International Rectifier

IRLML2402

HEXFET® Power MOSFET

- Generation V Technology
- Ultra Low On-Resistance
- N-Channel MOSFET
- SOT-23 Footprint
- Low Profile (<1.1mm)
- Available in Tape and Reel
- Fast Switching

Description

Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.

A customized leadframe has been incorporated into the standard SOT-23 package to produce a HEXFET Power MOSFET with the industry's smallest footprint. This package, dubbed the Micro3, is ideal for applications where printed circuit board space is at a premium. The low profile (<1.1mm) of the Micro3 allows it to fit easily into extremely thin application environments such as portable electronics and PCMCIA cards.

Absolute Maximum Ratings

	•		
	Parameter	Max.	Units
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 4.5V	1.2	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 4.5V	0.95	A
I _{DM}	Pulsed Drain Current ①	7.4	
P _D @T _A = 25°C	Power Dissipation	540	mW
	Linear Derating Factor	4.3	mW/°C
V _{GS}	Gate-to-Source Voltage	± 12	V
dv/dt	Peak Diode Recovery dv/dt ②	5.0	V/ns
T _{J,} T _{STG}	Junction and Storage Temperature Range	-55 to + 150	°C

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JA}$	Maximum Junction-to-Ambient ④		230	°C/W

IRLML2402

International **TOR** Rectifier

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	20			V	$V_{GS} = 0V, I_D = 250 \mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.024		V/°C	Reference to 25°C, I _D = 1mA
В	Static Drain-to-Source On-Resistance			0.25		V _{GS} = 4.5V, I _D = 0.93A ③
R _{DS(on)}	Static Dialif-to-Source Off-Resistance			0.35	Ω	$V_{GS} = 2.7V, I_D = 0.47A$ ③
V _{GS(th)}	Gate Threshold Voltage	0.70			V	$V_{DS} = V_{GS}$, $I_D = 250\mu A$
9 fs	Forward Transconductance	1.3			S	$V_{DS} = 10V, I_D = 0.47A$
I _{DSS}	Drain-to-Source Leakage Current			1.0	μA	V_{DS} = 16V, V_{GS} = 0V
יטא	Brain to course Leanage Carrent			25	μΑ	V _{DS} = 16V, V _{GS} = 0V, T _J = 125°C
I _{GSS}	Gate-to-Source Forward Leakage			-100	nA	V _{GS} = -12V
IGSS	Gate-to-Source Reverse Leakage			100	11/	V _{GS} = 12V
Qg	Total Gate Charge		2.6	3.9		$I_D = 0.93A$
Q _{gs}	Gate-to-Source Charge		0.41	0.62	nC	V _{DS} = 16V
Q _{gd}	Gate-to-Drain ("Miller") Charge		1.1	1.7		V _{GS} = 4.5V, See Fig. 6 and 9 ③
t _{d(on)}	Turn-On Delay Time		2.5			V _{DD} = 10V
t _r	Rise Time		9.5			$I_D = 0.93A$
t _{d(off)}	Turn-Off Delay Time		9.7		ns	$R_G = 6.2\Omega$
t _f	Fall Time		4.8		[R_D = 11 Ω , See Fig. 10 \Im
C _{iss}	Input Capacitance		110			V _{GS} = 0V
C _{oss}	Output Capacitance		51		pF	V _{DS} = 15V
C _{rss}	Reverse Transfer Capacitance		25			f = 1.0MHz, See Fig. 5

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			0.54		MOSFET symbol
	(Body Diode)			0.54	, 1	showing the
I _{SM}	Pulsed Source Current			7.4	- A -	integral reverse
	(Body Diode) ①		-	7.4		p-n junction diode.
V_{SD}	Diode Forward Voltage			1.2	V	$T_J = 25$ °C, $I_S = 0.93$ A, $V_{GS} = 0$ V ③
t _{rr}	Reverse Recovery Time		25	38	ns	T _J = 25°C, I _F = 0.93A
Q _{rr}	Reverse RecoveryCharge		16	24	nC	di/dt = 100A/µs ③

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- $\begin{tabular}{ll} \mathbb{O} I_{SD} \le 0.93A, \ di/dt \le 90A/\mu s, \ V_{DD} \le V_{(BR)DSS}, \\ $T_J \le 150^{\circ}C$ \end{tabular}$

Fig 1. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 2. Typical Output Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 8. Maximum Safe Operating Area

International **TOR** Rectifier

IRLML2402

Fig 9a. Basic Gate Charge Waveform

Fig 9b. Gate Charge Test Circuit

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

IRLML2402 International International ICR Rectifier

Peak Diode Recovery dv/dt Test Circuit

Fig 12. For N-Channel HEXFETS

International IOR Rectifier

IRLML2402

Micro3 (SOT-23) (Lead-Free) Package Outline

Dimensions are shown in millimeters (inches)

DIMENSIONS						
SYMBOL	MILLIM	ETERS	INCHES			
	MIN	MAX	MIN	MAX		
Α	0.89	1.12	0.035	0.044		
A1	0.01	0.10	0.0004	0.004		
A2	0.88	1.02	0.035	0.040		
b	0.30	0.50	0.012	0.020		
С	0.08	0.20	0.003	0.008		
D	2.80	3.04	0.110	0.120		
Е	2.10	2.64	0.083	0.104		
E1	1.20	1.40	0.047	0.055		
е	0.95	BSC	0.037	BSC		
e1	1.90	BSC	0.075	BSC		
L	0.40	0.60	0.016	0.024		
L1	0.54	REF	0.021	REF		
L2	0.25	BSC	0.010	BSC		
0	0	8	0	8		

Recommended Footprint 2.742

NOTES:

- 1. DIMENSIONING & TOLERANCING PER ANSI Y14.5M-1994
 2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
 3. CONTROLLING DIMENSION: MILLIMETERS [INCHES].

 \$\(\frac{1}{2}\) DATIME HALBER HIS LOCATED AT THE MOLD PARTING LINE.

 \$\(\frac{1}{2}\) DATIME AND B TO BE DETERMINED AT DATUM PLANE H.

 \$\(\frac{1}{2}\) DATIME AND B TO BE DETERMINED AT DATUM PLANE H.

 \$\(\frac{1}{2}\) DIMENSIONS D AND E I ARE MEASURED AT DATUM PLANE H. DIMENSIONS DOES

 NOT INCLUDE MOLD PROTRUSIONS OR INTERLEAD FLASH. MOLD PROTRUSIONS
 OR INTERLEAD FLASH SHALL NOT EXCEED 0.25 MM [0.010 INCH] PER SIDE.

 \$\(\frac{1}{2}\) DIMENSION L IS THE LEAD LENGTH FOR SOLDERING TO A SUBSTRATE.

 8. OUTLINE CONFORMS TO JEDEC OUTLINE TO 236 AB.

Micro3 (SOT-23 / TO-236AB) Part Marking Information

Note: For the most current drawing please refer to IR website at http://www.irf.com/package

IRLML2402

International

TOR Rectifier

Micro3™ Tape & Reel Information

Dimensions are shown in millimeters (inches)

NOTES:

- 1. CONTROLLING DIMENSION : MILLIMETER.
- CONTROLLING DIMENSION: MILLIMETER.
 OUTLINE CONFORMS TO EIA-481 & EIA-541.

Note: For the most current drawing please refer to IR website at http://www.irf.com/package

Data and specifications subject to change without notice.

IR WORLD HEADQUARTERS: 101N.Sepulveda Blvd, El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information. 12/2011