DIGITAL RISK MANAGER - ALEX FIORILLO

RISK MANAGEMENT PIANI DI TRATTAMENTO DEL RISCHIO

Introduzione

Un'azienda subisce 6 data breach ogni 2 anni, in cui l'80% del contenuto viene esfiltrato per un valore complessivo del dataset di 100.000€. L'attaccante riesce a portare a termine il data breach nel 90% dei casi.

Calcolare: Per ogni situazione, valutare: Utilizzare:

- SLE - mALE - λ = ALE

-ARO -CBA -t=EF

- ALE - ROSI (con rapporto di mitigazione)

- GL - mv (probabilità di riuscita dopo mitigazione)

Valutare se il costo delle contromisure rientra nell'investimento consigliato da Gordon-Loeb

Soluzione	1	2	3	4	5
Mitigation ratio	50%	65%	43%	62%	80%
ACS	63000	70000	60000	69000	100000

Calcoli

AV (Asset Value) = 100.000€

EF (Exposure Factor) = 80% (0,8)

ARO (Annual Rate of Occurrence) = 6 data breach / 2 anni = 3 data breach/anno

SLE (Single Loss Expectancy)

SLE = AV * EF

SLE = 100.000 * 0,8 = **80.000€**

ALE (Annual Loss Expectancy)

GL (Gordon Loeb)

$$GL = 0.37 * d$$

$$d = \lambda * t * v$$

Soluzione 1

mR (mitigation Ratio) = 50%

ACS (Annualized Cost of Safeguard) = 63.000€

mALE (mitigated Annual Loss Expectancy)

$$mALE = SLE * ARO * (1 - mR)$$

$$mALE = 80.000 * 3 * (1 - 0.5)$$

mALE = **120.000€**

CBA (Cost Benefit Analysis)

CBA = ALE - mALE - ACS

CBA = 240.000 - 120.000 - 63.000

CBA = **57.000€**

ROSI (Return On Security Investment)

ROSI = CBA / ACS

ROSI = 57.000 / 63.000

ROSI = 0.9 = 90%

mV (Verosomiglianza mitigata)

$$mV = V * (1 - mR)$$

$$mV = 90 * (1 - 0.5)$$

mV = 90 * 0.5

mV = **45%**

Soluzione 2

mR = 65%

ACS = 70.000€

mALE (mitigated Annual Loss Expectancy)

mALE = SLE * ARO * (1 - mR)

mALE = 80.000 * 3 * (1 - 0.65)

mALE = **84.000€**

CBA (Cost Benefit Analysis)

CBA = ALE - mALE - ACS

CBA = 240.000 - 84.000 - 70.000

CBA = **86.000€**

ROSI (Return On Security Investment)

ROSI = CBA / ACS

ROSI = 86.000 / 70.000

ROSI = 1,23 = **123%**

mV (Verosomiglianza mitigata)

mV = V * (1 - mR)

mV = 90 * (1 - 0.65)

mV = 90 * 0.35

mV =**31.5%**

Soluzione 3

mR = 43%

ACS = 60.000€

mALE (mitigated Annual Loss Expectancy)

$$mALE = SLE * ARO * (1 - mR)$$

$$mALE = 80.000 * 3 * (1 - 0.43)$$

CBA (Cost Benefit Analysis)

ROSI (Return On Security Investment)

mV (Verosomiglianza mitigata)

$$mV = V * (1 - mR)$$

$$mV = 90 * (1 - 0.43)$$

$$mV = 90 * 0,57$$

Soluzione 4

mR = 62%

ACS = 69.000€

mALE (mitigated Annual Loss Expectancy)

$$mALE = SLE * ARO * (1 - mR)$$

$$mALE = 80.000 * 3 * (1 - 0.62)$$

mALE = **91.200€**

CBA (Cost Benefit Analysis)

CBA = 240.000 - 91.200 - 69.000

CBA = **79.800€**

ROSI (Return On Security Investment)

ROSI = CBA / ACS

ROSI = 79.800 / 69.000

ROSI = 1,16 = **116%**

mV (Verosomiglianza mitigata)

mV = V * (1 - mR)

mV = 90 * (1 - 0.62)

mV = 90 * 0.38

mV = **34.2%**

Soluzione 5

mR = 80%

ACS = 100.000€

mALE (mitigated Annual Loss Expectancy)

mALE = SLE * ARO * (1 - mR)

mALE = 80.000 * 3 * (1 - 0.8)

mALE = **48.000€**

CBA (Cost Benefit Analysis)

CBA = ALE - mALE - ACS

CBA = 240.000 - 48.000 - 100.000

CBA = **92.000€**

ROSI (Return On Security Investment)

ROSI = CBA / ACS

ROSI = 92.000 / 100.000

ROSI = 0,92 = **92%**

mV (Verosomiglianza mitigata)

mV = V * (1 - mR)

mV = 90 * (1 - 0,80)

mV = 90 * 0.2

mV = **18%**