552,061

(12)特許協力条約に基づいて公開された国際出願

(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2004年10月28日(28.10.2004)

PCT

(10) 国際公開番号 WO 2004/091663 A1

(51) 国際特許分類7: A61K 45/00, 31/404, 31/4045, 31/407, 31/553, C07D 403/04, 403/14, 498/22, A61P 25/28, 25/08, 25/22, 25/18, 25/24, C07D 487/14

(21) 国際出願番号:

PCT/JP2004/005503

(22) 国際出願日:

2004 年4 月16 日 (16.04.2004)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ: 特願2003-114579 2003年4月18日(18.04.2003) JP

- (71) 出願人(米国を除く全ての指定国について): 協和醱酵 工業株式会社 (KYOWA HAKKO KOGYO CO., LTD.) [JP/JP]; 〒1008185 東京都千代田区大手町一丁目6番 1号 Tokyo (JP).
- (72) 発明者; および
- (75) 発明者/出願人 (米国についてのみ): 森下 剛 (MORISHITA, Tsuyoshi). 桜田 一洋 (SAKURADA, Kazuhiro). 鈴木 恵子 (SUZUKI, Keiko). 池田 俊-(IKEDA, Shun-ichi).

- (81) 指定国(表示のない限り、全ての種類の国内保護が 可能): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) 指定国(表示のない限り、全ての種類の広域保護が 可能): ARIPO (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ(AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

国際調査報告書

2文字コード及び他の略語については、 定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

(54) Title: DRUG FOR NERVE REGENERATION

(54) 発明の名称: 神経再生薬

(57) Abstract: It is intended to provide a drug for nerve degeneration, a nerve stem cell neurogenesis promoter, a neuron obtained by culturing a nerve stem cell in the presence of the neurogenesis promoter, and a method of producing the neuron. To achieve the above objects, a drug for nerve degeneration which contains as the active ingredient a substance inhibiting the activity of a glycogen synthase kinase-3, a nerve stem cell neurogenesis promoter containing this substance as the active ingredient, a neuron obtained by culturing a nerve stem cell in the presence of the neurogenesis promoter, and a method of producing the neuron are provided. The above-described drugs are useful as remedies for nerve diseases such as Parkinson's disease, Alzheimer's disease, Down's disease, cerebrovascular disorder, cerebral stroke, spinal injury, Huntington's chorea, multiple sclerosis, amyotrophic

obtained by culturing a nerve stem cell in the presence of the neurogenesis promoter, and a method of producing the neuron are provided. The above-described drugs are useful as remedies for nerve diseases such as Parkinson's disease, Alzheimer's disease Down's disease, cerebrovascular disorder, cerebral stroke, spinal injury, Huntington's chorea, multiple sclerosis, amyotrophic lateral sclerosis, epilepsy, anxiety disorder, integration dysfunction syndrome, depression and manic-depressive.

(57) 要約: 本発明の課題は、神経再生薬、神経幹細胞のニューロン新生促進剤、該ニューロン新生促進剤の存在下、神経幹細胞を培養して得られるニューロンおよび該ニューロンの製造方法を提供することにある。該課題を解決するために、本発明は、グリコーゲンシンターゼキナーゼー3の活性を阻害する物質を有効成分として含有する神経幹細胞のニューロン新生促進剤、該ニューロン新生促進剤の存在下、神経幹細胞を培養して含有する神経幹細胞のニューロン新生促進剤、該ニューロン新生促進剤の存在下、神経幹細胞を培養して含有する神経幹細胞のニューロン新生促進剤、該ニューロン新生促進剤の存在下、神経幹細胞を培養して含有する神経幹細胞のニューロン新生促進剤、該ニューロン新生促進剤の存在下、神経幹細胞を培養して含有する神経幹細胞のニューロン新生促進剤、方法を提供する。本発明の医薬は、パーキン 神経幹細胞を培養して得られるニューロンおよび該ニューロンの製造方法を提供することにある。該課題を解決するために、本発明は、グリコーゲンシンターゼキナーゼ-3の活性を阻害する物質を有効成分として含有する神経再 神経幹細胞を培養して得られるニューロンおよび該ニューロンの製造方法を提供する。本発明の医薬は、パーキン ソン病、アルツハイマー病、ダウン症、脳血管障害、脳卒中、脊髄損傷、ハンチントン舞踏病、多発性硬化症、筋 萎縮性側索硬化症、てんかん、不安障害、統合失調症、うつ病、躁鬱病などの神経疾患治療薬として有用である。

明細書

神経再生薬

技術分野

本発明はグリコーゲンシンターゼキナーゼー3(以下、GSK-3と略す)の活性を阻害する物質を有効成分として含有してなる神経再生薬、GSK-3の活性を阻害する物質を有効成分として含有してなるニューロン新生促進剤、該ニューロン新生促進剤の存在下、神経幹細胞を培養して得られるニューロン、および該ニューロンの製造方法に関する。

10 背景技術

5

15

20

25

神経疾患とは、脳や末梢のニューロンが遺伝的要因、環境要因、加齢要因などにより傷害を受ける疾患である神経変性疾患と、神経の変性を伴わないうつ病および躁鬱病等とを総称する。神経変性疾患として、具体的には、パーキンソン病、アルツハイマー病、ポリグルタミン酸病、筋萎縮性側索硬化症、多発ニューロパチー、脊髄損傷、脳血管障害などがあげられる。これら神経変性疾患の一般的治療法は、ニューロンの傷害により失われた神経伝達物質を補充する療法であるが、該療法で症状が改善するのはパーキンソン病、アルツハイマー病などに限定される。また神経伝達物質補充療法では神経細胞死の進行を止めることはできない。

中枢神経系を再生する再生医療は、パーキンソン病で失われたドーパミン作動性 ニューロンの機能を積極的に回復させる治療法として検討が進められてきたが、中 絶胎児脳を用いる方法であることから様々な問題があり一般的な利用としては応 用されていない。

また、胎児脳から取得した神経幹細胞やヒト受精卵から取得したES細胞を生体外で大量培養した後、目的のニューロンへ変換して移植に用いるという治療法も検討されているが、目的とするニューロンへ正確に分化させる技術は確立されておらず、また胎児由来の神経幹細胞やヒトES細胞を用いる方法であることに起因する問題もあり、臨床応用は進んでいない。

一方、成体脳から神経幹細胞が分離され、ヒト成体脳でも生涯にわたりニューロデンの新生が起こることが報告されたことから、患者の脳内に内在する神経幹細胞を

薬剤などで刺激して再生を誘導して神経変性疾患を治療する方法が検討されている。

• 5

10

20

25

インスリン様増殖因子-1 [J. Neuroscience, <u>20</u>, 2896-2903(2000)]、線維芽細胞増殖因子-2 [Pro. Nat. Acad. Sci. USA, <u>98</u>, 5874-5879(2001)]、ステムセルファクター [J. Clin. Invest., <u>110</u>, 311-319(2002)]、エリスロポエチン [J. Neuroscience, <u>21</u>, 9733-9743(2001)]、全脳虚血 [J. Neuroscience, <u>18</u>, 7768-7778(1998)]、てんかん刺激 [J. Neuroscience, <u>22</u>, 3174-3188(2002)] などサイトカインの脳内投与や疾患モデルにより海馬や嗅球でのニューロン新生が促進されることが報告されている。また、腫瘍増殖因子-αの脳内投与により線条体でドーパミン作動性ニューロンが新生し、パーキンソン病の症状が改善することも報告されている [Pro. Nat. Acad. Sci. USA, <u>97</u>, 14686-14691(2000)]。さらに、海馬への虚血傷害により失われたCA 1 錘体細胞が虚血後 2 日目から 5 日目にかけて脳内に線維芽細胞増殖因子-2 と上皮細胞増殖因子を投与することにより、その40%が完全に回復することも報告されている [Cell, 110, 429-441(2002)]。

15 しかし、上記の方法は、いずれも蛋白性の因子を脳内に投与することが必要であり、 一般的な医療へと応用することは困難である。

末梢投与可能な低分子化合物によりニューロン新生を惹起できるものとしては、モノアミンオキシダーゼ阻害剤、セロトニン特異的なトランスポーター阻害剤、フォスフォジエステラーゼ IV 阻害剤などの抗鬱薬が報告されている [Neuropsychopharmacology, 25, 836-844(2001)]。これらの薬剤が脳内で神経再生を誘導するメカニズムとしては、セロトニン作動性ニューロンのセロトニン受容体シグナルに直接的または間接的に作用して、神経栄養因子を生産し、セロトニン作動性ニューロン周囲のニューロン新生を促進していることが考えられている。したがって、これらの薬剤はセロトニン作動性ニューロンの変性とは関係しない大部分の神経疾患においては、神経再生薬として利用することはできないと考えられる。

また、気分安定化薬のリチウムが細胞死抑制遺伝子 bc1-2 の発現を誘導することにより海馬で恒常的に新生している新生ニューロンをニューロン死から保護し、海馬でのニューロン新生を見かけ上増加させることが報告されてい[J. Neurochemistry, 75, 1729-1734(2000)]。またリチウムは神経栄養因子 BDNF の発

現を誘導することも報告されている [Neuropharmacology, 43, 1173-1179(2002)]。 しかしながら、リチウムが直接、神経幹細胞に働きかけ、ニューロン分化を促進することによりニューロン新生を促進させることについては報告されておらず、またリチウムの海馬以外でのニューロン新生促進活性についても報告されていない。また、リチウムが何故、神経変性を伴わないうつ病および躁鬱病に対し治療効果があるのかについても知られていない。

アルツハイマー病では、グリコーゲンシンターゼキナーゼー3(以下、GSKー3と略す)が、微小管関連蛋白質である夕ウ蛋白質を過剰にリン酸化することで神経原繊維変化を形成し、神経細胞死を誘導するという仮説が提唱されている[Trends in Molecular Medicine, 8, 126-132(2002)]。またGSK-3の活性を阻害する物質は、in vitro において成熟した神経細胞を保護する活性があると報告されている[J. Neurochemistry, 77, 94-102(2001)]。該報告に基づき、GSK-3の活性を阻害する物質は、アルツハイマー病をはじめ様々な神経変性疾患の治療薬として用いることができると考えられている(国際公開第00/38675号パンフレット)が、成熟したニューロンを保護することで実際に神経変性疾患を治療することができるか否か、およびGSK-3の活性を阻害する物質にニューロン新生促進作用があることは知られていない。

発明の開示

5

10

15

25

20 本発明の目的は、GSK-3の活性を阻害する物質を有効成分として含有してなる神経再生薬、該物質を有効成分として含有してなる神経幹細胞のニューロン新生促進剤、該ニューロン新生促進剤の存在下、神経幹細胞を培養して得られるニューロンおよび該ニューロンの製造方法を提供することにある。

本発明は以下の(1)~(41)に関する。

- (1) グリコーゲンシンターゼキナーゼー3(以下、GSK-3と略す)の活性を阻害する物質を有効成分として含有してなる神経再生薬。
 - (2) 神経再生薬が、神経疾患の治療薬である上記(1)の医薬。
 - (3) 神経疾患が、パーキンソン病、アルツハイマー病、ダウン症、脳血管障

害、脳卒中、脊髄損傷、ハンチントン舞踏病、多発性硬化症、筋萎縮性側索硬化症、 てんかん、不安障害、統合失調症、うつ病および躁鬱病からなる群より選ばれる神 経疾患である上記(2)の医薬。

- (4) GSK-3の活性を阻害する物質が、リチウムまたはその薬理学的に許 5 容される塩である上記(1)~(3)のいずれか1つの医薬。
 - (5) GSK-3の活性を阻害する物質が、ビスインドリルマレイミド誘導体、3-アリール-4-インドリルマレイミド誘導体、インドロカルバゾール誘導体、インドロ[3,2-d][1]ベンズアゼピン-6(5H)-オン誘導体もしくはインジルビン誘導体またはそれらの薬理学的に許容される塩である上記(1)~(3)のいずれか1つの医薬。
 - (6) GSK-3の活性を阻害する物質が、式(I)

$$\begin{pmatrix}
R^{2} \\
N \\
R^{3}
\end{pmatrix}$$

$$\begin{pmatrix}
R^{5} \\
R^{4}
\end{pmatrix}$$
(I)

10

15

20

25

[式中、n およびm は同一または異なって、1~3 の整数を表し、R¹、R³ および R⁴は同一または異なって、水素原子、置換もしくは非置換の低級アルキル、置換もしくは非置換の低級アルケニル、-COR6 (式中、R6 は水素原子、置換もしくは非置換の低級アルケニル、 置換もしくは非置換の低級アルケニル、置換もしくは非置換のの低級アルケニル、置換もしくは非置換のアリールまたは置換もしくは非置換の近級アルキルを表す)、-COOR7 (式中、R7 は水素原子、置換もしくは非置換の近級アルキル、置換もしくは非置換のアリールまたは置換もしくは非置換のシクロアルキルを表す)または-OR8 (式中、R8 は水素原子、置換もしくは非置換の低級アルキル、置換もしくは非置換のアリールまたは置換もしくは非置換のシクロアルキルを表す)を表し、R² および R5 は同一または異なって、水素原子、置換もしくは非置換の低級アルケニル、置換もしくは非置換の低級アルケニル、置換もしくは非置換の低級アルカンカルボニル、置換もしくは非置換の低級アルコキシカルボニル、置換もしくは非置換の低級アルコキシカルボニル、置換もしくは非置換の低級アルコキシカルボニル、置換もしくは非置換の低級アルコキシカルボニル、置換もしくは非置換の低級アルコキシカルボニル、置換もしくは非置換の低級アルコキシカルボニル、置換もしくは非置換の低級アルコキシカルボニル、置換もしくは非置換の所級アルコキシ、ニトロ、アミノまたはモノもしくはジ低級アルキルアミノを表し、n および m

がそれぞれ 2 または 3 であるとき、それぞれの R²および R⁵は同一でも異なっていてもよい] で表される化合物、式(II)

$$\begin{pmatrix}
R^{2A} \\
na
\end{pmatrix}$$

$$\begin{pmatrix}
R^{2A} \\
na
\end{pmatrix}$$

$$\begin{pmatrix}
R^{5A} \\
R^{3A}
\end{pmatrix}$$

$$\begin{pmatrix}
R^{5A} \\
na
\end{pmatrix}$$

$$\begin{pmatrix}
R^{5A} \\
na
\end{pmatrix}$$

$$\begin{pmatrix}
R^{5A} \\
na
\end{pmatrix}$$

(式中、na、ma、R^{1A}、R^{2A}、R^{3A}および R^{5A}は、それぞれ前記 n、m、R¹、R²、R³および R⁵ と同義である)で表される化合物もしくは式(III)

[式中、nb、mb、 R^{18} 、 R^{28} および R^{58} は、それぞれ前記 n、m、 R^1 、 R^2 および R^5 と同義であり、 R^{38} および R^{48} は同一または異なって、水素原子、置換もしくは非置換の低級アルキル、置換もしくは非置換の低級アルケニル、 $-COR^6$ (式中、 R^6 は前記と同義である)、 $-COOR^7$ (式中、 R^7 は前記と同義である)または $-OR^8$ (式中、 R^8 は前記と同義である)を表すか、または R^{38} と R^{48} が一緒になって、

$$\begin{array}{cccc}
X & (A)
\end{array}$$

10

15

(式中、k は 1 または 2 を表し、X は CH_2 、NH、酸素原子または硫黄原子を表し、 R^9 はヒドロキシ、カルボキシ、カルバモイルまたは低級アルコキシカルボニルを表す)を形成する] で表される化合物またはそれらの薬理学的に許容される塩である上記 (1) \sim (3) のいずれか 1 つの医薬。

(7) GSK-3の活性を阻害する物質が、式(Ia)

$$R^{2a}$$

$$\begin{array}{c}
 & H \\
 & O \\
 & N \\$$

(式中、R^{2a} は水素原子、低級アルコキシ、低級アルコキシカルポニル、アリールまたはニトロを表し、R^{3a} および R^{4a} は同一または異なって、置換もしくは非置換の低級アルキルを表す)で表される化合物またはその薬理学的に許容される塩である上記(1)~(3)のいずれか1つの医薬。

(8) GSK-3の活性を阻害する物質が、式(IIa)

10

(式中、ma は前記と同義であり、 R^{3Aa} は置換もしくは非置換の低級アルキルを表し、 R^{5Aa} はハロゲンを表す)で表される化合物またはその薬理学的に許容される塩である上記(1)~(3)のいずれか1つの医薬。

(9) GSK-3の活性を阻害する物質が、式(IIIa)

(式中、R⁹は前記と同義である)で表される化合物またはその薬理学的に許容される塩である上記(1)~(3)のいずれか1つの医薬。

15 (10) GSK-3の活性を阻害する物質が、3,4-ピス(1ーメチルインドール-3-イル)-1H-ピロール-2,5-ジオン、3-(1-メチルインドール-3-イル)-4-(1-プロピルインドール-3-イル)-1H-ピロールー2,5-ジオン、3-[1-(3-シアノプロピル)インドール-3-イル]-4-(1-メチルインドール-3-イル)-1H-ピロール-2,5-ジオン、3

- [1-(3-アミノプロピル) インドール-3-イル] -4-(1-メチルイン ドール-3-イル) -1H-ピロール-2, 5-ジオン、3-[1-(3-カルボ キシプロピル) インドールー3ーイル] -4-(1-メチルインドール-3-イル) -1 H-ピロール-2, 5 -ジオン、3 - [1 - (3 - カルバモイルプロピル) イ ンドールー3ーイル] -4-(1-メチルインドール-3-イル)-1H-ピロー . 5 $\nu - 2$, 5 - ジオン、3 - [1 - (3 - 7 ミノプロピル) インドール<math>- 3 -イル] -4-(1-メチル-5-プロピルオキシインドール-3-イル)-1H-ピロー ルー2, 5-ジオン、3-[1-(3-ヒドロキシプロピル) インドールー3-イ $[\mu]$ [-4-(1-メチル-5-フェニルインドール-3-イル)-1.H-ピロール-2, 5-ジオン、3-[1-(3-アミノプロピル) インドール<math>-3-イル] -10 4-(1-メチル-5-フェニルインドール-3-イル)-1H-ピロール-2,5-ジオン、3-[1-(3-ヒドロキシプロピル) インドール-3-イル]-4 - (1-メチル-5-メトキシカルボニルインドール-3-イル)-1H-ピロー ルー2、5ージオン、3ー[1-(3-ヒドロキシプロピル) インドールー3ーイ ル] -4-(1-メチル-5-ニトロインドール-3-イル) -1H-ピロール-15 2, 5-ジオン、3-(1-メチルインドール-3-イル)-4-[1-(3-ヒ ドロキシプロピル) -5-ニトロインドール-3-イル] -1H-ピロール-2, 5-ジオン、3-(2-クロロフェニル)-4-(1-メチルインドール-3-イ ル) -1 H-ピロール-2, 5 -ジオン、3 - (2, 4 -ジクロロフェニル) -4- (1-メチルインドール-3-イル)-1H-ピロール-2,5-ジオン、3-20 (2-クロロフェニル) - 4 - [1 - (3 -ヒドロキシプロピル) インドール- 3- 1 - 1 H - U U - 2 D - 2 D - 3 D - 4 Dインドール-3-イル] -3-(2-クロロフェニル) -1H-ピロール-2, 5 ージオンおよび

25

からなる群より選ばれる化合物またはその薬理学的に許容される塩である上記 (1)~(3)のいずれか1つの医薬。

GSK-3を阻害する物質が、式(IV) (11)

$$R^{13}$$
 R^{14}
 R^{10}
 R^{15}
 R^{19}
 R^{18}
 R^{17}
 R^{19}
 R^{19}
 R^{19}
 R^{19}
 R^{19}
 R^{19}
 R^{19}
 R^{19}
 R^{19}
 R^{19}

5

[式中、A は単結合または二重結合によって右に結合されている酸素または硫黄で あり、R¹⁰は水素原子、アリール、低級脂肪族置換基、特にアルキルおよび低級アル キルエステルからなる群より選択され、R¹¹~R¹⁴ はアルコキシ、アミノ、アシル、 脂肪族置換基、特にアルキル、アルケニルおよびアルキニル置換基、脂肪族アルコ ール、特にアルキルアルコール、脂肪族ニトリル、特にアルキルニトリル、シアノ、 ニトロ、カルボキシル、ハロゲン、水素原子、ヒドロキシル、イミノならびに α 、 10 β 不飽和ケトンからなる群より個別に選択され、R¹⁵~R¹⁸ は脂肪族置換基、特にア ルキル、アルケニルおよびアルキニル置換基、特に低級脂肪族置換基、脂肪族アル コール、特にアルキルアルコール、アルコキシ、アシル、シアノ、ニトロ、エポキ シ、ハロアルキル基、ハロゲン、水素原子ならびにヒドロキシルからなる群より個 別に選択され、Rioは脂肪族の基、特に低級アルキル基、脂肪族アルコール、特にア 15 ルキルアルコール、カルボン酸、および水素からなる群より選択される] で表され る化合物またはその薬理学的に許容される塩である上記(1)~(3)のいずれか 1つの医薬。

(12) GSK-3を阻害する物質が、7,12-ジヒドロ-インドロ[3,2-d][1]ベ ンズアゼピン-6(5H)-オン、2-ブロモ-7,12-ジヒドロ-インドロ[3,2-d][1]ベンズア 20 ゼピン-6(5H)-オン、9-ブロモ-7,12-ジヒドロ-インドロ[3,2-d][1]ベンズアゼピン -6(5H)-オン、9-クロロ-7,12-ジヒドロ-インドロ[3,2-d][1]ベンズアゼピン。 -6(5H)-オン、11-クロロ-7,12-ジヒドロ-インドロ[3,2-d][1]ペンズアゼピン

5

10

15

20

25

-6(5H)-オン、10-プロモ-7,12-ジヒドロ-インドロ[3,2-d][1]ペンズアゼピン -6(5H)-オン、8-プロモ-6,11-ジヒドロ-チエノ[3',2':2,3 アゼピノ[4,5-b]インド ール-5(4H)-オン、9-プロモ-7,12-ジヒドロ-4-メトキシ-インドロ[3,2-d][1]ペン ズアゼピン-6(5H)-オン、9-プロモ-7,12-ジヒドロ-4-ヒドロキシ-インドロ [3, 2-d] [1] ペンズアゼピン-6(5H)-オン、7, 12-ジヒドロ-4-メトキシ-インドロ [3, 2-d] [1] ペンズアゼピン-6 (5H) -オン、9-ブロモ-7, 12-ジヒドロ-2, 3-ジメトキシ -インドロ[3, 2-d][1]ペンズアゼピン-6(5H)-オン、9-プロモ-7,12-ジヒドロ-2,3-ジヒドロキシ-インドロ[3,2-d][1]ペンズアゼピン-6(5H)-オン、7,12-ジヒドロ -2.3-ジメトキシ-インドロ[3.2-d][1]ペンズアゼピン-6(5H)-オン、7,12-ジヒドロ -9-トリフルオロメチル-インドロ[3, 2-d][1]ペンズアゼピン-6(5H)-オン、7, 12-ジ ・ヒドロ-2, 3-ジメトキシ-9-トリフルオロメチル-インドロ[3, 2-d][1]ベンズアゼピ ン-6(5H)-オン、2-プロモ-7,12-ジヒドロ-9-トリフルオロメチル-インドロ・ [3, 2-d] [1] ベンズアゼピン-6(5H)-オン、9-ブロモ-7, 12-ジヒドロ-インドロ [3, 2-d][1]ベンズアゼピン-6(5H)-チオン、9-ブロモ-5, 12-ピス-(t-プチルオキシ カルボニル)-7,12-ジヒドロ-インドロ[3,2-d][1]ベンズアゼピン-6(5H)-オン、9-プロモ-12-(t-プチルオキシカルボニル)-7,12-ジヒドロ-インドロ[3,2-d][1]ベン ズアゼピン-6(5H)-オン、9-プロモ-5,7-ビス-(t-プチルオキシカルボニル)-7,12-ジヒドロ-インドロ[3, 2-d][1]ベンズアゼピン-6(5H)-オン、9-プロモ-5,7,12-トリ -(t-プチルオキシカルポニル)-7, 12-ジヒドロ-インドロ[3, 2-d][1]ベンズアゼピ ン-6(5H)-オン、9-ブロモ-7,12-ジヒドロ-5-メチルオキシカルポニルメチル-イン ドロ[3, 2-d][1]ベンズアゼピン-6(5H)-オン、9-プロモ-7,12-ジヒドロ-12-メチル オキシカルボニルメチル-インドロ[3, 2-d][1]ベンズアゼピン-6(5H)-オン、9-プロ モ-7, 12-ジヒドロ-12-(2-ヒドロキシエチル)-インドロ[3, 2-d][1]ベンズアゼピン -6(5H)-オン、2,9-ジプロモ-7,12-ジヒドロ-インドロ[3,2-d][1]ペンズアゼピン -6(5H)-オン、8,10-ジクロロ-7,12-ジヒドロ-インドロ[3,2-d][1]ペンズアゼピン -6(5H)-オン、9-シアノ-7,12-ジヒドロ-インドロ[3,2-d][1]ペンズアゼピン -6(5H)-オン、9-ブロモ-7,12-ジヒドロ-5-メチル-インドロ[3,2-d][1]ベンズアゼ ピン-6(5H)-オン、5-ベンジル-9-プロモ-7,12-ジヒドロ-5-メチル-インドロ [3, 2-d][1]ベンズアゼピン-6(5H)-オン、9-プロモ-7,12-ジヒドロ-12-メチル-イン

ドロ[3, 2-d][1]ベンズアゼピン-6(5H)-オン、9-プロモ-12-エチル-7,12-ジヒドロ-インドロ[3, 2-d][1]ペンズアゼピン-6(5H)-オン、9-ブロモ-7,12-ジヒドロ-12-(2-プロペニル)-インドロ[3,2-d][1]ベンズアゼピン-6(5H)-オン、7,12-ジヒドロ-9-メチル-インドロ[3,2-d][1]ベンズアゼピン-6(5H)-オン、7,12-ジヒドロ-9-メトキ 5 シ-インドロ[3,2-d][1]ペンズアゼピン-6(5H)-オン、9-フルオロ-7,12-ジヒドロ -12-(2-プロペニル)-インドロ[3, 2-d][1]ベンズアゼピン-6(5H)-オン、11-プロモ -7,12-ジヒドロ-インドロ[3,2-d][1]ペンズアゼピン-6(5H)-オン、9-ブロモ-7,12-ジヒドロ-2-(メチルイミノアミン)-インドロ[3,2-d][1]ベンズアゼピン-6(5H)-オ ン、9-プロモ-7,12-ジヒドロ-2-(カルボン酸)-インドロ[3,2-d][1]ベンズアゼピン -6(5H)-オン、9-プロモ-7,12-ジヒドロ-10-ヒドロキシ-インドロ[3,2-d][1]ベンズ アゼピン-6(5H)-オン、9-ブロモ-7,12-ジヒドロ-11-ヒドロキシメチル-インドロ [3, 2-d][1]ベンズアゼピン-6(5H)-オン、7,12-ジヒドロ-4-ヒドロキシ-インドロ [3, 2-d] [1] ベンズアゼピン-6(5H)-オン、7, 12-ジヒドロ-2, 3-ジヒドロキシ-インド ロ[3, 2-d][1]ベンズアゼピン-6(5H)-オン、2,3-ジメトキシ-9-ニトロ-7,12-ジヒド ロ-インドロ[3, 2-d][1]ベンズアゼピン-6(5H)-オン、9-シアノ-7,12-ジヒドロ-イ ンドロ[3, 2-d][1]ベンズアゼピン-6(5H)-オン、2,3-ジメトキシ-9-シアノ-7,12-ジ ヒドロ-インドロ[3, 2-d][1]ベンズアゼピン-6(5H)-オン、9-ニトロ-7,12-ジヒドロ -インドロ[3, 2-d][1]ベンズアゼピン-6(5H)-オン、3-(6-オキソ-9-トリフルオロメ チル-5, 6, 7, 12-テトラヒドロ-インドロ[3, 2-d][1]ベンズアゼピン-2-イル)プロピ オニトリル、2-プロモ-9-ニトロ-7,12-ジヒドロ-インドロ[3,2-d][1]ベンズアゼピ ン-6(5H)-オン、3-(6-オキソ-9-トリフルオロメチル-5,6,7,12-テトラヒドロ-イン ドロ[3, 2-d][1]ベンズアゼピン-2-イル)アクリロニトリル、2-(3-ヒドロキシ-1-プ ロピニル) -9-トリフルオロメチル-7,12-ジヒドロ-インドロ[3,2-d][1]ベンズアゼ ピン-6(5H)-オン、2-ヨード-9-プロモ-7,12-ジヒドロ-インドロ[3,2-d][1]ベンズ アゼピン-6(5H)-オン、2-(3-オキソ-1-プテニル)-9-トリフルオロメチル-7,12-テ トラヒドロ-インドロ[3, 2-d][1]ベンズアゼピン-6(5H)-オン、8-クロロ-6,11-ジヒ ドロ-チエノ[3',2':2,3]アゼピノ[4,5-b]インドール-5(4H)-オン、2-ヨード-9-ト リフルオロメチル-7,12-ジヒドロ-インドロ[3,2-d][1]ペンズアゼピン-6(5H)-オ ン、7,12-ジヒドロ-ピリド[3',2':4,5]ピロロ[3,2-d][1]ベンズアゼピン-6(5H)-オ

10

15

20

25

ン、11-メチル-7, 12-ジヒドロ-インドロ[3, 2-d][1]ペンズアゼピン-6(5H)-オン、2-[2-(1-ヒドロキシシクロヘキシル)エチニル] -9-トリフルオロメチル-7, 12-ジヒドロ-インドロ[3, 2-d][1]ペンズアゼピン-6(5H)-オン、2-シアノ-7, 12-ジヒドロインドロ[3, 2-d][1]ペンズアゼピン-6(5H)-オン、2-ヨード-7, 12-ジヒドロ-インドロ[3, 2-d][1]ペンズアゼピン-6(5H)-オン、11-エチル-7, 12-ジヒドロ-インドロ[3, 2-d][1]ペンズアゼピン-6(5H)-オン、8-メチル-6, 11-ジヒドロ-チェノ[3', 2':2, 3]アゼピノ[4, 5-b]インドール-5(4H)-オンおよび3-(6-オキソ-9-トリフルオロメチル-5, 6, 7, 12-テトラヒドロ-インドロ[3, 2-d][1]ペンズアゼピン-2-イル)アクリル酸メチルエステルからなる群より選ばれる化合物またはその薬理学的に許容される塩である上記(1)~(3)のいずれか1つの医薬。

5

10

15

20

25

GSK-3を阻害する物質が、9-シアノ-7,12-ジヒドロ-インドロ [3, 2-d] [1] ペンズアゼピン-6(5H)-オン、9-プロモ-7, 12-ジヒドロ-2, 3-ジメトキシ -インドロ[3, 2-d][1]ベンズアゼピン-6(5H)-オン、2-ブロモ-7,12-ジヒドロ-9-ト リフルオロメチル-インドロ[3, 2-d][1]ベンズアゼピン-6(5H)-オン、7,12-ジヒド ロ-2,3-ジメトキシ-9-トリフルオロメチル-インドロ[3,2-d][1]ペンズアゼピン -6(5H)-オン、2,9-ジブロモ-7,12-ジヒドロ-インドロ[3,2-d][1]ベンズアゼピン -6(5H)-オン、7,12-ジヒドロ-9-トリフルオロメチル-インドロ[3,2-d][1]ベンズア ゼピン-6(5H)-オン、9-クロロ-7,12-ジヒドロ-インドロ[3,2=d][1]ペンズアゼピン -6(5H)-オン、8-プロモ-6,11-ジヒドロ-チエノ[3',2':2,3]アゼピノ[4,5-b]インド ール-5(4H)-オン、7,12-ジヒドロ-9-メトキシ-インドロ[3,2-d][1]ベンズアゼピン -6(5H)-オン、10-ブロモ-7,12-ジヒドロ-インドロ[3,2-d][1]ベンズアゼピン -6(5H)-オン、11-ブロモ-7,12-ジヒドロ-インドロ[3,2-d][1]ベンズアゼピン _-6 (5H)-オン、11-クロロ-7, 12-ジヒドロ-インドロ[3, 2-d][1] ベンズアゼピン -6(5H)-オン、9-フルオロ-7,12-ジヒドロ-インドロ[3,2-d][1]ベンズアゼピン -6(5H)-オン、9-メチル-7,12-ジヒドロ-インドロ[3,2-d][1]ベンズアゼピン -6(5H)-オン、9-ブロモ-7,12-ジヒドロ-インドロ[3,2-d][1]ベンズアゼピン -6(5H)-チオン、8,10-ジクロロ-7,12-ジヒドロ-インドロ[3,2-d][1]ベンズアゼピ ン-6(5H)-オン、9-プロモ-7,12-ジヒドロ-12-(2-ヒドロキシエチル)-インドロ [3, 2-d] [1] ベンズアゼピン-6(5H)-オン、9-ブロモ-7, 12-ジヒドロ-2, 3-ジヒドロキ

シーインドロ[3, 2-d] [1] ベンズアゼピン-6 (5H) -オン、2-プロモ-7, 12-ジヒドローインドロ[3, 2-d] [1] ベンズアゼピン-6 (5H) -オン、7, 12-ジヒドロ-2, 3-ジメトキシーインドロ[3, 2-d] [1] ベンズアゼピン-6 (5H) -オン、9-プロモ-7, 12-ジヒドロ-12-メチルーインドロ[3, 2-d] [1] ベンズアゼピン-6 (5H) -オン、9-プロモ-7, 12-ジヒドロ-5-メチルオキシカルボニルメチルーインドロ[3, 2-d] [1] ベンズアゼピン-6 (5H) -オンおよび 7, 12-ジヒドローインドロ[3, 2-d] [1] ベンズアゼピン-6 (5H) -オンからなる群より選ばれる化合物またはその薬理学的に許容される塩である上記(1)~(3)のいずれか 1 つの医薬。

5

- GSK-3を阻害する物質が、9-シアノ-7,12-ジヒドロ-インドロ (14)[3, 2-d] [1] ベンズアゼピン-6(5H)-オン、9-プロモ-7, 12-ジヒドロ-2, 3-ジメトキシ 10 -インドロ[3, 2-d][1]ベンズアゼピン-6(5H)-オン、2-プロモ-7,12-ジヒドロ-9-ト リフルオロメチル-インドロ[3,2-d][1]ベンズアゼピン-6(5H)-オン、7,12-ジヒド ロ-2, 3-ジメトキシ-9-トリフルオロメチル-インドロ[3, 2-d][1]ベンズアゼピン -6(5H)-オン、2,9-ジプロモ-7,12-ジヒドロ-インドロ[3,2-d][1]ベンズアゼピン -6(5H)-オン、7,12-ジヒドロ-9-トリフルオロメチル-インドロ[3,2-d][1]ベンズア 15 ゼピン-6(5H)-オン、9-クロロ-7,12-ジヒドロ-インドロ[3,2-d][1]ベンズアゼピン -6(5H)-オン、8-プロモ-6.11-ジヒドロ-チエノ[3',2':2,3]アゼピノ[4,5-b]インド ール-5(4H)-オンおよび 7.12-ジヒドロ-9-メトキシ-インドロ[3,2-d][1]ペンズア ゼピン-6(5H)-オンからなる群より選ばれる化合物またはその薬理学的に許容され る塩である上記(1)~(3)のいずれか1つの医薬。 20
 - (15) GSK-3を阻害する物質が、9-プロモ-7, 12-ジヒドロ-インドロ [3, 2-d] [1] ペンズアゼピン-6 (5H) -オンまたはその薬理学的に許容される塩である上記 (1) \sim (3) のいずれか 1 つの医薬。
 - (1'6) GSK-3を阻害する物質が、式(V)

$$R^{26}$$
 R^{26}
 R^{26}
 R^{21}
 R^{23}
 R^{24}
 R^{28}
 R^{29}
 R^{25}
 R^{25}
 R^{20}
 R^{20}
 R^{20}

5

10

15

20

[式中、同じか異なってよいR20およびR25は水素原子:ハロゲン:ヒドロキシ基: メチレンヒドロキシ基;直鎖または分枝鎖のC1~C18-アルキルまたはアルコキシ またはメチレンアルコキシ基;必要に応じて1個または複数のヘテロ原子を含む、 3から7個-炭素原子を有するシクロアルキル基:必要に応じて1個または複数の ヘテロ原子を有する置換または非置換のアリール、アラルキルまたはアリールオキ シ基;それぞれ互いに独立に、直鎖または分枝鎖のアルキル基中に1から6個の炭 素原子を有するモノー、ジーまたはトリアルキルシリル基;それぞれ互いに独立に 置換または非置換アリール基を有するモノー、ジーまたはトリアリールシリル基; トリフルオロメチル基;-COM;-COOM;あるいは-CH2COOM基(こ こでMは水素原子、必要ならばヒドロキシおよび/またはアミノ基1個または複数 で置換された直鎖または分枝鎖の $C_1 \sim C_{18}$ -アルキル基、または必要ならば1個ま たは複数のヘテロ原子を有し、1個または複数のハロゲン、アルキル基またはアル コキシ基で置換されていてよいアリール基を表す);-NR30R31基(ここで同じか 異なってよいR30およびR31は水素原子、必要ならば付加的に1個または複数のヒ ドロキシおよび/またはアミノ基で置換されているC1~C18 直鎖または分枝鎖ア ルキル基、置換または非置換で、必要ならば1個または複数のヘテロ原子を含むア リール基を表す);アシル基;-CH₂-NR³⁰R³¹メチレンアミノ基(ここでR³⁰ およびR31 は前記の意味を有する);ベンゼン環が必要ならば1個または複数のへ テロ原子を有するベンジル基;必要ならば1個または複数のヘテロ原子を有する、 炭素原子3から7個を有するメチレンシクロアルキル基;アミドとしての、窒素原 子に結合した生理的アミノ酸基:グリコシドが単糖または二糖から選択される〇一 グリコシドまたはN-グリコシド;あるいはメチレンスルホネート基を表し;同じ か異なってよいR²¹、R²²、R²³、R²⁴、R²⁶、R²⁷、R²⁸ およびR²⁹ は水素原子;

5

10

15

20

25

ハロゲン;ヒドロキシ基;ニトロソ基;ニトロ基;アルコキシ基;必要ならば1個 または複数のヒドロキシおよび/またはアミノ基で置換されている直鎖または分 枝鎖のC₁~C₁₈ アルキル基;必要ならば1個または複数のヘテロ原子を有する置 換または非置換のアリール基;必要ならば1個または複数のヘテロ原子を有する置 換または非置換アラルキル基:必要ならば1個または複数のヘテロ原子を有する置 換または非置換アリールオキシ基:必要ならば1個または複数のヘテロ原子を有す る置換または非置換メチレンアリールオキシ基;必要ならば1個または複数のヘテ ロ原子を含む、3から7個の炭素原子を有するシクロアルキル基;必要ならば1個 または複数のヘテロ原子を含む、3から7個の炭素原子を有するメチレンシクロア ルキル基:トリフルオロメチル基:-COM:-COOM:またはCH2COOM 基(ここでMは水素原子、必要ならばヒドロキシおよび/またはアミノ基1個また は複数で付加的に置換された直鎖または分枝鎖のC1~C18-アルキル基、または必 要ならば1個または複数のヘテロ原子を有し、1個または複数のハロゲン原子、ア ルキル基またはアルコキシ基で置換されていてよいアリール基を表す);-NR30 R31基(ここで同じか異なってよいR30およびR31は水素原子、必要ならば付加的 に1個または複数のヒドロキシおよび/またはアミノ基で置換されている直鎖ま たは分枝鎖 $C_1 \sim C_{18}$ アルキル基、置換または非置換で、必要ならば1 個または複 数のヘテロ原子を含むアリール基、アシル基を表すか、窒素原子が、必要ならば1 個または複数のヘテロ原子を含む、炭素原子3から7個を有するシクロアルキルの 一部を形成する); - CON R 30 R 31 基 (ここで R 30 および R 31 は前記の意味を有す る);ヒドロキシルアミノ基;ホスフェート基;ホスホネート基;スルフェート基; スルホネート基;スルホンアミド基;-SO2NR30R31基(ここでR30およびR31 は前記の意味を有する): -N=N-R32 アゾ基(ここでR32 は必要ならば1個ま たは複数のカルボキシル、ホスホリルまたはスルホネート基で置換された芳香族基 あるいはグリコシドが単糖または二糖から選択されている〇-グリコシドまたは Nーグリコシド基を表す) を表すか: R²⁰ およびR²⁴ ならびにR²⁵ およびR²⁹ はそ れぞれ一緒になって、互いに独立に必要ならば置換された1から4個のCH2 基を 有する環を形成し;同じか異なってよいYおよびZは酸素;イオウ;セレン;テル ルの原子:NR33基(ここでR33は水素原子、必要ならば1個または複数のカルボ キシル、ホスホリルまたはスルホネート基で置換された直鎖または分枝鎖 $C_1 \sim C_{18}$ アルキル基、必要ならば1 個または複数のヘテロ原子を含む置換または非置換のアリール基、アラルキル基またはスルホネート基を表す);あるいは $-NOR^{33}$ (ここで R^{33} 基は前記の意味を有する)を表す]で表される化合物またはそれらの薬理学的に許容される塩である上記(1) \sim (3)のいずれか1つの医薬。

5

10

15

20

25

- (17) GSK-3を阻害する物質が、インジルピン、5-3ードーインジルピン、5-ブロモーインジルピン、5-ブロモーインジルピン、5-ブロモーインジルピン、5-フルオローインジルピン、5-メチルーインジルピン、5-ニトローインジルピン、5-SO $_3$ Hーインジルピン、5'-ブロモーインジルピン、5-5'-ジプロモーインジルビン ンおよび $_5$ '-ブロモーインジルピン $_5$ -スルホン酸からなる群より選ばれる化合物またはその薬理学的に許容される塩である上記(1)~(3)のいずれか1つの医薬。
- (18) GSK-3を阻害する物質が、インジルビン-3'ーモノオキシム、5 ヨードーインジルビン-3'ーモノオキシムおよび $5-SO_3N$ a インジルビン 3'ーモノオキシムからなる群より選ばれる化合物またはその薬理学的に許容される塩である上記(1)~(3)のいずれか1つの医薬。
- (19) GSK-3を阻害する物質が、インジルピン-3'ーモノオキシムまた はその薬理学的に許容される塩である上記(1) \sim (3)のいずれか1つの医薬。
- (20) GSK-3の活性を阻害する物質を有効成分として含有してなる神経 幹細胞のニューロン新生促進剤。
- (21) GSK-3の活性を阻害する物質が、リチウムまたはその薬理学的に 許容される塩である上記(20)のニューロン新生促進剤。
- (22) GSK-3の活性を阻害する物質が、ピスインドリルマレイミド誘導体、 3ーアリールー4ーインドリルマレイミド誘導体、インドロカルバゾール誘導体、インドロ[3,2-d][1]ベンズアゼピン-6(5H)-オン誘導体もしくはインジルビン誘導体またはそれらの薬理学的に許容される塩である上記(20)のニューロン新生促進剤。
 - (2\3) GSK-3の活性を阻害する物質が、式(I)

$$\begin{pmatrix}
R^{2} \\
N \\
R^{3}
\end{pmatrix}$$

$$\begin{pmatrix}
R^{5} \\
R^{4}
\end{pmatrix}$$
(1)

5

10

15

[式中、n およびm は同一または異なって、1~3 の整数を表し、R¹、R³および R¹は同一または異なって、水素原子、置換もしくは非置換の低級アルキル、置換もしくは非置換の低級アルケニル、-COR6 (式中、R⁵は水素原子、置換もしくは非置換の低級アルケニル、置換もしくは非置換の低級アルケニル、置換もしくは非置換の低級アルケニル、置換もしくは非置換のアリールまたは置換もしくは非置換のシクロアルキルを表す)、-COOR¹ (式中、R¹は水素原子、置換もしくは非置換のシクロアルキルを表す)または-OR² (式中、R²は水素原子、置換もしくは非置換のシクロアルキルを表す)または-OR² (式中、R²は水素原子、置換もしくは非置換の低級アルキル、置換もしくは非置換のアリールまたは置換もしくは非置換のシクロアルキルを表す)を表し、R²および R⁵は同一または異なって、水素原子、置換もしくは非置換の低級アルトン、置換もしくは非置換の低級アルトン、置換もしくは非置換の低級アルトン、置換もしくは非置換の低級アルトン、関換もしくは非置換の低級アルトン、に関換もしくは非置換の低級アルトン・ニトロ、アミノまたはモノもしくはジ低級アルキルアミノを表し、n および mがそれぞれ 2 または 3 であるとき、それぞれの R²および R⁵は同一でも異なっていてもよい]で表される化合物、式(II)

$$\begin{pmatrix} R^{2A} \end{pmatrix}_{\text{na}} \begin{pmatrix} R^{5A} \end{pmatrix}_{\text{ma}} \begin{pmatrix} R^{5A} \end{pmatrix}_{\text{ma}}$$

(式中、na、ma、 R^{1A} 、 R^{2A} 、 R^{3A} および R^{5A} は、それぞれ前記 n、m、 R^{1} 、 R^{2} 、 R^{3} および R^{5} と同義である)で表される化合物もしくは式(III)

[式中、nb、nb、 R^{1B} 、 R^{2B} および R^{5B} は、それぞれ前記 n、n、 R^1 、 R^2 および R^5 と同義であり、 R^{3B} および R^{4B} は同一または異なって、水素原子、置換もしくは非置換の低級アルキル、置換もしくは非置換の低級アルケニル、 $-COR^6$ (式中、 R^6 は前記と同義である)、 $-COOR^7$ (式中、 R^7 は前記と同義である)または $-OR^8$ (式中、 R^8 は前記と同義である)を表すか、または R^{3B} と R^{4B} が一緒になって、

$$(A)$$

5

10

15

(式中、kは1または2を表し、XはCH₂、NH、酸素原子または硫黄原子を表し、R⁹ はヒドロキシ、カルボキシ、カルバモイルまたは低級アルコキシカルボニルを表す)を形成する]で表される化合物またはそれらの薬理学的に許容される塩である上記 (20)のニューロン新生促進剤。

(24) GSK-3の活性を阻害する物質が、式(Ia)

(式中、R^{2a} は水素原子、低級アルコキシ、低級アルコキシカルポニル、アリールまたは二トロを表し、R^{3a} および R^{4a} は同一または異なって、置換もしくは非置換の低級アルキルを表す)で表される化合物またはその薬理学的に許容される塩である上記(20)のニューロン新生促進剤。

(25) GSK-3の活性を阻害する物質が、式(IIa)

(式中、ma は前記と同義であり、 R^{3Aa} は置換もしくは非置換の低級アルキルを表し、 R^{5Aa} はハロゲンを表す)で表される化合物またはその薬理学的に許容される塩である上記(20)のニューロン新生促進剤。

5 (26) GSK-3の活性を阻害する物質が、式(IIIa)

(式中、R⁹は前記と同義である)で表される化合物またはその薬理学的に許容される塩である上記(20)のニューロン新生促進剤。

GSK-3の活性を阻害する物質が、3,4-ビス(1-メチルイン (27)ドールー3ーイル) -1H-ピロール-2、5-ジオン、3-(1-メチルインド 10 -ル-3-7ル) -4-(1-7ロピルインドール-3-7ル) -1 H-1 ロール -2.5-ジオン、3-[1-(3-シアノプロピル) インドール<math>-3-イル] ー - [1-(3-アミノプロピル) インドール-3-イル] -4-(1-メチルイン ドールー3ーイル) -1H-ピロール-2, 5-ジオン、3-[1-(3-カルボ 15 キシプロピル) インドールー3ーイル] -4-(1-メチルインドール-3-イル) -1H-ピロール-2、5-ジオン、3-[1-(3-カルパモイルプロピル)イ ンドールー3-イル]-4-(1-メチルインドール-3-イル)-1H-ピロー ルー2, 5ージオン、3ー[1ー(3ーアミノプロピル)インドールー3ーイル] -4-(1-メチル-5-プロピルオキシインドール-3-イル)-1H-ピロー 20 $\mathcal{W}-2$, 5-ジオン、3-[1-(3-ヒドロキシプロピル) インドールー<math>3-イ [N] -4-(1-メチル-5-フェニルインドール-3-イル) <math>-1 H-ピロール

-2, 5-ジオン、<math>3-[1-(3-アミノプロピル) インドール<math>-3-イル] -4- (1-メチル-5-フェニルインドール-3-イル).-1H-ピロール-2, 5-ジオン、3-[1-(3-ヒドロキシプロピル)インドール-3-イル]-4 - (1-メチル-5-メトキシカルボニルインドール-3-イル)-1H-ピロー N-2, 5-ジオン、3-1[1-(3-ヒドロキシプロピル) インドールー3-イ 5 2, 5-ジオン、3-(1-メチルインドール-3-イル)-4-[1-(3-ヒ 5-ジオン、3-(2-クロロフェニル)-4-(1-メチルインドール-3-イ ル) -1H-ピロール-2, 5-ジオン、3-(2, 4-ジクロロフェニル) -4 10 $-(1-メチルインドール-3-イ\ル)-1H-ピロール-2,5-ジオン、3-$ (2-2)000 (2-2)00 (2インドール-3-イル] -3- (2-クロロフェニル) -1 H - ピロール-2, 5 ージオンおよび 15

からなる群より選ばれる化合物またはその薬理学的に許容される塩である上記(20)のニューロン新生促進剤。

(28) GSK-3を阻害する物質が、式(IV)

[式中、A は単結合または二重結合によって右に結合されている酸素または硫黄であり、 R^{10} は水素原子、アリール、低級脂肪族置換基、特にアルキルおよび低級アルキルエステルからなる群より選択され、 $R^{11} \sim R^{14}$ はアルコキシ、アミノ、アシル、脂肪族置換基、特にアルキル、アルケニルおよびアルキニル置換基、脂肪族アルコール、特にアルキルアルコール、脂肪族ニトリル、特にアルキルニトリル、シアノ、ニトロ、カルボキシル、ハロゲン、水素原子、ヒドロキシル、イミノならびに α 、 β 不飽和ケトンからなる群より個別に選択され、 $R^{15} \sim R^{18}$ は脂肪族置換基、特にアルキル、アルケニルおよびアルキニル置換基、特に低級脂肪族置換基、脂肪族アルコール、アルケニルおよびアルキニル置換基、特に低級脂肪族置換基、脂肪族アルコール、特にアルキルアルコール、アルコキシ、アシル、シアノ、ニトロ、エポキシ、ハロアルキル基、ハロゲン、水素原子ならびにヒドロキシルからなる群より個別に選択され、 R^{19} は脂肪族の基、特に低級アルキル基、脂肪族アルコール、特にアルキルアルコール、カルポン酸、および水素からなる群より選択される]で表される化合物またはその薬理学的に許容される塩である上記(20)のニューロン新生促進剤。

(29) GSK-3を阻害する物質が、7,12-ジヒドロ-インドロ[3,2-d][1]ベンズアゼピン-6(5H)-オン、2-プロモ-7,12-ジヒドロ-インドロ[3,2-d][1]ベンズアゼピン-6(5H)-オン、9-プロモ-7,12-ジヒドロ-インドロ[3,2-d][1]ベンズアゼピン-6(5H)-オン、9-クロロ-7,12-ジヒドロ-インドロ[3,2-d][1]ベンズアゼピン-6(5H)-オン、11-クロロ-7,12-ジヒドロ-インドロ[3,2-d][1]ベンズアゼピン-6(5H)-オン、11-クロロ-7,12-ジヒドロ-インドロ[3,2-d][1]ベンズアゼピン-6(5H)-オン、10-プロモ-7,12-ジヒドロ-インドロ[3,2-d][1]ベンズアゼピン-6(5H)-オン、8-プロモ-6,11-ジヒドロ-チエノ[3',2':2,3アゼピノ[4,5-b]インドール-5(4H)-オン、9-プロモ-7,12-ジヒドロ-4-メトキシ-インドロ[3,2-d][1]ベン

ズアゼピン-6(5H)-オン、9-プロモ-7,12-ジヒドロ-4-ヒドロキシ-インドロ [3, 2-d] [1] ベンズアゼピン-6(5H)-オン、7,12-ジヒドロ-4-メトキシ-インドロ [3, 2-d] [1] ベンズアゼピン-6(5H)-オン、9-プロモ-7, 12-ジヒドロ-2, 3-ジメトキシ -インドロ[3, 2-d] [1]ペンズアゼピン-6(5H)-オン、9-プロモ-7, 12-ジヒドロ-2, 3-ジヒドロキシ-インドロ[3,2-d][1]ベンズアゼピン-6(5H)-オン、7,12-ジヒドロ -2. 3-ジメトキシ-インドロ[3, 2-d][1]ペンズアゼピン-6(5H)-オン、7, 12-ジヒドロ -9-トリフルオロメチル-インドロ[3, 2-d][1]ペンズアゼピン-6(5H)-オン、7, 12-ジ ヒドロ-2、3-ジメトキシ-9-トリフルオロメチル-インドロ[3, 2-d][1]ベンズアゼピ ン-6(5H)-オン、2-プロモ-7,12-ジヒドロ-9-トリフルオロメチル-インドロ [3, 2-d] [1] ベンズアゼピン-6(5H)-オン、9-ブロモ-7, 12-ジヒドロ-インドロ [3, 2-d] [1] ベンズアゼピン-6(5H)-チオン、9-プロモ-5, 12-ビス-(t-プチルオキシ カルボニル)-7,12-ジヒドロ-インドロ[3,2-d][1]ベンズアゼピン-6(5H)-オン、9-ブロモ-12-(t-ブチルオキシカルボニル)-7,12-ジヒドロ-インドロ[3,2-d][1]ベン ズアゼピン-6(5H)-オン、9-プロモ-5,7-ビス-(t-プチルオキシカルボニル)-7,12-ジヒドロ-インドロ[3, 2-d][1]ベンズアゼピン-6(5H)-オン、9-ブロモ-5,7,12-トリ -(t-プチルオキシカルポニル)-7, 12-ジヒドロ-インドロ[3, 2-d][1]ベンズアゼピ ン-6(5H)-オン、9-プロモ-7,12-ジヒドロ-5-メチルオキシカルボニルメチル-イン ドロ[3, 2-d][1]ペンズアゼピン-6(5H)-オン、9-プロモ-7, 12-ジヒドロ-12-メチル オキシカルボニルメチル-インドロ[3, 2-d][1]ベンズアゼピン-6(5H)-オン、9-プロ モ-7, 12-ジヒドロ-12-(2-ヒドロキシエチル)-インドロ[3, 2-d][1]ベンズアゼピン -6(5H)-オン、2,9-ジブロモ-7,12-ジヒドロ-インドロ[3,2-d][1]ペンズアゼピン -6(5H)-オン、8,10-ジクロロ-7,12-ジヒドロ-インドロ[3,2-d][1]ペンズアゼピン -6(5H)-オン、9-シアノ-7,12-ジヒドロ-インドロ[3,2-d][1]ベンズアゼピン -6(5H)-オン、9-プロモ-7,12-ジヒドロ-5-メチル-インドロ[3,2-d][1]ベンズアゼ ピン-6(5H)-オン、5-ベンジル-9-プロモ-7,12-ジヒドロ-5-メチル-インドロ [3, 2-d] [1] ペンズアゼピン-6(5H)-オン、9-プロモ-7, 12-ジヒドロ-12-メチル-イン ドロ[3, 2-d][1]ベンズアゼピン-6(5H)-オン、9-ブロモ-12-エチル-7,12-ジヒドロ-インドロ[3,2-d][1]ベンズアゼピン-6(5H)-オン、9-ブロモ-7,12-ジヒドロ-12-(2-プロペニル)-インドロ[3,2-d][1]ベンズアゼピン-6(5H)-オン、7,12-ジヒドロ-9-

10

15

20

25

5

15

20

25

メチル-インドロ[3, 2-d][1]ペンズアゼピン-6(5H)-オン、7,12-ジヒドロ-9-メトキ シ-インドロ[3, 2-d][1]ペンズアゼピン-6(5H)-オン、9-フルオロ-7.12-ジヒドロ -12-(2-プロペニル)-インドロ[3, 2-d][1]ベンズアゼピン-6(5H)-オン、11-プロモ -7.12-ジヒドロ-インドロ[3,2-d][1]ベンズアゼピン-6(5H)-オン、9-プロモ-7,12-ジヒドロ-2-(メチルイミノアミン)-インドロ[3,2-d][1]ベンズアゼピン-6(5H)-オ ン、9-プロモ-7,12-ジヒドロ-2-(カルボン酸)-インドロ[3,2-d][1]ベンズアゼピン -6(5H)-オン、9-ブロモ-7,12-ジヒドロ-10-ヒドロキシ-インドロ[3,2-d][1]ペンズ アゼピン-6(5H)-オン、9-プロモ-7、12-ジヒドロ-11-ヒドロキシメチル-インドロ [3, 2-d][1]ベンズアゼピン-6(5H)-オン、7,12-ジヒドロ-4-ヒドロキシ-インドロ [3, 2-d] [1] ベンズアゼピン-6(5H)-オン、7, 12-ジヒドロ-2, 3-ジヒドロキシ-インド 10 -ロ[3, 2-d][1]ペンズアゼピン-6(5H)-オン、2,3-ジメトキシ-9-ニトロ-7,12-ジヒド ロ-インドロ[3, 2-d][1]ベンズアゼピン-6(5H)-オン、9-シアノ-7,12-ジヒドロ-イ ンドロ[3, 2-d][1]ベンズアゼピン-6(5H)-オン、2,3-ジメトキシ-9-シアノ-7,12-ジ ヒドロ-インドロ[3, 2-d][1]ペンズアゼピン-6(5H)-オン、9-ニトロ-7,12-ジヒドロ -インドロ[3, 2-d][1]ベンズアゼピン-6(5H)-オン、3-(6-オキソ-9-トリフルオロメ チル-5, 6, 7, 12-テトラヒドロ-インドロ[3, 2-d][1]ペンズアゼピン-2-イル)プロピ オニトリル、2-プロモ-9-ニトロ-7, 12-ジヒドロ-インドロ[3, 2-d] [1] ベンズアゼピ ン-6(5H)-オン、3-(6-オキソ-9-トリフルオロメチル-5,6,7,12-テトラヒドロ-イン ドロ[3, 2-d][1]ベンズアゼピン-2-イル)アクリロニトリル、2-(3-ヒドロキシ-1-プ ロピニル) -9-トリフルオロメチル-7,12-ジヒドロ-インドロ[3,2-d][1]ベンズアゼ ピン-6(5H)-オン、2-ヨード-9-プロモ-7,12-ジヒドロ-インドロ[3,2-d][1]ベンズ アゼピン-6(5H)-オン、2-(3-オキソ-1-プテニル)-9-トリフルオロメチル-7,12-テ トラヒドロ-インドロ[3, 2-d][1]ペンズアゼピン-6(5H)-オン、8-クロロ-6,11-ジヒ ドロ-チエノ[3',2':2,3]アゼピノ[4,5-b]インドール-5(4H)-オン、2-ヨード-9-ト リフルオロメチル-7.12-ジヒドロ-インドロ[3.2-d][1]ベンズアゼピン-6(5H)-オ ン、7,12-ジヒドロ-ピリド[3',2':4,5]ピロロ[3,2-d][1]ベンズアゼピン-6(5H)-オ ン、11-メチル-7、12-ジヒドロ-インドロ[3、2-d][1]ペンズアゼピン-6(5H)-オン、 2-[2-(1-ヒドロキシシクロヘキシル)エチニル] -9-トリフルオロメチル-7,12-ジヒ ドロ-インドロ[3, 2-d][1]ベンズアゼピン-6(5H)-オン、2-シアノ-7,12-ジヒドロ-

インドロ[3, 2-d] [1] ベンズアゼピン-6(5H)-オン、2-ヨード-7,12-ジヒドローインドロ[3, 2-d] [1] ベンズアゼピン-6(5H)-オン、11-エチル-7,12-ジヒドローインドロ[3, 2-d] [1] ベンズアゼピン-6(5H)-オン、8-メチル-6,11-ジヒドローチェノ[3',2':2,3] アゼピノ[4,5-b] インドール-5(4H)-オンおよび 3-(6-オキソ-9-トリフルオロメチル-5,6,7,12-テトラヒドローインドロ[3,2-d] [1] ベンズアゼピン-2-イル) アクリル酸メチルエステルからなる群より選ばれる化合物またはその薬理学的に許容される塩である上記(20)のニューロン新生促進剤。

5

GSK-3を阻害する物質が、9-シアノ-7,12-ジヒドロ-インドロ [3, 2-d] [1] ペンズアゼピン-6(5H)-オン、9-プロモ-7, 12-ジヒドロ-2, 3-ジメトキシ -インドロ[3, 2-d][1]ベンズアゼピン-6(5H)-オン、2-プロモ-7,12-ジヒドロ-9-ト 10 リフルオロメチル-インドロ[3.2-d][1]ベンズアゼピン-6(5H)-オン、7,12-ジヒド ロ-2.3-ジメトキシ-9-トリフルオロメチル-インドロ[3,2-d][1]ベンズアゼピン -6(5H)-オン、2,9-ジプロモ-7,12-ジヒドロ-インドロ[3,2-d][1]ベンズアゼピン -6(5H)-オン、7.12-ジヒドロ-9-トリフルオロメチル-インドロ[3,2-d][1]ペンズア ゼピン-6(5H)-オン、9-クロロ-7,12-ジヒドロ-インドロ[3,2-d][1]ベンズアゼピン 15 -6(5H)-オン、8-プロモ-6,11-ジヒドロ-チエノ[3',2':2,3]アゼピノ[4,5-b]インド ール-5(4H)-オン、7.12-ジヒドロ-9-メトキシ-インドロ[3,2-d][1]ベンズアゼピン -6(5H)-オン、10-ブロモ-7,12-ジヒドロ-インドロ[3,2-d][1]ベンズアゼピン -6(5H)-オン、11-ブロモ-7,12-ジヒドロ-インドロ[3,2-d][1]ベンズアゼピン -6(5H)-オン、11-クロロ-7,12-ジヒドロ-インドロ[3,2-d][1]ベンズアゼピン 20 -6(5H)-オン、9-フルオロ-7,12-ジヒドロ-インドロ[3,2-d][1]ベンズアゼピン -6(5H)-オン、9-メチル-7,12-ジヒドロ-インドロ[3,2-d][1]ベンズアゼピン -6(5H)-オン、9-プロモ-7,12-ジヒドロ-インドロ[3,2-d][1]ベンズアゼピン -6(5H)-チオン、8,10-ジクロロ-7,12-ジヒドロ-インドロ[3,2-d][1]ベンズアゼピ ン-6(5H)-オン、9-プロモ-7,12-ジヒドロ-12-(2-ヒドロキシエチル)-インドロ 25 [3, 2-d] [1] ベンズアゼピン-6(5H)-オン、9-プロモ-7, 12-ジヒドロ-2, 3-ジヒドロキ シ-インドロ[3, 2-d][1]ベンズアゼピン-6(5H)-オン、2-プロモ-7,12-ジヒドロ-イ ンドロ[3, 2-d][1]ベンズアゼピン-6(5H)-オン、7, 12-ジヒドロ-2, 3-ジメトキシ-イ ンドロ[3, 2-d][1]ベンズアゼピン-6(5H)-オン、9-プロモ-7,12-ジヒドロ-12-メチ

ルーインドロ[3, 2-d] [1] ベンズアゼピン-6 (5H) -オン、9-ブロモ-7, 12-ジヒドロ-5-メチルオキシカルボニルメチルーインドロ[3, 2-d] [1] ベンズアゼピン-6 (5H) -オンおよび 7, 12-ジヒドローインドロ[3, 2-d] [1] ベンズアゼピン-6 (5H) -オンからなる群より選ばれる化合物またはその薬理学的に許容される塩である上記(20)のニューロン新生促進剤。

- (32) GSK-3を阻害する物質が、9-プロモ-7,12-ジヒドロ-インドロ [3,2-d][1]ベンズアゼピン-6(5H)-オンまたはその薬理学的に許容される塩である上記(20)のニューロン新生促進剤。
 - (33) GSK-3を阻害する物質が、式(V)

$$R^{27}$$
 R^{28}
 R^{29}
 R^{25}
 R^{20}
 R^{20}
 R^{20}
 R^{20}
 R^{20}
 R^{20}

5

10

15

20

[式中、同じか異なってよいR²⁰ およびR²⁵ は水素原子;ハロゲン;ヒドロキシ基; メチレンヒドロキシ基;直鎖または分枝鎖のC₁~C₁₈-アルキルまたはアルコキシ

.5

10

15

20

25

またはメチレンアルコキシ基;必要に応じて1個または複数のヘテロ原子を含む、 3から7個-炭素原子を有するシクロアルキル基;必要に応じて1個または複数の ヘテロ原子を有する置換または非置換のアリール、アラルキルまたはアリールオキ シ基;それぞれ互いに独立に、直鎖または分枝鎖のアルキル基中に1から6個の炭 素原子を有するモノー、ジーまたはトリアルキルシリル基; それぞれ互いに独立に 置換または非置換アリール基を有するモノー、ジーまたはトリアリールシリル基; トリフルオロメチル基;-COM;-COOM;あるいは-CH2COOM基(こ こでMは水素原子、必要ならばヒドロキシおよび/またはアミノ基1個または複数 で置換された直鎖または分枝鎖のC1~C18-アルキル基、または必要ならば1個ま たは複数のヘテロ原子を有し、1個または複数のハロゲン、アルキル基またはアル コキシ基で置換されていてよいアリール基を表す);-NR30R31基(ここで同じか 異なってよいR∞およびR31は水素原子、必要ならば付加的に1個または複数のヒ ドロキシおよび/またはアミノ基で置換されているC1~C18 直鎖または分枝鎖ア ルキル基、置換または非置換で、必要ならば1個または複数のヘテロ原子を含むア リール基を表す);アシル基;-CH₂-NR³⁰R³¹ メチレンアミノ基(ここでR³⁰ およびR31 は前記の意味を有する);ペンゼン環が必要ならば1個または複数のへ テロ原子を有するペンジル基:必要ならば1個または複数のヘテロ原子を有する、 炭素原子3から7個を有するメチレンシクロアルキル基;アミドとしての、窒素原 子に結合した生理的アミノ酸基;グリコシドが単糖または二糖から選択される〇-グリコシドまたはN-グリコシド;あるいはメチレンスルホネート基を表し;同じ か異なってよいR²¹、R²²、R²³、R²⁴、R²⁶、R²⁷、R²⁸ およびR²⁹ は水素原子; ハロゲン;ヒドロキシ基;ニトロソ基;ニトロ基;アルコキシ基;必要ならば1個 または複数のヒドロキシおよび/またはアミノ基で置換されている直鎖または分 枝鎖のC1~C18アルキル基:必要ならば1個または複数のヘテロ原子を有する置 換または非置換のアリール基;必要ならば1個または複数のヘテロ原子を有する置 換または非置換アラルキル基;必要ならば1個または複数のヘテロ原子を有する置 換または非置換アリールオキシ基: 必要ならば1個または複数のヘテロ原子を有す る置換または非置換メチレンアリールオキシ基;必要ならば1個または複数のヘテ 口原子を含む、3から7個の炭素原子を有するシクロアルキル基;必要ならば1個

または複数のヘテロ原子を含む、3から7個の炭素原子を有するメチレンシクロア ルキル基:トリフルオロメチル基:-COM:-COOM:またはCH2COOM 基(ここでMは水素原子、必要ならばヒドロキシおよび/またはアミノ基1個また は複数で付加的に置換された直鎖または分枝鎖のC1~C18-アルキル基、または必 要ならば1個または複数のヘテロ原子を有し、1個または複数のハロゲン原子、ア ルキル基またはアルコキシ基で置換されていてよいアリール基を表す):-NR30 R31 基(ここで同じか異なってよいR30 およびR31 は水素原子、必要ならば付加的 に1個または複数のヒドロキシおよび/またはアミノ基で置換されている直鎖ま ・たは分枝鎖C1~C18 アルキル基、置換または非置換で、必要ならば1個または複 数のヘテロ原子を含むアリール基、アシル基を表すか、窒素原子が、必要ならば1 個または複数のヘテロ原子を含む、炭素原子3から7個を有するシクロアルキルの 一部を形成する): - CON R 30 R 31 基 (ここで R 30 および R 31 は前記の意味を有す る):ヒドロキシルアミノ基:ホスフェート基:ホスホネート基:スルフェート基; スルホネート基;スルホンアミド基;-SO₂NR³⁰R³¹基(ここでR³⁰およびR³¹ は前記の意味を有する):-N=N-R32 アゾ基(ここでR32 は必要ならば1個ま たは複数のカルポキシル、ホスホリルまたはスルホネート基で置換された芳香族基 あるいはグリコシドが単糖または二糖から選択されている〇ーグリコシドまたは N-グリコシド基を表す) を表すか; R20 およびR24 ならびにR25 およびR29 はそ れぞれ一緒になって、互いに独立に必要ならば置換された1から4個のCH2基を 有する環を形成し:同じか異なってよいYおよびZは酸素:イオウ:セレン;テル ルの原子: NR33 基 (ここでR33 は水素原子、必要ならば1個または複数のカルボ キシル、ホスホリルまたはスルホネート基で置換された直鎖または分枝鎖C1~C18 アルキル基、必要ならば1個または複数のヘテロ原子を含む置換または非置換のア リール基、アラルキル基またはスルホネート基を表す);あるいは-NOR33(ここ でR88基は前記の意味を有する)を表す] で表される化合物またはそれらの薬理学 的に許容される塩である上記(20)のニューロン新生促進剤。

10

15

20

25

(34) GSK-3を阻害する物質が、インジルビン、5-ヨードーインジルビン、5-プロモーインジルビン、5-クロローインジルビン、5-フルオローインジルビン、5-メチルーインジルビン、5-SO₃

H- (1) (1) H- (1) (2) H- (1) (3) H- (1) (4) H- (1) (5) H- (1) (7) H- (1) (8) H- (1) (8) H- (1) (9) H- (1) (9) H- (1) (1) H- (1) (1) H- (1) (1) H- (1) (1) H- (1) (2) H- (1) (3) H- (1) (4) H- (1) (5) H- (1) (7) H- (1) (7) H- (1) (8) H- (1) (8) H- (1) (9) H- (1) (9) H- (1) (1) H

- (35) GSK-3を阻害する物質が、インジルピン-3'ーモノオキシム、5 5 -3ードーインジルピン-3'ーモノオキシムおよび $5-SO_3N$ aーインジルピン -3'ーモノオキシムからなる群より選ばれる化合物またはその薬理学的に許容さ れる塩である上記(20)のニューロン新生促進剤。
 - (36) GSK-3を阻害する物質が、インジルビン-3'-モノオキシムまたはその薬理学的に許容される塩である上記(20)のニューロン新生促進剤。
- 10 (37) 上記(20)~(36)のいずれか1つのニューロン新生促進剤の存在下、神経幹細胞を培養して得られるニューロン。
 - (38) 上記(20)~(36)のいずれか1つのニューロン新生促進剤の存在下、神経幹細胞を培養してニューロンを新生させ、培養物中よりニューロンを採取することを特徴とするニューロンの製造方法。
- 15 (39) GSK-3を阻害する物質を投与することを特徴とする神経再生方法。
 - (40) 神経再生薬の製造のためのGSK-3を阻害する物質の使用。
 - (41) 神経幹細胞のニューロン新生促進剤の製造のためのGSK-3を阻害する物質の使用。
- 20 以下、本発明の詳細を説明する。
 - 1. 本発明の神経再生薬および神経幹細胞のニューロン新生促進剤に含有されるG SK-3の活性を阻害する物質

GSK-3の活性を阻害する物質としては、GSK-3の活性を阻害する化合物であればいずれでもよいが、例えばリチウム、ビスインドリルマレイミド誘導体、3-アリール-4-インドリルマレイミド誘導体、インドロカルバゾール誘導体、インドロ[3,2-d] [1] ベンズアゼピン-6(5H)-オン誘導体、インジルビン誘導体等があげられる。

ビスインドリルマレイミド誘導体、3-アリール-4-インドリルマレイミド誘導体、インドロカルバゾール誘導体としては、具体的には、例えば式(I)~(III)

で表される化合物があげられる。中でも3、4-ビス(1-メチルインドールー3 -イル) -1 H -ピロール-2, 5 -ジオン、3 - (1 -メチルインドール-3 -**・イル)-4-(1-プロピルインドール-3-イル)-1H-ピロール-2,5-**ジオン、3-[1-(3-シアノプロピル)インドール-3-イル]-4-(1-メチルインドールー3ーイル)-1H-ピロールー2,5-ジオン、3-[1-(3 ーアミノプロピル) インドールー3-イル] -4-(1-メチルインドールー3-イル) -1H-ピロール-2, 5-ジオン、3-[1-(3-カルボキシプロピル) インドール-3-イル]-4-(1-メチルインドール-3-イル)-1H-ピロ ール-2,5-ジオン、3-[1-(3-カルバモイルプロピル)インドール-3 10 ジオン、3-[1-(3-アミノプロピル)インドール-3-イル]-4-(1-メチルー5-プロピルオキシインドールー3-イル)-1H-ピロールー2,5-ジオン、3-[1-(3-ヒドロキシプロピル) インドール-3-イル]-4-(1 -メチル-5-フェニルインドール-3-イル)-1H-ピロール-2,5-ジオ ン、3-[1-(3-アミノプロピル) インドール-3-イル] -4-(1-メチ 15 N-5-7ェニルインドール-3-1ル) -1H-1ロール-2, 5-3オン、3- [1-(3-ヒドロキシプロピル) インドール-3-イル] -4-(1-メチル -5-メトキシカルボニルインドール-3-イル)-1H-ピロール-2,5-ジ オン、3-[1-(3-ヒドロキシプロピル)インドール-3-イル]-4-(1 -メチル-5-ニトロインドール-3-イル)-1H-ピロール-2,5-ジオン、 20 -5-ニトロインドール-3-イル] -1 H - ピロール-2, 5-ジオン、3-(2) -クロロフェニル)-4-(1-メチルインドール-3-イル)-1H-ピロール -2, 5-ジオン、3-(2, 4-ジクロロフェニル) <math>-4-(1-メチルインド-ル-3-7ル) -1 H-ピロール-2, 5-ジオン、3-(2-クロロフェニル) -4-[1-(3-ヒドロキシプロピル) インドール-3-イル] -1H-ピロー ルー2, 5ージオン、3ー[1-(3-アミノプロピル) インドールー3ーイル] -4-(2-クロロフェニル)-1H-ピロール-2, 5-ジオンおよび

等が好ましい。

5

10

15

20

25

インドロ[3.2-d][1]ペンズアゼピン-6(5H)-オン誘導体としては、具体的には、 例えば式 (IV) で表される化合物があげられる。中でも 7,12-ジヒドロ-インドロ [3,2-d][1]ベンズアゼピン-6(5H)-オン、2-ブロモ-7,12-ジヒドロ-インドロ [3, 2-d] [1] ベンズアゼピン-6(5H)-オン、9-プロモ-7, 12-ジヒドロ-インドロ [3,2-d][1]ベンズアゼピン-6(5H)-オン、9-クロロ-7,12-ジヒドロ-インドロ [3,2-d][1] ベンズアゼピン-6(5H)-オン、11-クロロ-7,12-ジヒドロ-インドロ [3,2-d][1]ベンズアゼピン-6(5H)-オン、10-プロモ-7,12-ジヒドロ-インドロ [3,2-d][1]ベンズアゼピン-6(5H)-オン、8-プロモ-6,11-ジヒドロ-チエノ [3', 2':2, 3 アゼピノ[4, 5-b]インドール-5(4H)-オン、9-プロモ-7, 12-ジヒドロ-4-メトキシ-インドロ[3,2-d][1]ペンズアゼピン-6(5H)-オン、9-プロモ-7,12-ジヒド ロ-4-ヒドロキシ-インドロ[3, 2-d][1]ベンズアゼピン-6(5H)-オン、7, 12-ジヒドロ -4-メトキシ-インドロ[3, 2-d][1]ベンズアゼピン-6(5H)-オン、9-ブロモ-7, 12-ジ ヒドロ-2,3-ジメトキシ-インドロ[3,2-d][1]ペンズアゼピン-6(5H)-オン、9-プロ モ-7, 12-ジヒドロ-2, 3-ジヒドロキシ-インドロ[3, 2-d][1]ベンズアゼピン-6(5H)-オン、7,12ージヒドロー2,3ージメトキシーインドロ[3,2-d][1]ベンズアゼピンー6(5H)ー オン、7,12-ジヒドロ-9-トリフルオロメチル-インドロ[3,2-d][1]ベンズアゼピン -6(5H)-オン、7,12-ジヒドロ-2,3-ジメトキシ-9-トリフルオロメチル-インドロ [3, 2-d][1]ペンズアゼピン-6(5H)-オン、2-ブロモ-7, 12-ジヒドロ-9-トリフルオロ メチル-インドロ[3, 2-d][1]ベンズアゼピン-6(5H)-オン、9-ブロモ-7, 12-ジヒドロ -インドロ[3, 2-d][1]ベンズアゼピン-6(5H)-チオン、9-プロモ-5, 12-ビス-(t-プチ ルオキシカルポニル)-7, 12-ジヒドロ-インドロ[3, 2-d][1]ペンズアゼピン-6(5H)-オン、9-プロモ-12-(t-プチルオキシカルボニル)-7,12-ジヒドロ-インドロ [3, 2-d] [1] ペンズアゼピン-6(5H)-オン、9-プロモ-5, 7-ビス-(t-プチルオキシカル

5

ボニル)-7.12-ジヒドロ-インドロ[3,2-d][1]ペンズアゼピン-6(5H)-オン、9-ブロ モ-5,7,12-トリ-(t-プチルオキシカルボニル)-7,12-ジヒドロ-インドロ [3, 2-d] [1] ペンズアゼピン-6(5H)-オン、9-プロモ-7, 12-ジヒドロ-5-メチルオキシ カルボニルメチル-インドロ[3, 2-d][1]ペンズアゼピン-6(5H)-オン、9-プロモ -7, 12-ジヒドロ-12-メチルオキシカルボニルメチル-インドロ[3, 2-d][1]ベンズア ゼピン-6(5H)-オン、9-ブロモ-7,12-ジヒドロ-12-(2-ヒドロキシエチル)-インドロ [3, 2-d] [1] ベンズアゼピン-6(5H)-オン、2,9-ジプロモ-7,12-ジヒドロ-インドロ [3, 2-d][1]ペンズアゼピン-6(5H)-オン、8,10-ジクロロ-7,12-ジヒドロ-インドロ [3, 2-d] [1] ベンズアゼピン-6(5H)-オン、9-シアノ-7,12-ジヒドロ-インドロ [3, 2-d] [1] ベンズアゼピン-6(5H)-オン、9-ブロモ-7,12-ジヒドロ-5-メチル-イン 10 ドロ[3, 2-d][1]ベンズアゼピン-6(5H)-オン、5-ベンジル-9-プロモ-7,12-ジヒドロ -5-メチル-インドロ[3, 2-d][1]ベンズアゼピン-6(5H)-オン、9-ブロモ-7, 12-ジヒ ドロ-12-メチル-インドロ[3, 2-d][1]ベンズアゼピン-6(5H)-オン、9-プロモ-12-エ チル-7,12-ジヒドロ-インドロ[3,2-d][1]ベンズアゼピン-6(5H)-オン、9-プロモ -7.12-ジヒドロ-12-(2-プロペニル)-インドロ[3,2-d][1]ベンズアゼピン-6(5H)-15 オン、7,12-ジヒドロ-9-メチル-インドロ[3,2-d][1]ベンズアゼピン-6(5H)-オン、 7.12-ジヒドロ-9-メトキシ-インドロ[3,2-d][1]ベンズアゼピン-6(5H)-オン、9-フ ルオロ-7,12-ジヒドロ-12-(2-プロペニル)-インドロ[3,2-d][1]ベンズアゼピン -6(5H)-オン、11-プロモ-7,12-ジヒドロ-インドロ[3,2-d][1]ベンズアゼピン -6(5H)-オン、9-プロモ-7,12-ジヒドロ-2-(メチルイミノアミン)-インドロ 20 [3, 2-d] [1] ベンズアゼピン-6(5H)-オン、9-プロモ-7, 12-ジヒドロ-2-(カルボン 酸)-インドロ[3,2-d][1]ベンズアゼピン-6(5H)-オン、9-ブロモ-7,12-ジヒドロ -10-ヒドロキシ-インドロ[3, 2-d][1]ペンズアゼピン-6(5H)-オン、9-ブロモ-7, 12-ジヒドロ-11-ヒドロキシメチル-インドロ[3,2-d][1]ベンズアゼピン-6(5H)-オン、 7.12-ジヒドロ-4-ヒドロキシ-インドロ[3.2-d][1]ベンズアゼピン-6(5H)-オン、 25 7.12-ジヒドロ-2.3-ジヒドロキシ-インドロ[3,2-d][1]ベンズアゼピン-6(5H)-オ ン、2、3-ジメトキシ-9-ニトロ-7、12-ジヒドロ-インドロ[3、2-d][1]ベンズアゼピン -6(5H)-オン、9-シアノ-7,12-ジヒドロ-インドロ[3,2-d][1]ベンズアゼピン -6(5H)-オン、2,3-ジメトキシ-9-シアノ-7,12-ジヒドロ-インドロ[3,2-d][1]ペン

ズアゼピン-6(5H)-オン、9-ニトロ-7,12-ジヒドロ-インドロ[3,2-d][1]ペンズアゼ ピン-6(5H)-オン、3-(6-オキソ-9-トリフルオロメチル-5, 6, 7, 12-テトラヒドロ-イ ンドロ[3, 2-d][1]ベンズアゼピン-2-イル)プロピオニトリル、2-プロモ-9-ニトロ -7,12-ジヒドロ-インドロ[3,2-d][1]ペンズアゼピン-6(5H)-オン、3-(6-オキソ-9-トリフルオロメチル-5, 6, 7, 12-テトラヒドロ-インドロ [3, 2-d] [1] ベンズアゼピン 5 -2-イル)アクリロニトリル、2-(3-ヒドロキシ-1-プロピニル)-9-トリフルオロメ チル-7,12-ジヒドロ-インドロ[3,2-d][1]ベンズアゼピン-6(5H)-オン、2-ヨード -9-プロモ-7,12-ジヒドロ-インドロ[3,2-d][1]ベンズアゼピン-6(5H)-オン、2-(3-オキソ-1-ブテニル)-9-トリフルオロメチル-7,12-テトラヒドロ-インドロ [3,2-d][1]ベンズアゼピシ-6(5H)-オン、8-クロロ-6,11-ジヒドロ-チエノ 10 [3',2':2,3]アゼピノ[4,5-b]インドール-5(4H)-オン、2-ヨード-9-トリフルオロメ チル-7,12-ジヒドロ-インドロ[3,2-d][1]ベンズアゼピン-6(5H)-オン、7,12-ジヒ ドロ-ピリド[3', 2':4, 5] ピロロ[3, 2-d] [1] ベンズアゼピン-6(5H)-オン、11-メチル -7.12-ジヒドロ-インドロ[3.2-d][1]ベンズアゼピン-6(5H)-オン、2-[2-(1-ヒドロ キシシクロヘキシル)エチニル] -9-トリフルオロメチル-7,12-ジヒドロ-インドロ 15 [3.2-d][1]ベンズアゼピン-6(5H)-オン、2-シアノ-7,12-ジヒドロ-インドロ [3,2-d][1]ベンズアゼピン-6(5H)-オン、2-ヨード-7,12-ジヒドロ-インドロ [3,2-d][1]ベンズアゼピン-6(5H)-オン、11-エチル-7,12-ジヒドロ-インドロ [3,2-d][1]ベンズアゼピン-6(5H)-オン、8-メチル-6,11-ジヒドロ-チエノ [3', 2':2, 3]アゼピノ[4, 5-b]インドール-5(4H)-オンおよび 3-(6-オキソ-9-トリフ 20 ルオロメチル-5, 6, 7, 12-テトラヒドロ-インドロ[3, 2-d][1]ペンズアゼピン-2-イ ル)アクリル酸メチルエステル等が好ましい。

25

ム等が好ましい。

5

10

25

以下、式(I)~(V)で表される化合物をそれぞれ化合物(I)~(V)という。 他の式番号の化合物についても同様である。

化合物(I)~(III)および化合物(Ia)~(IIIa)の各基の定義において、以下の例示があげられる。

- (i) 低級アルキル、低級アルコキシおよび低級アルコキシカルポニルの低級アルキル部分としては、例えば直鎖または分岐状の炭素数 1~10 のアルキルがあげられ、具体的にはメチル、エチル、プロピル、イソプロピル、プチル、イソプチル、secーブチル、tertープチル、ペンチル、イソペンチル、ネオペンチル、ヘキシル、ヘプチル、オクチル、6ーメチルヘプチル、イソオクチル、ノニル、デシル等があげられる。
- (ii)シクロアルキルしては、例えば炭素数 3~8 のシクロアルキルがあげられ、具体的にはシクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル等があげられる。
- 15 (iii) 低級アルケニルとしては、例えば直鎖、分岐または環状の炭素数 2~8 のアルケニルがあげられ、具体的にはビニル、アリル、1-プロペニル、プテニル、ペンテニル、ヘキセニル、ヘプテニル、オクテニル、シクロヘキセニル、2,6-オクタジエニル等があげられる。
- (iv)モノもしくはジ低級アルキルアミノの低級アルキル部分は、前記低級アルキル 20 と同義であり、ジ低級アルキルアミノの2つの低級アルキル部分は、同一でも異なっていてもよい。
 - (v)ハロゲンは、フッ素、塩素、臭素およびヨウ素の各原子を表す。
 - (vi) アリールとしては、例えば炭素数 6~14 の単環式、二環式または三環式のアリールがあげられ、具体的にはフェニル、ナフチル、インデニル、アントラニル等があげられる。
 - (vii)置換低級アルキル、置換低級アルケニル、置換低級アルコキシおよび置換低級アルコキシカルボニルにおける置換基としては、同一または異なって、例えば置換数1~3の、ハロゲン、シアノ、ニトロ、ヒドロキシ、カルボキシ、カルバモイル、アミノ、モノまたはジ低級アルキルアミノ、シクロアルキル、低級アルカノイル、低級ア

ルコキシ、アリール、置換アリール、アリールオキシ、置換アリールオキシ、低級ア ルコキシカルボニル、低級アルカノイルオキシ等があげられる。

ここで示したハロゲン、モノもしくはジ低級アルキルアミノ、シクロアルキル、 アリールおよびアリールオキシのアリール部分、ならびに低級アルコキシ、低級ア ルコキシカルポニル、低級アルカノイルおよび低級アルカノイルオキシの低級アル キル部分は、それぞれ前記ハロゲン(v)、モノまたはジ低級アルキルアミノ(iv)、 シクロアルキル(ii)、アリール(vi)および低級アルキル(i)と同義である。

5

10

また、ここで示した置換アリールおよび置換アリールオキシにおける置換基としては、同一または異なって、例えば置換数 1~3 の、低級アルキル、低級アルコキシ、低級アルコキシカルポニル、ハロゲン、シアノ、ニトロ、ヒドロキシ、カルボキシ、アミノ等があげられる。

ここで示したハロゲンならびに低級アルキル、低級アルコキシおよび低級アルコキシカルポニルの低級アルキル部分は、それぞれ前記ハロゲン(v)および低級アルキル(i)と同義である。

15 (viii)置換アリールおよび置換シクロアルキルにおける置換基としては、前記置換 低級アルキルにおける置換基 (vii) の定義であげた基に加え、例えば低級アルキ ル、置換低級アルキル等があげられる。

ここで示した置換低級アルキルにおける置換基としては、同一または異なって、 例えば置換数 1~3 の、低級アルコキシ、低級アルコキシカルボニル、ハロゲン、 20 シアノ、ニトロ、ヒドロキシ、カルボキシ、アミノ等があげられる。

ここで示したハロゲンならびに低級アルコキシおよび低級アルコキシカルボニルの低級アルキル部分は、それぞれ前記ハロゲン(v)および低級アルキル(i)と同義である。

また、ここで示した低級アルキルは、前記低級アルキル(i)と同義である。

25 ビスインドリルマレイミド誘導体、3-アリール-4-インドリルマレイミド誘導体、インドロカルバゾール誘導体、インドロ[3,2-d][1]ベンズアゼピン-6(5H)-オン誘導体、インジルビン誘導体、化合物(I)~(V)および化合物(Ia)~(IIIa)の薬理学的に許容される塩としては、毒性のない水溶性のものが好ましく、例えば塩酸塩、硫酸塩、硝酸塩、リン酸塩などの無機酸塩、酢酸塩、マレイン酸塩、フマ

ル酸塩、クエン酸塩などの有機酸塩があげられ、薬理学的に許容される金属塩としては、ナトリウム塩、カリウム塩などのアルカリ金属塩、マグネシウム塩、カルシウム塩などのアルカリ土類金属塩、アルミニウム塩、亜鉛塩などがあげられ、薬理学的に許容されるアンモニウム塩としては、アンモニウム、テトラメチルアンモニウムなどの塩があげられ、薬理学的に許容される有機アミン付加塩としては、モルホリン、ピペリジンなどの付加塩等があげられる。

ビスインドリルマレイミド誘導体、3 - アリールー4 - インドリルマレイミド誘導体、インドロカルバゾール誘導体、インドロ[3,2-d][1]ペンズアゼピン-6(5H)-オン誘導体、インジルピン誘導体、化合物(I)~(V)および化合物(Ia)~(IIIa)は、EP 470490、W0 93/18766、W0 93/18765、EP 397060、W0 98/11105、W0 98/11103、W0 98/11102、W0 98/04552、W0 98/04551、DE 4243321、DE 4005970、DE 4217964、DE 4005970、DE 3914764、W0 96/04906、W0 95/07910、DE 42179464、US 5856517、US 5891901、W0 99/42100、EP 328026、EP 384349、EP 540956、DE 4005969、EP 508792、W0 99/65910、W0 01/037819等に記載の方法またはそれらに準じた方法により製造することができる。

10

15

20

また、GSK-3の活性を阻害する物質として、short interference RNA (siRNA)を使用することもできる。GSK-3に対する siRNA は、その RNAi 活性により GSK-3の発現を抑制し、その結果、GSK-3の活性を阻害することができる。 siRNA は、そのもの自身を細胞内に導入することによって GSK-3 の活性を阻害することができるほか、siRNA を発現するベクターを細胞内に導入することによっても可能である。

ヒトGSK-3に対する効果的な siRNA を作製するためには、効果の高いターゲット配列を選択することが重要である。その配列を決定するアルゴリズムは様々な方法が知られているが、例えば、ヒトGSK-3のメッセンジャーRNA配列中の任意の19配列の中で、グアニンまたはシトシンの含量が30~52%であること、3′末端の5塩基のうち3塩基以上がアデニンまたはウリジンであること、融解温度が20℃未満であること、3番目の塩基がアデニンであること、10番目の塩基がウリジンであること、13番目の塩基がグリシン以外であること、19番目の塩基がアデニンであること、19番目の塩基がグリシン及びシトシンでないことの各条件をより多

く満たす配列を選択することにより効果の高いターゲット配列を選択することができる。そのターゲット配列のオリゴRNAの3、末端に2塩基のヌクレオチドを付加したセンス鎖オリゴRNAおよびそのターゲット配列に相補的な配列のオリゴRNAの3、末端に2塩基のヌクレオチドを付加したアンチセンス鎖オリゴRNAの3、末端に2塩基のヌクレオチドを付加したアンチセンス鎖オリゴRNAの両者をハイブリダイズさせることにより、ヒトGSK-3に対する効果的なsiRNAを作製することができる。siRNAの合成、精製、ハイブリダイズは様々な方法により可能であるが、例えば、Silencer siRNA Construction Kit(Ambion 社製)を用い、添付のプロトコールに従うことにより実施することができる。またsiRNAを発現するベクターは、各種プラスミドベクターやレトロウイルスベクター、レンチウイルスベクター、アデノウイルスベクターなどの各種ウイルスベクターによって可能であるが、例えば、piGENE hU6 Vector(iGENE 社製)に上記の方法により選択したターゲット配列のオリゴDNAを添付プロトコールに従って組み込むことにより作製することができる。siRNAやsiRNAを発現するベクターの細胞内への導入は様々な方法により可能であるが、例えば Nucleofector Device (Amaxa 社製)を用い添付のプロトコールに従うことにより実施することができる。

2. GSK-3の活性を阻害する物質の探索法

5

10

15

20

25

GSK-3の活性を阻害する物質の探索法は、[i] 被験物質の存在下、GSK-3、GSK-3によりリン酸化されるペプチドおよびATPを共存させた場合と、[ii] 被験物質の非存在下、上記 [i] のGSK-3、GSK-3によりリン酸化されるペプチドおよびATPを共存させた場合での、[iii] リン酸化されているペプチドの量を測定、比較し、[iv] 被験物質の非存在下に比べ、被験物質の存在下におけるリン酸化されているペプチドの量が少ない物質を選択する方法をあげることができる。

被験物質は、特に限定されないが、例えば、ペプチド、蛋白質、細胞抽出液や該抽出液由来の精製物、細胞培養上清や該上清由来の精製物、血清などの生体試料や該生体試料由来の精製物、微生物の菌体抽出液や該抽出液由来の精製物、微生物培養上清や該上清由来の精製物、化合物、コンビナトリアルケミストリーを用いて合成された化合物などをあげることができる。

GSK-3としては、GSK-3の活性を有するものであれば特に限定されない

が、好ましくはほ乳類、より好ましくはラット、マウス、サルまたはヒト由来のG $SK-3\alpha$ または β をあげることができ、具体的には配列番号1で表されるアミノ酸配列を有する蛋白質をあげることができる。

GSK-3は、GSK-3をコードする遺伝子を有する発現ベクターを動物細胞 に導入し、該動物細胞を培養する方法などにより取得することができる。GSK-3をコードする遺伝子は、GSK-3をコードする遺伝子であれば特に限定されないが、好ましくはほ乳類、より好ましくはラット、マウス、サルまたはヒト由来の GSK-3 α または β をコードする遺伝子をあげることができ、具体的には配列番 号2で表される塩基配列を有する遺伝子をあげることができる。

5

15

20

10 GSK-3によりリン酸化されるペプチドとしては、グリコーゲン合成酵素をあ げることができ、グリコーゲン合成酵素としては、例えば配列番号3で表されるア ミノ酸配列を有するペプチドをあげることができる。

グリコーゲン合成酵素は、グリコーゲン合成酵素をコードする遺伝子を有する発現ベクターを動物細胞に導入し、該動物細胞を培養する方法などにより取得することができる。グリコーゲン合成酵素をコードする遺伝子は、グリコーゲン合成酵素をコードする遺伝子であれば特に限定されないが、好ましくはほ乳類、より好ましくはラット、マウス、サルまたはヒト由来のグリコーゲン合成酵素をコードする遺伝子をあげることができ、具体的には配列番号4で表される塩基配列を有する遺伝子をあげることができる。

また、蛋白質の翻訳に関与する eukaryotic initiation factor 2B (eIF2B) 蛋白質のアミノ酸配列中で、GSK-3によりリン酸化される部位を含むアミノ酸配列を有するペプチドもGSK-3によりリン酸化されるペプチドとして用いることができ、具体的には配列番号5で表されるアミノ酸配列を有するペプチドをあげることができる。

25 GSK-3の活性を測定する方法としては、例えばリン酸の供与体であるATP として [γ - 3 3 P] ATPを用い、被験物質存在下、または被験物質非存在下において、GSK-3によるグリコーゲン合成酵素または該酵素のリン酸化部位を含むペプチドのリン酸化反応を行い、該酵素またはペプチドに取り込まれた 3 3 P の量を液体シンチレーションカウンターなどを用いて測定する方法をあげることができ

る。

10

15

20

25

3. 神経再生薬

神経再生薬とは、ヒトまたは動物の脳内の神経幹細胞に直接作用することでニューロン新生を促進し、脳内のニューロンを増加させる作用を有する薬剤をいう。

5 該神経再生薬は、神経の変性または損傷を伴う神経疾患の治療薬として用いることができる。

該神経疾患としては、パーキンソン病、アルツハイマー病、ダウン症、脳血管障害、脳卒中、脊髄損傷、ハンチントン舞踏病、多発性硬化症、筋萎縮性側索硬化症、 てんかん、不安障害、統合失調症、うつ病および躁鬱病などをあげることができる。

GSK-3の活性を阻害する物質またはその薬理学的に許容される塩は、神経再生薬として、そのまま単独で投与することも可能であるが、通常各種の医薬製剤として提供するのが望ましい。また、それら医薬製剤は、動物および人に使用されるものである。

本発明の神経再生薬は、活性成分としてGSK-3の活性を阻害する物質またはその薬理学的に許容される塩を単独で、または任意の他の治療のための有効成分との混合物として含有することができる。また、それら医薬製剤は、活性成分を薬理学的に許容される一種またはそれ以上の担体と一緒に混合し、製剤学の技術分野においてよく知られている任意の方法により製造される。

投与経路は、治療に際し最も効果的なものを使用するのが望ましく、経口または、 例えば静脈内などの非経口をあげることができる。

投与形態としては、錠剤、散剤、顆粒剤、シロップ剤、注射剤などがある。

経口投与に適当な、例えばシロップ剤のような液体調製物は、水、蔗糖、ソルビット、果糖などの糖類、ポリエチレングリコール、プロピレングリコールなどのグリコール類、ごま油、オリーブ油、大豆油などの油類、pーヒドロキシ安息香酸エステル類などの防腐剤、ストロベリーフレーバー、ペパーミントなどのフレーバー類などを使用して製造できる。また、錠剤、散剤および顆粒剤などは、乳糖、ブドウ糖、蔗糖、マンニットなどの賦形剤、澱粉、アルギン酸ソーダなどの崩壊剤、ステアリン酸マグネシウム、タルクなどの滑沢剤、ポリビニールアルコール、ヒドロキシプロピルセルロース、ゼラチンなどの結合剤、脂肪酸エステルなどの界面活性

剤、グリセリンなどの可塑剤などを用いて製造できる。

4. 神経幹細胞のニューロン新生促進剤

5

10

25

非経口投与に適当な製剤は、好ましくは受容者の血液と等張である活性化合物を 含む滅菌水性剤からなる。例えば、注射剤の場合は、塩溶液、プドウ糖溶液または 塩水とプドウ糖溶液の混合物からなる担体などを用いて注射用の溶液を調製する。

また、これら非経口剤においても、経口剤で例示した希釈剤、防腐剤、フレーバー類、賦形剤、崩壊剤、滑沢剤、結合剤、界面活性剤、可塑剤などから選択される 1 種もしくはそれ以上の補助成分を添加することもできる。

GSK-3の活性を阻害する物質またはその薬理学的に許容される塩の投与量および投与回数は、投与形態、患者の年齢、体重、治療すべき症状の性質または重篤度により異なるが、通常経口の場合、成人一人当り0.01mg~1g、好ましくは0.05~50mgを一日一回ないし数回投与する。静脈内投与などの非経口投与の場合、成人一人当り0.001~100mg、好ましくは0.01~10mgを一日一回ないし数回投与する。

神経幹細胞のニューロン新生促進剤とは、in vivo または in vitro において、神 15 経幹細胞と接触させたとき、該神経幹細胞のニューロン新生を促進する薬剤のこと をいう。

神経幹細胞は、神経幹細胞であれば特に限定されないが、脳の成体神経幹細胞が好ましい。

脳は、いずれの動物の脳であってもよいが、好ましくは哺乳動物、より好ましく
20 はラット、マウス、サル、ヒトなどの脳をあげることができる。

GSK-3の活性を阻害する物質またはその薬理学的に許容される塩は、神経幹細胞のニューロン新生促進剤として、そのまま単独で用いることも可能であるが、通常各種の医薬製剤として提供するのが望ましい。また、それら医薬製剤は、動物および人に使用されるものである。

本発明の神経幹細胞のニューロン新生促進剤は、活性成分としてGSK-3の活性を阻害する物質またはその薬理学的に許容される塩を単独で、または任意の他の治療のための有効成分との混合物として含有することができる。それら医薬製剤は、上記した神経再生薬の製剤と同様の方法により製造することができ、同様の投与方法により投与することができる。

本発明の神経幹細胞のニューロン新生促進剤は、in vitro において、神経幹細胞と接触させ、該神経細胞を培養することにより、ニューロンを新生させ、培養物から該ニューロンを採取することを特徴とするニューロンの製造法に用いることができる。in vitro で本発明の神経幹細胞のニューロン新生促進剤を用いる場合、GSK-3の活性を阻害する物質またはその薬理学的に許容される塩を、該物質または該塩を溶解することができる溶液に溶解して用いることが好ましい。該溶液としては、水、DMSO などをあげることができる。

5

20

25

5. 本発明のニューロン新生促進剤の存在下、神経幹細胞を培養して得られるニューロン

10 本発明のニューロン新生促進剤の存在下、動物の神経幹細胞を培養することにより、該神経幹細胞のニューロン新生を積極的に促進させることができる。動物の神経幹細胞は、いずれの動物の神経幹細胞であってもよく、好ましくは哺乳動物、より好ましくはラット、マウス、サル、ヒト由来の神経幹細胞をあげることができ、神経幹細胞としては、脳由来の神経幹細胞をあげることができる。神経幹細胞は、いずれの週齢、または年齢の動物由来の細胞でもよいが、好ましくは成体神経幹細胞をあげることができる。

動物から成体神経幹細胞を取得する方法としては、J. Neuroscinece, 19,8487 (1999) および Genes & Develop., 10,3129 (1996) 記載の方法に準じて、外科的手法によって成体動物から脳を摘出して、脳細胞粗抽出液を調製し、該粗抽出液から成体幹細胞を濃縮する方法をあげることができる。

また、ヒトから成体神経幹細胞を取得する方法としては、Experimental Cell Research, 289, 378 (2003)記載の方法に準じて、バイオプシーによって神経疾患患者の側脳室壁から組織を採取して、脳細胞粗抽出液を調製し、該抽出液から成体幹細胞を濃縮する方法をあげることができる。

本発明のニューロン新生促進剤存在下、成体神経幹細胞を培養する場合、1.8× 10⁵個/cm²程度の成体神経幹細胞に対して、該ニューロン新生促進剤を100nmol/l ~100μmol/l の濃度で作用させることが好ましい。ただし、リチウムまたはその薬理学的に許容される塩は100μmol/l~10mmol/l の濃度で作用させることが好ましい。成体神経幹細胞と本発明のニューロン新生促進剤を接触させ、37℃で5%CO

2雰囲気下、4~14 日間、2 日おきに全量または部分量培地交換しながら静置培養することでニューロン新生を促進させることができる。

成体神経幹細胞の培養に用いる培地は、ニューロン新生の促進を妨げない培地であればいずれの培地でもよいが、1%の N2 supplement (Invitrogen 社製)を含む DMEM/F12 培地 (Invitrogen 社製) などを用いるのが好ましい。

上記の培養により取得されるニューロンは、培地から回収し、神経疾患患者の障害部位へ外科的手法で移植することにより該神経疾患の治療に用いることができる。該神経疾患としては、パーキンソン病、アルツハイマー病、ダウン症、脳血管障害、脳卒中、脊髄損傷、ハンチントン舞踏病、多発性硬化症、筋萎縮性側索硬化症、てんかん、不安障害、統合失調症、うつ病および躁鬱病などをあげることができる。

6. 本発明の神経再生薬の評価法

5

10

15

20

25

本発明の神経再生薬が、in vivo においてニューロンを再生させ、神経疾患を治療することができることは、以下の方法により確認することができる。

上記した本発明の神経再生薬を、ラットまたはサルなどの実験動物に投与する。 実験動物は、傷害を有していない健康な動物であってもよいが、海馬虚血傷害を与えることによりニューロン新生を効果的に観察することができるので [Cell, 110, 429 (2002)]、虚血、6-hydroxydopamine (6-OHDA)投与またはカイニン酸投与等の方法により、脳に傷害を与えた動物が好ましい。投与経路としては、経口、口腔内、皮下、筋肉内、静脈内または脳室内などへの投与をあげることができる。投与量、投与方法としては、例えば体重 1kg 当り $100 \, \mu \, \text{g} \sim 10 \, \text{mg}$ 、好ましくは $500 \, \mu \, \text{g} \sim 500 \, \text{ng}$ を一日一回ないし数回投与する。静脈内投与などの非経口投与の場合、体重 $1 \, \text{kg} \, \text{当}$ り $10 \, \mu \, \text{g} \sim 1 \, \text{ng}$ 、好ましくは $100 \, \mu \, \text{g} \sim 10 \, \text{ng}$ を一日一回ないし数回投与する。

新生したニューロンは以下の方法により検出することができる。

増殖細胞を標識することができるプロモデオキシウリジン (BrdU)、または Green Fluorescent Protein (GFP) やベータガラクトシダーゼ等の細胞標識可能な遺伝子を発現できるレトロウイルスベクターを該物質の最初の投与と同時、投与前または投与後に該実験動物に投与した後、該物質を一日一回ないし数回投与して 10~20 日間飼育する。その後、該実験動物の脳を摘出し、脳の凍結切片を調製して蛍光顕微

鏡を用いて観察し、例えば増殖細胞を標識する薬剤として BrdU を用いた場合は、 単位面積当たりの BrdU 陽性細胞数および BrdU 陽性細胞数に対するニューロンマー カーである Tujl 陽性細胞数の割合を、陰性コントロールと比較する。

以上の方法により、本発明の神経再生薬のニューロン新生促進作用および神経疾患治療効果を評価することができる。

7. 本発明のニューロン新生促進剤の評価法

10

15

20

25

参考例 2 記載の方法で取得できる ANSC-7 細胞を、1ml の 1%の N2 supplement (Invitrogen社製)と20 ng/ml の FGF-2 (PeproTech社製)を含む DMEM/F12 培地が入ったポリオルニチンおよびラミニンでコートした 12 穴培養ディッシュに 1 穴当たり 1.8×10⁵ 個まき、一晩インキュベートする。培養液を、FGF2 を含まず 0.5%の胎仔牛血清及び 1%の N2 supplement を含む DMEM/F12 培地 (Invitrogen社製。以下、分化誘導培地と称する)に全量交換して分化を誘導する。その際、PBS (Invitrogen社製)または DMS0 で 0.01 nmol/l~5 mol/l の範囲で段階的に希釈したGSK-3の活性を阻害する物質をそれぞれ 1000分の 1 容量添加する。陰性コントロールとして同容量の PBS または DMS0 を添加する。

培養液を、それぞれのGSK-3の活性を阻害する物質が入った分化誘導培地で2日おきに交換し、計6日間分化誘導後、15%中性緩衝ホルマリン液(和光純薬工業)に置換し20分間固定する。その後、0.3% TritonX-100 (ナカライテスク社製)を含むPBSを用いた5分間の洗浄を3回繰り返す。次に、PBSで希釈した10%ヤギ胎児血清 (DAKO 社製)を用いて細胞を2時間ブロッキングした後、1次抗体としてPBSで1000倍希釈したマウス抗 Tuj1 (β チューブリンイソタイプ皿)抗体(シグマアルドリッチ社製)を4℃で16時間反応させる。その後、0.3% TritonX-100を含むPBSを用いた5分間の洗浄を3回繰り返す。

次に、2 次抗体として 1000 倍希釈した Alexa Fluor 488 コンジュゲートヤギ抗マウス IgG 抗体 (Molecular Probes 社製) を室温で 2 時間反応さる。同時に Bisbenzimide H 33342 Fluorochrome, Trihydrochloride (Calbiochem 社製、以下 H33342 と記す)を終濃度 1 μ g/ml になるように添加し、核を染色する。PBS に浸したのち倒立型蛍光顕微鏡 (ニコン社製) により観察し、2.44 平方ミリメートルあたりの Tuj1 陽性ニューロン数をカウントする。

以下、本発明のニューロン新生促進剤のニューロン新生促進作用に関する実験例を示す。

実験例1:塩化リチウムによるニューロン新生促進(1)

5

10

15

20

25

上記7の方法により、ANSC-7細胞の分化誘導時に PBS で 0.01, 0.1, 1, 3mol/lになるように溶解した塩化リチウムまたは塩化ナトリウム(いずれもナカライテスク社製)を培養液の1000分の1容量、ANSC-7細胞を含有する培地に添加し、分化誘導後6日目のニューロン数を解析した。その結果、Tuj1陽性のニューロン数は終濃度 0.01, 0.1, 1, 3mmol/lの塩化リチウムでそれぞれ1.1, 1.3, 1.8, 2.1倍となり(塩化リチウム 1mmol/l以上で有意差あり)、塩化リチウム濃度に依存して増加した。また 3mmol/l の塩化リチウムによる H33342陽性の総細胞数は塩化リチウムなしのコントロールと比較して1.1倍で有意差がなかった。以上のことから、塩化リチウムは ANSC-7細胞のニューロン新生促進作用を有することが明らかとなった。また、ネガティブコントロールである塩化ナトリウムでは Tuj1陽性のニューロン数は終濃度 0.01, 0.1, 1, 3mmol/lでそれぞれ1.0, 1.1, 1.2, 1.2倍で全て有意差は無く、ニューロン新生数の増加は塩濃度や塩化物イオンによる効果ではなくリチウムの効果であると考えられる。

実験例2:塩化リチウムによるニューロン新生促進(2)

ANSC-7細胞に対するニューロン新生促進作用が BDNF および Bc1-2 の発現誘導によるものであるかどうかを明らかにするため、リチウムにより BDNF および Bc1-2 の発現が促進されるか否かを半定量的 RT-PCR により解析した。

ANSC-7 細胞を、2ml の 1%の N2 supplement と 20 ng/ml の FGF-2 を含む DMEM/F12 培地が入ったポリオルニチンとラミニンでコートした 6 穴培養ディッシュに、1 穴あたり 4.5×10⁵ 個になるように計 7 穴まき、一晩インキュペートした。1 穴の細胞から RNeasy mini kit (キアゲン社製)を用いて添付プロトコールに従って全 RNA を取得した。残り 6 穴の培地を分化誘導培地に全量交換して分化を誘導した。そのうち 2 穴には 3mol/l の塩化リチウムを培地の 1000 分の 1 容量、別の 2 穴には 1mol/l の塩化リチウムを培地の 1000 分の 1 容量添加した。残り 2 穴には同容量の PBS を添加しコントロールとした。

分化誘導開始から 24 時間後、各濃度の塩化リチウムを添加した1穴ずつから細

胞を採取し、該細胞から上記と同様の方法により全 RNA を取得し、残りの細胞からは分化誘導開始から 6 日後に全 RNA を取得した。上記で取得した各 $5\mu g$ の全 RNA に、 $10\mu l$ の $5\times DN$ ase buffer、 $0.5\mu l$ の RNase inhibitor $(40U/\mu l)$ 、 $2.5\mu l$ の RNase-free DNaseI $(1U/\mu l)$ (以上プロメガ社製)をそれぞれ加え、滅菌水で総容量を $50\mu l$ とした。37 で 30 分間反応させた後、フェノール/クロロホルム処理したのちエタノール沈殿した。

· 5

10

15

20

25

DNase 処理した各 $1\mu g$ の全 RNA に $0.5\mu g/\mu l$ オリゴ(dT) 12–18 プライマーを $1\mu l$ 加え、滅菌水で総容量を $12\mu l$ とした。65℃で 10 分間加熱した後氷上で急冷し、 $4\mu l$ の $5\times$ synthesis buffer (インビトロジェン社製)、 $1\mu l$ の 10 mmo 1/l dNTP mix、 $2\mu l$ の 0.1 mo 1/l DTT、 $1\mu l$ の 200 U/ μl Superscript II RT (インビトロジェン社製)を加え、42℃で 50 分間反応した。90℃で 5 分間加熱した後氷上に 10 分間置いた。 次に RNaseH(2 U/ μl) (インビトロジェン社製)を $1\mu l$ 加え、37℃で 20 分間反応し、滅菌水を加えて総容量を $200\mu l$ とすることにより cDNA を作製した。

同様に陽性コントロール用としてラット脳の全 RNA から cDNA を作成した。 $1 \mu l$ の該 cDNA に、 $2 \mu l$ の $10 \mu mol/l$ プライマーセット、 $1 \mu l$ の DMSO (ナカライテスク社製)、 $2 \mu l$ の $10 \times ExTaq$ buffer、 $1.6 \mu l$ の dNTPmix、 $0.1 \mu l$ の ExTaq(以上、タカラバイオ社製)を加え、サーマルサイクラーを用いて 94 ℃ c 1 分間処理後、94 ℂ c 1 分間、60 ℂ c 1 分間、74 ℂ c 1 分間のサイクルを、8cl-2 増幅用 PCR で 27 サイクル、BDNF 増幅用 PCR で 35 サイクル繰り返し、それぞれの cDNA 断片を増幅させた。8cl-2 の増幅には配列番号 6 および 7 で表される塩基配列からなる合成 DNA を、BDNF の増幅には配列番号 8 および 9 で表される塩基配列からなる合成 DNA をプライマーセットに用いた。

増幅 DNA は、1.8% アガロース(ナカライテスク社製)ゲルで電気泳動し、エチジウムプロマイド(ナカライテスク社製)で染色後、トランスイルミネーター(東洋紡社製)で検出した。Bcl-2 のバンド強度は分化開始後 24 時間目および 6 日目ともに塩化リチウムの濃度差により変化しなかった。BDNF は塩化リチウムの濃度差に関わらず発現は認められなかった。

以上の結果から、塩化リチウムによるニューロン新生促進活性は、Bcl-2 および BDNF を介した細胞死抑制の結果ではなく、塩化リチウムは積極的にニューロン新生

を促進することが示唆された。

10

25

実験例3:塩化リチウムによるニューロン新生促進(3)

リチウムによるニューロン新生促進作用がアポトーシス抑制による新生細胞数の増加によるものであるのか、または積極的にニューロン分化を誘導していることによるものであるのかを明らかにするため、リチウムによる ANSC-7 細胞に対するアポトーシス抑制効果を解析した。

上記7の方法により、塩化リチウムを終濃度 3mmol/l になるように ANSC-7 細胞を含有する培地に添加して 6 日間培養し、塩化リチウムを添加して培養した ANSC-7 細胞とコントロールとして PBS を添加して培養した ANSC-7 細胞とコントロールとして PBS を添加して培養した ANSC-7 細胞とを、in situ 細胞死検出キット、フルオレセイン(ロシュ・ダイアグノスティックス社製)を用いて添付プロトコールどおり該細胞と反応させた。倒立型蛍光顕微鏡(ニコン社製)を用いて該細胞を観察し、2.44 平方ミリメートルあたりのアポトーシス細胞数をカウントした。

その結果、アポトーシス陽性細胞数は塩化リチウム添加により 1.0 倍となり変化 せず、塩化リチウムは ANSC-7 細胞のアポトーシスを抑制しないことが明らかとなった。従って、リチウムによるニューロン新生促進作用は、積極的なニューロン新生の促進によるものであることが明らかとなった。

実験例4:インスリンおよびフォルスコリンとリチウムとのニューロン新生促進作用に関する拮抗作用

20 ニューロン新生促進作用が知られるインスリンおよびフォルスコリンとリチウムとのニューロン新生促進作用に関する拮抗作用を解析した。

上記7の方法により、ANSC-7 細胞の分化誘導時に、培地中の濃度が $5 \mu g/m 1$ または $25 \mu g/m 1$ になるようにインスリンを培地に添加するとともに、各濃度のインスリンを含む培地に、終濃度が 0、1 および 3mmol/l になるように塩化リチウムを添加し、6 日間分化誘導を行った。

その結果、3mmo1/1 の塩化リチウムによるニューロン増加率は、 $5\mu g/m1$ のインスリン共存時に比べ、 $25\mu g/m1$ のインスリン共存時で 0.70 倍となり有意に低下していた。よって、インスリンとリチウムの作用が拮抗することが明らかとなった。また、上記と同様の方法にて、インスリンの代わりに終濃度が 0.1 および 5μ

mol/l になるようにフォルスコリンを培地に添加し、終濃度が 0 または 3mmol/l の 塩化リチウム共存時におけるニューロン増加率を算出した。

その結果、塩化リチウムなしの条件ではフォルスコリンによるニューロン増加率 が 1, 5μ mol/l のフォルスコリンでそれぞれ 1.9, 2.2 倍であるのに対し、3mmol/l の塩化リチウム共存時にはそれぞれ 1.2, 1.1 倍と加算しなかった。従って、塩化リチウムとフォルスコリンは、ニューロン新生促進作用において拮抗することが明らかとなった。

5

10

リチウムの標的分子としては、GSK-3やイノシトールー1-リン酸フォスファターゼやイノシトールーポリフォスファターゼが知られており [Nature, $\underline{417}$, 292-295 (2002)]、また、インスリンとフォルスコリンは間接的にGSK-3の活性を阻害することが知られている [Mol. Cell. Biol., 19, 4989-5000 (1999)] 。リチウム、インスリンおよびフォルスコリンのニューロン新生促進作用に関する標的分子は共通であると考えられることから、リチウムはGSK-3の活性を阻害することにより神経幹細胞のニューロン新生を促進していることが示された。

実験例5:GSK-3の選択的阻害剤であるSB-216763によるニューロン新生促進参考例1記載の方法により合成したGSK-3の選択的阻害剤として知られるSB-216763[Chem. Biol., 7, 793-803(2000)]を、0.1 および0.33mmol/l になるようにDMSOに溶解し、上記7の方法により、その1000分の3容量をANSC-7を含有する培地に、ANSC-7細胞分化誘導時に添加し、分化誘導後6日目のニューロン数を20 測定した。

その結果、Tuj1 陽性のニューロン数は終濃度 0.3, $1.0 \, \mu \, mol/l$ の SB-216763 によってそれぞれ 1.2 倍、1.8 倍となり濃度依存的に有意に増加した。よって、GSK-3 を選択的に阻害する活性を持つ化合物によりニューロン新生を促進できることが明らかとなった。

以上より、GSK-3を選択的に阻害する活性を持つ物質は、神経幹細胞のニューロン新生促進剤になるとともに、神経の再生治療薬になることが示された。
 実験例 6: GSK-3の阻害剤である 9-ブロモ-7,12-ジヒドロ-インドロ [3,2-d] [1] ペンズアゼピン-6(5H)-オン (Kenpaullone) によるニューロン新生促進実験例1に示した方法と同様の方法により、GSK-3およびサイクリン依存性

キナーゼ(以下、CDKと称す)の阻害剤として知られる Kenpaullone [Biochem. J., 371, 199-204(2003)、CALBIOCHEM 社製] を、0.5、2 および 5mmol/l になるように DMSO に溶解し、培養液の 1000 分の 1 容量の該 DMSO 溶液を、ANSC-7 細胞を含有する培地に添加し、分化誘導後 6 日目の Tuj1 陽性ニューロン数を解析した。陰性コントロールとして同容量の DMSO を添加した。また同様に、CDK阻害剤として知られ、GSK-3 はほとんど阻害しない Roscovitine [Biochem. J., 371, 199-204(2003)、シグマアルドリッチ社製]を、2、5 および 10mmol/l になるように DMSO に溶解し、培養液の 1000 分の 1 容量の該 DMSO 溶液を、ANSC-7 細胞を含有する培地に添加し、分化誘導後 6 日目の Tuj1 陽性ニューロン数を解析した。

5

10

15

20

25

その結果、Tuj1 陽性ニューロン数は終濃度 $0.5\,\mu\,\text{mol/l}$ の Kenpaullone で陰性コントロールと比較して 1.3 倍、 $2\,\mu\,\text{mol/l}$ で 2.7 倍、 $5\,\mu\,\text{mol/l}$ で 3.7 倍となり、Kenpaullone の濃度依存的に有意に増加した。一方、終濃度 $2\,\mu\,\text{mol/l}$ の Roscovitine で陰性コントロールと比較して 1.0 倍、 $5\,\mu\,\text{mol/l}$ で 1.2 倍、 $10\,\mu\,\text{mol/l}$ で 1.1 倍でありそれぞれ有意差は無く、Roscovitine による Tuj1 ニューロン数の増加は認められなかった。従って、Kenpaullone はニューロン新生促進作用を持ち、その作用は Kenpaullone のCD K阻害活性ではなく GSK-3 阻害活性によるものであることが明らかとなった。

以上より、リチウム、SB-216763 に限らず、GSK-3を阻害する活性を持つ化 合物は、神経幹細胞のニューロン新生促進剤になるとともに、神経疾患の再生治療 用医薬になることが示された。

実験例7:GSK-3β遺伝子高発現によるニューロン新生の抑制

アルツハイマー病患者の脳内で $GSK-3\beta$ の高発現が認められることから $[J.Neuropathol.Exp.Neurol., 56,70-78(1997)]、アルツハイマー病発症の原因と <math>GSK-3\beta$ の関係を明らかにするため、成体神経幹細胞のニューロン分化に対する $GSK-3\beta$ 高発現の影響を、レトロウイルスベクターを用いて検討した。

まず、実験例 2 に記載したラット脳由来 c DNAを鋳型として、野生型ラットG SK-3 β 遺伝子をコードする c DNAを以下のように調製した。 2.5μ l の鋳型 c DNAに、 3μ l の配列番号 1 O および 1 1 からなる 10μ mol/l のプライマーセット (プロリゴ社製)、 5μ l の $10\times PCR$ buffer for KOD-plus-、 5μ l の 2mmol/l dNTPs、

 2μ l の 25mmol/l MgSO₄、 1μ l の KOD -plus- DNA polymerase (以上、東洋紡績社製) および 31.5μ l の滅菌水を加え、サーマルサイクラーを用いて 94℃で 25 世紀で 25

一方、GSK-3βのキナーゼ活性を失う変異である85番目のリジン残基がアルギニン残基に変異した変異型ラットGSK-3β遺伝子[Proc. Nat. Acad. Sci. USA, 92, 8498-8502(1995)]をコードするcDNAを同様に以下のように調製した。2.5μ1の野生型ラットGSK-3β遺伝子をコードするcDNAを鋳型として、配列番号10および12からなるプライマーセットを用いて変異型ラットGSK-3βの5、末端側部分長cDNAを増幅させ、配列番号11および13からなるプライマーセットを用いて変異型ラットGSK-3βの3、末端側部分長cDNAを増幅させた。それぞれの部分長cDNAの混合物を鋳型として、配列番号10および11からなるプライマーセットを用いて変異型ラットGSK3βの完全長cDNAを増幅させた。

野生型および変異型それぞれの増幅反応液をフェノール/クロロホルム処理したのちエタノールを加えて沈殿させ、QIAquick PCR purification kit (キアゲン社製)で添付プロトコールに従って精製した。

20

25

続いて $10\mu g$ の pCLNCX プラスミドベクター(IMGENEX 社製)に $10\mu l$ の $10\times M$ バッファー、 $5\mu l$ の $\underline{Hin}d\mathbb{H}$ (タカラバイオ社製)を加え、滅菌水を加えて $100\mu l$ とし、37℃で 12 時間反応させた。反応液をフェノール/クロロホルム処理した後 エタノールを加えてDNAを沈殿させ、 $32\mu l$ の滅菌水に溶解した。該DNA溶液に $4\mu l$ の $10\times Blunting$ buffer、 $4\mu l$ の KOD DNA polymerase を加え、72℃で 2 分間反応させ平滑末端化した。反応液をフェノール/クロロホルム処理した後エタノールを加えてDNAを沈殿させ、 $43\mu l$ の滅菌水に溶解した後、 $5\mu l$ の $10\times Alkaline$ Phosphatase buffer および $2\mu l$ の Alkaline Phosphatase (以上、タカラバイオ社製)を加え 65℃で 30 分間反応させた。反応液をフェノール/クロロホルム処理したのちエタノールを加えてDNAを沈殿させ滅菌水に溶解した。

この切断した pCLNCX プラスミドベクター $3\mu g$ に上記で調製した $3\mu g$ の野生型または変異型のラットGSK-3 β 遺伝子をコードする cDNAを混合し滅菌水を

加えて 4μ 1 とし、 4μ 1 の ligation high(東洋紡績社製)を加え 16℃で 12 時間反応させた。これを \underline{B} . \underline{coli} DH5 α コンピテントセル(タカラバイオ社製)にトランスフォーメーションした。定法によりアンピシリン耐性コロニーを液体L B培地で培養し、Endofree Plasmid Maxi Kit(キアゲン社製)を用いて添付プロトコールに従って pCLNC-GSK3 β プラスミド DNA および pCLNC-GSK3 β (K85R) プラスミド DNA を調製した。

5

10

15

20

25

次に、以下のとおりウイルスベクターを作製し、ANSC-7 細胞のニューロン分化 に関わる機能を解析した。まず、pCLNC-GSK3 β 、pCLNC-GSK3 β (K85R)、または陰性 コントロールである pCLNCX プラスミドベクターDNA15 μ g と、それぞれ pMD. G プラスミドベクターDNA (米国ソーク研究所より分与) 5μ g を 2ml の D-MEM high glucose 培地(インビトロジェン社製)に溶解し、Transfast transfection reagent(プロメガ社製)を用いて添付プロトコールに従って、前日に用意した 293gp 細胞(米国ソーク研究所より分与)にトランスフェクションを行った。

トランスフェクションの 3 日後に、培養上清を 0.45 μm のフィルター (Millipore 社製) でろ過し、ウイルスベクターを含む溶液を回収した。該ウイルスベクター溶液をポリアロマチュープ (日立工機製) に移し、超遠心機 (日立工機製) を用いて50,000×g、18℃で 90 分間遠心分離した。上清を除去し、沈殿しているウイルスを1%の N2 supplement と 20 ng/ml の FGF-2 と 8 μg/ml の臭化ヘキサジメトリン(シグマアルドリッチ社製)を含む DMEM/F12 培地に懸濁した。実験例 1 に示した方法と同様の方法により、ポリオルニチンおよびラミニンでコートした 12 穴培養ディッシュに 1 穴当たり 1.8×10⁵ 個まいて一晩静置した ANSC-7 細胞から培養上清を除いて該ウイルス懸濁液を添加し、37℃、5%CO₂ 濃度のインキュペーター中で 2 時間培養して感染させた。続いて培養液を分化誘導培地に全量交換して分化誘導を開始し、実験例 1 と同様に分化誘導 6 日後の Tuj1 陽性ニューロン数を解析した。

その結果、陰性コントロールである pCLNCX より作製したレトロウイルスを感染させ分化させた ANSC-7 細胞と比べ、pCLNC-GSK3 β より作製したレトロウイルスを感染させGSK-3 β を高発現させ分化させた細胞では新生ニューロン数が33%有意に減少した。一方、pCLNC-GSK3 β (K85R) より作製したレトロウイルスを感染させキナーゼ活性を持たないGSK-3 β (K85R) を高発現させ分化させた細胞

では新生ニューロン数が野生型 $GSK-3\beta$ を高発現させた細胞より有意に 34%多く、陰性コントロールである pCLNCX より作製したレトロウイルスを感染させ分化させた場合と同程度であった。よって $GSK-3\beta$ のキナーゼ活性によりニューロン新生が抑制されることが明らかとなった。

5 従って、アルツハイマー病は、GSK-3β の高発現による標的分子のリン酸 化の促進によってニューロン新生が抑制されることにより脳の自己再生能が抑制 され、発症する可能性が示され、GSK-3阻害剤が神経疾患、例えばアルツハイ マー病の治療薬となり得ることが示された。

実験例8:会合型ベータアミロイドペプチドによるニューロン新生の抑制とGSK-3阻害剤による抑制の解除(1)

10

15

20

ベータアミロイドペプチド(以下、A β と称す)は老人斑の主要構成成分であり、アルツハイマー病の原因であると考えられている物質である[Proc. Nat. Acad. Sci., USA, 98, 11039-11041(2001)]。A β [1-40](BIOSOURCE 社製)を 0.1% (v/v)トリフルオロ酢酸(ナカライテスク社製)で 10 mg/ml になるように溶解し、

25℃で1時間保温した後、PBSで0.5mg/mlに希釈した。25℃で24時間保温して会合体を形成させ[J.Biol.Chem., 276, 42027-42034(2001)]、実験例1に示した方法と同様の方法によりANSC-7細胞の分化誘導時に終濃度0.1mg/mlになるように培地に添加し、陰性コントロールには同容量のPBSを添加した。分化誘導2日後、4日後にはそれぞれ分化誘導培地のみで全量培地交換し、分化誘導6日後のニューロン数を測定した。

その結果、Tuj1 陽性ニューロン数は会合型 $A\beta$ の添加により78%有意に減少した。従って、神経疾患の1つであるアルツハイマー病は、会合型 $A\beta$ によりニューロン新生が抑制されることにより、脳の自己再生能が抑制され、発症する可能性が示された。

25 実験例 9:会合型ベータアミロイドペプチドによるニューロン新生の抑制とGSK -3阻害剤による抑制の解除(2)

会合型 $A\beta$ によるニューロン新生の抑制がアポトーシス促進による新生細胞数の減少によるものであるのか、またはニューロン分化の抑制によるものであるのかを明らかにするため、会合型 $A\beta$ の ANSC-7 細胞に対するアポトーシス促進効果を

解析した。

5

10

15

20

実験例8と同様の方法により、終濃度 0.1mg/ml の会合型A β を含有する分化誘導培地により6日間分化誘導した ANSC-7 細胞とコントロールとして PBS を含有する分化誘導培地により分化誘導した ANSC-7 細胞とを、in situ 細胞死検出キット、フルオレセイン (ロシュ・ダイアグノスティックス社製)を用いて添付プロトコールどおり該細胞と反応させた。倒立型蛍光顕微鏡 (ニコン社製)を用いて該細胞を

その結果、アポトーシス陽性細胞数は会合型 $A\beta$ 添加により 14%増加したが有意差は無かったことから、会合型 $A\beta$ による新生ニューロン数の減少は、アポトーシス促進よりもニューロン分化の抑制により主に引き起こされることが明らかとなった。

観察し、2.44平方ミリメートルあたりのアポトーシス細胞数をカウントした。

実験例10:会合型ペータアミロイドペプチドによるニューロン新生の抑制とGS K-3 阻害剤による抑制の解除(3)

実験例 8 と同様の方法により、終濃度 $0.1 \, \mathrm{mg/ml}$ の会合型 $A\beta$ を含有する分化誘導培地で ANSC-7 細胞を分化誘導する際に、塩化リチウムを終濃度 $3 \, \mathrm{nmol/l}$ 、または Kenpaullone を終濃度 $2 \, \mu \, \mathrm{mol/l}$ になるように加え、分化誘導 6 日後の Tujl 陽性ニューロン数を解析した。

その結果、塩化リチウムまたは Kenpaullone を加えることにより、Tujl 陽性ニューロン数が、会合型A β のみと比較してそれぞれ 73%、400%有意に増加した。 従って、GSK-3阻害剤は会合型A β によるニューロン新生の抑制を解除する作用を持つことが明らかとなった。

以上より、GSK-3を選択的に阻害する活性を持つ化合物は、アルツハイマー病等の神経疾患の神経再生薬になること、および該化合物は神経幹細胞のニューロン新生促進剤になることが示された。

25 実験例11:GSK-3の阻害剤である Indirubin-3'-monoxime によるニューロン新生促進

実験例 1 に示した方法と同様の方法により、G S K - 3 の阻害剤として報告されている Indirubin-3'-monoxime [J. Biol. Chem., <u>276</u>, 251-260 (2001)、シグマアルドリッチ社製]を、1mmol/l になるように DMSO に溶解し、培養液の 1000 分

の 1 容量の該 DMSO 溶液を、ANSC-7 細胞を含有する培地に添加し、分化誘導後 6 日目の Tuj1 陽性ニューロン数を解析した。陰性コントロールとして同容量の DMSO を添加した。その結果、終濃度 $1\mu \mod n$ の Indirubin-3'-monoxime の添加条件に おいて、Tuj1 陽性ニューロン数は陰性コントロールと比較して 1.4 倍に有意に増加した。従って、Indirubin-3'-monoxime はニューロン新生促進作用を持つこと が明らかとなった。

5

10

15

20

25

以上より、リチウム、SB-216763、Kenpaullone に限らず、GSK-3を阻害する活性を持つ化合物は、神経幹細胞のニューロン新生促進剤になるとともに、神経疾患の再生治療用医薬になることが示された。

実験例 1 2: GSK - 3 に対する特異的な siRNA によるニューロン新生促進 short interference RNA (siRNA) は遺伝子を特異的にノックダウンする [Nature, 411, 494-498 (2001)]。成体神経幹細胞に発現するGSK - 3 を特異的に阻害する ことによりニューロン新生が促進できることをさらに明らかにするため、GSK - 3 β に対する特異的な化学合成 siRNA を ANSC-7 細胞に導入し、ニューロン新生に 対する効果を検討した。

まず、以下のとおりGSK-3β に対する2種の化学合成 siRNA の ANSC-7 細胞でのノックダウン効果を検討した。ANSC-7 細胞に対する siRNA の導入は Rat NSC Nucleofector™ Kit (Amaxa 社製)を用いて行なった。1×10⁶個の ANSC-7 細胞に対して 150pmol の配列番号14および15からなる2重鎖 siRNA-B1 または配列番号16および17からなる2重鎖 siRNA-B2 (Dharmacon 社製)を添付プロトコールに従って導入した。陰性コントロールとして Non-specific Control Duplex IX (47% GC Content) siRNA (Dharmacon 社製)を導入した。導入後直ちに5mlの分化誘導培地に懸濁し、ポリオルニチンおよびラミニンでコートした6センチ培養ディッシュに播種した。播種48時間後に細胞を1%のNonidet P-40、50mMのTris-HC1(pH7.4)、50mMのNaCl(以上、ナカライテスク社製)、10mlあたり一錠のCompletemini、EDTA free (ロシュ・ダイアグノスティックス社製)を含む水溶液に溶解して回収し、定法によりSDS-PAGE 法で分離したのちウエスタンプロッティング法でGSK-3β量を検出した。検出にはGSK-3αおよびβを認識する抗GSK-3抗体(シグマ社製)を用いた。その結果、2種のGSK-3βに対する siRNA を導入した

細胞は両者とも陰性コントロールと比較して $GSK-3\beta$ 量が 9 割以上減少し、 $GSK-3\alpha$ 量は変化しなかったため、それぞれの siRNA は $GSK-3\beta$ 特異的にノックダウンできることが明らかになった。

続いてそれら2種の siRNA を ANSC-7 に導入後、直ちに 1ml の分化誘導培地が入ったポリオルニチンおよびラミニンでコートした 12 穴培養ディッシュに 1 穴当たり 1.8×10^5 個まき、分化を誘導した。実験例 1 に示した方法と同様の方法により、分化誘導後 6 日目の Tuj 1 陽性ニューロン数を解析した。その結果、Tuj 1 陽性ニューロン数は siRNA-B1 を導入した細胞では陰性コントロールと比較して 2.5 倍に増加し、5 iRNA-B2 を導入した細胞では 1.9 倍に増加した。従って、6 S K -3 β に対する 5 iRNA はニューロン新生促進作用を持つことが明らかとなった。

5

10

20

25

以上より、GSK-3を阻害する活性を持つ化合物および siRNA を含む核酸は、神経幹細胞のニューロン新生促進剤になるとともに、神経疾患の再生治療用医薬になることが示された。

参考例 1:3-(2,4-ジクロロフェニル)-4-(1-メチルインドール-3 15 -イル)-1H-ピロール-2,5-ジオン(SB-216763)の合成工程 1:3-イン ドールグリオキシル酸メチルエステルの合成

市販の3-インドールグリオキシル酸 (9.55 g) を塩化メチレン (300 mL) に 懸濁し、氷冷下、オキサリルクロリド (8.8 mL) を加え、20℃で 20 時間攪拌した。 反応液を氷冷し、メタノール (190 mL) を加えた後、反応液を 25℃で 1 時間攪拌 した。反応液に水および塩化メチレンを加え、析出した結晶を濾取し、結晶を塩化 メチレンで洗浄した。結晶を減圧乾燥し、3-インドールグリオキシル酸メチルエ ステル (7.07 g、69%) を得た。

工程2:2-(1-メチルインドール-3-イル)-2-オキソ酢酸メチルエステルの合成

工程1で得られた3-インドールグリオキシル酸メチルエステル(5.88 g)をN, N-ジメチルホルムアミド (180 mL) に溶解し、0℃で攪拌しながら、水素化ナトリウム (60%オイル分散、1.4 g) を少量ずつ加えた。反応混合物を1時間攪拌した後、ヨウ化メチル(1.2 mL) を加え、20℃で20時間攪拌した。氷冷水を反応液に添加した後、1 mol/L 塩酸で pH 値を5 に調整した。析出した結晶を濾取し、水で

洗浄した。結晶を減圧乾燥し、2-(1-メチルインドール-3-イル)-2-オキソ酢酸メチルエステル (1.96~g、33%) を得た。

工程3:2,4-ジクロロフェニル酢酸アミト・

市販の2,4-ジクロロフェニル酢酸(12.4 g)を塩化メチレン(350 mL)に 溶解し、氷冷下、オキサリルクロリド(10.6 mL)を加え、20℃で20時間攪拌した。 反応液を減圧濃縮し、得られた残渣を塩化メチレン(100 mL)に溶解した。この 溶液を氷冷した28%アンモニア水溶液(250 mL)に滴下し、塩化メチレンを減圧留 去した。析出した結晶を濾取し、水で洗浄した。結晶を減圧乾燥し、2,4-ジク ロロフェニル酢酸アミド(11.14 g、90%)を得た。

10 工程4:SB-216763の合成

20

25

tert-プトキシカリウム (0.5 g) をテトラヒドロフラン (35 mL) に溶解し、氷冷下、工程 2 で得られた 2-(1-メチルインドール-3-イル) -2-オキソ酢酸メチルエステル (0.4 g)、次いで工程 3 で得られた 2 , 4-ジクロロフェニル酢酸アミド (0.3 g) を加え、同温度で 3 時間攪拌した。水を反応液に添加した後、

15 酢酸エチルで抽出した。有機層を飽和炭酸水素ナトリウム水溶液、飽和食塩水で順次洗浄し、無水硫酸マグネシウムで乾燥した後、結晶をエタノールで洗浄した。結晶を減圧乾燥し、SB-216763 (390 mg、70%) を得た。

 1 H-NMR(CDCl₃) δ (ppm): 3.89(s, 3H), 6.41(d, J = 8.1 Hz, 1H), 6.80(t, J = 7.1 Hz, 1H), 7.15(t, J = 7.1 Hz, 1H), 7.32-7.38(m, 3H), 7.49(s, 1H), 8.01(s, 1H), 10.94(s, 1H)元素分析: 理論値(C:61.5、H:3.3、N:7.6)、測定値(C:61.3、H:3.5、N:7.4)

参考例2:ラット脳からの成体神経幹細胞の単離と培養

7週齢の Sprague Dawley rat をエテール麻酔によって眠らせた後に断頭し、頭頂部より頭蓋骨を切開して脳を摘出した。摘出した脳から脳室周囲部位を含む組織を顕微鏡下で眼科用のはさみとピンセットを用いて分離した。脳室周囲部位を含む組織は眼科用はさみとメスを用いて1mm³程度の断片にした後、2.5U/mlのパパイン、250U/mlのDNase (いずれも Worthington, Freehold, NJ 社製)、1u/mlの中性プロテアーゼ (Dispase: Boehringer Manheim 社製)を含む5mlのHBSS 緩衝液 (Invitrogen 社製)中で37℃、30分間消化反応を行なった。該反応により得られ

た細胞と組織の混合物を 10%の胎仔牛血清 (Hyclone 社製) を含む DMEM (Invitrogen 社製) で3回洗浄後、10%の胎仔牛血清を含む DMEM に溶解し、 $10^7 \mu$ m のナイロンメッシュを用いて未消化物を除去した。

得られた細胞粗抽出液を、10cm の培養皿上で 10%の胎仔牛血清を含む DMEM/F12 培地 (Invitrogen 社製) を用いて 37℃のインキュベーター中で1 晩培養した。翌日、培地を1%の N2 supplement (Invitrogen 社製)と 20ng/ml の FGF-2 (PeproTech 社製)を含む DMEM/F12 に置換して培養を開始した。3 日に一度、培地の半分を新しい 1%の N2 supplement と 20 ng/ml の FGF-2 を含む DMEM/F12 に置換し、培養を継続した。小型細胞の小さなコロニーが形成されたら 1%のトリプシンで 30 秒から 1分間程度処理し、剥がれた細胞を回収した。該細胞は、10 μg/ml のポリオルニチン(シグマ社製)を用いて室温で一晩、および 5 μg/ml のマウスEHS腫瘍由来ラミニン (Becton Dickinson 社製)を用いて 37℃で一晩コートしたマルチ・ウエルの培養皿 (Fisher Scientific 社製)上に撒き、培養を継続した。上記培養を続けることで、小型の突起を有し、厚みのある小型細胞が濃縮された。本細胞を成体神経幹細胞株 ANSC-7 として上記の実験に使用した。

発明を実施するための最良の形態

実施例1:錠剤

5

10

15

常法により、次の組成からなる錠剤を調製する。

20	(1)処方	SB-216763	5mg
		乳糖	62mg
		馬鈴薯デンプン	30mg
		ポリビニルアルコール	2mg
		ステアリン酸マグネシウム	1mg
25			100mg
			•
	(2)	Kenpaullone	5mg
	ډ	乳糖	62mg
	*	馬鈴薯デンプン	30mg

ポリビニルアルコール 2mg ステアリン酸マグネシウム 1mg 100mg

 5 (3)
 Indirubin-3'-monoxime
 5mg

 乳糖
 62mg

 馬鈴薯デンプン
 30mg

 ポリビニルアルコール
 2mg

 ステアリン酸マグネシウム
 1mg

10 100mg

実施例2:神経幹細胞のニューロン新生促進剤(1)

常法により、塩化リチウムを 3mol/l になるように PBS に溶解し、塩化リチウムを含む神経幹細胞のニューロン新生促進剤を調製した。

15

実施例3:神経幹細胞のニューロン新生促進剤(2)

常法により、SB-216763、Kenpaullone または Indirubin-3'-monoxime を 0.1mmol/l になるように DMSO に溶解し、SB-216763、Kenpaullone または Indirubin-3'-monoxime を含む神経幹細胞のニューロン新生促進剤を調製した。

20

25

産業上の利用可能性

本発明によれば、グリコーゲンシンターゼキナーゼー3の活性を阻害する物質を有効成分として含有してなる神経再生薬、該物質を有効成分として含有してなる神経幹細胞のニューロン新生促進剤、該ニューロン新生促進剤の存在下、神経幹細胞を培養して得られるニューロンおよび該ニューロンの製造方法を提供することができる。

配列表フリーテキスト

配列番号 5 - 人工配列の説明:合成蛋白質 配列番号 6 - 人工配列の説明:合成DNA 配列番号7-人工配列の説明:合成DNA

配列番号8-人工配列の説明:合成DNA

配列番号9-人工配列の説明:合成DNA

配列番号10-人工配列の説明:合成DNA

5 配列番号11-人工配列の説明:合成DNA・

配列番号12-人工配列の説明:合成DNA

配列番号13-人工配列の説明:合成DNA

配列番号14-人工配列の説明:合成RNA

配列番号15-人工配列の説明:合成RNA

10 配列番号16-人工配列の説明:合成RNA

配列番号17-人工配列の説明:合成RNA

・請求の範囲

- 1. グリコーゲンシンターゼキナーゼー3 (以下、GSK-3と略す)の活性 を阻害する物質を有効成分として含有してなる神経再生薬。
 - 2. 神経再生薬が、神経疾患の治療薬である請求項1記載の医薬。
- 5 3. 神経疾患が、パーキンソン病、アルツハイマー病、ダウン症、脳血管障害、 脳卒中、脊髄損傷、ハンチントン舞踏病、多発性硬化症、筋萎縮性側索硬化症、て んかん、不安障害、統合失調症、うつ病および躁鬱病からなる群より選ばれる神経 疾患である請求項2記載の医薬。
- 4. GSK-3の活性を阻害する物質が、リチウムまたはその薬理学的に許容 10 される塩である請求項 $1\sim3$ のいずれか1項に記載の医薬。
 - 5. GSK-3の活性を阻害する物質が、ピスインドリルマレイミド誘導体、3 アリール-4-インドリルマレイミド誘導体、インドロカルバゾール誘導体、インドロ[3,2-d] [1] ベンズアゼピン-6(5H)-オン誘導体もしくはインジルビン誘導体またはそれらの薬理学的に許容される塩である請求項1~3のいずれか1項に記載の医薬。
 - 6. GSK-3の活性を阻害する物質が、式(I)

$$\begin{pmatrix}
R^2 \\
N \\
R^3
\end{pmatrix}$$

$$\begin{pmatrix}
R^5 \\
M \\
R^4$$
(I)

15

20

25

[式中、n およびm は同一または異なって、1~3 の整数を表し、R¹、R³および R⁴は同一または異なって、水素原子、置換もしくは非置換の低級アルキル、置換もしくは非置換の低級アルケニル、一COR⁶ (式中、R⁶は水素原子、置換もしくは非置換の低級アルケニル、置換もしくは非置換の低級アルケニル、置換もしくは非置換のアリールまたは置換もしくは非置換のシクロアルキルを表す)、一COOR⁷ (式中、R⁷は水素原子、置換もしくは非置換の低級アルキル、置換もしくは非置換のアリールまたは置換もしくは非置換のシクロアルキルを表す)または一OR՞ (式中、R⁶は水素原子、置換もしくは非置換の低級アルキル、置換もしくは非置換のアリールまたは置換もしくは非置換の低級アルキル、置換もしくは非置換のアリールまたは置換もし

くは非置換のシクロアルキルを表す)を表し、R² および R⁵ は同一または異なって、水素原子、置換もしくは非置換の低級アルキル、置換もしくは非置換の低級アルケニル、置換もしくは非置換の低級アルコキシ、置換もしくは非置換の低級アルコキシカルボニル、置換もしくは非置換のアリール、カルボキシ、ハロゲン、ヒドロキシ、ニトロ、アミノまたはモノもしくはジ低級アルキルアミノを表し、n および m がそれぞれ 2 または 3 であるとき、それぞれの R² および R⁵ は同一でも異なっていてもよい] で表される化合物、式(II)

(式中、na、ma、 R^{1A} 、 R^{2A} 、 R^{3A} および R^{5A} は、それぞれ前記 n、m、 R^{1} 、 R^{2} 、 R^{3} および R^{5} と同義である)で表される化合物もしくは式(III)

[式中、nb、mb、 R^{1B} 、 R^{2B} および R^{5B} は、それぞれ前記 n、m、 R^1 、 R^2 および R^5 と同義であり、 R^{3B} および R^{4B} は同一または異なって、水素原子、置換もしくは非置換の低級アルキル、置換もしくは非置換の低級アルケニル、 $-COR^6$ (式中、 R^6 は前記と同義である)、 $-COOR^7$ (式中、 R^7 は前記と同義である)または $-OR^8$ (式中、 R^8 は前記と同義である)を表すか、または R^{3B} と R^{4B} が一緒になって、

$$R^9$$
 (A)

15

20

(式中、kは1または2を表し、XはCH₂、NH、酸素原子または硫黄原子を表し、R⁹ はヒドロキシ、カルポキシ、カルバモイルまたは低級アルコキシカルポニルを表す)を形成する]で表される化合物またはそれらの薬理学的に許容される塩である請求

項1~3のいずれか1項に記載の医薬。

7. GSK-3の活性を阻害する物質が、式(Ia)

(式中、R^{2a} は水素原子、低級アルコキシ、低級アルコキシカルボニル、アリール またはニトロを表し、R^{3a} および R^{4a} は同一または異なって、置換もしくは非置換 の低級アルキルを表す)で表される化合物またはその薬理学的に許容される塩であ る請求項1~3のいずれか1項に記載の医薬。

GSK-3の活性を阻害する物質が、式(IIa)

10 (式中、ma は前記と同義であり、 R^{3Aa} は置換もしくは非置換の低級アルキルを表し、 \dot{R}^{5Aa} はハロゲンを表す)で表される化合物またはその薬理学的に許容される塩である請求項 $1\sim3$ のいずれか 1 項に記載の医薬。

9. GSK-3の活性を阻害する物質が、式(IIIa)

15

(式中、R⁹は前記と同義である)で表される化合物またはその薬理学的に許容される塩である請求項1~3のいずれか1項に記載の医薬。

10. GSK-3の活性を阻害する物質が、3,4-ビス(1-メチルインドール-3-イル)-1H-ピロール-2,5-ジオン、3-(1-メチルインドール-3-イル)-4-(1-プロピルインドール-3-イル)-1H-ピロール-2,

5 - ジオン、3 - [1 - (3 - シアノプロピル) インドール - 3 - イル] - 4 - (1 -メチルインドール-3-イル)-1H-ピロール-2,5-ジオン、3-[1-(3-アミノプロピル) インドール-3-イル] -4-(1-メチルインドールー 3-7ル) -1 H - 2 - 1 - 2 - 2 - 3 - 1 -ピル) インドールー3-イル] -4- (1-メチルインドール-3-イル) -1H 5 -ピロール-2、5-ジオン、3-[1-(3-カルバモイルプロピル)インドー N-3-4ル] -4-(1-メチルインドール-3-4ル)-1H-ピロール-2,5-ジオン、3-[1-(3-アミノプロピル) インドール-3-イル]-4-(1 -メチル-5-プロピルオキシインドール-3-イル)-1H-ピロール-2,5ージオン、3-[1-(3-ヒドロキシプロピル) インドール-3-イル]-4-10 (1-メチル-5-フェニルインドール-3-イル)-1H-ピロール-2,5-ジオン、3-[1-(3-アミノプロピル)インドール-3-イル]-4-(1-メチルー5-フェニルインドールー3-イル)-1H-ピロールー2,5-ジオン、 3-[1-(3-ヒドロキシプロピル) インドール-3-イル] -4-(1-メチ ルー5-メトキシカルボニルインドールー3-イル)-1H-ピロールー2,5-15 ジオン、3-[1-(3-ヒドロキシプロピル)インドール-3-イル]-4-(1 -メチル-5-ニトロインドール-3-イル)-1H-ピロール-2,5-ジオン、 3-(1-メチルインドール-3-イル)-4-[1-(3-ヒドロキシプロピル)-5-ニトロインドール-3-イル] -1 H - ピロール-2, 5-ジオン、3-(2) -クロロフェニル) -4- (1-メチルインドール-3-イル) -1H-ピロール 20 -2、5-ジオン、3-(2、4-ジクロロフェニル)-4-(1-メチルインド $- \mu - 3 - 4 \mu - 1 H - 2 \mu - 2 \mu - 2 \mu - 3 - 4 \mu - 3 - 4 \mu - 3 - 4 \mu - 2 \mu - 3 - 4 \mu - 3 - 4 \mu - 2 \mu - 3 - 4 \mu - 3 \mu - 3 - 4 \mu - 3 - 4 \mu - 3 \mu -$ -4-[1-(3-ヒドロキシプロピル) インドール-3-イル] -1H-ピロー ルー2, 5-ジオン、4-[1-(3-アミノプロピル) インドールー3-イル] -3-(2-クロロフェニル)-1H-ピロール-2,5-ジオンおよび 25

からなる群より選ばれる化合物またはその薬理学的に許容される塩である請求項 1~3のいずれか1項に記載の医薬。

11. GSK-3を阻害する物質が、式(IV)

5

10

15

[式中、A は単結合または二重結合によって右に結合されている酸素または硫黄であり、R¹⁰は水素原子、アリール、低級脂肪族置換基、特にアルキルおよび低級アルキルエステルからなる群より選択され、R¹¹~R¹⁴はアルコキシ、アミノ、アシル、脂肪族置換基、特にアルキル、アルケニルおよびアルキニル置換基、脂肪族アルコール、特にアルキルアルコール、脂肪族ニトリル、特にアルキルニトリル、シアノ、ニトロ、カルボキシル、ハロゲン、水素原子、ヒドロキシル、イミノならびに α、β 不飽和ケトンからなる群より個別に選択され、R¹⁵~R¹⁸は脂肪族置換基、特にアルキル、アルケニルおよびアルキニル置換基、特に低級脂肪族置換基、脂肪族アルコール、アルケニルおよびアルキニル置換基、特に低級脂肪族置換基、脂肪族アルコール、特にアルキルアルコール、アルコキシ、アシル、シアノ、ニトロ、エポキシ、ハロアルキル基、ハロゲン、水素原子ならびにヒドロキシルからなる群より個別に選択され、R¹⁹は脂肪族の基、特に低級アルキル基、脂肪族アルコール、特にアルキルアルコール、カルボン酸、および水素からなる群より選択される]で表される化合物またはその薬理学的に許容される塩である請求項1~3のいずれか1項に記載の医薬。

5

10

15

20

25

GSK-3を阻害する物質が、7,12-ジヒドロ-インドロ[3,2-d][1]ベンズ 12. アゼピン-6(5H)-オン、2-プロモ-7,12-ジヒドロ-インドロ[3,2-d][1]ベンズアゼピ ン-6(5H)-オン、9-プロモ-7,12-ジヒドロ-インドロ[3,2-d][1]ペンズアゼピン -6(5H)-オン、9-クロロ-7,12-ジヒドロ-インドロ[3,2-d][1]ペンズアゼピン -6(5H)-オン、11-クロロ-7,12-ジヒドロ-インドロ[3,2-d][1]ベンズアゼピン -6(5H)-オン、10-プロモ-7,12-ジヒドロ-インドロ[3,2-d][1]ペンズアゼピン -6(5H)-オン、8-プロモ-6,11-ジヒドロ-チエノ[3',2':2,3アゼピノ[4,5-b]インド ール-5(4H)-オン、9-プロモ-7、12-ジヒドロ-4-メトキシ-インドロ[3, 2-d][1]ペン ズアゼピン-6(5H)-オン、9-プロモ-7,12-ジヒドロ-4-ヒドロキシ-インドロ [3, 2-d] [1] ベンズアゼピン-6(5H)-オン、7,12-ジヒドロ-4-メトキシ-インドロ [3, 2-d] [1] ベンズアゼピン-6(5H)-オン、9-プロモ-7,12-ジヒドロ-2,3-ジメトキシ -インドロ[3, 2-d][1]ベンズアゼピン-6(5H)-オン、9-ブロモ-7,12-ジヒドロ-2,3-ジヒドロキシ-インドロ[3,2-d][1]ベンズアゼピン-6(5H)-オン、7,12-ジヒドロ -2.3-ジメトキシ-インドロ[3,2-d][1]ペンズアゼピン-6(5H)-オン、7,12-ジヒドロ -9-トリフルオロメチル-インドロ[3, 2-d][1]ペンズアゼピン-6(5H)-オン、7, 12-ジ ヒドロ-2, 3-ジメトキシ-9-トリフルオロメチル-インドロ[3, 2-d][1]ペンズアゼピ ン-6(5H)-オン、2-プロモ-7,12-ジヒドロ-9-トリフルオロメチル-インドロ [3, 2-d][1] ベンズアゼピン-6(5H)-オン、9-プロモ-7,12-ジヒドロ-インドロ [3, 2-d][1]ベンズアゼピン-6(5H)-チオン、9-プロモ-5,12-ビス-(t-プチルオキシ カルボニル)-7,12-ジヒドロ-インドロ[3,2-d][1]ベンズアゼピン-6(5H)-オン、9-ブロモ-12-(t-プチルオキシカルボニル)-7,12-ジヒドロ-インドロ[3,2-d][1]ベン ズアゼピン-6(5H)-オン、9-プロモ-5,7-ピス-(t-プチルオキシカルボニル)-7,12-ジヒドロ-インドロ[3, 2-d][1]ペンズアゼピン-6(5H)-オン、9-プロモ-5,7,12-トリ -(t-ブチルオキシカルポニル)-7,12-ジヒドロ-インドロ[3,2-d][1]ベンズアゼピ ン-6(5H)-オン、9-プロモ-7,12-ジヒドロ-5-メチルオキシカルボニルメチル-イン ドロ[3,2-d][1]ベンズアゼピン-6(5H)-オン、9-プロモ-7,12-ジヒドロ-12-メチル オキシカルボニルメチル-インドロ[3, 2-d][1]ベンズアゼピン-6(5H)-オン、9-ブロ モ-7, 12-ジヒドロ-12-(2-ヒドロキシエチル)-インドロ[3, 2-d][1]ベンズアゼピン -6(5H)-オン、2,9-ジプロモ-7,12-ジヒドロ-インドロ[3,2-d][1]ベンズアゼピン

5

10

15

20

25

-6(5H)-オン、8,10-ジクロロ-7,12-ジヒドロ-インドロ[3,2-d][1]ベンズアゼピン -6(5H)-オン、9-シアノ-7,12-ジヒドロ-インドロ[3,2-d][1]ペンズアゼピン -6(5H)-オン、9-ブロモ-7,12-ジヒドロ-5-メチル-インドロ[3,2-d][1]ペンズアゼ ピン-6(5H)-オン、5-ベンジル-9-プロモ-7,12-ジヒドロ-5-メチル-インドロ [3, 2-d] [1] ベンズアゼピン-6(5H)-オン、9-プロモ-7,12-ジヒドロ-12-メチル-イン ドロ[3, 2-d][1]ベンズアゼピン-6(5H)-オン、9-プロモ-12-エチル-7,12-ジヒドロ-インドロ[3, 2-d][1]ベンズアゼピン-6(5H)-オン、9-プロモ-7,12-ジヒドロ-12-(2-プロペニル)-インドロ[3, 2-d][1]ベンズアゼピン-6(5H)-オン、7,12-ジヒドロ-9-メチル-インドロ[3, 2-d][1]ベンズアゼピン-6(5H)-オン、7,12-ジヒドロ-9-メトキ シ-インドロ[3, 2-d][1]ベンズアゼピン-6(5H)-オン、9-フルオロ-7,12-ジヒドロ -12-(2-プロペニル)-インドロ[3, 2-d][1]ベンズアゼピン-6(5H)-オン、11-プロモ -7.12-ジヒドロ-インドロ[3.2-d][1]ベンズアゼピン-6(5H)-オン、9-ブロモ-7,12-ジヒドロ-2-(メチルイミノアミン)-インドロ[3,2-d][1]ベンズアゼピン-6(5H)-オ ン、9-プロモ-7,12-ジヒドロ-2-(カルボン酸)-インドロ[3,2-d][1]ベンズアゼピン -6(5H)-オン、9-ブロモ-7,12-ジヒドロ-10-ヒドロキシ-インドロ[3,2-d][1]ベンズ アゼピン-6(5H)-オン、9-プロモ-7,12-ジヒドロ-11-ヒドロキシメチル-インドロ [3, 2-d] [1] ベンズアゼピン-6(5H)-オン、7,12-ジヒドロ-4-ヒドロキシ-インドロ [3, 2-d] [1] ベンズアゼピン-6(5H)-オン、7,12-ジヒドロ-2,3-ジヒドロキシ-インド ロ[3, 2-d][1]ペンズアゼピン-6(5H)-オン、2,3-ジメトキシ-9-ニトロ-7,12-ジヒド ロ-インドロ[3, 2-d][1]ベンズアゼピン-6(5H)-オン、9-シアノ-7,12-ジヒドロ-イ ンドロ[3, 2-d][1]ベンズアゼピン-6(5H)-オン、2,3-ジメトキシ-9-シアノ-7,12-ジ ヒドロ-インドロ[3, 2-d][1]ベンズアゼピン-6(5H)-オン、9-ニトロ-7,12-ジヒドロ -インドロ[3, 2-d][1]ペンズアゼピン-6(5H)-オン、3-(6-オキソ-9-トリフルオロメ チル-5, 6, 7, 12-テトラヒドロ-インドロ[3, 2-d][1]ベンズアゼピン-2-イル)プロピ オニトリル、2-ブロモ-9-ニトロ-7,12-ジヒドロ-インドロ[3,2-d][1]ベンズアゼピ ン-6(5H)-オン、3-(6-オキソ-9-トリフルオロメチル-5,6,7,12-テトラヒドロ-イン ドロ[3, 2-d][1]ベンズアゼピン-2-イル)アクリロニトリル、2-(3-ヒドロキシ-1-プ ロピニル) -9-トリフルオロメチル-7, 12-ジヒドロ-インドロ[3, 2-d][1]ベンズアゼ ピン-6(5H)-オン、2-ヨード-9-ブロモ-7,12-ジヒドロ-インドロ[3,2-d][1]ベンズ

アゼピン-6(5H)-オン、2-(3-オキソ-1-ブテニル) -9-トリフルオロメチル-7、12-デトラヒドローインドロ[3, 2-d] [1] ベンズアゼピン-6(5H)-オン、8-クロロ-6、11-ジヒドローチェノ[3', 2': 2、3] アゼピノ[4、5-b] インドール-5(4H)-オン、2-ヨード-9-トリフルオロメチル-7、12-ジヒドローインドロ[3、2-d] [1] ベンズアゼピン-6(5H)-オン、7、12-ジヒドローピリド[3', 2': 4、5] ピロロ[3、2-d] [1] ベンズアゼピン-6(5H)-オン、11-メチル-7、12-ジヒドローインドロ[3、2-d] [1] ベンズアゼピン-6(5H)-オン、11-メチル-7、12-ジヒドローインドロ[3、2-d] [1] ベンズアゼピン-6(5H)-オン、2-[2-(1-ヒドロキシシクロヘキシル) エチニル] -9-トリフルオロメチル-7、12-ジヒドロインドロ[3、2-d] [1] ベンズアゼピン-6(5H)-オン、2-シアノ-7、12-ジヒドロインドロ[3、2-d] [1] ベンズアゼピン-6(5H)-オン、2-ヨード-7、12-ジヒドロインドロ[3、2-d] [1] ベンズアゼピン-6(5H)-オン、11-エチル-7、12-ジヒドローインドロ[3、2-d] [1] ベンズアゼピン-6(5H)-オン、8-メチル-6、11-ジヒドローインドロ[3、2-d] [1] ベンズアゼピン-6(5H)-オン、8-メチル-6、11-ジヒドローチェノ[3'、2': 2、3] アゼピノ [4、5-b] インドール-5 (4H) -オンおよび 3-(6-オキソ-9-トリフルオロメチル-5、6、7、12-テトラヒドローインドロ[3、2-d] [1] ベンズアゼピン-2-イル) アクリル酸メチルエステルからなる群より選ばれる化合物またはその薬理学的に許容される塩である請求項 1 ~ 3 のいずれか 1 項に記載の医薬。

5

10

15

GSK-3を阻害する物質が、9-シアノ-7,12-ジヒドロ-インドロ 13. [3, 2-d] [1] ベンズアゼピン-6(5H)-オン、9-プロモ-7,12-ジヒドロ-2,3-ジメトキシ -インドロ[3, 2-d][1]ベンズアゼピン-6(5H)-オン、2-プロモ-7,12-ジヒドロ-9-ト リフルオロメチル-インドロ[3, 2-d][1]ペンズアゼピン-6(5H)-オン、7,12-ジヒド ロ-2,3-ジメトキシ-9-トリフルオロメチル-インドロ[3,2-d][1]ベンズアゼピン 20 -6(5H)-オン、2,9-ジプロモ-7,12-ジヒドロ-インドロ[3,2-d][1]ベンズアゼピン -6 (5H)-オン、7, 12-ジヒドロ-9-トリフルオロメチル-インドロ[3, 2-d] [1] ベンズア ゼピン-6(5H)-オン、9-クロロ-7,12-ジヒドロ-インドロ[3,2-d][1]ベンズアゼピン -6(5H)-オン、8-プロモ-6,11-ジヒドロ-チエノ[3',2':2,3]アゼピノ[4,5-b]インド ール-5(4H)-オン、7,12-ジヒドロ-9-メトキシ-インドロ[3,2-d][1]ベンズアゼピン 25 -6(5H)-オン、10-ブロモ-7,12-ジヒドロ-インドロ[3,2-d][1]ベンズアゼピン -6(5H)-オン、11-プロモ-7,12-ジヒドロ-インドロ[3,2-d][1]ベンズアゼピン -6(5H)-オン、11-クロロ-7,12-ジヒドロ-インドロ[3,2-d][1]ペンズアゼピン -6(5H)-オン、9-フルオロ-7,12-ジヒドロ-インドロ[3,2-d][1]ベンズアゼピン

PCT/JP2004/005503 WO 2004/091663

-6(5H)-オン、9-メチル-7,12-ジヒドロ-インドロ[3,2-d][1]ベンズアゼピン -6(5H)-オン、9-プロモ-7,12-ジヒドロ-インドロ[3,2-d][1]ベンズアゼピン -6(5H)-チオン、8,10-ジクロロ-7,12-ジヒドロ-インドロ[3,2-d][1]ベンズアゼピ ン-6(5H)-オン、9-プロモ-7,12-ジヒドロ-12-(2-ヒドロキシエチル)-インドロ [3, 2-d] [1] ベンズアゼピン-6(5H)-オン、9-ブロモ-7,12-ジヒドロ-2,3-ジヒドロキ シ-インドロ[3, 2-d][1]ペンズアゼピン-6(5H)-オン、2-プロモ-7,12-ジヒドロ-イ ンドロ[3, 2-d][1]ベンズアゼピン-6(5H)-オン、7,12-ジヒドロ-2,3-ジメトキシ-イ ンドロ[3, 2-d][1]ベンズアゼピン-6(5H)-オン、9-プロモ-7,12-ジヒドロ-12-メチ ル-インドロ[3, 2-d][1]ペンズアゼピン-6(5H)-オン、9-プロモ-7,12-ジヒドロ-5-メチルオキシカルボニルメチル-インドロ[3,2-d][1]ベンズアゼピン-6(5H)-オン 10 および 7,12-ジヒドロ-インドロ[3,2-d][1]ベンズアゼピン-6(5H)-オンからなる群 より選択される、請求項1~3のいずれか1項に記載の医薬。

5

15

20

25

9-シアノ-7,12-ジヒドロ-インドロ[3,2-d][1]ベンズアゼピン-6(5H)-オン、 9-プロモ-7, 12-ジヒドロ-2, 3-ジメトキシ-インドロ[3, 2-d][1]ベンズアゼピン -6(5H)-オン、2-プロモ-7,12-ジヒドロ-9-トリフルオロメチル-インドロ [3, 2-d] [1] ベンズアゼピン-6(5H)-オン、7,12-ジヒドロ-2,3-ジメトキシ-9-トリフ ルオロメチル-インドロ[3,2-d][1]ペンズアゼピン-6(5H)-オン、2,9-ジプロモ -7,12-ジヒドロ-インドロ[3,2-d][1]ペンズアゼピン-6(5H)-オン、7,12-ジヒドロ -9-トリフルオロメチル-インドロ[3, 2-d][1]ベンズアゼピン-6(5H)-オン、9-クロ ロ-7.12-ジヒドロ-インドロ[3.2-d][1]ベンズアゼピン-6(5H)-オン、8-ブロモ -6,11-ジヒドロ-チエノ[3',2':2,3]アゼピノ[4,5-b]インドール-5(4H)-オン、 7.12-ジヒドロ-9-メトキシ-インドロ[3,2-d][1]ベンズアゼピン-6(5H)-オンから なる群より選択される、請求項1~3のいずれか1項に記載の医薬。

9-ブロモ-7,12-ジヒドロ-インドロ[3,2-d][1]ベンズアゼピン-6(5H)-オン からなる群より選択される、請求項1~3のいずれか1項に記載の医薬。

GSK-3を阻害する物質が、式(V) 16.

$$R^{27}$$
 R^{28}
 R^{29}
 R^{25}
 R^{20}
 R^{20}
 R^{20}
 R^{20}
 R^{20}
 R^{20}

5

10

15

20

[式中、同じか異なってよいR20およびR25は水素原子;ハロゲン;ヒドロキシ基; メチレンヒドロキシ基;直鎖または分枝鎖のC1~C18-アルキルまたはアルコキシ またはメチレンアルコキシ基;必要に応じて1個または複数のヘテロ原子を含む、 3から7個-炭素原子を有するシクロアルキル基:必要に応じて1個または複数の ヘテロ原子を有する置換または非置換のアリール、アラルキルまたはアリールオキ シ基;それぞれ互いに独立に、直鎖または分枝鎖のアルキル基中に1から6個の炭 素原子を有するモノー、ジーまたはトリアルキルシリル基:それぞれ互いに独立に 置換または非置換アリール基を有するモノー、ジーまたはトリアリールシリル基; トリフルオロメチル基:-COM:-COOM:あるいは-CH2COOM基(こ こでMは水素原子、必要ならばヒドロキシおよび/またはアミノ基1個または複数 で置換された直鎖または分枝鎖の $C_1 \sim C_{18} - アルキル基、または必要ならば1個ま$ たは複数のヘテロ原子を有し、1個または複数のハロゲン、アルキル基またはアル コキシ基で置換されていてよいアリール基を表す):-NR30R31基(ここで同じか 異なってよいR30およびR31は水素原子、必要ならば付加的に1個または複数のヒ ドロキシおよび/またはアミノ基で置換されているC1~C18 直鎖または分枝鎖ア ルキル基、置換または非置換で、必要ならば1個または複数のヘテロ原子を含むア リール基を表す);アシル基;-CH2-NR30R31 メチレンアミノ基(ここでR30 およびR81 は前記の意味を有する);ベンゼン環が必要ならば1個または複数のへ テロ原子を有するベンジル基;必要ならば1個または複数のヘテロ原子を有する、 炭素原子3から7個を有するメチレンシクロアルキル基;アミドとしての、窒素原 子に結合した生理的アミノ酸基;グリコシドが単糖または二糖から選択される〇-グリコシドまたはNーグリコシド;あるいはメチレンスルホネート基を表し;同じ か異なってよいR²¹、R²²、R²³、R²⁴、R²⁶、R²⁷、R²⁸ およびR²⁹ は水素原子;

5

10

15

20

25

ハロゲン;ヒドロキシ基;ニトロソ基;ニトロ基;アルコキシ基;必要ならば1個 または複数のヒドロキシおよび/またはアミノ基で置換されている直鎖または分 枝鎖の $C_1 \sim C_{18}$ アルキル基;必要ならば1個または複数のヘテロ原子を有する置 換または非置換のアリール基;必要ならば1個または複数のヘテロ原子を有する置 換または非置換アラルキル基;必要ならば1個または複数のヘテロ原子を有する置 換または非置換アリールオキシ基;必要ならば1個または複数のヘテロ原子を有す る置換または非置換メチレンアリールオキシ基;必要ならば1個または複数のヘテ ロ原子を含む、3から7個の炭素原子を有するシクロアルキル基:必要ならば1個 または複数のヘテロ原子を含む、3から7個の炭素原子を有するメチレンシクロア ルキル基;トリフルオロメチル基;-COM;-COOM;または CH_2COOM 基(ここでMは水素原子、必要ならばヒドロキシおよび/またはアミノ基1個また は複数で付加的に置換された直鎖または分枝鎖のC1~C18-アルキル基、または必 要ならば1個または複数のヘテロ原子を有し、1個または複数のハロゲン原子、ア ルキル基またはアルコキシ基で置換されていてよいアリール基を表す); - N R 30 R31基(ここで同じか異なってよいR30およびR31は水素原子、必要ならば付加的 に1個または複数のヒドロキシおよび/またはアミノ基で置換されている直鎖ま たは分枝鎖C1~C18アルキル基、置換または非置換で、必要ならば1個または複 数のヘテロ原子を含むアリール基、アシル基を表すか、窒素原子が、必要ならば1 個または複数のヘテロ原子を含む、炭素原子3から7個を有するシクロアルキルの 一部を形成する); - CONR 80 R 81 基 (ここで R 30 および R 31 は前記の意味を有す る):ヒドロキシルアミノ基;ホスフェート基;ホスホネート基;スルフェート基; 「スルホネート基;スルホンアミド基;-SO₂NR30R31 基(ここでR30 およびR31 は前記の意味を有する): $-N=N-R^{32}$ アゾ基(ここで R^{32} は必要ならば1個ま たは複数のカルボキシル、ホスホリルまたはスルホネート基で置換された芳香族基 あるいはグリコシドが単糖または二糖から選択されている〇ーグリコシドまたは Nーグリコシド基を表す) を表すか; R20 およびR24 ならびにR25 およびR29 はそ れぞれ一緒になって、互いに独立に必要ならば置換された1から4個のCH2基を 有する環を形成し;同じか異なってよいYおよびZは酸素;イオウ;セレン;テル ルの原子;NR33基(ここでR33は水素原子、必要ならば1個または複数のカルボ

キシル、ホスホリルまたはスルホネート基で置換された直鎖または分枝鎖 $C_1 \sim C_{18}$ アルキル基、必要ならば1 個または複数のヘテロ原子を含む置換または非置換のアリール基、アラルキル基またはスルホネート基を表す);あるいは $-NOR^{33}$ (ここで R^{33} 基は前記の意味を有する)を表す〕で表される化合物またはそれらの薬理学的に許容される塩である請求項 $1\sim3$ のいずれか1 項に記載の医薬。

- 17. GSK-3を阻害する物質が、インジルビン、5-3ードーインジルビン、5-7ロモーインジルビン、5-7ロモーインジルビン、5-7ロモーインジルビン、5-7ロモーインジルビン、5-7ロモーインジルビン、5-7ロモーインジルビン、5-7ロモーインジルビン、5-7ロモーインジルビン、5-7ロモーインジルビン 5-7ロモーインジルビン 5-70を要定的に許容される塩である請求項 1-70のいずれか 1 項に記載の医薬。
- 18. GSK-3を阻害する物質が、インジルピン-3'-モノオキシム、5-ヨードーインジルピン-3'ーモノオキシムおよび $5-SO_3N$ aーインジルピン-3'ーモノオキシムからなる群より選ばれる化合物またはその薬理学的に許容される塩である請求項 $1\sim3$ のいずれか1項に記載の医薬。
- 19. GSK-3を阻害する物質が、インジルビン-3'ーモノオキシムまたはその薬理学的に許容される塩である請求項 $1\sim3$ のいずれか1項に記載の医薬。
- 20. GSK-3の活性を阻害する物質を有効成分として含有してなる神経幹細胞のニューロン新生促進剤。
- 20 21. GSK-3の活性を阻害する物質が、リチウムまたはその薬理学的に許容される塩である請求項20記載のニューロン新生促進剤。
 - 22. GSK-3の活性を阻害する物質が、ピスインドリルマレイミド誘導体、3-アリール-4-インドリルマレイミド誘導体、インドロカルバゾール誘導体もしくはインドロ[3,2d-d][1]ベンズアゼピン-6(5H)-オン誘導体またはそれらの薬理学的に許容される塩である請求項20記載のニューロン新生促進剤。
 - 23. GSK-3の活性を阻害する物質が、式(I)

10

15

25

5

10

15

$$\begin{pmatrix}
R^{2} \\
N
\end{pmatrix}$$

$$\begin{pmatrix}
R^{2} \\
N
\end{pmatrix}$$

$$\begin{pmatrix}
R^{5} \\
N
\end{pmatrix}$$

$$\begin{pmatrix}
R^{5} \\
R^{3}
\end{pmatrix}$$

$$\begin{pmatrix}
R^{4} \\
R^{5}
\end{pmatrix}$$

$$\begin{pmatrix}
R^{5} \\
R^{5}
\end{pmatrix}$$

[式中、n およびm は同一または異なって、1~3 の整数を表し、R¹、R³および R⁴は同一または異なって、水素原子、置換もしくは非置換の低級アルキル、置換もしくは非置換の低級アルケニル、-COR6 (式中、R⁶は水素原子、置換もしくは非置換の低級アルナル、置換もしくは非置換の低級アルナル、置換もしくは非置換の低級アルケニル、置換もしくは非置換のアリールまたは置換もしくは非置換のシクロアルキルを表す)、-COOR¹ (式中、R¹は水素原子、置換もしくは非置換のシクロアルキルを表す)または-OR⁶ (式中、R⁶は水素原子、置換もしくは非置換のシクロアルキルを表す)または-OR⁶ (式中、R՞は水素原子、置換もしくは非置換の低級アルキル、置換もしくは非置換のアリールまたは置換もしくは非置換のシクロアルキルを表す)を表し、R²および R⁵は同一または異なって、水素原子、置換もしくは非置換の低級アルナル、置換もしくは非置換の低級アルケニル、置換もしくは非置換の低級アルナール、置換もしくは非置換の低級アルカトニル、置換もしくは非置換の低級アルカトニル、置換もしくは非置換の低級アルカトニトロ、アミノまたはモノもしくはジ低級アルキルアミノを表し、n および mがそれぞれ 2 または 3 であるとき、それぞれの R²および R⁶は同一でも異なっていてもよい]で表される化合物、式(II)

$$\begin{pmatrix}
R^{2A} \\
na
\end{pmatrix}_{na}
\begin{pmatrix}
R^{5A} \\
R^{3A}
\end{pmatrix}_{ma}$$
(II)

(式中、na、ma、 R^{1A} 、 R^{2A} 、 R^{3A} および R^{5A} は、それぞれ前記 n、m、 R^{1} 、 R^{2} 、 R^{3} および R^{5} と同義である)で表される化合物もしくは式(III)

$$\begin{pmatrix}
R^{1B} \\
O \\
N
\end{pmatrix}$$

$$\begin{pmatrix}
R^{2B} \\
N
\end{pmatrix}$$

$$\begin{pmatrix}
R^{5B} \\
N^{5B}
\end{pmatrix}$$

$$\begin{pmatrix}
R^{5B} \\
N^{5B} \\
N^{5B} \\
N^{5B}
\end{pmatrix}$$

$$\begin{pmatrix}
R^{5B} \\
N^{5B} \\
N^{5B} \\$$

[式中、nb、mb、 R^{1B} 、 R^{2B} および R^{5B} は、それぞれ前記 n、m、 R^1 、 R^2 および R^5 と同義であり、 R^{3B} および R^{4B} は同一または異なって、水素原子、置換もしくは非置換の低級アルキル、置換もしくは非置換の低級アルケニル、 $-COR^6$ (式中、 R^6 は前記と同義である)、 $-COOR^7$ (式中、 R^7 は前記と同義である)または $-OR^8$ (式中、 R^8 は前記と同義である)を表すか、または R^{3B} と R^{4B} が一緒になって、

$$R^9$$
 X (A)

5

10

15

(式中、k は 1 または 2 を表し、X は CH_2 、NH、酸素原子または硫黄原子を表し、 R^9 はヒドロキシ、カルボキシ、カルバモイルまたは低級アルコキシカルボニルを表す)を形成する] で表される化合物またはそれらの薬理学的に許容される塩である請求項 2 0 記載のニューロン新生促進剤。

24. GSK-3の活性を阻害する物質が、式(Ia)

(式中、R^{2a} は水素原子、低級アルコキシ、低級アルコキシカルボニル、アリールまたはニトロを表し、R^{3a} および R^{4a} は同一または異なって、置換もしくは非置換の低級アルキルを表す)で表される化合物またはその薬理学的に許容される塩である請求項20記載のニューロン新生促進剤。

25. GSK-3の活性を阻害する物質が、式(IIa)

5

(式中、ma は前記と同義であり、R^{3Aa} は置換もしくは非置換の低級アルキルを表し、R^{5Aa} はハロゲンを表す)で表される化合物またはその薬理学的に許容される塩である請求項20記載のニューロン新生促進剤。

26. GSK-3の活性を阻害する物質が、式(IIIa)

(式中、R⁹は前記と同義である)で表される化合物またはその薬理学的に許容される塩である請求項20記載のニューロン新生促進剤。

GSK-3の活性を阻害する物質が、3,4-ビス(1-メチルインドー 27. N-3-7ル) -1H-2ロールー2, 5-3オン、3-(1-3)ルインドール 10 $-3-7\mu$) $-4-(1-7\mu\nu)\nu$ 5-ジオン、3-[1-(3-シアノプロピル) インドールー<math>3-イル] -4-(1(3-アミノプロピル) インドールー3-イル] -4-(1-メチルインドールー 15 ピル) インドールー3ーイル] ー4ー(1ーメチルインドールー3ーイル)-1H ーピロールー2.5ージオン、3ー[1-(3-カルバモイルプロピル)インドー $| \mathcal{V} - 3 - 4 \mathcal{V} | - 4 - (1 - \mathcal{Y} + \mathcal{V} + \mathcal{V} + \mathcal{V} + \mathcal{V}) - 1 \mathcal{V} - 1 \mathcal{V} - 1 \mathcal{V} - 2 \mathcal{V} + 2 \mathcal$ 5-ジオン、3-[1-(3-アミノプロピル) インドール-3-イル] -4-(1-メチル-5-プロピルオキシインドール-3-イル)-1H-ピロール-2,5 20 ージオン、3-[1-(3-ヒドロキシプロピル)インドール-3-イル]-4-(1 - メチル - 5 - フェニルインドール - 3 - イル) - 1 H - ピロール - 2, 5 -

ジオン、 $3 - [1 - (3 - \gamma =) / \gamma - \nu - \nu - 3 - 4 \nu] - 4 - (1 - \chi + \nu - 5 - \gamma + \nu - \lambda - \nu - 3 - 4 \nu) - 1 H - \nu - 2 + 5 - \nu + \nu - 3 - 4 \nu) - 1 H - \nu - 2 + 5 - \nu + \nu - 3 - 4 \nu) - 1 H - \nu - 2 + 5 - \nu + 2 \nu$

10

15

からなる群より選ばれる化合物またはその薬理学的に許容される塩である請求項20記載のニューロン新生促進剤。

28. GSK-3を阻害する物質が、式(IV)

[式中、A は単結合または二重結合によって右に結合されている酸素または硫黄であり、R¹⁰ は水素原子、アリール、低級脂肪族置換基、特にアルキルおよび低級アルキルエステルからなる群より選択され、R¹¹~R¹⁴ はアルコキシ、アミノ、アシル、脂肪族置換基、特にアルキル、アルケニルおよびアルキニル置換基、脂肪族アルコール、特にアルキルアルコール、脂肪族ニトリル、特にアルキルニトリル、シアノ、ニトロ、カルボキシル、ハロゲン、水素原子、ヒドロキシル、イミノならびに α、β 不飽和ケトンからなる群より個別に選択され、R¹⁵~R¹⁸ は脂肪族置換基、特にアルキル、アルケニルおよびアルキニル置換基、特に低級脂肪族置換基、脂肪族アルコール、アルケニルおよびアルキニル置換基、特に低級脂肪族置換基、脂肪族アルコール、特にアルキルアルコール、アルコキシ、アシル、シアノ、ニトロ、エポキシ、ハロアルキル基、ハロゲン、水素原子ならびにヒドロキシルからなる群より個別に選択され、R₁₉ は脂肪族の基、特に低級アルキル基、脂肪族アルコール、特にアルキルアルコール、カルボン酸、および水素からなる群より選択される] で表される化合物またはその薬理学的に許容される塩である請求項20記載のニューロン新生促進剤。

5

10

7,12-ジヒドロ-インドロ[3,2-d][1]ベンズアゼピン-6(5H)-オン、2-プロ 29. 15 モ-7,12-ジヒドロ-インドロ[3,2-d][1]ペンズアゼピン-6(5H)-オン、9-ブロモ -7, 12-ジヒドロ-インドロ[3, 2-d][1]ベンズアゼピン-6(5H)-オン、9-クロロ-7, 12-ジヒドロ-インドロ[3,2-d][1]ベンズアゼピン-6(5H)-オン、11-クロロ-7,12-ジヒ ドロ-インドロ[3, 2-d][1]ベンズアゼピン-6(5H)-オン、10-プロモ-7,12-ジヒドロ-インドロ[3,2-d][1]ベンズアゼピン-6(5H)-オン、8-ブロモ-6,11-ジヒドロ-チエノ 20 [3', 2':2,3 アゼピノ[4,5-b]インドール-5(4H)-オン、9-プロモ-7,12-ジヒドロ-4-メトキシ-インドロ[3, 2-d][1]ベンズアゼピン-6(5H)-オン、9-プロモ-7,12-ジヒド ロ-4-ヒドロキシ-インドロ[3, 2-d][1]ペンズアゼピン-6(5H)-オン、7,12-ジヒドロ -4-メトキシ-インドロ[3, 2-d][1]ペンズアゼピン-6(5H)-オン、9-ブロモ-7,12-ジ ヒドロ-2,3-ジメトキシ-インドロ[3,2-d][1]ベンズアゼピン-6(5H)-オン、9-ブロ 25 モ-7, 12-ジヒドロ-2, 3-ジヒドロキシ-インドロ[3, 2-d][1]ペンズアゼピン-6(5H)-オン、7,12-ジヒドロ-2,3-ジメトキシ-インドロ[3,2-d][1]ペンズアゼピン-6(5H)-オン、7,12-ジヒドロ-9-トリフルオロメチル-インドロ[3,2-d][1]ベンズアゼピン -6(5H)-オン、7,12-ジヒドロ-2,3-ジメトキシ-9-トリフルオロメチル-インドロ

PCT/JP2004/005503 WO 2004/091663

5

[3, 2-d] [1] ペンズアゼピン-6(5H)-オン、2-プロモ-7,12-ジヒドロ-9-トリフルオロ メチル-インドロ[3, 2-d][1]ベンズアゼピン-6(5H)-オン、9-ブロモ-7,12-ジヒドロ -インドロ[3, 2-d][1]ペンズアゼピン-6(5H)-チオン、9-プロモ-5,12-ビス-(t-プチ ルオキシカルボニル)-7,12-ジヒドロ-インドロ[3,2-d][1]ベンズアゼピン-6(5H)-オン、9-プロモ-12-(t-プチルオキシカルボニル)-7,12-ジヒドロ-インドロ [3, 2-d] [1] ベンズアゼピン-6(5H)-オン、9-プロモ-5,7-ビス-(t-プチルオキシカル ボニル)-7,12-ジヒドロ-インドロ[3,2-d][1]ベンズアゼピン-6(5H)-オン、9-プロ モ-5,7,12-トリ-(t-ブチルオキシカルボニル)-7,12-ジヒドロ-インドロ [3, 2-d] [1] ベンズアゼピン-6(5H)-オン、9-プロモ-7,12-ジヒドロ-5-メチルオキシ カルボニルメチル-インドロ[3,2-d][1]ベンズアゼピン-6(5H)-オン、9-プロモ 10 -7, 12-ジヒドロ-12-メチルオキシカルボニルメチル-インドロ[3, 2-d][1]ベンズア ゼピン-6(5H)-オン、9-プロモ-7,12-ジヒドロ-12-(2-ヒドロキシエチル)-インドロ [3, 2-d][1]ベンズアゼピン-6(5H)-オン、2,9-ジプロモ-7,12-ジヒドロ-インドロ [3, 2-d] [1] ベンズアゼピン-6(5H)-オン、8,10-ジクロロ-7,12-ジヒドロ-インドロ [3,2-d][1]ベンズアゼピン-6(5H)-オン、9-シアノ-7,12-ジヒドロ-インドロ 15 [3, 2-d] [1] ペンズアゼピン-6(5H)-オン、9-プロモ-7,12-ジヒドロ-5-メチル-イン ドロ[3, 2-d][1]ベンズアゼピン-6(5H)-オン、5-ベンジル-9-プロモ-7,12-ジヒドロ -5-メチル-インドロ[3,2-d][1]ベンズアゼピン-6(5H)-オン、9-プロモ-7,12-ジヒ ドロ-12-メチル-インドロ[3, 2-d][1]ベンズアゼピン-6(5H)-オン、9-プロモ-12-エ チル-7,12-ジヒドロ-インドロ[3,2-d][1]ベンズアゼピン-6(5H)-オン、9-プロモ 20 -7, 12-ジヒドロ-12-(2-プロペニル)-インドロ[3, 2-d][1]ベンズアゼピン-6(5H)-オン、7,12-ジヒドロ-9-メチル-インドロ[3,2-d][1]ベンズアゼピン-6(5H)-オン、 7.12-ジヒドロ-9-メトキシ-インドロ[3,2-d][1]ペンズアゼピン-6(5H)-オン、9-フ ルオロ-7,12-ジヒドロ-12-(2-プロペニル)-インドロ[3,2-d][1]ベンズアゼピン -6(5H)-オン、11-プロモ-7,12-ジヒドロ-インドロ[3,2-d][1]ペンズアゼピン 25 -6(5H)-オン、9-プロモ-7,12-ジヒドロ-2-(メチルイミノアミン)-インドロ [3, 2-d][1]ベンズアゼピン-6(5H)-オン、9-ブロモ-7,12-ジヒドロ-2-(カルボン 酸)-インドロ[3,2-d][1]ベンズアゼピン-6(5H)-オン、9-ブロモ-7,12-ジヒドロ -10-ヒドロキシ-インドロ[3, 2-d][1]ペンズアゼピン-6(5H)-オン、9-プロモ-7, 12-

ジヒドロ-11-ヒドロキシメチル-インドロ[3.2-d][1]ベンズアゼピン-6(5H)-オン、 7,12-ジヒドロ-4-ヒドロキシ-インドロ[3,2-d][1]ペンズアゼピン-6(5H)-オン、 7, 12-ジヒドロ-2, 3-ジヒドロキシ-インドロ[3, 2-d][1]ベンズアゼピン-6(5H)-オ ン、2, 3-ジメトキシ-9-ニトロ-7, 12-ジヒドロ-インドロ[3, 2-d] [1] ペンズアゼピン 5 -6(5H)-オン、9-シアノ-7,12-ジヒドロ-インドロ[3,2-d][1]ベンズアゼピン -6(5H)-オン、2,3-ジメトキシ-9-シアノ-7,12-ジヒドロ-インドロ[3,2-d][1]ペン ズアゼピン-6(5H)-オン、9-ニトロ-7,12-ジヒドロ-インドロ[3,2-d][1]ペンズアゼ ピン-6(5H)-オン、3-(6-オキソ-9-トリフルオロメチル-5, 6, 7, 12-テトラヒドロ-イ ンドロ[3, 2-d][1]ベンズアゼピン-2-イル)プロピオニトリル、2-ブロモ-9-ニトロ -7,12-ジヒドロ-インドロ[3,2-d][1]ベンズアゼピン-6(5H)-オン、3-(6-オキソ-9-10 トリフルオロメチル-5, 6, 7, 12-テトラヒドロ-インドロ[3, 2-d][1]ペンズアゼピン -2-イル)アクリロニトリル、2-(3-ヒドロキシ-1-プロピニル) -9-トリフルオロメ チル-7,12-ジヒドロ-インドロ[3,2-d][1]ベンズアゼピン-6(5H)-オン、2-ヨード -9-プロモ-7,12-ジヒドロ-インドロ[3,2-d][1]ベンズアゼピン-6(5H)-オン、2-(3-オキソ-1-プテニル)-9-トリフルオロメチル-7.12-テトラヒドロ-インドロ 15 [3, 2-d][1]ベンズアゼピン-6(5H)-オン、8-クロロ-6,11-ジヒドロ-チエノ [3', 2':2, 3] アゼピノ[4, 5-b] インドール-5(4H)-オン、2-ヨード-9-トリフルオロメ チル-7,12-ジヒドロ-インドロ[3,2-d][1]ベンズアゼピン-6(5H)-オン、7,12-ジヒ ドロ-ピリド[3', 2':4, 5] ピロロ[3, 2-d] [1] ベンズアゼピン-6 (5H)-オン、11-メチル -7, 12-ジヒドロ-インドロ[3, 2-d] [1] ペンズアゼピン-6(5H)-オン、2-[2-(1-ヒドロ 20 キシシクロヘキシル)エチニル]-9-トリフルオロメチル-7,12-ジヒドロ-インドロ [3, 2-d] [1] ペンズアゼピン-6(5H)-オン、2-シアノ-7, 12-ジヒドロ-インドロ [3, 2-d][1]ペンズアゼピン-6(5H)-オン、2-ヨード-7, 12-ジヒドロ-インドロ [3, 2-d] [1] ベンズアゼピン-6(5H)-オン、11-エチル-7, 12-ジヒドロ-インドロ [3, 2-d][1]ベンズアゼピン-6(5H)-オン、8-メチル-6,11-ジヒドロ-チエノ 25 [3', 2':2, 3] アゼピノ[4, 5-b] インドール-5(4H)-オンおよび 3-(6-オキソ-9-トリフ ルオロメチル-5, 6, 7, 12-テトラヒドロ-インドロ[3, 2-d][1]ベンズアゼピン-2-イ ル)アクリル酸メチルエステルからなる群より選択される、請求項20記載のニュ ーロン新生促進剤。

9-シアノ-7,12-ジヒドロ-インドロ[3,2-d][1]ベンズアゼピン-6(5H)-オン、 30. 9-プロモ-7,12-ジヒドロ-2,3-ジメトキシ-インドロ[3,2-d][1]ベンズアゼピン -6(5H)-オン、2-プロモ-7,12-ジヒドロ-9-トリフルオロメチル-インドロ [3, 2-d] [1] ペンズアゼピン-6(5H)-オン、7,12-ジヒドロ-2,3-ジメトキシ-9-トリフ ルオロメチル-インドロ[3, 2-d][1]ベンズアゼピン-6(5H)-オン、2,9-ジブロモ -7.12-ジヒドロ-インドロ[3,2-d][1]ペンズアゼピン-6(5H)-オン、7,12-ジヒドロ -9-トリフルオロメチル-インドロ[3,2-d][1]ベンズアゼピン-6(5H)-オン、9-クロ ロ-7.12-ジヒドロ-インドロ[3,2-d][1]ベンズアゼピン-6(5H)-オン、8-プロモ -6,11-ジヒドロ-チエノ[3',2':2,3]アゼピノ[4,5-b]インドール-5(4H)-オン、 7,12-ジヒドロ-9-メトキシ-インドロ[3,2-d][1]ペンズアゼピン-6(5H)-オン、10-10 プロモ-7,12-ジヒドロ-インドロ[3,2-d][1]ベンズアゼピン-6(5H)-オン、11-プロ モ-7,12-ジヒドロ-インドロ[3,2-d][1]ベンズアゼピン-6(5H)-オン、11-クロロ -7, 12-ジヒドロ-インドロ[3, 2-d][1]ベンズアゼピン-6(5H)-オン、9-フルオロ -7.12-ジヒドロ-インドロ[3,2-d][1]ペンズアゼピン-6(5H)-オン、9-メチル-7,12-ジヒドロ-インドロ[3, 2-d][1]ベンズアゼピン-6(5H)-オン、9-プロモ-7,12-ジヒド 15 ロ-インドロ[3, 2-d][1]ペンズアゼピン-6(5H)-チオン、8,10-ジクロロ-7,12-ジヒ ドロ-インドロ[3,2-d][1]ベンズアゼピン-6(5H)-オン、9-プロモ-7,12-ジヒドロ -12-(2-ヒドロキシエチル)-インドロ[3, 2-d][1]ベンズアゼピン-6(5H)-オン、9-ブ ロモ-7,12-ジヒドロ-2,3-ジヒドロキシ-インドロ[3,2-d][1]ベンズアゼピン -6(5H)-オン、2-プロモ-7,12-ジヒドロ-インドロ[3,2-d][1]ベンズアゼピン 20 -6(5H)-オン、7,12-ジヒドロ-2,3-ジメトキシ-インドロ[3,2-d][1]ベンズアゼピン -6(5H)-オン、9-プロモ-7,12-ジヒドロ-12-メチル-インドロ[3,2-d][1]ベンズアゼ ピン-6(5H)-オン、9-プロモ-7,12-ジヒドロ-5-メチルオキシカルボニルメチル-イ ンドロ[3,2-d][1]ベンズアゼピン-6(5H)-オンおよび 7,12-ジヒドロ-インドロ [3, 2-d] [1] ベンズアゼピン-6(5H)-オンからなる群より選択される、請求項20記 25 載のニューロン新生促進剤。

31. 9-シアノ-7, 12-ジヒドロ-インドロ[3, 2-d][1]ベンズアゼピン-6(5H)-オン、9-プロモ-7, 12-ジヒドロ-2, 3-ジメトキシ-インドロ[3, 2-d][1]ベンズアゼピン-6(5H)-オン、2-プロモ-7, 12-ジヒドロ-9-トリフルオロメチル-インドロ

32. 9-プロモ-7,12-ジヒドロ-インドロ[3,2-d][1]ベンズアゼピン-6(5H)-オン
10 からなる群より選択される、請求項20記載のニューロン新生促進剤。

33. GSK-3を阻害する物質が、式(V)

5

15

20

$$R^{27}$$
 R^{26}
 R^{27}
 R^{28}
 R^{29}
 R^{25}
 R^{20}
 R^{20}
 R^{20}
 R^{20}
 R^{20}

[式中、同じか異なってよい R^{20} および R^{25} は水素原子; ハロゲン; ヒドロキシ基; メチレンヒドロキシ基; 直鎖または分枝鎖の $C_1 \sim C_{18}$ ーアルキルまたはアルコキシ またはメチレンアルコキシ基; 必要に応じて1 個または複数のヘテロ原子を含む、 3 から 7 個一炭素原子を有するシクロアルキル基; 必要に応じて1 個または複数のヘテロ原子を有する置換または非置換のアリール、アラルキルまたはアリールオキシ基; それぞれ互いに独立に、直鎖または分枝鎖のアルキル基中に1 から6 個の炭素原子を有するモノー、ジーまたはトリアルキルシリル基; それぞれ互いに独立に置換または非置換アリール基を有するモノー、ジーまたはトリアリールシリル基; トリフルオロメチル基; -COM; -COM; あるいは $-CH_2COOM$ 基(ここでMは水素原子、必要ならばヒドロキシおよび/またはアミノ基1 個または複数で置換された直鎖または分枝鎖の1 で1 のののこってののです。または必要ならば1 個または複数のヘテロ原子を有し、1 ののののに対象のハロゲン、アルキル基またはアル

5

10

15

20

25

コキシ基で置換されていてよいアリール基を表す);-NR30R31基(ここで同じか 異なってよいR30およびR31は水素原子、必要ならば付加的に1個または複数のヒ ドロキシおよび/またはアミノ基で置換されているC₁~C₁₈ 直鎖または分枝鎖ア ルキル基、置換または非置換で、必要ならば1個または複数のヘテロ原子を含むア リール基を表す);アシル基;-CH2-NR30R31 メチレンアミノ基(ここでR30 およびR31 は前記の意味を有する);ペンゼン環が必要ならば1個または複数のへ テロ原子を有するペンジル基;必要ならば1個または複数のヘテロ原子を有する、 炭素原子3から7個を有するメチレンシクロアルキル基;アミドとしての、窒素原 子に結合した生理的アミノ酸基;グリコシドが単糖または二糖から選択される〇-グリコシドまたはN-グリコシド;あるいはメチレンスルホネート基を表し;同じ か異なってよいR²¹、R²²、R²³、R²⁴、R²⁶、R²⁷、R²⁸ およびR²⁹ は水素原子; ハロゲン:ヒドロキシ基:ニトロソ基:ニトロ基:アルコキシ基:必要ならば1個 または複数のヒドロキシおよび/またはアミノ基で置換されている直鎖または分 枝鎖の $C_1 \sim C_{18}$ アルキル基;必要ならば1個または複数のヘテロ原子を有する置 換または非置換のアリール基;必要ならば1個または複数のヘテロ原子を有する置 換または非置換アラルキル基:必要ならば1個または複数のヘテロ原子を有する置 換または非置換アリールオキシ基;必要ならば1個または複数のヘテロ原子を有す る置換または非置換メチレンアリールオキシ基;必要ならば1個または複数のヘテ ロ原子を含む、3から7個の炭素原子を有するシクロアルキル基;必要ならば1個 または複数のヘテロ原子を含む、3から7個の炭素原子を有するメチレンシクロア ルキル基;トリフルオロメチル基;-COM;-COOM;またはCH2COOM 基 (ここでMは水素原子、必要ならばヒドロキシおよび/またはアミノ基1個また は複数で付加的に置換された直鎖または分枝鎖のC1~C18-アルキル基、または必 要ならば1個または複数のヘテロ原子を有し、1個または複数のハロゲン原子、ア ルキル基またはアルコキシ基で置換されていてよいアリール基を表す); - N R 30 R31基(ここで同じか異なってよいR30およびR31は水素原子、必要ならば付加的 に1個または複数のヒドロキシおよび/またはアミノ基で置換されている直鎖ま たは分枝鎖 $C_1 \sim C_{18}$ アルキル基、置換または非置換で、必要ならば1個または複 数のヘテロ原子を含むアリール基、アシル基を表すか、窒素原子が、必要ならば1

PCT/JP2004/005503 WO 2004/091663

個または複数のヘテロ原子を含む、炭素原子3から7個を有するシクロアルキルの 一部を形成する); - CON R 30 R 31 基 (ここで R 30 および R 31 は前記の意味を有す る):ヒドロキシルアミノ基;ホスフェート基;ホスホネート基;スルフェート基; スルホネート基;スルホンアミド基;-SO2NR30R31基(ここでR30およびR31 は前記の意味を有する); $-N=N-R^{32}$ アゾ基(ここで R^{32} は必要ならば1個ま たは複数のカルボキシル、ホスホリルまたはスルホネート基で置換された芳香族基 あるいはグリコシドが単糖または二糖から選択されている〇ーグリコシドまたは Nーグリコシド基を表す) を表すか; R20 およびR24 ならびにR25 およびR29 はそ れぞれ一緒になって、互いに独立に必要ならば置換された1から4個のСН2基を 有する環を形成し;同じか異なってよいYおよびZは酸素;イオウ;セレン;テル ルの原子; NR33基(ここでR33は水素原子、必要ならば1個または複数のカルポ キシル、ホスホリルまたはスルホネート基で置換された直鎖または分枝鎖 С1~ С18 アルキル基、必要ならば1個または複数のヘテロ原子を含む置換または非置換のア リール基、アラルキル基またはスルホネート基を表す);あるいは-NOR33(ここ でR33基は前記の意味を有する)を表す]で表される化合物またはそれらの薬理学 15 的に許容される塩である請求項20記載のニューロン新生促進剤。

5

10

20

25

GSK-3を阻害する物質が、インジルビン、5-ヨードーインジルビン、 34. 5-プロモーインジルビン、5-クロローインジルビン、5-フルオローインジル ビン、5-メチル-インジルビン、5-ニトロ-インジルビン、5-SO₃H-イ ンジルビン、5'ープロモーインジルビン、5-5'ージプロモーインジルビンおよ び5'ープロモーインジルビン5ースルホン酸からなる群より選ばれる化合物また はその薬理学的に許容される塩である請求項20記載のニューロン新生促進剤。

GSK-3を阻害する物質が、インジルピン-3'-モノオキシム、5-ヨ 35. ード-インジルビン- 3'-モノオキシムおよび 5 - S O₃N a -インジルビン-3'ーモノオキシムからなる群より選ばれる化合物またはその薬理学的に許容され る塩である請求項20記載のニューロン新生促進剤。

- GSK-3を阻害する物質が、インジルビン-3'-モノオキシムまたはそ・ の薬理学的に許容される塩である請求項20記載のニューロン新生促進剤。
 - 請求項20~36のいずれか1項に記載のニューロン新生促進剤の存在下、 37.

神経幹細胞を培養して得られるニューロン。

5

38. 請求項20~36のいずれか1項に記載のニューロン新生促進剤の存在下、神経幹細胞を培養してニューロンを新生させ、培養物中よりニューロンを採取することを特徴とするニューロンの製造方法。

- 39. GSK-3を阻害する物質を投与することを特徴とする神経再生方法。
 - 40. 神経再生薬の製造のためのGSK-3を阻害する物質の使用。
- 41. 神経幹細胞のニューロン新生促進剤の製造のためのGSK-3を阻害する 物質の使用。

SEQUENCE LISTING

<110> KYOWA HAKKO KOGYO CO., LTD.

<120>

5

<130> 11562W01

<140>

<141>

10

<150> JP2003-114579

<151> 2003-04-18

<160> 17

15

<170> Patentin Ver. 2.1

<210> 1

<211> 420

20 <212> PRT

<213> Homo sapiens

<400> 1

Met Ser Gly Arg Pro Arg Thr Thr Ser Phe Ala Glu Ser Cys Lys Pro

25 1

5

10

15

Val Gln Gln Pro Ser Ala Phe Gly Ser Met Lys Val Ser Arg Asp Lys

20

25

Asp	Gly	Ser	Lys	Val	Thr	Thr	Val	Val	Ala	Thr	Pro	Gly	Gln	Gly	Pro
		35					40					45	•		

- Asp Arg Pro Gln Glu Val Ser Tyr Thr Asp Thr Lys Val Ile Gly Asn 50 55 60
 - Gly Ser Phe Gly Val Val Tyr Gln Ala Lys Leu Cys Asp Ser Gly Glu 65 70 75 80
- Leu Val Ala Ile Lys Lys Val Leu Gln Asp Lys Arg Phe Lys Asn Arg 85 90 95
 - Glu Leu Gln Ile Met Arg Lys Leu Asp His Cys Asn Ile Val Arg Leu 100 105 110
- Arg Tyr Phe Phe Tyr Ser Ser Gly Glu Lys Lys Asp Glu Val Tyr Leu 115 120 125

- Asn Leu Val Leu Asp Tyr Val Pro Glu Thr Val Tyr Arg Val Ala Arg

 20 130 135 140
 - His Tyr Ser Arg Ala Lys Gln Thr Leu Pro Val Ile Tyr Val Lys Leu 145 150 155 160
- Tyr Met Tyr Gln Leu Phe Arg Ser Leu Ala Tyr Ile His Ser Phe Gly 165 170 175
 - Ile Cys His Arg Asp Ile Lys Pro Gln Asn Leu Leu Leu Asp Pro Asp 180 185 190

Thr Ala Val Leu Lys Leu Cys Asp Phe Gly Ser Ala Lys Gln Leu Val 195 200 205

- 5 Arg Gly Glu Pro Asn Val Ser Tyr Ile Cys Ser Arg Tyr Tyr Arg Ala 210 215 220
 - Pro Glu Leu Ile Phe Gly Ala Thr Asp Tyr Thr Ser Ser Ile Asp Val 225 230 235 240
 - Trp Ser Ala Gly Cys Val Leu Ala Glu Leu Leu Leu Gly Gln Pro Ile
 245 250 255

10

- Phe Pro Gly Asp Ser Gly Val Asp Gln Leu Val Glu Ile Ile Lys Val

 260 265 270
 - Leu Gly Thr Pro Thr Arg Glu Gln Ile Arg Glu Met Asn Pro Asn Tyr
 275
 280
 285
- Thr Glu Phe Lys Phe Pro Gln Ile Lys Ala His Pro Trp Thr Lys Val 290 295 300
 - Phe Arg Pro Arg Thr Pro Pro Glu Ala Ile Ala Leu Cys Ser Arg Leu 305 · 310 315 320
 - Leu Glu Tyr Thr Pro Thr Ala Arg Leu Thr Pro Leu Glu Ala Cys Ala
 325
 330
 335
 - His Ser Phe Phe Asp Glu Leu Arg Asp Pro Asn Val Lys His Pro Asn 3/24

340 345 350

Gly Arg Asp Thr Pro Ala Leu Phe Asn Phe Thr Thr Gln Glu Leu Ser 355 360 365

5

Ser Asn Pro Pro Leu Ala Thr Ile Leu Ile Pro Pro His Ala Arg Ile 370 375 380

Gln Ala Ala Ser Thr Pro Thr Asn Ala Thr Ala Ala Ser Asp Ala 10 385 390 395 400

Asn Thr Gly Asp Arg Gly Gln Thr Asn Asn Ala Ala Ser Ala Ser Ala
405
410
415

15 Ser Asn Ser Thr

420

<210> 2

<211> 1260

20 <212> DNA

<213 Homo sapiens

<400> 2

atg tca ggg cgg ccc aga acc acc tcc ttt gcg gag agc tgc aag ccg 48

25 Met Ser Gly Arg Pro Arg Thr Thr Ser Phe Ala Glu Ser Cys Lys Pro

1 5 10 15

gtg çag cag cct tca gct ttt ggc agc atg aaa gtt agc aga gac aag 96 Val Gln Gln Pro Ser Ala Phe Gly Ser Met Lys Val Ser Arg Asp Lys

20 25 30

gac ggc agc aag gtg aca aca gtg gtg gca act cct ggg cag ggt cca 144

Asp Gly Ser Lys Val Thr Thr Val Val Ala Thr Pro Gly Gln Gly Pro

35 40 45

5

10

25

gac agg cca caa gaa gtc agc tat aca gac act aaa gtg att gga aat 192
Asp Arg Pro Gln Glu Val Ser Tyr Thr Asp Thr Lys Val Ile Gly Asn.
50 55 60

gga tca ttt ggt gtg gta tat caa gcc aaa ctt tgt gat tca gga gaa 240 Gly Ser Phe Gly Val Val Tyr Gln Ala Lys Leu Cys Asp Ser Gly Glu 65 70 75 80

ctg gtc gcc atc aag aaa gta ttg cag gac aag aga ttt aag aat cga 288
Leu Val Ala Ile Lys Lys Val Leu Gln Asp Lys Arg Phe Lys Asn Arg
85 90 95

gag ctc cag atc atg aga aag cta gat cac tgt aac ata gtc cga ttg 336

20 Glu Leu Gln Ile Met Arg Lys Leu Asp His Cys Asn Ile Val Arg Leu

100 105 110

cgt tat ttc ttc tac tcc agt ggt gag aag aaa gat gag gtc tat ctt 384

Arg Tyr Phe Phe Tyr Ser Ser Gly Glu Lys Lys Asp Glu Val Tyr Leu

115 120 125

aat ctg gtg ctg gac tat gtt ccg gaa aca gta tac aga gtt gcc aga 432 Asn Leu Val Leu Asp Tyr Val Pro Glu Thr Val Tyr Arg Val Ala Arg 130 135 140

	·cac	tat	agt	cga	gcc	aaa	cag	acg	ctc	cct	gtġ	att	tat	gtc	aag	ttg	480
	His	Tyr	Ser	Arg	Ala	Lys	Gln	Thr	Leu	Pro	Val	Ile	Tyr	Val	Lys	Leu .	
	145			•		150					155					160	
5																	
	tat	atg	tat	cag	ctg	ttc	cga	agt	tta	gcc	tat	atc	cat	tcc	ttt	gga	528
	Tyr	Met	Tyr	Gln	Leu	Phe	Arg	Ser	Leu	Ala	Tyr	Ile	His	Ser	Phe	Gly	
					165					170					175		
															. ;		
10	atc	tgc	cat	cgg	gat	att	aaa	ccg	cag	aac	ctc	ttg	ttg	gat	cct	gat	576
	lle	Cys	His	Arg	Asp	Ile	Lys	Pro	Gln	Asn	Leu	Leu	Leu	Asp	Pro	Asp	
	•			180					185					190			
	act	gc t	gta	tta	aaa	ctc	tgt	gac	ttt	gga	agt	gca	aag	cag	ctg	gtc	624
15	Thr	Ala	Val	Leu	Lys	Leu	Cys	Asp	Phe	Gly	Ser	Ala	Lys	Gln	Leu	Val	
			195					200					205				
						•											
	cga	gga	gaa	ccc	aat	gtt	tcg	tat	atc	tgt	tct	cgg	tac	tat	agg	gca	672
	Arg	Gly	Glu	Pro	Asn	Val	Ser	Tyr	Ile	Cys	Ser	Arg	Tyr	Tyr	Arg	Ala	
20		210)				215	j				220)				
			•-														
	cca	gag	g ttg	ato	ttt	gga	gco	act	gat	tat	aco	c tct	agt	tata	gat	gta	720
	Pro	Glu	ı Leu	ı Ile	e Phe	Gly	Ala	t Thi	Asp	Туг	Th	r Ser	Sei	: Ile	Asr	Val	
	225					230)				23	5				240	
25	•																
,	tgg	tci	t gct	ggo	tg:	t gtg	gtte	g gc	t gag	gcte	gtt	a cta	ı gga	a caa	a cca	a ata	768
																lle	
	•				.24	5				250)				25	5	

tit cca ggg gat agt ggt gtg gat cag tig gta gaa ata atc aag gtc 816

	Phe	Pro	Gly	Asp	Ser	Gly	Val	Asp	Gln	Leu	Val	Glu	Ile	Ile	Lys	Val	
				260					265					270		•	
•															•		
5													aac				864
	Leu	Gly	Thr	Pro	Thr	Arg	Glu	Gln	Ile	Arg	Glu	Met	Asn	Pro	Asn	Tyr	
	٠		275					280					2,85				•
										•							0.4.0
													tgg				912
lO	Thr	Glu	Phe	Lys	Phe	Pro	Gln	Ile	Lys	Ala	His		Trp	Thr	Lys	Val	
		290					295					300					
																,	0.00
											•		tgt				960
	Phe	Arg	Pro	Arg	Thr	Pro	Pro	Glu	Ala	Ile			Cys	Ser	Arg		
15	305					310					315	•				320	
													gaa				1008
	Leu	Glu	Tyr	Thr	Pro	Thr	Ala	Arg	Leu			Leu	Glu	Ala			
					325	ı				330)				335		
20																	
													aaa				1056
	His	Ser	Phe	Phe	e Asp	Glu	ı Leu	Arg	; Asr	Pro) Ası	ı Val	Lys			Asn	
				340)				345	5		•		350)		
25																g tca	1104
	Gly	/ Arg	g Asr	Thr	Pro	Ala	ı Let	Phe	e Ası	n Phe	e Thi	r Thi			ı Leı	ı Ser	
			355	5				360)				365	j			
	ag	aa	t cca	a cci	t cta	g gc	t acc	ato	ct	t at	t cc	t cc	t cai	gc	t cg	g att	1152

Ser Asn Pro Pro Leu Ala Thr Ile Leu Ile Pro Pro His Ala Arg Ile caa gca gct gct tca acc ccc aca aat gcc aca gca gcg tca gat gct Gln Ala Ala Ala Ser Thr Pro Thr Asn Ala Thr Ala Ala Ser Asp Ala aat act gga gac cgt gga cag acc aat aat gct gct tct gca tca gct Asn Thr Gly Asp Arg Gly Gln Thr Asn Asn Ala Ala Ser Ala Ser Ala tcc aac tcc acc Ser Asn Ser Thr <210> 3 <211> 737 <212> PRT <213 Homo sapiens <400> 3 Met Pro Leu Asn Arg Thr Leu Ser Met Ser Ser Leu Pro Gly Leu Glu Asp Trp Glu Asp Glu Phe Asp Leu Glu Asn Ala Val Leu Phe Glu Val Ala Trp Glu Val Ala Asn Lys Val Gly Gly Ile Tyr Thr Val Leu Gln

Thr	Lys	Ala	Lys	Val	Thr	Gly	Asp	Gļu	Trp	Gly	Asp	Asn	Tyr	Phe	Leu
	50					55					60				

- 5 Val Gly Pro Tyr Thr Glu Gln Gly Val Arg Thr Gln Val Glu Leu Leu 65 70 75 80
 - Glu Ala Pro Thr Pro Ala Leu Lys Arg Thr Leu Asp Ser Met Asn Ser 85 90 95

Lys Gly Cys Lys Val Tyr Phe Gly Arg Trp Leu Ile Glu Gly Gly Pro
100 105 110

10

25

Leu Val Val Leu Leu Asp Val Gly Ala Ser Ala Trp Ala Leu Glu Arg
15 120 125

Trp Lys Gly Glu Leu Trp Asp Ile Cys Asn Ile Gly Val Pro Trp Tyr
130 135 140

Asp Arg Glu Ala Asn Asp Ala Val Leu Phe Gly Phe Leu Thr Trp

145
150
155
160

Phe Leu Gly Glu Phe Leu Ala Gln Ser Glu Glu Lys Pro His Val Val
165 170 175

Ala His Phe His Glu Trp Leu Ala Gly Val Gly Leu Cys Leu Cys Arg 180 185 190

Ala Arg Arg Leu Pro Val Ala Thr Ile Phe Thr Thr His Ala Thr Leu 9/24

195 200 205

Leu Gly Arg Tyr Leu Cys Ala Gly Ala Val Asp Phe Tyr Asn Asn Leu 210 215 220

5 .

Glu Asn Phe Asn Val Asp Lys Glu Ala Gly Glu Arg Gln Ile Tyr His 225 230 235 240

Arg Tyr Cys Met Glu Arg Ala Ala Ala His Cys Ala His Val Phe Thr

245 250 255

Thr Val Ser Gln Ile Thr Ala Ile Glu Ala Gln His Leu Leu Lys Arg 260 265 270

Lys Pro Asp Ile Val Thr Pro Asn Gly Leu Asn Val Lys Lys Phe Ser 275 280 285

Ala Met His Glu Phe Gln Asn Leu His Ala Gln Ser Lys Ala Arg Ile 290 295 300

20

25

Gln Glu Phe Val Arg Gly His Phe Tyr Gly His Leu Asp Phe Asn Leu 305 310 315 320

Asp Lys Thr Leu Tyr Phe Phe Ile Ala Gly Arg Tyr Glu Phe Ser Asn 325 330 335

Lys Gly Ala Asp Val Phe Leu Glu Ala Leu Ala Arg Leu Asn Tyr Leu 340 345 350

Leu Arg Val Asn Gly Ser Glu Gln Thr Val Val Ala Phe Phe Ile Met 355 360 365

Pro Ala Arg Thr Asn Asn Phe Asn Val Glu Thr Leu Lys Gly Gln Ala 5 370 375 380

Val Arg Lys Gln Leu Trp Asp Thr Ala Asn Thr Val Lys Glu Lys Phe 385 390 395 400

Gly Arg Lys Leu Tyr Glu Ser Leu Leu Val Gly Ser Leu Pro Asp Met 405 410 415

Asn Lys Met Leu Asp Lys Glu Asp Phe Thr Met Met Lys Arg Ala Ile
420 425 430

Phe Ala Thr Gln Arg Gln Ser Phe Pro Pro Val Cys Thr His Asn Met
435 440 445

15

Leu Asp Asp Ser Ser Asp Pro Ile Leu Thr Thr Ile Arg Arg Ile Gly
20 450 455 460

Leu Phe Asn Ser Ser Ala Asp Arg Val Lys Val Ile Phe His Pro Glu
465 470 475 480

25 Phe Leu Ser Ser Thr Ser Pro Leu Leu Pro Val Asp Tyr Glu Glu Phe
485 490 495

Val Arg Gly Cys His Leu Gly Val Phe Pro Ser Tyr Tyr Glu Pro Trp
500 505 510

Gly Tyr Thr Pro Ala Glu Cys Thr Val Met Gly Ile Pro Ser Ile Ser 515 520 525

5 Thr Asn Leu Ser Gly Phe Gly Cys Phe Met Glu Glu His Ile Ala Asp 530 535 540

Pro Ser Ala Tyr Gly Ile Tyr Ile Leu Asp Arg Arg Phe Arg Ser Leu 545 550 555 560

Asp Asp Ser Cys Ser Gln Leu Thr Ser Phe Leu Tyr Ser Phe Cys Gln 565 570 575

10

25

- Gln Ser Arg Gln Arg Ile Ile Gln Arg Asn Arg Thr Glu Arg Leu
 580 585 590
 - Ser Asp Leu Leu Asp Trp Lys Tyr Leu Gly Arg Tyr Tyr Met Ser Ala 595 600 605
- 20 Arg His Met Ala Leu Ser Lys Ala Phe Pro Glu His Phe Thr Tyr Glu 610 615 620
 - Pro Asn Glu Ala Asp Ala Ala Gln Gly Tyr Arg Tyr Pro Arg Pro Ala 625 630 635 640

Ser Val Pro Pro Ser Pro Ser Leu Ser Arg His Ser Ser Pro His Gln 645 650 655

Ser Glu Asp Glu Glu Asp Pro Arg Asn Gly Pro Leu Glu Glu Asp Gly

660 665 670

Glu Arg Tyr Asp Glu Asp Glu Glu Ala Ala Lys Asp Arg Arg Asn Ile 675 680 685

5

Arg Ala Pro Glu Trp Pro Arg Arg Ala Ser Cys Thr Ser Ser Thr Ser 690 695 700

Gly Arg Lys Arg Asn Ser Val Asp Thr Ala Thr Ser Ser Leu Ser
10 705 710 715 720

Thr Pro Ser Glu Pro Leu Ser Pro Thr Ser Ser Leu Gly Glu Glu Arg
725 730 735

15 Asn

<210> 4

<211> 2211

<212> DNA

20 <213 Homo sapiens

<400> 4

25

atg cct tta aac cgc act ttg tcc atg tcc tca ctg cca gga ctg gag

Met Pro Leu Asn Arg Thr Leu Ser Met Ser Ser Leu Pro Gly Leu Glu

1 5 10 15

gac tgg gag gat gaa ttc gac ctg gag aac gca gtg ctc ttc gaa gtg
Asp Trp Glu Asp Glu Phe Asp Leu Glu Asn Ala Val Leu Phe Glu Val
20 25 30

	gcc	tgg	gag	gtg	gct	aac	aag	gtg	ggt	ggc	atc	tac	acg	gtg	ctg	cag	144
	Ala	Trp	Glu	Val	Ala	Asn	Lys	Val	Gly	Gly	He	Tyr	Thr	Val	Leu	Gln	
			35					40					45				•
5																	
	acg	aag	gcg	aag	gtg	aca	ggg	gac	gaa	tgg	ggc	gac	aac	tac	ttc	ctg	192
	Thr	Lys	Ala	Lys	Val	Thr	Gly	Asp	Glu	Trp	Gly	Asp	Asn	Tyr	Phe	Leu	
		50			•		55					60			_		
10										agg							240
	Val	Gly	Pro	Tyr	Thr	Glu	Gln	Gly	Val	Arg	Thr	Gln	Val	Glu	Leu		
	65					70					75					80	
																	222
										aca							288
15	Glu	Ala	Pro	Thr			Leu	Lys	Arg	Thr	Leu	Asp	Ser	Met			
					.85					90					95		
																1	200
																cct	336
	Lys	Gly	Cys			Tyr	Phe	e Gly			Leu	llle	GI			y Pro	
20				100)				105)				110	J		
				·					٠		4			- a t	~ ~0.0		384
																g cgc	
	Leu	va.			ı Lei	1 ASI	o va			1 Sei	Ale	1 11 <u>1</u>	12		u Git	ı Arg	•
·			118)				120	J				12	ט			
25	.			,	- at	, 	~ ~~	+ a +	o ta		n a t	പ്രവ	a ort	a cc	a ta	or tan	432
																g tad n Tvi	
	IT			, ,	и ге	u II)	13		e cy	o noi	. 11	14			U 11)	р Туг	
		13	U				10	U				1-1	•				

	gac	cgc	gag	gcc	aac	gac	gc t	gtc	ctc	ttt	ggc	ttt	ctg	acc	acc	tgg	480
	Asp	Arg	Glu	Ala	Asn	Asp	Ala	Val	Leu	Phe	Gly	Phe	Leu	Thr	Thr	Trp	
	145					150					155	·				160	
•													-				
5	ttc	ctg	ggt	gag	ttc	ctg	gca	cag	agt	gag	gag	aag	cca	cat	gtg	gtt	528
	Phe	Leu	Gly	Glu	Phe.	Leu	Ala	Gln	Ser	Glų	Glu	Lys	Pro	His	Val	Val	
					165					170					175		
	gc t	cac	ttc	cat	gag	tgg	ttg	gca	ggc	gtt	gga	ctc	tgc	ctg	tgt	cgt	576
10	Ala	His	Phe	His	Glu	Trp	Leu	Ala	Gly	Val	Gly	Leu	Cys	Leu	Cys	Arg	
				180					185					190			
	•															-	
	gcc	ċgg	cga	ctg	cct	gta	gca	acc	atc	ttc	acc	acc	cat	gcc	acg	ctg	624
	Ala	Arg	Arg	Leu	Pro	Val	Ala	Thr	Ile	Phe	Thr	Thr	His	Ala	Thr	Leu	
15			195					200					205				
	ctg	ggg	cgc	tac	ctg	tgt	gcc	ggt	gcc	gtg	gac	ttc	tac	aac	aac	ctg	672
	Leu	Gly	Arg	Tyr	Leu	Cys	Ala	Gly	Ala	. Val	Asp	Phe	Tyr	Asn	Asn	Leu	
		210					215	İ				220)				
20										•							
	gag	aac	tto	aac	gte	g gao	aag	g gaa	gca	ggg	gag	g agg	g cag	ato	: tac	cac	720
	Glu	Asr	ı Phe	e Asr	ı Val	Ası	Lys	Glu	ı Ala	ı Gly	Glu	ı Arg	g Glr	ı Ile	Туг	His	
	225	i				230)				235	5				240	
25	cga	ı tad	c tgo	cate	g gaa	agg	g gcg	g gca	a gco	cac	t go	c gc	t cad	gto	tto	act	768
	Arg	g Ty	r Cy:	s Me	t Glı	ı Ar	g Ala	a Ala	a Ala	a His	S Cy:	s Ala	a His	s Va	l Phe	e Thr	
					24	5				250)				25	5	
														•			
	aci	t gt	g tc	c ca	g at	c ac	c gc	c ato	c gas	g gca	a ca	g ca	c tt	g ct	c aag	g agg	816

	Thr	Val	Ser	Gln	Ile	Thr	Ala	Ile	Glu	Ala	Gln	His	Leu	Leu	Lys	Arg	•
	•			260					265					270			
	aaa	cca	gat	att	gtg	acc	ccc	aat	ggg	ctg	aat	gtg	aag	aag	ttt	tct	864
5	Lys	Pro	Asp	Ile	Val	Thr	Pro	Asn	Gly	Leu	Asn	Val	Lys	Lys	Phe	Ser	
			275				•	280					285				
	~~~		o o t	<b></b>	++0	000	000	a t a	aat	aat	cac	200	224	act	സമ	atc	912
												agc					312
	Ala		HIS	GIU	rne	GIII		Leu	піз	Ald	GIII	Ser	L A 2	Ala	Aig	116	
10		290					295					300					
	cag	gag	ttt	gtg	cgg	ggc	cat	ttt	tat	ggg	cat	ctg	gac	ttc	aac	ttg	960
	Gln	Glu	Phe	Val	Arg	Gly	His	Phe	Tyr	Gly	His	Leu	Asp	Phe	Asn	Leu	
	305					310					315					320	
15																	
	gac	aag	acc	tta	tac	ttc	ttt	atc	gcc	ggc	cgc	tat	gag	ttc	tcc	aac	1008
•	Asp	Lys	Thr	Leu	Tyr	Phe	Phe	Ile	Ala	Gly	Arg	g Tyr	Glu	Phe	Ser	Asn	
					325					330					335		
20	aag	ggt	gc t	gac	gtc	ttt	ctg	gag	gca	ttg	gct	cgg	cto	aac	tat	ctg	1056
	Lys	Gly	Ala	Asp	Val	Phe	Leu	Glu	Ala	Leu	Ala	a Arg	Leu	Asn	Tyr	Leu	
				340					345	i				350	)		
	cto	aga	gte	aac	ggo	ago	gag	cag	aca	gtg	ggt	t gcc	tto	tto	ato	atg	1104
25	Leu	ı Arg	Val	Asn	Gly	Ser	Glu	Glr	Thr	Val	Va	l Ala			e Ile	e Met	
	•		355	5				360	)				369	5			

1152

cca gcg cgg acc aac aat ttc aac gtg gaa acc ctc aaa ggc caa gct

Pro Ala Arg Thr Asn Asn Phe Asn Val Glu Thr Leu Lys Gly Gln Ala

gtg cgc aaa cag ctt tgg gac acg gcc aac acg gtg aag gaa aag ttc Val Arg Lys Gln Leu Trp Asp Thr Ala Asn Thr Val Lys Glu Lys Phe ggg agg aag ctt tat gaa tcc tta ctg gtt ggg agc ctt ccc gac atg Gly Arg Lys Leu Tyr Glu Ser Leu Leu Val Gly Ser Leu Pro Asp Met aac aag atg ctg gat aag gaa gac ttc act atg atg aag aga gcc atc Asn Lys Met Leu Asp Lys Glu Asp Phe Thr Met Met Lys Arg Ala Ile ttt gca acg cag cgg cag tct ttc ccc cct gtg tgc acc cac aat atg Phe Ala Thr Gln Arg Gln Ser Phe Pro Pro Val Cys Thr His Asn Met ctg gat gac tcc tca gac ccc atc ctg acc acc atc cgc cga atc ggc Leu Asp Asp Ser Ser Asp Pro Ile Leu Thr Thr Ile Arg Arg Ile Gly ctc ttc aat agc agt gcc gac agg gtg aag gtg att ttc cac ccg gag Leu Phe Asn Ser Ser Ala Asp Arg Val Lys Val Ile Phe His Pro Glu 

ttc ctc tcc tcc aca agc ccc ctg ctc cct gtg gac tat gag gag ttt 1488

Phe Leu Ser Ser Thr Ser Pro Leu Leu Pro Val Asp Tyr Glu Glu Phe
485 490 495

	gtc	cgt	ggc	tgt	cac	ctt	gga .	gtc	ttc	ccc	tcc	tac	tat	gag	cct	tgg	1536
	Val	Arg	Gly	Cys	His	Leu	Gly	Val	Phe	Pro	Ser	Tyr	Tyr	Glu	Pro	Trp	
				500					505					510			
5		•		•													
	ggc	tac	aca	ccg	gct	gag	tgc	acg	gtt	atg	gga	atc	ccc	agt	atc	tcc	1584
	Gly	Tyr	Thr	Pro	Ala	Glu	Cys	Thr	Val	Met	Gly	Ile	Pro	Ser	Ile	Ser	
			515					520					525				
													•		•	•	
0	acc	aat	ctc	tcc	ggc	ttc	ggc	tgc	ttc	atg	gag	gaa	cac	atc	gca	gac	1632
	Thr	Asn	Ļeu	Ser	Gly	Phe	Gly	Cys	Phe	Met	Glu	Glu	His	Ile	Ala	Asp	
		530					535					540	•				•
											•						
	ccc	tca	gċ t	tac	ggt	atc	tac	att	ctt	gac	cgg	cgg	ttc	cgc	agc	ctg	1680
<b>l</b> 5	Pro	Ser	Ala	Tyr	Gly	Ile	Tyr	Ile	Leu	Asp	Arg	Arg	Phe	Arg	Ser	Leu	
	545					550					555					560	
	gat	gat	tcc	tgc	tcg	cag	ctc	acc	tcc	ttc	ctc	tac	agt	ttc	tgt	cag	1728
	Asp	Asp	Ser	Cys	Ser	Gln	Leu	Thr	Ser	Phe	Leu	Tyr	Ser	Phe	Cys	Gln	
20					565					570					575		
	cag	agc	cgg	cgg	cag	cgt	atc	atc	cag	cgg	aac	cgc	acg	gag	cgc	ctc	1776
	Gln	Seŗ	Arg	Arg	Gln	Arg	Ile	Ile	Gln	Arg	Asn	Arg	Thr	Glu	Arg	Leu	
				580					585					590			
25																	
	tcc	gac	ctt	ctg	gac	tgg	aaa	tac	cta	ggc	cgg	tac	t a t	atg	tct	gcg	1824
	Ser	Asp	Leu	Leu	Asp	Ţrp	Lys	Tyr	Leu	Gly	Arg	Tyr	Tyr	Met	Ser	Ala	
			595					600					605				

	cgc	cac	atg	gcg	ctg	tcc	aag	gcc	ttt	cca	gag	cac	ttc	acc	tac	gag	1872
	Arg	His	Met	Ala	Leu	Ser	Lys	Ala	Phe	Pro	Glu	His	Phe	Thr	Tyr	Glu	
		610					615					620					
	•											•					
5	ccc	aac	gag	gcg	gat	gcg	gcc	cag	ggg	tac	cgc	tac	cca	cgg	cca	gcc	1920
	Pro	Asn	Glu	Ala	Asp	Ala	Ala	Gln	Gly	Tyr	Arg	Tyr	Pro	Arg	Pro	Ala	
	625	•				630					635					640	
															•		•
	tcg	gtg	cca	ccg	tcg	ссс	tcg	ctg	tca	cga	cac	tcc	agc	ccg	cac	cag	1968
10	Ser	Val	Pro	Pro	Ser.	Pro	Ser	Leu	Ser	Arg	His	Ser	Ser	Pró	His	Gln	
					645					650					655		
				•													
	agt	gag	gac	gag	gag	gat	ccc	cgg	aac	ggg	ccg	ctg	gag	gaa	gac	ggc	2016
	Ser	Glu	Asp	Glu	Glu	Asp	Pro	Arg	Asn	Gly	Pro	Leu	Glu	Glu	Asp	Gly	
15				660					665					670			
•	gag	cgc	tac	gat	gag	gac	gag	gag	gcc	gcc	aag	gac	cgg	cgc	aac	atc	2064
					Glu												
			675					680					685				
20				٠.													
	cgt	gca	. cca	gag	tgg	ccg	cgc	cga	gcg	tcc	tgo	acc	tcc	tcc	acc	agc	2112
					Trp												
	•	690			•		695					700					
																	•
25	ggo	cgo	: ลลย	cec	aac	tet	gtg	gao	e acg	gcc	aco	tco	ago	: tca	cto	agc	2160
20																Ser	
	705		, 2,		,	710					715					720	
	100	•					•									<b>-</b>	
	acc		. aga	gac	7 CCC	cto	ago		e acc	. ឧទ្ធ	: tcc	e ets	g gga	gag	g gag	cgt	2208

Thr Pro Ser Glu Pro Leu Ser Pro Thr Ser Ser Leu Gly Glu Glu Arg

730 735

2211

5 Asn

<210> 5

<211> 60

<212> PRT

10 <213> Artificial Sequence

725

<223> Description of Artificial Sequence: Synthetic PRT

<400> 5

15 Tyr Arg Arg Ala Ala Val Pro Pro Ser Pro Ser Leu Ser Arg His Ser

1 5 10 15

Ser Pro His Gln Ser Glu Asp Glu Glu Glu

20 25

<210> 6

20

25

<211> 24

<212> DNA

<213> Artificial Sequence

<223> Description of Artificial Sequence: synthetic DNA

**<400>** 6

agggtatgat aaccgggaga tcgt

PCT/JP2004/005503

WO 2004/091663

	<210> 7	
	<211> 24	
	<212> DNA	
5	<213> Artificial Sequence	
	<223> Description of Artificial Sequence: synthetic DNA	
	<400> 7	
10	gggccatata gttccacaaa ggca	24
	<210> 8	
	<211> 24	
	<212> DNA	
15	<213> Artificial Sequence	
	<223> Description of Artificial Sequence: synthetic DNA	
	<b>&lt;400&gt;</b> 8	
20	caaaaggcac tggaactcgc aatg	24
	<210> 9	
	<211> 24	
	<212> DNA	
25	<213> Artificial Sequence	
	<223> Description of Artificial Sequence:synthetic DNA	
	<400> 9	

	ttcttggcaa cggcaacaaa ccac	24
	⟨210⟩ 10	
	<b>&lt;211&gt; 24</b>	
5	<212> DNA	
	<213> Artificial Sequence	
	<223> Description of Artificial Sequence: synthetic DNA	
10	<400> 10	•
	ggtgaatcga gaagagccat catg	24
	⟨210⟩ 11	
	<211> 24	
15	<212> DNA	
	<213> Artificial Sequence	
	<223> Description of Artificial Sequence: synthetic DNA	
20	<400> 11	
	ttcaggtaga gttggaggct gatg	24
	<210> 12	
	<211> 25	
25	<212> DNA	
	<213> Artificial Sequence	
	<223> Description of Artificial Sequence: synthetic DNA	

PCT/JP2004/005503

WO 2004/091663

**<400>** 12

gaagaacttt cctgatggcc accag

25

<210> 13

5 <211> 25

<212> DNA

<213> Artificial Sequence

<223> Description of Artificial Sequence: synthetic DNA

10

**<400>** 13

ctggtggcca tcaggaaagt tcttc

25

<210> 14

15 〈211〉 21

<212> RNA

<213> Artificial Sequence

(223) Description of Artificial Sequence: synthetic RNA

20

<400> 14

gucaguuaca cagacacuat t

21

<210> 15

25 〈211〉 21

<212> RNA

<213 > Artificial Sequence

<223> Description of Artificial Sequence: synthetic RNA

	<400> 15	
	uagugucugu guaacugact t	21
5	<210> 16	•
	⟨211⟩ 21	
	<212> RNA	•
	<213> Artificial Sequence	
10	<223> Description of Artificial Sequence: synthetic RNA	
	<400> 16	
	gucuagccua uauccauuct t	21
15	<210> 17	
	⟨211⟩ 21	
	<212> RNA	
	<213> Artificial Sequence	
20	<223> Description of Artificial Sequence: synthetic RNA	

**<400> 17** 

gaauggauau aggcuagact t

International application No. INTERNATIONAL SEARCH REPORT PCT/JP2004/005503 CLASSIFICATION OF SUBJECT MATTER A61K45/00, 31/404, 31/4045, 31/405, 31/407, 31/553, C07D403/04, Int.Cl7 403/14, 498/22, A61P25/28, 25/08, 25/22, 25/18, 25/24, C07D487/14 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) A61K45/00, 31/404, 31/4045, 31/405, 31/407, 31/553, C07D403/04, 403/14, 498/22, A61P25/28, 25/08, 25/22, 25/18, 25/24, C07D487/14 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Jitsuyo Shinan Koho 1922-1996 Toroku Jitsuyo Shinan Koho 1994-2004 Kokai Jitsuyo Shinan Koho 1996-2004 1971-2004 Jitsuyo Shinan Toroku Koho Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) CAPLUS (STN), BIOSIS (STN), REGISTRY (STN), EMBASE (STN), MEDLINE (STN) C. DOCUMENTS CONSIDERED TO BE RELEVANT Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. WO 02/062387 A1 (SMITHKLINE BEECHAM P.L.C.), 1-3,20,37,Х 15 August, 2002 (15.08.02), 38,40,41 Y Full text; particularly, Claims 1 to 12 4-19,21-36 (Family: none) WO 99/42100 A1 (Sagami Chemical Research Center), 1-3, 5-7, 20,X 26 August, 1999 (26.08.99), 22-24,37,38, Full text; particularly, Claims 1 to 19; 40,41 compound No.13 & EP 1057484 A1 JP 2-306974 A (Goedecke AG.), 1-3,5-7,20,X 20 December, 1990 (20.12.90), 22-24,37,38, 40,41 Full text; particularly, Claims 1 to 7 & EP 397060 A3

×	Further documents are listed in the continuation of Box C.		See patent family annex.	
*	Special categories of cited documents:	"T"	later document published after the international filing date or priority	
"A"	document defining the general state of the art which is not considered to be of particular relevance	•	date and not in conflict with the application but cited to understand the principle or theory underlying the invention	
"E"	earlier application or patent but published on or after the international filing date		document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive	
"L"	cited to establish the publication date of another citation or other special reason (as specified) document referring to an oral disclosure, use, exhibition or other means		step when the document is taken alone	
"O" "P"		"Y"	considered to involve an inventive step when the document is combined with one or more other such documents, such combination	
		ater than	being obvious to a person skilled in the art	
1	the priority date claimed		document member of the same patent family	
			·	
Date	Date of the actual completion of the international search  Date of mailing of the international search report			
09 June, 2004 (09.06.04)			29 June, 2004 (29.06.04)	
		1	20 04, 2001 (2000.01)	
		1		
Name and mailing address of the ISA/		Authorized officer		
Japanese Patent Office				
1	oupuitodo rudeiro deredo			
Facsimile No.			Telephone No.	
	Form PCT/ISA/210 (second sheet) (January 2004)			
I UIIII .	FC1/13M/210 (35500Hd 3HCCH (January 2004)			

International application No.
PCT/JP2004/005503

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 01/13916 A1 (Sagami Chemical Research Center), 01 March, 2001 (01.03.01), Full text; particularly, Claims 1 to 17; compound Nos. 15, 16 & EP 1224932 A1	1-3,5,6,8, 10,20,22,23, 25,27,37,38, 40,41
X	JP 7-508268 A (Goedecke AG.), 14 September, 1995 (14.09.95), Full text; particularly, Claims 1 to 15 & US 5883114 A	1-3,5,6,20, 22,23,37,38, 40,41
x	WO 00/38675 A1 (SMITHKLINE BEECHM P.L.C.), 06 July, 2000 (06.07.00), Full text; particularly, Claims 1 to 11; examples & EP 1140070 A1	1-3,5,9,10, 20,22,26,27, 37,38,40,41
x	LOAST, Maryse et al., Paullones are potent inhibitors of glycogen synthase kinase-3β and cyclin-dependent kinase 5/p25, Eur. J. Biochem., 2000, Vol.267, pages 5983 to 5994; full text, particularly, page 5983; Fig. 2	1-3,5,11-15, 20,22,28-32, 37,38,40,41
x	WO 01/37819 A2 (CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE), 31 May, 2001 (31.05.01), Full text; particularly, Claims 1 to 15 & JP 2003-514850 A	1-3,16-20, 33-38,40,41
X Y	CHEN, Guang et al., Enhancement of hippocampal neurogenesis by lithium, Journal of Neuro chemistry, 2000, Vol.75, pages 1729 to 1734; full text; particularly, page 1729, abstract	1-4,20,21, 37,38,40,41 5-19,22-36

Por DOTACA DIA (continuation of first about (1)) (7

International application No.

PCT/JP2004/005503

Bo	x No.	, I	Nucleotide and/or amino acid sequence(s) (Continuation of item1.b of the first sheet)
1.	<ol> <li>With regard to any nucleotide and/or amino acid sequence disclosed in the international application and necessary to the claimed invention, the international search was carried out on the basis of:</li> </ol>		
	a.	type (	of material  a sequence listing  table(s) related to the sequence listing
-	b.	form:	at of material in written format in computer readable form
	c.	time (	of filing/furnishing  contained in the international application as filed  filed together with the international application in computer readable form  furnished subsequently to this Authority for the purposes of search
2.	×	or fu	Idition, in the case that more than one version or copy of a sequence listing and/or table relating thereto has been filed rnished, the required statements that the information in the subsequent or additional copies is identical to that in the leation as filed or does not go beyond the application as filed, as appropriate, were furnished.
3.	Add	litional	comments:

International application No. PCT/JP2004/005503.

Box No.	Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)
1. 🛪	national search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:  Claims Nos.: 39  because they relate to subject matter not required to be searched by this Authority, namely:  i.m. 39 pertains to methods for treatment of the human body by therapy.
1	Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box No.	Observations where unity of invention is lacking (Continuation of item 3 of first sheet)
This inter	national Searching Authority found multiple inventions in this international application, as follows:  (See extra sheet.)
	As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
-	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
	As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
	No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark (	The additional search fees were accompanied by the applicant's protest.  No protest accompanied the payment of additional search fees.

DOTTE & MID (arrive shoot) (Tonuery 2004)

International application No. PCT/JP2004/005503

# Continuation of Box No.III of continuation of first sheet(2)

It appears that the matter common to nerve degeneration drugs containing as the active ingredient the compounds having specific structures represented by the formulae (I) to (V) as set forth in claims 1 to 41 resides in "a nerve degeneration drug containing as the active ingredient a substance inhibiting the activity of a glycogen synthase kinase-3".

On the other hand, a nerve degeneration drug containing a substance inhibiting the activity of a glycogen synthase kinase-3 as the active ingredient is reported in the following document. Thus, the constitution of the above common matter cannot be considered as being novel and, therefore, cannot be regarded as the gist of the invention.

Such being the case, the nerve degeneration drugs containing as the active ingredient the compounds represented by the five different formulae as set forth in claims 1 to 41 cannot be regarded as a group of inventions so linked as to form a single general inventive concept.

Document: WO 02/062387 A1 (SMKTHKLINE BEECHAM P.L.C.) 2002.08.15

## A. 発明の属する分野の分類 (国際特許分類 (IPC))

Int. Cl¹ A61K45/00, 31/404, 31/4045, 31/405, 31/407, 31/553, C07D403/04, 403/14, 498/22, A61P25/28, 25/08, 25/22, 25/18, 25/24, C07D487/14

## B. 調査を行った分野

#### 調査を行った最小限資料(国際特許分類(IPC))

Int. Cl⁷ A61K45/00, 31/404, 31/4045, 31/405, 31/407, 31/553, C07D403/04, 403/14, 498/22, A61P25/28, 25/08, 25/22, 25/18, 25/24, C07D487/14

### 最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報

1922-1996年

日本国公開実用新案公報

1971-2004年

日本国登録実用新案公報

1994-2004年

日本国実用新案登録公報

1996-2004年

## 国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

CAPLUS (STN)

BIOSIS (STN)

REGISTRY (STN)

EMBASE (STN)

MEDLINE (STN)

### C. 関連すると認められる文献

O. MET	りてはのうなっていた。	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
X ·	WO 02/062387 A1(SMITHKLINE BEECHAM P.L.C.)2002.08.15, 全文, 特に請求項1-12 (ファミリーなし)	1-3, 20, 37, 38, 40, 41
Y	/ / / / / / / / / / / / / / / / / / /	4-19, 21-36
X	WO 99/42100 A1(財団法人相模中央化学研究所)1999.08.26, 全文, 特に請求項1-19, 化合物13等 & EP 1057484 A1	1-3, 5-7, 20, 22-24, 37, 38 40, 41
		•

### X C欄の続きにも文献が列挙されている。

#### パテントファミリーに関する別紙を参照。

#### * 引用文献のカテゴリー

- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「〇」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

#### の日の後に公表された文献

- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

## 国際調査を完了した日

09.06.2004

国際調査報告の発送日 29. 6. 2004

## 国際調査機関の名称及びあて先

日本国特許庁(ISA/JP)

郵便番号100-8915 東京都千代田区霞が関三丁目4番3号 特許庁審査官(権限のある職員)

小堀 麻子

4C 2938

電話番号 03-3581-1101 内線 3451

C (続き).	関連すると認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
X	JP 2-306974 A(ゲデッケ・アクチエンゲゼルシャフト)1990.12.20, 全文, 特に請求項1-7 & EP 397060 A3	1-3, 5-7, 20, 22-24, 37, 38, 40, 41
X	WO 01/13916 A1(財団法人相模中央化学研究所)2001.03.01, 全文, 特に請求項1-17, 化合物15,16 & EP 1224932 A1	1-3, 5, 6, 8, 10 20, 22, 23, 25, 27, 37, 38, 40, 41
x	JP 7-508268 A(ゲデッケ・アクチエンゲゼルシャフト)1995.09.14 全文, 特に請求項1-15 & US 5883114 A	1-3, 5, 6, 20, 22, 23, 37, 38, 40, 41
X	WO 00/38675 A1(SMITHKLINE BEECHM P.L.C)2000.07.06, 全文, 特に請求項1-11, EXAMPLE & EP 1140070 A1	1-3, 5, 9, 10, 20, 22, 26, 27, 37, 38, 40, 41
X	LOAST, Maryse <i>et al</i> , Paullones are potent inhibitors of glycogen synthase kinase-3 β and cyclin-dependent kinase 5/p25, Eur. J. Biochem., 2000, Vol. 267, pp5983-5994, 全文, 特に第5983頁, Fig. 2	1-3, 5, 11-15, 20, 22, 28-32, 37, 38, 40, 41
X	WO 01/37819 A2(CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE)2001.05.31,全文,特に請求項1-15 & JP 2003-514850 A	1-3, 16-20, 33-38, 40, 41
Y Y	CHEN, Guang <i>et al</i> , Enhancement of hippocampal neurogenesis by lithium, Journal of Neurochemistry, 2000, Vol. 75, pp1729-1734, 全文, 特に第1729頁Abstract	1-4, 20, 21, 37, 38, 40, 41 5-19, 22-36

第I櫚 ヌクレオチドン	又はアミノ酸配列(第1ページの1. bの続き)	
<ol> <li>この国際出願で開示されかつ請求の範囲に係る発明に必要なヌクレオチド又はアミノ酸配列に関して、 以下に基づき国際調査を行った。</li> </ol>		
a. タイプ	X 配列表	
	□ 配列表に関連するテープル	
b. フォーマット	X 書面	
	□ コンピュータ読み取り可能な形式	
c. 提出時期	□ 出願時の国際出願に含まれる	
	X この国際出願と共にコンピュータ読み取り可能な形式により提出された	
	出願後に、調査のために、この国際調査機関に提出された	
	表又は配列表に関連するテープルを提出した場合に、出願後に提出した配列若しくは追加して提出 顕時に提出した配列と同一である旨、又は、出願時の開示を超える事項を含まない旨の陳述書の提	
3. 補足意見:		
•		
:		
•		
·		
,		

第Ⅱ欄 請求の範囲の一部の調査ができないときの意見(第1ページの2の続き)
法第8条第3項(PCT17条(2)(a))の規定により、この国際調査報告は次の理由により請求の範囲の一部について作成しなかった。
1. X 請求の範囲 は、この国際調査機関が調査をすることを要しない対象に係るものである。 つまり、
請求の範囲39は治療による人体の処置方法に関するものである。
2. □ 請求の範囲は、有意義な国際調査をすることができる程度まで所定の要件を満たしていない国際出願の部分に係るものである。つまり、
3. [] 請求の範囲は、従属請求の範囲であってPCT規則6.4(a)の第2文及び第3文の規定に
従って記載されていない。
第Ⅲ欄 発明の単一性が欠如しているときの意見 (第1ページの3の続き)
次に述べるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。
特別ページ参照・
1. 出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求 の範囲について作成した。
2. 図 追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追加調査手数料の納付を求めなかった。
3.
4.
追加調査手数料の異議の申立てに関する注意
□ 追加調査手数料の納付と共に出願人から異議申立てがなかった。

## (第Ⅲ欄の続き)

本願の請求の範囲1-41に係る、式(I)-(V)で表される特定の構造を有する化合物を有効成分とする神経再生薬の共通部は「グリコーゲンシンターゼキナーゼ-3の活性を阻害する物質を有効成分として含有してなる神経再生薬」であると認められる。

一方、下記文献には、グリコーゲンシンターゼキナーゼ-3の活性を阻害する物質を有効成分として含有する神経再生薬が記載されているため、上記共通部の構成は新規な事項であると認められず、発明の主要部とみることができない。

してみれば、本願の請求の範囲1-41に係る、5つの異なる式で表される化合物を有効成分とする神経再生薬の発明は、互いに単一の一般的発明概念を形成するように連関している一群の発明には該当しない。

文献: WO 02/062387 A1 (SMITHKLINE BEECHAM P. L. C. ) 2002. 08. 15