

6.896 3/3/64 Computing clock period L8.Z 1. Let Go be subgraph of G with only O-wf edges. Go is acyclic (by WZ) z. Topologically sort vertices of Go 3. Scan through vertices in topo sort order, a. If no incoming edge to v, set D(v) = d(v) b otherwise, $\Delta(v) = d(v) + \max_{u \to v \text{ in Go}} \{\Delta(u)\}$ 4. O(6) = max D(V) «Longost path in acyclic graph» VEV 3 42 topo sort # Ex, (3/3) Z D(V) Running time: O(V+E) = O(E) if G connected Refining to minimize clock poriod Recall: For path-4 my v w(p) = w(p) - r(u) + r(v) What paths might realize Q(Gr)? W(p)=4, d(p,)=33 w(p2) 3, d(p2)=17 W(p3)= 3, d(p3)=263 Ketiming reweights each path from u tov by same amount. · Ignore p., since w_r(p.) ≥ 1 y legal retimings. · Ignore p., since w_r(p_r)=0 => w_r(p_r)=0 and d(p_r)> d(p_r)

	6.896
	3/3/64
Define W(u,v) = min {w(p): u mor v3.	48.3
unovisa critical path if w(p) = W(u, u).	
Define D(u, v) = max {d(p): u mov and w(p)	=W(u,v)
Lemmal. For any c>0, O(G) = c iff whene D(u,v)>c, we have W(u,v)>1.	ver
Duy > ine have w(u, v) >1	
Proof (=) Sup. O(G) St. and let 4, VEV 4	D(u,v)>c
Proof. (=>) Sup. O(G) & c, and let u, v & V & Thus, 3 u ~ sv \$ d(p) > C and w(p) = w(u Must have w(u, v) > 1, or else p would be O-wt path with d(p) > c. Contradiction	1, 1).
Must have $w(u,v) \ge 1$, or else o would be	ate
6-wt path with d(b) > c. Contradiction	
(Sup. Yu, veV, D(u, v) > c => W(u, v) >	
(\Leftarrow) Sup. $\forall u, v \in V$, $D(u, v) > c \Rightarrow W(u, v) > c$ Let $u \xrightarrow{\epsilon} v \to e \circ w \to path$. Then, $W(u, v)$ which implies $d(p) \leq D(u, v) \leq c$.	$y = \omega(p) = 0$
which implies d(p) < D(y, v) & C X	
Computing W and D	
1. Create graph with edge weights of usv	
of (w(e), -d(u))	
2 All-paixs sh. paths ((Floyd-Washall O(V3))	
1. Create graph with edge weights of usv of (we), -d(u) 2 All-paixs sh. paths (Floyd-Washall O(V3). Johnson + Fibheaps O(VE + V2 GV)
3. For weight $\langle x, y \rangle$ betw. u and v , $W(u,v) = x$ D(u,v) = d(v) - y	7
$W(u,v) = \times$	
D(u,v) = d(v) - v	