Examen de recuperación de SIN: Test del bloque 2 (1.75 puntos)

ETSINF, Universitat Politècnica de València, 24 de enero de 2025

Grupo, apellidos y nombre: 2,

Marca cada recuadro con una única opción. Puntuación: $\max(0, (\text{aciertos} - \text{errores}/3) \cdot 1, 75/6)$.

1 Dada la siguiente tabla de probabilidades de las variables de interés:

	$P(A=0 \mid B, C)$				P(B, C)			
В	0	0	1	1	0	0	1	1
\mathbf{C}	0	1	0	1	0	1	0	1
	0.049	0.431	0.022	0.842	0.038	0.292	0.462	0.208

¿Cuál es el valor de $P(A=1,B=1\mid C=1)$?

A)
$$P(A = 1, B = 1 \mid C = 1) \le 0.25$$

B)
$$0.25 < P(A = 1, B = 1 \mid C = 1) \le 0.50$$

C)
$$0.50 < P(A = 1, B = 1 \mid C = 1) \le 0.75$$

D)
$$0.75 < P(A = 1, B = 1 \mid C = 1) \le 1.00$$

- 2 Sea un problema de clasificación en cuatro clases para datos del tipo $\mathbf{x} = (x_1, x_2)^t \in \{0, 1\}^2$, con las distribuciones de probabilidad de la tabla. Indica en qué intervalo se halla el error de Bayes, ε^* :
 - A) $\varepsilon^* < 0.40$.
 - B) $0.40 \le \varepsilon^* < 0.45$.
 - C) $0.45 \le \varepsilon^* < 0.50$.
 - D) $0.50 \le \varepsilon^*$.

	x	L			
x_1	x_2	c=1	c=2	c=3	$P(\mathbf{x})$
0	0	0.3	0.3	0.1	0.2
0	1	0.1	0.2	0.2	0.2
1	0	0.3	0.1	0.3	0.1
1	1	0.1	0.2	0.2	0.5

3 Sea \mathbf{x} un objeto a clasificar en una clase de C posibles. Indica cuál de los siguientes clasificadores es de error mínimo (o escoge la última opción si los tres son de error mínimo):

A)
$$c(\mathbf{x}) = \underset{c}{\operatorname{arg max}} \log p(c \mid \mathbf{x}) + \log p(\mathbf{x})$$

B)
$$c(\mathbf{x}) = \underset{c=1,...,C}{\operatorname{arg max}} \log p(c \mid \mathbf{x}) - \log p(\mathbf{x})$$

C)
$$c(\mathbf{x}) = \underset{c=1,...,C}{\operatorname{arg max}} \frac{\log p(c|\mathbf{x})}{\log p(\mathbf{x})}$$

D) Los tres clasificadores anteriores son de error mínimo.

- Supóngase que estamos aplicando el algoritmo Perceptrón, a un conjunto de 3 muestras bidimensionales de aprendizaje para un problema de 2 clases. Tras procesar las primeras 2 muestras se han obtenido los vectores de pesos $\mathbf{w}_1 = (0, -4, 1)^t$, $\mathbf{w}_2 = (0, 4, -1)^t$. A continuación, se procesa la muestra ($\mathbf{x}_3 = (1, 5), c_3 = 1$), ¿cuál de los siguientes valores de margen b es el mínimo necesario para que se actualicen los pesos con esta muestra?
 - A) 0.0
 - B) 0.1
 - C) 1.0
 - D) 10.0
- 5 Dado el clasificador en dos clases definido por su frontera y regiones de decisión de la figura de la derecha, ¿cuál de los siguientes vectores de pesos (en notación homogénea) define un clasificador **no** equivalente al dado?

- A) $\mathbf{w}_1 = (0, -1, 0)^t$ y $\mathbf{w}_2 = (0, 0, -1)^t$.
- B) $\mathbf{w}_1 = (0, 0, 1)^t$ $\mathbf{w}_2 = (0, 1, 0)^t$.
- C) $\mathbf{w}_1 = (0, 1, 0)^t$ $\mathbf{y} \quad \mathbf{w}_2 = (0, 0, 1)^t$.
- D) Todos los vectores de pesos anteriores definen clasificadores no equivalentes al dado.
- $6 \ \square$ Dada la figura siguiente que muestra un conjunto de 8 puntos bidimensionales:

¿Cuál es el número de clústers que minimiza la suma de errores cuadráticos (SEC) de este conjunto?

- A) 1
- B) 4
- C) 5
- D) 8

Examen de recuperación de SIN: Problema del bloque 2 (2 puntos)

ETSINF, Universitat Politècnica de València, 24 de enero de 2025

Grupo, apellidos y nombre: 2,

Problema sobre regresión logística

La siguiente tabla presenta por filas un conjunto de 2 muestras de entrenamiento de 2 dimensiones procedentes de 2 clases:

$$\begin{array}{c|ccccc} n & x_{n1} & x_{n2} & c_n \\ \hline 1 & 0 & 0 & 1 \\ 2 & 1 & 1 & 2 \\ \end{array}$$

Adicionalmente, la siguiente tabla representa una matriz de pesos iniciales con los pesos de cada clase dispuestos por columnas:

\mathbf{w}_1	\mathbf{w}_2
0.	0.
-0.25	0.25
-0.25	0.25

Se pide:

- 1. (0.5 puntos) Calcula el vector de logits asociado a cada muestra de entrenamiento.
- 2. (0.25 puntos) Aplica la función softmax al vector de logits de cada muestra de entrenamiento.
- 3. (0.25 puntos) Clasifica todas las muestras de entrenamiento. En caso de empate, elige cualquier clase.
- 4. (0.5 puntos) Calcula el gradiente de la función NLL en el punto de la matriz de pesos iniciales.
- 5. (0.5 puntos) Actualiza la matriz de pesos iniciales aplicando descenso por gradiente con factor de aprendizaje $\eta = 1.0$.