Arrange the digits

Mixed methods

Arrange the digits 1, 2, 3, 4, 5, 6, 7, 8, 9 into three 3-digit numbers such that their total is as close to 1500 as possible.

Arrange the digits: digital roots of 9

Resource sheet

Th	Н	Т	U	
			2	The digit 2 is worth 2
				Difference = 18
		2		The digit 2 is worth 20
				Difference = 180
	2			The digit 2 is worth 200
				Difference = 1800
2				The digit 2 is worth 2000

Wherever the 2 is moved, what you gain is always a multiple of 9.

Is this true for any number?

How does this relate to the problem 'Arrange the digits'?