module - I: Crystal Structures

Amorphous: In a solid, it atom, are arranged irregularly and the environment of each item is not the same then its called amorphous. Inter-atomic distance is different. Its also called non-crystalline.

regularly in 3d and if the environment of each atom is same tun its called a crystalline structure. Inter-atomic distance is constant. Crystalline type includes mono-and poly-crystalline structure.

→ Space Lattice: Infinite array of points in three dimensional in which every point has the surroundings identical to that Of any other point in the array.

· Fach lattice point in space represents an atom.
· Atomic arrangement in a crystal is called

are called fundamental translation rectors. Let no be the no of translations of magnitude à in direction x-axis, tun its translation vetor $\overrightarrow{T}_{i} = n_{i} \overrightarrow{a}$. Let no be the no of translations of magnitude b in direction of y-axis, tun its translation vertor $\overrightarrow{T}_{2} = n_{2} \overrightarrow{b}$. Resultant translation vector, $\vec{T} = \vec{T_1} + \vec{T_2}$. $\vec{T} = n_1 \vec{a} + n_2 \vec{b}$. In 3D, $\vec{T} = n_1 \vec{a} + n_2 \vec{b} + h_3 \vec{c}$. -> Basis : Assembly of atoms or molecula (14 sept) or ions in identical composition, arrangement and orientation present at every point - lattice point in the space lattice, threby forming the crystal structure. Lattice + Basis = Crystal Structure Crystal structure lastice - Unit cell: Smallest geometrical figure which is repeated to give the actual crystal struc. The choice of a unit cell may be of different types.

Repeated translations of a and b generater

a square array, magnitude of a and b = quo.

unity, angle blw a and b is 90°. a and b

20 unit cell is called a parallelogram where as in 3D, its called a parallelepiped. . primitive cell - simple unit cell multiple (ell - contains more than one lattice point. In the fig, Pars has points at wrners and centre. * Lattice Parameters a, b, c are 3 rectors defined along 3 axes. α,β, r are 3 interfacial angles blw (Band C), (Tanda) and (a and b) respectively. A crystal structure is based on a bot and & Bir. If we consider a cubic crystal, tun $\vec{a} = \vec{b} = \vec{c}$ and $\vec{x} = \vec{\beta} = \vec{r} = 90^{\circ}$. Let P be the density of the molecules and volume V = abc V = a3. Mass = P. a3 - (1) / weight of the material Let 'M' be the molecular Na be the avagadro's number = 6.023 × 1023/mor Mass of each molecule = $\frac{M}{N_0}$. If there are 'n' no. of atoms or molecules in unit cell, $\therefore \quad | \quad mall \quad of \quad unit \quad (ell) = \frac{n \, \Pi}{Va} \quad | \quad -0$

from equations 0 and 0,	
$\int a^3 = \frac{n M}{Na} = n \qquad = n$	$a = \left[\frac{nM}{\int N_q}\right]^{1/3}$
* Crystal Lattice	[15 Sept]
1. Bravais lattice All atoms are the same kind. All lattice points are equivalent	
2. Non-Bravais lattice Atoms are of different kinds. Some atoms lattice points are not	1 1 1 1
Bravais lattice 3D Space generated by repeated 3 non-coplanar vectors a,b,c. Thre distinguishable ways of arranging 3D space. The are called Bravais	are 14 lattice point in
14 possible types of Space lattice as seven different crystal systems.	re categorised in
2 - Monoclinic 1 - Hexagonal 1 - Trigonal 4 - orthornomble	->
2 - tetragonal	way Hexagoral

F = face centred cubic unit cell c = Side centred cubic unit cell Primitive tun It is not a primitive cell. - Seven (rystal systems 1. cubic (2) a = b = c x=B= Y=90°

a = b = c

X > B = Y 7 90°

7. Triclinic (1)

07 b 7 c

4 types of unit cells:

I = Body centred cubic unit cell

P = Primitive cell

2. Tetragonal (2)

× ≠ |3 ≠ ¥ ≠90°

3. Orthorhombic (4)

 $\alpha = \beta = Y = 90^{\circ}$

 $a \neq b \neq c$

* Miller Indices

10 oct

Plane makes intercepts 2a, 3b, c along x, y, 2 direction reciprocals of the intercepts are cleared by fraction, upon multiplication with LCM.

$$\frac{1}{2} \times 6$$
 , $\frac{1}{3} \times 6$, $\frac{1}{1} \times 6$ =) 3,2,6

Step 1: Determine the intercepts of the plane along the axi

step ?: Determine the reciprocals of the humbers.

Step 3: Find th LCM and multiply each by this LCM. Stepy: Write it in paranthsis in the form (h, k, 1)

sup3: LM-6 :=> 3,2,3 surp 4: Miller indices (3,2,3)

All the parallel and equidistant planes have the same (n,k,1) values. So, Miller Indices (n,k,1) detimes a stet of paralled planes.

If any plane is parallel to one of the axes, then its intercept may be taken as infinity.

The plane passing through the origin is defined in terms of a plantiel plants having non-zero intercept.

It the miller Indices of two planes are having the same ratio. For example (844), (422) and (211) are three planes, and thin the planes are parallel to eachotur.

-> Miller conventions

Chenerally a notation allows for distinction between a specific direction or plane or families of such

[] - to identify specific direction

<> - to identify a family of equivalent directions

() - to identify a family of equivalent planes

{} - to identify a family of equivalent planes

-> Coordination number Defined as the number of equidistant reighbours that an atom has in a given structure. Hore closely packed structures greater coordination number. Simply, coordination number of an atom rumber of atoms which it touches. (coordination nos. of: SC - 6 , BCC - P , FCC - 12 , HCP - 12 , d - 100 mg -> Lattice points per cell It represents to no, of atoms per unit SC-1, BCC-2, FCC-4, HCP-6, diamons - ? -> Nearest neighbour distance distance between the centers of two march reignbour atoms. for cubic system formula: $d = \frac{1}{h^2 + k^2 + 1^2}$ $d = \frac{a}{\sqrt{h^2 + k^2 + 1^2}}$ Bec - 13a fec - a Hep - a diamond - 150 SL-a no. of atomy - 2 Buc Atomic radius - vaa Cookdination no - 8 $APF - \frac{3n}{2} \text{ or } 0.67$

. .