practical2

May 4, 2024

```
[1]: # Data Wrangling II
     # Create an "Academic performance" dataset of students and perform the
     ⇔following operations using
     # Python.
     # 1. Scan all variables for missing values and inconsistencies. If there are
      ⇔missing values and/or
            inconsistencies, use any of the suitable techniques to deal with them.
       2. Scan all numeric variables for outliers. If there are outliers, use any
     ⇔of the suitable techniques
            to deal with them.
     # 3. Apply data transformations on at least one of the variables. The purpose \Box
      ⇔of this
            transformation should be one of the following reasons: to change the
      ⇔scale for better
            understanding of the variable, to convert a non-linear relation into a_{\sqcup}
     ⇔linear one, or to decrease
            the skewness and convert the distribution into a normal distribution.
[2]: import numpy as np
     import pandas as pd
     import matplotlib.pyplot as plt
     import seaborn as sns
     import warnings
     warnings.filterwarnings("ignore")
     from sklearn.preprocessing import StandardScaler
[3]: data = pd.read_csv('../academic performance.csv')
     data.head()
[3]:
      gender NationalITy PlaceofBirth
                                           StageID GradeID SectionID Topic \
           Μ
                       ΚW
                                KuwaIT
                                        lowerlevel
                                                      G-04
                                                                   Α
                                                                        IT
     1
                       KW
                                KuwaIT
                                        lowerlevel
                                                      G-04
                                                                        IT
           М
     2
                                                                        IT
           М
                       KW
                                KuwaIT
                                        lowerlevel
                                                      G-04
     3
           М
                       KW
                                KuwaIT lowerlevel
                                                      G-04
                                                                   Α
                                                                        IT
                       KW
                                KuwaIT lowerlevel
                                                      G-04
                                                                        IT
           М
```

Semester Relation raisedhands VisITedResources AnnouncementsView \

0	F	Father	15.0	16	2
1	F	Father	20.0	20	3
2	F	Father	10.0	7	0
3	F	Father	30.0	25	5
4	F	Father	40.0	50	12

 ${\tt Discussion~ParentAnsweringSurvey~ParentschoolSatisfaction~ $$\setminus$ }$

0	20	Yes	Good
1	25	Yes	Good
2	30	No	Bad
3	35	No	Bad
4	50	No	Bad

StudentAbsenceDays Class

0	Under-7	M
1	Under-7	M
2	Above-7	L
3	Above-7	L
4	Above-7	М

[4]: data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 480 entries, 0 to 479
Data columns (total 17 columns):

#	Column	Non-Null Count Dtype	
0	gender	480 non-null object	t
1	NationalITy	480 non-null object	t
2	PlaceofBirth	480 non-null object	t
3	StageID	480 non-null object	t
4	GradeID	480 non-null object	t
5	SectionID	480 non-null object	t
6	Topic	480 non-null object	t
7	Semester	480 non-null object	t
8	Relation	480 non-null object	t
9	raisedhands	455 non-null float	64
10	VisITedResources	480 non-null int64	
11	AnnouncementsView	480 non-null int64	
12	Discussion	480 non-null int64	
13	ParentAnsweringSurvey	480 non-null object	t
14	${\tt ParentschoolSatisfaction}$	480 non-null object	t
15	StudentAbsenceDays	480 non-null object	t
16	Class	480 non-null object	t
_			

dtypes: float64(1), int64(3), object(13)

memory usage: 63.9+ KB

```
[5]: # 1. Scan all variables for missing values and inconsistencies. If there are
      ⇔missing values and/or
            inconsistencies, use any of the suitable techniques to deal with them.
     data.isnull().sum() #check for missing values
[5]: gender
                                  0
                                  0
    NationalITy
    PlaceofBirth
                                  0
                                  0
    StageID
    GradeID
                                  0
    SectionID
                                  0
    Topic
                                  0
    Semester
                                  0
                                  0
    Relation
    raisedhands
                                  25
    VisITedResources
                                  0
     AnnouncementsView
                                  0
    Discussion
                                  0
    ParentAnsweringSurvey
                                  0
    ParentschoolSatisfaction
                                  0
    StudentAbsenceDays
                                  0
     Class
                                  0
     dtype: int64
[6]: # we can remove null values by dropping rows or fill null values as per features
     # data1 = data.interpolate()
[7]: # data1.isnull().sum()
[8]: mean val = data['raisedhands'].mean()
     data['raisehands']=data['raisehands'].fillna(mean_val)
     data2.isnull().sum()
[8]: gender
                                 0
    NationalITy
                                 0
    PlaceofBirth
                                 0
    StageID
                                 0
    GradeID
                                 0
     SectionID
                                 0
    Topic
                                 0
     Semester
                                 0
    Relation
                                 0
     raisedhands
                                 0
    VisITedResources
                                 0
     AnnouncementsView
                                 0
                                 0
    Discussion
                                 0
     ParentAnsweringSurvey
```

```
ParentschoolSatisfaction
                                  0
     StudentAbsenceDays
                                  0
      Class
      dtype: int64
 [9]: # Or we can drop null value rows
      # data.dropna(axis=0, inplace=True)
[10]: # 2. Scan all numeric variables for outliers. If there are outliers, use any
      →of the suitable techniques
             to deal with them.
      fig,axis = plt.subplots(1, 2)
      max_val = data2.VisITedResources.quantile(0.95)
      min_val = data2.VisITedResources.quantile(0.05)
      print("Before Shape", data.shape)
      df = data2[(data2['VisITedResources'] > min_val) & (data2['VisITedResources'] <__
       →max_val)]
      print("After Shape", df.shape)
      sns.boxplot(data2['VisITedResources'], orient='v', ax=axis[0])
      axis[0].title.set_text('Before')
      sns.boxplot(df['VisITedResources'], orient='v', ax=axis[1])
      axis[1].title.set_text('After')
      plt.show()
```

Before Shape (480, 17) After Shape (427, 17)


```
⇔of this
             transformation should be one of the following reasons: to change the
       ⇔scale for better
             understanding of the variable, to convert a non-linear relation into a_{\sqcup}
       ⇔linear one, or to decrease
             the skewness and convert the distribution into a normal distribution.
[12]: scaler = StandardScaler()
      x = df[['raisedhands', 'VisITedResources', 'AnnouncementsView', 'Discussion']]
      scaledf = scaler.fit_transform(x)
      print(scaledf)
     [[-1.15922617 -1.29844429 -1.42428794 -0.90164582]
      [-0.99010159 -1.16788899 -1.38643105 -0.71803137]
      [-1.32835075 -1.59219371 -1.50000172 -0.53441693]
      [ 0.19377045  0.59460753  -0.55357945  -0.57113982]
      [-0.65185244 -1.26580546 -0.97000525 0.45710106]
      [-0.48272786 -1.36372194 -0.62929323 0.6407155 ]]
```

[11]: # 3. Apply data transformations on at least one of the variables. The purpose.

[13]: df.Discussion.hist()
plt.show()

[14]: import scipy.stats as stats

[15]: sns.distplot(df['Discussion'], bins = 40)
plt.show()


```
[16]: # Checking the skewness
df['Discussion'].skew()

[16]: 0.33203952447202845
```

```
[17]: # If you want to reduce skewness there are 4 methods, one of them is log
log = np.log(df['Discussion'])
print(log.skew())
```

-1.1910468123704019

```
[18]: sns.distplot(log, bins = 40)
```

[18]: <Axes: xlabel='Discussion', ylabel='Density'>

