Fred P. Brooks:

A Software Pioneer

Armin Grodon

Hochschule München

10.12.2015

Gliederung

Fred Brooks

- Fred Brooks
 - Leben
 - **IBM**
- **2** OS/360
 - Hintergrund
 - Design
 - Aufbau
 - Nach OS/360
 - IBM heute
- 3 The Mythical Man-Month
 - Vorgeschichte
 - Inhalt
- 4 Fazit

Armin Grodon

Hochschule München

- Frederick Phillips Brooks, Jr.⁽¹⁾
- 19. April 1931 in Durham, NC
- 1953, Bachelor in Physik
- 1956. Doktor in Informatik (Angewandte Mathematik)

Abbildung: Fred Brooks in Berlin⁽²⁾

⁽¹⁾ https://www.cs.unc.edu/~brooks/FPB_BIO.CV.04.2007.pdf

⁽²⁾ https://commons.wikimedia.org/wiki/File:Fred Brooks.jpg

0000 IBM

- Architekt für die Supercomputer **Stretch** und **Harvest**⁽¹⁾
- Projektleiter für Entwicklung von System/360
- Projektleiter für Design von OS/360

⁽¹⁾ https://www.cs.unc.edu/~brooks/FPB_BIO.CV.04.2007.pdf

IBM

IBM 7030 Stretch (1956-1961)

- Damals schnellster Supercomputer⁽³⁾
- Fast 190m² Fläche
- Für Los Alamos National Laboratory entwickelt
- Als Basis für mehrere Modelle aeplant⁽⁴⁾
- Finanziellerer Misserfolg
- Grundlage der meisten heutigen Interrupt-Systeme⁽¹⁾

⁽³⁾ http://www-03.ibm.com/ibm/history/exhibits/mainframe/mainframe_PP7030.html

⁽⁴⁾ Marshall W. McMurran, ACHIEVING ACCURACY: A Legacy of Computers and Missiles, 98-100

⁽¹⁾ https://www.cs.unc.edu/~brooks/FPB BIO.CV.04.2007.pdf

IBM

IBM 7950 Harvest (1958-1962)

- Doppelt so großer Zusatz zum IBM Stretch⁽⁴⁾
- Kryptoanalyse f
 ür die NSA
- Ursprung des 8-Bit-Byte⁽⁵⁾

^{//}www.brouhaha.com/~eric/retrocomputing/ibm/stretch/early history of harvest.html

⁽⁴⁾ Marshall W. McMurran, ACHIEVING ACCURACY: A Legacy of Computers and Missiles, 98-100

⁽⁵⁾ http:

Fazit O

OS/360

Armin Grodon

Hochschule München

Ausgangspunkt

- IBM hat ~70% Marktanteil⁽⁶⁾
- Angst Marktanteile zu verlieren
- Computer können nicht genug Speicher adressieren⁽¹⁾
- Computer sind nicht einfach durch neuer Hardware erweiterbar
- Kompliziertere Speichermedien erfordern "bessere" Betriebssysteme

Abbildung: IBM 2311 Festplattenlaufwerk⁽⁷⁾

⁽⁶⁾ Paul E. Ceruzzi, A History of Modern Computing, 144

⁽¹⁾ https://www.cs.unc.edu/~brooks/FPB_BIO.CV.04.2007.pdf

⁽⁷⁾ https://commons.wikimedia.org/wiki/File:IBM 2311 memory unit.JPG

Entscheidung

1961: Entscheidung für zweiten Versuch einer einheitlichen Basis⁽⁹⁾

- Vollständig auf- und abwärtskompatible Familie aus 7 Computern
- Gleiche Architektur für leistungsschwache Geräte und Supercomputer (geplant)
- Kompatibel für zukünftige Hardware und Software

⁽⁹⁾ G.H. Mealy, The functional structure of OS/360, Part I: Introductory survey, IBM Systems Journal

Grundlegende Neuerungen

- Festplattenlaufwerk in (fast) allen Ausführungen
- Multitasking unabhängiger Jobs⁽⁹⁾
- Kontrollprogramm ersetzt Operator
- Remote Zugriff
- Erweiterbar (Modular)

M

⁽⁹⁾ G.H. Mealy, The functional structure of OS/360, Part I: Introductory survey, IBM Systems Journal

Designentscheidungen

Abstraktion und Vereinfachung:

- Abstraktion von Hardware und Software⁽⁹⁾
- Beschränkung auf zwei Systemzustände (**Problem** und **Supervisor State**)
- Task: Jegliche Kombination aus Programm und Daten
- Alles ist ein Data Set⁽¹¹⁾
- Behandlung von CPU als Ressource⁽¹⁰⁾

⁽⁹⁾ G.H. Mealy, The functional structure of OS/360, Part I: Introductory survey, IBM Systems Journal

⁽¹⁰⁾ B.I. Witt, The functional structure of OS/360, Part II: Job and task management, IBM Systems Journal

⁽¹¹⁾ W.A. Clark, The functional structure of OS/360, Part III: Data management

Überblick

"One big peach and a bowl full of independent cherries" (8)

- Kontrollprogramm (Supervisor, Job Scheduler und Master Scheduler)⁽⁹⁾
- Compiler, Sortierprogramme, Macrogeneratoren, etc.

⁽⁸⁾ F.P. Brooks, Vortraa: The IBM Operating System/360, Berlin 2001

⁽⁹⁾ G.H. Mealy, The functional structure of OS/360, Part I: Introductory survey, IBM Systems Journal

Supervisor⁽⁹⁾

- Zentraler Kontrollpunkt
- Speicherverwaltung
- Lädt Programme/Module in Speicher
- Steuert Nebenläufigkeit von Tasks
- **Exception Handling**
- Bereitstellung von System-Diensten

⁽⁹⁾ G.H. Mealy, The functional structure of OS/360, Part I: Introductory survey, IBM Systems Journal

Scheduler⁽⁹⁾

Job-Scheduler

- Analysiert und optimiert eingehende Jobs
- Verwaltet Ein- und Ausgabegeräte (Nebenläufigkeit von Jobs)
- Initialisieren und Terminierung der einzelnen Job Steps

Master-Scheduler

Schnittstelle zum Operator

⁽⁹⁾ G.H. Mealy, The functional structure of OS/360, Part I: Introductory survey, IBM Systems Journal

Begriffsdefinitionen: Jobs (9)(10)

- Job: Unabhängige Arbeitseinheit Kein Bezug zu anderen Jobs möglich
- Job Step: Sequentieller Arbeitsschritt eines Jobs Bezug zwischen Job Steps möglich
- Task: Arbeit eines Programms in einem Job Step Kann selbst weitere Tasks (Subtasks) erzeugen Parallele Ausführung möglich
- Control Statement: Beschreibt Anforderungen eines Jobs
- Job Stream: Gruppierung mehrerer Control Statements Kann Eingabedaten enthalten

Aufbau

⁽⁹⁾ G.H. Mealy, The functional structure of OS/360, Part I: Introductory survey, IBM Systems Journal

⁽¹⁰⁾B.I. Witt. The functional structure of OS/360, Part II: Job and task management, IBM Systems Journal

Programmstrukturen und Wiederverwendbarkeit (10)

- Programm besteht aus einzelnen Unterprogrammen (Load Modules)
- Mögliche Strukturen:
 - Simple: Gesamtes Programm ohne weitere Unterprogramme
 - Planed Overlay: Programm in mehreren Segmenten
 - Dynamic Serial: Programm aus sequentiell angeordneten Unterprogrammen
 - Dynamic Parallel: Programm startet Unterprogramme in weiteren Tasks
- Unterprogramme sind:
 - nicht wiederverwendbar: Veränderung während Ausführung
 - seriell wiederverwendbar: Umkehrbare Veränderungen
 - wiederverwendbar: Geschützt gegen Veränderungen

⁽¹⁰⁾ B.I. Witt, The functional structure of OS/360, Part II: Job and task management, IBM Systems Journal

Job und Task Management (10)

Job Management

- Definiert und delegiert Arbeit
- Durchsucht Job Steps nach benötigten Datenträgern
- Sicherstellung, dass Ressourcen f
 ür Job Step bereitgestellt sind

Task Management

- Steuert den Arbeitsablauf
- Verwaltet Task mit Kontext (Task Control Block) in priorisierter Schlange
- Nicht wartenden Task mit h\u00f6chster Priorit\u00e4t laden.
- Bietet Speicherschutz und Speicher-Pools
- Benutzt einfachen swapping-Mechanismus (roll-in/out)

⁽¹⁰⁾ B.I. Witt. The functional structure of OS/360, Part II: Job and task management, IBM Systems Journal

Data Management⁽¹¹⁾

Reaktion auf wachsende Zahl an Geräten notwendig:

- Geräteklassen statt Geräte
- Zuweisung zu Geräten während der Ausführung
- statische, dynamische und generierte Zugriffsroutinen

⁽¹¹⁾ W.A. Clark, The functional structure of OS/360, Part III: Data management

Begriffsdefinitionen: Daten⁽¹¹⁾

- Data Set: Jede Sammlung von Daten
 Enthält Data Set Label (Name, Speicherbereich und weitere Parameter des Data Sets)

 Adressierung über Seriennummer des Volumes und eigenen Namen
- Volume: Jeglicher Zusatzspeicher Identifizierbar über Volume Label (Seriennummer und und weitere Informationen)
- Data-Set Catalog: Baumstruktur von Data Set Labels die immer im Speicher gehalten wird
- Generation Group: Möglichkeit ältere Versionen vorzuhalten
- Protected: Markierung um Passwort f
 ür Zugriff zu verlangen
- Buffer: Zwischenspeicher für Ein- und Ausgabe

⁽¹¹⁾W.A. Clark, The functional structure of OS/360, Part III: Data management

Verschiedene Zugriffsmethoden mit jeweils eigenen Macrosprachen, je nach Datenorganisation und Zugriffs-Art

Tabelle: Zugriffsmethoden nach Datenorganisation und Zugriffs-Art

	Queued	Basic
Sequential	QSAM	BSAM
Indexed Sequential	QISAM	BISAM
Direct		BDAM
Partitioned		BPAM
Telecommunication	QTAM	BTAM

Fazit

⁽¹¹⁾W.A. Clark, The functional structure of OS/360, Part III: Data management

Auswirkung für IBM

- Finanzieller Erfolg (Obwohl langsam und schwer zu bedienen)⁽⁶⁾
- IBM bleibt weiterhin Marktführer
- Konkurrenz von 7 auf 5 geschrumpft
- Architekturstandard geschaffen

⁽⁶⁾ Paul E. Ceruzzi, A History of Modern Computing, 144

Auswirkung für weitere Betriebssysteme

- 32 bit Wortlänge als Standard⁽¹²⁾
- 32/64 bit float Wort
- Strings variabler Länge
- (nahezu) ausschließlich Universalregister
- 32 bit Adressen
- 8-Bit-Byte als Standard
- Ein OS f
 ür verschiedene Anwendungsf
 älle und Hardware
- Hardwarestandards

⁽¹²⁾ Paul E. Ceruzzi, A History of Modern Computing (mitp, 2003), 151f

Multics und Unix

1965-1969: Entwicklung von Multics⁽¹³⁾

- Projekt von MIT, General Electric und Bell Labs
- TSS mit vielen Ideen aus OS/360
- Virtual Memory und Security

1969-1971: Entwicklung von Unix⁽¹⁴⁾

- Bell Labs steigt aus Multics aus
- Ken Thompson und Dennis Ritchie starten Entwicklung von Unix
- 1971: Beginn der Reimplementierung in C

⁽¹³⁾ http://www.multicians.org/history.html

⁽¹⁴⁾ https://www.bell-labs.com/usr/dmr/www/hist.html

Marktposition

- über 90% Marktanteil bei Mainframes⁽¹⁵⁾
- System z immer noch kompatibel mit OS/360 Software⁽¹⁶⁾
- PC-Sparte mit Thinkpad an Lenovo verkauft⁽¹⁷⁾

^{(15)&}lt;sub>http:</sub>

^{//}www.ccianet.org/2008/07/ibm-with-another-mainframe-antitrust-complaint-in-europe

 $^{^{(16)} {\}rm http://www-01.ibm.com/support/knowledgecenter/zosbasics/com.ibm.zos.zmainframe/zconc_compatible.htm}$

⁽¹⁷⁾ http://www.cnet.com/news/ibm-sells-pc-group-to-lenovo

System z

Abbildung: System z Mainframes⁽¹⁸⁾

 $^{^{(18)} \}verb|https://commons.wikimedia.org/wiki/File:System_z_Frames.JPG|$

System z

IBM z13

- Bis zu 10TB RAM und 141*5GHz⁽¹⁹⁾
- Bis zu 2.5 Milliarden Transaktionen am Tag⁽²⁰⁾
- Bis zu 8,000 VMs
- Echtzeit Verschlüsselung
- **Embedded echtzeit Analyse**

⁽¹⁹⁾ http://www-03.ibm.com/systems/z/hardware/z13_specs.html

⁽²⁰⁾ http://www-03.ibm.com/press/us/en/pressrelease/45808.wss

Virtualisiertes MVS

Abbildung: MVS/370 in Hercules in Ubuntu 15.10

The Mythical Man-Month

Fred Brooks

- Brooks wechselt 1964 University of North Carolina at Chapel Hill⁽¹⁾
- Gründet dort Lehrstuhl für Informatik (20 Jahre Leitung)
- "Analyse der Erfahrungen aus OS/360"(21) als Essays
- 1975: Veröffentlichung als Zusammenfassung
- Auch nach 40 Jahren noch zu großen Teilen gültig
- Allgemein sehr positiv aufgenommen

⁽¹⁾ https://www.cs.unc.edu/~brooks/FPB BIO.CV.04.2007.pdf

⁽²¹⁾ F.P. Brooks, Vom Mythos des Mann-Monats (mitp, 2003), Vorwort

Überblick

- Administrative und technische Lehren⁽²¹⁾
- Warum Programmieren so schwer? (Wie) lässt sich das lösen?
- Vielerlei, teils harte Kritik an OS/360
- Vielfach zitierte Weisheiten

OS/360

⁽²¹⁾ F.P. Brooks, Vom Mythos des Mann-Monats (mitp, 2003), Vorwort

Warum macht Programmieren (keinen) Spaß⁽²²⁾

- Schöpfungsgedanke
- Wertschätzung durch Nutzuna
- Gestaltung komplexer Obiekte
- Freude am Lernen
- Schaffen aus dem **Nichts**
- Erzeugnis ist "wirklich"

- Zwang zur Fehlerfreiheit
- Ziel/Ressourcen nicht unter eigener Kontrolle

000000000

- Abhängigkeit von externen Programmen
- Suche nach Fehlern
- Projekte werden schnell obsolet
- Messung an neuen Konzepte/Ideen
- Unrealistische Konzepte

⁽²²⁾ F.P. Brooks, Vom Mythos des Mann-Monats (mitp, 2003), Kapitel 1 - Der Teersumpf

Warum scheitern Software-Projekte

- Programmiersystem kostet etwa 9 mal so viel wie ein Programm⁽²²⁾
- Zeitnot und fehlerhafte Zeitplanung⁽²³⁾⁽²⁹⁾
 - Falscher Optimismus
 - Gleichsetzung: Arbeitszeit Arbeitskräfte
 - Zu wenig Zeit f
 ür Tests (bedingt durch Optimismus)
 - Falsche und zu späte Reaktion auf Verzögerung⁽³⁵⁾ "Der Einsatz zusätzlicher Arbeitskräfte bei bereits verzögerten Software-Projekten verzögert sie noch mehr (23)

⁽²²⁾ F.P. Brooks, Vom Mythos des Mann-Monats (mitp, 2003), Kapitel 1 - Der Teersumpf

⁽²³⁾ F.P. Brooks, Vom Mythos des Mann-Monats (mitp., 2003), Kapitel 2 - Der Mythos Mann-Monat

⁽²⁹⁾ F.P. Brooks, Vom Mythos des Mann-Monats (mitp., 2003), Kapitel 8 - Die Praxis als Herausforderuna

⁽³⁵⁾F.P. Brooks. Vom Mythos des Mann-Monats (mitp, 2003), Kapitel 14 - Die Katastrophe wird ausgebrütet

- Zu große Entwicklerteams⁽²⁴⁾
- Fehlen eines geschlossenen Konzepts/Designs, besonders bei wechselnder Leitung⁽²⁵⁾
- Fehlen eines Pilotproiekts⁽³²⁾
- "Das Problem des zweiten Systems"⁽²⁶⁾

Inhalt

⁽²⁴⁾ F.P. Brooks, Vom Mythos des Mann-Monats (mitp., 2003), Kapitel 3 - Das Ärzteteam

⁽²⁵⁾ F.P. Brooks, Vom Mythos des Mann-Monats (mitp., 2003), Kapitel 4 - Aristokratie, Demokratie und Systementwicklung

⁽³²⁾F.P. Brooks, Vom Mythos des Mann-Monats (mitp., 2003). Kapitel 11 - Das Pilotoroiekt für den Abfalleimer

⁽²⁶⁾ F.P. Brooks, Vom Mythos des Mann-Monats (mitp, 2003), Kapitel 5 - Das zweite System

Warum scheiterten Software-Projekte

- Probleme der Informationsweitergabe an alle Mitarbeiter (27)(28)
- Kein bestehendes Tooling für Management (29)(31)
- Probleme wegen Programmaröße⁽³⁰⁾
- Keine Hochsprachen, schlechtes Tooling (33)(34)
- Keine Dokumentation im Quellcode⁽³⁶⁾

⁽²⁷⁾ F.P. Brooks, Vom Mythos des Mann-Monats (mitp. 2003), Kapitel 6 - Die Wortstafette

⁽²⁸⁾ F.P. Brooks, Vom Mythos des Mann-Monats (mitp., 2003), Kapitel 7 - Wieso fiel der Turm zu Babel?

⁽²⁹⁾ F.P. Brooks, Vom Mythos des Mann-Monats (mito, 2003), Kapitel 8 - Die Praxis als Herausforderuna

⁽³¹⁾ F.P. Brooks, Vom Mythos des Mann-Monats (mitp., 2003), Kapitel 10 - Die Dokumenten-Hypothese

⁽³⁰⁾F.P. Brooks, Vom Mythos des Mann-Monats (mitp., 2003), Kapitel 9 - Zwei Zentner in einem Ein-Zentner-Sack

⁽³³⁾ F.P. Brooks, Vom Mythos des Mann-Monats (mitp., 2003), Kapitel 12 - Gutes Werkzeug

⁽³⁴⁾ F.P. Brooks, Vom Mythos des Mann-Monats (mitp., 2003), Kapitel 13 - Das Ganze und seine Teile

⁽³⁶⁾ F.P. Brooks, Vom Mythos des Mann-Monats (mitp, 2003), Kapitel 15 - Das andere Gesicht

No Silver Bullet (37)

1986 auf Konferenz veröffentlicht und später in Neuauflage abgedruckt

- Warum w\u00e4chst die Hardware-Entwicklung so schnell und die Software-Entwicklung so langsam?
- Warum ist Software-Entwicklung so viel komplexer?
- Kann man Software-Entwicklung beschleunigen und wenn ja, wie?
- Voraussage, dass keine einzelne Änderung in 10 Jahren eine Verbesserung um den Faktor 10 bringen wird
- Sehr kontrovers diskutiert. Vorwurf des Pessimismus⁽³⁸⁾

⁽³⁷⁾ F.P. Brooks, Vom Mythos des Mann-Monats (mitp., 2003), Kapitel 16 - Silberkugeln sind leider aus

⁽³⁸⁾F.P. Brooks. Vom Mythos des Mann-Monats (mitp., 2003), Kapitel 16 - Keine Silberkugeln Nachschuss

- Kaufen statt Programmieren
- Rapid Prototyping
- Iterative Entwicklungsverfahren
- Ausbilden "herausragender Designer"

Inhalt

⁽³⁷⁾ F.P. Brooks, Vom Mythos des Mann-Monats (mitp, 2003), Kapitel 16 - Silberkugeln sind leider aus

No Silver Bullet - keine Lösungsmöglichkeiten⁽³⁷⁾

Keine Lösung:

- Hochsprachen
- **Multitasking**

Unwahrscheinliche Lösungen:

- Programmierkonzepte von Ada
- Objektorientierte Programmierung
- Künstliche Intelligenz

⁽³⁷⁾ F.P. Brooks, Vom Mythos des Mann-Monats (mitp, 2003), Kapitel 16 - Silberkugeln sind leider aus

Rückblick nach 20 Jahren (39)

- Erklärungsversuch, warum das Buch immer noch gelesen wird
 - Zentrale Themen sind immer noch relevant
 - Buchthema ist zum Teil "Menschen in Teamarbeit"
- Grafischer Desktop als Beispiel für evolutionäres, geschlossenes Design
- Voraussage des Untergangs von WIMP (Windows, Icons, Menus, Pointer)
- Bestätigung seiner Thesen durch Boehm, DeMarco und E.F. Schuhmacher
- Selbstreflexion:
 - Kapselung ist besser als gläserner Entwickler
 - Überraschung durch PC-Revolution

⁽³⁹⁾F.P. Brooks, Vom Mythos des Mann-Monats (mitp., 2003), Kapitel 19 - Vom Mythos des Mann-Monats nach 20 Jahren

Fazit

Armin Grodon

Fred Brooks

Hochschule München

Fazit

Fred Brooks

- Prägte den Begriff "Software-Architekt"(1)
- Schaffung des Mainframes
- Schaffung der Grundlage für heutige Computer
- Zahlreiche Ehrungen und Auszeichnungen für seine Leistungen
- Arbeitet immer noch in der Forschung zu Software-Architektur⁽⁴⁰⁾

⁽¹⁾ https://www.cs.unc.edu/~brooks/FPB BIO.CV.04.2007.pdf

⁽⁴⁰⁾ F.P. Brooks, Erfolgreiches Design (mitp, 2011), Vorwort

Quellen:

- F.P. Brooks, Vom Mythos des Mann-Monats (mitp, 2003)
- F.P. Brooks, Erfolgreiches Design (mitp. 2011)
- F.P. Brooks, Vortrag: The IBM Operating System/360, Berlin 2001
- Brooks Mealy Witt Clark, The functional structure of OS/360, IBM Systems Journal
- https://www.cs.unc.edu/~brooks/FPB_BIO.CV.04.2007.pdf
- http://www-03.ibm.com/ibm/history/exhibits/mainframe/mainframe PP7030.html
- http://www-03.ibm.com/systems/z/hardware/z13 specs.html
- http://www-03.ibm.com/press/us/en/pressrelease/45808.wss
- http://www-01.ibm.com/support/knowledgecenter/zosbasics/com.ibm.zos.zmainframe/zconc compatible.htm
- http://www.brouhaha.com/~eric/retrocomputing/ibm/stretch/early_history_of_ harvest html
- http://www.ccianet.org/2008/07/ ibm-with-another-mainframe-antitrust-complaint-in-europe
- http://www.cnet.com/news/ibm-sells-pc-group-to-lenovo
- M.W. McMurran, ACHIEVING ACCURACY: A Legacy of Computers and Missiles, 98-100
- P.E. Ceruzzi, A History of Modern Computing, 144, 151f
- http://www.multicians.org/history.html
- https://www.bell-labs.com/usr/dmr/www/hist.html

Vielen Dank für die Aufmerksamkeit

