11.4 散列表的性能分析

散列表的性能分析

- □ 平均查找长度(ASL)用来度量散列表查找效率:成功、不成功
- □ 关键词的比较次数,取决于产生冲突的多少 影响产生冲突多少有以下三个因素:
 - (1) 散列函数是否均匀;不均匀冲突会更多
 - (2) 处理冲突的方法;
 - (3) 散列表的装填因子α。

分析: 不同冲突处理方法、装填因子对效率的影响

1. 线性探测法的查找性能

可以证明,线性探测法的期望探测次数满足下列公式:

$$p = \begin{cases} \frac{1}{2} \left[1 + \frac{1}{(1-\alpha)^2} \right] & (对插入和不成功查找而言) \\ \frac{1}{2} \left(1 + \frac{1}{1-\alpha} \right) & (对成功查找而言) \end{cases}$$

当α= 0.5时,

- □ 插入操作和不成功查找的期望 ASLu = 0.5*(1+1/(1-0.5)²) = 2.5 次
- □ 成功查找的期望 ASLs = 0.5*(1+1/(1-0.5)) = 1.5次

H(key)	0	1	2	3	4	5	6	7	8	9	10	11	12
key	11	30		47				7	29	9	84	54	20
冲突次数	0	6		0				0	1	0	3	1	3

期望 ASLu = 0.5*(1+1/(1-0.69)²) = 5.70次

期望 ASLs = 0.5*(1+1/(1-0.69)) = 2.11次(实际计算ASLs = 2.56)

2. 平方探测法和双散列探测法的查找性能

可以证明,平方探测法和双散列探测法探测次数满足下列公式:

$$p = \begin{cases} \frac{1}{1-\alpha} & (对插入和不成功查找而言) \\ \frac{1}{-\alpha} \ln(1-\alpha) & (对成功查找而言) \end{cases}$$

当α= 0.5时,

- □ 插入操作和不成功查找的期望 ASLu = 1/(1-0.5) = 2 次
- □ 成功查找的期望 ASLs = -1/0.5* In(1-0.5) ≈ 1.39 次

H(key)	0	1	2	3	4	5	6	7	8	9	10
key	11	30	20	47			84	7	29	9	54
冲突次数	0	3	3	0			2	0	1	0	0

α= 9/11=0.82,于是

期望 ASLu = 1/(1-0.82) ≈ 5.56次

期望 ASLs = -1/0.5* In(1-0.5) ≈ 2.09次(例中ASLs =2)。

❖ 期望探测次数与装填因子α的关系。

当装填因子α< 0.5的时候,各 种探测法的期望探测次数都 不大,也比较接近。 U.I 12.0 9.0 6.0 3.0 0.0 .10 .15 .20 .25 .30 .35 .40 .45 .50 .55 60 .65 .70 .75 .80 .85 .90 .95

> 线性探测法(虚线)、双散列探测法(实线) U表示不成功查找,I表示插入,S表示成功查找

❖ 期望探测次数与装填因子α的关系。

.10 .15 .20 .25 .30 .35 .40 .45 .50 .55 60 .65 .70 .75 .80 .85 .90 .95

线性探测法(虚线)、双散列探测法(实线) U表示不成功查找,I表示插入,S表示成功查找

❖ 期望探测次数与装填因子α的关系。

.10 .15 .20 .25 .30 .35 .40 .45 .50 .55 60 .65 .70 .75 .80 .85 .90 .95

线性探测法(虚线)、双散列探测法(实线) U表示不成功查找,I表示插入,S表示成功查找 建议装填因子不要超过0.85

3. 分离链接法的查找性能

所有地址链表的平均长度定义成装填因子α,α有可能超过1。 不难证明: 其期望探测次数 p为:

$$p = \begin{cases} \alpha + e^{-\alpha} & (对插入和不成功查找而言) \\ 1 + \frac{\alpha}{2} & (对成功查找而言) \end{cases}$$

当 $\alpha = 1$ 时,

- □ 插入操作和不成功查找的期望 ASLu = 1+e⁻¹ = 1.37 次,
- □ 成功查找的期望 ASLs = 1+1/2 = 1.5 次。
- ▶ 前面例子14个元素分布在11个单链表中,所以α= 14/11≈1.27, 故期望 ASLu = 1.27+e^{-1.27}≈ 1.55次 期望 ASLs = 1+1.27/2 ≈ 1.64次(例中ASLs =1.36)。

- 选择合适的 h(key),散列法的查找效率期望是常数*O(1),*它几乎与关键字的空间的大小n无关!也适合于关键字直接比较计算量大的问题它是以较小的α为前提。因此,散列方法是一个以空间换时间
- ◆ 散列方法的存储对关键字是随机的,不便于顺序查找关键字,也不适合于范围查找,或最大值最小值查找。

开放地址法:

散列表是一个数组,存储效率高,随机查找。

♥ 散列表有"聚集"现象

分离链法:

数组与链表结合

- 散列表是顺序存储和链式存储的结合,链表部分的存储效率 和查找效率都比较低。当冲突较多时,链表需要从头到尾扫描,效率较低
- ★ 关键字删除不需要"懒惰删除"法,从而没有存储"垃圾"。
- **◇** 太小的α可能导致空间浪费,大的α又将付出更多的时间代价。 不均匀的链表长度导致时间效率的严重下降。

