Exact Recovery for a Family of Community-Detection Generative Models

Paolo Penna

joint work with

Joachim Buhmann, Luca Corinzia, Luca Mondada

pick random triangle

pick random triangle add noise

pick random triangle add noise

pick random triangle add noise

pick random triangle

Return **heaviest** triangle

Return **heaviest** triangle

Return **heaviest** triangle

random graph model

Return **heaviest** triangle

Flavor of the Problem

random noise planted solution

planted random model

Recover planted solution?

Flavor of the Problem

planted solution

random noise

Many variants: planted clique, planted bisection, stochastic block model,...

planted random model

Recover planted solution?

Triangles ↓ Our General Model

Generalization #1

Planted Random Models

Random Graph

Planted Random Models

Weighted Stochastic Block Model

Random Graph

Planted Random Models

Weighted Stochastic Block Model

Random Graph

Densest k-Subgraph Problem

Generalization #2

Our Model

1 2 ... M

Random Energy Model (REM)

Random Energy Model (REM)

Random Energy Model (REM)

independent

Random Energy Model (REM)

Planted Random Energy Model (P-REM)

Planted Random Energy Model (P-REM)

Return max weight one

Recover planted solution?

Planted Random Energy Model (P-REM)

Maximum Likelihood (ML)

Return max weight one

Recover planted solution?

Random Graph

independent

P-REM

$$M = \binom{N}{k}$$

dependent Random Graph

independent

P-REM

$$M = \binom{N}{k}$$

search is hard

search maybe easier

Our Contribution

Signal to Noise Ratio
$$= \frac{\widehat{\mu}}{\widehat{\sigma}}$$

Signal to Noise Ratio
$$=\frac{\widehat{\mu}}{\widehat{\sigma}}$$
 $P(success) o 0 \qquad P(success) o 1$ fail success

h	Model	γ fail	γ_{succ}
1	k-P-REM	1	1
2	Graph	$\sqrt{\frac{1}{k-1}}$	$2\sqrt{\frac{1}{k-1}}$
2 < h < k	Hypergraph	$\sqrt{\frac{1}{\binom{k-1}{h-1}}}$	$2\sqrt{\frac{h}{\binom{k-1}{h-1}}}$
k	P-REM		$\begin{array}{c c} & \ddots & \ddots & \ddots \\ & 1 & & \end{array}$

$$k = o(\log N)$$

h	Model	γ fail	γ_{succ}
1	k-P-REM	1	1
2	Graph	$\sqrt{\frac{1}{k-1}}$	$2\sqrt{\frac{1}{k-1}}$
2 < h < k	Hypergraph	$\sqrt{rac{1}{inom{k-1}{h-1}}}$	$2\sqrt{\frac{h}{\binom{k-1}{h-1}}}$
k	P-REM	1	1

$$k = o(\log N)$$

h	Model	γ fail	γ_{succ}
1	<i>k</i> -P-REM	1	1
2 2 < h < k	Graph Hypergraph	$\sqrt{\frac{1}{k-1}}$ $\sqrt{\frac{1}{\binom{k-1}{h-1}}}$	$2\sqrt{\frac{1}{k-1}}$ $2\sqrt{\frac{h}{\binom{k-1}{h-1}}}$
k	P-REM	1	1

$$k = o(\log N)$$

h	Model	γ fail	γ_{succ}
1	<i>k</i> -P-REM	1	1
2 2 < h < k	Graph Hypergraph	$\sqrt{\frac{1}{k-1}}$ $\sqrt{\frac{1}{\binom{k-1}{h-1}}}$	$2\sqrt{\frac{1}{k-1}}$ $2\sqrt{\frac{h}{\binom{k-1}{h-1}}}$
k	P-REM	1	1

 $k = o(\log N)$

h	Model	γ fail	γ_{succ}
1	<i>k</i> -P-REM	1	1
2 2 < h < k	Graph Hypergraph	$ \sqrt{\frac{1}{k-1}} $ $ \sqrt{\frac{1}{\binom{k-1}{h-1}}} $	$2\sqrt{\frac{1}{k-1}}$ $2\sqrt{\frac{h}{\binom{k-1}{h-1}}}$
k	P-REM	1	1

$$k = o(\log N)$$

h	Model	γ fail	γ_{succ}
1	k-P-REM	1	1
2	Graph	$\sqrt{\frac{1}{k-1}}$	$2\sqrt{\frac{1}{k-1}}$
2 < h < k	Hypergraph	$\sqrt{\frac{1}{\binom{k-1}{b-1}}}$	$2\sqrt{\frac{h}{\binom{k-1}{h-1}}}$
k	P-REM	$\begin{vmatrix} 1 & 1 \end{vmatrix}$	$\begin{array}{c c} & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & \\ & & \\ & & \\ & \\ & & \\ & & \\ & \\ & & \\ & & \\ & & \\ & \\ & & \\ & \\ & \\ & & \\$

$$k = o(\log N)$$

maximum likelihood (ML)

Recover planted solution?

Planted Clique

$$k = \Theta(\log N) \qquad \qquad k = \sqrt{N}$$

A nearly tight sum-of-squares lower bound for the planted clique problem (Barak et al., FOCS'16).

i

Bisection

Stochastic Block Model

"Exact recovery in the stochastic block model" (Abbe, , Bandeira, and Hall, IEEE Transactions on Information Theory '16),

"Consistency thresholds for the planted bisection model" (Mossel, Neeman, and Sly, STOC 15)

"Community detection in general stochastic block models: Fundamental limits and efficient algorithms for recovery," $16(E_4Abbe)$ and C. Sandon, FOCS '15)

Generic distr.

k = N/c

Weighted Stochastic Block Model

"Information-theoretic bounds for exact recovery in weighted stochastic block models using the renyi divergence" (Jog and Loh, arXiv 2015)

Hypergraph Stochastic Block Model

"Consistency of spectral partitioning of uniform hypergraphs under planted partition model" (Ghoshdastidar and Dukkipati, NIPS '14) "Consistency of spectral hypergraph partitioning under planted partition model," (Ghoshdastidar et al, The Annals of Statistics '17)

Weighted Hypergraph Stochastic Block Model

"Community detection in hypergraphs, spiked tensor models, and Sum-of-Squares" (Chiheon Bandeira, Goemans, Int. Conf. on Sampling Theory and Applications, '17)

Open Questions

Computational Aspects

- trade off (dependency, recoverability, hardness)

Other Problems

- our technique ("reduce" to REM)

Thank You!!