

Radioactive Decay Laws

N: number of radio-isotopes

$$\frac{dN}{dt} = -\lambda \cdot N$$

$$\frac{dN}{N} = -\lambda \cdot dt$$

$$N(t) = N(t_0) \cdot e^{-\lambda \cdot t}$$

 λ : decay constant

 $N(t_0)=N_0$: initial number of radio-isotopes

Half-Life of Radio-Isotope

time (days)	¹³¹ I (%)	
0	100.0000	
1	91.7411	
2	84.1642	
3	77.2132	
4	70.8362	
5	64.9859	
6	59.6188	
7	54.6949	
8	50.1777	
9	46.0335	
10	42.2317	
15	27.4446	
20	17.8351	
25	11.5903	
30	7.5321	
40	3.1809	
50	1.3434	
60	0.5673	
70	0.2396	
80	0.1012	
90	0.0427	
100	0.0180	

$$N(t) = N_0 \cdot e^{-\lambda \cdot t}$$

Half-Life & Decay Constant

$$N(T_{\frac{1}{2}}) = \frac{1}{2} N_0 = N_0 \cdot e^{-\lambda \cdot T_{\frac{1}{2}}}$$

$$\ln 2 = \lambda \cdot T_{\frac{1}{2}}$$

$$\lambda = \frac{\ln 2}{T_{\frac{1}{2}}}$$

$$T_{\frac{1}{2}} = \frac{\ln 2}{\lambda}$$

The decay constant λ is inverse proportional to the half-life $T_{1/2}$

Half-life of a radioactive substance determines a time-scale ⇒ clock

Radioactive Clocks

dating isotopes

Example: If your 22920 year old sample (4 half-lives) originally had 1000 ¹⁴C isotopes, how many ¹⁴C isotopes are left today?

$$N(22920[y]) = 1000 \cdot e^{-\lambda \cdot 22920[y]}$$

$$\lambda = \ln 2/5730[y] = 1.21 \cdot 10^{-4}[y^{-1}]$$

$$N(22920[y]) = 62$$

Units for scaling the decay

Classical Unit: 1 Curie [Ci]
$$1[Ci] = \frac{dN}{dt} = 3.7 \cdot 10^{10} \left| \frac{decays}{s} \right|$$

Modern Unit: 1 Becquerel [Bq]
$$1[Bq] = \frac{dN}{dt} = 1 \left| \frac{decay}{s} \right|$$

The so-called dosimetry units (rad, rem) determine the amount of damage radioactive radiation can do to the human body. They depend on the kind and nature of the incident radiation

(X-rays, γ -rays, α -particles, β -particle, or neutrons).

It also depends on the energy loss of the particular radiation and the associated ionisation effects in the human body material.

Units for measuring the impact

Dose: $D = \frac{1}{2}$

Amount of energy *E* deposited by radiation into body part of mass *m*.

unit Rad or Gray

Equivalent Dose: $H = Q \cdot D$

Radiation independent dose Q is normalization factor Unit Rem or Sievert

http://en.wikipedia.org/wiki/Dosimetry

Photons:		Q=1
Neutrons:	E<10keV	Q=5
Neutrons:	E>10keV	Q=15
Protons:		Q=5
Alphas	:	Q=20

Internal \(\gamma \) Glowing

On average, 0.27% of the mass of the human body is potassium K of which 0.021% is radioactive 40 K with a half-life of $T_{1/2}$ =1.25·10 9 [y]. Each decay releases an average of E_{avg} = 0.5 MeV β - and γ -radiation, which is mostly absorbed by the body but a small fraction escapes the body.

Calculate, how many radioactive ⁴⁰K atoms are in your body system!

Example: 40K in your body

* mass of the body: m_{body}

 m_{body}

- * mass of potassium K in the body: $m_K = 0.0027 \cdot m_{body}$
- * mass of radioactive 40 K in the body: $m_{40_K} = 0.00021 \cdot m_K = 5.67 \cdot 10^{-7} \cdot m_{body}$

$$40g \text{ of } ^{40}K \equiv 6.023 \cdot 10^{23} \text{ atoms}$$

$$m_{_{^{40}K}} = 5.67 \cdot 10^{-7} \cdot m_{_{body}} [g] = \frac{6.023 \cdot 10^{23} \cdot 5.67 \cdot 10^{-7} \cdot m_{_{body}}}{40} [particles] = N_{_{^{40}K}}$$
$$\frac{N_{_{^{40}K}}}{= 8.54 \cdot 10^{15}} [particles/g]$$

to calculate N_{40} , you need the body mass m_{body} in gramm.

for 80 kg body:
$$N_{40_K} = 6.83 \cdot 10^{20} [particles]$$

Calculate the absorbed body dose over an average human lifetime of t = 70 y for this source of internal exposure.

* Dose:
$$D = \frac{E_{absorbed}}{m_{body}} = t \cdot A(^{40}K) \cdot \frac{E_{avg}}{m_{body}}$$

*
$$Activity: A(^{40}K) = \lambda \cdot N_{40}K = \ln 2/T_{1/2} \cdot N_{40}K$$

$$D = 70 [y] \cdot \frac{\ln 2}{1.25 \cdot 10^9 [y]} \cdot (8.54 \cdot 10^{15} [g^{-1}] \cdot m_{body}) \cdot \frac{0.5 [MeV]}{m_{body}}$$

$$D = 1.66 \cdot 10^{11} [MeV / kg] = 2.63 \cdot 10^{-2} [J / kg] = 2.63 \cdot 10^{-2} [Gy]$$

with:
$$1[eV] = 1.602 \cdot 10^{-19}[J]$$

Exposure to other natural or man-

made radioactivity

Tobacco contains a-emitter 210 Po with $T_{1/2}$ =138.4 days. Through absorption in bronchial system smoking adds 280 mrem/year to the annual dose of US population

¹⁴C Enrichment in Environment

¹⁴C is produced by interaction of cosmic rays with ¹⁴N in the atmosphere. Fall out of ¹⁴C and implementation into bio-material by photosynthesis. Decay counting may start after bio-material is dead.

You find in the ruins of a lost city - in a cold forgotten fireplace - a 25g piece of charcoal. How much carbon is in there?

Some Reminder?

1 mole of any kind of material contains $N_A = 6.022 \cdot 10^{23}$ particles (Avogadro's number)

1 mole of material has a mass of A [g]! e.g. 1 mole ${}^{12}C \equiv 12$ g; 1 mole ${}^{56}Fe \equiv 56$ g; 1 mole ${}^{197}Au \equiv 197$ g; 1 mole of ${}^{208}Pb \equiv 208$ g 1 mole ${}^{A}O_3 \equiv 27$ g + ${}^{3}O_3 = 75$ g

The piece of carbon has a mass of M = 25 g. This translates into the number of carbon ^{12}C atoms:

$$N(^{12}C) = \frac{N_A [nuclei/mole]}{A [g/mole]} \cdot M =$$

$$= \frac{6.022 \cdot 10^{23} [nuclei/mole]}{12 [g/mole]} \cdot 25[g]$$

$$N(^{12}C) = 1.25 \cdot 10^{24} \text{ atoms}$$

of charcoal? 14C-Dating, how old is the piece You analyze some weak active

The atmospheric ratio is: $\frac{^{14}C}{^{12}C} = 1.3 \cdot 10^{-12}$

You analyze some weak activity of A(t)=dN/dt=250 decays/min, this gives you the clue for determining its age.

$$\lambda = \frac{\ln 2}{T_{1/2}} = \frac{0.693}{5730 [y] \cdot 3.15 \cdot 10^7 [s/y]} = 3.84 \cdot 10^{-12} [s^{-1}]$$

number of ¹²C atoms in wood: $N(^{12}C) = 1.25 \cdot 10^{24}$ [atoms]; if $^{14}C/^{12}C$ has been constant $\Rightarrow N(^{14}C) = 1.25 \cdot 10^{24} \cdot 1.3 \cdot 10^{-12} = 1.63 \cdot 10^{12}$ [atoms]

initial activity: $A_0 = \lambda \cdot N(^{14}C) = 370 [decays/min]$

$$A(t) = A_0 \cdot e^{-\lambda \cdot t} \quad \Rightarrow \quad t = \frac{\ln \frac{A_0}{A(t)}}{\lambda} = \frac{\ln \frac{370}{250}}{3.84 \cdot 10^{-12} \left[s^{-1}\right]}; \qquad t = 3250 \left[y\right]$$

Sources of Natural Terrestrial Material

Natural alpha decay chains from long-lived heavy radioisotopes

Uranium Series:
 238U ⇒ 206Pb +8a

Actinium Series: ²³⁵U ⇒ ²⁰⁷Pb +7a

• Thorium Series: ²³²Th ⇒ ²⁰⁸Pb +6a

• Neptunium Series: ²⁴¹Pu ⇒ ²⁰⁹Pb +8a

The uranium-238 decay chain

There are several long-lived a-emitters in the chain: ²³⁴U ²³⁰Th, ²²⁶Ra!

Natural Radioactivity in the US

Long lived ⁴⁰K Radioactivity

 40 K has a half-life of $T_{1/2}$ =1.28·10⁹ years its natural abundance is 0.0118 %

Potassium-Argon dating method

Radiation Effects of Nuclear Bomb Tests

Beside shock, blast, and heat a nuclear bomb generates high intensity flux of radiation in form of γ -rays, x-rays, and neutrons as well as large abundances of short and long-lived radioactive nuclei which contaminate the entire area of the explosion and is distributed by atmospheric winds worldwide.

¹³¹I Fallout from Nevada Tests

Fig. BJ/S/CD Per capita thyroid doses for the population of each county Test Series: Buster-Jangle (1951)

Fig. UKSSICD. Per papita thyroid deses for the population of each sourty. Test Series: Upshat-Knothole (1956)

Fig. TS:S/CD Per capita thyroid doses for the population of each county Test Series: Tumbler-Snapper (1952)

Summary

Natural (and also anthropogenic) radioactivity provides a unique tool;

- characteristic decay patterns allow to analyze the content of the material
- characteristic decay times allow to introduce radioactive clocks for dating the material