In [1]:

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
df=pd.read_csv(r"C:\Users\G S R KARTHIK\Downloads\fiat500_VehicleSelection_Dataset.csv"
print(df)
```

	ID	model	engine_	power	age_in_days	km	previous_owners	
0	1	lounge		51	882	25000	1	\
1	2	pop		51	1186	32500	1	
2	3	sport		74	4658	142228	1	
3	4	lounge		51	2739	160000	1	
4	5	рор		73	3074	106880	1	
							• • •	
1533	1534	sport		51	3712	115280	1	
1534	1535	lounge		74	3835	112000	1	
1535	1536	pop		51	2223	60457	1	
1536	1537	lounge		51	2557	80750	1	
1537	1538	рор		51	1766	54276	1	
		lat	lon	price				
0	44.90	7242	3.611560	8900				
1	45.66	6359 12	2.241890	8800				
2	45.50	3300 13	1.417840	4200				
3	40.63	3171 1	7.634609	6000				
4	41.90	3221 1	2.495650	5700				
			• • •					
1533	45.06	9679	7.704920	5200				
1534	45.84	5692	3.666870	4600				
1535	45.48	1541	9.413480	7500				
1536	45.00	0702	7.682270	5990				
1537	40.32	3410 1	7.568270	7900				

[1538 rows x 9 columns]

In [2]: ▶

df.head(10)

Out[2]:

	ID	model	engine_power	age_in_days	km	previous_owners	lat	lon
0	1	lounge	51	882	25000	1	44.907242	8.611560
1	2	рор	51	1186	32500	1	45.666359	12.241890
2	3	sport	74	4658	142228	1	45.503300	11.417840
3	4	lounge	51	2739	160000	1	40.633171	17.634609
4	5	рор	73	3074	106880	1	41.903221	12.495650
5	6	рор	74	3623	70225	1	45.000702	7.682270
6	7	lounge	51	731	11600	1	44.907242	8.611560
7	8	lounge	51	1521	49076	1	41.903221	12.495650
8	9	sport	73	4049	76000	1	45.548000	11.549470
9	10	sport	51	3653	89000	1	45.438301	10.991700
4								•

In [3]: ▶

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1538 entries, 0 to 1537
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype	
0	ID	1538 non-null	int64	
1	model	1538 non-null	object	
2	engine_power	1538 non-null	int64	
3	age_in_days	1538 non-null	int64	
4	km	1538 non-null	int64	
5	previous_owners	1538 non-null	int64	
6	lat	1538 non-null	float64	
7	lon	1538 non-null	float64	
8	price	1538 non-null	int64	
<pre>dtypes: float64(2), int64(6), object(1)</pre>				

memory usage: 108.3+ KB

In [4]: ▶

df.describe()

Out[4]:

	ID	engine_power	age_in_days	km	previous_owners	<u>li</u>
count	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	1538.00000
mean	769.500000	51.904421	1650.980494	53396.011704	1.123537	43.54136
std	444.126671	3.988023	1289.522278	40046.830723	0.416423	2.13351
min	1.000000	51.000000	366.000000	1232.000000	1.000000	36.85583
25%	385.250000	51.000000	670.000000	20006.250000	1.000000	41.80299
50%	769.500000	51.000000	1035.000000	39031.000000	1.000000	44.39409
75%	1153.750000	51.000000	2616.000000	79667.750000	1.000000	45.46796
max	1538.000000	77.000000	4658.000000	235000.000000	4.000000	46.79561
4						•

In [5]: ▶

df.columns

Out[5]:

In [6]:

#EDA

sns.pairplot(df)

Out[6]:

<seaborn.axisgrid.PairGrid at 0x11d927903a0>

In [7]: ▶

sns.displot(['Price'])

Out[7]:

<seaborn.axisgrid.FacetGrid at 0x11d97ed2f80>

In [8]: ▶

sns.displot(df['price'])

Out[8]:

<seaborn.axisgrid.FacetGrid at 0x11d97ed33d0>

In [9]:
sns.displot(df['engine_power'])

Out[9]:

<seaborn.axisgrid.FacetGrid at 0x11d92790070>

In [10]:

Out[10]:

<Axes: >


```
In [11]: ▶
```

Out[11]:

<Axes: >


```
'lat', 'lon']]
y=df['price']
```

```
In [13]:

from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.3,random_state=101)
from sklearn.linear_model import LinearRegression
regr=LinearRegression()
regr.fit(X_train,y_train)
print(regr.intercept_)
```

8971.195683500027

In [14]: ▶

```
coeff_df=pd.DataFrame(regr.coef_,X.columns,columns=['coefficient'])
coeff_df
```

Out[14]:

	coefficient
ID	-0.046704
engine_power	11.646408
age_in_days	-0.898018
km	-0.017232
previous_owners	26.400886
lat	32.189709
lon	0.161073

In [15]: ▶

```
predictions=regr.predict(X_test)
plt.scatter(y_test,predictions)
```

Out[15]:

<matplotlib.collections.PathCollection at 0x11d9b303e80>

In [17]: ▶

 $\verb|sns.displot((y_test,predictions),bins=50)| \# without semicolon|\\$

Out[17]:

<seaborn.axisgrid.FacetGrid at 0x11d9b2d2c80>


```
In [18]:
```

```
sns.displot((y_test,predictions),bins=50);#with semicolon
```



```
In [19]: ▶
```

```
from sklearn import metrics
print('MAE:',metrics.mean_absolute_error(y_test,predictions))
print('MSE:',metrics.mean_squared_error(y_test,predictions))
print('MAE:',np.sqrt(metrics.mean_squared_error(y_test,predictions)))
```

MAE: 593.0876179519989 MSE: 551442.6799691883 MAE: 742.5918663500081

```
In [20]: ▶
```

```
#accuracy
regr=LinearRegression()
regr.fit(X_train,y_train)
regr.fit(X_train,y_train)
print(regr.score(X_test,y_test))
```

0.8597136704308846

```
H
In [22]:
df.fillna(method='ffill',inplace=True)
In [23]:
                                                                                        H
x=np.array(df['age_in_days']).reshape(-1,1)
y=np.array(df['km']).reshape(-1,1)
df.dropna(inplace=True)
In [24]:
X_train,X_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
regr.fit(X_train,y_train)
regr.fit(X_train,y_train)
Out[24]:
 ▼ LinearRegression
LinearRegression()
In [25]:
                                                                                        H
y_pred=regr.predict(X_test)
plt.scatter(X_test,y_test,color='y')
plt.plot(X_test,y_pred,color='b')
plt.show()
 200000
 150000
 100000
  50000
```

1000

2000

3000

4000

In []: **M**