

BUKU AJAR KOMPUTER

Dr. B.M. Laimeheriwa

KATA PENGANTAR

Bahan Ajar ini disusun dengan tujuan agar mahasiswa pada Program Studi Pendidikan Sejarah Fakultas Keguruan dan Ilmu Pendidikan Universitas Pattimura dapat menggunakannya sebagai acuan dalam proses belajar mengajar mata kuliah Komputer.

Penulis memberanikan diri untuk menyusun buku ini berdasarkan berbagai sumber pustaka, internet maupun pengalaman penulis sebagai praktisi sekaligus pengajar komputer sejak tahun 2001 hingga sekarang. Selain itu, terdorong oleh masih kurangnya buku-buku pegangan ilmu komputer yang dapat menjadi pedoman bagi mahasiswa Prodi Pendidikan Sejarah Universitas Pattimura Ambon.

Dalam kesempatan ini, penulis menyampaikan ucapan terima kasih dan penghargaan yang sebesar-besarnya kepada Dekan Fakultas Keguruan dan Ilmu Pendidikan serta Ketua Program Studi Pendidikan Pancasila dan Kewarganegaraan yang telah mempercayakan penulis mengasuh mata kuliah Komputer pada Program Studi Pendidikan Sejarah sejak tahun 2010 hingga saat ini, dan juga kepada para mahasiswa yang telah menjalin kerja sama dari tahun ajaran ke tahun ajaran sehingga proses belajar mengajar dapat berlangsung dengan tertib dan lancar.

Karena tiada gading yang tak retak, begitu pula bahan ajar ini, maka demi penyempurnaan buku ini, penulis mengharapkan kritik dan saran yang membangun dari mahasiswa serta para pembaca yang telah berkenan membaca bahan ajar ini. Akhir kata, penulis mengharapkan agar bahan ajar ini dapat bermanfaat bagi kita semua, khususnya para mahasiswa Program Studi Pendidikan Sejarah.

Ambon, Pebruari 2018

Penulis

GARIS-GARIS BESAR PROGRAM PEMBELAJARAN

Judul Mata Kuliah : Komputer Lanjutan

Kode/SKS :/2

Deskripsi : Kuliah ini merupakan kuliah pengantar tentang Ilmu

Komputer. Sebagai mata kuliah dasar Pengantar Ilmu Komputer memberikan gambaran umum tentang sejarah komputer, bagian-bagian komputer, penerapan komputer

serta etika penggunaannya.

Tujuan Instruksional Umum: Mahasiswa mengerti dasar-dasar yang

diperlukan untuk mempelajari komputer lebih lanjut.

No.	Tujuan Instruksional Khusus (TIK)	Topik		Sub Topik	Estimasi Waktu	Referensi
1.	Mengetahui perkembangan komputer dari awal ditemukan hingga kini	Sejarah Komputer		Asal mula alat hitung hingga komputer Perkembangan umum Komputer hingga kini	2 x 50 menit	2,5
2.	Memahami materi mengenai gambaran umum kebutuhan akan komputer dan penerapan komputer	Komputer dan Aplikasinya	0 0 0	Mengapa Komputer Revolusi Komputer Kebutuhan akan Komputer Pengertian komputer, tekologi informasi dan hubungannya Aplikasi komputer	2 x 50 menit	2,5
3.	Mengetahui klasifikas komputer dan perangkat Input dan Output	Komputer dan bagian- bagiannya		Bagaimana Komputer Bekerja Jenis-jenis Komputer Alat-alat Input Alat-alat Output	2 x 50 menit	1,2
4.	Memberi pemahaman tentang perangkat- perangkat keras yang menjadi inti dari komputer	Dasar-dasar Hardware Komputer	0 0 0		6 x 50 menit	1,2,5
5.	Memberi pemahaman mahasiswa tentang konset dasar perangkat lunak/software komputer	Dasar-dasar Software Komputer	0	Definisi dan fungsi software Sistem Operasi Software Aplikasi	4 x 50 menit	5

No.	Tujuan Instruksional Khusus (TIK)	Topik	Sub Topik	Estimasi Waktu	Referensi
6.	Mengetahui dan mampu melakukan konversi Sistem Bilangan di Komputer	Sistem Bilangan	 Macam Sistem Bilangan Konversi Sistem Bilangan Komputer	2 x 50 menit	5
			UTS		
7.	Mengetahui tentang file, tipe file dan direktori.	File dan Direktori	FileDirektori/Folder	2 x 50 menit	5
8.	Mengetahui tentang komunikasi data, jaringan dan internet	Komunikasi Data	 Media Ciri Jenis LAN, MAN & WAN Topologi Protokol Sejarah Internet World Wide Web Email 	6 x 50 menit	3,4,5
11.	Mengetahui jenis- jenis bahasa pemrograman dan klasifikasinya	Bahasa Pemrograman	DefinisiSejarahKlasifikasi	2 x 50 menit	5
12.	Memahami pentingnya keamanan komputer	Keamanan Komputer	Keamanan DataKeamananSoftwareKeamananHardware	2 x 50 menit	2,5
13.	Memberi wawasan kepada mahasiswa tentang etika dalam berkomputer	Etika Komputer	Definisi Isu-isu penting HAKI di Indonesia	2 x 50 menit	2,5

UAS

Mata kuliah : Ilmu Komputer Kode Mata kuliah/sks : Kom /3

Waktu Pertemuan : 2 x 50 menit

Pertemuan ke

A. Tujuan Instruksional

1. Umum

Mengetahui perkembangan komputer dari awal ditemukan hingga kini

2. Khusus

Setelah mengikuti mata kuliah ini, mahasiswa dapat:

- a. Memahami Perkembangan Komputer secara umum
- B. Pokok Bahasan : Sejarah Komputer
- C. Sub Pokok Bahasan
 - a. Asal mula alat hitung hingga komputer
 - b. Perkembangan umum Komputer hingga kini

Kegiatan Belajar Mengajar

Tahap	Kegiatan Dosen	Kegiatan	Media & Alat
		Mahasiswa	Pengajaran
Pendahuluan	1. Perkenalan	Memperhatikan	LCD,
	Membuat kesepakatan bersama dalam	Memberi Komentar	komputer,
	pembelajaran		Fotocopy
	Menjelaskan kontrak perkuliahan	Memperhatikan	Kontrak
	Menjelaskan cakupan materi yang	Memperhatikan	
	akan dipelajari	dan Mencatat	
Penyajian	Menanyakan apa yang mahasiswa	Menjawab	LCD,
	ketahui tentang Komputer		komputer,
	Menanyakan apa yang mahasiswa	Menjawab	
	ketahui tentang Sejarah Komputer		
	Menjelaskan Sejarah Komputer	Memperhatikan	
Penutup	Menyimpulkan materi	Mencatat	-
	Memberi kesempatan mahasiswa	Merespon	
	bertanya/berkomentar		
	Memberi penjelasan singkat tentang	Memperhatikan	
	materi berikut		

D. Evaluasi:

Jawablah pertanyaan di bawah ini dengan benar.

- 1. Apa alasan pentingnya penemuan awal seperti abakus bagi perkembangan komputer?
- 2. Apa alasan mula-mula komputer digunakan dan dikembangkan pada era tahun 1940an ? Tuliskan contohnya!
- 3. Apa yang menyebabkan komputer pribadi menjadi begitu laku hingga kini?
- 4. Apa hubungannya penemuan transistor dengan perkembangan komputer?
- Mungkinkah pada perkembangan selanjutnya komputer dapat berfikir seperti manusia? Jelaskan jawaban anda!

- 1. H.M. Jogiyanto, Pengenalan Komputer, Andi Offset, Yogyakarta, 1995
- 2. J. Glenn Brookshear, Computer Science an Overview, Fourth Edition, The Benjamin/Cummings Publising Company, Inc., 1994

Mata kuliah : Ilmu Komputer Kode Mata kuliah/sks : Kom /3 Waktu Pertemuan : 2 x 50 menit

Pertemuan ke : 2

A. Tujuan Instruksional Pokok

1. Umum

Memahami materi mengenai gambaran umum kebutuhan akan komputer dan penerapan komputer

2. Khusus

Setelah mengikuti mata kuliah ini, mahasiswa dapat:

- a. Menjelaskan perbedaan komputer dan sistem informasi.
- b. Menjelaskan pentingnya kebutuhan akan komputer.
- c. Menjelaskan aplikasi komputer dalam kehidupan sehari-hari.
- B. Bahasan: Komputer dan Aplikasinya
- C. Sub Pokok Bahasan
 - a. Mengapa Komputer
 - b. Revolusi Komputer
 - c. Kebutuhan akan Komputer
 - d. Pengertian komputer, tekologi informasi dan hubungannya
 - e. Aplikasi komputer

Kegiatan Belajar Mengajar

Tahap	Kegiatan Dosen	Kegiatan	Media & Alat
		Mahasiswa	Pengajaran
Pendahuluan	Menjelaskan garis besar pertemuan.	Memperhatikan	LCD,
	Menanyakan pemahaman tentang	Merespon	Komputer
	materi yang akan diajarkan.		
Penyajian	Menjelaskan Revolusi Industri dan	Memperhatikan	LCD,
	Revolusi Komputer		Komputer,
	2. Menjelaskan pengertian Komputer dan	Memperhatikan	White board,
	Sistem Informasi		spidol
	Menanyakan penerapan komputer	Merespon	
	4. Menjelaskan Penerapan Komputer	Memperhatikan	
	dalam kehidupan sehari-hari		
Penutup	Menyimpulkan materi	Mencatat	-
	Memberi kesempatan mahasiswa	Merespon	
	bertanya/berkomentar		
	Memberi penjelasan singkat tentang	Memperhatikan	
	materi berikut		

D. Evaluasi:

Jawablah pertanyaan di bawah ini dengan benar.

- 1. Tuliskan 5 alasan komputer mendapat perhatian besar di dunia!
- 2. Tuliskan 5 contoh penerapan komputer di bidang pendidikan!
- 3. Apa hubungan revolusi industri dengan komputer?
- 4. Tuliskan 5 contoh revolusi industri!
- 5. Tuliskan 3 contoh revolusi industri yang berhubungan dengan komputer!

- 1. H.M. Jogiyanto, Pengenalan Komputer, Andi Offset, Yogyakarta, 1995
- 2. J. Glenn Brookshear, Computer Science an Overview, Fourth Edition, The Benjamin/Cummings Publising Company, Inc., 1994

Mata kuliah : Ilmu Komputer Kode Mata kuliah/sks : Kom /3 Waktu Pertemuan : 2 x 50 menit

Pertemuan ke : 3

A. Tujuan Instruksional Pokok

1. Umum

Mengetahui klasifikas komputer dan perangkat Input dan Output

2. Khusus

Setelah mengikuti mata kuliah ini, mahasiswa dapat:

- a. Menjelaskan perbedaan komputer dan sistem informasi.
- b. Menjelaskan pentingnya kebutuhan akan komputer.
- c. Menjelaskan aplikasi komputer dalam kehidupan sehari-hari.
- B. Bahasan: Komputer dan bagian-bagiannya
- C. Sub Pokok Bahasan
 - a. Bagaimana Komputer Bekerja
 - b. Jenis-jenis Komputer
 - c. Alat-alat Input
 - d. Alat-alat Output

Kegiatan Belajar Mengajar

- Itogiataii i	Belajar Merigajar		
Tahap	Kegiatan Dosen	Kegiatan Mahasiswa	Media & Alat Pengajaran
Pendahuluan	Menjelaskan garis besar pertemuan.	Memperhatikan	LCD,
	Menanyakan pemahaman tentang materi yang akan diajarkan.	Merespon	Komputer
Penyajian	Menjelaskan Komponen penyusun komputer	Memperhatikan	LCD, Komputer,
	Menjelaskan Jenis-jenis komputer	Memperhatikan	White board,
	Menanyakan peralatan input dan output	Merespon	spidol
	4. Menjelaskan peralatan input dan output	Memperhatikan	
Penutup	Menyimpulkan materi	Mencatat	-
	Memberi kesempatan mahasiswa bertanya/berkomentar	Merespon	
	Memberi penjelasan singkat tentang materi berikut	Memperhatikan	

D. Evaluasi:

Jawablah pertanyaan di bawah ini dengan benar.

- 1. Selain Software dan Hardware yang menyusun sebuah komputer, terdapat istiliah *Brainware*. Jelaskan dan beri contoh Brainware tersebut!
- 2. Tuliskan 3 perbedaan antara General Purpose Computer dan Special Purpose Computer!
- 3. Tuliskan 2 perbedaan antara Notebook, Netbook dan PC Tablet!
- 4. Tuliskan hardware apa saja yang digunakan dalam *Teleconverence*!
- Tuliskan 3 keuntungan dan kerugian membeli komputer build-up dan komputer rakitan !

- 1. H.M. Jogiyanto, Pengenalan Komputer, Andi Offset, Yogyakarta, 1995
- 2. Wear, larry L., et al., Computers, An Introduction to Hardware and Software Design, McGrawHill, 1991

Mata kuliah : Ilmu Komputer Kode Mata kuliah/sks : Kom /3 Waktu Pertemuan : 4 x 50 menit

Pertemuan ke : 4,5,6

A. Tujuan Instruksional Pokok

1. Umum

Memberi pemahaman tentang perangkat-perangkat keras yang menjadi inti dari komputer

2. Khusus

Setelah mengikuti mata kuliah ini, mahasiswa dapat:

- a. Menjelaskan hardware yang diperlukan untuk membentuk komputer.
- b. Menjelaskan jenis-jenis prosesor.
- c. Menjelaskan jenis-jenis memori.
- d. Menjelaskan jenis-jenis media penyimpanan.
- B. Bahasan: Dasar-dasar Hardware Komputer
- C. Sub Pokok Bahasan
 - a. Sistem Unit
 - b. Motherboard
 - c. CPU
 - d. Memori
 - e. Penyimpanan

Kegiatan Belajar Mengajar

Negiaian	Delajai Meliyajai		
Tahap	Kegiatan Dosen	Kegiatan	Media & Alat
		Mahasiswa	Pengajaran
Pendahuluan	 Menjelaskan garis besar pertemuan. 	Memperhatikan	LCD,
	Menanyakan pemahaman tentang	Merespon	Komputer
	materi yang akan diajarkan.		
Penyajian	Menjelaskan hardware komputer	Memperhatikan	LCD,
	Menjelaskan sistem kerja hardware	Memperhatikan	Komputer,
	Menjelaskan tentang prosesor	Memperhatikan	White board,
	Menjelaskan tentang memori	Memperhatikan	spidol
	5. Menjelaskan tentang media	Memperhatikan	
	penyimpanan	Memperhatikan	
Penutup	Menyimpulkan materi	Mencatat	-
	Memberi kesempatan mahasiswa	Merespon	
	bertanya/berkomentar		
	3. Memberi penjelasan singkat tentang	Memperhatikan	
	materi berikut		

D. Evaluasi:

Jawablah pertanyaan di bawah ini dengan benar.

- Media penyimpanan apakah saat ini yang memiliki kapasitas penyimpanan paling besar
 Berapa besarnya ?
- 2. Prosesor menghasilkan panas yang tinggi. Apa yang diperlukan untuk menurunkan suhu prosesor ?
- 3. Tuliskan 3 alasan kenapa media penyimpanan kurang populer?
- 4. Apakah yang dimaksud dengan overclocking dan apa akibat positif dan negatif yang terjadi?
- 5. Jelaskan perbedaan antara prosesor untuk PC dan untuk Laptop.

- 1. H.M. Jogiyanto, Pengenalan Komputer, Andi Offset, Yogyakarta, 1995
- 2. Wear, larry L., et al., Computers, An Introduction to Hardware and Software Design, McGrawHill, 1991
- 3. J. Glenn Brookshear, Computer Science an Overview, Fourth Edition, The Benjamin/Cummings Publising Company, Inc., 1994

Mata kuliah : Ilmu Komputer Kode Mata kuliah/sks : Kom /3 Waktu Pertemuan : 2 x 50 menit

Pertemuan ke : 7,8

A. Tujuan Instruksional Pokok

1. Umum

Memberi pemahaman mahasiswa tentang konset dasar perangkat lunak/software komputer

2. Khusus

Setelah mengikuti mata kuliah ini, mahasiswa dapat:

- a. Menjelaskan definisi software
- b. Menjelaskan pembagian software
- c. Menjelaskan sistem utama termasuk sistem operasi, driver, utiliti
- d. Menjelaskan software aplikasi
- B. Bahasan: Dasar-dasar Software Komputer
- C. Sub Pokok Bahasan
 - a. Definisi dan fungsi software
 - b. Sistem Operasi
 - c. Software Aplikasi

Kegiatan Belajar Mengajar

		17	NA 11 0 A1 4
Tahap	Kegiatan Dosen	Kegiatan	Media & Alat
		Mahasiswa	Pengajaran
Pendahuluan	Menjelaskan garis besar pertemuan.	Memperhatikan	LCD,
	Menanyakan pemahaman tentang	Merespon	Komputer
	materi yang akan diajarkan.	-	-
Penyajian	Menjelaskan definisi software	Memperhatikan	LCD,
	Menanyakan jenis-jenis software	Merespon	Komputer,
	Menjelaskan pembagian software	Memperhatikan	White board,
	Menjelaskan tentang sistem utama	Memperhatikan	spidol
	5. Menjelaskan tentang sistem operasi	Memperhatikan	
	Menjelaskan tentang driver	Memperhatikan	
	7. Menjelaskan tentang utiliti	Memperhatikan	
	8. Menjelaskan tentang aplikasi	Memperhatikan	
Penutup	Menyimpulkan materi	Mencatat	-
-	Memberi kesempatan mahasiswa	Merespon	
	bertanya/berkomentar		
	3. Memberi penjelasan singkat tentang	Memperhatikan	
	materi berikut		

D. Evaluasi:

Jawablah pertanyaan di bawah ini dengan benar.

- 1. Tuliskan 3 perbedaan antara sistem operasi Linux dan Windows!
- 2. Apakah mungkin aplikasi yang berjalan di Linux dapat berjalan di Windows ? Jelaskan iawaban anda.
- 3. Sewaktu komputer dinyalakan ada tampilan program untuk memeriksa hardware. Apakah itu termasuk sistem operasi? Jelaskan jawaban anda.
- 4. Apa yang dimaksud dengan *plug and play*? Jika sebuah printer dihubungkan ke komputer maka komputer akan minta driver. Apakah ini termasuk *plug and play*?
- 5. Apakah setiap sistem operasi cocok dengan sembarang prosesor? Jelaskan.

E. Referensi

Mata kuliah : Ilmu Komputer Kode Mata kuliah/sks : Kom /3 Waktu Pertemuan : 2 x 50 menit

Pertemuan ke : 9

A. Tujuan Instruksional Pokok

1. Umum

Mengetahui dan mampu melakukan konversi Sistem Bilangan di Komputer

2. Khusus

Setelah mengikuti mata kuliah ini, mahasiswa dapat:

- a. Menjelaskan macam-macam sistem bilangan yang digunakan di komputer
- b. Melakukan konversi antar sistem bilangan
- c. Menjelaskan standar penggunaan karakter di komputer
- d. Melakukan konversi karakter ke sistem bilangan tertenti
- B. Bahasan: Dasar-dasar Software Komputer
- C. Sub Pokok Bahasan
 - a. Macam Sistem Bilangan
 - b. Konversi
 - c. Sistem Bilangan Komputer

Kegiatan Belajar Mengajar

	Karistan Dagan	Maniatan	Mad: 0 Mat
Tahap	Kegiatan Dosen	Kegiatan	Media & Alat
		Mahasiswa	Pengajaran
Pendahuluan	Menjelaskan garis besar pertemuan.	Memperhatikan	LCD,
	Menanyakan pemahaman tentang	Merespon	Komputer
	materi yang akan diajarkan.		·
Penyajian	Menjelaskan definisi software	Memperhatikan	LCD,
	Menanyakan jenis-jenis software	Merespon	Komputer,
	Menjelaskan pembagian software	Memperhatikan	White board,
	Menjelaskan tentang sistem utama	Memperhatikan	spidol
	5. Menjelaskan tentang sistem operasi	Memperhatikan	
	Menjelaskan tentang driver	Memperhatikan	
	7. Menjelaskan tentang utiliti	Memperhatikan	
	Menjelaskan tentang aplikasi	Memperhatikan	
Penutup	Menyimpulkan materi	Mencatat	-
	Memberi kesempatan mahasiswa	Merespon	
	bertanya/berkomentar		
	3. Memberi penjelasan singkat tentang	Memperhatikan	
	materi berikut	-	

D. Evaluasi:

Jawablah pertanyaan di bawah ini dengan benar.

- 1. Tuliskan 3 perbedaan antara sistem operasi Linux dan Windows!
- 2. Apakah mungkin aplikasi yang berjalan di Linux dapat berjalan di Windows ? Jelaskan jawaban anda.
- 3. Sewaktu komputer dinyalakan ada tampilan program untuk memeriksa hardware. Apakah itu termasuk sistem operasi? Jelaskan jawaban anda.
- 4. Apa yang dimaksud dengan *plug and play*? Jika sebuah printer dihubungkan ke komputer maka komputer akan minta driver. Apakah ini termasuk *plug and play*?
- 5. Apakah setiap sistem operasi cocok dengan sembarang prosesor? Jelaskan.

E. Referensi

Mata kuliah : Ilmu Komputer Kode Mata kuliah/sks : Kom /3 Waktu Pertemuan : 2 x 50 menit

Pertemuan ke : 10

A. Tujuan Instruksional Pokok

1. Umum

Mengetahui tentang file, tipe file dan direktori.

2. Khusus

Setelah mengikuti mata kuliah ini, mahasiswa dapat:

- a. Menjelaskan pengertian file dan direktori
- b. Menjelaskan tipe-tipe file
- c. Menjelaskan aturan penamaan file
- d. Menjelaskan struktur direktori
- B. Bahasan : File dan Direktori
- C. Sub Pokok Bahasan
 - a. File
 - b. Direktori/Folder

Kegiatan Belajar Mengajar

Regiatan	Delajai Meliyajai		
Tahap	Kegiatan Dosen	Kegiatan	Media & Alat
		Mahasiswa	Pengajaran
Pendahuluan	Menjelaskan garis besar pertemuan.	Memperhatikan	LCD,
	Menanyakan pemahaman tentang	Merespon	Komputer
	materi yang akan diajarkan.		
Penyajian	Menjelaskan definisi file	Memperhatikan	LCD,
	Menjelaskan aturan penamaan file	Memperhatikan	Komputer,
	Menjelaskan tipe-tipe file	Memperhatikan	White board,
	Menjelaskan definisi direktori	Memperhatikan	spidol
	5. Menjelaskan struktur direktori	Memperhatikan	
Penutup	Menyimpulkan materi	Mencatat	-
	Memberi kesempatan mahasiswa	Merespon	
	bertanya/berkomentar		
	3. Memberi penjelasan singkat tentang	Memperhatikan	
	materi berikut		

D. Evaluasi:

Jawablah pertanyaan di bawah ini dengan benar.

- 1. Tuliskan 5 perintah pengoperasian file!
- 2. Tuliskan 3 perintah pengoperasian direktori!

E. Referensi

Mata kuliah : Ilmu Komputer Kode Mata kuliah/sks : Kom /3 Waktu Pertemuan : 2 x 50 menit

Pertemuan ke : 11,12,13

A. Tujuan Instruksional Pokok

1. Umum

Mengetahui tentang komunikasi data, jaringan dan internet.

2. Khusus

Setelah mengikuti mata kuliah ini, mahasiswa dapat:

- a. Menjelaskan PCengertian dan proses komunikasi data
- b. Menjelaskan ciri dan jenis komunikasi data
- c. Menjelaskan macam-macam jaringan
- d. Menjelaskan topologi jaringan dan protokolnya

e.

- B. Bahasan: File dan Direktori
- C. Sub Pokok Bahasan
 - a. Media
 - b. Ciri
 - c. Jenis
 - d. LAN, MAN & WAN
 - e. Topologi
 - f. Protokol
 - g. Sejarah Internet
 - h. World Wide Web
 - i. Email

Kegiatan Belaiar Mengajar

	pelajai wieliyajai		
Tahap	Kegiatan Dosen	Kegiatan	Media & Alat
		Mahasiswa	Pengajaran
Pendahuluan	Menjelaskan garis besar pertemuan.	Memperhatikan	LCD,
	Menanyakan pemahaman tentang	Merespon	Komputer
	materi yang akan diajarkan.		
Penyajian	Menjelaskan proses komunikasi data	Memperhatikan	LCD,
	Menanyakan contoh komunikasi data	Merespon	Komputer,
	3. Menjelaskan ciri dan jenis komunikasi	Memperhatikan	White board,
	4. Menjelaskan pengertian jaringan	Memperhatikan	spidol
	5. Menjelaskan topologi dan protokol	Memperhatikan	
	Menjelaskan pengertian Internet	Memperhatikan	
	7. Menjelaskan sejarah Internet dunia dan	Memperhatikan	
	Indonesia		
	8. Menjelaskan tentang WWW & Email	Memperhatikan	
Penutup	Menyimpulkan materi	Mencatat	-
	Memberi kesempatan mahasiswa	Merespon	
	bertanya/berkomentar		
	Memberi penjelasan singkat tentang	Memperhatikan	
	materi berikut		

D. Evaluasi:

Jawablah pertanyaan di bawah ini dengan benar.

- 1. Tuliskan 3 kelebihan dan kekurangan Topologi Bintang bila dibandingkan dengan Topologi Cincin!
- 2. 100 komputer dalam sebuah organisasi ingin dibentuk dalam jaringan dan terbagi dalam 4 ruangan dengan jumlah masing-masing 25 komputer.
 - a. Topologi Jaringan apa yang cocok diterapkan? Jelaskan.
 - b. Pengalamatan komputer dengan metode apa yang cocok diterapkan? Jelaskan.

c. Media Transmisi apa yang cocok diterapkan? Jelaskan

- 1. William Stalings, Data and Computer Communications (6th edition), Prentice Hall, 1999.
- 2. J. Kurose and K. Ross, Computer Networking -- A Top-Down Approach Featuring the Internet, 3nd edition, Addison-Wesley, 2000
- 3. J. Glenn Brookshear, Computer Science an Overview, Fourth Edition, The Benjamin/Cummings Publising Company, Inc., 1994

Mata kuliah : Ilmu Komputer Kode Mata kuliah/sks : Kom /3 Waktu Pertemuan : 2 x 50 menit

Pertemuan ke : 14

A. Tujuan Instruksional Pokok

2. Umum

Mengetahui jenis-jenis bahasa pemrograman dan klasifikasinya.

3. Khusus

Setelah mengikuti mata kuliah ini, mahasiswa dapat:

- a. Menjelaskan apa yang dimaksud dengan bahasa pemrograman
- b. Menjelaskan proses awal bahasa pemrograman
- c. Menjelaskan klasifikasi bahasa pemrograman
- B. Bahasan : File dan Direktori
- C. Sub Pokok Bahasan
 - a. Definisi Bahasa Pemrograman
 - b. Sejarah Bahasa Pemrograman
 - c. Klasifikasi Bahasa Pemrograman

Kegiatan Belajar Mengajar

Tahap	Kegiatan Dosen	Kegiatan	Media & Alat
		Mahasiswa	Pengajaran
Pendahuluan	 Menjelaskan garis besar pertemuan. 	Memperhatikan	LCD,
	Menanyakan pemahaman tentang	Merespon	Komputer
	materi yang akan diajarkan.		
Penyajian	Menjelaskan definisi bahasa program	Memperhatikan	LCD,
	2. Menjelaskan sejarah bahasa program	Memperhatikan	Komputer,
	Menjelaskan klasifikasi bahasa	Memperhatikan	White board,
	program		spidol
	Menanyakan minat mahasiswa	Merespon	
Penutup	Menyimpulkan materi	Mencatat	-
	Memberi kesempatan mahasiswa	Merespon	
	bertanya/berkomentar		
	3. Memberi penjelasan singkat tentang	Memperhatikan	
	materi berikut		

D. Referensi

Mata kuliah : Ilmu Komputer Kode Mata kuliah/sks : Kom /3 Waktu Pertemuan : 2 x 50 menit

Pertemuan ke : 15

A. Tujuan Instruksional Pokok

1. Umum

Memahami pentingnya keamanan komputer.

2. Khusus

Setelah mengikuti mata kuliah ini, mahasiswa dapat:

- a. Menjelaskan pengertian keamanan komputer.
- b. Menjelaskan macam-macam keamanan komputer beserta faktor penyebabnya.
- c. Menjelaskan pencegahan dalam keamanan komputer.
- B. Bahasan : File dan Direktori
- C. Sub Pokok Bahasan
 - a. Keamanan Data
 - b. Keamanan Software
 - c. Keamanan Hardware

Kegiatan Belajar Mengajar

rtogiatair	Belajar Merigajar		
Tahap	Kegiatan Dosen	Kegiatan Mahasiswa	Media & Alat Pengajaran
Pendahuluan	 Menjelaskan garis besar pertemuan. Menanyakan pemahaman tentang materi yang akan diajarkan. 	Memperhatikan Merespon	LCD, Komputer
Penyajian	Menjelaskan tentang keamanan komputer dan pembagiannya Menanyakan faktor-faktor penyebab kerusakan	Memperhatikan Merespon	LCD, Komputer, White board, spidol
	Menjelaskan faktor-faktor penyebab kerusakan dan pencegahannya	Memperhatikan	
Penutup	Menyimpulkan materi Memberi kesempatan mahasiswa bertanya/berkomentar	Mencatat Merespon	-
	Memberi penjelasan singkat tentang materi berikut	Memperhatikan	

D. Evaluasi

- 1. Tuliskan 3 aplikasi untuk:
 - a. Membackup data
 - b. Merestore data
- 2. Tuliskan 3 jenis antivirus lokal!
- 3. Selain antivirus, apa lagi program untuk menangkal kerusakan dari internet?
- 4. Apa yang diperlukan untuk menghubungkan UPS dengan softwarenya?
- Apa yang dimaksud dengan dekripsi dan enkrispi dalam password dan tuliskan 2 metodenya!

- 1. H. M. Jogiyanto, Pengenalan Komputer, Andi Offset, Yogyakarta, 1995
- 2. J. Glenn Brookshear, Computer Science an Overview, Fourth Edition, The Benjamin/Cummings Publising Company, Inc., 1994

Mata kuliah : Ilmu Komputer Kode Mata kuliah/sks : Kom /3 Waktu Pertemuan : 2 x 50 menit

Pertemuan ke : 16

A. Tujuan Instruksional Pokok

1. Umum

Memberi wawasan kepada mahasiswa tentang etika dalam berkomputer.

2. Khusus

Setelah mengikuti mata kuliah ini, mahasiswa dapat:

- a. Menjelaskan defisi etika khususnya etika komputer
- b. Menjelaskan isu-isu penting dalam etika komputer
- c. Menjelaskan HAKI di Indonesia
- B. Bahasan: File dan Direktori
- C. Sub Pokok Bahasan
 - a. Definisi Etika Komputer
 - b. Isu-isu penting
 - c. HAKI di Indonesia

Kegiatan Belajar Mengajar

	Joiaja: mongaja:	1	
Tahap	Kegiatan Dosen	Kegiatan Mahasiswa	Media & Alat Pengajaran
Pendahuluan	 Menjelaskan garis besar pertemuan. Menanyakan pemahaman tentang materi yang akan diajarkan. 	Memperhatikan Merespon	LCD, Komputer
Penyajian	Menjelaskan definisi etika komputer Menjelaskan isu-isu penting seputar etika komputer Menjelaskan penerapan HAKI di Indonesia yang berkaitan dengan komputer	Memperhatikan Memperhatikan Memperhatikan	LCD, Komputer, White board, spidol
Penutup	Menyimpulkan materi Memberi kesempatan mahasiswa bertanya/berkomentar Memberi penjelasan singkat tentang materi berikut	Mencatat Merespon Memperhatikan	-

- 1. H. M. Jogiyanto, Pengenalan Komputer, Andi Offset, Yogyakarta, 1995
- 2. J. Glenn Brookshear, Computer Science an Overview, Fourth Edition, The Benjamin/Cummings Publising Company, Inc., 1994

DAFTAR ISI

KATA PENGANTAR	i
GBPP DAN SAP	ii
DAFTAR ISI	ii
BAB I. SEJARAH PERKEMBANGAN KOMPUTER	1
BAB II. KOMPUTER DAN APLIKASINYA	13
BAB III. KOMPUTER DAN BAGIAN-BAGIANNYA	18
BAB IV. PERANGKAT KERAS SISTEM UTAMA	25
BAB V. PERANGKAT LUNAK (SOFTWARE)	44
BAB VI. SISTEM BILANGAN	60
BAB VII. ORGANISASI FILE	73
BAB VIII. KOMUNIKASI DATA	78
BAB IX. JARINGAN KOMPUTER	82
BAB X. INTERNET	87
BAB XI. BAHASA PEMROGRAMAN	93
BAB XII. KEAMANAN KOMPUTER	96
BAB XIII. ETIKA KOMPUTER1	102
DAFTAR PUSTAKA	05

BAB I

SEJARAH PERKEMBANGAN KOMPUTER

Sejak dahulu kala, proses pengolahan data telah dilakukan oleh manusia. Manusia juga menemukan alat-alat mekanik dan elektronik untuk membantu manusia dalam penghitungan dan pengolahan data supaya bisa mendapatkan hasil lebih cepat.

Komputer yang kita temui saat ini adalah suatu evolusi panjang dari penemuan-penemuan manusia sejak dahulu kala berupa alat mekanik maupun elektronik.

Saat ini komputer dan piranti pendukungnya telah masuk dalam setiap aspek kehidupan dan pekerjaan. Komputer yang ada sekarang memiliki kemampuan yang lebih dari sekedar perhitungan matematik biasa.

Diantaranya adalah sistem komputer di kassa supermarket yang mampu membaca kode barang belanjaan, sentral telepon yang menangani jutaan panggilan dan komunikasi, jaringan komputer dan internet yang mennghubungkan berbagai tempat di dunia.

Peralatan Pengolahan Data digolongkan dalam 4 golongan besar :

- Peralatan Manual : dengan tangan
- Peralatan Mekanik : peralatan mekanik yg digerakan dengan tangan
- Peralatan Mekanik Elektronik : peralatan mekanik yang digerakkan secara otomatis oleh motor elektronik
- Peralatan Elektronik : peralatan yang sepenuhnya elektronik

A. Alat Hitung Tradisional dan Kalkulator Mekanik

Abakus merupakan 'Komputer Otomatis Pertama' hadir 5000 thn lalu di Cina dan masih digunakan hingga sekarang dan dipercaya sebagai awal mula mesin komputasi.

Abakus berupa bijian geser yang diatur dalam sebuah rak. Digunakan untuk melakukan perhitungan perdagangan. Seiring dengan hadirnya kertas dan alat tulis menulis di eropa, abakus mulai kurang populer.

Pada tahun 1642, Blaise Pascal yang baru berumur 19 tahun menemukan apa yang disebut Kalkulator Roda Numerik (numerical wheel calculator) untuk membantu ayahnya melakukan perhitungan pajak.

Kotak persegi kuningan dinamakan Pascaline (Gambar 1.1), menggunakan 8 roda putar bergerigi untuk menjumlahkan bilangan hingga 8 digit. Alat ini merupakan penghitung berbasis 10 (desimal). Kelemahan alat ini hanya terbatas pada penjumlahan saja.

Gambar 1.1 Pascaline

Tahun 1694 seorang filsuf dan matematikawan Jerman, Gottfred Wilhem von Leibniz memperbaiki Pascaline dengan mempelajari gambarnya hingga mesin itu dapat melakukan perkalian.

Charles Xavier kemudian menemukan alat yang disebut Arithometer (Gambar 1.2) yang dapat melakukan 4 operasi matematis dasar, yaitu + - x / .

Alat ini populer dan digunakan hingga perang dunia. Mereka bertiga memulai suatu era meknikal komputasi.

Gambar 1.2 Arithometer

Awal mula komputer sebenarnya dibentuk oleh seorang profesor matematika Inggris Charles Babbage di tahun 1822. Dia memperhatikan kesuaian antara mesin mekanik dan matematika : mesin mekanik sangat baik dalam mengerjakan tugas yang sama berulangkali tanpa kesalahan; sedang matematika membutuhkan repetisi sederhana dari suatu langkah-langkah tertentu.

la mengusulkan suatu mesin untuk melakukan perhitungan persamaan differensil. Mesin tersebut dinamakan Mesin Differensial (Gambar 1.3). Dengan menggunakan tenaga uap, mesin tersebut dapat menyimpan program dan dapat melakukan kalkulasi serta mencetak hasilnya secara otomatis.

la kemudian terinspirasi untuk memulai membuat komputer generalpurpose yang pertama, yang disebut Analytical Engine (Gambar 1.4) dan didanai
oleh pemerintah Inggris. Mesin ini direncanakan akan digerakan dengan tenaga
uap dan benar-benar otomatis. Akan tetapi proyek ini menjadi semakin sulit
dikerjakan dan memerlukan biaya yang sangat banyak. Sepuluh tahun kemudian
proyek ini belum juga selesai dan dananya habis. Akhirnya mesin ini tidak pernah
diselesaikan. Walaupun begitu, mesin ini telah menjadi ide bagi mesin berikutnya

Anayitical Engine.

Pada tahun 1833, Babbage mulai membuat *Anayitical Engine* sebesar rumah dan digerakkan oleh 6 mesin uap. Mesin ini dapat diprogram berkat adanya tenologi *punched card* / kartu berlubang yang dibuat oleh Jacquard.

Gambar 1.3 Mesin Differensial

Asisten Babbage, Augusta Ada King (1815-1842) memiliki peran penting dalam pembuatan mesin ini.

la membantu merevisi rencana, mencari pendanaan dari pemerintah Inggris, dan mengkomunikasikan spesifikasi Anlytical Engine kepada publik.

Selain itu, pemahaman Augusta yang baik tentang mesin ini memungkinkannya membuat instruksi untuk dimasukkan ke dlam mesin dan juga membuatnya menjadi programmer yang pertama. Pada tahun 1980, Departemen Pertahanan Amerika Serikat menamakan sebuah bahasa pemrograman dengan nama ADA sebagai penghormatan kepadanya.

Terdiri dari sekitar 50.000 komponen, desain dasar dari Analytical Engine menggunakan kartu-kartu perforasi (berlubang-lubang) yang berisi instruksi operasi bagi mesin tersebut.

Pada 1889, Herman Hollerith (1860-1929) juga menerapkan prinsip kartu perforasi untuk melakukan penghitungan bagi Biro Sensus Amerika Serikat.

Sensus sebelumnya yang dilakukan di tahun 1880 membutuhkan waktu tujuh tahun untuk menyelesaikan perhitungan. Dengan berkembangnya populasi, Biro tersebut memperkirakan bahwa dibutuhkan waktu sepuluh tahun untuk menyelesaikan perhitungan sensus.

Gambar 1.4 Kartu Berlubang/Loom Cards

Gambar 1.5 IBM Key Puch (Pencetak Kartu Berluban)

Hollerith menggunakan kartu perforasi untuk memasukkan data sensus yang kemudian diolah oleh alat tersebut secara mekanik. Sebuah kartu dapat menyimpan hingga 80 variabel.

Dengan menggunakan alat tersebut, hasil sensus dapat diselesaikan dalam waktu enam minggu dan berfungsi sebagai media penyimpan data. Tingkat kesalahan perhitungan juga dapat ditekan secara drastis. Ia kemudian mendirikan perusahaannya sendiri, Tabulating Machine Company, yang kemudian menjadi International Business Machines atau IBM.

Gambar 1.6. Mesin Tabulasi Hollerith

Vannevar Bush (1890-1974) membuat sebuah kalkulator untuk menyelesaikan persamaan differensial di tahun 1931. Mesin tersebut sangat besar dan berat karena ratusan gerigi dan poros yang dibutuhkan untuk melakukan perhitungan.

Dengan mengaplikasikan kondisi benar-salah ke dalam sirkuit listrik dalam bentuk terhubung-terputus, Atanasoff dan Berry membuat komputer elektrik pertama di tahun 1940. Namun proyek mereka terhenti karena kehilangan sumber pendanaan.

Pada tahun 1941, Konrad Zuse, seorang insinyur Jerman membangun sebuah komputer, Z3, untuk mendesain pesawat terbang dan peluru kendali. Tahun 1943, pihak Inggris menyelesaikan komputer pemecah kode rahasia yang dinamakan Colossus untuk memecahkan kode-rahasia yang digunakan Jerman.

Howard H. Aiken (1900-1973), seorang insinyur Harvard yang bekerja dengan IBM, berhasil memproduksi kalkulator elektronik untuk US Navy. Kalkulator tersebut berukuran panjang setengah lapangan bola kaki dan memiliki rentang kabel sepanjang 500 mil. The Harvd-IBM Automatic Sequence Controlled Calculator, atau Mark I, merupakan komputer relai elektronik. Ia menggunakan sinyal elektromagnetik untuk menggerakkan komponen mekanik

Gambar 1.7. Mark I

Komputer 'raksasa' berikutnya adalah Electronic Numerical Integrator and Computer (ENIAC), terdiri dari 18.000 tabung vakum, 70.000 resistor, dan 5 juta titik solder, komputer tersebut merupakan mesin yang sangat besar yang mengkonsumsi daya sebesar 160kW dan menempati ruangan lebih 167 m².

Gambar 1.8. ENIAC

Komputer ini dirancang oleh John Presper Eckert (1919-1995) dan John W. Mauchly (1907-1980) di University of Pennsylvania, ENIAC merupakan komputer

serbaguna (general purpose computer) yang bekerja lebih cepat dibandingkan Mark I. ENIAC bekerja dengan menggunakan *punched card* dari IBM.

Pada pertengahan 1940-an, John von Neumann (1903-1957) mendesain Electronic Discrete Variable Automatic Computer (EDVAC) pada tahun 1945 dengan sebuah memori untuk menampung baik program ataupun data dan mampu membedakannya. Merupakan komputer pertama yang menggunakan bilangan biner di memori. Ini disebut arsitektur von Neumann dan digunakan di hampir semua komputer digital hingga saat ini. Von Neumann juga

Gambar 1.9 Design Arsitektur von Neumann

Pada akhir tahun 1950, komputer bukan lagi merupakan mesin yang hanya diproduksi oleh pemerintah dan universitas. Eckert dan Mauchly meninggalkan University of Pennsylvania karena perdebatan tentang siapa yang memiliki hak paten atas inovasi mereka. Mereka membuat perusahaan sendiri dan memproduksi UNIVAC (Universal Automatic Computer) merupakan komputer komersial pertama yang diproduksi secara masal. UNIVAC juga merupakan komputer pertama yang menggunakan pita magnetik.

Gambar 1.10 EDVAC

Komputer-komputer generasi pertama ditandai dengan :

- Instruksi yang dibuat hanya untuk satu tugas tertentu saja.
- Setiap komputer memiliki bahasa mesin yang berbeda sehingga komputer lebih sulit diprogram.
- Teknologi Tube Vakum yang berukuran besar membuat komputer generasi pertama juga memiliki ukuran yang ekstra besar
- Penggunaan pita magnetik.

Dimulai pada tahun 1948, penemuan transistor sangat mempengaruhi perkembangan komputer. Transistor menggantikan tube vakum di televisi, radio, dan komputer. Akibatnya, ukuran mesin-mesin elektrik berkurang drastis. Transistor mulai digunakan di dalam komputer mulai pada tahun 1956. Penemuan lain yang berupa pengembangan memori inti-magnetik membantu pengembangan komputer generasi kedua yang lebih kecil, lebih cepat, lebih dapat diandalkan, dan lebih hemat energi dibanding para pendahulunya.

Mesin pertama yang memanfaatkan teknologi baru ini adalah superkomputer. IBM membuat superkomputer bernama Stretch, dan Sprery-Rand membuat komputer bernama LARC. Komputer generasi kedua menggantikan

bahasa mesin dengan bahasa assembly. Bahasa assembly adalah bahasa yang menggunakan singkatan-singakatan untuk menggantikan kode biner.

Pada awal 1960-an, mulai bermunculan komputer yang sukses di bidang bisnis, di universitas, dan di pemerintahan. Komputer-komputer generasi kedua ini merupakan komputer yang sepenuhnya menggunakan transistor. Mereka juga memiliki komponen-komponen yang dapat diasosiasikan dengan komputer pada saat ini: printer, penyimpanan dalam disket, memory, sistem operasi, dan program.

Beberapa bahasa pemrograman mulai bermunculan pada saat itu. Bahasa pemrograman Common Business-Oriented Language (COBOL) dan Formula Translator (FORTRAN) mulai umum digunakan. Bahasa pemrograman ini menggantikan kode mesin yang rumit dengan kata-kata, kalimat, dan formula matematika yang lebih mudah dipahami oleh manusia. Industri piranti lunak juga mulai bermunculan dan berkembang pada masa komputer generasi kedua ini.

Jack Kilby, seorang insinyur di Texas Instrument, mengembangkan sirkuit terintegrasi (IC: integrated circuit) di tahun 1958. IC mengkombinasikan tiga komponen elektronik dalam sebuah piringan silikon kecil yang terbuat dari pasir kuarsa.

Para ilmuwan kemudian berhasil memasukkan lebih banyak komponenkomponen ke dalam suatu chip tunggal yang disebut semikonduktor. Hasilnya, komputer menjadi semakin kecil karena komponenkomponen dapat dipadatkan dalam chip.

Kemajuan komputer generasi ketiga lainnya adalah penggunaan sistem operasi (operating system) yang memungkinkan mesin untuk menjalankan berbagai program yang berbeda secara serentak dengan sebuah program utama yang memonitor dan mengkoordinasi memori komputer.

Setelah IC, tujuan pengembangan menjadi lebih jelas: mengecilkan ukuran sirkuit dan komponenkomponen elektrik. Large Scale Integration (LSI) dapat memuat ratusan komponen dalam sebuah chip. Pada tahun 1980-an, *Very Large Scale Integration* (VLSI) memuat ribuan komponen dalam sebuah chip tunggal disusul oleh UVLSI (*Ultra Very Large Scale Integration*).

Chip Intel 4004 yang dibuat pada tahun 1971 membawa kemajuan pada IC dengan meletakkan seluruh komponen dari sebuah komputer (central processing unit, memori, dan kendali input/output) dalam sebuah chip yang sangat kecil. Komputer-komputer ini, yang disebut minikomputer, dijual dengan paket piranti lunak yang mudah digunakan oleh kalangan awam. Piranti lunak yang paling populer pada saat itu adalah program word processing dan spreadsheet. Pada awal 1980-an, video game seperti Atari 2600 menarik perhatian konsumen pada komputer rumahan yang lebih canggih dan dapat diprogram.

Pada tahun 1981, IBM memperkenalkan penggunaan Personal Computer (PC) untuk penggunaan di rumah, kantor, dan sekolah. Jumlah PC yang digunakan melonjak dari 2 juta unit di tahun 1981 menjadi 5,5 juta unit di tahun 1982. Sepuluh tahun kemudian, 65 juta PC digunakan. Komputer melanjutkan evolusinya menuju ukuran yang lebih kecil, dari komputer yang berada di atas meja (desktop computer) menjadi komputer yang dapat dimasukkan ke dalam tas (laptop), atau bahkan komputer yang dapat digenggam (palmtop).

IBM PC bersaing dengan Apple Macintosh dalam memperebutkan pasar komputer. Apple Macintosh menjadi terkenal karena mempopulerkan sistem grafis pada komputernya, sementara saingannya masih menggunakan komputer yang berbasis teks. Macintosh juga mempopulerkan penggunaan piranti mouse.

Pada masa sekarang, kita mengenal perjalanan IBM compatible dengan pemakaian CPU: IBM PC/486, Pentium, Pentium II, Pentium III, Pentium IV (Serial dari CPU buatan Intel). Juga kita kenal AMD k6, Athlon, dsb. Ini semua masuk dalam golongan komputer generasi keempat.

Dengan menggunakan perkabelan langsung (disebut juga local area network, LAN), atau kabel telepon, jaringan ini dapat berkembang menjadi sangat besar.

B. KOMPUTER GENERASI BERIKUTNYA

Teknologi nano menandai komputer generasi kelima. Prosesor berkembang dari single core menjadi dual core bahkan sixth core dengan teknologi 32nm. Dalam prosesor yang sama ditanamkan juga GPU (Graphical

Processing Unit). Dari 32-bit pengalamatan kini telah dimulai era 64-bit baik hardware maupun softwarenya.

Kabel optik sedang dikembangkan untuk menggantikan kabel konvensional dengan kecepatan hingga 10 Gb/s bahkan 100 Gb/s dan dengan satu kabel dapat menjalankan beberapa protokol sehingga mampu melewatkan data, video dan audio dalam satu kabel. Beberapa topik yang menjadi penelitian untuk masa mendatang adalah *Quantum Computer*, *Chemical Computer*, *DNA Computing*, *Optical Computer* dan lain-lain.

Soal

- Apa alasan pentingnya penemuan awal seperti abakus bagi perkembangan komputer ?
- 2. Apa alasan mula-mula komputer digunakan dan dikembangkan pada era tahun 1940an ? Tuliskan contohnya!
- 3. Apa yang menyebabkan komputer pribadi menjadi begitu laku hingga kini?
- 4. Apa hubungannya penemuan transistor dengan perkembangan komputer?
- 5. Mungkinkah pada perkembangan selanjutnya komputer dapat berfikir seperti manusia ? Jelaskan jawaban anda !

BAB II

KOMPUTER DAN APLIKASINYA

A. REVOLUSI INDUSTRI

Perkembangan komputer tidak lepas pengaruhnya dari Revolusi Industri pada tahun 1760 di Inggris. Dengan adanya Revolusi Industri kehidupan perindustrian berubah dari mekanik menjadi mekanik elektronik bahkan elektronik. Kehidupan manusia berubah dari masyarakat petani menjadi masyarakat industri. Masyarakat seakan terbangun dari cara berpikir lama sulit berkembang karena terbentur keterbatasan teknologi menjadi haus dan berlomba-lomba menguasai teknologi terbaru.

B. REVOLUSI KOMPUTER

Seiring dengan revolusi industri yang melahirkan teknologi baru yang tiada henti, komputerpun mengalami revolusi, dari yang bentuknya sebesar rumah menjadi sebesar buku. Revolusi komputer belum berhenti seiring dengan terus ditemukannya teknologi baru untuk membuat komputer semakin kecil, ringan, cepat dan murah. Masyarakat industri mulai berubah menjadi masyarakat informasi. Segala sesuatu yang analog berubah menjadi digital. Kemunculan Internet merubah pola hidup dan kerja yang individu/lokal menjadi global/mendunia karena informasi bisa didapat dan diberi dari dan ke seluruh dunia.

C. KOMPUTER

Komputer menurut Kamus Besar Bahasa Indonesia adalah alat elektronik otomatis yg dapat menghitung atau mengolah data secara cermat menurut yg diinstruksikan, dan memberikan hasil pengolahan, serta dapat menjalankan sistem multimedia (film, musik, televisi, faksimile, dsb), biasanya terdiri atas unit pemasukan, unit pengeluaran, unit penyimpanan, serta unit pengontrolan.

Komputer menurut Merriam-Webster Dictionary adalah alat elektronik yang dapat diprogram yang dapat menyimpan, menerima dan memproses data.

D. TEKNOLOGI INFORMASI

Teknologi Informasi adalah teknologi yang menggabungkan komputasi (komputer) dengan jalur komunikasi yang membawa data, suara ataupun video (Williams dan Sawyer (2003)).

Teknologi Informasi menurut Merriam-Webster Dictionary adalah teknologi yang melibatkan pengembangan, pemeliharaan dan menggunakan sistem komputer, software dan jaringan untuk memproses dan mendistribusikan data.

Secara umum berdasarkan definisi keduanya, komputer dan teknologi informasi tidak dapat dipisahkan satu sama lain, bahkan dalam beberapa kasus dapat saling dipertukarkan artinya.

E. MENGAPA KOMPUTER

Pada awalnya komputer merupakan proyek dari pemerintah tetapi dalam perkembanganya karena komputer memerlukan teknologi tinggi dan terus diperbaharui maka pihak akademisi pun ikut memainkan peran penting. Komputer kemudian bukan hanya menjadi sebuah alat tetapi juga menjadi ilmu yang dipelajari diberbagai institusi diseluruh penjuru dunia.

Ada beberapa alasan mengapa ilmu tentang komputer perlu dipelajari :

- Komputer sudah merambah hampir diseluruh lapisan dunia kerja bahkan masyarakat biasa
- Komputer membuat pekerjaan menjadi lebih mudah dan produktif
- Komputer membuat kita terhubung dengan dunia luar
- Komputer merupakan lahan pekerjaan, dan lain-lain.

Mengapa komputer begitu cepat merambah dalam masyarakat terutama dalam dunia kerja sehingga hampir tidak ada kantor yang tidak ada komputernya?

Ada beberapa alasan mengapa komputer digunakan, yaitu:

Kecepatan

Kecepatan komputer dalam hal kalkulasi dan pengolahan data membuat banyak pekerjaan dapat selesai lebih cepat juga, misalnya : perhitungan bunga bank, antrian di kasir, perhitungan pajak dan lain-lain.

Keakuratan

Kemungkinan kesalahan yang dilakukan oleh komputer mendekati 0%. Kalaupun terjadi kesalahan itu biasanya disebabkan karna *human error* / kesalahan pengoperasian atau kesalahan program yang dijalankan. Dengan demikian bila segala sesuatu dijalankan sesuai dengan prosedur yang benar maka komputer menjadi sangat akurat.

Ketahanan

Sebagaimana mesin-mesin lainnya, komputer umumnya dapat bekerja 24 jam sehari dengan tidak mempengaruhi tingkat keakuratannya dan pada komputer dengan spesifikasi yang bagus kecepatannya juga tidak akan berkurang walau dijalankan berhari-hari.

Kemampuan Penyimpanan

Dimulai dari *loom cards*, media penyimpanan di komputer telah mengalami revolusinya sendiri hingga mampu memiliki kapasitas penyimpanan hingga Terabyte. Komputer di pasaran di pertengahan tahun 2009 pada umumnya dijual dengan kapasitas hard disk > 200Gb.

• MultiTasking/Melakukan beberapa pekerjaan sekaligus

Dengan komputer kita dapat melakukan beberapa pekerjaan sekaligus, misalnya : mencetak laporan ke printer sambil mem'bakar' datanya ke CD dengan diiringi musik.

Kemampuan Multimedia (Hiburan)

Komputer masa kini dapat dilengkapi dengan berbagai alat multimedia yang dapat memberikan hiburan, misalnya : Speaker, TV Tunner, Mic, DVDRom, dan lain-lain. Adanya perlengkapan ini membuat komputer tidak hanya dapat digunakan untuk bekerja tetapi juga menjadi alat hiburan yang lengkap dan canggih.

F. APLIKASI KOMPUTER

Pemanfaatan komputer sangat luas sehingga hampir diseluruh bidang pekerjaan diperlukan adanya komputer. Di bawah ini beberapa diantaranya adalah:

Keuangan

Proses pengelolaan keuangan menjadi sangat terbantu dengan adanya komputer. Perhitungan bunga tabungan, kredit dan proses ATM menggunakan komputer. Bahkan hampir disemua perusahaan mengunakan komputer untuk mencatat keuangannya.

Industri

Keberadaan komputer tak terpisahkan dengan industri. Pabrikasi mobil, motor atau apapun menggunakan komputer untuk mengatur mesinmesin bekerja secara otomatis dan akurat.

Medis

Dunia medis pun tak ketinggalan memanfaatkan komputer. Komputer digunakan misalnya untuk memonitoring keadaan pasien dan mencatat rekam medis pasien.

Perdagangan

Dengan memanfaatkan komputer proses perdagangan bisa menjadi lebih cepat, efektif dan efisien. Kasir-kasir di swalayan, ecommerce, barang-barang yang menggunakan barcode merupakan contoh pemanfaatan komputer.

Transportasi

Jadwal kedatangan dan keberangkatan pesawat, kapal, kereta diatur dengan menggunakan komputer yang terhubung via internet. Pemesanan dan pembelian tiket juga dapat dilakukan via internet.

Komunikasi

Komunikasi data menjadi mudah dengan adanya teknologi jaringan baik bersifat lokal (LAN) ataupun internasional (Internet). Pilihan komunikasi menjadi sangat beragam. Komunikasi konvensional mulai ditinggalkan dan diganti dengan komunikasi modern. Surat berganti dengan email, telepon mendapat saingan dari chatting, video chatting, video conference, bahkan telepon IP.

• Masih banyak lagi bidang lainnya, misalnya entertaiment, grafis, pertambangan dan lain-lain.

Soal

- 1. Tuliskan 5 alasan komputer mendapat perhatian besar di dunia!
- 2. Tuliskan 5 contoh penerapan komputer di bidang pendidikan!
- 3. Apa hubungan revolusi industri dengan komputer?
- 4. Tuliskan 5 contoh revolusi industri!
- 5. Tuliskan 3 contoh revolusi industri yang berhubungan dengan komputer!

BAB III

KOMPUTER DAN BAGIAN-BAGIANNYA

Gambar 3.1 Komputer dan Perlengkapannya

A. KOMPUTER UMUM /ALL GENERAL PURPOSE COMPUTERS

Komputer umum adalah komputer yang dapat melakukan banyak jenis pekerjaan yang berbeda.

Sebagai mesin yang dapat diprogram, komputer memiliki dua karakteristik sebagai berikut :

- Merespon terhadap kumpulan perintah tertentu yang dibuat secara baik
- Menjalankan daftar perintah yang diberikan (program)

Komputer memiliki komponen yang dibagi dua bagian besar, yaitu:

- Perangkat Keras (Hardware) : bagian fisik dari komputer
 Misalnya : Monitor, CPU, Keyboard, dan lain-lain.
- Perangkat Lunak (Software) : program yang berjalan di komputer
 Misalnya : Sistem Operasi, Applikasi dan lain-lain.

Dalam penggunaan istilah CPU orang sering salah kaprah. CPU sesuai dengan kepanjangannya adalah prosesor tetapi masyarakat umumnya menggunakan kata CPU untuk menggambarkan System Unit yang dibungkus *Casing* berisi CPU, motherboard, dll. Oleh karena itu pengertian CPU terkadang harus disesuaikan dengan konteks kalimatnya.

Kebutuhan minimun hardware adalah:

• **Memory**: untuk menyimpan data atau program, paling tidak, sementara.

Contoh: RAM, ROM

• **Media Penyimpanan**: untuk menyimpan data secara permanen dalam jumlah besar.

Contoh: Disk drive(Hard Disk, Floppy Disk), Tape Drive

 Peralatan Masukan (Input Device): peralatan untuk memasukkan data dan perintah ke dalam komputer.

Contoh: Keyboard, Mouse

• Peralatan Keluaran (**Output Device**): peralatan untuk menampilkan atau menghasilkan keluaran dari komputer.

Contoh: Monitor, Printer

 Prosesor (CPU/Central Processing Unit): merupakan 'jantung' dari komputer yang memproses semua instruksi.

Contoh: Prosesor Intel, Prosesor AMD

 Papan Induk (Mainboard/Motherboard): papan sirkuit dimana CPU, Input dan Output Device terpasang yang mensinkronisasikan semuanya.
 Prosesor yang berbeda membutuhkan motherboard yang berbeda pula.

Contoh: Motherboard untuk prosesor Intel berbeda Motherboard untuk presesor AMD.

 Casing / Power Supply: wadah untuk menyusun semua hardware agar tertata rapi. Wadah/casing ini dilengkapi dengan power supply sebagai sumber listrik yang mengubah tegangan AC menjadi DC sesuai kebutuhan setiap hardware.

Kebutuhan minimal software adalah:

Sistem Operasi

B. KLASIFIKASI KOMPUTER

Komputer dapat diklasifikasikan berdasarkan ukuran dan konsumsi listrik (walaupun dapat saling tumpang-tindih), yaitu :

Komputer Mini/Laptop/Notebook

Komputer jinjing/lipat yang ukurannya kecil, monitor-keyboard-cpu menyatu, dapat menggunakan batteray sebagai sumber listrik sehingga dapat dibawa kemana-mana. Termasuk dalam golongan ini adalah *Tablet PC*, yaitu notebook dengan layar sentuh / *touch screen* yang memiliki sistem operasi yang berbeda dengan komputer biasa karena menggunakan layar sentuh. Sistem operasi yang umum dipakai adalah *Windows XP Tablet PC Edition*. Tersedia juga versi Linux dan Mac.

Gambar 3.2 Tablet PC HP Compaq

Netbook

Mirip dengan Notebook, hanya sesuai dengan namanya didesign lebih kepada pengguna yang mobile dan sering berinternet. Netbook tidak dilengkapi dengan DVDRom internal dan layarnya lebih kecil 8"-11".

Komputer Pribadi/Personal Computer(PC)

Ciri fisik PC ditandai dengan keleluasaannya dalam mengganti hardware sedangkan dari segi penggunanya adalah masyarakat umum. Karena bentuknya yang besar dan tergantung oleh listrik maka PC tidak dapat dengan mudah untuk dipindahkan (*tidak mobile*).

PC dapat digolongkan lagi dalam dua kelompok, yaitu :

- PC BuildUp : PC yang dikeluarkan oleh perusahaan komputer tertentu, misalnya Acer, IBM.
- PC Rakitan : PC yang dirakit sendiri oleh perseorangan atau toko komputer.

Server

Secara fisik mirip dengan PC, hanya casing CPU-nya tetapi memiliki spesifikasi lebih tinggi (lebih tangguh, lebih cepat, lebih besar kapasitasnya). Server pada umumnya diproduksi oleh suatu perusahaan komputer tertentu, misalnya IBM, HP, Dell dan lain-lain, tetapi kadang kala PC digunakan sebagai server dengan alasan biaya.

Mainframe

Merupakan kumpulan komputer-komputer yang berfungsi untuk melakukan banyak pekerjaan secara bersamaan dengan jumlah data yang sangat besar.

Supercomputer

Terdiri dari komputer-komputer mutakhir yang berfokus untuk melakukan perkerjaan tertentu dengan kecepatan yang sangat tinggi.

C. PERALATAN MASUKAN (INPUT DEVICE)

Komputer sebagai alat yang fungsi utamanya adalah memproses data, haruslah mendapat masukan data atau instruksi melalui perangkat tertentu. Peralatan input ini ada yang memerlukan bantuan manusia sepenuhnya dan ada yang hanya membutuhkan sedikit interaksi dengan manusia.

Berikut adalah beberapa contoh peralatan input, yaitu:

Keyboard

Keyboard pada mula terhubung dengan system unit lewat port *Com*, kemudian diperbarui dengan PS/2 dan yang terbaru menggunakan USB. Selain koneksi berbentuk kabel, keyboard ada yang terkoneksi dengan gelombang pendek yang disebut *wireless keyboard* sehingga tidak membutuhkan kabel.

Mouse

Teknolgi koneksi mouse hampir sama dengan keyboard kecuali pada mulanya mouse terkoneksi lewat port *serial*. Teknologi selanjutnya sama dengan keyboard. Mouse juga dapat dibedakan berdasarkan teknologi pendeteksi gerakannya menjadi : Mouse dengan track ball dan Mouse Optic (menggunakan cahaya infra merah).

Stylus

Stylus adalah pena yang didesain khusus untuk menulis/menekan dilayar monitor khusus atau terdapat tipe pena yang terhubung dengan komputer via kabel dan bisa digunakan untuk menggambar/menulis pada kertas dan hasilnya tampil di layar monitor.

Joystick/Gamepad

Merupakan peralatan input untuk permainan atau simulator.

Microphone

Bunyi masuk melalui microphone.

Scanner

Berfungsi untuk menyalin gambar/teks yang diletakkan di atasnya. Hasilnya biasanya berupa gambar di komputer dengan teknologi software terbaru bila input berupa teks maka scanner dapat mengenalinya sebagai tulisan yang dapat dipindahkan ke aplikasi pengolah kata, seperti MS Word.

Voice Recognation System

Peralatan yang digunakan untuk memasukan perintah lewat suara atau biasanya untuk memeriksa kecocokan suara.

Sensor

Berupa alat yang memancarkan infra merah, merespon terhadap benda yang melewatinya/melintasi infra merah. Infra merah juga dipakai sebagai sensor pada robot.

Camera

Menangkap gambar baik berupa foto maupun video sebagai masukan bagi komputer. Aplikasinya pada webcam (untuk *chating* atau *telekonverence*) atau CCTV (kamera pengintai/pengawas yang dipasang pada toko, bank, hotel bahkan rumah).

D. PERALATAN KELUARAN (OUTPUT DEVICE)

Peralatan output merupakan kebalikan fungsi dari peralatan input. Peralatan output berfungsi menterjemahkan data yang diolah untuk dapat diketahui oleh user.

Berikut adalah beberapa contoh peralatan output, yaitu:

Monitor

Monitor adalah keluaran yang paling umum dimana user dapat melihat tampilan sesuai dengan perintah yang dimasukkan. Monitor hingga saat ini dibuat dengan dua teknlogi, yaitu CRT dan LCD.

Printer

Printer merupakan alat cetak output dari komputer. Printer dibedakan menjadi tiga berdasarkan cara mencetak, yaitu : Dot matrix, Inkjet(dan sejenisnya) dan Laser. Koneksi printer ke komputer juga ada dua, yaitu : paralel (lama) dan USB (baru).

Speaker

Dengan speaker, komputer dapat menghasilkan keluaran berupa bunyi.

LCD Proyektor

Menghasilkan tampilan seperti monitor hanya saja dipancarkan ke layar atau dinding dengan tampilan lebih besar. Biasanya dipakai untuk presentasi. Teknologi gambar yang digunakan saat ini adalah DLP dan LCD.

E. KOMPUTER UNTUK TUJUAN KHUSUS / SPECIAL PURPOSE COMPUTER

Selain komputer yang dibuat untuk tujuan/pemakaian umum, ada juga komputer yang dibuat untuk tujuan tertentu / special purpose computer. Komputer ini dibuat untuk mengerjakan satu tugas tertentu saja.

Contoh komputer untuk tujuan khusus adalah:

- Deep Blue, komputer yang khusus untuk memainkan catur
- GRAPE-6
- 5E89

Soal

- 1. Selain Software dan Hardware yang menyusun sebuah komputer, terdapat istiliah *Brainware*. Jelaskan dan beri contoh Brainware tersebut!
- 2. Tuliskan 3 perbedaan antara *General Purpose Computer* dan *Special Purpose Computer*!
- 3. Tuliskan 2 perbedaan antara Notebook, Netbook dan PC Tablet!
- 4. Tuliskan hardware apa saja yang digunakan dalam *Teleconverence*!
- 5. Tuliskan 3 keuntungan dan kerugian membeli komputer build-up dan komputer rakitan!

Soal

- 1. Selain Software dan Hardware yang menyusun sebuah komputer, terdapat istiliah *Brainware*. Jelaskan dan beri contoh Brainware tersebut!
- 2. Tuliskan 3 perbedaan antara *General Purpose Computer* dan *Special Purpose Computer*!
- 3. Tuliskan 2 perbedaan antara Notebook, Netbook dan PC Tablet!
- 4. Tuliskan hardware apa saja yang digunakan dalam *Teleconverence*!
- 5. Tuliskan 3 keuntungan dan kerugian membeli komputer build-up dan komputer rakitan!

BAB IV

PERANGKAT KERAS SISTEM UTAMA

Sistem utama yang sering disebut cpu merupakan bagian paling vital dari suatu komputer. Di dalam sistem yang terbungkus casing inilah semua data diproses mulai dari data diterima sampai dikeluarkan lagi sesuai instruksi yang diberikan.

Sistem utama ini terdiri dari:

- Motherboard
- CPU
- Memori
- Media Penyimpanan
- Casing+Power Supply

Gambar 4.1. Isi dari Sistem Utama

1. MOTHERBOARD

Motherboard (MB) adalah bodi/mainframe dari komputer yang menghubungkan semua komponen. Komponen dalam MB ada yang bersifat lepasan dan paten(on-board). Motherboard memiliki bentuk yang paten (form faktor) berupa ukuran dan posisi lubang cpu, baut, i/o yang standart.

MB terdiri dari minimal:

- Soket(/slot) tempat untuk CPU
- Slot untuk memori
- Slot untuk kartu tambahan (VGA, Sound Card, Modem, dll)
- Chipset untuk mengatur data dari/ke CPU, memori dan periperal
- ROM
- Clock generator
- Koneksi Listrik dan jaringannya
- I/O konektor (mouse, keyboard, dll)

Periperal Terintegrasi.

Untuk menghemat biaya dan ukuran motherboard maka banyak komponen yang dibuat terintegrasi dalam motherboard yang dikenal dengan istilah **small form factor**.

Periperal Terintegrasi antara lain:

- Disk controller untuk FD, PATA, SATA dan RAID
- Vga (Intel, ATI, Nvidia)
- Sound card
- Ethernet network controller 10/100/1G
- Port (Serial, Paralel, PS/2, USB, InfraRed)
- Sensor temperatur, kecepatan fan, voltase.
- Expansion Slot (Slot untuk tambahan peralatan)

Motherboard memiliki dua chipset utama, yaitu:

a. Northbridge

Fungsi utamanya mengatur lalu-lintas data dari/ke CPU dan memori

b. Southbridge

Fungsi utamanya mengatur lalu-lintas data dari/ke I/O

Gambar 4.2. Area kerja Northbridge dan Southbridge

Gambar 4.3. Motherboard untuk Prosesor AMD

Gambar 4.4. Motherboard untuk Prosesor Intel

Gambar 4.5. Motherboard dengan Dual Prosesor

Motherboard yang didesain untuk server biasanya memiliki lebih dari 1 soket untuk CPU seperti Gambar 4.5.

2. CPU (CENTRAL PROCESSING UNIT) / PROSESOR

a. Sejarah

Prosesor atau microprocessor pertama kali diproduksi oleh Intel yaitu 4004 pada tahun 1970 untuk kalkulator. Pada tahun 1971, Intel mengeluarkan 8-bit 8080, mikroprosesor *general purpose* pertama. Digunakan pada MITS Altair 8800, komputer pribadi (PC) pertama. Dengan harga yang murah, Altair membuktikan komputer dapat digunakan di rumah (sebelumnya komputer hanya digunakan di universitas, angkatan bersenjata dan instansi besar). Keberhasilan ini diikuti oleh produsen lain seperti Motorolla 6800, WDC dan lain-lain.

Gambar 4.6 Chip Intel 4004

Mikroprosesor 16-bit pertama diperkenalkan oleh National Semiconductor IMP-16 di tahun 1973. Intel mengeluarkan 8086 yang merupakan keluarga x86 pertama dan menjadi kekuatan sebagian besar PC. Kemudian diikuti 8088, 80186, 80286, 80386, 80486. Produsen lainnya yang berhasil termasuk AMD dan Cyrix. Arsitektur microprosesor terus berkembang menjadi 32-bit dan 64-bit.

Microprosesor terus berkembang dengan dengan pendekatan penambahan prosesor. Dimulailah era multi core. Prosesor multi core adalah chip tunggal yang mengandung lebih dari satu inti mikroprosesor. Dimulai dengan dual core, kini terus berkembang hingga 6 core.

b. Teknologi

Prosesor memiliki memori sendiri yang disebut *cache* yang menyatu dengan prosesor. Di dalam prosesor terdapat chip yang disebut *microprocessor*. Chip ini terdiri dari jutan transistro mikro yang terangkai pada *silicon wafer*.

Gambar 4.7 Silicon Wafer

Prosesor menghasilkan panas tinggi bahkan ada yang sanggup untuk menggoreng telor, karena itu diperlukan cooler(heatsink+fan). Prosesor memiliki bentuk, arsitektur yang berbeda-beda untuk tiap jenisnya. Ada yang berupa slot dan soket, pin dan non-pin.

c. Penggunaan Prosesor

Sebagian besar prosesor dibuat untuk komputer, baik desktop, laptop, server atau mainframe. Di pasar ini hanya ada dua produsen yang terus bersaing, yaitu Intel dan AMD.

Persaingan paling ketat ada pada prosesor desktop. Prosesor untuk Laptop masih dikuasai oleh Intel dengan Prosesor Atom. Untuk kelas server dan mainframe prosesor yang digunakan adalah Xeon dan biasanya dalam satu sistem komputer terpasang lebih dari 1 prosesor.

Selain untuk komputer, prosesor juga digunakan dibanyak peralatan, misalnya :

- Microcontroller
- Data Signal Processor (DSP)
- Graphics Processing Unit (GPU)
- Handphone/Smartphone/PDA

Di bidang ini banyak produsen yang bersaing seperti Samsung, Motorolla dan Intel sendiri.

Tabel 6.1 Keluarga Prosesor Intel

	KB					2.33 GHz	
12 MB	6x256	12.8 GT/s	Six	32 nm	LGA 1366	1.6 GHz -	Intel Core i9
MB	KB				LGA 1366	3.33 GHz	
8-8M9	4×256	4.8 GT/s, 6.400 GT/s	Quad	45 nm	LGA 1156,	1.6 GHz-	Intel Core i7
MB			Quad		LGA 1366	3.46 GHz	
4 MB - 8	256 KB	2.5 GT/s	Dual,	32 nm, 45 nm	LGA 1156,	1.06 GHz -	Intel Core i5
MB						3.06 GHz	
3 MB - 4	•	-	Dual	32 nm	LGA 1156	2,4 GHz -	Intel Core i3
	12 MB	1066 MHz, 1333 MHz, 1600 MHz	Dual, Quad		SocketP, SocketJ, SocketT	3.33 GHz	
	1 MB -	533 MHz, 667 MHz, 800 MHz,	Single,	45 nm, 65 nm	SocketM,	1.06 GHz -	Intel Core 2
						2.33 GHz	
	2 MB	533 MHz, 667 MHz	Single, Dual	65 nm	SocketM	1.06 GHz -	Intel Core
							Dual-Core
	2 MB	1066 MHz	Dual	nm	SocketP, SocketT	2.93 GHz	Pentium
	1 MB -	533 MHz, 667 MHz, 800 MHz,	Single,	32 nm, 45 nm, 65	SocketM,	1.33 GHz -	Intel
	2 MB					2,266 GHz	
	1 MB -	400 MHz, 533 MHz	Single	90 nm, 130 nm	Socket479	-ZHW 008	Pentium M
	MB						Edition
MB	-1024				SocketT	3.73 GHz	Extreme
0 KB - 2	512 KB	800 MHz, 1066 MHz	Single	90 nm, 130 nm	Socket 478,	3.2 GHz-	Pentium 4
	-2 MB	1066 MHz		nm, 180 nm	Socket 478, Socket T	3.8 GHz	
	256 KB	400 MHz, 533 MHz, 800 MHz,	Single	65 nm, 90nm, 130	Socket 423,	1.3 GHz-	Pentium 4
	MB	MHz, 1333 MHz, 1600 MHz	Six	nm, 250 nm	SocketB		
16 MB	-16	MHz, 667 MHz, 800 MHz, 1066	Dual, Quad,	nm, 130 nm, 180	SocketM, SocketJ, SocketT,	3.8 GHz	
4 MB -	256 KB	100 MHz, 133 MHz, 400 MHz, 533	Single,	45 nm, 65 nm, 90	Slot 2, Socket 603, Socket 604,	400 MHz-	IntelXeon
				nm, 250 nm	495, Socket M, Socket T		
	1 MB	MHz, 533 MHz, 800 MHz		nm, 130 nm, 180	Socket 478, Socket 479, Socket	3,6 GHz	Celeron
	0 KB -	66 MHz, 100 MHz, 133 MHz, 400	Single, Dual	45 nm, 65 nm, 90	Slot1, Socket370,	266 MHz-	Intel
	-1 MB				PBGA441	2 GHz	
	512 KB	400 MHz, 533 MHz, 667 MHz	Single, Dual	45 nm	PBGA437	-zHW 008	IntelAtom
Cache	Cache		Core				
ᄄ	12	Bus Speed	Jumlah	Fabrikasi	Socket	Clock Speed	Prosesor

Tabel 6.2 Keluarga Prosesor AMD

Clock Speed Socket nm Fabrikasi nm Jumlah Core Bus Speed L2 Cache Cache Core Core Core Core Core Cache Cach	6144	512	1800 MHz, 2000 MHz	Quad	45	Socket AM2+, Socket	2,5 GHz – 3,4 GHz	PhenomII
Prosesor Clock Speed Socket fmm Fabrikasi chem Jumlah chem Bus Speed carbe L2 carbe AMDK5 75 MHz – 133 MHz Socket5, Socket7 500 nm, 350 nm Single 50 MHz, 60 MHz	2048	512	1600 MHz, 1800 MHz, 2000 MHz	Quad	65	Socket AM2+	1,8 GHz - 2,0 GHz	Phenom
Prosesor Clock Speed Socket nm Fabrikasi Jumlah Core Bus Speed Core L2 Cache Cache AMDK5 75 MHz-133 MHz Socket5, Socket7 500 nm, 350 nm Single 50 MHz, 60 MHz, 66 MHz - AMDK6 166 MHz-300 MHz Socket7 350, 250 Single 50 MHz, 60 MHz, 66 MHz - AMDK6-1 166 MHz-550 MHz SocketA 250, 180 Single 50 MHz, 60 MHz, 66 MHz - Athlon MR-1 1000 MHz-1400 Slot A, Socket A 180 Single 130 MHz, 166 MHz, 95 MHz, 97 MHz, 100 0,128 Athlon MR-1 1,33 GHz - 2,33 GHz Socket A 180, 130 Single 130 MHz, 166 MHz, 200 MHz 256 Athlon XP-1 1,4 GHz - 2,2 GHz Socket A 180, 130 Single 100 MHz, 133 MHz 512 Opteron 1,5 GHz - 2,2 GHz Socket A 130 Single 100 MHz, 133 MHz 512 Opteron 1,5 GHz - 2,6 GHz Socket 1939, Socket 939, So	2048	256 - 512	1000 MHz	Quad	65	SocketF, SocketAM2	1,7 GHz – 2,5 GHz	Opteron
Prosesor Clock Speed Socket nm Fabrikasi Lumlah (core) Jumlah (core) Bus Speed L2 carbe (arbe) AMDK5 75 MHz – 133 MHz Socket 5, Socket 7 500 nm, 350 nm Single 50 MHz, 60 MHz, 66 MHz - AMDK6 166 MHz – 300 MHz Socket 7 500 nm, 350 nm Single 50 MHz, 60 MHz, 66 MHz - AMDK6-1 166 MHz – 300 MHz Socket 7 390, 250 Single 50 MHz, 60 MHz, 66 MHz - AMDK6-2 166 MHz – 300 MHz Socket 7 390, 250 Single 50 MHz, 60 MHz, 66 MHz - Athlon NP 1,33 GHz – 2,33 GHz Socket A 180, 130 Single 100 MHz 256 Athlon XP 1,3 GHz – 2,2 GHz Socket A 180, 130 Single 100 MHz, 133 MHz 256 Athlon XP 1,4 GHz – 2,2 GHz Socket A 130 Single 100 MHz, 133 MHz 256 Sempron 1,5 GHz – 2,2 GHz Socket AM2, Socket 393 Socket 1939, Socket 1939 Single 100 MHz, 133 MHz 256 Sempron 1,5 GHz – 2,3 GHz		512			20,00	000000	1,00012 2,00012	X2
Prosesor Clock Speed Socket nm Fabrikasi Jumlah Lore Bus Speed L2 carbe (ABMD K5) AMDK5 75 MHz – 133 MHz Socket 5, Socket 7 500 nm, 350 nm Single 50 MHz, 60 MHz, 66 MHz - AMDK65 166 MHz – 300 MHz Socket 7 500 nm, 350 nm Single 50 MHz, 60 MHz, 60 MHz, 66 MHz - AMDK65 166 MHz – 300 MHz Socket 7 350, 250 Single 50 MHz, 60 MHz, 60 MHz - AMDK65 166 MHz – 300 MHz Socket 7 250, 180 Single 50 MHz, 95 MHz, 97 MHz, 100 0,128 Athlon MHz 1000 MHz – 2,33 GHz Socket A 180, 130 Single 130 MHz, 166 MHz, 200 MHz 256 Duron 1,3 GHz – 2,2 GHz Socket A 180, 130 Single 100 MHz, 133 MHz 256 Athlon XP 1,4 GHz – 2,2 GHz Socket A 130 Single 100 MHz, 133 MHz 256 Sempron 1,5 GHz – 2,2 GHz Socket AM2, Socket 939,	T	256 -	800 MH2	ا ا	90 65	Socket S1	1 6 GHz = 2 3 GHz	Turion 64
Prosesor Clock Speed Socket (Ambus) Fabrikasi (Ambus) Jumlah (Core) Bus Speed (Core) L2 (Care) Core KB Adhe Core Core KB Core Care KB Adhe Core KB Core KB Care KB Adhe Core KB Core KB Core KB Core KB Adhe Core KB Adhe Core KB Adhe Core Core KB Adhe Core		512 - 1024	800 MHz	Single	90	Socket 754	1,6 GHz – 2,4 GHz	Turion 64
Prosesor Clock Speed Socket nm Fabrikasi nm Jumlah Core Bus Speed L2 Cache Cache AMD K5 75 MHz – 133 MHz Socket 5, Socket 7 500 nm, 350 nm Single 50 MHz, 60 MHz, 60 MHz, 66 MHz - AMD K6 166 MHz – 300 MHz Socket 7 250, 180 Single 50 MHz, 60 MHz, 66 MHz - Athlon 1000 MHz-1400 Slot A, Socket A 180 Single 100 MHz 50 MHz, 100 0,128 Athlon XP 1,33 GHz – 2,33 GHz Socket A 180,130 Single 130 MHz, 156 MHz, 200 MHz 256 - Duron 600 MHz – Socket A 180,130 Single 133 MHz, 166 MHz, 200 MHz 256 - Athlon XP – 1,4 GHz – 2,2 GHz Socket A 180,130 Single 130 MHz, 133 MHz 256 - Athlon XP – 1,4 GHz – 2,2 GHz Socket A 180,130 Single 100 MHz, 133 MHz 256 - M 1,8 GHz Socket A 180,130 Single 100 MHz, 133 MHz 256 - MH 1,6 GHz – 2,2 GHz Socket A <td></td> <td>512 - 1024</td> <td>800 MHz</td> <td>Single</td> <td>130, 90</td> <td>Socket754</td> <td>1,6 GHz – 2,6 GHz</td> <td>Athlon Mobile 64</td>		512 - 1024	800 MHz	Single	130, 90	Socket754	1,6 GHz – 2,6 GHz	Athlon Mobile 64
Prosesor Clock Speed Socket Speed Fabrikasi nm Jumlah Core Bus Speed Cocket L2 Cache RM AMDK5 75 MHz – 133 MHz Socket 5, Socket 7 500 nm, 350 nm Single 50 MHz, 60 MHz, 60 MHz, 60 MHz		1024						X2
Prosesor Clock Speed Socket Lock Speed Fabrikasi Locket Speed Jumlah Locket Locket Speed Bus Speed Rocket Speed Locket Speed Rocket Speed L2 Cache Rocket Speed Rocket		256 -	1000 MHz	Dual	90, 65	Socket 939, Socket AM2	2,0 GHz - 3,2 GHz	Athlon 64
Prosesor Clock Speed Socket Fabrikasi nm Jumlah Core Bus Speed L2 Cache RB AMDK5 75 MHz – 133 MHz Socket5, Socket7 500 nm, 350 nm Single 50 MHz, 60 MHz, 66 MHz - AMDK6 166 MHz – 300 MHz Socket7 250, 180 Single 50 MHz, 66 MHz - AMDK6 166 MHz – 350 MHz Super Socket 7 250, 180 Single 50 MHz, 66 MHz - AMDK6 166 MHz – 350 MHz Super Socket 7 250, 180 Single 50 MHz, 66 MHz - AMDK6 1000 MHz – 1400 Slot A, Socket A 180 Single 66 MHz, 95 MHz, 97 MHz, 100 0,128 Athlon NP 1,33 GHz – 2,33 GHz Socket A 180, 130 Single 130 MHz, 166 MHz, 200 MHz 256 Duron 600 MHz Socket A 180, 130 Single 100 MHz, 133 MHz 512 Athlon XP 1,8 GHz Socket A 130 Single 100 MHz, 133 MHz 512 Athlon XP 1,4 GHz – 2,2 GHz Socket A 130 Single		1024				Socket AM2		
Prosesor Clock Speed Socket Inm Fabrikasi Pam Jumlah Core Bus Speed L2 Cache RB AMD K5 75 MHz – 133 MHz Socket 5, Socket 7 500 nm, 350 nm Single 50 MHz, 60 MHz, 66 MHz - KB AMD K6 166 MHz – 300 MHz Socket 7 350, 250 Single 50 MHz, 60 MHz, 66 MHz -		512 -	800 MHz - 1000 MHz	Single	130, 90, 65	Socket 754, Socket 939,	2,0 GHz - 2,8 GHz	Athlon 64
Prosesor Clock Speed Socket Fabrikasi nm Jumlah Core Bus Speed 12 Cache RB AMDK5 75 MHz – 133 MHz Socket5, Socket7 500 nm, 350 nm Single 50 MHz, 60 MHz, 66 MHz - AMDK6 166 MHz – 300 MHz Socket7 250, 180 Single 50 MHz, 60 MHz, 66 MHz - AMDK6-2 166 MHz – 550 MHz Super Socket 7 250, 180 Single 50 MHz, 60 MHz, 66 MHz - Athlon NP- 1,000 MHz-1400 Slot A, Socket A 180 Single 100 MHz 256 Athlon XP 1,33 GHz – 2,33 GHz Socket A 180, 130 Single 133 MHz, 166 MHz, 200 MHz 256 - 512 Duron 600 MHz – 2,2 GHz Socket A 180, 130 Single 100 MHz, 133 MHz 64 Athlon XP- 1,4 GHz – 2,2 GHz Socket A 130 Single 100 MHz, 133 MHz 256 - 512 Athlon XP- 1,4 GHz – 2,2 GHz Socket A 130 Single 100 MHz, 133 MHz 512 512 Socket A 130 Single		1024	800 MHz - 1000 MHz	Single, Dual	90	Socket 939, Socket 940, Socket AM2, Socket F	1,3 GHz – 3,0 GHz	Opteron
Prosesor Clock Speed Socket Fabrikasi Jumlah Core Bus Speed L2 Cache RB AMDK5 75 MHz – 133 MHz Socket 5, Socket 7 500 nm, 350 nm Single 50 MHz, 60 MHz, 66 MHz - AMDK6-2 166 MHz – 300 MHz Socket 7 250, 180 Single 50 MHz, 60 MHz, 66 MHz - AMDK6-2 166 MHz – 550 MHz Super Socket 7 250, 180 Single 66 MHz, 95 MHz, 97 MHz, 100 0,128 Athlon 1000 MHz – 1400 Slot A, Socket A 180 Single 100 MHz 256 Athlon XP 1,33 GHz – 2,33 GHz Socket A 180,130 Single 133 MHz, 166 MHz, 200 MHz 256 Duron 600 MHz – Socket A 180,130 Single 130 MHz, 133 MHz 512 Athlon XP 1,8 GHz – 2,2 GHz Socket A 130 Single 100 MHz, 133 MHz 512 Athlon XP 1,4 GHz – 2,2 GHz Socket A 130 Single 100 MHz, 133 MHz 512 Athlon XP 1,4 GHz – 2,2 GHz Socket A 130 <t< th=""><td></td><td>512</td><td></td><td>Singin</td><td>130</td><td>OCKELL</td><td>1,5 GHZ - 2,2 GHZ</td><td>Semprom</td></t<>		512		Singin	130	OCKELL	1,5 GHZ - 2,2 GHZ	Semprom
Prosesor Clock Speed Socket Fabrikasi Jumlah Core Bus Speed L2 Cache Cache (AB) AMD K5 75 MHz – 133 MHz Socket 5, Socket 7 500 nm, 350 nm Single 50 MHz, 60 MHz, 66 MHz - AMD K6-2 166 MHz – 300 MHz Socket 7 250, 180 Single 50 MHz, 60 MHz, 66 MHz - AMD K6-2 166 MHz – 550 MHz Super Socket 7 250, 180 Single 66 MHz, 95 MHz, 97 MHz, 100 0,128 Athlon 1000 MHz-1400 Slot A, Socket A 180 Single 100 MHz 256 Athlon XP 1,33 GHz – 2,33 GHz Socket A 180,130 Single 133 MHz, 166 MHz, 200 MHz 256 - Duron 600 MHz – Socket A 180,130 Single 100 MHz, 133 MHz 512 - Athlon XP – 1,4 GHz – 2,2 GHz Socket A 130 Single 100 MHz, 133 MHz 56 - Athlon XP – 1,4 GHz – 2,2 GHz Socket A 130 Single 100 MHz, 133 MHz 56 -	T	310		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	200	Socio+ A	1000000	S
Prosesor Clock Speed Socket Fabrikasi nm Jumlah Core Bus Speed L2 Cache Cache Cache Cache AMD K5 75 MHz – 133 MHz Socket 5, Socket 7 500 nm, 350 nm Single 50 MHz, 60 MHz, 66 MHz - KB AMD K6-2 166 MHz – 550 MHz Super Socket 7 250, 180 Single 50 MHz, 60 MHz, 66 MHz - 0,128 Athlon 1000 MHz-1400 Slot A, Socket A 180 Single 100 MHz 100 MHz, 97 MHz, 100 0,128 Athlon XP 1,33 GHz – 2,33 GHz Socket A 180,130 Single 133 MHz, 166 MHz, 200 MHz 256 - 512 Duron 600 MHz – 4 Socket A 180,130 Single 100 MHz, 133 MHz 256 - 512		256 - 513	100 MHz, 133 MHz	Single	130	SocketA	1,4 GHz – 2,2 GHz	Athlon XP-
Prosesor Clock Speed Socket Fabrikasi Jumlah Bus Speed L2 AMDK5 75 MHz –133 MHz Socket 5, Socket 7 500 nm, 350 nm Single 50 MHz, 60 MHz, 66 MHz - AMDK6-2 166 MHz – 300 MHz Socket 7 250, 180 Single 50 MHz, 60 MHz, 66 MHz - AMDK6-2 166 MHz – 550 MHz Super Socket 7 250, 180 Single 66 MHz, 95 MHz, 97 MHz, 100 0,128 Athlon 1000 MHz-1400 Slot A, Socket A 180 Single 100 MHz 100 MHz, 95 MHz, 97 MHz, 100 256 Athlon XP 1,33 GHz – 2,33 GHz Socket A 180,130 Single 133 MHz, 166 MHz, 200 MHz 256 - Duron 600 MHz – Socket A 180,130 Single 100 MHz, 133 MHz 256 -							1,8 GHz	
Prosesor Clock Speed Socket Fabrikasi Jumlah Bus Speed L2 AMDK5 75 MHz – 133 MHz Socket5, Socket7 500 nm, 350 nm Single 50 MHz, 60 MHz, 66 MHz - AMDK6-2 166 MHz – 300 MHz Socket7 350, 250 Single 50 MHz, 60 MHz, 66 MHz - AMDK6-2 166 MHz – 550 MHz Super Socket 7 250, 180 Single 66 MHz, 95 MHz, 97 MHz, 100 0,128 Athlon 1000 MHz-1400 Slot A, Socket A 180 Single 100 MHz 100 MHz, 200 MHz 256 - Athlon N/P 1,33 GHz – 2,33 GHz Socket A 180,130 Single 133 MHz, 166 MHz, 200 MHz 256 - 512 180 180,130 Single 133 MHz, 166 MHz, 200 MHz 256 -		64	ω	Single	180, 130	SocketA	-2HM 009	Duron
Prosesor Clock Speed Socket Fabrikasi Jumlah Bus Speed L2 AMDK5 75 MHz – 133 MHz Socket5, Socket7 500 nm, 350 nm Single 50 MHz, 60 MHz, 66 MHz - AMDK6-2 166 MHz – 300 MHz Socket7 350, 250 Single 50 MHz, 60 MHz, 66 MHz - AMDK6-2 166 MHz – 550 MHz Super Socket7 250, 180 Single 66 MHz, 95 MHz, 97 MHz, 100 0,128 Athlon 1000 MHz-1400 SlotA, SocketA 180 Single 133 MHz, 166 MHz, 200 MHz 256 - Athlon XP 1.33 GHz – 2.33 GHz SocketA 180.130 Single 133 MHz, 166 MHz, 200 MHz 256 -		512		c				
Prosesor Clock Speed Socket Fabrikasi Jumlah Bus Speed L2 AMDK5 75 MHz –133 MHz Socket5, Socket7 500 nm, 350 nm Single 50 MHz, 60 MHz, 66 MHz AMDK6-2 166 MHz – 300 MHz Socket7 350, 250 Single 50 MHz, 60 MHz, 66 MHz AMDK6-2 166 MHz – 550 MHz Super Socket7 250, 180 Single 66 MHz, 95 MHz, 97 MHz, 100 0,128 Athlon 1000 MHz-1400 Slot A, Socket A 180 Single 100 MHz 256		256 -	133 MHz, 166 MHz, 200 MHz	Single	180, 130	SocketA	1,33 GHz - 2,33 GHz	Athlon XP
Prosesor Clock Speed Socket Fabrikasi Jumlah Bus Speed L2 AMDK5 75 MHz – 133 MHz Socket 5, Socket 7 500 nm, 350 nm Single 50 MHz, 60 MHz, 66 MHz - AMDK6 166 MHz – 300 MHz Socket 7 350, 250 Single 50 MHz, 60 MHz, 66 MHz - AMDK6-2 166 MHz – 550 MHz Super Socket 7 250, 180 Single 66 MHz, 95 MHz, 97 MHz, 100 0,128 AMD K6-2 166 MHz – 550 MHz Super Socket 7 250, 180 Single 66 MHz, 95 MHz, 97 MHz, 100 0,128		256	100 MHz	Single	180	Slot A, Socket A	1000 MHz-1400 MHz	Athlon
Prosesor Clock Speed Socket Fabrikasi Jumlah Bus Speed L2 AMD K5 75 MHz – 133 MHz Socket 5, Socket 7 500 nm, 350 nm Single 50 MHz, 60 MHz, 60 MHz, 66 MHz - AMD K6-2 166 MHz – 550 MHz Super Socket 7 250.180 Single 50 MHz, 95 MHz, 97 MHz, 100 0.128			MHz	0,7				
Prosesor Clock Speed Socket Fabrikasi Jumlah Bus Speed L2 AMDK5 75 MHz – 133 MHz Socket5, Socket7 500 nm, 350 nm Single 50 MHz, 60 MHz, 66 MHz - AMDK6 166 MHz – 300 MHz Socket7 350, 250 Single 50 MHz, 60 MHz, 60 MHz -		0.128	66 MHz 95 MHz 97 MHz 100	Single	250.180	SuperSocket7	2HW 055 - 2HW 991	AMDK6-2
Prosesor Clock Speed Socket Fabrikasi Jumlah Bus Speed L2 nm Core KB AMDK5 75 MHz – 133 MHz Socket5, Socket7 500 nm, 350 nm Single 50 MHz, 60 MHz, 66 MHz -			50 MHz, 60 MHz, 66 MHz	Single	350, 250	Socket7	2HW 008-ZHW 991	AMDK6
Prosesor Clock Speed Socket Fabrikasi Jumlah Bus Speed L2 nm Core Cache KB		•	50 MHz, 60 MHz, 66 MHz	Single	500 nm, 350 nm	Socket5, Socket7	75 MHz -133 MHz	AMDK5
ProsesorClock SpeedSocketFabrikasiJumlahBus SpeedL2nmCoreCache		KB						
Prosesor Clock Speed Socket Fabrikasi Jumlah Bus Speed L2	Cac	Cache		Core	nm		,	
	ы	12	Bus Speed	Jumlah	Fabrikasi	Socket	Clock Speed	

d. System Bus

Dalam sistem komputer terdapat yang disebut bus. Bus adalah jalur/kabel yang berfungsi untuk mentransfer data dalam sistem komputer. Pada motherboard, bus merupakan jalur yang menghubungkan bagian-bagian sistem komputer seperti CPU, port I/O, chipset.

Bus dikendalikan oleh CPU dan dapat dibedakan berdasarkan informasi yang dibawa, yaitu :

- o Bus Data, untuk melewatkan data
- o Bus Alamat, yang melewatkan alamat dari suatu data
- Bus Kontrol, untuk melewatkan sinyal kontrol agar jalur bus yang melewatkan data atau alamat oleh peralatan yang berbeda tidak saling bertabrakan.

Sebuah komputer dengan bus 16 bit mampu mentranfer 16 bit data pada suatu waktu.

Gambar 4.8 Prosesor P4 pin

Gambar 4.9 Prosesor LGA P4 non-pin

3. MEMORI

Komponen utamanya adalah IC yang membuatnya menjadi penyimpanan dengan kecepatan akses tinggi. Ukuran unjuk kerja memori ditentukan oleh : Access Time, Memori Cycle Time, Transfer Rate Memori terbagi atas :

ROM (Read Only Memory)

Isinya tidak dapat dihapus begitu saja. Biasnya digunakan untuk menyimpan BIOS (Basic Input/Output System).

RAM (Random Access Memory)

Data dalam RAM akan hilang bila komputer dimatikan. RAM berfungsi menyimpan program yang sedang berjalan.

Berdasarkan teknologinya RAM terbagi dua, yaitu:

- DRAM (Dynamic RAM)
- SRAM (Static RAM)

Tipe RAM yang lain antara lain:

EDO DRAM : Extended Data Output
 SDRAM : Synchronous DRAM
 DDR SDRAM : Double Data Rate
 Sodim : Memori untuk Laptop

SODIM

DDR III

RAMBUS

Gambar 4.10 Macam-macam Memori

Flash Memory

Model memori yang banyak dipakai sebagai media penyimpanan eksternal.dan mobile. Flash memori memiliki ukuran yang besar hingga 160GB tetapi terhitung lambat dibanding RAM atau ROM.

Cache Memory

Memori yang terdapat di dalam prosesor. Merupakan memori yang berhubungan langsung dengan prosesor dan merupakan memori dengan kecepatan paling tinggi dalam satu sistem.

Memori berdasarkan pemasangan chip memori dapat digolongkan menjadi :

- DIMM (Dual In-line Memory Module)
 Modul chip memori dipasang pada kedua sisi papan sirkuit (PCB).
- SIMM (Single In-line Memory Module)
 Modul chip memori dipasang pada salah satu sisi papan sirkuit .

Gambar 4.11 Perbandingan Bandwidth SDRAM dan SDRAM Lanjut

Tabel 6.3. DDR SDRAM technologies

Туре	Nama Komponen	Nama Modul	Bus speed	Bandwidth
DDR-1	DDR200	PC1600	100 MHz	1.6 GB/s
	DDR266	PC2100	133 MHz	2.1 GB/s
	DDR333	PC2700	166 MHz	2.7 GB/s
	DDR400	PC3200	200 MHz	3.2 GB/s
DDR-2	DDR2-400	PC2-3200R	200 MHz	3.2 GB/s
	DDR2-533	PC2-4300	266 MHz	4.3 GB/s
	DDR2-667	PC2-5300	333 MHz	5.3 GB/s
	DDR2-800	PC2-6400	400 MHz	6.4 GB/s
DDR-3	DDR3-800	PC3-6400	400 MHz	6.4 GB/s
	DDR3-1066	PC3-8500	533 MHz	8.5 GB/s
	DDR3-1333	PC3-10600	667 MHz	10.6 GB/s
	DDR3-1600	PC3-12800	800 MHz	12.8 GB/s

4. MEDIA PENYIMPANAN

Media penyimpanan memiliki sejarah panjang. berkut

a. Punched Card / Kartu Berlubang

Media paling tua yang diketahui adalah dari 1725 dan dibuat oleh Basile Bouchon menggunakan pelubang untuk baju. Tetapi pola yang benar untuk penyimpanan data tercatat 23 Sep 1884 by Herman Hollerith.

Gambar 4.8 dibawah merupakan kartu 90 kolom dan hanya menyimpan sedikit data dengan pola penyimpanan yang berbeda untuk mesin yang berbeda.

Gambar 4.12 IBM Punch Card

Penggunaan kertas tape pertama diketahui 1846 oleh Alexander Bain penemu mesin fax dan printer telegraph.

Ada dua macam kertas tape, yaitu:

- 1. Roled Tape/Tape Rol
- 2. Fanfold Tape/Tape lipat

Setiap baris tape merepresentasikan satu karakter. Dengan metode lipat dapat menyimpan data lebih banyak dibanding kartu berlubang. Penggunaanya adalah untuk menyimpan pesan telegram, minikomputer, mesin otomatis, kriptografi.

Gambar 4.13 Tape Lipat

Gambar 4.14 Tape Rol

Kekurangan:

- Reliability
- Rewinding
- Penyimpanan sedikit.

Kelebihan

- Ketahanan (Longevity)
- Mudah dibaca (Human Accessibility)

b. Selectron Tube / Tabung Selektron

Tahun 1946 RCA mengembangkan tabung Selektron yang merupakan memory komputer awal dan berukuran 10 inchi dan dapat menyimpan 4096 bit. Karna sangat mahal maka ketersediaannya di pasar sangat jarang.

Gambar 4.15 Selectron Tube

c. Magnetic Tape / Pita Magnetik

Pada tahun 1950an tape magnetik pertama digunakan oleh IBM untuk menyimpan data. Satu rol tape dapat menyimpan data setara 10.000 kartu berlubang sehingga menjadi sangat populer dan sukses hingga pertengahan tahun 1980an.

Kemampuan menyimpannya adalah 128 karakter/inchi pada 8 tingkat. Penggunaannya berkembang luas meliputi bidang Audio, Video dan Komputer. Hingga saat ini tape masih merupakan pilihan untuk menyimpan data khususnya untuk keperluan backup. Kapasitas penyimpanan hingga tahun 2007 adalah 1 TB.

Gambar 4.16 Pita Magnetik

d. Magnetic Drum / Drum Magnetik

Drum magnetik ini memiliki ukuran 16 inchi dengan kecepatan 12.500 putaran/menit. Digunakan oleh komputer IBM 650 untuk menyimpan 10.000 karakter. Panjang 16 inchi dan berputar 12.500 putaran per menit. Digunakan pada komputer IBM 650 dan menyimpan 10.000 karakter.

Gambar 4.17 Drum Magnetik

e. Floppy Disk

Diperkenalkan pertama kali 1969. Berukuran 8 inchi dapat menyimpan 80kb data (hanya bias dibaca/read only). 4 tahun kemudian 1973 berkembang mampu menyimpan hingga 256kb dan dapat menulis data baru berulang kali.

Ada banyak sekali varian dari floppy disk tetapi yang paling terkenal adalah ukuran 5¼ inchi menampung 1.2 Mb dan 3¼ inchi menampung 1.44 Mb. Selain itu untuk bisa mengaksesnya dibutuhakan Floppy Disk Drive sesuai ukuran Floppy Disknya.

Pada perkembangannya dibuat media penyimpanan dengan ukuran dan bentuk yang mirip dengan Floppy Disk 3¼" yang disebut Zip Drive dengan kapasitas hingga 250 Mb. Hanya saja kurang laku di pasaran.

Gambar 4.18 Floppy Disk 51/4" dan 31/4"

f. Hard Disk

Hard Drive/Hard Disk pertama dikeluarkan oleh IBM untuk komputer 305 RAMAC pada 1956. Komputernya 'jelek' tetapi merupakan revolusi dalam media penyimpanan karna dapat menyimpan hingga 4.4MB data (5 juta karakter) yang merupakan jumlah sangat besar waktu itu. Data disimpan dalam 50 disk magnetik 24".

Hard Disk terus diproduksi dan dikembangkan hingga saat ini. Kapasitas untuk desktop umumnya hingga 120 dan 300 GB dengan 7200 RPM (Rotasi per Menit). Hard disk saat ini mencapai kapasitas 1 TB 15.000 RPM.

Ukuran umum untuk desktop adalah 3,5" sedangkan untuk laptop (PCMCI) 1,3" – 1,8"

Teknologi transfer data hard disk juga bermacam-macam seperti :

PATA (Paralel Advanced Technology Attachment) / IDE 133 MB/s

- SATA (Serial ATA) 1,5 GB/s
- SCSI (Small Computer System Interface) 640MB/s
- SCS (Serial Attachment SCSI) 1,5-3 GB/s
- SSD (State Solid Disk)

Gambar 4.19. Macam-macam Hard Disk

g. Laser Disk

Di tahun 1958 teknologi Laserdisc ditemukan, tetapi baru tahun 1978 tersedia di pasar. Teknologi ini digunakan untuk menyimpan video dan gambar pada disk (read only) dengan kualitas yang lebih baik dari VHS.

h. Compact Disk

Compact Disk (CD) merupakan varian dari Laser disk tetapi lebih kecil. Dikembangkan oleh kerjasama SONY dan Philips pada 1979 dan dipasarkan 1982.

CD pada umumnya menyimpan antara 650 MB hingga 800 MB dan berukuran diameter 120mm. Ada juga yang berukuran 80mm yang menampung 185-210MB yang disebut mini-CD.

Berdasarkan kemampuan baca dan tulis, CD dibedakan atas

CDR : CD yang hanya bisa ditulis saja (Read Only).

• CDR/W: CD yang bisa ditulis dan dihapus seperti disket.

Pengaksesan CD menggunakan teknologi laser. Kecepatan baca CD hingga saat ini mencapai 52x. 1 x = 153,6 KB/s.

Istilah penulisan pada CD dan yang sejenisnya adalah Burning.

i. DVD (Digital Video Disk)

DVD merupakan pengembangan CD yang menggunakan jenis teknologi laser yang berbeda. Panjang gelombang laser yang digunakan adalah 780nm (CD menggunakan 625-650nm) yang memungkinkan menyimpan data lebih banyak pada jumlah ruang yang sama.

DVD dapat ditulis pada single layer dan dual layer juga single side dan dual side. DVD yang banyak beredar adalah DVD-9 dengan single side dan dual layer berkapasitas hingga 8,5 GB.

DVD berukuran standar 12cm dan yang berukuran 8cm disebut mini-DVD. Teknologi penulisan DVD ada dua yaitu + dan – yang menunjukkan perbedaan kapasitas penyimpanan dan teknologi. Perbedaan ini timbul dikarenakan perbedaan teknologi pengembangan yang dilakukan oleh perusahaan yang berbeda. Walaupun pada awalnya konsumen agak disulitkan oleh perbedaan ini tetapi belakangan ini semua DVD drive dapat membaca dan menulis DVD- dan DVD+. Kecepatan baca DVD hingga kini adalah 16x. 1x = 1350 KB/s.

j. Blue-ray Disk (BD) vs High Definition DVD (HD)

Perkembangan media penyimpanan kedepan masih dalam masa "pertarungan" antara dua teknologi Blue-ray dan HD. Blue-ray Disk dikembangkan oleh Sony-Panasonic. BD menyimpan hingga 100 GB. HD DVD dikembangkan oleh Toshiba. HD menyimpan hingga 60 GB

5. POWER SUPPLY

Merupakan sumber listrik bagi system unit. Power supply menkonversi listrik 220v menjadi 12v. Kebutuhan daya listrik komputer saat ini adalah 450 W – 550 W.

PS memiliki macam konektor tergantung pada jenis cpu dan hard disk yang disupport, antara lain:

- Konektor utama menyuplai listrik ke motherboard. Ada dua macam 20 pin dan 24 pin.
- HD/CDRom konektor (PATA dan/atau SATA)
- FD konektor

Konektor ini biasanya dapat diseri sehingga memungkinkan banyak peralatan yang terhubung dengan power supply, misalnya fan casing, fan hard disk.

Soal

- 1. Media penyimpanan apakah saat ini yang memiliki kapasitas penyimpanan paling besar ? Berapa besarnya ?
- 2. Prosesor menghasilkan panas yang tinggi. Apa yang diperlukan untuk menurunkan suhu prosesor ?
- 3. Tuliskan 3 alasan kenapa media penyimpanan kurang populer?
- 4. Apakah yang dimaksud dengan overclocking dan apa akibat positif dan negatif yang terjadi ?
- 5. Jelaskan perbedaan antara prosesor untuk PC dan untuk Laptop.

BAB V

PERANGKAT LUNAK (SOFTWARE)

Perangkat keras komputer adalah peralatan 'mati' yang tidak bisa melakukan pekerjaan apapun tanpa ada instruksi/program yang menjalankannya. Program ini disebut perangkat lunak. Software bukan hanya untuk mengedalikan hardware tetapi membantu user untuk menjalankan sistem komputer sehingga dapat melakukan berbagai pekerjaan.

Software adalah kumpulan instruksi-instruksi berurutan yang membentuk suatu program yang dipasang dan dijalankan oleh hardware untuk suatu tugas intelektual tertentu. Oleh karena itu software sering disebut antarmuka/interface intelektual dari sistem komputer.

Proses penulisan/pembuatan software disebut *programming*, sedangkan orang yang melakukannya disebut *programmer*.

Software menurut pembayarannya dapat digolongkan menjadi :

- 1. Full Berbayar
- 2. Shareware/Trial/Demo
- 3. Freeware

Software menurut hak ciptanya dapat digolongkan menjadi :

- 1. Copyright
- 2. Copyleft/Open Source

Software dapat dibedakan atas dua golongan besar, yaitu :

- 1. Software Sistem
- 2. Software Aplikasi

Software merupakan lapisan/layer yang menghubungkan hardware dengan user seperti Gambar 5.1. Software sistem merupakan software yang paling dekat

dengan hardware sedangkan sofware aplikasi merupakan software yang paling dekat dengan user.

Gambar 5.1 Abstraksi User, Hardware dan Software

A. SOFTWARE SISTEM

Software sistem adalah

- Program yang menjadi perantara antara user dengan hardware.
- Program yang mengendalikan eksekusi program aplikasi sehingga dapat berjalan lebih efisien dan menghindari kesalahan penggunaan hardware yang tidak sesuai.

Software sistem dapat dibagi atas tiga golongan, yaitu :

Sistem Operasi

- ✓ Mengendalikan seluruh operasi pada komputer, termasuk memonitoring status komputer dan pendjadwalan operasi
- ✓ Mengatur resource sistem : CPU, memori, I/O
- ✓ Menyediakan interface antara user dan hardware. Interface ini membuat hardware yang begitu kompleks menjadi terlihat mudah oleh user sehingga user mudah dalam mengendalikan hardware.

Device Driver

✓ Mengatur peralatan I/O agar dapat berhubungan dengan sistem komputer. Tiap peralatan I/O harus memiliki program yang dipasang pada sistem operasi agar dapat dikenali dan dikendalikan. Program inilah yang disebut device driver. Peralatan I/O terdiri atas 3 komponen, yaitu : hardware I/O itu sendiri, controller dan software device driver.

- Program Utiliti/System Support
 - ✓ Dukungan dan perluasan program yang ada
 - ✓ Program yang digunakan untuk backup file, recover data, defragmenasi disk, kompresi data, memonitor perfomance komputer, dan lain-lain.

Gambar 5.2 Defragmentasi Disk

Gambar 5.3 Software Sistem.

1. Sistem Operasi

Sistem Operasi adalah Perangkat lunak yang bertindak sebagai perantara antara pemakai komputer dan perangkat keras.

Gambar 5.4 Posisi Sistem Operasi di Komputer

Tujuan dari Sistem Operasi adalah:

- Menjalankan program-program dari user dan membantu user dalam menggunakan komputer
- Menyediakan sarana sehingga pemakaian komputer menjadi mudah (convenient)
- Memanfaatkan perangkat keras komputer yang terbatas secara efisien (resource manager)

Fungsi dan tanggung jawab sistem operasi meliputi :

⅓ Inisialisasi Sistem /Booting

Sebelum sistem operasi berjalan ketika komputer dihidupkan maka akan dilakukan inisialisasi sistem yang dijalankan oleh BIOS akan mengecek dan menyimpan konfigurasi hardware (misalnya tipe dan kapasitas hard disk, memori, tipe dan resolusi monitor) serta me-load sistem operasi.

№ Manajemen Proses

- a. Supervisor (kernel) yang ada dalam memori utama mengarahkan pengambilan program ke dalam memori utama untuk dieksekusi oleh CPU.
- b. Mengelola memori (partisi lokasi memori, antrian data dalam memori).

№ Manajemen Memori

Mengelola memori yang terdiri dari partitioning (partisi per program) dan virtual memori (mensimulasikan sebagian kapasitas hard disk seolaholah merupakan memori utama, sebagai upaya untuk memperbesar kapasitas memori melebihi kapasitas memori fisiknya).

№ Manajemen File

Pengaturan dan pengaksesan file yang disimpan dalam penyimpanan sekunder (hard disk, cd, floppy, dsb) Sistem operasi membuat dan mengatur struktur file-file dan operasi-operasi terhadap file-file (misalnya copy, delete, move, dll).

№ Manajemen Pekerjaan

Sistem operasi dapat mengatur pekerjaan dengan cara sebagai berikut :

	Jumlah User	Jumlah Prosesor	Urutan Pemrosesan
Multitasking	Satu	Satu	Bersamaan
Multiprogramming	Banyak	Satu	Bersamaan
Time Sharing	Banyak	Satu	Round-Robin
Multiprocessing	Satu/lebih	Satu/lebih	Simultan

Tabel 5.1. Pengaturan Pekerjaan Sistem Operasi

Formating

Menyiapkan disk dengan cara menghapus semua data dan menentukan tipe sistem filenya agar siap dipakai oleh user.

¥ Keamanan Sistem

Sistem operasi mengelola kontrol terhadap akses user ke file.

꾈 User Interface

Tampilan interface disediakan oleh sistem operasi baik teks maupun GUI (Graphical User Interface) agar user dapat berinteraksi dengan sistem operasi juga aplikasi lainnya.

Pengendalian Kesalahan

Dalam sistem komputer terkadang terjadi kesalahan yang disebabkan baik oleh hardware, software ataupun user. Sistem operasi harus mampu melakukan pengendalian secara maksimal terhadap kesalahan yang terjadi.

Sifat-sifat sistem operasi adalah antara lain:

- Multitasking: kemampuan menjalankan beberapa aplikasi/pekerjaan pada saat yang bersamaan.
- Object Linking and Embedding (OLE): kemampuan membagi informasi antar aplikasi
- Networking / Jaringan: kemampuan untuk berhubungan dengan komputer/perangkat lain yang terpisah.
- o **Security**: menjamin keamanan pengaksesan data.
- o *Integral Messaging*: tersedianya perangkat lunak komunikasi (built in)
- Portability: kemampuan sistem operasi untuk berjalan pada perangkat keras yang berbeda, misalnya: Apple, IBM, dll
- Compatibility: kemampuan sistem operasi untuk menjalankan perangkat lunak yang dirancang untuk sistem operasi lain.
- O Plug and play: kemampuan untuk mendeteksi dan menjalankan hardware (peralatan I/O ,misalnya: mouse, printer; media penyimpanan, misalnya: flash) yang dipasang disaat sistem operasi telah berjalan. Jika tidak ada kemampuan ini maka sistem harus restart setiap kali ada penambahan hardware baru.
- 3-D look: kemampuan untuk memberikan tampilan GUI yang 3 dimensi pada layar monitor.
- Remote Access: kemampuan untuk mengakses atau diakses sistem lain dari lokasi yang berbeda.

Sistem operasi dapat dikelompokkan menjadi :

Desktop

Sistem operasi yang ditujukan bagi pengguna biasa baik untuk keperluan perkantoran ataupun rumahan dengan kebutuhan hardware komputer yang menengah, misalnya: Windows 98, Windows XP, Windows, Vista, Windows 7, Ubuntu Desktop, Mac Os X.

Server

Sistem operasi yang ditujukan untuk melayani banyak permintaan dari komputer yang lain dan biasanya digunakan didalam bidang usaha, misalnya: Windows Server 2003, Fedora Core 8, Ubuntu Server.

Embeded System

Sistem operasi yang didesign khusus untuk peralatan tertentu, misalnya: Windows CE, Windows Mobile 2003, Symbian OS.

2. Perkembangan Sistem Operasi

Perkembangan sistem operasi sangat dipengaruhi oleh perkembangan hardware komputer. Ketika hardware komputer semakin berkembang, orang terus berfikir untuk mengembang software yang dapat menjalankan hardware tersebut dan sulit untuk dijual.

Mainframe

Pada mulanya sistem operasi dikembangkan spesifik untuk tiap jenis komputer tertentu. Pada tahun 1950an sistem operasi pertama dikembangkan untuk komputer mainframe IBM Sytem/360 yang tersedia dalam banyak pilihan dan harga yang berbeda. Disini sistem operasi tunggal mulai direncanakan dan melahirkan OS/360.

Personal Computer

Kemunculan mikroprosesor di awal tahun 1970an membangkit pertumbuhan sistem operasi untuk PC. Sistem operasi pertama untuk PC adalah CP/M yang mirip dengan MS-DOS. Ken Thomson dari AT&T Bell Labs mengusulkan nama "Unix" bagi sistem operasi yang telah dikembangkan sejak

1969. Unix kemudian ditulis ulang dengan bahasa C yang membuatnya menjadi sistem operasi portable pertama yang dapat dipindahkan ke berbagai hardware.

Bill Gates yang mendirikan perusahaan Microsoft membeli QDOS dari Seattle Computer Products yang merupakan sistem operasi sederhanayang mirip dengan CP/M, untuk membuat sistem operasi dengan nama PC-DOS dalam kerja sama dengan IBM untuk didistribusikan bersama IBM-PC. Microsoft juga menjual secara terpisah dengan nama MS-DOS. Kemudian merilis Windows 1.0 untuk sistem operasi berbasis GUI hingga versi 3.1 dengan fasilitas jaringan.

Di tahun 1980an, Apple Computer menghadirkan mikrokomputer seri Apple II yaitu Apple Machintosh dengan inovasi GUI pada sistem operasi Mac/ Mac OS.

Dengan kehadiran arsitektur 32-bit, memberikan kesempatan bagi sistem operasi untuk melakukan *multitasking*. Microsoft mengeluarkan Windows NT. Apple mengembangkan Unix-Like NEXTSTEP digabung dengan FreeBSD menjadi inti dari Mac OS X. Dimulai dari Minix (software pembelajaran akademis) memberi inspirasi pada Linus Torvalds dan teman-temannya lewat internet mengembangankan Linux yang berbasis open source.

Microsoft kemudian mengembangkan Windows 95, Windows 98, Windows ME, Windows XP (gabungan dari Windows 98 dan NT), Windows 2000, Windows Server 2003, Windows Vista dan Windows 7. Linux yang open source berkembang dan melahirkan banyak varian yang kemudian ada yang tetap bersifat free dan komersial, misalnya RedHat 10 Enterprise (komersil) dan Fedora (RedHat free).

Pada perkembangannya sistem operasi tidak hanya berjalan di komputer saja tetapi merambah ke peralatan portable, misalnya PDA, Handphone. Linux dan Windows Mobile merupakan contohnya.

3. Linux Dan Windows

Dalam pengembangan sistem operasi, ada dua sistem operasi yang mendominasi pasar, khususnya di Indonesia yaitu Linux/*Unix like* dan Windows. Kedua sistem operasi ini begitu mendunia karena variannya yang terkenal mampu berjalan di PC/komputer biasa juga server. Selain itu keduanya mewakili produk software berbayar dan gratis.

a. LINUX

Gambar 5.5 Tux (Simbol utama Linux)

Linux/Unix-like merupakan sistem operasi yang begitu terkenal karena menggunakan konsep GPL (General Public License) atau gratis. Karena begitu banyak varian dan sumber awalnya adalah UNIX sedangkan istilah yang terkenal kemudian adalah LINUX maka untuk menuliskan seluruh sistem operasi sejenis tersebut digunakan istilah LINUX/Unix-like.

Berawal dari sistem operasi UNIX yang dikembangkan oleh AT&T di akhir tahun 1960an dan dirilis awal tahun 1970. Ditulis ulang di tahun 1972 dengan menggunakan bahasa C. Kemudian pada tahun 1983 GNU Project meluncurkan sistem operasi yang gratis dan di tahun 1986 didirikan FSF (*Free Software Foudation*) untuk mempromosikan konsep software gratis dan di tahun 1989 GNU GPL diluncurkan.

Tahun 1991 Linus Travolds menulis Linux kernel yang free/bebas artinya dapat diubah,dikopi,ditambah oleh siapapun demi pengembangan software gratis. Proyek ini menjadi terkenal karena dia melibatkan banyak sekali sukarelawan dan melahirkan Kernel Linux versi 1.0 yang menjadi inti

dari semua sistem linux di tahun 1994 dan dipublikasikan melalui GNU GPL.

Linux pada awalnya merupakan sistem operasi yang berbasis teks. Di tahun 1996 dimulai proyek untuk membuat versi tampilan desktop yaitu KDE dan GNOME yang berbasis GUI. X kemudian menjadi istilah standar dalam linux yang menggambarkan sistem *window*.

Diera 1990an dimana internet mulai marak, perusahaan-perusahaan web banyak menggunakan sofware gratis untuk web server. Apache HTTP Server merupakan pilihan yang paling banyak digunakan. Browser juga menggunakan prinsip ini dan yang kemudian terkenal adalah Mozilla Firefox dan Thunderbird. Sun Microsystems merilis program aplikasi OpenOffice yang mirip dengan Microsoft Office.

Pada perkembangannya beberapa perusahaan yang mengembangkan varian linux merilis versi yang tidak gratis atau versi perusahaan dengan berbagai modifikasi dan tambahan aplikasi serta bantuan *online*. Contohnya adalah RedHat 9.0 merupakan versi terakhir yang gratis. RedHat 10 harus didapatkan dengan membayar akan tetapi mereka mengembangkan proyek lain untuk terus melanjutkan versi gratisnya dengan nama Fedora.

Selain karena menganut prinsip GPL, linux menjadi terkenal karena kemampuannya untuk menjadi sistem operasi dekstop dan server dengan satu sistem operasi yang sama (Windows dibedakan versi dekstop dan server). Kehandalan server linux bagi sebagian orang adalah tidak tersaingi karena beberapa alasan utama yaitu : keamanan yang sangat ketat dan hingga kini belum ada virus yang bekerja di linux (kalaupun ada sangat sedikit). Ini disebabkan karena pengembangan linux melibatkan programmer-programmer handal yang tersebar diseluruh dunia sehingga bila terdapat celah keamanan atau virus maka 'seluruh dunia' akan bekerja untuk mencari solusinya.

System in & viaining

Gambar 5.6 Garis Sejarah Linux

Linux di Indonesia sendiri mendapat perhatian dari pemerintah dengan program IGOS (*Indonesia Goes Open Source*) dan melalui Kementrian Negara Riset dan Teknologi dirilislah Linux IGOS Nusantara yang berbasis pada Linux Fedora.

b. WINDOWS

Windows™ adalah produk dari Microsoft yang merupakan perusahaan yang didirikan oleh Bill Gates (yang kini menjadi orang terkaya di dunia) seorang jebolan Havard University. Diawali dengan pembelian QDOS oleh Microsoft untuk dibuat menjadi sistem operasi PC DOS (Personal Computer Disk Operating System) yang dijual bersama IBM PC. Microsoft sendiri menjual secara terpisah dengan nama MS DOS yang populer hingga versi 6. MS DOS yang berbasis teks menjadi landasan untuk pengembangan Windows yang berbasis grafis.

Microsoft merilis Windows 1.0 pada tahun 1985 yang sebenarnya bukan sistem operasi penuh tetapi lebih merupakan pengembangan MS DOS karena harus dijalankan lewat MS DOS. Microsoft bekerja sama dengan Apple membuat beberapa aplikasi desktop. Versi berikut yang dirilis adalah Windows 2.0, Windows/286, Windows/386. Tahun 1990 diluncurkan Windows 3.0 yang sukses dengan berbagai fitur, misalnya : multisking, multimedia, dan dapat berjalan disemua prosesor Intel.

Windows 3.1 dirilis sebagai perbaikan Windows 3.0 dan disusul Windows 3.11 yang merupakan versi akhir seri 3. Disaat yang bersamaan Microsoft merilis Windows for Workgroup 3.11 yang memberi kemampuan lebih untuk bekerja di jaringan. Pengembangan Windows selanjutnya terbagi 2 yaitu : Windows NT dan Windows 9x.

Windows NT 3.1 (Network) dikembangkan ditahun 1992 dengan fokus pada jaringan dan mengenalkan sistem file NTFS. Windows NT menjadi populer untuk sistem operasi jaringan dan mengambil alih dominasi Novell (sistem operasi jaringan berbasis teks). Pengembangan teknologi 32-bit API (*Application Programming Interface*) menjadi poin penting yang disebut juga Win32. Rencana penggabungan sistem operasi jaringan (Windows NT) dengan desktop (Windows 98) mulai digulirkan walaupun realisasinya hingga tahun 2001.

Windows 98 dirilis tahun 1995 sebagai sistem operasi desktop yang pangsa pasarnya paling luas. Dengan menerapkan 32-bit dan multitasking serta tampilan grafis yang lebih baik serta konsep *plug and play*. Microsoft Plus! menjadi tambahan applikasi yang dijual bersama Windows 95 yang merupakan program *theme/skin* untuk mempercantik tampilan windows.

Windows NT 4.0 dengan versi Workstation, Server, Server-Enterprise Edition, dan Terminal Server. Di tahun 1998 dirilis Windows 98 dengan dukungan terhadap FAT32 dan mendukung USB serta mengitegrasikan Internet Explores web browser di dalamnya. Tahun 1999 dirilis Windows 98 Second Edition dengan kemampuan *Internet Connection*

Sharing yang mengijinkan mesin lain dalam LAN berbagi pakai satu koneksi internet. Dukungan terhadap hardware juga meningkat dengan semakin banyaknya hardware yang disupport.

Windows 2000 lahir di tahun 2000 sebagai nama lain dari Windows NT 5.0 dan tetap berfokus pada jaringan dan server. Pada tahun yang sama diluncurkan Windows Me (Millennium Edition) yang merupakan pengembangan Windows 98 dengan fitur multimedia dan internet. Sebagai sistem operasi peralihan ke Windows XP, Windows Me banyak memiliki eror sehingga tidak laku dipasaran.

Di tahun 2001 diluncurkan Windows XP yang merupakan gabungan dari Windwos NT/2000 dan Windows 9x/Me. Dengan merilis 3 *service pack* untuk menutup lubang keamanannya, Windows XP menjadi sistem operasi dalam keluarga Windows yang paling berhasil dan bertahan hingga 2007 bahkan hingga kini terus diminati oleh pengguna komputer apalagi Windows Vista kurang mendapat sambutan hangat dari pasar.

Windows Vista sebagai penerus Windows XP menambahkan berbagai aplikasi multimedia dan internet. Selain itu hadir dalam versi 32-bit dan 64-bit. Penjualan Windows Vista kurang laku dipasaran karena tuntutan hardware yang tinggi serta program keamanan yang dirasa 'terlalu aman' hingga mengganggu kenyamanan pengguna.

Untuk memperbaiki Windows Vista yang dianggap 'gagal', diluncurkan Windows 7 di tahun 2009 dengan fitur yang hampir sama dengan Windows Vista disertai dengan perbaikan untuk keamanan dan kecepatannya. Selain itu juga diluncurkan Windows Server 2003 di tahun 2003 dan Windows Server 2008 di tahun 2008.

Gambar 5.7 Garis Sejarah Windows

Gambar 5.8 Windows Logo

B. SOFTWARE APLIKASI

Software Aplikasi adalah program yang berjalan di suatu sistem operasi yang mempunyai fungsi untuk membantu user mengerjakan tugas-tugas tertentu sehingga menjadi lebih efisien. Dengan kata lain merupakan subkelas dari software komputer yang menjalankan kemampuan komputer untuk menyelesaikan apa yang user inginkan.

Contoh dari aplikasi ini adalah pengolah kata, pengolah gambar, presentasi, pemutar video dan lain-lain. Beberapa aplikasi ada yang dijadikan satu paket dalam penjualannya dan disebut paket aplikasi/application suite seperti Microsoft Office (Word, Excel, Power Point, Publisher), OpenOffice dan iWork.

Dalam sistem yang tertanan pada perangakat tertentu/embedded system, terkadang sistem operasi dan aplikasi menjadi satu dan sulit dibedakan, misalnya pada VCR, microwave oven atau pemutar DVD.

Aplikasi dapat dikelompokkan dalam beberapa tipe, yaitu:'

- Otomatisasi industri
- Bisnis software
- Game komputer
- Software pendidikan
- Telekomunikasi
- Database
- Kesehatan
- Militer
- Gambar
- Pengolah kata

- Lembar kerja
- Software pengambil keputusan
- Dan lain-lain.

Soal

- 1. Tuliskan 3 perbedaan antara sistem operasi Linux dan Windows!
- Apakah mungkin aplikasi yang berjalan di Linux dapat berjalan di Windows
 Jelaskan jawaban anda.
- 3. Sewaktu komputer dinyalakan ada tampilan program untuk memeriksa hardware. Apakah itu termasuk sistem operasi? Jelaskan jawaban anda.
- 4. Apa yang dimaksud dengan *plug and play*? Jika sebuah printer dihubungkan ke komputer maka komputer akan minta driver. Apakah ini termasuk *plug and play*?
- 5. Apakah setiap sistem operasi cocok dengan sembarang prosesor? Jelaskan.

BAB VI

SISTEM BILANGAN

Sistem Bilangan adalah kumpulan simbol khusus yang digunakan dalam membangun sebua bilangan. Sistem bilangan yang umum dipakai manusia adalah Desimal yang terdiri dari sepuluh simbol yaitu 0 s/d 9. Sistem bilangan desimal biasanya disebut sistem bilangan berbasis 10. Penulisan basis sistem bilangan biasanya diakhir bilangan berupa angka yang diperkecil / subscrip, misalnya : 200₁₀, akan tetapi biasanya untuk sistem bilangan desimal tidak dituliskan.

A. SISTEM BILANGAN DI KOMPUTER

Sistem bilangan yang digunakan dalam komputer adalah :

- 1. Sistem Bilangan Biner
- 2. Sistem Bilangan Oktal
- 3. Sistem Bilangan Desimal
- 4. Sistem Bilangan Heksadesimal

I. Sistem Bilangan Biner

Sistem ini menggunakan dua simbol khusus, yaitu 0 dan 1. Disebut juga sistem bilangan berbasis 2. Biner merupakan bilangan dasar yang digunakan dalam sistem komputer digital. Penulisan bilangan biner dalam komputer biasanya dikelompokan per 4 bilangan, misalnya: 1010 0001.

Contoh:

- $0010_2 = 0010 = 2_{10}$
- $0 1010_2 = 1010 = 10_{10}$

II. Sistem Bilangan Oktal

Sistem ini menggunakan delapan simbol khusus, yaitu 0 s/d 7. Disebut juga sistem bilangan berbasis 8.

Contoh:

$$\circ$$
 2₈ = 2₁₀

$$010_8 = 8_{10}$$

III. Sistem Bilangan Desimal

Sistem ini menggunakan delapan simbol khusus, yaitu 0 s/d 9. Disebut juga sistem bilangan berbasis 10.

IV. Sistem Bilangan Heksadesimal

Sistem ini menggunakan delapan simbol khusus, yaitu 0 s/d 9, A,B,C,D,E,F. Disebut juga sistem bilangan berbasis 16 dan merupakan satusatunya sistem bilangan yang menggunakan huruf. Huruf-huruf A,B,C,D,E,F berturut-turut nilainya adalah : 10,11,12,13,14,15.

Contoh:

$$0.8_{16} = 2$$

o
$$A_{16} = 10$$

$$0 1A_{16} = 26$$

B. KONVERSI SISTEM BILANGAN

Manusia sebagai pengguna komputer terbiasa dengan sistem bilangan desimal, oleh karena itu sistem bilangan yang lain harus dikonversi ke sistem bilangan desimal agar mudah dimengerti. Komputer dapat mengerti semua sistem bilangan karna telah diprogram demikian, walaupun terlihat seperti itu akan tetapi sesungguhnya komputer pun melakukan konversi hanya saja hal itu berjalan dalam waktu yang sangat singkat (mili detik) sehingga tidak terlihat komputer sedang mengkonversi.

I. Konversi basis 2, 8, 16 ke basis 10

Aturan umum:

Kalikan setiap bilangan dengan basis yang dipangkatkan sesuai urutannya, kemudian hasilnya dijumlahkan.

- a. Konversi basis 2 ke basis 10.
 - Contoh:
 - 1. $1010_2 = 10_{10} \rightarrow 1010$ Urutan pangkat 3210

Sehingga perhitungannya menjadi :

$$(1 \times 2^3) + (0 \times 2^2) + (1 \times 2^1) + (0 \times 2^0) =$$

8 + 0 + 2 + 0 = 10₁₀

1. $11011_2 = 27_{10}$

Perhitungannya:

→
$$(1 \times 2^4) + (1 \times 2^3) + (0 \times 2^2) + (1 \times 2^1) + (1 \times 2^0) =$$

b. Konversi basis 8 ke basis 10.

Contoh:

1. $1501_8 = 833_{10}$

Perhitungannya:

$$\rightarrow$$
 (1 x 8³) + (5 x 8²) + (0 x 8¹) + (1 x 8⁰) =

2. $23_8 = 19_{10}$

Perhitungannya:

$$\rightarrow$$
 (2 x 8¹) + (3 x 8⁰) =

c. Konversi basis 16 ke basis 10.

Contoh:

1. $A1F_{16} = 2591_{10}$

Perhitungannya:

$$\rightarrow$$
 (A x 16²) + (1 x 16¹) + (F x 16⁰) =

$$\rightarrow$$
 10x256 + 16 + 15 = 2591

2. $50_{16} = 80_{10}$

Perhitungannya:

$$\rightarrow$$
 (5 x 16¹) + (0 x 16⁰) =

II. Konversi basis 10 ke basis 2, 8, 16

Aturan umum:

Bagilah bilangan dengan basisnya, kemudian sisa hasil bagi diurutkan mulai dari yang terakhir.

a. Konversi basis 10 ke basis 2.

Contoh:

1.
$$35_{10} = 100011_2$$

Perhitungannya:

$$2 - \frac{3}{4}$$

$$2 - \frac{4}{2} 0$$

$$2 - \frac{2}{1} 0$$

Hasilnya: 100011

2.
$$100_{10} = 1100100_2$$

b. Konversi basis 10 ke basis 8

Contoh:

1.
$$25_{10} = 31_8$$

Perhitungannya:

$$2 \frac{25}{3} 1$$

Hasilnya: 31

2.
$$78_{10} = 116_8$$

c. Konversi basis 10 ke basis 16.

Contoh:

1. $250_{10} = FA_{16}$

Perhitungannya:

16
$$\frac{250}{15(F)}$$
10 (A)

Hasilnya: FA

2. $5250_{10} = 1482_{16}$

III. Konversi basis 8, 16 ke basis 2

Aturan:

• Basis 8 ke basis 2

Konversi setiap digit bilangan ke bilangan biner 3 digit, kemudian digabungkan.

• Basis 16 ke basis 2

Konversi setiap digit bilangan ke bilangan biner 4 digit, kemudian digabungkan.

Bila terdapat digit 0 di depan hasil penggabungan bilangan biner maka boleh dihilangkan. Misalnya : $00100_2 = 100_2$.

a. Konversi basis 8 ke basis 2.

Contoh:

1. $32_8 = 11010_2$

Perhitungannya:

2

3

011 010

Hasilnya: 011010 = 11010.

- 2. $240_2 = 10100000_2$
- b. Konversi basis 16 ke basis 2.

Contoh:

1. $48_{16} = 1001000_2$

Perhitungannya:

8

4

0100 1000

Hasilnya: 01001000 = 1001000.

- 2. $2C_{16} = 101100_2$
- IV. Konversi basis 2 ke basis 8, 16

Aturan:

• Basis 2 ke basis 8

Kelompokkan menjadi 3 digit bilangan, dimulai dari digit terakhir kemudian konversikan ke basis 8.

• Basis 2 ke basis 16

Kelompokkan menjadi 4 digit bilangan, dimulai dari digit terakhir kemudian konversikan ke basis 16

a. Konversi basis 2 ke basis 8.

Contoh:

1. $10101_2 = 28_8$

Perhitungannya:

10 101

2 8

Hasilnya: 28

- 2. $110101_2 = 65_8$
- b. Konversi basis 2 ke basis 16.

Contoh:

1. $1001110_2 = 4E_{16}$

Perhitungannya:

100 1110

4 14(E)

Hasilnya: 4E

2. $10010111_2 = 97_{16}$

Tabel 6.1 Biner-Oktal-Desimal-Hexadesimal

Biner	Oktal	Desimal	Hexadesimal
0000	0	0	0
0001	1	1	1
0010	2	2	2
0011	3	3	3
0100	4	4	4
0101	5	5	5
0110	6	6	6
0111	7	7	7
1000	10	8	8
1001	11	9	9
1010	12	10	А
1011	13	11	В
1100	14	12	С
1101	15	13	D
1110	16	14	Е
1111	17	15	F

C. BIT

Manusia terbiasa bekerja dengan menggunakan bilangan desimal sedangkan komputer menggunakan bilangan biner. Komputer menggunakan bilangan biner salah satu alasannya adalah agar dapat diimplementasikan ke dalam komponen elekronika digital. Komputer modern menggunakan komponen yang dibangun dengan logika on/off (I/0).

Di dalam komputer, bilangan biner lebih dikenal dengan nama *bit* yang merupakan kependekan dari *Binary Digit*. Bit dapat menyatakan :

- Karakter
- Bilangan
- Nilai logika (true/false)
- Warna
- Lokasi/alamat

Bilangan dengan *n* bit dapat menyatakan 2ⁿ bilangan yang berbeda.

Kumpulan dari 8 bit disebut *byte*. Jadi 1 byte terdiri 8 bit. Byte biasanya digunakan untuk menyatakan kapasitas memori/penyimpanan.

1 byte = $1000\ 0000\ bit$

1 Kilo byte (KB) $= 2^{10} = 1.024$ byte

1 Mega byte (MB) $= 2^{20} = 1.048.576$ byte

1 Giga byte (GB) = 2_{30} = 1.073.741.824 byte

Perbedaan perhitungan inilah yang menyebabkan kesalahan tafsiran masyarakat awam yang terbiasa dengan bilangan desimal. Misalnya Flash Disk 1G dianggap sama dengan 1.000 MB atau 1.000.000.000 byte. Pada kenyataannya ukuran media penyimpanan biasanya dihitung dalam byte, sehingga Flash Disk 1G dihitung 1.000.000.000 byte = 0.93 GB.

D. KODE BILANGAN

Satu byte dapat menyatakan satu karakter data. Karena komputer dipakai oleh masyarakat luas dan diproduksi secara masal oleh banyak pabrik maka perlu adanya kesepakatan untuk menyatakan kelompok bit untuk setiap karakter data.

Beberapa kesepakatan tersebut adalah:

- 1. ASCII (American Standart Code for Information Intechange).
- 2. EBCDIC (Extended Binary Coded Decimal Interchange Code)
- ASCII pada awalnya menggunakan 7 bit untuk menyatakan 2⁷ (128) karakter.
 Bit ke-8 biasa ditambahkan untuk pengecekan error. Tetapi karena dirasa

kurang maka muncul ASCII-8 yang menggunakan 8 bit untuk menyatakan 2⁸ (256) karakter. Penggunaan ini tidak umum/tidak standar.

Tabel 6.2 Tabel ASCII

Biner		Hexa	Oktal	Desimal	Simbol	Keterangan
0000	0000	000	0	0	NUL	(Null char.)
0000	0001	001	1	1	SOH	(Start of Header)
0000	0010	002	2	2	STX	(Start of Text)
0000	0011	003	3	3	ETX	(End of Text)
0000	0100	004	4	4	EOT	(End of Transmission)
0000	0101	005	5	5	ENQ	(Enquiry)
0000	0110	006	6	6	ACK	(Acknowledgment)
0000	0111	007	7	7	BEL	(Bell)
0000	1000	008	10	8	BS	(Backspace)
0000	1001	009	11	9	HT	(Horizontal Tab)
0000	1010	00A	12	10	LF	(Line Feed)
0000	1011	00B	13	11	VT	(Vertical Tab)
0000	1100	00C	14	12	FF	(Form Feed)
0000	1101	00D	15	13	CR	(Carriage Return)
0000	1110	00E	16	14	SO	(Shift Out)
0000	1111	00F	17	15	SI	(Shift In)
0001	0000	010	20	16	DLE	(Data Link Escape)
0001	0001	011	21	17	DC1	(XON) (Device Control 1)
0001	0010	012	22	18	DC2	(Device Control 2)
0001	0011	013	23	19	DC3	(XOFF) (Device Control 3)
0001	0100	014	24	20	DC4	(Device Control 4)
0001	0101	015	25	21	NAK	(Negativ Acknowledgemnt)
0001	0110	016	26	22	SYN	(Synchronous Idle)
0001	0111	017	27	23	ETB	(End of Trans. Block)
0001	1000	018	30	24	CAN	(Cancel)
0001	1001	019	31	25	EM	(End of Medium)
0001	1010	01A	32	26	SUB	(Substitute)
0001	1011	01B	33	27	ESC	(Escape)
	1100	01C	34	28	FS	(File Separator)
	1101	01D	35	29	GS	(Group Separator)
	1110	01E	36	30	RS	(Reqst to Send) (Rec. Sep.)
	1111	01F	37	31	US	(Unit Separator)
	0000	020	40	32	SP	(Space)
	0001	021	41	33	!	(exclamation mark)
	0010	022	42	34	11	(double quote)
	0011	023	43	35	#	(number sign)
	0100	024	44	36	\$	(dollar sign)
	0101	025	45	37	8	(percent)
	0110	026	46	38	&	(ampersand)
0010	0111	027	47	39	ı	(single quote)

0010 1000 028 50 40 ((left/open parenthesis) 0010 1001 029 51 41) (right/closing parenth.) 0010 1010 02A 52 42 * (asterisk) Biner Hexa Oktal Desimal Simbol Keterangan 0010 1101 02B 53 43 + (plus) 0010 1101 02B 55 45 - (minus or dash) 0010 1101 02B 56 46 . (dot) 0011 1010 02E 56 46 . (dot) 0011 0010 031 61 49 1 0011 0010 032 62 50 2 0011 010 033 63 51 3 0011 010 034 64 52 4 0011 010 035 65 53 5 0011 1010 036 66 54 6 0011 1010 037 77 58 : (colon)	0010	1000	000	F.0	4.0	/	(7 - 6) /
Note							
Biner							
0010 1011 02B 53 43 + (plus) 0010 1100 02C 54 44 , (comma) 0010 1101 02D 55 45 - (minus or dash) 0010 1111 02F 56 46 . (dot) 0010 1111 02F 57 47 / (forward slash) 0011 0010 030 60 48 0 0011 0010 031 61 49 1 0011 0010 032 62 50 2 0011 0011 033 63 51 3 0011 0100 034 64 52 4 0011 0110 035 65 53 5 0011 0110 035 66 54 6 0011 011 037 67 55 7 0011 100 038 70 56 8 0011 1010 038 73 59 ; (semi-colon) 0011 1010 03C 74 60 < (less than) 0011 1010 03D 75 61 = (equal sign) 0011 111 03F 77 63 ? (question mark) 0101 111 03F 77 63 ? (question mark) 0100 000 040 100 64 @ (AT symbol) 010 010 042 102 66 B 0100 011 043 103 67 C 0100 010 044 104 68 D 0100 010 044 104 68 D 0100 010 044 110 72 H 0100 100 046 110 72 H 0100 1101 046 106 70 F 0100 1101 04B 113 75 K 0100 1101 04B 114 76 L 0100 1101 04B 115 77 M 0100 1101 04B 115 77 M 0100 1101 04B 116 78 N 0101 111 04F 117 79 O 0101 0001 051 121 81 Q 0101 0010 055 122 82 R 0101 0011 053 123 83 S	0010	1010	02A	52	42	*	(asterisk)
0010 1100 02C 54 444 , (comma) 0010 1101 02D 55 45 - (minus or dash) 0010 1110 02E 56 46 . (dot) 0010 1111 02F 57 47 / (forward slash) 0011 0000 030 60 48 0 0011 0001 031 61 49 1 0011 0010 032 62 50 2 0011 0010 033 63 51 3 0011 0100 034 64 52 4 0011 0110 035 65 53 5 0011 0100 036 66 54 6 0011 011 037 67 55 7 0011 1010 038 70 56 8 0011 1010 038 70 56 8 0011 1010 038 72 58 : (colon) 0011 1010 03C 74 60 < (less than) 0011 110 03E 73 59 ; (semi-colon) 0011 111 03F 77 63 ? (question mark) 0011 111 03F 77 63 ? (question mark) 0100 0000 040 100 64 @ (AT symbol) 0100 0010 041 101 65 A 0100 0010 042 102 66 B 0100 0110 044 104 68 D 0100 0100 048 110 72 H 0100 1010 048 112 74 J 0100 1010 04C 114 76 L 0100 1101 04B 113 75 K 0100 1101 04B 113 77 M 0100 1101 04B 113 77 M 0100 1101 04B 113 77 M 0100 1101 04B 115 77 M 0100 1101 04B 116 78 N 0100 1101 04B 116 78 N 0100 1101 04B 115 77 M 0100 1100 055 120 80 P 0100 1011 04F 117 79 O 0101 0000 055 120 80 P 0100 0101 055 122 82 R 0101 0011 0011 053 123 83 S	Biner	:	Hexa	Oktal	Desimal	Simbol	Keterangan
0010 1101 02D 55 45 - (minus or dash) 0010 1110 02E 56 46 . (dot) 0011 0000 030 60 48 0 0011 0010 031 61 49 1 0011 0010 032 62 50 2 0011 011 033 63 51 3 0011 0101 034 64 52 4 0011 0110 036 66 54 6 0011 0111 037 67 55 7 0011 0100 038 70 56 8 0011 1010 038 70 56 8 0011 1010 03A 72 58 : (colon) 0011 1010 03A 72 58 : (colon) 0011 1010 03C 74 60 < (less than) 0011 1010 03C 74 60 < (less than) 0011 1010 03C 76 62 </th <th>0010</th> <th>1011</th> <th>02B</th> <th>53</th> <th>43</th> <th>+</th> <th>(plus)</th>	0010	1011	02B	53	43	+	(plus)
0010 1110	0010	1100	02C	54	44	,	(comma)
0010 1111 02F 57 47 / (forward slash) 0011 0000 030 60 48 0 0011 0010 031 61 49 1 0011 0010 032 62 50 2 0011 0101 033 63 51 3 0011 0100 034 64 52 4 0011 0110 035 65 53 5 0011 0110 036 66 54 6 0011 1010 038 70 56 8 0011 1001 038 70 56 8 0011 1010 038 70 56 8 0011 1011 038 72 58 : (colon) 0011 1010 03C 74 60 < (less than) 0011 1101 03B 73 59 ; (semi-colon) 0011 1101 03B 75 61 = (equal sign) 0011 1100 03C 74 60<	0010	1101	02D	55	45	-	(minus or dash)
0011 0000 030 60 48 0 0011 0001 031 61 49 1 0011 0010 032 62 50 2 0011 0011 033 63 51 3 0011 0100 034 64 52 4 0011 0101 035 65 53 5 0011 0110 036 66 54 6 0011 0111 037 67 55 7 0011 1001 038 70 56 8 0011 1001 038 70 56 8 0011 1001 038 70 56 8 0011 1001 038 70 56 8 0011 1011 038 73 59 ; (semi-colon) 0011 1101 03B 73 59 ; (semi-colon) 0011 1100 03C 74 60 < (less than) 0011 1100 03C 74 60 < (less than) 0011 1110 03B 75 61 = (equal sign) 0011 1110 03B 76 62 > (greater than) 0011 1111 03F 77 63 ? (question mark) 0100 11111 03F 77 63 ? (question mark) 0100 0000 040 100 64 @ (AT symbol) 0100 0000 041 101 65 A 0100 0010 042 102 66 B 0100 0011 043 103 67 C 0100 0100 044 104 68 D 0100 0101 045 105 69 E 0100 0101 046 106 70 F 0100 0101 047 107 71 G 0100 1001 048 110 72 H 0100 1001 049 111 73 I 0100 1001 048 110 72 H 0100 1010 048 110 72 H 0100 1101 04B 113 75 K 0100 1101 04B 113 75 K 0100 1101 04B 115 77 M 0100 1101 04B 116 78 N 0100 1101 04B 116 78 N 0100 1110 04B 116 78 N 0100 1111 04F 117 79 O 0101 0001 051 121 81 Q 0101 0001 052 122 82 R 0101 0011 0053 123 83 S	0010	1110	02E	56	46		(dot)
0011 0001 031 61 49 1 0011 0010 032 62 50 2 0011 0011 033 63 51 3 0011 0100 034 64 52 4 0011 0110 035 65 53 5 0011 0110 036 66 54 6 0011 1010 038 70 56 8 0011 1010 038 70 56 8 0011 1011 038 71 57 9 0011 1010 03A 72 58 : (colon) 0011 1010 03A 72 58 : (colon) 0011 1011 03B 73 59 ; (semi-colon) 0011 1100 03C 74 60 < (less than) 0011 1101 03B 75 61 = (equal sign) 0011 1110 03E 76 62 > (greater than) 0011 1111 03F 77	0010	1111	02F	57	47	/	(forward slash)
0011 0010 032 62 50 2 0011 0011 033 63 51 3 0011 0100 034 64 52 4 0011 0101 035 65 53 5 0011 0110 036 66 54 6 0011 0111 037 67 55 7 0011 1000 038 70 56 8 0011 1001 039 71 57 9 0011 1010 03A 72 58 : (colon) 0011 1010 03A 73 59 ; (semi-colon) 0011 1010 03C 74 60 < (less than) 0011 110 03E 75 61 = (equal sign) 0011 1110 03E 76 62 > (greater than) 0011 1110 03F 77 63 ? (question mark) 0011 1111 03F 77 63 ? (question mark) 0100 0000 040 100 64 @ (AT symbol) 0100 0001 041 101 65 A 0100 0010 042 102 66 B 0100 0011 043 103 67 C 0100 0100 044 104 68 D 0100 0101 045 105 69 E 0100 0110 046 106 70 F 0100 0101 047 107 71 G 0100 1001 048 110 72 H 0100 1001 049 111 73 I 0100 1001 048 110 72 H 0100 1001 048 113 75 K 0100 1001 048 114 76 L 0100 1101 04B 113 75 K 0100 1101 04B 115 77 M 0100 1101 04B 116 78 N 0100 1101 04B 116 78 N 0100 1101 04B 116 78 N 0100 1100 052 122 82 R 0101 0010 0010 055 121 81 Q 0101 0010 0050 122 82 R 0101 0010 0011 053 123 83 S	0011	0000	030	60	48	0	
0011 0011 033 63 51 3 0011 0100 034 64 52 4 0011 0101 035 65 53 5 0011 0110 036 66 54 6 0011 0111 037 67 55 7 0011 1000 038 70 56 8 0011 1001 039 71 57 9 0011 1010 038 72 58 : (colon) 0011 1011 03B 73 59 ; (semi-colon) 0011 1100 03C 74 60 < (less than) 0011 1100 03C 74 60 < (less than) 0011 110 03B 75 61 = (equal sign) 0011 1110 03B 76 62 > (greater than) 0011 1111 03B 77 63 ? (question mark) 0011 1111 03F 77 63 ? (question mark) 0100 0000 040 100 64 @ (AT symbol) 0100 0001 041 101 65 A 0100 0010 042 102 66 B 0100 0101 043 103 67 C 0100 0100 044 104 68 D 0100 0101 045 105 69 E 0100 0101 046 106 70 F 0100 0101 047 107 71 G 0100 1010 048 110 72 H 0100 1010 048 110 72 H 0100 1010 048 113 75 K 0100 1011 049 111 73 I 0100 1010 048 113 75 K 0100 1011 04B 113 75 K 0100 1101 04B 113 75 K 0100 1100 04C 114 76 L	0011	0001	031	61	49	1	
0011 0100	0011	0010	032	62	50	2	
0011 0101 035 65 53 5 0011 0110 036 66 54 6 0011 0111 037 67 55 7 0011 1000 038 70 56 8 0011 1010 039 71 57 9 0011 1010 03A 72 58 : (colon) 0011 1011 03B 73 59 ; (semi-colon) 0011 1100 03C 74 60 < (less than) 0011 1101 03D 75 61 = (equal sign) 0011 1110 03E 76 62 > (greater than) 0011 1111 03F 77 63 ? (question mark) 0101 1111 03F 77 63 ? (question mark) 0100 0000 040 100 64 @ (AT symbol) 0100 0001 041 101 65 A 0100 0010 042 102 66 B 0100 0110 045 105 69 E 0100 0101 045 105 69 E 0100 0110 046 106 70 F 0100 0100 048 110 72 H 0100 1010 048 111 73 I 0100 1010 048 113 75 K 0100 1010 048 113 75 K 0100 1010 040 114 76 L 0100 1010 040 115 77 M 0100 1101 040 115 77 M 0100 1100 040 114 17 79 O 0101 0001 051 121 81 Q 0101 0001 052 122 82 R	0011	0011	033	63	51	3	
0011 0110 036 66 54 6 0011 0111 037 67 55 7 0011 1000 038 70 56 8 0011 1001 039 71 57 9 0011 1010 03A 72 58 : (colon) 0011 1010 03B 73 59 ; (semi-colon) 0011 1100 03C 74 60 < (less than) 0011 1110 03B 75 61 = (equal sign) 0011 1110 03B 76 62 > (greater than) 0011 1111 03F 77 63 ? (question mark) 0100 0100 040 100 64 @ (AT symbol) 0100 0001 041 101 65 A 0100 0010 042 102 66 B 0100 0011 043 103 67 C 0100 0100 044 104 68 D 0100 0100 045 105 69 E 0100 0110 046 106 70 F 0100 0110 047 107 71 G 0100 1001 048 110 72 H 0100 1001 049 111 73 I 0100 1001 049 111 73 I 0100 1010 040 114 76 L 0100 1101 04B 113 75 K 0100 1101 04B 113 75 K 0100 1101 04B 113 75 K 0100 1101 04C 114 76 L 0100 1101 04B 115 77 M 0100 1101 04C 114 76 L 0100 1101 04E 116 78 N 0100 1111 04F 117 79 O 0101 0010 050 120 80 P 0101 0010 051 121 81 Q 0101 0010 052 122 82 R	0011	0100	034	64	52	4	
0011 0111 037 67 55 7 0011 1000 038 70 56 8 0011 1001 039 71 57 9 0011 1010 03A 72 58 : (colon) 0011 1011 03B 73 59 ; (semi-colon) 0011 1100 03C 74 60 < (less than) 0011 1110 03B 75 61 = (equal sign) 0011 1110 03E 76 62 > (greater than) 0011 1111 03F 77 63 ? (question mark) 0100 1010 0040 100 64 @ (AT symbol) 0100 0010 041 101 65 A 0100 0101 042 102 66 B 0100 0101 043 103 67 C 0100 0101 044 104 68 D 0100 0101 045 105 69 E 0100 0101 046 106 70 F 0100 1001 049 111 73 I 0100 1001 04A 112 <th>0011</th> <th>0101</th> <th>035</th> <th>65</th> <th>53</th> <th>5</th> <th></th>	0011	0101	035	65	53	5	
0011 1000 038 70 56 8 0011 1001 039 71 57 9 0011 1010 03A 72 58 : (colon) 0011 1011 03B 73 59 ; (semi-colon) 0011 1100 03C 74 60 < (less than) 0011 1101 03B 75 61 = (equal sign) 0011 1110 03E 76 62 > (greater than) 0011 1111 03F 77 63 ? (question mark) 0100 0000 040 100 64 @ (AT symbol) 0100 0010 041 101 65 A 0100 0010 042 102 66 B 0100 0101 043 103 67 C 0100 010 044 104 68 D 0100 010 045 105 <th>0011</th> <th>0110</th> <th>036</th> <th>66</th> <th>54</th> <th>6</th> <th></th>	0011	0110	036	66	54	6	
0011 1001 039 71 57 9 0011 1010 03A 72 58 : (colon) 0011 1011 03B 73 59 ; (semi-colon) 0011 1100 03C 74 60 < (less than) 0011 1101 03D 75 61 = (equal sign) 0011 1110 03E 76 62 > (greater than) 0011 1111 03F 77 63 ? (question mark) 0100 0000 040 100 64 @ (AT symbol) 0100 0001 041 101 65 A 0100 0010 042 102 66 B 0100 011 043 103 67 C 0100 010 044 104 68 D 0100 010 045 105 69 E 0100 011 047 107	0011	0111	037	67	55	7	
0011 1010 03A 72 58 : (colon) 0011 1011 03B 73 59 ; (semi-colon) 0011 1100 03C 74 60 < (less than) 0011 1101 03D 75 61 = (equal sign) 0011 1110 03E 76 62 > (greater than) 0011 1111 03F 77 63 ? (question mark) 0100 0000 040 100 64 @ (AT symbol) 0100 0001 041 101 65 A 0100 0010 042 102 66 B 0100 0101 043 103 67 C 0100 0101 044 104 68 D 0100 0101 045 105 69 E 0100 0111 047 107 71 G 0100 0111 047 107	0011	1000	038	70	56	8	
0011 1010 03A 72 58 : (colon) 0011 1011 03B 73 59 ; (semi-colon) 0011 1100 03C 74 60 < (less than) 0011 1101 03D 75 61 = (equal sign) 0011 1110 03E 76 62 > (greater than) 0011 1111 03F 77 63 ? (question mark) 0100 0000 040 100 64 @ (AT symbol) 0100 0001 041 101 65 A 0100 0010 042 102 66 B 0100 0101 043 103 67 C 0100 0101 044 104 68 D 0100 0101 045 105 69 E 0100 0111 047 107 71 G 0100 0111 047 107	0011	1001	039	71	57	9	
0011 1011 03B 73 59 ; (semi-colon) 0011 1100 03C 74 60 < (less than) 0011 1101 03D 75 61 = (equal sign) 0011 1110 03E 76 62 > (greater than) 0010 1111 03F 77 63 ? (question mark) 0100 0000 040 100 64 @ (AT symbol) 0100 0010 041 101 65 A 0100 0010 042 102 66 B 0100 0101 043 103 67 C 0100 0101 043 103 67 C 0100 0101 044 104 68 D 0100 0101 045 105 69 E 0100 0111 047 107 71 G 0100 1010 048 110 72 H 0100 1010 04A 112 74 J 0100 1010 04B	0011	1010	03A	72		:	(colon)
0011 1100 03C 74 60 < (less than) 0011 1101 03D 75 61 = (equal sign) 0011 1110 03E 76 62 > (greater than) 0011 1111 03F 77 63 ? (question mark) 0100 0000 040 100 64 @ (AT symbol) 0100 0010 041 101 65 A 0100 0010 042 102 66 B 0100 0110 043 103 67 C 0100 0100 044 104 68 D 0100 0101 045 105 69 E 0100 0110 046 106 70 F 0100 0101 043 110 72 H 0100 1001 049 111 73 I 0100 1010 04A 112 74 J 0100 1011 04B 113 75 K 0100 1101 04B 115 77 M 0100 1101 04E 116 78 <t< th=""><th>0011</th><th>1011</th><th>03B</th><th>73</th><th>59</th><th></th><th></th></t<>	0011	1011	03B	73	59		
0011 1101 03D 75 61 = (equal sign) 0011 1110 03E 76 62 > (greater than) 0011 1111 03F 77 63 ? (question mark) 0100 0000 040 100 64 @ (AT symbol) 0100 0001 041 101 65 A 0100 0010 042 102 66 B 0100 0110 043 103 67 C 0100 0100 044 104 68 D 0100 0101 045 105 69 E 0100 0110 046 106 70 F 0100 0101 047 107 71 G 0100 1001 048 110 72 H 0100 1010 04A 112 74 J 0100 1011 04B 113 75 K 0100 1101 04B 115 77 M 0100 1101 04E 116	0011	1100	03C	74	60		
0011 1110 03E 76 62 > (greater than) 0011 1111 03F 77 63 ? (question mark) 0100 0000 040 100 64 @ (AT symbol) 0100 0001 041 101 65 A 0100 0010 042 102 66 B 0100 0011 043 103 67 C 0100 0100 044 104 68 D 0100 0101 045 105 69 E 0100 0110 046 106 70 F 0100 1011 047 107 71 G 0100 1001 048 110 72 H 0100 1001 049 111 73 I 0100 1011 04B 113 75 K 0100 1010 04C 114 76 L 0100 1101 04B 115 77 M 0100 1111 04F 117 79 O 0101 0001 050 120 80 P							
0011 1111 03F 77 63 ? (question mark) 0100 0000 040 100 64 @ (AT symbol) 0100 0001 041 101 65 A 0100 0010 042 102 66 B 0100 0011 043 103 67 C 0100 0100 044 104 68 D 0100 0101 045 105 69 E 0100 0110 046 106 70 F 0100 0111 047 107 71 G 0100 1001 048 110 72 H 0100 1010 04A 112 74 J 0100 1011 04B 113 75 K 0100 1101 04B 115 77 M 0100 1101 04E 116 78 N 0100 1110 04F 117 79 O 0101 0001 051 121 81 Q<							
0100 0000 040 100 64 @ (AT symbol) 0100 0001 041 101 65 A 0100 0010 042 102 66 B 0100 0011 043 103 67 C 0100 0100 044 104 68 D 0100 0101 045 105 69 E 0100 0110 046 106 70 F 0100 0101 047 107 71 G 0100 1000 048 110 72 H 0100 1001 049 111 73 I 0100 1010 04A 112 74 J 0100 1011 04B 113 75 K 0100 1101 04C 114 76 L 0100 1101 04E 116 78 N 0100 111 04F 117 79 O 0101 0000 050 120 80 P 0101 0010 052 122 82 R 0101 0011 053 123 83 S							
0100 0001 041 101 65 A 0100 0010 042 102 66 B 0100 0011 043 103 67 C 0100 0100 044 104 68 D 0100 0101 045 105 69 E 0100 0110 046 106 70 F 0100 1011 047 107 71 G 0100 1000 048 110 72 H 0100 1001 049 111 73 I 0100 1010 04A 112 74 J 0100 1011 04B 113 75 K 0100 1100 04C 114 76 L 0100 1101 04D 115 77 M 0100 1101 04E 116 78 N 0101 1010 04E 117 79 O 0101 0001 050 120 80 P 0101 0010 052 122 82 R 0101 0011 0							
0100 0010 042 102 66 B 0100 0011 043 103 67 C 0100 0100 044 104 68 D 0100 0101 045 105 69 E 0100 0110 046 106 70 F 0100 0111 047 107 71 G 0100 1000 048 110 72 H 0100 1001 049 111 73 I 0100 1010 04A 112 74 J 0100 1011 04B 113 75 K 0100 1100 04C 114 76 L 0100 1101 04D 115 77 M 0100 1110 04E 116 78 N 0100 1111 04F 117 79 O 0101 0001 051 121 81 Q 0101 0010 052 122 82 R 0101 0011 053 123 83 S							
0100 0011 043 103 67 C 0100 0100 044 104 68 D 0100 0101 045 105 69 E 0100 0110 046 106 70 F 0100 0111 047 107 71 G 0100 1000 048 110 72 H 0100 1001 049 111 73 I 0100 1010 04A 112 74 J 0100 1011 04B 113 75 K 0100 1100 04C 114 76 L 0100 1101 04D 115 77 M 0100 1110 04E 116 78 N 0100 1111 04F 117 79 O 0101 0000 050 120 80 P 0101 0001 051 121 81 Q 0101 0010 052 122 82 R 0101 0011 053 123 83 S					<u> </u>		
0100 0100 044 104 68 D 0100 0101 045 105 69 E 0100 0110 046 106 70 F 0100 0111 047 107 71 G 0100 1000 048 110 72 H 0100 1001 049 111 73 I 0100 1010 04A 112 74 J 0100 1011 04B 113 75 K 0100 1100 04C 114 76 L 0100 1101 04D 115 77 M 0100 1110 04E 116 78 N 0100 1111 04F 117 79 O 0101 0000 050 120 80 P 0101 0001 051 121 81 Q 0101 0010 052 122 82 R 0101 0011 053 123 83 S							
0100 0101 045 105 69 E 0100 0110 046 106 70 F 0100 0111 047 107 71 G 0100 1000 048 110 72 H 0100 1001 049 111 73 I 0100 1010 04A 112 74 J 0100 1011 04B 113 75 K 0100 1100 04C 114 76 L 0100 1101 04D 115 77 M 0100 1110 04E 116 78 N 0100 1111 04F 117 79 O 0101 0000 050 120 80 P 0101 0001 051 121 81 Q 0101 0010 052 122 82 R 0101 0011 053 123 83 S					<u> </u>		
0100 0110 046 106 70 F 0100 0111 047 107 71 G 0100 1000 048 110 72 H 0100 1001 049 111 73 I 0100 1010 04A 112 74 J 0100 1011 04B 113 75 K 0100 1100 04C 114 76 L 0100 1101 04D 115 77 M 0100 1110 04E 116 78 N 0100 1111 04F 117 79 O 0101 0000 050 120 80 P 0101 0001 051 121 81 Q 0101 0010 052 122 82 R 0101 0011 053 123 83 S							
0100 0111 047 107 71 G 0100 1000 048 110 72 H 0100 1001 049 111 73 I 0100 1010 04A 112 74 J 0100 1011 04B 113 75 K 0100 1100 04C 114 76 L 0100 1101 04D 115 77 M 0100 1110 04E 116 78 N 0100 1111 04F 117 79 O 0101 0000 050 120 80 P 0101 0001 051 121 81 Q 0101 0010 052 122 82 R 0101 0011 053 123 83 S							
0100 1000 048 110 72 H 0100 1001 049 111 73 I 0100 1010 04A 112 74 J 0100 1011 04B 113 75 K 0100 1100 04C 114 76 L 0100 1101 04D 115 77 M 0100 1110 04E 116 78 N 0100 1111 04F 117 79 O 0101 0000 050 120 80 P 0101 0001 051 121 81 Q 0101 0010 052 122 82 R 0101 0011 053 123 83 S							
0100 1001 049 111 73 I 0100 1010 04A 112 74 J 0100 1011 04B 113 75 K 0100 1100 04C 114 76 L 0100 1101 04D 115 77 M 0100 1110 04E 116 78 N 0100 1111 04F 117 79 O 0101 0000 050 120 80 P 0101 0001 051 121 81 Q 0101 0010 052 122 82 R 0101 0011 053 123 83 S							
0100 1010 04A 112 74 J 0100 1011 04B 113 75 K 0100 1100 04C 114 76 L 0100 1101 04D 115 77 M 0100 1110 04E 116 78 N 0100 1111 04F 117 79 O 0101 0000 050 120 80 P 0101 0001 051 121 81 Q 0101 0010 052 122 82 R 0101 0011 053 123 83 S							
0100 1011 04B 113 75 K 0100 1100 04C 114 76 L 0100 1101 04D 115 77 M 0100 1110 04E 116 78 N 0100 1111 04F 117 79 O 0101 0000 050 120 80 P 0101 0001 051 121 81 Q 0101 0010 052 122 82 R 0101 0011 053 123 83 S							
0100 1100 04C 114 76 L 0100 1101 04D 115 77 M 0100 1110 04E 116 78 N 0100 1111 04F 117 79 O 0101 0000 050 120 80 P 0101 0001 051 121 81 Q 0101 0010 052 122 82 R 0101 0011 053 123 83 S							
0100 1101 04D 115 77 M 0100 1110 04E 116 78 N 0100 1111 04F 117 79 O 0101 0000 050 120 80 P 0101 0001 051 121 81 Q 0101 0010 052 122 82 R 0101 0011 053 123 83 S					<u>'</u>		
0100 1110 04E 116 78 N 0100 1111 04F 117 79 O 0101 0000 050 120 80 P 0101 0001 051 121 81 Q 0101 0010 052 122 82 R 0101 0011 053 123 83 S							
0100 1111 04F 117 79 0 0101 0000 050 120 80 P 0101 0001 051 121 81 Q 0101 0010 052 122 82 R 0101 0011 053 123 83 S							
0101 0000 050 120 80 P 0101 0001 051 121 81 Q 0101 0010 052 122 82 R 0101 0011 053 123 83 S							
0101 0001 051 121 81 Q 0101 0010 052 122 82 R 0101 0011 053 123 83 S							
0101 0010 052 122 82 R 0101 0011 053 123 83 S							
0101 0011 053 123 83 S					<u> </u>		
0101 0100 054 124 84 T						'	
	0101	0100	054	124	84	Т	

0101	0101	055	125	85	U	
0101 0110		056	126	86	V	
0101 0111		057	127	87	W	
Bine	r	Hexa	Oktal	Desimal	Simbol	Keterangan
0101	1000	058	130	88	X	
0101	1001	059	131	89	Y	
0101	1010	05A	132	90	Z	
0101	1011	05B	133	91	[(left/opening bracket)
0101	1100	05C	134	92	\	(back slash)
0101	1101	05D	135	93]	(right/closing bracket
0101	1110	05E	136	94	^	(caret/circumflex)
0101	1111	05F	137	95		(underscore)
0110	0000	060	140	96	,	
0110	0001	061	141	97	a	
0110	0010	062	142	98	b	
0110	0011	063	143	99	С	
	0100	064	144	100	d	
	0101	065	145	101	е	
	0110	066	146	102	f	
	0111	067	147	103	g	
	1000	068	150	104	h	
	1001	069	151	105	i	
	1010	06A	152	106	j	
	1011	06B	153	107	k	
	1100	06C	154	108	1	
	1101	06D	155	109	m	
	1110	06E	156	110	n	
	1111	06F	157	111	0	
	0000	070	160	112	р	
	0001	071	161	113	q	
	0010	072 073	162 163	114 115	r	
	0100	074	164	116	t	
	0101	074	165	117	u	
	0110	076	166	118	v	
	0111	077	167	119	W	
	1000	078	170	120	x	
	1001	079	171	121	У	
	1010	07A	172	122	Z	
	1011	07B	173	123	{	(left/opening brace)
	1100	07C	174	124		(vertical bar)
	1101	07D	175	125	}	(right/closing brace)
	1110	07E	176	126	~	(tilde)
	1111	07F	177	127	DEL	(delete)

Tabel 6.3 Tabel ASCII tambahan

										۵.	nueće:		مامما	ınTable:	
143	Å	160	á	176		192	L	208	Ш	224	α	240	=		
142	Ä	159	f	175	»	191	1	207	\perp	223	•	239	\Diamond	255	
141	ì	158	7	174	«	190	4	206	#	222		238	ε	254	
140	î	157	¥	173	i	189	Ш	205	=	221	1	237	ф	253	2
139	ï	156	£	172	1/4	188	ī	204	ŀ	220		236	00	252	_
138	è	154	Ü	171	1/2	187	ī	203	īΓ	219		235	δ	251	V
137	ë	153	Ö	170	-	186		202	<u>JL</u>	218	г	234	Ω	250	
136	ê	152	_	169	_1	185	4	201	F	217	J	233	Θ	249	
135	ç	151	ù	168	8	184	1	200	L	216	+	232	Φ	248	۰
134	å	150	û	167	۰	183	П	199	⊪	215	#	231	τ	247	æ
133	à	149	ò	166	•	182	1	198	F	214	Г	230	μ	246	÷
132	ä	148	ö	165	Ñ	181	4	197	+	213	F	229	σ	245	J
131	â	147	ô	164	ñ	180	4	196	-	212	Ŀ	228	Σ	244	ſ
130	é	146	Æ	163	ú	179		195	F	211	L	227	π	243	≤
129	ü	145	æ	162	ó	178		194	т	210	π	226	Γ	242	≥
128	Ç	144	É	161	í	177		193	Т	209	₹	225	ß	241	±

Source: www.LookupTables.com

2. EBCDIC biasanya digunakan di komputer mainframe dan diadopsi oleh IBM. EBCDIC menggunakan 8 bit untuk menyatakan 1 karakater.

Tabel 6.4 Perbandingan Tabel EBCDIC dan ASCII

Character	EBCDIC	ASCII-8	Character	EBCDIC	ASCII-8
А	1100 0001	0100 0001	N	1101 0101	0100 1110
В	1100 0010	0100 0010	ö	1101 0110	0100 1111
Č	1100 0011	0100 0010	P	1101 0111	0101 0000
Ď	1100 0100	0100 0110	à	1101 1000	0101 0001
Ē	1100 0100	0100 0100	B	1101 1000	0101 0001
F	1100 0110	0100 0110	S	1110 0010	0101 0011
G	1100 0111	0100 0111	Т	1110 0011	0101 0100
H	1100 1000	0100 1000	U	1110 0100	0101 0101
1	1100 1001	0100 1001	V	1110 0101	0101 0110
J	1101 0001	0100 1010	W	1110 0110	0101 0111
K	1101 0010	0100 1011	Х	1110 0111	0101 1000
L	1101 0011	0100 1100	Υ	1110 1000	0101 1001
M	1101 0100	0100 1101	Ž	1110 1001	0101 1010
0	1111 0000	0011 0000	5	1111 0101	0011 0101
1	1111 0001	0011 0001	6	1111 0110	0011 0110
2	1111 0010	0011 0010	7	1111 0111	0011 0111
3	1111 0011	0011 0011	8	1111 1000	0011 1000
4			9		
4			9		0011 1001
!	0101 1010	0010 0001	i	0101 1110	0011 1011

Selain dua standar di atas terdapat juga standar untuk karakter yaitu UNICODE. UNICODE merupakan standar karakter yang dibuat untuk merepresentasikan semua simbol. UNICODE memberikan nomor yang unik untuk setiap karakter dan Standar UNICODE ini telah diadopsi oleh banyak perusahaan besar seperti Apple, IBM, HP, Microsft, Oracle, SAP, SUN dan lain-lain. UNICODE membutuhkan standar modern seperti XML, Java, JavaScript, Corbra dan lain-lain dan didukung banyak sistem operasi dan semua browser modern. UNICODE hadir di banyak negera dan merepresentasikan simbol-simbol dari bahasa-bahasa negera tersebut, seperti Cina, Arab, Jepang dan lain-lain.

Soal.

- 1. Berapa bit memori yang tersedia pada komputer dengan 4Kb memori?
- 2. Konversikan notasi bit berikut ke Hexadesimal!
 - a. 01001000
 - b. 0110101011110010
 - c. 111010000101010100010111
- 3. Bagaimana pola bit dari pola Oktal berikut?
 - a. 23
 - b. 599
- 4. Bagaimana pola bit dari karakter berikut dalam ASCII?
 - a. BIT
 - b. DATA
- 5. Bagaimana pola desimal dari karakter berikut dalam ASCII?
 - a. BYTE
 - b. KOMPUTER

BAB VII

ORGANISASI FILE

Dalam sistem komputer semua data kita tersimpan dalam media penyimpanan. User biasanya tidak mengetahui bagaimana data tersebut disimpan secara fisik karena yang tampil pada monitor adalah bagaimana data tersimpan secara logikal. Dalam menempatkan data di komputer kita perlu juga berhati-hati karena penempatan yang sembarangan akan menyusahkan kita sewaktu kita membutuhkannya. Oleh karena itu perlu kita mengenal data-data kita sendiri terutama tipe dan letak penyimpanan.

A. FILE/BERKAS

File atau file komputer adalah data/informasi yang tersimpan pada media penyimpanan di komputer. File komputer ini bisa diasumsikan sebagai file kantor tetapi dalam bentuk digital bukan kertas.

File biasanya ada bermacam-macam. Untuk mempermudah user mengelolanya maka data yang sejenis dikelompokkan menjadi satu tipe file tertentu yang ditandai dengan penamaan ekstensi. Ide tentang penggunaan ekstensi untuk penggolongan jenis file telah lama ada dan terus digunakan hingga sekarang di semua sistem operasi. Ekstensi file memberi tahu sistem operasi tentang jenis file dan aplikasi apa yang digunakan untuk membuka (melihat, memainkan/play, edit, konversi, cetak, burn) atau melakukan tindakan tertentu terhadap file tersebut.

Sejarah

Kata *file* muncul dalam konteks penyimpanan komputer pada awal 1952, menunjuk pada informasi yang tersimpada di *punched cards*. Pada awal penggunaan orang sering mengasumsikan file sebagai hardware (lebih dari sebagai isinya), misalnya: disk driver IBM 350 disebut sebagai *disk files*. Sepuluh tahun kemudian (1962) barulah diperkenalkan file-file sistem (*Compatible Time*-

Sharing System) yang mengacu pada beberapa file dalam satu media penyimpanan, yang membawa pada penggunaan istilah yang lebih tepat. Nama file CTSS memiliki dua bagian, yaitu : nama utama dan nama kedua yang mengindikasikan tipe file.

Gambar 7.1. File punched card

Gambar 7.2. Dua disk file IBM 305

Penamaan Nama File Komputer

Struktur dasar dari nama file komputer adalah:

- Nama file dasar
- Ekstensi file

Ekstensi file dipisahkan dari nama file dasar dengan tanda titik, misalnya : namafile.ext atau suratperintah.txt.

Nama file dasar dapat mengandung beberapa titik tetapi titik terakhir yang dikenali oleh sistem operasi sebagai pemisah dengan ekstensi, misalnya : nama.file.dasar.ext atau surat.perintah.txt. Nama file (nama file dasar dan

ekstensi) dapat menggunakan semua karakter, angka, beberapa simbol tetapi tidak boleh menggunakan simbol khusus yang dilarang oleh sistem operasi (\/ / *: <>?|).

Pada umumnya nama file menggunakan tiga atau empat karakter ekstensi untuk menentukan tipe file, misalnya : ORGANISASI.DOC, FOTO1.JPG, KEUANGAN.XLS, SURAT.DOCX, INDEX.HTML.

Pada beberapa sistem operasi pemberian ekstensi pada nama file adalah optional/pilihan/tidak harus sedangkan yang lain diwajibkan. Pada sistem operasi terdahulu, panjang nama file dasar dibatasi 8 karakter, sedangkan pada sistem operasi modern tidak ada batasan.

Tipe file ada banyak sekali karena umumnya setiap aplikasi memiliki tipe filenya sendiri. Secara umum tipe file dapat diketegorikan, antara lain :

- Dokumen (doc, docx, txt, rtf, xls, xlsx, pub, ppt, pps, pdf, mdb, dll)
- o Gambar (jpg, bmp, tiff, png, gif, dll)
- o Film (rm, dat, mpeg, mp4, 3gp, flv, rmvb, dll)
- Suara (mp3, wav, aac, midi, dll)
- Web (htm, html, xml, shtml, dll)
- o Kompres (zip, rar, cab, dll)
- o Image (nrg, iso)
- o Dan lain-lain

B. DIREKTORI/FOLDER

Direktori atau folder tempat penampungan maya yang berisi file atau direktori yang lain. Pada sistem operasi tertentu digunakan nama direktori (Linux, MS DOS) sedangkan pada sistem operasi lain digunakan nama folder (Windows).

MS DOS

MS Dos menggunakan istilah direktori. Struktur file paling tinggi dalam MS Dos adalah Drive. Di bawah drive terdapat direktori dan dibawah direktori disebut subdirektori.

Gambar 7.3 File dan Direktori di DOS

Windows

Struktur file paling tinggi dalam My Computer. Dibawah My Computer terdapat drive dan semua tempat dibawah drive disebut folder. Pada mode teks baik Windows maupun Dos memiliki pusat / root direktori denan format *drive*:\, misalnya c:\..

Gambar 7.4 Folder di Windows

Linux

Linux menggunakan istilah direktori. Struktur file paling tinggi dalam Linux disebut ROOT yang ditandai dengan /. Semua tempat yang dibawah root disebut direktori dan dibawah disebut subdirektori.

```
/
/bin
/boot
/dev
/etc
/etc/opt
/mount
```

Gambar 7.5 Direktory di Linux

BAB VIII

KOMUNIKASI DATA

Komunikasi data adalah transfer data/informasi antara pengirim/source dan penerima/reciever.

Model Komunikasi

Gambar 8.1. Model Komunikasi dan contohnya

Model komunikasi dibangun oleh:

Source / Sumber

Sumber yang menghasilkan data yang akan dikirim. Misalnya : komputer.

Transmiter

Peralatan yang mengkonversi data menjadi sinyal. Data tidak dapat langsung dikirim via perangkat komunikasi yang hanya mengenal model pengiriman sinya. Misalnya: modem.

Transmission System

Sistem yang membawa sinyal dari satu tempat ke tempat yang lain. Misalnya : jaringan telepon, jaringan internet.

Receiver

Peralatan yang mengkonversikan sinyal yang dikirim menjadi data yang dapat dimengerti oleh penerima. Misalnya: modem

Destination / Tujuan

Penerima data akhir yang menjadi tujuan pengiriman data. Misalnya : server/komputer.

Sinyal dapat dibedakan menjadi dua, yaitu:

1. Sinyal Analog

Sinyal Analog adalah sinyal data dalam bentuk gelombang yang kontinu, yang membawa informasi dengan mengubah karakteristik gelombang.

2. Sinyal Digital

Sinyal Digital adalah sinyal dalam dalam bentuk pulsa yang bernilai 0 dan 1.

Cara Pengiriman Data dibedakan atas:

Circuit Switching

Komunikasi dengan mededikasikan jalur untuk komunikasi tersebut. Digunakan untuk komunikasi suara. Misalnya : jalur telepon.

Packet Switching

Data dikirim secara berurutan dalam bentuk paket-paket kecil. Digunakan untuk hubungan terminal ke komputer atau komputer ke komputer.

Protokol

Protokol merupakan suatu aturan yang mengatur komunikasi antara komputer dalam jaringan. Protokol menjamin komunikasi dengan bahasa yang sama.

Protokol secara umum mengakomodasi hal-hal berikut :

Kompatibilitas penuh antara dua peralatan setara

- Bisa melayani banyak peralatan dengan kemampuan berbeda-beda
- Berlaku umum dan mudah untuk dipelajari atau diterapkan

Standar protokol adalah OSI (*Open System Interconnection*) yang dikeluarkan oleh ISO (International Standart Organisasion).

OSI memiliki 7 lapisan/layer, yaitu :

- Lapisan Aplikasi
- Lapisan Presentasi
- Lapisan Sesi
- Lapisan Transport
- Lapisan Jaringan
- ❖ Lapisan Data Link
- Lapisan Fisik

Selain OSI ada juga protokol lain yaitu TCP/IP (*Transmission Control Protocol*) / (*Internet Protocol*) yang merupakan protokol internet yang paling populer. TCP/IP memiliki 4 lapisan, yaitu:

- Lapisan Aplikasi
- Lapisan Transport
- Lapisan Internet
- Lapisan Jaringan

Gambar 8.2 Hubungan OSI Layer dan TCP/IP Layer

Media fisik yang digunakan dalam komunikasi data dalam jaringan adalah :

Kabel Berpilin (Twisted Pair)

Ada dua kategori yang digunakan:

- a. Kategori 3, untuk kecepatan 10 Mbps (model lama)
- b. Kategori 5, untuk kecepatan 100 Mbps, biasa disingkat Cat 5
- Kabel Koaksial (Coaxial Cable)

Kabel model lama yang mirip dengan kabel antena TV.

Kabel Serat Kaca (Fiber Optic Cable)

Kabel dengan serat kaca yang berkecepatan tinggi hingga 5 Gps.

Gelombang Radio (Radio)

Gelombang yang digunakan bermacam-macam tergantung wilayah jangkauan, misalnya: *WaveLan*, selular/wide area, satelit.

Perangkat yang digunakan dalam komunikasi data adalah antara lain :

Router

Router adalah merupakan piranti yang menghubungkan dua buah jaringan yang berbeda tipe maupun protokol.

Bridge

Bridge adalah jenis perangkat yang diperlukan jika dua buah jaringan bertipe sama (ataupun bertopologi berbeda) tetapi dikehendaki agar lalu lintas lokal masing-masing jaringan tidak saling mempengaruhi jaringan yang lainnya.

Repeater

Repeater adalah piranti yang berfungsi untuk memperbaiki dan memperkuat sinyal atau isyarat yang melewatinya.

BAB IX

JARINGAN KOMPUTER

Konsep jaringan pertama kali bermula dari pemikiran bahwa "Hubungan komunikasi antara dua peralatan biasanya tidak praktis dikarenakan : peralatan yang terpisah terlalu jauh atau jumlah peralatan yang banyak akan memerlukan jumlah koneksi yang sangat besar dan tidak praktis. Solusinya adalah jaringan komunikasi".

Jaringan komputer adalah seperangkat komputer otonom yang saling terhubung yang secara eksplisit terlihat, sehingga dapat saling bertukar informasi/data, dan berbagai (*share*) satu dengan yang lainnya. [Tanenbaum 1996].

Suatu jaringan pada prinsipnya terdiri atas *node* dan *link* (yang menghubungkan node-node).

Node

Setiap mesin dalam sebuah jaringan disebut *node*. Node dapat berupa komputer, printer, router, gateway dan lain-lain. Node yang berupa komputer disebut *host*.

Link

Contohnya adalah fiber optic, kabel koaksial (coaxial cable), kabel berpilin (twisted pair copper), gelombang radio dan lain-lain.

Hubungan antar komputer secara umum terbagi dua:

- Point to point (hubungan secara langsung antar dua host)
- Multiple access (hubungan antara lebih dari dua host dengan bantuan peralatan tertentu)

Setiap node memiliki alamat tertentu yang disebut *IP Adress /* alamat IP. Alamat ini harus unik artinya tidak boleh ada alamat yang sama dalam satu jaringan. Pemberian alamat dapat dilakukan dengan dua cara, yaitu:

Dinamis

Melalui *DHCP* (Dynamic Host Control Protocol) alamat IP tiap komputer dalam jaringan dapat diberikan secara otomatis sehingga tidak ada komputer yang memiliki IP yang sama.

Statis

Setiap komputer dalam jaringan diberikan alamat secara manual. Ini tentu saja akan memakan waktu lama bila jaringannya besar. Biasanya pemberian secara statis hanya untuk jaringan dalam skala kecil.

Alamat IP yang berlaku sekarang adalah standar IPv4 (*Internet Protocol Version 4*) dengan pola xxxx.xxxx.xxxx dengan pembagian atas Kelas A, B, dan C. IPv4 menggunakan 32 bit untuk pengalamatan (2³²)yang mampu melayani 4.294.967.296 alamat.. Setiap komputer diseluruh dunia yang ingin terhubung dalam jaringan Internet mendapatkan 1 alamat yang disebut IP Publik.

Seiring dengan bertambah banyaknya komputer yang terhubung ke Internet maka IPv4 tidak akan cukup alokasi alamatnya. Oleh karena itu dibuat suatu standar baru dengan nama IPv6 (*Internet Protocol Version 6*) yang menggunakan 128 bit sehingga dapat mengalokasikan alamat hingga 2¹²⁸ (3,4 x 10³⁸) dengan contoh 2001:0db8:85a3:0000:0000:8a2e:0370:7334.

Tujuan dari jaringan komputer adalah:

- Membagi sumber daya, misalnya : berbagi pemakaian printer, hard disk
- Komunikasi, misalnya : email, chatting, program
- Akses informasi, misalnya: browsing.

•

Topologi Jaringan

Topologi Jaringan adalah model atau peta dari sebuah jaringan. Topologi jaringan ada bermacam-macam dengan kelebihan dan kekurangannya. Pemilihan topologi tergantung kebutuhan dan tempat penerapan jaringan.

Topologi Jaringan terbagi atas :

• Topologi Bus

Gambar 9.1. Topologi Bus

• Topologi Bintang

Gambar 9.2. Topologi Bintang

• Topologi Cincin

Gambar 9.3. Topologi Cincin

Topologi Mesh

Mesh Topology

Gambar 10.4. Topologi Mesh

Jaringan komputer berdasarkan kriterianya dibedakan menjadi 4, yaitu :

- 1. Berdasarkan Distribusi Sumber Informasi/Data
 - Jaringan Terpusat
 - Jaringan Terdistribusi
- 2. Berdasarkan Jangkauan Geografis
 - LAN (Local Area Network)

Jaringan lokal berskala kecil.

MAN (Metropolitan Area Network)

Jaringan yang lebih besar dan mencakup suatu wilayah/kota.

WAN (Wide Area Network)

Jaringan yang sangat jauh dan merupakan gabungan dari jaringan-jaringan yang heterogen. Misalnya : internet.

- 3. Berdasarkan Hubungan Tiap Komputer
 - Host (pengguna terakhir)

Misalnya: email, Web

Client/server model (Model klien/server)

Komputer yang meminta layanan disebut client dan komputer yang memberikan layanan disebut server. Misalnya : email client/server, Web client/server

Peer to peer (P2P) model

Setiap host menjadi client dan server secara bersamaan. Ketika host meminta layanan ke host yang lain, saat itu juga di dapat melayani permintaan layanan dari host yang lain.

4. Berdasarkan Media Transmisi

Jaringan Berkabel (Wired Network)

Jaringan yang membutuhkan kabel untuk menghubungkan komputer-komputer.

Jaringan Nirkabel (Wireless Network)

Jaringan yang tidak menggunakan kabel untuk menghubungkan komputer-komputer tetapi menggunakan gelombang radio.

Soal.

- 1. Tuliskan 3 kelebihan dan kekurangan Topologi Bintang bila dibandingkan dengan Topologi Cincin!
- 2. 100 komputer dalam sebuah organisasi ingin dibentuk dalam jaringan dan terbagi dalam 4 ruangan dengan jumlah masing-masing 25 komputer.
 - a. Topologi Jaringan apa yang cocok diterapkan? Jelaskan.
 - b. Pengalamatan komputer dengan metode apa yang cocok diterapkan? Jelaskan.
 - c. Media Transmisi apa yang cocok diterapkan? Jelaskan.

BAB X

INTERNET

Sejarah

Pada mulanya komunikasi antar komputer hanya berlangsung dalam lingkungan jaringan lokal (LAN) saja. Baru pada tahun 1960an, Departemen Pertahanan Amerika membuat penelitian yang kemudian melahirkan ARPANET (Advanced Research Project Agency Network) yang dibangun untuk tujuan militer dan menghubungkan University of California dengan Stanford Research Institute di tahun 1969. ARPANET berkembang dengan pesat dan menjadi inti dari internet.

Protokol TCP/IP ditulis pertama kali pada tahun 1974 dan dipakai secara penuh pada internet pada 1984. Kata INTERNET sendiri muncul pada publikasi RFC 675 yang menggambarkan jaringan tunggal TCP/IP global. Tahun 1984 Domain Name Server (DNS) diperkenalkan. Internet baru mulai dikomersilkan ke publik umum pada tahun 1988 dan memberi layanan email MCI Mail di tahun 1989. Hypertext Transfer Protocol (HTTP) ditulis pada tahun 1990.

Gambar 10.1. Timeline Internet

Pada tahun 1991 web server / World Wide Web (WWW) pertama dipasang. Persaingan web browser dimulai pada tahun 1996 antara Netscape dan Windows.Sejarah internet di Indonesia sendiri baru dimulai tahun1990an yang dibangun atas dasar kebersamaan. Onno W. Purbo dan kawan-kawan memulai jaringan menggunakan gelombang radio dan berkembang menggunakan TCP/IP. Teknologi radio paket TCP/IP ini kemudian diadopsi UI, ITB, LAPAN. Ditahun 2006 melalui DIKMENJUR sebagian besar sekolah-sekolah terutama SMK seIndonesia mendapatkan fasilitas internet.

Perkembangan Internet

Internet adalah jaringan dari jaringan dunia. Orang-orang terhubung ke internet sehingga mereka dapat mengakses informasi yang di-*share* dalam dalam jumlah besar. Internet menjadi media partisipasi sehingga semua orang dapat mem-*publish* informasi atau membuat suatu layanan. Internet adalah usaha bersama karena itu tidak ada penguasa di internet.

Pada Januari 2000 saja ada lebih dari 72 juta host/komputer yang terhubung ke internet. Sekitar 5% dari penduduk dunia telah mengakses internet.

Apa saja yang diperlukan untuk mengakses Internet?

- Komputer
- Modem
- Koneksi: Line Telepon, Wireless, DSL, Kabel
- Software Jaringan (TCP/IP)
- Software Aplikasi Jaringan : Browser, Email, FTP, dll
- Internet Service Provider (ISP)

Pada perkembangannya akses internet bukan hanya melalui komputer tetapi bisa dilakukan melalui perangkat digital lain yang telah ditambahkan fungsi akses internet seperti : Hand Phone, TV, PDA.

Banyak hal yang dapat dilakukan dengan adanya Internet, antara lain:

Mengirim dan menerima Email

- Mengunduh/download data/program dari internet
- Menaruh/upload data/program ke internet
- Chatting
- Berselancar / browsing, dan lain-lain

Sebagian besar layanan yang diberikan oleh internet adalah gratis.

World Wide Web

Web pertama kali ditemukan oleh Tim Berners-Lee ketika berkonsultasi di CERN (European Organization for Nuclear Research) di Swiss. Web merupakan Sistem Informasi Terdistribusi artinya sistem informasi yang terletak pada banyak tempat yang dapat diakses dari banyak tempat.

Web dapat memuat multimedia sehingga membuatnya semakin menarik dan interaktif. Informasi dalam Web saling berhubungan dengan *hyperlink* dan biasanya ditandai dengan garis bawah, misalnya : www.yahoo.com dan pada umumnya berwarna. Hyperlink bisa juga berupa gambar. Biasanya hyperlink dapat diketahui dengan cara mengarahkan pointer mouse dan bila pointer berubah menjadi bentuk tangan menunjuk maka itulah hyperlink.

Istilah web page menunjuk pada halaman dokumen di Web dan untuk mengaksesnya biasanya menggunakan web browser, misalnya: Internet Explorer (IE), Mozilla/Firefox, Opera, Chrome. Halaman web tersimpan di komputer yang disebut web server. Setiap organisasi dapat membuat web servernya sendiri. Kumpulan dari halaman-halaman web disebut web site / situs web dan halaman depannya/pertama disebut home page.

"Kita tidak mungkin hilang di Web". Istilah ini menunjukan bahwa dengan semua fasilitas yang ada kita bisa kembali ke tempat yang pernah kita datangi sebelumnya atau tempat dimana kita memulai.

Fasilitas ini dimiliki oleh semua browser, antara lain :

- Back: kembali ke halaman sebelumnya
- Foward: maju ke halaman yang pernah didatangi (setelah kita mundur)

• Home: halaman pertama bila kita membuka browser

• History: daftar situs yang pernah kita kunjungi.

Unsur-unsur dalam Web

a. Nama Domain/ Domain Name

Merupakan alamat suatu situs di internet. Untuk menunjukkan lokasi suatu situs biasanya digunakan URL (uniform resource locator). Bagian lokasi/alamat dari browser menunjukkan URL dari halaman web yang sedang dibuka dan kita dapat pergi ke suatu halaman web tertentu dengan cara mengetikkan URL-nya pada browser.

Untuk dapat menaruh halaman web ke internet ada beberapa hal yang dilakukan, yaitu :

- Memiliki file-file situs web yang telah dibuat/mendesign web
- Menyewa nama domain
- Menyewa/menyediakan penyimpanan untuk meletakkan situs kita (hosting)
- Mengupload file-file situs web

Domain di internet ada banyak sekali jenisnya, antara lain :

1. Generik Domain

Merupakan domain dengan akhiran .com .net .org .edu .mil .gov. Jenis ini sering disebut top level domain dan tidak bergantung pada negara tertentu sehingga siapa saja boleh menggunakannya. Misalnya : www.bhineka.com.

.com : ditujukan untuk 'commercial'

• .edu : domain untuk pendidikan (education)

.gov : untuk pemerintahan (government)

.mil: untuk keperluan militer

.org : untuk organisasi tertentu

2. Domain berdasarkan negara

Domain ini memiliki akhiran yang merupakan kependekan dari suatu negara dan terdiri dari dua huruf. Sering juga disebut second level domain.

Domain ini didaftarkan pada masing-masing negara, misalnya : .id (Indonesia), .au(Australia), .jp(Jepang) dan lain-lain. Domain ini digabungkan dengan domain level pertama, misalnya :

.ac.id : untuk akademik (academic)

• .go.id : untuk pemerintah (government)

• .co.id : untuk perusahaan (company)

.or.id : organisasi selain yang di atas

b. Hosting

Hosting adalah ruangan di hard disk tempat menaruh file-file situs di internet. Bila disewa, besarnya kapasitas yang disewa menentukan harga sewanya. Bila kita memiliki sendiri web server maka tidak perlu disewa. Besarnya kapasitas hosting menentukan besarnya file-file yang dapat ditampilkan di situs.

c. Script / Bahasa Program

Bahasa program dalam pengelolaan situs disebut script. Script menentukan aktivitas situs, misalnya : penyimpanan ke database, interktifnya. Situs yang interaktif disukai oleh pengunjung dan membuat banyak orang mengujungi situs tersebut. Script ada banyak sekali yang hadir hingga saat ini. Diantaranya adalah HTML, ASP, PHP, JSP, Java Script, VB Script.

Email (Electronic Mail)

Email adalah salah satu layanan surat elektronik yang terdapat pada internet. Dengan email kita dapat berkirim pesan antara sesama pemilik email. Layanan ini disediakan oleh situs web yang dikelola oleh *mail server*, misalnya: yahoo (mail.yahoo.com), google (mail.google.com). Untuk membuat email dapat dengan cara masuk ke alamat penyedia email seperti di atas kemudian pilih Sign Up lalu ikuti langkah-langkah yang diperintahkan. Setiap penyedia email memiliki langkah yang sedikit berbeda.

Beberapa hal yang harus diperhatikan tentang email adalah antara lain:

Nama/account email unik. Tidak ada email yang sama diseluruh internet.

- Email dapat menerima dan mengirim tulisan dan attachment/tambahan berupa file (gambar, dokumen dan lain-lain).
- Email yang tidak pernah diakses dalam waktu tertentu akan ditutup (biasanya 3 bulan).
- Pada halaman depan sebelum masuk ke email, biasanya ada dua link, yaitu : Sign In (Masuk bila sudah memiliki email) dan Sign Up (untuk membuat email baru).
- Email dapat mengandung virus yang berbahaya, oleh karena itu sebaiknya tidak membuka email dari orang yang tidak kita kenal/mencurigakan.
- Layanan email terbaru menyediakan juga layanan chatting yang membuat kita bisa berkomunikasi langsung/chat dengan teman (yang terdaftar dalam buku alamat) yang sedang on-line / membuka email juga.

BAB XI

BAHASA PEMROGRAMAN

Pemrograman komputer merupakan salah bidang dibawah ilmu komputer. Ketika ilmu komputer berfokus pada aplikasi komputer, pemrograman komputer berfokus pada dasar dari program komputer, yaitu bagaimana program bekerja, di design, diperbaiki dan dibuat. Pemrograman komputer dan bahasa pemrograman sering saling menggantikan artinya dalam kontek tertentu karena keduanya memiliki tujuan yang sama yaitu menulis program untuk komputer.

Bahasa pemrograman adalah notasi untuk menulis program yang mana merupakan spesifikasi dari komputasi dan algoritma [*Anthony Aaby, 2004*]. Bahasa web atau *Markup Language* (XML, HTML) tidak dimasukkan dalam kelompok bahasa pemrograman.

Pola penulisan dalam bahasa tertentu disebut sintaks/syntax. Bahasa pemrograman pada dasarnya adalah tekstual karena walaupun ada yang menggunakan komponen visual tetapi tetap diperlukan penulisan notasi-notasi baik itu variabel, perintah-perintah dan hubungan antar komponen.

Sejarah

Ada Lovelance seorang wanita yang menjadi asisten Charles Babbage di tahun 1840an menuliskan dokumentasi lengkap untuk mesin Analytical Engine. Dokumentasi ini mencakup metode untuk menghitung bilangan Bernouli. Hal ini dianggap sebagai bahasa pemrograman pertama. Kemudian Herman Hollerith membuat kode untuk sensus 1890 dengan menggunakan *punch card*.

Pada tahun 1940an bahasa mesin dibuat sejalan dengan munculnya komputer elektrik yang disusul dengan Short Code yang dijalankan pada ENIAC. Di tahun 1950an bermunculan bahasa pemrograman modern misalnya FORTRAN

(Formula Translator), LISP (List Processor) dan COBOL (Common Bussiness Oriented Language) dan ALGOL 58. Bahasa BASIC yang merupakan cikal bakal VISUAL BASIC muncul di tahun 1964. Tahun 1970an merupakan era kemunculan bahasa pemgrograman terstruktur seperti PASCAL 1970. Bahasa C dan SQL juga hadir di era ini.

Ditahun 1983, departemen pertahanan Amerika mengembangkan bahasa ADA yang nama diambil dari Ada Lovelance sebagai penghormatan kepadanya sebagai programmer pertama di dunia. Di era ini lahir bahasa C++ dan PERL. Tahun 1990an merupakan era internet dan objek dimana bahasa yang lahir difokuskan pada pemrograman internet/jaringan dan berorientasi objek, seperti : Python, Java, Ruby, Java Script, PHP, Visual Basic, Delphi dan lain-lain. Tahun 2000an bahasa yang muncul antara lain adalah C#, Visual Basic .NET.

PENGGOLONGAN

Bahasa pemrograman memiliki kesamaan dan perbedaan yaitu :

> Kesamaan : menghasilkan output sama

Perbedaan : cara memberikan instruksi

Bahasa pemrograman memiliki tingkatan yang ditentukan oleh seberapa dekatnya bahasa mengakses mesin komputer. Tingkatan tersebut adalah :

Bahasa Tingkat Rendah (Low Level Language)

Biasa disebut bahasa mesin, perintah-perintahnya berupa bahasa mesin. Contoh : Assembly

Bahasa Tingkat Menengah (Middle Level Language)

Bahasanya yang perintah-perintahnya sebagian mudah dimengerti manusia dan sebagian lagi merupakan bahasa mesin. Contoh : C

Bahasa Tingkat Tinggi (High Level Language)

Bahasa yang perintah-perintahnya sepenuhnya mudah dimengerti manusia. Contoh: Pascal.

Pemrograman dapat digolongkan menjadi :

- Pemrograman Berorientasi Prosedural (*Procedural Oriented*)
- Pemrograman Berorientasi Fungsi (Functional Oriented)
- Pemrograman Berorientasi Logika (Logic Oriented)
- Pemrograman Berorientasi Objek (Objec Oriented)

Berdasarkan *interface*/antarmuka yang digunakan, bahasa pemrograman dibedakan atas:

Text Based / Berbasis Teks

Bahasa pemrograman yang berjalan di sistem operasi yang berbasis teks atau editornya non grafik. Misalnya: Pascal, C, Java

Graphic Based / Berbasis Grafik

Bahasa pemrograman yang berjalan di sistem operasi yang berbasis grafik. Bahasa ini menggunakan komponen GUI (Graphik User Interface) yang memudahkan programmer membuat tampilan grafis. Biasanya disebut juga Pemrograman Visual. Misalnya: Delphi, Visual Basic.

BAB XII

KEAMANAN KOMPUTER

Dalam penggunaan komputer ada beberapa hal yang sering dilupakan atau dianggap kurang penting oleh pengguna, yaitu kemanan komputer.

Keamanan komputer sendiri terbagi tiga, yaitu :

- Keamanan Data
- Keamanan Software
- Keamanan Hardware

A. Keamanan Data

Keamanan data dalam komputer merupakan hal yang sangat vital. Pada banyak kasus pengguna harus mengulangi pekerjaan berhari-hari atau berminggu-minggu bahkan berbulan-bulan karena kerusakan atau kehilangan data.

Hal-hal yang dapat menyebabkan kerusakan data, adalah:

1. Virus

Virus merupakan program yang secara ilegal berjalan dikomputer dengan tujuan yang tidak diinginkan. Kerusakan yang ditimbulkan sangat bervariasi dari hanya menyembunyikan data hingga merusak bahkan menghapus data. Penyebaran virus yang paling marak adalah lewat internet dan flashdisk.

2. Kesalahan Manusia / Human Error

Manusia sebagai pemilik data itu sendiri dapat dengan sengaja maupun tidak sengaja merusak data yang ada. Kesalahan dalam menghapus data atau menimpa data dengan nama yang sama sewaktu proses mengkopy atau simpan adalah contoh kesalahan yang umum terjadi.

3. Kesalahan Prosedur

Kesalahan prosedur adalah kesalahan pengoperasian komputer (tidak mengikuti prosedur yang berlaku). Misalnya mematikan komputer tanpa melalui proses shutdown.

4. Kerusakan Software

Karena beberapa sebab software dapat rusak baik software aplikasi maupun sistem operasi. Software yang rusak dapat menyebabkan data tidak tersimpan dengan benar atau tidak dapat diakses lagi.

5. Kerusakan Hardware

Kerusakan pada hardware tertentu akan merusak bahkan menghilangkan data-data yang ada. Misalnya: hard disk rusak secara fisik maka hampir dapat dipastikan data tidak dapat diakses lagi.

6. Kejahatan Komputer/Hacker

Pengrusakkan data dapat terjadi secara langsung maupun lewat internet/jaringan. Seseorang dapat menggunakan komputer kita secara ilegal dan menghapus/merusak data sewaktu kita tidak ada ditempat adalah contoh pengrusakkan secara langsung. Lewat internet, seorang hacker dapat menerobos sistem komputer dan merusak data.

7. Bencana

Bencana dapat berupa bencana alam seperti gempa, banjir dan lainlain tetapi juga dapat berupa kecelakaan seperti kebakaran.

Untuk mengantisipasi/mengatasi kerusakan ini beberapa hal yang dapat dilakukan adalah antara lain :

1. Memasang Antivirus

Antivirus dapat meminimalkan serangan virus yang telah **diketahui sebelumnya**!. Virus yang baru biasanya tidak dapat ditangkal dengan antivirus. Selain itu virus lokal (buatan dalam negeri) biasanya hanya dapat ditangkal oleh antivirus lokal juga dan termasuk paling sulit diatasi. Oleh karena itu perlu kewaspadaan dari pengguna juga untuk tidak mengakses situs yang tidak terpercaya atau memasukkan flash disk tanpa di*scan*.

2. Melakukan Backup secara rutin

Dibackup ke komputer atau media lain termasuk juga melakukan proses save secara rutin sewaktu bekerja dengan dokumen.

3. Recovery/Restore

Proses recovery adalah proses mengembalikan kondisi data/sistem pada saat terakhir kali disimpan. Recovery ini kadang sulit dilakukan karena tingkat keberhasilan tidak dapat dijamin 100%. Dengan menggunakan program tertentu dapat dilakukan.

4. Menggunakan password

Penggunaan password terhadap file akan membantu menghindari pengaksesan file oleh orang lain. Password dapat juga dipasang pada software/sistem operasi atau hardware(bios). Selain menggunakan kata sandi, dapat juga menggunakan model *finger print*, yaitu pembacaan sidik jari. Ini dapat ditemukan pada beberapa laptop masa kini.

5. Firewall

Dengan adanya firewall yang merupakan sistem keamanan terhadap data yang masuk maupun keluar komputer lewat jaringan, kita dapat meminimalkan akses yang tidak diinginkan lewat jaringan.

6. Menggunakan komputer sesuai dengan prosedur

Pengoperasian yang tepat akan menolong menghindarkan kerusakan data.

B. Keamanan Software

Software yang kita miliki dapat mengalami kerusakan yang membuat kita terpaksa harus memperbaiki atau memasang ulang. Oleh karena itu software yang kita miliki perlu dijaga apalagi bila kita beli dengan harga mahal atau perlu keahlian khusus dalam proses pemasangannya (apalagi bila kita tidak tahu proses melakukannya!) atau vital dalam pekerjaan kita.

Kerusakan software dapat disebabkan oleh beberapa hal, antara lain :

1. Penggunaan software bajakan

Software yang bajakan karena tidak berasal dari pembuatnya langsung maka kualitas software tersebut tidak dapat dijamin sehingga resiko kerusakan akan besar dan kita tidak dapat melakukan komplain.

2. Kesalahan prosedur

Pemasangan/install software yang tidak benar dapat menyebakan crash/bertabrakan dengan software lain atau tidak lengkap sehingga menyebabkan software rusak.

3. Virus

Virus selain dapat merusak data, dapat juga merusak software dan biasanya menyerang sistem operasi dan aplikasi yang berjalan di sistem operasi Windows.

Hal-hal yang dapat dilakukan untuk meminimalkan kerusakan komputer adalah antara lain :

 Menggunakan software yang terpercaya baik itu yang berbayar atau open source.

Memasang Antivirus.

Antivirus dapat menangkal dan memperbaiki virus yang merusak software.

3. Backup sistem.

Sistem komputer dapat dibackup secara keseluruhan dengan menggunakan aplikasi tertentu sehingg bila terjadi kerusakan yang paling parah sekalipun dapat dikembalikan ke kondisi semula.

4. Lakukan sesuai prosedur.

Bila tidak ada sistem backup dan software serta data dalam komputer bersifat vital, ada baiknya tidak melakukan proses pemasangan software sendiri bila tidak yakin dengan langkah-langkahnya. Pada dasarnya tidak ada software yang sempurna yang dapat mengatasi semua kesalahan pemakaian sehingga penggunaan sesuai prosedur sangat dianjurkan.

C. Keamanan Hardware

Keamanan hardware menjadi penting karena kerusakan pada hardware dapat menyebabkan kerusakan pada data dan sofware tetapi mungkin juga tidak mempengaruhi apapun, misalnya: kerusakan mouse tidak mempengaruhi data atau software, sedangkan kerusakan hard disk akan merusak data dan software.

Hal-hal yang dapat menyebabkan kerusakan hardware adalah antara lain:

1. Kelistrikan

Hardware komputer sangat tergantung pada listrik. Oleh karena itu ketidakstabilan listrik akan mempengaruhi kinerja dan ketahanan hardware. Komputer yang sering mati dengan tiba-tiba akibat kehilangan pasokan listrik dapat memicu kerusakan baik pada hard disk, motherboard bahkan power supply dan perangkat lainnya.

2. Kesalahan prosedur

Penggunaan atau penempatan yang tidak sesuai aturan akan menyebabkan memperpendek masa pakai hardware. Menyalakan komputer diruang yang panas atau memaksakan komputer menyala terusmenerus dapat menimbulkan kerusakan.

3. Bencana alam/kerusuhan.

Faktor ini adalah yang paling sulit dihindarkan karena diluar kemampuan kita. Banjir, gempa atau kerusuhan bila mencapai komputer maka kerusakan parah sangat mungkin terjadi.

Pencegahan yang dapat dilakukan adalah antara lain:

1. Memasang Stavolt atau UPS (Universal Power Saving)

Dengan adanya stavolt yang berfungsi menstabilkan arus listrik atau UPS yang berfungsi untuk menyediakan daya listrik selama beberapa waktu sehingga kita dapat melakukan proses shutdown secara baik, maka kerusakan akibat listrik dapat diminimalkan. UPS ada yang dilengkapi dengan aplikasi untuk mengendalikan UPS, baik untuk melihat kapasitas bateray atau memantau kondisi UPS lewat internet.

2. Menggunakan sesuai prosedur

Penempatan komputer yang benar, menyalakan dan mematikan, serta pemakaian sesuai fungsinya akan membuat hardware lebih awet. Selain itu penggunaan sesuai dengan prosedur khususnya yang berhubungan dengan kelistrikan akan mengurangi resiko kebakaran, misalnya mematikan komputer hingga stavolt/UPS.

Soal

- 1. Tuliskan 3 aplikasi untuk:
 - a. Membackup data
 - b. Merestore data
- 2. Tuliskan 3 jenis antivirus lokal!
- 3. Selain antivirus, apa lagi program untuk menangkal kerusakan dari internet?
- 4. Apa yang diperlukan untuk menghubungkan UPS dengan softwarenya?
- 5. Apa yang dimaksud dengan dekripsi dan enkrispi dalam password dan tuliskan 2 metodenya!

BAB XII

KEAMANAN KOMPUTER

Dalam penggunaan komputer ada beberapa hal yang sering dilupakan atau dianggap kurang penting oleh pengguna, yaitu kemanan komputer.

Keamanan komputer sendiri terbagi tiga, yaitu :

- Keamanan Data
- Keamanan Software
- Keamanan Hardware

A. Keamanan Data

Keamanan data dalam komputer merupakan hal yang sangat vital. Pada banyak kasus pengguna harus mengulangi pekerjaan berhari-hari atau berminggu-minggu bahkan berbulan-bulan karena kerusakan atau kehilangan data.

Hal-hal yang dapat menyebabkan kerusakan data, adalah:

1. Virus

Virus merupakan program yang secara ilegal berjalan dikomputer dengan tujuan yang tidak diinginkan. Kerusakan yang ditimbulkan sangat bervariasi dari hanya menyembunyikan data hingga merusak bahkan menghapus data. Penyebaran virus yang paling marak adalah lewat internet dan flashdisk.

2. Kesalahan Manusia / Human Error

Manusia sebagai pemilik data itu sendiri dapat dengan sengaja maupun tidak sengaja merusak data yang ada. Kesalahan dalam menghapus data atau menimpa data dengan nama yang sama sewaktu proses mengkopy atau simpan adalah contoh kesalahan yang umum terjadi.

3. Kesalahan Prosedur

Kesalahan prosedur adalah kesalahan pengoperasian komputer (tidak mengikuti prosedur yang berlaku). Misalnya mematikan komputer tanpa melalui proses shutdown.

4. Kerusakan Software

Karena beberapa sebab software dapat rusak baik software aplikasi maupun sistem operasi. Software yang rusak dapat menyebabkan data tidak tersimpan dengan benar atau tidak dapat diakses lagi.

5. Kerusakan Hardware

Kerusakan pada hardware tertentu akan merusak bahkan menghilangkan data-data yang ada. Misalnya: hard disk rusak secara fisik maka hampir dapat dipastikan data tidak dapat diakses lagi.

6. Kejahatan Komputer/Hacker

Pengrusakkan data dapat terjadi secara langsung maupun lewat internet/jaringan. Seseorang dapat menggunakan komputer kita secara ilegal dan menghapus/merusak data sewaktu kita tidak ada ditempat adalah contoh pengrusakkan secara langsung. Lewat internet, seorang hacker dapat menerobos sistem komputer dan merusak data.

7. Bencana

Bencana dapat berupa bencana alam seperti gempa, banjir dan lainlain tetapi juga dapat berupa kecelakaan seperti kebakaran.

Untuk mengantisipasi/mengatasi kerusakan ini beberapa hal yang dapat dilakukan adalah antara lain :

1. Memasang Antivirus

Antivirus dapat meminimalkan serangan virus yang telah **diketahui sebelumnya**!. Virus yang baru biasanya tidak dapat ditangkal dengan antivirus. Selain itu virus lokal (buatan dalam negeri) biasanya hanya dapat ditangkal oleh antivirus lokal juga dan termasuk paling sulit diatasi. Oleh karena itu perlu kewaspadaan dari pengguna juga untuk tidak mengakses situs yang tidak terpercaya atau memasukkan flash disk tanpa di*scan*.

2. Melakukan Backup secara rutin

Dibackup ke komputer atau media lain termasuk juga melakukan proses save secara rutin sewaktu bekerja dengan dokumen.

3. Recovery/Restore

Proses recovery adalah proses mengembalikan kondisi data/sistem pada saat terakhir kali disimpan. Recovery ini kadang sulit dilakukan karena tingkat keberhasilan tidak dapat dijamin 100%. Dengan menggunakan program tertentu dapat dilakukan.

4. Menggunakan password

Penggunaan password terhadap file akan membantu menghindari pengaksesan file oleh orang lain. Password dapat juga dipasang pada software/sistem operasi atau hardware(bios). Selain menggunakan kata sandi, dapat juga menggunakan model *finger print*, yaitu pembacaan sidik jari. Ini dapat ditemukan pada beberapa laptop masa kini.

5. Firewall

Dengan adanya firewall yang merupakan sistem keamanan terhadap data yang masuk maupun keluar komputer lewat jaringan, kita dapat meminimalkan akses yang tidak diinginkan lewat jaringan.

6. Menggunakan komputer sesuai dengan prosedur

Pengoperasian yang tepat akan menolong menghindarkan kerusakan data.

B. Keamanan Software

Software yang kita miliki dapat mengalami kerusakan yang membuat kita terpaksa harus memperbaiki atau memasang ulang. Oleh karena itu software yang kita miliki perlu dijaga apalagi bila kita beli dengan harga mahal atau perlu keahlian khusus dalam proses pemasangannya (apalagi bila kita tidak tahu proses melakukannya!) atau vital dalam pekerjaan kita.

Kerusakan software dapat disebabkan oleh beberapa hal, antara lain :

1. Penggunaan software bajakan

Software yang bajakan karena tidak berasal dari pembuatnya langsung maka kualitas software tersebut tidak dapat dijamin sehingga resiko kerusakan akan besar dan kita tidak dapat melakukan komplain.

2. Kesalahan prosedur

Pemasangan/install software yang tidak benar dapat menyebakan crash/bertabrakan dengan software lain atau tidak lengkap sehingga menyebabkan software rusak.

3. Virus

Virus selain dapat merusak data, dapat juga merusak software dan biasanya menyerang sistem operasi dan aplikasi yang berjalan di sistem operasi Windows.

Hal-hal yang dapat dilakukan untuk meminimalkan kerusakan komputer adalah antara lain :

 Menggunakan software yang terpercaya baik itu yang berbayar atau open source.

Memasang Antivirus.

Antivirus dapat menangkal dan memperbaiki virus yang merusak software.

3. Backup sistem.

Sistem komputer dapat dibackup secara keseluruhan dengan menggunakan aplikasi tertentu sehingg bila terjadi kerusakan yang paling parah sekalipun dapat dikembalikan ke kondisi semula.

4. Lakukan sesuai prosedur.

Bila tidak ada sistem backup dan software serta data dalam komputer bersifat vital, ada baiknya tidak melakukan proses pemasangan software sendiri bila tidak yakin dengan langkah-langkahnya. Pada dasarnya tidak ada software yang sempurna yang dapat mengatasi semua kesalahan pemakaian sehingga penggunaan sesuai prosedur sangat dianjurkan.

C. Keamanan Hardware

Keamanan hardware menjadi penting karena kerusakan pada hardware dapat menyebabkan kerusakan pada data dan sofware tetapi mungkin juga tidak mempengaruhi apapun, misalnya: kerusakan mouse tidak mempengaruhi data atau software, sedangkan kerusakan hard disk akan merusak data dan software.

Hal-hal yang dapat menyebabkan kerusakan hardware adalah antara lain:

1. Kelistrikan

Hardware komputer sangat tergantung pada listrik. Oleh karena itu ketidakstabilan listrik akan mempengaruhi kinerja dan ketahanan hardware. Komputer yang sering mati dengan tiba-tiba akibat kehilangan pasokan listrik dapat memicu kerusakan baik pada hard disk, motherboard bahkan power supply dan perangkat lainnya.

2. Kesalahan prosedur

Penggunaan atau penempatan yang tidak sesuai aturan akan menyebabkan memperpendek masa pakai hardware. Menyalakan komputer diruang yang panas atau memaksakan komputer menyala terusmenerus dapat menimbulkan kerusakan.

3. Bencana alam/kerusuhan.

Faktor ini adalah yang paling sulit dihindarkan karena diluar kemampuan kita. Banjir, gempa atau kerusuhan bila mencapai komputer maka kerusakan parah sangat mungkin terjadi.

Pencegahan yang dapat dilakukan adalah antara lain:

1. Memasang Stavolt atau UPS (Universal Power Saving)

Dengan adanya stavolt yang berfungsi menstabilkan arus listrik atau UPS yang berfungsi untuk menyediakan daya listrik selama beberapa waktu sehingga kita dapat melakukan proses shutdown secara baik, maka kerusakan akibat listrik dapat diminimalkan. UPS ada yang dilengkapi dengan aplikasi untuk mengendalikan UPS, baik untuk melihat kapasitas bateray atau memantau kondisi UPS lewat internet.

2. Menggunakan sesuai prosedur

Penempatan komputer yang benar, menyalakan dan mematikan, serta pemakaian sesuai fungsinya akan membuat hardware lebih awet. Selain itu penggunaan sesuai dengan prosedur khususnya yang berhubungan dengan kelistrikan akan mengurangi resiko kebakaran, misalnya mematikan komputer hingga stavolt/UPS.

Soal

- 1. Tuliskan 3 aplikasi untuk:
 - a. Membackup data
 - b. Merestore data
- 2. Tuliskan 3 jenis antivirus lokal!
- 3. Selain antivirus, apa lagi program untuk menangkal kerusakan dari internet?
- 4. Apa yang diperlukan untuk menghubungkan UPS dengan softwarenya?
- 5. Apa yang dimaksud dengan dekripsi dan enkrispi dalam password dan tuliskan 2 metodenya!

BAB XIII

ETIKA KOMPUTER

A. ETIKA

Di dalam Kamus besar bahasa Indonesia terbitan Departemen Pendidikan dan Kebudayaan (1998) mengartikan pengertian Etika dalam tiga Hal :

- Ilmu tentang apa yang baik dan buruk tentang statu hak dan kewajiban moral.
- 2. Kumpulan asas atau nilai yang berkenaan dengan akhlak.
- 3. Nilai mengenai benar dan salah yang dianut masyarakat.

Pelanggaran terhadap etika biasanya diberikan sanksi berupa:

- Sanksi Sosial
- Sanksi Hukum

Faktor-faktor yang dapat mempengaruhi pelanggaran etika :

- Kebutuhan Individu
 - Korupsi → alasan ekonomi
- Tidak ada pedoman
 - Area "abu-abu", sehingga tidak ada panduan
- Perilaku dan kebiasaan individu
 - Kebiasaan yang terakumulasi tak dikoreksi
- Lingkungan yang tidak etis
 - Pengaruh dari komunitas
- · Perilaku orang yang ditiru
 - Efek primordialisme yang kebablasan

B. ETIKA KOMPUTER

Etika komputer adalah ilmu tentang bagaimana berperilaku terhadap penggunaan komputer.

Seiring dengan perkembangan komputer dan penggunaannya, etika komputer mulai muncul pada tahun 1940an dan terus dipelajari hingga sekarang. Saat ini etika komputer sudah mulai dimasukan dalam mata pelajaran wajib dihampir semua perguruan tinggi yang memiliki jurusan komputer.

Masalah yang muncul adalah bagaimana teknologi komputer harus digunakan?. Etika komputer hadir untuk menjawab apa yang harus kita lakukan.

Isu-isu penting dalam etika komputer adalah:

Kejahatan Komputer

Merupakan kejahatan yang timbul akibat penggunaan komputer secara ilegal (Andi Hamsah, 1998).

Misalnya: penyebaran virus, email spam, carding, dan lain-lain.

Cyber Ethics / Etika Internet

Internet hadir untuk menjembatani seluruh komputer di seluruh dunia sehingga tidak ada lagi batasan jarak. Komunikasi antar user menjadi sangat lancar dan membuka peluang bagi banyak hal, misalnya bisnis, edukasi dan lain-lain.

Masalah yang muncul adalah user berasal dari berbagai belahan dunia dengan budaya yang berbeda. Perbedaan ini dapat menimbulkan perpecahan, oleh karena itu dibuat aturan dan prinsip yang disebut Nettiquette/Netiket berdasarkan IETF (The Internet Engineering Task Force).

E-commerce

Electronic Commerce merupakan model perdagangan secara elektronik yang biasanya dilakukan via internet. Ini memberi banyak kemudahan, misalnya konsumen tidak perlu jauh-jauh pergi melihat barangnya atau pada produsen yang dapat memasarkan barangnya tanpa harus bertemu dengan konsumen.

Akan tetapi kemudian muncul masalah seperti perhitungan pajak, perlindungan konsumen, pemalsuan tanda tangan digital, dan sebagainya. Indonesia sempat sangat bermasalah dengan hal ini sampai di-'blacklist' oleh salah satu situs e-commerce Amerika karna dianggap user Indonesia banyak melakukan tindakan ilegal.

Pelanggaran HAKI (Hak Atas Kekayaan Intelektual)

Software merupakan bentuk digital yang sangat mudah untuk digandakan. Disatu sisi memberi kemudahan dalam hal perbanyakan produksi tetapi disisi lain membuka peluang untuk pembajakan. Berbagai upaya dilakukan untuk mencegah dan menghambat pembajakan tetapi pembajakan tetap marak tanpa adanya kesadaran dari user.

Tanggung jawab Profesi

Kode etik profesi muncul untuk memberi gambaran adanya tanggung jawab bagi pekerja di bidang komputer untuk menjalankan fungsi dan tugasnya secara profesional. Di Indonesia telah dibentuk IPKIN (Ikatan Profesi Komputer dan Informatika) sejak tahun 1974 yang merupakan organisasi profesi di bidang komputer.

C. HAKI DI INDONESIA

Ada beberapa hal yang mendorong terjadinya pelangaran HAKI di Indonesia, antara lain :

- Produk yang intangible/tidak dapat diukur/dapat dibuat dalam format digital sangat banyak, misalnya: Musik, Film, Buku, Software.
- Penggandaan dari bentuk digital tidak merubah kualitas.
- Harga produk bajakan jauh lebih murah dan lebih mudah diperoleh.
- Kurangnya penegakan hukum dan kesadaran dibidang ini.

Di Indonesia telah dilakukan beberapa tindakan untuk melindungi HAKI, dan mengatasi masalah pembajakan, antara lain :

- Terbitnya Undang-undang tentang HAKI, yaitu UU No.6/1982 yang disempurnakan menjadi UU No. 12/1997 dan disempurnakan lagi menjadi UU No. 19/2002
- Adanya penertiban penjualan dan penggunaan software bajakan oleh pihak berwajib.
- Penggalakan penggunaan software open source yang bersifat gratis oleh pemerintah, salah satunya lewat IGOS (Indonesia Go to Open Source) dan dibentuknya kelompok-kelompok pengembang software open source.

DAFTAR PUSTAKA

- B.M. Laimeheriwa, Buku Latihan Kursus Operator Komputer, Edisi 8, Penerbit Penabur Computech, 2010
- B.M. Laimeheriwa, Buku Panduan Kursus Operator Komputer, Edisi 9, Penerbit Penabur Computech, 2010
- B.M. Laimeheriwa, Kitab Komputer, Penerbit Penabur Computech, 2009.
- Deborah G. Johnson, *Computer Ethics*, 3rd Edition, Prentice Hall, 2001.
- H.M. Jogiyanto, Pengenalan Komputer, Andi Offset, Yogyakarta, 1995.
- J. Glenn Brookshear, Computer Science an Overview, Fourth Edition, The Benjamin/Cummings Publising Company, Inc., 1994
- J. Kurose and K. Ross, Computer Networking -- A Top-Down Approach Featuring the Internet, 3nd edition, Addison-Wesley, 2000
- Peter. Norton, "Introduction to Computer, 4th Edition", Mc Graw Hill, 2002
- Robert T. Grauer and Maryann Barber, "Exploring Microsoft Office XP Volume II Enhanced Edition, with Word, Excel, PowerPoint, Outlook, Access, and FrontPage Laminates", Prentice Hall Publishing, 2003
- Schellenberg, Kathryn, ed. *Computers in Society* 7th edition. Guilford, Connecticut: Dushkin, 1998.
- Wear, larry L., et al., Computers, An Introduction to Hardware and Software Design, McGrawHill, 1991
- William Stalings, Data and Computer Communications (6th edition), Prentice Hall, 1999.
- Sumber-sumber lain di Internet.