ECS230

Summary 5

Least Squares Problem

Least squares problem: $X \in \mathbb{R}^{m \times n}$ $y \in \mathbb{R}^m$ m > n

The problem Xb = y does not in general have a solution (more equations than unknowns).

The least squares (LS) problem consists of finding a vector $b \in \mathbb{R}^n$ such that ||Xb - y|| is minimized.

Data-fitting interpretation: Find the best description of the vector y as a linear combination of the columns of X.

Normal equations:

Assuming $\operatorname{rank}(X) = n$, the residual norm ||Xb - y|| is minimized if b is a solution of the Normal Equations

$$X^T X b = X^T y$$

Solution of the Normal Equations:

- i) Compute $A = X^T X$ (A is symmetric positive definite)
- ii) Cholesky factorization: $A = LL^T$
- iii) Define $u = L^T b$. Solve $L u = X^T y$. Solve $L^T b = u$

Polynomial fit:

Given a set of pairs (x_i, y_i) i = 1, ..., p, find a polynomial of degree d < p that approximates the data in the least-squares sense.

Solve the Normal Equations with $X \in \mathbb{R}^{p \times (d+1)}$, and $x_{ij} = (x_i)^{(j-1)}$.

Accuracy:

 $\overline{\text{Condition}}$ number $\kappa(X^TX) = \kappa(X)^2$, where

$$\kappa(X) = ||X^+|| \, ||X||$$

and X^+ is the Moore-Penrose pseudoinverse of X. The condition number of X^TX can be large. The QR factorization can be used to solve the LS problem without having to form the product X^TX .