

Georg-Simon-Ohm-University of Applied Sciences Nuremberg

Report of the application project at the Faculty of AMP

Simulation of a medical therapy method with finite elements

Martin Michel

Keßlerplatz 12

DE-90489 Nuremberg

Advisor: Prof. Dr. rer. nat. Tim Kröger

Advisor: Prof. Dr. rer. nat. habil. Jörg Steinbach

Advisor: Prof. Dr. rer. nat. Thomas Lauterbach

Nuremberg, 01. January 1900

Contents

1.	Introduction										
2.		Computer-aided simulation of radio frequency ablation with finite elements 2.1. About Errors in simulations and numerical approaches									
	2.2.	Theory of finite elements	5								
		2.2.1. Elliptical problems	5								
		2.2.2. FEM for electrical fields	5								
		2.2.3. FEM for temperature fields	5								
		2.2.4. Axial symmetrie	5								
	2.3.	This part is about the concrete PDEs itself									
		2.3.1. FEM in zylindric Coordinates	5								
		2.3.2. PDE for Electric potential	6								
		2.3.3. Inner Domain	6								
		2.3.4. Electrodes	7								
		2.3.5. Outer boundary	7								
3.	Applied FEM-Simulation										
	3.1.	Grid generation / Triangulation	8								
	3.2.	Get TestData	8								
	3.3.	Solving the PDEs	8								
		3.3.1. numerical challenges	8								
		3.3.2. numerical integration	8								
		3.3.3. solving the system of equations	8								
	3.4.	Interpretation of result numbers	8								
	3.5.	Graphical output	8								
	3.6.	Optimization	8								
	3.7.	MatLab vs C++	8								
4.	Summary and Outlook										
	4.1.	Project Summary	8								
	4.2.	strengths and flaws	8								
	4.3.	State of the current Research	9								
	4.4.	Other FEM projects and software	9								
Α.	Sou	rce code Visual C++	11								
R	3 Source code Matliah										

List of Figures

List of Tables

	• .	•	
	101	ın	gs
ᆫ	ıσι		ട്ടാ
			\sim

1	Demo					1 1

1. Introduction

Lets talk about:

- Medical Treatment of Tumor
- Radio frequency ablation
- Why RFA Simulation is important
- Motivation
- This project in General

2. Computer-aided simulation of radio frequency ablation with finite elements

2.1. About Errors in simulations and numerical approaches

- see TUM dissertation
- There are different sources for errors following the simulation from the line from the real problem down to the discrete solution
- Idealization error: discrepancy between reality and the idealized reality and the idealized constitutive laws and boundary conditions -> Systems are often way more complex in reality, every patient is different
- Modeling errors: discrepancy between mathematical formulation and physical model -> e.g. using dimensionally reduced approaches, like linear dependencies or even constant parameters
- Discretization errors: discrepancy between the continous description and discrete discription of the model
- Solution errors: using iterative approximation methods and rounding errors
- It's basically a butterfly effect
- Optimizing one error source often conflicts with another one -> e.g. handling nonlinearity can cause fatal numerical errors (at least that's what Kroeger said ...)

2.2. Theory of finite elements

2.2.1. Elliptical problems

- Elliptical problems in general
- build up system of PDE's to describe problem
- Using the cylindric domain, different domains

2.2.2. FEM for electrical fields

- special domain
- boundary conditions

2.2.3. FEM for temperature fields

- boundary condition (heat source or sink)

2.2.4. Axial symmetrie

- Using axial symmetrie to simplify computations
- reducing one dimension 3D -> 2D
- significant savings calculations time and complexity
- approach: fourier decomposition in angular direction to reduce dependency on the angular ϕ
- using static models, only dependency on space
- maybe Torus elements

2.3. This part is about the concrete PDEs itself

2.3.1. FEM in zylindric Coordinates

- Rewrite the equations to zylindric coordinates

Laplace in kartesian coordinates:

$$\nabla^2 := \Delta := \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \tag{1}$$

Laplace in cylindric coordinates:

$$\Delta := \frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial^2}{\partial \phi^2} + \frac{\partial^2}{\partial z^2}$$
 (2)

Laplace in polar coordinates:

$$\Delta := \frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial^2}{\partial \phi^2} \tag{3}$$

2.3.2. PDE for Electric potential

Three parts are interesting: - Inner domain

- Fixed Potential of electrodes
- Inner domain
- Outer boundary -> Robin

Constant material parameters:

2.3.3. Inner Domain

- The electric potential of the inner domain is described as :

$$-\nabla \cdot (\sigma(x, y, z, t)\nabla \varphi(x, y, z, t)) = 0 \tag{4}$$

- Elliptical boundary problem
- Assuming constant material parameters: $\nabla \sigma = 0$
- Solution is independent from σ so we can cut it out Equation becomes Laplaces' equation, phi becomes time independent

$$-\Delta \varphi(x, y, z) = 0 \tag{5}$$

- Using a cylindric domain, we can use cylinder coordinates (see ref Laplace in cylinder)

$$-\Delta\varphi(r,\phi,z) = -\frac{1}{r}\frac{\partial\varphi}{\partial r} - \frac{\partial^2\varphi}{\partial r^2} - \frac{1}{r^2}\frac{\partial^2\varphi}{\partial\phi^2} - \frac{\partial^2\varphi}{\partial z^2} = 0$$
 (6)

- Since the domain has axis symmetry, the solution for φ is independent from the angular ϕ
- So equation simplifies to

$$-\frac{1}{r}\frac{\partial \varphi}{\partial r} - \frac{\partial^2 \varphi}{\partial r^2} - \frac{\partial^2 \varphi}{\partial z^2} = 0 \tag{7}$$

- PDE is now parabolic and no longer elliptic
- We will care about a more complex formulation later

2.3.4. Electrodes

 $-\phi=\pm 1$

2.3.5. Outer boundary

- For first try, a simplification with natural boundary conditions

$$n \cdot \nabla \varphi = 0 \tag{8}$$

- In cylindric domain, we

(9)

- 3. Applied FEM-Simulation
- 3.1. Grid generation / Triangulation
- 3.2. Get TestData
- 3.3. Solving the PDEs
- 3.3.1. numerical challenges
- 3.3.2. numerical integration
- 3.3.3. solving the system of equations
- 3.4. Interpretation of result numbers
- 3.5. Graphical output
- 3.6. Optimization
- 3.7. MatLab vs C++
- Basically the performance advantages of using C++
- 4. Summary and Outlook
- 4.1. Project Summary

This is the conclusion part

- 4.2. strengths and flaws
- why is it good, why is it bad

4.3. State of the current Research

- Research in the simulation of medical therapy methods

4.4. Other FEM projects and software

References

- [1] Tim Kröger et. al. Numerical Simulation of Radio Frequency Ablation with State Dependent Material Parameters in Three Space Dimensions. Springer, 2006.
- [2] Klaus Knothe u. Heribert Wessels. *Finite Elemente, Eine Einführung für Ingenieure, 5. Auflage.* Springer Vieweg, 2017.
- [3] Michale Jung u. Ulrich Langer. Methode der finiten Elemente für Ingenieure, Eine Einführung in die numerischen Grundlagen und Computersimulation, 2. Auflage. Springer Vieweg, 2013.
- [4] Christian G. Sorger. *Generierung von Netzen für Finite Elemente hoher Ordnung in zwei und drei Raumdimensionen*. Technische Universität München, Lehrstuhl für Computation in Engineering, 2012.
- [5] Michael McLaughlin. C++ Succinctly. Syncfusion Inc., 2012.
- [6] Physicists like to think that all you have to do is say 'These are the conditions now what happens next?'. *Richard Feynman*. The Character of Physical Law, 1965.
- [7] Not only is the Universe stranger than we think it is stranger than we can think. *Werner Heisenberg*. Across the Frontiers, 1972.

A. Source code Visual C++

Listing 1: For loop to print numbers from 1 to 10

```
1 // Print numbers from 1 to 10
2 #include <stdio.h>
3 int main() {
4   int i;
5   for (i = 1; i < 11; ++i)
6   {
7     printf("%d_", i);
8   }
9   return 0;
10 }</pre>
```

B. Source code MatLab

TODO