LINEAR ALGEBRA

LECTURE 4: LINEAR INDEPENDENCE, SPAN, SUBSPACE

Lecture Overview

- Elements in linear algebra
- Linear system
- Linear combination, vector equation, Four views of matrix multiplication
- Linear independence, span, and subspace
- Linear transformation
- Least squares
- Eigendecomposition
- Advanced eigendecomposition
- Singular value decomposition

Recall: Linear System

• Recall the matrix equation of a linear system:

Person	ID Weight	Height	ls_smoking	Life-span	[60	5.5	1]	$[x_1]$		[66]	
1	60kg	5.5ft	Yes (=1)	66	[60 65 55	5.0	0	x_2	=	74	
2	65kg	5.0ft	No (=0)	74	L55	6.0	1	$[x_3]$		L78]	
3	55kg	6.0ft	Yes (=1)	78		1		X	_	h	
						П		Λ		U	

• Or, a vector equation is written as

$$\begin{bmatrix} 60 \\ 65 \\ 55 \end{bmatrix} x_1 + \begin{bmatrix} 5.5 \\ 5.0 \\ 6.0 \end{bmatrix} x_2 + \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} x_3 = \begin{bmatrix} 66 \\ 74 \\ 78 \end{bmatrix}$$
$$\mathbf{a}_1 x_1 + \mathbf{a}_2 x_2 + \mathbf{a}_3 x_3 = \mathbf{b}$$

Uniqueness of Solution for Ax = b

• The solution exists only when $\mathbf{b} \in \text{Span } \{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\}$.

$$\begin{bmatrix} 60 \\ 65 \\ 55 \end{bmatrix} x_1 + \begin{bmatrix} 5.5 \\ 5.0 \\ 6.0 \end{bmatrix} x_2 + \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} x_3 = \begin{bmatrix} 66 \\ 74 \\ 78 \end{bmatrix}$$
$$\mathbf{a}_1 x_1 + \mathbf{a}_2 x_2 + \mathbf{a}_3 x_3 = \mathbf{b}$$

- If the solution exists for $A\mathbf{x} = \mathbf{b}$, when is it unique?
- It is unique when a_1 , a_2 , and a_3 are linearly independent.
- Infinitely many solutions exist when \mathbf{a}_1 , \mathbf{a}_2 , and \mathbf{a}_3 are linearly dependent.

Linear Independence

(Practical) Definition:

• Given a set of vectors $\mathbf{v}_1, \dots, \mathbf{v}_p \in \mathbb{R}^n$, check if \mathbf{v}_j can be represented as a linear combination of the previous vectors $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_{j-1}\}$ for $j = 1, \dots, p$, e.g.,

$$\mathbf{v}_{j} \in \text{Span } \{\mathbf{v}_{1}, \mathbf{v}_{2}, ..., \mathbf{v}_{j-1}\} \text{ for some } j = 1, ..., p?$$

- If at least one such \mathbf{v}_j is found, then $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ is linearly dependent.
- If no such \mathbf{v}_j is found, then $\{\mathbf{v}_1,\cdots,\mathbf{v}_p\}$ is linearly independent.

Linear Independence

(Formal) Definition:

- Consider $x_1\mathbf{v}_1 + x_2\mathbf{v}_2 \cdots + x_p\mathbf{v}_p = \mathbf{0}$.
- Obviously, one solution is $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$,

which we call a trivial solution.

- $\mathbf{v}_1, \dots, \mathbf{v}_p$ are linearly independent if this is the only solution.
- $\mathbf{v}_1, \dots, \mathbf{v}_p$ are linearly dependent if this system also has other nontrivial solutions, e.g., at least one x_i being nonzero.

Two Definitions are Equivalent

- If v_1, \dots, v_p are linearly dependent, consider a nontrivial solution.
- In the solution, let's denote j as the last index such that $x_i \neq 0$.
- Then, one can write $x_j \mathbf{v}_j = -x_1 \mathbf{v}_1 \cdots x_{j-1} \mathbf{v}_{j-1}$, and safely divide it by x_i , resulting in

$$\mathbf{v}_{j} = -\frac{x_{1}}{x_{j}}\mathbf{v}_{1} - \dots - \frac{x_{j-1}}{x_{j}}\mathbf{v}_{j-1} \in \text{Span } \{\mathbf{v}_{1}, \mathbf{v}_{2}, \dots, \mathbf{v}_{j-1}\}$$

which means \mathbf{v}_j can be represented as a linear combination of the previous vectors.

Geometric Understanding of Linear Dependence

• Given two vectors \mathbf{v}_1 and \mathbf{v}_2 , Suppose Span $\{\mathbf{v}_1, \mathbf{v}_2\}$ is the plane on the right.

• When is the third vector \mathbf{v}_3 linearly dependent of \mathbf{v}_1 and \mathbf{v}_2 ?

• That is, $\mathbf{v}_3 \in \text{Span } \{\mathbf{v}_1, \mathbf{v}_2\}$?

Linear Dependence

- A linearly dependent vector does not increase Span!
- If $\mathbf{v}_3 \in \text{Span } \{\mathbf{v}_1, \mathbf{v}_2\}$, then

Span
$$\{v_1, v_2\}$$
 = Span $\{v_1, v_2, v_3\}$,

- Why?
- Suppose $\mathbf{v}_3 = d_1\mathbf{v}_1 + d_2\mathbf{v}_2$, then the linear combination of \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 can be written as

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + c_3\mathbf{v}_3 = (c_1 + d_1)\mathbf{v}_1 + (c_1 + d_1)\mathbf{v}_2$$

which is also a linear combination of v_1 and v_2 .

Linear Dependence and Linear System Solution

- Also, a linearly dependent set produces multiple possible linear combinations of a given vector.
- Given a vector equation $x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + x_3\mathbf{v}_3 = \mathbf{b}$, suppose the solution is $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$, i.e., $3\mathbf{v}_1 + 2\mathbf{v}_2 + 1\mathbf{v}_3 = \mathbf{b}$.
- Suppose also $\mathbf{v}_3 = 2\mathbf{v}_1 + 3\mathbf{v}_2$, a linearly dependent case.
- Then, $3\mathbf{v}_1 + 2\mathbf{v}_2 + 1\mathbf{v}_3 = 3\mathbf{v}_1 + 2\mathbf{v}_2 + (2\mathbf{v}_1 + 3\mathbf{v}_2) = 5\mathbf{v}_1 + 5\mathbf{v}_2$, so $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 5 \\ 5 \\ 0 \end{bmatrix}$ is another solution. Many other solutions exist.

Linear Dependence and Linear System Solution

Actually, many more solutions exist.

• e.g.,
$$3\mathbf{v}_1 + 2\mathbf{v}_2 + 1\mathbf{v}_3 = 3\mathbf{v}_1 + 2\mathbf{v}_2 + (2\mathbf{v}_3 - 1\mathbf{v}_3)$$

= $3\mathbf{v}_1 + 2\mathbf{v}_2 + 2(2\mathbf{v}_1 + 3\mathbf{v}_2) - 1\mathbf{v}_3 = 7\mathbf{v}_1 + 8\mathbf{v}_2 - 1\mathbf{v}_3$,

thus
$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 7 \\ 8 \\ -1 \end{bmatrix}$$
 is another solution.

Uniqueness of Solution for Ax = b

• The solution exists only when $\mathbf{b} \in \text{Span } \{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\}$.

$$\begin{bmatrix} 60 \\ 65 \\ 55 \end{bmatrix} x_1 + \begin{bmatrix} 5.5 \\ 5.0 \\ 6.0 \end{bmatrix} x_2 + \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} x_3 = \begin{bmatrix} 66 \\ 74 \\ 78 \end{bmatrix}$$
$$\mathbf{a}_1 x_1 + \mathbf{a}_2 x_2 + \mathbf{a}_3 x_3 = \mathbf{b}$$

- If the solution exists for $A\mathbf{x} = \mathbf{b}$, when is it unique?
- It is unique when a_1 , a_2 , and a_3 are linearly independent.
- Infinitely many solutions exist when \mathbf{a}_1 , \mathbf{a}_2 , and \mathbf{a}_3 are linearly dependent.

Span and Subspace

- **Definition**: A **subspace** H is defined as a subset of \mathbb{R}^n closed under linear combination:
 - For any two vectors, $\mathbf{u}_1, \mathbf{u}_2 \in H$, and any two scalars c and d, $c\mathbf{u}_1 + d\mathbf{u}_2 \in H$.
- Span $\{v_1, \dots, v_p\}$ is always a subspace. Why?

•
$$\mathbf{u}_1 = a_1 \mathbf{v}_1 + \dots + a_p \mathbf{v}_p$$
, $\mathbf{u}_2 = b_1 \mathbf{v}_1 + \dots + b_p \mathbf{v}_p$

•
$$c\mathbf{u}_1 + d\mathbf{u}_2 = c(a_1\mathbf{v}_1 + \dots + a_p\mathbf{v}_p) + d(b_1\mathbf{v}_1 + \dots + b_p\mathbf{v}_p)$$

= $(ca_1 + db_1)\mathbf{v}_1 + \dots + (ca_p + db_p)\mathbf{v}_p$

• In fact, a subspace is always represented as Span $\{v_1, \dots, v_p\}$.

Basis of a Subspace

- **Definition**: A **basis** of a subspace *H* is a set of vectors that satisfies both of the following:
 - Fully spans the given subspace H
 - Linearly independent (i.e., no redundancy)
- In the previous example, where $H = \text{Span } \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$, Span $\{\mathbf{v}_1, \mathbf{v}_2\}$ forms a plane, but $\mathbf{v}_3 = 2\mathbf{v}_1 + 3\mathbf{v}_2 \in \text{Span } \{\mathbf{v}_1, \mathbf{v}_2\}$, $\{\mathbf{v}_1, \mathbf{v}_2\}$ is a basis of H, but not $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ nor $\{\mathbf{v}_1\}$ is a basis.

Non-Uniqueness of Basis

• Consider a subspace *H* (green plane).

• Is a basis unique?

• That is, is there any other set of linearly independent vectors that span the same subspace *H*?

Dimension of Subspace

- What is then unique, given a particular subspace H?
- Even though different bases exist for *H*, the number of vectors in any basis for *H* will be unique.
- We call this number as the dimension of H, denoted as dim H.
- In the previous example, the dimension of the plane is 2, meaning any basis for this subspace contains exactly two vectors.

Column Space of Matrix

• **Definition**: The **column space** of a matrix *A* is the subspace spanned by the columns of *A*. We call the column space of *A* as Col *A*.

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad \longrightarrow \qquad \text{Col } A = \text{Span} \left\{ \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \right\}$$

• What is dim Col A?

Matrix with Linearly Dependent Columns

• Given
$$A = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$
, note that $\begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$,

i.e., the third column is a linear combination of the first two.

$$\operatorname{Col} A = \operatorname{Span} \left\{ \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} \right\} \longrightarrow \operatorname{Col} A = \operatorname{Span} \left\{ \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \right\}$$

• What is dim Col A?

Rank of Matrix

- **Definition**: The **rank** of a matrix *A*, denoted by rank *A*, is the dimension of the column space of *A*:
 - rank $A = \dim Col A$