From Basics of Deep Learning to Application in Biology

Jędrzej Jakub Szymański

Part 1: Gradient descent

Machine learning has a lot of great down-to-earth applications

Goal

Container

Basket

Frame/Rack

Tank

Skip

Bin

Other CCU

Other

Truck head

Prediction

Confusion matrix

HPC-Enabled Precision Agriculture

Thermal

HPC-Enabled Precision Agriculture

What does the cow do?

Artificial Neural Networks

Decisions, Decisions, Decisions

- What are input parameters?
- What is the structure of the model?
- What is the required model complexity?
- How are we going to identify model parameters?

A mostly complete chart of

Neural Networks

©2019 Fjodor van Veen & Stefan Leijnen asimovinstitute.org

Deep Feed Forward (DFF)

Noisy Input Cell

Input Cell

- Hidden Cell
- Probablistic Hidden Cell

Backfed Input Cell

- Spiking Hidden Cell
- Capsule Cell
- Output Cell
- Match Input Output Cell
- Recurrent Cell
- Memory Cell
- Gated Memory Cell
- Kernel
- Convolution or Pool

Recurrent Neural Network (RNN)

Radial Basis Network (RBF)

Gated Recurrent Unit (GRU)

Auto Encoder (AE)

Variational AE (VAE)

Denoising AE (DAE)

Sparse AE (SAE)

Markov Chain (MC)

Perceptron

Perceptron

Data Set

Observation #	x_1	X ₂	У
1	4	7	-2.669
2	-4	0	-0.600
3	7	-5	7.230
4	5	7	-2.389
5	2	-1	2.410
6	-2	5	-3.490
7	-5	-1	-0.249
8	-6	2	-2.820
9	-1	1	-0.189
10	-4	-9	5.970

Synthetic Data Set created using:

$$\hat{y} = w_1 x_1 + w_2 x + w_0$$

 $w_1 = 0.38, w_2 = -0.73, w_0 = 0.92$

Linear Regression

How to find parameters?

Gradient Descent

Gradient Descent

Gradient Decent Training

Guess values for w_0 , w_1 w_2 - say all equal to zero

Forward Pass

Backward Pass – Update Weights

Backward Pass – Compute Gradients

Backward Pass – Update Weights

Forward Pass

SGD Training Loop

```
for epoch in range(number_of_epochs):
    for sample in training_data:
        forward_pass(sample)
        compute_gradients_from_loss()
        update_model_parameters()
```

Loss Surface

Batch GD Training Loop

```
for epoch in range(number_of_epochs):
    for sample in training_data:
        forward_pass(sample)
        compute_gradients_from_loss()
        accumulate_average_grads()
        update_model_parameters()
```

Loss Surface

Mini-Batch GD Training Loop

```
for epoch in range(number_of_epochs):
    for batch in n_batches:
        for sample in batch:
            forward_pass(sample)
                 compute_gradients_from_loss()
                      accumulate_average_grads()
                        update_model_parameters()
```

Gradient Descent Variants

- Stochastic Gradient Descent
- Batch Gradient Descent
- Mini-Batch Gradient Descent

Stochastic Gradient Descent (SGD)

- Push one data sample through the network
- Back propagate gradients update weights

Pros:

- Fast computation per pass
- Frequent updates

Cons:

- Noisy gradient signal (jumping around the loss surface) and harder to settle
- Update frequency may end up requiring more computation

Batch Gradient Descent

- Push all data through the network
- Propagate average gradients

Pros:

- Optimal (true) gradient computed
- Stable Error

Cons:

- Slow computation (all data/pass)
- Requires whole dataset in memory

Mini-Batch SGD

- Push a portion of data through the network
- Propagate average gradients

Pros:

- Intermediate Update Frequency
- Higher computational efficiency

Cons:

- Requires an additional parameter to configure
- Error information must be accumulated across minibatches

When do you stop training?

After a set number of iterations (epochs)

 When the Loss for the training dataset falls below a threshold

Normalisation

$$x' = \frac{x - \mu}{\sigma}$$

$$\mu = \frac{\sum_{i=1}^{N} x_i}{N}$$

$$\sigma = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \mu)^2}{P}}$$

Fancy Optimisers

Fancy Optimisers

