

teaching@ths.rwth-aachen.de https://ths.rwth-aachen.de/teaching/

Satisfiability Checking - WS 2023/2024 Series 11

Exercise 1: Subtropical satisfiability

Find a satisfying assignment for $2xy^2+x^2y-2xy-2x^2y^2=0$ using the subtropical satisfiability method as shown in the lecture. If you need to identify the real roots of a univariate polynomial of degree larger than two, please use WolframAlpha (https://www.wolframalpha.com).

Solution:

- I. We observe that for (1,1) we have 2+1-2-2=-1<0.
- II. We proceed to find a solution for $\underbrace{2xy^2 + x^2y 2xy 2x^2y^2}_{p(x,y)} > 0$.

The frame of p is $frame(p) = \{(1,2), (2,1), (1,1), (2,2)\}$ and we have the positive frame $frame^+(p) = \{(1,2), (2,1)\}$. We identify a direction n = (1,-1) and an offset c = 0.5 so that $n \cdot (2,1)^T > 0.5$ and $nu^T < 0.5$ for all $u \in \{(1,2), (1,1), (2,2)\}$.

(Note that separating the other positive frame point (1, 2) is also a valid option.)

We thus have that $p(a^1, a^{-1}) > 0$ for some sufficiently large a. We start with a = 2 and get $p(2, 2^{-1}) = -1 < 0$. We increase to a = 4 and get $p(4, 4^{-1}) = 0.5 > 0$.

From a=4 we obtain the satisfying assignment $x=4, y=\frac{1}{4}$.

III. We identify a real root for $2xy^2 + x^2y - 2xy - 2x^2y^2$ on the line segment between (1,1) and

1

 $(4,\frac{1}{4})$. That means, we search for a $t \in [0,1] \subset \mathbb{R}$ with

$$x = 1 + t(4 - 1) = 3t + 1$$

$$y = 1 + t(\frac{1}{4} - 1) = -\frac{3}{4}t + 1$$

$$p(x, y) = 2xy^2 + x^2y - 2xy - 2x^2y^2$$

$$= xy \cdot (2y + x - 2 - 2xy)$$

$$= (3t + 1)(-\frac{3}{4}t + 1) \cdot (2(-\frac{3}{4}t + 1) + (3t + 1) - 2 - 2(3t + 1)(-\frac{3}{4}t + 1))$$

$$= (-\frac{9}{4}t^2 + 3t - \frac{3}{4}t + 1) \cdot (-\frac{6}{4}t + 2 + 3t + 1 - 2 - 2(-\frac{9}{4}t^2 + 3t - \frac{3}{4}t + 1))$$

$$= (-\frac{9}{4}t^2 + 3t - \frac{3}{4}t + 1) \cdot (\frac{9}{2}t^2 - 3t - 1)$$

$$= -\frac{81}{8}t^4 + \frac{27}{4}t^3 + \frac{9}{4}t^2 + \frac{27}{2}t^3 - 9t^2 - 3t - \frac{27}{8}t^3 + \frac{9}{4}t^2 + \frac{3}{4}t + \frac{9}{2}t^2 - 3t - 1$$

$$= -\frac{81}{8}t^4 + \frac{135}{8}t^3 - \frac{21}{4}t - 1$$

$$= \frac{1}{8}(-81t^4 + 135t^3 - 42t - 8)$$

WolframAlpha tell us that this polynomial has 4 real roots, but only one real root between 0 and 1 at $t = \frac{1}{3} + \frac{1}{\sqrt{3}}$. We get:

$$x = 3t + 1 = 3 \cdot \left(\frac{1}{3} + \frac{1}{\sqrt{3}}\right) + 1 = \sqrt{3} + 2$$
$$y = -\frac{3}{4}t + 1 = -\frac{3}{4} \cdot \left(\frac{1}{3} + \frac{1}{\sqrt{3}}\right) + 1 = \frac{3 - \sqrt{3}}{4}$$

We control the result by substituting these values into the polynomial p(x,y), and get 0.

Exercise 2: Subtropical satisfiability

Assume that the subtropical satisfiability method found a solution $s=(s_1,\ldots,s_d)$ for a constraint $p(x_1,\ldots,x_d)>0$ based on a separating hyperplane with normal vector $n=(n_1,\ldots,n_d)\in\mathbb{R}^d$. Further, we assume that the corresponding monomial dominates p at s. Let $i\in\{1,\ldots,d\}$.

Prove the following statements:

- 1. If $n_i > 0$ then for all $s_i' \in \mathbb{R}_{>0}$ with $s_i' > s_i$ there exist $s_1', \ldots, s_{i-1}', s_{i+1}', \ldots, s_d' \in \mathbb{R}_{>0}$ such that $p(s_1', \ldots, s_d') > 0$.
- 2. If $n_i=0$ then for all $s_i'\in\mathbb{R}_{>0}$ there exist $s_1',\ldots,s_{i-1}',s_{i+1}',\ldots,s_d'\in\mathbb{R}_{>0}$ such that $p(s_1',\ldots,s_d')>0$.
- 3. If $n_i < 0$ then for all $s_i' \in \mathbb{R}_{>0}$ with $s_i' < s_i$ there exist $s_1', \ldots, s_{i-1}', s_{i+1}', \ldots, s_d' \in \mathbb{R}_{>0}$ such that $p(s_1', \ldots, s_d') > 0$.

Solution:

1. Assume $n_i>0$. Then the solution $s=(s_1,\ldots,s_d)\in\mathbb{R}^d_{>0}$ will have a "sufficiently large" value in dimension i. Let $s_i'\in\mathbb{R}_{>0}$ with $s_i'>s_i$. We show that there exist $s_1',\ldots,s_{i-1}',s_{i+1}',\ldots,s_d'\in\mathbb{R}_{>0}$ such that $s'=(s_1',\ldots,s_d')$ is also a solution.

Assume that the solution was found for some $a \in \mathbb{R}_{>0}$ with $p(a^{n_1},\ldots,a^{n_d})>0$, i.e. we have $s_i=a^{n_i}$, or equivalently $a=\sqrt[n_i]{s_i}$. By the construction of n we know that $p(b^{n_1},\ldots,b^{n_d})>0$ for all $b\in\mathbb{R}$ with b>a. We set $b=\sqrt[n_i]{s_i'}$. Note that $s_i< s_i'$ assures that $a=\sqrt[n_i]{s_i}<\sqrt[n_i]{s_i'}=b$.

2. Assume $n_i = 0$. We show that for all $s_i' \in \mathbb{R}_{>0}$ there exist $s_1', \ldots, s_{i-1}', s_{i+1}', \ldots, s_d' \in \mathbb{R}_{>0}$ such that $s' = (s_1', \ldots, s_d')$ is a solution.

To find such $s'_1,\ldots,s'_{i-1},s'_{i+1},\ldots,s'_d\in\mathbb{R}_{>0}$, assume that the method gives us some $a\in\mathbb{R}_{>0}$ with $p(a^{n_1},\ldots,a^{n_d})>0$. The vector n is constructed such a way that there exists a $b\in\mathbb{R}^d$ $v\cdot n^T>b$ for a positive frame point $v=(v_1,\ldots,v_d)$, and $u\cdot n^T< b$ for all other frame points.

We substitute s_i' for x_i in $p(x_1, \ldots, x_d)$, resulting in a polynomial $q(x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_d)$. Note that since $s_i' > 0$, this substitution does not change the signs of the coefficients in the terms. Note furthermore that each solution of q can be extended to a solution of p by assigning the value s_i' to x_i .

Let $n'=(n_1,\ldots,n_{i-1},n_{i+1},\ldots,n_d)$ result from n by removing the entry $n_i=0$ at position i. Note that the frame points u' of q are the frame points u of p after removing their ith entries. Then, since $n_i=0$, we have $v\cdot n^T=v'\cdot n'^T>b$ and $u\cdot n^T=u'\cdot n'^T<b$ for all other frame points u of p that are different from v. That means, n' is suited to separate v' from all other frame points in q, thus the subtropical satisfiability method gives us a solution for q>0, which we can extend to a solution for p>0 by assigning the value s_i' to s_i .

3. Assume $n_i <$ 0. Then the solution $s = (s_1, \ldots, s_d) \in \mathbb{R}^d_{>0}$ will have a "sufficiently small" value in dimension i. Let $s_i' \in \mathbb{R}_{>0}$ with $s_i' < s_i$. We show that there exist $s_1', \ldots, s_{i-1}', s_{i+1}', \ldots, s_d' \in \mathbb{R}_{>0}$ such that $s' = (s_1', \ldots, s_d')$ is also a solution.

Assume that the solution was found for some $a \in \mathbb{R}_{>0}$ with $p(a^{n_1},\dots,a^{n_d})>0$, i.e. we have $s_i=a^{n_i}$, or equivalently $a=\frac{1}{-n_i\sqrt{s_i'}}$. By the construction of n we know that $p(b^{n_1},\dots,b^{n_d})>0$ for all $b \in \mathbb{R}$ with b>a. We set $b=\frac{1}{-n_i\sqrt{s_i'}}$. Note that $s_i>s_i'$ assures that $a=\frac{1}{-n_i\sqrt{s_i'}}<\frac{1}{-n_i\sqrt{s_i'}}=b$.