

cisco

IPv6:

The Protocol

Tim Martin

BRKIP6-2191

Cisco Webex Teams

Questions?

Use Cisco Webex Teams to chat with the speaker after the session

How

- 1 Find this session in the Cisco Events Mobile App
- 2 Click "Join the Discussion"
- 3 Install Webex Teams or go directly to the team space
- 4 Enter messages/questions in the team space

Agenda

- IPv6 Addresses & Headers
- IPv6 Address Assignment
- IPv6 Link Operations
- IPv6 Host Address Acquisition
- Conclusion

IPv6 Node Types

- Node: Any device that implements an IPv6 protocol stack
- Host: A device with one or more interfaces participating in IPv6 network
- Router: A device that forwards packets and provides provisioning services

Address's & Headers

IPv6 Addressing

Hexadecimal Is Really Not That Difficult

- Widely used in computing and programming
 - Hex is a base 16 numerical system
 - Typically expressed by 0x, i.e. 0x34
- Every nibble is a Hex character
 - 4 bits have 16 combinations
 - · Easier than high school algebra

100s	10's	1's	256's	16's	1's
0	5	2		3	4
1	7	2		a	C
5	8	9	2	4	d

Binary	Hex	Decimal
0000	О	О
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	8
1001	9	9
1010	A	10
1011	В	11
1100	С	12
1101	D	13
1110	E	14
1111	F	15

IPv6 Address Format

- IPv6 addresses are 128 bits long (32 hex characters)
 - 8 groups (words, quads) of 16 bits separated by (:)
 - RFC5952 lower case, leading zeros, zero compression

2001:0db8:0046:a1d1:0000:0000:0000:0001

2001:db8:46:a1d1:0:0:0:1

2001:db8:46:a1d1::1

cisco Life!

Explaining BIG Numbers With Math

- The standard LAN size has been set at a /64
 - 18,446,744,073,709,600,000 IPv6 addresses
- Let's attempt to exhaust all of the available addresses
 - We will allocate 10,000,000 addresses per second
 - Hint: there are 31,536,000 seconds per year
 - 10,000,000 x 31,536,000 = 315,360,000,000,000

18,446,744,073,709,600,000 / 315,360,000,000,000

= 58,494 years

Attribution: Ed Horley

IPv6 Unicast Address Types

```
Link-Local – Non routable exists on a layer 2 domain (fe80::/10)
      fe80:0000:0000:0000:xxxx:xxxx:xxxx:xxxx
Unique-Local - Routable within administrative domain (fc00::/7)
      fc00:~~~~:****:xxxx:xxxx:xxxx:xxxx
      fd00:~~~~:****:xxxx:xxxx:xxxx:xxxx
Global - Routable across the Internet (2000::/3)
      2000:****:****:xxxx:xxxx:xxxx:xxxx
```


Global Address Assignment

- Provider Allocated (PA)
 - From your ISP, single homed
 - /48 /60
- Provider Independent (PI)
 - Multi home, Multi provider
 - /32 /48
- Local Internet Registry (LIR)
 - Regional registry member
 - Acquire & manage space
 - /29 /48

IPv6 over Ethernet

- IPv6 has a specific Ether type id
- IPv6 relies heavily on Multicast

cisco Life!

I/G bit = Multicast/Broadcast
U/L bit = Universal/Local

IPv4 and IPv6 Header Comparison

IPv4 Header (20-60)

- Length was variable
- Fields in green are removed
- Options appear in extension headers

IPv6 Header (40)

Upper layer checksums use Pseudo Header format: SRC/DST + Next Header

Extension Headers (~ Layer 3.5)

- EH are daisy chained, processed in order
- Length is variable, end on 64-bit boundary
- EHs have a Next Header field
- All EHs must be in the initial fragment

IPv6 Header	Transport Header	Data		
IPv6	Extension	Transport	Data	
Header	Header	Header		
IPv6	HBH EH	AH EH	Transport	Data
NH = 0	NH = 51	NH = 6	Header	Data

Extension Header	Type
Hop-by-Hop Options	0
Destination Options	60
Routing Header	43
Fragment Header	44
Authentication Header	51
ESP Header	50
Destination Options	60
Mobility Header	135
Experimental	253,254
No Next Header	59

ICMPv6 Messages

- Neighbor or router discovery (133-137)
- Multicast Listener Discovery (130–132, 143)
- Diagnostics using Ping, Traceroute (128, 129)

- Destination Unreachable(1)
- Packet Too Big (2)
- Time Exceeded (3)
- Parameter Problem (4)

Type Code Checksum

Data

• Type – (0–127) = Error messages, 128–255 Informational messages

IPv6 NH = **58**

- Code More granularity within the type
- Checksum Computed over the entire ICMPv6 & pseudo header
- Data Contents of "offending", filled to 1280B (error) or specific message format (info)

Path MTU Discovery

IPv6 Multicast Address (RFC 4291)

- Prefix ff00::/8
- Changes based on flag settings
 - Typically the last 32 bits of host's unicast address

8-bits		4-bits	4-bit	1-bits 112-		112	-bits
1111 11	11 1111 0 R P T Scor		ре	Variable format		e format	
Flags					Scope		
О	Reserved			1	Node	Unicast:	
D 0	NIa	No embedded RP			2	Link	2001:db8:46::426:c001
R = 0 R = 1	_	Embedded RP			3	Realm	
P = 0		Without Prefix			4	Admin	Multicast:
P = 1	Address based on Prefix			5	Site	ff0e::426:c001	
T = 0	Well Known Address			8	Organization		
T = 1		Temporary address			е	Global	

Special Use Addresses (RFC 5156)

- Localhost
 - 0:0:0:0:0:0:0:1=> ::1
- Unspecified address
 - 0:0:0:0:0:0:0:0=> 0::0 => :: => ::/128
- Documentation Prefix
 - 2001:0db8::/32
- Discard Prefix
 - 0100::/64
- 6to4 Automatic Tunneling
 - 2002::/16
- · Default Route
 - ::/0

Interface ID's

IPv6 Interface id Assignment

*Secure Neighbor Discovery SeND

Extended Unique Identifier (EUI64)

IPv6 Privacy Extensions (RFC 4941)

- Generated on unique 802 using MD5, then stored for next iteration
- Enabled by default in Windows, Android, iOS, Mac OS/X, Linux
- Temporary or Ephemeral addresses for client application (web browser)
- RFC 7217
- Generate IID's that are Stable/Constant for Each Network Interface
- IID's Change As Hosts Move From One Network to Another

DHCPv6

- Source fe80::1234, Destination ff02::1:2
- Client UDP 546, Server UDP 547
- DUID Different from v4, used to identify clients
- Original Multicast encapsulated in unicast (relay)
- ipv6 dhcp relay destination 2001:db8::feed:1

SOLICIT (any servers) →

← ADVERTISE (want this address)

REQUEST (I want that address) →

← REPLY (It's yours)

Link Operations

Neighbor Discovery Protocol – (NDP)

- Should use Link Local (fe80::/64) as its source
- Hop Limit must be set to 255
 - Generalized TTL Security Mechanism
- Neighbor discovery messages
 - Router solicitation (ICMPv6 type 133)
 - Router advertisement (ICMPv6 type 134)
 - Neighbor solicitation (ICMPv6 type 135)
 - Neighbor advertisement (ICMPv6 type 136)
 - Redirect (ICMPv6 type 137)

IPv4	IPv6
ARP Request	Neighbor Solicitation
ARP Reply	Neighbor Advertisement
Broadcast	Solicited Node Multicast

Solicited Node Multicast

- Required & special form of multicast used for neighbor resolution
- Every Unicast address must
 - Create corresponding solicited node multicast (ff02::1:ff00:0/104)
- Any Layer 3 multicast must
 - Map to corresponding Layer 2 multicast (33-33-xx-xx-xx)

IPv6 Source	fe80::04cb:57ff:fe3c:deca
IPv6 Destination	ff02::1:ff3c:deca
Ethernet Destination	33-33-FF- 3C-DE-CA
Ethernet Source	02-CB-57- 3C-DE-CA

Solicited Node Multicast Example

```
R1#sh ipv6 int e0
Ethernet0 is up, line protocol is up
  IPv6 is enabled, link-local address is FE80::200:CFF:FE3A:8B18
  Global unicast address(es):
    2001:DB8:46:1234::1 subnet is 2001:DB8:46:1234::/64
  Joined group address(es):
    FF02::1
    FF02::2
    FF02::1:FF00:1

    Solicited-Node Multicast Address*

    FF02::1:FF3A:8B18 -
 MTU is 1500 bytes
  ICMP error messages limited to one every 100 milliseconds
  TCMP redirects are enabled
  ND DAD is enabled, number of DAD attempts: 1
  ND reachable time is 30000 milliseconds
  ND router advertisements are sent every 200 seconds
*If EUI format is used then the 1rst solicited node moast addr is used for both the LL & GU
```

Neighbor Solicitation & Advertisement

- Node A needs to resolve node B's link address, Map's L3 to L2
- Multicast for resolution (new), Unicast for reachability (cache)

Node B will add node A to its neighbor cache during this process w/o sending NS

135 NS	ICMPv6 Type	136 NA
fe80::a	IPv6 Source	fe80::b
ff02::1:ff00:b	IPv6 Destination	fe80::a
255	Target Address	2001:db8:46:46::b
2001:db8:46:46::b	Option 2 TLLA	B's Link Layer Address
What is B link layer address?	*Flags	R = Router
A's Link Layer Address		S = Response to Solicitation O = Override cache information
	fe80::a ff02::1:ff00:b 255 2001:db8:46:46::b What is B link layer address?	fe80::a IPv6 Source ff02::1:ff00:b IPv6 Destination 255 Target Address 2001:db8:46:46::b Option 2 TLLA What is B link layer address? *Flags

Duplicate Address Detection (DAD)

- Unspecified Source (::), No Option 1 SLLA
- Probing the Local Link to Verify Address Uniqueness
- Microsoft uses a variant known as Optimistic DAD

ICMPv6 Type	135 NS
IPv6 Source	UNSPEC = ::
IPv6 Dest.	A Solicited Node Multicast ff02::1:ff00:a
Query	Anyone Using "a"

Node A can start using address A

Router Solicitation and Advertisement

- Router solicitations (RS) are sent by nodes at boot up
- Routers forward packets as well as provide provisioning services

RS	
ICMP Type	133
IPv6 Source	fe80::a
IPv6 Destination	ff02::2
Opt. 1 SLLA	SRC Link Layer Address

RA	
ICMP Type	134
IPv6 Source	fe80::1
IPv6 Destination	fe80::a
Data	Options, subnet prefix, lifetime, autoconfig flag

Router Advertisement

- M-Flag Stateful DHCPv6 to acquire IPv6 address
- O-Flag Stateless DHCPv6 in addition to SLAAC
- Preference Bits Low, Med, High
- Router Lifetime Must be >0 for Default
- Options Prefix Information, Length, Flags
- L bit Only way a host get a On Link Prefix
- A bit Set to 0 for DHCP to work properly


```
Type: 134 (RA)
```

Code: 0

Checksum: 0xff78 [correct]

Cur hop limit: 64 ∞ Flags: 0x84

1... = Managed (M flag)

.0.. ... = Not other (O flag)

..0. = Not Home (H flag)

...0 1... = Router pref: High

Router lifetime: (s)1800

Reachable time: (ms) 3600000

Retrans timer: (ms) 1000

ICMPv6 Option 3 (Prefix Info)

Prefix length: 64
∞ Flags: 0x84

1... = On link (L Bit)

.... 1... = No Auto (A Bit)

Prefix: 2001:0db8:4646:1234::/64

Host OS's

Router Advertisement Sent

```
▼ Internet Control Message Protocol v6

    Type: Router Advertisement (134)
    Code: 0
    Checksum: 0x1a4d [correct]
    Cur hop limit: 64

→ Flags: 0x00
      0... = Managed address configuration: Not set
      .0.. .... = Other configuration: Not set
      ...0. .... = Home Agent: Not set
      ...0 0... = Prf (Default Router Preference): Medium (0)
      .... .0.. = Proxv: Not set
      \dots = Reserved: 0
    Router lifetime (s): 180
    Reachable time (ms): 0
    Retrans timer (ms): 0
  ▶ ICMPv6 Option (Recursive DNS Server 2001558:feed::1)

▼ ICMPv6 Option (Prefix information : 2601: 2001:db8:46:1::/64)

      Type: Prefix information (3)
      Length: 4 (32 bytes)
      Prefix Length: 64
    ▶ Flag: 0xc0
      Valid Lifetime: 300
      Preferred Lifetime: 300
      Reserved
      Prefix: 2601: 2001:db8:46:1::
                                       (2001:db8:46:1::)
  ICMPv6 Option (Source link-layer address: 00:50:f1:00:00:00)
```

OSX Host Address Acquisition

- Effect of the Router Advertisement from previous slide
 - Preferred & valid lifetimes
 - DNS server information

tmartin# ifconfig -L

en0: flags=8863<UP,BROADCAST,SMART,RUNNING,SIMPLEX,MULTICAST> mtu 1500 ether b8:e8:56:19:f3:8a

inet6 fe80::bae8:5642:ce19:f38a%en0 prefixlen 64 scopeid 0x4

inet6 2001:db8:46:1:1809:5618:fa19:f38a prefixlen 64 autocom pltime 267 vltime 267

inet6 2001:db8:46:1:883e:b6a2:863:e31b prefixlen 64 autoconf temp pltime 267 vltime 267

nd6 options=201<PERFORMNUD ,DAD>

DNS Servers:

75.75.75.75 75.75 76 76

2001:558:feed::1

Search Domains:

hsd1.co.comcast.net

Linux, Ubuntu IPv6 Basics

- Check an IPv6 address
 - ip -6 addr show dev eth0
- Check an IPv6 address
 - ifconfig eth0 | grep "inet6 addr:"
- Check for IPv6 neighbors
 - ip -6 neigh show
- Ping6 2001:db8:4:6::c001:d00d
 - Windows:> ping fe80::250:e1ff:fec3:1%17
 - Unix\$ ping6 fe80::250:e1ff:fec3:1%en0

```
ipv6@localhost:~
File Edit View Search Terminal Help
[ipv6@localhost ~]$ ip -6 addr show dev eth0
2: eth0: <BROADCAST,MULTICAST,UP,LOWER UP> mtu 1500 qlen 1000
   inet6 2001:470:1f05:9a4:20c:29ff:fe75:495/64 scope global dynamic
      valid lft 7194sec preferred lft 594sec
   inet6 fe80::20c:29ff:fe75:495/64 scope link
      valid lft forever preferred lft forever
[ipv6@localhost ~]$ cat /proc/net/if inet6
eth0
200104701f0509a4020c29fffe750495 02 40 00 00
fe800000000000000000020c29fffe750495 02 40 20 80
[ipv6@localhost ~]$ ifconfig eth0 | grep "inet6 addr:"
         inet6 aggr: 2001:4/0:1T05:9a4:20C:29TT:Te/5:495/64 Scope:Global
         inet6_addr: fe80::20c:29ff:fe75:495/64 Scope:Link
[ipv6@localhost ~]$ ip -6 neigh show
fe80::3285:a9ff:fe6c:b3e0 dev eth0 lladdr 30:85:a9:6c:b3:e0 router STALE
[ipv6@localhost ~]$
```

Windows Host Address Acquisition

```
C:\Documents and Settings\>netsh
netsh>interface ipv6
netsh interface ipv6>show address
Querying active state...
Interface 5: Local Area Connection
Addr Type DAD State Valid Life Pref. Life Address
Public Preferred 29d23h58m25s 6d23h58m25s 2001:db8:4646:1:4f02:8a49:41ad:a136
Temporary Preferred 6d21h48m47s
                                     21h46m 2001:db8:4646:1:bd86:eac2:f5f1:39c1
Link Preferred infinite infinite fe80::4f02:8a49:41ad:a136
netsh interface ipv6>show route
Querying active state...
                                              Idx Gateway/Interface Name
Publish Type Met Prefix
no Autoconf 8 2001:db8:4646:1::/64 5 Local Area Connection
  Autoconf 256 ::/0
                                                5 fe80::20d:bdff:fe87:f6f9
no
```


Agenda

- IPv6 Addresses & Headers
- IPv6 Address Assignment
- IPv6 Link Operations
- IPv6 Host Address Acquisition
- Conclusion

Key Take Away

- Gain Operational Experience now
- Control IPv6 traffic as you would IPv4
- Lead your OT/LOB's into the Internet

Recommended Reading

http://www.ciscopress.com/store/ipv6-design-and-deployment-livelessons-9780134655512

ISBN-13: 978-0-13-465551-2

Complete your online session survey

- Please complete your session survey after each session. Your feedback is very important.
- Complete a minimum of 4 session surveys and the Overall Conference survey (starting on Thursday) to receive your Cisco Live t-shirt.
- All surveys can be taken in the Cisco Events Mobile App or by logging in to the Content Catalog on <u>ciscolive.com/emea</u>.

Cisco Live sessions will be available for viewing on demand after the event at ciscolive.com.

Continue your education

illiilli CISCO

Thank you

cisco live!

You make possible