```
In [1]: import numpy as np
   import matplotlib.pyplot as plt
   import pandas as pd
   from sklearn.linear_model import LinearRegression
   from statsmodels.formula.api import ols
   miami = pd.read_csv('C:/Users/samik/Documents/econometrics/miami-housing.csv')#
   miami
```

Out[1]:		LATITUDE	LONGITUDE	PARCELNO	SALE_PRC	LND_SQFOOT	TOT_LVG_AREA	SPEC_FEA
	0	25.891031	-80.160561	622280070620	440000.0	9375	1753	
	1	25.891324	-80.153968	622280100460	349000.0	9375	1715	
	2	25.891334	-80.153740	622280100470	800000.0	9375	2276	
	3	25.891765	-80.152657	622280100530	988000.0	12450	2058	
	4	25.891825	-80.154639	622280100200	755000.0	12800	1684	
	13927	25.783130	-80.259795	131320040990	275000.0	6780	967	
	13928	25.783585	-80.260354	131320040910	340000.0	7500	1854	
	13929	25.783793	-80.256126	131320040420	287500.0	8460	1271	
	13930	25.784007	-80.257542	131320040330	315000.0	7500	1613	
	13931	25.784387	-80.258901	131320040700	250000.0	8833	1867	

13932 rows × 17 columns

```
In [2]: #very simple regression using python
    simple = ols("SALE_PRC ~ CNTR_DIST", data = miami).fit()
    print(simple.summary())
```

OLS Regression Results

______ SALE PRC R-squared: Dep. Variable: Model: OLS Adj. R-squared: 0.074 Least Squares F-statistic:
Wed, 22 Feb 2023 Prob (F-statistic):
22:55:28 Log-Likelihood: Method: 1108. 8.20e-234 Date: Time: -1.9572e+05 No. Observations: 13932 AIC: 3.914e+05 13930 BIC: Df Residuals: 3.915e+05 Df Model: 1 Covariance Type: nonrobust ______ coef std err t P>|t| [0.025 0.975] ______ Intercept 5.842e+05 6109.678 95.615 0.000 5.72e+05 5.96e+05 CNTR_DIST -2.6899 0.081 -33.285 0.000 -2.848 -2.532 ______ 8857.556 Durbin-Watson: Omnibus: 0.655 0.000 Jarque-Bera (JB): 109677.981 Prob(Omnibus): 0.00 Skew: 2.923 Prob(JB): 15.440 Cond. No. Kurtosis: 1.79e+05 ______

Notes

- [1] Standard Errors assume that the covariance matrix of the errors is correctly s pecified.
- [2] The condition number is large, 1.79e+05. This might indicate that there are strong multicollinearity or other numerical problems.

```
In [3]: X=miami[['CNTR_DIST']]
    Y=miami[['SALE_PRC']]

    regressor = LinearRegression()
    regressor.fit(X,Y)
    y_pred = regressor.predict(X)
    plt.scatter(X, Y, color = 'red')
    plt.plot(X, regressor.predict(X), color = 'blue')
    plt.title('SALEPRC vs CNTR_DIST')
    plt.xlabel('CNTR_DIST')
    plt.ylabel('SALEPRC')
    plt.show()
```


In [4]: #very simple regression using python
simple = ols("SALE_PRC ~ CNTR_DIST + HWY_DIST + RAIL_DIST", data = miami).fit()
print(simple.summary())

CS
I S

Dep. Variable:	SALE_PRC	R-squared:	0.145			
Model:	OLS	Adj. R-squared:	0.145			
Method:	Least Squares	F-statistic:	788.5			
Date:	Wed, 22 Feb 2023	<pre>Prob (F-statistic):</pre>	0.00			
Time:	22:55:28	Log-Likelihood:	-1.9516e+05			
No. Observations:	13932	AIC:	3.903e+05			
Df Residuals:	13928	BIC:	3.904e+05			
Df Model:	3					
Covariance Type:	nonrobust					

covariance Type.		Hom obuse				
	coef	std err	t	P> t	======= [0.025	0.975]
Intercept CNTR_DIST HWY_DIST RAIL_DIST	4.782e+05 -3.3164 13.9236 4.9484	6662.856 0.087 0.415 0.454	71.775 -37.929 33.562 10.909	0.000 0.000 0.000 0.000	4.65e+05 -3.488 13.110 4.059	4.91e+05 -3.145 14.737 5.838
Omnibus: Prob(Omnibus Skew: Kurtosis:	us):	2.		•	:	0.685 104813.028 0.00 2.05e+05

Notes

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.05e+05. This might indicate that there are strong multicollinearity or other numerical problems.

In []