Conjecture on the Sign of the Functional Equation

The functional equation greatly speeds up the computation of the L-functions. If E has a bad reduction at infinity, Theorem 2.2 [1] cannot be applied for odd characters. Computing an extra coefficient is time-expensive, so we give the following conjecture on what the formula should be in this case.

Conjecture. Let ℓ be prime, $q \equiv 1 \mod \ell$, and χ be an odd primitive Dirichlet character of order ℓ with conductor coprime to N_E . We define $\alpha_{E,\ell,q,\chi}$ by

$$\omega_{E\otimes\chi} = \alpha_{E,\ell,q,\chi}\omega_{\chi}^2\,\omega_E\,\chi(N_E)$$

where $\omega_{E\otimes\chi}$ is the sign of the functional equation of $L(E\otimes\chi,u)$, ω_{χ} is the sign of the functional equation of $L(\chi,u)$, and ω_{E} is the sign of the functional equation of L(E,u). If $\chi_{1}|_{\mathbb{F}_{q}} \equiv \sigma(\chi_{2})|_{\mathbb{F}_{q}}$ for some $\sigma \in \operatorname{Gal}(\mathbb{Q}(\zeta_{\ell})/\mathbb{Q})$, then $\alpha_{E,\ell,q,\chi_{1}} = \sigma(\alpha_{E,\ell,q,\chi_{2}})$.

Remark. If χ is even, then $\alpha_{E,\ell,q,\chi} = 1$ because the prime at infinity isn't ramified and Theorem 2.2 [1] can be applied.

We give some examples for $\ell = 3$. Since $\alpha_{E,\ell,q,\chi}$ depends on the restriction of χ to \mathbb{F}_q , we omit χ in the index. Since χ is odd, there are two possible restrictions to \mathbb{F}_q .

For $E_1: y^2 = x^3 + t$ we have

$$\alpha_{E_1,3,7} = e^{2\pi i/3}$$
, or $e^{4\pi i/3}$.

For $E_2: y^2 = x(x+t)(x+t^2)$ we have

$$\alpha_{E_2,3,7} = -1.$$

For $E_3: y^2 = x(x-1)(x-t)$ we have

$$\alpha_{E_3,3,7} = -\frac{3}{7} - \frac{8}{7}e^{2\pi i/3}$$
, or $-\frac{3}{7} - \frac{8}{7}e^{4\pi i/3}$.

References

[1] Antoine Comeau-Lapointe, Chantal David, Matilde Lalin, and Wanlin Li. On the vanishing of twisted L-function of elliptic curves over rational function fields. Proceedings of the Fifteenth Algorithmic Number Theory Symposium, 2022.