

AN-1070 应用笔记

One Technology Way • P.O. Box 9106 • Norwood, MA 02062-9106, U.S.A. • Tel: 781.329.4700 • Fax: 781.461.3113 • www.analog.com

AD9833/AD9834的编程

作者: Liam Riordan

简介

本应用笔记介绍如何在AD9833/AD9834器件的输出上对正 弦波形进行编程。编程序列涉及输入复位模式,输入数据 至Freq0寄存器和退出复位模式。

AD9833/AD9834的编程

AD9833/AD9834上电时,器件应复位。这样可使相应的内部寄存器复位至0,以提供中间电平的模拟输出。为了避

FSYNC

SCLK

SDATA

免AD9833初始化时产生杂散DAC输出,RESET位应置1,直至器件准备好开始输出。RESET位不对相位寄存器、频率寄存器或控制寄存器进行复位,这些寄存器包含无效数据,因此应由用户将其设为已知值。然后,RESET位置0,以开始产生输出。在RESET置0后的8个MCLK周期内,DAC输出端会出现数据。

图1. AD9834功能框图

SLEEP

RESET

PSELECT

AN-1070 应用笔记

目录

简介1	功能框图
AD9833/AD9834的编程 1	AD9833/AD9834编程更多的信息3

AD9833/AD9834编程更多的信息

我们将提供一个简单的例子说明如何对AD9833/ AD9834 进行编程。如需了解更多详情,请参考AD9833或AD9834 数据手册。

基本示例

该示例的目的是使用MCLK频率为25 MHz的AD9833产生400 Hz输出频率。

拨号码由以下公式定义:

$$FreqReg = \frac{f_{OUT} \times 2^{28}}{f_{MCLK}}$$

因此, 在本例中, Freq 0 = 400 Hz。

$$FreqReg = \frac{400 \ Hz \times 2^{28}}{25 \ MHz}$$

= 4295 (十进制) = 0x10C7 = 0001 0000 1100 0111

所需初始化序列如表1所示。

表1.

十六进制	二进制
0x2100	0010 0001 0000 0000
0x50C7	0101 0000 1100 0111
0x4000	0100 0000 0000 0000
0xC000	1100 0000 0000 0000
0x2000	0010 0000 0000 0000

命令序列说明

0x2100-控制寄存器

- DB13置1。这样可将一个完整字通过两次连续写入载 入频率寄存器。第一次写入包含14个 LSB。第二次写 入包含14个MSB。
- RESET位DB8置1。这样做可将内部寄存器复位至0, 对应于中间电平的模拟输出。

0x50C7-频率寄存器0 LSB

- DB15和DB14分别置0和1,这是频率寄存器0地址。
- 其余14位是数据的14个LSB: 0x10C7 = 01 0000 1100 0111

0x4000-频率寄存器0 MSB

- DB15和DB14分别置0和1,这是频率寄存器0地址。
- 其余14位是数据的14个MSB, 本例中全部为0。

0xC000-相位寄存器 0

- DB15、DB14和DB13分别置1、1和0, DB12设置为无关(X), 这是相位寄存器0地址。
- 其余12位是数据位,本例中全部为0。

0x2000-退出复位

在RESET置0后的7个MCLK周期内,DAC输出端会出现信号。

AN-1070 应用笔记

注释