APM 236H1F term test 1

13 October, 2010

FAMILY NAME	
GIVEN NAME(S)	
STUDENT NUMBER	
SIGNATURE	

Instructions: No calculators or other aids allowed.

This test has 3 questions whose values are given immediately after the question numbers. Total marks = 40.

Write solutions in the spaces provided, using the backs of the pages if necessary. (Suggestion: If you have to continue a question, you may use the back of the **previous** page.) Aspects of any question which are indicated in **boldface** will be regarded as crucial during grading. Show your work.

The duration of this test is 50 minutes.

1. (13 marks) Solve the following problem graphically: Maximize z = 5x + 6y subject to the constraints $\begin{pmatrix} x & - & y & \leq & 3 \\ x & - & 2y & > & 4 \end{pmatrix}$, $x \geq 0, y \geq 0$.

The feasible region

of the problem is

the intersection of the

two shaded regions.

Since they do not
intersect, the

problem is infeasible

	2.(a) (4 marks) Which points in \mathbb{R}^n belong to the line segment having endpoints $x_1 \in \mathbb{R}^n$ and $x_2 \in \mathbb{R}^n$?
	One correct answer is: points of the form $(1-1)x_1+\lambda x_2$ Where $0 \le \lambda \le 1$
	A second correct answer is: points of the form $C_1 \times_1 + C_2 \times_2$ 2.(b) (5 marks) Define the term convex set (in \mathbb{R}^n).
	One correct answer is: S is convex provided, for each X , and $x \in S$, the line segment joining X , and x , lies in S . A second correct answer is: S is convex provided, for each X , X of S and X of S $(1-x)x$, $+\lambda x$ of S . 2.(c) (5 marks) Let $S = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \in \mathbb{R}^2 \text{ s.t. } -x+2y \le 2 \text{ and } x-y \le 0 \right\}$. Prove that $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ is not an extreme point of S . $\begin{bmatrix} -2 \end{bmatrix} \in S$, since $-(-\lambda)+\lambda\cdot 0 = 2$ and $-\lambda-0 \le 0$
	[2] ES, since -2+2-2=2 and 2-2=0
	Also, [1]= \(\frac{1}{2} - \f
C+34	This chagiam is not party the proof completed above. The was used to motivate the proof.

Page 2 of 3

- 3. (13 marks) Write **one** linear programming problem, \mathcal{P} , which satisfies **all** of the following:
- (1) \mathcal{P} has 2 decision variables, x and y.
- (2) \mathcal{P} is in standard form.
- (3) The feasible region of \mathcal{P} has $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ as **extreme points**.
- (4) $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ are the **only** extreme points of the feasible region of \mathcal{P} .
- (5) \mathcal{P} is unbounded.

One solution is:

Maximus 2 = x s.t.

A second solution is:

Maximize Z= y st.

A third solution is -

Maximul Z = x S.t.

Page 3 of 3

(Questions 2.(c) and 3 each have infinitely many solutions)