用层次分析模型购置电脑

摘 要

摘要:每个 CS 专业的同学都需要购置自己的电脑,为使得小水同学购买到自己最满意的电脑,我们使用层次分析模型(AHP)帮助小水同学做出了最优选择。

针对该问题,我们查阅资料,初步判断性能、价格、外观、实用性四个指标对最终结果的影响较大,考虑到各指标对最终结果的影响不同,我们建立了**层次分析模型**以确定评分体系,首先通过两两对比分析得出了 M-C、C-P 成对对比矩阵,经检验,所有矩阵均通过了**一致性检验**,然后通过 MATLAB 用**特征值法**计算得出各类型号电脑在不同指标下所占的权重,最后我们综合所有数据得到一张最终得分图,确定了最优选择应为**联想型号**的电脑。

关键词: 层次分析模型、一致性检验、特征值法求权重

一、问题重述

CS 专业的小水同学想要购置一台电脑,现在请你综合考虑各种因素,为小水同学 选择最合适的电脑。

二、问题分析

现在要为 CS 专业的小水购置电脑,由于题目中没有数据的支持,我们首先查阅资料,了解到小水是 CS 专业的学生,针对计算机专业的学生群体,我们在知网上查阅资料列出四种评价指标,性能、价格、外观、实用性,根据查阅的资料,我们将目标机型分为三类,MacBook Pro、华为、联想[1]。

其次考虑到影响因素较多且不同因素对最终结果的影响程度不同,我们建立了评价 体系,选择使用层次分析法来进行决策。

三、模型假设

- 1) 假设最终决策仅由性能、价格、外观、实用性四种指标决定,对决策影响较小的其它指标忽略不计;
- 2) 假设小水的考虑机型仅为 MacBoos Pro、华为、联想三种;

关键符号	符号说明	
CI	一致性指标	
RI	平均随机一致性指标	
CR	一致性比例	

四、符号说明

五、模型的建立与求解

5.1 层次分析模型的建立

将决策问题分解为三个层次,最上层为目标层 M, 即为小水选择最合适的电脑;最下层为方案层 P, 即购买 MacBook Pro P1 还是传统机型 P2, 中间层为准则层 C, 即四个影响因素: 性能 C1、价格 C2、外观 C3、实用性 C4; 具体如下图所示:

图 5.1.1: 层次分析法示意图

5.2 层次分析模型的求解

▶ 构造成对比较矩阵 M-C

首先构造成对比较矩阵 M-C,将准则层中三个元素 C1, C2, C3, C4 两两比较,得到成对比较矩阵:

表 5.1.1: 成对比较矩阵 M-C

	C1	C2	C3	C4
C1	1	1/2	4	3
C2	2	1	7	5
C3	1/4	1/7	1	1/2
C4	1/3	1/5	2	1

求解 M-C 的特征值,易解得 $\lambda_{max} = 4.0215$,权重向量如下:

$$\omega_i = (0.2884, 0.5323, 0.0675, 0.1118)^T$$
 (5.2.1)

一致性指标 $CI = \frac{\lambda_{\max} - n}{n-1}$,根据 $CR = \frac{CI}{RI}(RI)$ 如下表),计算得 CR = 0.0080 < 0.1,通过了一致性检验。

表 5.1.2: 平均随机一致性指标 RI 表

n	1	1	3	4	5	6	7	8	9	10
RI	0	0	0.52	0.89	1.12	1.26	1.36	1.41	1.46	1.49

▶ 构造判断矩阵 C1-P、C2-P、C3-P

依次构造成对比较矩阵 C1-P、C2-P、C3-P, 结果如下:

表 5.1.3: 成对比较矩阵 C-P

性能	P1	P2	Р3	价格	P1	P2	Р3
P1	1	2	5	P1	1	1/3	1/8
P2	1/2	1	2	P2	3	1	1/3
P3	1/5	1/2	1	P3	8	3	1

外观	P1	P2	Р3	实用性	P1	P2	Р3
P1	1	3	4	P1	1	1	1/4
P2	1/3	1	1	P2	1	1	1/4
P3	1/4	1	1	P3	4	4	1

最大特征值、一致性指标及权重向量如下表所示:

表 5.1.<u>4: 判断矩阵 C-P 的权重、最大特征</u>值及一致性比例

P	C1	P	C2	P	С3	P	C4
p1	0.5954	p1	0.0819	p1	0.6337	p1	0.1667
p2	0.2764	p2	0.2363	p2	0.1919	p2	0.1667
р3	0.1283	р3	0.6817	р3	0.1744	р3	0.6667
$\lambda_{ ext{max}}$	3.0055	$\lambda_{ ext{max}}$	3.0015	$\lambda_{ ext{max}}$	3.0092	$\lambda_{ ext{max}}$	3
CR	0.0053	CR	0.0015	CR	0.0088	CR	0

从表 5.1.4 可以看出, 所有矩阵都通过了一致性检验, 综合以上数据, 结合 Excel

我们可以整合计算得到以下表格:

	火 3.1.3:取於杆川水怕							
	权重指标	MacBook Pro	华为	联想				
性能	0.2884	0.5954	0.2764	0.1283				
价格	0.5323	0.0819	0.2363	0.6817				
外观	0.0675	0.6337	0.1919	0.1744				
实用性	0.1118	0.1667	0.1667	0.6667				
最终得分	_	0.2767	0.2371	0.4862				

表 5.1.5: 最终评价表格

5.3 层次分析模型的结果分析

为了更加直观的对比各个型号电脑的得分,我们做出下图,可以明显发现,联想型号的电脑是小水的最优选择。

图 5.1.1: 各型号电脑得分对比图

六、模型的评价与推广

6.1 优缺点分析

优点:使用了层次分析模型综合考虑了性能、价格、外观、实用性四大指标,综合计算得出了最终数据,结果有较高的可靠性。

缺点:由于成对对比矩阵的填写有一定的主观性,而结果依靠成对对比矩阵,所以结果带有一定的主观性。

6.2 模型的改进与推广

改进:可以综合考虑更多指标,进一步完善成对对比矩阵,以得到更精确的结果。 推广:层次分析模型还可以解决其它评价类问题。

七、参考文献

[1]张文辉. 层次分析法在购置电脑决策中的应用[J]. 中国商界, 2010(11):273.

附 录

一、程序源代码

求解最终数据的 Matlab 源代码 %% 层次分析作业 disp('请输入判断矩阵 A: '); A = input('A=');fprintf('\n'); if ok disp('A 是正互反矩阵'); fprintf('\n'); else disp('A 不是正互反矩阵'); fprintf('\n'); end % 特征值法求权重 n = length(A);[V,D] = eig(A);eig max = max(D(:));disp('最大特征值为: '); disp(eig max); disp('最大特征值对应的权重向量为: '); disp(V(:,c)); $[r,c] = find(D == eig_max, 1);$ disp('特征值求权重的结果为:'); disp(V(:,c)./sum(V(:,c)));RI=[0 0.0001 0.52 0.89 1.12 1.26 1.36 1.41 1.46 1.49 1.52 1.54 1.56 1.58 1.59]; CI = (eig max-n)./(n-1);CR = CI/RI(1,n);disp('一致性比例 CR: '); disp(CR); if CR<0.10 disp('CR<0.10, 判断矩阵 A 的一致性可以接受'); else disp('CR >= 0.10, 判断矩阵 A 需要修改'); end

二、支撑材料内容组成

文件夹	文件名	主要功能/用途
	层次分析法示意图.eddx	层次分析示意图的绘制
数据	层次分析示意图.jpg	层次分析示意图
致1店	成对比较矩阵.txt	用于求得各型号电脑在不同指标中所占权重
	最终得分.xlsx	用 Excel 表格计算最终得分
源代码	ccfxzy.m	求解成对对比矩阵的最大特征值、