Retinal Vessel Segmentation using U-nets

Mentors: Dr. Sudesh Rani

Dr. Poonam Saini

Members: Prajwal Sharma

(21103020) (CSE)

Content:

- Objectives
- Datasets
- □ Current Challenges
- Preprocessing
 - OpenCV
 - Albumentation
 - □ Pillow
- Models(Unet versions) & Parameters
- Results & Performance
- Inferences Drawn
- ☐ Future Outlooks
- Conclusion
- References

Anatomy of the Human Eye

Objectives

- Retinal vessel Segmentation using U-net
- Utilizing Various Preprocessing and Postprocessing Techniques.
- Comparing Various variation of U-net's Artitecture.
 - ☐ Sequential U-net (Simple)
 - Residual U-net
 - Recurrent U-net
 - R2 U-net (Residual Recurrent Unet)
 - ☐ Simple U-net with Attention)
- Web Application (Deployment): Creating a user-friendly interface to deploy the developed U-net models for real-world usage in medical field.

Datasets

Dataset	Year	Number of Images	Image Size	Description
DRIVE [1]	2004	20	584 * 565 (originally) 576 * 544 (for training)	Digital Retinal Images for Vessel Extraction (DRIVE) dataset. These images are captured from diabetic patients and are commonly used for evaluating algorithms for retinal vessel segmentation.
CHASE [3]	2012	28	999 * 960 (originally) 992 * 960 (for training)	Retinal vessel segmentation challenge (CHASE) dataset. It is curated for vessel segmentation tasks and features images captured from both healthy and diseased eyes.
HRF [2]	2012	45	3304 * 2236 (originally) 1024 * 1024 (for training)	High-Resolution Fundus (HRF) dataset .It is curated for vessel segmentation tasks and features images captured from both healthy and diseased eyes. elopment and evaluation.

Test: Train: Val == 7:2:1 (Split for all of them)

Current Challenges

- different sizes of retina. It makes it difficult for the model to be able to keep track of all size vessels.
- Vessels identification in pathological retinal images faces a tension between accurate vascular structure extraction and false responses near pathologies (such as hard and soft exudates, hemorrhages ,microaneurysms and cotton wool spots).

Preprocessing

- Using tf.keras.layers
 - Resizing (all 3 channels)
 - Preprocessing on Green Channel
 - ☐ CLAHE
 - Gamma Correction
 - Norm Clip
 - Morphological filter (top hat)
 - Concatenation of Preprocessed image to Original image
 - Multiplication with ROI (calculated by thresholding on Green Channel)
 - Augmentation

Augmentation

- Using Albumentation library
 - \Box H-Flip (prob = 0.5)
 - → V-Flip (prob = 0.5)
 - ☐ Same is applied to masks.

Will result in 4 Different Images with equal probability.

Augmented images

Models

- Various Unet Models Compared (build)
 - □ Sequential U-net (Simple): The basic implementation of UNet
 - Residual U-net: The residual U-Net incorporates residual connections, inspired by the ResNet architecture.
 - Recurrent U-net: The recurrent UNet introduces recurrent connections, by incorporating recurrent units, such as LSTM or GRU cells.
 - R2 U-net (Residual Recurrent Unet): This variation represents a fusion of the residual and recurrent architectures
 - ☐ Simple U-net with Attention : Soft Attention mechanisms are employed instead of traditional skip connections that enable dynamically focus on relevant regions of the input image,

Model's Parameter

- U-net's Parameters:
 - ☐ Level = 4
 - → Start units = 32
 - ☐ Scale = 2
 - Dilation rate = 1
 - n_channels (input) = 19
- ☐ General Parameters:
 - ☐ Optimizer = Adam (Ir = 0.005)
 - ☐ Epochs = 150
 - □ Batch Size = 2
- Callbacks
 - ☐ Checkpoint (for best Weights)
 - ☐ ReduceLROnPlateau (0.6,5)
- **⊒** Loss
 - Jaccard loss
- ☐ Metrics:
 - □ Specificity & Sensitivity
 - □ IOU
 - AUC
 - ☐ Accuracy & Fscore (B= 1)

Basic U-net Architecture

Skip Connection (with and without attention)

Simple & Residual Unit Block

Recurrent & R2 (Residual Recurrent) Unit Block

Model Results

Model Results									
Datas et	Model	Split	Ac cur acy	Anc	FScore	Iou	Loss (jaccar d)	Sensitivity	Specificity
	Simple Unet	train	0.959481	0.913883	0.827087	0.705446	0.294554	0.8078	0.98019
		val	0.961587	0.918631	0.823483	0.699934	0.300066	0.817227	0.979247
		test	0.957424	0.921806	0.824812	0.701958	0.298042	0.830396	0.974732
	Residual Unet	train	0.962111	0.916503	0.837091	0.720011	0.279989	0.810432	0.982829
		val	0.96136	0.915785	0.822299	0.698224	0.301776	0.813958	0.979473
		test	0.959719	0.920714	0.831877	0.712222	0.287778	0.824055	0.978313
	Recurrent Unet	train	0.961697	0.922209	0.839318	0.72326	0.27674	0.831561	0.979469
DRIVE		val	0.96185	0.921255	0.827599	0.7059	0.2941	0.832459	0.977797
R:		test	0.959712	0.928341	0.835572	0.717652	0.282348	0.846951	0.97509
	R2 Unet	train	0.958344	0.912549	0.820413	0.695856	0.304144	0.793454	0.980795
		val	0.960604	0.919286	0.818806	0.693201	0.306799	0.812987	0.9786
		test	0.957358	0.912579	0.817612	0.691798	0.308202	0.795469	0.97929
	Attention Unet	train	0.960194	0.922131	0.83223	0.712872	0.287128	0.823327	0.978785
		val	0.959762	0.92513	0.820138	0.695114	0.304886	0.834996	0.975079
		test	0.957974	0.926009	0.827	0.705154	0.294846	0.833548	0.974791

Datas et	Model	Split	Accur acy	Auc	FScore	Iou	Loss (jaccar d)	Sensitivity	Specificity
	Simple Unet	train	0.965476	0.918251	0.843967	0.730866	0.270766	0.819779	0.984365
		val	0.964884	0.918319	0.812865	0.685831	0.31001	0.828345	0.978159
		test	0.969487	0.922706	0.863558	0.760394	0.245855	0.828028	0.988253
	Residual Unet	train	0.96683	0.932126	0.854492	0.746746	0.255017	0.854502	0.981457
		val	0.965626	0.929639	0.820757	0.697458	0.299498	0.851128	0.976816
		test	0.970383	0.935383	0.871037	0.77188	0.233123	0.859679	0.984965
	Recurrent Unet	train	0.966945	0.927531	0.854096	0.746107	0.255534	0.847883	0.98246
HRF		val	0.966407	0.926022	0.824373	0.702536	0.295487	0.844963	0.978749
		test	0.970646	0.929896	0.870763	0.771474	0.233612	0.849815	0.986569
	R2 Unet	train	0.967624	0.934227	0.859424	0.754195	0.247401	0.866896	0.980806
		val	0.965531	0.93163	0.823706	0.701625	0.29631	0.864816	0.975579
		test	0.970792	0.935092	0.873505	0.775693	0.228721	0.86664	0.984522
	Attention Unet	train	0.966239	0.93187	0.852629	0.743877	0.257857	0.855849	0.980642
		val	0.96457	0.92897	0.814722	0.688927	0.304912	0.853003	0.97484
	0.101	test	0.969865	0.933594	0.868763	0.768333	0.236623	0.856954	0.984745

Dataset	Model	Split	Accur acy	Auc	FScore	Iou	Loss (jaccar d)	Sensitivity	Specificity
	Simple Unet	train	0.974525	0.907107	0.808292	0.678875	0.319206	0.792083	0.987898
		val	0.969245	0.883633	0.76767	0.624773	0.375227	0.743987	0.985701
		test	0.967318	0.901233	0.772169	0.62979	0.378193	0.790044	0.981263
		train	0.978849	0.927341	0.842813	0.728852	0.268962	0.838501	0.989135
	Residual Unet	val	0.973513	0.911931	0.807688	0.678453	0.321547	0.809435	0.985641
	01101	test	0.970217	0.917022	0.7955	0.661046	0.346201	0.827041	0.981562
	Recurrent U-net	train	0.977607	0.927883	0.835386	0.717845	0.280212	0.839469	0.987749
CHASE		val	0.972952	0.918759	0.806985	0.677529	0.322471	0.823394	0.983983
0102		test	0.970402	0.923721	0.799996	0.667405	0.341507	0.840018	0.980983
	R2 U-net	train	0.976944	0.915241	0.826328	0.704611	0.293228	0.81055	0.989086
		val	0.972026	0.905324	0.795998	0.66197	0.33803	0.793499	0.985205
		test	0.970127	0.913673	0.792834	0.657264	0.349629	0.817794	0.982069
	Attention U-net	train	0.973691	0.9163	0.806055	0.675787	0.321605	0.80938	0.985625
		val	0.968049	0.907286	0.773627	0.631742	0.368258	0.79406	0.980856
	0 1101	test	0.965343	0.913679	0.767091	0.622952	0.384757	0.815263	0.977321

Result Analysis

- □ Talking about the DRIVE and CHASE data, Recurrent U-net outperforming other models on testing data. Followed by Residual U-net which is also performing better then rest models.
- On HRF dataset (high quality image datasets) the R2 U-net outperformed other models, followed by a tough fight between Residual and Recurrent U-net.
- ☐ The Sequence for model performance considerin metrics values previous on test data is:
 - □ DRIVE: Recurrent > Residual > Attention > Simple > R2 Unet
 - ☐ CHASE: Recurrent > Residual > R2 > Simple > Attention U-net
 - ☐ HRF: R2 > Recurrent > Residual > Attention > Simple U-net

narameters follow the same trend)

Note : The image size is also reduced from DRIVE -> CHASE -> HRF dataset.

Some more analysis we construct, for the fundus image vessel segmentation task, R2
U-net tends to perform well as we increase the image size and the Recurrent U-net
generally performs slightly better than Residual U-net (maybe because the number of

Model's Performance

Future Outlook

- Explore various additional preprocessing techniques to improve vessel segmentation accuracy.
- Investigate concurrent preprocessing methods applied to the same image to optimize segmentation.
- Experiment with alternative deep learning models such as DeepLab, SegNet, and architectures incorporating GANs and FPNs.
- ☐ Deploy the developed model into a practical application for real-world usage.
- Extend focus beyond vessel segmentation to tackle other retinal eye segmentation challenges, including identifying arteries, veins, optic disc, optic nerve, lesions, and hemorrhages.
- Web Server Deployment: Deploying final models on web servers for easy access by stakeholders.
- Research Paper References: Incorporating a wider range of research papers for informed methodology.
- Comparative Analysis: Comparing results with existing research for validation and improvement insights.

Conclusion

- The Recurrent U-net consistently outperformed other models on the DRIVE and CHASE datasets, exhibiting superior segmentation accuracy.
- Conversely, the R2 U-net demonstrated superior performance on the HRF dataset, closely followed by the Recurrent and Residual U-net models.
- Through comprehensive evaluation of key metrics including Sensitivity, IOU, AUC, and F-score, a performance sequence on test data for each dataset was determined.
- Analysis indicated that as the image size increased, the performance of the R2 U-net improved significantly for fundus image vessel segmentation tasks.
- The Recurrent U-net exhibited slightly better performance compared to the Residual U-net, potentially due to similar trends in the number of parameters.
- The project contributes to understanding the effectiveness of different models for retinal vessel segmentation tasks, aiding future research and clinical applications.
- Insights into dataset-specific performance highlight the importance of tailoring model selection based on dataset characteristics.
- Understanding the impact of image size and model architecture on segmentation performance informs future model development efforts and optimization strategies for retinal image analysis tasks.

References

]	Data	isets :
		[1] Reference: Staal, J., Abramoff, M. D., Niemeijer, M., Viergever, M. A., & van Ginneken, B. (2004). Ridge-based vessel segmentation in color images of the retina. IEEE Transactions on Medical Imaging, 23(4), 501-509
		[2] Reference: Budai, A., Bock, R., Maier, A., Hornegger, J., & Michelson, G. (2013). Robust vessel segmentation in fundus images. International Journal of Biomedical Imaging, 2013, Artic ID 154860.
		[13] Reference: Fraz, M. M., Remagnino, P., Hoppe, A., Uyyanonvara, B., Rudnicka, A. R., Owe C. G., & Barman, S. A. (2012). An ensemble classification-based approach applied to retinal blovessel segmentation. IEEE Transactions on Biomedical Engineering, 59(9), 2538-2548.
)	Res	earch Papers: [4] Ronneberger, O., Fischer, P. and Brox, T., 2015. U-net: Convolutional networks for biomedical image segmentation. In <i>Medical image computing and computer-assisted intervention–MICCAI</i> 2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceedings, part III 18 (pp. 234-241). Springer International Publishing
		[5]Almotiri, J., Elleithy, K. and Elleithy, A., 2018. Retinal vessels segmentation techniques and algorithms: a survey. <i>Applied Sciences</i> , 8(2), p.155.