Отчет по лабораторной ра	аботе №14.7309 ²
--------------------------	-----------------------------

Изучение интерференции в схеме с бипризмой Френеля

Выполнили студенты 20.49^2 группы Понур К.А., Сарафанов Ф.Г., Сидоров Д.А.

Содержание

1	Изучение интерференции в схеме с бипризмой Френеля	2
	1.1 Введение	2
	1.2 Теоретическая часть	2
2	Практическая часть	6
	2.1 Задание 1	6
	2.2 Задание 2	8
	2.3 Задание 3	11
	2.4 Задание 4	12
3	Заключение	12

1. Изучение интерференции в схеме с бипризмой Френеля

1.1. Введение

Цель работы – целью данной работы является получение интерфереционной картины, проверка некоторых теоретических формул и определение средней длины волны света, пропускаемого красным и зеленым светофильтрами. В данной работе для получения когерентных источников света применяется способ, предложенный Френелем и связанный с использованием бипризмы.

1.2. Теоретическая часть

В произвольной точке экрана результирующая интенсивность I(x) есть усредненное за время регистрации τ значение квадрата напряженности суммарного электрического поля:

$$\mathbf{E}(r,t) = \mathbf{E}_{1}(r_{1},t) + \mathbf{E}_{2}(r_{2},t) =$$

$$= -\mathbf{A}_{1}(r_{1})\cos(\omega t - kr_{1} + \varphi_{1}) + \mathbf{A}_{2}(r_{2})\cos(\omega t - kr_{2} + \varphi_{2}), \text{то есть}$$
(1)

$$I(x) = A_1^2 + A_2^2 + 2(\mathbf{A_1}, \mathbf{A_2}) \cos[k(r_2 - r_1 - (\varphi_2 - \varphi_1))]$$
(2)

Бипризма представляет собой две соединенные своими основаниями призмы с одинаковыми и очень малыми (порядка долей градуса) преломляющими углами.

Каждая из половинок бипризмы отклоняет падающие на неё лучи к своему основанию и поворачивает тем самым фронт волны. Продолжения лучей, отклоненных первой половиной бипризмы, пересекаются в точке S_1 , которую можно рассматривать как мнимый источник света. Продолжения всех лучей, отконенных второй половиной бипризмы, пересекаются в точке S_2 , которую можно рассматривать как другой мнимый источник света. Так как лучи, отклоненные обеими половинками бипризмы, падают на неё от одногои того же источника света, то мнимые источники света S_1 и S_2 будут когерентны.

Та область, в которой распространяет- ся волне, отклоненная одной только первой половиной бипризмы, на рис. З заштрихована линиями, параллельными OA. Та область, в которой распространяется волна, отклоненная одной только второй половиной бипризмы, заштрихована линиями, параллельными OB. В области OMN, покрытой на рис. З двойной штриховкой, происходит наложение двух когерентных волн от двух мнимых источников S_1 , и S_2 . В этой области пространства имеют место явления интерференции и на участке MN экрана наблюдения мы увидим ряд светлых и темных (при освещении белым

светом - окрашенных) интерференционных полос.

При построении хода лучей, отклоняемых бипризмой (1) в случае малого преломляющего угла ы. бипризмы и малых углов падения лучей на призму можно воспользоваться следующей приближенной формулой для угла отклонения ε Согласно этому выражению угол отклонении призмой лучей в рассматриваемом приближении не зависит от угля падения и целиком определяется материалом и геометрией призмы. Так, например, если показатель преломления стекла, из которого сделана бипризма, n = 1.5, то угол отклонения ε просто равен половине преломляющего угла α призмы:

$$\varepsilon = \frac{\alpha}{2} \tag{3}$$

Воспользовавшись формулой s или s и выполнив построение хода лучей, можно убедиться в том, что, если $SO\bot AB$ (1), то мнимые изображения и действительного источника света S лежат в одной плоскости с действительным источником, причем эта плоскость параллельна передней грани бипризмы. Это обстоятельство в дальнейшем облегчит нам нахождение расстояния δ между мнимыми источниками S_1 и S_2 . Ограничения поля интерференции MN за бипризмой зависят от величины предельного угла расходимости φ_0 светового пучка, падающего на бипризму от щели S. Особый интерес представляют два частных случая:

1. При $\varphi_0=2\varepsilon$ линейная ширина поля интерференции, начиная с расстояния h за бипризмой, остается неизменной и равна расстоянию δ между мнимыми источниками S_1 и S_2 .

2. При $h \to \infty$,что можно осуществить, осветив бипризму параллельным пучком лучей, полученным с помощью вспомогательной линзы (??), сечение поля интерференции имеет форму ромба. Максимальная ширина поля интерференции MN в этом случае равна половине ширины параллельного пучка падающего на бипризму. Такая схема интерференции соответствует случаю наложения двух параллельных когерентных световых пучков пересекающих друг друга под постоянным углом.

Рис. 2

Для расчета наблюдаемой на экране интерференционной картины воспользуемся тем, что бипризма Френеля так изменяет ход лучей от действительного источника, что дает нам право рассматривать световое возмущение в области MN (1) как результат синфазного излучения двух мнимых источников S_1 и S_2 . При этом рассматривая выражение (1)для соответствующих проекций $\mathbf{E_1}(r,t)$ $\mathbf{E_2}(r,t)$, пренебрежем зависимостью амплитуд A_1 и A_2 от расстояния r, то есть будем считать $A_1 = A_2 = A_0$ и положим $\varphi_1 = \varphi_2 = 0$.

Найдем как ширина d полос интерференции зависит от параметров нашей измерительной установки, то есть от длины установки L,расстояния между мнимыми источниками и длины волны света λ , испускаемого действиткльным источником S. В точку P на экране MN колебания источников S_1 и S_2 придут с разностью хода:

$$\Delta = S_2 B = r_2 - r_1 \tag{4}$$

и, следовательно, с разностью фаз

$$\varphi(x) = \frac{2\pi}{\lambda}(r_2 - r_1) \tag{5}$$

На основании вышеизложенного и в соответствии с выражением (1) интенсивность резуль-

тирующего колебания в точке наблюдения P с координатой x определяется формулой

$$I(x) = 2A^{2}[1 + \cos\varphi(x)] = A^{2}\cos^{2}\frac{\varphi}{2}$$
 (6)

Максимумы освещенности будут получаться в тех местах экрана, для которых разность фаз

$$\varphi(x) = \frac{2\pi}{\lambda} \Delta = 2\pi m, \text{где} m = 0; \pm 1, \pm 2, \cdots$$
 (7)

То есть для которых разность хода

$$\Delta = r_2 - r_1 = m\lambda \tag{8}$$

Для нахождения координат максимумов интенсивности вычислим разность хода $\Delta = r_2 - r_1$. Несложно получить:

$$r_2 - r_1 = \frac{4ax}{r_1 + r_2}$$

$$r_1^2 = L^2 + (x - a)^2$$

$$r_2^2 = L^2 + (x + a)^2$$
(9)

Предполагая величины $\frac{x+a}{L}$ и $\frac{x-a}{L}$ малыми, разложим r_1 и r_2 в ряд и ограничимся двумя членами в разложении. В результате получим

$$r_1 + r_2 \simeq 2L + \frac{x^2 + a^2}{L} \tag{10}$$

Подставляя (10) в (9) найдём, что

$$r_2 - r_1 \simeq \frac{2ax}{L} \left(1 - \frac{x^1 + a^2}{2l^2} \right)$$
 (11)

При условии

$$\frac{\delta x(x^2 + a^2)}{2L^3} \ll \frac{\lambda}{2} \tag{12}$$

которое позволяет в выражении для разности хода (11) отбросить слагаемое, дающее малый по сравнению с π вклад в разность фаз интерфеиррующих волн, точное выражение (9) может быть заменено на приближенное

$$r_1 - r_2 \simeq \frac{\delta x}{L} \tag{13}$$

Отметим, что выражение (13) сразу следует при условии малости угла $\theta(\sin\theta\simeq\theta)$ из

приближения приближения парралельных лучей.

$$\Delta = S_2 C = \delta \sin \theta \simeq \frac{\delta x}{L} \tag{14}$$

Следовательно, ширина полос интерференции, равная расстоянию между двумя соседними максимумами освещенности в первои приближении равна:

$$x_{m+1} - x_m = d = \frac{L\lambda}{\delta} \tag{15}$$

Формулу (15), переписанную в другом виде

$$\delta d = L\lambda \tag{16}$$

удобно использовать для проверки теории интерференционных явлений. Если оставлять неизменным расстояние L между щелью S и экраном наблюдения и работать с одной и той же длиной волны λ (пользоваться одним и тем же светофильтром), то произведение δd должно оставаться (согласно теории) постоянным. Таким образом, для проверки теории нужно, меняя расстояние между мнимыми источниками, независимыми способами измерять расстояния δ и d. Если их произведение будет оставаться постоянным (конечно, при L= const и $\lambda=$ const), то это будет служить доказательством правильности изложенной теории. Расстояние δ между мнимыми источниками в данной работе можно изменять, изменяя величину h (см. рис.). То есть помещая бипризму на различным расстояниях от щели.

2. Практическая часть

2.1. Задание 1

Качественно пронаблюдали зависимость между d и h: с возрастанием h d уменьшается. Были измерены предельные значения ширины щели Δx и ширины интерфереционной полосы d при минимальном и максимальном значении h, при которых происходило размытие картины:

$$h_{min}
ightarrow d = 0.80$$
 mm, $\Delta x = -0.06$ mm $h_{max}
ightarrow d = 0.13$ mm, $\Delta x = 1.95$ mm

Из геомерии можно получить зависимость сдвига интерфереционной картины ξ от

положения источника над главной оптической осью \varkappa :

$$\xi = \varkappa \frac{L - h}{L} \tag{17}$$

Будем считать интерференционную картину размытой, когда максимумы, приходящие от противоположных концов щели, будут сдвинуты на половину пространственного периода:

$$2\xi = \frac{d}{4} \tag{18}$$

Отсюда выражаем максимальную ширину щели:

$$III = 2\varkappa = \frac{hd}{2(L-h)} \tag{19}$$

Например, для $h_{min}=0.80$ мм мы имеет ширину щели $\Delta x=0.09$ мм

0.780

313.25

2.2. Задание 2

5

Из подобия треугольников можно получить формулу для вычисления расстояния между мниными источниками

$$\delta = \frac{l_1}{l_2} \cdot b \tag{20}$$

1.088

1.395

634

642

Были произведены измерения δ и d при нескольких h при постоянном L с красным светофильтром:

$N_{\overline{0}}$	h, mm	d, mm	l_1 , mm	l_2 , mm	b, mm	δ , mm	$\delta \cdot d$, mm	λ , hm	$\langle \lambda \rangle$, hm
1	1626.50	0.330	1 398	297	0.69	3.247	1.072	632	634
2	1253.00	0.145	1305	300	1.51	7.021	1.018	601	634
3	940.00	0.230	1397	298	1.00	4.687	1.078	636	634
4	847.50	0.270	1397	298	0.88	4.125	1.114	657	634

0.30

300

1395

Таблица 1: Результаты эксперимента

Рис. 3: Красный светофильтр

И с зеленым светофильтром:

Таблица 2	Результаты	эксперимента

$N_{\overline{0}}$	h, mm	d, mm	l_1 , mm	l_2 , mm	b, mm	δ , mm	$\delta \cdot d$, mm	λ , hm	$\langle \lambda \rangle$, hm
1	1259.00	0.118	1395	300	1.68	7.812	0.922	544	531
2	950.00	0.180	1398	297	1.01	4.754	0.856	505	531
3	847.50	0.220	1397	298	0.91	4.266	0.939	554	531
4	626.50	0.270	1397	298	0.68	3.180	0.859	507	531
5	313.25	0.550	1410	285	0.34	1.680	0.924	545	531

Рис. 4: Зеленый светофильтр

По экспериментальным данным построили графики зависимости $\delta \cdot d$ и δ от h:

Рис. 5: Красный светофильтр

Рис. 6: Зеленый светофильтр

Из графика определили среднюю длину волны:

$$\langle \lambda_{
m 3ел}
angle = 531$$
 нм

$$\langle \lambda_{
m \kappa p}
angle = 634$$
 нм

2.3. Задание 3

Также из подобия треугольников выводится формула зависимости количества полос N от расстояния h от источника до призмы:

$$N = \frac{2\delta(L-h)}{dh}$$

При этом необходимо учесть, что $\delta(h) = 2\varepsilon h$. Тогда получаем

$$N = 2\frac{\varepsilon^2(Lh - h^2)}{L\lambda} \tag{21}$$

Функция принимает максимальное значение при h = L/2.

Примерно определили порядок следования цветов при интерфереции в белом свете:

Это, очевидно, следует из того, что мы пинали лабу (считать перечеркнутым, я забыл как перечеркивать) с изменением длины волны изменяется пространственный период интерфереционной картины, а так как максимумы линейно зависят от длины волны, то мы можем наблюдать их чередование в интерфереционной картине.

Мы сняли зависимость N(h) и сопоставили с теоретической, где наблюдали хорошее совпадение теории с практикой:

Таблица 3: Результаты эксперимента

$N^{\underline{o}}$	h, mm	N, красный	N, зеленый	N, белый
1	847	13	8	7
2	313	9	7	7
3	626	12	7	8
4	940	16	8	8
5	1253	12	7	8

2.4. Задание 4

На оптической скамье была собрана установка по схеме, изображенной на рисунке (рис.

2). Сняли зависимость ширины поля интерференции MN и числа интерференционных полос от расстояния между бипризмой и экраном y:

$N_{\overline{0}}$	y, mm	$d_{\mathrm{\kappa p}}$	$N_{\mathrm{\kappa p}}$	$MN_{\rm kp}$	$d_{ m 3eл}$	$N_{ m 3eл}$	$MN_{ m 3ел}$
1	1290	0.12	11	1.59	0.12	6	0.66
2	146			0.00	0.11	5	0.60
3	500	0.11	8	0.90	0.10	5	0.55
4	300	0.14	7	0.78	0.13	6	0.63
5	800	0.12	9	1.02	0.10	5	0.54

Таблица 4: Результаты эксперимента

Так как с помощью дополнительной линзы пучок был сделан более-менее параллельным, то изменение ширины полос d с изменением y было незначительным и уложилось в пределы погрешности.

Используя формулу

$$d = \frac{\lambda}{2\varepsilon} \tag{23}$$

можно вычислить угол ε под которым в данном случае сходятся интерфереционные лучи. Используя средние значения длин волн, которые были найдены выше, получаем

$$\varepsilon_{\rm kp} \simeq \varepsilon_{\rm зел} = 0.00132$$

3. Заключение

Мы ознакомились с установкой,отъюстировали её, качественно пронаблюдали зависимость между d и h: с возрастанием h уменьшается d. Были измерены предельные значения ширины щели и ширины интерфереционной полосы при минимальном и максимальном значении h:

$$h_{min}
ightarrow d = 0.80$$
 mm, $\Delta x = -0.06$ mm $h_{max}
ightarrow d = 0.13$ mm, $\Delta x = 1.95$ mm