ДЕКОДИРОВАНИЕ ЛИНЕЙНЫХ БЛОКОВЫХ КОДОВ МЕТОДАМИ ГЛУБОКОГО ОБУЧЕНИЯ **•**

A. Э. Жданов, к.т.н., alexandr_zhdanov@mail.ru

ДЕКОДИРОВАНИЕ ЛИНЕЙНЫХ БЛОКОВЫХ КОДОВ МЕТОДАМИ ГЛУБОКОГО ОБУЧЕНИЯ.

Класс алгоритмов с обменом сообщениями: Распространение достоверности - sumproduct - итеративное вероятностное

декодирование

- Присвоить каждому переменному узлу значения мягкого решения демодулятора (log отн. правдоподобия), присвоить всем сообщениям 0
- вычислить сообщение Q_{mn} от переменного узла к проверочному и передать его
- . В каждом пров узле на основе принятого сооб вычислить и передать сооб к перем узлу R $_{\rm mn}$
- Обновить Q_{mn} в соответствии с принятыми R_{mn}
- Повторять итерация до равенства проверочных сумм нулю

ДЕКОДИРОВАНИЕ ЛИНЕЙНЫХ БЛОКОВЫХ КОДОВ МЕТОДАМИ ГЛУБОКОГО ОБУЧЕНИЯ

 $Q_{mn} = R_{mn} = 0$

$$Q_{m'n'} = \ln(\frac{P(1)}{P(0)}) + \sum_{m} R_{n'm} - R_{m'n'}$$

Сообщение от переменного узла к проверочному узлу

Сообщение от проверочного узла к переменному узлу

ДЕКОДИРОВАНИЕ ЛИНЕЙНЫХ БЛОКОВЫХ КОДОВ МЕТОДАМИ ГЛУБОКОГО ОБУЧЕНИЯ

В случае линейной комбинации циклов формируется «останавливающее множество» которое можно определить как подмножество проверочных вершин, для которого не существует переменных вершин, соединенных единственным ребром с каким-либо из проверочных вершин, входящих в это подмножество

ДЕКОДИРОВАНИЕ ЛИНЕЙНЫХ БЛОКОВЫХ КОДОВ МЕТОДАМИ ГЛУБОКОГО ОБУЧЕНИЯ

$$x'_{m,n} = \alpha \times \max \left(x_{m,n} - \beta_{m,n}, 0 \right)$$

В [10] инициализируют смещения случайными значениями, взятыми из стандартного нормального распределения. Для обновления смещений после расчета градиентов используют оптимизатор Adam [14] со скоростью обучения 0,1.

10. Loren Lugosch and Warren J Gross. Neural offset min-sum decoding. In 2017 IEEE International Symposium on Information Theory (ISIT), pages 1361–1365. IEEE, 2017.

14 D. Kingma and J. Ba, "Adam: A method for stochastic optimization," International Conference on Learning Representations, 2015.

ДЕКОДИРОВАНИЕ ЛИНЕЙНЫХ БЛОКОВЫХ КОДОВ МЕТОДАМИ ГЛУБОКОГО ОБУЧЕНИЯ

Начальная инициализация происходит путем обучения на графе, при этом если будут обнаружены дефекты графа Таннера, то будет назначен большой β_{mn}

По результатам видно, что алгоритм с минимальным обучением выдает характеристики аналогичные алгоритму с глубоким обучением.

Характеристики ofset min sum flooding алгоритма с минимальным обучением для кода ВСН (63,36,11) и его сравнение с алгоритмом [10]

Цель: провести оптимизацию весов методом глубокого обучения, расширить множество кодов допускающих подобное декодирование

10. Loren Lugosch and Warren J Gross. Neural offset min-sum decoding. In 2017 IEEE International Symposium on Information Theory (ISIT), pages 1361–1365. IEEE, 2017.

Ссылка на репозиторий проекта: https://github.com/AlexandreZhdanov/Floding-neural-min-sum-decoder