CL transient from the OL FR

CL [Closed Loop], OL [Open Loop], FR [Frequency Response]

Theoretical aspects

For a NFS with time delay (τ_m) as in the picture below

The relation between the OL Nyquist Diagram and the CL step response transients can be illustrated in the next TWO figures:

In practice, the overshoot is no higher than 20%; the plot above will be reduced to this practical range:

Examples

Example 1: for k=1 and no time delay ($\tau_m = 0$)

Example 2: for k=2 and $\tau_m = 0$

Example 3: for k=0.2 and $\tau_m = 0.015$

Problems

1. Develop a matlab function that plot on ND circle of constant magnitude; consider as input parameter magnitude (Mp-Peak Value); the circle has radius $r = \frac{M_p}{M_p^2 - 1}$ and is centered at $\left(-\frac{M_p^2}{M_p^2 - 1}, 0\right)$

 Write a matlab function that converts the Peak Value (Mp) to overshoot and damping ratio; example of calling the function: [sigma, zeta]=compute_from_Mp(Mp) 	,