CS286: Database Systems

1 Lecture 3—9/4/2014

1.1 R*

- Assumptions:
 - There are administrative causes behind distributed data
 - Network: unreliable transport, in-order, packets are intact
 - Independent node failure
 - Slow-ish network
- Research goals:
 - "Site autonomy": No centralized state or control
 - * Data you touch should determine the sites you talk to
 - * "Distributed system is a system that fails because a machine you've never heard of fails"
 - * Load sharing and decentralization
 - * Less communication
 - * Harder to coordinate data consistency
 - * More network connections beyond hub and spoke
 - * Metadata management is harder
 - Location transparency \rightarrow emulate a centralized DB
 - Don't assume much about the network or OS
- Highlights:
 - Query optimizer cost modeling
 - Data layouts → horizontal partitioning
 - Replication
 - Distribution
 - Query compilation—unclear as to balance between compilation overhead and work saving
 - Spent a lot of time talking about 2PC \rightarrow presumed commit

1.2 Gamma

- Assumptions:
 - Fast interconnect—hypercube, more network bandwidth than aggregate disk bandwidth
 - Shared nothing—no disk or memory sharing
- Research goals:
 - Scale

- Highlights:
 - Parallel hybrid-hash join
 - Chained declustering
- Assess:
 - Linear speedup + scale-up
 - Superlinear speedup due to minimized seek count at scale

2 Lecture 4—9/9/2014

- ACID
 - Consistency is not what we typically think
 - Distributed systems: data has a consistent value across sites
 - Databases: data meets contract when transaction completes
- Serializability mathematically gives atomicity and isolation
- Logging gives atomicity and durability
- Ordering:
 - Determines outcome (unless operations are not associative and commutative)
 - Some things are commutable/associable
 - Ordering must be equivalent to some serializable order
 - Implicitly, this provides an API—people don't need to reason about concurrency
- What is storage?
 - Spacial-temporal rendezvous makes everything work!!!!
- Want to avoid/undo conflicts in space and time
 - Space: Shared names
 - Time: Ordering
- 2PL: Provides a conflict serialized schedule
 - Ordered by race for locks
 - Ordered by the end of the first phase ("lock point")
- Multi-version timestamp ordering
 - Every transaction gets a timestamp—this is the only synchronization point
 - For every object:
 - * Writes generate a new version for an object
 - * Reads annotate the version for the object

3 Lecture 5—9/11/2014

- Good graphs:
 - Crossover points
 - Non-monotonicity
 - Good breadth of X
 - Smooth \rightarrow variance was accounted for
- Infinite resources:
 - Why run infinite resources? Many people assumed infinite resources in their papers.
 - OCC wins because it allows higher parallelism, at the cost of restarting transactions
 - Blocking (2PL) performs well at start, low at the end. Why?
 - * Deadlock starts to cause performance to fail
 - * Lock contention starts to cause transactions to get in each other's way
 - * Locking is a feedback loop—it lengthens transaction time
- Takeaways:
 - MPL is a control variable—choose your infrastructure for your system
- When do we have "infinite" resources?
 - When we have user interaction (Computer \gg human)
 - Vastly overprovisioned compute
 - Work is not going on inside the serving infrastructure (e.g., work is done by clients)

3.1 What happens when you go distributed?

- Why go distributed?
 - Capacity (storage and throughput)
 - Low latency (tolerance)
 - Fault tolerance (durability vs. availability)
- Techniques
 - Sharding—split dataset across many nodes
 - Replication

4 Lecture 6—9/16/2014

- You need replication \rightarrow resilience to failure
- Tradeoff between replication and performance
- NoSQL:
 - Typically, a key-value store (data/programming model)
 - Typically distributed and sharded/partitioned
 - Usually weaker consistency model
 - No transactions/weak isolation model
 - "Not MySQL" \rightarrow lots of work at AOL/etc. with MySQL on memcached

- Typically OSS, not enterprise
- "Scalable", especially incremental scale \rightarrow improves organization/administration/ops
- "Evaporation" of the DBA
- Motivations:
 - Bayou: I want to operate when disconnected
 - Dynamo: Nodes gonna fail
- CAP theorem: if partitions occur, then we can either have consistency or availability
 - Availability: As long as a client can access a server, I can access data (concurrent operations don't need to communicate)
 - Consistency: "linearizable registers" \rightarrow if I make a write, you can read my write

5 Lecture 7—9/18/2014

- In traditional database, have disk page with tuples stored at continuous offsets.
 - Pointers ("slots") are at end of page and point back to tuples.
 - Can then compress and compact by looking at slot pointers.
 - Fixed length fields stored in tuples
 - Tuples contain pointers to variable length fields
- What changed between 1980 and 2010?
 - CPUs $10,000 \times$ faster
 - Disk BW grew $100 \times$
 - Disk seek time improved $10 \times$
- Specifically, gulf between disk performance and processor performance grew
- Research methodology: if area is fairly static, change parameters and see what you can do
- MonetDB
 - Vector/block processing:
- Traditional iterator processing model:
 - Build a tree of operators that run on top of iterators
 - Algorithms have init method (set up state), get next (give me a tuple), and close operators
 - "Pull" model \rightarrow data and control flow are coupled
- "Late materialization:" query optimizer should defer reading columns until as late as it can
- "Invisible joins:" joins that batch reordering
 - Semijoin: Filter R for all items that have a match in S
- Database cracking: opportunistically reorder blocks in order to improve performance

6 Lecture 8—9/23/2014

- Pre-relational data models:
 - Network: objects + pointers
 - Hierarchical: nested sets
- Then, the Relational Revolution
- But, persistent questioning:
 - In the 80's, nested relational
 - Object-Oriented Database \rightarrow 80's/90's
 - And then... XML
- Why flatten into relations:
 - Space efficient
 - Update/delete/inserts require work/care
 - Simple model and language
 - Data independence: physical and logical independence
- When is the relational model a pain?
 - Joins are expensive
 - Must know schema ahead of time
 - Read-only workloads are expensive
 - Programming language state
- \bullet Engineering versus "Found Structure" \rightarrow bricolage
 - Engineering \rightarrow collaboration and communication
 - Found structure \rightarrow exploratory data analytics
- XML database history:
 - WWW + search ate DB lunch
 - Let's query the internets!
 - DB \times WWW \times markup language people = pandemonium
 - 4 data models, 3 query languages, mostly overlap...
- \bullet DB vendors kept up with the pace of research
- How to encode XML:
 - Native
 - Shred to relationable tables
 - Relational encoding of trees
 - Path/value encoding
 - Hybrids

7 Lecture 9—9/25/2014

- Few ways to provide/describe isolation; e.g., for a KV store:
 - 2PL \rightarrow mechanism
 - Avoid anomalies (no lost update, no dirty/fuzzy read) → anomaly prevention
 - Draw conflicts into graph (graph should have no cycle) \rightarrow graph formalism
 - Every history is view equivalent to a serial history \rightarrow equivalence formalism
 - If every program preserves an invariant, then every execution will preserve the invariant \rightarrow integrity
- Full isolation is expensive; let's go for weaker models
- These descriptions don't imply equivalence:
 - Can provide SG without cycle with OCC, OCC \neq 2PL
 - Snapshot isolation \rightarrow no anomalies, but does not preserve invariants
- Strong vs. weak isolation: weaker implies more anomalies allowed, or more executions allowed
- Conditions of reality:
 - Phantom: occurs when your program has a complex predicate, and when table modifications are allowed (modifications can change predicate selections)
 - * Can solve with predicate locks (but no one does that)
 - * Can solve with locks on indices, next key locks, etc...
 - Repeatable read: in SQL, an isolation level where you can have phantoms, but everything else is OK (IBM defines as full isolation, hence confusion...)
 - Fuzzy read: short read locks, I read a single item multiple times and can see different values
 - Statement-level atomicity: hold short read locks for the whole time I'm evaluating a statement
 - select ... for update: hint that I'll grab locks later
- Isolation levels:
 - 0. Short duration write locks
 - 1. Commit duration write locks
 - 2. Commit duration write locks, short read locks
 - 3. Full serializability
- Snapshot isolation: a good demonstration that you can beat anomalies (no lost update, no dirty read, no fuzzy read, no phantoms), but not provide serializability

8 Lecture 10—9/30/2014

- Implementation:
 - Concurrency control: 1 transaction at a time
 - All transactions are stored procedures; not interactive
 - Partition your workload (?)
 - Hot replicas: in relational world, replication is a backup strategy, not a runtime strategy
 - Weak consistency "may" be interesting

8.1 Hekaton

- Built from ground-up to fit into SQL Server:
 - Limits design space
 - Must coexist with old systems (e.g., here, must have commit time in old system)
- Much else is in other papers

9 Lecture 11—10/2/2014

- This guy fellow thinks that people aren't thinking enough about parametrized queries
 - OLTP is pre-canned; OLAP isn't exactly
 - E.g., web forms
- Query optimization, a primer:
 - So, we want to select some keys from a table
 - There are many ways to execute most queries
 - * Joins are associative and commutative, so can be reordered
 - * Many different algorithms for joins
 - If we have value distribution statistics, we can estimate the cost of a query plan
 - Problem is NP-hard, exponential in the number of tables
 - Getting a plan wrong can cause orders of magnitude performance differences
 - * But, there are often many OK plans

9.1 Adaptive Query Processing

- Eddies:
 - Now-sort
 - Led to Inktomi
 - Led to River: adaptive parallel streaming/shuffle
 - Control: approximate query processing
 - Can structure work in many ways:
 - * Want to optimize for the expected amount of work

9.2 Robust Query Processing

- How can we make an optimizer more robust?
 - Add a feedback loop and adapt
 - Make query plan "pretty good" even if your estimates are bad—you don't want the best plan, you want a good plan that has a very low chance of morphing into an bad plan
- Why?
 - Bound your worst-case performance (don't break)
 - If you are robust to a metric, then you can use a cheap approach for collecting that metric
 - Predictable across versions
- Approaches:

- L.C.: You materialized a full intermediate result
- L.C. Eager M.: You add a materialization and look at the full intermediate approach
- E.C.W.C.: Watch a pipe and remember the record IDs, do an anti-join
- E.C.W.B.: Keep a buffer, so not as big as a materialization
- Need dynamic programming algo to search the space

10 Lecture 12-10/7/2014

- Query optimization:
 - We want to find the plan space
 - Estimate the cost!
 - And search (prune) that space
- Should separate a plan space into a logical and physical space
 - Logical space: logical operations
 - Physical space: access operations and disk layout (implementation)
- If you put a rule, you can make things blow up badly
- What happens if an optimizer doesn't exist? You need to take the optimizer that existed before, and modify it for your new optimized implementation.
- Cost estimation:
 - Want to put together summary statistics
 - Specifically, we probably want to generate selectivity estimation for joins
 - Cardinality estimation for group-by's
 - Summary statistics are computed from the data, selectivity/cardinality estimation from summary statistics
 - Cost estimation = statistics
- Logical plan space: SQL, XQuery, Pig, Datalog
- Parallelism:
 - How do I do a parallel database? How do I do joins/etc?
 - How do I allocate resources?
- Physical strategies need to have a logical mapping
- Can define rules mapping logical to logical, physical to logical
- Search strategies:
 - Bottom-up: data oriented, forward chaining
 - Top-down: goal oriented, backward chaining

11 Lecture 13—10/14/2014

- "This is not computer science, it is *sociology*!"
- Ecosystem is important → how does industry impact research?
- TL; DR:
 - MapReduce: Introduced mid-query fault tolerance
 - DryadLINQ: "We used cool language shit that we had at Microsoft."
- Early 2000's: What happened?
 - "The Cloud" \rightarrow massive user bases
 - Scale-out data:
 - 1. Data as a source of value \rightarrow early offers for FB were based on value of network/data
 - 2. Data has enormous scale and "schema-on-use" \rightarrow disk is cheap, don't toss data away!
 - Boom (late '90's) \rightarrow bust (2001) \rightarrow boom (2004) \rightarrow bust (GFC) \rightarrow now
 - Revenue model changed: money is not made on software sales, rather, it is made on advertising
 - Also, RE: revenue: switched from sales to subscription \rightarrow shift from CapEx to OpEx
 - Aside: internet company developers (not enterprise developers) are driving design
 - Custom SW is not sufficiently valuable relative to other things, so give it away:
 - 1. Network is value, not SW
 - 2. Ops side arises: even if you had FB's software, could you run Facebook?
 - 3. Open source software attracts top talent
 - 4. E[engineer] = 2 years: if everyone is going to leave in two years, don't have proprietary software
 - 5. "OOO and software reuse is dead"
 - As a result, buy vs. build decision is completely different
- Huge implications on the DB community:
 - Oracle as a punching bag → "All the bad things about Oracle must have arrived out of bad DB research."
 - * MySQL was also a dichotomous punching bag
 - * Where was Postgres? Cool software, but performance is worse than MySQL.
 - We've changed the optimization function: programmer productivity is #1 priority
 - * Initially, we must harness parallelism for developers!
 - · First, Google MapReduce
 - · And, Hadoop @ Yahoo
 - \cdot Also, Scope at MSFT
 - Since 2004:
 - 1. Parallel DBs were overprized and slow
 - 2. A lot of the MR workloads were SQL-ish:
 - * Hive
 - * Pig
 - 3. Clear OSS opportunity:
 - * Cloudera
 - * Hortonworks
 - * MapR
 - * ...
 - 4. Google sponsors significant education push around MapReduce
 - 5. Hybrid workflows rise up

11.1 Questions

- 1. Who should use the Hadoop ecosystem?
 - HDFS: Is a pretty useful storage system.
 - Everything else:
 - If you want to program MapReduce (e.g., custom UDFs), MR is a better platform...
 - What do you do once you get a result? With DBs, you can materialize it. With MR, you have many ways to go from there. E.g., opportunistic vs. agile pipelines. Assumes sophisticated developers are using the system.
 - How much data should you have? If you've got a program that'll scale across multiple machines, that's a good fit for Hadoop.
 - If you're using Hadoop, your jobs should probably be long running, and not terribly time critical.
 - Machine learning at scale?
 - How does Spark come in? Logical vs. physical fault tolerance is a nice thing to fall back on.
- 2. What should they pay?

11.2 DryadLINQ and .NET

- LINQ is cool.
- Unfortunately, it is in .NET...
- What is LINQ? \rightarrow a functional DSL for collections
- What in .NET are they interested in? \rightarrow Probably libraries for math/collections.
- Debugging: provide a single node implementation that can be run locally.
- Also have PLINQ \rightarrow parallel LINQ on a single system; so node + processor parallelism

12 Lecture 15—10/21/2014

- Streaming queries was a giant fad:
 - Language semantics issues are a big problem:
 - * Need a language that is rich enough that you can use, but
 - * Easy enough that you can program
 - * Declarative (calculus) vs. algebra languages
 - * Complex event processing
 - Whole bucket of systems work:
 - * Minimize memory footprint
 - * Scaling vs. number/complexity of queries
 - * Adaptivity and load shedding
 - * Surprisingly little work on parallelism and fault tolerance
 - * Distributed/service oriented fault tolerance
 - Theory:
 - * Using synopses/sketches
 - * E.g., what happens if you can only look at a record once?
 - Practice:
 - * Streams are not ordered!

- * Therefore, need to reorder streams.
- * People like to revoke data.
- * Few streams exist by themselves; we want to join against stored data.
- * Small \$\$\$\$, at least, so far.
- Happened around the same time that XML was a huge fad
- Industry stuff:
 - Wall Street time series stuff (Kx for HFT)
 - Enterprise publish/subscribe services
 - Message queues: store and forward networks for transactional endpoints
- Why don't transactions make sense? Concurrent, read heavy workloads.
- Research projects:
 - TelegraphCQ @ Berkeley
 - Aurora/Borealis @ MIT/Brandeis/Brown \rightarrow started as dataflow language
 - STREAM @ Stanford
- Language:
 - Have both data and ordering \rightarrow more than a relation
 - Have many-to-many mapping between records and time
- Operators:
 - Simple monotonic relational operators are fairly easy:
 - * Selection
 - * Projection
 - * Join
 - Nonmonotonic is harder:
 - * Temporal windows \rightarrow specifically, when is the window done?
 - * Aggregate

13 Lecture 16—10/23/2014

- Resilience:
 - Flux uses replication
 - Spark Streaming uses lineage
 - Stream dataflows across multiple machines

13.1 Flux

- Problem: parallel, fault-tolerant, continuous queries (→ data flow) with non-blocking operators
- Intuition: use replication (process pairs) and take-over on failure
- How does it work?
 - 1. Tuple comes in, and is streamed across two machines
 - 2. Have replicated producer/consumer pairs, which run the exact same operations on the exact same tuple streams

- 3. A consumer acks back to the other producer
- What happens if a failure occurs?
 - 1. The part of the system that isn't failing stops getting acks
 - 2. So, coordinator spin up a new machine
 - 3. Coordinator tells every node that node n is down
 - 4. State movement:
 - (a) I pause by quiescing the user
 - (b) I "clone" the "brain" by replicating the state
 - 5. Replay tuples through new machine
- Exchange operator can be parallelized
- Invariants:
 - 1. Don't lose a tuple
 - 2. Don't duplicate a tuple

13.2 Spark Streaming

- How do I Spark?
 - 1. Input stage takes tuples, and lumps them into batches
 - 2. Per batch, I create an RDD as part of my D-Stream
 - 3. I chain operators on top of these RDDs, which give me new RDDs. My operators are:
 - Stateless
 - Deterministic
 - Short

14 Lecture *n*—12/2/2014

- Counting is hard
 - Put time boundaries on measurements \rightarrow synchronize!
- Fundamental problem with distributed system: everyone has a different perception of time
- How can we resolve this problem?
 - Define a local clock (a gap-free sequence)
 - Send messages that can carry local time steps
- How do we maintain time in Java?
 - Posix time? This is a *physical* clock, not a *logical* clock.
 - Order of byte code instructions?
- How about in a Turing machine?
 - What automaton transition are we at?
 - Head activity
- Time does not come for free in a distributed system? What defines time?
- When we voted, we waited a certain amount of time to get the results.

- So, if we count, we wait, and how do we wait? By counting (if we've heard from enough/all people)!
- CALM: Consistency and logical monotonicity go hand in hand
 - Logically monotonically systems don't need coordination
 - Or, coordination is required for non-monotonicity
 - What is non-monotonicity? For two sets R and S and a non-monotonic operator \oplus , increasing the size of S reduces the size of $R \oplus S$.
 - If operators are monotonic, then I can *stream* them together and the results will eventually be correct.
 - CALM theorem:
 - 1. Scopes what is and is not computable w/o coordination.
 - * As aside, all PTIME algorithms fit under CALM
 - 2. Gives conservative tests for where to coordinate.
 - 3. Drive innovation in developing coordination-free protocols.
 - If you can do this, then you can take things that are hidden at the read/write layer, and then make them visible.
- Why is coordination bad?
 - Has bad availability issues...
 - Coordination increases latency/reduces throughput \rightarrow reduces percentage of time spent doing "useful" work
- Data centric languages are embarrassingly parallel
- CALM consistency is roughly determinism of outputs, actor-ish model
- Invariant confluence is roughly using invariants to determine whether we can eliminate concurrents
- CALM consistency can be determined syntactically
- Invariant confluence requires programmer effort
- If two operations commute, they can be done in parallel
- Goal of invariant confluence: determine when coordination is necessary to maintain consistency
- Invariants:
 - Currently, we keep lots of invariants in the system
 - Allows us to avoid shooting selves in the foot
 - Allows us to perform some system level performance optimizations
 - Empirically, in OSS web applications, developers tend to write invariants instead of transactions
- Four guarantees for invariant confluence:
 - 1. Validity: if you define an invariant, all states must satisfy it
 - 2. Availability: all operations that you define should be able to return a result
 - 3. Coordination-freedom: you guarantee a response without contacting someone
 - 4. Convergence: replicas must converge to a consistent global state
- Merge via user defined merge function