CODE #LIKEABOSCH

SW CHALLENGE 2022

ÁDÁM WITTMANN, 30.09.2022

Code #LikeABosch The Challenge - Part 1

- ▶ Part 1: Object tracking
 - Create your own estimated objects around the vehicle
 - ► Track these objects over time, update the estimated object information from timestamp to timestamp
 - ▶ If an object is out of the sensors' field of view, track it further based on your estimations
 - ▶ If an object is seen by multiple sensors, you could "merge" the two sensor inputs to one common estimated object
 - Absolute distance based
 - Kalman-filter based (more advanced)
 - Etc...

Code #LikeABosch The Challenge - Part 2

- ► Part 2: Blind spot detection
 - ► Blind spot is defined by coordinates (orange/brown rectangles)
 - Make an alert / warning (optic, acoustic or whatever) if an object is in the blind spot area
 - ► Extra fun ©
 - Only show warning if the object classification is ,car (value 2U)'
 - Object classification information (whether a detected object is a vehicle, pedestrian, etc...) is only available from the front camera
 - For this part, you'll need to carry on the classification info from the front camera to the side of the vehicle

Code #LikeABosch The Challenge - Part 3

- ► Part 3: Innovation and creativity
 - ► Invent / find new ideas, features, that could be realized based on these currently available sensors (4 corner radar, 1 video)
 - ► The new features shall currently not be on the market
 - We're curious about your
 - Ideas
 - Technical details
 - Business case (why the market needs it)
 - If you have, prototype implementation

Code #LikeABosch

Evaluation guideline

- ▶ It's not mandatory to complete or start all parts of the challenge
 - ▶ Deal with those parts which gives you the most joy and fun
 - In each part you have the chance to hand in a ,basic' and more advanced solutions as well, up to you what you choose
 - Having only highlevel solutions for all 3 parts can be as good as having more advanced and sophisticated solutions for less parts

▶ Part 1:

- Accuracy of the object tracking even in blindspots (using the validation dataset)
- Technical realization of the solution.
- Presentation (method, visualization, presentation style)

▶ Part 2:

- How precisely your solution gives the warnings (e.g. only when the objects are in the designated area, etc...)
- If the warning comes only on pedestrians and cyclists or on all objects
- ▶ Technical realization of the solution
- Presentation (method, visualization, presentation style)

▶ Part 3:

- Level of elaboration of the new idea(s)
- Innovativeness
- impact/value, business case
- sustainability
- feasibility
- prototype implementation
- presentation

Code #LikeABosch Signals

```
g Infrastructure CCR NET NetRunnablesClass m rteInputData out local.TChangeableMemPool. . . m arrayPool. 0 . elem 👚 camData m cameraTimeStamp
g Infrastructure CCR NET NetRunnablesClass m rteInputData out local.TChangeableMemPool. . . m arrayPool. 0 . elem m camData m objects. m value. . 🐔 . m dx
g Infrastructure CCR NET NetRunnablesClass m rteInputData out local.TChangeableMemPool. . . m arrayPool. 0 . elem m camData m objects. m value. .* . m dy
                                                                                                                                                             Camera
g Infrastructure CCR NET NetRunnablesClass m rteInputData out local.TChangeableMemPool. . . m arrayPool. Ø . elem m camData m objects. m value. .* . m vx
g Infrastructure CCR NET NetRunnablesClass m rteInputData out local.TChangeableMemPool. . . m arrayPool. 0 . elem m camData m objects. m value. .* . m vy
                                                                                                                                                                 Radar Object ID: 0..9
g Infrastructure CCR NET NetRunnablesClass m rteInputData out local.TChangeableMemPool. . . m arrayPool. 0 . elem m camData m objects. m value. .* . m objType
g Infrastructure CCR NET NetRunnablesClass m rteInputData out local.TChangeableMemPool. . . m arrayPool. 0 . elem m cornerData m value. .* . m header. m cornerTimestamp
g Infrastructure CCR NET NetRunnablesClass m rteInputData out local.TChangeableMemPool. . . m arrayPool. 0 . elem m cornerData m value. .* . m objects. m value. .* . m
g Infrastructure CCR NET NetRunnablesClass m rteInputData out local.TChangeableMemPool. . . m arrayPool. 0 . elem m cornerData m value. .* . m objects. m value. .* . m/dy
g Infrastructure CCR NET NetRunnablesClass m rteInputData out local.TChangeableMemPool. . . m arrayPool. 0 . elem m cornerData m value. .* . m objects. m value. .*
g Infrastructure CCR NET NetRunnablesClass m rteInputData out local.TChangeableMemPool. . . m arrayPool. 0 . elem m cornerData m value. .* . m objects. m value. .*
g Infrastructure CCR NET NetRunnablesClass m rteInputData out local.TChangeableMemPool. . . m arrayPool. 0 . elem m cornerData m value. .* . m objects. m value. .*/. m vy
g Infrastructure CCR NET NetRunnablesClass m rteInputData out local.TChangeableMemPool. . . m arrayPool. 0 . elem m cornerData m value. .* m objects. m value. .* . m ax
g Infrastructure CCR NET NetRunnablesClass m rteInputData out local.TChangeableMemPool. . . m arrayPool. 0 . elem m cornerData m value. .* . m objects. m value. .* . m ay
g Infrastructure CCR NET NetRunnablesClass m rteInputData out local.TChangeableMemPool. . . m arrayPool. 0 . elem m cornerData m value. .* . m\objects. m value. .* . m
g Infrastructure CCR NET NetRunnablesClass m rteInputData out local.TChangeableMemPool. . . m arrayPool. 0 . elem. m vehicleParameterCal m posXCam
g Infrastructure CCR NET NetRunnablesClass m rteInputData out local.TChangeableMemPool. . . m arrayPool. 0 . elem. m vehicleParameterCal m posYCam
                                                                                                                                                      Camera mounting position
 g Infrastructure CCR NET NetRunnablesClass m rteInputData out local.TChangeableMemPool. . . m arrayPool. 0 . elem. m vehicleParameterCal m posZCam
Long Delta Distance
Long Delta Velocity
                           ADMA reference
                                                                                                                                                 Radar ID: 0..3
Lat Delta Distance
```

Hunter_GPS_Mode
__g_ods_OneDrivingSW_perHv_HV_PerPmeRunnable_PerPmeRunnable_m_pmePort_out_local.TChangeableMemPool._.._m_arrayPool._1._elem._vxvRef_sw
__g_ods_OneDrivingSW_perHv_HV_PerPmeRunnable_PerPmeRunnable_m_pmePort_out_local.TChangeableMemPool._.._m_arrayPool._1._elem._axvRef_sw
__g_ods_OneDrivingSW_perHv_HV_PerPmeRunnable_PerPmeRunnable_m_pmePort_out_local.TChangeableMemPool._.._m_arrayPool._1._elem._vyvRef_sw
__g_ods_OneDrivingSW_perHv_HV_PerPmeRunnable_PerPmeRunnable_m_pmePort_out_local.TChangeableMemPool._.._m_arrayPool._1._elem._ayvRef_sw
__g_ods_OneDrivingSW_perHv_HV_PerPmeRunnable_PerPmeRunnable_m_pmePort_out_local.TChangeableMemPool._.._m_arrayPool._1._elem._psiDtOpt_sw
__g_ods_OneDrivingSW_perHv_HV_PerPmeRunnable_PerPmeRunnable_m_pmePort_out_local.TChangeableMemPool._.._m_arrayPool._1._elem._psiDtOpt_sw
__g_ods_OneDrivingSW_perHv_HV_PerPmeRunnable_PerPmeRunnable_m_pmePort_out_local.TChangeableMemPool._.._m_arrayPool._1._elem._psiDtOpt_sw
__g_ods_OneDrivingSW_perHv_HV_PerPmeRunnable_PerPmeRunnable_m_pmePort_out_local.TChangeableMemPool._.._m_arrayPool._1._elem._psiDtOpt_sw
__g_ods_OneDrivingSW_perHv_HV_PerPmeRunnable_PerPmeRunnable_m_pmePort_out_local.TChangeableMemPool._.._m_arrayPool._1._elem._psiDtOpt_sw
__g_ods_OneDrivingSW_perHv_HV_PerPmeRunnable_PerPmeRunnable_m_pmePort_out_local.TChangeableMemPool._..._m_arrayPool._1._elem._psiDtOpt_sw
__g_ods_OneDrivingSW_perHv_HV_PerPmeRunnable_PerPmeRunnable_m_pmePort_out_local.TChangeableMemPool._..._m_arrayPool._1._elem._psiDtOpt_sw
__g_ods_OneDrivingSW_perHv_HV_PerPmeRunnable_PerPmeRunnable_m_pmePort_out_local.TChangeableMemPool._..._m_arrayPool._1._elem._psiDtOpt_sw
__g_ods_OneDrivingSW_perHv_HV_PerPmeRunnable_PerPmeRunnable_m_pmePort_out_local.TChangeableMemPool._..._m_arrayPool._1._elem._psiDtOpt_sw
__g_ods_OneDrivingSW_perHv_HV_PerPmeRunnable_PerPmeRunnable_pmePort_out_local.TChangeableMemPool._..._m_arrayPool._1._elem._psiDtOpt_sw
__g_ods_OneDrivingSW_perHv_HV_PerPmeRunnable_pmePort_out_local.TChangeableMemPool._..._m_arrayPool._1._elem._pmePort_

Host Vehicle

Camera Object ID: 0..14

Lat Delta Velocity

Code #LikeABosch Sensor positions

	Value in degrees or mm
ANGLE_AZIMUTH_CORNER_RADAR_LEFT_FRONT	42
ANGLE_AZIMUTH_CORNER_RADAR_LEFT_REAR	135
ANGLE_AZIMUTH_CORNER_RADAR_RIGHT_FRONT	-42
ANGLE_AZIMUTH_CORNER_RADAR_RIGHT_REAR	-135
ANGLE_ELEVATION_CORNER_RADAR_LEFT_FRONT	0
ANGLE_ELEVATION_CORNER_RADAR_LEFT_REAR	0,48
ANGLE_ELEVATION_CORNER_RADAR_RIGHT_FRONT	0
ANGLE_ELEVATION_CORNER_RADAR_RIGHT_REAR	0,48
X_POSITION_CORNER_RADAR_LEFT_FRONT	3473,8
X_POSITION_CORNER_RADAR_LEFT_REAR	-766,4
X_POSITION_CORNER_RADAR_RIGHT_FRONT	3473,8
X_POSITION_CORNER_RADAR_RIGHT_REAR	-766,4
Y_POSITION_CORNER_RADAR_LEFT_FRONT	628,6
Y_POSITION_CORNER_RADAR_LEFT_REAR	738
Y_POSITION_CORNER_RADAR_RIGHT_FRONT	-628,6
Y_POSITION_CORNER_RADAR_RIGHT_REAR	-738
Z_POSITION_CORNER_RADAR_LEFT_FRONT	515,6
Z_POSITION_CORNER_RADAR_LEFT_REAR	735,9
Z_POSITION_CORNER_RADAR_RIGHT_FRONT	515,6
Z_POSITION_CORNER_RADAR_RIGHT_REAR	735,9

Code #LikeABosch

Details on signals

Video object type enum key (m ObjType):

```
{
    noDetection = 0U,
    truck = 1U,
    car = 2U,
    motorbike = 3U,
    bicycle = 4U,
    pedestrian = 5U,
    carOrTruck = 6U
};
```

- ► Host vehicle info:
 - vxvRef: longi velocity
 - axvRef: longi acceleration
 - vxvRef: lateral velocity
 - ayvRef: lateral acceleration
 - psiDtOpt: angular speed around axis z (yaw rate)
- ► Sensor input info:
 - ▶ dx: longi object distance
 - ▶ dy: lateral object distance
 - vx: longi object velocity
 - vy: lateral object velocity
 - ▶ ax: longi object acceleration
 - ▶ az: lateral object acceleration
- ► Units: meter, m/s and m/s²

▶ Normalization:

- You need to denorm the sensor (both radar and video) inputs to get them in m, m/s, m/s²:
 - distances: devide the input by 128
 - velcoties: divide the input by 256
 - acceleration: divide the input by 2048
 - yaw arte: divide the input by 16384
 - probability: divide the input by 128

► ADMA signals

- everything is in meter, m/s
- no need for denorming
- Hunger_GPS_Mode: gives the mode of the ADMA syste

 it can be used when it's 8 or 9

