

4213 - DNA Sequences

Latin America - South America - 2008/2009

Thomas, a computer scientist that works with DNA sequences, needs to compute longest common subsequences of given pairs of strings. Consider an alphabet of letters and a word $w=a_1a_2...a_r$, where a_i , for i=1,2,...,r. A subsequence of w is a word $x=a_{i_1}a_{i_2}...a_{i_s}$ such that $1 \le i_1 < i_2 < ... < i_s \le r$. Subsequence x is a segment of w if $i_{j+1}=i_j+1$, for j=1,2,...,s-1. For example the word ove is a segment of the word lovely, whereas the word loly is a subsequence of lovely, but not a segment.

A word is a *common subsequence* of two words w_1 and w_2 if it is a subsequence of each of the two words. A *longest common subsequence* of w_1 and w_2 is a common subsequence of w_1 and w_2 having the largest possible length. For example, consider the words $w_1 = lovxxelyxxxxx$ and $w_2 = xxxxxxxxlovely$. The words $w_3 = lovely$ and $w_4 = xxxxxxxx$, the latter of length 7, are both common subsequences of w_1 and w_2 . In fact, w_4 is their longest common subsequence. Notice that the empty word, of length zero, is always a common subsequence, although not necessarily the longest.

In the case of Thomas, there is an extra requirement: the subsequence must be formed from common segments having length K or more. For example, if Thomas decides that K=3, then he considers lovely to be an acceptable common subsequence of lovexelyxxxxx and xxxxxxxlovely, whereas xxxxxxx, which has length 7 and is also a common subsequence, is not acceptable. Can you help Thomas?

Input

The input contains several test cases. The first line of a test case contains an integer K representing the minimum length of common segments, where $1 \le K \le 100$. The next two lines contain each a string on lowercase letters from the regular alphabet of 26 letters. The length l of each string satisfies the inequality $1 \le l \le 10^3$. There are no spaces on any line in the input. The end of the input is indicated by a line containing a zero.

Output

For each test case in the input, your program must print a single line, containing the length of the longest subsequence formed by consecutive segments of length at least K from both strings. If no such common subsequence of length greater than zero exists, then 0 must be printed.

Sample input	Output for the sample input
3	6
lovxxelyxxxxx	7
xxxxxxlovely	10
1	0
lovxxelyxxxxx	
xxxxxxxlovely	
3	
lovxxxelxyxxxx	
xxxlovelyxxxxxx	
4	
lovxxxelyxxx	
xxxxxxlovely	
0	
	1

South America 2008-2009