National Institute of Technology Delhi

Name of the Examination: End Semester Examination

(Delayed Spring Semester 2022)

Department: CSE/ECE/ EEE

Course Code: CSB102

Max. Marks: 50

Date: 13/07/2022

Course Title: Data Structures

Duration: 3 hours

SECTION - A

1.	Write the series of PUSH and POP operations that will transform the STACK from its initial state to its final state. INITIAL: 10, 9, 27, 4, 29, _, _, _ FINAL: 10, 7, 8, 4, 36, _, _, _	1M
2.	Consider a six – element queue, as shown below: QUEUE: _, _, _, _, 6 Even though the queue has a capacity to store five more elements, it still leads to an OVERFLOW condition whenever an attempt to insert a new element is made. What could be the possible reason for this? Also, suggest a solution to overcome this situation.	1M
3.	Write the series of INSERT and DELETE operations that will transform the QUEUE from its initial state to its final state. INITIAL: _, 1, 2, 4, 6, _, _, _ FINAL: _, _, _, 4, 6, 8, _, _	1M
4.	Draw NULL Tree.	1M
5.	Draw NULL Graph.	1M

SECTION - B

6. Suppose a dataset S contains N elements.	1M
6. Suppose a dataset S contains N elements. a) Compare the running time T ₁ of the linear search algorithm	with the
running time T_2 of the binary search algorithm when i) N=1000 ar	nd ii)
N=10000.	
b) Discuss searching a given item in S when S is stored as a linked lis	st. 1M
7. Suppose the array A contains 14 elements as follows:	1M
66, 33, 40, 22, 55, 88, 60, 11, 80, 20, 50, 44, 77, 30	
a) Sort the array using Merge sort and show all the steps in the proces	ss.
b) Write the average case and worst case complexity consideri	ng extra 1M
memory.	
8. Consider the following list of 14 alphabetic characters:	2M
D A T A S T R UC T U R E S	
Apply the Quicksort algorithm to find the final position of character D) .
9. The keys 12, 18, 13, 2, 3, 23, 5 and 15 are inserted into an initial	y empty 2M
hash table of length 10 using open addressing and linear probing. I	Oraw the
resultant hash table and explain the steps to be followed.	
10. What is collision in hashing? Briefly explain the collision re-	esolution 2M
techniques.	
11. Consider the following arithmetic infix expression Q:	2M
Q: $A + (B * C - (D / F) * G) * H$	
Transform Q into its equivalent postfix expression P using stacks.	
12. A binary tree T has 9 nodes. The inorder and preorder traversals of T	yield the 2M
following sequences of nodes. Draw the tree T.	
Inorder: EACKFHDBG	
Preorder: FAEKCDHGB	
13. Write the prefix and postfix of following expression:	2M
(a+b)*d+e/(f+a*d)+c	
14. Evaluate following expression:	2M
P: 6, 2, /, 3, -, 4, 2, *, +	
15. Suppose n data items A ₁ , A ₂ ,, A _N are already sorted, i.e., A ₁ <	$< A_2 < 1M$
$\langle A_N \rangle$	
a) Assuming the items are inserted in order into an empty binary sea	irch tree,
what is the depth D of the tree T?	
b) Compare D with the average depth AD of a binary search tree	e with n 1M
nodes for n = 50, n=100, n=500	
16. Consider the algebraic expression $E = (2x + y)(5a - b)^3$	1M
Draw the tree which corresponds to the expression E.	
Find the Polish expression P equivalent to E.	1M
17. a) Towers of Hanoi Problem can be solved in two recursive calls.	Rewrite 1M
the algorithm using one recursive call instead of two.	
b) Show the corresponding moves of disks at each step.	1M

18.	Heira Dilla 1 Al 11 C 14	
10.	Using Dijkstra's Algorithm, find the shortest distance from source vertex 'S'	3M
	to remaining vertices in the following graph. Also, write the order in which	
	vertices are visited.	
	(a) $\xrightarrow{2}$ (c)	
	1 1	
		1
	2 3 3	
	5 1	
	(b) 2	
	\bigcup_{2}	
19.	Consider the graph G in figure representing the daily flights between cities of	21/1
17.	some airline. Suppose we want to fly from city A to city J with the minimum	3M
	number of stops. Find the minimum path P from A to J where each edge has	
	length 1. Show the updations at each step in the following format:	
	rength 1. Show the updations at each step in the following format:	
	QUEUE	İ
	ORIGIN	
	FRONT	
	REAR	
	(B) (E) (G)	
	(x)	
20.	a) Briefly describe the notions of the complexity of an algorithm.	23.4
20.	a) Briefly describe the notions of the complexity of an algorithm.b) Briefly explain the space-time trade-off of algorithms.	2M
21.		1M
21.	Consider a polynomial $p(x,y,z)$ in variables x,y and z. Unless otherwise	1M
	stated, the terms in $p(x,y,z)$ will be ordered lexicographically. $P(x,y,z) = 8x^{2}y^{2}z-6yz^{8}+3x^{3}yz+2xy^{7}z-5x^{2}y^{3}-4xy^{7}z^{3}$	
	a) Rewrite the polynomial so that the terms are ordered.	2) (
	b) Suppose the terms are stored in the order shown in the problem statement	2M
	in the linear arrays COEF, XEXP, YEXP and ZEXP, with the HEAD node	
	first. Assign values to LINK so that the linked list contains the ordered	
	sequence of terms.	
22.	a) Apply Heap sort to sort following numbers in ascending order.	2M
	82, 90, 10, 12, 15, 77, 55, 23	
	b) Write the best case, worst case and average case complexity of Heap sort	1M
23.	Consider the following deque of characters where DEQUE is a circular	3M
	array which is allocated six memory cells: LEFT=2, RIGHT = 4	
	DEQUE: _, A, C, D, _, _	
	Describe the deque while the following operations take place.	
	1)F is added to the right of the deque. 2) Two letters on the right are	
	deleted. 3)K, L, and M are added to the left of deque. 4) One letter on the	
	left is deleted. 5) R is added to the left of the deque. 6) S is added to the	
	right of the deque. 7) T is added to the right of the deque.	
24.	Suppose the following list of letters is inserted in order into an empty binary	2M
	search tree: J, R, D, G, T, E, M, H, P, A, F, Q	
	a) Find the final tree T.	
	b) Find the inorder traversal of T.	1M