MTAT.07.003 CRYPTOLOGY II

How to Model Cryptographic Primitives and Protocols

Sven Laur University of Tartu

Abstraction is a key to successs

> Cryptographic constructions are complex

- Irrelevant techincal details obscure security proofs.
- A good abstraction clarifies what is meant by security.
- An abstraction highlights which properties are relevant for security.

Cryptographic constructions are not provably secure

- Security of most cryptographic constructions is based on *intractability*.
- So far provable lower bounds are trivial for all computational problems.
- ♦ It is also *highly* unlikely that such proofs *do* exist in a *compact* form.

> Abstraction allows to escape intractability issues

- We just assume that necessary cryptographic primitives exist.
- The actual implementation of such primitives is out of our scope.

Illustrative Example

2048-bit RSA

Key generation

- 1. Choose two 1024-bit prime numbers p and q.
- 2. Compute Let n = pq, choose $e \leftarrow \mathbb{Z}_{\phi(n)}^*$ and set $d \leftarrow e^{-1} \mod \phi(n)$.
- 3. Public key is (n, e) and secret key is (n, e, d).

Encryption

- 1. Let pad : $\{0,1\}^{128} \to \mathbb{Z}_n^*$ be a predefined embedding.
- 2. To encrypt $m \in \{0,1\}^{128}$, output $c \leftarrow \mathsf{pad}(m)^e \mod n$.

Decryption

- 1. To decrypt $c \in \mathbb{Z}_n$, compute $x \leftarrow c^d \mod n$.
- 2. Extract m form x and verify that pad(m) = x.
- 3. Output \perp in case of failure and m otherwise.

The corresponding abstraction

Public Key Cryptosystem

To get rid of unnecessary details

- ▶ We split the system into algorithms and treat them as black boxes.
- > Functionality is guaranteed by specifying additional conditions.
- > Security is defined through specifications of tolerable attack scenarios.

Naive security requirement

Goal: It should be infeasible to derive a secret key from accessible data.

$$\mathcal{G}^{\mathcal{A}}$$

$$\begin{bmatrix} (\mathsf{sk},\mathsf{pk}) \leftarrow \mathsf{Gen} \\ \mathsf{sk}^* \leftarrow \mathcal{A}(\mathsf{pk}) \end{bmatrix}$$

$$\mathbf{return} \ [\mathsf{sk} \stackrel{?}{=} \mathsf{sk}^*]$$

The advantage of a key only attack is defined as an average success:

$$Adv(A) = Pr[G^A = 1]$$
.

Caveat: The attack scenario does not capture the security goal in real life.

Seemingly more advanced attack scenario

$$\mathcal{G}^{\mathcal{A}}$$

$$\begin{bmatrix} (\mathsf{sk},\mathsf{pk}) \leftarrow \mathsf{Gen} \\ \mathsf{sk}^* \leftarrow \mathcal{A}^{\mathsf{Enc}_{\mathsf{pk}}(\cdot)}(\mathsf{pk}) \\ \\ \mathbf{return} \ [\mathsf{sk} \stackrel{?}{=} \mathsf{sk}^*] \end{bmatrix}$$

Caveat: The attack scenario is not more powerful than the previous.

- \triangleright The adversary \mathcal{A} knows what is inside (Gen, Enc, Dec) blocks.
- \triangleright As adversary knows pk, she can compute $\mathsf{Enc}_{\mathsf{pk}}(m)$ by herself.
- \triangleright The oracle access to $Enc_{pk}(\cdot)$ function is redundant.

Classical chosen-ciphertext attack scenario

The difference: The attacker has an implicit access to secret key.

- Decryption operation can leak information about secret key.
- \triangleright This can happen only for the messages not computed by $Enc_{pk}(\cdot)$.
- > Such attacks are sometimes plausible in real life.

Time-success profiles

Fix the security game and the advantage function $Adv(\cdot)$. Then any concrete instantiation of a primitive can be broken with enough resources.

As a result, there exist a time-success profile $\varepsilon = \varepsilon(t)$, which captures the main security properties. Unfortunately, this profile cannot be computed nor approximated with our current knowledge.

Examples of Low-level Primitives

Discrete logarithm

- \triangleright Let p be a prime such that p=2q+1 for another 2048-bit prime q.
- ho Fix a generator g such that $g^2 \neq 1$ and define $\mathbb{G} = \left\{g^i : 0 \leq i < q\right\}$.
- > Then discrete logarithm defined below is considered intractable

$$\forall y \in \mathbb{G} : \log(y) = x \Leftrightarrow g^x \equiv y \pmod{p}$$
.

Exercise. Abstract away all details under the assumptions:

- \triangleright all construction based on it use only multiplication modulo p,
- \triangleright strings are mapped to $\mathbb G$ and elements of $\mathbb G$ are mapped to strings.

How to model the primitive if constructions also use addition modulo p?

Discrete logarithm problem in an abstract group

Definition. Let $\mathbb{G} = \langle g \rangle$ be a q-element multiplicative group generated by the element g. Then for any elements $y, z \in \mathbb{G}$ the discrete logarithm $\log_z y$ is defined as the smallest integer x such that $z^x = y$ and \bot if $y \notin \langle z \rangle$.

Advantage. Let $\mathsf{Adv}^{\mathsf{dl}}_{\mathbb{G}}(\mathcal{A}) = \Pr\left[\mathcal{G}^{\mathcal{A}} = 1\right]$ be defined through the game

$$\mathcal{G}^{\mathcal{A}}$$

$$\left[egin{array}{c} x \leftarrow_{\overline{u}} \mathbb{Z}_q & & \\ ext{return } [x \stackrel{?}{=} \mathcal{A}(g,g^x)] & & \end{array}
ight.$$

Discrete logarithm problem in an abstract group

Definition. Let $\mathbb{G}=\langle g\rangle$ be a q-element multiplicative group generated by the element g. Then for any elements $y,z\in\mathbb{G}$ the discrete logarithm $\log_z y$ is defined as the smallest integer x such that $z^x=y$ and \bot if $y\notin\langle z\rangle$.

Advantage. Let $\mathsf{Adv}^{\mathsf{dl}}_{\mathbb{G}}(\mathcal{A}) = \Pr\left[\mathcal{G}^{\mathcal{A}} = 1\right]$ be defined through the game

$$\mathcal{G}^{^{\Lambda}}$$

$$\left[egin{array}{c} x \leftarrow_{\overline{u}} \mathbb{Z}_q & & & \\ ext{return } [x \stackrel{?}{=} \mathcal{A}(g,g^x)] & & & \end{array}
ight.$$

Security. A group \mathbb{G} is (t, ε) -secure DL-group iff for any t-time adversary \mathcal{A} the corresponding advantage $\mathsf{Adv}^{\mathsf{dl}}_{\mathbb{G}}(\mathcal{A}) \leq \varepsilon$.

Diffie-Hellman protocol

Exercise. Formalise the security requirements for Diffie-Hellman protocol.

- 1. Eavesdropper cannot reconstruct the common secret g^{xy} .
- 2. Eavesdropper learns nothing about the common secret g^{xy} .

How to convert the common secret g^{xy} to a valid secret key sk $\in \{0,1\}^n$?

Computational Diffie-Hellman problem

Security. A group \mathbb{G} is (t, ε) -secure CDH-group iff for any t-time adversary \mathcal{A} the corresponding advantage $\operatorname{Adv}^{\operatorname{cdh}}_{\mathbb{G}}(\mathcal{A}) \leq \varepsilon$ where the corresponding security game is defined as follows.

$$\begin{bmatrix} x \leftarrow \mathbb{Z}_q \\ y \leftarrow \mathbb{Z}_q \\ z \leftarrow \mathcal{A}(g, g^x, g^y) \\ \mathbf{return} \ [g^{xy} \stackrel{?}{=} z] \end{bmatrix}$$

Decisional Diffie-Hellman

Security. A group \mathbb{G} is (t, ε) -secure DDH-group iff for any t-time adversary \mathcal{A} the corresponding advantage $\operatorname{Adv}_{\mathbb{G}}^{\operatorname{ddh}}(\mathcal{A}) \leq \varepsilon$ where the corresponding security games \mathcal{G}_0 and \mathcal{G}_1 and the advantage are defined as follows.

$$\mathsf{Adv}^{\mathsf{ddh}}_{\mathbb{G}}(\mathcal{A}) = \left| \Pr \left[\mathcal{G}_0^{\mathcal{A}} = 1 \right] - \Pr \left[\mathcal{G}_1^{\mathcal{A}} = 1 \right] \right|$$

Factorisation

Factorisation of n-bit composite numbers is considered difficult

- \triangleright Naive factorisation takes $\Theta(2^{\frac{n}{2}})$ division operations.
- \triangleright Pollard ρ algorithm takes $O(2^{\frac{n}{4}})$ multiplication operations on average.
- \triangleright Quadratic sieve takes $O(2^{c\sqrt{n}})$ multiplication operations on average.
- \triangleright Number field sieve takes $O(2^{c\sqrt[3]{n}})$ multiplication operations on average.

Current records

- ▶ Largest RSA challenge factored had 768 bits (2009).
- ▶ Largest number factored using quantum annealing is 4,088,459 (2018).
- \triangleright Largest partially factored Mersenne number has 5,240,707 bits (2016).
- > Approximate running-times are in thousands of computer years.

Abstract distribution of RSA moduli

Definition. A distribution of RSA moduli \mathfrak{N} is defined by an efficient algorithm Gen that outputs n, p, q such that n = pq and p, q are primes.

Security. A distribution \mathfrak{N} is (t, ε) -secure RSA-distribution iff for any t-time adversary \mathcal{A} the corresponding advantage $\operatorname{Adv}^{\mathsf{rsa}}_{\mathbb{G}}(\mathcal{A}) \leq \varepsilon$ where the security game is defined as follows

Example. Let \mathfrak{P} be an efficiently samplable set of primes. Then the distribution of products pq where $p \leftarrow \mathfrak{P}$ and $q \leftarrow \mathfrak{P}$ is RSA distribution.

Relations Between Problems

CDH group is also DH group

Intuition: If we can compute discrete logarithm then CDH is easy.

Reduction. Let \mathcal{A} be a DL-finder algorithm. Then the adversary \mathcal{B}

is as successful as the adversary \mathcal{A} :

$$\mathsf{Adv}^{\mathsf{cdh}}_{\mathbb{G}}(\mathfrak{B}) = \mathsf{Adv}^{\mathsf{dl}}_{\mathbb{G}}(\mathcal{A})$$
 .

Hence (t,ε) -secure CDH group must be also (t,ε) -secure DL group.

Formal proof

The adversary A sees the following chain of events

As $z = g^{xy} \Leftrightarrow xy = \overline{x}y \Leftrightarrow x = \overline{x}$ we can further simplify

Simple and difficult puzzles

Intuition: A good algorithm *should* work uniformly well on each instance.

Instance of discrete logarithm

Random self-reducibility

Any instance of a discrete logarithm can be reduced to a random instance.

The adversary A sees the following chain of events

and thus the worst case advantage $\Pr[x = \mathcal{B}(g^x)] = \mathsf{Adv}^{\mathsf{dl}}_{\mathbb{G}}(\mathcal{A}).$

Consequences of random self-reducibility

Consequence: There are no hard instances but easy instances may exist.

- ▷ The average success is larger for hard instances.
- Easy instances are handled worse than by the original algorithm.
- > Specialised algorithms for specific instance classes might work better.

Consequences of random self-reducibility

Consequence: There are various trade-offs between time and success.

- ▷ By repeating the DL-computations we can increase the success.
- \triangleright Any estimate on parameters t, ε gives a lower bound to success.

