Mnemonic	Format	Opcode	Effect	Notes
ADD m	3/4	18	A ← (A) + (mm+2)	
ADDF m	3/4	58	$F \leftarrow (F) + (mm+5)$	XF
ADDR r1,r2	2	90	$r2 \leftarrow (r2) + (r1)$	X
AND m	3/4	40	$A \leftarrow (A) \ \& \ (mm+2)$	
CLEAR r1	2	B4	r1 ← 0	X
COMP m	3/4	28	(A): (mm+2)	C
COMPF m	3/4	88	(F): (mm+5)	XFC
COMPR r1,r2	2	A0	(r1): (r2)	хс
DIV m	3/4	24	$A \leftarrow (A) / (mm+2)$	
DIVF m	3/4	64	$F \leftarrow (F) / (mm+5)$	XF
DIVR r1,r2	2	9C	r2 ← (r2) / (r1)	X
FIX	1	C4	$A \leftarrow (F)$ [convert to integer]	XF
FLOAT	1	C0	$F \leftarrow (A)$ [convert to floating]	XF
HIO	1	F4	Halt I/O channel number (A)	PX
J m	3/4	3C	PC ← m	
JEQ m	3/4	30	PC ← m if CC set to =	
JGT m	3/4	34	PC ← m if CC set to >	
JLT m	3/4	38	PC ← m if CC set to <	
JSUB m	3/4	48	$L \leftarrow (PC); PC \leftarrow m$	
LDA m	3/4	00	$A \leftarrow (mm+2)$	
LDB m	3/4	68	B ← (mm+2)	X
LDCH m	3/4	50	A [rightmost byte] \leftarrow (m)	
LDF m	3/4	70	F ← (mm+5)	XF
LDL m	3/4	08	$L \leftarrow (mm+2)$	
LDS m	3/4	6C	S ← (mm+2)	X
LDT m	3/4	74	$T \leftarrow (mm+2)$	X
LDX m	3/4	04	X ← (mm+2)	
LPS m	3/4	D0	Load processor status from information beginning at address m (see Section 6.2.1)	PX
MUL m	3/4	20	$A \leftarrow (A) * (mm+2)$	

Mnemonic	Format	Opcode	Effect	Notes
MULF m	3/4	60	F ← (F) * (mm+5)	XF
MULR r1, r2	2	98	r2 ← (r2) * (r1)	Х
NORM	1	C8	$F \leftarrow (F)$ [normalized]	ΧF
OR m	3/4	44	$A \leftarrow (A) \mid (mm+2)$	
RD m	3/4	D8	A [rightmost byte] ← data from device specified by (m)	P
RMO r1,r2	2	AC	r2 ← (r1)	X
RSUB	3/4	4C	$PC \leftarrow (L)$	
SHIFTL r1,n	2	A4	r1 ← (r1); left circular shift n bits. {In assembled instruction, r2 = n-1}	X
SHIFTR r1,n	2	A8	r1 ← (r1); right shift n bits, with vacated bit positions set equal to leftmost bit of (r1). {In assembled instruction, r2 = n-1}	X
SIO	1	F0	Start I/O channel number (A); address of channel program is given by (S)	PX
SSK m	3/4	EC	Protection key for address m ← (A) (see Section 6.2.4)	PX
STA m	3/4	0C	mm+2 ← (A)	
STB m	3/4	78	mm+2 ← (B)	Х
STCH m	3/4	54	$m \leftarrow (A)$ [rightmost byte]	
STF m	3/4	80	mm+5 ← (F)	XF
STI m	3/4	D4	Interval timer value ← (mm+2) (see Section 6.2.1)	PX
STL m	3/4	14	$mm+2 \leftarrow (L)$	
STS m	3/4	7C	mm+2 ← (S)	Х
STSW m	3/4	E8	mm+2 ← (SW)	P
STT m	3/4	84	mm+2 ← (T)	х
STX m	3/4	10	mm+2 ← (X)	
SUB m	3/4	1C	$A \leftarrow (A) - (mm+2)$	
SUBF m	3/4	5C	$F \leftarrow (F) - (mm+5)$	ΧF

Mnemonic	Format	Opcode	Effect	Note	es
SUBR r1,r2	2	94	r2 ← (r2) – (r1)	Х	
SVC n	2	В0	Generate SVC interrupt. {In assembled instruction, r1 = n}	X	
TD m	3/4	E0	Test device specified by (m)	P	C
TIO	1	F8	Test I/O channel number (A)	PX	C
TIX m	3/4	2C	$X \leftarrow (X) + 1; (X): (mm+2)$		C
TIXR r1	2	B8	$X \leftarrow (X) + 1; (X): (r1)$	X	C
WD m	3/4	DC	Device specified by $(m) \leftarrow (A)$ [rightmost byte]	P	

Instruction Formats

Format 1 (1 byte):

Format 2 (2 bytes):

83	8	4	4
	ор	r1	r2

Format 3 (3 bytes):

6	111111	12
ор	n i x b p e	disp

Format 4 (4 bytes):

6	111111	20	
ор	nixbpe	address	

Addressing Modes

The following addressing modes-apply to Format 3 and 4 instructions. Combinations of addressing bits not included in this table are treated as errors by the machine. In the description of assembler language notation, *c* indicates a constant between 0 and 4095 (or a memory address known to be in this range); *m* indicates a memory address or a constant value larger than 4095. Further information can be found in Section 1.3.2.