Integrator/LM-XCV400+

Logic Module

User Guide

Integrator/LM-XCV400+ User Guide

Copyright © ARM Limited 2000. All rights reserved.

Release information

Change history

Date	Issue	Change
16 February 2000	A	New document

Proprietary notice

ARM, the ARM Powered logo, Thumb and StrongARM are registered trademarks of ARM Limited.

The ARM logo, AMBA, Angel, ARMulator, EmbeddedICE, ModelGen, Multi-ICE, PrimeCell, ARM7TDMI, ARM7TDMI-S, ARM9TDMI, ARM9E-S, ARM966E-S, ETM7, ETM9, TDMI and STRONG are trademarks of ARM Limited.

All other products or services mentioned herein may be trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document may be adapted or reproduced in any material form except with the prior written permission of the copyright holder.

The product described in this document is subject to continuous developments and improvements. All particulars of the product and its use contained in this document are given by ARM Limited in good faith. However, all warranties implied or expressed, including but not limited to implied warranties or merchantability, or fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM Limited shall not be liable for any loss or damage arising from the use of any information in this document, or any error or omission in such information, or any incorrect use of the product.

Document confidentiality status

This document is Open Access. This document has no restriction on distribution.

Product status

The information in this document is Final (information on a developed product).

ARM web address

http://www.arm.com

Contents

Integrator/LM-XCV400+ User Guide

	About	t this document	V
	Furthe	er reading	vii
		back	
Chapter 1	Intro	duction	
•	1.1	About the ARM Integrator/LM-XCV400+ logic module	1-2
	1.2	Architecture overview	
	1.3	Links, indicators, and switches	
Chapter 2	Getti	ng Started	
•	2.1	Using a bench power supply	2-2
	2.2	Using the logic module with an Integrator motherboard	
	2.3	Setting the DIL switches	2-5
	2.4	Using Multi-ICE or JTAG equipment	2-6
	2.5	Differences between core and logic modules	
	2.6	Care of modules	2-8
Chapter 3	Hard	ware Description	
·	3.1	Logic module FPGA	3-2
	3.2	Bus interfaces	
	3.3	Clock control	3-7
	3.4	Reset control	
	3.5	JTAG support	

	3.6	Memory	3-17
	3.7	LEDs and switches	
	3.8	Prototyping grid	3-19
	3.9	Debug connectors	
Chapter 4	Desig	gner's Reference	
-	4.1	Tool flow	4-2
	4.2	Configuring the FPGA from flash	4-4
	4.3	Loading new FPGA configurations	
	4.4	Reprogramming the PLD	
Chapter 5	FPG/	A Configuration Examples	
•	5.1	About the FPGA configuration examples	5-2
	5.2	Example 2 programmer's reference	
Appendix A	Signa	al Descriptions	
	A.1	Logic module connector EXPA	A-2
	A.2	Logic module connector EXPB	A-5
	A.3	Connector EXPM	A-7
	A.4	Diagnostic connectors	A-9
Appendix B	FPG/	A Pin Allocation	
• •	B.1	Clock signals	B-2
	B.2	LEDs and switches	
	B.3	Diagnostics	B-5
	B.4	SSRAM	B-8
	B.5	Prototyping grid	B-11
	B.6	GPIO (or F BUS)	
	B.7	External Bus Interface (EBI)	
	B.8	ASB/AHB signals	
	B.9	Miscellaneous input/output signals	
	B.10	Modem card signals	
Appendix C	Mech	nanical Specification	
	C.1	Mechanical details	

Preface

This preface introduces the ARM Integrator/LM-XCV400+ logic module and its reference documentation. It contains the following sections:

- About this document on page vi
- Further reading on page viii
- Feedback on page ix.

About this document

This document describes how to set up and use the ARM Integrator/LM-XCV400+ logic module.

Intended audience

This document has been written for experienced hardware and software developers as an aid to developing ARM-based products using the ARM Integrator/LM-XCV400+ as a standalone development system or as part of an Integrator development system.

Organization

This document is organized into the following chapters:

Chapter 1 Introduction

Read this chapter for an introduction to the logic module.

Chapter 2 Getting Started

Read this chapter for a description of how to set up and start using the logic module.

Chapter 3 Hardware Description

Read this chapter for a description of the hardware architecture of the logic module. This includes clocks, resets, and debug facilities.

Chapter 4 Designer's Reference

Read this chapter for a description of how FPGA configurations are selected and how to download new FPGA configurations.

Chapter 5 FPGA Configuration Examples

Read this chapter for a description of the example FPGA configurations supplied with the logic module. This chapter provides information essential for understanding the memory map and register functions necessary to support the logic module example as part of an Integrator development system.

Appendix A Signal Descriptions

Refer to this appendix for connector pinouts.

Appendix B FPGA Pin Allocation

Refer to this appendix for a listing by function of the FPGA input/output pins.

Appendix C Mechanical Specification

Refer to this appendix for mechanical details of the logic module.

Typographical conventions

The following typographical conventions are used in this document:

bold Highlights ARM processor signal names within text, and interface

elements such as menu names. May also be used for emphasis in

descriptive lists where appropriate.

italic Highlights special terminology, cross-references and citations.

typewriter Denotes text that may be entered at the keyboard, such as

commands, file names and program names, and source code.

<u>type</u>writer Denotes a permitted abbreviation for a command or option. The

underlined text may be entered instead of the full command or

option name.

typewriter italic

Denotes arguments to commands or functions where the argument

is to be replaced by a specific value.

typewriter bold

Denotes language keywords when used outside example code.

Further reading

This section lists related publications by ARM Limited and other companies that provide additional information and examples.

ARM publications

The following publications provide information about related ARM products and toolkits:

- *ARM Integrator/AP User Guide* (ARM DUI 0098)
- *ARM Integrator/SP User Guide* (ARM DUI 0099)
- *ARM Multi-ICE User Guide* (ARM DUI 0048)
- AMBA Specification (ARM IHI 0011)
- *ARM Architectural Reference Manual* (ARM DDI 0100)
- *ARM Firmware Suite Reference Guide* (ARM DUI 0102)
- *ARM Software Development Toolkit User Guide* (ARM DUI 0040)
- *ARM Software Development Toolkit Reference Guide* (ARM DUI 0041)
- *ADS Tools Guide* (ARM DUI 0067)
- *ADS Debuggers Guide* (ARM DUI 0066)
- *ADS Debug Target Guide* (ARM DUI 0058)
- ADS Developer Guide (ARM DUI 0056)
- ADS CodeWarrior IDE Guide (ARM DUI 0065).

Other publications

The following publication provides information about the clock controller chip used on the Integrator modules:

 MicroClock OSCaR User Configurable Clock Data Sheet (MDS525), MicroClock Division of ICS, San Jose, CA.

The following publications provide information and guidelines for developing products for Microsoft Windows CE:

- Standard Development Board for Microsoft[®] Windows[®] CE, 1998, Microsoft Corporation
- HARP Enclosure Requirements for Microsoft® Windows® CE, 1998, Microsoft Corporation.

Further information on these topics is available from the Microsoft web site.

Feedback

ARM Limited welcomes feedback both on the ARM Integrator/LM-XCV400+ logic module and on the documentation.

Feedback on this document

If you have any comments about this document, please send email to errata@arm.com giving:

- the document title
- the document number
- the page number(s) to which your comments refer
- an explanation of your comments.

General suggestions for additions and improvements are also welcome.

Feedback on the ARM Integrator/LM-XCV400+

If you have any comments or suggestions about this product, please contact your supplier giving:

- the product name
- an explanation of your comments.

Chapter 1 Introduction

This chapter provides an introduction to the ARM Integrator/LM-XCV400+ logic module. It contains the following sections:

- About the ARM Integrator/LM-XCV400+ logic module on page 1-2
- Architecture overview on page 1-4
- Links, indicators, and switches on page 1-5.

1.1 About the ARM Integrator/LM-XCV400+ logic module

The Integrator/LM-XCV400+ logic module is designed as a platform for developing ASB, AHB, and APB peripherals for use with ARM cores. You can use it in three ways:

- as a standalone system, with a bench power supply
- with an Integrator core module, and an Integrator/AP or Integrator/SP motherboard
- as a core module with either Integrator/AP or Integrator/SP motherboard if a synthesized ARM core, such as the ARM7TDMI-S, is programmed into the FPGA.

Figure 1-1 on page 1-3 shows the layout of the logic module.

The logic module is fitted with a Xilinx Virtex FPGA. The basic functionality of the logic module is defined by a configuration which is loaded into the FPGA at power-up. Two FPGA configuration examples are preloaded into flash to get you started. You can download your own configurations using the Xilinx XChecker tool or Multi-ICE.

Figure 1-1 Integrator/LM-XCV400+ layout

1.2 Architecture overview

Figure 1-2 shows the architecture of the logic module.

Figure 1-2 System architecture

The logic module comprises the following:

- Xilinx Virtex XCV400, 600, 800, or 1000 FPGA
- configuration PLD and flash memory for storing FPGA configurations
- 256KB SSRAM
- clock generators and reset sources
- switches
- LEDs
- prototyping grid
- JTAG, Trace, and logic analyzer connectors
- system bus connectors to a motherboard and/or core modules and/or logic modules.

These components are discussed in detail in Chapter 3 Hardware Description.

1.3 Links, indicators, and switches

The logic module provides:

- one link
- seven surface-mounted LEDs
- one push button switch
- a 4-way DIL switch pack.

You can also add your own links and switches to the prototyping grid, if required.

1.3.1 CONFIG link

The CONFIG link enables *configuration mode*. Configuration mode changes the JTAG signal routing and is used to download new PLD or FPGA configurations.

1.3.2 LEDs summary

The LEDs are illustrated in Figure 1-3.

Figure 1-3 LEDs

The logic module provides seven LEDs, as summarized in Table 1-1.

Table 1-1 LED summary

Name	Color	Function
CFGLED	Orange	Configuration mode. This LED is lit when the CONFIG link is fitted.
POWER	Green	Power supply OK. This LED is lit when 3.3V power is supplied to the board.
FPGA_OK	Green	FPGA is configured. This LED is lit when power is supplied and the FPGA has loaded its configuration.
USER[3:0]	Green	User LEDs. These are general purpose LEDs connected to FPGA pins. Drive LOW to light.

1.3.3 Switches

The DIL switch and push button provide general purpose inputs to the FPGA.

The PLD uses two of the switches within the DIL pack to select the FPGA configuration when the logic module is powered up without a motherboard present.

Chapter 2 Getting Started

This chapter describes how to set up and start using the logic module. It contains the following sections:

- Using a bench power supply on page 2-2
- Using the logic module with an Integrator motherboard on page 2-3
- Setting the DIL switches on page 2-5
- Using Multi-ICE or JTAG equipment on page 2-6
- Differences between core and logic modules on page 2-7
- Care of modules on page 2-8.

2.1 Using a bench power supply

To power the logic module as a standalone system, connect a bench power supply capable of supplying +3.3V and +5V using the screw terminals shown in Figure 2-1. You must apply and remove the 3.3V and 5V supplies simultaneously.

You must take care to wire the supply correctly, because there is no reverse-polarity protection. The power terminals are marked clearly on the PCB.

Figure 2-1 Power supply screw terminals

2.2 Using the logic module with an Integrator motherboard

The logic module and core modules can be mounted onto an Integrator/AP or Integrator/SP motherboard, as described in:

- Mounting the logic module on an Integrator/AP
- *Mounting on an Integrator/SP* on page 2-4.

2.2.1 Mounting the logic module on an Integrator/AP

You can mount modules on the Integrator/AP in the following positions:

- logic modules using the connectors EXPA and EXPB
- core modules using the connectors HDRA and HDRB.

Note	
11000	

Logic modules can be mounted on the HDRA and HDRB connectors. However, the interrupt signals on the HDRB and EXPB are routed differently (see *Differences between core and logic modules* on page 2-7).

Precautions

To prevent damage to the Integrator/AP and modules:

- Power down before fitting or removing core modules or logic modules.
- Do not exceed four core modules or logic modules in one stack.
- Do not exceed a combined total of five core modules or logic modules on the Integrator/AP.

Fitting procedure

Fit a logic module as follows:

- 1. Place the Integrator/AP on a firm level surface.
- 2. Align connectors EXPA and EXPB on core module with the corresponding connectors on the Integrator/AP.
- 3. Press firmly on both ends of the logic module so that both connectors close together at the same time.
- 4. Repeat steps 2 and 3 for additional modules.

Figure 2-2 on page 2-4 shows four core modules and one logic module attached to an Integrator/AP.

Figure 2-2 Assembled Integrator/AP development system

2.2.2 Mounting on an Integrator/SP

The core modules and logic modules mount in a single stack using the HDRA/EXPA and HDRB/EXPB connectors. You must follow the same precautions and limit the number of modules to four.

Note	
Logic modules and core modules use the interrupt signals on the HDRB an	d EXPB
differently (see <i>Differences between core and logic modules</i> on page 2-7).	

2.3 Setting the DIL switches

When the logic module powers up, the FPGA loads configuration data from flash memory. The flash memory is preloaded with two example configuration images. These are selected as follows:

• On a standalone module, the 4-pole DIL switch (S1), illustrated in Figure 2-3, is used by the preloaded PLD configuration to select the FPGA configuration.

Figure 2-3 DIP switches

• If the logic module is mounted on a motherboard, the signals **CFGSEL** [1:0] from the motherboard are used to select the FPGA configuration. This selects an AHB or ASB example depending on the motherboard configuration.

For a full description of FPGA configuration image selection, see *Configuring the FPGA from flash* on page 4-4.

2.4 Using Multi-ICE or JTAG equipment

JTAG equipment, such as Multi-ICE, is connected to the 20-way box header, as shown in Figure 2-4. When multiple core or logic modules are stacked on a motherboard, the JTAG equipment is always connected to the top module in the stack. Refer to *JTAG support* on page 3-12 for a description of the JTAG system.

Figure 2-4 Connecting Multi-ICE

_____Note _____

The logic module programming utility requires Multi-ICE release 1.4 or above. Refer to the *Multi-ICE User Guide* for details of how to use Multi-ICE.

2.5 Differences between core and logic modules

Core and logic modules handle the interrupt signals differently. Core modules must receive interrupts, but logic modules, that implement peripherals, generate interrupts.

The signals on HDRB and EXPB concerned with interrupts are different, as shown in Table 2-1. All signals on these pins are driven open-collector (open-drain) to prevent conflict when logic and core modules are connected together in the same stack.

Appendix A Signal Descriptions provides a full description of all the connector pins.

Table 2-1 Interrupt Pins on HDRB and EXPB

HDRB	Label	Description	ЕХРВ	Label	Description
nFIQ0	H16	Fast interrupt to module 0	-	E16	Not used
nFIQ1	H17	Fast interrupt to module 1	-	E17	Not used
nFIQ2	H18	Fast interrupt to module 2	-	E18	Not used
nFIQ3	H19	Fast interrupt to module 3	-	E19	Not used
nIRQ0	H20	Interrupt to module 0	IRQSRC0	E20	Interrupt source from module 0 to interrupt controller
nIRQ1	H21	Interrupt to module 1	IRQSRC1	E21	Interrupt source from module 1 to interrupt controller
nIRQ2	H22	Interrupt to module 2	IRQSRC2	E22	Interrupt source from module 2 to interrupt controller
nIRQ3	H23	Interrupt to module 3	IRQSRC3	E23	Interrupt source from module 3 to interrupt controller

You can use the logic module to implement a synthesized processor, such as an ARM 7TDMI-S, in which case it functions as a core module. As a core module, it receives interrupts, and is installed in the HDRA/B stack.

Also, on the Integrator/AP, the 32 GPIO (otherwise know as the FBUS) lines are routed to the EXPB connector, but not the HDRB connector. The GPIO signals are therefore not available on the Integrator/SP.

2.6 Care of modules

When you remove a core or logic module from a motherboard, or separate modules, take care not to damage the EXPA/EXPB/EXPM connectors. Do not apply a twisting force to the ends of the connectors on removal. Ideally, loosen each side first before pulling the module directly upwards at both ends.

Use the logic module in a clean environment and avoid debris fouling the connectors on the underside of the PCB. Blocked holes result in damage to connectors on the motherboard or module below. It is worth giving the module a quick visual inspection to ensure that connector holes are clear before mounting on another board.

Observe ESD precautions when handling any Integrator PCB.

Chapter 3 **Hardware Description**

This chapter describes logic module hardware and contains the following sections:

- Logic module FPGA on page 3-2
- Bus interfaces on page 3-5
- *Clock control* on page 3-7
- Reset control on page 3-10
- JTAG support on page 3-12
- *Memory* on page 3-17
- *LEDs and switches* on page 3-18
- Prototyping grid on page 3-19
- *Debug connectors* on page 3-20.

3.1 Logic module FPGA

The logic module is fitted with Xilinx Virtex XCV400, 600, 800, or 1000 FPGA. The assignment of its input/output banks, JTAG implementation, and how the device is configured are described in the following sections:

- FPGA bank assignment
- *JTAG and the FPGA* on page 3-3
- FPGA configuration on page 3-3.

3.1.1 FPGA bank assignment

The FPGA input/output pins are organized into eight banks. If the logic module is configured for an Integrator motherboard or core module, the function of seven banks are defined as shown in Table 3-1. One bank is assigned to the prototyping grid (see *Prototyping grid* on page 3-19).

Table 3-1 FPGA input/output bank assignment

Bank	Function
0	This bank is connected to the memory expansion connector (EXPM). The supplied configurations set this bank up as a memory interface. If expansion memory is not required, it can be assigned to another function.
1	This bank provides addresses for the on-board SSRAM, LEDs, and memory access control on memory expansion connector (EXPM).
2	These banks provide access to the system bus, which provides the main
3	interface with other Integrator boards. These connect to EXPA.
4	This bank provides a Trace port, divider control for CLK2 clock generator, and JTAG.
5	Prototyping grid.
6	On-board SSRAM data bus, divider control for CLK1 clock generator, and reset control signals.
7	GPIO signals to and from the EXPA and EXPB connectors.

_____Note _____

For a complete listing of the FPGA connections, see Appendix B $FPGA\ Pin\ Allocation$.

3.1.2 JTAG and the FPGA

The FPGA provides a hardware JTAG TAP controller. You can use this TAP controller to download new FPGA configurations. In addition, a number of input/output pins are reserved for virtual TAP controller which you can synthesize into the FPGA configuration. You can use the virtual TAP controller to access a processor synthesized on the FPGA.

The CONFIG link is used to route the JTAG connector to the hardware TAP controller or the virtual TAP controller (see *JTAG support* on page 3-12).

The Example 2 configurations supplied with the logic module include a virtual TAP controller (see *FPGA Configuration Examples* on page 5-1).

3.1.3 FPGA configuration

At power-up the FPGA loads configuration data to its internal configuration memory. Figure 3-1 shows the architecture of the FPGA configuration system.

Figure 3-1 FPGA configuration architecture

The FPGA provides two configuration modes and the logic module provides three ways to load configuration data into the FPGA. The configuration modes are selected by the mode pins (**M[2:0]**) on the FPGA. The values of M1 and M2 are fixed but the M0 is controlled by the CONFIG link, as shown in Table 3-2.

Table 3-2 FPGA programming modes

M2	M1	МО	Mode selected
0	1	1	Slave serial mode
0	1	0	Select MAP mode

_____ Note _____

The signals **FD[7:0]** are connected with **SD[7:0]**. The signals are used for flash data transfers during FPGA configuration and for configuration downloads into flash. At all other times the signals are used for SSRAM transfers. All designs must drive **FnOE** and **FnWE** HIGH to inhibit reads and writes to the flash.

Select MAP mode

This mode is the normal FPGA configuration mode. The FPGA configuration is loaded from flash memory and the process is managed by the configuration *Programmable Logic Device* (PLD). The flash must contain valid configuration data and the CONFIG link must not be fitted.

The flash memory can store multiple configuration images. The image is selected either by the DIL switched or by **CFGSEL[1:0]** from the motherboard (see *Configuring the FPGA from flash* on page 4-4).

Slave serial mode

You can use slave serial mode to configure the FPGA with the XChecker tool. This mode is selected by fitting the CONFIG link.

Boundary scan programming

You can use the Multi-ICE JTAG port to download configurations when the CONFIG link is fitted (see *JTAG support* on page 3-12).

3.2 Bus interfaces

When used with an Integrator motherboard or core module, the logic modules require a system bus interface. You can also implement an expansion bus interface.

3.2.1 System bus interface

The system bus interface connects the logic module with other Integrator modules. This can be implemented using AHB or ASB interface. Example configurations are supplied with the logic module to get you started and to enable you to develop with various bus configurations (see Chapter 5 FPGA Configuration Examples).

In a conventional AMBA system, a single central decoder is used to provide a select signal (**DSELx** for ASB) for each slave on the bus. However, in the Integrator family this scheme is varied. Each module is responsible for providing its own select signals. This provides greater flexibility and improves performance.

The Integrator memory map defines the address space of each module depending on its position within the stack and on whether it is mounted in the HDRA/HDRB or EXPA/EXPB stack. When a module is not present, the central decoder on the motherboard provides a default response for bus transfers in the unoccupied address space. This default response is switched off when the module is present.

The scheme requires the central decoder to detect which modules are present and for each module to detect its position in the stack, and in which stack it is mounted. A module must respond to all memory accesses within its allocated address space but not to accesses outside of its allocated space.

The signals **ID[3:0]**, **nPRES[3:0]**, and **nEPRES[3:0]** and a signal rotation scheme are used by modules to determine their position in the stack and to signal their presence to the central decoder. A logic module can determine its position from **ID[3:0]**, and therefore its address. Table 3-3 shows addresses for modules in either stack position.

Base Address ID[3:0] Size Module ID EXPA/EXPB HDRA/HDRB 256MB 1101 3 (top) 0xF0000000 0xB0000000 2 1011 256MB 0xE0000000 0xA0000000 0111 1 0xD0000000 0x90000000 256MB 1110 0 (bottom) 0xC0000000 0x80000000 256MB

Table 3-3 Logic module base address decodes

3.2.2 Expansion bus interface

The *Expansion Bus Interface* (EBI) supports the addition of memory or peripheral expansion to the EBI connector EXPM. It provides a 32-bit data bus and a 26-bit address bus, and control signals. You can use the EBI as an expansion of the EBI on the motherboard or for local expansion for the logic module.

The *Integrator/AP User Guide* and *Integrator/SP User Guide* provide details about the expansion bus interface.

3.3 Clock control

The FPGA has four dedicated clock inputs. The function and control of the clock signals are described in the following sections:

- Clock architecture
- Programming the on-board clock generators on page 3-8.

3.3.1 Clock architecture

Figure 3-2 shows the architecture of the clocking system.

Figure 3-2 Clock architecture

The ICS525s are two programmable clock sources that are supplied with a reference clock signal by a 24MHz crystal oscillator. The output frequency from each ICS525 is configured by setting signal levels on its *divider* input pins. These are connected to the FPGA. Pull-down resistors on the divider inputs ensure that the oscillator outputs default to 4.8MHz when the FPGA is not configured.

The FPGA configuration examples supplied with the logic module provide two registers, LM_OSC1 and LM_OSC2, which control the divider inputs (see *Example 2 APB register peripheral* on page 5-7).

The system clock and memory clocks from the motherboard are controlled by similar oscillators on the motherboard. See the user guide for your motherboard for more information.

Table 3-4 provides a summary of the clock signals on the logic module.

Table 3-4 Logic module clock signals

FPGA pin name	Clock name	Clock source
GCK0	SYSCLK	Motherboard system clock.
GCK1	CLK1	On-board clock generator (programmable).
GCK2	CLK2	On-board clock generator (programmable).
GCK3	MEMCLK	Motherboard memory expansion clock.
CCLK	CCLK	Configuration clock supplied by the PLD to the FPGA to synchronize FPGA configuration. It is also used by the XChecker tool in slave serial mode. It is unused at other times.
-	SCLK	The example FPGA configuration uses an FPGA input/output pin to supply a clock signal to the SSRAM.

_____Note _____

The **MEMCLK** signal is supplied by the Integrator/AP motherboard through corresponding EXPM connectors on both the logic module and motherboard. The Integrator/SP does not provide a similar connector and, therefore, does not supply **MEMCLK** to the logic module.

3.3.2 Programming the on-board clock generators

The two clock generators are independently programmable and can produce frequencies in the range 1 MHz to 160 MHz. The output frequency is calculated using the following formula:

Frequency =
$$48MHz \cdot \frac{(CLK_CTRL[8:0] + 8)}{(CLK_CTRL[15:9] + 2) \cdot S}$$

where S can be assigned any value shown in Table 3-5 on page 3-9.

Table 3-5 Values for clock divisor S

Divisor S	CLK_CTRL[18:16]
2	001
4	011
5	100
6	111
7	101
8	010
9	110
10	000

The following operating range limits must be observed:

$$10 \text{MHz} < 48 \text{MHz} \cdot \frac{(\text{CLK_CTRL[8:0]} + 8)}{(\text{CLK_CTRL[15:9]} + 2)}$$

CLK_CTRL[15:9] < 118

You can calculate values for the clock control signals using the ICS525 calculator on the Microclock website.

3.4 Reset control

The logic module provides three predefined reset signals and a push button that you can use to assert a reset. Figure 3-3 shows the architecture of the reset system.

Figure 3-3 Reset architecture

3.4.1 JTAG test reset

The JTAG test reset signal, **nTRST**, is an active LOW open-collector signal. It is connected to an FPGA input/output pin to provide a reset input on the access to a TAP controller synthesized in the FPGA configuration. There are three possible sources of the **nTRST** signal:

- Multi-ICE connector
- Trace (embedded trace module) connector
- motherboard or core module on the EXPB connectors

_____Note _____

- The **nTRST** signal is also used to control FPGA **nPROGRAM** signal when the CONFIG link is fitted.
- On the Integrator/AP, the expansion connector (EXPB) version of **nTRST** is completely isolated from the core module (HDRB) version of **nTRST**.

3.4.2 System reset

The system reset signal, **nSRST**, is a bidirectional, active LOW, open-collector signal. It can be driven by JTAG equipment to reset the logic module. Some JTAG equipment monitors this line to sense when the module has been reset by the user. The **nSRST** signal connects to an FPGA input/output pin, and is present on Multi-ICE, Trace, and EXPB connectors in a similar way to the **nTRST** signal.

On the Integrator/AP, the expansion connector (EXPB) version of **nSRST** is completely separate from the core module (HDRB) version of **nSRST** (see the *Integrator/AP User Guide* for more details).

3.4.3 Motherboard reset

The motherboard reset signal, **nSYSRST**, is driven by the motherboard system controller, and is routed to an FPGA input/output pin on the logic module (see the *Integrator/AP User Guide* for further information).

3.4.4 Push button

The push button is general purpose but can be used as a reset button. It provides an active LOW input to an input/output pin on the FPGA. This is separate to any of the other reset signals.

3.5 JTAG support

The logic module provides support for programming using JTAG. The Multi-ICE and Trace connectors provide access to the FPGA and PLD TAP controllers. The JTAG hardware is connected to the top board in the stack. The JTAG signals **TMS**, **TCK**, and **TDI** route directly down to the motherboard.

The routing of the JTAG signals depends on two factors:

- whether the logic module is being used standalone or is mounted on a motherboard
- whether the logic module is in configuration mode or user mode.

The CONFIG link allows you to select between two JTAG modes:

- configuration mode, which is used for in-system reprogramming of the FPGA or PLD
- user mode, which is used for designs that synthesize a virtual TAP controller.

The Integrator/AP provides logic module and a core module mounting positions. The JTAG signals in these two positions are completely isolated. When the logic module has been programmed, downloading and debugging of ARM code is performed using the JTAG connector on the core module.

3.5.1 Configuration mode

Figure 3-4 shows the JTAG routing on the logic module in configuration mode.

Figure 3-4 Configuration mode JTAG routing

Select configuration mode by fitting the CONFIG link. Fitting the CONFIG link on the top module in a stack selects configuration mode on all of the modules in the same stack. The CONFIG LED is lit on all modules in the same stack.

In configuration mode, the FPGA and the PLD are connected into the **TDI-TDO** chain. This allows the FPGA, PLD, and flash memory to be configured or programmed using the JTAG port.

If more than one module is present when the stack is in configuration mode, it might be necessary to reduce the JTAG **TCK** speed to 1MHz to ensure reliable operation (see the *Multi-ICE User Guide*).

3.5.2 User mode

Figure 3-5 shows the JTAG routing for user mode.

Figure 3-5 User and configuration mode JTAG routing

Select user mode by removing the CONFIG link. This is the default mode.

In user mode, the JTAG signals are connected to FPGA input/output pins that have been designated for implementing a *virtual* TAP controller. This facility is provided for FPGA designs that require a TAP controller, for example, designs that include a synthesized processor.

If your design (or any other module in the same stack) does not implement a TAP controller, then you can ignore these connections. This is usually the case when prototyping AMBA peripherals on the Integrator/AP with the logic module in the expansion position.

In this mode, the four standard JTAG signals, along with **RTCK** and **nTRST**, are routed to the virtual TAP controller on the FPGA. The hardware FPGA TAP controller and the PLD are switched out of the **TDI-TDO** path. **RTCK** is a Multi-ICE specific signal used to support adaptive clocking (see *Using Multi-ICE adaptive clocking* on page 3-15).

3.5.3 Using JTAG with a multi-module Integrator system

Figure 3-6 on page 3-14 shows the JTAG data routing for a logic module, core module, and motherboard in user mode.

Routing switches on the logic module are controlled by the signal **nMBDET** from the motherboard. If the logic module is used standalone, **nMBDET** is pulled HIGH and the JTAG path is confined to components on the logic module.

If the logic module is mounted on a motherboard, either directly or on top of another module, as in Figure 3-6, **nMBDET** is pulled LOW by the motherboard and the **TDI-TDO** data path is routed first down to the motherboard and then up through each module in turn. A maximum of four modules can be stacked in this way. This can be a combination of core and logic modules.

Figure 3-6 JTAG data path (user mode)

 •	01	ŀΔ	
 ٠,	w	ιc	

- The JTAG port does not operate if the logic module is stacked without a
 motherboard. This is because nMBDET is pulled HIGH, isolating the logic
 module JTAG from other modules.
- If the logic module is mounted in a stack that includes a core module or another logic module that implements a TAP controller, the FPGA design must route **TDI** to **TDO** and **TCK** to **RCLK** for the JTAG system to work correctly.

3.5.4 Using Multi-ICE adaptive clocking

To use Multi-ICE with adaptive clocking, ensure the following:

- **TCK** is returned on **RTCK** to the Multi-ICE connector.
- The TCK signal to any logic module in a stack below the top board is driven by the RTCK output of the board above. The signal is then routed down through other modules to the motherboard and then back up to the Multi-ICE connector.

See the Multi-ICE User Guide for more information.

3.5.5 JTAG signal descriptions

Table 3-6 provides a summary of the JTAG signals.

Table 3-6 JTAG and related signals

Signal	Description	Function
TDI	Test Data In (from JTAG tool)	This signal goes down the stack of modules to the motherboard and then back up the stack, labelled TDO .
TDO	Test Data Out (to JTAG tool)	This signal is the return path of the data input signal TDI . The module connectors HDRB/EXPB have two pins, labelled TDI and TDO . TDI refers to data flowing down the stack and TDO to data flowing up the stack. The JTAG components are connected in the return path so that the length of track driven by the last component in the chain is kept as short as possible.
TCK	Test Clock (from JTAG tool)	This signal synchronizes all JTAG transactions. TCK connects to all JTAG components in the TDI-TDO chain. It makes use of series termination resistors on stubs to reduce reflections and maintain good signal integrity. TCK flows down the stack of modules and connects to each JTAG component, but if there is a device in the scan chain that synchronizes TCK to some other clock, then all down-stream devices are connected to the RTCK signal on that component (see RTCK below).
TMS	Test Mode Select (from JTAG tool)	This signal controls transitions in the tap controller state machine. TMS connects to all JTAG components in the scan chain as the signal flows down the module stack.

Table 3-6 JTAG and related signals (continued)

Signal	Description	Function			
RTCK	Return TCK (to JTAG tool)	Some devices sample TCK (for example, a synthesizable core with only one clock), and this delays the time at which a component actually captures data. RTCK is used to return the sampled clock to the JTAG equipment, so that the TCK is not advanced until the synchronizing device has captured the data. In adaptive clocking mode, Multi-ICE must detect an edge on RTCK before changing TCK . In a multiple-device JTAG chain, the RTCK output from a component connects to the TCK input of the down-stream device. The RTCK signal on the module connectors HDRB/EXPB returns TCK to the JTAG equipment. If there are no synchronizing components in the TDI-TDO chain then, it is not necessary to use the RTCK signal and it is connected to ground on the motherboard.			
nRTCKEN	Return TCK enable (from module to motherboard)	This active LOW signal is driven by any module that requires RTCK to be routed back to the JTAG equipment. If nRTCKEN is HIGH the motherboard drives RTCK LOW. If nRTCKEN is LOW, the motherboard drives the TCK signal back up the stack to the JTAG equipment. The logic module drives this signal LOW if it is not in configuration mode.			
nCFGEN	Configuration enable (from jumper on module at the top of the stack)	This active LOW signal is used to put the boards into configuration mode. In configuration mode all FPGAs and PLDs are connected to the TDI-TDO chain so that they can be configured by the JTAG equipment.			
GLOBAL_DONE	All FPGAs are configured	This open-collector signal indicates when all FPGAs in the system have configured. This signal is not part of the JTAG scheme, but is relevant to how the boards are reset and, therefore, has an effect on nSRST . The signal is routed between all FPGAs in the system through a pin on the HDRB/EXPB connectors. The master reset controller on the motherboard senses this line and holds all the boards in reset (by driving nSRST LOW) until all the FPGAs are configured. It is essential that a pull-up is added to the FPGA input/ouptut pad during synthesis.			

Note —

The signal naming on the logic module differs slightly from the rest of the Integrator syste. The logic module provides separate **LOCAL_DONE** and **GLOBAL_DONE** signals to make the scope of each signal clear. When **GLOBAL_DONE** reaches the EXPB connector it is known as **FPGADONE** to the rest of the Integrator system.

3.6 Memory

The logic module provides SSRAM and flash memory.

3.6.1 SSRAM

A 64K x 32-bit SSRAM (Micron part number MT58LC128K32B4) is provided with address, data and control signals routed to the FPGA. The address and data lines to the SSRAM are completely separate from the ASB/AHB buses.

3.6.2 Flash memory

This is used for FPGA configuration, and must not be used for any other purpose. Configuration is managed by the configuration PLD.

3.7 LEDs and switches

There are four general purpose green LEDs. These are lit by driving the associated LED output pin LOW.

The Example 2 FPGA configuration supplied with the logic module provides the register LM_LEDs to control the LEDs (see *Example 2 APB register peripheral* on page 5-7).

The location of the LEDs is illustrated in Figure 1-3 on page 1-5.

A 4-way DIL switch on the module is provided for user-defined operation. However when the logic module is powered up in user mode, the lower two switches are used to select the flash image (see *Configuring the FPGA from flash* on page 4-4).

The FPGA pins that are used to monitor the switches must always be configured as an input or high Z. This is because the signals are grounded when the switch is in the ON position. The switch signals are also routed to the prototyping grid.

3.8 Prototyping grid

The prototyping grid consists of an 18 x10 grid of 0.1 inch pitch plated-through holes. The holes are labelled A to R, and 0 to 9.

The holes on the left side of the grid are connected to FPGA input/output pins from the FPGA and various other signals. Power and grounds are provided around an area of open circuit holes.

You can use the prototyping grid to, for example:

- wire to off-board circuitry
- mount connectors
- mount small integrated circuits.

All of the signals from FPGA bank 5 (see *FPGA bank assignment* on page 3-2) are routed to the prototyping grid so that you can use the Virtex SelectIO feature of the FPGA (see *Virtex Application Note XAPP133*). The SelectIO feature provides support for a range of interfacing standards.

You can set the input voltage thresholds using the VREF_XXX inputs on prototyping holes E[0:7]. These signals can be assigned as input/output signals when they are not required as input reference signals (see *Virtex Application Note XAPP133*).

Larger FPGA devices use more of the input/output pins as voltage reference inputs. For example, the signal VREF_6_IO is an optional voltage reference input on XCV600 devices and above, VREF_8_IO on XCV800 and so on (see *Virtex Application Note XAPP133*).

The output voltage for bank 5 is set by the signal VCCO_5. There are three options for providing the voltage for this signal:

- 3.3V supplied from the logic module (default position)
- 2.5V supplied from the logic module
- user-supplied voltage from prototyping hole E8 (link LK1 must be removed for this option).

These options are selected using soldered link LK1.

Full details of the signals available on the prototyping grid are provided in Appendix B *FPGA Pin Allocation*.

3.9 Debug connectors

The logic module provides a logic analyzer connector and a Trace connector.

3.9.1 Logic analyzer connector

A 38-way Mictor connector is provided for debugging or monitoring purposes. Two 16-bit channels and clocks are routed directly to FPGA pins. These input/output pins are shared with the prototyping area.

3.9.2 Trace connector

The trace connector is intended for use with FPGA configurations that implement a synthesized ARM processor core with an *Embedded Trace Macrocell* (ETM). In this application the logic module is generally used standalone, or as a core module.

A 38-way Mictor connector is used. You can use it to route additional signals to a logic analyzer in a non-ETM FPGA design.

Chapter 4 **Designer's Reference**

This chapter describes how to download your own FPGA configurations and how configuration images in flash are selected. It contains the following sections:

- *Tool flow* on page 4-2
- Configuring the FPGA from flash on page 4-4
- Loading new FPGA configurations on page 4-6
- *Reprogramming the PLD* on page 4-8.

4.1 Tool flow

Preparing FPGA configuration files entails two steps:

- 1. Synthesis.
- 2. Place and route.

Figure 4-1 illustrates the basic tool flow process.

Figure 4-1 Basic tool flow

4.1.1 Synthesis

The synthesis stage of the tool flow takes the HDL files (either VHDL, Verilog, or a combination) and compiles them into a netlist targeted at a particular technology. In the case of the logic module, the target technology is Xilinx Virtex. There are several synthesis tools available for both PC and UNIX, which provide support for a variety of programmable logic vendors.

Synthesis information is supplied either through a GUI front end, or in the form of a command-line script. The information typically includes:

- a list of HDL files
- the target technology
- required optimization, such as area or delay
- timing and frequency requirements
- required pull-ups or pull-downs on the FPGA input/output pads
- output drive strengths.

Refer to the documentation for your particular software tool for further information.

A common netlist file format produced by synthesis is *Electronic Data Interchange Format* (EDIF) (for example, filename.edf). This file is used by the next stage of the tool flow, which is place and route.

Note
To ensure that the Integrator system operates correctly, a pull-up on the
GLOBAL_DONE signal is required on all designs. Specify this during the synthesis
stage.

4.1.2 Place and route

Place and route for the LM-XCV400+ is performed by Xilinx-specific software, to produce a .bit file which is used to program the FPGA. The Virtex targeted .edf is aimed at a particular device, which takes into account the device size, package type, and speed grade.

Signal names from the top-level HDL are mapped onto actual device pins by a user constraints file .ucf. You can also specify the timing requirements within this file.

Note
The file pinout.ucf file for the complete logic module FPGA pin allocation is
supplied on the CD. This is intended as a starting point for any design, and will need to
be edited before using in the place an route process.

4.2 Configuring the FPGA from flash

The flash memory has space to store up to four configurations for XCV400 or XCV600 FPGA types, or up to two configurations for XCV800 or XCV1000 sizes. The configuration image is selected when the logic module is powered up. Image selection is controlled by the configuration PLD.

The logic module is supplied with two PLD programs, pld_a.svf and pld_b.svf (the PLD is preprogrammed with pld_a.svf). These provide two options for the way the flash image is selected. The PLD configurations are:

pld_a.svf When the logic module is used standalone, SW1-1 and SW1-2 are set to select the FPGA configuration.

If the logic module is mounted on a motherboard, **CFGSEL[1:0]** (from the motherboard) are used to select the FPGA configuration.

pld_b.svf SW1-1 and SW1-2 are always used to select the configuration.

Table 4-1 and Table 4-2 show the FPGA image selection options.

Table 4-1 Configuration image selection for XVC400 and XVC600 FPGAs

Flash image	Image base address	CFGSEL[1:0]	SW1-1	SW1-2	SW1-3	SW1-4
0	0x000000	00	ON	ON	X	X
1	0x080000	01	ON	OFF	X	X
2	0x100000	10	OFF	ON	X	X
3	0x180000	11	OFF	OFF	X	X

Table 4-2 Configuration image selection for XVC800 and XVC1000 FPGAs

Flash image	Image base address	CFGSEL[1:0]	SW1-1	SW1-2	SW1-3	SW1-4
0	0x000000	X0	ON	X	X	X
1	0x100000	X1	OFF	X	X	X

—— Note ———

- The switch labels used in the Table 4-1 and Table 4-2 on page 4-4 refer to the markings on the board. These are named **SW[3:0]** in the configuration examples.
- The positions of the switches have no effect on the flash programming operation, only image selection on power-up.
- The PLD detects the presence of the XCV800/1000 by the omission of R25.

See *Example 2 programmer's reference* on page 5-5 for a description of the example images stored in flash when the logic module is shipped.

4.3 Loading new FPGA configurations

You can program the FPGA in two ways:

- writing configuration data directly to the FPGA using Multi-ICE, or the Xilinx XChecker cable
- writing configuration data to the flash memory using Multi-ICE.

To reconfigure the FPGA, the logic module must be in configure mode. This is enabled by fitting the CONFIG link (J13). The CFGLED is lit as an indication that configure mode is selected.

For a description of the configure mode, see *JTAG support* on page 3-12.

4.3.1 Reconfiguring the FPGA directly with JTAG

Using JTAG to program the FPGA is fast, but the configuration is lost when the power supply is removed. Programming takes between 10 and 15 seconds to complete using Multi-ICE on a fast PC, for example a 400MHz machine.

Using Xilinx XChecker cable

Use the DOWNLOAD connector (J1) with the Xilinx XChecker cable. Refer to Xilinx
documentation for the use and operation of this tool.
Note

A 3.3V voltage adapter should be used with Virtex devices.

Using Multi-ICE

You can reprogram the FPGA using Multi-ICE. A Multi-ICE client application called progcards is provided to read. bit files and configure the FPGA using the Multi-ICE hardware. You must use a board file (.brd) to tell the progcards utility about the method of programming. Examples are provided on the CD supplied with the logic module.

——— Note		
The progcar	ds utility requires Multi-ICE release	1.4 or later

For a full description of this utility, refer to the online document file progsuite.pdf on the supplied CD.

To load a new configuration into the FPGA:

- 1. Produce a <filename>.bit file with a **CCLK** start up clock for your design.
- Produce a <filename>.brd for your design. This is a configuration file for prograds.exe.
- 3. Put the logic module in configuration mode by fitting the CONFIG link.
- 4. Configure the Multi-ICE server using a configuration file. For example, LMXCV1000.cfg.
- 5. Run the programds utility. All .brd files present in the current directory that match the TAP configuration are offered as options.

Note	
Multi-ICE cannot autodetect logic modules. You must manually configure to	the
Multi-ICE server. Refer to the Multi-ICE User Guide for further informatio	n.

4.3.2 Downloading new the FPGA configurations into FLASH

The flash memory on the logic module configures the FPGA on power-up when the CONFIG link is not fitted. The progcards utility is used to program the flash. It first loads a flash programmer design into the FPGA, then writes the bit file to the flash memory. You can use the progcards utility to verify the flash image against a bit file.

The steps in writing a bit file to flash are similar to those described in *Reconfiguring the FPGA directly with JTAG* on page 4-6. The only difference is the contents of the .brd file (examples are provided on the CD).

To load the FPGA configuration from flash:

- 1. Remove the CONFIG link.
- 2. Power the logic module down.
- 3. Power the logic module up again.

4.4 Reprogramming the PLD

The logic module is supplied with the PLD already programmed.

You are advised not to reprogram this device with any image other than those provided. An invalid or incorrect design can cause the JTAG signal routing circuitry to fail and prevent the device being reprogrammed.

Program the PLD as follows:

- 1. Put the logic module into configuration mode by fitting the CONFIG link (J13) and power-up.
- 2. Start the Multi-ICE server and the load the configuration file for your logic module. For example:

```
<CD drive>:\LM-XCV400\programming\LMXCV1000.cfg
```

- 3. Start a command prompt and move to the directory <CD drive>:\LM-XCV400\programming\
- 4. Run the programds utility.
- 5. Choose the required PLD image.

Chapter 5 FPGA Configuration Examples

This chapter describes the FPGA configurations supplied with the logic module. It contains the following sections:

- About the FPGA configuration examples on page 5-2
- Example 2 programmer's reference on page 5-5.

5.1 About the FPGA configuration examples

The logic module is supplied with two example FPGA configurations. These are supplied to allow you to gain experience with synthesis, design, and place and route for the logic module. The examples are written in VHDL.

5.1.1 Example 1

Example 1 provides an entry to designing with the logic module as a standalone platform. It is intended to verify that the correct methods are being used for synthesis, place and route, and programming. This example flashes the LEDs, with frequency controlled by **SW[1:0]**, and places a binary count on the logic analyzer connector.

One HDL source file is supplied and bit files for all supported sizes of Virtex FPGAs are included.

5.1.2 Example 2

Four versions of Example 2 are provided to support the following implementations:

- ASB motherboard and ASB peripherals (preloaded flash image at 0x000000)
- ASB motherboard and AHB peripherals
- AHB motherboard and ASB peripherals
- AHB motherboard and AHB peripherals (preloaded flash image at 0x100000).

The ASB-ASB and AHB-AHB versions of Example 2 are preloaded into flash (see *Configuring the FPGA from flash* on page 4-4).

The four versions of Example 2 are intended for use with the Integrator/AP motherboard with the logic module fitted in the expansion position. The interrupt request signals from the logic module are routed to the interrupt controller on the Integrator/AP. You can also use the logic module with the Integrator/SP but interrupt requests from the logic module are not supported.

The Example 2 configurations are built from common blocks with a top level specific to the bus implementation. Each version includes:

- an SSRAM controller
- an ASB/AHB to APB bridge
- an APB register peripheral
- an APB interrupt controller.

Interrupt controller

Figure 5-1 shows the examples without a system bus bridge.

Figure 5-1 Example without bridge (ASBASB and AHBAHB)

Figure 5-2 shows the examples with a system bus bridge.

Figure 5-2 Example with bridge (ASBAHB and AHBASB)

Table 5-1 provides a summary description of the supplied HDL files. A more detailed description of each HDL block is included within the files in the form of comments.

Table 5-1 HDL file descriptions

File	Description
ASBASBTop.vhd ASBAHBTop.vhd AHBASBTop.vhd AHBASBTop.vhd	These four files are the top-level HDL that instantiate all of the high-speed peripherals, decoder, and all necessary support and glue logic to make a working system. The files are named so that, for example, ASBAHBTop . vhd is the top level for AHB peripherals connected to an ASB system bus.
ASB2AHB.vhd AHB2ASB.vhd	These are the bridges required to connect ASB or AHB peripherals to a non-native system.
ASBASBDecoder.vhd AHBASBDecoder.vhd AHBDecoder.vhd	The decoder blocks provide the high-speed peripherals with select lines. These are generated from the address lines and the module ID (position in stack) signals from the motherboard. The decoder blocks also contain the default slave peripheral to simplify the example structure. There are two different decoders supplied for the ASP peripheral examples. This is because the selection of the default slave and ASB response signals are different when the AHB2ASB bridge is present (see VHDL code for details). The Integrator family of boards uses a distributed address decoding system (see <i>Example 2 memory map</i> on page 5-6).
AHBMuxS2M.vhd	This is the AHB multiplexor that connects the read data buses from all of the slaves to the AHB master(s).
ASBSSRAM.vhd AHBSSRAM.vhd	High-speed peripherals require SSRAM controller blocks that support word, halfword, and byte operations to the 256KB of SSRAM on the logic module.
ASB2APB.vhd AHB2APB.vhd	These are the bridge blocks required to connect APB peripherals to the high-speed AMBA buses. They produce the PSELs for each of the APB peripherals.
ASBAPBSys.vhd AHBAPBSys.vhd	The components required for an APB system are instantiated in this block. These include the bridge and the APB peripherals. This file also multiplexes the APB peripheral read buses and concatenates the interrupt sources to feed into the interrupt controller peripheral.
APBRegs.vhd	The APB register peripheral provides memory-mapped registers that you can use to: configure the two clock generators (protected by the LM_LOCK register) write to the four user LEDs read the four switch inputs. It also latches the pressing of the push button to generate an expansion interrupt.
APBIntcon.vhd	The APB interrupt controller contains all of the standard interrupt controller registers and has an input port for four APB interrupts. (The example only uses one of them. The remaining three are set inactive in the AxBAPBSys block.) Four software interrupts are implemented.

5.2 Example 2 programmer's reference

The software sources and precompiled .axf file for this example demonstrate the operation of the SSRAM controller and APB peripherals. They are common for all four combinations of Example 2. The software uses the *ARM Firmware Suite* (AFS) to set up the environment and to run the example code.

There are separate project files for all processors currently supported by the Integrator platform for both the Software Development Toolkit v2.50 and the ARM Developer Suite v1.0.

Before compiling the Example 2 project, you must also build the μHAL library for the logic module.

5.2.1 Software description

There are three source files included in Example 2 that link with the μ HAL libraries associated with the processor you are using:

logic.c The main C code.

logic.h Constants.

rw_support.s Assembler functions for SSRAM testing.

After the FPGAs have been configured, indicated by the FPGA_OK LED being lit, you can download and execute the example software on the core module.

The operation of the code is as follows:

- 1. Determines DRAM size on the core module and set up the system controller.
- 2. Checks that the logic module is present in the AP expansion position.
- 3. Reports module information.
- 4. Sets system and logic module clock frequencies.
- 5. Sets up system interrupt controller and logic module interrupt controller.
- 6. Tests SSRAM for word, halfword, and byte accesses.
- 7. Enters and remains in LED flashing loop.
- 8. Responds to the pressing of the logic module push button by generating an IRQ and displaying the 4-way DIL switch value.

5.2.2 Example 2 memory map

Example 2 sets up the memory map for the logic module. Figure 5-3 shows the locations to which logic modules are assigned within the overall Integrator system memory map.

Figure 5-3 Integrator memory map

The Integrator system implements a distributed address decoding scheme in which each core or logic module is responsible for decoding its own area of memory.

It is important when implementing a logic module design, to ensure that the expansion logic implements a decoder and responds to all memory accesses in the appropriate memory region (see *System bus interface* on page 3-5).

5.2.3 Example 2 APB register peripheral

Table 5-2 shows the mapping of the logic module registers. The addresses shown are offsets from the base addresses shown in Figure 5-3 on page 5-6.

Table 5-2 Logic module registers

Offset address	Name	Туре	Size	Function
0x0000000	LM_ID	Read/write	24	Logic module ID register
0x0000004	LM_OSC1	Read/write	19	Oscillator divisor register 1
0x0000008	LM_OSC2	Read/write	19	Oscillator divisor register 2
0x000000C	LM_LOCK	Read/write	17	Oscillator lock register
0x0000014	LM_LEDS	Read/write	4	User LEDs control register
0x0000018	LM_INT	Read/write	1	Push button interrupt register
0x000001C	LM_SW	Read	4	Switches register

Logic module ID register

The ID register identifies the board manufacturer, board type, and revision.

Oscillator divisor registers

The oscillator registers control the frequency of the clocks generated by the two clock generators (see *Clock control* on page 3-7).

Before writing to the oscillator registers, you must unlock them by writing the value $0 \times 00000 A05F$ to the LM_LOCK register. After writing the oscillator register, relock them by writing any value other than $0 \times 0000 A05F$ to the LM_LOCK register.

Table 5-3 describes the oscillator register bits.

Table 5-3 LM_OSCx registers

Bits	Name	Access	Function	Default
18:16	OD	Read/write	Output divider: 000 = divide by 10 001 = divide by 2 010 = divide by 8 011 = divide by 4 100 = divide by 5 101 = divide by 7 110 = divide by 9 111 = divide by 6.	110
15:9	RDW	Read/write	Reference divider word. Defines the binary value of the R[6:0] pins of the clock generator.	0111110
8:0	VDW	Read/write	VCO divider word. Defines the binary value of the V[8:0] pins of the clock generator.	000000100

-----Note ------

The default values set the oscillators to 1MHz.

For information about setting the clock frequency, see *Clock control* on page 3-7.

Oscillator lock register

The lock register is used to control access to the oscillator registers, allowing them to be locked and unlocked. This mechanism prevents the oscillator registers from being overwritten accidently. Table 5-4 describes the lock register bits.

Table 5-4 LM_LOCK register

Bits	Name	Access	Function
16	LOCKED	Read	This bit indicates if the oscillator registers are locked or unlocked: 0 = unlocked 1 = locked.
15:0	LOCKVAL	Read/write	Write the value 0x0000A05F to this register to enable write accesses to the oscillator registers. Write any other value to this register to lock the oscillator registers.

User LEDs control register

The LEDs register is used to control the four user LEDs (see *LEDs summary* on page 1-5). Writing a 0 to a bit lights the associated LED.

Push button interrupt register

The push button interrupt register contains 1 bit. It is a latched indication that the push button has been pressed. The output from this register is used to drive an input to the interrupt controller. Table 5-5 describes the operation of this register.

Table 5-5 LM_INT register

Bits	Name	Access	Function
0	LM_INT	Read	This bit when SET is a latched indication that the push button has been pressed.
		Write	Write 0 to this register to CLEAR the latched indication. Writing 1 to this register has the same effect as pressing the push button.

Switches register

This register is used to read the setting of the 4-way DIL switch. A 0 indicates that the associated switch element is closed (ON).

5.2.4 Example 2 interrupt controller

The interrupt control registers are listed in Table 5-6.

Table 5-6 Interrupt controller registers

Register name	Address offset	Access	Size	Description
LM_ISTAT	0x1000000	Read	8 bits	Interrupt status register
LM_IRSTAT	0x1000004	Read	8 bits	Interrupt raw status register
LM_IENSET	0x1000008	Read/write	8 bits	Interrupt enable set
LM_IENCLR	0x100000C	Write	8 bits	Interrupt enable clear
LM_SOFTINT	0x1000010	Write	4 bits	Software interrupt register

The interrupt controller provides three registers for controlling and handling interrupts. These are:

- status register
- raw status register
- enable register, which is accessed using the enable set and enable clear locations.

The way that the interrupt enable, clear, and status bits function for each interrupt is illustrated in Figure 5-4 on page 5-11 and described in the following subsections. This figure shows the control for one interrupt bit. The logic module interrupts are routed to the system interrupt controller on the motherboard to one of the **EXPINT[3:0]** interrupts, depending on the position of the logic module in the stack.

Figure 5-4 Interrupt control

Interrupt status register

The status register contains the logical AND of the bits in the raw status register and the enable register.

Interrupt raw status register

The raw status register indicates the signal levels on the interrupt request inputs. A bit set to 1 indicates that the corresponding interrupt request is active.

Interrupt enable set

Use the enable set locations to set bits in the enable register as follows:

- Set bits in the enable register by writing to the ENSET location:
 - 1 = SET the bit
 - 0 =leave the bit unchanged.
- Read the current state of the enable bits from the ENSET location.

Interrupt enable clear

Use the clear set locations to set bits in the enable register as follows:

- Clear bits in the enable register by writing to the ENCLR location:
 - 1 = CLEAR the bit
 - 0 =leave the bit unchanged.

Software interrupt register

This register is used by software to generate interrupts.

Interrupt register bit assignment

The bit assignments for the status, raw status, and enable registers are shown in Table 5-7.

Table 5-7 Interrupt register bit assignment

Bit	Name	Function
7:5	-	Spare
4	PBINT	Push button interrupt
3:0	SOFTINT[3:0]	Interrupt generated by writing to the LM_SOFTINT location

Appendix A **Signal Descriptions**

This appendix describes the Integrator/AP interface connectors and signal connections. It contains the following sections:

- Logic module connector EXPA on page A-2
- Logic module connector EXPB on page A-5
- Connector EXPM on page A-7
- *Diagnostic connectors* on page A-9.

A.1 Logic module connector EXPA

Figure A-1 shows the pin numbers of the EXPA connectors. It shows the location of the power and ground pins.

Pin numbers for 200-way plug, viewed from above board

Samtec TOLC series

A0		GND		
110	GND		D0	10 10 10
A1	A2	D1	D2	10
A3	GND	GND	D3	10 10
A4	A5	D4	D5	10 10
A6	GND	GND	D6	10
A7	A8	D7	D8	11:
A9	GND	GND	Dg	11:
A10	A11	D10	D11	11:
A12	GND	GND	D12	11
A13		D13		111
A15	A14	GND	D14	12 12
A16	GND	D16	D15	12 12
A18	A17	GND	D17	12 12
A19	GND	D19	D18	12 12
A21	A20	GND	D20	12
A22	GND	D22	D21	13
	A23		D23	13
A24	GND	GND	D24	13 13
A25	A26	D25	D26	13 13
A27	GND	GND	D27	13 13
A28	A29	D28	D29	13
A30	GND	GND	D30	14
A31		D31		14
B1	B0	GND	CO	14
B2	GND	C2	C1	14 14
B4	B3	GND	C3	14 14
B5	GND	C5	C4	15 15
B7	B6	GND	C6	15 15
B8	GND	C8	C7	15
B10	B9	GND	C9	15
	GND		C10	15
B11	B12	C11	C12	15 16
B13	GND	GND	C13	16 16
B14	B15	C14	C15	16 16
B16	GND	GND	C16	16
B17	B18	C17	C18	16
B19	GND	GND	C19	16
B20		C20		17
B22	B21	GND	C21	17 17
B23	GND	C23	C22	17 17
B25	B24	GND	C24	17 17
B26	GND	C26	C25	17 17
B28	B27	GND	C27	18
B29	GND	C29	C28	18
B31	B30	GND GND	C30	18
	GND		C31	18
5V	3V3	3V3	12V	18 18
5V	3V3	3V3	12V	18 19
5V	3V3	3V3	12V	19 19
5V	3V3	3V3	12V	19
5V	3V3	3V3	12V	19
5V		3V3		19
5V	3V3	3V3	12V	19 19
	3V3		12V	20

Figure A-1 HDRA/EXPA pin numbering

The signals present on the pins labeled A[31:0], B[31:0], C[31:0], and D[31:0] are described in Table A-1.

Table A-1 Bus bit assignment (for an AMBA ASB bus)

Pin label	Name (ASB)	Description
A[31:0]	ADDR[31:0]	System address bus
B[31:0]	Not used	-
C[31:0]	CONT[31:0]	System control bus
D[31:0]	DATA[31:0]	System data bus

Table A-2 shows **CONT[31:0]** signal descriptions for an ASB bus implementation.

Table A-2 C bus detail for ASB

Position	Signal name	Description
CONT[31:16]	Not used	Connected to FPGA input/output and reserved
CONT15	BLOK	Locked transaction
CONT14	BLAST	Last response
CONT13	BERROR	Error response
CONT12	BWAIT	Wait response
CONT11	BWRITE	Write transaction
CONT10	Not used	Connected to FPGA input/output and reserved
CONT[9:8]	BPROT[1:0]	Transaction protection type
CONT7	Not used	Connected to FPGA input/output and reserved
CONT[6:5]	BURST[1:0]	Transaction burst size
CONT4	Not used	Connected to FPGA input/output and reserved
CONT[3:2]	BSIZE[1:0]	Transaction width
CONT[1:0]	BTRAN[1:0]	Transaction type

Table A-3 shows **CONT[31:0]** signal descriptions for an AHB bus implementation.

Table A-3 C bus detail for AHB

Position	Signal name	Description
CONT[31:16]	HGRANT[7:6]	Connected to FPGA input/output and reserved
CONT[29:28]	HBUSREQ[7:6]	Connected to FPGA input/output and reserved
CONT[27:26]	HLOCK[7:6]	Connected to FPGA input/output and reserved
CONT[25:24]	Note used	Connected to FPGA input/output and reserved
CONT[23:16]	HSPLIT[7:0]	Split transaction
CONT15	HMASTLOCK	Locked transaction
CONT[14:13]	HRESP[1:0]	Transfer response
CONT12	HREADY	Ready response
CONT11	HWRITE	Write transaction
CONT[10:8]	BPROT[2:0]	Transaction protection type
CONT[7:5]	HBURST[2:0]	Transaction burst size
CONT4	нркот3	Transaction protection type
CONT[3:2]	HSIZE[1:0]	Transaction width
CONT[1:0]	HTRANS[1:0]	Transaction type

A.2 Logic module connector EXPB

Figure A-2 shows the pin numbers of the connector EXPB.

Pin numbers for 120-way plug, viewed from above board

Samtec TOLC series

Figure A-2 EXPB pin numbering

Table A-4 describes the signals on the pins labeled H[31:0] and J[15:0]. The pins marked GPIO[31:0] are connected to the GPIO port of the FPGA.

Table A-4 EXPB signal description

Pin label	Name	Description
H[31:28]	SYSCLK[7:4]	System clock to each logic module (BLCK in AMBA ASB).
H[27:24]	nEPPRES[3:0]	Expansion module present.
H[23:20]	nIRQSRC[3:0]	Interrupt source from expansion module 3, 2, 1, and 0 respectively.
H[19:16]	-	Not connected.
H[15:12]	ID[3:0]	Logic module position indicator.

Table A-4 EXPB signal description (continued)

Pin label	Name	Description
H[11:8]	SLOCK[3:0]	System bus lock from processors 3, 2, 1, and 0 respectively (not used in AMBA ASB).
H[7:4]	SGNT[3:0]	System bus grant.
H[3:0]	SREQ[3:0]	System bus request.
J16	nRTCKEN	RTCK AND gate enable.
J[15:14]	CFGSEL[1:0]	FPGA configuration select.
J13	nCFGEN	Sets the stack and motherboard into configuration mode.
J12	nSRST	Multi-ICE reset (open collector).
J11	FPGADONE	Indicates when FPGA configuration is complete (open collector). Named LOCAL_DONE on logic module.
J10	RTCK	JTAG return TCK . Used for Multi-ICE adpative clocking.
J9	nSYSRST	Buffered system reset.
Ј8	nTRST	JTAG reset.
J7	TDO	JTAG test data out.
J6	TDI	JTAG test data in.
J5	TMS	JTAG test mode select.
J4	TCK	JTAG test clock.
J[3:1]	MASTER[2:0]	Master ID. Binary encoding of the master currently performing a transfer on the bus. Corresponds to BUSREQ and BUSGNT line numbers.
J0	nMBDET	Motherboard detect pin.

A.3 Connector EXPM

Figure A-3 shows the pin numbers of the connector EXPM.

Pin numbers for 120-way plug, viewed from above board

Samtec TOLC series

Figure A-3 EXPM pin numbering

Table A-5 describes the signals on the EXPM pins.

Table A-5 EXPM signal description

Name	Description
MA[25:0]	Memory address bus.
nFLWP	Flash write protect.
nFLVPP	Flash Vpp enable.
nBANK[7:4] Memory bank selects for nMCS1.	
nMCS[3:0]	Memory chip select.
EBIEN	EBI enable. Drive LOW to tristate MA[25:0], nMCSN[3:0], nMWR[3:0], and nMOE.

Table A-5 EXPM signal description (continued)

Name	Description
MCS0EN	Motherboard SC0 enable/disable.
nXCS0	CS0 to module. Enabled when MCS0EN is LOW.
MEMCLK	Memory clock.
MD[31:0]	Memory data bus.
nMWR[3:0]	Memory write strobe (active LOW).
nMOE	Memory output enable (active LOW).
MRDY	Memory ready. Drive LOW to wait processor, pull up to 3.3V for normal operation.
nSYSRST2	Buffered system reset.

A.4 Diagnostic connectors

This section provides details about the logic analyzer and Trace connectors. Figure A-4 shows the pin numbers of this type of connector.

Figure A-4 Diagnostic connector pin locations

A.4.1 Logic analyzer connector

Table A-6 shows the pinout of the logic analyzer connector J7.

Table A-6 J7 Signals descriptions

	Signal	Pin	Signal
1	-	2	-
3	GND	4	-
5	LA_ACLK	6	LA_BCLK
7	LA_A15	8	LA_B15
9	LA_A14	10	LA_B14
11	LA_A13	12	LA_B13
13	LA_A12	14	LA_B12
15	LA_A11	16	LA_B11
17	LA_A10	18	LA_B10
19	LA_A9	20	LA_B9
21	LA_A8	22	LA_B8
23	LA_A7	24	LA_B7
25	LA_A6	26	LA_B6
27	LA_A5	28	LA_B5
29	LA_A4	30	LA_B4
31	LA_A3	32	LA_B3
33	LA_A2	34	LA_B2
35	LA_A1	36	LA_B1
37	LA_A0	38	LA_B0

A.4.2 Trace

Table A-7 shows the pinout of the Trace connector.

Table A-7 Trace signals

Pin	Signal	Pin	Signal
1	-	2	-
3	-	4	-
5	DBGACK	6	TRCCLK
7	DBGRQ	8	TRCPKT11
9	nSRST	10	TRCPKT10
11	TDO	12	TRCPKT9
13	RTCK	14	TRCPKT8
15	TCK	16	TRCPKT7
17	TMS	18	TRCPKT6
19	TDI	20	TRCPKT5
21	nTRST	22	TRCPKT4
23	3V3	24	TRCPKT3
25	EXTTRIG	26	TRCPKT2
27	3V3	28	TRCPKT1
29	3V3	30	TRCPKT0
31	TRCPKT15	32	TRCSYNC
33	TRCPKT14	34	PIPESTAT2
35	TRCPKT13	36	PIPESTAT1
37	TRCPKT12	38	PIPESTAT0

A.4.3 Multi-ICE (JTAG)

Figure A-5 shows the pinout of the Multi-ICE connector J12. For a detailed description of the JTAG signals, see *JTAG signal descriptions* on page 3-15.

Figure A-5 Muti-ICE connctor pinout

Appendix B FPGA Pin Allocation

This appendix describes the Integrator/LM-XCV400+ interface connectors and signal connections. It contains the following sections:

- Clock signals on page B-2
- *LEDs and switches* on page B-4
- *Diagnostics* on page B-5
- SSRAM on page B-8
- *Prototyping grid* on page B-11
- *GPIO* (or F BUS) on page B-12
- External Bus Interface (EBI) on page B-13
- *ASB/AHB signals* on page B-16
- *Miscellaneous input/output signals* on page B-18
- *Modem card signals* on page B-20.

Note	

A full pin constraints file is provided on the CD supplied with the logic module as a starting point for your design:

\\LM-XCV400\place-and-route\pinout.ucf.

B.1 Clock signals

This section summarizes the signal connections related to clock signals.

B.1.1 Clock control signals

Table B-1 lists the clock control signals.

Table B-1 Clock control signals

		_
Signal	Pin (CLK1)	Pin (CLK2)
CLK_CTRL0	AC29	AM9
CLK_CTRL1	AD30	AN9
CLK_CTRL2	AD29	AJ10
CLK_CTRL3	AE33	AK10
CLK_CTRL4	AE32	AM10
CLK_CTRL5	AE30	AJ11
CLK_CTRL6	AF32	AL11
CLK_CTRL7	AF31	AN11
CLK_CTRL8	AF30	AJ12
CLK_CTRL9	AF29	AK12
CLK_CTRL10	AG33	AL12
CLK_CTRL11	AG30	AM12
CLK_CTRL12	AG29	AL13
CLK_CTRL13	AH33	AM13
CLK_CTRL14	AH32	AN13
CLK_CTRL15	AH31	AJ14
CLK_CTRL16	AH29	AK14
CLK_CTRL17	AJ32	AJ15
CLK_CTRL18	AJ31	AK15

B.1.2 Clock inputs

Table B-2 lists the clock input signals.

Table B-2 Clock inputs

Signal	Pin
SYSCLK	AL17
CLK1	AJ17
CLK2	D17
MEMCLK	A17

B.2 LEDs and switches

This section summarizes the signal connections related to LED control and switch sensing.

B.2.1 LEDs

Table B-3 lists the LED control signals.

Table B-3 LED control

LED	Pin	Notes
LED 0	B17	-
LED 1	C17	-
LED 2	E17	-
LED 3	D4	Also indicates FPGA BUSY during flash configuration.

B.2.2 Switches

Table B-4 lists the switch input signals.

Table B-4 Switch sensing

Switch	Pin	Notes
SW0	D15	Also used for FPGA image selection.
SW1	B16	Also used for FPGA image selection if XCV400/600 fitted.
SW2	C16	-
SW3	E16	-

B-4

B.3 Diagnostics

This section summarizes the logic analyzer and trace signal connections.

B.3.1 Logic analyzer

Table B-5 lists the logic analyzer signal connections. These pins are shared with prototyping grid.

Table B-5 Logic analyzer signals

	Channel A		Channel B	
Signal	FPGA pin	Connector pin	FPGA pin	Connector pin
LA_[B:A]0	AM31	37	AL25	38
LA_[B:A]1	AN31	35	AJ24	36
LA_[B:A]2	AL30	33	AK24	34
LA_[B:A]3	AM30	31	AM24	32
LA_[B:A]4	AM29	29	AJ23	30
LA_[B:A]5	AN29	27	AK23	28
LA_[B:A]6	AL28	25	AL23	26
LA_[B:A]7	AN28	23	AM23	24
LA_[B:A]8	AJ27	21	AJ22	22
LA_[B:A]9	AK27	19	AK22	20
LA_[B:A]10	AM27	17	AM22	18
LA_[B:A]11	AJ26	15	AJ21	16
LA_[B:A]12	AK26	13	AK21	14
LA_[B:A]13	AL26	11	AL21	12
LA_[B:A]14	AN26	9	AN21	10
LA_[B:A]15	AK25	7	AJ20	8
LA_[B:A]CLK	AM20	5	AJ19	6

B.3.2 Trace (ETM) connector

Table B-6 lists the trace signal connections.

Table B-6 Trace signals

Signal	Trace pin	FPGA/JTAG pin
N/C	1,2,3,4	Not applicable
DBGACK	5	AN17
TRCCLK	6	AJ9
DBGRQ	7	AM17
TRCPKT 11	8	AL6
nSRST	9	V30
TRCPKT 10	10	AK6
TDO	11	Test Data Out
TRCPKT 9	12	AJ6
RTCK	13	Return TCK
TRCPKT 8	14	AM5
тск	15	Test Clock
TRCPKT 7	16	AL5
TMS	17	Test Mode Select
TRCPKT 6	18	AK5
TDI	19	Test Data In
TRCPKT 5	20	AL4
nTRST	21	Test Reset
TRCPKT 4	22	AN3
3V3	23	Not applicable
TRCPKT 3	24	AK13
EXTTRIG	25	AM8
TRCPKT 2	26	AL9

Table B-6 Trace signals (continued)

Signal	Trace pin	FPGA/JTAG pin
3V3	27	Not applicable
TRCPKT 1	28	AM14
3V3	29	Not applicable
TRCPKT 0	30	AM4
TRCPKT 15	31	AK7
TRCSYNC	32	AK9
TRCPKT 14	33	AJ7
PIPESTAT 2	34	AL8
TRCPKT 13	35	AN6
PIPESTAT 1	36	AJ8
TRCPKT 12	37	AM6
PIPESTAT 0	38	AK6

B.4 SSRAM

This section summarizes the connections related to the SSRAM.

Table B-7 lists the SSRAM address signals.

Table B-7 SSRAM address pins

Signal	Pin	Notes
SA2	A3	SA[18:2] are shared
SA3	A4	with the flash memory.
SA4	B4	
SA5	A5	
SA6	В5	
SA7	C5	
SA8	C6	
SA9	В7	
SA10	C7	
SA11	A8	
SA12	В8	
SA13	C8	
SA14	D8	
SA15	E8	
SA16	A9	
SA17	C9	
SA18	D9	
SA19	B10	B10 and C10 are
SA20	C10	reserved for future use.

Table B-8 lists the SSRAM data signals.

Table B-8 SSRAM data signals

	Pin	Notes	Signal	Pin	Notes
SD0	E4	SD[7:0] are shared	SD16	AB30	-
SD1	K3	with flash memory.	SD17	AB29	-
SD2	L4		SD18	AC33	-
SD3	P3		SD19	AC31	-
SD4	W4		SD20	AC30	-
SD5	AB5		SD21	AJ30	-
SD6	AC4	-	SD22	AK31	-
SD7	AJ4		SD23	AL33	-
SD8	W29	-	SD24	V29	-
SD9	Y30	-	SD25	Y32	-
SD10	Y29	-	SD26	AD31	-
SD11	AA33	-	SD27	AE29	-
SD12	AA32	-	SD28	AK32	-
SD13	AA31	-	SD29	AE31	-
SD14	AA29	-	SD30	AA30	-
SD15	AB31	-	SD31	AH30	-

Table B-9 lists the SSRAM clock and control signals.

Table B-9 SSRAM clock and control signals

Signal	Pin	Notes
SCLK	A13	-
SnCE	D12	-
SnOE	C12	-
SnWBYTE0	E13	-

Table B-9 SSRAM clock and control signals

Signal	Pin	Notes
SnWBYTE1	C14	-
SnWBYTE2	D14	-
SnWBYTE3	E14	-
SnADV	B11	-
SnADSC	A11	-
SnADSP	E10	-
SnFT	E11	Must be set LOW. This signal is reserved for alternative SSRAM device.
SMODE	C11	-

B.5 Prototyping grid

Table B-10 lists the grid of *Plated Through Holes* (PLT). It lists the FPGA pin or other signal to which each PLT connects. Holes H[9:1] and R[9:1] are connected to GND, holes [H..R]0 are 3.3V, and all other holes are N/C.

Table B-10 Prototyping grid

	Α	В	С	D	E	F	G
0	AM31	AM27	AJ23	AN21	AL29	nPOR	LOCAL_DONE
1	AN31	AJ26	AK23	AJ20	AL24	nPBUTT	BUSY_DOUT
2	AL30	AK26	AL23	AM20	AL20	nSRST	DXN
3	AM30	AL26	AM23	AJ19	AJ25	nSYSRST	DXP
4	AM29	AN26	AJ22	AK19	AJ18	SW0	5V
5	AN29	AK25	AK22	AL19	AM26	SW1	5V
6	AL28	AL25	AM22	AN19	AN23	SW2	5V
7	AN28	AJ24	AJ21	AK18	AK28	SW3	5V
8	AJ27	AK24	AK21	AL18	VCCO_5	nPROGRAM	5V
9	AK27	AM24	AL21	AM18	GLOBAL_DON	E nINIT	5V

- Note -----

[•] VCCO_5 is the output voltage for bank 5 (see *Prototyping grid* on page 3-19).

[•] You can use DXN and DXP to determine the core temperature of the FPGA (see the Xilinx data sheet).

B.6 GPIO (or F BUS)

Table B-11 lists the connections to the GPIO signals on the EXPB connector (see *Logic module connector EXPB* on page A-5).

Table B-11 GPIO signal connections

Signal	Pin	Signal	Pin	Signal	Pin	Signal	Pin
GPIO0	G32	GPIO8	K29	GPIO16	M31	GPIO24	R30
GPIO1	H29	GPIO9	K30	GPIO17	M32	GPIO25	R31
GPIO2	H31	GPIO10	L29	GPIO18	N30	GPIO26	R33
GPIO3	Н33	GPIO11	L30	GPIO19	N31	GPIO27	T29
GPIO4	J29	GPIO12	L31	GPIO20	P29	GPIO28	T30
GPIO5	J30	GPIO13	L32	GPIO21	P30	GPIO29	T32
GPIO6	J31	GPIO14	M29	GPIO22	P32	GPIO30	U31
GPIO7	J33	GPIO15	M30	GPIO23	R29	GPIO31	U32

B.7 External Bus Interface (EBI)

This section summarizes the signals connected to the EXPM connector (see *Connector EXPM* on page A-7).

Table B-12 lists the address bus signals.

Table B-12 EBI address bus signals

Signal	Pin	Notes	Signal	Pin	Notes
MA0	C18	These signals are	MA13	D23	These signals are
MA1	E19	 also used by the motherboard during 	MA14	C23	 also used by the motherboard during
MA2	D19	configuration. If a design uses these	MA15	A23	configuration. If a design uses these
MA3	C19	signals, they must be tristated until	MA16	D24	signals, they must be tristated until
MA4	E20	GLOBAL_DONE	MA17	B24	GLOBAL_DONE
MA5	C20	goes HIGH.	MA18	E25	goes HIGH.
MA6	B20		MA19	D25	-
MA7	D21		MA20	C25	-
MA8	C21		MA21	B25	-
MA9	B21		MA22	A25	-
MA10	E22		MA23	E26	-
MA11	D22		MA24	C26	-
MA12	B22		MA25	B26	-

Table B-13 lists the data bus signals.

Table B-13 EBI data bus signals

Signal	Pin	Notes	Signal	Pin	Notes
MD0	D27	These signals are	MD16	E23	-
MD1	C27	 also used by the motherboard during 	MD17	E27	-
MD2	A27	configuration. If a design uses these	MD18	E24	-
MD3	E28	signals, they must be tristated until	MD19	E21	-
MD4	D28	GLOBAL_DONE	MD20	D29	-
MD5	C28	goes HIGH.	MD21	C33	-
MD6	A28		MD22	D32	-
MD7	C29		MD23	E30	-
MD8	B29	-	MD24	E32	-
MD9	D30	-	MD25	E33	-
MD10	C30	-	MD26	F29	-
MD11	B30	-	MD27	F30	-
MD12	A31	-	MD28	F31	-
MD13	A19	-	MD29	F33	-
MD14	D20	-	MD30	G29	-
MD15	D26	-	MD31	G30	-

Table B-13 lists the EBI control signals

Table B-14 EBI control signals

Signal	Pin	Notes
MSC0EN	D13	-
nXCS0	E18	-
nMOE	D18	Also used by the motherboard during configuration. If a design uses this signal, it must be tristated until GLOBAL_DONE goes HIGH.
MRDY	E7	-
nMWR0	D11	Also used by the motherboard during configuration. If a design uses this signal, it must be tristated until GLOBAL_DONE goes HIGH.
nMWR1	D16	-
nMWR2	E15	-
nMWR3	D10	-
nMCS2	A6	-
nMCS3	D7	-

-----Note -----

MCLK is listed in Table B-2 on page B-3.

B.8 ASB/AHB signals

This section summarizes signals related to ASB and AHB signals.

Table B-15 lists the address bus signals.

Table B-15 ASB/AHB address bus signals

Signal	Pin	Signal	Pin	Signal	Pin	Signal	Pin
ADDR0	M4	ADDR8	R4	ADDR16	W5	ADDR24	U2
ADDR1	M5	ADDR9	R5	ADDR17	AD3	ADDR25	U1
ADDR2	N2	ADDR10	T2	ADDR18	AE5	ADDR26	V5
ADDR3	N3	ADDR11	T3	ADDR19	AK2	ADDR27	V3
ADDR4	N4	ADDR12	T4	ADDR20	AF1	ADDR28	V2
ADDR5	P2	ADDR13	T5	ADDR21	AA4	ADDR29	W3
ADDR6	P5	ADDR14	U3	ADDR22	AH4	ADDR30	W1
ADDR7	R3	ADDR15	V4	ADDR23	U4	ADDR31	Y5

Table B-16 lists the data bus signals.

Table B-16 ASB/AHB data bus signals

Signal	Pin	Signal	Pin	Signal	Pin	Signal	Pin
DATA0	G5	DATA8	C1	DATA16	F5	DATA24	J3
DATA1	H4	DATA9	D2	DATA17	G1	DATA25	J4
DATA2	L5	DATA10	D3	DATA18	G3	DATA26	J5
DATA3	P4	DATA11	E2	DATA19	G4	DATA27	K2
DATA4	R1	DATA12	E3	DATA20	H2	DATA28	K4
DATA5	K5	DATA13	F1	DATA21	НЗ	DATA29	L1
DATA6	N5	DATA14	F3	DATA22	Н5	DATA30	L3
DATA7	В3	DATA15	F4	DATA23	J2	DATA31	M2

Table 5-8 ASB/AHB bus control signals

Signal	Pin	Signal	Pin	Signal	Pin	Signal	Pin
CONT0	Y4	CONT8	AC3	CONT16	AF4	CONT24	AJ3
CONT1	Y3	CONT9	AC1	CONT17	AF3	CONT25	AJ2
CONT2	AA5	CONT10	AD5	CONT18	AF2	CONT26	AJ1
CONT3	AA3	CONT11	AD4	CONT19	AG5	CONT27	AK3
CONT4	AA1	CONT12	AE4	CONT20	AG4	CONT28	AL1
CONT5	AB4	CONT13	AE3	CONT21	AG2	CONT29	AL7
CONT6	AB3	CONT14	AE1	CONT22	АН3	CONT30	AL10
CONT7	AC5	CONT15	AF5	CONT23	AH1	CONT31	AL16

B.9 Miscellaneous input/output signals

Table B-17 lists miscellaneous input/output signals.

Table B-17 Miscellaneous input/output signals

Signal	Pin	Notes
nIRQ / nEXPINT	K31	nIRQ input (in CM position), nEXPINT output in expansion position.
nFIQ	P31	nFIQ input (only when LM is in CM position).
DBGRQ	AM17	From Multi-ICE or Trace connector. Intended for use when the logic module implements a processor design in the core module position on an Integrator/AP or /SP.
DBGACK	AN17	To Multi-ICE or Trace connector. Intended for use when the logic module implements a processor design in the core module position on an Integrator/AP or /SP.
FPGA_V_TCK	AK16	Virtual JTAG port.
FPGA_V_TMS	AJ16	Virtual JTAG port.
FPGA_TDI	AL15	Virtual JTAG port.
nTRST	W30	Virtual JTAG port.
FPGA_V_TDO	AN15	Virtual JTAG port.
FPGA_V_RTCK	AM16	Virtual JTAG port.
ID0	T31	LM position indication in stack.
ID1	H32	LM position indication in stack.
ID2	L33	LM position indication in stack.
ID3	D31	LM position indication in stack.
SGNT	G31	System bus grant.
SREQ	U33	System bus request.
SLOCK	E31	System bus lock.
nPBUTT	W31	Push button.
nMBDET	V31	Motherboard present indication.

Table B-17 Miscellaneous input/output signals

Signal	Pin	Notes
nSYSRST	W33	System reset from system controller.
nSRST	V30	Reset from Multi-ICE or Trace tool.
GLOBAL_DONE	C13	Indicates that all FPGAs in the system have configured.

B.10 Modem card signals

The MDC connector is not fitted as standard. Table B-18 lists the FPGA pin allocation. This is detailed here in case you fit a connector (AMP part number 3-179397-0). The modem pins are shared with the prototyping grid.

Table B-18 Modem card signals

Signal	MDC pin	FPGA pin	Notes
MONO_OUT	1	N/A	Analog signal connected to jumper J10/J15 (not fitted)
AUD_PWRDWN	2	AJ25	-
GND	3	N/A	-
MONO_PHONE	4	N/A	Analog signal connected to jumper J10/J15 (not fitted)
AUXA_RIGHT	5	N/A	Analog signal connected to jumper J10/J15 (not fitted)
RESVD0	6	AJ18	-
AUXA_LEFT	7	N/A	Analog signal connected to jumper J10/J15 (not fitted)
GND	8	N/A	-
GND	9	N/A	-
5V	10	N/A	-
GND	11	N/A	-
RESVD1	12	AM26	-
GND	13	N/A	-
RESVD2	14	AN23	-
GND	15	N/A	-
PRIMARY_DN	16	AK28	-
3V3	17	N/A	-
5V	18	N/A	-
GND	19	N/A	-

Table B-18 Modem card signals

Signal	MDC pin	FPGA pin	Notes
GND	20	N/A	-
3V3	21	N/A	-
AC_SYNC	22	AM18	-
AC_SDOUT	23	AL29	-
SDATA_INB	24	AL18	-
AC_nRESET	25	AL24	-
SDATA_INA	26	AK18	-
GND	27	N/A	-
GND	28	N/A	-
AC_MSTRCLK	29	AL20	-
AC_BITCLK	30	AN19	-

Appendix C **Mechanical Specification**

This appendix contains the specifications for the ARM Integrator/LM-XCV400+ logic module. It contains the following section:

• Mechanical details on page C-2.

C.1 Mechanical details

The logic module is designed to be stackable on a number of different motherboards. Its size allows it to be mounted onto a CompactPCI motherboard while allowing the motherboard to be installed in a card cage. Figure C-1 shows the mechanical outline of the logic module.

Figure C-1 Board outline

Index

The items in this index are listed in alphabetic order, with symbols and numerics appearing at the end. The references given are to page numbers.

```
Α
                                         Clock inputs
                                                                                   Control
                                                       B-3
                                                                                       clocks 3-8
                                         Clock signals
                                                        3-8
About this book
                                                                                       interrupts 5-11
                                         CONFIG link 1-5
                                                                                       reset 3-10
    feedback ix
                                         Configuration
    typographical conventions
                                                                                   Core and logic module differences
Architecture
                                             FPGA 3-3
   clock 3-7
                                         Configuration Example 1 5-2
                                                                                   D
   FPGA configuration 3-3
                                         Configuration mode 3-12
    reset 3-10
                                                                                   Diagnostic connectors
                                                                                                         A-9
                                         Configuration modes, FPGA 3-4
   system 1-4
                                                                                   DIL switches, setting
                                         Connecting Multi-ICE 2-6
В
                                         Connectors
                                                                                   Ε
                                             EXPA
                                                     2-3, A-2
Boundary scan programming
                                             EXPB
                                                     2-3, A-5
                                                                                   Electronic Data Interchange Format 4-3
                                             EXPM
                                                     A-7
Bus interfaces 3-5
                                             HDRA
                                                      2-3
                                                                                   Enable register, interrupt 5-11, 5-12
                                                     2-3
                                             HDRB
                                                                                   Example memory map 5-6
C
                                             logic analyzer A-10
                                             Multi-ICE A-12
                                                                                   EXPA connector 2-3, A-2
Care of modules 2-8
                                             Trace A-11
                                                                                   Expansion bus interface 3-6
Clock control 3-7
                                                                                   EXPB connector 2-3, A-5
Clock control signals
                    B-2
                                                                                   EXPM signal description A-7
```

F	Logic analyzer connectors A-10	Registers
Fitting modules to motherboard 2-3	Logic analyzer signals B-5	LM_ID 5-7 LM IENCLR 5-10
Flash memory 3-17	Logic module base address decodes 3-5	LM_IENCLR 5-10 LM IENSET 5-10
•	Logic module registers 5-7	LM_INT 5-7
FPGA configuration 2-5, 3-3	Logic modules, attaching 2-3	LM_IRSTAT 5-10
FPGA configuration examples 5-2	Logic modules, maximum number 2-3	LM_ISTAT 5-10 LM LEDS 5-7
FPGA input/output pins 3-2		LM_LOCK 5-7
FPGA pin allocation B-1	М	LM_OSC1 5-7
FPGA place and route 4-2		LM_OSC2 5-7 LM_SOFTINT 5-10
FPGA synthesis 4-2	Maximum number of modules 2-3	LM_SW 5-7
FPGA, description 3-2	Memory map, example 5-6	Related publications viii
	Module fitting 2-3	Reset architecture 3-10
G	Modules, combined maximium 2-3	Reset control 3-10
GPIO signals A-5	Motherboard configuration signals 2-5	
21.11 2.00	Motherboard reset 3-11	S
Н	Multi-ICE (JTAG) connector A-12	_
	Multi-ICE adaptive clocking 3-15	Select MAP mode 3-4
HDL files 4-2	Multi-ICE connector 3-10	Setting the DIL switches 2-5
HDRA connectors 2-3	Multi-ICE, connecting 2-6	Signals clocks 3-8
HDRB connectors 2-3		JTAG 3-15
	0	Slave serial mode 3-4
I	Oscillator divisor registers 5-7	SSRAM 3-17
ICS525 3-7	Oscillator lock register 5-9	SSRAM, FPGA pins B-8
ID register 5-7		Status register, interrupt 5-11
Indicators 1-5	Р	Switches 1-5, 1-6, B-4
Input/output, FPGA 3-2	_	Switches register 5-10
Integrator memory map 5-6	Physical layout 1-3	Synthesis, FPGA 4-2
Integrator/LM-XCV400+ layout 1-3	Pinouts	System address bus A-3
Interfaces, bus 3-5	EXPA A-2 EXPB A-5	System architecture 1-4
Inter-module connectors A-2	EXPM A-7	System bus interface 3-5
Interrupt control 5-11	logic analyzer connector A-10	System control bus A-3
•	Muilti-ICE connector A-12 Trace A-11	•
1 1	Place and route 4-2	System reset 3-11
Interrupt register bit assignment 5-12	Preventing damage 2-3	Т
Interupt status 5-11	Product feedback ix	1
		Tool flow 4-2
J	Programmable clock sources 3-7 Programming, clocks 3-8	Trace 3-10
JTAG and the FPGA 3-3	Prototyping grid 1-4	Trace (ETM) connector B-6
JTAG data path 3-14		Trace connector A-11
JTAG signal descriptions 3-15	Push button 3-11	Trace port 3-2
JTAG signal routing 3-12, 3-13	Push button interrupt register 5-9	Typographical conventions vii
JTAG support 3-12	D	
JTAG test reset 3-10	R	U
	Raw status register, interrupt 5-11	_
L		User LEDs control register 5-9
_		
LEDs B-4		

LEDs summary 1-5 Links 1-5