Op-Amp Applications

- 1. Custom Weighted Summing & Difference Amplifier
- 2. Op-Amp Integrator
- 3. Precision Rectifier (Super Diode)

Lab Assignment: 05

EE1200: Electrical Circuits Lab

Harshil Rathan Y Y Akhilesh EE24BTECH11064 EE24BTECH11066

भारतीय प्रौद्योगिकी संस्थान हैदराबाद Indian Institute of Technology Hyderabad

Contents

1	LM358		2
2	Weighted Summing & Difference Amplifier		2
	2.1	Components Required	2
	2.2	Circuit Diagram	3
	2.3	Procedure	
	2.4	Observation	
3	Op-Amp Integrator		6
	3.1	Components Required	6
	3.2	Circuit Diagram	6
	3.3	Theory	7
	3.4	Observation	8
4	Precision Rectifier		
	4.1	Components Required	ç
	4.2	Circuit Diagram	
	4.3	Circuit set-up	10
	4.4	Theory	10
	1.5	Ol	10

भारतीय प्रौद्योगिकी संस्थान हैदराबाद Indian Institute of Technology Hyderabac

1 LM358

The LM358 is a low-power, dual-operational amplifier (op-amp) IC designed for general-purpose applications. It consists of two independent, high-gain op-amps that operate from a single power supply.

The pin-out diagram for LM358 is give above

Features and Uses

- Dual Op-Amp in a Single Package: Provides two independent op-amps, saving space and cost.
- Low Power Consumption: Each amplifier draws only 500μA, making it ideal for low-power designs.
- Works with a wide voltage range (3V to 32V), unlike many op-amps that require dual supplies.
- Used to amplify signals from sensors like temperature sensors, strain gauges, and pressure sensors.
- Generates triangular and square waveforms when used in oscillator circuits.
- Used in low-pass, high-pass, and band-pass filters in audio and signal processing circuits.

2 Weighted Summing & Difference Amplifier

2.1 Components Required

- Op-Amp IC LM358 Institute of Technology Hyderabad
- · Resistors -
- Function Generator
- Oscilloscope
- DC Power Supply

2.2 Circuit Diagram

Breadboard Connection

2.3 Procedure

Derivation of the Weighted Summing and Difference Amplifier Output Circuit Design

The circuit consists of two operational amplifier (op-amp) stages:

- 1) First op-amp (Inverting Summing Amplifier)
 - Takes three input voltages: V_1 , V_2 , and V_3 .
 - Performs weighted summation using properly chosen resistors.
 - Produces an intermediate output V_{out1} .
- 2) Second op-amp (Inverting Amplifier)
 - Takes V_{out1} as input and inverts it.
 - ullet This inversion helps achieve the required final output $V_{
 m out}$.

For general case,

Derivation of Output Equation

Applying Kirchhoff's Current Law (KCL) at the inverting input

$$\frac{V_1}{R_1} + \frac{V_2}{R_2} + \frac{V_3}{R_3} = \frac{V_{\text{out1}}}{R_f} \tag{2.1}$$

Multiplying by R_f :

$$V_{\text{out1}} = -R_f \left(\frac{V_1}{R_1} + \frac{V_2}{R_2} + \frac{V_3}{R_3} \right) \tag{2.2}$$

Choosing resistors:

$$\frac{R_f}{R_1} = 2 \Rightarrow R_f = 2R_1$$

$$\frac{R_f}{R_2} = 1 \Rightarrow R_f = R_2$$

$$\frac{R_f}{R_3} = -1 \Rightarrow R_f = -R_3$$

Thus, we obtain:

$$V_{\text{out1}} = -(2V_1 + V_2 - V_3) \tag{2.3}$$

The second stage is an inverting amplifier with gain -1:

$$V_{\text{out}} = -V_{\text{out}1} \tag{2.4}$$

Substituting:

$$V_{\text{out}} = 2V_1 + V_2 - V_3 \tag{2.5}$$

This confirms that the circuit correctly implements the desired function.

मारताय प्राधाागका संस्थान हदराव

Special Case for the Second Function

If
$$V_2 = 0$$
, then:

$$V_{\text{out}} = 2V_1 - V_3 \tag{2.6}$$

which matches the second required function.

Thus, the circuit fully satisfies the given mathematical functions.

2.4 Observation on Oscilloscope,

for the input power source,

input values in function generator,

Validation

checking the output voltage, Tute of Technology Hyderabad

$$2V_1 + V_2 - V_3$$

Here,

• V_3 is the voltage reading in the power source i.e 2V

$$V_1 = 1.5V$$
$$V_2 = 1V$$

Therefore the calucated output voltage,

$$2(1.5) + 1 - 2 = 2V$$

and it matches to the experimental output i.e 2.001V

- The circuit correctly implements the weighted sum and difference as required.
- By selecting appropriate resistor values, the desired coefficients in the equation are achieved.
- The two-stage design ensures correct polarity of the final output.

3.1 Components Required Op-Amp IC - LM358 Resistor - 10kΩ Capacitor - 100μF Function Generator Oscilloscope DC Power Supply 3.2 Circuit Diagram

3.3 Theory

An Op-Amp integrator is a circuit that performs mathematical integration of the input signal. The output signal is proportional to the integral of the input signal, which is given by

It consists of

- A resistor in series with the input signal
- A capacitor in the feedback loop

$$V_{out} = -\frac{1}{RC} \int V_{in} dt$$

For $R = 10k\Omega$ and $C = 100\mu F$

$$V_{out} = -1 \int V_{in} dt$$

This means that the output voltage is the negative integral of the input voltage.

Applications

- It converts a square wave to triangular waveform Waveform Generation
- · Low pass filtering effect
- 1) Power Connections:
 - Connect +12 V from the power supply to the V_{cc+} pin of the op-amp. (Pin 8)
 - Connect 0 V to the V_{cc-} pin of the op-amp. (Pin 4)
 - Connect the ground (GND) of the power supply to the circuit ground.
- 2) Resistor and Capacitor Connections:

- Connect one end of the resistor (*R*) to the input voltage source (square wave from function generator).
- Connect the other end of the resistor (R) to the inverting input (-) of the op-amp.
- Connect the capacitor (C) between the output of the op-amp and the inverting input (-) of the op-amp .
- Connect the non-inverting input (+) of the op-amp to ground.

3) Function Generator:

- Set up the function generator to produce a square wave signal (e.g., 1 kHz frequency, 5V peak-to-peak).
- Connect the function generator output to the resistor (R).

4) Oscilloscope Connection:

- Channel 2 (CH2) of the oscilloscope: Connect to the input square wave signal.
- Channel 1 (CH1) of the oscilloscope: Connect to the output of the op-amp.

Note: The ground clips of both **CH1** and **CH2** probes must be connected to the circuit ground (**GND**) to ensure proper reference and avoid floating signals.

Analysis

For
$$R = 10k\Omega$$
 and $C = 100\mu F$

$$V_{out} = -1 \int V_{in} dt$$

CH2 is the input signal with

- Frequency = 1Hz
- Amplitude = 2.0V

CH1 is the measure output signal across the ends of the $1k\Omega$ Resistor

भारतीय प्रौद्योगिकी संस्थान हैदराबाद Indian Institute of Technology Hyderabad

3.4 Observation

We observe that the square wave input is converted into triangular wave output.

4 Precision Rectifier

4.1 Components Required ीय प्रोह्मापिकी संस्थान हेद्रशहाद

- Op-Amp IC LM358 Institute of Technology Hyderabad
- Diode 1N4148
- Resistors
- AC Signal Generator
- Oscilloscope

4.2 Circuit Diagram

Breadboard Connections

4.3 Circuit set-up

- Connect one end of the resistor($10k\Omega$) to pin 2 of LM358 and the other end to the V_{in}
- Connect the pin 3 of LM358 to GND
- Connect a resistor($10k\Omega$) between pin 2 and pin 1 of LM358
- Connect 2 diodes in series between pin 2 and pin 1
- Connect a resistor ($1k\Omega$) from pin 1 to GND and measure the V_{out}

4.4 Theory

A precision rectifier, also called a super diode, is an op-amp-based rectifier circuit that can rectify signals with very small voltages, overcoming the 0.7V diode forward voltage drop of conventional rectifiers.

Half-Wave Rectifier

- The circuit connections are shown in the diagram above
- A half-wave precision rectifier allows only the positive half of an AC signal to pass while blocking the negative half.

Operation

- During the positive half-cycle, the op-amp output drives the diode into conduction, allowing the signal to pass.
- During the negative half-cycle, the diode blocks conduction, preventing the negative signal from reaching the output.
- Which results in a half wave rectifier

Analysis

For the input sine wave

$$V_{in}(t) = A sin(2\pi f)$$

where

- f = 80kHz
- A = 1

for $V_{in} > 0$

• The diode conducts, and the output follows the input.

$$V_{out}(t) = V_{in}(t) = \sin(2\pi 80000)t$$

for $V_{in} < 0$

• The diode blocks the signal, and the output is zero.

HYGIZIYIBIIY
$$V_{out}(t)=0$$
 7 864(8)6

The waveform is given by Institute of Technology Hyderabad

$$V_{out}(t) = \begin{cases} \sin(2\pi(80,000)t), & \text{if } V_{in} > 0\\ 0, & \text{if } V_{in} < 0 \end{cases}$$

the following waveform can be observed below

4.5 Observations

भारतीय प्रौद्योगिकी संस्थान हैदराबाद Indian Institute of Technology Hyderabac