MITCHELL'S BOOK: Ex. 3.2 DTs

Machine Learning 2024-25 Course Activity

Furno Francesco - francesco.furno@studenti.unipd.it - 2139507

November 4st, 2024

Consider the following set of training examples:

Instance	Classification	a_1	a_2
1	+	T	T
2	+	Т	Т
3	-	Т	F
4	+	F	F
5	-	F	T
6	-	F	Т

- 1. What is the entropy of this collection of training examples with respect to the target function classification?
- 2. What is the information gain of a_2 relative to these training examples?

Entropy

In this collection, there are 6 instances:

- 3 positive elements $\Rightarrow P_+ = \frac{3}{6} = \frac{1}{2}$
- 3 negative elements $\Rightarrow P_{-} = \frac{3}{6} = \frac{1}{2}$

The entropy with respect to the classification value is:

$$\begin{split} E(S) &= - \Big(\log_2 \left(P_+ \right)_\times P_+ + \log_2 (P_-) \times P_- \Big) \\ &= - \Big(\log_2 \left(\frac{1}{2} \right) \times \frac{1}{2} + \log_2 \left(\frac{1}{2} \right) \times \frac{1}{2} \Big) \\ &= - \Big(-1 \times \frac{1}{2} - 1 \times \frac{1}{2} \Big) \\ &= - \Big(-\frac{2}{2} \Big) = 1 \end{split}$$

We could have concluded that the entropy is 1 without calculation because the instances are perfectly balanced: there are an equal number of positive and negative elements. When the elements are perfectly distributed between the classes, the entropy function reaches its maximum value, indicating maximum uncertainty:

Figure 1: Entropy function

Information Gain of a_2

To find the Information Gain of a_2 we need to calculate the entropy for each possible value of this attribute. a_2 has two possible values: **T** and **F**.

Let's start with T. There are 4 instances where $a_2={\bf T}.$

Instance	Classification	a_1	a_2
1	+	T	T
2	+	Т	Т
5	-	F	Т
6	-	F	Τ

In total:

- 2 positive elements $\Rightarrow P_+ = \frac{2}{4} = \frac{1}{2}$
- 2 negative elements $\Rightarrow P_{-} = \frac{2}{4} = \frac{1}{2}$

$$\begin{split} E(a_{2-\mathbf{T}}) &= - \bigg(\log_2 \bigg(\frac{1}{2} \bigg) \times \frac{1}{2} + \log_2 \bigg(\frac{1}{2} \bigg) \times \frac{1}{2} \bigg) \\ &= 1 \end{split}$$

This is because the instances are perfectly balanced between the classifications.

Let's analyze **F**. There are 2 instances where $a_2 = \mathbf{F}$.

Instance	Classification	a_1	a_2
3	-	T	F
4	+	F	F

In total:

- 1 positive element $\Rightarrow P_+ = \frac{1}{2}$
- 1 negative element $1 \Rightarrow P_{-} = \frac{1}{2}$

$$\begin{split} E(a_{2-\mathbf{F}}) &= - \bigg(\log_2 \bigg(\frac{1}{2} \bigg) \times \frac{1}{2} + \log_2 \bigg(\frac{1}{2} \bigg) \times \frac{1}{2} \bigg) \\ &= 1 \end{split}$$

Again, the instances are perfectly balanced between the classifications.

Information Gain

$$\begin{split} G(S,a_2) &= E(S) - \left(\frac{4}{6} \times E(a_{2-\mathbf{T}}) + \frac{2}{6} \times E(a_{2-\mathbf{F}})\right) \\ &= 1 - \left(\frac{4}{6} \times 1 + \frac{2}{6} \times 1\right) \\ &= 1 - (1) \\ &= 0 \end{split}$$

The Information Gain of a_2 is 0 because, for both possible values (**T** and **F**), the instances are perfectly balanced in the classification + and -. This means that a_2 does not provide any additional information to reduce the uncertainty of the classification.