

Neural Networks

Andrey Sozykin @urfu.ru

Biological Neuron

Source: https://en.wikipedia.org/wiki/Neuron

Artificial Neuron

Institute of radioelectronics and information technologies

McCulloch and Pitts

Activation functions

Heaviside function

$$-\theta(x) = \begin{cases} 0, x < 0 \\ 1, x > 0 \end{cases}$$

Sigmoid functions

$$-\sigma(x) = \frac{1}{1 + e^{-x}}$$
(logistics)

$$-th(x) = \frac{e^{2x}-1}{e^{2x}+1}$$

(hyperbolic tangent)

Neural Network

Feed Forward Network

and information technologies

named after the first President of Russia B.N.Yeltsin Recurrent Neural Network

Deep Neural Network

Training Neural Network

Training a model means setting its parameters so that the model best fits the training set.

Training Linear Neuron

Neuron output:

$$a = \sum_{i=1}^{N} w_i x_i$$

Mean Square Error:

$$\varepsilon = \frac{1}{M} \sum_{j=1}^{M} (a_j - y_j)^2$$

Delta rule

• Changing the weights:

$$w_i = w_i - \eta \frac{2}{M} \sum_{j=1}^{M} x_j^i (a_j - y_j)$$

 η – learning rate

university named after the first President Backpropagation Algorithm of Russia B.N.Yeltsin

Institute of radioelectronics and information technologies

Error Backpropagation

Deep Learning Libraries

theano

Deep Learning Stack

MNIST Dataset

Mixed National Institute of Standards and Technology database

Back-Propagation Applied to Handwritten Zip Code Recognition / Y. LeCun, B. Boser, J. S. Denker et al. 1989

Neural Net for MNIST Recognition

- Input layer:
 - -800 neurons
- Output layer:
 - 10 neurons (the number of classes)
- Examples of the neural network architectures for MNIST
 - https://en.wikipedia.org/wiki/MNIST_database

How to prevent overfitting

- Training dataset
 - Dataset for training the neural network
- Test dataset:
 - Dataset for evaluating the performance and generalization of the neural network after the training

Parameters and hyperparameters

- Parameters of the neural network (learned during training):
 - Weights of the neuron inputs
- Hyperparameters of the neural network (must be specified by developer):
 - Number of layers in the network
 - Number of neurons in the layers
 - Type of layers (dense, convolutional, recurrent, etc.)
 - Learning rate
 - Number of epoch for training

How to prevent overfitting

- Training dataset
 - Dataset for training the neural network
- Validation dataset
 - Dataset for evaluating the performance and generalization of the neural network during the training for tuning hyperparameters
- Test dataset:
 - Dataset for evaluating the performance and generalization of the neural network after the training

Thank you!