MA2001

AY25/26 Sem 1

1. Linear Systems

Linear Systems and Their Solutions

• Linear system of m linear equations in n variables $x_1, ..., x_n$:

$$a_{11}x_1+\cdots+a_{1n}x_n=b_1$$

$$a_{m1}x_1+\cdots+a_{mn}x_n=b_m$$

- $x_1 = s_1, ..., x_n = s_n$ is a **solution** to the system if $x_1 = s_1, ..., x_n = s_n$ is a solution to every equation in the system The set of all solutions to the system is the **solution set** An expression that gives the entire solution set is a **general solution**
- A linear system is consistent if it has at least one solution, inconsistent if it has none
- o no solution (consistent)
- o unique solution (consistent)
- o infinitely many solutions (consistent)

Elementary Row Operations

• Augmented matrix of (1) is

$$\left(\begin{array}{ccc|c} a_{11} & \cdots & a_{1n} & b_1 \\ \vdots & & \vdots & \vdots \\ a_{m1} & \cdots & a_{mn} & b_m \end{array}\right).$$

- Elementary row operations (EROs):
 - 1. Multiply a row by non-zero constant (kR_i)
 - 2. Swap two rows $(R_i \leftrightarrow R_i)$
 - 3. Add a multiple of one row to another row $(R_i + cR_i)$
- Two augmented matrices are row equivalent if one can be obtained from the other by a series of EROs.
- Thm If augmented matrices of two systems of linear equations are row equivalent, then the two systems have the same set of solutions.

Remark. Converse is not true: two linear systems have different # of equations

Row-Echelon Form

- Row-echelon form (REF)
 - 1. Zero rows are at the bottom of the matrix.
 - For any two successive non-zero rows, leading entry of lower row occurs further to the right than higher row.
- Pivot point: leading entry of non-zero row

Pivot column: column contains a pivot point

- Reduced row-echelon form (RREF)
 - 1. The leading entry of every non-zero row is 1.
 - 2. In each pivot column, except the pivot point, all other entries are zero.

Gaussian Elimination

- Gaussian elimination: augmented matrix \rightarrow REF
 - 1. Find the leftmost non-zero column.
- 2. Check the top entry of the column. If it is 0, make it non-zero by swapping rows.
- 3. To rows underneath, add a multiple of the top row to make the rest of the column 0.
- 4. Cover the top row and repeat until done.
- Gauss–Jordan elimination: REF → RREF
 - 5. Multiply rows by constants to make all leading entries 1
 - Starting from the last non-zero row and working upwards, add multiples of it to rows above to make the rest of the pivot column 0.
- Consistency
- No solution: rightmost column is pivot column (leading entry occurs at the last column)
- o Unique solution: every column on the left is a pivot column
- Infinitely many solutions: at least one column on the left is not pivot column

No. of parameters = no. of non-pivot columns on the left

• Use a **branch diagram** to organise cases (for the values of unknowns) systematically.

Homogeneous Linear Systems

• A linear system (1) is **homogeneous** if $b_1 = \cdots = b_n = 0$:

$$a_{11}x_1 + \dots + a_{1n}x_n = 0$$

$$\vdots$$

$$a_{m1}x_1 + \dots + a_{mn}x_n = 0$$

- Trivial solution $x_1 = 0, ..., x_n = 0$ is a solution to any homogeneous system, so homogeneous system must be consistent:
- o only the trivial solution, or
- $\circ\,$ infinitely many solutions in addition to the trivial solution

Homogeneous system with more unknowns than equations has infinitely many solutions.

2. Matrices

Introduction to Matrices

- Row matrix: matrix with only one row

 Column matrix: matrix with only one column
- Square matrix: matrix with the same number of rows and columns. An $n \times n$ square matrix is of **order** n.
- The **diagonal** of square matrix $A = (a_{ij})_{n \times n}$ is the sequence of entries a_{11}, \ldots, a_{nn} .

$$a_{ij}$$
 is a
$$\begin{cases} \text{diagonal entry} & (i=j) \\ \text{non-diagonal entry} & (i \neq j) \end{cases}$$

Diagonal matrix: all non-diagonal entries are 0

- Scalar matrix: diagonal matrix with all equal diagonal entries
- Identity matrix I: scalar matrix with all diagonal entries 1
- Zero matrix 0: matrix with all entries 0
- Symmetric matrix: square matrix with $a_{ij} = a_{ji}$ for all i, j (symmetric wrt diagonal)
- **Upper-triangular matrix**: square matrix where if $a_{ij} = 0$ whenever i > j.

Lower-triangular matrix: square matrix where $a_{ij} = 0$ whenever i < j.

Triangular matrix: upper/lower-triangular

Matrix Operations

Two matrices are equal if 1. same size 2. corresponding entries are equal

Addition: $(a_{ij}) + (b_{ij}) = (a_{ij} + b_{ij})$ **Scalar multiplication**: $c(a_{ij}) = (ca_{ij})$

• Let $A = (a_{ij})_{m \times p}$, $B = (b_{ij})_{p \times n}$. The **product** AB is the $m \times n$ matrix whose (i, j)-entry is

$$\sum_{k=1}^{p} a_{ik} b_{kj} = a_{i1} b_{1j} + \dots + a_{in} b_{nj}.$$

• Let $A = (a_{ij})_{m \times n}$ and $a_i = \begin{pmatrix} a_{i1} & \cdots & a_{in} \end{pmatrix}$ denote the *i*-th row. Then $A = \begin{pmatrix} a_1 \\ \vdots \\ a_m \end{pmatrix}$.

If $b_j = \begin{pmatrix} b_{1j} \\ \vdots \\ b_{pj} \end{pmatrix}$ is the *j*-th column, then $A = \begin{pmatrix} b_1 & \cdots & b_n \end{pmatrix}$.

• If $A = (a_{ij})_{m \times p}$ with *i*-th row a_i , $B = (a_{ij})_{p \times n}$ with *j*-th column b_j , then

$$AB = \begin{pmatrix} a_1b_1 & \cdots & a_1b_n \\ \vdots & & \vdots \\ a_mb_1 & \cdots & a_nb_n \end{pmatrix} = \begin{pmatrix} a_1B \\ \vdots \\ a_mB \end{pmatrix} = \begin{pmatrix} Ab_1 & \cdots & Ab_n \end{pmatrix}.$$

• The linear system (1) can be written as Ax = b:

$$\begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}$$

A is coefficient matrix, x is variable matrix, b is constant matrix of the linear system.

- Thm Linear system with > 1 solution \Rightarrow infinite solutions Proof: If Ax = b has two distinct solutions u_1, u_2 , then $u_2 + t(u_1 - u_2)$ is a solution $\forall t \in \mathbb{R}$.
- The **transpose** of $A = (a_{ij})_{m \times n}$ is the $n \times m$ matrix A^{\top} whose (i, j)-entry is a_{ji} .
- Properties -

$$\circ (A^{\top})^{\top} = A$$

$$\circ (A+B)^{\top} = A^{\top} + B^{\top}$$

$$\circ (cA)^{\top} = cA^{\top}$$

$$\circ (AB)^{\top} = B^{\top}A^{\top}$$

 \circ A is symmetric \Leftrightarrow $A = A^{\top}$

Inverses of Square Matrices

 A square matrix A order n is invertible if there exists a square matrix B of order n such that AB = BA = I. Such a matrix B is called an inverse of A.

Singular: no inverse (use proof by contradiction)

- Thm An invertible matrix has a unique inverse.
 The inverse of an invertible matrix A is denoted by A⁻¹.
- Properties

$$\circ (cA)^{-1} = \frac{1}{c}A^{-1}$$

$$\circ (A^{\top})^{-1} = (A^{-1})^{\top}$$

$$\circ (A^{-1})^{-1} = A$$

$$\circ (AB)^{-1} = B^{-1}A^{-1}.$$

$$\circ A^{-n} = (A^{-1})^n = (A^n)^{-1}$$

Elementary Matrices

- Elementary matrix: square matrix obtained from the identity matrix by performing a single ERO
- Thm If E is the elementary matrix obtained by performing an ERO to I_m, then for any m×n matrix A, EA obtained by performing the same ERO to A.
- Thm Every elementary matrix has an inverse that is also elementary.
- Thm A and B are row equiv $\Leftrightarrow \exists$ elementary matrices E_1, \dots, E_k such that $E_k \dots E_1 A = B$.
- Thm Augmented matrices of two linear systems are row equiv ⇒ same solution set.
- **Invertibility Equivalences** If *A* is a square matrix, TFAE:
 - 1. A is invertible
 - 2. Ax = 0 has only the trivial solution
 - 3. RREF of A is an identity matrix
 - 4. A can be expressed as a product of elementary matrices
 - 5. $det(A) \neq 0$
- **Thm** Let A be invertible. To find A^{-1} ,

RREF of
$$(A \mid I)$$
 is $(I \mid A^{-1})$.

- Half-price Thm Let A and B be square matrices of same size. If AB = I, then A and B are invertible, $A^{-1} = B$, $B^{-1} = A$.
- Elementary column operations (ECOs) EROs but on columns
- If E is obtained from I_n by a single elementary column operation, then E is an elementary matrix.
- Thm If E is the elementary matrix obtained by performing an ECO to I_n , then for any $m \times n$ matrix A, AE can be obtained by performing the same ECO to A.

Remark. Post-multiply E to A, instead of pre-multiplying it.

Determinant

• Let M_{ij} be the submatrix of A obtained by deleting the i-th row and j-th column of A. The (i, j)-cofactor of A is

$$A_{ij} := (-1)^{i+j} \det(M_{ij}).$$

• Let $A = (a_{ij})_{n \times n}$. The **determinant** of A is

$$\det(A) := \sum_{k=1}^{n} a_{1k} A_{1k} = a_{11} A_{11} + \dots + a_{1n} A_{1n}$$

if n > 1, and $det(A) := a_{11}$ if n = 1.

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = a \begin{vmatrix} e & f \\ h & i \end{vmatrix} - b \begin{vmatrix} d & f \\ g & i \end{vmatrix} + c \begin{vmatrix} d & e \\ g & h \end{vmatrix}$$

• Cofactor Expansion - Let $A = (a_{ij})_{n \times n}$. Then for all i, j,

$$\det(A) = \sum_{k=1}^{n} a_{ik} A_{ik} = a_{i1} A_{i1} + \dots + a_{in} A_{in}$$
 [*i*-th row]

$$\det(A) = \sum_{k=1}^{n} a_{kj} A_{kj} = a_{1j} A_{1j} + \dots + a_{nj} A_{nj} \quad [j\text{-th column}]$$

Perform cofactor expansion along row/column with many 0s

- **Thm** If $A = (a_{ij})_{n \times n}$ is triangular, then $\det(A) = a_{11} \cdots a_{nn}$.
- Thm $det(A) = det(A^{\top})$
- Lemma The determinant of any square matrix with two identical rows/columns is zero.

Lemma - If two square matrices of order n differ at the i-th row only, then their $(i, 1), \ldots, (i, n)$ cofactors are the same.

• Determinants Under EROs -

$$\circ A \xrightarrow{cR_i} B \implies \det(B) = c \det(A)$$

$$\circ A \xrightarrow{R_i \leftrightarrow R_j} B \implies \det(B) = -\det(A)$$

- $\circ A \xrightarrow{R_i + cR_j} B \implies \det(B) = \det(A)$
- Thm For elementary matrix E, det(EA) = det(E) det(A).
 To find det(A):
 - Perform Gaussian elimination on A reduce it to REF (upper-triangular)
 - 2. det(R) = product of diagonal entries
 - 3. $E_k \cdots E_1 A = R \Rightarrow \det(E_k) \cdots \det(E_1) \det(A) = \det(R)$
- **Thm** Let A and B be $n \times n$ matrices.
- $\circ \det(cA) = c^n \det(A)$
- $\circ \det(AB) = \det(A)\det(B)$
- If A is invertible, then $\det(A^{-1}) = \frac{1}{\det(A)}$
- Let A be n × n matrix. The adjoint of A is the transpose of cofactor matrix:

$$\mathrm{adj}(A) = (A_{ji})_{n \times n} = (A_{ij})^{\top}.$$

- Method of Adjoints $A^{-1} = \frac{1}{\det(A)} \operatorname{adj}(A)$.
- Cramer's Rule Suppose Ax = b is a linear system where A is an $n \times n$ matrix. Let A_i be the matrix obtained from A by replacing the i-th column of A by b. If A is invertible, then the linear system has unique solution $x = A^{-1}b$:

$$x = \frac{1}{\det(A)} \begin{pmatrix} \det(A_1) \\ \vdots \\ \det(A_n) \end{pmatrix}.$$

3. Vector Spaces

Euclidean *n*-Spaces

- An *n*-vector of real numbers is $\mathbf{v} = (v_1, \dots, v_n)$
- We can identify an *n*-vector (v_1, \dots, v_n) with row matrix $(v_1 \dots v_n)$ or column matrix \vdots
- **Zero vector 0** = (0, ..., 0)
- Euclidean *n*-space \mathbb{R}^n is the set of *n*-vectors of real numbers

Linear Combinations and Linear Spans

- $\sum_{i=1}^k c_i \mathbf{v}_i$ is a **linear combination** of $\mathbf{v}_1, \dots, \mathbf{v}_k$
- Let $S = \{v_1, \dots, v_k\} \subseteq \mathbb{R}^n$. The **span** of *S* is the set of all linear combinations of v_1, \dots, v_k :

$$span(S) := \{c_1 v_1 + \dots + c_k v_k \mid c_1, \dots, c_k \in \mathbb{R}\}.$$

• Let $S = \{v_1, \dots, v_k\} \subseteq \mathbb{R}^n$. To check if $\mathbf{w} \in \text{span}(S)$, show that the following vector equation is consistent:

$$c_1 \mathbf{v}_1 + \dots + c_k \mathbf{v}_k = \mathbf{w} \Leftrightarrow (\mathbf{v}_1 \quad \dots \quad \mathbf{v}_k) \begin{pmatrix} c_1 \\ \vdots \\ c_k \end{pmatrix} = \mathbf{w} \Leftrightarrow A\mathbf{x} = \mathbf{w}$$

Do so by solving linear system $(v_1 \cdots v_k \mid w)$ and checking if it is consistent.

- \circ Inconsistent $\Rightarrow \mathbf{w} \notin \text{span}\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$
- \circ Unique solution \Rightarrow unique linear combination
- \circ Infinitely many solutions \Rightarrow non-unique linear combination
- To check if $\mathbf{w}_1, \dots, \mathbf{w}_m \in \text{span}\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$, check

$$(v_1 \cdots v_k \mid w_1 \cdots w_m)$$
 is consistent.

• To check if span $\{v_1, \dots, v_k\} = \mathbb{R}^n$, check

 $(v_1 \cdots v_k \mid x)$ is consistent for all $x \in \mathbb{R}^n$

- \Leftrightarrow REF(A) has no zero rows
- $\Leftrightarrow A$ is invertible
- Thm Let $S = \{v_1, \dots, v_k\} \subseteq \mathbb{R}^n$. If k < n, then span $(S) \neq \mathbb{R}^n$.
- Thm For any S ⊆ ℝⁿ, span(S) is closed under addition and scalar multiplication, and 0 ∈ span(S).
- Thm Given $S_1 = \{ \boldsymbol{u}_1, \dots, \boldsymbol{u}_k \}$, $S_2 = \{ \boldsymbol{v}_1, \dots, \boldsymbol{v}_m \} \subseteq \mathbb{R}^n$, $\operatorname{span}(S_1) \subseteq \operatorname{span}(S_2) \Leftrightarrow$ $\operatorname{every} \boldsymbol{u}_i \text{ is a linear combination of } \boldsymbol{v}_1, \dots, \boldsymbol{v}_m.$

Remark. To show $span(S_1) = span(S_2)$, need to show $span(S_1) \subseteq span(S_2)$ and $span(S_2) \subseteq span(S_1)$; use Gaussian elimination above.

• **Redundancy** - If \mathbf{v}_k is a linear combination of $\mathbf{v}_1, \dots, \mathbf{v}_{k-1}$, then $\operatorname{span}\{\mathbf{v}_1, \dots, \mathbf{v}_{k-1}\} = \operatorname{span}\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$.