

অষ্টম অধ্যায় রাসায়নিক বিক্রিয়া

মূল বিষয়

□ প্রতীক, সংকেত ও যোজনী:

- প্রতীক : সাধারণত মৌলের পুরো নাম না লিখে ইংরেজি বা ল্যাটিন নামের একটি বা দুটি অক্ষর দিয়ে সংক্ষেপে মৌলটিকে প্রকাশ করা হয়। মৌলের পুরো নামের এই সংক্ষিপ্ত রূপকে প্রতীক বলে। যেমন : H (হাইড্রোজেন), O (অক্সিজেন), Na (সোডিয়াম)
- সংকেত : কোনো মৌল বা যৌগের অণুর সংক্ষিপ্ত রূপকে সংকেত বলা হয়। যেমন : হাইড্রোজেন অণুর
 সংকেত H₂, হাইড্রোজেন ক্লোরাইড অণুর সংকেত HCI.
- যোজনী: কোনো মৌলের পরমাণু অপর কোনো পরমাণুকে যে সংখ্যক ইলেকট্রন দান বা গ্রহণ করতে পারে
 তাকে ঐ মৌলের যোজনী বলে। যেমন: অক্সিজেনের যোজনী ২ অর্থাৎ অক্সিজেনের একটি পরমাণুর ২ টি
 হাত আছে। এ ২ টি হাত দিয়ে অক্সিজেন একযোজী বা ১ হাত বিশিষ্ট ২ টি হাইড্রোজেনের পরমাণুকে ধরতে
 পারে। এ কারণে পানির সংকেত H₂O

কয়েকটি মৌল ও যৌগমূলকের যোজনী

	যোজনী - ১	যোজনী - ২	যোজনী - ৩	যোজনী – 8
অধাতু (মৌল)	হাইড্রোজেন (H) ফ্লোরিন (F) ক্লোরিন (CI) ব্রোমিন (Br) আয়োডিন (I)	অক্সিজেন (O) সালফার (S) কার্বন (C)	নাইট্রোজেন (N) ফসফরাস (P)	কার্বন (C) সালফার (S)
ধাতু (মৌল)	সোডিয়াম (Nɑ) পটাশিয়াম (k) কপার(C∪) (আস) সিলভার (Ag) গোল্ড (A∪)(আস)	ম্যাগনেসিয়াম (Mg) ক্যালসিয়াম (Ca) আয়রন (Fe) আয়র (Cu) কপার (Cu) (ইক) জিংক (Zn) টিন (Sn) (আস) লেড (Pb) (আস)	অ্যালুমিনিয়াম (AI) আয়রন (Fe)(ইক) গোল্ড (Au) (ইক)	টিন (Sn) (ইক) লেড (Pb) (ইক)
যৌগমূলক	অ্যামোনিয়াম (NH ₄ ⁺) হাইড্রোক্সিল (OH ⁻) নাইট্রাইট (NO ₂ ⁻) নাইট্রেট (NO ₃ ⁻) হাইড্রোজেন কার্বনেট (HCO ₃ ⁻)	কার্বনেট (CO ₃ ²⁻) সালফাইট (SO ₃ ²⁻) সালফেট (SO ₄ ²⁻)	ফসফেট (PO ₄ ³⁻)	

ছকে উল্লেখিত ${\rm SO_4}^{2-}$, ${\rm CO_3}^{2-}$, ${\rm NO_3}^-$, ${\rm NH_4}^+$ ইত্যাদি পরমাণুগুচ্ছ স্বাধীনভাবে থাকে না। মৌলিক পদার্থের পরমাণুর মতো যৌগ গঠনে অংশ নেয়। এ জাতীয় পরমাণুগুচ্ছকে যৌগমূলক বা র্য়াডিক্যাল বলে।

যৌগের আণবিক সংকেত লেখার ক্ষেত্রে যে সকল নিয়ম অনুসরণ করা হয় তা নিম্নরূপ :

(১) যৌগে উভয় মৌল বা যৌগমূলকের যোজনী একই হলে এক্ষেত্রে সংকেতে যোজনী লেখার প্রয়োজন হয় না। শুধু মৌল কিংবা মূলক গুলো পাশাপাশি লিখলেই চলে। যেমন : CaO (ক্যালসিয়াম অক্সাইড), NH₄Cl (অ্যামোনিয়াম ক্লোরাইড), NH₄NO₃ (অ্যামোনিয়াম নাইট্রেট) ইত্যাদি।

- (২) উভয় মৌলের কিংবা উভয় মূলকের যোজনী কোনো নির্দিষ্ট সংখ্যার গুণিতক হলে ঐ সংখ্যা দিয়ে যোজনীকে ভাগ করে বিনিময় করে লিখতে হয়। যেমন- কার্বন-ডাই-অক্সাইড এর ক্ষেত্রে ${\rm C_2O_4} \to {\rm CO_2}$ এখানে কার্বন ও অক্সিজেনের যোজনী যথাক্রমে 4 এবং 2।
- (৩) উভয় মৌলের কিংবা উভয় মূলকের যোজনী ভিন্ন এবং গুণিতক না হলে, অর্থাৎ A মৌলের যোজনী x এবং B মৌলের যোজনী y হলে A ও B মৌল দ্বারা গঠিত যৌগের সংকেত টি হবে A_yB_x । A মৌলের যোজনী সংখ্যা B মৌলের ডানপাশে সামান্য নিচে ছোট করে এবং B মৌলের যোজনী সংখ্যা A মৌলের ডানপাশের নিচের দিকে ছোট করে লিখতে হয়। যেমন- অ্যালুমিনিয়াম অক্সাইড (Al_2O_3)
- **রাসায়নিক সমীকরণ :** কোনো রাসায়নিক বিক্রিয়ায় অংশগ্রহণকারী বিক্রিয়ক দ্রব্য এবং উৎপন্ন দ্রব্যকে প্রতীক, সংকেত ও কতগুলো চিহ্নের (+, → বা =) সাহায্যে সংক্ষেপে প্রকাশ করাকে রাসায়নিক সংকেত বলে।
- 🕨 বিক্রিয়ক হলো রাসায়নিক বিক্রিয়া সংগঠনের পূর্বাবস্থা।
- বিক্রিয়াজাত পদার্থ/ উৎপাদ হলো রাসায়নিক বিক্রিয়া সংগঠনের শেষ বা পরবর্তী অবস্থা।
- ≻ উদাহরণ :

$$Zn + H_2SO_4 \rightarrow ZnSO_4 + H_2$$

জিংক সালফিউরিক জিংক হাইড্রোজেন
এসিড সালফেট

□ রাসায়নিক সমীকরণ লেখার নিয়ম গুলো নিম্নরূপ:

- (১) রাসায়নিক সমীকরণে বিক্রিয়ক পদার্থ বা পদার্থগুলোর স্ব স্ব প্রতীক বা সংকেত সমীকরণটির তীর চিহ্নের
- (→) বামদিকে লিখতে হয়। বিক্রিয়াজাত পদার্থ বা পদার্থগুলোর স্ব স্ব প্রতীক বা সংকেত সমীকরণ তীর চিহ্নের
- (\rightarrow) ডানদিকে লিখতে হয়।
- (২) বিক্রিয়ক ও বিক্রিয়াজাত পদার্থ একাধিক হলে তাদের সংকেত এর মধ্যে যোগ চিহ্ন (+) দেওয়া হয়।
- (৩) কোনো পদার্থের অণুর সংখ্যা একাধিক হলে অণুর সংকেত এর আগে সেই সংখ্যা লেখা হয়।
- (৪) বিক্রিয়ক এবং বিক্রিয়াজাত পদার্থগুলোর মধ্যে তীর চিহ্নের পরিবর্তে সমান চিহ্ন ও (=) বসানো যায়। তবে এক্ষেত্রে উভয়পক্ষের পরমাণুর সমতাকরণ প্রয়োজন।
- (৫) বিক্রিয়ার আগে বিভিন্ন পদার্থের অণুর মধ্যে যত সংখ্যক বিভিন্ন মৌলের পরমাণু থাকে, বিক্রিয়ার পরে গঠিত নতুন অণুগুলোর মধ্যে ঠিক তত সংখ্যক বিভিন্ন মৌলের পরমাণু থাকতে হবে। তাই সমীকরণের উভয়পক্ষে মৌলের পরমাণু সংখ্যার সমতা আনার জন্য প্রতীক ও সংকেতগুলোকে প্রয়োজনীয় সংখ্যা দ্বারা গুণ করতে হয়।

রাসায়নিক সমীকরণের সমতাকরণ

হাইড্রোজেন ও অক্সিজেনের বিক্রিয়ায় পানি উৎপন্ন হয়। সুতরাং সমতা চিন্ফের বামদিকে বসবে হাইড্রোজেন ও অক্সিজেন অণুর সংকেত এবং ডান দিকে বসবে বিক্রিয়ার ফলে উৎপন্ন পদার্থ পানির অণুর সংকেত। সুতরাং বিক্রিয়াটিকে নিম্নোক্তভাবে প্রকাশ করা যায় -

$$H_2$$
 + O_2 \longrightarrow H_2O হাইড্রোজেন পানি

কিন্তু বিক্রিয়ার আগে যত সংখ্যক H পরমাণু এবং O পরমাণু থাকে বিক্রিয়ার পরেও বিক্রিয়াজাত পদার্থে ততো সংখ্যক H এবং O পরমাণু থা<mark>কা</mark> উচিত। তাই বিক্রিয়ার সমতা স্থাপনের জন্য H_2 অনু, O_2 অনু ও H_2O অণুর সংখ্যা এবং সমীকরণ হবে নিম্নরূপ -

$$2H_2 + O_2 = 2H_2O$$

এই সমীকরণ থেকে বিক্রিয়ার পূর্বে এবং বিক্রিয়ার পরে হাইড্রোজেন ও অক্সিজেনের মোট পরমাণুর সংখ্যা গণনা করা যায়। বোঝার সুবিধার্থে উপরের সমীকরণটিকে একটু ভিন্নভাবে উপস্থাপন করা হলো -

$$2H_2$$
 + 0_2 = $2H_20$ (2×2) (1×2) $2\times(2\times1)$ 적, 4 2 = 2×3 적, 6 = 6

সুতরাং উপরের সমীকরণে বিক্রিয়ার আগের পরমাণুর সংখ্যা এবং বিক্রিয়ার পরের পরমাণুর সংখ্যা সমান।

রাসায়নিক বিক্রিয়া

(১) সংযোজন বিক্রিয়া : একের অধিক রাসায়নিক পদার্থ একত্রিত হয়ে সম্পূর্ণ ভিন্নধর্মী নতুন একটি রাসায়নিক পদার্থ তৈরি করে তাকে সংযোজন বিক্রিয়া বলে। যেমন :

Fe + S
$$\longrightarrow$$
 FeS

Zn + S \longrightarrow ZnS

$$NH_3$$
 + HCl \longrightarrow NH_4Cl

(২) দহন বিক্রিয়া : বাতাসের অক্সিজেনের উপস্থিতিতে কোনো উপাদানকে পুড়িয়ে তার অক্সাইডে পরিণত করাকে দহন বিক্রিয়া বলা হয়। যেমন :

$$S$$
 + O_2 \longrightarrow SO_2

$$2Mg$$
 + O_2 $\xrightarrow{$ তাপ $}$ $2MgO$

(৩) প্রতিস্থাপন বিক্রিয়া: যে বিক্রিয়ায় একটি মৌল কোন যৌগ থেকে অপর একটি মৌলকে সরিয়ে নিজে ঐ স্থান দখল করে নতুন যৌগ তৈরি করে তাকে প্রতিস্থাপন বিক্রিয়া বলে। যেমন:

Fe +
$$CuSO_4$$
 \longrightarrow $FeSO_4 + Cu$

(8) বিযোজন প্রক্রিয়া : যেসকল বিক্রিয়ায় একটি যৌগ ভেঙে একাধিক মৌল বা যৌগ উৎপন্ন হয় তাদেরকে বিয়োজন বিক্রিয়া বলে। যেমন :

$$CaCO_3$$
 তাপ CaO + CO_2
 $CuCO_3$ তাপ CuO + CO_2
 $2KCIO_3$ তাপ $2KCI$ + $3O_2$

(৫) প্রশমন বিক্রিয়া : এসিড ও ক্ষারজাতীয় পদার্থ পরস্পর বিক্রিয়া করে নিরপেক্ষ পদার্থ তৈরি করলে সে বিক্রিয়া কে প্রশমন বিক্রিয়া বলে। যেমন :

$$CaO + CH3COOH$$
 \longrightarrow $(CH3COO)2Ca + H2O$

রাসায়নিক বিক্রিয়ায় তাপ শক্তির রূপান্তর :

তাপশক্তি হ্রাস : বেকিং সোডা ও সাইট্রিক এসিডের বিক্রিয়ায় টেস্টটিউব স্পর্শ করলে ঠান্ডা অনুভূত হয়। কারণ এক্ষেত্রে তাপ শক্তি হ্রাস পেয়েছে।

বেকিং সোডা + সাইট্রিক এসিড ———— সোডিয়াম সাইট্রেট + কার্বন ডাইঅক্সাইড + পানি

তাপ শক্তি বৃদ্ধি : চুন ও পানির বিক্রিয়ায় বিকার অনেক বেশি গরম হয়ে যায় অর্থাৎ এক্ষেত্রে তাপশক্তি বৃদ্ধি পায়।

$$CaO + H_2O \longrightarrow Ca(OH)_2$$

লাইম ওয়াটার : পানিতে Ca(OH)2 এর সম্পুক্ত দ্রবণকেই চুনের পানি বা লাইম ওয়াটার বলে ।

□ শুষ্ক কোষ গঠন

প্রথমে অ্যামোনিয়াম ক্লোরাইড (NH_4Cl) , কয়লার মাংগানিজ গুঁডো ডাইঅক্সাইড এবং (MnO_2) ভালোভাবে মিশিয়ে তাতে অল্প পরিমাণ পানি যোগ করে একটি পেস্ট বা লেই তৈরি করা হয়। এই মিশ্রণটি সিলিন্ডার আকৃতির দস্তার চোঙে নিয়ে তার মধ্যে একটি কার্বন দন্ত এমনভাবে বসানো হয় যাতে দণ্ডটি দন্তার চোঙকে স্পর্শ না করে। কার্বন দন্ডের মাথায় একটি ধাতব টুপি পরানো থাকে। শুষ্ক কোষের উপরের অংশ কার্বনের চারপাশ পিচের আন্তরন দিয়ে ঢেকে দেওয়া হয়। দন্তার চোঙটিকে একটি শক্ত কাগজ দিয়ে ঘিরে দেওয়া হয়। এখানে দস্তার চোঙ ঋনাত্মক তডিৎদ্বার বা অ্যানোড হিসেবে কাজ করে। এখন আমরা দেখে নেই কিভাবে শুষ্ক কোষ কাজ করে।

শুষ্ক কোষ দিয়ে তড়িৎ বর্তনী তৈরি করে শক্তির রূপান্তর :

বর্তনী তৈরি হওয়ার ফলে বাল্ব জ্বলছে এবং তা আলোক শক্তি দিচ্ছে। এই আলোক শক্তি হচ্ছে কোষের রাসায়নিক শক্তির একটি রূপ। আর কোষের শক্তির উৎস হলো এখানে ব্যবহৃত রাসায়নিক পদার্থ অর্থাৎ দস্তা, অ্যামোনিয়াম ক্লোরাইড, কয়লার গুড়া ও ম্যাঙ্গানিজ ডাইঅক্সাইড। তাহলে বলা যায় যে, ঐ সকল রাসায়নিক পদার্থের সঞ্চিত শক্তিই রূপান্তরিত হয়ে আলোক শক্তি উৎপন্ন করছে। অর্থাৎ এখানে রাসায়নিক শক্তি আলোক শক্তিতে রূপান্তরিত হচ্ছে।

তড়িৎ বিশ্লেষণ: বিগলিত বা পানিতে দ্রবীভূত অবস্থায় তড়িৎ বিশ্লেষ্য পদার্থের মধ্য দিয়ে তড়িৎ পরিবহনের মাধ্যমে তড়িৎ বিশ্লেষ্য পদার্থের বিয়োজন বা রাসায়নিক পরিবর্তনকে তড়িৎ বিশ্লেষণ বলে।

তড়িং বিশ্লেষ্য : যে সমস্ত পদার্থ বিগলিত বা দ্রবীভূত অবস্থায় তড়িং পরিবহন করে এবং তড়িং প্রবাহের ফলে রাসায়নিক বিক্রিয়া করে অন্য পদার্থে পরিণত হয় তাদেরকে তড়িং বিশ্লেষ্য বলে। যেমন : লবণ (NaCl)

তড়িং অবিশ্লেষ্য : যে সমস্ত পদার্থ দ্রবীভূত বা বিগলিত অবস্থায় তড়িৎ পরিবহন করে না ফলে রাসায়নিক বিক্রিয়াও করে না তাদেরকে তড়িং অবিশ্লেষ্য বলে। যেমন : চিনি, গ্লুকোজ।

তড়িৎ বিশ্লেষণ

উদাহরণ :

কাচ পাত্রে ৩০০ মিলিমিটার পানি নিয়ে ৩০ গ্রাম সোডিয়াম ক্লোরাইড বা লবণ যোগ করে ভালোভাবে নাড়া দাও। এবার জিংক দন্ড দুটি চিত্র অনুযায়ী তামার তার দিয়ে ব্যাটারির সাথে সংযুক্ত কর। জিংক দন্ডের দিকে ভালো করে লক্ষ করলে উভয় দণ্ডের গায়ে গ্যাসের বুদবুদ দেখা যাবে।

তড়িৎ বিশ্লেষণ

এর কারণ হলো সোডিয়াম ক্লোরাইড দ্রবণে বিয়োজিত হয়ে ধনাত্মক সোডিয়াম আয়ন (Na^+) ও ঋণাত্মক ক্লোরাইড আয়ন (Cl^-) উৎপন্ন হয়।

একইভাবে দ্রবণে পানি বিয়োজিত হয়ে হাইড্রোজেন আয়ন ও হাইড্রোক্সিল আয়ন উৎপন্ন হয়।

$$H_2O$$
 \longrightarrow H^+ $+$ OH^-

ব্যাটারির সাথে সংযোগ দিয়ে দ্রবীভূত লবণের মধ্য দিয়ে বিদ্যুৎ প্রবাহের ফলে হাইড্রোক্সিল আয়ন ও ক্লোরাইড আয়ন অ্যানোডের দিকে অগ্রসর হয়। ক্লোরাইড আয়ন (Cl^-) অ্যানোডে গিয়ে রাসায়নিক বিক্রিয়ার মাধ্যমে ক্লোরিন গ্যাস (Cl_2) উৎপন্ন করে। তাই আমরা অ্যানোডে গ্যাসের বুদবুদ দেখতে পাই। অন্যদিকে সোডিয়াম আয়ন ও হাইড্রোজেন আয়ন ক্যাথোডের দিকে অগ্রসর হয়। বিদ্যুৎ প্রবাহের ফলে হাইড্রোজেন আয়ন (H^+) ক্যাথোডে গিয়ে রাসায়নিক বিক্রিয়ার মাধ্যমে হাইড্রোজেন গ্যাস (H_2) উৎপন্ন করে যার ফলে ক্যাথোডে হাইড্রোজেন গ্যাসের বুদবুদ দেখা যায় ও দ্রবণে সোডিয়াম আয়ন (Na^+) হাইড্রোক্সিল আয়ন থেকে যায়।

সোডিয়াম ক্লোরাইড দ্রবণের মধ্য দিয়ে তড়িৎ প্রবাহের ফলে অ্যানোডে ক্লোরিন গ্যাস, ক্যাথোডে হাইড্রোজেন গ্যাস উৎপন্ন হয় এবং সোডিয়াম হাইড্রোক্সাইড থেকে যায়।

প্রয়োজনীয় রাসায়নিক সংকেত

অ্যামোনিয়া $\rightarrow NH_3$

মিথেন → CH₄

হাইড্রোজেন ক্লোরাইড → HCl

অ্যামোনিয়াম ক্লোরাইড $\rightarrow NH_4Cl$ (নিশাদল)

অ্যামোনিয়াম নাইট্রেট → NH₄NO₃

ক্যালসিয়াম অক্সাইড ightarrow CaO (চুন)

অ্যালুমিনায়াম অক্সাইড → Al₂O₃

সালফিউরিক এসিড $\rightarrow H_2SO_4$

ফেরাস সালফাইড→ FeS

জিংক সালফাইড \rightarrow ZnS

কপার সালফেট → CuSO₄

ফেরাস সালফেট → FeSO₄

ক্যালসিয়াম কার্বনেট ightarrow $CaCO_3$ (চুনাপাথর)

ক্যালসিয়াম হাইড্রোক্সাইড ightarrow $Ca(OH)_2$ (চুনের পানি / লাইম ওয়াটার/স্ল্যাক ওয়াটার)

পটাশিয়াম ক্লোরেট → KClO₃

এসিটিক এসিড \rightarrow CH₃COOH

ক্যালসিয়াম এসিটেট $\rightarrow (CH_3COO)_2Ca$

সৃজনশীল প্রশ্ন

প্রশ্ন ১

$$Zn + CuSO_4 \longrightarrow A + Cu \longrightarrow (ii)$$

- ক. র্যাডিক্যাল কাকে বলে ?
- খ. তড়িৎ বিশ্লেষণ বলতে কি বুঝ ?
- গ. (ii) সমীকরণটি পূর্ণ করে সমতা কর।
- ঘ, বিক্রিয়াদ্বয় একই ধরনের কি ? যুক্তি দাও ।

১ নং প্রশ্নের উত্তর

- ক) যে সকল পরমাণু গুচ্ছ মৌলিক পদার্থের ন্যায় যৌগ গঠনে অংশ নেয়, বা স্বাধীনভাবে থাকে না তাদেরকে যৌগমূলক বা র্যাডিক্যাল বলে।
- খ) তড়িৎ বিশ্লেষণ বলতে বুঝায়, বিগলিত বা পানিতে দ্রবীভূত অবস্থায় তড়িৎ বিশ্লেষ্য পদার্থের মধ্যে দিয়ে তড়িৎ পরিবহনের মাধ্যমে তড়িৎ বিশ্লেষ্য পদার্থের বিয়োজন বা রাসায়নিক পরিবর্তন। যেমন- সোডিয়াম ক্লোরাইড এর মধ্য দিয়ে তড়িৎ প্রবাহ চালনা করলে দেখা যায় যে, অ্যানোডে বা ধনাত্মক তড়িৎদ্বারে ক্লোরিন গ্যাস এবং ঋণাত্মক তড়িৎদ্বারে তথা ক্যাথোডে সোডিয়াম ধাতু উৎপন্ন হয়।

গ) (ii) নং বিক্রিয়াটির পূর্ণরূপ হল:

$$Zn$$
 + $CuSO_4$ \longrightarrow $ZnSO_4$ + Cu
জিংক কপার সালফেট জিংক সালফেট

এখানে, বিক্রিয়ক হলো ${
m Zn}$ ও ${
m CuS}O_4$ এবং উৎপাদ ${
m ZnS}O_4$ ও ${
m Cu}$

সমীকরণের বামপক্ষের পরমাণু সংখ্যা =
$$3 + (5 + 5 + 5 \times 8)$$

= $3 + 6$
= 9

আবার, ডানপক্ষের পরমাণু সংখ্যা
$$=$$
 $(3 + 3 + 3 \times 8) + 3$

অর্থাৎ বিক্রিয়কের মোট প্রমাণুর সংখ্যা = উৎপাদের মোট প্রমাণু সংখ্যা

সুতরাং দেখা যাচ্ছে, প্রদত্ত সমীকরণে বিক্রিয়ার আগের পরমাণু সংখ্যা এবং বিক্রিয়ার পরের পরমাণুর সংখ্যা সমান।

ঘ) উদ্দীপকের বিক্রিয়া দুটির পূর্ণরূপ লিখে পাই -

$$2H_2$$
 + O_2 \longrightarrow $2H_2O$ ----- (i) $Zn + CuSO_4$ + Cu ----- (ii)

উদ্দীপকের বিক্রিয়া দুটি একই নয়, ভিন্ন ধরনের। নিচে যুক্তিসহ বিষয়টি তুলে ধরা হলো -

আমরা জানি, যেসকল বিক্রিয়ায় একাধিক যৌগ বা মৌল যুক্ত হয়ে সম্পূর্ণ নতুন যৌগ উৎপন্ন করে তাদের সংযোজন বিক্রিয়া বলে। (i) নং বিক্রিয়ায় দুটি গ্যাসীয় মৌলিক পদার্থ H_2 ও O_2 যুক্ত হয়ে সম্পূর্ণ নতুন যৌগ উৎপন্ন করে। সুতরাং (i) নং বিক্রিয়াটি একটি সংযোজন বিক্রিয়া তথা সংশ্লেষণ বিক্রিয়া।

আবার, যেসব বিক্রিয়ায় কোনো মৌল কোন যৌগ হতে অপর একটি মৌলকে সরিয়ে নিজে ঐ স্থান দখল করে নতুন যৌগ তৈরি করে তাকে প্রতিস্থাপন বিক্রিয়া বলে। (ii) নং বিক্রিয়ায় Zn, $CuSO_4$ দ্রবণ হতে Cu কে প্রতিস্থাপন করে তার স্থান দখল করে $ZnSO_4$ ও Cu উৎপন্ন করে। যেহেতু এখানে স্থানের বিনিময় হয়েছে তাই এটি একটি প্রতিস্থাপন বিক্রিয়া ।

অতএব, সামগ্রিক আলোচনার প্রেক্ষিতে বলা যায়, উদ্দীপকের বিক্রিয়া দুটি একই নয়, ভিন্নতর।

প্রশ্ন ২

সুমি ল্যাবরেটরিতে চুনাপাথরকে তাপ দেওয়ায় চুন ও কার্বন ডাইঅক্সাইড উৎপন্ন হলো। আবার চুনের সাথে পানি যোগ করলে চুনের পানি ও তাপ উৎপন্ন হলো। আর রিয়া তুঁতের দ্রবণে লোহার গুঁড়া মেশালে সেখানে কিছ নতুন পদার্থ তৈরি হলো।

- ক. প্রতীক কাকে বলে ?
- খ. চিনিকে তডিৎ অবিশ্লেষ্য পদার্থ বলা হয় কেন ?
- গ্. সুমির ১ম কাজে কোন ধরনের বিক্রিয়া সংঘটিত হয়, বর্ণনা কর।
- ঘ, সুমির ২য় কাজের বিক্রিয়া এবং রিয়ার কাজের বিক্রিয়া দুটি ভিন্ন ধরনের- বিশ্লেষণ কর।

২ নং প্রশ্নের উত্তর

- ক) মৌলের পুরো ইংরেজী বা ল্যা<mark>টিন</mark> নামের সংক্ষিপ্ত রূপকে প্রতীক বলে।
- খ) চিনি একটি তড়িৎ অবিশ্লেষ্য পদার্থ। কারণ, চিনি তড়িৎ প্রবাহের ফলে রাসায়নিক বিক্রিয়া করে না। যে সমস্ত পদার্থ দ্রবীভূত বা বিগলিত অবস্থায় তড়িৎ পরিবহন করে না ফলে রাসায়নিক বিক্রিয়াও সংঘটিত হয় না, তাদেরকৈ তড়িৎ অবিশ্লেষ্য পদার্থ বলে। তাই চিনি একটি তড়িৎ অবিশ্লেষ্য পদার্থ।
- গ) সুমি তার প্রথম কাজে চুনাপাথরকে তাপ দিয়ে চুন ও কার্বন ডাইঅক্সাইড উৎপন্ন করে। এক্ষেত্রে বিক্রিয়াটি কে নিম্নরূপে লিখা যায় :

এই বিক্রিয়াটি বিযোজন বিক্রিয়া। অর্থাৎ সুমির প্রথম কাজে বিযোজন বিক্রিয়া সংঘটিত হয় ।

কারণ, আমরা জানি, যেসকল বিক্রিয়ায় একটি যৌগ ভেঙে একাধিক মৌল বা যৌগ উৎপন্ন হয় তাদেরকে বিযোজন বিক্রিয়া বলে। সুমির বিক্রিয়ায় কঠিন চুনাপাথর ভেঙে গিয়ে যথাক্রমে চুন ও কার্বন ডাইঅক্সাইড উৎপন্ন হয়েছে অর্থাৎ চুনাপাথরের বিয়োজন সংঘটিত হয়েছে। তাই বিক্রিয়াটি একটি বিয়োজন বিক্রিয়া।

ঘ) সুমি তার দ্বিতীয় কাজের সময় চুন এর সাথে পানি যোগ করলে চুনের পানি তথা ক্যালসিয়াম হাইড্রোক্সাইড উৎপন্ন হয়। এক্ষেত্রে নিম্নোক্ত বিক্রিয়া সংঘটিত হয়।

আবার, রিয়া তুঁতের দ্রবণে লোহার গুঁড়া মিশ্রিত করলে নিম্নোক্ত বিক্রিয়া সংঘটিত হয়।

আমরা জানি, যে বিক্রিয়ায় একের অধিক পদার্থ একত্রিত হয়ে সম্পূর্ণ ভিন্নধর্মী নতুন একটি রাসায়নিক পদার্থ তৈরি করে তাকে সংযোজন বিক্রিয়া বলে। আবার, যেসকল বিক্রিয়ায় একটি মৌল কোনো যৌগ থেকে অপর একটি মৌলকে সরিয়ে নিজে ঐ স্থান দখল করে নতুন যৌগ তৈরি করে তাকে প্রতিস্থাপন বিক্রিয়া বলে। সুমি তার দ্বিতীয় বিক্রিয়ায় চুন তথা ক্যালসিয়াম অক্সাইডের সাথে পানির সংযোগ করলে নতুন পদার্থ ক্যালসিয়াম হাইড্রোক্সাইড তথা চুনের পানি উৎপন্ন করে। এক্ষেত্রে উৎপাদ ক্যালসিয়াম হাইড্রোক্সাইডের ধর্ম বিক্রিয়ক ক্যালসিয়াম অক্সাইড ও পানির চেয়ে সম্পূর্ণ ভিন্নতর। তাই এটি একটি সংযোজন বিক্রিয়া। আবার, রিয়ার বিক্রিয়ার আয়রন কপার সালফেট তথা তুঁতে হতে কপার কে প্রতিস্থাপন করে তার জায়গা দখল করে। ফলে আয়রন সালফেট ও কপার উৎপন্ন হয়। তাই এটি একটি প্রতিস্থাপন বিক্রিয়া।

অতএব, সামগ্রিক ভাবে বলা যায়, উপরোক্ত বিক্রিয়া দুটি ভিন্নতর।

প্রশ্ন ৩

(ii)
$$CaO + H_2O \longrightarrow Ca(OH)_2$$

- ক. প্রশমন বিক্রিয়া কাকে বলে ?
- খ. লাইম ওয়াটার বলতে কী বোঝায় ?
- গ. উদ্দীপকের (i) নং বিক্রিয়াটি কোন ধরনের ? ব্যাখ্যা কর।
- ঘ. উদ্দীপকের বিক্রিয়া দুটি কী একই ধরনের ? তোমার উত্তরের স্বপক্ষে যুক্তি দাও ?

৩ নং প্রশ্নের উত্তর

- ক) যে বিক্রিয়ায় পরস্পর বিপরীত<mark>ধর্মী</mark> অস্লীয় পদার্থ ও ক্ষারীয় পদার্থ বিক্রিয়া করে নিরপেক্ষ পদার্থ, লবণ ও পানি তৈরী করে তাকে প্রশমন বিক্রিয়া বলে।
- খ) চুনের পানির যোগ করার ফলে চুন ও পানির মধ্যে রাসায়নিক বিক্রিয়ায় ক্যালসিয়াম হাইড্রোক্সাইড $[{\rm Ca}({
 m OH})_2]$ উৎপন্ন হয়।

$$CaO + H_2O \longrightarrow Ca(OH)_2$$

বিক্রিয়ার ফলে উৎপন্ন এ $[Ca(OH)_2]$ কুইক লাইম নামেই বেশি পরিচিত। কুইক লাইম বা $Ca(OH)_2$ পানিতে খুব অল্প পরিমাণে দ্রবীভূত হয়। পানিতে ক্যালসিয়াম হাইড্রোক্সাইড $[Ca(OH)_2]$ বা কুইক লাইম এর সম্পুক্ত দ্রবনকে লাইম ওয়াটার বলা হয়।

এটি একটি দহন বিক্রিয়া। আবার একে সংযোজন বিক্রিয়া ও বলা যায়। নিচে এটি ব্যাখ্যা করা হলো -

যে রাসায়নিক বিক্রিয়ায় বায়ু বা অক্সিজেনের উপস্থিতিতে কোনো পদার্থে তাপ দিলে বা অগ্নিসংযোগ করলে তা ভিন্ন কোনো পদার্থে পরিণত হয় তাকে দহন বিক্রিয়া বলে। উদ্দীপকে ম্যাগনেসিয়াম (Mg) কে অক্সিজেন (O2) এর উপস্থিতিতে তাপ দিলে তা তা দহন বিক্রিয়ার মাধ্যমে নতুন পদার্থ ম্যাগনেসিয়াম অক্সাইড (MgO) উৎপন্ন করে।

আবার Mg ও O_2 এর দহন বিক্রিয়া একটি সংযোজন বিক্রিয়া।

ঘ) উদ্দীপকের বিক্রিয়া দুটি একই ধরনের। নিচে আমার উত্তরের সপেক্ষে যুক্তি উপস্থাপন করা হলো-

যে রাসায়নিক পরিবর্তনে একের অধিক পদার্থ একত্রিত হয়ে সম্পূর্ণ ভিন্নধর্মী নতুন একটি রাসায়নিক পদার্থ তৈরি করে তাকে সংযোজন বিক্রিয়া বলে।

বিক্রিয়াটি হলো ${
m Mg}+{
m O}_2$ তাপ ${
m MgO}$ এখানে, ${
m Mg}$ ও ${
m O}_2$ পরস্পরের সাথে বিক্রিয়া করে নতুন পদার্থ ${
m MgO}$ উৎপন্ন করে ।

আবার, (ii) নং বিক্রিয়াটি হলো $CaO + H_2O \rightarrow Ca(OH)_2$ এখানে ক্যালসিয়াম অক্সাইড (CaO) ও পানি H_2O পরস্পরের সাথে বিক্রিয়া করে নতুন পদার্থ ক্যালসিয়াম হাইড্রোক্সাইড $[Ca(OH)_2]$ উৎপন্ন করে।

অর্থাৎ (i) নং (ii) ও উভয় বিক্রিয়াই সংযোজন বিক্রিয়া।

প্রশ্ন ৪

- ক. ক্ষারক কাকে বলে ?
- খ. NH3 এসিড নয়- ব্যাখ্যা কর।
- গ, চিত্র Y এর শক্তির রূপান্তর বর্ণনা কর।
- ঘ, চিত্র X এর দ্রবণটির তড়িৎ বিশ্লেষণ মূল্যায়ন কর।

৪ নং প্রশ্নের উত্তর

- ক) যেসব রাসায়নিক বস্তুর মধ্যে অক্সিজেন ও হাইড্রোজেন পরমাণু থাকে এবং যারা পানিতে হাইড্রোক্সিল আয়ন (OH^-) উৎপন্ন করে তাদেরকে ক্ষারক বলে।
- খ) যেসব পদার্থ জলীয় দ্রবণে হাইড্রোজেন আয়ন H^+ দেয় তারা এসিড। আর যারা হাইড্রোক্সিল আয়ন OH^- দেয় তারা ক্ষারক। NH_3 পানিতে দ্রবীভূত হয়ে NH_4OH উৎপন্ন করে যা বিয়োজিত হয়ে আয়ন দেয়।

$$NH_3 + H_2O \rightarrow NH_4OH$$

$$NH_4OH \rightarrow NH_4^+ + OH^-$$

এজন্য NH3 এসিড নয়।

গ) উদ্দীপকের চিত্র Y- তে শুষ্ক কোষ দেখানো হয়েছে। শুষ্ক কোষের ধনাত্মক ও ঋণাত্মক তড়িৎদ্বারের সাথে একটি তারের সংযোগ দিয়ে তাতে একটি বাল্ল স্থাপন করা হয়েছে। ফলে তারের মাধ্যমে বাল্ল ও কোষের মধ্যে একটি বৈদ্যুতিক বর্তনী তৈরি হয়েছে। ফলে এতে শক্তির রূপান্তর ঘটবে।

বিশ্লেষণ: বর্তনী তৈরি হওয়ার ফলে বাল্প জ্বলবে এবং তা আলোক শক্তি দিবে পাশাপাশি এতে কিছুটা তাপশক্তি ও উৎপন্ন হবে। শক্তি আসে ব্যাটারি থেকে। আর ব্যাটারির শক্তির উৎস হলো এখানে ব্যবহৃত রাসায়নিক পদার্থ অর্থাৎ দস্তা, অ্যামোনিয়াম ক্লোরাইড, কয়লার গুঁড়া ও ম্যাঙ্গানিজ ডাই অক্সাইড।

তাই বলা যায় ঐ সকল রাসায়নিক পদার্থের সঞ্চিত শক্তিই রূপান্তরিত হয়ে আলোক শক্তি ও তাপশক্তি উৎপন্ন করে। অর্থাৎ এক্ষেত্রে রাসায়নিক শক্তি আলোক শক্তি ও তাপ শক্তিতে রূপান্তরিত হবে

য) চিত্রে X হলো NaCl এর জলীয় দ্রবণের তড়িৎ বিশ্লেষণ। NaCl এর জলীয় দ্রবণ হলো লবণ ও পানির মিশ্রণ।

লবণ পানির সম্পৃক্ত জলীয় দ্রবণকে ব্রাইন বলে। লবণ পানির মধ্য দিয়ে বিদ্যুৎ চালনা করার জন্য অ্যানোড ও ক্যাথোডকে লবণাক্ত পানিতে ডুবিয়ে বিদ্যুৎ চালনা করা হয়। দ্রবীভূত লবণের মধ্য দিয়ে বিদ্যুৎ চালনা করার জন্য অ্যানোড এবং ক্যাথোডকে লবণাক্ত পানিতে ডুবিয়ে বিদ্যুৎ চালনা করা হয়। দ্রবীভূত লবণের মধ্য দিয়ে বিদ্যুৎ চালনার ফলে ক্লোরাইড আয়ন (Cl^-) অ্যানোডে গিয়ে রাসায়নিক বিক্রিয়ার মাধ্যমে ক্লোরিন গ্যাস (Cl_2) উৎপন্ন করে। অন্যদিকে সোডিয়াম আয়ন Na^+ ক্যাথোডে গিয়ে রাসায়নিক বিক্রিয়ার মাধ্যমে ধাতব সোডিয়াম (Na) উৎপন্ন করে।

অতএব, উপরে আলোচনা হতে বলা যায়, লবণ পানির মিশ্রণে বিদ্যুৎ চালানোর ফলে লবণের এ রাসায়নিক পরিবর্তন ঘটে যা ক্লোরিন গ্যাস ও ধাতব সোডিয়াম উৎপন্ন করে।

প্রশ্ন ৫

(ii)
$$A + B \longrightarrow CaCO_3 + H_2O$$

(iii) Fe + CuSO₄
$$\longrightarrow$$
 FeSO₄ + H₂O

- ক. কুইক লাইম কি ?
- খ. দহন বিক্রিয়া বলতে কি বুঝায় ?
- গ. (i) নং (ii) বিক্রিয়ায় A ও B চিহ্নিত করে ব্যাখ্যা কর।
- ঘ. (i) ও (iii) নং বিক্রিয়ার মধ্যে তুলনামূলক বিশ্লেষণ কর।

৫ নং প্রশ্নের উত্তর

- ক) কুইক লাইম হলো ক্যালসিয়াম হাইড্রোক্সাইড Ca(OH)2।
- খ) কোনো মৌল বা যৌগ যখন বাতাসের অক্সিজেনের সাথে বিক্রিয়া করে রাসায়নিক শক্তিকে তাপ ও আলোক শক্তিতে রূপান্তরিত করে তখন তাকে দহন বিক্রিয়া বলে। যেমন- ম্যাগনেসিয়াম বাতাসের অক্সিজেনের সাথে বিক্রিয়া করে ম্যাগনেসিয়াম অক্সাইড উৎপন্ন করে। এ সময় তাপ ও আলোক শক্তি উৎপন্ন হয়।

গ) (ii) নং বিক্রিয়া হতে দেখা যায় যে, A ও B বিক্রিয়া করে $CaCO_3$ ও H_2O উৎপন্ন করে। যার সমীকরণ হলো -

$$A + B = CaCO_3 + H_2O$$

আবার, (i) নং বিক্রিয়া হতে দেখা যায় $CaCO_3$ এর বিয়োজনের CaO ও A ফলে তৈরি হয়। কিন্তু আমরা জানি, $CaCO_3$ বিয়োজিত হয়ে CaO ও CO_2 উৎপন্ন করে। সুতরাং A হবে CO_2 । আবার CO_2 গ্যাসকে চুনের পানিতে চালনা করলে চুনের পানি ঘোলা হয়ে যায়। এর কারণ হলো CO_2 চুনের পানিতে থাকা $Ca(OH)_2$ এর সাথে বিক্রিয়া করে $CaCO_3$ ও পানি উৎপন্ন করে, অর্থাৎ (ii) নং বিক্রিয়াটি হলো -

$$CO_2 + Ca(OH)_2 = CaCO_3 + H_2O$$
A B

অতএব, উপরোক্ত (ii) নং বিক্রিয়ায় A ও B যথাক্রমে ${
m CO_2}$ ও ${
m Ca(OH)_2}$ ।

- য) উদ্দীপকের (i) নং বিক্রিয়ায় $CaCO_3$ কে তাপ প্রয়োগ করার ফলে CaO ও A অর্থাৎ CO_2 উৎপন্ন হয়। আবার (iii) নং বিক্রিয়ায় Fe ও $CuSO_4$ এর বিক্রিয়ায় $FeSO_4$ ও Cu উৎপন্ন হয়। এক্ষেত্রে (i) নং বিক্রিয়ায় $CaCO_3$ বিয়োজিত হয়ে CaO ও CO_2 উৎপন্ন করে ফলে (i) নং বিক্রিয়াটি একটি বিযোজন বিক্রিয়া।
- আবার, (iii) নং বিক্রিয়ায় Fe, CuSO₄ থেকে Cu কে প্রতিস্থাপিত করে FeSO₄ তৈরি করে। ফলে (iii) নং বিক্রিয়াটি একটি প্রতিস্থাপন বিক্রিয়া। নিচে বিযোজন ও প্রতিস্থাপন বিক্রিয়ার মধ্যে তুলনামূলক বিশ্লেষণ করা হলো-
- ১. বিযোজন বিক্রিয়ার ক্ষেত্রে একটি বিক্রিয়ক থেকে একাধিক উৎপাদ গঠিত হলেও প্রতিস্থাপন বিক্রিয়ায় একাধিক বিক্রিয়ক থেকে একাধিক উৎপাত গঠিত হয়।
- ২. প্রতিস্থাপন বিক্রিয়ায় একটি <mark>মৌল</mark> কোন যৌগ থেকে অপর একটি মৌলকে সরিয়ে নিজে ঐ স্থান দখল করে কিন্তু বিযোজন বিক্রিয়ায় এরূপ ঘটে না।
- ৩. বিযোজন বিক্রিয়ার ক্ষেত্রে তাপ প্রয়োগ করা অত্যাবশ্যক হলেও প্রতিস্থাপন বিক্রিয়ার ক্ষেত্রে তা অত্যাবশ্যক নয়।

বহুনিৰ্বাচনী প্ৰশ্ন

(১) KClO₃ তাপ KCl +' A'

এখানে 'A' চিহ্নিত স্থানে উৎপন্ন গ্যাসটির পরমাণুর সংখ্যা কত ? [রা.বো.১৮]

- (す) 2
- (খ) 3

(গ) 5

(y) 6

(২) ড্রাইসেলে নিচের কোনটি ব্যবহৃত হয় ? [য.বো. ১৮]

- (NH₄Cl
- (খ) Ca(OH)2__
- (গ) NH₄OH
- (ঘ) CuSO₄

(৩) চুন + অ্যাসিটিক এসিড \to ক্যালসিয়াম এসিটেট + পানি এটা কোন ধরনের বিক্রিয়া ? [সি.বো.১৮]

- (ক) সংযোজন
- (খ) প্রতিস্থাপন
- (গ) বিয়োজন
- (ঘ) প্রশমন

(8) $Mg + O \rightarrow MgO$ বিক্রিয়াটি কোন ধরনের ? [ব.বো.১৮]

(ক) সংযোজন

(১) দহন

(গ) প্রশমন

(ঘ) প্রতিস্থাপন

(৫) $CaCO_3 + X \rightarrow CaCl_2 + H_2O + CO_2$ বিক্রিয়ার 'X' যৌগটির নাম কি? [ব.বো.১৮]

(ক) ক্যালসিয়াম হাইড্রোক্সাইড

হাইড্রোক্লোরিক এসিড

(গ) ক্যালসিয়াম অক্সাইড

(ঘ) অ্যাসেটিক এসিড

(৬)	অ্যামোনিয়াম	নাইট্রেট	এর সংকেত	কোনটি ?	[সি.বো.১৭:]
-----	--------------	----------	----------	---------	-------------

 $(\overline{\Phi}) \text{ NH}_4(\text{NO}_3)_2$

(খ) NH₄NO₂

(I) NH₄NO₃

(ঘ) (NH₄)₂NO₃

(৭) টিনের যোজনী কত? [রা.বো. ১৬]

(ক) ১ ও ২

(*) 2 3 8

(গ) ১ ও ৩

(ঘ) ২ ও ৩

(৮) সালফারের দহনের ফলে উৎপ<mark>ন্ন আ</mark>গুনের শিখার বর্ণ কিরূপ হয় ? **[চ.বো.১৬**]

(ৰ্ব) নীল

(খ) লাল

(গ) সবুজ

(ঘ) বেগুনি

(৯) কোনটি লাইম ওয়াটার ? [চ.বো.১৬]

(**T**) Ca(OH)₂

(খ) CaCl₂

(গ) CuCO₃

(ঘ) MgCO₃

(১০) কোনটি ধনাত্মক যৌগমূলক ? [দি.বো.১৬]

- (ক) সালফেট
- (খ) কার্বনেট
- (গ) ফসফেট
- 狐 অ্যামোনিয়াম

(১১) $H_2 + N_2 \rightarrow NH_3$ এ রাস	<u> গায়নিক সমীকরণটির স</u>	নমতাকরণের ক্ষেত্রে কোনটি	ট সঠিক ? [দি.বো.১৬]
(3, 1, 2			
(খ) 3, 2, 1			
(গ) 1, 2, 3			
(ঘ) 1, 3, 2			
(১২) মোমে কি ধরনের শক্তি সা	ঞ্চিত থাকে ? [দি.বো.	> ¢;]	
🖘 রাসায়নিক		(খ) তাপ	
(গ) আলোক		(ঘ) শব্দ	
(১৩) গাঁঢ় ধূসর বর্ণের পদার্থ কে	ানটি ? [কু.বো. ১৪]		
(季) FeSO ₄		(*) FeS	
(গ) MgO		(ঘ) NH ₄ Cl	
(১৪) পটাশিয়াম ক্লোরেটকে তাপ	া দিলে উৎপন্ন হয় -	[রা.বো	:১৬]
i. পটাশিয়াম ক্লোরাইড			
ii. অক্সিজেন			
iii. পানি			
নিচের কোনটি সঠিক?			
(ব) i ও ii (খ) i	iii &	(গ) ii ও iii	(ঘ) i, ii ও iii

🗖 উদ্দীপকের আলোকে ১৫ ও ১৬ নং প্রশ্নের উত্তর দাও : [ঢা.বো.১৮]

 $A + CO_2 \rightarrow \mathbf{p}$ নাপাথর

(১৫) বিক্রিয়াটি কোন ধরনের ?

(২) সংযোজন বিক্রিয়া

(খ) দহন বিক্রিয়া

(গ) প্রশমন বিক্রিয়া

(ঘ) বিয়োজন বিক্রিয়া

(১৬) বিক্রিয়ার সমীকরণটিতে- [রা.বো.১৬]

- i. উৎপাদ তাপে বিভাজিত হয়
- ii. A এর ধর্ম ও উৎপাদের ধর্ম একই
- iii. বিক্রিয়ক গ্যাসটি একাধিক মৌলের সমন্বয়ে গঠিত

নিচের কোনটি সঠিক?

- (গ) ii ও iii (ঘ) i, ii ও iii

🗆 উদ্দীপকটি পড়ে ১৭ ও ১৮ নং প্রশ্নের উত্তর দাও : 🔃 [ঢা.বো.১৮]

$$Fe + CuSO_4 = \Box + Cu$$

(১৭) সমীকরণটিতে চিহ্নিত স্থানে কি হবে ?

- (季) CaSO₄
- (গ) FeSO₄ (গ) H₂SO₄
- (ঘ) NH4Cl

(১৮) বিক্রিয়াটি কোন ধরনের বিক্রিয়া ? (ক) দহন (খ) সংযোজন (গ) বিয়োজন (৩) প্রতিস্থাপন (১৯) ম্যাগনেসিয়াম রিবন কে আগুনে পোড়ানো হলে -[রা.বো.১৬] i. ছাই পাওয়া যায় ii. নীল শিখা তৈরি হয় iii. MgO উৎপন্ন হয় নিচের কোনটি সঠিক? (গ) ii ও iii iii & i 😭 (ক) i ও ii (ঘ) i, ii ও iii (২০) শুষ্ক কোষের উপাদান - [রা.বো.১৬] i. নিশাদল ii. গুড়া কয়লা iii. ম্যাগনেসিয়াম ডাই অক্সাইড নিচের কোনটি সঠিক? ii & i (খ) i ও iii (গ) ii ও iii (ঘ) i, ii ও iii