1. Acids and Bases

a. Definitions

- i. Bronstead-Lowry
 - 1. _____ donor
- ii. Lewis
 - ______ acceptor
- iii. Examples

b. Parameter

- i. pH Scale
 - 1. pH = _____
 - 2. Ref. Range =_____
 - 3. >7.45 =
 - 4. <7.35=

2. Buffers

a. How do they work?

b.	Biological Buffe	ers	
	i. Bicarb		
	1.	Bicarb	and carbonic acid
		a	CO2 that remain

b. CO2 that diffuses into RBCs

a. CO2 that remains in plasma:

i. Chloride Shift

ii. Phosphate

1. Important in:

iii. Proteins

iv. Hemoglobin

3. ONE EQUATION TO RULE THEM ALL!

a. Henderson Hasselbalch

i. pH =

іі. рКа =	(at body temp)
iii. Final fo	ormula for the Bicarb/carbonic acid buffer:
b. Buffering para	meter
i. Base E	xcess
1.	Calculated
2.	What does it tell us?
4. Blood Gas Parameters	
a. pH	

b. pCO₂

- c. pO₂
- i. Indicates:
- ii. Vs. sO₂:
- iii. Saturation factors:
 - 1. pH
 - 2. 2,3 DPG
 - 3. Temp

iv. Blood Gas Analyzers

1. Electrodes

2. Calculations
a. Bicarb
b. BE
c. % Sat***
v. Calibrating Blood Gas Analyzers 1. pH
2. PCO ₂ and PO ₂
a. What are the problems with blood gas calibrators?
i. Thick

					ii.	Unstable
					iii.	Aqueous
					iv.	Flourocarbon?
				b.	Tonom	etry
_	_	 51	 _			

5. Examining Blood Gas Results

- a. Always Look at _____ FIRST!
 - i. >7.45
 - ii. <7.45
- b. Next examine WHY they are that way
 - i. Metabolic?
 - 1. HCO₃
 - ii. Respiratory?
 - 1. pCO₂

	рН	pCO2	HCO ₃
Resp. Acidosis			
Resp. Alkalosis			
Met. Acidosis			
Met. Alkalosis			

- c. If the body is out of balance it WILL try to compensate
 - i. Compensatory mechanisms are the opposite of the problem
 - 1. If problem is respiratory
 - 2. If problem is metabolic

Case Studies:
A 53 year old sustained major trauma in a motor vehicle accident. A blood gas was collected and the results follow: pH: 7.53 HCO3: 34 mmo/L pCO2: 42 mmHg
A 20 year old developed acute renal failure after aminoglycide therapy. An arterial blood gas revealed: pH: 7.36 HCO3: 16 mmol/L pCO2: 30 mmHg

A hospitalized 72 year old with COPD and an upper respiratory infection showed an arterial blood gas:

pH: 7.30

pCO2: 60 mmHg HCO3: 22 mmol/L