CMSC 127

Relational Model and ER- and EER-to-Relational Mapping

Reginald Neil C. Recario

Institute of Computer Science University of the Philippines Los Baños

Relational Model

- The Relational Model of Data is based on the concept of a *Relation*.
- A Relation is a mathematical concept based on the idea of sets.
- The model was first proposed by Edgar Frank "Ted" Codd of IBM Research in 1970.

Informal Definitions

- Informally, a relation looks like a table of values.
- □ A relation typically contains a set of rows.
- Each row corresponds to a real-world entity or relationship
 - □In the formal model, rows are called *tuples*

Informal Definitions

- □ Each *column* corresponds to an attribute
- Each column has a column header that indicates the meaning of the data items in that column
 - In the formal model, the column header is called an attribute name (or just attribute)

Example of a Relation

	Relation Name T STUDENT		Attr	ributes			•
	Name	No	Home_phone	Address	Office_phone	Age	Gpa
1	Benjamin Bayer	305-61-2435	373-1616	2918 Bluebonnet Lane	NULL	19	3.21
	Chung-cha Kim	381-62-1245	375-4409	125 Kirby Road	NULL	18	2.89
Tuples	Dick Davidson	422-11-2320	NULL	3452 Elgin Road	749-1253	25	3.53
	Rohan Panchal	489-22-1100	376-9821	265 Lark Lane	749-6492	28	3.93
•	Barbara Benson	533-69-1238	839-8461	7384 Fontana Lane	NULL	19	3.25

Informal Definitions

- □ Key of a Relation:
 - An attribute that uniquely identifies a row in the table
 - □In the STUDENT table, No is the key
 - Sometimes row-ids or sequential numbers are assigned as keys
 - ■Called artificial key or surrogate key

Informal Definitions

□ Primary Key

Chosen from the different keys of the relation

□ Foreign Key

An attribute that references the primary key of another relation

Example of a Foreign Key

□ Step 1: Mapping of Regular Entity Types

- ■Create a relation R that includes all the simple attributes of E.
- ■Choose one of the key attributes of E as the primary key for R.
- If the chosen key of E is composite, the set of simple attributes that form it will together form the primary key of R.

EMPLOYEE

Fname Minit Lname	<u>No</u>	Bdate	Address	Sex	Salary
-------------------	-----------	-------	---------	-----	--------

DEPARTMENT

Dname <u>Dnumber</u>

PROJECT

Pname	<u>Pnumber</u>	Plocation
-------	----------------	-----------

□ Step 2: Mapping of Weak Entity Types

- Create a relation R for the weak entity type W and include all simple attributes of W
- Include primary key of the owner entity types
- Set foreign key attributes of R the primary key attribute(s) of the relation(s) that correspond to the owner entity type(s).
- The primary key of R is the *combination* of the primary key(s) of the owner(s) and the partial key of the weak entity type W, if any.

DEPENDENT

(<u>Eno</u>	Dependent_name	Sex	Bdate	Relationship
_		<i>,</i>			

- □ Step3: Mapping of Binary 1:1 Relationship
 Types
 - ■Method1: Foreign key approach
 - Include primary key of relation T into relation S (as a foreign key)
 - It is better if S has a total participation in the given relationship type

- □ Step3: Mapping of Binary 1:1 Relationship
 Types
 - ■Method2: Merged relation approach
 - If both total participation, merge two relations

- □ Step3: Mapping of Binary 1:1Relationship Types
 - Method3: cross-reference or relationship relation approach
 - Set up a third relation and add the primary keys of the two associated entity types

MANAGES

Mgr_no <u>Dnum</u>

- □ Step4: Mapping of Binary 1:N Relationship Types
 - Include primary key of "1" side into "N" side relation (as a foreign key)
 - □Include all simple attributes

EMPLOYEE

									_	$\overline{}$	
Fname	Minit	Lname	<u>No</u>	Bdate	Address	Sex	Salary	Super_n	0)	Dno)

PROJECT

- □ Step5: Mapping of Binary M:N Relationship
 Types
 - ■Create a new relation
 - Include primary keys of both side relations (as foreign keys)
 - The primary key of the new relation is the combination of the primary keys of two associated entity types
 - Include relationship attribute(s)

WORKS_ON

<u>Eno</u> <u>Pno</u> Hours

- □ Step 6: Mapping of Multivalued Attributes
 - For each multivalued attribute A, create a new relation R.
 - This relation R will include an attribute corresponding to A, plus the primary key attribute K-as a foreign key in R-of the relation
 - The primary key of R is the combination of A and K. If the multivalued attribute is composite, we include its simple components.

DEPT_LOCATIONS

Dnumber

Dlocation

DEPT_LOCATIONS

<u>Dnumber</u>	Dlocation		
1	Houston		
4	Stafford		
5	Bellaire		
5	Sugarland		
5	Houston		

□ Step 7: Mapping of N-ary Relationship Types

- □For each n-ary relationship type R, wheren>2, create a new relation S to represent R.
- ■Include as foreign key attributes in S the primary keys of the relations that represent the participating entity types.
- Also include any simple attributes of the nary relationship type (or simple components of composite attributes) as attributes of S.

EMPLOYEE

Note:

□ The identifying relationship type of a weak entity type has no corresponding table because all its attributes are already present in the relation that corresponds to the weak entity type.

- Step 8: Options for MappingSpecialization or Generalization
 - ■Four options:
 - Option 8A: Multiple relations-Superclass and subclasses
 - Option 8B: Multiple relations-Subclass relations only
 - Option 8C: Single relation with one type attribute
 - Option 8D: Single relation with multiple type attributes

- □ Option 8A: Multiple relations-Superclass and subclasses
 - Create a relation for the superclass.
 - Create a relation for each subclass, include primary key of superclass and local attributes.
 - ■This option works for any specialization (total or partial, disjoint or overlapping).

Using Option 8A

EMPLOYEE

SSN FName N	LName	/Ilnit	BirthDate	Address	JobType	1
-------------	-------	--------	-----------	---------	---------	---

SECRETARY

SSN TypingSpeed

TECHNICIAN

SSN TGrade

ENGINEER

SSN | EngType

- □ Option 8B: Multiple relations-Subclass relations only
 - Create a relation for each subclass with all local and inherited attributes
 - This option only works for a total specialization.
 - ■This is also more suitable for a disjoint specialization.

Using Option 8B

CAR

VehicleId	LicensePlateNo	Price	MaxSpeed	NoOfPassengers
-----------	----------------	-------	----------	----------------

TRUCK

<u>VehicleId</u>	LicensePlateNo	Price	NoOfAxles	Tonnage
------------------	----------------	-------	-----------	---------

EER-to-Relational Mapping

- □ Option 8C: Single relation with one type attribute
 - ■Create a single relation containing all the attributes of the superclass and its subclasses.
 - Add/assign a type(discriminating) attribute that indicates the subclass to which each tuple belongs.
 - This option only works for a disjoint specialization.

Example

Using Option 8C

EMPLOYEE

SSN FName MInit LName BirthDate Add	ess JobType TypingSpeed TGrade Eng_type
-------------------------------------	---

EER-to-Relational Mapping

- Option 8D: Single relation with multiple type attributes
 - Create a single relation containing all the attributes of the superclass and its subclasses.
 - Add/assign multiple type attributes that indicate the subclass(es) to which each tuple may belong.
 - Each type attribute is of boolean datatype.
 - This option works for both overlapping and disjoint specializations.

Using Option 8D

Using Option 8D

PART

PartNo	Description	MFlag	DrawingNo	ManufactureDate	BatchNo	PFlag	SupplierName	ListPrice
--------	-------------	-------	-----------	-----------------	---------	-------	--------------	-----------

EER-to-Relational Mapping

- □ Options 8A and 8B: called as multiple-relation options
- □ Options 8C and 8D: called as single-relation options
- □ Options 8C and 8D:
 - not recommended if there are many specific attributes

EER-to-Relational Mapping

- Mapping of Shared Subclasses (Multiple Inheritance)
 - Any of the options discussed in Step 8 can be applied to a shared subclass.

With Shared Subclass

 Both 8C and 8D are used for the shared subclass STUDENT_ASSISTANT.

PERSON

SSN	Name	BirthDate	Sex	Address
-----	------	-----------	-----	---------

EMPLOYEE

SSN	Salary	EmployeeType	Position	Rank	PercentTime	RAFlag	TAFlag	Project	Course
-----	--------	--------------	----------	------	-------------	--------	--------	---------	--------

ALUMNUS

ALUMNUS_DEGREES

SSN Year Degree Major

<u>SSN</u>

STUDENT

SSI	MajorDept	GradFlag	UndergradFlag	DegreeProgram	Class	StudAssistFlag
-----	-----------	----------	---------------	---------------	-------	----------------

Example of a Relation

	Relation Name T STUDENT		Attr	ributes			•
	Name	No	Home_phone	Address	Office_phone	Age	Gpa
_	Benjamin Bayer	305-61-2435	373-1616	2918 Bluebonnet Lane	NULL	19	3.21
	Chung-cha Kim	381-62-1245	375-4409	125 Kirby Road	NULL	18	2.89
Tuples	Dick Davidson	422-11-2320	NULL	3452 Elgin Road	749-1253	25	3.53
	Rohan Panchal	489-22-1100	376-9821	265 Lark Lane	749-6492	28	3.93
`	Barbara Benson	533-69-1238	839-8461	7384 Fontana Lane	NULL	19	3.25

Formal Definitions - Schema

- The Schema (or description) of a Relation:
 - ■Denoted by R(A1, A2,An)
 - R is the *name* of the relation
 - ■A1, A2, ..., An are the *attributes* of the relation are
- Example: CUSTOMER (Cust-id, Custname, Address, Phone#)

Formal Definitions - Schema

□ Domain of an attribute

- a set of valid values of an attribute
 - ■For example, the domain of Cust-name is a string with a maximum length of 25
- has name or a logical definition:
 - ■Example: "Philippine_phone_numbers" are the set of 11 digit phone numbers valid in the Philippines

Formal Definitions - Schema

□ Domain of an attribute

- has a data-type or a format defined for it
 - Example: date can have a format like yyyy-mm-dd

Formal Definitions - Tuple

- an ordered set of values (enclosed in angled brackets '< ... >')
- Each value is derived from an appropriate domain.
- □ Example: 4-tuple
 - <632895, "John Smith", "101 Main St. Atlanta, GA 30332", "(404) 894-2000">
- □ A relation is a set of such tuples (rows).

Formal Definitions - State

- \Box denoted by r(R)
- □ is a subset of the Cartesian product of the domains of its attributes.
 - □Given R(A1, A2,, An)
 - \square r(R) \subset dom (A1) X dom (A2) XX dom(An)

Formal Definitions - Example

- □ Let R(A1, A2) be a relation schema:
 - □ Let $dom(A1) = \{0,1\}$
 - \blacksquare Let dom(A2) = {a,b,c}
- Then dom(A1) X dom(A2) is all possible combinations:
 - □{<0,a>, <0,b>, <0,c>, <1,a>, <1,b>, <1,c>}
- \Box r(R) could be {<0,a>, <0,b>, <1,c>}

Definition Summary

Informal Terms	Formal Terms
Table	Relation
Column Header	Attribute
All possible column values	Domain
Row	Tuple
Table Definition	Schema of a Relation
Populated Table	State of a Relation

Characteristics Of Relations

- Ordering of tuples in a relation r(R):
 not considered to be ordered
- Ordering of attributes in a relation schema R (and of values within each tuple):
 - ordered

Example – A relation STUDENT

	Relation Name T STUDENT		Attr	ributes			•
	Name	No	Home_phone	Address	Office_phone	Age	Gpa
_	Benjamin Bayer	305-61-2435	373-1616	2918 Bluebonnet Lane	NULL	19	3.21
	Chung-cha Kim	381-62-1245	375-4409	125 Kirby Road	NULL	18	2.89
Tuples	Dick Davidson	422-11-2320	NULL	3452 Elgin Road	749-1253	25	3.53
	Rohan Panchal	489-22-1100	376-9821	265 Lark Lane	749-6492	28	3.93
`	Barbara Benson	533-69-1238	839-8461	7384 Fontana Lane	NULL	19	3.25

Same relation state

STUDENT

Name	No	Home_phone	Address	Office_phone	Age	Gpa
Dick Davidson	422-11-2320	NULL	3452 Elgin Road	749-1253	25	3.53
Barbara Benson	533-69-1238	839-8461	7384 Fontana Lane	NULL	19	3.25
Rohan Panchal	489-22-1100	376-9821	265 Lark Lane	749-6492	28	3.93
Chung-cha Kim	381-62-1245	375-4409	125 Kirby Road	NULL	18	2.89
Benjamin Bayer	305-61-2435	373-1616	2918 Bluebonnet Lane	NULL	19	3.21

Characteristics Of Relations

□ Value in a tuple:

- □atomic (indivisible)
- must be from the domain of the attribute for that column

■A special **NULL** value is used to represent values that are unknown or inapplicable to certain tuples.

Notation

- □Component value of a tuple t:
 - □t[Ai] or t.Ai
- values of attributes Au, Av, ...,
 - Aw, respectively in t
 - □t[Au, Av, ..., Aw]

Example

STUDENT

Name	No	Home_phone	Address	Office_phone	Age	Gpa
Dick Davidson	422-11-2320	NULL	3452 Elgin Road	749-1253	25	3.53
Barbara Benson	533-69-1238	839-8461	7384 Fontana Lane	NULL	19	3.25
Rohan Panchal	489-22-1100	376-9821	265 Lark Lane	749-6492	28	3.93
Chung-cha Kim	381-62-1245	375-4409	125 Kirby Road	NULL	18	2.89
Benjamin Bayer	305-61-2435	373-1616	2918 Bluebonnet Lane	NULL	19	3.21

- □ If t represents the 4th tuple, then
 - \Box t[Home_phone] = <375-4409>
 - t[Name, Home_phone, Office_phone] =
 - <Chung-cha Kim, 375-4409, NULL>

Relational Model Constraints

- conditions that must hold on all valid relation states.
- □ Three main categories:
 - Inherent model-based or implicit constraints
 - Schema-based or explicit constraints
 - Application-based or semantic constraints

Inherent Model-based Constraints

- □ Based from some characteristics of relations
- □ Example:
 - ■Each value in a tuple is atomic
 - An unknown or inapplicable value should be represented using NULL

Schema-based Constraints

- Constraints that can be expressed in the schema of the relational model via the DDL
- □ Categories:
 - **□Domain** constraint
 - **■Key** constraints
 - **□**Entity integrity constraint
 - **■Not NULL** constraint
 - Referential integrity constraint

Domain Constraint

Every value in a tuple must be from the *domain of its attribute* (or it could be NULL, if allowed for that attribute).

- □ **Superkey** of relation R:
 - \blacksquare is a set of attributes of R which are sufficient to identify a unique tuple of each relation r(R)
 - **■** Example:
 - EMPLOYEE(Emp_no, TIN, Name, Position, Salary)
 - {Emp_no, Name, Position}
 - **■** {Emp_no}
 - {Position, Salary}
 - {TIN}

□Key of R:

- □is a *minimal* superkey
- □is a superkey with the additional property that removing any attribute from K results in a set of attributes that is not a superkey anymore

- Example: Consider the EMPLOYEE relation schema:
 - EMPLOYEE(Emp_no, TIN, Name, Position, Salary)
 - Possible superkeys of EMPLOYEE:
 - Superkey1 = {Emp_no, Name, Position}
 - Superkey2 = {Emp_no}
 - Superkey3 = {TIN}
 - [Emp_no, Name, Position] is a superkey but not a key.
 - Superkey2 and Superkey3 are keys.

- □ In general:
 - Any key is a superkey (but not vice versa)
 - Any set of attributes that includes a key is a superkey
- If a relation has several keys, each of the keys is called a candidate key.
- □ A primary key PK is a candidate key chosen as the principal means of identifying tuples within a relation.
 - The primary key attributes are <u>underlined</u>.

- □ A primary key is also used to reference the tuple from another tuple
 - General rule: Choose as primary key the smallest of the candidate keys (in terms of size) or whose value never or very rarely changes.

Emp_no as the primary key

EMPLOYEE

Entity Integrity

- □ The primary key attributes PK of each relation schema R in S cannot have null values in any tuple of r(R).
 - If PK has several attributes, null is not allowed in any of these attributes.

Not NULL

□ Specifies that an attribute other than the members of the primary key cannot have NULL values

Referential Integrity

- □ Tuples in the referencing relation R1 have attributes FK (called foreign key attributes) that reference the primary key attributes PK of the referenced relation R2.
 - \square A tuple t1 in R1 is said to reference a tuple t2 in R2 if t1[FK] = t2[PK].

Referential Integrity (or foreign key) Constraint

- □ Statement of the constraint
 - □The value in the foreign key column (or columns) FK of the *referencing* relation R1 can be either:
 - ■(1) a value of an existing primary key value of a corresponding primary key PK in the referenced relation R2, or
 - **■**(2) a null.

Application-based Constraints

- Based on application semantics and cannot be expressed by the model per se
 Examples:
 - ■the max. no. of hours per employee for all projects he or she works on is 56 hrs per week
 - the salary of an employee should not exceed the salary of the employee's supervisor

Relational Database Schema

□ Relational Database Schema S:

- ■A set of relation schemas S = {R1, R2, ..., Rn} and a set of integrityconstraints
- S is the name of the whole database schema
- ■R1, R2, ..., Rn are the names of the individual **relation schemas** within the database S

EMPLOYEE

Relational database state

- □ The *relational database state* is a union of all the individual relation states
- Whenever the database is changed, a new state arises
- Basic operations for changing the database:
 - INSERT a new tuple in a relation
 - DELETE an existing tuple from a relation
 - MODIFY an attribute of an existing tuple

EMPLOYEE

Fname	Minit	Lname	<u>No</u>	Bdate	Address	Sex	Salary	Super_no	Dno
John	В	Smith	123456789	1965-01-09	731 Fondren, Houston, TX	М	30000	333445555	5
Franklin	Т	Wong	333445555	1955-12-08	638 Voss, Houston, TX	М	40000	888665555	5
Alicia	J	Zelaya	999887777	1968-01-19	3321 Castle, Spring, TX	F	25000	987654321	4
Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	М	38000	333445555	5
Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5
Ahmad	V	Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	М	25000	987654321	4
James	E	Borg	888665555	1937-11-10	450 Stone, Houston, TX	М	55000	NULL	1

DEPARTMENT

Dname	<u>Dnumber</u>	Mgr_no	Mgr_start_date
Research	5	333445555	1988-05-22
Administration	4	987654321	1995-01-01
Headquarters	1	888665555	1981-06-19

DEPT_LOCATIONS

Dnumber	Dlocation	
1	Houston	
4	Stafford	
5	Bellaire	
5	Sugarland	
5	Houston	

WORKS_ON

Essn	<u>Pno</u>	Hours
123456789	1	32.5
123456789	2	7.5
666884444	3	40.0
453453453	1	20.0
453453453	2	20.0
333445555	2	10.0
333445555	3	10.0
333445555	10	10.0
333445555	20	10.0
999887777	30	30.0
999887777	10	10.0
987987987	10	35.0
987987987	30	5.0
987654321	30	20.0
987654321	20	15.0

PROJECT

Pname	Pnumber	Plocation	Dnum
ProductX	1	Bellaire	5
ProductY	2	Sugarland	5
ProductZ	3	Houston	5
Computerization	10	Stafford	4
Reorganization	20	Houston	1
Newbenefits	30	Stafford	4

DEPENDENT

<u>Eno</u>	Dependent_name	Sex	Bdate	Relationship
333445555	Alice	F	1986-04-05	Daughter
333445555	Theodore	М	1983-10-25	Son
333445555	Joy	F	1958-05-03	Spouse
987654321	Abner	М	1942-02-28	Spouse
123456789	Michael	М	1988-01-04	Son
123456789	Alice	F	1988-12-30	Daughter

Reference(s):

- Elmasri, R. and S.B. Navathe. 2010.

 Fundamentals of Database Systems. 6th
 Edition. Addition Wesley. ISBN-13: 9780-136-08620-8
- Elmasri, R. and S.B. Navathe. 2007.
 Fundamentals of Database Systems. 5th
 Edition. Addition Wesley. ISBN: 981-06-9800-3