Gewöhnliche Differentialgleichungen und Integration auf Mannigfaltigkeiten WS2018/19

Dozent: Prof. Dr. Friedemann Schuricht

28. Oktober 2018

In halts verzeichnis

VIII Integration auf Mannigfaltigkeiten			2
1	Mannigfaltigkeiten		2
	1.1	Relativ topologie auf Teilmengen $M\subset \mathbb{R}^n$	3
	1.2	Mannigfaltigkeiten	3

Vorwort

Kapitel VIII

$Integration\ auf\ Mannigfaltigkeiten$

1. Mannigfaltigkeiten

Definition

Sei $\varphi \in C^q(V,\mathbb{R}^n), \ V \subset \mathbb{R}^d$ offen, $q \geq 1.$ φ heißt <u>regulär</u> in $x \in V$, falls

$$\varphi'(x): \mathbb{R}^d \to \mathbb{R}^n \text{ regulär}$$
 (1)

Falls φ regulär $\forall x \in V$ heißt φ regulär auf V bzw. reguläre C^q -Parametrisierung (auch C^q -Immersion). V heißt Parameterbereich und $\varphi(V)$ Spur von V.

Gleichung (1) impliziert

$$d \le n \tag{2}$$

und sei in Kapitel VIII stehts erfüllt. Folglich:

Gleichung (1)
$$\Leftrightarrow$$
 rang $\underbrace{\varphi'(x)}_{n \times d\text{-Matrix}} = d$ (1')

■ Beispiel 1.1

- 1) Reguläre Kurve: $\varphi: I \subset \mathbb{R} \to \mathbb{R}^n$, I offen, $\varphi'(x) \neq 0$ ($\varphi'(x)$ ist der Tangentialvektor)
- 2) $\varphi:(0,2\pi)\to\mathbb{R}^2,\, \varphi(t):=(\cos kt,\sin kt)^\mathsf{T},\, k\in\mathbb{N}_{\geq 2}$ (k-fach durchlaufener Einheitskreis)
- 3) $\varphi: (-\pi, \pi) \to \mathbb{R}^2$, $\varphi(t) = (1 + 2\cos t)(\cos t, \sin t)^\mathsf{T}$ mit den besonderen Werte

$$\varphi\left(\pm \frac{2}{3}\pi\right) = \begin{pmatrix} 0\\0 \end{pmatrix}, \quad \varphi(0) = \begin{pmatrix} 3\\0 \end{pmatrix}$$

Achtung: $\binom{1}{0}$ gehört <u>nicht</u> zur Kurve. φ ist regulär (ÜA)

- 4) $\varphi:(-1,1)\to\mathbb{R}^2,\, \varphi(t)=(t^3,\,t^2)^\mathsf{T}$ ist nicht regulär, da $\varphi'(0)=0.$
- Beispiel 1.2 (Parametrisierung von Graphen)

Sei
$$f \in C^q(V, \mathbb{R}^{n-d}), V \subset \mathbb{R}^d$$
 offen.

Betrachte $\varphi \colon V \to \mathbb{R}^n$ mit $\varphi(x) := (x, f(x))$. Offenbar ist $\varphi \in C^q(V, \mathbb{R}^n)$ und $\varphi'(x) = (\mathrm{id}_{\mathbb{R}^d}, f'(x)) \in \mathbb{R}^{n \times d}$.

 $\Rightarrow \varphi$ stets regulär.

1.1. Relativtopologie auf Teilmengen $M \subset \mathbb{R}^n$

Definition

 $U \subset M$ heißt offen bezüglich M genau dann wenn $\exists \tilde{U} \subset \mathbb{R}^n$ offen mit $U = \tilde{U} \cap M$.

 $U \subset M$ heißt Umgebung von $u \in M$ bezüglich M, falls $\exists U_0 \subset M$ offen bezüglich M mit $u \in U_0 \subset U$.

1.2. Mannigfaltigkeiten

Definition

 $M \subset \mathbb{R}^n$ heißt <u>d</u>-dimensionale C^q -Mannigfaltigkeit $(q \geq 1)$ falls $\forall u \in M$ existiert eine Umgebung U von u bezüglich M und $\varphi : V \subset \mathbb{R}^d \to \mathbb{R}^n$, V offen mit φ reguläre C^q -Parametrisierung und φ ist Homöomorphismus und $\varphi(V) = U$.

M heißt auch C^q -Untermannigfaltigkeit. Verwende Mannigfaltigkeit statt C^1 -Mannigfaltigkeit

Definition

 φ^{-1} bzw. (φ^{-1}, U) heißt <u>Karte</u> von M um $u \in M$. φ ist das zugehörige <u>Kartengebiet</u>, φ zugehörige Parameterisierung, V zugehöriger Parameterbereich.

Eine Menge $\{\varphi_{\alpha}^{-1} \mid \alpha \in A\}$ heißt Atlas von M, falls die zugehörigen Kartengebiete U_{α} die Mannigfaltigkeit überdecken (d.h. $\bigcup_{\alpha \in A} U_{\alpha} \supset M$).

Definition

Eine reguläre Parametrisierung $\varphi \colon V \subset \mathbb{R}^d \to U \subset \mathbb{R}^n$ heißt <u>Einbettung</u>, falls sie ein Homöomorphismus ist.

<u>Vereinbarung:</u> Parametrisierungen in Verbindung mit Mannigfaltigkeiten sind <u>immer</u> Homöomorphismen (also Einbettungen).

■ Beispiel 1.3

- 1) Der Kreis aus Beispiel 1.1 ist eine eindimensionale C^{∞} -Mannigfaltigkeit (d.h. C^q -Mannigfaltigkeit $\forall q \in \mathbb{N}_{>1}$, obwohl mehrfach durchlaufen). Ein Atlas benötigt mindestens zwei Karten.
- 2) Kurven aus Beispiel 1.1 3), 4) sind keine Mannigfaltigkeiten
- 3) $M \subset \mathbb{R}^n$ offen ist n-dimensionale C^{∞} -Mannigfaltigkeit, {id} ist der zugehörige Atlas.

■ Beispiel 1.4

 $M := \operatorname{graph} f$ aus Beispiel 1.2.

Offenbar ist $\varphi \colon V \subset \mathbb{R}^d \to M \subset \mathbb{R}^n$ Homö
omorphismus und reguläre C^q -Parametrisierung
 $\Rightarrow M$ ist d-dimensionale C^q -Mannigfaltigkeit.

■ Beispiel 1.5

Sei
$$f: D \subset \mathbb{R}^n \to \mathbb{R}^{n-d}$$
, D offen, $f \in C^q$ $(q \ge 1)$, rang $f'(x) = n - d \ \forall u \in D$. Definiere

$$M := \{ u \in D \mid f(u) = 0 \}$$

Fixiere $\tilde{u} = (\tilde{x}, \tilde{y}) \in M$, wobei $\tilde{u} = (x_1, \dots, x_d, y_1, \dots, y_{n-d}) \in \mathbb{R}^n$.

$$\star \Rightarrow f_y(\tilde{x}, \tilde{y}) \in \mathbb{R}^{(n-d) \times (n-d)}$$
 regulär

 $\xrightarrow{\text{implizite}} \exists \text{ Umgebung } V \subset \mathbb{R}^d \text{ von } \tilde{x}, \text{ Umgebung } W \subset \mathbb{R}^{n-d} \text{ von } \tilde{y} \text{ und } \psi \in C^q(V, W) \text{ mit } (x, \psi(x)) \in M, \ \psi : V \to W$

- $\Rightarrow \varphi: V \subset \mathbb{R}^d \to \mathbb{R}^n$ mit $\varphi(x):=(x,\psi(x))$ ist reguläre C^q -Parametrisierung, Homöomorphismus und $\varphi(V)$ ist Umgebung von $\tilde{u} \in M$ bezüglich M
- $\Rightarrow M$ ist d-dimensionale $C^q\text{-Mannigfaltigkeit}$

Bemerkung: M = graph f und $M = \{f = 0\}$ sind grundlegende Konstruktionen von Mannigfaltigkeiten. Jede Mannigfaltigkeit hat – lokal – diese Eigenschaft.

Satz 1.6 (lokale Darstellung einer Mannigfaltigkeit als Graph)

Es gilt

 $M\subset\mathbb{R}^n$ ist d-dimensionale \Leftrightarrow $\forall u\in M$ \exists Umgebung U von u bezüglich $M,W\subset\mathbb{R}^d$ offen, $f\in C^q(W,\mathbb{R}^{n-d})$ und Permutation Π von Koordinaten in \mathbb{R}^n , sodass $\psi(W)=U \text{ und } \psi(u)=\Pi(w,f(w)) \ \forall w\in W$ (d.h. U ist Graph von f).

Somit: M ist C^q -Mannigfaltigkeit genau dann wenn M lokal Graph einer C^{∞} -Funktion ist.

Beweis

- (\Rightarrow) Klar nach z.B. Beispiel 1.2
- (\Leftarrow) Sei M Mannigfaltigkeit. Fixiere $\tilde{u} \in M$. Sei $\varphi \colon \tilde{V} \subset \mathbb{R}^d \to \tilde{U} \subset \mathbb{R}^n$ zugehörige C^q -Parametrisierung von $\tilde{u} = \varphi(\tilde{x})$.

 $\varphi'(x)$ ist regulär $\Rightarrow \varphi_I'(\tilde{x}) \in \mathbb{R}^{d \times d}$ regulär für die Zerlegung von φ in

$$\varphi(x) = \Pi \begin{pmatrix} \varphi_{\mathrm{I}}(x) \\ \varphi_{\mathrm{II}}(x) \end{pmatrix}, \quad \varphi_{\mathrm{I}}(x) \in \mathbb{R}^{d}, \quad \varphi_{\mathrm{II}}(x) \in \mathbb{R}^{n-d}$$

Zerlege ebenso $u = \Pi(v, w), v \in \mathbb{R}^d, w \in \mathbb{R}^{n-d}$ (d.h. auch $\tilde{u} = \Pi(\tilde{v}, \tilde{w})$)

Satz 1.7 (Charakterisierung von Mannigfaltigkeiten über umgebenden Raum)

Es gilt:

 $M \subset \mathbb{R}^n$ ist d-dimensionale Man- $\Leftrightarrow \forall u \in M \exists$ Umgebung \tilde{U} von u bezüglich dem \mathbb{R}^n , $\tilde{V} \subset \mathbb{R}^n$ nigfaltigkeit offen sowie

$$\tilde{\psi} \colon \tilde{U} \to \tilde{V}$$
 mit $\tilde{\psi}$ ist C^q -Diffeomorphismus und
$$\tilde{\psi}(\tilde{U} \cap M) = \tilde{V} \cap (\underbrace{\mathbb{R}^d \times \{0\}}_{\in \mathbb{R}^n})$$

<u>Bemerkung:</u> Die Charakterisierung von Mannigfaltigkeiten benutzt den umgebenden Raum und wird häufig als Definition für Mannigfaltigkeiten angegeben.

Beweis.

- (\Leftarrow) $\tilde{\psi}$ eingeschränkt auf $\tilde{U} \cap M$ liefert Karten \Rightarrow Behauptung
- (\Rightarrow) Fixiere $\tilde{u} \in M$. Wähle $U \subset M$, $W \subset \mathbb{R}^d$ sowie $f \in C^q(W, \mathbb{R}^{n-d})$ gemäß Satz 1.6 und sei oBdA $\Pi = \mathrm{id}$. Zerlege nach dem Schema $u = (v, w) \in \mathbb{R}^d \times \mathbb{R}^{n-d}$ obiges $\tilde{u} = (\tilde{v}, f(\tilde{v}))$.

Definiere $\hat{U}:=W\times\mathbb{R}^{n-d}=:\hat{V}$ und $\tilde{\varphi}\colon\hat{V}\to\hat{U}$ mit $\tilde{\varphi}(v,w):=(v,f(v)+w)$

$$\Rightarrow \tilde{\varphi} \in C^q, \, \tilde{\varphi}'(\tilde{v}, 0) = \begin{pmatrix} \mathrm{id}_d & 0 \\ f'(v) & \mathrm{id}_{n-d} \end{pmatrix} \text{ ist regul\"ar}$$

 $\xrightarrow{\text{implizite} \atop \text{Funktion}} \exists \text{ Umgebung } \tilde{U} \subset \hat{U} \text{ von } \tilde{u}, \text{ Umgebung } \tilde{V} \subset \hat{V} \text{ von } (\tilde{v},0), \text{ sodass } \tilde{\psi} := \tilde{\varphi}^{-1} \in C^q(\tilde{U},\tilde{V}) \text{ existiert.}$ Wegen $\tilde{\varphi}(\tilde{V} \cap (\mathbb{R}^d \times \{0\})) = \tilde{U} \cap M \text{ folgt die Behauptung.}$

Folgerung 1.8

Sei $M\subset \mathbb{R}^n$ d-dimensionale C^q -Mannigfaltigkeit und $\varphi\colon V\subset \mathbb{R}^d\to U\subset M$ eine Parametrisierung von U

 $\Rightarrow \exists \tilde{U}, \ \tilde{V} \subset \mathbb{R}^n \text{ offen und } \tilde{\varphi}: \tilde{V} \to \tilde{U} \text{ mit } U \subset \tilde{U} \text{ und } V \times \{0\} \subset \tilde{V} \text{ sowie } \tilde{\varphi} \text{ ist } C^q\text{-} Diffeomorphismus mit } \tilde{\varphi}(x,0) = \varphi(x) \ \forall x \in V.$

Beweis. Folgt aus den Beweisen von Satz 1.6 und Satz 1.7.

Satz 1.9 (lokale Darstellung von Mannigfaltigkeiten als Niveaumenge)

Es gilt

 $M \subset \mathbb{R}^n$ ist d-dimensionale $\Leftrightarrow \forall u \in M \exists \text{ Umgebung } \tilde{U} \text{ von } u \text{ bezüglich dem } \mathbb{R}^n \text{ und } f \in M$ annigfaltigkeit $C^q(\tilde{U}, \mathbb{R}^{n-d})$ mit rang f'(u) = n - d und $\tilde{U} \cap M = \{\tilde{u} \in \tilde{U} \mid f(\tilde{u}) = 0\}.$

Somit: M ist C^q -Mannigfaltigkeit genau dann wenn M lokal Niveaumenge einer C^q -Funktion ist.

Definition

 $c \in \mathbb{R}^{n-d}$ heißt <u>regulärer Wert</u> von $f \in C^q(\tilde{U}, \mathbb{R}^{n-d})$, $\tilde{U} \subset \mathbb{R}^n$ offen, falls rang $f'(u) = n - d \ \forall u \in \tilde{U}$ mit f(u) = c.

Folglich ist $M = \{u \in \tilde{U} \mid f(u) = c\}$ d-dimensionale Mannigfaltigkeit falls c regulärer Wert von f ist.

Beweis.

- (⇐) Gemäß Beispiel 1.5 erhält man eine lokale Parametrisierung ⇒ Behauptung
- (\Rightarrow) Fixiere $\tilde{u} \in M$. Wähle $\tilde{U}, \tilde{V} \subset \mathbb{R}^n, \tilde{\psi} \colon \tilde{U} \to \tilde{V}$ gemäß Satz 1.7. Sei $f := (\tilde{\psi}_{d+1}, \dots, \tilde{\psi}_n)$. Offenbar ist $f \in C^q(\tilde{U}, \mathbb{R}^{n-d})$.

Mit $\tilde{\varphi}$ aus Satz 1.7 folgt, dass $\tilde{\psi}'(\tilde{u}) = \varphi'(\tilde{v}, 0)^{-1}$ regulär ist

- $\Rightarrow f'(u)$ hat vollen Rang, d.h. rang f'(u) = n d
- \Rightarrow nach Konstruktion ist $\{\tilde{u} \in \tilde{U} \mid f(\tilde{u}) = 0\} = \tilde{U} \cap M$
- \Rightarrow Behauptung.

<u>Kartenwechsel:</u> Offenbar sind die Karten / der Atlas für Mannigfaltigkeiten nicht eindeutig, daher ist gelegentlich ein Wechsel der Karten sinnvoll.

Lemma 1.10 (Kartenwechsel)

Sei $M \subset \mathbb{R}^n$ d-dimensionale C^q -Mannigfaltigkeit und φ_1^{-1} , φ_2^{-1} Karten mit Kartengebieten $U_1 \cap U_2 \neq \emptyset$.

 $\Rightarrow \varphi_2^{-1} \circ \varphi_1 \colon \varphi_1^{-1}(U_1 \cap U_2) \to \varphi_2^{-1}(U_1 \cap U_2)$ ist C^q -Diffeomorphismus.

Beweis. Ersetzte φ_1 und φ_2 mit $\tilde{\varphi_1}$, $\tilde{\varphi_2}$ gemäß Folgerung 1.8. Einschränkung von $\varphi_2^{-1} \circ \varphi_1$ liefert die Behauptung.

Definition

Sei $M \subset \mathbb{R}^n$ d-dimensionale Mannigfaltigkeit. Ein Vektor $v \in \mathbb{R}^n$ heißt <u>Tangentialvektor</u> von $u \in M$, falls eine stetig differentierbare Kurve $\gamma \colon (-\delta, \delta) \to M$ $(\delta > 0)$ existiert mit $\gamma(0) = u$ und $\gamma'(0) = v$.

Die Menge aller Tangentialvektoren heißt Tangentialraum .

Satz 1.11

Sei $M \subset \mathbb{R}^n$ d-dimensionale C^q -Mannigfaltigkeit, $u \in M$, $\varphi \colon V \to M$ zugehörige Parametrisierung von u.

 $\Rightarrow T_u M$ ist d-dimensionale (\mathbb{R} -) Vektorraum und

$$T_u M = \underbrace{\varphi'(x)}_{\in L(\mathbb{R}^d, \mathbb{R}^n)} \cdot (\mathbb{R}^d) \tag{3}$$

mit $x := \varphi^{-1}(u)$, wobei $T_u M$ unabhängig von spezieller Parametrisierung φ ist.

Beweis. Sei
$$\gamma \colon (-\delta, \delta) \to M$$
 C^1 -Kurve mit $\gamma(0) = u$
 $\Rightarrow g := \varphi^{-1} \circ \gamma$ ist C^1 -Kurve $g \colon (-\delta, \delta) \to \mathbb{R}^d$ mit $g(0) = x$ und

$$\gamma'(0) = \varphi'(x) \cdot g'(0), \quad \varphi'(x) \text{ ist regulär.}$$

Offenbar liefert jede C^1 -Kurve g im \mathbb{R}^d durch x eine C^1 -Kurve γ in M mit ???. Die Menge aller Tangentialvektoren g'(0) von C^1 -Kurven g im \mathbb{R}^d ist offenbar \mathbb{R}^d .

$$\Rightarrow$$
 Gleichung (3) $\xrightarrow{\varphi'(x)}$ $\dim(T_uM) = d$.

Da ??? für jede Parametrisierung gilt, ist $T_u M$ unabhängig von φ .

Bemerkung: Man bezeichnet auch $(u, T_u M) \subset M \times \mathbb{R}^n$ als Tangentialraum und $TM := \bigcup_{u \in M} (u, T_u M) \subset M \times \mathbb{R}^n$ als Tangentialbündel.

■ Beispiel 1.12

Sei $M \subset \mathbb{R}^n$ offen $\Rightarrow M$ ist n-dimensionale Mannigfaltigkeit und $T_u M = \mathbb{R}^n \ \forall u \in M$.

Definition

Sei $M \subset \mathbb{R}^n$ d-dimensionale Mannigfaltigkeit. Vektoren $w \in \mathbb{R}^n$ heißen Normalenvektor in $u \in M$ an M, falls

$$\langle w, v \rangle = 0 \quad \forall v \in T_n M.$$

Die Menge aller Normalenvektoren $N_uM := (T_uM)^{\perp}$ heißt Normalenraum von M in u.

Satz 1.13

Sei $f \in C^1(V, \mathbb{R}^{n-d}), V \subset \mathbb{R}^n$ offen, $c \in \mathbb{R}^{n-d}$ regulärer Wert von f.

 $\Rightarrow M := \{u \in V \mid f(u) = c\}$ ist d-dimensionale Mannigfaltigkeit mit

$$T_u M = \{ v \in \mathbb{R}^n \mid f'(u) \cdot v = 0 \}$$
 (ker $f'(u)$) $\forall u \in M$

$$N_u M = \{ w \in \mathbb{R}^n \mid w = f'(u)^\mathsf{T} \cdot v, \ v \in \mathbb{R}^{n-d} \}$$
 $\forall u \in M$

d.h. die Spalten von $f'(u)^{\mathsf{T}}$ bilden eine Basis von $N_u M$.

■ Beispiel 1.14

Sei $f = \binom{f_1}{f_2} \in C^1(\mathbb{R}^3, \mathbb{R}^2)$, $0 \in \mathbb{R}^2$ regulärer Wert von f. $\Rightarrow M := \{u \in \mathbb{R}^3 \mid f_1(u) = 0 = f_2(u)\}$ ist 1-dimensionale Mannigfaltigkeit.

Der Gradient $f'_i(u)^\mathsf{T}$ steht senkrecht auf $\{f_i = 0\}$.

$$\Rightarrow f_1'(u)^\mathsf{T}, f_2'(u)^\mathsf{T}$$
 sind Normalen zu M in u .

$$\Rightarrow f_i'(u)^\mathsf{T} \cdot v = 0, i = 1, 2 \text{ für Tangentenvektor } v.$$

Beweis. M ist d-dimensionale Mannigfaltigkeit, vgl. Satz 1.9.

Sei
$$\gamma$$
 C^1 -Kurve auf M , $\gamma(0) = u$, $\gamma'(0) = v \Rightarrow f(\gamma(t)) = c \ \forall t$.

$$\Rightarrow f'(\gamma(0)) \cdot \gamma'(0) = f'(u) \cdot v = 0.$$

Wegen rang f'(u) = n - d folgt dim ker f'(u) = d

 \Rightarrow Behauptung für T_uM wegen dim $T_uM = d$.

Sei
$$w = f'(u)^\mathsf{T} \tilde{v}$$
 und $v \in T_u M \Rightarrow \langle w, v \rangle = \langle \tilde{v}, f(u)v \rangle = 0 \Rightarrow w \in N_u M$.

Da rang $f'(u)^{\mathsf{T}} = n - d$ und dim $N_u M = n - d$ folgt die Behauptung.

■ Beispiel 1.15

Sei $M := O(n) = \{A \in \mathbb{R}^{n \times n} \mid A^{\mathsf{T}}A = \mathrm{id}\}$ die orthogonale Gruppe. Dann ist M eine $\frac{n(n-1)}{2}$ -dimensionale Mannigfaltigkeit von $\mathbb{R}^{n \times n}$ mit

$$T_{\mathrm{id}}M = \{B \in \mathbb{R}^{n \times n} \mid B + B^{\mathsf{T}} = 0\}, \quad \text{(schiefsymmetrische Matrizen)}$$

Beweis.

- Betrachte $f : \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}_{\text{sym}}$ mit $f(A) = A^{\mathsf{T}}A$ $\Rightarrow f$ ist stetig differenzierbar mit $f'(A)B = A^{\mathsf{T}}B + B^{\mathsf{T}}A \in \mathbb{R}^{n \times n}_{\text{sym}} \ \forall B \in \mathbb{R}^{n \times n}$.
- id ist ein regulärer Wert von f, denn sei $f(A) = \operatorname{id}, S \in \mathbb{R}^{n \times n}_{\operatorname{sym}}$ $\Rightarrow f'(A)B = S$ hat die Lösung $B = \frac{1}{2}AS$, denn $\frac{1}{2}A^{\mathsf{T}}AS + \frac{1}{2}SA^{\mathsf{T}}A = S$, d.h. f'(A) hat vollen Rang $\xrightarrow{\operatorname{Satz} 1.9} M$ ist d-dimensionale Mannigfaltigkeit mit $d = \dim \mathbb{R}^{n \times n} - \dim \mathbb{R}^{n \times n}_{\operatorname{sym}} = n^2 - \frac{n(n+1)}{2} = \frac{n(n-1)}{2}$.

•
$$T_{id}M = \{B \in \mathbb{R}^{n \times n} \mid id^T B + B^T id = 0\}$$

Bemerkung:

- $A \in O(n) \Rightarrow A$ erhält das Skalarprodukt: $\langle Ax, Ay \rangle = \langle A^\mathsf{T} Ax, y \rangle = \langle x, y \rangle$.
- auch $A^{\mathsf{T}} \in O(n)$, somit stehts $A^{-1} = A^{\mathsf{T}}$.

