1.(1)解:对此问题 Euler公子的具体形式为:

 $y_{n+1} = y_n + h f(x_n, y_n) = y_n + o((x_n + y_n) = o(|x_n + |y_n|) + o(|x_n + y_n|) = o(|x_n + |y_n|) + o(|x_n + |y$

由初值Yo=●出发按上式计算.所得数值结果见碍:

(实际上,止时间 魁精确解为 Y=-X-1f2ex)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 1.0 In. 0 .01 Yn 1.0000 1.1000 1.2200 1.3620 1.5282 1.7210 1.9431 2.1974 2.4872 2.8159 3.1875 y(%) 1.0000 1.1103 1.2428 1.3997 1.5836 1.7974 2.0442 2.3275 2.6511 3.0192 3.4366 y(1/n)-yn 0.0000 0.0103 0.0228 0.0377 0.0554 0.0764 01011 0.130/ 0.1639 0.2033 0.249/ 由Y(sn)-Yn可见,当x建设拉门, Euler公村方法与Y住B的值设差建实起状.

(2)解:对此问题Eder公理各种对为:

Ynt = Yntal (yn - 2xn) = 1.14n - 0.2xn (n=0.1...10).

由初值YoiM发技上计计算

(实际上,此问题精确解为 y=dsolve('Dy=y-2*x/y', 'y(0)=1', 'x'), y=(2x+1)立)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Yn 1.000 1.1000 1.1918 1.2774 1.3582 1.4351 1.5090 1.5803 1.6498 1.7178 1.7848 YCM) 1.000 1.0954 1.1832 1.2649 1.3416 1.4142 1.4832 1.5492 1.6125 1.6733 1.7321 Yn-y(xn) \$ 0.000.0.0046 0.0086 0.0125 0.0166 0.0209 0.0258 0.0311 0.0373 0.0445 0.0527 由Yn-Ych)可见,Ewler为结与实际按果很相近,但P随为趋于1,误差会增大。

2.解:对此问题Euler公理体形式:

 $y_{n+1} = y_n + 0.5(1 - \frac{2x_n y_n}{1 + x_n^2})$ (n=0.1...4) 由初值4(0)-0出发按上式计算:

In 0 0.5 1.0 1.5 2.0 Yn 0.00000 0.50000 0.80000 0.90000 0.98462 y(xn) 0.00000 0.43333 0.66667 0.80769 0.93333 yn-y(xn) 0.00000 0.06667 0.13333 0.09231 0.05129

由Yn-Y(不)可称的预测,仅不从O变化到1,·Euler为法该差先增大后增小。

3·(1)解: 由改进 Euler公均:

 $y_p = y_n + h f(x_n, y_n) = y_n + O((x_n + y_n) = O(|x_n + h|y_n) = O(|x_n + h|y_n + O(0))$ $y_n + g = y_n + O(1(|x_n + O(1) + O(1)) = y_n + g(y_n + y_n) = y_n + g(y_n + g(y_n + g(y_n)) = y_n + g(y_n + g(y_n + g(y_n)))$ 黄文値 丝果ない下:

In 1	Yn	Y(In)	y(1/2n) - yn -
0	1.0000	1.0000	0.0000
0.1	1.1100	11103	0.0003
0.2	413988 [242]	1.2428	0.0007
0.3	15818 3985	1,3997	0.0012
0.4	1.79491.5818	1,5836	0.0018
' 1	7949	1.7974	0.0025
0.5		2.0442	0.0033
0.6	2.323020.409	'	0.0044
0.7	2.6450313	2,3275	0.0055
0.8	.2.6456	2.6511	0.0068
0.9	3.0124	3.0192	l l
١,٠		3:4366	0.0084
1.0	3,4282	314300	
	1	1	

(2)解:由设进fuler公式有:

$$y_{p} = y_{n} + h f(x_{n}, y_{n}) = y_{n} + \alpha_{1} \left(y_{n} - \frac{2x_{n}}{y_{n}}\right)$$

$$y_{q} = y_{n} + h f(x_{n} + h, y_{p}) = y_{n} + \alpha_{1} \left(y_{p} - \frac{2(x_{n} + \alpha_{1})}{y_{p}}\right)$$

$$y_{n+1} = \pm \left(y_{p} + y_{q}\right)$$

数値結果がT:

2571旬	紹朱欠い・		
	U	y (xn)	$y_n - y(x_n)$
7n	1 0000	1.0000	0.0000
0	1.0000	1.0954	0.0005
0.1	1.0959	1:1832	0.0009
0.2	1.1841	12649	0.0013
0.3	1.2662	1.3416	0.0018
0.4	1.3434 1.4:164	1.4142	0.00 22
0.5	1.4860	1.4832	0.00 2 8
0.6		1,5492	0.00 33
a7	1.5525	1.6125	0.0040
0.8	1.6165	1,6733	0.00 49
0.9	1.6782	1.7321	0.0058
1.0	1,7379		1

牛解:(1)用改进Euler为法:

$$y_{p} = y_{n} + h f(x_{n}, y_{n}) = y_{n} + 0.5 \left(1 - \frac{2x_{n}y_{n}}{1 + x_{n}^{2}}\right)$$
 $y_{q} = y_{n} + h f(x_{n} + y_{n}) = y_{n} + 0.5 \left(1 - \frac{2(x_{n} + 0.5)y_{p}}{1 + (x_{n} + 0.5)^{2}}\right)$
 $y_{n+1} = \frac{1}{2} \left(y_{p} + y_{q}\right)$

数值结果如:

- <u>Y</u>	·yn	1 4 (3n)	4(Nn)-4n.
$\frac{\lambda_n}{\sigma}$	0.00000	0.00000	0.00000
	0.400000	0.43333	0.03333
0.5			0.0 3/67
1.0	0.63500	0.66667	0.02009
1.5	0.78760	0.80769	'
2.0	6.92103	0.93333	0.01230
			1, , , , , ,

与第2蹬相比,改进Eulers法日月显精确度更高。

(2) 用4所RK为法:

由公
$$(9+9)$$
 有:

$$\begin{cases} y_{n+1} = y_n + \frac{0.5}{6} (K_1 + 2K_2 + 2K_3 + K_4) \\ K_1 = 1 - \frac{2x_n y_n}{1 + x_n x_n} \end{cases}$$

$$K_2 = 1 - \frac{2(x_n + \frac{0.5}{2})(y_n + \frac{0.5}{2}K_1)}{1 + (x_n + \frac{1}{4})^2}$$

$$K_3 = 1 - \frac{2(x_n + \frac{0.5}{2})(y_n + \frac{1}{4}K_1)}{1 + (x_n + \frac{1}{4})^2}$$

$$K_4 = 1 - \frac{2(x_n + \frac{0.5}{2})(y_n + \frac{1}{4}K_3)}{1 + (x_n + \frac{1}{4})^2}$$

$$1 + (x_n + \frac{1}{4})^2$$

$$1 + (x_n + \frac{1}{4})^2$$

,			
Xn	yn I	Y(Mn)	y(xn)-4n
0	0.00000	0.00000	0.00000
0.5	0.43322	0.43333	0.0003.6
1.0	0.66631	0.66667	0.00027
1.5	0.80742	0.80769	
2.0	0.93316	0.93333	0.000 17
) , , , , , , , , ,		

与2數相比,精度明显高。

5.解: 宝y= soetdt, 则{y'=ex2,从和全h=0.1.

由Euler公式有:

Yn+=Yn+hf(Yn,Yn)=Yn+olexn, 又的=0,则有:

•				
样野	Xn	y _n	Xn	y _n
•	0.1	0.0000 0.1000 0.2010 0.3051 0.4145	0.6 0.7 0.8 0.9	0.6603 ⁻ 0.8036 0.9668 1.1565
	0.5	0.5319	1.0	1.3813
,, ,			14 12017	

则由Euler公式·司得工(1)在不1处近似为1,3813

由改革Euler公式有:

$$y_q = y_n + o_1 e^{(g_n + o_1)}$$

 $y_{n+1} = \pm (y_p + y_q) = y_n + \frac{1}{20} (e^{x_n^2} + e^{(g_n + o_1)^2})$.

则有:

1.4.1			
-Xu	T I	Xn	yn
-"1	<u> </u>	0.5	0.5461
0	0.0000	_	` . <u>.</u>
011	0.1005	0.6	0.6819
,	0.2030	0.7	0.8352
0.2	İ	0.8	1.0116
0.3	0.3098	1	· .
0.4	0.4232	0.9	1.2189
0.1	1017232	1.0	14672
	url Kilning	97114 4-161 3	61114111/77

由改进Euler公式,引得I(A)在本1处近似为1.4672

6.解: 中点公式:

$$y_{n+1} = y_n + 0.2K_2$$

 $\begin{cases} y_{n+1} = y_n + 0.2K_2 \\ K_1 = x_n + y_n \end{cases}$
 $\begin{cases} K_2 = x_n + 0.1 + y_n + 0.1K_1 \end{cases}$

计算结果如下:

71 平500			7 77
-X _b	y _n	Xn	yn -
-111	1.0000	0.8	2.6307
0			3,4054
0.2	1,2400	1.0	7,403
	1.5768		1
0.4	1,5100		
,	2.0317	l	
0.6	1 2.03,1		-
	1	•	•

则由吃公村计算得400在产1分 近似值为3.405件

四阶RK公式:

$$\begin{cases} y_{n+1} = y_n + \frac{o.2}{6}(K_1 + 2K_2 + 2K_3 + K_4) \\ K_1 = X_n + y_n \\ K_2 = X_n + 0.1 + y_n + 0.1 K_1 \\ K_3 = X_n + 0.1 + y_n + 0.1 K_2 \\ K_4 = X_n + 0.2 + y_n + 0.2 K_3 \end{cases}$$

计算结果如:

	_		The state of the s
Xn I	<u>Yn</u>	I Nn 1	yn
.0	1.0000	0.6	2.0442
0.2	1.2428	0,8	2.6510
0.4	1,5836	1.0	3,4365.
Í		l	

贝山由四阶RK公式:有 y(x)在不1处的近似值为3.4365.

$$\begin{cases} y_{nH} = y_n + \frac{\alpha_1}{6}(K_1 + 2K_2 + 2K_3 + K_4) \\ K_1 = -y_n \\ K_2 = -y_n - \frac{\alpha_1}{2}K_1 \\ K_3 = -y_n - \frac{\alpha_2}{2}K_2 \\ K_4 = -\alpha_1K_3 \end{cases}$$

计算结果如下:

Xn	y _n	Xn	<u> Yn</u>
	1.0000	0.6	0.6123
0.1	0.9215 0.8492 0.7825 0.7211 0.6645	0.7	0.5643 0.5200 0.4792 0.4415

则须挺
$$\{C_2a=\pm\}$$
 \Rightarrow $\{a=\pm\}$ $C_2b=\pm$.

则当 a=6=至时, 其子为二阶公式

9. 解: 根据题意, Yn=nh=0.2n, fn=-Ynyn=-0.2nyn 由四所Adams显式公子有:

'Yn+1= Yn + h/24 (55 fn - 59 fn + +37 fn -2 - 9 fn -3)

= yn + 0.2 (55 xn yn + 59 xn + yn + 37 xn - 2 yn - 2 + 9 xn - 3 yn - 3)

= $y_n + \frac{1}{120} \left(-11ny_n^2 + 11.8(n-1)y_{n-1}^2 - 7.4(n-2)y_{n-2}^2 + 1.8(n-3)y_{n-3}^2 \right)$

(n=3,4,=5)

由四所Adam 隐松梢:

$$y_{n+1} = y_n + \frac{1}{14} \left(9 f_{n+1} + 19 f_n - 5 f_{n-1} + f_{n+2} \right) y_{n-1}^{-1}$$

$$= y_n + \frac{1}{120} \left(-1.8 (n+1) y_{n+1}^2 - 3.8 n y_n^2 + (n-1) \frac{1}{120} - 0.2 (n-2) f_{n-2}^{-1} \right)$$

 $\text{RIYM+=} \frac{60}{1.8(n+1)} \left(-1 + \sqrt{1 + 4x} \frac{1.8(n+1)}{120} x \left[y_n + \frac{1}{120} \left(-3.8 \text{ Ny}_n^2 + (n-1) f_n y_{n-1}^2 - 0.2(n-2) y_{n-2}^2 \right) \right] \right)$

利用精确解: y= 产业 水出起 步值后,按上面公式计算,结果如下:

~	Adam显式性		Adams P為式法.	
. Xn	y _n	14 (xn) - 4n	y _n	14(Kn)-4n
0.2.	\$ 2 1:9230769 1.7241379 1.4705882 1.232429 1.002328	1.29 X10 ⁻²	1.9230769 1.7241379 1.7241379 1.387811 1.469512 1.218639 0.999658	8-27×10-3 1.075×10-3 8.73×10-4 3.416×10-4

10.证明:因为Ynn=生(Yn+Yn-1)+年·(4fn+1-fn+3fn-1)=生(Yn+Yn-1)+年(4Yn+1-Yn+3Yn-1) 则曲截断键改变。 Tn+1=y(xn+h)-±y(xn)-±y(xn-h)-+[4y(xn+h)-y(xn)+3y(xn-h)] = 4(xn)+h4(xn)+ ±h24"(xn)+ ±h34"(xn)+0(h4)-+4(xn)++4(xn)-+h34"(xn) + 1x31 h3 y"(xn) + O(h4) - 4[44(xn)+4h y'(xn)+4h2 y"(xn)+O(h)-y(xn) $-3hy''(5n)+\frac{3h^2}{11}y'''(5n)+o(h^2)$ =- \frac{1}{2} \fr 古约=阶方法: 回截断误差的主项为-豪昂Y"(Nn)+OCh+). 11.解:的如=4n+h4n+产生2n++349n++41+11 yn+= yn-hynth yn - h3 yn + h4 yn - ... yn+1 = yn+hyn++2yn++3yn++... yn-1= yn-hyn++2yn-13-yn+... BALL: 4n+ 12 (Sfn+1+8fn-fn-1) $= y_n + \frac{h}{12} (sy'_{n+1} + 8y'_n - y'_{n-1})$ = Yn+= [5(yn+hyn++yn"++yn"++yn")+8yn-yn+hyn-+yn"++yn"++yn"++yn"++yn") $= y_n + h y_n' + \frac{h^2}{2} y_n'' + \frac{h^2}{2} y_n''' + \frac{h^2}{2} y_n''' + o(h^5)$

比较传载公案数引待,故二步公武丹有三所精愈。

局部误差的主项为[$\frac{5+}{5+}$ $y_n^{(4)}$ - $\frac{6+}{12}$ $y_n^{(4)}$ + $o(h^5)$] = $\frac{5+}{24}$ $y_n^{(4)}$ + $o(h^5)$

14.解:向后Euler为法: Yn+1=Yn+hf(Yn+1,Yn+1)用于Y'=/Y 有当まりかりかり 21 4n+= TI-7/11. Yn $\bar{h} = \lambda h$ 1+11-<1 (>)1-1/>1 它是以(1,0)为国心,,)为半径的单位国外部, 故绝对稳定性区间为一户<为h<0