Luds- Übungszettel 3

3.1:

a)
i) fx ist injektiv fir alle \ ETR \ {0}.

ii) h ist surjektiv.

b) $f: |N_0| \ge \mathbb{Z} \text{ mit } f(x) = \begin{cases} x/Z, & \text{falls } 21x \text{ und} \\ -(x+1)/2, & \text{falls } 21x. \end{cases}$

f ist surjektiv, du jedes $z \in \mathbb{Z}$ im Image von f enthalten ist: das Urbild einer Zahl $z \in \mathbb{Z}$ under f ist $z \in \mathbb{Z}$, falls $z \in \mathbb{Z}$, und $z \in \mathbb{Z}$.

fist injektiv, da für jedes ne INo eine einzigartige Abbildung erzengt wird:
wie in obenstehender Erklärung zur Surjektivität von f gezeigt, stammt jeder
Wert der Abhildung von einem anderen ursprünglichen Wert. Zudem ist f
für alle ne INo definiert.

Da f sowohl surjektiv als and injectiv ist, ist f bijektiv.

Eine Relation R: A -> B ist genan dann eine Abbildung, wenn:

dom (R) = preim (R) (=> +a ∈ A: 3 b ∈ B: a Rb)

Somit gilt M= dom(g) = preim(g) und N=dom(f) = preim(f).

Da zusätzlich im(g) EN, gilt: im(g) & preim(f).

Mit anderen Worten: für jeden Wert $m \in M$ hat g eine Euordnung auf ein $n \in N$, für welches zusätzlick eine Zuordnung durch f auf ein $p \in P$ existient. Somit gibt es keinen Wert $m \in M$, der durch f og nicht abgebildet werden kann. Somit gilt: dom $(f \circ g) = preim(f \circ g)$, wodurch $f \circ g$ eine Abbildung ist.

b)
Bedingung: fist bijektiv.

Zu zeigen: f ist bijektiv =) $\exists f^{-1}$ (Bedingung ist hinreichend), und $\exists f^{-1} =$) f ist bijektiv (Bedingung ist notwendig).