date: monday. january 29, 2024
Class Equations: Applications and Worked Out Examples
Last time: G is a G-set by conjugation G×G->G
(a,h) -> gha' <- conjugate of h C(h)={geG gha'=h <=> gh=ha's On={aha' qeG}
$C(n) = 2geGlgng = n < = > gn = ngs$ $O_n = 2ghg' geGlg$ $ O_n = 1 < = > O_n = 2h3 < = > ghg' = h for all geG$ $< = > C(n) = G$ $Z(G) = 2geGlgh = hg for all heG3$
$Z(G) = \{geG gh = hg \text{ for all heG}\}$ = $O_{h_1} \cup O_{h_2} \cup \cdots \cup O_{h_s}$ with $ O_{h_i} = 1$
(Class Equation) Let h,,h, be a representatives of conjugacy classes with $ O_{n_i} \ge 2$. Then,
$ G = Z(G) + O_{n_1} + \dots + O_{n_s} $
$= Z(G) + [G:C(h_i)] + \cdots + [G:C(h_s)]$
class equation
Theorem: If $ G = p^r$, then $ Z(G) \ge p$.
Proof By the class equation,
$ Z(G) = G - [G \cdot C(h_s)] - \cdots - [G \cdot C(h_s)]$
$\begin{split} Z(G) = G - [G:C(h_i)] - \cdots - [G:C(h_s)] \\ \text{Since } [G:C(h_i)] = \frac{ G }{ C(h_i) } & \ge 2. \text{ Since } G = p^r, \text{ this means } C(h_i) = p^{r-ni}. \text{ So } \\ [G:C(h_i)] = p^{ni} \text{ with } n_i \ge 1. \text{ (Note, we must have } n_i \ge 1, \text{ since } \\ [G:C(h_i)] \ge 2 \ge p^s \text{)}. \text{ Thus, every term on RHS is divisible by p. So } \\ p Z(G) . \end{split}$
[G:C(h,)] ≥ 2 ≥ p°). Thus, every term on KHS is divisible by p. So p[1Z(G)].

Theorem: If $|G| = p^2$, then G is abelian $(\langle = \rangle G \simeq \mathbb{Z}_{p^2} \text{ or } \simeq \mathbb{Z}_p \times \mathbb{Z}_p)$ Proof It is enough to show that $|Z(G)|=p^2=>Z(G)=G$. By previous result, $|Z(G)|=p^2$ or p. So, suppose |Z(G)|=p. Note |Z(G)|=p. Note |Z(G)|=p. Note |Z(G)|=p. Take |Z(G)|=p. So, |Z(G)|=p. Then |Z(G)|=p. So, |Z(G)|=p. $\langle hZ(G) \rangle = \frac{G}{2(G)}$ For any geG, gZ(G) e(hZ(G)). Thus, exists m such that $gZ(G)=(hZ(G))^m=h^mZ(G).$ Since $g \in gZ(G)$, there exists $x \in Z(G)$ such that $g = h^m x$. Take $g_1, g_2 \in G$. So there exists m_1, m_2 and $x_1, x_2 \in Z(G)$ such that $g_1 = h^m x_1$ and $g_2 = h^m x_2$. Then, $Q_{1}Q_{2} = h_{X_{1}}^{m_{1}} h_{X_{2}}^{m_{2}} \chi_{X_{2}}$ $= h_{X_{1}}^{m_{1}} h_{X_{2}}^{m_{2}} \chi_{X_{2}}$ $= h_{X_{1}}^{m_{1}} \chi_{X_{2}}^{m_{2}} \chi_{X_{2}}$ $= \int_{0}^{m_{2}} \int_{0}^{m_{1}} \chi_{1} \chi_{2} \chi_{2} = \int_{0}^{m_{2}} \chi_{2} \int_{0}^{m_{1}} \chi_{2} \chi_{2} = \int_{0}^{m_{2}} \chi_{2} \int_{0}^{m_{1}} \chi_{2} \int_{0}^{m_{2}} \chi_{2} \int_{0}^{m_{1}} \chi_{2} \int_{0}^{m_{2}} \chi_{2} \int_{0}^{m_{1}} \chi_{2} \int_{0}^{m_{2}} \chi_{2} \int_{0}^{m_{1}} \chi_{2} \int_{0}^$ =929... So, G is abelian. (Class Project) Determine the class equation Q_8 (quaternions)

$$1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad I = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, \quad J = \begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix}, \quad K = \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix} \quad \text{(here, } i^2 = -1\text{)}$$

