1^{er} Parcial — ANÁLISIS NUMÉRICO II - 2020 2 de octubre de 2020

Presentar un solo archivo llamado Apellido_Nombre_Parcial1.py, que debe resolver el examen al ejecutarlo. Debe contener todos los comandos y funciones necesarias para realizar lo pedido. La duración del examen es de 24hs y puede utilizar todo el material disponible online.

Para interpolar un conjunto de pares $\{(t_i, x_i)\}_{i=0}^n$ se puede utilizar un spline cúbico s, o sea $s(t) = s_i(t)$ si $t \in [t_{i-1}, t_i]$ para $i = 1, \ldots, n$, con s_i polinomio de grado 3 tal que

$$s_i(t_{i-1}) = x_{i-1}, \quad s_i(t_i) = x_i, \quad s_i'(t_i) = s_{i+1}'(t_i), \quad s_i''(t_i) = s_{i+1}''(t_i).$$

Si $t_i = t_0 + i\tau$ con $\tau = (t_n - t_0)/n$ y $s_1''(t_0) = s_n''(t_n) = 0$, entonces

$$s_i(t) = \kappa_{i-1} \frac{(t_i - t)^3}{6\tau} + \kappa_i \frac{(t - t_{i-1})^3}{6\tau} + \left(x_{i-1} - \kappa_{i-1} \frac{\tau^2}{6}\right) \frac{t_i - t}{\tau} + \left(x_i - \kappa_i \frac{\tau^2}{6}\right) \frac{t - t_{i-1}}{\tau},$$

donde $\kappa_0 = 0$, $\kappa_n = 0$ y

$$\frac{1}{6}\kappa_{i-1} + \frac{2}{3}\kappa_i + \frac{1}{6}\kappa_{i+1} = \frac{x_{i-1} - 2x_i + x_{i+1}}{\tau^2}, \quad i = 1, \dots, n-1.$$

- 1. Utilice su descomposición de Cholesky para hallar los valores κ_i .
- 2. Implemente una función en Python que evalúe el spline utilizando la función del ítem anterior. Debe tener entradas ξ , t_0 , t_n , x, donde $\xi = [\xi_0, \dots, \xi_m]$ es una lista de números, tales que $\xi_j \in [t_0, t_n] \ \forall j$. La salida debe ser una lista $w = [w_0, \dots, w_m]$, donde $w_j = s(\xi_j)$ para cada j.
- 3. A partir de datos $\{(x_i, y_i)\}_{i=0}^n$, defina $t_0 = 0$, $t_n = 1$ y utilizando una partición del [0, 1] en 200 puntos obtenga w y z, evaluando el spline para $\{(t_i, x_i)\}_{i=0}^n$ y $\{(t_i, y_i)\}_{i=0}^n$, respectivamente. Grafique w vs. z.

\boldsymbol{x}	0	17	30	13	15	25	25	35	43	35	38	50	59	50	53	67	75
y	5	20	50	20	0	10	10	10	20	10	0	10	20	10	0	10	20
\overline{x}	63	70	85	95	95	90	95	110	110	110	120	130	120	130	140	125	150
y	10	0	15	20	10	0	10	20	10	0	10	20	10	0	20	15	10