Towards Automated Benchmarking of Atomistic Forcefields: Neat Liquid Densities and Static Dielectric Constants from the ThermoML Data Archive

Kyle A. Beauchamp⁺,^{1,*} Julie M. Behr⁺,^{2,†} Ariën S. Rustenburg,^{3,‡} Christopher I. Bayly,^{4,§} Kenneth Kroenlein,^{5,¶} and John D. Chodera^{1,**}

¹Computational Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY

²Tri-Institutional Program in Computational Biology and Medicine, Weill Cornell Medical College, New York, NY ³Graduate Program in Physiology, Biophysics, and Systems Biology, Weill Cornell Medical College, New York, NY

⁴OpenEye Scientific Software Inc., Santa Fe, NM ⁵Thermodynamics Research Center, NIST, Boulder, CO (Dated: May 12, 2015)

Atomistic molecular simulations are a powerful way to make quantitative predictions, but the accuracy of these predictions depends entirely on the quality of the forcefield employed. While experimental measurements of fundamental physical properties offer a straightforward approach for evaluating forcefield quality, the bulk of this information has been tied up in formats that are not machine-readable. Compiling benchmark datasets of physical properties from non-machine-readable sources require substantial human effort and is prone to accumulation of human errors, hindering the development of reproducible benchmarks of forcefield accuracy. Here, we examine the feasibility of benchmarking atomistic forcefields against the NIST ThermoML data archive of physicochemical measurements, which aggregates thousands of experimental measurements in a portable, machine-readable, self-annotating format. As a proof of concept, we present a detailed benchmark of the generalized Amber small molecule forcefield (GAFF) using the AM1-BCC charge model against measurements (specifically bulk liquid densities and static dielectric constants at ambient pressure) automatically extracted from the archive, and discuss the extent of available data. The results of this benchmark highlight a general problem with fixed-charge forcefields in the representation low dielectric environments such as those seen in binding cavities or biological membranes.

Keywords: molecular mechanics forcefields; forcefield parameterization; forcefield accuracy; forcefield validation; mass density; static dielectric constant; biomolecular simulation

44 data grows.

55 molecules.

I. INTRODUCTION

Recent advances in hardware and software for molecular dynamics simulation now permit routine access to atomistic simulations at the 100 ns timescale and besond [1]. Leveraging these advances in combination with consumer GPU clusters, distributed computing, or custom hardware has brought microsecond and millisecond simulation timescales within reach of many laboratories. These dramatic advances in sampling, however, have revealed deficiencies in forcefields as a critical barrier to enabling truly predictive simulations of physical properties of biomolecular systems.

Protein and water forcefields have been the subject of numerous benchmarks [2–4] and enhancements [5–7], with key outcomes including the ability to fold fast-folding proteins [8–10], improved fidelity of water thermodynamic properties [11], and improved prediction of NMR observables. Although small molecule forcefields have also been the subject of benchmarks [12] and improvements [13], such work has typically focused on small perturbations to specific functional groups. For example, a recent study found

46 forcefield accuracy benchmarks is that many experimen47 tal datasets are heterogeneous, paywalled, and unavail48 able in machine-readable formats (although notable coun49 terexamples exist, e.g. the RCSB [14], FreeSolv [15], and the
50 BMRB [16]). While this inconvenience is relatively minor for
51 benchmarking forcefield accuracy for a single target sys52 tem (e.g. water), it becomes prohibitive for studies spanning
53 the large relevant chemical spaces, such as forcefields in-

54 tended to describe a large variety of druglike small organic

33 that modified hydroxyl nonbonded parameters led to im-

³⁴ proved prediction of static dielectric constants and hydra-³⁵ tion free energies [13]. There are also outstanding ques-

tions of generalizability of these targeted perturbations;

37 it is uncertain whether changes to the parameters for a

38 specific chemical moiety will be compatible with seem-

39 ingly unrelated improvements to other groups. Address-

40 ing these questions requires establishing community agree-

41 ment upon shared benchmarks that can be easily repli-

42 cated among laboratories to test proposed forcefield en-

43 hancements and expanded as the body of experimental

A key barrier to establishing reproducible and extensible

* Corresponding author; kyle.beauchamp@choderalab.org

12

In addition to inconvenience, the number and kind of human-induced errors that can corrupt hand-compiled benchmarks are legion. A USGS case study examining the reporting and use of literature values of the aqueous solubility (S_w) and octanol-water partition coefficients (K_{ow}) for DDT and its persistent metabolite DDE provides incredi-

[†] julie.behr@choderalab.org

[‡] bas.rustenburg@choderalab.org

[§] bayly@eyesopen.com

[¶] kenneth.kroenlein@nist.gov

^{**} Corresponding author; john.chodera@choderalab.org

62 ble insight into a variety of common errors [17]. Secondary 116 sources are often cited as primary sources—a phenomenon that occurred up to five levels deep in the case of DDT/DDE; citations for data are often incorrect, misattributed to unrelated publications, or omitted altogether; numerical data can be mistranscribed, transposed, or incorrectly converted among unit systems [17]. This occurs to such a degree that the authors note "strings of erroneous data compose as much as 41-73 percent of the total data" [17]. Given the incredible importance of these properties for human health and the environment, the quality of physicochemical datasets of far lesser importance is highly suspect.

To ameliorate problems of data archival, the NIST Thermodynamics Research Center (TRC) has developed an IUPAC standard XML-based format—ThermoML [18-20]-for storing physicochemical measurements, uncertainties, and metadata. Manuscripts containing new experimental measurements submitted to several journals (J. Chem. Eng. Data, J. Chem. Therm., Fluid Phase Equil., Therm. Acta, and Int. J. Therm.) are guided through a data archival process that involves sanity checks, conversion to a standard machine-readable format, and archival at the TRC (http://trc.nist.gov/ThermoML.html).

Here, we examine the ThermoML archive as a potential source for a reproducible, extensible accuracy benchmark of biomolecular forcefields. In particular, we concentrate on two important physical property measurements easily computable in many simulation codes—neat liquid density and static dielectric constant measurements—with the goal of developing a standard benchmark for validating these properties in fixed-charge forcefields of drug-like molecules and biopolymer residue analogues. These two properties provide sensitive tests of forcefield accuracy that are nonetheless straightforward to calculate. Using these data, we evaluate the generalized Amber small molecule forcefield (GAFF) [21, 22] with the AM1-BCC charge model [23, 24] and identify systematic biases to aid further forcefield refinement.

II. METHODS

ThermoML Archive retrieval and processing

101

A tarball archive snapshot of the ThermoML Archive was obtained from the the NIST TRC on 8 Apr. 2015. To explore the content of this archive, we created a Python (version 2.7.9) tool (ThermoPyL: 156 https://github.com/choderalab/ThermoPvL) formats the XML content into a spreadsheet-like format $_{158}$ bration timestep of 0.4 fs and a collision rate of 5 ps $^{-1}$. Proaccessible via the Pandas (version 0.15.2) library. First, we obtained the XML schema (http://media.iupac.org/ out of the data. This schema was converted into a Python 162 timestep or greater led to a significant timestep dependence object via PyXB 1.2.4 (http://pyxb.sourceforge.net/). 163 in computed equilibrium densities (Fig. 4). Finally, this schema was used to extract the data into 164 114 Pandas [25] dataframes, and the successive data filters 165 Monte Carlo barostat with a control pressure of 1 atm described in Section III A were applied.

B. Simulation

To enable automated accuracy benchmarking of physicochemical properties of neat liquids such as mass density and dielectric constant, we developed a semi-automated pipeline for preparing simulations, running them on a standard computer cluster using a portable simulation package, and analyzing the resulting data. All code for this procedure is available at https://github.com/choderalab/ 124 LiquidBenchmark. Below, we describe the operation of the various stages of this pipeline and their application to the 126 benchmark reported here.

Preparation

Simulation boxes containing 1000 molecules were constructed using PackMol version 14-225 [26, 27] wrapped in 130 the Python automation library openmoltools. In order to 131 ensure stable automated equilibration, PackMol box volumes were chosen to accommodate twice volume of the enclosed atoms, with atomic radii estimated as 1.06 Å and 1.53 ¹³⁴ Å for hydrogens and nonhydrogens, respectively.

For this illustrative benchmark, we utilized the generalized Amber small molecule forcefield (GAFF) [21, 22] with the 137 AM1-BCC charge model [23, 24], which we shall refer to as the GAFF/AM1-BCC forcefield.

Canonical AM1-BCC [23, 24, 28] charges were gener-140 ated with the OpenEye Python Toolkit version 2015-2-3 141 [29], using the oequacpac.OEAssignPartialCharges module with the OECharges_AM1BCCSym option, which 143 utilizes a conformational expansion procedure (using 144 oeomega. OEOmega [30]) prior to charge fitting to minimize 145 artifacts from intramolecular contacts. The OEOmega selected conformer was then processed using antechamber (with parmchk2) and tleap in AmberTools 14 [31] to produce Amber-format prmtop and inport files, which were then read into OpenMM to perform molecular simulations using the simtk.openmm.app module.

The simulations reported here used libraries openmoltools 0.6.4 [32], OpenMM 6.3 [33], and MDTraj 1.3 [34]. Exact commands to install various dependencies can be 154 found in Appendix A 1.

Equilibration and production

Simulation boxes were first minimized using the L-BFGS that $_{157}$ algorithm [35] and equilibrated for 10^7 steps with an equiliduction simulations were performed with OpenMM 6.3 [33] using a Langevin Leapfrog integrator [36] (with collision rate $t_{\text{lamespaces}}$ (ThermoML/ThermoML.xsd) defining the lay- t_{loi} 1 ps $^{-1}$) and a 1 fs timestep, as we found that timesteps of 2 fs

> Equilibration and production simulations utilized a 166 (101.325 kPa), utilizing molecular scaling and automated

167 step size adjustment during equilibration, with volume 215 simulation after discarding the initial far-from-equilibrium (PME) method with conducting boundary conditions [37] 217 nation criteria above). was used with a long-range cutoff of 0.95 nm and a long- 218 settings in OpenMM 6.3 for the CUDA platform [33].

tions were continued until automatic analysis showed standard errors in densities were less than 2×10^{-4} $/cm^3$. Automatic analysis of the production simulation data was run every 1 ns of simulation time, and utilized the detectEquilibration method in the timeseries module of pymbar 2.1 [38] to automatically discard the initial portion of the production simulation containing strong far-from-equilibrium behavior by maximizing the number of effectively uncorrelated samples in the remainder of the production simulation as determined by autocorrelation analysis using the fast adaptive statistical inefficiency computation method as implemented the timeseries.computeStatisticalInefficiency method of pymbar 2.1 (where the algorithm is described in [39]). Statistical errors were computed after subsampling the data to produce effectively uncorrelated equilibrium samples by $\delta^2 \rho \approx {\rm var}(\rho)/N_{\rm eff}$, where ${\rm var}(\rho)$ is the sample variance of the density and $N_{
m eff}$ is the number of effectively uncorrelated samples. With this protocol, we found starting trajectory lengths of 12000 (8000, 16000) frames (250 fs each), discarded regions of 28 (0, 460), and statistical inefficiencies of 20 (15, 28); reported numbers indicate (median, (25%, 75%)).

Instantaneous densities were stored every 250 fs, while 238 trajectory snapshots were stored every 5 ps.

Data analysis and statistical error estimation

200

Trajectory analysis was performed using OpenMM 6.3 [33] 20 and MDTraj 1.3 [34]. 202

Mass density. Mass density ρ was computed via the rela-203 204 tion,

$$\rho = \left\langle \frac{M}{V} \right\rangle,\tag{1}$$

246

247

253

 $_{205}$ where M is the total mass of all particles in the system and is the instantaneous volume of the simulation box.

Static dielectric constants. Static dielectric constants 250 were calculated using the dipole fluctuation approach appropriate for PME with conducting ("tin-foil") boundary conditions [11, 40], with the total system box dipole μ computed 252 from trajectory snapshots using MDTraj 1.3 [34].

$$\epsilon = 1 + \beta \frac{4\pi}{3} \frac{\langle \mu \cdot \mu \rangle - \langle \mu \rangle \cdot \langle \mu \rangle}{\langle V \rangle} \tag{2}$$

where $\beta \equiv 1/k_BT$ is the inverse temperature.

Computation of expectations. Expectations were es-214 timated by computing sample means over the production 258

moves attempted every 25 steps. The particle mesh Ewald 216 portion to equilibration (as described in Automatic termi-

Statistical uncertainties. The portion of the production range isotropic dispersion correction. PME grid and spline 219 simulation not discarded to equilibration was subsampled parameters were automatically selected using the default 220 according to the statistical inefficiency of the property un-221 der consideration to generate an effectively uncorrelated **Automatic termination criteria.** Production simula- 222 dataset. Statistical uncertainties were computed by boot-223 strapping these uncorrelated samples. All reported uncer-224 tainties represent an estimate of one standard deviation of 225 the mean unless otherwise stated.

Code availability

Data analysis, all intermediate data (except configura-228 tional trajectories, due to their large size), and figure cre-229 ation code for this work is available at https://github. 230 com/choderalab/LiquidBenchmark.

RESULTS

Extracting neat liquid measurements from the NIST TRC ThermoML Archive

As described in Section IIA, we retrieved a copy of the ThermoML Archive and performed a number of sequential filtering steps to produce an ThermoML extract relevant for benchmarking forcefields describing small organic molecules. As our aim is to explore neat liquid data with functional groups relevant to biopolymers and drug-like 240 molecules, we applied the following ordered filters, starting with all data containing density or static dielectric constants:

- 1. The measured solution contains only a single component (e.g. no binary mixtures)
- 2. The molecule contains only druglike elements (defined here as H, N, C, O, S, P, F, Cl, Br)
- 3. The molecule has \leq 10 heavy atoms
- 4. The measurement was performed in a biophysically relevant temperature range $(270 \le T \text{ [K]} \le 330)$
- 5. The measurement was performed at ambient pressure $(100 \le P \text{ [kPA]} \le 102)$
- 6. Only measurements in liquid phase were retained
- 7. The temperature and pressure were rounded to nearby values (as described below), averaging all measurements within each group of like conditions
- 8. Only conditions (molecule, temperature, pressure) for which both density and dielectric constants were available were retained

	Number of measurements remaining	
Filter step	Mass density	Static dielectric
1. Single Component	136212	1651
2. Druglike Elements	125953	1651
3. Heavy Atoms	71595	1569
4. Temperature	38821	964
5. Pressure	14103	461
6. Liquid state	14033	461
7. Aggregate T, P	3592	432
8. Density+Dielectric	246	246

TABLE I: Successive filtration of the ThermoML Archive.

A set of successive filters were applied to all measurements in the ThermoML Archive that contained either mass density or static dielectric constant measurements. Each column reports the number of measurements remaining after successive application of the corresponding filtration step.

The temperature and pressure rounding step was motivated by common data reporting variations; for example, an experiment performed at the freezing temperature of water and ambient pressure might be entered as either 101.325 kPA or 100 kPA, with a temperature of either 273 K or 273.15 K. Therefore all pressures within the range [kPA] $(100 \le P \le 102)$ were rounded to exactly 1 atm (101.325) kPa). Temperatures were rounded to one decimal place in 266 267

The application of these filters (Table I) leaves 246 conditions—where a condition here indicates a (molecule, temperature, pressure) tuple—for which both density and 294 the error also remain largely constant (vertical lines in Fig. 1 dielectric data are available. The functional groups present 295 in the resulting dataset are summarized in Table II; see Section II A for further description of the software pipeline used. 297

Benchmarking GAFF/AM1-BCC against the ThermoML Archive

274

275

276

Mass density

Mass densities of bulk liquids have been widely used for parameterizing and testing forcefields, particularly the Lennard-Jones parameters representing dispersive and repulsive interactions [42, 43]. We therefore used the present ThermoML extract as a benchmark of the GAFF/AM1-BCC forcefield (Fig. 1).

Overall accuracy. Overall, the densities show reasonable accuracy, with a root-mean square (RMS) relative error over all measurements of (3.0 \pm 0.1)%, especially encouraging given that this forcefield was not designed with the intention of modeling bulk liquid properties of organic molecules [21, 22]. This is reasonably consistent with previous studies reporting agreement of 4% on a different benchmark set [12].

Temperature dependence. For a given compound, the 292 signs of the errors typically do not change at different tem- 317

Functional Group	Occurrences
1,2-aminoalcohol	4
1,2-diol	3
alkene	3
aromatic compound	1
carbonic acid diester	2
carboxylic acid ester	4
dialkyl ether	7
heterocyclic compound	3
ketone	3
lactone	1
primary alcohol	19
primary aliphatic amine (alkylamine)	2
primary amine	2
secondary alcohol	4
secondary aliphatic amine (dialkylamine)	2
secondary aliphatic/aromatic amine (alkylarylamine)	1
secondary amine	3
sulfone	
sulfoxide	I
tertiary aliphatic amine (trialkylamine)	3
tertiary amine	3

TABLE II: Functional groups present in filtered dataset.

The filtered ThermoML dataset contained 246 distinct (molecule, temperature, pressure) conditions, spanning 45 unique compounds. The functional groups represented in these compounds (as identified by the program checkmol v0.5 [41]) is summarized here.

B), although several exceptions do occur. It is possible that these systematic density offsets indicate correctable biases in forcefield parameters.

Outliers. The largest density errors occur for a num-299 ber of oxygen-containing compounds: 1,4-dioxane; 2,5,8trioxanonane; 2-aminoethanol; dimethyl carbonate; formamide; and water (Fig. 7). The absolute error on these poor predictions is on the order of 0.05 g/ cm^3 , which is substantially higher than the measurement error (< 0.008 g/cm^3 ; see Fig. 5).

We note that our benchmark includes a GAFF/AM1-BCC model for water due to our desire to automate benchmarks 307 against a forcefield capable of modeling a large variety of 308 small molecular liquids. Water—an incredibly important solvent in biomolecular systems—is generally treated with a special-purpose model (such as TIP3P [42] or TIP4P-Ew [11]) parameterized to fit a large quantity of thermophysical data. 312 As expected, the GAFF/AM1-BCC model performs poorly in reproducing liquid densities for this very special solvent. We 314 conclude that it remains highly advisable that the field con-315 tinue to use specialized water models when possible.

Static dielectric constant

Overall accuracy. As a measure of the dielectric reperatures (Fig. 1, Fig. 7). Furthermore, the magnitudes of sign sponse, the static dielectric constant of neat liquids pro-

FIG. 1: Comparison of liquid densities between experiment and simulation. (a). Liquid density measurements extracted from ThermoML are compared against densities predicted using the GAFF / AM1-BCC small molecule fixed-charge forcefield. Color groupings represent identical chemical species, although the color map repeats itself due to the large (45) number of unique compounds. Plots of density versus temperature grouped by chemical species are available in Fig. 7. Simulation error bars represent one standard error of the mean, with the number of effective (uncorrelated) samples estimated using pymbar. Experimental error bars indicate the standard deviation between independently reported measurements, when available, or author-reported standard deviations in ThermoML entries; for some measurements, neither uncertainty estimate is available. See Fig. 5 for further discussion of error. (b). The same plot, but with the residual (predicted minus experiment) on the x axis. Note that the error bars are all smaller than the symbols.

 $_{319}$ vides a critical benchmark of the accuracy electrostatic treatment in forcefield models. Discussing the accuracy in terms the ability of GAFF/AM1-BCC to reproduce the static dielectric constant ϵ is not necessarily meaningful because of the way that the solvent dielectric ϵ enters into the Coulomb potential between two point charges separated by a distance r,

$$U(r) = \frac{q_1 q_2}{\epsilon r} \propto \frac{1}{\epsilon}.$$
 (3)

It is evident that $1/\epsilon$ is a much more meaningful quantity to compare than ϵ directly, as a 5% error in $1/\epsilon$ will cause a 5% error in the Coulomb potential between two point charges (assuming a uniform dielectric), while a 5% error in ϵ will have a much more complex ϵ -dependent effect on the Coulomb potential. We therefore compare simulations against measurements in our ThermoML extract on the $1/\epsilon$ scale in Fig. 2.

GAFF/AM1-BCC systematically underestimates the dielectric constants of nonpolar liquids. Overall, we find the dielectric constants to be qualitatively reasonable, but with clear deviations from experiment particularly for nonpolar liquids. This is not surprising given the complete neglect of electronic polarization which will be the dominant contribution for such liquids. In particular, GAFF/AM1-BCC systematically underestimates the dielectric constants for nonpolar liquids, with the predictions of $\epsilon \approx 1.0$ being substantially smaller than the measured $\epsilon \approx 2$. Because this deviation likely stems from the lack of an explicit treatment of electronic polarization, we used a simple empirical polarization model that computes the molecular electronic polarizability α as a sum of elemental atomic polarizability contributions [44].

From the computed molecular electronic polarizability α , an additive correction to the simulation-derived static dielectric constant accounting for the missing electronic polarizability can be computed [11]

$$\Delta \epsilon = 4\pi N \frac{\alpha}{\langle V \rangle} \tag{4}$$

 353 A similar polarization correction was used in the development of the TIP4P-Ew water model, where it had a minor effect [11] because almost all the high static dielectric constant for water comes from the configurational response of its strong dipole. However, the missing polarizability is a dominant contribution to the static dielectric constant of nonpolar organic molecules; in the case of water, the empirical atomic polarizability model predicts a dielectric correction of 0.52, while 0.79 was used for the TIP4P-Ew model. Averaging all liquids in the present work leads to polarizability corrections to the static dielectric of 0.74 ± 0.08 . Taking the dataset as a whole, we find that the relative error in uncorrected dielectric is on the order of -0.34 ± 0.02 , as compared to -0.25 ± 0.02 for the corrected dielectric.

FIG. 2: Measured (ThermoML) versus predicted (GAFF / AM1-BCC) inverse static dielectrics (a). Simulation error bars represent one standard error of the mean estimated via circular block averaging [45] with block sizes automatically selected to maximize the error [46]. Experimental error bars indicate the larger of standard deviation between independently reported measurements and the authors reported standard deviations; for some measurements, neither uncertainty estimate is available. See Fig. 5 for further discussion of error. See Section III B 2 for explanation of why inverse dielectric constant (rather than dielectric constant) is plotted. For nonpolar liquids, it is clear that the forcefield predicts electrostatic interactions that are substantially biased by missing polarizability. Plots of dielectric constant versus temperature grouped by chemical species are available in Fig. 8.

DISCUSSION

367

369

Mass densities

atic density biases with magnitudes larger than the mea- 425 which we discuss below. surement error. Correcting these errors may be a low- 426

382 the fundamental limit of fixed-charge forcefields for predicting orthogonal classes of experimental observables. For example, is it possible to achieve a relative density error of 10^{-4} without sacrificing accuracy of other properties such as enthalpies? In our opinion, the best way to answer such questions is to systematically build forcefields with the goal of predicting various properties to within their known experimental uncertainties, similar to what has been done for wa-390 ter [11, 47].

Dielectric constants in forcefield parameterization

A key feature of the static dielectric constant for a liquid is that, for forcefield purposes, it consists of two very different components, distinguished by the dependence on the fixed charges of the forcefield and dynamic motion of the molecule. One component, the high-frequency dielectric constant, arises from the almost-instantaneous electronic polarization in response to the external electric field: this contributes a small component, generally around $\epsilon = 2$, which can be dominant for non-polar liquids but is completely neglected by the non-polarizable forcefields in common use for biomolecular simulations. The other component arises from the dynamical response of the molecule, through nuclear motion, to allow its various molecular multipoles to respond to the external electric field: for polar liguids such as water, this contributes the majority of the dielectric constant. Thus for polar liquids, we expect the pa-408 rameterized atomic charges to play a major role in the static 409 dielectric.

Recent forcefield development has seen a resurgence 411 of papers fitting dielectric constants during forcefield pa-412 rameterization [13, 47]. However, a number of authors have pointed out potential challenges in constructing selfconsistent fixed-charge forcefields [48, 49].

Interestingly, recent work by Dill and coworkers [48] ob-416 served that, for CCl₄, reasonable choices of point charges are incapable of recapitulating the observed dielectric of $\epsilon = 2.2$, instead producing dielectric constants in the range of $1.0 \le \epsilon \le 1.05$. This behavior is quite general: fixed point charge forcefields will predict $\epsilon \approx 1$ for many nonpolar or symmetric molecules, but the measured dielectric constants are instead $\epsilon \approx 2$ (Fig. 3). While this behavior is well-known and results from missing physics of polarizabil-Our simulations have indicated the presence of system- 424 ity, we suspect it may have several profound consequences,

Suppose, for example, that one attempts to fit forcehanging fruit for future forcefield refinements. As an exam- 427 field parameters to match the static dielectric constants of ple of the feasibility of improved accuracy in densities, a re- $_{428}$ CCl₄, CHCl₃, CH₂Cl₂, and CH₃Cl. In moving from the cent three-point water model was able to recapitulate water $_{ ext{429}}$ tetrahedrally-symmetric $m CCl_4$ to the asymmetric $m CHCl_3$, density with errors of less than 0.005 g $/cm^3$ over temper- 430 it suddenly becomes possible to achieve the observed diature range [280 K, 320 K] [47]. This improved accuracy in 431 electric constant of 4.8 by an appropriate choice of point density prediction was obtained alongside accurate predic- $_{
m 432}$ charges. However, the model for $m CHCl_3$ uses fixed point tions of other experimental observables, including static di- 433 charges to account for both the permanent dipole moment electric constant. We suspect that such accuracy might be $_{434}$ and the electronic polarizability, whereas the CCl_4 model obtainable for GAFF-like forcefields across some portion of 435 contains no treatment of polarizability. We hypothesize that chemical space. A key challenge for the field is to demarcate 436 this inconsistency in parameterization may lead to strange

FIG. 3: Typical experimental static dielectric constants of some nonpolar compounds. (a). Measured static dielectric constants of various nonpolar or symmetric molecules [50, 51]. Fixed-charge forcefields give $\epsilon \approx 1$ for each species; for example, we calculated $\epsilon = 1.0030 \pm 0.0002$ for octane. (b). A congeneric series of chloro-substituted methanes have static dielectric constants between 2 and 13. Reported dielectric constants are at near-ambient temperatures.

mismatches, where symmetric molecules (e.g. benzene and 487 438 CCl₄) have qualitatively different properties than closely re-488 upcoming (2015) SAMPL challenge [53], which will examine ⁴³⁹ lated asymmetric molecules (e.g. toluene and CHCl₃).

tant wherever we encounter the transfer of a polar molecule sorption and distribution within the body. To understand 499 dipole methods [57, 58], and Drude methods [59, 60] have molecule transfer from the non-polar interior of a lipid bi- 501 racy and performance remains an open question; however, atomic polarizability could be important in accurate transfer free energies involving low-dielectric solvents, such as the small-molecule transfer free energy from octanol or cyclohexane to water. The Onsager model for solvation of a dipole μ of radius a gives us a way to estimate the magni-458 tude of error introduced by making an error $\Delta\epsilon$ the static 506

460 solvation is given by this model as

$$\Delta G = -\frac{\mu^2}{a^3} \frac{\epsilon - 1}{2\epsilon + 1} \tag{5}$$

461 such that, for an error of $\Delta\epsilon$ departing from the true static dielectric constant ϵ , we find the error in solvation is

$$\Delta \Delta G = -\frac{\mu^2}{a^3} \left[\frac{(\epsilon + \Delta \epsilon) - 1}{2(\epsilon + \Delta \epsilon) + 1} - \frac{\epsilon - 1}{2\epsilon + 1} \right]$$
 (6)

For example, the solvation of water (a=1.93 Å, $\mu=2.2$ D) in a low dielectric medium such as tetrachloromethane or benzene ($\epsilon \sim 2.2$, but $\Delta \epsilon = -1.2$) gives an error of $\Delta \Delta G \sim$ -8kJ/mol (-2 kcal/mol).

Implications for transfer free energies. As another example, consider the transfer of small druglike molecules from a nonpolar solvent (such as cyclohexane) to water, a property often measured to indicate the expected degree of lipophilicity of a compound. To estimate the magnitude of error expected, for each molecule in the latest (Feb. 20) FreeSolv database [15, 52], we estimated the expected error in computed transfer free energies should GAFF/AM1-BCC be used to model the nonpolar solvent cyclohexane 476 using the Onsager model (Eq. 6). We used took the cav- $_{
m 477}$ ity radius a to be the half the maximum interatomic dis- $_{\mbox{\tiny 478}}$ tance and calculated $\mu = \sum_i q_i r_i$ using the provided mol2 479 coordinates and AM1-BCC charges. This calculation predicts a mean error of (-3.8 ± 0.3) kJ / mol [(-0.91 ± 0.07) kcal / mol] for the 643 molecules (where the standard error is computed from bootstrapping over FreeSolv compound measurements), suggesting that the missing atomic polar-484 izabilty unrepresentable by fixed point charge forcefields could contribute substantially to errors in predicted transfer and solvation properties of druglike molecules. We conjecture that this missing physics will be important in the transfer free energies in several low dielectric media.

Utility in parameterization. Given their ease of mea-How important is this effect? We expect it to be impor- 491 surement and direct connection to long-range electrostatic 492 interactions, static dielectric constants have high poten-(such as a peptide, native ligand, or a pharmaceutical small 493 tial utility as primary data for forcefield parameterization molecule) from a polar environment (such as the cytosol, in- 494 efforts. Although this will require the use of forcefields terstitial fluid, or blood) into a non-polar environment (such 495 with explicit treatment of atomic polarizability, the inconsisas a biological membrane or non-polar binding site of an 496 tency of fixed-charge models in low-dielectric media is sufenzyme or receptor). Thus we expect this to be implicated 497 ficiently alarming to motivate further study of polarizable in biological processes ranging from ligand binding to ab- 498 forcefields. In particular, continuum methods [54–56], point this conceptually, consider the transfer of a polar small- 500 been maturing rapidly. Finding the optimal balance of acculayer to the aqueous and hence very polar cytosol. As a 502 the use of experimentally-parameterized direct polarization possible real-world example, we imagine that the missing 503 methods [61] may provide polarizability physics at a cost not much greater than fixed charge forcefields.

ThermoML as a data source

The present work has focused on the neat liquid den-459 dielectric constant of a solvent. The free energy of dipole 507 sity and dielectric measurements present in the ThermoML 508 Archive [18, 19, 62] as a target for molecular dynamics force- 500 ing grant 1T32GM083937). KAB was supported in part by resource for the forcefield community. First, the aggre- 564 this research by the Sloan Kettering Institute. gation, support, and dissemination of ThermoML datasets through the ThermoML Archive is supported by NIST, whose mission makes these tasks a long-term priority. Second, 565 the ThermoML Archive is actively growing, through partnerships with several journals, and new experimental measurements published in these journals are critically examined by the TRC and included in the archive. Finally, the files in the ThermoML Archive are portable and machine readable via a formal XML schema, allowing facile access to hunphysical properties contained in ThermoML—including activity coefficients, diffusion constants, boiling point temperatures, critical pressures and densities, coefficients of expansion, speed of sound measurements, viscosities, excess molar enthalpies, heat capacities, and volumes—for neat phases and mixtures represent a rich dataset of high utility for forcefield validation and parameterization.

V. CONCLUSIONS

530

531

High quality, machine-readable datasets of physicochemical measurements will be required for the construction of next-generation small molecule forcefields. Here we nave discussed the NIST/TRC ThermoML archive as a growing source of physicochemical measurements that may be useful for the forcefield community. From the NIST/TRC ThermoML archive, we selected a dataset of 246 ambient, neat liquid systems for which both densities and static dielectric constants are available. Using this dataset, we benchmarked GAFF/AM1-BCC, one of the most popular small molecule forcefields. We find systematic biases in densities and particularly static dielectric constants. Element-based empirical polarizabilty models are able to account for much of the systematic differences between GAFF/AM1-BCC and experiment. Non-polarizable forcefields may show unacceptable biases when predicting transfer and binding properties of non-polar environments such as binding cavities or membranes.

VI. ACKNOWLEDGEMENTS

We thank Patrick B. Grinaway (MSKCC), Vijay S. Pande (Stanford University), Lee-Ping Wang (Stanford University), Peter Eastman (Stanford University), Robert McGibbon (Stanford University), Jason Swails (Rutgers University), David L. Mobley (University of California, Irvine), Michael R. Shirts (University of Virginia), William C. Swope (IBM), Julia E. Rice (IBM), Hans Horn (IBM), Jed W. Pitera (IBM), and members of Chodera lab for helpful discussions. Support for JMB was provided by the Tri-Institutional Training Program in Computational Biology and Medicine (via NIH train-

field validation. While liquid mass densities and static di- ser Starr Foundation grant I8-A8-058. JDC and KAB acknowlelectric constants have already been widely used in force- 562 edge partial support from NIH grant P30 CA008748. KAB, field work, several aspects of ThermoML make it a unique 563 JLB, ASR, and JDC acknowledge the generous support of

VII. DISCLAIMERS

This contribution of the National Institute of Standards 567 and Technology (NIST) is not subject to copyright in the $_{568}$ United States. Products or companies named here are cited only in the interest of complete technical description, and ₅₇₀ neither constitute nor imply endorsement by NIST or by the dreds of thousands of measurements. Numerous additional $_{571}\,$ U.S. government. Other products may be found to serve as

VIII. TOC FIGURE

Appendix A: Appendices

• Figure: Timestep-dependence of density

575

576

577

580

581

- Figure: Error analysis (density) for ThermoML dataset
- Figure: Error analysis (static dielectric constant) for ThermoML dataset
 - Figure: Temperature Dependence: Density
 - Figure: Temperature Dependence: Static Dielectric Constant
 - Commands to install dependencies

FIG. 4: Dependence of computed density on simulation timestep. To probe the systematic error from finite time-step integration, we examined the timestep dependence of butyl acrylate density. (a). The density is shown for several choices of timestep. (b). The relative error, as compared to the reference value, is shown for several choices of timestep. Error bars represent standard errors of the mean, with the number of effective samples estimated using pymbar's statistical inefficiency routine [38]. The reference value is estimated by linear extrapolation to 0 fs using the 0.5 fs and 1.0 fs data points; the linear extrapolation is shown as black lines. We find a 2 fs timestep leads to systematic biases in the density on the order of 0.13%, while 1 fs reduces the systematic bias to approximately 0.08%—we therefore selected a 1 fs timestep for the present work, where we aimed to achieve three digits of accuracy in density predictions.

FIG. 5: Assessment of experimental error: Density To assess the experimental error in our ThermoML extract, we compared three different estimates of uncertainty. In the first approach (Weighted), we computed the standard deviation of the optimally weighted average of the measurements, using the uncertainties reported by authors ($\sigma_{Weighted} = [\sum_k \sigma_k^{-2}]^{-0.5}$). This uncertainty estimator places the highest weights on measurements with small uncertainties and is therefore easily dominated by small outliers and uncertainty under-reporting. In the second approach (Median), we estimated the median of the uncertainties reported by authors; this statistic should be robust to small and large outliers of author-reported uncertainties. In the third approach (Std), we calculated at the standard deviation of independent measurements reported in the ThermoML extract, completely avoiding the author-reported uncertainties. Plot (a) compares the three uncertainty estimates. We see that author-reported uncertainties appear to be substantially smaller than the scatter between the observed measurements. A simple psychological explanation might be that because density measurements are more routine, the authors simply report the accuracy limit of their hardware (e.g. 0.0001 g / cm^3 for a Mettler Toledo DM40 [63]). However, this hardware limit is not achieved due to inconsistencies in sample preparation; see Appendix in Ref. [20]. Panel (b) shows the same information as (a) but as a function of the measurement index, rather than as a scatter plot—because not all measurements have author-supplied uncertainties,

panel (c) contains slightly more data points than (a, b).

FIG. 6: Assessment of experimental error: Static **Dielectric Constant** To assess the experimental error in our ThermoML extract, we compared three different estimates of uncertainty. In the first approach (Weighted), we computed the standard deviation of the optimally weighted average of the measurements, using the uncertainties reported by authors ($\sigma_{Weighted} = [\sum_k \sigma_k^{-2}]^{-0.5}$). This uncertainty estimator places the highest weights on measurements with small uncertainties and is therefore easily dominated by small outliers and uncertainty under-reporting. In the second approach (Median), we estimated the median of the uncertainties reported by authors; this statistic should be robust to small and large outliers of author-reported uncertainties. In the third approach (Std), we calculated at the standard deviation of independent measurements reported in the ThermoML extract, completely avoiding the author-reported uncertainties. Plot (a) compares the three uncertainty estimates. Unlike the case of densities, author-reported uncertainties appear to be somewhat larger than the scatter between the observed measurements. Panel (b) shows the same information as (a) but as a function of the measurement index, rather than as a scatter plot—because not all measurements have author-supplied uncertainties, panel (c) contains slightly more data points than (a, b).

FIG. 7: Comparison of simulated and experimental densities for all compounds. Measured (blue) and simulated (green) densities are shown in units of g/cm^3 .

FIG. 7: Comparison of simulated and experimental densities for all compounds. Measured (blue) and simulated (green) densities are shown in units of g/cm^3 .

FIG. 7: Comparison of simulated and experimental densities for all compounds. Measured (blue) and simulated (green) densities are shown in units of g/cm^3 .

FIG. 7: Comparison of simulated and experimental densities for all compounds. Measured (blue) and simulated (green) densities are shown in units of g/cm^3 .

FIG. 7: Comparison of simulated and experimental densities for all compounds. Measured (blue) and simulated (green) densities are shown in units of g/cm^3 .

FIG. 8: **Comparison of simulated and experimental static dielectric constants for all compounds.** Measured (blue), simulated (green), and polarizability-corrected simulated (red) static dielectric constants are shown for all compounds.

FIG. 8: **Comparison of simulated and experimental static dielectric constants for all compounds.** Measured (blue), simulated (green), and polarizability-corrected simulated (red) static dielectric constants are shown for all compounds.

FIG. 8: **Comparison of simulated and experimental static dielectric constants for all compounds.** Measured (blue), simulated (green), and polarizability-corrected simulated (red) static dielectric constants are shown for all compounds.

FIG. 8: **Comparison of simulated and experimental static dielectric constants for all compounds.** Measured (blue), simulated (green), and polarizability-corrected simulated (red) static dielectric constants are shown for all compounds.

FIG. 8: **Comparison of simulated and experimental static dielectric constants for all compounds.** Measured (blue), simulated (green), and polarizability-corrected simulated (red) static dielectric constants are shown for all compounds.

1. Dependency Installation

584

```
The following shell commands can be used to install the necessary prerequisites via the conda package manager for Python:
```

```
588 $ conda config — add channels http://conda.binstar.org/omnia
589 $ conda install "openmoltools" "pymbar==2.1" "mdtraj==1.3" "openmm==6.3" packmol
590 %
```

Note that this command installs the exact versions used in the present study, with the exception of openmoltools for which only a more recent package is available. However, for authors interested in extending the present work, we suggust using the most up-to-date versions available instead, which involves replace the equality symbols == with >=.

R. C. Walker, Journal of Chemical Theory and Computation 9, 3878 (2013).

597

598

- [2] K. Lindorff-Larsen, P. Maragakis, S. Piana, M. Eastwood, 600 R. Dror, and D. Shaw, PloS one 7, e32131 (2012). 601
- K. Beauchamp, Y. Lin, R. Das, and V. Pande, J. Chem. Theory 602 603 Comput. 8, 1409 (2012).
- [4] R. Best, N. Buchete, and G. Hummer, Biophys. J. 95, L07 604
- [5] D.-W. Li and R. Bruschweiler, J. Chem. Theory Comput. 7, 1773 606 607
- [6] R. B. Best, X. Zhu, J. Shim, P. E. Lopes, J. Mittal, M. Feig, and 608 A. D. MacKerell, J. Chem. Theory Comput. (2012). 609
- [7] K. Lindorff-Larsen, S. Piana, K. Palmo, P. Maragakis, J. Klepeis, 610 R. Dror, and D. Shaw, Proteins: Struct., Funct., Bioinf. 78, 1950 611 612
- [8] K. Lindorff-Larsen, S. Piana, R. Dror, and D. Shaw, Science 334, 613 517 (2011). 614
- [9] D. Ensign, P. Kasson, and V. Pande, J. Mol. Biol. 374, 806 615 616
- [10] V. Voelz, G. Bowman, K. Beauchamp, and V. Pande, J. Am. 677 617 Chem. Soc. 132, 1526 (2010). 618
- H. Horn, W. Swope, J. Pitera, J. Madura, T. Dick, G. Hura, and 619 T. Head-Gordon, J. Chem. Phys. 120, 9665 (2004). 620
- [12] C. Caleman, P. J. van Maaren, M. Hong, J. S. Hub, L. T. Costa, 621 and D. van der Spoel, Journal of chemical theory and compu-622 tation 8, 61 (2011). 623
- [13] C. J. Fennell, K. L. Wymer, and D. L. Mobley, The Journal of 624 Physical Chemistry B (2014). 625
- [14] H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, 686 H. Weissig, I. N. Shindyalov, and P. E. Bourne, Nucleic Acids 687 [39] J. D. Chodera, N. Singhal, V. S. Pande, K. A. Dill, and W. C. 627 Res. **28**, 235 (2000). 628
- [15] D. L. Mobley, Experimental and calculated small 689 molecule hydration free energies, Retrieved from: 690 630 http://www.escholarship.org/uc/item/6sd403pz, 631 uC Irvine: Department of Pharmaceutical Sciences, UCI. 632
- [16] E. Ulrich, H. Akutsu, J. Doreleijers, Y. Harano, Y. Ioannidis, 693 633 634 Acids Res. 36, D402 (2008). 635
- J. Pontolillo and R. P. Eganhouse, Tech. Rep. Water-Resources 696 636 Investigations Report 01-4201, U.S. Geological Survey, Reston, 637 Virginia (2001). 638
- [18] M. Frenkel, R. D. Chirico, V. V. Diky, Q. Dong, S. Frenkel, P. R. 639 Franchois, D. L. Embry, T. L. Teague, K. N. Marsh, and R. C. Wil-640 hoit, Journal of Chemical & Engineering Data 48, 2 (2003). 641
- M. Frenkel, R. D. Chiroco, V. Diky, Q. Dong, K. N. Marsh, J. H. 642 Dymond, W. A. Wakeham, S. E. Stein, E. Königsberger, and A. R. 643 Goodwin, Pure and applied chemistry 78, 541 (2006). 644
- R. D. Chirico, M. Frenkel, J. W. Magee, V. Diky, C. D. Muzny, A. F. 645 Kazakov, K. Kroenlein, I. Abdulagatov, G. R. Hardin, and W. E. 646 Acree Jr, Journal of Chemical & Engineering Data 58, 2699 647 (2013).648
- [21] J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman, and D. A. 649 Case, J. Comput. Chem. 25, 1157 (2004). 650
- J. Wang, W. Wang, P. A. Kollman, and D. A. Case, J. Mol. Graph 651 Model. 25, 247260 (2006). 652
- A. Jakalian, B. L. Bush, D. B. Jack, and C. I. Bayly, J. Comput. 653 Chem. 21, 132 (2000). 654
- 655 A. Jakalian, D. B. Jack, and C. I. Bayly, J. Comput. Chem. 23, 1623 (2002).

- [1] R. Salomon-Ferrer, A. W. GolLtz, D. Poole, S. Le Grand, and 657 [25] W. McKinney, in Proceedings of the 9th Python in Science Conference, edited by S. van der Walt and J. Millman (2010), pp. 51 - 56.
 - [26] L. Martínez, R. Andrade, E. G. Birgin, and J. M. Martínez, Jour-660 nal of computational chemistry **30**, 2157 (2009).
 - [27] URL http://www.ime.unicamp.br/~martinez/packmol/. 662
 - C. Velez-Vega, D. J. McKay, V. Aravamuthan, R. Pearlstein, and J. S. Duca, Journal of chemical information and modeling 54, 3344 (2014).
 - [29] Openeye toolkits 2014, URL http://www.eyesopen.com. 666
 - [30] P. C. Hawkins and A. Nicholls, Journal of chemical information 667 and modeling 52, 2919 (2012).
 - [31] D. Case, V. Babin, J. Berryman, R. Betz, Q. Cai, D. Cerutti, 669 T. Cheatham III, T. Darden, R. Duke, H. Gohlke, et al., University 670 of California, San Francisco (2014).
 - 672 [32] URL http://github.com/choderalab/openmoltools.
 - [33] P. Eastman, M. S. Friedrichs, J. D. Chodera, R. J. Radmer, 673 C. M. Bruns, J. P. Ku, K. A. Beauchamp, T. J. Lane, L.-P. Wang, D. Shukla, et al., J. Chem. Theory Comput. 9, 461 (2012).
 - [34] R. T. McGibbon, K. A. Beauchamp, C. R. Schwantes, L.-P. Wang, C. X. Hernández, M. P. Harrigan, T. J. Lane, J. M. Swails, and V. S. Pande, bioRxiv p. 008896 (2014).
 - [35] D. C. Liu and J. Nocedal, Mathematical programming 45, 503 679
 - J. A. Izaguirre, C. R. Sweet, and V. S. Pande, Pacific Symposium on Biocomputing 15, 240 (2010).
 - T. Darden, D. York, and L. Pedersen, J. Chem. Phys. 98, 10089 683
 - [38] M. R. Shirts and J. D. Chodera, J. Chem. Phys. 129, 124105 (2008).
 - Swope, J. Chem. Phys. 126, 155101 (2007).
 - M. Neumann, Molecular Physics 50, 841 (1983).
 - [41] N. Haider, Molecules **15**, 5079 (2010).
 - 691 [42] W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, The Journal of chemical physics 79, 926 (1983).
 - J. Lin, M. Livny, S. Mading, D. Maziuk, and Z. Miller, Nucleic 694 [43] W. L. Jorgensen, J. D. Madura, and C. J. Swenson, Journal of the American Chemical Society 106, 6638 (1984).
 - R. Bosque and J. Sales, Journal of chemical information and computer sciences 42, 1154 (2002).
 - K. Sheppard, Arch toolbox for python (2015), GitHub repository: https://github.com/bashtage/arch, URL http://dx. doi.org/10.5281/zenodo.15681.
 - [46] H. Flyvbjerg and H. G. Petersen, J. Chem. Phys. 91, 461 (1989). 701
 - L.-P. Wang, T. J. Martínez, and V. S. Pande, The Journal of Phys-702 ical Chemistry Letters (2014). 703
 - C. J. Fennell, L. Li, and K. A. Dill, The Journal of Physical Chemistry B **116**, 6936 (2012).
 - I. V. Leontyev and A. A. Stuchebrukhov, The Journal of chem-706 ical physics 141, 014103 (2014).
 - A. D'Aprano and I. D. Donato, Journal of Solution Chemistry 19, 883 (1990).
 - W. M. Haynes, CRC handbook of chemistry and physics (CRC 710 Press, 2011). 711
 - D. L. Mobley, Experimental and calculated small molecule hy-712 dration free energies, Retrieved from: https://github.com/ choderalab/FreeSolv, uC Irvine: Department of Pharmaceutical Sciences, UCI.
 - J. Newman, V. J. Fazio, T. T. Caradoc-Davies, K. Branson, and [53] T. S. Peat, Journal of biomolecular screening (2009).

- 718 [54] J.-F. Truchon, A. Nicholl's, J. A. Grant, R. I. Iftimie, B. Roux, and 731 [60] V. M. Anisimov, G. Lamoureux, I. V. Vorobyov, N. Huang, C. I. Bayly, Journal of computational chemistry 31, 811 (2010). 732 719
- [55] J.-F. Truchon, A. Nicholls, B. Roux, R. I. Iftimie, and C. I. Bayly, 733 720 Journal of chemical theory and computation **5**, 1785 (2009). 721
- [56] J.-F. Truchon, A. Nicholls, R. I. Iftimie, B. Roux, and C. I. Bayly, 735 722 Journal of chemical theory and computation **4**, 1480 (2008). 723
- 724 I. Haque, D. Mobley, D. Lambrecht, R. DiStasio Jr, et al., J. 738 725 Phys. Chem. B 114, 2549 (2010). 726
- [58] P. Ren and J. W. Ponder, The Journal of Physical Chemistry B 727 108, 13427 (2004). 728
- [59] G. Lamoureux and B. Roux, The Journal of Chemical Physics 729 **119**, 3025 (2003). 730

- B. Roux, and A. D. MacKerell, Journal of Chemical Theory and Computation 1, 153 (2005).
- [61] L.-P. Wang, T. L. Head-Gordon, J. W. Ponder, P. Ren, J. D. Chodera, P. K. Eastman, T. J. Martínez, and V. S. Pande, J. Phys. Chem. B 117, 9956 (2013).
- [57] J. Ponder, C. Wu, P. Ren, V. Pande, J. Chodera, M. Schnieders, 131 [62] R. D. Chirico, M. Frenkel, V. V. Diky, K. N. Marsh, and R. C. Wilhoit, Journal of Chemical & Engineering Data 48, 1344 (2003).
 - 739 [63] Mettler toledo density meters, [Online; accessed 15-Jan-2015], URL http://us.mt.com/us/en/home/products/ Laboratory_Analytics_Browse/Density_Family_ Browse_main/DE_Benchtop.tabs.models-and-specs.

740

741

742