可圖

日月卦長

平面圖

• 可以畫在平面上且邊不相交的圖

歐拉公式

• V: 點數

• E: 邊數

• *F*: 面數

• C: 連通塊數

$$V = 4$$
 $E = 6$
 $F = 4$
 $C = 1$

$$4 - 6 + 4 = 1 + 1$$

歐拉公式

$$V-E+F=C+1$$

• 因為每個面都由至少 3 個邊圍成,且每個邊僅觸及 2 個面:

$$3F \leq 2E$$

• 因此若 G 是一個連通簡單圖

$$E \le 3V - 6$$

Kuratowski's theorem

• 簡單圖 G 是平面圖 $\leftrightarrow G$ 不包含一個子圖是 K_5 或 $K_{3,3}$ 的同胚

同胚 (Homeomorphism)

• 細分變換: 在一條邊上面加入新的點

• 同胚:兩張圖在經過一些細分變換後會同構

- 細分變換的逆轉換
- 不斷把 degree ≤ 2 的點移除並合併邊

- 細分變換的逆轉換
- 不斷把 degree ≤ 2 的點移除並合併邊

- 細分變換的逆轉換
- 不斷把 degree ≤ 2 的點移除並合併邊

Smoothing

- 用 adjacency matrix
- 一次移除一個點
- 時間複雜度是 $O(n^3)$

```
using AdjacencyMatrixTy = vector<vector<bool>>;
AdjacencyMatrixTy smoothing(AdjacencyMatrixTy G) {
  size_t N = G.size(), Change = 0;
  do {
   Change = 0;
    for (size_t u = 0; u < N; ++u) {
      vector<size t> E;
      for (size_t v = 0; v < N && E.size() < 3; ++v)
       if (G[u][v] && u != v) E.emplace_back(v);
     if (E.size() == 1 || E.size() == 2) {
       ++Change;
       for (auto v : E) G[u][v] = G[v][u] = false;
      if (E.size() == 2) {
        auto [a, b] = make_pair(E[0], E[1]);
       G[a][b] = G[b][a] = true;
  } while (Change);
  return G;
```

判斷 K_5 或 $K_{3,3}$

計算 degree

```
vector<size_t> getDegree(const AdjacencyMatrixTy &G) {
   size_t N = G.size();
   vector<size_t> Degree(N);
   for (size_t u = 0; u < N; ++u)
      for (size_t v = u + 1; v < N; ++v) {
        if (!G[u][v]) continue;
        ++Degree[u], ++Degree[v];
    }
   return Degree;
}</pre>
```

```
bool is_K5_or_K33(const vector<size_t> &Degree) {
  unordered_map<size_t, size_t> Num;
  for (auto Val : Degree) ++Num[Val];
  size_t N = Degree.size();
  bool isK5 = Num[4] == 5 && Num[4] + Num[0] == N;
  bool isK33 = Num[3] == 6 && Num[3] + Num[0] == N;
  return isK5 || isK33;
}
```

透過 degree 判斷

平面圖判斷法

• 枚舉子圖,對個子圖做 Smoothing 後判斷是否是 K_5 或 $K_{3,3}$

• 複雜的 O(n) 演算法 A new planarity test

圖色數(圖染色問題)

將一張圖上的每個頂點染色,使得相鄰的兩個點顏色不同,最小 需要的顏色數。

• 通常使用符號 $\chi(G)$ 表示

四色定理

若圖 G 是平面圖,則 $\chi(G) \leq 4$ 。

判斷平面圖的圖色數

・判斷 2 塗色 → 等同於判斷二分圖

• 判斷 3 塗色 → NP-Complete

• 判斷 4 塗色 → 有<u>多項式時間演算法</u>,但我不會

頂點覆蓋

- 設 G=(V,E)
- 一個頂點集合 $V' \subset V$ 使得 $\forall (u,v) \in E, u \in V' \lor v \in V'$

每個頂點覆蓋的補集都對應一個獨立集

最大獨立集點數 + 最小頂點覆蓋點數 = |V|

每個獨立集在補圖中都對應一個團

最大獨立集 = 補圖的最大團

枚舉極大團 (Bron-Kerbosch algorithm)

- 極大團:增加任一頂點都不再符合團定義的團
- n 個點的圖最多有 3^{n/3} 個極大團
- Bron–Kerbosch algorithm 可以枚舉所有極大團,時間為 $O(3^{n/3})$
- 請將這個演算法加入模板

判斷圖 G 是否能 3 塗色

• 枚舉圖 G 的極大獨立集 I

• 若存在 I 使得 G-I 形成二分圖,則 G 可以 3 塗色

• 反之則不能 3 塗色

s,t 一最小割 (s,t-mincut)

平面圖s,t 一最小割

• Ford and D. Fulkerson, "Maximal flow through a network", 1956

• 假設圖是連通無向圖,且邊的權重都是正的

• 若 s, t 兩點位於同一個面 (face) F_0 上,則 s, t — mincut 可以對應到**對偶圖 (Dual Graph)** 上 通過 F_0 的一個最小環 (s, t — F_0 — mincycle)

• 可以用最短路徑演算法構造

對偶圖 (Dual Graph

對偶圖 (Dual Graph) F_0

構造 s, $t - F_0 - mincycle$

若s,t不在同一個面上

• J. Reif. Minimum s-t cut of a planar undirected network in $O(n \log^2 n)$ time. 1983.

• 假設圖是連通無向圖,且邊的權重都是正的

• 利用 Ford Fulkerson 的結果做分治 (Divide and Conquer)

1. 計算 face - s 到 face - t 的最短路徑

2. 將路過的點編號 $F_0 \sim F_d$

4. $s, t - mincut = \min_{1 \le i \le d} \{SP(F_i', F_i'')\}$

觀察可能的路徑,假設i<j

Case 1: $SP(F_i',F_i'')$ 和 $SP(F_j',F_j'')$ 位於不同方向

觀察可能的路徑

Case 2: $SP(F_i',F_i'')$ 和 $SP(F_j',F_j'')$ 位於同方向

觀察可能的路徑,假設 i < j

Case 3: $SP(F_i', F_i'')$ 和 $SP(F_j', F_j'')$ 位於同方向且沒有完全「包住」的情況

不可能存在兩條不同長度的最短路徑

5. 分治法-先計算 $SP(F'_{\lfloor d/2 \rfloor}, F''_{\lfloor d/2 \rfloor})$

5. 分治法 - 切成兩張圖遞迴處理

5. 分治法 - 切成兩張圖遞迴處理

5. 分治法-若出現 degree = 2 的點要縮點

時間複雜度

- 遞迴結束條件: s,t 位於同一個平面上就直接計算
- 遞迴深度最多 $O(\log n)$
- 每一層只有 O(n) 個點
- 計算最短路徑時間: O(n log n)
- 總共時間複雜度

$$O(n\log n) \times O(\log n) = O(n\log^2 n)$$