Лабораторна робота N°9

Мінімізація функції однієї змінної методом Фібоначчі

Мета роботи

Вивчення методу Фібоначчі для зменшення інтервалу невизначеності унімодальної цільової функції, дослідження ефективності методу, порівняння методу з методом золотого перетину

9.1 Інформаційний матеріал

Метод Фібоначчі заснований на числах Фібоначчі:

$$F_0 = 1$$
, $F_1 = 1$, $F_n = F_{n-1} + F_{n-2}$, $n = 2$, 3, 4, ...

Цим числам, починаючи з F_2 , відповідає закономірність: кожен член послідовності дорівнює сумі двох попередніх.

У методі Фібоначчі заздалегідь задаються допустима кількість обчислень функції та відстань між двома внутрішніми точками останньої ітерації.

9.1.1 Вихідні дані до роботи

Задано:

- \bigstar функцію однієї змінної f(x),
- \bigstar початкову точку пошуку мінімуму функції $x_{_0}$,
- \bigstar допустиму похибку ϵ для обчислення точки мінімуму x ;
- ★ математичну модель двохсекторної економіки (1-21):
 https://classroom.google.com/c/NTQ1MDk1NzAxMjY3/a
 /NTUwODQyMTc1MTky/details

значення параметрів моделі (1-21), а також функцію

однієї змінної G(au) (11) для розв'язання оптимізаційної задачі.

Варіант 1.

$$f(x) = e^{x-5} + e^{5-x}, x_0 = 2, \epsilon = 0.01;$$

Варіант 2.

$$f(x) = x^4 - 8x^3 + 18x^2 + 2$$
, $x_0 = 3$, $\varepsilon = 0.001$;

Варіант 3.

$$f(x) = 2 - \frac{1}{\log_2(x^4 + 4x^3 + 29)}, \ x_0 = -1, \ \epsilon = 0.01;$$

Варіант 4.

$$f(x) = \ln(3x^4 - 4x^3 + 2)$$
, $x_0 = -2$, $\varepsilon = 0.01$.

9.2 Програма виконання роботи

- 1. Для унімодальної цільової функції однієї змінної з початковою точкою пошуку мінімуму за номером варіанта виконати постановку задачі мінімізації цільової функції.
- 2. Реалізувати програмно метод Фібоначчі для зменшення інтервалу невизначеності заданої цільової функції.
- 3. Здійснити зменшення інтервалу невизначеності заданої цільової функції:
 - \bigstar на кожній ітерації методу виводити на екран комп'ютера рядок, що містить номер точки пошуку k, довжину інтервалу невизначеності L_k , значення функції f_k і значення змінної x_k ;
 - ★ після закінчення процесу оптимізації на екрані повинна відображатись таблиця, що представляє процес мінімізації функції;

- ★ під таблицею необхідно відобразити кількість обчислень цільової функції, довжину кінцевого інтервалу невизначеності, мінімальне значення функції та відповідне значення незалежної змінної.
- 4. Відобразити графічно процес мінімізації цільової функції однієї змінної.
- 5. Аналітично знайти точку $x^* \in R$ мінімуму заданої функції f(x) і обчислити мінімальне значення функції $f^* = f(x^*)$. Порівняти зі значеннями, які знайдено чисельно, зробити висновки.
- 6. У чому полягає схожість і відмінність методів Фібоначчі та золотого перетину? Здійснити порівняння ефективності й простоти реалізації обох методів (Фібоначчі та золотого перетину), для цього надати:
 - ★ графік залежності кількості змін інтервалу від точності обчислень (для обох методів);
 - ★ графік залежності кількості обчислень функцій від точності обчислень (для обох методів).
 Зробити висновки.
- 7. Використовуючи програму методу, виконати постановку оптимізаційної задачі (взяти функцію однієї змінної $G(\tau)$, врахувати її економічний сенс, розглядаючи модель (1-21) в стаціонарному режимі), здійснити розв'язання оптимізаційної задачі, повторюючи дії пп. 2-5. За результатами розв'язання зробити висновки щодо оптимального значення норми оподаткування.
- 8. Код програми, усі результати, отримані в ході виконання роботи, занести до звіту. Зробити висновки за роботою.