大数定律及中心极限定理

一、作业 (提交时间: Dec. 11, 2023)

1.[b203-2] 设 $\{X_k\}$ 为独立随机变量序列, 且

$$P(X_k = \pm 2^k) = \frac{1}{2^{2k+1}}, \quad P(X_k = 0) = 1 - \frac{1}{2^{2k}}, \quad k = 1, 2, \dots$$

证明 $\{X_k\}$ 服从大数定律.

2.[b203-3] 设 $\{X_k\}$ 为独立随机变量序列, 且 $P(X_1 = 0) = 1$,

$$P(X_k = \pm \sqrt{n}) = \frac{1}{n}, \quad P(X_k = 0) = 1 - \frac{2}{n}, \quad n = 2, 3, \dots$$

证明 $\{X_k\}$ 服从大数定律.

3.[b204-9] 设 $\{X_n\}$ 为独立随机变量序列, 其中 X_n 服从参数为 \sqrt{n} 的泊松分布, 试问 $\{X_n\}$ 是否服从大数定律.

4.[156-1] 小王自主创业开了一家蛋糕店, 店内有 A,B,C 三种蛋糕出售, 其售价分别为 5 元、10 元、12 元. 顾客购买 A,B,C 三种蛋糕的概率分别是 0.2、0.3、0.5. 假设今天有 700 位顾客, 每位顾客各买一个蛋糕, 且各位顾客的消费是相互独立的. 用中心极限定理求小王今天的营业额在 7000 元至 7140 元之间的概率的近似值.

5.[158-3] 已知某厂生产的晶体管的寿命服从均值为 100 小时的指数分布, 假定这些晶体管的寿命是相互独立的. 现从该厂的产品中随机地抽取 64 只. 试求这 64 只晶体管的寿命之和超过 7000 小时的概率.

6.[159-5] 某供电网上有一万盏电灯, 夜晚每盏电灯开灯的概率均为 0.1, 且彼此开灯与否是相互独立的. 使用切比雪夫不等式和中心极限定理分别估算夜晚同时开灯数在 970 到 1030 之间的概率.

二、练习

1.[b203-4] 在伯努利试验中, 事件 A 出现的概率为 p, 令

$$X_n = \begin{cases} 1, &$$
 若在第 n 次及第 $n+1$ 次试验中 A 都出现 $0, &$ 其他

证明 $\{X_n\}$ 服从大数定律.

2.[b204-5] 设 $\{X_k\}$ 为独立随机变量序列, 且

$$P(X_n = 1) = p_n, \quad P(X_n = 0) = 1 - p_n, \quad n = 1, 2, \dots$$

证明 $\{X_n\}$ 服从大数定律.

3.[b204-7] 设 $\{X_k\}$ 为独立同分布随机变量序列, 其共同的分布为

$$P\left(X_n = \frac{2^k}{k^2}\right) = \frac{1}{2^k}, \quad k = 1, 2, \dots$$

试问 $\{X_n\}$ 是否服从大数定律.

4. [157-2] 设我校学生概率统计成绩 (百分制)X 服从正态分布, 且每个学生的概率统计成绩相互独立. 设我校学生概率统计平均成绩 (即参数 μ 之值) 为 72 分, 96 分以上的人占考生总数的 2.28%. 今任取 100 个学生的概率统计成绩, 以 Y 表示成绩在 60 分至 84 分之间的人数. 用中心极限定理求 $P(Y \ge 60)$.

5.[158-4] 在一次集体登山活动中, 假设每个人意外受伤的概率是 1%, 每个人是否意外受伤是相互独立的. (1) 为保证没有人意外受伤的概率大于 0.9, 应当控制参加登山活动的人数为多少人? (2) 如果有 100 人参加这次登山活动, 用中心极限定理求意外受伤的人数小于等于 2 人的概率的近似值.

6.[159-6] 设 $X_1, X_2, \ldots, X_{100}$ 相互独立且服从相同的分布, $X_i \sim U(0,1), i=1,2,\ldots,100$. 用中心极限定理计算 $P(e^{-110} \leq X_1 X_2 \ldots X_{100} \leq e^{-90})$.