5.6.1. Эффект Мёссбауэра

Стренадко Виктория

Цель работы: С помощью метода доплеровского сдвига мессбауэровской линии поглощения исследовать резонансное поглощение γ —лучей, испускаемых ядрами олова ^{119}Sn в соединении $BaSnO_3$ при комнатной температуре. Необходимо определить положение максимума резонансного поглощения, его величину, а также экспериментальную ширину линии $\Gamma_{\rm экc}$, оценить время жизни возбужденного состояния ядра ^{119}Sn .

Теоретическая часть

Нуклоны в атомном ядре могут находиться на различных дискретных энергетических уровнях. Самый нижний из уровней называется основным, остальные называются возбужденными. Ядра, находящиеся в возбужденном состоянии, могут переходить на более низкие энергетические уровни. Так возникает γ —излучение.

Отложим по оси абцисс энергию ядра, а по оси ординат — вероятность найти ядро в состоянии с данной энергией. Ширина кривой, измеренная на половине высоты, называется естественной шириной линии Γ . Она связана со средним временем жизни τ соотношением еопределенностей.

$$\Gamma \tau \simeq \hbar \tag{1}$$

Ядро, которое испускает γ —квант, приобретает импульс отдачи, равный по абсолютной величине импульсу γ —кванта. Если ядро свободно и первоначально покоится, то энергия отдачи равна

$$R = \frac{p^2}{M_{core}} = \frac{E_{\gamma}^2}{2M_{core}c^2} \simeq \frac{E_0^2}{2M_{core}c^2} = 2.5 \cdot 10^{-3} \text{ pB}$$
 (2)

Резонансное поглощение возможно, когда

$$2R \le \Gamma \tag{3}$$

Вероятность эффекта Мёссбауэра определяется выражением

$$f = \exp(-4\pi^2(u^2)/\lambda^2) \tag{4}$$

где (u^2) — среднеквадратичное смещение ядер в процессе тепловых колебаний решетки. Испускание и поглощение γ -квантов в твердых телах без рождения фононов носит название эффекта Мёссбауэра.

Интенсивность проходящего через поглотитель излучения уменьшается как

$$exp(-n_e\sigma_e)exp[-nf\sigma(E)] \tag{5}$$

Случай резонансного поглощения имеет лоренцовскую форму кривой:

$$\sigma(E) \propto \frac{(\frac{\Gamma}{2})^2}{(E - E_0)^2 + (\frac{\Gamma}{2})^2} \tag{6}$$

Величина амплитуды эыыекта определяется

$$\varepsilon(v) = \frac{N(\inf) - N(v)}{N(\inf) - N_{ch}} \tag{7}$$

Экспериментальная установка

Рис. 4. Блок-схема установки для наблюдения эффекта Мессбауэра: Э — эксцентрик, С — сцинтилляционный кристалл NaI(Tl), У — усилитель, АА — одноканальный амплитудный анализатор, ЭВМ — персональный компьютер, Γ — генератор для питания двигателя, РД-09 — двигатель с редуктором, ВСВ — высоковольтный стабилизированный выпрямитель

Ход работы:

- 1. Включили установку
- 2. Измерение спектра источника

Number	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Low_level	0	0,5	1	1,5	2	2,5	3	3,5	4	4,5	5	5,5	6	6,5	7	7,5	8	8,5	9	9,5
Intensity	0	47	6,6	9,4	27	30	31	36	53,6	52,8	6,6	91,2	92,8	57,4	39	17	5	6,2	2,6	3

3. Измерение резонансного поглощения

образец1	частота	U-	I-	U+	l+	Фон = 6,2	образец2	частота	U-	 -	U+	+	Фон=9,9
1	0	0	407,3	0	407,6		1	0	0	260,6	0	260,6	
2	146	5,96	345,1	4,87	362,2		2	148	6,01	224,1	4,92	223,3	
3	133	5,52	345,4	4,53	372,9		3	134	5,58	230,1	4,6	228,4	
4	122	5,14	346,5	4,19	370,7		4	120	4,97	229,7	4,1	232,8	
5	108	4,53	350	3,66	362,1		5	108	,		,		
6	96	3,92	355,4	3,17	348,6		6		.,		,		
7	86	3,45	347,7	2,81	351,2		7	88	,		,		
8	72	2,67	353	2,19	339,7		/		,				
9	63	1,91	346,1	1,58	363,6		8	82	3,24	229,4	2,68	193,7	
10	55	1,84			,		9	73	2,67	225,9	2,24	198,9	
11	77	2,81					10	62	1,9	221,8	1,58	217,5	
12	69	2,48	380,7	2,03	369		11	55	1,84	227,3	1,54	221,2	

образец3	частота	U-	 -	U+	+	Фон=6	образец4	частота	U-	I-	U+	+	Фон=5,75
1	0	0	68,2	0	68,2		1	. 0	0	465,4	. 0	465,4	
2	147	5,97	72,2	4,96	70,1		2	153	6,12	688,8	5,08	709,9	
3	136	,					3	143	5,07	700,9	4,81	706,7	
		- ,					- 4	130	5,41	701,2	4,44	721,9	
4	124	5,13	78,1	4,27	69		5	120	4,97	673	4,09	708	
5	114	4,75	71,1	3,88	64,9		6	107	4,44	695,9	3,67	713	
6	106	4,42	60,7	3,58	66		7	94	3,84	821,2	3,17	719,8	
7	95	3,9	64,8	3,25	62,6		8	85	3,27	727,3	2,75	806,7	
8	86	,					9	70	2,45	684,8	2,01	706,9	
							10	59	1,86	664	1,53	690,8	
9	75	2,76	66,8	2,26	49,6		11	. 52	1,86	655,3	1,53	691,3	MIN
10	60	1,85	65,8	1,52	67,9		12						
11	66	2,28	67,1	1,88	56,7		13	3 22	0,66	566,3	0,56	593,7	

Рис. 1: 1 образец

Рис. 2: 2 образец

Полученные данные для 2 образца дают ширину $2\Gamma_{\text{эксп}} = (6.02 \cdot 10^{-8})$ эВ, а химический сдвиг $\Delta E_{\text{хим}} \simeq 19.8 \cdot 10^{-8}$ эВ, $\varepsilon(v_p) = 0.184\%$.

Рис. 3: 3 образец

Полученные данные для 3 образца дают ширину $2\Gamma_{\text{эксп}}=7.63\cdot 10^{-8}$ эВ, а химический сдвиг $\Delta E_{\text{хим}}\simeq 19.61\cdot 10^{-8}$ эВ, $\varepsilon(v_p)=0.395\%$.

Полученные данные для 4 образца дают ширину $2\Gamma_{\text{эксп}} = 15.07 \cdot 10^{-8}$ эВ, а химический сдвиг $\Delta E_{\text{хим}} \simeq -1.82 \cdot 10^{-8}$ эВ, $\varepsilon(v_p) = 0.313\%$.

Рис. 4: 4 образец

Вывод:

Эффект резонансного поглощения γ -квантов может применяться для исследования структур, содержащих определенные изотопы. Так как мссбауэровская линия очень узка, то для того, чтобы резонанас нарушился, необходима маленькая скорость.

Уширение наблюдаемой линии может быть связано с большой толщиной поглотителя, которая сильно влияет на поведение крыльев кривой. Также существенный вклад в ширину линии вносит доплеровское смещение, которое могло возникнуть из-за вибраций поглотителя.