

Algebra relacyjna

Baza danych - 2020/21 Carlosa Costy

1

deti

Język zapytań/przesłuchań DB

- Algebra relacyjna
 - § Język formalny modelu relacyjnego
 - § Podstawowy zestaw operacji
- Inny język formalny: rachunek relacyjny
- Języki formalne stanowią teoretyczną podstawę języka zapytań stosowanego w praktyce.
- Praktyczny język Modelu Relacyjnego §SQL

lwa

dwa

Algebra relacyjna pytania? § Jak powinien wyglądać język zapytań BD? Jakie są § pytania? § Jak wyniki? • Wyrażenia algebry relacyjnej (język). § Kolejność operacji algebry relacyjnej. § Pozwalają sformułować podstawowe prośby o uzyskanie informacji o jednym lub kilku związkach. • Sformułowanie pytania: § zbiór operatorów operujących na relacjach zwraca § nową relację • Przestudiujmy zestaw operacji...

3

Występ
 Notacja: T(<|ista atrybutów>(R))
 § <|ista atrybutów>= A1, A2, ... Ak
 §A1...Ak to nazwy atrybutów relacji R
 Wynikiem jest nowa relacja zawierająca tylko k
 wybranych atrybutów.
 Zduplikowane wiersze są usuwane z wyniku.
 §Ustaw warunek (ustawić)

Łańcuch operacji

• π Imię, Imię, Wynagrodzenie (σ obrażenia=5(PRACOWNIK))

• Jeśli chcemy zmienić nazwę atrybutów i relacji:

TEMP←**o** obrażenia=5(PRACOWNIK)

38000

Narayan

 $R(Imie, Nazwisko, Wynagrodzenie) \leftarrow \Pi \quad _{Imie, \ Imie, \ Wynagrodzenie}(TEMP)$

TEMP													
Fnan	ne l	Minit	Minit Lname		<u>sn</u>	Bdate		Address	Sex	Salary	Super_ssn	Dno	
John		В	Smith	1234	56789	1965-01-0	09	731 Fondren, Houston,TX	М	30000	333445555	5	
Franl	klin	T Wong		3334	45555	1955-12-0	80	638 Voss, Houston,TX	М	40000	888665555	5	
Ram	esh	K	Naraya	n 6668	84444	1962-09-	15	975 Fire Oak, Humble,TX	М	38000	333445555	5	
Joyce	е	Α	English	4534	53453	1972-07-3	31	5631 Rice, Houston, TX	F	25000	333445555	5	
R													
First_nam		e Last_name		Salary									
John		Smith		30000									
Franklin		Wong		40000									

10

deti

deti Jedność • Notacja: R∪S={t:t∈R∨T∈S} S • Tabele muszą być kompatybilne §Ta sama liczba atrybutów §Atrybuty z kompatybilnymi domenami • Wynikiem jest relacja zawierająca wszystkie krotki R i S §Zduplikowane krotki są eliminowane Susan Yao STUDENT Ramesh Shah Johnny Ln Kohler INSTRUCTOR Yao Barbara Jones Susan Lname Shah Ford Smith John Kohler Wang Browne Barbara Jones Ernest Gilbert John Smith Amy Francis Johnson Jimmy Wang Browne 12 Shah Gilbert Johnson Ernest Francis

deti Różnica • Notacja: R**-**S={t:t∈R∧T∉S} S • Tabele muszą być kompatybilne §Ta sama liczba atrybutów §Atrybuty z kompatybilnymi domenami • Rezultatem jest relacja zawierająca krotki R, które nie istnieją w S STUDENT Fn Ln INSTRUCTOR Susan Yao Lname Fn Ln Shah Johnny Smith John Kohler Barbara Ricardo Browne Jones Barbara Jones Amy Ford Amy Ford Francis Johnson Jimmy Wang Jimmy Wang 14 Gilbert Shah Ernest Gilbert Ernest

Unia, przecięcie i różnica

deti

 W języku SQL istnieją następujące polecenia §UNION (ALL), PRZECIĘCIE (ALL) i OPRÓCZ (ALL)

Nieruchomości:

• Suma i Przecięcie to operacje przemienne:

RUS = SUR i ROS = SOR

• Różnica nie jest przemienna:

SR-S = S-R

• Suma i Przecięcie są operacjami asocjacyjnymi:

 $RU(SUT) = (RUS)UMieć \cap S) \cap T = R \cap (S \cap T)$

15

15

Produkt kartezjański

- Notacja: RXS
- Pozwala nam łączyć krotki z różnych relacji.

§Rezultatem jest nowa relacja (Q), która łączy każdą z nich element (krotka) relacji (R) z elementem (krotka) drugiej relacji (S):

Q(A1, A2, ..., An, B1, B2, ..., Bm) = R(A1, A2, ..., An) \times S(B1, B2, ..., Bm) \$Liczba krotek Q wynosi n*M.

• Wielka Brytania: "ŁĄCZENIE KRZYŻOWE"

16

WęzełQ (DOŁĄCZ DO TETA)

• Notacja: R⋈wS

§Można to postrzegać jako wynik następującego operacje:

R3←R1 X R2 (produkt kartezjański)

Ο_ν(R3) (wybór z warunkiem c)

§C to <warunek łączenia>, który może przybrać następującą postać:

<warunek> ORAZ <warunek> ORAZ ... ORAZ <warunek>

§W każdym <condition> możemy zastosować operatory porównanie:

=, <, ≤, >, ≥, ≠

18

deti

Dział

• Notacja: R÷S

Biorąc pod uwagę relacje R(A1 ,...,Ar,B1,...,Bk) i S(B1,...,Bk) \$Wynik będzie zawierał wszystkie krotki R1(A1 ,...,Ar) że dopasuj wszystkie krotki S w R2(B1,...,BK).

• R1 i R2 są rzutami R

§liczba atrybutów R > liczba atrybutów S.

• W SQL nie ma operatora realizującego dzielenie. Musimy odwołać się do podstawowych operatorów:

 $R+S = \pi$ κυρα έμιεchu(R) - π κυρα έμιεchu((π κυρα έμιεchu(R) \times S) - R)

αdzie π κυρα έμιεchu-> π (μ1, ..., Powietze)

22

deti

OPERATIO	N PURPOSE	NOTATION	
SELECT	Selects all tuples that satisfy the selection condition from a relation R .	$\sigma_{<_{ m selection\ condition>}}(R)$	
PROJECT	Produces a new relation with only some of the attributes of R , and removes duplicate tuples.	$\pi_{< ext{attribute list>}}(R)$	
THETA JOI	Produces all combinations of tuples from R_1 and R_2 that satisfy the join condition.	$R_{1}\bowtie_{<\text{join condition}>}R_{2}$	
EQUIJOIN	Produces all the combinations of tuples from R_1 and R_2 that satisfy a join condition with only equality comparisons.	$R_1 \bowtie_{<\text{join condition}>} R_2$, OR $R_1 \bowtie_{(<\text{join attributes 1}>),} (<\text{join attributes 2}>)$ R_2	
NATURAL .	IOIN Same as EQUIJOIN except that the join attributes of R_2 are not included in the resulting relation; if the join attributes have the same names, they do not have to be specified at all.	$\begin{array}{l} R_1 \star_{(\text{join condition}>} R_2, \\ \text{OR } R_1 \star_{(<\text{join attributes 1}>),} \\ \text{OR } R_1 \star_{R_2} \star_{R_2} \end{array}$ OR $R_1 \star_{R_2} \star_{R_2} \star_{R_2}$	
UNION	Produces a relation that includes all the tuples in R_1 or R_2 or both R_1 and R_2 ; R_1 and R_2 must be union compatible.	$R_1 \cup R_2$	
INTERSEC	FION Produces a relation that includes all the tuples in both R_1 and R_2 ; R_1 and R_2 must be union compatible.	$R_1 \cap R_2$	
DIFFEREN	CE Produces a relation that includes all the tuples in R_1 that are not in R_2 ; R_1 and R_2 must be union compatible.	$R_1 - R_2$	
CARTESIA PRODUCT	D 1: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$R_1 \times R_2$	
DIVISION	Produces a relation $R(X)$ that includes all tuples $t[X]$ in $R_1(Z)$ that appear in R_1 in combination with every tuple from $R_2(Y)$, where $Z = X \cup Y$.	$R_1(Z) \div R_2(Y)$	24

