Troisième devoir de la mécanique quantique

28 novembre 2017

1 Exercice

Obtenez les niveaux d'énergie :

$$V(x) := egin{cases} +\infty & 0 < x \\ rac{1}{2}m\omega^2 x^2 & x \ge 0 \end{cases}$$

dans la vallée de la potentielle.

2 Exercice

Le CO_2 est une molécule linéaire qui peut devenir un ion négatif avec l'absorption d'un électron. Pour le modèle de cette molécule il faut assumer que l'énergie du électron sans interaction soit E_O si on le mettre sur un des atoms oxigens et elle soit E_C si on le mettre sur le carbon. Les états d'électron sont $|D\rangle$ (dans l'oxygène dans le droit) $|M\rangle$ (dans le carbon au milieu) et finalement $|G\rangle$ (dans l'oxygène à gauche). Quand même les propres énergies du system sont differents de E_C , E_O en raison d'effet tunnel, pour ça il faut que on utillise une correction Δ . Donc le Hamilton opérateur du system

est le suivante :

$$\hat{H} = \begin{pmatrix} E_O & \Delta & 0 \\ \Delta & E_C & \Delta \\ 0 & \Delta & E_O \end{pmatrix}$$

- a) Quelles sont les propres énergies du system?
- b) Obtenez les vecteurs propres du system. Pour ça, il faut assumer que $E_O=E_C$.

3 Exercice

Le Hamilton operateur est $\hat{H} = \frac{\hat{L}_z^2}{2\Theta}$. L'état est (t = 0) :

$$\psi(\varphi, t = 0) = A\cos^2\varphi$$

Il faut normaliser la fonctionne et résoudre la value de A pour t > 0.

4 Exercice

La fonctionne qui corresponde á un état

$$\psi(x, y, z) = \frac{2(x^2 - y^2)}{f(x^2 + y^2 + z^2)}$$

Dans quelle valeur propre on peut trouver l'électron et qulle et la probabilité qui y corresponde ?