Lecture4: Diode circuits

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Electrical Engineering and Coumputer Science
Gwangju Institute of Science and Technology

PN junction as a diode

Exponential model

$$I_D = I_S \left(\exp \frac{V_D}{V_T} - 1 \right)$$

Rectifier

- Revisiting our first example
 - Analyze it by using the constant-voltage model

Simulation result

• Specific example of $I_S = 0.5$ fA and $R_1 = 1 k\Omega$.

Time-varying voltage source

- For example, $V_{in}(t) = 3\sin(2\pi f t)$ V.
 - 60 Hz, 10 periods

Introducing a capacitor

- Difference from the previous one?
 - First, consider the DC case. Remember that $I_C = C_1 \frac{d}{dt} V_{out}$.

Qualitative understanding

- Consider the first period.
 - When the input voltage exceeds $V_{D,on}$, the diode is turned on.
 - The charge is stored in the capacitor. Hence, the output voltage increases.
 - When the input voltage is lower than $V_{D,on}$, the output voltage does not change. (*Why?*)
- After the first period...
 - In the second period, the diode current is smaller than the one in the first period. (Why?)
 - After some periods, the diode current vanishes.
 - A DC output voltage is established.

Simulation result

• The capacitance, $C_1 = 1 \mu F$.

Example 3.6 (Razavi)

An OR gate

Limiter

Level-shift for both half cycles

