Lecture 2.3: Matrix product

Optimization and Computational Linear Algebra for Data Science

Léo Miolane

Matrix-vector product

Consider a linear map $L: \mathbb{R}^m \to \mathbb{R}^n$ and its associated matrix $E \in \mathbb{R}^{n \times m}$.

Question: Can we use the matrix \widetilde{L} to compute the image L(x) of a vector $x \in \mathbb{R}^m$?

Proposition

For all $x \in \mathbb{R}^m$ we have

$$L(x) = \tilde{L}x$$

where the "matrix-vector" product $\widetilde{L}x \in \mathbb{R}^n$ is defined by

$$(\widetilde{L}x)_i = \sum_{j=1}^m \widetilde{L}_{i,j} x_j$$
 for all $i \in \{1, \dots, n\}$.

Visualizing the formula

Why do we have $L(x) = \widetilde{L}x$?

Linear map associated to a matrix

Definition

The linear map associated to a matrix $\widetilde{L} \in \mathbb{R}^{n \times m}$ is the map

$$\begin{bmatrix} L: & \mathbb{R}^m & \to & \mathbb{R}^n \\ & x & \mapsto & \widetilde{L}x. \end{bmatrix}$$

Matrix product

- The matrix product LM is the $n \times k$ matrix of the linear map $L \circ M$.
- Its coefficients are given by the formula:

$$(LM)_{i,j} = \sum_{\ell=1}^{m} L_{i,\ell} M_{\ell,j} \quad \text{for all} \quad 1 \le i \le n, \quad 1 \le j \le k.$$

Visualizing the formula

