Beyond Physical Memory: Policies

In a virtual memory manager, life is easy when you have a lot of free memory. A page fault occurs, you find a free page on the free-page list, and assign it to the faulting page. Hey, Operating System, congratulations! You did it again.

Unfortunately, things get a little more interesting when little memory is free. In such a case, this **memory pressure** forces the OS to start **paging out** pages to make room for actively-used pages. Deciding which page (or pages) to **evict** is encapsulated within the **replacement policy** of the OS; historically, it was one of the most important decisions the early virtual memory systems made, as older systems had little physical memory. Minimally, it is an interesting set of policies worth knowing a little more about. And thus our problem:

THE CRUX: HOW TO DECIDE WHICH PAGE TO EVICT How can the OS decide which page (or pages) to evict from memory? This decision is made by the replacement policy of the system, which usually follows some general principles (discussed below) but also includes certain tweaks to avoid corner-case behaviors.

22.1 Cache Management

Before diving into policies, we first describe the problem we are trying to solve in more detail. Given that main memory holds some subset of all the pages in the system, it can rightly be viewed as a **cache** for virtual memory pages in the system. Thus, our goal in picking a replacement policy for this cache is to minimize the number of **cache misses**, i.e., to minimize the number of times that we have to fetch a page from disk. Alternately, one can view our goal as maximizing the number of **cache hits**, i.e., the number of times a page that is accessed is found in memory.

Knowing the number of cache hits and misses let us calculate the **average memory access time** (**AMAT**) for a program (a metric computer architects compute for hardware caches [HP06]). Specifically, given these values, we can compute the AMAT of a program as follows:

$$AMAT = T_M + (P_{Miss} \cdot T_D) \tag{22.1}$$

where T_M represents the cost of accessing memory, T_D the cost of accessing disk, and P_{Miss} the probability of not finding the data in the cache (a miss); P_{Miss} varies from 0.0 to 1.0, and sometimes we refer to a percent miss rate instead of a probability (e.g., a 10% miss rate means $P_{Miss} = 0.10$). Note you always pay the cost of accessing the data in memory; when you miss, however, you must additionally pay the cost of fetching the data from disk.

For example, let us imagine a machine with a (tiny) address space: 4KB, with 256-byte pages. Thus, a virtual address has two components: a 4-bit VPN (the most-significant bits) and an 8-bit offset (the least-significant bits). Thus, a process in this example can access 2^4 or 16 total virtual pages. In this example, the process generates the following memory references (i.e., virtual addresses): 0x000, 0x100, 0x200, 0x300, 0x400, 0x500, 0x600, 0x700, 0x800, 0x900. These virtual addresses refer to the first byte of each of the first ten pages of the address space (the page number being the first hex digit of each virtual address).

Let us further assume that every page except virtual page 3 is already in memory. Thus, our sequence of memory references will encounter the following behavior: hit, hit, hit, miss, hit, hit, hit, hit, hit. We can compute the **hit rate** (the percent of references found in memory): 90%, as 9 out of 10 references are in memory. The **miss rate** is thus 10% ($P_{Miss} = 0.1$). In general, $P_{Hit} + P_{Miss} = 1.0$; hit rate plus miss rate sum to 100%.

To calculate AMAT, we need to know the cost of accessing memory and the cost of accessing disk. Assuming the cost of accessing memory (T_M) is around 100 nanoseconds, and the cost of accessing disk (T_D) is about 10 milliseconds, we have the following AMAT: $100ns + 0.1 \cdot 10ms$, which is 100ns + 1ms, or 1.0001 ms, or about 1 millisecond. If our hit rate had instead been 99.9% $(P_{miss} = 0.001)$, the result is quite different: AMAT is 10.1 microseconds, or roughly 100 times faster. As the hit rate approaches 100%, AMAT approaches 100 nanoseconds.

Unfortunately, as you can see in this example, the cost of disk access is so high in modern systems that even a tiny miss rate will quickly dominate the overall AMAT of running programs. Clearly, we need to avoid as many misses as possible or run slowly, at the rate of the disk. One way to help with this is to carefully develop a smart policy, as we now do.

22.2 The Optimal Replacement Policy

To better understand how a particular replacement policy works, it would be nice to compare it to the best possible replacement policy. As it turns out, such an **optimal** policy was developed by Belady many years ago [B66] (he originally called it MIN). The optimal replacement policy leads to the fewest number of misses overall. Belady showed that a simple (but, unfortunately, difficult to implement!) approach that replaces the page that will be accessed *furthest in the future* is the optimal policy, resulting in the fewest-possible cache misses.

TIP: COMPARING AGAINST OPTIMAL IS USEFUL

Although optimal is not very practical as a real policy, it is incredibly useful as a comparison point in simulation or other studies. Saying that your fancy new algorithm has a 80% hit rate isn't meaningful in isolation; saying that optimal achieves an 82% hit rate (and thus your new approach is quite close to optimal) makes the result more meaningful and gives it context. Thus, in any study you perform, knowing what the optimal is lets you perform a better comparison, showing how much improvement is still possible, and also when you can *stop* making your policy better, because it is close enough to the ideal [AD03].

Hopefully, the intuition behind the optimal policy makes sense. Think about it like this: if you have to throw out some page, why not throw out the one that is needed the furthest from now? By doing so, you are essentially saying that all the other pages in the cache are more important than the one furthest out. The reason this is true is simple: you will refer to the other pages before you refer to the one furthest out.

Let's trace through a simple example to understand the decisions the optimal policy makes. Assume a program accesses the following stream of virtual pages: 0, 1, 2, 0, 1, 3, 0, 3, 1, 2, 1. Figure 22.1 shows the behavior of optimal, assuming a cache that fits three pages.

In the figure, you can see the following actions. Not surprisingly, the first three accesses are misses, as the cache begins in an empty state; such a miss is sometimes referred to as a **cold-start miss** (or **compulsory miss**). Then we refer again to pages 0 and 1, which both hit in the cache. Finally, we reach another miss (to page 3), but this time the cache is full; a replacement must take place! Which begs the question: which page should we replace? With the optimal policy, we examine the future for each page currently in the cache (0, 1, and 2), and see that 0 is accessed almost immediately, 1 is accessed a little later, and 2 is accessed furthest in the future. Thus the optimal policy has an easy choice: evict page 2, resulting in

Access	Hit/Miss?	Evict	Resulting Cache State
0	Miss		0
1	Miss		0, 1
2	Miss		0, 1, 2
0	Hit		0, 1, 2
1	Hit		0, 1, 2
3	Miss	2	0, 1, 3
0	Hit		0, 1, 3
3	Hit		0, 1, 3
1	Hit		0, 1, 3
2	Miss	3	0, 1, 2
1	Hit		0, 1, 2

Figure 22.1: Tracing The Optimal Policy

ASIDE: TYPES OF CACHE MISSES

In the computer architecture world, architects sometimes find it useful to characterize misses by type, into one of three categories: compulsory, capacity, and conflict misses, sometimes called the **Three C's** [H87]. A **compulsory miss** (or **cold-start miss** [EF78]) occurs because the cache is empty to begin with and this is the first reference to the item; in contrast, a **capacity miss** occurs because the cache ran out of space and had to evict an item to bring a new item into the cache. The third type of miss (a **conflict miss**) arises in hardware because of limits on where an item can be placed in a hardware cache, due to something known as **set-associativity**; it does not arise in the OS page cache because such caches are always **fully-associative**, i.e., there are no restrictions on where in memory a page can be placed. See H&P for details [HP06].

pages 0, 1, and 3 in the cache. The next three references are hits, but then we get to page 2, which we evicted long ago, and suffer another miss. Here the optimal policy again examines the future for each page in the cache (0, 1, and 3), and sees that as long as it doesn't evict page 1 (which is about to be accessed), we'll be OK. The example shows page 3 getting evicted, although 0 would have been a fine choice too. Finally, we hit on page 1 and the trace completes.

We can also calculate the hit rate for the cache: with 6 hits and 5 misses, the hit rate is $\frac{Hits}{Hits+Misses}$ which is $\frac{6}{6+5}$ or 54.5%. You can also compute the hit rate *modulo* compulsory misses (i.e., ignore the *first* miss to a given page), resulting in a 85.7% hit rate.

Unfortunately, as we saw before in the development of scheduling policies, the future is not generally known; you can't build the optimal policy for a general-purpose operating system¹. Thus, in developing a real, deployable policy, we will focus on approaches that find some other way to decide which page to evict. The optimal policy will thus serve only as a comparison point, to know how close we are to "perfect".

22.3 A Simple Policy: FIFO

Many early systems avoided the complexity of trying to approach optimal and employed very simple replacement policies. For example, some systems used **FIFO** (first-in, first-out) replacement, where pages were simply placed in a queue when they enter the system; when a replacement occurs, the page on the tail of the queue (the "first-in" page) is evicted. FIFO has one great strength: it is quite simple to implement.

Let's examine how FIFO does on our example reference stream (Figure 22.2, page 261). We again begin our trace with three compulsory misses to

 $^{^{1}}$ If you can, let us know! We can become rich together. Or, like the scientists who "discovered" cold fusion, widely scorned and mocked [FP89].

			Resulting	
Access	Hit/Miss?	Evict	Cache State	
0	Miss		First-in \rightarrow	0
1	Miss		First-in \rightarrow	0, 1
2	Miss		First-in \rightarrow	0, 1, 2
0	Hit		First-in \rightarrow	0, 1, 2
1	Hit		First-in \rightarrow	0, 1, 2
3	Miss	0	First-in \rightarrow	1, 2, 3
0	Miss	1	First-in \rightarrow	2, 3, 0
3	Hit		First-in \rightarrow	2, 3, 0
1	Miss	2	First-in \rightarrow	3, 0, 1
2	Miss	3	First-in \rightarrow	0, 1, 2
1	Hit		First-in \rightarrow	0, 1, 2

Figure 22.2: Tracing The FIFO Policy

pages 0, 1, and 2, and then hit on both 0 and 1. Next, page 3 is referenced, causing a miss; the replacement decision is easy with FIFO: pick the page that was the "first one" in (the cache state in the figure is kept in FIFO order, with the first-in page on the left), which is page 0. Unfortunately, our next access is to page 0, causing another miss and replacement (of page 1). We then hit on page 3, but miss on 1 and 2, and finally hit on 3.

Comparing FIFO to optimal, FIFO does notably worse: a 36.4% hit rate (or 57.1% excluding compulsory misses). FIFO simply can't determine the importance of blocks: even though page 0 had been accessed a number of times, FIFO still kicks it out, simply because it was the first one brought into memory.

ASIDE: BELADY'S ANOMALY

Belady (of the optimal policy) and colleagues found an interesting reference stream that behaved a little unexpectedly [BNS69]. The memory-reference stream: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5. The replacement policy they were studying was FIFO. The interesting part: how the cache hit rate changed when moving from a cache size of 3 to 4 pages.

In general, you would expect the cache hit rate to *increase* (get better) when the cache gets larger. But in this case, with FIFO, it gets worse! Calculate the hits and misses yourself and see. This odd behavior is generally referred to as **Belady's Anomaly** (to the chagrin of his co-authors).

Some other policies, such as LRU, don't suffer from this problem. Can you guess why? As it turns out, LRU has what is known as a **stack property** [M+70]. For algorithms with this property, a cache of size N+1 naturally includes the contents of a cache of size N. Thus, when increasing the cache size, hit rate will either stay the same or improve. FIFO and Random (among others) clearly do not obey the stack property, and thus are susceptible to anomalous behavior.

Access	Hit/Miss?	Evict	Resulting Cache State
0	Miss		0
1	Miss		0, 1
2	Miss		0, 1, 2
0	Hit		0, 1, 2
1	Hit		0, 1, 2
3	Miss	0	1, 2, 3
0	Miss	1	2, 3, 0
3	Hit		2, 3, 0
1	Miss	3	2, 0, 1
2	Hit		2, 0, 1
1	Hit		2, 0, 1

Figure 22.3: Tracing The Random Policy

22.4 Another Simple Policy: Random

Another similar replacement policy is Random, which simply picks a random page to replace under memory pressure. Random has properties similar to FIFO; it is simple to implement, but it doesn't really try to be too intelligent in picking which blocks to evict. Let's look at how Random does on our famous example reference stream (see Figure 22.3).

Of course, how Random does depends entirely upon how lucky (or unlucky) Random gets in its choices. In the example above, Random does a little better than FIFO, and a little worse than optimal. In fact, we can run the Random experiment thousands of times and determine how it does in general. Figure 22.4 shows how many hits Random achieves over 10,000 trials, each with a different random seed. As you can see, sometimes (just over 40% of the time), Random is as good as optimal, achieving 6 hits on the example trace; sometimes it does much worse, achieving 2 hits or fewer. How Random does depends on the luck of the draw.

Figure 22.4: Random Performance Over 10,000 Trials

			Resulting		
Access	Hit/Miss?	Evict	Cache State		
0	Miss		$LRU \rightarrow$	0	
1	Miss		$LRU \rightarrow$	0, 1	
2	Miss		$LRU \rightarrow$	0, 1, 2	
0	Hit		$LRU \rightarrow$	1, 2, 0	
1	Hit		$LRU{\rightarrow}$	2, 0, 1	
3	Miss	2	$LRU{\rightarrow}$	0, 1, 3	
0	Hit		$LRU \rightarrow$	1, 3, 0	
3	Hit		$LRU \rightarrow$	1, 0, 3	
1	Hit		$LRU{\rightarrow}$	0, 3, 1	
2	Miss	0	$LRU{\rightarrow}$	3, 1, 2	
1	Hit		$LRU \rightarrow$	3, 2, 1	

Figure 22.5: Tracing The LRU Policy

22.5 Using History: LRU

Unfortunately, any policy as simple as FIFO or Random is likely to have a common problem: it might kick out an important page, one that is about to be referenced again. FIFO kicks out the page that was first brought in; if this happens to be a page with important code or data structures upon it, it gets thrown out anyhow, even though it will soon be paged back in. Thus, FIFO, Random, and similar policies are not likely to approach optimal; something smarter is needed.

As we did with scheduling policy, to improve our guess at the future, we once again lean on the past and use *history* as our guide. For example, if a program has accessed a page in the near past, it is likely to access it again in the near future.

One type of historical information a page-replacement policy could use is **frequency**; if a page has been accessed many times, perhaps it should not be replaced as it clearly has some value. A more commonly-used property of a page is its **recency** of access; the more recently a page has been accessed, perhaps the more likely it will be accessed again.

This family of policies is based on what people refer to as the **principle of locality** [D70], which basically is just an observation about programs and their behavior. What this principle says, quite simply, is that programs tend to access certain code sequences (e.g., in a loop) and data structures (e.g., an array accessed by the loop) quite frequently; we should thus try to use history to figure out which pages are important, and keep those pages in memory when it comes to eviction time.

And thus, a family of simple historically-based algorithms are born. The **Least-Frequently-Used** (**LFU**) policy replaces the least-frequently-used page when an eviction must take place. Similarly, the **Least-Recently-Used** (**LRU**) policy replaces the least-recently-used page. These algorithms are easy to remember: once you know the name, you know exactly what it does, which is an excellent property for a name.

To better understand LRU, let's examine how LRU does on our ex-

ASIDE: TYPES OF LOCALITY

There are two types of locality that programs tend to exhibit. The first is known as **spatial locality**, which states that if a page P is accessed, it is likely the pages around it (say P-1 or P+1) will also likely be accessed. The second is **temporal locality**, which states that pages that have been accessed in the near past are likely to be accessed again in the near future. The assumption of the presence of these types of locality plays a large role in the caching hierarchies of hardware systems, which deploy many levels of instruction, data, and address-translation caching to help programs run fast when such locality exists.

Of course, the **principle of locality**, as it is often called, is no hard-and-fast rule that all programs must obey. Indeed, some programs access memory (or disk) in rather random fashion and don't exhibit much or any locality in their access streams. Thus, while locality is a good thing to keep in mind while designing caches of any kind (hardware or software), it does not *guarantee* success. Rather, it is a heuristic that often proves useful in the design of computer systems.

ample reference stream. Figure 22.5 (page 263) shows the results. From the figure, you can see how LRU can use history to do better than stateless policies such as Random or FIFO. In the example, LRU evicts page 2 when it first has to replace a page, because 0 and 1 have been accessed more recently. It then replaces page 0 because 1 and 3 have been accessed more recently. In both cases, LRU's decision, based on history, turns out to be correct, and the next references are thus hits. Thus, in our example, LRU does as well as possible, matching optimal in its performance².

We should also note that the opposites of these algorithms exist: Most-Frequently-Used (MFU) and Most-Recently-Used (MRU). In most cases (not all!), these policies do not work well, as they ignore the locality most programs exhibit instead of embracing it.

22.6 Workload Examples

Let's look at a few more examples in order to better understand how some of these policies behave. Here, we'll examine more complex **work-loads** instead of small traces. However, even these workloads are greatly simplified; a better study would include application traces.

Our first workload has no locality, which means that each reference is to a random page within the set of accessed pages. In this simple example, the workload accesses 100 unique pages over time, choosing the next page to refer to at random; overall, 10,000 pages are accessed. In the experiment, we vary the cache size from very small (1 page) to enough to hold all the unique pages (100 page), in order to see how each policy behaves over the range of cache sizes.

²OK, we cooked the results. But sometimes cooking is necessary to prove a point.

Figure 22.6: The No-Locality Workload

Figure 22.6 plots the results of the experiment for optimal, LRU, Random, and FIFO. The y-axis of the figure shows the hit rate that each policy achieves; the x-axis varies the cache size as described above.

We can draw a number of conclusions from the graph. First, when there is no locality in the workload, it doesn't matter much which realistic policy you are using; LRU, FIFO, and Random all perform the same, with the hit rate exactly determined by the size of the cache. Second, when the cache is large enough to fit the entire workload, it also doesn't matter which policy you use; all policies (even Random) converge to a 100% hit rate when all the referenced blocks fit in cache. Finally, you can see that optimal performs noticeably better than the realistic policies; peeking into the future, if it were possible, does a much better job of replacement.

The next workload we examine is called the "80-20" workload, which exhibits locality: 80% of the references are made to 20% of the pages (the "hot" pages); the remaining 20% of the references are made to the remaining 80% of the pages (the "cold" pages). In our workload, there are a total 100 unique pages again; thus, "hot" pages are referred to most of the time, and "cold" pages the remainder. Figure 22.7 (page 266) shows how the policies perform with this workload.

As you can see from the figure, while both random and FIFO do reasonably well, LRU does better, as it is more likely to hold onto the hot pages; as those pages have been referred to frequently in the past, they are likely to be referred to again in the near future. Optimal once again does better, showing that LRU's historical information is not perfect.

Figure 22.7: The 80-20 Workload

You might now be wondering: is LRU's improvement over Random and FIFO really that big of a deal? The answer, as usual, is "it depends." If each miss is very costly (not uncommon), then even a small increase in hit rate (reduction in miss rate) can make a huge difference on performance. If misses are not so costly, then of course the benefits possible with LRU are not nearly as important.

Let's look at one final workload. We call this one the "looping sequential" workload, as in it, we refer to 50 pages in sequence, starting at 0, then 1, ..., up to page 49, and then we loop, repeating those accesses, for a total of 10,000 accesses to 50 unique pages. The last graph in Figure 22.8 shows the behavior of the policies under this workload.

This workload, common in many applications (including important commercial applications such as databases [CD85]), represents a worst-case for both LRU and FIFO. These algorithms, under a looping-sequential workload, kick out older pages; unfortunately, due to the looping nature of the workload, these older pages are going to be accessed sooner than the pages that the policies prefer to keep in cache. Indeed, even with a cache of size 49, a looping-sequential workload of 50 pages results in a 0% hit rate. Interestingly, Random fares notably better, not quite approaching optimal, but at least achieving a non-zero hit rate. Turns out that random has some nice properties; one such property is not having weird corner-case behaviors.

Figure 22.8: The Looping Workload

22.7 Implementing Historical Algorithms

As you can see, an algorithm such as LRU can generally do a better job than simpler policies like FIFO or Random, which may throw out important pages. Unfortunately, historical policies present us with a new challenge: how do we implement them?

Let's take, for example, LRU. To implement it perfectly, we need to do a lot of work. Specifically, upon each *page access* (i.e., each memory access, whether an instruction fetch or a load or store), we must update some data structure to move this page to the front of the list (i.e., the MRU side). Contrast this to FIFO, where the FIFO list of pages is only accessed when a page is *evicted* (by removing the first-in page) or when a new page is added to the list (to the last-in side). To keep track of which pages have been least- and most-recently used, the system has to do some accounting work *on every memory reference*. Clearly, without great care, such accounting could greatly reduce performance.

One method that could help speed this up is to add a little bit of hardware support. For example, a machine could update, on each page access, a time field in memory (for example, this could be in the per-process page table, or just in some separate array in memory, with one entry per physical page of the system). Thus, when a page is accessed, the time field would be set, by hardware, to the current time. Then, when replacing a page, the OS could simply scan all the time fields in the system to find the least-recently-used page.

Unfortunately, as the number of pages in a system grows, scanning a huge array of times just to find the absolute least-recently-used page is prohibitively expensive. Imagine a modern machine with 4GB of memory, chopped into 4KB pages. This machine has 1 million pages, and thus finding the LRU page will take a long time, even at modern CPU speeds. Which begs the question: do we really need to find the absolute oldest page to replace? Can we instead survive with an approximation?

CRUX: HOW TO IMPLEMENT AN LRU REPLACEMENT POLICY Given that it will be expensive to implement perfect LRU, can we approximate it in some way, and still obtain the desired behavior?

22.8 Approximating LRU

As it turns out, the answer is yes: approximating LRU is more feasible from a computational-overhead standpoint, and indeed it is what many modern systems do. The idea requires some hardware support, in the form of a **use bit** (sometimes called the **reference bit**), the first of which was implemented in the first system with paging, the Atlas one-level store [KE+62]. There is one use bit per page of the system, and the use bits live in memory somewhere (they could be in the per-process page tables, for example, or just in an array somewhere). Whenever a page is referenced (i.e., read or written), the use bit is set by hardware to 1. The hardware never clears the bit, though (i.e., sets it to 0); that is the responsibility of the OS.

How does the OS employ the use bit to approximate LRU? Well, there could be a lot of ways, but with the **clock algorithm** [C69], one simple approach was suggested. Imagine all the pages of the system arranged in a circular list. A **clock hand** points to some particular page to begin with (it doesn't really matter which). When a replacement must occur, the OS checks if the currently-pointed to page P has a use bit of 1 or 0. If 1, this implies that page P was recently used and thus is *not* a good candidate for replacement. Thus, the use bit for P set to 0 (cleared), and the clock hand is incremented to the next page (P+1). The algorithm continues until it finds a use bit that is set to 0, implying this page has not been recently used (or, in the worst case, that all pages have been and that we have now searched through the entire set of pages, clearing all the bits).

Note that this approach is not the only way to employ a use bit to approximate LRU. Indeed, any approach which periodically clears the use bits and then differentiates between which pages have use bits of 1 versus 0 to decide which to replace would be fine. The clock algorithm of Corbato's was just one early approach which met with some success, and had the nice property of not repeatedly scanning through all of memory looking for an unused page.

Figure 22.9: The 80-20 Workload With Clock

The behavior of a clock algorithm variant is shown in Figure 22.9. This variant randomly scans pages when doing a replacement; when it encounters a page with a reference bit set to 1, it clears the bit (i.e., sets it to 0); when it finds a page with the reference bit set to 0, it chooses it as its victim. As you can see, although it doesn't do quite as well as perfect LRU, it does better than approaches that don't consider history at all.

22.9 Considering Dirty Pages

One small modification to the clock algorithm (also originally suggested by Corbato [C69]) that is commonly made is the additional consideration of whether a page has been modified or not while in memory. The reason for this: if a page has been **modified** and is thus **dirty**, it must be written back to disk to evict it, which is expensive. If it has not been modified (and is thus **clean**), the eviction is free; the physical frame can simply be reused for other purposes without additional I/O. Thus, some VM systems prefer to evict clean pages over dirty pages.

To support this behavior, the hardware should include a **modified bit** (a.k.a. **dirty bit**). This bit is set any time a page is written, and thus can be incorporated into the page-replacement algorithm. The clock algorithm, for example, could be changed to scan for pages that are both unused and clean to evict first; failing to find those, then for unused pages that are dirty, and so forth.

22.10 Other VM Policies

Page replacement is not the only policy the VM subsystem employs (though it may be the most important). For example, the OS also has to decide *when* to bring a page into memory. This policy, sometimes called the **page selection** policy (as it was called by Denning [D70]), presents the OS with some different options.

For most pages, the OS simply uses **demand paging**, which means the OS brings the page into memory when it is accessed, "on demand" as it were. Of course, the OS could guess that a page is about to be used, and thus bring it in ahead of time; this behavior is known as **prefetching** and should only be done when there is reasonable chance of success. For example, some systems will assume that if a code page P is brought into memory, that code page P+1 will likely soon be accessed and thus should be brought into memory too.

Another policy determines how the OS writes pages out to disk. Of course, they could simply be written out one at a time; however, many systems instead collect a number of pending writes together in memory and write them to disk in one (more efficient) write. This behavior is usually called **clustering** or simply **grouping** of writes, and is effective because of the nature of disk drives, which perform a single large write more efficiently than many small ones.

22.11 Thrashing

Before closing, we address one final question: what should the OS do when memory is simply oversubscribed, and the memory demands of the set of running processes simply exceeds the available physical memory? In this case, the system will constantly be paging, a condition sometimes referred to as **thrashing** [D70].

Some earlier operating systems had a fairly sophisticated set of mechanisms to both detect and cope with thrashing when it took place. For example, given a set of processes, a system could decide not to run a subset of processes, with the hope that the reduced set of processes' working sets (the pages that they are using actively) fit in memory and thus can make progress. This approach, generally known as admission control, states that it is sometimes better to do less work well than to try to do everything at once poorly, a situation we often encounter in real life as well as in modern computer systems (sadly).

Some current systems take more a draconian approach to memory overload. For example, some versions of Linux run an **out-of-memory killer** when memory is oversubscribed; this daemon chooses a memory-intensive process and kills it, thus reducing memory in a none-too-subtle manner. While successful at reducing memory pressure, this approach can have problems, if, for example, it kills the X server and thus renders any applications requiring the display unusable.

22.12 Summary

We have seen the introduction of a number of page-replacement (and other) policies, which are part of the VM subsystem of all modern operating systems. Modern systems add some tweaks to straightforward LRU approximations like clock; for example, **scan resistance** is an important part of many modern algorithms, such as ARC [MM03]. Scan-resistant algorithms are usually LRU-like but also try to avoid the worst-case behavior of LRU, which we saw with the looping-sequential workload. Thus, the evolution of page-replacement algorithms continues.

However, in many cases the importance of said algorithms has decreased, as the discrepancy between memory-access and disk-access times has increased. Because paging to disk is so expensive, the cost of frequent paging is prohibitive. Thus, the best solution to excessive paging is often a simple (if intellectually unsatisfying) one: buy more memory.

Common Concurrency Problems

Researchers have spent a great deal of time and effort looking into concurrency bugs over many years. Much of the early work focused on **deadlock**, a topic which we've touched on in the past chapters but will now dive into deeply [C+71]. More recent work focuses on studying other types of common concurrency bugs (i.e., non-deadlock bugs). In this chapter, we take a brief look at some example concurrency problems found in real code bases, to better understand what problems to look out for. And thus our central issue for this chapter:

CRUX: HOW TO HANDLE COMMON CONCURRENCY BUGS Concurrency bugs tend to come in a variety of common patterns. Knowing which ones to look out for is the first step to writing more robust, correct concurrent code.

32.1 What Types Of Bugs Exist?

The first, and most obvious, question is this: what types of concurrency bugs manifest in complex, concurrent programs? This question is difficult to answer in general, but fortunately, some others have done the work for us. Specifically, we rely upon a study by Lu et al. [L+08], which analyzes a number of popular concurrent applications in great detail to understand what types of bugs arise in practice.

The study focuses on four major and important open-source applications: MySQL (a popular database management system), Apache (a well-known web server), Mozilla (the famous web browser), and OpenOffice (a free version of the MS Office suite, which some people actually use). In the study, the authors examine concurrency bugs that have been found and fixed in each of these code bases, turning the developers' work into a quantitative bug analysis; understanding these results can help you understand what types of problems actually occur in mature code bases.

Figure 32.1 shows a summary of the bugs Lu and colleagues studied. From the figure, you can see that there were 105 total bugs, most of which

Application	What it does	Non-Deadlock	Deadlock
MySQL	Database Server	14	9
Apache	Web Server	13	4
Mozilla	Web Browser	41	16
OpenOffice	Office Suite	6	2
Total		74	31

Figure 32.1: **Bugs In Modern Applications**

were not deadlock (74); the remaining 31 were deadlock bugs. Further, you can see the number of bugs studied from each application; while OpenOffice only had 8 total concurrency bugs, Mozilla had nearly 60.

We now dive into these different classes of bugs (non-deadlock, deadlock) a bit more deeply. For the first class of non-deadlock bugs, we use examples from the study to drive our discussion. For the second class of deadlock bugs, we discuss the long line of work that has been done in either preventing, avoiding, or handling deadlock.

32.2 Non-Deadlock Bugs

Non-deadlock bugs make up a majority of concurrency bugs, according to Lu's study. But what types of bugs are these? How do they arise? How can we fix them? We now discuss the two major types of non-deadlock bugs found by Lu et al.: **atomicity violation** bugs and **order violation** bugs.

Atomicity-Violation Bugs

The first type of problem encountered is referred to as an **atomicity violation**. Here is a simple example, found in MySQL. Before reading the explanation, try figuring out what the bug is. Do it!

```
1 Thread 1::
2  if (thd->proc_info) {
3    fputs(thd->proc_info, ...);
4  }
5
6 Thread 2::
7 thd->proc_info = NULL;
```

Figure 32.2: Atomicity Violation (atomicity.c)

In the example, two different threads access the field <code>proc.info</code> in the structure <code>thd</code>. The first thread checks if the value is non-NULL and then prints its value; the second thread sets it to NULL. Clearly, if the first thread performs the check but then is interrupted before the call to <code>fputs</code>, the second thread could run in-between, thus setting the pointer to NULL; when the first thread resumes, it will crash, as a NULL pointer will be dereferenced by <code>fputs</code>.

The more formal definition of an atomicity violation, according to Lu et al, is this: "The desired serializability among multiple memory accesses is violated (i.e. a code region is intended to be atomic, but the atomicity is not enforced during execution)." In our example above, the code has an *atomicity assumption* (in Lu's words) about the check for non-NULL of proc_info and the usage of proc_info in the fputs () call; when the assumption is incorrect, the code will not work as desired.

Finding a fix for this type of problem is often (but not always) straightforward. Can you think of how to fix the code above?

In this solution (Figure 32.3), we simply add locks around the shared-variable references, ensuring that when either thread accesses the proclinfo field, it has a lock held (proclinfolock). Of course, any other code that accesses the structure should also acquire this lock before doing so.

```
pthread_mutex_t proc_info_lock = PTHREAD_MUTEX_INITIALIZER;
2
3
   Thread 1::
   pthread_mutex_lock(&proc_info_lock);
   if (thd->proc_info) {
5
     fputs(thd->proc_info, ...);
6
   pthread_mutex_unlock(&proc_info_lock);
8
   Thread 2::
10
   pthread_mutex_lock(&proc_info_lock);
11
   thd->proc_info = NULL;
12
   pthread_mutex_unlock(&proc_info_lock);
13
```

Figure 32.3: Atomicity Violation Fixed (atomicity_fixed.c)

Order-Violation Bugs

Another common type of non-deadlock bug found by Lu et al. is known as an **order violation**. Here is another simple example; once again, see if you can figure out why the code below has a bug in it.

```
1 Thread 1::
2 void init() {
3    mThread = PR_CreateThread(mMain, ...);
4 }
5
6 Thread 2::
7 void mMain(...) {
8    mState = mThread->State;
9 }
```

Figure 32.4: Ordering Bug (ordering.c)

As you probably figured out, the code in Thread 2 seems to assume that the variable mThread has already been initialized (and is not NULL);

```
pthread_mutex_t mtLock = PTHREAD_MUTEX_INITIALIZER;
   pthread_cond_t mtCond = PTHREAD_COND_INITIALIZER;
   int mtInit
                            = 0;
   Thread 1::
   void init() {
      mThread = PR_CreateThread(mMain, ...);
      // signal that the thread has been created...
10
      pthread_mutex_lock(&mtLock);
11
      mtInit = 1;
12
      pthread_cond_signal(&mtCond);
13
      pthread_mutex_unlock(&mtLock);
14
15
   }
16
17
   Thread 2::
18
   void mMain(...) {
19
20
       // wait for the thread to be initialized...
21
       pthread_mutex_lock(&mtLock);
22
       while (mtInit == 0)
            pthread_cond_wait(&mtCond, &mtLock);
24
       pthread mutex unlock (&mtLock);
25
       mState = mThread->State;
27
28
   }
29
```

Figure 32.5: Fixing The Ordering Violation (ordering_fixed.c)

however, if Thread 2 runs immediately once created, the value of mThread will not be set when it is accessed within mMain() in Thread 2, and will likely crash with a NULL-pointer dereference. Note that we assume the value of mThread is initially NULL; if not, even stranger things could happen as arbitrary memory locations are accessed through the dereference in Thread 2.

The more formal definition of an order violation is the following: "The desired order between two (groups of) memory accesses is flipped (i.e., A should always be executed before B, but the order is not enforced during execution)" [L+08].

The fix to this type of bug is generally to enforce ordering. As discussed previously, using **condition variables** is an easy and robust way to add this style of synchronization into modern code bases. In the example above, we could thus rewrite the code as seen in Figure 32.5.

In this fixed-up code sequence, we have added a condition variable (mtCond) and corresponding lock (mtLock), as well as a state variable

(mtInit). When the initialization code runs, it sets the state of mtInit to 1 and signals that it has done so. If Thread 2 had run before this point, it will be waiting for this signal and corresponding state change; if it runs later, it will check the state and see that the initialization has already occurred (i.e., mtInit is set to 1), and thus continue as is proper. Note that we could likely use mThread as the state variable itself, but do not do so for the sake of simplicity here. When ordering matters between threads, condition variables (or semaphores) can come to the rescue.

Non-Deadlock Bugs: Summary

A large fraction (97%) of non-deadlock bugs studied by Lu et al. are either atomicity or order violations. Thus, by carefully thinking about these types of bug patterns, programmers can likely do a better job of avoiding them. Moreover, as more automated code-checking tools develop, they should likely focus on these two types of bugs as they constitute such a large fraction of non-deadlock bugs found in deployment.

Unfortunately, not all bugs are as easily fixed as the examples we looked at above. Some require a deeper understanding of what the program is doing, or a larger amount of code or data structure reorganization to fix. Read Lu et al.'s excellent (and readable) paper for more details.

32.3 Deadlock Bugs

Beyond the concurrency bugs mentioned above, a classic problem that arises in many concurrent systems with complex locking protocols is known as **deadlock**. Deadlock occurs, for example, when a thread (say Thread 1) is holding a lock (L1) and waiting for another one (L2); unfortunately, the thread (Thread 2) that holds lock L2 is waiting for L1 to be released. Here is a code snippet that demonstrates such a potential deadlock:

```
Thread 1: Thread 2:
pthread_mutex_lock(L1); pthread_mutex_lock(L2);
pthread_mutex_lock(L2); pthread_mutex_lock(L1);
```

Figure 32.6: Simple Deadlock (deadlock.c)

Note that if this code runs, deadlock does not necessarily occur; rather, it may occur, if, for example, Thread 1 grabs lock L1 and then a context switch occurs to Thread 2. At that point, Thread 2 grabs L2, and tries to acquire L1. Thus we have a deadlock, as each thread is waiting for the other and neither can run. See Figure 32.7 for a graphical depiction; the presence of a **cycle** in the graph is indicative of the deadlock.

The figure should make the problem clear. How should programmers write code so as to handle deadlock in some way?

Figure 32.7: The Deadlock Dependency Graph

CRUX: HOW TO DEAL WITH DEADLOCK

How should we build systems to prevent, avoid, or at least detect and recover from deadlock? Is this a real problem in systems today?

Why Do Deadlocks Occur?

As you may be thinking, simple deadlocks such as the one above seem readily avoidable. For example, if Thread 1 and 2 both made sure to grab locks in the same order, the deadlock would never arise. So why do deadlocks happen?

One reason is that in large code bases, complex dependencies arise between components. Take the operating system, for example. The virtual memory system might need to access the file system in order to page in a block from disk; the file system might subsequently require a page of memory to read the block into and thus contact the virtual memory system. Thus, the design of locking strategies in large systems must be carefully done to avoid deadlock in the case of circular dependencies that may occur naturally in the code.

Another reason is due to the nature of **encapsulation**. As software developers, we are taught to hide details of implementations and thus make software easier to build in a modular way. Unfortunately, such modularity does not mesh well with locking. As Jula et al. point out [J+08], some seemingly innocuous interfaces almost invite you to deadlock. For example, take the Java Vector class and the method <code>AddAll()</code>. This routine would be called as follows:

```
Vector v1, v2;
v1.AddAll(v2);
```

Internally, because the method needs to be multi-thread safe, locks for both the vector being added to (v1) and the parameter (v2) need to be acquired. The routine acquires said locks in some arbitrary order (say v1 then v2) in order to add the contents of v2 to v1. If some other thread calls v2. AddAll(v1) at nearly the same time, we have the potential for deadlock, all in a way that is quite hidden from the calling application.

Conditions for Deadlock

Four conditions need to hold for a deadlock to occur [C+71]:

- Mutual exclusion: Threads claim exclusive control of resources that they require (e.g., a thread grabs a lock).
- Hold-and-wait: Threads hold resources allocated to them (e.g., locks that they have already acquired) while waiting for additional resources (e.g., locks that they wish to acquire).
- No preemption: Resources (e.g., locks) cannot be forcibly removed from threads that are holding them.
- Circular wait: There exists a circular chain of threads such that each thread holds one or more resources (e.g., locks) that are being requested by the next thread in the chain.

If any of these four conditions are not met, deadlock cannot occur. Thus, we first explore techniques to *prevent* deadlock; each of these strategies seeks to prevent one of the above conditions from arising and thus is one approach to handling the deadlock problem.

Prevention

Circular Wait

Probably the most practical prevention technique (and certainly one that is frequently employed) is to write your locking code such that you never induce a circular wait. The most straightforward way to do that is to provide a **total ordering** on lock acquisition. For example, if there are only two locks in the system (L1 and L2), you can prevent deadlock by always acquiring L1 before L2. Such strict ordering ensures that no cyclical wait arises; hence, no deadlock.

Of course, in more complex systems, more than two locks will exist, and thus total lock ordering may be difficult to achieve (and perhaps is unnecessary anyhow). Thus, a **partial ordering** can be a useful way to structure lock acquisition so as to avoid deadlock. An excellent real example of partial lock ordering can be seen in the memory mapping code in Linux [T+94] (v5.2); the comment at the top of the source code reveals ten different groups of lock acquisition orders, including simple

TIP: ENFORCE LOCK ORDERING BY LOCK ADDRESS

In some cases, a function must grab two (or more) locks; thus, we know we must be careful or deadlock could arise. Imagine a function that is called as follows: do_something(mutex_t *m1, mutex_t *m2). If the code always grabs m1 before m2 (or always m2 before m1), it could deadlock, because one thread could call do_something(L1, L2) while another thread could call do_something(L2, L1).

To avoid this particular issue, the clever programmer can use the *address* of each lock as a way of ordering lock acquisition. By acquiring locks in either high-to-low or low-to-high address order, do_something() can guarantee that it always acquires locks in the same order, regardless of which order they are passed in. The code would look something like this:

```
if (m1 > m2) { // grab in high-to-low address order
  pthread_mutex_lock(m1);
  pthread_mutex_lock(m2);
} else {
  pthread_mutex_lock(m2);
  pthread_mutex_lock(m1);
}
// Code assumes that m1 != m2 (not the same lock)
```

By using this simple technique, a programmer can ensure a simple and efficient deadlock-free implementation of multi-lock acquisition.

ones such as "i_mutex before i_mmap_rwsem" and more complex orders such as "i_mmap_rwsem before private_lock before swap_lock before i_pages_lock".

As you can imagine, both total and partial ordering require careful design of locking strategies and must be constructed with great care. Further, ordering is just a convention, and a sloppy programmer can easily ignore the locking protocol and potentially cause deadlock. Finally, lock ordering requires a deep understanding of the code base, and how various routines are called; just one mistake could result in the "D" word.

Hold-and-wait

The hold-and-wait requirement for deadlock can be avoided by acquiring all locks at once, atomically. In practice, this could be achieved as follows:

```
pthread_mutex_lock(prevention); // begin acquisition
pthread_mutex_lock(L1);
pthread_mutex_lock(L2);

pthread_mutex_unlock(prevention); // end
```

¹Hint: "D" stands for "Deadlock".

By first grabbing the lock prevention, this code guarantees that no untimely thread switch can occur in the midst of lock acquisition and thus deadlock can once again be avoided. Of course, it requires that any time any thread grabs a lock, it first acquires the global prevention lock. For example, if another thread was trying to grab locks L1 and L2 in a different order, it would be OK, because it would be holding the prevention lock while doing so.

Note that the solution is problematic for a number of reasons. As before, encapsulation works against us: when calling a routine, this approach requires us to know exactly which locks must be held and to acquire them ahead of time. This technique also is likely to decrease concurrency as all locks must be acquired early on (at once) instead of when they are truly needed.

No Preemption

Because we generally view locks as held until unlock is called, multiple lock acquisition often gets us into trouble because when waiting for one lock we are holding another. Many thread libraries provide a more flexible set of interfaces to help avoid this situation. Specifically, the routine pthread_mutex_trylock() either grabs the lock (if it is available) and returns success or returns an error code indicating the lock is held; in the latter case, you can try again later if you want to grab that lock.

Such an interface could be used as follows to build a deadlock-free, ordering-robust lock acquisition protocol:

```
top:
top:
pthread_mutex_lock(L1);
if (pthread_mutex_trylock(L2) != 0) {
    pthread_mutex_unlock(L1);
    goto top;
}
```

Note that another thread could follow the same protocol but grab the locks in the other order (L2 then L1) and the program would still be deadlock free. One new problem does arise, however: **livelock**. It is possible (though perhaps unlikely) that two threads could both be repeatedly attempting this sequence and repeatedly failing to acquire both locks. In this case, both systems are running through this code sequence over and over again (and thus it is not a deadlock), but progress is not being made, hence the name livelock. There are solutions to the livelock problem, too: for example, one could add a random delay before looping back and trying the entire thing over again, thus decreasing the odds of repeated interference among competing threads.

One point about this solution: it skirts around the hard parts of using a trylock approach. The first problem that would likely exist again arises due to encapsulation: if one of these locks is buried in some routine that is getting called, the jump back to the beginning becomes more complex to implement. If the code had acquired some resources (other than L1)

along the way, it must make sure to carefully release them as well; for example, if after acquiring L1, the code had allocated some memory, it would have to release that memory upon failure to acquire L2, before jumping back to the top to try the entire sequence again. However, in limited circumstances (e.g., the Java vector method mentioned earlier), this type of approach could work well.

You might also notice that this approach doesn't really *add* preemption (the forcible action of taking a lock away from a thread that owns it), but rather uses the trylock approach to allow a developer to back out of lock ownership (i.e., preempt their own ownership) in a graceful way. However, it is a practical approach, and thus we include it here, despite its imperfection in this regard.

Mutual Exclusion

The final prevention technique would be to avoid the need for mutual exclusion at all. In general, we know this is difficult, because the code we wish to run does indeed have critical sections. So what can we do?

Herlihy had the idea that one could design various data structures without locks at all [H91, H93]. The idea behind these **lock-free** (and related **wait-free**) approaches here is simple: using powerful hardware instructions, you can build data structures in a manner that does not require explicit locking.

As a simple example, let us assume we have a compare-and-swap instruction, which as you may recall is an atomic instruction provided by the hardware that does the following:

```
int CompareAndSwap(int *address, int expected, int new) {
   if (*address == expected) {
     *address = new;
   return 1; // success
}
return 0; // failure
}
```

Imagine we now wanted to atomically increment a value by a certain amount, using compare-and-swap. We could do so with the following simple function:

```
void AtomicIncrement(int *value, int amount) {
   do {
    int old = *value;
   } while (CompareAndSwap(value, old, old + amount) == 0);
}
```

Instead of acquiring a lock, doing the update, and then releasing it, we have instead built an approach that repeatedly tries to update the value to the new amount and uses the compare-and-swap to do so. In this manner,

no lock is acquired, and no deadlock can arise (though livelock is still a possibility, and thus a robust solution will be more complex than the simple code snippet above).

Let us consider a slightly more complex example: list insertion. Here is code that inserts at the head of a list:

```
void insert(int value) {
node_t *n = malloc(sizeof(node_t));
assert(n != NULL);
n->value = value;
n->next = head;
head = n;
}
```

This code performs a simple insertion, but if called by multiple threads at the "same time", has a race condition. Can you figure out why? (draw a picture of what could happen to a list if two concurrent insertions take place, assuming, as always, a malicious scheduling interleaving). Of course, we could solve this by surrounding this code with a lock acquire and release:

```
void insert(int value) {
   node_t *n = malloc(sizeof(node_t));
   assert(n != NULL);
   n->value = value;
   pthread_mutex_lock(listlock); // begin critical section
   n->next = head;
   head = n;
   pthread_mutex_unlock(listlock); // end critical section
}
```

In this solution, we are using locks in the traditional manner². Instead, let us try to perform this insertion in a lock-free manner simply using the compare-and-swap instruction. Here is one possible approach:

```
void insert(int value) {
node_t *n = malloc(sizeof(node_t));
assert(n != NULL);
n->value = value;
do {
n->next = head;
while (CompareAndSwap(&head, n->next, n) == 0);
}
```

²The astute reader might be asking why we grabbed the lock so late, instead of right when entering insert(); can you, astute reader, figure out why that is likely correct? What assumptions does the code make, for example, about the call to malloc()?

The code here updates the next pointer to point to the current head, and then tries to swap the newly-created node into position as the new head of the list. However, this will fail if some other thread successfully swapped in a new head in the meanwhile, causing this thread to retry again with the new head.

Of course, building a useful list requires more than just a list insert, and not surprisingly building a list that you can insert into, delete from, and perform lookups on in a lock-free manner is non-trivial. Read the rich literature on lock-free and wait-free synchronization to learn more [H01, H91, H93].

Deadlock Avoidance via Scheduling

Instead of deadlock prevention, in some scenarios deadlock **avoidance** is preferable. Avoidance requires some global knowledge of which locks various threads might grab during their execution, and subsequently schedules said threads in a way as to guarantee no deadlock can occur.

For example, assume we have two processors and four threads which must be scheduled upon them. Assume further we know that Thread 1 (T1) grabs locks L1 and L2 (in some order, at some point during its execution), T2 grabs L1 and L2 as well, T3 grabs just L2, and T4 grabs no locks at all. We can show these lock acquisition demands of the threads in tabular form:

A smart scheduler could thus compute that as long as T1 and T2 are not run at the same time, no deadlock could ever arise. Here is one such schedule:

CPU 1	Т3	T4
CPU 2	T1	T2

Note that it is OK for (T3 and T1) or (T3 and T2) to overlap. Even though T3 grabs lock L2, it can never cause a deadlock by running concurrently with other threads because it only grabs one lock.

Let's look at one more example. In this one, there is more contention for the same resources (again, locks L1 and L2), as indicated by the following contention table:

	T1	Т2	Т3	Τ4
L1	yes	yes	yes	no
L2	yes	ves	ves	no

TIP: DON'T ALWAYS DO IT PERFECTLY (TOM WEST'S LAW)

Tom West, famous as the subject of the classic computer-industry book *Soul of a New Machine* [K81], says famously: "Not everything worth doing is worth doing well", which is a terrific engineering maxim. If a bad thing happens rarely, certainly one should not spend a great deal of effort to prevent it, particularly if the cost of the bad thing occurring is small. If, on the other hand, you are building a space shuttle, and the cost of something going wrong is the space shuttle blowing up, well, perhaps you should ignore this piece of advice.

Some readers object: "This sounds like you are suggesting mediocrity as a solution!" Perhaps they are right, that we should be careful with advice such as this. However, our experience tells us that in the world of engineering, with pressing deadlines and other real-world concerns, one will always have to decide which aspects of a system to build well and which to put aside for another day. The hard part is knowing which to do when, a bit of insight only gained through experience and dedication to the task at hand.

In particular, threads T1, T2, and T3 all need to grab both locks ${\tt L1}$ and ${\tt L2}$ at some point during their execution. Here is a possible schedule that guarantees that no deadlock could ever occur:

As you can see, static scheduling leads to a conservative approach where T1, T2, and T3 are all run on the same processor, and thus the total time to complete the jobs is lengthened considerably. Though it may have been possible to run these tasks concurrently, the fear of deadlock prevents us from doing so, and the cost is performance.

One famous example of an approach like this is Dijkstra's Banker's Algorithm [D64], and many similar approaches have been described in the literature. Unfortunately, they are only useful in very limited environments, for example, in an embedded system where one has full knowledge of the entire set of tasks that must be run and the locks that they need. Further, such approaches can limit concurrency, as we saw in the second example above. Thus, avoidance of deadlock via scheduling is not a widely-used general-purpose solution.

Detect and Recover

One final general strategy is to allow deadlocks to occasionally occur, and then take some action once such a deadlock has been detected. For exam-

ple, if an OS froze once a year, you would just reboot it and get happily (or grumpily) on with your work. If deadlocks are rare, such a non-solution is indeed quite pragmatic.

Many database systems employ deadlock detection and recovery techniques. A deadlock detector runs periodically, building a resource graph and checking it for cycles. In the event of a cycle (deadlock), the system needs to be restarted. If more intricate repair of data structures is first required, a human being may be involved to ease the process.

More detail on database concurrency, deadlock, and related issues can be found elsewhere [B+87, K87]. Read these works, or better yet, take a course on databases to learn more about this rich and interesting topic.

32.4 Summary

In this chapter, we have studied the types of bugs that occur in concurrent programs. The first type, non-deadlock bugs, are surprisingly common, but often are easier to fix. They include atomicity violations, in which a sequence of instructions that should have been executed together was not, and order violations, in which the needed order between two threads was not enforced.

We have also briefly discussed deadlock: why it occurs, and what can be done about it. The problem is as old as concurrency itself, and many hundreds of papers have been written about the topic. The best solution in practice is to be careful, develop a lock acquisition order, and thus prevent deadlock from occurring in the first place. Wait-free approaches also have promise, as some wait-free data structures are now finding their way into commonly-used libraries and critical systems, including Linux. However, their lack of generality and the complexity to develop a new wait-free data structure will likely limit the overall utility of this approach. Perhaps the best solution is to develop new concurrent programming models: in systems such as MapReduce (from Google) [GD02], programmers can describe certain types of parallel computations without any locks whatsoever. Locks are problematic by their very nature; perhaps we should seek to avoid using them unless we truly must.