### KINASES AND PHOSPHATASES

### **TECHNICAL FIELD**

The invention relates to novel nucleic acids, kinases and phosphatases encoded by these nucleic acids, and to the use of these nucleic acids and proteins in the diagnosis, treatment, and prevention of cardiovascular diseases, immune system disorders, neurological disorders, disorders affecting growth and development, lipid disorders, cell proliferative disorders, and cancers. The invention also relates to the assessment of the effects of exogenous compounds on the expression of nucleic acids and kinases and phosphatases.

10

15

20

25

30

35

### **BACKGROUND OF THE INVENTION**

Reversible protein phosphorylation is the ubiquitous strategy used to control many of the intracellular events in eukaryotic cells. It is estimated that more than ten percent of proteins active in a typical mammalian cell are phosphorylated. Kinases catalyze the transfer of high-energy phosphate groups from adenosine triphosphate (ATP) to target proteins on the hydroxyamino acid residues serine, threonine, or tyrosine. Phosphatases, in contrast, remove these phosphate groups. Extracellular signals including hormones, neurotransmitters, and growth and differentiation factors can activate kinases, which can occur as cell surface receptors or as the activator of the final effector protein, as well as other locations along the signal transduction pathway. Cascades of kinases occur, as well as kinases sensitive to second messenger molecules. This system allows for the amplification of weak signals (low abundance growth factor molecules, for example), as well as the synthesis of many weak signals into an all-or-nothing response. Phosphatases, then, are essential in determining the extent of phosphorylation in the cell and, together with kinases, regulate key cellular processes such as metabolic enzyme activity, proliferation, cell growth and differentiation, cell adhesion, and cell cycle progression.

# **KINASES**

Kinases comprise the largest known enzyme superfamily and vary widely in their target molecules. Kinases catalyze the transfer of high energy phosphate groups from a phosphate donor to a phosphate acceptor. Nucleotides usually serve as the phosphate donor in these reactions, with most kinases utilizing adenosine triphosphate (ATP). The phosphate acceptor can be any of a variety of molecules, including nucleosides, nucleotides, lipids, carbohydrates, and proteins. Proteins are phosphorylated on hydroxyamino acids. Addition of a phosphate group alters the local charge on the acceptor molecule, causing internal conformational changes and potentially influencing intermolecular contacts. Reversible protein phosphorylation is the primary method for regulating protein activity in eukaryotic cells. In general, proteins are activated by phosphorylation in response

1

to extracellular signals such as hormones, neurotransmitters, and growth and differentiation factors. The activated proteins initiate the cell's intracellular response by way of intracellular signaling pathways and second messenger molecules such as cyclic nucleotides, calcium-calmodulin, inositol, and various mitogens, that regulate protein phosphorylation.

Kinases are involved in all aspects of a cell's function, from basic metabolic processes, such as glycolysis, to cell-cycle regulation, differentiation, and communication with the extracellular environment through signal transduction cascades. Inappropriate phosphorylation of proteins in cells has been linked to changes in cell cycle progression and cell differentiation. Changes in the cell cycle have been linked to induction of apoptosis or cancer. Changes in cell differentiation have been linked to diseases and disorders of the reproductive system, immune system, and skeletal muscle.

There are two classes of protein kinases. One class, protein tyrosine kinases (PTKs), phosphorylates tyrosine residues, and the other class, protein serine/threonine kinases (STKs), phosphorylates serine and threonine residues. Some PTKs and STKs possess structural characteristics of both families and have dual specificity for both tyrosine and serine/threonine residues. Almost all kinases contain a conserved 250-300 amino acid catalytic domain containing specific residues and sequence motifs characteristic of the kinase family. The protein kinase catalytic domain can be further divided into 11 subdomains. N-terminal subdomains I-IV fold into a two-lobed structure which binds and orients the ATP donor molecule, and subdomain V spans the two lobes. C-terminal subdomains VI-XI bind the protein substrate and transfer the gamma phosphate from ATP to the hydroxyl group of a tyrosine, serine, or threonine residue. Each of the 11 subdomains contains specific catalytic residues or amino acid motifs characteristic of that subdomain. For example, subdomain I contains an 8-amino acid glycine-rich ATP binding consensus motif, subdomain II contains a critical lysine residue required for maximal catalytic activity, and subdomains VI through IX comprise the highly conserved catalytic core. PTKs and STKs also contain distinct sequence motifs in subdomains VI and VIII which may confer hydroxyamino acid specificity.

In addition, kinases may also be classified by additional amino acid sequences, generally between 5 and 100 residues, which either flank or occur within the kinase domain. These additional amino acid sequences regulate kinase activity and determine substrate specificity. (Reviewed in Hardie, G. and S. Hanks (1995) The Protein Kinase Facts Book, Vol I, pp. 17-20 Academic Press, San Diego CA.). In particular, two protein kinase signature sequences have been identified in the kinase domain, the first containing an active site lysine residue involved in ATP binding, and the second containing an aspartate residue important for catalytic activity. If a protein analyzed includes the two protein kinase signatures, the probability of that protein being a protein kinase is close to 100% (PROSITE: PDOC00100, November 1995).

### **Protein Tyrosine Kinases**

5

10

15

20

25

35

Protein tyrosine kinases (PTKs) may be classified as either transmembrane, receptor PTKs or nontransmembrane, nonreceptor PTK proteins. Transmembrane tyrosine kinases function as receptors for most growth factors. Growth factors bind to the receptor tyrosine kinase (RTK), which causes the receptor to phosphorylate itself (autophosphorylation) and specific intracellular second messenger proteins. Growth factors (GF) that associate with receptor PTKs include epidermal GF, platelet-derived GF, fibroblast GF, hepatocyte GF, insulin and insulin-like GFs, nerve GF, vascular endothelial GF, and macrophage colony stimulating factor.

Nontransmembrane, nonreceptor PTKs lack transmembrane regions and, instead, form signaling complexes with the cytosolic domains of plasma membrane receptors. Receptors that function through non-receptor PTKs include those for cytokines and hormones (growth hormone and prolactin), and antigen-specific receptors on T and B lymphocytes.

Many PTKs were first identified as oncogene products in cancer cells in which PTK activation was no longer subject to normal cellular controls. In fact, about one third of the known oncogenes encode PTKs. Furthermore, cellular transformation (oncogenesis) is often accompanied by increased tyrosine phosphorylation activity (Charbonneau, H. and N.K. Tonks (1992) Annu. Rev. Cell Biol. 8:463-493). Regulation of PTK activity may therefore be an important strategy in controlling some types of cancer.

# Protein Serine/Threonine Kinases

Protein serine/threonine kinases (STKs) are nontransmembrane proteins. A subclass of STKs are known as ERKs (extracellular signal regulated kinases) or MAPs (mitogen-activated protein kinases) and are activated after cell stimulation by a variety of hormones and growth factors. Cell stimulation induces a signaling cascade leading to phosphorylation of MEK (MAP/ERK kinase) which, in turn, activates ERK via serine and threonine phosphorylation. A varied number of proteins represent the downstream effectors for the active ERK and implicate it in the control of cell proliferation and differentiation, as well as regulation of the cytoskeleton. Activation of ERK is normally transient, and cells possess dual specificity phosphatases that are responsible for its downregulation. Also, numerous studies have shown that elevated ERK activity is associated with some cancers. Other STKs include the second messenger dependent protein kinases such as the cyclic-AMP dependent protein kinases (PKA), calcium-calmodulin (CaM) dependent protein kinases, and the mitogen-activated protein kinases (MAP); the cyclin-dependent protein kinases; checkpoint and cell cycle kinases; Numb-associated kinase (Nak); human Fused (hFu); proliferation-related kinases; 5'-AMP-activated protein kinases; and kinases involved in apoptosis.

One member of the ERK family of MAP kinases, ERK 7, is a novel 61-kDa protein that has motif similarities to ERK1 and ERK2, but is not activated by extracellular stimuli as are ERK1 and

ERK2 nor by the common activators, c-Jun N-terminal kinase (JNK) and p38 kinase. ERK7 regulates its nuclear localization and inhibition of growth through its C-terminal tail, not through the kinase domain as is typical with other MAP kinases (Abe, M.K. (1999) Mol. Cell. Biol. 19:1301-1312).

5

10

15

20

25

30

35

The second messenger dependent protein kinases primarily mediate the effects of second messengers such as cyclic AMP (cAMP), cyclic GMP, inositol triphosphate, phosphatidylinositol, 3,4,5-triphosphate, cyclic ADP ribose, arachidonic acid, diacylglycerol and calcium-calmodulin. The PKAs are involved in mediating hormone-induced cellular responses and are activated by cAMP produced within the cell in response to hormone stimulation. cAMP is an intracellular mediator of hormone action in all animal cells that have been studied. Hormone-induced cellular responses include thyroid hormone secretion, cortisol secretion, progesterone secretion, glycogen breakdown, bone resorption, and regulation of heart rate and force of heart muscle contraction. PKA is found in all animal cells and is thought to account for the effects of cAMP in most of these cells. Altered PKA expression is implicated in a variety of disorders and diseases including cancer, thyroid disorders, diabetes, atherosclerosis, and cardiovascular disease (Isselbacher, K.J. et al. (1994) Harrison's Principles of Internal Medicine, McGraw-Hill, New York NY, pp. 416-431, 1887).

The casein kinase I (CKI) gene family is another subfamily of serine/threonine protein kinases. This continuously expanding group of kinases have been implicated in the regulation of numerous cytoplasmic and nuclear processes, including cell metabolism and DNA replication and repair. CKI enzymes are present in the membranes, nucleus, cytoplasm and cytoskeleton of eukaryotic cells, and on the mitotic spindles of mammalian cells (Fish, K.J. et al. (1995) J. Biol. Chem. 270:14875-14883).

The CKI family members all have a short amino-terminal domain of 9-76 amino acids, a highly conserved kinase domain of 284 amino acids, and a variable carboxyl-terminal domain that ranges from 24 to over 200 amino acids in length (Cegielska, A. et al. (1998) J. Biol. Chem. 273:1357-1364). The CKI family is comprised of highly related proteins, as seen by the identification of isoforms of casein kinase I from a variety of sources. There are at least five mammalian isoforms,  $\alpha$ ,  $\beta$ ,  $\gamma$ ,  $\delta$ , and  $\epsilon$ . Fish et al. identified CKI-epsilon from a human placenta cDNA library. It is a basic protein of 416 amino acids and is closest to CKI-delta. Through recombinant expression, it was determined to phosphorylate known CKI substrates and was inhibited by the CKI-specific inhibitor CKI-7. The human gene for CKI-epsilon was able to rescue yeast with a slow-growth phenotype caused by deletion of the yeast CKI locus, HRR250 (Fish et al., supra).

The mammalian circadian mutation tau was found to be a semidominant autosomal allele of CKI-epsilon that markedly shortens period length of circadian rhythms in Syrian hamsters. The tau locus is encoded by casein kinase I-epsilon, which is also a homolog of the *Drosophila* circadian gene double-time. Studies of both the wildtype and tau mutant CKI-epsilon enzyme indicated that the

mutant enzyme has a noticeable reduction in the maximum velocity and autophosphorylation state. Further, *in vitro*, CKI-epsilon is able to interact with mammalian PERIOD proteins, while the mutant enzyme is deficient in its ability to phosphorylate PERIOD. Lowrey et al. have proposed that CKI-epsilon plays a major role in delaying the negative feedback signal within the transcription-translation-based autoregulatory loop that composes the core of the circadian mechanism. Therefore the CKI-epsilon enzyme is an ideal target for pharmaceutical compounds influencing circadian rhythms, jet-lag and sleep, in addition to other physiologic and metabolic processes under circadian regulation (Lowrey, P.L. et al. (2000) Science 288:483-491).

Homeodomain-interacting protein kinases (HIPKs) are serine/threonine kinases and novel members of the DYRK kinase subfamily (Hofmann, T.G. et al. (2000) Biochimie 82:1123-1127). HIPKs contain a conserved protein kinase domain separated from a domain that interacts with homeoproteins. HIPKs are nuclear kinases, and HIPK2 is highly expressed in neuronal tissue (Kim, Y.H. et al. (1998) J. Biol. Chem. 273:25875-25879; Wang, Y. et al. (2001) Biochim. Biophys. Acta 1518:168-172). HIPKs act as corepressors for homeodomian transcription factors. This corepressor activity is seen in posttranslational modifications such as ubiquitination and phosphorylation, each of which are important in the regulation of cellular protein function (Kim, Y.H. et al. (1999) Proc. Natl. Acad. Sci. USA 96:12350-12355).

The human h-warts protein, a homolog of *Drosophila* warts tumor suppressor gene, maps to chromosome 6q24-25.1. It has a serine/threonine kinase domain and is localized to centrosomes in interphase cells. It is involved in mitosis and functions as a component of the mitotic apparatus (Nishiyama, Y. et al. (1999) FEBS Lett. 459:159-165).

# Calcium-Calmodulin Dependent Protein Kinases

10

15

20

25

30

35

Calcium-calmodulin dependent (CaM) kinases are involved in regulation of smooth muscle contraction, glycogen breakdown (phosphorylase kinase), and neurotransmission (CaM kinase I and CaM kinase II). CaM dependent protein kinases are activated by calmodulin, an intracellular calcium receptor, in response to the concentration of free calcium in the cell. Many CaM kinases are also activated by phosphorylation. Some CaM kinases are also activated by autophosphorylation or by other regulatory kinases. CaM kinase I phosphorylates a variety of substrates including the neurotransmitter-related proteins synapsin I and II, the gene transcription regulator, CREB, and the cystic fibrosis conductance regulator protein, CFTR (Haribabu, B. et al. (1995) EMBO J. 14:3679-3686). CaM kinase II also phosphorylates synapsin at different sites and controls the synthesis of catecholamines in the brain through phosphorylation and activation of tyrosine hydroxylase. CaM kinase II controls the synthesis of catecholamines and seratonin, through phosphorylation/activation of tyrosine hydroxylase and tryptophan hydroxylase, respectively (Fujisawa, H. (1990) BioEssays 12:27-29). The mRNA encoding a calmodulin-binding protein kinase-like protein was found to be

enriched in mammalian forebrain. This protein is associated with vesicles in both axons and dendrites and accumulates largely postnatally. The amino acid sequence of this protein is similar to CaM-dependent STKs, and the protein binds calmodulin in the presence of calcium (Godbout, M. et al. (1994) J. Neurosci. 14:1-13).

### 5 Mitogen-Activated Protein Kinases

10

15

20

25

30

35

The mitogen-activated protein kinases (MAP), which mediate signal transduction from the cell surface to the nucleus via phosphorylation cascades, are another STK family that regulates intracellular signaling pathways. Several subgroups have been identified, and each manifests different substrate specificities and responds to distinct extracellular stimuli (Egan, S.E. and R.A. Weinberg (1993) Nature 365:781-783). There are three kinase modules comprising the MAP kinase cascade: MAPK (MAP), MAPK kinase (MAP2K, MAPKK, or MKK), and MKK kinase (MAP3K, MAPKKK, OR MEKK) (Wang,X.S. et al (1998) Biochem. Biophys. Res. Commun. 253:33-37). The extracellular-regulated kinase (ERK) pathway is activated by growth factors and mitogens, for example, epidermal growth factor (EGF), ultraviolet light, hyperosmolar medium, heat shock, or endotoxic lipopolysaccharide (LPS). The closely related though distinct parallel pathways, the c-Jun N-terminal kinase (JNK), or stress-activated kinase (SAPK) pathway, and the p38 kinase pathway are activated by stress stimuli and proinflammatory cytokines such as tumor necrosis factor (TNF) and interleukin-1 (IL-1). Altered MAP kinase expression is implicated in a variety of disease conditions including cancer, inflammation, immune disorders, and disorders affecting growth and development. MAP kinase signaling pathways are present in mammalian cells as well as in yeast.

#### **Cyclin-Dependent Protein Kinases**

The cyclin-dependent protein kinases (CDKs) are STKs that control the progression of cells through the cell cycle. The entry and exit of a cell from mitosis are regulated by the synthesis and destruction of a family of activating proteins called cyclins. Cyclins are small regulatory proteins that bind to and activate CDKs, which then phosphorylate and activate selected proteins involved in the mitotic process. CDKs are unique in that they require multiple inputs to become activated. In addition to cyclin binding, CDK activation requires the phosphorylation of a specific threonine residue and the dephosphorylation of a specific tyrosine residue on the CDK.

Another family of STKs associated with the cell cycle are the NIMA (never in mitosis)-related kinases (Neks). Both CDKs and Neks are involved in duplication, maturation, and separation of the microtubule organizing center, the centrosome, in animal cells (Fry, A.M. et al. (1998) EMBO J. 17:470-481).

# **Checkpoint and Cell Cycle Kinases**

In the process of cell division, the order and timing of cell cycle transitions are under control of cell cycle checkpoints, which ensure that critical events such as DNA replication and chromosome

segregation are carried out with precision. If DNA is damaged, e.g. by radiation, a checkpoint pathway is activated that arrests the cell cycle to provide time for repair. If the damage is extensive, apoptosis is induced. In the absence of such checkpoints, the damaged DNA is inherited by aberrant cells which may cause proliferative disorders such as cancer. Protein kinases play an important role in this process. For example, a specific kinase, checkpoint kinase 1 (Chk1), has been identified in yeast and mammals, and is activated by DNA damage in yeast. Activation of Chk1 leads to the arrest of the cell at the G2/M transition (Sanchez, Y. et al. (1997) Science 277:1497-1501). Specifically, Chk1 phosphorylates the cell division cycle phosphatase CDC25, inhibiting its normal function which is to dephosphorylate and activate the cyclin-dependent kinase Cdc2. Cdc2 activation controls the entry of cells into mitosis (Peng, C.-Y. et al. (1997) Science 277:1501-1505). Thus, activation of Chk1 prevents the damaged cell from entering mitosis. A deficiency in a checkpoint kinase, such as Chk1, may also contribute to cancer by failure to arrest cells with damaged DNA at other checkpoints such as G2/M.

### **Proliferation-Related Kinases**

5

10

15

20

25

30

35

Proliferation-related kinase is a serum/cytokine inducible STK that is involved in regulation of the cell cycle and cell proliferation in human megakarocytic cells (Li, B. et al. (1996) J. Biol. Chem. 271:19402-19408). Proliferation-related kinase is related to the polo (derived from *Drosophila* polo gene) family of STKs implicated in cell division. Proliferation-related kinase is downregulated in lung tumor tissue and may be a proto-oncogene whose deregulated expression in normal tissue leads to oncogenic transformation.

## 5'-AMP-activated protein kinase

A ligand-activated STK protein kinase is 5'-AMP-activated protein kinase (AMPK) (Gao, G. et al. (1996) J. Biol Chem. 271:8675-8681). Mammalian AMPK is a regulator of fatty acid and sterol synthesis through phosphorylation of the enzymes acetyl-CoA carboxylase and hydroxymethylglutaryl-CoA reductase and mediates responses of these pathways to cellular stresses such as heat shock and depletion of glucose and ATP. AMPK is a heterotrimeric complex comprised of a catalytic alpha subunit and two non-catalytic beta and gamma subunits that are believed to regulate the activity of the alpha subunit. Subunits of AMPK have a much wider distribution in non-lipogenic tissues such as brain, heart, spleen, and lung than expected. This distribution suggests that its role may extend beyond regulation of lipid metabolism alone.

# Kinases in Apoptosis

Apoptosis is a highly regulated signaling pathway leading to cell death that plays a crucial role in tissue development and homeostasis. Deregulation of this process is associated with the pathogenesis of a number of diseases including autoimmune diseases, neurodegenerative disorders, and cancer. Various STKs play key roles in this process. ZIP kinase is an STK containing a

C-terminal leucine zipper domain in addition to its N-terminal protein kinase domain. This C-terminal domain appears to mediate homodimerization and activation of the kinase as well as interactions with transcription factors such as activating transcription factor, ATF4, a member of the cyclic-AMP responsive element binding protein (ATF/CREB) family of transcriptional factors (Sanjo, H. et al. (1998) J. Biol. Chem. 273:29066-29071). DRAK1 and DRAK2 are STKs that share homology with the death-associated protein kinases (DAP kinases), known to function in interferon- $\gamma$  induced apoptosis (Sanjo et al., *supra*). Like ZIP kinase, DAP kinases contain a C-terminal protein-protein interaction domain, in the form of ankyrin repeats, in addition to the N-terminal kinase domain. ZIP, DAP, and DRAK kinases induce morphological changes associated with apoptosis when transfected into NIH3T3 cells (Sanjo et al., *supra*). However, deletion of either the N-terminal kinase catalytic domain or the C-terminal domain of these proteins abolishes apoptosis activity, indicating that in addition to the kinase activity, activity in the C-terminal domain is also necessary for apoptosis, possibly as an interacting domain with a regulator or a specific substrate.

RICK is another STK recently identified as mediating a specific apoptotic pathway involving the death receptor, CD95 (Inohara, N. et al. (1998) J. Biol. Chem. 273:12296-12300). CD95 is a member of the tumor necrosis factor receptor superfamily and plays a critical role in the regulation and homeostasis of the immune system (Nagata, S. (1997) Cell 88:355-365). The CD95 receptor signaling pathway involves recruitment of various intracellular molecules to a receptor complex following ligand binding. This process includes recruitment of the cysteine protease caspase-8 which, in turn, activates a caspase cascade leading to cell death. RICK is composed of an N-terminal kinase catalytic domain and a C-terminal "caspase-recruitment" domain that interacts with caspase-like domains, indicating that RICK plays a role in the recruitment of caspase-8. This interpretation is supported by the fact that the expression of RICK in human 293T cells promotes activation of caspase-8 and potentiates the induction of apoptosis by various proteins involved in the CD95 apoptosis pathway (Inohara et al., supra).

# Mitochondrial Protein Kinases

10

15

20

25

30

35

A novel class of eukaryotic kinases, related by sequence to prokaryotic histidine protein kinases, are the mitochondrial protein kinases (MPKs) which seem to have no sequence similarity with other eukaryotic protein kinases. These protein kinases are located exclusively in the mitochondrial matrix space and may have evolved from genes originally present in respiration-dependent bacteria which were endocytosed by primitive eukaryotic cells. MPKs are responsible for phosphorylation and inactivation of the branched-chain alpha-ketoacid dehydrogenase and pyruvate dehydrogenase complexes (Harris, R.A. et al. (1995) Adv. Enzyme Regul. 34:147-162). Five MPKs have been identified. Four members correspond to pyruvate dehydrogenase kinase isozymes, regulating the activity of the pyruvate dehydrogenase complex, which is an important regulatory

enzyme at the interface between glycolysis and the citric acid cycle. The fifth member corresponds to a branched-chain alpha-ketoacid dehydrogenase kinase, important in the regulation of the pathway for the disposal of branched-chain amino acids. (Harris, R.A. et al. (1997) Adv. Enzyme Regul. 37:271-293). Both starvation and the diabetic state are known to result in a great increase in the activity of the pyruvate dehydrogenase kinase in the liver, heart and muscle of the rat. This increase contributes in both disease states to the phosphorylation and inactivation of the pyruvate dehydrogenase complex and conservation of pyruvate and lactate for gluconeogenesis (Harris (1995) supra).

# KINASES WITH NON-PROTEIN SUBSTRATES

# 10 Lipid and Inositol kinases

5

15

20

25

30

35

Lipid kinases phosphorylate hydroxyl residues on lipid head groups. A family of kinases involved in phosphorylation of phosphatidylinositol (PI) has been described, each member phosphorylating a specific carbon on the inositol ring (Leevers, S.J. et al. (1999) Curr. Opin. Cell. Biol. 11:219-225). The phosphorylation of phosphatidylinositol is involved in activation of the protein kinase C signaling pathway. The inositol phospholipids (phosphoinositides) intracellular signaling pathway begins with binding of a signaling molecule to a G-protein linked receptor in the plasma membrane. This leads to the phosphorylation of phosphatidylinositol (PI) residues on the inner side of the plasma membrane by inositol kinases, thus converting PI residues to the biphosphate state (PIP<sub>2</sub>). PIP<sub>2</sub> is then cleaved into inositol triphosphate (IP<sub>3</sub>) and diacylglycerol. These two products act as mediators for separate signaling pathways. Cellular responses that are mediated by these pathways are glycogen breakdown in the liver in response to vasopressin, smooth muscle contraction in response to acetylcholine, and thrombin-induced platelet aggregation.

PI 3-kinase (PI3K), which phosphorylates the D3 position of PI and its derivatives, has a central role in growth factor signal cascades involved in cell growth, differentiation, and metabolism. PI3K is a heterodimer consisting of an adapter subunit and a catalytic subunit. The adapter subunit acts as a scaffolding protein, interacting with specific tyrosine-phosphorylated proteins, lipid moieties, and other cytosolic factors. When the adapter subunit binds tyrosine phosphorylated targets, such as the insulin responsive substrate (IRS)-1, the catalytic subunit is activated and converts PI (4,5) bisphosphate (PIP<sub>2</sub>) to PI (3,4,5) P<sub>3</sub> (PIP<sub>3</sub>). PIP<sub>3</sub> then activates a number of other proteins, including PKA, protein kinase B (PKB), protein kinase C (PKC), glycogen synthase kinase (GSK)-3, and p70 ribosomal s6 kinase. PI3K also interacts directly with the cytoskeletal organizing proteins, Rac, rho, and cdc42 (Shepherd, P.R. et al. (1998) Biochem. J. 333:471-490). Animal models for diabetes, such as *obese* and *fat* mice, have altered PI3K adapter subunit levels. Specific mutations in the adapter subunit have also been found in an insulin-resistant Danish population, suggesting a role for PI3K in type-2 diabetes (Shepard, *supra*).

An example of lipid kinase phosphorylation activity is the phosphorylation of D-erythro-sphingosine to the sphingolipid metabolite, sphingosine-1-phosphate (SPP). SPP has emerged as a novel lipid second-messenger with both extracellular and intracellular actions (Kohama, T. et al. (1998) J. Biol. Chem. 273:23722-23728). Extracellularly, SPP is a ligand for the G-protein coupled receptor EDG-1 (endothelial-derived, G-protein coupled receptor). Intracellularly, SPP regulates cell growth, survival, motility, and cytoskeletal changes. SPP levels are regulated by sphingosine kinases that specifically phosphorylate D-erythro-sphingosine to SPP. The importance of sphingosine kinase in cell signaling is indicated by the fact that various stimuli, including platelet-derived growth factor (PDGF), nerve growth factor, and activation of protein kinase C, increase cellular levels of SPP by activation of sphingosine kinase, and the fact that competitive inhibitors of the enzyme selectively inhibit cell proliferation induced by PDGF (Kohama et al., supra).

### **Purine Nucleotide Kinases**

5

10

15

20

25

30

35

The purine nucleotide kinases, adenylate kinase (ATP:AMP phosphotransferase, or AdK) and guanylate kinase (ATP:GMP phosphotransferase, or GuK) play a key role in nucleotide metabolism and are crucial to the synthesis and regulation of cellular levels of ATP and GTP, respectively. These two molecules are precursors in DNA and RNA synthesis in growing cells and provide the primary source of biochemical energy in cells (ATP), and signal transduction pathways (GTP). Inhibition of various steps in the synthesis of these two molecules has been the basis of many antiproliferative drugs for cancer and antiviral therapy (Pillwein, K. et al. (1990) Cancer Res. 50:1576-1579).

AdK is found in almost all cell types and is especially abundant in cells having high rates of ATP synthesis and utilization such as skeletal muscle. In these cells AdK is physically associated with mitochondria and myofibrils, the subcellular structures that are involved in energy production and utilization, respectively. Recent studies have demonstrated a major function for AdK in transferring high energy phosphoryls from metabolic processes generating ATP to cellular components consuming ATP (Zeleznikar, R.J. et al. (1995) J. Biol. Chem. 270:7311-7319). Thus AdK may have a pivotal role in maintaining energy production in cells, particularly those having a high rate of growth or metabolism such as cancer cells, and may provide a target for suppression of its activity in order to treat certain cancers. Alternatively, reduced AdK activity may be a source of various metabolic, muscle-energy disorders that can result in cardiac or respiratory failure and may be treatable by increasing AdK activity.

GuK, in addition to providing a key step in the synthesis of GTP for RNA and DNA synthesis, also fulfills an essential function in signal transduction pathways of cells through the regulation of GDP and GTP. Specifically, GTP binding to membrane associated G proteins mediates the activation of cell receptors, subsequent intracellular activation of adenyl cyclase, and production

of the second messenger, cyclic AMP. GDP binding to G proteins inhibits these processes. GDP and GTP levels also control the activity of certain oncogenic proteins such as p21<sup>ras</sup> known to be involved in control of cell proliferation and oncogenesis (Bos, J.L. (1989) Cancer Res. 49:4682-4689). High ratios of GTP:GDP caused by suppression of GuK cause activation of p21<sup>ras</sup> and promote oncogenesis. Increasing GuK activity to increase levels of GDP and reduce the GTP:GDP ratio may provide a therapeutic strategy to reverse oncogenesis.

GuK is an important enzyme in the phosphorylation and activation of certain antiviral drugs useful in the treatment of herpes virus infections. These drugs include the guanine homologs acyclovir and buciclovir (Miller, W.H. and R.L. Miller (1980) J. Biol. Chem. 255:7204-7207; Stenberg, K. et al. (1986) J. Biol. Chem. 261:2134-2139). Increasing GuK activity in infected cells may provide a therapeutic strategy for augmenting the effectiveness of these drugs and possibly for reducing the necessary dosages of the drugs.

### **Pyrimidine Kinases**

5

10

15

20

25

30

35

The pyrimidine kinases are deoxycytidine kinase and thymidine kinase 1 and 2. Deoxycytidine kinase is located in the nucleus, and thymidine kinase 1 and 2 are found in the cytosol (Johansson, M. et al. (1997) Proc. Natl. Acad. Sci. USA 94:11941-11945). Phosphorylation of deoxyribonucleosides by pyrimidine kinases provides an alternative pathway for *de novo* synthesis of DNA precursors. The role of pyrimidine kinases, like purine kinases, in phosphorylation is critical to the activation of several chemotherapeutically important nucleoside analogues (Arner E.S. and S. Eriksson (1995) Pharmacol. Ther. 67:155-186).

# **PHOSPHATASES**

Protein phosphatases are generally characterized as either serine/threonine- or tyrosine-specific based on their preferred phospho-amino acid substrate. However, some phosphatases (DSPs, for dual specificity phosphatases) can act on phosphorylated tyrosine, serine, or threonine residues. The protein serine/threonine phosphatases (PSPs) are important regulators of many cAMP-mediated hormone responses in cells. Protein tyrosine phosphatases (PTPs) play a significant role in cell cycle and cell signaling processes. Another family of phosphatases is the acid phosphatase or histidine acid phosphatase (HAP) family whose members hydrolyze phosphate esters at acidic pH conditions.

PSPs are found in the cytosol, nucleus, and mitochondria and in association with cytoskeletal and membranous structures in most tissues, especially the brain. Some PSPs require divalent cations, such as Ca<sup>2+</sup> or Mn<sup>2+</sup>, for activity. PSPs play important roles in glycogen metabolism, muscle contraction, protein synthesis, T cell function, neuronal activity, oocyte maturation, and hepatic metabolism (reviewed in Cohen, P. (1989) Annu. Rev. Biochem. 58:453-508). PSPs can be separated into two classes. The PPP class includes PP1, PP2A, PP2B/calcineurin, PP4, PP5, PP6, and PP7.

Members of this class are composed of a homologous catalytic subunit bearing a very highly conserved signature sequence, coupled with one or more regulatory subunits (PROSITE PDOC00115). Further interactions with scaffold and anchoring molecules determine the intracellular localization of PSPs and substrate specificity. The PPM class consists of several closely related isoforms of PP2C and is evolutionarily unrelated to the PPP class.

5

10

15

20

25

30

35

PP1 dephosphorylates many of the proteins phosphorylated by cyclic AMP-dependent protein kinase (PKA) and is an important regulator of many cAMP-mediated hormone responses in cells. A number of isoforms have been identified, with the alpha and beta forms being produced by alternative splicing of the same gene. Both ubiquitous and tissue-specific targeting proteins for PP1 have been identified. In the brain, inhibition of PP1 activity by the dopamine and adenosine 3',5'-monophosphate-regulated phosphoprotein of 32kDa (DARPP-32) is necessary for normal dopamine response in neostriatal neurons (reviewed in Price, N.E. and M.C. Mumby (1999) Curr. Opin. Neurobiol. 9:336-342). PP1, along with PP2A, has been shown to limit motility in microvascular endothelial cells, suggesting a role for PSPs in the inhibition of angiogenesis (Gabel, S. et al. (1999) Otolaryngol. Head Neck Surg. 121:463-468).

PP2A is the main serine/threonine phosphatase. The core PP2A enzyme consists of a single 36 kDa catalytic subunit (C) associated with a 65 kDa scaffold subunit (A), whose role is to recruit additional regulatory subunits (B). Three gene families encoding B subunits are known (PR55, PR61, and PR72), each of which contain multiple isoforms, and additional families may exist (Millward, T.A et al. (1999) Trends Biosci. 24:186-191). These "B-type" subunits are cell type- and tissuespecific and determine the substrate specificity, enzymatic activity, and subcellular localization of the holoenzyme. The PR55 family is highly conserved and bears a conserved motif (PROSITE PDOC00785). PR55 increases PP2A activity toward mitogen-activated protein kinase (MAPK) and MAPK kinase (MEK). PP2A dephosphorylates the MAPK active site, inhibiting the cell's entry into mitosis. Several proteins can compete with PR55 for PP2A core enzyme binding, including the CKII kinase catalytic subunit, polyomavirus middle and small T antigens, and SV40 small t antigen. Viruses may use this mechanism to commandeer PP2A and stimulate progression of the cell through the cell cycle (Pallas, D.C. et al. (1992) J. Virol. 66:886-893). Altered MAP kinase expression is also implicated in a variety of disease conditions including cancer, inflammation, immune disorders, and disorders affecting growth and development. PP2A, in fact, can dephosphorylate and modulate the activities of more than 30 protein kinases in vitro, and other evidence suggests that the same is true in vivo for such kinases as PKB, PKC, the calmodulin-dependent kinases, ERK family MAP kinases, cyclin-dependent kinases, and the IkB kinases (reviewed in Millward et al., supra). PP2A is itself a substrate for CKI and CKII kinases, and can be stimulated by polycationic macromolecules. A PP2Alike phosphatase is necessary to maintain the G1 phase destruction of mammalian cyclins A and B

(Bastians, H. et al. (1999) Mol. Biol. Cell 10:3927-3941). PP2A is a major activity in the brain and is implicated in regulating neurofilament stability and normal neural function, particularly the phosphorylation of the microtubule-associated protein tau. Hyperphosphorylation of tau has been proposed to lead to the neuronal degeneration seen in Alzheimer's disease (reviewed in Price and Mumby, *supra*).

5

10

15

20

25

30

35

PP2B, or calcineurin, is a Ca<sup>2+</sup>-activated dimeric phosphatase and is particularly abundant in the brain. It consists of catalytic and regulatory subunits, and is activated by the binding of the calcium/calmodulin complex. Calcineurin is the target of the immunosuppressant drugs cyclosporine and FK506. Along with other cellular factors, these drugs interact with calcineurin and inhibit phosphatase activity. In T cells, this blocks the calcium dependent activation of the NF-AT family of transcription factors, leading to immunosuppression. This family is widely distributed, and it is likely that calcineurin regulates gene expression in other tissues as well. In neurons, calcineurin modulates functions which range from the inhibition of neurotransmitter release to desensitization of postsynaptic NMDA-receptor coupled calcium channels to long term memory (reviewed in Price and Mumby, supra).

Other members of the PPP class have recently been identified (Cohen, P.T. (1997) Trends Biochem. Sci. 22:245-251). One of them, PP5, contains regulatory domains with tetratricopeptide repeats. It can be activated by polyunsaturated fatty acids and anionic phospholipids *in vitro* and appears to be involved in a number of signaling pathways, including those controlled by atrial natriuretic peptide or steroid hormones (reviewed in Andreeva, A.V. and M.A. Kutuzov (1999) Cell Signal. 11:555-562).

PP2C is a ~42kDa monomer with broad substrate specificity and is dependent on divalent cations (mainly Mn<sup>2+</sup> or Mg<sup>2+</sup>) for its activity. PP2C proteins share a conserved N-terminal region with an invariant DGH motif, which contains an aspartate residue involved in cation binding (PROSITE PDOC00792). Targeting proteins and mechanisms regulating PP2C activity have not been identified. PP2C has been shown to inhibit the stress-responsive p38 and Jun kinase (JNK) pathways (Takekawa, M. et al. (1998) EMBO J. 17:4744-4752).

In contrast to PSPs, tyrosine-specific phosphatases (PTPs) are generally monomeric proteins of very diverse size (from 20kDa to greater than 100kDa) and structure that function primarily in the transduction of signals across the plasma membrane. PTPs are categorized as either soluble phosphatases or transmembrane receptor proteins that contain a phosphatase domain. All PTPs share a conserved catalytic domain of about 300 amino acids which contains the active site. The active site consensus sequence includes a cysteine residue which executes a nucleophilic attack on the phosphate moiety during catalysis (Neel, B.G. and N.K. Tonks (1997) Curr. Opin. Cell Biol. 9:193-204).

Receptor PTPs are made up of an N-terminal extracellular domain of variable length, a

transmembrane region, and a cytoplasmic region that generally contains two copies of the catalytic domain. Although only the first copy seems to have enzymatic activity, the second copy apparently affects the substrate specificity of the first. The extracellular domains of some receptor PTPs contain fibronectin-like repeats, immunoglobulin-like domains, MAM domains (an extracellular motif likely to have an adhesive function), or carbonic anhydrase-like domains (PROSITE PDOC 00323). This wide variety of structural motifs accounts for the diversity in size and specificity of PTPs.

5

10

15

20

25

30

35

PTPs play important roles in biological processes such as cell adhesion, lymphocyte activation, and cell proliferation. PTPs  $\mu$  and  $\kappa$  are involved in cell-cell contacts, perhaps regulating cadherin/catenin function. A number of PTPs affect cell spreading, focal adhesions, and cell motility, most of them via the integrin/tyrosine kinase signaling pathway (reviewed in Neel and Tonks, supra). CD45 phosphatases regulate signal transduction and lymphocyte activation (Ledbetter, J.A. et al. (1988) Proc. Natl. Acad. Sci. USA 85:8628-8632). Soluble PTPs containing Src-homology-2 domains have been identified (SHPs), suggesting that these molecules might interact with receptor tyrosine kinases. SHP-1 regulates cytokine receptor signaling by controlling the Janus family PTKs in hematopoietic cells, as well as signaling by the T-cell receptor and c-Kit (reviewed in Neel and Tonks, supra). M-phase inducer phosphatase plays a key role in the induction of mitosis by dephosphorylating and activating the PTK CDC2, leading to cell division (Sadhu, K. et al. (1990) Proc. Natl. Acad. Sci. USA 87:5139-5143). In addition, the genes encoding at least eight PTPs have been mapped to chromosomal regions that are translocated or rearranged in various neoplastic conditions, including lymphoma, small cell lung carcinoma, leukemia, adenocarcinoma, and neuroblastoma (reviewed in Charbonneau, H. and N.K. Tonks (1992) Annu. Rev. Cell Biol. 8:463-493). The PTP enzyme active site comprises the consensus sequence of the MTM1 gene family. The MTM1 gene is responsible for X-linked recessive myotubular myopathy, a congenital muscle disorder that has been linked to Xq28 (Kioschis, P. et al., (1998) Genomics 54:256-266). Many PTKs are encoded by oncogenes, and it is well known that oncogenesis is often accompanied by increased tyrosine phosphorylation activity. It is therefore possible that PTPs may serve to prevent or reverse cell transformation and the growth of various cancers by controlling the levels of tyrosine phosphorylation in cells. This is supported by studies showing that overexpression of PTP can suppress transformation in cells and that specific inhibition of PTP can enhance cell transformation (Charbonneau and Tonks, supra).

Apyrases are enzymes that efficiently hydrolyze ATP and ADP and may function either intraor extracellularly. One type of apyrase, ATP-diphosphohydrolase, catalyzes the hydrolysis of phosphoanhydride bonds of nucleoside tri- and di-phosphates in the presence of divalent cations (Nourizad, N. et al., (2003) Protein Purif. 27:229-237).

Dual specificity phosphatases (DSPs) are structurally more similar to the PTPs than the PSPs.

DSPs bear an extended PTP active site motif with an additional 7 amino acid residues. DSPs are primarily associated with cell proliferation and include the cell cycle regulators cdc25A, B, and C. The phosphatases DUSP1 and DUSP2 inactivate the MAPK family members ERK (extracellular signal-regulated kinase), JNK (c-Jun N-terminal kinase), and p38 on both tyrosine and threonine residues (PROSITE PDOC 00323, supra). In the activated state, these kinases have been implicated in neuronal differentiation, proliferation, oncogenic transformation, platelet aggregation, and apoptosis. Thus, DSPs are necessary for proper regulation of these processes (Muda, M. et al. (1996) J. Biol. Chem. 271:27205-27208). The tumor suppressor PTEN is a DSP that also shows lipid phosphatase activity. It seems to negatively regulate interactions with the extracellular matrix and maintains sensitivity to apoptosis. PTEN has been implicated in the prevention of angiogenesis (Giri, D. and M. Ittmann (1999) Hum. Pathol. 30:419-424) and abnormalities in its expression are associated with numerous cancers (reviewed in Tamura, M. et al. (1999) J. Natl. Cancer Inst. 91:1820-1828).

Histidine acid phosphatase (HAP; EXPASY EC 3.1.3.2), also known as acid phosphatase, hydrolyzes a wide spectrum of substrates including alkyl, aryl, and acyl orthophosphate monoesters and phosphorylated proteins at low pH. HAPs share two regions of conserved sequences, each centered around a histidine residue which is involved in catalytic activity. Members of the HAP family include lysosomal acid phosphatase (LAP) and prostatic acid phosphatase (PAP), both sensitive to inhibition by L-tartrate (PROSITE PDOC00538).

Synaptojanin, a polyphosphoinositide phosphatase, dephosphorylates phosphoinositides at positions 3, 4 and 5 of the inositol ring. Synaptojanin is a major presynaptic protein found at clathrin-coated endocytic intermediates in nerve terminals, and binds the clathrin coat-associated protein, EPS15. This binding is mediated by the C-terminal region of synaptojanin-170, which has 3 Asp-Pro-Phe amino acid repeats. Further, this 3 residue repeat had been found to be the binding site for the EH domains of EPS15 (Haffner, C. et al. (1997) FEBS Lett. 419:175-180). Additionally, synaptojanin may potentially regulate interactions of endocytic proteins with the plasma membrane, and be involved in synaptic vesicle recycling (Brodin, L. et al. (2000) Curr. Opin. Neurobiol. 10:312-320). Studies in mice with a targeted disruption in the synaptojanin 1 gene (Synj1) were shown to support coat formation of endocytic vesicles more effectively than was seen in wild-type mice, suggesting that Synj1 can act as a negative regulator of membrane-coat protein interactions. These findings provide genetic evidence for a crucial role of phosphoinositide metabolism in synaptic vesicle recycling (Cremona, O. et al. (1999) Cell 99:179-188).

# **Expression profiling**

10

15

20

25

30

35

Microarrays are analytical tools used in bioanalysis. A microarray has a plurality of molecules spatially distributed over, and stably associated with, the surface of a solid support.

Microarrays of polypeptides, polynucleotides, and/or antibodies have been developed and find use in a variety of applications, such as gene sequencing, monitoring gene expression, gene mapping, bacterial identification, drug discovery, and combinatorial chemistry.

One area in particular in which microarrays find use is in gene expression analysis. Array technology can provide a simple way to explore the expression of a single polymorphic gene or the expression profile of a large number of related or unrelated genes. When the expression of a single gene is examined, arrays are employed to detect the expression of a specific gene or its variants. When an expression profile is examined, arrays provide a platform for identifying genes that are tissue specific, are affected by a substance being tested in a toxicology assay, are part of a signaling cascade, carry out housekeeping functions, or are specifically related to a particular genetic predisposition, condition, disease, or disorder.

### Neurological disorders

10

15

20

25

30

35

Characterization of region-specific gene expression in the human brain provides a context and background for molecular neurobiology on a variety of neurological disorders.

Alzheimer's disease (AD) is a progressive, neurodestructive process of the human neocortex, characterized by the deterioration of memory and higher cognitive function. A progressive and irreversible brain disorder, AD is characterized by three major pathogenic episodes involving (a) an aberrant processing and deposition of beta-amyloid precursor protein (betaAPP) to form neurotoxic beta-amyloid (betaA) peptides and an aggregated insoluble polymer of betaA that forms the senile plaque, (b) the establishment of intraneuronal neuritic tau pathology yielding widespread deposits of agyrophilic neurofibrillary tangles (NFT) and (c) the initiation and proliferation of a brain-specific inflammatory response. These three seemingly disperse attributes of AD etiopathogenesis are linked by the fact that proinflammatory microglia, reactive astrocytes and their associated cytokines and chemokines are associated with the biology of the microtubule associated protein tau, betaA speciation and aggregation. Missense mutations in the presentlin genes PS1 and PS2, implicated in early onset familial AD, cause abnormal betaAPP processing with resultant overproduction of betaA42 and related neurotoxic peptides. Specific betaA fragments such as betaA42 can further potentiate proinflammatory mechanisms. Expression of the inducible oxidoreductase cyclooxygenase-2 and cytosolic phospholipase A2 (cPLA2) is strongly activated during cerebral ischemia and trauma, epilepsy and AD, indicating the induction of proinflammatory gene pathways as a response to brain injury. Neurotoxic metals such as aluminum and zinc, both implicated in AD etiopathogenesis, and arachidonic acid, a major metabolite of brain cPLA2 activity, each polymerize hyperphosphorylated tau to form NFT-like bundles. Studies have identified a reduced risk for AD in patients aged over 70 years who were previously treated with non-steroidal anti-inflammatory drugs for non-CNS afflictions that include arthritis. (For a review of the interrelationships between the

mechanisms of PS1, PS2 and betaAPP gene expression, tau and betaA deposition and the induction, regulation and proliferation in AD of the neuroinflammatory response, see Lukiw, W.J, and Bazan, N.G. (2000) Neurochem. Res. 2000 25:1173-1184).

### **Breast Cancer**

5

10

15

20.

25

30

35

More than 180,000 new cases of breast cancer are diagnosed each year, and the mortality rate for breast cancer approaches 10% of all deaths in females between the ages of 45-54 (Gish, K. (1999) AWIS Magazine 28:7-10). However, the survival rate based on early diagnosis of localized breast cancer is extremely high (97%), compared with the advanced stage of the disease in which the tumor has spread beyond the breast (22%). Current procedures for clinical breast examination are lacking in sensitivity and specificity, and efforts are underway to develop comprehensive gene expression profiles for breast cancer that may be used in conjunction with conventional screening methods to improve diagnosis and prognosis of this disease (Perou, C.M. et al. (2000) Nature 406:747-752).

Mutations in two genes, BRCA1 and BRCA2, are known to greatly predispose a woman to breast cancer and may be passed on from parents to children (Gish, *supra*). However, this type of hereditary breast cancer accounts for only about 5% to 9% of breast cancers, while the vast majority of breast cancer is due to non-inherited mutations that occur in breast epithelial cells.

The relationship between expression of epidermal growth factor (EGF) and its receptor, EGFR, to human mammary carcinoma has been particularly well studied. (See Khazaie, K. et al. (1993) Cancer and Metastasis Rev. 12:255-274, and references cited therein for a review of this area.) Overexpression of EGFR, particularly coupled with down-regulation of the estrogen receptor, is a marker of poor prognosis in breast cancer patients. In addition, EGFR expression in breast tumor metastases is frequently elevated relative to the primary tumor, suggesting that EGFR is involved in tumor progression and metastasis. This is supported by accumulating evidence that EGF has effects on cell functions related to metastatic potential, such as cell motility, chemotaxis, secretion and differentiation. Changes in expression of other members of the erbB receptor family, of which EGFR is one, have also been implicated in breast cancer. The abundance of erbB receptors, such as HER-2/neu, HER-3, and HER-4, and their ligands in breast cancer points to their functional importance in the pathogenesis of the disease, and may therefore provide targets for therapy of the disease (Bacus, S.S. et al. (1994) Am. J. Clin. Pathol. 102:S13-S24). Other known markers of breast cancer include a human secreted frizzled protein mRNA that is downregulated in breast tumors; the matrix G1a protein which is overexpressed in human breast carcinoma cells; Drg1 or RTP, a gene whose expression is diminished in colon, breast, and prostate tumors; maspin, a tumor suppressor gene downregulated in invasive breast carcinomas; and CaN19, a member of the S100 protein family, all of which are down-regulated in mammary carcinoma cells relative to normal mammary epithelial cells (Zhou, Z. et al. (1998) Int. J. Cancer 78:95-99; Chen, L. et al. (1990) Oncogene 5:1391-1395; Ulrix,

W. et al (1999) FEBS Lett 455:23-26; Sager, R. et al. (1996) Curr. Top. Microbiol. Immunol. 213:51-64; and Lee, S.W. et al. (1992) Proc. Natl. Acad. Sci. USA 89:2504-2508).

Cell lines derived from human mammary epithelial cells at various stages of breast cancer provide a useful model to study the process of malignant transformation and tumor progression as it has been shown that these cell lines retain many of the properties of their parental tumors for lengthy culture periods (Wistuba, I.I. et al. (1998) Clin. Cancer Res. 4:2931-2938). Such a model is particularly useful for comparing phenotypic and molecular characteristics of human mammary epithelial cells at various stages of malignant transformation.

# Colon Cancer

10

15

20

25

30

35

While soft tissue sarcomas are relatively rare, more than 50% of new patients diagnosed with the disease will die from it. The molecular pathways leading to the development of sarcomas are relatively unknown, due to the rarity of the disease and variation in pathology. Colon cancer evolves through a multi-step process whereby pre-malignant colonocytes undergo a relatively defined sequence of events leading to tumor formation. Several factors participate in the process of tumor progression and malignant transformation including genetic factors, mutations, and selection.

To understand the nature of gene alterations in colorectal cancer, a number of studies have focused on the inherited syndromes. Familial adenomatous polyposis (FAP), is caused by mutations in the adenomatous polyposis coli gene (APC), resulting in truncated or inactive forms of the protein. This tumor suppressor gene has been mapped to chromosome 5q. Hereditary nonpolyposis colorectal cancer (HNPCC) is caused by mutations in mis-match repair genes. Although hereditary colon cancer syndromes occur in a small percentage of the population and most colorectal cancers are considered sporadic, knowledge from studies of the hereditary syndromes can be generally applied. For instance, somatic mutations in APC occur in at least 80% of sporadic colon tumors. APC mutations are thought to be the initiating event in the disease. Other mutations occur subsequently. Approximately 50% of colorectal cancers contain activating mutations in ras, while 85% contain inactivating mutations in p53. Changes in all of these genes lead to gene expression changes in colon cancer. Lung Cancer

The potential application of gene expression profiling is particularly relevant to improving diagnosis, prognosis, and treatment of cancer, such as lung cancer. Lung cancer is the leading cause of cancer death in the United States, affecting more than 100,000 men and 50,000 women each year. Nearly 90% of the patients diagnosed with lung cancer are cigarette smokers. Tobacco smoke contains thousands of noxious substances that induce carcinogen metabolizing enzymes and covalent DNA adduct formation in the exposed bronchial epithelium. In nearly 80% of patients diagnosed with lung cancer, metastasis has already occurred. Most commonly lung cancers metastasize to pleura, brain, bone, pericardium, and liver. The decision to treat with surgery, radiation therapy, or

chemotherapy is made on the basis of tumor histology, response to growth factors or hormones, and sensitivity to inhibitors or drugs. With current treatments, most patients die within one year of diagnosis. Earlier diagnosis and a systematic approach to identification, staging, and treatment of lung cancer could positively affect patient outcome.

Lung cancers progress through a series of morphologically distinct stages from hyperplasia to invasive carcinoma. Malignant lung cancers are divided into two groups comprising four histopathological classes. The Non Small Cell Lung Carcinoma (NSCLC) group includes squamous cell carcinomas, adenocarcinomas, and large cell carcinomas and accounts for about 70% of all lung cancer cases. Adenocarcinomas typically arise in the peripheral airways and often form mucin secreting glands. Squamous cell carcinomas typically arise in proximal airways. The histogenesis of squamous cell carcinomas may be related to chronic inflammation and injury to the bronchial epithelium, leading to squamous metaplasia. The Small Cell Lung Carcinoma (SCLC) group accounts for about 20% of lung cancer cases. SCLCs typically arise in proximal airways and exhibit a number of paraneoplastic syndromes including inappropriate production of adrenocorticotropin and anti-diuretic hormone.

Lung cancer cells accumulate numerous genetic lesions, many of which are associated with cytologically visible chromosomal aberrations. The high frequency of chromosomal deletions associated with lung cancer may reflect the role of multiple tumor suppressor loci in the etiology of this disease. Deletion of the short arm of chromosome 3 is found in over 90% of cases and represents one of the earliest genetic lesions leading to lung cancer. Deletions at chromosome arms 9p and 17p are also common. Other frequently observed genetic lesions include overexpression of telomerase, activation of oncogenes such as K-ras and c-myc, and inactivation of tumor suppressor genes such as RB, p53 and CDKN2.

Genes differentially regulated in lung cancer have been identified by a variety of methods. Using mRNA differential display technology, Manda et al. (1999; Genomics 51:5-14) identified five genes differentially expressed in lung cancer cell lines compared to normal bronchial epithelial cells. Among the known genes, pulmonary surfactant apoprotein A and alpha 2 macroglobulin were down regulated whereas nm23H1 was upregulated. Petersen et al. (2000; Int J. Cancer, 86:512-517) used suppression subtractive hybridization to identify 552 clones differentially expressed in lung tumor derived cell lines, 205 of which represented known genes. Among the known genes, thrombospondin-1, fibronectin, intercellular adhesion molecule 1, and cytokeratins 6 and 18 were previously observed to be differentially expressed in lung cancers. Wang et al. (2000; Oncogene 19:1519-1528) used a combination of microarray analysis and subtractive hybridization to identify 17 genes differentially overexpressed in squamous cell carcinoma compared with normal lung epithelium. Among the known genes they identified were keratin isoform 6, KOC, SPRC, IGFb2,

connexin 26, plakofillin 1 and cytokeratin 13.

# Ovarian Cancer

10

15

20

25

30

35

Ovarian cancer is the leading cause of death from a gynecologic cancer. The majority of ovarian cancers are derived from epithelial cells, and 70% of patients with epithelial ovarian cancers present with late-stage disease. As a result, the long-term survival rate for this disease is very low. Identification of early-stage markers for ovarian cancer would significantly increase the survival rate. Genetic variations involved in ovarian cancer development include mutation of p53 and microsatellite instability. Gene expression patterns likely vary when normal ovary is compared to ovarian tumors. Prostate Cancer

As with most tumors, prostate cancer develops through a multistage progression ultimately resulting in an aggressive tumor phenotype. The initial step in tumor progression involves the hyperproliferation of normal luminal and/or basal epithelial cells. Androgen responsive cells become hyperplastic and evolve into early-stage tumors. Although early-stage tumors are often androgen sensitive and respond to androgen ablation, a population of androgen independent cells evolve from the hyperplastic population. These cells represent a more advanced form of prostate tumor that may become invasive and potentially become metastatic to the bone, brain, or lung. A variety of genes may be differentially expressed during tumor progression. For example, loss of heterozygosity (LOH) is frequently observed on chromosome 8p in prostate cancer. Fluorescence in situ hybridization (FISH) revealed a deletion for at least 1 locus on 8p in 29 (69%) tumors, with a significantly higher frequency of the deletion on 8p21.2-p21.1 in advanced prostate cancer than in localized prostate cancer, implying that deletions on 8p22-p21.3 play an important role in tumor differentiation, while 8p21.2-p21.1 deletion plays a role in progression of prostate cancer (Oba, K. et al. (2001) Cancer Genet. Cytogenet. 124: 20-26).

PZ-HPV-7 was derived from epithelial cells cultured from normal tissue from the peripheral zone of the prostate. The cells were transformed by transfection with HPV18. Immunocytochemical analysis showed expression of keratins 5 and 8 and also the early region 6 (E6) oncoprotein of HPV. The cells are negative for prostate specific antigen (PSA).

Interleukin 6 (IL-6) is a multifunctional protein that plays important roles in host defense, acute phase reactions, immune responses, and hematopoiesis. According to the type of biological responses being studied, IL-6 was previously named interferon-b2, 26-kDa protein, B cell stimulatory factor-2 (BSF-2), hybridoma/plasmacytoma growth factor, hepatocyte stimulating factor, cytotoxic T cell differentiation factor, and macrophage-granulocyte inducing factor 2A (MGI-2A). The IL-6 designation was adopted after these variously named proteins were found to be identical on the basis of their amino acid and/or nucleotide sequences. IL-6 is expressed by a variety of normal and transformed cells including T cells, B cells, monocytes/macrophages, fibroblasts, hepatocytes,

keratinocytes, astrocytes, vascular endothelial cells, and various tumor cells. The production of IL-6 is upregulated by numerous signals including mitogenic or antigenic stimulation, LPS, calcium ionophore, IL-1, IL-2, IFN, TNF, PDGF, and viruses. IL-4 and IL-13 inhibit IL-6 expression in monocytes.

### 5 Obesity

10

15

20

25

30

35

The most important function of adipose tissue is its ability to store and release fat during periods of feeding and fasting. White adipose tissue is the major energy reserve in periods of excess energy use. Its primary purpose is mobilization during energy deprivation. Understanding how various molecules regulate adiposity and energy balance in physiological and pathophysiological situations may lead to the development of novel therapeutics for human obesity. Adipose tissue is also one of the important target tissues for insulin. Adipogenesis and insulin resistance in type II diabetes are linked and present intriguing relations. Most patients with type II diabetes are obese and obesity in turn causes insulin resistance.

The majority of research in adipocyte biology to date has been done using transformed mouse preadipocyte cell lines. The culture condition which stimulates mouse preadipocyte differentiation is different from that for inducing human primary preadipocyte differentiation. In addition, primary cells are diploid and may therefore reflect the *in vivo* context better than aneuploid cell lines. Understanding the gene expression profile during adipogenesis in humans will lead to an understanding of the fundamental mechanism of adiposity regulation. Furthermore, through comparing the gene expression profiles of adipogenesis between donors with normal weight and donors with obesity, identification of crucial genes, potential drug targets for obesity and type II diabetes, will be possible.

Thiazolidinediones (TZDs) act as agonists for the peroxisome-proliferator-activated receptor gamma (PPAR $\gamma$ ), a member of the nuclear hormone receptor superfamily. TZDs reduce hyperglycemia, hyperinsulinemia, and hypertension, in part by promoting glucose metabolism and inhibiting gluconeogenesis. Roles for PPAR $\gamma$  and its agonists have been demonstrated in a wide range of pathological conditions including diabetes, obesity, hypertension, atherosclerosis, polycystic ovarian syndrome, and cancers such as breast, prostate, liposarcoma, and colon cancer.

The mechanism by which TZDs and other PPAR $\gamma$  agonists enhance insulin sensitivity is not fully understood, but may involve the ability of PPAR $\gamma$  to promote adipogenesis. When ectopically expressed in cultured preadipocytes, PPAR $\gamma$  is a potent inducer of adipocyte differentiation. TZDs, in combination with insulin and other factors, can also enhance differentiation of human preadipocytes in culture (Adams et al. (1997) J. Clin. Invest. 100:3149-3153). The relative potency of different TZDs in promoting adipogenesis *in vitro* is proportional to both their insulin sensitizing effects *in vivo*, and their ability to bind and activate PPAR $\gamma$  *in vitro*. Interestingly, adipocytes derived

from omental adipose depots are refractory to the effects of TZDs. It has therefore been suggested that the insulin sensitizing effects of TZDs may result from their ability to promote adipogenesis in subcutaneous adipose depots (Adams et al., *supra*). Further, dominant negative mutations in the PPARγ gene have been identified in two non-obese subjects with severe insulin resistance, hypertension, and overt non-insulin dependent diabetes mellitus (NIDDM) (Barroso et al. (1998) Nature 402:880-883).

NIDDM is the most common form of diabetes mellitus, a chronic metabolic disease that affects 143 million people worldwide. NIDDM is characterized by abnormal glucose and lipid metabolism that results from a combination of peripheral insulin resistance and defective insulin secretion. NIDDM has a complex, progressive etiology and a high degree of heritability. Numerous complications of diabetes including heart disease, stroke, renal failure, retinopathy, and peripheral neuropathy contribute to the high rate of morbidity and mortality.

10

15

20

30

35

At the molecular level, PPARγ functions as a ligand activated transcription factor. In the presence of ligand, PPARγ forms a heterodimer with the retinoid X receptor (RXR) which then activates transcription of target genes containing one or more copies of a PPARγ response element (PPRE). Many genes important in lipid storage and metabolism contain PPREs and have been identified as PPARγ targets, including PEPCK, aP2, LPL, ACS, and FAT-P (Auwerx, J. (1999) Diabetologia 42:1033-1049). Multiple ligands for PPARγ have been identified. These include a variety of fatty acid metabolites; synthetic drugs belonging to the TZD class, such as Pioglitazone and Rosiglitazone (BRL49653); and certain non-glitazone tyrosine analogs such as GI262570 and GW1929. The prostaglandin derivative 15-dPGJ2 is a potent endogenous ligand for PPARγ.

Expression of PPARγ is very high in adipose but barely detectable in skeletal muscle, the primary site for insulin stimulated glucose disposal in the body. PPARγ is also moderately expressed in large intestine, kidney, liver, vascular smooth muscle, hematopoietic cells, and macrophages. The high expression of PPARγ in adipose tissue suggests that the insulin sensitizing effects of TZDs may result from alterations in the expression of one or more PPARγ regulated genes in adipose tissue. Identification of PPARγ target genes will contribute to better drug design and the development of novel therapeutic strategies for diabetes, obesity, and other conditions.

Systematic attempts to identify PPARγ target genes have been made in several rodent models of obesity and diabetes (Suzuki et al. (2000) Jpn. J. Pharmacol. 84:113-123; Way et al. (2001) Endocrinology 142:1269-1277). However, a serious drawback of the rodent gene expression studies is that significant differences exist between human and rodent models of adipogenesis, diabetes, and obesity (Taylor (1999) Cell 97:9-12; Gregoire et al. (1998) Physiol. Reviews 78:783-809). Therefore, an unbiased approach to identifying TZD regulated genes in primary cultures of human tissues is necessary to fully elucidate the molecular basis for diseases associated with PPARγ activity.

There is a need in the art for new compositions, including nucleic acids and proteins, for the diagnosis, prevention, and treatment of cardiovascular diseases, immune system disorders, neurological disorders, disorders affecting growth and development, lipid disorders, cell proliferative disorders, and cancers.

5

10

15

20

25

30

35

#### SUMMARY OF THE INVENTION

Various embodiments of the invention provide purified polypeptides, kinases and phosphatases, referred to collectively as 'KPP' and individually as 'KPP-1,' 'KPP-2,' 'KPP-3,' 'KPP-4,' 'KPP-5,' 'KPP-6,' 'KPP-7,' 'KPP-8,' 'KPP-9,' 'KPP-10,' 'KPP-11,' 'KPP-12,' 'KPP-13,' 'KPP-14,' 'KPP-15,' 'KPP-16,' 'KPP-17,' 'KPP-18,' 'KPP-19,' 'KPP-20,' 'KPP-21,' 'KPP-22,' 'KPP-23,' 'KPP-24,' 'KPP-25,' 'KPP-26,' 'KPP-27,' 'KPP-28,' 'KPP-29,' 'KPP-30,' 'KPP-31,' 'KPP-32,' 'KPP-33,' 'KPP-34,' 'KPP-35,' 'KPP-36,' 'KPP-37,' 'KPP-38,' 'KPP-39,' 'KPP-40,' 'KPP-41,' 'KPP-42,' and 'KPP-43' and methods for using these proteins and their encoding polynucleotides for the detection, diagnosis, and treatment of diseases and medical conditions. Embodiments also provide methods for utilizing the purified kinases and phosphatases and/or their encoding polynucleotides for facilitating the drug discovery process, including determination of efficacy, dosage, toxicity, and pharmacology. Related embodiments provide methods for utilizing the purified kinases and phosphatases and/or their encoding polynucleotides for investigating the pathogenesis of diseases and medical conditions.

An embodiment provides an isolated polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-43, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical or at least about 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-43, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-43, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-43. Another embodiment provides an isolated polypeptide comprising an amino acid sequence of SEQ ID NO:1-43.

Still another embodiment provides an isolated polynucleotide encoding a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-43, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical or at least about 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-43, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-43,

and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-43. In another embodiment, the polynucleotide encodes a polypeptide selected from the group consisting of SEQ ID NO:1-43. In an alternative embodiment, the polynucleotide is selected from the group consisting of SEQ ID NO:44-86.

5

10

15

20

25

30

35

Still another embodiment provides a recombinant polynucleotide comprising a promoter sequence operably linked to a polynucleotide encoding a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-43, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical or at least about 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-43, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-43, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-43. Another embodiment provides a cell transformed with the recombinant polynucleotide. Yet another embodiment provides a transgenic organism comprising the recombinant polynucleotide.

Another embodiment provides a method for producing a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-43, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical or at least about 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-43, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-43, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-43. The method comprises a) culturing a cell under conditions suitable for expression of the polypeptide, wherein said cell is transformed with a recombinant polynucleotide comprising a promoter sequence operably linked to a polynucleotide encoding the polypeptide, and b) recovering the polypeptide so expressed.

Yet another embodiment provides an isolated antibody which specifically binds to a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-43, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical or at least about 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-43, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-43, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-43.

Still yet another embodiment provides an isolated polynucleotide selected from the group consisting of a) a polynucleotide comprising a polynucleotide sequence selected from the group

consisting of SEQ ID NO:44-86, b) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical or at least about 90% identical to a polynucleotide sequence selected from the group consisting of SEQ ID NO:44-86, c) a polynucleotide complementary to the polynucleotide of a), d) a polynucleotide complementary to the polynucleotide of b), and e) an RNA equivalent of a)-d). In other embodiments, the polynucleotide can comprise at least about 20, 30, 40, 60, 80, or 100 contiguous nucleotides.

Yet another embodiment provides a method for detecting a target polynucleotide in a sample, said target polynucleotide being selected from the group consisting of a) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:44-86, b) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical or at least about 90% identical to a polynucleotide sequence selected from the group consisting of SEQ ID NO:44-86, c) a polynucleotide complementary to the polynucleotide of a), d) a polynucleotide complementary to the polynucleotide of b), and e) an RNA equivalent of a)-d). The method comprises a) hybridizing the sample with a probe comprising at least 20 contiguous nucleotides comprising a sequence complementary to said target polynucleotide in the sample, and which probe specifically hybridizes to said target polynucleotide, under conditions whereby a hybridization complex is formed between said probe and said target polynucleotide or fragments thereof, and b) detecting the presence or absence of said hybridization complex. In a related embodiment, the method can include detecting the amount of the hybridization complex. In still other embodiments, the probe can comprise at least about 20, 30, 40, 60, 80, or 100 contiguous nucleotides.

Still yet another embodiment provides a method for detecting a target polynucleotide in a sample, said target polynucleotide being selected from the group consisting of a) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:44-86, b) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical or at least about 90% identical to a polynucleotide sequence selected from the group consisting of SEQ ID NO:44-86, c) a polynucleotide complementary to the polynucleotide of a), d) a polynucleotide complementary to the polynucleotide of b), and e) an RNA equivalent of a)-d). The method comprises a) amplifying said target polynucleotide or fragment thereof using polymerase chain reaction amplification, and b) detecting the presence or absence of said amplified target polynucleotide or fragment thereof. In a related embodiment, the method can include detecting the amount of the amplified target polynucleotide or fragment thereof.

Another embodiment provides a composition comprising an effective amount of a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-43, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical or at least about 90% identical to an

amino acid sequence selected from the group consisting of SEQ ID NO:1-43, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-43, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-43, and a pharmaceutically acceptable excipient. In one embodiment, the composition can comprise an amino acid sequence selected from the group consisting of SEQ ID NO:1-43. Other embodiments provide a method of treating a disease or condition associated with decreased or abnormal expression of functional KPP, comprising administering to a patient in need of such treatment the composition.

Yet another embodiment provides a method for screening a compound for effectiveness as an agonist of a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-43, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical or at least about 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-43, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-43, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-43. The method comprises a) contacting a sample comprising the polypeptide with a compound, and b) detecting agonist activity in the sample. Another embodiment provides a composition comprising an agonist compound identified by the method and a pharmaceutically acceptable excipient. Yet another embodiment provides a method of treating a disease or condition associated with decreased expression of functional KPP, comprising administering to a patient in need of such treatment the composition.

10

15

20

25

30

35

Still yet another embodiment provides a method for screening a compound for effectiveness as an antagonist of a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-43, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical or at least about 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-43, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-43, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-43. The method comprises a) contacting a sample comprising the polypeptide with a compound, and b) detecting antagonist activity in the sample. Another embodiment provides a composition comprising an antagonist compound identified by the method and a pharmaceutically acceptable excipient. Yet another embodiment provides a method of treating a disease or condition associated with overexpression of functional KPP, comprising administering to a patient in need of such treatment the composition.

Another embodiment provides a method of screening for a compound that specifically binds

to a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-43, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical or at least about 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-43, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-43, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-43. The method comprises a) combining the polypeptide with at least one test compound under suitable conditions, and b) detecting binding of the polypeptide to the test compound, thereby identifying a compound that specifically binds to the polypeptide.

10

15

20

25

30

35

Yet another embodiment provides a method of screening for a compound that modulates the activity of a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-43, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical or at least about 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-43, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-43, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-43. The method comprises a) combining the polypeptide with at least one test compound under conditions permissive for the activity of the polypeptide, b) assessing the activity of the polypeptide in the presence of the test compound, and c) comparing the activity of the polypeptide in the presence of the test compound with the activity of the polypeptide in the absence of the test compound, wherein a change in the activity of the polypeptide in the presence of the test compound is indicative of a compound that modulates the activity of the polypeptide.

Still yet another embodiment provides a method for screening a compound for effectiveness in altering expression of a target polynucleotide, wherein said target polynucleotide comprises a polynucleotide sequence selected from the group consisting of SEQ ID NO:44-86, the method comprising a) contacting a sample comprising the target polynucleotide with a compound, b) detecting altered expression of the target polynucleotide, and c) comparing the expression of the target polynucleotide in the presence of varying amounts of the compound and in the absence of the compound.

Another embodiment provides a method for assessing toxicity of a test compound, said method comprising a) treating a biological sample containing nucleic acids with the test compound; b) hybridizing the nucleic acids of the treated biological sample with a probe comprising at least 20 contiguous nucleotides of a polynucleotide selected from the group consisting of i) a polynucleotide

comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:44-86, ii) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical or at least about 90% identical to a polynucleotide sequence selected from the group consisting of SEQ ID NO:44-86, iii) a polynucleotide having a sequence complementary to i), iv) a polynucleotide complementary to the polynucleotide of ii), and v) an RNA equivalent of i)-iv). Hybridization occurs under conditions whereby a specific hybridization complex is formed between said probe and a target polynucleotide in the biological sample, said target polynucleotide selected from the group consisting of i) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:44-86, ii) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical or at least about 90% identical to a polynucleotide sequence selected from the group consisting of SEQ ID NO:44-86, iii) a polynucleotide complementary to the polynucleotide of i), iv) a polynucleotide complementary to the polynucleotide of ii), and v) an RNA equivalent of i)iv). Alternatively, the target polynucleotide can comprise a fragment of a polynucleotide selected from the group consisting of i)-v) above; c) quantifying the amount of hybridization complex; and d) comparing the amount of hybridization complex in the treated biological sample with the amount of hybridization complex in an untreated biological sample, wherein a difference in the amount of hybridization complex in the treated biological sample is indicative of toxicity of the test compound.

10

15

20

25

30

35

#### BRIEF DESCRIPTION OF THE TABLES

Table 1 summarizes the nomenclature for full length polynucleotide and polypeptide embodiments of the invention.

Table 2 shows the GenBank identification number and annotation of the nearest GenBank homolog, and the PROTEOME database identification numbers and annotations of PROTEOME database homologs, for polypeptide embodiments of the invention. The probability scores for the matches between each polypeptide and its homolog(s) are also shown.

Table 3 shows structural features of polypeptide embodiments, including predicted motifs and domains, along with the methods, algorithms, and searchable databases used for analysis of the polypeptides.

Table 4 lists the cDNA and/or genomic DNA fragments which were used to assemble polynucleotide embodiments, along with selected fragments of the polynucleotides.

Table 5 shows representative cDNA libraries for polynucleotide embodiments.

Table 6 provides an appendix which describes the tissues and vectors used for construction of the cDNA libraries shown in Table 5.

Table 7 shows the tools, programs, and algorithms used to analyze polynucleotides and polypeptides, along with applicable descriptions, references, and threshold parameters.

Table 8 shows single nucleotide polymorphisms found in polynucleotide sequences of the invention, along with allele frequencies in different human populations.

### DESCRIPTION OF THE INVENTION

Before the present proteins, nucleic acids, and methods are described, it is understood that embodiments of the invention are not limited to the particular machines, instruments, materials, and methods described, as these may vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to limit the scope of the invention.

As used herein and in the appended claims, the singular forms "a," "an," and "the" include plural reference unless the context clearly dictates otherwise. Thus, for example, a reference to "a host cell" includes a plurality of such host cells, and a reference to "an antibody" is a reference to one or more antibodies and equivalents thereof known to those skilled in the art, and so forth.

Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any machines, materials, and methods similar or equivalent to those described herein can be used to practice or test the present invention, the preferred machines, materials and methods are now described. All publications mentioned herein are cited for the purpose of describing and disclosing the cell lines, protocols, reagents and vectors which are reported in the publications and which might be used in connection with various embodiments of the invention. Nothing herein is to be construed as an admission that the invention is not entitled to antedate such disclosure by virtue of prior invention:

# **DEFINITIONS**

5

10

15

25

30

35

"KPP" refers to the amino acid sequences of substantially purified KPP obtained from any species, particularly a mammalian species, including bovine, ovine, porcine, murine, equine, and human, and from any source, whether natural, synthetic, semi-synthetic, or recombinant.

The term "agonist" refers to a molecule which intensifies or mimics the biological activity of KPP. Agonists may include proteins, nucleic acids, carbohydrates, small molecules, or any other compound or composition which modulates the activity of KPP either by directly interacting with KPP or by acting on components of the biological pathway in which KPP participates.

An "allelic variant" is an alternative form of the gene encoding KPP. Allelic variants may result from at least one mutation in the nucleic acid sequence and may result in altered mRNAs or in polypeptides whose structure or function may or may not be altered. A gene may have none, or many allelic variants of its naturally occurring form. Common mutational changes which give rise to allelic variants are generally ascribed to natural deletions, additions, or substitutions of nucleotides.

Each of these types of changes may occur alone, or in combination with the others, one or more times in a given sequence.

5

10

15

20

25

30

35

"Altered" nucleic acid sequences encoding KPP include those sequences with deletions, insertions, or substitutions of different nucleotides, resulting in a polypeptide the same as KPP or a polypeptide with at least one functional characteristic of KPP. Included within this definition are polymorphisms which may or may not be readily detectable using a particular oligonucleotide probe of the polynucleotide encoding KPP, and improper or unexpected hybridization to allelic variants, with a locus other than the normal chromosomal locus for the polynucleotide encoding KPP. The encoded protein may also be "altered," and may contain deletions, insertions, or substitutions of amino acid residues which produce a silent change and result in a functionally equivalent KPP. Deliberate amino acid substitutions may be made on the basis of one or more similarities in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues, as long as the biological or immunological activity of KPP is retained. For example, negatively charged amino acids may include aspartic acid and glutamic acid, and positively charged amino acids may include lysine and arginine. Amino acids with uncharged polar side chains having similar hydrophilicity values may include: asparagine and glutamine; and serine and threonine. Amino acids with uncharged side chains having similar hydrophilicity values may include: leucine, isoleucine, and valine; glycine and alanine; and phenylalanine and tyrosine.

The terms "amino acid" and "amino acid sequence" can refer to an oligopeptide, a peptide, a polypeptide, or a protein sequence, or a fragment of any of these, and to naturally occurring or synthetic molecules. Where "amino acid sequence" is recited to refer to a sequence of a naturally occurring protein molecule, "amino acid sequence" and like terms are not meant to limit the amino acid sequence to the complete native amino acid sequence associated with the recited protein molecule.

"Amplification" relates to the production of additional copies of a nucleic acid.

Amplification may be carried out using polymerase chain reaction (PCR) technologies or other nucleic acid amplification technologies well known in the art.

The term "antagonist" refers to a molecule which inhibits or attenuates the biological activity of KPP. Antagonists may include proteins such as antibodies, anticalins, nucleic acids, carbohydrates, small molecules, or any other compound or composition which modulates the activity of KPP either by directly interacting with KPP or by acting on components of the biological pathway in which KPP participates.

The term "antibody" refers to intact immunoglobulin molecules as well as to fragments thereof, such as Fab, F(ab')<sub>2</sub>, and Fv fragments, which are capable of binding an epitopic determinant. Antibodies that bind KPP polypeptides can be prepared using intact polypeptides or using fragments

containing small peptides of interest as the immunizing antigen. The polypeptide or oligopeptide used to immunize an animal (e.g., a mouse, a rat, or a rabbit) can be derived from the translation of RNA, or synthesized chemically, and can be conjugated to a carrier protein if desired. Commonly used carriers that are chemically coupled to peptides include bovine serum albumin, thyroglobulin, and keyhole limpet hemocyanin (KLH). The coupled peptide is then used to immunize the animal.

5

10

15

20

25

30

35

The term "antigenic determinant" refers to that region of a molecule (i.e., an epitope) that makes contact with a particular antibody. When a protein or a fragment of a protein is used to immunize a host animal, numerous regions of the protein may induce the production of antibodies which bind specifically to antigenic determinants (particular regions or three-dimensional structures on the protein). An antigenic determinant may compete with the intact antigen (i.e., the immunogen used to elicit the immune response) for binding to an antibody.

The term "aptamer" refers to a nucleic acid or oligonucleotide molecule that binds to a specific molecular target. Aptamers are derived from an *in vitro* evolutionary process (e.g., SELEX (Systematic Evolution of Ligands by EXponential Enrichment), described in U.S. Patent No. 5,270,163), which selects for target-specific aptamer sequences from large combinatorial libraries. Aptamer compositions may be double-stranded or single-stranded, and may include deoxyribonucleotides, ribonucleotides, nucleotide derivatives, or other nucleotide-like molecules. The nucleotide components of an aptamer may have modified sugar groups (e.g., the 2'-OH group of a ribonucleotide may be replaced by 2'-F or 2'-NH<sub>2</sub>), which may improve a desired property, e.g., resistance to nucleases or longer lifetime in blood. Aptamers may be conjugated to other molecules, e.g., a high molecular weight carrier to slow clearance of the aptamer from the circulatory system. Aptamers may be specifically cross-linked to their cognate ligands, e.g., by photo-activation of a cross-linker (Brody, E.N. and L. Gold (2000) J. Biotechnol. 74:5-13).

The term "intramer" refers to an aptamer which is expressed in vivo. For example, a vaccinia virus-based RNA expression system has been used to express specific RNA aptamers at high levels in the cytoplasm of leukocytes (Blind, M. et al. (1999) Proc. Natl. Acad. Sci. USA 96:3606-3610).

The term "spiegelmer" refers to an aptamer which includes L-DNA, L-RNA, or other left-handed nucleotide derivatives or nucleotide-like molecules. Aptamers containing left-handed nucleotides are resistant to degradation by naturally occurring enzymes, which normally act on substrates containing right-handed nucleotides.

The term "antisense" refers to any composition capable of base-pairing with the "sense" (coding) strand of a polynucleotide having a specific nucleic acid sequence. Antisense compositions may include DNA; RNA; peptide nucleic acid (PNA); oligonucleotides having modified backbone linkages such as phosphorothioates, methylphosphonates, or benzylphosphonates; oligonucleotides having modified sugar groups such as 2'-methoxyethyl sugars or 2'-methoxyethoxy sugars; or

oligonucleotides having modified bases such as 5-methyl cytosine, 2'-deoxyuracil, or 7-deaza-2'-deoxyguanosine. Antisense molecules may be produced by any method including chemical synthesis or transcription. Once introduced into a cell, the complementary antisense molecule base-pairs with a naturally occurring nucleic acid sequence produced by the cell to form duplexes which block either transcription or translation. The designation "negative" or "minus" can refer to the antisense strand, and the designation "positive" or "plus" can refer to the sense strand of a reference DNA molecule.

The term "biologically active" refers to a protein having structural, regulatory, or biochemical functions of a naturally occurring molecule. Likewise, "immunologically active" or "immunogenic" refers to the capability of the natural, recombinant, or synthetic KPP, or of any oligopeptide thereof, to induce a specific immune response in appropriate animals or cells and to bind with specific antibodies.

"Complementary" describes the relationship between two single-stranded nucleic acid sequences that anneal by base-pairing. For example, 5'-AGT-3' pairs with its complement, 3'-TCA-5'.

10

15

20

25

30

A "composition comprising a given polynucleotide" and a "composition comprising a given polypeptide" can refer to any composition containing the given polynucleotide or polypeptide. The composition may comprise a dry formulation or an aqueous solution. Compositions comprising polynucleotides encoding KPP or fragments of KPP may be employed as hybridization probes. The probes may be stored in freeze-dried form and may be associated with a stabilizing agent such as a carbohydrate. In hybridizations, the probe may be deployed in an aqueous solution containing salts (e.g., NaCl), detergents (e.g., sodium dodecyl sulfate; SDS), and other components (e.g., Denhardt's solution, dry milk, salmon sperm DNA, etc.).

"Consensus sequence" refers to a nucleic acid sequence which has been subjected to repeated DNA sequence analysis to resolve uncalled bases, extended using the XL-PCR kit (Applied Biosystems, Foster City CA) in the 5' and/or the 3' direction, and resequenced, or which has been assembled from one or more overlapping cDNA, EST, or genomic DNA fragments using a computer program for fragment assembly, such as the GELVIEW fragment assembly system (Accelrys, Burlington MA) or Phrap (University of Washington, Seattle WA). Some sequences have been both extended and assembled to produce the consensus sequence.

"Conservative amino acid substitutions" are those substitutions that are predicted to least interfere with the properties of the original protein, i.e., the structure and especially the function of the protein is conserved and not significantly changed by such substitutions. The table below shows amino acids which may be substituted for an original amino acid in a protein and which are regarded as conservative amino acid substitutions.

|    | Original Residue | Conservative Substitution |
|----|------------------|---------------------------|
|    | Ala              | Gly, Ser                  |
|    | Arg              | His, Lys                  |
|    | Asn              | Asp, Gln, His             |
| 5  | Asp              | Asn, Glu                  |
|    | Cys              | Ala, Ser                  |
|    | Gln              | Asn, Glu, His             |
|    | Glu              | Asp, Gln, His             |
|    | Gly              | Ala                       |
| 10 | His              | Asn, Arg, Gln, Glu        |
|    | <b>l</b> le      | Leu, Val                  |
|    | Leu              | Ile, Val                  |
| ,  | Lys              | Arg, Gln, Glu             |
| 15 | Met              | Leu, Ile                  |
|    | Phe              | His, Met, Leu, Trp, Tyr   |
|    | Ser              | Cys, Thr                  |
|    | Thr              | Ser, Val                  |
|    | Trp              | Phe, Tyr                  |
|    | Tyr              | His, Phe, Trp             |
| 20 | Val              | Ile, Leu, Thr             |

Conservative amino acid substitutions generally maintain (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a beta sheet or alpha helical conformation, (b) the charge or hydrophobicity of the molecule at the site of the substitution, and/or (c) the bulk of the side chain.

A "deletion" refers to a change in the amino acid or nucleotide sequence that results in the absence of one or more amino acid residues or nucleotides.

25

30

35

40

The term "derivative" refers to a chemically modified polynucleotide or polypeptide.

Chemical modifications of a polynucleotide can include, for example, replacement of hydrogen by an alkyl, acyl, hydroxyl, or amino group. A derivative polynucleotide encodes a polypeptide which retains at least one biological or immunological function of the natural molecule. A derivative polypeptide is one modified by glycosylation, pegylation, or any similar process that retains at least one biological or immunological function of the polypeptide from which it was derived.

A "detectable label" refers to a reporter molecule or enzyme that is capable of generating a measurable signal and is covalently or noncovalently joined to a polynucleotide or polypeptide.

"Differential expression" refers to increased or upregulated; or decreased, downregulated, or absent gene or protein expression, determined by comparing at least two different samples. Such comparisons may be carried out between, for example, a treated and an untreated sample, or a diseased and a normal sample.

"Exon shuffling" refers to the recombination of different coding regions (exons). Since an exon may represent a structural or functional domain of the encoded protein, new proteins may be assembled through the novel reassortment of stable substructures, thus allowing acceleration of the

evolution of new protein functions.

10

15

20

25

30

35

A "fragment" is a unique portion of KPP or a polynucleotide encoding KPP which can be identical in sequence to, but shorter in length than, the parent sequence. A fragment may comprise up to the entire length of the defined sequence, minus one nucleotide/amino acid residue. For example, a fragment may comprise from about 5 to about 1000 contiguous nucleotides or amino acid residues. A fragment used as a probe, primer, antigen, therapeutic molecule, or for other purposes, may be at least 5, 10, 15, 16, 20, 25, 30, 40, 50, 60, 75, 100, 150, 250 or at least 500 contiguous nucleotides or amino acid residues in length. Fragments may be preferentially selected from certain regions of a molecule. For example, a polypeptide fragment may comprise a certain length of contiguous amino acids selected from the first 250 or 500 amino acids (or first 25% or 50%) of a polypeptide as shown in a certain defined sequence. Clearly these lengths are exemplary, and any length that is supported by the specification, including the Sequence Listing, tables, and figures, may be encompassed by the present embodiments.

A fragment of SEQ ID NO:44-86 can comprise a region of unique polynucleotide sequence that specifically identifies SEQ ID NO:44-86, for example, as distinct from any other sequence in the genome from which the fragment was obtained. A fragment of SEQ ID NO:44-86 can be employed in one or more embodiments of methods of the invention, for example, in hybridization and amplification technologies and in analogous methods that distinguish SEQ ID NO:44-86 from related polynucleotides. The precise length of a fragment of SEQ ID NO:44-86 and the region of SEQ ID NO:44-86 to which the fragment corresponds are routinely determinable by one of ordinary skill in the art based on the intended purpose for the fragment.

A fragment of SEQ ID NO:1-43 is encoded by a fragment of SEQ ID NO:44-86. A fragment of SEQ ID NO:1-43 can comprise a region of unique amino acid sequence that specifically identifies SEQ ID NO:1-43. For example, a fragment of SEQ ID NO:1-43 can be used as an immunogenic peptide for the development of antibodies that specifically recognize SEQ ID NO:1-43. The precise length of a fragment of SEQ ID NO:1-43 and the region of SEQ ID NO:1-43 to which the fragment corresponds can be determined based on the intended purpose for the fragment using one or more analytical methods described herein or otherwise known in the art.

A "full length" polynucleotide is one containing at least a translation initiation codon (e.g., methionine) followed by an open reading frame and a translation termination codon. A "full length" polynucleotide sequence encodes a "full length" polypeptide sequence.

"Homology" refers to sequence similarity or, alternatively, sequence identity, between two or more polynucleotide sequences or two or more polypeptide sequences.

The terms "percent identity" and "% identity," as applied to polynucleotide sequences, refer to the percentage of identical nucleotide matches between at least two polynucleotide sequences

aligned using a standardized algorithm. Such an algorithm may insert, in a standardized and reproducible way, gaps in the sequences being compared in order to optimize alignment between two sequences, and therefore achieve a more meaningful comparison of the two sequences.

Percent identity between polynucleotide sequences may be determined using one or more computer algorithms or programs known in the art or described herein. For example, percent identity can be determined using the default parameters of the CLUSTAL V algorithm as incorporated into the MEGALIGN version 3.12e sequence alignment program. This program is part of the LASERGENE software package, a suite of molecular biological analysis programs (DNASTAR, Madison WI). CLUSTAL V is described in Higgins, D.G. and P.M. Sharp (1989; CABIOS 5:151-153) and in Higgins, D.G. et al. (1992; CABIOS 8:189-191). For pairwise alignments of polynucleotide sequences, the default parameters are set as follows: Ktuple=2, gap penalty=5, window=4, and "diagonals saved"=4. The "weighted" residue weight table is selected as the default.

Alternatively, a suite of commonly used and freely available sequence comparison algorithms which can be used is provided by the National Center for Biotechnology Information (NCBI) Basic Local Alignment Search Tool (BLAST) (Altschul, S.F. et al. (1990) J. Mol. Biol. 215:403-410), which is available from several sources, including the NCBI, Bethesda, MD, and on the Internet at ncbi.nlm.nih.gov/BLAST/. The BLAST software suite includes various sequence analysis programs including "blastn," that is used to align a known polynucleotide sequence with other polynucleotide sequences from a variety of databases. Also available is a tool called "BLAST 2 Sequences" that is used for direct pairwise comparison of two nucleotide sequences. "BLAST 2 Sequences" can be accessed and used interactively at ncbi.nlm.nih.gov/gorf/bl2.html. The "BLAST 2 Sequences" tool can be used for both blastn and blastp (discussed below). BLAST programs are commonly used with gap and other parameters set to default settings. For example, to compare two nucleotide sequences, one may use blastn with the "BLAST 2 Sequences" tool Version 2.0.12 (April-21-2000) set at default parameters. Such default parameters may be, for example:

Matrix: BLOSUM62

Reward for match: 1

Penalty for mismatch: -2

Open Gap: 5 and Extension Gap: 2 penalties

Gap x drop-off: 50

Expect: 10

5

10

15

20

25

30

35

Word Size: 11

Filter: on

Percent identity may be measured over the length of an entire defined sequence, for example, as defined by a particular SEQ ID number, or may be measured over a shorter length, for example,

over the length of a fragment taken from a larger, defined sequence, for instance, a fragment of at least 20, at least 30, at least 40, at least 50, at least 70, at least 100, or at least 200 contiguous nucleotides. Such lengths are exemplary only, and it is understood that any fragment length supported by the sequences shown herein, in the tables, figures, or Sequence Listing, may be used to describe a length over which percentage identity may be measured.

Nucleic acid sequences that do not show a high degree of identity may nevertheless encode similar amino acid sequences due to the degeneracy of the genetic code. It is understood that changes in a nucleic acid sequence can be made using this degeneracy to produce multiple nucleic acid sequences that all encode substantially the same protein.

The phrases "percent identity" and "% identity," as applied to polypeptide sequences, refer to the percentage of identical residue matches between at least two polypeptide sequences aligned using a standardized algorithm. Methods of polypeptide sequence alignment are well-known. Some alignment methods take into account conservative amino acid substitutions. Such conservative substitutions, explained in more detail above, generally preserve the charge and hydrophobicity at the site of substitution, thus preserving the structure (and therefore function) of the polypeptide. The phrases "percent similarity" and "% similarity," as applied to polypeptide sequences, refer to the percentage of residue matches, including identical residue matches and conservative substitutions, between at least two polypeptide sequences aligned using a standardized algorithm. In contrast, conservative substitutions are not included in the calculation of percent identity between polypeptide sequences.

Percent identity between polypeptide sequences may be determined using the default parameters of the CLUSTAL V algorithm as incorporated into the MEGALIGN version 3.12e sequence alignment program (described and referenced above). For pairwise alignments of polypeptide sequences using CLUSTAL V, the default parameters are set as follows: Ktuple=1, gap penalty=3, window=5, and "diagonals saved"=5. The PAM250 matrix is selected as the default residue weight table.

Alternatively the NCBI BLAST software suite may be used. For example, for a pairwise comparison of two polypeptide sequences, one may use the "BLAST 2 Sequences" tool Version 2.0.12 (April-21-2000) with blastp set at default parameters. Such default parameters may be, for example:

Matrix: BLOSUM62

Open Gap: 11 and Extension Gap: 1 penalties

Gap x drop-off: 50

Expect: 10

35 Word Size: 3

5

10

15

20

25

30

Filter: on

10

15

20

25

30

35

Percent identity may be measured over the length of an entire defined polypeptide sequence, for example, as defined by a particular SEQ ID number, or may be measured over a shorter length, for example, over the length of a fragment taken from a larger, defined polypeptide sequence, for instance, a fragment of at least 15, at least 20, at least 30, at least 40, at least 50, at least 70 or at least 150 contiguous residues. Such lengths are exemplary only, and it is understood that any fragment length supported by the sequences shown herein, in the tables, figures or Sequence Listing, may be used to describe a length over which percentage identity may be measured.

"Human artificial chromosomes" (HACs) are linear microchromosomes which may contain DNA sequences of about 6 kb to 10 Mb in size and which contain all of the elements required for chromosome replication, segregation and maintenance.

The term "humanized antibody" refers to an antibody molecule in which the amino acid sequence in the non-antigen binding regions has been altered so that the antibody more closely resembles a human antibody, and still retains its original binding ability.

"Hybridization" refers to the process by which a polynucleotide strand anneals with a complementary strand through base pairing under defined hybridization conditions. Specific hybridization is an indication that two nucleic acid sequences share a high degree of complementarity. Specific hybridization complexes form under permissive annealing conditions and remain hybridized after the "washing" step(s). The washing step(s) is particularly important in determining the stringency of the hybridization process, with more stringent conditions allowing less non-specific binding, i.e., binding between pairs of nucleic acid strands that are not perfectly matched. Permissive conditions for annealing of nucleic acid sequences are routinely determinable by one of ordinary skill in the art and may be consistent among hybridization experiments, whereas wash conditions may be varied among experiments to achieve the desired stringency, and therefore hybridization specificity. Permissive annealing conditions occur, for example, at 68°C in the presence of about 6 x SSC, about 1% (w/v) SDS, and about 100  $\mu$ g/ml sheared, denatured salmon sperm DNA.

Generally, stringency of hybridization is expressed, in part, with reference to the temperature under which the wash step is carried out. Such wash temperatures are typically selected to be about 5°C to 20°C lower than the thermal melting point ( $T_m$ ) for the specific sequence at a defined ionic strength and pH. The  $T_m$  is the temperature (under defined ionic strength and pH) at which 50% of the target sequence hybridizes to a perfectly matched probe. An equation for calculating  $T_m$  and conditions for nucleic acid hybridization are well known and can be found in Sambrook, J. and D.W. Russell (2001; Molecular Cloning: A Laboratory Manual, 3rd ed., vol. 1-3, Cold Spring Harbor Press, Cold Spring Harbor NY, ch. 9).

10

15

20

25

30

35

THE REAL PROPERTY OF THE PARTY OF THE PARTY

High stringency conditions for hybridization between polynucleotides of the present invention include wash conditions of 68°C in the presence of about 0.2 x SSC and about 0.1% SDS, for 1 hour. Alternatively, temperatures of about 65°C, 60°C, 55°C, or 42°C may be used. SSC concentration may be varied from about 0.1 to 2 x SSC, with SDS being present at about 0.1%. Typically, blocking reagents are used to block non-specific hybridization. Such blocking reagents include, for instance, sheared and denatured salmon sperm DNA at about 100-200 µg/ml. Organic solvent, such as formamide at a concentration of about 35-50% v/v, may also be used under particular circumstances, such as for RNA:DNA hybridizations. Useful variations on these wash conditions will be readily apparent to those of ordinary skill in the art. Hybridization, particularly under high stringency conditions, may be suggestive of evolutionary similarity between the nucleotides. Such similarity is strongly indicative of a similar role for the nucleotides and their encoded polypeptides.

The term "hybridization complex" refers to a complex formed between two nucleic acids by virtue of the formation of hydrogen bonds between complementary bases. A hybridization complex may be formed in solution (e.g., C<sub>0</sub>t or R<sub>0</sub>t analysis) or formed between one nucleic acid present in solution and another nucleic acid immobilized on a solid support (e.g., paper, membranes, filters, chips, pins or glass slides, or any other appropriate substrate to which cells or their nucleic acids have been fixed).

The words "insertion" and "addition" refer to changes in an amino acid or polynucleotide sequence resulting in the addition of one or more amino acid residues or nucleotides, respectively.

"Immune response" can refer to conditions associated with inflammation, trauma, immune disorders, or infectious or genetic disease, etc. These conditions can be characterized by expression of various factors, e.g., cytokines, chemokines, and other signaling molecules, which may affect cellular and systemic defense systems.

An "immunogenic fragment" is a polypeptide or oligopeptide fragment of KPP which is capable of eliciting an immune response when introduced into a living organism, for example, a mammal. The term "immunogenic fragment" also includes any polypeptide or oligopeptide fragment of KPP which is useful in any of the antibody production methods disclosed herein or known in the art.

The term "microarray" refers to an arrangement of a plurality of polynucleotides, polypeptides, antibodies, or other chemical compounds on a substrate.

The terms "element" and "array element" refer to a polynucleotide, polypeptide, antibody, or other chemical compound having a unique and defined position on a microarray.

The term "modulate" refers to a change in the activity of KPP. For example, modulation may cause an increase or a decrease in protein activity, binding characteristics, or any other biological, functional, or immunological properties of KPP.

The phrases "nucleic acid" and "nucleic acid sequence" refer to a nucleotide, oligonucleotide, polynucleotide, or any fragment thereof. These phrases also refer to DNA or RNA of genomic or synthetic origin which may be single-stranded or double-stranded and may represent the sense or the antisense strand, to peptide nucleic acid (PNA), or to any DNA-like or RNA-like material.

"Operably linked" refers to the situation in which a first nucleic acid sequence is placed in a functional relationship with a second nucleic acid sequence. For instance, a promoter is operably linked to a coding sequence if the promoter affects the transcription or expression of the coding sequence. Operably linked DNA sequences may be in close proximity or contiguous and, where necessary to join two protein coding regions, in the same reading frame.

5

10

15

20

25

30

35

"Peptide nucleic acid" (PNA) refers to an antisense molecule or anti-gene agent which comprises an oligonucleotide of at least about 5 nucleotides in length linked to a peptide backbone of amino acid residues ending in lysine. The terminal lysine confers solubility to the composition. PNAs preferentially bind complementary single stranded DNA or RNA and stop transcript elongation, and may be pegylated to extend their lifespan in the cell.

"Post-translational modification" of an KPP may involve lipidation, glycosylation, phosphorylation, acetylation, racemization, proteolytic cleavage, and other modifications known in the art. These processes may occur synthetically or biochemically. Biochemical modifications will vary by cell type depending on the enzymatic milieu of KPP.

"Probe" refers to nucleic acids encoding KPP, their complements, or fragments thereof, which are used to detect identical, allelic or related nucleic acids. Probes are isolated oligonucleotides or polynucleotides attached to a detectable label or reporter molecule. Typical labels include radioactive isotopes, ligands, chemiluminescent agents, and enzymes. "Primers" are short nucleic acids, usually DNA oligonucleotides, which may be annealed to a target polynucleotide by complementary base-pairing. The primer may then be extended along the target DNA strand by a DNA polymerase enzyme. Primer pairs can be used for amplification (and identification) of a nucleic acid, e.g., by the polymerase chain reaction (PCR).

Probes and primers as used in the present invention typically comprise at least 15 contiguous nucleotides of a known sequence. In order to enhance specificity, longer probes and primers may also be employed, such as probes and primers that comprise at least 20, 25, 30, 40, 50, 60, 70, 80, 90, 100, or at least 150 consecutive nucleotides of the disclosed nucleic acid sequences. Probes and primers may be considerably longer than these examples, and it is understood that any length supported by the specification, including the tables, figures, and Sequence Listing, may be used.

Methods for preparing and using probes and primers are described in, for example, Sambrook, J. and D.W. Russell (2001; Molecular Cloning: A Laboratory Manual, 3rd ed., vol. 1-3, Cold Spring Harbor Press, Cold Spring Harbor NY), Ausubel, F.M. et al. (1999; Short Protocols in

Molecular Biology, 4<sup>th</sup> ed., John Wiley & Sons, New York NY), and Innis, M. et al. (1990; <u>PCR</u> <u>Protocols, A Guide to Methods and Applications</u>, Academic Press, San Diego CA). PCR primer pairs can be derived from a known sequence, for example, by using computer programs intended for that purpose such as Primer (Version 0.5, 1991, Whitehead Institute for Biomedical Research, Cambridge MA).

5

10

15

20

25

30

35

Oligonucleotides for use as primers are selected using software known in the art for such purpose. For example, OLIGO 4.06 software is useful for the selection of PCR primer pairs of up to 100 nucleotides each, and for the analysis of oligonucleotides and larger polynucleotides of up to 5,000 nucleotides from an input polynucleotide sequence of up to 32 kilobases. Similar primer selection programs have incorporated additional features for expanded capabilities. For example, the PrimOU primer selection program (available to the public from the Genome Center at University of Texas South West Medical Center, Dallas TX) is capable of choosing specific primers from megabase sequences and is thus useful for designing primers on a genome-wide scope. The Primer3 primer selection program (available to the public from the Whitehead Institute/MIT Center for Genome Research, Cambridge MA) allows the user to input a "mispriming library," in which sequences to avoid as primer binding sites are user-specified. Primer3 is useful, in particular, for the selection of oligonucleotides for microarrays. (The source code for the latter two primer selection programs may also be obtained from their respective sources and modified to meet the user's specific needs.) The PrimeGen program (available to the public from the UK Human Genome Mapping Project Resource Centre, Cambridge UK) designs primers based on multiple sequence alignments, thereby allowing selection of primers that hybridize to either the most conserved or least conserved regions of aligned nucleic acid sequences. Hence, this program is useful for identification of both unique and conserved oligonucleotides and polynucleotide fragments. The oligonucleotides and polynucleotide fragments identified by any of the above selection methods are useful in hybridization technologies, for example, as PCR or sequencing primers, microarray elements, or specific probes to identify fully or partially complementary polynucleotides in a sample of nucleic acids. Methods of oligonucleotide selection are not limited to those described above.

A "recombinant nucleic acid" is a nucleic acid that is not naturally occurring or has a sequence that is made by an artificial combination of two or more otherwise separated segments of sequence. This artificial combination is often accomplished by chemical synthesis or, more commonly, by the artificial manipulation of isolated segments of nucleic acids, e.g., by genetic engineering techniques such as those described in Sambrook and Russell (supra). The term recombinant includes nucleic acids that have been altered solely by addition, substitution, or deletion of a portion of the nucleic acid. Frequently, a recombinant nucleic acid may include a nucleic acid sequence operably linked to a promoter sequence. Such a recombinant nucleic acid may be part of a

vector that is used, for example, to transform a cell.

5

10

15

20

25

30

35

Alternatively, such recombinant nucleic acids may be part of a viral vector, e.g., based on a vaccinia virus, that could be use to vaccinate a mammal wherein the recombinant nucleic acid is expressed, inducing a protective immunological response in the mammal.

A "regulatory element" refers to a nucleic acid sequence usually derived from untranslated regions of a gene and includes enhancers, promoters, introns, and 5' and 3' untranslated regions (UTRs). Regulatory elements interact with host or viral proteins which control transcription, translation, or RNA stability.

"Reporter molecules" are chemical or biochemical moieties used for labeling a nucleic acid, amino acid, or antibody. Reporter molecules include radionuclides; enzymes; fluorescent, chemiluminescent, or chromogenic agents; substrates; cofactors; inhibitors; magnetic particles; and other moieties known in the art.

An "RNA equivalent," in reference to a DNA molecule, is composed of the same linear sequence of nucleotides as the reference DNA molecule with the exception that all occurrences of the nitrogenous base thymine are replaced with uracil, and the sugar backbone is composed of ribose instead of deoxyribose.

The term "sample" is used in its broadest sense. A sample suspected of containing KPP, nucleic acids encoding KPP, or fragments thereof may comprise a bodily fluid; an extract from a cell, chromosome, organelle, or membrane isolated from a cell; a cell; genomic DNA, RNA, or cDNA, in solution or bound to a substrate; a tissue; a tissue print; etc.

The terms "specific binding" and "specifically binding" refer to that interaction between a protein or peptide and an agonist, an antibody, an antagonist, a small molecule, or any natural or synthetic binding composition. The interaction is dependent upon the presence of a particular structure of the protein, e.g., the antigenic determinant or epitope, recognized by the binding molecule. For example, if an antibody is specific for epitope "A," the presence of a polypeptide comprising the epitope A, or the presence of free unlabeled A, in a reaction containing free labeled A and the antibody will reduce the amount of labeled A that binds to the antibody.

The term "substantially purified" refers to nucleic acid or amino acid sequences that are removed from their natural environment and are isolated or separated, and are at least about 60% free, preferably at least about 75% free, and most preferably at least about 90% free from other components with which they are naturally associated.

A "substitution" refers to the replacement of one or more amino acid residues or nucleotides by different amino acid residues or nucleotides, respectively.

"Substrate" refers to any suitable rigid or semi-rigid support including membranes, filters, chips, slides, wafers, fibers, magnetic or nonmagnetic beads, gels, tubing, plates, polymers,

microparticles and capillaries. The substrate can have a variety of surface forms, such as wells, trenches, pins, channels and pores, to which polynucleotides or polypeptides are bound.

A "transcript image" or "expression profile" refers to the collective pattern of gene expression by a particular cell type or tissue under given conditions at a given time.

5

10

15

20

25

30

35

"Transformation" describes a process by which exogenous DNA is introduced into a recipient cell. Transformation may occur under natural or artificial conditions according to various methods well known in the art, and may rely on any known method for the insertion of foreign nucleic acid sequences into a prokaryotic or eukaryotic host cell. The method for transformation is selected based on the type of host cell being transformed and may include, but is not limited to, bacteriophage or viral infection, electroporation, heat shock, lipofection, and particle bombardment. The term "transformed cells" includes stably transformed cells in which the inserted DNA is capable of replication either as an autonomously replicating plasmid or as part of the host chromosome, as well as transiently transformed cells which express the inserted DNA or RNA for limited periods of time.

A "transgenic organism," as used herein, is any organism, including but not limited to animals and plants, in which one or more of the cells of the organism contains heterologous nucleic acid introduced by way of human intervention, such as by transgenic techniques well known in the art. The nucleic acid is introduced into the cell, directly or indirectly by introduction into a precursor of the cell, by way of deliberate genetic manipulation, such as by microinjection or by infection with a recombinant virus. In another embodiment, the nucleic acid can be introduced by infection with a recombinant viral vector, such as a lentiviral vector (Lois, C. et al. (2002) Science 295:868-872). The term genetic manipulation does not include classical cross-breeding, or *in vitro* fertilization, but rather is directed to the introduction of a recombinant DNA molecule. The transgenic organisms contemplated in accordance with the present invention include bacteria, cyanobacteria, fungi, plants and animals. The isolated DNA of the present invention can be introduced into the host by methods known in the art, for example infection, transfection, transformation or transconjugation. Techniques for transferring the DNA of the present invention into such organisms are widely known and provided in references such as Sambrook and Russell (*supra*).

A "variant" of a particular nucleic acid sequence is defined as a nucleic acid sequence having at least 40% sequence identity to the particular nucleic acid sequence over a certain length of one of the nucleic acid sequences using blastn with the "BLAST 2 Sequences" tool Version 2.0.9 (May-07-1999) set at default parameters. Such a pair of nucleic acids may show, for example, at least 50%, at least 60%, at least 70%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 97%, at least 98%, or at least 99% or greater sequence identity over a certain defined length. A variant may be described as, for example, an "allelic" (as defined above), "splice," "species," or "polymorphic" variant. A splice variant may have

significant identity to a reference molecule, but will generally have a greater or lesser number of polynucleotides due to alternate splicing during mRNA processing. The corresponding polypeptide may possess additional functional domains or lack domains that are present in the reference molecule. Species variants are polynucleotides that vary from one species to another. The resulting polypeptides will generally have significant amino acid identity relative to each other. A polymorphic variant is a variation in the polynucleotide sequence of a particular gene between individuals of a given species. Polymorphic variants also may encompass "single nucleotide polymorphisms" (SNPs) in which the polynucleotide sequence varies by one nucleotide base. The presence of SNPs may be indicative of, for example, a certain population, a disease state, or a propensity for a disease state.

A "variant" of a particular polypeptide sequence is defined as a polypeptide sequence having at least 40% sequence identity or sequence similarity to the particular polypeptide sequence over a certain length of one of the polypeptide sequences using blastp with the "BLAST 2 Sequences" tool Version 2.0.9 (May-07-1999) set at default parameters. Such a pair of polypeptides may show, for example, at least 50%, at least 60%, at least 70%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% or greater sequence identity or sequence similarity over a certain defined length of one of the polypeptides.

## 20 THE INVENTION

10

15

25

30

35

Various embodiments of the invention include new human kinases and phosphatases (KPP), the polynucleotides encoding KPP, and the use of these compositions for the diagnosis, treatment, or prevention of cardiovascular diseases, immune system disorders, neurological disorders, disorders affecting growth and development, lipid disorders, cell proliferative disorders, and cancers.

Table 1 summarizes the nomenclature for the full length polynucleotide and polypeptide embodiments of the invention. Each polynucleotide and its corresponding polypeptide are correlated to a single Incyte project identification number (Incyte Project ID). Each polypeptide sequence is denoted by both a polypeptide sequence identification number (Polypeptide SEQ ID NO:) and an Incyte polypeptide sequence number (Incyte Polypeptide ID) as shown. Each polynucleotide sequence is denoted by both a polynucleotide sequence identification number (Polynucleotide SEQ ID NO:) and an Incyte polynucleotide consensus sequence number (Incyte Polynucleotide ID) as shown. Column 6 shows the Incyte ID numbers of physical, full length clones corresponding to the polypeptide and polynucleotide sequences of the invention. The full length clones encode polypeptides which have at least 95% sequence identity to the polypeptide sequences shown in column 3.

Table 2 shows sequences with homology to polypeptide embodiments of the invention as identified by BLAST analysis against the GenBank protein (genpept) database and the PROTEOME database. Columns 1 and 2 show the polypeptide sequence identification number (Polypeptide SEQ ID NO:) and the corresponding Incyte polypeptide sequence number (Incyte Polypeptide ID) for polypeptides of the invention. Column 3 shows the GenBank identification number (GenBank ID NO:) of the nearest GenBank homolog and the PROTEOME database identification numbers (PROTEOME ID NO:) of the nearest PROTEOME database homologs. Column 4 shows the probability scores for the matches between each polypeptide and its homolog(s). Column 5 shows the annotation of the GenBank and PROTEOME database homolog(s) along with relevant citations where applicable, all of which are expressly incorporated by reference herein.

Table 3 shows various structural features of the polypeptides of the invention. Columns 1 and 2 show the polypeptide sequence identification number (SEQ ID NO:) and the corresponding Incyte polypeptide sequence number (Incyte Polypeptide ID) for each polypeptide of the invention. Column 3 shows the number of amino acid residues in each polypeptide. Column 4 shows amino acid residues comprising signature sequences, domains, motifs, potential phosphorylation sites, and potential glycosylation sites. Column 5 shows analytical methods for protein structure/function analysis and in some cases, searchable databases to which the analytical methods were applied.

10

15

20

25

30

35

Together, Tables 2 and 3 summarize the properties of polypeptides of the invention, and these properties establish that the claimed polypeptides are kinases and phosphatases. For example, SEQ ID NO:11 is 78% identical, from residue M1 to residue W1219, to mouse NIK (GenBank ID g1872546) as determined by the Basic Local Alignment Search Tool (BLAST). (See Table 2.) The BLAST probability score is 0.0, which indicates the probability of obtaining the observed polypeptide sequence alignment by chance. SEQ ID NO:11 also has homology to proteins that activate the c-Jun N-terminal kinase (Mapk8) signaling pathway, and are mitogen-activated protein kinase kinase kinase kinases (MAP4K), as determined by BLAST analysis using the PROTEOME database. SEQ ID NO:11 also contains a CNH domain, a protein kinase domain, a domain found in NIK1-like kinases, and a serine/threonine kinase catalytic domain, as determined by searching for statistically significant matches in the hidden Markov model (HMM)-based PFAM and SMART databases of conserved protein families/domains. (See Table 3.) Data from BLIMPS, MOTIFS, and PROFILESCAN analyses, and BLAST analyses against the PRODOM and DOMO databases, provide further corroborative evidence that SEQ ID NO:11 is a protein kinase.

As another example, SEQ ID NO:15 is 99% identical, from residue E124 to residue I750, to human lymphoid phosphatase LyP1 (GenBank ID g4100632) as determined by the Basic Local Alignment Search Tool (BLAST). (See Table 2.) The BLAST probability score is 0.0, which indicates the probability of obtaining the observed polypeptide sequence alignment by chance. SEQ

ID NO:15 also has homology to proteins that may be involved in T-cell development and are required for B-cell antigen receptor-mediated growth arrest and apoptosis and are protein tyrosine phosphatase non-receptors, as determined by BLAST analysis using the PROTEOME database. SEQ ID NO:15 also contains a protein-tyrosine phosphatase domain, a protein-tyrosine phosphatase catalytic domain, and a protein-tyrosine phosphatase catalytic motif domain as determined by searching for statistically significant matches in the hidden Markov model (HMM)-based SMART and PFAM databases of conserved protein families/domains. (See Table 3.) Data from BLIMPS, MOTIFS, and PROFILESCAN analyses, and BLAST analyses against the PRODOM and DOMO databases, provide further corroborative evidence that SEQ ID NO:15 is a protein-tyrosine phosphatase.

10

15

20

25

30

35

As another example, SEQ ID NO:24 is 99% identical, from residue M1 to residue K487, to human apyrase (GenBank ID g4583675) as determined by the Basic Local Alignment Search Tool (BLAST). (See Table 2.) The BLAST probability score is 3.7e-264, which indicates the probability of obtaining the observed polypeptide sequence alignment by chance. SEQ ID NO:24 also has homology to proteins that are localized to the lysosomal/autophagic vacuoles and are apyrase proteins, as determined by BLAST analysis using the PROTEOME database. SEQ ID NO:24 also contains a GDA1/CD39 (nucleoside phosphatase family) domain as determined by searching for statistically significant matches in the hidden Markov model (HMM)-based PFAM database of conserved protein families/domains. (See Table 3.) Data from BLIMPS and BLAST analyses against the PRODOM and DOMO databases, provide further corroborative evidence that SEQ ID NO:24 is a nucleoside phosphatase.

As another example, SEQ ID NO:27 is 97% identical, from residue M1 to residue G76, to human SKRP1 (GenBank ID g18148911) as determined by the Basic Local Alignment Search Tool (BLAST). (See Table 2.) The BLAST probability score is 5.7e-35, which indicates the probability of obtaining the observed polypeptide sequence alignment by chance. SEQ ID NO:27 also has homology to proteins that dephosphorylate phosphotyrosine and phosphoserine, inactivate MAPK, and are proteins containing two dual specificity phosphatase catalytic domains, as determined by BLAST analysis using the PROTEOME database. Data from BLIMPS analyses provide further corroborative evidence that SEQ ID NO:27 is a dual specificity phosphatase.

As another example, SEQ ID NO:28 is 98% identical, from residue M1 to residue S449, to human protein phosphatase 4 regulatory subunit 2 (GenBank ID g8250239) as determined by the Basic Local Alignment Search Tool (BLAST). (See Table 2.) The BLAST probability score is 1.4E-241, which indicates the probability of obtaining the observed polypeptide sequence alignment by chance. SEQ ID NO:28 also has homology to human protein phosphatase 4 regulatory subunit 2, as determined by BLAST analysis using the PROTEOME database. The foregoing provide evidence that SEQ ID NO:28 is a protein phosphatase regulatory subunit.

As another example, SEQ ID NO:34 is 93% identical, from residue E39 to residue I490, to human multifunctional calcium/calmodulin-dependent protein kinase II delta2 isoform (GenBank ID g4426595) as determined by the Basic Local Alignment Search Tool (BLAST). (See Table 2.) The BLAST probability score is 9.0e-255, which indicates the probability of obtaining the observed polypeptide sequence alignment by chance. SEQ ID NO:34 also has homology to calcium-calmodulin dependent protein kinase II delta, a member of the multifunctional CAMKII family involved in Ca2+ regulated processes, of which the alternative form delta 3 is specifically upregulated in the myocardium of patients with heart failure, as determined by BLAST analysis using the PROTEOME database. SEQ ID NO:34 also contains a protein kinase domain and a serine/threonine protein kinase catalytic domain as determined by searching for statistically significant matches in the hidden Markov model (HMM)-based PFAM and SMART databases of conserved protein families/domains. (See Table 3.) Data from BLIMPS, MOTIFS, and PROFILESCAN analyses, and BLAST analyses against the PRODOM and DOMO databases, provide further corroborative evidence that SEQ ID NO:34 is a calcium-calmodulin dependent protein kinase. The foregoing provides evidence that SEQ ID NO:34 is a calcium-calmodulin dependent protein kinase.

10

15

20

25

30

35

SEQ ID NO:1-10, SEQ ID NO:12-14, SEQ ID NO:16-23, SEQ ID NO:25-26, SEQ ID NO:29-33, and SEQ ID NO:35-43 were analyzed and annotated in a similar manner. The algorithms and parameters for the analysis of SEQ ID NO:1-43 are described in Table 7.

As shown in Table 4, the full length polynucleotide embodiments were assembled using cDNA sequences or coding (exon) sequences derived from genomic DNA, or any combination of these two types of sequences. Column 1 lists the polynucleotide sequence identification number (Polynucleotide SEQ ID NO:), the corresponding Incyte polynucleotide consensus sequence number (Incyte ID) for each polynucleotide of the invention, and the length of each polynucleotide sequence in basepairs. Column 2 shows the nucleotide start (5') and stop (3') positions of the cDNA and/or genomic sequences used to assemble the full length polynucleotide embodiments, and of fragments of the polynucleotides which are useful, for example, in hybridization or amplification technologies that identify SEQ ID NO:44-86 or that distinguish between SEQ ID NO:44-86 and related polynucleotides.

The polynucleotide fragments described in Column 2 of Table 4 may refer specifically, for example, to Incyte cDNAs derived from tissue-specific cDNA libraries or from pooled cDNA libraries. Alternatively, the polynucleotide fragments described in column 2 may refer to GenBank cDNAs or ESTs which contributed to the assembly of the full length polynucleotides. In addition, the polynucleotide fragments described in column 2 may identify sequences derived from the ENSEMBL (The Sanger Centre, Cambridge, UK) database (i.e., those sequences including the designation "ENST"). Alternatively, the polynucleotide fragments described in column 2 may be derived from

the NCBI RefSeq Nucleotide Sequence Records Database (i.e., those sequences including the designation "NM" or "NT") or the NCBI RefSeq Protein Sequence Records (i.e., those sequences including the designation "NP"). Alternatively, the polynucleotide fragments described in column 2 may refer to assemblages of both cDNA and Genscan-predicted exons brought together by an "exon stitching" algorithm. For example, a polynucleotide sequence identified as FL\_XXXXXX\_N<sub>1</sub>\_N<sub>2</sub>\_YYYYY\_N<sub>3</sub>\_N<sub>4</sub> represents a "stitched" sequence in which XXXXXX is the identification number of the cluster of sequences to which the algorithm was applied, and YYYYY is the number of the prediction generated by the algorithm, and  $N_{1,2,3...}$ , if present, represent specific exons that may have been manually edited during analysis (See Example V). Alternatively, the polynucleotide fragments in column 2 may refer to assemblages of exons brought together by an "exon-stretching" algorithm. For example, a polynucleotide sequence identified as FLXXXXXX\_gAAAAA\_gBBBBB\_1\_N is a "stretched" sequence, with XXXXXX being the Incyte project identification number, gAAAAA being the GenBank identification number of the human genomic sequence to which the "exon-stretching" algorithm was applied, gBBBBB being the GenBank identification number or NCBI RefSeq identification number of the nearest GenBank protein homolog, and N referring to specific exons (See Example V). In instances where a RefSeq sequence was used as a protein homolog for the "exon-stretching" algorithm, a RefSeq identifier (denoted by "NM," "NP," or "NT") may be used in place of the GenBank identifier (i.e., gBBBBB).

5

10

15

20

25

30

Alternatively, a prefix identifies component sequences that were hand-edited, predicted from genomic DNA sequences, or derived from a combination of sequence analysis methods. The following Table lists examples of component sequence prefixes and corresponding sequence analysis methods associated with the prefixes (see Example IV and Example V).

| Prefix    | Type of analysis and/or examples of programs                     |
|-----------|------------------------------------------------------------------|
| GNN, GFG, | Exon prediction from genomic sequences using, for example,       |
| ENST      | GENSCAN (Stanford University, CA, USA) or FGENES                 |
|           | (Computer Genomics Group, The Sanger Centre, Cambridge, UK).     |
| GBI       | Hand-edited analysis of genomic sequences.                       |
| FL        | Stitched or stretched genomic sequences (see Example V).         |
| INCY      | Full length transcript and exon prediction from mapping of EST   |
|           | sequences to the genome. Genomic location and EST composition    |
|           | data are combined to predict the exons and resulting transcript. |

In some cases, Incyte cDNA coverage redundant with the sequence coverage shown in Table 4 was obtained to confirm the final consensus polynucleotide sequence, but the relevant Incyte cDNA identification numbers are not shown.

Table 5 shows the representative cDNA libraries for those full length polynucleotides which were assembled using Incyte cDNA sequences. The representative cDNA library is the Incyte cDNA library which is most frequently represented by the Incyte cDNA sequences which were used to assemble and confirm the above polynucleotides. The tissues and vectors which were used to construct the cDNA libraries shown in Table 5 are described in Table 6.

5

10

15

20

25

30

35

Table 8 shows single nucleotide polymorphisms (SNPs) found in polynucleotide sequences of the invention, along with allele frequencies in different human populations. Columns 1 and 2 show the polynucleotide sequence identification number (SEQ ID NO:) and the corresponding Incyte project identification number (PID) for polynucleotides of the invention. Column 3 shows the Incyte identification number for the EST in which the SNP was detected (EST ID), and column 4 shows the identification number for the SNP (SNP ID). Column 5 shows the position within the EST sequence at which the SNP is located (EST SNP), and column 6 shows the position of the SNP within the full-length polynucleotide sequence (CB1 SNP). Column 7 shows the allele found in the EST sequence. Columns 8 and 9 show the two alleles found at the SNP site. Column 10 shows the amino acid encoded by the codon including the SNP site, based upon the allele found in the EST. Columns 11-14 show the frequency of allele 1 in four different human populations. An entry of n/d (not detected) indicates that the frequency of allele 1 in the population was too low to be detected, while n/a (not available) indicates that the allele frequency was not determined for the population.

The invention also encompasses KPP variants. Various embodiments of KPP variants can have at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% amino acid sequence identity to the KPP amino acid sequence, and can contain at least one functional or structural characteristic of KPP.

Various embodiments also encompass polynucleotides which encode KPP. In a particular embodiment, the invention encompasses a polynucleotide sequence comprising a sequence selected from the group consisting of SEQ ID NO:44-86, which encodes KPP. The polynucleotide sequences of SEQ ID NO:44-86, as presented in the Sequence Listing, embrace the equivalent RNA sequences, wherein occurrences of the nitrogenous base thymine are replaced with uracil, and the sugar backbone is composed of ribose instead of deoxyribose.

The invention also encompasses variants of a polynucleotide encoding KPP. In particular, such a variant polynucleotide will have at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% polynucleotide sequence identity to a polynucleotide encoding KPP. A particular

aspect of the invention encompasses a variant of a polynucleotide comprising a sequence selected from the group consisting of SEQ ID NO:44-86 which has at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% polynucleotide sequence identity to a nucleic acid sequence selected from the group consisting of SEQ ID NO:44-86. Any one of the polynucleotide variants described above can encode a polypeptide which contains at least one functional or structural characteristic of KPP.

10

15

20

25

30

35

In addition, or in the alternative, a polynucleotide variant of the invention is a splice variant of a polynucleotide encoding KPP. A splice variant may have portions which have significant sequence identity to a polynucleotide encoding KPP, but will generally have a greater or lesser number of nucleotides due to additions or deletions of blocks of sequence arising from alternate splicing during mRNA processing. A splice variant may have less than about 70%, or alternatively less than about 60%, or alternatively less than about 50% polynucleotide sequence identity to a polynucleotide encoding KPP over its entire length; however, portions of the splice variant will have at least about 70%, or alternatively at least about 85%, or alternatively at least about 95%, or alternatively 100% polynucleotide sequence identity to portions of the polynucleotide encoding KPP. For example, a polynucleotide comprising a sequence of SEQ ID NO:48, a polynucleotide comprising a sequence of SEQ ID NO:49 and a polynucleotide comprising a sequence of SEQ ID NO:50 are splice variants of each other; a polynucleotide comprising a sequence of SEQ ID NO:75 and a polynucleotide comprising a sequence of SEQ ID NO:76 are splice variants of each other; a polynucleotide comprising a sequence of SEQ ID NO:77 and a polynucleotide comprising a sequence of SEQ ID NO:78 are splice variants of each other; a polynucleotide comprising a sequence of SEQ ID NO:79 and a polynucleotide comprising a sequence of SEQ ID NO:80 are splice variants of each other; a polynucleotide comprising a sequence of SEQ ID NO:57 and a polynucleotide comprising a sequence of SEQ ID NO:62 are splice variants of each other, and a polynucleotide comprising a sequence of SEQ ID NO:68 and a polynucleotide comprising a sequence of SEQ ID NO:69 are splice variants of each other. Any one of the splice variants described above can encode a polypeptide which contains at least one functional or structural characteristic of KPP.

It will be appreciated by those skilled in the art that as a result of the degeneracy of the genetic code, a multitude of polynucleotide sequences encoding KPP, some bearing minimal similarity to the polynucleotide sequences of any known and naturally occurring gene, may be produced. Thus, the invention contemplates each and every possible variation of polynucleotide sequence that could be made by selecting combinations based on possible codon choices. These combinations are made in accordance with the standard triplet genetic code as applied to the

polynucleotide sequence of naturally occurring KPP, and all such variations are to be considered as being specifically disclosed.

Although polynucleotides which encode KPP and its variants are generally capable of hybridizing to polynucleotides encoding naturally occurring KPP under appropriately selected conditions of stringency, it may be advantageous to produce polynucleotides encoding KPP or its derivatives possessing a substantially different codon usage, e.g., inclusion of non-naturally occurring codons. Codons may be selected to increase the rate at which expression of the peptide occurs in a particular prokaryotic or eukaryotic host in accordance with the frequency with which particular codons are utilized by the host. Other reasons for substantially altering the nucleotide sequence encoding KPP and its derivatives without altering the encoded amino acid sequences include the production of RNA transcripts having more desirable properties, such as a greater half-life, than transcripts produced from the naturally occurring sequence.

10

15

20

25

30

35

The invention also encompasses production of polynucleotides which encode KPP and KPP derivatives, or fragments thereof, entirely by synthetic chemistry. After production, the synthetic polynucleotide may be inserted into any of the many available expression vectors and cell systems using reagents well known in the art. Moreover, synthetic chemistry may be used to introduce mutations into a polynucleotide encoding KPP or any fragment thereof.

Embodiments of the invention can also include polynucleotides that are capable of hybridizing to the claimed polynucleotides, and, in particular, to those having the sequences shown in SEQ ID NO:44-86 and fragments thereof, under various conditions of stringency (Wahl, G.M. and S.L. Berger (1987) Methods Enzymol. 152:399-407; Kimmel, A.R. (1987) Methods Enzymol. 152:507-511). Hybridization conditions, including annealing and wash conditions, are described in "Definitions."

Methods for DNA sequencing are well known in the art and may be used to practice any of the embodiments of the invention. The methods may employ such enzymes as the Klenow fragment of DNA polymerase I, SEQUENASE (US Biochemical, Cleveland OH), Taq polymerase (Applied Biosystems), thermostable T7 polymerase (Amersham Biosciences, Piscataway NJ), or combinations of polymerases and proofreading exonucleases such as those found in the ELONGASE amplification system (Invitrogen, Carlsbad CA). Preferably, sequence preparation is automated with machines such as the MICROLAB 2200 liquid transfer system (Hamilton, Reno NV), PTC200 thermal cycler (MJ Research, Watertown MA) and ABI CATALYST 800 thermal cycler (Applied Biosystems). Sequencing is then carried out using either the ABI 373 or 377 DNA sequencing system (Applied Biosystems), the MEGABACE 1000 DNA sequencing system (Amersham Biosciences), or other systems known in the art. The resulting sequences are analyzed using a variety of algorithms which are well known in the art (Ausubel et al., supra, ch. 7; Meyers, R.A. (1995) Molecular Biology and

Biotechnology, Wiley VCH, New York NY, pp. 856-853).

, 10

15

20

25

30

35

The nucleic acids encoding KPP may be extended utilizing a partial nucleotide sequence and employing various PCR-based methods known in the art to detect upstream sequences, such as promoters and regulatory elements. For example, one method which may be employed, restriction-site PCR, uses universal and nested primers to amplify unknown sequence from genomic DNA within a cloning vector (Sarkar, G. (1993) PCR Methods Applic. 2:318-322). Another method, inverse PCR, uses primers that extend in divergent directions to amplify unknown sequence from a circularized template. The template is derived from restriction fragments comprising a known genomic locus and surrounding sequences (Triglia, T. et al. (1988) Nucleic Acids Res. 16:8186). A third method, capture PCR, involves PCR amplification of DNA fragments adjacent to known sequences in human and yeast artificial chromosome DNA (Lagerstrom, M. et al. (1991) PCR Methods Applic. 1:111-119). In this method, multiple restriction enzyme digestions and ligations may be used to insert an engineered double-stranded sequence into a region of unknown sequence before performing PCR. Other methods which may be used to retrieve unknown sequences are known in the art (Parker, J.D. et al. (1991) Nucleic Acids Res. 19:3055-3060). Additionally, one may use PCR, nested primers, and PROMOTERFINDER libraries (BD Clontech, Palo Alto CA) to walk genomic DNA. This procedure avoids the need to screen libraries and is useful in finding intron/exon junctions. For all PCR-based methods, primers may be designed using commercially available software, such as OLIGO 4.06 primer analysis software (National Biosciences, Plymouth MN) or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the template at temperatures of about 68°C to 72°C.

When screening for full length cDNAs, it is preferable to use libraries that have been size-selected to include larger cDNAs. In addition, random-primed libraries, which often include sequences containing the 5' regions of genes, are preferable for situations in which an oligo d(T) library does not yield a full-length cDNA. Genomic libraries may be useful for extension of sequence into 5' non-transcribed regulatory regions.

Capillary electrophoresis systems which are commercially available may be used to analyze the size or confirm the nucleotide sequence of sequencing or PCR products. In particular, capillary sequencing may employ flowable polymers for electrophoretic separation, four different nucleotide-specific, laser-stimulated fluorescent dyes, and a charge coupled device camera for detection of the emitted wavelengths. Output/light intensity may be converted to electrical signal using appropriate software (e.g., GENOTYPER and SEQUENCE NAVIGATOR, Applied Biosystems), and the entire process from loading of samples to computer analysis and electronic data display may be computer controlled. Capillary electrophoresis is especially preferable for sequencing small DNA fragments which may be present in limited amounts in a particular sample.

In another embodiment of the invention, polynucleotides or fragments thereof which encode KPP may be cloned in recombinant DNA molecules that direct expression of KPP, or fragments or functional equivalents thereof, in appropriate host cells. Due to the inherent degeneracy of the genetic code, other polynucleotides which encode substantially the same or a functionally equivalent polypeptides may be produced and used to express KPP.

5

10

15

20

25

30

35

The polynucleotides of the invention can be engineered using methods generally known in the art in order to alter KPP-encoding sequences for a variety of purposes including, but not limited to, modification of the cloning, processing, and/or expression of the gene product. DNA shuffling by random fragmentation and PCR reassembly of gene fragments and synthetic oligonucleotides may be used to engineer the nucleotide sequences. For example, oligonucleotide-mediated site-directed mutagenesis may be used to introduce mutations that create new restriction sites, alter glycosylation patterns, change codon preference, produce splice variants, and so forth.

The nucleotides of the present invention may be subjected to DNA shuffling techniques such as MOLECULARBREEDING (Maxygen Inc., Santa Clara CA; described in U.S. Patent No. 5,837,458; Chang, C.-C. et al. (1999) Nat. Biotechnol. 17:793-797; Christians, F.C. et al. (1999) Nat. Biotechnol. 17:259-264; and Crameri, A. et al. (1996) Nat. Biotechnol. 14:315-319) to alter or improve the biological properties of KPP, such as its biological or enzymatic activity or its ability to bind to other molecules or compounds. DNA shuffling is a process by which a library of gene variants is produced using PCR-mediated recombination of gene fragments. The library is then subjected to selection or screening procedures that identify those gene variants with the desired properties. These preferred variants may then be pooled and further subjected to recursive rounds of DNA shuffling and selection/screening. Thus, genetic diversity is created through "artificial" breeding and rapid molecular evolution. For example, fragments of a single gene containing random point mutations may be recombined, screened, and then reshuffled until the desired properties are optimized. Alternatively, fragments of a given gene may be recombined with fragments of homologous genes in the same gene family, either from the same or different species, thereby maximizing the genetic diversity of multiple naturally occurring genes in a directed and controllable manner.

In another embodiment, polynucleotides encoding KPP may be synthesized, in whole or in part, using one or more chemical methods well known in the art (Caruthers, M.H. et al. (1980) Nucleic Acids Symp. Ser. 7:215-223; Horn, T. et al. (1980) Nucleic Acids Symp. Ser. 7:225-232). Alternatively, KPP itself or a fragment thereof may be synthesized using chemical methods known in the art. For example, peptide synthesis can be performed using various solution-phase or solid-phase techniques (Creighton, T. (1984) Proteins, Structures and Molecular Properties, WH Freeman, New York NY, pp. 55-60; Roberge, J.Y. et al. (1995) Science 269:202-204). Automated synthesis may be

achieved using the ABI 431A peptide synthesizer (Applied Biosystems). Additionally, the amino acid sequence of KPP, or any part thereof, may be altered during direct synthesis and/or combined with sequences from other proteins, or any part thereof, to produce a variant polypeptide or a polypeptide having a sequence of a naturally occurring polypeptide.

The peptide may be substantially purified by preparative high performance liquid chromatography (Chiez, R.M. and F.Z. Regnier (1990) Methods Enzymol. 182:392-421). The composition of the synthetic peptides may be confirmed by amino acid analysis or by sequencing (Creighton, *supra*, pp. 28-53).

5

10

15

20

25

30

35

In order to express a biologically active KPP, the polynucleotides encoding KPP or derivatives thereof may be inserted into an appropriate expression vector, i.e., a vector which contains the necessary elements for transcriptional and translational control of the inserted coding sequence in a suitable host. These elements include regulatory sequences, such as enhancers, constitutive and inducible promoters, and 5' and 3' untranslated regions in the vector and in polynucleotides encoding KPP. Such elements may vary in their strength and specificity. Specific initiation signals may also be used to achieve more efficient translation of polynucleotides encoding KPP. Such signals include the ATG initiation codon and adjacent sequences, e.g. the Kozak sequence. In cases where a polynucleotide sequence encoding KPP and its initiation codon and upstream regulatory sequences are inserted into the appropriate expression vector, no additional transcriptional or translational control signals may be needed. However, in cases where only coding sequence, or a fragment thereof, is inserted, exogenous translational control signals including an in-frame ATG initiation codon should be provided by the vector. Exogenous translational elements and initiation codons may be of various origins, both natural and synthetic. The efficiency of expression may be enhanced by the inclusion of enhancers appropriate for the particular host cell system used (Scharf, D. et al. (1994) Results Probl. Cell Differ. 20:125-162).

Methods which are well known to those skilled in the art may be used to construct expression vectors containing polynucleotides encoding KPP and appropriate transcriptional and translational control elements. These methods include *in vitro* recombinant DNA techniques, synthetic techniques, and *in vivo* genetic recombination (Sambrook and Russell, *supra*, ch. 1-4, and 8; Ausubel et al., *supra*, ch. 1, 3, and 15).

A variety of expression vector/host systems may be utilized to contain and express polynucleotides encoding KPP. These include, but are not limited to, microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors; yeast transformed with yeast expression vectors; insect cell systems infected with viral expression vectors (e.g., baculovirus); plant cell systems transformed with viral expression vectors (e.g., cauliflower mosaic virus, CaMV, or tobacco mosaic virus, TMV) or with bacterial expression vectors

(e.g., Ti or pBR322 plasmids); or animal cell systems (Sambrook and Russell, supra; Ausubel et al., supra; Van Heeke, G. and S.M. Schuster (1989) J. Biol. Chem. 264:5503-5509; Engelhard, E.K. et al. (1994) Proc. Natl. Acad. Sci. USA 91:3224-3227; Sandig, V. et al. (1996) Hum. Gene Ther. 7:1937-1945; Takamatsu, N. (1987) EMBO J. 6:307-311; The McGraw Hill Yearbook of Science and Technology (1992) McGraw Hill, New York NY, pp. 191-196; Logan, J. and T. Shenk (1984) Proc. Natl. Acad. Sci. USA 81:3655-3659; Harrington, J.J. et al. (1997) Nat. Genet. 15:345-355). Expression vectors derived from retroviruses, adenoviruses, or herpes or vaccinia viruses, or from various bacterial plasmids, may be used for delivery of polynucleotides to the targeted organ, tissue, or cell population (Di Nicola, M. et al. (1998) Cancer Gen. Ther. 5:350-356; Yu, M. et al. (1993) Proc. Natl. Acad. Sci. USA 90:6340-6344; Buller, R.M. et al. (1985) Nature 317:813-815; McGregor, D.P. et al. (1994) Mol. Immunol. 31:219-226; Verma, I.M. and N. Somia (1997) Nature 389:239-242). The invention is not limited by the host cell employed.

In bacterial systems, a number of cloning and expression vectors may be selected depending upon the use intended for polynucleotides encoding KPP. For example, routine cloning, subcloning, and propagation of polynucleotides encoding KPP can be achieved using a multifunctional *E. coli* vector such as PBLUESCRIPT (Stratagene, La Jolla CA) or PSPORT1 plasmid (Invitrogen). Ligation of polynucleotides encoding KPP into the vector's multiple cloning site disrupts the *lacZ* gene, allowing a colorimetric screening procedure for identification of transformed bacteria containing recombinant molecules. In addition, these vectors may be useful for *in vitro* transcription, dideoxy sequencing, single strand rescue with helper phage, and creation of nested deletions in the cloned sequence (Van Heeke, G. and S.M. Schuster (1989) J. Biol. Chem. 264:5503-5509). When large quantities of KPP are needed, e.g. for the production of antibodies, vectors which direct high level expression of KPP may be used. For example, vectors containing the strong, inducible SP6 or T7 bacteriophage promoter may be used.

15

20

25

30

35

Yeast expression systems may be used for production of KPP. A number of vectors containing constitutive or inducible promoters, such as alpha factor, alcohol oxidase, and PGH promoters, may be used in the yeast Saccharomyces cerevisiae or Pichia pastoris. In addition, such vectors direct either the secretion or intracellular retention of expressed proteins and enable integration of foreign polynucleotide sequences into the host genome for stable propagation (Ausubel et al., supra; Bitter, G.A. et al. (1987) Methods Enzymol. 153:516-544; Scorer, C.A. et al. (1994) Bio/Technology 12:181-184).

Plant systems may also be used for expression of KPP. Transcription of polynucleotides encoding KPP may be driven by viral promoters, e.g., the 35S and 19S promoters of CaMV used alone or in combination with the omega leader sequence from TMV (Takamatsu, N. (1987) EMBO J. 6:307-311). Alternatively, plant promoters such as the small subunit of RUBISCO or heat shock

promoters may be used (Coruzzi, G. et al. (1984) EMBO J. 3:1671-1680; Broglie, R. et al. (1984) Science 224:838-843; Winter, J. et al. (1991) Results Probl. Cell Differ. 17:85-105). These constructs can be introduced into plant cells by direct DNA transformation or pathogen-mediated transfection (The McGraw Hill Yearbook of Science and Technology (1992) McGraw Hill, New York NY, pp. 191-196).

In mammalian cells, a number of viral-based expression systems may be utilized. In cases where an adenovirus is used as an expression vector, polynucleotides encoding KPP may be ligated into an adenovirus transcription/translation complex consisting of the late promoter and tripartite leader sequence. Insertion in a non-essential E1 or E3 region of the viral genome may be used to obtain infective virus which expresses KPP in host cells (Logan, J. and T. Shenk (1984) Proc. Natl. Acad. Sci. USA 81:3655-3659). In addition, transcription enhancers, such as the Rous sarcoma virus (RSV) enhancer, may be used to increase expression in mammalian host cells. SV40 or EBV-based vectors may also be used for high-level protein expression.

Human artificial chromosomes (HACs) may also be employed to deliver larger fragments of DNA than can be contained in and expressed from a plasmid. HACs of about 6 kb to 10 Mb are constructed and delivered via conventional delivery methods (liposomes, polycationic amino polymers, or vesicles) for therapeutic purposes (Harrington, J.J. et al. (1997) Nat. Genet. 15:345-355).

15

20

25

30

35

For long term production of recombinant proteins in mammalian systems, stable expression of KPP in cell lines is preferred. For example, polynucleotides encoding KPP can be transformed into cell lines using expression vectors which may contain viral origins of replication and/or endogenous expression elements and a selectable marker gene on the same or on a separate vector. Following the introduction of the vector, cells may be allowed to grow for about 1 to 2 days in enriched media before being switched to selective media. The purpose of the selectable marker is to confer resistance to a selective agent, and its presence allows growth and recovery of cells which successfully express the introduced sequences. Resistant clones of stably transformed cells may be propagated using tissue culture techniques appropriate to the cell type.

Any number of selection systems may be used to recover transformed cell lines. These include, but are not limited to, the herpes simplex virus thymidine kinase and adenine phosphoribosyltransferase genes, for use in tk and apr cells, respectively (Wigler, M. et al. (1977) Cell 11:223-232; Lowy, I. et al. (1980) Cell 22:817-823). Also, antimetabolite, antibiotic, or herbicide resistance can be used as the basis for selection. For example, dhfr confers resistance to methotrexate; neo confers resistance to the aminoglycosides neomycin and G-418; and als and pat confer resistance to chlorsulfuron and phosphinotricin acetyltransferase, respectively (Wigler, M. et al. (1980) Proc. Natl. Acad. Sci. USA 77:3567-3570; Colbere-Garapin, F. et al. (1981) J. Mol. Biol. 150:1-14). Additional selectable genes have been described, e.g., trpB and hisD, which alter cellular

requirements for metabolites (Hartman, S.C. and R.C. Mulligan (1988) Proc. Natl. Acad. Sci. USA 85:8047-8051). Visible markers, e.g., anthocyanins, green fluorescent proteins (GFP; BD Clontech),  $\beta$ -glucuronidase and its substrate  $\beta$ -glucuronide, or luciferase and its substrate luciferin may be used. These markers can be used not only to identify transformants, but also to quantify the amount of transient or stable protein expression attributable to a specific vector system (Rhodes, C.A. (1995) Methods Mol. Biol. 55:121-131).

5

10

15

20

25

30

15

Although the presence/absence of marker gene expression suggests that the gene of interest is also present, the presence and expression of the gene may need to be confirmed. For example, if the sequence encoding KPP is inserted within a marker gene sequence, transformed cells containing polynucleotides encoding KPP can be identified by the absence of marker gene function.

Alternatively, a marker gene can be placed in tandem with a sequence encoding KPP under the control of a single promoter. Expression of the marker gene in response to induction or selection usually indicates expression of the tandem gene as well.

In general, host cells that contain the polynucleotide encoding KPP and that express KPP may be identified by a variety of procedures known to those of skill in the art. These procedures include, but are not limited to, DNA-DNA or DNA-RNA hybridizations, PCR amplification, and protein bioassay or immunoassay techniques which include membrane, solution, or chip based technologies for the detection and/or quantification of nucleic acid or protein sequences.

Immunological methods for detecting and measuring the expression of KPP using either specific polyclonal or monoclonal antibodies are known in the art. Examples of such techniques include enzyme-linked immunosorbent assays (ELISAs), radioimmunoassays (RIAs), and fluorescence activated cell sorting (FACS). A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering epitopes on KPP is preferred, but a competitive binding assay may be employed. These and other assays are well known in the art (Hampton, R. et al. (1990) Serological Methods, a Laboratory Manual, APS Press, St. Paul MN, Sect. IV; Coligan, J.E. et al. (1997) Current Protocols in Immunology, Greene Pub. Associates and Wiley-Interscience, New York NY; Pound, J.D. (1998) Immunochemical Protocols, Humana Press, Totowa NJ).

A wide variety of labels and conjugation techniques are known by those skilled in the art and may be used in various nucleic acid and amino acid assays. Means for producing labeled hybridization or PCR probes for detecting sequences related to polynucleotides encoding KPP include oligolabeling, nick translation, end-labeling, or PCR amplification using a labeled nucleotide. Alternatively, polynucleotides encoding KPP, or any fragments thereof, may be cloned into a vector for the production of an mRNA probe. Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes *in vitro* by addition of an appropriate RNA polymerase such as T7, T3, or SP6 and labeled nucleotides. These procedures may be conducted using a variety

of commercially available kits, such as those provided by Amersham Biosciences, Promega (Madison WI), and US Biochemical. Suitable reporter molecules or labels which may be used for ease of detection include radionuclides, enzymes, fluorescent, chemiluminescent, or chromogenic agents, as well as substrates, cofactors, inhibitors, magnetic particles, and the like.

Host cells transformed with polynucleotides encoding KPP may be cultured under conditions suitable for the expression and recovery of the protein from cell culture. The protein produced by a transformed cell may be secreted or retained intracellularly depending on the sequence and/or the vector used. As will be understood by those of skill in the art, expression vectors containing polynucleotides which encode KPP may be designed to contain signal sequences which direct secretion of KPP through a prokaryotic or eukaryotic cell membrane.

5

10

15

20

25

15

In addition, a host cell strain may be chosen for its ability to modulate expression of the inserted polynucleotides or to process the expressed protein in the desired fashion. Such modifications of the polypeptide include, but are not limited to, acetylation, carboxylation, glycosylation, phosphorylation, lipidation, and acylation. Post-translational processing which cleaves a "prepro" or "pro" form of the protein may also be used to specify protein targeting, folding, and/or activity. Different host cells which have specific cellular machinery and characteristic mechanisms for post-translational activities (e.g., CHO, HeLa, MDCK, HEK293, and WI38) are available from the American Type Culture Collection (ATCC, Manassas VA) and may be chosen to ensure the correct modification and processing of the foreign protein.

In another embodiment of the invention, natural, modified, or recombinant polynucleotides encoding KPP may be ligated to a heterologous sequence resulting in translation of a fusion protein in any of the aforementioned host systems. For example, a chimeric KPP protein containing a heterologous moiety that can be recognized by a commercially available antibody may facilitate the screening of peptide libraries for inhibitors of KPP activity. Heterologous protein and peptide moieties may also facilitate purification of fusion proteins using commercially available affinity matrices. Such moieties include, but are not limited to, glutathione S-transferase (GST), maltose binding protein (MBP), thioredoxin (Trx), calmodulin binding peptide (CBP), 6-His, FLAG, c-myc, and hemagglutinin (HA). GST, MBP, Trx, CBP, and 6-His enable purification of their cognate fusion proteins on immobilized glutathione, maltose, phenylarsine oxide, calmodulin, and metal-chelate resins, respectively. FLAG, c-myc, and hemagglutinin (HA) enable immunoaffinity purification of fusion proteins using commercially available monoclonal and polyclonal antibodies that specifically recognize these epitope tags. A fusion protein may also be engineered to contain a proteolytic cleavage site located between the KPP encoding sequence and the heterologous protein sequence, so that KPP may be cleaved away from the heterologous moiety following purification. Methods for fusion protein expression and purification are discussed in Ausubel et al. (supra, ch. 10 and 16). A

variety of commercially available kits may also be used to facilitate expression and purification of fusion proteins.

In another embodiment, synthesis of radiolabeled KPP may be achieved *in vitro* using the TNT rabbit reticulocyte lysate or wheat germ extract system (Promega). These systems couple transcription and translation of protein-coding sequences operably associated with the T7, T3, or SP6 promoters. Translation takes place in the presence of a radiolabeled amino acid precursor, for example, <sup>35</sup>S-methionine.

5

lO

15

20

25

30

35

KPP, fragments of KPP, or variants of KPP may be used to screen for compounds that specifically bind to KPP. One or more test compounds may be screened for specific binding to KPP. In various embodiments, 1, 2, 3, 4, 5, 10, 20, 50, 100, or 200 test compounds can be screened for specific binding to KPP. Examples of test compounds can include antibodies, anticalins, oligonucleotides, proteins (e.g., ligands or receptors), or small molecules.

In related embodiments, variants of KPP can be used to screen for binding of test compounds, such as antibodies, to KPP, a variant of KPP, or a combination of KPP and/or one or more variants KPP. In an embodiment, a variant of KPP can be used to screen for compounds that bind to a variant of KPP, but not to KPP having the exact sequence of a sequence of SEQ ID NO:1-43. KPP variants used to perform such screening can have a range of about 50% to about 99% sequence identity to KPP, with various embodiments having 60%, 70%, 75%, 80%, 85%, 90%, and 95% sequence identity.

In an embodiment, a compound identified in a screen for specific binding to KPP can be closely related to the natural ligand of KPP, e.g., a ligand or fragment thereof, a natural substrate, a structural or functional mimetic, or a natural binding partner (Coligan, J.E. et al. (1991) <u>Current Protocols in Immunology</u> 1(2):Chapter 5). In another embodiment, the compound thus identified can be a natural ligand of a receptor KPP (Howard, A.D. et al. (2001) Trends Pharmacol. Sci.22:132-140; Wise, A. et al. (2002) Drug Discovery Today 7:235-246).

In other embodiments, a compound identified in a screen for specific binding to KPP can be closely related to the natural receptor to which KPP binds, at least a fragment of the receptor, or a fragment of the receptor including all or a portion of the ligand binding site or binding pocket. For example, the compound may be a receptor for KPP which is capable of propagating a signal, or a decoy receptor for KPP which is not capable of propagating a signal (Ashkenazi, A. and V.M. Divit (1999) Curr. Opin. Cell Biol. 11:255-260; Mantovani, A. et al. (2001) Trends Immunol. 22:328-336). The compound can be rationally designed using known techniques. Examples of such techniques include those used to construct the compound etanercept (ENBREL; Amgen Inc., Thousand Oaks CA), which is efficacious for treating rheumatoid arthritis in humans. Etanercept is an engineered p75 tumor necrosis factor (TNF) receptor dimer linked to the Fc portion of human IgG<sub>1</sub> (Taylor, P.C.

et al. (2001) Curr. Opin. Immunol. 13:611-616).

10

15

20

25

30

35

In one embodiment, two or more antibodies having similar or, alternatively, different specificities can be screened for specific binding to KPP, fragments of KPP, or variants of KPP. The binding specificity of the antibodies thus screened can thereby be selected to identify particular fragments or variants of KPP. In one embodiment, an antibody can be selected such that its binding specificity allows for preferential identification of specific fragments or variants of KPP. In another embodiment, an antibody can be selected such that its binding specificity allows for preferential diagnosis of a specific disease or condition having increased, decreased, or otherwise abnormal production of KPP.

In an embodiment, anticalins can be screened for specific binding to KPP, fragments of KPP, or variants of KPP. Anticalins are ligand-binding proteins that have been constructed based on a lipocalin scaffold (Weiss, G.A. and H.B. Lowman (2000) Chem. Biol. 7:R177-R184; Skerra, A. (2001) J. Biotechnol. 74:257-275). The protein architecture of lipocalins can include a beta-barrel having eight antiparallel beta-strands, which supports four loops at its open end. These loops form the natural ligand-binding site of the lipocalins, a site which can be re-engineered *in vitro* by amino acid substitutions to impart novel binding specificities. The amino acid substitutions can be made using methods known in the art or described herein, and can include conservative substitutions (e.g., substitutions that do not alter binding specificity) or substitutions that modestly, moderately, or significantly alter binding specificity.

In one embodiment, screening for compounds which specifically bind to, stimulate, or inhibit KPP involves producing appropriate cells which express KPP, either as a secreted protein or on the cell membrane. Preferred cells can include cells from mammals, yeast, *Drosophila*, or *E. coli*. Cells expressing KPP or cell membrane fractions which contain KPP are then contacted with a test compound and binding, stimulation, or inhibition of activity of either KPP or the compound is analyzed.

An assay may simply test binding of a test compound to the polypeptide, wherein binding is detected by a fluorophore, radioisotope, enzyme conjugate, or other detectable label. For example, the assay may comprise the steps of combining at least one test compound with KPP, either in solution or affixed to a solid support, and detecting the binding of KPP to the compound. Alternatively, the assay may detect or measure binding of a test compound in the presence of a labeled competitor. Additionally, the assay may be carried out using cell-free preparations, chemical libraries, or natural product mixtures, and the test compound(s) may be free in solution or affixed to a solid support.

An assay can be used to assess the ability of a compound to bind to its natural ligand and/or to inhibit the binding of its natural ligand to its natural receptors. Examples of such assays include

radio-labeling assays such as those described in U.S. Patent No. 5,914,236 and U.S. Patent No. 6,372,724. In a related embodiment, one or more amino acid substitutions can be introduced into a polypeptide compound (such as a receptor) to improve or alter its ability to bind to its natural ligands (Matthews, D.J. and J.A. Wells. (1994) Chem. Biol. 1:25-30). In another related embodiment, one or more amino acid substitutions can be introduced into a polypeptide compound (such as a ligand) to improve or alter its ability to bind to its natural receptors (Cunningham, B.C. and J.A. Wells (1991) Proc. Natl. Acad. Sci. USA 88:3407-3411; Lowman, H.B. et al. (1991) J. Biol. Chem. 266:10982-10988).

KPP, fragments of KPP, or variants of KPP may be used to screen for compounds that modulate the activity of KPP. Such compounds may include agonists, antagonists, or partial or inverse agonists. In one embodiment, an assay is performed under conditions permissive for KPP activity, wherein KPP is combined with at least one test compound, and the activity of KPP in the presence of a test compound is compared with the activity of KPP in the absence of the test compound. A change in the activity of KPP in the presence of the test compound is indicative of a compound that modulates the activity of KPP. Alternatively, a test compound is combined with an *in vitro* or cell-free system comprising KPP under conditions suitable for KPP activity, and the assay is performed. In either of these assays, a test compound which modulates the activity of KPP may do so indirectly and need not come in direct contact with the test compound. At least one and up to a plurality of test compounds may be screened.

10

15

20

25

30

35

In another embodiment, polynucleotides encoding KPP or their mammalian homologs may be "knocked out" in an animal model system using homologous recombination in embryonic stem (ES) cells. Such techniques are well known in the art and are useful for the generation of animal models of human disease (see, e.g., U.S. Patent No. 5,175,383 and U.S. Patent No. 5,767,337). For example, mouse ES cells, such as the mouse 129/SvJ cell line, are derived from the early mouse embryo and grown in culture. The ES cells are transformed with a vector containing the gene of interest disrupted by a marker gene, e.g., the neomycin phosphotransferase gene (neo; Capecchi, M.R. (1989) Science 244:1288-1292). The vector integrates into the corresponding region of the host genome by homologous recombination. Alternatively, homologous recombination takes place using the Cre-loxP system to knockout a gene of interest in a tissue- or developmental stage-specific manner (Marth, J.D. (1996) Clin. Invest. 97:1999-2002; Wagner, K.U. et al. (1997) Nucleic Acids Res. 25:4323-4330). Transformed ES cells are identified and microinjected into mouse cell blastocysts such as those from the C57BL/6 mouse strain. The blastocysts are surgically transferred to pseudopregnant dams, and the resulting chimeric progeny are genotyped and bred to produce heterozygous or homozygous strains. Transgenic animals thus generated may be tested with potential therapeutic or toxic agents.

Polynucleotides encoding KPP may also be manipulated in vitro in ES cells derived from

human blastocysts. Human ES cells have the potential to differentiate into at least eight separate cell lineages including endoderm, mesoderm, and ectodermal cell types. These cell lineages differentiate into, for example, neural cells, hematopoietic lineages, and cardiomyocytes (Thomson, J.A. et al. (1998) Science 282:1145-1147).

Polynucleotides encoding KPP can also be used to create "knockin" humanized animals (pigs) or transgenic animals (mice or rats) to model human disease. With knockin technology, a region of a polynucleotide encoding KPP is injected into animal ES cells, and the injected sequence integrates into the animal cell genome. Transformed cells are injected into blastulae, and the blastulae are implanted as described above. Transgenic progeny or inbred lines are studied and treated with potential pharmaceutical agents to obtain information on treatment of a human disease. Alternatively, a mammal inbred to overexpress KPP, e.g., by secreting KPP in its milk, may also serve as a convenient source of that protein (Janne, J. et al. (1998) Biotechnol. Annu. Rev. 4:55-74).

## **THERAPEUTICS**

5

10

15

20

25

30

35

Chemical and structural similarity, e.g., in the context of sequences and motifs, exists between regions of KPP and kinases and phosphatases. In addition, examples of tissues expressing KPP can be found in Table 6 and can also be found in Example XI. Therefore, KPP appears to play a role in cardiovascular diseases, immune system disorders, neurological disorders, disorders affecting growth and development, lipid disorders, cell proliferative disorders, and cancers. In the treatment of disorders associated with increased KPP expression or activity, it is desirable to decrease the expression or activity, it is desirable to increase the expression or activity, it is desirable to increase the expression or activity of KPP.

Therefore, in one embodiment, KPP or a fragment or derivative thereof may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of KPP. Examples of such disorders include, but are not limited to, a cardiovascular disease such as arteriovenous fistula, atherosclerosis, hypertension, vasculitis, Raynaud's disease, aneurysms, arterial dissections, varicose veins, thrombophlebitis and phlebothrombosis, vascular tumors, and complications of thrombolysis, balloon angioplasty, vascular replacement, and coronary artery bypass graft surgery, congestive heart failure, ischemic heart disease, angina pectoris, myocardial infarction, hypertensive heart disease, degenerative valvular heart disease, calcific aortic valve stenosis, congenitally bicuspid aortic valve, mitral annular calcification, mitral valve prolapse, rheumatic fever and rheumatic heart disease, infective endocarditis, nonbacterial thrombotic endocarditis, endocarditis of systemic lupus erythematosus, carcinoid heart disease, cardiomyopathy, myocarditis, pericarditis, neoplastic heart disease, congenital heart disease, and complications of cardiac transplantation, congenital lung anomalies, atelectasis, pulmonary congestion and edema, pulmonary embolism, pulmonary hemorrhage, pulmonary infarction, pulmonary hypertension, vascular sclerosis,

PCT/US2004/009215 WO 2004/098539

obstructive pulmonary disease, restrictive pulmonary disease, chronic obstructive pulmonary disease, emphysema, chronic bronchitis, bronchial asthma, bronchiectasis, bacterial pneumonia, viral and mycoplasmal pneumonia, lung abscess, pulmonary tuberculosis, diffuse interstitial diseases, pneumoconioses, sarcoidosis, idiopathic pulmonary fibrosis, desquamative interstitial pneumonitis, hypersensitivity pneumonitis, pulmonary eosinophilia bronchiolitis obliterans-organizing pneumonia, diffuse pulmonary hemorrhage syndromes, Goodpasture's syndromes, idiopathic pulmonary hemosiderosis, pulmonary involvement in collagen-vascular disorders, pulmonary alveolar proteinosis, lung tumors, inflammatory and noninflammatory pleural effusions, pneumothorax, pleural tumors, drug-induced lung disease, radiation-induced lung disease, and complications of lung transplantation; an immune system disorder such as acquired immunodeficiency syndrome (AIDS), 10 Addison's disease, adult respiratory distress syndrome, allergies, ankylosing spondylitis, amyloidosis, anemia, asthma, atherosclerosis, autoimmune hemolytic anemia, autoimmune thyroiditis, autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), bronchitis, cholecystitis, contact dermatitis, Crohn's disease, atopic dermatitis, dermatomyositis, diabetes mellitus, emphysema, episodic lymphopenia with lymphocytotoxins, erythroblastosis fetalis, erythema nodosum, atrophic 15 gastritis, glomerulonephritis, Goodpasture's syndrome, gout, Graves' disease, Hashimoto's thyroiditis, hypereosinophilia, irritable bowel syndrome, multiple sclerosis, myasthenia gravis, myocardial or pericardial inflammation, osteoarthritis, osteoporosis, pancreatitis, polymyositis, psoriasis, Reiter's syndrome, rheumatoid arthritis, scleroderma, Sjögren's syndrome, systemic anaphylaxis, systemic lupus erythematosus, systemic sclerosis, thrombocytopenic purpura, ulcerative 20 colitis, uveitis, Werner syndrome, complications of cancer, hemodialysis, and extracorporeal circulation, viral, bacterial, fungal, parasitic, protozoal, and helminthic infections, and trauma; a neurological disorder such as epilepsy, ischemic cerebrovascular disease, stroke, cerebral neoplasms, Alzheimer's disease, Pick's disease, Huntington's disease, dementia, Parkinson's disease and other extrapyramidal disorders, amyotrophic lateral sclerosis and other motor neuron disorders, progressive 25 neural muscular atrophy, retinitis pigmentosa, hereditary ataxias, multiple sclerosis and other demyelinating diseases, bacterial and viral meningitis, brain abscess, subdural empyema, epidural abscess, suppurative intracranial thrombophlebitis, myelitis and radiculitis, viral central nervous system disease, prion diseases including kuru, Creutzfeldt-Jakob disease, and Gerstmann-Straussler-Scheinker syndrome, fatal familial insomnia, nutritional and metabolic diseases of the 30 nervous system, neurofibromatosis, tuberous sclerosis, cerebelloretinal hemangioblastomatosis, encephalotrigeminal syndrome, mental retardation and other developmental disorders of the central nervous system including Down syndrome, cerebral palsy, neuroskeletal disorders, autonomic nervous system disorders, cranial nerve disorders, spinal cord diseases, muscular dystrophy and other neuromuscular disorders, peripheral nervous system disorders, dermatomyositis and polymyositis,

35

inherited, metabolic, endocrine, and toxic myopathies, myasthenia gravis, periodic paralysis, mental disorders including mood, anxiety, and schizophrenic disorders, seasonal affective disorder (SAD), akathesia, amnesia, catatonia, diabetic neuropathy, tardive dyskinesia, dystonias, paranoid psychoses, postherpetic neuralgia, Tourette's disorder, progressive supranuclear palsy, corticobasal degeneration, and familial frontotemporal dementia; a disorder affecting growth and development such as actinic keratosis, arteriosclerosis, atherosclerosis, bursitis, cirrhosis, hepatitis, mixed connective tissue disease (MCTD), myelofibrosis, paroxysmal nocturnal hemoglobinuria, polycythemia vera, psoriasis, primary thrombocythemia, renal tubular acidosis, anemia, Cushing's syndrome, achondroplastic dwarfism, Duchenne and Becker muscular dystrophy, epilepsy, gonadal dysgenesis, WAGR syndrome (Wilms' tumor, aniridia, genitourinary abnormalities, and mental retardation), Smith-Magenis syndrome, myelodysplastic syndrome, hereditary mucoepithelial dysplasia, hereditary keratodermas, hereditary neuropathies such as Charcot-Marie-Tooth disease and neurofibromatosis, hypothyroidism, hydrocephalus, seizure disorders such as Syndenham's chorea and cerebral palsy, spina bifida, anencephaly, craniorachischisis, congenital glaucoma, cataract, and sensorineural hearing loss; a lipid disorder such as fatty liver, cholestasis, primary biliary cirrhosis, carnitine deficiency, carnitine palmitoyltransferase deficiency, myoadenylate deaminase deficiency, hypertriglyceridemia, lipid storage disorders such Fabry's disease, Gaucher's disease, Niemann-Pick's disease, metachromatic leukodystrophy, adrenoleukodystrophy, GM<sub>2</sub> gangliosidosis, and ceroid lipofuscinosis, abetalipoproteinemia, Tangier disease, hyperlipoproteinemia, diabetes mellitus, lipodystrophy, lipomatoses, acute panniculitis, disseminated fat necrosis, adiposis dolorosa, lipoid adrenal hyperplasia, minimal change disease, lipomas, atherosclerosis, hypercholesterolemia, hypercholesterolemia with hypertriglyceridemia, primary hypoalphalipoproteinemia, hypothyroidism, renal disease, liver disease, lecithin:cholesterol acyltransferase deficiency, cerebrotendinous xanthomatosis, sitosterolemia, hypocholesterolemia, Tay-Sachs disease, Sandhoff's disease, hyperlipidemia, hyperlipemia, lipid myopathies, and obesity; and a cell proliferative disorder such as actinic keratosis, arteriosclerosis, atherosclerosis, bursitis, cirrhosis, hepatitis, mixed connective tissue disease (MCTD), myelofibrosis, paroxysmal nocturnal hemoglobinuria, polycythemia vera, psoriasis, primary thrombocythemia, and cancers including adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, cancers of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, colon, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid, uterus, leukemias such as multiple myeloma, and lymphomas such as Hodgkin's disease.

10

15

20

25

35

In another embodiment, a vector capable of expressing KPP or a fragment or derivative thereof may be administered to a subject to treat or prevent a disorder associated with decreased

expression or activity of KPP including, but not limited to, those described above.

10

15

20

25

30

35

In a further embodiment, a composition comprising a substantially purified KPP in conjunction with a suitable pharmaceutical carrier may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of KPP including, but not limited to, those provided above.

In still another embodiment, an agonist which modulates the activity of KPP may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of KPP including, but not limited to, those listed above.

In a further embodiment, an antagonist of KPP may be administered to a subject to treat or prevent a disorder associated with increased expression or activity of KPP. Examples of such disorders include, but are not limited to, those cardiovascular diseases, immune system disorders, neurological disorders, disorders affecting growth and development, lipid disorders, cell proliferative disorders, and cancers described above. In one aspect, an antibody which specifically binds KPP may be used directly as an antagonist or indirectly as a targeting or delivery mechanism for bringing a pharmaceutical agent to cells or tissues which express KPP.

In an additional embodiment, a vector expressing the complement of the polynucleotide encoding KPP may be administered to a subject to treat or prevent a disorder associated with increased expression or activity of KPP including, but not limited to, those described above.

In other embodiments, any protein, agonist, antagonist, antibody, complementary sequence, or vector embodiments may be administered in combination with other appropriate therapeutic agents. Selection of the appropriate agents for use in combination therapy may be made by one of ordinary skill in the art, according to conventional pharmaceutical principles. The combination of therapeutic agents may act synergistically to effect the treatment or prevention of the various disorders described above. Using this approach, one may be able to achieve therapeutic efficacy with lower dosages of each agent, thus reducing the potential for adverse side effects.

An antagonist of KPP may be produced using methods which are generally known in the art. In particular, purified KPP may be used to produce antibodies or to screen libraries of pharmaceutical agents to identify those which specifically bind KPP. Antibodies to KPP may also be generated using methods that are well known in the art. Such antibodies may include, but are not limited to, polyclonal, monoclonal, chimeric, and single chain antibodies, Fab fragments, and fragments produced by a Fab expression library. In an embodiment, neutralizing antibodies (i.e., those which inhibit dimer formation) can be used therapeutically. Single chain antibodies (e.g., from camels or llamas) may be potent enzyme inhibitors and may have application in the design of peptide mimetics, and in the development of immuno-adsorbents and biosensors (Muyldermans, S. (2001) J. Biotechnol. 74:277-302).

For the production of antibodies, various hosts including goats, rabbits, rats, mice, camels, dromedaries, llamas, humans, and others may be immunized by injection with KPP or with any fragment or oligopeptide thereof which has immunogenic properties. Depending on the host species, various adjuvants may be used to increase immunological response. Such adjuvants include, but are not limited to, Freund's, mineral gels such as aluminum hydroxide, and surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, KLH, and dinitrophenol. Among adjuvants used in humans, BCG (bacilli Calmette-Guerin) and *Corynebacterium parvum* are especially preferable.

It is preferred that the oligopeptides, peptides, or fragments used to induce antibodies to KPP have an amino acid sequence consisting of at least about 5 amino acids, and generally will consist of at least about 10 amino acids. It is also preferable that these oligopeptides, peptides, or fragments are substantially identical to a portion of the amino acid sequence of the natural protein. Short stretches of KPP amino acids may be fused with those of another protein, such as KLH, and antibodies to the chimeric molecule may be produced.

10

15

20

25

30

35

Monoclonal antibodies to KPP may be prepared using any technique which provides for the production of antibody molecules by continuous cell lines in culture. These include, but are not limited to, the hybridoma technique, the human B-cell hybridoma technique, and the EBV-hybridoma technique (Kohler, G. et al. (1975) Nature 256:495-497; Kozbor, D. et al. (1985) J. Immunol. Methods 81:31-42; Cote, R.J. et al. (1983) Proc. Natl. Acad. Sci. USA 80:2026-2030; Cole, S.P. et al. (1984) Mol. Cell Biol. 62:109-120).

In addition, techniques developed for the production of "chimeric antibodies," such as the splicing of mouse antibody genes to human antibody genes to obtain a molecule with appropriate antigen specificity and biological activity, can be used (Morrison, S.L. et al. (1984) Proc. Natl. Acad. Sci. USA 81:6851-6855; Neuberger, M.S. et al. (1984) Nature 312:604-608; Takeda, S. et al. (1985) Nature 314:452-454). Alternatively, techniques described for the production of single chain antibodies may be adapted, using methods known in the art, to produce KPP-specific single chain antibodies. Antibodies with related specificity, but of distinct idiotypic composition, may be generated by chain shuffling from random combinatorial immunoglobulin libraries (Burton, D.R. (1991) Proc. Natl. Acad. Sci. USA 88:10134-10137).

Antibodies may also be produced by inducing *in vivo* production in the lymphocyte population or by screening immunoglobulin libraries or panels of highly specific binding reagents as disclosed in the literature (Orlandi, R. et al. (1989) Proc. Natl. Acad. Sci. USA 86:3833-3837; Winter, G. et al. (1991) Nature 349:293-299).

Antibody fragments which contain specific binding sites for KPP may also be generated. For example, such fragments include, but are not limited to, F(ab')<sub>2</sub> fragments produced by pepsin

digestion of the antibody molecule and Fab fragments generated by reducing the disulfide bridges of the F(ab')2 fragments. Alternatively, Fab expression libraries may be constructed to allow rapid and easy identification of monoclonal Fab fragments with the desired specificity (Huse, W.D. et al. (1989) Science 246:1275-1281).

5

10

15

20

25

30

35

Various immunoassays may be used for screening to identify antibodies having the desired specificity. Numerous protocols for competitive binding or immunoradiometric assays using either polyclonal or monoclonal antibodies with established specificities are well known in the art. Such immunoassays typically involve the measurement of complex formation between KPP and its specific antibody. A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering KPP epitopes is generally used, but a competitive binding assay may also be employed (Pound, *supra*).

Various methods such as Scatchard analysis in conjunction with radioimmunoassay techniques may be used to assess the affinity of antibodies for KPP. Affinity is expressed as an association constant,  $K_a$ , which is defined as the molar concentration of KPP-antibody complex divided by the molar concentrations of free antigen and free antibody under equilibrium conditions. The  $K_a$  determined for a preparation of polyclonal antibodies, which are heterogeneous in their affinities for multiple KPP epitopes, represents the average affinity, or avidity, of the antibodies for KPP. The  $K_a$  determined for a preparation of monoclonal antibodies, which are monospecific for a particular KPP epitope, represents a true measure of affinity. High-affinity antibody preparations with  $K_a$  ranging from about  $10^9$  to  $10^{12}$  L/mole are preferred for use in immunoassays in which the KPP-antibody complex must withstand rigorous manipulations. Low-affinity antibody preparations with  $K_a$  ranging from about  $10^6$  to  $10^7$  L/mole are preferred for use in immunopurification and similar procedures which ultimately require dissociation of KPP, preferably in active form, from the antibody (Catty, D. (1988) Antibodies, Volume I: A Practical Approach, IRL Press, Washington DC; Liddell, J.E. and A. Cryer (1991) A Practical Guide to Monoclonal Antibodies, John Wiley & Sons, New York NY).

The titer and avidity of polyclonal antibody preparations may be further evaluated to determine the quality and suitability of such preparations for certain downstream applications. For example, a polyclonal antibody preparation containing at least 1-2 mg specific antibody/ml, preferably 5-10 mg specific antibody/ml, is generally employed in procedures requiring precipitation of KPP-antibody complexes. Procedures for evaluating antibody specificity, titer, and avidity, and guidelines for antibody quality and usage in various applications, are generally available (Catty, supra; Coligan et al., supra).

In another embodiment of the invention, polynucleotides encoding KPP, or any fragment or complement thereof, may be used for therapeutic purposes. In one aspect, modifications of gene

expression can be achieved by designing complementary sequences or antisense molecules (DNA, RNA, PNA, or modified oligonucleotides) to the coding or regulatory regions of the gene encoding KPP. Such technology is well known in the art, and antisense oligonucleotides or larger fragments can be designed from various locations along the coding or control regions of sequences encoding KPP (Agrawal, S., ed. (1996) Antisense Therapeutics, Humana Press, Totawa NJ).

In therapeutic use, any gene delivery system suitable for introduction of the antisense sequences into appropriate target cells can be used. Antisense sequences can be delivered intracellularly in the form of an expression plasmid which, upon transcription, produces a sequence complementary to at least a portion of the cellular sequence encoding the target protein (Slater, J.E. et al. (1998) J. Allergy Clin. Immunol. 102:469-475; Scanlon, K.J. et al. (1995) FASEB J. 9:1288-1296). Antisense sequences can also be introduced intracellularly through the use of viral vectors, such as retrovirus and adeno-associated virus vectors (Miller, A.D. (1990) Blood 76:271-278; Ausubel et al., *supra*; Uckert, W. and W. Walther (1994) Pharmacol. Ther. 63:323-347). Other gene delivery mechanisms include liposome-derived systems, artificial viral envelopes, and other systems known in the art (Rossi, J.J. (1995) Br. Med. Bull. 51:217-225; Boado, R.J. et al. (1998) J. Pharm. Sci. 87:1308-1315; Morris, M.C. et al. (1997) Nucleic Acids Res. 25:2730-2736).

10

15

20

25

30

35

In another embodiment of the invention, polynucleotides encoding KPP may be used for somatic or germline gene therapy. Gene therapy may be performed to (i) correct a genetic deficiency (e.g., in the cases of severe combined immunodeficiency (SCID)-X1 disease characterized by Xlinked inheritance (Cavazzana-Calvo, M. et al. (2000) Science 288:669-672), severe combined immunodeficiency syndrome associated with an inherited adenosine deaminase (ADA) deficiency (Blaese, R.M. et al. (1995) Science 270:475-480; Bordignon, C. et al. (1995) Science 270:470-475), cystic fibrosis (Zabner, J. et al. (1993) Cell 75:207-216; Crystal, R.G. et al. (1995) Hum. Gene Therapy 6:643-666; Crystal, R.G. et al. (1995) Hum. Gene Therapy 6:667-703), thalassamias, familial hypercholesterolemia, and hemophilia resulting from Factor VIII or Factor IX deficiencies (Crystal, R.G. (1995) Science 270:404-410; Verma, I.M. and N. Somia (1997) Nature 389:239-242)), (ii) express a conditionally lethal gene product (e.g., in the case of cancers which result from unregulated cell proliferation), or (iii) express a protein which affords protection against intracellular parasites (e.g., against human retroviruses, such as human immunodeficiency virus (HIV) (Baltimore, D. (1988) Nature 335:395-396; Poeschla, E. et al. (1996) Proc. Natl. Acad. Sci. USA 93:11395-11399), hepatitis B or C virus (HBV, HCV); fungal parasites, such as Candida albicans and Paracoccidioides brasiliensis; and protozoan parasites such as Plasmodium falciparum and Trypanosoma cruzi). In the case where a genetic deficiency in KPP expression or regulation causes disease, the expression of KPP from an appropriate population of transduced cells may alleviate the clinical manifestations caused by the genetic deficiency.

In a further embodiment of the invention, diseases or disorders caused by deficiencies in KPP are treated by constructing mammalian expression vectors encoding KPP and introducing these vectors by mechanical means into KPP-deficient cells. Mechanical transfer technologies for use with cells *in vivo* or *ex vitro* include (i) direct DNA microinjection into individual cells, (ii) ballistic gold particle delivery, (iii) liposome-mediated transfection, (iv) receptor-mediated gene transfer, and (v) the use of DNA transposons (Morgan, R.A. and W.F. Anderson (1993) Annu. Rev. Biochem. 62:191-217; Ivics, Z. (1997) Cell 91:501-510; Boulay, J.-L. and H. Récipon (1998) Curr. Opin. Biotechnol. 9:445-450).

Expression vectors that may be effective for the expression of KPP include, but are not limited to, the PCDNA 3.1, EPITAG, PRCCMV2, PREP, PVAX, PCR2-TOPOTA vectors (Invitrogen, Carlsbad CA), PCMV-SCRIPT, PCMV-TAG, PEGSH/PERV (Stratagene, La Jolla CA), and PTET-OFF, PTET-ON, PTRE2, PTRE2-LUC, PTK-HYG (BD Clontech, Palo Alto CA). KPP may be expressed using (i) a constitutively active promoter, (e.g., from cytomegalovirus (CMV), Rous sarcoma virus (RSV), SV40 virus, thymidine kinase (TK), or β-actin genes), (ii) an inducible promoter (e.g., the tetracycline-regulated promoter (Gossen, M. and H. Bujard (1992) Proc. Natl. Acad. Sci. USA 89:5547-5551; Gossen, M. et al. (1995) Science 268:1766-1769; Rossi, F.M.V. and H.M. Blau (1998) Curr. Opin. Biotechnol. 9:451-456), commercially available in the T-REX plasmid (Invitrogen)); the ecdysone-inducible promoter (available in the plasmids PVGRXR and PIND; Invitrogen); the FK506/rapamycin inducible promoter; or the RU486/mifepristone inducible promoter (Rossi, P.M.V. and H.M. Blau, supra)), or (iii) a tissue-specific promoter or the native promoter of the endogenous gene encoding KPP from a normal individual.

10

15

20

25

30

35

Commercially available liposome transformation kits (e.g., the PERFECT LIPID TRANSFECTION KIT, available from Invitrogen) allow one with ordinary skill in the art to deliver polynucleotides to target cells in culture and require minimal effort to optimize experimental parameters. In the alternative, transformation is performed using the calcium phosphate method (Graham, F.L. and A.J. Eb (1973) Virology 52:456-467), or by electroporation (Neumann, E. et al. (1982) EMBO J. 1:841-845). The introduction of DNA to primary cells requires modification of these standardized mammalian transfection protocols.

In another embodiment of the invention, diseases or disorders caused by genetic defects with respect to KPP expression are treated by constructing a retrovirus vector consisting of (i) the polynucleotide encoding KPP under the control of an independent promoter or the retrovirus long terminal repeat (LTR) promoter, (ii) appropriate RNA packaging signals, and (iii) a Rev-responsive element (RRE) along with additional retrovirus *cis*-acting RNA sequences and coding sequences required for efficient vector propagation. Retrovirus vectors (e.g., PFB and PFBNEO) are commercially available (Stratagene) and are based on published data (Riviere, I. et al. (1995) Proc.

Natl. Acad. Sci. USA 92:6733-6737), incorporated by reference herein. The vector is propagated in an appropriate vector producing cell line (VPCL) that expresses an envelope gene with a tropism for receptors on the target cells or a promiscuous envelope protein such as VSVg (Armentano, D. et al. (1987) J. Virol. 61:1647-1650; Bender, M.A. et al. (1987) J. Virol. 61:1639-1646; Adam, M.A. and A.D. Miller (1988) J. Virol. 62:3802-3806; Dull, T. et al. (1998) J. Virol. 72:8463-8471; Zufferey, R. et al. (1998) J. Virol. 72:9873-9880). U.S. Patent No. 5,910,434 to Rigg ("Method for obtaining retrovirus packaging cell lines producing high transducing efficiency retroviral supernatant") discloses a method for obtaining retrovirus packaging cell lines and is hereby incorporated by reference. Propagation of retrovirus vectors, transduction of a population of cells (e.g., CD4+T-cells), and the return of transduced cells to a patient are procedures well known to persons skilled in the art of gene therapy and have been well documented (Ranga, U. et al. (1997) J. Virol. 71:7020-7029; Bauer, G. et al. (1997) Blood 89:2259-2267; Bonyhadi, M.L. (1997) J. Virol. 71:4707-4716; Ranga, U. et al. (1998) Proc. Natl. Acad. Sci. USA 95:1201-1206; Su, L. (1997) Blood 89:2283-2290).

In an embodiment, an adenovirus-based gene therapy delivery system is used to deliver polynucleotides encoding KPP to cells which have one or more genetic abnormalities with respect to the expression of KPP. The construction and packaging of adenovirus-based vectors are well known to those with ordinary skill in the art. Replication defective adenovirus vectors have proven to be versatile for importing genes encoding immunoregulatory proteins into intact islets in the pancreas (Csete, M.E. et al. (1995) Transplantation 27:263-268). Potentially useful adenoviral vectors are described in U.S. Patent No. 5,707,618 to Armentano ("Adenovirus vectors for gene therapy"), hereby incorporated by reference. For adenoviral vectors, see also Antinozzi, P.A. et al. (1999; Annu. Rev. Nutr. 19:511-544) and Verma, I.M. and N. Somia (1997; Nature 18:389:239-242).

In another embodiment, a herpes-based, gene therapy delivery system is used to deliver polynucleotides encoding KPP to target cells which have one or more genetic abnormalities with respect to the expression of KPP. The use of herpes simplex virus (HSV)-based vectors may be especially valuable for introducing KPP to cells of the central nervous system, for which HSV has a tropism. The construction and packaging of herpes-based vectors are well known to those with ordinary skill in the art. A replication-competent herpes simplex virus (HSV) type 1-based vector has been used to deliver a reporter gene to the eyes of primates (Liu, X. et al. (1999) Exp. Eye Res. 169:385-395). The construction of a HSV-1 virus vector has also been disclosed in detail in U.S. Patent No. 5,804,413 to DeLuca ("Herpes simplex virus strains for gene transfer"), which is hereby incorporated by reference. U.S. Patent No. 5,804,413 teaches the use of recombinant HSV d92 which consists of a genome containing at least one exogenous gene to be transferred to a cell under the control of the appropriate promoter for purposes including human gene therapy. Also taught by this

patent are the construction and use of recombinant HSV strains deleted for ICP4, ICP27 and ICP22. For HSV vectors, see also Goins, W.F. et al. (1999; J. Virol. 73:519-532) and Xu, H. et al. (1994; Dev. Biol. 163:152-161). The manipulation of cloned herpesvirus sequences, the generation of recombinant virus following the transfection of multiple plasmids containing different segments of the large herpesvirus genomes, the growth and propagation of herpesvirus, and the infection of cells with herpesvirus are techniques well known to those of ordinary skill in the art.

In another embodiment, an alphavirus (positive, single-stranded RNA virus) vector is used to deliver polynucleotides encoding KPP to target cells. The biology of the prototypic alphavirus, Semliki Forest Virus (SFV), has been studied extensively and gene transfer vectors have been based on the SFV genome (Garoff, H. and K.-J. Li (1998) Curr. Opin. Biotechnol. 9:464-469). During alphavirus RNA replication, a subgenomic RNA is generated that normally encodes the viral capsid proteins. This subgenomic RNA replicates to higher levels than the full length genomic RNA, resulting in the overproduction of capsid proteins relative to the viral proteins with enzymatic activity (e.g., protease and polymerase). Similarly, inserting the coding sequence for KPP into the alphavirus genome in place of the capsid-coding region results in the production of a large number of KPPcoding RNAs and the synthesis of high levels of KPP in vector transduced cells. While alphavirus infection is typically associated with cell lysis within a few days, the ability to establish a persistent infection in hamster normal kidney cells (BHK-21) with a variant of Sindbis virus (SIN) indicates that the lytic replication of alphaviruses can be altered to suit the needs of the gene therapy application (Dryga, S.A. et al. (1997) Virology 228:74-83). The wide host range of alphaviruses will allow the introduction of KPP into a variety of cell types. The specific transduction of a subset of cells in a population may require the sorting of cells prior to transduction. The methods of manipulating infectious cDNA clones of alphaviruses, performing alphavirus cDNA and RNA transfections, and performing alphavirus infections, are well known to those with ordinary skill in the art.

10

15

20

25

30

35

Oligonucleotides derived from the transcription initiation site, e.g., between about positions -10 and +10 from the start site, may also be employed to inhibit gene expression. Similarly, inhibition can be achieved using triple helix base-pairing methodology. Triple helix pairing is useful because it causes inhibition of the ability of the double helix to open sufficiently for the binding of polymerases, transcription factors, or regulatory molecules. Recent therapeutic advances using triplex DNA have been described in the literature (Gee, J.E. et al. (1994) in Huber, B.E. and B.I. Carr, Molecular and Immunologic Approaches, Futura Publishing, Mt. Kisco NY, pp. 163-177). A complementary sequence or antisense molecule may also be designed to block translation of mRNA by preventing the transcript from binding to ribosomes.

Ribozymes, enzymatic RNA molecules, may also be used to catalyze the specific cleavage of RNA. The mechanism of ribozyme action involves sequence-specific hybridization of the ribozyme

molecule to complementary target RNA, followed by endonucleolytic cleavage. For example, engineered hammerhead motif ribozyme molecules may specifically and efficiently catalyze endonucleolytic cleavage of RNA molecules encoding KPP.

5

15

20

25

30

35

Specific ribozyme cleavage sites within any potential RNA target are initially identified by scanning the target molecule for ribozyme cleavage sites, including the following sequences: GUA, GUU, and GUC. Once identified, short RNA sequences of between 15 and 20 ribonucleotides, corresponding to the region of the target gene containing the cleavage site, may be evaluated for secondary structural features which may render the oligonucleotide inoperable. The suitability of candidate targets may also be evaluated by testing accessibility to hybridization with complementary oligonucleotides using ribonuclease protection assays.

Complementary ribonucleic acid molecules and ribozymes may be prepared by any method known in the art for the synthesis of nucleic acid molecules. These include techniques for chemically synthesizing oligonucleotides such as solid phase phosphoramidite chemical synthesis. Alternatively, RNA molecules may be generated by *in vitro* and *in vivo* transcription of DNA molecules encoding KPP. Such DNA sequences may be incorporated into a wide variety of vectors with suitable RNA polymerase promoters such as T7 or SP6. Alternatively, these cDNA constructs that synthesize complementary RNA, constitutively or inducibly, can be introduced into cell lines, cells, or tissues.

RNA molecules may be modified to increase intracellular stability and half-life. Possible modifications include, but are not limited to, the addition of flanking sequences at the 5' and/or 3' ends of the molecule, or the use of phosphorothioate or 2' O-methyl rather than phosphodiesterase linkages within the backbone of the molecule. This concept is inherent in the production of PNAs and can be extended in all of these molecules by the inclusion of nontraditional bases such as inosine, queosine, and wybutosine, as well as acetyl-, methyl-, thio-, and similarly modified forms of adenine, cytosine, guanine, thymine, and uracil which are not as easily recognized by endogenous endonucleases.

In other embodiments of the invention, the expression of one or more selected polynucleotides of the present invention can be altered, inhibited, decreased, or silenced using RNA interference (RNAi) or post-transcriptional gene silencing (PTGS) methods known in the art. RNAi is a post-transcriptional mode of gene silencing in which double-stranded RNA (dsRNA) introduced into a targeted cell specifically suppresses the expression of the homologous gene (i.e., the gene bearing the sequence complementary to the dsRNA). This effectively knocks out or substantially reduces the expression of the targeted gene. PTGS can also be accomplished by use of DNA or DNA fragments as well. RNAi methods are described by Fire, A. et al. (1998; Nature 391:806-811) and Gura, T. (2000; Nature 404:804-808). PTGS can also be initiated by introduction of a complementary segment of DNA into the selected tissue using gene delivery and/or viral vector

delivery methods described herein or known in the art.

10

15

20

25

30

35

RNAi can be induced in mammalian cells by the use of small interfering RNA also known as siRNA. siRNA are shorter segments of dsRNA (typically about 21 to 23 nucleotides in length) that result *in vivo* from cleavage of introduced dsRNA by the action of an endogenous ribonuclease. siRNA appear to be the mediators of the RNAi effect in mammals. The most effective siRNAs appear to be 21 nucleotide dsRNAs with 2 nucleotide 3' overhangs. The use of siRNA for inducing RNAi in mammalian cells is described by Elbashir, S.M. et al. (2001; Nature 411:494-498).

siRNA can be generated indirectly by introduction of dsRNA into the targeted cell. Alternatively, siRNA can be synthesized directly and introduced into a cell by transfection methods and agents described herein or known in the art (such as liposome-mediated transfection, viral vector methods, or other polynucleotide delivery/introductory methods). Suitable siRNAs can be selected by examining a transcript of the target polynucleotide (e.g., mRNA) for nucleotide sequences downstream from the AUG start codon and recording the occurrence of each nucleotide and the 3' adjacent 19 to 23 nucleotides as potential siRNA target sites, with sequences having a 21 nucleotide length being preferred. Regions to be avoided for target siRNA sites include the 5' and 3' untranslated regions (UTRs) and regions near the start codon (within 75 bases), as these may be richer in regulatory protein binding sites. UTR-binding proteins and/or translation initiation complexes may interfere with binding of the siRNP endonuclease complex. The selected target sites for siRNA can then be compared to the appropriate genome database (e.g., human, etc.) using BLAST or other sequence comparison algorithms known in the art. Target sequences with significant homology to other coding sequences can be eliminated from consideration. The selected siRNAs can be produced by chemical synthesis methods known in the art or by in vitro transcription using commercially available methods and kits such as the SILENCER siRNA construction kit (Ambion, Austin TX).

In alternative embodiments, long-term gene silencing and/or RNAi effects can be induced in selected tissue using expression vectors that continuously express siRNA. This can be accomplished using expression vectors that are engineered to express hairpin RNAs (shRNAs) using methods known in the art (see, e.g., Brummelkamp, T.R. et al. (2002) Science 296:550-553; and Paddison, P.J. et al. (2002) Genes Dev. 16:948-958). In these and related embodiments, shRNAs can be delivered to target cells using expression vectors known in the art. An example of a suitable expression vector for delivery of siRNA is the PSILENCER1.0-U6 (circular) plasmid (Ambion). Once delivered to the target tissue, shRNAs are processed *in vivo* into siRNA-like molecules capable of carrying out gene-specific silencing.

In various embodiments, the expression levels of genes targeted by RNAi or PTGS methods can be determined by assays for mRNA and/or protein analysis. Expression levels of the mRNA of a targeted gene can be determined, for example, by northern analysis methods using the

NORTHERNMAX-GLY kit (Ambion); by microarray methods; by PCR methods; by real time PCR methods; and by other RNA/polynucleotide assays known in the art or described herein. Expression levels of the protein encoded by the targeted gene can be determined, for example, by microarray methods; by polyacrylamide gel electrophoresis; and by Western analysis using standard techniques known in the art.

5

10

15

20

25

30

35

An additional embodiment of the invention encompasses a method for screening for a compound which is effective in altering expression of a polynucleotide encoding KPP. Compounds which may be effective in altering expression of a specific polynucleotide may include, but are not limited to, oligonucleotides, antisense oligonucleotides, triple helix-forming oligonucleotides, transcription factors and other polypeptide transcriptional regulators, and non-macromolecular chemical entities which are capable of interacting with specific polynucleotide sequences. Effective compounds may alter polynucleotide expression by acting as either inhibitors or promoters of polynucleotide expression. Thus, in the treatment of disorders associated with increased KPP expression or activity, a compound which specifically inhibits expression of the polynucleotide encoding KPP may be therapeutically useful, and in the treatment of disorders associated with decreased KPP expression or activity, a compound which specifically promotes expression of the polynucleotide encoding KPP may be therapeutically useful.

In various embodiments, one or more test compounds may be screened for effectiveness in altering expression of a specific polynucleotide. A test compound may be obtained by any method commonly known in the art, including chemical modification of a compound known to be effective in altering polynucleotide expression; selection from an existing, commercially-available or proprietary library of naturally-occurring or non-natural chemical compounds; rational design of a compound based on chemical and/or structural properties of the target polynucleotide; and selection from a library of chemical compounds created combinatorially or randomly. A sample comprising a polynucleotide encoding KPP is exposed to at least one test compound thus obtained. The sample may comprise, for example, an intact or permeabilized cell, or an in vitro cell-free or reconstituted biochemical system. Alterations in the expression of a polynucleotide encoding KPP are assayed by any method commonly known in the art. Typically, the expression of a specific nucleotide is detected by hybridization with a probe having a nucleotide sequence complementary to the sequence of the polynucleotide encoding KPP. The amount of hybridization may be quantified, thus forming the basis for a comparison of the expression of the polynucleotide both with and without exposure to one or more test compounds. Detection of a change in the expression of a polynucleotide exposed to a test compound indicates that the test compound is effective in altering the expression of the polynucleotide. A screen for a compound effective in altering expression of a specific polynucleotide can be carried out, for example, using a Schizosaccharomyces pombe gene expression system

(Atkins, D. et al. (1999) U.S. Patent No. 5,932,435; Arndt, G.M. et al. (2000) Nucleic Acids Res. 28:E15) or a human cell line such as HeLa cell (Clarke, M.L. et al. (2000) Biochem. Biophys. Res. Commun. 268:8-13). A particular embodiment of the present invention involves screening a combinatorial library of oligonucleotides (such as deoxyribonucleotides, ribonucleotides, peptide nucleic acids, and modified oligonucleotides) for antisense activity against a specific polynucleotide sequence (Bruice, T.W. et al. (1997) U.S. Patent No. 5,686,242; Bruice, T.W. et al. (2000) U.S. Patent No. 6,022,691).

Many methods for introducing vectors into cells or tissues are available and equally suitable for use in vivo, in vitro, and ex vivo. For ex vivo therapy, vectors may be introduced into stem cells taken from the patient and clonally propagated for autologous transplant back into that same patient. Delivery by transfection, by liposome injections, or by polycationic amino polymers may be achieved using methods which are well known in the art (Goldman, C.K. et al. (1997) Nat. Biotechnol. 15:462-466).

10

15

20

25

30

35

Any of the therapeutic methods described above may be applied to any subject in need of such therapy, including, for example, mammals such as humans, dogs, cats, cows, horses, rabbits, and monkeys.

An additional embodiment of the invention relates to the administration of a composition which generally comprises an active ingredient formulated with a pharmaceutically acceptable excipient. Excipients may include, for example, sugars, starches, celluloses, gums, and proteins. Various formulations are commonly known and are thoroughly discussed in the latest edition of Remington's Pharmaceutical Sciences (Maack Publishing, Easton PA). Such compositions may consist of KPP, antibodies to KPP, and mimetics, agonists, antagonists, or inhibitors of KPP.

In various embodiments, the compositions described herein, such as pharmaceutical compositions, may be administered by any number of routes including, but not limited to, oral, intravenous, intramuscular, intra-arterial, intramedullary, intrathecal, intraventricular, pulmonary, transdermal, subcutaneous, intraperitoneal, intranasal, enteral, topical, sublingual, or rectal means.

Compositions for pulmonary administration may be prepared in liquid or dry powder form. These compositions are generally aerosolized immediately prior to inhalation by the patient. In the case of small molecules (e.g. traditional low molecular weight organic drugs), aerosol delivery of fast-acting formulations is well-known in the art. In the case of macromolecules (e.g. larger peptides and proteins), recent developments in the field of pulmonary delivery via the alveolar region of the lung have enabled the practical delivery of drugs such as insulin to blood circulation (see, e.g., Patton, J.S. et al., U.S. Patent No. 5,997,848). Pulmonary delivery allows administration without needle injection, and obviates the need for potentially toxic penetration enhancers.

Compositions suitable for use in the invention include compositions wherein the active

ingredients are contained in an effective amount to achieve the intended purpose. The determination of an effective dose is well within the capability of those skilled in the art.

Specialized forms of compositions may be prepared for direct intracellular delivery of macromolecules comprising KPP or fragments thereof. For example, liposome preparations containing a cell-impermeable macromolecule may promote cell fusion and intracellular delivery of the macromolecule. Alternatively, KPP or a fragment thereof may be joined to a short cationic N-terminal portion from the HIV Tat-1 protein. Fusion proteins thus generated have been found to transduce into the cells of all tissues, including the brain, in a mouse model system (Schwarze, S.R. et al. (1999) Science 285:1569-1572).

5

10

15

20

25

30

35

For any compound, the therapeutically effective dose can be estimated initially either in cell culture assays, e.g., of neoplastic cells, or in animal models such as mice, rats, rabbits, dogs, monkeys, or pigs. An animal model may also be used to determine the appropriate concentration range and route of administration. Such information can then be used to determine useful doses and routes for administration in humans.

A therapeutically effective dose refers to that amount of active ingredient, for example KPP or fragments thereof, antibodies of KPP, and agonists, antagonists or inhibitors of KPP, which ameliorates the symptoms or condition. Therapeutic efficacy and toxicity may be determined by standard pharmaceutical procedures in cell cultures or with experimental animals, such as by calculating the ED<sub>50</sub> (the dose therapeutically effective in 50% of the population) or LD<sub>50</sub> (the dose lethal to 50% of the population) statistics. The dose ratio of toxic to therapeutic effects is the therapeutic index, which can be expressed as the LD<sub>50</sub>/ED<sub>50</sub> ratio. Compositions which exhibit large therapeutic indices are preferred. The data obtained from cell culture assays and animal studies are used to formulate a range of dosage for human use. The dosage contained in such compositions is preferably within a range of circulating concentrations that includes the ED<sub>50</sub> with little or no toxicity. The dosage varies within this range depending upon the dosage form employed, the sensitivity of the patient, and the route of administration.

The exact dosage will be determined by the practitioner, in light of factors related to the subject requiring treatment. Dosage and administration are adjusted to provide sufficient levels of the active moiety or to maintain the desired effect. Factors which may be taken into account include the severity of the disease state, the general health of the subject, the age, weight, and gender of the subject, time and frequency of administration, drug combination(s), reaction sensitivities, and response to therapy. Long-acting compositions may be administered every 3 to 4 days, every week, or biweekly depending on the half-life and clearance rate of the particular formulation.

Normal dosage amounts may vary from about 0.1  $\mu$ g to 100,000  $\mu$ g, up to a total dose of about 1 gram, depending upon the route of administration. Guidance as to particular dosages and

methods of delivery is provided in the literature and generally available to practitioners in the art. Those skilled in the art will employ different formulations for nucleotides than for proteins or their inhibitors. Similarly, delivery of polynucleotides or polypeptides will be specific to particular cells, conditions, locations, etc.

#### 5 DIAGNOSTICS

10

15

20

25

30

35

In another embodiment, antibodies which specifically bind KPP may be used for the diagnosis of disorders characterized by expression of KPP, or in assays to monitor patients being treated with KPP or agonists, antagonists, or inhibitors of KPP. Antibodies useful for diagnostic purposes may be prepared in the same manner as described above for therapeutics. Diagnostic assays for KPP include methods which utilize the antibody and a label to detect KPP in human body fluids or in extracts of cells or tissues. The antibodies may be used with or without modification, and may be labeled by covalent or non-covalent attachment of a reporter molecule. A wide variety of reporter molecules, several of which are described above, are known in the art and may be used.

A variety of protocols for measuring KPP, including ELISAs, RIAs, and FACS, are known in the art and provide a basis for diagnosing altered or abnormal levels of KPP expression. Normal or standard values for KPP expression are established by combining body fluids or cell extracts taken from normal mammalian subjects, for example, human subjects, with antibodies to KPP under conditions suitable for complex formation. The amount of standard complex formation may be quantitated by various methods, such as photometric means. Quantities of KPP expressed in subject, control, and disease samples from biopsied tissues are compared with the standard values. Deviation between standard and subject values establishes the parameters for diagnosing disease.

In another embodiment of the invention, polynucleotides encoding KPP may be used for diagnostic purposes. The polynucleotides which may be used include oligonucleotides, complementary RNA and DNA molecules, and PNAs. The polynucleotides may be used to detect and quantify gene expression in biopsied tissues in which expression of KPP may be correlated with disease. The diagnostic assay may be used to determine absence, presence, and excess expression of KPP, and to monitor regulation of KPP levels during therapeutic intervention.

In one aspect, hybridization with PCR probes which are capable of detecting polynucleotides, including genomic sequences, encoding KPP or closely related molecules may be used to identify nucleic acid sequences which encode KPP. The specificity of the probe, whether it is made from a highly specific region, e.g., the 5' regulatory region, or from a less specific region, e.g., a conserved motif, and the stringency of the hybridization or amplification will determine whether the probe identifies only naturally occurring sequences encoding KPP, allelic variants, or related sequences.

Probes may also be used for the detection of related sequences, and may have at least 50% sequence identity to any of the KPP encoding sequences. The hybridization probes of the subject

invention may be DNA or RNA and may be derived from the sequence of SEQ ID NO:44-86 or from genomic sequences including promoters, enhancers, and introns of the KPP gene.

Means for producing specific hybridization probes for polynucleotides encoding KPP include the cloning of polynucleotides encoding KPP or KPP derivatives into vectors for the production of mRNA probes. Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes *in vitro* by means of the addition of the appropriate RNA polymerases and the appropriate labeled nucleotides. Hybridization probes may be labeled by a variety of reporter groups, for example, by radionuclides such as <sup>32</sup>P or <sup>35</sup>S, or by enzymatic labels, such as alkaline phosphatase coupled to the probe via avidin/biotin coupling systems, and the like.

10

15

20

25

30

35

Polynucleotides encoding KPP may be used for the diagnosis of disorders associated with expression of KPP. Examples of such disorders include, but are not limited to, a cardiovascular disease such as arteriovenous fistula, atherosclerosis, hypertension, vasculitis, Raynaud's disease, aneurysms, arterial dissections, varicose veins, thrombophlebitis and phlebothrombosis, vascular tumors, and complications of thrombolysis, balloon angioplasty, vascular replacement, and coronary artery bypass graft surgery, congestive heart failure, ischemic heart disease, angina pectoris, myocardial infarction, hypertensive heart disease, degenerative valvular heart disease, calcific aortic valve stenosis, congenitally bicuspid aortic valve, mitral annular calcification, mitral valve prolapse, rheumatic fever and rheumatic heart disease, infective endocarditis, nonbacterial thrombotic endocarditis, endocarditis of systemic lupus erythematosus, carcinoid heart disease, cardiomyopathy, myocarditis, pericarditis, neoplastic heart disease, congenital heart disease, and complications of cardiac transplantation, congenital lung anomalies, atelectasis, pulmonary congestion and edema, pulmonary embolism, pulmonary hemorrhage, pulmonary infarction, pulmonary hypertension, vascular sclerosis, obstructive pulmonary disease, restrictive pulmonary disease, chronic obstructive pulmonary disease, emphysema, chronic bronchitis, bronchial asthma, bronchiectasis, bacterial pneumonia, viral and mycoplasmal pneumonia, lung abscess, pulmonary tuberculosis, diffuse interstitial diseases, pneumoconioses, sarcoidosis, idiopathic pulmonary fibrosis, desquamative interstitial pneumonitis, hypersensitivity pneumonitis, pulmonary eosinophilia bronchiolitis obliterans-organizing pneumonia, diffuse pulmonary hemorrhage syndromes, Goodpasture's syndromes, idiopathic pulmonary hemosiderosis, pulmonary involvement in collagen-vascular disorders, pulmonary alveolar proteinosis, lung tumors, inflammatory and noninflammatory pleural effusions, pneumothorax, pleural tumors, drug-induced lung disease, radiation-induced lung disease, and complications of lung transplantation; an immune system disorder such as acquired immunodeficiency syndrome (AIDS), Addison's disease, adult respiratory distress syndrome, allergies, ankylosing spondylitis, amyloidosis, anemia, asthma, atherosclerosis, autoimmune hemolytic anemia, autoimmune thyroiditis, autoimmune polyendocrinopathy-candidiasis-ectodermal

5

10

15

20

25

30

35

dystrophy (APECED), bronchitis, cholecystitis, contact dermatitis, Crohn's disease, atopic dermatitis, dermatomyositis, diabetes mellitus, emphysema, episodic lymphopenia with lymphocytotoxins, erythroblastosis fetalis, erythema nodosum, atrophic gastritis, glomerulonephritis, Goodpasture's syndrome, gout, Graves' disease, Hashimoto's thyroiditis, hypereosinophilia, irritable bowel syndrome, multiple sclerosis, myasthenia gravis, myocardial or pericardial inflammation, osteoarthritis, osteoporosis, pancreatitis, polymyositis, psoriasis, Reiter's syndrome, rheumatoid arthritis, scleroderma, Sjögren's syndrome, systemic anaphylaxis, systemic lupus erythematosus, systemic sclerosis, thrombocytopenic purpura, ulcerative colitis, uveitis, Werner syndrome, complications of cancer, hemodialysis, and extracorporeal circulation, viral, bacterial, fungal, parasitic, protozoal, and helminthic infections, and trauma; a neurological disorder such as epilepsy, ischemic cerebrovascular disease, stroke, cerebral neoplasms, Alzheimer's disease, Pick's disease, Huntington's disease, dementia, Parkinson's disease and other extrapyramidal disorders, amyotrophic lateral sclerosis and other motor neuron disorders, progressive neural muscular atrophy, retinitis pigmentosa, hereditary ataxias, multiple sclerosis and other demyelinating diseases, bacterial and viral meningitis, brain abscess, subdural empyema, epidural abscess, suppurative intracranial thrombophlebitis, myelitis and radiculitis, viral central nervous system disease, prion diseases including kuru, Creutzfeldt-Jakob disease, and Gerstmann-Straussler-Scheinker syndrome, fatal familial insomnia, nutritional and metabolic diseases of the nervous system, neurofibromatosis, tuberous sclerosis, cerebelloretinal hemangioblastomatosis, encephalotrigeminal syndrome, mental retardation and other developmental disorders of the central nervous system including Down syndrome, cerebral palsy, neuroskeletal disorders, autonomic nervous system disorders, cranial nerve disorders, spinal cord diseases, muscular dystrophy and other neuromuscular disorders, peripheral nervous system disorders, dermatomyositis and polymyositis, inherited, metabolic, endocrine, and toxic myopathies, myasthenia gravis, periodic paralysis, mental disorders including mood, anxiety, and schizophrenic disorders, seasonal affective disorder (SAD), akathesia, amnesia, catatonia, diabetic neuropathy, tardive dyskinesia, dystonias, paranoid psychoses, postherpetic neuralgia, Tourette's disorder, progressive supranuclear palsy, corticobasal degeneration, and familial frontotemporal dementia; a disorder affecting growth and development such as actinic keratosis, arteriosclerosis, atherosclerosis, bursitis, cirrhosis, hepatitis, mixed connective tissue disease (MCTD), myelofibrosis, paroxysmal nocturnal hemoglobinuria, polycythemia vera, psoriasis, primary thrombocythemia, renal tubular acidosis, anemia, Cushing's syndrome, achondroplastic dwarfism, Duchenne and Becker muscular dystrophy, epilepsy, gonadal dysgenesis, WAGR syndrome (Wilms' tumor, aniridia, genitourinary abnormalities, and mental retardation), Smith-Magenis syndrome, myelodysplastic syndrome, hereditary mucoepithelial dysplasia, hereditary keratodermas, hereditary neuropathies such as Charcot-Marie-Tooth disease and neurofibromatosis, hypothyroidism,

hydrocephalus, seizure disorders such as Syndenham's chorea and cerebral palsy, spina bifida, anencephaly, craniorachischisis, congenital glaucoma, cataract, and sensorineural hearing loss; a lipid disorder such as fatty liver, cholestasis, primary biliary cirrhosis, carnitine deficiency, carnitine palmitoyltransferase deficiency, myoadenylate deaminase deficiency, hypertriglyceridemia, lipid storage disorders such Fabry's disease, Gaucher's disease, Niemann-Pick's disease, metachromatic leukodystrophy, adrenoleukodystrophy, GM2 gangliosidosis, and ceroid lipofuscinosis, abetalipoproteinemia, Tangier disease, hyperlipoproteinemia, diabetes mellitus, lipodystrophy, lipomatoses, acute panniculitis, disseminated fat necrosis, adiposis dolorosa, lipoid adrenal hyperplasia, minimal change disease, lipomas, atherosclerosis, hypercholesterolemia, hypercholesterolemia with hypertriglyceridemia, primary hypoalphalipoproteinemia, hypothyroidism, 10 renal disease, liver disease, lecithin:cholesterol acyltransferase deficiency, cerebrotendinous xanthomatosis, sitosterolemia, hypocholesterolemia, Tay-Sachs disease, Sandhoff's disease, hyperlipidemia, hyperlipemia, lipid myopathies, and obesity; and a cell proliferative disorder such as actinic keratosis, arteriosclerosis, atherosclerosis, bursitis, cirrhosis, hepatitis, mixed connective tissue disease (MCTD), myelofibrosis, paroxysmal nocturnal hemoglobinuria, polycythemia vera, 15 psoriasis, primary thrombocythemia, and cancers including adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, cancers of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, colon, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin. spleen, testis, thymus, thyroid, uterus, leukemias such as multiple myeloma, and lymphomas such as 20 Hodgkin's disease. Polynucleotides encoding KPP may be used in Southern or northern analysis, dot blot, or other membrane-based technologies; in PCR technologies; in dipstick, pin, and multiformat ELISA-like assays; and in microarrays utilizing fluids or tissues from patients to detect altered KPP expression. Such qualitative or quantitative methods are well known in the art.

In a particular embodiment, polynucleotides encoding KPP may be used in assays that detect the presence of associated disorders, particularly those mentioned above. Polynucleotides complementary to sequences encoding KPP may be labeled by standard methods and added to a fluid or tissue sample from a patient under conditions suitable for the formation of hybridization complexes. After a suitable incubation period, the sample is washed and the signal is quantified and compared with a standard value. If the amount of signal in the patient sample is significantly altered in comparison to a control sample then the presence of altered levels of polynucleotides encoding KPP in the sample indicates the presence of the associated disorder. Such assays may also be used to evaluate the efficacy of a particular therapeutic treatment regimen in animal studies, in clinical trials, or to monitor the treatment of an individual patient.

25

30

35

In order to provide a basis for the diagnosis of a disorder associated with expression of KPP,

a normal or standard profile for expression is established. This may be accomplished by combining body fluids or cell extracts taken from normal subjects, either animal or human, with a sequence, or a fragment thereof, encoding KPP, under conditions suitable for hybridization or amplification. Standard hybridization may be quantified by comparing the values obtained from normal subjects with values from an experiment in which a known amount of a substantially purified polynucleotide is used. Standard values obtained in this manner may be compared with values obtained from samples from patients who are symptomatic for a disorder. Deviation from standard values is used to establish the presence of a disorder.

Once the presence of a disorder is established and a treatment protocol is initiated, hybridization assays may be repeated on a regular basis to determine if the level of expression in the patient begins to approximate that which is observed in the normal subject. The results obtained from successive assays may be used to show the efficacy of treatment over a period ranging from several days to months.

10

15

20

25

30

35

With respect to cancer, the presence of an abnormal amount of transcript (either under- or overexpressed) in biopsied tissue from an individual may indicate a predisposition for the development of the disease, or may provide a means for detecting the disease prior to the appearance of actual clinical symptoms. A more definitive diagnosis of this type may allow health professionals to employ preventative measures or aggressive treatment earlier, thereby preventing the development or further progression of the cancer.

Additional diagnostic uses for oligonucleotides designed from the sequences encoding KPP may involve the use of PCR. These oligomers may be chemically synthesized, generated enzymatically, or produced *in vitro*. Oligomers will preferably contain a fragment of a polynucleotide encoding KPP, or a fragment of a polynucleotide complementary to the polynucleotide encoding KPP, and will be employed under optimized conditions for identification of a specific gene or condition. Oligomers may also be employed under less stringent conditions for detection or quantification of closely related DNA or RNA sequences.

In a particular aspect, oligonucleotide primers derived from polynucleotides encoding KPP may be used to detect single nucleotide polymorphisms (SNPs). SNPs are substitutions, insertions and deletions that are a frequent cause of inherited or acquired genetic disease in humans. Methods of SNP detection include, but are not limited to, single-stranded conformation polymorphism (SSCP) and fluorescent SSCP (fSSCP) methods. In SSCP, oligonucleotide primers derived from polynucleotides encoding KPP are used to amplify DNA using the polymerase chain reaction (PCR). The DNA may be derived, for example, from diseased or normal tissue, biopsy samples, bodily fluids, and the like. SNPs in the DNA cause differences in the secondary and tertiary structures of PCR products in single-stranded form, and these differences are detectable using gel electrophoresis in

non-denaturing gels. In fSCCP, the oligonucleotide primers are fluorescently labeled, which allows detection of the amplimers in high-throughput equipment such as DNA sequencing machines. Additionally, sequence database analysis methods, termed in silico SNP (isSNP), are capable of identifying polymorphisms by comparing the sequence of individual overlapping DNA fragments which assemble into a common consensus sequence. These computer-based methods filter out sequence variations due to laboratory preparation of DNA and sequencing errors using statistical models and automated analyses of DNA sequence chromatograms. In the alternative, SNPs may be detected and characterized by mass spectrometry using, for example, the high throughput MASSARRAY system (Sequenom, Inc., San Diego CA).

10

15

20

25

30

35

SNPs may be used to study the genetic basis of human disease. For example, at least 16 common SNPs have been associated with non-insulin-dependent diabetes mellitus. SNPs are also useful for examining differences in disease outcomes in monogenic disorders, such as cystic fibrosis, sickle cell anemia, or chronic granulomatous disease. For example, variants in the mannose-binding lectin, MBL2, have been shown to be correlated with deleterious pulmonary outcomes in cystic fibrosis. SNPs also have utility in pharmacogenomics, the identification of genetic variants that influence a patient's response to a drug, such as life-threatening toxicity. For example, a variation in N-acetyl transferase is associated with a high incidence of peripheral neuropathy in response to the anti-tuberculosis drug isoniazid, while a variation in the core promoter of the ALOX5 gene results in diminished clinical response to treatment with an anti-asthma drug that targets the 5-lipoxygenase pathway. Analysis of the distribution of SNPs in different populations is useful for investigating genetic drift, mutation, recombination, and selection, as well as for tracing the origins of populations and their migrations (Taylor, J.G. et al. (2001) Trends Mol. Med. 7:507-512; Kwok, P.-Y. and Z. Gu (1999) Mol. Med. Today 5:538-543; Nowotny, P. et al. (2001) Curr. Opin. Neurobiol. 11:637-641).

Methods which may also be used to quantify the expression of KPP include radiolabeling or biotinylating nucleotides, coamplification of a control nucleic acid, and interpolating results from standard curves (Melby, P.C. et al. (1993) J. Immunol. Methods 159:235-244; Duplaa, C. et al. (1993) Anal. Biochem. 212:229-236). The speed of quantitation of multiple samples may be accelerated by running the assay in a high-throughput format where the oligomer or polynucleotide of interest is presented in various dilutions and a spectrophotometric or colorimetric response gives rapid quantitation.

In further embodiments, oligonucleotides or longer fragments derived from any of the polynucleotides described herein may be used as elements on a microarray. The microarray can be used in transcript imaging techniques which monitor the relative expression levels of large numbers of genes simultaneously as described below. The microarray may also be used to identify genetic variants, mutations, and polymorphisms. This information may be used to determine gene function,

to understand the genetic basis of a disorder, to diagnose a disorder, to monitor progression/regression of disease as a function of gene expression, and to develop and monitor the activities of therapeutic agents in the treatment of disease. In particular, this information may be used to develop a pharmacogenomic profile of a patient in order to select the most appropriate and effective treatment regimen for that patient. For example, therapeutic agents which are highly effective and display the fewest side effects may be selected for a patient based on his/her pharmacogenomic profile.

In another embodiment, KPP, fragments of KPP, or antibodies specific for KPP may be used as elements on a microarray. The microarray may be used to monitor or measure protein-protein interactions, drug-target interactions, and gene expression profiles, as described above.

10

15

20

25

30

-5

A particular embodiment relates to the use of the polynucleotides of the present invention to generate a transcript image of a tissue or cell type. A transcript image represents the global pattern of gene expression by a particular tissue or cell type. Global gene expression patterns are analyzed by quantifying the number of expressed genes and their relative abundance under given conditions and at a given time (Seilhamer et al., "Comparative Gene Transcript Analysis," U.S. Patent No. 5,840,484; hereby expressly incorporated by reference herein). Thus a transcript image may be generated by hybridizing the polynucleotides of the present invention or their complements to the totality of transcripts or reverse transcripts of a particular tissue or cell type. In one embodiment, the hybridization takes place in high-throughput format, wherein the polynucleotides of the present invention or their complements comprise a subset of a plurality of elements on a microarray. The resultant transcript image would provide a profile of gene activity.

Transcript images may be generated using transcripts isolated from tissues, cell lines, biopsies, or other biological samples. The transcript image may thus reflect gene expression in vivo, as in the case of a tissue or biopsy sample, or in vitro, as in the case of a cell line.

Transcript images which profile the expression of the polynucleotides of the present invention may also be used in conjunction with *in vitro* model systems and preclinical evaluation of pharmaceuticals, as well as toxicological testing of industrial and naturally-occurring environmental compounds. All compounds induce characteristic gene expression patterns, frequently termed molecular fingerprints or toxicant signatures, which are indicative of mechanisms of action and toxicity (Nuwaysir, E.F. et al. (1999) Mol. Carcinog. 24:153-159; Steiner, S. and N.L. Anderson (2000) Toxicol. Lett. 112-113:467-471). If a test compound has a signature similar to that of a compound with known toxicity, it is likely to share those toxic properties. These fingerprints or signatures are most useful and refined when they contain expression information from a large number of genes and gene families. Ideally, a genome-wide measurement of expression provides the highest quality signature. Even genes whose expression is not altered by any tested compounds are important

as well, as the levels of expression of these genes are used to normalize the rest of the expression data. The normalization procedure is useful for comparison of expression data after treatment with different compounds. While the assignment of gene function to elements of a toxicant signature aids in interpretation of toxicity mechanisms, knowledge of gene function is not necessary for the statistical matching of signatures which leads to prediction of toxicity (see, for example, Press Release 00-02 from the National Institute of Environmental Health Sciences, released February 29, 2000, available at niehs.nih.gov/oc/news/toxchip.htm). Therefore, it is important and desirable in toxicological screening using toxicant signatures to include all expressed gene sequences.

5

10

15

20

25

30

35

In an embodiment, the toxicity of a test compound can be assessed by treating a biological sample containing nucleic acids with the test compound. Nucleic acids that are expressed in the treated biological sample are hybridized with one or more probes specific to the polynucleotides of the present invention, so that transcript levels corresponding to the polynucleotides of the present invention may be quantified. The transcript levels in the treated biological sample are compared with levels in an untreated biological sample. Differences in the transcript levels between the two samples are indicative of a toxic response caused by the test compound in the treated sample.

Another embodiment relates to the use of the polypeptides disclosed herein to analyze the proteome of a tissue or cell type. The term proteome refers to the global pattern of protein expression in a particular tissue or cell type. Each protein component of a proteome can be subjected individually to further analysis. Proteome expression patterns, or profiles, are analyzed by quantifying the number of expressed proteins and their relative abundance under given conditions and at a given time. A profile of a cell's proteome may thus be generated by separating and analyzing the polypeptides of a particular tissue or cell type. In one embodiment, the separation is achieved using two-dimensional gel electrophoresis, in which proteins from a sample are separated by isoelectric focusing in the first dimension, and then according to molecular weight by sodium dodecyl sulfate slab gel electrophoresis in the second dimension (Steiner and Anderson, supra). The proteins are visualized in the gel as discrete and uniquely positioned spots, typically by staining the gel with an agent such as Coomassie Blue or silver or fluorescent stains. The optical density of each protein spot is generally proportional to the level of the protein in the sample. The optical densities of equivalently positioned protein spots from different samples, for example, from biological samples either treated or untreated with a test compound or therapeutic agent, are compared to identify any changes in protein spot density related to the treatment. The proteins in the spots are partially sequenced using, for example, standard methods employing chemical or enzymatic cleavage followed by mass spectrometry. The identity of the protein in a spot may be determined by comparing its partial sequence, preferably of at least 5 contiguous amino acid residues, to the polypeptide sequences of interest. In some cases, further sequence data may be obtained for definitive protein identification.

A proteomic profile may also be generated using antibodies specific for KPP to quantify the levels of KPP expression. In one embodiment, the antibodies are used as elements on a microarray, and protein expression levels are quantified by contacting the microarray with the sample and detecting the levels of protein bound to each array element (Lucking, A. et al. (1999) Anal. Biochem. 270:103-111; Mendoze, L.G. et al. (1999) Biotechniques 27:778-788). Detection may be performed by a variety of methods known in the art, for example, by reacting the proteins in the sample with a thiol- or amino-reactive fluorescent compound and detecting the amount of fluorescence bound at each array element.

Toxicant signatures at the proteome level are also useful for toxicological screening, and should be analyzed in parallel with toxicant signatures at the transcript level. There is a poor correlation between transcript and protein abundances for some proteins in some tissues (Anderson, N.L. and J. Seilhamer (1997) Electrophoresis 18:533-537), so proteome toxicant signatures may be useful in the analysis of compounds which do not significantly affect the transcript image, but which alter the proteomic profile. In addition, the analysis of transcripts in body fluids is difficult, due to rapid degradation of mRNA, so proteomic profiling may be more reliable and informative in such cases.

10

15

20

25

30

35

In another embodiment, the toxicity of a test compound is assessed by treating a biological sample containing proteins with the test compound. Proteins that are expressed in the treated biological sample are separated so that the amount of each protein can be quantified. The amount of each protein is compared to the amount of the corresponding protein in an untreated biological sample. A difference in the amount of protein between the two samples is indicative of a toxic response to the test compound in the treated sample. Individual proteins are identified by sequencing the amino acid residues of the individual proteins and comparing these partial sequences to the polypeptides of the present invention.

In another embodiment, the toxicity of a test compound is assessed by treating a biological sample containing proteins with the test compound. Proteins from the biological sample are incubated with antibodies specific to the polypeptides of the present invention. The amount of protein recognized by the antibodies is quantified. The amount of protein in the treated biological sample is compared with the amount in an untreated biological sample. A difference in the amount of protein between the two samples is indicative of a toxic response to the test compound in the treated sample.

Microarrays may be prepared, used, and analyzed using methods known in the art (Brennan, T.M. et al. (1995) U.S. Patent No. 5,474,796; Schena, M. et al. (1996) Proc. Natl. Acad. Sci. USA 93:10614-10619; Baldeschweiler et al. (1995) PCT application WO95/25116; Shalon, D. et al. (1995) PCT application WO95/35505; Heller, R.A. et al. (1997) Proc. Natl. Acad. Sci. USA 94:2150-2155;

Heller, M.J. et al. (1997) U.S. Patent No. 5,605,662). Various types of microarrays are well known and thoroughly described in Schena, M., ed. (1999; <u>DNA Microarrays: A Practical Approach</u>, Oxford University Press, London).

In another embodiment of the invention, nucleic acid sequences encoding KPP may be used to generate hybridization probes useful in mapping the naturally occurring genomic sequence. Either coding or noncoding sequences may be used, and in some instances, noncoding sequences may be preferable over coding sequences. For example, conservation of a coding sequence among members of a multi-gene family may potentially cause undesired cross hybridization during chromosomal mapping. The sequences may be mapped to a particular chromosome, to a specific region of a chromosome, or to artificial chromosome constructions, e.g., human artificial chromosomes (HACs), yeast artificial chromosomes (YACs), bacterial artificial chromosomes (BACs), bacterial P1 constructions, or single chromosome cDNA libraries (Harrington, J.J. et al. (1997) Nat. Genet. 15:345-355; Price, C.M. (1993) Blood Rev. 7:127-134; Trask, B.J. (1991) Trends Genet. 7:149-154). Once mapped, the nucleic acid sequences may be used to develop genetic linkage maps, for example, which correlate the inheritance of a disease state with the inheritance of a particular chromosome region or restriction fragment length polymorphism (RFLP) (Lander, E.S. and D. Botstein (1986) Proc. Natl. Acad. Sci. USA 83:7353-7357).

10

15

20

25

30

35

Fluorescent in situ hybridization (FISH) may be correlated with other physical and genetic map data (Heinz-Ulrich, et al. (1995) in Meyers, supra, pp. 965-968). Examples of genetic map data can be found in various scientific journals or at the Online Mendelian Inheritance in Man (OMIM) World Wide Web site. Correlation between the location of the gene encoding KPP on a physical map and a specific disorder, or a predisposition to a specific disorder, may help define the region of DNA associated with that disorder and thus may further positional cloning efforts.

In situ hybridization of chromosomal preparations and physical mapping techniques, such as linkage analysis using established chromosomal markers, may be used for extending genetic maps. Often the placement of a gene on the chromosome of another mammalian species, such as mouse, may reveal associated markers even if the exact chromosomal locus is not known. This information is valuable to investigators searching for disease genes using positional cloning or other gene discovery techniques. Once the gene or genes responsible for a disease or syndrome have been crudely localized by genetic linkage to a particular genomic region, e.g., ataxia-telangiectasia to 11q22-23, any sequences mapping to that area may represent associated or regulatory genes for further investigation (Gatti, R.A. et al. (1988) Nature 336:577-580). The nucleotide sequence of the instant invention may also be used to detect differences in the chromosomal location due to translocation, inversion, etc., among normal, carrier, or affected individuals.

In another embodiment of the invention, KPP, its catalytic or immunogenic fragments, or

oligopeptides thereof can be used for screening libraries of compounds in any of a variety of drug screening techniques. The fragment employed in such screening may be free in solution, affixed to a solid support, borne on a cell surface, or located intracellularly. The formation of binding complexes between KPP and the agent being tested may be measured.

Another technique for drug screening provides for high throughput screening of compounds having suitable binding affinity to the protein of interest (Geysen, et al. (1984) PCT application WO84/03564). In this method, large numbers of different small test compounds are synthesized on a solid substrate. The test compounds are reacted with KPP, or fragments thereof, and washed. Bound KPP is then detected by methods well known in the art. Purified KPP can also be coated directly onto plates for use in the aforementioned drug screening techniques. Alternatively, non-neutralizing antibodies can be used to capture the peptide and immobilize it on a solid support.

In another embodiment, one may use competitive drug screening assays in which neutralizing antibodies capable of binding KPP specifically compete with a test compound for binding KPP. In this manner, antibodies can be used to detect the presence of any peptide which shares one or more antigenic determinants with KPP.

In additional embodiments, the nucleotide sequences which encode KPP may be used in any molecular biology techniques that have yet to be developed, provided the new techniques rely on properties of nucleotide sequences that are currently known, including, but not limited to, such properties as the triplet genetic code and specific base pair interactions.

Without further elaboration, it is believed that one skilled in the aft can, using the preceding description, utilize the present invention to its fullest extent. The following embodiments are, therefore, to be construed as merely illustrative, and not limitative of the remainder of the disclosure in any way whatsoever.

The disclosures of all patents, applications, and publications mentioned above and below, including U.S. Ser. No. 60/467,491, U.S. Ser. No. 60/469,441, U.S. Ser. No. 60/476,408, U.S. Ser. No. 60/494,656, U.S. Ser. No. 60/524,415, and U.S. Ser. No. 60/528,750, are hereby expressly incorporated by reference.

#### **EXAMPLES**

## 0 I. Construction of cDNA Libraries

5

10

15

20

25

5

Incyte cDNAs are derived from cDNA libraries described in the LIFESEQ database (Incyte, Palo Alto CA). Some tissues are homogenized and lysed in guanidinium isothiocyanate, while others are homogenized and lysed in phenol or in a suitable mixture of denaturants, such as TRIZOL (Invitrogen), a monophasic solution of phenol and guanidine isothiocyanate. The resulting lysates are centrifuged over CsCl cushions or extracted with chloroform. RNA is precipitated from the lysates

with either isopropanol or sodium acetate and ethanol, or by other routine methods.

Phenol extraction and precipitation of RNA are repeated as necessary to increase RNA purity. In some cases, RNA is treated with DNase. For most libraries, poly(A)+ RNA is isolated using oligo d(T)-coupled paramagnetic particles (Promega), OLIGOTEX latex particles (QIAGEN, Chatsworth CA), or an OLIGOTEX mRNA purification kit (QIAGEN). Alternatively, RNA is isolated directly from tissue lysates using other RNA isolation kits, e.g., the POLY(A)PURE mRNA purification kit (Ambion, Austin TX).

In some cases, Stratagene is provided with RNA and constructs the corresponding cDNA libraries. Otherwise, cDNA is synthesized and cDNA libraries are constructed with the UNIZAP vector system (Stratagene) or SUPERSCRIPT plasmid system (Invitrogen), using the recommended procedures or similar methods known in the art (Ausubel et al., *supra*, ch. 5). Reverse transcription is initiated using oligo d(T) or random primers. Synthetic oligonucleotide adapters are ligated to double stranded cDNA, and the cDNA is digested with the appropriate restriction enzyme or enzymes. For most libraries, the cDNA is size-selected (300-1000 bp) using SEPHACRYL S1000, SEPHAROSE CL2B, or SEPHAROSE CL4B column chromatography (Amersham Biosciences) or preparative agarose gel electrophoresis. cDNAs are ligated into compatible restriction enzyme sites of the polylinker of a suitable plasmid, e.g., PBLUESCRIPT plasmid (Stratagene), PSPORT1 plasmid (Invitrogen, Carlsbad CA), PCDNA2.1 plasmid (Invitrogen), PBK-CMV plasmid (Stratagene), PCR2-TOPOTA plasmid (Invitrogen), PCMV-ICIS plasmid (Stratagene), pIGEN (Incyte, Palo Alto CA), pRARE (Incyte), or pINCY (Incyte), or derivatives thereof. Recombinant plasmids are transformed into competent *E. coli* cells including XL1-Blue, XL1-BlueMRF, or SOLR from Stratagene or DH5α, DH10B, or ElectroMAX DH10B from Invitrogen.

#### II. Isolation of cDNA Clones

15

20

25

30

35

Plasmids obtained as described in Example I are recovered from host cells by *in vivo* excision using the UNIZAP vector system (Stratagene) or by cell lysis. Plasmids are purified using at least one of the following: a Magic or WIZARD Minipreps DNA purification system (Promega); an AGTC Miniprep purification kit (Edge Biosystems, Gaithersburg MD); and QIAWELL 8 Plasmid, QIAWELL 8 Plasmid, QIAWELL 8 Ultra Plasmid purification systems or the R.E.A.L. PREP 96 plasmid purification kit from QIAGEN. Following precipitation, plasmids are resuspended in 0.1 ml of distilled water and stored, with or without lyophilization, at 4°C.

Alternatively, plasmid DNA is amplified from host cell lysates using direct link PCR in a high-throughput format (Rao, V.B. (1994) Anal. Biochem. 216:1-14). Host cell lysis and thermal cycling steps are carried out in a single reaction mixture. Samples are processed and stored in 384-well plates, and the concentration of amplified plasmid DNA is quantified fluorometrically using PICOGREEN dye (Molecular Probes, Eugene OR) and a FLUOROSKAN II fluorescence scanner

PCT/US2004/009215 WO 2004/098539

(Labsystems Oy, Helsinki, Finland).

#### III. Sequencing and Analysis

5

10

15

30

35

Incyte cDNA recovered in plasmids as described in Example II are sequenced as follows. Sequencing reactions are processed using standard methods or high-throughput instrumentation such as the ABI CATALYST 800 (Applied Biosystems) thermal cycler or the PTC-200 thermal cycler (MJ Research) in conjunction with the HYDRA microdispenser (Robbins Scientific) or the MICROLAB 2200 (Hamilton) liquid transfer system. cDNA sequencing reactions are prepared using reagents provided by Amersham Biosciences or supplied in ABI sequencing kits such as the ABI PRISM BIGDYE Terminator cycle sequencing ready reaction kit (Applied Biosystems). Electrophoretic separation of cDNA sequencing reactions and detection of labeled polynucleotides are carried out using the MEGABACE 1000 DNA sequencing system (Amersham Biosciences); the ABI PRISM 373 or 377 sequencing system (Applied Biosystems) in conjunction with standard ABI protocols and base calling software; or other sequence analysis systems known in the art. Reading frames within the cDNA sequences are identified using standard methods (Ausubel et al., supra, ch. 7). Some of the cDNA sequences are selected for extension using the techniques disclosed in Example VIII.

Polynucleotide sequences derived from Incyte cDNAs are validated by removing vector, linker, and poly(A) sequences and by masking ambiguous bases, using algorithms and programs based on BLAST, dynamic programming, and dinucleotide nearest neighbor analysis. The Incyte cDNA sequences or translations thereof are then queried against a selection of public databases such as the GenBank primate, rodent, mammalian, vertebrate, and eukaryote databases, and BLOCKS, 20 PRINTS, DOMO, PRODOM; PROTEOME databases with sequences from Homo sapiens, Rattus norvegicus, Mus musculus, Caenorhabditis elegans, Saccharomyces cerevisiae, Schizosaccharomyces pombe, and Candida albicans (Incyte, Palo Alto CA); hidden Markov model (HMM)-based protein family databases such as PFAM, INCY, and TIGRFAM (Haft, D.H. et al. (2001) Nucleic Acids Res. 29:41-43); and HMM-based protein domain databases such as SMART (Schultz, J. et al. (1998) Proc. 25 Natl. Acad. Sci. USA 95:5857-5864; Letunic, I. et al. (2002) Nucleic Acids Res. 30:242-244). (HMM is a probabilistic approach which analyzes consensus primary structures of gene families; see, for example, Eddy, S.R. (1996) Curr. Opin. Struct. Biol. 6:361-365.) The queries are performed using programs based on BLAST, FASTA, BLIMPS, and HMMER. The Incyte cDNA sequences are assembled to produce full length polynucleotide sequences. Alternatively, GenBank cDNAs, GenBank ESTs, stitched sequences, stretched sequences, or Genscan-predicted coding sequences (see Examples IV and V) are used to extend Incyte cDNA assemblages to full length. Assembly is performed using programs based on Phred, Phrap, and Consed, and cDNA assemblages are screened for open reading frames using programs based on GeneMark, BLAST, and FASTA. The full length polynucleotide sequences are translated to derive the corresponding full length polypeptide

sequences. Alternatively, a polypeptide may begin at any of the methionine residues of the full length translated polypeptide. Full length polypeptide sequences are subsequently analyzed by querying against databases such as the GenBank protein databases (genpept), SwissProt, the PROTEOME databases, BLOCKS, PRINTS, DOMO, PRODOM, Prosite, hidden Markov model (HMM)-based protein family databases such as PFAM, INCY, and TIGRFAM; and HMM-based protein domain databases such as SMART. Full length polynucleotide sequences are also analyzed using MACDNASIS PRO software (MiraiBio, Alameda CA) and LASERGENE software (DNASTAR). Polynucleotide and polypeptide sequence alignments are generated using default parameters specified by the CLUSTAL algorithm as incorporated into the MEGALIGN multisequence alignment program (DNASTAR), which also calculates the percent identity between aligned sequences.

Table 7 summarizes tools, programs, and algorithms used for the analysis and assembly of Incyte cDNA and full length sequences and provides applicable descriptions, references, and threshold parameters. The first column of Table 7 shows the tools, programs, and algorithms used, the second column provides brief descriptions thereof, the third column presents appropriate references, all of which are incorporated by reference herein in their entirety, and the fourth column presents, where applicable, the scores, probability values, and other parameters used to evaluate the strength of a match between two sequences (the higher the score or the lower the probability value, the greater the identity between two sequences).

The programs described above for the assembly and analysis of full length polynucleotide and polypeptide sequences are also used to identify polynucleotide sequence fragments from SEQ ID NO:44-86. Fragments from about 20 to about 4000 nucleotides which are useful in hybridization and amplification technologies are described in Table 4, column 2.

#### IV. Identification and Editing of Coding Sequences from Genomic DNA

10

15

20

25

30

35

Putative kinases and phosphatases are initially identified by running the Genscan gene identification program against public genomic sequence databases (e.g., gbpri and gbhtg). Genscan is a general-purpose gene identification program which analyzes genomic DNA sequences from a variety of organisms (Burge, C. and S. Karlin (1997) J. Mol. Biol. 268:78-94; Burge, C. and S. Karlin (1998) Curr. Opin. Struct. Biol. 8:346-354). The program concatenates predicted exons to form an assembled cDNA sequence extending from a methionine to a stop codon. The output of Genscan is a FASTA database of polynucleotide and polypeptide sequences. The maximum range of sequence for Genscan to analyze at once is set to 30 kb. To determine which of these Genscan predicted cDNA sequences encode kinases and phosphatases, the encoded polypeptides are analyzed by querying against PFAM models for kinases and phosphatases. Potential kinases and phosphatases are also identified by homology to Incyte cDNA sequences that have been annotated as kinases and phosphatases. These selected Genscan-predicted sequences are then compared by BLAST analysis to

the genpept and gbpri public databases. Where necessary, the Genscan-predicted sequences are then edited by comparison to the top BLAST hit from genpept to correct errors in the sequence predicted by Genscan, such as extra or omitted exons. BLAST analysis is also used to find any Incyte cDNA or public cDNA coverage of the Genscan-predicted sequences, thus providing evidence for transcription. When Incyte cDNA coverage is available, this information is used to correct or confirm the Genscan predicted sequence. Full length polynucleotide sequences are obtained by assembling Genscan-predicted coding sequences with Incyte cDNA sequences and/or public cDNA sequences using the assembly process described in Example III. Alternatively, full length polynucleotide sequences are derived entirely from edited or unedited Genscan-predicted coding sequences.

# V. Assembly of Genomic Sequence Data with cDNA Sequence Data "Stitched" Sequences

Partial cDNA sequences are extended with exons predicted by the Genscan gene identification program described in Example IV. Partial cDNAs assembled as described in Example III are mapped to genomic DNA and parsed into clusters containing related cDNAs and Genscan exon predictions from one or more genomic sequences. Each cluster is analyzed using an algorithm based on graph theory and dynamic programming to integrate cDNA and genomic information, generating possible splice variants that are subsequently confirmed, edited, or extended to create a full length sequence. Sequence intervals in which the entire length of the interval is present on more than one sequence in the cluster are identified, and intervals thus identified are considered to be equivalent by transitivity. For example, if an interval is present on a cDNA and two genomic sequences, then all three intervals are considered to be equivalent. This process allows unrelated but consecutive genomic sequences to be brought together, bridged by cDNA sequence. Intervals thus identified are then "stitched" together by the stitching algorithm in the order that they appear along their parent sequences to generate the longest possible sequence, as well as sequence variants. Linkages between intervals which proceed along one type of parent sequence (cDNA to cDNA or genomic sequence to genomic sequence) are given preference over linkages which change parent type (cDNA to genomic sequence). The resultant stitched sequences are translated and compared by BLAST analysis to the genpept and gbpri public databases. Incorrect exons predicted by Genscan are corrected by comparison to the top BLAST hit from genpept. Sequences are further extended with additional cDNA sequences, or by inspection of genomic DNA, when necessary.

### "Stretched" Sequences

10

15

20

25

30

35

Partial DNA sequences are extended to full length with an algorithm based on BLAST analysis. First, partial cDNAs assembled as described in Example III are queried against public databases such as the GenBank primate, rodent, mammalian, vertebrate, and eukaryote databases using the BLAST program. The nearest GenBank protein homolog is then compared by BLAST

analysis to either Incyte cDNA sequences or GenScan exon predicted sequences described in Example IV. A chimeric protein is generated by using the resultant high-scoring segment pairs (HSPs) to map the translated sequences onto the GenBank protein homolog. Insertions or deletions may occur in the chimeric protein with respect to the original GenBank protein homolog. The GenBank protein homolog, the chimeric protein, or both are used as probes to search for homologous genomic sequences from the public human genome databases. Partial DNA sequences are therefore "stretched" or extended by the addition of homologous genomic sequences. The resultant stretched sequences are examined to determine whether they contain a complete gene.

#### VI. Chromosomal Mapping of KPP Encoding Polynucleotides

10

15

20

30

35

The sequences used to assemble SEQ ID NO:44-86 are compared with sequences from the Incyte LIFESEQ database and public domain databases using BLAST and other implementations of the Smith-Waterman algorithm. Sequences from these databases that matched SEQ ID NO:44-86 are assembled into clusters of contiguous and overlapping sequences using assembly algorithms such as Phrap (Table 7). Radiation hybrid and genetic mapping data available from public resources such as the Stanford Human Genome Center (SHGC), Whitehead Institute for Genome Research (WIGR), and Généthon are used to determine if any of the clustered sequences have been previously mapped. Inclusion of a mapped sequence in a cluster results in the assignment of all sequences of that cluster, including its particular SEQ ID NO:, to that map location.

Map locations are represented by ranges, or intervals, of human chromosomes. The map position of an interval, in centiMorgans, is measured relative to the terminus of the chromosome's p-arm. (The centiMorgan (cM) is a unit of measurement based on recombination frequencies between chromosomal markers. On average, 1 cM is roughly equivalent to 1 megabase (Mb) of DNA in humans, although this can vary widely due to hot and cold spots of recombination.) The cM distances are based on genetic markers mapped by Généthon which provide boundaries for radiation hybrid markers whose sequences were included in each of the clusters. Human genome maps and other resources available to the public, such as the NCBI "GeneMap'99" World Wide Web site (ncbi.nlm.nih.gov/genemap/), can be employed to determine if previously identified disease genes map within or in proximity to the intervals indicated above.

#### VII. Analysis of Polynucleotide Expression

Northern analysis is a laboratory technique used to detect the presence of a transcript of a gene and involves the hybridization of a labeled nucleotide sequence to a membrane on which RNAs from a particular cell type or tissue have been bound (Sambrook and Russell, *supra*, ch. 7; Ausubel et al., *supra*, ch. 4).

Analogous computer techniques applying BLAST are used to search for identical or related molecules in databases such as GenBank or LIFESEQ (Incyte). This analysis is much faster than

multiple membrane-based hybridizations. In addition, the sensitivity of the computer search can be modified to determine whether any particular match is categorized as exact or similar. The basis of the search is the product score, which is defined as:

5 BLAST Score x Percent Identity
5 x minimum {length(Seq. 1), length(Seq. 2)}

10

15

20

25

30

35

The product score takes into account both the degree of similarity between two sequences and the length of the sequence match. The product score is a normalized value between 0 and 100, and is calculated as follows: the BLAST score is multiplied by the percent nucleotide identity and the product is divided by (5 times the length of the shorter of the two sequences). The BLAST score is calculated by assigning a score of +5 for every base that matches in a high-scoring segment pair (HSP), and -4 for every mismatch. Two sequences may share more than one HSP (separated by gaps). If there is more than one HSP, then the pair with the highest BLAST score is used to calculate the product score. The product score represents a balance between fractional overlap and quality in a BLAST alignment. For example, a product score of 100 is produced only for 100% identity over the entire length of the shorter of the two sequences being compared. A product score of 70 is produced either by 100% identity and 70% overlap at one end, or by 88% identity and 100% overlap at the other. A product score of 50 is produced either by 100% identity and 50% overlap at one end, or 79% identity and 100% overlap.

Alternatively, polynucleotides encoding KPP are analyzed with respect to the tissue sources from which they are derived. For example, some full length sequences are assembled, at least in part, with overlapping Incyte cDNA sequences (see Example III). Each cDNA sequence is derived from a cDNA library constructed from a human tissue. Each human tissue is classified into one of the following organ/tissue categories: cardiovascular system; connective tissue; digestive system; embryonic structures; endocrine system; exocrine glands; genitalia, female; genitalia, male; germ cells; hemic and immune system; liver; musculoskeletal system; nervous system; pancreas; respiratory system; sense organs; skin; stomatognathic system; unclassified/mixed; or urinary tract. The number of libraries in each category is counted and divided by the total number of libraries across all categories. Similarly, each human tissue is classified into one of the following disease/condition categories: cancer, cell line, developmental, inflammation, neurological, trauma, cardiovascular, pooled, and other, and the number of libraries in each category is counted and divided by the total number of libraries across all categories. The resulting percentages reflect the tissue- and disease-specific expression of cDNA encoding KPP. cDNA sequences and cDNA library/tissue information are found in the LIFESEQ database (Incyte, Palo Alto CA).

#### VIII. Extension of KPP Encoding Polynucleotides

5

10

15

20

25

30

35

Full length polynucleotides are produced by extension of an appropriate fragment of the full length molecule using oligonucleotide primers designed from this fragment. One primer is synthesized to initiate 5' extension of the known fragment, and the other primer is synthesized to initiate 3' extension of the known fragment. The initial primers are designed using OLIGO 4.06 software (National Biosciences), or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the target sequence at temperatures of about 68 °C to about 72 °C. Any stretch of nucleotides which would result in hairpin structures and primer-primer dimerizations is avoided.

Selected human cDNA libraries are used to extend the sequence. If more than one extension is necessary or desired, additional or nested sets of primers are designed.

High fidelity amplification is obtained by PCR using methods well known in the art. PCR is performed in 96-well plates using the PTC-200 thermal cycler (MJ Research, Inc.). The reaction mix contains DNA template, 200 nmol of each primer, reaction buffer containing Mg<sup>2+</sup>, (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>, and 2-mercaptoethanol, Taq DNA polymerase (Amersham Biosciences), ELONGASE enzyme (Invitrogen), and Pfu DNA polymerase (Stratagene), with the following parameters for primer pair PCI A and PCI B: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 60°C, 1 min; Step 4: 68°C, 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 68°C, 5 min; Step 7: storage at 4°C. In the alternative, the parameters for primer pair T7 and SK+ are as follows: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 57°C, 1 min; Step 4: 68°C, 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 68°C, 5 min; Step 7: storage at 4°C.

The concentration of DNA in each well is determined by dispensing 100  $\mu$ l PICOGREEN quantitation reagent (0.25% (v/v) PICOGREEN; Molecular Probes, Eugene OR) dissolved in 1X TE and 0.5  $\mu$ l of undiluted PCR product into each well of an opaque fluorimeter plate (Corning Costar, Acton MA), allowing the DNA to bind to the reagent. The plate is scanned in a Fluoroskan II (Labsystems Oy, Helsinki, Finland) to measure the fluorescence of the sample and to quantify the concentration of DNA. A 5  $\mu$ l to 10  $\mu$ l aliquot of the reaction mixture is analyzed by electrophoresis on a 1% agarose gel to determine which reactions are successful in extending the sequence.

The extended nucleotides are desalted and concentrated, transferred to 384-well plates, digested with CviII cholera virus endonuclease (Molecular Biology Research, Madison WI), and sonicated or sheared prior to religation into pUC 18 vector (Amersham Biosciences). For shotgun sequencing, the digested nucleotides are separated on low concentration (0.6 to 0.8%) agarose gels, fragments are excised, and agar digested with Agar ACE (Promega). Extended clones were religated using T4 ligase (New England Biolabs, Beverly MA) into pUC 18 vector (Amersham Biosciences), treated with Pfu DNA polymerase (Stratagene) to fill-in restriction site overhangs, and transfected

into competent *E. coli* cells. Transformed cells are selected on antibiotic-containing media, and individual colonies are picked and cultured overnight at 37 °C in 384-well plates in LB/2x carb liquid media.

The cells are lysed, and DNA is amplified by PCR using Taq DNA polymerase (Amersham Biosciences) and Pfu DNA polymerase (Stratagene) with the following parameters: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 60°C, 1 min; Step 4: 72°C, 2 min; Step 5: steps 2, 3, and 4 repeated 29 times; Step 6: 72°C, 5 min; Step 7: storage at 4°C. DNA is quantified by PICOGREEN reagent (Molecular Probes) as described above. Samples with low DNA recoveries are reamplified using the same conditions as described above. Samples are diluted with 20% dimethysulfoxide (1:2, v/v), and sequenced using DYENAMIC energy transfer sequencing primers and the DYENAMIC DIRECT kit (Amersham Biosciences) or the ABI PRISM BIGDYE Terminator cycle sequencing ready reaction kit (Applied Biosystems).

10

15

20

25

30

35

In like manner, full length polynucleotides are verified using the above procedure or are used to obtain 5' regulatory sequences using the above procedure along with oligonucleotides designed for such extension, and an appropriate genomic library.

#### IX. Identification of Single Nucleotide Polymorphisms in KPP Encoding Polynucleotides

Common DNA sequence variants known as single nucleotide polymorphisms (SNPs) are identified in SEQ ID NO:44-86 using the LIFESEQ database (Incyte). Sequences from the same gene are clustered together and assembled as described in Example III, allowing the identification of all sequence variants in the gene. An algorithm consisting of a series of filters is used to distinguish SNPs from other sequence variants. Preliminary filters remove the majority of basecall errors by requiring a minimum Phred quality score of 15, and remove sequence alignment errors and errors resulting from improper trimming of vector sequences, chimeras, and splice variants. An automated procedure of advanced chromosome analysis is applied to the original chromatogram files in the vicinity of the putative SNP. Clone error filters use statistically generated algorithms to identify errors introduced during laboratory processing, such as those caused by reverse transcriptase, polymerase, or somatic mutation. Clustering error filters use statistically generated algorithms to identify errors resulting from clustering of close homologs or pseudogenes, or due to contamination by non-human sequences. A final set of filters removes duplicates and SNPs found in immunoglobulins or T-cell receptors.

Certain SNPs are selected for further characterization by mass spectrometry using the high throughput MASSARRAY system (Sequenom, Inc.) to analyze allele frequencies at the SNP sites in four different human populations. The Caucasian population comprises 92 individuals (46 male, 46 female), including 83 from Utah, four French, three Venezualan, and two Amish individuals. The African population comprises 194 individuals (97 male, 97 female), all African Americans. The

Hispanic population comprises 324 individuals (162 male, 162 female), all Mexican Hispanic. The Asian population comprises 126 individuals (64 male, 62 female) with a reported parental breakdown of 43% Chinese, 31% Japanese, 13% Korean, 5% Vietnamese, and 8% other Asian. Allele frequencies are first analyzed in the Caucasian population; in some cases those SNPs which show no allelic variance in this population are not further tested in the other three populations.

### X. Labeling and Use of Individual Hybridization Probes

Hybridization probes derived from SEQ ID NO:44-86 are employed to screen cDNAs, genomic DNAs, or mRNAs. Although the labeling of oligonucleotides, consisting of about 20 base pairs, is specifically described, essentially the same procedure is used with larger nucleotide fragments. Oligonucleotides are designed using state-of-the-art software such as OLIGO 4.06 software (National Biosciences) and labeled by combining 50 pmol of each oligomer, 250  $\mu$ Ci of  $[\gamma^{-32}P]$  adenosine triphosphate (Amersham Biosciences), and T4 polynucleotide kinase (DuPont NEN, Boston MA). The labeled oligonucleotides are substantially purified using a SEPHADEX G-25 superfine size exclusion dextran bead column (Amersham Biosciences). An aliquot containing  $10^7$  counts per minute of the labeled probe is used in a typical membrane-based hybridization analysis of human genomic DNA digested with one of the following endonucleases: Ase I, Bgl II, Eco RI, Pst I, Xba I, or Pvu II (DuPont NEN).

The DNA from each digest is fractionated on a 0.7% agarose gel and transferred to NYTRAN PLUS nylon membranes (Schleicher & Schuell, Durham NH). Hybridization is carried out for 16 hours at 40°C. To remove nonspecific signals, blots are sequentially washed at room temperature under conditions of up to, for example, 0.1 x saline sodium citrate and 0.5% sodium dodecyl sulfate. Hybridization patterns are visualized using autoradiography or an alternative imaging means and compared.

#### XI. Microarrays

5

10

15

20

25

30

35

The linkage or synthesis of array elements upon a microarray can be achieved utilizing photolithography, piezoelectric printing (ink-jet printing; see, e.g., Baldeschweiler et al., supra), mechanical microspotting technologies, and derivatives thereof. The substrate in each of the aforementioned technologies should be uniform and solid with a non-porous surface (Schena, M., ed. (1999) DNA Microarrays: A Practical Approach, Oxford University Press, London). Suggested substrates include silicon, silica, glass slides, glass chips, and silicon wafers. Alternatively, a procedure analogous to a dot or slot blot may also be used to arrange and link elements to the surface of a substrate using thermal, UV, chemical, or mechanical bonding procedures. A typical array may be produced using available methods and machines well known to those of ordinary skill in the art and may contain any appropriate number of elements (Schena, M. et al. (1995) Science 270:467-470; Shalon, D. et al. (1996) Genome Res. 6:639-645; Marshall, A. and J. Hodgson (1998) Nat.

Biotechnol. 16:27-31).

5

10

15

20

25

30

35

Full length cDNAs, Expressed Sequence Tags (ESTs), or fragments or oligomers thereof may comprise the elements of the microarray. Fragments or oligomers suitable for hybridization can be selected using software well known in the art such as LASERGENE software (DNASTAR). The array elements are hybridized with polynucleotides in a biological sample. The polynucleotides in the biological sample are conjugated to a fluorescent label or other molecular tag for ease of detection. After hybridization, nonhybridized nucleotides from the biological sample are removed, and a fluorescence scanner is used to detect hybridization at each array element. Alternatively, laser desorbtion and mass spectrometry may be used for detection of hybridization. The degree of complementarity and the relative abundance of each polynucleotide which hybridizes to an element on the microarray may be assessed. In one embodiment, microarray preparation and usage is described in detail below.

#### **Tissue or Cell Sample Preparation**

Total RNA is isolated from tissue samples using the guanidinium thiocyanate method and poly(A)<sup>+</sup> RNA is purified using the oligo-(dT) cellulose method. Each poly(A)<sup>+</sup> RNA sample is reverse transcribed using MMLV reverse-transcriptase, 0.05 pg/µl oligo-(dT) primer (21mer), 1X first strand buffer, 0.03 units/µl RNase inhibitor, 500 µM dATP, 500 µM dGTP, 500 µM dTTP, 40 µM dCTP, 40 µM dCTP-Cy3 (BDS) or dCTP-Cy5 (Amersham Biosciences). The reverse transcription reaction is performed in a 25 ml volume containing 200 ng poly(A)<sup>+</sup> RNA with GEMBRIGHT kits (Incyte). Specific control poly(A)<sup>+</sup> RNAs are synthesized by *in vitro* transcription from non-coding yeast genomic DNA. After incubation at 37°C for 2 hr, each reaction sample (one with Cy3 and another with Cy5 labeling) is treated with 2.5 ml of 0.5M sodium hydroxide and incubated for 20 minutes at 85°C to the stop the reaction and degrade the RNA. Samples are purified using two successive CHROMA SPIN 30 gel filtration spin columns (BD Clontech, Palo Alto CA) and after combining, both reaction samples are ethanol precipitated using 1 ml of glycogen (1 mg/ml), 60 ml sodium acetate, and 300 ml of 100% ethanol. The sample is then dried to completion using a SpeedVAC (Savant Instruments Inc., Holbrook NY) and resuspended in 14 µl 5X SSC/0.2% SDS.

#### **Microarray Preparation**

Sequences of the present invention are used to generate array elements. Each array element is amplified from bacterial cells containing vectors with cloned cDNA inserts. PCR amplification uses primers complementary to the vector sequences flanking the cDNA insert. Array elements are amplified in thirty cycles of PCR from an initial quantity of 1-2 ng to a final quantity greater than 5  $\mu$ g. Amplified array elements are then purified using SEPHACRYL-400 (Amersham Biosciences).

Purified array elements are immobilized on polymer-coated glass slides. Glass microscope

slides (Corning) are cleaned by ultrasound in 0.1% SDS and acetone, with extensive distilled water washes between and after treatments. Glass slides are etched in 4% hydrofluoric acid (VWR Scientific Products Corporation (VWR), West Chester PA), washed extensively in distilled water, and coated with 0.05% aminopropyl silane (Sigma-Aldrich, St. Louis MO) in 95% ethanol. Coated slides are cured in a 110°C oven.

Array elements are applied to the coated glass substrate using a procedure described in U.S. Patent No. 5,807,522, incorporated herein by reference. 1  $\mu$ l of the array element DNA, at an average concentration of 100 ng/ $\mu$ l, is loaded into the open capillary printing element by a high-speed robotic apparatus. The apparatus then deposits about 5 nl of array element sample per slide.

Microarrays are UV-crosslinked using a STRATALINKER UV-crosslinker (Stratagene). Microarrays are washed at room temperature once in 0.2% SDS and three times in distilled water. Non-specific binding sites are blocked by incubation of microarrays in 0.2% casein in phosphate buffered saline (PBS) (Tropix, Inc., Bedford MA) for 30 minutes at 60°C followed by washes in 0.2% SDS and distilled water as before.

#### 15 **Hybridization**

5

10

20

30

35

Hybridization reactions contain 9  $\mu$ l of sample mixture consisting of 0.2  $\mu$ g each of Cy3 and Cy5 labeled cDNA synthesis products in 5X SSC, 0.2% SDS hybridization buffer. The sample mixture is heated to 65°C for 5 minutes and is aliquoted onto the microarray surface and covered with an 1.8 cm² coverslip. The arrays are transferred to a waterproof chamber having a cavity just slightly larger than a microscope slide. The chamber is kept at 100% humidity internally by the addition of 140  $\mu$ l of 5X SSC in a corner of the chamber. The chamber containing the arrays is incubated for about 6.5 hours at 60°C. The arrays are washed for 10 min at 45°C in a first wash buffer (1X SSC, 0.1% SDS), three times for 10 minutes each at 45°C in a second wash buffer (0.1X SSC), and dried.

#### 25 Detection

Reporter-labeled hybridization complexes are detected with a microscope equipped with an Innova 70 mixed gas 10 W laser (Coherent, Inc., Santa Clara CA) capable of generating spectral lines at 488 nm for excitation of Cy3 and at 632 nm for excitation of Cy5. The excitation laser light is focused on the array using a 20X microscope objective (Nikon, Inc., Melville NY). The slide containing the array is placed on a computer-controlled X-Y stage on the microscope and raster-scanned past the objective. The 1.8 cm x 1.8 cm array used in the present example is scanned with a resolution of 20 micrometers.

In two separate scans, a mixed gas multiline laser excites the two fluorophores sequentially. Emitted light is split, based on wavelength, into two photomultiplier tube detectors (PMT R1477, Hamamatsu Photonics Systems, Bridgewater NJ) corresponding to the two fluorophores.

Appropriate filters positioned between the array and the photomultiplier tubes are used to filter the signals. The emission maxima of the fluorophores used are 565 nm for Cy3 and 650 nm for Cy5. Each array is typically scanned twice, one scan per fluorophore using the appropriate filters at the laser source, although the apparatus is capable of recording the spectra from both fluorophores simultaneously.

The sensitivity of the scans is typically calibrated using the signal intensity generated by a cDNA control species added to the sample mixture at a known concentration. A specific location on the array contains a complementary DNA sequence, allowing the intensity of the signal at that location to be correlated with a weight ratio of hybridizing species of 1:100,000. When two samples from different sources (e.g., representing test and control cells), each labeled with a different fluorophore, are hybridized to a single array for the purpose of identifying genes that are differentially expressed, the calibration is done by labeling samples of the calibrating cDNA with the two fluorophores and adding identical amounts of each to the hybridization mixture.

The output of the photomultiplier tube is digitized using a 12-bit RTI-835H analog-to-digital (A/D) conversion board (Analog Devices, Inc., Norwood MA) installed in an IBM-compatible PC computer. The digitized data are displayed as an image where the signal intensity is mapped using a linear 20-color transformation to a pseudocolor scale ranging from blue (low signal) to red (high signal). The data is also analyzed quantitatively. Where two different fluorophores are excited and measured simultaneously, the data are first corrected for optical crosstalk (due to overlapping emission spectra) between the fluorophores using each fluorophore's emission spectrum.

A grid is superimposed over the fluorescence signal image such that the signal from each spot is centered in each element of the grid. The fluorescence signal within each element is then integrated to obtain a numerical value corresponding to the average intensity of the signal. The software used for signal analysis is the GEMTOOLS gene expression analysis program (Incyte). Array elements that exhibit at least about a two-fold change in expression, a signal-to-background ratio of at least about 2.5, and an element spot size of at least about 40%, are considered to be differentially expressed.

#### Expression

5

10

15

20

25

30

35

For example, SEQ ID NO:51, SEQ ID NO:53-54, and SEQ ID NO:57 were differentially expressed in breast carcinoma cell lines versus a cell line derived from normal breast epithelial tissue as determined by microarray analysis. Gene expression profiles of nonmalignant mammary epithelial cells were compared to gene expression profiles of various breast carcinoma lines at different stages of tumor progression. The cells were grown in defined serum-free H14 medium to 70-80% confluence prior to RNA harvest. Cell lines compared included: a) HMEC, a primary breast epithelial cell line isolated from a normal donor, b) MCF-10A, a breast mammary gland cell line

isolated from a 36-year-old woman with fibrocystic breast disease, c) MCF7, a nonmalignant breast adenocarcinoma cell line isolated from the pleural effusion of a 69-year-old female, d) T-47D, a breast carcinoma cell line isolated from a pleural effusion obtained from a 54-year-old female with an infiltrating ductal carcinoma of the breast, e) Sk-BR-3, a breast adenocarcinoma cell line isolated from a malignant pleural effusion of a 43-year-old female, f) BT-20, a breast carcinoma cell line derived in vitro from cells emigrating out of thin slices of the tumor mass isolated from a 74-year-old female, g) MDA-mb-231, a breast tumor cell line isolated from the pleural effusion of a 51-year-old female, and h) MDA-mb-435S, a spindle-shaped strain that evolved from the parent line (435) isolated by R. Cailleau from pleural effusion of a 31-year-old female with metastatic, ductal adenocarcinoma of the breast. Expression of SEQ ID NO:53 was increased at least two-fold in MCF7 cells versus HMECs. In a similar experiment, expression of SEQ ID NO:51 was decreased at least two-fold in Sk-BR-3 cells versus HMECs. In a similar experiment, expression of SEQ ID NO:54 was decreased at least two-fold in Sk-BR-3, T-47D, and MCF7 cells versus HMECs. In a similar experiment, expression of SEQ ID NO:57 was decreased at least two-fold in MDA-mb-231 and MCF-10A cells versus HMECs. Therefore, in various embodiments, SEQ ID NO:51, SEQ ID NO:53-54, and SEQ ID NO:57 can be used for one or more of the following: i) monitoring treatment of breast cancer, ii) diagnostic assays for breast cancer, and iii) developing therapeutics and/or other treatments for breast cancer.

10

15

20

25

30

:5

In another example, SEQ ID NO:45, SEQ ID NO:51, SEQ ID NO:53-54, and SEQ ID NO:57 were differentially expressed in breast carcinoma cell lines versus a cell line derived from a donor with non-malignant, fibrocystic breast disease as determined by microarray analysis. Gene expression profiles of nonmalignant mammary epithelial cells were compared to gene expression profiles of various breast carcinoma lines at different stages of tumor progression. The cells were grown in defined serum-free TCH medium, defined serum-free H14 medium, or the supplier's recommended medium to 70-80% confluence prior to RNA harvest and compared to MCF-10A cells grown in the same medium. Cell lines compared included: a) MCF-10A, a breast mammary gland (luminal ductal characteristics) cell line isolated from a 36-year-old woman with fibrocystic breast disease; b) MCF7, a nonmalignant breast adenocarcinoma cell line isolated from the pleural effusion of a 69-year-old female, c) T-47D, a breast carcinoma cell line isolated from a pleural effusion obtained from a 54-year-old female with an infiltrating ductal carcinoma of the breast, d) Sk-BR-3, a breast adenocarcinoma cell line isolated from a malignant pleural effusion of a 43-year-old female, e) BT-20, a breast carcinoma cell line derived in vitro from the cells emigrating out of thin slices of the tumor mass isolated from a 74-year-old female, f) MDA-mb-231, a breast tumor cell line isolated from the pleural effusion of a 51-year old female, and g) MDA-mb-435S, a spindle shaped strain that evolved from the parent line (435) isolated from the pleural effusion of a 31-year-old female with

metastatic, ductal adenocarcinoma of the breast. Expression of SEQ ID NO:45 was increased at least two-fold in MCF7 cells when grown in either the defined serum-free H14 medium or the supplier's recommended medium as compared with MCF-10A cells grown under the same conditions. In a similar experiment, expression of SEQ ID NO:51 was decreased at least two-fold in Sk-BR-3 cells when grown in any of the growth conditions as compared with MCF-10A cells grown under the same conditions. In a similar experiment, expression of SEQ ID NO:53 was increased at least two-fold in MCF7 cells when grown in any of the growth conditions as compared with MCF-10A cells grown under the same conditions. In a similar experiment, expression of SEQ ID NO:54 was decreased at least two-fold in Sk-BR-3 cells and T-47D cells when grown in any of the growth conditions as compared with MCF-10A cells grown under the same conditions. In a similar experiment, expression of SEQ ID NO:57 was increased at least two-fold in MDA-mb-231 cells when grown in either the defined serum-free H14 medium or the supplier's recommended medium as compared with MCF-10A cells grown under the same conditions. Therefore, in various embodiments, SEQ ID NO:45, SEQ ID NO:51, SEQ ID NO:53-54, and SEQ ID NO:57 can be used for one or more of the following: i) monitoring treatment of breast cancer, ii) diagnostic assays for breast cancer, and iii) developing therapeutics and/or other treatments for breast cancer.

5

10

15

20

25

30

35

In another example, expression of SEQ ID NO:47 was down-regulated in a breast cancer cell line (MCF7) treated with TNFα versus untreated MCF7 cells as determined by microarray analysis. MCF7 cells were treated with 10 ng/mL TNFα for 1, 4, 8, 12, 24, 48, and 72 hours. Treated cells were compared to untreated cells kept in culture for the same amount of time. Expression of SEQ ID NO:47 was decreased at least two-fold in MCF7 cells treated with 10 ng/mL TNFα for 4, 8, 24, or 48 hours as compared with untreated MCF7 cells. Therefore, in various embodiments, SEQ ID NO:47 can be used for one or more of the following: i) monitoring treatment of breast cancer, ii) diagnostic assays for breast cancer, and iii) developing therapeutics and/or other treatments for breast cancer.

In another example, expression of SEQ ID NO:51 was down-regulated in ovary tumor tissue versus normal ovary tissue as determined by microarray analysis. Expression of SEQ ID NO:51 was decreased at least two-fold in ovary tumor tissue as compared with matched normal ovary tissue from the same donor in 1 of 2 donors tested. Therefore, in various embodiments, SEQ ID NO:51 can be used for one or more of the following: i) monitoring treatment of ovarian cancer, ii) diagnostic assays for ovarian cancer, and iii) developing therapeutics and/or other treatments for ovarian cancer.

In another example, expression of SEQ ID NO:54 was down-regulated in brain tissue from donors with Alzheimer's disease (AD) versus brain tissue from a normal donor as determined by microarray analysis. Specific dissected brain regions from the cerebellum, dentate nucleus, and vermis of a normal donor were compared to: a) the corresponding regions dissected from the brain of a female with mild AD; and b) the corresponding regions dissected from the brain of a female with

severe AD. The diagnosis of normal or mild AD was established by a certified neuropathologist based on microscopic examination of multiple sections throughout the brain. Expression of SEQ ID NO:54 was decreased at least two-fold in the striatum and globus pallidus region of the brain of a donor with severe AD and a donor with mild AD as compared with the corresponding region of the brain from a normal donor. Therefore, in various embodiments, SEQ ID NO:54 can be used for one or more of the following: i) monitoring treatment of AD, ii) diagnostic assays for AD, and iii) developing therapeutics and/or other treatments for AD.

In another example, expression of SEQ ID NO:57 was up-regulated in lung tumor tissue versus normal lung tissue as determined by microarray analysis. Expression of SEQ ID NO:57 was increased at least two-fold in lung tumor tissue as compared with matched normal lung tissue from the same donor in 3 of 4 donors tested. Therefore, in various embodiments, SEQ ID NO:57 can be used for one or more of the following: i) monitoring treatment of lung cancer, ii) diagnostic assays for lung cancer, and iii) developing therapeutics and/or other treatments for lung cancer.

10

15

20

25

30

35

In another example, expression of SEQ ID NO:57 was down-regulated to a lesser extent in preadipocytes taken from an obese donor versus preadipocytes taken from a non-obese donor as determined by microarray analysis. Primary subcutaneous preadipocytes were isolated from the adipose tissue of a non-obese donor, a 28-year-old healthy female with body mass index (BMI) of 23.59, and an obese donor, a 40-year-old healthy female with a body mass index (BMI) of 32.47. The preadipocytes from each donor were cultured and induced to differentiate into adipocytes by growing them in differentiation medium containing PPAR-y agonist and human insulin (Zen-Bio). Some thiazolidinediones or PPAR-γ agonists, which bind and activate an orphan nuclear receptor. PPAR-γ, have been shown to induce human adipocyte differentiation. The preadipocytes were treated with human insulin and PPAR-y agonist for 3 days and subsequently were switched to medium containing insulin for a range of time periods ranging from one to 20 days before the cells were collected for analysis. Differentiated adipocytes from each donor were compared to untreated preadipocytes, maintained in culture in the absence of differentiation-inducing agents, from the same donor. Between 80% and 90% of the preadipocytes finally differentiated to adipocytes as observed under phase contrast microscopy. Expression of SEQ ID NO:57 was decreased at least two-fold in differentiated preadipocytes from a normal donor versus non-differentiated preadipocytes from the same donor. In contrast, no differential expression was seen in differentiated preadipocytes from an obese donor versus non-differentiated preadipocytes from the same donor. These data suggest that SEQ ID NO:57 is differentially expressed in adipocytes from normal subjects but not in adipocytes from obese subjects. Therefore, in various embodiments, SEQ ID NO:57 can be used for one or more of the following: i) monitoring treatment of diabetes mellitus and other disorders, such as obesity and hypertension ii) diagnostic assays for diabetes mellitus and other disorders, such as obesity and

hypertension iii) developing therapeutics and/or other treatments for diabetes mellitus and other disorders, such as obesity and hypertension.

In another example, SEQ ID NO:47, SEQ ID NO:54, and SEQ ID NO:56 showed tissuespecific expression as determined by microarray analysis. RNA samples isolated from a variety of normal human tissues were compared to a common reference sample. Tissues contributing to the reference sample were selected for their ability to provide a complete distribution of RNA in the human body and include brain (4%), heart (7%), kidney (3%), lung (8%), placenta (46%), small intestine (9%), spleen (3%), stomach (6%), testis (9%), and uterus (5%). The normal tissues assayed were obtained from at least three different donors. RNA from each donor was separately isolated and individually hybridized to the microarray. Since these hybridization experiments were conducted using a common reference sample, differential expression values are directly comparable from one tissue to another. The expression of SEQ ID NO:47 was increased by at least two-fold in small intestine and liver as compared to the reference sample. Therefore, SEQ ID NO:47 can be used as a tissue marker for small intestine and liver. The expression of SEQ ID NO:54 was increased by at least two-fold in brain (temporal cortex) and leukocytes as compared to the reference sample. Therefore, SEQ ID NO:54 can be used as a tissue marker for brain (temporal cortex) and leukocytes. The expression of SEQ ID NO:56 was increased by at least two-fold in brain as compared to the reference sample. Therefore, SEQ ID NO:56 can be used as a tissue marker for brain.

10

15

20

25

30

35

In another example, SEQ ID NO:44 showed tissue-specific expression as determined by microarray analysis. RNA samples isolated from a variety of normal human tissues were compared to a common reference sample. Tissues contributing to the reference sample were selected for their ability to provide a complete distribution of RNA in the human body and include brain (4%), heart (7%), kidney (3%), lung (8%), placenta (46%), small intestine (9%), spleen (3%), stomach (6%), testis (9%), and uterus (5%). The normal tissues assayed were obtained from at least three different donors. RNA from each donor was separately isolated and individually hybridized to the microarray. Since these hybridization experiments were conducted using a common reference sample, differential expression values are directly comparable from one tissue to another. The expression of SEQ ID NO:44 was increased by at least two-fold in leukocytes, thymus gland, and tonsil as compared to the reference sample. Therefore, SEQ ID NO:44 can be used as a tissue marker for leukocytes, thymus gland, and tonsil.

In another example, SEQ ID NO:48-50 showed tissue-specific expression as determined by microarray analysis. RNA samples isolated from a variety of normal human tissues were compared to a common reference sample. Tissues contributing to the reference sample were selected for their ability to provide a complete distribution of RNA in the human body and include brain (4%), heart (7%), kidney (3%), lung (8%), placenta (46%), small intestine (9%), spleen (3%), stomach (6%),

testis (9%), and uterus (5%). The normal tissues assayed were obtained from at least three different donors. RNA from each donor was separately isolated and individually hybridized to the microarray. Since these hybridization experiments were conducted using a common reference sample, differential expression values are directly comparable from one tissue to another. The expression of SEQ ID NO:48-50 was increased by at least two-fold in muscle, adipose tissue, and liver as compared to the reference sample. Therefore, SEQ ID NO:48-50 can be used as a tissue marker for muscle, adipose tissue, and liver.

10

15

20

25

30

35

In another example, expression of SEQ ID NO:62 was up-regulated in breast cancer cell lines versus a breast epithelial cell line derived from normal breast tissue as determined by microarray analysis. Gene expression profiles of nonmalignant mammary epithelial cells were compared to gene expression profiles of various breast carcinoma lines at different stages of tumor progression. The cells were grown in defined serum-free H14 medium to 70-80% confluence prior to RNA harvest. Cell lines compared included: a) HMEC, a primary breast epithelial cell line isolated from a normal donor, b) MCF-10A, a breast mammary gland cell line isolated from a 36-year-old woman with fibrocystic breast disease, c) MCF7, a nonmalignant breast adenocarcinoma cell line isolated from the pleural effusion of a 69-year-old female, d) T-47D, a breast carcinoma cell line isolated from a pleural effusion obtained from a 54-year-old female with an infiltrating ductal carcinoma of the breast, e) Sk-BR-3, a breast adenocarcinoma cell line isolated from a malignant pleural effusion of a 43-year-old female, f) BT-20, a breast carcinoma cell line derived in vitro from cells emigrating out of thin slices of the tumor mass isolated from a 74-year-old female, g) MDA-mb-231, a breast tumor cell line isolated from the pleural effusion of a 51-year-old female, and h) MDA-mb-435S, a spindleshaped strain that evolved from the parent line (435) isolated by R. Cailleau from pleural effusion of a 31-year-old female with metastatic, ductal adenocarcinoma of the breast. Expression of SEQ ID NO:62 was increased at least two-fold in two (MDA-mb-231 and MCF-10A) of seven breast cancer cell lines tested compared to HMECs. Therefore, in various embodiments, SEQ ID NO:62 can be used for one or more of the following: i) monitoring treatment of breast cancer, ii) diagnostic assays for breast cancer, and iii) developing therapeutics and/or other treatments for breast cancer.

In another example, expression of SEQ ID NO:62 was up-regulated in lung cancer tissue versus normal lung tissue as determined by microarray analysis. Expression of SEQ ID NO:62 was increased at least two-fold in lung tumor tissue versus matched normal lung tissue from the same donor in three of three donors with squamous cell cancer tested. Therefore, in various embodiments, SEQ ID NO:62 can be used for one or more of the following: i) monitoring treatment of lung cancer, ii) diagnostic assays for lung cancer, and iii) developing therapeutics and/or other treatments for lung cancer.

In another example, expression of SEQ ID NO:62 was down-regulated to a lesser extent in

preadipocytes taken from an obese donor versus preadipocytes taken from a non-obese donor as determined by microarray analysis. Primary subcutaneous preadipocytes were isolated from the adipose tissue of a non-obese donor, a 28-year-old healthy female with body mass index (BMI) of 23.59, and an obese donor, a 40-year-old healthy female with a body mass index (BMI) of 32.47. The preadipocytes from each donor were cultured and induced to differentiate into adipocytes by 5 growing them in differentiation medium containing PPAR-y agonist and human insulin (Zen-Bio). Some thiazolidinediones or PPAR-y agonists, which bind and activate an orphan nuclear receptor, PPAR-γ, have been shown to induce human adipocyte differentiation. The preadipocytes were treated with human insulin and PPAR-y agonist for 3 days and subsequently were switched to medium containing insulin for a range of time periods ranging from one to 20 days before the cells were collected for analysis. Differentiated adipocytes from each donor were compared to untreated preadipocytes, maintained in culture in the absence of differentiation-inducing agents, from the same donor. Between 80% and 90% of the preadipocytes finally differentiated to adipocytes as observed under phase contrast microscopy. Expression of SEQ ID NO:62 was decreased at least two-fold in differentiated preadipocytes from a normal donor versus non-differentiated preadipocytes from the same donor. In contrast, no differential expression was seen in differentiated preadipocytes from an obese donor versus non-differentiated preadipocytes from the same donor. These data suggest that SEQ ID NO:62 is differentially expressed in adipocytes from normal subjects but not in adipocytes from obese subjects. Therefore, in various embodiments, SEQ ID NO:62 can be used for one or more of the following: i) monitoring treatment of diabetes mellitus and other disorders, such as obesity and hypertension ii) diagnostic assays for diabetes mellitus and other disorders, such as obesity and hypertension iii) developing therapeutics and/or other treatments for diabetes mellitus and other disorders, such as obesity and hypertension.

10

15

20

25

30

35

In another example, expression of SEQ ID NO:69 was down-regulated in diseased lung tissue versus normal lung tissue as determined by microarray analysis. Expression of SEO ID NO:69 was decreased at least two-fold in the lung tumor tissue with squamous cell carcinoma as compared to grossly uninvolved lung tissue from the same donor using a pair comparison experimental design. Therefore, in various embodiments, SEQ ID NO:69 can be used for one or more of the following: i) monitoring treatment of lung cancer, ii) diagnostic assays for lung cancer, and iii) developing therapeutics and/or other treatments for lung cancer.

In another example, expression of SEQ ID NO:74 was downregulated in brain tissue affected by Alzheimer's Disease versus normal brain tissue as determined by microarray analysis. Specific dissected brain regions from the brain patients with AD were compared to dissected regions from normal brain. The diagnosis of normal or AD was established by a certified neuropathologist based on microscopic examination of multiple sections throughout the brain. Expression of SEQ ID NO:74

was decreased at least two-fold in 7 of 10 AD-affected tissue samples. Therefore, in various embodiments, SEQ ID NO:74 can be used for one or more of the following: i) monitoring treatment of Alzheimer's Disease, ii) diagnostic assays for Alzheimer's Disease, and iii) developing therapeutics and/or other treatments for Alzheimer's Disease as determined by microarray analysis.

5

10

15

20

25

Ю

As another example, SEQ ID NO:72 and SEQ ID NO:74 were downregulated in breast cancer cells versus nonmalignant mammary epithelial cells, as determined by microarray analysis. Cell lines compared included: a) MCF-10A, a breast mammary gland (luminal ductal characteristics) cell line isolated from a 36-year-old woman with fibrocystic breast disease, b) MCF7, a nonmalignant breast adenocarcinoma cell line isolated from the pleural effusion of a 69-year-old female, c) BT-20, a breast carcinoma cell line derived in vitro from the cells emigrating out of thin slices of tumor mass isolated from a 74-year-old female, d) T-47D, a breast carcinoma cell line isolated from a pleural effusion obtained from a 54-year-old female with an infiltrating ductal carcinoma of the breast, e) Sk-BR-3, a breast adenocarcinoma cell line isolated from a malignant pleural effusion of a 43-year-old female, f) MDA-mb-231, a breast tumor cell line isolated from the pleural effusion of a 51-year-old female, g) MDA-mb-435S, a spindle-shaped strain that evolved from the parent line (435) isolated by R. Cailleau from pleural effusion of a 31-year-old female with metastatic, ductal adenocarcinoma of the breast, and h) HMEC, a primary breast epithelial cell line isolated from a normal donor. Expression of SEQ ID NO:72 was decreased at least two-fold in the Sk-BR-3, BT-20, MDA-mb-435S, T-47D, and MCF7 cell lines as compared to the normal breast epithelial cells. Expression of SEQ ID NO:74 was decreased at least two-fold in the MCF-10A, T-47D, Sk-BR-3, and MCF7 cell lines as compared to the normal breast epithelial cells. Therefore, in various embodiments, SEQ ID NO:72 and SEQ ID NO:74 can be used for one or more of the following: i) monitoring treatment of breast cancer, ii) diagnostic assays for breast cancer, and iii) developing therapeutics and/or other treatments for breast cancer as determined by microarray analysis.

As another example, SEQ ID NO:74 and SEQ ID NO:77 showed tissue-specific expression as determined by microarray analysis. RNA samples isolated from a variety of normal human tissues were compared to a common reference sample. Tissues contributing to the reference sample were selected for their ability to provide a complete distribution of RNA in the human body and include brain (4%), heart (7%), kidney (3%), lung (8%), placenta (46%), small intestine (9%), spleen (3%), stomach (6%), testis (9%), and uterus (5%). The normal tissues assayed were obtained from at least three different donors. RNA from each donor was separately isolated and individually hybridized to the microarray. Since these hybridization experiments were conducted using a common reference sample, differential expression values are directly comparable from one tissue to another. The expression of SEQ ID NO:74 was increased by at least two-fold in brain cortex tissue as compared to the reference sample. Therefore, SEQ ID NO:74 can be used as a tissue marker for brain cortex

tissue. The expression of SEQ ID NO:77 was increased by at least two-fold in heart tissue as compared to the reference sample. Therefore, SEQ ID NO:77 can be used as a tissue marker for heart tissue.

#### XII. Complementary Polynucleotides

Sequences complementary to the KPP-encoding sequences, or any parts thereof, are used to detect, decrease, or inhibit expression of naturally occurring KPP. Although use of oligonucleotides comprising from about 15 to 30 base pairs is described, essentially the same procedure is used with smaller or with larger sequence fragments. Appropriate oligonucleotides are designed using OLIGO 4.06 software (National Biosciences) and the coding sequence of KPP. To inhibit transcription, a complementary oligonucleotide is designed from the most unique 5' sequence and used to prevent promoter binding to the coding sequence. To inhibit translation, a complementary oligonucleotide is designed to prevent ribosomal binding to the KPP-encoding transcript.

#### XIII. Expression of KPP

5

10

15

20

25

30

35

Expression and purification of KPP is achieved using bacterial or virus-based expression systems. For expression of KPP in bacteria, cDNA is subcloned into an appropriate vector containing an antibiotic resistance gene and an inducible promoter that directs high levels of cDNA transcription. Examples of such promoters include, but are not limited to, the trp-lac (tac) hybrid promoter and the T5 or T7 bacteriophage promoter in conjunction with the lac operator regulatory element. Recombinant vectors are transformed into suitable bacterial hosts, e.g., BL21(DE3). Antibiotic resistant bacteria express KPP upon induction with isopropyl beta-D-thiogalactopyranoside (IPTG). Expression of KPP in eukaryotic cells is achieved by infecting insect or mammalian cell lines with recombinant Autographica californica nuclear polyhedrosis virus (AcMNPV), commonly known as baculovirus. The nonessential polyhedrin gene of baculovirus is replaced with cDNA encoding KPP by either homologous recombination or bacterial-mediated transposition involving transfer plasmid intermediates. Viral infectivity is maintained and the strong polyhedrin promoter drives high levels of cDNA transcription. Recombinant baculovirus is used to infect Spodoptera frugiperda (Sf9) insect cells in most cases, or human hepatocytes, in some cases. Infection of the latter requires additional genetic modifications to baculovirus (Engelhard, E.K. et al. (1994) Proc. Natl. Acad. Sci. USA 91:3224-3227; Sandig, V. et al. (1996) Hum. Gene Ther. 7:1937-1945).

In most expression systems, KPP is synthesized as a fusion protein with, e.g., glutathione Stransferase (GST) or a peptide epitope tag, such as FLAG or 6-His, permitting rapid, single-step, affinity-based purification of recombinant fusion protein from crude cell lysates. GST, a 26-kilodalton enzyme from Schistosoma japonicum, enables the purification of fusion proteins on immobilized glutathione under conditions that maintain protein activity and antigenicity (Amersham Biosciences). Following purification, the GST moiety can be proteolytically cleaved from KPP at

specifically engineered sites. FLAG, an 8-amino acid peptide, enables immunoaffinity purification using commercially available monoclonal and polyclonal anti-FLAG antibodies (Eastman Kodak). 6-His, a stretch of six consecutive histidine residues, enables purification on metal-chelate resins (QIAGEN). Methods for protein expression and purification are discussed in Ausubel et al. (supra, ch. 10 and 16). Purified KPP obtained by these methods can be used directly in the assays shown in Examples XVII, XVIII, XIX, XX, and XXI, where applicable.

#### XIV. Functional Assays

10

15

20

25

30

35

KPP function is assessed by expressing the sequences encoding KPP at physiologically elevated levels in mammalian cell culture systems. cDNA is subcloned into a mammalian expression vector containing a strong promoter that drives high levels of cDNA expression. Vectors of choice include PCMV SPORT plasmid (Invitrogen, Carlsbad CA) and PCR3.1 plasmid (Invitrogen), both of which contain the cytomegalovirus promoter.  $5-10 \mu g$  of recombinant vector are transiently transfected into a human cell line, for example, an endothelial or hematopoietic cell line, using either liposome formulations or electroporation. 1-2  $\mu$ g of an additional plasmid containing sequences encoding a marker protein are co-transfected. Expression of a marker protein provides a means to distinguish transfected cells from nontransfected cells and is a reliable predictor of cDNA expression from the recombinant vector. Marker proteins of choice include, e.g., Green Fluorescent Protein (GFP; BD Clontech), CD64, or a CD64-GFP fusion protein. Flow cytometry (FCM), an automated, laser optics-based technique, is used to identify transfected cells expressing GFP or CD64-GFP and to evaluate the apoptotic state of the cells and other cellular properties. FCM detects and quantifies the uptake of fluorescent molecules that diagnose events preceding or coincident with cell death. These events include changes in nuclear DNA content as measured by staining of DNA with propidium iodide; changes in cell size and granularity as measured by forward light scatter and 90 degree side light scatter; down-regulation of DNA synthesis as measured by decrease in bromodeoxyuridine uptake; alterations in expression of cell surface and intracellular proteins as measured by reactivity with specific antibodies; and alterations in plasma membrane composition as measured by the binding of fluorescein-conjugated Annexin V protein to the cell surface. Methods in flow cytometry are discussed in Ormerod, M.G. (1994; Flow Cytometry, Oxford, New York NY).

The influence of KPP on gene expression can be assessed using highly purified populations of cells transfected with sequences encoding KPP and either CD64 or CD64-GFP. CD64 and CD64-GFP are expressed on the surface of transfected cells and bind to conserved regions of human immunoglobulin G (IgG). Transfected cells are efficiently separated from nontransfected cells using magnetic beads coated with either human IgG or antibody against CD64 (DYNAL, Lake Success NY). mRNA can be purified from the cells using methods well known by those of skill in the art. Expression of mRNA encoding KPP and other genes of interest can be analyzed by northern analysis

or microarray techniques.

10

15

20

25

30

15

#### XV. Production of KPP Specific Antibodies

KPP substantially purified using polyacrylamide gel electrophoresis (PAGE; see, e.g., Harrington, M.G. (1990) Methods Enzymol. 182:488-495), or other purification techniques, is used to immunize animals (e.g., rabbits, mice, etc.) and to produce antibodies using standard protocols.

Alternatively, the KPP amino acid sequence is analyzed using LASERGENE software (DNASTAR) to determine regions of high immunogenicity, and a corresponding oligopeptide is synthesized and used to raise antibodies by means known to those of skill in the art. Methods for selection of appropriate epitopes, such as those near the C-terminus or in hydrophilic regions are well described in the art (Ausubel et al., *supra*, ch. 11).

Typically, oligopeptides of about 15 residues in length are synthesized using an ABI 431A peptide synthesizer (Applied Biosystems) using FMOC chemistry and coupled to KLH (Sigma-Aldrich, St. Louis MO) by reaction with N-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS) to increase immunogenicity (Ausubel et al., *supra*). Rabbits are immunized with the oligopeptide-KLH complex in complete Freund's adjuvant. Resulting antisera are tested for antipeptide and anti-KPP activity by, for example, binding the peptide or KPP to a substrate, blocking with 1% BSA, reacting with rabbit antisera, washing, and reacting with radio-iodinated goat anti-rabbit IgG.

# XVI. Purification of Naturally Occurring KPP Using Specific Antibodies

Naturally occurring or recombinant KPP is substantially purified by immunoaffinity chromatography using antibodies specific for KPP. An immunoaffinity column is constructed by covalently coupling anti-KPP antibody to an activated chromatographic resin, such as CNBr-activated SEPHAROSE (Amersham Biosciences). After the coupling, the resin is blocked and washed according to the manufacturer's instructions.

Media containing KPP are passed over the immunoaffinity column, and the column is washed under conditions that allow the preferential absorbance of KPP (e.g., high ionic strength buffers in the presence of detergent). The column is eluted under conditions that disrupt antibody/KPP binding (e.g., a buffer of pH 2 to pH 3, or a high concentration of a chaotrope, such as urea or thiocyanate ion), and KPP is collected.

# XVII. Identification of Molecules Which Interact with KPP

KPP, or biologically active fragments thereof, are labeled with <sup>125</sup>I Bolton-Hunter reagent (Bolton, A.E. and W.M. Hunter (1973) Biochem. J. 133:529-539). Candidate molecules previously arrayed in the wells of a multi-well plate are incubated with the labeled KPP, washed, and any wells with labeled KPP complex are assayed. Data obtained using different concentrations of KPP are used to calculate values for the number, affinity, and association of KPP with the candidate molecules.

Alternatively, molecules interacting with KPP are analyzed using the yeast two-hybrid

system as described in Fields, S. and O. Song (1989; Nature 340:245-246), or using commercially available kits based on the two-hybrid system, such as the MATCHMAKER system (BD Clontech).

KPP may also be used in the PATHCALLING process (CuraGen Corp., New Haven CT) which employs the yeast two-hybrid system in a high-throughput manner to determine all interactions between the proteins encoded by two large libraries of genes (Nandabalan, K. et al. (2000) U.S. Patent No. 6,057,101).

#### XVIII. Demonstration of KPP Activity

5

10

15

20

25

30

35

Generally, protein kinase activity is measured by quantifying the phosphorylation of a protein substrate by KPP in the presence of [γ-<sup>32</sup>P]ATP. KPP is incubated with the protein substrate, <sup>32</sup>P-ATP, and an appropriate kinase buffer. The <sup>32</sup>P incorporated into the substrate is separated from free <sup>32</sup>P-ATP by electrophoresis and the incorporated <sup>32</sup>P is counted using a radioisotope counter. The amount of incorporated <sup>32</sup>P is proportional to the activity of KPP. A determination of the specific amino acid residue phosphorylated is made by phosphoamino acid analysis of the hydrolyzed protein.

In one alternative, protein kinase activity is measured by quantifying the transfer of gamma phosphate from adenosine triphosphate (ATP) to a serine, threonine or tyrosine residue in a protein substrate. The reaction occurs between a protein kinase sample with a biotinylated peptide substrate and gamma <sup>32</sup>P-ATP. Following the reaction, free avidin in solution is added for binding to the biotinylated <sup>32</sup>P-peptide product. The binding sample then undergoes a centrifugal ultrafiltration process with a membrane which will retain the product-avidin complex and allow passage of free gamma <sup>32</sup>P-ATP. The reservoir of the centrifuged unit containing the <sup>32</sup>P-peptide product as retentate is then counted in a scintillation counter. This procedure allows the assay of any type of protein kinase sample, depending on the peptide substrate and kinase reaction buffer selected. This assay is provided in kit form (ASUA, Affinity Ultrafiltration Separation Assay, Transbio Corporation, Baltimore MD, U.S. Patent No. 5,869,275). Suggested substrates and their respective enzymes include but are not limited to: Histone H1 (Sigma) and p34<sup>ede2</sup>kinase, Annexin I, Angiotensin (Sigma) and EGF receptor kinase, Annexin II and *src* kinase, ERK1 & ERK2 substrates and MEK, and myelin basic protein and ERK (Pearson, J.D. et al. (1991) Methods Enzymol. 200:62-81).

In another alternative, protein kinase activity of KPP is demonstrated in an assay containing KPP, 50 μl of kinase buffer, 1 μg substrate, such as myelin basic protein (MBP) or synthetic peptide substrates, 1 mM DTT, 10 μg ATP, and 0.5 μCi [γ-<sup>32</sup>P]ATP. The reaction is incubated at 30 °C for 30 minutes and stopped by pipetting onto P81 paper. The unincorporated [γ-<sup>32</sup>P]ATP is removed by washing and the incorporated radioactivity is measured using a scintillation counter. Alternatively, the reaction is stopped by heating to 100 °C in the presence of SDS loading buffer and resolved on a 12% SDS polyacrylamide gel followed by autoradiography. The amount of incorporated <sup>32</sup>P is proportional to the activity of KPP.

In yet another alternative, adenylate kinase or guanylate kinase activity of KPP may be measured by the incorporation of  $^{32}$ P from  $[\gamma^{-32}$ P]ATP into ADP or GDP using a gamma radioisotope counter. KPP, in a kinase buffer, is incubated together with the appropriate nucleotide mono-phosphate substrate (AMP or GMP) and  $^{32}$ P-labeled ATP as the phosphate donor. The reaction is incubated at 37°C and terminated by addition of trichloroacetic acid. The acid extract is neutralized and subjected to gel electrophoresis to separate the mono-, di-, and triphosphonucleotide fractions. The diphosphonucleotide fraction is excised and counted. The radioactivity recovered is proportional to the activity of KPP.

In yet another alternative, other assays for KPP include scintillation proximity assays (SPA), scintillation plate technology and filter binding assays. Useful substrates include recombinant proteins tagged with glutathione transferase, or synthetic peptide substrates tagged with biotin. Inhibitors of KPP activity, such as small organic molecules, proteins or peptides, may be identified by such assays.

In another alternative, phosphatase activity of KPP is measured by the hydrolysis of paranitrophenyl phosphate (PNPP). KPP is incubated together with PNPP in HEPES buffer pH 7.5, in the presence of 0.1%  $\beta$ -mercaptoethanol at 37 °C for 60 min. The reaction is stopped by the addition of 6 ml of 10 N NaOH (Diamond, R.H. et al. (1994) Mol. Cell. Biol. 14:3752-62). Alternatively, acid phosphatase activity of KPP is demonstrated by incubating KPP-containing extract with 100  $\mu$ l of 10 mM PNPP in 0.1 M sodium citrate, pH 4.5, and 50  $\mu$ l of 40 mM NaCl at 37 °C for 20 min. The reaction is stopped by the addition of 0.5 ml of 0.4 M glycine/NaOH, pH 10.4 (Saftig, P. et al. (1997) J. Biol. Chem. 272:18628-18635). The increase in light absorbance at 410 nm resulting from the hydrolysis of PNPP is measured using a spectrophotometer. The increase in light absorbance is proportional to the activity of KPP in the assay.

In the alternative, KPP activity is determined by measuring the amount of phosphate removed from a phosphorylated protein substrate. Reactions are performed with 2 or 4 nM KPP in a final volume of 30  $\mu$ l containing 60 mM Tris, pH 7.6, 1 mM EDTA, 1 mM EGTA, 0.1%  $\beta$ -mercaptoethanol and 10  $\mu$ M substrate, <sup>32</sup>P-labeled on serine/threonine or tyrosine, as appropriate. Reactions are initiated with substrate and incubated at 30° C for 10-15 min. Reactions are quenched with 450  $\mu$ l of 4% (w/v) activated charcoal in 0.6 M HCl, 90 mM Na<sub>4</sub>P<sub>2</sub>O<sub>7</sub>, and 2 mM NaH<sub>2</sub>PO<sub>4</sub>, then centrifuged at 12,000 × g for 5 min. Acid-soluble <sup>32</sup>Pi is quantified by liquid scintillation counting (Sinclair, C. et al. (1999) J. Biol. Chem. 274:23666-23672).

#### XIX. Kinase Binding Assay

10

15

20

25

30

35

Binding of KPP to a FLAG-CD44 cyt fusion protein can be determined by incubating KPP with anti-KPP-conjugated immunoaffinity beads followed by incubating portions of the beads (having 10-20 ng of protein) with 0.5 ml of a binding buffer (20 mM Tris-HCL (pH 7.4), 150 mM NaCl, 0.1%)

bovine serum albumin, and 0.05% Triton X-100) in the presence of <sup>125</sup>I-labeled FLAG-CD44cyt fusion protein (5,000 cpm/ng protein) at 4 °C for 5 hours. Following binding, beads were washed thoroughly in the binding buffer and the bead-bound radioactivity measured in a scintillation counter (Bourguignon, L.Y.W. et al. (2001) J. Biol. Chem. 276:7327-7336). The amount of incorporated <sup>32</sup>P is proportional to the amount of bound KPP.

#### XX. Identification of KPP Inhibitors

Compounds to be tested are arrayed in the wells of a 384-well plate in varying concentrations along with an appropriate buffer and substrate, as described in the assays in Example XVII. KPP activity is measured for each well and the ability of each compound to inhibit KPP activity can be determined, as well as the dose-response kinetics. This assay could also be used to identify molecules which enhance KPP activity.

#### XXI. Identification of KPP Substrates

10

15

20

25

30

;5

A KPP "substrate-trapping" assay takes advantage of the increased substrate affinity that may be conferred by certain mutations in the PTP signature sequence of protein tyrosine phosphatases. KPP bearing these mutations form a stable complex with their substrate; this complex may be isolated biochemically. Site-directed mutagenesis of invariant residues in the PTP signature sequence in a clone encoding the catalytic domain of KPP is performed using a method standard in the art or a commercial kit, such as the MUTA-GENE kit from BIO-RAD. For expression of KPP mutants in Escherichia coli, DNA fragments containing the mutation are exchanged with the corresponding wild-type sequence in an expression vector bearing the sequence encoding KPP or a glutathione S-transferase (GST)-KPP fusion protein. KPP mutants are expressed in E. coli and purified by chromatography.

The expression vector is transfected into COS1 or 293 cells via calcium phosphate-mediated transfection with 20  $\mu$ g of CsCl-purified DNA per 10-cm dish of cells or 8  $\mu$ g per 6-cm dish. Forty-eight hours after transfection, cells are stimulated with 100 ng/ml epidermal growth factor to increase tyrosine phosphorylation in cells, as the tyrosine kinase EGFR is abundant in COS cells. Cells are lysed in 50 mM Tris·HCl, pH 7.5/5 mM EDTA/150 mM NaCl/1% Triton X-100/5 mM iodoacetic acid/10 mM sodium phosphate/10 mM NaF/5  $\mu$ g/ml leupeptin/5  $\mu$ g/ml aprotinin/1 mM benzamidine (1 ml per 10-cm dish, 0.5 ml per 6-cm dish). KPP is immunoprecipitated from lysates with an appropriate antibody. GST-KPP fusion proteins are precipitated with glutathione-Sepharose, 4  $\mu$ g of mAb or 10  $\mu$ l of beads respectively per mg of cell lysate. Complexes can be visualized by PAGE or further purified to identify substrate molecules (Flint, A.J. et al. (1997) Proc. Natl. Acad. Sci. USA 94:1680-1685).

Various modifications and variations of the described compositions, methods, and systems of

the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. It will be appreciated that the invention provides novel and useful proteins, and their encoding polynucleotides, which can be used in the drug discovery process, as well as methods for using these compositions for the detection, diagnosis, and treatment of diseases and conditions.

Although the invention has been described in connection with certain embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Nor should the description of such embodiments be considered exhaustive or limit the invention to the precise forms disclosed. Furthermore, elements from one embodiment can be readily recombined with elements from one or more other embodiments. Such combinations can form a number of embodiments within the scope of the invention. It is intended that the scope of the invention be defined by the following claims and their equivalents.

|                   |                | Incyte Full Length Clones | 90040615CA2 | 95114642CA2, 95114758CA2, 95162524CA2, 95162564CA2 | 95121315CA2, 95121539CA2 | 95141143CA2 | 95183446CA2 |            |            |            |            | 90041659CA2 | 90136641CA2 |            |            | 90094269CA2 |            | 90111670CA2 | 90198192CA2 |            |            |            | 95132479CA2, 95206437CA2, 95206561CA2 |            |            |            |            |            | 90124401CA2 |            |            |
|-------------------|----------------|---------------------------|-------------|----------------------------------------------------|--------------------------|-------------|-------------|------------|------------|------------|------------|-------------|-------------|------------|------------|-------------|------------|-------------|-------------|------------|------------|------------|---------------------------------------|------------|------------|------------|------------|------------|-------------|------------|------------|
| Incyte            | Polynucleotide | А                         | 7517831CB1  | 7520272CB1                                         | 7521279CB1               | 7523965CB1  | 7524016CB1  | 7524680CB1 | 7524757CB1 | 7516229CB1 | 7516525CB1 | 7516533CB1  | 7516613CB1  | 7517068CB1 | 7517148CB1 | 7517238CB1  | 7518685CB1 | 7520192CB1  | 7520428CB1  | 7522586CB1 | 7524017CB1 | 7525773CB1 | 7525861CB1                            | 2509577CB1 | 7505222CB1 | 7524408CB1 | 7526163CB1 | 7526158CB1 | 7519807CB1  | 7526180CB1 | 7526185CB1 |
| Polynucleotide    | SEQ ID NO:     |                           | 44          | 45                                                 | 46                       | 47          | 48          | 49         | 50         | 51         | 52         | 53          | 54          | 55         | 56         | 57          | 58         | 59          | 09          | 61         | 62         | 63         | 64                                    | 65         | 99         | 29         | 89         | 69         | 70          | 71         | 72         |
| Incyte            | Polypeptide ID |                           | 7517831CD1  | 7520272CD1                                         | 7521279CD1               | 7523965CD1  | 7524016CD1  | 7524680CD1 | 7524757CD1 |            | 7516525CD1 | 7516533CD1  | 7516613CD1  | 7068CD1    | 7517148CD1 | 7238CD1     |            | 192CD1      | 7520428CD1  | 7522586CD1 |            | 7525773CD1 | 7525861CD1                            |            | 7505222CD1 | Ī.         |            |            | 7519807CD1  | 7526180CD1 | 7526185CD1 |
| Polypeptide       | SEQ ID NO:     |                           | 1           | 2                                                  | 3                        | 4           | 5           | 9          | 7          | 8          | 9          | 10          | 11          | 12         | 13         | 14          | 15         | 16          | 17          | 18         | 19         | 20         | 21                                    |            | 23         |            |            |            |             |            |            |
| Incyte Project ID |                |                           | 7517831     | 7520272                                            | 7521279                  | 7523965     | 7524016     | 7524680    | 7524757    | 7516229    | 7516525    | 7516533     | 7516613     | 7517068    | 7517148    | 7517238     | 7518685    | 7520192     | 7520428     | 7522586    | 7524017    | 7525773    | 7525861                               | 2509577    | 7505222    | 7524408    | 7526163    | 7526158    | 7519807     | 7526180    | 7526185    |

| They is a region of the region | Dolemantido | 7.0.40         |               |                |                           | _   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------|---------------|----------------|---------------------------|-----|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rotypepude  | meyie          | roiynucieonde | Incyre         |                           | _   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SEQ ID NO:  | Polypeptide ID | SEQ ID NO:    | Polynucleotide |                           |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                |               | О              | Incyte Full Length Clones |     |
| 7526192                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30          | 7526192CD1     | . 22          | 7526192CB1     |                           |     |
| 7526193                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 31          | 7526193CD1     | 74            | 7526193CB1     |                           | _   |
| 7526196                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 32          | 7526196CD1     | 75            | 7526196CB1     |                           | _   |
| 7526198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 33          | 7526198CD1     | 92            | 7526198CB1     |                           | _   |
| 7526208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 34          | 7526208CD1     | <i>LL</i>     | 7526208CB1     |                           | т — |
| 7526212                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 35          | 7526212CD1     | 82            | 7526212CB1     |                           | т - |
| 7526213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 36          | 7526213CD1     | 61            | 7526213CB1     |                           | _   |
| 7526214                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 37          | 7526214CD1     | 08            | 7526214CB1     |                           | -   |
| 7526228                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 38          | 7526228CD1     | 81            | 7526228CB1     |                           | _   |
| 7526246                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 39          | 7526246CD1     | 82            | 7526246CB1     |                           |     |
| 7526258                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 40          | 7526258CD1     | 83            | 7526258CB1     |                           | _   |
| 7526311                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 41          | 7526311CD1     | 84            | 7526311CB1     |                           |     |
| 7526315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 42          | 7526315CD1     | 85            | 7526315CB1     |                           |     |
| 7526442                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 43          | 7526442CD1     | 86            | 7526442CB1     |                           |     |

| Polypeptide SEQ Incyte | Incyte         | GenBank ID NO:        | D NO: Probability | Annotation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------------------|----------------|-----------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ID NO:                 | Polypeptide ID | or PROTEOME<br>ID NO: | Score             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1                      | 7517831CD1     | g775208               | 4.3E-21           | [Homo sapiens] p56lck                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                        |                |                       |                   | Vogel, L. B. et al., p70 phosphorylation and binding to p56lck is an early event in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ·                      |                |                       |                   | interleukin-2-induced onset of cell cycle progression in T-lymphocytes, J. Biol. Chem. 270,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                        |                | 342146IT C'K          | 7 2E-20           | How coniane Drotain Piness Transferral I simple consists and in tracial transfer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                        |                | N2407127C             | V2-77-1           | LITOLICO Sapiens of Totelli Kniase, it ansiet ase of Lymphocyte-specific protein tyrosine Knase, for one kinase that is involved in Totell recentor signaling through Bas and MADK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                        |                |                       |                   | pathways, activator of CASP8 in radiation-induced apoptosis; gene defect correlates with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                        |                |                       |                   | immunodeficiency plus CD4 lymphopenia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                        |                |                       |                   | Su, S. B. et al., Inhibition of tyrosine kinase activation blocks the down-regulation of CXC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                        |                |                       |                   | chemokine receptor 4 by HIV-1 gp120 in CD4+ T cells, J Immunol 162, 7128-32 (1999).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                        |                | 780711 Lck            | 8.0E-17           | Mus musculus   Protein kinase: Transferase   Lymphocyte-specific protein tyrosine kinase.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                        |                |                       |                   | tyrosine kinase that is involved in T cell receptor signaling through Ras and MAPK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                        |                |                       |                   | pathways, regulates T cell development and apoptosis: human gene defect correlates with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                        |                | •                     |                   | immunodeficiency plus CD4 lymphopenia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                        |                |                       |                   | Legname, G. et al., Inducible expression of a p56Lck transgene reveals a central role for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                        |                |                       |                   | Lck in the differentiation of CD4 SP thymocytes, Immunity 12, 537-46 (2000).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2                      | 7520272CD1     | g439226               | 4.0E-152          | [Homo sapiens] fructose-1,6-bisphosphatase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                        |                |                       |                   | Kikawa, Y. et al., cDNA sequences encoding human fructose 1,6-bisphosphatase from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                        |                |                       |                   | monocytes, liver and kidney: Application of monocytes to molecular analysis of human                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                        |                |                       |                   | fructose 1,6-bisphosphatase deficiency, Cell. Mol. Biol. Res. 199, 687-693 (1994)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                        |                | 753731 FRP1           | 3 OF-153          | Home espiene Methors where the second and second to the second of the second se |
|                        |                |                       |                   | Anderson Court for the form of |
|                        |                |                       |                   | nydrolyzes iruciose-1,0-0ispnospnate to iruciose-0-pnospnate and inorganic pnospnate,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                        |                |                       |                   | regulatory step in gluconeogenesis; deficiency is associated with metabolic acidosis and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                        |                |                       |                   | fasting hypoglycemia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                        |                |                       |                   | el-Maghrabi, M. R. et al., Isolation of a human liver fructose-1,6-bisphosphatase cDNA and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                        |                |                       |                   | expression of the protein in Escherichia coli. Role of ASP-118 and ASP-121 in catalysis, J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                        |                |                       |                   | Biol Chem 268, 9466-72 (1993).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

PCT/US2004/009215

| Polypeptide SEQ Incyte | 2 Incyte       | GenBank ID NO: Probability | Probability | Annotation                                                                                    |
|------------------------|----------------|----------------------------|-------------|-----------------------------------------------------------------------------------------------|
| ID NO:                 | Polypeptide ID | or PROTEOME<br>ID NO:      | Score       |                                                                                               |
|                        |                | 586739 Pck1                | 2.6E-68     | [Mus musculus][Lyase;Other kinase][Cytoplasmic] Cytosolic phosphoenolpyrnyate                 |
|                        |                |                            |             | carboxykinase, catalyzes the formation of phosphoenolpyruvate by decarboxylation of           |
|                        |                |                            |             | oxaloacetate                                                                                  |
|                        |                |                            |             | She, P. et al., Phosphoenolpyruvate carboxykinase is necessary for the integration of hepatic |
|                        |                |                            |             | energy metabolism, Mol Cell Biol 20, 6508-17 (2000).                                          |
| 5                      | 7524016CD1     | g35503                     | 1.7E-94     | [Homo sapiens] 6-phosphofructo-2-kinase/fructose-2,6- bisphosphatase (AA 1-471)               |
|                        |                |                            |             | Lange, A. J. et al., Sequence of human liver 6-phosphofructo-2-kinase/fructose-2.6-           |
|                        |                |                            |             | bisphosphatase, Nucleic Acids Res. 18, 3652 (1990)                                            |
|                        |                | 336898 PFKFB1              | 1.2E-95     | [Homo sapiens][Protein phosphatase; Transferase; Other phosphatase; Other                     |
|                        |                |                            |             | kinase; Hydrolase] 6-phosphofructo-2-kinase, fructose-2,6-biphosphatase 1, liver and muscle   |
|                        |                |                            |             | form, enzyme involved in regulating glycolysis, catalyzes the synthesis and degradation of    |
|                        |                |                            |             | fructose-2,6-bisphosphate                                                                     |
|                        |                |                            |             | Lange, A. J. et al., Expression of human liver 6-phosphofructo-2-kinase/fructose-2,6-         |
|                        |                |                            |             | bisphosphatase in Escherichia coli. Role of N-2 proline in degradation of the protein. J Biol |
|                        |                |                            |             | Chem 268, 8078-84 (1993).                                                                     |
|                        |                | 430618 Pfkfb1              | 9.3E-89     | [Rattus norvegicus][Protein phosphatase; Transferase; Other phosphatase; Other                |
|                        |                |                            |             | kinase; Hydrolase] 6-phosphofructo-2-kinase, fructose-2,6-biphosphatase 1, liver and muscle   |
|                        |                |                            |             | form, enzyme involved in regulating glycolysis, catalyzes the synthesis and degradation of    |
|                        |                |                            |             | fructose-2,6-bisphosphate                                                                     |
|                        |                |                            |             | Kurland, I. J. et al., Rat liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase.        |
|                        |                |                            |             | Properties of phospho- and dephospho-forms and of two mutants in which Ser32 has been         |
|                        |                |                            |             | changed by site-directed mutagenesis, J Biol Chem 267, 4416-23 (1992).                        |
| 0                      | /524680CD1     | g35503                     | 1.3E-215    | [Homo sapiens] 6-phosphofructo-2-kinase/fructose-2,6- bisphosphatase (AA 1-471)               |
|                        |                |                            | · ·         | Lange, A. J. et al., Sequence of human liver 6-phosphofructo-2-kinase/fructose-2,6-           |
|                        |                |                            |             | bisphosphatase, Nucleic Acids Res. 18, 3652 (1990)                                            |
|                        |                | 336898 PFKFB1  9.1E-217    | •           | [Homo sapiens][Protein phosphatase; Transferase; Other phosphatase; Other                     |
|                        |                |                            |             | kinase; Hydrolase] 6-phosphofructo-2-kinase, fructose-2,6-biphosphatase 1, liver and muscle   |
|                        |                |                            |             | form, enzyme involved in regulating glycolysis, catalyzes the synthesis and degradation of    |
|                        |                |                            | ,           | fructose-2,6-bisphosphate                                                                     |

Table 2

| Polypeptide SEQ Incyte | Incyte         | GenBank ID NO:           | D NO: Probability | Annotation                                                                                                                                                                         |
|------------------------|----------------|--------------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D NO:                  | Polypeptide ID | or PROTEOME<br>ID NO:    | Score             |                                                                                                                                                                                    |
|                        |                |                          |                   | Lange, A. J. et al., Expression of human liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase in Escherichia coli. Role of N-2 proline in degradation of the protein, J Biol |
|                        |                |                          |                   | Chem 268, 8078-84 (1993).                                                                                                                                                          |
|                        |                | 430618 Pfkfb1            | 1.2E-207          | [Rattus norvegicus][Protein phosphatase; Transferase; Other phosphatase; Other                                                                                                     |
|                        |                | _                        |                   | kinase;Hydrolase] 6-phosphofructo-2-kinase, fructose-2,6-biphosphatase 1, liver and muscle                                                                                         |
|                        |                |                          |                   | form, enzyme involved in regulating glycolysis, catalyzes the synthesis and degradation of                                                                                         |
|                        |                |                          |                   | fructose-2,6-bisphosphate                                                                                                                                                          |
|                        |                |                          |                   | Kurland, I. J. et al., Rat liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase.                                                                                             |
|                        |                |                          |                   | Properties of phospho- and dephospho- forms and of two mutants in which Ser32 has been                                                                                             |
|                        |                |                          |                   | changed by site-directed mutagenesis, J Biol Chem 267, 4416-23 (1992).                                                                                                             |
| 7                      | 7524757CD1     | g35503                   | 3.7E-223          | [Homo sapiens] 6-phosphofructo-2-kinase/fructose-2,6- bisphosphatase (AA 1-471)                                                                                                    |
|                        |                |                          |                   | Lange, A. J. et al., Sequence of human liver 6-phosphofructo-2-kinase/fructose-2,6-                                                                                                |
|                        |                |                          |                   | bisphosphatase, Nucleic Acids Res. 18, 3652 (1990)                                                                                                                                 |
|                        |                | 336898 PFKFB1   2.7E-224 | 2.TE-224          | [Homo sapiens][Protein phosphatase; Transferase; Other phosphatase; Other                                                                                                          |
|                        |                |                          |                   | kinase;Hydrolase] 6-phosphofructo-2-kinase, fructose-2,6-biphosphatase 1, liver and muscle                                                                                         |
|                        |                |                          |                   | form, enzyme involved in regulating glycolysis, catalyzes the synthesis and degradation of                                                                                         |
|                        |                |                          |                   | fructose-2,6-bisphosphate                                                                                                                                                          |
|                        |                |                          |                   | Lange, A. J. et al., Expression of human liver 6-phosphofructo-2-kinase/fructose-2,6-                                                                                              |
|                        |                |                          |                   | bisphosphatase in Escherichia coli. Role of N-2 proline in degradation of the protein, J Biol                                                                                      |
|                        |                |                          |                   | Chem 268, 8078-84 (1993).                                                                                                                                                          |
|                        |                | 430618Pfkfb1             | 3.7E-216          | [Rattus norvegicus][Protein phosphatase; Transferase; Other phosphatase; Other                                                                                                     |
|                        |                |                          |                   | kinase;Hydrolase] 6-phosphofructo-2-kinase, fructose-2,6-biphosphatase 1, liver and muscle                                                                                         |
|                        |                |                          |                   | form, enzyme involved in regulating glycolysis, catalyzes the synthesis and degradation of                                                                                         |
|                        |                |                          |                   | fructose-2,6-bisphosphate                                                                                                                                                          |
|                        |                |                          |                   | Kurland, I. J. et al., Rat liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase.                                                                                             |
|                        |                |                          |                   | Properties of phospho- and dephospho- forms and of two mutants in which Ser32 has been                                                                                             |
|                        |                |                          |                   | changed by site-directed mutagenesis, J Biol Chem 267, 4416-23 (1992).                                                                                                             |
| <b>.</b>               | 7516229CD1     | g6760472                 | 3.0E-190          | [Homo sapiens] type II phosphatidylinositol-4-phosphate 5-kinase 53K isoform                                                                                                       |

| Polypeptide SEQ Incyte | Incyte         | GenBank ID NO:                      | D NO: Probability | Annotation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------------------|----------------|-------------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ID NO:                 | Polypeptide ID | or PROTEOME ID NO:                  | Score             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                        |                |                                     |                   | Boronenkov, I. V. et al., The sequence of phosphatidylinositol-4-phosphate 5-kinase defines a novel family of lipid kinases, J. Biol. Chem. 270, 2881-2884 (1995)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                        |                | 568490 PIP5K2A 2.1E-191             | 2.IE-191          | [Homo sapiens][Transferase;Other kinase] Phosphatidylinositol-4-phosphate 5-kinase type II, alpha, a member of a family of kinases responsible for the synthesis of PtdIns(4,5)P2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                        |                |                                     |                   | Boronenkov, I. V. et al., The sequence of phosphatidylinositol-4-phosphate 5-kinase defines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                        |                | 757680 Pip5k2a                      | 5.0E-188          | a novel ramily of lipid kinases, J Biol Chem 270, 2881-4 (1995).  [Rattus norvegicus] Phosphatidylinositol-4-phosphate 5-kinase tyme II alpha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                        |                |                                     |                   | Itoh, T. et al., Autophosphorylation of type I phosphatidylinositol phosphate kinase regulates its libid kinase activity. I Biol Chem 275, 19389-04. (2000)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 6                      | 7516525CD1     | g23499314                           | 6.7E-270          | Homo sapiens] (AF425232) CaMKK alpha protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                        |                | 716531 DKFZp7   4.6E-271<br>61M0423 | 4.6E-271          | [Homo sapiens] Protein with strong similarity to calcium-calmodulin-dependent protein kinase kinase 1 alpha (rat Camkk1), which phosphorylates and activates Ca(2+)-calmodulin (CaM)-dependent kinase I and IV but not CaM kinase II, contains a protein kinase domain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ·                      |                | 711580 Camkk1                       | 2.4E-254          | [Rattus norvegicus][Protein kinase;Transferase] Calcium-calmodulin-dependent protein kinase kinase 1 alpha, phosphorylates and activates Ca(2+)-calmodulin (CaM)-dependent kinase I and IV but not CaM kinase II, involved in Ca(2+)-calmodulin signaling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                        |                |                                     |                   | Okuno, S. et al., Regulation of Ca(2+)/Calmodulin-Dependent Protein Kinase Kinase alpha by cAMP-Dependent Protein Kinase: I. Biochemical Analysis, J Biochem (Tokyo) 130, 503-13. (2001).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 10                     | 7516533CD1     | g189508                             | 3.6E-240          | [Homo sapiens] p70 ribosomal S6 kinase alpha-I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                        |                |                                     |                   | Grove, J. R. et al., Cloning and expression of two human p70 S6 kinase polypeptides differing only at their amino termini. Mol. Cell. Biol. 11, 5541-5550 (1991)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                        |                | 337822 RPS6KB   2.5E-241            | 2.5E-241          | [Homo sapiens][Protein kinase;Transferase] Ribosomal protein S6 kinase, 70kD, a member of the ribosomal protein S6 kinase (RSK) family of protein kinases, insulin and mitogen activated, and plays roles in cell cycle progression and control of coll and plays roles in cell cycle progression and control of coll and plays roles in cell cycle progression and control of coll and plays roles in cell cycle progression and control of coll and plays roles in cell cycle progression and control of coll and plays roles in cell cycle progression and control of coll and plays roles in cell cycle progression and control of coll and plays roles in cell cycle progression and control of coll and plays roles in cell cycle progression and collection and plays roles in cell cycle progression and collection and plays roles in cell cycle progression and collection and plays roles in cell cycle progression and collection and plays roles in cell cycle progression and collection and plays roles in cell cycle progression and collection and plays roles in cell cycle progression and collection and c |
|                        |                |                                     |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| Dolymontide CEO Lacute | Tranto          | Garbant TO NO. Protectility | Prototilia. | Α                                                                                               |
|------------------------|-----------------|-----------------------------|-------------|-------------------------------------------------------------------------------------------------|
| Total pepulate of      | duryuc          | Delibalik ID INO.           | FIODADIM    | Aliforation                                                                                     |
| LD NO:                 | Polypeptide IIJ | or PROTEOME<br>ID NO:       | Score       |                                                                                                 |
|                        |                 |                             |             | Brenneisen, P. et al., Activation of p70 ribosomal protein S6 kinase is an essential step in    |
|                        | ·               |                             |             | the DNA damage-dependent signaling pathway responsible for the ultraviolet B-mediated           |
| ·                      |                 |                             |             | increase in interstitial collagenase (MMP-1) and stromelysin-1 (MMP-3) protein levels in        |
|                        |                 |                             |             | human dermal fibroblasts, J Biol Chem 275, 4336-44. (2000).                                     |
|                        |                 | 711952 Rps6kb1   5.3E-239   | 5.3E-239    | [Rattus norvegicus][Protein kinase; Transferase] Ribosomal protein S6 kinase, 70kD, a           |
|                        |                 |                             |             | member of the ribosomal protein S6 kinase (RSK) family of protein kinases, insulin and          |
|                        |                 |                             |             | mitogen activated, and plays roles in cell cycle progression and control of cell proliferation  |
|                        |                 |                             |             | Grove, J. R. et al., Cloning and expression of two human p70 S6 kinase polypeptides             |
|                        |                 |                             |             | differing only at their amino termini, Mol Cell Biol 11, 5541-50 (1991).                        |
| 11                     | 7516613CD1      | g1872546                    | 0.0         | [Mus musculus] NIK                                                                              |
|                        |                 |                             |             | Su, Y. C. et al., NIK is a new Ste20-related kinase that binds NCK and MEKK1 and                |
|                        |                 |                             |             | activates the SAPK/INK cascade via a conserved regulatory domain, EMBO J. 16, 1279-             |
|                        |                 | 582239 Map4k4               | 0.0         | [Mus musculus][Protein kinase;Transferase;Receptor (signalling)] Mitogen-activated              |
|                        |                 |                             |             | protein kinase kinase kinase kinase 4, a serine-threonine kinase, interacts with Nck, interacts |
|                        |                 |                             |             | with MEKK1 (Map3k1) and activates the c-Jun N-terminal kinase (Mapk8) signaling                 |
|                        |                 |                             |             | pathway; mutants fail to develop somites or a hindgut                                           |
|                        |                 |                             |             | Becker, E. et al., Nck-interacting Ste20 kinase couples Eph receptors to c-Jun N-terminal       |
|                        |                 |                             |             | kinase and integrin activation, Mol Cell Biol 20, 1537-45. (2000).                              |
|                        |                 | 340694 MAP4K4   0.0         | 0.0         | [Homo sapiens][Protein kinase; Transferase] Mitogen-activated protein kinase kinase kinase      |
|                        |                 |                             |             | kinase 4, a serine-threonine kinase, activates the c-Jun N-terminal kinase (MAPK8)              |
|                        |                 |                             |             | signaling pathway, does not activate the ERK or p38 (CSBP1) kinase pathways, may be             |
|                        |                 |                             |             | involved in TNF-alpha (TNF) signaling                                                           |
|                        |                 |                             |             | Yao, Z. et al., A novel human STE20-related protein kinase, HGK, that specifically              |
|                        |                 |                             |             | activates the c-Jun N-terminal kinase signaling pathway, J Biol Chem 274, 2118-25 (1999).       |
| 12                     | 7517068CD1      | g6110362                    | 0.0         | [Homo sapiens] Traf2 and NCK interacting kinase, splice variant 7                               |
|                        |                 | -                           |             | Fu, C. A. et al., TNIK, a novel member of the germinal center kinase family that activates      |
|                        |                 |                             |             | the c-Jun N-terminal kinase pathway and regulates the cytoskeleton, J. Biol. Chem. 274,         |
|                        |                 |                             |             | 30729-30737 (1999)                                                                              |

Table 2

| Polypeptide SEQ Incyte |            | GenBank ID NO: Probability | Probability | Annotation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------------------|------------|----------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ID NO:                 |            | or PROTEOME Scor           | Score       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                        |            | 340694 MAP4K4              | 0.0         | [Homo sapiens][Protein kinase;Transferase] Mitogen-activated protein kinase kinase kinase kinase kinase kinase kinase 4. a serine-threonine kinase.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                        |            |                            |             | signaling pathway, does not activate the ERK or p38 (CSBP1) kinase pathways, may be involved in TNF-alpha (TNF) signaling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                        |            |                            |             | Yao, Z. et al., A novel human STE20-related protein kinase, HGK, that specifically activates the c-Jun N-terminal kinase signaling pathway, J Biol Chem 274, 2118-25 (1999).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                        |            | 582239 Map4k4              | 0.0         | [Mus musculus][Protein kinase;Transferase;Receptor (signalling)] Mitogen-activated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                        |            |                            |             | protein kinase kinase kinase kinase 4, a serine-threonine kinase, interacts with Nck, interacts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                        |            |                            |             | with interest (wapes) and activates the c-jun in-ferminal kinase (Mapk8) signaling pathway; mutants fail to develop somites or a hindgut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                        |            |                            |             | Su, Y. C. et al., NIK is a new Ste20-related kinase that binds NCK and MEKK1 and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                        |            |                            |             | activates the SAPK/INK cascade via a conserved regulatory domain, Embo Journal 16,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                        |            |                            |             | 1279-90 (1997).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 13                     | 7517148CD1 | g312395                    | 0.0         | [Homo sapiens] beta-adrenergic kinase 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                        |            |                            |             | Parruti, G. et al., Molecular cloning, functional expression and mRNA analysis of human beta-adrenergic receptor kinase 2, Biochem. Biophys. Res. Commun. 190, 475-481 (1993)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                        |            | 341946 ADRBK               | 0.0         | [Homo sapiens][Protein kinase; Transferase][Cytoplasmic; Plasma membrane] G-protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                        |            | 2                          |             | coupled receptor kinase 3, member of a family of protein kinases that specifically                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                        |            |                            |             | phosphorylate activated G protein coupled receptors, resulting in receptor desensitization,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                        |            |                            |             | may represent a genetic marker for mood disorders                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                        |            |                            |             | Parruti, G. et al., Molecular cloning, functional expression and mRNA analysis of human heta-adreneroic recentor kinase 2. Binchem Binchys Res Commin. 100, 475, 81, (1003)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                        |            |                            |             | - Communication of the communi |

### Table (

| Polypeptide SEQ Incyte ID NO: | Incyte<br>Polypeptide ID | GenBank ID NO:<br>or PROTEOME | D NO: Probability OME Score | Annotation                                                                                 |
|-------------------------------|--------------------------|-------------------------------|-----------------------------|--------------------------------------------------------------------------------------------|
|                               |                          | ID NO:                        |                             |                                                                                            |
|                               | ·                        | 589791 Adrbk2                 | 0.0                         | [Rattus norvegicus] Protein kinase; Transferase] [Axon; Dense bodies] G-protein coupled    |
|                               |                          |                               |                             | activated Garotein counled recentors resulting in general decentaristics.                  |
|                               |                          |                               |                             | mentance of protein coupled receptors, resuming in receptor describilization, may regulate |
|                               |                          |                               |                             | nociception, sperm chemotaxis and olfaction                                                |
|                               |                          |                               |                             | Kovoor, A. et al., Agonist induced homologous desensitization of mu-opioid receptors       |
|                               |                          |                               | •                           | mediated by G protein-coupled receptor kinases is dependent on agonist efficacy. Mol       |
|                               |                          |                               |                             | Pharmacol 54, 704-11 (1998).                                                               |
| 14                            | 7517238CD1               | g15559349                     | 0.0                         | [Homo sapiens] Similar to likely ortholog of maternal embryonic leucine zipper kinase      |
|                               |                          | 570006 MELK                   | 0.0                         | [Homo sapiens][Protein kinase; Transferase] Protein containing two C-terminal kinase       |
|                               |                          |                               |                             | associated domain 1 and two protein kinase domains, has low similarity to microtubule-     |
|                               |                          |                               |                             | MAP-affinity regulating kinase (rat LOC60328), which is a serine-threonine kinase that     |
|                               |                          |                               |                             | influences microtubule stability                                                           |
|                               |                          |                               |                             | Seong, H. A. et al., Phosphorylation of a novel zinc-finger-like protein, ZPR9, by murine  |
|                               |                          |                               |                             | protein serine/threonine kinase 38 (MPK38), Biochem J 361, 597-604. (2002).                |
|                               |                          | 585291 Melk                   | 6.8E-270                    | [Mus musculus][Protein kinase;Transferase] Protein containing a protein kinase domain and  |
|                               |                          | •                             |                             | a C-terminal kinase associated domain 1, has low similarity to rat LOC60328, which is a    |
|                               |                          |                               |                             | serine-threonine kinase that participates in microtubule stability and the control of cell |
|                               |                          |                               |                             | polarity                                                                                   |
|                               |                          |                               |                             | Seong, H. A. et al., Phosphorylation of a novel zinc-finger-like protein, ZPR9, by murine  |
|                               |                          |                               |                             | protein serine/threonine kinase 38 (MPK38), Biochem J 361, 597-604. (2002).                |
| 15                            | 7518685CD1               | g4100632                      | 0.0                         | [Homo sapiens] lymphoid phosphatase LyP1                                                   |
|                               |                          |                               |                             | Cohen, S. et al., Cloning and characterization of a lymphoid-specific, inducible human     |
|                               |                          |                               |                             | protein tyrosine phosphatase, Lyp, Blood 93, 2013-2024 (1999)                              |
|                               |                          | 570850                        | 0.0                         | [Homo sapiens][Protein phosphatase; Hydrolase] Protein tyrosine phosphatase non-receptor   |
|                               |                          | PTPN22                        |                             | type 22, a protein tyrosine phosphatase that may be involved in T-cell development         |
|                               |                          |                               |                             |                                                                                            |
|                               |                          |                               |                             | Cohen, S. et al., Cloning and characterization of a lymphoid-specific, inducible human     |
|                               |                          |                               |                             | protein tyrosine phosphatase, Lyp, Blood 93, 2013-24 (1999).                               |

| Polypeptide SEO Incyte | Incyte         | GenBank ID NO:    | D NO: Probability | Annotation                                                                                                                                                                                                                                                                                |
|------------------------|----------------|-------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D NO:                  | Polypeptide ID | μi                | Score             |                                                                                                                                                                                                                                                                                           |
|                        |                | 582663 <br>Ptpn8  | 4.2E-270          | [Mus musculus][Protein phosphatase;Hydrolase] Protein tyrosine phosphatase non-receptor type 8, a protein tyrosine phosphatase that inhibits T-cell receptor mediated T-cell activation and is required for B-cell antigen receptor-mediated growth arrest and apoptosis                  |
|                        |                |                   |                   | Matthews, R. J. et al., Characterization of hematopoietic intracellular protein tyrosine phosphatases: description of a phosphatase containing an SH2 domain and another enriched in proline., glutamic acid., serine., and threonine. rich sequences, Mol Cell Biol 12, 2396-405 (1992). |
| 16                     | 7520192CD1     | g190748           | 4.7E-105          | [Homo sapiens] protein-tyrosine phophatase                                                                                                                                                                                                                                                |
|                        |                |                   |                   | Gu, M. X. et al., Identification, cloning, and expression of a cytosolic megakaryocyte protein-tyrosine-phosphatase with sequence homology to cytoskeletal protein 4.1, Proc. Natl. Acad. Sci. U.S.A. 88, 5867-5871 (1991)                                                                |
|                        |                | 337402 <br>PTPN4  | 3.3E-106          | [Homo sapiens][Protein phosphatase;Hydrolase][Cytoplasmic] Protein tyrosine phosphatase non-receptor type 4, a non-membrane spanning protein tyrosine phosphatase that can inhibit cell proliferation, may play a role in signal transduction                                             |
|                        |                |                   |                   | Gu, M. et al., The properties of the protein tyrosine phosphatase PTPMEG, J Biol Chem 271, 27751-9. (1996).                                                                                                                                                                               |
|                        |                | 628499 <br>Ptpn4  | 1.2E-102          | [Mus musculus][Protein phosphatase;Hydrolase] Protein tyrosine phosphatase non-receptor type 4, a protein tyrosine phosphatase that may play a role in spermatogenesis                                                                                                                    |
|                        |                |                   |                   | Hironaka, K. et al., The protein-tyrosine phosphatase PTPMEG interacts with glutamate receptor delta 2 and epsilon subunits, J Biol Chem 275, 16167-73 (2000).                                                                                                                            |
| 17                     | 7520428CD1     | g13537204         | 0.0               | [Homo sapiens] MAST205                                                                                                                                                                                                                                                                    |
|                        |                | 742582<br>MAST205 | 0.0               | [Homo sapiens][Protein kinase;Transferase][Cytoskeletal] Protein with strong similarity to microtubule associated testis specific serine/threonine protein kinase (mouse Mtssk), which                                                                                                    |
|                        |                |                   |                   | may act in spermatid maturation and microtubule organization, contains a protein kinase domain and a PDZ, DHR, or GLGF domain                                                                                                                                                             |

### Table (

| Polypeptide SEQ Incyte | Incyte         | GenBank ID NO: Probability | Probability | Annotation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------------------|----------------|----------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ID NO:                 | Polypeptide ID | or PROTEOME ID NO:         | Score       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                        |                |                            |             | Walden, P. D. et al., Increased activity associated with the MAST205 protein kinase complex during mammalian spermiogenesis, Biol Reprod 55, 1039-44 (1996).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                        |                | 582149 Mtssk               | 0.0         | [Mus musculus][Protein kinase;Transferase][Cytoplasmic;Cytoskeletal] Microtubule                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                        |                |                            |             | associated testis specific serine/threonine protein kinase, may be involved in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                        |                |                            |             | organization of manchette microtubules in spermatids, may have a role in spermatid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| i                      |                |                            |             | maturation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                        |                |                            |             | Walden, P. D. et al., Increased activity associated with the MAST205 protein kinase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                        |                |                            |             | complex during mammalian spermiogenesis, Biol Reprod 55, 1039-44 (1996).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 18                     | 7522586CD1     | g507162                    | 6.7E-54     | [Homo sapiens] PITSLRE alpha 2-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                        |                |                            |             | Xiang, J. et al., Molecular cloning and expression of alternatively spliced PITSLRE protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                        |                |                            |             | Annaec ISOLOHIII), J. DIOI. CIRCHI. 205, 15/100-15/74 (1574)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                        |                | 618480                     | 1.3E-53     | [Homo sapiens][Protein kinase;Transferase][Nuclear;Cytoplasmic] Cell division cycle 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                        |                | CDC2L1                     |             | like 1, member of the p34 (CDC2) superfamily that contains a PSTAIRE box, a protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| -                      |                |                            |             | kinase involved in apoptosis and cell cycle control; mutation of the corresponding gene is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                        |                |                            |             | associated with non-Hodgkin lymphoma and melanoma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                        |                |                            |             | The second secon |
|                        |                |                            |             | Lahtt, J. M. et al., PITSLKE protein kinase activity is associated with apoptosis, Mol Cell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                        |                |                            |             | Biol 15, 1-11 (1995).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                        |                | 281017                     | 2.9E-53     | [Mus musculus][Protein kinase;Transferase] Cell division cycle 2 like 2, a protein kinase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <del></del>            |                | Cdc212                     |             | that binds Src-homology 2 (SH2) domains, appears to be involved in cell proliferation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                        |                |                            |             | during embryonic development, member of the p34(cdc2) superfamily                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                        |                |                            |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                        |                |                            |             | Malek, S. N. et al., A cyclin-dependent kinase homologue, p130PITSLRE is a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                        |                |                            |             | phosphotyrosine- independent SH2 ligand, J Biol Chem 269, 33009-20 (1994).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 19                     | 7524017CD1     | g1405935                   | 4.4E-275    | [Mus musculus] serine/threonine kinase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                        | -              |                            |             | Heyer, B. S. et al., New member of the Snf1/AMPK kinase family, Melk, is expressed in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                        |                |                            |             | mouse egg and preimplantation embryo, Mol. Reprod. Dev. 47, 148-156 (1997)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| Polypeptide SEQ Incyte | Incyte         | GenBank ID NO: Probability | Probability | Annotation                                                                                    |
|------------------------|----------------|----------------------------|-------------|-----------------------------------------------------------------------------------------------|
| B NO:                  | Polypeptide ID | or PROTEOME<br>ID NO:      | Score       |                                                                                               |
|                        |                | 570006                     | 0.0         | [Homo sapiens][Protein kinase; Transferase] Protein containing two C-terminal kinase          |
|                        |                | MELK                       |             | associated domain 1 and two protein kinase domains, has low similarity to microtubule-        |
|                        |                |                            |             | MAP-affinity regulating kinase (rat LOC60328), which is a serine-threonine kinase that        |
|                        |                |                            |             | influences microtubule stability                                                              |
|                        |                | ;                          |             | Seong, H. A. et al., Phosphorylation of a novel zinc-finger-like protein, ZPR9, by murine     |
|                        |                |                            |             | protein serine/threonine kinase 38 (MPK38), Biochem J 361, 597-604. (2002).                   |
|                        |                | 585291 Melk                | 3.0E-276    | [Mus musculus][Protein kinase;Transferase] Protein containing a protein kinase domain and     |
|                        |                |                            |             | a C-terminal kinase associated domain 1, has low similarity to rat LOC60328, which is a       |
|                        |                |                            |             | serine-threonine kinase that participates in microtubule stability and the control of cell    |
|                        |                |                            |             | polarity                                                                                      |
|                        |                |                            |             | Gil, M. et al., Cloning and expression of a cDNA encoding a novel protein serine/threonine    |
|                        |                |                            |             | kinase predominantly expressed in hematopoietic cells, Gene 195, 295-301 (1997).              |
| 20                     | 7525773CD1     | g187561                    | 1.1E-151    | [Homo sapiens] mevalonate kinase                                                              |
|                        |                |                            |             | Schafer, B. L. et al., Molecular cloning of human mevalonate kinase and identification of a   |
|                        |                |                            |             | missense mutation in the genetic disease mevalonic aciduria, J. Biol. Chem. 267, 13229-       |
|                        |                |                            |             | 13238 (1992)                                                                                  |
|                        |                | 339520MVK                  | 7.9E-153    | [Homo sapiens][Protein kinase;Transferase;Other kinase] Mevalonate kinase (mevalonic          |
|                        | <b>-</b> ,,    |                            |             | aciduria), a peroxisomal enzyme involved in isoprenoid and cholesterol biosynthesis;          |
|                        |                |                            |             | mutations in the corresponding gene cause mevalonic aciduria, hyperimmunoglobulinemia         |
|                        |                |                            |             | D and periodic fever syndrome                                                                 |
|                        |                |                            |             | Cho, Y. K. et al., Investigation of invariant serine/threonine residues in mevalonate kinase. |
|                        |                |                            |             | Tests of the functional significance of a proposed substrate binding motif and a site         |
|                        |                |                            |             | implicated in human inherited disease, J Biol Chem 276, 12573-8. (2001).                      |
|                        |                | 704952 Mvk                 | 1.8E-129    | [Rattus norvegicus][Transferase;Other kinase] Mevalonate kinase, a peroxisomal enzyme         |
|                        |                |                            |             | involved in isoprenoid and cholesterol biosynthesis; deficiency of human MVK causes           |
|                        |                |                            |             | mevalonic aciduria, hyperimmunoglobulinemia D and periodic fever syndrome                     |
|                        |                |                            |             | Potter, D. et al., Identification and functional characterization of an active-site lysine in |
|                        |                |                            |             | mevalonate kinase, J Biol Chem 272, 5741-6. (1997).                                           |

| Polypeptide SEQ Incyte | \[Incyte       | GenBank ID NO             | ID NO: Probability | Annotation                                                                                  |
|------------------------|----------------|---------------------------|--------------------|---------------------------------------------------------------------------------------------|
| io<br>H                | Polypeptide ID | or PROTEOME               | Score              |                                                                                             |
| 21                     | 7525861CD1     | g22328117                 | 8.6E-77            | [Homo sapiens] similar to protein-tyrosine-phosphatase homolog DKFZp566K0524.1 -            |
|                        |                | 102,200                   |                    | numan (Iragment)                                                                            |
|                        |                | 425672                    | 1.1E-83            | [Homo sapiens][Protein phosphatase; Hydrolase][Cytoplasmic] Protein with high similarity    |
|                        |                | UKFZP366KUSZ              |                    | to protein tyrosine phosphatase non-receptor type 20 (mouse Ptpn20), which is a testis-     |
|                        |                | 4_                        |                    | specific protein tyrosine phosphatase that may play a role in spermatogenesis or meiosis.   |
|                        |                |                           |                    | member of the protein-tyrosine phosphatase family                                           |
|                        |                | 582661                    | 2.5E-47            | Mus musculus][Protein phosphatase;Hydrolase][Cytoplasmic] Protein tyrosine phosphatase      |
|                        |                | Ptpn20                    |                    | non-receptor type 20, a testis-specific protein tyrosine phosphatase that may play a mle in |
|                        |                |                           |                    | spermatogenesis or meiosis                                                                  |
|                        |                | <u> </u>                  |                    | Ohsugi, M. et al., Molecular cloning and characterization of a novel cytoplasmic protein.   |
|                        |                |                           | •                  | tyrosine phosphatase that is specifically expressed in spermatocytes 1 Biol Chem 272        |
|                        |                |                           |                    | 33092-9 (1997).                                                                             |
| 22                     | 2509577CD1     | g10312094                 | 6.4E-40            | NIMA-related serine/threonine kinase [Mus musculus]                                         |
|                        |                |                           |                    | Kandli, M. et al. Isolation and characterization of two evolutionarily concerned            |
|                        |                |                           |                    | kinases (Nek6 and nek7) related to the fungal mitotic regulator NTMA Gamming 69, 197        |
|                        |                |                           |                    | 196 (2000)                                                                                  |
|                        | 2509577CD1     | 714317 D1044.3   2.2E-130 | 2.2E-130           | [Caenorhabditis elegans] Protein containing 16 EB module domains and a protein kinase       |
|                        |                |                           |                    | domain, has a region of low similarity to NIMA (never in mitosis gene a) -related expressed |
|                        |                |                           |                    | kinase 6 (human NEK6), which activates the S6 ribosomal protein kinase p7086K               |
|                        |                |                           |                    | (RPS6KB1)                                                                                   |
|                        |                |                           |                    | Chervitz, S. A. et al. Comparison of the complete protein sets of worm and yeast:           |
|                        |                |                           |                    | Orthology and divergence. Science 282, 2022-2028 (1998)                                     |
|                        | 750957/CDI     | 789751 NEK6               | 1.3E-40            | [Homo sapiens][Protein kinase;Transferase] NIMA (never in mitosis gene a) -related          |
| -                      |                |                           |                    | expressed kinase 6, a protein kinase that phosphorylates and activates the S6 ribosomal     |
|                        |                |                           |                    | protein kinase p70S6K (RPS6KB1)                                                             |
|                        |                |                           |                    | Belham, C. et al. Identification of the NIMA family kinases NEK6/7 as regulators of the     |
|                        | , 10000000     |                           |                    | p70 ribosomal S6 kinase. Curr. Biol. 11, 1155-1167 (2001)                                   |
| 7                      | /20222CD1      | g256855                   | 5.4E-112           | serine/threonine- and tyrosine-specific protein kinase; Nek1 [Mus sp.]                      |

| Polyneptide SEO Incyte | Incyte         | GenBank ID NO: Probability | Probability | Annotation                                                                                                                                                                     |
|------------------------|----------------|----------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D NO:                  | Polypeptide ID | or PROTEOME<br>ID NO:      | Score       |                                                                                                                                                                                |
|                        |                |                            |             | Letwin, K. et al. A mammalian dual specificity protein kinase, Nekl, is related to the NTMA cell cycle regulator and highly expressed in meiotic germ cells. EMBO J. 11, 3521- |
|                        |                |                            |             | 3531 (1992)                                                                                                                                                                    |
|                        | 7505222CD1     | 750718 NEK1                | 2.3E-110    | [Homo sapiens] Protein containing a protein kinase domain, has weak similarity to serine                                                                                       |
|                        |                |                            |             | threonine kinase 2 (mouse Stk2), which undergoes cleavage by caspase 3 (mouse Casp3)                                                                                           |
|                        |                |                            |             | and the released N-terminal kinase domain and C-terminal domain promote apoptosis                                                                                              |
|                        |                |                            |             | Nagase, T. et al. Prediction of the coding sequences of unidentified human genes. XXI.                                                                                         |
|                        |                |                            |             | The complete sequences of 60 new cDNA clones from brain which code for large proteins.  DNA Bec. 8, 170-187 (2001)                                                             |
|                        | 7505222CD1     | 430066 Nek3                | 2.0E-92     | Mus musculus][Protein kinase; Transferase][Cytoplasmic] NIMA-related kinase 3, a                                                                                               |
|                        |                |                            | <u> </u>    | protein kinase that is involved in cell cycle control                                                                                                                          |
|                        |                |                            |             | Chen, A. et al. NIMA-related kinases: isolation and characterization of murine nek3 and                                                                                        |
|                        |                |                            |             | nek4 cDNAs, and chromosomal localization of nek1, nek2 and nek3. Gene 234, 127-137                                                                                             |
|                        |                |                            |             |                                                                                                                                                                                |
| 24                     | 7524408CD1     | g4583675                   | 3.7E-264    | [Homo sapiens] apyrase                                                                                                                                                         |
|                        |                |                            |             | Biederbick, A. et al. A human intracellular apyrase-like protein, LALP70, localizes to                                                                                         |
|                        |                |                            |             | lysosomal/autophagic vacuoles. J. Cell. Sci. 112 (Pt 15), 2473-2484 (1999)                                                                                                     |
|                        | 7524408CD1     | 340820 LYSAL1   2.7E-265   | 2.7E-265    | [Homo sapiens][Other phosphatase;Hydrolase][Lysosome/vacuole;Cytoplasmic] Lysosomal                                                                                            |
|                        |                | _                          |             | apyrase-like protein (Golgi apyrase), a member of the apyrase or GDA1/CD39 family that is                                                                                      |
|                        |                |                            |             | a lysosomal membrane protein with four apyrase domains, alternative splice form is                                                                                             |
|                        |                |                            |             | identical to uridine diphosphatase                                                                                                                                             |
|                        |                |                            |             | Biederbick, A. et al. First apyrase splice variants have different enzymatic properties. J.                                                                                    |
|                        |                |                            |             | Biol. Chem. 275, 19018-19024 (2000)                                                                                                                                            |
|                        | 7524408CD1     | 753913 Lysal2              | 2.8E-160    | [Mus musculus] Protein with high similarity to lysosomal apyrase-like protein (Golgi                                                                                           |
|                        |                |                            |             | apyrase, human LYSAL1), which is a lysosomal membrane protein with four apyrase                                                                                                |
|                        |                |                            |             | domains, member of the GDA1 or CD39 family of nucleoside phosphatases                                                                                                          |
|                        |                |                            |             | Shi, J. D. et al. Molecular cloning and characterization of a novel mammalian endo-apyrase                                                                                     |
|                        |                |                            |             | (LALP1). J. Biol. Chem. 276, 17474-17478 (2001)                                                                                                                                |
| 25                     | 7526163CD1     | g13537204                  | 0.0         | MAST205 [Homo sapiens]                                                                                                                                                         |
|                        |                |                            |             |                                                                                                                                                                                |

| Polypeptide SEQ Incyte | Incyte         | GenBank ID NO: Probability | Probability | Annotation                                                                                                                                                                                |
|------------------------|----------------|----------------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ID NO:                 | Polypeptide ID | or PROTEOME ID NO:         | Score       |                                                                                                                                                                                           |
|                        | 7526163CD1     | KIAA05                     | 0.0         | [Homo sapiens][Protein kinase; Transferase] Protein with high similarity to murine Mtssk, which is a protein kinase that interacts with micrombules and facilitates their organization in |
|                        |                | 5                          |             | spermatids, contains a eukaryotic protein kinase domain and a PDZ domain                                                                                                                  |
|                        |                |                            |             | Nagase, T. Prediction of the coding sequences of unidentified human genes. IX. The                                                                                                        |
| -                      |                |                            |             | complete sequences of 100 new cDNA clones from brain which can code for large proteins                                                                                                    |
|                        |                |                            |             | in vitro . DNA Res. 5, 31-39 (1998)                                                                                                                                                       |
|                        | 7526163CD1     | 742582 MAST20 0.0          | 0.0         | [Homo sapiens][Protein kinase;Transferase][Cytoskeletal] Protein with strong similarity to                                                                                                |
|                        |                | 5                          |             | microtubule associated testis specific serine/threonine protein kinase (mouse Mtssk), which                                                                                               |
|                        |                |                            | ,           | may act in spermatid maturation and microtubule organization, contains a protein kinase                                                                                                   |
|                        |                |                            |             | domain and a PDZ, DHR, or GLGF domain                                                                                                                                                     |
|                        |                |                            |             | Walden, P. D. et al. Increased activity associated with the MAST205 protein kinase                                                                                                        |
|                        |                |                            |             | complex during mammalian spermiogenesis. Biol. Reprod. 55, 1039-1044 (1996)                                                                                                               |
| 26                     | 7526158CD1     | g406058                    | 0.0         | protein kinase [Mus musculus]                                                                                                                                                             |
|                        |                | -                          |             | Walden, P. D. et al. A novel 205-kilodalton testis-specific serine/threonine protein kinase                                                                                               |
|                        |                |                            |             | associated with microtubules of the spermatid manchette. Mol. Cell. Biol. 13, 7625-7635                                                                                                   |
|                        |                | -                          |             | (1993)                                                                                                                                                                                    |
|                        | 7526158CD1     | 423529 KIAA05 0.0          | 0.0         | [Homo sapiens][Protein kinase; Transferase] Protein with high similarity to murine Mtssk,                                                                                                 |
|                        |                | [61                        |             | which is a protein kinase that interacts with microtubules and facilitates their organization in                                                                                          |
|                        |                |                            |             | spermatids, contains a eukaryotic protein kinase domain and a PDZ domain                                                                                                                  |
|                        |                |                            |             | Nagase, T. DNA Res. 5, 31-39 (1998) supra                                                                                                                                                 |
|                        | 7526158CD1     | 582149 Mtssk               | 0.0E+00     | [Mus musculus][Protein kinase;Transferase][Cytoplasmic;Cytoskeletal] Microtubule                                                                                                          |
|                        |                |                            |             | associated testis specific serine/threonine protein kinase, may be involved in the                                                                                                        |
|                        |                |                            |             | organization of manchette microtubules in spermatids, may have a role in spermatid                                                                                                        |
|                        |                |                            |             | maturation                                                                                                                                                                                |
|                        |                |                            |             | Lumeng, C. et al. Interactions between beta 2-syntrophin and a family of microtubule-                                                                                                     |
|                        |                |                            |             | associated serine/threonine kinases. Nat. Neurosci. 2, 611-617 (1999)                                                                                                                     |
| 27                     | 7519807CD1     | g18148911                  | 5.7E-35     | [Homo sapiens] SKRP1                                                                                                                                                                      |
|                        |                |                            |             |                                                                                                                                                                                           |

| Polypeptide SEQ Incyte ID NO: | Incyte<br>Polypeptide ID | GenBank ID NO: Probability or PROTEOME Score | Probability<br>Score | Annotation                                                                                                                                                                                                                                                                                          |
|-------------------------------|--------------------------|----------------------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                               |                          |                                              |                      | Zama, T. et al., A novel dual specificity phosphatase SKRP1 interacts with the MAPK kinase MKK7 and inactivates the JNK MAPK pathway. Implication for the precise regulation of the particular MAPK mathway. I Biol. Chem. 277, 22000-22018, 2000                                                   |
|                               |                          |                                              |                      | Zama, T. et al., Scaffold role of a mitogen-activated protein kinase phosphatase, SKRP1, for the JNK signaling pathway, J. Biol. Chem. 277, 23919-23926 (2002)                                                                                                                                      |
|                               |                          | 773093 <br>SKRP1                             | 3.4E-36              | [Homo sapiens] Protein containing two dual specificity phosphatase catalytic domains, has moderate similarity to dual specificity phosphatase 3 (vaccinia H1 related phosphatase                                                                                                                    |
|                               |                          |                                              |                      | human DUSP3), which dephosphorylates phosphotyrosine and phosphoserine, and inactivates MAPK                                                                                                                                                                                                        |
| 28                            | 7526180CD1               | g8250239                                     | 1.4E-241             | protein phosphatase 4 regulatory subunit 2 [Homo sapiens]                                                                                                                                                                                                                                           |
|                               |                          |                                              |                      | Hastie, C. J. et al., A novel 50 kDa protein forms complexes with protein phosphatase 4 and is located at centrosomal microtubule organizing centres, Biochem. J. 347 Pt 3, 845-855 (2000)                                                                                                          |
|                               | 7526180CD1               | 606258 PPP4R2                                | 7.8E-243             | [Homo sapiens][Regulatory subunit][Cytoplasmic;Centrosome/spindle pole body] Protein phosphatase 4 regulatory subunit 2, interacts with protein phosphatase 4 catalytic subunit (PPP4C), may target PPP4C to the centrosome and regulate its activity at centrosomal microtubule organizing centers |
|                               |                          |                                              |                      | Hastie, C. J. et al. (supra)                                                                                                                                                                                                                                                                        |
| 29                            | 7526185CD1               | g2582413                                     | 8.0E-74              | STE20-like kinase 3 [Homo sapiens]                                                                                                                                                                                                                                                                  |
|                               |                          |                                              |                      | Schinkmann, K. A. et al., Cloning and characterization of a novel mammalian STE20-like kinase (mst-3), J. Biol. Chem. 272, 286995-286703 (1997)                                                                                                                                                     |
|                               | 7526185CD1               | 336486 STK24                                 | 4.4E-75              | [Homo sapiens][Protein kinase;Transferase] Serine-threonine kinase 24 (Ste20 yeast homolog) member of the SPS1 subgroup of the STE20.Like protein family a sering                                                                                                                                   |
|                               |                          |                                              |                      | threonine kinase that prefers manganese as a cofactor and uses either GTP or ATP as a                                                                                                                                                                                                               |
|                               |                          |                                              |                      | Thou T H at al I Mantification of a human havin anadific inchange of manualian company                                                                                                                                                                                                              |
|                               |                          |                                              |                      | like kinase 3 that is regulated by cAMP-dependent protein kinase J Biol Chem 275. 2513-                                                                                                                                                                                                             |
|                               |                          |                                              | ,                    | 9 (2000).                                                                                                                                                                                                                                                                                           |

|                        |                |                             |             | -                                                                                           |
|------------------------|----------------|-----------------------------|-------------|---------------------------------------------------------------------------------------------|
| Polypeptide SEQ Incyte | \ Incyte       | GenBank ID NO: Probability  | Probability | Annotation                                                                                  |
| ED NO:                 | Polypeptide ID | or PROTEOME<br>ID NO:       | Score       |                                                                                             |
|                        | 7526185CD1     | 743574 MST4                 | 4.0E-65     | [Homo sapiens][Protein kinase;Transferase] Mst3 and SOK1-related kinase. a protein          |
|                        |                |                             |             | kinase, induces apoptosis, involved in cell growth, appears to activate MAPK but not JNK    |
| ·                      |                |                             | ,           | nor p38 kinase pathways, alternative form MST4a may regulate MST4; gene maps to a           |
|                        |                |                             |             | region associated with mental retardation                                                   |
|                        |                |                             |             | Lin, J. L. et al., MST4, a new Ste20-related kinase that mediates cell growth and           |
|                        |                |                             |             | transformation via modulating ERK pathway. Oncogene 20 6559-69 (2001)                       |
| 30                     | 7526192CD1     | g2199529                    | 1.5E-134    | casein kinase I gamma 2 (Homo saniens)                                                      |
|                        |                |                             |             | Kitabayashi, A. N. et al., Cloning and chromosomal manning of human casein kinase I         |
|                        |                |                             |             | gamma 2 (CSNK1G2), Genomics 46, 133-137 (1997)                                              |
|                        | 7526192CD1     | 344104 CSNK1G 8.1E-136      | 8.1E-136    | [Homo sapiens][Protein kinase; Transferase] Casein kinase 1 gamma 2, a mutative             |
|                        |                | 2                           |             | serine/threonine protein kinase, may play a role in signal transduction                     |
|                        |                |                             |             | Kitabayashi, A. N. et al., Cloning and chromosomal manning of human casesin Vinnes I        |
|                        |                |                             |             | gamma 2 (CSNK1G2),, Genomics 46, 133-7 (1997).                                              |
|                        | 7526192CD1     | 664931   Csnk1g2   2.9E-129 | 2.9E-129    | [Rattus norvegicus][Protein kinase; Transferase] Casein kinase 1 gamma 2. serine/threonine  |
|                        |                |                             |             | protein kinase, may play a role in receptor tyrosine kinase-mediated signal transduction    |
|                        |                |                             |             | Voisin, L. et al., Angiotensin II stimulates serine phosphorylation of the adaptor protein  |
|                        |                |                             |             | Nck: physical association with the serine/threonine kinases Pak1 and casein kinase I        |
| 2.4                    |                |                             |             | Biochem J 341, 217-23 (1999).                                                               |
| 31                     | /526193CD1     | g15215576                   | 1.1E-166    | BMP-2 inducible kinase [Mus musculus]                                                       |
|                        |                |                             |             | Kearns, A. E. et al., Cloning and characterization of a novel protein kinase that impairs   |
|                        |                |                             |             | osteoblast differentiation in vitro, J. Biol. Chem. 276, 42213-42218 (2001)                 |
|                        | 7526193CD1     | 770160 Bike                 | 6.1E-168    | [Mus musculus] Protein containing a protein kinase domain, has low similarity to C. elegans |
|                        |                |                             |             | SEL-5, which is a serine-threonine protein kinase that likely regulates LIN-12 and GI P-1   |
|                        |                |                             |             | signaling                                                                                   |
|                        |                |                             |             | Kearns, A. E. et al. (supra)                                                                |
|                        | /326193CD1     | 24458 sel-5                 | 1.2E-60     | [Caenorhabditis elegans][Protein kinase][Cytoplasmic] Serine/threonine protein kinase       |
|                        |                |                             |             | which likely regulates LIN-12 and GLP-1 signaling; has similarity to S. cerevisiae Ark1n    |
|                        |                |                             |             | and Prk1p protein kinases which are involved in regulation of the cytoskeleton              |

| Polypeptide SEO Incyte | Incyte         | GenBank ID NO:        | D NO: Probability | Annotation                                                                                                                                                                 |
|------------------------|----------------|-----------------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ED NO:                 | Polypeptide ID | or PROTEOME<br>ID NO: | Score             |                                                                                                                                                                            |
|                        |                |                       |                   | Fares, H. et al., SEL-5, A Serine/Threonine Kinase That Facilitates lin-12 Activity in Caenorhabditis elegans., Genetics 153, 1641-1654 (1999).                            |
| 32                     | 7526196CD1     | g2506080              | 4.5E-40           | HsGAK [Homo sapiens]                                                                                                                                                       |
|                        |                |                       |                   | Kimura, S. H. et al., Structure, expression, and chromosomal localization of human GAK,                                                                                    |
| :                      |                |                       |                   | Genomics 44, 179-187 (1997)                                                                                                                                                |
|                        | 7526196CD1     | 342050 GAK            | 2.5E-41           | [Homo sapiens][Protein kinase;Transferase] Cyclin G-associated kinase, a putative serine/threonine protein kinase that shares homology with tensin and auxilin, may play a |
|                        |                |                       |                   | role in cell cycle regulation                                                                                                                                              |
|                        |                |                       |                   | Kimura, S. H. et al. (supra)                                                                                                                                               |
|                        | 7526196CD1     | 704892 Gak            | 1.1E-40           | [Rattus norvegicus][Protein kinase; Transferase] Cyclin G-associated kinase, a                                                                                             |
|                        |                |                       |                   | serine/threonine protein kinase that shares homology with tensin and auxilin, interacts with                                                                               |
|                        |                |                       |                   | cyclin G (Ccng1)- Cdk5 complex, involved in the dissociation of clathrin-coated vesicles in                                                                                |
|                        |                |                       |                   | non-neuronal cells                                                                                                                                                         |
|                        |                |                       |                   | Greener, T. et al., Role of cyclin G-associated kinase in uncoating clathrin-coated vesicles                                                                               |
|                        |                |                       |                   | from non-neuronal cells., J Biol Chem 275, 1365-70. (2000).                                                                                                                |
| 33                     | 7526198CD1     | g2506080              | 0.0               | HsGAK [Homo sapiens]                                                                                                                                                       |
|                        |                |                       |                   | Kimura, S. H. et al. (supra)                                                                                                                                               |
|                        | 7526198CD1     | 342050 GAK            | 0.0               | [Homo sapiens][Protein kinase;Transferase] Cyclin G-associated kinase, a putative serine/threonine protein kinase that shares homology with tensin and auxilin, may play a |
|                        |                |                       |                   | role in cell cycle regulation                                                                                                                                              |
|                        |                |                       |                   | Kimura, S. H. et al. (supra)                                                                                                                                               |
|                        | 7526198CD1     | 704892 Gak            | 0.0               | [Rattus norvegicus][Protein kinase; Transferase] Cyclin G-associated kinase, a                                                                                             |
|                        |                |                       |                   | serine/threonine protein kinase that shares homology with tensin and auxilin, interacts with                                                                               |
|                        |                |                       |                   | cyclin G (Ceng1)- Cdk5 complex, involved in the dissociation of clathrin-coated vesicles in                                                                                |
|                        |                |                       |                   | non-neuronal cells                                                                                                                                                         |
|                        |                |                       |                   | Greener, T. et al. (supra)                                                                                                                                                 |
| 34                     | 7526208CD1     | g4426595              | 9.0E-255          | multifunctional calcium/calmodulin-dependent protein kinase II delta2 isoform [Homo                                                                                        |
|                        |                |                       |                   | sapiensj                                                                                                                                                                   |

| Polypeptide SEQ Incyte | Incyte         | GenBank ID NO:             | ID NO: Probability | Annotation                                                                                                                                                                                                 |
|------------------------|----------------|----------------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ID NO:                 | Polypeptide ID | or PROTEOME ID NO:         | Score              |                                                                                                                                                                                                            |
|                        |                |                            |                    | Hoch, B. et al., Identification and expression of delta-isoforms of the multifunctional Ca2+/calmodulin-dependent protein kinase in failing and nonfailing human myocardium, Circ. Res. 84, 713-721 (1999) |
|                        | 7526208CD1     | 742886 CAMK2 4.9E-256<br>D | 4.9E-256           | [Homo sapiens][Protein kinase;Transferase][Nuclear;Cytoplasmic] Calcium/calmodulin-                                                                                                                        |
|                        |                | 1                          |                    | in Ca2+ regulated processes; alternative form delta 3 is specifically upregulated in the myocardium of patients with heart failure                                                                         |
|                        |                |                            |                    | Hoch, B. et al. (supra)                                                                                                                                                                                    |
|                        | 7526208CD1     | 772372 Camk2d              | 3.1E-243           | [Mus musculus] Protein with strong similarity to calcium-calmodulin-dependent protein                                                                                                                      |
|                        |                |                            |                    | kinase II delta (rat Camk2d), which is involved in Ca2+ regulated processes, contains two protein kinase domains                                                                                           |
|                        |                |                            |                    | Hoch, B. et al., delta-Ca(2+)/calmodulin-dependent protein kinase Π expression pattern in                                                                                                                  |
|                        |                |                            |                    | adult mouse heart and cardiogenic differentiation of embryonic stem cells, J Cell Biochem                                                                                                                  |
|                        |                |                            |                    | 79, 293-300 (2000).                                                                                                                                                                                        |
| 35                     | 7526212CD1     | g1661132                   | 5.3E-169           | calcium/calmodulin-dependent protein kinase II delta 2-subunit [Sus scrofa]                                                                                                                                |
|                        |                |                            |                    | Singer, H. A. et al., Novel Ca2+/calmodulin-dependent protein kinase II gamma-subunit                                                                                                                      |
|                        |                |                            |                    | variants expressed in vascular smooth muscle, brain, and cardiomyocytes, J. Biol. Chem. 272, 9393-9400 (1997)                                                                                              |
|                        | 7526212CD1     | 772372 Camk2d 2.9E-170     | 2.9E-170           | [Mus musculus] Protein with strong similarity to calcium-calmodulin-dependent protein                                                                                                                      |
|                        |                |                            |                    | kinase II delta (rat Camk2d), which is involved in Ca2+ regulated processes, contains two                                                                                                                  |
|                        |                |                            |                    | protein Kinase domains                                                                                                                                                                                     |
|                        | . 400,00,00    |                            |                    | Hoch, B. et al., J Cell Biochem 79, 293-300 (2000). (supra)                                                                                                                                                |
|                        | 7526212CD1     | 742886 CAMK2   1.6E-169    | 1.6E-169           | [Homo sapiens][Protein kinase; Transferase][Nuclear; Cytoplasmic] Calcium/calmodulin-                                                                                                                      |
|                        |                | <b>.</b>                   |                    | dependent protein kinase in detra, member of the multitunctional CAMKII family involved                                                                                                                    |
|                        |                |                            |                    | III Caz+ regulated processes, alternative form delta 3 is specifically upregulated in the                                                                                                                  |
|                        |                |                            |                    | myocardium of patients with heart failure                                                                                                                                                                  |
|                        |                |                            |                    | Hoch, B. et al., Circ Res 84, 713-21. (1999). (supra)                                                                                                                                                      |
| 36                     | 7526213CD1     | g15215576                  | 2.IE-15            | BMP-2 inducible kinase [Mus musculus]                                                                                                                                                                      |
|                        |                |                            |                    | Kearns, A. E. et al. (supra)                                                                                                                                                                               |

## Table (

| Polypeptide SEQ Incyte | Incyte         | GenBank ID NO: Probability | Probability | Annotation                                                                                       |
|------------------------|----------------|----------------------------|-------------|--------------------------------------------------------------------------------------------------|
| ID NO:                 | Polypeptide ID | or PROTEOME<br>ID NO:      | Score       |                                                                                                  |
|                        | 7526213CD1     | 605792 BIKE                | 1.7E-27     | [Homo sapiens][Protein kinase;Transferase] Protein containing a eukaryotic protein kinase domain |
|                        | 7526213CD1     | 770160 Bike                | 1.1E-16     | [Mus musculus] Protein containing a protein kinase domain, has low similarity to C. elegans      |
|                        |                |                            |             | SEL-5, which is a serine-threonine protein kinase that likely regulates LIN-12 and GLP-1         |
|                        |                |                            |             | signaling                                                                                        |
|                        |                |                            |             | Kearns, A. E. et al. (supra)                                                                     |
| 37                     | 7526214CD1     | g15215576                  | 1.7E-16     | BMP-2 inducible kinase [Mus musculus]                                                            |
|                        |                |                            |             | Kearns, A. E. et al. (supra)                                                                     |
|                        | 7526214CD1     | 605792 BIKE                | 3.8E-28     | [Homo sapiens][Protein kinase; Transferase] Protein containing a eukaryotic protein kinase       |
|                        |                |                            |             | domain                                                                                           |
|                        | 7526214CD1     | 770160 Bike                | 9.4E-18     | [Mus musculus] Protein containing a protein kinase domain, has low similarity to C. elegans      |
|                        |                |                            |             | SEL-5, which is a serine-threonine protein kinase that likely regulates LIN-12 and GLP-1         |
|                        |                |                            |             | signaling                                                                                        |
|                        |                |                            |             | Kearns, A. E. et al. (supra)                                                                     |
| 38                     | 7526228CD1     | g2924624                   | 4.6E-55     | TGF-beta activated kinase 1a [Homo sapiens]                                                      |
|                        |                |                            | :           | Sakurai, H. et al., TGF-beta-activated kinase 1 stimulates NF-kappa B activation by an NF-       |
|                        |                |                            |             | kappa B-inducing kinase-independent mechanism, Biochem. Biophys. Res. Commun. 243,               |
|                        |                |                            |             | 545-549 (1998)                                                                                   |
|                        |                |                            |             |                                                                                                  |
|                        | 7526228CD1     | 338400 MAP3K7 2.5E-56      | 2.5E-56     | [Homo sapiens][Protein kinase;Transferase] Mitogen-activated protein kinase kinase kinase        |
|                        |                |                            |             | 7 (TGF beta activated kinase 1), mediates TGFbeta and IL1 signal transduction, induces           |
|                        |                |                            |             | NFkappaB activation, may act as a regulatory kinase of I kappa B kinases (IKKs)                  |
|                        |                |                            |             | Sakurai, H. et al., Functional interactions of transforming growth factor beta-activated         |
|                        |                |                            |             | kinase 1 with IkappaB kinases to stimulate NF-kappaB activation., J Biol Chem 274, 10641-        |
|                        |                |                            |             | 8 (1999).                                                                                        |
|                        | 7526228CD1     | 338400 MAP3K7 2.50E-56     | 2.50E-56    | [Homo sapiens][Protein kinase; Transferase] Mitogen-activated protein kinase kinase kinase       |
|                        |                |                            |             | 7 (TGF beta activated kinase 1), mediates TGFbeta and IL1 signal transduction, induces           |
|                        |                |                            |             | NFkappaB activation, may act as a regulatory kinase of I kappa B kinases (IKKs)                  |

| Polypeptide SEQ Incyte | Incyte         | GenBank ID NO: Probability | Probability | Annotation                                                                                     |
|------------------------|----------------|----------------------------|-------------|------------------------------------------------------------------------------------------------|
| ID NO:                 | Polypeptide ID | or PROTEOME ID NO:         | Score       |                                                                                                |
|                        |                |                            |             | Craig, R. et al., p38 MAPK and NF-kappa B collaborate to induce interleukin-6 gene             |
|                        |                | •                          |             | expression and release. Evidence for a cytoprotective autocrine signaling pathway in a         |
|                        |                |                            |             | cardiac myocyte model system., J Biol Chem 275, 23814-24 (2000).                               |
| 39                     | 7526246CD1     | g23272739                  | 5.7E-96     | adrenergic, beta, receptor kinase 1 [Homo sapiens]                                             |
|                        |                |                            |             | Strausberg, R. L. et al., Generation and initial analysis of more than 15,000 full-length      |
|                        |                |                            |             | human and mouse cDNA sequences, Proc. Natl. Acad. Sci. U.S.A. 99, 16899-16903 (2002)           |
|                        | 7526246CD1     | 334086 ADRBK   3.1E-97     | 3.1E-97     | [Homo sapiens][Protein kinase;Transferase][Cytoplasmic;Plasma membrane] Beta-                  |
|                        |                | •                          |             | adrenergic receptor kinase 1, kinase that mediates desensitization of G protein-coupled        |
|                        |                |                            |             | receptors, phosphorylated by PKC, may modulate cardiovascular function; mouse and rat          |
|                        |                |                            |             | Adrbk1 appear to be involved with cardiomyopathy and myocardial infarction                     |
|                        |                |                            |             | Shih, M. et al., Oligodeoxynucleotides antisense to mRNA encoding protein kinase A,            |
|                        |                |                            |             | protein kinase C, and beta-adrenergic receptor kinase reveal distinctive cell-type-specific    |
|                        |                |                            |             | roles in agonist-induced desensitization., Proc Natl Acad Sci U S A 91, 12193-7 (1994).        |
|                        | 7526246CD1     | 775647 Adrbk1              | 1.1E-94     | [Mus musculus][Protein kinase;Transferase] Beta-adrenergic receptor kinase 1, a kinase         |
|                        |                |                            |             | that may mediate desensitization of G protein-coupled receptors, modulates myocardial          |
|                        |                |                            |             | function and involved in cardiomyopathy; human ADRBK1 may play roles in hypertension           |
|                        |                |                            |             | and cardiomyopathy                                                                             |
|                        |                |                            |             | Proll, M. A. et al., Beta 2-adrenergic receptor mutants reveal structural requirements for the |
|                        |                |                            |             | desensitization observed with long-term epinephrine treatment., Mol Pharmacol 44, 569-74       |
|                        |                |                            |             | (1993).                                                                                        |
| 40                     | 7526258CD1     | g33303889                  | 9.6E-110    | FAST kinase [synthetic construct]                                                              |
|                        | 7526258CD1     | 743544 FASTK               | 5.2E-111    | [Homo sapiens][Protein kinase; Transferase] Fas-activated serine threonine kinase, a serine-   |
|                        |                |                            |             | threonine kinase that phosphorylates RNA binding protein TIA1 during Fas mediated              |
|                        |                |                            |             | apoptosis, upregulated in peripheral blood mononuclear cells of atopic asthmatics and          |
|                        |                |                            |             | atopic non asthmatic patients                                                                  |
|                        |                |                            |             | Brutsche, M. H. et al., Apoptosis signals in atopy and asthma measured with cDNA arrays.,      |
|                        |                |                            |             | Clin Exp Immunol 123, 181-7. (2001).                                                           |

# Table (

| Polypeptide SEQ Incyte | Incyte         | GenBank ID NO:         | D NO: Probability | Annotation                                                                                 |
|------------------------|----------------|------------------------|-------------------|--------------------------------------------------------------------------------------------|
| i i                    | rotypepuae III | OF PROTECIME<br>ID NO: | Score             |                                                                                            |
|                        | 7526258CD1     | 685389 MGC529 1.6E-11  | 1.6E-11           | [Homo sapiens] Protein of unknown function, has a region of low similarity to a region of  |
|                        |                | 7                      |                   | fas-activated serine threonine kinase (human FASTK), which is a serine-threonine kinase    |
| 41                     | 7526311CD1     | 91088281               | 7 00 67           | mat purospinorylates KINA binding protein human TIA1 during Fas mediated apoptosis         |
|                        |                |                        | 10-77:1           | Pyruvate uenydrogenase kinase [Homo sapiens]                                               |
|                        |                |                        |                   | Gudi, R. et al., Diversity of the pyruvate dehydrogenase kinase gene family in humans, J.  |
|                        | 750(0110001    | 20/01/12/22            |                   | B101. CREM. 270, 28989-28994 (1995)                                                        |
|                        | /32631ICD1     | 336846 PDK1            | 4.3E-68           | [Homo sapiens][Protein kinase; Transferase; Other kinase][Cytoplasmic; Mitochondrial]      |
|                        |                |                        |                   | Pyruvate dehydrogenase kinase 1, phosphorylates and inactivates the pyruvate               |
|                        |                |                        |                   | dehydrogenase complex and thus regulates pyruvate metabolism                               |
|                        |                |                        |                   | Taylor, V. et al., 5' phospholipid phosphatase SHIP-2 causes protein kinase B inactivation |
|                        |                |                        |                   | and cell cycle arrest in glioblastoma cells., Mol Cell Biol 20, 6860-71 (2000)             |
|                        | 7526311CD1     | 757382 Pdk1            | 2.2E-55           | [Rattus norvegicus][Protein kinase; Transferase; Other kinase][Cytoplasmic: Mitochondrial] |
|                        |                |                        |                   | Pyruvate dehydrogenase kinase 1, phosphorylates and inactivates the pyruvate               |
|                        |                |                        |                   | dehydrogenase complex and thus putatively regulates pyruvate metabolism                    |
|                        |                |                        |                   | Sugden, M. C. et al., Expression and regulation of pyruvate dehydrogenase kinase isoforms  |
|                        |                |                        |                   | in the developing rat heart and in adulthood: role of thyroid hormone status and lipid     |
| 5                      |                |                        |                   | supply, Biochem J 352, 731-8. (2000).                                                      |
| 7,5                    | 7526315CD1     | g12655099              | 7.2E-121          | Mixed lineage kinase-related kinase MRK-beta [Homo sapiens]                                |
|                        |                |                        |                   | Strausberg, R. L. et al. (supra)                                                           |
|                        | 7526315CD1     | 476453 ZAK             | 3.9E-122          | [Homo sapiens] Mixed lineage kinase with a leucine zipper and a sterile alpha motif. a     |
|                        |                |                        |                   | mixed lineage kinase-like protein that stimulates the JNK/SAPK pathway and activates NF-   |
|                        |                |                        |                   | kappaB; overexpression induces apoptosis of a hepatoma cell line                           |
|                        |                |                        |                   | Liu, T. C. et al., Cloning and expression of ZAK, a mixed lineage kinase-like protein      |
|                        |                |                        |                   | containing a leucine-zipper and a sterile-alpha motif, Biochem Biophys Res Commun 274,     |
|                        |                |                        |                   | 811-6 (2000).                                                                              |
|                        | 7526315CD1     | 662697 Zak             | 2.7E-121          | [Mus musculus][Protein kinase; Transferase] Mixed lineage kinase with a leucine zipner and |
|                        |                |                        |                   | a sterile alpha motif, activated by osmotic shock; overexpression activates the p38        |
|                        |                |                        |                   | (Mapk14), JNK/SAPK, ERK (Mapk3), and ERK5 (Mapk7) pathways, alpha alternative              |
|                        |                |                        |                   | form disrupts actin stress fibers                                                          |

| , r                    |                |                                  |             |                                                                                            |   |
|------------------------|----------------|----------------------------------|-------------|--------------------------------------------------------------------------------------------|---|
| rolypeptide SEQ incyte | √Incyte        | GenBank ID NO: Probability       | Probability | Annotation                                                                                 | _ |
| D NO:                  | Polypeptide ID | Polypeptide ID or PROTEOME Score | Score       |                                                                                            |   |
|                        |                | ID NO:                           |             |                                                                                            |   |
|                        |                |                                  |             | Gotoh, I. et al., Identification and characterization of a novel MAP kinase kinase kinase. | , |
|                        |                |                                  |             | MLTK., J Biol Chem 276, 4276-86 (2001). (supra)                                            |   |
| 43                     | 7526442CD1     | g12803641                        | 3.5E-64     | CCRK protein [Homo sapiens]                                                                | _ |
|                        |                |                                  |             | Strausberg, R. L. et al. (supra)                                                           |   |
|                        | 7526442CD1     | 568698 CCRK                      | 2.4E-65     | [Homo sapiens][Protein kinase; Transferase] Protein containing four protein kinase domains |   |
|                        |                |                                  |             | has a region of moderate similarity to cyclin-dependent kinase 3 (human CDK3). which is a  |   |
|                        |                |                                  |             | kinase that binds to cyclin A and is required for progression from G1 to S phase           |   |
|                        | 7526442CD1     | 583769 Cdk5                      | 1.6E-22     | [Mus musculus][Protein kinase;Transferase][Cell body (soma);Growth cone] Cyclin-           |   |
|                        |                |                                  |             | dependent protein kinase 5, serine-threonine kinase that associates with the regulatory    |   |
|                        |                |                                  |             | subunit p35 (Cdk5r) and phosphorylates neuronal proteins, involved in neuronal             |   |
|                        |                |                                  |             | differentiation, regulation of myogenesis, and adaptive responses to cocaine               |   |
|                        |                |                                  |             | Ohshima, T. et al., Targeted disruption of the cyclin-dependent kinase 5 gene results in   |   |
|                        |                |                                  |             | abnormal corticogenesis, neuronal pathology and perinatal death., Proc Natl Acad Sci US    |   |
|                        |                |                                  |             | A 93, 11173-8 (1996).                                                                      |   |

### Table (

| SEO      | Incyte            | Amino Acid | Amino Acid Signature Sequences Domains and Motific                                                               | Anotherical Mathode     |
|----------|-------------------|------------|------------------------------------------------------------------------------------------------------------------|-------------------------|
| ,<br>  E |                   |            |                                                                                                                  | railary ucar intentious |
| a ö      | Polypeptide<br>ID | Kesidues   |                                                                                                                  | and Databases           |
| 1        | 7517831CD1        | 83         | signal_cleavage: M1-T58                                                                                          | SPSCAN                  |
|          |                   |            | ASE ATP-                                                                                                         | BLAST_PRODOM            |
|          |                   |            | Potential Phoenhomilation Sites: S7                                                                              | Commo                   |
|          |                   |            | Dotential Alvocalistica Sites: NAO MK7                                                                           | MOLIFS                  |
| ],       | 1                 | 000        | rotelinal Objects judges, 1440, 140/                                                                             | MOLIFS                  |
| 2        | 7520272CD1        | 292        | signal_cleavage: M1-A44                                                                                          | SPSCAN                  |
|          |                   |            | ≻1-6-bisphosphatase: N12-H289                                                                                    | HIMMER_PFAM             |
|          |                   |            | Inositol phosphatase/fructose-1,6-bisphosphatase IPB000146: G59-D100, G112-T135, Q155-P189, R198-P220, G228-G253 | BLIMPS_BLOCKS           |
|          |                   |            | Fructose-1-6-bisphosphatase active site: H208-E255                                                               | PROFILESCAN             |
|          |                   |            | Fructose-1,6-bisphosphatase signature PR00115: D119-Y140, P156-L176, G181-G196, A197-P220, BLIMPS_PRINTS         | BLIMPS_PRINTS           |
|          |                   |            | G228-G248, V257-V279                                                                                             |                         |
| -        |                   |            | Inositol phosphatase/fructose-1,6-bisphosphatase family signature PR00377: V115-N126, L211-A221, Y234-G248       | BLIMPS_PRINTS           |
|          |                   |            | HYDROLASE CARBOHYDRATE METABOLISM FRUCTOSE-16-BISPHOSPHATASE                                                     | BLAST PRODOM            |
|          |                   |            |                                                                                                                  | í                       |
|          |                   |            | CHLOROPLAST CALVIN PD001491:G68-P189 D188-V279                                                                   |                         |
|          |                   |            |                                                                                                                  | BLAST_PRODOM            |
|          |                   |            | CARBOHYDRATE METABOLISM D-FRUCTOSE-1, 6-BISPHOSPHATE MULTI-GENE                                                  |                         |
|          |                   |            | PD017713: 113-V66                                                                                                |                         |
|          |                   |            |                                                                                                                  | BLAST_DOMO              |
|          |                   |            | DMI00535 P09467 10-331:V11-P189 P189-E287                                                                        |                         |
|          |                   |            |                                                                                                                  | BLAST_DOMO              |
|          |                   |            | 189-E287                                                                                                         |                         |
|          |                   |            |                                                                                                                  | BLAST_DOMO              |
|          |                   |            | 190-G274                                                                                                         |                         |
|          |                   |            |                                                                                                                  | BLAST DOMO              |
|          |                   |            |                                                                                                                  | -<br> .                 |
|          |                   |            | , S149, S275, T145, T252                                                                                         | MOTIFS                  |

| SEO        | Incyte            | Amino Acid | Amino Acid Signature Seguences Domains and Mosife.                                                       |                                     |
|------------|-------------------|------------|----------------------------------------------------------------------------------------------------------|-------------------------------------|
| ДŚ         | Polypeptide<br>TD | Residues   |                                                                                                          | Analytical Methods<br>and Databases |
|            | 3                 |            | Defendial Channel die Street                                                                             |                                     |
|            |                   |            | roteinal diyeosylanon ones; Noo                                                                          | MOTIFS                              |
| ,          | . 400001032       | ,          | Fructose-1-6-bisphosphatase active site: G228-A240                                                       | MOTIFS                              |
| <u>,  </u> | /5212/9CDI        | 434        | signal_cleavage: M1-G51                                                                                  | SPSCAN                              |
|            |                   |            | 6-phosphofructo-2-kinase: Q30-P249                                                                       | HMMER PFAM                          |
|            |                   |            | Phosphoglycerate mutase family: R250-I400                                                                | HMMER PEAM                          |
|            |                   |            | Phosphoglycerate mutase family IPB001345: I252-S284, V299-A311, G315-R347                                | BLIMPS BLOCKS                       |
|            |                   |            | Phosphoglycerate mutase family phosphohistidine signature: 1234-K283                                     | PROFIL ESCAN                        |
|            |                   |            | o-phosphofructo-2-kinase family signature PR00991: V125-A139, K151-I165, P177-F191, V230-S251, I252-L274 | BLIMPS_PRINTS                       |
|            |                   |            | MUTASE PROTEOME COMPI HTTE PHONDHOCH WOED A THE DAY TOOL ATTENDED A                                      |                                     |
|            |                   |            | GLYCOLYSIS BPG-DEPENDENT FRUCTOSE-2,6-BISPHOSPHATASE PHOSPHOGI YCFROMITASE PROMO720-2752 1220            | BLAST_PRODOM                        |
|            |                   |            | KINASE FRUCTOSE-2,6-BISPHOSPHATASE INCLUDES: ISOZYME 6DE 2 2/2011 6                                      | TO TO TO THE PARTY OF THE           |
|            |                   |            | PHOSPHOFRUCTO-2-KINASE/FRUCTOSE-2,6-BIPHOSPHATASE TRANSFERASE 2,6-                                       | BLASI_FRODOM                        |
|            |                   |            | P2ASE MULTI-FUNCTIONAL PD002665: T36-1252                                                                |                                     |
|            |                   |            | Т                                                                                                        | BI ACT DDODOM                       |
|            |                   |            |                                                                                                          | MICOTON TO TOWN                     |
|            |                   |            |                                                                                                          | BLAST PRODOM                        |
| •          |                   |            |                                                                                                          | 1000000                             |
|            |                   |            | I KANSFERASE KINASE HYDROLASE ATP-BINDING PD114268: M1-M35                                               |                                     |
| •          | •                 | <u> </u>   | ,6-BISPHOSPHATE 2-PHOSPHATASE                                                                            | BLAST DOMO                          |
|            |                   |            |                                                                                                          |                                     |
|            | •                 |            | ,6-BISPHOSPHATE 2-PHOSPHATASE                                                                            | BLAST_DOMO                          |
| 1          |                   |            | -                                                                                                        |                                     |
|            | _                 |            | OSPHATE 2-PHOSPHATASE                                                                                    | BLAST DOMO                          |
|            |                   |            |                                                                                                          |                                     |
|            | _                 | <u> </u>   | ,6-BISPHOSPHATE 2-PHOSPHATASE                                                                            | BLAST DOMO                          |
|            |                   |            | LIMU1656 r25114 183-441:D183-E349 S330-V407                                                              |                                     |

| SEO | SEO Incyte  | Amino Acid | Amino Acid   Simphire Comences Domeine and Marie                                                                                        |                                     |
|-----|-------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| A   | Polypeptide | Residues   | -grand organization to mains and Mouns                                                                                                  | Analytical Methods<br>and Databases |
| Ž   | m<br>m      |            |                                                                                                                                         |                                     |
|     |             |            | Potential Phosphorylation Sites: S3, S56, S204, S275, S330, T60, T85, T133, T140, T248, T409, Y377                                      | MOTIFS                              |
|     |             |            |                                                                                                                                         | MOTHS                               |
|     |             |            |                                                                                                                                         | MOTIFS                              |
|     |             |            |                                                                                                                                         | MOTTES                              |
| 4   | 7523965CD1  | 240        | -L178, T179-L202, D204-                                                                                                                 | BLIMPS_BLOCKS                       |
|     |             |            | -                                                                                                                                       | BLAST_PRODOM                        |
|     |             |            | PECANDOA I LASE GLUCONEUGENESIIS PD004738; D46-E232                                                                                     |                                     |
|     |             |            | PHOSPHOENOLPYRUVATE CARBOXYKINASE, MITOCHONDRIAL PRECURSOR GTP EC 14.1.1.32 CARBOXYL ASE PEPCKM GI LICONFOGENESIS I VASE DECARDOXYL ASE | BLAST_PRODOM                        |
|     |             |            | BINDING MITOCHONDRION TRANSIT PEPTIDE MANGANES PD144568: M1-R45                                                                         |                                     |
|     |             |            |                                                                                                                                         | BI AST DOMO                         |
|     |             |            | -                                                                                                                                       |                                     |
|     |             |            | DM01781 P20007 40-646: G35-E232                                                                                                         |                                     |
|     |             |            | DM01781 P21642 33-639: L33-P240                                                                                                         |                                     |
|     |             |            | DM01781 Q05893 30-640: V32-E232                                                                                                         |                                     |
|     | I I         |            | 351, S115, S136, S187, T29, T66, T75, T219                                                                                              | MOTIFS                              |
| 2   | 7524016CD1  | 199        |                                                                                                                                         | SPSCAN                              |
|     |             |            |                                                                                                                                         | HMMER PFAM                          |
|     |             |            |                                                                                                                                         | BLIMPS PRINTS                       |
|     |             |            | KINASE FRUCTOSE-2,6-BISPHOSPHATASE INCLUDES: ISOZYME 6PF-2-K/FRU-6-                                                                     | BLAST_PRODOM                        |
|     |             |            |                                                                                                                                         |                                     |
|     |             |            | 6-PHOSPHOFRUCTO-2-KINASE / FRUCTOSE-2 6-RISPHOSPHATE 2 PHOSPHATE 3                                                                      | TAGE TO SE                          |
|     |             |            |                                                                                                                                         | BLAST_DUMO                          |
|     | -           | <u></u>    | DM01457 P07953 29-182: A10-C161                                                                                                         |                                     |
|     |             | <u> </u>   | DM01457 P25114 27-181: T16-D160                                                                                                         |                                     |
|     |             |            | DM01457 P26285 26-180: T16-Y158                                                                                                         |                                     |

| Ç          | 7 4.              | Amino Agid  | Amino Acid Simotime Segmenter Domains and Motifs                                              | Analytical Methods     |
|------------|-------------------|-------------|-----------------------------------------------------------------------------------------------|------------------------|
| 7 17       | Incyte            | Amino Acid  |                                                                                               | and Databases          |
| <u>a §</u> | Polypeptide<br>TD | Residues    |                                                                                               |                        |
|            | Ę                 |             | Potential Phosphorylation Sites: S36, S64, S98, T5, T112                                      | MOTIFS                 |
|            |                   |             |                                                                                               | MOTIFS                 |
|            |                   |             | oop); G26-T33                                                                                 | MOTIFS                 |
|            | 7574680011        | 406         | hoffricto-2-kinase: M1-P186                                                                   | HIMIMER_PFAM           |
| 0          | 1770004767        | <br>        | Phosphoglycerate mutase family: R187-I372                                                     | HIMMER_PFAM            |
|            |                   |             | olycerate mutase family IPB001345: 1189-A221, V236-A248, G252-E284, E301-E346                 | BLIMPS_BLOCKS          |
|            |                   |             |                                                                                               | PROFILESCAN            |
|            |                   |             | 2, P114-F128, V167-S188,                                                                      | BLIMPS_PRINTS          |
|            |                   |             | I189-L211, A266-P282                                                                          |                        |
|            |                   |             | MUTASE PROTEOME COMPLETE PHOSPHOGLYCERATE PGAM ISOMERASE                                      | BLAST_PRODOM           |
|            |                   |             | GLYCOLYSIS BPG-DEPENDENT FRUCTOSE-2,6-BISPHOSPHATASE                                          | -                      |
|            |                   |             | PHOSPHOGLYCEROMUTASE PD000730:Y190-Y303 P298-L360                                             | Trouble and the second |
|            |                   |             | KINASE FRUCTOSE-2,6-BISPHOSPHATASE INCLUDES: ISOZYME 6PF-2-K/FRU-6-                           | BLAST_PRODOM           |
|            |                   |             | PHOSPHOFRUCTO-2-KINASE/FRUCTOSE-2,6-BIPHOSPHATASE TRANSFERASE 2,6-                            |                        |
|            |                   |             | P2ASE MULTI-FUNCTIONAL PD002665: K9-I189                                                      |                        |
|            |                   |             | 6-BISPHOSPHATASE TRANSFERASE 6PF2K/FRU2 6-P2ASE INCLUDES: KINASE                              | BLAST_PRODOM           |
|            |                   |             | FRUCTOSE2 MULTI-FUNCTIONAL ENZYME ISOZYME PD009472: T361-Y406                                 |                        |
|            |                   |             | FRUCTOSE-2 SIMILAR PD114271: S232-V376                                                        | BLAST_PRODOM           |
|            |                   |             | 6-PHOSPHOFRUCTO-2-KINASE / FRUCTOSE-2,6-BISPHOSPHATE 2-PHOSPHATASE                            | BLAST_DOMO             |
|            |                   |             | DM01656J7C1470 184-441: K123-V379                                                             |                        |
|            |                   |             | DM01656 P07953 184-442: D120-V379                                                             |                        |
|            |                   | <del></del> | DM01656[P25114]183-441: D120-V379                                                             |                        |
|            |                   |             | DM01656 P26285 182-441: D120-V379                                                             |                        |
|            |                   |             | Potential Phosphorylation Sites: S22, S56, S212, S233, S302, S343, T5, T70, T185, T273, T381, | MOTIFS                 |
|            |                   |             | Y295, Y349                                                                                    | 7,500                  |
|            |                   |             |                                                                                               | MOTIFS                 |
|            |                   |             | hosphohistidine signature: L191-N200                                                          | MOTIFS                 |
| ,          | 7524757CD1        | 426         | signal cleavage: MI-T33                                                                       | SPSCAN                 |
|            |                   |             |                                                                                               | HIMMER_PFAM            |

| が日  |                   |            |                                                                                                                                 |                    |
|-----|-------------------|------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------|
| А   | Incyte            | Amino Acid | Amino Acid   Signature Sequences, Domains and Motifs                                                                            | Analytical Methods |
| NO: | Polypeptide<br>ID | Residues   |                                                                                                                                 | and Databases      |
|     |                   |            | Phosphoglycerate mutase family: R207-I392                                                                                       | HIMIMER PFAM       |
|     |                   |            | Phosphoglycerate mutase family phosphohistidine signature: 1191-Y240                                                            | PROFILESCAN        |
|     |                   |            | Phosphoglycerate mutase family IPB001345A: 1209-A241, V256-A268, G272-E304, E321-E366                                           | BLIMPS BLOCKS      |
|     |                   |            | 6-phosphofructo-2-kinase family signature PR00991: V82-S96, K108-1122, P134-F148, V187-S208, BLIMPS_PRINTS I209-L231, A286-P302 | BLIMPS_PRINTS      |
|     |                   |            | KINASE FRUCTOSE-2,6-BISPHOSPHATASE INCLUDES: ISOZYME 6PF-2-K/FRU-6-                                                             | BLAST PRODOM       |
|     |                   |            | PHOSPHOFRUCTO-2-KINASE/FRUCTOSE-2,6-BIPHOSPHATASE TRANSFERASE 2,6-                                                              |                    |
|     |                   |            | P2ASE MULTI-FUNCTIONAL PD002665:A10-A64 D52-I209                                                                                |                    |
|     |                   |            | MUTASE PROTEOME COMPLETE PHOSPHOGLYCERATE PGAM ISOMERASE                                                                        | BLAST_PRODOM       |
|     |                   |            | GLYCOLYSIS BPG-DEPENDENT FRUCTOSE-2,6-BISPHOSPHATASE                                                                            | 1                  |
|     |                   |            | PHOSPHOGLYCEROMUTASE PD000730:Y210-Y323 P318-L380                                                                               |                    |
|     |                   |            | 6BISPHOSPHATASE TRANSFERASE 6PF2K/FRU2 6-P2ASE INCLUDES: KINASE                                                                 | BLAST_PRODOM       |
|     |                   |            | FRUCTOSE2 MULTI-FUNCTIONAL ENZYME ISOZYME PD009472: T381-Y426                                                                   | I                  |
|     |                   |            | FRUCTOSE-2 SIMILAR PD114271: S252-V396                                                                                          | BLAST PRODOM       |
|     |                   |            | 6-PHOSPHOFRUCTO-2-KINASE / FRUCTOSE-2,6-BISPHOSPHATE 2-PHOSPHATASE                                                              | BLAST DOMO         |
|     |                   |            | DM01656JJC1470J184-441: K143-V399                                                                                               | l                  |
|     |                   |            | DM01656 JC2037 185-444: D140-V399                                                                                               |                    |
|     |                   |            | DM01656 P07953 184-442: D140-V399                                                                                               |                    |
|     |                   |            | DM01656 P25114 183-441: D140-V399                                                                                               |                    |
|     |                   |            | Potential Phosphorylation Sites: S36, S76, S232, S253, S322, S363, T5, T90, T205, T293, T401,                                   | MOTIFS             |
|     |                   |            | Y315, Y369                                                                                                                      |                    |
|     | ·                 |            | Potential Glycosylation Sites: N89                                                                                              | MOTIFS             |
|     |                   |            |                                                                                                                                 | MOTIFS             |
|     |                   |            | Phosphoglycerate mutase family phosphohistidine signature: L211-N220                                                            | MOTIFS             |
|     | 7516229CD1        | 355        |                                                                                                                                 | SPSCAN             |
|     |                   |            | 54                                                                                                                              | HMMER PFAM         |
|     |                   |            | Phosphatidylinositol phosphate kinases: M62-T355                                                                                | HMMER SMART        |

| SFO      | Incorte     | Amino Acid | Amino Acid   Signature Sequences Domains and Motifs                                        | Analytical Methods |
|----------|-------------|------------|--------------------------------------------------------------------------------------------|--------------------|
| <u>自</u> | Polypeptide | Residues   |                                                                                            | and Databases      |
| Ö        | a           |            |                                                                                            |                    |
|          |             |            | KINASE PHOSPHATIDYLINOSITOL-4-PHOSPHATE 5-KINASE-TYPE TRANSFERASE                          | BLAST_PRODOM       |
|          |             |            | DIPHOSPHOINOSITIDE 1-PHOSPHATIDYLINOSITOL-4-PHOSPHATE PTDINS4P-5-KINASE                    |                    |
| Ì        |             |            | ALPHA PD002308:M1-F112 F112-1353                                                           |                    |
|          |             |            | PHOSPHATIDYLINOSITOL; KINASE;                                                              | BLAST_DOMO         |
|          |             |            | DM07197 P48426 8-404:G8-Q113 Q113-T355                                                     |                    |
|          |             |            | PHOSPHATIDYLINOSITOL; KINASE;                                                              | BLAST_DOMO         |
|          |             |            | DM07197]P38994[351-756:L41-F112 Q110-I350                                                  |                    |
|          |             |            | Potential Phosphorylation Sites: S48, S150, S171, S296, S343, T18, T181, T261, T311, T325  | MOTIFS             |
|          | ·           |            | Potential Glycosylation Sites: N46                                                         | MOTIFS             |
| 6        | 7516525CD1  | 543        | Protein kinase domain: Y128-V447                                                           | HIMMER_PFAM        |
|          |             |            | Serine/Threonine protein kinases, catalytic domain: Y128-V447                              | HIMMER_SMART       |
|          |             |            | Receptor tyrosine kinase class V IPB001426: L294-K315, P316-D342                           | BLIMPS_BLOCKS      |
|          |             |            | Protein kinases signatures and profile: Q289-D342                                          | PROFILESCAN        |
|          |             |            | Tyrosine kinase catalytic domain signature PR00109: Y303-L321, 1416-V438, G350-1360, L372- | BLIMPS_PRINTS      |
|          |             |            | D394                                                                                       |                    |
|          |             |            |                                                                                            | BLAST_PRODOM       |
|          |             |            | 2.7.1 PHOSPHORYLATION PRECURSOR PD000001:Q127-A353                                         |                    |
|          |             |            | G340-E453 P414-W446                                                                        |                    |
|          |             |            | KINASE ATP-BINDING TRANSFERASE SERINE/THREONINE-PROTEIN                                    | BLAST_PRODOM       |
|          |             |            | CA2/CALMODULIN-DEPENDENT BETA CG17698 CA/CALMODULIN-DEPENDENT ALPHA                        |                    |
|          |             |            | SERINE/THREONINE PD019141: V447-F501                                                       |                    |
|          |             |            | ENT                                                                                        | BLAST_PRODOM       |
|          |             |            | TRANSFERASE ALPHA SERINE/THREONINE GLYCOGEN CALCIUM/CALMODULIN                             |                    |
|          |             |            | PD027014: E502-S543                                                                        |                    |
|          | ,           |            |                                                                                            | BLAST_PRODOM       |
|          |             |            | CA2/CALMODULIN-DEPENDENT BETA CA/CALMODULIN-DEPENDENT ALPHA                                |                    |
|          |             |            | SERINETHREONINE PD031900; M1-Q127                                                          |                    |
|          |             |            |                                                                                            | BLAST_DOMO         |
|          |             |            | DM00004 A57156 130-399:L130-L228 Q238-V438                                                 |                    |

| SEQ<br>E    | SEQ Incyte         | Amino Acid | Amino Acid Signature Sequences, Domains and Motifs                                    | Analytical Methods |
|-------------|--------------------|------------|---------------------------------------------------------------------------------------|--------------------|
| S<br>S<br>S | Folypeptide<br> ID | Kesidues   |                                                                                       | and Databases      |
|             |                    |            |                                                                                       | BLAST_DOMO         |
|             |                    |            | DMU0004P200260130-399:E133-Q231 P247-1436                                             |                    |
|             |                    |            |                                                                                       | BLAST_DOMO         |
|             |                    |            | DM00004p06782 57-296:1134-K166 R195-Q231 D282-V438                                    |                    |
|             |                    |            |                                                                                       | BLAST DOMO         |
|             |                    |            |                                                                                       |                    |
|             |                    |            | 60, S266, S368, S457, S463, S475.                                                     | MOTTES             |
|             |                    |            |                                                                                       |                    |
|             |                    |            | Potential Glycosylation Sites: N147                                                   | MOTIFS             |
|             |                    |            | P-binding site motif A (P-loop): G523-S530                                            | MOTIFS             |
|             |                    |            | kinases ATP-binding region signature: 1134-K157                                       | MOTIFS             |
|             |                    |            | freonine protein kinases active-site signature: I309-L321                             | MOTIFS             |
| 2           | 7516533CD1         | 445        |                                                                                       | HMMER PEAM         |
|             |                    |            | Protein kinase C terminal domain: R273-I359                                           | HAMED DEAM         |
|             |                    |            | in to Ser/Thr-tyne protein kinases: P273_A 225                                        | THOUSE CLAM        |
|             |                    |            |                                                                                       | HIMIMEK_SIMAKI     |
|             |                    |            |                                                                                       | HIMIMER_SIMART     |
|             |                    |            |                                                                                       | BLIMPS BLOCKS      |
|             |                    |            | ne kinase catalytic domain signature PR00109: H128-L146, V194-E216, L92-E105, L236-   | BLIMPS_PRINTS      |
|             |                    |            | A238                                                                                  |                    |
|             |                    |            | KINASE S6 RIBOSOMAL SERINE/THREONINE-PROTEIN TRANSFERASE P70 BETA 2.7.1. BLAST_PRODOM | BLAST PRODOM       |
| I           |                    |            | ATP-BINDING PHOSPHORYLATION PD032092: S337-L445                                       |                    |
|             |                    |            |                                                                                       | BLAST DOMO         |
|             |                    |            |                                                                                       |                    |
|             |                    |            | DM00004 A57459 61-302: V27-G257                                                       |                    |
|             |                    |            | DM00004 P23443 69-313: A48-G257                                                       |                    |
|             |                    |            |                                                                                       | BLAST DOMO         |
|             |                    |            |                                                                                       | }                  |
|             |                    |            | , S295, S300, S314, S337, S341, S354, S361, S372.                                     | MOTIFS             |
|             |                    |            |                                                                                       |                    |
|             |                    |            |                                                                                       |                    |

## Table ?

|             | rolypeptide |          |                                                                                                | •              |
|-------------|-------------|----------|------------------------------------------------------------------------------------------------|----------------|
|             |             | Kesidues |                                                                                                | and Databases  |
|             |             |          | Serine/Threonine protein kinases active-site signature: 1134-L146                              | MOTTES         |
|             | 7516613CD1  | 1219     | CNH domain: Y901-R1199                                                                         | HMMER PRAM     |
|             |             |          | Protein kinase domain: F25-I289                                                                | HIMMER PRAM    |
|             |             |          | Domain found in NIK1-like kinases, mouse citron and yeast ROM1, ROM2: Y901-R1199               | HWMER SWART    |
|             |             |          | Serine/Threonine protein kinases, catalytic domain: F25-I289                                   | HMMER SWART    |
|             |             |          | Tyrosine kinase, catalytic domain: F25-1289                                                    | HMMER SMART    |
|             |             |          | Receptor tyrosine kinase class III IPB001824: T59-I113, W129-K168, G190-P232                   | BLIMPS BLOCKS  |
|             |             |          | Protein kinases signatures and profile: W129-V182                                              | PROFILESCAN    |
|             |             |          | KINASE SERINE/THREONINE-PROTEIN BINDING PHORBOL-ESTER ATP-BINDING                              | BLAST PRODOM   |
|             |             |          | TRANSFERASE GDP-GTP EXCHANGE RHO1 CDC42-BINDING PD014445:L919-S1043 F1074-S1197                | I              |
|             |             |          | KINASE SERINE/THREONINE-PROTEIN ATP. BINDING TP ANSEED ASE MIG. 15                             | A CATO TO A TO |
|             |             |          | TYROSINE-PROTEIN 2.7.1 PD147188:1289-P500 S795-W915                                            | BLASI_FRUDUM   |
|             |             |          | COIL COILED MYOSIN CHAIN ATP-BINDING HEAVY FILAMENT MUSCLE REPRAT                              | BLAST PRODOM   |
|             |             |          |                                                                                                |                |
|             |             |          | Q292-R459, R358-E537                                                                           |                |
|             |             |          | ATP-BINDING TRANSFERASE NIK KINASE SERINE/THREONINE-PROTEIN PD147187:                          | BLAST PRODOM   |
| <del></del> |             | . 7      | H501-K831, E514-W915                                                                           |                |
| -           |             | · - 1    | PROTEIN KINASE DOMAIN                                                                          | BLAST DOMO     |
|             |             |          | DM00004 A53714 17-262: L27-S279                                                                | ,              |
|             |             |          | DM00004 P08458 20-262: V31-S279                                                                |                |
|             |             |          | DM00004 P10676 18-272: L27-P278                                                                |                |
| -           |             |          | DM00004 P38692 24-266; E29-S279                                                                |                |
|             |             |          | Potential Phosphorylation Sites: S9, S17, S77, S112, S255, S259, S264, S324, S326, S550, S554, | MOTIFS         |
|             |             |          | S573, S625, S626, S633, S682, S683, S707, S721, S727, S756, S764, S880, S963, S1023, S1043,    |                |
| +           |             |          |                                                                                                |                |
|             |             |          | T689, T690, T810, T816, T876, T996, T1057, Y321, Y323, Y467                                    | MOTIFS         |
| 1           |             |          | Potential Glycosylation Sites: N33, N570, N719, N818, N1151                                    | MOTIFS         |
| _           |             | 1        | Leucine zipper pattern: L472-L493                                                              | MOTIES         |

| SEO | Incyte         | Amino Acid | Amino Acid   Signature Sequences. Domains and Motifs                         | A 1 . 4                             |
|-----|----------------|------------|------------------------------------------------------------------------------|-------------------------------------|
| ДŻ  | ID Polypeptide | Residues   |                                                                              | Analytical Methods<br>and Databases |
|     |                |            | Protein kinases ATP-binding region signature: V31-K54                        | NO THE                              |
|     |                |            | Serine/Threonine protein kinases active-site signature: V140 I 161           | MOLIFS                              |
| 22  | 7517068CD1     | 1168       | CNH domain: Y850-R1148                                                       | MOTIFS                              |
|     |                |            | Profein kinase domain: P75-1780                                              | HMMEK PFAM                          |
|     |                |            | Domain found in MIV 18 by bissons                                            | HMMER PFAM                          |
|     |                |            | Society ROM2: Y850-R1148                                                     | HIMMER_SMART                        |
|     |                |            | Serine/Infeonine protein kinases, catalytic domain: F25-I289                 | HIMIMER_SIMART                      |
|     |                |            | Lyrosine kinase, catalytic domain: F25-1289                                  | HMMER SMART                         |
|     |                |            | Eukaryotic protein kinase IPB000719: H145-L160, Y210-G220                    | BLIMPS BLOCKS                       |
|     |                |            | Receptor tyrosine kinase class III IPB001824: T59-V113, W129-K168, G190-P232 | BLIMPS BLOCKS                       |
|     |                |            | Protein kinases signatures and profile: W129-T181                            | PROBIL BOCKN                        |
|     |                |            | 39: M105-K118 H143-L161 S214-M236 G190                                       | DI TAME DEPARTMENT                  |
|     |                |            |                                                                              | DLIMITS_FRUNTS                      |
|     |                |            | KINASE SERINE/THREONINE-PROTEIN BINDING PHORBOL-RETER ATTENDED               | אנסתסמק ייס א זפ                    |
|     |                |            |                                                                              | DLASI_FRUDUM                        |
|     |                |            | S1146                                                                        |                                     |
|     |                |            | E SERINE/THREONINE-PROTEIN ATP-BINDING TRANCHERA OF MIG. 15                  | אטמטממ איס זס                       |
|     |                |            |                                                                              | DEAST_FRODOM                        |
|     |                |            |                                                                              | RI ACT PRODOM                       |
|     |                |            |                                                                              | MOTON TOWN                          |
|     |                |            | SE NIK KINASE SERINE/THREONINE-PROTEIN PD147187:                             | RI AST PRODOM                       |
|     |                |            |                                                                              |                                     |
|     |                |            |                                                                              | BI.AST DOMO                         |
|     |                | <u> </u>   |                                                                              |                                     |
|     |                |            | DM00004 P10676 18-272: L27-P278                                              |                                     |
|     |                |            | DM00004 P38692 24-266: E29-R277                                              |                                     |
|     |                |            | DM00004 P50527 388-627: V31-T280                                             |                                     |
|     |                |            |                                                                              |                                     |

| SEO      | SEO Incyte     | Amino Acid | Amino Acid   Simpture Commonce Domoine and Marie                                                                                                                                         |                    |
|----------|----------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| <u> </u> | Polynentide    | Pecidne    | סיביימים כישועורכא, בסוומווא מות ואוטווא                                                                                                                                                 | Analytical Methods |
| Ö        | 1 or y perpute | Nesidues   |                                                                                                                                                                                          | and Databases      |
|          |                |            | Potential Phosphorylation Sites: S9, S77, S112, S255, S259, S264, S275, S324, S326, S426, S446, S504, S523, S571, S580, S639, S640, S646, S647, S696, S723, S767, S776, S793, S829, S912 | MOTIFS             |
|          |                |            | 8992, S1146, T59, T124, T187, T222, T309, T319, T349, T467, T627, T635, T716, T750, T795, T045, T106, V221, V221                                                                         |                    |
|          |                |            | I Glycosylation Sites: N33, N273, N443, N407                                                                                                                                             | Omnoy              |
|          |                |            | cinases ATP-binding region signature: V31-K54                                                                                                                                            | MOTIES             |
|          |                |            | e: V149-L161                                                                                                                                                                             | MOTIFS             |
| 13       | 7517148CD1     | 650        | or of G protein signaling domain: TS4-C175                                                                                                                                               | HIMMER PFAM        |
|          |                |            |                                                                                                                                                                                          | HIMIMER PFAM       |
|          |                |            | or of G protein signalling domain: T54-C175                                                                                                                                              | HMMER SMART        |
|          |                |            |                                                                                                                                                                                          | HIMMER SMART       |
|          |                |            |                                                                                                                                                                                          | HMMER SWART        |
|          |                |            |                                                                                                                                                                                          | BI IMPS BI OCKS    |
|          |                |            |                                                                                                                                                                                          | BLIMPS PRINTS      |
|          |                |            | T524                                                                                                                                                                                     | BLIMPS PRINTS      |
|          |                |            |                                                                                                                                                                                          | BLIMPS PFAM        |
|          |                |            |                                                                                                                                                                                          | BLIMPS_PFAM        |
|          |                |            | KINASE RECEPTOR ATP-BINDING SERINE/THREONINE-PROTEIN TRANSFERASE                                                                                                                         | BLAST_PRODOM       |
|          |                |            | COUPLED BETA-ADRENERGIC MULTI-GENE FAMILY G-PROTEIN PD007430: M1-153                                                                                                                     |                    |
|          |                |            | BETA-ADKENERGIC RECEPTOR KINASE COUPLED TRANSFERASE SERINE/THREONINE BLAST_PRODOM                                                                                                        | LAST_PRODOM        |
|          |                | •          | FROI EIN ATP-BINDING MULTI-GENE FAMILY BETA ARKIPD007640: T533-Q575                                                                                                                      |                    |
|          |                |            |                                                                                                                                                                                          |                    |
| _        |                |            | TRANSFERASE SERINE/THREONINE PROTEIN ATP-BINDING MULTI-GENE PD151831:                                                                                                                    | BLAST_PRODOM       |
|          |                |            | 1012-1000                                                                                                                                                                                |                    |

| SEO.   | Incyte      | Amino Acid | Amino Acid   Signature Sequences, Domains and Motifs                                        | Analytical Methods |
|--------|-------------|------------|---------------------------------------------------------------------------------------------|--------------------|
| i<br>A | Polypeptide | Residues   |                                                                                             | and Databases      |
| į      | 1           |            |                                                                                             | BLAST_DOMO         |
|        |             |            | DM00004 P21146 193-437; V193-G438                                                           |                    |
|        |             | •          | DM00004P328651193-438; V193-C438                                                            |                    |
|        |             |            | DM00004 Q0953/ 205-450; V193-C459<br>DM00004 Q09639 193-439; V193-G438                      |                    |
|        |             |            | 3, S137, S156, S168, S247, S290, S343, S370, S423, S434,                                    | MOTIFS             |
|        |             |            | -                                                                                           |                    |
|        |             |            |                                                                                             | MOTIFS             |
|        |             |            | signature: I197-K220                                                                        | MOTIFS             |
|        |             |            | Phreonine protein kinases active-site signature: V313-L325                                  | MOTIFS             |
| 14     | 7517238CD1  | 603        | associated domain 1: S554-V603                                                              | HIMMER PFAM        |
|        |             |            | kinase domain: Y11-I215                                                                     | HIMMER_PFAM        |
|        |             |            | Threonine protein kinases, catalytic domain: Y11-I215                                       | HMMER_SMART        |
|        |             |            | IPPER                                                                                       | BLAST_PRODOM       |
|        |             |            | MATERNAL EMBRYONIC LEUCINE PK38 W03G1.6 PD017644: I215-V603                                 |                    |
|        |             |            | PROTEIN KINASE DOMAIN                                                                       | BLAST_DOMO         |
|        |             |            | DM00004 S52244 15-255:L13-E87 E88-M206                                                      |                    |
|        |             |            | PROTEIN KINASE DOMAIN                                                                       | BLAST_DOMO         |
| _      |             |            | DM00004 P06782 57-296:E15-D93 E88-M206                                                      |                    |
|        |             |            | PROTEIN KINASE DOMAIN                                                                       | BLAST_DOMO         |
|        |             |            | DM00004 P54645 17-258:L13-E87 E88-M206                                                      |                    |
|        |             |            | PROTEIN KINASE DOMAIN                                                                       | BLAST_DOMO         |
|        |             |            | DM00004 S51025 18-258:L13-E87 E88-M206                                                      |                    |
|        |             |            | Potential Phosphorylation Sites: S140, S205, S308, S315, S496, S501, S600, T56, T252, T313, | MOTIFS             |
|        |             |            | T339, T380, T439, T441, T470, T517, T547, T552, Y10, Y379, Y590                             |                    |
|        |             |            | Potential Glycosylation Sites: N306, N437, N514                                             | MOTIFS             |
|        |             |            |                                                                                             | MOTIFS             |
|        |             |            | ı signature: 117-K40                                                                        | MOTIFS             |
| 75     | 7518685CD1  | 750        | Protein-tyrosine phosphatase: N54-E231                                                      | HMMER_PFAM         |
|        |             |            |                                                                                             |                    |

| SEQ | SEQ Incyte        | Amino Acid | Amino Acid   Signature Sequences, Domains and Motifs                                                                        | Analytical Methods |
|-----|-------------------|------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------|
| ДÖ  | Polypeptide<br>ID | Residues   |                                                                                                                             | and Databases      |
|     |                   |            | Protein tyrosine phosphatase, catalytic domain: E23-K234                                                                    | HMMER SMART        |
|     |                   |            | tyrosine phosphatase, catalytic domain motif: T127-E231                                                                     | HIMMER SMART       |
|     |                   |            | phosphatase family IPB000387:                                                                                               | BLIMPS_BLOCKS      |
|     |                   |            | Tyrosine specific protein phosphatases signature and profiles: P147-V239                                                    | PROFILESCAN        |
|     |                   |            | Protein tyrosine phosphatase signature PR00700: S83-190, Y99-E119, R126-S143, P165-1183, F199-BLIMPS_PRINTS S214, L215-V225 | BLIMPS_PRINTS      |
|     |                   |            | 77                                                                                                                          | BLIMPS PRINTS      |
|     |                   |            |                                                                                                                             | BLAST_PRODOM       |
|     |                   |            | TYROSINE TRANSMEMBRANE GLYCOPROTEIN RECEPTOR PD000167:N54-E119 F131-<br>E231                                                |                    |
|     |                   |            |                                                                                                                             | BLAST_PRODOM       |
|     |                   |            | SE                                                                                                                          | BLAST_PRODOM       |
|     |                   |            | ELL PROTEIN TYROSINE PHOSPHATASE 70ZPEP HYDROLASE                                                                           | BLAST_PRODOM       |
|     |                   |            | NE-PHOSPHATASE<br>2-291:E22-L123 E124-R235                                                                                  | BLAST_DOMO         |
|     |                   |            |                                                                                                                             | BLAST_DOMO         |
|     |                   |            | PROTEIN-TYROSINE-PHOSPHATASE<br>DM00089 Q05209 14-295:K21-L123 E124-R235                                                    | BLAST_DOMO         |
|     |                   |            |                                                                                                                             | BLAST_DOMO         |
|     |                   |            | 78, S121, S143, S245, S295, S305, S413, S436,                                                                               | MOTIFS             |
|     |                   |            | S489, S619, S624, S667, S677, S694, S736, T20, T47, T77, T109, T210, T275, T287, T319, T337, T393, T595, T681, Y44, Y66     |                    |
|     |                   |            | Glycosylation Sites: N198, N259, N327, N411, N441, N454, N534, N674, N721, N722                                             | MOTIFS             |

| [ E         |                   |            |                                                                               |                    |
|-------------|-------------------|------------|-------------------------------------------------------------------------------|--------------------|
| ا<br>ا<br>ا |                   | Amino Acid | Amino Acid Signature Sequences, Domains and Motifs                            | Analytical Methods |
| a ë         | Polypeptide<br>ID | Residues   |                                                                               | and Databases      |
|             |                   |            | Tyrosine specific protein phosphatases active site: I168-I180                 | MOTTES             |
| 19          | 7520192CD1        | 206        | signal_cleavage: M1-A42                                                       | SPSCAN             |
|             |                   |            | FERM domain (Band 4.1 family): C31-H149                                       | HIMMER PFAM        |
|             |                   |            | Band 4.1 homologues: Q25-H149                                                 | HIMMER SMART       |
|             |                   |            | Band 4.1 family IPB000299; E129-K172                                          | BLIMPS BLOCKS      |
|             |                   |            |                                                                               | PROFILESCAN        |
|             |                   |            | Band 4.1 family domain signatures and profile: G124-K172                      | PROFILESCAN        |
|             |                   |            | Band 4.1 protein family signature PR00935: L62-L74, E129-G145                 | BLIMPS PRINTS      |
|             |                   |            | PROTEIN CYTOSKELETON STRUCTURAL PHOSPHATASE HYDROLASE PROTEIN                 | BLAST PRODOM       |
|             |                   |            | TYROSINE PHOSPHORYLATION MOESIN TYROSINE BAND PD000961:V30-R123 R123-<br>F148 | l                  |
|             |                   |            | PROTEIN CYTOSKELETON STRUCTURAL PROTEIN TYROSINE PHOSPHATASE                  | BLAST PRODOM       |
|             |                   |            | HYDROLASE BAND ALTERNATIVE SPLICING PHOSPHORYLATION PD014063: H149-           |                    |
|             |                   |            | E202                                                                          |                    |
|             |                   |            | PROTEIN TYROSINE PHOSPHATASE MEGI EC 3.1.3.48 PTPASE MEGI MEG                 | BLAST_PRODOM       |
|             |                   |            | STACCTORAL FROIDING TONNELLETON HYDROLANE PDI29232; MI-V30                    |                    |
|             |                   |            | BAND 4<br>DM00609 P29074 19-463:E19-R123 F110-L203                            | BLAST_DOMO         |
|             |                   |            | BAND 4                                                                        | RI AST DOMO        |
|             |                   |            | DM00609 P11171 200-623:R24-R123 K116-R200                                     |                    |
|             |                   |            | BAND 4                                                                        | BLAST_DOMO         |
|             |                   |            | DM00609 P11434 183-612;R24-R123 K116-R200                                     |                    |
|             |                   |            | BAND 4                                                                        | BLAST DOMO         |
|             |                   |            | DM00609 P28191 18-438:E28-R123 G124-E202                                      |                    |
|             |                   |            | Potential Phosphorylation Sites: S99, S126, S155, S189, T2, T65, T137         | MOTIFS             |
|             |                   |            | Band 4.1 family domain signature 1: W84-D113                                  | MOTIFS             |
| <u></u>     | 7520428CD1        | 733        | Signal Peptide: M31-A54                                                       | HMMER              |
|             |                   |            | signal_cleavage: M1-S68                                                       | SPSCAN             |
|             |                   |            | Protein kinase domain: F427-F700                                              | HMMER_PFAM         |

| S. C. | Trans             | A Seite    | Simutura Camanaa Damaine and Matife                                                             | Analytical Methods |
|-------|-------------------|------------|-------------------------------------------------------------------------------------------------|--------------------|
| 72    | ıncyte            | Amino Acid | Annio Acid Signature Sequences, Domains and Mours                                               | A That Lane        |
| A Ż   | Polypeptide<br>TD | Residues   |                                                                                                 | and Databases      |
|       |                   |            | Serine/Threonine protein kinases, catalytic domain: F427-F700                                   | HIMMER_SMART       |
|       |                   |            | Eukaryotic protein kinase IPB000719: H542-L557, Y617-G627                                       | BLIMPS_BLOCKS      |
|       |                   |            | Protein kinases signatures and profile: F494-M574                                               | PROFILESCAN        |
|       |                   |            | Tyrosine kinase catalytic domain signature PR00109: M504-K517, Y540-I558, V621-D643             | BLIMPS_PRINTS      |
|       |                   |            | PROTEIN KINASE SERINE/THREONINE KIN4 MICROTUBULE ASSOCIATED TESTIS                              | BLAST_PRODOM       |
|       |                   |            | SPECIFIC TESTIS-SPECIFIC MAST205 PD041650: K236-D426                                            |                    |
|       |                   |            | MICROTUBULE ASSOCIATED TESTIS SPECIFIC SERINE/THREONINE PROTEIN KINASE                          | BLAST_PRODOM       |
|       |                   |            | 205KD TESTIS-SPECIFIC SERINE/THREONINE PROTEIN KINASE MAST205 KINASE                            |                    |
|       |                   | •          | PD135564: C83-Y235                                                                              |                    |
|       |                   |            | PROTEIN KINASE DOMAIN                                                                           | BLAST_DOMO         |
|       |                   |            | DM08046 P05986 1-397:D183-P206 S423-K573 V600-E733                                              |                    |
|       |                   |            | PROTEIN KINASE DOMAIN                                                                           | BLAST_DOMO         |
|       |                   |            | DM00004 S42867 75-498:1430-T581 H587-F728                                                       |                    |
|       |                   |            | PROTEIN KINASE DOMAIN                                                                           | BLAST_DOMO         |
|       |                   |            | DM00004 S42864 41-325:E428-K573 H587-T688                                                       |                    |
|       |                   |            | PROTEIN KINASE DOMAIN                                                                           | BLAST_DOMO         |
|       |                   |            | DM00004 A54602 455-712: T429-G687                                                               |                    |
|       |                   |            | Potential Phosphorylation Sites: S75, S82, S86, S115, S119, S145, S168, S196, S395, S418, S423, | MOTIFS             |
|       |                   |            | S448, S690, S721, S726, T181, T421, T429, T480, T496, T644, T674, T701, T730                    |                    |
|       |                   |            | Leucine zipper pattern: L515-L536                                                               | MOTIFS             |
|       |                   |            | Serine/Threonine protein kinases active-site signature: 1546-1558                               | MOTIFS             |
| 18    | 7522586CD1        | 114        | PITSLRE ALPHA ISOFORM PROTEIN KINASE PBETA22 CELL DIVISION CYCLE 2LIKE                          | BLAST_PRODOM       |
|       | ••••              |            | PD009467: M1-K108                                                                               |                    |
|       |                   |            | Potential Phosphorylation Sites: S7, S43, S47, S72, S92, T12, T61                               | MOTIFS             |
| 61    | 7524017CD1        | 612        | Kinase associated domain 1: S563-V612                                                           | HIMMER_PFAM        |
|       |                   |            | Protein kinase domain: Y11-I224                                                                 | HMMER_PFAM         |
|       |                   |            | Serine/Threonine protein kinases, catalytic domain: Y11-I224                                    | HMMER_SMART        |
|       |                   |            | Receptor tyrosine kinase class V IPB001426: F74-K95, P96-K122, C129-Y161                        | BLIMPS_BLOCKS      |
|       |                   |            | Phorbol esters/diacylglycerol binding domain IPB002219: T16-K26, V84-D93, C130-E139             | BLIMPS_BLOCKS      |

| CEO<br>CEO | CEO Incide        | Amino Agid   | Constitute Courses Brands 3 Marite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |
|------------|-------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| ץ<br>ו מ   | mcyte             | Piller ordin | Admino Acid Signature Sequences, Domains and Motis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Analytical Methods |
| a Ö        | Polypeptide<br>ID | Residues     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and Databases      |
|            |                   |              | Tyrosine kinase catalytic domain signature PR00109: L47-I60, Y83-F101, A151-D173, L193-M215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | BLIMPS_PRINTS      |
|            |                   |              | KINASE PROTEIN KIAA0175 PK38 MATERNAL EMBRYONIC LEUCINE ZIPPER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BLAST_PRODOM       |
|            |                   |              | SECURITY THE COURT OF THE PROPERTY OF THE PROP |                    |
|            |                   |              | PROTEIN KINASE DOMAIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | BLAST_DOMO         |
|            |                   |              | DM00004 S52244 15-255:L13-G48L47-M215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |
|            |                   |              | PROTEIN KINASE DOMAIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | BLAST DOMO         |
|            |                   | •            | DM00004 P06782 57-296:B15-L47 G52-M215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ]                  |
|            |                   |              | PROTEIN KINASE DOMAIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | BLAST DOMO         |
|            |                   |              | DM00004 P54645 17-258:L13-L47 Y49-M215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ı                  |
|            |                   |              | PROTEIN KINASE DOMAIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | BLAST DOMO         |
|            |                   |              | DM00004 S24578 18-262:L13-L47 Y49-M215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |
|            |                   |              | Potential Phosphorylation Sites: S66, S149, S214, S317, S324, S505, S510, S609, T261, T322.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MOTIFS             |
|            |                   |              | T348, T389, T448, T450, T479, T526, T556, T561, Y10, Y388, Y599                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
|            |                   |              | Potential Glycosylation Sites: N315, N446, N523                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MOTIFS             |
|            |                   |              | Leucine zipper pattern: L126-L147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MOTIFS             |
|            |                   |              | Prenyl group binding site (CAAX box):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MOTIFS             |
|            |                   |              | Protein kinases ATP-binding region signature: 117-K40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MOTIFS             |
|            |                   |              | Serine/Threonine protein kinases active-site signature: Y89-F101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MOTIFS             |
| ຊ          | 7525773CD1        | 311          | GHMP kinases putative ATP-binding protein: V5-P311                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HIMMER_PFAM        |
|            |                   |              | mevalonate kinase: L7-S309                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | HIMIMER_TIGRFAM    |
|            |                   |              | GHMP kinases putative ATP-binding domain IPB001745: P11-H20, H276-C287                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BLIMPS_BLOCKS      |
|            |                   |              | Mevalonate kinase signature PR00959: A10-N34, E141-G160, H276-K293                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | BLIMPS PRINTS      |
|            |                   |              | KINASE ATP-BINDING TRANSFERASE GALACTOKINASE GALACTOSE METABOLISM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BLAST_PRODOM       |
|            |                   |              | MEVALONATE MK BIOSYNTHESIS PROTEIN PD002375: 1144-L292                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |
|            |                   |              | MEVALONATE KINASE TRANSFERASE ATP-BINDING MK BIOSYNTHESIS STEROL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BLAST_PRODOM       |
|            |                   |              | PROTEIN CHOLESTEROL MVK PD007691: L6-158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |
|            |                   |              | MEVALONATE KINASE MK TRANSFERASE CHOLESTEROL BIOSYNTHESIS ATP-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BLAST_PRODOM       |
|            |                   |              | BINDING DISEASE MUTATION PD013931: K59-R124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |

| SEO | SEO Incyte  | Amino Acid | Amino Acid   Signature Sequences, Domains and Motifs                                     | Analytical Methods |
|-----|-------------|------------|------------------------------------------------------------------------------------------|--------------------|
| í   | Polypeptide | Residues   |                                                                                          | and Databases      |
| Ö   | А           |            |                                                                                          |                    |
|     |             |            | DOMAIN                                                                                   | BLAST_DOMO         |
|     |             |            |                                                                                          |                    |
|     |             |            | GHMP KINASES PUTATIVE ATP-BINDING DOMAIN                                                 | BLAST_DOMO         |
|     |             |            |                                                                                          |                    |
|     |             |            | DOMAIN                                                                                   | BLAST_DOMO         |
|     |             |            |                                                                                          |                    |
|     |             |            | GDOMAIN                                                                                  | BLAST_DOMO         |
|     |             |            |                                                                                          |                    |
|     |             |            | Potential Phosphorylation Sites: S73, S149, S171, S302, T104, T126, T214                 | MOTIFS             |
| 21  | 7525861CD1  | 206        |                                                                                          | BLIMPS_PRINTS      |
| 1   |             |            | C 3.1.3.48 PHOSPHO-                                                                      | BLAST_PRODOM       |
|     |             |            |                                                                                          |                    |
|     |             |            |                                                                                          | MOTIFS             |
|     |             |            |                                                                                          | MOTIFS             |
| 22  | 2509577CD1  | 1125       | V198-E238, S239-A279, E280-E320, N401-S448                                               | HIMMER_PFAM        |
|     |             |            | Protein kinase domain: Y519-I783                                                         | HIMMER_PFAM        |
|     |             |            | Armadillo/beta-catenin-like repeats: A197-E238, C278-E320, N401-S448                     | HIMMER_SMART       |
|     |             |            | Serine/Threonine protein kinases, catalyti: Y519-L.791                                   | HIMMER_SMART       |
|     |             |            | Tyrosine kinase, catalytic domain: Y519-I783                                             | HIMMER_SIMART      |
|     |             |            | Receptor tyrosine kinase class II IPB002011: I578-K622, I651-K702, L735-V779             | BLIMPS BLOCKS      |
|     |             |            | Protein kinases signatures and profile: R630-S684                                        | PROFILESCAN        |
|     |             |            | Tyrosine kinase catalytic domain signature PR00109: L645-L663, A710-T732, Y754-I776      | BLIMPS_PRINTS      |
|     |             |            | SERINE/THREONINE PROTEIN KINASE D1044.3 IN CHROMOSOME III EC 2.7.1. PROTEIN BLAST_PRODOM | BLAST_PRODOM       |
|     |             |            | TRANSFERASE ATP-BINDING EGF-LIKE DOMAIN PD140750:E108-1334 D775-Q813 C319-               |                    |
|     |             |            | G517                                                                                     |                    |

| SEQ | _                 | Amino Acid | Amino Acid Signature Sequences, Domains and Motifs                                                       | Analytical Methods |
|-----|-------------------|------------|----------------------------------------------------------------------------------------------------------|--------------------|
| a ö | Polypeptide<br>ID | Residues   |                                                                                                          | and Databases      |
|     |                   |            | 404                                                                                                      | BLAST_DOMO         |
|     |                   |            | P11837 13-285:1521-H646 I651-D775                                                                        |                    |
|     |                   |            | P41951 433-687: I521-I776                                                                                |                    |
|     |                   |            | P51954 6-248: L522-1776                                                                                  |                    |
|     |                   |            | P51955 10-261: 1521-1776                                                                                 |                    |
|     |                   |            | Potential Phosphorylation Sites: S40, S235, S266, S376, S479, S540, S567, S618, S696, S755, S852, MOTIFS | MOTIFS             |
|     | _                 |            | S900, S935, S974, S1039, S1068, S1108, T11, T15, T22, T58, T270, T324, T593, T670, T812,                 |                    |
|     |                   |            | T898, T1077, T1092, T1123, Y746                                                                          |                    |
|     |                   |            | Potential Glycosylation Sites: N86, N96, N187, N401, N793, N911, N1105                                   | MOTIFS             |
|     |                   |            | Protein kinases ATP-binding region signature: L525-K548                                                  | MOTIFS             |
|     |                   |            | protein kinases specific active-site signature: 1651-L663                                                | MOTIFS             |
| 23  | 750522CD1         | 888        |                                                                                                          | HIMMER_PFAM        |
|     |                   |            | hreonine protein kinases, catalyti: Y61-L316                                                             | HIMMER_SMART       |
|     |                   |            | Tyrosine kinase, catalytic domain: Y61-L316                                                              | HIMMER_SMART       |
|     |                   |            | Receptor tyrosine kinase class III IPB001824: M97-R151, Q161-A200, A218-P260                             | BLIMPS_BLOCKS      |
|     |                   |            |                                                                                                          | PROFILESCAN        |
|     |                   |            | ; PR00109: M137-N150, H175-L193, T242-N264, F285-                                                        | BLIMPS_PRINTS      |
|     |                   |            | PROTEIN KINASE DOMAIN DM00004                                                                            | BLAST_DOMO         |
|     |                   |            | P51954 6-248: 164-1307                                                                                   |                    |
|     |                   |            | P51955 10-261: V63-I307                                                                                  |                    |
|     |                   |            | P51957 8-251: 164-1307                                                                                   |                    |
|     |                   |            | 008942 22-269: 167-1307                                                                                  |                    |
|     |                   |            | Potential Phosphorylation Sites: S53, S105, S126, S300, S399, S487, S501, S556, S574, S754, S781, MOTIFS | MOTIFS             |
|     |                   | ,<br>      | 8794, S804, S838, T32, T256, T442, T640, T660, T711, T763, T799, T821, T834, T865, T873,                 | •                  |
|     |                   |            | Y474, Y605                                                                                               |                    |
|     |                   |            | Potential Glycosylation Sites: N212, N240, N636, N861                                                    | MOTIFS             |
|     |                   |            | Protein kinases ATP-binding region signature: 167-K90                                                    | MOTIFS             |
|     |                   |            | Serine/Threonine protein kinases active-site signature: 1181-L193                                        | MOTIFS             |
|     |                   |            |                                                                                                          |                    |

|     |                   |            |                                                                                       | A l. at a. 1 M facts and |
|-----|-------------------|------------|---------------------------------------------------------------------------------------|--------------------------|
| SEQ | SEQ Incyte        | Amino Acid | Amino Acid   Signature Sequences, Domains and Motifs                                  | Analytical Methods       |
| ДË  | Polypeptide<br>ID | Residues   |                                                                                       | and Databases            |
| 24  | 7524408CD1        | 487        | GDA1/CD39 (nucleoside phosphatase) family: T80-K487                                   | HIMMER_PFAM              |
|     |                   |            | Cytosolic domain: MI-I34                                                              | TIMHIMIMER               |
|     |                   |            | Transmembrane domain: M35-I54                                                         |                          |
|     |                   |            | Non-cytosolic domain: R55-K487                                                        |                          |
|     |                   |            | GDA1/CD39 family of nucleoside phosphatase IPB000407: 191-Y105, P173-R183, I217-E238, | BLIMPS_BLOCKS            |
|     |                   |            | G268-Y281                                                                             |                          |
|     |                   |            | HYDROLASE TRANSMEMBRANE PROTEIN NUCLEOSIDE CD39 NUCLEOSIDE-                           | BLAST_PRODOM             |
|     |                   |            | TRIPHOSPHATASE TRIPHOSPHATE NTP-ASE PRECURSOR ATP-                                    |                          |
|     |                   |            | DIPHOSPHOHYDROLASE PD003822:N86-K487 191-Y105                                         |                          |
|     |                   |            | GUANOSINE DIPHOSPHATASE-LIKE PROTEIN KIAA0392 PD070805: M1-P85                        | BLAST_PRODOM             |
|     |                   |            | ACTIVATION; NUCLEOSIDE; ANTIGEN; LYMPHOID; DM02628                                    | BLAST_DOMO               |
|     |                   |            | 156242 40-471:N86-S291 K264-F472                                                      |                          |
|     |                   |            | P49961 40-471:N86-S291 K264-F472                                                      |                          |
|     |                   |            | P32621 84-517:Y89-G235 T266-Y435                                                      |                          |
|     |                   |            | P40009 1-462: N84-S479                                                                |                          |
|     |                   | -          | Potential Phosphorylation Sites: S212, S218, S292, S479, T75, T144, T266, Y175, Y477  | MOTIFS                   |
|     |                   |            | Potential Glycosylation Sites: N404, N407                                             | MOTIFS                   |
| 25  | 7526163CD1        | 1309       | PDZ domain (Also known as DHR or GLGF): P950-L1037                                    | HMMER_PFAM               |
|     |                   |            | Protein kinase domain: F367-F640                                                      | HMMER_PFAM               |
|     |                   |            | Domain present in PSD-95, Dlg, and ZO-1/2: K958-E1038                                 | HMMER_SMART              |
|     |                   |            | Extension to Ser/Thr-type protein kinases: L641-F704                                  | HIMMER_SMART             |
|     |                   |            | Serine/Threonine protein kinases, catalyt: F367-F640                                  | HIMMER_SMART             |
|     |                   |            | Eukaryotic protein kinase IPB000719: H482-L497, Y557-G567                             | BLIMPS_BLOCKS            |
|     |                   |            | Tyrosine kinase catalytic domain signature PR00109: M444-K457, Y480-1498, V561-D583   | BLIMPS_PRINTS            |
|     |                   |            | PROTEIN KINASE SERINE/THREONINE KIN4 MICROTUBULE ASSOCIATED TESTIS                    | BLAST_PRODOM             |
|     |                   |            | SPECIFIC TESTIS SPECIFIC MAST205 PD041650: R177-D366                                  |                          |
|     |                   |            | MICROTUBULE ASSOCIATED TESTIS SPECIFIC SERINE/THREONINE PROTEIN KINASE                | BLAST_PRODOM             |
|     | -                 |            | 205KD TESTIS SPECIFIC SERINE/THREONINE PROTEIN KINASE MAST205 KINASE                  |                          |
|     |                   |            | PD069998: T1034-D1128                                                                 |                          |

#### Table :

| SEO | SEO Incyte        | Amino Acid | Amino Acid Signature Sequences. Domains and Motifs                                                                                                                                                                                                                                                                                                                                                          | Analytical Methods        |
|-----|-------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| АŻ  | Polypeptide<br>ID | Residues   |                                                                                                                                                                                                                                                                                                                                                                                                             | and Databases             |
|     |                   |            | MICROTUBULE ASSOCIATED TESTIS SPECIFIC SERINE/THREONINE PROTEIN KINASE 205KD TESTIS SPECIFIC SERINE/THREONINE PROTEIN KINASE MAST205 KINASE PD135564: G11-Y176                                                                                                                                                                                                                                              | BLAST_PRODOM              |
|     |                   |            | MICROTUBULE ASSOCIATED TESTIS SPECIFIC SERINE/THREONINE PROTEIN KINASE 205KD TESTIS SPECIFIC SERINE/THREONINE PROTEIN KINASE MAST205 KINASE PD182663: 1719-W984                                                                                                                                                                                                                                             | BLAST_PRODOM              |
|     |                   |            | PROTEIN KINASE DOMAIN<br>DM00004<br> S42867 75-498:1370-K513 H527-F668 A1135-A1148<br> A54602 455-712: T369-G627                                                                                                                                                                                                                                                                                            | BLAST_DOMO                |
|     |                   |            | PROTEIN KINASE DOMAIN<br>DM08046<br> P05286 1-397:S365-K513 V540-E684<br> P06244 1-396:D366-K513 V540-E684                                                                                                                                                                                                                                                                                                  | BLAST_DOMO                |
|     |                   |            | Potential Phosphorylation Sites: S57, S61, S85, S108, S146, S257, S336, S358, S365, S621, S666, S672, S680, S690, S701, S709, S726, S738, S747, S767, S792, S793, S921, S930, S946, S956, S963, S985, S1031, S1041, S1060, S1063, S1074, S1080, S1101, S1180, S1273, S1215, S1257, S1262, T1068, T1181, T121, T420, T584, T670, T685, T721, T907, T1035, T1036, T235, T369, T436, T854, T1088, T1175, T1036 | MOTIFS                    |
|     |                   |            | Potential Glycosylation Sites: N64, N1039                                                                                                                                                                                                                                                                                                                                                                   | MOTIFS                    |
| 92  | 7526158CD1        | 1331       | PDZ domain (Also known as DHR or GLGF): P972-L1059                                                                                                                                                                                                                                                                                                                                                          | MOTIFS<br>HMMER_PFAM      |
|     |                   |            | Protein kinase domain: F389-F662 Domain present in PSD-95, Dlg, and ZO-1/2: K980-E1060                                                                                                                                                                                                                                                                                                                      | HMMER_PRAM<br>HMMER_SMART |
|     |                   |            | Serine/Threonine protein kinases, catalyt: F389-F662                                                                                                                                                                                                                                                                                                                                                        | HMMER_SMART               |
|     |                   |            | Eukaryotic protein kinase IPB000719: H504-L519, Y579-G589  Tvrosine kinase catalytic domain signature PR00109: M466-K479 V502-I520 V583-D605                                                                                                                                                                                                                                                                | BLIMPS BLOCKS             |
|     |                   |            | PROTEIN KINASE SERINE/THREONINE KIN4 MICROTUBULE ASSOCIATED TESTIS SPECIFIC TESTIS SPECIFIC MAST205 PD041650: R199-D388                                                                                                                                                                                                                                                                                     | BLAST_PRODOM              |

| íe       | Incyte            | Amino Acid | Amino Acid Signature Segmences Domains and Motife                                                                                                                                                                                                                                                                                                                                                                             | Ameliation Matheda |
|----------|-------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
|          | _                 |            | organization of developes, Domains and Mouns                                                                                                                                                                                                                                                                                                                                                                                  | Analytical Methods |
| NO<br>NO | Polypeptide<br>ID | Kesidues   |                                                                                                                                                                                                                                                                                                                                                                                                                               | and Databases      |
| •        |                   |            | MICROTUBULE ASSOCIATED TESTIS SPECIFIC SERINE/THREONINE PROTEIN KINASE 205KD TESTIS SPECIFIC SERINE/THREONINE PROTEIN KINASE MAST205 KINASE PD069998: T1056-D1150                                                                                                                                                                                                                                                             | BLAST_PRODOM       |
|          |                   |            | MICROTUBULE ASSOCIATED TESTIS SPECIFIC SERINE/THREONINE PROTEIN KINASE 205KD TESTIS SPECIFIC SERINE/THREONINE PROTEIN KINASE MAST205 KINASE PD135564: C47-Y198                                                                                                                                                                                                                                                                | BLAST_PRODOM       |
|          |                   |            | MICROTUBULE ASSOCIATED TESTIS SPECIFIC SERINE/THREONINE PROTEIN KINASE 205KD TESTIS SPECIFIC SERINE/THREONINE PROTEIN KINASE MAST205 KINASE PD182663: T741-W1006                                                                                                                                                                                                                                                              | BLAST_PRODOM       |
|          |                   |            | PROTEIN KINASE DOMAIN DM00004                                                                                                                                                                                                                                                                                                                                                                                                 | BLAST_DOMO         |
|          |                   |            | S42867 75-498:1392-K535 H549-F690 A1157-A1170<br> A54602 455-712: T391-G649                                                                                                                                                                                                                                                                                                                                                   |                    |
|          |                   | -          | PROTEIN KINASE DOMAIN DM08046<br> P05986 1-397:S387-K535 V562-E706<br> P06244 1-396:D388-K535 V562-E706                                                                                                                                                                                                                                                                                                                       | BLAST_DOMO         |
|          |                   |            | Potential Phosphorylation Sites: S3, S46, S79, S83, S107, S130, S168, S279, S358, S380, S387, S643, S688, S694, S702, S712, S723, S731, S748, S760, S769, S789, S814, S815, S943, S952, S968, S978, S985, S1007, S1053, S1063, S1082, S1085, S1096, S1102, S1123, S1202, S1284, S1295, S1237, S1279, S1284, T1090, T1203, T143, T442, T606, T692, T707, T743, T929, T1057, T1328, T257, T391, T458, T876, T1110, T1197, T1328 | MOTIFS             |
|          |                   |            | Serine/Threonine protein kinases active-site signature: 1508-1520                                                                                                                                                                                                                                                                                                                                                             | MOTIFS             |
| 27       | 7519807CD1        | 80         | MAM domain IPB000998: C54-V66                                                                                                                                                                                                                                                                                                                                                                                                 | BLIMPS_BLOCKS      |
|          |                   |            | main signature PR00020: G52-K70                                                                                                                                                                                                                                                                                                                                                                                               | BLIMPS_PRINTS      |
|          |                   |            | Phosphorylation Sites: T27, T34                                                                                                                                                                                                                                                                                                                                                                                               | MOTIFS             |
| 78       | 7526180CD1        | 495        | ACIDIC SERINE CLUSTER REPEAT<br>DM03496[P32583]57-405: S261-D495                                                                                                                                                                                                                                                                                                                                                              | BLAST_DOMO         |
|          |                   |            | Potential Phosphorylation Sites: S141, S217, S239, S294, S296, S359, S430, S442, S451, S466, S476, T194, T196, T241, T251, T342, T375, T392, T412, T417                                                                                                                                                                                                                                                                       | MOTIFS             |

| Residues   Residues                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SEO | SEO Incyte | Amino Acid | Signature Seguences Domains and Motife                                             |                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------|------------|------------------------------------------------------------------------------------|------------------|
| Potential Glycosylation Sites: N192, N220, N289, N465                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A S |            | Residues   |                                                                                    | and Databases    |
| 7526185CD1   157   Serine-Throotine protein knases, catalytic domain: P24-Y157     KINASE PROTEIN DOMAIN TRANSFERASE PD00584: L27-G36     ROTEIN KINASE DOMAIN     DM00004 R045714 17-262: L27-V151     DM00004 R045714 17-262: L27-V151     DM00004 R04576 21-262: R26-V151     DM00004 R04576 21-262: R26-V151     DM00004 R0458 20-262: R26-V151     DM00004 R0458 20-262: R26-V151     DM00004 R0458 20-262: R26-V151     Potential Glycosylation Sites: S04, S75, S106, S137, T25, T46     Potential Glycosylation Sites: N44     Protein kinase Almolining region signature: R36-K33     Resinc-Throotine protein kinases, catalytic domain: F46-G305     Bakaryotic protein kinase BrB000719: H189-L204     Protein kinase signature and profile: 1713-P230     CASEIN KINASE DOMAIN ROPORM CKIGANMA TRANSFERASE     SERINE/TREONINIEPROTEIN ATPBINDING MULTIGENE PD026544: MI-NA5     Protein kinases ATP-bulming region signature: L25-K75     DM00004 A56711 46-303: V48-L76 E109-R302     DM00004 A56711 46-303: V48-L76 E109-R302     Potential Phosphorylation Sites: S19, S99, S192, S202, T84, T183, T210, T232, T247     Protein kinases ATP-bulming region signature: L193-V205     Serine/Threonine protein kinases active-site signature: L193-V205     Serine/Threonine protein kinases callytic domain: V46-K313     Bulkaryotic protein kinases, calalytic domain: V46-K313     Bulkaryotic protein kinases (1980) C106-C188, R39-C249     Bulkaryotic protein kinases (1980) C106-C249     Bulkaryotic protein kinases (1980) C106-C249     Bulkaryotic protein kinases (1980) C106-C249     Bulkaryotic protein kinases (1980) C106-C188     Bulkaryotic protein kinases (1980) C106-C349     Bulkaryotic protein kinases (1980) C106-C349    |     |            |            | Potential (Flycosylation Sites: N192 N220 N265                                     | ommo) (          |
| KINASE PROTEIN DOMAIN TRANSFERASE PD00584;127-G36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 53  | 7526185CD1 | 157        | Serine/Threonine protein kinases catalytic domain: E24.V157                        | THATTE CALABE    |
| PROTEIN KINASE DOMAIN   DM00004 A53714 17-262: L27-V151   DM00004 A53714 17-262: L27-V151   DM00004 B98458 20-262: 130-V151   Poteniia Phospolyaliano Sites: N44   Protein kinases ATP-binding region signature: 130-K53   Protein kinases ATP-binding region signature: 130-K53   Protein kinases signatures and proffice T173-P230   CASEIN KINASE I GAMANA SIOCPAM CKIGAAMAA TAANSFERASE   SERINETHREONINEPROTEIN ATPBINDING MULTIGENE PD026544: M1-N45   PROTEIN KINASE DOMAIN   DM00004 S6711 46-303-V48-L76 E109-R302   DM000004 S6711 46-303-V48-L76 E109-R302   Protein kinases ACIP-binding region signature: L35-V205   Protein kinases ACIP-binding region signature: L39-V205   Protein kinases Catalvic domain: V46-K313   Eukayotic protein kinase PB000719: C168-L183, 1239-C349                                                                                                                                                                                                                                                                                                                                                                                                          |     |            |            | KINASE PROTEIN DOMAIN TO A NSEED A SE DOMASOA. I 27                                | DI TO THE SIMAK! |
| DM00004 4937 471-4751                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |            |            | DROTTEN FINA SE DOMANA                                                             | BLIMPS PRODOM    |
| DM00004 4930147 17-202; L22-17.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |            |            | 1 XV 1 ELIV MATASE DOMENTA<br>  DMODDAIN 5271 A 177 769 . I 27 XX 151              | BLAST_DOMO       |
| DM00004 P98458 20-262: 130-V151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |            |            | DM0000A[45537] 14 17-202; L27-7 131                                                |                  |
| DM00004P38692J2-266: J50-V151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |            |            |                                                                                    |                  |
| Potential Phosphorylation Sites: 534, 575, S106, S137, T25, T46    Potential Glycosylation Sites: 834, 575, S106, S137, T25, T46    Protein kinases ATP-binding region signature: 130-K53    Protein kinases ATP-binding region signature: 130-K53    Protein kinase domain: F46-G305   SerineThreonine protein kinases, catalytic domain: F46-G305   Eukaryotic protein kinases, catalytic domain: F46-G305   CASEN KINASE I GAMAA ISOFORM CKIGAMAA TRANSFERASE   SERINETHREONINEPROTEIN ATPBINDING MULTIGENE PD026544; MI-N45     PROTEIN KINASE I GAMAA ISOFORM CKIGAMAA TRANSFERASE   SERINETHREONINEPROTEIN ATPBINDING MULTIGENE PD026544; MI-N45     PROTEIN KINASE DOMAIN   DM00004 556711 46-303:V48-L76 E109-R302   DM00004 56711 46-303:V48-L76 E109-R302   DM000004 56711 45-301:V48-L76 E109-R302   DM000004 56711 45-301:V48-L76 E109-R302   DM000004 56711 45-301:V48-L76 E109-R302   DM000004 566711 45-301:V48-L76 E109-R302   DM000004 566711 45-301:V48-L76 E109-R302   DM000004 566711 45-301:V48-L76 E109-R302   DM000004 566711 45-301:V48-L76 E109-R302   DM000004 56671 45-301:V48-L76 E109-R302   DM000004 5667 11 45-301:V48-L76 E109-R302   DM0000004 5667 11 45-301:V48-L76   DM000004 5667 11 45-301:V48-L |     |            |            | DM00004 P38692 24-266; K26-V151                                                    |                  |
| Potential Glycosylation Sites: N44     Protein kinases ATP-binding region signature: 130-K53     Protein kinase domain: F46-G305     Protein kinase domain: F46-G305     Bukaryotic protein kinase BB000719: H189-L204     Protein kinase signatures and profile: T173-P230     CASEIN KINASE I GAMMA ISOFORM CKIGAMMA TRANSFERASE     SERINE/THREONINEPROTEIN ATPBINDING MUL.TIGENE PD026544: M1-N45     PROTEIN KINASE DOMAIN     DM00004 ES6711 48-303:V48-L76 E109-R302     DM00004 CS6711 46-303:V48-L76 E109-R302     Protein kinases ATP-binding region signature: 152-K75     Serine/Threonine protein kinases active-site signature: L193-V205     Serine/Threonine protein kinases active-site signature: L193-V205     Serine/Threonine protein kinases catalytic domain: V46-R310     Serine/Threonine protein kinases (218), 1239-G249     Eukaryotic protein kinase IPB000719: C168-L183, 1239-G249                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |            |            | Potential Phosphorylation Sites: S34, S75, S106, S137, T25, T46                    | MOTIFS           |
| Protein kinases ATP-binding region signature: 130-K53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |            |            | Potential Glycosylation Sites: N44                                                 | MOTTES           |
| 7526192CD1 305   Protein kinase domain: P46-G305                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |            |            | Protein kinases ATP-binding region signature: 130-K53                              | MOTIFS           |
| Serine/Threonine protein kinases, catalytic domain: F46-G305                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | စ္က | 7526192CD1 | 305        | Protein kinase domain: F46-G305                                                    | HIMMER PFAM      |
| Eukaryotic protein kinase IPB000719: H189-L204   Protein kinases signatures and profile: T173-P230   CASEIN KINASE I GAMMA ISOFORM CKIGAMMA TRANSFERASE   SERINE/THREONINEPROTEIN ATPBINDING MULTIGENE PD026544: M1-N45   PROTEIN KINASE DOMAIN   DM00004 B56711 48-303:V48-L76 E109-R302   DM00004 B56711 48-303:V48-L76 E109-R302   DM000004 D56406 31-276:V48-L76 E109-R302   DM000004 D56406 31-276:V48-L76 E109-R302   DM000004 D56406 31-276:V48-L76 E109-R302   Potential Phosphorylation Sites: S19, S99, S129, S262, T84, T183, T210, T232, T247   Protein kinases ATP-binding region signature: L193-V205   Serine/Threonine protein kinases active-site signature: L193-V205   Signal_cleavage: M1-G68   Protein kinase domain: V46-F310   Serine/Threonine protein kinases, catalytic domain: V46-K313   Eukaryotic protein kinase IPB000719: C168-L183, I239-G249                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |            |            | Serine/Threonine protein kinases, catalytic domain: F46-G305                       | HIMMER SMART     |
| Protein kinases signatures and profile: T173-P230   CASEIN KINASE I GAMMA ISOFORM CKIGAMMA TRANSFERASE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |            |            | Eukaryotic protein kinase IPB000719: H189-L204                                     | BLIMPS BLOCKS    |
| CASEIN KINASE I GAMMA ISOFORM CKIGAMMA TRANSFERASE   SERINETTREONINEPROTEIN ATPBINDING MULTIGENE PD026544: M1-N45     PROTEIN KINASE DOMAIN     DM00004 B56711 48-303:V48-L76 E109-R302     DM00004 B56711 46-303:V48-L76 E109-R302     DM00004 D56406 31-276:V48-L76 E109-R302     DM00004 D56406 31-276:V48-L76 E109-R302     DM00004 D56406 31-276:V48-L76 E109-R302     Potential Phosphorylation Sites: S19, S99, S129, S262, T84, T183, T210, T232, T247     Protein kinases ATP-binding region signature: L193-V205     Serine/Threonine protein kinases active-site signature: L193-V205     Serine/Threonine protein kinases catalytic domain: V46-K313     Serine/Threonine protein kinases, catalytic domain: V46-K313     Eukaryotic protein kinase IPB000719: C168-L183, I239-G249                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |            |            | Protein kinases signatures and profile: T173-P230                                  | PROFILESCAN      |
| SERINE/THREONINEPROTEIN ATPBINDING MUL/TIGENE PD026544: M1-N45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |            |            | CASEIN KINASE I GAMMA ISOFORM CKIGAMMA TRANSFERASE                                 | BLAST_PRODOM     |
| PROTEIN KINASE DOMAIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |            |            | SERINE/THREONINEPROTEIN ATPBINDING MULTIGENE PD026544: M1-N45                      |                  |
| DM00004 B56711 48-303:V48-L76 E109-R302                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |            |            | PROTEIN KINASE DOMAIN                                                              | BLAST DOMO       |
| DM00004 A56711 46-303:V48-L76 E109-R302                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |            |            | DM00004 B56711 48-303:V48-L76 E109-R302                                            | 1                |
| DM00004 C56711 45-301:V48-L76 E109-R302                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |            |            | DM00004 A56711 46-303:V48-L.76 E109-R302                                           |                  |
| DM00004 D56406 31-276:V48-L.76 E109-R302                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |            |            | DM00004 C56711 45-301:V48-L76 B109-R302                                            |                  |
| Potential Phosphorylation Sites: S19, S99, S129, S262, T84, T183, T210, T232, T247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |            |            | DM00004 D56406 31-276:V48-L76 E109-R302                                            |                  |
| Protein kinases ATP-binding region signature: IS2-K75  Serine/Threonine protein kinases active-site signature: L193-V205  7526193CD1 930 Signal_cleavage: M1-G68 Protein kinase domain: V46-F310 Serine/Threonine protein kinases, catalytic domain: V46-K313  Eukaryotic protein kinase IPB000719: C168-L183, I239-G249                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |            |            | Potential Phosphorylation Sites: S19, S99, S129, S262, T84, T183, T210, T232, T247 | MOTIFS           |
| Serine/Threonine protein kinases active-site signature: L.193-V205     7526193CD1 930   Signal_cleavage: M1-G68     Protein kinase domain: V46-F310     Serine/Threonine protein kinases, catalytic domain: V46-K313     Eukaryotic protein kinase IPB000719: C168-L.183, I239-G249                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |            |            | Protein kinases ATP-binding region signature: IS2-K75                              | MOTIFS           |
| 7526193CD1         930         Signal_cleavage: M1-G68           Protein kinase domain: V46-F310         Serine/Threonine protein kinases, catalytic domain: V46-K313           Eukaryotic protein kinase IPB000719: C168-L183, I239-G249                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     | - 1        |            | Serine/Threonine protein kinases active-site signature: L193-V205                  | MOTIFS           |
| kinase domain: V46-F310  Threonine protein kinases, catalytic domain: V46-K313  tic protein kinase IPB000719: C168-L183, I239-G249                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 31  |            |            | Signal_cleavage: M1-G68                                                            | SPSCAN           |
| Threonine protein kinases, catalytic domain: V46-K313 tic protein kinase IPB000719: C168-L183, I239-G249                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |            |            | Protein kinase domain: V46-F310                                                    | HIMMER PFAM      |
| tic protein kinase IPB000719: C168-L183, 1239-G249                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |            |            | Serine/Threonine protein kinases, catalytic domain: V46-K313                       | HIMMER SMART     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |            |            | Eukaryotic protein kinase IPB000719: C168-L183, 1239-G249                          | BLIMPS BLOCKS    |

| SEQ | Incyte              | Amino Acid | Amino Acid   Signature Sequences, Domains and Motifs                                                                                                                 | Analytical Methods |
|-----|---------------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| e ë | D Polypeptide NO: D | Residues   |                                                                                                                                                                      | and Databases      |
|     |                     |            | PROTEIN REPEAT SIGNAL PRECURSOR PRION GLYCOPROTEIN NUCLEAR GPIANCHOR BLAST_PRODOM BRAIN MAJOR PD001091; G373-P626, G404-P626, P358-O601, P349-O574, P320-S519, P296- | BLAST_PRODOM       |
|     |                     |            | 0541                                                                                                                                                                 |                    |
|     |                     |            |                                                                                                                                                                      | BLAST_DOMO         |
|     |                     |            | DM00004 P38080 36-309: L52-1304                                                                                                                                      |                    |
|     |                     |            | DM00004 P40494 23-287: L52-1304                                                                                                                                      |                    |
|     |                     |            | DM00004 P51954 6-248: L52-I304                                                                                                                                       |                    |
|     |                     |            | DM00004P53974[23-288: L52-1304                                                                                                                                       |                    |
|     |                     |            | 333,                                                                                                                                                                 | MOTIFS             |
|     |                     |            | S871, S879, T47, T147, T199, T221, T240, T241, T275, T389, T395, T628, T708, T743, T757,                                                                             |                    |
|     |                     |            | T829                                                                                                                                                                 |                    |
|     |                     |            | Il Glycosylation Sites: N113, N273, N667, N703, N823, N905                                                                                                           | MOTIFS             |
|     |                     |            | Serine/Threonine protein kinases active-site signature: 1172-L184                                                                                                    | MOTIFS             |
| 32  | 7526196CD1          | 118        | eptide: M1-G22                                                                                                                                                       | HIMMER             |
| ·   |                     |            | Signal_cleavage: M1-G22                                                                                                                                              | SPSCAN             |
|     |                     |            |                                                                                                                                                                      | BLIMPS_BLOCKS      |
|     |                     |            | FERASE SERINE/THREONINEPROTEIN                                                                                                                                       | BLAST_PRODOM       |
|     |                     |            | ATPBINDING HSGAK PD026473: M1-L40                                                                                                                                    |                    |
|     |                     |            | l Phosphorylation Sites: S6, S21, S62, S73, S92, S113                                                                                                                | MOTIFS             |
| 33  | 7526198CD1          | 1355       | Protein kinase domain: L40-E315                                                                                                                                      | HIMMER_PFAM        |
|     |                     |            | olecular chaperone homology domain: E1290-S1351                                                                                                                      | HIMMER_SMART       |
|     |                     |            | Threonine protein kinases, catalytic domain: L40-A317                                                                                                                | HIMMER_SIMART      |
|     |                     |            |                                                                                                                                                                      | BLIMPS_BLOCKS      |
|     |                     |            | Protein kinases signatures and profile: V148-H200                                                                                                                    | PROFILESCAN        |
|     |                     |            |                                                                                                                                                                      | BLAST_PRODOM       |
|     |                     |            | יייין אייין                                                    |                    |

| OEO<br>OEO | CEO Incute        | Amino Acid | Amino Acid Cimpture Commonse Domaine and Matife                                              | Analytical Methode |
|------------|-------------------|------------|----------------------------------------------------------------------------------------------|--------------------|
| אַ         | anchie.           | PINC CHILL | •                                                                                            | moment man frame   |
| ДŻ         | Polypeptide<br>ID | Residues   |                                                                                              | and Databases      |
|            |                   |            | DSPHORYLATION KIAA0473 CYCLIN G-                                                             | BLAST_PRODOM       |
|            |                   |            | ASSOCIATED KINASE TRANSFERASE                                                                |                    |
|            |                   |            | PD010124: Q1215-Q1349                                                                        |                    |
|            |                   |            | PD025411: S456-V640                                                                          |                    |
|            |                   |            | PD151518: L641-L1093, P868-S1235, R320-E366                                                  |                    |
|            |                   |            | PROTEIN KINASE DOMAIN                                                                        | BLAST_DOMO         |
|            |                   |            | DM00004 P38080 36-309: LA6-I306                                                              |                    |
|            |                   |            | DM00004 P40494 23-287; R41-I306                                                              |                    |
|            |                   |            | DM00004 P53974 23-288: R44-I306                                                              |                    |
|            | -                 |            | DM00004 Q09170 169-423: R44-S305                                                             |                    |
|            |                   |            | Potential Phosphorylation Sites: S6, S21, S62, S73, S93, S305, S393, S456, S530, S540, S551, | MOTIFS             |
|            |                   |            | S661, S726, S737, S738, S784, S811, S906, S976, S1029, S1103, S1113, S1220, S1234, S1235,    |                    |
|            |                   |            | 81237, 81344, 7155, 7186, 7382, 7414, 7459, 7611, 7680, 7776, 7805, 7949, 71118, 71156,      |                    |
|            |                   |            | T1165, T1244, Y412                                                                           |                    |
|            |                   |            | l Sites: N677, N724, N809, N970, N1196                                                       | MOTIFS             |
|            |                   |            | Serine/Threonine protein kinases active-site signature: 1169-L181                            | MOTIFS             |
| 34         | 7526208CD1        | 490        | Protein kinase domain: Y14-1252                                                              | HIMMER_PFAM        |
|            |                   |            | Serine/Threonine protein kinases, catalytic domain: Y14-I252                                 | HIMMER_SMART       |
|            |                   |            | Ĭ.                                                                                           | BLIMPS_BLOCKS      |
|            |                   |            | Protein kinases signatures and profile: F65-D147                                             | PROFILESCAN        |
|            |                   |            | 43                                                                                           | BLIMPS_PRINTS      |
|            |                   |            |                                                                                              | BLAST_PRODOM       |
|            |                   |            | CALMODULINBINDING CHAIN TRANSFERASE SERINE/THREONINEPROTEIN                                  |                    |
|            |                   |            | PD001779:1252-K303 S312-V380                                                                 |                    |
|            |                   |            |                                                                                              | BLAST_PRODOM       |
|            |                   |            | TRANSFERASE SERINE/THREONINEPROTEIN CALMODULINBINDING PD004250: E381-                        |                    |
|            |                   |            | K469                                                                                         |                    |
|            |                   |            |                                                                                              |                    |

### Table .

| SEO | Incyte            | Amino Acid | Amino Acid   Signature Sequences, Domains and Motifs                                         | Analytical Methods |
|-----|-------------------|------------|----------------------------------------------------------------------------------------------|--------------------|
| ВS  | Polypeptide<br>ID | Residues   |                                                                                              | and Databases      |
|     |                   |            | PROTEIN KINASE DOMAIN                                                                        | BLAST_DOMO         |
|     |                   |            | DM00004 JU0270 16-262:E18-R53 V54-A243                                                       |                    |
|     |                   |            | DM00004 A44412 16-262:E18-R53 V54-A243                                                       |                    |
|     |                   |            | DM00004 P11798 15-261: E39-A243, L16-E63                                                     |                    |
|     |                   |            | KINASE; DEPENDENT; II; CALMODULIN;                                                           | BLAST_DOMO         |
|     |                   | ~~         | DM05068 P11798 263-426: S244-A418                                                            |                    |
|     |                   |            | Potential Phosphorylation Sites: S51, S59, S89, S312, S313, S397, T36, T47, T74, T242, T327, | MOTIFS             |
|     |                   |            | Т328, Т369                                                                                   |                    |
|     |                   |            | Potential Glycosylation Sites: N293, N326, N479                                              | MOTIFS             |
| L   |                   |            | Protein kinases ATP-binding region signature: L20-K43                                        | MOTIFS             |
|     |                   |            | Serine/Threonine protein kinases active-site signature: V112-L124                            | MOTIFS             |
| 35  | 7526212CD1        | 344        | Protein kinase domain: Y14-I252                                                              | HMMER_PFAM         |
|     |                   |            | Serine/Threonine protein kinases, catalytic domain: Y14-I252                                 | HIMMER_SMART       |
|     |                   |            | Eukaryotic protein kinase IPB000719: H108-L123, Y171-G181                                    | BLIMPS_BLOCKS      |
|     |                   |            | Protein kinases signatures and profile: F65-D147                                             | PROFILESCAN        |
|     |                   |            | Tyrosine kinase catalytic domain signature PR00109: H106-L124, V175-E197, V221-A243          | BLIMPS PRINTS      |
|     |                   |            | KINASE PROTEIN II CALCIUM/CALMODULIN-DEPENDENT TYPE SUBUNIT                                  | BLAST_PRODOM       |
|     |                   |            | CALMODULINBINDING CHAIN TRANSFERASE SERINE/THREONINEPROTEIN                                  |                    |
|     |                   |            | PD001779; I252-K324                                                                          |                    |
|     |                   |            | PROTEIN KINASE DOMAIN                                                                        | BLAST_DOMO         |
|     |                   |            | DM00004 JU0270 16-262:E18-R53 V54-A243                                                       |                    |
|     |                   |            | DM00004 A44412 16-262:E18-R53 V54-A243                                                       |                    |
|     |                   |            | DM00004P08414 44-285: B19-T242                                                               |                    |
|     |                   |            | DM00004P11798 15-261: E39-A243, L16-E63                                                      |                    |
|     |                   |            | Potential Phosphorylation Sites: S51, S59, S89, T36, T47, T74, T242, T316, T317              | MOTIFS             |
|     |                   |            | Potential Glycosylation Sites: N293, N315                                                    | MOTIFS             |
|     |                   |            | Protein kinases ATP-binding region signature: L20-K43                                        | MOTIFS             |
|     |                   |            | Serine/Threonine protein kinases active-site signature: V112-L124                            | MOTIFS             |
| 36  | 7526213CD1        | 68         | Potential Phosphorylation Sites: S5, S56, S80, T52                                           | MOTIFS             |

| Polypeptide   Residues   Hexokinase family PB001312: S10-G24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SEO    | Incyte            | Amino Acid | Amino Acid Signature Sequences. Domains and Motifs                             | Analytical Methods |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------------|------------|--------------------------------------------------------------------------------|--------------------|
| Protein Resolutes   Protein Prophorylation Sites: S5, S6, T32     Protein Prophorylation Sites: S5, S6, S6, T32     Protein Prophorylation Sites: S5, S6, S6, T32     Protein Prophorylation Sites: S1, S6, S6, T32     Protein Prophorylation Sites: S1, S6, S6, T32     Protein Rinase family Prophorylation Sites: S14, S67, S69     Protein Rinase S17P-binding region signature: V42-K63     Protein Rinase S17P-binding region signature: V42-K63     Protein Rinase S17P-binding region signature: V42-K63     Protein Rinase S17P-binding domain: T54-C175     Regulator of G protein signalling domain: T64-C175     Regulato | y<br>E | Delymontide       | Dociduse   |                                                                                | and Datahases      |
| Hexokinase family IPB001312: S10-G24     Potential Phosphorylation Sites: SS, SS6, T52     Protein all Phosphorylation Sites: SS, SS6, T52     Protein all Phosphorylation Sites: SS, SS6, T52     Protein Signal cleavage: M.I.1.415     Protein Rinase DOMAIN     DM00004[08881]361-604: B35-L117     DM00004[08881]361-604: B35-L117     DM00004[08881]361-604: B35-L113     Protein kinases ATP-binding region signature: V42-K63     Protein kinases ATP-binding region signature: V42-K63     Regulator of G protein signaling domain: T54-C175     Reference of G protein signaling domain: T52-S187     Reference of G protein signaling domain: T52-S18 | ÿ      | rotypeptide<br>ID | Vesidues   |                                                                                | and Damousos       |
| 7526214CD1 88   Potential Phosphorylation Sites: S5, S56, S67, T52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |                   |            | Hexokinase family IPB001312: S10-G24                                           | BLIMPS_BLOCKS      |
| Hexokinase family IPB001312: S10-G24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 37     | 7526214CD1        | 88         | Potential Phosphorylation Sites: S5, S56, S67, T52                             | MOTIFS             |
| 7526228CD1   137   Signal_cleavage: M1-A15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |                   |            | Hexokinase family IPB001312: S10-G24                                           | BLIMPS_BLOCKS      |
| PROTEIN KINASE DOMAIN   PROTEIN KINASE DOMAIN   DM00004[138044]100-349: V38-A117   DM00004[138044]100-349: V38-A117   DM000004[00830]150-673: E35-A114   DM000004[00831]561-604: E35-L112   Potential Phosphorylation Sites: S14, S67, S69   Leucine zipper pattern: L.112-L.133   Protein kinases ATP-binding region signature: V42-K63   Regulator of G protein signaling domain: T54-C175   GPCK kinase signature PR00717: F11-N183   RECEPTOR KINASE TRANSFERASE SERNNE/TEREONINEPROTEIN ATPBINDING   RECEPTOR KINASE TRANSFERASE SERNNE/TEREONINEPROTEIN ATPBINDING   BETAADRENERGIC COUPLED PROTEIN MULTIGENE FAMILY PD007430: M1-V53   KINASE: THREONINE: ATP: SERINE:   DM0135[12191: E152-S187     N/TERMINAL DOMAIN   N/TERMINAL DOMAIN   DM05135[121463: 150: L33-E151     DM05135[120653]34-149: L34-L150     Potential Phosphorylation Sites: S94, S246, S332, S373, S441, T138, T336, T365     Potential Peptide: M1-R201     Potential Peptide: M1-R201     Signal Peptide: M1-G18, M1-A21     Signal Peptide: M1-R218     DM05135[120653]34-L34     Signal Peptide: M1-R218     Signal M | 38     | 7526228CD1        | 137        | Signal_cleavage: M1-A15                                                        | SPSCAN             |
| DM00004 D80530 329-573: E35-N114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |                   |            | PROTEIN KINASE DOMAIN                                                          | BLAST_DOMO         |
| DM00004 P08630 329-573: E35-N114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |                   |            | DM00004 I38044 100-349: V38-A117                                               |                    |
| DM00004[Q08881]361-604: E35-L112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |                   |            | DM00004 P08630 329-573: E35-N114                                               |                    |
| Potential Phosphorylation Sites: S14, S67, S69   Leucine zipper pattern: L112-L133   Leucine zipper pattern: L112-L133   Protein kinases ATP-binding region signature: V42-K63   Regulator of G protein signaling domain: T54-C175   Regulator of G protein signaling domain: T54-C175   GPCR kinase signature PRO/17: F1/1-N18   Regulator of G protein signaling domain proteins PF00615: M15-K21, F162-K178   Regulator of G protein signaling domain proteins PF00615: M15-K21, F162-K178   Regulator of G protein signaling domain proteins PF00615: M15-K21, F162-K178   RECEPTOR KINASE TRANSFERASE SIRDINE/TRIBEONINE/ROTEIN ATPBINDING BETAADRENERGIC COUPLED PROTEIN MULTIGENE FAMILY PD007430: M1-V53   KINASE; THREONINE, ATP; SERINE;   DM0174/P21146 152-191: B152-S187     N-TERMINAL DOMAIN     DM05135/P20546 33-150: L34-B151     DM05135/P20546 33-150: L34-B151     DM05135/P2056 33-140: L34-B151     DM05135/P2056 33-140: L34-B151     DM05135/P2056 33-140: L34-B151     Retential Phosphorylation Sites: S29, S38, S60, S127, S168, T97     Cell attachment sequence: R188-D1960     FAST KINASE PD135789: M1-R201     Rotential Phosphorylation Sites: S94, S246, S332, S373, S441, T138, T336, T365     Potential Peptide: M1-C18, M1-A21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |                   |            | DM00004 Q08881 361-604: E35-L112                                               |                    |
| Leucine zipper pattern: L112-L133   Protein kinases ATP-bindling region signature: V42-K63     Protein kinases ATP-bindling region signature: V42-K63     Regulator of G protein signaling domain: T54-C175     Regulator of G protein signaling domain: T54-C175     Regulator of G protein signaling domain: T54-C175     GPCR kinase signature PR00717: F171-N183     Regulator of G protein signaling domain proteins PP00615: M15-K21, F162-K178     Regulator of G protein signaling domain proteins PP00615: M15-K21, F162-K178     Regulator of G protein signaling domain proteins PP00615: M15-K21, F162-K178     Regulator of G protein signaling domain proteins PP00615: M15-K21, F162-K178     Regulator of G protein signaling domain proteins PP00615: M15-K21, F162-K178     Regulator of G protein signaling domain proteins PP00615: M15-K21, F162-K178     Regulator of G protein signaling domain proteins PP00615: M1-V53     RINASE; THREONINE; ATP; SERINE; DM0713/F92146/132-191: E152-S187     DM0513/F92146/132-191: E152-S187     DM0513/F9286/53-160. 134-E151     DM0513/F9286/53-160. 134-E151     DM0513/F9286/53-149: L34-L150     Rotential Phosphorylation Sites: S29, S38, S60, S127, S168, T97     Cell attachment sequence: R158-D160     FAST KINASE PD135789: M1-R201     RAST KINASE PD135789: M1-R201     RAST KINASE PD135789: M1-R201     Rotential Phosphorylation Sites: S94, S246, S332, S373, S441, T138, T336, T365                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |                   |            | Potential Phosphorylation Sites: S14, S67, S69                                 | MOTIFS             |
| Protein kinases ATP-binding region signature: V42-K63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |                   |            | Leucine zipper pattern: L112-L133                                              | MOTIFS             |
| 7526246CD1 243   Regulator of G protein signaling domain: T54-C175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |                   |            | Protein kinases ATP-binding region signature: V42-K63                          | MOTIFS             |
| Regulator of G protein signalling domain: T54-C175   GPCR kinase signature PR00717: F171-N183   Regulator of G protein signalling domain proteins PF00615: M15-K21, F162-K178   RECEPTOR KINASE TRANSFERASE SERINE/THREONINEPROTEIN ATPBINDING   BETAADRENBERGIC COUPLED PROTEIN MULTIGENE FAMIL.Y PD007430: M1-V53   KINASE; THREONINE; ATP; SERINE;   DM01747 P21146 152-191: E152-S187     N-TERMINAL DOMAAIN     DM05135 P2146 33-150: L33-E151     DM05135 P23865 33-150: L34-E151     DM05135 P23865 33-150: L34-E151     DM05135 Q96639 34-149: L34-1150     Potential Phosphorylation Sites: S29, S38, S60, S127, S168, T97     Cell attachment sequence: R158-D160     T526258CD1 463   CELL CYCLE PROGRESSION PROTEIN FAST KINASE PD041692: L200-P417     FAST KINASE PD135789: M1-R201     Potential Phosphorylation Sites: S94, S246, S332, S373, S441, T138, T336, T365     7526311CD1   184   Signal Peptide: M1-G18, M1-A21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 39     | 7526246CD1        | 243        | Regulator of G protein signaling domain: T54-C175                              | HMMER_PFAM         |
| GPCR kinase signature PR00717: F171-N183   Regulator of G protein signalling domain proteins PF00615: M15-K21, F162-K178   RECEPTOR KINASE TRANSFERASE SERINE/THREONINEPROTEIN ATPBINDING   BETAADRENERGIC COUPLED PROTEIN MULTICENE FAMILY PD007430: M1-V53     KINASE; THREONINE; ATP; SERINE;   DM01747 P21146 132-191: E152-S187     N-TERMINAL DOMAIN   DM05135 P21146 33-150: L33-E151     DM05135 P22164 33-150: L34-E151     DM05135 Q09639 34-149: L34-E151     DM0 |        |                   |            | Regulator of G protein signalling domain: T54-C175                             | HIMMER_SMART       |
| Regulator of G protein signalling domain proteins PF00615: M15-K21, F162-K178   RECEPTOR KINASE TRANSFERASE SERINE/THREONINEPROTEIN ATPBINDING BETAADRENERGIC COUPLED PROTEIN MULTIGENE FAMILY PD007430: M1-V53 KINASE; THREONINE; ATP; SERINE; DM01747 P21146 152-191: E152-S187                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |                   |            | GPCR kinase signature PR00717: F171-N183                                       | BLIMPS_PRINTS      |
| RECEPTOR KINASE TRANSFERASE SERINE/THREONINEPROTEIN ATPBINDING   BETAADRENERGIC COUPLED PROTEIN MULTIGENE FAMILY PD007430: M1-V53     KINASE; THREONINE; ATP; SERINE;     DM01747[P21146]152-191: E152-S187     N-TERMINAL DOMAIN     DM05135[P21146]33-150: L33-E151     DM05135[P212146]33-150: L34-E151     DM05135[Q9639]34-149: L34-L150     Potential Phosphorylation Sites: S29, S38, S60, S127, S168, T97     FAST KINASE PD135789: M1-R201     FAST KINASE PD135789: M1-R201     Potential Phosphorylation Sites: S94, S246, S332, S373, S441, T138, T336, T365     T526311CD1   184   Signal Peptide: M1-G18, M1-A21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |                   |            | Regulator of G protein signalling domain proteins PF00615: M15-K21, F162-K178  | BLIMPS_PFAM        |
| BETAADRENERGIC COUPLED PROTEIN MULTIGENE FAMILY PD007430: M1-V53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |                   |            | RECEPTOR KINASE TRANSFERASE SERINE/THREONINEPROTEIN ATPBINDING                 | BLAST_PRODOM       |
| KINASE; THREONINE; ATP; SERINE;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |                   |            | BETAADRENERGIC COUPLED PROTEIN MULTIGENE FAMILY PD007430; M1-V53               |                    |
| DM01747 P21146 152-191: E152-S187     N-TERMINAL DOMAIN     DM05135 P21146 33-150: L33-E151     DM05135 P21146 33-150: L34-E151     DM05135 Q09639 34-149: L34-I150     DM05135 Q09639 34-149: L34-I150     DM05135 Q09639 34-149: L34-I150     DM05135 Q09639 34-149: L34-I150     Cell attachment sequence: R158-D160     CelL CYCLE PROGRESSION PROTEIN FAST KINASE PD041692: L200-P417     FAST KINASE PD135789: M1-R201     Potential Phosphorylation Sites: S94, S246, S332, S373, S441, T138, T336, T365     7526311CD1   184   Signal Peptide: M1-G18, M1-A21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |                   |            | KINASE; THREONINE; ATP; SERINE;                                                | BLAST_DOMO         |
| N-TERMINAL DOMAIN<br>  DM05135 P21146 33-150: L33-E151<br>  DM05135 P22865 33-150: L34-E151<br>  DM05135 Q09639 34-149: L34-I150<br>  DM05135 Q09639 34-149: L34-I150<br>  DM05135 Q09639 34-149: L34-I150<br>  Potential Phosphorylation Sites: S29, S38, S60, S127, S168, T97<br>  Cell attachment sequence: R158-D160<br>  CelL CYCLE PROGRESSION PROTEIN FAST KINASE PD041692: L200-P417<br>  FAST KINASE PD135789: M1-R201<br>  Potential Phosphorylation Sites: S94, S246, S332, S373, S441, T138, T336, T365<br>  T526311CD1   184   Signal Peptide: M1-G18, M1-A21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |                   |            | DM01747[P21146[152-191: E152-S187                                              |                    |
| DM05135 P21146 33-150: L33-E151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |                   |            | N-TERMINAL DOMAIN                                                              | BLAST_DOMO         |
| DM05135 P32865 33-150: L34-E151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |                   |            | DM05135 P21146 33-150: L33-E151                                                |                    |
| DM05135 Q09639 34-149: L34-1150     Potential Phosphorylation Sites: S29, S38, S60, S127, S168, T97     Cell attachment sequence: R158-D160     CELL CYCLE PROGRESSION PROTEIN FAST KINASE PD041692: L200-P417     FAST KINASE PD135789: M1-R201     Potential Phosphorylation Sites: S94, S246, S332, S373, S441, T138, T336, T365     7526311CD1   184   Signal Peptide: M1-G18, M1-A21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |                   |            | DM05135 P32865 33-150: L34-E151                                                |                    |
| Potential Phosphorylation Sites: S29, S38, S60, S127, S168, T97   Cell attachment sequence: R158-D160   7526258CD1   463   CELL CYCLE PROGRESSION PROTEIN FAST KINASE PD041692: L200-P417     FAST KINASE PD135789: M1-R201   Potential Phosphorylation Sites: S94, S246, S332, S373, S441, T138, T336, T365     7526311CD1   184   Signal Peptide: M1-G18, M1-A21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |                   |            | DM05135 Q09639 34-149: L34-1150                                                |                    |
| 7526258CD1         463         CELL CYCLE PROGRESSION PROTEIN FAST KINASE PD041692: L200-P417           FAST KINASE PD135789: M1-R201         FAST KINASE PD135789: M1-R201           Potential Phosphorylation Sites: S94, S246, S332, S373, S441, T138, T336, T365           7526311CD1         184           Signal Peptide: M1-G18, M1-A21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |                   |            | Potential Phosphorylation Sites: S29, S38, S60, S127, S168, T97                | MOTIFS             |
| 7526258CD1         463         CELL CYCLE PROGRESSION PROTEIN FAST KINASE PD041692: L200-P417           FAST KINASE PD135789: M1-R201         Potential Phosphorylation Sites: S94, S246, S332, S373, S441, T138, T336, T365           7526311CD1         184         Signal Peptide: M1-G18, M1-A21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |                   |            | Cell attachment sequence: R158-D160                                            | MOTIFS             |
| FAST KINASE PD135789: M1-R201<br>  Potential Phosphorylation Sites: S94, S246, S332, S373, S441, T138, T336, T365<br>  7526311CD1   184   Signal Peptide: M1-G18, M1-A21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 40     | 7526258CD1        | 463        | CELL CYCLE PROGRESSION PROTEIN FAST KINASE PD041692: L200-P417                 | BLAST_PRODOM       |
| Potential Phosphorylation Sites: S94, S246, S332, S373, S441, T138, T336, T365   7526311CD1   184   Signal Peptide: M1-G18, M1-A21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |                   |            | FAST KINASE PD135789: M1-R201                                                  | BLAST_PRODOM       |
| 7526311CD1   184   Signal Peptide: M1-G18, M1-A21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |                   |            | Potential Phosphorylation Sites: S94, S246, S332, S373, S441, T138, T336, T365 | MOTIFS             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 41     | 7526311CD1        | 184        | Signal Peptide: M1-G18, M1-A21                                                 | HMMER              |

| SEO | SEO Incyte        | Amino Acid | Amino Acid   Signature Sequences, Domains and Motifs                                                                                                | Analytical Methods |
|-----|-------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| ДÖ  | Polypeptide<br>ID | Residues   |                                                                                                                                                     | and Databases      |
|     |                   |            |                                                                                                                                                     | SPSCAN             |
|     |                   |            | lic domain: K163-T184                                                                                                                               | TIMHMIMER          |
|     |                   |            | Transmembrane domain: W143-W162                                                                                                                     |                    |
|     |                   |            | Non-cytosolic domain: M1-T142                                                                                                                       |                    |
|     |                   |            | KINASE DEHYDROGENASE TRANSFERASE PD01976: P54-G66, N69-S117                                                                                         | BLIMPS_PRODOM      |
|     |                   |            | KINASE PYRUVATE DEHYDROGENASE TRANSFERASE DEHYDROGENASE-LIPOAMIDE BLAST_PRODOM MITOCHONDRIAL PRECURSOR TRANSIT PEPTIDE MITOCHONDRION PD004994: V42- | BLAST_PRODOM       |
|     |                   |            | 1135                                                                                                                                                | :                  |
|     |                   |            | PYRUVATE DEHYDROGENASE-LIPOAMIDE KINASE ISOZYME 1, MITOCHONDRIAL                                                                                    | BLAST_PRODOM       |
|     |                   |            | PRECURSOR EC 2.7.1.99 DEHYDROGENASE ISOFORM 1 TRANSFERASE TRANSIT                                                                                   |                    |
|     |                   |            | PERTIDE MITOCHONDRION MOLLIGENE FAMILI FULL 4623; MI-E39                                                                                            |                    |
|     |                   |            | KINASE; DEHYDROGENASE; PYRUVATE; ACID;                                                                                                              | BLAST_DOMO         |
|     | _                 |            | DM01978 A55305 2-103: A37-E130                                                                                                                      |                    |
|     |                   |            | DM01978 I55465 28-129: F28-E130                                                                                                                     |                    |
|     |                   |            | DM01978 I70159 2-103: A37-E130                                                                                                                      |                    |
|     |                   |            |                                                                                                                                                     |                    |
|     |                   |            | Potential Phosphorylation Sites: S38, S58, S117, S128, S170                                                                                         | MOTIFS             |
| 42  | 7526315CD1        | 386        |                                                                                                                                                     | HIMMER_PFAM        |
|     |                   |            | Serine/Threonine protein kinases, catalytic domain: L16-L262                                                                                        | HIMMER_SMART       |
|     |                   |            | Protein kinases signatures and profile: 1107-7161                                                                                                   | PROFILESCAN        |
|     |                   |            |                                                                                                                                                     | BLAST_DOMO         |
|     |                   |            | DM00004 A53800 119-368: E20-K221                                                                                                                    |                    |
|     |                   |            | DM00004 A55318 159-389; D15-W216                                                                                                                    |                    |
|     |                   |            | DM00004J7C2363 126-356: D15-W216                                                                                                                    |                    |
|     |                   |            | DM00004 Q05609 553-797: E20-S233                                                                                                                    |                    |
|     |                   |            | al Phosphorylation Sites: S61, S89, S96, S233, S273, S277, S295, S341, S346, S360, S365,                                                            | MOTIFS             |
|     |                   |            | T345, Y274                                                                                                                                          |                    |
|     |                   |            | Potential Glycosylation Sites: N97, N159, N340                                                                                                      | MOTIFS             |
|     |                   |            | Leucine zipper pattern: L225-L246, L232-L253                                                                                                        | MOTIFS             |

Table 3

|     |                |            | The state of the s |                    |
|-----|----------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| SEQ | SEQ Incyte     | Amino Acid | Amino Acid Signature Sequences, Domains and Motifs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Analytical Methods |
| А   | Polypeptide    | Residues   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and Databases      |
| NO: | В              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
|     |                |            | Serine/Threonine protein kinases active-site signature: V129-I141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MOTIFS             |
| 43  | 7526442CD1 152 | 152        | Eukaryotic protein kinase IPB000719: H119-Q134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BLIMPS_BLOCKS      |
|     |                |            | PROTEIN KINASE DOMAIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | BLAST_DOMO         |
|     |                |            | DM00004 149592 6-276. L7-R131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |
|     |                |            | DM00004 P23437 6-286: R9-R131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |
|     |                |            | DM00004 P29620 21-289: 110-P130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
|     |                |            | DM00004 Q02399 6-276: L7-R131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |
|     |                |            | Protein kinases ATP-binding region signature: 110-K33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MOTIFS             |

| Polynucleotide          | Sequence Fragments                                                                                                                                   |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| SEQ ID NO:/             |                                                                                                                                                      |
| Incyte ID/ Sequence     |                                                                                                                                                      |
| Length                  |                                                                                                                                                      |
| 44/ 7517831CB1/         | 1-937, 1-1916, 479-1163, 762-1440, 765-1648, 1025-1916                                                                                               |
| 1916                    |                                                                                                                                                      |
| 45/ 7520272CB1/         | 1-584, 1-755, 1-764, 2-925, 149-926, 218-926                                                                                                         |
| 926                     |                                                                                                                                                      |
| 46/ 7521279CB1/         | 1-828, 530-1382, 591-1382, 635-1382, 989-1382                                                                                                        |
| 1382                    |                                                                                                                                                      |
| 47/ 7523965CB1/         | 1-665, 1-876, 2-1677, 158-1087, 167-1047, 293-1057, 736-1536, 744-1267, 744-1526, 744-1593, 978-1678                                                 |
| 1678                    |                                                                                                                                                      |
| 48/ 7524016CB1/         | 1-855, 2-812, 539-895                                                                                                                                |
| 895                     |                                                                                                                                                      |
| 49/ 7524680CB1/         | 1-819, 2-764, 510-1294                                                                                                                               |
| 1294                    |                                                                                                                                                      |
| 50/ 7524757CB1/         | 1-647, 1-710, 2-677, 573-1354                                                                                                                        |
| 1354                    |                                                                                                                                                      |
| 51/ 7516229CB1/         | 1-726, 1-1179, 300-1179, 349-1204, 396-1180, 474-1201, 475-1201, 497-1201, 568-1201, 582-1201                                                        |
| 1204                    |                                                                                                                                                      |
| 52/ 7516525CB1/         | 1-425, 1-672, 1-701, 1-717, 1-935, 1-1859, 205-1118, 728-1623, 859-1858, 888-1859, 974-1859, 1050-1858, 1053-1859, 1002-1851, 1114-                  |
| 1859                    | 1859, 1130-1859, 1149-1859, 1167-1859, 1267-1858, 1289-1859                                                                                          |
| 53/ 7516533CB1/         | 1-767, 1-1692, 28-1025, 694-1645, 844-1695                                                                                                           |
| 1695                    |                                                                                                                                                      |
| 54/ 7516613CB1/         | 1-176, 1-805, 1-914, 1-3891, 231-3891, 613-1352, 642-1329, 643-1438, 644-1447, 668-1289, 847-1618, 860-1623, 1380-2008, 1388-2100                    |
| 3891                    | 1541-1948, 1541-2000, 1558-1901, 1670-2559, 1872-2565, 1881-2589, 2304-3236, 2433-3222, 2438-3215, 2442-3223, 2470-3204, 2549-                       |
|                         | 3214, 3007-3891, 3103-3891, 3270-3891, 3283-3891, 3337-3891                                                                                          |
| 55/ 7517068CB1/<br>3954 | 1-603, 1-778, 1-3954, 410-1315, 416-1127, 440-798, 1037-2445, 1132-2069, 1138-1925, 1623-2614, 1690-2567, 2379-3252, 2446-3954, 2613-3234, 3186-3954 |
| 56/ 7517148CB1/<br>3357 | 1-655, 26-3357, 377-1295, 447-1269, 580-1302, 1190-1924, 1194-2055, 1230-1956, 1442-2298, 2241-2719, 2545-3357, 2678-3356                            |
|                         |                                                                                                                                                      |

| Polynucleotide      | Sequence Fragments                                                                                                                |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| SEQ ID NO:/         |                                                                                                                                   |
| Incyte ID/ Sequence |                                                                                                                                   |
| Length              |                                                                                                                                   |
| 57/ 7517238CB1/     | 1-772, 1-2006, 418-1330, 573-1330, 732-1615, 746-1617, 1195-2029, 1199-2036, 1207-2029, 1268-2004, 1298-2036                      |
| 2036                |                                                                                                                                   |
| 58/ 7518685CB1/     | 1-645, 26-2541, 529-1345, 942-1833, 1752-2541, 1775-2541, 1950-2540                                                               |
| 2541                |                                                                                                                                   |
| 59/ 7520192CB1/     | 1-802, 1-803, 1-880, 1-2529, 208-1179, 464-1177, 707-1448, 732-1469, 1113-1952, 1143-1948, 1692-2582, 1781-2555, 1858-2611, 1916- |
| 2611                | 2555, 2043-2555                                                                                                                   |
| 60/ 7520428CB1/     | 1-781, 1-830, 2-5215, 44-5215, 190-723, 397-1135, 414-1120, 708-1383, 741-1569, 757-1546, 757-1606, 1186-2040, 1191-2029, 1556-   |
| 5216                | 2392, 1561-2342, 1967-2655, 2006-2059, 2120-2780, 2380-3164, 2407-3194, 2769-3419, 2771-3450, 3167-3823, 3193-3831, 3562-4286,    |
|                     | 3565-4101, 3633-4506, 3770-4506, 3974-4724, 3975-4708, 4346-5082, 4352-4996, 4447-5215, 4448-5216, 4450-5216, 4457-5216, 4460-    |
|                     | 5216, 4478-5216, 4588-5216, 4771-5216, 4795-5216, 5125-5216, 5130-5216                                                            |
| 61/ 7522586CB1/     | 1-817, 1-2554, 655-1515, 678-1376, 970-1849, 1110-1840, 1319-1729, 1462-2334, 1470-2177, 1470-2240, 1490-2270, 1765-2554          |
| 2554                |                                                                                                                                   |
| 62/ 7524017CB1/     | 1-2022, 1035-1956, 1163-1951, 1175-2022, 1178-2023                                                                                |
| 2023                |                                                                                                                                   |
| 63/ 7525773CB1/     | 1-847, 2-1128, 184-1129                                                                                                           |
| 1129                |                                                                                                                                   |
| 64/ 7525861CB1/     | 1-687, 2-686                                                                                                                      |
| 687                 |                                                                                                                                   |
| 65/ 2509577CB1/     | 1-3912, 692-1142, 692-1191, 692-1374, 692-1383, 692-1385, 991-1569, 1053-1112, 1118-1449, 1118-1619, 1118-1704, 1118-1717, 1118-  |
| 3912                | 1774, 1193-1462, 1193-1505, 1193-1625, 1193-1667, 1193-1687, 1193-1702, 1193-1716, 1193-1724, 1193-1735, 1202-1884, 1306-1624,    |
|                     | 1308-1841, 1308-1866, 1308-1989, 1308-2001, 1308-2006, 1323-2016, 1333-1833, 1831-2300, 1831-2302, 1838-2524, 1911-2622, 1921-    |
|                     | 2796, 2158-2951, 2231-2430, 2266-2685, 2269-2951, 2359-2951, 2441-2632, 2441-2957, 2441-2965, 2466-3026, 2467-2943, 2475-3193,    |
|                     | 2676-2925, 2969-3225                                                                                                              |
| 66/ 7505222CB1/     | 1-2813, 147-2813, 1800-2249, 1976-2224, 1976-2590, 2139-2331, 2290-2373, 2290-2484, 2290-2512, 2290-2573, 2290-2587, 2290-2592,   |
| 3229                | 2290-2596, 2290-2601, 2290-2626, 2290-2636, 2290-2641, 2290-2669, 2290-2673, 2290-2702, 2290-2732, 2290-2755, 2290-2760, 2290-    |
|                     |                                                                                                                                   |
|                     | . 2427-3215, 2465-3204, 2482-3211, 2495-2899, 2509-2900, 2536-3229, 2538-2900, 2575-2812, 2596-2819, 2649-3229                    |

| Polymicleotide      | Sequence Hearments                                                                                                                    |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| and intercount      |                                                                                                                                       |
| SEQ ID NO:/         |                                                                                                                                       |
| Incyte ID/ Sequence |                                                                                                                                       |
| Length              |                                                                                                                                       |
| 67/ 7524408CB1/     | 1-753, 1-877, 2-669, 2-676, 2-718, 2-2099, 529-1448, 548-1422, 631-1515, 640-1476, 1257-2100, 1319-2100, 1340-2099, 1345-2100, 1353-  |
| 2100                | 2099                                                                                                                                  |
| 68/ 7526163CB1/     | 1-718, 1-789, 11-4017, 14-590, 17-664, 17-674, 24-849, 79-221, 169-4213, 171-849, 241-929, 311-946, 380-828, 421-1058, 440-1069, 466- |
| 4213                | 1171, 494-984, 494-1004, 494-1017, 494-1019, 494-1037, 494-1122, 494-1270, 494-1279, 509-1065, 541-1058, 559-1058, 654-1148, 674-     |
|                     | 1307, 676-1286, 722-874, 731-1267, 750-1460, 850-1386, 940-1516, 960-1765, 963-1639, 965-1553, 965-1590, 973-1633, 975-1571, 1023-    |
|                     | 1616, 1071-1647, 1079-1569, 1093-1716, 1101-1585, 1110-1658, 1110-1689, 1110-1725, 1117-1590, 1120-1788, 1127-1992, 1134-1635,        |
|                     | 1135-1581, 1144-1648, 1145-1876, 1157-1598, 1161-1839, 1162-1772, 1196-1857, 1204-1762, 1207-1915, 1215-1877, 1262-1805, 1277-        |
|                     | 1775, 1280-1981, 1290-1915, 1298-1711, 1303-1964, 1349-1825, 1354-1973, 1367-2079, 1378-2014, 1384-2081, 1418-1946, 1422-1915,        |
|                     | 1427-1948, 1431-1980, 1433-2054, 1440-2126, 1460-2112, 1488-1898,                                                                     |
|                     | 1533-2187, 1544-2393, 1559-2390, 1570-2397, 1583-2386, 1608-2050, 1612-2210, 1639-2204, 1639-2221, 1639-2291, 1639-2342, 1641-        |
|                     | 2322, 1666-2393, 1676-2347, 1684-2366, 1692-2223,                                                                                     |
|                     | 1701-2393, 1704-2231, 1706-2320, 1706-2393, 1711-2531, 1724-2431, 1755-2310, 1760-2393, 1762-2192, 1763-2192, 1771-2398, 1793-        |
|                     | 2259, 1798-2393, 1809-2393, 1813-2393, 1816-2393, 1818-2333, 1820-2393, 1856-2393, 1858-2393, 1885-2393, 1897-2393, 1913-2393,        |
|                     | 1915-2393, 1916-2393, 1936-2393, 1937-2393, 1980-2644, 1993-2393, 2005-2393, 2021-2484, 2029-2419, 2086-2393, 2148-2792, 2156-        |
|                     | 2180, 2276-3024, 2289-3020, 2314-3220, 2329-2786, 2329-2829, 2351-2940, 2363-3123, 2586-3050, 2602-3014, 2628-3274, 2696-3341,        |
|                     | 2731-3244, 2840-3377, 2863-3679, 2945-3400, 3402-3605, 3428-3935, 3595-4034, 3627-4183, 3632-4061, 3638-4091, 3711-4185, 3720-        |
|                     | 4189, 3809-4191, 3809-4212, 3909-4160, 3909-4181, 4059-4213                                                                           |
| 69/7526158CB1/      | 1-882, 1-5991, 20-942, 36-335, 66-942, 99-314, 133-335, 175-942, 214-942, 241-334, 262-4306, 333-941, 333-942, 404-1039, 473-921,     |
| 5991                | 473-932, 514-1151, 533-1162, 559-1264, 587-1077, 587-1097, 587-1110, 587-1112, 587-1130, 587-1215, 587-1363, 587-1372, 602-1158,      |
|                     | 634-1151, 652-1151, 747-1241, 1068-1664, 1172-1662, 1186-1809, 1194-1678, 1213-1881, 1220-2085, 1238-1969, 1254-1932, 1297-1855,      |
|                     | 1370-1868, 1373-2074, 1391-1804, 1442-1918, 1471-2107, 1477-2174, 1511-2039, 1515-2008, 1520-2041, 1524-2073, 1533-2219, 1553-        |
|                     | 2205, 1581-1991, 1626-2280, 1637-2486, 1652-2483, 1663-2490, 1676-2479, 1701-2143, 1705-2303, 1732-2297, 1732-2314, 1732-2384,        |
|                     | 1732-2435, 1734-2415, 1759-2486, 1769-2440, 1777-2459, 1785-2316, 1794-2486, 1797-2324, 1799-2413, 1799-2486, 1804-2624, 1817-        |
|                     | 2524, 1848-2403, 1853-2486, 1864-2491, 1886-2352, 1891-2486, 1902-2486, 1906-2486, 1909-2486, 1913-2486, 1949-2486, 1951-2486,        |
|                     | 1978-2486, 1990-2486, 2006-2486, 2008-2486, 2009-2486, 2029-2486, 2030-2486, 2073-2737, 2086-2486, 2098-2486, 2114-2577,              |
|                     | 2122-2512, 2179-2486, 2241-2885, 2369-3117, 2382-3113, 2407-3313, 2422-2879, 2422-2922, 2444-3033, 2456-3216, 2679-3143, 2695-        |
|                     | 3107, 2721-3367, 2789-3434, 2824-3337, 2933-3470, 2956-3772, 3038-3493, 3495-3698, 3521-4028, 3720-4276, 3725-4154, 3731-4184,        |
| •                   | 3740-4127, 3804-4278, 3813-4282, 3902-4289, 3902-4305, 4002-4253, 4002-4274, 4152-4306, 4403-4463, 4537-4598                          |

| Polymicleotide      | Garmanne Brommanto                                                                                                                       |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| SEQ ID NO:/         |                                                                                                                                          |
| Incyte ID/ Sequence |                                                                                                                                          |
| Length              |                                                                                                                                          |
| 70/7519807CB1/      | 1-699                                                                                                                                    |
| 699                 |                                                                                                                                          |
| 71/7526180CB1/      | 1-224, 1-361, 1-376, 1-409, 1-416, 1-432, 1-437, 1-443, 1-445, 1-455, 1-457, 1-483, 1-2049, 2-193, 2-424, 2-464, 2-504, 3-358, 3-419, 3- |
| 2453                | 518, 4-190, 4-280, 7-860, 10-561, 10-579, 10-637, 14-445, 17-509, 34-331, 37-732, 37-762, 37-782, 37-784, 37-896, 39-695, 39-705, 39-    |
|                     | 758, 39-782, 39-814, 39-880, 40-808, 42-572, 53-804, 71-320, 71-699, 84-293, 85-614, 107-526, 120-572, 131-748, 141-420, 151-500, 154-   |
|                     | 525, 155-806, 182-475, 182-666, 186-525, 188-512, 188-525, 188-733, 203-504, 219-504, 219-525, 233-518, 233-630, 242-331, 248-600        |
|                     | 259-444, 260-614, 260-621, 260-653, 260-748, 260-749, 261-627, 273-840, 277-614, 353-568, 358-1005, 398-575, 401-1853, 426-650, 426-     |
|                     | 656, 426-800, 426-911, 426-1090, 432-1071, 434-690, 435-598, 439-1223, 444-693, 444-717, 444-767, 449-718, 451-637, 452-1071, 454-       |
|                     | 643, 454-1281, 454-1458, 459-1283, 463-981, 467-1018, 468-1168, 486-715, 493-699, 499-1095, 508-764, 508-1050, 511-1137, 527-778.        |
|                     | 527-1031, 527-1032, 533-1049, 533-1171, 534-1033, 534-1049, 549-1095, 550-929, 575-1095,                                                 |
|                     | 580-1027, 593-1072, 595-767, 605-1031, 618-890, 618-1131, 620-798, 638-1335, 639-1032, 650-1105, 650-1133, 667-1200, 667-1207, 667-      |
|                     | 1227, 667-1251, 672-1176, 673-727, 678-1135, 679-975, 684-968, 711-1111, 718-1530, 724-1396, 724-1532, 724-1547, 726-1437, 738-          |
|                     | 1115, 739-1108, 739-1110, 747-1054, 749-1051, 749-1161, 752-1553, 774-1015, 774-1054, 790-1207, 792-1048, 792-1054, 792-1109, 792-       |
|                     | 1131, 792-1161, 792-1228, 792-1298, 793-1132, 801-1468, 817-1554, 838-1477, 842-1207, 843-1144, 849-1118, 854-1530, 865-1095, 885-       |
|                     | 1414, 889-1393, 903-1041, 903-1406, 905-1548, 907-1081, 920-1136, 932-1613, 939-1111, 939-1263, 945-1391, 950-1273, 973-1328.            |
|                     | 1050-1429, 1060-1635, 1071-1147, 1076-1376, 1099-1558, 1120-1512, 1127-1259, 1147-1573, 1179-1878, 1194-1716, 1215-1622, 1222-           |
|                     |                                                                                                                                          |
|                     | 1325-1946, 1381-1619, 1381-1642, 1398-1601, 1398-1622, 1438-2095, 1443-1743, 1444-1558, 1453-1656, 1473-1704, 1484-1753,                 |
|                     | 1523-1573, 1531-1917, 1578-1763, 1578-1904, 1578-2059, 1578-2062, 1578-2063, 1578-2064, 1581-1999, 1581-2112, 1589-2045, 1594-           |
|                     | 1931, 1606-2042, 1616-2049, 1631-1867, 1672-2453, 1685-2408, 1697-2048, 1719-1980, 1742-2000, 1744-2112, 1784-2095, 1788-2408,           |
|                     | 1/90-2034, 1803-2093, 1817-2372, 1855-2408, 1869-2167, 1880-2071; 1880-2087, 1880-2091, 1880-2092, 1880-2097, 1880-2315, 1883-           |
|                     | 2353, 1905-2117, 1926-2141, 1941-2110, 1946-2054, 1951-2169, 1971-2408, 1971-2421, 1979-2408, 1980-2408, 1994-2408                       |
| 0.20183CB1/         | 1-4430, 313-1222, 338-592, 649-4430, 938-1574, 1084-1754, 1095-1765, 1185-1978, 1198-1884, 1204-1880, 1208-1859, 1214-2029, 1223-        |
| 4430                | 2017, 1255-1917, 1255-2004, 1259-1957, 1282-2255, 1298-1950, 1321-2017, 1335-2004, 1352-2002, 1354-2004, 1383-2002, 1396-2064,           |
|                     | 1469-2171, 1503-2297, 1506-2183, 1515-2243, 1528-2457, 1546-2439, 1560-2428, 1560-2458, 1582-2282, 1582-2429, 1587-2305, 1599-           |
|                     | ( )                                                                                                                                      |
|                     | 1724-2467, 1772-2468, 1775-2468, 1782-2468, 1782-2469, 1783-2431, 1786-2468, 1801-2467, 1809-2468, 1816-2469, 1829-2469, 1833-           |
|                     | 2469, 1852-2469, 1858-2469, 2196-2847, 2386-3249, 3402-4093, 3471-4274, 3698-4426                                                        |
|                     |                                                                                                                                          |

| Delimination                          |                                                                                                                                      |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| SEQ ID NO:/                           |                                                                                                                                      |
| Incyte ID/ Sequence                   |                                                                                                                                      |
| Length                                |                                                                                                                                      |
| 73/7526192CB1/                        | 1-3276, 734-1407, 1223-1711, 1860-2512, 1860-2524, 1925-2468, 2447-3057, 2552-3009                                                   |
| 37/0                                  |                                                                                                                                      |
| 74/7526193CB1/                        | 1-344, 20-367, 20-3910, 99-612, 340-775, 464-775, 486-797, 500-746, 520-779, 537-799, 552-768, 560-779, 567-790, 582-1094, 587-1213, |
| 3910                                  | 610-895, 616-1173, 634-1307, 698-1094, 706-1162, 776-1097, 778-1097, 797-1101, 799-1093, 805-1348, 824-1456, 824-1504, 825-1466,     |
|                                       | 830-1503, 834-1412, 840-1124, 840-1426, 849-1097, 868-1096, 885-1348, 1048-1744, 1115-1714, 1124-1734, 1127-1742, 1146-1711,         |
|                                       | 1217-1481, 1222-1524, 1246-1525, 1249-1757, 1251-1509, 1295-1751, 1321-1832, 1334-1889, 1376-1647, 1376-1670, 1376-1768, 1387.       |
|                                       | 1768, 1466-1742, 1470-1829, 1491-2092, 1497-1880, 1502-1820, 1520-2235, 1599-2231, 1961-1989, 1992-2298, 2014-2654, 2076-2336,       |
|                                       | 2092-2727, 2135-2425, 2135-2448, 2147-2580, 2153-2443, 2226-2705, 2476-2624, 2508-2889, 2511-2969, 2530-2930, 2807-3117, 2862-       |
|                                       | 3393, 2870-3085, 3117-3543, 3343-3863, 3458-3789, 3569-3807                                                                          |
| 75/7526196CB1/                        | 1-4380, 41-683, 763-1641, 818-1676, 884-1835, 887-1743, 887-1834, 887-1835, 897-1740, 900-1709, 954-1835, 1032-1590, 1035-1895.      |
| 4380                                  | 1036-1729, 1036-1835, 1039-1835, 1065-1676, 1141-1738, 1169-1738, 1176-1738, 1188-1738, 1189-1737, 1198-1920, 1198-2052, 1202-       |
|                                       | 1738, 1304-1944, 1353-2006, 1354-1879, 1354-1985, 1354-2016, 1354-2051, 1354-2086, 1356-2011, 1411-2084, 1411-2094, 1498-2168,       |
|                                       | 2279-2898, 2279-2901, 2279-2918, 2279-2945, 2279-2987, 2279-3041, 2279-3091, 2279-3111, 2279-3151, 2285-3136, 2361-2898, 2365-       |
|                                       | 3037, 2368-3037, 2392-2942, 2398-3036, 2406-2999, 2422-3076, 2429-3046, 2430-3037, 2447-3014, 2500-3037, 2538-3118, 3013-3077,       |
|                                       | 3108-4157                                                                                                                            |
| 76/7526198CB1/                        | 1-622, 1-624, 1-4163, 3-677, 49-748, 76-607, 83-981, 86-731, 86-826, 101-650, 102-660, 102-693, 138-660, 138-847, 139-730, 139-807.  |
| 4293                                  | 139-833, 139-847, 139-848, 139-914, 139-926, 139-1002, 194-827, 299-882, 318-882, 2082-2933, 2092-2695, 2092-2698, 2092-2715, 2092-  |
|                                       | 2742, 2092-2784, 2092-2838, 2092-2888, 2092-2908, 2092-2948, 2158-2695, 2162-2834, 2165-2834, 2189-2739, 2195-2833, 2203-2796,       |
|                                       | 2219-2873, 2226-2843, 2227-2834, 2244-2811, 2297-2834, 2335-2915, 2810-2874, 2905-3964, 3908-4293                                    |
| 77/ 7526208CB1/                       | 1-581, 21-6538, 438-1053, 581-1057, 589-1057, 906-1436, 1332-1978, 1483-2045, 1486-2135, 1645-2142, 2127-2864, 2129-2864, 2304-      |
| 6538                                  | 2751, 2382-2971, 2543-3089, 2564-3118, 2568-3068, 3104-3725, 3255-3883, 3376-3897, 3450-4136, 3459-4057, 3476-3968, 3478-4027,       |
|                                       | 3479-4046, 3481-4172, 3489-4296, 3502-4173, 3522-4172, 3533-4165, 3555-4177, 3564-4310, 3578-4049, 3643-4157, 3643-4275, 3652-       |
|                                       | 4172, 3663-4244, 3676-4334, 3699-4147, 3806-4475, 3959-4517, 3972-4672, 4006-4691, 4007-4745, 4028-4745, 4040-4746, 4043-4695,       |
|                                       | 4067-4745, 4076-4745, 4078-4745, 4104-4659, 4116-4745, 4155-4745, 4165-4745, 4184-4745, 4194-4686, 4195-4685, 4215-4689, 4216-       |
|                                       | 4688, 4242-4745, 4251-4702, 4284-4745, 4873-5519, 4878-5586, 5089-5766, 5144-5808, 5483-6067, 5491-6053, 5502-6329, 5571-6067,       |
|                                       | 5580-6040, 5386-6065, 5587-6067, 5587-6069, 5603-6069, 5614-6067                                                                     |
| 78/ 7526212CB1/<br>2349               | 1-581, 1-2290, 438-1053, 581-1057, 589-1057, 906-1436, 1332-1978, 1483-2045, 1608-2349                                               |
| , , , , , , , , , , , , , , , , , , , |                                                                                                                                      |

| Polynucleotide         | Sequence Fragments                                                                                                                 |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| SEQ ID NO:/            |                                                                                                                                    |
| Incyte ID/ Sequence    |                                                                                                                                    |
| Length                 |                                                                                                                                    |
| 79/7526213CB1/         | 1-8009, 203-877, 203-936, 571-1314, 571-1436, 571-1450, 577-1378, 586-1449, 594-1332, 652-1450, 731-1652, 747-1525, 756-1532, 799- |
| 8015                   | 1670, 806-1686, 833-1552, 833-1695, 833-1721, 833-1768, 843-1675, 849-1612, 850-1644, 850-1675, 855-1615, 856-1771, 857-1624, 857- |
|                        | 1678, 915-1764, 928-1675, 928-1768, 928-1899, 933-1753, 933-1779, 934-1774, 943-1759, 947-1898, 950-1844, 1827-2719, 1829-2642,    |
|                        | 1829-2704, 1829-2737, 1830-2720, 2108-3060, 2154-3036, 2155-3043, 2160-3084, 2161-3052, 2172-3054, 2174-3015, 2180-2972, 2212-     |
|                        | 3066, 2212-3163, 2215-2958, 2215-3030, 2277-3051, 2281-3068, 2422-3338, 2430-3130, 2430-3212, 2430-3244, 2430-3322, 2434-3184,     |
|                        | 5975-6837, 6557-7314, 7215-7903, 7241-8015                                                                                         |
| 80/ 7526214CB1/        | 1-7945, 203-668, 203-955, 492-1352, 507-1304, 507-1371, 507-1385, 513-1313, 514-1304, 522-1384, 588-1385, 692-1396, 707-787, 735-  |
| 7945                   | 1548, 742-1621, 769-1487, 769-1656, 769-1703, 785-1551, 786-1610, 787-1550, 787-1559, 788-1706, 790-1712, 791-1488, 792-1613, 796- |
|                        | 1676, 863-1610, 863-1703, 863-1834, 868-1688, 868-1714, 869-1709, 878-1694, 882-1833, 885-1779, 1762-2657, 1764-2579, 1764-2642,   |
|                        | 1764-2675, 1765-2658, 2418-3318, 2583-3356, 2664-3334, 2664-3380, 2664-3382, 2664-3389, 2664-3405, 2664-3422, 2664-3431, 2664-     |
|                        | 3445, 2664-3454, 2664-3458, 2664-3459, 2664-3464, 2664-3469, 2664-3470, 2664-3471, 2664-3480, 2664-3510, 2664-3511, 2664-3532,     |
|                        | 2664-3562, 2668-3458, 2668-3609, 2668-3617, 2706-3617, 2711-3617, 2776-3617, 2779-3617, 2781-3654, 2782-3617, 2784-3654, 2804-     |
|                        | 3617, 2810-3654, 2823-3653, 2848-3654, 2849-3628, 2849-3651, 2849-3654, 2854-3654, 2876-3653, 2876-3654, 2899-3650, 2906-3654,     |
|                        | 2915-3654, 2949-3654, 2952-3654, 2971-3654, 3008-3682, 3181-3922, 3471-4320, 3797-4551, 4066-4870, 4320-5134, 4541-5355,           |
|                        | 4764-5490, 5247-5934, 5910-6772, 6492-7250, 6854-7555, 7150-7839, 7176-7945                                                        |
| 81/7526228CB1/         | 1-528, 1-719, 30-3149, 217-706, 229-740, 239-1013, 243-910, 263-996, 402-1249, 1515-2354, 1538-2050, 1569-2354, 1889-2602, 2023-   |
| 3149                   | 2773, 2112-2648, 2124-2819, 2147-2671, 2211-2688, 2566-3119                                                                        |
| 82/7526246CB1/         | 1-563, 118-3617, 407-1087, 412-1145, 506-1090, 521-563, 703-1270, 869-1158, 869-1501, 1194-1870, 1194-1985, 1194-1992, 1358-2314,  |
| 3617                   | 1371-2039, 1373-2314, 1376-2303, 1385-2314, 1421-2000, 1423-2016, 1423-2314, 1429-2101, 1439-2254, 1455-2314, 1457-2209, 1466-     |
|                        | 2314, 1471-2313, 1471-2314, 1478-2314, 1480-2314, 1492-2313, 1494-2313, 1494-2314, 1495-2351, 1497-2314, 1497-2351, 1509-2150,     |
|                        | 1509-2351, 1515-2314, 1519-2303, 1520-2314, 1521-2249, 1529-2314, 1539-2152, 1542-2130, 1542-2336, 1542-2367, 1542-2412, 1544-     |
|                        |                                                                                                                                    |
|                        | 1616-2267, 1616-2314, 1625-2252, 1631-2190, 1638-2313, 1648-2404, 1653-2261, 1656-2242, 1661-2344, 1677-2397, 1679-2352, 1688-     |
|                        | 2368, 1714-2320, 1715-2528, 1728-2280, 1737-2340, 1740-2392, 1744-2314, 1773-2465, 1782-2351, 1797-2414, 1824-2428, 2599-3242      |
| 83/7526258CB1/<br>1955 | 1-1955, 81-946, 715-1172, 812-1528, 987-1540                                                                                       |
| 22.2                   |                                                                                                                                    |

| Polynucleotide      | Sequence Fragments                                                                                                                   |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| SEQ ID NO:/         |                                                                                                                                      |
| Incyte ID/ Sequence |                                                                                                                                      |
| Length              |                                                                                                                                      |
| 84/7526311CB1/      | 1-2937, 122-658, 122-690, 122-739, 123-1393, 539-1393, 621-1393, 807-1393, 1099-1644, 1237-1848, 1251-1561, 1390-2042, 1392-2069,    |
| 2937                | 1396-2052, 1430-1987, 1495-1949, 1502-1940, 1531-2266, 1542-2039, 1549-2106, 1579-1965, 1658-2132, 1731-2380, 1737-2490, 1759-       |
|                     | 2540, 1837-2534, 1853-2606, 1871-2301, 1880-2223, 1925-2496, 1960-2513, 1971-2483, 1984-2421, 1984-2491, 1984-2567, 1984-2611,       |
|                     | 1992-2496, 2000-2404, 2015-2565, 2021-2502, 2033-2567, 2038-2544, 2060-2394, 2062-2561, 2066-2606, 2083-2510, 2107-2572, 2109-       |
|                     | 2500, 2129-2573, 2136-2565, 2139-2582, 2147-2567, 2154-2547, 2156-2606, 2160-2609, 2169-2741, 2182-2609, 2223-2552, 2240-2586,       |
|                     | 2246-2606, 2247-2568, 2247-2602, 2328-2878, 2355-2860, 2374-2890, 2472-2913, 2478-2937                                               |
| 85/7526315CB1/      | 1-6121, 193-871, 310-931, 573-982, 867-1481, 867-1492, 867-1496, 867-1573, 867-1595, 890-1609, 919-1643, 922-1655, 1103-1948, 2143-  |
| 6122                | 2950, 2339-3054, 2423-3023, 2471-3073, 2669-3237, 2738-3490, 2738-3554, 2800-3574, 3049-3795, 3247-3955, 4679-5357, 4789-5413,       |
|                     | 5055-5683, 5121-5809, 5167-5854, 5317-6012, 5343-6045, 5356-6064, 5370-6043, 5370-6116, 5405-6106, 5410-6122, 5424-6117, 5458-       |
|                     | 6108, 5461-6122, 5479-6079, 5493-6117, 5495-6063, 5524-6117                                                                          |
| 86/7526442CB1/      | 1-437, 1-647, 1-1893, 1-1914, 260-862, 260-863, 684-1206, 684-1379, 720-1262, 741-1452, 744-1453, 748-1386, 750-1276, 760-1283, 762- |
| 1914                | 1262, 784-1394, 789-1234, 789-1378, 791-1267, 794-1261, 796-1623, 807-1405, 814-1325, 818-1406, 821-1623, 845-1278, 845-1332, 856-   |
|                     | 1377, 863-1451, 876-1423, 880-1464, 953-1403, 960-1772, 961-1395, 969-1452, 1474-1914                                                |

Table 5

| Polynucleotide SEQ | Incyte Project ID: | Polynucleotide SEO Incyte Project ID: Representative Library |
|--------------------|--------------------|--------------------------------------------------------------|
| DNO:               | •                  |                                                              |
| 65                 | 2509577CB1         | TESTNOC01                                                    |
| 99                 | 750522CB1          | LUNGDIN02                                                    |
| 89                 | 7526163CB1         | BRAITDR02                                                    |
| 69                 | 7526158CB1         | THP1TXT04                                                    |
| 71                 | 7526180CB1         | BRSTNOT01                                                    |
| 72                 | 7526185CB1         | UTREDMF02                                                    |
| 73                 | 7526192CB1         | NERDTDN03                                                    |
| 74                 | 7526193CB1         | BRABDIR01                                                    |
| 75                 | 7526196CB1         | BRACNOK02                                                    |
| 76                 | 7526198CB1         | BRACNOK02                                                    |
| 77                 | 7526208CB1         | BLADDIT01                                                    |
| 78                 | 7526212CB1         | BRAINOR03                                                    |
| 80                 | 7526214CB1         | MYEPUNN01                                                    |
| 81                 | 7526228CB1         | MYEPUNF01                                                    |
| 82                 | 7526246CB1         | THYMNOE01                                                    |
| 83                 | 7526258CB1         | BLYRTXT03                                                    |
| 84                 | 7526311CB1         | SININOT04                                                    |
| 85                 | 7526315CB1         | OVARDIN02                                                    |
| 98                 | 7526442CB1         | PITUNON01                                                    |

| Library   | Vector   | I ibrary Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BLADDIT01 | pINCY    | Library was constructed using RNA isolated from diseased bladder tissue removed from a 73-year-old male during a total cystectomy. Pathology indicated the bladder mucosa showed mild chronic cystitis. Pathology for the associated tumor tissue indicated invasive grade 3 adenocarcinoma, which formed a friable mass situated within the proximal methra, 14 cm from the distal urethral resection margin. The tumor invaded superficially into, but not through, muscularis propria.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| BLYRTXT03 | pINCY    | Library was constructed using RNA isolated from a treated Raji cell line derived from the B-lymphocyte cells of an 11-year-old Black male (ATCC CCL-86). The cells were treated for 18 hours with 10ng/ml of interleukin 18 (IL-18). Pathology indicated Burkitt's lymphoma.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| BRABDIR01 | pINCY    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| BRACNOK02 | PSPORT1  | This amplified and normalized library was constructed using RNA isolated from posterior cingulate tissue removed from an 85-year-old Caucasian female who died from myocardial infarction and retroperitoneal hemorrhage. Pathology indicated atherosclerosis, moderate to severe, involving the circle of Willis, middle cerebral, basilar and vertebral arteries; infarction, remote, left dentate nucleus; and amyloid plaque deposition consistent with age. There was mild to moderate leptomeningeal fibrosis, especially over the convexity of the frontal lobe. There was mild generalized atrophy involving all lobes. The white matter was mildly thinned. Cortical thickness in the temporal lobes, both maximal and minimal, was slightly reduced. The substantia nigra pars compacta appeared mildly depigmented. Patient history included COPD, hypertension, and recurrent deep venous thrombosis. 6.4 million independent clones from this amplified library were normalized in one round using conditions |
| BRAINOR03 | PBK-CMV  | adapted from Soares et al., PNAS (1994) 91:9228-9232 and Bonaldo et al., Genome Research 6 (1996):791.  This random primed library was constructed using pooled cDNA from two donors. cDNA was generated using mRNA isolated from brain tissue removed from a Caucasian male fetus (donor A) who was stillborn with a hypoplastic left heart at 23 weeks' gestation and from brain tissue removed from a Caucasian male fetus (donor B), who died at 23 weeks' gestation from premature birth. Serologies were negative for both donors and family history for donor B included diabetes in the mother.                                                                                                                                                                                                                                                                                                                                                                                                                    |
| BRAITDR02 | PCDNA2.1 | This random primed library was constructed using RNA isolated from allocortex, neocortex, anterior and frontal cingulate tissue removed from a 55-year-old Caucasian female who died from cholangiocarcinoma. Pathology indicated mild meningeal fibrosis predominately over the convexities, scattered axonal spheroids in the white matter of the cingulate cortex and the thalamus, and a few scattered neurofibrillary tangles in the entorhinal cortex and the periaqueductal gray region. Pathology for the associated tumor tissue indicated well-differentiated cholangiocarcinoma of the liver with residual or relapsed tumor. Patient history included cholangiocarcinoma, post-operative Budd-Chiari syndrome, biliary ascites, hydrothorax, dehydration, malnutrition, oliguria and acute renal failure. Previous surgeries included cholecystectomy and resection of 85% of the liver.                                                                                                                       |

| I ihrary  | Vector                | Throny Dannington                                                                                                                  |
|-----------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------|
| BRSTNOT01 | PBLUESCRIPT Library w | Library was constructed using RNA isolated from the breast tissue of a 56-year-old Caucasian female who died in a motor            |
|           |                       | vehicle accident.                                                                                                                  |
| LUNGDIN02 | pINCY                 | This normalized lung tissue library was constructed from 7.6 million independent clones from a diseased lung tissue library.       |
|           |                       | Starting RNA was made from RNA isolated from diseased lung tissue. Pathology indicated ideopathic pulmonary disease.               |
|           |                       | The library was normalized in 2 rounds using conditions adapted from Soares et al., PNAS (1994) 91:9228-9232 and Bonaldo           |
|           |                       | et al., Genome Research 6 (1996):791, except that a significantly longer (48 hours/round) reannealing hybridization was used.      |
| MYEPUNF01 | pRARE                 | This 5' cap isolated full-length library was constructed using RNA isolated from an untreated K-562 cell line, derived from        |
|           |                       | chronic myelogenous leukemia precursor cells removed from a 53-year-old female.                                                    |
| MYEPUNN01 | pRARE                 | This normalized untreated K-562 cell line tissue library was constructed from independent clones from a K-562 cell line            |
|           |                       | library. Starting RNA was made from an untreated K-562 cell line, derived from chronic myelogenous leukemia precursor cells        |
|           |                       | removed from a 53-year-old female. The library was normalized in one round using conditions adapted from Soares et al.             |
|           |                       | PNAS (1994) 91:9228-9232 and Bonaldo et al., Genome Research 6 (1996):791, except that a significantly longer (48                  |
|           |                       | hours/round) reannealing hybridization was used.                                                                                   |
| NERDTDN03 | pINCY                 | This normalized dorsal root ganglion tissue library was constructed from 1.05 million independent clones from a dorsal root        |
|           |                       | ganglion tissue library. Starting RNA was made from dorsal root ganglion tissue removed from the cervical spine of a 32-year-      |
|           |                       | old Caucasian male who died from acute pulmonary edema, acute bronchopneumonia, bilateral pleural effusions, pericardial           |
|           |                       | effusion, and malignant lymphoma (natural killer cell type). The patient presented with pyrexia of unknown origin, malaise.        |
|           |                       | fatigue, and gastrointestinal bleeding. Patient history included probable cytomegalovirus infection, liver congestion, and         |
|           |                       | steatosis, splenomegaly, hemorrhagic cystitis, thyroid hemorrhage, respiratory failure, pneumonia of the left lung, natural killer |
|           |                       | cell lymphoma of the pharynx, Bell's palsy, and tobacco and alcohol abuse. Previous surgeries included colonoscopy, closed         |
|           |                       | colon biopsy, adenotonsillectomy, and nasopharyngeal endoscopy and biopsy. Patient medications included Diflucan                   |
|           |                       | (fluconazole), Deltasone (prednisone),                                                                                             |
|           |                       | hydrocodone, Lortab, Alprazolam, Reazodone, ProMace-Cytabom, Etoposide, Cisplatin, Cytarabine, and dexamethasone. The              |
|           |                       | patient received radiation therapy and multiple blood transfusions. The library was normalized in 2 rounds using conditions        |
|           |                       | adapted from Soares et al., PNAS (1994) 91:9228-9232 and Bonaldo et al., Genome Research 6 (1996):791, except that a               |
|           |                       | significantly longer (48 hours/round) reannealing hybridization was used.                                                          |

| Library   | Vector      | Library Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OVARDIN02 | pINCY       | This normalized ovarian tissue library was constructed from 5.76 million independent clones from an ovary library. Starting RNA was made from diseased ovarian tissue removed from a 39-year-old Caucasian female during total abdominal hysterectomy, bilateral salpingo-oophorectomy, dilation and curettage, partial colectomy, incidental appendectomy, and temporary colostomy. Pathology indicated the right and left adnexa, mesentery and muscularis propria of the sigmoid colon were extensively involved by endometriosis. Endometriosis also involved the anterior and posterior serosal surfaces of the uterus and the cul-de-sac. The endometrium was proliferative. Pathology for the associated tumor tissue indicated multiple (3 intramural, 1 subserosal) leiomyomata. The patient presented with abdominal pain and infertility. Patient history included scoliosis. Family history included hyperlipidemia, benign hypertension, atherosclerotic coronary artery disease, depressive disorder, brain cancer, and type II diabetes. The |
|           |             | library was normalized in two rounds using conditions adapted from Soares et al., PNAS(1994) 91:9228 and Bonaldo et al., Genome Research 6 (1996):791, except that a significantly longer (48-hours/round) reannealing hybridization was used.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| PITUNON01 | pINCY       | This normalized pituitary gland tissue library was constructed from 6.92 million independent clones from a pituitary gland tissue library. Starting RNA was made from pituitary gland tissue removed from a 55-year-old male who died from chronic obstructive pulmonary disease. Neuropathology indicated there were no gross abnormalities, other than mild ventricular                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|           |             | enlargement. There was no apparent microscopic abnormality in any of the neocortical areas examined, except for a number of silver positive neurons with apical dendrite staining, particularly in the frontal lobe. The significance of this was undetermined. The only other microscopic abnormality was that there was prominent silver staining with some swollen axons in the CA3 region of the anterior and posterior hippocampus. Microscopic sections of the cerebellum revealed mild Bergmann's gliosis in the Purkinje cell layer. Patient history included schizophrenia. The library was normalized in two rounds using conditions                                                                                                                                                                                                                                                                                                                                                                                                              |
|           |             | adapted from Soares et al., PNAS (1994) 91:9228-9232 and Bonaldo et al., Genome Research (1996) 6:791, except that a significantly longer (48 hours/round) reannealing hybridization was used.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| SININOT04 | pINCY       | Library was constructed using RNA isolated from diseased ileum tissue obtained from a 26-year-old Caucasian male during a partial colectomy, permanent colostomy, and an incidental appendectomy. Pathology indicated moderately to severely active Crohn's disease. Family history included enteritis of the small intestine.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| TESTNOC01 | PBLUESCRIPT | PBLUESCRIPT This large size fractionated library was constructed using RNA isolated from testicular tissue removed from a pool of eleven, 10 to 61-year-old Caucasian males.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| THP1TXT04 | pINCY       | Library was constructed using RNA isolated from stimulated THP-1 cells. THP-1 is a human promonocyte line derived from the peripheral blood of a 1-year-old male (Abbott Sample) with acute monocytic leukemia (Int. J. Cancer 26 (1980):171).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| Library             | Vector | Library Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| THYMNOE01 PCDNA2.1  |        | This 5' biased random primed library was constructed using RNA isolated from thymus tissue removed from a 2-year-old Caucasian female during a thymectomy and patch closure of left atrioventricular fistula. Pathology indicated there was no gross abnormality of the thymus. The patient presented with congenital heart abnormalities. Patient history included double inlet left ventricle and a rudimentary right ventricle, pulmonary hypertension, cyanosis, subaortic stenosis, seizures, and a fracture of the skull base. Patient medications included Lasix and Captopril. Family history included reflux neuronathy in the mother |
| UTREDMF02 PCMV-ICIS |        | This full-length enriched library was constructed using 1.5 micrograms of polyA RNA isolated from endometrial tissue removed from a 32-year-old female. The endometrium was in secretory phase.                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| Posgram   Destription   Destription   ABI FACTURA   A program that removes vector sequences and masks   Applied Biosystems, Foster City, CA.   Paracel   Mismatch <a href="Mismatch color=">ABI FACTURA   A program that removes vector sequences and masks   Applied Biosystems, Foster City, CA.   Paracel   Mismatch <a co<="" color="Mismatch color=" href="Mismatch color=" mismatch="" th=""><th></th><th></th><th>!</th><th></th></a></a>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                                                                                              | !                                                            |                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------|
| A program that removes vector sequences and masks ambiguous bases in nucleic acid sequences.  A Fast Data Finder useful in comparing and amotating Applied Biosystems, Foster City, CA, Peracel amino acid or nucleic acid sequences.  A Basic Local Alignment Search Tool useful in sequence similarity search for amino acid and nucleic acid sequences.  A Basic Local Alignment Search Tool useful in sequence similarity search for amino acid and nucleic Applied Biosystems, Foster City, CA.  A Basic Local Alignment Search Tool useful in sequence similarity search for amino acid and nucleic acid sequences. BLAST includes five functions:  blastp, blasth, and thistx.  A Pearson and Lipman algorithm that searches for similarity between a query sequence and a group of sequences of the same type. FASTA comprises as least five functions; fasta, fasta, fasta, fastx, and Smith, TF, and M.S. Waterman (1981) seearch.  A BLocks IMProved Searcher that matches a sequence Henikoff, S. and J.G. Henikoff, J.G. and PRODOM, and PFAM databases to search for gene.  RODOM, and PFAM databases to search for gene.  A Blocks IMProved Searcher that matches a sequence Henikoff, S. and J.G. Henikoff, J.G. and PRODOM, and PFAM databases to search for gene.  A Blocks IMProved Searcher that matches a sequence Henikoff, S. and J.G. Henikoff, J.G. and PRODOM, and PFAM databases to search for gene.  A Blocks IMProved Searcher that matches a sequence and attabases of hidden Markov model (HMM)-based databases of hidden Markov model (HMM)-based databases of hidden Markov model (HMM)-based databases of classic sequences, such as FFAM, and algorithm that searches for structural and sequence Gribskov, M. et al. (1999) Methods Buryon. State of the patterns defined in Prosite.  An algorithm that searches for structural and sequence Gribskov, M. et al. (1999) Methods Buryon. State of the patterns defined in Prosite.  An algorithm that searches for structural and sequence Gribskov, M. et al. (1999) Nucleic patterns defined in Prosite.  A process of the same patterns | Program           | Description                                                                                  | Reference                                                    | Parameter Threshold                     |
| A Fast Data Finder useful in comparing and annotating Applied Biosystems, Foster City, CA; Paracel amino acid or nucleic acid sequences.  A Basic Local Alignment Search Tool useful in sequences similarity bearen for amino acid and nucleic 215:403-410; Altschul, S.F. et al. (1990) J. Mol. Biol. sequences imilarity search for amino acid and nucleic 215:403-410; Altschul, S.F. et al. (1997) acid sequences. BLAST includes five functions:  blastp, blastn, blastr, tolastn, and that searches for similarity between a query sequence and a group of sequences of the same type. FASTA comprises as least five functions: fasta, fasta, fasta, fasts, and sequence of the same type. FASTA comprises as least five functions: fasta, tasta, fasta, fasts, and Smith, T.F. and M.S. Waterman (1981) secarch.  A BLocks IMProved Searcher that matches a sequence Henikoff, S. and J.G. Henikoff (1991) Nucleic against those in BLOCKS, PRINTS, DOMO, Problem And PRAM databases to search for gene. Families, sequence homology, and structural fingerprimidities, and PRAM databases to search for gene. Family consensus sequences, such as PFAM.  An algorithm for searching a query sequence against Krogh, A. et al. (1994) J. Mol. Biol. 235;1501-1 inden Markov model (HMM)-based databases of protein family consensus sequences, such as PFAM.  An algorithm that searches for structural and sequence Gribskov, M. et al. (1998) Methods Enzymol. Cambridge Univ. Press, pp. 1-350.  An algorithm that searches for structural and sequence Gribskov, M. et al. (1997) Nucleic Facilities and the searches for structural and sequence of ribskov, M. et al. (1997) Nucleic in a structural and sequence of ribskov, M. et al. (1997) Nucleic in a structural and sequence of ribskov, M. et al. (1997) Nucleic in a structural and sequence of ribskov, M. et al. (1997) Nucleic in a structural and sequence of ribskov, M. et al. (1997) Nucleic in a structural and sequence of ribskov, M. et al. (1997) Nucleic in a structural and sequence of ribskov, M. et al. (1997) Nucleic in a structural  | ABI FACTURA       | A program that removes vector sequences and masks ambiguous bases in nucleic acid sequences. | Applied Biosystems, Foster City, CA.                         |                                         |
| A Basic Local Alignment Search Tool useful in sequences.  A Basic Local Alignment Search Tool useful in sequence similarity search for amino acid and nucleic decid sequence. BLAST includes five functions: blastp, blastn, blastr, thastn, and thastn.  A Bearson and Lipman algorithm that searches for similarity between a query sequence and a group of similarity between a query sequence and a group of similarity between a query sequence and a group of search.  A BLocks IMProved Searcher that matches a sequence Henikoff, S. and J.G. Henikoff (1991) Nucleic Agids Res. 19:6565-6572; Henikoff (1997) Nucleic Agids Res. 19:6565-6572; Henikoff (1997) Nucleic Agids Res. 19:6565-6572; Henikoff (1997) J. Chem. Inf. Comput. Sci. 37:417-424.  A BLocks IMProved Searcher that matches a sequence Henikoff (1996) Methods Enzymol. 266:88-families, sequence homology, and structural fingerprint 105; and Attwood, T.K. et al. (1997) J. Chem. Inf. Comput. Sci. 37:417-424.  An algorithm for searching a query sequence against hidden Markov model (HMM)-based databases of protein family consensus sequences, such as PFAM.  An algorithm that searches for structural and sequence of ribskov, M. et al. (1998) Our World View, in a Nutshell, chapters defined in Prosite.  An algorithm that searches for structural and sequence of ribskov, M. et al. (1999) Methods Enzymol. spatterns defined in Prosite.  A Basic Local Alischina S. S. 211-221.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ABIPARACEL<br>FDF | A Fast Data Finder useful in comparing and annotating amino acid or nucleic acid sequences.  | Applied Biosystems, Foster City, CA; Paracel Inc Pasadena CA | Mismatch <50%                           |
| A Basic Local Alignment Search for amino acid and nucleic last sequences imilarity search for amino acid and nucleic blastp, blastn, blastn, tblastn, tblastn, tblastn, tblastn, tblastn, tblastn, blastn, tblastn, tblastn | ABI AutoAssembler | A program that assembles nucleic acid sequences.                                             | Applied Biosystems, Foster City, CA.                         |                                         |
| sequences similarity search for amino acid and nucleic blastp, blastn, blastr, tblastn, and tblastr.  A Pearson and Lipman algorithm that searches for similarity between a query sequence and a group of sequences of the same type. FASTA comprises as least five functions: fasta, fasta, fastx, and sequence of the same type. FASTA comprises as least five functions: fasta, fasta, fastx, fastx, and sequence of the same type. FASTA comprises as least five functions: fasta, fasta, fastx, fastx, and sequence of the same type. FASTA comprises as a sequence Henikoff, S. and J.G. Henikoff (1991) Nucleic against those in BLOCKS, PRINTS, DOMO, and PFAM databases to search for gene families, sequence bomology, and structural fingerprint 105; and Attwood, T.K. et al. (1997) J. Chem. Inf. Comput. Sci. 37:417-424.  An algorithm for searching a query sequence against fiden Markov model (HMM)-based databases of protein family consensus sequences, such as PFAM.  NCY, SMART and TIGRFAM.  A BLOCKS MART and TIGRFAM.  A BLOCKS PRINTS, DOMO, and Attwood, T.K. et al. (1994) J. Mol. Biol. 235:1501-1 inf. Comput. Sci. 37:417-424.  A BLOCKS PRINTS, DOMO, and Attwood, T.K. et al. (1997) J. Chem. Inf. Comput. Sci. 37:417-424.  A BLOCKS PRINTS, DOMO, and Attwood, T.K. et al. (1988) Drock and Attwood, T.K. et al. (1988) Drock and Attwood Sci. 88-169666-6572; Henikoff, 1.63-1696.  A BLOCKS PRINTS, DOMO, and Attwood, T.K. et al. (1987) J. Chem. Inf. Comput. Sci. 37:417-424.  A BLOCKS, PRINTS, DOMO, and Attwood, T.K. et al. (1987) J. Chem. Inf. Comput. Sci. 37:417-424.  A BLOCKS, PRINTS, DOMO, and Attwood, T.K. et al. (1988) Drock and Attwood Sci. 88-169666-6572; Henikoff, 1.63-1896.  A BLOCKS, PRINTS, DOMO, and Attwood, T.K. et al. (1988) Drock and Attwood Sci. 88-1696-1896.  A BLOCKS, PRINTS, DOMO, and Attwood, T.K. et al. (1988) Drock and Attwood Sci. 88-1696-1896.  A BLOCKS, PRINTS, Press, pp. 1-350.  A BLOCKS, PRINTS, Press, pp. 1-35 | BLAST             | A Basic Local Alignment Search Tool useful in                                                | Altschul, S.F. et al. (1990) J. Mol. Biol.                   | ESTs: Probability value = $1.0E-8$ or   |
| acid sequences. BLAST includes five functions: blastp, blastn, blasts, thlastn, and thlastx.  A Pearson and Lipman algorithm that searches for similarity between a query sequence and a group of sequences of the same type. FASTA comprises as least five functions: fasta, ffasta, fastx, ffastx, and sequence of the same type. FASTA comprises as least five functions: fasta, ffasta, fastx, ffastx, and sequence of the same type. FASTA comprises as least five functions: fasta, ffasta, fastx, ffastx, and Secuence of the same type. FASTA comprises as and Smith, T.F. and M.S. Waterman (1981) secarch.  A BLocks IMProved Searcher that matches a sequence Henikoff, S. and J.G. Henikoff (1990) Methods Enzymol. 183:63-98; and Shructural fingerprint 105; and Attwood, T.K. et al. (1997) J. Chem. regions.  An algorithm for searching a query sequence against hidden Markov model (HMM)-based databases of hidden Markov model (HMM)- |                   | cleic                                                                                        | 215:403-410; Altschul, S.F. et al. (1997)                    | less; Full Length sequences:            |
| A Pearson and Lipman algorithm that searches for similarity between a query sequence and a group of similarity between a query sequence and a group of sequences of the same type. FASTA comprises as least five functions: fasta, |                   |                                                                                              | Nucleic Acids Res. 25:3389-3402.                             | Probability value = 1.0E-10 or less     |
| A Pearson, W.R. and D.J. Lipman (1988) Proc. similarity between a query sequence and a group of sequences of the same type. FASTA comprises as least five functions: fasta, tfasta, fasta, tfasta, and Smith, T.F. and M.S. Waterman (1981) ssearch.  A BLocks IMProved Searcher that matches a sequence Henikoff, S. and J.G. Henikoff (1991) Nucleic against those in BLOCKS, PRINTS, DOMO, PRODOM, and PFAM databases to search for gene families, sequence homology, and structural fingerprint 105; and Attwood, T.K. et al. (1997) J. Chem. Inf. Comput. Sci. 37:417-424.  An algorithm for searching a query sequence against hidden Markov model (HMM)-based databases of protein family consensus sequences, such as PFAM, Nucleic Acids Res. 26:320-322; Durbin, R. et al. (1998) Our World View, in a Nutshell, Cambridge Univ. Press, pp. 1-350.  An algorithm that searches for structural and sequence Gribskov, M. et al. (1989) Methods Enzymol. 183:146-159; Bairoch, A. et al. (1997) Nucleic et al. (1998) Methods Enzymol. 183:146-159; Bairoch, A. et al. (1997) Nucleic et al. (1997) Nucleic et al. (1998) Res. 25:217-221.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | EA CITA           |                                                                                              |                                                              |                                         |
| sequences of the same type. FASTA comprises as least five functions: fasta, tfasta, fastx, tfastx, and sequence of the same type. FASTA comprises as least five functions: fasta, tfasta, fastx, tfastx, and sequence of the same type. FASTA comprises as least five functions: fasta, tfasta, fastx, tfastx, and sequence of the same type. FASTA comprises and Smith, T.F. and M.S. Waterman (1981) search.  A BLocks IMProved Searcher that matches a sequence Henikoff, S. and J.G. Henikoff (1991) Nucleic against those in BLOCKS, PRINTS, DOMO, PRODOM, and PFAM databases to search for gene families, sequence homology, and structural fingerprint 105; and Attwood, T.K. et al. (1997) J. Chem. Inf. Comput. Sci. 37:417-424.  An algorithm for searching a query sequence against fidden Markov model (HMM)-based databases of protein family consensus sequences, such as PFAM, Incleic Acids Res. 26:320-322; Durbin, R. et al. (1998) Our World View, in a Nutshell, Cambridge Univ. Press, pp. 1-350.  An algorithm that searches for structural and sequence motifs in protein sequences that match sequence gribskov, M. et al. (1989) Methods Enzymol. 183:146-159; Bairoch, A. et al. (1997) Nucleic Acids Res. 25:217-221.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | FASIA             |                                                                                              | Pearson, W.R. and D.J. Lipman (1988) Proc.                   | ESTs: fasta E value = $1.06E-6$ ;       |
| sequences of the same type. FASTA comprises as least five functions: fasta, tfasta, fastx, and ssearch.  A BLocks IMProved Searcher that matches a sequence against those in BLOCKS, PRINTS, DOMO, against those in BLOCKS, PRINTS, DOMO, and PFAM databases to search for gene families, sequence homology, and structural fingerprint 105; and Attwood, T.K. et al. (1997) J. Chem. Inf. Comput. Sci. 37:417-424.  An algorithm for searching a query sequence against hidden Markov model (HMM)-based databases of protein family consensus sequences, such as PFAM, algorithm that searches for structural and sequence motifs in protein sequences that match sequence of cribskov, M. et al. (1988) Methods Enzymol. Statems defined in Prosite.  An algorithm that searches for structural and sequence patterns defined in Prosite.  An algorithm that searches for structural and sequence patterns defined in Prosite.  An algorithm that searches for structural and sequence or patterns defined in Prosite.  An algorithm that searches for structural and sequence Acids Res. 26:320-322; Durbin, R. et al. (1998) Methods Enzymol. Structural and sequence or patterns defined in Prosite.  An algorithm that searches for structural and sequence Acids Res. 26:317-221.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |                                                                                              | Natl. Acad Sci. USA 85:2444-2448; Pearson,                   | Assembled ESTs: fasta Identity =        |
| least five functions: fasta, ffasta, fastx, and search.  Seearch.  A BLocks IMProved Searcher that matches a sequence against those in BLOCKS, PRINTS, DOMO, PRODOM, and PFAM databases to search for gene families, sequence homology, and structural fingerprint 105; and Attwood, T.K. et al. (1997) J. Chem. Inf. Comput. Sci. 37:417-424.  An algorithm for searching a query sequence against hidden Markov model (HMM)-based databases of protein family consensus sequences, such as PFAM, Nucleic Acids Res. 26:320-322; Durbin, R. et al. (1998) Our World View, in a Nutshell, Cambridge Univ. Press, pp. 1-350.  An algorithm that searches for structural and sequence Gribskov, M. et al. (1988) CABIOS 4:61-66; motifs in protein sequences that match sequence against and the searches for structural and sequence or dribskov, M. et al. (1989) Methods Enzymol. 183:146-159; Bairoch, A. et al. (1997) Nucleic Baird Res. 25:217-221.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   | <b>~</b>                                                                                     | W.R. (1990) Methods Enzymol. 183:63-98;                      | 95% or greater and Match length =       |
| Adv. Appl. Math. 2:482-489.  A BLocks IMProved Searcher that matches a sequence against those in BLOCKS, PRINTS, DOMO, PRODOM, and PFAM databases to search for gene regions.  An algorithm for searching a query sequence against hidden Markov model (HMM)-based databases of protein family consensus sequences, such as PFAM, INCY, SMART and TIGRFAM.  An algorithm that searches for structural and sequence Gribskov, M. et al. (1989) Methods Enzymol. 266:88-1620-322; Durbin, R. et al. (1998) Cambridge Univ. Press, pp. 1-350.  An algorithm that searches for structural and sequence Gribskov, M. et al. (1989) Methods Enzymol. 183:146-159; Bairoch, A. et al. (1997) Nucleic Acids Res. 25:217-221.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   | least five functions: fasta, tfasta, fastx, tfastx, and                                      | and Smith, T.F. and M.S. Waterman (1981)                     | 200 bases or greater; fastx E value $=$ |
| A BLocks IMProved Searcher that matches a sequence degainst those in BLOCKS, PRINTS, DOMO, PRODOM, and PFAM databases to search for gene families, sequence homology, and structural fingerprint 105; and Attwood, T.K. et al. (1997) J. Chem. Inf. Comput. Sci. 37:417-424.  An algorithm for searching a query sequence against hidden Markov model (HMM)-based databases of protein family consensus sequences, such as PFAM, Nucleic Acids Res. 26:320-322; Durbin, R. et al. (1998) Our World View, in a Nutshell, Cambridge Univ. Press, pp. 1-350.  An algorithm that searches for structural and sequence gribskov, M. et al. (1989) Methods Enzymol. 183:146-159; Bairoch, A. et al. (1997) Nucleic controls in protein sequences that match sequence gribskov, M. et al. (1989) Methods Enzymol. 183:146-159; Bairoch, A. et al. (1997) Nucleic controls and sequence are all and sequence gribskov, M. et al. (1989) Methods Enzymol. 183:146-159; Bairoch, A. et al. (1997) Nucleic controls and sequence are all and sequence gribskov, M. et al. (1989) Methods Enzymol. 183:146-159; Bairoch, A. et al. (1997) Nucleic controls and sequence are all and sequence are all and sequence are all and sequence gribskov, M. et al. (1989) Methods Enzymol. 193:146-159; Bairoch, A. et al. (1997) Nucleic controls and sequence are all and are all ar |                   | ssearch.                                                                                     | Adv. Appl. Math. 2:482-489.                                  | 1.0E-8 or less; Full Length             |
| A BLocks IMProved Searcher that matches a sequence against those in BLOCKS, PRINTS, DOMO, PRODOM, and PFAM databases to search for gene families, sequence homology, and structural fingerprint 105; and Attwood, T.K. et al. (1997) J. Chem. Inf. Comput. Sci. 37:417-424.  An algorithm for searching a query sequence against hidden Markov model (HMM)-based databases of protein family consensus sequences, such as PFAM, Incleic Acids Res. 26:320-322; Durbin, R. et al. (1998) Our World View, in a Nutshell, Cambridge Univ. Press, pp. 1-350.  An algorithm that searches for structural and sequence gribskov, M. et al. (1988) CABIOS 4:61-66; motifs in protein sequences that match sequence Gribskov, M. et al. (1989) Methods Enzymol. 183:146-159; Bairoch, A. et al. (1997) Nucleic lists and the searches for structural and sequence gribskov, M. et al. (1989) Methods Enzymol. 183:146-129; Bairoch, A. et al. (1997) Nucleic lists and the searches for structural and sequence gribskov, M. et al. (1989) Methods Enzymol. Handles and the searches for structural and sequence gribskov, M. et al. (1989) Methods Enzymol. Handles and the searches for structural and sequence gribskov, M. et al. (1989) Methods Enzymol. Handles and the searches for structural and sequence gribskov, M. et al. (1989) Methods Enzymol. Handles and the searches for structural and sequence gribskov, M. et al. (1989) Methods Enzymol. Handles and the searches for structural and sequence gribskov, M. et al. (1989) Methods Enzymol. Handles and the searches for structural and sequence gribskov, M. et al. (1989) Methods Enzymol. Handles and the searches for structural and sequence gribskov, M. et al. (1989) Methods Enzymol. Handles and the searches for structural and sequence gribskov, M. et al. (1989) Methods Enzymol. Handles and the searches for structural and sequence gribskov, M. et al. (1989) Methods Enzymol. Handles and the searches for structural and sequence gribskov, M. et al. (1989) Methods Enzymol. Handles and the searches for structural and sequence gribskov an |                   |                                                                                              |                                                              | sequences: fastx score = 100 or         |
| against those in BLOCKS, PRINTS, DOMO, PRODOM, and PFAM databases to search for gene families, sequence homology, and structural fingerprint 105; and Attwood, T.K. et al. (1997) J. Chem. Inf. Comput. Sci. 37:417-424.  An algorithm for searching a query sequence against hidden Markov model (HMM)-based databases of protein family consensus sequences, such as PFAM, Inchein Acids Res. 26:320-322; Durbin, R. et al. (1998) Our World View, in a Nutshell, Cambridge Univ. Press, pp. 1-350.  An algorithm that searches for structural and sequence Gribskov, M. et al. (1989) Methods Enzymol. patterns defined in Prosite.  PRODOM, and PFAM databases to Structural and sequence Gribskov, M. et al. (1989) Methods Enzymol. patterns defined in Prosite.  Acids Res. 25:217-221.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BLIMPS            | A BLocks IMProved Searcher that matches a sequence                                           | Henikoff, S. and J.G. Henikoff (1991) Nucleic                | Probability value = $1.0E-3$ or less    |
| PRODOM, and PFAM databases to search for gene families, sequence homology, and structural fingerprint 105; and Attwood, T.K. et al. (1997) J. Chem. Inf. Comput. Sci. 37:417-424.  An algorithm for searching a query sequence against hidden Markov model (HMM)-based databases of protein family consensus sequences, such as PFAM, Inc. Acids Res. 26:320-322; Durbin, R. et al. (1998) Our World View, in a Nutshell, Cambridge Univ. Press, pp. 1-350.  An algorithm that searches for structural and sequence Gribskov, M. et al. (1989) Methods Enzymol. patterns defined in Prosite.  PRODOM, and Attwood, T.K. et al. (1997) J. Chem. Inf. Comput. Sci. 37:417-424.  Krogh, A. et al. (1994) J. Mol. Biol. 235:1501-1301. Inc. Sci. 11988) Durbin, R. et al. (1998) Methods Enzymol. Inc. Inc. Inc. Inc. Inc. Inc. Inc. Inc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   | against those in BLOCKS, PRINTS, DOMO,                                                       | Acids Res. 19:6565-6572; Henikoff, J.G. and                  |                                         |
| families, sequence homology, and structural fingerprind 105; and Attwood, T.K. et al. (1997) J. Chem. regions.  An algorithm for searching a query sequence against hidden Markov model (HMM)-based databases of protein family consensus sequences, such as PFAM, INCLE Acids Res. 26:320-322; Durbin, R. et al. (1998) Our World View, in a Nutshell, Cambridge Univ. Press, pp. 1-350.  An algorithm that searches for structural and sequence Gribskov, M. et al. (1989) Methods Enzymol. patterns defined in Prosite.  Progression Acids Res. 26:320-322; Durbin, R. et al. (1998) CABIOS 4:61-66; motifs in protein sequence that match sequence Gribskov, M. et al. (1989) Methods Enzymol. 183:146-159; Bairoch, A. et al. (1997) Nucleic Acids Res. 25:217-221.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |                                                                                              | S. Henikoff (1996) Methods Enzymol. 266:88-                  |                                         |
| An algorithm for searching a query sequence against hidden Markov model (HMM)-based databases of protein family consensus sequences, such as PFAM, INCY, SMART and TIGRFAM.  An algorithm that searches for structural and sequence motifs in protein sequences that match sequence patterns defined in Prosite.  Progh, A. et al. (1994) J. Mol. Biol. 235:1501-1531; Sonnhammer, E.L.L. et al. (1988)  Nucleic Acids Res. 26:320-322; Durbin, R. et al. (1998) Our World View, in a Nutshell, Cambridge Univ. Press, pp. 1-350.  Gribskov, M. et al. (1989) Methods Enzymol. 183:146-159; Bairoch, A. et al. (1997) Nucleic Acids Res. 25:217-221.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   | ıξ                                                                                           | 105; and Attwood, T.K. et al. (1997) J. Chem.                |                                         |
| An algorithm for searching a query sequence against hidden Markov model (HMM)-based databases of protein family consensus sequences, such as PFAM, INCY, SMART and TIGRFAM.  An algorithm that searches for structural and sequence motifs in protein sequences that match sequence patterns defined in Prosite.  An algorithm that searches for structural and sequence patterns defined in Prosite.  An algorithm that searches for structural and sequence Gribskov, M. et al. (1989) Methods Enzymol. 183:146-159; Bairoch, A. et al. (1997) Nucleic Rocies 25:217-221.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   | regions.                                                                                     | Inf. Comput. Sci. 37:417-424.                                | ,                                       |
| hidden Markov model (HMM)-based databases of protein family consensus sequences, such as PFAM, INCY, SMART and TIGRFAM.  An algorithm that searches for structural and sequence motifs in protein sequences that match sequence patterns defined in Prosite.  Protein Faul. (1988)  Nucleic Acids Res. 26:320-322; Durbin, R. et al. (1998) Our World View, in a Nutshell, Cambridge Univ. Press, pp. 1-350.  Gribskov, M. et al. (1989) Methods Enzymol. 183:146-159; Bairoch, A. et al. (1997) Nucleic Acids Res. 25:217-221.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HMMER             |                                                                                              | Krogh, A. et al. (1994) J. Mol. Biol. 235:1501-              | PFAM, INCY, SMART or                    |
| protein family consensus sequences, such as PFAM, Nucleic Acids Res. 26:320-322; Durbin, R. et INCY, SMART and TIGRFAM.  al. (1998) Our World View, in a Nutshell, Cambridge Univ. Press, pp. 1-350.  An algorithm that searches for structural and sequence Gribskov, M. et al. (1989) Methods Enzymol. patterns defined in Prosite.  183:146-159; Bairoch, A. et al. (1997) Nucleic Acids Res. 25:217-221.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   | IMM)-based databases of                                                                      | 1531; Sonnhammer, E.L.L. et al. (1988)                       | TIGRFAM hits: Probability value =       |
| INCY, SMART and TIGRFAM.  An algorithm that searches for structural and sequence motifs in protein sequences that match sequence patterns defined in Prosite.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   | sequences, such as PFAM,                                                                     | Nucleic Acids Res. 26:320-322; Durbin, R. et                 | 1.0E-3 or less; Signal peptide hits:    |
| An algorithm that searches for structural and sequence motifs in protein sequences that match sequence patterns defined in Prosite.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                                                                                              | al. (1998) Our World View, in a Nutshell,                    | Score = 0 or greater                    |
| An algorithm that searches for structural and sequence motifs in protein sequences that match sequence patterns defined in Prosite.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                                                                                              | Cambridge Univ. Press, pp. 1-350.                            |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ProtileScan       | nence                                                                                        | -                                                            | Normalized quality score ≥ GCG-         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | •                                                                                            | Gribskov, M. et al. (1989) Methods Enzymol.                  | specified 'HIGH" value for that         |
| Acids Res. 25:217-221.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |                                                                                              | 183:146-159; Bairoch, A. et al. (1997) Nucleic               | particular Prosite motif. Generally,    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                                                                              | Acids Res. 25:217-221.                                       | score = $1.4-2.1$ .                     |

| 6         |                                                                                               |                                                 |                                      |
|-----------|-----------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------|
| Program   | Description                                                                                   | Reference                                       | Parameter Threshold                  |
| Phred     |                                                                                               | Ewing, B. et al. (1998) Genome Res. 8:175-      |                                      |
|           | sequencer traces with high sensitivity and probability.                                       | 185; Ewing, B. and P. Green (1998) Genome       |                                      |
|           |                                                                                               | Res. 8:186-194.                                 |                                      |
| Phrap     | A Phils Revised Assembly Program including SWAT Smith, T.F. and M.S. Waterman (1981) Adv.     | Smith, T.F. and M.S. Waterman (1981) Adv.       | Score = 120 or greater: Match length |
|           | and CrossMatch, programs based on efficient                                                   | Appl. Math. 2:482-489; Smith, T.F. and M.S.     | = 56 or greater                      |
|           | implementation of the Smith-Waterman algorithm,                                               | Waterman (1981) J. Mol. Biol. 147:195-197;      | <b>b</b>                             |
|           | useful in searching sequence homology and assembling and Green, P., University of Washington, | and Green, P., University of Washington,        |                                      |
|           | DNA sequences.                                                                                | Seattle, WA.                                    |                                      |
| Consed    | A graphical tool for viewing and editing Phrap                                                | Gordon, D. et al. (1998) Genome Res. 8:195-     |                                      |
|           |                                                                                               | 202.                                            |                                      |
| SPScan    | A weight matrix analysis program that scans protein                                           | Nielson, H. et al. (1997) Protein Engineering   | Score = 3.5 or greater               |
|           | sequences for the presence of secretory signal                                                | 10:1-6; Claverie, J.M. and S. Audic (1997)      | 6                                    |
|           | <del></del>                                                                                   | CABIOS 12:431-439.                              |                                      |
| TMAP      |                                                                                               | Persson, B. and P. Argos (1994) J. Mol. Biol.   |                                      |
|           | transmembrane segments on protein sequences and                                               | 237:182-192; Persson, B. and P. Argos (1996)    |                                      |
|           | determine orientation.                                                                        | Protein Sci. 5:363-371.                         |                                      |
| TMHIMIMER | MIM)                                                                                          | Sonnhammer, E.L. et al. (1998) Proc. Sixth      |                                      |
|           | to delineate transmembrane segments on protein                                                | Intl. Conf. On Intelligent Systems for Mol.     |                                      |
|           | sequences and determine orientation.                                                          | Biol., Glasgow et al., eds., The Am. Assoc. for |                                      |
|           | -                                                                                             | Artificial Intelligence (AAAI) Press, Menlo     | -                                    |
|           | -                                                                                             | Park, CA, and MIT Press, Cambridge, MA, pp.     |                                      |
|           |                                                                                               | 175-182.                                        |                                      |
| Motifs    | A program that searches amino acid sequences for                                              | Bairoch, A. et al. (1997) Nucleic Acids Res.    |                                      |
|           | patterns that matched those defined in Prosite.                                               | 25:217-221; Wisconsin Package Program           |                                      |
|           |                                                                                               | Manual, version 9, page M51-59, Genetics        |                                      |
|           |                                                                                               | Computer Group, Madison, WI.                    |                                      |

|                   |          | _         | -           |             |             | -           |             |             | -           |             | -           | —           | _           | _           |             |             | _           | _           | _           | _           | _           | _           | _           |             |             |             | _           |             | _           |           | _           |
|-------------------|----------|-----------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-----------|-------------|
| Hispanic          | Allele 1 | frequency | n/a         | n/a         | n/a         | п/а         | n/a         | p/u         | n/a         | n/a       | n/a         |
| Asian             | Allele 1 | frequency | n/a         | p/u         | n/a         | n/a       | n/a         |
| African           | Allele 1 | frequency | n/a         | n/a         | n/a         | п/а         | n/a         | p/u         | n/a         | n/a       | n/a         |
| Caucasian         | Allele 1 | frequency | n/a         | n/a         | n/a         | p/u         | n/a         | p/u         | p/u         | n/a         | p/u         | p/u         | p/u         | p/u         | p/u         | n/a         | p/u         | n/a         | n/a         | p/u         | р/ш       | n/a         |
| Allele Amino Acid |          |           | noncoding   | noncoding   | noncoding   | noncoding   | noncoding   | noncoding   | D18         | noncoding   | noncoding   | noncoding   |             | noncoding   | G274        | noncoding   | S275        | Q284        | noncoding   |             | M164        | noncoding   | noncoding   | noncoding   | noncoding   |             | noncoding   | noncoding   | noncoding   |           | noncoding   |
|                   | 7        |           | G           | T           | g 9         | G           | Ð           | Ð           | Y Y         | Ð           | Ð           | Ð           |             | Ψ V         | Ð           | L           |             | L           | Y Y         |             | G D         | C           | C           | C           | T           | A           |             | A 1         | C           |           | T           |
| Allele            | 1        |           | A           | င           | A           | T           | A           | Y           | Ð           | A           | Ą           | Ą           | A           | ၁           | À           | ၁           | C           | ၁           | Ð           | G           | A           | G           | Ð           | Đ           | J           | Ð           | G           | Ð           | G           | Ð         | ر<br>ر      |
| EST               | Allele   |           | Α           | C           | Α           | T           | G           | A           | G           | A           | Α           | A           | А           | C           | А           | C           | ၁           | ၁           | Ð           | G           | A           | G           | G           | G           | ပ           | Ö           | ß           | G           | G           | . Đ       | ပ           |
| CB1               | SNP      |           | 1721        | 1867        | 1738        | 1271        | 1744        | 1761        | 109         | 1730        | 1747        | 1755        | 1772        | 458         | 838         | 916         | 840         | 998         | 794         | 1642        | 491         | 1605        | 1543        | 1542        | 1672        | 785         | 789         | 262         | 1553        | 1534      | 1664        |
| EST               | SNP      |           | 149         | 3           | 132         | 178         | 126         | 109         | 110         | 140         | 123         | 115         | 86          | 384         | 250         | 52          | 128         | 204         | 99          | 113         | 209         | 125         | 186         | 56          | 186         | 173         | 177         | 251         | 199         | 227       | 26          |
| SNPID             |          |           | SNP00003755 | SNP00098537 | SNP00149767 | SNP00023921 | SNP00003755 | SNP00149767 | SNP00027387 | SNP00003755 | SNP00149767 | SNP00003755 | SNP00149767 | SNP00126822 | SNP00065601 | SNP00069832 | SNP00075533 | SNP00075533 | SNP00075756 | SNP00033242 | SNP00100133 | SNP00033242 | SNP00033242 | SNP00033242 | SNP00136906 | SNP00057801 | SNP00096467 | SNP00075756 | SNP00033242 |           | SNP00136906 |
| ESTID             |          |           | 142314T6    | 142314T6    | 142314T6    | 1531602H1   | 2655558T6   | 2655558T6   | 2829606H1   | 2836842T6   | 2836842T6   | 2876073T6   | 2876073T6   | 7758626H1   | 1265056T6   | 1501560T6   | 1501560T6   | 1968576T6   | 1238421H1   | 1324236T6   | 1394758F6   | 1394758T6   | 1631511T6   | 1964258H1   | 1964258H1   | 3149675H1   | 3149675H1   | 659587931   | 759508T6    | 7636827H1 | 7636827H1   |
| E E               |          |           | 7517831     | 7517831     | 7517831     | 7517831     | 7517831     | 7517831     | 7517831     | 7517831     | 7517831     | 7517831     | 7517831     | 7517831     | 7520272     | 7520272     | 7520272     | 7520272     | 7523965     | 7523965     | 7523965     | 7523965     | 7523965     | 7523965     | 7523965     | 7523965     | 7523965     | 7523965     | 7523965     | 7523965   | 7523965     |
| SEQ               | А        | NO:       | 44          | 4           | 4           | 44          | 4           | 4           | 4           | 4           | 4           | 4           |             | 4           | 45          | 45          | 45          | 45          | 47          | 47          | 47          | 47          | 47          | 47          | 47          | 47          | 47          | 47          | 47          | 47        | 47          |

| SEO      | CIA C   | ESTID     | SNPID         | EST | CB1  | EST          | Allele | Allele | Allele Amino Acid | Caucasian | African   | Asian     | Hispanic  |
|----------|---------|-----------|---------------|-----|------|--------------|--------|--------|-------------------|-----------|-----------|-----------|-----------|
| <u>A</u> |         |           |               | SNP | SNP  | Allele       | -      | 2      | ,                 | Allele 1  | Allele 1  | Allele 1  | Allele 1  |
| ÿ<br>Z   |         |           |               |     |      |              |        |        |                   | frequency | frequency | frequency | frequency |
| 47       | 7523965 | 7637976J1 | SNP00075756   | 269 | 543  | Ð            | G      | A      | stop181           | n/a       | n/a       | n/a       | n/a       |
| 21       | 7516229 | 1329019Т6 | SNP00069933   | 170 | 1162 | Ŋ            | £      | r<br>D | noncoding         | n/a       | n/a       | n/a       | n/a       |
| 21       | 7516229 | 6555450H1 | SNP00023019   | 310 | 929  | Ŋ            | ß      | A      | S200              | n/a       | n/a       | n/a       | n/a       |
| 22       | 7516525 | 2190612H1 | SNP00128124   | 49  | 1276 | 4            | ß      | A      | E413              | n/a       | n/a       | n/a       | n/a       |
| 25       | 7516525 | 3780651H1 | SNP00074470   | 124 | 1682 | ນ            | ر<br>ن |        | noncoding         | 10        | 96.0      | 0.77      | 0.65      |
| 52       | 7516525 | 3825922H1 | SNP00074469   | 151 | 1667 | ن<br>ن       | C      |        | S543              | p/u       | p/u       | n/d       | p/d       |
| 23       | 7516533 | 000364H1  | SNP00002194   | 28  | 1573 | <sub>0</sub> | A      | r<br>S | noncoding         | 0.78      | n/a       | n/a       | n/a       |
| 23       | 7516533 | 2360696T6 | SNP00002194   | 447 | 1574 | ß            |        | ß      | ļ                 |           | n/a       | n/a       | n/a       |
| 23       | 7516533 | 2641486F6 | SNP00151695   | 95  | 1482 | A            | A      | ß      | Ī                 | n/a       | n/a       | n/a       | n/a       |
| 23       | 7516533 |           | SNP00126890   | 34  | 1112 | A            | A      | r<br>D |                   | n/a       | n/a       | n/a       | n/a       |
| 23       | 7516533 |           | SNP00126889   | 33  | 1081 |              |        |        |                   |           | n/a       | n/a       | n/a       |
| 23       | 7516533 | 3505057H1 | SNP00127060   | 80  | 1128 | ၁            | ·<br>ن | A      | R356              | n/a       | n/a       | n/a       | n/a       |
| 23       | 7516533 | 3505057H1 | SNP00127061   | 247 | 1295 |              |        |        | E411              | n/a       | n/a       | n/a       | n/a       |
| 23       | 7516533 | 3505057H1 | SNP00151694   | 133 | 1181 | T            | T (    | G      | P373              | n/a       | n/a       | n/a       | n/a       |
| 23       | 7516533 | 4376126H1 | SNP00127062   | 27  | 1369 | A A          | V V    | G      | K436              | 11/a      | n/a       | n/a       | n/a       |
| 72       | 7516613 | 1741505T6 | SNP00054334   | 116 | 2763 | )<br>O       |        |        | R904              | p/u       | p/u       | p/u       | p/u       |
| 22       | 7516613 | 1741505T6 | SNP00124224   | 52  | 2827 | T            | Т (    | 3 2    | S925              | p/u       | p/u       | p/u       | p/u       |
| 22       | 7516613 | 1852144T6 | SNP00029583   | 68  | 3808 | ၁            |        |        | noncoding         | p/u       | n/a       | n/a       | n/a       |
| 24       | 7516613 | 2086173H1 | SNP00029583   | 150 | 3791 | ၂            | C      | T      | noncoding         | p/u       | n/a       |           | n/a       |
| 24       | 7516613 | 2103173R6 | SNP00074035   | 137 | 331  | A '          | Α (    | G      |                   | p/u       | p/u       |           | p/u       |
| 24       | 7516613 | 2172576F6 | SNP00074035   | 62  | 327  | Α /          | A (    | G I    | K92               | p/u       | p/u       | p/u       | p/u       |
| 22       | 7516613 | 2230058H1 | SNP00029582   | 57  | 2999 | )<br>)       | C 1    | T      | H983              | p/u       | n/a       | n/a       | n/a       |
| 54       | 7516613 | 2502887T6 | SNP00029583   | 99  | 3831 | )<br>C       |        |        | noncoding         | p/u       | n/a       | n/a       | n/a       |
| 24       | 7516613 | 2606210F6 | SNP00029582   | 412 | 2998 | C            | C      |        |                   |           | n/a       |           | n/a       |
| 54       | 7516613 | 2606210F6 | SNP00124225   | 348 | 2934 | Α /          | A (    | G      | K961              | n/a       | n/a       | n/a       | n/a       |
| 25       | 7516613 |           | 0054332       | 20  | 2607 | ŋ            | G /    | A (    | G852              | n/a       | n/a       | n/a       | n/a       |
| 22       | 7516613 |           | [             | 2   | 2722 | D<br>D       | Ð<br>Ð | A F    | R890 1            | ı/d       | n/a       | n/a       | n/a       |
| T        | 7516613 | 2827761H1 | $\overline{}$ | 86  | 44   | G            | G /    | A      | E198              | ı/q       | p/u       | p/u       | p/u       |
| 54       | 7516613 | 3136587H1 | SNP00124225   | 104 | 2935 | A A          | A      | G T    | T961 1            | n/a       | n/a       | n/a       | n/a       |

#### Table {

|            |          | - 1       |             |             | -           |             | -т          | ٠,          |             | _           |         |             |             |                |             | _           |           |           | - 1         |             | _           |             | _           | _           | _           |             | -т          | _           |             | _           | <del></del> |
|------------|----------|-----------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|---------|-------------|-------------|----------------|-------------|-------------|-----------|-----------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Hispanic   | Allele 1 | frequency | p/u         | n/a         | n/a         | p/u         | n/a         | n/a         | n/a         | n/a         | n/a     | n/a         | n/a         | 0.64           | n/a         | p/u         | p/u       | n/a       | n/a         | n/a         | n/a         | n/a         | n/a         | 0.99        | n/a         | n/a         | 0.99        | n/a         | n/a         | n/a         | n/a         |
| Asian      | Allele 1 | frequency | p/u         | n/a         | n/a         | p/u         | n/a         | n/a         | n/a         | n/a         | n/a     | n/a         | n/a         | 0.87           | n/a         | p/u         | p/u       | n/a       | n/a         | n/a         | n/a         | n/a         | n/a         | p/u         | n/a         | n/a         | p/u         | n/a         | n/a         | n/a         | n/a         |
| African    | Allele 1 | frequency | p/u         | n/a         | n/a         | p/u         | n/a         | n/a         | n/a         | n/a         | n/a     | n/a         | n/a         | 0.49           | n/a         | p/u         | p/u       | n/a       | n/a         | n/a         | n/a         | n/a         | n/a         | p/u         | n/a         | n/a         | p/u         | n/a         | n/a         | n/a         | n/a         |
| Caucasian  | Allele 1 | frequency | , p/u       | n/a         | n/a         | 98.0        | n/a         | n/a         | n/a         | n/a         | p/u     | p/u         | п/а         | 9.65           | n/a         | 66'0        | 0.99      | n/a       | n/a         | n/a         | n/a         | п/а         | n/a         | p/u         | n/a         | n/a         | p/u         | n/a         | n/a         | n/a         | n/a         |
| Amino Acid |          |           | E448        | S578        | L579        | S604        | noncoding   | G807        | A807        | Q206        | S702    | 1469        | P206        | N248           | A806        | noncoding   | noncoding | noncoding | noncoding   | noncoding   | noncoding   | noncoding   | S288        | noncoding   |
| Allele     | 7        |           | A .         |             | C           | A           |             | A           | A           |             | ${f L}$ | Ð           |             | ပ              | A           |             | ၁         | C         | C           | د           |             | C           | ၁           | Ð           | ၁           | Е           | ව           | Ţ           | Ą           | Ð           | A           |
| Allele     | <b>-</b> |           | O           | Ð           | T           | ວ           | L           | Ð           | G           | Y           | ၁       | Ą           | Ą           | Ţ              | G           | ß           | <b>5</b>  | A         | Ą           | Ą           | A           | A           | L           | <b>A</b>    | G           | ပ           | 4           | ပ           | ပ           | A           | ß           |
| EST        | Allele   |           | A           | ົວ          | L           | Ą           | T           | Ð           | G           | A           | C       | Ą           | A           | [ <del>-</del> | ß           | ß           | ပ         | A         | Ą           | Æ           | A           | A           | T           | A           | ڻ<br>ت      | ن<br>ن      | A           | ပ           | ပ           | Ą           | ß           |
| CBI        | SNP      |           | 1396        | 1786        | 1788        | 1864        | 3700        | 2443        | 2442        | 649         | 2129    | 1428        | 641         | 191            | 2441        | 2035        | 2091      | 2814      | 2839        | 2857        | 2411        | 2366        | 866         | 4802        | 4836        | 3711        | 4818        | 3907        | 3946        | 2523        | 3306        |
| EST        | SNP      |           | 28          | 419         | 314         | 491         | 369         | 105         | 105         | 381         | 336     | 288         | 331         | 297            | 283         | 178         | 92        | 72        | 351         | 334         | 70          | 348         | 30          | 28          | 29          | 156         | 341         | 22          | 61          | 178         | 105         |
| SNP ID     |          |           | SNP00074036 | SNP00074037 | SNP00074038 | SNP00098419 | SNP00127935 | SNP00067424 | SNP00067424 | SNP00115029 | 1       | SNP00115031 | SNP00115029 | SNP00115030    | SNP00067424 | SNP00028255 |           | 1         | SNP00122615 | SNP00122615 | SNP00067260 | SNP00067260 | SNP00035691 | SNP00029126 | SNP00134113 | SNP00100525 | SNP00029126 | SNP00100526 | SNP00100527 | SNP00006017 | SNP00029124 |
| ESTID      |          |           | 5971646H1   | 5971646H1   | 6203324H1   |             |             | 9           |             |             |         |             |             |                |             |             |           |           | ,0          |             |             | 2836570F6   |             | 1           |             | -           | 8           | 1349339F6   |             |             | Γ.          |
| E G        |          |           | 7516613     | 7516613     | 7516613     | 7516613     | 7517068     | 7517068     | 7517068     | 7517068     | 7517068 | 7517068     | 7517068     | 7517068        | 7517068     | 7517148     | 7517148   | 7517148   | 7517148     | 7517148     | 7517148     | 7517148     | 7517238     | 7520428     | 7520428     | 7520428     | 7520428     | 7520428     | 7520428     | 7520428     | 7520428     |
| SEO        | í        | Ö         | _           |             | 1           |             | T           | П           | П           |             | T       | l           |             |                | T           |             |           |           | l           |             | ļ           |             |             |             |             |             |             |             | T           |             |             |

| SEQ       | PID     | ESTID     | SNPID       | EST      | CBI           | EST      | Allele | Allele       | Allele Amino Acid | Caucasian | African      | Asian     | Hispanic |
|-----------|---------|-----------|-------------|----------|---------------|----------|--------|--------------|-------------------|-----------|--------------|-----------|----------|
| А         |         |           |             | dNS      | dNS           | ماماله   | -      | ·            |                   |           | A 11.01.0. 1 | A 11-1- 1 | 411-1-1  |
| Ö         |         |           |             | <b>1</b> | <b>1</b><br>5 | Aller C  | - ·    | ۷ .          |                   | frequency | Allele 1     | Allele 1  | Allele I |
| 09        | 7520428 | 1547712H1 | SNP00061149 | 173      | 3374          | A        | A      | ß            | noncoding         | n/a       | n/a          |           | ח/א      |
| 9         | 7520428 | 1708824T6 | SNP00134113 | 303      | 4877          | ß        |        | U            | noncoding         | n/a       | n/a          |           | 1/a      |
| 8         | 7520428 | 1812674H1 | SNP00117686 | 180      | 4713          | ပ        | ر<br>ر | T            | noncoding         | 66.0      | 96'0         | ,,        | 0.96     |
| 8         | 7520428 | 1861030T6 | SNP00029126 | 368      | 4815          | Ą        | A      |              | noncoding         | p/u       |              |           | 0.99     |
| 8         | 7520428 | 1861030T6 | SNP00134113 | 334      | 4849          | ß        | Ŋ      | ပ            | noncoding         | n/a       |              |           | n/a      |
| 8         | 7520428 | 1903968H1 | SNP00029125 | 37       | 4436          | Ą        | A      |              | noncoding         | n/a       |              |           | n/a      |
| 9         | 7520428 | 2345238T6 | SNP00029126 | 377      | 4803          | A        |        |              | noncoding         | p/u       |              |           | 66.0     |
| 8         | 7520428 | 2345238T6 | SNP00117686 | 466      | 4714          |          |        |              | noncoding         | 0.99      | 9            | 2         | 960      |
|           | 7520428 | 2345238T6 | SNP00134113 | 343      | 4837          | G        | ڻ<br>ن |              | noncoding         | n/a       | n/a          |           | n/a      |
| T         | 7520428 | 2479846H1 | SNP00136971 | 133      | 2478          | L        | T      | <sub>ව</sub> | noncoding         | n/a       |              |           | n/a      |
| 99        | 7520428 | 264357T6  | SNP00029126 | 362      | 4831          | A        |        |              | noncoding         | p/u       |              |           | 0.99     |
| - 1       | 7520428 | 264357T6  | SNP00134113 | 328      | 4865          | G        | D<br>D | ບ            | noncoding         | n/a       |              |           | n/a      |
|           | 7520428 | 2792180T6 | SNP00134113 | 339      | 4840          | G        | 9<br>9 | C            |                   | n/a       |              |           | n/a      |
| 8         | 7520428 | 3699304H1 | SNP00100524 | 54       | 3440          | Ð        | י<br>ט |              |                   | n/a       | n/a          |           | n/a      |
| 8         | 7520428 | 3790573H1 | SNP00013785 | 201      | 4056          | T        | C      | T            |                   | 0.23      |              |           | n/a      |
| 8         | 7520428 | 4534017T1 | SNP00134113 | 324      | 4854          | G        | G<br>G |              |                   |           |              |           | n/a      |
| 8         | 7520428 | 6388557H1 | SNP00100523 | 201      | 1774          | ပ<br>ပ   | C T    |              | L579              | n/a       | n/a          | n/a       | n/a      |
|           | 7520428 | 683123011 | - 1         | 252      | 4827          | Y Y      | A (    | G            | noncoding         | p/u       | p/u          |           | 0.99     |
| - 1       | 7520428 | 6831230J1 | SNP00117686 | 163      | 4738          |          |        |              |                   | 0.99      | 96.0         | 0.95      | 96.0     |
| 8         | 7520428 | 6831230J1 | SNP00134113 | 286      | 4861          | ر<br>ت   | G C    |              | noncoding         | n/a       | n/a          | n/a       | n/a      |
|           | 7520428 | 7688277H1 | SNP00100525 |          | 3712          | ၁        | C 1    |              | noncoding         | n/a       | n/a          | n/a       | n/a      |
| 寸         | 7520428 | 768954911 | SNP00006017 | 344      | 2522          | A /      | A G    |              |                   | n/a       | n/a          |           | n/a      |
|           | 7520428 | 768954911 | SNP00136971 | 389      | 2477          | T        | T G    |              | noncoding         | п/а       | n/a          |           | п/а      |
| $\exists$ | 7520428 | 7703916H1 | SNP00029124 | 221      | 3307          | G (      | G      |              | noncoding         | n/a       | n/a          | n/a       | n/a      |
| 8         | 7520428 | 7703916H1 | SNP00100524 | 82       | 3441          | )<br>G   | G      |              |                   | n/a       |              |           | n/a      |
|           | 7520428 | 7712761H1 | SNP00029125 | 196      | 4437          | /<br>V   | A G    |              |                   | n/a       | n/a          | n/a       | n/a      |
|           | 7520428 | 775622131 | SNP00006017 | 74       | 2524          | A /      | A G    |              | noncoding         | n/a       | n/a          | n/a       | n/a      |
| T         | 7520428 | 775622131 | 0136971     |          |               | T        | T G    |              |                   | n/a       | n/a          |           | n/a      |
| 8         | 7520428 | 990784R6  | SNP00013785 | 260      | 4057          | <u>ی</u> | C T    |              |                   | 0.23      | n/a          | n/a n     | n/a      |

|                   |          |           |             |             | <del></del> |             |             |             | <del>-,</del> |             |             |             |             |             | _           |             | - 1         | - 1         | —т          | - 1         | - 1         |             | _           | -           | Т           | Т           |               |             |             |             | _               |
|-------------------|----------|-----------|-------------|-------------|-------------|-------------|-------------|-------------|---------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|---------------|-------------|-------------|-------------|-----------------|
| Hispanic          | Allele 1 | frequency | n/a         | 0.57        | n/a         | p/u         | n/a         | n/a         | p/u           | n/a         | n/a         | n/a         | n/a         | p/u         | 0.17        | n/a           | n/a         | n/a         | n/a         | 0.46            |
| Asian             | Allele 1 | frequency | n/a         | 0.44        | n/a         | p/u         | n/a         | n/a         | p/u           | n/a         | n/a         | n/a         | n/a         | p/u         | 0.19        | n/a         | n/a         | п/а         | n/a           | n/a         | n/a         | n/a         | 0.67            |
| African           | Allele 1 | frequency | n/a         | 0.52        | n/a         | p/u         | n/a         | n/a         | p/u           | n/a         | n/a         | n/a         | n/a         | p/u         | n/d         | n/a         | n/a         | n/a         | n/a         | n/a         | n/a         | п/а         | n/a         | n/a         | n/a         | n/a         | n/a           | n/a         | n/a         | n/a         | 0.37            |
| Caucasian         | Allele 1 | frequency | n/a         | 0.7         | n/a         | p/u         | n/a         | n/a         | p/u           | n/a         | n/a         | n/a         | n/a         | p/u         | 0.14        | n/a         | n/a         | n/a         | 0.59        | n/a         | n/a         | n/a         | n/a         | 0.87        | 0.87        | p/u         | n/a           | n/a         | n/a         | n/a         | 0.46            |
| Allele Amino Acid |          |           | noncoding   | noncoding   | R57         | noncoding   | noncoding   | noncoding   | noncoding     | noncoding   | noncoding   | noncoding   | noncoding   | noncoding   | noncoding   | noncoding   | G2          | K24         | noncoding   | noncoding   | noncoding   | E18         | S297        | E50         | S52         | S277        | 0 <i>77</i> 0 | Y460        | noncoding   | G211        | G1067           |
| Allele            | 7        |           | A           |             | C           | m I         |             | T           |               | ၁           | T           | ၁           | T           |             | G           | ပ           | ß           | A           | A           | ပ           | A           | A           | င           | A           | A           | G           | C             | ၁           | T           | ၁           | င               |
| Allele            | 1        |           | G           | T           | T           | ၁           | T           | C           | င             | T           | C           | T           | ၁           | Ą           | A           | A           | П           | Ð           | Ð           | £-          | ŋ           | G           | T           | g           | Ŋ           | ပ           | T             | H           | ပ           | Ð           | Ţ               |
| EST               | Allele   |           | ß           | Т           | ၁           | ນ           | T           | Т           | ບ             | T           | Ŧ           | ۲           | H           | A           | ŋ           | A           | F           | b           | A           | ပ           | ß           | ŋ           | L           | Ð           | Ð           | Ð           | T             | H           | ပ           | Ŋ           | ပ               |
| B                 | SNP      |           | 1870        | 1642        | 375         | 2054        | 1997        | 2008        | 2053          | 1996        | 2007        | 2003        | 2014        | 1406        | 631         | 169         | 212         | 278         | 2014        | 1239        | 1186        | 258         | 981         | 167         | 172         | 847         | 2484          | 1411        | 1957        | <i>L</i> 99 | 3236            |
| EST               | SNP      |           | 113         | 23          | 103         | 123         | 99          | 11          | 123           | 99          | 77          | 510         | 499         | 38          | 141         | 4           | 191         | 11          | 75          | 4           | 97          | 306         | 30          | 253         | 169         | 519         | 4             | 213         | 268         | 195         | 132             |
| SNP ID            |          |           | SNP00114359 | SNP00049573 | SNP00008735 | SNP00039374 | SNP00047780 | SNP00047781 | SNP00039374   | SNP00047780 | SNP00047781 | SNP00047780 | SNP00047781 | SNP00018770 | SNP00092603 | SNP00154337 | SNP00065632 | SNP00152262 | SNP00059143 | SNP00036245 | SNP00126649 | SNP00152262 | SNP00035691 | SNP00007308 | SNP00007308 | SNP00032647 | SNP00070606   | SNP00121108 | SNP00033062 | SNP00130724 | SNP00071326 132 |
| ESTID             |          |           | 1242156H1   | 1285002H1   |             | 1377565F6   |             | 1377565F6   | ١.            | _           | _           | 1377565T6   | 1377565T6   |             | 1857852H1   | 2108516H1   | 2655085H1   | 2889783H1   | 3861045H1   | 3948090T6   | 3948090T6   | 4550659T1   | 055029H1    | 1274616F6   | 2608313H1   | 4435787F7   | 5546336F7     | 2749757H1   | 4739562R7   | 5206370H1   | 7960593H1       |
| PD                |          |           | 7522586     | 7522586     | 7522586     | 7522586     | 7522586     | 7522586     | 7522586       | 7522586     | 7522586     | 7522586     | 7522586     | 7522586     | 7522586     | 7522586     | 7522586     | 7522586     | 7522586     | 7522586     | 7522586     | 7522586     | 7524017     | 7525773     | 7525773     | 7525773     | 2509577       | 7524408     | 7524408     | 7526158     | 7526158         |
| SEO               | í        | Ö         | 1           |             |             |             | Γ           |             | 1             |             |             |             |             |             |             |             | 1           | l           |             |             | Г           |             | 1.          |             |             |             |               | 19          |             |             |                 |

|            |          | ->        | 1           | 1           | Τ            | Т         | Τ           | Τ         | 1         | Т         | Т         | Т         | Т        | Т       | Т       | Т         | Τ         | T       | Т         | Т       | Г         | Τ         | _       | т       | _         | Т       | T -         | т-        | Т         | 1              | Τ-               |
|------------|----------|-----------|-------------|-------------|--------------|-----------|-------------|-----------|-----------|-----------|-----------|-----------|----------|---------|---------|-----------|-----------|---------|-----------|---------|-----------|-----------|---------|---------|-----------|---------|-------------|-----------|-----------|----------------|------------------|
| Hispanic   | Allele 1 | frequency | n/a         | n/a         | n/a          | n/a       | n/a         | n/a       | n/a       | n/a       | n/a       | n/a       | n/a      | n/a     | n/a     | 0.46      | n/a       | 0.76    | 0.61      | n/a     | n/a       | n/a       | n/a     | n/a     | p/u       | n/a     | n/a         | n/a       | p/u       | n/a            | n/a              |
| Asian      | Allele 1 | frequency | n/a         | n/a         | n/a          | n/a       | n/a         | n/a       | n/a       | n/a       | n/a       | n/a       | n/a      | n/a     | n/a     | 0.45      | n/a       |         |           | n/a     | n/a       | n/a       | n/a     |         |           |         |             |           |           | n/a            |                  |
| African    | Allele 1 | frequency | n/a         |             |              |           |             |           |           |           | n/a       | n/a       |          |         | n/a     | 4         | n/a       | 0.91    | 0.47      | n/a     | n/a       | n/a       | n/a     |         | n/a       |         | n/a         | n/a       |           | n/a            | n/a              |
| Caucasian  | Allele 1 | frequency | n/a         | n/a         | 0.12         | n/a       | 7           | n/a       |           | 0.88      | n/a.      | 0.15      |          | p/u     | n/a     | 0.42      | n/a       | 0.74    | 0.61      | r/a     | n/a r     | n/a       | n/a     | n/a n   | u p/u     | n/a     | u p/u       | n/a n     | u p/u     |                | n/a n            |
| Amino Acid |          |           | noncoding   | noncoding   | noncoding    |           |             | noncoding |           | V207      | M135      | noncoding |          | S291    | E486    | noncoding | noncoding |         | noncoding |         | noncoding | noncoding |         |         | noncoding |         | noncoding   | noncoding | 1         |                |                  |
| Allele     | 7        |           | G           | A           | <sub>D</sub> | C         |             |           | T.        |           | G         | A         |          | C       |         | T         | T         |         | T         |         | C         |           | C       |         | T         | T       |             | A I       | T         | A n            |                  |
| Allele     | _        |           | T           | ß           | A            | A         |             |           | ပ         |           | A         | Ğ         | A        |         | A       | C         | C         |         | C         |         | T (       |           | T (     | G 7     |           |         |             |           |           |                | J. A             |
| EST        | Allele   |           | T           | Ü           | A            | A         | ن<br>ن      | ں<br>ت    | ິນ        | G         | D         | A         | A A      | T       |         | ၁         |           |         |           |         |           |           | C 1     |         | ) C       | ) C     | A           | j G       | C         | i<br>G         | Ð                |
| CB1        | SNP      |           | 2374        | 2390        | 1961         | 1981      | 419         | 188       | 961       | 1036      | 822       |           | 2239     | 1290    | 1875    | 231 (     | 96        |         | 3028      | 1488 T  | 1533 T    |           | 1582    | 2429 (  | 2262 C    | 1018 C  | 1909 A      | 2446 G    | 2279. C   | 2482 G         | 2453 G           |
| EST        | SNP      |           | 133         | 149         | 39           | 19        | 336         | 105       | 135       |           | 274       |           | 58       |         |         |           | 356       |         |           | 129     | 216       |           |         | 1       | 99        |         | 33          | 57 2      | 4         |                |                  |
| SNPID      |          |           | SNP00146630 | SNP00146631 | SNP00040633  |           | SNP00007120 |           |           | - 1       | _         |           |          | $\neg$  | - 1     | - 1       |           |         |           | T       |           | - 1       | $\neg$  |         | 00098139  | $\neg$  | $\neg \neg$ |           |           | SNP00062572 34 | SNP00062572   51 |
| ESTID      |          |           | 1458121H1   | 1458121H1   | 1663635F6    | 1663635F6 | 2013516T6   | 2013516T6 | 2254891H1 | 2254891H1 | 2254891R6 | 257026H1  | 257026H1 |         |         |           |           | H       |           |         |           |           |         |         |           |         |             |           |           |                | 1553058T6        |
| PID        |          |           | 7526180     | 7526180     | 7526180      | 7526180   | 7526180     | 7526180   | 7526180   | 7526180   | 7526180   | 7526180   | 7526180  | 7526180 | 7526180 | 7526180   | 7526180   | 7526180 | 7526185   | 7526185 | 7526185   | 7526185   | 7526185 | 7526192 | 7526192   | 7526192 | 7526192     | 7526192   | 7526192   | 7526192        | 7526192          |
| SEQ.       | A 9      | 2         | 7           | 71          | 7            | 7         | 71          | 17        | 2         | 71        | 7         | 5         |          | 7       | 5       | 11        |           | T       | 72        |         | 72        |           | T       | 23      | - 1       |         |             | Т         | $\exists$ |                | [3]              |

| -          |          |           |             |             |           |              |             |             |             | _         |             |           |             |             |           | _           |             |             |         |             |             |         |             |             |             |         |             |             |             |           |             |
|------------|----------|-----------|-------------|-------------|-----------|--------------|-------------|-------------|-------------|-----------|-------------|-----------|-------------|-------------|-----------|-------------|-------------|-------------|---------|-------------|-------------|---------|-------------|-------------|-------------|---------|-------------|-------------|-------------|-----------|-------------|
| Hispanic   | Allele 1 | frequency | p/u         | n/a         | n/a       | n/a          | n/a         | p/u         | n/a         | n/a       | n/a         | n/a       | n/a         | n/a         | n/a       | n/a         | n/a         | n/a         | n/a     | p/u         | n/a         | p/u     | p/u         | n/a         | n/a         | n/a     | n/a         | p/u         | n/a         | n/a       | n/a         |
| Asian      | Allele 1 | frequency | n/a         | n/a         | n/a       | n/a          | n/a         | n/a         | n/a         | n/a       | n/a         | n/a       | n/a         | n/a         | n/a       | n/a         | n/a         | n/a         | n/a     | p/u         | n/a         | p/u     | p/u         | n/a         | n/a         | n/a     | n/a         | p/u         | n/a         |           | n/a         |
| African    | Allele 1 | frequency | n/a         | n/a         | n/a       | n/a          | n/a         | n/a         | n/a         | n/a       | n/a         | n/a       | n/a         | n/a         | n/a       | n/a         | n/a         | n/a         | n/a     | p/u         | n/a         | p/u     |             | n/a         | n/a         | n/a     | n/a         | p/u         | n/a         |           | n/a         |
| Caucasian  | Allele 1 | frequency | p/u         | n/a         | p/u       | n/a          | n/a         | p/u         | p/u         | n/a       | n/a         | n/a       | p/u         | n/a         | 96.0      | p/u         | 0.97        | p/u         | 0.34    |             | n/a         | p/u     | p/u         | n/a         | n/a         | n/a     | p/u         | p/u         | p/u         | 0.34      | 0.97        |
| Amino Acid | •        |           | noncoding   | noncoding   | noncoding | noncoding    | noncoding   | noncoding   | noncoding   | noncoding | N232        | T241      | noncoding   | noncoding   | noncoding |             | noncoding   | noncoding   |         |             |             |         |             | noncoding   | noncoding   |         |             | noncoding   | noncoding   |           |             |
| Allele     | 7        |           | T           | T           | G         | $\mathbf{I}$ | A           | T           | G           | T         | G           | Ð         |             | T           | G         | ß           | A           | G           | C       | G           | ر<br>ر      | G       | G           | A           |             | r<br>G  | G           | G           | G           | C         | A           |
| Allele     | -        |           | c           | C           | A         |              | -           | ပ           | A           |           | A           | A         |             |             | A .       |             |             |             | Ţ       |             | Ţ           | A (     | A (         |             | C           | A       |             | A (         |             |           | G<br>G      |
| EST        | Allele   |           | C           | C           | A         |              | G           | C           | A           |           | A           | A A       |             | G           | Y Y       | / V         | G<br>G      | A /         | C       | Y Y         | C           | Α /     | À           | G<br>G      | C           | V V     | Α /         | Α /         |             | T - T     | G           |
| CBI        | SNP      |           | 2271        | 1686        | 1911      | 1683         | 2342        | 2177        | 1908        | 716       | 1539        | 1566      | 145         | 715         | 4315      | 2487        | 3533        | 3121        | 3401    | 2824        | 65          | 1856    | 1854        | 2187 (      | 1594 (      | 1195    | 3128        | 2852 /      | 3149        | 3428      | 3560 (      |
| EST        | SNP      |           | 232         | 24          | 249       | 24           | 180         | 347         | 342         | 217       | 164         | 191       | 200         | 118         | 09        | 162         | 103         | 102         | 133     | 113         | 46 (        | 190     | 190         | 134         | 155         | 420     | 162         | 510 2       | 213         | 238 3     | 370         |
| SNPID      |          |           | SNP00098139 | SNP00068491 | _,        | SNP00068491  | SNP00062572 | SNP00098139 | SNP00068492 |           | SNP00142508 |           | SNP00118120 | SNP00057788 |           | SNP00124328 | SNP00006288 | SNP00124330 | _       | SNP00124329 | SNP00124327 |         | SNP00068980 | SNP00153438 | SNP00068979 |         | SNP00124330 | SNP00124329 | SNP00124330 |           | SNP00006288 |
| ESTID      |          | -         | 1678219T6   | 1722718F6   | 1722718F6 | 1722718H1    | 2997552T6   | 2997552T6   | 7674218H2   | 1328791H1 | 4291033F6   | 4291033F6 | 7217965H1   | 7760201H1   |           |             | 1436210H1   | 1           |         | 1597263F6   | 1669032H1   |         | 2555446H1   | 3337906H1   | 3643184H1   | 1       | 770376411   | 7753868H1   | 7753868H1   | 8598525H1 | 8598525H1   |
| PD<br>BD   |          |           | 7526192     | 7526192     | 7526192   | 7526192      | 7526192     | 7526192     | 7526192     | 7526193   | 7526193     | 7526193   | 7526193     | 7526193     | 7526196   | 7526196     | 7526196     | 7526196     | 7526196 | 7526196     | 7526196     | 7526196 | 7526196     | 7526196     | 7526196     | 7526196 | 7526196     | 7526196     | 7526196     | 7526196   | 7526196     |
| SEQ        | А        | ÿ         | 13          | 73          |           |              | 73          | 73          | 73          | 74        | 74          | 74        | 74          |             |           | 75          |             |             |         |             |             |         |             | -           |             |         |             |             |             |           | 75          |

| Hispanic          | Allele 1 | frequency | n/a         | p/u         | n/d         | n/d         | n/a         | n/d         | p/u         | n/a         | n/a         | n/a         |
|-------------------|----------|-----------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Asian             | Allele 1 | frequency | n/a         | 96.0        | 96.0        | 96'0        | n/a         | 96'0        | 96:0        | n/a         | n/a         | n/a         |
| African           | Allele 1 | frequency | n/a         | p/u         | p/u         | p/u         | n/a         | p/u         | p/u         | n/a         | n/a         | n/a         |
| Caucasian         | Allele 1 | frequency | p/u         | n/a         | n/a         | n/a         | n/a         | p/u         | n/a         | 0.04        | n/a         | n/a         | n/a         | n/a         | 0.04        | n/a         | 0.04        | n/a         | n/a         | n/a         | n/a         | 0.04        | p/u         | n/d         | p/u         | n/a         | p/u         | n/d         | n/a         | n/a         | n/a         |
| Allele Amino Acid |          |           | noncoding   | noncoding   | noncoding   | V276        | W218        | noncoding   | V276        | noncoding   |
| Allele            | 7        |           | T           | ${f T}$     | G           |             | c           | Ţ           |             | ၁           | T           | Т           |             | Т           | C           |             | C           |             | T           |             |             | C           | A           |             | A           | A           | A           | A           | G           | G           | G           |
| Allele            | 1        |           | ၁           | C           | Т           | ၁           | Т           | C           | د           | G           | C           | C           | A           | ာ           | Ð           | G           | G           | ၁           | ၁           | A           | ၁           | G           | G           | G           | G           | G           | G           | G           | A           | c           | C           |
| EST               | Allele   |           | ာ           | C           | ${f L}$     | T           | T           | C           | L           | C           | C           | C           | A           | ၁           | ၁           | A           | ာ           | ၁           | ၁           | A           | ລ           | C           | Ð           | G           | Ð           | Ð           | Ð           | G           | A           | C           | ၁           |
| CB1               | SNP      |           | 1115        | 3806        | 5405        | 1969        | 1794        | 1115        | 1969        | 2161        | 6811        | 6814        | 2468        | 8689        | 3198        | 2210        | 3134        | 6746        | 6149        | 2403        | 6333        | 3135        | 2716        | 2712        | 2740        | 234         | 2787        | 2713        | 2362        | 2115        | 2182        |
| EST               | SNP      |           | <i>L</i> 9  | 163         | 139         | 480         | 187         | <i>L</i> 9  | 480         | 123         | 151         | 151         | 137         | 352         | 64          | 72          | 123         | 151         | 151         | 137         | 352         | 64          | 319         | 8           | 241         | 18          | 251         | 194         | 123         | 78          | 58          |
| SNP ID            |          |           | SNP00053972 | SNP00033469 | SNP00113323 | SNP00053973 | SNP00153340 | SNP00053972 | SNP00053973 | SNP00014900 | SNP00044591 | SNP00044591 | SNP00139931 | SNP00153180 | SNP00014900 | SNP00139930 | SNP00014900 | SNP00044591 | SNP00044591 | SNP00139931 | SNP00153180 | SNP00014900 | SNP00066816 | SNP00066816 | SNP00066816 | SNP00136441 | SNP00066816 | SNP00066816 | SNP00068998 | SNP00068997 | SNP00068997 |
| ESTID             |          |           | 3693823H1   | 3967421F6   | 5055874H1   | 6449431H1   | 2749684F6   | 3693823H1   | 6449431H1   | 1430148F6   | 2113230H1   |             | 2556574H1   |             | 3844660H1   | 712904R6    | 1430148F6   |             |             | 2556574HI   | 2987033F6   | 3844660H1   |             | 1835249H1   | 2169542T6   | 2536771H1   | 2805663T6   | 510019T6    | 1294154H1   | 1545488H1   | 280325T6    |
| EB.               |          |           | 7526208     | 7526208     | 7526208     | 7526208     | 7526212     | 7526212     | 7526212     | 7526213     | 7526213     | 7526213     | 7526213     |             | 7526213     | 7526213     | 7526214     | 7526214     | 7526214     | 7526214     | 7526214     | 7526214     | 7526228     | 7526228     | 7526228     | 7526228     | 7526228     | 7526228     | 7526246     | 7526246     | 7526246     |
| SEQ               | А        | NO:       | 11          | 77          | 77          | 11          | 78          | 78          | ,<br>8/     | 79          |             | , 62        |             |             | . 6/        | . 62        |             |             |             |             | 08          |             | 81          |             |             |             | 81          |             |             |             | . 28        |

| . <u>2</u>        |          | 긁         |             |             |             |             |           |             |             |           |             |             |             |             |             |             |             |             |           |             |           |             |             |           |             |             |             |             |             |             | Γ       |
|-------------------|----------|-----------|-------------|-------------|-------------|-------------|-----------|-------------|-------------|-----------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-----------|-------------|-----------|-------------|-------------|-----------|-------------|-------------|-------------|-------------|-------------|-------------|---------|
| Hispanic          | Allele 1 | frequency | n/a         | n/a         | n/a         | p/u         | n/a       | n/a         | n/a         | n/a       | p/u         | p/u         | n/a         | n/a         | n/a         | 0.92        | n/a         | n/a         | n/a       | n/a         | n/a       | 0.64        | n/a         | n/a       | n/a         | n/a         | n/a         | n/a         | n/a         | n/a         | -7-     |
| Asian             | Allele 1 | frequency | n/a         | n/a         | n/a         | p/u         | n/a       | n/a         | n/a         | n/a       | p/u         | p/u         | n/a         | n/a         | n/a         | 0.98        | n/a         | n/a         | n/a       | n/a         | n/a       | 98.0        | n/a         | n/a       | n/a         | n/a         | n/a         | n/a         | n/a         | n/a         | -/-     |
| African           | Allele 1 | frequency | n/a         | n/a         | n/a         | p/u         | п/а       | n/a         | n/a         | п/а       | n/d         | p/u         | n/a         | n/a         | n/a         | 0.9         | n/a         | n/a         | n/a       | n/a         | n/a       | 0.63        | n/a         | n/a       | n/a         | n/a         | n/a         | n/a         | n/a         | n/a         |         |
| Caucasian         | Allele 1 | frequency | n/a         | n/a         | n/a         | p/u         | n/a       | n/a         | n/a         | n/a       | n/d         | 1           | n/a         | n/a         | n/a         | 0.82        | n/a         | n/a         | n/a       | n/a         | n/a       | 0.71        | n/a         | n/a       | p/u         | n/a         | n/a         | p/u         | n/a         | n/a         | 2/4     |
| Allele Amino Acid |          |           | noncoding   | noncoding   | noncoding   | G74         | R14       | 86T         | P362        | D335      | L348        | L334        | noncoding   | noncoding   | noncoding   | noncoding   |             | ding        | A129      | noncoding   | noncoding | noncoding   | noncoding   |           | noncoding   | noncoding   | noncoding   | noncoding   | noncoding   | noncoding   | Γ       |
|                   | 7        |           | G           | G 1         | G           | C           | G ]       | C           |             | c ı       | T ]         |             | C           |             | C           | C           | G           |             | L         | G           | T I       | G 1         | T           | C         | C           | T           | C           | A           | T           | C           | נ       |
| Allele            |          |           | A           | C           | A           | G           | A         | G           |             | T         |             | ၁           |             |             | ${f I}$     |             | T           | T           | ၁         | A           |           | A           | c           |           | A           |             | $_{ m T}$   | G           | ၁           | G           | E       |
| EST               | Allele   |           | A           | c           | A           | G           | A         | G           | T           | C         | Ţ           | C           | $_{ m I}$   | T           | T           | T           | G           | T           | C         |             | T         | G           | ၁           | G         | A           | ပ           | T           | A           | C           | G           | E       |
| CBI               | SNP      |           | 2946        | 2116        | 2365        | 328         | 150       | 402         | 1194        | 1113      | 1151        | 1108        | 2179        | 2259        | 2257        | 1282        | 1347        | 2235        | 540       | 1775        | 5335      | 5447        | 5461        | 5601      | 2848        | 4783        | 3316        | 3367        | 4780        | 9095        | 215     |
| EST               | SINP     |           | 224         | 165         | 486         | 241         | 63        | <i>L</i> 9  | 191         | 21        | 13          | 30          | 300         | 252         | 152         | 32          | <i>L</i> 6  | 268         | 438       | 186         | 62        | 161         | 205         | 48        | 65          | 87          | 82          | 133         | 16          | 458         |         |
| SNPID             |          |           | SNP00041996 | SNP00068997 | 86689000dNS | SNP00076027 |           | SNP00037439 | SNP00043983 |           | SNP00037440 | SNP00111294 | SNP00019740 | SNP00019740 | SNP00019740 | SNP00058093 | SNP00114001 | SNP00019740 | ı         | SNP00003740 |           | SNP00012540 | SNP00045700 |           | SNP00022215 | SNP00012538 | SNP00028237 | SNP00028238 | SNP00012538 | SNP00045701 | _       |
| ESTID             |          |           | 4407121H1   | 7621966J1   | 7751044H1   | 1348638F6   | 1348638F6 | 1444773H1   | 1897166H1   | 2770947H1 |             |             | 1649261F6   |             |             | 2745158H1   | 2745158H1   | 2921293T6   | 8011285H1 | 058064H1    | 1         | 1004004H1   | 1           | 1330039H1 |             | 1377277F1   | 1675313F6   | 1675313F6   | 1675313T6   | 1682961T7   |         |
| PID               |          |           | 7526246     | 7526246     | 7526246     | 7526258     | ٠.        | 7526258     | 7526258     | 7526258   | 7526258     | 7526258     | 7526311     | 7526311     | 7526311     | 7526311     | 7526311     | 7526311     | 7526311   | 7526315     | 7526315   | 7526315     | 7526315     | 7526315   | 7526315     | 7526315     | 7526315     | 7526315     | 7526315     | 7526315     | 7526315 |
| SEO               | Α        | Ö         | 23          | . 28        | 28          | 83          | 83        | ,<br>83     | 83          | 83        | 83          | 83          | 28          | 28          | 84          | <b>8</b>    | 28          | 25          | 8         | 82          | &         | 85          | 82          | 88        | 83          | 88          | 85          | 82          | 88          | 85          |         |

| SEO      | Old.    | ESTID     | SNPID           | EST | GB1  | EST    | Allele | Allele | Allele Allele Amino Acid Caucasian | Caucasian | African   | Asian     | Hispanic  |
|----------|---------|-----------|-----------------|-----|------|--------|--------|--------|------------------------------------|-----------|-----------|-----------|-----------|
| <u> </u> | }       |           |                 | SNP | SNP  | Allele | 1      | 7      |                                    | Allele 1  | Allele 1  | Allele 1  | Allele 1  |
| Ġ        |         |           |                 |     |      |        |        |        |                                    | frequency | frequency | frequency | frequency |
| _        | 7526315 | 403838T6  | SNP00028238 336 | 336 | 3387 | ß      | ß      | A      | noncoding                          | p/u       | n/a       | n/a       | n/a       |
| 88       | 7526315 | 762283731 | SNP00028237 242 |     | 3317 | T      | L      | C      | noncoding                          | n/a       | n/a       | n/a       | n/a       |
| 88       | 7526315 | 762283711 | SNP00028238 191 |     | 3368 | ß      | G      | A      | noncoding                          | n/d       | n/a       | n/a       | n/a       |
| 85       | 7526315 | 7625836H1 | SNP00028237 72  |     | 3299 | T      | Т      | C      | noncoding                          | n/a       | n/a       | n/a       | n/a       |
| 85       | 7526315 | 7625836H1 | SNP00028238     | 123 | 3348 | G      | Ð      | A      | noncoding                          | p/u       | n/a       | n/a       | n/a       |
| 85       | 7526315 | 7752327H1 | SNP00045701 517 | 517 | 2600 | G      | Ð      | C      | noncoding                          | n/a       | n/a       | n/a       | n/a       |
| 98       | 7526442 | 1265917F1 | SNP00149600 355 | 355 | 1648 | T      | L      | ၁      | noncoding                          | n/a       | n/a       | n/a       | n/a       |
| 98       | 7526442 | 1382145F6 | SNP00149600 469 | 469 | 1646 | T      | T      | ာ      | noncoding                          | n/a       | n/a       | n/a       | n/a       |
| 98       | 7526442 | 1824201F6 | 97 9790004NS    | 79  | 724  | C      | ၁      | L      | S139                               | p/u       | p/u       | n/a       | p/u       |
| 98       | 7526442 | 2046231H1 | SNP00114113 226 | 226 | 1004 | G      | G      | C      | noncoding                          | p/u       | n/a       | n/a       | n/a       |
| 98       | 7526442 | 2744627F6 | SNP00022802 98  | 86  | 167  | ၁      | ၁      | Ŋ      | noncoding                          | n/a       | n/a       | п/а       | п/а       |
| 98       | 7526442 | 691185T6  | SNP00149600 55  | 55  | 1722 | Т      | Т      | ر<br>ر | noncoding                          | n/a       | n/a       | n/a       | n/a       |
| 98       | 7526442 | 7622751H1 | SNP00031991 177 | 177 | 692  | ນ      | C      | Ţ      | noncoding                          | n/a       | n/a       | n/a       | n/a       |