

Document Title	Specification of Fixed Point
	Interpolation Routines
Document Owner	AUTOSAR
Document Responsibility	AUTOSAR
Document Identification No	396
Document Classification	Standard
Document Status	Final
Part of AUTOSAR Standard	Classic Platform
Part of Standard Release	4.3.0

	Document Change History			
Date	Release	Changed by	Change Description	
2016-11-30	4.3.0	AUTOSAR Release Management	 Added: Added a new requirement (SWS_Ifx_00250) to provide info on symmetricity for interpolation services. A note has been added in SWS_Ifx_00016 as a suggestion to provide hardware independent solution too. Modified: Section 2 has been updated to include abbreviation for (DET) Default Error tracer. Updated IFX document to support MISRA 2012 standard. (Removed redundant statements in SWS_Ifx_00809 which already exist in SWS_BSW document and SWS_SRS document) Modified the reference to SRS_BSW_General (SRS_BSW_00437) & (SRS_BSW_00448) for SWS_Ifx_00436 & SWS_Ifx_00999 requirements. 	

Document Change History			
Date	Release	Changed by	Change Description
2015-07-31	4.2.2	AUTOSAR Release Management	Added: Added a new statement in Section 8.5 below the formula to provide more clarity to the users Modified: Updated the "Requirements traceability" section Updated Record layouts for distributed interpolation routines in SWS_Ifx_00185 Updated SWS_Ifx_00001 for naming convetion under Section 5.1, File Structure
2014-10-31	4.2.1	AUTOSAR Release Management	 Added: IFX RecordLayout Blueprint reference in section 3.1 Modified: The usage of const is corrected in function parameters for SWS_Ifx_00004, SWS_Ifx_00014, SWS_Ifx_00015, SWS_Ifx_00017, SWS_Ifx_00020, SWS_Ifx_00022, SWS_Ifx_00025, SWS_Ifx_00027, SWS_Ifx_00030, SWS_Ifx_00032, SWS_Ifx_00205 & SWS_Ifx_00209. Serial numbers in Section 3.2
2014-03-31	4.1.3	AUTOSAR Release Management	Modified: Removed columns Element6 & Element7 in the Record Layout table of SWS_lfx_00186.
2013-10-31	4.1.2	AUTOSAR Release Management	 Corrections made for IntMap_s16u8_s8 function in Rec- ord Layout Table of SWS_lfx_00186 Corrected array-out-of-bounds for lfx_lpoMap function Editorial changes

	Document Change History			
Date	Release	Changed by Change Description		
2013-03-15	4.1.1	AUTOSAR Administration	 Rounding mechanism specified for DPRatio calculation Corrected the formula for integrated map interpolation and map interpolation Removed unwanted Ratio calculation for integrated fix-I map look up with rounding and Integrated fixmap look up without rounding and integrated map look-up without rounding Modified the reference to non-existant metamodel elementCalpr-mElementPrototype to Parameter-DataPrototype Corrected for 'DependencyOnArtifact' 	
2011-12-22	4.0.3	AUTOSAR Administration	 Removal of rounding off feature from 'MAP lookup routines' 	
2010-09-30	3.1.5	AUTOSAR Administration	DPSearch function optimised using structure pointer	
2010-02-02	3.1.4	AUTOSAR Administration	Initial Release	

Disclaimer

This specification and the material contained in it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the companies that have contributed to it shall not be liable for any use of the specification.

The material contained in this specification is protected by copyright and other types of Intellectual Property Rights. The commercial exploitation of the material contained in this specification requires a license to such Intellectual Property Rights.

This specification may be utilized or reproduced without any modification, in any form or by any means, for informational purposes only. For any other purpose, no part of the specification may be utilized or reproduced, in any form or by any means, without permission in writing from the publisher.

The AUTOSAR specifications have been developed for automotive applications only. They have neither been developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Advice for users

AUTOSAR specifications may contain exemplary items (exemplary reference models, "use cases", and/or references to exemplary technical solutions, devices, processes or software).

Any such exemplary items are contained in the specifications for illustration purposes only, and they themselves are not part of the AUTOSAR Standard. Neither their presence in such specifications, nor any later documentation of AUTOSAR conformance of products actually implementing such exemplary items, imply that intellectual property rights covering such exemplary items are licensed under the same rules as applicable to the AUTOSAR Standard.

Table of Contents

1	Intr	oduction	n and functional overview	. 8
2	Acr	onyms a	and abbreviations	. 9
3	Rel	ated do	cumentation	10
	3.1 3.2		d standards and norms	
4	Cor	nstraints	and assumptions	11
	4.1 4.2		ionsability to car domains	
5	Dep	pendend	cies to other modules	12
	5.1	File str	ructure	12
6	Red	quireme	nts traceability	14
7	Fur	nctional	specification	16
	7.1 7.2 7.3 7.4	Error o Error o Error n	elassificationletectionotificationation and shutdown	16 16 16
	7.5		Library API	
8	7.6		implementationecification	
O		•		
	8.1 8.2	-	ed typeslefinitions	
	8.3	<i>,</i> .	ent about rounding	
	8.4		ent about routines optimization	
	8.4	.1 Targ	get optimization	20
	8.4		mization for routine numbers	
	8.5		plation routines definitions	
			ributed data point search and interpolation	
	_	5.5.1.1	Data Point Search	
		5.1.2	Curve look up	
		.5.1.3 .5.1.4	Curve look-up Map interpolation	
		5.5.1.5	Map look-up	
		.5.1.6	Map look-up without rounding	
			grated data point search and interpolation	
		.5.2.1	Integrated curve interpolation	
	8	.5.2.2	Integrated curve look-up	32
	8	.5.2.3	Integrated fix-curve interpolation	
		.5.2.4	Integrated fix-curve look up	
		.5.2.5	Integrated fix- I curve interpolation	
		.5.2.6	Integrated fix- I curve look up	
	8	.5.2.7	Integrated map interpolation	39

8	3.5.2.8	Integrated map look-up	42
3	3.5.2.9	Integrated map look-up without rounding	44
3	3.5.2.10	Integrated fix- map interpolation	46
8	3.5.2.11	Integrated fix- map look up	
8	3.5.2.12	Integrated fix- map look up without rounding	51
8	3.5.2.13	Integrated fix- I map interpolation	53
3	3.5.2.14	Integrated fix- I map look up	56
3	3.5.2.15	Integrated fix- I map look up without rounding	58
8.5	3.3 Reco	ord layouts for interpolation routines	60
3	3.5.3.1	Record layouts for map values	60
-	3.5.3.2	Record layout definitions	
8.6	Examp	les of use of functions	63
8.7		n API	
8.7		GetVersionInfo	
8.8		ack notifications	
8.9	Schedu	uled routines	63
8.10	Expect	ed Interfaces	64
		datory Interfaces	
		onal Interfaces	
8.1	0.3 Conf	figurable interfaces	64
9 Se	quence d	diagrams	65
10 (Configura	ation specification	66
	J	·	
10.1		ned Information	
10.2	Configu	uration option	66
11 N	Not appli	cable requirements	67

Known Limitations

1 Introduction and functional overview

AUTOSAR Library routines are the part of system services in AUTOSAR architecture and below figure shows position of AUTOSAR library in layered architecture.

Figure : Layered architecture

Ifx routines specification specifies the functionality, API and the configuration of the AUTOSAR library dedicated to interpolation routines for fixed point values.

The interpolation library contains the following routines:

- Distributed data point search and interpolation
- Integrated data point search and interpolation

All routines are re-entrant and can be used by multiple applications at the same time.

2 Acronyms and abbreviations

Acronyms and abbreviations, which have a local scope and therefore are not contained in the AUTOSAR glossary, must appear in a local glossary.

Abbreviation /	n / Description:		
Acronym:			
Cur	Curve for Interpolation		
DET	Default Error Tracer		
DPSearch	Data point search		
DPResult	Data point result		
lfx	Interpolation Fixed point		
IpoCur	Interpolation of curve used for distributed search and interpolation		
LkUpCur	Curve look-up used for distributed search and interpolation		
ІроМар	Interpolation of map used for distributed search and interpolation		
LkUpMap	Map look-up used for distributed search and interpolation		
IntlpoCur	Integrated interpolation of curve		
IntLkUpCur	Integrated curve look-up		
IntlpoFixCur	Integrated interpolation of fixed curve		
IntLkUpFixCur	Integrated fixed curve look-up		
IntlpoFixICur	Integrated interpolation of fixed interval curve		
IntLkUpFixICur	Integrated fixed interval curve look-up		
IntlpoMap	Integrated interpolation of map		
IntLkUpMap	Integrated map look-up		
IntlpoFixMap	Integrated interpolation of fixed map		
IntLkUpFixMap	Integrated fixed map look-up		
IntlpoFixIMap	Integrated interpolation of fixed interval map		
IntLkUpFixIMap	Integrated fixed interval map look-up		
Lib	Library		
Мар	Map for Interpolation		
s8	Mnemonic for the sint8, specified in AUTOSAR_SWS_PlatformTypes		
s16	Mnemonic for the sint16, specified in AUTOSAR_SWS_PlatformTypes		
s32	Mnemonic for the sint32, specified in AUTOSAR_SWS_PlatformTypes		
u8	Mnemonic for the uint8, specified in AUTOSAR_SWS_PlatformTypes		
u16	Mnemonic for the uint16, specified in AUTOSAR_SWS_PlatformTypes		
u32	Mnemonic for the uint32, specified in AUTOSAR_SWS_PlatformTypes		

3 Related documentation

3.1 Input documents

- [1] List of Basic Software Modules, AUTOSAR_TR_BSWModuleList.pdf
- [2] Layered Software Architecture, AUTOSAR EXP LayeredSoftwareArchitecture.pdf
- [3] General Requirements on Basic Software Modules, AUTOSAR_SRS_BSWGeneral.pdf
- [4] Specification of ECU Configuration, AUTOSAR_TPS_ECUConfiguration.pdf
- [5] Basic Software Module Description Template, AUTOSAR_TPS_BSWModuleDescriptionTemplate.pdf
- [6] Specification of Platform Types, AUTOSAR_SWS_PlatformTypes.pdf
- [7] Specification of Standard Types, AUTOSAR SWS StandardTypes.pdf
- [8] Requirement on Libraries, AUTOSAR_SRS_Libraries.pdf
- [9] Memory mapping mechanism, AUTOSAR_SWS_MemoryMapping.pdf
- [10] Software Component Template, AUTOSAR_TPS_SoftwareComponentTemplate.pdf
- [11] Specification of C Implementation Rules, AUTOSAR_TR_CImplementationRules.pdf
- [12] IFX_RecordLayout_Blueprint,
 AUTOSAR MOD IFX RecordLayout Blueprint.arxml

3.2 Related standards and norms

- [13] ISO/IEC 9899:1990 Programming Language C
- [14] ASAM MCD-2MC Version 1.6: Association for Standardisation of Automation and Measuring Systems.

4 Constraints and assumptions

4.1 Limitations

No limitations.

4.2 Applicability to car domains

No restrictions.

5 Dependencies to other modules

5.1 File structure

[SWS_Ifx_00001] [The Ifx module shall provide the following files:

- C files, Ifx_<name>.c used to implement the library. All C files shall be prefixed with 'Ifx_'.
- Header file Ifx.h provides all public function prototypes and types defined by the Ifx library specification | (SRS_LIBS_00005)

Figure: File structure

Implementation & grouping of routines with respect to C files is recommended as per below options and there is no restriction to follow the same.

Option 1 : <Name> can be function name providing one C file per function, eg.: Ifx_IntlpoMap_u16u8_u8.c etc.

Option 2 : <Name> can have common name of group of functions:

- 2.1 Group by object family:
- eg.:Ifx_lpoMap.c, Ifx_lpoCur.c, Ifx_DPSearch.c
- 2.2 Group by routine family:
- eg.: Ifx IpoMap.c, Ifx IntlpoMap.c, Ifx IpoCur.c etc.
- 2.3 Group by method family:
- eg.: Ifx_lpo.c, Ifx_Intlpo.c, Ifx_Lkup.c, Ifx_IntLkup.c, etc.
- 2.4 Group by architecture:
- eg.: Ifx IpoMap8.c, Ifx IpoMap16.c
- 2.5 Group by other methods: (individual grouping allowed)

Option 3 : <Name> can be removed so that single C file shall contain all Ifx functions, eg.: Ifx.c.

Using above options gives certain flexibility of choosing suitable granularity with reduced number of C files. Linking only on-demand is also possible in case of some options.

6 Requirements traceability

Requirement	quirement Description	
SRS_BSW_00003	All software modules shall provide version and identification information	SWS_lfx_00815
SRS_BSW_00007	All Basic SW Modules written in C language shall conform to the MISRA C 2012 Standard.	SWS_lfx_00809
SRS_BSW_00304	All AUTOSAR Basic Software Modules shall use the following data types instead of native C data types	SWS_lfx_00812
SRS_BSW_00306	AUTOSAR Basic Software Modules shall be compiler and platform independent	SWS_lfx_00813
SRS_BSW_00318	Each AUTOSAR Basic Software Module file shall provide version numbers in the header file	SWS_lfx_00815
SRS_BSW_00321	The version numbers of AUTOSAR Basic Software Modules shall be enumerated according specific rules	SWS_lfx_00815
SRS_BSW_00348	All AUTOSAR standard types and constants shall be placed and organized in a standard type header file	SWS_lfx_00811
SRS_BSW_00374	All Basic Software Modules shall provide a readable module vendor identification	SWS_lfx_00814
SRS_BSW_00378	AUTOSAR shall provide a boolean type	SWS_lfx_00812
SRS_BSW_00379	All software modules shall provide a module identifier in the header file and in the module XML description file.	SWS_lfx_00814
SRS_BSW_00402	Each module shall provide version information	SWS_lfx_00814
SRS_BSW_00407	Each BSW module shall provide a function to read out the version information of a dedicated module implemen- tation	SWS_lfx_00815, SWS_lfx_00816
SRS_BSW_00411	All AUTOSAR Basic Software Modules shall apply a naming rule for enabling/disabling the existence of the API	SWS_lfx_00816
SRS_BSW_00437	Memory mapping shall provide the possibility to define RAM segments which are not to be initialized during startup	SWS_lfx_00810
SRS_BSW_00448	Module SWS shall not contain requirements from Other Modules	SWS_lfx_00999
SRS_LIBS_00001	The functional behavior of each library functions shall not be configurable	SWS_lfx_00818
SRS_LIBS_00002	A library shall be operational before all BSW modules and application SW-Cs	SWS_lfx_00800
SRS_LIBS_00003	A library shall be operational until the shutdown	SWS_lfx_00801
SRS_LIBS_00005	Each library shall provide one header file with its public interface	SWS_lfx_00001
SRS_LIBS_00013	The error cases, resulting in the check at runtime of the value of input parameters, shall be listed in SWS	SWS_lfx_00817, SWS_lfx_00819
SRS_LIBS_00015	It shall be possible to configure the microcontroller so that the library code is shared between all callers	SWS_lfx_00806
SRS_LIBS_00017	Usage of macros should be avoided	SWS_lfx_00807
SRS_LIBS_00018	A library function may only call library functions	SWS_lfx_00808

7 Functional specification

7.1 Error classification

[SWS Ifx 00823][

No error classification definition as DET call not supported by library I()

7.2 Error detection

[SWS_lfx_00819] [Error detection: Function should check at runtime (both in production and development code) the value of input parameters, especially cases where erroneous value can bring to fatal error or unpredictable result, if they have the values allowed by the function specification. All the error cases shall be listed in SWS and the function should return a specified value (in SWS) that is not configurable. This value is dependant of the function and the error case so it is determined case by case.

If values passed to the routines are not valid and out of the function specification, then such error are not detected.

E.g. If passed value > 32 for a bit-position

or a negative number of samples of an axis distribution is passed to a routine.] (SRS_LIBS_00013)

7.3 Error notification

[SWS_lfx_00817] [The functions shall not call the DET for error notification.] (SRS_LIBS_00013)

7.4 Initialization and shutdown

[SWS_lfx_00800] [Ifx library shall not require initialization phase. A Library function may be called at the very first step of ECU initialization, e.g. even by the OS or EcuM, thus the library shall be ready.] (SRS_LIBS_00002)

[SWS_lfx_00801] [Ifx library shall not require a shutdown operation phase.] (SRS LIBS 00003)

7.5 Using Library API

Ifx API can be directly called from BSW modules or SWC. No port definition is required. It is a pure function call.

The statement 'Ifx.h' shall be placed by the developer or an application code generator but not by the RTE generator

Using a library should be documented. if a BSW module or a SWC uses a Library, the developer should add an Implementation-DependencyOnArtifact in the BSW/SWC template.

minVersion and maxVersion parameters correspond to the supplier version. In case of AUTOSAR library, these parameters may be left empty because a SWC or BSW module may rely on a library behaviour, not on a supplier implementation. However, the SWC or BSW modules shall be compatible with the AUTOSAR platform where they are integrated.

7.6 library implementation

[SWS_Ifx_00806] [The Ifx library shall be implemented in a way that the code can be shared among callers in different memory partitions.] (SRS_LIBS_00015)

[SWS_Ifx_00807] [Usage of macros should be avoided. The function should be declared as function or inline function. Macro #define should not be used.] (SRS_LIBS_00017)

[SWS_lfx_00808] [A library function can call other library functions because all library functions shall be re-entrant. A library function shall not call any BSW modules functions, e.g. the DET. | (SRS_LIBS_00018)

[SWS_Ifx_00809] [The library, written in C programming language, should conform to the MISRA C Standard.

Please refer to SWS_BSW_00115 for more details.

I (SRS BSW 00007)

[SWS_Ifx_00810] [Each AUTOSAR library Module implementation library>*.c and

shall map their code to memory sections using the AUTOSAR memory
mapping mechanism.| (SRS_BSW_00437)

[SWS_lfx_00811] [Each AUTOSAR library Module implementation library>*.c, that uses AUTOSAR integer data types and/or the standard return, shall include the header file Std_Types.h.] (SRS_BSW_00348)

[SWS_lfx_00812] [All AUTOSAR library Modules should use the AUTOSAR data types (integers, boolean) instead of native C data types, unless this library is clearly identified to be compliant only with a platform. J (SRS_BSW_00304, SRS_BSW_00378)

[SWS_lfx_00813] [All AUTOSAR library Modules should avoid direct use of compiler and platform specific keyword, unless this library is clearly identified to be compliant only with a platform. eg. #pragma, typeof etc.| (SRS_BSW_00306)

[SWS_Ifx_00820] If input value is less than first distribution entry then first value of the distribution array shall be returned or used in the interpolation routines. If input

value is greater than last distribution entry then last value of the distribution array shall be returned or used in the interpolation routines.] ()

[SWS_lfx_00821] [Axis distribution passed to lfx routines shall have strong monotony sequence.] ()

[SWS_lfx_00250] [The interpolation result obtained for rising and falling curves/maps shall be symmetrical.] ()

8 Routine specification

8.1 Imported types

In this chapter, all types included from the following files are listed:

Header file	Imported Type
Std_Types.h	boolean, sint8, uint8, sint16, uint16, sint32, uint32

It is observed that since the sizes of the integer types provided by the C language are implementation-defined, the range of values that may be represented within each of the integer types will vary between implementations.

Thus, in order to improve the portability of the software these types are defined in PlatformTypes.h [AUTOSAR_SWS_PlatformTypes]. The following mnemonic are used in the library routine names.

Size	Platform Type	Mnemonic	Range
unsigned 8-Bit	boolean	NA	[TRUE, FALSE]
signed 8-Bit	sint8	s8	[-128, 127]
signed 16-Bit	sint16	s16	[-32768, 32767]
signed 32-Bit	sint32	s32	[-2147483648, 2147483647]
unsigned 8-Bit	uint8	u8	[0, 255]
unsigned 16-Bit	uint16	u16	[0, 65535]
unsigned 32-Bit	uint32	u32	[0, 4294967295]

Table 1: Mnemonic for Base Types

As a convention in the rest of the document:

- mnemonics will be used in the name of the routines (using <InTypeMn1> that means Type Mnemonic for Input)
- the real type will be used in the description of the prototypes of the routines (using <InType> or <OutType>).

8.2 Type definitions

Structure definition:

[SWS Ifx 00002] [

Name:	Ifx_DPResultU16_Type		
Туре:	Structure		
Element:	uint16	Index	Data point index
	uint16	Ratio	Data point ratio
Description:	Structure used for data point search for index and ratio		

I()

[SWS_lfx_00003][

Ratio shall have resolution of 2⁻¹⁶

|()

[SWS_lfx_00248][

Ratio shall be rounded towards zero (()

[SWS_lfx_00200][

Ifx_DPResultU16_Type structure shall not be read/write/modified by the user directly. Only Ifx routines shall have access to this structure.

8.3 Comment about rounding

Two types of rounding can be applied: Results are 'rounded off', it means:

0 <= X < 0.5 rounded to 0
 0.5 <= X < 1 rounded to 1
 -0.5 < X <= 0 rounded to 0
 -1 < X <= -0.5 rounded to -1

Results are rounded towards zero.

- 0 <= X < 1 rounded to 0
- -1 < X <= 0 rounded to 0

8.4 Comment about routines optimization

8.4.1 Target optimization

The routines described in this library may be realized as regular routines or inline functions. For ROM optimization purposes, it is recommended that the c routines be realized as individual source files so they may be linked in on an as-needed basis.

For example, depending on the target, two types of optimization can be done:

- Some routines can be replaced by another routine using integer promotion
- Some routines can be replaced by the combination of a limiting routine and a routine with a different signature.

8.4.2 Optimization for routine numbers

Many routines can be omitted by exchanging 'X' and 'Y' data types. With this method, reduction in total number of routines is possible in case of Map interpolation routines. This optimization of routine numbers is done based on below mentioned rules.

- Rule 1: Bigger data type of 'X' and 'Y' comes first (16 Bit before 8 Bit)
- Rule 2: unsigned before signed (u16 before s16)
- Order: u32, s32, u16, s16, u8, s8

In this case, below routine can be replaced as:

Ifx_IntIpoMap_s8u16_u16 With Ifx_IntIpoMap_u16s8_u16

Note: swapped inputs need another map value order in memory, see <u>record layout</u> <u>section</u>

8.5 Interpolation routines definitions

Interpolation between two given points is calculated as shown below.

result =
$$y_0 + (y_1 - y_0) \bullet \frac{x - x_0}{x_1 - x_0}$$

where: X is the input value x0 = data point before X x1 = data point after X y0 = value at x0 y1 = value at x1

Quantization error is by design and shall not be compensated in implementation.

Figure: Linear and lookup interpolation

There are two interpolation methods.

- Linear interpolation
- Lookup interpolation

Above figure differentiates linear and lookup integration method. Linear method interpolates result considering two data points, whereas lookup interpolation returns entry data point.

Data point arrays can be grouped as one array or one structure for all elements as shown below.

where, number of samples = 5

X axis distribution = 0 to 64 Y axis distribution = 1 to 6

Interpolation routines accepts arguments separately to support above scenarios. Routine call example is given below for array and structure grouping respectively.

Example:

```
uint8 lfx_IntlpoCur_u8_u8 (15, Curve_u8[0], &Curve_u8[1], &Curve_u8[6]); uint8 lfx_IntlpoCur_u8_u8 (15, Curve_u8.N, &Curve_u8.X, &Curve_u8.Y);
```

Interpolation can be calculated in two ways as shown below:

- 1. Distributed data point search and interpolation
- 2. Integrated data point search and interpolation

8.5.1 Distributed data point search and interpolation

In this interpolation method data point search (e.g. index and ratio) is calculated using routine Ifx_DPSearch_<InTypeMn> which returns result structure Ifx_DPResultU16_Type. It contains index and ratio information. This result can be used by curve interpolation, curve look-up interpolation, map interpolation and map look-up interpolation.

8.5.1.1 Data Point Search

[SWS Ifx 00004] [

[0110 _IIX_0000+	1		
Service name:	lfx_DPSearch_ <intypemn></intypemn>		
Syntax:	<pre>void Ifx_DPSearch_<intypemn>(Ifx_DPResultU16_Type* dpResult,</intypemn></pre>		
Service ID[hex]:	0x001 to 0x004		
Sync/Async:	Synchronous		
Reentrancy:	Reentrant		
	Xin	Input value	
Parameters (in):	N	Number of samples	
	X_array	Pointer to the X axis distribution array	
Parameters (in-	None		
out):			
Parameters (out):	dpResult Pointer to the result structure		
Return value:	None		
	Ifx_DPSearch_ <intypemn> routine searches the position of input Xin within the given distribution array X_array, and returns index and ratio necessary for interpolation.</intypemn>		

I()

[SWS_lfx_00006][

If $(X_array[0] < Xin < X_array[N-1])$, then returned Index shall be the lowest index for which $(Xin < X_array[index + 1])$.


```
dpResult ->Index = index
dpResult ->Ratio = (Xin - X_array[index]) / (X_array [index+1] - X_array [index])
|()
```

[SWS_lfx_00008][

If the input value matches with one of the distribution array values, then return the respective index and ratio = 0.

```
If (Xin == X_array[index]), then dpResult ->Index = index
```

dpResult ->Ratio = 0

(()

[SWS_lfx_00009][

```
If (Xin < X_array[0]), then return first index of an array and ratio = 0 dpResult ->Index = 0 dpResult ->Ratio = 0 ]()
```

[SWS_lfx_00010][

```
If (Xin > X_array[N-1]), then return last index of an array and ratio = 0 dpResult ->Index = N - 1 dpResult ->Ratio = 0 ]()
```

[SWS_lfx_00011][

The minimum value of N shall be 1 I()

[SWS_lfx_00013][

This routine returns index and ratio through the structure of type Ifx_DPResultU16_Type I()

Here is the list of implemented routines.

[SWS_lfx_00014][

Service ID[hex]	Service prototype
0x001	void Ifx_DPSearch_u8 (Ifx_DPResultU16_Type*, uint8, uint8, const uint8 *)
0x002	void Ifx_DPSearch_s8 (Ifx_DPResultU16_Type*, sint8, sint8, const sint8 *)
0x003	void Ifx_DPSearch_u16 (Ifx_DPResultU16_Type*, uint16, uint16, const uint16 *)
0x004	void Ifx_DPSearch_s16 (Ifx_DPResultU16_Type*, sint16, sint16, const sint16 *)

(()

8.5.1.2 Curve interpolation

[SWS_lfx_00015] [

Service name:	lfx_lpoCur_ <outtypemn></outtypemn>	
Syntax:	<pre><outtype> Ifx_IpoCur_<outtypemn>(const Ifx_DPResultU16_Type* dpResult, const <intype>* Val_array</intype></outtypemn></outtype></pre>	

Service ID[hex]:	0x005 to 0x008		
Sync/Async:	Synchronous		
Reentrancy:	Reentrant		
Parameters (in):	dpResult	Data point search result	
Parameters (m).	Val_array	Pointer to the result axis distribution array	
Parameters (in-	Parameters (in-None		
out):			
Parameters (out):	None		
Return value:	<outtype></outtype>	Result of the Interpolation	
•	Based on searched index and ratio information, this routine calculates and returns interpolation for curve.		

| ()

[SWS_lfx_00016][

index = dpResult->Index if dPResult->Ratio == 0 Result = Val_array[index]

Result = Val_array[index] + (Val_array[index+1] - Val_array[index]) * dpResult->Ratio

Note:

In case of missing HW support the Software solution mentioned below could also be used to avoid 64-bit arithmetic operation.

if (Val_array[index] <= Val_array[index+1]) then
Result = Val_array[index] + (Val_array[index+1] - Val_array[index]) * dpResult->Ratio
if (Val_array[index] > Val_array[index+1]) then
Result = Val_array[index] - (Val_array[index] - Val_array[index+1]) * dpResult->Ratio
|()

[SWS_lfx_00201][

Do not call this routine until you have searched the axis using the Ifx_DPSearch routine. Only then it is ensured that the search result (Ifx_DPResultU16_Type) contains valid data and is not used uninitialized. I()

Here is the list of implemented routines.

[SWS Ifx 00017][

	[6116_11X_66611]		
ĺ	Routine	Routine prototype	
l	ID[hex]		
ĺ	0x005	sint8 Ifx_IpoCur_s8 (const Ifx_DPResultU16_Type*, const sint8 *)	
	0x006	sint16 lfx_lpoCur_s16 (const lfx_DPResultU16_Type*, const sint16 *)	
ĺ	0x007	uint16 lfx_lpoCur_u16 (const lfx_DPResultU16_Type*, const uint16 *)	
ĺ	800x0	uint8 Ifx_lpoCur_u8 (const Ifx_DPResultU16_Type*, const uint8 *)	

I()

8.5.1.3 Curve look-up

[SWS Ifx 00020] [

Service name:	lfx_LkUpCur_ <outtypemn></outtypemn>

Syntax:	4 -	_LkUpCur_ <outtypemn>(</outtypemn>	
	<pre>const Ifx_DPResultU16_Type* dpResult,</pre>		
	const <in< th=""><th>Type>* Val_array</th></in<>	Type>* Val_array	
)	_	
Service ID[hex]:	0x00A to 0x00D		
Sync/Async:	Synchronous		
Reentrancy:	Reentrant		
Parameters (in)	dpResult	Data point search result	
Parameters (in):	Val_array	Pointer to the result axis distribution array	
Parameters (in-	None		
out):			
Parameters (out):	None		
Return value:	<outtype></outtype>	Entry point of the result array	
Description:	Based on searched index and ratio information, this routine calculates and return entry point of the result array.		

] ()

[SWS_lfx_00021][

[SWS_lfx_00202][

Do not call this routine until you have searched the axis using the Ifx_DPSearch routine. Only then it is ensured that the search result (Ifx_DPResultU16_Type) contains valid data and is not used uninitialized.

(()

Here is the list of implemented routines.

[SWS Ifx 00022][

Routine ID[hex]	Routine prototype
0x00A	sint8 Ifx_LkUpCur_s8 (const Ifx_DPResultU16_Type*, const sint8 *)
0x00B	sint16 Ifx_LkUpCur_s16 (const Ifx_DPResultU16_Type*, const sint16 *)
0x00C	uint16 lfx_LkUpCur_u16 (const lfx_DPResultU16_Type*, const uint16 *)
0x00D	uint8 Ifx_LkUpCur_u8 (const Ifx_DPResultU16_Type*, const uint8 *)

()

8.5.1.4 Map interpolation

[SWS_lfx_00025] [

5116_IIX_00020]			
Service name:	lfx_lpoMap_ <outtypemn></outtypemn>		
Syntax:	<pre><outtype> Ifx_IpoMap_<outtypemn>(const Ifx_DPResultU16_Type* dpResultX, const Ifx_DPResultU16_Type* dpResultY, uint16 num_value, const <intype>* Val_array)</intype></outtypemn></outtype></pre>		
Service ID[hex]:	0x010 to 0x013		
Sync/Async:	Synchronous		
Reentrancy:	Reentrancy: Reentrant		
	dpResultX	Data point search result for x axis	
Parameters (in):	dpResultY	Data point search result for y axis	
	num_value	Number of y axis points	

	Val_array	Pointer to the result axis distribution array
Parameters (in-	None	
out):		
Parameters (out):	None	
Return value:	<outtype></outtype>	Result of the Interpolation
	Based on searched indices and ratios information using the relevant Ifx_DPSearch	
	routine, this routine calculates and returns the interpolation result for map.	

I()

[SWS_lfx_00026][

Based on searched indices and ratios information using the relevant Ifx_DPSearch routine, this routine calculates and returns the interpolation result for map.

```
BaseIndex = dpResultX->Index * num_value + dpResultY->Index
if (dpResultX->Ratio == 0)
  if (dpResultY->Ratio == 0)
    Result = Val array [BaseIndex]
  else
    LowerY = Val array [BaseIndex]
    UpperY = Val array [BaseIndex + 1]
    Result = LowerY + (UpperY - LowerY) * dpResultY->Ratio
else
  if (dpResultY->Ratio == 0)
    LowerX = Val array[BaseIndex]
    UpperX = Val_array[BaseIndex + num_value]
    Result = LowerX + (UpperX - LowerX) * dpResultX->Ratio
  else
    LowerY = Val_array [BaseIndex]
    UpperY = Val_array [BaseIndex + 1]
    LowerX = LowerY + (UpperY - LowerY) * dpResultY->Ratio
    LowerY = Val array[BaseIndex + num value]
    UpperY = Val array[BaseIndex + num value + 1]
    UpperX = LowerY + (UpperY - LowerY) * dpResultY->Ratio
    Result = LowerX + (UpperX - LowerX) * dpResultX->Ratio
I()
```

[SWS Ifx 00203][

Do not call this routine until you have searched the axis using the Ifx_DPSearch routine. Only then it is ensured that the search result (Ifx_DPResultU16_Type) contains valid data and is not used uninitialized.

|()|

Here is the list of implemented routines.

[SWS_lfx_00027][

[0110_111/_00021]			
Routine ID[hex]	Routine prototype		
	uint8 lfx_lpoMap_u8 (const lfx_DPResultU16_Type*,		
	const Ifx_DPResultU16_Type*,		
	uint16,		
0x010	const uint8 *)		
	uint16 Ifx_IpoMap_u16 (const Ifx_DPResultU16_Type*,		
0x011	const Ifx_DPResultU16_Type*,		

	uint16,		
	const uint16 *)		
	sint8 Ifx_lpoMap_s8 (const Ifx_DPResultU16_Type*,		
	const Ifx DPResultU16 Type*,		
	uint16,		
0x012	const sint8 *)		
	sint16 Ifx_lpoMap_s16 (const Ifx_DPResultU16_Type*,		
	const Ifx_DPResultU16_Type*,		
	uint16,		
0x013	const sint16 *)		

1()

8.5.1.5 Map look-up

[SWS Ifx 00030][

5/10_11X_00000]			
Service name:	lfx_LkUpMap_ <outtypemn></outtypemn>		
Syntax:	<pre><outtype> Ifx_LkUpMap_<outtypemn>(const Ifx_DPResultU16_Type* dpResultX, const Ifx_DPResultU16_Type* dpResultY, uint16 num_value, const <intype>* Val_array)</intype></outtypemn></outtype></pre>		
Service ID[hex]:	0x015 to 0x018		
Sync/Async:	Synchronous		
Reentrancy:	Reentrant		
	dpResultX	Data point search result for x axis	
Paramatara (in)	dpResultY	Data point search result for y axis	
Parameters (in):	num_value	Number of y axis points	
	Val_array	Pointer to the result axis distribution array	
Parameters (in- out):	-None		
Parameters (out):	None		
Return value:	<outtype></outtype>	Entry point of the result array	
Description:	Based on searched index and ratio information, this routine calculates and returns entry value of the result distribution array.		

]()

[SWS_lfx_00031][

BaseIndex = dpResultX->Index * num_value + dpResultY->Index I()

[SWS_lfx_00033][

if(dpResultX->Ratio < 0.5 && dpResultY->Ratio < 0.5) then return Val_array [BaseIndex]

if(dpResultX->Ratio ≥ 0.5 && dpResultY->Ratio < 0.5) then return Val_array [BaseIndex + num_value]

if(dpResultX->Ratio < 0.5 && dpResultY->Ratio ≥ 0.5) then return Val_array [BaseIndex + 1]

if(dpResultX->Ratio \geq 0.5 && dpResultY->Ratio \geq 0.5) then return Val_array [BaseIndex + num_value + 1]

(()

[SWS_lfx_00204][

Do not call this routine until you have searched the axis to ensure the search result contains valid data and is not used uninitialized.

Here is the list of implemented routines.

[SWS Ifx 00032][

Routine ID[hex]	Routine prototype
	uint8 Ifx_LkUpMap_u8 (const Ifx_DPResultU16_Type*,
	const Ifx_DPResultU16_Type*,
	uint16,
0x015	const uint8 *)
	uint16 Ifx_LkUpMap_u16 (const Ifx_DPResultU16_Type*,
	const Ifx_DPResultU16_Type*,
	uint16,
0x016	const uint16 *)
	sint8 Ifx_LkUpMap_s8 (const Ifx_DPResultU16_Type*,
	const Ifx_DPResultU16_Type*,
	uint16,
0x017	const sint8 *)
	sint16 Ifx_LkUpMap_s16 (const Ifx_DPResultU16_Type*,
	const lfx_DPResultU16_Type*,
	uint16,
0x018	const sint16 *)

]()

8.5.1.6 Map look-up without rounding

[SWS_lfx_00205] [

Service name:	lfx_LkUpBaseMap_<	:OutTypeMn>
Syntax:	const Ifx_D: const Ifx_D: uint16 num_	kUpBaseMap_ <outtypemn>(PResultU16_Type* dpResultX, PResultU16_Type* dpResultY, value, pe>* Val_array</outtypemn>
Service ID[hex]:	0x0A5 to 0x0A8	
Sync/Async:	Synchronous	
Reentrancy:	Reentrant	
	dpResultX	Data point search result for x axis
Paramatara (in)	dpResultY	Data point search result for y axis
Parameters (in):	num_value	Number of y axis points
	Val_array	Pointer to the result axis distribution array
Parameters (in- out):	None	
<i>'</i>	None	
Return value:	<outtype></outtype>	Entry point of the result array
Description:	Based on searched index and ratio information, this routine calculates and returns entry value of the result distribution array.	

] ()

[SWS_lfx_00206][

BaseIndex = dpResultX->Index * num_value + dpResultY->Index]()

[SWS_lfx_00207][

Return Value = Val_array [BaseIndex] I()

[SWS Ifx 00208][

Do not call this routine until you have searched the axis using the Ifx_DPSearch routine. Only then it is ensured that the search result (Ifx_DPResultU16_Type) contains valid data and is not used uninitialized.

(()

Here is the list of implemented routines.

[SWS_lfx_00209][

Routine ID[hex]	Routine prototype
	uint8 Ifx_LkUpBaseMap_u8 (const Ifx_DPResultU16_Type*,
	const Ifx_DPResultU16_Type*,
	uint16,
0x0A5	const uint8 *)
	uint16 Ifx_LkUpBaseMap_u16 (const Ifx_DPResultU16_Type*,
	const lfx_DPResultU16_Type*,
	uint16,
0x0A6	const uint16 *)
	sint8 Ifx_LkUpBaseMap_s8 (const Ifx_DPResultU16_Type*,
	const Ifx_DPResultU16_Type*,
	uint16,
0x0A7	const sint8 *)
	sint16 Ifx_LkUpBaseMap_s16 (const Ifx_DPResultU16_Type*,
	const Ifx_DPResultU16_Type*,
	uint16,
0x0A8	const sint16 *)

]()

8.5.2 Integrated data point search and interpolation

In this method of interpolation, single routine does data point search (e.g. Index and ratio) and interpolation for curve, map or look-up table.

8.5.2.1 Integrated curve interpolation

[SWS_lfx_00035] [

Service name:	Ifx_IntlpoCur_ <intypemn>_<outtypemn></outtypemn></intypemn>
Syntax:	<pre><outtype> Ifx_IntIpoCur_<intypemn>_<outtypemn>(</outtypemn></intypemn></outtype></pre>
Service ID[hex]:	0x01A to 0x029
Sync/Async:	Synchronous
Reentrancy:	Reentrant

	Xin	Input value
Parameters (in):	N	Number of samples
Parameters (m).	X_array	Pointer to the X axis distribution array
	Val_array	Pointer to the result axis distribution array
Parameters (in-	None	
out):		
Parameters (out):	None	
Return value:	<outtype></outtype>	Result of the Interpolation
Description:	This routine calculates interpolation of a curve at position Xin using below equa-	
	tion.	

]()

[SWS_lfx_00036][

If (X_array[0] < Xin < X_array[N -1]), then index = lowest index for which (Xin < X_array[index + 1]).

RatioX = (Xin - X_array[index]) / (X_array [index+1] - X_array [index])

Result = Val_array[index] + (Val_array[index+1] - Val_array[index])*RatioX]()

[SWS Ifx 00037][

Input value matches with one of the distribution array value then result shall be respective Y array element indicated by index.

If (Xin == X_array[index]) then,
Result = Val_array[index]
|()

[SWS_lfx_00038][

If (Xin < X_array[0]) then,
Result = Val_array[0]
I()</pre>

[SWS Ifx 00039][

If (Xin > X_array[N-1]) then, Result = Val_array[N-1] I()

[SWS_lfx_00040][

The minimum value of N shall be 1 J()

Here is the list of implemented routines.

[SWS Ifx 00041][

Routine ID[hex]	Routine prototype
0x01A	uint8 Ifx_IntIpoCur_u8_u8 (uint8, uint8, const uint8 *, const uint8 *)
0x01B	uint16 Ifx_IntlpoCur_u8_u16 (uint8, uint8, const uint8 *, const uint16 *)
0x01C	sint8 Ifx_IntIpoCur_u8_s8 (uint8, uint8, const uint8 *, const sint8 *)
0x01D	sint16 Ifx_IntIpoCur_u8_s16 (uint8, uint8, const uint8 *, const sint16 *)
0x01E	uint8 Ifx_IntlpoCur_u16_u8 (uint16, uint16, const uint16 *, const uint8 *)
0x01F	uint16 Ifx_IntlpoCur_u16_u16 (uint16, uint16, const uint16 *, const uint16 *)
0x020	sint8 Ifx_IntlpoCur_u16_s8 (uint16, uint16, const uint16 *, const sint8 *)
0x021	sint16 Ifx_IntlpoCur_u16_s16 (uint16, uint16, const uint16 *, const sint16 *)

0x022	uint8 Ifx_IntIpoCur_s8_u8 (sint8, sint8, const sint8 *, const uint8 *)
0x023	uint16 Ifx_IntlpoCur_s8_u16 (sint8, sint8, const sint8 *, const uint16 *)
0x024	sint8 Ifx_IntlpoCur_s8_s8 (sint8, sint8, const sint8 *, const sint8 *)
0x025	sint16 Ifx_IntIpoCur_s8_s16 (sint8, sint8, const sint8 *, const sint16 *)
0x026	uint8 Ifx_IntIpoCur_s16_u8 (sint16, sint16, const sint16 *, const uint8 *)
0x027	uint16 Ifx_IntlpoCur_s16_u16 (sint16, sint16, const sint16 *, const uint16 *)
0x028	sint8 Ifx_IntlpoCur_s16_s8 (sint16, sint16, const sint16 *, const sint8 *)
0x029	sint16 Ifx_IntIpoCur_s16_s16 (sint16, sint16, const sint16 *, const sint16 *)

]()

8.5.2.2 Integrated curve look-up

[SWS_lfx_00045] [

	4	
Service name:	lfx_IntLkUpCur_ <ir< th=""><th>TypeMn>_<outtypemn></outtypemn></th></ir<>	TypeMn>_ <outtypemn></outtypemn>
Syntax:	<intype> X <intype> N const <int< th=""><th></th></int<></intype></intype>	
Service ID[hex]:	0x030 to 0x03F	
Sync/Async:	Synchronous	
Reentrancy:	Reentrant	
	Xin	Input value
Parameters (in):	N	Number of samples
rarameters (m).	X_array	Pointer to the X axis distribution array
	Val_array	Pointer to the result axis distribution array
Parameters (in- out):	None	
Parameters (out):	None	
Return value:	<outtype></outtype>	Entry point of the result array
Description:	This routine returns below equations.	respective entry value of the result at position Xin based on

I()

[SWS_lfx_00046][

```
If (X_array[0] < Xin < X_array[N -1]), then
index = lowest index for which (Xin < X_array[index + 1]).
Result = Val_array[index]
J()</pre>
```

[SWS_lfx_00047][

Input value matches with one of the distribution array value then result shall be respective Y array element indicated by index.

```
If (Xin == X_array[index]) then,
Result = Val_array[index]
|()
```

[SWS_lfx_00048][

```
If (Xin < X_array[0]) then,
Result = Val_array[0]
]()</pre>
```


[SWS_lfx_00049][

If (Xin > X_array[N-1]) then, Result = Val_array[N-1] I()

[SWS_lfx_00050][

The minimum value of N shall be 1 I()

Here is the list of implemented routines.

[SWS_lfx_00051][

Telle-lix-ee	<u>, </u>
Routine ID[hex]	Routine prototype
0x030	uint8
0x031	uint16 Ifx_IntLkUpCur_u8_u16 (uint8 , uint8, const uint8 *, const uint16 *)
0x032	sint8 Ifx_IntLkUpCur_u8_s8 (uint8 , uint8, const uint8 *, const sint8 *)
0x033	sint16 Ifx_IntLkUpCur_u8_s16 (uint8 , uint8, const uint8 *, const sint16 *)
0x034	uint8 Ifx_IntLkUpCur_u16_u8 (uint16 , uint16, const uint16 *, const uint8 *)
0x035	uint16 Ifx_IntLkUpCur_u16_u16 (uint16 , uint16, const uint16 *, const uint16 *)
0x036	sint8 Ifx_IntLkUpCur_u16_s8 (uint16 , uint16, const uint16 *, const sint8 *)
0x037	sint16 Ifx_IntLkUpCur_u16_s16 (uint16 , uint16, const uint16 *, const sint16 *)
0x038	uint8
0x039	uint16 Ifx_IntLkUpCur_s8_u16 (sint8 , sint8, const sint8 *, const uint16 *)
0x03A	sint8 Ifx_IntLkUpCur_s8_s8 (sint8, sint8, const sint8 *, const sint8 *)
0x03B	sint16 Ifx_IntLkUpCur_s8_s16 (sint8, sint8, const sint8 *, const sint16 *)
0x03C	uint8 Ifx_IntLkUpCur_s16_u8 (sint16, sint16, const sint16 *, const uint8 *)
0x03D	uint16 Ifx_IntLkUpCur_s16_u16 (sint16, sint16, const sint16 *, const uint16 *)
0x03E	sint8 Ifx_IntLkUpCur_s16_s8 (sint16, sint16, const sint16 *, const sint8 *)
0x03F	sint16 Ifx_IntLkUpCur_s16_s16 (sint16, sint16, const sint16 *, const sint16 *)
1.0	

]()

8.5.2.3 Integrated fix-curve interpolation

ISWS Ifx 000551

<u>[&M&_IIX_UUU33</u>			
Service name:	lfx_IntIpoFi	lfx_IntlpoFixCur_ <intypemn>_<outtypemn></outtypemn></intypemn>	
Syntax:	<pre><outtype> Ifx_IntIpoFixCur_<intypemn>_<outtypemn>(</outtypemn></intypemn></outtype></pre>		
Service ID[hex]:	0x040 to 0x043		
Sync/Async:	Synchronou	Synchronous	
Reentrancy:	Reentrant	Reentrant	
	Xin	Input value	
	N	Number of samples	
Parameters (in):	Val_array	Pointer to the result axis distribution array	
i arameters (m).	Offset	Offset of the first sampling value for X-axis	
	Shift	'Shift' is the power of 2, (2^Shift) represents X-axis distribution point	
		interval	
Parameters (in- out):	None		
Parameters (out):	None		

Return value:	<outtype>Result of the Interpolation</outtype>
•	This routine calculates interpolation of a curve at position Xin using below equations.
	uons.

| () |

[SWS_lfx_00056][

X axis distribution points shall be calculated based on Offset and Shift values. X array [index] = Offset + index * 2^{Shift}

If Offset = 10, Shift = 2 and N = 5 then,

 $X_{array}[5] = \{10, 14, 18, 22, 26\}$

I()

[SWS_lfx_00057][

If (X_array[0] < Xin < X_array[N -1]), then index = lowest index for which (Xin < X_array[index + 1]).

RatioX = (Xin - X_array[index]) / (X_array [index+1] - X_array [index])

Result = Val_array[index] + (Val_array[index+1] - Val_array[index]) * RatioX |()

[SWS_lfx_00058][

Input value matches with one of the distribution array value then result shall be respective Y array element indicated by index.

If (Xin == X_array[index])
Result = Val_array[index]
I()

[SWS_lfx_00059][

If (Xin < X_array[0]) then, Result = Val_array[0] I()

[SWS Ifx 00060][

If (Xin > X_array[N-1]) then,
Result = Val_array[N-1]
]()

[SWS Ifx 00061][

The minimum value of N shall be 1 ()

Here is the list of implemented routines.

[SWS_lfx_00062][

TOTAL TINE	, - -]
Routine ID[hex]	Routine prototype
0x040	uint8 Ifx_IntIpoFixCur_u8_u8 (uint8, uint8, const uint8 *, uint8, uint8)
0x041	uint16 Ifx_IntlpoFixCur_u16_u16 (uint16, uint16, const uint16 *, uint16, uint16)
0x042	sint8 Ifx_IntIpoFixCur_s8_s8 (sint8, sint8, const sint8 *, sint8, sint8)
0x043	sint16 Ifx_IntlpoFixCur_s16_s16 (sint16, sint16, const sint16 *, sint16, sint16)

(()

8.5.2.4 Integrated fix-curve look up

[SWS_lfx_00070] [

Service name:	lfx_IntLkUpFixCur_ <intypemn>_<outtypemn></outtypemn></intypemn>		
Syntax:	<pre><outtype> Ifx_IntLkUpFixCur_<intypemn>_<outtypemn>(</outtypemn></intypemn></outtype></pre>		
Service ID[hex]:	0x045 to 0x048		
Sync/Async:	Synchronous		
Reentrancy:	Reentrant		
Parameters (in):	N Val_array Offset Shift	Input value Number of samples Pointer to the result axis distribution array Offset of the first sampling value for X-axis 'Shift' is the power of 2, (2^Shift) represents X-axis distribution point interval	
Parameters (in-None put):			
	None		
Return value:	<outtype> Entry point of the result array</outtype>		
Description:	This routine returns respective entry value of the result distribution array at position Xin based on below equations.		

| ()

[SWS_lfx_00071][

X axis distribution points shall be calculated based on Offset and Shift values. X_{array} [index] = Offset + index * 2^{Shift}

```
If Offset = 10, Shift = 2 and N = 5 then,

X_{array}[5] = \{10, 14, 18, 22, 26\}

I()
```

[SWS_lfx_00072][

If (X_array[0] < Xin < X_array[N -1]), then index = lowest index for which (Xin < X_array[index + 1]). Result = Val_array[index]]()

[SWS Ifx 000731]

Input value matches with one of the distribution array value then result shall be respective Y array element indicated by index.

```
If (Xin == X_array[index]) then,
Result = Val_array[index]
|()
```

[SWS_lfx_00074][

If (Xin < X_array[0]) then, Result = Val_array[0]

|()|

[SWS_lfx_00075][

If (Xin > X_array[N-1]) then, Result = Val_array[N-1] J()

[SWS_lfx_00076][

The minimum value of N shall be 1

Here is the list of implemented routines.

[SWS_lfx_00077][

Ten.e-ux-eee1				
Routine ID[hex]	Routine prototype			
0x045	uint8 Ifx_IntLkUpFixCur_u8_u8 (uint8, uint8, const uint8 *, uint8, uint8)			
0x046	uint16 lfx_IntLkUpFixCur_u16_u16 (uint16, uint16, const uint16 *, uint16, uint16)			
0x047	sint8 Ifx_IntLkUpFixCur_s8_s8 (sint8, sint8, const sint8 *, sint8, sint8)			
0x048	sint16 Ifx_IntLkUpFixCur_s16_s16 (sint16, sint16, const sint16 *, sint16, sint16)			

]()

8.5.2.5 Integrated fix- I curve interpolation

[SWS Ifx 00080] [

[3442_IIX_00060	1		
Service name:	lfx_IntlpoFixlCur_ <intypemn>_<outtypemn></outtypemn></intypemn>		
Syntax:	<pre><outtype> Ifx_IntIpoFixICur_<intypemn>_<outtypemn>(</outtypemn></intypemn></outtype></pre>		
Service ID[hex]:	0x04A to 0x04D		
Sync/Async:	Synchronous		
Reentrancy:	Reentrant		
Parameters (in):	Xin N	Input value Number of samples	
	Val_array Offset	Pointer to the result axis distribution array Offset of the first sampling value for X-axis	
	Interval	represents X-axis distribution point fix interval	
Parameters (in- out):	None		
Parameters (out):	None		
Return value:	<outtype></outtype>	Result of the Interpolation	
Description:	This routine calculates interpolation of a curve at position Xin using below equations.		

] ()

[SWS_lfx_00081][

X axis distribution points shall be calculated based on Offset and Interval values. X_array [index] = offset + index * Interval

If Offset = 5, Interval = 12 and N = 5 then, $X_{array}[5] = \{5, 17, 29, 41, 53\}$ J()

[SWS_lfx_00082][

If (X_array[0] < Xin < X_array[N -1]), then index = lowest index for which (Xin < X_array[index + 1]).

RatioX = (Xin - X_array[index]) / (X_array [index+1] - X_array [index])

Result = Val_array[index] + (Val_array[index+1] - Val_array[index]) * RatioX | ()

[SWS_lfx_00083][

Input value matches with one of the distribution array value then result shall be respective Y array element indicated by index.

If (Xin == X_array[index])
Result = Val_array[index]
J()

[SWS_lfx_00084][

If (Xin < X_array[0]) then,
Result = Val_array[0]
|()</pre>

[SWS_lfx_00085][

If (Xin > X_array[N-1]) then, Result = Val_array[N-1] J()

[SWS_lfx_00086][

The minimum value of N shall be 1 (()

Here is the list of implemented routines.

[SWS_lfx_00087][

Routine ID[hex]	Routine prototype		
0x04A	uint8 Ifx_IntIpoFixICur_u8_u8 (uint8, uint8, const uint8 *, uint8, uint8)		
0x04B	uint16 Ifx_IntlpoFixICur_u16_u16 (uint16, uint16, const uint16 *, uint16, uint16)		
0x04C	sint8 Ifx_IntlpoFixICur_s8_s8 (sint8, sint8, const sint8 *, sint8, sint8)		
0x04D	sint16 Ifx_IntlpoFixICur_s16_s16 (sint16, sint16, const sint16 *, sint16, sint16)		

]()

8.5.2.6 Integrated fix- I curve look up

[SWS Ifx 00090] [

<u> </u>		
Service name:	lfx_IntLkUpFixICur_ <intypemn>_<outtypemnt></outtypemnt></intypemn>	
Syntax:	<pre><outtype> Ifx_IntLkUpFixICur_<intypemn>_<outtypemnt>(</outtypemnt></intypemn></outtype></pre>	
	<intype> N,</intype>	
	const <intype>* Val array,</intype>	

	<intype> (</intype>	Offset,
	<intype></intype>	Interval
)	
Service ID[hex]:	0x050 to 0x053	
Sync/Async:	Synchronous	
Reentrancy:	Reentrant	
	Xin	Input value
	N	Number of samples
Parameters (in):	Val_array	Pointer to the result axis distribution array
	Offset	Offset of the first sampling value for X-axis
	Interval	represents X-axis distribution point fix interval
Parameters (in-	Parameters (in-None	
out):		
Parameters (out):	None	
Return value:	<outtype></outtype>	Entry point of the result array
Description:	This routine returns respective entry value of the result distribution array at position Xin based on below equations.	
	LIOH AIH based on below equations.	

]()

[SWS_lfx_00091][

X axis distribution points shall be calculated based on Offset and Interval values. X_array [index] = offset + index * Interval

```
If Offset = 5, Interval = 12 and N = 5 then,

X_{array}[5] = \{5, 17, 29, 41, 53\}

]()
```

[SWS_lfx_00092][

If (X_array[0] < Xin < X_array[N -1]), then index = lowest index for which (Xin < X_array[index + 1]). Result = Val_array[index]]()

[SWS Ifx 00093][

Input value matches with one of the distribution array value then result shall be respective Y array element indicated by index.

If (Xin == X_array[index])
Result = Val_array[index]
|()

[SWS_lfx_00094][

If (Xin < X_array[0]) then, Result = Val_array[0] I()

[SWS_lfx_00095][

If (Xin > X_array[N-1]) then, Result = Val_array[N-1] I()

[SWS_lfx_00096][

The minimum value of N shall be 1 I()

Here is the list of implemented routines.

[SWS_lfx_00097][

Routine ID[hex]	Routine prototype
0x050	uint8 Ifx_IntLkUpFixICur_u8_u8 (uint8, uint8, const uint8 *, uint8, uint8)
0x051	uint16 Ifx_IntLkUpFixICur_u16_u16 (uint16, uint16, const uint16 *, uint16, uint16)
0x052	sint8 Ifx_IntLkUpFixICur_s8_s8 (sint8, sint8, const sint8 *, sint8, sint8)
0x053	sint16 Ifx_IntLkUpFixICur_s16_s16 (sint16, sint16, const sint16 *, sint16, sint16)

(()

8.5.2.7 Integrated map interpolation

[SWS_lfx_00098] [

[<u>3442_IIX_00090</u>	<u> </u>		
Service name:	lfx_IntIpoMap_ <intypemn><intypemn>_<outtypemn></outtypemn></intypemn></intypemn>		
Syntax:	<pre><outtype> Ifx_IntIpoMap_<intypemn><intypemn>_<outtypemn>(</outtypemn></intypemn></intypemn></outtype></pre>		
Service ID[hex]:	0x060 to 0x087		
Sync/Async:	Synchronous		
Reentrancy:	Reentrant		
	Xin Yin	Input value for X axis Input value for Y axis	
	Nx	Number of X axis samples	
Parameters (in):	Ny	Number of Y axis samples	
	X_array	Pointer to the X axis distribution array	
	Y_array	Pointer to the Y axis distribution array	
	Val_array	Pointer to the result axis distribution array	
Parameters (in- out):			
Parameters (out):	None		
Return value:	<outtype></outtype>	Result of the Map Interpolation	
Description:	This routine calculates Interpolation of a map at position X and Y using below equations.		

]()

[SWS_lfx_00099][

Index calculation:

$$\label{eq:continuous_continuous_continuous} \begin{split} & \operatorname{index} X = \operatorname{minimum} \ value \ of \ \operatorname{index} if \ (X_array[\operatorname{index} X] < Xin < X_array[\operatorname{index} X+1]) \\ & \operatorname{index} Y = \operatorname{minimum} \ value \ of \ \operatorname{index} if \ (Y_array[\operatorname{index} Y] < Yin < Y_array[\operatorname{index} Y+1]) \\ & \operatorname{BaseIndex} = \operatorname{Index} X * \ Ny + \operatorname{index} Y \\ & \operatorname{J}() \end{split}$$

[SWS_lfx_00100][


```
Ratio calculation:
RatioX = (Xin - X_array[indexX]) / (X_array [indexX+1] - X_array [indexX])
RatioY = (Yin - Y array[indexY]) / (Y array [indexY+1] - Y array [indexY])
I()
[SWS_lfx_00101][
LowerY = Val_array [BaseIndex]
UpperY = Val array [BaseIndex + 1]
LowerX = LowerY + (UpperY - LowerY) * RatioY
LowerY = Val_array [BaseIndex + Ny]
UpperY = Val array [BaseIndex + Ny + 1]
UpperX = LowerY + (UpperY - LowerY) * RatioY
Result = LowerX + (UpperX - LowerX) * RatioX
I()
[SWS Ifx 00102][
If (Xin == X_array[indexX]) and (Y_array[indexY] < Yin < Y_array[indexY+1])
Result = Val array [BaseIndex] + (Val array [BaseIndex+1] - Val array[BaseIndex]) *
RatioY
I()
[SWS Ifx 00103][
If (Yin == Y_array[indexY]) and (X_array[indexX] < Xin < X_array[indexX+1])
Result = Val_array [BaseIndex] + (Val_array [BaseIndex+Ny] - Val_array[BaseIndex])
* RatioX
I()
[SWS_lfx_00104][
If (Xin == X_array[indexX]) and (Yin == Y_array[indexY])
Result = Val array [BaseIndex]
]()
[SWS Ifx 00105][
If Xin < X_array[0], then
indexX = 0,
RatioX = 0
I()
[SWS_lfx_00106][
If Xin > X_array[Nx-1], then
indexX = Nx - 1,
RatioX = 0
I()
[SWS_lfx_00107][
```

If Yin < Y_array[0], then

indexY = 0, RatioY = 0 J()

[SWS_lfx_00108][

If Yin > Y_array[Ny-1], then indexY = Ny - 1, RatioY = 0

[SWS_lfx_00109][

The minimum value of Nx and Ny shall be 1 I()

Here is the list of implemented routines.

[SWS_lfx_00110][

Routine	Routine prototype
ID[hex]	riodamo prototypo
0x060	uint8 Ifx_IntIpoMap_u16u8_u8 (uint16, uint8, uint16, uint16, const uint16 *, const uint8 *, const uint8 *)
0x061	uint16 Ifx_IntIpoMap_u16u8_u16 (uint16, uint8, uint16, uint16, const uint16 *, const uint8 *, const uint16 *)
0x062	sint8 Ifx_IntIpoMap_u16u8_s8 (uint16, uint8, uint16, uint16, const uint16 *, const uint8 *, const sint8 *)
0x063	sint16 lfx_IntIpoMap_u16u8_s16 (uint16, uint8, uint16, uint16, const uint16 *, const uint8 *, const sint16 *)
0x064	uint8 lfx_IntlpoMap_u16u16_u8 (uint16, uint16, uint16, uint16, const uint16 *, const uint16 *, const uint8 *)
0x065	uint16 Ifx_IntIpoMap_u16u16_u16 (uint16, uint16, uint16, uint16, const uint16 *, const uint16 *)
0x066	sint8 lfx_IntlpoMap_u16u16_s8 (uint16, uint16, uint16, uint16, const uint16 *, const uint16 *, const sint8 *)
0x067	sint16 Ifx_IntlpoMap_u16u16_s16 (uint16, uint16, uint16, uint16, const uint16 *, const uint16 *)
0x068	uint8 Ifx_IntIpoMap_u16s8_u8 (uint16, sint8, uint16, uint16, const uint16 *, const sint8 *, const uint8 *)
0x069	uint16 lfx_IntlpoMap_u16s8_u16 (uint16, sint8, uint16, uint16, const uint16 *, const sint8 *, const uint16 *)
0x06A	sint8 Ifx_IntIpoMap_u16s8_s8 (uint16, sint8, uint16, uint16, const uint16 *, const sint8 *, const sint8 *)
0x06B	sint16 lfx_IntlpoMap_u16s8_s16 (uint16, sint8, uint16, uint16, const uint16 *, const sint8 *, const sint16 *)
0x06C	uint8 Ifx_IntIpoMap_u16s16_u8 (uint16, sint16, uint16, uint16, const uint16 *, const sint16 *, const uint8 *)
0x06D	uint16 Ifx_IntIpoMap_u16s16_u16 (uint16, sint16, uint16, uint16, const uint16 *, const sint16 *, const uint16 *)
0x06E	sint8 lfx_IntlpoMap_u16s16_s8 (uint16, sint16, uint16, uint16, const uint16 *, const sint16 *, const sint8 *)
0x06F	sint16 Ifx_IntlpoMap_u16s16_s16 (uint16, sint16, uint16, uint16, const uint16 *, const sint16 *)
0x070	uint8 lfx_IntIpoMap_s16u8_u8 (sint16, uint8, sint16, sint16, const sint16 *, const uint8 *, const uint8 *)
0x071	uint16 lfx_IntlpoMap_s16u8_u16 (sint16, uint8, sint16, sint16, const sint16 *, const uint8 *, const uint16 *)

0x072	sint8 Ifx_IntIpoMap_s16u8_s8 (sint16, uint8, sint16, sint16, const sint16 *, const uint8 *, const sint8 *)
0x073	sint16 lfx_IntlpoMap_s16u8_s16 (sint16, uint8, sint16, sint16, const sint16 *, const uint8 *, const sint16 *)
0x074	uint8 Ifx_IntIpoMap_s16s8_u8 (sint16, sint8, sint16, sint16, const sint16 *, const sint8 *, const uint8 *)
0x075	uint16 lfx_IntlpoMap_s16s8_u16 (sint16, sint8, sint16, sint16, const sint16 *, const sint8 *, const uint16 *)
0x076	sint8 Ifx_IntIpoMap_s16s8_s8 (sint16, sint8, sint16, sint16, const sint16 *, const sint8 *, const sint8 *)
0x077	sint16 lfx_IntlpoMap_s16s8_s16 (sint16, sint8, sint16, sint16, const sint16 *, const sint8 *, const sint16 *)
0x078	uint8 lfx_IntlpoMap_s16s16_u8 (sint16, sint16, sint16, sint16, const sint16 *, const sint16 *, const uint8 *)
0x079	uint16 lfx_IntlpoMap_s16s16_u16 (sint16, sint16, sint16, sint16, const sint16 *, const sint16 *,
0x07A	sint8 lfx_IntlpoMap_s16s16_s8 (sint16, sint16, sint16, sint16, const sint16 *, const sint8 *)
0x07B	sint16 Ifx_IntIpoMap_s16s16_s16 (sint16, sint16, sint16, sint16, const sint16 *, const sint16 *)
0x07C	uint8 lfx_IntlpoMap_u8u8_u8 (uint8, uint8, uint8, uint8, const uint8 *, const uint8 *, const uint8 *)
0x07D	uint16 Ifx_IntIpoMap_u8u8_u16 (uint8, uint8, uint8, uint8, const uint8 *, const uint8 *, const uint16 *)
0x07E	sint8 lfx_IntlpoMap_u8u8_s8 (uint8, uint8, uint8, uint8, const uint8 *, const uint8 *, const sint8 *)
0x07F	sint16 Ifx_IntIpoMap_u8u8_s16 (uint8, uint8, uint8, uint8, const uint8 *, const uint8 *, const sint16 *)
0x080	uint8 lfx_IntlpoMap_u8s8_u8 (uint8, sint8, uint8, uint8, const uint8 *, const sint8 *, const uint8 *)
0x081	uint16 Ifx_IntIpoMap_u8s8_u16 (uint8, sint8, uint8, uint8, const uint8 *, const sint8 *, const uint16 *)
0x082	sint8 Ifx_IntIpoMap_u8s8_s8 (uint8, sint8, uint8, uint8, const uint8 *, const sint8 *, const sint8 *)
0x083	sint16 Ifx_IntIpoMap_u8s8_s16 (uint8, sint8, uint8, uint8, const uint8 *, const sint8 *, const sint16 *)
0x084	uint8 lfx_IntlpoMap_s8s8_u8 (sint8, sint8, sint8, sint8, const sint8 *, const sint8 *, const uint8 *)
0x085	uint16 Ifx_IntIpoMap_s8s8_u16 (sint8, sint8, sint8, sint8, const sint8 *, const sint8 *, const uint16 *)
0x086	sint8 Ifx_IntIpoMap_s8s8_s8 (sint8, sint8, sint8, sint8, const sint8 *, const sint8 *, const sint8 *)
0x087	sint16 lfx_IntIpoMap_s8s8_s16 (sint8, sint8, sint8, sint8, const sint8 *, const sint8 *, const sint16 *)

]()

8.5.2.8 Integrated map look-up

[SWS_lfx_00111] [

<u>[0110_ X_ 00111</u>		
Service name:	lfx_IntLkUpMap_ <intypemn><intypemn>_<outtypemn></outtypemn></intypemn></intypemn>	
Syntax:	<pre>COUTType> Ifx_IntLkUpMap_<intypemn><intypemn>_<outtypemn>(</outtypemn></intypemn></intypemn></pre>	

	const <intype>*</intype>	Y_array,	
	const <intype>*</intype>	Val_array	
)		
Service ID[hex]:	0x08A to 0x08D		
Sync/Async:	Synchronous		
Reentrancy:	Reentrant		
	Xin	Input value for X axis	
	Yin	Input value for Y axis	
	Nx	Number of X axis samples	
Parameters (in):	Ny	Number of Y axis samples	
	X_array	Pointer to the X axis distribution array	
	Y_array	Pointer to the Y axis distribution array	
	Val_array	Pointer to the result axis distribution array	
Parameters (in-	(in-None		
out):			
Parameters (out):	None		
Return value:	<outtype></outtype>	Entry point of the result array	
Description:	This routine returns respective entry value of the result distribution array at posi-		
	tion Xin and Yin based on below equations.		

I()

[SWS_lfx_00112][

Index calculation:

indexX = minimum value of index if (X_array[indexX] < Xin < X_array[indexX+1])
indexY = minimum value of index if (Y_array[indexY] < Yin < Y_array[indexY+1])
BaseIndex = IndexX * Ny + indexY
|()</pre>

[SWS_lfx_00113][

Ratio calculation:

if (indexX < (Nx - 1))

RatioX = (Xin - X_array[indexX]) / (X_array [indexX+1] - X_array [indexX])

else

RatioX = 0

if (indexY < (Ny - 1))

RatioY = (Yin - Y_array[indexY]) / (Y_array [indexY+1] - Y_array [indexY])

else

RatioY = 0

I()

[SWS_lfx_00114][

if(RatioX < 0.5 && RatioY < 0.5) then

Result = Val_array [BaseIndex]

if(RatioX \geq 0.5 && RatioY < 0.5) then

Result = Val_array [BaseIndex + Ny]

if(RatioX < $0.5 \&\& RatioY \ge 0.5$) then

Result = Val_array [BaseIndex + 1]

if(RatioX \geq 0.5 && RatioY \geq 0.5) then

Result = Val_array [BaseIndex + Ny + 1]

43 of 67

(()

[SWS_lfx_00116][

If (Xin == X_array[indexX]) and (Yin == Y_array[indexY])
Result = Val_array [BaseIndex]
|()

[SWS_lfx_00117][

If Xin < X_array[0], then indexX = 0 |()

[SWS_lfx_00118][

If Xin > X_array[Nx-1], then indexX = Nx - 1 |()

[SWS_lfx_00119][

If Yin < Y_array[0], then indexY = 0]()

[SWS_lfx_00120][

If Yin > Y_array[Ny-1], then indexY = Ny - 1

[SWS_lfx_00121][

The minimum value of Nx and Ny shall be 1 J()

Here is the list of implemented routines.

ISWS Ifx 001221

Routine ID[hex]	Routine prototype
	uint8 Ifx_IntLkUpMap_u8u8_u8(uint8, uint8, uint8, uint8, const uint8 *, const uint8 *, const uint8 *, const uint8 *)
	sint8 Ifx_IntLkUpMap_s8s8_s8 (sint8, sint8, sint8, sint8, const sint8 *, const sint8 *, const sint8 *, const sint8 *,
	uint16 Ifx_IntLkUpMap_u16u16_u16 (uint16, uint16, uint16, uint16, const uint16 *, const uint16 *, const uint16 *)
	sint16 Ifx_IntLkUpMap_s16s16_s16 (sint16, sint16, sint16, sint16, const sint16 *, const sint16 *)

()

8.5.2.9 Integrated map look-up without rounding

[SWS_lfx_00211] [

Service name:	lfx_IntLkUpBaseMap_ <intypemn><intypemn>_<outtypemn></outtypemn></intypemn></intypemn>		
Syntax:	<outtype></outtype>		
	<pre>Ifx_IntLkUpBaseMap_<intypemn><intypemn>_<outtypemn>(</outtypemn></intypemn></intypemn></pre>		

	<pre><intype> Xin, <intype> Yin, <intype> Nx, <intype> Ny, const <intype>* X_array, const <intype>* Y_array, const <intype>* Val array</intype></intype></intype></intype></intype></intype></intype></pre>	
Comice IDIhavi) 0x044 to 0x04D	
	0x0AA to 0x0AD	
Sync/Async:	Synchronous	
Reentrancy:	Reentrant	
		Input value for X axis
	Yin	Input value for Y axis
	Nx	Number of X axis samples
Parameters (in):	Ny	Number of Y axis samples
	X_array	Pointer to the X axis distribution array
	Y_array	Pointer to the Y axis distribution array
	Val_array	Pointer to the result axis distribution array
Parameters (in-	None	,
out):		
Parameters (out):	None	
Return value:	<outtype></outtype>	Entry point of the result array
Description:	This routine returns respective entry value of the result distribution array at position Xin and Yin based on below equations.	

1 ()

[SWS_lfx_00212][

Index calculation:

indexX = minimum value of index if (X_array[indexX] < Xin < X_array[indexX+1])
indexY = minimum value of index if (Y_array[indexY] < Yin < Y_array[indexY+1])
BaseIndex = IndexX * Ny + indexY
|()</pre>

[SWS_lfx_00214][

Return Value = Val_array [BaseIndex] j()

[SWS_lfx_00216][

If (Xin == X_array[indexX]) and (Yin == Y_array[indexY])
Result = Val_array [BaseIndex]
|()

[SWS Ifx 00217][

If Xin < X_array[0], then indexX = 0

[SWS_lfx_00218][

If Xin > X_array[Nx-1], then indexX = Nx - 1]()

[SWS_lfx_00219][

If Yin < Y_array[0], then indexY = 0

[SWS_lfx_00220][

If Yin > Y_array[Ny-1], then indexY = Ny - 1 J()

[SWS_lfx_00221][

The minimum value of Nx and Ny shall be 1 J()

Here is the list of implemented routines.

[SWS Ifx 002221[

Routine ID[hex]	Routine prototype
	uint8 Ifx_IntLkUpBaseMap_u8u8_u8(uint8, uint8, uint8, uint8, const uint8 *, const uint8 *, const uint8 *)
	sint8 Ifx_IntLkUpBaseMap_s8s8_s8 (sint8, sint8, sint8, sint8, const sint8 *, const sint8 *, const sint8 *,
	uint16 Ifx_IntLkUpBaseMap_u16u16_u16 (uint16, uint16, uint16, uint16, const uint16 *, const uint16 *)
	sint16 Ifx_IntLkUpBaseMap_s16s16_s16 (sint16, sint16, sint16, sint16, const sint16 *, const sint16 *)

|()

8.5.2.10 Integrated fix- map interpolation

[SWS Ifx 00123] [

<u>[3W3_IIX_UU123</u>]		
Service name:	lfx_IntlpoFixMap_ <intypemn><intypemn>_<outtypemn></outtypemn></intypemn></intypemn>		
Syntax:	<pre></pre> <pre><outtype> Ifx_IntIpoFixMap_<intypemn><intypemn>_<outtypemn> (</outtypemn></intypemn></intypemn></outtype></pre>		
Service ID[hex]:	0x090 to 0x	093	
Sync/Async:	Synchronous		
Reentrancy:	Reentrant		
	Xin	Input value for X axis	
	Yin	Input value for Y axis	
Parameters (in):	Nx	Number to X axis samples	
raiailleteis (III).	Ny	Number to Y axis samples	
	Val_array	Pointer to the result axis distribution array	
	OffsetX	Offset of the first sampling value for X-axis	

ShiftX		'Shift' is the power of 2, (2^ShiftX) represents X-axis distribution point interval	
	OffsetY	Offset of the first sampling value for Y-axis	
		'Shift' is the power of 2, (2^ShiftY) represents Y-axis distribution point interval	
Parameters (in-	-None		
out):			
Parameters (out):	None		
Return value:	<outtype> Result of the Interpolation</outtype>		
Description:	This routine calculates Interpolation of a map at position X and Y using below equations.		

I()

[SWS_lfx_00124][

X and Y axis distribution points shall be calculated based on Offset and Shift values.

```
X_array[index] = OffsetX + index * 2<sup>ShiftX</sup>
Y_array[index] = OffsetY + index * 2<sup>ShiftY</sup>

If Offset = 10, Shift = 2 and N = 5 then,
axis = {10, 14, 18, 22, 26} (applicable to X and Y axis)
J()
```

[SWS_lfx_00125][

Index calculation:

indexX = minimum value of index if (X_array[indexX] < Xin < X_array[indexX+1])
indexY = minimum value of index if (Y_array[indexY] < Yin < Y_array[indexY+1])
BaseIndex = IndexX * Ny + indexY
[()</pre>

[SWS_lfx_00126][

Ratio calculation:

RatioX = (Xin - X_array[indexX]) / (X_array [indexX+1] - X_array [indexX]) RatioY = (Yin - Y_array[indexY]) / (Y_array [indexY+1] - Y_array [indexY])]()

[SWS_lfx_00127][

```
LowerY = Val_array [BaseIndex]
UpperY = Val_array [BaseIndex + 1]
LowerX = LowerY + (UpperY - LowerY) * RatioY
```

```
LowerY = Val_array [BaseIndex + Ny]
UpperY = Val_array [BaseIndex + Ny + 1]
UpperX = LowerY + (UpperY - LowerY) * RatioY

Result = LowerX + (UpperX - LowerX) * RatioX
```

[SWS Ifx 00128][

If $(Xin == X_array[indexX])$ and $(Y_array[indexY] < Yin < Y_array[indexY+1])$

I()

Result = Val_array [BaseIndex] + (Val_array [BaseIndex+1] - Val_array[BaseIndex]) * RatioY |()

[SWS_lfx_00129][

If (Yin == Y_array[indexY]) and (X_array[indexX] < Xin < X_array[indexX+1])

Result = Val_array [BaseIndex] + (Val_array [BaseIndex+Ny] - Val_array[BaseIndex])

* RatioX

[()

[SWS_lfx_00130][

If (Xin == X_array[indexX]) and (Yin == Y_array[indexY])
Result = Val_array [BaseIndex]
|()

[SWS_lfx_00131][

If Xin < X_array[0], then indexX = 0, RatioX = 0

[SWS_lfx_00132][

If Xin > X_array[Nx-1], then indexX = Nx - 1, RatioX = 0 |()

[SWS Ifx 00133][

If Yin < Y_array[0], then indexY = 0, RatioY = 0 J()

[SWS_lfx_00134][

If Yin > Y_array[Ny-1], then indexY = Ny - 1, RatioY = 0 I()

[SWS_lfx_00135][

The minimum value of Nx and Ny shall be 1 I()

Here is the list of implemented routines.

[SWS Ifx 00136][

LOTTOX_	[0110_11X_00100]			
Routine ID[hex]	Routine prototype			
	uint8 Ifx_IntIpoFixMap_u8u8_u8(uint8, uint8, uint8, uint8, const uint8 *, uint8, uint8, uint8, uint8)			
0x091	uint16 lfx_IntlpoFixMap_u16u16_u16 (uint16, uint16, uint16, uint16, const uint16 *,			

	uint16, uint16, uint16)
0x092	sint8 Ifx_IntIpoFixMap_s8s8_s8 (sint8, sint8, sint8, sint8, const sint8 *, sint8, sint8, sint8, sint8)
0x093	sint16 Ifx_IntIpoFixMap_s16s16_s16 (sint16, sint16, sint16, sint16, const sint16 *, sint16, sint16, sint16, sint16)

]()

8.5.2.11 Integrated fix- map look up

[SWS Ifx 00139] [

<u>[SWS_IfX_00139</u>			
Service name:	lfx_IntLkUpFixMap_ <intypemn><intypemn>_<outtypemn></outtypemn></intypemn></intypemn>		
Syntax:	<pre><outtype> Ifx IntLkUpFixMap <intypemn><intypemn> <outtypemn> (</outtypemn></intypemn></intypemn></outtype></pre>		
		pe> Xin,	
	<inty< th=""><th>pe> Yin,</th></inty<>	pe> Yin,	
		pe> Nx,	
		pe> Ny,	
		<intype>* Val_array,</intype>	
	<intype> OffsetX,</intype>		
		pe> ShiftX, pe> OffsetY,	
		pe> ShiftY	
	(1111)	per billier	
Service ID[hex]:	0x095 to 0x0	098	
Sync/Async:	Synchronous		
Reentrancy:	Reentrant		
	Xin	Input value for X axis	
	Yin	Input value for Y axis	
	Nx	Number to X axis samples	
	Ny	Number to Y axis samples	
	Val_array	Pointer to the result axis distribution array	
Parameters (in):	OffsetX	Offset of the first sampling value for X-axis	
	ShiftX	'Shift' is the power of 2, (2^ShiftX) represents X-axis distribution point interval	
	OffsetY	Offset of the first sampling value for Y-axis	
	ShiftY	'Shift' is the power of 2, (2^ShiftY) represents Y-axis distribution point interval	
Parameters (in-	None	m. 13. 13.	
out):			
Parameters (out):	None		
Return value:		Entry point of the result array	
Description:	This routine returns respective entry value of the result distribution array at posi-		
	tion Xin and Yin based on below equations.		
I /\			

] ()

[SWS_lfx_00140][

X and Y axis distribution points shall be calculated based on Offset and Shift values.

```
X_{array}[index] = offsetX + index * 2^{ShiftX}

Y_{array}[index] = offsetY + index * 2^{ShiftY}
```

If Offset = 10, shift = 2 and N = 5 then, axis = $\{10, 14, 18, 22, 26\}$ (applicable to X and Y axis)

|()

```
[SWS Ifx 00141][
Index calculation:
indexX = minimum value of index if (X_array[indexX] < Xin < X_array[indexX+1])
indexY = minimum value of index if (Y array[indexY] < Yin < Y array[indexY+1])
BaseIndex = IndexX * Ny + indexY
|()|
[SWS_lfx_00143][
Ratio calculation:
if (indexX < (Nx - 1))
RatioX = (Xin - X_array[indexX]) / (X_array [indexX+1] - X_array [indexX])
else
RatioX = 0
if (indexY < (Ny - 1))
RatioY = (Yin - Y array[indexY]) / (Y array [indexY+1] - Y array [indexY])
RatioY = 0
I()
[SWS_lfx_00144][
if(RatioX < 0.5 && RatioY < 0.5) then
Result = Val_array [BaseIndex]
if(RatioX \geq 0.5 && RatioY < 0.5) then
Result = Val_array [BaseIndex + Ny]
if(RatioX < 0.5 \&\& RatioY \ge 0.5) then
Result = Val_array [BaseIndex + 1]
if(RatioX \geq 0.5 && RatioY \geq 0.5) then
Result = Val array [BaseIndex + Ny + 1]
I()
[SWS Ifx 00145][
If (Xin == X_array[indexX]) and (Yin == Y_array[indexY])
Result = Val_array [BaseIndex]
I()
[SWS_lfx_00146][
If Xin < X array[0], then
indexX = 0
I()
[SWS_lfx_00147][
If Xin > X_array[Nx-1], then
indexX = Nx - 1
```

I()

[SWS_lfx_00148][

If Yin < Y_array[0], then indexY = 0 |()

[SWS_lfx_00149][

If Yin > Y_array[Ny-1], then indexY = Ny - 1 |()

[SWS_lfx_00150][

The minimum value of Nx and Ny shall be 1 J()

Here is the list of implemented routines.

[SWS Ifx 00151][

Routine ID[hex]	Routine prototype
0x095	uint8 Ifx_IntLkUpFixMap_u8u8_u8 (uint8, uint8, uint8, uint8, const uint8 *, uint8, uint8, uint8, uint8)
0x096	uint16 lfx_IntLkUpFixMap_u16u16_u16 (uint16, uint16, uint16, uint16, const uint16 *, uint16, uint16, uint16, uint16)
0x097	sint8 Ifx_IntLkUpFixMap_s8s8_s8 (sint8, sint8, sint8, sint8, const sint8 *, sint8, sint8, sint8, sint8)
0x098	sint16 lfx_IntLkUpFixMap_s16s16_s16 (sint16, sint16, sint16, sint16, const sint16 *, sint16, sint16, sint16, sint16)

|()|

8.5.2.12 Integrated fix- map look up without rounding

[SWS_lfx_00225] [

[3443_IIX_00223	4			
Service name:	lfx_IntLkUpFixBaseMap_ <intypemn><intypemn>_<outtypemn></outtypemn></intypemn></intypemn>			
Syntax:	<pre><outtype> Ifx_IntLkUpFixBaseMap_<intypemn><intypemn>_<outtypemn>(</outtypemn></intypemn></intypemn></outtype></pre>			
Service ID[hex]:	0x0B0 to 0x0B3			
Sync/Async:	Synchronous			
Reentrancy:	Reentrant			
	Xin	Input value for X axis		
	Yin	Input value for Y axis		
Paramatara (in)	Nx	Number to X axis samples		
Parameters (in):	Ny	Number to Y axis samples		
	Val_array	/al_array Pointer to the result axis distribution array		
	OffsetX	Offset of the first sampling value for X-axis		

ShiftX		'Shift' is the power of 2, (2^ShiftX) represents X-axis distribution point interval	
	OffsetY	Offset of the first sampling value for Y-axis	
		'Shift' is the power of 2, (2^ShiftY) represents Y-axis distribution point interval	
Parameters (in- out):	None		
Parameters (out):	None		
Return value:	<outtype> Entry point of the result array</outtype>		
	This routine returns respective entry value of the result distribution array at position Xin and Yin based on below equations.		
		()	

[SWS_lfx_00226][

X and Y axis distribution points shall be calculated based on Offset and Shift values.

```
X_{array[index]} = offsetX + index * 2^{ShiftX}
Y_array[index] = offsetY + index * 2<sup>ShiftY</sup>
If Offset = 10, shift = 2 and N = 5 then,
axis = \{10, 14, 18, 22, 26\} (applicable to X and Y axis)
```

[SWS_lfx_00227][

Index calculation:

```
indexX = minimum value of index if (X_array[indexX] < Xin < X_array[indexX+1])
indexY = minimum value of index if (Y_array[indexY] < Yin < Y_array[indexY+1])
BaseIndex = IndexX * Ny + indexY
|()
```

[SWS_lfx_00229][

Return Value = Val_array [BaseIndex] I()

[SWS_lfx_00230][

If (Xin == X_array[indexX]) and (Yin == Y_array[indexY]) Result = Val array [BaseIndex]]()

[SWS Ifx 00231][

If Xin < X_array[0], then indexX = 0I()

[SWS Ifx 00232][

If $Xin > X_array[Nx-1]$, then indexX = Nx - 1I()

[SWS_lfx_00233][

If Yin < Y_array[0], then indexY = 0]()

[SWS_lfx_00234][

If Yin > Y_array[Ny-1], then indexY = Ny - 1]()

[SWS_lfx_00235][

The minimum value of Nx and Ny shall be 1 I()

Here is the list of implemented routines.

[SWS Ifx 00236][

Routine ID[hex]	Routine prototype
0x0B0	uint8 Ifx_IntLkUpFixBaseMap_u8u8_u8 (uint8, uint8, uint8, uint8, const uint8 *, uint8, uint8, uint8)
0x0B1	uint16 Ifx_IntLkUpFixBaseMap_u16u16_u16 (uint16, uint16, uint16, uint16, const uint16 *, uint16, uint16, uint16, uint16)
0x0B2	sint8 Ifx_IntLkUpFixBaseMap_s8s8_s8 (sint8, sint8, sint8, sint8, const sint8 *, sint8, sint8, sint8)
0x0B3	sint16 Ifx_IntLkUpFixBaseMap_s16s16_s16 (sint16, sint16, sint16, sint16, const sint16 *, sint16, sint16, sint16, sint16)

]()

8.5.2.13 Integrated fix- I map interpolation

[SWS_lfx_00153] [

Service name:	Ifx_IntIpoFixIMap_ <intypemn><intypemn>_<outtypemn></outtypemn></intypemn></intypemn>		
		eivin> <iii ypeivin="">_<outi ypeivin=""></outi></iii>	
Syntax:	<outtype></outtype>		
	<pre>Ifx_IntIpoFixIMap_<intypemn><intypemn>_<outtypemn> (</outtypemn></intypemn></intypemn></pre>		
	<intype> Xin,</intype>		
	<intype> Yin,</intype>		
	<intype> Nx,</intype>		
	<intype> Ny,</intype>		
	const <intype>*</intype>		
	<intype> Offset</intype>		
	<intype> Interv</intype>		
	<intype> Offset</intype>		
	<intype> IntervalY</intype>		
)		
Service ID[hex]:	0x09A to 0x09D		
Sync/Async:	Synchronous		
Reentrancy:	Reentrant		
	Xin	Input value for X axis	
	Yin	Input value for Y axis	
	Nx	Number to X axis samples	
Parameters (in):	Ny	Number to Y axis samples	
i arameters (m).	Val_array	Pointer to the result axis distribution array	
	OffsetX	Offset of the first sampling value for X-axis	
	IntervalX	represents X-axis distribution point interval	
	OffsetY	Offset of the first sampling value for Y-axis	

	IntervalY	represents Y-axis distribution point interval	
Parameters (in-	None		
out):			
Parameters (out):	None		
Return value:	<outtype></outtype>	Result of the Interpolation	
Description:	This routine calculates Interpolation of a map at position X and Y using below		
	equations.		

I()

[SWS_lfx_00154][

X and Y axis distribution points shall be calculated based on Offset and Interval values.

```
X_array[index] = offsetX + index * IntervalX
Y_array[index] = offsetY + index * IntervalY

If Offset = 10, Interval = 2 and N = 5 then,

axis = {10, 12, 14, 16, 18} (applicable to X and Y axis)

]()
```

[SWS_lfx_00155][

Index calculation:

```
indexX = minimum value of index if (X_array[indexX] < Xin < X_array[indexX+1])
indexY = minimum value of index if (Y_array[indexY] < Yin < Y_array[indexY+1])
BaseIndex = IndexX * Ny + indexY
I()</pre>
```

[SWS_lfx_00156][

```
Ratio Calculation:
```

```
RatioX = (Xin - X_array[indexX]) / (X_array [indexX+1] - X_array [indexX]) RatioY = (Yin - Y_array[indexY]) / (Y_array [indexY+1] - Y_array [indexY]) |()
```

[SWS Ifx 00157][

```
LowerY = Val_array [BaseIndex]
UpperY = Val_array [BaseIndex + 1]
LowerX = LowerY + (UpperY - LowerY) * RatioY

LowerY = Val_array [BaseIndex + Ny]
UpperY = Val_array [BaseIndex + Ny + 1]
UpperX = LowerY + (UpperY - LowerY) * RatioY

Result = LowerX + (UpperX - LowerX) * RatioX |()
```

[SWS Ifx 00158][

```
If (Xin == X_array[indexX]) and (Y_array[indexY] < Yin < Y_array[indexY+1])

Result = Val_array [BaseIndex] + (Val_array [BaseIndex+1] - Val_array[BaseIndex]) *

RatioY

[()
```


[SWS_lfx_00159][

If (Yin == Y_array[indexY]) and (X_array[indexX] < Xin < X_array[indexX+1])

Result = Val_array [BaseIndex] + (Val_array [BaseIndex+Ny] - Val_array[BaseIndex])

* RatioX

|()

[SWS_lfx_00160][

If (Xin == X_array[indexX]) and (Yin == Y_array[indexY])
Result = Val_array [BaseIndex]
|()

[SWS_lfx_00161][

If Xin < X_array[0], then indexX = 0, RatioX = 0

[SWS_lfx_00162][

If Xin > X_array[Nx-1], then indexX = Nx - 1, RatioX = 0]()

[SWS_lfx_00163][

If Yin < Y_array[0], then indexY = 0, RatioY = 0

[SWS_lfx_00164][

If Yin > Y_array[Ny-1], then indexY = Ny - 1, RatioY = 0 J()

[SWS_lfx_00165][

The minimum value of Nx and Ny shall be 1 J()

Here is the list of implemented routines.

[SWS_lfx_00166][

Routine ID[hex]	Routine prototype
	uint8 Ifx_IntIpoFixIMap_u8u8_u8 (uint8, uint8, uint8, uint8, const uint8 *, uint8, uint8, uint8, uint8)
	uint16 lfx_IntIpoFixIMap_u16u16_u16(uint16, uint16, uint16, uint16, const uint16 *, uint16, uint16, uint16, uint16)
	sint8 lfx_IntIpoFixIMap_s8s8_s8(sint8, sint8, sint8, sint8, const sint8 *, sint8, sint8, sint8, sint8)
0x09D	sint16 lfx_IntlpoFixIMap_s16s16_s16 (sint16, sint16, sint16, sint16, const sint16 *, sint16,

sint16, sint16, sint16)

1()

8.5.2.14 Integrated fix- I map look up

[SWS_lfx_00169] [

Service name:	lfx_IntLkUpFixIMap_ <intypemn><intypemn>_<outtypemn></outtypemn></intypemn></intypemn>						
Syntax:	<outtype></outtype>						
	<pre>Ifx_IntLkUpFixIMap_<intypemn><intypemn>_<outtypemn>(</outtypemn></intypemn></intypemn></pre>						
	<intype> Xin,</intype>						
	<intype> Yin,</intype>						
		<intype> Nx,</intype>					
	<intype> Ny,</intype>	1					
	const <intype>*</intype>						
	<pre><intype> Offset <intype> Interv</intype></intype></pre>						
	<pre><intype> Interv <intype> Offset</intype></intype></pre>						
	<pre><intype> Offset <intype> Interv</intype></intype></pre>						
)	α11					
Service ID[hex]:	0x0A0 to 0x0A3						
Sync/Async:	Synchronous						
Reentrancy:	Reentrant						
	Xin	Input value for X axis					
	Yin	Input value for Y axis					
	Nx	Number to X axis samples					
	Ny	Number to Y axis samples					
Parameters (in):	Val_array	Pointer to the result axis distribution array					
	OffsetX	Offset of the first sampling value for X-axis					
	IntervalX	represents X-axis distribution point interval					
	OffsetY	Offset of the first sampling value for Y-axis					
	IntervalY	represents Y-axis distribution point interval					
Parameters (in-	None						
out):							
Parameters (out):	None						
Return value:	<outtype> Entry point of the result array</outtype>						
Description:	This routine returns respective entry value of the result distribution array at posi-						
	tion Xin and Yin based on below equations.						

] ()

[SWS_lfx_00170][

X and Y axis distribution points shall be calculated based on Offset and Interval values.

```
X_array[index] = offsetX + index * IntervalX
Y_array[index] = offsetY + index * IntervalY

If Offset = 10, Interval = 2 and N = 5 then,

axis = {10, 12, 14, 16, 18} (applicable to X and Y axis)

J()
```

[SWS_lfx_00171][

Index calculation:

indexX = minimum value of index if (X_array[indexX] < Xin < X_array[indexX+1])


```
indexY = minimum value of index if (Y_array[indexY] < Yin < Y_array[indexY+1])
BaseIndex = IndexX * Ny + indexY
I()
[SWS_lfx_00173][
Ratio calculation:
if (indexX < (Nx - 1))
RatioX = (Xin - X_array[indexX]) / (X_array [indexX+1] - X_array [indexX])
else
RatioX = 0
if (indexY < (Ny - 1))
RatioY = (Yin - Y_array[indexY]) / (Y_array [indexY+1] - Y_array [indexY])
RatioY = 0
]()
[SWS Ifx 00174][
if(RatioX < 0.5 && RatioY < 0.5) then
Result = Val_array [BaseIndex]
if(RatioX \geq 0.5 && RatioY < 0.5) then
Result = Val_array [BaseIndex + Ny]
if(RatioX < 0.5 && RatioY \geq 0.5) then
Result = Val_array [BaseIndex + 1]
if(RatioX \geq 0.5 && RatioY \geq 0.5) then
Result = Val array [BaseIndex + Ny + 1]
|()|
[SWS Ifx 00175][
If (Xin == X array[indexX]) and (Yin == Y array[indexY])
Result = Val_array [BaseIndex]
I()
[SWS Ifx 00176][
If Xin < X_array[0], then
indexX = 0
1()
[SWS_lfx_00177][
If Xin > X_array[Nx-1], then
indexX = Nx - 1
I()
[SWS Ifx 00178][
If Yin < Y_array[0], then
indexY = 0
]()
```


[SWS_lfx_00179][

If Yin > Y_array[Ny-1], then indexY = Ny - 1 |()

[SWS_lfx_00180][

The minimum value of Nx and Ny shall be 1 J()

Here is the list of implemented routines.

[SWS_lfx_00181][

Routine ID[hex]	Routine prototype
0x0A0	uint8 Ifx_IntLkUpFixIMap_u8u8_u8(uint8, uint8, uint8, uint8, const uint8 *, uint8, uint8, uint8, uint8)
	uint16 Ifx_IntLkUpFixIMap_u16u16_u16(uint16,uint16,uint16,uint16,const uint16 *, uint16, uint16, uint16, uint16)
0x0A2	sint8 Ifx_IntLkUpFixIMap_s8s8_s8(sint8, sint8, sint8, sint8, const sint8 *, sint8, sint8, sint8, sint8)
0x0A3	sint16 Ifx_IntLkUpFixIMap_s16s16_s16(sint16,sint16,sint16,sint16,const sint16 *, sint16, sint16, sint16, sint16)

]()

8.5.2.15 Integrated fix- I map look up without rounding

[SWS_Ifx_00249] [

[<u>3773_IIX_00249]</u>	1					
Service name:	fx_IntLkUpFixIBaseMap_ <intypemn><intypemn>_<outtypemn></outtypemn></intypemn></intypemn>					
Syntax:	<outtype></outtype>					
	_	<pre>Ifx_IntLkUpFixIBaseMap_<intypemn><intypemn>_<outtypemn>(</outtypemn></intypemn></intypemn></pre>				
	<intype> Xin,</intype>					
	<intype> Yin,</intype>					
	<intype> Nx,</intype>					
		<intype> Ny,</intype>				
	const <intype>*</intype>					
	<intype> Offset</intype>	·				
	<intype> Interv</intype>	·				
	<intype> Offset</intype>	·				
	/ / / / / / / / / / / / / / / / / / /	<intype> IntervalY</intype>				
Service ID[hex]:	0x0B4 to 0x0B7					
Sync/Async:	Synchronous	Synchronous				
Reentrancy:	Reentrant					
	Xin	Input value for X axis				
	Yin	Input value for Y axis				
	Nx	Number to X axis samples				
	Ny	Number to Y axis samples				
Parameters (in):	Val_array	Pointer to the result axis distribution array				
	OffsetX	Offset of the first sampling value for X-axis				
	IntervalX	represents X-axis distribution point interval				
	OffsetY	Offset of the first sampling value for Y-axis				
	IntervalY	represents Y-axis distribution point interval				
Parameters (in-	None					
out):						

Parameters (out):	None	
Return value:	<outtype></outtype>	Entry point of the result array
•	This routine returns respective entry value of the result distribution array at position Xin and Yin based on below equations.	

I()

[SWS_lfx_00237][

X and Y axis distribution points shall be calculated based on Offset and Interval values.

```
X_array[index] = offsetX + index * IntervalX
Y_array[index] = offsetY + index * IntervalY

If Offset = 10, Interval = 2 and N = 5 then,

axis = {10, 12, 14, 16, 18} (applicable to X and Y axis)

]()
```

[SWS_lfx_00238][

Index calculation:

```
indexX = minimum value of index if (X_array[indexX] < Xin < X_array[indexX+1])
indexY = minimum value of index if (Y_array[indexY] < Yin < Y_array[indexY+1])
BaseIndex = IndexX * Ny + indexY
|()</pre>
```

[SWS_lfx_00240][

Return Value = Val_array [BaseIndex] ()

[SWS_lfx_00241][

If (Xin == X_array[indexX]) and (Yin == Y_array[indexY])
Result = Val_array [BaseIndex]
|()

[SWS Ifx 00242][

If Xin < X_array[0], then indexX = 0 |()

[SWS_lfx_00243][

If Xin > X_array[Nx-1], then indexX = Nx - 1

[SWS_lfx_00244][

If Yin < Y_array[0], then indexY = 0]()

[SWS_lfx_00245][

If Yin > Y_array[Ny-1], then indexY = Ny - 1 |()

[SWS_lfx_00246][

The minimum value of Nx and Ny shall be 1 I()

Here is the list of implemented routines.

[SWS Ifx 00247][

Routine ID[hex]	Routine prototype
0x0B4	uint8 Ifx_IntLkUpFixIBaseMap_u8u8_u8 (uint8, uint8, uint8, uint8, const uint8 *, uint8, uint8, uint8)
0x0B5	uint16 Ifx_IntLkUpFixIBaseMap_u16u16_u16(uint16, uint16, uint16, uint16, const uint16 *, uint16, uint16, uint16, uint16)
0x0B6	sint8 Ifx_IntLkUpFixIBaseMap_s8s8_s8 (sint8, sint8, sint8, sint8, const sint8 *, sint8, sint8, sint8, sint8)
0x0B7	sint16 Ifx_IntLkUpFixIBaseMap_s16s16_s16(sint16, sint16, sint16, sint16, const sint16 *, sint16, sint16, sint16, sint16)

1()

8.5.3 Record layouts for interpolation routines

Record layout specifies calibration data serialization in the ECU memory which describes the shape of the characteristics. Single record layout can be referred by multiple instances of interpolation ParameterDataPrototype. Record layouts can be nested particular values refer to the particular property of the object. With different properties of record layouts it is possible to specify complex objects.

8.5.3.1 Record layouts for map values

Due to optimization, the orientation of map values in memory is different depending on the usage of the inputs. See section 8.4.2.

- 1. If the "X" and "Y" inputs are not swapped then, values "Val" of maps have to be in COLUMN DIR order.
- 2. If the "X" and "Y" inputs are swapped then, values "Val" of maps have to be in ROW DIR order.

According to ASAM standard [ASAM MCD-2MC Version 1.5.1 and 1.6], COL-UMN_DIR and ROW_DIR are formats of storing map values (Val[]) and more information can be found in ASAM standard.

8.5.3.2 Record layout definitions

Below table specifies record layouts supported for distributed interpolation routines. **ISWS Ifx 001851**

Record layout Name	Element1	Element2	
Distr_s8	sint8 N	sint8 X[]	
Distr_u8	uint8 N	uint8 X[]	

Distr_s16	sint16 N	sint16 X[]
Distr_u16	uint16 N	uint16 X[]
Cur_u8	uint8 Val[]	
Cur_u16	uint16 Val[]	
Cur_s8	sint8 Val[]	
Cur_s16	sint16 Val[]	
Map_u8	uint8 Val[]	
Map_u16	uint16 Val[]	
Map_s8	sint8 Val[]	
Map_s16	sint16 Val[]	

Table: Record layouts for distributed interpolation routines] ()

Below table specifies record layouts supported for integrated interpolation routines.

[SWS Ifx 00186] [

S.No	Record Layout Name	Element1	Element2	Element3	Element4	Element5
1	IntCur_u8_u8	uint8 N	uint8 X[]	uint8 Val[]		
2	IntCur_u8_u16	uint8 N	uint8 X[]	uint16 Val[]		
3	IntCur_u8_s8	uint8 N	uint8 X[]	sint8 Val[]		
4	IntCur_u8_s16	uint8 N	uint8 X[]	sint16 Val[]		
5	IntCur_u16_u8	uint16 N	uint16 X[]	uint8 Val[]		
6	IntCur_u16_u16	uint16 N	uint16 X[]	uint16 Val[]		
7	IntCur_u16_s8	uint16 N	uint16 X[]	sint8 Val[]		
8	IntCur_u16_s16	uint16 N	uint16 X[]	sint16 Val[]		
9	IntCur_s8_u8	sint8 N	sint8 X[]	uint8 Val[]		
10	IntCur_s8_u16	sint8 N	sint8 X[]	uint16 Val[]		
11	IntCur_s8_s8	sint8 N	sint8 X[]	sint8 Val[]		
12	IntCur_s8_s16	sint8 N	sint8 X[]	sint16 Val[]		
13	IntCur_s16_u8	sint16 N	sint16 X[]	uint8 Val[]		
14	IntCur_s16_u16	sint16 N	sint16 X[]	uint16 Val[]		
15	IntCur_s16_s8	sint16 N	sint16 X[]	sint8 Val[]		
16	IntCur_s16_s16	sint16 N	sint16 X[]	sint16 Val[]		
17	FixIntCur_u8_u8	uint8 N	uint8 Val[]			
18	FixIntCur_u16_u16	uint16 N	uint16 Val[]			
19	FixIntCur_s8_s8	sint8 N	sint8 Val[]			
20	FixIntCur_s16_s16	sint16 N	sint16 Val[]			
21	IntMap_u8u8_u8	uint8 Nx	uint8 Ny	uint8 X[]	uint8 Y[]	uint8 Val[]
22	IntMap_u8u8_u16	uint8 Nx	uint8 Ny	uint8 X[]	uint8 Y[]	uint16 Val[]
23	IntMap_u8u8_s8	uint8 Nx	uint8 Ny	uint8 X[]	uint8 Y[]	sint8 Val[]
24	IntMap_u8u8_s16	uint8 Nx	uint8 Ny	uint8 X[]	uint8 Y[]	sint16 Val[]
25	IntMap_u8s8_u8	uint8 Nx	uint8 Ny	uint8 X[]	sint8 Y[]	uint8 Val[]
26	IntMap_u8s8_u16	uint8 Nx	uint8 Ny	uint8 X[]	sint8 Y[]	uint16 Val[]
27	IntMap_u8s8_s8	uint8 Nx	uint8 Ny	uint8 X[]	sint8 Y[]	sint8 Val[]
28	IntMap_u8s8_s16	uint8 Nx	uint8 Ny	uint8 X[]	sint8 Y[]	sint16 Val[]
29	IntMap_u16u8_u8	uint16 Nx	uint16 Ny	uint16 X[]	uint8 Y[]	uint8 Val[]
30	IntMap_u16u8_u16	uint16 Nx	uint16 Ny	uint16 X[]	uint8 Y[]	uint16 Val[]
31	IntMap_u16u8_s8	uint16 Nx	uint16 Ny	uint16 X[]	uint8 Y[]	sint8 Val[]
32	IntMap_u16u8_s16	uint16 Nx	uint16 Ny	uint16 X[]	uint8 Y[]	sint16 Val[]
33	IntMap_u16u16_u8	uint16 Nx	uint16 Ny	uint16 X[]	uint16 Y[]	uint8 Val[]
34	IntMap_u16u16_u16	uint16 Nx	uint16 Ny	uint16 X[]	uint16 Y[]	uint16 Val[]
35	IntMap_u16u16_s8	uint16 Nx	uint16 Ny	uint16 X[]	uint16 Y[]	sint8 Val[]

00	Indian					-1-14037 15
36	IntMap_u16u16_s16	uint16 Nx	uint16 Ny	uint16 X[]	uint16 Y[]	sint16 Val[]
37	IntMap_u16s8_u8	uint16 Nx	uint16 Ny	uint16 X[]	sint8 Y[]	uint8 Val[]
38	IntMap_u16s8_u16	uint16 Nx	uint16 Ny	uint16 X[]	sint8 Y[]	uint16 Val[]
39	IntMap_u16s8_s8	uint16 Nx	uint16 Ny	uint16 X[]	sint8 Y[]	sint8 Val[]
40	IntMap_u16s8_s16	uint16 Nx	uint16 Ny	uint16 X[]	sint8 Y[]	sint16 Val[]
41	IntMap_u16s16_u8	uint16 Nx	uint16 Ny	uint16 X[]	sint16 Y[]	uint8 Val[]
42	IntMap_u16s16_u16	uint16 Nx	uint16 Ny	uint16 X[]	sint16 Y[]	uint16 Val[]
43	IntMap_u16s16_s8	uint16 Nx	uint16 Ny	uint16 X[]	sint16 Y[]	sint8 Val[]
44	IntMap_u16s16_s16	uint16 Nx	uint16 Ny	uint16 X[]	sint16 Y[]	sint16 Val[]
45	IntMap_s8s8_u8	sint8 Nx	sint8 Ny	sint8 X[]	sint8 Y[]	uint8 Val[]
46	IntMap_s8s8_u16	sint8 Nx	sint8 Ny	sint8 X[]	sint8 Y[]	uint16 Val[]
47	IntMap_s8s8_s8	sint8 Nx	sint8 Ny	sint8 X[]	sint8 Y[]	sint8 Val[]
48	IntMap_s8s8_s16	sint8 Nx	sint8 Ny	sint8 X[]	sint8 Y[]	sint16 Val[]
49	IntMap_s16u8_u8	sint16 Nx	sint16 Ny	sint16 X[]	uint8 Y[]	uint8 Val[]
50	IntMap_s16u8_s8	sint16 Nx	sint16 Ny	sint16 X[]	uint8 Y[]	sint8 Val[]
51	IntMap_s16u8_u16	sint16 Nx	sint16 Ny	sint16 X[]	uint8 Y[]	uint16 Val[]
52	IntMap_s16u8_s16	sint16 Nx	sint16 Ny	sint16 X[]	uint8 Y[]	sint16 Val[]
53	IntMap_s16s8_u8	sint16 Nx	sint16 Ny	sint16 X[]	sint8 Y[]	uint8 Val[]
54	IntMap_s16s8_u16	sint16 Nx	sint16 Ny	sint16 X[]	sint8 Y[]	uint16 Val[]
55	IntMap_s16s8_s8	sint16 Nx	sint16 Ny	sint16 X[]	sint8 Y[]	sint8 Val[]
56	IntMap_s16s8_s16	sint16 Nx	sint16 Ny	sint16 X[]	sint8 Y[]	sint16 Val[]
57	IntMap_s16s16_u8	sint16 Nx	sint16 Ny	sint16 X[]	sint16 Y[]	uint8 Val[]
58	IntMap_s16s16_u16	sint16 Nx	sint16 Ny	sint16 X[]	sint16 Y[]	uint16 Val[]
59	IntMap_s16s16_s8	sint16 Nx	sint16 Ny	sint16 X[]	sint16 Y[]	sint8 Val[]
60	IntMap_s16s16_s16	sint16 Nx	sint16 Ny	sint16 X[]	sint16 Y[]	sint16 Val[]
61	IntMap_u8u16_u8	uint8 Nx	uint8 Ny	uint8 X[]	uint16 Y[]	uint8 Val[]
62	IntMap_u8u16_u16	uint8 Nx	uint8 Ny	uint8 X[]	uint16 Y[]	uint16 Val[]
63	IntMap_u8u16_s8	uint8 Nx	uint8 Ny	uint8 X[]	uint16 Y[]	sint8 Val[]
64	IntMap_u8u16_s16	uint8 Nx	uint8 Ny	uint8 X[]	uint16 Y[]	sint16 Val[]
65	IntMap_u8s16_u8	uint8 Nx	uint8 Ny	uint8 X[]	sint16 Y[]	uint8 Val[]
66	IntMap_u8s16_u16	uint8 Nx	uint8 Ny	uint8 X[]	sint16 Y[]	uint16 Val[]
67	IntMap_u8s16_s8	uint8 Nx	uint8 Ny	uint8 X[]	sint16 Y[]	sint8 Val[]
68	IntMap_u8s16_s16	uint8 Nx	uint8 Ny	uint8 X[]	sint16 Y[]	sint16 Val[]
69	IntMap_s8u8_u8	sint8 Nx	sint8 Ny	sint8 X[]	uint8 Y[]	uint8 Val[]
70	IntMap_s8u8_u16	sint8 Nx	sint8 Ny	sint8 X[]	uint8 Y[]	uint16 Val[]
71	IntMap_s8u8_s8	sint8 Nx	sint8 Ny	sint8 X[]	uint8 Y[]	sint8 Val[]
72	IntMap_s8u8_s16	sint8 Nx	sint8 Ny	sint8 X[]	uint8 Y[]	sint16 Val[]
73	IntMap_s8s16_u8	sint8 Nx	sint8 Ny	sint8 X[]	sint16 Y[]	uint8 Val[]
74	IntMap_s8s16_u16	sint8 Nx	sint8 Ny	sint8 X[]	sint16 Y[]	uint16 Val[]
75	IntMap_s8s16_s8	sint8 Nx	sint8 Ny	sint8 X[]	sint16 Y[]	sint8 Val[]
76	IntMap_s8s16_s16	sint8 Nx	sint8 Ny	sint8 X[]	sint16 Y[]	sint16 Val[]
77	IntMap_s8u16_u8	sint8 Nx	sint8 Ny	sint8 X[]	uint16 Y[]	uint8 Val[]
78	IntMap_s8u16_u16	sint8 Nx	sint8 Ny	sint8 X[]	uint16 Y[]	uint16 Val[]
79	IntMap_s8u16_s8	sint8 Nx	sint8 Ny	sint8 X[]	uint16 Y[]	sint8 Val[]
80	IntMap_s8u16_s16	sint8 Nx	sint8 Ny	sint8 X[]	uint16 Y[]	sint16 Val[]
81	IntMap_s16u16_u8	sint16 Nx	sint16 Ny	sint16 X[]	uint16 Y[]	uint8 Val[]
82	IntMap_s16u16_u16	sint16 Nx	sint16 Ny	sint16 X[]	uint16 Y[]	uint16 Val[]
83	IntMap_s16u16_s8	sint16 Nx	sint16 Ny	sint16 X[]	uint16 Y[]	sint8 Val[]
84	IntMap_s16u16_s16	sint16 Nx	sint16 Ny	sint16 X[]	uint16 Y[]	sint16 Val[]
85	FixIntMap_u8_u8	uint8 Nx	uint8 Ny	uint8 Val[]		
86	FixIntMap_u16_u16	uint16 Nx	uint16 Ny	uint16 Val[]		
87	FixIntMap_s8_s8	sint8 Nx	sint8 Ny	sint8 Val[]		
~ .	ap_00_00	J 11/1	J 1.19	J V 4.1[]		

88 FixIntMap_s16_s16 sint16 Nx	sint16 Ny	sint16 Val[]		
--------------------------------	-----------	--------------	--	--

Table: Record layouts for integrated interpolation routines ()

Note: As mentioned in in <u>chapter 8.4</u>, interpolation routines optimization is achieved by swaping X and Y axis during function call for Call-back notifications for below mentioned record layouts.

From Map_u8u16_u8 (S. No 61) to Map_s16u16_s16 (S. No 84)

8.6 Examples of use of functions

None

8.7 Version API

8.7.1 Ifx GetVersionInfo

[SWS_lfx_00815] [

,						
Service name:	Ifx_GetVersion	onInfo				
Syntax:	void Ifx GetVersionInfo(
	Std VersionInfoType* versioninfo					
)					
Service ID[hex]:	0xff					
Sync/Async:	Synchronous	Synchronous				
Reentrancy:	Reentrant	Reentrant				
Parameters (in):	None					
Parameters (in-	None					
out):						
Parameters (out):	versioninfo	Pointer to where to store the version information of this module.				
rarameters (out).		Format according [BSW00321]				
Return value:	None					
Description:	Returns the version information of this library.					

(SRS_BSW_00407, SRS_BSW_00003, SRS_BSW_00318, SRS_BSW_00321)

The version information of a BSW module generally contains:

Module Id

Vendor Id

Vendor specific version numbers (SRS_BSW_00407).

[SWS_lfx_00816] [

If source code for caller and callee of Ifx_GetVersionInfo is available, the Ifx library should realize Ifx_GetVersionInfo as a macro defined in the module's header file.] (SRS_BSW_00407, SRS_BSW_00411)

8.8 Call-back notifications

None.

8.9 Scheduled routines

The Ifx library does not have scheduled routines.

8.10Ex _l	pected	Interfaces
---------------------	--------	------------

None

8.10.1 Mandatory Interfaces

None

8.10.2 Optional Interfaces

None

8.10.3 Configurable interfaces

None

9 Sequence diagrams

Not applicable.

10 Configuration specification

10.1 Published Information

[SWS_lfx_00814] [The standardized common published parameters as required by SRS_BSW_00402 in the General Requirements on Basic Software Modules [3] shall be published within the header file of this module and need to be provided in the BSW Module Description. The according module abbreviation can be found in the List of Basic Software Modules [1]. J (SRS_BSW_00402, SRS_BSW_00374, SRS_BSW_00379)

Additional module-specific published parameters are listed below if applicable.

10.2 Configuration option

[SWS_lfx_00818] [The lfx library shall not have any configuration options that may affect the functional behavior of the routines. I.e. for a given set of input parameters, the outputs shall be always the same. For example, the returned value in case of error shall not be configurable.] (SRS_LIBS_00001)

However, a library vendor is allowed to add specific configuration options concerning library implementation, e.g. for resources consumption optimization.

11 Not applicable requirements

[SWS_lfx_00999] [These requirements are not applicable to this specification.] (SRS_BSW_00448)