Übung 3

Aufgabe 1:

Beweisen oder widerlegen Sie folgende Behauptung über Sprachen: { parse error: \forall L_1 , L_2 , L_3 : L_1 ($L_2 - L_3$) = L_1 $L_2 - L_1$ L_3 }

Gegenbeisiel: $L_1 = \{a\}; L_2 = \{b\}; L_3 = \{\}$

Aufgabe 2:

Gegeben seien die folgenden Zustandsübergangsdiagramme endlicher Automaten M1 und M2:

Geben Sie formale Beschreibungen der Automaten M1 und M2 an. Beantworten Sie die folgenden Fragen für jeden der beiden Automaten:

- a) Was ist die Folge der Zustände, die bei Eingabe aabb erreicht werden? $M_1:q1\to q2\to q3\to q1\to q1~\text{M_2:q1} \text{ harrow q1} \text{ harrow q2} \text{ harrow q2}$
- ullet b) Wird das Wort aabb akzeptiert? M_1 Nein, kein landen in q1 kein endzustand M_2 Ja, landen in gültigem Endzustand q4
- c) Wird das leere Wort e akzeptiert? Nur bei M_2 da q1 endzustand?

Aufgabe 3:

Sei M durch folgendes Zustandsübergangsdiagramm gegeben. Was ist L(M)? Beweisen Sie ihre Antwort!

Aufgabe 4:

Geben Sie deterministische endliche Automaten an, die die folgenden Sprachen akzeptieren:

• a) $\{w \in \{a,b\}^* | w \text{ beginnt mit aba} \}$

- b) $\{w \in \{a,b\}^* | w$ enthaelt genau 2 a $\}$

Aufgabe 5:

Geben Sie deterministische endliche Automaten an, die die folgenden Sprachen akzeptieren:

- a) $\{w \in \{a,b\}^* | ext{ in w folgt auf jedes a unmittelbar ein b} \}$

- b) $\{w \in \{a,b\}^* | w ext{ enthaelt das Teilwort aabab} \}$

Aufgabe 6:

Geben Sie jeweils (nichtdeterministische) endliche Automaten an, die die folgenden Sprachen akzeptieren:

- a) $\{w \in \{a,b\}^* | w ext{ beginnt mit b und endet mit a} \}$

• b) $\{w \in \{0,7\}^* | w \text{ enthaelt das Teilwort 007} \}$

Aufgabe 7:

Geben Sie jeweils (nichtdeterministische) endliche Automaten an, die die folgenden Sprachen akzeptieren:

• a)
$$\{w\in\{a,b\}^*||w|\leq 3\}$$

- b) $\{w \in \{a,b\}^* | w$ an jeder ungeraden Position in w
 steht ein b}

