Fonction décroissante

www.cafeplanck.com info@cafeplanck.com

Fonction strictement décroissante

Première définition:

La fonction $\begin{cases} f:A\to B\\ y=f(x) \end{cases}$ est strictement décroissante sur I lorsque :

$$\forall x_1, x_2 \in I, x_2 > x_1 \Rightarrow f(x_2) < f(x_1)$$

Deuxième définition:

La fonction $\begin{cases} f:A\to B\\ y=f(x) \end{cases}$ est strictement décroissante sur I lorsque :

$$\forall x_1, x_2 \in I, \Delta x > 0 \Rightarrow \Delta y < 0$$

Troisième définition:

La fonction $\begin{cases} f:A \to B \\ y = f(x) \end{cases}$ est strictement décroissante sur I lorsque :

$$\forall x_1, x_2 \in I, \frac{\Delta y}{\Delta x} < 0$$

Fonction décroissante

Première définition:

La fonction $\begin{cases} f:A \to B \\ y = f(x) \end{cases}$ est décroissante sur I lorsque :

$$\forall x_1, x_2 \in I, x_2 > x_1 \Rightarrow f(x_2) \le f(x_1)$$

Deuxième définition:

La fonction $\begin{cases} f:A \to B \\ y = f(x) \end{cases}$ est décroissante sur I lorsque :

$$\forall x_1, x_2 \in I, \Delta x > 0 \Rightarrow \Delta y \le 0$$

Troisième définition :

La fonction $\begin{cases} f:A \to B \\ y = f(x) \end{cases}$ est décroissante sur I lorsque :

$$\forall x_1, x_2 \in I, \frac{\Delta y}{\Delta x} \le 0$$