Termodinámica - Clase 19

Graeme Candlish

Institúto de Física y Astronomía, UV graeme.candlish@ifa.uv.cl

Contenido

Conceptos en esta clase

La estadística de Maxwell-Boltzmann

La estadística de Bose-Einstein

La estadística de Fermi-Dirac

Resumer

Conceptos en esta clase

- Contando microestados (con ciertos valores de los N_i):
 - Maxwell-Boltzmann
 - Bose-Einstein
 - Fermi-Dirac

Contenido

Conceptos en esta clase

La estadística de Maxwell-Boltzmann

La estadística de Bose-Einstein

La estadística de Fermi-Dirac

Resumer

Consideremos primero un sistema donde no hay degeneración de los niveles de energía. En el ejemplo hay 2 niveles, 5 partículas, y los números de ocupación son $N_2 = 3$ y $N_1 = 2$.

$$\frac{2}{\text{Nivel 1}}$$
 $N_1 = 2$

1 2 5
$$N_2 = 3$$
 Nivel 2

$$\frac{4}{\text{Nivel 1}}$$
 $N_1 = 2$

Tenemos el problema de organizar 5 objetos (partículas) en 2 cajas (niveles de energía) donde hay 3 objetos (partículas) en la primera caja (nivel de energía) y 2 objetos en la segunda. Ya sabemos como resolver este problema!

$$W = N! \prod_{j} \frac{1}{N_{j}!} = 5! \frac{1}{3!} \frac{1}{2!} = 10$$

Estadística de Maxwell-Boltzmann

Ahora incluyimos la degeneración de los niveles de energía. Consideremos un nivel de energía j con número de ocupación N_j . Ya que las partículas son **distinguibles** podemos identificar partícula 1, partícula 2, etc.

- Partícula 1: elegimos uno de los g_j estados posibles.
- Partícula 2: no hay límite en el número de partículas que pueden ocupar el mismo estado, así que hay g_j estados posibles de nuevo.
- Partícula 3: de nuevo, g_i estados posibles.
- ...hasta partícula N_j . Todas las partículas tienen g_j estados posibles.

Número de microestados en un nivel degenerado

Ejemplo:

- Para partícula 1 hay 3 estados posibles $(g_i = 3)$.
- Para partícula 2 hay, de nuevo, 3 estados posibles.
- Para partícula 3 hay, de nuevo, 3 estados posibles.
- Es lo mismo para partículas 4 y 5.
- Entonces, hay $3 \times 3 \times 3 \times 3 \times 3 = 3^5 = 243$ estados posibles en total (para este nivel de energía).

Número de microestados en un nivel degenerado

Entonces, para partículas que cumplen la estadística de Maxwell-Boltzmann (sin restricción en el número de partículas en cada estado y las partículas son distinguibles) el número de estados posibles en nivel j con degeneración g_j es:

$$\omega_j = g_j^{N_j}$$

Número total de microestados (con ciertos N_j)

- Hay ω_j estados posibles en nivel j con número de ocupación N_j.
- Entonces, considerando todos los niveles de energía, hay $\prod_j \omega_j = \prod_j g_j^{N_j}$ estados posibles, donde N_j es el número de ocupación de cada nivel.

Número total de microestados (con ciertos N_j)

- Ya vimos como podemos organizar N partículas entre los j niveles.
- Por lo tanto el número total de formas de organizar N
 partículas entre los niveles de energía, con número de
 ocupación N_j y degeneración g_j es

$$\mathcal{W} = N! \prod_{j} \frac{g_{j}^{N_{j}}}{N_{j}!}$$

Microestados en la estadística de Maxwell-Boltzmann

$$\mathcal{W}_{MB} = N! \prod_{j} \frac{g_{j}^{N_{j}}}{N_{j}!}$$

- Este resultado expresa el número de microestados posibles para estos números de ocupación N_j.
- Para calcular el número total de microestados disponibles, hay que sumar sobre todas las combinaciones posibles de números de ocupación, que son consistentes con la energía total del sistema.

Contenido

Conceptos en esta clase

La estadística de Maxwell-Boltzmann

La estadística de Bose-Einstein

La estadística de Fermi-Dirac

Resumer

Bose-Einstein: partículas *indistinguibles*, sin restricción en sus estados.

En este caso no podemos elegir una partícula como partícula 1, la otra como partícula 2, etc. porque son todas iguales! Las partículas cuánticas son así.

Lo que importan son los N_j .

Consideremos un nivel de energía j. Tenemos N_j partículas, y g_j estados. Así que el problema es determinar cuántas formas de organizar las N_j partículas en distintos grupos, donde hay un máximo de g_j grupos posibles.

- Consideremos N_j puntos, y $g_j 1$ líneas que dividen los puntos en g_j grupos.
- Entonces, hay $g_j + N_j 1$ ubicaciones, donde $g_j 1$ están ocupadas por las líneas, las otras por los puntos.
- ¿Cómo podemos organizar $g_j 1$ objetos de un total de $g_j + N_j 1$?

El coeficiente binomial nos dice cuantas formas hay de elegir n objetos de un conjunto de N.

$$\binom{N}{n} = \frac{N!}{n!(N-n)!}.$$

En este caso tenemos

$$\binom{g_j+N_j-1}{g_j-1}=\frac{(g_j+N_j-1)!}{(g_j-1)!(g_j+N_j-1-(g_j-1))!}=\frac{(g_j+N_j-1)!}{(g_j-1)!N_j!}.$$

Entonces

$$\omega_j = \frac{(g_j + N_j - 1)!}{(g_j - 1)! N_j!}, \qquad \mathcal{W}_{BE} = \prod_j \frac{(g_j + N_j - 1)!}{(g_j - 1)! N_j!}.$$

Podemos ver que $W_{BE} \neq W_{MB}$! De nuevo el número **total** de microestados viene de la suma sobre todos los valores de N_j consistentes con la energía total.

Contenido

Conceptos en esta clase

La estadística de Maxwell-Boltzmann

La estadística de Bose-Einstein

La estadística de Fermi-Dirac

Resumer

Estadística Fermi-Dirac

Fermi-Dirac: partículas *indistinguibles*, sólo una partícula por estado.

Estadística Fermi-Dirac

De nuevo, consideremos un nivel de energía j. Hay que elegir N_j estados del conjunto total de g_j . ¿Cuántas formas hay de elegir N_j elementos de un conjunto de g_j elementos? El coeficiente binomial de nuevo!

$$\begin{pmatrix} g_j \\ N_j \end{pmatrix} = \frac{g_j!}{(g_j - N_j)! N_j!}.$$
 (1)

Entonces,

$$\omega_j = \frac{g_j!}{(g_j - N_j)!N_j!}, \qquad \mathcal{W}_{FD} = \prod_j \frac{g_j!}{(g_j - N_j)!N_j!}. \qquad (2)$$

Contenido

Conceptos en esta clase

La estadística de Maxwell-Boltzmann

La estadística de Bose-Einstein

La estadística de Fermi-Dirac

Resumen

Resumen

Para ciertos valores de los N_j , hemos obtenido el número de microestados en un sistema que cumple las estadísticas de Maxwell-Boltzmann, Bose-Einstein o Fermi-Dirac.

$$\mathcal{W}_{MB} = \mathit{N}! \prod_{j} rac{g_{j}^{N_{j}}}{\mathit{N}_{j}!} \qquad \mathcal{W}_{BE} = \prod_{j} rac{(g_{j} + \mathit{N}_{j} - 1)!}{(g_{j} - 1)!\mathit{N}_{j}!}$$
 $\mathcal{W}_{FD} = \prod_{j} rac{g_{j}!}{(g_{j} - \mathit{N}_{j})!\mathit{N}_{j}!}$