S uites numériques

1.1. SUITES NUMERIQUES:

1.2.1. Généralités :

1.1.1.1. Définition :

On appelle suite numérique toute application u de \mathbf{N} dans \mathbf{R} qui à tout entier n associe un nombre réel $\mathbf{u}(n)$, noté u_n et appelé terme général de la suite.

La suite est notée $(u_n)_{n\in\mathbb{N}}$ ou (u_n)

1.1.1.2. Suites monotones :

1) On dit que la suite (u_n) est **croissante** si :

$$\forall n \in \mathbf{N}$$
 $u_n \leq u_{n+1}$

2) On dit que la suite (u_n) est **décroissante** si :

$$\forall n \in \mathbf{N}$$
 $u_{n+1} \leq u_n$

- 3) La suite (u_n) est **monotone** si elle est croissante ou décroissante
- On appelle **suite extraite** de (u_n) , toute suite $(u_{g(n)})$ où g est une application strictement croissante de N dans N.

1.1.1.3. Suite majorée. Suite minorée :

1) On dit que la suite (u_n) est **majorée** si :

$$\exists M \in \mathbf{R} \quad \forall n \in \mathbf{N} \quad u_n \leq M$$

2) On dit que la suite (u_n) est **minorée** si :

$$\exists m \in \mathbf{R} \quad \forall n \in \mathbf{N} \quad u_n \ge m$$

3) La suite (u_n) est **bornée** si elle est majorée et minorée

1.2.2. Suites convergentes :

1.2.2.1. Définition :

La suite (u_n) est dite **convergente** et admet pour limite $l \in \mathbf{R}$ (ou tend vers l)

si
$$\forall \varepsilon > 0 \ \exists n_0 = n_0(\varepsilon) \in \mathbf{N} \ tel \ que \ n \ge n_0 \Longrightarrow |u_n - l| < \varepsilon$$

On écrit alors : $\lim_{n \to +\infty} u_n = l$

Une suite qui n'est pas convergente sera dite divergente

1.2.2.2. Premières propriétés :

- 1) La limite d'une suite convergente est unique ;
- 2) Toute suite convergente es bornée ;
- 3) Toute suite extraite d'une suite convergente est convergente et tend vers la même limite.

1.2.2.3. Convergence d'une suite monotone :

Théorème 1:

Toute suite croissante majorée est convergente vers sa borne supérieure.

Toute suite décroissante minorée est convergente vers sa borne inférieure.

1.2.2.4. Convergence d'une suite positive :

Définition: Une suite (u_n) est dite positive si : $u_n \ge 0 \quad \forall n \in \mathbb{N}$

4) La limite d'une suite convergente positive est positive.

1.2.2.5. Opérations sur les suites convergentes :

Théorème 2:

Soient (u_n) et (v_n) deux suites convergentes respectivement vers l et l' et soit $\alpha \in \mathbf{R}$. Alors, la suite $(u_n + v_n)$ converge vers l + l'; la suite $(u_n v_n)$ converge vers l.l'; la suite $(\alpha.u_n)$ converge vers $\alpha.l$. Si de plus, l'est non nul, alors la suite $\left(\frac{u_n}{v_n}\right)$ tend vers $\frac{l}{l'}$.

1.2.2.6. Comparaison de suites convergentes :

- 5) Soient (u_n) et (v_n) deux suites convergentes respectivement vers l et l' telles que : $\forall n \in \mathbb{N}$ $u_n \leq v_n$. Alors $l \leq l$ '.
- Soient (u_n) et (v_n) deux suites convergentes vers la même limite l et (w_n) une suite vérifiant $\forall n \in \mathbb{N}$ $u_n \leq w_n \leq v_n$. Alors : $\lim_{n \to +\infty} w_n = l$

1.3.1. Suites adjacentes :

Définition: Deux suites (u_n) et (v_n) sont dites adjacentes si l'une est croissante, l'autre décroissante et si $\lim (u_n - v_n) = 0$.

7) Deux suites adjacentes sont convergentes et tendent vers la même limite.

1.4. LIMITES INFINIES:

8) Une suite croissante non majorée tend vers $+\infty$. Une suite décroissante non minorée tend vers $-\infty$.