AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1

2

3

7

8

10

11

12

13

14

Claim 1 (currently amended): An in-mold coating formation method, wherein a mold is opened at a predetermined interval after a thermoplastic resin material is subjected to an injection-molding within a mold, a predetermined amount of coating material is injected into a space formed between the surface of the thermoplastic resin molded product and the internal surface of the mold cavity of the mold by using a coating material injection device, the mold is reclosed upon the completion of injection of the coating material, the injected coating material is allowed to cure within the mold so as to obtain an integrally formed molded product having a coating layer tightly adhered to the surface of the thermoplastic resin molded product, characterized in that:

- (1) injection of a coating material is performed only after a time period has passed which is necessary for the surface of the thermoplastic resin molded product to be cured to such an extent that said surface can withstand an injection pressure of the coating material and a flowing pressure of said coating material;
- (2) an injection time of the coating material is set to be within a range of $0.10 t_1$ to $0.99 t_1$, when a gel time of the coating material in contact with an internal surface of the mold is defined as

 t_1 ; and

15

16

17

18

19

20

21

22

23

24

1

2

3

4

7

(3) a time period from beginning of injection of the coating material to its spreading through an interior of the mold by reclosure of the mold is set to be within a range of 0.20 t_1 to 1.10 t_1 wherein t_1 has the same meaning as defined above, wherein

the injection of the coating material is started at a time when said thermoplastic resin arrives
at a temperature equal to or lower than its thermally deforming temperature in the case that said
thermoplastic resin is an amorphous resin, and

the injection of the coating material is started at a time when said thermoplastic resin arrives at a temperature equal to or lower than its crystallizing temperature in the case that said thermoplastic resin is a crystalline resin.

Claim 2 (canceled).

Claim 3 (withdrawn): An in-mold coating formation method, wherein the mold is opened to at a predetermined interval after a thermoplastic resin material is subjected to injection-molding within a mold, a predetermined amount of a coating material injected into a space formed between surface of a thermoplastic resin molded product and internal surface of a mold cavity of a mold by using a coating material injection device, the mold is reclosed upon the completion of injection of the coating material, the injected coating material is allowed to cure within the mold so as to obtain an integrally formed molded

product having a coating layer tightly adhered to the surface of the thermoplastic resin molded
product, characterized in that:

a stroke of a hydraulic cylinder for providing a driving force to close a mold in a toggle type injection molding machine, or a stroke of a ball screw for providing a driving force to close a mold in a toggle type electric injection molding machine, is subjected to a feedback control which is performed by using a mold closing servo valve or a servo motor, thereby effecting a drive control using a preset mold opening amount changing pattern and a preset mold closing force changing pattern.

Claim 4 (withdrawn): An in-mold coating formation method according to claim 3, wherein an in-mold pressure of the coating material injected in the mold is subjected to a feedback control which is performed by using a mold closing servo valve or a servo motor, thereby effecting a drive control using a preset changing pattern.

Claim 5 (withdrawn): An in-mold coating formation apparatus, wherein the mold is opened to at a predetermined interval after a thermoplastic resin material is subjected to injection-molding within a mold, a predetermined amount of coating material injected into a space formed between the surface of the thermoplastic resin molded product and the internal surface of the mold cavity of the mold by using a coating material injection

Ħ

coating material is allowed to cure within the mold so as to obtain an integrally formed molded product having a coating layer tightly adhered to the surface of the thermoplastic resin molded product, characterized in that the apparatus comprises:

a mold closing servo valve for controlling a flow rate and a pressure of a working oil being supplied to a mold closing hydraulic cylinder in a toggle type injection molding machine; a stroke sensor for detecting the stroke of the hydraulic cylinder; a mold opening amount sensor for detecting the mold opening amount of the mold; a mold closing force sensor for detecting a mold closing force of the mold; a coating material pressure sensor for detecting an in-mold pressure of the coating material injected in the mold; a coating material injection device for injecting the coating material;

a mold closing condition setting section for setting and inputting the mold's mold opening amount changing pattern and its mold closing force changing pattern, and the coating material's inmold pressure changing pattern;

injection device control section for receiving a command signal fed from the mold closing condition setting section so as to drive and control the coating material injection device;

a changing pattern storing section capable of storing a correlation between a stroke of the hydraulic cylinder detected by the stroke sensor and a mold opening amount detected by the mold opening amount sensor, and another correlation between a stroke of the hydraulic cylinder detected by the stroke sensor and a mold closing force detected by the mold closing force sensor, also capable of converting a mold opening amount changing pattern and a mold closing force changing pattern both of which have been set in advance in the mold closing condition setting section into stroke

changing patterns of respective hydraulic cylinders;

27

28

29

30

1

2

3

4

2

3

5

6

7

1

2

a mold closing control section which is provided to cause the mold closing servo valve to perform a feedback control in accordance with a stroke changing pattern of the hydraulic cylinder and an in-mold pressure changing pattern of the coating material.

Claim 6 (withdrawn): An in-mold coating formation apparatus according to claim 5, wherein the toggle type injection molding machine is replaced by a toggle type electric injection molding machine, the mold closing hydraulic cylinder is replaced by a mold closing ball screw, the mold closing servo valve is replaced by a servo motor.

Claim 7 (withdrawn): An in-mold coating formation mold which is equipped with a coating material injection device for injecting a coating material into a mold cavity in order that a coating layer can be formed on the surface of a thermoplastic resin molded product within the mold, characterized in that:

an auxiliary cavity extending in the opening and closing direction of the mold is formed which is communicated with the mold cavity of the mold through the entire circumference thereof, the auxiliary cavity has a thickness of 0.1 to 2 mm and a length of 0.5 to 30 mm.

Claim 8 (withdrawn): An in-mold coating formation mold according to claim 7, wherein there is provided a heater for heating a cavity surface of the auxiliary cavity, said cavity surface being

on the coating material injection side.

3

1

2

3

5

6

7

8

9

10

l

2

3

4

1

2

Claim 9 (withdrawn): An in-mold coating formation method, wherein an in-mold coating formation mold is used which is equipped with a coating material injection device that is provided for injecting a coating material into a mold cavity in order that a coating layer can be formed on the surface of a thermoplastic resin molded product formed by virtue of the mold, and which is also equipped with an auxiliary cavity communicated with the mold cavity of the mold through the entire circumference thereof, characterized in that:

an auxiliary molded body is formed by a resin to be used for molding injected into the auxiliary cavity, a small gap is formed because of a small shrinkage of the auxiliary molded body so that the small gap is located between the auxiliary molded body and the internal surface of the auxiliary cavity, said gap being used in preventing the coating material from flowing out of the mold.

Claim 10 (withdrawn): An in-mold coating formation method according to claim 9, wherein the temperature of the cavity surface on the coating material injection side of the auxiliary cavity is kept higher than other parts of the mold, the coating material spread from the mold cavity surface is cured in the auxiliary cavity, thereby preventing the coating material from flowing out of the mold.

Claim 11 (withdrawn): An in-mold coating formation method, wherein the mold is opened at a predetermined interval after a thermoplastic resin material is subjected to injection-molding

within a mold, a predetermined amount of coating material is injected into a space formed between the surface of the thermoplastic resin molded product and the internal surface of the mold cavity of the mold by using a coating material injection device, the mold is reclosed upon the completion of injection of the coating material, the injected coating material is allowed to cure within the mold so as to obtain an integrally formed molded product having a coating layer tightly adhered to the surface of the thermoplastic resin molded product, characterized in that:

after the mold is opened at a predetermined interval after a thermoplastic resin material is subjected to injection-molding within a mold, a predetermined amount of coating material is injected into a space formed between the surface of the thermoplastic resin molded product and the internal surface of the mold cavity of the mold by using a coating material injection device, the mold is then closed upon the completion of injection of the coating material;

an in-mold pressure of the coating material is controlled such that said pressure will arrive at a predetermined value of 0.5 MPa or higher in a zone where the thermoplastic resin molded product receives the lowest pressure within the mold.

Claim 12 (withdrawn): An in-mold coating formation method according to claim 11, wherein a sub-cavity is formed which is communicated with the mold cavity, a groove portion is formed which is communicated with the sub-cavity.

Claim 13 (withdrawn): An in-mold coating formation method, wherein the mold is opened at a predetermined interval after a thermoplastic resin material is subjected to injection-molding within a mold, a predetermined amount of coating material is injected into a space formed between the surface of the thermoplastic resin molded product and the internal surface of the mold cavity of the mold by using a coating material injection device, the mold is reclosed upon the completion of injection of the coating material, the injected coating material is allowed to cure within the mold so as to obtain an integrally formed molded product having a coating layer tightly adhered to the surface of the thermoplastic resin molded product, characterized in that:

when the surface of the thermoplastic resin molded product has been cured, the mold is opened at a predetermined interval, a heat diffusion from surface of a thermoplastic resin molded product to one mold portion is prohibited, after surface temperature of the thermoplastic resin molded product has been increased to a value which is equal to or higher than a curing temperature of the coating material because of a heat held within the thermoplastic resin molded product, the coating material is injected.

* * * *