오비탈 렌더링 (2024.5)

개요

본 탐구에서는 python의 numpy와 matplotlib을 이용하여 슈뢰딩거의 파동방정식을 시각화하고 수소꼴 원자의 오비탈들을 렌더링하였다.

이론

원자 오비탈

원자가 포함한 전자들은 무작위적으로 발견되지 않고, 확률적으로 일정한 분포를 가지기 떄문에 이를 파동함수로 대략적으로 일반화할 수 있다. 파동함수의 제곱은 전자 존재의 확률 밀도를 나타내는데, 이를 특정 범위 이상으로 필터링한 것은 원자 오비 탈이라 한다.

양자수

양자수는 오비탈이 가지는 요소를 말하는 것으로, 주양자수, 부양자수, 그리고 방위 양자수의 세가지를 가진다. 주양자수(n)은 오비탈 에너지에 해당하는 값, 즉 오비탈이 존재하는 전자 껍질을 말한다. 수소꼴 원자에서는 주양자수에 의해 에너지 준위가 결정된다. 부양자수(I)은 오비탈의 모양을 나타내는 양자수로, s, p, d, d 등의 모양은 이 부양자수, 혹은 각운동량 양자수에 의 하여 결정된다. 자기 양자수(m)은 오비탈의 방향을 정하는 양자수로, 예를 들어 d 오비탈의 경우 각각 d 사 가지를 구분하는 양자수이다.

구형 극좌표계

슈뢰딩거 파동함수는 3차원 구형 극좌표계에서 동작한다. 구형 극좌표계는 (r, θ, ϕ) 꼴의 좌표를 사용하는데, r은 원점에서 점이 떨어진 거리, θ 는 위도, 그리고 ϕ 는 경도를 의미한다. 구형 극좌표계에서의 점 (r, θ, ϕ) 은 직교좌표계에서 (r, θ, ϕ) 은 지원 (r, θ, ϕ) 은 (r, θ, ϕ) 은 (r, θ, ϕ) 은 (r, θ, ϕ) 은 (r, θ, ϕ) 은

슈뢰딩거의 파동함수

TABLE 1.2	Hydrogenlike Wavefunctions*	(Atomic Orbitals), $\psi = R$	Y
-----------	-----------------------------	-------------------------------	---

(a) Radial wavefunctions, $R_{nl}(r)$		(b) Angular wavefunctions, $Y_{lm_l}(\theta, \phi)$			
n	1	$R_{nl}(r)$	1	" m_l " [†]	$Y_{lm_l}(\theta, \phi)$
1	0	$2\left(\frac{Z}{a_0}\right)^{3/2} e^{-Zr/a_0}$	0	0	$\left(\frac{1}{4\pi}\right)^{1/2}$
2	0	$\frac{1}{2\sqrt{2}} \left(\frac{Z}{a_0}\right)^{3/2} \left(2 - \frac{Zr}{a_0}\right) e^{-Zr/2a_0}$	1	x	$\left(\frac{3}{4\pi}\right)^{1/2}\sin\theta\cos\varphi$
	1	$\frac{1}{2\sqrt{6}} \left(\frac{Z}{a_0}\right)^{3/2} \left(\frac{Zr}{a_0}\right) e^{-Zr/2a_0}$		У	$\left(\frac{3}{4\pi}\right)^{\!1/2}\sin\theta\sin\varphi$
3	0	$\frac{2}{9\sqrt{3}} \left(\frac{Z}{a_0}\right)^{3/2} \left(3 - \frac{2Zr}{a_0} + \frac{2Z^2r^2}{9a_0^2}\right) e^{-Zr/3a_0}$		z	$\left(\frac{3}{4\pi}\right)^{1/2}\cos\theta$
	1	$\frac{4}{27\sqrt{6}} \left(\frac{Z}{a_0}\right)^{3/2} \left(2 - \frac{Zr}{3a_0}\right) \left(\frac{Zr}{a_0}\right) e^{-Zr/3a_0}$	2	xy	$\left(\frac{15}{16\pi}\right)^{1/2}\!\sin^2\theta\sin2\varphi$
	2	$\frac{4}{81\sqrt{30}} \left(\frac{Z}{a_0}\right)^{3/2} \left(\frac{Zr}{a_0}\right)^2 e^{-Zr/3a_0}$		yz	$\left(\frac{15}{4\pi}\right)^{1/2}\cos\theta\sin\theta\sin\phi$
				zx	$\left(\frac{15}{4\pi}\right)^{1/2}\cos\theta\sin\theta\cos\phi$
				$x^{2} - y^{2}$	$\left(\frac{15}{16\pi}\right)^{1/2}\!\sin^2\theta\cos2\varphi$
				z^2	$\left(\frac{5}{16\pi}\right)^{1/2} (3\cos^2\theta - 1)$

Note: In each case, $a_0 = 4\pi\epsilon_0 \hbar^2 / m_e e^2 \approx 52.9 \text{ pm}$.

슈뢰딩거의 파동함수는 \$ ψ(r, θ, φ) = R(r) * Y(θ, φ) \$ 꼴로 나타낸다. R은 방사방향 파동함수로, 극좌표계상에서의 거리에만 영향을 받으며, Y는 각파동 함수로, 극좌표계상에서의 위도와 경도에만 영향을 받는다. 이 파동함수는 각각의 오비탈 양자수에 따라 달라진다.

구현

파이썬 코드 실행 시 들어오는 전달인자를 오비탈의 종류로 받아 렌더링하는 구조로 구현하였다.

사전 변수 정의

```
orbital = str(sys.argv[1])
bohr_radius = 1.5
hz = 2 * 10 ** 10
judgeRate = 1
```

위 코드에서 orbital은 전달인자로 받은 오비탈의 종류, bohr_radius는 보어 반지름 a_0 , hz는 수소꼴 원자의 양성자 수, 그리고 judgeRate는 추후 확률밀도를 필터링하는 기준으로 사용하는 변수이다. 위에서 bohr_radius와 hz는 좌 표축 스케일에 맞도록 확대하였다.

파동함수 정의

```
def fR(rad):
    if orbital == 's0':
        return 2 * np.sqrt((hz / bohr_radius) ** 3) * np.exp(-0.5 * hz *
rad / bohr_radius)
    elif orbital == 'p-1' or orbital == 'p0' or orbital == 'p1':
```

[†]In all cases except $m_l = 0$, the orbitals are sums and differences of orbitals with specific values of m_l .

```
return rad * np.exp(-rad / (2 * bohr_radius)) / (np.sqrt(24 *
(bohr radius ** 5)))
    elif orbital == 'd-2' or orbital == 'd-1' or orbital == 'd0' or
orbital == 'd1' or orbital == 'd2':
         return 4 * rad * rad * np.exp(-rad / (3 * bohr radius)) / (81 *
np.sgrt(30 * ((bohr radius) ** 3)) * (bohr radius ** 2))
def fY(th, ph):
    if orbital == 's0':
         return np.sqrt(1 / (4 * np.pi))
    elif orbital == 'p-1':
         return np.sqrt(\frac{3}{8} / (\frac{8}{9} * np.pi)) * np.sin(th) * np.exp(-ph * \frac{1}{1})
    elif orbital == 'p0':
         return np.sqrt(3 / (4 * np.pi)) * np.cos(th)
    elif orbital == 'p1':
         return np.sqrt(\frac{3}{8} / (\frac{8}{9} * np.pi)) * np.sin(th) * np.exp(ph * \frac{1}{1})
    elif orbital == 'd-2':
         return np.sqrt(\frac{5}{32} * np.pi)) * np.sin(th) * np.sin(th) *
np.exp(-2 * ph * 1j)
    elif orbital == 'd-1':
         return np.sqrt(\frac{5}{8} / (\frac{8}{9} * np.pi)) * np.cos(th) * np.sin(th) *
np.exp(-ph * 1j)
    elif orbital == 'd0':
         return np.sqrt(\frac{5}{16} \times \text{np.pi}) * (\frac{3}{16} \times \text{np.cos}) * (\frac{1}{16} \times \text{np.pi})
    elif orbital == 'd1':
         return np.sqrt(\frac{5}{8} / (\frac{8}{9} * np.pi)) * np.cos(th) * np.sin(th) *
np.exp(ph * 1j)
    elif orbital == 'd2':
         return np.sqrt(\frac{5}{4} / (\frac{32}{4} * np.pi)) * np.sin(th) * np.sin(th) *
np.exp(2 * ph * 1j)
```

각 오비탈에 따라 방사상 파동함수와 각파동함수가 다른 값을 가지므로, 이를 if문을 이용해 분리해준다. fR은 방사상 파동함수, fY는 각파동함수를 나타낸다.

판정 함수

```
def judge(r, th, ph):
    wf = fR(r) * fY(th, ph)
    dP = (wf ** 2)
    return (dP >= judgeRate), (wf >= 0)
```

위 코드에서 judge 함수는 특정 공간에서 전자가 존재할 확률이 기준치보다 큰지 작은지에 따라 참 혹은 거짓의 boolean 값은 반환하는 함수이다.

극좌표계 설계

```
r = np.linspace(0, 6, 10)
theta = np.linspace(0, 2 * np.pi, 50)
phi = np.linspace(0, 2 * np.pi, 50)
```

```
Xp = []
Yp = []
Zp = []

Xm = []
Ym = []
Zm = []
```

반지름 $r \in [0, 6]$ 의 공간상에서 확인하도록 설계하였다. 위 코드에서 x_p , y_p , y_p , y_p 판동함수의 값이 양수인 공간들, y_p , y_p , y_p , y_p 판동함수의 값이 음수인 공간들을 각각 저장하는 리스트이다.

분류

```
while len(Xp) < 32000:
    judgeRate *= 0.9
    print("Judge Rate: " + str(judgeRate))
    for rad in r:
        for a in theta:
            for b in phi:
                res = judge(rad, a, b)
                if (res[0]):
                    if (res[1]):
                        Xp.append(rad * np.sin(a) * np.cos(b))
                        Yp.append(rad * np.sin(a) * np.sin(b))
                        Zp.append(rad * np.cos(a))
                    else:
                        Xm.append(rad * np.sin(a) * np.cos(b))
                        Ym.append(rad * np.sin(a) * np.sin(b))
                        Zm.append(rad * np.cos(a))
```

리스트의 원소 개수가 특정 값 이상이 될 때까지 기준치를 낮추어가며 필터링하는 방식이다.

플로팅

```
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')

ax.scatter3D(Xp, Yp, Zp, color = 'red')
ax.scatter3D(Xm, Ym, Zm, color = 'blue')
ax.set_box_aspect([1, 1, 1])

ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')

def animate(i):
    ax.view_init(elev=10, azim=i*4)
    return fig,
```

```
ani = animation.FuncAnimation(fig, animate, frames = 90, interval = 50,
blit = True)
ani.save('./export/' + orbital + '.mp4', writer = 'ffmpeg', fps = 20)
```

결괏값을 3차원 matplotlib axis에 플롯하고, ffmpeg를 이용해 이를 .mp4 애니메이션 형식으로 저장한다.

결과물

1s0

.

2p0

2p1

.

2p-1

7

3d0

3d1

9 / 13

3d-1

•

3d2

•

3d-2

해석 & 결론

이 연구를 통하여 화학에서의 오비탈과 심화된 파동함수 개념까지 정리할 수 있었고, 동시에 matplotlib에서의 3차원 구형 극 좌표계 플로팅을 익히고 . 비록 기대하였던 이상적인 모양이 나오지는 않았으나 이는 추후 수정해보고 싶다.

소스 코드 링크

https://github.com/jkmanyeEx/Orbital-Rendering