5. Übungsblatt zur Vorlesung "Stochastik und Numerik"

Aufgabe 5.1 (Prüfungsaufgabe)

Sei X eine stetige Zufallsvariablen mit Wahrscheinlichkeitsdichte:

$$f(x) = \begin{cases} c(x-2), & 2 \le x \le 3\\ 0, & \text{sonst} \end{cases}$$

a) Bestimmen Sie *c* und die Verteilungsfunktion der Zufallsvariablen X.

Im Folgenden sei c = 2.

- b) Berechnen Sie P(2.1 < X < 2.8).
- c) Bestimmen Sie den Erwartungswert, die Varianz und den Median von X.

Aufgabe 5.2 (Stetige Verteilung und Quantil-Funktion)

Sei *X* eine stetige Zufallsvariable mit Verteilungsfunktion:

$$F(x) = \frac{e^x}{1 + e^x}$$

- a) Bestimmen Sie die zugehörige Dichte f(x).
- b) Stellen Sie die *F*(*x* grafisch dar und überzeugen Sie sich davon, dass *F* streng monoton und damit umkehrbar ist.
- c) Ermitteln Sie mit der Umkehrfunktion $F^{-1}(p)$ einen Ausdruck für das p-Quantil x_p und berechnen Sie das 1., 2. und 3. Quartil der Verteilung.

Aufgabe 5.3 (Erwartungswert einer transformierten Zufallsvariable)

Die Grünphase (einschließlich Blinkphase) einer Fußgängerampel beträgt 25 Sekunden, die Rotphase 65 Sekunden. Sie kommen zu einem zufälligen Zeitpunkt an die Ampel. X sei die Ankunftszeit und Y = g(X) die Wartezeit an der Ampel.

Wie lange warten Sie im Mittel, wenn Ihre Ankunft an der Ampel rein zufällig innerhalb eines Intervalls von 90 Sekunden bestehend aus Grün- und Rotphase erfolgt?

Aufgabe 5.4 (Alternative Formeln zur Berechnung der Varianz und Kovarianz)

Beweisen Sie die folgenden Formeln für Zufallsvariablen X und Y:

a)
$$Var[X] = E[X^2] - (E[X])^2$$

b)
$$Cov[X, Y] = E[X \cdot Y] - E[X] \cdot E[Y]$$