

Vorlesung 9 - Mächtigkeit von Mengen

Diskrete Strukturen (WS 2023-24)

Łukasz Grabowski

Mathematisches Institut

Diskrete Strukturen

1. Wiederholung

- 2. Weitere Beispiele zur Mächtigkei
- 3. Fixpunkt
- 4. Der zweite Beweis vom Satz von Cantor-Schröder Bernstein
- 5. Verbänd
- 6. Charakterisierung von Verbänden durch \lor und \land

• Zwei Mengen M und N sind gleichmächtig, kurz |M|=|N|, gdw. eine bijektive Funktion $f\colon M\to N$ existiert.

- ightharpoonup Z.B. $|\mathbb{Z}| = |\mathbb{N}|$
- $ightharpoonup |\mathbb{N}| \neq |\mathbb{R}|, |\mathcal{P}(X)| \neq |\mathcal{X}|$ Andere Notation: $\mathcal{P}(X) = 2^X$.
- Sei $\mathcal U$ ein Universum von Mengen. Dann die Gleichmächtigkeit ist eine Äquivalenzrelation auf $\mathcal U$.
- Die Äquivalenzklassen heißen Kardinalitäten.
- (Cantor -Schröder-Bernstein) Seien $f: A \to B$ und $g: B \to A$ injektive Funktionen. Dann existiert eine bijektive Funktion $h: A \to B$.
 - ▶ Wir definieren $|M| \le |N|$ genau dann wenn es gibt eine Injektion $f: M \to N$. Das ist eine Ornungsrelation.

Diskrete Strukturen | Wiederholung

Diskrete Strukturen 1. Wiederholung 2. Weitere Beispiele zur Mächtigkeit 4. Der zweite Beweis vom Satz von Cantor-Schröder-

- $|\mathbb{N}^2| = |\mathbb{N}|$.
 - ▶ Nach CBS, wir brauchen Injektionen $f \colon \mathbb{N} \to \mathbb{N}^2$ und $g \colon \mathbb{N}^2 \to \mathbb{N}$ zu konstruieren.
 - $ightharpoonup f: \mathbb{N} o \mathbb{N}^2$; Z.B. f(x) := (x, 0),
 - ▶ $g: \mathbb{N}^2 \to \mathbb{N}$: $g(n,m) := 1n_k m_k n_{k-1} m_{k-1} \dots n_0 m_0$, wobei k+1 ist das Maximum der Längen der Dezimaldarstellungen von n und $m = \sum_{i=0}^k n_i \cdot 10^i$ und $m = \sum_{i=0}^k m_i \cdot 10^i$ mit $n_i, m_i \in \{0, \dots, 9\}$ für alle $i \in \{0, \dots, k\}$.

Diskrete Strukturen | Weitere Beispiele zur Mächtigkeit

- $|\mathbb{R}| = |\mathcal{P}(\mathbb{N})|$.
 - ▶ $|\mathbb{R}| = |(0,1)|$. Nach CBS reicht die Injektionen $f: (0,1) \to \mathcal{P}(\mathbb{N})$ und $g: \mathcal{P}(\mathbb{N}) \to (0,1)$ zu konstruieren.
 - ▶ Jede reelle Zahl $x \in (0,1)$ lässt sich eindeutig als $x = [0, d_1d_2d_3d_4\cdots]_{10}$ darstelen, mit den Ziffern $d_1, d_2, \ldots \in \{0, 1, \ldots, 9\}$, so dass kein $n \in \mathbb{N}$ existiert mit $d_i = 9$ für alle $i \in \mathbb{N}$ mit $i \geq n$.
 - ▶ Dann sei $g: \mathbb{R} \to \mathcal{P}((0,1)) \to \mathbb{R}$ so definiert: $f(x) := \{[d_1]_{10}, [d_1d_2]_{10}, [d_1d_2d_3]_{10}, \dots\}$

. Diese Funktion \boldsymbol{f} ist injektiv.

Diskrete Strukturen | Weitere Beispiele zur Mächtigkeit

▶ Sei $X \subseteq \mathbb{N}$. Wir definieren die reelle Zahl $g(X) := [0, 1b_0b_1b_2\cdots]_{10}$ mit $b_i \in \{0, 5\}$, so dass $b_i = 5\,$ gdw. $i \in X$ für alle $i \in \mathbb{N}$. Offenbar ist auch diese Funktion g injektiv.

6/26

- $|\mathbb{O}| = |\mathbb{Z}|$
- Wir wissen $|\mathbb{Q}| \ge |\mathbb{Z}|$, also es reicht zu zeigen dass $|\mathbb{Q}| \le |\mathbb{Z}|$.
- Wir wissen auch $|\mathbb{Z}| = |\mathbb{N}| = |\mathbb{N}^2|$, also es reicht zu zeigen dass $|\mathbb{Q}| \leq |\mathbb{N}^2|$.
- Die positiven rationalen Zahlen entsprechen den nicht weiter kürzbaren Brüchen $\frac{m}{n}$ mit $m, n \in \mathbb{N}_+$. Also wir haben eine Injektion $f: \mathbb{Q}_+ \to \mathbb{N}_+ \times \mathbb{N}_+$, mit $f(\frac{m}{n}) = (m, n)$.
- Jetzt bauen wir die Injektion $g: \mathbb{Q} \to \mathbb{N} \times \mathbb{N}$.
 - $ightharpoonup g(rac{m}{n}):=(m,n)$ wenn ggt(m,n)=1, m,n>0,
 - $ightharpoonup g(\frac{-m}{n}) := (-m, n) \ ggt(m, n) = 1, m, n > 0$
 - ightharpoonup g(0) := (0,0).

Satz

Seien A_1, A_2, \ldots abzählbar. Dann $\bigcup_{i=1}^{\infty} A_i$ ist auch abzählbar.

Beweis.

- Wir müssen eine Injektion $\bigcup_i A_i \to \mathbb{N}$ definieren.

• Erst, wir finden disjunkte Teilmenge
$$B_1, B_2, \ldots \subset \mathbb{N}$$
 mit $|B_i| = |\mathbb{N}|$ und $\bigcup_i B_i = \mathbb{N}$.

- ▶ 1.1.2.1.2.3.1.2.3.4.1.2.3.4.5....
- Wir haben Bijektionen $\beta_i \colon \mathbb{N} \to B_i$. Wir haben auch Injektionen $\alpha_i \colon A_i \to \mathbb{N}$.
- Wir definieren $s: \bigcup_{i=1}^{\infty} A_i \to \mathbb{N}$, so dass s(x) ist die kleinste i mit $x \in A_i$.
- Schließlich können wir die Injektion $F: \bigcup_{i=1}^{\infty} A_i \to \mathbb{N}$ definieren, wie folgt: $F(x) := \beta_{s(x)}(\alpha_{s(x)}(x)).$

$$F(x) := \beta_{s(x)}(\alpha_{s(x)}(x)).$$

Falls $F(x) = F(y)$, dann $s(x) = s(y)$, weil die Bilde von verschiedenEN β_i 's

disjunkt sind. Dann die Injektivität folgt da $\alpha_{s(x)}$ and $\beta_{s(x)}$ sind beide injektiv.

Diskrete Strukturen | Weitere Beispiele zur Mächtigkeit

Satz

 $\mathcal{P}_{<\infty}(\mathbb{N})$ ist abzählbar.

Beweis.

- Es reicht zu zeigen dass $\forall k \in \mathbb{N}$ gilt dass $\mathcal{P}_k(\mathbb{N})$ ist abzählbar.
- Wir haben eine Surjektion $\mathbb{N}^k \to \mathcal{P}_k(\mathbb{N})$: $(a_1, a_2, \dots, a_k) \mapsto \{a_1, \dots, a_k\}$. Also es reicht zu zeigen, dass \mathbb{N}^k ist abzählbar.

Sei X eine Menge. Dann definieren wir $\mathcal{P}_{<\infty}(X) := \{A \subset X : |A| < \infty\}$.

- Wir beweisen mit Induktion $|\mathbb{N}^k| = |\mathbb{N}|$. ▶ IA: k = 2 Wir wissen $|\mathbb{N}^2| = |\mathbb{N}|$.
 - ▶ IH: $|\mathbb{N}^k| = |\mathbb{N}|$ wenn k > 1.
 - ▶ IB: zu zeigen ist $|\mathbb{N}^{k+1}| = |\mathbb{N}|$. Es gilt $|\mathbb{N}^{k+1}| = |\mathbb{N} \times \mathbb{N}^k|$. Aus dem Übungsblatt und aus IH folgt $|\mathbb{N} \times \mathbb{N}^k| = |\mathbb{N} \times \mathbb{N}|$. Also auch $|\mathbb{N}^{k+1}| = |\mathbb{N}|$.
- Diskrete Strukturen | Weitere Beispiele zur Mächtigkeit

Diskrete Strukturen

- 1. Wiederholung
- 2. Weitere Beispiele zur Mächtigkei

3. Fixpunkte

- 4. Der zweite Beweis vom Satz von Cantor-Schröder Bernstein
- 5. Verbände
- 6. Charakterisierung von Verbänden durch \lor und \land

Die Iteration ist ein wesentliches Prinzip in Rainer Mathematik und in der Programmierung. Ein wichtiger Aspekt der Iteration sind die sogenannte Fixpunkte. Sei $f\colon M\to M$ eine Funktion auf einer Menge M. Ein Fixpunkt von f ist ein Element $m\in M$, so dass f(m)=m.

Beispiele

- Die Funktion $f: \mathbb{N} \to \mathbb{N}$ mit f(x) := x + 1 hat keine Fixpunkte.
- Die Funktion $f: \mathbb{N} \to \mathbb{N}$ mit $n \mapsto \lceil \sqrt{n} \rceil$ hat die Fixpunkte 0, 1 und 2.

Beispiel - Die Methode von Newton

- Gegeben: eine differenzierbare Funktion $f: \mathbb{R} \to \mathbb{R}$
- Ziel: $x \in \mathbb{R}$ zu finden, mit f(x) = 0.
- Algorithmus von Newton: wir nehmen $x_0 \in \mathbb{R}$, dann definieren wir $x_1 := x_0 \frac{f(x_0)}{f'(x_0)}$ und allgemein $x_k := x_{k-1} \frac{f(x_{k-1})}{f'(x_{k-1})}$
 - ► Fixpunkte sind die gesuchte Lösungen. Sehr häufig konvergieren Iterationen zu einem Fixpunkt.

• Wir möchten Fixpunkte benutzen, um einen alternativen Beweis von CBS zu geben Wir beginnen mit der Erinnerung an das folgende Lemma.

Lemma. Sei M eine Menge. Wir betrachten die teilweise geordnete Menge $(\mathcal{P}(M),\subseteq)$. Sei $\mathcal{X} \subseteq \mathcal{P}(M)$. Dann $\bigcup \mathcal{X}$ ist die kleinste obere Schranke von \mathcal{X} . D.h.

$$\bigcup \mathcal{X} \subseteq U$$

für alle $U \in \uparrow \mathcal{X}$

Satz. (Lemma von Knaster-Tarski) Sei $f: \mathcal{P}(M) \to \mathcal{P}(M)$ mit $f(X) \subseteq f(Y)$ für alle $X \subseteq Y \subseteq M$. Dann hat f einen Fixpunkt.

Beweis. Seien

$$Q := \{ X \in \mathcal{P}(M) \mid X \subseteq f(X) \}$$

und $N := \bigcup \mathcal{Q}$.

- Wir zeigen jetzt dass f(N) = N, d.h. N is ein Fixpunkt von f.
- Für jede Menge $X \in \mathcal{Q}$ gilt $X \subseteq N$. Deswegen gilt $X \subseteq f(X) \subseteq f(N)$.
- Es folgt dass f(N) ist eine obere Schranke von \mathcal{Q} . Deswegen $N = \bigcup \mathcal{Q} \subseteq f(N)$.
- Auch gilt: $f(N) \subseteq f(f(N))$, wodurch $f(N) \in \mathcal{Q}$. Es folgt also $f(N) \subseteq \bigcup Q = N$, und deswegen auch N = f(N),

Beispiele

- Sei $f \colon \mathbb{N} \to \mathbb{N} \ \, \text{mit} \, f(x) := x+1$. Wir betrachten jetzt f als eine Funktion auf $\mathcal{P}(\mathbb{N})$.
- Für welche Teilmengen $X \subseteq \mathbb{N}$ gilt f(X) = X? Für $X = \emptyset$
- Sei $q: \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ wie folgt definiert:

$$g(X) := X \cup f(X).$$

Fixpunkte: \emptyset , \mathbb{N} , $X_k := \{n \in \mathbb{N} \mid n \geq k\}$ mit $k \in \mathbb{N}$.

Diskrete Strukturen

- 1. Wiederholung
- 2. Weitere Beispiele zur Mächtigkei
- 3. Fixpunkte
- 4. Der zweite Beweis vom Satz von Cantor-Schröder-Bernstein
- 5. Verbänd
- 6. Charakterisierung von Verbänden durch \lor und \land

tionen. Dann existiert eine bijektive Funktion $B\colon M o N$.

Satz. (Cantor-Schröder-Bernstein) Seien $f: M \to N$ und $g: N \to M$ injektive Funk-

.....

• Wir definieren die Funktion $h \colon \mathcal{P}(M) \to \mathcal{P}(M)$:

$$h(X) := M \setminus g(N \setminus f(X))$$
.

- Für alle $X \subseteq Y \subseteq M$ gilt $f(X) \subseteq f(Y)$ also auch $N \setminus f(Y) \subseteq N \setminus f(X)$, und deswegen auch $g(N \setminus f(Y)) \subseteq g(N \setminus f(X))$.
 - $g(N\setminus f(Y))\subseteq g(N\setminus f(X)).$ D.h. $h(X)\subseteq h(Y)$.
- Nach dem Lemma von Knaster-Tarski existiert also ein Fixpunkt $F\subseteq M$ für h. Es gilt

$$M \setminus F = M \setminus h(F) = M \setminus (M \setminus g(N \setminus f(F))) = g(N \setminus f(F))$$
.

Diskrete Strukturen | Der zweite Beweis vom Satz von Cantor-Schröder-Bernstein

• Wir definieren eine Funktion $B: M \to N$ durch

$$B(m) := f(m)$$
 wenn $m \in F$

$$B(m) := q^{-1}(m)$$
 wenn $m \in M \setminus F$

Wir möchten zeigen dass B ist bijektiv.

• Surjektivität: Sei $n \in N$. Falls $n \in f(F)$, dann existiert $m \in F$, so dass f(m) = n. Damit gilt B(m) = n. Sonst ist $n \in N \setminus f(F)$ und damit

$$q(n) \in q(N \setminus f(F)) = M \setminus F$$
.

Also B(g(n)) = n.

Injektivität: Seien $x, y \in M$ mit B(x) = B(y).

- Sei $B(x) \in f(F)$. Erst zeigen wir dass $x, y \in F$. Sonst wenn z.b. $x \in M \setminus F$, dann deswegen dass $M \setminus F = g(N \setminus f(F))$, würden wir $B(x) = g^{-1}(x) \in N \setminus f(F)$ haben, was jedoch $B(x) \in f(F)$ widerspricht. Also gilt $x, y \in F$. Damit gilt auch x = y, da finiektiv ist.

• Sei $B(x) \notin f(F)$. Dann gilt $x, y \in M \setminus F$, also x = g(B(x)) = g(B(y)) = y.

Der zweite Beweis vom Satz von Cantor-Schröder-Bernstein

Diskrete Strukturen

- 1. Wiederholung
- 2. Weitere Beispiele zur Mächtigkei
- 3. Fixpunkto
- 4. Der zweite Beweis vom Satz von Cantor-Schröder-Bernstein

5. Verbände

6. Charakterisierung von Verbänden durch \lor und \land

- Das Supremum $\sup X$ von X ist das kleinste Element von $\uparrow X$, also die kleinste obere Schranke für X.
- Das Infimum $\inf X$ von X ist das größte Element von $\downarrow X$, also die größte untere Schranke für X.

• Sei (M, \prec) eine teilweise geordnete Menge und $X \subseteq M$.

Teilmengerelation \subseteq . Dann hat M kein Supremum.

• Suprema/Infima existieren nicht immer. Als Beispiel betrachten wir $\mathbb R$ mit üblicher Ordnungsrelation. Dann $\mathbb R$ selbst hat kein Supremum und kein Infimum.

• Noch ein Beispiel: Die Menge M von allen endlichen Teilmengen von \mathbb{N} , mit der

- Sei M eine Menge, und sei $X \subset \mathcal{P}(M)$. Dann \mathcal{M} hat Supremum und Infimum in \mathcal{P} , und es gilt $\sup X = \bigcup X$, $\inf X = \bigcap X$.
- Dieser Satz motiviert folgende Notation: Sei (M, \subseteq) eine geordnete Menge, und $x,y \in M$. Dann schreiben wir $x \vee y := \sup\{x,y\}$), $x \wedge y := \inf\{\{x,y\}\}$.

- (M,\subseteq) heißt Verband gdw. für alle $x,y\in M$ wir haben dass $x\vee y$ und $x\wedge y$ existieren. • (M,\subseteq) heißt vollständiger Verband gdw. für alle $X\subseteq M$ wir habe dass $\sup X$ und
- $\inf X$ existieren.

Beispiele

- (\mathbb{N},\leq) , (\mathbb{Z},\leq) , (\mathbb{Q},\leq) und (\mathbb{R},\leq) sind alle Verbände. Sie sind alle nicht vollständig.
- Wir haben gesehen dass für jede Menge M gilt dass $(\mathcal{P}(M),\subseteq)$ ist ein vollständiger Verband.
- Sei $\mathcal{Q}\subset\mathcal{P}(M)$ die Menge von allen endlichen Mengen. Dann \mathcal{Q} is ein Verband. \mathcal{Q} ist vollstandig gdw. M ist eine endliche Menge.
- Jeder vollständiger Verband $\mathcal M$ hat das kleinste und das grosste Element. Sie sind, bzw.. $\inf \mathcal M$ und $\sup \mathcal M$.

Satz. Jeder endliche Verband ist vollständig.

Beweis. Sei (M, \preceq) ein Verband. Wir beweisen durch Induktion über n = |X|: Für jede endliche nicht-leere Teilmenge $X \subseteq M$ existiert $\sup X$. (Der Beweis bezüglich $\inf X$ ist ähnlich.)

- Induktionsanfang: Sei n=1=|X| und $x\in X$. Dann ist $x\preceq x$ und für alle oberen Schranken z von X gilt offenbar $x\prec z$. Also ist $x=\sup X$.
- Sei $n \in \mathbb{N}_+$ beliebig.
 - ▶ Induktionshypothese: Für jedes $X \subseteq M$ mit |X| = n existiert $\sup X$.
 - ▶ Induktionsbehauptung: Für jedes $X \subseteq M$ mit |X| = n + 1 existiert $\sup X$.

Satz. Jeder endliche Verband ist vollständig.

Beweis. (Fortzetzung)

- Sei $X \subseteq M$ mit |X| = n + 1 und $z \in X$. Gemäß Induktionshypothese existiert ein $y = \sup(X \setminus \{z\})$. Wir zeigen, dass $z \vee y = \sup X$.
- Es gilt $x \leq z \vee y$ für alle $x \in X$. Sei $m \in M$, so dass $x \leq m$ für alle $x \in X$. Also auch $z \prec m$ und $y \prec m$. Damit allerdings auch $z \vee y \prec m$.

Diskrete Strukturen

- 1. Wiederholung
- 2. Weitere Beispiele zur Mächtigkei
- 3. Fixpunkto
- 4. Der zweite Beweis vom Satz von Cantor-Schröder Bernstein
- 5. Verbänd
- 6. Charakterisierung von Verbänden durch \vee und \wedge

z. Für jeden Verband (M, \preceq) und alle $x, y, z \in M$ gelten

- $x \lor y = y \lor x \text{ und } x \land y = y \land x$
- $x \lor (y \lor z) = (x \lor y) \lor z \text{ und } x \land (y \land z) = (x \land y) \land z$

• $x \lor (x \land y) = x \text{ und } x \land (x \lor y) = x$

Beweis. Z.B. beweisen wir dass
$$x \wedge (y \wedge z) = (x \wedge y) \wedge z$$
.

 $x \wedge (y \wedge z) \geq z$.

Damit sehen wir $x \wedge (y \wedge z) \geq x \wedge y$, und deswegen

$$x \wedge (y \wedge z) \geq (x \wedge y) \wedge z$$
.

Ähnlich zeigen wir $(x \wedge y) \wedge z \geq x \wedge (y \wedge z)$, also $(x \wedge y) \wedge z = x \wedge (y \wedge z)$,

 $x \wedge (y \wedge z) \geq x$ und $x \wedge (y \wedge z) \geq y \wedge z$. Also $x \wedge (y \wedge z) \geq x$ und $x \wedge (y \wedge z) \geq y$ und

Kommutativität

Assoziativität

Absorption

VIELEN DANK FÜR IHRE AUFMERKSAMKEIT!

Łukasz Grabowski

Mathematisches Institut

grabowski@math.uni-leipzig.de