A Machine Learning Perspective on Predictive Coding with PAQ by Knoll & de Freitas

Presentation by Phil Trommer

December 4, 2019

Overview

- Introduction to PAQ
- PAQ8L
 - Architecture
 - Neural Network
 - Model Mixer
 - Adaptive Probability Maps
- 3 Applications for PAQ8
- 4 References

- Introduction to PAQ
- 2 PAQ8L
- Applications for PAQ8
- 4 References

What is PAQ8

- What is it?
- How does it work?
- What makes it so famous?

What is PAQ?

- A lossless, open-source compression algorithm
- Brings high perfomance at the cost of increased memory usage and time consumption
- Related to PPM, is envisioned as PPMs improvement

Principles of PAQ

- Modeling combined with adaptive arithmetic encoding
- Open to additions and improvements
- Improves performance of PPM by including several predictors (i.e. models of data)
- Combines the result of the predictors

Exemplary Predictors

The order-*n* context predictor

- Examines the last n bits and counts the 1's and 0's
- Estimates probability whether next bit is 1 or 0 like PPM

Exemplary Predictors

The order-*n* context predictor

- Examines the last *n* bits and counts the 1's and 0's
- Estimates probability whether next bit is 1 or 0 like PPM

The sparse context predictor

- Context consists of a specific amount of non-contiguous bytes before the current bit
- Useful for some binary files

Exemplary Predictors

The order-*n* context predictor

- Examines the last *n* bits and counts the 1's and 0's
- Estimates probability whether next bit is 1 or 0 like PPM

The sparse context predictor

- Context consists of a specific amount of non-contiguous bytes before the current bit
- Useful for some binary files

Whole word order-n context

- Context is the latest n whole words
- Non-alphabetical characters are ignored and upper- or lower case letters are viewed as the same
- Very useful for text files

PAQ & Predictors

- PAQ encoder looks at the beginning of input file for deciding which predictors are used
- Ways to combine predictions change through with the different versions
- Each predictor outputs a pair of bit counts (n_0, n_1)
- Counts of each predictor are weighted with context length
- Those counts get summed up

PAQ8L

- Introduction to PAQ
- 2 PAQ8L
 - Architecture
 - Neural Network
 - Model Mixer
 - Adaptive Probability Maps
- Applications for PAQ8
- 4 References

PAQ8L

PAQ8 - What's new?

- Predictors don't produce a pair of bit counts anymore \hookrightarrow those counts get weighted and normalized into the interval $[0,1]\subset\mathbb{R}$
- Instead each predictor already outputs a probability
- paq8l is a stable version of paq8, released by Matt Mahoney

PAQ8L

PAQ8 - What's new?

- Predictors don't produce a pair of bit counts anymore \hookrightarrow those counts get weighted and normalized into the interval $[0,1]\subset\mathbb{R}$
- Instead each predictor already outputs a probability
- paq81 is a stable version of paq8, released by Matt Mahoney

PAQ8L - Machine Learning Perspective

- paq8l is the version of PAQ used by Byron Knoll & Nando de Freitas
- They try to show the possibilities of PAQ beyond data compression

Architecture

Architecture of PAQ8

- Uses weighted combination of predictions from Large number of models
- Allows no-contiguous context matches
- paq8l uses 552 prediciton models
- Combines the output of them into a single one

 → Passes this through an adaptive probability map (APM) before

using the arithmetic coder

Architecture

Architecture of PAQ8

- Uses weighted combination of predictions from Large number of models
- Allows no-contiguous context matches
- paq8l uses 552 prediciton models

Figure: PAQ8 Architecture

Neurons of a neural network

A neuron takes one or more inputs and gives an output.

Within the topic of machine learning, the neuron can be understood as a function.

Neurons of a neural network

A neuron takes one or more inputs and gives an output.

Within the topic of machine learning, the neuron can be understood as a function.

Figure: Neural network architecture

Layer in neural network

A layer is a group of neurons.

Layer in neural network

A layer is a group of neurons.

A neural network

Neural networks is defined by its layers:

- 1 input layer with *n* inputs
- 1 output layer with k outputs
- M layers between input and output layer (i.e. hidden layers)
- Layers can consist of different amounts of neurons

Layer in neural network

A layer is a group of neurons.

A neural network

Neural networks is defined by its layers:

- 1 input layer with *n* inputs
- 1 output layer with k outputs
- M layers between input and output layer (i.e. hidden layers)
- Layers can consist of different amounts of neurons

General structure of neural network

Let it be an generic neural network with:

- $x_1,...x_n$ inputs and $y_1,...,y_k$ outputs
- There are M different layers between input and output

Figure: Neural network architecture

Model Mixer of paq81

- Resembles a neural network with one hidden layer
- One hidden layer is between input and output layer
- Subtle differences from a standard neural network

Model Mixer of paq8l

- Resembles a neural network with one hidden layer
- One hidden layer is between input and output layer
- Subtle differences from a standard neural network

Differences between paq8l and neural networks

- Weights for first and second layers are learned online and independently for all nodes:
 - Each node trained separately
 - reduces predictive cross-entropy error (unlike back propagation)
- 4 Hidden nodes are partitioned into seven sets

Hidden Node Partitioning

- For every bit of data 1 node from each set
- Only edges of selected nodes are updated
- $552 \times 7 = 3,864$ weights updated per bit

Figure: Model Mixer architecture (Graphic by Knoll & De Freitas)

Node selection

- Sets 1,2,4 and 6 choose node based on single byte in context

 → 256 nodes per set
- ullet Set 1 has additional byte ightarrow 264 nodes
- Sets 3 and 7 use combination of several bytes
- Depending on the context, a specific node is selected

Node selection

- Sets 1,2,4 and 6 choose node based on single byte in context

 → 256 nodes per set
- Set 1 has additional byte \rightarrow 264 nodes
- Sets 3 and 7 use combination of several bytes
- Depending on the context, a specific node is selected

Mixtures of Experts

- Technique published by Jacobs et al.
- Used for neural network training
- Requires a gating network to select expert model

Adaptive Probability Maps

Definition APM

- Takes prediction from model mixer
- is an two dimensional table and low order context as input
- Outputs a new prediction on non-linear scale
- Table entries adjusted after each bit is coded

Applications for PAQ8

- Introduction to PAQ
- 2 PAQ8L
- Applications for PAQ8
- 4 References

Classification

Classification as the basic principle

- Compression based classification discovered by researches (Marton et al., 2005)
- Standard procedures for compression based classification exists
- SMDL, AMDL & BCN

Classification

Classification as the basic principle

- Compression based classification discovered by researches (Marton et al., 2005)
- Standard procedures for compression based classification exists
- SMDL, AMDL & BCN

Classification procedures

- \bullet SMDL \to uses differences between test dictionary and result dictionary
- \bullet AMDL \to uses difference between compressed file sizes (training files & test file)
- ullet BCN o uses difference between compressed file sizes (training file & test file)

Applications for PAQ8

What applications?

PAQ8 is useful even beside compressing files.

- Adaptive Text Prediction
- Text categorization
- Shape recognition
- Lossy compression (i.e. JPEG)

Results are calculated by an module called PAQclass

Applications for PAQ8

What applications?

PAQ8 is useful even beside compressing files.

- Adaptive Text Prediction
- Text categorization
- Shape recognition
- Lossy compression (i.e. JPEG)

Results are calculated by an module called PAQclass

Adaptive Text Prediction

- PAQ8 can be used to find string x for some training string y
- Can be set to work in speech recognition and text prediction (for typing)

Text categorization

METHODOLOGY	PROTOCOL	Percent correct
extended version of Naive Bayes	80-20 TRAIN-TEST SPL	IT 86.2
(Rennie et al., 2003) SVM + error correcting output coding (Rennie 2001)	80-20 TRAIN-TEST SPL	IT 87.5
LANGUAGE MODELING (PENG ET AL. 2004)	80-20 TRAIN-TEST SPL	IT 89.23
AMDL USING RAR COMPRESSION	80-20 TRAIN-TEST SPL	90.5
MULTICLASS SVM + LINEAR KERNEL (WEINBERGER AND SAUL) (2009)	70-30 TRAIN-TEST SPL	IT 91.96
PAQclass	80-20 train-test spli	it 92.35
MULTINOMIAL NAIVE BAYES + TFIDF (KIBRIYA ET AL.) 2005)	80-20 TRAIN-TEST SPL	IT 93.65

Figure: Text categorization comparison (Graphic by Knoll & De Freitas)

Shape recognition

Figure: Shape recognition principle (Graphic by Knoll & De Freitas)

Shape recognition

METHODOLOGY	Protocol	PERCENT CORRECT
1-NN + Levenshtein edit distance Mollineda et al. 2002	LEAVE-ONE-OUT	≈ 67
I-NN + HMM-BASED DISTANCE	LEAVE-ONE-OUT	73.77
(Bicego and Trudda, 2008) 1-NN + mBm-based features	LEAVE-ONE-OUT	76.5
(BICEGO AND TRUDDA, 2008) 1-NN + APPROXIMATED CYCLIC DISTANCE	LEAVE-ONE-OUT	≈ 78
(Mollineda et al., 2002)		
1-NN + CONVERT TO TIME SERIES (WEI ET AL. 2008)	LEAVE-ONE-OUT	80.04
SVM + HMM-based entropic features (Perina et al.) 2009)	LEAVE-ONE-OUT	81.21
SVM + HMM-based nonlinear kernel (Carli et al., 2009)	50-50 TRAIN-TEST SPLIT	85.52
SVM + HMM-based Fisher Kernel	50-50 train-test split	85.8
PAQclass + convert to time series	leave-one-out	87.22

Figure: Shape recognition comparison (Graphic by Knoll & De Freitas)

Lossy compression

Figure: Picture compression comparison (Graphic by Knoll & De Freitas)

Upper-Left: uncompressed	Upper-Right: compressed by paq8
Bottom-Left: JPEG	Bottom-Right: JPEG2000

References

- Introduction to PAQ
- PAQ8L
- Applications for PAQ8
- 4 References

References

- A Machine Learning Perspective on Predictive Coding with PAQ, Byron Knoll & Nando de Freitas, 2019/08/17
- $\bullet \ \ https://stackoverflow.com/questions/41990250/what-is-cross-entropy$
- http://mattmahoney.net/
- https://www.techopedia.com/definition/33264/hidden-layer-neural-networks
- Handbook of Datacompression, 5th Edition, Springer