Téléinformatique - TD du 03/01/2005

Mankalas

February 14, 2005

Formules

- $D=R_{\mbox{effective}}\log_2(V)$ avec D débit binaire (en b/s), R rapidité de modulation (baud)
- $R_{\text{maximale}} = 2BP$
- $\frac{S}{B}db = 10 \log_{10} \left(\frac{S}{B}db\right)$ avec $\frac{S}{B} = \frac{\text{Signal}}{\text{Bruit}}$
- $C = BP \log_2 \left(1 + \frac{S}{B}val\right)$ avec C capacité d'un suppport (en b/s) et BP bande passante (en Hz).
- $V = \sqrt{1 + \frac{S}{B}Val}$ avec V valence, nombre de niveaux de tension (ou états) que peut prendre le signal.
- $\log_2(x) = 3,32\log_{10}(x)$.

Exercice 1

1. La table des codes de Huffman donne :

\mathbf{E}	A	S	Τ	U	\mathbf{Z}	
0.34	0.28	0.13	0.12	0.08	0.05	
00	01	100	101	110	111	

2. La taux de compression est :

	nombre de bits pour 100 symboles	taux de compression
ASCII	700	34%
EBCDIB	800	30%
Huffman	238	100%

Exercice 2

On ajoute 3 zéros car le polynôme est de degré 3

	1	0	0	1	1	1	1	0	0	0	1011
\oplus	1	0	1	1							
		1	0	1	1	1	0	0	0		
	\oplus	1	0	1	1						
						1	0	0	0		
					\oplus	1	0	1	1		
						0	0	1	1		

Exercice 3

1000 caractères ASCII + parité = 8000bits, R=2400bps, 2 bits par état. On a $D=R\log_2(V)=2400\log_2(4)=4800b.s^{-1}$, donc le temps de transmission est de $\frac{8000}{4800}=1,7s$.

Exercice 4

La quantification de la voix s'effectue sur 256 niveaux, la bande passante est de $4000 \mathrm{Hz}$. On a 8000 échantillons par seconde, un échantillon est codé sur 8 bits, donc la bande passante de $64000 \mathrm{b/s}$ est nécessaire.

Exercice 5

1.
$$R_{\text{max}} = 2BP = 2 \times (2900 - 500) = 4800 Hz$$
 et
$$R_{\text{effective}} = \frac{D}{\log_2(V)} = \frac{9600}{3} = 3200 bauds$$

2. On a

$$V = \sqrt{1 + \frac{S}{B}val} \Rightarrow V^2 = 1 + \frac{S}{B}val \Rightarrow \frac{S}{B}val = V^2 - 1 \Rightarrow \frac{S}{B}val = 8^2 - 1 = 63$$
 et
$$\frac{S}{B}db = 10\log_{10}\left(\frac{S}{B}val\right) = 18db$$

Exercice 6

On a

$$C = BP \log_2 \left(1 + \frac{S}{B} val\right) = (3400 - 300) \log_2 \left(1 + 10^{\frac{S}{10B}}\right) = 3100 \times 3, 32 \log_{10}(1001) = 30899b/s$$

Exercice 7

- 1.
- 2. $R = 500bauds \Rightarrow D = R \log_2(V) = 1000b/s$
- 3. On a

$$C = BP \log_2 \left(1 + \frac{S}{B}val\right) = \frac{R}{2} \log_2(1 + 10^6) = 250 \times 3, 32 \log_{10}(10^6) = 4980b/s$$

Exercice 8

- 1. 14 intervalles temporels fois 8 bits = 112 bits
- 2. Le débit de la voir composite : $14 \times 1200 = 16800b/s$
- 3. L'efficacité de ce multiplexeur est de

$$\frac{\text{debit utile}}{\text{debit total}} = \frac{12 \times 1200}{14 \times 1200} = 86\%$$