Worksheet 3: Modular Arithmetic

- 1. Fix a positive integer m, and define the relation $x \sim y$ by $x \equiv y \mod m$. Prove that \sim is an equivalence relation.
- 2. Let $a, b, c, m \in \mathbb{Z}$ with m > 0.
 - (a) Show that, if gcd(c, m) = 1, then

```
ac \equiv bc \pmod{m} implies a \equiv b \pmod{m}.
```

- (b) Give an example that shows that the gcd condition is necessary.
- 3. Suppose $a, b, m \in \mathbb{Z}$ with m > 0, and let $g := \gcd(a, m)$. Prove:
 - (a) If $g \nmid b$ then $ax \equiv b \mod m$ has no solution $x \in \mathbb{Z}$.
 - (b) If $g \mid b$ then $ax \equiv b \mod m$ has g distinct solutions $x \mod m$.
 - (c) If g = 1 then a has a multiplicative inverse modulo m.
- 4. Suppose $a, m \in \mathbb{Z}$ with m > 0 and gcd(a, m) = 1, and let $\{r_1, r_2, \dots, r_{\phi(m)}\}$ be a reduced residue system modulo m.
 - (a) Show that $\{ar_1, ar_2, \dots, ar_{\phi(m)}\}$ is also a reduced residue system modulo m.
 - (b) Conclude that $r_1r_2\cdots r_{\phi(m)}\equiv (ar_1)(ar_2)\cdots (ar_{\phi(m)}) \mod m$ and, consequently, that

$$a^{\phi(m)} \equiv 1 \pmod{m}$$
.

(This is *Euler's theorem*.)

- (c) Prove that, if p is prime and $a \in \mathbb{Z}$, then $a^p \equiv a \mod p$. (This is Fermat's little theorem.)
- (d) Conclude that, if p is prime and $a, b \in \mathbb{Z}$, then $(a + b)^p \equiv a^p + b^p \mod p$. (This is every freshman's dream.)
- 5. Suppose p is prime. Prove that $x^2 \equiv 1 \mod p$ has precisely the two solutions $x \equiv \pm 1 \mod p$.
- 6. Suppose $m \in \mathbb{Z}_{>0}$.
 - (a) Show that, if m > 4 is not prime, then $(m-1)! \equiv 0 \mod m$.
 - (b) Now suppose m is prime. Show that if $a \not\equiv 0, \pm 1 \mod m$ then there exists $b \not\equiv 0, \pm 1, a \mod m$ such that $ab \equiv 1 \mod m$.
 - (c) Conclude Wilson's theorem: $(m-1)! \equiv -1 \mod m$ if and only if m is prime.
- 7. Andrews 5.1.1–3, 3.2.3, 5.2.3, and 5.2.19.
- 8. Experiment with the sage command mod. Compare the running times of $2^{1000000000000}$ mod 3 and $(2 \text{ mod } 3)^{100000000000}$. What do you think sage does?
- 9. Compute 7^{43} mod 11 without sage. Check your answer with sage.
- 10. Write down a precise statement for each definition we have given this week. For each definition, give an example and a non-example.