Cross Validation and Bootstrap

Lab 9 - MATH 4322

Problem 1

We will use the data Weekly in the ISLR2 package to predict Direction using Lag1 and Lag2.

Description

Weekly percentage returns for the S&P 500 stock index between 1990 and 2010.

Lag1 Percentage return for previous week

Lag2 Percentage return for 2 weeks previous

Direction A factor with levels Down and Up indicating whether the market had a positive or negative return on a given week

Year	Lag1	Lag2	Lag3
Min. :1990	Min. :-18.1950	Min. :-18.1950	Min. :-18.1950
1st Qu.:1995	1st Qu.: -1.1540	1st Qu.: -1.1540	1st Qu.: -1.1580
Median :2000	Median : 0.2410	Median : 0.2410	Median : 0.2410
Mean :2000	Mean : 0.1506	Mean : 0.1511	Mean : 0.1472
3rd Qu.:2005	3rd Qu.: 1.4050	3rd Qu.: 1.4090	3rd Qu.: 1.4090
Max. :2010	Max. : 12.0260	Max. : 12.0260	Max. : 12.0260
Lag4	Lag5	Volume	Today
Min. :-18.19	50 Min. :-18.19	950 Min. :0.0874	7 Min. :-18.1950
1st Qu.: -1.15	80 1st Qu.: -1.16	360 1st Qu.:0.3320	2 1st Qu.: -1.1540
Median: 0.23	80 Median: 0.23	340 Median :1.0026	8 Median: 0.2410
Mean : 0.14	58 Mean : 0.13	399 Mean :1.5746	2 Mean : 0.1499
3rd Qu.: 1.40	90 3rd Qu.: 1.40	050 3rd Qu.:2.0537	3 3rd Qu.: 1.4050
Max. : 12.02	60 Max. : 12.02	260 Max. :9.3282	1 Max. : 12.0260
Direction			
Down:484			
Up :605			

Question 1: Is this a regression or classification problem?

This is a classification problem because the response variable is binary

Question 2: Which is the correct model, linear regression or logistic regression?

Between the two models the logistic regression is the correct model.

Question 3: Write out the equation of the correct model.

$$\text{Direction} = \frac{exp(\beta_0 + \beta_1 \times \text{Lag1} + \beta_2 \times \text{Lag2})}{1 + exp(\beta_0 + \beta_1 \times \text{Lag1} + \beta_2 \times \text{Lag2})} + \epsilon$$

1. Fit a logistic regression model that predicts Direction using Lag1 and Lag2 on half of the data. This is the **trainning** data.

Question 4: In R what code do we use to separate the data into a train and test data.

```
library(ISLR2)
set.seed(100)
sample = sample(1:nrow(Weekly),nrow(Weekly)/2)
train = Weekly[sample,]
test = Weekly[-sample,]
```

Question 5: In R what code do would we use to get a model to predict direction based on lag1 and lag2?

Call: glm(formula = Direction ~ Lag1 + Lag2, family = binomial, data = train)

Coefficients:

```
(Intercept) Lag1 Lag2
0.21145 -0.01450 0.05513
```

Degrees of Freedom: 543 Total (i.e. Null); 541 Residual

Null Deviance: 747.9

Residual Deviance: 745.6 AIC: 751.6

```
Call:
glm(formula = Direction ~ Lag1 + Lag2, family = binomial, data = train)
Coefficients:
            Estimate Std. Error z value Pr(>|z|)
                       0.08666
                                  2.440
(Intercept) 0.21145
                                          0.0147 *
           -0.01450
                        0.03647 -0.398
                                          0.6910
Lag1
Lag2
             0.05513
                        0.03914
                                  1.408
                                          0.1590
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 747.95 on 543 degrees of freedom
Residual deviance: 745.59 on 541 degrees of freedom
AIC: 751.59
Number of Fisher Scoring iterations: 4
Use this model to predict the direction of the first observation. You can do this by predicting
that the first observation will go up if P(Direction = "Up" | Lag1, Lag2) > 0.5
Question 6: What is the code to get a prediction of the first observation?
  predict.glm(direction.glm,newdata = Weekly[1,],type = "response")
0.5710867 = P ( Direction = "Up" (X)
  Weekly[1,]$Direction
[1] Down = Actual value Of Direction
Levels: Down Up
```

Question 7: Would we predict the first observation to go up or down?

We would predict the first observation to go up

Question 8: Is the a correct prediction or miss classified?

The original observation is going Down, so this is miss classified.

We want to create a confusion matrix to determine the proportion of miss classified observations. This is called the *error rate*.

Question 9: What is the code to create this confusion matrix?

Question 10: What is the error rate based on the training data?

```
(confmat.train[1,2]+confmat.train[2,1])/sum(confmat.train)
```

[1] 0.4393382

2. Use this trained model to make a prediction from the data that we did not use. This is the **test** data.

Question 11: What is the test error rate?

```
(confmat.test[1,2]+confmat.test[2,1])/sum(confmat.test)
```

[1] 0.4477064

3. We want to create a LOOCV test error rate for the whole data using a for loop.

Write a for loop from i = 1 to i = n, where n is the number of observations in the data set, that performs each of the following steps:

- i. Fit a logistic regression model using all but the i^{th} observation to predict Direction using Lag1 and Lag2.
- ii. Compute the posterior probability of the market moving up for the i^{th} observation.
- iii. Use the posterior probability for the i^th observation in order to predict whether or not the market moves up.
- iv. Determine whether or not an error was made in predicting the direction for the i^{th} observation. If an error was made, then indicate this as a 1, and otherwise indicate it as a 0.

Question 12: Take the average of the n numbers obtained in **iv** in order to obtain the LOOCV estimate for the test error. What is the value?

```
mean(loocv.err)
```

[1] 0.4499541

4. We will use the cv.glm function to determine LOOCV estimate for the test error. Since the response is binary, we will have to create a cost function to determine what probability we want to use as a cut off for "Up".

```
library(boot)
```

Warning: package 'boot' was built under R version 4.3.2

[1] 0.4499541

Question 13: Give the cross validation estimate from this method. Compare this to the value in Task 3, is it the same, higher or lower?

This is the same as previous value

5. We will do a 10-fold cross validation

```
set.seed(10)
cv.glm(Weekly,direction.glm,cost, K = 10)$delta[1]
```

[1] 0.4481175

Question 14: Is this the same value as the loocy error?

This is not the same value

Question 15: Repeat the cv.glm code again. Do you get the same value?

```
cv.glm(Weekly,direction.glm,cost, K = 10)$delta[1]
```

[1] 0.4508724

We do not get the same value as before

Question 16: What does the CV value represent in this scenario?

The CV is from the 10 samples, the average error rate

Problem 2

Suppose that we wish to invest a fixed sum of money in two financial assets that yield returns of X and Y, respectively, where X and Y are random quantities. We will invest a fraction, α , of our money in X, and will invest the remaining $1-\alpha$ in Y. Since there is variability associated with the returns on these two assets, we wish to choose α to minimize the total risk, or variance, of our investment. In other words, we want to minimize $Var(\alpha X + (1-\alpha)Y)$. One can show that the value that minimizes the risk is given by

$$\forall \alpha (\alpha k \notin \gamma_1 - \alpha \gamma)$$

$$= \alpha^2 \ \forall \alpha r(x) + (r - \alpha)^2 \ \forall \alpha r(y) + \partial \alpha (r \alpha) c_{\alpha r(x,y)}^{\alpha} = \frac{\sigma_Y^2 - \sigma_{XY}}{\sigma_X^2 + \sigma_Y^2 - 2\sigma_{XY}}$$

Where,
$$\sigma_X^2 = Var(X)$$
, $\sigma_Y^2 = Var(Y)$, and $\sigma_{XY} = Cov(X, Y)$.

In reality the population variances and covariance is unknown so we have to use estimates, using a data set that contains past measurements for X and Y. We can then estimate the value of α that minimizes the variance of our investment using

$$\hat{\alpha} = \frac{\hat{\sigma}_Y^2 - \hat{\sigma}_{XY}}{\hat{\sigma}_X^2 + \hat{\sigma}_Y^2 - 2\hat{\sigma}_{XY}}$$

1. Install and/or call the ISLR2 library, we will be using the Portfolio data set.

```
#install.packages("ISLR") #(Remove # if you have not installed this package)
library(ISLR2)
```

2. Create the function which takes as input (X, Y) data as well as a vector indicating which observations should be used to estimate α . The function then outputs the estimate for α based on the selected observations. The function is as follows:

```
alpha.fn = function(data,index) {
   X = data$X[index]
   Y = data$Y[index]
   return((var(Y) - cov(X,Y))/(var(X) + var(Y) - 2*cov(X,Y)))
}
```

Be careful about capitalization and lower case in these variables.

3. This function returns or outputs an estimate for α based on a applying the formula to the observations indexed by the argument index. For instance, the following command tells R to estimate α using all 100 observations.

```
(alpha.hat = alpha.fn(Portfolio,1:100))
```

[1] 0.5758321

Question $\stackrel{7}{\cancel{k}}$: From this command, give an estimate of α .

$$\hat{\alpha} = 0.5758$$

4. The following command uses the sample function to randomly select 100 observations from the range 1 to 100, with replacement. This is equivalent to constructing a new bootstrap data set and recomputing α based on the new data set.

```
set.seed(10)
(alpha.hat2 = alpha.fn(Portfolio,sample(100,100,replace = TRUE)))
```

[1] 0.508921

Question 2. From this command, give an estimate of α .

$$\hat{\alpha}_2 = 0.5089$$

We can implement a bootstrap analysis by performing this command many times, recording all of the corresponding estimate for α , and computing the resulting standard deviation. However, the boot() function automates this approach. Below, is the function to produce R=1000 bootstrap estimates for α .

```
# install.packages("boot") #(Remove # if you have not installed this package)
library(boot)
alpha.boot = boot(Portfolio,alpha.fn,R = 1000)
alpha.boot
```

ORDINARY NONPARAMETRIC BOOTSTRAP

```
Call:
boot(data = Portfolio, statistic = alpha.fn, R = 1000)
```

```
{\tt Bootstrap\ Statistics\ :}
```

original bias std. error t1* 0.5758321 0.00702054 0.09237541

[1] 0.5828526 = 0.57510.007

[1] 0.09237541

Question 20'.

ue are aft by about 923%