By: Kasvina Tirumal

European Call Options

- Gives the buyer the right to buy a security at strike price K, and can only be exercised on a specified expiration date, T.
- Underlying security can be any form of financial asset - stocks and bonds.
- Payoff of a European call option: $\max(S_T K, 0)$

Security price at time of expiration T

Example: Consider call option whose underlying stock has initial price \$40, and strike price \$50.

UNIVERSITY of WASHINGTON

Stocks

- A security that represents ownership within the issuing corporation.
- Prices fluctuates daily.
- Stock price movement can be modeled as a stochastic process known as Geometric Brownian Motion (GBM).

Geometric Brownian Motion

 A stochastic process is said to follow a Geometric Brownian Motion (GBM), if it satisfies the following stochastic differential equation:

• We can transform the stock price process using the natural logarithm, $Z = \ln(S_t)$, and using **Itô's Lemma**, we can rewrite the differential equation as follows:

$$dZ_t = \left(\mu - \frac{1}{2}\sigma^2\right) dt + \sigma dW_t$$

• This implies that dZ_t follows the following normal distribution:

$$Z_{t+\triangle t} - Z_t \sim N\left(\left(\mu - \frac{1}{2}\sigma^2\right)\triangle t, \sigma^2\triangle t\right)$$

Geometric Brownian Motion

$$Z_{t+\triangle t} - Z_t \sim N\left(\left(\mu - \frac{1}{2}\sigma^2\right)\triangle t, \sigma^2\triangle t\right)$$

 Using the above general form, we can model daily stock price movements in a given trading year as follows:

$$Z_{\frac{i+1}{251}} - Z_{\frac{i}{251}} \sim N\left(\mu - \frac{1}{2}\left(\frac{\sigma^2}{251}\right), \frac{\sigma^2}{251}\right)$$

 As a result, we can estimate the drift (expected return) and historical volatility of any stock within a given time period.

Black-Scholes Model

Models that dynamics of a financial market containing financial derivatives (eg. options, contracts).

$$dB(t) = rB(t)dt,$$

$$dS(t) = \alpha S(t)dt + \sigma S(t)d\bar{W}(t)$$

$$\max(S_T - K, 0)$$

• Given the final payoff of an option, we can solve this system of partial differential equations, to obtain the **Black-Scholes Equation**.

Black-Scholes Equation

- Theoretical estimate of the price of European call options.
- Shows that European call options have a unique price given the risk of the underlying security and its expected return.
- The price of a European Call Option, F, with strike price K and time of maturity T is given by the formula:

 Cumulative distribution function for N[0,1]

$$F = S \cdot N[d_1(t,s)] - e^{r(T-t)} \cdot K \cdot N[d_2(t,s)]$$

$$d_1(t,s) = \frac{1}{\sigma \cdot \sqrt{T-t}} \cdot \left[ln \left(\frac{S}{K} \right) + \left(r + \frac{1}{2} \sigma^2 \right) \cdot (T-t) \right]$$

$$d_2(t,s) = d_1(t,s) - \sigma \cdot \sqrt{T-t}$$
 Interest rate

Let's get pricing!

Methodology

- 1. **Import** call option data for stocks of the top five S&P 500 companies from Yahoo Finance, which includes: Apple, Nvidia, Microsoft, Amazon, and Meta.
- 2. Estimate **historical volatility** of each stock using 2024 data and the following distribution:

$$Z_{\frac{i+1}{251}} - Z_{\frac{i}{251}} \sim N\left(\mu - \frac{1}{2}\left(\frac{\sigma^2}{251}\right), \frac{\sigma^2}{251}\right)$$

- 3. Use the computed historical volatility as the **volatility input**.
- 4. Choose the current return rate of a 6-month treasury bond as the **interest rate**.
- 5. **Estimate call option prices** using the Black-Scholes equation.
- 6. **Compare** the market price to estimated price.

	,					_		r = 0.0434		Estimated Pr	ice
	Stock_Abbv	Strike	Bid	Ask	Implied Volatility	Trade Date	Months to Exp	Market Price	Stock Price	Historical Volatility	Empirical Price
411	META	535	161.65	163.70	0.4904	2025-02-12	7	162.675	668.200012	0.356621	162.253682
131	NVDA	135	11.55	11.65	0.5392	2025-03-03	6	11.600	108.760002	0.519978	8.252041
310	AMZN	205	24.35	24.60	0.3849	2025-03-03	6	24.475	196.589996	0.280979	13.771835
19	AAPL	125	119.80	120.65	0.7022	2025-02-12	7	120.225	241.574387	0.223086	119.666438
201	NVDA	2170	72.85	76.05	4.3241	2024-06-06	15	74.450	123.510773	0.519978	0.000035
341	AMZN	360	0.27	0.30	0.3333	2025-03-03	6	0.285	196.589996	0.280979	0.024821
37	AAPL	220	34.85	35.05	0.3406	2025-02-28	6	34.950	241.574387	0.223086	31.129842
139	NVDA	144	9.00	9.15	0.5311	2025-03-03	6	9.075	108.760002	0.519978	6.388282
109	NVDA	98	28.75	28.95	0.6006	2025-03-03	6	28.850	108.760002	0.519978	22.200111
330	AMZN	305	1.26	1.30	0.3200	2025-02-27	6	1.280	212.279999	0.280979	0.876350

Methodology cont.

- Use the implied volatility provided in the dataset to estimate call option prices using the Black-Scholes equation.
- Compare market price to estimated price using implied volatility.

UNIVERSITY of WASHINGTON

Volatility Smile

- Patterns in implied volatility that arise when pricing financial options.
- Theoretically, the curve takes the following form:

I was curious whether this pattern can be observed in my dataset.

UNIVERSITY of WASHINGTON

Thank you for your time!