project

December 5, 2020

1 CSCI 3022 Final Project - Regression

```
[1]: NAME = "Vu Dang"
      COLLABORATORS = ""
[45]: %matplotlib inline
      import numpy as np
      import scipy as sp
      import scipy.stats as stats
      import pandas as pd
      import matplotlib.pyplot as plt
      import seaborn as sns
      # Set color map to have light blue background
      sns.set()
      import statsmodels.formula.api as smf
      import statsmodels.api as sm
      import patsy
      import sklearn
      from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
      from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis
```

1.1 1. Linear Regression 1

In this section, I will perform an initial pass through of loading, cleaning the data and finding an initial model through forward stepwise selection using the linear regression model.

```
[31]: # load in the data sets
data_test = pd.read_csv('test.csv', comment='#')
data_train = pd.read_csv('train.csv', comment='#')
```

The data has been loaded in. The first thing I will do is drop the "Id" column. I believe that this column is useless and should have no effect on the prediction of the sale price.

```
[32]: data_train = data_train.drop(["Id"], axis=1)
  data_test = data_test.drop(["Id"], axis=1)
  print(data_train)
  print(data_test)
```

	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley Lo	otShape \	
0	60	RL	65.0	8450	Pave	NaN	Reg	
1	20	RL	80.0	9600	Pave	NaN	Reg	
2	60	RL	68.0	11250	Pave	NaN	IR1	
3	70	RL	60.0	9550	Pave	NaN	IR1	
4	60	RL	84.0	14260	Pave	NaN	IR1	
	•••	•••			•••			
1455	60	RL	62.0	7917	Pave	NaN	Reg	
1456	20	RL	85.0	13175	Pave	NaN	Reg	
1457	70	RL	66.0	9042	Pave	NaN	Reg	
1458	20	RL	68.0	9717	Pave	NaN	Reg	
1459	20	RL	75.0	9937	Pave	NaN	Reg	
	T 10 .		T . G . C .	D 74	D 104	7 17	м. п.	,
			LotConfig				MiscFeature	
0	Lvl	AllPuk					NaN	
1	Lvl	AllPuk					NaN	
2	Lvl	AllPuk					NaN	
3	Lvl	AllPuk					NaN	
4	Lvl	AllPub	FR2	. () Nal	NaN	NaN	
 4 4 5 5	 T 7	 433D1				 T N - N	N - N	
1455	Lvl	AllPub					NaN NaN	
1456	Lvl	AllPuk					NaN	
1457	Lvl	AllPuk					Shed	
1458	Lvl	AllPuk					NaN	
1459	Lvl	AllPuk	Inside	. () Nal	NaN	NaN	
	MiscVal MoS	old YrSol	.d SaleType	SaleCondi	ition S	SalePrice)	
0	0	2 200	V -		ormal	208500)	
1	0	5 200	7 WD	No	ormal	181500)	
2	0	9 200	08 WD	No	ormal	223500)	
3	0	2 200	06 WD	Abr	norml	140000)	
4	0	12 200	08 WD	No	ormal	250000)	
•••		•••	•••	•••	•••			
1455	0	8 200	7 WD	No	ormal	175000)	
1456	0	2 201	.O WD	No	ormal	210000)	
1457	2500	5 201	.O WD	No	ormal	266500)	
1458	0	4 201	.O WD	No	ormal	142125	5	
1459	0	6 200		No	ormal	147500		
F								
[1460	rows x 80 MSSubClass		I otEmontomo	T a+ Amas	Ctmoot	111 or I o	+Chono \	
^		•	LotFrontage			Alley Lo	-	
0	20	RH	80.0	11622	Pave	NaN NaN	Reg	
1	20	RL	81.0	14267	Pave	NaN NaN	IR1	
2	60	RL	74.0	13830	Pave	NaN NaN	IR1	
3	60	RL	78.0	9978	Pave	NaN NaN	IR1	
4	120	RL	43.0	5005	Pave	NaN	IR1	
 1454	 160	 RM	21.0	 1936	 Pave	NaN	Reg	
1404	100	IIII	21.0	1930	rave	παπ	ireR	

1455	160	RM		21.0	1894	P	ave NaN	Re	g	
1456	20	RL		160.0	20000	P	ave NaN	Re		
1457	85	RL		62.0	10441	P	ave NaN	Re	g	
1458	60	RL		74.0	9627	P	ave NaN	Re	g	
									•	
	LandContour	Utilities	LotCon	fig "	ScreenP	orch	PoolArea	PoolQC	Fence	\
0	Lvl	AllPub	Ins	ide "		120	0	NaN	${\tt MnPrv}$	
1	Lvl	AllPub	Cor	ner "		0	0	NaN	NaN	
2	Lvl	AllPub	Ins	ide "		0	0	NaN	${\tt MnPrv}$	
3	Lvl	AllPub	Ins	ide "		0	0	NaN	NaN	
4	HLS	AllPub	Ins	ide "		144	0	NaN	NaN	
•••	•••	•••			•••	•••				
1454	Lvl	AllPub	Ins	ide "		0	0	NaN	NaN	
1455	Lvl	AllPub	Ins	ide "		0	0	NaN	NaN	
1456	Lvl	AllPub	Ins	ide "		0	0	NaN	NaN	
1457	Lvl	AllPub	Ins	ide "		0	0	NaN	${\tt MnPrv}$	
1458	Lvl	AllPub	Ins	ide "		0	0	NaN	NaN	
	MiscFeature	MiscVal	MoSold	YrSol	d SaleT	уре	SaleCond	ition		
0	NaN	0	6	201	0	WD	N	ormal		
1	Gar2	12500	6	201	0	WD	N	ormal		
2	NaN	0	3	201	0	WD	N	ormal		
3	NaN	0	6	201	0	WD	N	ormal		
4	NaN	0	1	201	0	WD	N	ormal		
•••	•••		•••							
1454	NaN	0	6	200	6	WD	N	ormal		
1455	NaN	0	4	200	6	WD	Ab	norml		
1456	NaN	0	9	200	6	WD	Ab	norml		
1457	Shed	700	7	200	6	WD	N	ormal		
1458	NaN	0	11	200	6	WD	N	ormal		

[1459 rows x 79 columns]

I notice that there are lots of NaNs in both the test and train data. For this section, I will naively fill any numerical NaNs with 0's. In the next section I will perform a more educated cleaning procedure.

```
[33]: data_train = data_train.fillna(0.0)
    data_test = data_test.fillna(0.0)
    print(data_train.info())
    print(data_test.info())
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1460 entries, 0 to 1459
Data columns (total 80 columns):

#	Column	Non-Null Count	Dtype
0	MSSubClass	1460 non-null	int64

1	MSZoning	1460	non-null	object
2	LotFrontage		non-null	float64
3	LotArea		non-null	int64
4	Street		non-null	object
5	Alley		non-null	object
6	LotShape		non-null	object
7	LandContour		non-null	object
8	Utilities		non-null	object
9	LotConfig		non-null	object
10	LandSlope		non-null	object
11	Neighborhood		non-null	object
12	Condition1		non-null	object
13	Condition2		non-null	object
14	BldgType		non-null	object
15	HouseStyle		non-null	object
16	OverallQual		non-null	int64
	OverallCond		non-null	int64
	YearBuilt		non-null	int64
19	YearRemodAdd		non-null	int64
20	RoofStyle		non-null	object
21	RoofMatl		non-null	object
22	Exterior1st		non-null	object
23	Exterior2nd		non-null	object
24	MasVnrType		non-null	object
25	MasVnrArea		non-null	float64
26	ExterQual		non-null	object
27	ExterCond		non-null	object
28	Foundation		non-null	object
29	BsmtQual		non-null	object
30	BsmtCond		non-null	object
31	BsmtExposure		non-null	object
32	BsmtFinType1		non-null	object
33	BsmtFinSF1		non-null	int64
34	BsmtFinType2		non-null	object
35	BsmtFinSF2		non-null	int64
	BsmtUnfSF		non-null	int64
	TotalBsmtSF		non-null	int64
38	Heating		non-null	object
39	HeatingQC		non-null	object
40	CentralAir		non-null	object
41	Electrical		non-null	object
42	1stFlrSF		non-null	int64
43	2ndFlrSF		non-null	int64
44	LowQualFinSF		non-null	int64
45	GrLivArea		non-null	int64
46	BsmtFullBath		non-null	int64
47	BsmtHalfBath		non-null	int64
48	FullBath		non-null	int64
	· ===			· • -

49	HalfBath	1460	non-null	int64			
50	${\tt BedroomAbvGr}$	1460	non-null	int64			
51	KitchenAbvGr	1460	non-null	int64			
52	KitchenQual	1460	non-null	object			
53	${\tt TotRmsAbvGrd}$	1460	non-null	int64			
54	Functional	1460	non-null	object			
55	Fireplaces	1460	non-null	int64			
56	FireplaceQu	1460	non-null	object			
57	${\tt GarageType}$	1460	non-null	object			
58	${\tt GarageYrBlt}$	1460	non-null	float64			
59	${\tt GarageFinish}$	1460	non-null	object			
60	GarageCars	1460	non-null	int64			
61	GarageArea	1460	non-null	int64			
62	GarageQual	1460	non-null	object			
63	${\tt GarageCond}$	1460	non-null	object			
64	PavedDrive	1460	non-null	object			
65	WoodDeckSF	1460	non-null	int64			
66	OpenPorchSF	1460	non-null	int64			
67	${\tt EnclosedPorch}$	1460	non-null	int64			
68	3SsnPorch	1460	non-null	int64			
69	ScreenPorch	1460	non-null	int64			
70	PoolArea	1460	non-null	int64			
71	PoolQC	1460	non-null	object			
72	Fence	1460	non-null	object			
73	MiscFeature	1460	non-null	object			
74	MiscVal	1460	non-null	int64			
75	MoSold	1460	non-null	int64			
76	YrSold	1460	non-null	int64			
77	SaleType	1460	non-null	object			
78	${\tt SaleCondition}$	1460	non-null	object			
79	SalePrice	1460	non-null	int64			
dtyp	dtypes: float64(3), int64(34), object(43)						
memo	ry usage: 912.6	+ KB					
None							

None

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1459 entries, 0 to 1458
Data columns (total 79 columns):

Dava	COTAMINE (COCCE	io columno,.	
#	Column	Non-Null Count	Dtype
0	MSSubClass	1459 non-null	int64
1	MSZoning	1459 non-null	object
2	LotFrontage	1459 non-null	float64
3	LotArea	1459 non-null	int64
4	Street	1459 non-null	object
5	Alley	1459 non-null	object
6	LotShape	1459 non-null	object
7	LandContour	1459 non-null	object
8	Utilities	1459 non-null	object

9	LotConfig	1459	non-null	object
10	LandSlope	1459	non-null	object
11	Neighborhood	1459	non-null	object
12	Condition1	1459	non-null	object
13	Condition2	1459	non-null	object
14	BldgType	1459	non-null	object
15	HouseStyle	1459	non-null	object
16	OverallQual	1459	non-null	int64
17	OverallCond	1459	non-null	int64
18	YearBuilt	1459	non-null	int64
19	YearRemodAdd	1459	non-null	int64
20	RoofStyle	1459	non-null	object
21	RoofMatl	1459	non-null	object
22	Exterior1st	1459	non-null	object
23	Exterior2nd	1459	non-null	object
24	MasVnrType	1459	non-null	object
25	MasVnrArea	1459	non-null	float64
26	ExterQual	1459	non-null	object
27	ExterCond	1459	non-null	object
28	Foundation	1459	non-null	object
29	BsmtQual	1459	non-null	object
30	BsmtCond	1459	non-null	object
31	BsmtExposure	1459	non-null	object
32	BsmtFinType1	1459	non-null	object
33	BsmtFinSF1	1459	non-null	float64
34	BsmtFinType2	1459	non-null	object
35	BsmtFinSF2	1459	non-null	float64
36	BsmtUnfSF	1459	non-null	float64
37	TotalBsmtSF	1459		float64
38	Heating	1459		object
39	HeatingQC	1459	non-null	object
40	CentralAir	1459	non-null	object
41	Electrical	1459	non-null	object
42	1stFlrSF	1459		int64
43	2ndFlrSF	1459		int64
44	LowQualFinSF		non-null	int64
45	GrLivArea		non-null	int64
46	BsmtFullBath	1459		float64
47	BsmtHalfBath	1459		float64
48	FullBath	1459		int64
49	HalfBath	1459		int64
50	BedroomAbvGr	1459		int64
51	KitchenAbvGr	1459		int64
52	KitchenQual	1459		
52 53	TotRmsAbvGrd	1459		object int64
54	Functional	1459		object
55	Fireplaces	1459		int64
56	FireplaceQu	1459		object
50	ıırehraceda	1403	non nutt	object

```
GarageType
                    1459 non-null
                                     object
 57
     GarageYrBlt
                    1459 non-null
                                     float64
 58
     GarageFinish
 59
                    1459 non-null
                                     object
     GarageCars
                    1459 non-null
                                     float64
 60
    GarageArea
                    1459 non-null
 61
                                     float64
 62
     GarageQual
                    1459 non-null
                                     object
 63
     GarageCond
                    1459 non-null
                                     object
    PavedDrive
                    1459 non-null
                                     object
    WoodDeckSF
                    1459 non-null
                                     int64
                    1459 non-null
 66
     OpenPorchSF
                                     int64
     EnclosedPorch
                    1459 non-null
 67
                                     int64
     3SsnPorch
                    1459 non-null
 68
                                     int64
                    1459 non-null
 69
     ScreenPorch
                                     int64
 70
    PoolArea
                    1459 non-null
                                     int64
    PoolQC
                    1459 non-null
                                     object
 72 Fence
                    1459 non-null
                                     object
                                     object
 73
    MiscFeature
                    1459 non-null
 74
    MiscVal
                    1459 non-null
                                     int64
 75
    MoSold
                    1459 non-null
                                     int64
 76
    YrSold
                    1459 non-null
                                     int64
                    1459 non-null
 77
    SaleType
                                     object
 78 SaleCondition 1459 non-null
                                     object
dtypes: float64(11), int64(25), object(43)
memory usage: 900.6+ KB
None
```

The NaNs have been filled with 0s. Now, I'm going to rename some columns, purely due to the fact that the statsmodel library doesn't like variable names with numerical digits as prefixes. As you can see, I'm simply replacing the bad variable names with the working ones.

```
[34]: data_train.rename(columns={'1stFlrSF':'FirstFlrSF'}, inplace=True)
   data_train.rename(columns={'2ndFlrSF':'SecondFlrSF'}, inplace=True)
   data_train.rename(columns={'3SsnPorch':'ThreeSsnPorch'}, inplace=True)

data_test.rename(columns={'1stFlrSF':'FirstFlrSF'}, inplace=True)
   data_test.rename(columns={'2ndFlrSF':'SecondFlrSF'}, inplace=True)
   data_test.rename(columns={'3SsnPorch':'ThreeSsnPorch'}, inplace=True)
```

In this next part, I'm setting up the prerequisites for performing forward stepwise selection. In a nutshell, what I'm trying to do is create a vector of what I think are useful variables. In this case, useful variables are variables that are non-categorical. As you can see in the code and the resulting print results, I'm only keeping variables that have numbers.

```
[80]: # get the list of columns

# this is the list of potential variables

cols = list(data_train.columns)

# drop "SalePrice" from this list because it's the variable we're trying to

→predict
```

```
cols.remove("SalePrice")

print(cols)
print(len(cols))

to_remove = []
for var in cols:
    if data_train[var].dtypes == "object":
        to_remove.append(var)

for elem in to_remove:
    cols.remove(elem)

print(cols)
print(len(cols))
```

```
['MSSubClass', 'MSZoning', 'LotFrontage', 'LotArea', 'Street', 'Alley',
'LotShape', 'LandContour', 'Utilities', 'LotConfig', 'LandSlope',
'Neighborhood', 'Condition1', 'Condition2', 'BldgType', 'HouseStyle',
'OverallQual', 'OverallCond', 'YearBuilt', 'YearRemodAdd', 'RoofStyle',
'RoofMatl', 'Exterior1st', 'Exterior2nd', 'MasVnrType', 'MasVnrArea',
'ExterQual', 'ExterCond', 'Foundation', 'BsmtQual', 'BsmtCond', 'BsmtExposure',
'BsmtFinType1', 'BsmtFinSF1', 'BsmtFinType2', 'BsmtFinSF2', 'BsmtUnfSF',
'TotalBsmtSF', 'Heating', 'HeatingQC', 'CentralAir', 'Electrical', 'FirstFlrSF',
'SecondFlrSF', 'LowQualFinSF', 'GrLivArea', 'BsmtFullBath', 'BsmtHalfBath',
'FullBath', 'HalfBath', 'BedroomAbvGr', 'KitchenAbvGr', 'KitchenQual',
'TotRmsAbvGrd', 'Functional', 'Fireplaces', 'FireplaceQu', 'GarageType',
'GarageYrBlt', 'GarageFinish', 'GarageCars', 'GarageArea', 'GarageQual',
'GarageCond', 'PavedDrive', 'WoodDeckSF', 'OpenPorchSF', 'EnclosedPorch',
'ThreeSsnPorch', 'ScreenPorch', 'PoolArea', 'PoolQC', 'Fence', 'MiscFeature',
'MiscVal', 'MoSold', 'YrSold', 'SaleType', 'SaleCondition']
['MSSubClass', 'LotFrontage', 'LotArea', 'OverallQual', 'OverallCond',
'YearBuilt', 'YearRemodAdd', 'MasVnrArea', 'BsmtFinSF1', 'BsmtFinSF2',
'BsmtUnfSF', 'TotalBsmtSF', 'FirstFlrSF', 'SecondFlrSF', 'LowQualFinSF',
'GrLivArea', 'BsmtFullBath', 'BsmtHalfBath', 'FullBath', 'HalfBath',
'BedroomAbvGr', 'KitchenAbvGr', 'TotRmsAbvGrd', 'Fireplaces', 'GarageYrBlt',
'GarageCars', 'GarageArea', 'WoodDeckSF', 'OpenPorchSF', 'EnclosedPorch',
'ThreeSsnPorch', 'ScreenPorch', 'PoolArea', 'MiscVal', 'MoSold', 'YrSold']
36
```

The good thing about forward selection is that it doesn't really matter how the variables correlate with one another. Simply iterating through all of them will eventually land on the "best" model. Since there are 36 variables that I want to keep, there will be 36 "best" models generated, one for each "number of variables". Then, I will plot the R^2 score for each model.

```
[36]: # forward selection implementation
```

```
# a list of the best smf.ols object created for each model
m_list = []
# k is the number of possible factors
k = len(cols)
# a list of the best r score for each k, using the training set
r_train_list = []
# a list of the best r score for each k, using the test set
r_test_list = []
# a list of the best model for each k
model list = []
# allowed factors
allowed_factors = cols
# initialize the first model
m k = smf.ols("SalePrice ~ MSSubClass", data=data_train).fit()
model = "SalePrice ~ "
for i in range(k):
    # loop through the allowed factors
    if (i > 0):
        model_temp = model + allowed_factors[0]
        m_k = smf.ols(model_temp, data=data_train).fit()
    for factor in allowed_factors:
        # create the string representing the model
        model_temp = model + factor
        #print(model temp)
        # fit the model
        m = smf.ols(model temp, data=data train).fit()
        # if the r^2 score of the temporary model is higher than that of the
\rightarrow baseline model
        # then update the baseline model to the temporary model
        # also update the best_model variable to reflect the current best model
        # and also record the factor that was chosen
        if (m.rsquared_adj >= m_k.rsquared_adj):
            m k = m
            best model mk = model temp
            chosen factor = factor
    model = best_model_mk + " + "
    model list.append(model)
    m_list.append(m_k)
    allowed_factors.remove(chosen_factor)
    r_train_list.append(m_k.rsquared_adj)
x = range(1, len(r_train_list)+1)
plt.plot(x, r_train_list)
plt.xlabel("Number of variables")
plt.ylabel("R^2")
```

[36]: Text(0, 0.5, 'R^2')

The forward selection process is now finished. To find the best model, I simply need to find the index at which the R² score was the highest in the $r_t rain_l ist$ vector. This can be accomplished using the np.argmax() function. Once this is done, I can use this index and print out the best model selection and also use the model to predict the sale prices from the test dataset.

```
[63]: max_idx = np.argmax(r_train_list)
  best_model = m_list[max_idx]
  print(f"The best model is {model_list[max_idx]}")
  print(f"This model uses {max_idx+1} variables.")
  print(f"This model has an R^2 of {r_train_list[max_idx]}.")
  predict_price = best_model.predict(data_test)
  print(predict_price)

best_linear_regression_1_model = model_list[max_idx]
```

```
The best model is SalePrice ~ OverallQual + GrLivArea + BsmtFinSF1 + GarageCars + MSSubClass + YearBuilt + BedroomAbvGr + OverallCond + GarageYrBlt + LotArea + MasVnrArea + BsmtFullBath + TotRmsAbvGrd + ScreenPorch + WoodDeckSF + KitchenAbvGr + TotalBsmtSF + Fireplaces + YearRemodAdd + FullBath + LowQualFinSF + PoolArea + YrSold + This model uses 23 variables.

This model has an R^2 of 0.8131253479855177.

0 116762.584782
1 160461.401492
2 173429.464588
```

```
3 200721.259106
4 195038.498874
....
1454 75531.691530
1455 61551.235844
1456 178515.338047
1457 116506.028507
1458 258825.504074
Length: 1459, dtype: float64
```

The R² for this model is around 0.8, which is not bad! However, this model doesn't account for the interactions between the variables and the NaNs were filled in very naively. In the next section, I will be making improvements for the data clean up process, which I think will help a lot.

1.2 2. Linear Regression 2

The first step to improving the data cleanup process is by filling NaNs with values that actually make sense. To keep things simple, I will fill NaNs with the average* value of each column. If the column is a floating point column, NaNs will be filled with the "true" average, otherwise they will be filled with a rounded version of the average.

To start fresh, I will load back in the data sets and drop the "Id" column as before.

```
[19]: # load in the data sets
   data_test = pd.read_csv('test.csv', comment='#')
   data_train = pd.read_csv('train.csv', comment='#')

[20]: data_train = data_train.drop(["Id"], axis=1)
   data_test = data_test.drop(["Id"], axis=1)
   print(data_test.info())
   print(data_train.info())
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1459 entries, 0 to 1458
Data columns (total 79 columns):

#	Column	Non-Null Count	Dtype
0	MSSubClass	1459 non-null	int64
1	MSZoning	1455 non-null	object
2	${ t LotFrontage}$	1232 non-null	float64
3	LotArea	1459 non-null	int64
4	Street	1459 non-null	object
5	Alley	107 non-null	object
6	LotShape	1459 non-null	object
7	LandContour	1459 non-null	object
8	Utilities	1457 non-null	object
9	LotConfig	1459 non-null	object
10	LandSlope	1459 non-null	object
11	Neighborhood	1459 non-null	object

12	Condition1	1459	non-null	object
13	Condition2	1459	non-null	object
14	BldgType	1459	non-null	object
15	HouseStyle	1459	non-null	object
16	OverallQual	1459	non-null	int64
17	OverallCond	1459	non-null	int64
18	YearBuilt	1459	non-null	int64
19	YearRemodAdd	1459	non-null	int64
20	RoofStyle	1459	non-null	object
21	RoofMatl	1459	non-null	object
22	Exterior1st	1458	non-null	object
23	Exterior2nd	1458	non-null	object
24	MasVnrType	1443	non-null	object
25	MasVnrArea	1444	non-null	float64
26	ExterQual	1459	non-null	object
27	ExterCond	1459		object
28	Foundation	1459		object
29	BsmtQual	1415	non-null	object
30	BsmtCond	1414		object
31	BsmtExposure	1415	non-null	object
32	BsmtFinType1	1417		object
33	BsmtFinSF1	1458	non-null	float64
34	BsmtFinType2	1417	non-null	object
35	BsmtFinSF2	1458	non-null	float64
36	BsmtUnfSF	1458	non-null	float64
37	TotalBsmtSF	1458	non-null	float64
38	Heating	1459	non-null	object
39	HeatingQC	1459		object
40	CentralAir	1459		object
41	Electrical	1459		object
42	1stFlrSF	1459	non-null	int64
43	2ndFlrSF	1459		int64
44	LowQualFinSF	1459	non-null	int64
45	GrLivArea	1459		int64
46	BsmtFullBath	1457		float64
47	BsmtHalfBath	1457		float64
48	FullBath	1459		int64
49	HalfBath	1459		int64
50	BedroomAbvGr	1459		int64
51	KitchenAbvGr	1459		int64
52	KitchenQual	1458		object
53	TotRmsAbvGrd	1459		int64
54	Functional	1457		object
55	Fireplaces	1459	non-null	int64
56	FireplaceQu		non-null	object
57	GarageType	1383	non-null	object
58	GarageYrBlt	1381		float64
59	GarageFinish	1381	non-null	object
	~~1 ~PO1 1111D11	1001	u.r	22,000

60	GarageCars	1458 non-null	float64				
61	GarageArea	1458 non-null	float64				
62	GarageQual	1381 non-null	object				
63	GarageCond	1381 non-null	object				
64	PavedDrive	1459 non-null	object				
65	WoodDeckSF	1459 non-null	int64				
66	OpenPorchSF	1459 non-null	int64				
67	EnclosedPorch	1459 non-null	int64				
68	3SsnPorch	1459 non-null	int64				
69	ScreenPorch	1459 non-null	int64				
70	PoolArea	1459 non-null	int64				
71	PoolQC	3 non-null	object				
72	Fence	290 non-null	object				
73	MiscFeature	51 non-null	object				
74	MiscVal	1459 non-null	int64				
75	MoSold	1459 non-null	int64				
76	YrSold	1459 non-null	int64				
77	SaleType	1458 non-null	object				
78	SaleCondition	1459 non-null	object				
dtyp	dtypes: float64(11), int64(25), object(43)						
memory usage: 900.6+ KB							
Mono							

None

<class 'pandas.core.frame.DataFrame'> RangeIndex: 1460 entries, 0 to 1459 Data columns (total 80 columns):

#	Column	Non-Null Count	Dtype
0	MSSubClass	1460 non-null	int64
1	MSZoning	1460 non-null	object
2	LotFrontage	1201 non-null	float64
3	LotArea	1460 non-null	int64
4	Street	1460 non-null	object
5	Alley	91 non-null	object
6	LotShape	1460 non-null	object
7	${\tt LandContour}$	1460 non-null	object
8	Utilities	1460 non-null	object
9	LotConfig	1460 non-null	object
10	LandSlope	1460 non-null	object
11	Neighborhood	1460 non-null	object
12	Condition1	1460 non-null	object
13	Condition2	1460 non-null	object
14	BldgType	1460 non-null	object
15	HouseStyle	1460 non-null	object
16	OverallQual	1460 non-null	int64
17	OverallCond	1460 non-null	int64
18	YearBuilt	1460 non-null	int64
19	${\tt YearRemodAdd}$	1460 non-null	int64
20	RoofStyle	1460 non-null	object

21	RoofMatl	1460	non-null	object
22	Exterior1st	1460	non-null	object
23	Exterior2nd	1460	non-null	object
24	${ t MasVnrType}$	1452	non-null	object
25	MasVnrArea	1452	non-null	float64
26	ExterQual	1460	non-null	object
27	ExterCond	1460	non-null	object
28	Foundation	1460	non-null	object
29	BsmtQual	1423	non-null	object
30	BsmtCond	1423	non-null	object
31	BsmtExposure	1422	non-null	object
32	BsmtFinType1	1423	non-null	object
33	BsmtFinSF1	1460	non-null	int64
34	BsmtFinType2	1422	non-null	object
35	BsmtFinSF2	1460	non-null	int64
36	BsmtUnfSF	1460	non-null	int64
37	TotalBsmtSF	1460	non-null	int64
38	Heating	1460	non-null	object
39	HeatingQC	1460	non-null	object
40	CentralAir	1460	non-null	object
41	Electrical	1459	non-null	object
42	1stFlrSF	1460	non-null	int64
43	2ndFlrSF	1460	non-null	int64
44	LowQualFinSF	1460	non-null	int64
45	GrLivArea	1460	non-null	int64
46	BsmtFullBath	1460	non-null	int64
47	BsmtHalfBath	1460	non-null	int64
48	FullBath	1460	non-null	int64
49	HalfBath	1460	non-null	int64
50	BedroomAbvGr	1460	non-null	int64
51	KitchenAbvGr	1460	non-null	int64
52	KitchenQual	1460	non-null	object
53	TotRmsAbvGrd	1460	non-null	int64
54	Functional	1460	non-null	object
55	Fireplaces	1460	non-null	int64
56	FireplaceQu	770 r	non-null	object
57	GarageType	1379	non-null	object
58	GarageYrBlt	1379	non-null	float64
59	GarageFinish	1379	non-null	object
60	GarageCars	1460	non-null	int64
61	GarageArea	1460		int64
62	GarageQual	1379		object
63	GarageCond	1379	non-null	object
64	PavedDrive	1460	non-null	object
65	WoodDeckSF	1460	non-null	int64
66	OpenPorchSF	1460	non-null	int64
67	EnclosedPorch	1460	non-null	int64
68	3SsnPorch	1460		int64
				

```
69 ScreenPorch
                   1460 non-null
                                  int64
 70 PoolArea
                   1460 non-null
                                  int64
 71 PoolQC
                   7 non-null
                                  object
72 Fence
                   281 non-null
                                  object
73 MiscFeature
                  54 non-null
                                  object
 74 MiscVal
                  1460 non-null
                                  int64
 75 MoSold
                  1460 non-null
                                  int64
 76 YrSold
                  1460 non-null
                                  int64
 77 SaleType
                  1460 non-null
                                  object
78 SaleCondition 1460 non-null
                                  object
 79 SalePrice
                   1460 non-null
                                  int64
dtypes: float64(3), int64(34), object(43)
memory usage: 912.6+ KB
None
```

```
[21]: # fill NaNs for non-object variables only.

for col in data_train.columns:
    if (data_train[col].dtypes != "object"):
        avg = data_train[col].mean()
        data_train[col] = data_train[col].fillna(avg)

for col in data_test.columns:
    if (data_test[col].dtypes != "object"):
        avg = data_test[col].mean()
        data_test[col] = data_test[col].fillna(avg)
```

```
[22]: print(data_train.info())
print(data_test.info())
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1460 entries, 0 to 1459
Data columns (total 80 columns):

#	Column	Non-Null Count	Dtype
0	MSSubClass	1460 non-null	int64
1	MSZoning	1460 non-null	object
2	LotFrontage	1460 non-null	float64
3	LotArea	1460 non-null	int64
4	Street	1460 non-null	object
5	Alley	91 non-null	object
6	LotShape	1460 non-null	object
7	LandContour	1460 non-null	object
8	Utilities	1460 non-null	object
9	LotConfig	1460 non-null	object
10	LandSlope	1460 non-null	object
11	Neighborhood	1460 non-null	object
12	Condition1	1460 non-null	object

10	C	1.460	11	-1
13	Condition2		non-null	object
14	BldgType		non-null	object
15	•		non-null	object
16	•		non-null	int64
	OverallCond		non-null	int64
	YearBuilt		non-null	int64
	YearRemodAdd		non-null	int64
20	J		non-null	object
	RoofMatl		non-null	object
	Exterior1st		non-null	object
	Exterior2nd		non-null	object
24	MasVnrType		non-null	object
	MasVnrArea		non-null	float64
	ExterQual		non-null	object
27	ExterCond	1460	non-null	object
	Foundation		non-null	object
29	BsmtQual	1423	non-null	object
30	BsmtCond	1423	non-null	object
31	${\tt BsmtExposure}$	1422	non-null	object
32	BsmtFinType1	1423	non-null	object
33	BsmtFinSF1	1460	non-null	int64
34	${\tt BsmtFinType2}$	1422	non-null	object
35	BsmtFinSF2	1460	non-null	int64
36	BsmtUnfSF	1460	non-null	int64
37	TotalBsmtSF	1460	non-null	int64
38	Heating	1460	non-null	object
39	${\tt HeatingQC}$	1460	non-null	object
40	CentralAir	1460	non-null	object
41	Electrical	1459	non-null	object
42	1stFlrSF	1460	non-null	int64
43	2ndFlrSF	1460	non-null	int64
44	LowQualFinSF	1460	non-null	int64
45	GrLivArea	1460	non-null	int64
46	BsmtFullBath	1460	non-null	int64
47	BsmtHalfBath	1460	non-null	int64
48	FullBath	1460	non-null	int64
49	HalfBath	1460	non-null	int64
50	BedroomAbvGr	1460	non-null	int64
51	KitchenAbvGr	1460	non-null	int64
52	KitchenQual	1460	non-null	object
53	TotRmsAbvGrd	1460	non-null	int64
54	Functional	1460	non-null	object
55	Fireplaces	1460	non-null	int64
56	FireplaceQu		non-null	object
57	GarageType		non-null	object
58	GarageYrBlt		non-null	float64
59	GarageFinish	1379		object
60	GarageCars		non-null	int64
				

61	GarageArea	1460 non-null	int64
62	GarageQual	1379 non-null	object
63	GarageCond	1379 non-null	object
64	PavedDrive	1460 non-null	object
65	WoodDeckSF	1460 non-null	int64
66	OpenPorchSF	1460 non-null	int64
67	${\tt EnclosedPorch}$	1460 non-null	int64
68	3SsnPorch	1460 non-null	int64
69	ScreenPorch	1460 non-null	int64
70	PoolArea	1460 non-null	int64
71	PoolQC	7 non-null	object
72	Fence	281 non-null	object
73	MiscFeature	54 non-null	object
74	MiscVal	1460 non-null	int64
75	MoSold	1460 non-null	int64
76	YrSold	1460 non-null	int64
77	SaleType	1460 non-null	object
78	${\tt SaleCondition}$	1460 non-null	object
79	SalePrice	1460 non-null	int64
dtypes: float64(3), int64(34), object(43)			
memory usage: 912.6+ KB			

None

<class 'pandas.core.frame.DataFrame'> RangeIndex: 1459 entries, 0 to 1458 Data columns (total 79 columns):

#	Column	Non-Null Count	Dtype
0	MSSubClass	1459 non-null	int64
1	MSZoning	1455 non-null	object
2	LotFrontage	1459 non-null	float64
3	LotArea	1459 non-null	int64
4	Street	1459 non-null	object
5	Alley	107 non-null	object
6	LotShape	1459 non-null	object
7	${\tt LandContour}$	1459 non-null	object
8	Utilities	1457 non-null	object
9	LotConfig	1459 non-null	object
10	LandSlope	1459 non-null	object
11	Neighborhood	1459 non-null	object
12	Condition1	1459 non-null	object
13	Condition2	1459 non-null	object
14	BldgType	1459 non-null	object
15	HouseStyle	1459 non-null	object
16	OverallQual	1459 non-null	int64
17	OverallCond	1459 non-null	int64
18	YearBuilt	1459 non-null	int64
19	${\tt YearRemodAdd}$	1459 non-null	int64
20	RoofStyle	1459 non-null	object

21	RoofMatl	1459	non-null	object
22	Exterior1st	1458	non-null	object
23	Exterior2nd	1458	non-null	object
24	MasVnrType	1443	non-null	object
25	MasVnrArea	1459	non-null	float64
26	ExterQual	1459	non-null	object
27	ExterCond	1459	non-null	object
28	Foundation	1459	non-null	object
29	BsmtQual	1415	non-null	object
30	BsmtCond	1414	non-null	object
31	BsmtExposure	1415	non-null	object
32	BsmtFinType1	1417	non-null	object
33	BsmtFinSF1	1459	non-null	float64
34	BsmtFinType2	1417	non-null	object
35	BsmtFinSF2	1459	non-null	float64
36	BsmtUnfSF	1459	non-null	float64
37	TotalBsmtSF	1459	non-null	float64
38	Heating	1459	non-null	object
39	HeatingQC	1459	non-null	object
40	CentralAir	1459	non-null	object
41	Electrical	1459	non-null	object
42	1stFlrSF	1459		int64
43	2ndFlrSF	1459	non-null	int64
44	LowQualFinSF	1459	non-null	int64
45	GrLivArea	1459	non-null	int64
46	BsmtFullBath	1459	non-null	float64
47	BsmtHalfBath	1459	non-null	float64
48	FullBath	1459	non-null	int64
49	HalfBath	1459		int64
50	BedroomAbvGr	1459		int64
51	KitchenAbvGr	1459	non-null	int64
52	KitchenQual	1458	non-null	object
53	TotRmsAbvGrd	1459	non-null	int64
54	Functional	1457	non-null	object
55	Fireplaces	1459	non-null	int64
56	FireplaceQu		non-null	object
57	GarageType	1383	non-null	object
58	GarageYrBlt	1459		float64
59	GarageFinish	1381	non-null	object
60	GarageCars	1459	non-null	float64
61	GarageArea	1459		float64
62	GarageQual	1381	non-null	object
63	GarageCond	1381	non-null	object
64	PavedDrive	1459		object
65	WoodDeckSF	1459		int64
66	OpenPorchSF	1459	non-null	int64
67	EnclosedPorch	1459	non-null	int64
68	3SsnPorch	1459		int64
50	ONDIN OT CIT	1 100	Hull	-1100 -1

```
69 ScreenPorch
                   1459 non-null
                                  int64
 70 PoolArea
                   1459 non-null
                                  int64
 71 PoolQC
                   3 non-null
                                  object
 72 Fence
                  290 non-null
                                  object
 73 MiscFeature 51 non-null
                                  object
 74 MiscVal
                  1459 non-null
                                  int64
 75 MoSold
                  1459 non-null
                                  int64
                  1459 non-null
 76 YrSold
                                  int64
 77 SaleType
                 1458 non-null
                                  object
78 SaleCondition 1459 non-null
                                  object
dtypes: float64(11), int64(25), object(43)
memory usage: 900.6+ KB
None
```

Now that the cleanup part is over, I will create a pairplot of the data and look for any relationships between the variables. In order to do this, I will first reduce the data set by dropping the categorical variables again.

```
[23]: # Renaming some columns too
  data_train.rename(columns={'1stFlrSF':'FirstFlrSF'}, inplace=True)
  data_train.rename(columns={'2ndFlrSF':'SecondFlrSF'}, inplace=True)
  data_train.rename(columns={'3SsnPorch':'ThreeSsnPorch'}, inplace=True)

  data_test.rename(columns={'1stFlrSF':'FirstFlrSF'}, inplace=True)
  data_test.rename(columns={'2ndFlrSF':'SecondFlrSF'}, inplace=True)
  data_test.rename(columns={'3SsnPorch':'ThreeSsnPorch'}, inplace=True)
```

```
[53]: # get the list of columns
      # this is the list of potential variables
      cols = list(data_train.columns)
      # drop "SalePrice" from this list because it's the variable we're trying to \Box
       \rightarrowpredict
      cols.remove("SalePrice")
      print(cols)
      print(len(cols))
      to_remove = []
      for var in cols:
          if data_train[var].dtypes == "object":
              to_remove.append(var)
      for elem in to_remove:
          cols.remove(elem)
      print(cols)
      print(len(cols))
```

```
['MSSubClass', 'MSZoning', 'LotFrontage', 'LotArea', 'Street', 'Alley',
'LotShape', 'LandContour', 'Utilities', 'LotConfig', 'LandSlope',
'Neighborhood', 'Condition1', 'Condition2', 'BldgType', 'HouseStyle',
'OverallQual', 'OverallCond', 'YearBuilt', 'YearRemodAdd', 'RoofStyle',
'RoofMatl', 'Exterior1st', 'Exterior2nd', 'MasVnrType', 'MasVnrArea',
'ExterQual', 'ExterCond', 'Foundation', 'BsmtQual', 'BsmtCond', 'BsmtExposure',
'BsmtFinType1', 'BsmtFinSF1', 'BsmtFinType2', 'BsmtFinSF2', 'BsmtUnfSF',
'TotalBsmtSF', 'Heating', 'HeatingQC', 'CentralAir', 'Electrical', 'FirstFlrSF',
'SecondFlrSF', 'LowQualFinSF', 'GrLivArea', 'BsmtFullBath', 'BsmtHalfBath',
'FullBath', 'HalfBath', 'BedroomAbvGr', 'KitchenAbvGr', 'KitchenQual',
'TotRmsAbvGrd', 'Functional', 'Fireplaces', 'FireplaceQu', 'GarageType',
'GarageYrBlt', 'GarageFinish', 'GarageCars', 'GarageArea', 'GarageQual',
'GarageCond', 'PavedDrive', 'WoodDeckSF', 'OpenPorchSF', 'EnclosedPorch',
'ThreeSsnPorch', 'ScreenPorch', 'PoolArea', 'PoolQC', 'Fence', 'MiscFeature',
'MiscVal', 'MoSold', 'YrSold', 'SaleType', 'SaleCondition']
79
['MSSubClass', 'LotFrontage', 'LotArea', 'OverallQual', 'OverallCond',
'YearBuilt', 'YearRemodAdd', 'MasVnrArea', 'BsmtFinSF1', 'BsmtFinSF2',
'BsmtUnfSF', 'TotalBsmtSF', 'FirstFlrSF', 'SecondFlrSF', 'LowQualFinSF',
'GrLivArea', 'BsmtFullBath', 'BsmtHalfBath', 'FullBath', 'HalfBath',
'BedroomAbvGr', 'KitchenAbvGr', 'TotRmsAbvGrd', 'Fireplaces', 'GarageYrBlt',
'GarageCars', 'GarageArea', 'WoodDeckSF', 'OpenPorchSF', 'EnclosedPorch',
'ThreeSsnPorch', 'ScreenPorch', 'PoolArea', 'MiscVal', 'MoSold', 'YrSold']
```

Now that I have a list of allowed variables, I will reduce the size of the DataFrame to only include the allowed variables.

```
[25]: data_test = data_test[cols]
  cols.append("SalePrice")
  data_train = data_train[cols]
```

```
[26]: # drop SalePrice from the list again cols.remove("SalePrice")
```

There are 36 variables. A pairplot would need to create 36^2 = 1296 plots. It would take a very long time to finish. So instead of doing that, I'll create 36 pairplots, each with 6 randomly chosen variables. That shouldn't take as long. I couldn't figure out how to create multiple different pairplots so I'll just create 1.

```
[27]: # 1
    random_vars = np.random.choice(cols, 6)
    small_set = data_train[random_vars]
    sns.pairplot(small_set)
```

[27]: <seaborn.axisgrid.PairGrid at 0x7fb4c8046610>

There doesn't realy seem to be any correlations between the 6 randomly chosen variables, but the way the plots look make me feel like a logistic regression might give really good results. So, I'll explore that in the next section. For now, I will keep going forward with linear regression. The code is the same as in Section 1. A plot of the R^2 score is included and the model is also included.

```
[28]: # forward selection implementation

# a list of the best smf.ols object created for each model
m_list = []
# k is the number of possible factors
k = len(cols)
# a list of the best r score for each k, using the training set
r_train_list = []
# a list of the best r score for each k, using the test set
```

```
r_test_list = []
\# a list of the best model for each k
model_list = []
# allowed factors
allowed_factors = cols
# initialize the first model
m_k = smf.ols("SalePrice ~ MSSubClass", data=data_train).fit()
model = "SalePrice ~ "
for i in range(k):
    # loop through the allowed factors
    if (i > 0):
        model_temp = model + allowed_factors[0]
        m_k = smf.ols(model_temp, data=data_train).fit()
    for factor in allowed_factors:
        # create the string representing the model
        model_temp = model + factor
        #print(model_temp)
        # fit the model
        m = smf.ols(model_temp, data=data_train).fit()
        # if the r^2 score of the temporary model is higher than that of the
\hookrightarrow baseline model
        # then update the baseline model to the temporary model
        # also update the best_model variable to reflect the current best model
        # and also record the factor that was chosen
        if (m.rsquared_adj >= m_k.rsquared_adj):
            m_k = m
            best_model_mk = model_temp
            chosen_factor = factor
    model = best_model_mk + " + "
    model_list.append(model)
    m_list.append(m_k)
    allowed factors.remove(chosen factor)
    r_train_list.append(m_k.rsquared_adj)
x = range(1, len(r_train_list)+1)
plt.plot(x, r_train_list)
plt.xlabel("Number of variables")
plt.ylabel("R^2")
```

[28]: Text(0, 0.5, 'R^2')


```
[29]: max_idx = np.argmax(r_train_list)
  best_model = m_list[max_idx]
  print(f"The best model is {model_list[max_idx]}")
  print(f"This model uses {max_idx+1} variables.")
  print(f"This model has an R^2 of {r_train_list[max_idx]}.")

  predict_price = best_model.predict(data_test)
  print(predict_price)
```

```
The best model is SalePrice ~ OverallQual + GrLivArea + BsmtFinSF1 + GarageCars
+ MSSubClass + YearBuilt + BedroomAbvGr + OverallCond + LotArea + MasVnrArea +
BsmtFullBath + TotRmsAbvGrd + WoodDeckSF + ScreenPorch + TotalBsmtSF +
YearRemodAdd + KitchenAbvGr + Fireplaces + FullBath + GarageYrBlt + PoolArea +
YrSold + LowQualFinSF + LotFrontage +
This model uses 24 variables.
This model has an R<sup>2</sup> of 0.8097002534319625.
        118504.813973
1
        163042.668599
2
        173608.497914
3
        200027.557758
4
        195343.381853
1454
         58924.834755
1455
         66808.129661
```

```
1456 171623.264178
1457 98969.768138
1458 253322.571866
Length: 1459, dtype: float64
```

Well the results are surprising! Using the average value results in a worse best R^2 score and more variables had to be used. So, moving on to the next section, perhaps using a logistic regression might yield better results.

1.3 3. Logistic Regression

In this section, instead of using forward selection to pick my model, I will use all 36 variables. I will also clean and format the data the same way as in Section 1.

```
[81]: # load in the data sets
data_test = pd.read_csv('test.csv', comment='#')
data_train = pd.read_csv('train.csv', comment='#')
data_train = data_train.drop(["Id"], axis=1)
data_test = data_test.drop(["Id"], axis=1)
data_train = data_train.fillna(0.0)
data_test = data_test.fillna(0.0)
data_test = data_test.fillna(0.0)
data_train.rename(columns={'1stFlrSF':'FirstFlrSF'}, inplace=True)
data_train.rename(columns={'2ndFlrSF':'SecondFlrSF'}, inplace=True)
data_train.rename(columns={'1stFlrSF':'FirstFlrSF'}, inplace=True)
data_test.rename(columns={'2ndFlrSF':'SecondFlrSF'}, inplace=True)
data_test.rename(columns={'2ndFlrSF':'SecondFlrSF'}, inplace=True)
data_test.rename(columns={'3SsnPorch':'ThreeSsnPorch'}, inplace=True)
```

Let's get rid of all the "object" columns.

```
[82]: cols.append("SalePrice")
  data_train_new = data_train[cols]
  cols.remove("SalePrice")
  data_test_new = data_test[cols]
```

```
[85]: model = "SalePrice ~ "
for i in range(len(cols)):
    if (i != (len(cols)-1)):
        model += cols[i] + " + "
    else:
        model += cols[i]
print(model)
lr = sklearn.linear_model.LogisticRegression()
y,X = patsy.dmatrices(model, data=data_train_new)
log_reg_model_full = lr.fit(X, y.ravel())
print('Score is', log_reg_model_full.score(X, y.ravel()))
```

```
SalePrice ~ MSSubClass + LotFrontage + LotArea + OverallQual + OverallCond + YearBuilt + YearRemodAdd + MasVnrArea + BsmtFinSF1 + BsmtFinSF2 + BsmtUnfSF +
```

```
TotalBsmtSF + FirstFlrSF + SecondFlrSF + LowQualFinSF + GrLivArea + BsmtFullBath + BsmtHalfBath + FullBath + HalfBath + BedroomAbvGr + KitchenAbvGr + TotRmsAbvGrd + Fireplaces + GarageYrBlt + GarageCars + GarageArea + WoodDeckSF + OpenPorchSF + EnclosedPorch + ThreeSsnPorch + ScreenPorch + PoolArea + MiscVal + MoSold + YrSold  
Score is 0.05342465753424658  
/opt/conda/lib/python3.8/site-packages/sklearn/linear_model/_logistic.py:762: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression  
n_iter_i = _check_optimize_result(
```

Wow...The result is very disappointing here. It seems like logistic regression is the wrong way to go here! Or perhaps my code is wrong somehow.

1.4 4. Results Discussion

2 a. Linear Regression

It definitely seems that linear regression was the way to go for this project. The initial "naive" way of cleaning up the data and using forward selection to algorithmically select variables proved to be the best way to predict the housing prices. The best R^2 score was around 0.831. When trying to improve the data clean up process by filling in NaNs with the average value of each column, the R^2 score went down. This was a very surprising result since I thought that having more realistic values would improve prediction results.

3 b. Logistic Regression

The result here was extremely disappointing, to say the least. Some of the variables looked like they could do very well with a logistic regression model. However, the end result was a score of 0.0534. That indicates extremely poor fit. To recap, here are the best prediction scores for: Linear Regression with 0's for NaNs: 0.831 Linear Regression with average for NaNs: 0.8097 Logistic Regression with all variables: 0.0534

3.1 5. Conclusion

To recap, linear regression using forward regression and filling NaNs with 0's was the best method for obtaining a decent prediction model. The best model used 23 out of 36 numerical variables. However, there are 79 variables in total that could have been used. I think a few of the categorical variables could be used to improve prediction results. For example, whether or not a house has a garage should definitely influence the price of a house. Furthermore, there should be some interactions between whether or not there is a garage and the size of the garage. A larger garage should mean a higher sale price! In order to turn these categorical variables into numerical variables,

numerical values must be assigned to them. The variable that describes whether or not there is a garage could be represented by a boolean. I didn't do this because the description of said variable included more than 2 choices. There are other categorical variables that are the same way, i.e. they have more than 2 values. To fully clean up and prepare the data, a full understanding of the data set, which includes understanding the values that each variable represents and assigning numerical values as appropriate. It would be great to be able to see a full pairplot of all 79 variables. The interactions between variables would be fully shown then. I'm not sure how the logistic regression model could be improved. Perhaps logistic regression is out of the question for this data set.

[]: