Bias-Variance

Slides by Tom Dietterich

Bias-Variance in Regression

- True function is $y = f(x) + \varepsilon$, where ε is normally distributed with zero mean and standard deviation σ .
- Given a set of training examples, $\{(xi, yi)\}$, we fit an hypothesis $h(x) = w \cdot x + b$ to the data to minimize the squared error

$$\Sigma_i [y_i - h(x_i)]^2$$

$y = x + 2\sin(1.5x) + N(0,0.2)$

50 fits (of 20 examples each)

Bias-Variance Analysis

• Now, given a new data point x^* (with observed value $y^* = f(x^*) + \varepsilon$), we would like to understand the expected prediction error

$$E[(y^* - h(x^*))^2]$$

Statistical Analysis

- Imagine that our particular training sample S is drawn from some population of possible training samples according to P(S).
- Compute $E_P [(y^* h(x^*))^2]$
- Decompose this into "bias", "variance", and "noise"

A Side Note

Let Z be a random variable with probability distribution P(Z)

Let $\underline{Z} = E_p[Z]$ be the average value of Z.

Lemma:
$$E[(Z - Z)^2] = E[Z^2] - Z^2$$

$$E[(Z - \underline{Z})^2] = E[Z^2 - 2Z\underline{Z} + \underline{Z}^2]$$

$$= E[Z^2] - 2 E[Z] Z + Z^2$$

$$= E[Z^2] - 2 Z^2 + Z^2$$

$$= E[Z^2] - Z^2$$

Corollary: $E[Z^2] = E[(Z - \underline{Z})^2] + \underline{Z}^2$

Bias Variance Noise

```
E[(h(x^*) - y^*)^2] = E[h(x^*)^2 - 2h(x^*)y^* + y^{*2}]
= E[h(x^*)^2] - 2 E[h(x^*)] E[v^*] + E[v^{*2}]
= E[(h(x^*) - h(x^*))^2] + h(x^*)^2 (lemma)
-2 h(x^*) f(x^*)
+ E[ (y^* - f(x^*))^2] + f(x^*)^2 (lemma)
= E[(h(x^*) - h(x^*))^2] + [variance]
(h(x^*) - f(x^*))^2 + [bias^2]
E[(v^* - f(x^*))^2] [noise]
```

Error = Variance + Bias² + Noise²

Bias Variance and Noise

- Variance: $E[(h(x^*) h(x^*))^2]$ Describes how much $h(x^*)$ varies from one training set S to another
- Bias: $[h(x^*) f(x^*)]$
- Describes the average error of $h(x^*)$.
- Noise: $E[(y^* f(x^*))^2] = E[\epsilon^2] = \sigma^2$
- Describes how much y* varies from f(x*)

50 fits (of 20 examples each)

Bias

Variance

Noise

Measuring Bias and Variance

- In practice (unlike in theory), we have only ONE training set S.
- We can simulate multiple training sets by bootstrap replicates

 $S' = \{x \mid x \text{ is drawn at random with replacement from S} \text{ and } |S'| = |S|.$

Bias and Variance Measurement Procedure

- Construct B bootstrap replicates of S (e.g., B = 200): S1, ..., S_B
- Apply learning algorithm to each replicate
 S_b to obtain hypothesis h_b
- Let T_b = S \ S_b be the data points that do not appear in S_b (out of bag points)
- Compute predicted value h_b(x) for each x in T_b

Estimating B/V/N

- For each data point x, we will now have the observed corresponding value y and several predictions $y_1, ..., y_K$
- Compute the average prediction <u>h</u>
- Estimate bias as (h y)

- Estimate variance as $\Sigma_k (y_k h)^2/(K 1)$
- Assume noise is 0

Approximations

- Bootstrap replicates are not real data
- We ignore the noise
 - If we have multiple data points with the same x value, then we can estimate the noise
 - We can also estimate noise by pooling y values
 from nearby x values

This naturally leads us to Ensemble methods – Bagging and Boosting