COMPLEX ANALYSIS QUALIFYING EXAM

January 2002

(Burckel & Bennett)

- Do any 7 of the 9 problems. The notation is: \mathbb{N} for the natural numbers $(1,2,3,\ldots)$, \mathbb{R} the reals, \mathbb{C} the complex <u>plane</u>, $\mathbb{D}:=\{z\in\mathbb{C}:|z|<1\}$, $\overline{\mathbb{D}}:=\{z\in\mathbb{C}:|z|\leq1\}$. For open $U\subset\mathbb{C}$, H(U) is the set of all holomorphic functions on U, $C(\overline{\mathbb{D}})$ the set of all continuous complex-valued functions on $\overline{\mathbb{D}}$.
- 1. Let S denote the open sector in the upper half-plane having bounding rays $\{t \in \mathbb{R} : t \geq 0\}$ and $\{(-\frac{1}{2} + \frac{\sqrt{3}}{2}i)t : t \geq 0\}$ and let L denote the lens-shaped region $\{z \in \mathbb{D} : |z-1| < 2 \& |z+1| < 2\}$. Exhibit a Moebius (=fractional-linear) transformation of S onto L or prove that none exists.
- 2. The function $f \in H(\mathbb{D})$ is defined by $f(z) := \sum_{n=1}^{\infty} z^n$, $z \in \mathbb{D}$. Find the Laurent series for its analytic continuation into the annulus $\mathbb{C} \setminus \overline{\mathbb{D}}$.

The piecewise-smooth

3. closed curve Γ is defined on [0, 4] by

$$\Gamma(t) := \begin{cases} -ie^{2\pi it} & 0 \le t \le 1\\ -i + 4(t-1) & 1 \le t \le 2\\ -i + 4e^{\pi i(t-2)} & 2 \le t \le 3\\ -i + 4(t-4) & 3 \le t \le 4. \end{cases}$$

Sketch this curve and compute $\int_{\Gamma} \csc(z) dz$.

- 4. (i) Formulate a Morera theorem in $\mathbb D$ that involves only rectangles parallel to the axes. (A proof is not required.)
 - (ii) Using (i), outline a proof that "straight lines are removable for holomorphic functions", meaning that $C(\overline{\mathbb{D}}) \cap H(\mathbb{D} \backslash \mathbb{R}) \subset H(\mathbb{D})$.
- 5. U open $\subset \mathbb{C}$, $g: U \to \mathbb{C}$ is continuous and g^n is holomorphic (for some $n \in \mathbb{N}$). Show that g itself is holomorphic in U.

Hint: First consider the case that g is zero-free; work locally.

- 6. f is holomorphic and non-constant in the bounded region Ω and $\lim_{z\to b} |f(z)| = 1$ for each b in the boundary of Ω .
 - (i) Show that $f(\Omega) \subset \mathbb{D}$.
 - (ii) Show that f has a zero in Ω .
 - (iii) Use (ii) to show that $\mathbb{D} \subset f(\Omega)$. [In summary, $f(\Omega) = \mathbb{D}$.] <u>Hint</u>: Apply (ii) to $\varphi \circ f$ for various conformal automorphisms φ of \mathbb{D} .
- 7. Say that f_n converges continuously to f if $f_n(z_n) \to f(z)$ whenever $z_n \to z$.
 - (i) Show that for f_n , $f \in H(\Omega)$ this concept is equivalent to local uniform convergence of f_n to f.

1

- (ii) Use (i) to show that if f_n , g_n , f,g are all holomorphic self-maps of Ω and $f_n \to f$, $g_n \to g$ (locally uniformly), then $f_n \circ g_n \to f \circ g$.
- 8. $h: \mathbb{D} \to \mathbb{R}$ is harmonic and $f:=\frac{\partial h}{\partial x} i\frac{\partial h}{\partial y}$.
 - (i) Show that f is holomorphic in \mathbb{D} . (You may wish to use the definition "harmonic \Leftrightarrow Laplacian identically 0".)
 - (ii) Show that if F is an antiderivative of f, then h and $\operatorname{Re} F$ differ only by a constant.
 - (iii) $h: \overline{\mathbb{D}} \to \mathbb{R}$ is continuous and h is harmonic in \mathbb{D} . How would you find a harmonic conjugate k for h in \mathbb{D} ?
- 9. Suppose $f: \mathbb{C} \to \mathbb{C}$ is holomorphic and $\operatorname{Im} f(z) > 0 \quad \forall z \in \mathbb{C}$. Prove that f is constant.