0.8512 n

011242 已知集合 $A = \{y | y = \sin x, x \in \mathbf{R}\},$ 集合 $B = \{y | y = \sqrt{x}, x \in \mathbf{R}\},$ 则 $A \cap B =$ _______

000356 若集合 $A = \{x | y^2 = x, y \in \mathbf{R}\}, B = \{y | y = \sin x, x \in \mathbf{R}\}, 则 A \cap B = _$

0.8662 r

$$011244$$
 已知关于 x,y 的二元一次方程组的增广矩阵为 $\begin{pmatrix} 2 & 1 & 5 \\ 1 & -2 & 0 \end{pmatrix}$,则 $xy =$ ______.

0.9903 r

011244 已知关于
$$x,y$$
 的二元一次方程组的增广矩阵为 $\begin{pmatrix} 2 & 1 & 5 \\ 1 & -2 & 0 \end{pmatrix}$, 则 $xy =$ ______.

000670 已知关于
$$x,y$$
 的二元一次方程组的增广矩阵为 $\begin{pmatrix} 2 & 1 & 5 \\ 1 & -2 & 0 \end{pmatrix}$, 则 $3x-y=$ ______

0.8601 r

$$011244$$
 已知关于 x,y 的二元一次方程组的增广矩阵为 $\begin{pmatrix} 2 & 1 & 5 \\ 1 & -2 & 0 \end{pmatrix}$, 则 $xy =$ ______.

$$000717$$
 已知一个关于 x,y 的二元一次方程组的增广矩阵是 $\begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & 2 \end{pmatrix}$,则 $x+y=$ _______.

0.8571 r

$$011244$$
 已知关于 x,y 的二元一次方程组的增广矩阵为 $\begin{pmatrix} 2 & 1 & 5 \\ 1 & -2 & 0 \end{pmatrix}$,则 $xy =$ _______

$$003792$$
 若关于 x,y 的二元线性方程组的增广矩阵为 $\begin{pmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{pmatrix}$,则 $x-y=$ ______.

0.8914 r

$$011244$$
 已知关于 x,y 的二元一次方程组的增广矩阵为 $\begin{pmatrix} 2 & 1 & 5 \\ 1 & -2 & 0 \end{pmatrix}$,则 $xy =$ ______.

$$003823$$
 已知关于 x,y 的二元一次方程组的增广矩阵为 $\begin{pmatrix} 2 & 3 & 1 \\ 1 & 1 & 2 \end{pmatrix}$,则 $D_x =$ _______.

0.8529 r

$$0.8529 ext{ r}$$
 $0.8529 ext{ r}$ 011247 已知实数 x 、 y 满足条件 $\begin{cases} x-y \geq 0, \\ y \geq 0, \\ x+y \leq 1, \end{cases}$ 则目标函数 $z=2x-y$ 的最大值为_____.
$$\begin{cases} 2x-y \leq 0, \\ x+y \leq 3, \\ x \geq 0, \end{cases}$$
 ,则 $2x+y$ 的最大值是_____.

$$000452$$
 如果实数 x 、 y 满足
$$\begin{cases} 2x-y\leq 0, \\ x+y\leq 3, \quad , \text{则 } 2x+y \text{ 的最大值是}____ \\ x\geq 0, \end{cases}$$

0.8625 r

$$011248$$
 方程 $(\log_3 x)^2 + \log_9 3x = 2$ 的解集为______.

```
000850 方程 \log_2(9^x + 7) = 2 + \log_2(3^x + 1) 的解为_____
```

 $0.8513 \; {\rm r}$

$$011248$$
 方程 $(\log_3 x)^2 + \log_9 3x = 2$ 的解集为_____.

$$004396$$
 方程 $1 + \log_2 x = \log_2(x^2 - 3)$ 的解为______

 $0.8611 \; \mathrm{r}$

$$011248$$
 方程 $(\log_3 x)^2 + \log_9 3x = 2$ 的解集为______.

$$004447$$
 方程 $\lg(2x+3) = 2 \lg x$ 的解为______

0.8555 r

$$011248$$
 方程 $(\log_3 x)^2 + \log_9 3x = 2$ 的解集为_____

$$004665$$
 方程 $\lg(x+2) = 2 \lg x$ 的解为_____

0.8736 r

$$011248$$
 方程 $(\log_3 x)^2 + \log_9 3x = 2$ 的解集为_____.

$$004689$$
 方程 $\log_3(x^2-1)=2+\log_3(x-1)$ 的解为 $x=$ ______

0.8652 r

$$011248$$
 方程 $(\log_3 x)^2 + \log_9 3x = 2$ 的解集为_____

$$005789$$
 方程 $\log_x(x^2 - x) = \log_x 2$ 的解为_____

0.8905 n

$$\begin{array}{ccc} 011264 & \lim_{n \to \infty} \frac{3^n - 1}{3^n + 1} = & \\ 000336 & \lim_{n \to \infty} \frac{2n - 5}{n + 1} = & \\ & & \end{array}.$$

$$000336 \lim_{n \to \infty} \frac{2n-5}{n+1} =$$

0.9120 n

$$011264 \lim_{n \to \infty} \frac{3^n - 1}{3^n + 1} = \underline{\hspace{1cm}}.$$

$$000376 \lim_{n \to \infty} \frac{2n + 3}{n + 1} = \underline{\hspace{1cm}}.$$

$$000376 \lim_{n \to \infty} \frac{2n+3}{n+1} =$$

 $0.8927~\mathrm{n}$

011264
$$\lim_{n\to\infty} \frac{3^n-1}{3^n+1} =$$
_____.
000516 计算: $\lim_{n\to\infty} (1-\frac{n}{n+1}) =$ ____.

000516 计算:
$$\lim_{n \to \infty} (1 - \frac{n}{n+1}) = \underline{\hspace{1cm}}$$

0.8887 n

011264
$$\lim_{n\to\infty} \frac{3^n-1}{3^n+1} =$$
______.
000546 计算: $\lim_{n\to\infty} \frac{2n}{3n-1} =$ ______.

000546 计算:
$$\lim_{n\to\infty} \frac{2n}{3n-1} =$$

 $0.9825 \ r$

$$011264 \lim_{n \to \infty} \frac{3^n - 1}{3^n + 1} = \underline{\hspace{1cm}}.$$

$$000588 \lim_{n \to \infty} \frac{3^n - 1}{3^{n+1} + 1} = \underline{\hspace{1cm}}.$$

$$000588 \lim_{n \to \infty} \frac{3^n - 1}{3^{n+1} + 1} =$$

 $0.8511 \ n$

$$011264 \lim_{n \to \infty} \frac{3^n - 1}{3^n + 1} = \underline{\hspace{1cm}}$$

011264
$$\lim_{n\to\infty} \frac{3^n-1}{3^n+1} =$$
______.
000606 计算: $\lim_{n\to\infty} (1+\frac{1}{n})^3 =$ _____.

 $0.8702 \ r$

011264
$$\lim_{n \to \infty} \frac{3^n - 1}{3^n + 1} =$$
______.
000679 $\lim_{n \to \infty} \frac{2^{n+1} + 3^{n+1}}{2^n + 3^n} =$ ______.

$$0.9424~{\rm n}$$

$$0.3424 \text{ II}$$

$$011264 \lim_{n \to \infty} \frac{3^n - 1}{3^n + 1} = \underline{\qquad}$$

$$000796 \lim_{n \to \infty} \frac{2n + 1}{n - 1} = \underline{\qquad}$$

$$000796 \lim_{n\to\infty} \frac{2n+1}{n-1} =$$

 $0.8802 \ n$

$$011264 \lim_{n \to \infty} \frac{3^n - 1}{3^n + 1} = \underbrace{\qquad \qquad }_{2n}$$

$$000827$$
 计算: $\lim_{n\to\infty} \frac{2n}{4n+1} =$ _______.

0.8528 n

$$011264 \lim_{n \to \infty} \frac{3^n - 1}{3^n + 1} = \underline{\hspace{1cm}}.$$

011264
$$\lim_{n \to \infty} \frac{3^n - 1}{3^n + 1} = _____.$$
000870 计算 $\lim_{n \to \infty} \frac{1 + 2 + 3 + \dots + n}{n^2 + 1} = _____.$

 $0.8811~\mathrm{r}$

000943 计算:
$$\lim_{n \to \infty} \frac{3^n + 1}{3^{n+1} + 2^n} = \underline{\hspace{1cm}}$$

0.9192 n

$$011264 \lim_{n \to \infty} \frac{3^n - 1}{3^n + 1} = \underbrace{\qquad \qquad }_{n+1}$$

$$n \to \infty$$
 $3^n + 1$
003611 计算: $\lim_{n \to \infty} \frac{n+1}{3n-1} =$ ______

0.8643 r

$$011264 \lim_{n \to \infty} \frac{3^n - 1}{3^n + 1} = \underline{\qquad}.$$

 $0.9121 \ n$

$$\begin{array}{ccc} 011264 & \lim_{n \to \infty} \frac{3^n - 1}{3^n + 1} = & \\ 004513 & \lim_{n \to \infty} \frac{2n}{3n^2 + 1} = & \\ & & \end{array}.$$

$$004513 \lim_{n\to\infty} \frac{2n}{3n^2+1} =$$

 $0.8702 \; \mathrm{r}$

$$011264 \lim_{n \to \infty} \frac{3^n - 1}{3^n + 1} = \underline{\qquad}.$$

$$004748 \lim_{n \to \infty} \frac{2^{n+1} + 3^n}{2^n + 3^{n+1}} = \underline{\qquad}.$$

$$004748 \lim_{n \to \infty} \frac{2^{n+1} + 3^n}{2^n + 3^{n+1}} = \underline{\hspace{1cm}}$$

0.8657 n

$$011264 \lim_{n \to \infty} \frac{3^n - 1}{3^n + 1} = \underline{\qquad}.$$

$$006863 \lim_{n \to \infty} \frac{1}{n^2 - n\sqrt{n^2 + 1}} = \underline{\qquad}.$$

$$006863 \lim_{n\to\infty} \frac{1}{n^2 - n\sqrt{n^2 + 1}} =$$

 $0.8753 \; {\rm r}$

$$006878 \lim_{n \to \infty} \frac{2^{2n-1} + 1}{4^n - 3^n} = \underline{\hspace{1cm}}$$

 $0.8757 \; r$

$$011264 \lim_{n \to \infty} \frac{3^n - 1}{3^n + 1} = \underline{\hspace{1cm}}.$$

```
008500 计算: \lim_{n\to\infty} \frac{3^n-4^n}{3^{n+1}+4^{n+1}} = \frac{1}{2^n}
```

0.9419 n

0.9419 n
$$011264 \lim_{n \to \infty} \frac{3^n - 1}{3^n + 1} = \underline{\qquad}.$$

$$008671 \lim_{n \to \infty} \frac{1 + (-1)^n}{n} = \underline{\qquad}.$$

$$008671 \lim_{n \to \infty} \frac{1 + (-1)^n}{n} = \underline{\hspace{1cm}}$$

 $0.8576 \ n$

$$011264 \lim_{n \to \infty} \frac{3^n - 1}{3^n + 1} = \underline{\qquad}$$

011055 计算:
$$\lim_{n \to \infty} \frac{|4n - 23|}{2n} =$$
______.

0.9877 s

011268 设复数
$$z=\begin{vmatrix}\cos\alpha & \mathrm{i}\\\sin\alpha & \sqrt{2}+\mathrm{i}\end{vmatrix}$$
 (i 为虚数单位),若 $|z|=\sqrt{2}$,则 $\tan2\alpha=$ _____.

$$004273$$
 设复数 $z=\begin{vmatrix}\cos \alpha & \mathrm{i} \\ \sin \alpha & \sqrt{2}+\mathrm{i}\end{vmatrix}$ (i 为虚数单位),若 $|z|=\sqrt{2}$,则 $\tan 2\alpha =$ ______

0.8682 r

011275 设 $x \in \mathbf{R}$, 则 "x > 3" 是 " $x^2 > 9$ " 的 (

A. 充分非必要条件

B. 必要非充分条件

C. 充要条件

D. 既非充分条件又非必要条件

004365 已知 $x \in \mathbf{R}$, 则"x > 0" 是"x > 1" 的 (

A. 充分非必要条件

B. 必要非充分条件

C. 充要条件

D. 既非充分又非必要条件

0.9132 r

011284 设集合 $A = \{1, 2, 3, 4\}$, 集合 $B = \{1, 3, 5, 7\}$, 则 $A \cap B =$

003673 已知集合
$$A = \{1, 2, 3, 4\}, B = \{3, 4, 5\}, 则 A \cap B = _$$

 $0.9132 \ r$

011284 设集合
$$A = \{1, 2, 3, 4\}$$
, 集合 $B = \{1, 3, 5, 7\}$, 则 $A \cap B =$ ______

011134 已知集合
$$A = \{1, 2, 3, 4\}$$
, 集合 $B = \{4, 5\}$, 则 $A \cap B =$ ______.

 $0.8521 \ r$

0.8636 r

$$011286$$
 函数 $y = \frac{\cos^2 x + 1}{2}$ 的最小正周期为______.

$$008334$$
 函数 $y = 2\cos^2(2x + \frac{\pi}{3})$ 的最小正周期是_____

 $0.8781 \; \mathrm{r}$

$$011286$$
 函数 $y = \frac{\cos^2 x + 1}{2}$ 的最小正周期为______.

```
011135 函数 y = 2\cos^2 x - 1 的最小正周期为_
0.8522 \text{ r}
0.8887 r
011305 已知集合 U = \{-1,0,1,2,3\}, A = \{-1,0,2\}, 则 \overline{A} = \underline{\hspace{1cm}}.
 000716 已知集合 U = \{-1, 0, 1, 2, -3\}, A = \{-1, 0, 2\}, 则 <math>C_U A = \underline{\hspace{1cm}}
0.9736~\mathrm{s}
011306 已知一个关于 x、y 的二元一次方程组的增广矩阵是 \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & 2 \end{pmatrix},则 x+y=_______000579 已知一个关于 x, y 的二元一次方程组的增广矩阵是 \begin{pmatrix} 1 & -1 & 2 \\ 0 & 1 & 2 \end{pmatrix},则 x+y=_______.
0.9905 \ s
1.0000 \ s
011307 i 是虚数单位, 若复数 (1-2i)(a+i) 是纯虚数, 则实数 a 的值为_
000718 i 是虚数单位, 若复数 (1-2i)(a+i) 是纯虚数, 则实数 a 的值为____
0.9598 \mathrm{\ s}
0.9307 s 011311 已知椭圆 \frac{x^2}{a^2}+y^2=1 (a>0) 的左右焦点分别为 F_1、F_2,抛物线 y^2=2x 的焦点为 F,若 F_2,则 a=_______. 000723 已知椭圆 \frac{x^2}{a^2}+y^2=1 (a>0) 的焦点 F_1、F_2,抛物线 y^2=2x 的焦点为 F,若 \overrightarrow{F_1F}=3\overrightarrow{FF_2},则
0.9307 \text{ s}
```

 $1.0000 \ s$

011316 在数列 $\{a_n\}$ 中, $a_1=3$, $a_{n+1}=1+a_1\cdot a_2\cdot a_3\cdots a_n$, 记 T_n 为数列 $\{\frac{1}{a_n}\}$ 的前 n 项和, 则 $\lim_{n\to\infty} T_n = \underline{\hspace{1cm}}$

004280 在数列 $\{a_n\}$ 中, $a_1=3$, $a_{n+1}=1+a_1\cdot a_2\cdot a_3\cdots a_n$, 记 T_n 为数列 $\{\frac{1}{a_n}\}$ 的前 n 项和, 则 $\lim_{n\to\infty} T_n = \underline{}$

0.8906 r

011326 行列式
$$\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix}$$
 的值为______.

$$011326$$
 行列式 $egin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ 的值为______. 003652 行列式 $egin{bmatrix} 4 & 1 \\ 2 & 5 \end{bmatrix}$ 的值为______.

 $0.8830 \ r$

011327 设集合
$$A = \{x|y = \sqrt{x-1}, \ x \in \mathbf{R}\}, \ B = \{y|y = \sqrt{1-x^2}, \ x \in \mathbf{R}\}, \$$
则 $A \cap B =$ ______.

000910 若集合
$$A = \{x | y = \sqrt{x-1}, x \in \mathbf{R}\}, B = \{x | |x| \le 1, x \in \mathbf{R}\}, 则 A \cap B = \underline{\hspace{1cm}}$$
.

 $1.0000 \ s$

$$011328$$
 若函数 $f(x)=1+rac{1}{x}(x>0)$ 的反函数为 $f^{-1}(x)$,则不等式 $f^{-1}(x)>2$ 的解集为_______. 000911 若函数 $f(x)=1+rac{1}{x}(x>0)$ 的反函数为 $f^{-1}(x)$,则不等式 $f^{-1}(x)>2$ 的解集为______.

000911 若函数
$$f(x) = 1 + \frac{1}{x}(x > 0)$$
 的反函数为 $f^{-1}(x)$, 则不等式 $f^{-1}(x) > 2$ 的解集为______.

 $0.8612~\mathrm{s}$

$$011329$$
 已知常数 $a>0$, 双曲线 $4x^2-y^2=1$ 的一条渐近线与直线 $ax+y+1=0$ 垂直, 则 $a=$ ______

000956 双曲线
$$4x^2 - y^2 = 1$$
 的一条渐近线与直线 $tx + y + 1 = 0$ 垂直, 则 $t =$ ______.

0.8818 s

011332 在一个水平放置的底面半径为 $\sqrt{3}$ 的的圆柱形量杯中装有适量的水, 现放入一个半径为 R 的实心铁 球, 球完全浸没入水中且无水溢出. 若水面上升高度也为 R, 则 $R = _$

000959 在一个水平放置的底面半径为 $\sqrt{3}$ 的圆柱形量杯中装有适量的水, 现放入一个半径为 R 的实心铁 球, 球完全浸没于水中且无水溢出, 若水面高度恰好上升 R, 则 R=_

 $0.9223 \ s$

011334 在平面直角坐标系 xOy 中,将点 A(2,1) 绕原点 O 逆时针旋转 $\frac{\pi}{4}$ 到点 B. 设直线 OB 的倾斜角为 α , $\mathbf{M} \cos \alpha = \underline{}$

000960 在平面直角坐标系 xOy 中,将点 A(2,1) 绕原点 O 逆时针旋转 $\frac{\pi}{4}$ 到点 B, 若直线 OB 的倾斜角为 α , 则 $\cos \alpha$ 的值为___

0.8588 r

$$011347 (x^2 + \frac{1}{x})^8$$
 的展开式中 x^4 项的系数是______.

$$011347~(x^2+rac{1}{x})^8$$
 的展开式中 x^4 项的系数是______.
$$004127~在~(x^2+rac{2}{x})^7~$$
的二项展开式中, x^2 的系数为______.

1.0000 s

$$011368$$
 已知集合 $A = \{1, 2, m\}, B = \{2, 4\}, 若 A \cup B = \{1, 2, 3, 4\},$ 则实数 $m =$ _____.

0.8501

```
011368 已知集合 A = \{1, 2, m\}, B = \{2, 4\}, 若 A \cup B = \{1, 2, 3, 4\}, 则实数 m = \_
```

$$011112$$
 已知集合 $A = \{1, 2, m\}, B = \{3, 4\}, 若 A \cap B = \{4\}, 则实数 $m =$ _______$

 $1.0000 \ s$

$$011369 (x + \frac{1}{x})^n$$
 的展开式中的第 3 项为常数项, 则正整数 $n =$ ______.

$$000837 (x + \frac{1}{x})^n$$
 的展开式中的第 3 项为常数项, 则正整数 $n =$ ______

 $0.9142 \ r$

$$011370$$
 已知复数 z 满足 $z^2 = 4 + 3i(i$ 为虚数单位), 则 $|z| =$ ______

$$000687$$
 已知复数 z 满足 $(2-3i)z=3+2i(i$ 为虚数单位), 则 $|z|=$ ________

 $1.0000 \ s$

$$011370$$
 已知复数 z 满足 $z^2 = 4 + 3i(i 为虚数单位), 则 $|z| =$ ______$

000838 已知复数
$$z$$
 满足 $z^2 = 4 + 3i(i 为虚数单位), 则 $|z| =$ ______$

 $0.9261 {\rm \ r}$

011370 已知复数
$$z$$
 满足 $z^2 = 4 + 3i(i 为虚数单位), 则 |z| = ________$

$$003612$$
 已知复数 $z = 1 - 2i(i 为虚数单位)$, 则 $|z| = _____.$

 $0.8523 \ r$

$$011370$$
 已知复数 z 满足 $z^2 = 4 + 3i(i 为虚数单位), 则 $|z| =$ _______$

$$004101$$
 已知复数 z 满足 $z = 3 - i(i 为虚数单位), 则 $z \cdot \overline{z} =$ ______$

0.8712 n

$$011371 \lim_{n \to \infty} \frac{2^{n+1} + 3^{n+1}}{2^{n} + 3^{n}} = \underline{\qquad}$$

$$000376 \lim_{n \to \infty} \frac{2n+3}{n+1} = \underline{\qquad}.$$

 $0.8617 \; \mathrm{r}$

$$011371 \lim_{n \to \infty} \frac{2^{n+1} + 3^{n+1}}{2^n + 3^n} = \underline{\qquad}$$

$$000588 \lim_{n \to \infty} \frac{3^n - 1}{3^{n+1} + 1} = \underline{\qquad}.$$

 $1.0000 \ s$

$$000679 \lim_{n \to \infty} \frac{2^{n+1} + 3^{n+1}}{2^n + 3^n} = \underline{\hspace{1cm}}$$

 $0.8729 \ n$

011371
$$\lim_{n \to \infty} \frac{2^{n+1} + 3^{n+1}}{2^n + 3^n} = \underline{\qquad}$$

000796 $\lim_{n \to \infty} \frac{2n + 1}{n - 1} = \underline{\qquad}$

$$000796 \lim_{n \to \infty} \frac{2n+1}{n-1} =$$
______.

0.8839 r

$$011371 \lim_{n \to \infty} \frac{2^{n+1} + 3^{n+1}}{2^n + 3^n} = \underline{\qquad}.$$

$$n \to \infty$$
 $2^n + 3^n + 1$ 000943 计算: $\lim_{n \to \infty} \frac{3^n + 1}{3^{n+1} + 2^n} = \underline{\hspace{1cm}}$

0.8867 r

$$011371 \lim_{n \to \infty} \frac{2^{n+1} + 3^{n+1}}{2^n + 3^n} = \underline{\hspace{1cm}}.$$

$$\begin{array}{lll} 004491 & \lim_{n \to \infty} \frac{3^{n+1}+1}{2^{n}} = & \\ 0.8654 & n & \\ 011371 & \lim_{n \to \infty} \frac{2^{n+1}+3^{n+1}}{2^{n}+3^{n}} = & \\ 0.8601 & n & \\ 011371 & \lim_{n \to \infty} \frac{2^{n+1}+3^{n+1}}{2^{n}+3^{n}} = & \\ 0.8601 & n & \\ 00453 & \text{iff} & \lim_{n \to \infty} \frac{2^{n+1}+3^{n+1}}{2^{n}+3^{n}} = & \\ 0.9659 & r & \\ 011371 & \lim_{n \to \infty} \frac{2^{n+1}+3^{n+1}}{2^{n}+3^{n}} = & \\ 0.9659 & r & \\ 011371 & \lim_{n \to \infty} \frac{2^{n+1}+3^{n+1}}{2^{n}+3^{n}} = & \\ 0.9659 & r & \\ 011371 & \lim_{n \to \infty} \frac{2^{n+1}+3^{n+1}}{2^{n}+3^{n}} = & \\ 0.8775 & r & \\ 011371 & \lim_{n \to \infty} \frac{2^{n+1}+3^{n+1}}{2^{n}+3^{n}} = & \\ 0.8588 & n & \\ 011371 & \lim_{n \to \infty} \frac{2^{n+1}+3^{n+1}}{2^{n}+3^{n}} = & \\ 0.8537 & r & \\ 011371 & \lim_{n \to \infty} \frac{2^{n+1}+3^{n+1}}{2^{n}+3^{n}} = & \\ 0.8737 & r & \\ 011371 & \lim_{n \to \infty} \frac{2^{n+1}+3^{n+1}}{3^{n+1}+4^{n+1}} = & \\ 0.8500 & \text{iff} & \lim_{n \to \infty} \frac{2^{n+1}+3^{n+1}}{3^{n+1}+4^{n+1}} = & \\ 0.00500 & \text{iff} & \lim_{n \to \infty} \frac{2^{n+1}+3^{n+1}}{3^{n+1}+4^{n+1}} = & \\ 0.00680 & \text{fight olymin R} \\ & & \text{Empths olymin R} \\ & & \text{Empths olymin R} \\ & & \text{Empths olymin R} \\ & & \text{C} \\ &$$

则 z = -2x + y 的取值范围为_ 004753 设变量 x、y 满足条件 0.9972 s011374 直线 0.8585 r(θ 为参数) 的公共点的个数是 $1.0000 \ s$ 011375 若 $f(x) = x^{\frac{1}{3}} - x^{-\frac{1}{2}}$, 则满足 f(x) > 0 的 x 的取值范围是 000684 若 $f(x) = x^{\frac{1}{3}} - x^{-\frac{1}{2}}$, 则满足 f(x) > 0 的 x 的取值范围是 $1.0000 \ s$ 011376 某商场举行购物抽奖促销活动, 规定每位顾客从装有编号为 0、1、2、3 的四个相同小球的抽奖箱 中, 每次取出一球记下编号后放回, 连续取两次, 若取出的两个小球编号相加之和等于 6, 则中一等奖, 等于 5 中 二等奖, 等于 4 或 3 中三等奖. 则顾客抽奖中三等奖的概率为____ 000844 某商场举行购物抽奖促销活动, 规定每位顾客从装有编号为 0、1、2、3 的四个相同小球的抽奖箱 中, 每次取出一球记下编号后放回, 连续取两次, 若取出的两个小球编号相加之和等于 6, 则中一等奖, 等于 5 中 二等奖,等于4或3中三等奖.则顾客抽奖中三等奖的概率为__ 1.0000 s011377 已知函数 $f(x) = \lg(\sqrt{x^2 + 1} + ax)$ 的定义域为 R, 则实数 a 的取值范围是_ 000845 已知函数 $f(x) = \lg(\sqrt{x^2 + 1} + ax)$ 的定义域为 R, 则实数 a 的取值范围是 $1.0000 \ s$ 011389 不等式 |1-x| > 1 的解集是_ 000757 不等式 |1-x| > 1 的解集是 0.8603 r011389 不等式 |1-x| > 1 的解集是 000816 不等式 |x-3| < 2 的解集为 0.8676 r011389 不等式 |1-x| > 1 的解集是

```
002793 不等式 2 < |x+1| < 3 的解集是_
0.9096 n
011389 不等式 |1-x| > 1 的解集是
002794 不等式 |x-2| > 9x 的解集是
1.0000 \ s
011389 不等式 |1-x| > 1 的解集是_
004312 不等式 |1-x| > 1 的解集是_
0.9012 r
011389 不等式 |1-x| > 1 的解集是
011029 不等式 |3x-2| < 1 的解集是_
1.0000 \ s
011390 若函数 f(x) = \sqrt{8 - ax - 2x^2} 是偶函数, 则该函数的定义域是
000758 若函数 f(x) = \sqrt{8 - ax - 2x^2} 是偶函数, 则该函数的定义域是
0.9341 r
\begin{array}{l} 011391 \ \hbox{ Z is } \alpha = \frac{1}{3}, \ \hbox{ y } \cos(\alpha - \frac{\pi}{2}) = \_\_\_. \\ 000587 \ \hbox{ L 知 } \sin\alpha = \frac{4}{5}, \ \hbox{ y } \cos(\alpha + \frac{\pi}{2}) = \_\_\_. \end{array}
1.0000 \ s
\begin{array}{l} 011391 \ \hbox{ \hbox{$\not$ $z$}} \sin \alpha = \frac{1}{3}, \ \hbox{$\not$ $\bigcup$}} \ \cos (\alpha - \frac{\pi}{2}) = \__. \\ 000818 \ \hbox{ $\not$ $z$} \sin \alpha = \frac{1}{3}, \ \hbox{$\not$ $\bigcup$}} \ \cos (\alpha - \frac{\pi}{2}) = \__. \\ \end{array} .
0.8536 r
\begin{array}{l} 011391 \ \hbox{ \hbox{$\vec{z}$}} \ \sin\alpha = \frac{1}{3}, \ \hbox{$\vec{M}$} \ \cos(\alpha - \frac{\pi}{2}) = \__. \\ 004122 \ \hbox{$\vec{z}$} \ \sin\alpha = \frac{1}{4}, \ \hbox{$\vec{M}$} \ \sin(\pi + \alpha) = \__. \end{array}.
0.8859 \ n
011391 若 \sin \alpha = \frac{1}{3},则 \cos(\alpha - \frac{\pi}{2}) =______.
011009 若 \sin \alpha = \frac{1}{3},则 \sin(\frac{\pi}{2} - 2\alpha) =_____.
1.0000 \ s
\overrightarrow{O11392} 已知两个不同向量 \overrightarrow{OA} = (1, m), \overrightarrow{OB} = (m - 1, 2), 若 \overrightarrow{OA} \perp \overrightarrow{AB}, 则实数 <math>m = 0
000819 已知两个不同向量 \overrightarrow{OA} = (1, m), \overrightarrow{OB} = (m - 1, 2),  若 \overrightarrow{OA} \perp \overrightarrow{AB},  则实数 m =
1.0000 \ s
011393 在等比数列 \{a_n\} 中, 公比 q=2, 前 n 项和为 S_n, 若 S_5=1, 则 S_{10}=______.
000820 在等比数列 \{a_n\} 中, 公比 q=2, 前 n 项和为 S_n, 若 S_5=1, 则 S_{10}=______.
0.8991 s
011394 若 x、y 满足 \begin{cases} x \le 2, \\ x - y + 1 \ge 0, & \text{则 } z = 2x - y \text{ 的最小值为} \\ x + y - 2 \ge 0, \end{cases}
```

 $\begin{cases} x \leq 2, \\ x - y + 1 \geq 0, & \text{则 } z = 2x - y \text{ 的最小值为} \\ x + y - 2 \geq 0, \end{cases}$ 0.8899 r $\begin{cases} x \leq 2, \\ x - y + 1 \geq 0, & \text{则 } z = 2x - y \text{ 的最小值为} \\ x + y - 2 \geq 0, \end{cases}$ $\begin{cases} x \leq 2, \\ x - y + 1 \geq 0, & \text{则 } z = 2x - y \text{ 的最小值为} \\ x + y - 2 \geq 0, \end{cases}$ $\begin{cases} x \geq 1, \\ x - y + 2 \leq 0, & \text{则 } z = -2x + y \text{ 的取值范围为} \\ x + y - 7 \leq 0, \end{cases}$ 0.9248 s011395 已知圆 $C: (x-4)^2 + (y-3)^2 = 4$ 和两点 A(-m,0), B(m,0), m > 0, 若圆 C 上至少存在一点 P, 使得 $\angle APB = 90^{\circ}$, 则 m 的取值范围是____ 000652 已知圆 $C: (x-4)^2 + (y-3)^2 = 4$ 和两点 A(-m,0), B(m,0)(m>0), 若圆 C 上至少存在一点 P, 使得 $\angle APB = 90^{\circ}$, 则 m 的取值范围是____ 0.9907 s $011396~(1+rac{1}{x^2})(1+x)^6$ 展开式中 x^2 项的系数为_______. $000823~(1+rac{1}{x^2})(1+x)^6~$ 展开式中 x^2 的系数为______. 0.9288 s011398 已知 f(x) 是定义在 [-2,2] 上的奇函数, 当 $x \in (0,2]$ 时, $f(x) = 2^x - 1$, 函数 $g(x) = x^2 - 2x + m$, 如果对于任意的 $x_1 \in [-2,2]$, 总存在 $x_2 \in [-2,2]$, 使得 $f(x_1) \leq g(x_2)$, 则实数 m 的取值范围是______. 000824 已知 f(x) 是定义在 [-2,2] 上的奇函数, 当 $x \in (0,2]$ 时, $f(x) = 2^x - 1$, 函数 $g(x) = x^2 - 2x + m$. 如果对于任意的 $x_1 \in [-2,2]$, 总存在 $x_2 \in [-2,2]$, 使得 $f(x_1) \leq g(x_2)$, 则实数 m 的取值范围是____ $1.0000 \ s$ 011399 已知曲线 $C:y=-\sqrt{9-x^2},$ 直线 l:y=2, 若对于点 A(0,m), 存在 C 上的点 P 和 l 上的点 Q, 使 得 $\overrightarrow{AP} + \overrightarrow{AQ} = \overrightarrow{0}$, 则 m 取值范围是______. 000825 已知曲线 $C:y=-\sqrt{9-x^2},$ 直线 l:y=2, 若对于点 A(0,m), 存在 C 上的点 P 和 l 上的点 Q, 使 得 $\overrightarrow{AP} + \overrightarrow{AQ} = \overrightarrow{0}$, 则 m 取值范围是______. 0.8747 r011411 已知复数 z 满足 zi = 2 + i(i 为虚数单位), 则 Im<math>z =______. 000469 若复数 z 满足 iz = 1 + i(i 为虚数单位), 则 <math>z = 1 + i(i + i) $0.8721~\mathrm{n}$ 011411 已知复数 z 满足 zi = 2 + i(i 为虚数单位), 则 Imz =_____. 000777 若复数 z 满足 z(1-i) = 2i(i 是虚数单位), 则 |z| = 1.

0.8699 n

011411 已知复数 z 满足 zi = 2 + i(i 为虚数单位), 则 Im<math>z = ...

003656 已知复数 z 满足 (1+i)z = 1 - 7i(i 是虚数单位), 则 |z| =

0.9362 n

011411 已知复数 z 满足 zi = 2 + i(i) 为虚数单位), 则 $Imz = _____.$

010987 已知复数 z 满足 zi = 2 + i(i 为虚数单位), 则 <math>z =____

0.8729 r

011412 若函数 $f(x) = 2^x + 1$ 的图像与 y = g(x) 的图像关于直线 y = x 对称, 则 g(3) =______.

000634 若函数 $f(x) = 4^x + 2^{x+1}$ 的图像与函数 y = g(x) 的图像关于直线 y = x 对称, 则 g(3) =______.

0.8962 r

011412 若函数 $f(x) = 2^x + 1$ 的图像与 y = g(x) 的图像关于直线 y = x 对称, 则 g(3) =_____.

010988 若函数 $f(x) = 2^x + 1$ 的图像与 g(x) 的图像关于直线 y = x 对称, 则 g(9) =______.

0.9051 r

011413 若 $\tan(\alpha - \frac{\pi}{4}) = -3$,则 $\tan(\pi - \alpha) =$ ______.
010989 若 $\tan(\alpha + \frac{\pi}{4}) = -3$,则 $\tan\alpha =$ _____.

0.8697 r

011414 如图, 正四棱柱 $ABCD - A_1B_1C_1D_1$ 的底面边长为 3, 高为 4, 则异面直线 AA_1 与 BD_1 所成角的 大小是

010991 如图, 已知正四棱柱 $ABCD - A_1B_1C_1D_1$ 的底面边长为 2, 高为 3, 则异面直线 AA_1 与 BD_1 所成 角的大小是_____

0.9570 r

011415 在 $(1-2x)^6$ 的二项展开式中, x^3 项的系数为_____.

004686 在 $(1+2x)^6$ 的二项展开式中, x^2 项的系数为_____.

0.9140 r

011415 在 $(1-2x)^6$ 的二项展开式中, x^3 项的系数为______ $004727 (1+2x)^{10}$ 的二项展开式中, x^2 项的系数为 0.8938 r011415 在 $(1-2x)^6$ 的二项展开式中, x^3 项的系数为 . 004747 在 $(1+2x)^6$ 的二项展开式中, x^5 项的系数为 $0.9537 \ s$ 011415 在 $(1-2x)^6$ 的二项展开式中, x^3 项的系数为 . 010990 在 $(1-2x)^6$ 的二项展开式中, x^3 项的系数为______. (用数字作答) 0.9724 r011416 新冠病毒爆发初期, 全国支援武汉的活动中, 需要从 A 医院某科室的 7 名男医生 (含一名主任医师)、 5 名女医生 (含一名主任医师) 中分别选派 3 名男医生和 2 名女医生, 要求至少有一名主任医师参加, 则不同的 选派方案共有_____种. 010992 新冠病毒爆发初期, 全国支援武汉的活动中, 需要从 A 医院某科室的 6 名男医生 (含一名主任医师)、 4 名女医生 (含一名主任医师) 中分别选派 3 名男医生和 2 名女医生, 要求至少有一名主任医师参加, 则不同的 选派方案共有______ 种. (用数字作答) $1.0000 \ s$ 011417 设 $k \in \{-2,-1,\frac{1}{3},\frac{2}{3},2\}$,若对任意 $x \in (-1,0) \cup (0,1)$,都成立 $x^k > \|x\|$,则 k 取值的集合 是 010993 设 $k \in \{-2, -1, \frac{1}{3}, \frac{2}{3}, 2\}$,若对任意 $x \in (-1, 0) \cup (0, 1)$,都成立 $x^k > |x|$,则 k 取值的集合 是 0.8712 r011418 若关于 x,y 的线性方程组 $\begin{cases} a_1x+b_1y=c_1, & \text{ 的增广矩阵是 } \begin{pmatrix} m & 1 & 3 \\ 0 & 2 & n \end{pmatrix}, \text{ 且 } \begin{cases} x=-1, & \text{ 是该 } \\ y=1 \end{cases}$ 是该 $\begin{vmatrix} -1 & 0 & 1 \\ 0 & 3 & m \end{vmatrix}$ | 中第 3 行第 2 列的元素的代数余子式的值是______. 线性方程组的解,则三阶行列式 010971 若关于 x、y 的二元一次线性方程组 $\begin{cases} a_1x+b_1y=c_1 & \text{ 的增广矩阵是 } \begin{pmatrix} m & 1 & 3 \\ 0 & 2 & n \end{pmatrix}, \ \mathbb{E} \begin{cases} x=1 \\ y=-1 \end{cases}$ 是该线性方程组的解, 则三阶行列式 $ig|_0$ 3 m 中第 3 行第 2 列元素的代数余子式的值是_____ 0.9230 r011431 集合 $A = \{x | 0 < x < 3\}, B = \{x | |x| < 2\}, 则 A \cap B =$

000547 已知集合 $A = \{x | 0 < x < 3\}, B = \{x | x^2 > 4\}, 则 A \cap B =$

 $0.8761 {\rm \ r}$

- 011431 集合 $A = \{x | 0 < x < 3\}, B = \{x | |x| < 2\}, 则 A \cap B = _____.$
- 若集合 $A = \{x|3x+1>0\}, B = \{x||x-1|<2\}, 则 A \cap B=$
- 0.9487 r
- 函数 $y = x^{-\frac{1}{2}}$ 的定义域是_____.
- 函数 $y = x^{-\frac{3}{2}}$ 的定义域为_____.
- 0.8505 n
- 函数 $y = x^{-\frac{1}{2}}$ 的定义域是_____
- 002993 函数 $y = \frac{3^x 1}{3^x 2}$ 的值域是_____
- 0.8544 n
- 函数 $y = x^{-\frac{1}{2}}$ 的定义域是______
- 函数 $y = (\frac{1}{2})^{x^2 x}$ 的值域是_____
- 0.8505 n
- 函数 $y = x^{-\frac{1}{2}}$ 的定义域是_____.
- 函数 $f(x) = \sqrt{1 \frac{2}{x}}$ 的定义域是______
- $0.9095 \ s$
- 函数 $y = x^{-\frac{1}{2}}$ 的定义域是_____.
- 函数 $f(x) = x^{-\frac{1}{2}}$ 的定义域为_____
- $0.9358 \ s$
- 函数 $y = x^{-\frac{1}{2}}$ 的定义域是______.
- 函数 $f(x) = x^{-\frac{1}{2}}$ 的定义域是______
- 0.8783 n
- 函数 $y = x^{-\frac{1}{2}}$ 的定义域是______.
- 函数 $y = \frac{1}{|x| x^2}$ 的定义域为______.
- 0.8718 n
- 函数 $y = x^{-\frac{1}{2}}$ 的定义域是______
- 函数 $y = 1 \frac{1}{x+2}$ 的值域为______.
- $0.8572~\mathrm{r}$
- 函数 $y = x^{-\frac{1}{2}}$ 的定义域是______.
- $0.8520~\mathrm{n}$
- 函数 $y = x^{-\frac{1}{2}}$ 的定义域是_____
- 函数 $y = \lg(x-1) + \frac{1}{\sqrt{2-x}}$ 的定义域是______
- $0.8832~\mathrm{r}$
- 函数 $y = x^{-\frac{1}{2}}$ 的定义域是
- 函数 $f(x) = x^{-\frac{2}{3}}$ 的定义域为_____.

0.9156 r

$$011434$$
 已知线性方程组的增广矩阵为 $\begin{pmatrix} 1 & 1 & 3 \\ a & 0 & 2 \end{pmatrix}$,若该线性方程组的解为 $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$,则实数 $a =$ ______.

$$000869$$
 已知线性方程组的增广矩阵为 $\begin{pmatrix} 1 & -1 & 3 \\ a & 3 & 4 \end{pmatrix}$,若该线性方程组的解为 $\begin{pmatrix} -1 \\ 2 \end{pmatrix}$,则实数 $a =$ _______

 $0.8760 \ r$

011435 已知函数
$$f(x) = \begin{vmatrix} 2^x & 1 \\ 1 & 1 \end{vmatrix}$$
,则 $f^{-1}(0) =$ ______.

000934 已知函数
$$f(x) = \begin{vmatrix} \log_3 x & 1 \\ 2 & 1 \end{vmatrix}$$
,则 $f^{-1}(0) = \underline{\qquad}$

0.9054 r

011435 已知函数
$$f(x) = \begin{vmatrix} 2^x & 1 \\ 1 & 1 \end{vmatrix}$$
,则 $f^{-1}(0) =$ ______.

003721 已知函数
$$f(x) = \begin{vmatrix} 1 & 1 \\ 1 & \log_2 x \end{vmatrix}$$
,则 $f^{-1}(1) = \underline{\hspace{1cm}}$

0.8753 n

$$011452 \lim_{n \to \infty} \frac{3^n}{3^n + 2^n} = \underline{\qquad}.$$

$$000336 \lim_{n \to \infty} \frac{2n - 5}{n + 1} = \underline{\qquad}.$$

$$000336 \lim_{n\to\infty} \frac{2n-5}{n+1} =$$

0.8851 n

0.0037 II
$$011452 \lim_{n \to \infty} \frac{3^n}{3^n + 2^n} = \underline{\qquad}.$$

$$000376 \lim_{n \to \infty} \frac{2n + 3}{n + 1} = \underline{\qquad}.$$

$$000376 \lim_{n \to \infty} \frac{2n+3}{n+1} = \underline{\hspace{1cm}}$$

$$011452 \lim_{n \to \infty} \frac{3^n}{\frac{3^n + 2^n}{5^n - 7^n}} = \underline{}$$

$$000457 \lim_{n \to \infty} \frac{5^n + 7^n}{5^n + 7^n} = \underline{}$$

$$000457 \lim_{n \to \infty} \frac{5^n - 7^n}{5^n + 7^n} = \underline{\hspace{1cm}}.$$

 $0.8524 \ n$

0.8524 n
$$011452 \lim_{n \to \infty} \frac{3^n}{3^n + 2^n} = \underline{\qquad}.$$
000546 计算: $\lim_{n \to \infty} \frac{2n}{3^n + 2^n} = \underline{\qquad}.$

000546 计算:
$$\lim_{n\to\infty} \frac{2n}{3n-1} =$$
_____.

0.9031 r

$$000588 \lim_{n \to \infty} \frac{3^n - 1}{2^{n+1} + 1} = \underline{\hspace{1cm}}$$

0.8792 r

$$011452 \lim_{n \to \infty} \frac{3^n}{3^n + 2^n} = \underline{\qquad}.$$

$$000679 \lim_{n \to \infty} \frac{2^{n+1} + 3^{n+1}}{2^n + 3^n} = \underline{\qquad}.$$

$$000679 \lim_{n \to \infty} \frac{2^{n+1} + 3^{n+1}}{2^n + 3^n} = \underline{\hspace{1cm}}$$

0.8697 n

$$011452 \lim_{n \to \infty} \frac{3^n}{3^n + 2^n} = \underline{\qquad}.$$

$$000796 \lim_{n \to \infty} \frac{2n+1}{n-1} = \underline{\qquad}.$$

$$000796 \lim_{n\to\infty} \frac{2n+1}{n-1} =$$

 $0.9272~\mathrm{r}$

$$011452 \lim_{n \to \infty} \frac{3^n}{3^n + 2^n} = \underline{\qquad}.$$

000943 计算:
$$\lim_{n\to\infty} \frac{3^n+1}{3^{n+1}+2^n} =$$

0.9102 r

011452
$$\lim_{n \to \infty} \frac{3^n}{3^n + 2^n} =$$
______.
004491 $\lim_{n \to \infty} \frac{3^{n+1} + 1}{2 \cdot 3^n + 2^n} =$ ______.

$$004491 \lim_{n \to \infty} \frac{3^{n+1} + 1}{2 \cdot 3^n + 2^n} = \underline{\hspace{1cm}}$$

 $0.8913 \ n$

$$011452 \lim_{n \to \infty} \frac{3^n}{3^n + 2^n} = \underline{\qquad}$$

$$004513 \lim_{n \to \infty} \frac{2n}{3n^2 + 1} = \underline{\hspace{1cm}}$$

 $0.8792 \ r$

$$011452 \lim_{n \to \infty} \frac{3^n}{3^n + 2^n} = \underline{\qquad}.$$

$$004748 \lim_{n \to \infty} \frac{2^{n+1} + 3^n}{2^n + 3^{n+1}} = \underline{\qquad}.$$

$$004748 \lim_{n \to \infty} \frac{2^{n+1} + 3^n}{2^n + 3^{n+1}} = \underline{\qquad}.$$

 $0.8769 \ n$

$$011452 \lim_{n \to \infty} \frac{3^n}{3^n + 2^n} = \underline{\qquad}.$$

$$006863 \lim_{n \to \infty} \frac{1}{n^2 - n\sqrt{n^2 + 1}} = \underline{\hspace{1cm}}$$

 $0.9182 \ r$

$$011452 \lim_{n \to \infty} \frac{3^n}{3^n + 2^n} = \underline{\qquad}.$$

0.8533

$$011452 \lim_{n \to \infty} \frac{3^n}{3^n + 2^n} = \underline{\qquad}.$$

 $0.8641~\mathrm{n}$

$$011452 \lim_{n \to \infty} \frac{3^n}{3^n + 2^n} = \underline{\qquad}.$$

0.8783 r

$$004374$$
 设集合 $A = \{1, 2, 3\}, B = \{x | x < 3\}, 则 A \cap B = _____.$

 $0.8871 \ r$

$$011007$$
 若集合 $A = \{x | 1 \le x\}, B = \{-1, 1, 2, 3\}, 则 A \cap B = _____.$

 $0.8601 \ \mathrm{n}$

$$011454$$
 已知复数 z 满足 $z \cdot (1-i) = 1 + i(i)$ 为虚数单位),则 $|z| = ______$

$$000469$$
 若复数 z 满足 $iz = 1 + i(i 为虚数单位), 则 $z =$ ______$

 $0.8583 \ r$

- 011454 已知复数 z 满足 $z \cdot (1 i) = 1 + i(i$ 为虚数单位), 则 |z| =______
- 000777 若复数 z 满足 z(1-i)=2i(i 是虚数单位), 则 |z|=______
- 0.9263 r
- 011454 已知复数 z 满足 $z \cdot (1-i) = 1 + i(i)$ 为虚数单位), 则 |z| = 2
- 000847 已知复数 z 满足 $z \cdot (1 i) = 2i$, 其中 i 为虚数单位, 则 $|z| = ____$
- $0.8847 \ r$
- 011454 已知复数 z 满足 $z \cdot (1-i) = 1 + i(i$ 为虚数单位), 则 $|z| = ____$
- 003656 已知复数 z 满足 (1+i)z = 1 7i(i 是虚数单位), 则 |z| = 1 7i(i 是虚数单位), 则 |z| = 1 7i(i
- 0.9483 r
- 011454 已知复数 z 满足 $z \cdot (1-i) = 1 + i(i$ 为虚数单位), 则 $|z| = ___$
- 004512 复数 z 满足 $z \cdot i = 1 + i(i)$ 为虚数单位), 则 $|z| = _____.$
- 0.8746 n
- 011454 已知复数 z 满足 $z \cdot (1-i) = 1 + i(i$ 为虚数单位), 则 $|z| = ___$
- 010987 已知复数 z 满足 zi = 2 + i(i 为虚数单位), 则 z =
- 0.9943 r
- 011454 已知复数 z 满足 $z \cdot (1-i) = 1 + i(i)$ 为虚数单位), 则 |z| = 2
- 011008 已知复数 z 满足 $z \cdot (1-i) = 1 + 3i(i$ 为虚数单位), 则 $|z| = _____$
- 0.8566 n
- 011454 已知复数 z 满足 $z \cdot (1 i) = 1 + i(i$ 为虚数单位), 则 |z| =____
- 011051 已知复数 z 满足 $\frac{1}{z-1} = i(i 为虚数单位)$, 则 z =______.
- 0.9088 r
- $\begin{array}{l} 011455 \ \hbox{ \hbox{\not $ $}} \ \hbox{ r} \ \sin \alpha = \frac{1}{3}, \ \hbox{ $\rlap{ \not $}} \ \ \cos (\pi 2\alpha) = ____. \\ 000818 \ \hbox{ $\rlap{ $\rlap{ $ $}} \ $} \ \sin \alpha = \frac{1}{3}, \ \hbox{ $\rlap{ \not $}} \ \ \cos (\alpha \frac{\pi}{2}) = ____. \end{array}$
- 0.8670 r
- 011455 若 $\sin \alpha = \frac{1}{3}$,则 $\cos(\pi 2\alpha) =$ _____.
 004122 若 $\sin \alpha = \frac{1}{4}$,则 $\sin(\pi + \alpha) =$ ____.
- 0.8726 r
- 011455 若 $\sin \alpha = \frac{1}{3}$,则 $\cos(\pi 2\alpha) =$ _____.
 011009 若 $\sin \alpha = \frac{1}{3}$,则 $\sin(\frac{\pi}{2} 2\alpha) =$ ____.
- 0.8726 r
- 011456 抛物线 $y^2 = -4x$ 的准线方程是
- 000467 抛物线 $y^2 = 4x$ 的焦点坐标是_
- 0.9008 r
- 011456 抛物线 $y^2 = -4x$ 的准线方程是
- 000806 抛物线 $x^2 = 12y$ 的准线方程为____

0.8726 r

$$011456$$
 抛物线 $y^2 = -4x$ 的准线方程是

$$000878$$
 抛物线 $y^2 = 4x$ 的焦点坐标是

0.9246 r

$$011456$$
 抛物线 $y^2 = -4x$ 的准线方程是______.

$$002440$$
 抛物线 $(x+2)^2 = -4(y-1)$ 的准线方程是

0.9577 r

$$011456$$
 抛物线 $y^2 = -4x$ 的准线方程是

$$004514$$
 抛物线 $x^2 = -4y$ 的准线方程为______.

0.8624 r

$$011457$$
 已知函数 $y = f(x)$ 的图像与函数 $y = 2^x$ 的图像关于 $y = x$ 对称, 则 $f(3) =$ _____.

008093 若函数 y = f(x) 的图像与函数 $y = 2^x - 1$ 的图像关于直线 y = x 成轴对称图形, 则函数 y = f(x)

的解析式为_

0.9864 r

011458 从包含学生甲的 1200 名学生中随机抽取一个容量为 80 的样本, 则学生甲被抽到的概率为_

004494 从包含学生甲的 1200 名学生中随机抽取一个容量为 60 的样本, 则学生甲被抽到的概率为__

0.8503 s

$$011459$$
 在 $(x^2 + \frac{2}{x})^6$ 的二项展开式中,常数项等于______.

000398 在二项式
$$(x+\frac{2}{x})^6$$
 的展开式中, 常数项是______.

0.8548 r

$$011459$$
 在 $(x^2 + \frac{2}{x})^6$ 的二项展开式中,常数项等于______.
 000483 $(x + \frac{1}{x})^9$ 的二项展开式中,常数项的值为_____.

$$000483 (x + \frac{1}{x^2})^9$$
的二项展开式中, 常数项的值为______.

 $0.8687 \ r$

$$011459$$
 在 $(x^2+\frac{2}{x})^6$ 的二项展开式中,常数项等于______.
 000580 在 $(x-\frac{2}{x})^6$ 的二项展开式中,常数项的值为______.

$$000580$$
 在 $(x-\frac{2}{x})^6$ 的二项展开式中, 常数项的值为______

$$011459$$
 在 $(x^2+\frac{2}{x})^6$ 的二项展开式中,常数项等于_______.
000737 在 $(x+\frac{1}{x})^6$ 的二项展开式中,常数项是______.

$$000737$$
 在 $(x+\frac{1}{x})^6$ 的二项展开式中,常数项是_______.

0.8893 r

$$011459$$
 在 $(x^2 + \frac{2}{x})^6$ 的二项展开式中,常数项等于______. 004127 在 $(x^2 + \frac{2}{x})^7$ 的二项展开式中, x^2 的系数为______.

$$004127$$
 在 $(x^2 + \frac{2}{-})^7$ 的二项展开式中, x^2 的系数为_____

1.0000 s

$$1.0000 \text{ s}$$
 011460 在 $\triangle ABC$ 中,角 A 、 B 、 C 所对的边分别为 a 、 b 、 c , 且 $\begin{vmatrix} \sqrt{3}b + 2c & 2a \\ \cos B & 1 \end{vmatrix} = 0$, 则角 $A =$ ______.

011013 在 $\triangle ABC$ 中,角 A、B、C 所对的边分别为 a、b、c, 且 $\begin{vmatrix} \sqrt{3}b+2c & 2a \\ \cos B & 1 \end{vmatrix} = 0$,则角 A =_______

0.9175 r

011464 已知两条直线 l_1 、 l_2 的方程分别为 $l_1: ax+y-1=0$ 和 $l_2: x-2y+1=0$,则 "a=2" 是 "直线 $l_1\perp l_2$ " 的 ().

A. 充分不必要条件

B. 必要不充分条件

C. 充要条件

D. 既不充分也不必要条件

004502 已知两条直线 l_1 、 l_2 的方程分别为 $l_1: ax+y-1=0$ 和 $l_2: x-y+1=0$,则 "a=1" 是 "直线 $l_1\perp l_2$ " 的 ().

A. 充分不必要条件

B. 必要不充分条件

C. 充要条件

D. 既不充分也不必要条

件

 $0.9962~\mathrm{s}$

011465 在正方体 $ABCD - A_1B_1C_1D_1$ 中, 下列四个结论中错误的是 ().

A. 直线 B_1C 与直线 AC 所成的角为 60°

B. 直线 B_1C 与平面 AD_1C 所成的角为 60°

C. 直线 B_1C 与直线 AD_1 所成的角为 90°

D. 直线 B_1C 与直线 AB 所成的角为 90°

011020 在正方体 $ABCD - A_1B_1C_1D_1$ 中, 下列四个结论中错误的是 ().

A. 直线 B_1C 与直线 AC 所成的角为 60°

B. 直线 B_1C 与平面 AD_1C 所成的角为 60°

C. 直线 B₁C 与直线 AD₁ 所成的角为 90° 0.8966 r

D. 直线 B₁C 与直线 AB 所成的角为 90°

011469 已知函数 $f(x) = \sqrt{3}\sin x \cos x + \cos^2 x + 1$.

(1) 求 f(x) 的最小正周期和值域;

(2) 若对任意的 $x \in \mathbf{R}$, $f^2(x) - k \cdot f(x) - 2 \le 0$ 恒成立, 求实数 k 的取值范围.

011024 已知函数 $f(x) = \sqrt{3}\sin x \cos x - \sin^2 x + 2$.

- (1) 求 f(x) 的最小正周期和值域;
- (2) 若对任意的 $x \in \mathbf{R}$, $f^2(x) k \cdot f(x) + 1 \le 0$ 恒成立, 求实数 k 的取值范围.

0.9510 r

$$011475$$
 不等式 $\frac{x+1}{x} > 1$ 的解为_____.

$$011475$$
 不等式 $\frac{x+1}{x} > 1$ 的解为______.

$$000459$$
 不等式 $\frac{x+2}{x+1} > 1$ 的解集为______.

0.8644 n

$$011475$$
 不等式 $\frac{x+1}{x} > 1$ 的解为_____.

$$011475$$
 不等式 $\frac{x+1}{x} > 1$ 的解为_____.
$$000540$$
 不等式 $\frac{1}{|x-1|} \ge 1$ 的解集为_____.

0.8507 r

$$011475$$
 不等式 $\frac{x+1}{x} > 1$ 的解为_____.

$$011475$$
 不等式 $\frac{x+1}{x} > 1$ 的解为_____.

$$002801$$
 不等式 $\frac{2x}{1-x} \le 1$ 的解集是_____.

 $0.8578~\mathrm{n}$

$$011475$$
 不等式 $\frac{x+1}{x} > 1$ 的解为______.

$$011475$$
 不等式 $\frac{x+1}{x} > 1$ 的解为______.
$$002802$$
 不等式 $\frac{1+|x|}{|x|-1} \geq 3$ 的解集是______.

0.9610 r

$$011475$$
 不等式 $\frac{x+1}{x} > 1$ 的解为______.

$$\frac{x}{x-1} > 1$$
 的解集为______.

0.9059 r

$$011475$$
 不等式 $\frac{x+1}{x} > 1$ 的解为______.

$$004249$$
 不等式 $\frac{1}{x-1} > 1$ 的解集为______.

0.9059 r

$$011475$$
 不等式 $\frac{x+1}{x} > 1$ 的解为_____.

$$011475$$
 不等式 $\frac{x+1}{x} > 1$ 的解为______.
 004469 不等式 $\frac{1}{x-1} > 1$ 的解集为______.

0.9171 r

$$011475$$
 不等式 $\frac{x+1}{x} > 1$ 的解为______.

$$011091$$
 不等式 $\frac{1}{x}$ < 1 的解集为______.

0.9439 r

$$011494$$
 若集合 $A = (-\infty, -3), B = (-4, +\infty), 则 A \cap B =$

$$003631$$
 已知集合 $A = (-\infty, 3), B = (2, +\infty), 则 A \cap B = _____.$

0.9516 r

$$011494$$
 若集合 $A = (-\infty, -3), B = (-4, +\infty), 则 A \cap B =$

$$004724$$
 若集合 $A = (-\infty, 1), B = (0, +\infty), 则 A \cap B =$

 $0.9766 \ s$

$$011494$$
 若集合 $A = (-\infty, -3), B = (-4, +\infty), 则 A \cap B = _____.$

```
011049 已知集合 A = (-\infty, -3), B = (-4, +\infty), 则 <math>A \cap B = _____.
0.9426 r
011495 抛物线 y^2 = 6x 的准线方程为 .
000806 抛物线 x^2 = 12y 的准线方程为______.
0.8559 r
011495 抛物线 y^2 = 6x 的准线方程为
002440 抛物线 (x+2)^2 = -4(y-1) 的准线方程是
0.9426 r
011495 抛物线 y^2 = 6x 的准线方程为
004514 抛物线 x^2 = -4y 的准线方程为 .
0.8551 r
011495 抛物线 y^2 = 6x 的准线方程为 . .
011092 抛物线 y^2 = 2x 的焦点坐标为
0.8518 \text{ n}
011496 已知复数 z 满足 \frac{1}{z-1} = i(i 为虚数单位), 则 <math>z = _____.
011008 已知复数 z 满足 z \cdot (1 - i) = 1 + 3i(i 为虚数单位), 则 |z| = __
1.0000 \ s
011496 已知复数 z 满足 \frac{1}{z-1}=\mathrm{i}(\mathrm{i} 为虚数单位),则 z=______. 011051 已知复数 z 满足 \frac{1}{z-1}=\mathrm{i}(\mathrm{i} 为虚数单位),则 z=______.
0.8720 r
011498 已知二项式 (2x+\frac{1}{x})^6,则其展开式中的常数项为_______. 000398 在二项式 (x+\frac{2}{x})^6 的展开式中,常数项是______.
1.0000 \ s
011498 已知二项式 (2x+\frac{1}{x})^6,则其展开式中的常数项为_______. 011054 已知二项式 (2x+\frac{1}{x})^6,则其展开式中的常数项为______.
0.8812 r
0.00121 011499 若实数 x,y 满足 \begin{cases} x \geq 0, \\ 2x-y \leq 0, x+y-3 \leq 0, \end{cases} 则 z=2x+y 的最大值为______. x \leq 2,  x-y+1 \geq 0,  则 z=2x-y 的最小值为_____. x+y-2 \geq 0,  x+y-2 \geq 0, 
0.8631 r 0.11499 若实数 x,y 满足 \begin{cases} x \geq 0, \\ 2x - y \leq 0, x + y - 3 \leq 0, \end{cases} 则 z = 2x + y 的最大值为______.
```

004105 已知 x,y 满足: $\begin{cases} x+2\geq 0, \\ y-1\leq 0, \end{cases}$ 则 z=x-2y 的最大值为_____. $x-y-4\leq 0$

 $1.0000 \ s$

011500 已知圆锥的底面半径为 1, 高为 $\sqrt{3}$, 则该圆锥的侧面展开图的圆心角 θ 的大小为__

011056 已知圆锥的底面半径为 1, 高为 $\sqrt{3}$, 则该圆锥的侧面展开图的圆心角 θ 的大小为

 $0.9935~\mathrm{s}$

011502 已知函数 f(x) 的周期为 2, 且当 $0 < x \le 1$ 时, $f(x) = \log_4 x$, 那么 $f(\frac{9}{2}) = \underline{\hspace{1cm}}$ 004413 已知函数 f(x) 的周期为 2, 且当 $0 < x \le 1$ 时, $f(x) = \log_4 x$, 那么 $f(\frac{9}{2}) = \underline{\hspace{1cm}}$

 $1.0000 \ s$

011506 直线 x + 3y - 1 = 0 的一个法向量可以是 ().

A. (3, -1)

B. (3, 1)

C. (1,3)

011061 直线 x + 3y - 1 = 0 的一个法向量可以是 ().

C. (1,3)

 $1.0000 \ s$

011509 下列结论中错误的是(

A. 存在实数 x、y 满足 $\begin{cases} |x| \leq 1, & \text{并使得 } 4(x+1)(y+1) > 9 \text{ 成立} \\ |x+y| \leq 1, \end{cases}$ B. 存在实数 x、y 满足 $\begin{cases} |x| \leq 1, & \text{并使得 } 4(x+1)(y+1) > 7 \text{ 成立} \\ |x+y| \leq 1, \end{cases}$ C. 满足 $\begin{cases} |x| \leq 1, & \text{且使得 } 4(x+1)(y+1) = -9 \text{ 的实数 } x \text{、} y \text{ 不存在} \\ |x+y| \leq 1, \end{cases}$ D. 满足 $\begin{cases} |x| \leq 1, & \text{且使得 } 4(x+1)(y+1) = -9 \text{ 的实数 } x \text{、} y \text{ 不存在} \\ |x+y| \leq 1, \end{cases}$ D. 满足 $\begin{cases} |x| \leq 1, & \text{且使得 } 4(x+1)(y+1) < -9 \text{ 的实数 } x \text{、} y \text{ 不存在} \end{cases}$ 011515 设全集 $U = \mathbf{R}$, 若集合 $A = \{0, 1, 2\}, B = \{x | -1 < x < 2\}, A \cap (\mathcal{C}_U B) = \underline{\hspace{1cm}}$ 000377 设全集 $U = \mathbf{R}$, 集合 $A = \{-1, 0, 1, 2, 3\}$, $B = \{x | x \ge 2\}$, 则 $A \cap \mathcal{C}_U B = \underline{\hspace{1cm}}$. 0.9344 r011515 设全集 $U = \mathbf{R}$, 若集合 $A = \{0, 1, 2\}$, $B = \{x | -1 < x < 2\}$, $A \cap (\mathcal{C}_U B) = \underline{\hspace{1cm}}$ 000706 设全集 $U = \mathbf{R}$, 若集合 $A = \{2\}, B = \{x | -1 < x < 2\}$, 则 $A \cap (\mathbf{C}_U B) = \underline{\hspace{1cm}}$ $1.0000~\mathrm{s}$ 011516 设抛物线的焦点坐标为 (1,0), 则此抛物线的标准方程为____ 000707 设抛物线的焦点坐标为 (1,0), 则此抛物线的标准方程为___ $0.8697 \ s$ 011517 某次体检, 8 位同学的身高 (单位: 米) 分别为 1.68, 1.71, 1.73, 1.63, 1.81, 1.74, 1.66, 1.78, 则这组数 据的中位数是____(米). 000708 某次体检, 8 位同学的身高 (单位: 米) 分别为. 1.68, 1.71, 1.73, 1.63, 1.81, 1.74, 1.66, 1.78, 则这组 数据的中位数是 (米). $1.0000 \ s$ 011518 函数 $f(x) = 2 \sin 4x \cos 4x$ 的最小正周期为_____ 000709 函数 $f(x) = 2\sin 4x \cos 4x$ 的最小正周期为 0.9053 r011518 函数 $f(x) = 2\sin 4x\cos 4x$ 的最小正周期为 000945 函数 $f(x) = (\sin x - \cos x)^2$ 的最小正周期为 0.9151 r011518 函数 $f(x) = 2 \sin 4x \cos 4x$ 的最小正周期为_ 011116 函数 $f(x) = \sin^2 x - \cos^2 x$ 的最小正周期为 $1.0000 \ s$ 011519 已知球的俯视图面积为 π, 则该球的表面积为___ 000710 已知球的俯视图面积为 π , 则该球的表面积为_

0.9929 s

$$0.9929 \text{ s}$$
 011520 若线性方程组的增广矩阵为 $\begin{pmatrix} 1 & 2 & c_1 \\ 2 & 0 & c_2 \end{pmatrix}$ 的解为 $\begin{cases} x=1, \\ y=3, \end{cases}$ 则 $c_1+c_2=$ _______. 000711 若线性方程组的增广矩阵为 $\begin{pmatrix} 1 & 2 & c_1 \\ 2 & 0 & c_2 \end{pmatrix}$ 、解为 $\begin{cases} x=1, \\ y=3, \end{cases}$ 则 $c_1+c_2=$ _______.

011521 在报名的 8 名男生和 5 名女生中, 选取 6 人参加志愿者活动, 要求男、女都有, 则不同的选取方式 的种数为____(结果用数值表示).

000712 在报名的 8 名男生和 5 名女生中, 选取 6 人参加志愿者活动, 要求男、女生都有, 则不同的选取方 _(结果用数值表示). 式的种数为

0.9377 r

0.9947 s

011521 在报名的 8 名男生和 5 名女生中, 选取 6 人参加志愿者活动, 要求男、女都有, 则不同的选取方式 的种数为 (结果用数值表示).

000901 在报名的 5 名男生和 4 名女生中, 选取 5 人参加志愿者服务, 要求男、女生都有, 则不同的选取方 式的种数为 _____(结果用数值表示).

0.9911 s

011524 奇函数 f(x) 定义域为 R, 当 x>0 时, $f(x)=x+\frac{m^2}{r}-1$ (这里 m 为正常数), 若 $f(x)\leq m-2$ 对 一切 $x \le 0$ 成立, 则 m 的取值范围是_____

000715 设奇函数 f(x) 的定义域为 $\mathbf{R},$ 当 x>0 时, $f(x)=x+\frac{m^2}{x}-1$ (这里 m 为正常数). 若 $f(x)\leq m-2$ 对一切 $x \le 0$ 成立, 则 m 的取值范围为

 $1.0000 \mathrm{\ s}$

011536 已知集合
$$A = \{1, 2, 4, 6, 8\}, B = \{x | x = 2k, k \in A\}, 则 A \cap B = _____.$$

000426 已知集合
$$A = \{1, 2, 4, 6, 8\}, B = \{x | x = 2k, k \in A\}, 则 A \cap B = _____.$$

 $1.0000 \ s$

$$011537$$
 已知 $\frac{\overline{z}}{1-\mathrm{i}}=2+\mathrm{i}$, 则复数 z 的虚部为______. 000427 已知 $\frac{\overline{z}}{1-\mathrm{i}}=2+\mathrm{i}$, 则复数 z 的虚部为______.

 $1.0000 \ s$

011538 设函数
$$f(x) = \sin x - \cos x$$
, 且 $f(a) = 1$, 则 $\sin 2a =$ _____

$$000428$$
 设函数 $f(x) = \sin x - \cos x$, 且 $f(a) = 1$, 则 $\sin 2a =$ ______

 $0.9737 \ s$

$$011539$$
 已知二元一次方程 $egin{cases} a_1x+b_1y+c_1, & \textbf{的增广矩阵是} \begin{pmatrix} 1 & -1 & 1 \ & & 1 \ & & 1 & 3 \end{pmatrix},$ 则此方程组的解是______

000429 已知二元一次方程 $egin{cases} a_1x+b_1y=c_1, & ext{ 的增广矩阵是} \begin{pmatrix} 1 & -1 & 1 \ & & & \ 1 & 1 & 3 \end{pmatrix},$ 则此方程组的解是
$a_2x + b_2y = c_2 \qquad \left(1 1 3\right)^{7/3}$
$1.0000 \mathrm{\ s}$
011540 数列 $\{a_n\}$ 是首项为 1 , 公差为 2 的等差数列, S_n 是它前 n 项和, 则 $\lim_{n \to \infty} \frac{S_n}{a_n^2} =$
000430 数列 $\{a_n\}$ 是首项为 1 , 公差为 2 的等差数列, S_n 是它前 n 项和, 则 $\lim_{n \to \infty} \frac{S_n}{a_n^2} =$
$0.8628 \mathrm{\ s}$
011540 数列 $\{a_n\}$ 是首项为 1 , 公差为 2 的等差数列, S_n 是它前 n 项和, 则 $\lim_{\substack{n\to\infty\\a^2}} \frac{S_n}{a_n^2} =$
000638 已知首项为 1 公差为 2 的等差数列 $\{a_n\}$, 其前 n 项和为 S_n , 则 $\lim_{n\to\infty} \frac{a_n^2}{S_n} =$
$0.9802~\mathrm{s}$
011540 数列 $\{a_n\}$ 是首项为 1 , 公差为 2 的等差数列, S_n 是它前 n 项和, 则 $\lim_{n\to\infty}\frac{S_n}{a_n^2}=$ 000840 已知数列 $\{a_n\}$ 是首项为 1 , 公差为 2 的等差数列, S_n 是其前 n 项和, 则 $\lim_{n\to\infty}\frac{S_n}{a_n^2}=$
000840 已知数列 $\{a_n\}$ 是首项为 1 , 公差为 2 的等差数列, S_n 是其前 n 项和, 则 $\lim_{n \to \infty} \frac{S_n}{2} =$
$0.8628 \mathrm{\ s}$
011540 数列 $\{a_n\}$ 是首项为 1 , 公差为 2 的等差数列, S_n 是它前 n 项和, 则 $\lim_{n\to\infty} \frac{S_n}{a_n^2} =$
004082 已知首项为 1 公差为 2 的等差数列 $\{a_n\}$, 其前 n 项和为 S_n , 则 $\lim_{n \to \infty} \frac{{(a_n)}^2}{S_n} =$
0.9971 s
011541 已知角 A 是 $\triangle ABC$ 的内角, 则 " $\cos A = \frac{1}{2}$ " 是 " $\sin A = \frac{\sqrt{3}}{2}$ " 的 条件 (填 "充分非必
要"、"必要非充分"、"充要条件"、"既非充分又非必要"之一)
000431 已知角 A 是 $\triangle ABC$ 的内角, 则 " $\cos A = rac{1}{2}$ " 是 " $\sin A = rac{\sqrt{3}}{2}$ " 的 条件 (填 "充分非必
要"、"必要非充分"、"充要条件"、"既非充分又非必要"之一).
1.0000 s
011542 若双曲线 $x^2-\frac{y^2}{b^2}=1$ 的一个焦点到其渐近线距离为 $2\sqrt{2}$, 则该双曲线焦距等于 000432 若双曲线 $x^2-\frac{y^2}{b^2}=1$ 的一个焦点到其渐近线距离为 $2\sqrt{2}$, 则该双曲线焦距等于
000432 若双曲线 $x^2 - \frac{y^2}{t^2} = 1$ 的一个焦点到其渐近线距离为 $2\sqrt{2}$, 则该双曲线焦距等于
1.0000 s
011544 设 F_1, F_2 分别是双曲线 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 的左、右焦点,点 P 在双曲线右支上且满足
$ PF_2 = F_1F_2 $, 双曲线的渐近线方程为 $4x \pm 3y = 0$, 则 $\cos \angle PF_1F_2 = $
011058 设 F_1, F_2 分别是双曲线 $\dfrac{x^2}{a^2} - \dfrac{y^2}{b^2} = 1(a>0,b>0)$ 的左、右焦点,点 P 在双曲线右支上且满足
$ PF_2 = F_1F_2 $, 双曲线的渐近线方程为 $4x \pm 3y = 0$, 则 $\cos \angle PF_1F_2 = $
1.0000 s
011545 若 a,b 分别是正数 p,q 的算术平均数和几何平均数, 且 $a,b,-2$ 这三个数可适当排序后成等差数列
也可适当排序后成等比数列,则 $p+q+pq$ 的值形成的集合是
011059 若 a,b 分别是正数 p,q 的算术平均数和几何平均数, 且 $a,b,-2$ 这三个数可适当排序后成等差数列
也可适当排序后成等比数列,则 $p+q+pq$ 的值形成的集合是
$0.8539~\mathrm{s}$

011550 已知函数 $f(x) = A\sin(\omega x + \varphi)(A > 0, \omega > 0)$ 的图像与直线 y = b(0 < b < A) 的三个相邻交点的横坐标依次是 1, 2, 4,下列区间是函数 f(x) 单调递增区间的是 ().

A.
$$[0, 3]$$

B.
$$\left[\frac{3}{2}, 3\right]$$

C.
$$[3, 6]$$

D.
$$[3, \frac{9}{2}]$$

011063 已知函数 $f(x) = A\sin(\omega x + \phi)(A>0,\ \omega>0)$ 的图像与直线 y=b(0< b< A) 的三个相邻交点的横坐标依次是 1,2,4, 下列区间是函数 f(x) 单调递增区间的是 ().

A.
$$[0, 3]$$

B.
$$\left[\frac{3}{2}, 3\right]$$

C.
$$[3, 6]$$

D.
$$[3, \frac{9}{2}]$$

 $0.8512~\mathrm{s}$

011552 如图在三棱锥 P-ABC 中, 棱 AB、AC、AP 两两垂直, AB=AC=AP=3, 点 M 在 AP 上, 目 AM=1.

- (1) 求异面直线 BM 和 PC 所成的角的大小;
- (2) 求三棱锥 P BMC 的体积.

011065 如图在三棱锥 P-ABC 中, 棱 AB、AC、AP 两两垂直, AB=AC=AP=3, 点 M 在 AP 上, 且 AM=1.

- (1) 求异面直线 BM 和 PC 所成的角的大小;
- (2) 求三棱锥 P BMC 的体积.

0.8723 r

011557 已知集合 $A = \{1, 2, 3, 4\}, B = \{3, 4, 5\}, 则 A \cap B = _____.$

000456 设集合 $A = \{2, 3, 4, 12\}, B = \{0, 1, 2, 3\}, 则 A \cap B = ______$

0.9193 r

011557 已知集合 $A = \{1, 2, 3, 4\}, B = \{3, 4, 5\}, 则 A \cap B =$

003610 已知集合 $A = \{1, 2, 4\}, B = \{2, 4, 5\}, \, \text{则 } A \cap B = _$ ______.

 $1.0000 \mathrm{\ s}$

011557 已知集合 $A = \{1, 2, 3, 4\}, B = \{3, 4, 5\}, 则 A \cap B = _____.$

003673 已知集合 $A = \{1, 2, 3, 4\}, B = \{3, 4, 5\}, 则 A \cap B = _____.$

 $0.8728 \ r$

$$011557$$
 已知集合 $A = \{1, 2, 3, 4\}, B = \{3, 4, 5\}, 则 A \cap B = _____.$

$$004552$$
 已知集合 $A = \{1, 2, 3, 4, 5\}, B = \{3, 5, 6\}, 则 A \cap B = _____.$

0.8822 r

010923 已知集合
$$A = \{1, 2, 3, 4\}, B = \{2, 4, 6\}, 则 A \cup B = _____.$$

0.9449 r

$$011557$$
 已知集合 $A = \{1, 2, 3, 4\}, B = \{3, 4, 5\}, 则 A \cap B =$

011134 已知集合
$$A = \{1, 2, 3, 4\}$$
, 集合 $B = \{4, 5\}$, 则 $A \cap B =$ _____

 $1.0000 \ s$

$$011558$$
 若排列数 $P_6^m = 6 \times 5 \times 4$, 则 $m = _____$.

$$003674$$
 若排列数 $P_6^m = 6 \times 5 \times 4$, 则 $m = _____$.

0.9381 r

$$011559$$
 不等式 $\frac{x-1}{x} > 1$ 的解集为_____

$$011559$$
 不等式 $\frac{x-1}{x} > 1$ 的解集为______. 000459 不等式 $\frac{x+2}{x+1} > 1$ 的解集为______.

0.8624 r

$$011559$$
 不等式 $\frac{x-1}{} > 1$ 的解集为______

$$011559$$
 不等式 $\frac{x-1}{x} > 1$ 的解集为______.
 000507 不等式 $\frac{x-1}{x} < 0$ 的解为______.

0.8961 n

$$011559$$
 不等式 $\frac{x-1}{x} > 1$ 的解集为______

$$011559$$
 不等式 $\frac{x-1}{x} > 1$ 的解集为______.
$$000540$$
 不等式 $\frac{1}{|x-1|} \ge 1$ 的解集为______.

0.8515 r

$$011559$$
 不等式 $\frac{x-1}{x} > 1$ 的解集为_____

$$011559$$
 不等式 $\frac{x-1}{\frac{x}{x}} > 1$ 的解集为______. 000797 不等式 $\frac{x}{x-1} < 0$ 的解集为______.

0.8712 r

$$011559$$
 不等式 $\frac{x-1}{} > 1$ 的解集为______

$$011559$$
 不等式 $\frac{x-1}{\frac{x}{2x}} > 1$ 的解集为______.
 002801 不等式 $\frac{2x}{1-x} \le 1$ 的解集是______.

 $0.8557 \ n$

011559 不等式
$$\frac{x-1}{x} > 1$$
 的解集为______.

$$x = 002802$$
 不等式 $\frac{1+|x|}{|x|-1} \ge 3$ 的解集是______

0.8538 n

$$011559$$
 不等式 $\frac{x-1}{x} > 1$ 的解集为______.

$$002961$$
 不等式 $\log_{\frac{1}{2}}(x-1) \ge 1$ 的解集为______.

 $1.0000 \ s$

$$011559$$
 不等式 $\frac{x-1}{x} > 1$ 的解集为______.

003675 不等式 $\frac{x-1}{x} > 1$ 的解集为_____ 0.8581 r011559 不等式 $\frac{x-1}{x} > 1$ 的解集为______. 004125 关于 x 的不等式 $\frac{1}{x} > 1$ 的解集为_____ 0.9410 r011559 不等式 $\frac{x-1}{x} > 1$ 的解集为______. 004249 不等式 $\frac{1}{x-1} > 1$ 的解集为______. 0.9410 r011559 不等式 $\frac{x-1}{x} > 1$ 的解集为______. 004469 不等式 $\frac{1}{x-1} > 1$ 的解集为______. 0.9332 r011559 不等式 $\frac{x-1}{x} > 1$ 的解集为______. 011091 不等式 $\frac{1}{x} < 1$ 的解集为______. 0.8639 r011560 已知球的体积为 36π, 则该球主视图的面积等于______ 000482 已知球主视图的面积等于 9π, 则该球的体积为_ 0.8864 r011560 已知球的体积为 36π, 则该球主视图的面积等于 000589 已知球的表面积为 16π, 则该球的体积为_ $1.0000 \ s$ 011560 已知球的体积为 36π, 则该球主视图的面积等于 003676 已知球的体积为 36π, 则该球主视图的面积等于_ 0.9455 r011560 已知球的体积为 36π, 则该球主视图的面积等于____ 011136 已知球的体积为 36π, 则该球大圆的面积等于____

 $1.0000 \ s$

011561 已知复数 z 满足 $z+\frac{3}{z}=0,$ 则 |z|=______.
003677 已知复数 z 满足 $z+\frac{3}{z}=0,$ 则 |z|=______.

 $1.0000 \ s$

011562 设双曲线 $\frac{x^2}{9} - \frac{y^2}{b^2} = 1$ (b > 0) 的焦点为 F_1 、 F_2 , P 为该双曲线上的一点,若 $|PF_1| = 5$,则 $|PF_2| = _{___}$

003678 设双曲线 $\frac{x^2}{9} - \frac{y^2}{b^2} = 1 \; (b>0)$ 的焦点为 F_1 、 F_2 , P 为该双曲线上的一点,若 $|PF_1| = 5$,则 $|PF_2| = _{_}$

 $0.8698 \ s$

011563 如图, 以长方体 $ABCD - A_1B_1C_1D_1$ 的顶点 D 为坐标原点, 过 D 的三条棱所在的直线为坐标轴, 建立空间直角坐标系. 若 $\overrightarrow{DB_1}$ 的坐标为 (4,3,2), 则 $\overrightarrow{AC_1}$ 的坐标是

003679 如图, 以长方体 $ABCD - A_1B_1C_1D_1$ 的顶点 D 为坐标原点, 过 D 的三条棱所在的直线为坐标轴, 建立空间直角坐标系. 若 $\overrightarrow{DB_1}$ 的坐标为 (4,3,2), 则 $\overrightarrow{AC_1}$ 的坐标是

 $1.0000 \ s$

1.0000 s 011564 定义在 $(0, +\infty)$ 上的函数 y = f(x) 的反函数为 $y = f^{-1}(x)$. 若 $g(x) = \begin{cases} 3^x - 1, & x \leq 0, \\ f(x), & x > 0 \end{cases}$ 为奇函

数,则 $f^{-1}(x) = 2$ 的解为______.

003680 定义在 $(0,+\infty)$ 上的函数 y=f(x) 的反函数为 $y=f^{-1}(x)$. 若 $g(x)= \begin{cases} 3^x-1, & x\leq 0, \\ f(x), & x>0 \end{cases}$

数,则 $f^{-1}(x) = 2$ 的解为______.

 $1.0000 \ s$

011565 已知四个函数: ① y=-x, ② $y=-\frac{1}{x}$, ③ $y=x^3$, ④ $y=x^{\frac{1}{2}}$. 从中任选 2 个,则事件"所选 2 个函 数的图像有且仅有一个公共点"的概率为___

003681 已知四个函数: ① y=-x, ② $y=-\frac{1}{x}$, ③ $y=x^3$, ④ $y=x^{\frac{1}{2}}$. 从中任选 2 个,则事件"所选 2 个函 数的图像有且仅有一个公共点"的概率为_

 $0.9457 \ s$

011566 已知数列 $\{a_n\}$ 和 $\{b_n\}$, 其中 $a_n=n^2,\ n\in \mathbf{N}^*, \{b_n\}$ 的项是互不相等的正整数. 若对于任意 $n\in \mathbf{N}^*,$ $\{b_n\}$ 的第 a_n 项等于 $\{a_n\}$ 的第 b_n 项,则 $\frac{\lg(b_1b_4b_9b_{16})}{\lg(b_1b_2b_3b_4)} =$ ______. 003207 已知数列 $\{a_n\}$ 和 $\{b_n\}$,其中 $a_n=n^2,\,n\in\mathbf{N}^*,\,\{b_n\}$ 的项是互不相等的正整数,若对于任意 $n\in\mathbf{N}^*,$

 $\{b_n\}$ 的第 a_n 项等于 $\{a_n\}$ 的第 b_n 项, 则 $\frac{\lg(b_1b_4b_9b_{16})}{\lg(b_1b_2b_3b_4)} =$ ______. 1.0000 s

已知数列 $\{a_n\}$ 和 $\{b_n\}$, 其中 $a_n=n^2,\ n\in \mathbf{N}^*,\ \{b_n\}$ 的项是互不相等的正整数. 若对于任意 $n\in \mathbf{N}^*,\ \{b_n\}$ 的第 a_n 项等于 $\{a_n\}$ 的第 b_n 项,则 $\frac{\lg(b_1b_4b_9b_{16})}{\lg(b_1b_2b_3b_4)}=$ ______.

已知数列 $\{a_n\}$ 和 $\{b_n\}$, 其中 $a_n=n^2,\ n\in \mathbf{N}^*,\ \{b_n\}$ 的项是互不相等的正整数. 若对于任意 $n\in \mathbf{N}^*,\ |g(b_1b_2b_0b_{16})|$

 $\{b_n\}$ 的第 a_n 项等于 $\{a_n\}$ 的第 b_n 项, 则 $\frac{\lg(b_1b_4b_9b_{16})}{\lg(b_1b_2b_3b_4)} =$ ______.

 $1.0000~\mathrm{s}$

011567 设
$$\alpha_1, \alpha_2 \in \mathbf{R}$$
, 且 $\frac{1}{2 + \sin \alpha_1} + \frac{1}{2 + \sin(2\alpha_2)} = 2$, 则 $|10\pi - \alpha_1 - \alpha_2|$ 的最小值等于______.
003698 设 $\alpha_1, \alpha_2 \in \mathbf{R}$, 且 $\frac{1}{2 + \sin \alpha_1} + \frac{1}{2 + \sin(2\alpha_2)} = 2$, 则 $|10\pi - \alpha_1 - \alpha_2|$ 的最小值等于______.
0.9088 s

如图, 用 35 个单位正方形拼成一个矩形, 点 P_1, P_2, P_3, P_4 以及四个标记为 " \blacktriangle " 的点在正方形的顶点处, 设集合 $\Omega = \{P_1, P_2, P_3, P_4\}$, 点 $P \in \Omega$. 过 P 作直线 l_P , 使得不在 l_P 上的 " \blacktriangle " 的点分布在 l_P 的两侧. 用 $D_1(l_P)$ 和 $D_2(l_P)$ 分别表示 l_P 一侧和另一侧的 " \blacktriangle " 的点到 l_P 的距离之和. 若过 P 的直线 l_P 中有且只有一条满足 $D_1(l_P) = D_2(l_P)$, 则 Ω 中所有这样的 P 为_______.

如图,用 35 个单位正方形拼成一个矩形,点 P_1, P_2, P_3, P_4 以及四个标记为 " \blacktriangle " 的点在正方形的顶点处,设集合 $\Omega = \{P_1, P_2, P_3, P_4\}$,点 $P \in \Omega$. 过 P 作直线 l_P ,使得不在 l_P 上的 " \blacktriangle " 的点分布在 l_P 的两侧. 用 $D_1(l_P)$ 和 $D_2(l_P)$ 分别表示 l_P 一侧和另一侧的 " \blacktriangle " 的点到 l_P 的距离之和. 若过 P 的直线 l_P 中有且只有一条满足 $D_1(l_P) = D_2(l_P)$,则 Ω 中所有这样的 P 为_______.

 $1.0000 \ s$

011569 关于 x、y 的二元一次方程组 $\begin{cases} x+5y=0,\\ 2x+3y=4 \end{cases}$ 的系数行列式 D 为 ().

A. $\begin{vmatrix} 0 & 5 \\ 4 & 3 \end{vmatrix}$ B. $\begin{vmatrix} 1 & 0 \\ 2 & 4 \end{vmatrix}$ C. $\begin{vmatrix} 1 & 5 \\ 2 & 3 \end{vmatrix}$ D. $\begin{vmatrix} 6 & 0 \\ 5 & 4 \end{vmatrix}$ 003685 关于 x、y 的二元一次方程组 $\begin{cases} x + 5y = 0, \\ 2x + 3y = 4 \end{cases}$ 的系数行列式 D 为 ().

A. $\begin{vmatrix} 0 & 5 \\ 4 & 3 \end{vmatrix}$ B. $\begin{vmatrix} 1 & 0 \\ 2 & 4 \end{vmatrix}$ C. $\begin{vmatrix} 1 & 5 \\ 2 & 3 \end{vmatrix}$ 011570 在数列 $\{a_n\}$ 中, $a_n = \left(-\frac{1}{2}\right)^n$, $n \in \mathbb{N}^*$,则 $\lim_{n \to \infty} a_n$ (). A. 等于 $-\frac{1}{2}$ B. 等于 0 C. 等于 $\frac{1}{2}$ 003686 在数列 $\{a_n\}$ 中, $a_n = \left(-\frac{1}{2}\right)^n$, $n \in \mathbb{N}^*$,则 $\lim_{n \to \infty} a_n$ (). A. 等于 $-\frac{1}{2}$ B. 等于 0 C. 等于 $\frac{1}{2}$ D. 不存在

A. 等于
$$-\frac{1}{2}$$

C. 等于
$$\frac{1}{2}$$

D. 不存在

 $1.0000 \ s$

011571 已知 a,b,c 为实常数, 数列 $\{x_n\}$ 的通项 $x_n = an^2 + bn + c, n \in \mathbb{N}^*, 则 "存在 <math>k \in \mathbb{N}^*,$ 使得 $x_{100+k}, x_{200+k}, x_{300+k}$ 成等差数列"的一个必要条件是().

A.
$$a \ge 0$$

B.
$$b < 0$$

C.
$$c = 0$$

D.
$$a - 2b + c = 0$$

003687 已知 a,b,c 为实常数, 数列 $\{x_n\}$ 的通项 $x_n = an^2 + bn + c, n \in \mathbb{N}^*, 则 "存在 <math>k \in \mathbb{N}^*,$ 使得 $x_{100+k}, x_{200+k}, x_{300+k}$ 成等差数列"的一个必要条件是().

A.
$$a \geq 0$$

B.
$$b \le 0$$

C.
$$c = 0$$

D.
$$a - 2b + c = 0$$

 $1.0000 \ s$

011572 在平面直角坐标系 xOy 中,已知椭圆 $C_1: \frac{x^2}{36} + \frac{y^2}{4} = 1$ 和 $C_2: x^2 + \frac{y^2}{9} = 1$. P 为 C_1 上的动点,Q为 C_2 上的动点, w 是 $\overrightarrow{OP} \cdot \overrightarrow{OQ}$ 的最大值. 记 $\Omega = \{(P,Q)|P$ 在 C_1 上, Q在 C_2 上, 且 $\overrightarrow{OP} \cdot \overrightarrow{OQ} = w\}$, 则 Ω 中的元 素有().

A. 2 个

003688 在平面直角坐标系 xOy 中,已知椭圆 $C_1: \frac{x^2}{36} + \frac{y^2}{4} = 1$ 和 $C_2: x^2 + \frac{y^2}{9} = 1$. P 为 C_1 上的动点,Q 为 C_2 上的动点,w 是 $\overrightarrow{OP} \cdot \overrightarrow{OQ}$ 的最大值. 记 $\Omega = \{(P,Q)|P \in C_1$ 上, $Q \in C_2$ 上,且 $\overrightarrow{OP} \cdot \overrightarrow{OQ} = w\}$,则 Ω 中的元 素有().

A. 2 个

C. 8 个

D. 无穷个

0.9211 s

011573 如图, 直三棱柱 $ABC - A_1B_1C_1$ 的底面为直角三角形, 两直角边 AB 和 AC 的长分别为 4 和 2, 侧 棱 AA1 的长为 5.

- (1) 求三棱柱 $ABC A_1B_1C_1$ 的体积;
- (2) 设 M 是 BC 中点, 求直线 A_1M 与平面 ABC 所成角的大小.

003689 如图, 直三棱柱 $ABC - A_1B_1C_1$ 的底面为直角三角形, 两直角边 AB 和 AC 的长分别为 4 和 2, 侧棱 AA_1 的长为 5.

- (1) 求三棱柱 $ABC A_1B_1C_1$ 的体积;
- (2) 设 M 是 BC 中点, 求直线 A_1M 与平面 ABC 所成角的大小.

 $1.0000~\mathrm{s}$

011574 已知函数 $f(x) = \cos^2 x - \sin^2 x + \frac{1}{2}, \ x \in (0, \pi).$

- (1) 求 f(x) 的单调递增区间;
- (2) 设 $\triangle ABC$ 为锐角三角形,角 A 所对的边 $a=\sqrt{19}$,角 B 所对的边 b=5,若 f(A)=0,求 $\triangle ABC$ 的面积。 003690 已知函数 $f(x)=\cos^2 x-\sin^2 x+\frac{1}{2},\ x\in(0,\pi).$
- (1) 求 f(x) 的单调递增区间;
- (2) 设 $\triangle ABC$ 为锐角三角形, 角 A 所对的边 $a=\sqrt{19}$, 角 B 所对的边 b=5, 若 f(A)=0, 求 $\triangle ABC$ 的面积. 1.0000 s

 $a_n = \begin{cases} 5n^4 + 15, & 1 \leq n \leq 3, \\ -10n + 470, & n \geq 4, \end{cases}$ 个月共享单车的投放量和损失量分别为 a_n 和 b_n (单位: 辆), 其中 $a_n = \begin{cases} 5n^4 + 15, & 1 \leq n \leq 3, \\ b_n = n + 5, \text{ 第 } n \text{ 个月底的共享单车的保有量是前 } n \text{ 个月的累计投放量与累计 } n \text{ 个月的累计投放量 } n \text{ 个月的图 } n \text{ 个别的图 } n$

损失量的差.

- (1) 求该地区第 4 个月底的共享单车的保有量;
- (2) 已知该地共享单车停放点第 n 个月底的单车容纳量 $S_n = -4(n-46)^2 + 8800(单位: 辆). 设在某月底, 共享单车保有量达到最大, 问该保有量是否超出了此时停放点的单车容纳量?$

003691 根据预测, 某地第 n $(n \in \mathbb{N}^*)$ 个月共享单车的投放量和损失量分别为 a_n 和 b_n (单位: 辆), 其中

 $a_n = \begin{cases} 5n^4 + 15, & 1 \le n \le 3, \\ b_n = n + 5, \text{ 第 } n \text{ 个月底的共享单车的保有量是前 } n \text{ 个月的累计投放量与累计} \\ -10n + 470, & n \ge 4, \end{cases}$

- (1) 求该地区第 4 个月底的共享单车的保有量;
- (2) 已知该地共享单车停放点第 n 个月底的单车容纳量 $S_n = -4(n-46)^2 + 8800(单位: 辆). 设在某月底, 共享$ 单车保有量达到最大, 问该保有量是否超出了此时停放点的单车容纳量?

 $0.8947 \ s$

011576 在平面直角坐标系 xOy 中,已知椭圆 Γ : $\frac{x^2}{4}+y^2=1,$ A 为 Γ 的上顶点,P 为 Γ 上异于上、下顶点 的动点. M 为 x 正半轴上的动点.

- (1) 若 P 在第一象限, 且 $|OP| = \sqrt{2}$, 求 P 的坐标;
- (2) 设 $P\left(\frac{8}{5},\frac{3}{5}\right)$. 若以 A,P,M 为顶点的三角形是直角三角形, 求 M 的横坐标; (3) 若 |MA|=|MP|, 直线 AQ 与 Γ 交于另一点 C, 且 $\overrightarrow{AQ}=2\overrightarrow{AC}$, $\overrightarrow{PQ}=4\overrightarrow{PM}$, 求直线 AQ 的方程. 003417 * 在平面直角坐标系 xOy 中,已知椭圆 Γ : $\frac{x^2}{4} + y^2 = 1$,A 为 Γ 的上顶点,P 为 Γ 上异于上、下顶 点的动点, M 为正半轴上的动点
- (1) 若 P 在第一象限, 且 $|OP| = \sqrt{2}$, 求 P 的坐标;
- (2) 设 $P(\frac{8}{5},\frac{3}{5})$, 若以 A、P、M 为顶点的三角形是直角三角形, 求 M 的横坐标 m; (3) 若 |MA|=|MP|, 直线 AQ 与 Γ 交于另一点 C, 且 $\overrightarrow{AQ}=2\overrightarrow{AC}$, $\overrightarrow{PQ}=4\overrightarrow{PM}$, 求直线 AQ 的方程.

011576 在平面直角坐标系 xOy 中,已知椭圆 $\Gamma: \frac{x^2}{4} + y^2 = 1$,A 为 Γ 的上顶点,P 为 Γ 上异于上、下顶点 的动点. M 为 x 正半轴上的动点.

- (1) 若 P 在第一象限, 且 $|OP| = \sqrt{2}$, 求 P 的坐标;
- (2) 设 $P\left(\frac{8}{5},\frac{3}{5}\right)$. 若以 A,P,M 为顶点的三角形是直角三角形, 求 M 的横坐标;
- (3) 若 |MA|=|MP|, 直线 AQ 与 Γ 交于另一点 C, 且 $\overrightarrow{AQ}=2\overrightarrow{AC}$, $\overrightarrow{PQ}=4\overrightarrow{PM}$, 求直线 AQ 的方程. 003692 在平面直角坐标系 xOy 中,已知椭圆 Γ : $\frac{x^2}{4}+y^2=1,$ A 为 Γ 的上顶点,P 为 Γ 上异于上、下顶点 的动点. M 为 x 正半轴上的动点.
- (1) 若 P 在第一象限, 且 $|OP| = \sqrt{2}$, 求 P 的坐标;
- 1.0000 s

011577 设定义在 R 上的函数 f(x) 满足: 对于任意的 $x_1, x_2 \in \mathbb{R}$, 当 $x_1 < x_2$ 时, 都有 $f(x_1) \le f(x_2)$.

- (1) 若 $f(x) = ax^3 + 1$, 求 a 的取值范围;
- (2) 若 f(x) 是周期函数, 证明: f(x) 是常值函数;
- (3) 设 f(x) 恒大于零. g(x) 是定义在 R 上的、恒大于零的周期函数, M 是 g(x) 的最大值. 函数 h(x)=f(x)g(x). 证明: "h(x) 是周期函数" 的充要条件是 "f(x) 是常值函数".

003693 设定义在 R 上的函数 f(x) 满足: 对于任意的 $x_1, x_2 \in \mathbb{R}$, 当 $x_1 < x_2$ 时, 都有 $f(x_1) \le f(x_2)$.

- (1) 若 $f(x) = ax^3 + 1$, 求 a 的取值范围;
- (2) 若 f(x) 是周期函数, 证明: f(x) 是常值函数;
- (3) 设 f(x) 恒大于零. g(x) 是定义在 R 上的、恒大于零的周期函数, M 是 g(x) 的最大值. 函数 h(x) = f(x)g(x). 证明: "h(x) 是周期函数"的充要条件是"f(x) 是常值函数".

0.8515 r

$$011244$$
 已知关于 x,y 的二元一次方程组的增广矩阵为 $\begin{pmatrix} 2 & 1 & 5 \\ 1 & -2 & 0 \end{pmatrix}$, 则 $xy =$ ______.

$$0.8515 \text{ r}$$
 011244 已知关于 x,y 的二元一次方程组的增广矩阵为 $\begin{pmatrix} 2 & 1 & 5 \\ 1 & -2 & 0 \end{pmatrix}$,则 $xy =$ ______. 011306 已知一个关于 x 、 y 的二元一次方程组的增广矩阵是 $\begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & 2 \end{pmatrix}$,则 $x+y =$ _______.

0.8702 r

011264
$$\lim_{n \to \infty} \frac{3^n - 1}{3^n + 1} =$$
______.
011371 $\lim_{n \to \infty} \frac{2^{n+1} + 3^{n+1}}{2^n + 3^n} =$ ______.

0.9192 r

0.9192 r
$$011264 \lim_{n \to \infty} \frac{3^n - 1}{3^n + 1} = \underline{\qquad}$$

$$011452 \lim_{n \to \infty} \frac{3^n}{3^n} = \underline{\qquad}$$

0.9132

$$011284$$
 设集合 $A = \{1, 2, 3, 4\}$, 集合 $B = \{1, 3, 5, 7\}$, 则 $A \cap B =$ ______

$$011557$$
 已知集合 $A = \{1, 2, 3, 4\}, B = \{3, 4, 5\}, 则 A \cap B = _____.$

0.8648 r

$$0.8648 \text{ r}$$
 0.8648 r 0.8

011522 已知曲线
$$C_1$$
 的参数方程为
$$\begin{cases} x = 2t - 1, \\ y = t + 2, \end{cases}$$
 (t 是参数) 曲线 C_2 的参数方程为
$$\begin{cases} x = -1 + \sqrt{5}\cos\theta, \\ y = \sqrt{5}\sin\theta, \end{cases}$$
 (t

是参数) 则 C_1 和 C_2 的两个交点之间的距离为

0.8792 r

0.9088 n

011391 若
$$\sin \alpha = \frac{1}{3}$$
,则 $\cos(\alpha - \frac{\pi}{2}) =$ ______.
011455 若 $\sin \alpha = \frac{1}{3}$,则 $\cos(\pi - 2\alpha) =$ _____.

0.8566 n

$$011454$$
 已知复数 z 满足 $z \cdot (1-i) = 1 + i(i$ 为虚数单位), 则 $|z| =$ _____.

$$011496$$
 已知复数 z 满足 $\frac{1}{z-1}=\mathrm{i}(\mathrm{i}$ 为虚数单位), 则 $z=$ ______.

0.9293 r

- 抛物线 $y^2 = -4x$ 的准线方程是______.
- 抛物线 $y^2 = 6x$ 的准线方程为______.
- 0.9610 r
- 不等式 $\frac{x+1}{x} > 1$ 的解为______. 011559 不等式 $\frac{x-1}{x} > 1$ 的解集为______.