# Portfolio assignment 15

30 min: Train a decision tree to predict the species of a penguin based on their characteristics.

- Split the penguin dataset into a train (70%) and test (30%) set.
- Use the train set to fit a DecisionTreeClassifier. You are free to to choose which columns you want to use as feature variables and you are also free to choose the max\_depth of the tree. **Note**: Some machine learning algorithms can not handle missing values. You will either need to
  - replace missing values (with the mean or most popular value). For replacing missing values you can
    use .fillna(<value>) <a href="https://pandas.pydata.org/docs/reference/api/pandas.Series.fillna.html">https://pandas.pydata.org/docs/reference/api/pandas.Series.fillna.html</a>)
     (<a href="https://pandas.pydata.org/docs/reference/api/pandas.Series.fillna.html">https://pandas.pydata.org/docs/reference/api/pandas.Series.fillna.html</a>)
  - remove rows with missing data. You can remove rows with missing data with .dropna()
    <a href="https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.dropna.html">https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.dropna.html</a>)
    <a href="https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.dropna.html">https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.dropna.html</a>)
- Use your decision tree model to make predictions for both the train and test set.
- Calculate the accuracy for both the train set predictions and test set predictions.
- Is the accurracy different? Did you expect this difference?
- Use the plot\_tree\_classification function above to create a plot of the decision tree. Take a few minutes to analyse the decision tree. Do you understand the tree?

Optional: Perform the same tasks but try to predict the sex of the pinguin based on the other columns

### In [1]:

```
from sklearn.model selection import train test split
from sklearn.tree import DecisionTreeClassifier
import seaborn as sns
from sklearn import tree
import graphviz
def plot_tree_classification(model, features, class_names):
    # Generate plot data
   dot_data = tree.export_graphviz(model, out_file=None,
                          feature names=features,
                          class names=class names,
                          filled=True, rounded=True,
                          special characters=True)
   # Turn into graph using graphviz
   graph = graphviz.Source(dot_data)
   # Write out a pdf
   graph.render("decision tree")
   # Display in the notebook
   return graph
```

## In [2]:

```
penguins = sns.load_dataset("penguins")
penguins.dropna(axis=0, inplace= True)
```

#### In [3]:

penguins\_train, penguins\_test = train\_test\_split(penguins, test\_size = 0.3, stratify=pengui
print(penguins\_train.shape, penguins\_test.shape)

(233, 7) (100, 7)

## In [4]:

features= ['flipper\_length\_mm']
dt\_classification = DecisionTreeClassifier(max\_depth = 3) # Increase max\_depth to see effec
dt\_classification.fit(penguins\_train[features], penguins\_train['species'])

### Out[4]:

DecisionTreeClassifier(max\_depth=3)

# In [5]:

plot\_tree\_classification(dt\_classification, features, penguins.species.unique())

# Out[5]:

