Exercice 1

Déterminer la nature des intégrales impropres suivantes :

a)
$$\int_{1}^{+\infty} \frac{1}{x\sqrt{x+2}} \, \mathrm{d}x$$

d)
$$\int_{1}^{+\infty} \frac{1}{x^2 \ln x} \, \mathrm{d}x$$

$$g) \int_0^{+\infty} \frac{e^x}{x+1} \, \mathrm{d}x$$

b)
$$\int_0^{+\infty} \frac{1}{\sqrt{(x+1)(x+2)}} \, \mathrm{d}x$$

e)
$$\int_{1}^{+\infty} \frac{\ln x}{x+1} \, \mathrm{d}x$$

h)
$$\int_0^{+\infty} \frac{x e^x + 1}{x e^{2x} + 1} dx$$

c)
$$\int_0^{+\infty} \frac{x^2 + 1}{x^5 + 1} \, \mathrm{d}x$$

$$f) \int_0^{+\infty} \frac{1}{x e^x + 1} \, \mathrm{d}x$$

Exercice 2

Déterminer la nature des intégrales impropres suivantes :

a)
$$\int_{1}^{+\infty} \frac{\sin x}{x^2} \, \mathrm{d}x$$

c)
$$\int_{-\infty}^{0} \frac{\sin^3 x}{x^2} \, \mathrm{d}x$$

e)
$$\int_0^{\pi} \ln(2x + 3\sin x) \, \mathrm{d}x$$

b)
$$\int_0^{+\infty} \frac{\sin x + \cos x}{\sqrt{x^3 + 1}} \, \mathrm{d}x$$

$$\mathrm{d}) \int_{-\infty}^{0} \mathrm{e}^{x} \cos x \, \mathrm{d}x$$

f)
$$\int_{0}^{+\infty} x^4 e^{-x^2} dx$$

Exercice

Le but de cet exercice est de démontrer la formule de Stirling : $n! \sim \sqrt{2\pi n} \frac{n^n}{e^n}$.

Pour tout $n \in \mathbb{N}^*$ on pose $u_n = \frac{n!}{\left(\frac{n}{a}\right)^n \sqrt{n}}$ et $v_n = \ln u_n$.

- 1) a) À l'aide d'un développement limité, montrer que $v_n v_{n+1} = \frac{1}{n \to +\infty} \frac{1}{12n^2} + \left(\frac{1}{n^2}\right)$.
 - b) En déduire que la suite (v_n) converge.
 - c) En déduire l'existence d'un réel C>0 tel que $n! \underset{n\to +\infty}{\sim} C \sqrt{n} \frac{n^n}{\mathrm{e}^n}.$
- 2) Montrons dans cette question que $C = \sqrt{2\pi}$. Pour tout $n \in \mathbb{N}$, on pose $W_n = \int_0^{\frac{\pi}{2}} \sin^n(x) dx$ (intégrale de Wallis)
 - a) Calculer W_0 et W_1 .
 - b) Montrer que (W_n) converge.
 - c) Montrer que pour tout $n \in \mathbb{N}$, $W_n = \int_0^{\frac{\pi}{2}} \cos^n(t) dt$
 - d) En déduire W_2 .
 - e) À l'aide d'une intégration par partie, montrer que pour tout $n \in \mathbb{N}$, $W_{n+2} = \frac{n+1}{n+2}W_n$.
 - f) En déduire que pour tout $n \in \mathbb{N}$, $(n+1)W_nW_{n+1} = \frac{\pi}{2}$.
 - g) Montrer que $\lim_{n\to +\infty}W_n=0$, $\lim_{n\to +\infty}\frac{W_n}{W_{n+1}}=1$, et $\lim_{n\to +\infty}\sqrt{n}W_n=\sqrt{\frac{\pi}{2}}$.
 - h) Montrer que pour tout $n \in \mathbb{N}$, $W_{2n} = \frac{(2n)!}{2^{2n}(n!)^2} \frac{\pi}{2}$.
 - i) En déduire que $C = \sqrt{2\pi}$.

* * Exercice 4

- 1) Montrer à l'aide du changement de variable $x=\mathrm{e}^u$ que l'intégrale $\int_0^{+\infty}\sin(\mathrm{e}^u)\,\mathrm{d}u$ converge.
- 2) Montrer à l'aide du changement de variable $t=u^{1/3}$ que l'intégrale $\int_0^{+\infty} \frac{\mathrm{d}u}{u^{2/3}+u^{4/3}}$ converge et la calculer.

Exercice 5

Soit $\theta \in \mathbb{R}$ et $n \in \mathbb{N}^*$ tels que $\sin(n\theta) \neq 0$. On considère le polynôme $P(X) = \sum_{k=1}^{n} \binom{n}{k} \sin(k\theta) X^k$

- 1) Montrer que $P(X) = \frac{1}{2i} (1 + e^{i\theta} X)^n \frac{1}{2i} (1 + e^{-i\theta} X)^n$
- 2) En déduire que λ est racine du polynôme P si et seulement si $\exists k \in [0, n-1], \lambda = \frac{e^{\frac{2ik\pi}{n}} 1}{e^{i\theta} e^{\frac{2ik\pi}{n}} e^{-i\theta}}$.
- 3) Montrer que toutes les racines de P sont réelles.

On considère la suite (u_n) définie par $u_1=1$ et $\forall n\in\mathbb{N}^*,\ u_{n+1}=u_n+\left(\ln\left(1+\frac{1}{u_n}\right)\right)^2$. Le but de cet exercice est de déterminer un équivalent de u_n lorsque $n\to+\infty$. On admet le théorème de Cesàro :

Si
$$\lim_{n \to +\infty} a_n = \ell$$
 avec $\ell \in \mathbb{R}$ alors $\lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^n a_k = \ell$

- 1) Montrer que la suite (u_n) est bien définie.
- 2) Étudier le sens de variation de (u_n) puis montrer que $\lim_{n \to +\infty} u_n = +\infty$.
- 3) Soit β un réel non nul. Montrer que $u_{n+1}^{\beta} u_n^{\beta} = \beta u_n^{\beta-3} + o(u_n^{\beta-3})$.
- 4) Déterminer une valeur de β telle que $u_{n+1}^{\beta} u_n^{\beta}$ converge vers une limite finie.
- 5) En déduire à l'aide du théorème admis que $u_n \underset{n \to +\infty}{\sim} \sqrt[3]{3n}$.

Pour tout $x \in]0; +\infty[$, on appelle **fonction Gamma d'Euler** la fonction définie par $\Gamma(x) = \int_{a}^{+\infty} e^{-t} t^{x-1} dt$.

- 1) Montrer que Γ est bien définie sur $]0; +\infty[$.
- 2) Montrer que pour tout x > 0, $\Gamma(x+1) = x\Gamma(x)$
- 3) Calculer $\Gamma(1)$ puis en déduire que $\forall n \in \mathbb{N}, \, \Gamma(n+1) = n!$
- 4) Calculer $\Gamma\left(\frac{1}{2}\right)$ puis $\Gamma\left(\frac{3}{2}\right)$. On pourra admettre la valeur de l'intégrale de Gauss : $\int_{0}^{+\infty} e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$.

Le coin des Khûbes

(ENSAE 2013) Soit $f:[0,1] \to [0,1]$ une fonction continue. On suppose qu'il existe une constante 0 < c < 1 telle que, pour tous x, y dans [0, 1],

$$|f(x) - f(y)| \le c|x - y|$$

Démontrer que l'équation f(x) = x admet une unique solution dans [0, 1].

(ENS 2016) Soit $f: \mathbb{R}_+ \to \mathbb{R}$ une fonction dérivable telle que $f(x)f(y) \le f(xy)$ pour tout $x, y \ge 0$ et f(1) = 1.

- 1) Montrer que $f(x) \ge 0$ pour tout $x \ge 0$
- 2) Montrer que $f(x) \ge f(x^{1/n})^n$ pour tout x > 0 et $n \ge 1$
- 3) En déduire qu'il existe un réel p tel que $f(x) \ge x^p$ pour tout $x \ge 0$
- 4) Montrer que p > 0
- 5) Montrer que $f(x) = x^p$ pour tout $x \ge 0$.

