CS 481

Artificial Intelligence Language Understanding

February 16, 2023

Announcements / Reminders

- Please follow the Week 06 To Do List instructions
- PA #01 due on Monday (02/20/23) at 11:59 PM CST
 Thursday (02/23/23) at 11:59 PM CST

Exam dates:

• Midterm: 03/02/2023 during Thursday lecture time

Final: 04/27/2023 during Thursday lecture time

Plan for Today

- Treebank
- Constituency parsing

Treebank

 In linguistics, a treebank is a parsed text corpus that annotates syntactic or semantic sentence structure.

Treebanks are often created on top of a corpus that has already been annotated with part-ofspeech tags. In turn, treebanks are sometimes enhanced with semantic or other linguistic information.

Penn Treebank

https://web.archive.org/web/20131109202842/http://www.cis.upenn.edu/~treebank/

Available via NLTK

Context Free Grammar

A context-free grammar G is defined by:

- lacktriangleq N: a set of non-terminal symbols (variables)
- Σ : a set of terminal symbols (disjoint from N)
- R: a set of rules or productions of the form $A \rightarrow \beta$, where:
 - A: a non-terminal symbol
 - β : a string of symbols from the infinite set of strings $(\Sigma \cup N)^*$
- S: a designated start symbol

Derivation: Formal Definition

Derivation is a generalization of direct derivation:

Let α_1 , α_2 , ..., α_m are strings in the set $(\Sigma \cup N)^*$, with $m \ge 1$ such that

$$\alpha_1 \Rightarrow \alpha_2, \alpha_2 \Rightarrow \alpha_3, ..., \alpha_{m-1} \Rightarrow \alpha_m$$

and we can say that $lpha_{\it l}$ derives $lpha_{\mu}$, or $lpha_{\it l} \stackrel{*}{\Rightarrow} lpha_{\mu}$

Language vs. Grammar

Language L_G generated by a grammar G is the set of all strings composed of terminal symbols that can be derived from the designated start symbol S.

$$L_G = \{ w \mid w \ \textit{is in} \ * \ \textit{and } S^* \ w \}$$
 strings made up of terminals derived from symbol S

Parsing

The task of determining the parts of speech, phrases, clauses, and their relationship to one another is called parsing.

The Concept of Constituency Groups of words that may behave as a single unit or phrase are called a constituent.

Constituents: Examples

There exist different kinds of constituents:

- noun phrases (NP): the man, a boy with a hat, Illinois
- prepositional phrases (PP): with glasses, in the room
- verb phrases (VP): eat pasta, sleep, sleep soundly
- etc.

Constituents: Heads and Dependents

Every phrase has a head:

- noun phrases (NP): the man, a boy with a hat, Illinois
- prepositional phrases (PP): with glasses, in the room
- verb phrases (VP): <u>eat</u> pasta, <u>sleep</u>, <u>sleep</u>
 soundly

all other parts are dependents (arguments or adjuncts)

Parse Tree: Example

Parse tree (representing a sequence of expansions = derivation) for sentence:

I prefer a morning flight

Parse Tree: What Does It Tell Us? If a parse tree for some sentence s CAN be generated using grammar rules - what does it tell us about s?

Parse Tree: Applications

Parse trees can be used:

- in grammar checking: sentence that cannot be parsed may have grammatical errors
- as an intermediate stage of representation for semantic analysis:
 - question answering
 - etc.

Ambiguous Grammar

A grammar is said to be ambiguous if it can generate the same string (here: 1 + 2 - 3) through multiple derivations.

Structural Ambiguity

Structural ambiguity occurs when the grammar can assign more than one parse to a sentence.

Attachment Ambiguity

A sentence has an attachment ambiguity if a particular constituent can be attached to the parse tree at more than one place.

Coordination Ambiguity

Consider the expression:

Old men and women

It could be read as:

[Old [men and women]]

It could be read as:

[Old men] and [women]

In coordination ambiguity phrases can be conjoined by a conjunction like and.

Bottom-Up vs. Top-Down Parsing

Bottom-Up Parsing

Bottom-up parsing is a parsing technique that first looks at the lowest level of the parse tree and works up the parse tree by using the rules of grammar.

Top-Down Parsing

Top-down parsing is a parsing technique that first looks at the highest level of the parse tree and works down the parse tree by using the rules of grammar.

Chomsky Normal Form

A context-free grammar, G, is said to be in Chomsky normal form if all of its production rules are of the form:

$$A \rightarrow BC$$
 or $A \rightarrow a$ or $S \rightarrow \epsilon$

where:

- A, B, and C are non-terminal symbols,
- a is a terminal symbol
- S is the start symbol, and ϵ denotes the empty string.
- neither B nor C may be the start symbol

Conversion to Chomsky Normal Form

The process of conversion of a standard contex-free grammar to its Chomsky Normal Form (CNF) can be summarized with:

- copy all conforming rules to the new grammar unchanged
- convert terminals within rules to dummy non-terminals
- convert unit productions
- make all rules binary and add them to new grammar

Conversion to Chomsky Normal Form

Standard Grammar

 $VP \rightarrow ADV$ make NP

Equivalent CNF Grammar

$$VP \rightarrow ADV VP_{1}$$

$$VP_{1} \rightarrow VP_{2} NP$$

$$VP_{2} \rightarrow make$$

Chomsky Normal Form Grammar

\mathscr{L}_1 Grammar	\mathscr{L}_1 in CNF
$S \rightarrow NP VP$	$S \rightarrow NP VP$
$S \rightarrow Aux NP VP$	$S \rightarrow X1 VP$
	$XI \rightarrow Aux NP$
$S \rightarrow VP$	$S \rightarrow book \mid include \mid prefer$
	$S \rightarrow Verb NP$
	$S \rightarrow X2 PP$
	$S \rightarrow Verb PP$
	$S \rightarrow VPPP$
$NP \rightarrow Pronoun$	$NP \rightarrow I \mid she \mid me$
$NP \rightarrow Proper-Noun$	$NP \rightarrow TWA \mid Houston$
$NP \rightarrow Det Nominal$	$NP \rightarrow Det Nominal$
$Nominal \rightarrow Noun$	$Nominal \rightarrow book \mid flight \mid meal \mid money$
$Nominal \rightarrow Nominal Noun$	$Nominal \rightarrow Nominal Noun$
$Nominal \rightarrow Nominal PP$	$Nominal \rightarrow Nominal PP$
$VP \rightarrow Verb$	VP ightarrow book include prefer
$VP \rightarrow Verb NP$	$VP \rightarrow Verb NP$
$VP \rightarrow Verb NP PP$	$VP \rightarrow X2 PP$
	$X2 \rightarrow Verb NP$
$VP \rightarrow Verb PP$	$VP \rightarrow Verb PP$
$VP \rightarrow VP PP$	VP o VP PP
$PP \rightarrow Preposition NP$	$PP \rightarrow Preposition NP$

Chomsky Normal Form: Motivation

- CNF grammar produces the same language as generated by its equivalent standard context-free grammar
- CNF grammar is <u>used as a preprocessing step for</u> <u>many context-free grammar algorithms</u> for CFG like CYK/CKY, bottom-up parsers, etc.
- generating string w of length 'n' requires '2n-1' production or steps in CNF

CKY Parsing Algorithm

- CKY: Cocke—Younger—Kasami
- Bottom-up parsing:
 - start with the words
- Dynamic programming:
 - save the results in a table/chart
 - re-use these results in finding larger constituents
- Complexity: $O(n^3 * |G|)$
 - n: length of string, |G|: size of grammar)
- Presumes a grammar in Chomsky Normal Form

Input: Part Of Speech-tagged sentence S:

 $Joe | N \ eats | V \ pasta | N \ with | P \ sauce | N$

Rule Production
$S \rightarrow NP VP$
$NP \rightarrow Noun$
$NP \rightarrow Det Noun$
$NP \rightarrow NP PP$
$VP \rightarrow Verb$
$VP \rightarrow Verb NP$
$VP \rightarrow VP PP$
$PP \rightarrow P NP$

Input: Part Of Speech-tagged sentence S:

 $_{0}$ Joe N_{1} eats V_{2} pasta N_{3} with P_{4} sauce N

i 0 1 2 3 4

Joe	eats	pasta	with	sauce		j
					Joe	0
					eats	1
					pasta	2
					with	3
					sauce	4

Rule Production
$S \rightarrow NP VP$
$NP \rightarrow Noun$
NP → Det Noun
$NP \rightarrow NP PP$
$VP \rightarrow Verb$
$VP \rightarrow Verb NP$
$VP \rightarrow VP PP$
$PP \rightarrow P NP$

CKY Recognition: Sentence Splits

Input: Part Of Speech-tagged sentence S:

 $_{0}$ Joe N_{1} eats V_{2} pasta N_{3} with P_{4} sauce N

i	0	1	2	3	4		
	Joe	eats	pasta	with	sauce		j
						Joe	0
				i,j		eats	1
						pasta	2
						with	3
1	$\mathbf{w}_0, \mathbf{w}_1$, W ₂ ,	W3, W2	1		sauce	4

Rule Production
$S \rightarrow NP VP$
$NP \rightarrow Noun$
NP → Det Noun
$NP \rightarrow NP PP$
$VP \rightarrow Verb$
$VP \rightarrow Verb NP$
$VP \rightarrow VP PP$
$PP \rightarrow P NP$

CKY Recognition: Sentence Splits

Input: Part Of Speech-tagged sentence S:

 $_{0}$ Joe N_{1} eats V_{2} pasta N_{3} with P_{4} sauce N

i	0	1	2	3	4		
	Joe	eats	pasta	with	sauce		j
						Joe	0
				i,j		eats	1
						pasta	2
						with	3
•	$\mathbf{w_0}, \mathbf{w_1}$, W ₂ ,	W3, W2	1		sauce	4

Rule Production
$S \rightarrow NP VP$
$NP \rightarrow Noun$
NP → Det Noun
$NP \rightarrow NP PP$
$VP \rightarrow Verb$
$VP \rightarrow Verb NP$
$VP \rightarrow VP PP$
$PP \rightarrow P NP$

Input: Part Of Speech-tagged sentence S:

 $_{0}$ Joe N_{1} eats V_{2} pasta N_{3} with P_{4} sauce N

			•	1	. 21	. 3	•	′
i	0	1	2	3	4			
	Joe	eats	pasta	with	sauce		j	
	Noun					Joe	0	
						eats	1	
						pasta	2	
						with	3	
						sauce	4	

Rule Production
$S \rightarrow NP VP$
NP → Noun
NP → Det Noun
$NP \rightarrow NP PP$
$VP \rightarrow Verb$
$VP \rightarrow Verb NP$
$VP \rightarrow VP PP$
$PP \rightarrow P NP$

Input: Part Of Speech-tagged sentence S:

 $_{0}$ Joe N_{1} eats V_{2} pasta N_{3} with P_{4} sauce N

i	0	1	2	3	4		
	Joe	eats	pasta	with	sauce		j
	Noun					Joe	0
		Verb				eats	1
						pasta	2
						with	3
						sauce	4

Rule Production
$S \rightarrow NP VP$
$NP \rightarrow Noun$
NP → Det Noun
$NP \rightarrow NP PP$
$VP \rightarrow Verb$
$VP \rightarrow Verb NP$
$VP \rightarrow VP PP$
$PP \rightarrow P NP$

Input: Part Of Speech-tagged sentence S:

 $_{0}$ Joe N_{1} eats V_{2} pasta N_{3} with P_{4} sauce N

i	0	1	2	3	4		
	Joe	eats	pasta	with	sauce		j
	Noun					Joe	0
		Verb				eats	1
			Noun			pasta	2
						with	3
						sauce	4

Rule Production
$S \rightarrow NP VP$
$NP \rightarrow Noun$
NP → Det Noun
$NP \rightarrow NP PP$
$VP \rightarrow Verb$
$VP \rightarrow Verb NP$
$VP \rightarrow VP PP$
$PP \rightarrow P NP$

Input: Part Of Speech-tagged sentence S:

 $_{0}$ Joe N_{1} eats V_{2} pasta N_{3} with P_{4} sauce N

i	0	1	2	3	4		
	Joe	eats	pasta	with	sauce		j
	Noun					Joe	0
		Verb				eats	1
			Noun			pasta	2
				P		with	3
						sauce	4

Rule Production
$S \rightarrow NP VP$
$NP \rightarrow Noun$
NP → Det Noun
$NP \rightarrow NP PP$
$VP \rightarrow Verb$
$VP \rightarrow Verb NP$
$VP \rightarrow VP PP$
$PP \rightarrow P NP$

Input: Part Of Speech-tagged sentence S:

 $_{0}$ Joe N_{1} eats V_{2} pasta N_{3} with P_{4} sauce N

i	0	1	2	3	4		
	Joe	eats	pasta	with	sauce		j
	Noun					Joe	0
		Verb				eats	1
			Noun			pasta	2
				P		with	3
					Noun	sauce	4

Rule Production
$S \rightarrow NP VP$
$NP \rightarrow Noun$
NP → Det Noun
$NP \rightarrow NP PP$
$VP \rightarrow Verb$
$VP \rightarrow Verb NP$
$VP \rightarrow VP PP$
$PP \rightarrow P NP$

Input: Part Of Speech-tagged sentence S:

 $_{0}$ Joe N_{1} eats V_{2} pasta N_{3} with P_{4} sauce N

			_	_	_	
0	1	2	3	4		
Joe	eats	pasta	with	sauce		j
Noun	S				Joe	0
	Verb				eats	1
		Noun			pasta	2
			P		with	3
				Noun	sauce	4
	Joe	Joe eats Noun S	Joe eats pasta Noun S Verb	Joe eats pasta with Noun S Verb Noun	Joe eats pasta with sauce Noun S Verb Noun P	Joe eats pasta with sauce Noun S Joe Verb eats Noun pasta P with

Rule Production
$S \rightarrow NP VP$
NP → Noun
$NP \rightarrow Det Noun$
$NP \rightarrow NP PP$
$VP \rightarrow Verb$
$VP \rightarrow Verb NP$
$VP \rightarrow VP PP$
$PP \rightarrow P NP$

Input: Part Of Speech-tagged sentence S:

 $_{0}$ Joe N_{1} eats V_{2} pasta N_{3} with P_{4} sauce N

i	0	1	2	3	4		
	Joe	eats	pasta	with	sauce		j
	Noun	S				Joe	0
		Verb	VP			eats	1
			Noun			pasta	2
				Р		with	3
					Noun	sauce	4

Rule Production
$S \rightarrow NP VP$
NP → Noun
$NP \rightarrow Det Noun$
$NP \rightarrow NP PP$
$VP \rightarrow Verb$
VP → Verb NP
$VP \rightarrow VP PP$
$PP \rightarrow P NP$

Input: Part Of Speech-tagged sentence S:

 $_{0}$ Joe N_{1} eats V_{2} pasta N_{3} with P_{4} sauce N

i	0	1	2	3	4		
	Joe	eats	pasta	with	sauce		j
	Noun	S				Joe	0
		Verb	VP			eats	1
			Noun	Ø		pasta	2
				P		with	3
					Noun	sauce	4

Rule Production
$S \rightarrow NP VP$
$NP \rightarrow Noun$
NP → Det Noun
$NP \rightarrow NP PP$
$VP \rightarrow Verb$
$VP \rightarrow Verb NP$
$VP \rightarrow VP PP$
$PP \rightarrow P NP$

Input: Part Of Speech-tagged sentence S:

 $_{0}$ Joe N_{1} eats V_{2} pasta N_{3} with P_{4} sauce N

i	0	1	2	3	4		
	Joe	eats	pasta	with	sauce		j
	Noun	S				Joe	0
		Verb	VP			eats	1
			Noun	Ø		pasta	2
				P	PP	with	3
					Noun	sauce	4

Rule Production
$S \rightarrow NP VP$
NP → Noun
NP → Det Noun
$NP \rightarrow NP PP$
$VP \rightarrow Verb$
$VP \rightarrow Verb NP$
$VP \rightarrow VP PP$
PP → P NP

Input: Part Of Speech-tagged sentence S:

 $_{0}$ Joe N_{1} eats V_{2} pasta N_{3} with P_{4} sauce N

i	0	1	2	3	4		
	Joe	eats	pasta	with	sauce		j
	Noun	S	S			Joe	0
		Verb	VP			eats	1
			Noun	Ø		pasta	2
				P	PP	with	3
					Noun	sauce	4

Rule Production
$S \rightarrow NP VP$
NP → Noun
NP → Det Noun
$NP \rightarrow NP PP$
$VP \rightarrow Verb$
$VP \rightarrow Verb NP$
$VP \rightarrow VP PP$
$PP \rightarrow P NP$

Input: Part Of Speech-tagged sentence S:

 $_{0}$ Joe N_{1} eats V_{2} pasta N_{3} with P_{4} sauce N

i	0	1	2	3	4		
	Joe	eats	pasta	with	sauce		j
	Noun	S	Ø			Joe	0
		Verb	VP			eats	1
			Noun	Ø		pasta	2
				Р	PP	with	3
					Noun	sauce	4

Rule Production
$S \rightarrow NP VP$
$NP \rightarrow Noun$
NP → Det Noun
$NP \rightarrow NP PP$
$VP \rightarrow Verb$
$VP \rightarrow Verb NP$
$VP \rightarrow VP PP$
$PP \rightarrow P NP$

Input: Part Of Speech-tagged sentence S:

 $_{0}$ Joe N_{1} eats V_{2} pasta N_{3} with P_{4} sauce N

i	0	1	2	3	4		
	Joe	eats	pasta	with	sauce		j
	Noun	S	S			Joe	0
		Verb	VP	Ø		eats	1
			Noun	Ø		pasta	2
				P	PP	with	3
					Noun	sauce	4

Rule Production
$S \rightarrow NP VP$
$NP \rightarrow Noun$
$NP \rightarrow Det Noun$
$NP \rightarrow NP PP$
$VP \rightarrow Verb$
$VP \rightarrow Verb NP$
$VP \rightarrow VP PP$
$PP \rightarrow P NP$

Input: Part Of Speech-tagged sentence S:

 $_{0}$ Joe N_{1} eats V_{2} pasta N_{3} with P_{4} sauce N

i	0	1	2	3	4		
	Joe	eats	pasta	with	sauce		j
	Noun	S	S			Joe	0
		Verb	VP	Ø		eats	1
			Noun	Ø		pasta	2
				P	PP	with	3
					Noun	sauce	4

Rule Production
$S \rightarrow NP VP$
$NP \rightarrow Noun$
$NP \rightarrow Det Noun$
$NP \rightarrow NP PP$
$VP \rightarrow Verb$
VP → Verb NP
$VP \rightarrow VP PP$
$PP \rightarrow P NP$

Input: Part Of Speech-tagged sentence S:

 $_{0}$ Joe N_{1} eats V_{2} pasta N_{3} with P_{4} sauce N

i	0	1	2	3	4		
	Joe	eats	pasta	with	sauce		j
	Noun	S	S			Joe	0
		Verb	VP	Ø		eats	1
			Noun	Ø	NP	pasta	2
				P	PP	with	3
					Noun	sauce	4

Rule Production
$S \rightarrow NP VP$
NP → Noun
$NP \rightarrow Det Noun$
$NP \rightarrow NP PP$
$VP \rightarrow Verb$
$VP \rightarrow Verb NP$
$VP \rightarrow VP PP$
$PP \rightarrow P NP$

Input: Part Of Speech-tagged sentence S:

 $_{0}$ Joe N_{1} eats V_{2} pasta N_{3} with P_{4} sauce N

i	0	1	2	3	4		
	Joe	eats	pasta	with	sauce		j
	Noun	S	S			Joe	0
		Verb	VP	Ø		eats	1
			Noun	Ø	Ø	pasta	2
				P	PP	with	3
					Noun	sauce	4

Rule Production
$S \rightarrow NP VP$
$NP \rightarrow Noun$
NP → Det Noun
$NP \rightarrow NP PP$
$VP \rightarrow Verb$
$VP \rightarrow Verb NP$
$VP \rightarrow VP PP$
$PP \rightarrow P NP$

Input: Part Of Speech-tagged sentence S:

 $_{0}$ Joe N_{1} eats V_{2} pasta N_{3} with P_{4} sauce N

i	0	1	2	3	4		
	Joe	eats	pasta	with	sauce		j
	Noun	S	S	Ø		Joe	0
		Verb	VP	Ø		eats	1
			Noun	Ø	NP	pasta	2
				Р	PP	with	3
					Noun	sauce	4

Rule Production
$S \rightarrow NP VP$
$NP \rightarrow Noun$
NP → Det Noun
$NP \rightarrow NP PP$
$VP \rightarrow Verb$
$VP \rightarrow Verb NP$
$VP \rightarrow VP PP$
$PP \rightarrow P NP$

Input: Part Of Speech-tagged sentence S:

 $_{0}$ Joe N_{1} eats V_{2} pasta N_{3} with P_{4} sauce N

i	0	1	2	3	4		
	Joe	eats	pasta	with	sauce		j
	Noun	S	S	Ø		Joe	0
		Verb	VP	Ø		eats	1
			Noun	Ø	NP	pasta	2
				P	PP	with	3
					Noun	sauce	4

Rule Production
$S \rightarrow NP VP$
$NP \rightarrow Noun$
NP → Det Noun
$NP \rightarrow NP PP$
$VP \rightarrow Verb$
$VP \rightarrow Verb NP$
$VP \rightarrow VP PP$
$PP \rightarrow P NP$

Input: Part Of Speech-tagged sentence S:

 $_{0}$ Joe N_{1} eats V_{2} pasta N_{3} with P_{4} sauce N

i	0	1	2	3	4		
	Joe	eats	pasta	with	sauce		j
	Noun	S	S	Ø		Joe	0
		Verb	VP	Ø		eats	1
			Noun	Ø	NP	pasta	2
				P	PP	with	3
					Noun	sauce	4

Rule Production
$S \rightarrow NP VP$
$NP \rightarrow Noun$
NP → Det Noun
$NP \rightarrow NP PP$
$VP \rightarrow Verb$
$VP \rightarrow Verb NP$
$VP \rightarrow VP PP$
$PP \rightarrow P NP$

Input: Part Of Speech-tagged sentence S:

 $_{0}$ Joe N_{1} eats V_{2} pasta N_{3} with P_{4} sauce N

i	0	1	2	3	4		
	Joe	eats	pasta	with	sauce		j
	Noun	S	S	Ø		Joe	0
		Verb	VP	Ø	VP	eats	1
			Noun	Ø	NP	pasta	2
				P	PP	with	3
					Noun	sauce	4

Rule Production
$S \rightarrow NP VP$
$NP \rightarrow Noun$
NP → Det Noun
$NP \rightarrow NP PP$
$VP \rightarrow Verb$
VP → Verb NP
$VP \rightarrow VP PP$
$PP \rightarrow P NP$

Input: Part Of Speech-tagged sentence S:

 $_{0}$ Joe N_{1} eats V_{2} pasta N_{3} with P_{4} sauce N

i	0	1	2	3	4		
	Joe	eats	pasta	with	sauce		j
	Noun	S	S	Ø		Joe	0
		Verb	VP	Ø	VP	eats	1
			Noun	Ø	NP	pasta	2
				P	PP	with	3
					Noun	sauce	4

Rule Production
$S \rightarrow NP VP$
$NP \rightarrow Noun$
NP → Det Noun
$NP \rightarrow NP PP$
$VP \rightarrow Verb$
$VP \rightarrow Verb NP$
$VP \rightarrow VPPP$
$PP \rightarrow P NP$

Input: Part Of Speech-tagged sentence S:

 $_{0}$ Joe N_{1} eats V_{2} pasta N_{3} with P_{4} sauce N

i	0	1	2	3	4		
	Joe	eats	pasta	with	sauce		j
	Noun	S	S	Ø		Joe	0
		Verb	VP	Ø	Ø	eats	1
			Noun	Ø	NP	pasta	2
				P	PP	with	3
					Noun	sauce	4

Rule Production
$S \rightarrow NP VP$
$NP \rightarrow Noun$
NP → Det Noun
$NP \rightarrow NP PP$
$VP \rightarrow Verb$
$VP \rightarrow Verb NP$
$VP \rightarrow VP PP$
$PP \rightarrow P NP$

Input: Part Of Speech-tagged sentence S:

 $_{0}$ Joe N_{1} eats V_{2} pasta N_{3} with P_{4} sauce N

i	0	1	2	3	4		
	Joe	eats	pasta	with	sauce		j
	Noun	S	S	Ø	S	Joe	0
		Verb	VP	Ø	VP	eats	1
			Noun	Ø	NP	pasta	2
				P	PP	with	3
					Noun	sauce	4

Rule Production
$S \rightarrow NP VP$
NP → Noun
$NP \rightarrow Det Noun$
$NP \rightarrow NP PP$
$VP \rightarrow Verb$
$VP \rightarrow Verb NP$
$VP \rightarrow VP PP$
$PP \rightarrow P NP$

Input: Part Of Speech-tagged sentence S:

 $_{0}$ Joe N_{1} eats V_{2} pasta N_{3} with P_{4} sauce N

i	0	1	2	3	4		
	Joe	eats	pasta	with	sauce		j
	Noun	S	S	Ø	Ø	Joe	O
		Verb	VP	Ø	VP	eats	1
			Noun	Ø	NP	pasta	2
				P	PP	with	3
					Noun	sauce	4

Rule Production
$S \rightarrow NP VP$
$NP \rightarrow Noun$
NP → Det Noun
$NP \rightarrow NP PP$
$VP \rightarrow Verb$
$VP \rightarrow Verb NP$
$VP \rightarrow VP PP$
$PP \rightarrow P NP$

Input: Part Of Speech-tagged sentence S:

 $_{0}$ Joe N_{1} eats V_{2} pasta N_{3} with P_{4} sauce N

i	0	1	2	3	4		
	Joe	eats	pasta	with	sauce		j
	Noun	S	S	Ø	Ø	Joe	0
		Verb	VP	Ø	VP	eats	1
			Noun	Ø	NP	pasta	2
				P	PP	with	3
					Noun	sauce	4

Rule Production
$S \rightarrow NP VP$
$NP \rightarrow Noun$
NP → Det Noun
$NP \rightarrow NP PP$
$VP \rightarrow Verb$
$VP \rightarrow Verb NP$
$VP \rightarrow VP PP$
$PP \rightarrow P NP$

Input: Part Of Speech-tagged sentence S:

 $_{0}$ Joe N_{1} eats V_{2} pasta N_{3} with P_{4} sauce N

i	0	1	2	3	4		
	Joe	eats	pasta	with	sauce		j
	Noun	S	S	Ø	Ø	Joe	0
		Verb	VP	Ø	VP	eats	1
			Noun	Ø	NP	pasta	2
				Р	PP	with	3
					Noun	sauce	4

Rule Production
$S \rightarrow NP VP$
$NP \rightarrow Noun$
NP → Det Noun
$NP \rightarrow NP PP$
$VP \rightarrow Verb$
$VP \rightarrow Verb NP$
$VP \rightarrow VP PP$
$PP \rightarrow P NP$

Input: Part Of Speech-tagged sentence S:

 $_{0}$ Joe N_{1} eats V_{2} pasta N_{3} with P_{4} sauce N

i	0	1	2	3	4		
	Joe	eats	pasta	with	sauce		j
	Noun	S	S	Ø	S	Joe	0
		Verb	VP	Ø	VP	eats	1
			Noun	Ø	NP	pasta	2
C : [0	N 11.			P	PP	with	3
S in [0, N-1]: This Grammar can generate S				Noun	sauce	4	

Rule Production
$S \rightarrow NP VP$
NP → Noun
$NP \rightarrow Det Noun$
$NP \rightarrow NP PP$
$VP \rightarrow Verb$
$VP \rightarrow Verb NP$
$VP \rightarrow VP PP$
$PP \rightarrow P NP$

Input: Part Of Speech-tagged sentence S:

 $_{0}$ Joe N_{1} eats V_{2} pasta N_{3} with P_{4} sauce N

i	0	1	2	3	4		
	Joe	eats	pasta	with	sauce		j
	Noun	S	S	Ø	S	Joe	0
		Verb	VP	Ø	VP	eats	1
			Noun	Ø	NP	pasta	2
c := [0	N 11.			P	PP	with	3
S in [0, N-1]: This Grammar <u>can generate S</u>			,	,	Noun	sauce	4

Rule Production
$S \rightarrow NP VP$
$NP \rightarrow Noun$
NP → Det Noun
$NP \rightarrow NP PP$
$VP \rightarrow Verb$
$VP \rightarrow Verb NP$
$VP \rightarrow VP PP$
$PP \rightarrow P NP$

CKY Parsing with Backpointers

Input: Part Of Speech-tagged sentence S:

 $_{0}$ Joe N_{1} eats V_{2} pasta N_{3} with P_{4} sauce N

Noun

4

sauce

ı	Ü	1	2	3	4			
	Joe	eats	pasta	with	sauce		j	
	← Noun←	S	S	Ø	S	Joe	0	
		Verb	VP	Ø	VP	eats	1	
			Noun	Ø	NP ;	pasta	2	
				← P	PP ≠	with	3	

Rule Production
$S \rightarrow NP VP$
$NP \rightarrow Noun$
NP → Det Noun
$NP \rightarrow NP PP$
$VP \rightarrow Verb$
$VP \rightarrow Verb NP$
$VP \rightarrow VP PP$
$PP \rightarrow P NP$

Ambiguous Grammar

What is the most likely parse tree τ for this sentence s?

Ambiguous Grammar

What is the most likely parse tree τ for this sentence s? We need a model of $P(\tau \mid s)$

Computing $P(\tau \mid s)$ To Choose τ Goal: find a parse tree τ such that is $P(\tau \mid s)$ maximized

By Bayes Theorem:

$$P(\tau \mid s) = \frac{P(\tau, s)}{P(s)}$$

Computing $P(\tau \mid s)$ To Choose τ Maximizing:

$$P(\tau|s) = \frac{P(\tau,s)}{P(s)}$$

means finding:

$$\frac{arg \ max}{\tau} P(\tau \mid s) = \frac{arg \ max}{\tau} \frac{P(\tau, s)}{P(S)}$$

$$\frac{arg \ max}{\tau} P(\tau \mid s) \propto \frac{arg \ max}{\tau} P(\tau, s)$$

Computing $P(\tau \mid s)$ To Choose τ

Now:

where:

• yield of a tree τ is the string of terminal symbols that can be read off the leaf nodes

Yield of Tree τ

Computing $P(\tau)$: The idea

Let T be the (infinite) set of all trees in the language:

$$L = \{ s \in \Sigma^* | \exists \tau \in T : \text{yield}(\tau) = s \}$$

We need to define $P(\tau)$ such that:

$$\forall \tau \in T : 0 \le P(\tau) \le 1$$

$$\sum_{\tau \in T} P(\tau) = 1$$

Probabilistic Context Free Grammar

A probabilistic context-free grammar G is defined by:

- N: a set of non-terminal symbols (variables)
- Σ : a set of terminal symbols (disjoint from N)
- R: a set of rules or productions of the form $A \to \beta$, where:
 - A: a non-terminal symbol
 - β : a string of symbols from the infinite set of strings $(\Sigma \cup N)^*$
- S: a designated start symbol
- P: the set of probabilities on productions / rules

Parse Tree: Example

Parse tree τ (representing a sequence of expansions = derivation) for sentence:

Joe eats pasta with sauce

Rule Production
$S \rightarrow NP VP$
$NP \rightarrow Noun$
$NP \rightarrow Det Noun$
$NP \rightarrow NP PP$
$VP \rightarrow Verb$
$VP \rightarrow Verb NP$
$VP \rightarrow VP PP$
$PP \rightarrow P NP$

Parse Tree: Example

Parse tree τ (representing a sequence of expansions = derivation) for sentence:

Joe eats pasta with sauce

Rule Production
$S \rightarrow NP VP$
$NP \rightarrow Noun$
NP → Det Noun
$NP \rightarrow NP PP$
$VP \rightarrow Verb$
VP → Verb NP
$VP \rightarrow VP PP$
$PP \rightarrow P NP$

Parse Tree: Example

Parse tree τ (representing a sequence of expansions = derivation) for sentence:

Joe eats pasta with sauce

Rule Production
$S \rightarrow NP VP$
$NP \rightarrow Noun$
NP → Det Noun
$NP \rightarrow NP PP$
$VP \rightarrow Verb$
$VP \rightarrow Verb NP$
$VP \rightarrow VP PP$
$PP \rightarrow P NP$

$$P(\tau) = ???$$

Probabilistic Context-Free Grammar

For every non-terminal X, define a probability distribution $P(X \to \alpha \mid X)$ over all rules with the same non-terminal symbol X.

Rule Production	$P(X \to \alpha \mid X)$
$S \rightarrow NP VP$	1.0
NP → Noun	0.2
NP → Det Noun	0.4
$NP \rightarrow NP PP$	0.4
$VP \rightarrow Verb$	0.4
VP → Verb NP	0.3
$VP \rightarrow VP PP$	0.3
$PP \rightarrow P NP$	1.0

Probabilistic Context-Free Grammar

For every non-terminal X, define a probability distribution $P(X \to \alpha \mid X)$ over all rules with the same non-terminal symbol X.

Rule Production	$P(X \to \alpha \mid X)$		
$S \rightarrow NP VP$	1.0		
NP → Noun	0.2		
NP → Det Noun	0.4		
$NP \rightarrow NP PP$	0.4		
VP → Verb	0.4		
VP → Verb NP	0.3		
$VP \rightarrow VP PP$	0.3		
PP → P NP	1.0		

Parse tree τ (representing a sequence of expansions = derivation) for sentence:

Joe eats pasta with sauce

Rule Production	P(Rule)
$S \rightarrow NP VP$	1.0
NP → Noun	0.2
$NP \rightarrow Det Noun$	0.4
$NP \rightarrow NP PP$	0.4
$VP \rightarrow Verb$	0.4
$VP \rightarrow Verb NP$	0.3
$VP \rightarrow VP PP$	0.3
$PP \rightarrow P NP$	1.0

$$P(\tau) = ???$$

Parse tree τ (representing a sequence of expansions = derivation) for sentence:

Joe eats pasta with sauce

Rule Production	P(Rule)
$S \rightarrow NP VP$	1.0
NP → Noun	0.2
$NP \rightarrow Det Noun$	0.4
$NP \rightarrow NP PP$	0.4
$VP \rightarrow Verb$	0.4
VP → Verb NP	0.3
$VP \rightarrow VP PP$	0.3
$PP \rightarrow P NP$	1.0

$$P(\tau) = \prod P(Rule)$$

Parse tree τ (representing a sequence of expansions = derivation) for sentence:

Joe eats pasta with sauce

Rule Production	P(Rule)
$S \rightarrow NP VP$	1.0
$NP \rightarrow Noun$	0.2
$NP \rightarrow Det Noun$	0.4
$NP \rightarrow NP PP$	0.4
$VP \rightarrow Verb$	0.4
$VP \rightarrow Verb NP$	0.3
$VP \rightarrow VP PP$	0.3
$PP \rightarrow P NP$	1.0

$$P(\tau) = 1.0 * 0.2 * 0.3 * 0.3 * 0.2 * 1.0 * 0.2$$

Parse tree τ (representing a sequence of expansions = derivation) for sentence:

Joe eats pasta with sauce

Rule Production	P(Rule)
$S \rightarrow NP VP$	1.0
NP → Noun	0.2
$NP \rightarrow Det Noun$	0.4
$NP \rightarrow NP PP$	0.4
$VP \rightarrow Verb$	0.4
$VP \rightarrow Verb NP$	0.3
$VP \rightarrow VP PP$	0.3
$PP \rightarrow P NP$	1.0

Probabilistic CKY

Input: Part Of Speech-tagged sentence S:

 $_{0}$ Joe N_{1} eats V_{2} pasta N_{3} with P_{4} sauce N

i 0 1 2 3 4

Joe	eats	pasta	with	sauce		j
Noun P()	S P()	S P()	Ø P()	S P()	Joe	0
	Verb P()	VP P()	Ø P()	VP P()	eats	1
		Noun P()	Ø P()	NP P()	pasta	2
			P P()	PP P()	with	3
				Noun P()	sauce	4

Rule Production	P(Rule)
$S \rightarrow NP VP$	1.0
NP → Noun	0.2
$NP \rightarrow Det Noun$	0.4
$NP \rightarrow NP PP$	0.4
$VP \rightarrow Verb$	0.4
$VP \rightarrow Verb NP$	0.3
$VP \rightarrow VP PP$	0.3
$PP \rightarrow P NP$	1.0

Probabilistic CKY

Input: Part Of Speech-tagged sentence S:

 $_{0}$ Joe N_{1} eats V_{2} pasta N_{3} with P_{4} sauce N

i 0 1 2 3 4

Joe	eats	pasta	with	sauce		j
Noun P()	S P()	S _P()	Ø P()	S P()	Joe	0
	Verb P()	VP PQ	Ø P()	VP P()\	eats	1
		Noun P()	Ø P()	NP P()	pasta	2
			P()	PP /	with	3
				Noun P()	sauce	4

Rule Production	P(Rule)
$S \rightarrow NP VP$	1.0
$NP \rightarrow Noun$	0.2
NP → Det Noun	0.4
$NP \rightarrow NP PP$	0.4
$VP \rightarrow Verb$	0.4
$VP \rightarrow Verb NP$	0.3
$VP \rightarrow VP PP$	0.3
$PP \rightarrow P NP$	1.0

Probabilistic CKY

Input: Part Of Speech-tagged sentence S:

 $_{0}$ Joe N_{1} eats V_{2} pasta N_{3} with P_{4} sauce N

i	0	1	2	3	4		
	Joe	eats	pasta	with	sauce		j
	Noun e	S P()	S _P()	Ø P()	S P()	Joe	0
		Verb	VP PQ	Ø P()	— ∀ P P() \	eats	1
			Noun PO	P()	NP P()	pasta	2
N/III+iI	, ole poss	ible tro	osl	P()	PP /	with	3
	ole prob				Noun P()	sauce	4

Rule Production	P(Rule)
$S \rightarrow NP VP$	1.0
$NP \rightarrow Noun$	0.2
$NP \rightarrow Det Noun$	0.4
$NP \rightarrow NP PP$	0.4
$VP \rightarrow Verb$	0.4
$VP \rightarrow Verb NP$	0.3
$VP \rightarrow VP PP$	0.3
$PP \rightarrow P NP$	1.0