This listing of claims will replace all prior versions, and listings, of claims in the application:

## Listing of Claims:

1. (Currently Amended) <u>A cyclopenta Cyclopenta[b]</u>naphthalene <u>compound</u> derivatives of the general of formula (I)

$$\begin{array}{c|c} & & & \\ \hline C & & B \\ \hline & & & \\ \end{array}$$
 (I)

in which:

C is 
$$L^2$$

a b c

$$L^2$$

$$L^3$$

$$L^4$$

$$L^7$$

- Z is in each case, independently of one another, a single bond, a double bond, -CF<sub>2</sub>O-, -OCF<sub>2</sub>-, -CH<sub>2</sub>CH<sub>2</sub>-, -CF<sub>2</sub>CF<sub>2</sub>-, -C(O)O-, -OC(O)-, -CH<sub>2</sub>O-, -OCH<sub>2</sub>-, -CF=CH-, -CH=CF-, -CF=CF-, -CH=CH- or -C≡C-,
- A is in each case, independently of one another, 1,4-phenylene, in which =CHmay be replaced once or twice by =N-, and which may be monosubstituted
  to tetrasubstituted, independently of one another, by halogen (-F, -Cl, -Br,
  -I), -CN, -CH<sub>3</sub>, -CH<sub>2</sub>F, -CHF<sub>2</sub>, -CF<sub>3</sub>, -OCH<sub>3</sub>, -OCH<sub>2</sub>F, -OCHF<sub>2</sub> or -OCF<sub>3</sub>,
  1,4-cyclohexylene, 1,4-cyclohexylene or 1,4-cyclohexadienylene, in
  which -CH<sub>2</sub>- may be replaced once or twice, independently of one another,
  by -O- or -S- in such a way that heteroatoms are not directly adjacent, and
  which may be monosubstituted or polysubstituted by halogen, or is 1,3cyclobutylene or bicyclo[2.2.2]octane,
- R is hydrogen, an alkyl, alkoxy, alkenyl or alkynyl radical having from 1 to 15 or 2 to 15 carbon atoms respectively which is unsubstituted, monosubstituted by -CP<sub>3</sub> or at least monosubstituted by halogen, where, in addition, one or more CH<sub>2</sub> groups in these radicals may each, independently of one another, be replaced by -O-, -S-, -CO-, -COO-, -OCO- or -OCO-O- in such a way that heteroatoms are not directly adjacent, halogen, -CN, -SCN, -NCS, -SF<sub>5</sub>, -CP<sub>3</sub>, -OCF<sub>4</sub>, -OCF<sub>4</sub>, -OCH<sub>5</sub>, or -OCH<sub>5</sub>F.

- L<sup>1</sup> L<sup>8</sup> are each, independently of one another, hydrogen, an alkyl, alkoxy, alkenyl or alkynyl radical having from 1 to 15 or 2 to 15 carbon atoms respectively which is unsubstituted or at least monosubstituted by halogen, where, in addition, one or more CH2 groups in these radicals may each, independently of one another, be replaced by -O-, -S-, -CO-, -COO-, -OCO- or -OCO-O- in such a way that heteroatoms are not directly adjacent, halogen, -CN, -SCN, -NCS, -SFs, -CFs, -OCFs, -OCFfg- or -(Z-A-)n-R.
- 2. (Currently Amended) <u>A cyclopenta Cyclopenta [b]</u>naphthalene <u>compound</u> derivatives according to Claim 1 selected from the general of formulae (II) to (VI)

$$L^{2}$$

$$L^{3}$$

$$+ \frac{1}{4}$$

$$+ \frac{1}{6}$$

$$(II)$$

$$\begin{array}{c|c}
L^{2} \\
L^{3}
\end{array}$$

$$\begin{array}{c|c}
B \\
CZ-A-)_{n}-R
\end{array}$$
(III)

$$L^{2}$$

$$L^{3}$$

$$L^{4}$$

$$L^{4}$$

$$L^{4}$$

$$L^{6}$$

$$(IV)$$

$$\begin{array}{c|c}
L^{2} \\
L^{3} \\
L^{4}
\end{array}$$

$$\begin{array}{c|c}
L^{4} \\
L^{4}
\end{array}$$

$$\begin{array}{c|c}
L^{6}
\end{array}$$

$$\begin{array}{c|c}
(V)
\end{array}$$

$$L^{\frac{2}{2}}L^{\frac{2}{4}}$$

$$L^{\frac{3}{4}}$$

$$L^{\frac{4}{4}}$$

$$L^{$$

in which:

- Z is in each case, independently of one another, a single bond, a double bond,
  -CF<sub>2</sub>O-, -OCF<sub>2</sub>-, -CH<sub>2</sub>CH<sub>2</sub>-, -CF<sub>2</sub>CF<sub>2</sub>-, -C(O)O-, -OC(O)-, -CH<sub>2</sub>O-, -OCH<sub>2</sub>-,
  -CF=CH-, -CH=CF-, -CF=CF-, -CH=CH- or -C≡C-,
- A is in each case, independently of one another, 1,4-phenylene, in which =CHmay be replaced once or twice by =N-, and which may be monosubstituted
  to tetrasubstituted, independently of one another, by halogen (-F, -Cl, -Br,
  -I), -CN, -CH<sub>3</sub>, -CH<sub>2</sub>F, -CHF<sub>2</sub>, -CF<sub>3</sub>, -OCH<sub>3</sub>, -OCH<sub>2</sub>F, -OCH<sub>2</sub> or -OCF<sub>3</sub>,
  1,4-cyclohexylene, 1,4-cyclohexenylene or 1,4-cyclohexalienylene, in
  which -CH<sub>2</sub>- may be replaced once or twice, independently of one another,
  by -O- or -S- in such a way that heteroatoms are not directly adjacent, and

- which may be monosubstituted or polysubstituted by halogen, or is 1,3-cyclobutylene or bicyclo[2,2,2]octane.
- R is hydrogen, an alkyl, alkoxy, alkenyl or alkynyl radical having from 1 to 15 or 2 to 15 carbon atoms respectively which is unsubstituted, monosubstituted by -CF<sub>3</sub> or at least monosubstituted by halogen, where, in addition, one or more CH<sub>2</sub> groups in these radicals may each, independently of one another, be replaced by -O-, -S-, -CO-, -COO-, -OCO- or -OCO-O- in such a way that heteroatoms are not directly adjacent, halogen, -CN, -SCN, -NCS, -SF<sub>5</sub>, -CF<sub>3</sub>, -OCF<sub>3</sub>, -OCHF<sub>2</sub> or -OCH<sub>2</sub>F,
- L<sup>2</sup>, L<sup>3</sup> and L<sup>8</sup> are each, independently of one another, hydrogen, an alkyl, alkoxy, alkenyl or alkynyl radical having from 1 to 15 or 2 to 15 carbon atoms respectively which is unsubstituted or at least monosubstituted by halogen, where, in addition, one or more CH<sub>2</sub> groups in these radicals may each, independently of one another, be replaced by -O-, -S-, -CO-, -COO-, -OCO- or -OCO-O- in such a way that heteroatoms are not directly adjacent, halogen, -CN, -SCN, -NCS, -SF<sub>5</sub>, -CF<sub>3</sub>, -OCF<sub>3</sub>, -OCHF<sub>2</sub>, -OCH<sub>2</sub>F or -(Z-A-)<sub>n</sub>-R,
- L<sup>4</sup> and L<sup>6</sup> are each, independently of one another, hydrogen, an alkyl, alkoxy, alkenyl or alkynyl radical having from 1 to 15 or 2 to 15 carbon atoms respectively which is at least monosubstituted by halogen, where, in addition, one or more CH2 groups in these radicals may each, independently of one another, be replaced by -O-, -S-, -CO-, -COO-, -OCO- or -OCO-O- in such a way that heteroatoms are not directly adjacent, halogen, -CN, -SF<sub>3</sub>, -SCN, -NCS, -CF<sub>3</sub>, -OCF<sub>3</sub>, -OCH<sub>2</sub>F or -OCH<sub>2</sub>F, preferably with the proviso that L<sup>4</sup> and L<sup>6</sup> cannot simultaneously be hydrogen, and
- n is 0, 1, 2 or 3.
- (Canceled)
- 4. (Currently Amended) <u>A cyclopenta Cyclopenta</u>[b]naphthalene <u>compound</u> derivatives-according to Claim 2, <u>wherein characterised in that A</u> is

- (Currently Amended) <u>A cyclopenta Cyclopenta [b]</u>naphthalene <u>compound</u> derivatives-according to claim 2, <u>wherein</u> eharacterised in that L<sup>2</sup> and L<sup>3</sup>, independently of one another, are hydrogen, an alkoxy radical having from 1 to 7 carbon atoms, fluorine or chlorine.
- (Currently Amended) <u>A cyclopenta Cyclopenta [b]</u>naphthalene <u>compound derivatives</u> according to claim 2, <u>wherein eharacterised in that L<sup>4</sup> and L<sup>6</sup></u>, independently of one another, are -CF<sub>3</sub>, fluorine or chlorine.
- 7. (Canceled)
- 8. (Canceled)
- 9. (Canceled)
- 10. (Canceled)
- 11. (Canceled)
- 12. (Canceled)
- 13. (Canceled)
- 14. (Currently Amended) <u>A cyclopenta (Cyclopenta [b]</u>naphthalene <u>compound</u> derivatives-according to claim 1, <u>wherein</u> eharacterised in that Z is a single bond, -CF<sub>2</sub>O<sub>-</sub>, -OCF<sub>2</sub>-, -CF<sub>2</sub>CF<sub>2</sub>-, -CH=CH-, -CF=CH-, -CH=CF- or -CF=CF-.

- 15. (Currently Amended) <u>A cyclopenta Cyclopenta (b)</u> Inaphthalene <u>compound derivatives</u>-according to claim 1, <u>wherein eharacterised in that R</u> is an alkyl radical, alkoxy radical or alkenyl radical having from 1 to 7 or 2 to 7 carbon atoms respectively.
- 16. (Canceled)
- 17. (Currently Amended) A liquid Liquid-crystalline medium comprising at least two liquid-crystalline compounds, wherein eharacterised in that it comprises at least one compound is a cyclopenta[b]naphthalene compound derivative-according to claim 1.
- (Currently Amended) <u>An Electro-Electro-optical display element containing a liquid-crystalline medium according to Claim 17.</u>
- (Currently Amended) <u>A mesogenic liquid crystalline</u> <del>Mesogenie</del> medium, <u>comprising</u> <u>eharacterised in that it emprises</u> at least one cyclopenta[b]naphthalene <u>compound</u> <u>derivative</u> according to claim <u>1</u> <del>7</del>.
- 20. (Currently Amended) An Electro- Electro- optical light-control element which contains an electrode arrangement, at least one element for polarisation of the light and a mesogenic control medium, where the light-control element is operated at a temperature at which the mesogenic control medium in the unaddressed state is in the isotropic phase, characterised in that the mesogenic control medium comprises at least one cyclopenta[b]naphthalene derivative according to claim 1. 7-.