Important Problematic Questions for University Exam

Prepared By Mr. EBIN PM, AP, IESCE

MODULE 1 Q1: A benchmark program is run on a 40 MHz processor. The executed program consists of 100,000 instruction executions, with the following instruction mix and clock cycle count: Instruction Instruction Cycles per Count Instruction Type Integer 45.000 1 arithmetic Data transfer 32.000 Floating point 15.000 2 Control 8000 transfer Determine the effective CPI, MIPS rate, and execution time for this program. EDULINE Prepared By Mr.EBIN PM, AP, IESCE

nstruction Type	Instruction Count	Cycles per Instruction	cycles
Integer arithmetic	45,000	1	45000
Data transfer	32,000	2	64000
Floating point	15,000	2	30000
Control transfer	8000	2	16000

- Total no: of cycles required to execute complete program
 - **→** 45000+64000+30000+16000
 - → 155000 cycles

C=155000 cycles

• Effective CPI= C/Ic

→ 155000/100000

CPI = 1.55

Prepared By Mr.EBIN PM, AP, IESCE

EDULINE

4

- MIPS rate= f/CPI*10⁶ = 40/ 1.55*10⁶ = 40*10⁶/1.55*10⁶ = 25.8
- Given f=40 MHz $\rightarrow \tau = 1/40$

 $T = Ic * CPI * \tau$

= 100000*1.55*1/40

= 100000*1.55*0.025

= 3875

= 3.875 ms

Prepared By Mr.EBIN PM, AP, IESCE

EDULINE

_

Q2:

3 enhancement with the following speed up are proposed for a new architecture

- Speedup $_1 = 30$
- Speedup $_2$ = 20
- Speedup $_3 = 15$

If enhancement 1 and 2 are each usable for 25% of the time, what fraction of the time must enhancement 3 be used to achieve an overall speed up of 10?

Prepared By Mr.EBIN PM, AP, IESCE

EDULINE

6

Ans:
$$Speed wp = \left(1 - Feachers + Feachers$$

MODULE 2

Q: Consider the design of a 3 level memory hierarchy with following features

Memory level	Access time	Capacity	Cost/kbyte
Cache	t1= 25 ns	s1= 512 Kbytes	c1= \$1.25
Main memory	t2= unknown	s2= 32 Mbytes	c2= \$.2
Disk array	t3= 4 ms	s3= unknown	c3= \$0.0002

• Aim is to achieve effective memory access time Teff=850 ns

Cache hit ratio $h_1 = 0.98$

Main memory Hit ratio $h_2 = 0.99$

Disk array hit ratio $h_3 = 1$

Total cost is upper bounded by\$15000

Calculate the unknown specifications based on the given conditions?

Prepared By Mr.EBIN PM, AP, IESCE

EDULINE

```
• C_{total} = c_1 s_1 + c_2 s_2 + c_3 s_3 <= 15000
15000 = 1.25 * 512 + .2 * 32000 + .0002 * s3
15000 = 640 + 6400 + .0002 * s3
.0002 * s3 = 15000 - 640 - 6400
= 7960 / .0002
= 39800000 \times 10^{-6}
s3 = 39.8

Prepared By Mr. EBIN PM, AP, IESCE
```

```
T_{eff} = h_1 t_1 + (1 - h_1) h_2 t_2 + (1 - h_1)(1 - h_2) h_3 t_3
T_{eff} = h1 t_1 + (1 - h_1) h_2 t_2 + (1 - h_1)(1 - h_2) h_3 t_3 <= 850 \text{ ns}
850 \times 10^{-9} = .98 \times 25 \times 10^{-9} + .02 \times .99 \times t_2 + .02 \times .01 \times 14 \times 10^{-3}
850 \times 10^{-9} = 24.5 \times 10^{-9} + .0198 t_2 + .0008 \times 10^{-3}
.0198 t_2 = 850 \times 10^{-9} - 24.5 \times 10^{-9} - .0008 \times 10^{-3}
= 825.5 \times 10^{-9} - .0008 \times 10^{-3}
= 825.5 \times 10^{-9} - .0008 \times 10^{-9}
= 25.5 \times 10^{-9} - .0198
t_2 = 1287 \times 10^{-9}
```

Q2:

Consider the design of a three level memory hierarchy with the following specifications for memory characteristics:

Memory level	Access time	Capacity	Cost/Kbyte
Cache	t1=25 ns	s1=512 Kbytes	c1=\$1.25
Main Memory	t2=903 ns	s2=32 Mbytes	c2=\$0.2
Disk array	t3=4 ms	s3 =39.8 Gbytes	c3=\$0.0002

Hit ratio of cache memory is h1=0.98 and a hit ratio of main memory is h2=0.9.

- (i) Calculate the effective access time.
- (ii) Calculate the total memory cost.

Prepared By Mr.EBIN PM, AP, IESCE

EDULINE

11

Effective access time

```
T_{eff}=h1t1+(1-h1)h2t2+(1-h1)(1-h2)h3t3
```

=0.98*25x10⁻⁹+.02*.9*903x10⁻⁹+.02*.1*1*4x10⁻³

 $=24.5 \times 10^{-9} + 16.254 \times 10^{-9} + .008 \times 10^{-3}$

 $=40.754 \times 10^{-9} + .008 \times 10^{-3}$

=40.754x10⁻⁹ +8000x10⁻⁹

 $= 8040.754 \times 10^{-9}$

 $= 8.04 \mu sec.$

EDULINE

12

Prepared By Mr.EBIN PM, AP, IESCE

 $Total cost = C_1S_1 + C_2S_2 + C_3S_3$

 $= 1.25 \times 512 + 0.2 \times 32 \times 10^{3} + 39.8 \times 0.0002 \times 10^{6}$

= 640+6400+7960

= \$15000

EDULINE

13

MODULE 4

Prepared By Mr. EBIN PM, AP, IESCE

Q1:

Consider the execution of a program of **15,000** instructions by a linear pipeline processor with a clock rate of **25** Mhz. Assume that the instruction pipeline has five stages and that one instruction is issued per clock cycle. The penalties due to branch instructions and out-of sequence executions are ignored.

- Calculate the speedup factor using this pipeline to execute the program as compared with the use of an equivalent non-pipelined processor with an equal amount of flow-through delay.
- what are the efficiency and throughput of this pipelined processor?

Prepared By Mr.EBIN PM, AP, IESCE

EDULINE

14

Prepared By Mr. EBIN PM, AP, IESCE

Q2:

Suppose the time delay of 4 stage are $\tau_1 = 60$ ns, $\tau_2 = 50$ ns, $\tau_3 = 90$ ns, $\tau_4 = 80$ ns and the interface latch has a delay of **d**= 10ns. Find the clock period and frequency of this pipeline?

$$\tau = \tau_{max} + d = 90* 10^{-9} + 10* 10^{-9} = 100* 10^{-9}$$

This means that the clock frequency of the pipeline can be set to

$$f = \frac{1}{T} = \frac{1}{100 * 10^{-9}} = 10 \text{ MHz}$$

EDULINE

16

Prepared By Mr.EBIN PM, AP, IESCE

Q3:

Determine the frequency of the pipeline if the stage delays are $\tau 1 = 3$ ns, $\tau 2 = \tau 3 = 5$ ns and $\tau 4 = 8$ ns and the latch delay is 1 ns.

$$\tau_{max} = 8 \text{ns}$$
 $d = 1 \text{ns}$
 $\tau = \tau_{max} + d = 8 \cdot 10^{-9} + 1 \cdot 10^{-9} = 9 \cdot 10^{-9}$

$$f = \frac{1}{\tau} = \frac{1}{9 \cdot 10^{-9}} = 111.11 \text{ MHz}$$

EDULINE

17

Prepared By Mr.EBIN PM, AP, IESCE