Tian Qiu

IE 336

HW 10

1.

The SAS System

Ons	arrivar	sei vice
1	14.72	25.23
2	16.39	12.68
3	2.58	30.18
4	0.96	55.07
5	0.51	16.16
6	0.66	17.90
7	8.07	32.59
8	0.40	20.83
9	91.70	37.62
10	0.60	61.90
11	2.10	26.54
12	1.11	35.62
13	45.32	17.34
14	1.18	22.44
15	71.51	51.06
16	0.86	35.40
17	42.66	38.29
18	74.55	20.86
19	12.47	22.16
20	15.99	13.87
21	27.66	29.20

Obs arrival service

- 1.56 27.29
- 15.02 30.54
- 24.86 41.23
- 18.67 24.60
- 14.42 33.58
- 2.38 28.29
- 22.50 53.61
- 23.69 20.82
- 19.86 40.10
- 28.02 37.41
- 1.61 26.45
- 1.80 29.77
- 14.67 33.74
- 10.47 43.28
- 39.57 20.92
- 42.45 73.82
- 32.96 31.37
- 0.55 32.03
- 20.02 40.30
- 25.99 25.40
- 5.18 29.97
- 11.82 18.65
- 0.60 34.58
- 34.80 22.95
- 20.66 33.06
- 5.18 31.73
- 25.99 30.74
- 5.31 23.54
- 0.80 31.53

(a) Arrival: Mean = 18.0682 Service: Mean = 31.4848

Variable: arrival

Moments

N	50	Sum Weights	50		
Mean	18.0682	Sum Observations	903.41		
Std Deviation	20.4175146	Variance	416.874901		
Skewness	1.77966511	Kurtosis	3.55821467		
Uncorrected SS	36749.8627	Corrected SS	20426.8701		
Coeff Variation	113.002483	Std Error Mean	2.8874726		
Madalasaandaa					

Variable: service

Moments

N	50	Sum Weights	50
Mean	31.4848	Sum Observations	1574.24
Std Deviation	12.0596491	Variance	145.435136
Skewness	1.31485198	Kurtosis	2.55292012
Uncorrected SS	56690.9532	Corrected SS	7126.32165
Coeff Variation	38.303083	Std Error Mean	1.70549193

(b)

(c)

(d) The distribution of arrival looks exponential while the distribution of service looks not that exponential bu slightly normal. My conclusion is that it is because the time of arrival depends on how people flow but the time of service depends on the server.

(b) The same as 2.

(c) Poisson Random:

Real data:

(d) They are not quite similar. It is not enough to say poisson is a good model to simulate the queue theory. I would say we need more test case like 500 people to test this model.