# (03) Complexity Part 2a (Big 'O') Video (18 mins):

https://www.youtube.com/watch?v=QYf5fgISAbY&list=PLi1cUmnkDnZvpLl1N PYxmq1Jnd7LAGCaa&index=22

#### Efficiency is a matter of the growth rate

- Growth rate:
  - how the number of operations grows as the input size increases

A more efficient algorithm has a slower growth rate in running time as the input size increases.



#### Why do we care about growth rate?



Remember "The Hare vs. The Tortoise" Story?

#### Asymptotic Order of Growth

- → Asymptotic analysis is about describing the behavior of mathematical functions "in the limit"
  - we want to know how the function behaves as the input gets larger and larger without bound, towards infinity
- ♦ Why "in the limit"?
  - Small input sizes have fast running times and cause no issue
  - We are usually concerned with the worst-case complexity
- ♦ Why worst case, and not best case or average case?
  - Best case is often a "special" situation that does not apply to most inputs
  - Average case is difficult to determine without knowledge of the real world frequencies of input occurrences
  - Worst case is a good predictor of "difficulty" of problems



#### Big O Notation

- ◆ Capital letter O to specify an algorithm's order of complexity
  - ❖ O(n²) pronounced "oh of n-squared" or "big oh of n-squared"
  - represents the concept of "upper bound"
- ★ E.g., O(n²) means an algorithm is of the order n²
  - ❖ "for large n the number of operations will be roughly n²"
- ◆ Algorithms with same order of complexity are asymptotically equal in efficiency



#### O(1) - Constant Time





# O(n) - Linear Time





## O(n<sup>2</sup>) - Quadratic Time





## O(n<sup>3</sup>) - Cubic Time





# increasing order of complexity

## Increasing order of complexity

|              | Big O              | Remarks                                                                                               |
|--------------|--------------------|-------------------------------------------------------------------------------------------------------|
| Constant     | O(1)               | not affected by input size n                                                                          |
| Logarithmic  | O(log n)           | we will see this during decomposition/recursion                                                       |
| Linear       | O(n)               | roughly proportional to input size n                                                                  |
| Linearithmic | O(n log n)         | we will see this during decomposition/recursion                                                       |
| Polynomial   | O(n <sup>k</sup> ) | ${f k}$ is some constant, e.g., ${f k}$ = 1 is linear, ${f k}$ = 2 is quadratic, ${f k}$ = 3 is cubic |
| Exponential  | O(k <sup>n</sup> ) | k is some constant                                                                                    |
| Factorial    | <b>O(</b> n!)      | often considered to be within exponential family                                                      |



## Thinking in terms of Growth

| Big O                             | Remarks                                                                                                                                                                                                                         |
|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| O(1)                              | when ${\tt n}$ doubles, the number of operations remains the same                                                                                                                                                               |
| O(log n)                          | when n doubles, the number of operations increase by 1 (for $\log_2 n$ ) when n x10, the number of operations increase by 1 (for $\log_{10} n$ ) (note: we shall see later that the base is not significant for Big O notation) |
| <b>O(</b> n)                      | when ${\tt n}$ doubles, the number of operations also doubles                                                                                                                                                                   |
| <b>O(</b> n <sup>2</sup> )        | when ${\tt n}$ doubles, the number of operations also quadruples                                                                                                                                                                |
| <b>O(</b> 2 <sup>n</sup> <b>)</b> | when ${\tt n}$ increases by 1, the number of operations doubles                                                                                                                                                                 |
| <b>O(</b> n!)                     | when ${\tt n}$ increases by 1, the number of operations increases ${\tt n}$ times                                                                                                                                               |



#### Dominance rules for Big O notation

→ Exponential dominates polynomial, which dominates logarithmic.

```
e.g.:
```

- If number of operations is  $2^n + n^2$ , complexity is  $O(2^n)$
- If number of operations is  $n^2 + \log n$ , complexity is  $O(n^2)$
- → Higher order dominates lower order

```
e.g.:
```

- If number of operations is  $n^3 + n^2 + n$ , the complexity is  $O(n^3)$
- → Ignore multiplicative constants in the highest-order term

```
e.g.:
```

• If number of operations is  $3n^2$ , the complexity is  $O(n^2)$ 



#### Why keep only the dominant term?

+ E.g. 1  
No of steps = 
$$2^n + n^2$$
  
 $\rightarrow O(2^n)$ 

| n    | 2 <sup>n</sup> | n²      | 2 <sup>n</sup> + n <sup>2</sup> | % of 2 <sup>n</sup> |
|------|----------------|---------|---------------------------------|---------------------|
| 1    | 2              | 1       | 3                               | 67%                 |
| 5    | 32             | 25      | 57                              | 56%                 |
| 10   | 1024           | 100     | 1124                            | 91%                 |
| 20   | 1048576        | 400     | 1048976                         | 100%                |
| 30   | 1073741824     | 900     | 1073742724                      | 100%                |
| 40   | 1.09951E+12    | 1600    | 1.09951E+12                     | 100%                |
| 50   | 1.1259E+15     | 2500    | 1.1259E+15                      | 100%                |
| 100  | 1.26765E+30    | 10000   | 1.26765E+30                     | 100%                |
| 200  | 1.60694E+60    | 40000   | 1.60694E+60                     | 100%                |
| 300  | 2.03704E+90    | 90000   | 2.03704E+90                     | 100%                |
| 400  | 2.5822E+120    | 160000  | 2.5822E+120                     | 100%                |
| 500  | 3.2734E+150    | 250000  | 3.2734E+150                     | 100%                |
| 1000 | 1.0715E+301    | 1000000 | 1.0715E+301                     | 100%                |
|      |                |         |                                 |                     |



#### Why keep only the dominant term?

→ E.g. 2  
No of steps = 
$$n^2$$
 + log n  
→  $O(n^2)$ 

| n      | n²          | log n | n² + log n    | % of n <sup>2</sup> |
|--------|-------------|-------|---------------|---------------------|
| 10     | 100         | 1.00  | 101.00        | 99%                 |
| 20     | 400         | 1.30  | 401.30        | 100%                |
| 30     | 900         | 1.48  | 901.48        | 100%                |
| 40     | 1600        | 1.60  | 1601.60       | 100%                |
| 50     | 2500        | 1.70  | 2501.70       | 100%                |
| 100    | 10000       | 2.00  | 10002.00      | 100%                |
| 200    | 40000       | 2.30  | 40002.30      | 100%                |
| 300    | 90000       | 2.48  | 90002.48      | 100%                |
| 400    | 160000      | 2.60  | 160002.60     | 100%                |
| 500    | 250000      | 2.70  | 250002.70     | 100%                |
| 1000   | 1000000     | 3.00  | 1000003.00    | 100%                |
| 10000  | 100000000   | 4.00  | 100000004.00  | 100%                |
| 100000 | 10000000000 | 5.00  | 1000000005.00 | 100%                |
|        |             |       |               |                     |



#### Why Drop Multiplicative Constant?

- ♦ When we use big-O notation, we drop constants and low-order terms. This is because when the problem size gets sufficiently large, those terms don't matter.
- → However, this means that two algorithms can have the **same** big-O time complexity, even though one is always faster than the other. For example, suppose algorithm 1 requires N² time, and algorithm 2 requires 10 \* N² + N time. For both algorithms, the time is O(N²), but algorithm 1 will always be faster than algorithm 2. In this case, the constants and low-order terms do matter in terms of which algorithm is actually faster.
- → However, constants do <u>not</u> matter in terms of how an algorithm "scales" (i.e. how does the algorithm's time change when the problem size doubles). Although an algorithm that requires N² time will always be faster than an algorithm that requires 10\*N² time, for **both** algorithms, if the problem size doubles, the actual time will quadruple.
- ◆ When two algorithms have **different** big-O time complexity, the constants and low-order terms only matter when the problem size is small. For example, even if there are large constants involved, a linear-time O(n) algorithm will always eventually be faster than a quadratic-time O(n²) algorithm.

Extracted from http://pages.cs.wisc.edu/~vernon/cs367/notes/3.COMPLEXITY.html



#### Steps towards Big O

- ♦ Characterize the worst case
  - Exercise some creativity
  - Understand different complexity classes of problems
- → Count the number of operations in terms of the input size n
  - Use your Counting skills learnt in Week 1
- → Reduce by dropping the less dominant terms
  - Use the guidelines given in this week's lesson



#### Complexity helps to answer these questions

- → How difficult is this problem?
  - More complex problems require more computations, and thus are more difficult to solve with a computer.
- ◆ Among algorithms that solve the same problem, which is better?
  - Algorithms with lower complexity are preferred.
- ◆ Is this problem solvable, or even solved?
  - An algorithm with polynomial complexity (or lower) is commonly considered "efficient".
  - Some problems with exponential complexity can still be "solved" using heuristic algorithms (see future lesson).
  - ❖ Usually with some heuristic reasoning, most problems have solutions with low-degree polynomials such as n, n log n, n², or n³





factorial exponential polynomial linearithmic linear logarithmic constant

School of Information Systems

#### If each operation takes one nanosecond (10<sup>-9</sup>)

| input size  | log n    | n        | n log n  | n²         | 2 <sup>n</sup>           | n!                       |
|-------------|----------|----------|----------|------------|--------------------------|--------------------------|
| 10          | 0.003 µs | 0.01 µs  | 0.033 µs | 0.1 μs     | 1 µs                     | 3.63 ms                  |
| 20          | 0.004 µs | 0.02 µs  | 0.086 µs | 0.4 μs     | 1 ms                     | 77.1 yrs                 |
| 30          | 0.005 µs | 0.03 µs  | 0.147 µs | 0.9 µs     | 1 sec                    | 8 x 10 <sup>15</sup> yrs |
| 40          | 0.005 µs | 0.04 µs  | 0.213 µs | 1.6 µs     | 18.3 min                 |                          |
| 50          | 0.006 µs | 0.05 µs  | 0.282 µs | 2.5 µs     | 13 days                  |                          |
| 100         | 0.007 µs | 0.1 μs   | 0.644 µs | 10 µs      | 4 x 10 <sup>13</sup> yrs |                          |
| 1,000       | 0.010 µs | 1.00 µs  | 9.966 µs | 1 ms       |                          |                          |
| 10,000      | 0.013 µs | 10 µs    | 130 µs   | 100 ms     |                          |                          |
| 100,000     | 0.017 µs | 0.10 ms  | 1.67 ms  | 10 sec     |                          |                          |
| 1,000,000   | 0.020 µs | 1 ms     | 19.93 ms | 16.7 min   |                          |                          |
| 10,000,000  | 0.023 µs | 0.01 sec | 0.23 sec | 1.16 days  |                          |                          |
| 100,000,000 | 0.027 µs | 0.10 sec | 2.66 sec | 115.7 days |                          |                          |





#### Faster Algorithm vs. Faster Machine

#### Largest size of problem that can be solved in 1 sec

|                                     |                | Slower Machine<br>(1 operation per µs) | 1000x Faster<br>Machine<br>(1 operation per ns) |
|-------------------------------------|----------------|----------------------------------------|-------------------------------------------------|
| Slower                              | n!             | 9.5                                    | 12.5                                            |
| Algorithm (Exponential)             | 2 <sup>n</sup> | 20                                     | 30                                              |
| Faster<br>Algorithm<br>(Polynomial) | n³             | 100                                    | 1,000                                           |
|                                     | n²             | 1,000                                  | 31,623                                          |
|                                     | n              | 1,000,000                              | 1,000,000,000                                   |



#### Summary

- → The concept of algorithms
- → The concept of computational complexity
  - Efficiency is measured in terms of growth rate
- → Big O to indicate the order of complexity in worst case scenarios
- Different orders of complexity
  - Constant, logarithmic, polynomial, exponential



# In-class Exercises: What is the Big O?

|     | f(n)                               | Big O |
|-----|------------------------------------|-------|
| (a) | $3n^3 - 27n^2 + 9n + 10$           |       |
| (b) | n <sup>2</sup> <b>– log</b> n + 9n |       |
| (c) | n <b>log</b> n + 9n                |       |
| (d) | $2^{n} + n^{2}$                    |       |



#### In-class Exercises: What is the Big O?

(a) Given an array a of n numbers, where n > 10, find out which of the first 10 numbers is the largest.

(b) Given an array a of n numbers, find the smallest difference between any two numbers in the array a.

(c) There are n students in the class. Find 3 students with different last names.



# (03) Complexity Part 2b (Solution to In-class Ex) Video (9 mins):

https://www.youtube.com/watch?v=nLtPWkZB3aA&list=PLi1cUmnkDnZvpLI1N PYxmq1Jnd7LAGCaa&index=23



#### Road Map

#### Algorithm Design and Analysis

- Week 1: Counting, Programming
- → Week 2: Programming
- ♦ Week 3: Complexity
- Next week → → Week 4: Iteration & Decomposition
  - ♦ Week 5: Recursion

#### **Fundamental Data Structures**

(Weeks 6 - 10)

Computational Intractability and Heuristic Reasoning

(Weeks 11 - 13)



#### Useful Formulas for your Tutorial

- →  $\log (n^x) = x * \log n$  ← note: this is different from  $(\log n)^x$
- $\rightarrow$  log a + log b = log (a \* b)
- $\rightarrow$  log a log b = log (a / b)
- →  $\log_a x = \log_b x / \log_b a$  ← how to change the base
- → This is an AP series: 1 + 2 + 3 + 4.... + n
  - ❖ sum of AP series = N/2 \* (a + I), where
    - N is the number of terms
    - a is the first number in the series
    - ► I is the last number in the series
  - \* sum = n/2 \* (1 + n)



#### **Announcements**

→ Remember to do your labs on time.

→ Remember to watch the videos for week 4 (Iteration & Decomposition) + attempt SCQ before next lesson

→ Open consultation hours (Mon 9-10 a.m.) - you are welcome!

