

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE160304301

FCC REPORT

(BLE)

Applicant: Shenzhen Incomm Technology.CO., Ltd.

Address of Applicant: Huamei Building 526, Zhenxing Road, Futian District,

Shenzhen City, China

Equipment Under Test (EUT)

Product Name: L16 Smart Wristfit

Model No.: L16

FCC ID: 2AHR6-L16

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 17 Mar., 2016

Date of Test: 17 Mar., to 24 Mar., 2016

Date of report issued: 25 Mar., 2016

Test Result: PASS *

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	25 Mar., 2016	Original

Test Fngineer

Reviewed by: Date: 25 Mar., 2016

Project Engineer

3 Contents

			Page			
1	COV	/ER PAGE	1			
2	VERSION					
3		ITENTS				
4		T SUMMARY				
5	GEN	IERAL INFORMATION	5			
	5.1	CLIENT INFORMATION	5			
	5.2	GENERAL DESCRIPTION OF E.U.T	5			
	5.3	TEST ENVIRONMENT AND MODE				
	5.4	DESCRIPTION OF SUPPORT UNITS	7			
	5.5	LABORATORY FACILITY	7			
	5.6	LABORATORY LOCATION				
	5.7	DESCRIPTION OF SUPPORT UNITS				
	5.8	TEST INSTRUMENTS LIST	8			
6	TES	T RESULTS AND MEASUREMENT DATA	9			
	6.1	ANTENNA REQUIREMENT:	9			
	6.2	CONDUCTED EMISSION				
	6.3	CONDUCTED OUTPUT POWER	13			
	6.4	OCCUPY BANDWIDTH	15			
	6.5	POWER SPECTRAL DENSITY	18			
	6.6	BAND EDGE	20			
	6.6.	Conducted Emission Method	20			
	6.6.2	2 Radiated Emission Method	22			
	6.7	Spurious Emission	28			
	6.7.					
	6.7.2	Radiated Emission Method	31			
7	TES	T SETUP PHOTO	36			
8	EUT	CONSTRUCTIONAL DETAILS	38			

4 Test Summary

Test Item	Section in CFR 47	Uncertainty	Result
Antenna requirement	15.203/15.247 (c)	/	Pass
AC Power Line Conducted Emission	15.207	±3.28dB	Pass
Conducted Peak Output Power	15.247 (b)(3)	±1.50dB	Pass
6dB Emission Bandwidth	15.247 (a)(2)	±1.50dB	Pass
Power Spectral Density	15.247 (e)	±1.50dB	Pass
Band Edge	15.247(d)	±1.50dB	Pass
Spurious Emission	15.205/15.209	±4.88dB	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	Shenzhen Incomm Technology.CO., Ltd.
Address of Applicant:	Huamei Building 526, Zhenxing Road, Futian District, Shenzhen City, China
Manufacturer:	Shenzhen Incomm Technology.CO., Ltd.
Address of Manufacturer:	Huamei Building 526, Zhenxing Road, Futian District, Shenzhen City, China

5.2 General Description of E.U.T.

Product Name:	L16 Smart Wristfit
Model No.:	L16
Hardware Version:	V1.6
Software Version:	V3.02
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	Internal Antenna
Antenna gain:	2 dBi
Power supply:	Rechargeable Li-ion Battery DC3.7V-55mAh

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2442MHz
The Highest channel	2480MHz

5.3 Test environment and mode

Operating Environment:	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test mode:	
Operation mode	Keep the EUT in continuous transmitting with modulation (fully-charged battery)

Report No: CCISE160304301

The sample was placed 0.8m(below 1GHz)/1.5m(above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

N/A

5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

5.7 Description of Support Units

Manufacturer	Description	Model	Serial Number	FCC ID/DoC
UMX	Adapter	WTA051000USA1	N/A	N/A

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 7 of 49

5.8 Test Instruments list

Rad	Radiated Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
1	3m SAC	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017		
2	BiConiLog Antenna	SCHWARZBECK	VULB9163	CCIS0005	03-28-2015	03-28-2016		
3	Horn Antenna	SCHWARZBECK	BBHA9120D	CCIS0006	03-28-2015	03-28-2016		
4	Pre-amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2015	03-31-2016		
5	Pre-amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	04-01-2015	03-31-2016		
6	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	04-01-2015	03-31-2016		
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	04-01-2015	03-31-2016		
8	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP30	CCIS0023	03-28-2015	03-28-2016		
9	EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	03-28-2015	03-28-2016		
10	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2015	03-31-2016		
11	RF Cable	SUHNER	SUCOFLEX100	CCIS0018	04-01-2015	03-31-2016		
12	Coaxial Cable	Astrolab	SHLF5	CCIS0016	04-01-2015	03-31-2016		
13	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		

Con	Conducted Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	08-23-2014	08-22-2017		
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-28-2015	03-28-2016		
3	LISN	CHASE	MN2050D	CCIS0074	03-28-2015	03-28-2016		
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2015	03-31-2016		
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FC

FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The BLE antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is 2 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15.207			
Test Method:	ANSI C63.10: 2013			
Test Frequency Range:	150 kHz to 30 MHz			
Class / Severity:	Class B			
Receiver setup:	RBW=9kHz, VBW=30kHz			
•	11. 12. 12. 12. 12. 12. 12. 12. 12. 12.	Limit /s	1D\ /\	
Limit:	Frequency range (MHz)	Limit (c Quasi-peak	Average	
	0.15-0.5	66 to 56*	56 to 46*	
	0.5-5	56	46	
	5-30	60	50	
	* Decreases with the logarithm			
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted measurement. 			
Test setup:	AUX Equipment E	EMI Receiver	Iter — AC power	
Toot Uncertainte	Remark: E.U.T: Equipment Under Test LISN: Line Impedence Stabiliza Test table height=0.8m	tion Network	. ماد ماد د.	
Test Uncertainty:	±3.28 dB			
Test Instruments:	Refer to section 5.7 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

Measurement Data

Neutral:

Trace: 9

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL : L16 Smart Wristfit Condition

EUT

Model : L16 Test Mode : BLE mode Power Rating : AC120/60HZ

Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: MT Remark

Nemark									
	Freq	Read	LISN Factor	Cable	Level	Limit Line	Over	Remark	
	rreq	Level	ractor	LUSS	Level	Line	Line	Kemaik	
-	MHz	dBu∜	dB	dB	dBu∀	dBuV	₫B		
1	0.226	16.35	0.16	10.75	27.26	52.61	-25.35	Average	
2	0.361	32.07	0.16	10.73	42.96	58.69	-15.73	QP	
3	0.361	26.54	0.16	10.73	37.43	48.69	-11.26	Average	
4	0.461	20.40	0.16	10.75	31.31	56.67	-25.36	QP	
5	0.570	20.62	0.17	10.77	31.56	56.00	-24.44	QP	
1 2 3 4 5 6 7 8 9	0.579	15.15	0.17	10.77	26.09	46.00	-19.91	Average	
7	0.720	22.21	0.17	10.78	33.16	56.00	-22.84	QP	
8	0.796	22.41	0.18	10.81	33.40	56.00	-22.60	QP	
9	0.876	13.81	0.18	10.83	24.82	46.00	-21.18	Average	
10	1.229	18.59	0.19	10.90	29.68	56.00	-26.32	QP	
11	1.296	13.50	0.19	10.90	24.59	46.00	-21.41	Average	
12	1.645	13.16	0.19	10.93	24.28	46.00	-21.72	Average	

Line:

Trace: 11
Site : CCIS Shielding Room
Condition : FCC PART15 B QP LISN LINE

EUT : L16 Smart Wristfit

Model : L16 Test Mode : BLE mode Power Rating : AC120/60HZ

Power Rating: AC120/60HZ Environment: Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: MT

Remark

					_		
Freq			Cable Loss	Level	Limit Line	Over Limit	Remark
MHz	dBu₹	<u>dB</u>	₫B	dBu₹	dBu₹	<u>dB</u>	
0.358	32.81	0.26	10.73	43.80	58.78	-14.98	QP
0.365	25.32	0.26	10.73	36.31	48.61	-12.30	Average
0.481	12.60	0.27	10.75	23.62	46.32	-22.70	Average
0.567	21.42	0.27	10.77	32.46	56.00	-23.54	QP
0.573	12.27	0.27	10.77	23.31	46.00	-22.69	Average
0.675	21.59	0.28	10.77	32.64	56.00	-23.36	QP
0.727	22.82	0.28	10.78	33.88	56.00	-22.12	QP
0.796	23.85	0.28	10.81	34.94	56.00	-21.06	QP
0.796	13.75	0.28	10.81	24.84	46.00	-21.16	Average
1.229	20.33	0.29	10.90	31.52	56.00	-24.48	QP
1.229	11.58	0.29	10.90	22.77	46.00	-23.23	Average
1.628	11.71	0.31	10.93	22.95	46.00	-23.05	Average
	Freq 0.358 0.365 0.481 0.567 0.797 0.796 0.796 1.229 1.229	Read Freq Level MHz dBuV 0.358 32.81 0.365 25.32 0.481 12.60 0.567 21.42 0.573 12.27 0.675 21.59 0.727 22.82 0.796 23.85 0.796 13.75 1.229 20.33 1.229 11.58	Read LISN Freq Level Factor MHz dBuV dB 0.358 32.81 0.26 0.365 25.32 0.26 0.481 12.60 0.27 0.567 21.42 0.27 0.573 12.27 0.27 0.675 21.59 0.28 0.796 23.85 0.28 0.796 23.85 0.28 0.796 13.75 0.28 1.229 20.33 0.29 1.229 11.58 0.29	Read LISN Cable Level Factor Loss MHz dBuV dB dB 0.358 32.81 0.26 10.73 0.365 25.32 0.26 10.73 0.481 12.60 0.27 10.75 0.567 21.42 0.27 10.77 0.573 12.27 0.27 10.77 0.675 21.59 0.28 10.77 0.727 22.82 0.28 10.78 0.796 23.85 0.28 10.81 0.796 13.75 0.28 10.81 1.229 20.33 0.29 10.90 1.229 11.58 0.29 10.90	Read LISN Cable Level Factor Loss Level	Read LISN Cable Limit	Read LISN Cable Limit Over Freq Level Factor Loss Level Lime Limit MHz dBuV dB dB dBuV dBuV dB 0.358 32.81 0.26 10.73 43.80 58.78 -14.98 0.365 25.32 0.26 10.73 36.31 48.61 -12.30 0.481 12.60 0.27 10.75 23.62 46.32 -22.70 0.567 21.42 0.27 10.77 32.46 56.00 -23.54 0.573 12.27 0.27 10.77 32.31 46.00 -22.69 0.675 21.59 0.28 10.77 32.64 56.00 -23.36 0.727 22.82 0.28 10.78 33.88 56.00 -22.12 0.796 23.85 0.28 10.81 34.94 56.00 -21.06 0.796 13.75 0.28 10.81 24.84

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)					
Test Method:	ANSI C63.10:2013					
Limit:	30dBm					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Measurement Data

Test CH	Maximum Conducted Output Power (dBm)	Limit(dBm)	Result
Lowest	3.98		
Middle	3.66	30.00	Pass
Highest	3.25		

Test plot as follows:

Date: 19.MAR.2016 08:56:52 Lowest channel

Date: 19.MAR.2016 08:59:04 Middle channel

Highest channel

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)				
Test Method:	ANSI C63.10:2013				
Limit:	>500kHz				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.7 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data

Test CH	6dB Emission Bandwidth (MHz)	Limit(kHz)	Result	
Lowest	0.708			
Middle	0.714	>500	Pass	
Highest	0.696			

Test CH	99% Occupy Bandwidth (MHz)	Limit(kHz)	Result	
Lowest	1.098			
Middle	1.086	N/A	N/A	
Highest	1.086			

Test plot as follows:

6dB EBW

Date: 19.MAR.2016 09:06:43

Lowest channel

Date: 19.MAR.2016 09:12:11

Middle channel

Date: 19.MAR.2016 09:16:00

Highest channel

99% OBW

Date: 19.MAR.2016 09:21:00

Lowest channel

Date: 19.MAR.2016 09:19:48

Middle channel

Date: 19.MAR.2016 09:18:36

Highest channel

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)					
Test Method:	ANSI C63.10:2013					
Limit:	8 dBm					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Test CH	Power Spectral Density (dBm/100kHz)	Factor	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result
Lowest	3.52	-15.23	-11.71		
Middle	3.14	-15.23	-12.09	8.00	Pass
Highest	2.83	-15.23	-12.40		
Remark: Factor	r=10log(3kHz/RBW)=-15.23,	RBW=100k	.Hz.		

Test plots as follow:

Date: 19.MAR.2016 09:24:39

Lowest channel

Date: 19.MAR.2016 09:25:26

Middle channel

Date: 19.MAR.2016 09:26:13

Highest channel

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Test Method:	ANSI C63.10:2013					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table					
	Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Test plots as follow:

Date: 19.MAR.2016 09:31:33

Lowest channel

Date: 19.MAR.2016 09:34:28

Highest channel

6.6.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.209 and 15.205						
Test Method:	ANSI C63.10: 2	013					
Test Frequency Range:	2.3GHz to 2.5G	Hz					
Test site:	Measurement D						
Receiver setup:	Frequency	Detector	RBW	VBW	Remark		
Neceiver setup.		Peak	1MHz	3MHz	Peak Value		
	Above 1GHz	RMS	1MHz	3MHz	Average Value		
Limit:	Freque	ency	Limit (dBuV/	m @3m)	Remark		
	Abovo 1	CU-7	54.0	0	Average Value		
					Peak Value		
Test Procedure:	Above 1GHz 54.00 Average Valu						

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : L16 Smart Wristfit Condition

EUT

Model : L16

Test mode : BLE-L Mode Power Rating : DC 3.7V

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: MT

REMARK

	Freq	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark
•	MHz	dBu∜	dB/m	dB	−−−dB	dBuV/m	dBuV/m	dB	
	2390.000 2390.000								

Test channel: Lowest

Vertical:

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : L16 Smart Wristfit Condition

EUT Model : L16

Test mode : BLE-L Mode Power Rating : DC 3.7V

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: MT REMARK :

 -		Antenna						
rreq	rever	Factor	LOSS	ractor	rever	Line	Limit	Kemark
MHz	dBu∜	dB/m	₫B	₫B	dBuV/m	dBuV/m	dB	
2390,000 2390,000								

Test channel: Highest

Horizontal:

Site Condition : 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : L16 Smart Wristfit

EUT

Model : L16

Test mode : BLE-H Mode

Power Rating: DC 3.7V Environment: Temp:25.5°C Huni:55% Test Engineer: MT REMARK:

	Freq		Antenna Factor						Remark	
	MHz dBuV		dB/m	dB	dB	dBuV/m	dBuV/m	dB		
1 2	2483.500 2483.500				0.00					

Test channel: Highest

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : L16 Smart Wristfit Condition

EUT

Model

: L16 : BLE-H Mode Test mode Power Rating : DC 3.7V

Environment : Temp:25.5°C Huni:55% Test Engineer: MT REMARK :

22.507/250	Freq		Antenna Factor						
	MHz	dBu∀	dB/m	dB	dB	dBuV/m	dBuV/m	dB	
1 2	2483.500 2483.500								

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)						
Test Method:	ANSI C63.10:2013						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:							
	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 5.7 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						

Test plot as follows:

Lowest channel

Date: 19.MAR.2016 09:40:25

30MHz~25GHz

Middle channel

Date: 19.MAR.2016 09:39:19

30MHz~25GHz

Highest channel

Date: 19.MAR.2016 09:37:46

30MHz~25GHz

6.7.2 Radiated Emission Method

0.7.2 Naulateu Liilissioii i					
Test Requirement:	FCC Part 15 C		and 15.205		
Test Method:	ANSI C63.10:20	013			
Test Frequency Range:	9KHz to 25GHz	:			
Test site:	Measurement D	Distance: 3m			
Receiver setup:	Frequency	Detector	RBW	VBW	Remark
	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak Value
	Above 1GHz	Peak	1MHz	3MHz	Peak Value
Limit:	Francis	RMS	1MHz	3MHz	Average Value Remark
Liffiit.	Frequency 30MHz-88MHz		<u>-imit (dBuV/m</u> 40.0	@3III)	Quasi-peak Value
	88MHz-216MHz		13.5		Quasi-peak Value
	216MHz-960MH		16.0		Quasi-peak Value
	960MHz-1GHz		54.0		Quasi-peak Value
	A		54.0		Average Value
	Above 1GHz		74.0		Peak Value
Test Procedure:	1GHz)/1.5r The table of highest race. 2. The EUT antenna, we tower. 3. The antenna Both horized make the number of the find the second of the emissions, measurem depending aimed at the emissions above the emissions above the emissions above the emissions above the limit spof the EUT have 10 defined the second of the EUT have 10 defining the emission of the emission of the EUT have 10 defining the emission of t	m(above 1GH: was rotated 36 diation. was set 3 me which was mount ha height is van to determine ontal and vertineasurement. Suspected em when the anten dithe rota table maximum reace diated emission measurement dito be a ent distance, he source of with polariza ent antenna m on the radia ne emission so urement anten ons. The mea shall be restrict ground or referenceiver system Bandwidth with sion level of the ecified, then te would be rep margin would	eters away for the don the trained from or the maximum cal polarizations are turned ling. It test above antenna awas turned ling. It test above antenna awas ource of while keeping emissions are tion pattern urce for recent and elevation surement are ted to a range tence ground a was set of Maximum Here EUT in persting could be orted. Other libe re-tested	rom the incop of a variance meter to um value or ions of the EUT was an edit to height from 0 degramments and to height from 0 degramments and to height and to height each frequency of the emerical plane. It is plane to plane the end one by one is plane to plane the end one by one	g table 0.8m(below a 3 meter camber. e the position of the terference-receiving able-height antenna of four meters above of the field strength. antenna are set to tranged to its worst is from 1 meter to 4 rees to 360 degrees. The lower than the EUT, hission and staying taximum signal. The lower than the EUT, hission and staying taximum signal. The lat which maximizes wation for maximum is of from 1 m to 4 m etect Function and the peak values hissions that did not e using peak, quasi-reported in a data

Below 1GHz

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M3G) HORIZONTAL Condition

EUT : L16 Smart Wristfit

: L16 Model

: BLE-L-CH Mode Test mode

Power Rating : DC 3.7V Environment : Temp:25.5°C Huni:55%

Test Engineer: MT REMARK

Freq						Limit Line	Over Limit	
MHz	dBu∜	dB/m	d₿	dB	dBuV/m	dBuV/m	<u>dB</u>	
121.549	44.00	11.89	2.19	29.38	28.70	43.50	-14.80	QP
143.830	38.23	11.34	2.44	29.25	22.76	43.50	-20.74	QP
232.532	38.06	11.66	2.83	28.64	23.91	46.00	-22.09	QP
370.702	37.67	14.91	3.09	28.65	27.02	46.00	-18.98	QP
528.246	36.38	17.54	3.77	29.04	28.65	46.00	-17.35	QP
763.376	33.54	20.46	4.36	28.40	29.96	46.00	-16.04	QP
	MHz 121, 549 143, 830 232, 532 370, 702 528, 246	Freq Level MHz dBuV 121.549 44.00 143.830 38.23 232.532 38.06 370.702 37.67 528.246 36.38	Freq Level Factor MHz dBuV dB/m 121.549 44.00 11.89 143.830 38.23 11.34 232.532 38.06 11.66 370.702 37.67 14.91 528.246 36.38 17.54	MHz dBuV dB/m dB 121.549 44.00 11.89 2.19 143.830 38.23 11.34 2.44 232.532 38.06 11.66 2.83 370.702 37.67 14.91 3.09 528.246 36.38 17.54 3.77	Freq Level Factor Loss Factor MHz dBuV dB/m dB dB 121.549 44.00 11.89 2.19 29.38 143.830 38.23 11.34 2.44 29.25 232.532 38.06 11.66 2.83 28.64 370.702 37.67 14.91 3.09 28.65 528.246 36.38 17.54 3.77 29.04	MHz dBuV dB/m dB dB dBuV/m 121.549 44.00 11.89 2.19 29.38 28.70 143.830 38.23 11.34 2.44 29.25 22.76 232.532 38.06 11.66 2.83 28.64 23.91 370.702 37.67 14.91 3.09 28.65 27.02 528.246 36.38 17.54 3.77 29.04 28.65	Freq Level Factor Loss Factor Level Line MHz dBuV dB/m dB dB dBuV/m dBuV/m	MHz dBuV dB/m dB dB dBuV/m dBuV/m dBuV/m dBuV/m dB 121.549 44.00 11.89 2.19 29.38 28.70 43.50 -14.80 143.830 38.23 11.34 2.44 29.25 22.76 43.50 -20.74 232.532 38.06 11.66 2.83 28.64 23.91 46.00 -22.09 370.702 37.67 14.91 3.09 28.65 27.02 46.00 -18.98 528.246 36.38 17.54 3.77 29.04 28.65 46.00 -17.35

Vertical:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M3G) VERTICAL : L16 Smart Wristfit Condition

EUT

Model : L16

Test mode : BLE-L-CH Mode Power Rating : DC 3.7V

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: MT REMARK :

Thurst									
	Freq		Antenna Factor						
-	MHz	dBu∜	dB/m	₫B	dB	dBuV/m	dBuV/m	dB	
1	35.624	37.91	15.05	1.07	29.94	24.09	40.00	-15.91	QP
2	99.878	41.26	9.80	1.94	29.53	23.47	43.50	-20.03	QP
3	121.123	44.13	11.86	2.18	29.38	28.79	43.50	-14.71	QP
4 5 6	284.977	35.94	12.25	2.90	28.48	22.61	46.00	-23.39	QP
5	370.702	46.49	14.91	3.09	28.65	35.84	46.00	-10.16	QP
6	564.639	36.89	18.21	3.90	29.05	29.95	46.00	-16.05	QP

Above 1GHz

Т	est channel	:	Lo	west	Le	vel:		Limit (dB) Polarization 19.13 Vertical		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4804.00	48.55	35.99	10.57	40.24	54.87	74.00	-19.13	Vertical		
4804.00	46.16	35.99	10.57	40.24	52.48	74.00	-21.52	Horizontal		
Т	est channel	•	Lo	west	Le	vel:	A	Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4804.00	39.69	35.99	10.57	40.24	46.01	54.00	-7.99	Vertical		
4804.00	37.15	35.99	10.57	40.24	43.47	54.00	-10.53	Horizontal		

Т	est channel	:	Mi	iddle	Le	vel:		Limit Polarization (dB) 9.39 Vertical		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4884.00	47.72	36.38	10.66	40.15	54.61	74.00	-19.39	Vertical		
4884.00	45.70	36.38	10.66	40.15	52.59	74.00	-21.41	Horizontal		
Т	est channel	:	Mi	iddle	Le	vel:	A	-21.41 Horizontal Average Over		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4884.00	38.56	36.38	10.66	40.15	45.45	54.00	-8.55	Vertical		
4884.00	36.58	36.38	10.66	40.15	43.47	54.00	-10.53	Horizontal		

Te	est channel:		Hig	ghest	Le	vel:		Limit (dB) Polarization 18.04 Vertical	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4960.00	48.55	36.71	10.73	40.03	55.96	74.00	-18.04	Vertical	
4960.00	45.36	36.71	10.73	40.03	52.77	74.00	-21.23	Horizontal	
Te	est channel:		Hig	ghest	Le	vel:	Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4960.00	39.62	36.71	10.73	40.03	47.03	54.00	-6.97	Vertical	
4960.00	36.67	36.71	10.73	40.03	44.08	54.00	-9.92	Horizontal	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.