Discrete Structures and Theory of Logic Lecture-40

Dr. Dharmendra Kumar (Associate Professor) United College of Engineering and Research, Prayagraj October 2, 2023

Field

An algebraic structure (F, +, .), where F is a set and + and . are two binary operators defined on set F, is said to be field if it satisfies following properties:-

- (1) (R, +) is an abelian group.
- (2) (R', .) is an abelian group, where $R' = R-\{0\}$.
- (3) Distributive property must hold i.e. a.(b+c) = a.b + a.c and (b+c).a = b.a + c.a, \forall $a,b,c \in F$.

Field

Example: The ring of rational numbers (Q, +, .) is a field.

Solution: Since (Q, +, .) is a ring therefore we have to show only second property of field i.e. (Q', .) is an abelian.

Since (Q, +, .) is ring therefore (Q', .) is a semigroup. Now, we hae to find identity element and inverse.

Clearly 1 is an identity element.

Consider an element $a \in Q$ '. clearly the inverse of a is 1/a. Therefore inverse property is also satisfied.

If $a,b\in Q'$ then a.b=b.a, therefore commutative property is satisfied. Since all the properties of an abelian group is satisfied within Q'. Therefore, (Q', .) is an abelian group.

Therefore, (Q, +, .) is a field.

Example: (R, +, .) is a field.

Ring with zero divisors

If a and b are two non-zero elements of a ring R such that a.b = 0, then a and b are divisors of 0(or o divisors). In particular, a is a left divisor of 0 and b is right divisor of 0.

Example: The ring of integers do not have zero divisors. Because there exist no two non-zero integers such that their product is zero.

Ring homomorphism

Let (R, +, .) and (S, \oplus, \odot) be rings. A mapping $f: R \to S$ is called a ring homomorphism from (R, +, .) to (S, \oplus, \odot) if for any $a,b \in R$,

$$f(a{+}b) = f(a) \oplus f(b) \text{ and } f(a.b) = f(a) \odot f(b)$$

Boolean ring

A ring R is said to be boolean ring if $a^2 = a$, $\forall a \in R$.

Example: Show that a Boolean ring is always commutative.

Solution: It is proved in the previous example.

Example: If (R, +, .) is a ring with unity, then show that, for all

 $a \in R$,

(i)
$$(-1).a = -a$$

(ii)
$$(-1).(-1) = 1$$

Solution:

(i)
$$a + (-1).a = 1.a + (-1).a$$

 $= (1+(-1)).a$
 $= 0.a$
 $= 0$
 $\Rightarrow -a = (-1).a$
(ii) $(-1).(-1) = -((-1).1) = -(-(1)) = 1$ (since $(a^{-1})^{-1}$
 $= a$)

Example: Explain Boolean ring with suitable example.

Solution: A ring R is said to be boolean ring if $a^2 = a$, $\forall a \in R$.

Example of Boolean ring is $(Z_2, +_2, \times_2)$ because

$$Z_2 = \{0,1\}$$
 and $0^2 = 0 \times_2 0 = 0$, $1^2 = 1 \times_2 1 = 1$.

Note: $(Z_n, +_n, \times_n)$ is a field iff n is prime number.

Example: Determine all values of x from the given field which satisfies the given equation:-

- (i) x + 1 = -1 over Z_2, Z_3, Z_5 and Z_7
- (ii) 2x + 1 = 2 over Z_3 , and Z_5
- (iii) 5x + 1 = 2 over Z_5

Solution:

(i) Consider field Z_2 . $Z_2 = \{0,1\}$. Now, we have to find which values of Z_2 satisfies following x + 1 = -1.

Here, -1 indicate the additive inverse of 1.Clearly, in this field, additive inverse of 1 is 1, therefore the given equation is modified as \times + 1 = 1.

Clearly x = 0 satisfies this equation.

Consider field Z_3 . $Z_3 = \{0,1,2\}$. In this field, additive inverse of 1 is 2, therefore the given equation is modified as x + 1 = 2.

Clearly x = 1 satisfies this equation.

Consider field Z_5 . $Z_5 = \{0,1,2,3,4\}$. In this field, additive inverse of 1 is 4, therefore the given equation is modified as x + 1 = 4.

Clearly x = 3 satisfies this equation.

Consider field Z_7 . $Z_7 = \{0,1,2,3,4,5,6\}$. In this field, additive inverse of 1 is 6, therefore the given equation is modified as x + 1 = 6.

Clearly x = 5 satisfies this equation.

(ii) Consider field Z_3 . $Z_3 = \{0,1,2\}$. Now, we have to find which values of Z_3 satisfies following 2x + 1 = 2.

Clearly x = 2 satisfies this equation.

Consider field Z_5 . $Z_5 = \{0,1,2,3,4\}$. Now, we have to find which values of Z_5 satisfies following 2x + 1 = 2.

Clearly x = 3 satisfies this equation.

(iii) Consider field Z_5 . $Z_5 = \{0,1,2,3,4\}$. Now, we have to find which values of Z_5 satisfies following 5x + 1 = 2.

Clearly there is no x in Z_5 which satisfies this equation.

Exercise

- 1. Show that $(Z_7, +_7, \times_7)$ is a commutative ring with identity.
- 2. We are given the ring ($\{a,b,c,d\}$, +, .), whose operations are given by the following table:-

	а	b	С	d
	а	b	С	d
b	b	С	d	а
С	С	d	а	b
d	d	а	b	С

Is it commutative ring? Does it have an identity? what is the zero of this ring? Find the additive inverse pf each of its elements.

Exercise

- 1. Show that (I, \oplus, \odot) is a commutative ring with identity, where the operations \oplus and \odot are defined, for any $a,b \in I$ as $a \oplus b = a+b-1$ and $a \odot b = a+b-ab$.
- 2. Prove that (R, +, *) is a ring with zero divisors, where R is 2×2 matrix and + and * are usual addition and multiplication operations.