

Máquinas de Moore e Mealy

Sistemas Digitais 2016/2017

Pedro Salgueiro pds@di.uevora.pt

Circuitos sequenciais síncronos

Sumário

- Máquinas de estados
- Máquinas de Moore
- Máquinas de Mealy
- Exemplos

Máquinas de estado

Máquinas de estado

- As saídas são determinadas em função
 - Do estado actual
 - Opcionalmente
 - Dos valores lógicos presentes nas entradas

Máquinas de estados

Máquinas de estados

- Máquinas de Moore
 - Saídas dependem unicamente do estado actual
- Máquinas de Mealy
 - Saídas dependem:
 - Estado actual
 - e das entradas

Máquinas de estados

Máquina de Moore

Máquinas de estados

Máquina de Mealy

Exemplo

Pretende-se construir um circuito detector da sequência **000**. O circuito tem apenas uma entrada X e uma saída Z que deverá estar activa durante um ciclo de relógio em resposta à detecção da sequência correcta.

- Formas de onda

- Sequência de bits

X 0 1 0 1 0 0 0 1 1 0 0
Z 0 0 0 0 0 1 0 0 0

Exemplo

Pretende-se construir um circuito detector da sequência 000. O circuito tem apenas uma entrada X e uma saída Z que deverá estar activa durante um ciclo de relógio em resposta à detecção da sequência correcta.

- Síntese do circuito
 - 1) Nº de estados
 - 4
- Fora de sequência
- 1 para cada zero detectado
- 2) Diagrama de estados
 - Escolher a situação inicial (X=1 ou X=0)
 - Desenhar a situação que satisfaz o problema (Z=1)
 - Completar com as restantes situações

- Situação inicial
 - X=1
- Estados

Estado	Descrição
Α	Fora de sequência
В	Recebido o primeiro 0
С	Recebido o segundo 0
D	Sequência completa

- Restantes casos
 - Situação inicial: X=1

Estado	Descrição
Α	Fora de sequência
В	Recebido o primeiro 0
С	Recebido o segundo 0
D	Sequência completa

- Situação inicial
 - X=0
- Estados

Estado	Descrição
Α	Recebido o primeiro 0
В	Recebido o segundo 0
С	Sequência completa
D	Fora de sequência

Exemplo

Situação inicial

Estado	Descrição
Α	Recebido o primeiro 0
В	Recebido o segundo 0
С	Sequência completa
D	Fora de sequência

- Codificação
 - Situação inicial: X=1

Estado	Codificação
Α	00
В	01
С	10
D	11

Exemplo

Tabela de transição de estados

- Situação inicial: X=1

X	Estado Actual	Estado Seguinte	Z
0	Α	В	0
1	Α	Α	0
0	В	С	0
1	В	Α	0
0	С	D	0
1	С	Α	0
0	D	В	1
1	D	Α	1

Exemplo

Tabela de transição de estados

- Situação inicial: X=1

X	Estado Actual	Estado Seguinte	Z
0	00	01	0
1	00	00	0
0	01	10	0
1	01	00	0
0	10	11	0
1	10	00	0
0	11	01	1
1	11	00	1

Exemplo

Tabela de transição de estados

	Estado Actual	Estado Seguinte	
X	Q1 ⁿ Q0 ⁿ	Q1 ⁿ Q0 ⁿ	Z
0	0 0	0 1	0
1	0 0	0 0	0
0	0 1	10	0
1	01	0 0	0
0	10	11	0
1	10	0 0	0
0	11	0 1	1
1	11	0 0	1

Tabela de excitação de FF T

Q*	Q	Т
0	0	0
0	1	1
1	0	1
1	1	0

	$Q_1^{n}Q_0^{n}$	n			
	X	00	01	11	10
T	0	0	1	1	0
1	1	0	0	1	1

$$T_1 = Q_0 \overline{X} + Q_1 X$$

$$T_o = \overline{Q}_1 \, \overline{X} + Q_o \, X + \overline{Q}_o \, \overline{X}$$

$$Z = Q_1 Q_0$$

Exemplo

Pretende-se construir um circuito detector da sequência **1010.** O circuito tem apenas uma entrada X e uma saída Z que deverá estar activa durante um ciclo de relógio em resposta à detecção da sequência correcta. Este detector deve permitir a detecção de sequências encadeadas.

- Visualização
 - Sequência de bits

X 0 1 0 1 0 0 1 0 1 0 1 1 1 0 1 0 1 0
Z 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 1

Exemplo

Pretende-se construir um circuito detector da sequência 1010. O circuito tem apenas uma entrada X e uma saída Z que deverá estar activa durante um ciclo de relógio em resposta à detecção da sequência correcta. Este detector deve permitir a detecção de sequências encadeadas:

- Máquina de Moore
 - Número de estados:
 - 5

Estado	Descrição
Α	Fora de sequência
В	Recebido 1
С	Recebido 10
D	Recebido 101
E	Sequência completa

- Máquina de Moore
 - Estados

Estado	Descrição
Α	Fora de sequência
В	Recebido 1
С	Recebido 10
D	Recebido 101
E	Sequência completa

- Máquina de Mealy
 - Saída depende
 - Estado
 - Entrada
 - Saída representada na transição
 - Número de estados
 - 4

Estado	Descrição	
Α	Fora de sequência	
В	Recebido 1	
С	Recebido 10	
D	Recebido 101	

- Máquina de Mealy
 - Saída depende
 - Estado
 - Entrada
 - Saída representada na transição
 - Número de estados
 - 4

Estado	Descrição	
Α	Fora de sequência	
В	Recebido 1	
С	Recebido 10	
D	Recebido 101	

Exemplo

• Tabela de transição de estados

X	Estado Actual	Estado Seguinte	Z
0	Α	Α	0
1	Α	В	0
0	В	С	0
1	В	В	0
0	С	Α	0
1	С	D	0
0	D	С	1
1	D	В	0

Exemplo

• Tabela de transição de estados

	Estado Actual	Estado Seguinte	
Х	$Q_1^n Q_0^n$	$Q_1^n Q_0^n$	Z
0	0 0	0 0	0
1	0 0	01	0
0	01	10	0
1	01	01	0
0	10	0 0	0
1	10	11	0
0	11	10	1
1	11	01	0

Exemplo

• Tabela de transição de estados

	Estado Actual	Estado Seguinte	
Х	$Q_1^n Q_0^n$	$Q_1^n Q_0^n$	Z
0	0 0	0 0	0
1	0 0	0 1	0
0	0 1	10	0
1	0 1	0 1	0
0	10	0 0	0
1	10	11	0
0	11	10	1
1	11	01	0

• Tabela excitação FF SR

Q*	Q	S	R
0	0	0	-
0	1	1	0
1	0	0	1
1	1	-	0

$$S_1 = Q_0 \overline{X}$$

$$R_1 = \overline{Q}_0 \overline{X} + Q_0 X$$

Exemplo

Tabela de transição de estados

	Estado Actual	Estado Seguinte	
Х	$Q_1^n Q_0^n$	$Q_1^n Q_0^n$	Z
0	0 0	0 0	0
1	0 0	0 1	0
0	0 1	10	0
1	0 1	0 1	0
0	10	0 0	0
1	10	11	0
0	11	10	1
1	11	0 1	0

Tabela exticação FF SR

Q*	Q	S	R
0	0	0	-
0	1	1	0
1	0	0	1
1	1	-	0

$$R_{0} = \overline{X}$$

$$0 \quad 0 \quad 01 \quad 11 \quad 10$$

$$1 \quad 0 \quad 0 \quad 0$$

$$Z = Q_1 Q_0 \overline{X} \quad \begin{array}{c|cccc} Q_1^n Q_0^n & & & & & \\ X & & 0 & 0 & 1 & 10 \\ & & 0 & 0 & 1 & 0 \\ & & 1 & 0 & 0 & 0 & 0 \end{array}$$

Máquinas de Moore e Mealy

Máquinas de Moore e Mealy

- Diferenças
 - Moore: as saídas são função exclusiva do estado;
 - Mealy: as saídas são função do estado e das entradas;
- De forma geral
 - Máquinas de Mealy
 - Necessitam de menos hardware
 - Máquinas de Moore
 - Função de saída mais simples
 - Mais fácil de detectar erros