Automatização de oráculos de teste para imagens médicas de modelos tridimensionais

Misael Costa Júnior Orientador: Prof. Dr. Márcio Delamaro

Universidade de São Paulo - USP Instituto de Ciências Matemáticas e de Computação - ICMC misaeljr@usp.br

19 de fevereiro de 2018

Introdução

Oráculos de teste baseados em características

Fluxo de atividades

- Conclusões

Publicações

Introdução

Introdução

- Engenharia de Software: produzir software de alta qualidade;
- Verificação, Validação e Teste (VV&T);
- Teste manual vs Teste automatizado;
- Oráculos de teste são fundamentais em cenários de testes automatizados (OLIVEIRA et al., 2014a).

Oráculos de teste

Figura: Fluxo genérico de teste com oráculos (Adaptado de OLIVEIRA (2017)).

Oráculos de teste: Problema do oráculo

- Não há oráculos de teste que sempre apoiam a decisão correta (WEYUKER, 1982; BARR et al., 2015);
- Ocorrência de falsos positivos e falsos negativos;
- O problema de oráculo se agrava em saídas complexas.

Figura: Exemplo de formatos de saídas que dificultam a automatização de oráculos

Motivação – Imagens sintéticas 3D de vasos sanguíneos

Figura: Vasos sintéticos 3D – antes e depois da segmentação (Adaptado de GALARRETA-VALVERDE et al. (2013)).

Objetivo

Fornecer alternativas para uma avaliação **criteriosa**, **sistemática** e **produtiva** da qualidade de sistemas com saídas que processem ou gerem imagens sintéticas tridimensionais de vasos sanguíneos, por meio de **oráculos automatizados**.

sintéticas 3D de vasos sanguíneos;

Referências

Definir o modo como extratores de características podem fornecer infor-

Documentar e generalizar características e particularidades de sistemas que

mações sobre a correção de sistemas que processem ou gerem imagens

Generalizar um framework para teste de sistemas de saídas complexas;

processem ou gerem imagens sintéticas 3D de vasos sanguíneos;

 Estabelecer um ambiente para que novos sistemas 3D sejam inseridos no contexto do framework.

Oráculos de teste baseados em caraterísticas

Conceitos básicos

- Exploram características extraídas de uma saída confiável indicada pelo testador como referência;
- Utiliza conceitos de Recuperação de Imagem Baseada em Conteúdo (do inglês, Content-Based Image Retrieval - CBIR);
- São compostos de dois elementos básicos: (i) extração de características e
 (ii) comparações de objetos;
- Para projetar a abordagem é necessário que sejam explicitados os seguintes elementos: (i) o grupo de características relevantes; (ii) a função de similaridade para medir a distância entre as saídas SUT e as referências predefinidas; e o (iii) limiar de proximidade.

Um passo a passo

Figura: Abordagem oráculos de teste baseado em características – um passo a passo.

Framework O-FIm/CO - Oracle for Images

- Apoia testes em sistemas com saídas gráficas ou complexas;
- Emprega conceitos de CBIR;
- Oráculos gráficos (do inglês, Graphical Oracle Gr-O) (DELAMARO et al., 2013).

Framework O-FIm/CO - Oracle for Images

Figura: Estrutura genérica do O-FIm/CO (Adaptado de OLIVEIRA et al. (2014)).

Framework O-FIm/CO - Oracle for Images

- Extratores de características (*IExtractor*);
- Funções de similaridade (ISimilarity).

```
similarity Euclidean extractor MyExtractor { color = "red"alpha = 78 rectangle = [100 100 30 40] } extractor OurExtractor { rectangle = [0 0 128 64] scale = 1.33 } precision = 0.46
```

Figura: Exemplo de um oráculo gráfico para o *framework* O-FIm/CO (Adaptado de OLIVEIRA (2012)).

Fluxo de atividades

Fluxo de atividades

Figura: Fluxo de atividades do mestrado.

Passo 1: Seleção de base de dados

Figura: Fluxo de atividades do mestrado.

- Muito úteis para exames de angio-RM ou por angio-TC;
- Sistemas que não têm sua qualidade mensurada devido à falta de estratégias de teste automatizado (GALARRETA-VALVERDE et al., 2013);
- A atividade para modelagem de objetos tridimensionais (3D) em sistemas computacionais é complexa;
- Apesar da sua importância, exames de angiografia devem ser evitados:
 - Ataques cardíacos;
 - Derrames no paciente.

Exemplo de imagens

Figura: Categorias de imagens sintéticas de vasos sanguíneos.

Passo 2: Mapeamento sistemático (MS)

Figura: Fluxo de atividades do mestrado.

Objetivos

Introdução

- Identificar métodos e abordagens de teste de software e análise de qualidade em sistemas biomédicos;
- Definir uma taxonomia de estratégias de teste de software e análise de qualidade em sistemas biomédicos;
- Obter uma visão geral dos procedimentos experimentais mais adequados para avaliação de sistemas biomédicos;
- Relatar as principais limitações e dificuldades na validação de sistemas biomédicos.

Introdução Oráculos de teste baseados em caraterísticas **Fluxo de atividades** Conclusões Publicações Referências

Processo de seleção

Figura: Processo de seleção (KITCHENHAM, 2004).

Seleção de estudos primários

Figura: Análise de publicações por ano.

Sistemas que processam imagens médicas

- 23% (21/91) dos estudos apresentam abordagens para sistemas que geram ou processam imagens médicas;
- 85% (18/21) desses estudos discutem a complexidade do processo de avaliação nesse domínio de sistema;
- FILHO et al. (2014) e GIBSON et al. (2001) avaliam a qualidade de imagens médicas por meio de abordagens automatizadas, demonstrando que tais abordagens são mais eficientes em comparação ao uso de métodos manuais;
- Automatização de oráculos de teste para sistemas com saídas complexas (OLIVEIRA et al., 2014b; DELAMARO et al., 2013).

Passo 3: Seleção e implementação de extratores

Figura: Fluxo de atividades do mestrado.

Processo de seleção e implementação

Figura: Processo de seleção e implementação dos extratores.

Exemplo

Características extraídas

Dimensões da imagem: 120 120 120 ######Extrator de densidade######

Densidade: 1,03x10-4 #####Extrator de bifurcação######

Números de bifurcações: 3 ####Extrator de pontos terminais####

Número de pontos terminais: 5 #####Extrator de segmentos#####

Número de segmentos: 7 #Extrator de tamanho médio de segmentos#

Tamanho médio de segmentos: 17,28

Figura: Exemplo de características obtidas por meio dos extratores desenvolvidos.

Passo 4: Extensões no OFIm/CO

Figura: Fluxo de atividades do mestrado.

Extensões no framework OFIm/CO

- O framework OFIm/CO oferece uma interface Java completa para sistemas com saídas complexas chamada OFImPlugin;
- No contexto do presente trabalho, foi mantida a interface original, realizando uma pequena alteração no parâmetro do método computeValue;
- Duas interfaces Java para adaptar plug-ins do O-Flm/CO: (i) Interfacel-mageExtractor; e (ii) InterfaceSimilarityFunction;
- Um catálogo de plugins foi desenvolvido e disponibilizado para imagens médicas 3D no formato NIfTI.

Extensões no framework OFIm/CO

```
Código-fonte 2 - Classe abstrata para plug-ins do O-FIm/CO
1: package br.oracle.pluginInterfaces;
2: import java.io.IOException;
3: public abstract class OFImPlugin {
    public abstract String getName();
     public abstract void setProperty(String propertyName,
      Object propertyValue);
    public abstract Object getProperty(String propertyName);
    public abstract Object[] getProperties();
     public abstract String[] getPropertyNames();
    public abstract double computeValue(Object complexObject);
10: }
```

```
Código-fonte 3 – Interface Java para função de similaridade do O-FIm/CO
```

```
I: package br.oracle.pluginInterfaces;
2: import java.util.Vector;
3: public interface InterfaceSimilarityFunction {
    public String getSimilarityName();
    public void addExtractor(OFImPlugin oFImPlugin);
    public Vector < OFImPlugin > getExtractors();
    public double computeSimilarity(double[] vectModel, double
     [] vectSUT):
   public double[] getVectorSimilarity(String complexObject);
9: }
```

```
I: package br.oracle.pluginInterfaces;
2: import java.io.IOException:
3: public interface InterfaceImageExtractor {
      public abstract String getName();
      public abstract void setProperty(String propertyName,
```

Código-fonte 4 - Interface Java para extratores em imagens do O-FIm/CO

```
Object propertyValue):
       public abstract Object getProperty(String propertyName);
       public abstract Object[] getProperties();
       public abstract String[] getPropertyNames();
       public abstract double computeValue(Object complexObject)
       throws IOException;
10: }
```

Figura: Inferfaces do framework OFIm/CO.

Passo 5: Condução de experimentos

Figura: Fluxo de atividades do mestrado.

- Experimento 1: Categorização de imagens sintéticas 3D e 2D de vasos sanguíneos;
- Experimento 2: Avaliação de imagens sintéticas 3D de vasos sanguíneos após aplicação de ruído gaussiano;
- Experimento 3: Oráculos humanos para avaliação da qualidade de sistemas que geram imagens sintéticas 3D de vasos sanguíneos.

Medidas avaliadas

$$Precisão = \frac{VP}{VP + FP}$$
 (1)

Revocação =
$$\frac{VP}{VP + FN}$$
 (2)

Especificidade =
$$\frac{VN}{VN + FP}$$
 (3)

VP = Verdadeiro Positivo

 $\mathsf{VN} = \mathsf{Verdadeiro} \; \mathsf{Negativo}$

 $\mathsf{FP} = \mathsf{Falso} \; \mathsf{Positivo}$

 $\mathsf{FN} = \mathsf{Falso} \ \mathsf{Negativo}$

Condução

Figura: Fluxo de atividades para julgamento do oráculo.

Experimento 1

Introdução

- Experimento 1: Categorização de imagens sintéticas 3D e 2D de vasos sanguíneos;
- Experimento 2: Avaliação de imagens sintéticas 3D de vasos sanguíneos após aplicação de ruído gaussiano;
- Experimento 3: Oráculos humanos para avaliação da qualidade de sistemas que geram imagens sintéticas 3D de vasos sanguíneos.

Motivação

Figura: Abordagem oráculos de teste baseado em características – um passo a passo.

Questões de pesquisa (QPs) e Formulação de hipóteses

- QP1: Oráculos de teste baseados em características são capazes de categorizar corretamente imagens sintéticas 3D e 2D de vasos sanguíneos?
- Hipótese nula H₀ (QP1): Oráculos de teste baseados em características não são capazes de tomar a decisão correta entre a similaridade das imagens a serem avaliadas a partir de uma imagem modelo.

$$H_0: \theta_o = 0.05$$

Hipótese alternativa H₁ (QP1): Oráculos de teste baseados em características são capazes de tomar a decisão correta entre a similaridade das imagens a serem avaliadas a partir de uma imagem modelo.

$$H_1: \theta_o < 0.05$$

Questões de pesquisa (QPs) e Formulação de hipóteses

- QP2: Oráculos de teste baseados em características são capazes de categorizar corretamente imagens sintéticas 3D e 2D de vasos sanguíneos em comparação com classificadores randômicos?
- Hipótese nula H₀ (QP2): Não há diferença na precisão para categorizar as imagens sintéticas de vasos sanguíneos entre o oráculo de teste baseado em características e os classificadores randômicos.

$$H_0: \theta_o = \theta_r$$

Hipótese alternativa H₁ (QP2): O oráculo de teste baseado em características obtém um valor de precisão diferente na categorização de imagens sintéticas de vasos sanguíneos em comparação com classificadores randômicos.

$$H_1: \theta_o \neq \theta_r$$

Objetivos

- Avaliar a precisão da abordagem na avaliação de imagens sintéticas 3D e 2D de vasos sanguíneos;
- Definir um conjunto de extratores de características para imagens sintéticas
 3D e 2D de vasos sanguíneos;
- Comparar a precisão da abordagem em relação a classificadores randômicos;
- Relatar as principais limitações e dificuldades na avaliação de imagens sintéticas 3D e 2D de vasos sanguíneos.

Metodologia

Figura: Etapas para condução do experimento.

Categorização das imagens

Figura: Categorias de imagens definidas a partir da similaridade entre o número de características – Categorização manual.

Seleção de características

Características extraídas

Dimensões da imagem: 120 120 120
######Extrator de densidade#####

Densidade: 1,03x10-4
#####Extrator de bifurcação#####

Números de bifurcações: 3
####Extrator de pontos terminais####

Número de pontos terminais: 5
#####Extrator de segmentos#####

Número de segmentos: 7

Figura: Exemplo de características obtidas por meio dos extratores desenvolvidos — Estudo 1.

Configuração do limiar

Figura: Comparação da média da precisão e revocação para o conjunto de valores de limiares.

X	VI	P/VN	e FP/I	-N		Métricas		
Imagem	VP	VN	FP	FN	Precisão	Revocação	Especificidade	
aneurism1	4	7	1	0	0,80	1,00	0,87	
aneurism2	3	9	0	0	1,00	1,00	1,00	
nonRegular1	4	6	2	0	0,67	1,00	0,75	
nonRegular2	4	6	2	0	0,67	1,00	0,75	
nonRegular3	3	8	1	0	0,75	1,00	0,90	
nonRegular4	1	11	0	0	1,00	1,00	1,00	
normal1	1	9	2	0	0,33	1,00	0,81	
normal2	1	7	4	0	0,20	1,00	0,63	
normal3	4	7	1	0	0,80	1,00	0,87	
normal4	3	9	0	0	1,00	1,00	1,00	
normal5	1	11	0	0	1,00	1,00	1,00	
stenose1	4	7	1	0	0,80	1,00	0,87	
stenose2	3	9	0	0	1,00	1,00	1,00	
Média			_		0,77	1	0,88	

Tabela: Resultados retornados pelo oráculo por meio das métricas de precisão, revocação e especificidade para imagens 3D.

X	VI	P/VN (e FP/F	-N		Métricas		
Imagem	VP	VN	FP	FN	Precisão	Revocação	Especificidade	
aneurism1	2	7	1	2	0,67	0,50	0,87	
aneurism2	3	9	0	0	1,00	1,00	1,00	
nonRegular1	4	7	1	0	0,80	1,00	0,87	
nonRegular2	3	7	1	1	0.75	0.75	0,87	
nonRegular3	3	9	0	0	1,00	1,00	1,00	
nonRegular4	0	11	0	1	0,00	0,00	1,00	
normal1	1	11	0	0	1,00	1,00	1,00	
normal2	1	7	4	0	0,20	1,00	0,63	
normal3	4	7	1	0	0,80	1,00	0,87	
normal4	3	9	0	0	1,00	1,00	1,00	
normal5	0	11	0	1	0,00	0,00	1,00	
stenose1	3	8	0	1	1,00	0.75	1,00	
stenose2	3	9	0	0	1,00	1,00	1,00	
Média					0,72	0,81	0,93	

Tabela: Resultados retornados pelo oráculo por meio das métricas de precisão, revocação e especificidade para imagens 2D.

Abordagem	Métrica	\mathbf{o}_1	alcances
	FP	14	A prob. de exatamente 142 de 156 é p = 1×10^{-12}
Imagens 3D	FN	0	A prob. de exatamente, ou menos do que, 142 de 156 é p $= 0.9$
illiagelis 3D	VP	36	A prob. de exatamente, ou mais de, 142 de 156 é p $= 1 \times 10^{-12}$
	VN	106	A prob. de exatamente, ou maior que, 142 de 156 é p = 1×10^{-12}
	FP	8	A prob. de exatamente 142 de 156 é p $= 1 \times 10^{-12}$
Imagens 2D	FN	6	A prob. de exatamente, ou menos do que, 142 de 156 é $p=0.9$
illiagelis 2D	VP	30	A prob. de exatamente, ou mais de, 142 de 156 é p $= 1 \times 10^{-12}$
	VN	112	A prob. de exatamente, ou maior que, 142 de 156 é p = 1×10^{-12}
	FP	24	A prob. de exatamente 108 de 156 é p $= 1 \times 10^{-12}$
Random 1	FN	24	A prob. de exatamente, ou menos de, 108 de 156 é p $=0,9$
Nanuoni 1	VP	12	A prob. de exatamente, ou mais de, 108 de 156 é p $= 1 \times 10^{-12}$
	VN	96	A prob. de exatamente, ou maior que, 108 de 156 é p = $1x10^{-12}$
	FP	28	A prob. de exatamente 100 de 156 é p = 1×10^{-12}
Random 2	FN	28	A prob. de exatamente, ou menos de, 100 de 156 é $p=0.9$
Nanuom 2	VP	10	A prob. de exatamente, ou mais do que, 100 de 156 é p $= 1 \times 10^{-12}$
	VN	90	A prob. de exatamente, ou maior que, 100 de 156 é p = 1×10^{-12}

Tabela: Teste binomial a partir das métricas coletadas no experimento.

t-test bicaudal: oráculos de teste baseados em características versus classificadores randômicos com nível de significância de $\alpha=0.05$.

p-value =
$$0.0109$$

Conclusões

- Oráculos de teste baseados em características são mais eficientes na avaliação da similaridade de imagens sintéticas 3D de vasos sanguíneos;
- A abordagem obteve uma diferença estatisticamente significativa na categorização das imagens 3D e 2D, em comparação a categorização randômica;
- Os resultados obtidos por meio do estudo possibilitaram utilizar subsídios gerados em outros cenários;
- Aplicar a abordagem em outros cenários.

Experimento 2

- Experimento 1: Categorização de imagens sintéticas 3D e 2D de vasos sanguíneos;
- Experimento 2: Avaliação de imagens sintéticas 3D de vasos sanguíneos após aplicação de ruído gaussiano;
- Experimento 3: Oráculos humanos para avaliação da qualidade de sistemas que geram imagens sintéticas 3D de vasos sanguíneos.

Motivação

Introdução

Questão de pesquisa (QP) e Formulação de hipóteses

- QP1: Oráculos de teste baseados em características são capazes de avaliar corretamente a similaridade entre imagens modelo e as respectivas imagens após aplicação de diferentes níveis de ruído gaussiano?
- Hipótese nula H₀ (QP1): Oráculos de teste baseados em características não são capazes de tomar a decisão correta entre a similaridade das imagens a serem avaliadas com ruído gaussiano a partir de uma imagem modelo.

$$H_0: \theta_o = 0.05$$

 Hipótese alternativa H₁ (QP1): Oráculos de teste baseados em características são capazes de tomar a decisão correta entre a similaridade das imagens a serem avaliadas com ruído gaussiano a partir de uma imagem modelo com alta precisão.

$$H_1: \theta_0 < 0.05$$

Objetivos

- Avaliar a precisão da abordagem na avaliação de imagens sintéticas 3D após aplicação de ruído gaussiano;
- Definir um conjunto de extratores de características para imagens sintéticas
 3D de vasos sanguíneos;
- Avaliar uma abordagem eficaz para definição do limiar para o conjunto de dados;
- Relatar as principais limitações e dificuldades na avaliação de imagens sintéticas 3D de vasos sanguíneos, no contexto do presente experimento.

Metodologia

Figura: Etapas para condução do experimento.

Aplicação de ruído gaussiano

Figura: Exemplo de uma imagem de vaso sanguíneo com aneurisma após aplicação de seis diferentes níveis de ruído gaussiano.

Seleção de características

Características extraídas

Dimensões da imagem: 120 120 120 ######Extrator de densidade######

Densidade: 1,03x10-4 #####Extrator de bifurcação######

Números de bifurcações: 3 ####Extrator de pontos terminais####

Número de pontos terminais: 5 #####Extrator de segmentos#####

Número de segmentos: 7 #Extrator de tamanho médio de segmentos: 17,28

Figura: Exemplo de características obtidas por meio dos extratores desenvolvidos.

Configuração do limiar

$$\bar{\mathbf{x}} = \frac{\sum_{i=0}^{N-1} x_i}{N} \tag{4}$$

$$\sigma = \sqrt{\frac{1}{N} \sum_{i=0}^{N-1} (x_i - \overline{x})^2}$$
 (5)

Assim, os valores definidos para os limiares são apresentados a seguir:

th1: 0,313273919

th2: 0,15663696

• th3: 0.626547839

X	∣ VI	P/VN (e FP/F	-N		Métricas		
Imagem	VP	VN	FP	FN	Precisão	Revocação	Especificidade	
aneurism1	6	42	0	0	1,00	1,00	1,00	
aneurism2	6	42	0	0	1,00	1,00	1,00	
nonRegular1	6	39	3	0	0,66	1,00	0,92	
nonRegular2	3	39	3	3	0,5	0,50	0,92	
normal1	4	42	0	2	1,00	0,66	1,00	
normal2	4	42	0	2	1,00	0,66	1,00	
stenose1	6	42	0	0	1,00	1,00	1,00	
stenose2	6	42	0	0	1,00	1,00	1,00	
Média					0,89	0,85	0,98	

Tabela: Desempenho do oráculo por meio das métricas de precisão, revocação e especificidade, com o primeiro conjunto de características – Limiar = th2.

X	VI	P/VN (e FP/F	N	Métricas		
Imagem	VP	VN	FP	FN	Precisão	Revocação	Especificidade
aneurism1	6	42	0	0	1,00	1,00	1,00
aneurism2	6	42	0	0	1,00	1,00	1,00
nonRegular1	6	42	0	0	1,00	1,00	1,00
nonRegular2	3	42	0	3	1,00	0,5	1,00
normal1	4	42	0	2	1,00	0,66	1,00
normal2	4	42	0	2	1,00	0,66	1,00
stenose1	6	42	0	0	1,00	1,00	1,00
stenose2	6	42	0	0	1,00	1,00	1,00
Média					1,00	0,85	1,00

Tabela: Desempenho do oráculo por meio das métricas de precisão, revocação e especificidade, com o segundo conjunto de características – Limiar = th2.

Limiar	Métrica	0_1	alcances
	FP	34	A prob. de exatamente 346 de 384 é p $= 1$ x 10^{-12}
th1	FN	4	A prob. de exatamente, ou menos que, 346 de 384 é p $= 0.9$
uii	VP	44	A prob. de exatamente, ou mais que, 346 de 384 é p $= 1 \times 10^{-12}$
	VN	302	A prob. de exatamente, ou maior que, 346 de 384 é p = $1x10^{-12}$
	FP	0	A prob. de exatamente 377 de 384 é p = 1×10^{-12}
th2	FN	7	A prob. de exatamente, ou menor, 377 de 384 é p $= 0.9$
LIIZ	VP	41	A prob. de exatamente, ou mais de, 377 de 384 é p $= 1$ x 10^{-12}
	VN	336	A prob. de exatamente, ou maior que, 377 de 384 é p = $1x10^{-12}$
	FP	133	A prob. de exatamente 251 de 384 é p = 1×10^{-12}
th3	FN	0	A prob. de exatamente, ou menor que, 251 de 384 é p $= 0.9$
ilis	VP	48	A prob. de exatamente, ou mais que, 251 de 384 é p $= 1 \times 10^{-12}$
	VN	203	A prob. de exatamente, ou maior que, 251 de 384 é p = 1×10^{-12}

Tabela: Teste binomial a partir das métricas coletadas no experimento.

Conclusões

- A abordagem apresentou alta precisão no julgamento correto das imagens sintéticas 3D de vasos sanguíneos após aplicação de diferentes níveis de ruído gaussiano;
- A alta precisão do oráculo está relacionada a alguns fatores observados na condução do estudo como, por exemplo:
 - O número de características utilizadas refletem diretamente na precisão do oráculo;
 - Características que se complementam tornam o oráculo mais preciso;
 - Abordagens de definição de limiar baseadas no desvio padrão produzem melhores resultados.
- Oráculos de teste baseados em características podem ser utilizados como uma estratégia promissora para automatizar a atividade de avaliação de objetos complexos.

Experimento 3

- Experimento 1: Categorização de imagens sintéticas 3D e 2D de vasos sanguíneos;
- Experimento 2: Avaliação de imagens sintéticas 3D de vasos sanguíneos após aplicação de ruído gaussiano;
- Experimento 3: Oráculos humanos para avaliação da qualidade de sistemas que geram imagens sintéticas 3D de vasos sanguíneos.

Motivação

Figura: Avaliação de imagens com ruído gaussiano: oráculos humanos e oráculos automatizados.

Questão de pesquisa (QP) e Formulação de hipóteses

- QP1: Oráculos humanos apresentam alta precisão no julgamento correto da similaridade entre imagens modelo e as respectivas imagens após aplicação de ruído em relação a oráculos de teste baseados em características?
- Hipótese nula H₀ (QP1): Oráculos de teste baseados em características (θ_a) e oráculos humanos (θ_h) apresentam equivalência no julgamento correto da similaridade das imagens modelo com as respectivas imagens após aplicação de ruído gaussiano.

$$H_0: \theta_a = \theta_h$$

• Hipótese alternativa H_1 (QP1): Oráculos de teste baseados em característica (θ_a) e oráculos humanos (θ_h) não apresentam equivalência no julgamento correto da similaridade das imagens modelo com as respectivas imagens após aplicação de ruído gaussiano.

$$H_1: \theta_a \neq \theta_h$$

Objetivos

- avaliar a eficiência dos oráculos humanos no julgamento correto da similaridade entre as imagens modelo com as imagens a serem avaliadas em comparação a oráculos automatizados.
- replicar o experimento 2, visando verificar a eficiência dos oráculos de teste baseados em características em comparação aos oráculos humanos;
- realizar avaliações estatísticas objetivando comparar o desempenho do julgamento do oráculo de teste baseado em características em relação aos oráculos humanos;
- relatar as principais limitações e dificuldades na avaliação de imagens sintéticas 3D de vasos sanguíneos, no contexto do presente experimento.

Metodologia

Figura: Etapas para condução do experimento.

Formulário de pesquisa

Figura: Screenshots das etapas de preenchimento do formulário.

X	Orá	culos huma	Orácul	o auton	natizado	
Imagem	Prec.	Rev.	Espec.	Prec.	Rev.	Espec.
aneurism1	0,68961	0,72222	0,93015	1,00	1,00	1,00
aneurism2	0,60749	0,67777	0,92010	1,00	1,00	1,00
nonRegular1	0,47701	0,70740	0,88941	1,00	1,00	1,00
nonRegular2	0,78791	0,73703	0,96031	1,00	0,50	1,00
normal1	0,97804	0,87936	0,99629	1,00	0,66	1,00
normal2	0,87388	0,72962	0,98465	1,00	0,66	1,00
stenose1	0,76248	0,65925	0,95608	1,00	1,00	1,00
stenose2	0,67966	0,67777	0,93492	1,00	1,00	1,00
Média	0,73201	0,72380	0,94648	1,00	0,85	1,00

Tabela: Desempenho dos oráculos humanos em relação ao oráculo automatizado (*th2*).

Métrica	p-value	t-value	\mathbf{H}_0
Precisão	0.0018	4.8671	Rej.
Revocação	0.2000	1.4151	Ac.
Especificidade	0.0035	4.3245	Rej.

Tabela: *T-test* entre o oráculo de teste baseado em características e os oráculos humanos.

Conclusões

- O oráculo de teste baseado em características apresentou equivalência aos oráculos humanos em um cenário (revocação);
- O estudo evidenciou uma diferença estatística em dois cenários (precisão e especificidade);
- Oráculos de teste baseados em características podem complementar oráculos humanos em atividades de avaliação de objetos complexos;
- Três particularidades devem ser ressaltadas: (i) a quantidade de objetos a serem analisados interfere no julgamento dos oráculos humanos; (ii) o perfil dos participantes (oráculos humanos) interfere nos resultados do experimento.

Conclusões

Contribuições

- Avaliações experimentais da abordagem em sistemas que gerem ou processem imagens médicas 3D, destacando suas vantagens e desvantagens;
- Extensões e configurações realizadas na arquitetura do O-FIm/CO como suporte adequado aos oráculos de teste baseados em características;
- Catálogo de plug-ins que representam extratores de características para imagens médicas 3D de vasos sanguíneos foram disponibilizados de modo open-source;
- Um MS sobre abordagens e estratégias de teste de software e análise de qualidade em sistemas biomédicos.

Trabalhos futuros

- Aplicação da abordagem em sistemas que gerem ou processem imagens médicas reais – ICMC/USP e IME/USP (em planejamento);
- Avaliação de técnicas de geração de escoamento de fluído ICMC/USP e EACH/USP (em planejamento);
- Avaliação da aplicabilidade de métodos de aprendizagem de máquina na abordagem – ICMC/USP, UFV e UFPR (em andamento);
- Avaliação da aplicabilidade de teste metamórfico ICMC/USP (em aberto);
- Implementação de *plugins* para o O-FIm/CO ICMC/USP (em aberto).

Publicações

- JUNIOR, MISAEL C.; DELAMARO, M. E. Automatização de oráculos de teste para o processamento de imagens médicas de modelos tridimensionais. In: Congresso Brasileiro de Software: Teoria e Prática (CBSoft), 2016, Maringá, PR. VI WORKSHOP DE TESES E DISSERTAÇÕES DO CBSOFT (WTDSOFT 2016), 2016. p. 35-41. (publicado);
- JÚNIOR, M. C.; OLIVEIRA, R. A. P.; VALVERDE, M. A. G.; JACKOWSKI, M. P.; NUNES, F. L. S.; DELAMARO, M. E. Feature-Based Test Oracles to Categorize Synthetic 3D and 2D Images of Blood Vessels. In: the 2nd Brazilian Symposium, 2017, Fortaleza. Proceedings of the 2nd Brazilian Symposium on Systematic and Automated Software Testing - SAST. New York: ACM Press, 2017. p. 1. (publicado);
- JÚNIOR, M. C.; OLIVEIRA, R. A. P.; VALVERDE, M. A. G.; JACKOWSKI, M. P.; NUNES, F. L. S.; DELAMARO, M. E. . Software testing and quality analysis in biomedical systems: a systematic mapping study. (em revisão);
- JÚNIOR, M. C.; OLIVEIRA, R. A. P.; VALVERDE, M. A. G.; JACKOWSKI, M. P.; NUNES, F. L. S.; DELAMARO, M. E. . Feature-Based Test Oracles to evaluate three-dimensional synthetic images of blood vessels: a study case. (em andamento)

Agradecimentos

Prof. Dr. Márcio Delamaro

Fluxo de atividades

Prof.^a Dr.^a Fátima Nunes

Prof. Dr. Rafael Oliveira

Dr. Miguel Galarreta

Prof. Dr. Marcel Jackowski

Referências I

- BARR, E. T., HARMAN, M., MCMINN, P., SHAHBAZ, M., and YOO, S. (2015). The oracle problem in software testing: A survey. *IEEE Transactions on Software Engineering*, pages 507–525.
- DELAMARO, M. E., NUNES, F. L. S., and OLIVEIRA, R. A. P. (2013). Using concepts of content-based image retrieval to implement graphical testing oracles. *Software Testing, Verification and Reliability*, pages 171–198.
- FILHO, A. C. S., RODRIGUES, E. P., Junior, J. E., and CARNEIRO, A. A. O. (2014). A computational tool as support in b-mode ultrasound diagnostic quality control. Revista Brasileira de Engenharia Biomédica, pages 402–405.
- GALARRETA-VALVERDE, M. A., MACEDO, M. M. G., MEKKAAOI, C., and JACKOWSKI, M. P. (2013). Three-dimensional synthetic blood vessel generation using stochastic L-systems. In *Proceedings of the Medical Imaging: Image Processing*, pages 866911–866911–6.
- GIBSON, N. M., DUDLEY, N. J., and GRIFFITH, K. (2001). A computerised quality control testing system for b-mode ultrasound. Ultrasound in medicine & biology, pages 1697–1711.
- KITCHENHAM, B. (2004). Procedures for performing systematic reviews. Keele, UK, pages 1–26.
- OLIVEIRA, R. A. P. (2012). Apoio à automatização de oráculos de teste para programas com interfaces gráficas. Master's thesis, Instituto de Ciências Matemáticas e de Computação (ICMC) Universidade de São Paulo (USP), São Carlos,SP.
- OLIVEIRA, R. A. P. (2017). Test oracles for systems with complex outputs: the case of TTS systems. Ph.d. thesis, Instituto de Ciências Matemáticas e de Computação (ICMC) Universidade de São Paulo (USP), São Carlos, SP.
- OLIVEIRA, R. A. P., Gil, V. N., Nunes, F. L. S., and Delamaro, M. E. (2014). An extensible framework to implement test oracle for "non-testable programs". In *Proceedings of the 26th International Conference on Software Engineering & Knowledge Engineering*, pages 199–204.
- OLIVEIRA, R. A. P., KANEWALA, U., and NARDI, P. A. (2014a). Automated test oracles: State of the art, taxonomies, and trends. Advances in Computers, v. 95, pages 113–199. Elsevier.
- OLIVEIRA, R. A. P., MEMON, A. M., GIL, V. N., NUNES, F. L. S., and DELAMARO, M. E. (2014b). An extensible framework to implement test oracles for non-testable programs. In Proceedings of the 26th International Conference on Software Engineering and Knowledge Engineering (SEKE), pages 199–204.
- WEYUKER, E. J. (1982). On testing non-testable programs. The Computer Journal, pages 465-470.

Obrigado!

Misael Costa Júnior - misaeljr@usp.br

