GABARITO - LISTA 4

MODELO DE REGRESSÃO LINEAR MÚLTIPLA: INFERÊNCIA

Mateus Cardoso

30/06/2021

1) Hipótese RLM.1 (Linear em parámetros): O modelo na população pode ser escrito da seguinte maneira

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + u,$$

em que $\beta_0, \beta_1, \ldots, \beta_k$ são os parâmetros desconhecidos (constantes) de interesse e u é um erro aleatório não observável ou um termo de perturbação.

A hipótese RLM.1 descreve o relacionamento populacional que esperamos estimar, e explicitamente especifica β_j — os efeitos populacionais ceteris paribus da x_j sobre y — como os parâmetros de interesse.

Hipótese RLM.2 (Amostragem aleatória): Temos uma amostra aleatória de n observações, $\{(x_{i1}, x_{i2}, ..., x_{ik}, y_i) : i = 1, 2, ..., n\}$, seguindo o modelo populacional na Hipótese RLM.1.

Essa hipótese de amostragem aleatória significa que possuímos dados que podem ser usados para estimarmos a β_j , e que os dados foram selecionados como representativos da população descrita na hipótese RLM.1.

Hipótese RLM.3 (Colinearidade imperfeita): Na amostra (e, portanto, na população), nenhuma das variáveis independentes é constante e não existem relacionamentos lineares exatos entre as variáveis independentes.

Sempre que temos uma amostra de dados, precisamos saber se podemos usar os dados para calcularmos as estimativas MQO, a $\hat{\beta}_j$. Essa é a função da Hipótese RLM.3: se tivermos variação amostral em cada variável independente e nenhum relacionamento linear exato entre as variáveis independentes, poderemos calcular a $\hat{\beta}_j$.

Hipótese RLM.4 (Média condicional zero): O erro u tem zero como valor esperado dados quaisquer valores das variáveis independentes. Em outras palavras:

$$E(u|x_1, x_2, ..., x_k) = 0.$$

Como já discutimos, presumindo que as não observáveis são, na média, não relacionadas com as variáveis explicativas, é vital para se derivar a primeira propriedade estatística de cada

estimador MQO: sua ausência de viés no parâmetro populacional correspondente. É claro, todas as hipóteses anteriores são usadas para demonstrar a ausência de viés.

Hipótese RLM.5 (Homoscedasticidade): O erro u tem a mesma variância dados quaisquer valores das variáveis explicativas. Em outras palavras:

$$Var(u|x_1,...,x_k) = \sigma^2.$$

Comparada com a Hipótese RLM.4, a hipótese de homoscedasticidade é de importância secundária; particularmente, a Hipótese RLM.5 não tem influência na ausência de viés das $\hat{\beta}_j$. Ainda assim, a homoscedasticidade tem duas implicações importantes: (1) Podemos derivar fórmulas das variâncias amostrais cujos componentes são fáceis de serem caracterizados; (2) Podemos concluir, sob as hipóteses RLM.1 até a RLM.5 de Gauss-Markov, que os estimadores MQO têm a menor variância entre todos os estimadores lineares, não viesados.

Hipótese RLM.6 (Normalidade): O erro populacional u é independente das variáveis explicativas $x_1, x_2, ..., x_k$, e é normalmente distribuído com média zero e variância σ^2 : $u \sim Normal(0, \sigma^2)$.

Adicionamos a Hipótese RLM.6 à distribuição amostral exata das estatísticas t e estatísticas F, de forma que possamos realizar testes de hipóteses. No próximo capítulo, veremos que a RLM.6 pode ser eliminada se tivermos uma amostra de tamanho razoavelmente grande. A Hipótese RLM.6 realmente implica uma propriedade de eficiência mais forte dos MQO: os estimadores MQO têm a menor variância entre todos os estimadores não viesados; o grupo de comparação não estará mais restrito a estimadores lineares na $(y_i: i=1, 2, ..., n)$.

2) (i) e (iii) geralmente fazem com que a estatística t não tenha uma distribuição t sob H_0 . A homoscedasticidade é uma das premissas do MRLC. Uma variável importante omitida viola a Hipótese MLR.3.

As Hipóteses do MRLC não contêm nenhuma afirmação acerca das correlações amostrais entre as variáveis independentes, exceto para descartar o caso em que a correlação é igual a um.

- **3)** (i) $H_0: \beta_3 = 0 \text{ e } H_1: \beta_3 \neq 0.$
 - (ii) Tudo mais constante, uma população maior aumenta a demanda por moradias para aluguel, o que deve aumentar as rendas. A demanda por habitação geral é maior quando a renda média é maior, elevando o custo da habitação, incluindo as taxas de aluguel.
- (iii) A interpretação de um modelo Log-Log (Elasticidade) se dá da seguinte forma: quando x aumenta em 1%, espera-se uma variação de $1*\beta_k\%$ em y. Então, como temos $\beta_1=0,066$, quando pop aumentar em 1%, esperamos uma variação de 0,066% em rent. Uma afirmação correta para o postulado é: "um aumento de 10% na população aumenta o valor do aluguel(rent) em 0,066*10=0,66%."

- (iv) Com GL (Graus de Liberdade)¹ = 64 3 1 = 60, o valor crítico de 1% para um teste bicaudal é $2,660^2$. A estatística t é $\frac{\hat{\beta}_3 \beta_{H_0}}{ep(\hat{\beta}_3)} = \frac{0,0056 0}{0,0017} = 3,29$, o que está bem acima do valor crítico. Então, β_3 é estatisticamente diferente de zero ao nível de 1%, ou seja, rejeita-se a hipótese nula.
- 4) (i) Para a aproximação normal padronizada, temos que o valor crítico de t é igual a 1,96 para o nível de confiança de 95%. Temos que o valor instervalo de confiança para hsGPA é $0,412\pm1,96*0,094=0,412\pm0,184$. Portanto, IC(hsGPA,95%)=[0,228;0,596].
 - (ii) Não, pois o valor 0,4 está dentro do intervalo de confiança de 95%.
- (iii) Sim, pois 1 está fora do intervalo de confiança de 95%.

Exercícios no R

- 1) (i) Tratando-se de um modelo Nível-Log, a interpretação do coeficiente β_1 é (*ceteris paribus*): quando x aumenta em 1%, espera-se uma variação de $\frac{\beta_1}{100}$ unidades em y. Neste caso, se as despesas do Candidato A subirem em 1%, espera-se que os votos do Candidato A aumentem em 0,01 pontos percentuais.
 - (ii) A hipótese nula é $H_0:\beta_2=-\beta_1$. De forma equivalente, podemos reescrever $H_0:\beta_1+\beta_2=0$.
- (iii) Primeiro, vamos abrir o pacote tidyverse e salvar a base VOTE1 do Wooldridge em nosso environment do R.

library(tidyverse)

votos <- wooldridge::vote1</pre>

Agora, vamos visualizar nossa base de dados:

votos %>% glimpse()

 $^{{}^1}GL = n - k - 1$, onde n é o tamanho da amostra e k é o número de parâmetros de **INCLINAÇÃO**(Ou seja, o núemro de variáveis explicativas usadas no modelo).

²Na tabela t de Student, encontre o ponto de encontro entre a coluna de 99% para o teste bicaudal e a linha de 60 graus de liberdade.

```
## Rows: 173
## Columns: 10
## $ state
              <chr> "AL", "AK", "AZ", "AZ", "AR", "AR", "CA", "CA", "CA", "CA", "~
## $ district <int> 7, 1, 2, 3, 3, 4, 2, 3, 5, 6, 7, 11, 12, 16, 19, 23, 24, 27, ~
              <int> 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1~
## $ democA
## $ voteA
              <int> 68, 62, 73, 69, 75, 69, 59, 71, 76, 73, 68, 71, 52, 79, 50, 6~
## $ expendA <dbl> 328.296, 626.377, 99.607, 319.690, 159.221, 570.155, 696.748,~
## $ expendB <dbl> 8.737, 402.477, 3.065, 26.281, 60.054, 21.393, 193.915, 7.695~
## $ prtystrA <int> 41, 60, 55, 64, 66, 46, 58, 49, 71, 64, 53, 58, 49, 54, 54, 5~
## $ lexpendA <dbl> 5.793916, 6.439952, 4.601233, 5.767352, 5.070293, 6.345908, 6~
## $ lexpendB <dbl> 2.167567, 5.997638, 1.120048, 3.268846, 4.095244, 3.063064, 5~
## $ shareA
              <dbl> 97.40767, 60.88104, 97.01476, 92.40370, 72.61247, 96.38355, 7~
Podemos estimar nosso modelo:
mod <- lm(voteA ~ lexpendA + lexpendB + prtystrA, data = votos)</pre>
```

```
mod <- lm(voteA ~ lexpendA + lexpendB + prtystrA, data = votos)
summary(mod)

##
## Call:
## lm(formula = voteA ~ lexpendA + lexpendB + prtystrA, data = votos)
##
## Residuals:</pre>
```

Min 1Q Median 3Q Max ## -20.3968 -5.4174 -0.8679 4.9551 26.0660 ## ## Coefficients:

Estimate Std. Error t value Pr(>|t|) ## ## (Intercept) 45.07893 11.48 3.92631 <2e-16 *** ## lexpendA 6.08332 0.38215 15.92 <2e-16 *** ## lexpendB -6.61542 0.37882 -17.46<2e-16 ***

prtystrA 0.15196 0.06202 2.45 0.0153 *

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1

##

Residual standard error: 7.712 on 169 degrees of freedom
Multiple R-squared: 0.7926, Adjusted R-squared: 0.7889
F-statistic: 215.2 on 3 and 169 DF, p-value: < 2.2e-16</pre>

Nossa equação estimada é

$$voteA = 45,079 + 6,083 lexpendA - 6,615 lexpendB + 0,152 prtystrA$$

$$(3,926) \qquad (0,382) \qquad (0,379) \qquad (0,062)$$

$$n = 173, \quad R^2 = 0,793.$$

Tanto os gastos do Candidato A quanto o Candidato B afetam os resultados, pois as estimativas são significantes com p-valor próximo de zero (***).

Mesmo que os coeficientes de log(expendA) e log(expendB) possuam magnitudes similares e sinal oposto, não podemos testar a hipótese nula formulada anteriormente pois não temos o erro padão de $\hat{\beta}_1 + \hat{\beta}_2$.

(iv) Para tanto, precisaremos de um parâmetro $\theta_1 = \beta_1 + \beta_2$. Adicionando na equação original e rearranjando, temos

$$\widehat{voteA} = \beta_0 + \theta_1 lexpendA + \beta_2 [lexpendB - lexpendA] + \beta_3 prtystrA + u.$$

Podemos estimar nosso novo modelo, depois de criar a variável de lexpendB - lexpendA:

```
votos %>%
  mutate(lexpB_lexpA = lexpendB-lexpendA) -> votos

mod2 <- lm(voteA ~ lexpendA + lexpB_lexpA + prtystrA, data = votos)

summary(mod2)</pre>
```

```
##
## Call:
## lm(formula = voteA ~ lexpendA + lexpB_lexpA + prtystrA, data = votos)
##
## Residuals:
##
        Min
                  1Q
                       Median
                                    3Q
                                            Max
## -20.3968 -5.4174 -0.8679
                                4.9551 26.0660
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 45.07893
                           3.92631
                                   11.481
                                             <2e-16 ***
               -0.53210
## lexpendA
                           0.53309 - 0.998
                                             0.3196
## lexpB lexpA -6.61542
                           0.37882 -17.463
                                             <2e-16 ***
## prtystrA
                0.15196
                           0.06202
                                     2.450
                                             0.0153 *
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 7.712 on 169 degrees of freedom
## Multiple R-squared: 0.7926, Adjusted R-squared: 0.7889
## F-statistic: 215.2 on 3 and 169 DF, p-value: < 2.2e-16
```

De nossa equação estimada, temos $\hat{\theta}_1 = -0,532$ e $ep(\hat{\theta}_1) = 0,533$. A estatística t para a hipótese formulada em (ii) é $\frac{-0,532}{0,533} \approx -1$. Dessa forma, não é possível rejeitar H_0 .

2) De início, vamos armazenar a base 401KSUBS no R.

1 2017

```
ksubs<- wooldridge::k401ksubs
```

(i) Para encontrar quantas residências com apenas uma pessoa existem no conjunto de dados, basta aplicar um filtro e contar.

```
ksubs %>%
  filter(fsize == 1) %>%
  count()

##     n
```

Temos 2017 residências com apenas uma pessoa no conjunto de dados.

(ii) Vamos estimar o modelo, após salvar a base com os filtros necessários.

```
ksubs %>%
  filter(fsize == 1) -> ksubs2

mod3 <- lm(nettfa ~ inc + age, data = ksubs2)
summary(mod3)</pre>
```

```
##
## Call:
## lm(formula = nettfa ~ inc + age, data = ksubs2)
##
## Residuals:
##
       Min
                                 3Q
                1Q Median
                                        Max
## -179.95 -14.16
                     -3.42
                               6.03 1113.94
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) -43.03981
                             4.08039 - 10.548
                                                <2e-16 ***
                 0.79932
                             0.05973
                                                <2e-16 ***
## inc
                                     13.382
                 0.84266
                             0.09202
                                       9.158
                                                <2e-16 ***
## age
## ---
```

```
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 44.68 on 2014 degrees of freedom
## Multiple R-squared: 0.1193, Adjusted R-squared: 0.1185
## F-statistic: 136.5 on 2 and 2014 DF, p-value: < 2.2e-16</pre>
```

O coeficiente em inc indica que mais um dólar em renda (mantendo age fixo) resulta em cerca de 80 centavos a mais no nettfa previsto; nenhuma surpresa nisso. O coeficiente de idade significa que, mantendo a renda constante, se uma pessoa ficar um ano mais velha, prevê-se que a sua nettfa aumente cerca de \$843 (lembrando que nettfa é medida em milhares de dólares). Novamente, nenhuma surpresa.

- (iii) O intercepto nos indica a nettfa prevista quando age=0 e inc=0, portanto, não é interessante para a análise.
- (iv) A estatística $t \in \frac{0.843-1}{0.092} \approx -1,71$. Contra a hipótese alternativa $H_1: \beta_2 < 1$, ao nível de significância de 1% temos o p-valor, que é a probabilidade de |T| > 2,567 como aproximadamente 0,044 (encontramos este valor com o comando pnorm(-1.71)). Então, podemos rejeitar a hipótese nula a 5%, mas não a 1% (contra a hipótese unicaudal).
- (v) Fazendo a regressão simples:

```
mod4 <- lm(nettfa ~ inc, data = ksubs2)
summary(mod4)</pre>
```

```
##
## Call:
## lm(formula = nettfa ~ inc, data = ksubs2)
##
## Residuals:
##
       Min
                1Q
                   Median
                                3Q
                                       Max
## -185.12 -12.85
                     -4.85
                              1.78 1112.66
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) -10.5709
                            2.0607
                                     -5.13 3.18e-07 ***
## inc
                 0.8207
                            0.0609
                                     13.48 < 2e-16 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 45.59 on 2015 degrees of freedom
## Multiple R-squared: 0.08267,
                                    Adjusted R-squared: 0.08222
## F-statistic: 181.6 on 1 and 2015 DF, p-value: < 2.2e-16
```

O coeficiente de inclinação em inc
 na regressão simples é de cerca de 0.821, o que não é muito diferente de 0.799 obtido na parte (ii). A
contece que a correlação entre inc e age na amostra de pessoas solteiras é apenas cerca de 0.039,

cor(ksubs2\$age, ksubs2\$inc)

[1] 0.03905864

o que ajuda a explicar por que o simples e as estimativas de regressão múltipla não são muito diferentes.