Espacios euclídeos

Manuel Ojeda Aciego

Universidad de Málaga Dpto. de Matemática Aplicada

Curso 2015-2016

Producto escalar

Definición

Sea $\mathcal V$ un espacio vectorial definido sobre el cuerpo $\mathbb R$. Un **producto escalar** es una función $\varphi \colon \mathcal V \times \mathcal V \to \mathbb R$ que verifica:

- Un **producto escalar** se suele definir, de forma más sucinta, como una forma bilineal $\varphi \colon \mathcal{V} \times \mathcal{V} \to \mathbb{R}$ simétrica y definida positiva.

Producto escalar

Ejemplo

La función (|): $\mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ definida como

$$(\vec{x} \mid \vec{y}) = x_1 y_1 + \dots + x_n y_n$$

es el producto escalar euclídeo.

 \checkmark Para denotar el producto escalar de dos vectores \vec{v}, \vec{w} se suelen usar distintas notaciones, tales como

$$\varphi(\vec{v}, \vec{w}), \qquad \langle \vec{v}, \vec{w} \rangle, \qquad (\vec{v} \mid \vec{w}), \qquad \vec{v} \cdot \vec{w}$$

 \checkmark Para distinguir el producto escalar euclídeo definido en \mathbb{R}^n de otros productos escalares usaremos la notación siguiente:

 $\vec{v} \cdot \vec{w}$ representa el producto escalar euclídeo en \mathbb{R}^n

 $\langle ec{v}, ec{w}
angle$ representa el producto escalar general en un espacio vectorial ${\cal V}$

Producto escalar

Ejemplo

La función $\langle \ \rangle \colon \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ definida como

$$\langle \vec{x}, \ \vec{y} \rangle = x_1 y_1 + 7 x_2 y_2$$

es otro producto escalar en \mathbb{R}^2 .

Este ejemplo se puede generalizar demostrando que:

$$\langle \vec{v}, \vec{w} \rangle = c_1 v_1 w_1 + c_2 v_2 w_2 + ... + c_n v_n w_n$$
, con $c_i > 0$

es un producto escalar en \mathbb{R}^n , en el que las constantes c_i se llaman **pesos**.

Definición

Se llama **espacio euclídeo** a un espacio vectorial real en el que se ha definido un producto escalar.

Ejemplo

Son espacios euclídeos:

 $lackbox{0} \ \mathbb{R}^n$ con el producto escalar euclídeo (|): $\mathbb{R}^n imes \mathbb{R}^n o \mathbb{R}$ definido

$$(\vec{x} \mid \vec{y}) = x_1 y_1 + \cdots + x_n y_n$$

$$(\vec{x} \mid \vec{y}) = x_1y_1 + 7x_2y_2$$

3 \mathbb{R}^2 con el producto escalar (|): $\mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ definido

$$(\vec{x} \mid \vec{y}) = 2x_1y_1 + x_2y_1 + x_1y_2 + 2x_2y_2$$

Norma de un vector. Distancias

Definición

Sea $(\mathcal{V},\langle\ \rangle)$ un espacio vectorial euclídeo. Llamamos **norma** de un vector $\vec{v}\in\mathcal{V}$ al número real

$$\|\vec{v}\| = \sqrt{\langle \vec{v}, \vec{v} \rangle}$$

Ejemplo

La norma del vector $\vec{v} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$ del espacio \mathbb{R}^3 con el producto escalar usual es

$$\|\vec{v}\| = \sqrt{1^2 + 2^2 + 1^2} = \sqrt{6}$$

Norma de un vector. Distancias

Definición

Sea $(\mathcal{V},\langle\ \rangle)$ un espacio vectorial euclídeo. Se dice que $\vec{u}\in\mathcal{V}$ es un vector **unitario** $si\ \|\vec{u}\|=1$

• Si \vec{v} es un vector no nulo, el vector $\vec{u} = \frac{1}{\|\vec{v}\|} \vec{v}$ es unitario.

Ejemplo

En el espacio \mathbb{R}^3 con el producto escalar usual, el vector

$$\vec{u} = \begin{pmatrix} 2/3 \\ -2/3 \\ 1/3 \end{pmatrix}$$

es unitario.

Norma de un vector. Distancias

Definición

Sea $(\mathcal{V}, \langle \ \rangle)$ un espacio vectorial euclídeo. Llamamos **distancia** entre dos vectores $\vec{v}, \vec{w} \in \mathcal{V}$ al número real

$$d(\vec{v},\vec{w}) = \|\vec{v} - \vec{w}\|$$

Ejemplo

La distancia entre los vectores $\vec{v} = \begin{pmatrix} 7 \\ 1 \end{pmatrix}$ y $\vec{w} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$ de \mathbb{R}^2 con el producto escalar euclídeo es

$$d(\vec{v}, \vec{w}) = ||\vec{v} - \vec{w}|| = \sqrt{(7-3)^2 + (1-2)^2} = \sqrt{17}$$

Norma de un vector. Distancias

Teorema (Propiedades de la norma)

Sea $(\mathcal{V}, \langle \ \rangle)$ un espacio vectorial euclídeo y sean $c \in \mathbb{R}, \ \vec{v}, \vec{w} \in \mathcal{V}$.

- $||c\vec{v}|| = |c| ||\vec{v}||$

Teorema (Propiedades de la distancia)

Sean \vec{v} , \vec{w} vectores de un espacio euclideo $(\mathcal{V}, \langle \rangle)$. Entonces

- $0 d(\vec{v}, \vec{w}) \geq 0$

Norma de un vector. Distancias

Teorema (Desigualdad de Cauchy-Schwarz)

Sean \vec{v} , \vec{w} vectores de un espacio euclideo $(\mathcal{V}, \langle \ \rangle)$ Entonces

$$\left| \langle \vec{v}, \vec{w} \rangle \right| \le \|\vec{v}\| \cdot \|\vec{w}\|$$

De la designaldad de Cauchy-Schwarz se obtiene $-1 \leq \frac{\langle \vec{v}, \vec{w} \rangle}{\|\vec{v}\| \cdot \|\vec{w}\|} \leq 1$

Luego, existe un único ángulo θ tal que $\cos\theta = \frac{\langle \vec{v}, \vec{w} \rangle}{\|\vec{v}\| \cdot \|\vec{w}\|}$

Definición

Sean \vec{v} y \vec{w} vectores en un espacio euclídeo $(\mathcal{V}, \langle \ \rangle)$. El **ángulo** entre dos vectores \vec{v} y \vec{w} , no nulos, viene dado por

$$ang(\vec{v}, \vec{w}) = \theta = arc \cos rac{\langle \vec{v}, \vec{w}
angle}{\|\vec{v}\| \cdot \|\vec{w}\|}$$

Ángulo entre vectores. Ortogonalidad

Eiemplos

- En \mathbb{R}^4 con el producto escalar euclídeo, el ángulo de los vectores $\vec{v} = (1, 2, 1, 0)$ y $\vec{w} = (0, 1, 0, 1)$ es $\theta = \arccos \frac{2}{\sqrt{6}\sqrt{2}} = \arccos \frac{1}{2\sqrt{3}}$
- **②** En $\mathbb{R}_3(x)$ se considera el producto escalar $(p|q) = \sum p(i)q(i)$ El ángulo determinado por los polinomios $x^2 + 1$ y $x^2 - 3x + 1$ es $\theta = \arccos \frac{2}{\sqrt{2} \cdot \sqrt{11}} = \arccos \frac{\sqrt{2}}{\sqrt{11}} = \arccos \sqrt{\frac{2}{11}}$

$$\theta = rc \cos rac{2}{\sqrt{2} \cdot \sqrt{11}} = rc \cos rac{\sqrt{2}}{\sqrt{11}} = rc \cos \sqrt{rac{2}{11}}$$

Ángulo entre vectores. Ortogonalidad

Definición (Vectores ortogonales)

Sea $(\mathcal{V}, \langle \ \rangle)$ un espacio vectorial euclídeo y sean $\vec{v}, \vec{w} \in \mathcal{V}$. Se dice que \vec{v} es **ortogonal** a \vec{w} si su producto escalar es cero.

Cuando un vector \vec{v} es ortogonal a todos los vectores de un subespacio $\mathcal W$ se dice que \vec{v} es **ortogonal** a $\mathcal W$

Teorema (Generalización del teorema de Pitágoras)

Sea $(\mathcal{V}, \langle \ \rangle)$ un espacio vectorial euclídeo. Dos vectores $\vec{v}, \vec{w} \in \mathcal{V}$ son ortogonales si y sólo si verifican:

$$\|\vec{v} + \vec{w}\|^2 = \|\vec{v}\|^2 + \|\vec{w}\|^2$$

Ángulo entre vectores. Ortogonalidad

Ejemplo

En el espacio \mathbb{R}^3 con el producto escalar usual, los vectores

$$\vec{v} = \begin{pmatrix} -1\\2\\-1 \end{pmatrix}, \vec{w} = \begin{pmatrix} -1\\0\\1 \end{pmatrix}$$

son ortogonales.

- ✓ La ortogonalidad depende del producto escalar que se elige.
- ✓ Dos vectores pueden ser ortogonales con respecto a un producto escalar y no serlo con respecto a otro producto.

Bases ortogonales y ortonormales

Definición (Sistema ortogonal)

Sea $(\mathcal{V}, \langle \rangle)$ un espacio vectorial euclídeo. Se dice que un sistema de vectores $\{\vec{v}_1, ..., \vec{v}_m\} \subset \mathcal{V}$ es **ortogonal** si cada vector \vec{v}_i es ortogonal a todos los demás.

Ejemplo

En el espacio \mathbb{R}^3 con el producto escalar usual el sistema

$$\left\{\vec{\mathsf{v}}_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \vec{\mathsf{v}}_2 = \begin{pmatrix} -1 \\ 2 \\ -1 \end{pmatrix}, \vec{\mathsf{v}}_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}\right\}$$

es ortogonal,

$$(1,1,1)\cdot\begin{pmatrix}-1\\2\\-1\end{pmatrix}=0 \qquad (1,1,1)\cdot\begin{pmatrix}-1\\0\\1\end{pmatrix}=0 \qquad (-1,2,-1)\cdot\begin{pmatrix}-1\\0\\1\end{pmatrix}=0$$

Bases ortogonales y ortonormales

Teorema

Si un sistema de vectores es ortogonal, entonces es linealmente independiente.

Corolario

En un espacio euclídeo $(\mathcal{V}, \langle \ \rangle)$ de dimensión n cualquier sistema ortogonal de n vectores no nulos es una base de \mathcal{V} .

Ejemplo

En el espacio \mathbb{R}^3 con el producto escalar canónico el sistema

$$\left\{ ec{v}_1 = egin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, ec{v}_2 = egin{pmatrix} -1 \\ 2 \\ -1 \end{pmatrix}, ec{v}_3 = egin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}
ight\}$$

es una base, ya que es ortogonal.

Bases ortogonales y ortonormales

Definición (Sistema ortonormal)

Sea $(\mathcal{V}, \langle \ \rangle)$ un espacio vectorial euclídeo. Se dice que un sistema de vectores $\{\vec{u}_1,...,\vec{u}_m\} \subset \mathcal{V}$ es **ortonormal** si es un sistema ortogonal y cada vector \vec{u}_i es unitario.

Ejemplo

En el espacio \mathbb{R}^3 con el producto escalar usual, el sistema

$$\left\{ \vec{u}_1 = \begin{pmatrix} 1/\sqrt{3} \\ 1/\sqrt{3} \\ 1/\sqrt{3} \end{pmatrix}, \vec{u}_2 = \begin{pmatrix} -1/\sqrt{6} \\ 2/\sqrt{6} \\ -1/\sqrt{6} \end{pmatrix}, \vec{u}_3 = \begin{pmatrix} -1/\sqrt{2} \\ 0 \\ 1/\sqrt{2} \end{pmatrix} \right\}$$

es un sistema ortonormal.

Bases ortogonales y ortonormales

Teorema (Coordenadas en una base ortonormal)

Sea $\mathcal{B} = \{\vec{u}_1, \dots, \vec{u}_n\}$ una base ortonormal del espacio euclídeo $(\mathcal{V}, \langle \rangle)$. Entonces la representación de cada vector $\vec{v} \in \mathcal{V}$ en la base \mathcal{B} viene dada por

$$\vec{v} = \langle \vec{v}, \vec{u}_1 \rangle \vec{u}_1 + \langle \vec{v}, \vec{u}_2 \rangle \vec{u}_2 + ... + \langle \vec{v}, \vec{u}_n \rangle \vec{u}_n$$

• Las coordenadas de un vector \vec{v} en la base ortonormal \mathcal{B} se llaman coeficientes de Fourier de \vec{v} respecto a la base \mathcal{B} .

Proyección ortogonal

Definición (Proyección ortogonal)

Sean \vec{v} y \vec{w} vectores de un espacio euclídeo $(\mathcal{V}, \langle \ \rangle)$, con $\vec{w} \neq 0$. La **proyección ortogonal** de \vec{v} sobre \vec{w} se define como

$$proy_{ec{w}} ec{v} = rac{\langle ec{v}, ec{w}
angle}{\langle ec{w}, ec{w}
angle} ec{w}$$

• Si \vec{w} es unitario, entonces $\langle \vec{w}, \vec{w} \rangle = \|\vec{w}\|^2 = 1$, y la proyección de \vec{v} sobre \vec{w} queda

$$proy_{\vec{w}}\vec{v} = \langle \vec{v}, \vec{w} \rangle \vec{w}$$

Proyección ortogonal

Teorema (Proyección ortogonal y distancia)

Sean \vec{v} y \vec{w} vectores de un espacio euclídeo $(\mathcal{V}, \langle \ \rangle)$, con $\vec{w} \neq 0$. Entonces

$$d(ec{v}, extit{proy}_{ec{w}} ec{v}) < d(ec{v}, c ec{w}), \qquad ext{si } c
eq rac{\langle ec{v}, ec{w}
angle}{\langle ec{w}, ec{w}
angle}$$

• $proy_{\vec{w}}\vec{v}$ es el múltiplo escalar de \vec{w} más cercano a \vec{v} .

Proyección ortogonal

Definición (Proyección ortogonal sobre un subespacio \mathcal{W})

Sea $\{\vec{w}_1, \vec{w}_2, \dots, \vec{w}_r\}$ una base ortogonal de un subespacio vectorial \mathcal{W} de un espacio euclídeo $(\mathcal{V}, \langle \ \rangle)$. La **proyección ortogonal** de un vector $\vec{v} \in \mathcal{V}$ sobre \mathcal{W} , denotada por proy $_{\mathcal{W}}\vec{v}$ viene dada por

$$proy_{w}\vec{v} = \frac{\langle \vec{v}, \vec{w}_{1} \rangle}{\langle \vec{w}_{1}, \vec{w}_{1} \rangle} \vec{w}_{1} + \frac{\langle \vec{v}, \vec{w}_{2} \rangle}{\langle \vec{w}_{2}, \vec{w}_{2} \rangle} \vec{w}_{2} + \dots + \frac{\langle \vec{v}, \vec{w}_{r} \rangle}{\langle \vec{w}_{r}, \vec{w}_{r} \rangle} \vec{w}_{r}$$

Si $\{\vec{u}_1, \vec{u}_2, \dots, \vec{u}_r\}$ es una base ortonormal de \mathcal{W} entonces la expresión de la proyección ortogonal de $\vec{v} \in \mathcal{V}$ sobre \mathcal{W} , se expresa como

$$proy_{\mathcal{W}}\vec{v} = \langle \vec{v}, \vec{u}_1 \rangle \vec{u}_1 + \langle \vec{v}, \vec{u}_2 \rangle \vec{u}_2 + \cdots + \langle \vec{v}, \vec{u}_r \rangle \vec{u}_r$$

Proyección ortogonal

Proyección ortogonal

Definición (Complemento ortogonal)

Sea ${\mathcal W}$ un subespacio vectorial de un espacio euclídeo $({\mathcal V},\langle\
angle).$

El complemento ortogonal de W, denotado W^{\perp} es

$$\mathcal{W}^{\perp} = \left\{ ec{x} \in \mathcal{V} \mid \langle ec{x}, ec{w}
angle = 0, \; extit{para todo} \; ec{w} \in \mathcal{W}
ight\}$$

Teorema

Sea $\mathcal W$ un subespacio vectorial de un espacio euclídeo $(\mathcal V,\langle\
angle)$. Entonces

- \mathcal{W}^{\perp} es subespacio vectorial de \mathcal{V} .
- 3 $Si \dim \mathcal{V} = n$, entonces $\dim \mathcal{W}^{\perp} = n \dim \mathcal{W}$.

Proyección ortogonal

Teorema (Descomposición ortogonal)

Sea \mathcal{W} un subespacio vectorial finito de un espacio euclídeo $(\mathcal{V}, \langle \ \rangle)$. Entonces todo vector $\vec{v} \in \mathcal{V}$ tiene una representación única de la forma

$$\vec{v} = \vec{v}_1 + \vec{v}_2$$

donde $\vec{v}_1 \in \mathcal{W}$ y $\vec{v}_2 \in \mathcal{W}^{\perp}$.

Los vectores \vec{v}_1 y \vec{v}_2 se determinan muy fácilmente pues, respectivamente, son la proyección ortogonal de \vec{v} sobre W y la componente de \vec{v} ortogonal a W.

$$ec{v}_1 = \mathit{proy}_{\scriptscriptstyle\mathcal{W}} ec{v}$$

$$\vec{v}_2 = \vec{v} - \textit{proy}_{\scriptscriptstyle \mathcal{W}} \vec{v}$$

Proyección ortogonal

Ejemplo

Sea el vector
$$\vec{v} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \in \mathbb{R}^3$$
 y el subespacio $\mathcal{W} = \mathcal{L}\Big(\vec{u}_1 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \vec{u}_2 = \begin{pmatrix} -4/5 \\ 0 \\ 3/5 \end{pmatrix}\Big).$

La **proyección ortogonal** del vector \vec{v} **sobre** el subespacio \mathcal{W} es

$$proy_{\mathcal{W}}\vec{v} = \langle \vec{v}, \vec{u}_1 \rangle \vec{u}_1 + \langle \vec{v}, \vec{u}_2 \rangle \vec{u}_2 = 1 \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + (-\frac{1}{5}) \begin{pmatrix} -4/5 \\ 0 \\ 3/5 \end{pmatrix} = \begin{pmatrix} 4/25 \\ 1 \\ -3/25 \end{pmatrix}$$

La componente de \vec{v} ortogonal a \mathcal{W} es

$$\vec{v} - proy_{\mathcal{W}}\vec{v} = \begin{pmatrix} 1\\1\\1 \end{pmatrix} - \begin{pmatrix} 4/25\\1\\-3/25 \end{pmatrix} = \begin{pmatrix} 21/25\\0\\28/25 \end{pmatrix}$$

Existencia de bases ortogonales y ortonormales. Método de Gram-Schmidt

Teorema

Todo espacio euclídeo de dimensión finita tiene una base ortonormal.

La demostración desarrolla el Método de Ortonormalización de

Gram-Schmidt

- En primer lugar, partiendo de una base cualquiera $\mathcal{B} = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$ se construye una base ortogonal $\mathcal{B}' = \{\vec{w}_1, \vec{w}_2, \dots, \vec{w}_n\}$
- ② A continuación, normalizando los vectores de \mathcal{B}' , se forma la base ortonormal $\mathcal{B}'' = \{\vec{u}_1, \vec{u}_2, \dots, \vec{u}_n\}$

Método de Gram-Schmidt

Dada una base $\mathcal{B} = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$ de un espacio euclídeo $(\mathcal{V}, \langle \rangle)$.

 $\bullet \ \ \mathsf{Se} \ \mathsf{forma} \ \mathsf{la} \ \mathsf{base} \ \mathcal{B}' = \{\vec{w}_1, \vec{w}_2, \dots, \vec{w}_n\}, \ \mathsf{donde} \ \mathsf{los} \ \vec{w}_j \ \mathsf{son}$

$$\vec{w}_{1} = \vec{v}_{1}$$

$$\vec{w}_{2} = \vec{v}_{2} - \frac{\langle \vec{v}_{2}, \vec{w}_{1} \rangle}{\langle \vec{w}_{1}, \vec{w}_{1} \rangle} \vec{w}_{1}$$

$$\vec{w}_{3} = \vec{v}_{3} - \frac{\langle \vec{v}_{3}, \vec{w}_{1} \rangle}{\langle \vec{w}_{1}, \vec{w}_{1} \rangle} \vec{w}_{1} - \frac{\langle \vec{v}_{3}, \vec{w}_{2} \rangle}{\langle \vec{w}_{2}, \vec{w}_{2} \rangle} \vec{w}_{2}$$

$$\vdots$$

$$\vec{w}_{n} = \vec{v}_{n} - \frac{\langle \vec{v}_{n}, \vec{w}_{1} \rangle}{\langle \vec{w}_{1}, \vec{w}_{1} \rangle} \vec{w}_{1} - \frac{\langle \vec{v}_{n}, \vec{w}_{2} \rangle}{\langle \vec{w}_{2}, \vec{w}_{2} \rangle} \vec{w}_{2} \dots - \frac{\langle \vec{v}_{n}, \vec{w}_{n-1} \rangle}{\langle \vec{w}_{n-1}, \vec{w}_{n-1} \rangle} \vec{w}_{n-1}$$

 $\mathcal{B}' = \{\vec{w}_1, \vec{w}_2, \dots, \vec{w}_n\}$ es una base ortogonal de \mathcal{V} .

2 Normalizando los vectores de \mathcal{B}' obtenemos la siguiente base ortonormal

$$\mathcal{B}'' = \{\frac{\vec{w}_1}{\|\vec{w}_1\|}, \frac{\vec{w}_2}{\|\vec{w}_2\|}, \dots, \frac{\vec{w}_n}{\|\vec{w}_n\|}\}$$

Método de Gram-Schmidt

Ejemplo

Aplique el método de Gram-Schmidt a la siguiente base de \mathbb{R}^3

$$\mathcal{B} = \{ \vec{v}_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \vec{v}_2 = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}, \vec{v}_3 = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} \}$$

Primero formamos la base ortogonal $\mathcal{B}' = \{\vec{w}_1, \vec{w}_2, \vec{w}_3\}$

$$\vec{w}_{1} = \vec{v}_{1} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$

$$\vec{w}_{2} = \vec{v}_{2} - \frac{\vec{v}_{2} \cdot \vec{w}_{1}}{\vec{w}_{1} \cdot \vec{w}_{1}} \vec{w}_{1} = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} - \frac{3}{2} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$$

$$\vec{w}_{3} = \vec{v}_{3} - \frac{\vec{v}_{3} \cdot \vec{w}_{1}}{\vec{w}_{1} \cdot \vec{w}_{1}} \vec{w}_{1} = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} - \frac{1/2}{1/2} \cdot \frac{1}{2} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix}$$

Existencia de bases ortogonales y ortonormales. Método de Gram-Schmidt

Luego

$$\mathcal{B}' = \{ \vec{w}_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \vec{w}_2 = \frac{1}{2} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}, \vec{w}_3 = \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix} \}$$

Normalizando cada vector de la base \mathcal{B}' obtenemos $\mathcal{B}'' = \{\vec{u}_1, \vec{u}_2, \vec{u}_3\}$

$$\begin{array}{rcl} \vec{u}_1 & = & \frac{1}{\|\vec{w}_1\|} \vec{w}_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = \frac{\sqrt{2}}{2} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \\ \\ \vec{u}_2 & = & \frac{1}{\|\vec{w}_2\|} \vec{w}_2 = \frac{1}{1/\sqrt{2}} \cdot \frac{1}{2} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} = \frac{\sqrt{2}}{2} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} \\ \\ \vec{u}_3 & = & \frac{1}{\|\vec{w}_3\|} \vec{w}_3 = \frac{1}{2} \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \end{array}$$

Definiciones (Aplicación ortogonal, Matriz ortogonal)

- Una aplicación lineal se dice **ortogonal** si conserva el producto escalar.
- Se dice que una matriz Q es **ortogonal** si $Q^tQ=I$. Es decir, $Q^t=Q^{-1}$.

Teorema

Sea $\mathcal{B}=\{\vec{u}_1,\ldots,\vec{u}_n\}$ una base ordenada de \mathbb{R}^n y sea P la matriz del cambio de base de \mathcal{B} a la base canónica \mathcal{C} . Entonces \mathcal{B} es una base ortonormal si y sólo si P es una matriz ortogonal.

Ejemplo

La matriz ortogonal
$$Q=\begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$
 es la matriz del cambio de la base ortonormal $\mathcal{B}=\left\{\vec{u}_1=\frac{1}{\sqrt{2}}\begin{pmatrix}1\\1\end{pmatrix}, \vec{u}_2=\frac{1}{\sqrt{2}}\begin{pmatrix}-1\\1\end{pmatrix}\right\}$ a la base canónica.

ortonormal
$$\mathcal{B}=\left\{ ec{u}_1=rac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}, ec{u}_2=rac{1}{\sqrt{2}} \begin{pmatrix} -1 \\ 1 \end{pmatrix}
ight\}$$
 a la base canónica

Definición

Se dice que una matriz A es diagonalizable ortogonalmente si existe una matriz ortogonal P tal que $P^tAP = D$.

Ejemplo

Sean las matrices

$$A = \left(\begin{array}{cccc} 3 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 3 \end{array}\right)$$

trices
$$A = \begin{pmatrix} 3 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 3 \end{pmatrix}$$

$$P = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ 0 & -\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} \end{pmatrix}$$

La matriz A es diagonalizable ortogonalmente, ya que

$$P^{t}AP = D = \left(\begin{array}{ccc} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 5 \end{array}\right)$$

Teorema

Una matriz A de orden n es diagonalizable ortogonalmente si y solo si A tiene un sistema de n vectores propios ortonormales.

Teorema

Si una matriz A es diagonalizable ortogonalmente, entonces es simétrica.

Ejemplo (Diagonalización ortogonal)

$$A = \left(\begin{array}{rrr} 3 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 3 \end{array}\right)$$

Valores propios

 $\lambda_1=2, \,\, {
m multiplicidad} \,\, 2$ $\lambda_2=5, \,\, {
m multiplicidad} \,\, 1$

Sus **subespacios propios** son:

$$\mathcal{U}_2 = \{(x,y,z) \in \mathbb{R}^3 \mid x+y+z=0\} = \mathcal{L} \left[\vec{v}_1 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \ \vec{v}_2 = \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix} \right]$$

$$\mathcal{U}_8 = \{(x, y, z) \in \mathbb{R}^3 \mid x - z = 0 \land y - z = 0\} = \mathcal{L}\left[\vec{v}_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}\right]$$

Ejemplo (cont.)

$$A = \left(\begin{array}{rrr} 3 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 3 \end{array}\right)$$

Base de vectores propios de A

$$\left\{\vec{v}_1 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \vec{v}_2 = \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}, \vec{v}_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}\right\}$$

- Podemos observar que \vec{v}_3 es ortogonal a \vec{v}_1 y a \vec{v}_2 ; pero \vec{v}_1 no es ortogonal a \vec{v}_2 .
- Ortogonalizando la base de \mathcal{U}_2 , obtenemos la base

$$ec{w}_1 = egin{pmatrix} 1 \ -1 \ 0 \end{pmatrix}, \ ec{w}_2 = egin{pmatrix} 1 \ 1 \ -2 \end{pmatrix}$$

• Ahora, la base de vectores propios $\{\vec{w}_1, \vec{w}_2, \vec{v}_3\}$ ya es ortogonal.

Ejemplo (cont.)

$$A = \left(\begin{array}{rrr} 3 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 3 \end{array}\right)$$

Base de vectores propios ortogonales de A

$$\left\{ ec{w}_1 = egin{pmatrix} 1 \ -1 \ 0 \end{pmatrix}, \ ec{w}_2 = egin{pmatrix} 1 \ 1 \ -2 \end{pmatrix}, \ ec{v}_3 = egin{pmatrix} 1 \ 1 \ 1 \end{pmatrix}
ight\}$$

Normalizando nos queda una base de vectores propios ortonormal

$$\left\{ \vec{u}_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \vec{u}_2 = \frac{1}{\sqrt{6}} \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}, \vec{u}_3 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\}$$

Ejemplo (cont.) Así, obtenemos la diagonalización ortogonal de la matriz simétrica A,

$$D = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 5 \end{pmatrix} = P^{t}AP = P^{t} \begin{pmatrix} 3 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 3 \end{pmatrix} P$$

donde P es la matriz ortogonal siguiente

$$P = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ 0 & -\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} \end{pmatrix}$$

- > En este ejemplo ha sido decisivo que el vector propio \vec{v}_3 correspondiente al valor propio $\lambda_2=5$ fuese **ortogonal** a los vectores propios \vec{v}_1 y \vec{v}_2 correspondientes a $\lambda_1=2$.
- ➤ El siguiente teorema muestra que esta **ortogonalidad** no es casual, sino que es una consecuencia de la **simetría** de *A*.

Teorema

Si una matriz A es simétrica, entonces los vectores propios que pertenecen a subespacios propios distintos son ortogonales.

Teorema

Sea $A \in \mathcal{M}_n(\mathbb{R})$ una matriz simétrica. Entonces:

- 1 A sólo tiene valores propios reales.
- ② Si un valor propio λ tiene orden de multiplicidad k, la dimensión del subespacio propio \mathcal{U}_{λ} es k.

Corolario

Toda matriz simétrica $A \in \mathcal{M}_n(\mathbb{R})$ es diagonalizable ortogonalmente.

Procedimiento para diagonalizar ortogonalmente una matriz simétrica A

- Se encuentra una base para cada subespacio propio de A.
- Se aplica el proceso de Gram-Schmidt a cada una de estas bases para obtener una base ortonormal de cada subespacio propio.
- Se forma una matriz P cuyas columnas son los vectores de las bases ortonormales obtenidas.

Esta matriz diagonaliza ortogonalmente a la matriz A.

$$P^tAP = D$$