 0} \frac{2(x+h) + 3 - (2x+3)}{h}$	✓ S	CA
	$= \lim_{h \to 0} \frac{2x + 2h + 3 - 2x - 3}{h}$	VS	CA
		✓ S	CA
	$=\lim_{h\to 0}\frac{2h}{h}$		
	$=\lim_{h\to 0}(2)$		
	=2	✓2	CA
		AO: 0 marks/ Volp	ounte
	5 4		(5)
6.2.1	$y = -x^{-5} + 3x^4$	$\checkmark 5x^{-6}$	A
	$\frac{dy}{dx} = 5x^{-6} + 12x^3$	$\checkmark 5x^{-6}$ $\checkmark 12x^3$	A
	dx		(2)
6.2.2	$f(x) = \frac{3}{x^4} - \frac{x}{\sqrt{x}}$		
	$=3x^{-4}-x^{\frac{1}{2}}$	$\checkmark 3x^{-4}$ $\checkmark x^{\frac{1}{2}}$ $\checkmark -12x^{-5}$ $\checkmark -\frac{1}{2}x^{-\frac{1}{2}}$	A
		$\checkmark x^{\frac{1}{2}}$	A
	$\therefore f'(x) = -12x^{-5} - \frac{1}{2}x^{-\frac{1}{2}}$	$\checkmark -12x^{-5}$	CA
	OR/OF	$\sqrt{-\frac{1}{2}x^{-\frac{1}{2}}}$	CA
	$f'(x) = -\frac{12}{x^5} - \frac{1}{2\sqrt{x}}$		
	$x^5 2\sqrt{x}$		(4)
6.2.3	$D_x \left[\frac{x^2 + x - 6}{x + 3} \right]$		
	$= D_x \left[\frac{(x+3)(x-2)}{x+3} \right]$	✓ factors/ faktore	A
	$=D_x[x-2]$	✓ S	CA
	= 1	✓ 1	CA

	6.3	$m_{\text{ave}} = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$	✓ SF	A
OR/OF OR/OF $y_{1} = f(x_{1}) = -2(0)^{2} + 2 = 2$ $y_{2} = f(x_{2}) = -2(2)^{2} + 2 = -6$ $m_{ave} = \frac{y_{2} - y_{1}}{x_{2} - x_{1}}$ $= \frac{-6 - 2}{2 - 0}$ $= -4$ OA OR/OF Volume of Mayor of the series of t		$= \frac{\left[-2(2)^2 + 2\right] - \left[-2(0)^2 + 2\right]}{2 - 0}$	v 2L	A
OR/OF OR/OF $y_{1} = f(x_{1}) = -2(0)^{2} + 2 = 2$ $y_{2} = f(x_{2}) = -2(2)^{2} + 2 = -6$ $m_{ave} = \frac{y_{2} - y_{1}}{x_{2} - x_{1}}$ $= \frac{-6 - 2}{2 - 0}$ $= -4$ OA OR/OF SET A SF CA SF CA (3) 6.4.1 $g(x) = 1 - x^{2}$ $g'(x) = -2x$ $m_{uan} = g'(-3) = -2(-3) = 6$ OA OR/OF SET A V SF CA (3) V derivative/Afgeleide A V gradient CA (2) 6.4.2 $g(-3) = 1 - (-3)^{2} = -8$ $y = mx + c$ $-8 = 6(-3) + c$ $-8 + 18 = c$ $c = 10$ $y = 6x + 10$ V average gradient/ gemiddelde grad. CA (3) V derivative/Afgeleide A V gradient CA (2) V SF CA		$=\frac{-6-2}{2}$	✓ S	CA
$y_{1} = f(x_{1}) = -2(0)^{2} + 2 = 2$ $y_{2} = f(x_{2}) = -2(2)^{2} + 2 = -6$ $m_{ave} = \frac{y_{2} - y_{1}}{x_{2} - x_{1}}$ $= \frac{-6 - 2}{2 - 0}$ $= -4$ $6.4.1 \qquad g(x) = 1 - x^{2}$ $g'(x) = -2x$ $m_{tan} = g'(-3) = -2(-3) = 6$ $y = mx + c$ $-8 = 6(-3) + c$ $-8 + 18 = c$ $c = 10$ $y = 6x + 10$ $V \text{ both values of/}$ Beide waardes van y A V SF CA A vareage gradient/ gemiddelde grad. CA (3) V derivative/Afgeleide A V gradient CA (2) V SF CA V average gradient/ gemiddelde grad. CA (3) V derivative/Afgeleide A V gradient CA (2) V SF CA		2		CA
$y_{2} = f(x_{2}) = -2(2)^{2} + 2 = -6$ $m_{ave} = \frac{y_{2} - y_{1}}{x_{2} - x_{1}}$ $= \frac{-6 - 2}{2 - 0}$ $= -4$ $6.4.1 \qquad g(x) = 1 - x^{2}$ $g'(x) = -2x$ $m_{tan} = g'(-3) = -2(-3) = 6$ $y = mx + c$ $-8 = 6(-3) + c$ $-8 + 18 = c$ $c = 10$ $y = 6x + 10$ $y = both values of/Beide waardes van y$ A $y = SF$ A $y = average gradient/gemiddelde grad. CA$ (3) $y = derivative/Afgeleide A$ $y = m(x - x_{1})$ $y + 8 = 6(x + 3)$ $y = 4$ $y = m(x - x_{1})$ $y + 8 = 6(x + 3)$ $y = 4$ $y = 4$ $y = 4$ $y = 4$ $y = 6x + 10$		OR/OF	OR/OF	
Beide waardes van y $m_{\text{ave}} = \frac{y_2 - y_1}{x_2 - x_1}$ $= \frac{-6 - 2}{2 - 0}$ $= -4$		$y_1 = f(x_1) = -2(0)^2 + 2 = 2$		
$m_{\text{ave}} = \frac{y_2 - y_1}{x_2 - x_1}$ $= \frac{-6 - 2}{2 - 0}$ $= -4$ $6.4.1 \qquad g(x) = 1 - x^2$ $g'(x) = -2x$ $m_{\text{tan}} = g'(-3) = -2(-3) = 6$ $y = mx + c$ $-8 = 6(-3) + c$ $-8 + 18 = c$ $c = 10$ $y = 6x + 10$ $y = \frac{y_2 - y_1}{x_2 - x_1}$ $y = \frac{y_2 - y_1}{y_2 - x_1}$ $y = \frac{y_1 - y_1}{y_2 - x_1}$ $y = \frac{y_2 - y_1}{y_2 - x_1}$ $y = \frac{y_1 - y_1}{y_2 - x_1}$ $y = $		$y_2 = f(x_2) = -2(2)^2 + 2 = -6$		
		$m = \frac{y_2 - y_1}{y_2 - y_1}$	Beide waardes van	•
		$x_2 - x_1$		1.
6.4.1 $g(x) = 1 - x^2$ $g'(x) = -2x$ $f'(x) = -2x$ $f'(x) = -2(-3) = 6$		$=\frac{-6-2}{}$	✓ SF	CA
6.4.1 $g(x) = 1 - x^2$ $g'(x) = -2x$ $f'(x) = -2x$ $f'(x) = -2(x)$ $f'(x) = -$			✓ average gradient/	
$g'(x) = -2x$ $m_{tan} = g'(-3) = -2(-3) = 6$ $g(-3) = 1 - (-3)^2 = -8$ $y = mx + c$ $-8 = 6(-3) + c$ $-8 + 18 = c$ $c = 10$ $y = 6x + 10$ $y = dx + 10$ $y = dx + 10$ $y = derivative / Afgeleide A y gradient CA (2) y-value / y-waarde A ✓ SF CA$		=-4		
6.4.2 $g(-3)=1-(-3)^2=-8$ $y ext{-value }/y ext{-waarde}$ A $y=mx+c$ OR/OF $y-y_1=m(x-x_1)$ $y+8=6(x+3)$ $y+8=6(x+3)$ $y=6x+10$ $y=6x+10$ $y=6x+10$ $y=6x+10$	6.4.1		✓ derivative/ Afgelei	de A
$y = mx + c -8 = 6(-3) + c -8 + 18 = c c = 10$ $y = 6x + 10$ OR/OF $y - y_1 = m(x - x_1) y + 8 = 6(x + 3)$ Figure 10 OR/OF $y - y_1 = m(x - x_1) y + 8 = 6(x + 3)$ Figure 20 Vequation/ vergelyking CA		$m_{\text{tan}} = g'(-3) = -2(-3) = 6$	✓ gradient	
$-8 = 6(-3) + c$ $-8 + 18 = c$ $c = 10$ $y = 6x + 10$ $y + 8 = 6(x + 3)$ $\checkmark \text{ equation/}$ $\textit{vergelyking} \textbf{CA}$	6.4.2	$g(-3)=1-(-3)^2=-8$	y-value / y-waarde	A
c = 10 $y = 6x + 10$ $vergelyking$ CA		-8 = 6(-3) + c $y + 8 = 6(x + 3)$	✓ SF	CA
$y = 6x + 10$ \checkmark equation/ vergelyking CA				
vergelyking CA				
		•	vergelyking	
(3)				(3) [22]

QUES	STION/VRAAG 7		
7.1.1	B(0;-5)	✓ Coordinates of/koordinate van B	A (1)
7.1.2	$h(x) = x^3 - 3x^2 - 9x - 5$ $h(-1) = (-1)^3 - 3(-1)^2 - 9(-1) - 5 = 0$	✓ SF ✓ 0	A A
	$\therefore x + 1$ is a factor / is 'n faktor		(2)
7.1.3	By inspection / Deur inspeksie $h(x) = (x^2 + 2x + 1)(x - 5)$	✓ quadratic factor /kwadratties fakto	r
	$h(x) = (x+1)^2 (x-5)$ $\therefore x = -1 \text{ or/of } x = 5$	✓ Other intercepts/ander afsnitte	A A
	∴ D(5;0)	✓ Coordinates of/koordinate van D	CA
	OR/OF $h(x) = (x+1)(x^2 - 4x - 5)$	OR/OF ✓ quadratic factor/ kwadratties fakto	
	$h(x) = (x+1)(x-5)(x+1)$ x-intercepts/afsnitte; $h(x) = 0$ $\therefore x = -1 \text{ or/of } x = 5$	✓ Other factors /ander faktore	A
	$\therefore D(5;0)$ OR/OF	OR/OF	CA
	$0 = (x+1)(x^{2} - 4x - 5)$ $x = -1 \text{ or/of } x = \frac{-(-4) \pm \sqrt{(-4)^{2} - 4(1)(-5)}}{2(1)}$	✓ quadratic factor/ kwadratties fakto	A
	$\therefore x = -1 \text{ or/of } x = 5$ $\therefore D(5; 0)$	✓ Other intercepts/ ander afsnitte ✓ Coord. of / koord. van D AO: Full marks/ Volpunte	A CA (3)
7.1.4	$h'(x) = 3x^2 - 6x - 9$ $3x^2 - 6x - 9 = 0 \qquad \therefore x^2 - 2x - 3 = 0$	✓ derivative/afgeleide ✓ equating derivative to 0/ stel afgeleide gelyk aan 0	M M
	$(x-3)(x+1) = 0 \text{ OR } x = \frac{-(-2) \pm \sqrt{(-2)^2 - 4(1)(2)^2}}{2(1)}$ $\therefore x = 3 \text{ or/of } x = -1$	✓ factors/formula/faktore/formuleCA	
	$h(3) = (3)^3 - 3(3)^2 - 9(3) - 5 = -32$ $\therefore C(3; -32)$		CA CA (5)
7.2	x < -1 or/of $x > 3$	✓ both crit. values/beide krit. waarde ✓ notation/notasie	CA CA
	OR/OF $r \in (-\infty; -1) (3:\infty)$	OR/OF ✓ both crit. values/ beide krit. waarde ✓ notation/notasie	CA CA
	$x \in (-\infty; -1) \cup (3; \infty)$		(2) [13]

QUESTION/VRAAG 8						
8.1	30 - 6t = 0 $30 = 6t$ $t = 5 s$			✓ 30 – 6 <i>t</i> ✓ value of/waarde van in NPU	A CA (2)	
8.2.1	$s = 30t - 3t^{2}$ $\frac{ds}{dt} = 30 - 6t$ $= 30 - 6(0) \text{ m/s}$ $= 30 \times \frac{3600}{1000} \text{ km/h}$ $= 108 \text{ km/h}$	NO Penalty if correct unit omitted. Geen penaliseering indien korrekte eenheid uitgelaat		✓ $t = 0$ ✓ $\times \frac{3600}{1000}$ ✓ S ✓ substitution/vervanging	A CA (3)	
8.2.2	$s = 30(5) - 3(5)^2$ m = 75 m		AO: I	✓ distance/afstand Full marks/ Volpunte	(2)	
8.3	75 m > 70 m Therefore car A will collid dus sal kar A met stasionê	le with the stationary car B / re kar B bots		✓ reason/rede ✓ conclusion/gevolgtrekk	CA	

QUESTION/VRAAG 9						
9.1.1	$\int \left(x^{-2} + \frac{1}{x}\right) dx$ $= -x^{-1} + \ln x + C \mathbf{OR}/\mathbf{OF} = -\frac{1}{x} + \ln x + C$	$\begin{array}{c} \checkmark - x^{-1} \text{ or/of } -\frac{1}{x} \\ \checkmark \ln x \\ \checkmark C \end{array}$	A A A (3)			
9.1.2	$\int \left(x^{\frac{1}{3}} - 5x^4\right) dx$ $= \frac{x^{\frac{4}{3}}}{\frac{4}{3}} - \frac{5x^5}{5} + C$ $= \frac{3x^{\frac{4}{3}}}{4} - x^5 + C$ No penalty if C omitted Geen penaliseering indien C weggelaat is	$\checkmark \frac{x^{\frac{4}{3}}}{\frac{4}{3}} \text{ OR/OF } \frac{3x^{\frac{4}{3}}}{4}$ $\checkmark -\frac{5x^{5}}{5} \text{ OR/OF } -x^{5}$	A (2)			
9.2	$A = -\int_{-1}^{2} (2x^{3} - 4) dx$ $= -\left(\frac{x^{4}}{2} - 4x\right)\Big _{-1}^{2}$ $= -\left[\left(\frac{(2)^{4}}{2} - 4(2)\right) - \left(\frac{(-1)^{4}}{2} - 4(-1)\right)\right]$ $\therefore A = 4,5 \text{ square units/kwadraat eenhede}$	✓ -4x $✓ SF$ $✓ bounded area/begrensde$	A A CA			
	OR/OF $A = \int_{-1}^{2} (2x^{3} - 4) dx$ $= \left(\frac{x^{4}}{2} - 4x\right)\Big _{-1}^{2}$ $= \left[\frac{(2)^{4}}{2} - 4(2)\right] - \left[\frac{(-1)^{4}}{2} - 4(-1)\right]$ $= -4.5$ $\therefore A = 4.5 \text{ square units /kwadraat eenhede}$	OR/OF Area notation using intergrals/ Area-notasie me gebruik van integrale $ \frac{x^4}{2} $ $ \checkmark - 4x $ $ \checkmark SF $ $ \checkmark - 4,5 $ $ \checkmark bounded area/ begrensden$	M A A CA			
			(6) [11] [150]			