Summary of Tests for Convergence of Series			
Test	When to use	Conclusions	Lecture Week
Test for Divergence	All series	$\lim_{n\to\infty} a_n \neq 0 \implies \text{divergent}$	10
Geometric series	$\sum ar^{n-1}$ where $a \neq 0$	$ r < 1$: $\sum_{n=1}^{\infty} ar^{n-1} = \frac{a}{1-r}$ $ r \ge 1$: divergent	10
p-series	$\sum \frac{1}{n^p}$	$p > 1$: convergent $p \le 1$: divergent	10
Integral Test	$f(n) = a_n$ with f cont., decreasing and positive	$\sum_{n=1}^{\infty} a_n \text{ and } \int_1^{\infty} f(x) dx$ both converge or both diverge	Not tested
Comparison Test	$0 \le a_n \le b_n$	$\sum_{n} b_n \text{ converges } \Longrightarrow \sum_{n} a_n \text{ converges }$ $\sum_{n} a_n \text{ diverges } \Longrightarrow \sum_{n} b_n \text{ diverges }$	10
Limit Comparison Test	$a_n, b_n > 0$ and $\lim_{n \to \infty} \frac{a_n}{b_n} = L$	$L > 0$: $\sum a_n$ and $\sum b_n$ both converges or both diverges	
		$L = 0$: $\sum b_n$ converges $\Longrightarrow \sum a_n$ converges $L = \infty$: $\sum b_n$ diverges $\Longrightarrow \sum a_n$ diverges	
Alternating Series Test	$\sum_{n=0}^{\infty} (-1)^{n-1} b_n$ where $b_n > 0$	$\{b_n\}$ decreasing and converging to 0 $\implies \sum (-1)^{n-1}b_n$ convergent	(1
Absolute convergence	All series	absolutely convergent \implies convergent	
Ratio Test	All series with $\lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right = L$	$L < 1$: absolutely convergent $L > 1$ or $L = \infty$: divergent	11
Root Test	All series with $\lim_{n \to \infty} \sqrt[n]{ a_n } = L$	$L < 1$: absolutely convergent $L > 1$ or $L = \infty$: divergent	