J. SAASTAMOINEN National Research Council of Canada

OF ATMOSPHERIC REFRACTION (1)

Abstract

Since the barometer measures the weight of the overlying atmosphere, it follows by the law of Gladstone and Dale that the height integral \int (n-1) dr of the atmospheric refractivity for light, taken from ground level up to the top of the atmosphere, is directly proportional to ground pressure. The refractivity integral, therefore, can be determined without detailed knowledge of the height distribution of the refractive index, which not only simplifies the derivation of refraction formulas in which atmospheric models have been used hitherto, but also improves their accuracy. For zenith distances not exceeding about 75 degrees, the correction for astronomical refraction will be given by the standard formula

$$\Delta z_0'' = 16''.271 \tan z \left[1 + 0.0000394 \tan^2 z \left(\frac{p - 0.156e}{T} \right) \right] \left(\frac{p - 0.156e}{T} \right) - 0''.0749 \left(\tan^3 z + \tan z \right) \left(\frac{p}{1000} \right)$$

where z is the apparent zenith distance, p is the total pressure and e is the partial pressure of water vapour, both in millibars, and T is the absolute temperature in degrees Kelvin Part II of the paper contains further applications of the theory to refraction problems in satellite geodesy, including the photogrammetric refraction and the atmospheric corrections in the ranging of artificial satellites.

Part I. Astronomical Refraction

Derivation of General Formula for Astronomical Refraction

In Figure 1, the law of refraction applied at point P gives

$$(n + dn) \sin z = n \sin (z + dz) = n (\sin z + \cos z dz)$$

from which immediately follows the differential equation $d(\Delta z) = dz = (\tan z/n) dn$ and the corresponding integral equation

(1) Cet article sera publié en trois fois : Builetin Géodésique n⁰⁶ 105, 106 et 107,

$$(0 \le z_1 \le 90^\circ) \; ; \qquad \Delta z = \int_1^{n_1} \frac{\tan z}{z} \; dn$$
 (1)

which is the basic mathematical expression of the correction for astronomical refraction.

Since **z** is not, in general, constant along the light path but depends upon the refractive index according to the law of refraction

$$\mathbf{n} \, \mathbf{r} \, \sin \mathbf{z} = \mathbf{n}_1 \, \mathbf{r}_1 \, \sin \mathbf{z}_1 = \mathbf{const.} \tag{2}$$

it will be necessary to find a suitable expression for tan z that makes (1) integrable. Setting $\mathbf{n_1} \mathbf{r_1} / (\mathbf{nr}) = \mathbf{y}$ for brevity, we have from (2)

$$sin^2 z = y^2 tan^2 z_1/(1 + tan^2 z_1)$$

 $cos^2 z = (1 + tan^2 z_1 - y^2 tan^2 z_1)/(1 + tan^2 z_1)$

and

$$tan z = y tan z_1 \left[1 + tan^2 z_1 (1 - y^2) \right]^{-\frac{1}{2}} =$$

$$= y tan z_1 - \frac{1}{2} y (1 - y^2) tan^3 z_1 + \frac{3}{8} y (1 - y^2)^2 tan^5 z_1 -$$

$$-\frac{5}{16} y (1 - y^2)^3 tan^7 z_1 + \frac{35}{128} y (1 - y^2)^4 tan^9 z_1 - \frac{63}{256} y (1 - y^2)^5 tan^{11} z_1 + \dots$$

Neglecting the subsequent terms in the binomial expansion, the first five may be written identically

$$tan z = tan z_1 + \left(y - \frac{r_1}{r}\right) (tan^3 z_1 + tan z_1) - \left(\frac{r - r_1}{r}\right) (tan^3 z_1 + tan z_1) +$$

$$+ \left(1 + \frac{1}{2}y\right) (1 - y)^2 tan^3 z_1 + \frac{3}{8}y (1 + y)^2 (1 - y)^2 tan^5 z_1 -$$

$$- \frac{5}{16}y (1 + y)^3 (1 - y)^3 tan^7 z_1 + \frac{35}{128}y (1 + y)^4 (1 - y)^4 tan^9 z_1$$

into which we substitute the approximation

$$y - \frac{r_1}{r} = \left(\frac{r_1}{r}\right) \left(\frac{n_1 - n}{n}\right) = n_1 - n$$

$$\frac{r - r_1}{r} = \frac{1}{r_1} (r - r_1) - \frac{1}{r_1^2} (r - r_1)^2$$

$$\left(1 + \frac{1}{2} y\right) (1 - y)^2 = \frac{3}{2} (1 - y)^2 = \frac{3}{2r_1^2} (r - r_1)^2$$

$$\frac{3}{8} y (1 + y)^2 (1 - y)^2 = \frac{3}{2} (1 - y)^2 = \frac{3}{2} \left[\left(1 - \frac{r_1}{r}\right) - (n_1 - n)\right]^2 =$$

$$= \frac{3}{2r_1^2} (r - r_1)^2 - \frac{3}{r_1} (n_1 - n) (r - r_1)$$

$$\frac{5}{16} y (1 + y)^3 (1 - y)^3 = \frac{5}{2} (1 - y)^3 = \frac{5}{2r_1^3} (r - r_1)^3$$

$$\frac{35}{128} y (1 + y)^4 (1 - y)^4 = \frac{35}{8} (1 - y)^4 = \frac{35}{8r_1^4} (r - r_1)^4$$

and obtain

$$tan z = tan z_1 + (tan^3 z_1 + tan z_1) (n_1 - n) - A_1 (r - r_1) + A_2 (r - r_1)^2 - A_2'(n_1 - n) (r - r_1) - A_3 (r - r_1)^3 + A_4 (r - r_1)^4$$
(3)

where the coefficients are:

$$A_{1} = (\tan^{3} z_{1} + \tan z_{1})/r_{1}$$

$$A_{2} = (3 \tan^{5} z_{1} + 5 \tan^{3} z_{1} + ...)/(2 r_{1}^{2})$$

$$A'_{2} = 3 \tan^{5} z_{1}/r_{1}$$

$$A_{3} = 5 \tan^{7} z_{1}/(2 r_{1}^{3})$$

$$A_{4} = 35 \tan^{9} z_{1}/(8 r_{1}^{4})$$
(4)

By the substitution of (3), integral (1) breaks down into seven terms, of which the first two can be solved at once :

$$tan z_1 \int_1^{n_1} \frac{dn}{n} = tan z_1 / og n_1 = tan z_1 / og [1 + (n_1 - 1)] =$$

$$= tan z_1 (n_1 - 1) - \frac{1}{2} tan z_1 (n_1 - 1)^2 + ...$$

$$(tan^3 z_1 + tan z_1) \int_1^{n_1} (n_1 - n) dn = \frac{1}{2} (tan^3 z_1 + tan z_1) (n_1 - 1)^2$$

Since n is nearly unity (1 $\leq n < 1.0004$), all the terms of higher than second order will be omitted in the first integral, as well as n in the denominator of the subsequent ones. Equation (1) then becomes

$$\Delta z = \tan z_1 (n_1 - 1) + \frac{1}{2} \tan^3 z_1 (n_1 - 1)^2 - A_1 \int_1^{n_1} (r - r_1) dn +$$

$$+ A_2 \int_1^{n_1} (r - r_1)^2 dn - A_2' \int_1^{n_1} (n_1 - n) (r - r_1) dn -$$

$$- A_3 \int_1^{n_1} (r - r_1)^3 dn + A_4 \int_1^{n_1} (r - r_1)^4 dn$$
(5)

The five remaining atmospheric integrals can be determined, as follows.

Integral
$$\int_{1}^{n_1} (r - r_1) dn$$
.

In physical meteorology, the atmosphere may be thought of as a mixture of two ideal gases, dry air and water vapour. If we denote the total pressure, the partial pressure of water vapour and the absolute temperature by **p**, **e** and **T** respectively, the densities of the dry—air and water—vapour components are, as stated by the perfect gas law.

$$\rho_{\rm d} = \frac{\rm p - e}{\rm RT}$$
 and $\rho_{\rm w} = \frac{\rm e}{\rm R_{\rm w}T}$

where **R** and **R**_w stand for the appropriate gas constants. The density of the mixture is, of course, equal to $\rho_{\rm d}+\rho_{\rm w}$, or

$$\rho = \frac{\mathbf{p}}{\mathbf{RT}} - \left(1 - \frac{\mathbf{R}}{\mathbf{R_{wi}}}\right) \frac{\mathbf{e}}{\mathbf{RT}}$$

The atmosphere being in hydrostatic equilibrium, pressure p measured at any height level is equal to the total weight of the air contained in a vertical column of unit cross section, reaching from the point of observation $(r = r_1)$ up to the top of the atmosphere (r = r'). Consequently,

$$\int_{r_1}^{r'} \rho \ dr = \frac{1}{R} \int_{r_1}^{r'} \left(\frac{p}{T}\right) dr - \frac{1}{R} \left(1 - \frac{R}{R_W}\right) \int_{r_1}^{r'} \left(\frac{e}{T}\right) \ dr = \frac{p_1}{g}$$
 (6)

where **q** is the local value of gravity at the centroid of the atmospheric column.

The refractivity of moist air for electromagnetic radiation may be written

$$n-1 = \frac{(n_0-1)T_0}{p_0} \left(\frac{\rho}{T}\right) - c_w (e/T) + c_w' (e/T^2)$$
 (7)

where n_0 is the refractive index of dry air at pressure p_0 and temperature T_0 , and c_w and c_w are constants. The corresponding height integral

$$\int_{r_1}^{r'} (n-1) dr = \frac{(n_0-1) T_0}{p_0} \int_{r_1}^{r'} \left(\frac{p}{T}\right) dr - c_w \int_{r_1}^{r'} \left(\frac{a}{T}\right) dr + c_{w'} \int_{r_1}^{r'} \left(\frac{a}{T^2}\right) dr$$

can be readily determined with the aid of equation (6). This gives

$$\int_{r_{1}}^{r'} (n-1) dr = \frac{(n_{0}-1) RT_{0}}{p_{0} g} p_{1} + \left[\frac{(n_{0}-1) T_{0}}{p_{0}} \left(1 - \frac{R}{R_{w}} \right) - c_{w} \right] \int_{r_{1}}^{r'} \left(\frac{e}{T} \right) dr + c_{w'} \int_{r_{1}}^{r'} \left(\frac{e}{T^{2}} \right) dr$$
(8)

Equation (8) expresses the value of the refractivity integral in terms of ground pressure $\mathbf{p_1}$, with minor corrections included due to the presence of water vapour in the atmosphere.

As far as the astronomical refraction is concerned, the contribution of humidity to the refractivity integral is negligible, and the last two terms in equation (8) can be omitted. Setting

$$u = r - r_1$$
 $v = n - 1$
 $du = dr$ $dv = dn$

and integrating by parts:

$$\int (r-r_1) \ dn \ = \int u \ dv \ = \ uv - \int v \ du \ = \ (r-r_1) \ (n-1) - \int (n-1) \ dr \ ,$$

we then obtain from (8) and (7) the important relationships

$$\int_{1}^{n_{1}} (r - r_{1}) dn = \int_{r_{1}}^{r'} (n - 1) dr = \frac{(n_{0} - 1) RT_{0}}{p_{0} g} p_{1} = \frac{R}{g} (n_{1} - 1) T_{1}$$
 (9)

Integral
$$\int_1^{n_1} (r-r_1)^2 dn$$
.

This integral requires some consideration of the vertical distribution of pressure and temperature in the atmosphere. We shall determine its value in two parts, the stratospheric component and the tropospheric component. The state of the atmosphere at the bounding surface, the tropopause, shall be denoted by superscripts \mathbf{p}^0 , \mathbf{T}^0 , etc..., and it is assumed to be known.

Throughout the stratosphere, the temperature may be taken as constant, and equal to temperature T^0 at the tropopause. Integration of the hydrostatic equation for fluids, $dp = g \rho dr$, on the condition $\rho = p/(RT^0)$ gives the pressure as

$$p = p^0 e^{m(r-r^0)}$$
 (10)

where **e** is the base of natural logarithms, and $\mathbf{m} = -\mathbf{g}/(\mathbf{RT}^0)$ is constant. Similarly,

$$n-1 = (n^0 - 1) e^{m(r-r^0)}$$
 (11)

and differentiating (11)

$$dn = m (\dot{n}^0 - 1) e^{m(r - r^0)} dr = m (n - 1) dr$$
 (12)

Since identically

$$(r-r_1)^2 = (r^0-r_1)^2 + (r-r^0)^2$$

 $(r-r_1)^2 = (r^0-r_1)^2 + 2(r^0-r_1)(r-r^0) + (r-r^0)^2$

we have first, using (9)

$$\int_{1}^{n^{0}} (r-r_{1})^{2} dn = (r^{0}-r_{1})^{2} (n^{0}-1) + \frac{2R}{g} (r^{0}-r_{1}) (n^{0}-1) T^{0} + \int_{1}^{n^{0}} (r-r^{0})^{2} dn$$

Now from (12)

$$\int (r-r^0)^2 dn = m (n^0 - 1) \int (r-r^0)^2 e^{m(r-r^0)} dr =$$

$$= m (n^0 - 1) \frac{e^{m(r-r^0)}}{m^3} [m^2 (r-r^0)^2 - 2m (r-r^0) + 2] + C =$$

$$= (n-1) \left[(r-r^0)^2 - \frac{2}{m} (r-r^0) + \frac{2}{m^2} \right] + C$$

where C is the constant of integration. This gives

$$\int_{1}^{n^{0}} (r - r^{0})^{2} dn = \frac{2(n^{0} - 1)}{m^{2}} = \frac{2R^{2}}{g^{2}} (n^{0} - 1) T^{02}$$
 (13)

and the total stratospheric component is consequently

$$\int_{1}^{n^{0}} (r - r_{1})^{2} dn = (r^{0} - r_{1})^{2} (n^{0} - 1) + \frac{2R}{g} (r^{0} - r_{1}) (n^{0} - 1) T^{0} + \frac{2R^{2}}{g^{2}} (n^{0} - 1) T^{02}$$
(14)

Through most of the troposphere, the temperature decreases with height at a fairly uniform rate which varies slightly with latitude and season, although in the polar regions there exists a permanent inversion in the lower troposphere where the actual temperatures increase with height. Integration of the hydrostatic equation on the conditions $\rho = p/(RT)$ and

$$T = T_1 + \beta (r - r_1) \tag{15}$$

where the vertical gradient of temperature, $\beta = dT/dr$, is assumed constant gives the pressure as

$$p = p_1 \left(\frac{T}{T_1}\right)^{-g/(R\beta)} \tag{16}$$

and the pressure—temperature ratio as $p/T = (p_1/T_1) (T/T_1)^{m'}$, where $m' = -g/(R\beta) - 1$ is constant. The refractivity is now given by

$$n-1 = (n_1 - 1) \left(\frac{T}{T_1}\right)^{m'} \tag{17}$$

and its differential by

$$dn = \frac{m'(n_1 - 1)}{T_1} \left(\frac{T}{T_1}\right)^{m'-1} dT = m'\left(\frac{n - 1}{T}\right) dT$$
 (18)

Since from (15)

$$r - r_1 = \frac{T - T_1}{\beta} = \frac{T_1}{\beta} \left(\frac{T}{T_1} - 1 \right)$$
 and $(r - r_1)^2 = \frac{T_1^2}{\beta^2} \left(\frac{T}{T_1} - 1 \right)^2$

we have

$$\int (r - r_1)^2 dn = \frac{m' (n_1 - 1) T_1}{\beta^2} \int \left(\frac{T}{T_1} - 1\right)^2 \left(\frac{T}{T_1}\right)^{m'-1} dT =$$

$$= \frac{m' (n_1 - 1) T_1^2}{\beta^2} \left[\left(\frac{1}{m' + 2}\right) \left(\frac{T}{T_1}\right)^{m' + 2} - \left(\frac{2}{m' + 1}\right) \left(\frac{T}{T_1}\right)^{m' + 1} + \frac{1}{m'} \left(\frac{T}{T_1}\right)^{m'} \right] + C =$$

$$= \frac{(n - 1) T_1^2}{\beta^2} \left[\left(\frac{m'}{m' + 2}\right) \left(\frac{T}{T_1}\right)^2 - \left(\frac{2m'}{m' + 1}\right) \left(\frac{T}{T_1}\right) + 1 \right] + C =$$

$$= (r - r_1)^2 (n - 1) + \frac{(n - 1) T_1^2}{\beta^2} \left[\left(\frac{2}{m' + 1} \right) \left(\frac{T}{T_1} \right) - \left(\frac{2}{m' + 2} \right) \left(\frac{T}{T_1} \right)^2 \right] + C$$

where **C** is the constant of integration, and the preceding term, transformed step by step, is

$$\begin{split} &\frac{(n-1)\,T_{\,1}^{\,2}}{\beta^{2}}\left[\left(\frac{2}{m'+1}\right)\left(\frac{T}{T_{\,1}}\right)-\left(\frac{2}{m'+2}\right)\left(\frac{T}{T_{\,1}}\right)^{2}\right]=\frac{2\,(n-1)\,T_{\,1}\,T}{\beta^{2}\,(m'+1)}\left[1-\left(\frac{m'+1}{m'+2}\right)\left(\frac{T}{T_{\,1}}\right)\right]=\\ &=\frac{2\,(n-1)\,T_{\,1}\,T}{\beta^{2}\,(m'+1)}\left[\left(\frac{1}{m'+2}\right)\left(\frac{T}{T_{\,1}}\right)-\left(\frac{T}{T_{\,1}}-1\right)\right]=\frac{2\,(n-1)\,T}{\beta\,(m'+1)}\left[\frac{T}{\beta\,(m'+2)}-(r-r_{\,1})\right]=\\ &=\frac{2\,(n-1)\,RT}{g}\left[(r-r_{\,1})-\frac{T}{\beta\,(m'+2)}\right]=\frac{2\,R}{g}\,(r-r_{\,1})\,(n-1)\,T+\frac{2\,R^{2}}{g^{\,2}\,(1-R\,\beta/g)}\,(n-1)\,T^{\,2} \end{split}$$

The tropospheric component is accordingly

$$\int_{n^0}^{n_1} (r - r_1)^2 dn = -(r^0 - r_1)^2 (n^0 - 1) - \frac{2R}{g} (r^0 - r_1) (n^0 - 1) T^0 + \frac{2R^2}{g^2 (1 - R\beta/g)} \left[(n_1 - 1) T_1^2 - (n^0 - 1) T^{02} \right]$$
(19)

which equation holds for any constant value of $\beta \neq g/R$, including $\beta = 0$.

The sum of component integrals (14) and (19) gives the total value of the integral

$$\int_{1}^{n_{1}} (r-r_{1})^{2} dn = \frac{2 R^{2}}{g^{2}} \left[\frac{(n_{1}-1) T_{1}^{2} - (n^{0}-1) T^{02}}{1-R\beta/g} + (n^{0}-1) T^{02} \right] (20)$$

under normal atmospheric conditions where the vertical distribution of temperature throughout the troposphere is substantially a linear function of height.

Integral
$$\int_1^{n_1} (n_1 - n) (r - r_1) dn$$
.

Integration by parts using the substitutions $\mathbf{u} = \mathbf{r} - \mathbf{r}_1$ and $\mathbf{v} = [\mathbf{n}_1 - \mathbf{1} - (\mathbf{n} - \mathbf{1})]^2$ gives first, in view of (9),

$$\int_{1}^{n_{1}} (n_{1}-n) (r-r_{1}) dn = \frac{R}{g} (n_{1}-1)^{2} T_{1} - \frac{1}{2} \int_{r_{1}}^{r'} (n-1)^{2} dr$$
 (21)

the latter integral being more conveniently determined.

In the stratosphere, equation (11) gives

$$\int (n-1)^2 dr = (n^0 - 1)^2 \int e^{2m(r-r^0)} dr =$$

$$= (n^0 - 1)^2 \frac{e^{2m(r-r^0)}}{2m} + C = -\frac{R}{2a} (n-1)^2 T^0 + C$$

and

$$\int_{r^0}^{r'} (n-1)^2 dr \approx \frac{R}{2g} (n^0 - 1)^2 T^0$$
 (22)

whereas in the troposphere, applying (17)

$$\int (n-1)^2 dr = \frac{(n_1-1)^2}{\beta} \int \left(\frac{T}{T_1}\right)^{2m'} dT =$$

$$= \frac{(n_1-1)^2 T_1}{\beta (2m'+1)} \left(\frac{T}{T_1}\right)^{2m'+1} + C = -\left(\frac{R}{2g+R\beta}\right) (n-1)^2 T + C$$

and

$$\int_{r_1}^{r^0} (n-1)^2 dr = \left(\frac{R}{2g+R\beta}\right) [(n_1-1)^2 T_1 - (n^0-1)^2 T^0]$$
 (23)

The sum of (22) and (23) substituted into equation (21) finally gives the total value of the integral

$$\int_{1}^{m_{1}} (n_{1} - n) (r - r_{1}) dn = \frac{R}{g} (n_{1} - 1)^{2} T_{1} - \frac{R}{2(2g + R\beta)} [(n_{1} - 1)^{2} T_{1} + \frac{1}{2} (R\beta/g) (n^{0} - 1)^{2} T^{0}]$$
(24)

again assuming that the vertical gradient of temperature is constant in the troposphere.

Integrals
$$\int_1^{n_1} (r-r_1)^3 dn$$
 and $\int_1^{n_1} (r-r_1)^4 dn$.

For the stratospheric component of the first integral we have from (12)

$$\int (r-r^0)^3 dn = m (n^0-1) \int (r-r^0)^3 e^{m(r-r^0)} dr =$$

$$= m (n^0-1) \left[\frac{1}{m} (r-r^0)^3 e^{m(r-r^0)} - \frac{3}{m} \int (r-r^0) e^{m(r-r^0)} dr \right] =$$

$$= (r-r^0)^3 (n-1) - \frac{3}{m} \int (r-r^0)^2 dn$$

and further, in view of (13)

$$\int_{1}^{n^{0}} (r-r^{0})^{3} dn = -\frac{3}{m} \int_{1}^{n^{0}} (r-r^{0})^{2} dn = \frac{6R^{3}}{g^{3}} (n^{0}-1) T^{03}$$
 (25)

Using the identity $(\mathbf{r}-\mathbf{r}_1)^3=(\mathbf{r}^0-\mathbf{r}_1)^3+3(\mathbf{r}^0-\mathbf{r}_1)^2(\mathbf{r}-\mathbf{r}^0)+3(\mathbf{r}^0-\mathbf{r}_1)(\mathbf{r}-\mathbf{r}^0)^2+(\mathbf{r}-\mathbf{r}^0)^3$ and applying integrals (9), (13), and (25), the stratospheric component is obtained as

$$\int_{1}^{n^{0}} (r-r_{1})^{3} dn = (r^{0}-r_{1})^{3} (n^{0}-1) + \frac{3R}{g} (r^{0}-r_{1})^{2} (n^{0}-1) T^{0} + \frac{6R^{2}}{g^{2}} (r^{0}-r_{1}) (n^{0}-1) T^{02} + \frac{6R^{3}}{g^{3}} (n^{0}-1) T^{03}$$
(26)

For the tropospheric component of the same integral we have from (15) and (18)

$$\begin{split} &\int (r-r_1)^3 \ dn = \frac{m'(n_1-1)\ T_1^2}{\beta^3} \int \left(\frac{T}{T_1}-1\right)^3 \left(\frac{T}{T_1}\right)^{m'-1} \ dT = \\ &= \frac{m'(n_1-1)\ T_1^3}{\beta^3} \left[\left(\frac{1}{m'+3}\right) \left(\frac{T}{T_1}\right)^{m'+3} - \left(\frac{3}{m'+2}\ \left(\frac{T}{T_1}\right)^{m'+2} + \left(\frac{3}{m'+1}\ \left(\frac{T}{T_1}\right)^{m'+1} - \right) \right] + C = \frac{(n-1)\ T_1^3}{\beta^3} \left[\left(\frac{m'}{m'+3}\right) \left(\frac{T}{T_1}\right)^3 - \left(\frac{3m'}{m'+2}\right) \left(\frac{T}{T_1}\right)^2 + \left(\frac{3m'}{m'+1}\right) \left(\frac{T}{T_1}\right) - 1 \right] + C = \frac{(n-1)\ T_1^3}{\beta^3} \left[\left(\frac{m'}{m'+3}\right) \left(\frac{T}{T_1}\right)^3 - \left(\frac{3m'}{m'+2}\right) \left(\frac{T}{T_1}\right)^2 + \left(\frac{3m'}{m'+1}\right) \left(\frac{T}{T_1}\right) - 1 \right] + C = \frac{(n-1)\ T_1^3}{\beta^3} \left[\left(\frac{m'}{m'+3}\right) \left(\frac{T}{T_1}\right)^3 - \left(\frac{3m'}{m'+2}\right) \left(\frac{T}{T_1}\right)^2 + \left(\frac{3m'}{m'+1}\right) \left(\frac{T}{T_1}\right) - 1 \right] + C = \frac{(n-1)\ T_1^3}{\beta^3} \left[\left(\frac{m'}{m'+3}\right) \left(\frac{T}{T_1}\right)^3 - \left(\frac{3m'}{m'+2}\right) \left(\frac{T}{T_1}\right)^3 + \left(\frac{3m'}{m'+1}\right) \left(\frac{T}{T_1}\right) - 1 \right] + C = \frac{(n-1)\ T_1^3}{\beta^3} \left[\left(\frac{m'}{m'+3}\right) \left(\frac{T}{T_1}\right)^3 - \left(\frac{3m'}{m'+2}\right) \left(\frac{T}{T_1}\right)^3 + \left(\frac{3m'}{m'+1}\right) \left(\frac{T}{T_1}\right) - 1 \right] + C = \frac{(n-1)\ T_1^3}{\beta^3} \left[\left(\frac{m'}{m'+3}\right) \left(\frac{T}{T_1}\right)^3 - \left(\frac{3m'}{m'+2}\right) \left(\frac{T}{T_1}\right)^3 - \left(\frac{3m'}{m'+1}\right) \left(\frac{3m'}{m'+1}\right) \left(\frac{T}{T_1}\right)^3 - \left(\frac{3m'}{m'+1}\right) \left(\frac{3m'}{m'+$$

$$= (r-r_1)^3 (n-1) - \frac{3(n-1)T_1^2 T}{\beta^3 (m'+1)} \left[\left(\frac{m'+1}{m'+3} \right) \left(\frac{T}{T_1} \right)^2 - \left(\frac{2m'+2}{m'+2} \right) \left(\frac{T}{T_1} \right) + 1 \right] + C =$$

$$= (r-r_1)^3 (n-1) + \frac{3R}{g} (r-r_1)^2 (n-1) T + \frac{6(n-1)T_1 T^2}{\beta^3 (m'+1)(m'+2)} \left[\left(\frac{m'+2}{m'+3} \right) \left(\frac{T}{T_1} \right) - 1 \right] + C =$$

$$= (r-r_1)^3 (n-1) + \frac{3R}{g} (r-r_1)^2 (n-1) T + \frac{6R^2}{g^2 (1-R\beta/g)} (r-r_1) (n-1) T^2 +$$

$$+ \frac{6R^3}{g^3 (1-R\beta/g) (1-2R\beta/g)} (n-1) T^3 + C =$$

The tropospheric component is accordingly

$$\int_{n^0}^{n_1} (r - r_1)^3 dn = -(r^0 - r_1)^3 (n^0 - 1) - \frac{3R}{g} (r^0 - r_1)^2 (n^0 - 1) T^0 - \frac{6R^2}{g^2 (1 - R\beta/g)} (r^0 - r_1) (n^0 - 1) T^{02} + \frac{6R^3}{g^3 (1 - R\beta/g) (1 - 2R\beta/g)} \left[(n_1 - 1) T_1^3 - (n^0 - 1) T^{03} \right]$$

which added to stratospheric component (26) gives the total integral

$$\begin{split} \int_{1}^{n_{1}} \left(r-r_{1}\right)^{3} dn &= \frac{6R^{3}}{g^{3}} \left[\frac{\left(n_{1}-1\right) T_{1}^{3}-\left(n^{0}-1\right) T^{03}}{\left(1-R\beta/g\right) \left(1-2R\beta/g\right)} + \left(n^{0}-1\right) T^{03} \right] + \\ &+ \frac{6R^{2}}{g^{2}} \left[1 - \frac{1}{1-R\beta/g} \right] \left(r^{0}-r_{1}\right) \left(n^{0}-1\right) T^{02} \end{split}$$

Similarly,

$$\int_{1}^{n_{1}} (r-r_{1})^{4} dn = \frac{24R^{4}}{g^{4}} \left[\frac{(n_{1}-1) T_{1}^{4} - (n^{0}-1) T^{04}}{(1-R\beta/g) (1-2R\beta/g) (1-3R\beta/g)} + (n^{0}-1) T^{04} \right] + \frac{24R^{3}}{g^{3}} \left[1 - \frac{1}{(1-R\beta/g) (1-2R\beta/g)} \right] (r^{0}-r_{1}) (n^{0}-1) T^{03} + \frac{12R^{2}}{g^{2}} \left(1 - \frac{1}{1-R\beta/g} \right) (r^{0}-r_{1})^{2} (n^{0}-1) T^{02}$$
(29)

is obtained for the explicit value of the last integral considered in the expression for astronomical refraction (5).

Due to insolational heating of the ground during the day and its radiational cooling during the night, temperature gradients within the first few kilometres of the troposphere next to the ground frequently differ significantly from the approximately constant value of β above that level. Consequently integrals (20), (24), (28) and (29) should be modified by subdividing their respective tropospheric components. But since only a small contribution to these integrals comes from the lower levels, it will be quite sufficient merely to extend the constant temperature gradient of the free troposphere down to the ground level, neglecting the small error thus involved. This requires that the actual values of T_1 and $T_1 - T_2$ be replaced by

$$T_1' = T^0 - \beta (r^0 - r_1)$$
 (15')

$$n_1' - 1 = (n^0 - 1) (T_1'/T^0)^{m'}$$
 (17')

and the prevailing temperature gradient of the lower troposphere can be disregarded.

We may now combine the results from the preceding discussion, and write on the basis of equation (5) the following expression for the correction for astronomical refraction (in seconds of arc):

$$\Delta z'' = \rho'' \tan z_1 \left[1 + \frac{1}{2} \tan^2 z_1 (n_1 - 1) \right] (n_1 - 1) - \frac{\rho'' R}{r_1 g} (\tan^3 z_1 + \tan z_1) (n_1 - 1) T_1 + \delta_1'' - \delta_2'' - \delta_3'' + \delta_4''$$
 (30)

where

$$\begin{split} \delta_{1}^{"} &= \frac{\rho^{"} \, R^{2}}{r_{1}^{2} \, g^{2}} \, \left(3 \, \tan^{5} \, z_{1} + 5 \, \tan^{3} \, z_{1} \right) \left[\frac{\left(n_{1}^{'} - 1 \right) \, T_{1}^{'2} - \left(n^{0} - 1 \right) \, T^{02}}{1 - R \, \beta / g} \right. \\ \delta_{2}^{"} &= \frac{3 \, \rho^{"} \, R}{r_{1} \, g} \, \tan^{5} \, z_{1} \left[\left(n_{1}^{'} - 1 \right)^{2} \, T_{1}^{'} - \frac{\left(n_{1}^{'} - 1 \right)^{2} \, T_{1}^{'} + \frac{1}{2} \, \left(R \, \beta / g \right) \left(n^{0} - 1 \right)^{2} \, T^{0}}{2 \, (2 + R \, \beta / g)} \right] \\ \delta_{3}^{"} &= \frac{15 \, \rho^{"} \, R^{3}}{r_{1}^{3} \, g^{3}} \, \tan^{7} \, z_{1} \left[\frac{\left(n_{1}^{'} - 1 \right) \, T_{1}^{'3} - \left(n^{0} - 1 \right) \, T^{03}}{\left(1 - R \, \beta / g \right) \left(1 - 2 \, R \, \beta / g \right)} + \left(n^{0} - 1 \right) \, T^{03} \right] + \\ &+ \frac{15 \, \rho^{"} \, R^{2}}{r_{1}^{3} \, g^{2}} \, \tan^{7} \, z_{1} \left(1 - \frac{1}{1 - R \, \beta / g} \right) \left(r^{0} - r_{1} \right) \, \left(n^{0} - 1 \right) \, T^{02} \end{split}$$

$$\begin{split} \delta_4'' &= \frac{105\,\rho''\,R^4}{r_1^4\,g^4}\,\tan^9\,z_1\,\left[\frac{(n_1'-1)\,T_1'^4-(n^0-1)\,T^{04}}{(1-R\,\beta/g)\,(1-2\,R\,\beta/g)\,(1-3\,R\,\beta/g)} + (n^0-1)\,T^{04}\right] + \\ &+ \frac{105\,\rho''\,R^3}{r_1^4\,g^3}\,\tan^9\,z_1\,\left[1-\frac{1}{(1-R\,\beta/g)\,(1-2\,R\,\beta/g)}\,\right](r^0-r_1)\,(n^0-1)\,T^{03} + \\ &+ \frac{105\,\rho''\,R^2}{2\,r_1^4\,g^2}\,\tan^9\,z_1\left(1-\frac{1}{1-R\,\beta/g}\right)(r^0-r_1)^2\,(n^0-1)\,T^{02} \end{split}$$

represent minor terms dependent on the vertical structure of the atmosphere. Up to zenith distance $\mathbf{z}_1 = \mathbf{80}^{\circ}$, equation (30) will give the value of integral (1) accurately enough for all practical purposes, as can best be demonstrated by test computations on atmospheric models based upon the formulas previously derived (see Tables Ia — c and IIa — c).

Table la.

Atmospheric Model No. 1 (Tropical Zone)

		$r_1 = 6360 \text{km}$		r' = 63/6.8 km	$p_1 = 1010 mb$	T ₁ = 299.86 °K		$n_1 = 1.000265/1/(\lambda = 0.5/4 \mu)$	0 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1		$R = 2.8704 \times 10^6 \text{ erg g}^{-1} ^{\circ}\text{K}^{-1}$		g = 97.8 × 10° cm sec-4									
T, °K $\left (n-1) 10^6 \right - \left(\frac{dn}{dr} \right) 10^6 \text{km}^{-1}$	3.0983	2.6538	2.2730	1.9469	1.3800	0.9782	0.6933	0.4914	0.3483	0.2469	0.1750	0.1241	0.0623	0.0313	0.0157	0.0079	0.0040	0.0020	0.0010	0.0005		
(n — 1) 10 ⁶	18.01	15.42	13.21	11.31	8,02	5.68	4.03	2.86	2.02	1.43	1:02	0.72	0.36	0.18	0.09	90.0	0.02	0.01	900.0	0.003		
	198.00	198.00	198.00	198.00	198.00	198.00	198.00	198.00	198.00	198.00	198.00	198.00	198.00	198.00	198.00	198.00	198.00	198.00	198.00	198.00		
p, mb	45.19	38.71	33.15	28.40	20.13	14.27	10.11	7.17	5.08	3.60	2.55	1.81	0.91	0.46	0.23	0.12	90.0	0.03	0.01	0.00		
r, km 6360+	21.3	22.2	23.1	24	3 9	88	8	32	ষ্ঠ	98	88	4	4	84	52	26	8	g	88	72		
$(n-1)10^6 - (\frac{dn}{dr}) 10^6, km^{-1}$	24.8210	23.3982	22.0353	20.7308	19.4832	18.2908	17.1522	16.0658	15.0300	13.4513	11.9962	10.6585	9.4323	8.3116	7.2906	6.3636	5.5250	6.7209	5.7566	4.9307	4.2233	3.6173
(n — 1) 10 ⁶	265.72	246.43	228.26	211.16	195.08	179.97	165.80	152.52	140.08	121.58	105.05	90.34	77.29	65.77	55.64	46.78	39.06	39.06	33.45	28.65	24.54	21.02
T, °K	289.85	295.00	290.15	285.30	280.45	275.60	270.75	514.08 265.90	261.05	263.17	245.29	237.41	229.52	221.64	150.77 213.76	22.08 205.88	98.03 198.00	98.03 198.00	83.97 198.00	71.92 198.00	61.60 198.00	52.76 198.00
b, mb	1010.00 299.85	921.55 295.00	839.57 290.15	763.68 285.30	693.53 280.45	628.76 275.60	569.05 270.75	514.08	463.55 261.05	390.19 253.17	326.65 245.29	271.88 237.41	224.89 229.52	184.80 221.64	150.77	122.08	98.03	98.03	83.97	71.92	61.60	52.76
r, km 6360+	0	0.8	1.6	2.4	3.2	4	4 .8	9.6	6.4	7.7	6	10.3	11.6	12.9	14.2	15.5	16.8	16.8	17.7	18.6	19.5	20.4

T able 1b.

Atmospheric Model No. 2 (Temperate Zone)

		r, = 6380 km		r' = 6390.4 km	$p_1 = 1015 mb$	T; = 285.08 °K		$n_1 = 1.000280868 (\lambda = 0.574 \mu)$	1-1-1 20 at 0 1 a	p = -0.45 Km ⁻ ·		$R = 2.8704 \times 10^{6} \text{ erg g}^{-1} \text{ K}^{-1}$	ć	g = 98 × 10 cm sec-1								
$-\frac{(dn)}{dr}$ 10 ⁶ , km ⁻¹	3.6727	2.8142	2.1564	1.6523	1.2080	0.8832	0.6457	0.4720	0.3451	0.2523	0.1844	0.1348	0.0721	0.0385	0.0206	0.0110	0.0059	0.0031	0.0017	0.0009		
T, °K (n-1)10 ⁶	23.45	17.97	13.77	10.55	7.71	5.64	4.12	3.01	2.20	1.61	1.18	0.86	0.46	0.25	0.13	0.07	0.04	0.02	0.01	0.006		
	218.00	218.00	218.00	218.00	218.00	218.00	218.00	218.00	218.00	218.00	218.00	218.00	218.00	218.00	218.00	218.00	218.00	218.00	218.00	218.00		
p, mp	64.81	49.66	38.05	29.16	21.32	15.58	11.39	8.33	6.09	4.45	3.25	2.38	1.27	0.68	0.36	0.19	0.10	0.06	0.03	0.02		
r, km 6380 +	18.9	20.6	22.3	24	3 6	28	8	32	Ŗ	8	88	4	4	84	52	56	9	2	88	72		
- (dh) 10 ⁶ , km ⁻¹ 6380	27.2824	26.2791	25.3018	24.3501	23.4236	22.5219	21.6447	20.7916	19.9622	18.6834	17.4629	16.2990	15.1902	14,1351	13.1322	12.1799	11.2767	13.9033	10.6535	8.1633	6.2551	4.7930
(n - 1)10 ⁶	280.87	267.48	254.58	242.17	230.23	218.74	207.70	197.10	186.91	171.45	157.00	143.50	130.91	119.18	108.28	98.15	88.78	88.78	68.02	52.12	39.94	30.60
T, %	285.08	281.86	278.63	275.40	272.18	268.96	265.73	262.50	259.28	254.12	248.96	243.80	238.64	233.48	228.32	223.16	218.00	218.00	218.00	218.00	10.37 218.00	84.57 218.00
р, шр	1015.00 285.08	955.68 281.86	899.20 278.63	845.46 275.40	794.36 272.18	745.79 268.96	699.65 265.73	655.86 262.50	614.32 259.28	552.31 254.12	495.48 248.96	443.48 243.80	396.01 238.64	352.74 233.48	313.38 228.32	277.67 223.16	245.33 218.00	245.33 218.00	187.98 218.00	144.04 218.00	110.37	84.57
r, km 6380+	0	0.5	-	1.5	2	2.5	က	3.5	4	4.8	9.6	6.4	7.2	80	8.8	9.6	10.4	10.4	12.1	13.8	15,5	17.2

Table Ic. Atmospheric Model No. 3 (Arctic Zone)

			r ₁ = 6400 km	ri = 6401.6 km	ro 		$p_1 = 1020 \text{mb}$	$T_1 = 252.5^{\circ} K$	3 010000000	$n_1 = 1.0003186/0 \text{ (A} = 0.5/4 \mu)$	$\beta^{i} = +10.925$ ^o K km ⁻¹		$\beta = -6.525^{\circ} \text{K km}^{-1}$		$R = 2.8704 \times 10^6 \text{ erg g}^{-1} ^{\circ}\text{K}^{-1}$		$g = 98.2 \times 10^{1} \text{ cm sec}^{-2}$						
T, ${}^{\circ}K$ $(n-1)$ 10 6 $-(\frac{dn}{dr})$ 10 6 , km ⁻¹	3.8358	2.8659	2.1413	1.5999	1.1771	0.8661	0.6373	0.4689	0.3450	0.2538	0.1868	0.1374	0.0744	0.0403	0.0218	0.0118	0.000	0.0035	0.0019	0.0010			
(n – 1) 10 ⁶	25.00	18.68	13.96	10.43	7.67	5.65	4.15	3.06	2.25	1.65	1.22	9	0.48	0.26	0.14	ğ	3 5		0.0	0.007			
T, °K	223.00	223.00	223.00	223,00	223.00	223.00	223.00	223.00	223.00	223.00	223 00	223.00	223.00			222 00	222.62	223.00	223.00	223.00			
p, mb	70.68	52.81	39.46	29.48	21.69	15.96	11.74	8.64	6.36	4.68	3 44	2 53	1.37	0.74	0.40	0 22	0.13	200	0.03	0.02			
r, km 6400+	18.3	20.2	22.1	24	56	78	8	32	发	98	8	3 8	3	48	52	9	3 8	3 2	8	22			
$(n-1) 10^6 - (\frac{dn}{dr}) 10^6 \text{ km}^{-1}$	56.9646	54.5009	52.1633	49.9446	47.8378	45.8362	43.9339	42.1252	40.4047	24.7840	23.0779	21.4549	19.9125	18.4486	17.0609	15.7471	14.5050	13.3324	16.4745	12.3089	9.1967	6.8713	5.1339
(n –1) 10 ⁶	318.67	307.53	296.86	286.65	276.88	267.51	258.53	249.93	241.68	241.68	220.15	200.11	181.50	164.25	148.27	133.52	119.91	107.39	107.39	80.23	59.95	44.79	33.46
٦, گ	252.50	254.68	256.87	259.06	261.24	263.42	265.61	267.80	269.98	269.98	264.11	258.24	252.36	246.49	240.62	234.74	228.87	223.00	223.00	223.00	223.00	223.00	223.00
p, mb	1020.00	992.85	966.64	941.34	916.90	893.30	870.48	848.44	827.12	827.12	737.04	655.07	580.64	513.21	452.26	397.31	347.89	303.56	303.56	226.81	169.46	126.61	94.60
r, km 6400 +	0	0.2	0.4	9.0	8.0	-	1.2	4.	1.6	9.1	2.5	3.4	4.3	5.2	6.1	7	7.9	8.8	8.8	10.7	12.6	14.5	16.4

Table IIa. Atmospheric Model No. 1 (Tropjeal Zone)

				10000	2020-01	0000711	10 0443	0.6967		299:11	-		312.160	- 14.284	1,868	- 0.267	- 0.271	0.061	00,,000	2					
							707.8	0.3863		149:00	-		150.736	-1.781	0.062	- 0.00	- 0.002	0.00	00,,07	_					
				210011	25 0770 EG 5107	20.00	3 7214	0.2506		97.76	٦,		94.968	- 0.526	0.00	- 0.001	- 0.000	0.000	1						
			Integrals :;				16.8 – 24 km:	- 22		Astronomical	Merraction :	Formula (30) ;	1st term :	2nd term :		. 29 :	. 69 .								_
	2 15	$z_1 = 70^{\circ} z_1 = 80^{\circ}$	3.3003	2,8161	2.4029	2.0604	1.4413	1.0133	0.7124	0.5010	0.3623	0.2478	0.1743	0.1226	0.0807	0.0301	0.0149	0.0074	0.0037	0.0018	0.000	9000			
	٥١٥		1.7110	1.4638	1.2524	1.0715	0.7576	0.5367	0.3787	0.2678	0.1893	0.1330	0.0947	0.0669	0.0335	0.0167	0.0084	0.0042	0.0021	0.0010	0.0006	0.0003			_
: [.d-	8 = 1 ₂	1.003	0.9380	0.8013	0.6859	0.4856	0.3438	0.2434	0.1723	0.1220	0.0864	0.0611	0.0433	0.0217	0.0100	0.0066	0.0027	0.0014	0.0007	0.0003	0.0002			_
· .		z1 = 80°	5.16432	5.14464	5.12514	5.10581	2.66157 5.06349 0.4856	2.85490 5.02207	2,64827 4,98156	2.64168 4.94192	1.69780 2.63613 4.90317 0.1220	2.62861 4.86527	2.62214 4.82821	2.61672 4.79196	2.60299 4.72178	2.59044 4.65454	1.67963 2.57806 4.59006	1.67554 2.56585 4.52812 0.0027	2.55380 4.46859	4.41131	2.53018 4.35815	4.30297			
<u>i</u>	ten z	2, = 70	2.67732	2.67430	2.67128	2.66826	2.66157	2.66490	2.64827	2.64168	2.63513	2.62861	2.62214	2.61672	2.60299	2.59044	2.57806	2.56585	2.55380	2.54191	2.53018	2.51860			
3		z1 = 60°	1.71093	1.71000	1.70907.	1.70814	1.70807	1.70400	1.70193	1.69986	1.69780	1.69575	1.69370	1.69166	1.68759	1.68355	1.67963	1.67564	1,67168	1.66764	1.66373	1.65984			_
Astronomical national, as = P J n mile and a con , you also	(g/4)	_	0.63906	0.64738	0.46884	0.40157	0.28464	0.20176	0.14301	0.10137	0.07186	0.05093	0.03610	0.02559	0.01286	0.00646	0.00326	0.00163	0.00082	0.00041	0.00021	0.00010			-
1011	r, km 6360+		21.3	22.2	ž	*	8	88	8	g	a a	8	8	\$	\$	\$	23	22	8	2	8	22			_
100000	ž	z1 = 80°	29.0276	27.2879	26.5896	23.9900	22.4667	27.01.12	19.6390	18.3290	17.0873	15.2044	13.4816	15.9094		9.1810	8.0073	80,498	6.9998	7,2984	6.2271		4.5333	3.8879	=
•	ر ا ا	ω = 1z	14,0625	13,2448	12.4619	11.7138	10,9986	10,3160	9.6647	9.0441	8.4530	7,5634	6.7258	5.9665	5.2717	4.6380	4.0817	3,5396	3,0682	3.7323	3.1933	2.7320	2.3374	1.9906	
	- e	00 = 1z	8.8652	8.3636	7.8638	7,3962	8,9472	6.5193	6.1108	6.7213	5,3501	4.7847	4.2640					2.2634	1.9650	2,3781	2,0369	1.7428	1,4920	1.2772	
		00 = 1z 04	5.67128	6.66136	6 5.63143 7.8638	5,61162	6.59163	6.67178	5.56197	6.63221	72 5.51262 5.3501	6.48068	17 5.44902	5.41762	5.38648	5.36562	3 5.32508	5.29482	5.26491	10 5.26491	10 5.24464	5.22427	37 6.20414	5 5.18415	_
	ž.	0/ = 1z	2,74748	174488	1,74246	2.73993	13737	Ξ	2	2.72963	2.72702	2.7227.5			2,70983	270649		7	9		2,68940	2.68639	2.68337		_
		z) = 60° z	1.73206 2	1.73131 2.74488	1,73067 2,7424	1,72962 2,7399	1.72906 2.73737	1,72830 2,7348	1.72763 2.7322	1.72678 2.7296	1.72508 2.7270	1.72471 2.7227	1.72342 2.7184	1.72213 2.71416 5.41762	1.72082 2.7098	1,71961 2,706	1.71819 2.701	1.71687 2.6967	1.71554 2.092	1.71554 2.892	1.71463 2.689	1.71371 2.68630 5.22427	1.71278 2.6833	1.71186 2.880X	<u>-</u>
	5, km - 6" (dn/dr)		6.11834	4.82503	4.54407	4.27514	4.01791	3.77208	3.63731	3.31330	3.00073	_	2,47413		72	1.71428	1,50371			1.38823	1.18736	1.01700	0.87109	0.74611	_
L	c, km 6360+		•	8.0	9,	2.4	3.2	4	7	9.9	7.0	7.7	•	10.3	11.8	12.9	14.2	9	16.8	16.8	17.7	18.6	19.6	8	_

Table IIb.
Atmospheric Model No. 2
(Temperate Zone)

		Integrals ::	0 - 4 km: 33.5267 53.1215 108.9898	4 - 10.4 km : 34.9234 66.1647 111.3767	27.7120 43.5495	24 - 40 km: 3.4041 5.3011 10.0g89	40 - 72 km: 0.2989 0.4891 0.8274		Refraction: 99'36 157'80 316'92		Formula (30);	100.386 156.339	1 - 0.526 - 1.781 - 1.	0.006 0.060	- 0000	- 0.000 - 0.002 -	0000 0000 0000 0000	16::916 09::291 16::91			- See toodhow to lape its.			
2 5	z, =80°	3.9666	3.0089	2.2890	1.7415	1.2826	0.9155	0.0630	0.4815	0.3483	0.2534	0.1838	0.1334	0.0703	0.0370	0.0196	0.0103	0.0064	0.0029	0.0016	0.000	_		_
(p/4) - 4-	2 ₁ = 70	2.0347	1,6658	1.1896	0.9086	0.8633	0.4837	0.3528	0.2573	0.1876	0.1368	9660.0	0.0728	0.0387	0.0206	0.0110	99000	0.0031	0.0016	0.000	0.0006			_
•	z ₁ =60° z ₁ =70° z ₁ =80°	1.2981	0.9837	0.7608	0.5822	0.4261	0.3104	0.2267.	0.1666	0.1208	0.0683	0.0644	0.0471	0.0251	20134		0.0038	0.0020	0.0011	0.000	0.0003			_
		6.22171	6.18372	6.14636	5.10064	6.06730	3.02588	4.98638	1,94578	90708	1.86019	4.83216	4.79594	1,72681	4,86862	1.59416	4.53226	4.47278	4.41550	4.38036	4.30720		_	_
7 S	1 = 70	2,68600	2.68028	2.67456	2.66886	2.66218	2.65662 6.02588	2,64891	2.84233 4.94678	2.63679 4.90706	2.62929 4.88919	2.62284	2.61643	2.80373 4.72681	2.59121	2.57886 4.59416 0.0071	1.56668	2.55488	2.54279	2.53100	2.51963			_
	$z_1 = 60^{\circ}$ $z_1 = 70^{\circ}$ $z_1 = 80^{\circ}$	3851	1.71184	1.71008 2	1.70832	1.70626	1.70419	1.70212	1.70007	1.69601	1.89698	1.88392	1.69188	1.68783	1.68380	2 87878.1	1.67581 2.56668 4.53228 0.0038	2 991.091	1.68783	1.86403	1.66015			_
-0- (m/dr)		0.76763	0.58046	0.44478 1	0.34082	0.24917	0.18216	0.13318	0.09736	0.07118	0.06204	0.03806	0.02781	0.01487	0.00795	0.00428	1 72200.0	121000	0.00066	0.00036	0.00019	_		-
r, km 6380+		2	20.6	22.3	7	×	8	8	g	ಕ	8	8	\$	\$	#	2	3	8	2	8	2			_
z G	08 = 17	31.9066	30.6667	29.4629	28.2938	27.1585	26.0666	24.9675	23.9504	22.9449	21.4002	19.9322	18.5366	17.2189	15,9647	14.7798	13.6509	12.6026	16,5380	11,8186	8.9601	6.8371	6.2003	=
- p" (dn/dr) t	1 = 70	5.4568	4.8803	4.3191	3.7729	3,2415	2,7247	2.2223	1.7339	1.2564	0.5296	9128	9.1678	8.5362	7.9358	7.3667	6.8250	6,3129	7.7833	6.9619	4.5512	3.4801	2.6610	-
- 0	z ₁ = 60° z ₁ = 70° z ₁ = 80°	9.7442	_	8.0323	6.6904	8.3576		7.7190	7.4128	7.1162	6.6566	8.2191	5,8021	6.4061	5.0274	4.0686	4,3281	4.0064	4.9383	3.7804	2.8930	2,2163	1.6958	-
	00 = 12	8 5.67128	5.65910 9.3836	5.64690	5,63470	5,62248	5.61026 8.0339	5.59804		6.57360	0 8.65407	6.53456		7 5.49569		5.46701	5.43778	5,41862		_	6.33890	6.29828	2 6.26028	_
1 mg	<u></u>	2.74748	ø	Ŋ	99	2.74132	2,73976	2.73820	7	*	2.73250	2,72894	9	2.72477	2,72217	92			_		_	7	2.69172	_
	z1 = 60° z1 = 70	7,7206	1.73160 2.7466	1.73116 2.744	1.73069 2.7428	1.73023	1.72977	1.72931	1.72884 2.7366	1.72837 2.7360	1.72761 2.7328	1.72685	1.72608 2.7273	1.72631 2.7247	1,72463 2,722	1.72376 2.7196	1.72286	1.72217 2.71430	1.72217 2.71430	1.72060 2.7087	1.71879 2.7031	1.71.707 2.0974	1.71534	-
- p" (dn/dr)		5.62582	_	6.21764	5.02136	4.83036	4.8446	4.46361	Ť	4.11672		3.60141	_			2.70841	2.51203	2.32578	2.86751	_	1.68371	1.29016	0.98860	-
r, km 6380+		•	9.0	-	9,1	~	2,6		3.6	•	4.0	5.6	3	7.2	•	8.8	9.6	10.4	10.	12.1	13.8	16.6	17.2	_

			_	_	_		_	_	_	1	-	_	_		_		_		-					
			89.8025	163.9958	106.9680	999876	0.8610		361,751		_	374.686	- 14.257	1.561	- 0.273	- 0.252	960'0	361"52	_					
			43.5899	76,7060	54.0825	5.2165	0.4769		178':07			180.810	1.780	0.048	- 0.008	-0.002	0.000	179":07						
			27.4886 43.5899	47.8626 75.7060	34.3796	3.3500	0.3092	i -	13:38		-		- 0.525	0.00	1000	-6.000	0.000	113'38	-	1				
		Integrals ";	5	1.6 - 8.8 km:	8.8 - 24 km:	- 40 km:	- 72 km:	Astronomical	Refraction :		Formule (30):		2nd term :	:-	- 13:	e -			-					
	• 0			_	_	5 50 20	<u>\$</u>	_	_		_	_			8	9	=	3	25	_•	_	_		
(dr.) ten z	21 = 80 z1 = 70 z1 = 80	75 4.1476	58 3.0738	20 2.2780	11 1.6884	88 1.2320	0.3045 0.4746 0.8991	1.70247 2.66002 4.99215 0.2238 0.3483 0.6562	67 0.4790	76 0.3497	0.0688 0.1377 0.2653	1.69429 2.62400 4.83879 0.0663 0.1011 0.1864	0.0742 0.1361	0.0259 0.0400 0.0726	0.0215 0.0388	0.0116 0.0207	0.0063 0.0111	0.0034 0.0059	0.0018 0.0032	0.0010 0.0017	900 0.000	<u> </u> 		
-p" (dn/dr)	200	65 2.1275	24 1.5858	1.1820	38 0.8811	1.70669 2.66326 5.07414 0.4144 0.6488	48	80	0.1645 0.2557	0.1876	88 0.13	63 0.10		69	0.0140 0.02		41		0.0012 0.00		0.0006			
		33 1.3565	1.0124	66 0.7565	63 0.5638	14 0.41		15 0.22		75 0.1209		90.0	54 0.0480			67 0.0076	190001	00 0.0022		54 0.000	133 0.0003	<u> </u>		
	1=12	6.242	6.19960	6.15766	6.11663	8.074	2 6.002	4.902	4.962	3 4.913	4.875	4.838	2.61760 4.80264	3 4.732	4.665	4,600	2,56794 4,53661	2.56594 4.47906	2.64410 4.42174	4.36654	4.31333			
z 5	01 = 12	2.6890	1.71267 2.68268	1.71061 2.67630	1.70865 2.66994	2.0632	2.8866	2.6800	1.70042 2.64346 4.96251	2.6369	2.6304	2.6240	2.61764	2.6046	1.68419 2.59244 4.66509	1.68020 2.58011 4.60067	2.5679	2.5669		2.53241	2.52088			
	z ₁ = 60° z ₁ = 70° z ₁ = 80°	1.71453 2.68807 6.24233	1,71267	1,71061	1,70865	.70659	1.70453 2.86662 5.03289	1.70247	1,70042	1.69637 2.63693 4.91376	1.69633 2.63044 4.87586	1.69429	1.69226	1.68821 2.60463 4.73236	61789	1.68020	1.67623	1.67228	1.66837	1.86447	1.66060			
-p" (dn/dr)		0.79117	0.56113	0.44167	0.32889	0.24280	0.17866	0.13146	0.00672	0.07116	0.06236	0.03862		0.01536	0.00831	0.00450	0.00243	0.00132	0.00071	0.00030	0.00021			
r, km 6400+		18.3	20.2	22.1	z	*	*	8	×	8	8	8	\$	\$	4	25	28	8	3	8	2			
	z i = 80°	56.6152	33.0023	18180	1082.88	56.7907	53.4183	51.1643	10.0219	46.9848	28.8200	26.7325	24.7560	22.8798	21.1213	9.6030 19.4569	8.8643 17,8870	B.1473 16.4112	7.4807 15.0250	18.5661	13.7582	10.1945	7.5538	6.6972
$= \rho^{\infty} \left(\frac{dn/dr}{n} \right) \tan z$,1 = 70°	2.2720	0.8713	9.5423	8.2813	7.0833	5.9465	A.8642	3,8382		4.0212	3.0430	7.8508 12.1136 24.7560	7.0075 11.2313 22.8958	8.5726 10.3949 21.1213	9.6030	8.8643	8.1473	7.4807	9.2437	6.8910	5.1360	3.8291	2.8542
-هـ (ق	09=1	20.3448 32.2720 86.6152	19,4636 30,8713 63,6923	18.6274 29.5423 60.9197	17,8339 28,2813 58,2801	7.0802	16.3642 25.9465 53.4183	15,0838 24,8642 51,1643	15.0369 23,8362 49,0219	14,4216 22,8684	8.8461 14.0212 28.8200	8.2334 13.0430 26.7325	7.6506	7.0075	6.5726	6.0763	5.6047	6.1601	4.7408	5.8578	4,3721	3.2632	2.4364	1.8176
	70 21 = 80 21 = 60 21 = 70 21 = 80	748 6.67128 2	1701 5.06750 1	1 19039 299	1 1.050.8 5.00	17.0802 27.0833 56.7907 E833 56.7907	1 5.85162	1449 5.64748 1	1396 8.64327 1	1342 6.63902 1		5.61712	5.59621	6.67330	5.55140	5.52963	6.60770	F. 48694	5.46424	5.46424	440 5,41938	0815 6.37450	5.32990	6.29590
z g										2.74342	2.74342	2.74064	2.73783	2,73600	1.72751 2.73216 6.55140	1.72665 2.72927 6.52963	2,72638 6.60770	1.72482 2.72348 5.48594	2,72054 5,46424	1,72404 2,72064 6,46424	2,71440		2.70183	2.69646 6.29680
	z 1 = 00 = 1z	1.73206 2.7	1.73101 2.7	1.73177 2.7	1.73162 2.7	1.73147 2.7	1.73132 2.7	1.73117 2.7	1.73101 2.7	1.73086	1,73066		1.72820 2.73783	1,728,38	1.72751	1.72086	1.72679	1.72482	1.72404	1,72404	1.72220	1.72032 2.7	1.71840	1.71647
- p" (dn/dr)		11.74606	11,23615	10.75627	10.29807	9.86452	9.45187	9.0568	8.08678	_		4.75912	4.42450	4.10651	3.80468	3,51864	3.24764	2.99151	2.74970	3.39774	2,63870	1.89083	1,41724	1.06891
r, km 6400 +		۰	6.2	3	9.0	8.0	_	7.7	3	9.	1.6	2.5	, ,	<u>.</u>	6.2	5	_	7.9		3	10,7	12.6	14.5	3