Análise de Sentimentos Aplicada à Política

Lucas Romão Silva

Prof Dr. Roberto Hirata Jr.

29 de outubro de 2017

Sumário

1	The	e First Chapter	1
2	Ma	chine Learning e Análise de Sentimentos	3
	2.1	Considerações	3
	2.2	Contextualização	3
	2.3	Logistic Regression	4
		2.3.1 Método do Gradiente	5
		2.3.2 Método de Newton-Raphson	7
		2.3.3 Extensão para o caso de várias classes	
	2.4	Support Vector Machine	9
		2.4.1 Extensão ao caso de multiclasses	2
	2.5	Análise de Sentimentos	3
		2.5.1 Obtendo um vetor de features	3
		2.5.2 Análise de Tweets	
		2.5.3 Classificação Manual da Opinião	5

Capítulo 1
The First Chapter

Capítulo 2

Machine Learning e Análise de Sentimentos

2.1 Considerações

Ao longo deste capítulo usaremos n para se referir à quantidade de elementos do conjunto de entrada, cada entrada é i é um vetor $x_i \in \mathbb{R}^m$. O conjunto de entrada entrada será referida como X durante as descrições do algoritmo e assim cada entrada será dada tanto como X_i como x_i . Para cada i associaremos duas variáveis t_i e y_i que se referem ao valor esperado e ao valor obtido através do treinamento, respectivamente.

A notação $\mathbb{1}_{i==j}$ é uma função indicadora que vale 1 se i é igual a j e 0 caso contrário.

2.2 Contextualização

Os problemas tratados por *Machine Learning* classificam-se de forma geral em três tipos:

- Aprendizado supervisionado: nesse caso tem-se os elementos de entrada e para cada um desses elementos, tem-se associado um rótulo t_i . Nesse caso o modelo deve ser treinado com base nos elementos dados para que se possa prever o rótulo de uma nova entrada;
- Aprendizado não-supervisionado: nesse caso tem-se apenas os elementos de entrada. O objetivo deste tipo de problema é tentar modelar uma distribuição ou estrutura comum entre os dados para que se possa entendê-los melhor;

• Aprendizado semi-supervisionado: nesse último caso alguns elementos possuem um rótulo associado. Problemas desse tipo aplicam técnicas gtanto de aprendizado supervisionado como de não-supervisionado.

Neste trabalho será tratado um problema de aprendizado supervisionado que é o da classificação.

Na classificação temos k classes e cada elemento i da entrada é associado a uma classe $t_i = \{1..k\}$. O objetivo do problema da classificação é dado entrada $X = (x_1, x_2, ..., x_n)$ e $t = (t_1, ..., t_n)$ treinar um modelo capaz de prever classes para um x qualquer.

Há diversos algoritmos na literatura que se propõem a resolver o problema da classificação. Bishop (2006)[1] enuncia diversos dos algoritmos comumente utilizados para a classificação, cada algoritmo possui seus prós e contras e utiliza diferentes abordagens.

Para este trabalho escolheu-se implementar os algoritmos *Logistic Regres*sion e Support Vector Machines, que será chamado simplesmente de SVM por facilidade.

Tanto para o *Logistic Regression* quanto SVM será explicado a princípio o problema será inicialmente abordado a partir da classificação binária e, a partir dela, será descrito como estender para o problema com mais de duas classes, que será é o caso deste trabalho.

2.3 Logistic Regression

O nosso modelo será construído de forma probabilística, isto é, a partir de um discriminante linear $w^T x + w_0$ atribuiremos uma probabilidade de um elemento x pertencer à classe C^1 e, consequentemente a probabilidade de pertencer à classe C^2 é dada por $1 - P(C^1|x)$. O termo w_0 é chamado de viés, e para efeito das contas que serão feitas consideraremos vetores w' e x' da forma $x' = (x, 1), w' = (w, w_0)$ note entretanto que os chamaremos daqui pra frente simplesmente de w e x.

No caso da classificação binária, usaremos que $t_n \in \{0, 1\}$ onde $t_n = 1$ se o elemento pertence à classe C^1 e $t_n = 0$ se pertence à classe C^2 .

A classificação de um elemento será a classe a qual ele tem maior probabilidade de pertencer.

Para utilizarmos nosso discriminante para atribuir as probabilidades, utilizase a função sigmóide definida por:

$$\sigma(a) = \frac{1}{1 + exp(-a)} \tag{2.1}$$

A função sigmóide é usada devido à sua propriedade de mapear todo o conjunto dos números reais dentro do intervalo [0, 1].

Aplicando ao nosso modelo obtêm-se a expressão:

$$P(C^1|x) = y(x) = \sigma(w^T x) \tag{2.2}$$

Importante notar que apesar de utilizarmos o vetor x nas equações, é possível aplicarmos uma transformação linear $\phi: \mathcal{R}^m \to \mathcal{R}^d$ à entrada x para obtermos $\phi(x)$ e usá-lo no lugar de x. O uso de transformação linear no nosso conjunto de entrada nos permite transformar o domínio para que se obtenha uma separação melhor entre as classes ou até mesmo fazer a redução da dimensão do domínio.

Com essa equação em mãos, nosso objetivo é minimizar o erro na classificação dos dados. Tomamos como erro o negativo do logaritmo da verosimilhança de nossa função que é dada por:

$$E(w) = -\sum_{i=1}^{n} p(t|w) = -\sum_{i=1}^{n} \{t_n ln(y_n) + (1 - t_n) ln(1 - y_n)\}$$
 (2.3)

A fim de minimizar o erro, utiliza-se métodos de otimização linear (note que por mais que se use uma transformação linear ϕ sobre x nosso problema ainda é linear sobre w).

Dois métodos são comumente usados: método do gradiente e método de Newton-Raphson. Esses métodos são utilizados tanto para o caso da classificação binária quanto o caso da classificação com k > 2. A diferença entre um problema e outro será abordada com mais detalhes a seguir.

Uma dúvida natural que surge ao ter que resolver um problema de otimização é o caso de parar o procedimento em um mínimo local ao invés de um mínimo local da função. Entretanto, temos que nossa função E(w) é côncava, isto é, $E(\lambda w + (1 - \lambda)w') = \lambda E(w) + (1 - \lambda)w' \ \forall w, w' \in R^m, \lambda \in [0, 1]$, tal propriedade nos garante que existe um único minizador.

2.3.1 Método do Gradiente

Para este método, minimiza-se a função objetivo, no caso E(w) utilizando apenas o gradiente da função junto de um passo α . Com ambos valores em mãos, o valor w é atualizado usando a equação:

$$w^{(novo)} = w^{(antigo)} + \alpha \nabla E(w) \tag{2.4}$$

Com $\nabla E(w)$ sendo o gradiente do vetor de pesos. O gradiente é calculado usando o fato de que a derivada da função sigmóide com respeito a um vetor a é dada por:

$$\frac{d\sigma}{da} = \sigma(1 - \sigma) \tag{2.5}$$

Usando 2.5 tem-se a seguinte equação para o gradiente:

$$\nabla E(w) = X^T(y - t) \tag{2.6}$$

Com $y = (y_1, ..., y_n)$ e $t = (t_1, ..., t_n)$ onde $y_n = P(C^1 | x_n) = \sigma(w^T x)$ e t_n tal qual assumido no começo da seção.

O algoritmo de atualização do vetor de pesos descrito a seguir vale tanto para o método do gradiente quanto para o de Newton-Raphson, portanto para o segundo será focado apenas nas diferenças entre os dois.

Algorithm 1 Logistic Regression usando método do gradiente

Input: Matriz $X \in \mathbb{R}^{n \times m}$, vetor de rótulos $t \in \{0,1\}^n$

Output: Vetor de pesos $w \in \mathbb{R}^m$

- 1: $iteracao \leftarrow 0$
- $2: w \leftarrow 0$
- 3: while $|E(w)^{(iteracao)} E(w)^{(iteracao-1)}| \ge \epsilon$ and iteracao < maxIteracoesdo
- $y \leftarrow (\sigma(w^T x_1), \sigma(w^T x_2), \dots, \sigma(w^T x_n))^T$ 4:
- $\nabla E(w) \leftarrow X^T(y-t)$ 5:
- 6:
- $w \leftarrow w \alpha \nabla E(w)$ $E(w)^{(iteracao)} \leftarrow -\sum_{i=1}^{n} \{t_n ln(y_n) + (1 t_n) ln(1 y_n)\}$ 7:
- $iteracao \leftarrow iteracao + 1$
- 9: end while

Importante notar que em 3 tem-se duas condições de paradas do algoritmo que são o número de iterações e a diferença da diminuição da função objetivo for menor do que um dado ϵ . Tais condições são chamadas de condições de

convergência e nos garantem que chegamos a um valor suficientemente próximo do ótimo, uma vez que atingir este valor pode exigir um número muito alto de iterações o que acarreta em grande custo computacional. Na implementação do algoritmo, escolheu-se um valores padrão para ϵ e maxIteracoes como 10^{-4} e 200 respectivamente.

A quantidade de iterações necessárias para a convergência é influenciada fortemente pela escolha de α , pois as escolha de um valor pequeno para α acarretaria em muitas iterações para convergir ao passo que um valor muito grande pode fazer com que o algoritmo pare num valor distante do ótimo.

2.3.2 Método de Newton-Raphson

Vimos em 2.3.1 que o método do gradiente apesar de implementação simples pode levar muito tempo para resolver o problema.

O método de Newton-Raphson acaba convergindo mais rápido do que o método do gradiente, contudo ao custo de uma maior complexidade devido à necessidade de calcular outros elementos.

A atualização agora é feita seguindo a equação

$$w^{(novo)} = w^{(antigo)} - H^{-1}\nabla E(w)$$
(2.7)

Onde H é a matriz Hessiano da função erro, que é calculado usando $H = \nabla \nabla E(w) = X^T R X$ onde R é uma matriz diagonal $n \times n$ onde as entradas da diagonal principal valem $R_{kk} = y_k(1 - y_k)$. Substituindo os valores de H e usando 2.6 em 2.7 obtemos

$$w^{(novo)} = w^{(antigo)} - (X^T R X)^{-1} \nabla E(w)$$

= $(X^T R X)^{-1} [(X^T R X) w^{(antigo)} - X^T (y - t)]$ (2.8)

2.3.3 Extensão para o caso de várias classes

Diversas abordagens podem ser usadas para resolver o problema multiclasse, no caso será usado diversos discriminantes y_k com $k = \{1, ..., K\}$ com K sendo o total de classes. Assim nosso vetor w agora é uma matriz $W \in \mathbb{R}^{m \times k}$. Outra representação que usaremos para o algoritmo será $W = (w_1, ..., w_k)$ com $w_i \in \mathbb{R}^{1 \times mk}$.

Quanto à codificação do vetor de rótulos, segue-se a codificação dada em Bishop (2006)[1] de 1-K, na codificação tem-se que $t_n \in \{0,1\}^k$ com $t_{nk}=1$ se o elemento n pertencer à classe k e 0 nas demais entradas.

8CAPÍTULO 2. MACHINE LEARNING E ANÁLISE DE SENTIMENTOS

Quanto a função de probabilidade que desejamos estimar, utiliza-se a função softmax que é dada pela equação:

$$P(C^k|x_n) = y_{nk} = \frac{exp(w_k^T x_n)}{\sum_j exp(w_j^T x_n)}$$
(2.9)

Que nos dá verossimilhança e a seguinte função de erro, obtida tomando o negativo do logaritmo da verossimilhança.

$$P(T|w_1, \dots, w_k) = \prod_{i=1}^n \prod_{j=1}^k P(C^j|x_i)^{t_{ij}} = \prod_{i=1}^n \prod_{j=1}^k y_{ij}^{t_{ij}}$$
$$E(W) = -\sum_{i=1}^n \sum_{j=1}^k t_{ij} ln(y_{ij})$$

Novamente nesse caso pode-se encontrar o valor de W que minimize E(W) usando os dois métodos discutidos em 2.3.1 e 2.3.2, porém agora temos que a derivada com respeito a cada $w_k^T x$ vale:

$$\frac{\partial y_k}{\partial (w_j^T x)} = y_k (\mathbb{1}_{k==j} - y_j) \tag{2.10}$$

Usando essa representação de W como um vetor, podemos calcular o vetor gradiente onde a derivada com respeito a cada w_i é dada pela equação:

$$\nabla_{w_j} E(W) = X^T (Y_j - T_j) \tag{2.11}$$

Com Y_j e T_j correspondendo, respectivamente, às j-ésimas colunas de Y e T.

Com o gradiente em mãos já temos o que é necessário para o método do gradiente e a atualização seria feita da forma $W^{(novo)} = W^{(antigo)} - \alpha \nabla E(W)$.

Para aplicarmos o método de Newton-Raphson, seria necessário computarmos o Hessiano que nesse caso seria uma matriz $m*k \times m*k$ com cada bloco j,i contendo uma matriz $m\times m$ calculada pela equação:

$$\nabla_{w_i} \nabla_{w_j} E(W) = -\sum_{k=1}^n y_{ki} (\mathbb{1}_{i==j} - y_{kj}) X_k^T X_k$$
 (2.12)

Onde X_k é a k-ésima linha de X. Com essas equações em mãos nossa atualização de W seria feita usando a fórmula $W^{(novo)} = W^{(antigo)} - H^{-1}\nabla E(W)$.

A classificação de um novo x é feita a partir do cálculo de $P(C^k|x) = y_k(x), \forall k = \{1, \dots, k\}.$

A classe de x é dada pelo k que tiver a maior probabilidade sobre os demais.

2.4 Support Vector Machine

Assim como fizemos com o logistic regression, começaremos com a definição para o caso binário e depois iremos estender para mais de uma classe. Nesse caso nossas classes serão $t_n \in \{-1,1\}$ onde $t_n = 1$ se x pertence à classe C^1 e $t_n = -1$ se x pertence à classe C^2 .

No algoritmo SVM a classificação é feita a partir de um discriminante linear da forma

$$y(x) = w^T x + b \tag{2.13}$$

Tal y é chamado de superfície de decisão e a classificação é baseada no sinal de y. Se y(x) > 0, x é atribuído à classe C^1 , caso contrário é atribuído à classe C^2 .

Porém ao invés de procurarmos um w que separe perfeitamente todas as classes (que não necessariamente existe), nosso objetivo é maximizar a margem do discriminante linear, isto é, a menor distância de um ponto à superfície. A distância de um ponto à superfície é dado pela fórmula

$$\frac{[t_n(w^T x_n + b)]}{||w||} \tag{2.14}$$

Na descrição inicial do problema vamos tratar o caso com o conjunto X linearmente separável, o que indica que é possível obter uma superfície que separe sem erro todas as classes para, em seguida, tratarmos o caso real que é o do conjunto que não é linearmente separável. O fato de o conjunto ser linearmente separável nos garante que $t_n y(x_n) > 0 \forall n$.

$$\underset{x,b}{\operatorname{argmax}} \left\{ \frac{1}{||w||} \min_{n} [t_n(w^T x_n + b)] \right\}$$
 (2.15)

Podemos ajustar w e b de forma a termos que $t_n(w^Tx_n + b) = 1$ para o ponto mais próximo da margem e $t_n(w^Tx_n + b) \ge 1, \forall n$. Com esse reajuste temos que nosso problema de encontrar um vetor de pesos de margem maximizada seria de maximizar $\frac{1}{||w||}$ que é equivalente ao problema de otimização quadrática:

$$\underset{\mathbf{ujeito a}}{\operatorname{argmin}_{w,b}} \quad ||w||^2$$

$$\mathbf{sujeito a} \quad t_k(w^T x_k + b), \quad k = 1, \dots, n$$
(2.16)

Agora iremos supor que não necessariamente nossa entrada não é linearmente separável, isto é, não existe uma superfície de decisão que separe perfeitamente as duas classes. Assim iremos permitir que alguns valores estejam classificados incorretamente, para isso será necessário suavizarmos nossa margem penalizando cada uma das entradas incorretamente classificadas. Cortes e Vapnik (1995)[2] descrevem a penalização através da introdução de variváveis de folga $\xi_n \geq 0$ para cada elemento de X. Um elemento corretamente classificado terá $\xi_n = 0$, os demais pontos têm $\xi_n = |t_n - y(x_n)|$.

Com isso nossa restrição de $t_n y(x_n) \ge 1$ é modificada e tem-se $t_n y(x_n) \ge 1 - \xi_n \forall n$.

O valor de ξ_n assim nos indica três possíveis casos:

- Se $\xi_n = 0$, x_n está corretamente classificado e se encontra ou na margem ou do lado correto dela.
- Se $0 < \xi_n \le 1$, x_n está corretamente classificado e se encontra entre a margem e a superfície.
- Se $\xi_n > 1$, x_n não está classificado corretamente.

A função objetivo agora precisa conter os valores de ξ e para isso colocamos uma constante C>0 que define a compensação entre a penalização das variáveis de folga e a margem. Com isso temos o seguinte problema de otimização quadrática:

$$\underset{\text{sujeito a}}{\operatorname{argmin}}_{w,b,\xi} \quad C \sum_{i=1}^{n} \xi_i + \frac{1}{2} ||w||^2$$

$$\underset{t_k(w^T x_k + b)}{t_k(w^T x_k + b)} \ge 1 - \xi_k, \quad k = 1, \dots, n$$
(2.17)

(2.18f)

Para implementar o SVM basta então resolver o problema de otimização quadrática acima. Isto é feito seguindo os seguintes passos

1. Introduz-se multiplicadores de Lagrange α_n e μ_n e obtem-se o Lagrangiano com as restrições

$$L(w,b,\xi) = \frac{1}{2}||w||^2 + C\sum_{i=1}^n \xi_i - \sum_{i=1}^n \alpha_i \{t_i(w^T x_i + b) - 1 + \xi_i\} - \sum_{i=1}^n \mu_i \xi_i$$

$$(2.18a)$$

$$\alpha_n \ge 0$$

$$t_n y(x_n) - 1 + \xi_n \ge 0$$

$$\alpha_n \{t_n(w^T x_n + b) - 1 + \xi_n\} = 0$$

$$\mu_n \ge 0$$

$$(2.18d)$$

$$(2.18d)$$

$$(2.18e)$$

$$\mu_n \ge 0$$

$$(2.18f)$$

2. Derivamos o lagrangiano com respeito a w, b e ξ e igualamos a 0 para obtermos os valores ótios para essas variáveis e, assim obtemos os seguintes valores:

$$\frac{\partial L}{\partial w} = 0 \Rightarrow w = \sum_{i=1}^{n} \alpha_i t_i x_i \tag{2.19}$$

$$\frac{\partial L}{\partial b} = 0 \Rightarrow \sum_{i=1}^{n} \alpha_i t_i = 0 \tag{2.20}$$

$$\frac{\partial L}{\partial \xi} = 0 \Rightarrow \alpha_n = C - \mu_n \tag{2.21}$$

3. Com isso em mãos, resolve-se não o problema primal e sim o dual (utiliza-se aqui o fato de que se as condições mencionadas no item anterior são satisfeitas, tem-se que vale a dualidade forte e o valor ótimo de ambas as funções coincide). O dual é dado pelo problema

$$\min_{\alpha} \quad \tilde{L}(\alpha) = \sum_{i=1}^{n} \alpha_i - 1/2 \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j t_i t_j k(x_i, x_j)$$
sujeito a $0 \le \alpha_i \le C, i = 1, \dots, n$

$$\sum_{i=1}^{n} \alpha_i t_i = 0$$
(2.22)

12CAPÍTULO 2. MACHINE LEARNING E ANÁLISE DE SENTIMENTOS

No problema a cima é importante destacar a expressão $k(x_i, x_j)$, essa expressão é um Kernel que é uma função onde $k(x, x') = \phi(x)^T \phi(x')$ com ϕ sendo alguma transformação linear. Tal qual no caso da regressão logística, essas transformações são usadas para mudar o domínio da entrada x.

4. Acha-se o valor de b usando a fórmula:

$$b = \frac{1}{N_{\mathcal{M}}} \sum_{n \in \mathcal{M}} \left(t_n - \sum_{m \in \mathcal{S}} \alpha_m t_m k(x_n, x_m) \right)$$
 (2.23)

Com \mathcal{M} sendo o conjunto de pontos que satisfazem $0 < \alpha_n < C$ e \mathcal{S} o conjunto de vetores de suporte (pontos que possuem $\alpha_n > 0$ e, consequentemente, contribuem para a classificação do modelo).

Uma vez resolvido o problema dual e encontrado valor de b, podemos classificar um novo x usando o sinal do discriminante y(x) dado por

$$y(x) = \sum_{i=1}^{n} \alpha_i t_i k(x, x_i) + b = \sum_{n \in S} \alpha_n t_n l(x, x_n) + b$$
 (2.24)

2.4.1 Extensão ao caso de multiclasses

Diversas abordagens são possíveis para o caso de multiclasses. A escolhida entre elas foi o método intuitivo chamado One-versus-all (OVA). Nesse método é construído K classificadores, com K sendo o número de classes. Cada classificador y_k define uma superfície de decisão que separa a classe k das demais (por isso o nome One-versus-all). Um novo x tem sua classe dada pela que o classificador y_k tem maior valor, isto é

$$y(x) = \operatorname*{argmax}_{k} y_k(x) \tag{2.25}$$

Portanto a classificação multiclasses se utiliza de todos os recursos já apresentados no caso binário o que torna simples a construção do classificador.

Na imagem abaixo é mostrado a ideia por trás do método OVA nele a classe C^1 é dada pelos círculos, C^2 pelos triângulos e C^3 pelas cruzes. As figuras em vermelho em cada classificador são os pontos onde $t_n = -1$.

2.5 Análise de Sentimentos

O campo de análise de sentimentos, também conhecido como mineração de opinião é uma área da ciência da computação que analisa as opiniões, sentimentos e atitudes das pessoas em relação a uma entidade (Bing Liu, 2012)[3]. Uma entidade pode ser definida como o sujeito ao qual está se observando as opiniões, seja ela uma pessoa, instituição ou produto.

A área possui uma diversa gama de aplicações, dentre elas, a área de classificação de sentimentos que através do uso de informações subjetivas contidas num texto avalia qual a opinião relacionada ao mesmo.

2.5.1 Obtendo um vetor de features

Para realizar a extração das informações do texto, existe uma etapa de préprocessamento na qual cada texto é transformado num vetor numérico para então ser processado por algum algoritmo de classificação. Neste trabalho foi escolhido usar o modelo bag of words (BOW). No modelo, é construída uma matriz de entrada onde cada linha i representa um documento (texto sobre o qual quer extrair a opinião) e as colunas representam a frequência de um termo, o conjunto de todos os textos é chamado de corpus.

Uma alternativa ao BOW seria o modelo de N-grama, nele os termos não são apenas as palavras, mas um conjunto de n palavras juntas, o que traz mais informação pelo fato de juntar substantivo e verbo, substantivo e adjetivo, por exemplo, entretanto acaba gerando um vetor de features ainda maior que, consequentemente, faz com que os algoritmos demorem mais para convergir. A escolha pelo BOW foi tida baseada no compromisso entre desempenho e performance do algoritmo.

Antes de obter um vetor numérico, é feito um pré-processamento no documento removendo artigos, adicionando espaços antes e depois de pontuações e transformando em um vetor de tokens. Uma vez que foi obtido o vetor de tokens, é removido todo elemento que seja apenas espaço e pontuação. Em seguida, monta-se uma nova string juntando todas as tokens usando espaços para então montar um vetor de frequência a partir do novo corpus.

A frequência pode ser medidas simples como a quantidade de vezes em que um termo j aparece no documento i ou se o termo j aparece no documento i (nesse caso cada vetor de entrada seria um vetor binário) bem como pode ser uma medida mais complexa como tf-idf (term frequency - inverse document frequency). A relação entre os métodos de computar a frequência e o desempenho dos algoritmos de classificação serão exibidas no capítulo seguinte.

O método tf-idf baseia-se na frequência de cada termo ponderada pela frequência inversa no documento, que é usada para mensurar o quão importante um termo é em um documento (por exemplo a palavra "um"em um conjunto de textos em português aparece várias vezes, apesar de ter uma baixa importância). Ele pode ser calculado pelas expressões:

$$TF(t) = \frac{\text{# de aparições de t no documento}}{\text{total de termos no documento}}$$
(2.26a)

$$TF(t) = \frac{\text{# de aparições de t no documento}}{\text{total de termos no documento}}$$
(2.26a)
$$IDF(t) = log \left(\frac{\text{Total de documentos}}{\text{# de documentos que contenham t}} \right)$$
(2.26b)

$$TF - IDF(t) = TF(t) * IDF(t)$$
 (2.26c)

O procedimento de obtenção dos vetores de features a partir do novo corpus pode ser realizado utilizando as bibliotecas scikit-learn e nltk do Python.

2.5.2Análise de Tweets

Aqui entro na parte que quero falar.

2.5.3 Classificação Manual da Opinião

Com o conjunto de dados obtido em 2.5.1, podemos aplicar os algoritmos descritos no começo do capítulo. Entretanto como também mencionado no começo deste capítulo, problemas de aprendizado supervisionado exigem que o conjunto de dados seja composto não só dos dados, mas também do valor esperado para cada entrada. No caso da classificação da opinião de textos, tal opinião deve ser primeiro atribuída manualmente para que, com posse dessas opiniões, seja possível treinar os algoritmos.

Para facilitar a etapa de classificação manual, foi desenvolvido um sistema online onde cada usuário informa a quantidade de *tweets* que se deseja classificar e consegue classificá-los de forma mais simples. Deu-se a essa ferramenta o nome de CLAM (de Classificador Manual).

O desenvolvimento do CLAM foi motivado pela ausência de ferramentas no Brasil que permitem a colaboração nessa etapa de classificação manual (uma ferramenta comumente usada é o Amazon Mechanical Turk, porém na época do desenvolvimento do CLAM não estava disponível no Brasil) em conjunto com a falta de ferramentas gratuitas de uma forma geral, uma vez que até que a maioria das ferramentas existentes são pagas (vide o próprio Amazon Mechanical Turk). Por isso priorizou-se construir um código simples para que fosse fácil a modificiação da base do sistema por colaboradores externos, que fosse de fácil uso para o usuário final e também de fácil hospedagem do sistema em alguma plataforma como Heroku e Firebase.

O código é de domínio público e está disponível no link: https://github.com/romaolucas/manual-classifier-helper

O projeto foi desenvolvido usando a linguagem Python em conjunto do framework web Django por já possuir diversas ferramentas integradas não só de gerenciamento do sistema, bem como modelagem do banco de dados e sistema de migração para que possa modificar os modelos de dados já existentes sem precisar realizar um acesso direto à base de dados além de possuir um conjunto de bibliotecas que facilitam o processo de importação de dados em csv e vasta quantidade de tutoriais de como desenvolver uma aplicação usando Django.

Para a modelagem de dados construiu-se dois modelos: um para tweets e outro para as opiniões. Na modelagem, considerou-se que cada usuário irá classificar apenas textos que não possuem uma classificação, não só para evitar ter que lidar com opiniões divergentes em um texto, mas também para garantir um maior número de dados para o treinamento. Uma possível melhoria do sistema seria a possibilidade de mais usuários avaliarem um mesmo conjunto de textos para garantir um consenso na hora de associar uma opinião a um texto.

16CAPÍTULO 2. MACHINE LEARNING E ANÁLISE DE SENTIMENTOS

O CLAM possui o seguinte fluxo para a classificação:

- 1. Informa a quantidade de tweets que se deseja classificar
- 2. O usuário é levado a uma página com os n tweets para classificar. Enquanto o campo da opinião é obrigatório, existe um campo optativo para informar se o dado tweet é irônico ou não, uma vez que textos com ironia atrapalham o treinamento por conter palavras positivas sendo usadas de maneira negativa e vice-versa.
- 3. Uma vez classificados, o usuário é levado a uma página onde é possível ver todos os *tweets* já classificados e também gerar um arquivo csv contendo todos aqueles que não foram marcados como irônicos.

Para um usuário que deseja hospedar a plataforma e usá-la para si, existe também o admin onde é possível importar tweets para serem classificados.

Abaixo é descrito o fluxo para a importação de novos dados no admin.

- 1. Realiza o login no sistema utilizando seu usuário e senha de administrador.
- 2. Seleciona a parte de Tweets na tela principal.
- 3. Uma vez na parte de visualizar todos os *tweets* já armazenados na base de dados, seleciona a opção de importar no canto superior direito.
- 4. Na página que segue, basta informar um arquivo .csv, .xls (formato do excel) ou .json contendo nessa ordem: o id do tweet (fornecido pelo Twitter), usuário que escreveu, texto, espaço vazio para representar o id que será preenchido automaticamente na hora de importar no banco de dados.
- 5. Caso todos os dados sejam fornecidos corretamente, será passado a uma nova página para confirmar se deseja importar e, por fim, será redirecionado à pagina que contém todos os *tweets*.

Referências Bibliográficas

- [1] Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, 1 edition, 2006.
- [2] Corinna Cortes and Vladimir Vapnik. Support-vector networks. *Machine Learning*, (20):273–297, 1995.
- [3] Bing Liu. Sentiment Analysis and Opinion Mining. Morgan & Claypool Publishers, 1 edition, 2012.