TP2

Intégration numérique

5 octobre 2017

Dans ce TP, on présente quelques méthodes numériques pour calculer, approximativement, l'intégrale d'une fonction sur un intervalle compact (borné, fermé).

- 1. Création d'une fonction simple et représentation graphique [Python : module math; Maths : calcul exact d'une intégrale].
 - (a) Excrite la fonction $f(x) = \sqrt{1-x^2}$ sous forme d'une fonction python (on utilisera la fonction sqrt() du module math).
 - (b) Représentation graphique sur l'intervalle [-0.5, 0.5].
 - (c) Calculer, à la main, l'intégrale I de cette fonction sur l'intervalle donné.
- 2. Calcul approché de I au moyen de la méthode du point milieu [Python : module time, création et écriture d'un tableau de résultats dans un fichier texte au moyen des fonctions open() et write(); Maths : approximation d'une fonction par une fonction en escalier, approximation numérique d'une intégrale].
 - (a) Représenter graphiquement f sur papier, repère orthonormé, unité = 8 cm.
 - (b) On définit une subdivision régulière x_0, \dots, x_4 de l'intervalle d'intégration [0,1] en n=4 parts égales (on a donc $x_0=-0.5, x_1=-0.25, \dots, x_4=0.5$. On note c_1, \dots, c_4 les milieux de ces sous-intervalles. Pour chaque $k=1,\dots,4$, dessiner le **rectangle** de base $[x_{k-1},x_k]$ et de hauteur $f(c_k)$, et calculer sa surface s_k . La méthode du point milieu consiste à prendre la somme $S_4=\sum_{i=1}^4 s_k$ comme approximation de I
 - (c) Calculer l'erreur commise $|S_4 I|$.
 - (d) Utiliser la fonction clock() du module time pour mesurer le temps de calcul de votre intégrale.
 - (e) Ecrire une fonction python point_milieu qui prend en arguments une fonction f, des bornes a, b et un entier n et qui renvoie l'intégrale approchée de f sur [a, b] au moyen de la méthode du point milieu.
 - (f) Tester point_milieu avec $f(x) = \sqrt{1-x^2}$, a = -0.5, b = 0.5 et $n = 10^k$, k variant de 1 à 6, puis remplir manuellement le tableau ci-dessous :

n	erreur	temps (sec.)
10		
100		
1000		
10000		
100000		
1000000		

(g) En python, recréer automatiquement le tableau obtenu au moyen d'une boucle for. Utiliser les fonction print pour voir le tableau à l'écran et write pour écrire le tableau dans un fichier texte. Voir documentation à l'adresse https://docs.python.org/3/tutorial/inputoutput.html. Exemple de tableau produit automatiquement en python:

```
n | erreur | temps (sec.)

10 | 8.33333e-04 | 1.80000e-05
100 | 8.33333e-06 | 4.10000e-05
1000 | 8.33333e-08 | 3.98000e-04
10000 | 8.33337e-10 | 3.95500e-03
100000 | 8.33034e-12 | 4.02760e-02
1000000 | 8.37108e-14 | 3.99448e-01
```

- 3. Dans la méthode du point milieu, on a approximé la fonction f sur l'intervalle $[x_{k-1}, x_k]$ par la fonction constante prenant la même valeur que f en c_k , le milieu de $[x_{k-1}, x_k]$; dans la **méthode du trapèze**, on approxime f sur cet intervalle par la fonction affine qui prend les mêmes valeurs que f en x_{k-1} et x_k . Reprendre le travail précédent, mais avec la méthode du trapèze.
- 4. Dans la méthode du point milieu, on a approximé f sur l'intervalle $[x_{k-1}, x_k]$ par une fonction constante polynôme de degré 0; dans la méthode du trapèze, on a approximé f sur cet intervalle par une fonction affine polynôme de degré 1; dans la **méthode de Simpson**, on approxime f sur l'intervalle $[x_{k-1}, x_k]$ par le polynôme de degré 2 qui prend les mêmes valeurs que f en x_{k-1} , c_k et x_k . Reprendre le travail précédent, mais avec la méthode de Simpson.
- 5. Comparer les trois méthodes précédentes.
- 6. La **méthode de Monte-Carlo** est intéressante pour calculer des surfaces, des volumes, etc., et on pourrait donc l'appliquer au problème ci-dessus. Présentons la méthode en modifiant un peu la situation précédente [Python: module numpy.random; Maths: distribution de probabilité].
 - (a) A l'aide de matplotlib.pyplot, dessiner le cercle unité (centré à l'origine et de rayon 1). Quelle est la surface du disque unité?
 - (b) En ligne de commande, à l'aide de la fonction numpy.random.rand(), générer quelques valeurs aléatoires suivant la distribution de loi uniforme sur [0,1]. Même exercice avec une distribution de loi uniforme sur [-1,1].
 - (c) Générer N = 1000 points suivant la distribution uniforme sur le carré $[-1,1]^2$. Faire apparaître ces N points sur le graphique précédent, en rouge les points intérieurs au disque unité, et en vert les points extérieurs au disque.
 - (d) Compter le nombre I de points intérieurs et le nombre E de points extérieurs. La méthode de Monte-Carlo consiste à prendre le rapport $\frac{I}{N}$ comme approximation de la surface S du disque; calculer l'erreur commise $|\frac{I}{N} S|$; à l'aide de time.clock() mesurer le temps de calcul de ce calcul.
 - (e) Ecrire une fonction python $Monte_Carlo$ qui prend en arguments un entier N et qui renvoie une approximation de la surface du disque unité au moyen de la méthode de Monte-Carlo.
 - (f) Tester Monte_Carlo avec $N=10^k$, k variant de 1 à 6, puis créer automatiquement, et l'enregistrer dans un fichier texte, un tableau de résutats du modèle ci-dessous :

N	erreur	temps (sec.)
10		
100		
1000		
10000		
100000		
1000000		

(g) Reprendre le travail qui précède avec le calcul du volume de la boule unité par la méthode de Monte-Carlo.