Recall
$$y \in \{0, 1\} = Y$$

We had a true system (not a model but sometimes be "the model.")

$$y = t(z_1, z_2, z_3)$$

where $z_1 = \text{has}$ sufficient funds, $z_2 = \text{unforeseen}$ emergency and $z_3 = \text{criminal}$ intentions

Problem: $\{z_1, z_2, z_3\}$ is unobserved (impossible to obtain). What to do?

Next best thing: Try to define and collect information "related" to $\{z_1, z_2, z_3\}$

Thus use what you have (or what is easily available). Let's pretend we got the resources to "define and collect."

- x_1 : salary measured by average salary
- x_2 : previous loan repayment did they ever miss previous loan payment? $\in [0,1]$
- x_3 : historical criminal record previous crime type? $\{$ no crime, infraction, misdemeanor, felony $\}$

Definition 0.1. Process Assessment: use as much as you got and whatever is cheaply available

Example: use age.

Let's say we have x_1, x_2, x_3 . The idea is $\{z_1, z_2, z_3\}$ which contains some info in $\{x_1, x_2, x_3\}$.

Let $\vec{x} = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}$ where the LHS is an observation/record/object/input/independent variable and the RHS is features/ attributes/ characteristics/ regressors/ covariances/ predictors.

Note that dim $\vec{x} = p$ or d.

$$\vec{x} = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} \in X$$

where X is the covariance space.

Spaces: $x_1 \in \mathbb{R}, x_2 \in [0,1]$ - binary ordinary variable, x_3 - categorized variables with 4 "levels"

Two Ideas:

First to do: code is numerical, such as $x_3 \in \begin{bmatrix} 0 & 1 & 2 & 3 \end{bmatrix}$ - this should only be done if predictor is "ordinal."

Next to do: Take x_3 and turn it into x_{3a} (binary no crime), x_{3b} - binary infraction, x_{3c} , x_{3d} . This increases p from 3 to 6 - more variables to think about.

So, it is impossible to get $\{z_1, z_2, z_3\}$ but we do have $[x_1 \ x_2 \ x_3]$ GOAL: Do the best we can to explain y by creating a model f, the approximation - the best

relationship we can get. Does $y = f(x_1, x_2, x_3)$? No. In fact,

$$y \approx f(x_1, x_2, x_3)$$

 $y = f(x_1, x_2, x_3) + \delta$

where $\delta = t(\vec{z}) - f(\vec{x})$, which comes from ignorance.

How do we get f? First note there is no analytical solution.

Example: $h(x) = x^2$. Find min h.

Instead, use an "empirical solution." An example of this is using data to learn from data.

Definition 0.2. Supervised Learning: uses historical examples of record and their responses

In this case, it requires 3 ingredients:

$$\mathcal{D} := \left\{ \langle \vec{x}_1, y_1 \rangle, \langle \vec{x}_2, y_2 \rangle, \langle \vec{x}_3, y_3 \rangle \right\}$$

where \vec{x}_1 is Bill's characteristics and y_1 is whether or not he paid back loan, \vec{x}_2 is Jill's, etc. Let

$$X = \begin{bmatrix} \vec{x}_1 \\ \vec{x}_2 \\ \vdots \\ \vec{x}_n \end{bmatrix} \in X^n, \quad Y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} \in Y^n$$

where $\dim(x) = n \cdot p$ and $\dim(\vec{y}) = n$.