Basic Set Operations

relation r

relation s

- $r \cup s$
- а $r \cap s$ d □ r - s
- $A \mid B$ b С a f b
 - B C Α b g d af
- \Box Can we perform \cup , \cap , between any two relations?
 - They need to be *union compatible*
 - -|R| = |S| and
 - corresponding attributes have same domains
- Properties
- Both ∪ and ∩ are commutative operations tribute Names?
 Difference is not commutative
 55, Panos K Charactic

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

Basic Set Operations

relation r

- \Box $r \cup s$ \Box $r \cap s$
- \Box r-s
- В b a d f а
- relation s

a

d

 \Box Can we perform \cup , \cap , – between any two relations?

С b

- They need to be *union compatible*
 - -|R| = |S| and
 - corresponding attributes have same domains
- Properties
- Both ∪ and ∩ are commutative operations tribute Name
 Difference is not commutative

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

Cartesian Product

relation r

relation **s**

- ightharpoonup Let p(P) = r(R) x s(S)
- |P| = ? and |p| = ?
 - $|P| = |R| + |S| = \alpha_r + \alpha_s$
 - |p| = |r|*|s|
- □ Name conflicts are resolved by using the relations names as prefixes: r.A, r.B, S.A, S.B

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

13

Common Query

- Library microDB:
 - Librarian (SSN, Name, SNO)
 - Section (SNO, SName, Head)
- List the names of head librarians.
- □ How?

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

Equi-Join

relation r

1 2 3 2 4 6

С

- $r \bowtie r \bowtie r.Ai = s.Aj S$
- =-join is a macro of

$$\sigma_{r.Ai = s.Aj}(r \times s)$$

 \Box =-join of r(R) and s(S):

$$r \bowtie_{r.B = s.D} s = ?$$

relation **s**

elation s		1	2	4	8	
С	D		2	6	6	8
3	4		8	2	თ	4
6	8		2	4	3	4

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

Θ-Join

- Θ-join of r(R) and s(S)
 on attributes r.A_i and s.A_i

$$r \bowtie_{r,Ai \theta_{S},Aj} S$$

= $\sigma_{r,Ai \theta_{S},Aj} (r \times s)$

 $lue{}$ \geq -join of r(R) and s(S):

$$r \bowtie_{r.B \ge s.D} s = ?$$

relation **r**

Α	В	С	D
1	2	3	4
2	4	6	8
1	2	4	8
2	6	6	8
8	2	3	4
2	4	3	4

relation s

С	D
3	4
6	8

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

16

Example of Θ -Join

ightharpoonup \geq -join of r(R) and s(S):

$$r \bowtie_{r,B \ge s,D} s = ?$$

r.A	r.B	r.C	r.D	s.C	s.D
2	4	6	8	3	4
2	4	3	4	3	4
2	6	6	8	3	4

 \mathbf{p} r \mathbf{M} s = r \mathbf{x} s, $\Theta = \phi$

	relation r			
Α	В	С	Q	
1	2	3	4	
2	4	6	8	
1	2	4	8	
2	6	6	8	
8	2	3	4	
2	4	3	4	

relation **s**

С	D	
3	4	
6	8	

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

Natural-Join

Equi-join without duplicate columns

ightharpoonup P=list of attributes: P=R \cap S

$$\square r*s = \prod_{R \cup S} (r \bowtie_{r,P = s,P} s)$$

□ Note other notations & meanings

•
$$r \bowtie s = r * s, R \cap S \neq \phi$$

•
$$r * s = r x s$$
, $R \cap S = \phi$

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

relation r

relation s

С	D	Е
3	4	6
6	8	8

Examples from Library DB

- □ Library DB schema:
 - LIBRARIAN(Name, SSN, SNO, BirthPlace)
 - SECTION(SName, SNO, Head)
 - OUTREACH(Pname, PNO, SNUM, Location)
 - WORKSON(<u>LSSN,PNO</u>,Hours)
- For every outreach activity located in PGH, list its project number, the responsible section and its head.
- □ Find all the librarians (Name, SSN) who work on projects located in their place of birth.

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

Division Usage: Review Example

Query: "List the names of people who have in common all Susan's friends on Facebook."

Relation Friends

Username	FNFriend	LNFrind
Susan	Alex	L
Mark	Alex	L
Kirk	Mary	K
Shi	Alex	L
Susan	Mary	K
Shi	Lory	М
Kirk	Chia	S
Kirk	Alex	L

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

Division Usage: Review Example

Query: "List the names of people who have in common all Susan's friends on Facebook."

Relation Friends

$SF \leftarrow \sigma_{Username = 'Susan'}(Friends)$
$SSF \leftarrow Friends \div \pi_{FN,LN}(SF)$
$RSLT \leftarrow \sigma_{Username \neq `Susan'}(SSF)$

Osernanie	I INI PIENU	CINITING
Susan	Alex	L
Mark	Alex	L
Kirk	Mary	K
Shi	Alex	L
Susan	Mary	K
Shi	Lory	М
Kirk	Chia	S
Kirk	Alex	L
	Mark Kirk Shi Susan Shi Kirk	Susan Alex Mark Alex Kirk Mary Shi Alex Susan Mary Shi Lory Kirk Chia

Username ENEriend I NErind

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

Extended Relational Operations

- □ Extended set and Relational operations:
 - Outer Union
 - Outer Joins
- Aggregate operations:
 - MAX, MIN, AVG, SUM
 - Count
 - Subset: groupping
- Arithmetic operations and other functions:

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

26

Outer Union

- □ it is defined on partially union compatible relations
 - Non union-compatible attributes are kept in r ∪* s
 - Non union-compatible attributes without value are set to NULL
 - Tuples are "matched" over common named attributes like in natural join $r \cup * s$

relation r

	relation i			
FN	LN	MJ		
а	b	CS		
d	а	ce		
С	b	CS		

relation s

FN	LN	CL
b	g	f
d	а	sr

FN LN MJ CL b CS Null а sr С b CS Null f

what about outer intersection or outer difference?

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

Outer Join

- Join selects only tuples satisfying the join-condition
- □ Outer Join:
 - Left outer join (r™s) keeps every tuple in the left relation
 - Right outer join (r⋈ s) keeps every tuple in the right relation
 - Full outer join (r] X s) keeps every tuple
- Attributes of tuples with no matching tuples are set to NULL
- □ With out a join-condition they behave like natural join

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

28

Outer Join ("natural")

r**]⊠**s

FN	LN	MJ	CL
а	b	CS	Null
d	а	ce	sr
С	b	CS	Null

relation r		
FN	LN	MJ
а	b	CS
d	а	се
С	b	CS

relation s		
FN	LN	CL
b	g	f
d	а	sr

r**]⊠[**s

I XLS			
FN	LN	MJ	CL
d	а	ce	sr
b	g	Null	f

FN	LN	MJ	CL
а	b	cs	Null
d	а	ce	sr
С	b	cs	Null
b	g	Null	f

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

Aggregate Functions

- Mathematical and Statistical aggregate functions on collections of values
 - SUM, MAXIMUM, MINIMUM, AVERAGE
 - COUNT number of tuples (cardinality)

f <function list> (< relation>)

- Function list is a list of pairs (< function, attribute >)
- E.g., \$ count SID. AVERAGE GPA (STUDENT)

CS1555/2055, Panos K. Chrysanthis – University of Pittsburgh

30

Aggregate Functions: Example

□ RSLT \leftarrow \$\(\mathfrak{f}\) count SID, AVERAGE GPA (STUDENT)

Student

SID	Name	Age	GPA
546007	Susan	18	3.8
546100	Bob	19	3.65
546500	Bill	20	3.7

RSLT

Count_SID	AVERAGE_GPA
3	3.72

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

Example of Aggregation Query

- Q: Find the students with the highest GPA.
- Student (SID, Name, Age, GPA)
- □ A:

```
MG(MGPA) \leftarrow f_{MAX GPA} (Student);
```

 $RSLT \leftarrow MG \bowtie MGPA = GPA (Student);$

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

20

Recursive closure

- □ It is applied to a recursive relationship between tuples of the same relation
- □ E.g., find all the ancestors or descendants
- □ How do we express it?
- What about the join operation?
- Need control statements...iteration

CS1555/2055, Panos K. Chrysanthis – University of Pittsburgh

34

Grouping

Grouping the tuple in a relation

<grouping attributes> f<function list> (<relation>)

- Tuples are grouped based on the values of grouping attributes
- E.g., major & count SID, AVERAGE GPA (STUDENT)

major Count_SID AVERAGE_GPA

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

33

Write Queries in Relational Algebra

- □ Deletion:
 - r ← r − Relational_Expression
 - STUDENT \leftarrow STUDENT (σ Dept = 'CSD' \wedge QPA<2.5 (STUDENT))
- □ Insertion:
 - $r \leftarrow r \cup Relational Expression$
 - STUDENT ← STUDENT ∪ {(365, `Smith', `John')}
- □ Updating:
 - $r \leftarrow \Pi$ attributes-to-be-updated (r)
 - STUDENT $\leftarrow \Pi_{Dept = 'CSD'} (\sigma_{Dept = 'CS'} (STUDENT))$

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

_

Discussion

- □ The relational algebra is *procedural*
- □ The queries in relational algebra specify *how* to produce a result, BUT...
- □ The *how* should be the responsibility of the system
- User queries should be *declarative* specifying what is to be retrieved
 - Textual query languages (SQL, QUEL)
 - Graphical query languages (QBE)
 - Visual iconic languages (QBI)
- Other formal query languages:
 - Relational tuple calculus
 - Relational domain calculus

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

