<u>Табло</u> / Моите курсове / <u>Бакалаври, летен семестър 2021/2022</u> / <u>КН</u> / <u>Алгебра 2, поток 1, летен семестър 2021/2022</u>	
/ тестове, контроль	ни, домашни / <u>тест 2, част 1</u>
Започнат на	Friday, 29 April 2022, 15:30
Състояние	Завършен
•	Friday, 29 April 2022, 15:58
	28 мин. 30 сек.
Оценка	11,75 οτ 12,00 (98 %)
Въпрос 1	
Отговорен	
2,00 от максимално 2,00	очки
	което да бъде изпълнено свойството $27(1) = \underbrace{1 + \ldots + 1}_{27} = 0$?
• Възможно е	да съществува такова поле.
• Характеристиката такова поле трябва да бъде	
• Вярно е,	че полето \mathbb{Z}_3 трябва да се $$ съдържа в такова поле F .
• Не е възмож	такова поле F да бъде подполе на \mathbb{C} .
• Вярно е,	че за произволни елементи a,b от такова поле F е изпълнено равенството $(a+b)^{27}=a^{27}+b^{27}$.
Въпрос 2	
Отговорен	
2,00 от максимално 2,00 т	очки
Нека K е пръстен и I е подпръстен.	
I е идеал на K , когато	
(Отбележете всички верни твърдения)	
Изберете едно или повече:	
□ \(K\) е поле и \(I\) е негово собствено подполе.	
\(\forall g,\) от \(K\) , е изпълнено \(g = g\).	
☑ \(ar \in I,\ \ ra\in I,\) за всеки \(a\in I, r\in K\)	
☑ \(I=\texttt{Ker}(\varphi)\), където \(\varphi:K\rightarrow M\) е хомоморфизъм на пръстени.	

Въпрос **3**Отговорен
1,00 от максимално 1,00 точки

В пръстена на полиномите \(\mathbb{Z}_{7}[x]\) с коефициенти от полето \(\mathbb{Z}_{7}\) полиномът \(f(x) = \overline{4} $x^5+\overline{5} x^3+\overline{2} x^2+x+\overline{3} \in \mathbb{Z}_{7}[x]\)$ е разделен на полинома \(g(x) = $x+\overline{1}\)$ и е получено \(f(x) = g(x). q(x) + r(x)\), където \(q(x)\) е частното, а \(r\) е остатъкът. Пресметнете частното и остатъка.

Елементите om (\mathbb{Z}_7) са записани като (\mathbb{Z}_7)) или като (\mathbb{Z}_7)).

Въпрос **4**Отговорен
2,00 от максимално 2,00 точки

Дадена е системата $\$ \left|\begin{array}{cccc} x&\equiv& a&(\texttt{mod} 2)\\ x&\equiv& 2&(\texttt{mod} 3)\\ x&\equiv& 1&(\texttt{mod} 5)\\ \end{array} \right. \$\$

Системата има единствено решение по модул \(m=\)

30

, което може да се запише във вида (k.a+s), където (k=)

15

и \(s=\)

. (запишете ги като неотрицателни числа, по-малки от \(m\))

Въпрос 5	
Отговорен	
2,00 от максимално 2,00 точки	
Нека \$\$	
$M = \{ a + b \sqrt[3]{5} + c \sqrt[3]{25} \vert a, b, c \in \mathbb{Q} \}.$	
\$\$	
Отбележете верните твърдения.	
Изберете едно или повече:	
Ako \(K\subset \mathbb{C} \) е пръстен, за който е изпълнено \(\mathbb{Q}\subseteq K\) и \(\sqrt[3]{5}\in K \), тогава е изпълнено че \(M\subseteq K\).	
☑ Всеки ненулев елемент в \(M \) е обратим.	
□ Елементът \(\alpha=625 - 20 \sqrt[3]{5}+50\sqrt[3]{25} \in М\) е делител на нулата.	
Въпрос 6	
Отговорен	
2,00 от максимално 2,00 точки	
Нека с $(A[x])$ е отбелязано множеството от полиноми с коефициенти от комутативен пръстен (A) и $(f,g,h \in A[x])$	
Отбележете твърденията, които винаги са верни.	
Изберете едно или повече:	
□ Подмножеството от полиноми, които са от степен ненадминаваща 3, образува подпръстен на \(A[x]\)	
Ако \(A\) е област на цялост, следователно \(A[x]\) също е област на цялост.	
□ Aко \(h=f+g\), следователно \(\texttt{deg}(h)\)geq \texttt{deg}(f)\)	
Ако \(A\) е поле, тогава обратимите елементи в \(A[x]\) са всички полиноми от степен нула.	

Въпрос **7**Отговорен
0,75 от максимално 1,00 точки

\(\overline{12} +\overline{13} -\overline{3}=\) 5 (mod 17)
\(\overline{12} .\overline{7} +\overline{15}=\) 14 (mod 17)
\(\overline{12}^{-1}=\) 0 (mod 17)
\(\overline{7}:\overline{12}=\) 2 (mod 17)

Елементите om (\mathbf{Z}_{17}) са записани като (\mathbf{k}) или като $(\mathbf{k} \pmod{17})$.

▼ тест 1, част 2
Отиди на ...
тест 2, част 2 ►

https://learn.fmi.uni-sofia.bg/mod/quiz/review.php?attempt=163035&cmid=233343