9 Числовые характеристики величин

Определение 9.1. Пусть ξ — дискретная случайная величина, принимающая значения из $X_{\xi} = \{x_1, \dots, x_m\}$, $\mathcal{D}_{\xi} = \{D_1, \dots, D_m\}$ — разбиение, порожденное этой величиной. Тогда под математическим ожиданием будем понимать:

$$\mathbb{E}\xi = \sum_{k=1}^{m} x_k \mathsf{P}(D_k). \tag{1}$$

Отметим некоторые свойства математического ожидания.

- 1. Если c некоторое число, то $\mathbb{E}(c) = c$.
- 2. Если $\xi \leqslant \eta$, то $\mathbb{E}\xi \leqslant \mathbb{E}\eta$.
- 3. Если c число, то $\mathbb{E}(c\xi) = c\mathbb{E}\xi$.
- 4. $\mathbb{E}(\xi + \eta) = \mathbb{E}\xi + \mathbb{E}\eta$.
- 5. $|\mathbb{E}\xi| \leq \mathbb{E}|\xi|$.
- 6. Если $\xi \ge 0$ и $\mathbb{E}\xi = 0$, то $\xi = 0$ п.н.

Определение 9.2. Величина $\nu_k = \mathbb{E}(\xi^k)$ называется k-м моментом величины ξ ; $\mu_k = \mathbb{E}(\xi - \mathbb{E}\xi)^k$ называется k-м центральным моментом величины ξ ; k-й момент случайной величины $|\xi|$ называется абсолютным k-м моментом величины ξ .

Определение 9.3. Второй центральный момент величины ξ называется дисперсией и обозначается $\mathbb{D}\xi$, то есть

$$\mathbb{D}\xi = \mathbb{E}(\xi - \mathbb{E}\xi)^2.$$

 $\sqrt{\mathbb{D}\xi}$ называется средним квадратическим отклонением величины ξ и обозначается σ_{ξ} .

Перечислим некоторые свойства дисперсии.

- 1. $0 \leq \mathbb{D}\xi = \mathbb{E}\xi^2 (\mathbb{E}\xi)^2 \leq \mathbb{E}\xi^2$.
- 2. Для любого числа $c \mathbb{D}(c\xi) = c^2 \mathbb{D}\xi$.
- 3. $\mathbb{D}(\xi) = 0$ тогда и только тогда, когда $\xi = \mathrm{const}\,$ п.н.
- 4. Для любого числа c справедливо $\mathbb{D}(\xi+c)=\mathbb{D}\xi$.

Для вычисления центральных моментов можно использовать следующие формулы, которые связывают центральные и начальные моменты

$$\mu_2 = \nu_2 - \nu_1^2$$
, $\mu_3 = \nu_3 - 3\nu_1\nu_2 + 2\nu_1^3$, $\mu_4 = \nu_4 - 4\nu_1\nu_3 + 6\nu_1^2\nu_2 - 3\nu_1^4$.

Наряду с основными числовыми характеристиками, перечисленными выше, вводят и другие, которые отражают те или иные геометрические особенности распределений. К таким характеристикам относятся moda Мо ξ , meduaha Ме ξ , kosphuuehm acummempuu γ_1 u skcuecc γ_2 .

Определение 9.4. Под модой случайной величины понимают наиболее вероятные значения для дискретной случайной величины.

Определение 9.5. Под медианой случайной величины понимают такое ее значение $Me \, \xi$, для которого выполнено

$$\mathsf{P}(\xi\leqslant\mathsf{Me}\,\xi)\geqslant\frac{1}{2}\quad u\quad\mathsf{P}(\xi\geqslant\mathsf{Me}\,\xi)\geqslant\frac{1}{2}.$$

Определение 9.6. Коэффициент асимметрии *определяется из соотношения*

$$\gamma_1 = \frac{\mathbb{E}(\xi - \mathbb{E}\xi)^3}{\sigma^3}$$

и характеризует асимметрию распределения относительно математического ожидания.

Определение 9.7. Эксцессом случайной величины называется число

$$\gamma_2 = \frac{\mathbb{E}(\xi - \mathbb{E}\xi)^4}{\sigma^4} - 3.$$

- **9.1.** Вычислить математическое ожидание и дисперсию бернуллиевской случайной величины: $P(\xi = 1) = p$, $P(\xi = 0) = q = 1 p$.
- **9.2.** Вычислить математическое ожидание и дисперсию биномиальной случайной величины.
- **9.3.** При бросании трех игральных костей игрок выигрывает: 1800 р., если выпало 3 шестерки, 140 р., если выпало 2 шестерки и 20 р., если одна. Какова должна быть ставка за участие в игре, чтобы игра была безобидной?
- **9.4.** Дискретная случайная величина ξ имеет два возможных значения x_1 и x_2 , причем $x_1 < x_2$. Вероятность того, что ξ примет значение x_1 , равна 0,6. Найдите закон распределения величины ξ , если известны математическое ожидание и дисперсия: $\mathbb{E}\xi=1,4,\ \mathbb{D}\xi=0,24$. По цели стреляют 20 раз. Попадания при отдельных выстрелах независимые события. Вероятность попадания при каждом выстреле равна 3/5. Пусть ξ число попаданий при n выстрелах. Найти распределение ξ , $\mathbb{E}\xi$, $\mathbb{D}\xi$, наиболее вероятное число попаданий.
- **9.5.** Среди 100 изделий содержится 10 дефектных. С целью проверки качества отбирают 5 изделий. Найти математическое ожидание числа дефектных изделий в выборке.
- **9.6.** Пусть случайные величины ξ и η независимы и $\mathbb{E}\xi=\mathbb{D}\xi=1$, $\mathbb{E}\eta=2$, $\mathbb{D}\eta=4$. Найти математические ожидания случайных величин:

a)
$$\xi^2 + 2\eta^2 - \xi\eta - 4\xi + \eta + 4$$
;

б)
$$(\xi + \eta + 1)^2$$
.

- **9.7.** Случайные величины ξ и η независимы и имеют одно и то же дискретное распределение $\mathsf{P}(\xi=x_k)=\mathsf{P}(\eta=x_k)=p_k,\ k=1,\ldots,n$. Найти $\mathsf{P}(\xi=\eta)$.
- **9.8.** Случайная величина ξ принимает значения $1, 2, \ldots n$ с вероятностями p_1, p_2, \ldots, p_n . Доказать, что справедлива следующая формула для математического ожидания

$$\mathbb{E}\xi = \sum_{j=1}^{n} \mathsf{P}(\xi \geqslant j).$$

- **9.9.** Сколько раз в среднем надо бросать кость до появления шестерки?
 - **9.10.** Доказать, что

$$\mathbb{E}\xi + \mathbb{E}\eta = \mathbb{E}\max\{\xi,\eta\} + \mathbb{E}\min\{\xi,\eta\},$$

$$\max\{\mathbb{E}\xi_1,\dots,\mathbb{E}\xi_n\} \leqslant \mathbb{E}\max\{\xi_1,\dots,\xi_n\},$$

$$\mathbb{E}\min\{\xi_1,\dots,\xi_n\} \leqslant \min\{\mathbb{E}\xi_1,\dots,\mathbb{E}\xi_n\}.$$

- **9.11.** Показать, что $\inf_{-\infty} \mathbb{E}(\xi a)^2 = \mathbb{D}\xi$.
- **9.12.** Доказать, что для любых случайных величин ξ и η справедливы неравенства

$$\left(\sqrt{\mathbb{D}\xi} - \sqrt{\mathbb{D}\eta}\right)^2 \leqslant \mathbb{D}(\xi + \eta) \leqslant \left(\sqrt{\mathbb{D}\xi} + \sqrt{\mathbb{D}\eta}\right)^2.$$

9.13. Дискретная случайная величина принимает значения $x_k = \frac{1}{2^k}$ с вероятностью $p_k = \frac{1}{2^k}$, где $k = 1, 2, 3, \ldots$. Найти моду, коэффициент асимметрии, эксцесс.

Указание. Воспользоваться формулой для вычисления $\mathbb{E}g(\xi)$ для $g(\xi)=\xi^k$ и соотношениями между центральными и начальными моментами.

- **9.14.** Пусть $\mathsf{P}(\xi=k)=1/N\,,\;k=1,\ldots,N\,.$ Найти $\mathbb{E}\xi$ и $\mathbb{D}\xi\,.$
- **9.15.** В урне N шаров, среди которых n белых. Делается выборка объема k. Пусть ξ число белых шаров в выборке. Определить $\mathbb{E}\xi$ и $\mathbb{D}\xi$.
- **9.16.** Написаны n писем, предназначенные разным адресатам. Имеется n конвертов с соответствующими адресами. Письма случайным образом вложены в конверты. Пусть ξ число писем, которые попали своим адресатам. Найти $\mathbb{E}\xi$ и $\mathbb{D}\xi$.

- **9.17.** Пусть ν число появления события A в серии из n независимых испытаний, в каждом из которых $\mathsf{P}(A)=p$. Пусть ξ величина, принимающая значения 0 и 1 в зависимости от того, оказалось ν четным или нечетным. Найти $\mathbb{E}\xi$.
- **9.18.** Случайные величины ξ и η независимы и имеют одинаковые распределения $\mathsf{P}(\xi=k)=\mathsf{P}(\eta=k)=1/N,\ k=1,\ldots,N$. Положим $\nu=\min\{\xi,\eta\},\ \mu=\max\{\xi,\eta\},\ \lambda=\mu-\nu$. Найти распределения случайных величин $\nu,\ \mu$ и λ Найти математические ожидания и дисперсии для случайных величин $\nu,\ \mu,\ \lambda$.
- **9.19.** Купоны в коробках занумерованы цифрами от 1 до 5, и для того чтобы выиграть, надо набрать комплект из пяти купонов с разными номерами. Если из коробки вынимается один купон, то сколько коробок в среднем надо испытать, чтобы получить полный комплект?
- **9.20.** Докажите, что если сумма двух независимых случайных величин почти наверное постоянна, то и каждое из слагаемых постоянно.

10 Числовые характеристики векторов

Определение 10.1. Число $\text{cov}(\xi,\eta) = \mathbb{E}(\xi - \mathbb{E}\xi)(\eta - \mathbb{E}\eta)$ называется ковариацией случайных величин ξ и η .

Определение 10.2. Число

$$\rho(\xi, \eta) = \frac{\text{cov}(\xi, \eta)}{\sqrt{\mathbb{D}\xi\mathbb{D}\eta}}$$

называется коэффициентом корреляции случайных величин ξ и η .

Определение 10.3. Если случайные величины ξ и η таковы, что $\rho(\xi,\eta)=0$, то они называются некоррелированными.

Для непосредственных вычислений часто используют следующие формулы:

$$cov(\xi, \eta) = \mathbb{E}(\xi \cdot \eta) - \mathbb{E}\xi \cdot \mathbb{E}\eta;$$
$$\mathbb{D}(\xi + \eta) = \mathbb{D}\xi + \mathbb{D}\eta + 2\operatorname{cov}(\xi, \eta).$$

Определение 10.4. Линейной регрессией случайной величины ξ_2 по случайной величине ξ_1 называется линейная функция $\varphi(\xi_1) = a\xi_1 + b$ такая, что величина $\mathbb{E}[\xi_2 - \varphi(\xi_1)]^2$ минимальна.

Последнее условие выполнено тогда и только тогда, когда

$$a = \frac{\operatorname{cov}(\xi_1, \xi_2)}{\mathbb{D}\xi_1} = \rho(\xi_1, \xi_2) \sqrt{\frac{\mathbb{D}\xi_2}{\mathbb{D}\xi_1}},$$
$$b = \mathbb{E}\xi_2 - a\mathbb{E}\xi_1.$$

Определение 10.5. Коэффициент а называют коэффициентом линейной регрессии случайной величины ξ_2 по случайной величине ξ_1 , величина $\mathbb{E}[\xi_2-\varphi(\xi_1)]^2=\mathbb{D}\xi_2(1-\rho^2(\xi_1,\xi_2))$ и называется остаточной дисперсией, а прямая вида $y=\mathbb{E}\xi_2+a(x-\mathbb{E}\xi_1)$ называется прямой линейной регрессией случайной величины ξ_2 по случайной величине ξ_1 . Эта прямая всегда проходит через точку $(\mathbb{E}\xi_1,\mathbb{E}\xi_2)$.

10.1. Дано совместное распределение случайных величин ξ и η :

ξ η	0	1	2	3
-1	0,02	0,03	0,09	0,01
0	0,04	0,2	0,16	0,1
1	0,05	0,1	0,15	0,05

- 1) Найдите законы распределения случайных величин ξ и η .
- 2) Вычислите математические ожидания и дисперсии: $\mathbb{E}\xi$, $\mathbb{E}\eta$, $\mathbb{D}\xi$, $\mathbb{D}\eta$, $\mathbb{E}\xi\eta$.
- **10.2.** Совместное распределение случайных величин ξ и η определяется формулами:

$$P(\xi = 0, \eta = 1) = P(\xi = 0, \eta = -1) = 1/4,$$

$$P(\xi = 1, \eta = 0) = P(\xi = -1, \eta = 0) = 1/4.$$

Найдите:

- а) математические ожидания $\mathbb{E}\xi$, $\mathbb{E}\eta$;
- б) дисперсии $\mathbb{D}\xi$, $\mathbb{D}\eta$;
- в) ковариацию $cov(\xi, \eta)$;
- г) коэффициент корреляции $\rho(\xi, \eta)$.
- **10.3.** Случайные величины ξ и η связаны соотношением $\eta=2-3\xi$. Известно, что $\mathbb{E}\xi=-1$, $\mathbb{D}\xi=4$. Определить математическое ожидание $\mathbb{E}\eta$, дисперсию $\mathbb{D}\eta$, ковариацию $\mathrm{cov}(\xi,\eta)$ и коэффициент корреляции $\rho(\xi,\eta)$.
- **10.4.** Случайные величины ξ и η независимы и имеют одинаковое распределение с математическим ожиданием a и дисперсией σ^2 . Найти коэффициент корреляции случайных величин $\zeta_1 = \alpha \xi + \beta \eta$ и $\zeta_2 = \alpha \xi \beta \eta$.
- **10.5.** Сумму независимых равномерно распределенных на $\{0,\ldots,9\}$ однозначных чисел ξ и η можно записать в виде

$$\xi + \eta = \zeta_1 + 10\zeta_2.$$

Найти законы распределения ζ_1 и ζ_2 . Зависимы ли ζ_1 и ζ_2 .

- **10.6.** Подбрасываются три игральные кости. Пусть ξ_1 , ξ_2 , ξ_3 количество очков, выпавших соответственно на 1, 2 и 3-й костях. Найдите ковариацию $\text{cov}(\xi_1+\xi_2,\xi_2+\xi_3)$.
 - 10.7. Дана ковариационная матрица:

$$C = \left(\begin{array}{rrr} 16 & -14 & 12 \\ -14 & 49 & -21 \\ 12 & -21 & 36 \end{array}\right)$$

Найдите корреляционную матрицу.

10.8. Задан закон распределения случайного вектора:

ξ η	2	3	5
1	0,1	0,2	$0,\!15$
3	0,05	0,14	0,11
4	0,12	0,08	0,05

Найдите:

- а) коэффициент корреляции между ξ и η ;
- б) уравнение линейной регрессии η по ξ .
- **10.9.** Дважды бросается игральная кость. Случайные величины: ξ число появлений шестерки, η число появлений четной цифры.
- а) Найдите совместное распределение вектора $(\xi;\eta)$.
- б) Исследуйте ξ и η на независимость.
- в) Вычислите вероятность $P(\xi \leqslant \eta)$.
 - 10.10. В условии предыдущего номера
- а) найдите функцию распределения F(x;y) вектора $(\xi;\eta)$,
- б) вычислите ковариационную матрицу вектора $(\xi; \eta)$,
- в) уравнение линейной регрессии η по ξ .
- **10.11.** Из урны, содержащей 6 белых и 4 черных шара, наудачу без возвращения извлекают 2 шара. Случайные величины: ξ число белых шаров в выборке, η число черных шаров в выборке. Описать закон распределения вектора $(\xi;\eta)$ и найти коэффициент корреляции между ξ и η .
- **10.12.** Два игрока наудачу без возвращения извлекают по одному шару из урны, содержащей 6 белых и 4 черных шара. Случайные величины: ξ число белых шаров у игрока, начинающего игру, η число белых шаров у второго. Описать закон распределения вектора $(\xi;\eta)$ и найти уравнение линейной регрессии η по ξ .
- 10.13. Пусть доходности ценных бумаг являются независимыми случайными величинами. Найдите ожидаемую доходность и риск портфелей, которые в равных долях распределены между: а) двумя первыми;

б) тремя первыми; в) всеми шестью ценными бумагами. Ожидаемые доходности и риск ценных бумаг представлены в таблице:

№ акции	1	2	3	4	5	6
r	11	10	9	8	7	6
σ	4	3	1	0,8	0,7	0,7

10.14. Инвестор может сформировать портфель из ценных бумаг, нормы прибыли по которым являются независимыми случайными величинами R_1 , R_2 , R_3 с ожидаемыми доходностями и рисками, представленными в таблице:

	R_1	R_2	R_3
r	11	10	9
σ	4	3	1

Найдите доли вложения капитала в различные ценные бумаги, обеспечивающие среднюю норму r=10 и минимизирующие риск.

10.15. Инвестор может сформировать портфель из ценных бумаг с доходностями R_1 и R_2 . Ожидаемые доходности и риски активов, представлены в таблице:

	R_1	R_2
r	9	12
σ	2	3

Найдите структуру, ожидаемую доходность и риск портфеля, имеющего минимальный риск, если известен коэффициент корреляции $\rho(R_1;R_2)=-1/6$.