ANSWER SCHEME [100 MARKS]

This paper consists of 10 structured questions. Answer all questions in the space provided. The marks for each part of the question is as indicated.

Question 1 (10 marks)

- a) Write a regular expression for the following languages. (6 marks)
 - ii) The language $L = \{w \in \{a, b\} : w \text{ contains the substring } aa\}$. (a + b)*aa(a + b)*
 - ii) The language of all strings over $\{a, b\}$ in which b is the second letter and a is the second last letter. (a + b)b(a + b)*a(a + b)
- b) Give a description of the following languages in your own words. (4 marks)
 - i) (ab)*ba The language of all strings over $\{a, b\}$ that start with zero or more substring ab and end with substring ba
 - ii) (a + b)*(b + aa)(a + b)* The language of all strings over $\{a, b\}$ that contain letter b or substring aa.

Question 2 (10 marks)

a) List down all the strings with length at most three and state whether the sets are finite or infinite.

```
{ε, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, bab, bba, bbb}, FINITE
```

- b) Give a regular expression of language A* that start and end with different symbol a(a + b)*b + b(a + b)*a
- c) Given $B = \{a, b, c\}$. Write the language of AB^2

```
A = {a, b}
B = {a, b, c}
B<sup>2</sup>= {a, b, c} {a, b, c} = {aa, ab, ac, ba, bb, bc, ca, cb, cc}
AB<sup>2</sup>= {a, b} { aa, ab, ac, ba, bb, bc, ca, cb, cc}
AB<sup>2</sup> = {aaa, aab, aac, aba, abb, abc, aca, acb, acc, baa, bab, bac, bba, bbb, bbc, bca, bcb, bcc}
```

d) Draw a state diagram of DFA which accepts set of all string over A* of length two.L = {aa, ab, ba, bb}

Question 3 (10 marks)

Complete the table below with the corresponding finite automata or regular expression.

Complete the table below with the corresponding finite automata of regular expression.			
Finite Automata	Regular Expression		
a B b	a(ba)*		
a b a b	(ab + ba)*		
A a B b C	a(a + b + c)		
A B C C	ab*c		
A a C b B a	(ab*a)* + ba*		

Question 4 (10 marks)

a) (4 marks)

Table 1.

IN the language	NOT IN the language
a, aa, ab, aab, abab, abaab	ba, abb

b) Convert the NFA to the equivalent DFA.

(4 marks)

NFA

δ	a	b	λ*
${q_0}$	$\{q_1\}$	ф	$\{q_0, q_3\}$
$\{q_1\}$	φ	$\{q_2\}$	$\{q_1\}$
${q_2}$ - final	ф	ф	$\{q_0, q_2\}$
{q ₃ }	$\{q_0, q_2\}$	ф	{q ₃ }

DFA

δ	α λ*	<i>b</i> λ*
{q ₀ , q ₃ }	$\{q_0, q_1, q_2, q_3\}$	$\{q_0, q_2\}$
$ \begin{aligned} & \{q_0, \ q_3\} \\ & \{q_0, \ q_1, \ q_2, q_3\} \text{ - final} \end{aligned} $	$\{q_0, q_1, q_2, q_3\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$ - final	{q ₁ }	ф
$\{q_1\}$	ф	$\{q_0, q_2\}$

c) Write the regular expression for the DFA. (aa* + aa*b + b) (ab)*

(2 marks)

Question 5 (10 marks)

Given NFA state diagram below:

a) Which of the strings ababa, aababa, ababaabb, abaaba are accepted by the NFA? (4 marks)

ababa : $q_0 - q_2 - q_1 - q_2 - q_3 - q_1$: accepted

aababa: $q_0 - q_2$ - : rejected

ababaabb: $q_0 - q_2 - q_1 - q_2 - q_3 - q_1 - q_2 - q_3 - :$ rejected

abaaba: $q_0 - q_2 - q_1 - q_1 - q_2 - q_3 - q_1$: accepted

b) Construct the transition table of above NFA.

(2 marks)

δ	a	b
> @	$\{q_1, q_2\}$	Ø
фl	{q ₁ , q ₂ }	Ø
q ₂	Ø	{q ₁ , q ₃ }
q ₃	{q ₁ , q ₂ }	Ø

c) Convert the NFA to equivalent DFA

(4 marks)

δ	a	b
> 00	{q ₁ , q ₂ }	Ø
{q ₁ , q ₂ }	{q ₁ , q ₂ }	{q ₁ , q ₃ }
{ q ₁, q₃}	{q ₁ , q ₂ }	Ø
Ø	Ø	Ø

Question 6 (10 marks)

a) Given a regular expression $a\Sigma^*b\Sigma^*c$ and set of alphabet $\Sigma = \{a, b, c\}$. List THREE strings that can be generated and TWO strings that cannot be generated by the regular expression. (5 marks)

Accepted strings { awc | w contains at least a b } Rejected strings

abc	В
aabc	Abb
abac	

- b) Write the regular expression over the alphabet $\Sigma = \{0, 1\}$ for each of the following language:
 - i) $\{w \mid w \text{ has } at \text{ most one } 0\}$. $1*(\lambda + 0)1*$ (1 mark)
 - ii) {w | w has exactly two 0's}. 1*01*01* (2 marks)
 - iii) {w | w has no more than two 0's}. $(1*(\lambda + 0)1*) + (1*01*01*)$ (2 marks)

Questions 7 (10 marks)

a) Draw the DFA for the language L1 = {w | w has odd number of 0's and odd number of 1's}. $\Sigma = \{0, 1\}.$ (5 marks)

b) Draw the NFA for the language L2 = {w | w contains the substring 101}. Σ = {0, 1}.(5 marks)

Questions 8 (10 marks)

a) Draw a state diagram for M. Is it a DFA or NFA? _____ DFA (3 mark)

- b) Give a regular expression for the language accepted by M. a*b*c* (3 marks)
- c) Give 2 possible strings accepted by M. a, b, c, ab, ac, bc, abc, aa, bb, cc (2 marks)
- d) Trace the computations that process the strings *abbbbc*. (2 marks)

Question 9 (10 marks)

Based on the diagram below, answer the questions.

a) Write the transition table of the NFA above.

(3 marks)

δ	а	b	ε
1	{3}	φ	{2 }
2	{1}	φ	φ
3	{2}	{2,3}	φ

- b) Draw the possibility tree for the computation of the following strings. (4 marks)
 - i. abba

ii. abaa

c) What is the regular expression of the FA above? (a*ab*(a+b))* (3 marks)

Question 10 (10 marks)

Given an FA description for Elevator/Lift.

a) Draw the state diagram for the Elevator.

(3 marks)

b) Inputs: 1, 2, 3, 4 (5 marks)

States: 1, 2, 3, 4
Final States: 1, 2, 4
Starting States: 1, 2, 3, 4

Rules : 1 to 1^{st} floor, 2 to 2^{nd} floor, 3 to 3^{rd} floor, 4 to 4^{th} floor

c) 4 (2 marks)