AD~1 MIDSEM ODD~2023

L	Introduction to the course/subject: Program Outcomes; Course
01	Outcomes; Lesson plan; Teaching methodology; Evaluation strategy etc.
L	Introduction to Algorithm Design: Importance of problem
02	solving using
	algorithms; Characteristic features of an algorithm(input, output,
	finiteness, definiteness, effectiveness, correctness, efficiency);
L	Introduction to Algorithm Design: Expressing algorithms
03	(pseudocode); Basicaspects of algorithms (correctness, design and
	analysis)
L	Computational tractability: Polynomial time as a definition efficiency
04	of an algorithm; Worst case Running times and Brute-Force Search
L	Asymptotic order of growth (Big-Oh, Big-Omega, Big-Theta)
05	
L	Asymptotic order of growth (Big-Oh, Big-Omega, Big-Theta)
06	
L	Recurrences (Iterative, Substitution and Master method)
07	
L	Recurrences (contd)
80	
L	Priority Queue Implementation using Heap data structure
09	
L	Priority Queue Implementation using Heap data structure
10	
L	Graph: Basic definitions, applications and representations
11	Croph. Docio definitione analizations and non-visualizations (1)
L	Graph: Basic definitions, applications and representations (contd)
12	Cranh. Cranh connectivity and granh traversal (DEC DEC)
L 12	Graph: Graph connectivity and graph traversal (BFS, DFS)
13	Craph Craph connectivity and graph traversal (DEC DEC)
L 14	Graph: Graph connectivity and graph traversal (BFS, DFS)
L	Graph: Testing hipartitoness - an application of RES
15	Graph: Testing bipartiteness – an application of BFS
13	

Graph: Connectivity in directed graph; Directed-Acyclic-Graph and
Topological ordering
Graph: Connectivity in directed graph; Directed-Acyclic-Graph and
Topological ordering
Graph: MST using Kruskal's algorithm—the union-find data structure
Graph: MST using Kruskal's algorithm—the union-find data structure
(contd)
Graph: MST using Prim's algorithm
Graph: Shortest path problem (Dijkstra' algorithm)
Greedy Method: Interval Scheduling with proof of optimality using the
Greedy Algorithm Stays Ahead
Greedy Method: Interval Scheduling with proof of optimality using the
Greedy
Algorithm Stays Ahead
Greedy Method: Scheduling to Minimize Lateness with proof of
optimality using An Exchange Argument
Greedy Method: Optimal Caching: A More Complex Exchange Argument
(no discussion on proof of optimality)
Greedy Method: Huffman Codes and Data Compression (no discussion
on proof of optimality)
Greedy Method: Huffman Codes and Data Compression (no discussion
on proof of optimality) contd