LabRoboticsProject

Generated by Doxygen 1.8.15

1 Namespace Index	1
1.1 Namespace List	1
2 Hierarchical Index	3
2.1 Class Hierarchy	3
3 Class Index	5
3.1 Class List	5
4 File Index	7
4.1 File List	7
5 Namespace Documentation	9
5.1 CHRONO Namespace Reference	9
5.1.1 Enumeration Type Documentation	9
5.1.1.1 TIME_TYPE	9
5.1.2 Function Documentation	9
5.1.2.1 getElapsed() [1/2]	10
	10
	10
	10
	13
**	13
	13
•	13
	13
	14
•	
	14
	14
,	14
•	14
<u> </u>	14
21	14
5.2.2.1 ClipType	14
	15
5.2.2.3 EdgeSide	15
5.2.2.4 EndType	15
5.2.2.5 InitOptions	16
5.2.2.6 JoinType	16
5.2.2.7 NodeType	16
5.2.2.8 PolyFillType	16
5.2.2.9 PolyType	17
5.2.3 Function Documentation	17
5.2.3.1 Abs()	17

5.2.3.2 AddPolyNodeToPaths()	17
5.2.3.3 Area() [1/3]	17
5.2.3.4 Area() [2/3]	17
5.2.3.5 Area() [3/3]	18
5.2.3.6 CleanPolygon() [1/2]	18
5.2.3.7 CleanPolygon() [2/2]	18
5.2.3.8 CleanPolygons() [1/2]	18
5.2.3.9 CleanPolygons() [2/2]	18
5.2.3.10 ClosedPathsFromPolyTree()	18
5.2.3.11 DisposeOutPts()	19
5.2.3.12 DistanceFromLineSqrd()	19
5.2.3.13 DistanceSqrd()	19
5.2.3.14 DupOutPt()	19
5.2.3.15 E2InsertsBeforeE1()	19
5.2.3.16 EdgesAdjacent()	19
5.2.3.17 ExcludeOp()	20
5.2.3.18 FindNextLocMin()	20
5.2.3.19 FirstIsBottomPt()	20
5.2.3.20 GetBottomPt()	20
5.2.3.21 GetDx()	20
5.2.3.22 GetHorzDirection()	20
5.2.3.23 GetLowermostRec()	21
5.2.3.24 GetMaximaPair()	21
5.2.3.25 GetMaximaPairEx()	21
5.2.3.26 GetNextInAEL()	21
5.2.3.27 GetOverlap()	21
5.2.3.28 GetOverlapSegment()	21
5.2.3.29 GetUnitNormal()	22
5.2.3.30 HorzSegmentsOverlap()	22
5.2.3.31 InitEdge()	22
5.2.3.32 InitEdge2()	22
5.2.3.33 Int128Mul()	22
5.2.3.34 IntersectListSort()	22
5.2.3.35 IntersectPoint()	23
5.2.3.36 IsHorizontal()	23
5.2.3.37 IsIntermediate()	23
5.2.3.38 IsMaxima()	23
5.2.3.39 IsMinima()	23
5.2.3.40 JoinHorz()	23
5.2.3.41 Minkowski()	24
5.2.3.42 MinkowskiDiff()	24
5.2.3.43 MinkowskiSum() [1/2]	24

5.2.3.44 MinkowskiSum() [2/2]	. 24
5.2.3.45 OpenPathsFromPolyTree()	. 24
5.2.3.46 operator<<() [1/5]	. 25
5.2.3.47 operator<<() [2/5]	. 25
5.2.3.48 operator<<() [3/5]	. 25
5.2.3.49 operator<<() [4/5]	. 25
5.2.3.50 operator<<() [5/5]	. 25
5.2.3.51 Orientation()	. 25
5.2.3.52 OutRec1RightOfOutRec2()	. 26
5.2.3.53 ParseFirstLeft()	. 26
5.2.3.54 PointCount()	. 26
5.2.3.55 PointInPolygon() [1/2]	. 26
5.2.3.56 PointInPolygon() [2/2]	. 26
5.2.3.57 PointIsVertex()	. 26
5.2.3.58 PointsAreClose()	. 27
5.2.3.59 Poly2ContainsPoly1()	. 27
5.2.3.60 PolyTreeToPaths()	. 27
5.2.3.61 Pt2IsBetweenPt1AndPt3()	. 27
5.2.3.62 RangeTest()	. 27
5.2.3.63 RemoveEdge()	. 27
5.2.3.64 ReverseHorizontal()	. 28
5.2.3.65 ReversePath()	. 28
5.2.3.66 ReversePaths()	. 28
5.2.3.67 ReversePolyPtLinks()	. 28
5.2.3.68 Round()	. 28
5.2.3.69 SetDx()	. 28
5.2.3.70 SimplifyPolygon()	. 28
5.2.3.71 SimplifyPolygons() [1/2]	. 29
5.2.3.72 SimplifyPolygons() [2/2]	. 29
5.2.3.73 SlopesEqual() [1/3]	. 29
5.2.3.74 SlopesEqual() [2/3]	. 29
5.2.3.75 SlopesEqual() [3/3]	. 29
5.2.3.76 SlopesNearCollinear()	. 30
5.2.3.77 SwapIntersectNodes()	. 30
5.2.3.78 SwapPoints()	. 30
5.2.3.79 SwapPolyIndexes()	. 30
5.2.3.80 SwapSides()	. 30
5.2.3.81 TopX()	. 30
5.2.3.82 TranslatePath()	. 31
5.2.3.83 UpdateOutPtldxs()	. 31
5.2.4 Variable Documentation	. 31
5.2.4.1 def_arc_tolerance	. 31

5.2.4.2 hiRange	 . 31
5.2.4.3 loRange	 . 31
5.2.4.4 pi	 . 31
5.2.4.5 Skip	 . 31
5.2.4.6 two_pi	 . 32
5.2.4.7 Unassigned	 . 32
5.3 DW Namespace Reference	 . 32
5.3.1 Function Documentation	 . 32
5.3.1.1 changeBuffer()	 . 32
5.3.1.2 init()	 . 32
5.3.2 Variable Documentation	 . 32
5.3.2.1 map_buffer	 . 33
5.3.2.2 window	 . 33
5.4 timeutils Namespace Reference	 . 33
5.4.1 Function Documentation	 . 33
5.4.1.1 getTimeS()	
5.4.1.2 timespecDiff()	 . 33
6 Class Documentation	35
6.1 Angle Class Reference	
6.1.1 Detailed Description	
6.1.2 Member Enumeration Documentation	
6.1.2.1 ANGLE_TYPE	
6.1.3 Constructor & Destructor Documentation	
6.1.3.1 Angle() [1/2]	 . 37
6.1.3.2 Angle() [2/2]	 . 37
6.1.4 Member Function Documentation	 . 38
6.1.4.1 add()	 . 38
6.1.4.2 checkValue()	 . 38
6.1.4.3 copy()	 . 38
6.1.4.4 cos()	 . 39
6.1.4.5 degToRad()	 . 39
6.1.4.6 div()	 . 39
6.1.4.7 equal()	 . 40
6.1.4.8 get()	 . 40
6.1.4.9 getType()	 . 40
6.1.4.10 getTypeName()	 . 40
6.1.4.11 greater()	 . 40
6.1.4.12 less()	 . 41
6.1.4.13 mul()	 . 41
6.1.4.14 normalize()	 . 42
6.1.4.15 operator *()	 . 42

6.1.4.16 operator *=()	42
6.1.4.17 operator double()	43
6.1.4.18 operator float()	43
6.1.4.19 operator int()	43
6.1.4.20 operator long()	43
6.1.4.21 operator"!=()	43
6.1.4.22 operator+()	44
6.1.4.23 operator+=()	44
6.1.4.24 operator-()	45
6.1.4.25 operator-=()	45
6.1.4.26 operator/()	45
6.1.4.27 operator/=()	46
6.1.4.28 operator<()	46
6.1.4.29 operator<=()	46
6.1.4.30 operator=() [1/2]	46
6.1.4.31 operator=() [2/2]	47
6.1.4.32 operator==()	47
6.1.4.33 operator>()	47
6.1.4.34 operator>=()	47
6.1.4.35 radToDeg()	48
6.1.4.36 set()	48
6.1.4.37 setType()	48
6.1.4.38 sin()	49
6.1.4.39 sub()	49
6.1.4.40 tan()	49
6.1.4.41 to_string()	49
6.1.4.42 toDeg()	50
6.1.4.43 toRad()	50
6.1.5 Friends And Related Function Documentation	50
6.1.5.1 operator <<	50
6.2 CalSettings Class Reference	51
6.2.1 Member Enumeration Documentation	53
6.2.1.1 InputType	53
6.2.1.2 Pattern	53
6.2.2 Constructor & Destructor Documentation	53
6.2.2.1 CalSettings()	53
6.2.3 Member Function Documentation	53
6.2.3.1 isListOfImages()	53
6.2.3.2 nextImage()	54
6.2.3.3 read()	54
6.2.3.4 readStringList()	54
6.2.3.5 validate()	55

55
6
56
56
56
56
56
56
57
57
57
57
57
57
58
58
58
58
58
58
58
59
59
59
59
59
59
60
60
60
60
60
31
31
31
31
62
32
32
32
3
64

6.4.2 Member Function Documentation	64
6.4.2.1 Execute() [1/4]	64
6.4.2.2 Execute() [2/4]	64
6.4.2.3 Execute() [3/4]	64
6.4.2.4 Execute() [4/4]	64
6.4.2.5 ExecuteInternal()	65
6.4.2.6 ReverseSolution() [1/2]	65
6.4.2.7 ReverseSolution() [2/2]	65
6.4.2.8 StrictlySimple() [1/2]	65
6.4.2.9 StrictlySimple() [2/2]	65
6.5 ClipperLib::ClipperBase Class Reference	66
6.5.1 Member Typedef Documentation	67
6.5.1.1 MinimaList	67
6.5.1.2 ScanbeamList	68
6.5.2 Constructor & Destructor Documentation	68
6.5.2.1 ClipperBase()	68
6.5.2.2 ~ClipperBase()	68
6.5.3 Member Function Documentation	68
6.5.3.1 AddBoundsToLML()	68
6.5.3.2 AddPath()	68
6.5.3.3 AddPaths()	68
6.5.3.4 Clear()	69
6.5.3.5 CreateOutRec()	69
6.5.3.6 DeleteFromAEL()	69
6.5.3.7 DisposeAllOutRecs()	69
6.5.3.8 DisposeLocalMinimaList()	69
6.5.3.9 DisposeOutRec()	69
6.5.3.10 GetBounds()	69
6.5.3.11 InsertScanbeam()	70
6.5.3.12 LocalMinimaPending()	70
6.5.3.13 PopLocalMinima()	70
6.5.3.14 PopScanbeam()	70
6.5.3.15 PreserveCollinear() [1/2]	70
6.5.3.16 PreserveCollinear() [2/2]	70
6.5.3.17 ProcessBound()	70
6.5.3.18 Reset()	71
6.5.3.19 SwapPositionsInAEL()	71
6.5.3.20 UpdateEdgeIntoAEL()	71
6.5.4 Member Data Documentation	71
6.5.4.1 m_ActiveEdges	71
6.5.4.2 m_CurrentLM	71
6.5.4.3 m_edges	71

6.5.4.4 m_HasOpenPaths	. 71
6.5.4.5 m_MinimaList	. 72
6.5.4.6 m_PolyOuts	. 72
6.5.4.7 m_PreserveCollinear	. 72
6.5.4.8 m_Scanbeam	. 72
6.5.4.9 m_UseFullRange	. 72
6.6 ClipperLib::clipperException Class Reference	. 72
6.6.1 Constructor & Destructor Documentation	. 73
6.6.1.1 clipperException()	. 73
6.6.1.2 ~clipperException()	. 73
6.6.2 Member Function Documentation	. 73
6.6.2.1 what()	. 73
6.7 ClipperLib::ClipperOffset Class Reference	. 73
6.7.1 Constructor & Destructor Documentation	. 74
6.7.1.1 ClipperOffset()	. 74
6.7.1.2 ~ClipperOffset()	. 74
6.7.2 Member Function Documentation	. 74
6.7.2.1 AddPath()	. 74
6.7.2.2 AddPaths()	. 74
6.7.2.3 Clear()	. 74
6.7.2.4 Execute() [1/2]	. 75
6.7.2.5 Execute() [2/2]	. 75
6.7.3 Member Data Documentation	. 75
6.7.3.1 ArcTolerance	. 75
6.7.3.2 MiterLimit	. 75
6.8 Configuration2< T1 > Class Template Reference	. 75
6.8.1 Detailed Description	. 77
6.8.2 Constructor & Destructor Documentation	. 77
6.8.2.1 Configuration2() [1/3]	. 77
6.8.2.2 Configuration2() [2/3]	. 77
6.8.2.3 Configuration2() [3/3]	. 78
6.8.3 Member Function Documentation	. 78
6.8.3.1 angle() [1/2]	. 78
6.8.3.2 angle() [2/2]	. 78
6.8.3.3 copy()	. 79
6.8.3.4 distance()	. 79
6.8.3.5 equal()	. 80
6.8.3.6 EuDistance()	. 80
6.8.3.7 MaDistance()	. 80
6.8.3.8 offset() [1/3]	. 81
6.8.3.9 offset() [2/3]	. 81
6.8.3.10 offset() [3/3]	. 81

6.8.3.11 offset_angle()	 . 82
6.8.3.12 offset_x()	 . 82
6.8.3.13 offset_y()	 83
6.8.3.14 operator Configuration2< T2 >()	 83
6.8.3.15 operator Point2< T2 >()	 83
6.8.3.16 operator=()	 . 84
6.8.3.17 operator==()	 . 84
6.8.3.18 point()	 . 84
6.8.3.19 to_string()	 85
6.8.3.20 x() [1/2]	 85
6.8.3.21 x() [2/2]	 85
6.8.3.22 y() [1/2]	 85
6.8.3.23 y() [2/2]	 . 86
6.8.4 Friends And Related Function Documentation	 86
6.8.4.1 operator <<	 86
6.9 Curve< T > Class Template Reference	 87
6.9.1 Detailed Description	 . 88
6.9.2 Constructor & Destructor Documentation	 . 88
6.9.2.1 Curve() [1/4]	 . 88
6.9.2.2 Curve() [2/4]	 . 88
6.9.2.3 Curve() [3/4]	 89
6.9.2.4 Curve() [4/4]	 89
6.9.3 Member Function Documentation	 90
6.9.3.1 begin() [1/2]	 90
6.9.3.2 begin() [2/2]	 90
6.9.3.3 end() [1/2]	 90
6.9.3.4 end() [2/2]	 90
6.9.3.5 to_string()	 91
6.9.4 Friends And Related Function Documentation	 91
6.9.4.1 operator <<	 91
6.9.5 Member Data Documentation	 91
6.9.5.1 P0	 91
6.9.5.2 P1	 92
6.10 ClipperLib::DoublePoint Struct Reference	 92
6.10.1 Constructor & Destructor Documentation	 92
6.10.1.1 DoublePoint() [1/2]	 92
6.10.1.2 DoublePoint() [2/2]	 92
6.10.2 Member Data Documentation	 92
6.10.2.1 X	 93
6.10.2.2 Y	 93
6.11 Dubins < T > Class Template Reference	 93
6.11.1 Detailed Description	 94

6.11.2 Constructor & Destructor Documentation	95
6.11.2.1 Dubins() [1/4]	95
6.11.2.2 Dubins() [2/4]	95
6.11.2.3 Dubins() [3/4]	95
6.11.2.4 Dubins() [4/4]	96
6.11.3 Member Function Documentation	96
6.11.3.1 check()	96
6.11.3.2 draw()	97
6.11.3.3 getA1()	97
6.11.3.4 getA2()	98
6.11.3.5 getA3()	98
6.11.3.6 getId()	98
6.11.3.7 getKMax()	98
6.11.3.8 length()	98
6.11.3.9 LRL()	98
6.11.3.10 LSL()	99
6.11.3.11 LSR()	99
6.11.3.12 rangeSymm()	100
6.11.3.13 RLR()	100
6.11.3.14 RSL()	100
6.11.3.15 RSR()	101
6.11.3.16 scaleFromStandard()	101
6.11.3.17 scaleToStandard()	102
6.11.3.18 shortest_path()	102
6.11.3.19 splitlt()	102
6.11.3.20 to_string()	103
6.11.4 Friends And Related Function Documentation	103
6.11.4.1 operator <<	103
6.12 DubinsArc< T1, T2 > Class Template Reference	103
6.12.1 Detailed Description	105
6.12.2 Constructor & Destructor Documentation	105
6.12.2.1 DubinsArc() [1/2]	105
6.12.2.2 DubinsArc() [2/2]	105
6.12.3 Member Function Documentation	106
6.12.3.1 draw()	106
6.12.3.2 getK()	106
6.12.3.3 length()	106
6.12.3.4 splitlt()	106
6.12.3.5 to_string()	107
6.12.4 Friends And Related Function Documentation	107
6.12.4.1 operator <<	107
6.13 DubinsSet < T > Class Template Reference	108

6.13.1 Detailed Description	 108
6.13.2 Constructor & Destructor Documentation	 109
6.13.2.1 DubinsSet() [1/4]	 109
6.13.2.2 DubinsSet() [2/4]	 109
6.13.2.3 DubinsSet() [3/4]	 109
6.13.2.4 DubinsSet() [4/4]	 110
6.13.3 Member Function Documentation	 110
6.13.3.1 find_best()	 110
6.13.3.2 getDubins()	 111
6.13.3.3 getDubinses()	 111
6.13.3.4 getKmax()	 111
6.13.3.5 getLength()	 111
6.13.3.6 getSize()	 112
6.13.3.7 to_string()	 112
6.13.4 Friends And Related Function Documentation	 112
6.13.4.1 operator<<	 112
6.14 Filter Class Reference	 113
6.14.1 Detailed Description	 113
6.14.2 Constructor & Destructor Documentation	 114
6.14.2.1 Filter() [1/3]	 114
6.14.2.2 Filter() [2/3]	 114
6.14.2.3 Filter() [3/3]	 114
6.14.3 Member Function Documentation	 115
6.14.3.1 copy()	 115
6.14.3.2 High()	 115
6.14.3.3 Low()	 115
6.14.3.4 operator vector< int >()	 115
6.14.3.5 operator=()	 116
6.14.3.6 to_string()	 116
6.14.4 Friends And Related Function Documentation	 116
6.14.4.1 operator <<	 116
6.14.5 Member Data Documentation	 117
6.14.5.1 high_h	 117
6.14.5.2 high_s	 117
6.14.5.3 high_v	 117
6.14.5.4 low_h	 117
6.14.5.5 low_s	 117
6.14.5.6 low_v	 118
6.15 Gate Class Reference	 118
6.15.1 Constructor & Destructor Documentation	 119
6.15.1.1 Gate()	 119
6.15.2 Member Function Documentation	 119

6.15.2.1 print()	119
6.15.2.2 toString()	120
6.16 CameraCapture::input_options_t Struct Reference	120
6.16.1 Detailed Description	120
6.16.2 Constructor & Destructor Documentation	121
6.16.2.1 input_options_t() [1/3]	121
6.16.2.2 input_options_t() [2/3]	121
6.16.2.3 input_options_t() [3/3]	121
6.16.3 Member Data Documentation	121
6.16.3.1 cameraFPS	121
6.16.3.2 frameHeight_px	121
6.16.3.3 frameWidth_px	121
6.16.3.4 nameCamera	122
6.17 ClipperLib::Int128 Class Reference	122
6.17.1 Constructor & Destructor Documentation	122
6.17.1.1 Int128() [1/3]	122
6.17.1.2 Int128() [2/3]	123
6.17.1.3 Int128() [3/3]	123
6.17.2 Member Function Documentation	123
6.17.2.1 operator "!=()	123
6.17.2.2 operator -()	123
6.17.2.3 operator -=()	123
6.17.2.4 operator >()	123
6.17.2.5 operator >=()	124
6.17.2.6 operator double()	124
6.17.2.7 operator+()	124
6.17.2.8 operator+=()	124
6.17.2.9 operator-()	124
6.17.2.10 operator<()	124
6.17.2.11 operator<=()	124
6.17.2.12 operator=()	125
6.17.2.13 operator==()	125
6.17.3 Member Data Documentation	125
6.17.3.1 hi	125
6.17.3.2 lo	125
6.18 ClipperLib::IntersectNode Struct Reference	126
6.18.1 Member Data Documentation	126
6.18.1.1 Edge1	126
6.18.1.2 Edge2	126
6.18.1.3 Pt	127
6.19 ClipperLib::IntPoint Struct Reference	127
6.19.1 Constructor & Destructor Documentation	127

6.19.1.1 IntPoint()	27
6.19.2 Friends And Related Function Documentation	27
6.19.2.1 operator"!=	28
6.19.2.2 operator==	28
6.19.3 Member Data Documentation	28
6.19.3.1 X	28
6.19.3.2 Y	28
6.20 ClipperLib::IntRect Struct Reference	28
6.20.1 Member Data Documentation	29
6.20.1.1 bottom	29
6.20.1.2 left	29
6.20.1.3 right	29
6.20.1.4 top	29
6.21 ClipperLib::Join Struct Reference	29
6.21.1 Member Data Documentation	30
6.21.1.1 OffPt	30
6.21.1.2 OutPt1	30
6.21.1.3 OutPt2	30
6.22 ClipperLib::LocalMinimum Struct Reference	31
6.22.1 Member Data Documentation	31
6.22.1.1 LeftBound	31
6.22.1.2 RightBound	31
6.22.1.3 Y	32
6.23 ClipperLib::LocMinSorter Struct Reference	32
6.23.1 Member Function Documentation	32
6.23.1.1 operator()()	32
6.24 Mapp Class Reference	32
6.24.1 Constructor & Destructor Documentation	34
6.24.1.1 Mapp()	35
6.24.2 Member Function Documentation	36
6.24.2.1 addObject()	36
6.24.2.2 addObjects() [1/4]	36
6.24.2.3 addObjects() [2/4]	37
6.24.2.4 addObjects() [3/4]	37
6.24.2.5 addObjects() [4/4]	37
6.24.2.6 cellsFromSegment()	38
6.24.2.7 checkSegment()	38
6.24.2.8 checkSegmentCollisionWithType()	38
6.24.2.9 createMapRepresentation()	39
6.24.2.10 getGateCenter()	39
6.24.2.11 getPointType()	39
6.24.2.12 getVictimCenters()	40

	6.24.2.13 imageAddPoint()
	6.24.2.14 imageAddPoints()
	6.24.2.15 imageAddSegment()
	6.24.2.16 imageAddSegments()
	6.24.2.17 matrixToString()
	6.24.2.18 minPathNPoints()
	6.24.2.19 minPathTwoPoints()
	6.24.2.20 minPathTwoPointsInternal()
	6.24.2.21 printDimensions()
	6.24.2.22 printMap()
	6.24.2.23 resetDistanceMap()
	6.24.2.24 sampleNPoints() [1/2]
	6.24.2.25 sampleNPoints() [2/2]
	6.24.2.26 samplePointsEachNCells()
6.24.3	Member Data Documentation
	6.24.3.1 baseDistance
	6.24.3.2 borderSize
	6.24.3.3 borderSizeDefault
	6.24.3.4 cellSize
	6.24.3.5 dimX
	6.24.3.6 dimY
	6.24.3.7 foundLimit
	6.24.3.8 lengthX
	6.24.3.9 lengthY
	6.24.3.10 map
	6.24.3.11 nPoints
	6.24.3.12 offsetValue
	6.24.3.13 pixX
	6.24.3.14 pixY
	6.24.3.15 range
	6.24.3.16 vGates
	6.24.3.17 vObstacles
	6.24.3.18 vVictims
	eption< T > Class Template Reference
6.25.1	Constructor & Destructor Documentation
	6.25.1.1 MyException()
6.25.2	Member Function Documentation
	6.25.2.1 what()
6.25.3	Member Data Documentation
	6.25.3.1 a
	6.25.3.2 b
	6.25.3.3 type

6.26 Object Class Reference
6.26.1 Member Function Documentation
6.26.1.1 computeCenter()
6.26.1.2 computeRadius()
6.26.1.3 getCenter()
6.26.1.4 getPoints()
6.26.1.5 getRadius()
6.26.1.6 insidePoly()
6.26.1.7 insidePolyApprox()
6.26.1.8 nPoints()
6.26.1.9 offsetting()
6.26.1.10 size()
6.26.1.11 toString()
6.26.2 Member Data Documentation
6.26.2.1 center
6.26.2.2 points
6.26.2.3 radius
6.27 Obstacle Class Reference
6.27.1 Constructor & Destructor Documentation
6.27.1.1 Obstacle()
6.27.2 Member Function Documentation
6.27.2.1 print()
6.27.2.2 toString()
6.28 ClipperLib::OutPt Struct Reference
6.28.1 Member Data Documentation
6.28.1.1 ldx
6.28.1.2 Next
6.28.1.3 Prev
6.28.1.4 Pt
6.29 ClipperLib::OutRec Struct Reference
6.29.1 Member Data Documentation
6.29.1.1 BottomPt
6.29.1.2 FirstLeft
6.29.1.3 ldx
6.29.1.4 IsHole
6.29.1.5 IsOpen
6.29.1.6 PolyNd
6.29.1.7 Pts
6.30 Point2< T > Class Template Reference
6.30.1 Detailed Description
6.30.2 Constructor & Destructor Documentation
6.30.2.1 Point2() [1/3]

6.30.2.2 Point2() [2/3]	160
6.30.2.3 Point2() [3/3]	161
6.30.3 Member Function Documentation	161
6.30.3.1 copy()	161
6.30.3.2 distance()	161
6.30.3.3 equal()	162
6.30.3.4 EuDistance()	162
6.30.3.5 MaDistance()	163
6.30.3.6 offset() [1/3]	163
6.30.3.7 offset() [2/3]	163
6.30.3.8 offset() [3/3]	164
6.30.3.9 offset_x()	164
6.30.3.10 offset_y()	164
6.30.3.11 operator cv::Point()	165
6.30.3.12 operator"!=()	165
6.30.3.13 operator<()	165
6.30.3.14 operator=()	166
6.30.3.15 operator==()	166
6.30.3.16 th()	166
6.30.3.17 to_string()	166
6.30.3.18 x() [1/2]	167
6.30.3.19 x() [2/2]	167
6.30.3.20 y() [1/2]	167
6.30.3.21 y() [2/2]	167
6.30.4 Friends And Related Function Documentation	168
6.30.4.1 operator <<	168
6.31 ClipperLib::PolyNode Class Reference	168
6.31.1 Constructor & Destructor Documentation	169
6.31.1.1 PolyNode()	170
6.31.1.2 ~PolyNode()	170
6.31.2 Member Function Documentation	170
6.31.2.1 ChildCount()	170
6.31.2.2 GetNext()	170
6.31.2.3 IsHole()	170
6.31.2.4 IsOpen()	170
6.31.3 Friends And Related Function Documentation	170
6.31.3.1 Clipper	170
6.31.3.2 ClipperOffset	171
6.31.4 Member Data Documentation	171
6.31.4.1 Childs	
6.31.4.2 Contour	171
6.31.4.3 Parent	171

6.32 ClipperLib::PolyTree Class Reference	1
6.32.1 Constructor & Destructor Documentation	'2
6.32.1.1 ∼PolyTree()	'2
6.32.2 Member Function Documentation	'2
6.32.2.1 Clear()	'2
6.32.2.2 GetFirst()	'3
6.32.2.3 Total()	'3
6.32.3 Friends And Related Function Documentation	'3
6.32.3.1 Clipper	'3
6.33 Settings Class Reference	'3
6.33.1 Detailed Description	'6
6.33.2 Member Enumeration Documentation	'6
6.33.2.1 COLOR	'6
6.33.3 Constructor & Destructor Documentation	'6
6.33.3.1 Settings()	'6
6.33.3.2 ∼Settings()	7
6.33.4 Member Function Documentation	7
6.33.4.1 addUnMap()	7
6.33.4.2 changeMask() [1/2]	7
6.33.4.3 changeMask() [2/2]	'8
6.33.4.4 clean()	'8
6.33.4.5 cleanAndRead()	'8
6.33.4.6 getTemplates() [1/3]	'8
6.33.4.7 getTemplates() [2/3]	'9
6.33.4.8 getTemplates() [3/3]	'9
6.33.4.9 maps() [1/4]	'9
6.33.4.10 maps() [2/4]	31
6.33.4.11 maps() [3/4]	31
6.33.4.12 maps() [4/4]	32
6.33.4.13 readFromFile()	32
6.33.4.14 save()	32
6.33.4.15 to_string()	3
6.33.4.16 unMaps() [1/4]	3
6.33.4.17 unMaps() [2/4]	34
6.33.4.18 unMaps() [3/4]	34
6.33.4.19 unMaps() [4/4]	35
6.33.4.20 writeToFile()	35
6.33.5 Friends And Related Function Documentation	35
6.33.5.1 operator<<	35
6.33.6 Member Data Documentation	36
6.33.6.1 blackMask	36
6.33.6.2 blueMask	36

	6.33.6.3 calibrationFile
	6.33.6.4 convexHullFile
	6.33.6.5 greenMask
	6.33.6.6 intrinsicCalibrationFile
	6.33.6.7 kernelSide
	6.33.6.8 mapsFolder
	6.33.6.9 mapsNames
	6.33.6.10 mapsUnNames
	6.33.6.11 redMask
	6.33.6.12 robotMask
	6.33.6.13 templates
	6.33.6.14 templatesFolder
	6.33.6.15 victimMask
	6.33.6.16 whiteMask
6.34 Clipperl	Lib::TEdge Struct Reference
6.34.1	Member Data Documentation
	6.34.1.1 Bot
	6.34.1.2 Curr
	6.34.1.3 Dx
	6.34.1.4 Next
	6.34.1.5 NextInAEL
	6.34.1.6 NextInLML
	6.34.1.7 NextInSEL
	6.34.1.8 Outldx
	6.34.1.9 PolyTyp
	6.34.1.10 Prev
	6.34.1.11 PrevInAEL
	6.34.1.12 PrevInSEL
	6.34.1.13 Side
	6.34.1.14 Top
	6.34.1.15 WindCnt
	6.34.1.16 WindCnt2
	6.34.1.17 WindDelta
6.35 Tuple <	T > Class Template Reference
6.35.1	Detailed Description
6.35.2	Constructor & Destructor Documentation
	6.35.2.1 Tuple() [1/2]
	6.35.2.2 Tuple() [2/2]
6.35.3	Member Function Documentation
	6.35.3.1 add()
	6.35.3.2 addlfNot()
	6.35.3.3 ahead()

6.35.3.4 begin() [1/2]	195
6.35.3.5 begin() [2/2]	195
6.35.3.6 distance()	195
6.35.3.7 end() [1/2]	196
6.35.3.8 end() [2/2]	196
6.35.3.9 equal()	196
6.35.3.10 eraseAll()	196
6.35.3.11 EuDistance()	196
6.35.3.12 find()	
6.35.3.13 get()	
6.35.3.14 MaDistance()	197
6.35.3.15 mul() [1/2]	198
6.35.3.16 mul() [2/2]	198
6.35.3.17 operator *()	198
6.35.3.18 operator *=()	198
6.35.3.19 operator std::string()	198
6.35.3.20 operator vector $<$ T1 $>$ ()	199
6.35.3.21 operator+()	199
6.35.3.22 operator+=()	199
6.35.3.23 operator==()	199
6.35.3.24 operator[]()	199
6.35.3.25 remove()	200
6.35.3.26 set()	200
6.35.3.27 size()	200
6.35.3.28 sum() [1/2]	201
6.35.3.29 sum() [2/2]	201
6.35.3.30 to_std_string()	201
6.35.3.31 to_string()	
6.35.4 Friends And Related Function Documentation	201
6.35.4.1 operator<<	201
6.36 Victim Class Reference	202
6.36.1 Constructor & Destructor Documentation	203
6.36.1.1 Victim()	203
6.36.2 Member Function Documentation	203
6.36.2.1 getValue()	203
6.36.2.2 print()	204
6.36.2.3 setValue()	204
6.36.2.4 toString()	
6.36.3 Member Data Documentation	
6.36.3.1 value	204
7 File Documentation	205

7.1 src/calibration.cc File Reference
7.1.1 Function Documentation
7.1.1.1 calcBoardCornerPositions()
7.1.1.2 calibration()
7.1.1.3 computeReprojectionErrors()
7.1.1.4 read()
7.1.1.5 runCalibration()
7.1.1.6 runCalibrationAndSave()
7.1.1.7 saveCameraParams()
7.2 src/camera_capture.cc File Reference
7.2.1 Macro Definition Documentation
7.2.1.1 SDEBUG
7.3 src/clipper.cc File Reference
7.3.1 Macro Definition Documentation
7.3.1.1 HORIZONTAL
7.3.1.2 NEAR_ZERO
7.3.1.3 TOLERANCE
7.4 src/configure.cc File Reference
7.4.1 Function Documentation
7.4.1.1 acquireImage()
7.4.1.2 configure()
7.4.1.3 on_high_h_thresh_trackbar()
7.4.1.4 on_high_s_thresh_trackbar()
7.4.1.5 on_high_v_thresh_trackbar()
7.4.1.6 on_low_h_thresh_trackbar()
7.4.1.7 on_low_s_thresh_trackbar()
7.4.1.8 on_low_v_thresh_trackbar()
7.4.1.9 show_all_conditions()
7.4.1.10 update_trackers()
7.4.2 Variable Documentation
7.4.2.1 filter
7.5 src/detection.cc File Reference
7.5.1 Macro Definition Documentation
7.5.1.1 EPS_CURVE
7.5.1.2 MIN_AREA_SIZE
7.5.2 Function Documentation
7.5.2.1 _compare()
7.5.2.2 computeConversionParameters()
7.5.2.3 crop_number_section()
7.5.2.4 detection()
7.5.2.5 erode_dilation()
7.5.2.6 find_contours()

7.5.2.7 load_number_template()
7.5.2.8 localize() [1/2]
7.5.2.9 localize() [2/2]
7.5.2.10 number_recognition()
7.5.2.11 save_convex_hull()
7.5.2.12 shape_detection()
7.5.3 Variable Documentation
7.5.3.1 robotShape
7.5.3.2 templates
7.6 src/dubins.cc File Reference
7.7 src/include/calibration.hh File Reference
7.7.1 Detailed Description
7.7.2 Enumeration Type Documentation
7.7.2.1 anonymous enum
7.7.3 Function Documentation
7.7.3.1 calibration()
7.7.3.2 runCalibrationAndSave()
7.7.4 Variable Documentation
7.7.4.1 sett
7.8 src/include/camera_capture.hh File Reference
7.9 src/include/clipper.hh File Reference
7.9.1 Macro Definition Documentation
7.9.1.1 CLIPPER_VERSION
7.9.1.2 use_lines
7.10 src/include/configure.hh File Reference
7.10.1 Function Documentation
7.10.1.1 acquireImage()
7.10.1.2 configure()
7.10.1.3 show_all_conditions()
7.11 src/include/detection.hh File Reference
7.11.1 Enumeration Type Documentation
7.11.1.1 COLOR_TYPE
7.11.2 Function Documentation
7.11.2.1 computeConversionParameters()
7.11.2.2 crop_number_section()
7.11.2.3 detection()
7.11.2.4 erode_dilation()
7.11.2.5 find_contours()
7.11.2.6 load_number_template()
7.11.2.7 localize() [1/2]
7.11.2.8 localize() [2/2]
7.11.2.9 number_recognition()

7.11.2.10 save_convex_hull()	34
7.11.2.11 shape_detection()	34
7.12 src/include/draw.hh File Reference	34
7.12.1 Typedef Documentation	35
7.12.1.1 int	35
7.13 src/include/dubins.hh File Reference	36
7.13.1 Macro Definition Documentation	37
7.13.1.1 DELTA	
7.13.1.2 KMAX	37
7.13.1.3 PIECE_LENGTH	38
7.13.1.4 PREC	38
7.13.2 Function Documentation	38
7.13.2.1 circline()	38
7.13.2.2 disp()	38
7.13.2.3 reduce_points()	39
7.13.2.4 sinc()	39
7.13.2.5 toBase()	39
7.13.3 Variable Documentation	40
7.13.3.1 countTries	40
7.13.3.2 elapsedArcs	40
7.13.3.3 elapsedBest	40
7.13.3.4 elapsedCheck	40
7.13.3.5 elapsedCirc	41
7.13.3.6 elapsedLRL	41
7.13.3.7 elapsedLSL	41
7.13.3.8 elapsedLSR	41
7.13.3.9 elapsedPrimitives	41
7.13.3.10 elapsedRLR	41
7.13.3.11 elapsedRSL	41
7.13.3.12 elapsedRSR	41
7.13.3.13 elapsedScale	42
7.13.3.14 elapsedSet	42
7.13.3.15 elapsedVar	42
7.14 src/include/filter.hh File Reference	42
7.15 src/include/map.hh File Reference	43
7.15.1 Enumeration Type Documentation	44
7.15.1.1 OBJ_TYPE	44
7.16 src/include/maths.hh File Reference	44
7.16.1 Macro Definition Documentation	46
7.16.1.1 A_180	
7.16.1.2 A_2PI	46
7.16.1.3 A 360	46

7.16.1.4 A 90	46
7.16.1.5 A_DEG_NULL	47
7.16.1.6 A_PI	
7.16.1.7 A_PI2	
7.16.1.8 A_RAD_NULL	
7.16.1.9 Dlnf	
7.16.1.10 Epsi	17
7.16.1.11 tupleConstiter	17
7.16.1.12 tupleIter	
7.16.2 Enumeration Type Documentation	
7.16.2.1 DISTANCE_TYPE	
7.16.3 Function Documentation	
7.16.3.1 equal()	19
7.16.3.2 pow2()	
7.16.4 Variable Documentation	
7.16.4.1 DEGTORAD	19
7.16.4.2 RADTODEG	50
7.17 src/include/objects.hh File Reference	
7.18 src/include/planning.hh File Reference	
7.18.1 Function Documentation	
7.18.1.1 createMapp()	
7.18.1.2 loadVP()	
7.18.1.3 loadVVP()	
7.18.1.4 planning()	
7.19 src/include/settings.hh File Reference	
7.19.1 Variable Documentation	
7.19.1.1 sett	
7.20 src/include/unwrapping.hh File Reference	54
7.20.1 Function Documentation	
7.20.1.1 find_rect()	55
7.20.1.2 loadCoefficients()	
7.20.1.3 unwrapping()	55
7.21 src/include/utils.hh File Reference	56
7.21.1 Macro Definition Documentation	57
7.21.1.1 COUT	57
7.21.1.2 INFO	
7.21.1.3 NAME	58
7.21.2 Typedef Documentation	58
7.21.2.1 Clock	
7.21.3 Enumeration Type Documentation	
7.21.3.1 EXCEPTION_TYPE	
7.21.4 Function Documentation	

7.21.4.1 my_imshow()	258
7.21.4.2 mywaitkey() [1/2]	259
7.21.4.3 mywaitkey() [2/2]	259
7.22 src/map.cc File Reference	259
7.23 src/maths.cc File Reference	260
7.24 src/objects.cc File Reference	260
7.25 src/planning.cc File Reference	260
7.25.1 Function Documentation	261
7.25.1.1 createMapp()	261
7.25.1.2 loadVP()	261
7.25.1.3 loadVVP()	261
7.25.1.4 planning()	262
7.26 src/run/calibration_run.cc File Reference	262
7.26.1 Function Documentation	262
7.26.1.1 main()	262
7.27 src/run/detection_run.cc File Reference	262
7.27.1 Function Documentation	263
7.27.1.1 main()	263
7.28 src/run/main.cc File Reference	263
7.28.1 Function Documentation	263
7.28.1.1 main()	263
7.28.2 Variable Documentation	264
7.28.2.1 sett	264
7.29 src/run/planning_run.cc File Reference	264
7.29.1 Function Documentation	264
7.29.1.1 main()	264
7.30 src/run/unwrapping_run.cc File Reference	264
7.30.1 Function Documentation	265
7.30.1.1 main()	265
7.31 src/settings.cc File Reference	265
7.31.1 Macro Definition Documentation	265
7.31.1.1 NPOS	265
7.31.2 Function Documentation	266
7.31.2.1 getFiles()	266
7.31.2.2 vecToFile()	266
7.32 src/unwrapping.cc File Reference	266
7.32.1 Macro Definition Documentation	267
7.32.1.1 AREA_MIN	267
7.32.1.2 AREA_RATIO	267
7.32.2 Function Documentation	267
7.32.2.1 distance()	267
7 32 2 2 find, rect()	268

7.32.2.3 loadCoefficients()	 	 	 	 			 			268
7.32.2.4 unwrapping()	 	 	 	 			 			269
7.33 src/utils.cc File Reference	 	 	 	 			 			269
7.33.1 Function Documentation	 	 	 	 			 			269
7.33.1.1 my_imshow()	 	 	 	 			 			269
7.33.1.2 mywaitkey() [1/2]	 	 	 	 			 			270
7.33.1.3 mywaitkey() [2/2]	 	 	 	 			 			270
Index										271
Index										2/1

Namespace Index

1.1 Namespace List

Here is a list of all namespaces with brief descriptions:

CHRONO									 									 					ć
ClipperLib									 									 					10
DW									 									 					32
timeutils .									 					 				 					33

2 Namespace Index

Hierarchical Index

2.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

Angle	
CalSettings	51
ClipperLib::ClipperBase	66
ClipperLib::Clipper	62
ClipperLib::ClipperOffset	
$Configuration 2 < T1 > \dots $	75
$\label{local_configuration} \textbf{Configuration2} < \textbf{double} > \ \ . \ \ \ \ \ . \ \ \ \ \ . \ \ \ \ \ . \ \ \ \ \ . \$	75
$Configuration 2 < T > \dots \dots$	75
$Configuration 2 < T2 > \dots $	75
$Curve < T > \dots \dots$	87
Dubins < T >	93
$Curve {<} double {>} \ldots \ldots$	87
DubinsArc< T >	103
Curve < T2 >	87
DubinsArc< T1, T2 >	103
ClipperLib::DoublePoint	92
$DubinsSet < T > \dots \dots \dots \dots \dots \dots \dots \dots \dots $. 108
exception	
$MyException < T > \ \dots \dots$	147
exception	
ClipperLib::clipperException	
Filter	
CameraCapture::input_options_t	
ClipperLib::Int128	122
ClipperLib::IntersectNode	. 126
ClipperLib::IntPoint	. 127
ClipperLib::IntRect	. 128
ClipperLib::Join	. 129
ClipperLib::LocalMinimum	. 131
ClipperLib::LocMinSorter	132
Mapp	132
Object	149
Gate	118
Obstacle	154

4 Hierarchical Index

Victim	202
lipperLib::OutPt	. 156
lipperLib::OutRec	. 157
$pint2 \!< T \!> \ldots \ldots \ldots \ldots \ldots \ldots \ldots$. 158
pint2< double >	. 158
pint2< int >	. 158
pint2< T1 >	. 158
pint2< T2 >	. 158
lipperLib::PolyNode	. 168
ClipperLib::PolyTree	171
ettings	. 173
lipperLib::TEdge	. 189
uple < T >	. 192
uple < Dubins < T > >	. 192
uple < string >	. 192
ideoCapture	
CameraCapture	60

Class Index

3.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

Angle	
This class allows to save and handle angles. It supports DEG and RAD, operations such as	
addition and subtraction with operators overloading, conversion from RAD to DEG and viceversa	
and normalization of the angle	35
CalSettings	51
CameraCapture	60
ClipperLib::Clipper	62
ClipperLib::ClipperBase	66
ClipperLib::clipperException	72
ClipperLib::ClipperOffset	73
Configuration2< T1 >	
This class stores a configuration, that is a point and an angle	75
Curve < T >	87
ClipperLib::DoublePoint	92
Dubins < T >	
Class to store a Dubins curve. This class inherits from Curve and is composed of three	
DubinsArc	93
DubinsArc< T1, T2 >	
Class to store a maneuver of Dubins. It inherits from Curve. Since each Dubins is formed of	
atmost 3 maneuvers, this class is meant to store one of this maneuver, which can be L, R or S	
	103
DubinsSet < T >	
Given a set of point, compute the shortest set of Dubins that allows to go from start to end	
	108
<u> </u>	113
	118
CameraCapture::input_options_t	
– . –	120
·	122
	126
ClipperLib::IntPoint	
ClipperLib::IntRect	
ClipperLib::Join	
ClipperLib::LocalMinimum	
	121

6 Class Index

Mapp																																		 		132
MyException < T >																																		 		147
Object																																		 		149
Obstacle																																		 		154
ClipperLib::OutPt .																																		 		156
ClipperLib::OutRec																																		 		157
Point2< T >																																				
Class that s	tor	es	tv	vo	va	ılu	e t	0	СО	ns	trι	ıct	t a	р	oin	t i	n a	20). 🗆	Γh	e١	va	lue	e is	SS	av	ec	ıi k	n a	ιT	up	le		 		158
ClipperLib::PolyNode																																		 		168
ClipperLib::PolyTree																																		 		171
Settings																																				173
ClipperLib::TEdge .																																		 		189
Tuple $<$ T $>$																																		 		192
Victim																																				202

File Index

4.1 File List

Here is a list of all files with brief descriptions:

src/calibration.cc
src/camera_capture.cc
src/clipper.cc
src/configure.cc
src/detection.cc
src/dubins.cc
src/map.cc
src/maths.cc
src/objects.cc
src/planning.cc
src/settings.cc
src/unwrapping.cc
src/utils.cc
src/include/calibration.hh
Library for calibration
src/include/camera_capture.hh
src/include/clipper.hh
src/include/configure.hh
src/include/detection.hh
src/include/draw.hh
src/include/dubins.hh
src/include/filter.hh
src/include/map.hh
src/include/maths.hh
src/include/objects.hh
src/include/planning.hh
src/include/settings.hh
src/include/unwrapping.hh
src/include/utils.hh
src/run/calibration_run.cc
src/run/detection_run.cc
src/run/main.cc
src/run/planning_run.cc
src/run/unwrapping_run.cc 26

8 File Index

Chapter 5

Namespace Documentation

5.1 CHRONO Namespace Reference

Enumerations

enum TIME_TYPE { SEC, MSEC, MUSEC, NSEC }

Functions

- string getType (TIME_TYPE type, string ret="")
- double getElapsed (Clock::time_point start, Clock::time_point stop, TIME_TYPE type=MUSEC)
- string getElapsed (Clock::time_point start, Clock::time_point stop, string ret, TIME_TYPE type=MUSEC)

5.1.1 Enumeration Type Documentation

5.1.1.1 TIME_TYPE

enum CHRONO::TIME_TYPE

Enumerator

SEC	
MSEC	
MUSEC	
NSEC	

5.1.2 Function Documentation

5.2 ClipperLib Namespace Reference

Classes

- class Clipper
- class ClipperBase
- · class clipperException
- · class ClipperOffset
- struct DoublePoint
- class Int128
- struct IntersectNode
- struct IntPoint
- struct IntRect
- struct Join
- struct LocalMinimum
- struct LocMinSorter
- struct OutPt
- struct OutRec
- class PolyNode
- class PolyTree
- struct TEdge

Typedefs

- · typedef signed long long clnt
- · typedef signed long long long64
- typedef unsigned long long ulong64
- typedef std::vector< IntPoint > Path
- typedef std::vector< Path > Paths
- typedef std::vector< PolyNode * > PolyNodes
- typedef std::vector< OutRec * > PolyOutList
- typedef std::vector< TEdge * > EdgeList
- typedef std::vector< Join * > JoinList
- typedef std::vector< IntersectNode * > IntersectList

Enumerations

- enum Direction { dRightToLeft, dLeftToRight }
- enum NodeType { ntAny, ntOpen, ntClosed }
- enum ClipType { ctIntersection, ctUnion, ctDifference, ctXor }
- enum PolyType { ptSubject, ptClip }
- enum PolyFillType { pftEvenOdd, pftNonZero, pftPositive, pftNegative }
- enum InitOptions { ioReverseSolution = 1, ioStrictlySimple = 2, ioPreserveCollinear = 4 }
- enum JoinType { jtSquare, jtRound, jtMiter }
- enum EndType {
 etClosedPolygon, etClosedLine, etOpenButt, etOpenSquare,
 etOpenRound }
- enum EdgeSide { esLeft = 1, esRight = 2 }

Functions

- cInt Round (double val)
- · cInt Abs (cInt val)
- Int128 Int128Mul (long64 lhs, long64 rhs)
- bool Orientation (const Path &poly)
- double Area (const Path &poly)
- double Area (const OutPt *op)
- double Area (const OutRec &outRec)
- bool PointIsVertex (const IntPoint &Pt, OutPt *pp)
- int PointInPolygon (const IntPoint &pt, const Path &path)
- int PointInPolygon (const IntPoint &pt, OutPt *op)
- bool Poly2ContainsPoly1 (OutPt *OutPt1, OutPt *OutPt2)
- bool SlopesEqual (const TEdge &e1, const TEdge &e2, bool UseFullInt64Range)
- · bool SlopesEqual (const IntPoint pt1, const IntPoint pt2, const IntPoint pt3, bool UseFullInt64Range)
- bool SlopesEqual (const IntPoint pt1, const IntPoint pt2, const IntPoint pt3, const IntPoint pt4, bool UseFull
 —
 Int64Range)
- bool IsHorizontal (TEdge &e)
- double GetDx (const IntPoint pt1, const IntPoint pt2)
- void SetDx (TEdge &e)
- void SwapSides (TEdge &Edge1, TEdge &Edge2)
- void SwapPolyIndexes (TEdge &Edge1, TEdge &Edge2)
- clnt TopX (TEdge &edge, const clnt currentY)
- void IntersectPoint (TEdge &Edge1, TEdge &Edge2, IntPoint &ip)
- void ReversePolyPtLinks (OutPt *pp)
- void DisposeOutPts (OutPt *&pp)

- void InitEdge (TEdge *e, TEdge *eNext, TEdge *ePrev, const IntPoint &Pt)
- void InitEdge2 (TEdge &e, PolyType Pt)
- TEdge * RemoveEdge (TEdge *e)
- · void ReverseHorizontal (TEdge &e)
- void SwapPoints (IntPoint &pt1, IntPoint &pt2)
- bool GetOverlapSegment (IntPoint pt1a, IntPoint pt1b, IntPoint pt2a, IntPoint pt2b, IntPoint &pt1, IntPoint &pt2, IntPoint &pt2, IntPoint &pt2, IntPoint &pt2, IntPoint &pt2, IntPoint &pt3, IntPoint &pt3,
- bool FirstIsBottomPt (const OutPt *btmPt1, const OutPt *btmPt2)
- OutPt * GetBottomPt (OutPt *pp)
- bool Pt2IsBetweenPt1AndPt3 (const IntPoint pt1, const IntPoint pt2, const IntPoint pt3)
- bool HorzSegmentsOverlap (clnt seg1a, clnt seg1b, clnt seg2a, clnt seg2b)
- void RangeTest (const IntPoint &Pt, bool &useFullRange)
- TEdge * FindNextLocMin (TEdge *E)
- OutRec * GetLowermostRec (OutRec *outRec1, OutRec *outRec2)
- bool OutRec1RightOfOutRec2 (OutRec *outRec1, OutRec *outRec2)
- bool IsMinima (TEdge *e)
- bool IsMaxima (TEdge *e, const clnt Y)
- bool IsIntermediate (TEdge *e, const clnt Y)
- TEdge * GetMaximaPair (TEdge *e)
- TEdge * GetMaximaPairEx (TEdge *e)
- TEdge * GetNextInAEL (TEdge *e, Direction dir)
- void GetHorzDirection (TEdge &HorzEdge, Direction &Dir, cInt &Left, cInt &Right)
- bool IntersectListSort (IntersectNode *node1, IntersectNode *node2)
- bool EdgesAdjacent (const IntersectNode &inode)
- int PointCount (OutPt *Pts)
- void SwapIntersectNodes (IntersectNode &int1, IntersectNode &int2)
- bool E2InsertsBeforeE1 (TEdge &e1, TEdge &e2)
- bool GetOverlap (const clnt a1, const clnt a2, const clnt b1, const clnt b2, clnt &Left, clnt &Right)
- void UpdateOutPtldxs (OutRec &outrec)
- OutPt * DupOutPt (OutPt *outPt, bool InsertAfter)
- bool JoinHorz (OutPt *op1, OutPt *op1b, OutPt *op2, OutPt *op2b, const IntPoint Pt, bool DiscardLeft)
- static OutRec * ParseFirstLeft (OutRec *FirstLeft)
- DoublePoint GetUnitNormal (const IntPoint &pt1, const IntPoint &pt2)
- · void ReversePath (Path &p)
- void ReversePaths (Paths &p)
- void SimplifyPolygon (const Path &in poly, Paths &out polys, PolyFillType fillType)
- void SimplifyPolygons (const Paths &in_polys, Paths &out_polys, PolyFillType fillType)
- void SimplifyPolygons (Paths &polys, PolyFillType fillType)
- double DistanceSqrd (const IntPoint &pt1, const IntPoint &pt2)
- double DistanceFromLineSqrd (const IntPoint &pt, const IntPoint &In1, const IntPoint &In2)
- bool SlopesNearCollinear (const IntPoint &pt1, const IntPoint &pt2, const IntPoint &pt3, double distSqrd)
- bool PointsAreClose (IntPoint pt1, IntPoint pt2, double distSqrd)
- OutPt * ExcludeOp (OutPt *op)
- void CleanPolygon (const Path &in_poly, Path &out_poly, double distance)
- void CleanPolygon (Path &poly, double distance)
- void CleanPolygons (const Paths &in_polys, Paths &out_polys, double distance)
- void CleanPolygons (Paths &polys, double distance)
- void Minkowski (const Path &poly, const Path &path, Paths &solution, bool isSum, bool isClosed)
- void MinkowskiSum (const Path &pattern, const Path &path, Paths &solution, bool pathlsClosed)
- void TranslatePath (const Path &input, Path &output, const IntPoint delta)
- · void MinkowskiSum (const Path &pattern, const Paths &paths, Paths &solution, bool pathIsClosed)
- · void MinkowskiDiff (const Path &poly1, const Path &poly2, Paths &solution)
- void AddPolyNodeToPaths (const PolyNode &polynode, NodeType nodetype, Paths &paths)
- void PolyTreeToPaths (const PolyTree &polytree, Paths &paths)
- void ClosedPathsFromPolyTree (const PolyTree &polytree, Paths &paths)

- void OpenPathsFromPolyTree (PolyTree &polytree, Paths &paths)
- std::ostream & operator<< (std::ostream &s, const IntPoint &p)
- std::ostream & operator<< (std::ostream &s, const Path &p)
- std::ostream & operator<< (std::ostream &s, const Paths &p)
- Path & operator<< (Path &poly, const IntPoint &p)
- Paths & operator<< (Paths &polys, const Path &p)

Variables

- static double const pi = 3.141592653589793238
- static double const two_pi = pi *2
- static double const def_arc_tolerance = 0.25
- static int const Unassigned = -1
- static int const Skip = -2
- static clnt const loRange = 0x3FFFFFF
- static clnt const hiRange = 0x3FFFFFFFFFFFFLL

5.2.1 Typedef Documentation

5.2.1.1 clnt

typedef signed long long ClipperLib::cInt

5.2.1.2 EdgeList

typedef std::vector< TEdge* > ClipperLib::EdgeList

5.2.1.3 IntersectList

typedef std::vector< IntersectNode* > ClipperLib::IntersectList

5.2.1.4 JoinList

typedef std::vector< Join* > ClipperLib::JoinList

5.2.1.5 long64

typedef signed long long ClipperLib::long64

5.2.1.6 Path

typedef std::vector< IntPoint > ClipperLib::Path

5.2.1.7 Paths

typedef std::vector< Path > ClipperLib::Paths

5.2.1.8 PolyNodes

typedef std::vector< PolyNode* > ClipperLib::PolyNodes

5.2.1.9 PolyOutList

typedef std::vector< OutRec* > ClipperLib::PolyOutList

5.2.1.10 ulong64

typedef unsigned long long ClipperLib::ulong64

5.2.2 Enumeration Type Documentation

5.2.2.1 ClipType

enum ClipperLib::ClipType

Enumerator

ctIntersection	
ctUnion	
ctDifference	
ctXor	

5.2.2.2 Direction

enum ClipperLib::Direction

Enumerator

dRightToLeft	
dLeftToRight	

5.2.2.3 EdgeSide

enum ClipperLib::EdgeSide

Enumerator

ool oft	
esLeft	
esRight	

5.2.2.4 EndType

enum ClipperLib::EndType

Enumerator

etClosedPolygon	
etClosedLine	
etOpenButt	
etOpenSquare	
etOpenRound	

5.2.2.5 InitOptions

enum ClipperLib::InitOptions

Enumerator

ioReverseSolution	
ioStrictlySimple	
ioPreserveCollinear	

5.2.2.6 JoinType

enum ClipperLib::JoinType

Enumerator

jtSquare	
jtRound	
jtMiter	

5.2.2.7 NodeType

enum ClipperLib::NodeType

Enumerator

ntAny	
ntOpen	
ntClosed	

5.2.2.8 PolyFillType

enum ClipperLib::PolyFillType

Enumerator

pftEvenOdd	
pftNonZero	
pftPositive	
pftNegative	

5.2.2.9 PolyType

```
enum ClipperLib::PolyType
```

Enumerator

ptSubject	
ptClip	

5.2.3 Function Documentation

5.2.3.1 Abs()

5.2.3.2 AddPolyNodeToPaths()

5.2.3.3 Area() [1/3]

5.2.3.4 Area() [2/3]

```
5.2.3.5 Area() [3/3]
double ClipperLib::Area (
            const OutRec & outRec )
5.2.3.6 CleanPolygon() [1/2]
void ClipperLib::CleanPolygon (
             const Path & in_poly,
             Path & out_poly,
             double distance )
5.2.3.7 CleanPolygon() [2/2]
void ClipperLib::CleanPolygon (
            Path & poly,
             double distance )
5.2.3.8 CleanPolygons() [1/2]
void ClipperLib::CleanPolygons (
             const Paths & in_polys,
             Paths & out_polys,
             double distance )
5.2.3.9 CleanPolygons() [2/2]
void ClipperLib::CleanPolygons (
             Paths & polys,
             double distance )
5.2.3.10 ClosedPathsFromPolyTree()
void ClipperLib::ClosedPathsFromPolyTree (
            const PolyTree & polytree,
             Paths & paths )
```

5.2.3.11 DisposeOutPts()

```
void ClipperLib::DisposeOutPts (
    OutPt *& pp )
```

5.2.3.12 DistanceFromLineSqrd()

5.2.3.13 DistanceSqrd()

5.2.3.14 DupOutPt()

5.2.3.15 E2InsertsBeforeE1()

5.2.3.16 EdgesAdjacent()

5.2.3.17 ExcludeOp()

```
OutPt* ClipperLib::ExcludeOp (
            OutPt * op )
5.2.3.18 FindNextLocMin()
TEdge* ClipperLib::FindNextLocMin (
            TEdge *E)
5.2.3.19 FirstIsBottomPt()
bool ClipperLib::FirstIsBottomPt (
           const OutPt * btmPt1,
            const OutPt * btmPt2 )
5.2.3.20 GetBottomPt()
OutPt* ClipperLib::GetBottomPt (
             OutPt * pp )
5.2.3.21 GetDx()
double ClipperLib::GetDx (
            const IntPoint pt1,
             const IntPoint pt2 ) [inline]
5.2.3.22 GetHorzDirection()
void ClipperLib::GetHorzDirection (
             TEdge & HorzEdge,
             Direction & Dir,
             cInt & Left,
             cInt & Right )
```

5.2.3.23 GetLowermostRec()

```
OutRec* ClipperLib::GetLowermostRec (
          OutRec * outRec1,
          OutRec * outRec2 )
```

5.2.3.24 GetMaximaPair()

5.2.3.25 GetMaximaPairEx()

5.2.3.26 GetNextInAEL()

5.2.3.27 GetOverlap()

5.2.3.28 GetOverlapSegment()

5.2.3.29 GetUnitNormal()

```
DoublePoint ClipperLib::GetUnitNormal (
            const IntPoint & pt1,
             const IntPoint & pt2 )
5.2.3.30 HorzSegmentsOverlap()
bool ClipperLib::HorzSegmentsOverlap (
             cInt segla,
             cInt seg1b,
             cInt seg2a,
             cInt seg2b )
5.2.3.31 InitEdge()
void ClipperLib::InitEdge (
             TEdge * e,
             TEdge * eNext,
             TEdge * ePrev,
             const IntPoint & Pt ) [inline]
5.2.3.32 InitEdge2()
void ClipperLib::InitEdge2 (
             TEdge & e,
             PolyType Pt )
5.2.3.33 Int128Mul()
Int128 ClipperLib::Int128Mul (
             long64 lhs,
             long64 rhs )
5.2.3.34 IntersectListSort()
bool ClipperLib::IntersectListSort (
             IntersectNode * node1,
             IntersectNode * node2 )
```

5.2.3.35 IntersectPoint()

5.2.3.36 IsHorizontal()

5.2.3.37 IsIntermediate()

5.2.3.38 IsMaxima()

5.2.3.39 IsMinima()

5.2.3.40 JoinHorz()

```
bool ClipperLib::JoinHorz (
    OutPt * op1,
    OutPt * op1b,
    OutPt * op2,
    OutPt * op2b,
    const IntPoint Pt,
    bool DiscardLeft )
```

5.2.3.41 Minkowski()

5.2.3.42 MinkowskiDiff()

5.2.3.43 MinkowskiSum() [1/2]

5.2.3.44 MinkowskiSum() [2/2]

5.2.3.45 OpenPathsFromPolyTree()

```
5.2.3.46 operator <<() [1/5]
Path& ClipperLib::operator<< (</pre>
             Path & poly,
             const IntPoint & p ) [inline]
5.2.3.47 operator <<() [2/5]
Paths& ClipperLib::operator<< (</pre>
             Paths & polys,
             const Path & p ) [inline]
5.2.3.48 operator << () [3/5]
std::ostream & ClipperLib::operator<< (</pre>
             std::ostream & s,
             const IntPoint & p )
5.2.3.49 operator << () [4/5]
std::ostream & ClipperLib::operator<< (</pre>
             std::ostream & s,
             const Path & p )
5.2.3.50 operator << () [5/5]
std::ostream & ClipperLib::operator<< (</pre>
            std::ostream & s,
             const Paths & p )
5.2.3.51 Orientation()
bool ClipperLib::Orientation (
            const Path & poly )
```

5.2.3.52 OutRec1RightOfOutRec2()

```
bool ClipperLib::OutRec1RightOfOutRec2 (
             OutRec * outRec1,
             OutRec * outRec2 )
5.2.3.53 ParseFirstLeft()
static OutRec* ClipperLib::ParseFirstLeft (
            OutRec * FirstLeft ) [static]
5.2.3.54 PointCount()
int ClipperLib::PointCount (
             OutPt * Pts )
5.2.3.55 PointlnPolygon() [1/2]
int ClipperLib::PointInPolygon (
            const IntPoint & pt,
             const Path & path )
5.2.3.56 PointlnPolygon() [2/2]
int ClipperLib::PointInPolygon (
             const IntPoint & pt,
             OutPt * op )
5.2.3.57 PointlsVertex()
bool ClipperLib::PointIsVertex (
             const IntPoint & Pt,
             OutPt * pp )
```

5.2.3.58 PointsAreClose()

5.2.3.59 Poly2ContainsPoly1()

```
bool ClipperLib::Poly2ContainsPoly1 (
          OutPt * OutPt1,
          OutPt * OutPt2 )
```

5.2.3.60 PolyTreeToPaths()

5.2.3.61 Pt2IsBetweenPt1AndPt3()

5.2.3.62 RangeTest()

5.2.3.63 RemoveEdge()

5.2.3.64 ReverseHorizontal()

5.2.3.65 ReversePath()

5.2.3.66 ReversePaths()

5.2.3.67 ReversePolyPtLinks()

```
void ClipperLib::ReversePolyPtLinks ( {\tt OutPt} \ * \ pp \ )
```

5.2.3.68 Round()

5.2.3.69 SetDx()

5.2.3.70 SimplifyPolygon()

```
5.2.3.71 SimplifyPolygons() [1/2]
void ClipperLib::SimplifyPolygons (
             const Paths & in_polys,
             Paths & out_polys,
             PolyFillType fillType )
5.2.3.72 SimplifyPolygons() [2/2]
void ClipperLib::SimplifyPolygons (
             Paths & polys,
             PolyFillType fillType )
5.2.3.73 SlopesEqual() [1/3]
bool ClipperLib::SlopesEqual (
             const TEdge & e1,
             const TEdge & e2,
             bool UseFullInt64Range )
5.2.3.74 SlopesEqual() [2/3]
bool ClipperLib::SlopesEqual (
             const IntPoint pt1,
             const IntPoint pt2,
             const IntPoint pt3,
             bool UseFullInt64Range )
5.2.3.75 SlopesEqual() [3/3]
bool ClipperLib::SlopesEqual (
             const IntPoint pt1,
             const IntPoint pt2,
             const IntPoint pt3,
             const IntPoint pt4,
             bool UseFullInt64Range )
```

5.2.3.76 SlopesNearCollinear()

5.2.3.77 SwapIntersectNodes()

5.2.3.78 SwapPoints()

5.2.3.79 SwapPolyIndexes()

5.2.3.80 SwapSides()

5.2.3.81 TopX()

5.2.3.82 TranslatePath()

5.2.3.83 UpdateOutPtldxs()

5.2.4 Variable Documentation

5.2.4.1 def_arc_tolerance

```
double const ClipperLib::def_arc_tolerance = 0.25 [static]
```

5.2.4.2 hiRange

```
cInt const ClipperLib::hiRange = 0x3FFFFFFFFFFFFFFLL [static]
```

5.2.4.3 loRange

```
cInt const ClipperLib::loRange = 0x3FFFFFFF [static]
```

5.2.4.4 pi

```
double const ClipperLib::pi = 3.141592653589793238 [static]
```

5.2.4.5 Skip

```
int const ClipperLib::Skip = -2 [static]
```

5.2.4.6 two_pi

```
double const ClipperLib::two_pi = pi *2 [static]
```

5.2.4.7 Unassigned

```
int const ClipperLib::Unassigned = -1 [static]
```

5.3 DW Namespace Reference

Functions

- void init (x, y, GLfloat *vertices_buffer={0.0f})
- void changeBuffer (GLfloat *vertices_buffer, uint dim)

Variables

- GLFWwindow * window
- GLuint map_buffer

5.3.1 Function Documentation

5.3.1.1 changeBuffer()

5.3.1.2 init()

5.3.2 Variable Documentation

5.3.2.1 map_buffer

```
GLuint DW::map_buffer
```

5.3.2.2 window

```
GLFWwindow* DW::window
```

5.4 timeutils Namespace Reference

Functions

- int64_t timespecDiff (struct timespec *timeA_p, struct timespec *timeB_p)
- double getTimeS ()

5.4.1 Function Documentation

5.4.1.1 getTimeS()

```
double timeutils::getTimeS ( )
```

5.4.1.2 timespecDiff()

Chapter 6

Class Documentation

6.1 Angle Class Reference

This class allows to save and handle angles. It supports DEG and RAD, operations such as addition and subtraction with operators overloading, conversion from RAD to DEG and viceversa and normalization of the angle.

```
#include <maths.hh>
```

Public Types

enum ANGLE_TYPE { DEG, RAD, INVALID }

Public Member Functions

• Angle ()

A void constructor to create an angle.

Angle (double _th, ANGLE_TYPE _type=RAD)

This constructor takes the angle value and the type of angle and stores them. It also normalize the angle in case is above 2pi (360°) or below 0.

• double get () const

Returns the dimension of the angle.

ANGLE_TYPE getType () const

Returns the type of the angle.

- string getTypeName () const
- template < class T >

void set (const T _th)

Set the value of the angle.

void setType (ANGLE_TYPE _type)

Set the type of the angle.

• double degToRad ()

Convert and store the angle from DEG to RAD.

double radToDeg ()

Converts and stores the angle from RAD to DEG.

• double toRad () const

Converts but does not store the value of the angle from DEG to RAD.

36 Class Documentation

double toDeg () const

Converts but does not store the value of the angle from RAD to DEG.

• void normalize ()

Normalize the angle, that is to set it in $[0,2\pi)$ or [0,360). Moreover it check if the value is infinite or NaN. In this case the type is set to <code>INVALID</code>.

Angle add (const Angle phi)

Sums and angle to this one. In the process a new angle is created so normalize () is also called.

• Angle sub (const Angle phi)

Subtracts and angle to this one. In the process a new angle is created so normalize () is also called.

template < class T1 >

Angle mul (const T1 A)

Multiply and angle by a costant. In the process a new angle is created so normalize () is also called.

template<class T1 >

Angle div (const T1 A)

Divide and angle by a costant. In the process a new angle is created so normalize () is also called.

Angle copy (const Angle phi)

Copies an angle to this one. In the process a new angle is created so normalize () is also called.

- Angle operator+ (const Angle phi)
- Angle operator- (const Angle phi)
- template<class T1 >

Angle operator * (const T1 A)

template<class T1 >

Angle operator/ (const T1 A)

- Angle operator= (const Angle phi)
- Angle operator= (const double phi)
- Angle & operator+= (const Angle phi)
- Angle & operator-= (const Angle phi)
- template < class T >

Angle & operator *= (const T A)

• template<class T >

Angle & operator/= (const T A)

- bool equal (const Angle &phi)
- bool less (const Angle &phi)
- bool greater (const Angle &phi)
- bool operator== (const Angle &phi)
- bool operator!= (const Angle &phi)
- bool operator< (const Angle &phi)
- bool operator> (const Angle &phi)
- bool operator<= (const Angle &phi)
- bool operator>= (const Angle &phi)
- · double cos () const

Compute the cosine of the angle. \returns A double that is the cosine of the angle.

double sin () const

Compute the sine of the angle. \returns A double that is the sine of the angle.

· double tan () const

Compute the tangent of the angle. $\mbox{\it Netunrs A double that is the tangent of the angle. } \\$

· operator int () const

Cast to int.

· operator double () const

Cast to double.

· operator float () const

Cast to float.

• operator long () const

Cast to long.

• stringstream to_string (ANGLE_TYPE _type=INVALID) const

Static Public Member Functions

• static bool checkValue (const double th)

Friends

• ostream & operator<< (ostream &out, const Angle &data)

6.1.1 Detailed Description

This class allows to save and handle angles. It supports DEG and RAD, operations such as addition and subtraction with operators overloading, conversion from RAD to DEG and viceversa and normalization of the angle.

6.1.2 Member Enumeration Documentation

6.1.2.1 ANGLE_TYPE

enum Angle::ANGLE_TYPE

Enumerator

DEG	
RAD	
INVALID	

6.1.3 Constructor & Destructor Documentation

```
6.1.3.1 Angle() [1/2]
Angle::Angle ( ) [inline]
```

A void constructor to create an angle.

This constructor takes the angle value and the type of angle and stores them. It also normalize the angle in case is above 2pi (360°) or below 0.

38 Class Documentation

Parameters

in	_th	The dimension of the angle.
in	_type	The type of the angle.

6.1.4 Member Function Documentation

6.1.4.1 add()

Sums and angle to this one. In the process a new angle is created so normalize () is also called.

Parameters

in <i>phi</i>	The angle to be summed.
---------------	-------------------------

Returns

The angle summed.

6.1.4.2 checkValue()

6.1.4.3 copy()

Copies an angle to this one. In the process a new angle is created so ${\tt normalize}$ () is also called.

Parameters

in	Α	The angle to be copied.

Returns

The new angle.

6.1.4.4 cos()

```
double Angle::cos ( ) const [inline]
```

Compute the cosine of the angle. \returns A double that is the cosine of the angle.

6.1.4.5 degToRad()

```
double Angle::degToRad ( ) [inline]
```

Convert and store the angle from DEG to RAD.

Returns

The value of the angle.

6.1.4.6 div()

Divide and angle by a costant. In the process a new angle is created so normalize () is also called.

Template Parameters

The type of the dividend.

Parameters

in	Α	The costant to use to divide.

Returns

The angle divided.

40 Class Documentation

6.1.4.7 equal()

This function takes an angle to copare, an using the equal function for doubles calculates if it is equal or not to this.

Parameters

in <i>phi</i>	The angle to compare.
---------------	-----------------------

Returns

true if the two angle are equal, false otherwise.

6.1.4.8 get()

```
double Angle::get ( ) const [inline]
```

Returns the dimension of the angle.

6.1.4.9 getType()

```
ANGLE_TYPE Angle::getType ( ) const [inline]
```

Returns the type of the angle.

6.1.4.10 getTypeName()

```
string Angle::getTypeName ( ) const [inline]
```

<Returns a string that tells the type of angle.

6.1.4.11 greater()

This function takes the value in radiants of an angle and compares it with this.

Parameters

in	phi	The angle to compare.
----	-----	-----------------------

Returns

true if this is more than phi, false otherwise.

6.1.4.12 less()

This function takes the value in radiants of an angle and compares it with this.

Parameters

in	phi	The angle to compare.
----	-----	-----------------------

Returns

true if this is less than phi, false otherwise.

6.1.4.13 mul()

Multiply and angle by a costant. In the process a new angle is created so normalize () is also called.

Template Parameters

The	type of the coefficient.

Parameters

in	phi	The costant to use to multiply.

Returns

The angle multiplied.

42 Class Documentation

6.1.4.14 normalize()

```
void Angle::normalize ( ) [inline]
```

Normalize the angle, that is to set it in $[0,2\pi)$ or [0,360). Moreover it check if the value is infinite or NaN. In this case the type is set to <code>INVALID</code>.

6.1.4.15 operator *()

This function overload the operator *. It simply calls the mul () function.

Template Parameters

The	type of the coefficient.
-----	--------------------------

Parameters

```
in A The coefficient.
```

Returns

The angle multiplied.

6.1.4.16 operator *=()

This function overload the operator *=. It simply calls the mul () function and then assign the result to this.

Parameters

in	Α	The coefficient.

Returns

this.

6.1.4.17 operator double()

```
Angle::operator double ( ) const [inline]
```

Cast to double.

Returns

The value in RAD of the angle casted to double

6.1.4.18 operator float()

```
Angle::operator float ( ) const [inline]
```

Cast to float.

Returns

The value in RAD of the angle casted to float

6.1.4.19 operator int()

```
Angle::operator int ( ) const [inline]
```

Cast to int.

Returns

The value in RAD of the angle casted to int

6.1.4.20 operator long()

```
Angle::operator long ( ) const [inline]
```

Cast to long.

Returns

The value in RAD of the angle casted to long

6.1.4.21 operator"!=()

This function overload the operator ==. It simply calls the equal () function.

44 Class Documentation

Parameters

Returns

true if the two angle are equal, false otherwise.

This function overload the operator ==. It simply calls the equal () function and negates it.

Parameters

in	phi	The second angle.
----	-----	-------------------

Returns

false if the two angle are equal, true otherwise.

6.1.4.22 operator+()

This function overload the operator +. It simply calls the add () function.

Parameters

in	phi	The angle to be summed.

Returns

The angle summed.

6.1.4.23 operator+=()

This function overload the operator +=. It simply calls the add () function and then assign the result to this.

Parameters

in	phi	The angle to be summed.

Returns

this.

6.1.4.24 operator-()

This function overload the operator -. It simply calls the sub () function.

Parameters

in	phi	The angle to be subtracted.
----	-----	-----------------------------

Returns

The angle subtracted.

6.1.4.25 operator-=()

This function overload the operator -=. It simply calls the sub () function and then assign the result to this.

Parameters

```
in phi The angle to be subtracted.
```

Returns

this.

6.1.4.26 operator/()

This function overload the operator /. It simply calls the ${\tt div}$ () function.

Template Parameters

The type of the dividend.	
---------------------------	--

Parameters

```
in A The dividend.
```

Returns

The angle divided.

6.1.4.27 operator/=()

This function overload the operator /=. It simply calls the ${\tt div}$ () function and then assign the result to this.

Parameters

```
in A The dividend.
```

Returns

this.

6.1.4.28 operator<()

6.1.4.29 operator<=()

6.1.4.30 operator=() [1/2]

This function overload the operator =. It simply calls the \mathtt{copy} () function.

Parameters

in	phi	The angle to be copied.
----	-----	-------------------------

Returns

The new angle.

6.1.4.31 operator=() [2/2]

6.1.4.32 operator==()

This function overload the operator ==. It simply calls the equal () function.

Parameters

```
in phi The second angle.
```

Returns

true if the two angle are equal, false otherwise.

6.1.4.33 operator>()

6.1.4.34 operator>=()

6.1.4.35 radToDeg()

```
double Angle::radToDeg ( ) [inline]
```

Converts and stores the angle from RAD to DEG.

Returns

The value of the angle.

6.1.4.36 set()

Set the value of the angle.

Template Parameters

T | The programming type for the value to be stored. It's then cast to double.

Parameters

in	\leftarrow	The dimension of the angle to be stored.
	_←	
	th	

6.1.4.37 setType()

Set the type of the angle.

in	\leftarrow	The type of the angle to be stored.
	_← th	

6.1.4.38 sin()

```
double Angle::sin ( ) const [inline]
```

Compute the sine of the angle. \returns A double that is the sine of the angle.

6.1.4.39 sub()

Subtracts and angle to this one. In the process a new angle is created so normalize () is also called.

Parameters

in	phi	The angle to be subtracted.	
----	-----	-----------------------------	--

Returns

The angle subtracted.

6.1.4.40 tan()

```
double Angle::tan ( ) const [inline]
```

Compute the tangent of the angle. \returns A double that is the tangent of the angle.

6.1.4.41 to_string()

This function create a strinstream object containing the most essential info, that is the dimension and the type of angle.

in	The	type of values to be printed. Default is set to INVALID and it'll print the data of the Angle as it
		was saved

Returns

A string stream.

6.1.4.42 toDeg()

```
double Angle::toDeg ( ) const [inline]
```

Converts but does not store the value of the angle from RAD to DEG.

Returns

The value of the angle

6.1.4.43 toRad()

```
double Angle::toRad ( ) const [inline]
```

Converts but does not store the value of the angle from DEG to RAD.

Returns

The value of the angle

6.1.5 Friends And Related Function Documentation

6.1.5.1 operator <<

This function overload the << operator so to print with std::cout the most essential info, that is the dimension and the type of angle.

in	out	The out stream.
in	data	The angle to print.

Returns

An output stream to be printed.

The documentation for this class was generated from the following file:

src/include/maths.hh

6.2 CalSettings Class Reference

```
#include <calibration.hh>
```

Public Types

- enum Pattern { NOT_EXISTING =0, CHESSBOARD =1 }
- enum InputType { INVALID =0, IMAGE_LIST =3 }

Public Member Functions

· CalSettings ()

Constructor that sets goodInput to false.

• void write (FileStorage &fs) const

Write serialization.

• void read (const FileNode &node)

Read serialization.

• void validate ()

This function validate the content of the file.

· Mat nextImage ()

Get next image from list.

Static Public Member Functions

- static bool readStringList (const string &filename, vector < string > &I)

Read from file a list of images.

• static bool isListOflmages (const string &filename)

Check if the file from which is trying to retrive a list is a valid format (xml or yaml).

Public Attributes

Size boardSize

The size of the board -> Number of items by width and height.

Pattern calibrationPattern = CHESSBOARD

One of the Chessboard, circles, or asymmetric circle pattern.

float squareSize

The size of a square in your defined unit (point, millimeter,etc).

· int nrFrames

The number of frames to use from the input for calibration.

float aspectRatio

The aspect ratio.

· int delay

In case of a video input.

bool writePoints

Write detected feature points.

· bool writeExtrinsics

Write extrinsic parameters.

· bool calibZeroTangentDist

Assume zero tangential distortion.

· bool calibFixPrincipalPoint

Fix the principal point at the center.

bool flipVertical

Flip the captured images around the horizontal axis.

· string outputFileName

The name of the file where to write.

· bool showUndistorsed

Show undistorted images after calibration.

string input

The input.

• bool useFisheye = false

use fisheye camera model for calibration

bool fixK1

fix K1 distortion coefficient

bool fixK2

fix K2 distortion coefficient

bool fixK3

fix K3 distortion coefficient

· bool fixK4

fix K4 distortion coefficient

• bool fixK5

fix K5 distortion coefficient

- int cameralD
- vector< string > imageList
- size_t atlmageList
- VideoCapture inputCapture
- InputType inputType = IMAGE_LIST
- bool goodInput
- int flag

6.2.1 Member Enumeration Documentation

6.2.1.1 InputType

```
enum CalSettings::InputType
```

Enumerator

INVALID	
IMAGE_LIST	

6.2.1.2 Pattern

```
enum CalSettings::Pattern
```

Enumerator

NOT_EXISTING	
CHESSBOARD	

6.2.2 Constructor & Destructor Documentation

6.2.2.1 CalSettings()

```
CalSettings::CalSettings ( ) [inline]
```

Constructor that sets goodInput to false.

6.2.3 Member Function Documentation

6.2.3.1 isListOfImages()

Check if the file from which is trying to retrive a list is a valid format (xml or yaml).

Parameters

in filename The name of the file to check for val	dity.
---	-------

Returns

false is the file is not xml or yaml true otherwise.

6.2.3.2 nextImage()

```
Mat CalSettings::nextImage ( )
```

Get next image from list.

Returns

A matrix containing the next image to consider.

6.2.3.3 read()

Read serialization.

This function read data from a file and stores each node in their corresponding variables.

Parameters

in	node	The node of the file to consider.
----	------	-----------------------------------

6.2.3.4 readStringList()

Read from file a list of images.

Parameters

in	filename	The name of the file from which to read.
out	1	A vector which will contain the names of the file from the list.

Returns

false if the file could not be opened or if the file doesn't contain a list true otherwise.

6.2.3.5 validate()

```
void CalSettings::validate ( )
```

This function validate the content of the file.

Even though this function doesn't return anything nor has any parameters for output, it sets a variable of the CalSettings class, that is <code>googInput</code>, to <code>false</code> if some infos were wrong. <code>true</code> otherwise. The options it takes in consideration are the following:

- · Size must be positive.
- Cells must be greater than 10^{-6} .
- The number of frames considered, that is images, must be greater than 0.
- Check for valid input, that is a valid list of images.
- · Else a list of image is being used.
- Check the field pattern: if it doesn't correspond to a known one than it's invalid.

6.2.3.6 write()

Write serialization.

This function write data to a file.

6.2.4 Member Data Documentation

6.2.4.1 aspectRatio

float CalSettings::aspectRatio

The aspect ratio.

6.2.4.2 atlmageList

size_t CalSettings::atImageList

6.2.4.3 boardSize

Size CalSettings::boardSize

The size of the board -> Number of items by width and height.

6.2.4.4 calibFixPrincipalPoint

bool CalSettings::calibFixPrincipalPoint

Fix the principal point at the center.

6.2.4.5 calibrationPattern

Pattern CalSettings::calibrationPattern = CHESSBOARD

One of the Chessboard, circles, or asymmetric circle pattern.

6.2.4.6 calibZeroTangentDist

bool CalSettings::calibZeroTangentDist

Assume zero tangential distortion.

6.2.4.7 cameralD int CalSettings::cameraID 6.2.4.8 delay int CalSettings::delay In case of a video input. 6.2.4.9 fixK1 bool CalSettings::fixK1 fix K1 distortion coefficient 6.2.4.10 fixK2 bool CalSettings::fixK2 fix K2 distortion coefficient 6.2.4.11 fixK3 bool CalSettings::fixK3 fix K3 distortion coefficient

fix K4 distortion coefficient

bool CalSettings::fixK4

6.2.4.12 fixK4

6.2.4.13 fixK5 bool CalSettings::fixK5 fix K5 distortion coefficient 6.2.4.14 flag int CalSettings::flag 6.2.4.15 flipVertical $\verb|bool CalSettings::flipVertical|\\$ Flip the captured images around the horizontal axis. 6.2.4.16 goodInput bool CalSettings::goodInput 6.2.4.17 imageList vector<string> CalSettings::imageList 6.2.4.18 input string CalSettings::input The input. 6.2.4.19 inputCapture

VideoCapture CalSettings::inputCapture

6.2.4.20 inputType

```
InputType CalSettings::inputType = IMAGE_LIST
```

6.2.4.21 nrFrames

```
int CalSettings::nrFrames
```

The number of frames to use from the input for calibration.

6.2.4.22 outputFileName

string CalSettings::outputFileName

The name of the file where to write.

6.2.4.23 showUndistorsed

bool CalSettings::showUndistorsed

Show undistorted images after calibration.

6.2.4.24 squareSize

```
float CalSettings::squareSize
```

The size of a square in your defined unit (point, millimeter, etc).

6.2.4.25 useFisheye

bool CalSettings::useFisheye = false

use fisheye camera model for calibration

6.2.4.26 writeExtrinsics

```
bool CalSettings::writeExtrinsics
```

Write extrinsic parameters.

6.2.4.27 writePoints

```
bool CalSettings::writePoints
```

Write detected feature points.

The documentation for this class was generated from the following files:

- src/include/calibration.hh
- src/calibration.cc

6.3 CameraCapture Class Reference

```
#include <camera_capture.hh>
```

Inherits VideoCapture.

Classes

struct input_options_t

Structure for store the input option for the class CameraCapture.

Public Member Functions

- CameraCapture (input_options_t options)
- bool grab (cv::Mat &img, double ×tamp)
- bool isOpened ()
- bool isAlive ()
- ∼CameraCapture ()
- bool startCamera ()
- bool loadCoefficients (std::string const &filename)

6.3.1 Constructor & Destructor Documentation

6.3.1.1 CameraCapture()

Initializer of the camera capture class

Parameters

```
options for the class
```

Returns

6.3.1.2 ∼CameraCapture()

```
{\tt CameraCapture::}{\sim}{\tt CameraCapture~(~)}
```

release the resource

6.3.2 Member Function Documentation

6.3.2.1 grab()

Grab the first frame available and store it in frame variable

Returns

success if a frame is grabbed, false if not

6.3.2.2 isAlive()

```
bool CameraCapture::isAlive ( )
```

Check if the videostream is alive

Returns

true if open, false if not

6.3.2.3 isOpened()

```
bool CameraCapture::isOpened ( )
```

Check if the videostream is opened

Returns

true if open, false if not

6.3.2.4 loadCoefficients()

6.3.2.5 startCamera()

```
bool CameraCapture::startCamera ( )
```

get time in ns

Returns

time in ns

The documentation for this class was generated from the following files:

- src/include/camera_capture.hh
- src/camera_capture.cc

6.4 ClipperLib::Clipper Class Reference

```
#include <clipper.hh>
```

Inheritance diagram for ClipperLib::Clipper:

Collaboration diagram for ClipperLib::Clipper:

Public Member Functions

- Clipper (int initOptions=0)
- bool Execute (ClipType clipType, Paths &solution, PolyFillType fillType=pftEvenOdd)
- bool Execute (ClipType clipType, Paths &solution, PolyFillType subjFillType, PolyFillType clipFillType)
- bool Execute (ClipType clipType, PolyTree &polytree, PolyFillType fillType=pftEvenOdd)
- bool Execute (ClipType clipType, PolyTree &polytree, PolyFillType subjFillType, PolyFillType clipFillType)
- bool ReverseSolution ()
- void ReverseSolution (bool value)
- bool StrictlySimple ()
- void StrictlySimple (bool value)

Protected Member Functions

• virtual bool ExecuteInternal ()

Additional Inherited Members

6.4.1 Constructor & Destructor Documentation

```
6.4.1.1 Clipper()
```

```
ClipperLib::Clipper::Clipper (
    int initOptions = 0 )
```

6.4.2 Member Function Documentation

```
6.4.2.1 Execute() [1/4]
bool ClipperLib::Clipper::Execute (
             ClipType clipType,
             Paths & solution,
             PolyFillType fillType = pftEvenOdd )
6.4.2.2 Execute() [2/4]
bool ClipperLib::Clipper::Execute (
             ClipType clipType,
             Paths & solution,
             PolyFillType subjFillType,
             PolyFillType clipFillType )
6.4.2.3 Execute() [3/4]
bool ClipperLib::Clipper::Execute (
             ClipType clipType,
             PolyTree & polytree,
             PolyFillType fillType = pftEvenOdd )
6.4.2.4 Execute() [4/4]
bool ClipperLib::Clipper::Execute (
             ClipType clipType,
             PolyTree & polytree,
             PolyFillType subjFillType,
             PolyFillType clipFillType )
```

6.4.2.5 ExecuteInternal()

```
bool ClipperLib::Clipper::ExecuteInternal ( ) [protected], [virtual]
6.4.2.6 ReverseSolution() [1/2]
bool ClipperLib::Clipper::ReverseSolution ( ) [inline]
6.4.2.7 ReverseSolution() [2/2]
\verb"void ClipperLib::Clipper::ReverseSolution" (
            bool value ) [inline]
6.4.2.8 StrictlySimple() [1/2]
bool ClipperLib::Clipper::StrictlySimple ( ) [inline]
6.4.2.9 StrictlySimple() [2/2]
void ClipperLib::Clipper::StrictlySimple (
            bool value ) [inline]
```

The documentation for this class was generated from the following files:

- src/include/clipper.hh
- src/clipper.cc

6.5 ClipperLib::ClipperBase Class Reference

#include <clipper.hh>

Inheritance diagram for ClipperLib::ClipperBase:

Collaboration diagram for ClipperLib::ClipperBase:

Public Member Functions

- ClipperBase ()
- virtual ∼ClipperBase ()
- virtual bool AddPath (const Path &pg, PolyType PolyTyp, bool Closed)

- bool AddPaths (const Paths &ppg, PolyType PolyTyp, bool Closed)
- virtual void Clear ()
- IntRect GetBounds ()
- bool PreserveCollinear ()
- void PreserveCollinear (bool value)

Protected Types

- typedef std::vector< LocalMinimum > MinimaList
- typedef std::priority_queue < clnt > ScanbeamList

Protected Member Functions

- void DisposeLocalMinimaList ()
- TEdge * AddBoundsToLML (TEdge *e, bool IsClosed)
- virtual void Reset ()
- TEdge * ProcessBound (TEdge *E, bool IsClockwise)
- void InsertScanbeam (const clnt Y)
- bool PopScanbeam (cInt &Y)
- bool LocalMinimaPending ()
- bool PopLocalMinima (cInt Y, const LocalMinimum *&locMin)
- OutRec * CreateOutRec ()
- void DisposeAllOutRecs ()
- void DisposeOutRec (PolyOutList::size_type index)
- void SwapPositionsInAEL (TEdge *edge1, TEdge *edge2)
- void DeleteFromAEL (TEdge *e)
- void UpdateEdgeIntoAEL (TEdge *&e)

Protected Attributes

- MinimaList::iterator m CurrentLM
- · MinimaList m MinimaList
- bool m_UseFullRange
- EdgeList m_edges
- bool m_PreserveCollinear
- bool m_HasOpenPaths
- PolyOutList m_PolyOuts
- TEdge * m_ActiveEdges
- ScanbeamList m_Scanbeam

6.5.1 Member Typedef Documentation

6.5.1.1 MinimaList

typedef std::vector<LocalMinimum> ClipperLib::ClipperBase::MinimaList [protected]

```
6.5.1.2 ScanbeamList
```

```
typedef std::priority_queue<cInt> ClipperLib::ClipperBase::ScanbeamList [protected]
```

6.5.2 Constructor & Destructor Documentation

```
6.5.2.1 ClipperBase()
```

```
ClipperLib::ClipperBase::ClipperBase ( )
```

6.5.2.2 ∼ClipperBase()

```
ClipperLib::ClipperBase::~ClipperBase ( ) [virtual]
```

6.5.3 Member Function Documentation

6.5.3.1 AddBoundsToLML()

6.5.3.2 AddPath()

6.5.3.3 AddPaths()

```
6.5.3.4 Clear()
void ClipperLib::ClipperBase::Clear ( ) [virtual]
6.5.3.5 CreateOutRec()
OutRec * ClipperLib::ClipperBase::CreateOutRec ( ) [protected]
6.5.3.6 DeleteFromAEL()
void ClipperLib::ClipperBase::DeleteFromAEL (
             TEdge * e ) [protected]
6.5.3.7 DisposeAllOutRecs()
void ClipperLib::ClipperBase::DisposeAllOutRecs ( ) [protected]
6.5.3.8 DisposeLocalMinimaList()
void ClipperLib::ClipperBase::DisposeLocalMinimaList ( ) [protected]
6.5.3.9 DisposeOutRec()
void ClipperLib::ClipperBase::DisposeOutRec (
             PolyOutList::size_type index ) [protected]
6.5.3.10 GetBounds()
IntRect ClipperLib::ClipperBase::GetBounds ( )
```

```
6.5.3.11 InsertScanbeam()
```

```
void ClipperLib::ClipperBase::InsertScanbeam (
            const cInt Y ) [protected]
6.5.3.12 LocalMinimaPending()
bool ClipperLib::ClipperBase::LocalMinimaPending ( ) [protected]
6.5.3.13 PopLocalMinima()
bool ClipperLib::ClipperBase::PopLocalMinima (
             const LocalMinimum *& locMin ) [protected]
6.5.3.14 PopScanbeam()
bool ClipperLib::ClipperBase::PopScanbeam (
            cInt & Y ) [protected]
6.5.3.15 PreserveCollinear() [1/2]
bool ClipperLib::ClipperBase::PreserveCollinear ( ) [inline]
6.5.3.16 PreserveCollinear() [2/2]
void ClipperLib::ClipperBase::PreserveCollinear (
             bool value ) [inline]
6.5.3.17 ProcessBound()
TEdge * ClipperLib::ClipperBase::ProcessBound (
             TEdge *E,
             \verb|bool| IsClockwise|) | [\verb|protected|] \\
```

```
6.5.3.18 Reset()
```

```
void ClipperLib::ClipperBase::Reset ( ) [protected], [virtual]
```

6.5.3.19 SwapPositionsInAEL()

6.5.3.20 UpdateEdgeIntoAEL()

6.5.4 Member Data Documentation

6.5.4.1 m_ActiveEdges

```
TEdge* ClipperLib::ClipperBase::m_ActiveEdges [protected]
```

6.5.4.2 m_CurrentLM

```
\label{limit} {\tt MinimaList::iterator~ClipperLib::ClipperBase::m\_CurrentLM} \quad [protected]
```

6.5.4.3 m_edges

```
EdgeList ClipperLib::ClipperBase::m_edges [protected]
```

6.5.4.4 m_HasOpenPaths

```
bool ClipperLib::ClipperBase::m_HasOpenPaths [protected]
```

6.5.4.5 m_MinimaList

```
MinimaList ClipperLib::ClipperBase::m_MinimaList [protected]
```

6.5.4.6 m_PolyOuts

```
PolyOutList ClipperLib::ClipperBase::m_PolyOuts [protected]
```

6.5.4.7 m_PreserveCollinear

```
bool ClipperLib::ClipperBase::m_PreserveCollinear [protected]
```

6.5.4.8 m_Scanbeam

```
ScanbeamList ClipperLib::ClipperBase::m_Scanbeam [protected]
```

6.5.4.9 m_UseFullRange

```
bool ClipperLib::ClipperBase::m_UseFullRange [protected]
```

The documentation for this class was generated from the following files:

- src/include/clipper.hh
- src/clipper.cc

6.6 ClipperLib::clipperException Class Reference

```
#include <clipper.hh>
```

Inherits exception.

Public Member Functions

- clipperException (const char *description)
- virtual ~clipperException () throw ()
- virtual const char * what () const throw ()

6.6.1 Constructor & Destructor Documentation

6.6.1.1 clipperException()

6.6.1.2 ∼clipperException()

```
virtual ClipperLib::clipperException::~clipperException ( ) throw ( ) [inline], [virtual]
```

6.6.2 Member Function Documentation

6.6.2.1 what()

```
virtual const char* ClipperLib::clipperException::what ( ) const throw ( ) [inline], [virtual]
```

The documentation for this class was generated from the following file:

• src/include/clipper.hh

6.7 ClipperLib::ClipperOffset Class Reference

```
#include <clipper.hh>
```

Public Member Functions

- ClipperOffset (double miterLimit=2.0, double roundPrecision=0.25)
- ∼ClipperOffset ()
- void AddPath (const Path &path, JoinType joinType, EndType endType)
- void AddPaths (const Paths &paths, JoinType joinType, EndType endType)
- void Execute (Paths &solution, double delta)
- void Execute (PolyTree &solution, double delta)
- void Clear ()

Public Attributes

- double MiterLimit
- double ArcTolerance

6.7.1 Constructor & Destructor Documentation

```
6.7.1.1 ClipperOffset()
```

6.7.1.2 ∼ClipperOffset()

```
ClipperLib::ClipperOffset::~ClipperOffset ( )
```

6.7.2 Member Function Documentation

6.7.2.1 AddPath()

6.7.2.2 AddPaths()

6.7.2.3 Clear()

```
void ClipperLib::ClipperOffset::Clear ( )
```


6.7.2.5 Execute() [2/2]

6.7.3 Member Data Documentation

6.7.3.1 ArcTolerance

```
double ClipperLib::ClipperOffset::ArcTolerance
```

6.7.3.2 MiterLimit

```
double ClipperLib::ClipperOffset::MiterLimit
```

The documentation for this class was generated from the following files:

- src/include/clipper.hh
- src/clipper.cc

6.8 Configuration2 < T1 > Class Template Reference

This class stores a configuration, that is a point and an angle.

```
#include <maths.hh>
```

Public Member Functions

Configuration2 ()

Default constructor that use as point (0,0) and as angle 0 RAD.

Configuration2 (const T1 _x, const T1 _y, const Angle _th)

Default constructor that takes the coordinates, the angle, and stores them.

Configuration2 (const Point2< T1 > P, const Angle _th)

Default constructor that takes the point, the angle, and stores them.

- Point2< T1 > point () const
- T1 x () const
- T1 y () const
- Angle angle () const
- int x (const T1 _x)

This function stores a new value for the abscissa.

int y (const T1 _y)

This function stores a new value for the ordinate.

void angle (const Angle th)

This function stores a new value for the angle.

template < class T2 >

```
int offset (const T2 offset, const Angle phi, const Angle th)
```

This function compute the offset of the point given a vector, that is the length of the vector and its angle. The angle must be an Angle variable. It takes also another Angle to change the Angle in the configuration.

int offset (Configuration2< T1 > p)

This function compute the offset of the point given another Configuration 2.

int offset (Point2< T1 > p, const Angle _th=Angle())

This function compute the offset of the point given a Point2 containing the offsets for the abscissa and the ordinate and an Angle to change the Angle in the configuration.

• int offset x (const T1 offset)

Function to add an offset to the abscissa.

int offset_y (const Angle _offset)

Function to add an offset to the ordinate.

void offset_angle (const Angle _th)

Function to add an offset to the angle.

template < class T2 >

```
Tuple < double > distance (Configuration2 < T2 > B, DISTANCE_TYPE dist_type=EUCLIDEAN)
```

Wrapper to compute different distances. \tparan T2 The type of the elements in the second Configuration2.

template < class T2 >

```
Tuple < double > EuDistance (Configuration2 < T2 > B)
```

Function that compute the Euclidean Distance between two configurations. \tparan T2 The type of the elements in the second Configuration2.

template < class T2 >

```
Tuple < double > MaDistance (Configuration2 < T2 > B)
```

Function that compute the Manhattan Distance between two configurations. \tparan T2 The type of the elements in the second Configuration2.

• stringstream to_string () const

Function to create a stringstream containing the detail of the configuration.

• template < class T2 >

```
operator Point2< T2 > () const
```

Cast of Configuration to Point2.

Configuration2< T1 > copy (const Configuration2< T1 > &A)

Copy a configuration into another one.

Configuration2< T1 > operator= (const Configuration2< T1 > &A)

Overload of the = operatore. Just calls copy.

```
    bool equal (const Configuration2< T1 > &A)
```

Equalize two configurations.

bool operator== (const Configuration2< T1 > &A)
 Overload of the == operator. Just calls equal.

```
    template < class T2 > 
operator Configuration2 < T2 > () const
```

Friends

ostream & operator << (ostream &out, const Configuration2 < T1 > &data)
 Overload of operator << to output the content of a Configuration2.

6.8.1 Detailed Description

```
template < class T1> class Configuration2< T1>
```

This class stores a configuration, that is a point and an angle.

Template Parameters

```
T1 The type of the coordinates.
```

6.8.2 Constructor & Destructor Documentation

```
6.8.2.1 Configuration2() [1/3]

template<class T1>
Configuration2< T1 >::Configuration2 ( ) [inline]
```

Default constructor that use as point (0,0) and as angle 0 RAD.

```
6.8.2.2 Configuration2() [2/3]
```

Default constructor that takes the coordinates, the angle, and stores them.

Parameters

in	\leftarrow	The abscissa coordinate.
	_←	
	X	
in	\leftarrow	The ordinate coordinate.
	_~	
	У	
in	\leftarrow	The angle.
	_~	
	th	

6.8.2.3 Configuration2() [3/3]

Default constructor that takes the point, the angle, and stores them.

Parameters

in	Р	The coordinates.
in	\leftarrow	The angle.
	_← th	

6.8.3 Member Function Documentation

```
6.8.3.1 angle() [1/2]

template<class T1>
Angle Configuration2< T1 >::angle ( ) const [inline]
```

Returns

The angle.

This function stores a new value for the angle.

Parameters

in	\rightarrow	The value to be stored.
	_← th	

Returns

1 if everything went ok, 0 otherwise.

6.8.3.3 copy()

Copy a configuration into another one.

Parameters

in	Α	Configuration to be coppied.
----	---	------------------------------

Returns

this.

6.8.3.4 distance()

 $Wrapper\ to\ compute\ different\ distances.\ \ \ \ the\ type\ of\ the\ elements\ in\ the\ second\ \ Configuration 2.$

Parameters

in	В	The second Configuration2 to use for computing the distance.
in	dist	The type of distance to be computed.

Returns

The distance between the two configurations.

6.8.3.5 equal()

Equalize two configurations.

Parameters

in	Α	Configuration to be equalized.
----	---	--------------------------------

Returns

true if the two configurations are equal.

6.8.3.6 EuDistance()

Function that compute the Euclidean Distance between two configurations. \tparan T2 The type of the elements in the second Configuration2.

Parameters

```
in B the second Configuration2 to use for computing the distance.
```

Returns

The Euclidean distance between the two configurations.

6.8.3.7 MaDistance()

Function that compute the Manhattan Distance between two configurations. \tparan T2 The type of the elements in the second Configuration2.

Parameters

in B the second Configuration2 to use for computing the distance.

Returns

The Manhattan distance between the two configurations.

This function compute the offset of the point given a vector, that is the length of the vector and its angle. The angle must be an Angle variable. It takes also another Angle to change the Angle in the configuration.

Template Parameters

This function compute the offset of the point given another Configuration2.

Parameters

in p The configuration containing the offsets.

Returns

1 if everything went fine, 0 otherwise.

```
6.8.3.10 offset() [3/3]

template<class T1>
int Configuration2< T1 >::offset (
```

```
Point2< T1 > p,
const Angle _th = Angle() ) [inline]
```

This function compute the offset of the point given a Point2 containing the offsets for the abscissa and the ordinate and an Angle to change the Angle in the configuration.

Parameters

in	р	The point containing the offsets.
in	\leftarrow	The offset for the Angle in the configuration. It's set to 0 as default so to easily change just the
	_←	coordinates.
	th	

Returns

1 if everything went fine, 0 otherwise.

6.8.3.11 offset_angle()

Function to add an offset to the angle.

Parameters

in	_offset	The offset.

Returns

1 if everything went fine, 0 otherwise.

6.8.3.12 offset_x()

Function to add an offset to the abscissa.

Parameters

in	_offset	The offset.

Returns

1 if everything went fine, 0 otherwise.

6.8.3.13 offset_y()

Function to add an offset to the ordinate.

Parameters

```
in _offset The offset.
```

Returns

1 if everything went fine, 0 otherwise.

6.8.3.14 operator Configuration2 < T2 >()

```
template<class T1>
template<class T2 >
Configuration2< T1 >::operator Configuration2< T2 > ( ) const [inline]
```

6.8.3.15 operator Point2< T2 >()

Cast of Configuration to Point2.

Template Parameters

```
Type of Point2 to be casted to.
```

Returns

A Point2 of type T2.

6.8.3.16 operator=()

Overload of the = operatore. Just calls copy.

Parameters

in	Α	Configuration to be coppied.	
----	---	------------------------------	--

Returns

this.

6.8.3.17 operator==()

Overload of the == operator. Just calls equal.

Parameters

in	Α	Configuration to be equalized.
----	---	--------------------------------

Returns

true if the two configurations are equal.

6.8.3.18 point()

```
template<class T1>
Point2<T1> Configuration2< T1 >::point ( ) const [inline]
```

Returns

A Point2 variable containing the coordinates.

6.8.3.19 to_string()

```
template<class T1>
stringstream Configuration2< T1 >::to_string ( ) const [inline]
```

Function to create a stringstream containing the detail of the configuration.

Returns

A stringstream.

```
6.8.3.20 x() [1/2]
template<class T1>
T1 Configuration2< T1 >::x ( ) const [inline]
```

Returns

The abscissa coordinate.

This function stores a new value for the abscissa.

Parameters

in	\leftarrow	The value to be stored.
	_←	
	X	

Returns

1 if everything went ok, 0 otherwise.

```
6.8.3.22 y() [1/2]

template<class T1>
T1 Configuration2< T1 >::y ( ) const [inline]
```

Returns

The ordinate coordinate.

This function stores a new value for the ordinate.

Parameters

in	\leftarrow	The value to be stored.
	_←	
	У	

Returns

1 if everything went ok, 0 otherwise.

6.8.4 Friends And Related Function Documentation

6.8.4.1 operator <<

Overload of operator << to output the content of a Configuration2.

Parameters

in	out	The output stream.
in	data	The Configuration2 to print.

Returns

An output stream to be printed.

The documentation for this class was generated from the following file:

• src/include/maths.hh

6.9 Curve < T > Class Template Reference

#include <dubins.hh>

Inheritance diagram for Curve< T >:

Collaboration diagram for Curve< T >:

Public Member Functions

• Curve ()

Default plain constructor which creates two plain Configuration2s.

- Curve (const Configuration2< T > _P0, const Configuration2< T > _P1)
- Curve (const Point2< T > _P0, const Point2< T > _P1, const Angle _th0, const Angle _th1)
- Curve (const T x0, const T y0, const Angle _th0, const T x1, const T y1, const Angle _th1)
- Configuration2< T > begin () const

Returns the starting Configuration 2 of the Curve.

• Configuration2< T > end () const

Returns the ending Configuration2 of the Curve.

- void begin (Configuration2< T > _P0)
- void end (Configuration2< T > _P1)
- stringstream to_string () const

Protected Attributes

```
    Configuration2< T > P0
        Start Configuration2.

    Configuration2
    T > P1
        End Configuration2.
```

Friends

ostream & operator<< (ostream &out, const Curve &data)

6.9.1 Detailed Description

```
\begin{array}{l} \text{template}{<}\text{class T}{>} \\ \text{class Curve}{<}\text{T}{>} \end{array}
```

Class that defines a general curve. It just containes a start Configuration2 and an end Configuration2.

Template Parameters

```
T | The type of the Configuration2s
```

6.9.2 Constructor & Destructor Documentation

```
6.9.2.1 Curve() [1/4]

template<class T>
Curve< T >::Curve ( ) [inline]
```

Default plain constructor which creates two plain Configuration2s.

Constructor that takes two Configuration2s and stores them.

Parameters

_P0	Start Configuration2.
_P1	End Configuration2.

6.9.2.3 Curve() [3/4]

Constructor that takes two Point2s and two Angles and stores them as Configuration2s.

Parameters

_P0	Start Point 2.
_P1	End Point2.
_th0	Starting Angle
_th1	Ending Angle

6.9.2.4 Curve() [4/4]

 $Constructor\ that\ takes\ the\ bare\ coordinates\ of\ two\ points\ and\ their\ {\tt Angles}\ and\ stores\ them\ as\ {\tt Configuration2s}.$

Parameters

x0	Start abscissa coordinate.
y0	Start ordinate coordinate.
_th0	Start Angle.
x1	End abscissa coordinate.
y1	End ordinate coordinate.
_th1	End Angle.

6.9.3 Member Function Documentation

```
6.9.3.1 begin() [1/2]

template<class T>
Configuration2<T> Curve< T >::begin ( ) const [inline]
```

Returns the starting Configuration2 of the Curve.

Function that stores the starting Configuration2.

Parameters

```
_PO Starting Configuration2.
```

```
6.9.3.3 end() [1/2]
```

```
template<class T>
Configuration2<T> Curve< T >::end ( ) const [inline]
```

Returns the ending Configuration2 of the Curve.

```
6.9.3.4 end() [2/2]
```

Function that stores the ending Configuration2.

Parameters

_PO | Ending Configuration2.

6.9.3.5 to_string()

```
template<class T>
stringstream Curve< T >::to_string ( ) const [inline]
```

This function create a strinstream object containing infos about the Curve.

Returns

A string stream.

6.9.4 Friends And Related Function Documentation

6.9.4.1 operator < <

This function overload the << operator so to print with std::cout the values of the Curve.

Parameters

in	out	The out stream.
in	data	The Curve to print.

Returns

An output stream to be printed.

6.9.5 Member Data Documentation

6.9.5.1 P0

```
template<class T>
Configuration2<T> Curve< T >::P0 [protected]
```

Start Configuration2.

6.9.5.2 P1

```
template<class T>
Configuration2<T> Curve< T >::P1 [protected]
```

End Configuration2.

The documentation for this class was generated from the following file:

src/include/dubins.hh

6.10 ClipperLib::DoublePoint Struct Reference

```
#include <clipper.hh>
```

Public Member Functions

- DoublePoint (double x=0, double y=0)
- DoublePoint (IntPoint ip)

Public Attributes

- double X
- double Y

6.10.1 Constructor & Destructor Documentation

```
6.10.1.1 DoublePoint() [1/2]
```

6.10.1.2 DoublePoint() [2/2]

6.10.2 Member Data Documentation

6.10.2.1 X

double ClipperLib::DoublePoint::X

6.10.2.2 Y

double ClipperLib::DoublePoint::Y

The documentation for this struct was generated from the following file:

• src/include/clipper.hh

6.11 Dubins < T > Class Template Reference

Class to store a Dubins curve. This class inherits from Curve and is composed of three DubinsArc.

#include <dubins.hh>

Inheritance diagram for Dubins< T >:

Collaboration diagram for Dubins < T >:

Public Member Functions

- Dubins ()
- Dubins (const Configuration2< T > _P0, const Configuration2< T > _P1, const double _K=KMAX)
- Dubins (const Point2< T > _P0, const Point2< T > _P1, const Angle _th0, const Angle _th1, const double K=KMAX)
- Dubins (const T x0, const T y0, const Angle _th0, const T x1, const T y1, const Angle _th1, const double _K=KMAX)
- double getKMax () const

Returns the maximum curvature of the Dubins.

· double length () const

Returns the length of the Dubins.

double getId ()

Returns the id of the Dubins, that is the set of three maneuvers that creates the curve.

DubinsArc< T > getA1 () const

Returns the first DubinsArc.

DubinsArc< T > getA2 () const

Returns the second DubinsArc.

DubinsArc< T > getA3 () const

Returns the third DubinsArc.

- double * LSL (double th0, double th1, double kmax)
- double * RSR (double th0, double th1, double kmax)
- double * LSR (double th0, double th1, double _kmax)
- double * RSL (double th0, double th1, double kmax)
- double * RLR (double th0, double th1, double kmax)
- double * LRL (double th0, double th1, double _kmax)
- Tuple < double > scaleToStandard ()

Function to compute standardize the parameters. This function computes the initial and final angles as if the reference system is P0(-1,0), P1(0,1). This allows to simplify the calculations to find the best set of maneuvers.

- Tuple < double > scaleFromStandard (double lambda, double sc s1, double sc s2, double sc s3)
- int shortest_path ()

This function computes the shortest path for the <u>Dubins</u> constructed. First the values are scaled. Then the six sets of maneuvers are computed and their lengths are stored. Once the set that gives the <u>Dubins</u> with the minimum length is found, the lengths are rescaled and the <u>DubinsArc</u> are created. In the process length is also computed.

- bool check (double s1, double k0, double s2, double k1, double s3, double k2, Angle th0, Angle th1) const
- Tuple < Tuple < Point2 < double > > > splitlt (int _arch=0, double _L=PIECE_LENGTH)
- stringstream to_string () const
- void draw (double dimX, double dimY, double inc, Scalar scl, Mat &image, double SHIFT=0)

Static Public Member Functions

• static double rangeSymm (double ang)

Friends

ostream & operator<< (ostream &out, const Dubins &data)

Additional Inherited Members

6.11.1 Detailed Description

template < class T > class Dubins < T >

Class to store a Dubins curve. This class inherits from Curve and is composed of three DubinsArc.

Template Parameters

```
The type of the classes Curve and DubinsArc.
```

6.11.2 Constructor & Destructor Documentation

```
6.11.2.1 Dubins() [1/4]

template<class T>
Dubins< T >::Dubins ( ) [inline]
```

Plain constructor for Dubins that calls the plain constructor of Curve and DubinsArc.

Constructor that takes an initial and a final Configuration2, a curvature and compute the Dubins that connect the two configurations.

Parameters

_P0	Initial Configuration2.
_P1	Final Configuration2.
_K	Curvature.

6.11.2.3 Dubins() [3/4]

Constructor that takes an initial and a final Point2, the two respectively Angles and the curvature and computes the Dubins.

Parameters

_P0	Initial Point 2.
_P1	Final Point2.
_th0	Initial Angle
_th1	Final Angle
_K	Curvature.

6.11.2.4 Dubins() [4/4]

Constructor that takes the initial and final coordinates, the respective Angles and the curvature and compute a Dubins.

Parameters

x0	Initial abscissa coordinate.
y0	Initial ordinate coordinate.
_th0	Initial Angle.
x1	Final abscissa coordinate.
y1	Final ordinate coordinate.
_th1	Final Angle.
_K	Curvature of the curve.

6.11.3 Member Function Documentation

6.11.3.1 check()

```
double k2,
Angle th0,
Angle th1 ) const [inline]
```

Function that checks that the values got in shortest_path() are right.

Parameters

s1	Length for the first DubinsArc.
k0	Curvature for the first DubinsArc.
s2	Length for the second DubinsArc.
k1	Curvature for the second DubinsArc.
s3	Length for the third DubinsArc.
k2	Curvature for the third DubinsArc.
th0	Initial angles (standardised).
th1	Final angles (standardised).

Returns

true if the values where correct, false otherwise.

6.11.3.2 draw()

Function to draw the Dubins.

Parameters

dimX	The dimension X of the Mat.
dimY	The dimension Y of the Mat.
inc	The value to scale each point.
scl	The Scalar that defines the color to use.
image	The Mat where to draw the points.
SHIFT	The value to use to shift the points to make them stay inside the matrix.

6.11.3.3 getA1()

```
template<class T>
DubinsArc<T> Dubins< T >::getA1 ( ) const [inline]
```

Returns the first DubinsArc.

```
6.11.3.4 getA2()
```

```
template<class T>
DubinsArc<T> Dubins< T >::getA2 ( ) const [inline]
```

Returns the second DubinsArc.

6.11.3.5 getA3()

```
template<class T>
DubinsArc<T> Dubins< T >::getA3 ( ) const [inline]
```

Returns the third DubinsArc.

6.11.3.6 getId()

```
template<class T>
double Dubins< T >::getId ( ) [inline]
```

Returns the id of the Dubins, that is the set of three maneuvers that creates the curve.

6.11.3.7 getKMax()

```
template<class T>
double Dubins< T >::getKMax ( ) const [inline]
```

Returns the maximum curvature of the Dubins.

6.11.3.8 length()

```
template<class T>
double Dubins< T >::length ( ) const [inline]
```

Returns the length of the Dubins.

6.11.3.9 LRL()

Function to compute the set of maneuvers Left Right Left.

Parameters

th0	The initial angle standardized.
th1	The final angle standardized.
_kmax	The maximum curvature.

Returns

An array of dimension 3 containing the length of the 3 maneuvers.

6.11.3.10 LSL()

Function to compute the set of maneuvers Left Straight Left.

Parameters

th0	The initial angle standardized.
th1	The final angle standardized.
kmax	The maximum curvature.

Returns

An array of dimension 3 containing the length of the 3 maneuvers.

6.11.3.11 LSR()

Function to compute the set of maneuvers Left Straight Right.

Parameters

th0	The initial angle standardized.
th1	The final angle standardized.
_kmax	The maximum curvature.

Returns

An array of dimension 3 containing the length of the 3 maneuvers.

6.11.3.12 rangeSymm()

Normalize an angular difference $(-\pi, \pi]$.

Parameters

ed.

Returns

The normalized angle.

6.11.3.13 RLR()

Function to compute the set of maneuvers Right Left Right.

Parameters

th0	The initial angle standardized.
th1	The final angle standardized.
_kmax	The maximum curvature.

Returns

An array of dimension 3 containing the length of the 3 maneuvers.

6.11.3.14 RSL()

```
template<class T>
double* Dubins< T >::RSL (
```

```
double th0,
double th1,
double _kmax ) [inline]
```

Function to compute the set of maneuvers Right Straight Left.

Parameters

th0	The initial angle standardized.
th1	The final angle standardized.
_kmax	The maximum curvature.

Returns

An array of dimension 3 containing the length of the 3 maneuvers.

6.11.3.15 RSR()

Function to compute the set of maneuvers Right Straight Right.

Parameters

th0	The initial angle standardized.
th1	The final angle standardized.
kmax	The maximum curvature.

Returns

An array of dimension 3 containing the length of the 3 maneuvers.

6.11.3.16 scaleFromStandard()

6.11.3.17 scaleToStandard()

```
template<class T>
Tuple<double> Dubins< T >::scaleToStandard ( ) [inline]
```

Function to compute standardize the parameters. This function computes the initial and final angles as if the reference system is P0(-1,0), P1(0,1). This allows to simplify the calculations to find the best set of maneuvers.

Returns

A Tuple of duoble containing the standardised initial and final angle, the new curvature and the parameter lambda that allows to compute the real dimension lengths.

6.11.3.18 shortest_path()

```
template<class T>
int Dubins< T >::shortest_path ( ) [inline]
```

This function computes the shortest path for the <u>Dubins</u> constructed. First the values are scaled. Then the six sets of maneuvers are computed and their lengths are stored. Once the set that gives the <u>Dubins</u> with the minimum length is found, the lengths are rescaled and the <u>DubinsArc</u> are created. In the process length is also computed.

Returns

The id of the set of maneuvers.

6.11.3.19 splitlt()

```
template<class T>
Tuple<Tuple<Point2<double> > Dubins< T >::splitIt (
    int _arch = 0,
    double _L = PIECE_LENGTH ) [inline]
```

Function to split a Dubins in points.

Parameters

_arch	If defined returns only the points for a single DubinsArc.
_L	The distance from one point to another.

Returns

A Tuple containing three Tuple of Point2 (one for each arc) containing the computed points.

6.11.3.20 to_string()

```
template<class T>
stringstream Dubins< T >::to_string ( ) const [inline]
```

This function create a strinstream object containing infos about the Dubins.

Returns

A string stream.

6.11.4 Friends And Related Function Documentation

6.11.4.1 operator <<

This function overload the << operator so to print with std::cout the values of the Dubins, that is printing the 3 DubinsArcs.

Parameters

in	out	The out stream.
in	data	The Dubins to print.

Returns

An output stream to be printed.

The documentation for this class was generated from the following file:

• src/include/dubins.hh

6.12 DubinsArc< T1, T2 > Class Template Reference

Class to store a maneuver of <u>Dubins</u>. It inherits from <u>Curve</u>. Since each <u>Dubins</u> is formed of atmost 3 maneuvers, this class is meant to store one of this maneuver, which can be L, R or S respectively Left, Right, Straight.

```
#include <dubins.hh>
```

Inheritance diagram for DubinsArc< T1, T2 >:

Collaboration diagram for DubinsArc< T1, T2 >:

Public Member Functions

- DubinsArc ()
- DubinsArc (const Configuration2< T2 > _P0, const T1 _k, const T1 _l)
- T1 getK () const

Returns the curvature of the arc.

• T1 length () const

Returns the length of the arc.

Tuple < Point2 < T2 > > splitIt (double _L=PIECE_LENGTH)

Splits the <code>DubinsArc</code> in pieces of <code>_L</code> length. This function starts from the begining of the arc and computes n new arcs through the <code>circline()</code> function using the curvature of the <code>DubinsArc</code> and <code>_L</code> as the length.

- stringstream to_string () const
- void draw (double dimX, double dimY, double inc, Scalar scl, Mat &image, double SHIFT)

Friends

ostream & operator<< (ostream &out, const DubinsArc &data)

Additional Inherited Members

6.12.1 Detailed Description

```
template < class T1 = double, class T2 = double > class DubinsArc < T1, T2 >
```

Class to store a maneuver of <u>Dubins</u>. It inherits from <u>Curve</u>. Since each <u>Dubins</u> is formed of atmost 3 maneuvers, this class is meant to store one of this maneuver, which can be L, R or S respectively Left, Right, Straight.

Template Parameters

T1	The type of Length and Curvature.
T2	The type of the class Curve.

6.12.2 Constructor & Destructor Documentation

6.12.2.1 DubinsArc() [1/2]

```
template<class T1 = double, class T2 = double>
DubinsArc< T1, T2 >::DubinsArc ( ) [inline]
```

Plain constructor of DubinsArc that sets L and K to 0 and creates a plain Curve.

6.12.2.2 DubinsArc() [2/2]

Creates a new DubinsArc given a start Configuration2, the curvature and the length of the arc calling circline().

Parameters

_P0	The starting Configuration2.
_k	The curvature of the DubinsArc.
_/	The length of the DubinsArc.

6.12.3 Member Function Documentation

6.12.3.1 draw()

This function draws the DubinsArc.

Parameters

dimX	The dimension X of the Mat.
dimY	The dimension Y of the Mat.
inc	The value to scale each point.
scl	The Scalar that defines the color to use.
image	The Mat where to draw the points.
SHIFT	The value to use to shift the points to make them stay inside the matrix.

6.12.3.2 getK()

```
template<class T1 = double, class T2 = double>
T1 DubinsArc< T1, T2 >::getK ( ) const [inline]
```

Returns the curvature of the arc.

6.12.3.3 length()

```
template<class T1 = double, class T2 = double>
T1 DubinsArc< T1, T2 >::length ( ) const [inline]
```

Returns the length of the arc.

6.12.3.4 splitlt()

Splits the <code>DubinsArc</code> in pieces of _L length. This function starts from the begining of the arc and computes n new arcs through the <code>circline()</code> function using the curvature of the <code>DubinsArc</code> and _L as the length.

Parameters

\leftarrow	The length that each points should have.
_← 1	

Returns

A Tuple of Configuration2s representing the points along the arc.

6.12.3.5 to_string()

```
template<class T1 = double, class T2 = double>
stringstream DubinsArc< T1, T2 >::to_string ( ) const [inline]
```

This function create a strinstream object containing infos about the DubinsArc.

Returns

A string stream.

6.12.4 Friends And Related Function Documentation

6.12.4.1 operator <<

This function overload the << operator so to print with std::cout the values of the <code>DubinsArc</code>, that is <code>Curve</code> values more the length and the curvature.

Parameters

in	out	The out stream.
in	data	The DubinsArc to print.

Returns

An output stream to be printed.

The documentation for this class was generated from the following file:

• src/include/dubins.hh

6.13 DubinsSet < T > Class Template Reference

Given a set of point, compute the shortest set of Dubins that allows to go from start to end through all points.

```
#include <dubins.hh>
```

Public Member Functions

- DubinsSet (Tuple < Dubins < T > > dubinses, double kmax=KMAX)
- DubinsSet (Tuple < Configuration2 < T >> _confs, double _kmax=KMAX)
- DubinsSet (Configuration2< T > start, Configuration2< T > end, Tuple< Point2< T > _points, double _kmax=KMAX)

Constructor that given a start Configuration2, an end Configuration2 and a Tuple of Point2, computes the best path from start to end through all points by brute forcing all possible angles. Since this approach is based on a brute force algorithm, it's best not to use this on too many points.

DubinsSet (Tuple < Point2 < T > > _points, double _kmax=KMAX)

Constructor that computes a series of <code>Dubins</code> given only <code>Point2</code> points via brute force. Since this approach is based on a brute force algorithm, it's best not to use this on too many points.

- void find_best (Tuple < Point2 < T > > _points, Tuple < Angle > &_angles, Angle area=A_2PI, double tries=4.0, double _kmax=KMAX)
- double getLength ()

Returns the Length of the set of Dubins.

· double getKmax ()

Returns the maximum curvature.

• double getSize ()

Returns the number of Dubins stored.

Tuple < Dubins < T > > getDubinses ()

Returns a Tuple containing all the Dubins.

- Dubins < T > getDubins (int id)
- stringstream to_string ()

Friends

ostream & operator<< (ostream &out, DubinsSet &data)

6.13.1 Detailed Description

```
template < class T > class DubinsSet < T >
```

Given a set of point, compute the shortest set of Dubins that allows to go from start to end through all points.

Template Parameters

T Type for class Dubins.

6.13.2 Constructor & Destructor Documentation

Constructor that given a Tuple of Dubins computes stores all of them.

Parameters

_dubinses	The Tuple of Dubins.
_kmax	The maximum curvature.

6.13.2.2 DubinsSet() [2/4]

Constructor that takes a Tuple of Configuration2s and computes the Dubins between them.

Parameters

_confs	The Tuple of Configuration2s.
_kmax	The maximum curvature to be used.

6.13.2.3 DubinsSet() [3/4]

Constructor that given a start Configuration2, an end Configuration2 and a Tuple of Point2, computes the best path from start to end through all points by brute forcing all possible angles. Since this approach is based on a brute force algorithm, it's best not to use this on too many points.

Parameters

start	Configuration2 of start.
end	Configuration2 of end.
_points	Tuple of Point 2 containing all the intermediate points.
_kmax	The maximum curvature of the system.

6.13.2.4 DubinsSet() [4/4]

Constructor that computes a series of Dubins given only Point2 points via brute force. Since this approach is based on a brute force algorithm, it's best not to use this on too many points.

Parameters

_points	A Tuple containing all points.
_kmax	The maximum curvature to be used for all Dubins.

6.13.3 Member Function Documentation

6.13.3.1 find_best()

Function to compute the best path. This function calls <code>disp()</code> in order to calculate all possible angles, and then creates a <code>Dubins</code> for each possibility choosing the one with the minimum length.

Parameters

_points	A Tuple of Point2 through which the path should flow.
_angles	A Tuple of Angle containing all base Angle.
area	This is the angle around each angle to be "scanned".
tries	The number of discretizations that should be made.
_kmax	The maximum curvature to be used.

6.13.3.2 getDubins()

Thid functions returns a specific Dubins from the set.

Parameters

```
id The position of the Dubins in the set.
```

Returns

The id-th Dubins.

6.13.3.3 getDubinses()

```
template<class T >
Tuple<Dubins<T> > DubinsSet< T >::getDubinses ( ) [inline]
```

Returns a Tuple containing all the Dubins.

6.13.3.4 getKmax()

```
template<class T >
double DubinsSet< T >::getKmax ( ) [inline]
```

Returns the maximum curvature.

6.13.3.5 getLength()

```
template<class T >
double DubinsSet< T >::getLength ( ) [inline]
```

Returns the Length of the set of Dubins.

6.13.3.6 getSize()

```
template<class T >
double DubinsSet< T >::getSize ( ) [inline]
```

Returns the number of Dubins stored.

6.13.3.7 to_string()

```
\label{template} $$ \ensuremath{\mbox{template}$<$class T >:} $$ stringstream DubinsSet< T >::to_string ( ) [inline]
```

This function create a strinstream object containing infos about the DubinsSet.

Returns

A string stream.

6.13.4 Friends And Related Function Documentation

6.13.4.1 operator < <

This function overload the << operator so to print with std::cout the values of the DubinsSet, that is printing all the Dubins stored.

Parameters

in	out	The out stream.
in	data	The DubinsSet to print.

Returns

An output stream to be printed.

The documentation for this class was generated from the following file:

• src/include/dubins.hh

6.14 Filter Class Reference 113

6.14 Filter Class Reference

```
#include <filter.hh>
```

Public Member Functions

• Filter ()

Default constructor: it set all values to 0.

• Filter (int _low_h, int _low_s, int _low_v, int _high_h, int _high_s, int _high_v)

Constructor that sets all the values.

Filter (vector < int > v)

Constructor from a vector.

· Scalar Low ()

Returns a Scalar containing the lower boudary.

• Scalar High ()

Returns a Scalar containing the lower boudary.

• stringstream to_string () const

Save value in a stringstream.

• Filter copy (const Filter &fil)

A function to copy a filter to this.

• Filter operator= (const Filter &filt)

Overload of operator =. It just calls the copy function.

operator vector< int > () const

Overload of operator cast to vector<int>.

Public Attributes

• int low_h

Lower value for hue.

• int low_s

Lower value for saturation.

• int low v

Lower value for value.

int high_h

Higher value for hue.

· int high s

Higher value for saturation.

• int high_v

Higher value for value.

Friends

ostream & operator<< (ostream &out, const Filter &data)

6.14.1 Detailed Description

A class to store the values for an HSV filter with lower and higher boundary.

6.14.2 Constructor & Destructor Documentation

```
6.14.2.1 Filter() [1/3]

Filter::Filter ( ) [inline]
```

Default constructor: it set all values to 0.

```
6.14.2.2 Filter() [2/3]
```

```
Filter::Filter (
    int _low_h,
    int _low_s,
    int _low_v,
    int _high_h,
    int _high_s,
    int _high_v) [inline]
```

Constructor that sets all the values.

Parameters

_low⊷	Lower value for hue
_h	
_low⊷	Lower value for saturation
_s	
_low⊷	Lower value for value
_ <i>v</i>	
_high←	Higher value for hue
_h	
_high←	Higher value for saturation
_s	
_high⊷	Higher value for value
_ <i>v</i>	

Constructor from a vector.

6.14 Filter Class Reference

Parameters

v The vector containing the 6 values. Mind that they must be 6.

6.14.3 Member Function Documentation

```
6.14.3.1 copy()
```

A function to copy a filter to this.

Parameters

fil The filter to be copied.

Returns

this filter with the new values copied.

6.14.3.2 High()

```
Scalar Filter::High ( ) [inline]
```

Returns a Scalar containing the lower boudary.

6.14.3.3 Low()

```
Scalar Filter::Low ( ) [inline]
```

Returns a Scalar containing the lower boudary.

6.14.3.4 operator vector < int >()

```
Filter::operator vector< int > ( ) const [inline]
```

Overload of operator cast to vector<int>.

Returns

A vector containing the 6 values.

6.14.3.5 operator=()

Overload of operator =. It just calls the copy function.

Parameters

```
filt The filter to be copied.
```

Returns

this filter with the new values copied.

6.14.3.6 to_string()

```
stringstream Filter::to_string ( ) const [inline]
```

Save value in a stringstream.

Returns

A stringstream containing the values of both boundaries.

6.14.4 Friends And Related Function Documentation

6.14.4.1 operator <<

This function overload the << operator so to print with \mathtt{std} : \mathtt{cout} .

Parameters

in	out	The out stream.
in	data	The filter to print.

Returns

An output stream to be printed.

6.14 Filter Class Reference

6.14.5 Member Data Documentation

6.14.5.1 high_h

int Filter::high_h

Higher value for hue.

6.14.5.2 high_s

Higher value for saturation.

int Filter::high_s

6.14.5.3 high_v

int Filter::high_v

Higher value for value.

6.14.5.4 low_h

int Filter::low_h

Lower value for hue.

6.14.5.5 low_s

int Filter::low_s

Lower value for saturation.

6.14.5.6 low_v

int Filter::low_v

Lower value for value.

The documentation for this class was generated from the following file:

• src/include/filter.hh

6.15 Gate Class Reference

#include <objects.hh>

Inheritance diagram for Gate:

Collaboration diagram for Gate:

6.15 Gate Class Reference

Public Member Functions

Gate (vector < Point2 < int > > &vp)

Constructor of the gate class and automatically compute center and radius.

• string toString ()

Generate a string that describe the gate.

• void print ()

Print the describing string of the gate.

Additional Inherited Members

6.15.1 Constructor & Destructor Documentation

```
6.15.1.1 Gate()
```

```
Gate::Gate ( \label{eq:continuous} \mbox{ vector} < \mbox{ Point2} < \mbox{ int } > > \& \mbox{ } \mb
```

Constructor of the gate class and automatically compute center and radius.

Parameters

	in	vp	Vector of points that is the convex hull of the gate.	1
--	----	----	---	---

Returns

Return the created gate.

6.15.2 Member Function Documentation

```
6.15.2.1 print()
```

```
void Gate::print ( )
```

Print the describing string of the gate.

6.15.2.2 toString()

```
string Gate::toString ( )
```

Generate a string that describe the gate.

Returns

The generated string.

The documentation for this class was generated from the following files:

- src/include/objects.hh
- src/objects.cc

6.16 CameraCapture::input_options_t Struct Reference

Structure for store the input option for the class CameraCapture.

```
#include <camera_capture.hh>
```

Public Member Functions

- input options t()
- input_options_t (const uint32_t frameHeight_px_, const uint32_t frameWidth_px_, const uint32_t cameraF←
 PS_, const uint32_t cameraId_)
- input_options_t (const input_options_t &inpOpt)

Public Attributes

- uint32_t frameHeight_px
- uint32_t frameWidth_px
- uint32 t cameraFPS
- char nameCamera [20]

6.16.1 Detailed Description

Structure for store the input option for the class CameraCapture.

frameHeight_px desidered height of the camera

frameWidth_px desidered width of the frame of the camera

cameraFPS desidered FPS of the camera

nameCamera is the camera filedescriptor (max 20 char)

6.16.2 Constructor & Destructor Documentation

6.16.2.1 input_options_t() [1/3]

```
CameraCapture::input_options_t::input_options_t ( )
6.16.2.2 input_options_t() [2/3]
CameraCapture::input_options_t::input_options_t (
            const uint32_t frameHeight_px_,
             const uint32_t frameWidth_px_,
             const uint32_t cameraFPS_,
             const uint32_t cameraId_ )
6.16.2.3 input_options_t() [3/3]
CameraCapture::input_options_t::input_options_t (
             const input_options_t & inpOpt )
6.16.3 Member Data Documentation
6.16.3.1 cameraFPS
uint32_t CameraCapture::input_options_t::cameraFPS
6.16.3.2 frameHeight_px
uint32_t CameraCapture::input_options_t::frameHeight_px
6.16.3.3 frameWidth_px
uint32_t CameraCapture::input_options_t::frameWidth_px
```

6.16.3.4 nameCamera

```
char CameraCapture::input_options_t::nameCamera[20]
```

The documentation for this struct was generated from the following files:

- · src/include/camera capture.hh
- src/camera_capture.cc

6.17 ClipperLib::Int128 Class Reference

Public Member Functions

```
    Int128 (long64 _lo=0)
```

- Int128 (const Int128 &val)
- Int128 (const long64 &_hi, const ulong64 &_lo)
- Int128 & operator= (const long64 &val)
- bool operator== (const Int128 &val) const
- bool operator != (const Int128 &val) const
- bool operator > (const Int128 &val) const
- bool operator< (const Int128 &val) const
- bool operator >= (const Int128 &val) const
- bool operator<= (const Int128 &val) const
- Int128 & operator+= (const Int128 &rhs)
- Int128 operator+ (const Int128 &rhs) const
- Int128 & operator -= (const Int128 &rhs)
- Int128 operator (const Int128 &rhs) const
- Int128 operator- () const
- · operator double () const

Public Attributes

- · ulong64 lo
- long64 hi

6.17.1 Constructor & Destructor Documentation

```
6.17.1.2 Int128() [2/3]
ClipperLib::Int128::Int128 (
            const Int128 & val ) [inline]
6.17.1.3 Int128() [3/3]
ClipperLib::Int128::Int128 (
            const long64 & _hi,
             const ulong64 & _lo ) [inline]
6.17.2 Member Function Documentation
6.17.2.1 operator "!=()
bool ClipperLib::Int128::operator != (
            const Int128 & val ) const [inline]
6.17.2.2 operator -()
Int128 ClipperLib::Int128::operator - (
            const Int128 & rhs ) const [inline]
6.17.2.3 operator -=()
Int128& ClipperLib::Int128::operator -= (
            const Int128 & rhs ) [inline]
6.17.2.4 operator >()
bool ClipperLib::Int128::operator > (
           const Int128 & val ) const [inline]
```

```
6.17.2.5 operator >=()
bool ClipperLib::Int128::operator >= (
            const Int128 & val ) const [inline]
6.17.2.6 operator double()
ClipperLib::Int128::operator double ( ) const [inline]
6.17.2.7 operator+()
Int128 ClipperLib::Int128::operator+ (
            const Int128 & rhs ) const [inline]
6.17.2.8 operator+=()
Int128& ClipperLib::Int128::operator+= (
             const Int128 & rhs ) [inline]
6.17.2.9 operator-()
Int128 ClipperLib::Int128::operator- ( ) const [inline]
6.17.2.10 operator<()
bool ClipperLib::Int128::operator< (</pre>
           const Int128 & val ) const [inline]
6.17.2.11 operator<=()
bool ClipperLib::Int128::operator<= (</pre>
            const Int128 & val ) const [inline]
```

```
6.17.2.12 operator=()
```

6.17.2.13 operator==()

6.17.3 Member Data Documentation

6.17.3.1 hi

```
long64 ClipperLib::Int128::hi
```

6.17.3.2 lo

```
ulong64 ClipperLib::Int128::lo
```

The documentation for this class was generated from the following file:

• src/clipper.cc

6.18 ClipperLib::IntersectNode Struct Reference

Collaboration diagram for ClipperLib::IntersectNode:

Public Attributes

- TEdge * Edge1
- TEdge * Edge2
- IntPoint Pt

6.18.1 Member Data Documentation

6.18.1.1 Edge1

TEdge* ClipperLib::IntersectNode::Edge1

6.18.1.2 Edge2

TEdge* ClipperLib::IntersectNode::Edge2

6.18.1.3 Pt

```
IntPoint ClipperLib::IntersectNode::Pt
```

The documentation for this struct was generated from the following file:

• src/clipper.cc

6.19 ClipperLib::IntPoint Struct Reference

```
#include <clipper.hh>
```

Public Member Functions

• IntPoint (cInt x=0, cInt y=0)

Public Attributes

- · clnt X
- · clnt Y

Friends

- bool operator== (const IntPoint &a, const IntPoint &b)
- bool operator!= (const IntPoint &a, const IntPoint &b)

6.19.1 Constructor & Destructor Documentation

6.19.1.1 IntPoint()

```
ClipperLib::IntPoint::IntPoint (
          cInt x = 0,
          cInt y = 0 ) [inline]
```

6.19.2 Friends And Related Function Documentation

6.19.2.1 operator"!=

6.19.3 Member Data Documentation

6.19.3.1 X

```
cInt ClipperLib::IntPoint::X
```

6.19.3.2 Y

```
cInt ClipperLib::IntPoint::Y
```

The documentation for this struct was generated from the following file:

• src/include/clipper.hh

6.20 ClipperLib::IntRect Struct Reference

```
#include <clipper.hh>
```

Public Attributes

- · clnt left
- clnt top
- · clnt right
- cInt bottom

6.20.1 Member Data Documentation

6.20.1.1 bottom cInt ClipperLib::IntRect::bottom 6.20.1.2 left cInt ClipperLib::IntRect::left 6.20.1.3 right cInt ClipperLib::IntRect::right 6.20.1.4 top

The documentation for this struct was generated from the following file:

• src/include/clipper.hh

cInt ClipperLib::IntRect::top

6.21 ClipperLib::Join Struct Reference

Collaboration diagram for ClipperLib::Join:

Public Attributes

- OutPt * OutPt1
- OutPt * OutPt2
- IntPoint OffPt

6.21.1 Member Data Documentation

6.21.1.1 OffPt

```
IntPoint ClipperLib::Join::OffPt
```

6.21.1.2 OutPt1

```
OutPt* ClipperLib::Join::OutPt1
```

6.21.1.3 OutPt2

```
OutPt* ClipperLib::Join::OutPt2
```

The documentation for this struct was generated from the following file:

• src/clipper.cc

6.22 ClipperLib::LocalMinimum Struct Reference

Collaboration diagram for ClipperLib::LocalMinimum:

Public Attributes

- · clnt Y
- TEdge * LeftBound
- TEdge * RightBound

6.22.1 Member Data Documentation

6.22.1.1 LeftBound

TEdge* ClipperLib::LocalMinimum::LeftBound

6.22.1.2 RightBound

TEdge* ClipperLib::LocalMinimum::RightBound

6.22.1.3 Y

```
cInt ClipperLib::LocalMinimum::Y
```

The documentation for this struct was generated from the following file:

• src/clipper.cc

6.23 ClipperLib::LocMinSorter Struct Reference

Public Member Functions

• bool operator() (const LocalMinimum &locMin1, const LocalMinimum &locMin2)

6.23.1 Member Function Documentation

6.23.1.1 operator()()

The documentation for this struct was generated from the following file:

• src/clipper.cc

6.24 Mapp Class Reference

```
#include <map.hh>
```

Public Member Functions

Mapp (const int _lengthX=1000, const int _lengthY=1500, const int _pixX=cellSize, const int _pixY=cellSize, const int _pixY=cellSize, const int _borderSizeDefault, const vector< vector< Point2< int >>> &vvp=vector< vector< Point2< int >>>())

Constructor of the class.

void addObject (const vector < Point2 < int > > &vp, const OBJ TYPE type)

Given an obstacle it is added to the map.

void addObjects (const vector < vector < Point2 < int > > &vvp, const OBJ TYPE type)

Given a vector objects it is added them to the map.

void addObjects (const vector < Obstacle > &objs)

Given a vector of obstacles adds them to the map.

void addObjects (const vector < Victim > &objs)

Given a vector of victims adds them to the map.

void addObjects (const vector < Gate > &objs)

Given a vector of gates (tipically this vector contain only one element) adds it to the map.

void getVictimCenters (vector< Point2< int > > &vp)

Add to the given vector the set of centers of the victims of the map.

void getGateCenter (vector< Point2< int > > &vp)

Add to the given vector the center of the gate of the map.

OBJ_TYPE getPointType (const Point2< int > &p)

Given a point return the type (status) of the cell in the map that contain it.

bool checkSegment (const Point2< int > &p0, const Point2< int > &p1)

Given a segment, the function answer if that segment cross a cell with obstacles.

bool checkSegmentCollisionWithType (const Point2< int > &p0, const Point2< int > &p1, const OBJ_TYPE type)

Given a segment and a type, the function answer if that segment cross a cell with the given type.

• vector< vector< Point2 < int >>> minPathNPoints (const vector< Point2 < int >> &vp)

Given a couple of points the function compute the minimum path that connect them avoiding the intersection of OBST and BODA.

vector< Point2< int > > minPathTwoPoints (const Point2< int > &p0, const Point2< int > &p1)

Given a couple of points the function compute the minimum path that connect them avoiding the intersection of OBST and BODA.

vector< Point2< int > > sampleNPoints (const vector< vector< Point2< int > > &vvp, const int n=nPoints)

It extracts from the given vector of vector of points, a subset of points that always contains the first one and the last one of each vector.

vector< Point2< int > > sampleNPoints (const vector< Point2< int > > &points, const int n)

It extracts from the given vector of points, a subset of points that always contains the first one and the last one.

vector< Point2< int > > samplePointsEachNCells (const vector< Point2< int > > &points, const int step)

It extracts from the given vector of points, a subset of points that always contains the first one and the last one.

Mat createMapRepresentation ()

The function create an image (Mat) with the dimensions of the Mapp and all its objects inside.

• void imageAddSegments (Mat &image, const vector< Point2< int >> &vp, const int thickness=3)

It add to the given image a set of (n-1) segments specified by the n points given.

- void imageAddSegment (Mat &image, const Point2< int > &p0, const Point2< int > &p1, const int thickness)

 It add to the given image the segment defined from p0 to p1.
- void imageAddPoints (Mat &image, const vector< Point2< int >> &vp, const int radius=7)

It add to the given image a vector of points.

void imageAddPoint (Mat &image, const Point2< int > &p, const int radius=7)

It add to the given image a point.

void printMap ()

Print to the terminal the main informations of the Map, and its grid representation.

string matrixToString ()

Generate a string (a grid of pixels) that represent the matrix.

• void printDimensions ()

Print to the terminal the main informations of the Map.

Protected Member Functions

• set< pair< int, int > > cellsFromSegment (const Point2< int > &p0, const Point2< int > &p1)

Given a segment (from p0 to p1) it return a set of all the cells that are partly cover from that segment.

 vector< Point2< int > > minPathTwoPointsInternal (const Point2< int > &startP, const Point2< int > &endP, double **distances, Point2< int > **parents)

Given a couple of points the function compute the minimum path that connect them avoiding the intersection of OBST and BODA.

void resetDistanceMap (double **distances, const double value=baseDistance)

It reset, to the given value, the matrix of distances, to compute again the minPath search.

Protected Attributes

- OBJ TYPE ** map
- const int range = 3
- const int foundLimit = 5
- const int offsetValue = 50
- int lengthX
- · int lengthY
- int dimX
- · int dimY
- int pixX
- int pixY
- int borderSize
- vector< Obstacle > vObstacles
- vector < Victim > vVictims
- vector < Gate > vGates

Static Protected Attributes

- static constexpr double baseDistance = -1.0
- static const int borderSizeDefault = 4
- static const int cellSize = 5
- static const int nPoints = 20

6.24.1 Constructor & Destructor Documentation

6.24.1.1 Mapp()

Constructor of the class.

Parameters

in	_lengthX	It is the size in pixel of the horizontal dimension.
in	_lengthY	It is the size in pixel of the vertical dimension.
in	_pixX	It is the horizontal granularity of a cell (how many pixels for each cell).
in	_pixY	It is the vertical granularity of a cell (how many pixels for each cell).
in	_borderSize	It is the dimension (defined based on cells of the map) of the border of each obstascles.
in	vvp	It is a vector, of vector, of point that delimit, as a convex hull, a set of obstacles in the map.

6.24.2 Member Function Documentation

6.24.2.1 addObject()

Given an obstacle it is added to the map.

This means that all the cells of the map that are partly cover from this obstacle will be set to its type.

Parameters

in	vp	It is the vector of points (convex hull) that delimit the object of interest.
in	type	It is the type of the given object. Defined as a OBJ_TYPE.

6.24.2.2 addObjects() [1/4]

Given a vector objects it is added them to the map.

This means that all the cells of the map that are partly cover from these obstacles will be set to its type. It is a wrapper function of addObject.

in	vvp	It is the vector of vector of points (set of convex hull) that delimit the objects of interest.
in	type	It is the type of the given object. Defined as a OBJ_TYPE.

```
6.24.2.3 addObjects() [2/4]  \begin{tabular}{ll} \begin{tabular}{ll} void Mapp::addObjects ( & const vector < Obstacle > & objs ) \end{tabular}
```

Given a vector of obstacles adds them to the map.

This means that all the cells of the map that are partly cover from these obstacles will be set to its type. It is a wrapper function of addObject.

Parameters

in	objs	It is the vector of obstacles to be loaded in the map structure.	1
----	------	--	---

Given a vector of victims adds them to the map.

This means that all the cells of the map that are partly cover from these victims will be set to its type. It is a wrapper function of addObject.

Parameters

```
in objs It is the vector of victims to be loaded in the map structure.
```

Given a vector of gates (tipically this vector contain only one element) adds it to the map.

This means that all the cells of the map that are partly cover from this gate will be set to its type. It is a wrapper function of addObject.

in	objs	It is the vector of gates to be loaded in the map structure.

6.24.2.6 cellsFromSegment()

```
set< pair< int, int > > Mapp::cellsFromSegment ( const Point2< int > & p0, const Point2< int > & p1 ) [protected]
```

Given a segment (from p0 to p1) it return a set of all the cells that are partly cover from that segment.

Parameters

in	p0	First point of the segment.
in	p1	Second point of the segment.

Returns

A set containing all the cells, identified by their row(i or y) and column(j or x).

6.24.2.7 checkSegment()

```
bool Mapp::checkSegment (  {\rm const~Point2<~int~>~\&~p0,} \\ {\rm const~Point2<~int~>~\&~p1~)}
```

Given a segment, the function answer if that segment cross a cell with obstacles.

It is a wrapper for the function 'checkSegmentCollisionWithType'.

Parameters

in	p0	First point of the segment.
in	p1	Second point of the segment.

Returns

True if the obstacles were crossed, false otherwise.

6.24.2.8 checkSegmentCollisionWithType()

Given a segment and a type, the function answer if that segment cross a cell with the given type.

Parameters

in	p0	First point of the segment.
in	p1	Second point of the segment.
in	type	The type to be detected.

Returns

True if the type was found, false otherwise.

6.24.2.9 createMapRepresentation()

```
Mat Mapp::createMapRepresentation ( )
```

The function create an image (Mat) with the dimensions of the Mapp and all its objects inside.

Returns

The generated image is returned.

6.24.2.10 getGateCenter()

```
void Mapp::getGateCenter ( \label{eq:cont} \mbox{vector} < \mbox{Point2} < \mbox{int} \mbox{ > & $vp$ )}
```

Add to the given vector the center of the gate of the map.

Parameters

out	vp	A vector where the requested center will be added.
-----	----	--

6.24.2.11 getPointType()

```
OBJ_TYPE Mapp::getPointType ( {\tt const\ Point2} < {\tt int} \ > \& \ p \ )
```

Given a point return the type (status) of the cell in the map that contain it.

in	р	The point of which we want to know the informations.
----	---	--

Returns

The type (OBJ_TYPE) of the cell.

6.24.2.12 getVictimCenters()

```
void Mapp::getVictimCenters ( \label{eq:vector} \mbox{vector} < \mbox{Point2} < \mbox{int} \mbox{ } > \mbox{ & } \mbox{\it vp} \mbox{ )}
```

Add to the given vector the set of centers of the victims of the map.

Parameters

ou	=	vp	A vector where the requested centers will be added.
----	---	----	---

6.24.2.13 imageAddPoint()

It add to the given image a point.

Parameters

		[in/out]	map The image where the points will be added.
i	n	р	The point to add.
i	n	radius	The radius of the point to be drawn.

6.24.2.14 imageAddPoints()

It add to the given image a vector of points.

		[in/out]	map The image where the point will be added.
	in	vp	The vecotor of points to add.
Ī	in	radius	The radius of the points to be drawn.

6.24.2.15 imageAddSegment()

It add to the given image the segment defined from p0 to p1.

Parameters

	[in/out]	map The image where the segment will be added.
in	p0	The first point of the segment.
in	p1	The end point of the segment.
in	thickness	The thickness of the line to be drawn.

6.24.2.16 imageAddSegments()

It add to the given image a set of (n-1) segments specified by the n points given.

Parameters

	[in/out]	map The image where the segments will be added.
in	vp	The vector of points that identify the segments.
in <i>thickness</i>		The thickness of the lines to be drawn.

6.24.2.17 matrixToString()

```
string Mapp::matrixToString ( )
```

Generate a string (a grid of pixels) that represent the matrix.

Returns

The generated string.

6.24.2.18 minPathNPoints()

```
vector< vector< Point2< int > > Mapp::minPathNPoints ( const vector< Point2< int > > & vp )
```

Given a couple of points the function compute the minimum path that connect them avoiding the intersection of OBST and BODA.

The function is based on a Breadth-first search (BFS).

Parameters

in	p0	The source point.
in	p1	The destination point.

Returns

A vector of vector of points along the path (one for each cell of the grid of the map). Each vector is the best path for one connection, given n points there are n-1 connections.

6.24.2.19 minPathTwoPoints()

```
vector< Point2< int > > Mapp::minPathTwoPoints ( const Point2< int > & p0, const Point2< int > & p1)
```

Given a couple of points the function compute the minimum path that connect them avoiding the intersection of OBST and BODA.

The function is based on a Breadth-first search (BFS).

Parameters

in	p0	The source point.
in	p1	The destination point.

Returns

A vector of points along the path (one for each cell of the grid of the map).

6.24.2.20 minPathTwoPointsInternal()

```
double ** distances,
Point2< int > ** parents ) [protected]
```

Given a couple of points the function compute the minimum path that connect them avoiding the intersection of OBST and BODA.

The function is based on a Breadth-first search (BFS).

Parameters

in	startP	The source point.
in	endP The destination point.	
in	distances	A matrix that is needed to store the distances of the visited cells.
in	parents	A matrix that is needed to store the parent of each cell (AKA the one that have discovered
		that cell with the minimum distance).

Returns

A vector of points along the path (one for each cell of the grid of the map).

6.24.2.21 printDimensions()

```
void Mapp::printDimensions ( )
```

Print to the terminal the main informations of the Map.

6.24.2.22 printMap()

```
void Mapp::printMap ( )
```

Print to the terminal the main informations of the Map, and its grid representation.

6.24.2.23 resetDistanceMap()

It reset, to the given value, the matrix of distances, to compute again the minPath search.

in	value	The value to be set.

6.24.2.24 sampleNPoints() [1/2]

```
vector< Point2< int > > Mapp::sampleNPoints ( const vector< vector< Point2< int > > & vvp, const int n = nPoints)
```

It extracts from the given vector of vector of points, a subset of points that always contains the first one and the last one of each vector.

Parameters

in	n	The n number of points to sample.
in	points	The vector of vector of points to be selected.

Returns

The vector containing the subset of n points.

6.24.2.25 sampleNPoints() [2/2]

```
vector< Point2< int > > Mapp::sampleNPoints ( const vector< Point2< int > > & points, const int n)
```

It extracts from the given vector of points, a subset of points that always contains the first one and the last one.

Parameters

i	n	n	The number of points to select exept the extremes, it must be greater or equal than 2.
i	n	points	The vector of points to be selected.

Returns

The vector containing the subset of n points.

6.24.2.26 samplePointsEachNCells()

```
vector< Point2< int > > Mapp::samplePointsEachNCells ( const vector< Point2< int > > & points, const int step )
```

It extracts from the given vector of points, a subset of points that always contains the first one and the last one.

Parameters

in	step	The distance (counted as cells) from the previous to the next cell, it must but >=2 to have a	
		reason.	
in	points	The vector of points to be selected.	

Returns

The vector containing the subset of points, each step cells.

6.24.3 Member Data Documentation

6.24.3.1 baseDistance

```
constexpr double Mapp::baseDistance = -1.0 [static], [protected]
```

6.24.3.2 borderSize

```
int Mapp::borderSize [protected]
```

6.24.3.3 borderSizeDefault

```
const int Mapp::borderSizeDefault = 4 [static], [protected]
```

6.24.3.4 cellSize

```
const int Mapp::cellSize = 5 [static], [protected]
```

6.24.3.5 dimX

```
int Mapp::dimX [protected]
```

```
6.24.3.6 dimY
int Mapp::dimY [protected]
6.24.3.7 foundLimit
const int Mapp::foundLimit = 5 [protected]
6.24.3.8 lengthX
int Mapp::lengthX [protected]
6.24.3.9 lengthY
int Mapp::lengthY [protected]
6.24.3.10 map
OBJ_TYPE** Mapp::map [protected]
6.24.3.11 nPoints
const int Mapp::nPoints = 20 [static], [protected]
6.24.3.12 offsetValue
const int Mapp::offsetValue = 50 [protected]
```

6.24.3.13 pixX

int Mapp::pixX [protected]

Generated by Doxygen

6.24.3.14 pixY

```
int Mapp::pixY [protected]
```

6.24.3.15 range

```
const int Mapp::range = 3 [protected]
```

6.24.3.16 vGates

```
vector<Gate> Mapp::vGates [protected]
```

6.24.3.17 vObstacles

```
vector<Obstacle> Mapp::vObstacles [protected]
```

6.24.3.18 vVictims

```
vector<Victim> Mapp::vVictims [protected]
```

The documentation for this class was generated from the following files:

- src/include/map.hh
- src/map.cc

6.25 MyException < T > Class Template Reference

```
#include <utils.hh>
```

Inherits exception.

Public Member Functions

- MyException (EXCEPTION_TYPE _type, T _a, int _b)
- const char * what () const throw ()

Public Attributes

```
• EXCEPTION_TYPE type
```

- Ta
- int b

6.25.1 Constructor & Destructor Documentation

6.25.1.1 MyException()

6.25.2 Member Function Documentation

```
6.25.2.1 what()
```

```
template<class T > const char* MyException< T >::what ( ) const throw ( ) [inline]
```

6.25.3 Member Data Documentation

6.25.3.1 a

```
template<class T >
T MyException< T >::a
```

6.25.3.2 b

```
template<class T >
int MyException< T >::b
```

6.25.3.3 type

```
template<class T >
EXCEPTION_TYPE MyException< T >::type
```

The documentation for this class was generated from the following file:

• src/include/utils.hh

6.26 Object Class Reference

```
#include <objects.hh>
```

Inheritance diagram for Object:

Collaboration diagram for Object:

Public Member Functions

• string toString ()

Generate a string that describe the object.

• unsigned int size ()

Return the number of points of the object.

unsigned int nPoints ()

Return the number of points of the object.

vector< Point2< int > > getPoints ()

Return the of points of the object.

Point2< int > getCenter ()

Retrieve the center of the object.

• double getRadius ()

Retrieve the radius of the object.

void computeCenter ()

Find the representative center of the object.

void computeRadius ()

Compute the radius of the object.

void offsetting (const int offset, const int limitX, const int limitY)

Enlarge the object of the given offset (defined as pixels=mm in our scenario).

bool insidePolyApprox (Point2< int > pt)

Check if the given point is inside the approximation shape of the object (a circle).

bool insidePoly (Point2< int > pt)

Exact check if a point is inside the object (no approximation).

Protected Attributes

- vector< Point2< int > > points
- Point2< int > center
- double radius

6.26.1 Member Function Documentation

```
6.26.1.1 computeCenter()
```

```
void Object::computeCenter ( )
```

Find the representative center of the object.

The center is computed as the mean of the minimum and maximum x and y.

6.26.1.2 computeRadius()

```
void Object::computeRadius ( )
```

Compute the radius of the object.

This function assume that the center of the object is already computed and consistent.

6.26.1.3 getCenter()

```
Point2< int > Object::getCenter ( )
```

Retrieve the center of the object.

Returns

The center.

6.26.1.4 getPoints()

```
vector< Point2< int > > Object::getPoints ( )
```

Return the of points of the object.

Returns

The vector of points.

6.26.1.5 getRadius()

```
double Object::getRadius ( )
```

Retrieve the radius of the object.

Returns

The radius.

6.26.1.6 insidePoly()

Exact check if a point is inside the object (no approximation).

in	pt	The point to be checked.

Returns

True if the point is inside the object, false otherwise.

6.26.1.7 insidePolyApprox()

```
bool Object::insidePolyApprox ( {\tt Point2<\ int}\ >\ pt\ )
```

Check if the given point is inside the approximation shape of the object (a circle).

Parameters

in	pt	The point to be checked.
----	----	--------------------------

Returns

True if the point is inside the object, false otherwise.

6.26.1.8 nPoints()

```
unsigned int Object::nPoints ( )
```

Return the number of points of the object.

Returns

The number of points.

6.26.1.9 offsetting()

Enlarge the object of the given offset (defined as pixels=mm in our scenario).

The function automatically update even the center and the radius.

in	offset	The size of the offset.
in	limitX	The the maximum x that the point can have.
in	limitY	The the maximum y that the point can have.

```
6.26.1.10 size()
unsigned int Object::size ( )
Return the number of points of the object.
Returns
     The number of points.
6.26.1.11 toString()
string Object::toString ( )
Generate a string that describe the object.
Returns
     The generated string.
6.26.2 Member Data Documentation
6.26.2.1 center
Point2<int> Object::center [protected]
6.26.2.2 points
vector<Point2<int> > Object::points [protected]
6.26.2.3 radius
```

The documentation for this class was generated from the following files:

• src/include/objects.hh

double Object::radius [protected]

• src/objects.cc

6.27 Obstacle Class Reference

#include <objects.hh>

Inheritance diagram for Obstacle:

Collaboration diagram for Obstacle:

Public Member Functions

Obstacle (vector< Point2< int > > &vp)

Constructor of the obstacle class and automatically compute center and radius.

• string toString ()

Generate a string that describe the obstacle.

• void print ()

Print the describing string of the obstacle.

Additional Inherited Members

6.27.1 Constructor & Destructor Documentation

6.27.1.1 Obstacle()

```
Obstacle::Obstacle ( \label{eq:point2} \mbox{vector} < \mbox{Point2} < \mbox{int} \mbox{ } > \mbox{\& } \mbox{\it vp} \mbox{ })
```

Constructor of the obstacle class and automatically compute center and radius.

Parameters

	in	vp	Vector of points that is the convex hull of the obstacle.
--	----	----	---

Returns

Return the created obstacle.

6.27.2 Member Function Documentation

6.27.2.1 print()

```
void Obstacle::print ( )
```

Print the describing string of the obstacle.

6.27.2.2 toString()

```
string Obstacle::toString ( )
```

Generate a string that describe the obstacle.

Returns

The generated string.

The documentation for this class was generated from the following files:

- src/include/objects.hh
- src/objects.cc

6.28 ClipperLib::OutPt Struct Reference

Collaboration diagram for ClipperLib::OutPt:

Public Attributes

- int ldx
- IntPoint Pt
- OutPt * Next
- OutPt * Prev

6.28.1 Member Data Documentation

6.28.1.1 ldx

int ClipperLib::OutPt::Idx

6.28.1.2 Next

OutPt* ClipperLib::OutPt::Next

6.28.1.3 Prev

OutPt* ClipperLib::OutPt::Prev

6.28.1.4 Pt

IntPoint ClipperLib::OutPt::Pt

The documentation for this struct was generated from the following file:

• src/clipper.cc

6.29 ClipperLib::OutRec Struct Reference

Collaboration diagram for ClipperLib::OutRec:

Public Attributes

- int ldx
- bool IsHole
- bool IsOpen
- OutRec * FirstLeft
- PolyNode * PolyNd
- OutPt * Pts
- OutPt * BottomPt

6.29.1 Member Data Documentation

6.29.1.1 BottomPt

OutPt* ClipperLib::OutRec::BottomPt

6.29.1.2 FirstLeft

```
OutRec* ClipperLib::OutRec::FirstLeft
```

6.29.1.3 ldx

```
int ClipperLib::OutRec::Idx
```

6.29.1.4 IsHole

```
bool ClipperLib::OutRec::IsHole
```

6.29.1.5 IsOpen

```
bool ClipperLib::OutRec::IsOpen
```

6.29.1.6 PolyNd

```
PolyNode* ClipperLib::OutRec::PolyNd
```

6.29.1.7 Pts

```
OutPt* ClipperLib::OutRec::Pts
```

The documentation for this struct was generated from the following file:

• src/clipper.cc

6.30 Point2 < T > Class Template Reference

Class that stores two value to construct a point in 2D. The value is saved in a Tuple.

```
#include <maths.hh>
```

Public Member Functions

• Point2 ()

Default constructor to build an empty Tuple.

Point2 (const T _x, const T _y)

Constructor that taked to elements and builds a point.

Point2 (const cv::Point p)

Constructor that takes a cv::Point and returns a Point2.

- Tx() const
- T y () const
- void x (const T _x)

Set the abscissa value.

void y (const T _y)

Set the ordinate value.

template<class T1 >

void offset (const T1 _offset, const Angle th)

This function compute the offset of the point given a vector, that is the length of the vector and its angle. The angle must be an Angle variable.

void offset (const Point2< T > p)

This function compute an offset given another point made of the abscissa offset and the ordinate offset.

void offset (const Tuple < T > p)

This function compute an offset given a Tuple made of the abscissa offset and the ordinate offset.

void offset_x (const T _offset)

This function compute an offset for the abscissa.

void offset_y (const T _offset)

This function compute an offset for the ordinate.

template<class T1 >

```
double distance (Point2< T1 > B, DISTANCE TYPE dist=EUCLIDEAN)
```

Wrapper to compute different distances. \tparan T1 The type of the elements in the second Point 2.

template<class T1 >

```
double MaDistance (Point2< T1 > B)
```

Function that compute the Manhattan Distance between two points. \tparan T1 The type of the elements in the second Point2.

template<class T1 >

```
double EuDistance (Point2< T1 > B)
```

Function that compute the Euclidean Distance between two points. \tparan T1 The type of the elements in the second Point2.

- stringstream to_string () const
- Point2< T > copy (const Point2< T > &A)

Copy a point into another one.

Point2< T > operator= (const Point2< T > &A)

Overload of the = operatore. Just calls copy.

bool equal (const Point2< T > &A)

Equalize two points.

bool operator== (const Point2< T > &A)

Overload of the == operator. Just calls equal.

bool operator!= (const Point2< T > &A)

Overload of the != operator. Just calls equal and negates it.

operator cv::Point () const

Cast to cv::Point.

- bool operator< (const Point2< T > &A)
- Angle th (Point2 P1, Angle::ANGLE_TYPE type=Angle::RAD)

Friends

ostream & operator << (ostream &out, const Point2 < T > &data)
 Overload of operator << to output the content of a Point2.

6.30.1 Detailed Description

```
\begin{array}{l} \text{template}{<}\text{class T}{>} \\ \text{class Point2}{<}\text{ T}{>} \end{array}
```

Class that stores two value to construct a point in 2D. The value is saved in a Tuple.

Template Parameters

```
The type of the coordinates to be stored.
```

6.30.2 Constructor & Destructor Documentation

```
6.30.2.1 Point2() [1/3]

template<class T>
Point2< T >::Point2 ( ) [inline]
```

Default constructor to build an empty Tuple.

```
6.30.2.2 Point2() [2/3]

template < class T >
Point2 < T >::Point2 (
```

const T $_x$,

Constructor that taked to elements and builds a point.

const T $_y$) [inline]

Parameters

in	\leftarrow	The abscissa coordinate.
	_←	
	X	
in	\leftarrow	The ordinate coordinate.
	_←	
	У	

Constructor that takes a cv::Point and returns a Point2.

Parameters

```
in p The cv::Point to be copied.
```

6.30.3 Member Function Documentation

6.30.3.1 copy()

Copy a point into another one.

Parameters

```
in A point to be coppied.
```

Returns

this.

6.30.3.2 distance()

Wrapper to compute different distances. \tparan T1 The type of the elements in the second Point2.

Parameters

in	В	The second Point2 to use for computing the distance.	
in	dist	The type of distance to be computed.	

Returns

The distance between the two points.

6.30.3.3 equal()

Equalize two points.

Parameters

in	Α	point to be compared to.
----	---	--------------------------

Returns

true if the two points are equal.

6.30.3.4 EuDistance()

Function that compute the Euclidean Distance between two points. $\t T1$ The type of the elements in the second $\t Point2$.

Parameters

```
in B the second Point 2 to use for computing the distance.
```

Returns

The Euclidean distance between the two points.

6.30.3.5 MaDistance()

Function that compute the Manhattan Distance between two points. \tparan T1 The type of the elements in the second Point2.

Parameters

iı	1	В	the second Point 2 to use for computing the distance.
----	---	---	---

Returns

The Manhattan distance between the two points.

6.30.3.6 offset() [1/3]

This function compute the offset of the point given a vector, that is the length of the vector and its angle. The angle must be an Angle variable.

Template Parameters

6.30.3.7 offset() [2/3]

This function compute an offset given another point made of the abscissa offset and the ordinate offset.

Parameters

in p The point with the	e offsets.
-------------------------	------------

Returns

1 if everything went fine, 0 otherwise.

This function compute an offset given a Tuple made of the abscissa offset and the ordinate offset.

Parameters

```
in p The Tuple with the offsets. Its dimension must be 2.
```

Returns

1 if everything went fine, 0 otherwise.

6.30.3.9 offset_x()

This function compute an offset for the abscissa.

Parameters

```
in _offset The offset.
```

Returns

1 if everything went fine, 0 otherwise.

6.30.3.10 offset_y()

This function compute an offset for the ordinate.

Parameters

The offset.

Returns

1 if everything went fine, 0 otherwise.

6.30.3.11 operator cv::Point()

```
template<class T>
Point2< T >::operator cv::Point ( ) const [inline]
```

Cast to cv::Point.

Returns

The value casted to point

6.30.3.12 operator"!=()

Overload of the != operator. Just calls equal and negates it.

Parameters

```
in A point to be compared to.
```

Returns

true if the two configurations are different.

6.30.3.13 operator<()

6.30.3.14 operator=()

Overload of the = operatore. Just calls copy.

Parameters

in A	point to be coppied.
------	----------------------

Returns

this.

6.30.3.15 operator==()

Overload of the == operator. Just calls equal.

Parameters

in	Α	point to be compared to.
----	---	--------------------------

Returns

true if the two configurations are equal.

6.30.3.16 th()

6.30.3.17 to_string()

```
template<class T>
stringstream Point2< T >::to_string ( ) const [inline]
```

```
6.30.3.18 x() [1/2]
```

```
template<class T>
T Point2< T >::x ( ) const [inline]
```

Returns

The abscissa coordinate

```
6.30.3.19 x() [2/2]
```

Set the abscissa value.

Parameters

in	\leftarrow	The new abscissa value
	_←	
	X	

Returns

1 if it was successful, 0 otherwise.

```
6.30.3.20 y() [1/2]
```

```
template<class T>
T Point2< T >::y ( ) const [inline]
```

Returns

The ordinate coordinate

```
6.30.3.21 y() [2/2]
```

Set the ordinate value.

Parameters

in	\leftarrow	The new ordinate value
	_←	
	X	

Returns

1 if it was successful, 0 otherwise.

6.30.4 Friends And Related Function Documentation

```
6.30.4.1 operator <<
```

Overload of operator << to output the content of a Point2.

Parameters

in	out	The output stream.
in	data	The Point 2 to print.

Returns

An output stream to be printed.

The documentation for this class was generated from the following file:

• src/include/maths.hh

6.31 ClipperLib::PolyNode Class Reference

#include <clipper.hh>

Inheritance diagram for ClipperLib::PolyNode:

Collaboration diagram for ClipperLib::PolyNode:

Public Member Functions

- PolyNode ()
- virtual ∼PolyNode ()
- PolyNode * GetNext () const
- bool IsHole () const
- bool IsOpen () const
- int ChildCount () const

Public Attributes

- Path Contour
- PolyNodes Childs
- PolyNode * Parent

Friends

- class Clipper
- class ClipperOffset

6.31.1 Constructor & Destructor Documentation

```
6.31.1.1 PolyNode()
ClipperLib::PolyNode::PolyNode ( )
6.31.1.2 ∼PolyNode()
virtual ClipperLib::PolyNode::~PolyNode ( ) [inline], [virtual]
6.31.2 Member Function Documentation
6.31.2.1 ChildCount()
int ClipperLib::PolyNode::ChildCount ( ) const
6.31.2.2 GetNext()
PolyNode * ClipperLib::PolyNode::GetNext ( ) const
6.31.2.3 IsHole()
bool ClipperLib::PolyNode::IsHole ( ) const
6.31.2.4 IsOpen()
bool ClipperLib::PolyNode::IsOpen ( ) const
6.31.3 Friends And Related Function Documentation
6.31.3.1 Clipper
friend class Clipper [friend]
```

6.31.3.2 ClipperOffset

```
friend class ClipperOffset [friend]
```

6.31.4 Member Data Documentation

6.31.4.1 Childs

```
PolyNodes ClipperLib::PolyNode::Childs
```

6.31.4.2 Contour

```
Path ClipperLib::PolyNode::Contour
```

6.31.4.3 Parent

```
PolyNode* ClipperLib::PolyNode::Parent
```

The documentation for this class was generated from the following files:

- src/include/clipper.hh
- src/clipper.cc

6.32 ClipperLib::PolyTree Class Reference

```
#include <clipper.hh>
```

Inheritance diagram for ClipperLib::PolyTree:

Collaboration diagram for ClipperLib::PolyTree:

Public Member Functions

- \sim PolyTree ()
- PolyNode * GetFirst () const
- void Clear ()
- int Total () const

Friends

• class Clipper

Additional Inherited Members

6.32.1 Constructor & Destructor Documentation

```
6.32.1.1 \simPolyTree()
```

ClipperLib::PolyTree::~PolyTree () [inline]

6.32.2 Member Function Documentation

6.32.2.1 Clear()

void ClipperLib::PolyTree::Clear ()

6.32.2.2 GetFirst()

```
PolyNode * ClipperLib::PolyTree::GetFirst ( ) const
```

6.32.2.3 Total()

```
int ClipperLib::PolyTree::Total ( ) const
```

6.32.3 Friends And Related Function Documentation

6.32.3.1 Clipper

```
friend class Clipper [friend]
```

The documentation for this class was generated from the following files:

- src/include/clipper.hh
- src/clipper.cc

6.33 Settings Class Reference

```
#include <settings.hh>
```

Collaboration diagram for Settings:

Public Types

enum COLOR {
 BLACK, RED, GREEN, VICTIMS,
 BLUE, WHITE, ROBOT }

Public Member Functions

Settings (string mapsFolder="data/map", string _templatesFolder="data/num_template/", vector< string > ← mapsNames={}, vector< string > _mapsUnNames={}, string _calibrationFile="data/calib_config.xml", string _intrinsicCalibrationFile="data/intrinsic_calibration.xml", Filter _blackMask=Filter(0, 0, 0, 179, 255, 70), Filter _redMask=Filter(15, 100, 140, 160, 255, 255), Filter _greenMask=Filter(54, 74, 25, 119, 255, 88), Filter _victimMask=Filter(0, 0, 0, 179, 255, 80), Filter _blueMask=Filter(100, 100, 40, 140, 200, 170), Filter _cw whiteMask=Filter(100, 100, 40, 140, 200, 170), Filter _roboteMask=Filter(100, 100, 40, 140, 200, 170), int _kernelSide=9, string _convexHullFile="data/convexHull.xml", vector< string > _templates={})

Constructor of class Settings. The value are all set by default. The constructor does NOT read from or write to file.

• \sim Settings ()

Destructor.

void save (string mapsFolder="data/map", string _templatesFolder="data/num_template/", vector< string > _mapsNames={}, vector< string > _mapsUnNames={}, string _calibrationFile="data/calib_config.xml", string _intrinsicCalibrationFile="data/intrinsic_calibration.xml", Filter _blackMask=Filter(0, 0, 0, 179, 255, 70), Filter _redMask=Filter(15, 100, 140, 160, 255, 255), Filter _greenMask=Filter(54, 74, 25, 119, 255, 88), Filter _victimMask=Filter(0, 0, 0, 179, 255, 80), Filter _blueMask=Filter(100, 100, 40, 140, 200, 170), Filter _roboteMask=Filter(100, 100, 40, 140, 200, 170), int _kernelSide=9, string _convexHullFile="data/convexHull.xml", vector< string > _templates={})

Function to change values. The value are all set by default. This function does NOT read from or write to file.

void writeToFile (string _path="data/settings.xml")

Function to write settings to file. Default is data/settings.xml.

void readFromFile (string _path="data/settings.xml")

Function to read from file. The data found is going to be added to the settings. Default file is data/settings.xml.

• void clean ()

Function to clean all settings: number types are set to 0, string are set to "", Tuples are set to Tuple<>() and Filter are set to all 0s.

void cleanAndRead (string _path="data/settings.xml")

Function to clean all settings and then read from file. Default is data/settings.xml.

Tuple< string > maps (Tuple< int > ids=Tuple< int >())

Function to return the paths of maps. If ids are not specified all maps are returned.

Tuple < string > maps (int id=-1)

Function to return the path of a map. If id is negative all maps are returned.

string maps (string mapName)

A function to return the path of a given map.

Tuple < string > maps (Tuple < string > _mapNames)

A function to return the paths of a given Tuple of maps.

- bool addUnMap (string unMap)
- Tuple < string > unMaps (Tuple < int > ids=Tuple < int >())

Function to return the paths of undistorted maps. If ids are not specified all undistorted maps are returned.

• Tuple< string > unMaps (int id=-1)

Function to return the path of an undistorted map. If id is negative all undistorted maps are returned.

string unMaps (string unMapName)

A function to return the path of a given undistorted map.

Tuple < string > unMaps (Tuple < string > _unMapNames)

A function to return the paths of a given Tuple of undistorted maps.

Tuple < string > getTemplates (int id=-1)

Function to return the path of a template. If id is negative all templates are returned.

string getTemplates (string _template)

A function to return the path of a given template.

Tuple < string > getTemplates (Tuple < string > _templates)

A function to return the paths of a given Tuple of templates.

void changeMask (Tuple < COLOR > color, Tuple < Filter > fil)

Change the values of Tuple of filters. Mind that no write function is called.

void changeMask (COLOR color, Filter fil)

Change the values of a filter. Mind that no write function is called.

stringstream to_string () const

A function that creates a stringstream to print the values stored in settings.

Public Attributes

· string mapsFolder

A string containing the path for mapsFolder. No certainty is given about the form of this string.

Tuple < string > mapsNames

A Tuple containing the names of the maps. These are not paths but just names.

Tuple < string > mapsUnNames

A Tuple containing the names of the undistorted maps. These are not paths but just names.

· string intrinsicCalibrationFile

A string containing the path to the file containing the values of the matrix for the calibration.

string calibrationFile

A string containing the path to the file containing the data for the calibration.

Filter blackMask

Filter for black.

Filter redMask

Filter for red.

Filter greenMask

Filter for green.

Filter victimMask

Filter for the victims.

· Filter blueMask

Filter for blue.

Filter whiteMask

Filter for white.

Filter robotMask

Filter for the triangle above the robot.

- · int kernelSide
- string convexHullFile

AString containing the path to file containing the points of the elements in the arena.

string templatesFolder

A String containing the path of the folder containing the number templates.

Tuple < string > templates

A Tuple containing the names of the templates. These are not paths but just names.

Friends

ostream & operator<< (ostream &out, const Settings &data)

6.33.1 Detailed Description

Class that stores settings for the projects such as location of files, name of maps and filters to use. Mind that when created it does not read from file by default but the function must be invoked.

6.33.2 Member Enumeration Documentation

6.33.2.1 COLOR

enum Settings::COLOR

Enumerator

BLACK	
RED	
GREEN	
VICTIMS	
BLUE	
WHITE	
ROBOT	

6.33.3 Constructor & Destructor Documentation

6.33.3.1 Settings()

```
Settings::Settings (
             string _mapsFolder = "data/map",
             string _templatesFolder = "data/num_template/",
             vector< string > _mapsNames = {},
             vector< string > _mapsUnNames = {},
             string _intrinsicCalibrationFile = "data/calib_config.xml",
             string _calibrationFile = "data/intrinsic_calibration.xml",
             Filter _blackMask = Filter(0, 0, 0, 179, 255, 70),
             Filter _redMask = Filter(15, 100, 140, 160, 255, 255),
             Filter _greenMask = Filter(54, 74, 25, 119, 255, 88),
             Filter _victimMask = Filter(0, 0, 0, 179, 255, 80),
             Filter _blueMask = Filter(100, 100, 40, 140, 200, 170),
             Filter _whiteMask = Filter(100, 100, 40, 140, 200, 170),
             Filter _robotMask = Filter(100, 100, 40, 140, 200, 170),
             int _kernelSide = 9,
             string _convexHullFile = "data/convexHull.xml",
             vector < string > \_templates = \{\})
```

Constructor of class Settings. The value are all set by default. The constructor does NOT read from or write to file.

Parameters

mapsFolder	A string containing the path for mapsFolder. No certainty is given about the form of this string
_templatesFolder	A String containing the path of the folder containing the number templates.
_mapsNames	A Tuple containing the names of the maps. These are not paths but just names.
_mapsUnNames	A Tuple containing the names of the undistorted maps. These are not paths but just names.
_calibrationFile	A string containing the path to the file containing the data for the calibration.
_intrinsicCalibrationFile	A string containing the path to the file containing the values of the matrix for the calibration.
_blackMask	Filter for black.
_redMask	Filter for red.
_greenMask	Filter for green.
_victimMask	Filter for the victims.
_blueMask	Filter for blue.
_whiteMask	Filter for white.
_robotMask	Filter for the triangle above the robot.
_kernelSide	
_convexHullFile	A String containing the path to file containing the points of the elements in the arena.
_templates	A Tuple containing the names of the templates. These are not paths but just names.

6.33.3.2 ∼Settings()

```
Settings::~Settings ( )
```

Destructor.

6.33.4 Member Function Documentation

6.33.4.1 addUnMap()

6.33.4.2 changeMask() [1/2]

Change the values of Tuple of filters. Mind that no write function is called.

Parameters

color	A Tuple containing the colors of the filters to change.
fil	The new filters to be stored.

```
6.33.4.3 changeMask() [2/2]
```

Change the values of a filter. Mind that no write function is called.

Parameters

color	The filter to change.	
fil The new filter to be store		

6.33.4.4 clean()

```
void Settings::clean ( )
```

Function to clean all settings: number types are set to 0, string are set to "", Tuples are set to Tuple <>() and Filter are set to all 0s.

6.33.4.5 cleanAndRead()

Function to clean all settings and then read from file. Default is data/settings.xml.

6.33.4.6 getTemplates() [1/3]

```
Tuple< string > Settings::getTemplates ( int id = -1)
```

Function to return the path of a template. If id is negative all templates are returned.

Function to return the path of a template. If id is not specified all templates are returned.

Parameters

id The positions in this.templates of the template to be retrieved

Returns

A Tuple containing the paths of the templates.

A function to return the path of a given template.

Parameters

	_templateName	The name of the template to check in the Tuple.
--	---------------	---

Returns

The path to the template if it is found, an empty string otherwise.

A function to return the paths of a given Tuple of templates.

Parameters

_template | A Tuple containing the names of the templates to check in the Tuple.

Returns

The paths to the templates if they are found, an empty Tuple otherwise.

Function to return the paths of maps. If ids are not specified all maps are returned.

Parameters

ids | A Tuple containing the ids (that is the positions in this.mapsNames) of the maps to be retrieved.

Returns

A Tuple containing the paths of the maps.

Function to return the path of a map. If id is negative all maps are returned.

Function to return the path of a map. If id is not specified all maps are returned.

Parameters

id The positions in this.mapsNames of the map to be retrieved

Returns

A Tuple containing the paths of the maps.

Parameters

id A the positions in this.mapsNames of the map to be retrieved

Returns

A Tuple containing the paths of the maps.

A function to return the path of a given map.

Parameters

_mapName The name of the map to check in the Tuple.

Returns

The path to the map if the map is found, an empty string otherwise.

A function to return the paths of a given Tuple of maps.

Parameters

_mapNames A Tuple containing the names of the maps to check in the Tuple.

Returns

The paths to the maps if they are found, an empty Tuple otherwise.

6.33.4.13 readFromFile()

Function to read from file. The data found is going to be added to the settings. Default file is data/settings.xml.

Parameters

```
_path The path of file to read from.
```

6.33.4.14 save()

```
Filter _blueMask = Filter(100, 100, 40, 140, 200, 170),
Filter _whiteMask = Filter(100, 100, 40, 140, 200, 170),
Filter _robotMask = Filter(100, 100, 40, 140, 200, 170),
int _kernelSide = 9,
string _convexHullFile = "data/convexHull.xml",
vector< string > _templates = {} )
```

Function to change values. The value are all set by default. This function does NOT read from or write to file.

Parameters

mapsFolder	A string containing the path for mapsFolder. No certainty is given about the form of this string
_templatesFolder	A String containing the path of the folder containing the number templates.
_mapsNames	A Tuple containing the names of the maps. These are not paths but just names.
_mapsUnNames	A Tuple containing the names of the undistorted maps. These are not paths but just names.
_calibrationFile	A string containing the path to the file containing the data for the calibration.
_intrinsicCalibrationFile	A string containing the path to the file containing the values of the matrix for the calibration.
_blackMask	Filter for black.
_redMask	Filter for red.
_greenMask	Filter for green.
_victimMask	Filter for the victims.
_blueMask	Filter for blue.
_whiteMask	Filter for white.
_robotMask	Filter for the triangle above the robot.
_kernelSide	
_convexHullFile	A String containing the path to file containing the points of the elements in the arena.
_templates	A Tuple containing the names of the templates. These are not paths but just names.

6.33.4.15 to_string()

```
stringstream Settings::to_string ( ) const [inline]
```

A function that creates a stringstream to print the values stored in settings.

Returns

A strinstream containing the settings values.

6.33.4.16 unMaps() [1/4]

Function to return the paths of undistorted maps. If ids are not specified all undistorted maps are returned.

Parameters

ids

A Tuple containing the ids (that is the positions in this.mapsUnNames) of the undistorted maps to be retrieved.

Returns

A Tuple containing the paths of the undistorted maps.

Function to return the path of an undistorted map. If id is negative all undistorted maps are returned.

Function to return the path of an undistorted map. If id is not specified all undistorted maps are returned.

Parameters

The positions in this.mapsUnNames of the undistorted map to be retrieved

Returns

A Tuple containing the paths of the undistorted maps.

Parameters

id A the positions in this.mapsUnNames of the undistorted map to be retrieved

Returns

A Tuple containing the paths of the undistorted maps.

A function to return the path of a given undistorted map.

Parameters

_unMapName The name of the undistorted map to check in the Tuple.

Returns

The path to the undistorted map if it is found, an empty string otherwise.

A function to return the paths of a given Tuple of undistorted maps.

Parameters

_unMapNames | A Tuple containing the names of the undistorted maps to check in the Tuple.

Returns

The paths to the undistorted maps if they are found, an empty Tuple otherwise.

6.33.4.20 writeToFile()

Function to write settings to file. Default is data/settings.xml.

Parameters

_path The path of the file to write to.

6.33.5 Friends And Related Function Documentation

6.33.5.1 operator < <

This function overload the << operator so to print with std::cout.

Parameters

in	out	The out stream.
in	datThe	settings to print.

Returns

An output stream to be printed.

6.33.6 Member Data Documentation

6.33.6.1 blackMask

Filter Settings::blackMask

Filter for black.

6.33.6.2 blueMask

Filter Settings::blueMask

Filter for blue.

6.33.6.3 calibrationFile

string Settings::calibrationFile

A string containing the path to the file containing the data for the calibration.

6.33.6.4 convexHullFile

string Settings::convexHullFile

AString containing the path to file containing the points of the elements in the arena.

6.33.6.5 greenMask

Filter Settings::greenMask

Filter for green.

6.33.6.6 intrinsicCalibrationFile

string Settings::intrinsicCalibrationFile

A string containing the path to the file containing the values of the matrix for the calibration.

6.33.6.7 kernelSide

int Settings::kernelSide

6.33.6.8 mapsFolder

string Settings::mapsFolder

A string containing the path for mapsFolder. No certainty is given about the form of this string.

6.33.6.9 mapsNames

Tuple<string> Settings::mapsNames

A Tuple containing the names of the maps. These are not paths but just names.

6.33.6.10 mapsUnNames

Tuple<string> Settings::mapsUnNames

A Tuple containing the names of the undistorted maps. These are not paths but just names.

6.33.6.11 redMask Filter Settings::redMask Filter for red. 6.33.6.12 robotMask Filter Settings::robotMask

Filter for the triangle above the robot.

```
6.33.6.13 templates
```

Tuple<string> Settings::templates

A Tuple containing the names of the templates. These are not paths but just names.

```
6.33.6.14 templatesFolder
```

string Settings::templatesFolder

A String containing the path of the folder containing the number templates.

6.33.6.15 victimMask

Filter Settings::victimMask

Filter for the victims.

6.33.6.16 whiteMask

Filter Settings::whiteMask

Filter for white.

The documentation for this class was generated from the following files:

- src/include/settings.hh
- src/settings.cc

6.34 ClipperLib::TEdge Struct Reference

Collaboration diagram for ClipperLib::TEdge:

Public Attributes

- IntPoint Bot
- IntPoint Curr
- IntPoint Top
- double Dx
- PolyType PolyTyp
- · EdgeSide Side
- int WindDelta
- · int WindCnt
- int WindCnt2
- int Outldx
- TEdge * Next
- TEdge * Prev
- TEdge * NextInLML
- TEdge * NextInAEL
- TEdge * PrevInAEL
- TEdge * NextInSEL
- TEdge * PrevInSEL

6.34.1 Member Data Documentation

```
6.34.1.1 Bot
IntPoint ClipperLib::TEdge::Bot
6.34.1.2 Curr
IntPoint ClipperLib::TEdge::Curr
6.34.1.3 Dx
double ClipperLib::TEdge::Dx
6.34.1.4 Next
TEdge* ClipperLib::TEdge::Next
6.34.1.5 NextInAEL
TEdge* ClipperLib::TEdge::NextInAEL
6.34.1.6 NextInLML
TEdge* ClipperLib::TEdge::NextInLML
6.34.1.7 NextInSEL
TEdge* ClipperLib::TEdge::NextInSEL
6.34.1.8 Outldx
int ClipperLib::TEdge::OutIdx
```

```
6.34.1.9 PolyTyp
PolyType ClipperLib::TEdge::PolyTyp
6.34.1.10 Prev
TEdge* ClipperLib::TEdge::Prev
6.34.1.11 PrevInAEL
TEdge* ClipperLib::TEdge::PrevInAEL
6.34.1.12 PrevInSEL
TEdge* ClipperLib::TEdge::PrevInSEL
6.34.1.13 Side
EdgeSide ClipperLib::TEdge::Side
6.34.1.14 Top
IntPoint ClipperLib::TEdge::Top
6.34.1.15 WindCnt
int ClipperLib::TEdge::WindCnt
6.34.1.16 WindCnt2
int ClipperLib::TEdge::WindCnt2
```

6.34.1.17 WindDelta

```
int ClipperLib::TEdge::WindDelta
```

The documentation for this struct was generated from the following file:

· src/clipper.cc

6.35 Tuple < T > Class Template Reference

```
#include <maths.hh>
```

Public Member Functions

• Tuple ()

Defualt constructor.

• Tuple (int _n,...)

Constructors that takes the number of objectes to be stored, the objects and then stores them. For compatibility problem we strongly suggest to use this constructor only with standard types or types that can be promotted to one of the standard ones. For any other type we suggest to use an empty constructor and then use the add() function.

- · int size () const
- T get (const int n) const

Gets the n-th element.

- int find (T _el)
- void add (const T _new)

Adds a value at the end of the list.

- void addlfNot (T el)
- int remove (const T pos)

Removes a value from the list.

• void eraseAll ()

Removes all values from the Tuple.

int set (const int pos, const T _new)

Set a value in a certain position, or adds the element if the position equals the number of elements.

- void ahead (const T _new)
- bool equal (Tuple < T > _t)
- bool operator== (Tuple < T > _t)
- Tuple < T > sum (Tuple < T > t)
- Tuple < T > sum (T inc)
- Tuple < T > operator+ (T inc)
- Tuple < T > & operator+= (T inc)
- Tuple < T > mul (Tuple < T > t)
- Tuple < T > mul (T inc)
- Tuple < T > operator * (T inc)
- Tuple < T > & operator *= (T inc)
- template<class T1 >

```
double EuDistance (const Tuple < T1 > B)
```

Function that compute the Euclidean Distance between two tuples. They must have the same number of elements. \tag{tparan T1 The type of the elements in the second Tuple.}

template < class T1 >
 double MaDistance (const Tuple < T1 > B)

Function that compute the Manhattan Distance between two tuples. They must have the same number of elements. It and T1 The type of the elements in the second Tuple.

template<class T1 >

```
double distance (const Tuple < T1 > B, const DISTANCE_TYPE dist=EUCLIDEAN)
```

Wrapper to compute different distances. They must have the same number of elements. \tparan T1 The type of the elements in the second Tuple.

- stringstream to_string (string _prefix="") const
- string to_std_string () const
- operator std::string () const
- template<class T1 >

```
operator vector< T1 > () const
```

Overload of cast to vector.

int & operator[] (int index)

Overloading [] operator to access elements in array style.

• tupleIter begin ()

Iterator.

• tupleConstIter begin () const

Const iterator.

• tupleIter end ()

Iterator.

• tupleConstIter end () const

Const iterator.

Friends

ostream & operator << (ostream &out, const Tuple < T > &data)
 Overload of operator << to output the content of the tuple.

6.35.1 Detailed Description

```
template < class T > class Tuple < T >
```

\bried This class allows the definition and storage of tuples of different dimensions. Functions to compute distance between tuples are also available.

Template Parameters

```
The type of elements to be stored.
```

6.35.2 Constructor & Destructor Documentation

```
6.35.2.1 Tuple() [1/2]

template<class T>
Tuple< T >::Tuple ( ) [inline]
```

Defualt constructor.

Constructors that takes the number of objectes to be stored, the objects and then stores them. For compatibility problem we strongly suggest to use this constructor only with standard types or types that can be promotted to one of the standard ones. For any other type we suggest to use an empty constructor and then use the add () function.

Parameters

in	\leftarrow	Number of obejctes to store.
	_←	
	n	
in		Objects to store.

6.35.3 Member Function Documentation

6.35.3.1 add()

Adds a value at the end of the list.

Parameters

in	_new	The new value to be added.

6.35.3.2 addlfNot()

6.35.3.3 ahead()

6.35.3.4 begin() [1/2]

```
template<class T>
tupleIter Tuple< T >::begin ( ) [inline]
```

Iterator.

Returns

the elements.begin() iterator.

6.35.3.5 begin() [2/2]

```
template<class T>
tupleConstIter Tuple< T >::begin ( ) const [inline]
```

Const iterator.

Returns

the elements.begin() iterator.

6.35.3.6 distance()

Wrapper to compute different distances. They must have the same number of elements. \tparan T1 The type of the elements in the second Tuple.

Parameters

in	В	The second Tuple to use for computing the distance.
in	dist	The type of distance to be computed.

Returns

The distance between the two Tuple.

```
6.35.3.7 end() [1/2]
template<class T>
tupleIter Tuple< T >::end ( ) [inline]
Iterator.
Returns
     the elements.end() iterator.
6.35.3.8 end() [2/2]
template<class T>
\label{tupleConstIter Tuple< T >::end () const [inline]} \\
Const iterator.
Returns
     the elements.begin() iterator.
6.35.3.9 equal()
template < class T >
bool Tuple< T >::equal (
              Tuple T > t) [inline]
6.35.3.10 eraseAll()
template<class T>
void Tuple< T >::eraseAll ( ) [inline]
Removes all values from the Tuple.
6.35.3.11 EuDistance()
template < class T >
{\tt template}{<}{\tt class}~{\tt T1}~{>}
```

double Tuple< T >::EuDistance (

const Tuple < T1 > B) [inline]

Function that compute the Euclidean Distance between two tuples. They must have the same number of elements. \tparan T1 The type of the elements in the second Tuple.

Parameters

in $ $ $ $ $ $ the second Tuple to use for computing the distant
--

Returns

The Euclidean distance between the two Tuple.

6.35.3.12 find()

6.35.3.13 get()

Gets the n-th element.

Parameters

in	\rightarrow	The position of the element to retrieve.
	_←	
	n	

Returns

The element in the n-th position or an empty costructor if _n is greater then n or less than 0.

6.35.3.14 MaDistance()

Function that compute the Manhattan Distance between two tuples. They must have the same number of elements. \tparan T1 The type of the elements in the second Tuple.

Parameters

in B the second Tuple to use for computing the distance.

Returns

The Manhattan distance between the two Tuple.

```
6.35.3.15 mul() [1/2]
template<class T>
{\tt Tuple}{<\tt T>} \; {\tt Tuple}{<\tt} \; {\tt T} \; >:: {\tt mul} \; \; (
               Tuple T > t) [inline]
6.35.3.16 mul() [2/2]
{\tt template}{<}{\tt class} \ {\tt T}{>}
Tuple<T> Tuple< T >::mul (
              T inc ) [inline]
6.35.3.17 operator *()
template<class T>
Tuple<T> Tuple< T >::operator * (
              T inc ) [inline]
6.35.3.18 operator *=()
{\tt template}{<}{\tt class} \ {\tt T}{>}
Tuple<T>& Tuple< T >::operator *= (
               T inc ) [inline]
6.35.3.19 operator std::string()
template<class T>
Tuple< T >::operator std::string ( ) const [inline]
```

6.35.3.20 operator vector< T1 >()

Overload of cast to vector.

Returns

A vector containing the values of elements.

6.35.3.21 operator+()

6.35.3.22 operator+=()

6.35.3.23 operator==()

6.35.3.24 operator[]()

Overloading [] operator to access elements in array style.

Parameters

in	index	ld of value to get.

Returns

Value at id position.

6.35.3.25 remove()

Removes a value from the list.

Parameters

in	pos	The position of the value to be removed.
----	-----	--

Returns

1 if verything went fine, 0 otherwise.

6.35.3.26 set()

Set a value in a certain position, or adds the element if the position equals the number of elements.

Parameters

in	pos	Must be in $[0, n-1]$. If $pos = n$ then the element is added at the end of the vector.
in	_new	The new element to be set.

Returns

1 if everything went right, 0 if the position was greater than n or less the 0.

6.35.3.27 size()

```
template<class T>
int Tuple< T >::size ( ) const [inline]
```

Returns

The number of stored elements. -1 if the Tuple has a different number of elements.

This function create a strinstream object containing the values of the Tuple.

Returns

A string stream.

6.35.4 Friends And Related Function Documentation

Overload of operator << to output the content of the tuple.

Parameters

in	out	The output stream.
in	data	The Tuple to print.

Returns

An output stream to be printed.

The documentation for this class was generated from the following file:

• src/include/maths.hh

6.36 Victim Class Reference

#include <objects.hh>

Inheritance diagram for Victim:

Collaboration diagram for Victim:

Public Member Functions

Victim (vector< Point2< int > > &vp, int _value)

Constructor of the victim class and automatically compute center and radius.

• string toString ()

Generate a string that describe the victim.

• void print ()

Print the describing string of the victim.

- int getValue ()
- void setValue (int v)

Protected Attributes

• int value

6.36.1 Constructor & Destructor Documentation

6.36.1.1 Victim()

```
Victim::Victim (  \mbox{vector} < \mbox{Point2} < \mbox{int} >> \& \mbox{\it vp,} \\ \mbox{int} \mbox{\it \_value} \mbox{\it )}
```

Constructor of the victim class and automatically compute center and radius.

Parameters

in	vp	Vector of points that is the convex hull of the victim.
in <i>value</i> The representative number of the victim.		

Returns

Return the created victim.

6.36.2 Member Function Documentation

6.36.2.1 getValue()

```
int Victim::getValue ( ) [inline]
```

6.36.2.2 print()

```
void Victim::print ( )
```

Print the describing string of the victim.

6.36.2.3 setValue()

```
void Victim::setValue (

int v ) [inline]
```

6.36.2.4 toString()

```
string Victim::toString ( )
```

Generate a string that describe the victim.

Returns

The generated string.

6.36.3 Member Data Documentation

6.36.3.1 value

```
int Victim::value [protected]
```

The documentation for this class was generated from the following files:

- src/include/objects.hh
- src/objects.cc

Chapter 7

File Documentation

7.1 src/calibration.cc File Reference

#include "calibration.hh"
Include dependency graph for calibration.cc:

Functions

- int calibration (string inputFile)
 - Function to run the complete calibration.
- static void read (const FileNode &node, CalSettings &x, const CalSettings &default value)
 - Reads CalSettings from file. If there is none then initiate a new CalSettings.
- static double computeReprojectionErrors (const vector< vector< Point3f >> &objectPoints, const vector< vector< Point2f >> &imagePoints, const vector< Mat > &rvecs, const vector< Mat > &tvecs, const Mat &cameraMatrix, const Mat &distCoeffs, vector< float > &perViewErrors, bool fisheye)
 - Compute the errors of the projection.
- void calcBoardCornerPositions (Size boardSize, float squareSize, vector < Point3f > &corners)
 - This function compute the position of the upper corners of every cell.

This function run the calibration creating the matrixed for the camera and the distorsion coefficients.

static void saveCameraParams (const CalSettings &s, const Size &imageSize, const Mat &cameraMatrix, const Mat &distCoeffs, const vector< Mat > &rvecs, const vector< Mat > &tvecs, const vector< float > &reprojErrs, const vector< vector< Point2f > > &imagePoints, const double totalAvgErr)

Function to save the computed parameters to a file.

bool runCalibrationAndSave (CalSettings &s, Size imageSize, Mat &cameraMatrix, Mat &distCoeffs, vector < vector < Point2f > > imagePoints)

Reads CalSettings from file. If there is none then initiate a new CalSettings.

7.1.1 Function Documentation

7.1.1.1 calcBoardCornerPositions()

This function compute the position of the upper corners of every cell.

Parameters

in	boardSiz	The dimension of the chess board.
in	squareSize	The dimension of the edge of a cell.
out	out corners A vector of Point3fs which equals to the corners of the co	

7.1.1.2 calibration()

Function to run the complete calibration.

Parameters

iı	inputFile	Name of the setting.xml file. It's set to default to default.xml
----	-----------	--

Returns

- -2 if the CalSettings file could be load but the input was not well-formed
- -1 if the CalSettings file could not be opened.
- 0 if everything went fine.

7.1.1.3 computeReprojectionErrors()

```
static double computeReprojectionErrors ( const\ vector<\ vector<\ Point3f\ >\ \&\ objectPoints, const\ vector<\ vector<\ Point2f\ >\ \&\ imagePoints, const\ vector<\ Mat\ >\ \&\ rvecs, const\ vector<\ Mat\ >\ \&\ tvecs, const\ Mat\ \&\ cameraMatrix,
```

```
const Mat & distCoeffs,
vector< float > & perViewErrors,
bool fisheye ) [static]
```

Compute the errors of the projection.

Parameters

in	objectPoints	The real image points which will be projected
in	rvecs	Input vector of rotation vectors estimated for each pattern view.
in	tvecs	Input vector of translation vectors estimated for each pattern view.
in	cameraMatrix	The matrix containing the parameters for the camera
in	distCoeffs	The matrix containing the distortion coefficients.
in	fisheye	A variable which says if a fish eye correction should be applied or no.
out	perViewErrors	A vector containing the error for each image.
out	imagePoints	The projected points for each image.

Returns

The total error.

7.1.1.4 read()

Reads CalSettings from file. If there is none then initiate a new CalSettings.

Parameters

in	node	node to consider for getting CalSettings;
in	X	CalSettings to configure;
in	default_value	CalSettings default value. Setted to CalSettings().

7.1.1.5 runCalibration()

```
vector< Mat > & tvecs,
vector< float > & reprojErrs,
double & totalAvgErr ) [static]
```

This function run the calibration creating the matrixed for the camera and the distorsion coefficients.

Parameters

in	s	The CalSettings read from the file and memorized.
in	imageSize	The size of the image used in calibrateCamera() to initialize the camera
		matrix.
in	imagePoints	The projected points for each image.
in	reprojErrs	The re-projection error, that is a geometric error corresponding to the image distance
		between a projected point and a measured one.
out	cameraMatrix	The matrix of the camera parameters
out	distCoeffs	The matrix of the distorsion coefficients.
out	rvecs	Output vector of rotation vectors estimated for each pattern view.
out	tvecs	Output vector of translation vectors estimated for each pattern view.
out	totalAvgErr	The total avarage error given from distorsion.

Returns

 ${\tt false} \ \ \textit{if one or more elements in the} \ {\tt cameraMatrix} \ \ \textit{and} \ {\tt distCoeffs} \ \ \textit{are invalid}.$ ${\tt true} \ \ \textit{if all the elements are valid}.$

7.1.1.6 runCalibrationAndSave()

Reads CalSettings from file. If there is none then initiate a new CalSettings.

Parameters

in	s	The CalSettings being used during the execution.
in	imageSize	The dimensions of the images.
in	imagePoints	The projected points for each image.
ou	t cameraMatrix	The matrix which is used to store the values for the camera parameters.
ou	t distCoeffs	The matrix which is used to store the distortion coefficients.

Returns

true if the calibration succeded. false otherwise.

7.1.1.7 saveCameraParams()

Function to save the computed parameters to a file.

Parameters

in	s	Use the CalSettings got at the beginning for information as the output file name, image and board size.
in	imageSize	The size of the imgage.
in	cameraMatrix	The camera matrix.
in	distCoeffs	The distorsion coefficient matrix.
	[int]	rvecs Vector of rotation vectors estimated for each pattern view.
in	tvecs	Vector of translation vectors estimated for each pattern view.
in	reprojErrs	The re-projection error, that is a geometric error corresponding to the image distance
		between a projected point and a measured one.
in	imagePoints	The projected points for each image.
in	totalAvgErr	The total avarage error given from distorsion.

Open file for writing

Stores time of calibration

Store infos about the images

7.2 src/camera_capture.cc File Reference

```
#include <iostream>
#include <utils.hh>
#include <cstring>
#include <camera_capture.hh>
Include dependency graph for camera_capture.cc:
```


Macros

#define SDEBUG(X) {}

7.2.1 Macro Definition Documentation

7.2.1.1 SDEBUG

```
#define SDEBUG( X ) {}
```

7.3 src/clipper.cc File Reference

```
#include "clipper.hh"
#include <cmath>
#include <vector>
#include <algorithm>
#include <stdexcept>
#include <cstring>
#include <cstdlib>
#include <ostream>
#include <functional>
```

Include dependency graph for clipper.cc:

Classes

- struct ClipperLib::TEdge
- struct ClipperLib::IntersectNode
- struct ClipperLib::LocalMinimum
- struct ClipperLib::OutRec
- struct ClipperLib::OutPt
- struct ClipperLib::Join
- struct ClipperLib::LocMinSorter
- class ClipperLib::Int128

Namespaces

• ClipperLib

Macros

- #define HORIZONTAL (-1.0E+40)
- #define TOLERANCE (1.0e-20)
- #define NEAR_ZERO(val) (((val) > -TOLERANCE) && ((val) < TOLERANCE))

Enumerations

- enum ClipperLib::Direction { ClipperLib::dRightToLeft, ClipperLib::dLeftToRight }
- enum ClipperLib::NodeType { ClipperLib::ntAny, ClipperLib::ntOpen, ClipperLib::ntClosed }

Functions

- cInt ClipperLib::Round (double val)
- clnt ClipperLib::Abs (clnt val)
- Int128 ClipperLib::Int128Mul (long64 lhs, long64 rhs)
- bool ClipperLib::Orientation (const Path &poly)
- double ClipperLib::Area (const Path &poly)
- double ClipperLib::Area (const OutPt *op)
- double ClipperLib::Area (const OutRec &outRec)
- bool ClipperLib::PointlsVertex (const IntPoint &Pt, OutPt *pp)
- int ClipperLib::PointInPolygon (const IntPoint &pt, const Path &path)
- int ClipperLib::PointInPolygon (const IntPoint &pt, OutPt *op)
- bool ClipperLib::Poly2ContainsPoly1 (OutPt *OutPt1, OutPt *OutPt2)
- bool ClipperLib::SlopesEqual (const TEdge &e1, const TEdge &e2, bool UseFullInt64Range)
- bool ClipperLib::SlopesEqual (const IntPoint pt1, const IntPoint pt2, const IntPoint pt3, bool UseFullInt64
 Range)
- bool ClipperLib::SlopesEqual (const IntPoint pt1, const IntPoint pt2, const IntPoint pt3, const IntPoint pt4, bool UseFullInt64Range)
- bool ClipperLib::IsHorizontal (TEdge &e)
- double ClipperLib::GetDx (const IntPoint pt1, const IntPoint pt2)
- void ClipperLib::SetDx (TEdge &e)
- void ClipperLib::SwapSides (TEdge &Edge1, TEdge &Edge2)
- void ClipperLib::SwapPolyIndexes (TEdge &Edge1, TEdge &Edge2)
- clnt ClipperLib::TopX (TEdge &edge, const clnt currentY)
- void ClipperLib::IntersectPoint (TEdge &Edge1, TEdge &Edge2, IntPoint &ip)
- void ClipperLib::ReversePolyPtLinks (OutPt *pp)
- void ClipperLib::DisposeOutPts (OutPt *&pp)
- void ClipperLib::InitEdge (TEdge *e, TEdge *eNext, TEdge *ePrev, const IntPoint &Pt)
- void ClipperLib::InitEdge2 (TEdge &e, PolyType Pt)
- TEdge * ClipperLib::RemoveEdge (TEdge *e)
- void ClipperLib::ReverseHorizontal (TEdge &e)
- void ClipperLib::SwapPoints (IntPoint &pt1, IntPoint &pt2)
- bool ClipperLib::GetOverlapSegment (IntPoint pt1a, IntPoint pt1b, IntPoint pt2a, IntPoint pt2b, IntPoint &pt1, IntPoint &pt2)
- bool ClipperLib::FirstIsBottomPt (const OutPt *btmPt1, const OutPt *btmPt2)
- OutPt * ClipperLib::GetBottomPt (OutPt *pp)
- bool ClipperLib::Pt2IsBetweenPt1AndPt3 (const IntPoint pt1, const IntPoint pt2, const IntPoint pt3)
- bool ClipperLib::HorzSegmentsOverlap (clnt seg1a, clnt seg1b, clnt seg2a, clnt seg2b)
- void ClipperLib::RangeTest (const IntPoint &Pt, bool &useFullRange)
- TEdge * ClipperLib::FindNextLocMin (TEdge *E)
- OutRec * ClipperLib::GetLowermostRec (OutRec *outRec1, OutRec *outRec2)
- bool ClipperLib::OutRec1RightOfOutRec2 (OutRec *outRec1, OutRec *outRec2)

- bool ClipperLib::IsMinima (TEdge *e)
- bool ClipperLib::IsMaxima (TEdge *e, const clnt Y)
- bool ClipperLib::IsIntermediate (TEdge *e, const clnt Y)
- TEdge * ClipperLib::GetMaximaPair (TEdge *e)
- TEdge * ClipperLib::GetMaximaPairEx (TEdge *e)
- TEdge * ClipperLib::GetNextInAEL (TEdge *e, Direction dir)
- void ClipperLib::GetHorzDirection (TEdge &HorzEdge, Direction &Dir, cInt &Left, cInt &Right)
- bool ClipperLib::IntersectListSort (IntersectNode *node1, IntersectNode *node2)
- bool ClipperLib::EdgesAdjacent (const IntersectNode &inode)
- int ClipperLib::PointCount (OutPt *Pts)
- void ClipperLib::SwapIntersectNodes (IntersectNode &int1, IntersectNode &int2)
- bool ClipperLib::E2InsertsBeforeE1 (TEdge &e1, TEdge &e2)
- bool ClipperLib::GetOverlap (const clnt a1, const clnt a2, const clnt b1, const clnt b2, clnt &Left, clnt &Right)
- void ClipperLib::UpdateOutPtldxs (OutRec &outrec)
- OutPt * ClipperLib::DupOutPt (OutPt *outPt, bool InsertAfter)
- bool ClipperLib::JoinHorz (OutPt *op1, OutPt *op1b, OutPt *op2, OutPt *op2b, const IntPoint Pt, bool DiscardLeft)
- static OutRec * ClipperLib::ParseFirstLeft (OutRec *FirstLeft)
- DoublePoint ClipperLib::GetUnitNormal (const IntPoint &pt1, const IntPoint &pt2)
- void ClipperLib::ReversePath (Path &p)
- void ClipperLib::ReversePaths (Paths &p)
- void ClipperLib::SimplifyPolygon (const Path &in poly, Paths &out polys, PolyFillType fillType)
- void ClipperLib::SimplifyPolygons (const Paths &in_polys, Paths &out_polys, PolyFillType)
- void ClipperLib::SimplifyPolygons (Paths &polys, PolyFillType fillType)
- double ClipperLib::DistanceSqrd (const IntPoint &pt1, const IntPoint &pt2)
- double ClipperLib::DistanceFromLineSqrd (const IntPoint &pt, const IntPoint &In1, const IntPoint &In2)
- bool ClipperLib::SlopesNearCollinear (const IntPoint &pt1, const IntPoint &pt2, const IntPoint &pt3, double distSqrd)
- bool ClipperLib::PointsAreClose (IntPoint pt1, IntPoint pt2, double distSqrd)
- OutPt * ClipperLib::ExcludeOp (OutPt *op)
- void ClipperLib::CleanPolygon (const Path &in poly, Path &out poly, double distance)
- void ClipperLib::CleanPolygon (Path &poly, double distance)
- void ClipperLib::CleanPolygons (const Paths &in polys, Paths &out polys, double distance)
- void ClipperLib::CleanPolygons (Paths &polys, double distance)
- void ClipperLib::Minkowski (const Path &poly, const Path &path, Paths &solution, bool isSum, bool isClosed)
- void ClipperLib::MinkowskiSum (const Path &pattern, const Path &path, Paths &solution, bool pathIsClosed)
- void ClipperLib::TranslatePath (const Path &input, Path &output, const IntPoint delta)
- void ClipperLib::MinkowskiSum (const Path &pattern, const Paths &paths, Paths &solution, bool pathls
 — Closed)
- void ClipperLib::MinkowskiDiff (const Path &poly1, const Path &poly2, Paths &solution)
- void ClipperLib::AddPolyNodeToPaths (const PolyNode &polynode, NodeType nodetype, Paths &paths)
- void ClipperLib::PolyTreeToPaths (const PolyTree &polytree, Paths &paths)
- void ClipperLib::ClosedPathsFromPolyTree (const PolyTree &polytree, Paths &paths)
- void ClipperLib::OpenPathsFromPolyTree (PolyTree &polytree, Paths &paths)
- std::ostream & ClipperLib::operator<< (std::ostream &s, const IntPoint &p)
- std::ostream & ClipperLib::operator<< (std::ostream &s, const Path &p)
 std::ostream & ClipperLib::operator<< (std::ostream &s, const Paths &p)

Variables

- static double const ClipperLib::pi = 3.141592653589793238
- static double const ClipperLib::two pi = pi *2
- static double const ClipperLib::def_arc_tolerance = 0.25
- static int const ClipperLib::Unassigned = -1
- static int const ClipperLib::Skip = -2

7.3.1 Macro Definition Documentation

7.3.1.1 HORIZONTAL

```
#define HORIZONTAL (-1.0E+40)
```

7.3.1.2 NEAR_ZERO

```
#define NEAR_ZERO( val \ ) \ (\mbox{((val)} \ > \mbox{-TOLERANCE}) \ \&\& \ (\mbox{(val)} \ < \mbox{TOLERANCE}))
```

7.3.1.3 TOLERANCE

```
#define TOLERANCE (1.0e-20)
```

7.4 src/configure.cc File Reference

```
#include <configure.hh>
Include dependency graph for configure.cc:
```


Functions

- void on_low_h_thresh_trackbar (int, void *)
- void on_high_h_thresh_trackbar (int, void *)
- void on_low_s_thresh_trackbar (int, void *)
- void on high s thresh trackbar (int, void *)
- void on_low_v_thresh_trackbar (int, void *)
- void on_high_v_thresh_trackbar (int, void *)
- void update_trackers ()
- Mat acquireImage (const bool save)

It acgire a frame from the default camera of the pc.

void configure (bool deploy, int img_id)

If DEPLOY is defined then takes a photo from the camera, shows tha various filters and asks if they are visually correct. If not then it allows to set the various filters through trackbars. If DEPLOY is not defined then it takes a map from the folder set in Settings and ask for visual confirmation.

bool show_all_conditions (const Mat &frame)

Variables

```
• Filter filter = Filter(30, 30, 30, 100, 100, 100)
```

7.4.1 Function Documentation

7.4.1.1 acquirelmage()

It acqire a frame from the default camera of the pc.

Parameters

in	save	If save, or not, the acquired image to a file.
----	------	--

Returns

The Mat of the acquired frame.

7.4.1.2 configure()

```
void configure (
          bool deploy,
          int img_id )
```

If DEPLOY is defined then takes a photo from the camera, shows tha various filters and asks if they are visually correct. If not then it allows to set the various filters through trackbars. If DEPLOY is not defined then it takes a map from the folder set in Settings and ask for visual confirmation.

If deploy is true then takes a photo from the camera, shows tha various filters and asks if they are visually correct. If not then it allows to set the various filters through trackbars. If deploy is false then it takes the imd_id-th maps from the folder set in Settings and ask for visual confirmation.

7.4.1.3 on_high_h_thresh_trackbar()

```
void on_high_h_thresh_trackbar (
          int ,
          void * )
```

@function on_high_h_thresh_trackbar

7.4.1.4 on_high_s_thresh_trackbar()

@function on_high_s_thresh_trackbar

7.4.1.5 on_high_v_thresh_trackbar()

```
void on_high_v_thresh_trackbar (
          int ,
          void * )
```

@function on_high_v_thresh_trackbar

7.4.1.6 on_low_h_thresh_trackbar()

```
void on_low_h_thresh_trackbar (
          int ,
          void * )
```

@function on_low_h_thresh_trackbar

7.4.1.7 on_low_s_thresh_trackbar()

```
void on_low_s_thresh_trackbar (
          int ,
          void * )
```

@function on_low_s_thresh_trackbar

7.4.1.8 on_low_v_thresh_trackbar()

```
void on_low_v_thresh_trackbar (
          int ,
          void * )
```

@function on_low_v_thresh_trackbar

7.4.1.9 show_all_conditions()

Function to show a picture with various filters taken from Settings. It then asks for visual confirmation.

Parameters

frame	The image to show.
-------	--------------------

Returns

True if the filters are okay, false otherwise.

7.4.1.10 update_trackers()

```
void update_trackers ( )
```

Function to update trackers with filter

7.4.2 Variable Documentation

7.4.2.1 filter

```
Filter filter = Filter(30, 30, 30, 100, 100, 100)
```

7.5 src/detection.cc File Reference

#include "detection.hh"
Include dependency graph for detection.cc:

Macros

• #define EPS_CURVE 5

Given an image, in black/white format, identify all the borders that delimit the shapes.

• #define MIN_AREA_SIZE 1000

Functions

· int detection ()

Loads some images and detects shapes according to different colors.

- void computeConversionParameters (Mat &transf)
- Point2< int > localize ()
- Point2< int > localize (const Mat &img)
- void load_number_template ()

Load some templates and save them in the global variable 'templates'.

void shape_detection (const Mat &img, const COLOR_TYPE color)

Detect shapes inside the image according to the variable 'color'.

void erode dilation (Mat &img, const COLOR TYPE color)

It apply some filtering function for isolate the subject and remove the noise.

- bool _compare (const pair< int, int > &a, const pair< int, int > &b)
- void find_contours (const Mat &img, const Mat &original, const COLOR_TYPE color)

Given an image, in black/white format, identify all the borders that delimit the shapes.

void save_convex_hull (const vector< vector< Point >> &contours, const COLOR_TYPE color)

Given some vector save it in a xml file.

• int number_recognition (Rect blob, const Mat &base)

Detect a number on an image inside a region of interest.

void crop_number_section (Mat &ROI)

Given an image identify the region of interest(ROI) and crop it out.

Variables

- vector< Mat > templates
- vector< Point > robotShape

7.5.1 Macro Definition Documentation

7.5.1.1 EPS_CURVE

#define EPS_CURVE 5

Given an image, in black/white format, identify all the borders that delimit the shapes.

Parameters

	in	img	It is an image in HSV format at the base of the elaboration process.
	out	original	It is the original source of 'img', it is used for showing the detected contours.
Ī	in	color	It is the type of reference color.

7.5.1.2 MIN_AREA_SIZE

```
#define MIN_AREA_SIZE 1000
```

7.5.2 Function Documentation

7.5.2.1 _compare()

```
bool _compare (  \mbox{const pair} < \mbox{int, int} > \& \ a, \\ \mbox{const pair} < \mbox{int, int} > \& \ b \ )
```

7.5.2.2 computeConversionParameters()

```
void computeConversionParameters ( \label{eq:matching} \text{Mat \& } transf \ )
```

7.5.2.3 crop_number_section()

Given an image identify the region of interest(ROI) and crop it out.

Parameters

in,out	ROI	Is the image that the function will going to elaborate.
--------	-----	---

7.5.2.4 detection()

```
int detection ( )
```

Loads some images and detects shapes according to different colors.

Returns

Return 0 if the function reach the end.

7.5.2.5 erode_dilation()

It apply some filtering function for isolate the subject and remove the noise.

An example of the sub functions called are: GaussianBlur, Erosion, Dilation and Threshold.

Parameters

in,out	img	Is the image on which the function apply the filtering.
in	color	It is the type of reference color. According to the color the filtering functions apply can
		change in the type and in the order.

7.5.2.6 find_contours()

Given an image, in black/white format, identify all the borders that delimit the shapes.

Parameters

in	img	Is an image in HSV format at the base of the elaboration process.
out	original	It is the original source of 'img', it is used for showing the detected contours.
in	color	It is the type of reference color.

7.5.2.7 load_number_template()

```
void load_number_template ( )
```

Load some templates and save them in the global variable 'templates'.

```
7.5.2.8 localize() [1/2]
```

```
Point2<int> localize ( )
```

7.5.2.9 localize() [2/2]

7.5.2.10 number_recognition()

Detect a number on an image inside a region of interest.

Parameters

in	blob	Identify the region of interest inside the image 'base'.
in	base	Is the image where the function will going to search the number.

Returns

The number recognise, '-1' otherwise.

7.5.2.11 save_convex_hull()

Given some vector save it in a xml file.

Parameters

in	contours	Is a vector that is saved in a xml file.
in	color	It is the type of reference color, according to which the function decide if saved
		('color==GREEN') or not ('otherwise') the vector 'victims'.

7.5.2.12 shape_detection()

Detect shapes inside the image according to the variable 'color'.

Parameters

ſ	in	img	Image on which the research will done.	
	in	color	It is the type of reference color. These color identify the possible spectrum that the function	
			search on the image.	

7.5.3 Variable Documentation

7.5.3.1 robotShape

vector<Point> robotShape

7.5.3.2 templates

vector<Mat> templates

7.6 src/dubins.cc File Reference

#include "dubins.hh"
Include dependency graph for dubins.cc:

7.7 src/include/calibration.hh File Reference

Library for calibration.

#include <utils.hh>
#include <settings.hh>
#include <iostream>
#include <sstream>
#include <string>
#include <ctime>
#include <cstdio>

```
#include <opencv2/core.hpp>
#include <opencv2/core/utility.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/calib3d.hpp>
#include <opencv2/imgcodecs.hpp>
#include <opencv2/videoio.hpp>
#include <opencv2/videoio.hpp>
#include dependency graph for calibration.hh:
```


This graph shows which files directly or indirectly include this file:

Classes

· class CalSettings

Enumerations

• enum { DETECTION = 0, CAPTURING = 1, CALIBRATED = 2 }

Functions

• int calibration (string inputFile="")

Function to run the complete calibration.

bool runCalibrationAndSave (CalSettings &s, Size imageSize, Mat &cameraMatrix, Mat &distCoeffs, vector < vector < Point2f > > imagePoints)

Reads CalSettings from file. If there is none then initiate a new CalSettings.

Variables

• Settings * sett

7.7.1 Detailed Description

Library for calibration.

7.7.2 Enumeration Type Documentation

7.7.2.1 anonymous enum

anonymous enum

Enumerator

DETECTION	
CAPTURING	
CALIBRATED	

7.7.3 Function Documentation

7.7.3.1 calibration()

Function to run the complete calibration.

Parameters

in	inputFile	Name of the setting.xml file. It's set to default to default.xml
----	-----------	--

Returns

- -2 if the CalSettings file could be load but the input was not well-formed
- -1 if the CalSettings file could not be opened.
- 0 if everything went fine.

7.7.3.2 runCalibrationAndSave()

```
Size imageSize,
Mat & cameraMatrix,
Mat & distCoeffs,
vector< vector< Point2f > > imagePoints )
```

Reads CalSettings from file. If there is none then initiate a new CalSettings.

Parameters

in	s	The CalSettings being used during the execution.
in	imageSize	The dimensions of the images.
in	imagePoints	The projected points for each image.
out	cameraMatrix	The matrix which is used to store the values for the camera parameters.
out	distCoeffs	The matrix which is used to store the distortion coefficients.

Returns

true if the calibration succeded. false otherwise.

7.7.4 Variable Documentation

7.7.4.1 sett

Settings* sett

7.8 src/include/camera_capture.hh File Reference

#include <opencv2/opencv.hpp>
Include dependency graph for camera_capture.hh:

This graph shows which files directly or indirectly include this file:

Classes

- · class CameraCapture
- struct CameraCapture::input_options_t

Structure for store the input option for the class CameraCapture.

7.9 src/include/clipper.hh File Reference

```
#include <vector>
#include <list>
#include <set>
#include <stdexcept>
#include <cstring>
#include <cstdlib>
#include <ostream>
#include <functional>
#include <queue>
```

Include dependency graph for clipper.hh:

This graph shows which files directly or indirectly include this file:

Classes

- struct ClipperLib::IntPoint
- struct ClipperLib::DoublePoint
- · class ClipperLib::PolyNode
- · class ClipperLib::PolyTree
- struct ClipperLib::IntRect
- class ClipperLib::ClipperBase
- · class ClipperLib::Clipper
- · class ClipperLib::ClipperOffset
- class ClipperLib::clipperException

Namespaces

· ClipperLib

Macros

- #define CLIPPER_VERSION "6.4.2"
- #define use lines

Typedefs

- typedef signed long long ClipperLib::cInt
- typedef signed long long ClipperLib::long64
- typedef unsigned long long ClipperLib::ulong64
- typedef std::vector< IntPoint > ClipperLib::Path
- typedef std::vector< Path > ClipperLib::Paths
- $\bullet \ \ typedef \ std::vector < PolyNode * > ClipperLib::PolyNodes$
- typedef std::vector< OutRec * > ClipperLib::PolyOutList
- typedef std::vector< TEdge * > ClipperLib::EdgeList
- $\bullet \ \ \mathsf{typedef} \ \mathsf{std} : \! \mathsf{vector} \! < \! \mathsf{Join} \ * > \! \mathsf{ClipperLib} : \! \mathsf{JoinList} \\$
- $\bullet \ \ typedef \ std:: vector < IntersectNode \ * > ClipperLib:: IntersectList \\$

Enumerations

- enum ClipperLib::ClipType { ClipperLib::ctIntersection, ClipperLib::ctUnion, ClipperLib::ctXor}
- enum ClipperLib::PolyType { ClipperLib::ptSubject, ClipperLib::ptClip }
- enum ClipperLib::PolyFillType { ClipperLib::pftEvenOdd, ClipperLib::pftNonZero, ClipperLib::pftPositive, ClipperLib::pftNegative }
- enum ClipperLib::InitOptions { ClipperLib::ioReverseSolution = 1, ClipperLib::ioStrictlySimple = 2, ClipperLib::ioPreserveCollinear = 4}
- enum ClipperLib::JoinType { ClipperLib::jtSquare, ClipperLib::jtRound, ClipperLib::jtMiter }
- enum ClipperLib::EndType {
 ClipperLib::etClosedPolygon, ClipperLib::etClosedLine, ClipperLib::etOpenButt, ClipperLib::etOpenSquare, ClipperLib::etOpenRound }
- enum ClipperLib::EdgeSide { ClipperLib::esLeft = 1, ClipperLib::esRight = 2 }

Functions

- Path & ClipperLib::operator<< (Path &poly, const IntPoint &p)
- Paths & ClipperLib::operator<< (Paths &polys, const Path &p)
- std::ostream & ClipperLib::operator<< (std::ostream &s, const IntPoint &p)
- std::ostream & ClipperLib::operator<< (std::ostream &s, const Path &p)
- std::ostream & ClipperLib::operator<< (std::ostream &s, const Paths &p)
- bool ClipperLib::Orientation (const Path &poly)
- double ClipperLib::Area (const Path &poly)
- int ClipperLib::PointInPolygon (const IntPoint &pt, const Path &path)
- void ClipperLib::SimplifyPolygon (const Path &in poly, Paths &out polys, PolyFillType fillType)
- void ClipperLib::SimplifyPolygons (const Paths &in polys, Paths &out polys, PolyFillType fillType)
- void ClipperLib::SimplifyPolygons (Paths &polys, PolyFillType fillType)
- void ClipperLib::CleanPolygon (const Path &in poly, Path &out poly, double distance)
- void ClipperLib::CleanPolygon (Path &poly, double distance)
- void ClipperLib::CleanPolygons (const Paths &in polys, Paths &out polys, double distance)
- void ClipperLib::CleanPolygons (Paths &polys, double distance)
- void ClipperLib::MinkowskiSum (const Path &pattern, const Path &path, Paths &solution, bool pathIsClosed)
- void ClipperLib::MinkowskiSum (const Path &pattern, const Paths &paths, Paths &solution, bool pathls
 — Closed)
- void ClipperLib::MinkowskiDiff (const Path &poly1, const Path &poly2, Paths &solution)
- void ClipperLib::PolyTreeToPaths (const PolyTree &polytree, Paths &paths)
- void ClipperLib::ClosedPathsFromPolyTree (const PolyTree &polytree, Paths &paths)
- void ClipperLib::OpenPathsFromPolyTree (PolyTree &polytree, Paths &paths)
- void ClipperLib::ReversePath (Path &p)
- void ClipperLib::ReversePaths (Paths &p)

Variables

- static clnt const ClipperLib::loRange = 0x3FFFFFF
- static clnt const ClipperLib::hiRange = 0x3FFFFFFFFFFFFLL

7.9.1 Macro Definition Documentation

7.9.1.1 CLIPPER_VERSION

```
#define CLIPPER_VERSION "6.4.2"
```

7.9.1.2 use_lines

#define use_lines

7.10 src/include/configure.hh File Reference

```
#include <iostream>
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/core/core_c.h>
#include <utils.hh>
#include <filter.hh>
#include <camera_capture.hh>
#include <settings.hh>
```

Include dependency graph for configure.hh:

This graph shows which files directly or indirectly include this file:

Functions

• Mat acquireImage (const bool save=true)

It acgire a frame from the default camera of the pc.

void configure (bool deploy=true, int img_id=0)

If deploy is true then takes a photo from the camera, shows tha various filters and asks if they are visually correct. If not then it allows to set the various filters through trackbars. If deploy is false then it takes the imd_id-th maps from the folder set in Settings and ask for visual confirmation.

• bool show_all_conditions (const Mat &frame)

7.10.1 Function Documentation

7.10.1.1 acquirelmage()

It acgire a frame from the default camera of the pc.

Parameters

	in	save	If save, or not, the acquired image to a file.	
--	----	------	--	--

Returns

The Mat of the acquired frame.

7.10.1.2 configure()

If deploy is true then takes a photo from the camera, shows tha various filters and asks if they are visually correct. If not then it allows to set the various filters through trackbars. If deploy is false then it takes the imd_id-th maps from the folder set in Settings and ask for visual confirmation.

If deploy is true then takes a photo from the camera, shows tha various filters and asks if they are visually correct. If not then it allows to set the various filters through trackbars. If deploy is false then it takes the imd_id-th maps from the folder set in Settings and ask for visual confirmation.

7.10.1.3 show_all_conditions()

Function to show a picture with various filters taken from Settings. It then asks for visual confirmation.

Parameters

Returns

True if the filters are okay, false otherwise.

7.11 src/include/detection.hh File Reference

```
#include <utils.hh>
#include <settings.hh>
#include <filter.hh>
#include <configure.hh>
#include <iostream>
#include <fstream>
#include <string>
#include <cmath>
#include <cmath>
#include <opencv2/highgui.hpp>
#include <opencv2/core.hpp>
#include <opencv2/opencv.hpp>
#include <opencv2/imgcodecs.hpp>
Include dependency graph for detection.hh:
```


This graph shows which files directly or indirectly include this file:

Enumerations

enum COLOR_TYPE {
 RED, GREEN, BLUE, BLACK,
 CYAN }

Functions

• int detection ()

Loads some images and detects shapes according to different colors.

- void computeConversionParameters (Mat &transf)
- Point2< int > localize ()
- Point2< int > localize (const Mat &img)
- void shape_detection (const Mat &img, const COLOR_TYPE color)

Detect shapes inside the image according to the variable 'color'.

void erode_dilation (Mat &img, const COLOR_TYPE color)

It apply some filtering function for isolate the subject and remove the noise.

void find_contours (const Mat &img, const Mat &original, const COLOR_TYPE color)

Given an image, in black/white format, identify all the borders that delimit the shapes.

• int number_recognition (Rect blob, const Mat &base)

Detect a number on an image inside a region of interest.

void save_convex_hull (const vector< vector< Point >> &contours, const COLOR_TYPE color)

Given some vector save it in a xml file.

void load_number_template ()

Load some templates and save them in the global variable 'templates'.

void crop_number_section (Mat &processROI)

Given an image identify the region of interest(ROI) and crop it out.

7.11.1 Enumeration Type Documentation

7.11.1.1 COLOR TYPE

enum COLOR_TYPE

Enumerator

RED	
GREEN	
BLUE	
BLACK	
CYAN	

7.11.2 Function Documentation

7.11.2.1 computeConversionParameters()

```
void computeConversionParameters ( \label{eq:matching} \text{Mat \& } transf \ )
```

7.11.2.2 crop_number_section()

Given an image identify the region of interest(ROI) and crop it out.

Parameters

in,o	t <i>ROI</i>	Is the image that the function will going to elaborate.
------	--------------	---

7.11.2.3 detection()

```
int detection ( )
```

Loads some images and detects shapes according to different colors.

Returns

Return 0 if the function reach the end.

7.11.2.4 erode_dilation()

It apply some filtering function for isolate the subject and remove the noise.

An example of the sub functions called are: GaussianBlur, Erosion, Dilation and Threshold.

Parameters

	in,out	img	Is the image on which the function apply the filtering.
ſ	in	color	It is the type of reference color. According to the color the filtering functions apply can
			change in the type and in the order.

7.11.2.5 find_contours()

Given an image, in black/white format, identify all the borders that delimit the shapes.

Parameters

in	img	Is an image in HSV format at the base of the elaboration process.
out	original	It is the original source of 'img', it is used for showing the detected contours.
in	color	It is the type of reference color.

7.11.2.6 load_number_template()

```
void load_number_template ( )
```

Load some templates and save them in the global variable 'templates'.

7.11.2.7 localize() [1/2]

```
Point2<int> localize ( )
```

7.11.2.8 localize() [2/2]

7.11.2.9 number_recognition()

Detect a number on an image inside a region of interest.

Parameters

in	blob	Identify the region of interest inside the image 'base'.
in	base	Is the image where the function will going to search the number.

Returns

The number recognise, '-1' otherwise.

7.11.2.10 save_convex_hull()

Given some vector save it in a xml file.

Parameters

ir	contours	Is a vector that is saved in a xml file.
ir	color	It is the type of reference color, according to which the function decide if saved
		('color==GREEN') or not ('otherwise') the vector 'victims'.

7.11.2.11 shape_detection()

Detect shapes inside the image according to the variable 'color'.

Parameters

in	img	Image on which the research will done.
in	color	It is the type of reference color. These color identify the possible spectrum that the function
		search on the image.

7.12 src/include/draw.hh File Reference

```
#include <GL/glew.h>
#include <GLFW/glfw3.h>
#include <glm/glm.hpp>
```

```
#include <OpenGL/gl.h>
#include <OpenGl/glu.h>
#include <GLUT/glut.h>
Include dependency graph for draw.hh:
```


Namespaces

• DW

Typedefs

• typedef uint unsigned int

Functions

- void DW::init (x, y, GLfloat *vertices_buffer={0.0f})
- void DW::changeBuffer (GLfloat *vertices_buffer, uint dim)

Variables

- GLFWwindow * DW::window
- GLuint DW::map_buffer

7.12.1 Typedef Documentation

7.12.1.1 int

 ${\tt typedef \ uint \ unsigned \ int}$

7.13 src/include/dubins.hh File Reference

```
#include <maths.hh>
#include <iostream>
#include <sstream>
#include <vector>
#include <string>
```

Include dependency graph for dubins.hh:

This graph shows which files directly or indirectly include this file:

Classes

- class Curve< T >
- class DubinsArc< T1, T2 >

Class to store a maneuver of <u>Dubins</u>. It inherits from <u>Curve</u>. Since each <u>Dubins</u> is formed of atmost 3 maneuvers, this class is meant to store one of this maneuver, which can be L, R or S respectively Left, Right, Straight.

class Dubins < T >

Class to store a Dubins curve. This class inherits from Curve and is composed of three DubinsArc.

class DubinsSet< T >

Given a set of point, compute the shortest set of Dubins that allows to go from start to end through all points.

Macros

- #define PIECE_LENGTH 2
- #define PREC 100000
- #define KMAX 0.5
- #define DELTA M_PI/180.0

Functions

- static double sinc (double t)
- Configuration2< double > circline (double _L, Configuration2< double > _P0, double _K)
- Tuple< Angle > toBase (Tuple< Angle > z, int n, int base, const Angle &inc, int startPos, int endPos)

Convert a value in base 10 to base base in a Tuple. To each value an inc is multiplied and the initial Angle is added.

void disp (Tuple< Tuple< Angle > > &t, Tuple< Angle > &z, int N, const Angle &inc, int startPos=0, int endPos=0)

Compute the arrangements. Since each arrangement can be computed as n_{parts} , where each values is then multiplied for the increment and is added to the initial values.

template < class T > vector < Point2 < T > > reduce_points (Tuple < Point2 < T > > init_points)

Variables

- double elapsedScale
- double elapsedPrimitives
- · double elapsedBest
- double elapsedArcs
- double elapsedCheck
- unsigned long countTries
- · double elapsedVar
- · double elapsedCirc
- · double elapsedSet
- double elapsedLSL
- · double elapsedRSR
- double elapsedLSR
- · double elapsedRSL
- double elapsedRLR
- double elapsedLRL

7.13.1 Macro Definition Documentation

7.13.1.1 DELTA

#define DELTA M_PI/180.0

7.13.1.2 KMAX

#define KMAX 0.5

7.13.1.3 PIECE_LENGTH

```
#define PIECE_LENGTH 2
```

7.13.1.4 PREC

```
#define PREC 100000
```

7.13.2 Function Documentation

7.13.2.1 circline()

Computes an arrival point from an initial configuration through an arc of length _L and curvature _K.

Parameters

_L	The length of the arch.
_P0	The starting Configuration2 of the arc.
K	The curvature of the arc.

Returns

The ending Configuration2 of the arc.

7.13.2.2 disp()

Compute the arrangements. Since each arrangement can be computed as n_{parts} , where each values is then multiplied for the increment and is added to the initial values.

Parameters

t	A Tuple containing all the Tuples containing the Angles.
Z	A Tuple containing all the initial Angles.
N	The number of iterations. Each iteration is going to be converted in base parts.
inc	The increment to give each initial Angle.
startPos	The initial position to consider in Tuple.
endPos	The final position to consider in Tuple.

Parameters

Z	Vector to use
Ν	Number of time to "iterate"
inc	Incrementation

7.13.2.3 reduce_points()

7.13.2.4 sinc()

```
static double sinc ( \label{eq:double_t} \mbox{double } t \mbox{ ) [static]}
```

Compute the sinc of the function defined as:

$$sinc(t) = \frac{sin(t)}{t} \quad t \neq 01 \quad t = 0$$

Parameters

t The value of the angle to be used.

Returns

The result of the previous formula.

7.13.2.5 toBase()

```
Tuple<Angle> toBase ( \label{eq:toBase} \mbox{Tuple} < \mbox{Angle} > \mbox{$z$,}
```

```
int n,
int base,
const Angle & inc,
int startPos,
int endPos )
```

Convert a value in base 10 to base base in a Tuple. To each value an inc is mulltiplied and the initial Angle is added.

Parameters

Z	A Tuple containing all the initial Angles.
n	The value to be converted.
base	The base.
inc	The increment.
startPos	The starting position of the Tuple of Angles.
endPos	The ending position of the Tuple of Angles.

Returns

7.13.3 Variable Documentation

7.13.3.1 countTries

unsigned long countTries

7.13.3.2 elapsedArcs

double elapsedArcs

7.13.3.3 elapsedBest

double elapsedBest

7.13.3.4 elapsedCheck

double elapsedCheck

7.13 src/include/dubins.hh File Reference	2
7.13.3.5 elapsedCirc	
double elapsedCirc	
7.13.3.6 elapsedLRL	
double elapsedLRL	
7.13.3.7 elapsedLSL	
double elapsedLSL	
7.13.3.8 elapsedLSR	
double elapsedLSR	
7.13.3.9 elapsedPrimitives	
double elapsedPrimitives	
7.13.3.10 elapsedRLR	
double elapsedRLR	
7.13.3.11 elapsedRSL	
double elapsedRSL	

double elapsedRSR

7.13.3.12 elapsedRSR

7.13.3.13 elapsedScale

double elapsedScale

7.13.3.14 elapsedSet

double elapsedSet

7.13.3.15 elapsedVar

double elapsedVar

7.14 src/include/filter.hh File Reference

#include <opencv2/opencv.hpp>
Include dependency graph for filter.hh:

This graph shows which files directly or indirectly include this file:

Classes

class Filter

7.15 src/include/map.hh File Reference

```
#include <vector>
#include <set>
#include <queue>
#include <tuple>
#include <iostream>
#include <iomanip>
#include <maths.hh>
#include <settings.hh>
#include <utils.hh>
#include <objects.hh>
#include <opencv2/highgui.hpp>
#include <opencv2/core.hpp>
#include <opencv2/opencv.hpp>
#include <opencv2/imgcodecs.hpp>
Include dependency graph for map.hh:
```


This graph shows which files directly or indirectly include this file:

Classes

• class Mapp

Enumerations

```
enum OBJ_TYPE {
   FREE, VICT, OBST, GATE,
   BODA }
```

7.15.1 Enumeration Type Documentation

7.15.1.1 OBJ_TYPE

enum OBJ_TYPE

Enumerator

FREE	
VICT	
OBST	
GATE	
BODA	

7.16 src/include/maths.hh File Reference

```
#include "utils.hh"
#include <iostream>
#include <cmath>
#include <vector>
#include <cstdarg>
#include <sstream>
#include <string>
#include <opencv2/opencv.hpp>
#include <limits>
Include dependency graph for maths.hh:
```


This graph shows which files directly or indirectly include this file:

Classes

class Angle

This class allows to save and handle angles. It supports DEG and RAD, operations such as addition and subtraction with operators overloading, conversion from RAD to DEG and viceversa and normalization of the angle.

- class Tuple < T >
- class Point2< T >

Class that stores two value to construct a point in 2D. The value is saved in a Tuple.

class Configuration2< T1 >

This class stores a configuration, that is a point and an angle.

Macros

- #define DInf numeric_limits<double>::infinity()
- #define Epsi numeric_limits<double>::epsilon()
- #define A 2PI Angle(6.2831853071-Epsi, Angle::RAD)

Default Angle for 2pi rad.

#define A_360 Angle(360.0-Epsi, Angle::DEG)

Default Angle for 360 degree.

#define A_PI Angle(M_PI, Angle::RAD)

Default Angle for pi rad.

• #define A_180 Angle(180, Angle::DEG)

Defualt Angle for 180 degree.

#define A_PI2 Angle(M_PI/2.0, Angle::RAD)

Default Angle for pi/2 rad.

• #define A_90 Angle(90, Angle::DEG)

Defualt Angle for 90 degree.

• #define A_DEG_NULL Angle(0, Angle::DEG)

Default Angle for 0 rad.

• #define A_RAD_NULL Angle(0, Angle::RAD)

Defualt Angle for 0 degree.

- #define tupleIter typename vector<T>::iterator
- #define tupleConstIter const typename vector<T>::iterator

Enumerations

• enum DISTANCE_TYPE { EUCLIDEAN, MANHATTAN }

Functions

```
• bool equal (const double &A, const double &B, const double E=Epsi)  Function \ to \ compare \ two \ dubles \ as \ |A-B| < \varepsilon.  • template<class T > T pow2 (const T x)
```

Variables

```
• const double DEGTORAD =(M_PI/180.0)
```

```
• const double RADTODEG =(180.0/M_PI)
```

7.16.1 Macro Definition Documentation

```
7.16.1.1 A_180
#define A_180 Angle(180, Angle::DEG)
```

Defualt Angle for 180 degree.

```
7.16.1.2 A_2PI
```

```
#define A_2PI Angle(6.2831853071-Epsi, Angle::RAD)
```

Default Angle for 2pi rad.

```
7.16.1.3 A_360
```

```
#define A_360 Angle(360.0-Epsi, Angle::DEG)
```

Default Angle for 360 degree.

```
7.16.1.4 A_90
```

```
#define A_90 Angle(90, Angle::DEG)
```

Defualt Angle for 90 degree.

```
7.16.1.5 A_DEG_NULL
#define A_DEG_NULL Angle(0, Angle::DEG)
Default Angle for 0 rad.
7.16.1.6 A_PI
#define A_PI Angle(M_PI, Angle::RAD)
Default Angle for pi rad.
7.16.1.7 A_PI2
#define A_PI2 Angle(M_PI/2.0, Angle::RAD)
Default Angle for pi/2 rad.
7.16.1.8 A_RAD_NULL
#define A_RAD_NULL Angle(0, Angle::RAD)
Defualt Angle for 0 degree.
7.16.1.9 DInf
#define DInf numeric_limits<double>::infinity()
7.16.1.10 Epsi
#define Epsi numeric_limits<double>::epsilon()
7.16.1.11 tupleConstiter
```

#define tupleConstIter const typename vector<T>::iterator

7.16.1.12 tuplelter

#define tupleIter typename vector<T>::iterator

7.16.2 Enumeration Type Documentation

7.16.2.1 DISTANCE_TYPE

enum DISTANCE_TYPE

Enumerator

EUCLIDEAN	
MANHATTAN	

7.16.3 Function Documentation

7.16.3.1 equal()

Function to compare two dubles as $|A-B|<\varepsilon.$

Parameters

in	Α	First number.	
in	В	Second number.	
in	Ε	$arepsilon$, set at std::numeric_limits <double>::epsilon() as default.</double>	

Returns

true if |A-B|<arepsilon, false otherwise.

7.16.3.2 pow2()

```
\label{template} $$ $$ template < class T > $$ $$ T pow2 ( $$ const T x ) [inline]
```

7.16.4 Variable Documentation

7.16.4.1 **DEGTORAD**

```
const double DEGTORAD = (M_PI/180.0)
```

7.16.4.2 RADTODEG

```
const double RADTODEG =(180.0/M_PI)
```

7.17 src/include/objects.hh File Reference

```
#include <iostream>
#include <vector>
#include <sstream>
#include <string>
#include <opencv2/core.hpp>
#include <opencv2/opencv.hpp>
#include "clipper.hh"
#include "maths.hh"
```

Include dependency graph for objects.hh:

This graph shows which files directly or indirectly include this file:

Classes

- · class Object
- · class Obstacle
- · class Gate
- · class Victim

7.18 src/include/planning.hh File Reference

```
#include <iostream>
#include <tuple>
#include <vector>
#include <map.hh>
#include <utils.hh>
#include <maths.hh>
#include <settings.hh>
#include <objects.hh>
#include <detection.hh>
```

Include dependency graph for planning.hh:

This graph shows which files directly or indirectly include this file:

Functions

- pair< vector< Point2< int > >, Mapp * > planning ()
 - The function plan a route from the actual position of the robot up to the final gate through all the victims.
- Mapp * createMapp ()

The goal is to load, all the neccessary data, from files and create a Mapp that store everything.

void loadVVP (vector< vector< Point2< int >>> &vvp, FileNode fn)

The function load from the given fileNode a vector of vectors of Point2<int>.

void loadVP (vector< Point2< int > > &vp, FileNode fn)

The function load from the given fileNode a vector of Point2<int>.

7.18.1 Function Documentation

7.18.1.1 createMapp()

```
Mapp* createMapp ( )
```

The goal is to load, all the neccessary data, from files and create a Mapp that store everything.

Returns

The created mapp.

7.18.1.2 loadVP()

```
void loadVP ( \label{eq:voint2} \mbox{vector} < \mbox{Point2} < \mbox{int} \mbox{ } > \mbox{\& } \mbox{\it vp,} FileNode \mbox{\it fn} )
```

The function load from the given fileNode a vector of Point2<int>.

Parameters

ſ	out	vp	The location where to save the loaded vector.
ſ	in	fn	The fileNode from which to load the vector.

7.18.1.3 loadVVP()

```
void loadVVP ( \label{eq:vector} \mbox{vector} < \mbox{Point2} < \mbox{int} \ > \ > \ \& \ vvp \mbox{,} FileNode fn )
```

The function load from the given fileNode a vector of vectors of Point2<int>.

Parameters

out	vvp	The location where to save the loaded vector of vectors.
in	fn	The fileNode from which to load the vector of vectors.

7.18.1.4 planning()

```
pair< vector<Point2<int> >, Mapp* > planning ( )
```

The function plan a route from the actual position of the robot up to the final gate through all the victims.

All the data about the objects are loaded from the files previously saved. Then a Mapp is created and on that structure, thanks to a minPath function and a lot of dubin curves, the best route is computed.

Returns

Two elements are returned: a pointer to the Mapp where all data are stored and a vector of points placed on the computed route.

7.19 src/include/settings.hh File Reference

```
#include <filter.hh>
#include <maths.hh>
#include <utils.hh>
#include <opencv2/core/core.hpp>
#include <iostream>
#include <string>
#include <dirent.h>
#include <sstream>
```

Include dependency graph for settings.hh:

This graph shows which files directly or indirectly include this file:

Classes

· class Settings

Variables

• Settings * sett

Global variable defined in main.cc.

7.19.1 Variable Documentation

7.19.1.1 sett

```
Settings* sett
```

Global variable defined in main.cc.

7.20 src/include/unwrapping.hh File Reference

```
#include <utils.hh>
#include <settings.hh>
#include <iostream>
#include <fstream>
#include <string>
#include <cmath>
#include <opencv2/videoio.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/core.hpp>
#include <opencv2/opencv.hpp>
#include <opencv2/imgcodecs.hpp>
Include dependency graph for unwrapping.hh:
```


This graph shows which files directly or indirectly include this file:

Functions

• int unwrapping ()

Take some images according to a xml and unwrap the black rectangle inside the image after appling undistortion trasformation.

- void loadCoefficients (const string filename, Mat &camera_matrix, Mat &dist_coeffs)

 Load coefficients from a file.
- void find_rect (vector < Point > &_rect, const int &width, const int &height)

Since the border of the arena might not always be clean but might have some imperfection, this functions computes the four vertixes taking all the points and computing the four that are the clostest to the corner of the image.

7.20.1 Function Documentation

7.20.1.1 find_rect()

Since the border of the arena might not always be clean but might have some imperfection, this functions computes the four vertixes taking all the points and computing the four that are the clostest to the corner of the image.

Parameters

in	_rect	The vector of cv::Point to work on.
in	width	The width of the image.
in <i>height</i>		The height of the image.

7.20.1.2 loadCoefficients()

Load coefficients from a file.

Load two matrix 'camera_matrix' and 'distortion_coefficients' from the xml file passed.

Parameters

in <i>filename</i>		The string that identify the location of the xml file.
out	camera_matrix	Where the 'camera_matrix' matrix is saved.
out <i>dist_coeffs</i>		Where the 'distortion_coefficients' matrix is saved.

7.20.1.3 unwrapping()

```
int unwrapping ( )
```

Take some images according to a xml and unwrap the black rectangle inside the image after appling undistortion trasformation.

Load from the xml file 'data/settings.xml' the name of some images, load the images from the file, apply the calibration (undistortion trasformation) thanks to the matrices load with the 'loadCoefficients' function. Then, with the use of a filter for the black the region of interest (a rectangle) is identified and all the perspective is rotated for reach a top view of the rectangle. Finally, the images are saved on some files.

Returns

A 0 is return if the function reach the end.

7.21 src/include/utils.hh File Reference

```
#include <sstream>
#include <iostream>
#include <exception>
#include <chrono>
#include <opencv2/highgui.hpp>
#include <opencv2/highgui/highgui_c.h>
#include <opencv2/core.hpp>
#include <opencv2/opencv.hpp>
#include <opencv2/imgcodecs.hpp>
#include <time.h>
#include <cstdint>
```

Include dependency graph for utils.hh:

This graph shows which files directly or indirectly include this file:

Classes

class MyException < T >

Namespaces

- CHRONO
- · timeutils

Macros

• #define NAME(x) #x

Returns the name of the variable.

#define COUT(x)

Print a messag to stderr.

• #define INFO(msg)

Print the name of a variable and its content. Only if DEBUG is defined.

Typedefs

typedef chrono::high_resolution_clock Clock

Enumerations

- enum CHRONO::TIME_TYPE { CHRONO::SEC, CHRONO::MSEC, CHRONO::MUSEC, CHRONO::NSEC }
- enum EXCEPTION TYPE { EXISTS, SIZE }

Functions

- string CHRONO::getType (TIME_TYPE type, string ret="")
- double CHRONO::getElapsed (Clock::time_point start, Clock::time_point stop, TIME_TYPE type=MUSEC)
- string CHRONO::getElapsed (Clock::time_point start, Clock::time_point stop, string ret, TIME_TYPE type=MUSEC)
- void my_imshow (const char *win_name, Mat img, bool reset=false)

Function to show images in an order grill.

· void mywaitkey ()

Function to use after my_imshow() for keeping the image opened until a key is pressed.

• void mywaitkey (string windowName)

Function to use after my_imshow() for keeping the image opened until a key is pressed. When a key is pressed a specific window is closed.

- int64_t timeutils::timespecDiff (struct timespec *timeA_p, struct timespec *timeB_p)
- double timeutils::getTimeS ()

7.21.1 Macro Definition Documentation

7.21.1.1 COUT

```
#define COUT(
     x )
```

Print a messag to stderr.

7.21.1.2 INFO

```
#define INFO( msg )
```

Print the name of a variable and its content. Only if DEBUG is defined.

7.21.1.3 NAME

```
#define NAME( x ) \#x
```

Returns the name of the variable.

7.21.2 Typedef Documentation

7.21.2.1 Clock

 $\verb|typedef| chrono::high_resolution_clock| Clock|$

7.21.3 Enumeration Type Documentation

7.21.3.1 EXCEPTION_TYPE

```
enum EXCEPTION_TYPE
```

Enumerator

EXISTS	
SIZE	

7.21.4 Function Documentation

7.21.4.1 my_imshow()

```
Mat img,
bool reset = false )
```

Function to show images in an order grill.

Parameters

win_name	win_name The name of the window to use.	
img	The Mat containing the image.	
reset	If true the image is going to be placed in 0,0 i.e. the top left corner of the screen.	

7.21.4.2 mywaitkey() [1/2]

```
void mywaitkey ( )
```

Function to use after my_imshow() for keeping the image opened until a key is pressed.

7.21.4.3 mywaitkey() [2/2]

Function to use after my_imshow() for keeping the image opened until a key is pressed. When a key is pressed a specific window is closed.

Parameters

windowName	The window to close after pressing a key.
------------	---

7.22 src/map.cc File Reference

#include <map.hh>

Include dependency graph for map.cc:

7.23 src/maths.cc File Reference

#include "maths.hh"
Include dependency graph for maths.cc:

7.24 src/objects.cc File Reference

#include "objects.hh"
Include dependency graph for objects.cc:

7.25 src/planning.cc File Reference

#include "planning.hh"
Include dependency graph for planning.cc:

Functions

- pair< vector< Point2< int >>, Mapp *> planning ()

The function plan a route from the actual position of the robot up to the final gate through all the victims.

Mapp * createMapp ()

The goal is to load, all the neccessary data, from files and create a Mapp that store everything.

void loadVVP (vector< vector< Point2< int > > &vvp, FileNode fn)

The function load from the given fileNode a vector of vectors of Point2<int>.

void loadVP (vector < Point2 < int > > &vp, FileNode fn)

The function load from the given fileNode a vector of Point2<int>.

7.25.1 Function Documentation

7.25.1.1 createMapp()

```
Mapp* createMapp ( )
```

The goal is to load, all the neccessary data, from files and create a Mapp that store everything.

Returns

The created mapp.

7.25.1.2 loadVP()

```
void loadVP ( \label{eq:voint2} \mbox{vector} < \mbox{Point2} < \mbox{int} > > \& \mbox{\it vp,} FileNode \mbox{\it fn} )
```

The function load from the given fileNode a vector of Point2<int>.

Parameters

out	vp	The location where to save the loaded vector.
in	fn	The fileNode from which to load the vector.

7.25.1.3 loadVVP()

```
void loadVVP ( \label{eq:vector} \mbox{vector} < \mbox{Point2} < \mbox{int} \mbox{ } > \mbox{ } > \mbox{ } \mbox{vvp,} FileNode fn )
```

The function load from the given fileNode a vector of vectors of Point2<int>.

Parameters

out	vvp	The location where to save the loaded vector of vectors.
in	fn	The fileNode from which to load the vector of vectors.

262 File Documentation

7.25.1.4 planning()

```
pair< vector<Point2<int> >, Mapp* > planning ( )
```

The function plan a route from the actual position of the robot up to the final gate through all the victims.

All the data about the objects are loaded from the files previously saved. Then a Mapp is created and on that structure, thanks to a minPath function and a lot of dubin curves, the best route is computed.

Returns

Two elements are returned: a pointer to the Mapp where all data are stored and a vector of points placed on the computed route.

7.26 src/run/calibration_run.cc File Reference

#include <calibration.hh>

Include dependency graph for calibration_run.cc:

Functions

• int main ()

7.26.1 Function Documentation

7.26.1.1 main()

int main ()

7.27 src/run/detection_run.cc File Reference

#include <detection.hh>

Include dependency graph for detection_run.cc:

Functions

• int main ()

7.27.1 Function Documentation

```
7.27.1.1 main()
```

```
int main ( )
```

7.28 src/run/main.cc File Reference

```
#include <utils.hh>
#include <detection.hh>
#include <unwrapping.hh>
#include <calibration.hh>
#include <planning.hh>
#include <configure.hh>
#include <settings.hh>
#include <iostream>
```

Include dependency graph for main.cc:

Functions

• int main ()

Variables

Settings * sett = new Settings()
 Global variable defined in main.cc.

7.28.1 Function Documentation

7.28.1.1 main()

```
int main ( )
```

264 File Documentation

7.28.2 Variable Documentation

7.28.2.1 sett

Settings* sett =new Settings()

Global variable defined in main.cc.

7.29 src/run/planning_run.cc File Reference

#include <planning.hh>
Include dependency graph for planning_run.cc:

Functions

• int main ()

7.29.1 Function Documentation

7.29.1.1 main()

int main ()

7.30 src/run/unwrapping_run.cc File Reference

#include <unwrapping.hh>
Include dependency graph for unwrapping_run.cc:

Functions

• int main ()

7.30.1 Function Documentation

```
7.30.1.1 main()
```

```
int main ( )
```

7.31 src/settings.cc File Reference

```
#include "settings.hh"
Include dependency graph for settings.cc:
```


Macros

• #define NPOS string::npos Shortcut for string::npos.

Functions

- vector< string > getFiles (const string &path)

 Function to get all files in directory. From https://stackoverflow.com/questions/612097/how-can-i-get-the-life

 The string is a string of the string and the string are string as a string a string are string as a string are string as a string are string as a string as a string are string as a string as a string as a string are string as a string are string as a string as a string are string as a string a
- void vecToFile (FileStorage &fs, vector < int > x)

7.31.1 Macro Definition Documentation

7.31.1.1 NPOS

#define NPOS string::npos

Shortcut for string::npos.

266 File Documentation

7.31.2 Function Documentation

7.31.2.1 getFiles()

Function to get all files in directory. From https://stackoverflow.com/questions/612097/how-can-i-get-the

Parameters

Path The path to check.

Returns

A vector containing the names of the files in the directory.

7.31.2.2 vecToFile()

```
void vecToFile (  \label{eq:fileStorage & fs, }  vector< int > x ) [inline]
```

Writes a vector to a file.

Parameters

fs	The FileStorage where to write the vector.
Х	The vector to write.

7.32 src/unwrapping.cc File Reference

```
#include "unwrapping.hh"
Include dependency graph for unwrapping.cc:
```


Macros

- #define AREA_RATIO 0.7
- #define AREA_MIN 500

Functions

• static float distance (Point c1, Point c2)

Compute the euclidean distance.

• int unwrapping ()

Take some images according to a xml and unwrap the black rectangle inside the image after appling undistortion trasformation.

void find rect (vector < Point > & rect, const int &width, const int &height)

Since the border of the arena might not always be clean but might have some imperfection, this functions computes the four vertixes taking all the points and computing the four that are the clostest to the corner of the image.

void loadCoefficients (const string filename, Mat &camera_matrix, Mat &dist_coeffs)

Load coefficients from a file.

7.32.1 Macro Definition Documentation

7.32.1.1 AREA_MIN

```
#define AREA_MIN 500
```

7.32.1.2 AREA RATIO

```
#define AREA_RATIO 0.7
```

7.32.2 Function Documentation

7.32.2.1 distance()

```
static float distance ( \label{eq:point_c1} \mbox{Point } c1, \mbox{Point } c2 \; ) \quad [\mbox{static}]
```

Compute the euclidean distance.

268 File Documentation

Parameters

in,out	c1	The first point.
in,out	c2	The second point.

Returns

The euclidean distance.

7.32.2.2 find_rect()

Since the border of the arena might not always be clean but might have some imperfection, this functions computes the four vertixes taking all the points and computing the four that are the clostest to the corner of the image.

Parameters

in	_rect	The vector of cv::Point to work on.	
in	width	The width of the image.	
in	height	The height of the image.	

7.32.2.3 loadCoefficients()

Load coefficients from a file.

Load two matrix 'camera_matrix' and 'distortion_coefficients' from the xml file passed.

Parameters

in	filename	The string that identify the location of the xml file.
out	camera_matrix	Where the 'camera_matrix' matrix is saved.
out	dist_coeffs	Where the 'distortion_coefficients' matrix is saved.

7.32.2.4 unwrapping()

```
int unwrapping ( )
```

Take some images according to a xml and unwrap the black rectangle inside the image after appling undistortion transformation.

Load from the xml file 'data/settings.xml' the name of some images, load the images from the file, apply the calibration (undistortion trasformation) thanks to the matrices load with the 'loadCoefficients' function.

Then, with the use of a filter for the black the region of interest (a rectangle) is identified and all the perspective is rotated for reach a top view of the rectangle.

Finally, the images are saved on some files.

Returns

A 0 is return if the function reach the end.

7.33 src/utils.cc File Reference

```
#include "utils.hh"
```

Include dependency graph for utils.cc:

Namespaces

· timeutils

Functions

- void my_imshow (const char *win_name, cv::Mat img, bool reset)
 - Function to show images in an order grill.
- · void mywaitkey ()

Function to use after my_imshow() for keeping the image opened until a key is pressed.

void mywaitkey (string windowName)

Function to use after my_imshow() for keeping the image opened until a key is pressed. When a key is pressed a specific window is closed.

- int64_t timeutils::timespecDiff (struct timespec *timeA_p, struct timespec *timeB_p)
- double timeutils::getTimeS ()

7.33.1 Function Documentation

7.33.1.1 my_imshow()

Function to show images in an order grill.

270 File Documentation

Parameters

win_name	The name of the window to use.	
img	The Mat containing the image.	
reset	If true the image is going to be placed in 0,0 i.e. the top left corner of the screen.	

```
7.33.1.2 mywaitkey() [1/2] void mywaitkey ( )
```

Function to use after my_imshow() for keeping the image opened until a key is pressed.

Function to use after my_imshow() for keeping the image opened until a key is pressed. When a key is pressed a specific window is closed.

Parameters

The window to close after pressing a key.	windowName
---	------------

Index

_compare	Mapp, 136, 137
detection.cc, 218	AddPath
\sim CameraCapture	ClipperLib::ClipperBase, 68
CameraCapture, 61	ClipperLib::ClipperOffset, 74
\sim ClipperBase	AddPaths
ClipperLib::ClipperBase, 68	ClipperLib::ClipperBase, 68
\sim ClipperOffset	ClipperLib::ClipperOffset, 74
ClipperLib::ClipperOffset, 74	AddPolyNodeToPaths
\sim PolyNode	ClipperLib, 17
ClipperLib::PolyNode, 170	addUnMap
\sim PolyTree	Settings, 177
ClipperLib::PolyTree, 172	ahead
\sim Settings	Tuple < T >, 194
Settings, 177	Angle, 35
\sim clipperException	add, 38
ClipperLib::clipperException, 73	Angle, 37
	ANGLE_TYPE, 37
a	checkValue, 38
MyException< T >, 148	copy, 38
A_180	cos, 39
maths.hh, 246	DEG, 37
A_2PI	
maths.hh, 246	degToRad, 39
A_360	div, 39
maths.hh, 246	equal, 39
A_90	get, 40
maths.hh, 246	getType, 40
A_DEG_NULL	getTypeName, 40
maths.hh, 246	greater, 40
A_PI	INVALID, 37
maths.hh, 247	less, 41
A_PI2	mul, 41
maths.hh, 247	normalize, 41
A_RAD_NULL	operator *, 42
maths.hh, 247	operator *=, 42
Abs	operator double, 42
ClipperLib, 17	operator float, 43
acquirelmage	operator int, 43
configure.cc, 214	operator long, 43
configure.hh, 229	operator!=, 43
add	operator<, 46
Angle, 38	operator<<, 50
Tuple < T >, 194	operator<=, 46
AddBoundsToLML	operator>, 47
ClipperLib::ClipperBase, 68	operator>=, 47
addlfNot	operator+, 44
Tuple < T >, 194	operator+=, 44
addObject	operator-, 45
Mapp, 136	operator-=, 45
addObjects	operator/, 45

operator/=, 46	BottomPt
operator=, 46, 47	ClipperLib::OutRec, 157
operator==, 47	
RAD, 37	calcBoardCornerPositions
radToDeg, 47	calibration.cc, 206
set, 48	calibFixPrincipalPoint
setType, 48	CalSettings, 56
sin, 48	CALIBRATED
sub, 49	calibration.hh, 223
tan, 49	calibration
to_string, 49	calibration.cc, 206
toDeg, 50	calibration.hh, 223
toRad, 50	calibration.cc
angle	calcBoardCornerPositions, 206
Configuration2< T1 >, 78	calibration, 206
ANGLE_TYPE	computeReprojectionErrors, 206
Angle, 37	read, 207
ArcTolerance	runCalibration, 207
ClipperLib::ClipperOffset, 75	runCalibrationAndSave, 208
Area	saveCameraParams, 208
ClipperLib, 17	calibration.hh
AREA_MIN	CALIBRATED, 223
unwrapping.cc, 267	calibration, 223
AREA_RATIO	CAPTURING, 223
unwrapping.cc, 267	DETECTION, 223
aspectRatio	runCalibrationAndSave, 223
CalSettings, 56	sett, 224
atlmageList	calibration_run.cc
CalSettings, 56	main, 262
	calibrationFile
b	Settings, 186
MyException $<$ T $>$, 148	calibrationPattern
baseDistance	CalSettings, 56
Mapp, 145	calibZeroTangentDist
begin	CalSettings, 56
Curve< T >, 90	CalSettings, 51
Tuple $< T >$, 195	aspectRatio, 56
BLACK	atImageList, 56
detection.hh, 231	boardSize, 56
Settings, 176	calibFixPrincipalPoint, 56
blackMask	calibrationPattern, 56
Settings, 186	calibZeroTangentDist, 56
BLUE	CalSettings, 53
detection.hh, 231	cameralD, 56
Settings, 176	CHESSBOARD, 53
blueMask	delay, 57
Settings, 186	fixK1, 57
boardSize	fixK2, 57
CalSettings, 56	fixK3, 57
BODA	fixK4, 57
map.hh, 244	fixK5, 57
borderSize	flag, 58
Mapp, 145	flipVertical, 58
borderSizeDefault	goodInput, 58
Mapp, 145	IMAGE_LIST, 53
Bot Climan and the ATE days 100	imageList, 58
ClipperLib::TEdge, 189	input, 58
bottom	inputCapture, 58
ClipperLib::IntRect, 129	InputType, 53

inputType, 58	CalSettings, 53
INVALID, 53	ChildCount
isListOfImages, 53	ClipperLib::PolyNode, 170
nextImage, 54	Childs
NOT_EXISTING, 53	ClipperLib::PolyNode, 171
nrFrames, 59	CHRONO, 9
outputFileName, 59	getElapsed, 9, 10
Pattern, 53	getType, 10
read, 54	MSEC, 9
readStringList, 54	MUSEC, 9
showUndistorsed, 59	NSEC, 9
squareSize, 59	SEC, 9
useFisheye, 59	TIME_TYPE, 9
validate, 55	cint
write, 55	ClipperLib, 13 circline
writeExtrinsics, 59	
writePoints, 60	dubins.hh, 238 clean
camera_capture.cc SDEBUG, 210	Settings, 178
CameraCapture, 60	cleanAndRead
~CameraCapture, 61	Settings, 178
CameraCapture, 60	CleanPolygon
grab, 61	ClipperLib, 18
isAlive, 61	CleanPolygons
isOpened, 61	ClipperLib, 18
loadCoefficients, 62	Clear
startCamera, 62	ClipperLib::ClipperBase, 68
CameraCapture::input_options_t, 120	ClipperLib::ClipperOffset, 74
cameraFPS, 121	ClipperLib::PolyTree, 172
frameHeight_px, 121	Clipper
frameWidth_px, 121	ClipperLib::Clipper, 63
input_options_t, 121	ClipperLib::PolyNode, 170
nameCamera, 121	ClipperLib::PolyTree, 173
cameraFPS	clipper.cc
CameraCapture::input_options_t, 121	HORIZONTAL, 213
cameralD	NEAR ZERO, 213
CalSettings, 56	TOLERANCE, 213
CAPTURING	clipper.hh
calibration.hh, 223	CLIPPER_VERSION, 227
cellsFromSegment	use_lines, 228
Mapp, 137	CLIPPER_VERSION
cellSize	clipper.hh, 227
Mapp, 145	ClipperBase
center	ClipperLib::ClipperBase, 68
Object, 153	clipperException
changeBuffer	ClipperLib::clipperException, 73
DW, 32	ClipperLib, 10
changeMask	Abs, 17
Settings, 177, 178	AddPolyNodeToPaths, 17
check	Area, 17
Dubins $<$ T $>$, 96	cInt, 13
checkSegment	CleanPolygon, 18
Mapp, 138	CleanPolygons, 18
checkSegmentCollisionWithType	ClipType, 14
Mapp, 138	ClosedPathsFromPolyTree, 18
checkValue	ctDifference, 15
Angle, 38	ctIntersection, 15
CHESSBOARD	ctUnion, 15

ctXor, 15	Minkowski, 23
def_arc_tolerance, 31	MinkowskiDiff, 24
Direction, 15	MinkowskiSum, 24
DisposeOutPts, 18	NodeType, 16
DistanceFromLineSqrd, 19	ntAny, 16
DistanceSqrd, 19	ntClosed, 16
dLeftToRight, 15	ntOpen, 16
dRightToLeft, 15	OpenPathsFromPolyTree, 24
DupOutPt, 19	operator<<, 24, 25
E2InsertsBeforeE1, 19	Orientation, 25
EdgeList, 13	OutRec1RightOfOutRec2, 25
EdgesAdjacent, 19	ParseFirstLeft, 26
EdgeSide, 15	Path, 14
EndType, 15	Paths, 14
esLeft, 15	pftEvenOdd, 16
esRight, 15	pftNegative, 16
etClosedLine, 15	pftNonZero, 16
etClosedPolygon, 15	pftPositive, 16
etOpenButt, 15	pi, 31
etOpenRound, 15	PointCount, 26
etOpenSquare, 15	PointInPolygon, 26
ExcludeOp, 19	PointIsVertex, 26
FindNextLocMin, 20	PointsAreClose, 26
FirstIsBottomPt, 20	Poly2ContainsPoly1, 27
GetBottomPt, 20	PolyFillType, 16
GetDx, 20	PolyNodes, 14
GetHorzDirection, 20	PolyOutList, 14
GetLowermostRec, 20	PolyTreeToPaths, 27
GetMaximaPair, 21	PolyType, 17
GetMaximaPairEx, 21	Pt2IsBetweenPt1AndPt3, 27
GetNextInAEL, 21	ptClip, 17
GetOverlap, 21	ptSubject, 17
GetOverlapSegment, 21	RangeTest, 27
GetUnitNormal, 21	RemoveEdge, 27
hiRange, 31	ReverseHorizontal, 27
HorzSegmentsOverlap, 22	ReversePath, 28
InitEdge, 22	ReversePaths, 28
InitEdge2, 22	ReversePolyPtLinks, 28
InitOptions, 15	Round, 28
Int128Mul, 22	SetDx, 28
IntersectList, 13	SimplifyPolygon, 28
IntersectListSort, 22	SimplifyPolygons, 28, 29
IntersectPoint, 22	Skip, 31
ioPreserveCollinear, 16	SlopesEqual, 29
ioReverseSolution, 16	SlopesNearCollinear, 29
ioStrictlySimple, 16	SwapIntersectNodes, 30
IsHorizontal, 23	SwapPoints, 30
IsIntermediate, 23	SwapPolyIndexes, 30
IsMaxima, 23	SwapSides, 30
IsMinima, 23	TopX, 30
JoinHorz, 23	TranslatePath, 30
JoinList, 13	two_pi, 31
JoinType, 16	ulong64, 14
jtMiter, 16	Unassigned, 32
jtRound, 16	UpdateOutPtldxs, 31
jtSquare, 16	ClipperLib::Clipper, 62
long64, 13	Clipper, 63
loRange, 31	Execute, 64
5 /	, -

ExecuteInternal, 64	operator >, 123
ReverseSolution, 65	operator >=, 123
StrictlySimple, 65	operator -, 123
ClipperLib::ClipperBase, 66	operator -=, 123
\sim ClipperBase, 68	operator double, 124
AddBoundsToLML, 68	operator<, 124
AddPath, 68	operator<=, 124
AddPaths, 68	operator+, 124
Clear, 68	operator+=, 124
ClipperBase, 68	operator-, 124
CreateOutRec, 69	operator=, 124
DeleteFromAEL, 69	operator==, 125
DisposeAllOutRecs, 69	ClipperLib::IntersectNode, 126
DisposeLocalMinimaList, 69	Edge1, 126
DisposeOutRec, 69	Edge2, 126
GetBounds, 69	Pt, 126
InsertScanbeam, 69	ClipperLib::IntPoint, 127
LocalMinimaPending, 70	IntPoint, 127
m_ActiveEdges, 71	operator!=, 127
m_CurrentLM, 71	operator==, 128
m_edges, 71	X, 128
m_HasOpenPaths, 71	Y, 128
m_MinimaList, 71	ClipperLib::IntRect, 128
m_PolyOuts, 72	bottom, 129
m_PreserveCollinear, 72	left, 129
m_Scanbeam, 72	right, 129
m_UseFullRange, 72	top, 129
MinimaList, 67	ClipperLib::Join, 129
PopLocalMinima, 70	OffPt, 130
PopScanbeam, 70	OutPt1, 130
PreserveCollinear, 70	OutPt2, 130
ProcessBound, 70	ClipperLib::LocalMinimum, 131
Reset, 70	LeftBound, 131
ScanbeamList, 67	RightBound, 131
SwapPositionsInAEL, 71	Y, 131
UpdateEdgeIntoAEL, 71	ClipperLib::LocMinSorter, 132
ClipperLib::clipperException, 72	operator(), 132
\sim clipperException, 73	ClipperLib::OutPt, 156
clipperException, 73	ldx, 156
what, 73	Next, 156
ClipperLib::ClipperOffset, 73	Prev, 156
\sim ClipperOffset, 74	Pt, 156
AddPath, 74	ClipperLib::OutRec, 157
AddPaths, 74	BottomPt, 157
ArcTolerance, 75	FirstLeft, 157
Clear, 74	ldx, 158
ClipperOffset, 74	IsHole, 158
Execute, 74, 75	IsOpen, 158
MiterLimit, 75	PolyNd, 158
ClipperLib::DoublePoint, 92	Pts, 158
DoublePoint, 92	ClipperLib::PolyNode, 168
X, 92	\sim PolyNode, 170
Y, 93	ChildCount, 170
ClipperLib::Int128, 122	Childs, 171
hi, 125	Clipper, 170
Int128, 122, 123	ClipperOffset, 170
lo, 125	Contour, 171
operator !=, 123	GetNext, 170

IsHole, 170	EuDistance, 80
IsOpen, 170	MaDistance, 80
Parent, 171	offset, 81
PolyNode, 169	offset_angle, 82
ClipperLib::PolyTree, 171	offset_x, 82
\sim PolyTree, 172	offset_y, 83
Clear, 172	operator Configuration2< T2 >, 83
Clipper, 173	operator Point2 $<$ T2 $>$, 83
GetFirst, 172	operator<<, 86
Total, 173	operator=, 83
ClipperLib::TEdge, 189	operator==, 84
Bot, 189	point, 84
Curr, 190	to_string, 84
Dx, 190	x, 85
Next, 190	y, 85, 86
NextInAEL, 190	configure
NextInLML, 190	configure.cc, 214
NextInSEL, 190	configure.hh, 229
Outldx, 190	configure.cc
PolyTyp, 190	acquireImage, 214
Prev, 191	configure, 214
PrevinAEL, 191	filter, 216
PrevInSEL, 191	on_high_h_thresh_trackbar, 214
Side, 191	on_high_s_thresh_trackbar, 214
Top, 191	on_high_v_thresh_trackbar, 215
WindCnt, 191	on_low_h_thresh_trackbar, 215
WindCate, 191	on_low_s_thresh_trackbar, 215
WindDelta, 191	on_low_v_thresh_trackbar, 215
ClipperOffset	show_all_conditions, 215
ClipperLib::ClipperOffset, 74	update_trackers, 216
ClipperLib::PolyNode, 170 ClipType	configure.hh
ClipperLib, 14	acquireImage, 229 configure, 229
Clock	show_all_conditions, 229
utils.hh, 258	Contour
ClosedPathsFromPolyTree	ClipperLib::PolyNode, 171
ClipperLib, 18	convexHullFile
COLOR	Settings, 186
Settings, 176	copy
COLOR_TYPE	Angle, 38
detection.hh, 231	Configuration2< T1 >, 79
computeCenter	Filter, 115
Object, 150	Point2< T >, 161
computeConversionParameters	cos
detection.cc, 218	Angle, 39
detection.hh, 231	countTries
computeRadius	dubins.hh, 240
Object, 150	COUT
computeReprojectionErrors	utils.hh, 257
calibration.cc, 206	createMapp
Configuration2	planning.cc, 261
Configuration $2 < T1 > 77, 78$	planning.hh, 251
Configuration2< T1 >, 75	createMapRepresentation
angle, 78	Mapp, 139
Configuration2, 77, 78	CreateOutRec
copy, 79	ClipperLib::ClipperBase, 69
distance, 79	crop_number_section
equal, 79	detection.cc, 218

detection.hh, 232	detection.hh
ctDifference	BLACK, 231
ClipperLib, 15	BLUE, 231
ctIntersection	COLOR TYPE, 231
ClipperLib, 15	computeConversionParameters, 231
ctUnion	crop_number_section, 232
ClipperLib, 15	CYAN, 231
ctXor	
	detection, 232
ClipperLib, 15	erode_dilation, 232
Curr	find_contours, 233
ClipperLib::TEdge, 190	GREEN, 231
Curve	load_number_template, 233
Curve< T >, 88, 89	localize, 233
Curve< T >, 87	number_recognition, 233
begin, 90	RED, 231
Curve, 88, 89	save_convex_hull, 234
end, 90	shape_detection, 234
operator<<, 91	• —
P0, 91	detection_run.cc
P1, 91	main, 263
	dimX
to_string, 91	Mapp, 145
CYAN	dimY
detection.hh, 231	Mapp, 145
def one television	DInf
def_arc_tolerance	maths.hh, 247
ClipperLib, 31	Direction
DEG	ClipperLib, 15
Angle, 37	• •
DEGTORAD	disp
maths.hh, 249	dubins.hh, 238
degToRad	DisposeAllOutRecs
Angle, 39	ClipperLib::ClipperBase, 69
delay	DisposeLocalMinimaList
CalSettings, 57	ClipperLib::ClipperBase, 69
DeleteFromAEL	DisposeOutPts
ClipperLib::ClipperBase, 69	ClipperLib, 18
DELTA	DisposeOutRec
dubins.hh, 237	ClipperLib::ClipperBase, 69
	distance
DETECTION	Configuration2< T1 >, 79
calibration.hh, 223	Point2 < T >, 161
detection	
detection.cc, 218	Tuple < T >, 195
detection.hh, 232	unwrapping.cc, 267
detection.cc	DISTANCE_TYPE
_compare, 218	maths.hh, 248
computeConversionParameters, 218	DistanceFromLineSqrd
crop_number_section, 218	ClipperLib, 19
detection, 218	DistanceSqrd
EPS_CURVE, 217	ClipperLib, 19
erode_dilation, 218	div
find contours, 219	Angle, 39
load_number_template, 219	dLeftToRight
	ClipperLib, 15
localize, 219	
MIN_AREA_SIZE, 217	DoublePoint
number_recognition, 220	ClipperLib::DoublePoint, 92
robotShape, 221	draw
save_convex_hull, 220	Dubins $<$ T $>$, 97
shape_detection, 220	DubinsArc< T1, T2 >, 106
templates, 221	draw.hh
·	

int, 235	getK, 106
dRightToLeft	length, 106
ClipperLib, 15	operator<<, 107
Dubins	splitlt, 106
Dubins < T >, 95, 96	to_string, 107
Dubins $<$ T $>$, 93	DubinsSet T >, 109, 110
check, 96	DubinsSet< T >, 108
draw, 97 Dubins, 95, 96	DubinsSet, 109, 110
getA1, 97	find best, 110
getA2, 98	getDubins, 111
getA3, 98	getDubinses, 111
getld, 98	getKmax, 111
getKMax, 98	getLength, 111
length, 98	getSize, 111
LRL, 98	operator<<, 112
LSL, 99	to_string, 112
LSR, 99	DupOutPt
operator<<, 103	ClipperLib, 19
rangeSymm, 100	DW, 32
RLR, 100	changeBuffer, 32
RSL, 100	init, 32
RSR, 101	map_buffer, 32
scaleFromStandard, 101	window, 33
scaleToStandard, 101	Dx
shortest_path, 102	ClipperLib::TEdge, 190
splitlt, 102	E2InsertsBeforeE1
to_string, 102	ClipperLib, 19
dubins.hh	Edge1
circline, 238	ClipperLib::IntersectNode, 126
countTries, 240	Edge2
DELTA, 237	ClipperLib::IntersectNode, 126
disp, 238	EdgeList
elapsedArcs, 240	ClipperLib, 13
elapsedBest, 240	EdgesAdjacent
elapsedCheck, 240	ClipperLib, 19
elapsedCirc, 240	EdgeSide
elapsedLRL, 241 elapsedLSL, 241	ClipperLib, 15
elapsedLSL, 241 elapsedLSR, 241	elapsedArcs
elapsedPrimitives, 241	dubins.hh, 240
elapsedRLR, 241	elapsedBest
elapsedRSL, 241	dubins.hh, 240
elapsedRSR, 241	elapsedCheck dubins.hh, 240
elapsedScale, 241	elapsedCirc
elapsedSet, 242	dubins.hh, 240
elapsedVar, 242	elapsedLRL
KMAX, 237	dubins.hh, 241
PIECE_LENGTH, 237	elapsedLSL
PREC, 238	dubins.hh, 241
reduce_points, 239	elapsedLSR
sinc, 239	dubins.hh, 241
toBase, 239	elapsedPrimitives
DubinsArc	dubins.hh, 241
DubinsArc< T1, T2 >, 105	elapsedRLR
DubinsArc< T1, T2 >, 103	dubins.hh, 241
draw, 106	elapsedRSL
DubinsArc, 105	dubins.hh, 241

elapsedRSR	utils.hh, 258
dubins.hh, 241	F'II. 440
elapsedScale	Filter, 113
dubins.hh, 241	copy, 115
elapsedSet	Filter, 114
dubins.hh, 242	High, 115
elapsedVar	high_h, 117
dubins.hh, 242	high_s, 117
end	high_v, 117
Curve $<$ T $>$, 90	Low, 115
Tuple $<$ T $>$, 196	low_h, 117
EndType	low_s, 117
ClipperLib, 15	low_v, 117
EPS_CURVE	operator vector< int >, 115
detection.cc, 217	operator 115
Epsi	operator=, 115
maths.hh, 247	to_string, 116
equal	filter
Angle, 39	configure.cc, 216
Configuration2< T1 >, 79	find
maths.hh, 249	Tuple < T >, 197
Point2< T >, 162	find_best
Tuple < T >, 196	DubinsSet< T >, 110
eraseAll	find_contours
Tuple < T >, 196	detection.cc, 219
erode_dilation	detection.hh, 233
detection.cc, 218	find_rect
detection.hh, 232	unwrapping.cc, 268
esLeft	unwrapping.hh, 255
ClipperLib, 15	FindNextLocMin
esRight	ClipperLib, 20
ClipperLib, 15	FirstIsBottomPt
etClosedLine	ClipperLib, 20
ClipperLib, 15	FirstLeft
etClosedPolygon	ClipperLib::OutRec, 157
ClipperLib, 15	fixK1
etOpenButt	CalSettings, 57
•	fixK2
ClipperLib, 15	CalSettings, 57
etOpenRound	fixK3
ClipperLib, 15	CalSettings, 57
etOpenSquare	fixK4
ClipperLib, 15	CalSettings, 57
EUCLIDEAN	fixK5
maths.hh, 249	CalSettings, 57
EuDistance	flag
Configuration $2 < T1 >$, 80	CalSettings, 58
Point2< T >, 162	flipVertical
Tuple $<$ T $>$, 196	CalSettings, 58
EXCEPTION_TYPE	foundLimit
utils.hh, 258	Mapp, 146
ExcludeOp	frameHeight_px
ClipperLib, 19	CameraCapture::input_options_t, 121
Execute	frameWidth_px
ClipperLib::Clipper, 64	CameraCapture::input_options_t, 121
ClipperLib::ClipperOffset, 74, 75	FREE
ExecuteInternal	map.hh, 244
ClipperLib::Clipper, 64	
EXISTS	GATE

map.hh, 244	GetOverlapSegment
Gate, 118	ClipperLib, 21
Gate, 119	getPoints
print, 119	Object, 151
toString, 119	getPointType
get	Mapp, 139
Angle, 40	getRadius
	Object, 151
Tuple < T >, 197	-
getA1	getSize
Dubins< T >, 97	DubinsSet< T >, 111
getA2	getTemplates
Dubins $<$ T $>$, 98	Settings, 178, 179
getA3	getTimeS
Dubins $<$ T $>$, 98	timeutils, 33
GetBottomPt	getType
ClipperLib, 20	Angle, 40
GetBounds	CHRONO, 10
ClipperLib::ClipperBase, 69	getTypeName
getCenter	Angle, 40
Object, 150	GetUnitNormal
	ClipperLib, 21
getDubins	getValue
DubinsSet< T >, 111	Victim, 203
getDubinses	getVictimCenters
DubinsSet< T >, 111	Mapp, 140
GetDx	• •
ClipperLib, 20	goodInput
getElapsed	CalSettings, 58
CHRONO, 9, 10	grab
getFiles	CameraCapture, 61
settings.cc, 266	greater
GetFirst	Angle, 40
ClipperLib::PolyTree, 172	GREEN
getGateCenter	detection.hh, 231
Mapp, 139	Settings, 176
GetHorzDirection	greenMask
	Settings, 186
ClipperLib, 20	
getId	hi
Dubins< T >, 98	ClipperLib::Int128, 125
getK	High
DubinsArc< T1, T2 >, 106	Filter, 115
getKMax	high_h
Dubins $<$ T $>$, 98	Filter, 117
getKmax	high_s
DubinsSet< T >, 111	Filter, 117
getLength	high v
DubinsSet< T >, 111	Filter, 117
GetLowermostRec	
ClipperLib, 20	hiRange
GetMaximaPair	ClipperLib, 31
ClipperLib, 21	HORIZONTAL
GetMaximaPairEx	clipper.cc, 213
	HorzSegmentsOverlap
ClipperLib, 21	ClipperLib, 22
GetNext	
ClipperLib::PolyNode, 170	ldx
GetNextInAEL	ClipperLib::OutPt, 156
ClipperLib, 21	ClipperLib::OutRec, 158
GetOverlap	IMAGE_LIST
ClipperLib, 21	CalSettings, 53

imageAddPoint	ClipperLib, 16
Mapp, 140	ioStrictlySimple
imageAddPoints	ClipperLib, 16
Mapp, 140	isAlive
imageAddSegment	CameraCapture, 61
Mapp, 141	IsHole
imageAddSegments	ClipperLib::OutRec, 158
Mapp, 141	ClipperLib::PolyNode, 170
• • •	IsHorizontal
imageList	
CalSettings, 58	ClipperLib, 23
INFO	IsIntermediate
utils.hh, 257	ClipperLib, 23
init	isListOfImages
DW, 32	CalSettings, 53
InitEdge	IsMaxima
ClipperLib, 22	ClipperLib, 23
InitEdge2	IsMinima
ClipperLib, 22	ClipperLib, 23
InitOptions	IsOpen
	ClipperLib::OutRec, 158
ClipperLib, 15	ClipperLib::PolyNode, 170
input	
CalSettings, 58	isOpened
input_options_t	CameraCapture, 61
CameraCapture::input_options_t, 121	1 * 11
inputCapture	JoinHorz
CalSettings, 58	ClipperLib, 23
InputType	JoinList
CalSettings, 53	ClipperLib, 13
inputType	JoinType
	ClipperLib, 16
CalSettings, 58	jtMiter
InsertScanbeam	ClipperLib, 16
ClipperLib::ClipperBase, 69	jtRound
insidePoly	ClipperLib, 16
Object, 151	jtSquare
insidePolyApprox	
Object, 152	ClipperLib, 16
int	karnalCida
draw.hh, 235	kernelSide
Int128	Settings, 187
ClipperLib::Int128, 122, 123	KMAX
• •	dubins.hh, 237
Int128Mul	
ClipperLib, 22	left
IntersectList	ClipperLib::IntRect, 129
ClipperLib, 13	LeftBound
IntersectListSort	ClipperLib::LocalMinimum, 131
ClipperLib, 22	length
IntersectPoint	Dubins< T >, 98
ClipperLib, 22	DubinsArc< T1, T2 >, 106
IntPoint	lengthX
ClipperLib::IntPoint, 127	Mapp, 146
intrinsicCalibrationFile	lengthY
	_
Settings, 187	Mapp, 146
INVALID	less
Angle, 37	Angle, 41
CalSettings, 53	lo
ioPreserveCollinear	ClipperLib::Int128, 125
ClipperLib, 16	load_number_template
ioReverseSolution	detection.cc, 219

detection.hh, 233	detection_run.cc, 263
loadCoefficients	main.cc, 263
CameraCapture, 62	planning_run.cc, 264
unwrapping.cc, 268	unwrapping_run.cc, 265
unwrapping.hh, 255	main.cc
loadVP	main, 263
planning.cc, 261	sett, 264
planning.hh, 252	MANHATTAN
loadVVP	maths.hh, 249
planning.cc, 261	map
planning.hh, 252	Mapp, 146
localize	map.hh
detection.cc, 219 detection.hh, 233	BODA, 244
LocalMinimaPending	FREE, 244
ClipperLib::ClipperBase, 70	GATE, 244
long64	OBJ_TYPE, 244
ClipperLib, 13	OBST, 244
loRange	VICT, 244
ClipperLib, 31	map_buffer
Low	DW, 32
Filter, 115	Mapp, 132
low h	addObject, 136
Filter, 117	addObjects, 136, 137
low s	baseDistance, 145 borderSize, 145
Filter, 117	borderSizeDefault, 145
low_v	cellsFromSegment, 137
Filter, 117	cellSize, 145
LRL	checkSegment, 138
Dubins $<$ T $>$, 98	checkSegmentCollisionWithType, 138
LSL	createMapRepresentation, 139
Dubins $<$ T $>$, 99	dimX, 145
LSR	dimY, 145
Dubins $<$ T $>$, 99	foundLimit, 146
ma Alatina Edward	getGateCenter, 139
m_ActiveEdges	getPointType, 139
ClipperLib::ClipperBase, 71	getVictimCenters, 140
m_CurrentLM ClipperLib::ClipperBase, 71	imageAddPoint, 140
m_edges	imageAddPoints, 140
ClipperLib::ClipperBase, 71	imageAddSegment, 141
m_HasOpenPaths	imageAddSegments, 141
ClipperLib::ClipperBase, 71	lengthX, 146
m MinimaList	lengthY, 146
ClipperLib::ClipperBase, 71	map, 146
m PolyOuts	Mapp, 134
ClipperLib::ClipperBase, 72	matrixToString, 141
m PreserveCollinear	minPathNPoints, 141
ClipperLib::ClipperBase, 72	minPathTwoPoints, 142
m_Scanbeam	minPathTwoPointsInternal, 142
ClipperLib::ClipperBase, 72	nPoints, 146
m_UseFullRange	offsetValue, 146
ClipperLib::ClipperBase, 72	pixX, 146
MaDistance	pixY, 146
Configuration $2 < T1 >$, 80	printDimensions, 143
Point2< T >, 162	printMap, 143
Tuple $<$ T $>$, 197	range, 147
main	resetDistanceMap, 143
calibration_run.cc, 262	sampleNPoints, 144

samplePointsEachNCells, 144	CHRONO, 9
vGates, 147	my_imshow
vObstacles, 147	utils.cc, 269
vVictims, 147	utils.hh, 258
maps	MyException
Settings, 179, 181, 182	MyException< T >, 148
mapsFolder	MyException< T >, 147
Settings, 187	a, 148
mapsNames	b, 148
Settings, 187	MyException, 148
mapsUnNames	type, 148
Settings, 187	what, 148
maths.hh	mywaitkey
A_180, 246	utils.cc, 270
A_2PI, 246	utils.hh, 259
A_360, 246	
A_90, 246	NAME
A DEG NULL, 246	utils.hh, 258
A_PI, 247	nameCamera
A PI2, 247	CameraCapture::input_options_t, 121
A_RAD_NULL, 247	NEAR_ZERO
	clipper.cc, 213
DEGTORAD, 249	Next
DInf, 247	ClipperLib::OutPt, 156
DISTANCE_TYPE, 248	ClipperLib::TEdge, 190
Epsi, 247	nextImage
equal, 249	CalSettings, 54
EUCLIDEAN, 249	NextInAEL
MANHATTAN, 249	ClipperLib::TEdge, 190
pow2, 249	NextInLML
RADTODEG, 249	ClipperLib::TEdge, 190
tupleConstIter, 247	NextInSEL
tupleIter, 247	ClipperLib::TEdge, 190
matrixToString	NodeType
Mapp, 141	ClipperLib, 16
MIN_AREA_SIZE	normalize
detection.cc, 217	Angle, 41
MinimaList	NOT_EXISTING
ClipperLib::ClipperBase, 67	CalSettings, 53
Minkowski	nPoints
ClipperLib, 23	Mapp, 146
MinkowskiDiff	• •
ClipperLib, 24	Object, 152 NPOS
MinkowskiSum	
ClipperLib, 24	settings.cc, 265
minPathNPoints	nrFrames
Mapp, 141	CalSettings, 59
minPathTwoPoints	NSEC
Mapp, 142	CHRONO, 9
minPathTwoPointsInternal	ntAny
Mapp, 142	ClipperLib, 16
MiterLimit	ntClosed
	ClipperLib, 16
ClipperLib::ClipperOffset, 75 MSEC	ntOpen
	ClipperLib, 16
CHRONO, 9	number_recognition
mul	detection.cc, 220
Angle, 41	detection.hh, 233
Tuple < T >, 198	00.1.51/05
MUSEC	OBJ_TYPE

map.hh, 244	ClipperLib::Int128, 123
Object, 149	operator *
center, 153	Angle, 42
computeCenter, 150	Tuple < T >, 198
computeRadius, 150	operator *=
getCenter, 150	Angle, <mark>42</mark>
getPoints, 151	Tuple < T >, 198
getRadius, 151	operator -
insidePoly, 151	ClipperLib::Int128, 123
insidePolyApprox, 152	operator -=
nPoints, 152	ClipperLib::Int128, 123
offsetting, 152	operator Configuration2< T2 >
points, 153	Configuration2< T1 >, 83
radius, 153	operator cv::Point
size, 153	Point2< T >, 165
toString, 153	operator double
OBST	Angle, 42
map.hh, 244	ClipperLib::Int128, 124
Obstacle, 154	operator float
	Angle, 43
Obstacle, 155	•
print, 155	operator int
toString, 155	Angle, 43
OffPt	operator long
ClipperLib::Join, 130	Angle, 43
offset	operator Point2< T2 >
Configuration2 < T1 >, 81	Configuration2< T1 >, 83
Point2< T >, 163, 164	operator std::string
offset_angle	Tuple < T >, 198
Configuration2< T1 >, 82	operator vector< int >
offset_x	Filter, 115
Configuration2< T1 >, 82	operator vector< T1 >
Point2< T >, 164	Tuple $<$ T $>$, 198
offset_y	operator!=
Configuration2< T1 >, 83	Angle, 43
Point2< T >, 164	ClipperLib::IntPoint, 127
offsetting	Point2< T >, 165
Object, 152	operator<
offsetValue	Angle, 46
Mapp, 146	ClipperLib::Int128, 124
on_high_h_thresh_trackbar	Point2< T >, 165
configure.cc, 214	operator<<
on_high_s_thresh_trackbar	Angle, 50
configure.cc, 214	ClipperLib, 24, 25
on_high_v_thresh_trackbar	Configuration $2 < T1 >$, 86
configure.cc, 215	Curve $<$ T $>$, 91
on_low_h_thresh_trackbar	Dubins $<$ T $>$, 103
configure.cc, 215	DubinsArc< T1, T2 >, 107
on_low_s_thresh_trackbar	DubinsSet $<$ T $>$, 112
configure.cc, 215	Filter, 116
on_low_v_thresh_trackbar	Point2< T >, 168
configure.cc, 215	Settings, 185
OpenPathsFromPolyTree	Tuple < T >, 201
ClipperLib, 24	operator<=
operator !=	Angle, 46
ClipperLib::Int128, 123	ClipperLib::Int128, 124
operator >	operator>
ClipperLib::Int128, 123	Angle, 47
operator >=	operator>=
-p	- 1

Angle, 47	ClipperLib, 14
operator()	Pattern
ClipperLib::LocMinSorter, 132	CalSettings, 53
operator+	pftEvenOdd
Angle, 44	ClipperLib, 16
ClipperLib::Int128, 124	pftNegative
Tuple < T >, 199	ClipperLib, 16
operator+=	pftNonZero
Angle, 44	ClipperLib, 16
ClipperLib::Int128, 124	pftPositive
Tuple $<$ T $>$, 199	ClipperLib, 16
operator-	pi
Angle, 45 ClipperLib::Int128, 124	ClipperLib, 31
operator-=	PIECE_LENGTH
Angle, 45	dubins.hh, 237
operator/	pixX
Angle, 45	Mapp, 146
operator/=	pixY
Angle, 46	Mapp, 146
operator=	planning
Angle, 46, 47	planning.cc, 261
ClipperLib::Int128, 124	planning.hh, 252
Configuration2< T1 >, 83	planning.cc
Filter, 115	createMapp, 261
Point2< T >, 165	loadVP, 261
operator==	loadVVP, 261
Angle, 47	planning, 261
ClipperLib::Int128, 125	planning.hh
ClipperLib::IntPoint, 128	createMapp, 251
Configuration2< T1 >, 84	loadVP, 252
Point2 < T >, 166	loadVVP, 252
Tuple < T >, 199	planning, 252
operator[]	planning_run.cc
Tuple < T >, 199	main, 264
Orientation	point Configuration2< T1 >, 84
ClipperLib, 25	Point2
Outldx	Point2 < T >, 160, 161
ClipperLib::TEdge, 190	Point2 $<$ T $>$, 158
OutPt1	copy, 161
ClipperLib::Join, 130	distance, 161
OutPt2	equal, 162
ClipperLib::Join, 130	EuDistance, 162
outputFileName	MaDistance, 162
CalSettings, 59	offset, 163, 164
OutRec1RightOfOutRec2	offset x, 164
ClipperLib, 25	offset y, 164
P0	operator cv::Point, 165
Curve < T >, 91	operator!=, 165
P1	operator<, 165
Curve < T >, 91	operator<<, 168
Parent	operator=, 165
ClipperLib::PolyNode, 171	operator==, 166
ParseFirstLeft	Point2, 160, 161
ClipperLib, 26	th, 166
Path	to_string, 166
ClipperLib, 14	x, 166, 167
Paths	y, 167
	, -

PointCount	Pt2IsBetweenPt1AndPt3
ClipperLib, 26	ClipperLib, 27
PointInPolygon	ptClip
ClipperLib, 26	ClipperLib, 17
PointIsVertex	Pts
ClipperLib, 26	ClipperLib::OutRec, 158
points	ptSubject
Object, 153	ClipperLib, 17
PointsAreClose	
ClipperLib, 26	RAD
Poly2ContainsPoly1	Angle, 37
ClipperLib, 27	radius
PolyFillType	Object, 153
ClipperLib, 16	RADTODEG
PolyNd	maths.hh, 249
ClipperLib::OutRec, 158	radToDeg
PolyNode	Angle, 47
ClipperLib::PolyNode, 169	range
PolyNodes	Mapp, 147
ClipperLib, 14	rangeSymm
PolyOutList	Dubins $<$ T $>$, 100
ClipperLib, 14	RangeTest
••	ClipperLib, 27
PolyTreeToPaths	read
ClipperLib, 27	calibration.cc, 207
PolyTyp	CalSettings, 54
ClipperLib::TEdge, 190	readFromFile
PolyType	Settings, 182
ClipperLib, 17	readStringList
PopLocalMinima	CalSettings, 54
ClipperLib::ClipperBase, 70	RED
PopScanbeam	detection.hh, 231
ClipperLib::ClipperBase, 70	Settings, 176
pow2	redMask
maths.hh, 249	Settings, 187
PREC	reduce_points
dubins.hh, 238	dubins.hh, 239
PreserveCollinear	remove
ClipperLib::ClipperBase, 70	Tuple < T >, 200
Prev	RemoveEdge
ClipperLib::OutPt, 156	ClipperLib, 27
ClipperLib::TEdge, 191	Reset
PrevInAEL	ClipperLib::ClipperBase, 70
ClipperLib::TEdge, 191	resetDistanceMap
PrevInSEL	Mapp, 143
ClipperLib::TEdge, 191	ReverseHorizontal
print	ClipperLib, 27
Gate, 119	ReversePath
Obstacle, 155	ClipperLib, 28
Victim, 203	ReversePaths
printDimensions	ClipperLib, 28
Mapp, 143	ReversePolyPtLinks
printMap	ClipperLib, 28
Mapp, 143	ReverseSolution
ProcessBound	ClipperLib::Clipper, 65
ClipperLib::ClipperBase, 70	right
Pt	ClipperLib::IntRect, 129
ClipperLib::IntersectNode, 126	RightBound
ClipperLib::Mtersectivode, 126 ClipperLib::OutPt, 156	ClipperLib::LocalMinimum, 131
OlipperLib Outi t, 100	Onpperciococanvinninum, 131

RLR	clean, 178
Dubins < T >, 100	cleanAndRead, 178
ROBOT	COLOR, 176
Settings, 176	convexHullFile, 186
robotMask	getTemplates, 178, 179
Settings, 188	GREEN, 176
robotShape	greenMask, 186
detection.cc, 221	intrinsicCalibrationFile, 187
Round	kernelSide, 187
ClipperLib, 28	maps, 179, 181, 182
RSL	maps, 173, 161, 162 mapsFolder, 187
Dubins< T >, 100	maps loder, 187
RSR	•
Dubins < T >, 101	mapsUnNames, 187
runCalibration	operator<<, 185
	readFromFile, 182
calibration.cc, 207	RED, 176
runCalibrationAndSave	redMask, 187
calibration.cc, 208	ROBOT, 176
calibration.hh, 223	robotMask, 188
sampleNPoints	save, 182
Mapp, 144	Settings, 176
• • •	templates, 188
samplePointsEachNCells	templatesFolder, 188
Mapp, 144	to string, 183
Save	unMaps, 183–185
Settings, 182	victimMask, 188
save_convex_hull	VICTIMS, 176
detection.cc, 220	WHITE, 176
detection.hh, 234	whiteMask, 188
saveCameraParams	writeToFile, 185
calibration.cc, 208	
scaleFromStandard	settings.cc
Dubins< T >, 101	getFiles, 266
scaleToStandard	NPOS, 265
Dubins< T >, 101	vecToFile, 266
ScanbeamList	settings.hh
ClipperLib::ClipperBase, 67	sett, 253
SDEBUG	setType
camera_capture.cc, 210	Angle, 48
SEC	setValue
CHRONO, 9	Victim, 204
set	shape_detection
Angle, 48	detection.cc, 220
Tuple < T >, 200	detection.hh, 234
SetDx	shortest_path
ClipperLib, 28	Dubins $< T >$, 102
sett	show_all_conditions
calibration.hh, 224	configure.cc, 215
main.cc, 264	configure.hh, 229
settings.hh, 253	showUndistorsed
Settings, 173	CalSettings, 59
~Settings, 173	Side
	ClipperLib::TEdge, 191
addUnMap, 177	SimplifyPolygon
BLACK, 176	
blackMask, 186	ClipperLib, 28
BLUE, 176	SimplifyPolygons
blueMask, 186	ClipperLib, 28, 29
calibrationFile, 186	sin
changeMask, 177, 178	Angle, 48

sinc	Tuple $<$ T $>$, 201
dubins.hh, 239	SwapIntersectNodes
SIZE	ClipperLib, 30
utils.hh, 258	SwapPoints
size	ClipperLib, 30
Object, 153	SwapPolyIndexes
Tuple $<$ T $>$, 200	ClipperLib, 30
Skip	SwapPositionsInAEL
ClipperLib, 31	ClipperLib::ClipperBase, 71
SlopesEqual	SwapSides
ClipperLib, 29	ClipperLib, 30
SlopesNearCollinear	
ClipperLib, 29	tan
splitIt	Angle, 49
Dubins < T >, 102	templates
DubinsArc< T1, T2 >, 106	detection.cc, 221
squareSize	Settings, 188
CalSettings, 59	templatesFolder
src/calibration.cc, 205	Settings, 188
src/camera_capture.cc, 209	th Division To the
src/clipper.cc, 210	Point2 $<$ T $>$, 166
src/configure.cc, 213	TIME_TYPE
src/detection.cc, 216	CHRONO, 9
src/dubins.cc, 221	timespecDiff
src/include/calibration.hh, 221	timeutils, 33
src/include/camera_capture.hh, 224	timeutils, 33
src/include/clipper.hh, 225	getTimeS, 33
src/include/configure.hh, 228	timespecDiff, 33
src/include/detection.hh, 230	to_std_string Tuple< T >, 201
src/include/draw.hh, 234	to_string
src/include/dubins.hh, 236	Angle, 49
src/include/filter.hh, 242	Configuration2< T1 >, 84
src/include/map.hh, 243	Curve < T >, 91
src/include/maths.hh, 244	Dubins $< T >$, 102
src/include/objects.hh, 250	DubinsArc< T1, T2 >, 107
src/include/planning.hh, 251	DubinsSet< T >, 112
src/include/settings.hh, 253	Filter, 116
src/include/unwrapping.hh, 254	Point2< T >, 166
src/include/utils.hh, 256	Settings, 183
src/map.cc, 259	Tuple < T >, 201
src/maths.cc, 260	toBase
src/objects.cc, 260	dubins.hh, 239
src/planning.cc, 260	toDeg
src/run/calibration_run.cc, 262	Angle, 50
src/run/detection_run.cc, 262	TOLERANCE
src/run/main.cc, 263	clipper.cc, 213
src/run/planning_run.cc, 264	Тор
src/run/unwrapping_run.cc, 264	ClipperLib::TEdge, 191
src/settings.cc, 265	top
src/unwrapping.cc, 266	ClipperLib::IntRect, 129
src/utils.cc, 269	TopX
startCamera	ClipperLib, 30
CameraCapture, 62	toRad
StrictlySimple	Angle, 50
ClipperLib::Clipper, 65	toString
Sub Angle 40	Gate, 119
Angle, 49	Object, 153
sum	Obstacle, 155

Victim, 204	find_rect, 268
Total	loadCoefficients, 268
ClipperLib::PolyTree, 173	unwrapping, 268
TranslatePath	unwrapping.hh
ClipperLib, 30	find_rect, 255
Tuple	loadCoefficients, 255
Tuple < T >, 193, 194	unwrapping, 255
Tuple < T >, 192	unwrapping_run.cc
add, 194	main, 265
addlfNot, 194	update_trackers
ahead, 194	configure.cc, 216
begin, 195	UpdateEdgeIntoAEL
distance, 195	ClipperLib::ClipperBase, 71
end, 196	UpdateOutPtIdxs
equal, 196	ClipperLib, 31
eraseAll, 196	use_lines
EuDistance, 196	clipper.hh, 228
find, 197	
get, 197	useFisheye
MaDistance, 197	CalSettings, 59
mul, 198	utils.cc
operator *, 198	my_imshow, 269
operator *=, 198	mywaitkey, 270
operator std::string, 198	utils.hh
operator vector< T1 >, 198	Clock, 258
operator<<, 201	COUT, 257
operator+, 199	EXCEPTION_TYPE, 258
operator+=, 199	EXISTS, 258
operator==, 199	INFO, 257
·	my_imshow, 258
operator[], 199	mywaitkey, 259
remove, 200	NAME, 258
set, 200	SIZE, 258
size, 200	
sum, 201	validate
to_std_string, 201	CalSettings, 55
to_string, 201	value
Tuple, 193, 194	Victim, 204
tupleConstiter	vecToFile
maths.hh, 247	settings.cc, 266
tupleIter	vGates
maths.hh, 247	Mapp, 147
two_pi	VICT
ClipperLib, 31	map.hh, 244
type	Victim, 202
MyException $<$ T $>$, 148	getValue, 203
ulong64	print, 203
ClipperLib, 14	setValue, 204
Unassigned	toString, 204
ClipperLib, 32	value, 204
unMaps	Victim, 203
Settings, 183–185	victimMask
	Settings, 188
unwrapping unwrapping.cc, 268	VICTIMS
	Settings, 176
unwrapping.hh, 255	_
unwrapping.cc	vObstacles
AREA_MIN, 267	Mapp, 147
AREA_RATIO, 267	vVictims
distance, 267	Mapp, 147

```
what
     ClipperLib::clipperException, 73
    MyException < T >, 148
WHITE
     Settings, 176
whiteMask
     Settings, 188
WindCnt
     ClipperLib::TEdge, 191
WindCnt2
     ClipperLib::TEdge, 191
WindDelta
     ClipperLib::TEdge, 191
window
     DW, 33
write
     CalSettings, 55
writeExtrinsics
     CalSettings, 59
writePoints
    CalSettings, 60
writeToFile
    Settings, 185
Χ
     ClipperLib::DoublePoint, 92
    ClipperLib::IntPoint, 128
Χ
    Configuration 2 < T1 >, 85
     Point2< T >, 166, 167
Υ
    ClipperLib::DoublePoint, 93
    ClipperLib::IntPoint, 128
     ClipperLib::LocalMinimum, 131
у
    Configuration 2 < T1 >, 85, 86
     Point2< T >, 167
```