Контрольная работа

19 декабря 2020 г.

Задача 1.

Исследователь Лосяш хочет оценить факторы, влияющие на богатство жителей маленькой, но гордой планеты Плутон. Известно, что каждый житель имеет Документ, в котором точно указаны его уровень мастерства и уровень начитанности (оба – вещественнозначные переменные). Исследователь Лосяш строит следующую модель:

$$y_i = \beta_0 e^{\beta_1 x_i + \beta_2 z_i} u_i,$$

где y_i – богатство i-го жителя, x_i – его уровень мастерства, z_i – его уровень начитанности. Лосяш уверен, что $\ln u_i \sim \mathcal{N}(0,1)$.

- а) Является ли модель линейной по β_2 ? А по β_1 ? А по β_0 ?
- b) Найди ML-оценки коэффициентов β_1 и β_2 при помощи метода максимального правдоподобия.
- с) Выведи формулу 95%-го доверительного интервала для β_0 .
- d) Перепиши модель так, чтобы её можно было оценить при помощи МНК. Интуитивно поясни, что нужно предпринять, чтобы МНК-оценки совпадали с ML-оценками.
- е) Напиши подробный алгоритм, как можно проверить гипотезу

$$H_0: \beta_1 = 2\beta_2$$

при помощи LR-теста и теста Вальда.

Задача 2.

Рассмотрим модель множественной регрессии $y=X\beta+u$, оцениваемую при помощи МНК по 7 регрессорам, включая константный. Число наблюдений равно n=200.

- а) Бараш убеждён, что верна только полная модель, построенная на всех 7 регрессорах. Покажи на картинке МНК \hat{y} , TSS, ESS, RSS, R^2 в его регрессии.
- b) Нюша считает, что полная модель, конечно, верна, но при этом верна и ограниченная модель с пятью регрессорами, включая константный. Покажи на картинке МНК из предыдущего пункта \hat{y} , TSS, ESS, RSS, R^2 в её регрессии.
- с) Как проверить, права ли Нюша? Покажи на картинке МНК объект, который можно использовать в качестве критерия.

На следующей страничке ещё две задачи!

Задача 3.

Исходная выборка y — вектор из n независимых случайных величин, равномерных на [0;1]. Пусть y^* — одна из бутстэп-выборок.

- а) Просто для удобства выпиши $\mathbb{E}(y_i)$, $\mathrm{Var}(y_i)$, $\mathbb{E}(\bar{y})$, $\mathrm{Var}(\bar{y})$.
- b) Найди $\mathbb{E}(y_i^*)$, $\operatorname{Var}(y_i^*)$, $\mathbb{E}(\bar{y}^*)$, $\operatorname{Var}(\bar{y}^*)$.
- с) Найди $Cov(y_i, y_i^*)$, $Cov(\bar{y}, \bar{y}^*)$.

Задача 4.

У меня есть три монетки. Они выпадают орлом с вероятностями p_1, p_2 и $p_3 = p_1 + p_2$. Я провожу эксперимент из 100 раундов.

В каждом раунде я равновероятно выбираю одну из монеток. Подбрасываю её два раза и записываю число выпавших орлов.

После окончания эксперимента у меня остаётся на бумажке 100 записанных чисел. Какая монетка подкидывалась в каждом раунде, я не помню.

Опиши ЕМ-алгоритм для оценивания неизвестных p_1 и p_2 .

Если формулы для какого-то шага выводятся в явном виде, то выведи их. Если формулы для какого-то шага не выводятся в явном виде, то объясни, какая оптимизационная задача будет решаться численно.