Realistic Realizability: Specifying ABIs You Can Count On

Andrew Wagner, Zachary Eisbach, Amal Ahmed Northeastern University OOPSLA 2024, Pasadena, CA

What is an ABI?

Application Binary Interface (ABI)

The run-time contract for using a particular API (or for an entire library), including things like symbol names, calling conventions, and type layout information.

— Swift

What is an ABI?

Application Binary Interface (ABI)

The run-time contract for using a particular API (or for an entire library), including things like symbol names, calling conventions, and type layout information.

Behavior

— Swift

What is an ABI?

Application Binary Interface (ABI)

The run-time contract for using a particular API (or for an entire library), including things like symbol names, calling conventions, and type layout information.

Behavior

— Swift

```
foo : (Int, Int) -> Int

representation of the footh interval of the footh interval
```

Why Use an ABI?

Why Use an ABI? Interoperability

Why Use an ABI? Interoperability

Why Use an ABI? Interoperability

Why Use an ABI? Interoperability for Compilers

Why Use an ABI? Interoperability for Languages

Who is Designing an ABI?

Who is Designing an ABI?

The run-time contract for using a particular API

The run-time contract for using a particular API

This Type T

The run-time contract for using a particular API

This Type T

Is Realized By These Target Programs

$$\llbracket \mathsf{T} \rrbracket = \{ \ \underline{e} \ \mathsf{I} \ \dots \ \}$$

The run-time contract for using a particular API

This Type T

Is Realized By These Target Programs

$$\llbracket \mathbf{T} \rrbracket = \{ \ \underline{\mathbf{e}} \ \mathsf{I} \ \dots \ \}$$

Semantic Typing using Realistic Realizability [Benton06]

The run-time contract for using a particular API

This Type T

Our Proposal

e is ABI compliant with τ if $e \in [\tau]$

Is Realized By These Target Programs

 $\llbracket \mathbf{T} \rrbracket = \{ \ \underline{\mathbf{e}} \ \mathsf{I} \ \dots \ \}$

Semantic Typing using Realistic Realizability [Benton06]

Case Study

- Functional Source Language
 - Recursive records and variants, higher-order recursive functions
- C-like Target
 - Block-based memory, pointer arithmetic
- Automatic Reference Counting (ARC) Implementation
 - Values are boxed and reference-counted
 - Separation logic abstractions for reasoning about RC

Case Study

- Functional Source Language
 - Recursive records and variants, higher-order recursive functions
- C-like Target
 - Block-based memory, pointer arithmetic
- Automatic Reference Counting (ARC) Implementation
 - Values are boxed and reference-counted
 - Separation logic abstractions for reasoning about RC

Layout + Behavior

Case Study

- Functional Source Language
 - Recursive records and variants, higher-order recursive functions
- C-like Target
 - Block-based memory, pointer arithmetic
- Automatic Reference Counting (ARC) Implementation
 - Values are boxed and reference-counted
 - Separation logic abstractions for reasoning about RC

Layout + Behavior

References: Layout

Location ℓ is a reference to an object that behaves like type T

$$\mathcal{R}[T](l)$$

References: Layout

Object Data Ref. Count Location ℓ is a reference to an object that behaves like type T $O[\mathbb{Z}](\ell+1) = \exists n. \ell+1 \mapsto n$ More in Paper: Unboxed types

$$\mathcal{R}\left[\!\left[T\right]\!\right]\left(\ell\right)$$

l	l + 1
C	$O[T](\ell+1)$

Single reference represents one share of underlying object

Single reference represents one share of underlying object

$$\mathcal{R}[T](l)$$

 $\ell \qquad \ell+1 \dots$ $\geq 3 \qquad O \llbracket T \rrbracket (\ell+1)$ $\mathcal{R} \llbracket T \rrbracket (\ell)$

Reference confers permission to increment count & acquire more shares

$$\left\{ \mathcal{R} \left[\! \left[T \right] \! \right] \right\} + + \ell \left\{ n. \ \, \lceil n > 1 \, \rceil \star \mathcal{R} \left[\! \left[T \right] \! \right] \right\} \right\}$$

$$\left\{ \mathcal{R}[T](\ell) \right\} --\ell \left\{ n. \right\}$$

$$\left\{ \mathcal{R}[T](\ell) \right\} --\ell \left\{ n. \left(\lceil n > 0 \rceil \land \text{emp} \right) \right\}$$

$$\mathcal{R} \begin{bmatrix} T \end{bmatrix} \begin{pmatrix} \ell \\ \ell + 1 \dots \end{pmatrix}$$

$$\left\{ \mathcal{R}[T](\ell) \right\} - -\ell \left\{ n. \left(\lceil n > 0 \rceil \land \text{emp} \right) \right\}$$

$$\left\{ \mathcal{R}[T](\ell) \right\} - -\ell \left\{ n. \left(\lceil n > 0 \rceil \land \text{emp} \right) \lor \left(\lceil n = 0 \rceil \star \ell \mapsto 0 \star O[T](\ell+1) \right) \right\}$$

$$O\left[\!\left[T_1 \longrightarrow T_2\right]\!\right](\ell) \stackrel{\triangle}{\approx} \exists f. \ \ell \longmapsto f \star$$

Pointer to function

$$O \llbracket T_1 \to T_2 \rrbracket (\ell) \stackrel{\triangle}{\approx} \exists f. \ell \mapsto f \star \\ \forall \ell_1. \left\{ \mathcal{R} \llbracket T_1 \rrbracket (\ell_1) \right\} f(\ell_1) \left\{ \ell_2. \mathcal{R} \llbracket T_2 \rrbracket (\ell_2) \right\}$$

Pointer to function

Calling convention:
Caller increment

$$O \llbracket T_1 \to T_2 \rrbracket (\ell) \stackrel{\triangle}{\approx} \exists f. \ell \mapsto f \star \\ \forall \ell_1. \left\{ \mathcal{R} \llbracket T_1 \rrbracket (\ell_1) \right\} f(\ell_1) \left\{ \ell_2. \mathcal{R} \llbracket T_2 \rrbracket (\ell_2) \right\}$$

Pointer to function

Calling convention:
Caller increment

$$\forall \, \boldsymbol{\ell}_1. \, \left\{ \mathcal{R} \, \llbracket T_1 \rrbracket (\boldsymbol{\ell}_1) \right\} \, \boldsymbol{f}(\boldsymbol{\ell}_1) \, \left\{ \boldsymbol{\ell}_2. \, \mathcal{R} \, \llbracket T_2 \rrbracket (\boldsymbol{\ell}_2) \, \star \, \mathcal{R} \, \llbracket T_1 \rrbracket (\boldsymbol{\ell}_1) \right\}$$

Callee increment

$$O \llbracket T_1 \to T_2 \rrbracket (\ell) \stackrel{\triangle}{\approx} \exists f. \ell \mapsto f \star \\ \forall \ell_1. \left\{ \mathcal{R} \llbracket T_1 \rrbracket (\ell_1) \right\} f(\ell_1) \left\{ \ell_2. \mathcal{R} \llbracket T_2 \rrbracket (\ell_2) \right\}$$

Pointer to function

Calling convention:
Caller increment

VS.

$$\forall \ell_1. \left\{ \mathcal{R} \llbracket T_1 \rrbracket (\ell_1) \right\} f(\ell_1) \left\{ \ell_2. \mathcal{R} \llbracket T_2 \rrbracket (\ell_2) \star \mathcal{R} \llbracket T_1 \rrbracket (\ell_1) \right\}$$

Callee increment

Aggregate Layout

```
O[[struct Point \{x : \mathbb{Z}, y : \mathbb{Z}\}]](\ell)
```

Aggregate Layout

O [struct Point $\{x : \mathbb{Z}, y : \mathbb{Z}\}$] (ℓ)

$$\exists \ell_x, \ell_y. \ \ell \mapsto \ell_x \star \ell + 1 \mapsto \ell_y$$

Physical footprint

Aggregate Layout

 $O[[struct Point \{x : \mathbb{Z}, y : \mathbb{Z}\}]](\ell)$

$$\exists \ell_x, \ell_y. \ell \mapsto \ell_x \star \ell + 1 \mapsto \ell_y \star \mathcal{R} \llbracket \mathbb{Z} \rrbracket (\ell_x) \star \mathcal{R} \llbracket \mathbb{Z} \rrbracket (\ell_y)$$

Physical footprint

Logical footprint includes permission to access fields

unq Plain Old Data

++(\ell-1)

14

$$++(\ell-1);$$
 $++\ell_{y}$

Jump Modality: It is possible to "jump" from ℓ to an object that satisfies P

Jump Modality: It is possible to "jump" from ℓ to an object that satisfies P

Composition sums counters at the root, not in objects

Jump Modality: It is possible to "jump" from ℓ to an object that satisfies P

Jump Modality: It is possible to "jump" from ℓ to an object that satisfies P

Reachability Modality $\diamond P$: It is possible to reach P via some set of jumps

Allows reading and incrementing from deeply nested objects

Jump Modality: It is possible to "jump" from ℓ to an object that satisfies P

Reachability Modality $\diamond P$: It is possible to reach P via some set of jumps

Allows reading and incrementing from deeply nested objects

$$\frac{\text{@-INCR}}{\left\{ \ @_{\ell} P \ \right\} + + \ell \left\{ n. \ \lceil n > 1 \rceil \star @_{\ell} P \star @_{\ell} P \right\} }$$

Jump Modality: It is possible to "jump" from ℓ to an object that satisfies P

Reachability Modality $\diamond P$: It is possible to reach P via some set of jumps

Allows reading and incrementing from deeply nested objects

Rigid Layout

```
O \left[ \text{struct Point } \{x : \mathbb{Z}, y : \mathbb{Z}\} \right] (\ell)
= \exists \ell_x, \ell_y. \ell \mapsto \ell_x \star \ell + 1 \mapsto \ell_y \star \mathcal{R} \left[ \mathbb{Z} \right] (\ell_x) \star \mathcal{R} \left[ \mathbb{Z} \right] (\ell_y)
```

Like C ABI

Rigid Layout

```
O \left[ \left[ \text{struct Point} \left\{ x : \mathbb{Z}, y : \mathbb{Z} \right\} \right] \right] (\ell)
= \exists \ell_x, \ell_y. \ell \mapsto \ell_x \star \ell + 1 \mapsto \ell_y \star \mathcal{R} \left[ \mathbb{Z} \right] (\ell_x) \star \mathcal{R} \left[ \mathbb{Z} \right] (\ell_y)
```

Like C ABI

```
No reordering upd struct Point \{x: \mathbb{Z}, y: \mathbb{Z}\} \not \Rightarrow \text{ struct Point } \{y: \mathbb{Z}, x: \mathbb{Z}\}
```

Rigid Layout

```
O \left[ \text{struct Point } \{x : \mathbb{Z}, y : \mathbb{Z}\} \right] (\ell)
= \exists \ell_x, \ell_y. \ell \mapsto \ell_x \star \ell + 1 \mapsto \ell_y \star \mathcal{R} \left[ \mathbb{Z} \right] (\ell_x) \star \mathcal{R} \left[ \mathbb{Z} \right] (\ell_y)
```

Like C ABI

```
No reordering upd struct Point \{x: \mathbb{Z}, y: \mathbb{Z}\} \not \Rightarrow \text{ struct Point } \{y: \mathbb{Z}, x: \mathbb{Z}\}

No extensibility upd struct Point \{x: \mathbb{Z}, y: \mathbb{Z}\} \not \Rightarrow \text{ struct Point } \{x: \mathbb{Z}, y: \mathbb{Z}\}
```


 τ_2 is an ABI compatible update from τ_1 if $\llbracket \tau_2 \rrbracket \subseteq \llbracket \tau_1 \rrbracket$

Resilient Layout

Like Swift ABI

Resilient Layout

Client Using Point

Offset Table

Like Swift ABI

Resilient Layout

Client Using Point

Offset Table

Like Swift ABI

Library Providing Point

Ox	Oy	Oz
2	0	1

More in the Paper

- Variations: Unboxed types, calling conventions, layout optimizations
- Theorems: Safety & memory reclamation, compiler compliance, type evolution

Next Steps

- Ongoing: Rust-like ABI over Wasm with ownership and borrowing
- Application: Verified FFI

Takeaways

The Methodology

ABI Spec with Realistic Realizability

Compiler Compliance, Library Evolution, FFI Safety*

The Case Study

Graph-Based Resources for RC

$$\bigcirc P \diamond P$$

Paper Slides Contact

