Final Exam

8:00-11:00AM, Wednesday, May 9, 2018

Name: _			
Section:	9:00 AM	12:00 PM	3:00 PM
NetID: _		_	
Score:		-	

Problem	Pts.	Score
1	6	
2	4	
3	8	
4	4	
5	4	
6	6	
7	4	
8	6	
9	6	
10	6	
11	4	
12	6	
13	8	
14	6	
15	6	
16	6	
Total	90	

Instructions

- You may not use any books, calculators, or notes other than four <u>handwritten</u> two-sided sheets of 8.5" x 11" paper.
- Show all your work to receive full credit for your answers.
- When you are asked to "calculate", "determine", or "find", this means providing closed-form expressions (i.e., without summation or integration signs).
- Neatness counts. If we are unable to read your work, we cannot grade it.
- Turn in your entire booklet once you are finished. No extra booklet or papers will be considered.

- 1. Answer "True" or "False" for the following statements.
 - (a) If the unit pulse response, h[n], of an arbitrary LSI system is zero for n < 0, the system must be causal. \mathbf{T}/\mathbf{F}
 - (b) A longer FIR filter can be designed to achieve the transition band width at least as narrow as another shorter FIR filter.

 T/F
 - (c) If a system is BIBO stable then it must be causal. T/F
 - (d) The response of a BIBO unstable LSI system to any non-zero input is always unbounded. T/F
 - (e) A serial connection of two BIBO stable systems is necessarily stable. T/F
 - (f) A parallel connection of two BIBO stable systems is necessarily stable. T/F

(4 Pts.)

2. A sequence x[n] has the z-transform

$$X(z) = \frac{z}{(z - \frac{1}{2})(z - 2)}, \quad \text{ROC}: |z| > 2.$$

Circle all correct x[n] in the following list of answers.

(a)
$$x[n] = -\frac{1}{3}(\frac{1}{2})^n u[n] + \frac{4}{3}2^n u[n]$$

(b)
$$x[n] = -\frac{1}{3}(\frac{1}{2})^{n-1}u[n-1] + \frac{4}{3}2^{n-1}u[n-1]$$

(c)
$$x[n] = \frac{1}{3}(\frac{1}{2})^{n-1}u[-n] - \frac{4}{3}2^{n-1}u[-n]$$

(d)
$$x[n] = \frac{1}{3}(\frac{1}{2})^{n-1}u[n-1] + \frac{4}{3}2^{n-1}u[n-1]$$

(8 Pts.)

3. Given a causal LTI system with the transfer function:

$$H(z) = \frac{4}{1 - \frac{1}{2}z^{-1}} + \frac{2}{1 - \frac{1}{4}z^{-1}},$$

- (a) Determine each of the following:
 - i. Locations of the all poles and zeros of the system
 - ii. Region of convergence of H(z)
 - iii. Is the system BIBO stable?

(b) What is the impulse response $\{h[n]\}$ of the given system?

(c) Determine a *causal* linear constant coefficient difference equation (LCCDE) whose transfer function is as above.

(4 Pts.)

4. Consider the following cascaded system with two causal subsystems:

$$H_1(z) = \frac{z - 0.25}{z^2 - 1.5z + 0.5},$$
 and $H_2(z) = \frac{z + c}{(z - 0.25)^2}.$

Determine c so that the following cascaded system is BIBO stable.

(4 Pts.)

5. Recall that the convolution of two discrete signals $\{x[n]\}$ and $\{h[n]\}$ is denoted as:

$$(x*h)[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k].$$

Prove that $((x*h_1)*h_2)[n] = (x*(h_1*h_2))[n]$ for all n. Draw equivalent system block diagrams for the left side and right side of the equation.

4

6. An FIR filter is described by the difference equation

$$y[n] = x[n] - x[n-6]$$

(a) Determine the frequency response of the system, $H_d(\omega)$.

(b) The filter's response to the input

$$x[n] = \cos\left(\frac{\pi}{10}n\right) + 3\sin\left(\frac{\pi}{3}n + \frac{\pi}{10}\right).$$

is given by

$$y[n] = A_1 \cos\left(\frac{\pi}{10}n + \phi_1\right) + A_2 \sin\left(\frac{\pi}{3}n + \phi_2\right).$$

Determine A_1 , A_2 , ϕ_1 , and ϕ_2 .

$$A_2 =$$

$$\phi_1 =$$

$$\phi_2 =$$

(4 Pts.)

- 7. Let $(X[k])_{k=0}^{99}$ be the 100-point **DFT** of a **real-valued** sequence $(x[n])_{n=0}^{99}$ and $X_d(\omega)$ be the **DTFT** of x[n] zero-padded to infinite length. Circle all correct equations in the following list.
 - (a) $X[70] = X_d \left(-\frac{6\pi}{10} \right)$
 - (b) $X[70] = X_d \left(\frac{70\pi}{50}\right)$
 - (c) $|X[70]| = |X_d\left(\frac{70\pi}{100}\right)|$
 - (d) $\angle X[70] = -\angle X_d\left(\frac{3\pi}{5}\right)$

(6 Pts.)

- 8. Let $\{x[n]\}_{n=0}^{N-1}$ be a **real-valued** N-point sequence with N-point DFT $\{X[k]\}_{n=0}^{N-1}$.
 - (a) Show that X[N/2] is real-valued if N is even.

(b) Show that $X[\langle N-k\rangle_N]=X^*[k]$ where $\langle n\rangle_N$ denotes n modulo N.

9. The z-transform of x[n] is

$$X(z) = \frac{1}{1 - \frac{1}{2}z^{-1}}, \quad \text{ROC:} |z| > \frac{1}{2}.$$

Compute the DTFT of the following signals:

(a) $\{y[n]\}$ where $y[n] = x[n] e^{-j\pi n/4}$, for all n.

(b) $\{v[n]\}$ where v[n] = x[2n+1], for all n.

- 10. The signal $x_a(t) = 3\sin(40\pi t) + 2\cos(60\pi t)$ is sampled at a sampling period T to obtain the discrete-time signal $x[n] = x_a(nT)$.
 - (a) Compute and sketch the magnitude of the continuous-time Fourier transform of $x_a(t)$.

(b) Compute and sketch the magnitude of the discrete-time Fourier transform of x[n] for: (1) $T = 10 \,\mathrm{ms}$; and (2) $T = 20 \,\mathrm{ms}$.

(c) For $T = 10 \,\text{ms}$ and $T = 20 \,\text{ms}$, determinate whether the original continuous-time signal $x_a(t)$ can be recovered from x[n].

(4 Pts.)

11. An analog signal $x_a(t) = \cos(200\pi t) + \sin(500\pi t)$ is to be processed by a digital signal processing (DSP) system with a digital filter sandwiched between an ideal A/D and an ideal D/A converters with the sampling frequency 1 kHz. Suppose that we want to pass the second component but stop the first component of $x_a(t)$. Sketch the specification of the digital filter in such a DSP system, and identify the transition band of that desired digital filter.

(6 Pts.)

- 12. Let x[n] be the input to a D/A convertor with T=5 ms. Sketch the output signal $x_a(t)$ for the following cases. Label your axis tick marks and units clearly.
 - (a) The D/A convertor is a ZOH and $x[n] = 2\delta[n] + 3\delta[n-7]$.

(b) The D/A convertor is an "ideal" D/A and $x[n] = 3\delta[n-7]$

(8 Pts.)

13. Consider the following system:

where the D/A convertor is an ideal D/A. Assume that $x_a(t)$ is bandlimited to $\Omega_{\rm max}$ (rad/sec), T is chosen to be $T < \frac{\pi}{\Omega_{\rm max}}$ and the impulse response of overall system is $h(t) = \delta(t - T/2)$ (or $H_a(\Omega) = e^{-j\Omega T/2}$).

(a) Determine the frequency response $H_d(\omega)$ of the **desired** digital filter.

(b) Determine the unit pulse response h[n] of the **desired** digital filter.

(c) Determine a length-2 FIR filter g[n] that approximates the above desired filter h[n] using a rectangular window design. Is this **designed** FIR filter g[n] LP or GLP?

14. Consider the system in the figure below. For each of the following statements determine whether they are true or false. If false, give an example of x[n] and the corresponding y[n] that violate the property.

(a) The system is linear

(b) The system is time-invariant

(c) The system is causal

(d) The system is BIBO stable.

15. Figure below shows the DTFT of a sequence x[n].

(a) Consider the downsampling operation shown below,

$$x[n] \longrightarrow \bigvee M \longrightarrow y[n]$$

Compute the maximum integer value of M you can use so that no aliasing occurs.

(c) Consider the upsampling operation shown below. Sketch the DTFT of y[n].

$$x[n] \longrightarrow \uparrow 3 \longrightarrow y[n]$$

16. Let S be a stable LSI system that maps an input signal $\{x[n]\}$ to a output signal $\{y[n]\}$ as:

$$\{x[n]\} \longrightarrow \boxed{S} \longrightarrow \{y[n]\}$$

Suppose that instead of $\{x[n]\}$, we input $\{\widetilde{x}[n]\}$ into the system \mathcal{S} , where $\{\widetilde{x}[n]\}$ differs from $\{x[n]\}$ only at one sample; that is, for some finite constants n_0 and E,

$$\widetilde{x}[n] = \begin{cases} x[n] & \text{for all } n \neq n_0, \\ x[n] + E & \text{for } n = n_0. \end{cases}$$

This produces the output signal $\{\widetilde{y}[n]\}$. Show that for sufficiently large $n,\ \widetilde{y}[n]$ approach y[n], which means

$$\lim_{n \to +\infty} |\widetilde{y}[n] - y[n]| = 0.$$

Hint: $\sum_{n\in\mathcal{Z}}|h[n]|<+\infty$ implies $\lim_{n\to\infty}|h[n]|=0$.