复旦大学数学科学学院 2013~2014 学年第二学期期末考试试卷 A 卷

课程名称:高等数学 B(下)					课程代码:MATH120004		
开课院系: 数学科学学院				考	考试形式:闭		卷
姓 名:			学 号 <u>:</u>		专 业:		
题 号	_	<u> </u>	[1]	四	五	六	总 分
得 分							

- 一、计算题。(每题6分,共48分)
- 1、求二元函数 $u = x \sin(x + y)$ 的一阶及二阶偏导数 $\frac{\partial u}{\partial x}$, $\frac{\partial^2 u}{\partial x \partial y}$.

$$2$$
、求椭球面 $4x^2 + y^2 + z^2 = 1$ 在点 $(\frac{1}{2\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}})$ 处的切平面。

3、计算二重积分 $\iint_D \sin y^2 dx dy$,其中 D 是由 x+y=1, x=1 及 y=1 所围成的区域。

4、求函数 $z = xe^{2y}$ 在点 **P(1,0)**处沿从点 **P** 到点 **Q(3,-2)**的方向的方向导数。

5. 求解微分方程 $xy'-y=x^3$.

6. 求幂级数 $\sum_{n=1}^{\infty} (-1)^n \frac{\ln n}{2^n} x^n$ 的收敛半径及收敛域。

7. 将函数 $f(x) = 1(x \in [0, \pi])$ 展开成正弦级数。

8. 计算 $\iint_{\Omega} z dx dy dz$, 其中 Ω 是由 $x^2 + y^2 + z^2 \le 2z$ 所定义的球体。

二、(10 分) 求函数 $f(x,y) = x^2 - y^2 + 2$ 在椭圆域 $D = \{(x,y) \mid x^2 + \frac{1}{4}y^2 \le 1\}$ 上的最大值和最小值。

- 三、 $(10 \, \%)$ (1) 求幂级数 $\sum_{n=1}^{\infty} \frac{n}{n+1} x^n$ 的和函数;
- (2) 计算 $\sum_{n=1}^{\infty} \frac{n}{(n+1)2^{n+1}}$ 的值。

四、(10分)设平面区域

$$D = \{(x, y) \mid 1 \le x^2 + y^2 \le 4, x \ge 0, y \ge 0\}.$$

计算二重积分:
$$\iint_{D} \frac{x\sqrt{x^2 + y^2}}{x + y} dxdy$$

五、
$$(10 \, \beta)$$
判断级数 $\sum_{n=1}^{\infty} [e - (1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!})]$ 的敛散性。

六、(12分)设 $f(\mathbf{u})$ 在 $(-\infty, +\infty)$ 上二阶连续可导, $z = f(e^x \cos y)$,

(1)求
$$\frac{\partial^2 z}{\partial x^2}$$
及 $\frac{\partial^2 z}{\partial y^2}$ 。

(2)若
$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = e^{2x} (4z + 8e^x \cos y)$$
,且 $f(0) = f'(0) = 0$,

试求出 $f(\mathbf{u})$ 的表达式。