Discrete and Computational Geometry

Deadline: 17 Jan 2025

Winter semester 2024/2025

Assignment 10

Based on Lecture 17 and Lecture 18

Problem 1: (5 Points)

Consider the points $p_1 = (0.05, 0.68)$, $p_2 = (0.07, 0.68)$, $p_3 = (0.12, 0.55)$, $p_4 = (0.3, 0.36)$, $p_5 = (0.63, 0.01)$, $p_6 = (0.68, 0.01)$ as depicted in Figure 1 on the next page. Find the WSPD of this point set with separation ratio s = 3, which is obtained by the construction algorithm presented in class (lecture 18).

Problem 2: (8 Points)

For any $p \in \mathbb{R}^2$, r > 0, let B(p, r) be the Euclidean ball of radius r, centered at p. Consider a set P of n points in \mathbb{R}^2 , stored in a compressed quadtree. Design an algorithm which, given a query point $q \in \mathbb{R}^2$, radius r > 0, and approximation parameter $1 \ge \epsilon > 0$, returns an integer m such that

$$|B(q,r) \cap P| \le m \le |B(q,(1+\epsilon)r) \cap P|.$$

You can assume that the compressed quadtree of P stores for each node the number of leaves of its subtree. The query algorithm must be adaptive to ϵ , meaning that larger values of ϵ should lead to faster running time. Analyse the running time of your algorithm.

Problem 3: (5 Points)

Prove the following statement (Lemma 18.5): Let P be a set of n points in \mathbb{R}^d . For any two distinct points $p, q \in P$, the algorithm WellSeparatedPairDecomposition from the lecture outputs exactly one s-well-separated pair that covers $\{p, q\}$.

Problem 4: (5 Points)

Define the weight of a WSPD $\{\{A_1, B_1\}, \dots, \{A_m, B_m\}\}$ as the quantity

$$\sum_{i=1}^{m} |A_i| + |B_i|$$

Show that there exists a set of n points in \mathbb{R}^1 , such that any WSPD with separation ratio at least 2 has weight $\Omega(n^2)$.

Figure 1