MICROPROCESADORES

5º Semestre Grado en Ingeniería Eléctrica y Electrónica

Curso 2018 - 19

Trabajo Final

Máquina de Azar

Autores : Erik Churo y Edison Aushay

Analisis

La visión dinámica del sistema se puede observar dentro de la figura 1.

Figura 1.Diagrama de Estados.

Del análisis anterior hemos diferenciados las siguientes tareas :

Figura 1.Pulsadar Botón.

Figura 2.Refrescar.

Figura 3. Máquina Azar.

Figura 4.Efectos Parpadeo.

Figura 5.Efectos sonoros.

Figura 6. Sonar Melodía.

Diseño

El diagrama de componentes de nuestra aplicación es el siguiente

Figura 2.Diagrama de flujos.

El componente APP_RM se encarga cambiar y parar las cifras de la máquina de azar, se comunica con el componente APP_BLIK y el APP_ORCHESTRATE para los efectos de parpadeo y efectos sonoros tras analizar la secuencia final.Existe otra comunicacion con el componente APP_SOUND, para el sonido de inicio de partida y sonidos tras las paradas de las cifras.El componente APP_S2, se encarga de iniciar la partida tras detectar la pulsación de botón de arranque.El componente APP_REFRESH, realiza el refresco de los digitos.Todas las comunicaciones con PIC16F877A , se realizan a traves del componente APP_PIC.

Implementación

Para la implementación se ha empleado el PIC16F877A.Para las diferentes temporizaciones hemos empleado el timer0, se encarga de temporizar 5ms.Para que funcionen los display hemos configurado el PUERTO A como entrada digital y establecido los pines RA0,RA1 y RA2 como pines de salida.Además de configurar el puerto D como un terminal de salida.Para el pulsador, el pin RA4 debe ser configurado como pin de entrada.Finalmente, para los efectos sonoros se debe configurar el terminal RC2 como salida y el módulo CPP como pwm, la configuración anterior emplea el timer2 para realizar la comparacion con el t_{on} y T de las diferentes frecuencias de la melodia.