Problem Set 1, Problem 16 Relational-algebra queries

Templates: Copy these templates as needed, and use them to form your queries.

Π_{attributes} (expression)

(expression1) X (expression2)

σ_{predicate} (expression)

(expression1) ⋈_{predicate} (expression2)

(expression1) - (expression2)

(expression1) ™_{predicate} (expression2)

variable ← expression

Example: Find the name and year of all R-rated movies.

$$\Pi_{\text{name, year}} \left(\sigma_{\text{rating = 'R'}} \left(\text{Movie} \right) \right)$$

Example of breaking the above query into two steps:

RMovies $\leftarrow \sigma_{\text{rating = 'R'}}$ (Movie)

 $\Pi_{\text{name, year}}$ (RMovies)

problem 16.1

 $\Pi_{\text{Movie.name, Oscar.type, Oscar.year}}$ ($G_{\text{Movie.id}} = Oscar.movie_id \text{ AND Oscar.person_id} = Person.id \text{ AND Person.name} = 'Jodie Foster'$ (Movie X Oscar X Person))

problem 16.2

$$\Pi_{\text{Actor.actor_id}}$$
 (Actor) - $\Pi_{\text{Actor.actor_id}}$ (($\sigma_{\text{Movie.id}} = \text{Actor.movie_id AND Movie.earnings_rank} <= 200$ (Movie X Actor)))

problem 16.3

$$\begin{aligned} & \text{MoviesWithOscars} \leftarrow \left(\text{Movie}\right) \bowtie_{\text{Movie.id} = \text{Oscar.movie_id}} \left(\text{Oscar}\right) \\ & \Pi_{\text{Movie.name, Oscar.type}} \left(\sigma_{\text{Movie.genre LIKE '%B%'}} \left(\text{MoviesWithOscars}\right)\right) \end{aligned}$$