Домашняя работа 4 (на 22.04).

Необходимо набрать 5 баллов.

COMB 1. (2 балла) Предъявить нижнюю оценку на количество вершин в k-регулярном графе имеющем обхват g.

[COMB 2.] (1 балл) Доказать, что для всех $k \geq 2$ справедливы неравенства $\chi(C_{2k+1}) > \omega(C_{2k+1})$ и $\chi(\overline{C_{2k+1}}) > \omega(\overline{C_{2k+1}})$.

СОМВ 3. (1,5 балла) Граф L(G) называется реберным графом графа G, если вершинами L(G) являются ребра G и вершины L(G) смежны если соответствующие ребра графа G инцидентны.

Доазать, что для любого двудольнго G граф L(G) является совершенным.

СОМВ 4. (1 балл) Предположим, что верно следующее утверждение: граф G является совершенным тогда и только тогда, когда для любого индуцированного подграфа H графа G выполняется неравенство $V(H) \le \alpha(H)\omega(H)$.

Доказать, что из этого утверждения следует теорема о совершенном графе.

СОМВ 5. (1 балл) Доказать, что любой двудольный граф G[X,Y] является совершенным графом, как с помощью определения совершенного графа, так и с помощью теоремы о совершенных графах.

СОМВ 6. (1,5 балла) Графом сравнимости (comparability graph) называют граф G, связанный с некоторым частично упорядоченным множеством (P, \preceq) . Множество вершин графа G совпадает с множеством P элементов частично упорядоченного множества. Если два элемента $x, y \in P$ ($x \neq y$) сравнимы между собой (то есть $x \prec y$ или $y \prec x$), о соответствующие этим элементам вершины x, y графа G соединены между собой ребром.

Доказать, что граф сравнимости является совершенным графом, как с помощью теоремы Мирского, так и без нее. Показать эквивалентность теоремы Мирского утверждению о том, что граф сравнимости совершенен.