Introduction to DSP: Mathematical Preliminaries - Assignment

- 1. Consider a complex number, z=x+jy. We know that this complex number can also be written as $z=re^{j\theta}$, which is the called the Euler representation of the complex number. Find the Euler representation for the following complex numbers:
 - (a) z = -1 1j
 - (b) z = -100j
 - (c) $z = 10\cos(\frac{\pi}{4}) + j10\sin(\frac{\pi}{4})$

Plot these complex number in the complex plane.

- 2. The previous two complex numbers are fixed complex numbers. Let us now consider a complex number that changes with time $t \in \mathbb{R}$, and we write this complex numbers as z(t) to indicate that it is a function of time t. z(t) can be thought of as a mathematical function, that maps from the set of real number (\mathbb{R}) (time) to the set of complex numbers (\mathbb{C}) . Find the Euler representation of the following time-varying complex numbers. Note that the r and θ will be time-varying as well.
 - (a) z(t) = 1 + t + j2t
 - (b) $z(t) = \cos(\pi t) + j\sin(\pi t)$
 - (c) $z(t) = \cos(\pi t) + j2\sin(\pi t)$
 - (d) $z(t) = t\cos(\pi t) + jt\sin(\pi t)$
- 3. Plot the trajectory of the complex number $z=t\,e^{j2\pi t}$ for time $0\leq t\leq 5$.

- 4. For each complex number z=x+jy, we can define a complex conjugate representd by \overline{z} , which is defined as $\overline{z}=x-jy$, i.e the sign of the imaginary component is changed, while the real component remains unchanged. For the complex number z=3+4j, plot the z and \overline{z} on the complex plane.
- 5. If a complex number $z=re^{j\theta}$, what is the correponding Euler representation for its complex conjugate \overline{z} .
- 6. For any complex number z=x+jy, what can you say about the outcomes of the following operations:
 - (a) $z + \overline{z}$
 - (b) $z \overline{z}$
 - (c) $j(z-\overline{z})$
 - (d) $z\overline{z}$
- 7. Consider two complex numbers $z_1=1-i$ and $z_2=2+i$. Using the complex plane, explain geometrically what happens we add the two complex numbers (z_1+z_2) , and multipy the two complex numbers (z_1z_2) .
- 8. Write down the domain and range of the following functions:
 - (a) $y = \log(x)$
 - (b) $y = \sqrt{x-5}$
 - (c) $y = \sin(x)$