Instructor:- **Prof**. Bakul Gohel

Classification using EEG data

Looking through the brain

Introduction

- Recognizing objects from different categories is of fundamental importance for survival.
- Electroencephalography, or EEG, records the electrical activity of brain.
- EEG signals good temporal resolution, but a low spatial one.
- EEG scope in human computer interaction, psychology, and neurological sciences.

Dataset

Electroencephalogram (EEG)

- > 10 Subjects
- > 5185 to 5188 Trials per subject
- > 124 Electrodes or Channels
- > 32 Time Sample per trial
- > 6 Classes

Objective

- Classification using linear discriminant analysis.
- To study the linear separability
- Brain analysis with following binary classes
 - Human Face
 - Inanimate objects
- Effects of data augmentation on linear separability.
- Spatial and Temporal analysis of brain.

LDA

- Bayesian classifier
- Linear decision boundary
- Maximizes: Between class variance
 Within class variance
- Gaussian density to each class
- Optimization technique : Eigen solver
- Shrinkage: Estimation of Covariance matrices

Data Augmentation

- New data points by averaging *n* number of data points, belonging to same class, randomly :-
 - With Replacement Same number of samples
 - Without Replacement
- n = [2, 4, 6, 8]

K-fold Cross Validation

Result

Conclusion

- Brain differentiates human face and inanimate objects very distinctively.
- Specific region of visual recognition
- Specific time of brain response
- Augmentation effects
 - decreased SNR more linear separability
 - Increased accuracy
- Stability of machine learning model is important

Thank you