Universidade Federal de Santa Catarina Programa de Pós-Graduação em Ciência da Computação Inteligência Artificial Conexionista

Augusto André Souza Berndt 202000735

Exercício 7 - Problema da tireoide com RBF e probabilística.

Enunciado: Usando como base os arquivos e programas vistos em aula, implemente um código de Rede Neural RBF e Rede Neural Probabilística para o dataset da tireóide visto no exercício de classificação. Escreva um relatório relatando o trabalho feito e os códigos que você implementou.

1. Modelo *Radial basis function* **(RBF):** A biblioteca oficial Keras não disponibiliza uma camada RBF. Logo, para implementação dessa rede neural foi utilizado uma biblioteca pública disponível no github (https://github.com/PetraVidnerova/rbf_for_tf2) que faz a integração com a biblioteca Keras. Ou seja, o código anterior do exercício da tireóide foi facilmente adaptado para aplicação de uma camada RBF, como mostra a Figura 1.

Figura 1.

1.1 Função de ativação com "bug": Houveram diversas execuções que davam valores estranhos de treinamento, como mostra a Figura 2. Depois de muito tentar rodar e modificar o código, se reparou que o código que veio do exercício anterior estava com um otimizador de treinamento não ótimo que foi testado no exercício anterior (Ftrl), como também mostra a Figura 2.

Figura 2.

1.2 Melhor, mas ainda limitado: Após consertar o erro, obtemos um treinamento positivo, como mostra a Figura 3, com 150 épocas apenas (estava se usando poucas épocas para testes mais rápidos).

Figura 3.

Tenta-se então com mais épocas e a configuração mostrada na Figura 1. Com 700 neurônios, inicialização de K means, betas de 8.0 (tamanho dos radiais) e camada de saída com funções softmax. Os resultados de treinamento mostrados na Figura 4 mostram que definitivamente os hiperparâmetros precisam de um fine tuning.

	precision	recall	f1-score	support	
Class 1	0.10	0.60	0.17	73	
Class 2	0.08	0.59	0.15	177	
Class 3	0.98	0.53	0.69	3178	
accuracy			0.54	3428	
nacro avg	0.39	0.58	0.34	3428	
ghted avg	0.91	0.54	0.65	3428	

Figura 4.

A configuração do modelo na Figura 5 foi reajustado diversas e várias vezes, porém sempre dando um treinamento e resultados de classificação bem limitados. Se tentou modificar empiricamente algumas da combinações a seguir sobre os hiperparâmetros para o treinamento da rede (estou citando os que lembro de ter utilizado, foram realmente muitas tentativas):

- 1. Número de neurônios 10, 100, 500, 700, 800 e 900.
- 2. Parâmetro betas da função RBF 2.0, 3.0, 5.0, 10.0, 12.0, 13.0 e 15.0
- 3. Inicializador do RBF random ou aleatório
- 4. Função de ativação da camada de saída softmax e sigmoid
- 5. Remoção ou não de alguns atributos (isto foi feito no exercício anterior da tireoide)
- 6. Número de épocas de treinamento 100, 500, 1000 e 1500
- 7. Tamanho batch do treinamento 100 e 200
- 8. Função de otimização do modelo Adam (10⁻³, 10⁻⁵, 10⁻², 10⁻⁴), Adamax (10⁻³,10⁻²), Adagrad (10⁻³) Mesmo com todas estas tentativas de diversos valores para os parâmetros de entrada, só se conseguiu obter um treinamento satisfatório modificando o modelo de erro de *binary_crossentropy* para

MSE!!!!!

Notou-se que o erro inicial acaba dando valores mais baixos já inicialmente.

Classification Report								
	precision	recall	f1-score	support				
Class 1	0.15	0.60	0.24	73				
Class 2	0.11	0.51	0.18	177				
Class 3	0.97	0.71	0.82	3178				
accuracy			0.70	3428				
macro avg	0.41	0.61	0.42	3428				
weighted avg	0.91	0.70	0.78	3428				

Figura 5.

1.3 Solução aceitável: As Figuras 6 e 7 mostram os valores já para um bom treinamento, depois de muitas e muitas tentativas. Infelizmente tentei alterar várias vezes 8 diferentes parâmetros até me dar de conta que a função custo utilizada que estava causando um treinamento ruim. As Figuras 3,4 e 5 são apenas alguns exemplos de vários que foram omitidos no relatório, onde o treinamento não foi satisfatório o bastante, oscilando entre 50% e 70%.

As Figuras 6 e 7 já demonstra um aprendizado satisfatório, com uma acurácia de 79%. O modelo RBF parece conseguir classificar corretamente o problema. Alguns atributos desnecessários foram removidos, assim como no exercício anterior da tireoide.

Figura 6 - configuração de hiperparâmetros.

Figura 7 - resultados do treinamento.