Epreuve écrite

Examen de fin d'études secondaires 2012

**Section: BC

Branche: PHYSIQUE _____

I Mouvement d'une projectile dans le champ de force uniforme $(5 + \underline{2} + \underline{4} + \underline{3} + \underline{2} = 16 \text{ points})$

Un projectile de masse m est tiré avec une vitesse initiale \vec{v}_0 et évolue ensuite dans le champ de pesanteur \vec{g} supposé uniforme. La résistance de l'air est négligeable.

a) Dans un repère (O, \vec{i}, \vec{j}) , établir les équations horaires du mouvement ainsi que l'équation cartésienne de la trajectoire.

Une catapulte se trouve à 1.5m au dessus d'un terrain horizontal. Elle lance un projectile avec une vitesse initiale de 108km/h. L'angle entre le vecteur vitesse et l'horizontale vaut 40° .

- b) Faire une figure et indiquer le repère choisi.
- c) Déterminer la position d'impact du projectile.
- d) Déterminer les coordonnées du sommet de la trajectoire.
- e) Déterminer le temps de vol.

II Oscillation mécanique $(2+4+2+2+\underline{3}+\underline{3}=16 \text{ points})$

Un pendule élastique horizontal non amorti est caractérisé par la masse m accrochée à un ressort de raideur k.

- a) Faire le bilan des forces appliquées à la masse m lorsque le ressort est étiré.
- b) Etablir, à partir de la relation fondamentale de la dynamique (seconde loi de Newton), l'équation différentielle du mouvement pour ce système.
- c) Proposer une solution de cette équation, vérifier sa validité et établir l'expression de la pulsation propre.
- d) Déduire les expressions de la vitesse et de l'accélération de l'oscillateur en fonction du temps.

On considère un tel pendule, constitué d'une masse m = 2.5kg accrochée à un ressort de raideur k=122.5N/m. A l'instant initiale (t=0s), la masse passe par sa position d'équilibre avec une vitesse de 3.5m/s orientée dans le sens positif de l'axe.

- e) Déterminer la valeur de l'amplitude, de la vitesse angulaire et de la phase initiale du mouvement résultant.
- f) Déterminer les dates auxquelles la masse *m* subit une accélération positive maximale et donner la valeur de cette accélération.

Epreuve écrite

Examen de fin d'études secondaires 2012

Section: BC

Branche: PHYSIQUE

No color du candidat	

III Interférences lumineuses (4 + 5 + 3 + 2 = 14 points)

- a) Décrire l'expérience des fentes de Young en lumière monochromatique.
- b) Etablir l'expression de la différence de marche.
- c) Déterminer la position des franges brillantes sur l'écran et en déduire l'expression pour l'interfrange i.

Deux fentes parallèles espacées d'une certaine distance sont éclairées par un pinceau de lumière monochromatique de longueur d'onde $\lambda = 632nm$. Sur un écran placé perpendiculairement au pinceau lumineux à une distance D=3m on observe la formation de franches brillantes et obscure. La distance séparant les centres de 7 franges brillantes vaut 12mm.

d) Déterminer l'écart entre les deux fentes.

IV L'effet photoélectrique (5+2+2+2+3=14 points)

Lorsqu'une plaque de zinc est éclairée par une lampe à vapeur de mercure, on peut faire les trois observations suivantes :

- Si la plaque de zinc possède une charge négative, la charge diminue.
- En interposant une plaque de verre entre la lampe et la plaque de zinc, l'effet n'est plus observé.
- Si la plaque possède une charge positive, l'effet n'est pas observé.
- a) Interpréter ces observations à l'aide du modèle corpusculaire de la lumière : hypothèse d'Einstein.
- b) Définir le travail d'extraction d'un électron et la fréquence seuil.

On éclaire une cathode qui est recouverte de l'un des métaux figurant dans le tableau ci-dessous avec une lumière monochromatique de longueur d'onde $\lambda = 280nm$.

Métal	Travail d'extraction en eV		
Co	3,90		
Al	4,08		
Pb	4,14		
Zn	4,31		
Fe	4,50		
Pt	6,35		

- c) Identifier les métaux pour lesquels l'effet photoélectrique pourra être observé.
- d) Déterminer le métal pour lequel la valeur de l'énergie cinétique des électrons émis donne une valeur maximale. Expliquer votre choix !
- e) Déterminer la valeur de cette énergie cinétique maximale ainsi que la vitesse des électrons émis.

Relevé des principales constantes physiques

Grandeur physique	Symbole	Valeur	Unité
	usuel	numérique	
Constante d'Avogadro	N _A (ou L)	$6,022\cdot10^{23}$	mol ⁻¹
Constante molaire des gaz parfaits	R	8,314	J K ⁻¹ mol ⁻¹
Constante de gravitation	K (ou G)	6,673-10 ⁻¹¹	$N m^2 kg^{-2}$
Constante électrique pour le vide	$k = \frac{1}{4\pi\varepsilon_0}$	8,988·10 ⁹	N m ² C ⁻²
Célérité de la lumière dans le vide	c	2,998·10 ⁸	m s ⁻¹
Perméabilité du vide	μ_0	$4\pi \cdot 10^{-7}$	H m ⁻¹
Permittivité du vide	$\varepsilon_0 = \frac{1}{\mu_0 c^2}$	8,854·10 ⁻¹²	F m ⁻¹
Charge élémentaire	е	1,602·10 ⁻¹⁹	С
Masse au repos de l'électron	m _e	9,1094·10 ⁻³¹ 5,4858·10 ⁻⁴ 0,5110	kg u MeV/c ²
Masse au repos du proton	m _p	1,6726·10 ⁻²⁷ 1,0073 938,27	kg u MeV/c ²
Masse au repos du neutron	m_n	1,6749·10 ⁻²⁷ 1,0087 939,57	kg u MeV/c ²
Masse au repos d'une particule α	m_{α}	6,6447·10 ⁻²⁷ 4,0015 3727,4	kg u MeV/c ²
Constante de Planck	h	6,626.10 ⁻³⁴	Js
Constante de Rydberg de l'atome d'hydrogène	R _H	1,097·10 ⁷	m ⁻¹
Rayon de Bohr	r ₁ (ou a ₀)	5,292·10 ⁻¹¹	m
Energie de l'atome d'hydrogène dans l'état fondamental	E ₁	-13,59	eV

Grandeurs liées à la Terre et au Soleil		Valeur utilisée sauf		
(elles peuvent dépendre du lieu ou du temps)		indication	indication contraire	
Composante horizontale du champ magnétique terrestre	B _h	2.10-5	Т	
Accélération de la pesanteur à la surface terrestre	g	9,81	m s ⁻²	
Rayon moyen de la Terre	R	6370	km	
Jour sidéral	Т	86164	S	
Masse de la Terre	M_{T}	$5,98 \cdot 10^{24}$	kg	
Masse du Soleil	M _S	$1,99 \cdot 10^{30}$	kg	

Conversion d'unités en usage avec le SI

1 angström = 1 $\overset{\circ}{A}$ = 10⁻¹⁰ m 1 électronvolt = 1 eV = 1,602·10⁻¹⁹ J 1 unité de masse atomique = 1 u = 1,6605·10⁻²⁷ kg = 931,49 MeV/c²