

Luddy School of Informatics, Computing, and Engineering

Predictive Modeling for Multi-Label Tagging in Algorithmic Challenges

Team Members:

Under the guidance of:

Aayush Jaiswal

Dr. Yuzhen Ye

Meet Palod

Objective

- 1. To generate all the tags for a algorithmic question.
- Explore and compare various Machine Learning and Deep Learning approaches to solve this problem
- 3. Hyper-parameter optimization to enhance the precision, recall, f1-score, and hamming loss of different models.

About the data

- 1. Source from Kaggle, it is a comprehensive dataset of contest questions from Codeforces, a popular platform for coding practice.
- Contains a total of 8434 records, with 4 fields: 'contest' (numerical), 'problemname' (categorical), 'problem-statement' (categorical), 'problems-tags' (categorical, multi-label)
- 3. Our column of interest are problem statement and problem tags. Problem statement is the full text from the problem page and problem tags are comma-separated tagged classes.

Top 20 Highest occurring Tags

- 1. Implementation
- 2. Math
- 3. greedy
- 4. dp
- 5. datastructures
- 6. constructivealgorithms
- 7. bruteforce
- 8. graphs
- 9. binarysearch
- 10. sortings
- 11. dfandsimilar
- 12. trees
- 13. strings
- 14. numbertheory
- 15. combinatorics
- 16. specialproblem
- 17. twopointers
- 18. bitmasks
- 19. geometry
- 20. dsu

Multi-gram Analysis

Unigram tag contains 6 percent of data, i.e., tag column containing only one tag.

Multi-gram has 91 percent of data, i.e., tags column with more than two or more than two tags.

Frequency Distribution of Number of Tags per Problem

Data Preprocessing

- 1. Dropped rows without tags and convert text to lowercase.
- 2. Remove unicodes, HTML tags, and stop words.
- 3. Tokenize the problem statement.
- Perform Lemmatization and Stemming.
- 5. Divide data in train-test split with 20% test size.

Models and their performance

- 1. Logistic Regression
- 2. Random Forest Classifier
- 3. Bi-LSTM
- 4. SGD Classifier

Models and their performance

- 1. Precision True Positives / (True Positives + False Positives)
- 2. Recall True Positives / (True Positives + False Negatives)
- 3. Micro F1-score 2 x Precision x Recall / (Precision + Recall)
- 4. Hamming Loss 1 Accuracy

Models and their performance

S1-no	Algorithm	Precision	Recall	Micro-f1score	Hamming-loss
1	Logistic-Regression	0.536	0.295	0.381	0.068
2	Random Forest Classifier	0.743	0.243	0.366	0.069
3	Bidirectional-lstm	0.337	0.315	0.325	0.092
4	SVM Classifier	0.469	0.325	0.384	0.074

Conclusion

- The Random Forest Classifier outperformed other models in precision, recall, making it the most suitable model for this dataset.
- Logistic Regression has the best recall and hamming loss compared to random forest regressor and lstm.
- 3. As the dataset is small, machine learning model is performing better than deep learning model.

Future Work

- 1. Get more data from different platforms to facilitate training.
- 2. Techniques like oversampling or undersampling can be applied to make the dataset with various tags more balanced.
- Hyper-parameter optimization to enhance the precision, recall, f1-score, and hamming loss of different models.
- Explore more complex approaches and architectures like ensemble learning, BERT to get better results.

