

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

09-138343

(43) Date of publication of application: 27.05.1997

(51)Int.CI.

G02B 13/00

G02B 13/18

(21)Application number: 07-319546

(71)Applicant: MARK:KK

(22)Date of filing:

14.11.1995

(72)Inventor: FUJIOKA IWATATSU

(54) OBJECTIVE LENS SYSTEM FOR DISK SUBSTRATE VARIABLE IN THICKNESS

(57)Abstract:

PROBLEM TO BE SOLVED: To provide an objective lens system which is capable of dealing with continuous variation in the thickness of a disk substrate in recording and reproducing of an optical information medium of a large density and large capacity and has good performance in spite of extremely simple constitution with a smaller number of elements.

SOLUTION: A positive single lens, a positive objective lens and the disk substrate are arranged successively from the light source side. The positive single lens described above is moved on the optical axis, by which the aberrations occurring in the change in the thickness of the disk substrate are improved in case of an increase in such aberrations. The objective lens is focused by slightly moving the lens on the optical axis with respect to the moving of the image point position by the change in the thickness of the disk substrate. The positive single lens is composed of two elements of the positive lenses.

LEGAL STATUS

[Date of request for examination]

15.07.1997

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3014311

[Date of registration]

17.12.1999

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開平9-138343

(43)公開日 平成9年(1997)5月27日

(51) Int. Cl. 6

識別記号

庁内整理番号

FΙ

技術表示箇所

G02B 13/00

13/18

G02B 13/00 13/18

審査請求 未請求 請求項の数5 FD (全21頁)

(21)出願番号

特願平7-319546

(22)出願日

平成7年(1995)11月14日

(71)出願人 591183418

株式会社マーク

東京都中野区江古田1丁目38番6号

(72)発明者 藤陵 嚴達

東京都東久留米市滝山5丁目15番17号

(74)代理人 弁理士 井ノロ 寮

(54) 【発明の名称】ディスク基板厚み可変の対物レンズ系

(57) 【要約】

【課題】 構成枚数も少なく、極めて簡単な構成にもかかわらず、高密度大容量の光情報媒体の記録,再生においてディスク基板の厚みの連続可変に対応でき、性能の良好な対物レンズ系を提供する。

【解決手段】 光源側より順次に正の単レンズ,正の対物レンズおよびディスク基板が配置され、ディスク基板の厚みの変化に起因する収差の増大に対しては上記の正の単レンズを光軸上で移動することにより収差を良好とし、ディスク基板厚みの変化による像点位置の移動には対物レンズを光軸上で微少移動することにより合焦する。なお、上記正の単レンズは2枚の正レンズで構成することもできる。

【特許請求の範囲】

【請求項1】 光源側より順次に正の単レンズ,正の対 物レンズおよびディスク基板が配置され、ディスク基板 の厚みの変化に起因する収差の増大に対しては上記正の 単レンズを光軸上で移動することにより収差を良好と し、ディスク基板の厚みの変化による像点位置の移動に は対物レンズを光軸上で微少量移動することにより合焦 することを特徴とするディスク基板厚み可変の対物レン ズ系。

【請求項2】 請求項1に記載の対物レンズ系におい て、ディスク基板の厚みが増加するときは、正の単レン ズを光源側に近づける方向に移動させ、ディスク基板の 厚みが減少するときは正の単レンズを像側に近づける方 向に移動することを特徴とするディスク基板厚み可変の 対物レンズ系。

【請求項3】 請求項1または2に記載の対物レンズ系 において、正の単レンズの焦点距離をfc, 対物レンズ の焦点距離を f_x , 正の単レンズの像側の曲率半径を r , とするとき、

$$f_c > 5 f_1 \qquad \cdots \qquad (1)$$
 $r_1 < 0 \qquad \cdots \qquad (2)$

なる条件を満足することを特徴とするディスク基板厚み 可変の対物レンズ系。

【請求項4】 請求項1乃至3のいずれかに記載の対物 レンズ系において、対物レンズは収差補正の基準となる 特定ディスク基板厚との組合せにおいて、無限遠物体か らの平行光束に対して収差を良好とするもののほか、有 限距離物体からの発散光束に対して収差を良好とするも の、および対物レンズの像側方向の物体に向かう収斂光 束(超無限遠光束)に対して収差を良好とするもののい 30 ずれでも良いことを特徴とするディスク基板厚み可変の 対物レンズ系。

【請求項5】 請求項1乃至4のいずれかに記載の対物 レンズ系において、正の単レンズを2枚の正レンズで構 成し、この合成レンズの焦点距離をfct,球面の曲率半 径を光源側より順次に r, r, r, r, 、対物レ ンズの焦点距離を f』とするとき、

$$f_{t\tau} > 4 f_{II}$$
 (3)
 $r_{I} < 0, r_{I} < 0$ (4)

なる関係を保つことを特徴とするディスク基板厚み可変 40 の対物レンズ系。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、大容量の光情報媒 体の記録、再生に適した対物レンズ系に関する。

[0002]

【従来の技術】高密度,大容量の光情報媒体の記録,再 生には対物レンズのNAを大きくすることが有効である が、このときレンズの光軸の傾きにより収差発生量が増

することが有利である。以上の理由で近年ディスク基板 の厚みを薄くすることが試みられている。一方、現在普 及しているコンパクトディスク (CD) は、ディスク基 板の厚みは1.2mmと厚い。この現在のコンパクトデ ィスクと高密度光ディスク(SD)の両方を記録、再生 できる光ディスク装置が必要となった。しかるに、ディ スクの基板厚みが変化すると球面収差が著しく変化する ため、コンパクトディスク(CD)と高密度光ディスク (SD) の両方を1つの対物レンズ系で満足することは 10 不可能であった。

【0003】最近対物レンズにホログラムレンズを付加 することにより、多焦点を得る方法として特開平7-1 98909号公報、特開平7-98431号公報等があ るが、回折による光量低下の欠点を逃れることはできな い。また、特開平7-153110号公報にはコリメー タレンズと対物レンズの間に負の非球面をもつ補正板を 挿入することにより、ディスク基板の厚みの変更に対処 する方法が開示されているが、ディスク基板厚みが異な る数だけそれに対応した補正板が必要であり、その出し 20 入れの機構も複雑となる。また、ディスク基板と対物レ ンズのセットを交換する方法も行われているようである が、ディスク基板の厚みが異なる数だけ対物レンズとの セットが必要であり、経済性および機構の複雑さは免れ ない。

[0004]

【発明が解決しようとする課題】本発明は簡単な機構に より異なった多数のディスク基板厚みに対応し、光量の 損失もなく、しかも良好な性能が得られる方法を提供す るものである。

[0005]

【課題を解決するための手段】大容量の光情報媒体の記 録、再生にはレーザ光源からの発散光をコリメータレン ズで無限遠からの平行光束に変換し、対物レンズで結像 させるのが一般的であるが、本発明はコリメータレンズ をも廃止し、しかもディスク基板の厚みの変化により増 大する収差をも除去し、多数のディスク基板の厚みにも 充分良好な性能が得られる光学系を、極めて簡単な構成 で得られるものである。すなわち、本発明は光源側より 順次に光軸上、正の単レンズ、対物レンズ、ディスク基 板が配置され、ディスク基板の厚みの変化に対しては、 上記正の単レンズを光軸上で移動することにより収差を 良好とするものである。

【0006】本発明のディスク基板の厚みの変化に対 し、収差補正が良好にできる理由を以下に説明する。こ こでディスク基板の厚みの変化は対物レンズの球面収差 を著しく変化させることは当業界では衆知であることを

(説明1) 正の対物レンズの球面収差は入射する光の物 体距離によって変化する。無限遠物体に対する球面収差 大する。これを防ぐには光ディスクの基板の厚みを薄く 50 に対し、物体が有限距離で正の対物レンズに近づくほ

ど、補正不足の球面収差が増大する。すなわち、球面収 差の近点変化であり、この逆の超無限遠光束に対しても 成り立つ。

(説明2) 光源である有限距離物点からの発散光束が入 射する正の単レンズに対して補正不足の球面収差が発生 する。その量は正の単レンズの光源側と像側の屈折力の 分担度により若干差異が生ずる。

【0007】以上のことを総合、考察、集大成すること により本発明が生じたものである。大容量の光情報媒体 の記録,再生のためには、対物レンズは高NAとし、デ 10 ィスク基板の厚みは小さい値を特定し、この組合せのも とに収差を極限まで除去する。この場合、対物レンズに 入射する光束は無限遠物体からの平行光束、有限距離物 体からの発散光束、および対物レンズの像側方向の物体 に向かう収斂光束(超無限遠光束)のいずれでも良い。

【0008】次に本発明の光学系におけるレンズ配置に ついて図1を参照しながら説明する。対物レンズが前記 の特定のディスク基板厚みと組合わされている場合は、 光源である物点からの発散光束が正の単レンズによって 作られる像点は対物レンズの設計時に用いられた入射光 20 束の近傍に得られるように正の単レンズの焦点距離およ び光源との距離を設定する。簡単のために対物レンズと 特定ディスク基板厚みとの組合せが無限遠物体からの平 行光束に対して収差が補正されている場合について述べ

【0009】(a) ディスク基板厚みが特定値の場合 正の単レンズの前側焦点位置よりも光源が若干外側にな るように配置する。これは正の単レンズの補正不足の球 面収差を考慮するからである(前記説明2)。

(b) ディスク基板厚みが特定値より厚い場合 球面収差が補正過剰となる。正の単レンズによる光源の 像点が対物レンズに対し有限距離物点からの発散光束と なるように正の単レンズを動かせば収差が良好となる

(前記説明1)。すなわち、正の単レンズを光源側に近 づけ、その分だけ対物レンズとの間隔を拡げる。この場 合も前記説明2による正の単レンズによる球面収差も補 正の対象となる。

(c) ディスク基板厚みが特定値より薄い場合 球面収差が補正不足となる。正の単レンズによる光源の 像点が対物レンズの像側方向の点に向かう収斂光束(超 40 無限遠光束)となるように正の単レンズを移動すれば収 差が良好となる(前記説明1)。すなわち、正の単レン ズを光源から遠ざけ、その分だけ対物レンズとの間隔を 狭める。この場合も前記説明2による正の単レンズによ る球面収差も補正の対象となる。

【0010】以上(a), (b), (c) の方法は対物レンズ と特定ディスク基板厚みとの組合せの設計基準の物体距 離が有限距離物体からの発散光束の場合および対物レン ズの像側方向の物体に向かう収斂光束 (超無限遠光束) に対して行われた場合においても成り立つ。これまでに 50 ンズで構成したときの条件式である。正の単レンズを上

述べた方法により高密度、大容量、高NAにおいて、デ ィスク基板厚みの変化に対しても球面収差は極めて良好 に補正することができるが、コマ収差には若干の影響も あり、トラッキング等で対物レンズの光軸と直角方向の 移動(シフト)による性能の悪化にも考慮する必要があ るため、高NA(SD)においてはディスク基板の厚さ の変化は特定値の20%以内が望ましい。例えば、NA = 0. 6でディスク基板の特定厚さが 0. 6 mmのとき は、±0.12mm位に止めるのが良い。

【0011】次にコンパクトディスク(CD)用として 用いるときは使用波長が780nmと長く、NA=0. 45が現状である。高密度光ディスク(SD)における 波長は650 nm, 635 nm等であるから、これらの 波長を使用した場合、コンパクトディスク(CD)に必 要なNAは

使用波長650nmのとき

 $NA_{co} = 0.45 \cdot (650/780) = 0.375$ 使用波長635nmのとき

 $NA_{c_0} = 0.45 \cdot (635/780) = 0.366$ で良いことになり、ディスク基板厚みが0.6mmから 1. 2 mmと大きく変化しても充分高性能の結果が得ら れる。そのためには正の単レンズと対物レンズとの間に 絞りを挿入すると良い。なお、ディスク基板の厚みの変 化に対する全系像点位置の変化に対しては対物レンズの 微少移動により行う。

【0012】次に条件式(1)について説明する。本発 明においてはコリメータレンズを廃止しているため、正 の単レンズがコリメータレンズの働きも併せもってい る。条件式1は正の単レンズの焦点距離と対物レンズの 焦点距離との間の関係を定めるものである。正の単レン ズの焦点距離をfc、NAをNA。、対物レンズの焦点 距離をfェ、NAをNA。とすれば、双方に収差がない 場合は、

 $f_c / f_M = NA_M / NA_c$ $\cdot \cdot \cdot (5)$ なる関係が成り立つ。すなわち、対物レンズがNA。= 0. 6 の場合、正の単レンズのNA。 は条件式 (1) か らNA。 < 0. 12となり、光源側のNAの負担が過大 となるのを防ぐものである。

【0013】条件式(2)は正の単レンズと対物レンズ との相互偏心による性能低下を防ぐためのものである。 トラッキング等により対物レンズを光軸と直角方向に移 動(シフト)する場合、正の単レンズも同時にシフトで きれば問題はないが、機構の複雑化を防ぐために対物レ ンズのみをシフトするときは偏心による性能低下が生ず る。この量は正の単レンズの光源側と像側の屈折力の分 担度により変化する。像側の屈折力分担が少なくなると きは対物レンズのシフトによる性能低下が多くなる。条 件式(2)の範囲を超えるときはこの傾向が増大する。 【0014】条件式(3)は正の単レンズを2枚の正レ

記の2枚の構成とすることにより、光源側のNAの増大による光量の増加が可能となる。この2枚構成としたときの可動レンズのNAをNA $_{c_1}$ とすれば対物レンズのNA $_{u}=0$.6のとき、前記の式(5)よりNA $_{c_1}$ <0.15の範囲で光源側のNAも増大することができる。

【0015】条件式(4)は正の単レンズを2枚の正レンズで構成したときの可動レンズと対物レンズの相互偏心による性能低下を防ぐためのものである。2枚のレンズ共、像側の面の正の屈折力が弱くなると対物レンズのシフトによる性能低下が多くなる。条件式(4)の範囲10を超えるときはこの傾向が増大する。なお、本発明対物レンズ系の正の単レンズまたはこれを2枚の正レンズで構成し、ディスク基板厚みの変化に際し、移動する上記可動レンズに非球面を採用し、光源側のNAの増大や性能の向上を図ることは本発明の条件範囲を逸脱するものではない。ただし、トラッキング等により対物レンズのみがシフトする場合には可動レンズと対物レンズのみがシフトする場合には可動レンズと対物レンズの相互偏心による性能維持への配慮が必要である。

[0016]

【発明の実施の形態】次に本発明のディスク基板厚み可 20 変の対物レンズ系の実施例1から実施例8までを第1表から第8表に示す。表中の記号は次の通りである。

【0017】 r₁: 順次に球面の曲率半径または非球面 の頂点曲率半径

 d_1 : 順次にレンズの光軸上の厚みまたは空気間隔 n_1 : 順次にレンズの材質の波長 6.50 n mにおける屈 折率

t:ディスク基板の光軸上の厚み

nb :ディスク基板の材質の波長650nmにおける屈

折率

WD:作動距離

L1:第1レンズから光源までの光軸上の距離

f :全系の焦点距離

f: :正の単レンズの焦点距離

fc7:正の単レンズが2枚構成となったときの焦点距離

f』:対物レンズの焦点距離

NA:全系のNA

NA』:対物レンズのNA

NA_c:光源側のNA

0 L₁₁ :対物レンズの設計に用いた物体距離(有限距離

物体からの発散光束が入射するとき (-))

非球面の形状の式は、

x:非球面上の点のレンズ面頂点における接平面からの 距離

h:光軸からの高さ

C:非球面頂点の曲率 (C=1/r)

K:円錐定数 A₁₁:非球面係数

とするとき

【式1】

$$X = \frac{Ch^{2}}{1 + \sqrt{1 - (1 + K) C^{2} h^{2}}} + \sum_{i=2}^{n} A_{2i} h^{2i}$$

で表される。なお、ディスク基板厚さ t=0. 6 のときの対物レンズの有効径を t=0. 5 および t=0. 7 にも使用し t=1. 2 のときは絞り(対物レンズの手前2 の位置)により計算を行った。

(以下、余白とする。)

30 【表1】

実施例 1

$$f_c = 30. \ 196 \quad f_M = 4. \ 5 \quad NA_M = 0. \ 6 \quad L_{1M} = \infty$$
 $r_1 = \infty$
 $r_2 = -25. \ 0$
 $r_3 = 2. \ 75$
 $r_4 = -6. \ 931$
 $r_5 = \infty$
 $t = \overline{9}$
 $t = \overline{9}$
 $t = \overline{9}$
 $t = \overline{9}$
 $t = \overline{9}$

t L d z f NA NAc	0. 5 -32. 02 2. 65 4. 346 0. 605 0. 082	0.6 -29.67 5.0 4.699 0.600	0. 7 -27. 81 6. 86 5. 022 0. 596	0. 375
WAc	0. 082	0. 088	0. 092	0. 067
WD	2. 162	2. 145	2. 124	1. 967

非球面係数

非球面	To T4	
K A4 A8 A10 A12 A14 A16 A16	-8. 77156×10-1 2. 10680×10-3 4. 69606×10-5 7. 99174×10-7 1. 73782×10-7 7. 84965×10-8 -4. 89508×10-11 -1. 93707×10-10 -6. 59082×10-11	-3. 00545×10 7. 02580×10-4 4. 60027×10-5 -7. 3325810-8 -1. 96496×10-8 -3. 67224×10-7 -2. 62505×10-8 8. 38902×10-9 9. 39881×10-10

 $f_{c} / f_{M} = 6.710$

【表2】

実施例2

$$f_c = 30.174$$
 $f_N = 4.5$ $NA_N = 0.6$ $L_{1M} = \infty$
 $r_1 = 100.0$ $d_1 = 2.0$ $n_1 = 1.82793$
 $r_2 = -33.0$ $d_2 = 可变$ $r_4 = -6.931$ $WD = 可变$ $r_5 = \infty$ $t = 可变$ $n_6 = 1.57747$

非球面係数

非球面	f g	r 4
K A ₄ A ₆ A ₁₀ A ₁₂ A ₁₄ A ₁₆	-8. 77156×10 ⁻¹ 2. 10680×10 ⁻⁸ 4. 69606×10 ⁻⁸ 7. 99174×10 ⁻⁷ 1. 73782×10 ⁻⁷ 7. 84965×10 ⁻⁸ -4. 89508×10 ⁻¹¹ -1. 93707×10 ⁻¹⁹ -6. 59082×10 ⁻¹¹	-3. 00545×10 7. 02580×10-4 4. 60027×10-5 -7. 33258×10-8 -1. 96496×10-8 -3. 67224×10-7 -2. 62505×10-8 8. 38902×10-9 9. 39881×10-10

 $f_c / f_M = 6.705$

11

実施例3

 $f_c = 30.472$ $f_M = 4.5$ $NA_M = 0.6$ $L_{1M} = \infty$ $r_1 = 50.0$ $d_1 = 2.0$ $n_1 = 1.82793$ $d_2 = 可変$ $d_3 = 3.6$ $n_2 = 1.49936$ WD = 可変 $t = \pi$

按积面保款

非球面	T s	Γ.
K A4 A6 A10 A12 A14 A15 A18	-8. 77156×10 ⁻¹ 2. 10680×10 ⁻⁸ 4. 69606×10 ⁻⁵ 7. 99174×10 ⁻⁷ 1. 73782×10 ⁻⁷ 7. 84965×10 ⁻⁹ -4. 89508×10 ⁻¹¹ -1. 93707×10 ⁻¹⁶ -6. 59082×10 ⁻¹¹	-3. 00545×10 7. 02580×10-4 4. 60027×10-5 -7. 33258×10-6 -1. 96496×10-8 -3. 67224×10-7 -2. 62505×10-8 8. 38902×10-8 9. 39881×10-10

 $f_c / f_M = 6.772$

【表4】

実施例 4

 $f_c = 30.174$ $f_M = 4.5$ $NA_M = 0.6$ $L_{IM} = \infty$ $r_1 = 33.0$ $d_1 = 2.0$ $n_1 = 1.82793$ $d_2 = 可変$ $d_3 = 3.6$ $n_2 = 1.49936$ $m_3 = -6.931$ $m_4 = -6.931$ $m_5 = -6.931$ $m_6 = 1.57747$

非球面係数

非球面	T s	Г	
K A 6 A 8 A 10 A 12 A 14 A 16 A 18	-8. 77156×10 ⁻¹ 2. 10680×10 ⁻⁸ 4. 69606×10 ⁻⁵ 7. 99174×10 ⁻⁷ 1. 73782×10 ⁻⁷ 7. 84965×10 ⁻⁸ -4. 89508×10 ⁻¹¹ -1. 93707×10 ⁻¹⁰ -6. 59082×10 ⁻¹¹	-3. 00545×10 7. 02580×10-4 4. 60027×10-8 -7. 33258×10-8 -1. 96496×10-8 -3. 67224×10-9 -2. 62505×10-8 8. 38902×10-9 9. 39881×10-10	

 $f_c/f_x = 6.705$

実施例 5

$$f_c = 25.019$$
 $f_M = 4.5$ $NA_M = 0.6$ $L_{1M} = \infty$
 $r_1 = \infty$
 $r_2 = -22.8$
 $r_3 = -22.8$
 $r_4 = -6.931$
 $r_5 = \infty$
 $r_6 = \infty$

非球面係数

非球面	Гв	Γ4
K A4 A8 A10 A12 A14 A15 A18	-8. 77156×10 ⁻¹ 2. 10680×10 ⁻⁹ 4. 69606×10 ⁻⁵ 7. 99174×10 ⁻⁷ 1. 73782×10 ⁻⁷ 7. 84965×10 ⁻⁹ -4. 89508×10 ⁻¹¹ -1. 93707×10 ⁻¹⁰ -6. 59082×10 ⁻¹¹	-3. 00545×10 7. 02580×10-4 4. 60027×10-5 -7. 33258×10-5 -1. 96496×10-7 -3. 67224×10-7 -2. 62505×10-9 8. 38902×10-9 9. 39881×10-7

 $f_c / f_M = 5.560$

【表 6 】

実施例 6

$$f_c = 36.147$$
 $f_m = 4.3$ $NA_m = 0.6$ $L_{1m} = -300$ $r_1 = -360.0$ $n_1 = 1.82793$ $d_2 = 可变$ $r_4 = -5.702$ $d_6 = 3.7$ $n_2 = 1.49936$ $m_4 = 7.502$ $m_5 = 7.502$ $m_6 = 1.57747$

非球面係数

非城面	Γ.	Γd
K A4 A8 A10 A12 A14 A16 A1#	-7. 98962×10 ⁻¹ 1. 49179×10 ⁻³ 1. 91505×10 ⁻⁵ -1. 69235×10 ⁻⁶ -5. 72618×10 ⁻⁶ -3. 85959×10 ⁻⁹ -1. 41481×10 ⁻⁹ -4. 57411×10 ⁻¹⁰ -1. 12038×10 ⁻¹⁰	-2. 19588×10 3. 20305×10-4 -1. 75942×10-5 -1. 73427×10-5 -3. 39889×10-5 -3. 79829×10-7 2. 69263×10-6 1. 33962×10-5 7. 53364×10-11

 $f_c / f_M = 8.406$

【表7】

実施例?

$$f_c = 29.632$$
 $f_M = 4.5$ $NA_M = 0.6$ $L_{1M} = 300$ $r_1 = 93.0$ $d_1 = 2.0$ $n_1 = 1.82793$ $d_2 = 可変$ $r_3 = 2.8$ $d_4 = 3.3$ $n_2 = 1.49936$ $WD = 可変$ $r_5 = \infty$ $t = 可変$ $n_6 = 1.57747$

t	0.5	0. 6	0. 7	1. 2
L:	-35.79	-32. 87	-30. 64	-23. 59
d:	2.08	5. 0	7. 23	14. 28
f	4.295	4. 741	5. 149	7. 075
NA	0.606	0. 602	0. 598	0. 375
NAc	0.074	0. 081	0. 086	0. 064
NAc	0. 074	0. 081	0. 086	
WD	2. 288	2. 271	2. 250	

非球面係數

非球面	Гэ .	Γ4	
K A ₄ A ₆ A ₁₀ A ₁₂ A ₁₄ A ₁₈	-1. 08974 2. 88628×10 ⁻⁶ 3. 16847×10 ⁻⁶ -6. 03541×10 ⁻⁶ -5. 03967×10 ⁻⁷ -6. 87062×10 ⁻⁶ -6. 17509×10 ⁻⁶ -8. 18994×10 ⁻¹⁰ -2. 01841×10 ⁻¹⁰	-2. 35194×10 -6. 16199×10-4 -1. 32179×10-4 -2. 76214×10-5 -2. 33274×10-5 -1. 20936×10-7 4. 53476×10-8 1. 49463×10-8 -1. 93636×10-9	

 $f_c / f_M = 6.585$

【表8】

21

実施例8

$f_{c} = 22.7$	46 $f_M = 4.5$	$NA_{H}=0. 6 L_{1M}=\infty$
$r_1 = -150.0$ $r_2 = -25.0$	d ₁ = 1. 5	n ₁ = 1. 82793
$r_{s} = -100.0$ $r_{4} = -33.0$	$d_2 = 0. 1$ $d_3 = 1. 5$	n = 1. 82793
$r_{5} = 2.75$ $r_{8} = -6.931$	d 4 = 可変 d 5 = 3.6	n _s = 1. 49 ₉ 36
r ₇ = ∞ r ₆ = ∞	WD= 可変 t = 可変	n _b = 1. 57747
t 0. 5 L 2 2. 95 d 3. 73 f 4. 567 NA 0. 604 NAc 0. 112 WD 2. 162	5. 0 4. 841 0. 600 0. 117	0. 7 -20. 63 6. 05 5. 094 0. 596 0. 121 2. 122 1. 2 -17. 24 9. 44 6. 128 0. 375 0. 085 1. 962

非球面係数

非球面	T's	r.	
K A 4 A 6 A 10 A 12 A 14 A 18 A 18	-8. 77156×10 ⁻¹ 2. 10680×10 ⁻⁸ 4. 69606×10 ⁻⁸ 7. 99174×10 ⁻⁷ 1. 73782×10 ⁻⁷ 7. 84965×10 ⁻⁹ -4. 89508×10 ⁻¹¹ -1. 93707×10 ⁻¹⁸ -6. 59082×10 ⁻¹¹	-3. 00545×10 -7. 02580×10-4 4. 60027×10-5 -7. 33258×10-6 -1. 96496×10-8 -3. 67224×10-7 -2. 62505×10-8 8. 38902×10-8 9. 39881×10-10	

 $f_c / f_m = 5.055$

【0018】実施例1~5および実施例8における対物 レンズは共通で特定ディスク基板厚み 0.6 mmにおい 30 て無限遠物体 $(L_{ij} = \infty)$ に対し収差を良好としたもの で、この収差曲線を図2に示す。実施例1の収差曲線を 図3および図4に、実施例2の収差曲線を図5および図 6に、実施例3の収差曲線を図7および図8に、実施例 4の収差曲線を図9および図10に、実施例5の収差曲 線を図11および図12に示す。実施例6における対物 レンズは特定ディスク基板厚み0.6mmにおいて対物 レンズの第1面の手前300mmの有限物体からの発散 光束(L₁=-300)に対して収差を良好としたもの で、この収差曲線を図13に示し、全系の収差曲線を図 40 14および図15に示す。実施例7における対物レンズ は特定ディスク基板厚み0.6mmにおいて、対物レン ズの第1面より像側300mmにある物体に向かう収斂 光束(超無限遠光束) (L₁₁=300) に対して収差を 良好としたものでこの収差曲線を図16に示し、全系の 収差曲線を図17および図18に示す。実施例8は正の 単レンズを2枚の正レンズで構成したものでその構成断 面図を図19に示し、全系の収差曲線を図20および図 21に示す。いずれの実施例においてもディスク基板厚 みが変化しても良好な性能であることがわかる。

[0019]

【発明の効果】以上説明したように本発明によるディスク基板厚み可変の対物レンズ系は構成枚数も少なく、極めて簡単な機構にもかかわらず、高密度、大容量の光情報媒体の記録・再生においてディスク基板の厚みの連続可変にも充分対応でき、性能も良好となし得るものである。本発明はディスク基板厚みを変数としたズーム対物レンズ系とも考えることができ、多数のディスク基板厚みに対応でき、しかも回折による光量低下の欠点もない。

【図面の簡単な説明】

【図1】本発明のディスク基板厚み可変対物レンズ系の 実施例1の構成断面図である。

【図2】実施例 $1\sim5$ および実施例8において対物レンズのディスク基板厚み0. 6における収差曲線図である。

【図3】実施例1のディスク基板厚みが(a)は0.

6, (b)は1.2における収差曲線図である。

【図4】実施例1のディスク基板厚みが(a)は0. 5, (b)は0.7における収差曲線図である。

【図5】実施例2のディスク基板厚みが(a)は0.

50 6, (b) は1.2 における収差曲線図である。

【図6】実施例2のディスク基板厚みが(a)は0.

23

5, (b) は0.7における収差曲線図である。

【図7】実施例3のディスク基板厚みが(a)は0.

6, (b) は1.2 における収差曲線図である。

【図8】実施例3のディスク基板厚みが(a)は0.

5, (b) は0.7における収差曲線図である。

【図9】実施例4のディスク基板厚みが(a)は0.

6, (b) は1.2における収差曲線図である。

【図10】実施例4のディスク基板厚みが(a)は0.

5, (b)は0.7における収差曲線図である。

【図11】実施例5のディスク基板厚みが(a)は0.

6, (b)は1.2における収差曲線図である。

【図12】実施例5のディスク基板厚みが(a)は0.

5, (b)は0.7における収差曲線図である。

【図13】実施例6において対物レンズのディスク基板厚み0.6における収差曲線図である。

【図14】実施例6のディスク基板厚みが(a)は0.

6, (b) は1.2における収差曲線図である。

【図15】実施例6のディスク基板厚みが(a)は0.

5, (b) は0.7における収差曲線図である。

【図16】実施例7において対物レンズのディスク基板厚み0.6における収差曲線図である。

【図17】実施例7のディスク基板厚みが(a)は0.

6, (b) は1.2 における収差曲線図である。

【図18】実施例7のディスク基板厚みが(a)は0.

10 5, (b) は 0.7 における 収差曲線図である。

【図19】実施例8の構成断面図である。

【図20】実施例8のディスク基板厚みが(a)は0.

6, (b) は1.2における収差曲線図である。

【図21】実施例8のディスク基板厚みが(a)は0.

5, (b) は0.7における収差曲線図である。

[図1]

【図2】

対物ルズ LiM = 00

【図11】

【図12】

【図15】

【手続補正書】

【提出日】平成8年1月19日

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】0012

【補正方法】変更

【補正内容】

【0012】次に条件式(1)について説明する。本発明においてはコリメータレンズを廃止しているため、正の単レンズがコリメータレンズの働きも併せもっている。条件式(1)は正の単レンズの焦点距離と対物レン

ズの焦点距離との間の関係を定めるものである。正の単レンズの焦点距離を f_{ι} 、NAをNA $_{\iota}$ 、対物レンズの焦点距離を f_{ι} 、NAをNA $_{\iota}$ とすれば、双方に収差がない場合は、

 $f_c / f_w = NA_w / NA_c$ ・・・ (5) なる関係が成り立つ。すなわち、対物レンズが $NA_w = 0$. 6の場合、正の単レンズの NA_c は条件式 (1) から $NA_c < 0$. 12となり、光源側のNAの負担が過大となるのを防ぐものである。