Las | Si
$$dv(y) = 0$$
 alors
Las | Empilery ser AT.
 $dv(y) = 1$;
 $debrt(y) = t$;
Las | $t = t+1$.
 $pere(y) = x$;

. Excepte:

AT: & pf bx skldx xx

	a	6	اد	d	ا	17	19	/h	[i	1	h	P
père	a	a	d	h	i	Ь	h	9	j	f	j	h
diht	1	2	11	I	18	3	6	7	17	4	5	8
Fin	24	23	12	13	19	22	15	14	20	21	16	9

Vos (b) = { b, e}

Vos (c) = (b, g, d)

Vois (d) = { c, h}

Vois (h) = [1,9, e]

Vos (e) = {a,f,it

Vov (f) = (j,9,5,ef

160(e)={4,43.

16is (g)={k,h,f,c]-vois(i)={e,j}

Von (h)= (g, e, d) Von(j)= /h, f, i}-

(Ah, minu le piles ent à l'aims ...)

On obtient l'ordre: on explore les devendants de haire ab f j k g h l l d c c d h g h è e e i s f b a.

Chaque interale correspond de réserce dons la pile.

Analyse:

Terminaison /complexité: Si le temps d'empil */ dépil * et 0(1) -> Oron

Correction:

On se set des intervals de présence double pile pur vorr qu'en a ou aubre romal:

ofait 1: On n'a pas 12 19 x, y

Pr: Sa vient du forctionement de la pile AT: si on empile x avant y, il famora dépiler y avant z. D.

Ainsi les seuls cas de figure sont: LLJ et LJLJ. (on a un système de parenthésage). Pour & fixé, ser intervale est:

12 fint, fifty proper avec h > 0.

ofait 2: les fi sert exactement les fils de x dans l'arbre.

Pr: Pla est empilé jute agrè x, donc père (f1) = se Ala fin de l'intervale de £1, £1 est dépilé de AT et Ex toure en haut de AT · fi est alors empilé, donc pire (fi)= x ... de nême ti.

I Invesement si y a pour père x , il a été traité Cosque x était en haut de AT, donc y est l'un des fi

Ona ainsi la propriété rivante:

g descendant de x on [x [y y] x]

(delit(x) < delit(y) < fin(y) < fin(x)

ofait 3: On a un orbre rormal

Pc: Soit suy EE(G), over disens dilat(x) < debut (y) On repent pas avoir [X-x]...[y...y] prisqu'au moment of on dépile x, tous ses vosites ont été vivités, desc ona: [x-19-19]. x) et y est en descendant de x .

[-Problème du jour 1°5-]

STABLE - MAX .

Entrèe: 6= (V,E)
Sortie: ens X de sonnet de G formant un stable de taille
Maximale

- Sa, et stable maximal par inclusion 16,c,df stable maximum (= de cordinalité maximale).

le poblème est NI- difficile et nême:

1000-APPROX - STABLE - MAX

|Entrée: 6=(V,E)

Sortie: ens X de sonnet de G formant un stable et de taille > 1000 de celle d'instable maximum.

C'et NP- complet et a peut remplacer loss par n'importe quoi, sa reste NP-couplet: STABLE-MAX est NON-Apporimable.

- Chap IV: Graphes vietàs.

II. Définitions de base.

· Un graphe oriente D=(V,A) est formé de sonnets: V et d'arcs: A, qui sert des couples d'élénets distincts de V (et plus des paires). Si say est un arc de D, yoc peut aussi être un arc de D mais pas forcément:

Exemple:

lesars sont ab, ba et bc

2 Je de longueur 4.

(3) le circuit de loigneur 4.

loque , cy EA, on dit que y est voisin sontant de a et que oc est voisin entrant de y. le voisinagé sontant de n est:

Nt(n)= {9: 204 E A} (OU Voist(x)).

Successe Sortant est: $d^{+}(x) = |N^{+}(x)|$.

- . On définit de nême wiinage entrant et degré entrant.
- · borsque d'(x)=0, or dit que x est une jource, si d'(x)=0, x est un puit.
- o bosque a orblie les orientations, on obtient m graphe non-vienté, dit graphe sous jacent. Pour un graphe vienté D, on rote U(D) son graphe sous-jacent.

tx: D U(0)

- · Codage: on peut coder D par:
 - 1-liste des arcs
 - 2- liste des voisins estants pour chaque x: N*(x) or Vois*(x).
 - > Matrice d'adjacence: AD: (aij) à laij= 0 si ij & A.

 (AD rist plus sy métrique!).

II) Parcours orientes.

- · C'est comme dans le cas non-orienté, sanf qu'en remplane Vois(x) par Vois+(x): on sit le sers des aves.
 - On va obtenir des <u>arborescences</u> <u>states</u>: une abrescence sortante est l'orientation d'un abre T de racine de telle façon que par tot , c, il existe un chemin orienté de r à se.

. Exemple de parcors en largeur:

AT: YEF & &bf										
Sommet	a	1 6	C] d	le	14	19	10		
père	<u></u>	a	e	6	r	d	a	r		
ordre :	4	6	3	5	2	7	8	1		
niveau	3	4	2	3	1	4	5	0		

. Si tos les semmets re set pas atteignables par un chemin depui, r, souveit en dosit un sommet son atteint et on continue le parcous à partir de ce sommet.

. Excepte de paras en profedeur:

On do nit un sommet restant.

AT= Leth gkydthl												
sommet:	a	15									1	h] (
père:	6	7	d	d	i	e	18	d	i	L		th
debut:	5	4	18	17	2	3	8	20		+-	†	21
Rin .		7	AA	o, 1		11	44		11	12	,	

livean: 4 3 X X 1 2 3 X 0 3 4

Il n'y a pas de drevin execté de i à d, don pas de riveaux. (dit(i,d)= 00)

· Son preuve, on va regarder les orborevences qu'on obtent à l'sue d'in parcons (en possideur et largeur).

· Parcers er largeur:

. Entre niveau identique: togas posible

D'un riveau haht! tojour

· Den niveau kāk avec

k>h': posible: nomeon

k < h': impossible

· larcour en profendeur.

olg: on peut aussi faire des vocas extremts...

. A l'intérieur d'une niène brande: tagars puible

. Din somet or ves in somet y rictant pas dans la même branche:

si d(x) > d(y): possible: nouveau.

si d(y) = d(y): inyouible.

IDAG.

. Un DAG (directed acyclic graph) est un graphe orienté sons circuit. Même si c'est l'analogne des orbres pour les graphes non orientes, leur structure est béaucoup plus complexe.

· Exemple:

Enfait, lot graphe adnet une orientation

Sow circuit.