数学

第一章函数极限和连续

1.函数

- y=f(x)
 - o x是自变量 x 的范围叫定义域
 - 。 y是因变量 y 的范围叫做值域
 - o f是对应法则
- $\frac{b}{a}$ 、 $\frac{x}{y}$ 、 $\frac{1}{x+1}$ ** $\sqrt[Hit]{$ 被开方数

常数函数

• y=c(常数) 偶函数 关于y轴对称

基本初等函数

幂函数

幂函数 y=x^μ (μ!= 0)

y=x¹=x 奇函数

注意 奇函数特点关于圆点对称

• y=kx+b (一条直线) 例子 y=2-x 如何判断是直线 x是一次幂

● y=x² 偶函数

注意偶函数特点关于y轴对称

y=x⁴ 偶函数

- y=ax² +bx +c(抛物线)
 - a>0 开口向上
 - a<0 开口向下
- y=-x² 偶函数

● y=x³ 奇函数

• $y=x^{-1} = \frac{1}{x}$ 奇函数 定义域 $(-\infty,0)\cup (0, +\infty)$

• y= \sqrt{x} =x^ $\frac{1}{2}$ ^ 非奇非偶 定义域 [0,+ ∞)

幂函数的性质

1.
$$(x^p)^q = x^{p*q}$$

2.
$$X^p * X^q = x^{p+q}$$

3.
$$x^{q} \setminus x^{p} = x^{p-q}$$

例子
$$x^3 \setminus x^2 = x$$

4.
$$x^p \setminus 1 = x^{-p}$$

例子
$$x \setminus 1 = x^{-1}$$
 (反比例函数) $x^3 \setminus 1 = x^{-3}$

5.
$$m\sqrt{-x^n} = x^{m \cdot n}$$

例子
$$2\sqrt{-x^1} = \sqrt{-x} = x^{2 \setminus 1}$$
 $3\sqrt{-x} = x^{3 \setminus 1}$ $4\sqrt{-x^3} = x^{4 \setminus 3}$

指数函数

• y= a \times (a>0 \perp , a!= 1) \times (- ∞ ,+ ∞) \times (0,+ ∞)

1. a⁰ =1 a必须大于0

2. a>1 y=2^x y=3^x

3. 0<a<1 y=($\frac{1}{2}$)^X y=($\frac{1}{3}$)^X

4. y=e^X e=2.718281... >1

5. $y=e^{-x} = (e^{-1})^x = (e\1)^x e\1<1$ 和 $y=e^x$ 对称

指数函数性质

1.
$$(e^{x})^{y} = e^{xy}$$

2.
$$e^{x1} * e^{x2} = e^{x1+x2}$$

3.
$$e^{x1} \setminus e^{x2} = e^{x1-x2}$$

5.
$$m\sqrt{-}(e^x)^n = m\sqrt{-}e^{xn} = e^{m/xn}$$

6.
$$(a*b)^X = a^X * b^X$$

7. 例题

$$(e^x)^2 = e^{2x} != e^{x^2}$$

o
$$e^{3x} * e^{2x} = e^{5x}$$

o
$$e^{3x} - e^{2x} = e^{2x} (e^x - 1)$$
 ! = e^x

o
$$e^{3x} \setminus e^{2x} = e^x$$

o
$$3\sqrt{-}e^{2x} = e^{3\sqrt{2x}}$$

$$\circ 2^{x} * e^{x} = (2e)^{x}$$

对数函数

- y=log $^{x}_{a}$ x>0 x是对数里面的真数 a >0 a != 1 a是对数里面的底数 定义域 $(0, +\infty)$
- a>1

• 0<a<1

- $y = log_a^1 = 0$ $y = log_a^a = 1$
- a=e 时 y=log^X_e =ln^X

• a=10 时 y=log^X₁₀ =lg^X

对数性质

1.
$$\log^{x}_{a} + \log^{y}_{a} = \log^{xy}_{a}$$
 $\ln^{x} + \ln^{y} = \ln^{xy}$

$$ln^{x} + ln^{y} = ln^{xy}$$

$$2 \log^{X} a - \log^{y} a = \log^{y/X} a$$

$$\ln^x - \ln^y = \ln^{y/x}$$

2.
$$\log^{x} a - \log^{y} a = \log^{y/x} a$$
 $\ln^{x} - \ln^{y} = \ln^{y/x}$
3. $\log^{x} a = m \log^{x} a$ $\ln^{x} = m \ln^{x} X$

$$l_n x'' = m l_n x$$

4. 对数恒等式 e^{lnA} =A

5.
$$\log^b a = \frac{\log b}{\log a}$$

$$5. \log^{b} a = \frac{\log^{b} b}{\log^{a} a} \qquad \log^{3} 2 = \frac{\ln^{3}}{\ln^{2}} = \frac{\log^{4} 3}{\log^{4} 2}$$

三角函数

1. 正弦函数 y=sinx 周期 $t=2\pi$ 有界函数 奇函数 最大1 最小-1

2. 余弦函数 y=cosx 周期 t= 2π 有界函数 偶函数 最大1 最小-1

cosπ=-1 必考

cos0=1 必考

3. 正切函数 y=tanx = $\frac{sinx}{cosx}$ 周期 t= π 奇函数

4. 余切函数 y=cotx= $\frac{1}{tanx}$ = $\frac{cosx}{sinx}$ 周期 t= π 奇函数

- 5. 正割函数 y=secx= $\frac{1}{cosx}$ 偶函数
- 6. 余割函数 y=cscx= $\frac{1}{sinx}$ 奇函数

记忆技巧

- $\sin^2 x + \cos^2 x = 1 \tan^2 x + 1 = \sec x^2 + 1 + \cot^2 x = \csc^2 x$ 三角形上顶点的平方等于下顶点的平方
- $tanx = \frac{sinx}{cosx}$ $cotx = \frac{cosx}{sinx}$ 任意一个顶点等于顺时针的两个相邻顶点的商
- $secx = \frac{1}{cosx}$ $tanx = \frac{1}{cotx}$ $cscx = \frac{1}{sinx}$ 对角线互为倒数

二倍角公式:

- sin2x=xsinx * cosx
- $\cos 2x = \cos^2 x \sin^2 x = 2\cos^2 1 = 1 2\sin^2 x$

降幂公式

- $\sin^2 x = \frac{1 \cos 2x}{2}$ $\cos^2 x = \frac{1 + \cos 2x}{2}$

三角函数值

角α	0°	30°	45°	60∘	90°	120°	135°	150°	180∘
弧度制	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π
sinx	0	1/2	√2/2	√3/2	1	√3/2	√2/2	1/2	0
COSX	1	√3/2	√2/2	1/2	0	-1/2	-√2/2	-√3/2	-1
tanx	0	√3/3	1	√3	\	-√3	-1	-√3/3	0
cotx	\	√3	1	√3/3	0	-√3/3	-1	-√3	\
$cotx = \frac{1}{tanx}$									
$Secx = \frac{1}{cosx}$									
$Secx = \frac{1}{sinx}$									
◆									

反三角函数

1. 反正弦函数 y=arcsinx 奇函数 有界函数 定义域 x [-1,1] y[- $\frac{\pi}{2}$, $\frac{\pi}{2}$]

2. 反余弦 y=arccosx 定义域 x [-1,1] y[0,π]

3. 反正切函数 y=arctanx 奇函数 有界函数 定义域 x $[-\infty,\infty]$ y $[-\frac{\pi}{2},\frac{\pi}{2}]$

4. 反余切函数 y=arccotx 有界函数 定义域 x $[-\infty,\infty]$ y $[0,\pi]$

图像可能有差距

5. 考试题型

- 1. $\sin \frac{\pi}{6} = \frac{1}{2}$ $\arcsin \frac{1}{2} = \frac{\pi}{6}$ 2. $\tan \frac{\pi}{4} = 1$ $\arctan 1 = \frac{\pi}{4}$

复合函数

- 例 y=(x²+3)³ 由u=x²+3 和 y=u³ 复合
- 技巧符合拆分分单独的初等函数
- 例题
 - 1. y=sin(x+1) 由u=x+1 和 y=sinu 复合
 - 2. $y=log^{2x+2}$ 3 由u=^2x+2 和 y= log^u 3 复合

- 3. y=arssinx² 由u=x² 和 y=arssinu 复合
- 4. y=cos²x 由u=cosx 和 y=y=u² 复合
- 5. y=ln²x 由u=lnx 和 y=u² 复合

初等函数

• 初等函数:由基本初等函数及常数,经过有限次的加,减,乘,除及有限次的复合运算所构成,并能用一个式子表示的函数

分段函数

$$\bullet \quad y = \begin{cases} x & x > 0 \\ 1 - x & x <= 0 \end{cases}$$

考点一求函数定义域

1. 求初等函数及分段函数的定义域

1.
$$\frac{1}{\Box}$$
 口 !=0 例 $\frac{1}{x}$!=0

3.
$$2n+1\sqrt{-}$$
口 口 $[-\infty,\infty]$ 例 $y=3\sqrt{-}x$ $[-\infty,\infty]$

4.
$$y = log^{\square}a$$
 口 > 0 或者 $y = ln^x x > 0$ $y = lg^x x > 0$

5. arcsin口 或者 arccos口 口 [-1,1] 例子 arcsinx [-1,1] arccosx [-1,1]

6. 例子

$$y=\sqrt{2}-x \qquad 2-x>=0 \ -> x<=2 \ -> \infty$$

$$y=\ln(x-3) \qquad x-3>0 \ -> x>3 \ -> \infty$$

$$y=\frac{1}{x+1} \qquad x+1 \ !=0 \ -> x!=-1 \ -> (-\infty,-1)U(-1,\infty)$$

$$y=\frac{\sqrt{-64-x^2}}{\ln(x-5)} \begin{cases} 6^{\frac{1}{2}}-\chi^2 \neq 0 \Rightarrow \chi^2 \leq \frac{1}{2} \\ \chi^2 + \gamma \Rightarrow 0 \Rightarrow \chi^2 \leq \frac{1}{2} \end{cases} \qquad x>1 \qquad x$$

注意In算法是 In¹ =0 所以 x-5!=1 大于取两边小于取中间

$$y = \sqrt{16-x^2 + \ln(x-2)} \begin{cases} 16-x^2 + \ln(x-2) \\ 16-x^2 > 0 \Rightarrow x^2 \le 16 \end{cases}$$

$$y = \sqrt{16-x^2 + \ln(x-2)} \begin{cases} 16-x^2 + \ln(x-2) \\ 16-x^2 > 0 \Rightarrow x^2 \le 16 \end{cases}$$

$$(2, 4]$$

$$y = \frac{\arcsin(\frac{x-1}{3})}{\sqrt[3]{x-2}} \quad \begin{cases} -1 \leqslant \frac{\cancel{x}-1}{3} \leqslant 1 \implies -3 \leqslant \cancel{x}-1 \leqslant 3 \\ -2 \leqslant \cancel{x} \leqslant \cancel{4} \end{cases} \xrightarrow[-2, 2]{0} \quad (2.4)$$

$$\mathbf{y} = egin{cases} x & x <= 0 \ x+1 & 0 < x < 2 \ x^2 & 2 <= x <= 5 \end{cases}$$

分段函数求定义域 就是把所有加一起

7. 真题

4. 2020.11
$$y = \frac{\ln(x+1)}{\sqrt{\frac{1}{5}-x}}$$
 $\begin{cases} x \to 70 & x > 1 \\ \frac{1}{5}-x > 0 & x < 1 \end{cases}$ $\begin{cases} x \to 70 & x > 6 \\ \frac{1}{5}-x > 0 & x < 1 \end{cases}$ $\begin{cases} x \to 70 & x > 6 \\ \frac{1}{5}-x > 0 & x < 1 \end{cases}$ $\begin{cases} x \to 70 & x > 6 \\ \frac{1}{5}-x > 0 & x < 1 \end{cases}$ $\begin{cases} x \to 70 & x > 6 \\ \frac{1}{5}-x > 0 & x < 1 \end{cases}$ $\begin{cases} x \to 70 & x < 1 \end{cases}$ $\begin{cases} x \to 70 & x < 1 \end{cases}$ $\begin{cases} x \to 70 & x < 1 \end{cases}$ $\begin{cases} x \to 70 & x < 1 \end{cases}$ $\begin{cases} x \to 70 & x < 1 \end{cases}$ $\begin{cases} x \to 70 & x < 1 \end{cases}$ $\begin{cases} x \to 70 & x < 1 \end{cases}$ $\begin{cases} x \to 70 & x < 1 \end{cases}$ $\begin{cases} x \to 70 & x < 1 \end{cases}$ $\begin{cases} x \to 70 & x < 1 \end{cases}$ $\begin{cases} x \to 70 & x < 1 \end{cases}$ $\begin{cases} x \to 70 & x < 1 \end{cases}$ $\begin{cases} x \to 70 & x < 1 \end{cases}$ $\begin{cases} x \to 70 & x < 1 \end{cases}$ $\begin{cases} x \to 70 & x < 1 \end{cases}$ $\begin{cases} x \to 70 & x < 1 \end{cases}$ $\begin{cases} x \to 70 & x < 1 \end{cases}$ $\begin{cases} x \to 70 & x < 1 \end{cases}$ $\begin{cases} x \to 70 & x < 1 \end{cases}$ $\begin{cases} x \to 70 & x < 1 \end{cases}$ $\begin{cases} x \to 70 & x < 1 \end{cases}$ $\begin{cases} x \to 70 & x < 1 \end{cases}$ $\begin{cases} x \to 70 & x < 1 \end{cases}$ $\begin{cases} x \to 70 & x < 1 \end{cases}$ $\begin{cases} x \to 70 & x < 1 \end{cases}$ $\begin{cases} x \to 70 & x < 1 \end{cases}$ $\begin{cases} x \to 70 & x < 1 \end{cases}$ $\begin{cases} x \to 70 & x < 1 \end{cases}$ $\begin{cases} x \to 70 & x < 1 \end{cases}$ $\begin{cases} x \to 70 & x < 1 \end{cases}$ $\begin{cases} x \to 70 & x < 1 \end{cases}$ $\begin{cases} x \to 70 & x < 1 \end{cases}$ $\begin{cases} x \to 70 & x < 1 \end{cases}$ $\begin{cases} x \to 70 & x < 1 \end{cases}$ $\begin{cases} x \to 70 & x < 1 \end{cases}$ $\begin{cases} x \to 70 & x < 1 \end{cases}$ $\begin{cases} x \to 70 & x < 1 \end{cases}$ $\begin{cases} x \to 70 & x < 1 \end{cases}$ $\begin{cases} x \to 70 & x < 1 \end{cases}$ $\begin{cases} x \to 70 & x < 1 \end{cases}$ $\begin{cases} x \to 70 & x < 1 \end{cases}$ $\begin{cases} x \to 70 & x < 1 \end{cases}$ $\begin{cases} x \to 70 & x < 1 \end{cases}$ $\begin{cases} x \to 70 & x < 1 \end{cases}$ $\begin{cases} x \to 70 & x < 1 \end{cases}$ $\begin{cases} x \to 70 & x < 1 \end{cases}$ $\begin{cases} x \to 70 & x < 1 \end{cases}$ $\begin{cases} x \to 70 & x < 1 \end{cases}$ $\begin{cases} x \to 70 & x < 1 \end{cases}$ $\begin{cases} x \to 70 & x < 1 \end{cases}$ $\begin{cases} x \to 70 & x < 1 \end{cases}$ $\begin{cases} x \to 70 & x < 1 \end{cases}$ $\begin{cases} x \to 70 & x < 1 \end{cases}$ $\begin{cases} x \to 70 & x < 1 \end{cases}$ $\begin{cases} x \to 70 & x < 1 \end{cases}$ $\begin{cases} x \to 70 & x < 1 \end{cases}$ $\begin{cases} x \to 70 & x < 1 \end{cases}$ $\begin{cases} x \to 70 & x < 1 \end{cases}$ $\begin{cases} x \to 70 & x < 1 \end{cases}$ $\begin{cases} x \to 70 & x < 1 \end{cases}$ $\begin{cases} x \to 70 & x < 1 \end{cases}$ $\begin{cases} x \to 70 & x < 1 \end{cases}$ $\begin{cases} x \to 70 & x < 1 \end{cases}$ $\begin{cases} x \to 70 & x < 1 \end{cases}$ $\begin{cases} x \to 70 & x < 1 \end{cases}$ $\begin{cases} x \to 70 & x < 1 \end{cases}$ $\begin{cases} x \to 70 & x < 1 \end{cases}$ $\begin{cases} x \to 70 & x < 1 \end{cases}$ $\begin{cases} x \to 70 & x < 1 \end{cases}$ $\begin{cases} x \to 70 & x < 1 \end{cases}$ $\begin{cases} x \to 70 & x < 1 \end{cases}$ $\begin{cases} x \to 70 & x < 1 \end{cases}$ $\begin{cases} x \to 70 & x < 1 \end{cases}$ $\begin{cases} x \to 70 & x < 1 \end{cases}$ $\begin{cases} x \to 70 & x < 1 \end{cases}$ $\begin{cases} x \to 70 & x < 1 \end{cases}$ $\begin{cases} x \to 70 & x < 1 \end{cases}$ $\begin{cases} x \to 70 & x < 1 \end{cases}$ $\begin{cases} x \to 70 & x < 1 \end{cases}$ $\begin{cases} x \to 70 & x < 1 \end{cases}$ $\begin{cases} x \to 70 & x < 1 \end{cases}$ $\begin{cases} x \to 70 & x < 1 \end{cases}$ $\begin{cases} x \to 70 & x < 1 \end{cases}$ $\begin{cases} x \to 70 & x < 1 \end{cases}$ $\begin{cases} x \to 70 & x <$

7. 第6题 分段函数取并集