Romanian IMO TST 2005

Day I - March 31, 2005

Problem 1. Solve the equation $3^x = 2^x y + 1$ in positive integers.

Solution.

In the following, the notation $p^n||t$ will mean that $p^n|t$ and that p^{n+1} does not divide t. Note that if p is a prime, $p^i||a$ and $p^j||b$ then $p^{i+j}||ab$. This is trivial by looking at the prime factorization of a and b.

We will use with two simple lemmas:

LEMMA 1. For any $n \in \mathbb{N}$ we have $2^{n+2}||3^{2^n} - 1$.

LEMMA 2. For any natural number $n \geq 3$ we have $2^n > n + 2$.

Proof of Lemma 1.

We set as the induction basis the case n=1 (it is clear that $2^3||8$ holds).

Now let's suppose that LEMMA 1 is true for some $n \ge 1$ and we'll prove that it is true for n + 1. We notice that we have

$$3^{2^{n+1}} - 1 = (3^{2^n})^2 - 1^2 = (3^{2^n} - 1)(3^{2^n} + 1).$$

From the induction hypothesis we know that $2^{n+2}||3^{2^n}-1$. But $n+2 \ge 3$, so $4|2^{n+2}$. Therefore $4|3^{2^n}-1$. As a consequence we get that 4 does not divide $3^{2^n}+1$, so, by combining this with the fact that $3^{2^n}+1$ is even, we have $2||3^{2^n}+1$. Using the property mentioned at the beginning, we get $2^{n+3}||(3^{2^n}-1)(3^{2^n}+1)=3^{2^{n+1}}-1$, which completes the induction step, so LEMMA 1 is fully proven.

Proof of Lemma 2.

Again, the proof will be by induction over n. The base case, n = 3, is trivial, since 8 > 3.

Now let's suppose that LEMMA 2 is true for some $n \ge 3$ and we'll prove that it is true for n+1. We have $2^{n+1} = 2 \cdot 2^n > 2 \cdot (n+2) = 2n+4 > n+3$, which completes the induction step and the short proof of LEMMA 2.

We rewrite the equation as

$$2^{x}y = (3-1)(3^{x-1} + 3^{x-2} + \dots + 3 + 1)$$

= $2(3^{x-1} + 3^{x-2} + \dots + 3 + 1).$

1

Now let $n, \alpha \in \mathbb{N} \cup \{0\}$ such that $x = 2^n \alpha$, with α odd.

Case 1. n=0, i.e. x is odd

Since $S = 3^{x-1} + 3^{x-2} + \ldots + 3 + 1$ is a sum of x odd terms and x is also odd, it follows that S is odd. Therefore $2||2^xy$, so x is at most 1. But we know that x is positive (≥ 1) , so x = 1, which implies y = 1. Hence (x, y) = (1, 1) is a solution of the equation.

Case 2. $n \ge 1$, i.e. x is even

In this case the equation becomes

$$2^{2^{n}\alpha}y = \left(3^{2^{n}}\right)^{\alpha} - 1^{\alpha} = \left(3^{2^{n}} - 1\right)\left(\left(3^{2^{n}}\right)^{\alpha - 1} + \left(3^{2^{n}}\right)^{\alpha - 2} + \ldots + \left(3^{2^{n}}\right)^{1} + \left(3^{2^{n}}\right)^{0}\right).$$

Since $T = (3^{2^n})^{\alpha-1} + (3^{2^n})^{\alpha-2} + \ldots + (3^{2^n})^1 + (3^{2^n})^0$ is a sum of α odd terms and α is also odd, it follows that T is odd. Combine this with what we know from LEMMA 1, i.e. $2^{n+2}||3^{2^n}-1$, to obtain $2^{n+2}||RHS$. Let $t \in \mathbb{N}$ s.t. $2^t||2^{2^n\alpha}y$. For equality to take place we must have t=n+2. Furthermore, it is obvious that $t \geq 2^n\alpha$.

If $n \ge 3$, using LEMMA 2, we get $t \ge 2^n \alpha \ge 2^n > n+2$, so in this case we can't have equality.

If n=2 we must have t=4. But $t\geq 4\alpha \geq 4$, so it is imperative to have $\alpha=1$. Therefore $x=2^n\alpha=4$, which implies y=5.

If n=1 we must have t=3. But $t\geq 2\alpha$, so any $\alpha>1$ won't do. Therefore $\alpha=1$ and $x=2^n\alpha=2$, which implies y=2.

In conclusion, the solutions of the equation are (1,1), (2,2) and (4,5).