

SCHWINGUNGSTECHNIK

sylomer

Werkstoffdatenblätter

sylomer Standardtypen

Werkstoff

Gemischtzelliges Polyetherurethan (PUR) mit kombinierten Feder-/Dämpfereigenschaften.

Standard-Lieferform

Dicke: 12,5 mm / 25 mm
Rollen: 1,5 m breit / 5,0 m lang
Streifen: bis 1,5 m breit, bis 5,0 m lang

Andere Abmessungen (auch Dicke) sowie Stanzteile, Formteile auf Anfrage.

Eigenschaften	Prüfverfahren	SR 11	SR 18	SR 28	SR 42	SR 55	SR 110	SR 220	SR 450	SR 850	SR 1200
Farbe		gelb	orange	blau	rosa	grün	braun	rot	grau	türkis	violett
Statischer Einsatzbereich [N/mm²]**		0,011	0,018	0,028	0,042	0,055	0,110	0,220	0,450	0,850	1.200
Lastspitzen [N/mm²]**		0,5	0,75	1,0	2,0	2,0	3,0	4,0	5,0	6,0	6,0
Mechanischer Verlustfaktor	DIN 53513*	0,25	0,23	0,21	0,16	0,17	0,13	0,13	0,11	0,12	0,11
Statischer Schubmodul [N/mm²]	DIN ISO 1827*	0,03	0,05	0,07	0,08	0,13	0,22	0,35	0,58	0,8	0,9
Dynamischer Schubmodul [N/mm²]	DIN ISO 1827*	0,1	0,12	0,15	0,17	0,26	0,42	0,64	1,0	1,4	1,6
Abrieb [mm³]***	DIN 53516	1400	400	1300	1200	1100	1100	1000	400	300	350
Statischer E-Modul [N/mm²] (bei der Obergrenze des statischen Einsatzbereiches)**	DIN 53513*	0,061	0,097	0,166	0,282	0,367	0,87	1,44	3,30	7,2	10,4
Dynamischer E-Modul [N/mm²] (bei der Obergrenze des statischen Einsatzbereiches)**	DIN 53513*	0,172	0,280	0,437	0,611	0,753	1,36	2,54	5,04	11,1	16,4
Stauchhärte bei 10 % Verformung [N/mm²]		0,012	0,020	0,031	0,047	0,061	0,12	0,22	0,42	0,86	1,08
Einsatztemperatur [°C]						-30 bis -	- 70				
Temperaturspitze [°C]	kurzzeitig****	+120									
Brandverhalten	DIN 4102 EN ISO 11925-2					B 2 B, C und	d D				

^{*} Messungen in Anlehnung an die jeweilige Norm

** Werte gelten für Formfaktor q=3, Materialdicke 25 mm

**** Anwendungsspezifisch

Alle Angaben und Daten beruhen auf unserem derzeitigen Wissensstand. Sie können als Rechen- bzw. Richtwerte herangezogen werden, unterliegen üblichen Fertigungstoleranzen und stellen keine zugesicherten Eigenschaften dar. Änderungen vorbehalten.

Datenblätter der verschiedenen Materialtypen sowie spezielle Kennwerte auf Anfrage.

Der Inhalt dieser Druckschrift ist das Ergebnis anwendungstechnischer Erfahrungen. Alle Angaben und Hinweise erfolgen nach bestem Wissen; sie stellen keine Eigenschaftszusicherung dar. Für die Beratung durch diese Druckschrift ist eine Haftung auf Schadenersatz, gleich welcher Art und welchen Rechtsgrundes, ausgeschlossen. Technische Änderungen im Rahmen der Produktentwicklung bleiben vorbehalten. 201610

^{***} Die Messung des Abriebs erfolgt dichteabhängig mit variierenden Prüfparametern

Statisches Dauerstandverhalten

Sylomer® zeigt wie andere Elastomere bei einer statischen Belastung eine Zunahme der Verformung (Kriechen). Diese Verformungszunahme verhält sich proportional dem Logarithmus der Zeit. Das heiβt, dass pro Dekade (1 Tag, 10 Tage, 100 Tage, ...) immer dieselbe zusätzliche Verformung auftritt. Die größte Verformungszunahme aufgrund des Kriechens ist nach relativ kurzer Zeit abgeschlossen. Die statischen Einsatzbereiche von Sylomer® sind so gewählt, dass die Verformungen für alle Typen gleich verlaufen.

Abb. 1: Verformung unter statischer Belastung in Abhängigkeit der Zeit

Dynamisches Dauerstandverhalten

Wird Sylomer® im angegebenen statischen Einsatzbereich belastet, so tritt bei gleich bleibenden Umgebungsbedingungen keine Änderung der Eigenfrequenz während der Belastungszeit auf.

Abb. 2: Änderung der Eigenfrequenz unter statischer Belastung in Abhängigkeit der Zeit

Amplitudenabhängigkeit

Sylomer® Werkstoffe weisen eine vernachlässigbare Amplitudenabhängigkeit auf. Bei anderen elastischen Werkstoffen wie z.B. kompakten, geschäumten oder gebundenen Kautschukprodukten (Gummigranulat) sind dagegen erhebliche Abhängigkeiten der dynamischen Steifigkeit von der Schwingungsamplitude zu beobachten.

Bezugswerte: Amplitude 0,11 mm (enspricht einer Schwingschnelle von 100 dBv bei 10 Hz).

Abb. 3: Dynamischer Elastizitätsmodul in Abhängigkeit der Schwingungsamplitude

Temperatur- und Frequenzabhängigkeit des Verlustfaktors

Sylomer® zeigt eine Temperatur- und Frequenzabhängigkeit des Verlustfaktors. Diese Abhängigkeiten sind in Tab. 1 und Tab. 2 dargestellt.

Temperaturabhängigkeit

	-10 °C	0°C	10°C	20°C	30°C	50°C
Sylomer⊚ SR 11	0,60	0,44	0,32	0,25	0,22	0,19
Sylomer® SR 18	0,51	0,31	0,26	0,23	0,20	0,18
Sylomer® SR 28	0,45	0,33	0,25	0,21	0,20	0,17
Sylomer® SR 42	0,40	0,30	0,22	0,18	0,17	0,15
Sylomer® SR 55	0,35	0,24	0,20	0,17	0,16	0,14
Sylomer⊚ SR 110	0,29	0,21	0,16	0,14	0,12	0,10
Sylomer® SR 220	0,26	0,19	0,15	0,13	0,12	0,10
Sylomer _® SR 450	0,25	0,18	0,14	0,12	0,11	0,10
Sylomer® SR 850	0,25	0,17	0,14	0,11	0,11	0,09
Sylomer⊚ SR 1200	0,23	0,17	0,13	0,11	0,10	0,09

Frequenzabhängigkeit

	1Hz	50 Hz	100 Hz	1000 Hz
Sylomer® SR 11	0,19	0,30	0,33	0,43
Sylomer® SR 18	0,17	0,29	0,32	0,46
Sylomer® SR 28	0,14	0,28	0,33	0,45
Sylomer® SR 42	0,11	0,22	0,27	0,42
Sylomer® SR 55	0,11	0,21	0,25	0,40
Sylomer® SR 110	0,10	0,17	0,20	0,32
Sylomer® SR 220	0,09	0,16	0,19	0,30
Sylomer _® SR 450	0,08	0,16	0,18	0,29
Sylomer® SR 850	0,08	0,16	0,18	0,28
Sylomer® SR 1200	0,08	0,14	0,17	0,26

Tab. 1 und Tab. 2: DMA-Untersuchungen (Dynamic Mechanical Analysis). Messungen im linearen Bereich der Federkennlinie. Werte bezogen auf Formfaktor q = 3, beim jeweiligen statischen Einsatzbereich.

Temperaturabhängigkeit des dynamischen Elastizitätsmoduls

Sylomer® zeigt eine Temperaturabhängigkeit des dynamischen Elastizitätsmoduls.

DMA-Untersuchung (Dynamisch-mechanische Analyse), Messungen mit sinusförmiger Anregung im linearen Bereich der Federkennlinie, Werte bezogen auf Formfaktor q = 3 beim jeweiligen statischen Einsatzbereich bei einer Frequenz von 10 Hz.

Abb. 4: Dynamischer Elastizitätsmodul in Abhängigkeit der Temperatur

Frequenzabhängigkeit des dynamischen Elastizitätsmoduls

Sylomer® zeigt eine Frequenzabhängigkeit des dynamischen Elastizitätsmoduls.

DMA-Untersuchung (Dynamischmechanische Analyse), Messungen bei Raumtemperatur (23 °C) mit sinusförmiger Anregung im linearen Bereich der Federkennlinie, Wertebezogen auf Formfaktor q=3 beim jeweiligen statischen Einsatzbereich.

Abb. 5: Dynamischer Elastizitätsmodul in Abhängigkeit der Frequenz

Formfaktorabhängigkeit

Der Formfaktor ist ein geometrisches Maß für die Form eines Elastomerlagers und ist als Quotient aus belasteter Fläche zur Mantelfläche des Lagers definiert.

Definition: Formfaktor =
$$\frac{\text{Belastete Fläche}}{\text{Mantelflächen}}$$

In den Werkstoffdatenblättern werden in Abb. 1 bis 3 Federkennlinien, Elastizitätsmodule und Eigenfrequenzen für den Formfaktor 3 angegeben. Für abweichende Formfaktoren müssen die Werkstoffeigenschaften entsprechend angepasst werden. Die Änderungen der Eigenschaften werden auf Seite 4 der Werkstoffdatenblätter abgebildet.

Für elastische Sylomer® Lager gilt näherungsweise

			Bezugswert		
			\downarrow		
	Einzellage	er	Streifenlager	Flächenlag	er
Formfaktor	0,5	2	3	6	

Zellige Werkstoffe mit geringer Dichte wie z.B. Sylomer® SR 11, SR 18 und SR 28 sind volumenkompressibel, der Einfluss des Formfaktors auf die Steifigkeit kann somit nahezu vernachlässigt werden. Mit zunehmender Belastbarkeit des Sylomer® Werkstoffes nimmt der Einfluss des Formfaktors zu.

(Polyetherurethan)

Farbe gelb

Standard-Lieferformen, ab Lager

Dicke: 12,5 mm bei Sylomer® SR 11 - 12

25 mm bei Sylomer® SR 11 - 25

Rollen: 1,5 m breit, 5,0 m lang Streifen: bis 1,5 m breit, bis 5,0 m lang

Andere Abmessungen (auch Dicke) sowie Stanzteile, Formteile auf Anfrage

Einsatzbereich	Druckbelastung	Verformung
	formfaktorabhängig, die a gelten für Formf	
Statischer Einsatzbereich (statische Lasten)	bis 0,011 N/mm²	ca. 7 %
Dynamikbereich (statische und dynamische Lasten)	bis 0,016 N/mm²	ca. 25 %
Lastspitzen (seltene, kurzzeitige Lasten)	bis 0,5 N/mm²	ca. 80 %

Sylomer® **Typenreihe** Statischer Einsatzbereich

Werkstoffeigenschaften		Prüfverfahren	Anmerkung
Mechanischer Verlustfaktor	η = 0,25	DIN 53513*	frequenz-, last- und amplitudenabhängig
Rückprallelastizität	45 %	DIN 53573	
Druckverformungsrest	< 5 %	EN ISO 1856	50 % Verformung, 23 °C, 70 h, 30 min nach Entlastung
Statischer Schubmodul	0,03 N/mm ²	DIN ISO 1827*	bei einer Vorspannung von 0,011 N/mm²
Dynamischer Schubmodul	0,10 N/mm ²	DIN ISO 1827*	bei einer Vorspannung von 0,011 N/mm², 10 Hz
Reibwert (Stahl)	μ _s = 0,5	Getzner Werkstoffe	trocken
Reibwert (Beton)	$\mu_{\scriptscriptstyle B}$ = 0,7	Getzner Werkstoffe	trocken
Abrieb	1400 mm ³	DIN 53516	Last 2,5 N, Unterhaut
Einsatztemperatur	-30 bis 70 °C		kurzzeitig höhere Temperaturen möglich
Spezifischer Durchgangswiderstand	> 10¹² Ω·cm	DIN IEC 93	trocken
Wärmeleitfähigkeit	0,05 W/(mK)	DIN 52612/1	
Brandverhalten	B2 B, C und D	DIN 4102 EN ISO 11925-2	normal entflammbar bestanden

^{*} Messung in Anlehnung an die jeweilige Norm

Alle Angaben und Daten beruhen auf unserem derzeitigen Wissensstand. Sie können als Rechen- bzw. Richtwerte herangezogen werden, unterliegen üblichen Fertigungstoleranzen und stellen keine zugesicherten Eigenschaften dar. Änderungen vorbehalten.

Werkstoffdatenblatt sylomer

Federkennlinie

Abb. 1: Quasistatische Federkennlinie mit einer Belastungsgeschwindigkeit von 0,0011 N/mm²/s

Prüfung zwischen ebenen und planparallelen Stahlplatten, Aufzeichnung der 3. Belastung, Prüfung bei Raumtemperatur

Formfaktor q=3

Elastizitätsmodul

Abb. 2: Belastungsabhängigkeit der statischen und dynamischen E-Moduli

Quasistatischer E-Modul als Tangentenmodul aus der Federkennlinie. Dynamischer E-Modul aus sinusförmiger Anregung mit einer Schwingschnelle von 100 dBv re. 5 · 10⁻⁸ m/s (entsprechend einer Schwingweite von 0,22 mm bei 10 Hz und 0,08 mm bei 30 Hz)

Messung in Anlehnung an DIN 53513

Formfaktor q=3

Eigenfrequenzen

Abb. 3: Eigenfrequenzen eines schwingungsfähigen Systems mit einem Freiheitsgrad, bestehend aus einer starren Masse und einem elastischen Lager aus Sylomer SR 11 auf starrem Untergrund

Parameter: Dicke des Sylomerlagers

Werkstoffdatenblatt sylomer

Schwingungsisolation

Abb. 4: Verminderung der Übertragung mechanischer Schwingungen durch den Einbau einer elastischen Lagerung aus Sylomer SR 11 auf starrem Untergrund

Parameter: Übertragungsmaβ in dB, Isolierwirkungsgrad in Prozent

Einfluss des Formfaktors

Die Diagramme geben Korrekturwerte bei unterschiedlichen Formfaktoren an.

Abb. 5: Statischer Einsatzbereich

Abb. 6: Einfederung*

Abb. 7: Dynamischer Elastizitätsmodul bei 10 Hz*

*Referenzwerte: Pressung 0,011 N/mm², Formfaktor q=3

Abb. 8: Eigenfrequenzen*

(Polyetherurethan)

Farbe orange

Standard-Lieferformen, ab Lager

Dicke: 12,5 mm bei Sylomer® SR 18 - 12

25 mm bei Sylomer® SR 18 - 25

Rollen: 1,5 m breit, 5,0 m lang

Streifen: bis 1,5 m breit, bis 5,0 m lang

Andere Abmessungen (auch Dicke), sowie Stanzteile, Formteile auf Anfrage

Einsatzbereich	Druckbelastung	Verformung
	formfaktorabhängig, die a gelten für Formf	
Statischer Einsatzbereich (statische Lasten)	bis 0,018 N/mm²	ca. 7 %
Dynamikbereich (statische und dynamische Lasten)	bis 0,028 N/mm²	ca. 25 %
Lastspitzen (seltene, kurzzeitige Lasten)	bis 0,75 N/mm²	ca. 80 %

Sylomer® Typenreihe Statischer Einsatzbereich

Werkstoffeigenschaften		Prüfverfahren	Anmerkung
Mechanischer Verlustfaktor	η = 0,23	DIN 53513*	frequenz-, last- und amplitudenabhängig
Rückprallelastizität	45 %	DIN 53573	
Druckverformungsrest	< 5 %	EN ISO 1856	50 % Verformung, 23 °C, 70 h, 30 min nach Entlastung
Statischer Schubmodul	0,05 N/mm ²	DIN ISO 1827*	bei einer Vorspannung von 0,018 N/mm²
Dynamischer Schubmodul	0,12 N/mm²	DIN ISO 1827*	bei einer Vorspannung von 0,018 N/mm², 10 Hz
Reibwert (Stahl)	μ _s = 0,5	Getzner Werkstoffe	trocken
Reibwert (Beton)	$\mu_{\scriptscriptstyle B}$ = 0,7	Getzner Werkstoffe	trocken
Abrieb	400 mm ³	DIN 53516	Last 2,5 N, Unterhaut
Einsatztemperatur	-30 bis 70 °C		kurzzeitig höhere Temperaturen möglich
Spezifischer Durchgangswiderstand	> 10¹² Ω·cm	DIN IEC 93	trocken
Wärmeleitfähigkeit	0,05 W/(mK)	DIN 52612/1	
Brandverhalten	B2 B, C und D	DIN 4102 EN ISO 11925-2	normal entflammbar bestanden

^{*} Messung in Anlehnung an die jeweilige Norm

Alle Angaben und Daten beruhen auf unserem derzeitigen Wissensstand. Sie können als Rechen- bzw. Richtwerte herangezogen werden, unterliegen üblichen Fertigungstoleranzen und stellen keine zugesicherten Eigenschaften dar. Änderungen vorbehalten.

Werkstoffdatenblatt sylomer

Federkennlinie

Abb. 1: Quasistatische Federkennlinie mit einer Belastungsgeschwindigkeit von 0,0018 N/mm²/s

Prüfung zwischen ebenen und planparallelen Stahlplatten, Aufzeichnung der 3. Belastung, Prüfung bei Raumtemperatur

Formfaktor q=3

Elastizitätsmodul

Abb. 2: Belastungsabhängigkeit der statischen und dynamischen E-Moduli

Quasistatischer E-Modul als Tangentenmodul aus der Federkennlinie. Dynamischer E-Modul aus sinusförmiger Anregung mit einer Schwingschnelle von 100 dBv re. 5 · 10⁻⁸ m/s (entsprechend einer Schwingweite von 0,22 mm bei 10 Hz und 0,08 mm bei 30 Hz)

Messung in Anlehnung an DIN 53513

Formfaktor q=3

Eigenfrequenzen

Abb. 3: Eigenfrequenzen eines schwingungsfähigen Systems mit einem Freiheitsgrad, bestehend aus einer starren Masse und einem elastischen Lager aus Sylomer SR 18 auf starrem Untergrund

Parameter: Dicke des Sylomerlagers

Störfrequenz [Hz]

Abb. 4: Verminderung der Übertragung mechanischer Schwingungen durch den Einbau einer elastischen Lagerung aus Sylomer SR 18 auf starrem Untergrund

Parameter: Übertragungsmaβ in dB, Isolierwirkungsgrad in Prozent

Einfluss des Formfaktors

Die Diagramme geben Korrekturwerte bei unterschiedlichen Formfaktoren an.

Abb. 5: Statischer Einsatzbereich

Abb. 6: Einfederung*

Abb. 7: Dynamischer Elastizitätsmodul bei 10 Hz*

Abb. 8: Eigenfrequenzen*

^{*}Referenzwerte: Pressung 0,018 N/mm², Formfaktor q=3

(Polyetherurethan)

Farbe blau

Standard-Lieferformen, ab Lager

Dicke: 12,5 mm bei Sylomer® SR 28 - 12

25 mm bei Sylomer® SR 28 - 25

Rollen: 1,5 m breit, 5,0 m lang Streifen: bis 1,5 m breit, bis 5,0 m lang

Andere Abmessungen (auch Dicke), sowie Stanzteile, Formteile auf Anfrage

Einsatzbereich	Druckbelastung	Verformung
	formfaktorabhängig, die a gelten für Formf	
Statischer Einsatzbereich (statische Lasten)	bis 0,028 N/mm²	ca. 7 %
Dynamikbereich (statische und dynamische Lasten)	bis 0,042 N/mm²	ca. 25 %
Lastspitzen (seltene, kurzzeitige Lasten)	bis 1 N/mm²	ca. 80 %

Sylomer® Typenreihe Statischer Einsatzbereich

Werkstoffeigenschaften		Prüfverfahren	Anmerkung
Mechanischer Verlustfaktor	η = 0,21	DIN 53513*	frequenz-, last- und amplitudenabhängig
Rückprallelastizität	45 %	DIN 53573	
Druckverformungsrest	< 5 %	EN ISO 1856	50 % Verformung, 23 °C, 70 h, 30 min nach Entlastung
Statischer Schubmodul	0,07 N/mm ²	DIN ISO 1827*	bei einer Vorspannung von 0,028 N/mm²
Dynamischer Schubmodul	0,15 N/mm ²	DIN ISO 1827*	bei einer Vorspannung von 0,028 N/mm², 10 Hz
Reibwert (Stahl)	μ _s = 0,5	Getzner Werkstoffe	trocken
Reibwert (Beton)	$\mu_{\scriptscriptstyle B}$ = 0,7	Getzner Werkstoffe	trocken
Abrieb	1300 mm ³	DIN 53516	Last 5 N, Unterhaut
Einsatztemperatur	-30 bis 70 °C		kurzzeitig höhere Temperaturen möglich
Spezifischer Durchgangswiderstand	> 10 ¹¹ Ω·cm	DIN IEC 93	trocken
Wärmeleitfähigkeit	0,06 W/(mK)	DIN 52612/1	
Brandverhalten	B2 B, C und D	DIN 4102 EN ISO 11925-2	normal entflammbar bestanden

^{*} Messung in Anlehnung an die jeweilige Norm

Alle Angaben und Daten beruhen auf unserem derzeitigen Wissensstand. Sie können als Rechen- bzw. Richtwerte herangezogen werden, unterliegen üblichen Fertigungstoleranzen und stellen keine zugesicherten Eigenschaften dar. Änderungen vorbehalten.

Federkennlinie

Abb. 1: Quasistatische Federkennlinie mit einer Belastungsgeschwindigkeit von 0,0028 N/mm²/s

Prüfung zwischen ebenen und planparallelen Stahlplatten, Aufzeichnung der 3. Belastung, Prüfung bei Raumtemperatur

Formfaktor q=3

Elastizitätsmodul

Abb. 2: Belastungsabhängigkeit der statischen und dynamischen E-Moduli

Quasistatischer E-Modul als Tangentenmodul aus der Federkennlinie. Dynamischer E-Modul aus sinusförmiger Anregung mit einer Schwingschnelle von 100 dBv re. 5 · 10⁻⁸ m/s (entsprechend einer Schwingweite von 0,22 mm bei 10 Hz und 0,08 mm bei 30 Hz)

Messung in Anlehnung an DIN 53513

Formfaktor q=3

Eigenfrequenzen

Abb. 3: Eigenfrequenzen eines schwingungsfähigen Systems mit einem Freiheitsgrad, bestehend aus einer starren Masse und einem elastischen Lager aus Sylomer SR 28 auf starrem Untergrund

Parameter: Dicke des Sylomerlagers

Abb. 4: Verminderung der Übertragung mechanischer Schwingungen durch den Einbau einer elastischen Lagerung aus Sylomer SR 28 auf starrem Untergrund

Parameter: Übertragungsmaβ in dB, Isolierwirkungsgrad in Prozent

Einfluss des Formfaktors

Die Diagramme geben Korrekturwerte bei unterschiedlichen Formfaktoren an.

Abb. 5: Statischer Einsatzbereich

Abb. 6: Einfederung*

Abb. 7: Dynamischer Elastizitätsmodul bei 10 Hz*

Abb. 8: Eigenfrequenzen*

*Referenzwerte: Pressung 0,028 N/mm², Formfaktor q=3

(Polyetherurethan)

Farbe rosa

Standard-Lieferformen, ab Lager

Dicke: 12,5 mm bei Sylomer® SR 42 - 12

25 mm bei Sylomer® SR 42 - 25

Rollen: 1,5 m breit, 5,0 m lang Streifen: bis 1,5 m breit, bis 5,0 m lang

Andere Abmessungen (auch Dicke), sowie Stanzteile, Formteile auf Anfrage

Einsatzbereich	Druckbelastung	Verformung
	formfaktorabhängig, die a gelten für Formf	
Statischer Einsatzbereich (statische Lasten)	bis 0,042 N/mm²	ca. 7 %
Dynamikbereich (statische und dynamische Lasten)	bis 0,065 N/mm²	ca. 25 %
Lastspitzen (seltene, kurzzeitige Lasten)	bis 2 N/mm²	ca. 80 %

Sylomer® Typenreihe Statischer Einsatzbereich

Werkstoffeigenschaften		Prüfverfahren	Anmerkung
Mechanischer Verlustfaktor	η = 0,16	DIN 53513*	frequenz-, last- und amplitudenabhängig
Rückprallelastizität	55 %	DIN 53573	
Druckverformungsrest	< 5 %	EN ISO 1856	50 % Verformung, 23 °C, 70 h, 30 min nach Entlastung
Statischer Schubmodul	0,08 N/mm ²	DIN ISO 1827*	bei einer Vorspannung von 0,042 N/mm²
Dynamischer Schubmodul	0,17 N/mm ²	DIN ISO 1827*	bei einer Vorspannung von 0,042 N/mm², 10 Hz
Reibwert (Stahl)	μ _s = 0,5	Getzner Werkstoffe	trocken
Reibwert (Beton)	μ _B = 0,7	Getzner Werkstoffe	trocken
Abrieb	1200 mm ³	DIN 53516	Last 7,5 N, Unterhaut
Einsatztemperatur	-30 bis 70 °C		kurzzeitig höhere Temperaturen möglich
Spezifischer Durchgangswiderstand	> 10 ¹¹ Ω·cm	DIN IEC 93	trocken
Wärmeleitfähigkeit	0,07 W/(mK)	DIN 52612/1	
Brandverhalten	B2 B, C und D	DIN 4102 EN ISO 11925-2	normal entflammbar bestanden

 $^{^{}st}$ Messung in Anlehnung an die jeweilige Norm

Alle Angaben und Daten beruhen auf unserem derzeitigen Wissensstand. Sie können als Rechen- bzw. Richtwerte herangezogen werden, unterliegen üblichen Fertigungstoleranzen und stellen keine zugesicherten Eigenschaften dar. Änderungen vorbehalten.

Federkennlinie

Abb. 1: Quasistatische Federkennlinie mit einer Belastungsgeschwindigkeit von 0,0042 N/mm²/s

Prüfung zwischen ebenen und planparallelen Stahlplatten, Aufzeichnung der 3. Belastung, Prüfung bei Raumtemperatur

Formfaktor q=3

Elastizitätsmodul

Abb. 2: Belastungsabhängigkeit der statischen und dynamischen E-Moduli

Quasistatischer E-Modul als Tangentenmodul aus der Federkennlinie. Dynamischer E-Modul aus sinusförmiger Anregung mit einer Schwingschnelle von 100 dBv re. 5 · 10⁻⁸ m/s (entsprechend einer Schwingweite von 0,22 mm bei 10 Hz und 0,08 mm bei 30 Hz)

Messung in Anlehnung an DIN 53513

Formfaktor q=3

Eigenfrequenzen

Abb. 3: Eigenfrequenzen eines schwingungsfähigen Systems mit einem Freiheitsgrad, bestehend aus einer starren Masse und einem elastischen Lager aus Sylomer SR 42 auf starrem Untergrund

Parameter: Dicke des Sylomerlagers

Abb. 4: Verminderung der Übertragung mechanischer Schwingungen durch den Einbau einer elastischen Lagerung aus Sylomer SR 42 auf starrem Untergrund

Parameter: Übertragungsmaβ in dB, Isolierwirkungsgrad in Prozent

Einfluss des Formfaktors

Die Diagramme geben Korrekturwerte bei unterschiedlichen Formfaktoren an.

Abb. 5: Statischer Einsatzbereich

Abb. 7: Dynamischer Elastizitätsmodul bei 10 Hz*

Abb. 6: Einfederung*

Abb. 8: Eigenfrequenzen*

*Referenzwerte: Pressung 0,042 N/mm², Formfaktor q=3

(Polyetherurethan)

Farbe grün

Standard-Lieferformen, ab Lager

Dicke: 12,5 mm bei Sylomer® SR 55 - 12

25 mm bei Sylomer® SR 55 - 25

Rollen: 1,5 m breit, 5,0 m lang Streifen: bis 1,5 m breit, bis 5,0 m lang

Andere Abmessungen (auch Dicke), sowie Stanzteile, Formteile auf Anfrage

Einsatzbereich	Druckbelastung	Verformung	
	formfaktorabhängig, die a gelten für Formf		
Statischer Einsatzbereich (statische Lasten)	bis 0,055 N/mm²	ca. 7 %	
Dynamikbereich (statische und dynamische Lasten)	bis 0,085 N/mm²	ca. 25 %	
Lastspitzen (seltene, kurzzeitige Lasten)	bis 2 N/mm²	ca. 80 %	

Sylomer® Typenreihe Statischer Einsatzbereich

0,1

0,01

Pressung [N/mm²]

Werkstoffeigenschaften		Prüfverfahren	Anmerkung
Mechanischer Verlustfaktor	η = 0,17	DIN 53513*	frequenz-, last- und amplitudenabhängig
Rückprallelastizität	55 %	DIN 53573	
Druckverformungsrest	< 5 %	EN ISO 1856	50 % Verformung, 23 °C, 70 h, 30 min nach Entlastung
Statischer Schubmodul	0,13 N/mm ²	DIN ISO 1827*	bei einer Vorspannung von 0,055 N/mm²
Dynamischer Schubmodul	0,26 N/mm ²	DIN ISO 1827*	bei einer Vorspannung von 0,055 N/mm², 10 Hz
Reibwert (Stahl)	μ _s = 0,5	Getzner Werkstoffe	trocken
Reibwert (Beton)	μ _B = 0,7	Getzner Werkstoffe	trocken
Abrieb	1100 mm ³	DIN 53516	Last 7,5 N, Unterhaut
Einsatztemperatur	-30 bis 70 °C		kurzzeitig höhere Temperaturen möglich
Spezifischer Durchgangswiderstand	> 10 ¹¹ Ω·cm	DIN IEC 93	trocken
Wärmeleitfähigkeit	0,07 W/(mK)	DIN 52612/1	
Brandverhalten	B2 B, C und D	DIN 4102 EN ISO 11925-2	normal entflammbar bestanden

 $^{^{}st}$ Messung in Anlehnung an die jeweilige Norm

Alle Angaben und Daten beruhen auf unserem derzeitigen Wissensstand. Sie können als Rechen- bzw. Richtwerte herangezogen werden, unterliegen üblichen Fertigungstoleranzen und stellen keine zugesicherten Eigenschaften dar. Änderungen vorbehalten.

Abb. 1: Quasistatische Federkennlinie mit einer Belastungsgeschwindigkeit von 0,0055 N/mm²/s

Prüfung zwischen ebenen und planparallelen Stahlplatten, Aufzeichnung der 3. Belastung, Prüfung bei Raumtemperatur

Formfaktor q=3

Elastizitätsmodul

Abb. 2: Belastungsabhängigkeit der statischen und dynamischen E-Moduli

Quasistatischer E-Modul als Tangentenmodul aus der Federkennlinie. Dynamischer E-Modul aus sinusförmiger Anregung mit einer Schwingschnelle von 100 dBv re. 5 · 10⁻⁸ m/s (entsprechend einer Schwingweite von 0,22 mm bei 10 Hz und 0,08 mm bei 30 Hz)

Messung in Anlehnung an DIN 53513

Formfaktor q=3

Eigenfrequenzen

Abb. 3: Eigenfrequenzen eines schwingungsfähigen Systems mit einem Freiheitsgrad, bestehend aus einer starren Masse und einem elastischen Lager aus Sylomer SR 55 auf starrem Untergrund

Parameter: Dicke des Sylomerlagers

Abb. 4: Verminderung der Übertragung mechanischer Schwingungen durch den Einbau einer elastischen Lagerung aus Sylomer SR 55 auf starrem Untergrund

Parameter: Übertragungsmaß in dB, Isolierwirkungsgrad in Prozent

Einfluss des Formfaktors

Die Diagramme geben Korrekturwerte bei unterschiedlichen Formfaktoren an.

Abb. 5: Statischer Einsatzbereich

Abb. 6: Einfederung*

Abb. 7: Dynamischer Elastizitätsmodul bei 10 Hz*

Abb. 8: Eigenfrequenzen*

*Referenzwerte: Pressung 0,055 N/mm², Formfaktor q=3

(Polyetherurethan)

Farbe braun

Standard-Lieferformen, ab Lager

Dicke: 12,5 mm bei Sylomer® SR 110 - 12

25 mm bei Sylomer® SR 110 - 25

Rollen: 1,5 m breit, 5,0 m lang Streifen: bis 1,5 m breit, bis 5,0 m lang

Andere Abmessungen (auch Dicke), sowie Stanzteile, Formteile auf Anfrage

Einsatzbereich	Druckbelastung	Verformung	
	formfaktorabhängig, die a gelten für Formf		
Statischer Einsatzbereich (statische Lasten)	bis 0,11 N/mm²	ca. 10 %	
Dynamikbereich (statische und dynamische Lasten)	bis 0,16 N/mm²	ca. 20 %	
Lastspitzen (seltene, kurzzeitige Lasten)	bis 3 N/mm²	ca. 70 %	

Sylomer® **Typenreihe** Statischer Einsatzbereich

Werkstoffeigenschaften		Prüfverfahren	Anmerkung
Mechanischer Verlustfaktor	η = 0,13	DIN 53513*	frequenz-, last- und amplitudenabhängig
Rückprallelastizität	55 %	DIN 53573	
Druckverformungsrest	< 5 %	EN ISO 1856	50 % Verformung, 23 °C, 70 h, 30 min nach Entlastung
Statischer Schubmodul	0,22 N/mm ²	DIN ISO 1827*	bei einer Vorspannung von 0,11 N/mm²
Dynamischer Schubmodul	0,42 N/mm ²	DIN ISO 1827*	bei einer Vorspannung von 0,11 N/mm², 10 Hz
Reibwert (Stahl)	μ _s = 0,5	Getzner Werkstoffe	trocken
Reibwert (Beton)	μ _в = 0,7	Getzner Werkstoffe	trocken
Abrieb	1100 mm ³	DIN 53516	Last 10 N, Unterhaut
Einsatztemperatur	-30 bis 70 °C		kurzzeitig höhere Temperaturen möglich
Spezifischer Durchgangswiderstand	> 10 ¹¹ Ω·cm	DIN IEC 93	trocken
Wärmeleitfähigkeit	0,08 W/(mK)	DIN 52612/1	
Brandverhalten	B2 B, C und D	DIN 4102 EN ISO 11925-2	normal entflammbar bestanden

^{*} Messung in Anlehnung an die jeweilige Norm

Alle Angaben und Daten beruhen auf unserem derzeitigen Wissensstand. Sie können als Rechen- bzw. Richtwerte herangezogen werden, unterliegen üblichen Fertigungstoleranzen und stellen keine zugesicherten Eigenschaften dar. Änderungen vorbehalten.

Federkennlinie

Abb. 1: Quasistatische Federkennlinie mit einer Belastungsgeschwindigkeit von 0,011 N/mm²/s

Prüfung zwischen ebenen und planparallelen Stahlplatten, Aufzeichnung der 3. Belastung, Prüfung bei Raumtemperatur

Formfaktor q=3

Elastizitätsmodul

Abb. 2: Belastungsabhängigkeit der statischen und dynamischen E-Moduli

Quasistatischer E-Modul als Tangentenmodul aus der Federkennlinie. Dynamischer E-Modul aus sinusförmiger Anregung mit einer Schwingschnelle von 100 dBv re. 5 · 10⁻⁸ m/s (entsprechend einer Schwingweite von 0,22 mm bei 10 Hz und 0,08 mm bei 30 Hz)

Messung in Anlehnung an DIN 53513

Formfaktor q=3

Abb. 3: Eigenfrequenzen eines schwingungsfähigen Systems mit einem Freiheitsgrad, bestehend aus einer starren Masse und einem elastischen Lager aus Sylomer SR 110 auf starrem Untergrund

Parameter: Dicke des Sylomerlagers

Abb. 4: Verminderung der Übertragung mechanischer Schwingungen durch den Einbau einer elastischen Lagerung aus Sylomer SR 110 auf starrem Untergrund

Parameter: Übertragungsmaβ in dB, Isolierwirkungsgrad in Prozent

Einfluss des Formfaktors

Die Diagramme geben Korrekturwerte bei unterschiedlichen Formfaktoren an.

Abb. 5: Statischer Einsatzbereich

Abb. 6: Einfederung*

Abb. 7: Dynamischer Elastizitätsmodul bei 10 Hz*

Abb. 8: Eigenfrequenzen*

*Referenzwerte: Pressung 0,11 N/mm², Formfaktor q=3

(Polyetherurethan)

Farbe rot

Standard-Lieferformen, ab Lager

Dicke: 12,5 mm bei Sylomer® SR 220 - 12

25 mm bei Sylomer® SR 220 - 25

Rollen: 1,5 m breit, 5,0 m lang

Streifen: bis 1,5 m breit, bis 5,0 m lang

Andere Abmessungen (auch Dicke), sowie Stanzteile, Formteile auf Anfrage

Einsatzbereich	Druckbelastung	Verformung
	formfaktorabhängig, die a gelten für Formf	
Statischer Einsatzbereich (statische Lasten)	bis 0,22 N/mm²	ca. 10 %
Dynamikbereich (statische und dynamische Lasten)	bis 0,35 N/mm²	ca. 20 %
Lastspitzen (seltene, kurzzeitige Lasten)	bis 4 N/mm²	ca. 70 %

Sylomer® Typenreihe Statischer Einsatzbereich

Werkstoffeigenschaften		Prüfverfahren	Anmerkung
Mechanischer Verlustfaktor	η = 0,13	DIN 53513*	frequenz-, last- und amplitudenabhängig
Rückprallelastizität	55 %	DIN 53573	
Druckverformungsrest	< 5 %	EN ISO 1856	50 % Verformung, 23 °C, 70 h, 30 min nach Entlastung
Statischer Schubmodul	0,35 N/mm ²	DIN ISO 1827*	bei einer Vorspannung von 0,22 N/mm²
Dynamischer Schubmodul	0,64 N/mm ²	DIN ISO 1827*	bei einer Vorspannung von 0,22 N/mm², 10 Hz
Reibwert (Stahl)	μ _s = 0,5	Getzner Werkstoffe	trocken
Reibwert (Beton)	$\mu_{\scriptscriptstyle B}$ = 0,7	Getzner Werkstoffe	trocken
Abrieb	1000 mm ³	DIN 53516	Last 10 N, Unterhaut
Einsatztemperatur	-30 bis 70 °C		kurzzeitig höhere Temperaturen möglich
Spezifischer Durchgangswiderstand	> 10 ¹¹ Ω·cm	DIN IEC 93	trocken
Wärmeleitfähigkeit	0,08 W/(mK)	DIN 52612/1	
Brandverhalten	B2 B, C und D	DIN 4102 EN ISO 11925-2	normal entflammbar bestanden

^{*} Messung in Anlehnung an die jeweilige Norm

Alle Angaben und Daten beruhen auf unserem derzeitigen Wissensstand. Sie können als Rechen- bzw. Richtwerte herangezogen werden, unterliegen üblichen Fertigungstoleranzen und stellen keine zugesicherten Eigenschaften dar. Änderungen vorbehalten.

Federkennlinie

Abb. 1: Quasistatische Federkennlinie mit einer Belastungsgeschwindigkeit von 0,022 N/mm²/s

Prüfung zwischen ebenen und planparallelen Stahlplatten, Aufzeichnung der 3. Belastung, Prüfung bei Raumtemperatur

Formfaktor q=3

Elastizitätsmodul

Abb. 2: Belastungsabhängigkeit der statischen und dynamischen E-Moduli

Quasistatischer E-Modul als Tangentenmodul aus der Federkennlinie. Dynamischer E-Modul aus sinusförmiger Anregung mit einer Schwingschnelle von 100 dBv re. 5 · 10⁻⁸ m/s (entsprechend einer Schwingweite von 0,22 mm bei 10 Hz und 0,08 mm bei 30 Hz)

Messung in Anlehnung an DIN 53513

Formfaktor q=3

Abb. 3: Eigenfrequenzen eines schwingungsfähigen Systems mit einem Freiheitsgrad, bestehend aus einer starren Masse und einem elastischen Lager aus Sylomer SR 220 auf starrem Untergrund

Parameter: Dicke des Sylomerlagers

Abb. 4: Verminderung der Übertragung mechanischer Schwingungen durch den Einbau einer elastischen Lagerung aus Sylomer SR 220 auf starrem Untergrund

Parameter: Übertragungsmaβ in dB, Isolierwirkungsgrad in Prozent

Einfluss des Formfaktors

Die Diagramme geben Korrekturwerte bei unterschiedlichen Formfaktoren an.

Abb. 5: Statischer Einsatzbereich

Abb. 6: Einfederung*

Abb. 7: Dynamischer Elastizitätsmodul bei 10 Hz*

Abb. 8: Eigenfrequenzen*

*Referenzwerte: Pressung 0,22 N/mm², Formfaktor q=3

(Polyetherurethan)

Farbe grau

Standard-Lieferformen, ab Lager

Dicke: 12,5 mm bei Sylomer® SR 450 - 12

25 mm bei Sylomer® SR 450 - 25

Rollen: 1,5 m breit, 5,0 m lang

Streifen: bis 1,5 m breit, bis 5,0 m lang

Andere Abmessungen (auch Dicke), sowie Stanzteile, Formteile auf Anfrage

Einsatzbereich	Druckbelastung	Verformung	
	formfaktorabhängig, die a gelten für Formf		
Statischer Einsatzbereich (statische Lasten)	bis 0,45 N/mm²	ca. 10 %	
Dynamikbereich (statische und dynamische Lasten)	bis 0,7 N/mm²	ca. 20 %	
Lastspitzen (seltene, kurzzeitige Lasten)	bis 5 N/mm²	ca. 70 %	

Sylomer® **Typenreihe** Statischer Einsatzbereich

Werkstoffeigenschaften		Prüfverfahren	Anmerkung
Mechanischer Verlustfaktor	η = 0,11	DIN 53513*	frequenz-, last- und amplitudenabhängig
Rückprallelastizität	60 %	DIN 53573	
Druckverformungsrest	< 5 %	EN ISO 1856	50 % Verformung, 23 °C, 70 h, 30 min nach Entlastung
Statischer Schubmodul	0,58 N/mm ²	DIN ISO 1827*	bei einer Vorspannung von 0,45 N/mm²
Dynamischer Schubmodul	1,0 N/mm ²	DIN ISO 1827*	bei einer Vorspannung von 0,45 N/mm², 10 Hz
Reibwert (Stahl)	μ _s = 0,5	Getzner Werkstoffe	trocken
Reibwert (Beton)	μ _B = 0,7	Getzner Werkstoffe	trocken
Abrieb	400 mm ³	DIN 53516	Last 10 N, Unterhaut
Einsatztemperatur	-30 bis 70 °C		kurzzeitig höhere Temperaturen möglich
Spezifischer Durchgangswiderstand	> 10 ¹¹ Ω·cm	DIN IEC 93	trocken
Wärmeleitfähigkeit	0,1 W/(mK)	DIN 52612/1	
Brandverhalten	B2 B, C und D	DIN 4102 EN ISO 11925-2	normal entflammbar bestanden

^{*} Messung in Anlehnung an die jeweilige Norm

Alle Angaben und Daten beruhen auf unserem derzeitigen Wissensstand. Sie können als Rechen- bzw. Richtwerte herangezogen werden, unterliegen üblichen Fertigungstoleranzen und stellen keine zugesicherten Eigenschaften dar. Änderungen vorbehalten.

Abb. 1: Quasistatische Federkennlinie mit einer Belastungsgeschwindigkeit von 0,045 N/mm²/s

Prüfung zwischen ebenen und planparallelen Stahlplatten, Aufzeichnung der 3. Belastung, Prüfung bei Raumtemperatur

Formfaktor q=3

Elastizitätsmodul

Abb. 2: Belastungsabhängigkeit der statischen und dynamischen E-Moduli

Quasistatischer E-Modul als Tangentenmodul aus der Federkennlinie. Dynamischer E-Modul aus sinusförmiger Anregung mit einer Schwingschnelle von 100 dBv re. 5 · 10⁻⁸ m/s (entsprechend einer Schwingweite von 0,22 mm bei 10 Hz und 0,08 mm bei 30 Hz)

Messung in Anlehnung an DIN 53513

Formfaktor q=3

Eigenfrequenzen

Abb. 3: Eigenfrequenzen eines schwingungsfähigen Systems mit einem Freiheitsgrad, bestehend aus einer starren Masse und einem elastischen Lager aus Sylomer SR 450 auf starrem Untergrund

Parameter: Dicke des Sylomerlagers

Abb. 4: Verminderung der Übertragung mechanischer Schwingungen durch den Einbau einer elastischen Lagerung aus Sylomer SR 450 auf starrem Untergrund

Parameter: Übertragungsmaβ in dB, Isolierwirkungsgrad in Prozent

Einfluss des Formfaktors

Die Diagramme geben Korrekturwerte bei unterschiedlichen Formfaktoren an.

Abb. 5: Statischer Einsatzbereich

Abb. 6: Einfederung*

Abb. 7: Dynamischer Elastizitätsmodul bei 10 Hz*

Abb. 8: Eigenfrequenzen*

*Referenzwerte: Pressung 0,45 N/mm², Formfaktor q=3

(Polyetherurethan)

Farbe türkis

Standard-Lieferformen, ab Lager

Dicke: 12,5 mm bei Sylomer® SR 850 - 12

25 mm bei Sylomer® SR 850 - 25

Rollen: 1,5 m breit, 5,0 m lang

Streifen: bis 1,5 m breit, bis 5,0 m lang

Andere Abmessungen (auch Dicke), sowie Stanzteile, Formteile auf Anfrage

Einsatzbereich	Druckbelastung	Verformung
	formfaktorabhängig, die a gelten für Formf	
Statischer Einsatzbereich (statische Lasten)	bis 0,85 N/mm²	ca. 10 %
Dynamikbereich (statische und dynamische Lasten)	bis 1,3 N/mm²	ca. 20 %
Lastspitzen (seltene, kurzzeitige Lasten)	bis 6 N/mm²	ca. 50 %

Sylomer Typenreihe Statischer Einsatzbereich

Werkstoffeigenschaften		Prüfverfahren	Anmerkung
Mechanischer Verlustfaktor	η = 0,12	DIN 53513*	frequenz-, last- und amplitudenabhängig
Rückprallelastizität	60 %	DIN 53573	
Druckverformungsrest	< 5 %	EN ISO 1856	25 % Verformung, 23 °C, 70 h, 30 min nach Entlastung
Statischer Schubmodul	0,8 N/mm ²	DIN ISO 1827*	bei einer Vorspannung von 0,85 N/mm²
Dynamischer Schubmodul	1,4 N/mm²	DIN ISO 1827*	bei einer Vorspannung von 0,85 N/mm², 10 Hz
Reibwert (Stahl)	μ _s = 0,5	Getzner Werkstoffe	trocken
Reibwert (Beton)	μ _B = 0,7	Getzner Werkstoffe	trocken
Abrieb	300 mm ³	DIN 53516	Last 10 N, Unterhaut
Einsatztemperatur	-30 bis 70 °C		kurzzeitig höhere Temperaturen möglich
Spezifischer Durchgangswiderstand	> 10 ¹¹ Ω·cm	DIN IEC 93	trocken
Wärmeleitfähigkeit	0,11 W/(mK)	DIN 52612/1	
Brandverhalten	B2 B, C und D	DIN 4102 EN ISO 11925-2	normal entflammbar bestanden

^{*} Messung in Anlehnung an die jeweilige Norm

Alle Angaben und Daten beruhen auf unserem derzeitigen Wissensstand. Sie können als Rechen- bzw. Richtwerte herangezogen werden, unterliegen üblichen Fertigungstoleranzen und stellen keine zugesicherten Eigenschaften dar. Änderungen vorbehalten.

Abb. 1: Quasistatische Federkennlinie mit einer Belastungsgeschwindigkeit von 0,085 N/mm²/s

Prüfung zwischen ebenen und planparallelen Stahlplatten, Aufzeichnung der 3. Belastung, Prüfung bei Raumtemperatur

Formfaktor q=3

Elastizitätsmodul

Abb. 2: Belastungsabhängigkeit der statischen und dynamischen E-Moduli

Quasistatischer E-Modul als Tangentenmodul aus der Federkennlinie. Dynamischer E-Modul aus sinusförmiger Anregung mit einer Schwingschnelle von 100 dBv re. 5 · 10⁻⁸ m/s (entsprechend einer Schwingweite von 0,22 mm bei 10 Hz und 0,08 mm bei 30 Hz)

Messung in Anlehnung an DIN 53513

Formfaktor q=3

Eigenfrequenzen

Abb. 3: Eigenfrequenzen eines schwingungsfähigen Systems mit einem Freiheitsgrad, bestehend aus einer starren Masse und einem elastischen Lager aus Sylomer SR 850 auf starrem Untergrund

Parameter: Dicke des Sylomerlagers

Abb. 4: Verminderung der Übertragung mechanischer Schwingungen durch den Einbau einer elastischen Lagerung aus Sylomer SR 850 auf starrem Untergrund

Parameter: Übertragungsmaβ in dB, Isolierwirkungsgrad in Prozent

Einfluss des Formfaktors

Die Diagramme geben Korrekturwerte bei unterschiedlichen Formfaktoren an.

Abb. 5: Statischer Einsatzbereich

Abb. 6: Einfederung*

Abb. 7: Dynamischer Elastizitätsmodul bei 10 Hz*

Abb. 8: Eigenfrequenzen*

^{*}Referenzwerte: Pressung 0,85 N/mm², Formfaktor q=3

(Polyetherurethan)

Farbe violett

Standard-Lieferformen, ab Lager

Dicke: 12,5 mm bei Sylomer® SR 1200 - 12

25 mm bei Sylomer® SR 1200 - 25

Rollen: 1,5 m breit, 5,0 m lang

Streifen: bis 1,5 m breit, bis 5,0 m lang

Andere Abmessungen (auch Dicke), sowie Stanzteile, Formteile auf Anfrage

Einsatzbereich	Druckbelastung	Verformung
	formfaktorabhängig, die a gelten für Formf	
Statischer Einsatzbereich (statische Lasten)	bis 1,2 N/mm ²	ca. 10 %
Dynamikbereich (statische und dynamische Lasten)	bis 1,8 N/mm²	ca. 20 %
Lastspitzen (seltene, kurzzeitige Lasten)	bis 6 N/mm²	ca. 50 %

Sylomer® **Typenreihe** Statischer Einsatzbereich

Werkstoffeigenschaften		Prüfverfahren	Anmerkung
Mechanischer Verlustfaktor	η = 0,09	DIN 53513*	frequenz-, last- und amplitudenabhängig
Rückprallelastizität	60 %	DIN 53573	
Druckverformungsrest	< 5 %	EN ISO 1856	25 % Verformung, 23 °C, 70 h, 30 min nach Entlastung
Statischer Schubmodul	0,9 N/mm ²	DIN ISO 1827*	bei einer Vorspannung von 1,2 N/mm²
Dynamischer Schubmodul	1,6 N/mm ²	DIN ISO 1827*	bei einer Vorspannung von 1,2 N/mm², 10 Hz
Reibwert (Stahl)	μ _s = 0,5	Getzner Werkstoffe	trocken
Reibwert (Beton)	$\mu_{\scriptscriptstyle B}$ = 0,7	Getzner Werkstoffe	trocken
Abrieb	350 mm ³	DIN 53516	Last 10 N, Unterhaut
Einsatztemperatur	-30 bis 70 °C		kurzzeitig höhere Temperaturen möglich
Spezifischer Durchgangswiderstand	> 10¹¹ Ω·cm	DIN IEC 93	trocken
Wärmeleitfähigkeit	0,11 W/(mK)	DIN 52612/1	
Brandverhalten	B2 B, C und D	DIN 4102 EN ISO 11925-2	normal entflammbar bestanden

^{*} Messung in Anlehnung an die jeweilige Norm

Alle Angaben und Daten beruhen auf unserem derzeitigen Wissensstand. Sie können als Rechen- bzw. Richtwerte herangezogen werden, unterliegen üblichen Fertigungstoleranzen und stellen keine zugesicherten Eigenschaften dar. Änderungen vorbehalten.

Federkennlinie

Abb. 1: Quasistatische Federkennlinie mit einer Belastungsgeschwindigkeit von 0,12 N/mm²/s

Prüfung zwischen ebenen und planparallelen Stahlplatten, Aufzeichnung der 3. Belastung, Prüfung bei Raumtemperatur

Formfaktor q=3

Elastizitätsmodul

Abb. 2: Belastungsabhängigkeit der statischen und dynamischen E-Moduli

Quasistatischer E-Modul als Tangentenmodul aus der Federkennlinie. Dynamischer E-Modul aus sinusförmiger Anregung mit einer Schwingschnelle von 100 dBv re. 5 · 10-8 m/s (entsprechend einer Schwingweite von 0,22 mm bei 10 Hz und 0,08 mm bei 30 Hz)

Messung in Anlehnung an DIN 53513

Formfaktor q=3

Eigenfrequenzen

Abb. 3: Eigenfrequenzen eines schwingungsfähigen Systems mit einem Freiheitsgrad, bestehend aus einer starren Masse und einem elastischen Lager aus Sylomer SR 1200 auf starrem Untergrund

Parameter: Dicke des Sylomerlagers

Störfrequenz [Hz]

Abb. 4: Verminderung der Übertragung mechanischer Schwingungen durch den Einbau einer elastischen Lagerung aus Sylomer SR 1200 auf starrem Untergrund

Parameter: Übertragungsmaβ in dB, Isolierwirkungsgrad in Prozent

Einfluss des Formfaktors

Die Diagramme geben Korrekturwerte bei unterschiedlichen Formfaktoren an.

Abb. 5: Statischer Einsatzbereich

Abb. 6: Einfederung*

Abb. 7: Dynamischer Elastizitätsmodul bei 10 Hz*

Abb. 8: Eigenfrequenzen*

*Referenzwerte: Pressung 1,2 N/mm², Formfaktor q=3

FAX-Antwort: (0208) 37 83-154 Bitte senden Sie mir mehr Informationen:

Sylomer® & Sylodyn® Elastomere für die Schwingungsdämpfung im niedrigen, mittleren und hohen Bereich

Akustik + Sylomer® Elastische Befestigungselemente für Decken und Wände

KSD®-Elemente
Isolierung von Körperschall, Schwingungen
und Erschütterungen

Stahlfeder-Schwingungsdämpfer Aktivisolierung von z. B. Klimageräten, Ventilatoren, etc.

Sicherheits- und Industriestoßdämpfer Elemente zur sicheren Abbremsung bewegter Massen

Schwingungsisolatoren für Maschinen, Motoren, Kompressoren, Transfersysteme, Lüfter und Gebläse

Maschinenschuhe
zur Nivellierung und
Dämpfung von Geräten
und Maschinen

Gummi-Metall-Elemente
Schwingungsabsorption
und Lärmreduzierung

Gummi-Hohlfedern
Elastomerfedern
Federelemente für den
Einsatz im Fahrzeugund Maschinenbau

Lärmschutzkabinen und -kapseln Dämmung und Isolierung von Luftschall

Paneel-System HAPS
» Do it yourself «
Hochabsorbierendes
Lärmschutzsystem für
den Eigenbau

Schallabsorptionselemente
Dämmmaterialien für
Maschinen, Geräte und
den Innenausbau

ELASTOMERTECHNIK Gummitechnik Kunststofftechnik

ANTRIEBSTECHNIK
Antriebselemente
Linearsysteme

FLUIDTECHNIK
Hydraulik
Hydraulik-Service

Platz für Ihre Visitenkarte

Einkleben - Kopieren - Faxen

Unsere Anschrift	lautet:

Firma:			
Name:			
Straße:			
PLZ & Ort:			
Telefon:			
Fax:			
E-M@il:			