QUINTA FORMA NORMAL (5FN)

BASES DE DATOS

ALUMNO: MOLINA VÉJAR AARÓN GAEL

CONCATENACIÓN SIN PÉRDIDA Ó PROPIEDAD NO ADITIVA DE UNA DESCOMPOSICIÓN

- **Definición**. Formalmente, una descomposición de R tiene la propiedad de concatenación sin pérdida (no aditiva) respecto al conjunto de dependencias F en R si, por cada estado de relación r de R que satisface F, se mantiene lo siguiente, donde * es la CONCATENACIÓN NATURAL de todas las relaciones en D: $*(\pi R I(r), ..., \pi R m(r))=r$.
- Es importante mencionar que este concepto hace referencia a pérdida de información, no de tuplas. Por lo que podriamos obtener tuplas falsas al momento de aplicar una proyección o una concatenación natural si es que no se cumple esta propiedad.

DEPENDENCIA DE CONCATENCACIÓN (DEPENDENCIA DE UNIÓN Ó JOIN DEPENDENCY)

• **Definición**. Una JD (Dependencia de concatenación, Join Dependency), expresada por JD(R1,R2,...,Rn), especificada en un esquema de relación R, indica una restricción en los estados r de R que dice que cada estado legal r de R debe tener una descomposición de concatenación no aditiva en R1,R2,...,Rn; es decir, por cada r tenemos:

•
$$*(\pi R I(r), \pi R 2(r), ..., \pi R n(r)) = r$$

• Una JD es una **resticción** que fuerza a que se realice una descomposición sobre ciertas relaciónes, manteniendo la propiedad de concatencación no aditiva.

CONTRATO	PROVEEDOR	PIEZA
	•••	•••

CONTRATO	PROVEEDOR
•••	

CONTRATO	PROVEEDOR	PIEZA
	•••	•••

CONTRATO	PROVEEDOR

CONTRATO	PROVEEDOR	PIEZA
	•••	•••

CONTRATO	PIEZA
•••	

CONTRATO	PROVEEDOR

CONTRATO	PIEZA
	•••

PROVEEDOR	PIEZA
•••	•••

CONTRATO	PROVEEDOR
•••	•••

CONTRATO	PIEZA
	•••

CONTRATO	PROVEEDOR	PIEZA
***	***	•••

PROVEEDOR	PIEZA
	•••

DEPENDENCIA DE CONCATENCACIÓN (DEPENDENCIA DE UNIÓN Ó JOIN DEPENDENCY)

• Es muy importante remarcar que una dependencia de este tipo es una restricción con una semántica muy peculiar que resulta muy dificil de detectar en práctica; por consiguiente la normalización 5FN es muy rara verla en práctica

QUINTA FORMA NORMAL (5FN) Ó FORMA NORMAL PROYECCIÓN-CONCATENCACIÓN, PROJECT-JOIN NORMAL FORM (PJNF)

- **Definición**. Un esquema de relación R está en quinta forma normal (5FN) (o en PJNF [Forma normal de proyección-concatenación, Project-Join Normal Form]) respecto a un conjunto F de dependencias funcionales, multivalor y de concatenación si, por cada dependencia de concatenación no aditiva JD(R1,R2,...,Rn) en F+ (es decir, implicada por F), cada Ri es una superclave de R.
- El conjunto F indica que el esquema de relación R está evaluado por distintas dependencias que incluyen:
 - Dependencias funcionales
 - Dependencias multivaluadas
 - o Dependencias de concatenación

REGRESANDO A NUESTRO EJEMPLO

• Para que la tabla esté en quinta forma normal (5FN), cada una de las subrelaciones resultantes de la descomposición debe contener una superclave de la relación original.

REGRESANDO A NUESTRO EJEMPLO

• Para que la tabla esté en quinta forma normal (5FN), cada una de las subrelaciones resultantes de la descomposición debe contener una superclave de la relación original.

ASPECTOS IMPORTANTES A CONSIDERAR DE LA 5FN

- A pesar de que en el ejemplo no se mostró explicitamente la tabla a normalizar en 5FN debe estar normalizada en 4FN
- La 5FN es la forma mas avanzada y compleja de normalización, sin embargo es muy raro que en la práctica se llegue a esta forma.
- La semántica de datos es crucial, se debe poseer un alto conocimiento de cómo interactúan los datos entre si dentro de una tabla.

REFERENCIAS

- Elmasri, R., & Navathe, S. B. (2007). Fundamentos de sistemas de bases de datos (5.ª ed.). Pearson.
- Silberschatz, A., Korth, H. F., & Sudarshan, S. (2006). Fundamentos de bases de datos (5.ª ed.). McGraw-Hill.