

第三章 控制系统的时域分析

- 3.1 典型输入信号
- 3.2 控制系统的时域性能指标
- 3.3一阶系统的时域响应
- 3.4二阶系统的时域响应
- 3.5 高阶系统的时域分析
- 3.6 线性定常系统的稳定性和劳斯判据
- 3.7 控制系统的稳态误差分析

对于线性系统,常用的分析方法有三种:

- *时域分析法;
- *根轨迹法;
- ※频域分析法【频率响应法】。

<u>时域分析</u>:根据系统模型和典型输入信号,求出系统的时间响应(利用Laplace变换),然后按照响应曲线来分析系统的稳定性,暂态过程性能和稳态误差。

时域分析法特点:

- ■直接在时间域中对系统进行分析校正,是一种直接分析方法。
- 优点: 直观、准确, 尤其适用于低阶系统。
- <u>缺点</u>: 基于求解系统输出的解析解, 比较繁琐。

第三章 控制系统的时域分析

- 3.1 典型输入信号
- 3.2 控制系统的时域性能指标
- 3.3 一阶系统的时域响应
- 3.4 二阶系统的时域响应
- 3.5 高阶系统的时域分析
- 3.6 线性定常系统的稳定性和劳斯判据
- 3.7 控制系统的稳态误差分析

*典型输入信号有: 阶跃信号; 速度信号; 加速度信号; 脉冲信号; 正弦信号;

*特点: 数学表达简单,便于分析和处理,易于实验室获得。

3.1 典型输入信号

典型输入信号

函数图象	像原函数	时域 关系	像函数	复域 关系	例
δ (t)	单位脉冲 f(t)= δ (t)	df dt	1	×s	撞击 后坐力 电脉冲
1(t) 0 t	单位阶跃 $f(t)=\left\{egin{array}{ll} 1 & t \geqslant 0 \ 0 & t < 0 \end{array} ight.$		1 s		开关量
0 t	单位斜坡 $f(t)=\left\{\begin{array}{ll} t & t \geq 0 \\ 0 & t < 0 \end{array}\right.$		$\frac{1}{s^2}$		等速跟踪
0 t ² /2	单位加速度 $f(t)=egin{cases} t^2/2 & t\geqslant 0 \ 0 & t < 0 \end{cases}$		$\frac{1}{s^3}$		

3.1 典型输入信号

正弦信号

$$r(t) = A \sin \omega t$$

$$R(s) = L[r(t)] = \frac{A\omega}{s^2 + \omega^2}$$

<u>余弦信号</u>

$$r(t) = A\cos\omega t$$

$$R(s) = L[r(t)] = \frac{As}{s^2 + \omega^2}$$

分析一个系统时需要采用哪种信号,要根据系统实际输入信号的性质而定。

Thank You!