Linear modelling: Maximum likelihood approach (2)

Rohit Budhiraja

Machine Learning for Wireless Communications (EE 798L)

Jan 19, 2024

Recap of last lecture and today's agenda

- Recap of last class
 - Discussed generative data modelling approach
 - Approach will help in capturing uncertainty in prediction
- Today's agenda
 - Show that maximum likelihood (ML) model favours complex models
 - Show how parameter estimation in ML model becomes zero forcing receiver in wireless
- Reference Chapter 2 of FCML

Generative data modelling (recap)

- How do we generate data from our current model?
 - We have an equation $f(\mathbf{x}; \mathbf{w}) = \mathbf{w}^T \mathbf{x}$
 - Substitute w calculated earlier, and it could generate a winning time for any particular year

- It doesn't look much like the original data. To make it more realistic, we need to add some errors
- Our model now takes the following form

$$t_n = \mathbf{w}^T \mathbf{x}_n + \epsilon_n$$

• Error ϵ_n – difference between model and actual winning times

Generative data modelling (recap)

ullet Error ϵ_n is modelled as continuous random variable, and also independent across Olympic years

$$p(\epsilon_1,\cdots,\epsilon_N)=\prod_{n=1}^N p(\epsilon_n)$$

- Assumed ϵ_n to be Gaussian distributed with pdf $\mathcal{N}(0,\sigma^2)$
 - Distribution allows ϵ_n to be both positive and negative
- Model has two components: deterministic $(\mathbf{w}^T \mathbf{x}_n)$ and random (ϵ_n) , which we need to calculate
- Random variable t_n for our model $t_n = \mathbf{w}^T \mathbf{x}_n + \epsilon_n$ has pdf

$$p(t_n|\mathbf{x}_n,\mathbf{w},\sigma^2) = \mathcal{N}(\mathbf{w}^T\mathbf{x}_n,\sigma^2)$$

- Note conditioning on LHS pdf of t_n depends on particular values of \mathbf{x}_n and \mathbf{w}
 - Also all t_n (conditioned) are independent as noise at each data point is independent

Idea of "likelihood" (recap)

- Consider year 1980 from our dataset. We earlier calculated $\mathbf{w} = [36.416, -0.0133]^T$
- pdf of t_n is $p(t_n|\mathbf{x}_n, \mathbf{w}, \sigma^2) = \mathcal{N}(\mathbf{w}^T\mathbf{x}_n, \sigma^2)$
 - With mean $\mathbf{w}^T \mathbf{x}_n = [36.416, -0.0133][1, 1980]^T = 10.02$
- If we assume $\sigma^2 = 0.05$, then pdf of t_n is

- For a continuous random variable, t, p(t) cannot be interpreted as a probability
- Interpretation of height of the curve at a particular value of t
 - How likely it is that we would observe that particular t for x=1980
 - Implies, most likely winning time in 1980 would be 10.02 seconds

Idea of "likelihood" (recap)

- But actual winning time in 1980 Olympics is C (10.25 seconds)
- Density $p(t_n|\mathbf{x}_n,\mathbf{w},\sigma^2)$ at $t_n=10.25$ is an important quantity likelihood of nth data point
- We cannot change $t_n = 10.25$ (this is our data) but we can change **w** and σ^2 to try and move the pdf so as to make it as high as possible at $t_n = 10.25$

Dataset likelihood and calculation of parameters (recap)

• If we have N data points, we maximize their joint likelihood while calculating $\bf w$ and σ^2

$$L = p(t_1, \dots, t_N | \mathbf{x}_1, \dots, \mathbf{x}_N, \mathbf{w}, \sigma^2) = p(\mathbf{t} | \mathbf{X}, \mathbf{w}, \sigma^2)$$

• Recall we assume that the noise at each data point is independent for $t_n = \mathbf{w}^T \mathbf{x}_n + \epsilon_n$

$$L = p(\mathbf{t}|\mathbf{X}, \mathbf{w}, \sigma^2) = \prod_{n=1}^{N} p(t_n|\mathbf{x}_n, \mathbf{w}, \sigma^2) = \prod_{n=1}^{N} \mathcal{N}(\mathbf{w}^T \mathbf{x}_n, \sigma^2)$$
$$= \prod_{n=1}^{N} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{1}{2\sigma^2} (t_n - \mathbf{w}^T \mathbf{x}_n)^2\right\}$$

• Values of w that maximises the likelihood

$$\hat{\mathbf{w}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{t}$$

Variance calculation for maximum likelihood approach

• We now calculate an expression for σ^2 assuming $\mathbf{w} = \hat{\mathbf{w}}$

$$\log L = -\frac{N}{2} \log 2\pi - N \log \sigma - \frac{1}{2\sigma^2} \sum_{n=1}^{N} (t_n - \mathbf{w}^T \mathbf{x}_n)^2$$

$$\frac{\partial \log L}{\partial \sigma} = -\frac{N}{\sigma} + \frac{1}{\sigma^3} \sum_{n=1}^{N} (t_n - \mathbf{x}^T \hat{\mathbf{w}})^2 = 0$$

$$\widehat{\sigma^2} = \frac{1}{N} \sum_{n=1}^{N} (t_n - \mathbf{x}^T \hat{\mathbf{w}})^2 = \frac{1}{N} (\mathbf{t} - \mathbf{X} \hat{\mathbf{w}})^T (\mathbf{t} - \mathbf{X} \hat{\mathbf{w}}) = \frac{1}{N} (\mathbf{t}^T \mathbf{t} - 2\mathbf{t}^T \mathbf{X} \hat{\mathbf{w}} + \hat{\mathbf{w}}^T \mathbf{X}^T \mathbf{X} \hat{\mathbf{w}})$$

- Above approach is also known as parameter estimation problem for a given distribution
- By substituting $\hat{\mathbf{w}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{t}$, we have

$$\widehat{\sigma^2} = \frac{1}{N} (\mathbf{t}^T \mathbf{t} - 2\mathbf{t}^T \mathbf{X} (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{t} + \mathbf{t}^T \mathbf{X} (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{X} (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{t})$$

$$= \frac{1}{N} (\mathbf{t}^T \mathbf{t} - 2\mathbf{t}^T \mathbf{X} (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{t} + \mathbf{t}^T \mathbf{X} (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{t})$$

$$= \frac{1}{N} (\mathbf{t}^T \mathbf{t} - \mathbf{t}^T \mathbf{X} (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{t}) = \frac{1}{N} (\mathbf{t}^T \mathbf{t} - \mathbf{t}^T \mathbf{X} \hat{\mathbf{w}})$$

• Using the Olympic 100m data, $\hat{\mathbf{w}} = [36.4165 - 0.0133]^T$ and $\hat{\sigma}^2 = 0.0503$

Maximum likelihood favours complex models (1)

Log likelihood expression is

$$\log L = -\frac{N}{2} \log 2\pi - N \log \sigma - \frac{1}{2\sigma^2} \sum_{n=1}^{N} (t_n - \mathbf{w}^T \mathbf{x}_n)^2$$
 (1)

• Substituting $\mathbf{w} = \hat{\mathbf{w}}$ and $\widehat{\sigma^2} = \frac{1}{N} \sum_{n=1}^{N} (t_n - \hat{\mathbf{w}}^T \mathbf{x}_n)^2$ into (1) maximizes log likelihood

$$\log L = -\frac{N}{2}\log 2\pi - \frac{N}{2}\log \widehat{\sigma^2} - \frac{1}{2\widehat{\sigma^2}}N\widehat{\sigma^2} = -\frac{N}{2}(1+\log 2\pi) - \frac{N}{2}\log \widehat{\sigma^2}$$

- ullet Note: for fixed data N, maximum value of L will keep increasing as we decrease noise variance σ^2
 - ullet Noise is incorporated into model to capture effects which its deterministic part (i.e. f(x; w)) cannot
- One way to decrease σ^2 is to modify $f(\mathbf{x}; \mathbf{w})$ so that it can capture more variability in data
 - $\bullet\,$ i.e., make it more flexible by fitting increasingly higher-order polynomial function

Maximum likelihood favours complex models (2)

- Eighth-order polynomial gets closer to observed data than first-order polynomial
- More complex model is overfitting
 - We have given it too much freedom and it is attempting to make sense out of what is essentially noise

Maximum likelihood favours complex models (3)

- ullet If we use $\log L$ to choose model order, it would always point us to models of increasing complexity
- Simpler model is better able to generalize than the complex one
- Showed how regularisation could be used to penalize over-complex parameter values
 - Same can be done with Bayesian approach through use of prior distributions on parameter values

Maximum likelihood approach in a form suitable for wireless

• Recall our data model form $t_n = \mathbf{w}^T \mathbf{x}_n + \epsilon_n$. We therefore have

$$t_1 = w_0 + x_1 w_1 + \epsilon_1$$

$$t_2 = w_0 + x_2 w_1 + \epsilon_2$$

$$\vdots = \vdots$$

$$t_N = w_0 + x_N w_1 + \epsilon_N$$

$$\mathbf{t} = \mathbf{X} \mathbf{w} + \epsilon$$

where
$$\epsilon = [\epsilon_1 \epsilon_2, \dots, \epsilon_N]^T$$

• Joint likelihood of N data points

$$L = p(\mathbf{t}|\mathbf{X}, \mathbf{w}, \sigma^2) = p(t_1, \dots, t_N|\mathbf{x}_1, \dots, \mathbf{x}_N, \mathbf{w}, \sigma^2) = \prod_{n=1}^N p(t_n|\mathbf{x}_n, \mathbf{w}, \sigma^2) = \prod_{n=1}^N \mathcal{N}(\mathbf{w}^T \mathbf{x}_n, \sigma^2)$$
$$= \prod_{n=1}^N \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{1}{2\sigma^2}(t_n - \mathbf{w}^T \mathbf{x}_n)^2\right\}$$

• Calculated \mathbf{w} by maximizing the natural logarithm of the likelihood $\hat{\mathbf{w}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{t}$

Multiple-input multiple-output (MIMO) wireless systems

• Consider a transmitter with 2 antennas and receiver with N antennas.

• MIMO system simultaneously transmits 2 different symbols. Received signal is

$$y_1 = h_{11}x_1 + h_{12}x_2 + n_1$$

 $y_2 = h_{21}x_1 + h_{22}x_2 + n_2$
 $\vdots = \vdots$
 $y_N = h_{N1}x_1 + h_{N2}x_2 + n_N$
 $y = Hx + n$

• Receive signal vector $\mathbf{y} = [y_1, \dots, y_N]^T$, transmit signal $\mathbf{x} = [x_1, x_2]^T$, receiver noise $\mathbf{n} = [n_1, \dots, n_N]^T$

Multiple-input multiple-output (MIMO) wireless systems

Channel

$$\mathbf{H} = \left[\begin{array}{cc} h_{11} & h_{12} \\ \vdots & \vdots \\ h_{N1} & h_{N2} \end{array} \right] = \left[\begin{array}{c} \mathbf{h}_1^T \\ \mathbf{h}_2^T \\ \vdots \\ \mathbf{h}_N^T \end{array} \right]$$

Receive signal vector is

$$y = Hx + n$$

ullet Two symbols in transmit vector ${f x}$ interfere with each other at receiver – need to recover ${f x}$ from ${f y}$

MIMO systems and machine learning

Receive signal vector is

$$y = Hx + n$$

Joint likelihood of N receive signals (data points)

$$L = p(\mathbf{y}|\mathbf{H}, \mathbf{x}, \sigma^2) = p(y_1, \dots, y_N|\mathbf{h}_1, \dots, \mathbf{h}_N, \mathbf{x}, \sigma^2) = \prod_{n=1}^N p(y_n|\mathbf{h}_n, \mathbf{x}, \sigma^2) = \prod_{n=1}^N \mathcal{N}(\mathbf{x}^T\mathbf{h}_n, \sigma^2)$$
$$= \prod_{n=1}^N \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{1}{2\sigma^2}(y_n - \mathbf{x}^T\mathbf{h}_n)^2\right\}$$

- ullet Calculate old x by maximizing the natural logarithm of the likelihood $\hat{old x} = (old H^T old H)^{-1} old H^T old y$
- We denote $\mathbf{W} = (\mathbf{H}^T \mathbf{H})^{-1} \mathbf{H}^T$ (zero forcing receiver)

$$\begin{aligned} \textbf{Wy} &= \hat{\textbf{x}} &= \textbf{WHx} + \textbf{Wn} \\ &= (\textbf{H}^T\textbf{H})^{-1}\textbf{H}^T\textbf{Hx} + \underbrace{\textbf{Wn}}_{\hat{\textbf{n}}} = \textbf{x} + \hat{\textbf{n}} \end{aligned}$$

