Chapter 6

Techniques of integration

6.1 Integration by parts

Theorem 6.1 – Integration by parts

If f, g are differentiable functions and their derivatives f', g' are continuous, then

$$\int f(x) \cdot g'(x) \, dx = f(x) \cdot g(x) - \int f'(x) \cdot g(x) \, dx. \tag{6.1}$$

• It is quite common, and also convenient, to express the last equation in the form

$$\int u \, dv = uv - \int v \, du. \tag{6.2}$$

This alternative version arises by letting u = f(x) and v = g(x) for simplicity.

• Some typical integrals that may be computed using integration by parts are

$$\int p(x) \cdot e^{ax} dx$$
, $\int p(x) \cdot \sin(ax) dx$, $\int p(x) \cdot \cos(ax) dx$,

where p(x) is a polynomial and $a \neq 0$ is a given constant. In each of these cases, one needs to integrate by parts n times, where n is the degree of the polynomial.

• Some other integrals for which integration by parts might be needed are those that involve \sin^{-1} , \tan^{-1} or ln. These are functions whose derivatives are much simpler, so they are all natural choices for the variable u that appears in equation (6.2).

Example 6.2 We use integration by parts to compute the integral

$$\int xe^x dx.$$

Letting u = x and $dv = e^x dx$, we find that du = dx and $v = e^x$. It easily follows that

$$\int xe^x dx = uv - \int v du = xe^x - \int e^x dx = xe^x - e^x + C.$$

Example 6.3 We use integration by parts to compute the integral

$$\int x \cos(2x) \, dx.$$

In this case, we take u = x and $dv = \cos(2x) dx$. Since du = dx and $v = \frac{1}{2}\sin(2x)$, we get

$$\int x \cos(2x) \, dx = \frac{x}{2} \sin(2x) - \frac{1}{2} \int \sin(2x) \, dx = \frac{x}{2} \sin(2x) + \frac{1}{4} \cos(2x) + C. \qquad \Box$$

Example 6.4 We use integration by parts to compute the integral

$$\int x^2 \ln x \, dx.$$

Letting $u = \ln x$ and $dv = x^2 dx$, we find that $du = \frac{1}{x} dx$ and $v = \frac{x^3}{3}$. This implies that

$$\int x^2 \ln x \, dx = \frac{x^3}{3} \ln x - \int \frac{x^3}{3} \cdot \frac{1}{x} \, dx = \frac{x^3}{3} \ln x - \int \frac{x^2}{3} \, dx = \frac{x^3}{3} \ln x - \frac{x^3}{9} + C. \qquad \Box$$

Example 6.5 We use a double integration by parts to compute the integral

$$\int e^{ax} \sin(bx) \, dx, \qquad b \neq 0.$$

If we let $u = e^{ax}$ and $dv = \sin(bx) dx$, then $du = ae^{ax} dx$ and $v = -\frac{1}{b}\cos(bx)$, so

$$\int e^{ax} \sin(bx) dx = -\frac{1}{b} e^{ax} \cos(bx) + \frac{a}{b} \int e^{ax} \cos(bx) dx.$$

Next, we take $u = e^{ax}$ and $dv = \cos(bx) dx$. Since $du = ae^{ax} dx$ and $v = \frac{1}{b}\sin(bx)$, one has

$$\int e^{ax} \sin(bx) \, dx = -\frac{1}{b} e^{ax} \cos(bx) + \frac{a}{b} \left[\frac{1}{b} e^{ax} \sin(bx) - \frac{a}{b} \int e^{ax} \sin(bx) \, dx \right]$$
$$= -\frac{1}{b} e^{ax} \cos(bx) + \frac{a}{b^2} e^{ax} \sin(bx) - \frac{a^2}{b^2} \int e^{ax} \sin(bx) \, dx.$$

Here, the rightmost integral is the same as the leftmost integral, so we actually have

$$\left(1 + \frac{a^2}{b^2}\right) \int e^{ax} \sin(bx) \, dx = -\frac{1}{b} e^{ax} \cos(bx) + \frac{a}{b^2} e^{ax} \sin(bx).$$

Once we now multiply the last equation by $b^2/(a^2+b^2)$, we may finally conclude that

$$\int e^{ax} \sin(bx) \, dx = -\frac{be^{ax} \cos(bx)}{a^2 + b^2} + \frac{ae^{ax} \sin(bx)}{a^2 + b^2} + C.$$

6.2 Integration by substitution

• A very useful tool for simplifying integrals is provided by the formula

$$\int g(f(x)) \cdot f'(x) \, dx = \int g(u) \, du. \tag{6.3}$$

• Here, the idea is to introduce a variable u = f(x) to replace the leftmost integral by another integral which is much simpler and also expressible in terms of u alone.

Example 6.6 We use an appropriate substitution to compute the integral

$$\int \frac{(\ln x)^3}{x} \, dx.$$

If we take $u = \ln x$, then we have $du = \frac{1}{x} dx$ and this is easily seen to imply that

$$\int \frac{(\ln x)^3}{x} dx = \int u^3 du = \frac{1}{4} u^4 + C = \frac{1}{4} (\ln x)^4 + C.$$

Example 6.7 We use integration by substitution to compute the integral

$$\int x^2 (x^3 + 6)^4 \, dx.$$

In this case, the choice $u = x^3 + 6$ is suitable because $du = 3x^2 dx$ and this gives

$$\int x^2(x^3+6)^4 dx = \frac{1}{3} \int u^4 du = \frac{1}{15} u^5 + C = \frac{1}{15} (x^3+6)^5 + C.$$

Example 6.8 We use an appropriate substitution to compute the integral

$$\int \frac{2x+7}{(x+2)^2} \, dx.$$

In this case, we take u = x + 2 to merely simplify the denominator. Since du = dx, we get

$$\int \frac{2x+7}{(x+2)^2} dx = \int \frac{2(u-2)+7}{u^2} du = \int 2u^{-1} du + \int 3u^{-2} du$$
$$= 2\ln|u| - 3u^{-1} + C = 2\ln|x+2| - \frac{3}{x+2} + C.$$

Example 6.9 We use integration by substitution to compute the integral

$$\int \cos \sqrt{x} \, dx.$$

If we let $u = \sqrt{x}$ to simplify the square root, then $x = u^2$ and dx = 2u du, so

$$\int \cos \sqrt{x} \, dx = \int \cos u \cdot 2u \, du = 2 \int u \cos u \, du.$$

Next, we need to integrate by parts. Letting $dv = \cos u \, du$ and $v = \sin u$, we find that

$$\int \cos \sqrt{x} \, dx = 2u \sin u - 2 \int \sin u \, du = 2u \sin u + 2 \cos u + C$$
$$= 2\sqrt{x} \sin \sqrt{x} + 2 \cos \sqrt{x} + C.$$

6.3 Reduction formulas

• A reduction formula expresses an integral I_n that depends on some integer n in terms of another integral I_m that involves a smaller integer m. If one repeatedly applies this formula, one may then express I_n in terms of a much simpler integral.

Example 6.10 We use integration by parts to establish the reduction formula

$$\int \sin^n x \, dx = -\frac{1}{n} \sin^{n-1} x \cdot \cos x + \frac{n-1}{n} \int \sin^{n-2} x \, dx. \tag{6.4}$$

If we take $dv = \sin x \, dx$, then we have $v = -\cos x$ and we may integrate by parts with

$$u = \sin^{n-1} x, \qquad du = (n-1)\sin^{n-2} x \cdot \cos x.$$

Using the fact that $\sin^2 x + \cos^2 x = 1$, one may thus conclude that

$$\int \sin^n x \, dx = -\sin^{n-1} x \cdot \cos x + (n-1) \int \sin^{n-2} x \cdot \cos^2 x \, dx$$

$$= -\sin^{n-1} x \cdot \cos x + (n-1) \int \sin^{n-2} x \cdot (1 - \sin^2 x) \, dx$$

$$= -\sin^{n-1} x \cdot \cos x + (n-1) \int \sin^{n-2} x \, dx + (1-n) \int \sin^n x \, dx.$$

Here, the rightmost integral coincides with the original integral on the left. Once we now rearrange terms, we end up with n copies of the integral and equation (6.4) follows.

Example 6.11 We use a reduction formula to compute the integral I_3 in the case that

$$I_n = \int x^n e^{2x} \, dx.$$

If we take $u = x^n$ and $dv = e^{2x} dx$, then $du = nx^{n-1} dx$ and $v = \frac{1}{2}e^{2x}$, so one has

$$I_n = \frac{1}{2} x^n e^{2x} - \frac{n}{2} \int x^{n-1} e^{2x} dx = \frac{1}{2} x^n e^{2x} - \frac{n}{2} \cdot I_{n-1}.$$
 (6.5)

We now apply the last formula repeatedly to determine I_3 . According to the formula,

$$I_{3} = \frac{1}{2}x^{3}e^{2x} - \frac{3}{2} \cdot I_{2} = \frac{1}{2}x^{3}e^{2x} - \frac{3}{2} \cdot \left[\frac{1}{2}x^{2}e^{2x} - I_{1}\right]$$

$$= \frac{1}{2}x^{3}e^{2x} - \frac{3}{2} \cdot \left[\frac{1}{2}x^{2}e^{2x} - \frac{1}{2}xe^{2x} + \frac{1}{2} \cdot I_{0}\right]$$

$$= \frac{1}{2}x^{3}e^{2x} - \frac{3}{4}x^{2}e^{2x} + \frac{3}{4}xe^{2x} - \frac{3}{4}\int e^{2x} dx$$

$$= \frac{1}{2}x^{3}e^{2x} - \frac{3}{4}x^{2}e^{2x} + \frac{3}{4}xe^{2x} - \frac{3}{8}e^{2x} + C.$$

Example 6.12 We use integration by parts to establish the reduction formula

$$\int \sec^n x \, dx = \frac{1}{n-1} \sec^{n-2} x \cdot \tan x + \frac{n-2}{n-1} \int \sec^{n-2} x \, dx. \tag{6.6}$$

In this case, we note that $(\tan x)' = \sec^2 x$ and we write the given integral as

$$\int \sec^n x \, dx = \int \sec^{n-2} x \cdot \sec^2 x \, dx.$$

If we take $dv = \sec^2 x \, dx$, then we have $v = \tan x$ and we may integrate by parts with

$$u = \sec^{n-2} x$$
, $du = (n-2)\sec^{n-3} x \cdot \sec x \tan x = (n-2)\sec^{n-2} x \cdot \tan x$.

Using the fact that $1 + \tan^2 x = \sec^2 x$, one may thus establish the identity

$$\int \sec^{n} x \, dx = \sec^{n-2} x \cdot \tan x - (n-2) \int \sec^{n-2} x \cdot \tan^{2} x \, dx$$

$$= \sec^{n-2} x \cdot \tan x - (n-2) \int \sec^{n-2} x \cdot (\sec^{2} x - 1) \, dx$$

$$= \sec^{n-2} x \cdot \tan x - (n-2) \int \sec^{n} x \, dx + (n-2) \int \sec^{n-2} x \, dx.$$

Since the integral on the left hand side also appears on the right hand side, this gives

$$(n-1)\int \sec^n x \, dx = \sec^{n-2} x \cdot \tan x + (n-2)\int \sec^{n-2} x \, dx.$$

In particular, the reduction formula (6.6) follows by dividing both sides with n-1.

Example 6.13 Let $a \neq 0$ be some given constant and consider the integral

$$I_n = \int \frac{dx}{(x^2 + a)^n} = \int (x^2 + a)^{-n} dx.$$

If we take $u = (x^2 + a)^{-n}$ and dv = dx, then we may integrate by parts to find that

$$I_n = x(x^2 + a)^{-n} + n \int x(x^2 + a)^{-n-1} \cdot 2x \, dx.$$

Let us now rearrange terms and express the last equation in the form

$$I_n = x(x^2 + a)^{-n} + 2n \int \frac{x^2 + a - a}{(x^2 + a)^{n+1}} dx$$
$$= x(x^2 + a)^{-n} + 2n \int \frac{dx}{(x^2 + a)^n} - 2na \int \frac{dx}{(x^2 + a)^{n+1}}.$$

The integrals on the right hand side have the same form as the original integral, so

$$I_n = x(x^2 + a)^{-n} + 2n \cdot I_n - 2na \cdot I_{n+1}.$$

Rearranging terms once again, one may thus establish the reduction formula

$$2na \cdot I_{n+1} = (2n-1) \cdot I_n + x(x^2+a)^{-n}.$$

6.4 Trigonometric integrals

Theorem 6.14 – Powers of sine and cosine

Consider the integral $\int \sin^m x \cdot \cos^n x \, dx$ for any non-negative integers m, n.

- (a) When n is odd, one may compute this integral using the substitution $u = \sin x$.
- (b) When m is odd, one may compute this integral using the substitution $u = \cos x$.
- (c) When m, n are even, one may use the half-angle formulas to simplify the integral.

Theorem 6.15 – Powers of secant and tangent

Consider the integral $\int \sec^m x \cdot \tan^n x \, dx$ for any non-negative integers m, n.

- (a) When n is odd, one may compute this integral using the substitution $u = \sec x$.
- (b) When m is even, one may compute this integral using the substitution $u = \tan x$.
- (c) When m is odd and n is even, one may reduce the integrand to powers of $\sec x$.
- The three cases that arise in Theorem 6.14 are closely related to the identities

$$(\sin x)' = \cos x,$$
 $(\cos x)' = -\sin x,$ $\sin^2 x + \cos^2 x = 1.$

If one uses the substitution $u = \sin x$, then one may express any even power of cosine in terms of u^2 , but also needs a copy of cosine for $du = \cos x \, dx$. This yields an odd number of cosines, so the substitution $u = \sin x$ will only help when n is odd.

• The last case that arises in Theorem 6.14 requires the half-angle formulas

$$\sin^2 \theta = \frac{1 - \cos(2\theta)}{2}, \qquad \cos^2 \theta = \frac{1 + \cos(2\theta)}{2}.$$
 (6.7)

These formulas are helpful for reducing the even powers of sine and cosine.

• The three cases that arise in Theorem 6.15 are closely related to the identities

$$(\sec x)' = \sec x \tan x,$$
 $(\tan x)' = \sec^2 x,$ $1 + \tan^2 x = \sec^2 x.$

These imply that an odd number of tangents is needed to substitute $u = \sec x$, while an even number of secants is needed to substitute $u = \tan x$.

Example 6.16 We use the substitution $u = \sin x$ to compute the integral

$$\int \sin^4 x \cdot \cos^5 x \, dx.$$

In this case, we have $du = \cos x \, dx$ and also $\sin^2 x + \cos^2 x = 1$, so

$$\int \sin^4 x \cdot \cos^5 x \, dx = \int \sin^4 x \cdot (1 - \sin^2 x)^2 \cdot \cos x \, dx = \int u^4 (1 - u^2)^2 \, du$$

$$= \int u^4 (1 - 2u^2 + u^4) \, du = \int (u^4 - 2u^6 + u^8) \, du$$

$$= \frac{u^5}{5} - \frac{2u^7}{7} + \frac{u^9}{9} + C = \frac{\sin^5 x}{5} - \frac{2\sin^7 x}{7} + \frac{\sin^9 x}{9} + C.$$

Example 6.17 We use the half-angle formulas to simplify and compute the integral

$$\int \sin^2 x \cdot \cos^2 x \, dx.$$

Since the exponents are both even, one needs to express the integrand in the form

$$\sin^2 x \cdot \cos^2 x = \frac{1 - \cos(2x)}{2} \cdot \frac{1 + \cos(2x)}{2} = \frac{1}{4} \cdot \left[1 - \cos^2(2x) \right]$$
$$= \frac{1}{4} \cdot \left[1 - \frac{1 + \cos(4x)}{2} \right] = \frac{1}{8} \cdot \left[1 - \cos(4x) \right].$$

Once we now integrate both sides of this equation, we may easily conclude that

$$\int \sin^2 x \cdot \cos^2 x \, dx = \frac{1}{8} \left[x - \frac{\sin(4x)}{4} \right] + C = \frac{x}{8} - \frac{\sin(4x)}{32} + C.$$

Example 6.18 We use an appropriate substitution to compute the integral

$$\int \sec^4 x \cdot \tan^2 x \, dx.$$

If we let $u = \tan x$, then $du = \sec^2 x \, dx$ and also $\sec^2 x = 1 + \tan^2 x = 1 + u^2$, so one has

$$\int \sec^4 x \cdot \tan^2 x \, dx = \int \sec^2 x \cdot \tan^2 x \cdot \sec^2 x \, dx = \int (1 + u^2) \cdot u^2 \, du$$
$$= \int (u^2 + u^4) \, du = \frac{u^3}{3} + \frac{u^5}{5} + C = \frac{\tan^3 x}{3} + \frac{\tan^5 x}{5} + C.$$

Example 6.19 We use an appropriate substitution to compute the integral

$$\int \frac{\sin^3 x}{\cos^8 x} \, dx.$$

Since the cosine appears in the denominator, it is better to first simplify and write

$$\int \frac{\sin^3 x}{\cos^8 x} dx = \int \frac{\sin^3 x}{\cos^3 x} \cdot \frac{1}{\cos^5 x} dx = \int \tan^3 x \cdot \sec^5 x dx.$$

Let us take $u = \sec x$. Since $du = \sec x \tan x \, dx$ and also $u^2 = \sec^2 x = \tan^2 x + 1$, we get

$$\int \frac{\sin^3 x}{\cos^8 x} dx = \int \tan^2 x \cdot \sec^4 x \cdot \sec x \tan x \, dx = \int (u^2 - 1) \cdot u^4 \, du$$
$$= \int (u^6 - u^4) \, du = \frac{u^7}{7} - \frac{u^5}{5} + C = \frac{\sec^7 x}{7} - \frac{\sec^5 x}{5} + C.$$

6.5 Trigonometric substitutions

- Trigonometric substitutions are sometimes needed to simplify integrals that contain expressions of the form $\sqrt{a^2 x^2}$, $\sqrt{x^2 a^2}$ and $\sqrt{x^2 + a^2}$ for some a > 0. In each of these cases, one naturally seeks a substitution to simplify the square root.
- The three most common trigonometric substitutions are listed in the table below.

Expression	Substitution	Simplification	
$\sqrt{a^2-x^2}$	$x = a\sin\theta$	$\sqrt{a^2 - x^2} = a\cos\theta,$	$dx = a\cos\theta d\theta$
$\sqrt{a^2 + x^2}$	$x = a \tan \theta$	$\sqrt{a^2 + x^2} = a \sec \theta,$	$dx = a\sec^2\theta d\theta$
$\sqrt{x^2-a^2}$	$x = a \sec \theta$	$\sqrt{x^2 - a^2} = a \tan\theta ,$	$dx = a \sec \theta \tan \theta d\theta$

• In the first case, one has $a^2 - x^2 = a^2 - a^2 \sin^2 \theta = a^2 \cos^2 \theta$ and $\sqrt{a^2 - x^2} = a \cos \theta$. This is because $\theta = \sin^{-1}(x/a)$ lies between $-\pi/2$ and $\pi/2$, so $\cos \theta$ is non-negative.

Example 6.20 We use a trigonometric substitution to compute the integral

$$\int \frac{dx}{\sqrt{a^2 - x^2}}, \qquad a > 0.$$

If we let $x = a \sin \theta$, then $a^2 - x^2 = a^2 - a^2 \sin^2 \theta = a^2 \cos^2 \theta$ and also $dx = a \cos \theta d\theta$, so

$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \int \frac{a\cos\theta \, d\theta}{a\cos\theta} = \int d\theta = \theta + C = \sin^{-1}\frac{x}{a} + C.$$

Example 6.21 We use a trigonometric substitution to compute the integral

$$\int \frac{dx}{x^2 + a^2}, \qquad a > 0.$$

If we let $x = a \tan \theta$, then $x^2 + a^2 = a^2 \tan^2 \theta + a^2 = a^2 \sec^2 \theta$ and also $dx = a \sec^2 \theta d\theta$, so

$$\int \frac{dx}{x^2 + a^2} = \int \frac{a \sec^2 \theta \, d\theta}{a^2 \sec^2 \theta} = \frac{1}{a} \int d\theta = \frac{1}{a} \theta + C = \frac{1}{a} \tan^{-1} \frac{x}{a} + C.$$

Example 6.22 We use a trigonometric substitution to compute the integral

$$\int \frac{x^2 dx}{\sqrt{4 - x^2}}.$$

If we let $x = 2\sin\theta$, then $4 - x^2 = 4 - 4\sin^2\theta = 4\cos^2\theta$ and also $dx = 2\cos\theta \,d\theta$, so

$$\int \frac{x^2 dx}{\sqrt{4 - x^2}} = \int \frac{4\sin^2 \theta \cdot 2\cos \theta d\theta}{2\cos \theta} = \int 4\sin^2 \theta d\theta = 2\int [1 - \cos(2\theta)] d\theta$$
$$= 2\theta - \sin(2\theta) + C = 2\theta - 2\sin \theta \cdot \cos \theta + C.$$

It remains to express this equation in terms of $x = 2\sin\theta$. Since $\theta = \sin^{-1}\frac{x}{2}$, we get

$$\int \frac{x^2 dx}{\sqrt{4 - x^2}} = 2\sin^{-1}\frac{x}{2} - 2\cdot\frac{x}{2}\cdot\sqrt{1 - \frac{x^2}{4}} + C = 2\sin^{-1}\frac{x}{2} - \frac{x}{2}\sqrt{4 - x^2} + C.$$