情報工学科履修規程

&

修学の手引き

平成21年度

琉球大学工学部

情報工学科

http://www.ie.u-ryukyu.ac.jp/

情報工学科履修規程

履修にあたっては、学生便覧、本履修規程の両方を参照すること.

情報工学科履修規程

コース配属・変更

- (1) 情報工学科に在籍する学生は所定の期日までに総合情報コースあるいは計算工学コースのどちらかに属さなければならない. 2年前学期プロジェクト・デザインⅡの中でコース登録を実施する. ただし, 1年次の科目から必修・選択の区別が異なるので注意が必要である.
- (2) コースの変更は最終学年が始まるまでに所定の様式にて学科長に申請する. ただし, 原則として「総合情報コース」から「計算工学コース」への変更は認めない.
- (3) 計算工学コースを選択し、平成15年度以前の学生便覧が適用される学生については、最終学年が始まるまでに、「卒業研究」と「セミナー」以外の計算工学コース必修科目を修得しておかなければならない。
- (4) 平成15年度以前の学生便覧が適用されている学生で、3年前学期にコース配属が行われた学生は時間割配当の理由により(3)の科目が最終学年の始まるまでに登録できなかった場合に限り、コース変更申請を4年前期終了時まで認める.

卒業研究登録条件

- (5) 4年次(6個学期在学後)または5個学期在学後の4月の時点で卒業研究を登録するためには、次の2項目の条件を満たしていなければならない.
 - (ア)6個学期在学の学生については、取得単位数が105以上であること.また、5個学期在学の学生については取得単位数が90以上であること.
 - (イ)原則とし3年後学期までの専門必修科目の全ての単位を取得していること.

卒業研究, セミナーの評価

- (6) 卒業研究は、研究室あるいは指導教員が直接指導できる場所において学習、研究を実施した正味時間が450時間を超えていることが単位取得の前提条件である.
- (7) 卒業研究, セミナーの評価は, 指導教員が学習目標の各項目についてその達成度の評価を行い, それをもとに成績を決定する.

(平成16年3月20日工学部代議会承認) (平成18年度学生便覧改訂)

修学の手引き

修学の手引きは、情報工学科の学生が履修計画を立てる上で有用な情報を整理しまとめたものである。修学の手引きに記述されていない情報は、年2回開催される年次別懇談会において提供されるので必ず参加すること。疑問点等がある場合には積極的に年次指導教員に質問すること。

1	はじめに・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6
2	講座及び教職員の紹介・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· · · · 7
3	提供科目 · · · · · · · · · · · · · · · · · · ·	9
	. 1 提供科目・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· · · 12 · · · 126
4	総合情報コース・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	18
	. 1 学習・教育目標・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
5	計算工学コース・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	23
	. 1 学習・教育目標・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
6	高等学校教諭免許(情報)取得のための履修計画・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· · · 27
7	卒業研究・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	27
	.1 卒業研究の目的・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	27 28 28 29
8	各種資格 · · · · · · · · · · · · · · · · · · ·	
	. 1 情報処理技術者試験 (http://www.jitec.jp) . 2 シスコ・ネットワーキング・アカデミー . 3 オラクルマスター	• • • 31
9	卒業後の進路・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	32
	. 1 就職······ . 2 大学院理工学研究科(博士前期課程情報工学専攻,博士後期課程)···············	
付	₹ · · · · · · · · · · · · · · · · · · ·	· · · 35
	. 情報工学科FAQ······ . インターンシップおよび実習証明書······ . 就職先一覧·····	• • • 37

1. はじめに

行政,教育,医療,観光,農林水産業とあらゆる社会分野に情報化の波が押し寄せ,今や情報工学は現代社会を支える総合的基盤として必要不可欠なものになっている。日々に高度化するコンピュータは生活を能率よくかつ快適に営むために、社会の隅々にまで浸透し、一般市民にも「コンピュータ・リテラシー」の向上が要求されるほど、社会に密着している。情報化革新とも言えるこの社会の趨勢に呼応して、大学で教育、研究すべき学問分野も大きく変容しつつあり、大学に対する社会の要請も質的に変化してきている。平成5年10月1日、情報工学科が設置され、急速に発展するコンピュータ技術に対する教育・研究の重要な役割を担うことになった。さらに、平成9年4月1日には、大学院博士課程が設置され現在に至っている。

本学科は、情報社会の中核となる技術職、研究職の幅広い分野を対象にして、基礎学力と実践力を備えた人材の養成を目指している。平成16年度からは養成する人材をより明確にするため、学科内に以下の2つのコースを設置した。

- 総合情報コース
 - 現代社会の様々な分野における情報技術の総合的資質を備えた人材を育成するコース.情報工学の基礎知識・技術を修得するとともに、情報技術と社会との関わりを深く理解する.
- 計算工学コース
 - より深い計算工学の知識と技術を備えた人材を育成するコース.情報工学の基礎知識・技術を習得するとともに、数学系科目を必修にすることによりエンジニアとしての基礎を固める.

本学科の学生は卒業までに次に示す学習・教育目標を達成しなければならない.

- (A) 自ら積極的に考え自ら意欲的に行動することができる(積極性)
- (B) 社会と密接に連携し、学習研究成果を社会に還元し、社会に対する責任を果たすことができる(社会性)
- (C) 国際的に通用するコミュニケーション能力を身に付け、将来、諸外国との積極的な交流を行うことができる(コミュニケーション能力と国際性)
- (D) 論理的思考の基礎技法として数学を応用することができる(論理性)
- (E) 幅広い教養と柔軟な思考力を有し、日進月歩の情報技術革新に対処することができる(柔軟性)
- (F)情報利用技術を自在に使いこなすことができる(実践性)
- (G) 現在の情報技術の適用範囲や限界を良く理解し、将来、技術者・研究者として、適切に課題を設定するとともに、新しい情報システムを設計・開発することができる(創造性)
- (H)計算機システム工学,情報通信工学,ソフトウェア工学,知能情報処理工学,人工知能工学,知 的制御工学の各分野における専門的な深い知識を身に付け,専門用語が示すものの具体的内容及 びその有効性,適用範囲を説明することができる(専門性)

これらの学習・教育目標は、総合情報コース及び計算工学コースのそれぞれのコースで独自のサブ目標に展開される。学生は登録したコースが要求する科目群をしっかり履修することにより全ての目標を達成することができる。ただし、個々の学生にはこれらの学習目標を十分に理解した上で日常の修学に努めることが求められる。また、定期的に自身の学習目標に対する達成度を評価し、その後の修学に生かすことが重要である。

本冊子は情報工学科へ入学した学生が円滑に勉学、研究を進められるように学科の概要を説明するとともに、卒業までに必要とする各種情報を提供する目的で作成されたものである。第2章には「講座及び教職員の紹介」が記載されている。情報工学科の提供する専門科目は第3章に掲載されている。履修計画については総合情報コースを第4章、計算工学コースを第5章にまとめてある。これらを良く理解し、各自の目標を達成するための修学のあり方を決定することが望まれる。第6章には卒業研究の着手要件と卒業に必要な事項が記されている。第7章には各種資格の情報が、第8章には、大学院理工学研究科博士前期課程情報工学専攻および博士後期課程の授業科目が掲載されている。付録には情報工学科Q&A、インターンシップおよび就職に関する資料もある。

本冊子が諸君の良き修学の手引書になることを希望する.

2. 講座及び教職員の紹介

<システム情報工学講座>

本講座は、現代のコンピュータ工学の中核を成す要素技術であるハードウエア及び計算機システムに関する分野で、論理回路の合成、計算機アーキテクチャの原理、並列分散システムの設計、ネットワークの原理、ヒューマンインタフェースの活用などに関する教育と研究を行っている。また、コンピュータを効率良く利用する工学技術としてのプラント制御、CAD、データベース、マルチメディア等に関する教育と研究にも力を入れている。

<知能情報工学講座>

本講座では、人間に近い高度なコンピュータの実現を目指して研究している。すなわち、人間の知識獲得、認知、学習、推論方法の解明とそれに基づいた高度情報処理など、いわゆる人工知能と呼ばれる分野で、人工知能のためのハードウエア、ソフトウェアおよびその応用分野である知的制御に関する教育と研究を行っている。

表2-1 教職員一覧

	名前	役職	学位	専門・研究内容	居室	内線	メール
	Mohammad Reza Asharif (モハマト゛レサ゛ - アシ ャリフ)	教授	工学博士	音声信号雑音の除去,二値 画像類似検索,画像処理, 音響エコーキャンセラ,ディジタルフィルタ	工 1-606	8681	asharif
	玉城 史朗 (タマキ シロウ)	教授	工学博士	ディジタル制御, ロボティクス, 自然エネルギーシステム	工 1-702	8720	shiro
システ	和田 知久 (ワダ トモヒサ)	教授	工学博士	デジタル通信システム, LSI設計と回路CAD	工 1-605	8713	wada
ム 情 報	名嘉村 盛和 (ナカムラ モリカズ)	教授	博士(工学)	並列分散アルゴリズム, バイオ情報処理	工 1-505	8715	morikazu
工学講座	河野 真治 (コウノ シンジ)	准教授	工学博士	並列オブジェクト指向言語,持続型 オブジェクト,時間を扱う理論を使 った論理合成とプログラム検証	工 1-504	8723	kono
座	長山 格 (ナガヤマ イタル)	准教授	博士(工学)	マルチメディアシステムと適 応信号処理,信頼性工学	工. 1-703	8725	nagayama
	岡崎 威生 (オカザキ タケオ)	講師	理学修士	潜在構造モデル,推測過程論,ゲノム情報解析	エ 1-706	8903	okazaki
	吉田 たけお (ヨシダタケオ)	助教	博士(工学)	ハードウエア記述言語,デ ィジタルシステムの耐故 障化設計	工 1-603	8726	tyoshida
	宮里智樹(ミヤザト トモキ)	助教	博士(工学)	ネットワーク制御	工 1-704	8712	tmiyazato

	長田 智和 (ナガタ トモカズ)	助教	博士(工学)	インターネット通信工学	工 1-701	8719	nagayan
	宮城 隼夫 (ミヤキ゛ハヤオ)	教授	工学博士	ファジイ理論, 意志決定 論, 地理情報システム, シ ステム安定論, 予測問題	工 1-708	8717	miyagi
	高良 富夫 (タカラ トミオ)	教授	工学博士	音声自動認識,人工合成音 声,音韻・音声の分析,琉 球方言,アジアの言語	工 1-507	8718	Takara
知	遠藤 聡志 (エント゛ウ サトシ)	教授	博士(工学)	人工知能,観光情報,マル チエージェント	工 1-601	8714	endo
能情報	山田孝治(ヤマダ゛コウシ゛)	准教授	博士(工学)	知能ロボット,分散人工知能	工 1-602	8724	koji
工学講	姜 東植 (カン ドンシク)	准教授	博士(工学)	信号処理, ニューラルネットワーク	工 1-707	8729	kang
座	當間 愛晃 (トウマ ナルアキ)	助教	博士(工学)	複雜系工学,人工知能	エ 1-705	8830	tnal
	赤嶺 有平 (アカミネ ユウヘイ)	助教	博士(工学)	並列計算,マルチメディア, コンピュータグラフィクス	工 1-604	8716	yuhei
総情セ	谷口 祐治	講師	工学士	ネットワークアルゴリズ ム,情報教育	情報 処理セ ンター	8949	taniguchi @cc.u-ryu kyu.ac.jp
ンタ	舟木 慶一 (フナキ ケイイチ)	講師	博士(工学)	音響信号処理	情報 処理セ ンター	8946	funaki@cc .u-ryukyu .ac.jp
学科	米須 順子 (ヨネス ジュンコ)	技術職員 (技術部)		学科事務全般	工 1-502	8662	junkoy
職員	新城 弥生 (シンジョウ ヤヨイ)	事務職員 (非常勤)		学科事務全般	工 1-502	8662	yayoi

[※]学外から電話をかける場合は 098-895-(内線番号)

[※]メールアドレスは ○○○○@ie.u-ryukyu.ac.jp

[※]大学住所は 〒903-0213 沖縄県中頭郡西原町字千原1

[※]学科代表FAX番号は 098-895-8727

[□] より詳しい情報は学科URL http://www.ie.u-ryukyu.ac.jp/ を参照

3. 提供科目

3.1 提供科目

情報工学科の学生が履修できる授業科目を大別すると,①情報工学科または工学部が提供する「専門科目」,②他学部及び他学科が提供する「専門科目(自由)」,③大学教育センターが提供する「共通教育等科目」に分けられる.さらに,共通教育等科目は「共通教育科目」と「専門基礎教育科目」に分類される.

【専門科目】

情報工学科のカリキュラムの特徴は、情報工学の基礎となるコンピュータのハードウェアおよびソフトウェア分野全般を総合的に教育することから始めることにある。すなわち、以下に示す必修科目が入学直後の1年次に提供されている。

プログラミング Ⅰ, プログラミング Ⅱ

ソフトウェア基礎 I, ソフトウェア基礎 Ⅱ

ソフトウェア基礎演習 I, ソフトウェア基礎演習 II

コンピュータ I, コンピュータ II

これらの総合的科目を学習することにより、まずトップダウン的に情報工学の学問分野全般を見渡すことができ、高学年において深く専門分野の学習を行う際に各科目の位置付けを明確にすることができる.1年次終了時の学習の到達度としては、基本情報技術者試験に合格できる程度を目指す(当然、学生個人の試験対策は必要である).2年次になると、

アルゴリズムとデータ構造

オペレーティングシステム

計算機アーキテクチャ

を学習する。これらは情報工学のコア科目として位置付られ、最も重要な基本科目であり、総合情報コース及び計算工学コースとも必修科目としている。また、情報工学実験 I , II , III ,

工学部他学科,法政系,経済系,経営系,社会系等の提供する科目も単位数の上限は設定されているが取得可能である.これら選択科目は,専門科目(自由)として各人の適性や目指している将来の職種に応じて選択することになる.

【専門基礎教育科目】

情報工学科の専門科目を学習するための基礎科目として、微分積分学と物理学が必修になっている.入学時に基礎学力が十分でない学生のためには、微分積分学入門、物理学入門が用意されている.ただし、計算工学コースを選択した場合は、微分積分学入門、物理学入門を履修単位に含めることはできない.また、微分積分学入門、物理学入門を履修するには年次指導教員の許可が必要であるので指導教員に相談すること.

【共通教育科目】

幅広い教養と実用的な語学力を身につけるため、大学共通の教育科目が用意されている。共通教育科目の履修計画においては、本学科の専門科目が比較的低学年に集中していることから、各学年でバランスよく履修するよう留意する必要がある。英語は、本学科では受講年次が指定されているので注意されたい。専門科目をある程度学習した後、例えば4年次において、大学の共通教育科目を履修することも、幅広い人格形成と応用力養成の点で効果的である。

専門科目を提供講座毎に分類して表3-1に示す. 専門科目(自由), 共通教育等科目, 各科目の詳細情報については, 学生便覧を参照すること.

表3-1 提供講座別科目分類表

工学部共通(選択またはコース必修)						
科目	授業科目	単位	科目	授業科目	単位	
番号			番号			
工006	総合演習D	2	<i>n</i> 306	経営工学概論	2	
<i>"</i> 220	情報産業論	2	<i>"</i> 310	産業社会学原論 I	2	
<i>"</i> 300	科学技術史	2	<i>u</i> 311	産業社会学原論Ⅱ	2	
<i>"</i> 301	安全工学	2	<i>n</i> 320	企業研修	2	
<i>"</i> 302	品質管理	2	<i>u</i> 321	企業実習	2	
<i>"</i> 303	工業所有権法	2				
		学科共词	通(必修)			
科目	授業科目	単位	科目	授業科目	単位	
番号			番号			
情101	ソフトウェア基礎 I	2	情201	情報工学実験 I	1.5	
<i>"</i> 102	ソフトウェア基礎Ⅱ	2	<i>y</i> 202	情報工学実験Ⅱ	1.5	
<i>"</i> 103	ソフトウェア基礎演習 I	1	<i>y</i> 301	情報工学実験Ⅲ	1.5	
" 104	ソフトウェア基礎演習Ⅱ	1	<i>n</i> 302	情報工学実験Ⅳ	1.5	
" 105	プログラミング I	2	<i>"</i> 401	卒業研究	6	
<i>"</i> 106	プログラミング Ⅱ	2	<i>n</i> 402	セミナー	2	
" 107	コンピュータ I	2	<i>n</i> 109	プロジェクト・デザインI	2	
<i>"</i> 108	コンピュータⅡ	2	<i>II</i> 209	プロジェクト・デザインⅡ	2	
" 153	線形代数学	2	<i>n</i> 366	情報社会と情報倫理	2	
<i>"</i> 203	アルゴリズムとデータ構造	2				
" 204	オペレーティングシステム	2				
<i>"</i> 205	計算機アーキテクチャ	2				

学科共通(選択またはコース必修)						
科目	授業科目	単位	科目	授業科目	単位	
番号			番号			
情151	情報数学 I	2	<i>n</i> 367	情報科教育法A	2	
" 152	情報数学Ⅱ	2	<i>y</i> 368	情報科教育法B	2	
<i>"</i> 154	工業数学 I	2	" 451	情報英語Ⅱ	2	
<i>"</i> 251	ディジタル回路	2	" 281	インターンシップ I	1	
<i>y</i> 252	言語理論とオートマトン	2	<i>"</i> 381	インターンシップⅡ	1	
<i>y</i> 253	ディジタルシステム設計	2	" 481	インターンシップⅢ	1	
<i>y</i> 254	システム理論	2	<i>II</i> 482	情報工学実践 I	2	
<i>y</i> 255	情報理論	2	<i>II</i> 483	情報工学実践Ⅱ	2	
<i>"</i> 256	工業数学Ⅱ	2	<i>II</i> 484	情報工学実践Ⅲ	2	
<i>y</i> 257	工業数学Ⅲ	2	<i>II</i> 485	情報工学実践IV	2	
<i>y</i> 258	確率及び統計	2	" 491	特別講義I	1	
<i>y</i> 351	数理計画と最適化	2	<i>II</i> 492	特別講義Ⅱ	1	
<i>y</i> 352	ディジタル信号処理	2	<i>"</i> 493	特別講義Ⅲ	1	
<i>y</i> 353	グラフとネット	2	<i>II</i> 494	特別講義IV	2	
<i>y</i> 354	ディジタル制御論	2	<i>11</i> 495	特別講義V	2	
<i>n</i> 355	プログラミングⅢ	2	<i>"</i> 496	特別講義VI	2	
<i>y</i> 356	プログラミングIV	2				
<i>u</i> 357	数值解析	2				
<i>"</i> 358	回路理論	2				
<i>n</i> 359	情報英語 I	2				
<i>"</i> 361	教育情報工学	2				
<i>y</i> 362	計算機文化論	2				
<i>y</i> 363	情報創造工学	2				
<i>y</i> 364	インターネット・ソフトウェア	2				
<i>y</i> 365	環境情報科学	2				
	システム情報コ	C学講座	(選択また	はコース必修)		
科目	授業科目	単位	科目	授業科目	単位	
番号			番号			
情211	情報ネットワーク I	2	# 313	ヒューマンインタフェース	2	
" 212	コンパイラ構成論	2	" 314	並列分散システム	2	
" 213	情報ネットワークⅡ	2	" 411	シミュレーション	2	
<i>"</i> 311	データベース	2	" 412	CAD	2	
<i>"</i> 312	ソフトウェア工学	2	" 413	アルゴリズム論	2	
		In India / m	A mallion of the second			
知能情報工学講座(選択)						
科目	授業科目	単位	科目	授業科目	単位	
番号	1 I Na		番号	L 45		
情221	人工知能	2	" 324	自然言語処理	2	
" 222	ファジィ理論	2	<i>y</i> 325	知能ロボット	2	
" 321	パターン認識論	2	# 326	音声・画像処理	2	
# 322	ニューラルネット	2	" 421	リモートセンシング	2	
<i>"</i> 323	知識工学	2				

3.2 先修科目と後続科目

履修計画を立てる際の参考になるように、ある科目を受講する前に修得しておくことが望ましい「先 修科目」と、各科目に関連の深い「後続科目」を一覧にしてそれぞれ表に示す. 但し、本表は参考のた めであり、詳細は科目毎のシラバスを参照するか、担当教員に相談すること.

表3-2 先修科目一覧表

	科目名	先 修 科 目
	プログラミング I	
学	プログラミング I	プログラミング I
科	ソフトウェア基礎 I	
共	ソフトウェア基礎Ⅱ	ソフトウェア基礎 I
通	ソフトウェア基礎演習 I	
	ソフトウェア基礎演習Ⅱ	ソフトウェア基礎演習Ⅱ
	コンピュータ I	
	コンピュータⅡ	コンピュータ I
	アルゴリズムとデータ構造	プログラミング I , I I
	オペレーティングシステム	ソフトウェア基礎Ⅰ,Ⅱ, コンピュータⅠ,Ⅱ
	計算機アーキテクチャ	ソフトウェア基礎 Ⅰ, Ⅱ, コンピュータ Ⅰ, Ⅱ
	情報工学実験 I	
	情報工学実験Ⅱ	情報工学実験 I
	情報工学実験Ⅲ	情報工学実験 I , Ⅱ
	情報工学実験IV	情報工学実験 I , Ⅱ, Ⅲ
	プロジェクト・デザインI	
	プロジェクト・デザイン Ⅱ	プロジェクト・デザイン I
	情報社会と情報倫理	
	情報数学 I	
	情報数学Ⅱ	情報数学 I
	工業数学 I	
	ディジタル回路	
	グラフとネット	情報数学 I
	ディジタルシステム設計	ディジタル回路
	言語理論とオートマトン	情報数学 I
	情報理論	確率及び統計,情報数学I,線形代数学
	工業数学Ⅱ	
	工業数学Ⅲ	
	確率及び統計	工業数学 I
	システム理論	線形代数学
	数理計画と最適化	線形代数学
	ディジタル信号処理	工業数学Ⅱ,確率及び統計
	ディジタル制御論	工業数学Ⅱ,ディジタル信号処理
	数值解析	線形代数学,プログラミング I
	回路理論	】工業数学Ⅰ,工業数学Ⅱ
	プログラミングⅢ	プログラミング I , II
	プログラミングIV	プログラミング I , II
	情報英語I	
	情報科教育法B	情報科教育法A
	」「有報科教育仏B	J1育報科教育法A

	総合演習D	情報科教育法A
		情報英語I
	教育情報工学	
	計算機文化論	
	情報創造工学	
	インターネット・ソフトウェア	
	情報ネットワークⅡ	情報ネットワークI
	アルゴリズム論	情報数学I,アルゴリズムとデータ構造
シ	情報通信	コンピュータ I , II
ス	ソフトウェア工学	プログラミング I , II , ソフトウェア基礎 I , II
テ	データベース	アルゴリズムとデータ構造
ム	ユーザインタフェース	ソフトウェア基礎 I , I I
情	並列分散システム	オペレーティングシステム、情報ネットワークⅠ、
報		計算機アーキテクチャ
工学	シミュレーション	確率及び統計,数値解析,数理計画と最適化
于	コンパイラ構成論	ソフトウェア基礎 I, II, 言語理論とオートマトン
	CAD	ディジタル回路
	人工知能	情報数学Ⅱ
	ファジイ理論	情報数学Ⅱ,システム理論
知	パターン認識論	確率及び統計、言語理論とオートマトン、工業数学
能		I
情	ニューラルネット	工業数学 I
報	知識工学	人工知能
工	自然言語処理	言語理論とオートマトン
学	知能ロボット	人工知能
	音声・画像処理	パターン認識論、ディジタル信号処理
	リモートセンシング	パターン認識論

表3-3 後続科目一覧表

	選択科目名	後続科目
	プログラミング I	プログラミングⅡ,アルゴリズムとデータ構造,
		数値解析、ソフトウェア工学
学	プログラミングⅡ	アルゴリズムとデータ構造,ソフトウェア工学
科	 ソフトウェア基礎 I	ソフトウェア基礎Ⅱ, アルゴリズムとデータ構造,
共		オペレーティングシステム、計算機アーキテクチ
通		+
	ソフトウェア基礎Ⅱ	アルゴリズムとデータ構造,オペレーティングシ
		ステム、ソフトウェア工学、計算機アーキテクチ
		ャ、コンパイラ構成論
	ソフトウェア基礎演習 I	ソフトウェア基礎演習Ⅱ
	ソフトウェア基礎演習Ⅱ	
	コンピュータ I	コンピュータⅡ、計算機アーキテクチャ
	コンピュータⅡ	計算機アーキテクチャ
	線形代数学	情報理論,システム理論,数理計画と最適化,数
		值解析

アルゴリズムとデータ構造	アルゴリズム論, データベース
オペレーティングシステム	並列分散システム
 計算機アーキテクチャ	 並列分散システム
情報工学実験 I	情報工学実験 II, III, IV
情報工学実験Ⅱ	情報工学実験Ⅲ, IV
情報工学実験Ⅲ	情報工学実験IV
年	
情報工学実験IV	
プロジェクト・デザインI	プロジェクト・デザイン Ⅱ
プロジェクト・デザインⅡ	
情報社会と情報倫理	
情報数学 I	情報数学Ⅱ,情報理論,言語理論とオートマトアルゴリズム論,コンパイラ構成論,人工知能ファジイ理論,パターン認識論,ニューラルネト,知識工学,自然言語処理,知能ロボット,声・画像処理,リモートセンシング
	人工知能,ファジイ理論,パターン認識論, ニューラルネット,知識工学,自然言語処理, 知能ロボット,音声・ 画像処理,リモートセ シング
工業数学 I	システム理論、パターン認識論、音声・画像処
	リモートセンシング、回路理論、ニューラルネ
	ト,確率及び統計
ディジタル回路	ディジタルシステム設計, CAD
グラフとネット	
ディジタルシステム設計	
言語理論とオートマトン	コンパイラ構成論,自然言語処理,パターン認 論
工業数学Ⅱ	ディジタル信号処理,ディジタル制御
	音声・画像処理,回路理論
 工業数学 Ⅲ	
確率及び統計	情報理論,ディジタル信号処理,ディジタル制
	シミュレーション、パターン認識論、
	音声・画像処理、リモートセンシング
システム理論	ファジィ理論
数理計画と最適化	シミュレーション
ディジタル信号処理	ディジタル制御,音声・画像処理
ディジタル制御論	
数値解析	シミュレーション
<u> プログラミングⅢ</u>	
<u> </u>	
プログラミングIV	
<u> </u>	
『『新光記』 情報英語Ⅱ	
型型型型型型型型型型型型型型型型型型型型型型型型型型型型型型型型型型型型型	
計算機文化論	
情報創造工学	

	インターネット・ソフトウェア	
	環境情報工学	
	情報社会と情報倫理	
	情報科教育法A	情報科教育法B,総合演習D
	情報科教育法B	
シ	アルゴリズム論	
ス	情報ネットワーク I	並列分散システム,情報ネットワーク I
テ	情報ネットワークⅡ	
	ソフトウェア工学	
情	データベース	
報	ヒューマンインタフェース	
	並列分散システム	
学	シミュレーション	
	コンパイラ構成論	
	CAD	
	人工知能	知識工学、知能ロボット
	ファジイ理論	
知	パターン認識論	音声・画像処理,リモートセンシング
能	ニューラルネット	
情	知識工学	
報一	自然言語処理	
工	知能ロボット	
学	音声・画像処理	
	リモートセンシング	

3.3 専門科目分類表

表3-4は、各科目を分類したものである.総合情報コース及び計算工学コースにおいて、それぞれの修了要件で示されている各分類の必要単位数は異なるので注意が必要である.

表3-4 専門科目分類表

分 類	科目
情 報 技 術 (4科 目)	ソフトウエア基礎 I , 同 II , ソフトウエア基礎演習 I , 同 II
プロジェクト・デ゛サ゛イン (2科目)	プロジェクト・デザイン I , 同 II
研究·実験	卒業研究, セミナー, 情報工学実験 I ~Ⅳ
数学基礎	線形代数学,情報数学Ⅰ,同Ⅱ,確率及び統計, 工業数学Ⅰ~Ⅲ
情報工学コア	アルゴリズムとデータ構造, コンピュータ I, 同 II, 計算機アーキテクチャ, 情報ネットワーク I, プログラミング I, 同 II, オペレーティングシステム
コンピュータ システム系	ディジタル回路,ディジタルシステム設計, CAD, 並列分散システム, コンパイラ構成論, 言語理論とオートマトン
情報通信系	ディジタル信号処理,情報理論,情報ネットワークⅡ,インターネット・ソフトウェア
コンピュータ応用系	ソフトウェア工学, データベース, 音声・画像処理, ディジタル制御論, 知識工学, 人工知能, 知能ロボット, システム理論, ファジイ理論, リモートセンシング, 自然言語処理, パターン認識論, ヒューマンインターフェイス
基 礎 境 界	回路理論, アルゴリズム論, 数値解析, 数理計画と最適化, シミュレーション, ニューラルネット, グラフとネット, プログラミングⅢ, 同Ⅳ
情報工学関連	情報英語 I,同 II,教育情報工学,情報創造工学,計算機文化論,環境情報科学,情報社会と情報倫理,特別講義 I ~Ⅲ,特別講義 IV ~ VI,インターンシップ I ~Ⅲ,情報工学実践 I ~ IV,情報科教育法 A,同 B,総合演習 D,工学部共通科目
専門 (自由)	他学科及び他学部の専門教育における提供科目

3.4 シラバスの利用

科目毎にシラバスが準備されている.シラバスには、科目名、使用テキスト、達成目標、15回分の講義内容、評価法が記載されている.シラバスは講義の最初の時間に配付されるので、科目の達成目標や概要を理解することが出来る.例として、以下に「アルゴリズムとデータ構造」のシラバスを示す.なお、学科Webページに最新のシラバスの一覧がリンクされているので、履修計画に役立てること.

・シラバス(例)

科目番号	情203	科目名	アルゴリズムとデータ構造				
必修選択の別	必修	単位数	2単位(2-0)				
開講学期	二年前期	時限・教室	月曜日 ・ 1時限目 ・				
担当者	名嘉村盛和(教官室:工1-507)	連絡先	morikazu@ie.u-ryukyu.ac.jp_•				
オフィスアワー	火曜日(10:30-12:00), 金曜日(15:30-17:0	00)の他,随時メ	ールでも受付可能				
講義内容と方法							
教科書	渡邊敏正「データ構造と基本アルゴリズム	、」, 共立出版					
参考書	石畑清 「アルゴリズムとデータ構造」岩 Cormen, Leiserson and Rivest: Introdu		thms, MIT Press, 1994.				
達成目標	○基本データ構造、基本アルゴリズムを理 ○基本アルゴリズムをプログラムとして関 ○新たな基本的な問題に対するアルゴリフ	₹装し実行できる	こと(実践性)				
評価基準と評価方法	達成目標に到達したかどうかを課題(20%),中間試験(40%),期末試験(40%)によって評価する。専門性は主として試験,実践性は課題,創造性は試験及び課題によって評価を行う。全ての達成目標に到達したものについて,総合点60%以上のものを可,70%以上を良,80%以上を優とする。						
履修条件	プログラミングI, IIを履修していること	•					
	授業	計画					
回数 (日付)		内 容					
第1回(4/12)	アルゴリズム設計の概要(pdf)						
第2回(4/19)	コンピュータとプログラム(pdf)						
第3回()	基本データ構造(リスト) (pdf)						
第4回 ()	基本データ構造(キュー, スタック)(pdf)						
第5回()	ヒープ (pdf)_						
第6回 ()	演習						
第7回()	中間試験						
第8回 ()	整列 (瓶ソート,選択法,挿入法) (pdf)						
第9回 ()	整列(クイックソート,マージソート,ヒー	·プソート)(pdf)	<u>) </u>				
第10回()	第10回 () 探索 (2分探索木) (pdf)						
第11回()	<u>探索(ハッシュ法)(pdf)</u>						
第12回 ()	ブラフの基本アルゴリズム(グラフの定義,表現) (pdf)_						
第13回 ()	ブラフの基本アルゴリズム(幅優先探索,深さ優先探索)(pdf)						
第14回()	演習						
第15回 ()	期末試験						
備考	URL: http://www.ads.ie.u-ryukyu.ac.	jp/~morikazu/Cl	ass/Algorithm1/				

4. 総合情報コース

情報工学科提供科目を4年間で全て履修することは時間的に不可能であり、卒業要件でも要求していない.したがって、学生は、卒業後の進路、適正等を考慮し系統的に履修計画を立てる必要がある.本学科では、総合情報コースと計算工学コースを設置している.学生は2年前期終了時点でどちらかのコースに登録する必要がある.それぞれのコースで必修科目が設定されているが、計算工学コースでのみ必修となっている科目が一年次を対象に開講されているので、注意が必要である.また、履修コース登録、および履修コース変更については、情報工学科履修規程を参照すること.

本章は、総合情報コースの学習・教育目標及び履修計画、修了要件について説明する. 計算工学コースについては、次章を参照のこと.

4.1 学習・教育目標

総合情報コースは、現代社会の様々な分野における情報技術の総合的資質を備えた人材を育成するコースで、以下に示す学習・教育目標を掲げている.

これらの<u>学習・教育目標は各講義における達成目標に展開されるため、学生は講義の履修を通して目標を達成していく</u>ことになる。当然であるが、各講義では<u>達成目標をクリアしないと単位は取得できない</u>。最終的には総合情報コースの修了要件を満足することで全ての学習・教育目標を達成することになる。講義の達成目標はシラバスに記載されているので、しっかり理解して講義に臨むこと。

- (A) 自ら積極的に考え自ら意欲的に行動することができる(積極性)
 - (A-1) 設定された環境のもとで、自ら考え行動することができる.
 - (A-2) 自由な発想に基づき、自ら考え積極的に行動することができる.
- (B) 社会と密接に連携し、学習研究成果を社会に還元し、社会に対する責任を果たすことができる(社会性)
 - (B-1) 技術者として社会に対する責任を自覚することができる.
 - (B-2) 社会と連携し、学習研究成果を社会に還元することができる.
 - (B-3) 現代社会の様々な分野において情報技術を応用することができる.
- (C) 国際的に通用するコミュニケーション能力を身に付け、将来、諸外国との積極的な交流を 行うことができる(コミュニケーション能力と国際性)
 - (C-1) 英語を中心とした外国語によるコミュニケーション能力を身に付ける.
 - (C-2) 知識, 構想等を図, 文章等で表現する能力, 及びプレゼンテーション能力を身に付ける.
 - (C-3) プロジェクトを円滑に進めるためのチームワーク力と協調性を身に付ける.
- (D) 論理的思考の基礎技法として数学を応用することができる(論理性)
 - (D-1) 工学に必要な基本的な数学の能力を身につける.
- (E) 幅広い教養と柔軟な思考力を有し、日進月歩の情報技術革新に対処することができる(柔軟性)
 - (E-1) 社会科学,人文科学,自然科学の広い領域の教養を身につける.
 - (E-2) 柔軟で総合的な思考力を身につけ、情報革新に対処できる.
- (F) 情報利用技術を自在に使いこなすことができる(実践性)
 - (F-1) 情報技術の基礎知識と技法を身につける.
 - (F-2) プログラミング能力を身につける.
 - (F-3) システムプログラムに関する基礎知識を身につける.
- (G) 現在の情報技術の適用範囲や限界を良く理解し、将来、技術者・研究者として、適切に課題を設定するとともに、新しい情報システムを設計・開発することができる(創造性)
 - (G-1) ソフトウェアとアルゴリズムに関し、その適用範囲を理解して、より有効なものを考案できる.

- (G-2) コンピュータの基本プログラムに関する基本設計能力を身につける.
- (G-3) コンピュータのハードウエアに関する基本的設計能力を身につける.
- (H) 計算機システム工学, 情報通信工学, ソフトウエア工学, 知能情報処理工学, 人工知能工学, 知的制御工学の各分野における専門的な深い知識を身に付け, 専門用語が示すものの具体的内容及びその有効性, 適用範囲を説明することができる(専門性)
 - (H-1) 情報工学分野において、専門用語が示すものの具体的内容及びその有効性、適用 範囲を理解する.
 - (H-2) 情報工学およびその周辺分野における種々のテーマについて、専門用語が示すものの具体的内容及びその有効性、適用範囲を理解する.

4.2 履修計画と修了要件

総合情報コースは、卒業後、社会の様々な分野における情報技術の専門職を目指した人材を育成するコースである。本コースでは、情報工学の基礎知識・技術を修得するとともに、産業社会学原論 I を必修、産業社会学原論 II 及び情報創造工学を選択必修とすることにより情報技術と社会との関わりを理解する。本コースの情報工学分野の必修科目は必要最小限の基本科目とし、選択の幅を広げたのが特徴である。したがって、情報工学分野の幅広い知識と技術の修得、あるいは他分野の知識の修得を念頭に置きながら選択科目の履修計画を立てることが望まれる。例えば、専門科目分類表における、コンピュータ応用系、基礎境界、情報工学関連科目は幅広い知識と技術を得るために有用であると考えられる。また、工学部他学科・他学部の提供する専門科目(専門科目(自由))の履修も情報技術の応用を考える上で効果的である。

情報工学科では、総合情報コースまたは計算工学コースのうち、登録しているコースの修了要件を満たすことが卒業要件となる。総合情報コースの修学計画を立てる際には、「総合情報コース履修計画表」が参考になる。不明な点がある場合には、速やかに年次指導教員に確認を取ること。以下に総合情報コースの修了要件を示す。

総合情報コース修了要件

合計125単位以上

- 注1) 専門科目は、情報工学科が提供する科目及び工学部共通・基礎科目で構成される。 (講座別授業科目分類表参照)
- 注2) 専門科目(自由)とは、他学科または他学部の提供する科目(教職に関する科目を含む)のことであり、共通教育および専門基礎科目は含まない。
- 注3) 共通教育科目の情報科学演習は卒業要件の総単位数に含めることはできない。
- 注4) 専門基礎科目の8単位を超えて修得した単位を,人文系科目から琉大特色科目までの16単位に含めることはできない。
- 注5) 微分積分学入門Ⅰ,同Ⅱと物理学入門Ⅰ,同Ⅲの履修に際しては指導教員の承認を受けること。
- 注6) 微分積分学STIと微分積分学入門Iの単位の両方を、同時に卒業要件の総単位数に含めることはできない。同 II についても同様である。
- 注7) 物理学Ⅰと物理学入門Ⅰの単位の両方を、同時に卒業要件の総単位数に含めることはできない。同Ⅱについても

同様である。

- 注8) 外国人学生の場合には、琉球大学共通教育等履修規程第8条により次の特例を認める。
- (1) 共通教育の人文、社会、自然、総合、琉大特色科目のうち4単位まで、日本事情科目で読み替えることができる。
- (2) 英語以外の一つの外国語(4単位以上)を日本語科目で読み替えることができる。
- 注9) 入学年次の便覧に記載されていない科目の取扱い及び履修計画に関しては、指導教員に相談すること。

総合情報コース 履修計画表

		人 腹惨計画衣	-	T	le.	1	_			
	学年	13	.	2:		3年		4年		ht / m L
<u> </u>	学期	1	2	2 3	·	5	6	7	8卒業要件	<u>年(以上</u>
11	教養領域				健康運動系科目	か てい り			2	_
共_					系科目(2) 社会系科目(2) 自然	然糸科目			16	
通	総合領域									_
教	±± ±4 4= 1 b	I W 44	T	14	日本語表現法入門		1		2	_
育	基幹領域	大学英語	英語科目	英語科目					8(12)	
Щ.		M 11 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	I w 13 44 13 37	Ide am we a	第2外国語		•		4(0)	_
	門基礎教育	微分積分学ST I		物理学 I	物理学Ⅱ				8	_
 	情報技術	ソフトウェア基礎 I	ソフトウェア基礎 I							
			ソフトウェア基礎演習 I						6	_
ス		プロジェクト・デザインI		プロジェクト・デザインⅡ					4	_
必				情報工学実験 [情報工学実験Ⅱ	情報工学実験Ⅲ	情報工学実験Ⅳ	卒業研究(6)		
修	*							セミナー(2)	14	_
	数学基礎	線形代数学(必)	工業数学I	工業数学Ⅱ						
		情報数学Ⅰ	情報数学Ⅱ	確率及び統計						
	情報工学コ			アルゴリズムとデータ構造(必)						
	ア	プログラミング I (必)	プログラミング Ⅱ(必)		オペレーティングシステム(必)					
	,		情報ネットワークⅠ							
	コンピュータ				CAD	ディジタルシステム設計	並列分散システム			
	システム系			言語理論とオートマトン			コンパイラ構成論			
学	情報通信系			情報ネットワークⅡ	情報理論	ディジタル信号処理				
科	一大田四大田					インターネットソフトウェア				
捍				システム理論	人工知能	ソフトウェアエ学	音声画像処理			
提 供 科	コンピュータ				ファジィ理論	データベース		リモートセンシング		
科目	応用系					ヒューマンインターフェース	知能ロボット			
目して						パターン認識論	自然言語処理			
選	2					アルゴリズム論	数値解析			
振	基礎境界					数理計画と最適化	シミュレーション			
1 1"	`					ニューラルネット				
						プログラミングⅢ		情報英語Ⅱ		
							教育情報工学			
							情報創造工学	計算機文化論		
	情報工学							環境情報科学		
	開報工子 関連						情報科教育法A	情報科教育法B		
	月连							総合演習D		
							- 産業社会学原論 I・Ⅱ			
						特別講弟	【~Ⅲ(1) 特別講義Ⅳ~	VI (2)		
					イン	ターンシップ [~Ⅲ(1)				
1 1	専門(自由)			他学科	及び他学部の専門教育における	提供科目			61	125

*「コース選択」内の(必)は、「コース必修」科目である.

ピンクは必修科目

青はシステム情報系科目 オレンジは知能情報系科目

5. 計算工学コース

情報工学科提供科目を4年間で全て履修することは時間的に不可能であり、卒業要件でも要求していない.したがって、学生は、卒業後の進路、適正等を考慮し系統的に履修計画を立てる必要がある.本学科では、総合情報コースと計算工学コースを設置している。学生は2年前期終了時点でどちらかのコースに登録する必要がある.それぞれのコースで必修科目が設定されているが、計算工学コースでのみ必修となっている科目が一年次を対象に開講されているので、注意が必要である.また、履修コース登録、および履修コース変更については、情報工学科履修規程を参照すること.

本章は、計算工学コースの学習・教育目標及び履修計画、修了要件について説明する.総合情報コースについては、前章を参照のこと.

5.1 学習·教育目標

計算工学コースは,より深い計算工学の知識と技術を備えた人材を育成するコースで,以下に示す 学習・教育目標を掲げている.

各学習・教育目標は講義における達成目標に細分化されるため、学生は講義の履修を通して目標を達成していくことになる。最終的には計算工学コースの修了要件を満足することで全ての学習・教育目標を達成することになる。講義の達成目標はシラバスに記載されているので、しっかり理解して講義に臨むこと。

- (A) 自ら積極的に考え自ら意欲的に行動することができる (積極性)
 - (A-1) 設定された環境のもとで、自ら考え行動することができる.
 - (A-2) 自由な発想に基づき、自ら考え積極的に行動することができる.
- (B) 社会と密接に連携し、学習研究成果を社会に還元し、社会に対する責任を果たすことができる(社会性)
 - (B-1) 技術者として社会に対する責任を自覚することができる.
 - (B-2) 社会と連携し、学習研究成果を社会に還元することができる.
- (C) 国際的に通用するコミュニケーション能力を身に付け、将来、諸外国との積極的な交流を 行うことができる(コミュニケーション能力と国際性)
 - (C-1) 英語を中心とした外国語によるコミュニケーション能力を身に付ける.
 - (C-2) 知識, 構想等を図, 文章等で表現する能力, 及びプレゼンテーション能力を身に付ける.
 - (C-3) プロジェクトを円滑に進めるためのチームワーク力と協調性を身に付ける.
- (D) 論理的思考の基礎技法として数学を応用することができる(論理性)
 - (D-1) 工学に必要な基本的な数学の能力を身につける.
 - (D-2) 工学の分野で応用される数学の能力を身につける.
 - (D-3) 情報工学の分野で応用される数学の能力を身につける.
- (E) 幅広い教養と柔軟な思考力を有し、日進月歩の情報技術革新に対処することができる(柔軟性)
 - (E-1) 社会科学, 人文科学, 自然科学の広い領域の教養を身につける.
 - (E-2) 柔軟で総合的な思考力を身につけ、情報革新に対処できる.
- (F) 情報利用技術を自在に使いこなすことができる(実践性)
 - (F-1) 情報技術の基礎知識と技法を身につける.
 - (F-2) プログラミング能力を身につける.
 - (F-3) システムプログラムに関する基礎知識を身につける.
- (G) 現在の情報技術の適用範囲や限界を良く理解し、将来、技術者・研究者として、適切に課題を設定するとともに、新しい情報システムを設計・開発することができる(創造性)
 - (G-1) ソフトウエアとアルゴリズムに関し、その適用範囲を理解して、より有効なものを考案できる.
 - (G-2) コンピュータの基本プログラムに関する基本設計能力を身につける.

- (G-3) コンピュータのハードウエアに関する基本的設計能力を身につける.
- (H) 計算機システム工学,情報通信工学,ソフトウエア工学,知能情報処理工学,人工知能工学,知的制御工学の各分野における専門的な深い知識を身に付け,専門用語が示すものの具体的内容及びその有効性,適用範囲を説明することができる(専門性)
 - (H-1) 情報工学分野において、専門用語が示すものの具体的内容及びその有効性、適用 範囲を理解する.
 - (H-2) コンピュータシステム系,情報通信系,コンピュータ応用系のうちの一つの領域において,専門用語が示すものの具体的内容及びその有効性,適用範囲を理解する.
 - (H-3) 情報工学およびその周辺分野における種々のテーマについて、専門用語が示すものの具体的内容及びその有効性、適用範囲を理解する.

5.2 履修計画と修了要件

計算工学コースでは、より深い計算工学の知識と技術を備えた人材を育成することを目的とする. そのため、工学の基礎となる数学基礎の全科目が必修科目となり、また、情報工学コアの情報ネットワークIも必修となっている。選択の幅は総合情報コースと比較して狭くなっているが、コンピュータシステム系、情報通信系、コンピュータ応用系、基礎境界、情報工学関連の分野から系統立てて履修することが望まれる。その際、第3章の表3-2、3-3にまとめられている先修科目、後続科目が参考になる。なお、専門基礎教育科目は、(入門科目ではなく)微分積分学ST及び物理学を履修する必要がある。本コースは日本技術者教育認定機構(http://www.jabee.org/)による「情報および情報処理技術関連分野」の認定プログラムである。本コースを修了すると、技術士第一次試験が免除され、大学卒業と同時に修習技術者の資格を得ることができ、申請により技術士補の資格が得られる。修習技術者及び技術士補については、以下のWEBページを参照のこと。

社団法人 日本技術士会 http://www.engineer.or.jp/

情報工学科では、総合情報コースまたは計算工学コースのうち、登録しているコースの修了要件を満たすことが卒業要件となる.計算工学コースの修学計画を建てる際には、計算工学コース履修計画表が参考になる.不明な点がある場合には、速やかに年次指導教員に確認を取ること.

計算工学コース修了要件

ただし、コンピュータシステム系、情報通信系、コンピュータ応用系の中のどれか一つの領域から 8単位以上取得していること。

合計125単位以上

31単位以上

注1)専門科目は,情報工学科が提供する科目及び工学部共通・基礎科目で構成される。(講座別授業科目分類表参照)

20単位

- 注2) 専門科目(自由)とは、他学科または他学部の提供する科目(教職に関する科目を含む)のことであり、共通教育および専門基礎科目は含まない。
- 注3) 共通教育科目の情報科学演習は卒業要件の総単位数に含めることはできない。

コンピュータシステム系

コンピュータ応用系

専門科目(自由)

情報工学関連(情報社会と情報倫理を除く)

情報通信系

基礎境界

以上

- 注4) 専門基礎科目の8単位を超えて修得した単位を、人文系科目から琉大特色科目までの16単位に含めることはできない。
- 注5) 微分積分学入門Ⅰ,同Ⅱと物理学入門Ⅰ,同Ⅲは卒業要件の総単位数に含めることはできない。
- 注6) 外国人学生の場合には、琉球大学共通教育等履修規程第8条により次の特例を認める。
- (1) 共通教育の人文, 社会, 自然, 総合, 琉大特色科目のうち4単位まで, 日本事情科目で読み替えることができる。
- (2) 英語以外の一つの外国語(4単位以上)を日本語科目で読み替えることができる。
- 注7) 入学年次の便覧に記載されていない科目の取扱い及び履修計画に関しては、指導教員に相談すること。

辻質エヴュニュ 屋板計画主

	学年	ス <u>履修計画表</u> 	 年	2:	——————————— 年	3	年	4年		
	学期	1	2	3	4	5	6	7	8卒	業要件
	教養領域			人文	健康運動系科目 (系科目(2) 社会系科目(2)自然系科目				2
	総合領域				総合科目・琉大特色科					16
拉	****	1 W ## ==	144	144	日本語表現法入門	<u> </u>				2
	基幹領域	大学英語	英語科目	英語科目	#					8(12)
	m サ t t t t t t t t t t t t t t t t t t	wh ハ tie ハ 쓴 o = ፣	wh ハ キキ ハ ᄴ o = =	#LTD 24 T	第2外国語					4(0)
界	門基礎教育	微分積分学STI	微分積分学STⅡ	物理学Ⅰ	物理学Ⅱ					8
	情報技術	ソフトウェア基礎 I ソフトウェア基礎演習 I	ソフトウェア基礎Ⅱ	<u> </u>						•
			ソフトウェア基礎演習 🏾							6
⊐	修学計画	プロジェクト・デザイン [プロジェクト・デザイン Ⅱ 情報工学実験 I	桂却于当中段 1	桂 4 7 尚 9 8 7 6 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		☆米II中(c)		4
1	研究•実験			▋旧報工子夫級Ⅰ	情報工学実験Ⅱ	情報工学実験Ⅲ	情報工学実験Ⅳ	卒業研究(6) セミナー(2)		14
ス		┃ ┃線形代数学		 工業数学 Ⅱ				セミナー(2)		14
必		情報数学 I	┃┴未数子↓ 情報数学Ⅱ	工来数子Ⅱ 確率及び統計						10
修			□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□	唯平及い杭計 アルゴリズムとデータ構造	1. 台州マーナニカエト					12
	情報工学コ	コンピュータ I プログラミング I	プログラミング I	アルコリスムとナーダ博垣	計算機ドーキナクテヤ オペレーティングシステム					
	ア	プログラミング 1	情報ネットワークⅠ		オペレーティングシステム					16
_	コンピュータ		IH TIX 1 O D I	ディジタル回路	CAD	ディジタルシステム設計	並列分散システム			10
	システム系			言語理論とオートマトン	0/10	, 12), 2 X , 4 K II	コンパイラ構成論			
				情報ネットワークⅡ	情報理論	ディジタル信号処理	- 1 > 1777 Annu			
	情報通信系			HI IN I ZI Z Z Z	15 IN Thin	インターネットソフトウェア				
				システム理論	人工知能	ソフトウェア工学	音声画像処理			
	コンピュータ				ファジィ理論	データベース	ディジタル制御論	リモートセンシング		
	応用系						知能ロボット			
						パターン認識論	自然言語処理			
コ						アルゴリズム論	数値解析			
	基礎境界					数理計画と最適化	シミュレーション			
ス						ニューラルネット				
選択						プログラミングⅢ	プログラミンⅣ	情報英語Ⅱ		
択	₹						情報英語 I	教育情報工学		
							情報創造工学	計算機文化論		
	┃ ┃ 情報工学						情報社会と情報倫理(必修)	環境情報科学		
	情報工字 関連							情報科教育法B		
	月建							総合演習D		
							· 産業社会学原論 I • Ⅱ			
							義Ⅰ~Ⅲ(1) 特別講義Ⅳ~Ⅴ	TI (2)		
	専門(自由)				4及び他学部の専門教育に					33
朝	門必修単位	13	13	9.5	5.5	1.5	3.5	4	4	

*「コース選択」内の(必)は、「コース必修」科目である. ピンク は必修科目

青 はシステム情報系科目 は知能情報系科目

6. 高等学校教諭免許(情報)取得のための履修計画

総合情報コース及び計算工学コースのどちらに属していても,高等学校教諭1種免許状(情報)を受ける場合は,教科に関する科目,教職に関する科目,教科又は教職に関する科目から必要単位を取得する必要がある(表6-1).また,教育職員免許法施行規則4条及び同規則66条の5により「日本国憲法」,「体育」,「外国語コミュニケーション」,「情報機器の操作」の必要単位を修得しなければならない.教職に関する科目(総合演習D,情報科教育法A,Bを除く)は教育学部で提供される.

なお、教科に関する科目、教職に関する科目、教科または教職に関する科目等、高等学校教員免許状(情報)を受けるための詳細については、工学部学務係で配布される「教員免許状収得の手引(高校-情報)」を参照すること.

免許の種類	基礎資格	教科関係	教職関係	教科または教職
高1種(情報)	学士(工学)の	2 0	2 7	1 6
	学位を有すること			

表6-1 高等学校教諭1種免許(情報)取得に要する単位数

また、大学院(博士前期課程)に進学した者で、高等学校教諭1種免許状(情報)を取得している者、 又は1種免許に必要な単位を取得している者は、表9-1にある科目から表6-2の通り単位を取得し、 なおかつ専修免許状の基礎資格を満たすことにより専修免許を取得することができる.

※免許状の基礎資格: 専修免許状については、修士の学位を有すること(短大を除く大学の専攻科又は 大学院の課程に1年以上在学し、30単位以上修得した場合を含む)

免許の種類	基礎資格	取得科目及び単位数
高専免(情報)	修士(工学)の	情報工学専攻提供科目から24単位以上
	学位を有すること	

表6-2 高等学校教諭専修免許(情報)取得に要する単位数

なお、教職関連科目の履修については、提供年次の変更等があるので、その都度、年次指導教員に 相談しながら履修計画を立てること.

7. 卒業研究

7.1 卒業研究の目的

卒業研究は最終学年の前後期を通して実施・修得しなければならない必修科目である.しかし,他の専門科目とはかなり性格の異なるものである.つまり,他の専門科目は講義を受講することによって単位を取得するという受け身的なものであるのに対し,卒業研究では,他の専門科目で修得した基礎知識を基に,指導教員の指導を受けながら専門的な課題を解決するため各自が積極的に研究計画を立案し実行しなければならない.すなわち,卒業研究は,将来職場で直面するであろう様々な課題を解決していく上での基本的な方法・経験を体得させることを目的としており,大学4年間の総仕上げとしての意味を持つ重要な科目として位置づけられている.従って,何よりも研究課題に対する,学生自身の自発的かつ積極的な取組みが最も必要である.

7.2 卒業研究を登録するための条件

充実した卒業研究ができるように、3年次後期の12月頃に卒業研究着手条件(後述)を満たしている学生は、希望により調整された指導教員へ配属され、卒業研究に着手する。この着手時点から、卒業研究の登録が受け付けられる翌年4月までの期間は、卒業研究準備期間であり、各指導教員の研究テーマに関連したセミナーが行なわれたり、準備的学習・課題を指示されたり、実際に卒業研究を進めている4年生あるいは院生から直接指導を受けたりする。卒業研究の正式登録は4年次の4月の時点で行われるが、この時点で卒業研究登録条件(後述)を満たしている者のみが登録を受け付けられ、既に着手した卒業研究を継続することができる。以下に、卒業研究着手条件と登録条件を示す。

[I] 卒業研究着手条件

3年次後期で卒業研究に着手するためには、次の2項目の条件を満たさなければならない。

- (1) 3年次後期を含め6個学期在学の学生については、卒業研究着手時点までの取得単位数が85以上であり、取得単位数とその時点の登録単位数の合計が105以上であること。また、3年後期(年度学期)を含め5個学期在学の学生については、取得単位数が70以上であり、取得単位数と登録単位数の合計が90以上であること。
- (2) 原則として、3年後期までの専門必修科目のすべての単位を取得または登録していること.

〔II〕卒業研究登録条件

4年次(6個学期在学後)または5個学期在学後の4月時点で卒業研究を登録するためには、次の2項目の条件を満たしていなければならない.

- (1) 6個学期在学の学生については、取得単位数が105以上であること. また、5個学期在学の学生については、取得単位数が90以上であること.
- (2) 原則として、3年後期までの専門必修科目のすべての単位を取得していること、

7.3 研究発表及び卒業論文

卒業研究では、研究内容に対する評価を受ける場としての中間発表と最終発表がある.また、最終発表を行う前に卒業論文を作成し、提出しなければならない.

中間発表は11月頃に行なわれる.各自10分程度の持ち時間で、これまで行って来た研究の経過及びこれからどのように研究を進めていくかについて発表し、質疑応答が行なわれる.最終発表は2月末頃に行なわれる.最終発表では、中間発表と同様10分程度の持ち時間でこの1年間に行って来た各自の研究成果をまとめて発表する.また中間発表、最終発表のいずれの場合も、その発表の概要を著した予稿を作成しなければならない.卒業論文は、各自が1年間行って来た卒業研究の成果をまとめた論文であり、最終発表に先だって作成し指導教員へ提出しなければならない.

7.4 卒業研究の実施時間と単位認定

卒業研究は、その単位を認定するために、定められた学習時間数を満たすことが必要である. すなわち、卒業研究は、研究室あるいは指導教員が直接指導できる場所において、学習・研究を実施した正味時間が450時間を超えていることが単位取得の前提条件である. なお、この学習時間を確認するための記録を、なんらかの形式で作成しておくことが必要である. 詳しくは指導教員の指示によること.

また、卒業研究やセミナーを通して、学習目標の各項目についてその達成度の評価を指導教員が行い、成績が決定される.評価項目については、シラバスまたは情報工学科履修規程に記載されるので、確認しておくこと.

7.5 研究課題を選択するための諸注意

卒業研究登録に関する説明会が3年後期の11月頃に行なわれる. そのとき,各教員より卒業研究課題の説明が行なわれるので,それにより希望する研究課題をいくつかにしばり,11月頃に行なわれる4年生の卒業研究中間発表を聴講したり,直接教員に会って説明を受けたりして各自の希望する指導教員を選択するとよい. また研究課題を選択するには,各自がこれまで主にどの専門分野の科目を修得してきたかを充分考慮することが望ましい. さらに,本学大学院修士課程に進学を希望する学生は,卒業研究と修士課程での研究がつながるのが理想的であると思われるので,この点をも考慮して研究課題を選択すべきであろう. 教員が指導できる学生の数には制限があるので,制限数以上の学生が1人の教員を希望したときには調整が必要であり,希望する教員に配属されないこともある.

8. 各種資格

この章では、情報工学科に関連した資格として、通産省の情報処理技術者試験、シスコ社のCCNA、オラクル社のオラクルマスターを紹介する.

8.1 情報処理技術者試験(http://www.jitec.jp)

情報処理技術者試験は、「情報処理の促進に関する法律」第6条に基づく国家試験である。情報処理技術者試験は、昭和44年に第一種情報処理技術者試験と第二種情報処理技術者試験の2区分でスタートした。その後、昭和46年に特種情報処理技術者試験を追加し、昭和61年には情報処理システムの監査を行う技術者を評価する情報処理システム監査技術者試験を,昭和63年にはオンライン技術者を評価するオンライン情報処理技術者試験を追加している。平成6年に試験制度の見直しがあり、11区分に変更され、平成12年に試験制度の見直しがあり、現在のようになっている。

情報処理試験に合格すれば、就職活動時及び就職後においても大変有利になるため早期の取得を強 <u>く勧める</u>. 基本情報技術者試験は2年次終了までに、ソフトウエア開発技術者試験は3年次終了まで に合格することを目標として欲しい.

<春期試験>

試験の区分:

ITパスポート試験

基本情報技術者試験

応用情報技術者試験

プロジェクトマネージャ試験

データベーススペシャリスト試験

エンベデッドシステムシステムスペシャリスト試験

情報セキュリティスペシャリスト試験

システム監査技術者試験

<秋期試験>

試験の区分:

ITパスポート試験

基本情報技術者試験

応用情報技術者試験

ITストラテジスト試験

システムアーキテクト試験

ネットワークスペシャリスト試験

ITサービスマネージャ試験

表8-1 情報処理技術関係の試験の一覧

試験の名称	対 象 者 像	試験実施
ITパスポート試験	職業人が共通に備えておくべき情報技術に関する基礎的な知識をもち、情報技術に携わる業務に就くか、担当業務に対して情報技術を活用していこうとする者	春秋
基本情報技術者試験	高度 IT 人材となるために必要な基本的知識・技能をもち, 実践的な活用能力を身に付けた者	春秋
応用情報技術者試験	高度 IT 人材となるために必要な応用的知識・技能をもち, 高度IT 人材としての方向性を確立した者	春秋
プロジェクトマネージャ試験	高度 IT 人材として確立した専門分野をもち、システム開発 プロジェクトの責任者として、プロジェクト計画を立案し、 必要となる要員や資源を確保し、計画した予算、納期、品質 の達成について責任をもってプロジェクトを管理・運営する	春
データベーススペシャリスト 試験	高度 IT 人材として確立した専門分野をもち、データベースに関係する固有技術を活用し、最適な情報システム基盤の企画・要件定義・開発・運用・保守において中心的な役割を果たすとともに、固有技術の専門家として、情報システムの企画・要件定義・開発・運用・保守への技術支援を行う者	春
エンベデッドシステムシステ ムスペシャリスト試験	高度 IT 人材として確立した専門分野をもち、組込みシステム開発に関係する広い知識や技能を活用し、最適な組込みシステム開発基盤の構築や組込みシステムの設計・構築・製造を主導的に行う者	春
情報セキュリティスペシャリ スト試験	高度 IT 人材として確立した専門分野をもち、情報システムの企画・要件定義・開発・運用・保守において、情報セキュリティポリシに準拠してセキュリティ機能の実現を支援し、又は情報システム基盤を整備し、情報セキュリティ技術の専門家として情報セキュリティ管理を支援する者	春秋
システム監査技術者試験	高度 IT 人材として確立した専門分野をもち、被監査対象から独立した立場で、情報システムや組込みシステムに関するリスク及びコントロールを総合的に点検、評価し、監査結果をトップマネジメントなどに報告し、改善を勧告する者	春
ITストラテジスト試験	高度 IT 人材として確立した専門分野をもち、企業の経営戦略に基づいて、ビジネスモデルや企業活動における特定のプロセスについて、情報技術を活用して改革・高度化・最適化するための基本戦略を策定・提案・推進する者。また、組込みシステムの企画及び開発を統括し、新たな価値を実現するための基本戦略を策定・提案・推進する者	秋

システムアーキテクト試験	高度 IT 人材として確立した専門分野をもち、IT ストラテジストによる提案を受けて、情報システム又は組込みシステムの開発に必要となる要件を定義し、それを実現するためのアーキテクチャを設計し、情報システムについては開発を主導	秋
ネットワークスペシャリスト 試験	高度 IT 人材として確立した専門分野をもち、ネットワークに関係する固有技術を活用し、最適な情報システム基盤の企画・要件定義・開発・運用・保守において中心的な役割を果たすとともに、固有技術の専門家として、情報システムの企画・要件定義・開発・運用・保守への技術支援を行う者	秋
ITサービスマネージャ試験	高度 IT 人材として確立した専門分野をもち、情報システム 全体について、安定稼働を確保し、障害発生時においては被 害の最小化を図るとともに、継続的な改善、品質管理など、 安全性と信頼性の高いサービスの提供を行う者	秋

8.2 シスコ・ネットワーキング・アカデミー

情報工学科では、平成14年度からシスコ・ネットワーキング・アカデミーのカリキュラムを導入している。シスコ・ネットワーキング・アカデミーは、米国のシスコシステムズ(Cisco Systems Inc.) が開発したコンピューター・ネットワーキング技術を実践的に教えるための教育プログラムである。世界的にネットワーク技術者の絶対数が不足している現状で、21世紀に必要となるネットワークに必要な知識と技術を、特別なトレーニングを受けた有資格の本学教員が講座の中で教えるものである。本学科では、情報ネットワークI、IIの講義にシスコ・ネットワーキング・アカデミーのカリキュラムを導入することにより、ネットワーキングの理論と実践の両方を効率良く学習できる環境を提供する。また、学生がシスコの技術者認定資格の一つであるCCNA(Cisco Certified Network Associate)を取得できるよう、有資格の教員がサポートする。

8.3 オラクルマスター

日本オラクルが制度化したOracleDB製品を用いたデータベースの設計, 開発, 運用に携わる高度利用者の技術認定. 設計から運用・管理・指導までを対象としたORACLE MASTER Platinum, 運用・管理者を対象としたORACLE MASTER Gold/Silver, 開発者を対象としたORACLE Certified Developerがある.

9. 卒業後の進路

卒業後の進路としては就職と大学院への進学の道がある. 琉球大学にも大学院理工学研究科が設置されており,これは博士前期課程(2年間)と博士後期課程(3年間)からなる. 本学科卒業生の進む専攻としては博士前期課程に情報工学専攻がある.

9.1 就職

就職の指導及び斡旋は、本人並びに卒業研究の指導教員と相談しながら就職担当教授が行う. 将来の進路については、どの専門分野の科目を履修しているかが考慮の対象となる.

履修科目は将来進みたい分野によって系統的にまとまる様にし、また学業成績は、それで全てが決まるものではないが、就職における選考の際、常に重要な資料となるので、<u>良好な成績を保つ様に心掛ける必要がある</u>. また、資格試験の計画的な受験も大切である. <u>就職活動が本格的に始まる3年後</u>学期までに、基本情報技術者試験、ソフトウエア開発技術者試験に合格することを強く望む.

9.2 大学院理工学研究科(博士前期課程情報工学専攻,博士後期課程)

本学理工学研究科博士前期課程の情報工学専攻は、計算機システム、信号処理、メディア通信、知能情報処理、ロボティクス、知的システムの6研究指導分野からなり、各研究分野の研究テーマは多岐にわたっている。研究テーマは、次ページに示す授業内容からうかがい知ることができる。博士前期課程を修了すると、修士の学位が授与される。

2年間の博士前期課程を修了した後,博士後期課程(3年間)に進学し,さらに研究を深めることができる.本学理工学研究科博士後期課程工学系は,生産エネルギー工学専攻および総合知能工学専攻の2専攻からなり,各専攻はさらに生産開発工学,エネルギー開発工学,環境情報工学および電子情報工学の4研究分野に分かれる.近年の目覚ましい学問の進展と学問領域の融合化に対処するため,各学科の教員は4研究分野に分散して所属している.次ページ以降には,本学科と関連の深い分野の授業科目のみを示す.博士後期課程を修了し,論文が合格すれば,博士の学位が授与される.授業科目は次のとおりである.

表9-1: 博 士 前 期 課 程

		201. 14 T 11 24 W	単数	<u>'</u>	tite de
	講座	授業科目	必修	選択	備考
	シ	計算機システム論		2	情報工学特別研究
		信号処理論		2	(6単位),情報工学
情	ステ、	情報通信論		2	特別演習(6単位)を
	ム 唐	情報基礎論		2	含む30単位以上を
報	ム情報工学	ソフトウェアシステム論		2	修得し、かつ、必要
	工	マルチメディア情報処理論		2	な研究指導を受けた
エ	子	システムアーキテクチャ論		2	上,修士論文の審査
		音声情報処理論		2	及び最終試験に合格
	知	アドバンスト制御論		2	すること。
学	知能情報工	知能システム論		2	
	情 報	システム解析論		2	
専	工	知能ロボット論		2	
	学	複雑系工学論		2	
攻		数理モデル論		2	
		法律情報総論		2	
		経営情報総論		2	
		心理情報総論		2	
		情報工学特別研究 I	1.5		
		情報工学特別研究Ⅱ	1.5		
		情報工学特別研究Ⅲ	1.5		
		情報工学特別研究IV	1.5		
		情報工学特別演習I	1.5		
		情報工学特別演習Ⅱ	1.5		
		情報工学特別演習Ⅲ	1.5		
	共	情報工学特別演習IV	1.5		
		情報工学特別講義I		1	
	通	情報工学特別講義Ⅱ		1	
		情報工学特別講義Ⅲ		1	
		情報工学特別講義IV		1	
		情報工学特別講義V		2	
		情報工学特別講義VI		2	
		TechnicalReading&Writing		2	
		情報技術演習 I		2	
		情報技術演習Ⅱ		2	
		情報技術演習Ⅲ		2	
		情報技術演習IV		2	
		プロジェクト・マネジメント演習		2	

表9-2: 博 士 後 期 課 程

専 攻	講座	授 業 科 目 名	<u>単</u> 位 必修	数 選 択	備考
総合	環境情	環交都水環熱社会空間 ない こうしゅ こうしゅ おいま は		2 2 2 2 2 2 2	必修科目 総合知能工学論 文研究 I (3単位) 総合知能工学論 文研究 II (3単位) 計6単位を含む 12単位以上を
知	報 工 学	音 声 言 語 処 理 特 論 進化プログラミング特論 脳 型 計 算 機 特 論 ソフトウェアシステム特論 並列・分散システム特論 自律型ニューロシステム特論		2 2 2 2 2 2	修得し、かつ、 必要な研究指導 を受けた上、博 士論文の審査及 び最終試験に合 格すること。
能工工		電 磁 場 の 量 率 論 論 m		2 2 2 2 2 2 2 2	
学	電子	創発知能織 制 対		2 2 2 2 2 2	
攻	情報工	信号 響信 号 大 特 論 論 報 が 理 学 特 論 計 算 物 理 学 特 論 計 算 ル タ 設 計 特 論 フィルタ 設 計 特 論		2 2 2 2 2 2	
	学	議論論論論論論論論論論論論論論論論論論論論論論論論論論論論論論論論論論論論		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
	共通	知能化機構特別講義総合知能工学論文研究I 総合知能工学論文研究II 特別計画研究 特別教育	3 3	2 2 2	

付録

A. 情報工学科FAQ

01. 図書館にない本を入手するには?

琉球大学付属図書館のWEBサイト (http://www.lib.u-ryukyu.ac.jp) から図書の購入依頼ができます.また,授業担当教員を通じて学生用・院生用図書として推薦してもらうこともできます.図書館にはいろんな分野のビデオコンテンツも揃っています.積極的に活用しましょう.

Q2. 計算機がうまく動かない場合にはどうすればよい?

どのような状況なのかきちんと把握して、NetNewsのニュースグループ(ura.ie.comp.*)で質問してください. あるいは、4階のコンピュータ実習室にいる先輩に思い切って質問してみましょう.

Q3. 教室, 実験室等の設備に問題がある場合は?

教職員(講義担当あるいは年次指導教員等)に速やかに連絡してください. NetNewsで連絡するのも良いです.

Q4. 4年生でも16単位未満で除籍になりますか?

最終学年であれば、除籍になりません.ただし、「4年生=最終学年」ではありません.その年度に登録した科目を全て取得すれば卒業要件を満足する場合にのみ最終学年となります.

Q5. 単位を落とすと進級できない場合がある?

1年生から2年生,2年生から3年生への進級には特に条件はありません。卒業研究の配属の際に,条件があります。ただし、取得単位が少なすぎると、どの学年でも(最終学年を除いて)16単位未満除籍になる可能性がありますので注意が必要です。

Q6. 就職の事はいつ頃から考えれば良いですか?

できるだけ早い方が良いです。先輩たちがどのような会社に就職しているのか?,入社試験はどういうものか?,就職に有利な資格にはどのようなものがあるか?等,早い時期に調査しておきましょう。情報工学科会議室で就職に関する資料が閲覧できます。

Q7. 卒業研究の研究室は自由に選べますか?

学生の希望をもとに研究室配属を行いますが、研究室の定員がありますので、全員が希望通りの配属にはなるとは限りません。最近は成績順に割り当てています。日頃から良い成績をとるように心がけましょう。

Q8. 半年間勉強したけど自分は情報工学に向いていない?

半年間の勉強で向き不向きを判断するのは無理があると思います。まずは指導教員,先輩に相談してみましょう。

Q9. 科目登録の方法は?

共通教育等の科目及び専門科目は、Web履修登録で行います.

Q10. どうしてこんなに忙しい?

んーどうしてでしょう?自分のためだと思って頑張ってください.若いときの苦労は後で何十倍となって返ってきます.でも一番大切なものは健康ですので、十分注意してください.キツイ場合には速やかに教員に相談しましょう.

Q11. インターンシップは就職に有利?

実際にインターンシップを経験した先輩の話を聞いてみると、就職に関する意識が向上した、実際の現場を経験することで、自分に欠けているものが見えてきた、というのが大半です。積極的に参加したほうが良いと思います。

Q12. 大学院に進学するにはどうすれば良い?

琉球大学の大学院であれば4年生の8月に博士前期課程の入試があります。選考は、当日の試験の成績、学部での成績、TOEFLスコア、面接結果を考慮して行われています(平成18年度現在)。低学年では、日頃の勉強をしっかりやることと、TOEFLの勉強を進めておく、というのが大事だと思います。

Q13. 成績は「D」がいっぱいだけど大丈夫でしょうか?

卒業要件では成績の質は問いません.しかし,研究室配属,就職,進学では,やはり質が問われます.奨学金,授業料免除等も成績の質が考慮されると考えた方が良いと思います.できるだけ良い評価で単位を取得しましょう.

Q14. アルバイトはやっても大丈夫?

勉学に支障が出ない限り問題ありません. ただし,4年生の研究室配属後は,指導教員とよく相談してください.

Q15. オフィスアワーって何ですか?

教員が学生からの質問を受け付ける時間帯です.各教員が設定していますので,うまく利用してください.もちろん,オフィスアワー以外でも質問を受け付けられる場合がありますので,メール等で連絡をしてみてください.

Q16. 指導教員には、勉強以外の問題も相談してよいのでしょうか?

はい、勉強以外のことも相談してください. いつも的確なアドバイスができるかは分かりませんが、ちゃんと相談にのります.

Q17. 年次別懇談会、合宿研修は参加しなくても良い?

参加してください. どうしても参加できない場合は前もって指導教員に連絡してください. 懇談 会,合宿研修で貴重な情報がたくさん得られます.

Q18. 微分積分学入門,物理学入門を履修したいのですが?

高校で微積や物理を履修しなかった学生は、指導教員と相談の上、履修することができます. 履修した者 (特に、これら科目が受験に課せられた前期入学者) は、始めから入門シリーズを履修することはできません. 最低1年間は頑張ってください. ただし、単位を落としてしまった場合は、改めて、指導教員と相談してください. 但し、計算工学コースでは卒業要件の単位として認められません.

Q19. 進路に悩んだら?

一人で悩まず、年次指導教員に気軽に相談してください。4年生の研究室配属後は、指導教員や研究室の先輩が力になってくれるでしょう。就職指導教員に相談するのも良いかも知れません。

Q.20. 教科書が高いので買いたくないのですが、買わなくても大丈夫ですよね?

教科書無しで講義を受けても意味が無いので、必ず購入してしっかり勉強してください. つまり、 講義は飛び石のようなもので重要な点を解説します. 飛び石の間を埋める詳しい説明は教科書を読ん で自習し理解する必要があります.

B. インターンシップおよび実習証明書

大学で学んだ学問の理解を,企業の現場又は研究所等で実習を行なうことにより,深めるものである.夏期又は春期休業中に2年次,3年次,4年次学生が,1週間から4週間行なう.現業実習を終了し,実習証明書,レポート等を提出し単位を取得する.平成14年度以降のの主な実習依頼先を次に挙げる.

- (1) 琉球朝日放送
- (2) 株式会社東芝
- (3) 沖縄テレビ放送株式会社
- (4) 横河電機株式会社
- (5) オープンテクノロジーズコーポレーション
- (6) 沖縄タイムス社
- (7) 株式会社CSKシステムズ沖縄
- (8) 沖縄県企画開発部情報政策室
- (9) 株式会社沖縄富士通システムエンジニアリング
- (10) NTT西日本沖縄支店
- (11) 沖縄NECソフトウェア株式会社
- (12) 株式会社エルエスアイ開発研究所
- (13) 株式会社ジャスミンソフト
- (14) 株式会社国際システム
- (15) サンマイクロシステムズ
- (16) サイオンコミュニケーションズ株式会社
- (17) 株式会社テクノフェイス
- (18) 沖縄コンピュータ販売株式会社
- (19) 株式会社イーサー
- (20) 株式会社ハーベル
- (21) 沖電グローバルシステムズ株式会社
- (22) 株式会社テクノクラフト
- (23) 株式会社コンピュータ沖縄
- (24) 株式会社アジャスト
- (25) 沖縄電力株式会社
- (26) 官野湾市役所
- (27) マーズコーポレーションR&D
- (28) 株式会社レキサス
- (29) 浦添市役所
- (30) 株式会社NSソリューションズ東京
- (31) アイフォーコム株式会社
- (32) 琉球銀行

(順不同)

《インターンシップ》実習指導報告書

6. 実習学生氏名			
2. 実習場所名称			
住所			
3. 実習部署名			
4. 実習スケジュール期間		_より	まで
第1週第3週			
月			
火			
水			
木			
金	金		
第2週第4週			
月			
火			
水			
木			
金	金		
)= Fn	• 6	
5. 実習評価(スケール上	に印を付けて下	3(1)	
1) ***			
1) 社会性	普通	白)、	
日常礼儀悪い 口頭応答悪い			
ロ頭応合器い 反応速度悪い		· ·	
及応速度悪い 対人対応悪い	育理 普通		
· · · · · · = =	育进		
2) 適応能力	华 法	大いにある	
日常常識無い 状況把握力無い			
从优忙推刀無い	育理) Q
整理力無い	普通	大いにある	
攻撃/集中力無い			ある
総合学力無い			
3) 職務適性			
こつこつ/じっくり型,一	発/集中型、開加	放/外向型,閉息/内	自向型
デスク専門型、対人管理型		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
製造ライン型、開発技術型			
上昇指向型,安定指向型			
4) 向上性/将来性			
職能成長期待無い	普通	大いに	こある
我社で採用遠慮する			
5) 本実習の総合評価			
取組の真面目さ無い	普通	大レ	いにあった
能力的余力目一杯		たっぷ	° h
6. 指導評価者			
職名	氏名		_年月日

C. 就職先一覧

情報	情報工学科(平成8年度以前は電気工学科)電子・情報工学科)													
卒業生	卒業生就職先別一覧(数字は人数を示す。()内は修士)													
年度(年度(平成) 4 5 6 7 8 9 10 11 12 13 14 15 16										16			
	修士課程 (本学)	16	23	23	29	36	21	17	19	12	14	25	22	13
進学	修士課程 (他大学)	1	5		2		1	4	0	2			0	0
	博士課程		(3)	(1)		(3)	(6)		(3)	(2)	(2)		0	0 (0)
	国家	4(1)	1	3	5(1)	3	1	(1)	(1)	1			1	0 (0)
公務員	地方 (県内)	6	2	5(1)	2(1)	2 (2)	1 (2)				3(1)	1	3(1)	0(1)
貝	地方 (県外)												0	0 (0)
大学等	等教員	(1)	(1)	(1)									0	2 (0)
슈	県内	42 (5)	42 (5)	36 (3)	46 (7)	25 (3)	11(7)	15 (6)	10 (4)	14(2)	17 (13)	20 (8)	20 (9)	17 (15)
会 社	県外	33 (7)	18 (5)	8 (10)	19 (12)	28 (14)	9 (11)	7(6)	10 (7)	8 (7)	8 (8)	2 (5)	8 (3)	11 (6)

年度((平成)	17	18	19	20
	修士課程	17	24	11	23
進学	修士課程 (他大学)	2	0	0	0
	博士課程	(1)	(1)	(2)	(2)
	国家	0 (0)	0 (0)	0 (0)	0 (0)
公務員	地方(県内)	2	0	1	0
貝 	地方(県外)	0	0	0	0
大学等	· 等教員	0	0	0	0
会	県内	8	16(2)	19 (5)	12 (4)
会社	県外	11	9 (10)	10 (10)	8 (13)

県内

710.3				
進路	進路地	学士	修士	計
琉球大学大学院理工学研究科修士課程	沖縄	23		23
琉球大学大学院理工学研究科博士課程	沖縄		2	2
株式会社 総和ビジネスマシンズ	沖縄	1		1
株式会社GNA	沖縄	1		1
沖縄日立ネットワークシステムズ株式会社	沖縄	1		1
デジタルあじまぁ	沖縄	1		1
満喜株式会社	沖縄	1		1
スカイ株式会社	沖縄	1		1
株式会社オーシーシー	沖縄	1	1	2
株式会社沖縄銀行	沖縄	1		1
コアテクノ株式会社	沖縄	1		1
株式会社沖縄富士通システムエンジニアリング	沖縄	1		1
株式会社TPC	沖縄		1	1
NECソフト沖縄株式会社	沖縄		1	1
球陽製糖株式会社	沖縄	1		1
計		34	5	39

県外

進路	進路地	学士	修士	計
アップルジャパン株式会社	東京	1		1
株式会社KSK	東京	1		1
NECマイクロシステム株式会社	神奈川	1		1
株式会社タカミヤ	福岡	1		1
株式会社 エヌ・ティ・ティ ネオメイト	福岡	1		1
富士通BSC	東京	1		1
新興プランテック株式会社	神奈川	1		1
株式会社野村総合研究所	東京	1		1
株式会社NTTデータ	東京		1	1
NSソリューションズ東京	東京		1	1
株式会社 東芝セミコンダクター社	神奈川		1	1
株式会社PFU	神奈川		1	1
トヨタテクニカルディベロップメント	愛地		1	1
富士通マイクロソリューションズ株式会社	神奈川		1	1
東京ビジネスソリューション	東京		1	1
富士通ソーシャルシステムラボラトリ	神奈川		2	2
株式会社テクノスジャパン	東京		1	1
株式会社ドワンゴ	東京		1	1
株式会社 デンソーテクノ	愛地		1	1
コベルコシステム株式会社	兵庫		1	1
株式会社 NEC	東京		1	1
				<u>-</u>
11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1		8	14	22

海外

進路	進路地	学士	修士	計
なし				

進路	進路地	学士	修士	計
未定・家業・公務員準備		2	1	3

県内

NO 1				
進路	進路地	学士	修士	計
琉球大学大学院理工学研究科修士課程	沖縄	11		11
琉球大学大学院理工学研究科博士課程	沖縄		2	2
株式会社 総和ビジネスマシンズ	沖縄		1	1
株式会社 沖縄日立ネットワークシステムズ	沖縄		1	1
株式会社 国際システム	沖縄	3	1	4
沖縄富士通システムエンジニアリング	沖縄	3		3
Jetrunテクノロジ株式会社	沖縄	2		2
NECソフト沖縄株式会社	沖縄	1	2	3
株式会社 光貴	沖縄	1		1
沖縄銀行	沖縄	2		2
株式会社 ビックニイウス	沖縄	2		2
株式会社 ジーエヌエー	沖縄	3		3
読谷村役場	沖縄	1		1
株式会社 R.E.I.	沖縄	1		1
計		3 0	7	3 7

県外

進路	進路地	学士	修士	計
日本アイ・ビー・エム株式会社	東京		1	1
NECシステムテクノロジー株式会社	東京		1	1
株式会社 NTTデータ	東京		1	1
コベルコシステム株式会社	兵庫		1	1
株式会社ユー・エス・イー	東京		1	1
新日鉄ソリューションズ株式会社	東京		2	2
株式会社アイネス	東京		1	1
株式会社トヨタコミュニケーションシステム	愛知		1	1
株式会社東京ビジネスソリューション	東京		1	1
株式会社 セガ	東京	1		1
株式会社 ケイビーエムジェイ	東京	1		1
株式会社 ケンウッド	東京	1		1
株式会社 日本アドバンストシステム	東京	1		1
株式会社 CSKシステムズ	東京	1		1
株式会社エヌ・ティ・ティ ネオメイト	大阪	1		1
株式会社 協和エクシオ	東京	1		1
株式会社 シー・シー・ダブル	東京	1		1
デンソーテクノ株式会社	愛知	1		1
株式会社 アイアイジェイ テクノロジー	東京	1		1
計		1 0	10	2 0

海外

	進路	進路地	学士	修士	計
な	<u>የ</u> .				

進路	進路地	学士	修士	計
未定・家業・公務員準備		5	1	5

⁽備考)県内就職をしつつ修士(琉球大学大学院理工学研究科修士課程)に進学する者が1名あり。

県内

進路	進路地	学士	修士	計
琉球大学大学院理工学研究科修士課程	沖縄	24		24
琉球大学大学院理工学研究科博士課程	沖縄		1	1
沖縄電力株式会社	沖縄	2	1	3
沖縄日立ネットワークシステムズ	沖縄	1		1
沖縄フォーサイト株式会社	沖縄	2		2
沖縄富士通システムエンジニアリング	沖縄	2		2
株式会社KSK	沖縄	1		1
株式会社NECソフト沖縄	沖縄	1		1
株式会社ステーションピー	沖縄	1		1
株式会社タップ	沖縄	3		3
株式会社日本流通システム	沖縄	1		1
起業	沖縄	1		1
岸本情報システム株式会社	沖縄	1		1
サムズインターナショナル株式会社	沖縄		1	1
11-14-11-11-11-11-11-11-11-11-11-11-11-1		4 0	3	4 3

県外

進路	進路地	学士	修士	計
株式会社KSK	東京	1		1
株式会社科学情報システムズ	大阪	1		1
株式会社国際システム	東京	1		1
株式会社NTTドコモ九州	福岡	1		1
株式会社ベーシックデータ	東京	1		1
株式会社ダイキンエンジニアリング	愛知	1		1
コムコ株式会社	東京	1		1
デンソーテクノ株式会社	愛知	1		1
琉球ネットワークサービス	東京	1		
IBMソリュージョンズ株式会社	東京		1	1
NECソフト株式会社	東京		1	1
NTTデータ株式会社	東京		1	1
株式会社ウイルコム	東京		1	1
株式会社日本アドバンストシステム	東京		2	2
株式会社トヨタコミュニケーションシステム	愛知		1	1
新日鉄ソリュージョンズ株式会社	東京		1	1
ニイウスコー株式会社	東京		1	1
日本システムウエア株式会社	東京		1	1
<u> </u>		9	10	1 9

海外

	進路	進路地	学士	修士	計
なし					

進路	進路地	学士	修士	計
未定・家業・公務員準備		3		3

県内

2111 4	1			
進路	進路地	学士	修士	計
琉球大学大学院理工学研究科修士課程	進学	19		19
NECソフト沖縄株式会社	沖縄	2	2	4
沖縄日立ネットワークシステムズ	沖縄	2		2
株式会社マグナデザインネット	沖縄		2	2
北中城村役場	沖縄	1		1
国際システム	沖縄	1		1
株式会社レキサス			1	1
沖縄電力			1	1
ネクストコム	沖縄	1		1
株式会社 創和ビジネス・マシンズ	沖縄	1		1
株式会社オーシーシー	沖縄		1	1
岸本情報システム	沖縄	1		1
美来工科高校	沖縄	1	0	1
計		30	7	32

県外

進路	進路地	学士	修士	計
独協大学法科大学院	埼玉	1		
キーウェアソリューションズ株式会社	東京	1		1
ジュピターテレコム	東京	2		3
デンソーテクノ株式会社	愛知	2		1
リクルートスタッフィングエンジニアビュー	東京	1		1
株式会社 日本アドバンストシステム	東京	2	2	3
株式会社ジュピターテレコム	東京	1		1
株式会社タップ	東京	1	2	1
沖ネットワークエルエスアイ	東京		1	
NTTデータカスタマーサービス株式会社	東京		1	1
NTT西日本	大阪		1	1
株式会社ワークスアプリケーションズ	東京		1	1
株式会社VSN	神奈川		1	1
株式会社NTTデータ	東京		1	1
株式会社アストロデザイン	東京		1	1
富士ソフトDIS	東京		1	1
NTTデータシステム株式会社	東京		1	1
NTTコミュニケーションズ	東京		1	1
計		11	14	13

海外

進路	進路地	学士	修士	計
なし				

進路	進路地	学士	修士	計
未定・家業・公務員準備		4		4

県内

進路	進路地	学士	修士	計
琉球大学大学院理工学研究科修士課程	進学	13		13
国際システム	沖縄	1		1
岸本情報システム	沖縄	2		2
沖縄富士通	沖縄	1		1
NECソフト沖縄	沖縄	2	3	5
沖縄県立知念高校	沖縄	1		1
沖縄日立ネットワークシステムズ	沖縄	2	1	3
システック沖縄	沖縄	1		1
沖縄県立宮古高校	沖縄	1		1
沖縄県教職員共済会電算部	沖縄	1		1
ビックニイウス	沖縄	1		1
沖縄電力	沖縄	1	2	3
琉球新報社	沖縄	1		1
エス・ケー・アイ	沖縄	1		1
RYUIソリューション	沖縄	1		1
富士通FSAS	沖縄	1		1
エヌテック・システムズ	沖縄	1	3	4
沖縄富士通システムエンジニアリング	沖縄		2	2
沖縄グローバルシステムズ株式会社	沖縄		1	1
サイオンコミュニケーションズ (株)	沖縄		1	1
株式会社PFU	沖縄		1	1
日本アドバンストシステム	沖縄		1	1
球陽高校(非常勤教員)	沖縄		1	1
計		32		32

県外

進路	進路地	学士	修士	計
富士通FSAS	東京	1		1
TAP	東京	1		1
ソフィックス	神奈川	1		1
日立ハイコス	東京	2		2
NetMarks	東京	2		2
日立ハイシステム21	神奈川	1		1
ヤンマー	大阪	1		1
安川情報システム株式会社	東京	1		1
沖ネットワークエルエスアイ	東京	1		1
日立ハイブリッドネットワーク株式会社	神奈川		1	1
株式会社ソニー・コンピューターエンタテインメント	東京		1	1
横河電機株式会社	東京		1	1
株式会社東芝	東京		1	1
日本インフォメーション株式会社	名古屋		1	1
富士通ゼネラル	神奈川県		1	1
計		13		13

海外

進路	進路地	学士	修士	計
カナダ留学中		1		1
オーストラリア留学中		1		1

進路	進路地	学士	修士	計
未定・家業・公務員準備		3		3

県内

進路	進路地	学士	修士	計
琉球大学大学院理工学研究科修士課程	進学	22		22
沖縄電力	沖縄	2		2
岸本情報システム	沖縄	4		4
NECソフト沖縄	沖縄	4		4
アイアンドコム	沖縄	1		1
富士ゼロックス沖縄	沖縄	2		2
国建システム	沖縄	1	1	2
創和ビジネスマシンズ	沖縄	1		1
沖縄県警察	沖縄	2		2
沖縄県庁	沖縄	1		1
株式会社OCC	沖縄	1	1	2
沖縄富士通システムエンジニアリング	沖縄	1	3	4
エヌテックシステムズ	沖縄		1	1
株式会社マグナデザインネット	沖縄		1	1
浦添市役所	沖縄		1	1
リュウアイ・ソリューション株式会社	沖縄		1	1
計		42	9	51

県外

進路	進路地	学士	修士	計
日立システムアシスト	東京	1		1
株式会社フォース	大阪	2		2
ニイウス株式会社	東京	1	1	3
株式会社インタープロジェク	東京	1		1
株式会社システムサービス	東京	1		1
日本情報システムサービス	大阪	1		1
JICA	東京	1		1
フロムソフトウエア株式会社	東京		1	1
株式会社TAP	東京		1	1
計		8	3	11

海外

進路	進路地	学士	修士	計
なし				

進路	進路地	学士	修士	計
未定・家業・公務員準備		3	1	4

県内

進路	進路地	学士	修士	計
琉球大学大学院理工学研究科修士課程	進学	25		25
沖縄日立ネットワークシステムズ	沖縄	4	1	5
沖縄タイムス社	沖縄	1		1
NECソフト沖縄	沖縄		2	2
CSKシステムズ沖縄	沖縄	1		1
沖縄富士通システムエンジニアリング	沖縄	1		1
国際システム	沖縄	1		1
コンピュータネットワーク	沖縄	1		1
アイオニクス沖縄	沖縄	2		2
マグナデザインネット	沖縄		1	
旭堂	沖縄	1		1
沖縄県庁	沖縄	1		1
occ	沖縄	2		2
レキサス	沖縄	1		1
沖縄市役所	沖縄	1		1
沖縄県警察	沖縄	1		3
沖縄電力	沖縄		2	
沖電グローバルシステムズ	沖縄	1		
りゅうせき	沖縄	1		
トップテクノロジー	沖縄		1	_
沖縄環境保全研究所	沖縄		1	
計		45	8	53

県外

進路	進路地	学士	修士	計
エムソフト	東京	1		1
ハイテクシステム	愛知	1		1
ソニー	東京		2	2
ソニーLSIデザイン	東京		1	1
SRA	東京		1	1
野村総合研究所	東京		1	1
前上		2	5	7

海外

進路	進路地	学士	修士	計
マレーシア内企業	マレーシア	1		1

進路	進路地	学士	修士	計
未定・家業・公務員準備		4	1	5

県内

進路	進路地	学士	修士	計
琉球大学大学院理工学研究科修士課程	進学	14		14
沖縄日立ネットワークシステムズ	沖縄	5	1	6
那覇データセンター	沖縄	3		3
NECソフト沖縄	沖縄	2		2
CSKシステムズ沖縄	沖縄	1	4	5
沖縄富士通システムエンジニアリング	沖縄	1	3	4
国際システム	沖縄	1	2	3
平良市役所(臨時)	沖縄	1		1
創和ビジネスマシンズ	沖縄	1		1
国建システム	沖縄	1		1
沖縄県庁	沖縄	1		1
大宜味村村役場	沖縄	1		1
エス・ネット	沖縄	1		1
(有)オーシャン・トゥエンティワン	沖縄	1		1
沖縄電力	沖縄		3	3
琉球大学大学院理工学研究科博士課程	進学		2	2
県高校教員	沖縄		1	1
計		34	16	50

県外

進路	進路地	学士	修士	計
日立アプリケーションシステムズ	東京	2		2
NTTドコモ九州	福岡	1	1	2
開成建設	鹿児島	1		1
日立ビジネスソリューション	神奈川	1		1
日立セミコンデバイス(株)	東京	1		1
ソフトウェア開発SKI	東京	1		1
Compy	東京	1		1
日立マイクロソフトウェアシステムズ	神奈川		1	1
メトロシステムズ	東京		1	1
日立公共システムエンジニアリング	東京		1	1
ネクストコム	東京		1	1
ドコモ・システムズ	東京		1	1
オープンテクノロジーズ	東京		1	1
ソフトサービス	福岡		1	1
計		8	8	16

海外

進路	進路地	学士	修士	計
マレーシア内企業	マレーシア	2		2

進路	進路地	学士	修士	計
未定・家業・公務員準備		4	2	6

県内

進路	進路地	学士	修士	計
琉球大学大学院理工学研究科修士課程	進学	13		13
日立ネットワークシステムズ	沖縄	5		5
琉球大学大学院理工学研究科博士課程	進学		2	2
沖縄富士通システムエンジニアリング	沖縄	2		2
NECソフト沖縄	沖縄		2	2
琉球大学研究生	進学	1		1
アルファシステムズ	沖縄	1		1
カヌチャベイホテル	沖縄	1		1
沖縄電力	沖縄	1		1
沖縄コンピュータ販売	沖縄	1		1
郵政外務職員	沖縄	1		1
国際システム	沖縄	1		1
国建システム	沖縄	1		1
沖縄市役所	沖縄	1		1
琉大情報処理センター	沖縄		1	1
ネクストコム	沖縄		1	1
トロピカルテクノセンター	沖縄		1	1
計		29	7	36

県外

進路	進路地	学士	修士	計
オープンテクノロジーズ	東京		3	3
NTTコミュウェア	東京	1		1
NTTデータ	東京		1	1
伊藤忠テクノサイエンス	東京	1		1
警視庁	東京	1		1
コアーズ	東京	1		1
国際電気	東京		1	1
日立アプリケーションシステムズ	東京		1	1
(株)ガイオ・テクノロジー	神奈川		1	1
奈良先端科学技術大学院大学情報科学研究科ネットワーク専攻	京都	1		1
NTTデータ九州テクシス	福岡	1		1
NTTドコモ九州	福岡	1		1
計		7	7	14

海外

進路	進路地	学士	修士	計
ミツミマレーシア	マレーシア	1	0	1

進路	進路地	学士	修士	計
未定,家業,公務員準備		10	3	13

県内

進路	進路地	学士	修士	計
琉球大学大学院理工学研究科修士課程	進学	26		26
琉球大学大学院理工学研究科博士課程	進学		2	2
日立ネットワークシステムズ	沖縄	3		3
沖縄電力	沖縄		2	2
沖縄CSK	沖縄		1	1
トロピカルテクノセンター	沖縄		1	1
日本システムウェア	沖縄		1	1
沖縄セルラー	沖縄	1		1
琉球新報	沖縄	1		1
沖縄銀行	沖縄	1		1
NAKコミュニケーションズ	沖縄	1		1
国際システム	沖縄	1		1
創和ビジネスマシンズ	沖縄	1		1
沖縄富士通システムエンジニアリング	沖縄	1		1
アイオニクス	沖縄	1		1
沖縄日本電気ソフトウェア	沖縄	1		1
計		38	7	45

県外

進路	進路地	学士	修士	計
北海道大学複雑系工学分野博士課程	北海道		1	1
富士ソフトABC	東京		1	1
エコパワー	東京		1	1
日立アプリケーションシステムズ	東京		1	1
日立公共システムエンジニアリング	東京		1	1
INSエンジニアリング	東京		1	1
日立システムエンジニアリング	東京	1		1
ハイマックス	東京	1		1
FJB	東京	1		1
日立電子サービス	東京	1		1
日本情報通信システム	東京	1		1
富士通システムコンストラクション	東京	1		1
日本シノプシス	東京	1		1
日立ビジネスソリューション	東京	1		1
クレスコ	東京	1		1
NTT西日本	大阪		1	1
11th L		9	7	16

海外

進路	進路地	学士	修士	計
マレーシア内	マレーシア	1	0	1
中国内	中国		1	1
w = H				

その他

進路	進路地	学士	修士	計
未定,家業,公務員準備		7	1	8

県内

進路	進路地	学士	修士	計
琉球大学大学院理工学研究科修士課程	進学	16		16
琉球大学研究生	進学	1		1
CSKシステムズ沖縄	沖縄	2	1	3
創和ビジネスマシンズ	沖縄	2		2
国建システム	沖縄	2		2
沖縄日本電気ソフトウェア	沖縄	1	2	3
沖縄電力	沖縄	1	1	2
(株)九州行政システム沖縄営業所	沖縄	1		1
沖縄富士通システムエンジニアリング	沖縄	1		1
琉球新報社	沖縄	1		1
久高木材	沖縄	1		1
沖銀システムサービス(株)	沖縄	1		1
沖縄銀行	沖縄	1		1
那覇データセンター	沖縄	1		1
沖縄タイムス社	沖縄	1		1
国家公務員(国家II種)	沖縄		1	1
琉球大学極低温センター	沖縄		1	1
(株) TTC	沖縄		1	1
計		33	7	40

県外

進路	進路地	学士	修士	計
九州工業大学大学院情報工学研究科知能情報工学専攻		2		2
九州工業大学大学院情報工学研究科制御システム学専攻		1		1
三菱電機(株)	東京		1	1
日本シノプシス	東京		1	1
日立アプリケーションシステムズ	東京		1	1
INSエンジニアリング	東京		1	1
富士通システムコンストラクション	東京	1		1
NEC情報サービス(株)	東京	1		1
ハイマックス	神奈川		1	1
NTTコミュニケーションウェア(株)	千葉		1	1
安川情報システム(株)	福岡		1	1
(株)宮崎情報処理センター	宮崎	1		1
(株)ベンチャーセーフネット	大阪	1		1
11th L		7	7	14

海外

進路	進路地	学士	修士	計
シンガポール大学受験		1	0	1
マレーシアキャノン	マレーシア	1	0	1

進路	進路地	学士	修士	計
未定,家業,公務員準備		6	0	6

県内

進路	進路地	学士	修士	計
琉球大学大学院理工学研究科修士課程	進学	19		19
琉球大学大学院理工学研究科博士課程	進学		6	6
琉球大学研究生	進学	1		1
沖縄日本電気ソフトウェア	沖縄	2	2	4
沖縄銀行	沖縄	2		2
創和ビジネスマシンズ	沖縄	1		1
コスモスネット	沖縄	1		1
国際システム	沖縄	1		1
沖縄県警	沖縄	1		1
那覇データセンター	沖縄	1		1
(株) リュウ・アイ・システム	沖縄	1		1
沖銀システムサービス(株)	沖縄	1		1
国建システム	沖縄	1		1
琉球大学工学部	沖縄		1	1
日本電気	沖縄		1	1
沖縄タイムス社	沖縄		1	1
NEC沖縄	沖縄		1	1
沖縄電力	沖縄		1	1
計		32	13	45

県外

進路	進路地	学士	修士	計
北陸先端科学技術大学大学院	進学	1		1
大分大学大学院工学研究科知能情報システム工学専攻	進学	1		1
防衛庁	東京	1		1
クレスコ	東京	1		1
NTTコムウェア	東京	1		1
日本電気インフォメーションテクノロジー	東京	1		1
(株) テレコムサービス	東京	1		1
日本電気テレコムシステム	東京	1		1
三菱電機(株)	東京		1	1
東芝	東京		1	1
旭化成マイクロシステム	東京		1	1
アイオニクス	東京		1	1
アドバンテスト	東京		1	1
NTT	東京		1	1
CSK	東京		1	1
沖縄富士通システムエンジニアリング	東京		1	1
日本ヒューレットパッカード	東京		1	1
電源開発	東京		1	1
日立製作所	東京		1	1
NTT九州支社	熊本	1		
アドバンテスト	埼玉	1		
(株) ダイフク	大阪	1		
豊田カローラ熊本	熊本	1		

日立電子サービス	神奈川		1	
中部電力	愛知		1	
計		12	13	25

海外

進路	進路地	学士	修士	計
なし		0	0	0

進路	進路地	学士	修士	計
未定,家業,公務員準備		2	4	6

2009年4月1日発行
編集・発行:琉球大学工学部情報工学科教務委員会

〒903-0213 沖縄県中頭郡西原町字千原1
電話(098)-895-8662 (学科事務室)
FAX (098)-895-8727
URL: http://www.ie.u-ryukyu.ac.jp/