The Spectrum of a Bounded Linear Operator

Let X be a complex Banach space and $T \in B(X)$. The resolvent set of T, $\rho(T)$, is

$$\rho(T) = {\lambda \in \mathbb{C} : T - \lambda I \text{ is invertible}}.$$

The *spectrum of T*, $\sigma(T)$, is the complement of $\rho(T)$,

$$\sigma(T) = \mathbb{C} \setminus \rho(T)$$

$$= \{ \lambda \in \mathbb{C} : T - \lambda I \text{ is not invertible} \}.$$

The point spectrum of T is the set

$$\sigma_{p}(T) = {\lambda \in \mathbb{C} : (T - \lambda I)x = 0 \text{ for some non-zero } x \in X}.$$

If $\lambda \in \sigma_p(T)$, then λ is an eigenvalue of T, $E_{\lambda} := \operatorname{Ker}(T - \lambda I)$ is the eigenspace corresponding to λ , and any non-zero $x \in E_{\lambda}$ is one of the corresponding eigenvectors (if $x \in E_{\lambda}$, then $Tx = \lambda x$); the dimension of E_{λ} is the multiplicity of λ .

Any $\lambda \in \sigma_p(T)$ satisfies $|\lambda| \leq ||T||$: if there exists $x \neq 0$ such that $Tx = \lambda x$, then

$$|\lambda| ||x|| = ||\lambda x|| = ||Tx|| \le ||T|| ||x||,$$

which shows that $|\lambda| \leq ||T||$.

Lemma 14.2 Suppose that $T \in B(X)$ and that $\{\lambda_j\}_{j=1}^n$ are distinct eigenvalues of T. Then any set $\{e_j\}_{j=1}^n$ of corresponding eigenvectors (i.e. $Te_j = \lambda_j e_j$) is linearly independent.

Lemma If $T \in B(X)$, then $\sigma(T)$ is a closed subset of

$$\{\lambda \in \mathbb{C} : |\lambda| \le ||T||\}.$$
 (14.3)

Proof First we prove the inclusion

$$\sigma(T) \subseteq {\lambda \in \mathbb{C} : |\lambda| \le ||T||}.$$

Note that for any $\lambda \neq 0$, we can write

$$T - \lambda I = \lambda \left(\frac{1}{\lambda}T - I\right),\,$$

so if $I - \frac{1}{\lambda}T$ is invertible, $\lambda \notin \sigma(T)$. But for $|\lambda| > ||T||$ we have

$$\left\|\frac{1}{\lambda}T\right\|\|I\|<1,$$

and then Lemma 11.16 guarantees that $I - \frac{1}{\lambda}T$ is invertible, i.e. $\lambda \in \rho(T)$, and the result follows.

To show that the spectrum is closed we show that the resolvent set is open. If $\lambda \in \rho(T)$, then $T - \lambda I$ is invertible and Lemma 11.16 shows that $(T - \lambda I) - \delta I$ is invertible provided that

$$\|\delta^{\mathsf{T}}\|\|(T - \lambda I)^{-1}\| < 1,$$

i.e. $T - (\lambda + \delta)I$ is invertible for all δ with $|\delta| < \|(T - \lambda I)^{-1}\|^{-1}$, and so $\rho(T)$ is open.

Example The right-shift operator \mathfrak{s}_r on ℓ^2 has no eigenvalues.

Proof Observe that $\mathfrak{s}_r x = \lambda x$ implies that

$$(0, x_1, x_2, \ldots) = \lambda(x_1, x_2, x_3, \ldots)$$

and so

$$\lambda x_1 = 0$$
, $\lambda x_2 = x_1$, $\lambda x_3 = x_2$,

If $\lambda \neq 0$, then this implies that $x_1 = 0$, and then $x_2 = x_3 = x_4 = \ldots = 0$, and so λ is not an eigenvalue. If $\lambda = 0$, then we also obtain $\mathbf{x} = 0$, and so there are no eigenvalues, i.e. $\sigma_p(\mathfrak{s}_r) = \emptyset$.

Example For the left-shift operator \mathfrak{s}_l on ℓ^2 every $\lambda \in \mathbb{C}$ with $|\lambda| < 1$ is an eigenvalue.

Proof Observe that $\lambda \in \mathbb{C}$ is an eigenvalue if $\mathfrak{s}_l x = \lambda x$, i.e. if

$$(x_2, x_3, x_4 \ldots) = \lambda(x_1, x_2, x_3, \ldots),$$

i.e. if

$$x_2 = \lambda x_1, \quad x_3 = \lambda x_2, \quad x_4 = \lambda x_3, \quad \cdots$$

Given $\lambda \neq 0$ this gives a candidate eigenvector

$$\mathbf{x} = (1, \lambda, \lambda^2, \lambda^3, \ldots),$$

which is an element of ℓ^2 (and so is an actual eigenvector) provided that

$$\sum_{n=1}^{\infty} |\lambda|^{2n} = \frac{1}{1 - |\lambda|^2} < \infty,$$

which is the case for any λ with $|\lambda| < 1$. It follows that

$$\{\lambda \in \mathbb{C} : |\lambda| < 1\} \subseteq \sigma_{p}(\mathfrak{s}_{l}).$$

Lemma If H is a Hilbert space and $T \in B(H)$, then

$$\sigma(T^*) = {\overline{\lambda} : \lambda \in \sigma(T)}.$$

Proof If $\lambda \notin \sigma(T)$, then $T - \lambda I$ has a bounded inverse,

$$(T - \lambda I)(T - \lambda I)^{-1} = I = (T - \lambda I)^{-1}(T - \lambda I).$$

Taking adjoints we obtain

$$[(T - \lambda I)^{-1}]^* (T^* - \overline{\lambda}I) = I = (T^* - \overline{\lambda}I)[(T - \lambda I)^{-1}]^*,$$

and so $T^* - \overline{\lambda}I$ has a bounded inverse, i.e. $\overline{\lambda} \notin \sigma(T^*)$. Starting instead with T^* we deduce that $\lambda \notin \sigma(T^*) \Rightarrow \overline{\lambda} \notin \sigma(T)$, which completes the proof. \square

Since $s_r = s_l^*$, $\{\lambda \in \mathbb{C}: |\lambda| < 1\} \subset \sigma_p(s_l) \subset \sigma(s_l)$, we have from this Lemma that $\{\lambda \in \mathbb{C}: |\lambda| < 1\} \subset \sigma(s_r)$.

Example The spectrum of \mathfrak{s}_l and of \mathfrak{s}_r (as operators on ℓ^2) are both equal to the unit disc in the complex plane:

$$\sigma(\mathfrak{s}_l) = \sigma(\mathfrak{s}_r) = \{\lambda \in \mathbb{C} : |\lambda| \le 1\}.$$

Proof We showed earlier that for the shift operators \mathfrak{s}_r and \mathfrak{s}_l on ℓ^2 ,

$$\sigma(\mathfrak{s}_l) = \sigma(\mathfrak{s}_r) \supseteq \{\lambda \in \mathbb{C} : |\lambda| < 1\}.$$

Since the spectrum is closed and $\|\mathfrak{s}_r\| = \|\mathfrak{s}_l\| = 1$, it follows

$$\sigma(\mathfrak{s}_l) = \sigma(\mathfrak{s}_r) = \{\lambda \in \mathbb{C} : |\lambda| \le 1\}.$$

Spectral mapping theorem Let X be a complex Banach space and $T \in B(X)$. If $Q(t) = \sum_{k=0}^{n} a_k t^k$ is a polynomial, then

$$Q(\sigma_p(T)) = \sigma_p(Q(T)). \quad (*)$$

$$Q(\sigma(T)) = \sigma(Q(T)). \qquad (**)$$

Proof We have $Q(\sigma_p(T)) \subset \sigma_p(Q(T))$. Assume now by contradiction that there exists $\mu \in \sigma_p(Q(T))$ such that $\mu \notin Q(\sigma_p(T))$. Write

$$Q(t) - \mu = a(t - t_1)(t - t_2) \cdots (t - t_n)$$

with $a \neq 0$. Then $t_i \notin \sigma_p(T) \ \forall i$. In fact, if for some $i, t_i \in \sigma_p(T)$, then $\mu = Q(t_i)$. This contradicts our assumption. In addition, we have some $x \neq 0$ such that $Q(T)x = \mu x$. Since for each $i, T - t_i I$ is injective, we conclude that x = 0. Impossible. This proves (*).

In order to prove (**), let us show firstly that $Q(\sigma(T)) \subset \sigma(Q(T))$. Suppose, by contradiction, that there exists some $\mu \in Q(\sigma(T))$ such that $\mu \notin \sigma(Q(T))$. Then $\mu = Q(\lambda)$ with $\lambda \in \sigma(T)$, and $Q(T) - Q(\lambda)I = S$ is bijective. We may write

$$Q(t) - Q(\lambda) = (t - \lambda)W(t) \quad \forall t \in \mathbb{C},$$

and thus

$$(T - \lambda I)W(T) = W(T)(T - \lambda I) = S.$$

Hence $T - \lambda I$ is bijective and $\lambda \in \rho(T)$; impossible. Therefore, $Q(\sigma(T)) \subset \sigma(Q(T))$. Now suppose there is a $\mu \in \sigma(Q(T))$ such that $\mu \notin Q(\sigma(T))$. Write $Q(t) - \mu$ as above with $t_i \notin \sigma(T) \ \forall i$. Then $Q(T) - \mu I$ can be written as product of bijective operators. Therefore $Q(T) - \mu I$ is bijective, i.e., $\mu \in \rho(Q(T))$. Impossible. This proves (**).

Compact Operators

Definition Let X and Y be normed spaces. A linear operator $T: X \to Y$ is *compact* if for any bounded sequence $(x_n) \in X$, the sequence $(Tx_n) \in Y$ has a convergent subsequence (whose limit lies in Y).

T is compact if $T\mathbb{B}_X$ is a precompact subset of Y

Note that a compact operator must be bounded, since otherwise there exists a sequence $(x_n) \in X$ with $||x_n|| = 1$ but $Tx_n \to \infty$, and clearly (Tx_n) cannot have a convergent subsequence.

Example Take $T \in B(X, Y)$ with finite-dimensional range. Then T is compact, since any bounded sequence in a finite-dimensional space has a convergent subsequence.

Noting that if $T, S: X \to Y$ are both compact, then T + S is also compact, and that λT is compact for any $\lambda \in \mathbb{K}$, we can define the space K(X, Y) of all compact linear operators from X into Y, and this is then a vector space.

Definition. A linear operator $T: X \to Y$ is said to be of *fitte rank* if the range of T, is finite-dimensional.

Theorem Suppose that X is a normed space and Y is a Banach space. If $(K_n)_{n=1}^{\infty}$ is a sequence of compact (linear) operators in K(X,Y) that converges to some $K \in B(X,Y)$, i.e.

$$||K_n - K||_{B(X,Y)} \to 0$$
 as $n \to \infty$,

then $K \in K(X, Y)$. In particular, K(X, Y) is complete.

Proof

Since Y is complete it suffices to check that for every $\varepsilon > 0$ there is a finite covering of $K(\mathbb{B}_X)$ with balls of radius ε . Fix an integer n such that $||K_n - K|| < \frac{\varepsilon}{2}$. Since $K_n(\mathbb{B}_X)$ has compact closure, there is a finite covering of $K_n(\mathbb{B}_X)$ by balls of radius $\varepsilon/2$, say

$$K_n(\mathbb{B}_X) \subset \bigcup_{i \in I} B\left(f_i, \frac{\varepsilon}{2}\right)$$
. It follows that $K(\mathbb{B}_X) \subset \bigcup_{i \in I} B(f_i, \varepsilon)$.

Definition 15.5 An operator $T \in B(H)$ is *Hilbert–Schmidt* if for some orthonormal basis $\{e_j\}_{j=1}^{\infty}$ of H

$$||T||_{HS}^2 := \sum_{i=1}^{\infty} ||Te_i||^2 < \infty.$$

Proposition 15.6 Any Hilbert–Schmidt operator T is compact.

Proof Choose some orthonormal basis $\{e_j\}_{j=1}^{\infty}$ for H, and observe that since T is linear and continuous we can write

$$Tu = T\left(\sum_{j=1}^{\infty} (u, e_j)e_j\right) = \sum_{j=1}^{\infty} (u, e_j)Te_j.$$

Now for each n let $T_n: H \to H$ be defined by setting

$$T_n u := \sum_{j=1}^n (u, e_j) T e_j.$$

This operator is clearly linear, and its range is finite-dimensional since it is the linear span of $\{Te_j\}_{j=1}^n$. It follows that T_n is a compact operator for each n.

Thus

$$\|(T_{n} - T)u\| = \left\| \sum_{j=n+1}^{\infty} (u, e_{j}) T e_{j} \right\|$$

$$\leq \sum_{j=n+1}^{\infty} |(u, e_{j})| \|T e_{j}\|$$

$$\leq \left(\sum_{j=n+1}^{\infty} |(u, e_{j})|^{2} \right)^{1/2} \left(\sum_{j=n+1}^{\infty} \|T e_{j}\|^{2} \right)^{1/2}$$

$$\leq \|u\| \left(\sum_{j=n+1}^{\infty} \|T e_{j}\|^{2} \right)^{1/2},$$

which shows that

$$||T_n - T||_{B(H)} \le \left(\sum_{j=n+1}^{\infty} ||Te_j||^2\right)^{1/2}$$

$$\rightarrow 0, n \rightarrow \infty$$
.

Theorem Let T be a compact linear operator on a Hilbert space E. There exists a sequence of finite rank operators $\{T_n\}_{n=1}^{\infty}$ such that $\|T_n - T\| \to 0$.

Proof

Let $B_E = \{x \in E: ||x|| \le 1\}$, set $K = \overline{T(B_E)}$. Given $\varepsilon > 0$ there is a finite covering of K with balls of radius ε , say $K \subset \bigcup_{i \in I} B(f_i, \varepsilon)$. Let G denote the vector space spanned by the f_i 's and set $T_{\varepsilon} = P_G T$, so that T_{ε} is of finite rank. We claim that $||T_{\varepsilon} - T|| < 2\varepsilon$. For every $x \in B_E$ there is some $i_0 \in I$ such that

$$||Tx - f_{i_0}|| < \varepsilon.$$

Thus

$$||P_GTx - P_Gf_{i_0}|| < \varepsilon,$$

that is,

$$||P_G T x - f_{i_0}|| < \varepsilon.$$

Combining (1) and (2), one obtains

$$||P_GTx - Tx|| < 2\varepsilon \quad \forall x \in B_E,$$

that is,

$$||T_{\varepsilon}-T||$$
 <2 ε .

Lemma If H is a Hilbert space and $T \in K(H)$, then $T^* \in K(H)$.

Proof Since T is compact and T* is bounded, it follows that TT* is compact. For any bounded sequence $(x_n) \in H$,

 TT^*x_n has a convergent subsequence (which we relabel). Therefore

$$|(TT^*(x_n - x_m), x_n - x_m)| \le ||TT^*(x_n - x_m)|| ||x_n - x_m|| \to 0$$

as $\min(m, n) \to \infty$. But the left-hand side of this expression is

$$|(T^*(x_n - x_m), T^*(x_n - x_m))| = ||T^*(x_n - x_m)||^2,$$

which shows that (T^*x_n) is Cauchy and thus convergent, showing that T^* is compact.

Theorem Suppose that X is an infinite-dimensional Banach space and $T \in K(X)$. Then $0 \in \sigma(T)$.

The Hilbert-Schmidt Theorem

If T is self-adjoint, then the numerical range of T, V(T), is the set

$$V(T) := \{ (Tx, x) : x \in H, ||x|| = 1 \}.$$
 (16.1)

Theorem 16.1 Let H be a Hilbert space and $T \in B(H)$ a self-adjoint operator. Then $V(T) \subset \mathbb{R}$ and

$$||T||_{B(H)} = \sup\{|\lambda| : \lambda \in V(T)\}.$$
 (16.2)

Proof We have

$$(Tx, x) = (x, Tx) = \overline{(Tx, x)},$$

and so (Tx, x) is real for every $x \in H$.

To prove (16.2) we let $M = \sup\{|(Tx, x)| : x \in H, ||x|| = 1\}$. Clearly

$$|(Tx, x)| \le ||Tx|| ||x|| \le ||T|| ||x||^2 = ||T||$$

when ||x|| = 1, and so $M \le ||T||$.

Now observe that for any $u, v \in H$ we have

$$(T(u+v), u+v) - (T(u-v), u-v) = 2[(Tu, v) + (Tv, u)]$$

= $2[(Tu, v) + (v, Tu)]$
= $4 \operatorname{Re}(Tu, v),$

using the fact that $(Tv, u) = (v, Tu) = \overline{(Tu, v)}$ since T is self-adjoint.

$$4\operatorname{Re}(Tu, v) = (T(u + v), u + v) - (T(u - v), u - v)$$

$$\leq M(\|u + v\|^2 + \|u - v\|^2)$$

$$= 2M(\|u\|^2 + \|v\|^2)$$

using the Parallelogram Law.

If $Tu \neq 0$ choose

$$v = \frac{\|u\|}{\|Tu\|} Tu$$

to obtain, since ||v|| = ||u||, that

$$4||u|||Tu|| \le 4M||u||^2,$$

i.e. $||Tu|| \le M||u||$ if $Tu \ne 0$. The same inequality is trivial if Tu = 0, and so it follows that $||T|| \le M$ and therefore we obtain ||T|| = M, as required. \square

Corollary 16.2 *If* $T \in B(H)$ *is self-adjoint, then*

- (i) all of its eigenvalues are real, and
- (ii) if $Tx_1 = \lambda_1 x_1$ and $Tx_2 = \lambda_2 x_2$ with $\lambda_1 \neq \lambda_2$, then $(x_1, x_2) = 0$.

Theorem 16.3 Let H be a Hilbert space and $T \in B(H)$ a compact self-adjoint operator. Then at least one of $\pm ||T||$ is an eigenvalue of T, and so in particular

$$||T|| = \max\{|\lambda| : \lambda \in \sigma_{p}(T)\}. \tag{16.3}$$

Proof

Note that

$$|\lambda| \leq ||T||$$
, $\forall \lambda \in \sigma_p(T)$.

$$||T|| = \sup_{||x||=1} |(Tx, x)|,$$

so there exists a sequence (x_n) of unit vectors in H such that

$$(Tx_n, x_n) \to \alpha,$$
 (16.4)

where α is either ||T|| or -||T||. Since T is compact, there is a subsequence x_{n_j} such that Tx_{n_j} is convergent to some $y \in H$. Relabel x_{n_j} as x_n again, so that $Tx_n \to y$ and (16.4) still holds.

Now consider

$$||Tx_n - \alpha x_n||^2 = ||Tx_n||^2 + \alpha^2 - 2\alpha (Tx_n, x_n)$$

$$\leq 2\alpha^2 - 2\alpha (Tx_n, x_n);$$

by our choice of x_n , the right-hand side tends to zero as $n \to \infty$. It follows, since $Tx_n \to y$, that

$$\alpha x_n \to y$$
,

and since $\alpha \neq 0$ is fixed we have $x_n \to x := y/\alpha$; note that ||x|| = 1 since it is the limit of the x_n and $||x_n|| = 1$ for every n. Since T is bounded, it is continuous, so therefore

$$Tx = \lim_{n \to \infty} Tx_n = y = \alpha x.$$

We have found $x \in H$ with ||x|| = 1 such that $Tx = \alpha x$, so $\alpha \in \sigma_p(T)$.

Lemma 16.5 If $T \in B(H)$ and Y is a closed linear subspace of H such that $TY \subseteq Y$, then $T^*Y^{\perp} \subseteq Y^{\perp}$. In particular, if $T \in B(H)$ is self-adjoint and Y is a closed linear subspace of H, then

$$TY \subseteq Y \qquad \Rightarrow \qquad TY^{\perp} \subseteq Y^{\perp}.$$

Proof Let $x \in Y^{\perp}$ and $y \in Y$. Then $Ty \in Y$ and so

$$0 = (Ty, x) = (y, T^*x) \qquad \text{for all } y \in Y,$$

i.e.
$$T^*x \in Y^{\perp}$$
.

X: a Banach space. A bounded operator $A \colon X \to X$ is called *invertible* if it maps X one-to-one onto X. By the Banach theorem the inverse mapping A^{-1} is automatically continuous.

Definition. The spectrum $\sigma(A)$ of a bounded linear operator A on a complex Banach space X consists of all $\lambda \in \mathbb{C}$ such that the operator $A - \lambda I$ is not invertible.

The complement of the spectrum is called the *resolvent set* of the operator A and denoted by $\varrho(A)$. The points of the resolvent set are called *regular* points. For every $\lambda \in \varrho(A)$ the operator

$$R_{\lambda}(A) := (A - \lambda I)^{-1}$$

is called the *resolvent* of A (one should bear in mind that sometimes the resolvent is defined as the inverse to $\lambda I - A$). For $\lambda, \mu \in \varrho(A)$ we have the *Hilbert identity*

$$R_{\lambda}(A) - R_{\mu}(A) = (\lambda - \mu)R_{\mu}(A)R_{\lambda}(A),$$

which is easily verified by multiplying both sides by $(A - \lambda I)$ from the right and then multiplying by $(A - \mu I)$ from the left.

By Banach's inverse mapping theorem a point λ belongs to the spectrum if and only if either $\operatorname{Ker}(A - \lambda I) \neq 0$ or $(A - \lambda I)(X) \neq X$, where

$$Ker(A - \lambda I) := \{x \colon Ax - \lambda x = 0\}.$$

In the first case λ is an *eigenvalue*, i.e., $Av = \lambda v$ for some vector $v \neq 0$ (called an *eigenvector*). In the finite-dimensional space both cases can happen only simultaneously, but in infinite-dimensional spaces the situation is different.

Lemma $\lambda \in \varrho(A)$ and

(i) Let $A \in B(X)$. Then, whenever $|\lambda| > ||A||$, we have

$$R_{\lambda}(A) = -\sum_{k=0}^{\infty} \frac{A^k}{\lambda^{1+k}},$$

where the series converges in the operator norm.

(ii) For every point $\lambda_0 \in \varrho(A)$, whenever $|\lambda - \lambda_0| < ||R_{\lambda_0}(A)||^{-1}$, we have $\lambda \in \varrho(A)$ and

$$R_{\lambda}(A) = \sum_{k=0}^{\infty} (\lambda - \lambda_0)^k R_{\lambda_0}(A)^{k+1},$$

where the series converges in the operator norm.

PROOF. (i) We have $A - \lambda I = -\lambda I + A$, where $||A|| < |\lambda| = 1/||(\lambda I)^{-1}||$. Convergence of the series of $-\lambda^{-1-k}A^k$ in the operator norm is obvious from the estimate $||\lambda^{-k}A^k|| \le |\lambda|^{-k}||A||^k$. It is straightforward to show that for its sum S_λ we have $S_\lambda(A - \lambda I) = (A - \lambda I)S_\lambda = I$.

(ii) Convergence of the series with respect to the norm is justified similarly. For its sum S_{λ} we have

$$S_{\lambda}(A - \lambda I) = \sum_{k=0}^{\infty} (\lambda - \lambda_0)^k R_{\lambda_0}(A)^{k+1} (A - \lambda_0 I - (\lambda - \lambda_0) I)$$
$$= \sum_{k=0}^{\infty} [(\lambda - \lambda_0)^k R_{\lambda_0}(A)^k - (\lambda - \lambda_0)^{k+1} R_{\lambda_0}(A)^{k+1}] = I.$$

Similarly, $(A - \lambda I)S_{\lambda} = I$.

Let X be a complex or real Banach space and K be a compact operator on X.

Lemma A Let K be a compact operator on X.

- (i) The kernel of the operator I K is finite-dimensional.
- (ii) The range of the operator I K is closed.

PROOF. (i) On the kernel of the operator I - K the operator I equals K and hence is compact, which is only possible if this kernel is finite-dimensional.

(ii) Let $y_n = x_n - Kx_n \to y$. We show that $y \in (I - K)(X)$. Suppose first that $\sup_n ||x_n|| < \infty$. By the compactness of K we can extract from $\{Kx_n\}$ a convergent subsequence $\{Kx_{n_i}\}$. Since $x_{n_i} = y_{n_i} + Kx_{n_i}$, the sequence $\{x_{n_i}\}$ converges as well. Denoting its limit by x, we obtain y = x - Kx.

We now consider the case where the sequence $\{x_n\}$ is not bounded. Set $Z=\mathrm{Ker}(I-K)$ and

$$d_n = \inf\{\|x_n - z\| \colon z \in Z\}.$$

Since Z is finite-dimensional, there exist vectors $z_n \in Z$ with $||x_n - z_n|| = d_n$. We show that the sequence $\{d_n\}$ is bounded. Suppose the contrary. We can assume that $d_n \to +\infty$. Set

$$v_n = (x_n - z_n)/\|x_n - z_n\|.$$

Since $(I - K)z_n = 0$ and $\sup_n ||y_n|| < \infty$, we have

$$||v_n|| = 1, \ v_n - Kv_n = (I - K)x_n/||x_n - z_n|| = y_n/d_n \to 0.$$

The sequence $\{Kv_n\}$ contains a convergent subsequence $\{Kv_{n_i}\}$. Then $\{v_{n_i}\}$ converges to some vector $v \in X$. Moreover,

$$v - Kv = \lim_{i \to \infty} (v_{n_i} - Kv_{n_i}) = 0,$$

i.e., $v \in Z$. However, this is impossible, since $dist(v, Z) \ge 1$, because

$$||v_n - z|| = \frac{1}{d_n} ||x_n - z_n - d_n z|| \ge \frac{d_n}{d_n} = 1$$
 for all $z \in \mathbb{Z}$, $n \in \mathbb{N}$.

Thus, the sequence $\{d_n\}$ is bounded. Now everything reduces to the first case, since $(I - K)(x_n - z_n) = (I - K)x_n = y_n$.

Theorem Let K be a compact operator on a complex or real infinite-dimensional Banach space X. Then the spectrum of K either coincides with the point 0 or has the form

$$\sigma(K) = \{0\} \cup \{k_n\},\$$

where all numbers k_n are eigenvalues of K of finite multiplicity, which means that $\dim \operatorname{Ker}(K-k_n I) < \infty$, and the collection $\{k_n\}$ is either finite or is a sequence converging to zero.

PROOF. By the noncompactness of I the operator K is not invertible and hence $0 \in \sigma(K)$. Let $\lambda \in \sigma(K)$ and $\lambda \neq 0$. We show that λ is an eigenvalue. Suppose the contrary. Passing to the operator $\lambda^{-1}K$, we can assume that $\lambda = 1$. By the lemma the subspace $X_1 = (K - I)(X)$ is closed in X. In addition, we have $X_1 \neq X$, since otherwise K - I would be invertible. Set

$$X_n = (K - I)^n(X) = (K - I)(X_{n-1}), \quad n \ge 2.$$

It is clear that $X_{n+1} \subset X_n$, since $X_1 \subset X$, whence $X_2 \subset X_1$ and so on. By the lemma we obtain that all subspaces X_n are closed. They are all different by the injectivity of K-I, since if

$$(K-I)(X_n) = (K-I)(X_{n-1}),$$

then $X_n = X_{n-1}$, whence we obtain $X_n = \cdots = X_1 = X$.

According to Riesz Lemma, there exist vectors $x_n \in X_n$ such that $||x_n|| = 1$ and $dist(x_n, X_{n+1}) \ge 1/2$. If n < m, we have

$$Kx_n - Kx_m = x_n - x_m + (K - I)x_n - (K - I)x_m,$$

where

$$-x_m + (K-I)x_n - (K-I)x_m \in X_m + X_{n+1} + X_{m+1} \subset X_{n+1}.$$

Hence $||Kx_n - Kx_m|| \ge 1/2$, i.e., $\{Kx_n\}$ contains no Cauchy subsequence contrary to the compactness of K. The obtained contradiction means that λ is an eigenvalue of K. By the lemma dim $\operatorname{Ker}(K - \lambda I) < \infty$, i.e., λ has a finite multiplicity.

We now show that $\sigma(K)$ has no nonzero limit points. Suppose that $\lambda_n \to \lambda$, where λ_n are eigenvalues and $\lambda \neq 0$. We can assume that λ_n are distinct and $|\lambda_n| \geqslant \sigma > 0$. Let us take $x_n \neq 0$ with $Kx_n = \lambda_n x_n$. It is readily seen that the vectors x_n are linearly independent. Denote by X_n the linear span of x_1, \ldots, x_n . It is clear that $K(X_n) \subset X_n$. By Riesz Lemma there exist $y_n \in X_n$ with $\|y_n\| = 1$ and $\operatorname{dist}(y_n, X_{n-1}) \geqslant 1/2$, n > 1. We have

$$y_n = \alpha_n x_n + z_n, \quad z_n \in X_{n-1}.$$

Then for n > m we have

$$Ky_n - Ky_m = K(\alpha_n x_n) + Kz_n - Ky_m = \alpha_n \lambda_n x_n + Kz_n - Ky_m$$
$$= \lambda_n (y_n - z_n + \lambda_n^{-1} Kz_n - \lambda_n^{-1} Ky_m),$$

where $-z_n + \lambda_n^{-1}Kz_n - \lambda_n^{-1}Ky_m \in X_{n-1}$, because $z_n \in X_{n-1}$, $Kz_n \in X_{n-1}$, $Ky_m \in X_m \subset X_{n-1}$. Since $|\lambda_n| \geqslant \sigma$ and $\operatorname{dist}(y_n, X_{n-1}) \geqslant 1/2$, we have $||Ky_n - Ky_m|| \geqslant \sigma/2$. Hence $\{Ky_n\}$ contains no Cauchy subsequence, which is a contradiction.

Theorem 16.6 (Hilbert–Schmidt Theorem). Let H be a Hilbert space and $T \in B(H)$ a compact self-adjoint operator. Then there exists a finite or countably infinite orthonormal sequence (w_j) consisting of eigenvectors of T, with corresponding non-zero real eigenvalues (λ_j) , such that for all $x \in H$

$$Tx = \sum_{j} \lambda_j(x, w_j) w_j. \tag{16.5}$$

Proof By Theorem 16.3 there exists $w_1 \in H$ such that $Tw_1 = \pm ||T||w_1$ and $||w_1|| = 1$.

Consider the subspace of H perpendicular to w_1 ,

$$H_2 = w_1^{\perp}$$
.

Since $H_2 \subset H$ is closed, it is a Hilbert space (Lemma 8.11). Then since T is self-adjoint, Lemma 16.5 shows that T leaves H_2 invariant. If we consider $T_2 = T|_{H_2}$, then we have $T_2 \in B(H_2, H_2)$ with T_2 compact; this operator is still self-adjoint, since for all $x, y \in H_2$

$$(x, T_2y) = (x, Ty) = (Tx, y) = (T_2x, y).$$

Now apply Theorem 16.3 to the operator T_2 on the Hilbert space H_2 find an eigenvalue $\lambda_2 = \pm ||T_2||$ and an eigenvector $w_2 \in H_2$ with $||w_2|| = 1$.

Now if we let $H_3 = \{w_1, w_2\}^{\perp}$, then H_3 is a closed subspace of H_2 and $T_3 = T|_{H_3}$ is compact and self-adjoint. We can once more apply Theorem 16.3 to find an eigenvalue $\lambda_3 = \pm ||T_3||$ and a corresponding eigenvector $w_3 \in H_3$ with $||w_3|| = 1$. We continue this process as long as $T_n \neq 0$.

If $T_n = 0$ for some n, then, for any given $x \in H$, if we set

$$y := x - \sum_{j=1}^{n-1} (x, w_j) w_j \in H_n,$$

we have

$$0 = T_n y = T y = T x - \sum_{j=1}^{n-1} (x, w_j) T w_j = T x - \sum_{j=1}^{n-1} \lambda_j (x, w_j) w_j,$$

which is (16.5).

If T_n is never zero, then, given $x \in H$, consider

$$y_n := x - \sum_{j=1}^{n-1} (x, w_j) w_j \in H_n$$

(for $n \geq 2$). We have

$$||x||^2 = ||y_n||^2 + \sum_{j=1}^{n-1} |(x, w_j)|^2,$$

and so $||y_n|| \le ||x||$. It follows, since $T_n = T|_{H_n}$, that

$$\left\| Tx - \sum_{j=1}^{n-1} \lambda_j(x, w_j) w_j \right\| = \|Ty_n\| \le \|T_n\| \|y_n\| = |\lambda_n| \|x\|,$$

and since $|\lambda_n| \to 0$ as $n \to \infty$ (Theorem above) we obtain (16.5).