

Universidade Federal de Uberlândia

Faculdade de Engenharia Elétrica FEELT

TENSÕES, CORRENTE E POTÊNCIAS EM CIRCUITO SÉRIE, FATOR DE POTÊNCIA E CORRENTE ALTERNADA SENOIDAL - USO DE MEDIDORES ANALÓGICOS E DIGITAIS

Relatório da Disciplina de Circuitos Elétricos II por

Lesly Viviane Montúfar Berrios 11811ETE001

Prof. Wellington Maycon Santos Bernardes Uberlândia, Setembro / 2019

Sumário

1	Objetivos Introdução teórica										
2											
3	Preparação										
	3.1 Materiais e ferramentas	2									
	3.2 Montagem	3									
4	Análise sobre segurança										
5	Cálculos, análise dos resultados e questões										
6	Conclusões	4									

1 Objetivos

Montar um circuito série *RLC*, energizá-lo com tensão alternada senoidal, realizar medições usando equipamentos analógicos e digitais, efetuar desenvolvimentos teóricos e cálculos numéricos confrontando os resultados teóricos com aqueles obtidos experimentalmente.

2 Introdução teórica

3 Preparação

3.1 Materiais e ferramentas

1 - Fonte

Alimentará todo o circuito.

2 - Variador de tensão (Varivolt)

O equipamento permitirá obter o valor desejado de corrente a partir da regulagem correta da tensão fornecida pela fonte. Também chamado de autotransformador.

3 - Medidor eletrônico KRON Mult K

Possibilita encontrar a medição da potência real (P) - vatímetro, reativa (Q) e aparente (S) do circuito. Ele também possui função de cofasímetro, instrumento elétrico que mede o fator de potência (fp, $cos\theta$) ou o ângulo da impedância θ do circuito, para um circuito com a impedância $Z = Z \angle \theta$.

4 - Conectores

Foram utilizadas pontas de provas para a verificação das grandezas nos multímetros e pontas de prova específicas para multímetro. Para as conexões no circuito foi utilizado majoritariamente cabos banana-banana.

5 - Multímetro

Utilizado para medir a resistência R, capacitância C e gradezas do conjunto L e R_L especificados no experimento.

6 - Amperímetro analógico AC

Instrumento de maior precisão.

7 - Voltímetro analógico AC

Instrumento de maior precisão.

8 - Osciloscópio

Utilizado obter informações da forma de onda $(V_{pp}, V_{max}, V_{rms})$.

9 - Reostato R

Reostato com potência nominal de aproximadamente 1kW.

10 - Capacitor C

Reostato com potência nominal de aproximadamente 1kW.

11 - Bobina B

O valor medido da indutância da bobina B (reator para lâmpada vapor de sódio) realizada recentemente (Agosto/2019) é de 160 mH e resistência interna de 3,8 ohms.

3.2 Montagem

1) Montando o circuito

Realize a montagem informada na Figura 1, com os parâmetros R, C, L, RL, V e f (preenchendo as Tabelas 1 e 2).

Figura 1: Montagem experimental.

4 Análise sobre segurança

Os óculos de segurança são Equipamentos de Proteção Individual (EPIs) e são utilizados para a proteção da área ao redor dos olhos contra qualquer tipo de detrito estranho, que possa causar irritação ou ferimentos. Também protegem contra faíscas, respingos de produtos químicos, detritos, poeira, radiação e etc [5]. É importante a utilização desse equipamento durante os experimentos a fim de evitar qualquer dano, além de preparar o profissional para o manejo correto e seguro de qualquer equipamento.

Além disso, foi de extrema importância a presença do professor ou técnico na verificação da montagem do circuito antes de energizá-lo. Assim, reduziu-se riscos de curtos-circuitos ou sobre-carga na rede.

5 Cálculos, análise dos resultados e questões

1 - Complete a Tabela 1 com os dados do Caso A, sendo $V_e f = 100V$ e $R = 100\Omega$ (teórico).

Tabela 1: Parâmetros reais da montagem do primeiro caso.

$R[\Omega]$	V(V)	L[mH]	$R_L[\Omega]$	V[volts]	f[Hz]

2 - Complete a Tabela 3 com os dados do Caso B, sendo $V_e f = 50V$ e $R = 20\Omega$ (teórico).

Tabela 2: Parâmetros reais da montagem do segundo caso.

1	$R[\Omega]$	V(V)	L[mH]	$R_L[\Omega]$	V[volts]	f[Hz]

3 - Complete a Tabela 1 com os dados do Caso A, sendo $V_e f = 100V$ e $R = 100\Omega$ (teórico).

Tabela 3: Erro percentual das duas montagens.

	Medições									Cálculos		
Valores	V_{ef}	I	$cos\theta$	V_R	V_C	$V_{(L+R_L)}$	P	S	Q	θ^1	S^2	Q^3
	[V]	[A]	[fp]	[V]	[V]	[V]	[W]	[VA]	[VAr]	[circ]	[VA]	[Var]
	Caso A											
Medidos												
Calculados												
Erros (%)												
Caso B												
Medidos												
Calculados												
Erros (%)												

6 Conclusões

No experimento, um transformador foi uitlizado a fim de discutir o fenômeno da indutância mútua. A simulação experimental permitiu também calcular o fluxo e impedâncias envolvidas. Além disso, foi discutido a situação em que é removido o barramento superior do núcleo.

Sobreleva-se a importância dos Equipamento de Proteção Invidual, para melhor aproveitamento.

Referências

- [1] P. H. Rezende, "Circuitos Magneticamente Acoplados", UFU, 2018. Disponível em: https://www.moodle.ufu.br/pluginfile.php/702496/mod_resource/content/3/Cap.%20I_Acoplamento.pdf. Acesso em: ago. 2019.
- [2] J. D. Irwin, "Análise de Circuitos Em Engenharia", Pearson, 4^a Ed., 2000.
- [3] R. L. Boylestad, "Intrdução À Análise de Circuitos", Pearson, 10^a Ed., 2004.
- [4] B. S. Marczewski, B. J. R. Santos, F. H. G. Zucatelli, L. A. Tonin, "Experimento 4: Indutância Mútua.", Uversidade Federal do ABC, 2011. Disponível em: https://www.scribd.com/document/97029440/Relatorio-Exp4-Indutancia-Mutua-Circuitos-Eletricos-2-Trim3-3. Acesso em: set. 2019.
- [5] SafetyTrabi, "Óculos de segurança: Saiba quando utilizar este EPI", SafetyTrab, 2019. Disponível em: https://www.safetytrab.com.br/blog/oculos-de-seguranca/. Acesso em: ago. 2019.