Измерение энергии первого уровня атома гелия методом электронного возбуждения

Маслов Артём, Дедков Денис группа Б01-108а 16.10.2023

Цель и задачи работы:

1. Методом электронного возбуждения измерить энергию первого уровня атома гелия динамическим и статическим методами.

Описание экспериментальной установки

Схема экспериментальной установки приведена на рисунке 1:

Рис. 1: Слева схема экспериментальной установки. Справа схематичный график зависимости тока коллектора от напряжения на аноде.

Разреженный гелий заполняет трехэлектродную лампу. Электроны, испускаемые разогретым катодом, ускоряются в постоянном электрическом поле, созданном между катодом и сетчатым анодом лампы. Передвигаясь от катода к аноду электроны сталкиваются с атомами гелия. Если энергия электрона, налетающего на атом, недостаточна для того, чтобы перевести его в возбуждённое состояние, то возможны только упругие соударения, при которых электроны почти не теряют энергии, так как их масса в тысячи раз меньше массы атомов.

По мере увеличения разности потенциалов между анодом и катодом энергия электронов увеличивается и, в конце концов, оказывается достаточной для возбуждения атомов. При таких неупругих столкновениях одному из атомных электронов передаётся кинетическая энергия налетающего электрона и происходит переход атомного электрона на свободный энергетический уровень или ионизация.

Третьим электродом лампы является коллектор. Между ним и анодом поддерживается небольшое постоянное задерживающее напряжение. Ток коллектора, пропорциональный числу электронов, попадающих на него за секунду, измеряется микроамперметром.

При увеличении потенциала анода ток коллектора сначала растет, но когда энергия электронов становится достаточной для возбуждения атомов, ток коллектора резко уменьшается. Электроны при неупругих столкновениях теряют часть энергии и уже не могут преодолеть задерживающий потенциал. При дальнейшем увеличении потенциала анода, коллекторный ток возрастает. Следующее замедление роста тока происходит в момент, когда часть электроном неупруго сталкивается с атомами два раза. Таким образом, на кривой зависимости тока коллектора от напряжения анода имеется ряд максимумов и минимумов, отстоящих друг от друга на равные расстояния ΔV , которое равно энергии первого возбуждённого состояния.

Рис. 2: Слева схема экспериментальной установки. Справа схематичный график зависимости тока коллектора от напряжения на аноде.

Оборудование и приборы

Экспериментальная установка №1.14.

- 1. Трехэлектродная лампа.
- 2. Вольтметр GDM-8145. Инвентарный номер №51391. Погрешность измерения $\sigma_{\text{в}} = \pm (0.03\% rdg + 4 digits)$.
- 3. Микроамперметр GDM-8145. Инвентарный номер №51399. Погрешность измерения $\sigma_{\rm a}=\pm (0.3\% rdg+2digits).$
- 4. Блок питания. Инвентарный номер №410134125745.

Первичные экспериментальные данные

В таблицах 1-3 приведены первичные экспериментальные данные статического метода.

Оценим погрешности первичных экспериментальных данных. Суммарная погрешность измерения тока и напряжения складывается из погрешностей приборов ($\sigma_{\rm B}=\pm(0.03\%rdg+4digits)$), $\sigma_{\rm a}=\pm(0.3\%rdg+2digits)$) и случайной погрешностью сигнала, которая определяется шумом в электрической цепи $\sigma_{\Sigma}=\sqrt{\sigma_{\rm приб.}^2+\sigma_{\rm случ.}^2}$. Измеряемое значение напряжения флуктуировало примерно на $\pm 0.1~{\rm B}$ и не зависело от величины измеряемого напряжения. Поэтому случайную погрешность измерения напряжения оценим величиной этой флуктуации: $\sigma_{\rm H.c.}=\pm 0.01~{\rm B}$. При измерении коллекторного тока микроамперметром среднеквадратичное отклонение сигнала от среднего зависело от величины измеряемого тока. Проведя серию измерений среднего значения тока и максимального отклонения измеряемого значения от среднего было установлено, что относительная случайная погрешность измерений составляет примерно $\varepsilon_{\rm T.c.}\approx 2\%$. Далее считаем, что относительная случайная погрешность измерения тока одинакова во всём диапазоне значений измеряемого сигнала.

Таблица 1. Статический метод. $U_{\text{зад}} = 4 \text{ B}.$

Таблица 2. Статический метод. $U_{\text{зад}} = 6 \text{ B}.$

ица 1. Статический метод. $U_{ m 3ag}$ = $U=4~{ m B}$						
U, B	$U = \sigma_U, B$	4 B I, A	σ_I , A			
$0.00 \\ 1.19$	$0.04 \\ 0.04$	$0.009 \\ 0.023$	$0.001 \\ 0.001$			
$\frac{1.19}{2.11}$	0.04	0.023 0.039	0.001			
3.03	0.04	0.056	0.001			
4.02	0.04	0.075	0.002			
5.06	0.04	0.096	0.002			
6.01	0.04	0.116	0.002			
7.04	0.04	0.139	0.003			
8.09	0.04	0.164	0.003			
8.50	0.04	0.175	0.004			
9.04	0.04	0.188	0.004			
9.50	0.04	0.200	0.004			
9.90	0.04	0.211	0.004			
10.00	0.04	0.210	0.004			
10.00	0.04	0.213	0.004			
10.50	0.04	0.226	0.005			
11.02	0.04	0.240	0.005			
11.50	0.04	0.253	0.005			
12.10	0.04	0.268	0.005			
13.07	0.05	0.292	0.006			
14.03	0.05	0.320	0.007			
15.00	0.05	0.340	0.007			
15.04	0.05	0.340	0.007			
16.00	0.05	0.370	0.008			
17.00	0.05	0.392	0.008			
18.00	0.05	0.415	0.008			
19.00	0.05	0.439	0.009			
20.00	0.05	0.450	0.009			
20.00	0.05	0.456	0.009			
21.00	0.05	0.468	0.009			
22.00	0.05	0.481	0.010			
23.00	0.05	0.480	0.010			
24.00	0.05	0.488	0.010			
24.50	0.05	0.406	0.008			
25.00	0.05	0.416	0.008			
25.00	0.05	0.410	0.008			
26.00	0.05	0.449	0.009			
27.00	0.05	0.481	0.010			
28.00	0.05	0.507	0.010			
30.00	0.05	0.560	0.011			
30.00	0.05	0.570	0.012			
33.00	0.05	0.678	0.014			
34.00	0.05	0.702	0.014			
35.00	0.05	0.727	0.015			
36.00	0.05	0.736	0.015			
37.00	0.05	0.746	0.015			
38.00	0.05	0.745	0.015			
39.00	0.05	0.737	0.015			
40.00	0.05	0.690	0.014			
43.00	0.05	0.684	0.014			
44.00	0.05	0.678	0.014			
45.00	0.05	0.675	0.014			
46.00	0.05	0.679	0.014			
47.00	0.06	0.685	0.014			
50.00	0.06	0.690	0.014			
55.00	0.06	0.750	0.015			
60.00	0.06	0.790	0.016			
70.00	0.06	0.820	0.017			

U = 6 B				
U, B	σ_U , B	I, A	σ_I , A	
0.00	0.04	0.004	0.001	
5.00	0.04	0.056	0.001	
10.00	0.04	0.172	0.004	
15.00	0.05	0.305	0.006	
20.00	0.05	0.428	0.009	
21.00	0.05	0.448	0.009	
22.00	0.05	0.464	0.009	
23.00	0.05	0.473	0.010	
24.00	0.05	0.476	0.010	
25.00	0.05	0.300	0.006	
26.00	0.05	0.289	0.006	
27.00	0.05	0.314	0.006	
28.00	0.05	0.349	0.007	
30.00	0.05	0.420	0.009	
32.00	0.05	0.492	0.010	
35.00	0.05	0.579	0.012	
36.00	0.05	0.588	0.012	
37.00	0.05	0.594	0.012	
38.00	0.05	0.601	0.012	
39.00	0.05	0.598	0.012	
40.00	0.05	0.587	0.012	
42.00	0.05	0.558	0.011	
45.00	0.05	0.523	0.011	
46.00	0.05	0.516	0.010	
47.00	0.06	0.513	0.010	
48.00	0.06	0.513	0.010	
49.00	0.06	0.518	0.011	
50.00	0.06	0.526	0.011	
55.00	0.06	0.570	0.012	
60.00	0.06	0.613	0.012	
65.00	0.06	0.622	0.013	
70.00	0.06	0.618	0.013	

Таблица 3. Статический метод. $U_{\text{зад}} = 8 \text{ B}.$

U = 8 B				
U, B	I, A	σ_I , A		
0.00	0.04	0.004	0.001	
5.00	0.04	0.022	0.001	
10.00	0.04	0.125	0.003	
15.00	0.05	0.255	0.005	
20.00	0.05	0.384	0.008	
22.00	0.05	0.422	0.009	
23.00	0.05	0.433	0.009	
24.00	0.05	0.444	0.009	
25.00	0.05	0.443	0.009	
25.50	0.05	0.200	0.004	
26.00	0.05	0.188	0.004	
27.00	0.05	0.188	0.004	
28.00	0.05	0.199	0.004	
29.00	0.05	0.225	0.005	
30.00	0.05	0.266	0.005	
31.00	0.05	0.305	0.006	
35.00	0.05	0.437	0.009	
37.00	0.05	0.468	0.009	
38.00	0.05	0.476	0.010	
39.00	0.05	0.477	0.010	
40.00	0.05	0.468	0.009	
45.00	0.05	0.405	0.008	
48.00	0.06	0.372	0.008	
49.00	0.06	0.367	0.007	
50.00	0.06	0.366	0.007	
51.00	0.06	0.369	0.007	
52.00	0.06	0.373	0.008	
55.00	0.06	0.398	0.008	
60.00	0.06	0.434	0.009	
65.00	0.06	0.439	0.009	
70.00	0.06	0.428	0.009	

В таблице 4 приведены первичные экспериментальные данные динамического метода. Таблица 4. Динамический метод.

U = 4 B		U = 6 B		U = 8 B	
x_i , B	σ_{x_i} , B	x_i , B	σ_{x_i} , B	x_i , B	σ_{x_i} , B
-20.1	0.6	-21.8	0.6	-23.8	0.5
-14.5	0.7	-14.8	0.7	-15.2	0.7
-1.8	1.0	-3.2	0.9	-4.3	0.9
0.1	1.0	-0.3	1.0	-0.6	1.0
-20.4	0.6	-22.0	0.6	-23.4	0.5
-14.2	0.7	-14.4	0.7	-15.3	0.7
-3.2	0.9	-4.3	0.9	-5.1	0.9
0.1	1.0	-0.6	1.0	-1.8	1.0

Обработка экспериментальных данных

Динамический метод

По координатам максимумов и минимумов определим энергию первого возбужденного уровня гелия. Таблица 4. Динамический метод.

Tacomide in American recommendation			
$\Delta V_{max}^{(1)}, \mathrm{B}$	$\Delta V_{max}^{(1)}, \mathrm{B}$	$\Delta V_{max}^{(2)}, \mathrm{B}$	$\Delta V_{max}^{(2)}, \mathrm{B}$
18.3	14.6	17.1	14.3
18.6	14.5	17.7	13.8
19.5	14.6	18.3	13.6

Погрешность определения V оценим по формуле: $\sigma_V = 0.02 * V + 1$. Погрешность ΔV определялась по формуле $\sigma(\Delta V) = \sqrt{\sigma_{V1}^2 + \sigma_{V2}^2}$. Определим среднее значение энергии первого возбужденного уровня гелия $E=16.2\pm2.4$ эВ.

Статический метод

Построим график зависимости коллекторного тока от потенциала анода.

Определим координаты максимумов и разность между ними:

$U_{\text{зад}}, \ \mathbf{B}$	V_{max1} , B	V_{max2} , B	ΔV , B	E, эВ
4	24.0 ± 1.0	37.0 ± 1.0	13.0 ± 1.4	13.0 ± 1.4
6	24.0 ± 1.0	38.0 ± 1.0	14.0 ± 1.4	14.0 ± 1.4
8	25.0 ± 1.0	39.0 ± 1.0	14.0 ± 1.4	14.0 ± 1.4

Погрешность измерения ΔV оценим следующим образом. Точки брались дискретно с шагом 1 V. Сделать шаг меньше в эксперименте не было возможности, так как ручка регулировки напряжения была очень чувствительной. Если на определённом шаге следующее измеренное значение V_2 было меньше текущего V_1 , то это означает о наличии скачка тока на графике I(V). При этом максимум точно находится между V_1 и V_2 . Считаем, что так как не известна информация о математической формуле кривой I(V) и нет возможности провести аппроксимацию (аппроксимация полиномом даст плохой результат, так как на график I(V) не является гладким из-за скачка тока после первого максимума), то пусть вероятность нахождения максимума справа от точки V_1 подчиняется гауссовому распределению. Тогда с вероятностью $\approx 98\%$ максимум находится в интервале $3\sigma = 1$ В. Тогда погрешность $\sigma(\Delta V) = \sqrt{2}\sigma_V \approx 0.5$ В.

Определим среднее значение энергии первого возбужденного состояния атома гелия $E=13.7\pm1.4$ эВ.

Обсуждение результатов и выводы

В работе была определена энергия первого возбужденного состояния атома гелия статическим методом $E=13.7\pm1.4~\mathrm{sB}.$

Была определена энергия первого возбужденного состояния атома гелия динамическим методом $E=16.2\pm2.4~\mathrm{aB}$.

Согласно табличным данным энергия, необходимая для перехода атома гелия из основного состояния в первое возбужденное, равна 19.8 эВ.