

DATA PREPARATION: Instruction for machine learning data preparation

STEP 1

- Run ClinicalVolumes tumor segmentation. Save segmentation of the tumor into a "seg" folder. one "seg" folder for each animal

STEP 2

- RGB image creation (Python)
 - 1) Open "Dicom_to_tiff/1_RGBcreator/Python" folder
 - 2) Inside the "data_dir" folder, create a new directory (Note: create one directory for each animal) Name each directory similarly to the following: LFIC_MR_0001_20200101 The name must have the same number of letters and underscore as the suggested. The name will be used to name the RGB images
 - 3) Move or copy the dicom files into the corresponding folder inside the "data_dir" directory
 - Open "RGB_creator_multidir" in a Python editor
 Select image options as requested
 - 5) Run "RGB_creator.py" from the terminal with the command: python RGB_creator_multidir.py
- The program will convert all the dicom files inserted in the different folders in .tif 256x256x3

STEP 3

- 8bits mask image creation (MATLAB)
 - 1) Copy a single "seg" folder (folder with the segmentation dicom files) into "Dicom_to_tiff/1_RGBcreator/Matlab" folder
 - Open Gray_scale_and_8uint_image.m file in MATLAB and follow the instruction inside the file.
 (no need to clean the folders from old data)
 - 3) Segmented masks will be created and found in the "Images_GrayS_8bits" folder

- The program must be run for one animal (one dicom dataset) at the time

Note: If needed to **rename**, **invert the order** or **rotate** the .tif image files:

- 1. open the "Dicom_to_tiff/ 3_IMAGE_editing" folder
- 2. move the tif images into the corresponding folder (The name of the folder will be used to name or rename the images)
- Open "IMAGE_editing_multidir.py" in a Python editorSelect image options as requested
- 4. Run "IMAGE_editing_multidir.py" from the terminal with the command: python IMAGE_editing_multidir.py

STEP 4

- Move the tif image files and mask files in a folder XX. One folder per animal

Instruction for machine learning data preparation (Skull_stripping)

STEP 1

- Run ClinicalVolumes tumor segmentation. Save segmentation of the tumor into a "seg" folder.
- Run ClinicalVolumes full brain segmentation. Save segmentation of the brain into a "seg_skull_stripping" folder.

STEP 2

- RGB image creation _ Skull_stripping_mask creation (MATLAB)
 - Move the "seg_skull_stripping" folder into
 "Dicom_to_tiff/2_RGBcreator_Skull_stripping/Matlab" folder
 - 2) Open Skull_stripping_mat file in MATLAB and follow the instruction reported in the file. (no need to clean the folders from old data)
 - 3) Segmented brains .tif files will be found in the "Skull_stripping_mask" folder
- The program must be run for one animal (one dicom dataset) at the time
- RGB image creation _ Skull_stripping_mask creation (Python)

will be used to name the RGB images

- 4) Open "Dicom_to_tiff/2_RGBcreator_Skull_stripping /Python" folder
- 5) Inside the "data_dir" folder create a new directory (Note: create one directory for each animal)

 Name each directory similarly to the following: LFIC_MR_0001_20200101

 The name must have the same number of letters and underscore as the suggested. The name
 - Inside the "Skull_stripping_mask" folder create a directory of the same name as in (5)
- 7) Move or copy the dicom files into the corresponding "data_dir" folder
- 8) Move or copy the .tif skull stripping masks files (created in STEP 2) into the corresponding "Skull_stripping_mask" folder

- Open "RGB_creator_multidir_stripping.py" in a Python editor
 Select image options as requested
- 10) Run "RGB_creator_multidir_stripping.py" from the terminal with the command: python RGB_creator_multidir_stripping.py
- The program will convert all the dicom files inserted in the different folders in .tif 256x256x3

STEP 3

- 8bits mask image creation (MATLAB)
 - 4) Copy the "seg" folder into "Dicom_to_tiff/1_RGBcreator/Matlab" folder
 - 5) Open Gray_scale_and_8uint_image.m file in MATLAB and follow the instruction inside the file. (no need to clean the folders from old data)
 - 6) Images will be created in the "Images_GrayS_8bits" folder
- The program must be run for one animal (one dicom dataset) at the time

Note: If needed to **rename**, **invert the order** or **rotate** the tif image files:

- 5. open the "Dicom_to_tiff/ 3_IMAGE_editing" folder
- 6. move the tif images into the corresponding folder (The name of the folder will be used to name or rename the images)
- Open "IMAGE_editing_multidir.py" in a Python editor
 Insert the directory paths as requested
 Select image options as requested
- 8. Run "IMAGE_editing_multidir.py" from the terminal with the command: python IMAGE_editing_multidir.py

STEP 4

- Move the .tif image files and .tif mask files in a folder XX. One folder per animal