

# MÉCANIQUE GÉNÉRALE - INTERROGATION Nº 3

## MERCREDI 24 JANVIER 2018

Sont autorisés : Formulaire (2 pages environ + 1 feuille des liaisons) Calculatrice non programmable

## Étude d'une commande externe de boîte de vitesses

#### 1. Étude fonctionnelle du mécanisme

#### Réponses:

1.1.





1.2. Liaison 2/3: 
$$B_2 \in (O_3, \vec{y}_3) \Leftrightarrow \begin{cases} \overrightarrow{O_3B_2} \cdot \vec{x}_3 = 0 \\ \overrightarrow{O_3B_2} \cdot \vec{z}_3 = 0 \end{cases} \Leftrightarrow \begin{cases} \tan \theta_3 = \frac{-d - b \sin \psi_1 + c \cos(\psi_1 + \psi_2)}{e} \\ a - b \cos \psi_1 - c \sin(\psi_1 + \psi_2) = 0 \end{cases}$$
 (1)

$$\textbf{Liaison 3/4:} \quad \mathbf{C}_4 \in (\mathbf{O}_3, \vec{y}_3) \Leftrightarrow \left\{ \begin{array}{l} \overrightarrow{\mathbf{O}_3\mathbf{C}_4} \cdot \vec{x}_3 = 0 \\ \overrightarrow{\mathbf{O}_3\mathbf{C}_4} \cdot \vec{z}_3 = 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} f\sin\theta_3 + g\sin(\theta_4 - \theta_3) = 0 \\ \text{toujours vrai} \end{array} \right.$$

$$\textbf{Liaison 4/5:} \quad \mathrm{D}_{4} \in (\mathrm{O}_{5}, \vec{x}_{0,5}) \Leftrightarrow \left\{ \begin{array}{l} \overrightarrow{\mathrm{O}_{5}\mathrm{D}_{4}^{\prime}} \cdot \vec{y}_{0} = 0 \\ \overrightarrow{\mathrm{O}_{5}\mathrm{D}_{4}^{\prime}} \cdot \vec{z}_{0} = 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} Y = e + f + h \sin \theta_{4} \\ \mathrm{toujours\ vrai} \end{array} \right.$$

Seule l'équation (2) était à donner impérativement.

1.3. k = 5 - 4 = 1: l'entrée est l'action du conducteur sur le levier de vitesses et la sortie est le déplacement de la fourchette pour la sélection du rapport.

## 2. Étude analytique du mouvement de $S_2$ par rapport à $S_0$

#### Réponses:

$$2.1. \ \left\{\mathcal{V}_{2/0}\right\}_{(\mathcal{O}_2)}: \left\{ \begin{array}{l} \vec{\Omega}(2/0) = (\dot{\psi}_1 + \dot{\psi}_2) \vec{y}_0 \\ \vec{V}\left(\mathcal{O}_2, 2/0\right) = -b \dot{\psi}_1 \vec{x}_1 \end{array} \right.$$



- 2.2. Le point  $B_2$  appartient aux deux plans du mécanisme  $(O, \vec{x}_0, \vec{z}_0)$  (pour l'ensemble  $S_1$  et  $S_2$ ) et  $(O, \vec{x}_0, \vec{y}_0)$  (pour l'ensemble  $S_3$ ,  $S_4$  et  $S_5$ ) donc sa trajectoire est à l'intersection de ces deux plans : c'est un segment de droite suivant l'axe  $(O, \vec{x}_0)$ .
- 2.3.  $\vec{V}(B_2/0) = -b\dot{\psi}_1\vec{x}_1 c(\dot{\psi}_1 + \dot{\psi}_2)\vec{z}_2$   $\vec{A}(B_2/0) = -b\ddot{\psi}_1\vec{x}_1 + b\dot{\psi}_1^2\vec{z}_1 - c(\ddot{\psi}_1 + \ddot{\psi}_2)\vec{z}_2 - c(\dot{\psi}_1 + \dot{\psi}_2)^2\vec{x}_2$ En projetant dans  $R_0$ :  $\vec{V}(B_2/0) = \begin{bmatrix} -b\dot{\psi}_1\cos\psi_1 - c(\dot{\psi}_1 + \dot{\psi}_2)\sin(\psi_1 + \psi_2) \\ -b\dot{\psi}_1\cos\psi_1 - c(\dot{\psi}_1 + \dot{\psi}_2)\sin(\psi_1 + \psi_2) \end{bmatrix}\vec{x}_0 + \begin{bmatrix} b\dot{\psi}_1\sin\psi_1 - c(\dot{\psi}_1 + \dot{\psi}_2)\cos(\psi_1 + \psi_2) \end{bmatrix}\vec{z}_0$

car la dérivée par rapport au temps de l'équation de liaison (2) annule la composante suivant  $\vec{z_0}$ . La vitesse est bien tangente à la trajectoire. Il en est de même de l'accélération ici car cette trajectoire est rectiligne.

2.4. La dérivée par rapport au temps de l'équation de liaison (2) permet d'écrire :  $b\dot{\psi}_1\sin\psi_1-c(\dot{\psi}_1+\dot{\psi}_2)\cos(\psi_1+\psi_2)=0 \Leftrightarrow c(\dot{\psi}_1+\dot{\psi}_2)\cos\psi_2=0 \text{ pour } \psi_1=0 \Rightarrow \dot{\psi}_1+\dot{\psi}_2=0 \text{ car } \psi_2\neq\frac{\pi}{2}.$  D'où  $\vec{V}$  (B<sub>2</sub>/0) =  $-b\dot{\psi}_1\vec{x}_1=\vec{V}$  (O<sub>2</sub>/0) pour  $\psi_1=0$ .

## 3. Étude graphique de la commande

Mouvement de  $S_2$  par rapport à  $S_0$ 





#### Réponses:

- 3.1.  $O_2$  est lié à  $S_1$ . Ce dernier a un mouvement de rotation d'axe  $(O_1, \vec{y}_{0,1})$  par rapport à  $S_0$  donc  $\vec{V}$   $(O_2/0)$   $\perp (O_1O_2)$ . La répartition du champ de vitesse autour de  $O_1$  permet d'entièrement déterminer cette vitesse à partir de celle de A.
  - $\overrightarrow{V}(B_2/0) //(O, \overrightarrow{x_0})$  (cf. question 2.2).  $O_2$  et  $B_2$  sont liés au même solide  $S_2$ . Par equiprojectivité,  $\overrightarrow{V}(B_2/0) \cdot \overrightarrow{O_2B_2} = \overrightarrow{V}(O_2/0) \cdot \overrightarrow{O_2B_2}$  ce qui permet d'entièrement déterminer la vitesse du point  $B_2$ .
- 3.2. Les vitesses ne sont pas nulles, ce n'est pas un mouvement de repos. Le mouvement est plan, ce n'est pas un mouvement hélicoïdal. Les vitesses des points  $O_2$  et  $B_2$  sont différentes, ce n'est pas une translation. Le mouvement linéaire tangent est une rotation.
  - La répartition du champ de vitesse dans un mouvement de rotation est telle que  $(I_{2/0}O_2) \perp \vec{V}(O_2/0)$  et  $(I_{2/0}B_2) \perp \vec{V}(B_2/0)$  d'où le point  $I_{2/0}$ .
- 3.3. Le point est rejeté à l'infini dans la direction de  $\vec{z_0}$ . Dans ce cas,  $\vec{V}$  (B<sub>2</sub>/0) =  $\vec{V}$  (O<sub>2</sub>/0) et on peut montrer que le champ de vitesse est uniforme avec un vecteur rotation instantanée nul. Le mouvement linéaire tangent devient dans cette position un mouvement de translation. On peut donc voir cette translation comme le cas limite d'une rotation où l'axe de viration est rejeté à l'infini.

#### Mouvement de $S_3$ par rapport à $S_0$



#### Réponses:

- 3.4.  $\vec{V}(B_2/0) = \vec{V}(B_2/3) + \vec{V}(B_2, 3/0)$ .
  - $\vec{V}$  (B<sub>2</sub>/0) est connue des questions précédentes.

 $B_2$  est astreint à rester sur l'axe  $(O_3, \vec{y}_3)$  (liaison linéaire annulaire) donc  $\vec{V}$   $(B_2/3) //\vec{y}_3$ .

Le mouvement de  $S_3/S_0$  est une rotation d'axe  $(O_3, \vec{z}_0)$  (liaison pivot) donc  $\vec{V}(B_2, 3/0) \perp (O_3B_2)$ .

Le triangle des vitesses détermine ensuite entièrement  $\vec{V}$  (B<sub>2</sub>, 3/0).

3.5. Pour la même raison que précédemment,  $\vec{V}$  (C<sub>4</sub>, 3/0)  $\perp$  (O<sub>3</sub>C<sub>4</sub>). La répartition du champ de vitesse autour de O<sub>3</sub> permet d'entièrement déterminer  $\vec{V}$  (C<sub>4</sub>, 3/0).

#### Mouvement de $S_4$ par rapport à $S_0$

Non demandé dans l'interrogation.

 $\vec{V}$  (C<sub>4</sub>/0): D'après la composition des vitesses:  $\vec{V}$  (C<sub>4</sub>/0) =  $\vec{V}$  (C<sub>4</sub>/3) +  $\vec{V}$  (C<sub>4</sub>,3/0).

Le mouvement de  $S_4/S_0$  est une rotation d'axe  $(O_4,\vec{z_0})$  (liaison pivot) donc  $\vec{V}$   $(C_4/0) \perp (O_4C_4)$ .

 $C_4$  est astreint à rester sur l'axe  $(O_3, \vec{y}_3)$  (liaison linéaire annulaire) donc  $\vec{V}$   $(C_4/3)$  // $\vec{y}_3$ .

 $\vec{V}\left(\mathbf{C}_{4},3/0\right)$  est connue de la question précédente.

Le triangle des vitesses détermine ensuite entièrement  $\vec{V}$  (C<sub>4</sub>/0).



 $\vec{V}$  (D<sub>4</sub>/0): Pour les mêmes raisons que précédemment,  $\vec{V}$  (D<sub>4</sub>/0)  $\perp$  (O<sub>4</sub>D<sub>4</sub>). L'équiprojectivité ( $\vec{V}$  (C<sub>4</sub>/0)  $\cdot$   $\vec{C_4D_4} = \vec{V}$  (D<sub>4</sub>/0)  $\cdot$   $\vec{C_4D_4}$ ) ou la répartition du champ de vitesse autour de O<sub>4</sub> permet d'entièrement déterminer  $\vec{V}$  (D<sub>4</sub>/0).

#### Mouvement de S<sub>5</sub> par rapport à S<sub>0</sub>

#### Réponses:

- 3.6. D'après la composition des vitesses :  $\vec{V}$  (D<sub>4</sub>/0) =  $\vec{V}$  (D<sub>4</sub>/5) +  $\vec{V}$  (D<sub>4</sub>,5/0).  $\vec{V}$  (D<sub>4</sub>/0) est connue de la question précédente. D<sub>4</sub> est astreint à rester sur l'axe (O<sub>5</sub>, $\vec{x}_5$ ) (rainure) donc  $\vec{V}$  (D<sub>4</sub>/5) // $\vec{x}_5$ . Le mouvement de S<sub>5</sub>/S<sub>0</sub> est une translation rectiligne d'axe  $\vec{y}_0$  (liaison glissière) donc  $\vec{V}$  (D<sub>4</sub>,5/0) // $\vec{y}_0$ . Le triangle des vitesses détermine ensuite entièrement  $\vec{V}$  (D<sub>4</sub>,5/0).
- 3.7. Le mouvement de  $S_5/S_0$  est une translation donc le champ de vitesse est uniforme et  $\vec{V}$  (O<sub>5</sub>/0) =  $\vec{V}$  (D<sub>4</sub>, 5/0).

### 4. Liaison $S_4/S_5$

#### Réponses:

$$\begin{split} 4.1. & \ \vec{V}\left(\mathcal{D}_4/5\right) = \left(\frac{\mathrm{d}\overrightarrow{\mathcal{O}_5 \mathcal{D}_4}}{\mathrm{d}t}\right)_5 = -h \sin \theta_4 \dot{\theta}_4 \vec{x}_{0,5} \\ & \ \vec{V}\left(\mathcal{J}, 6/5\right) = \vec{V}\left(\mathcal{D}_4/5\right) + \vec{\Omega}(6/5) \wedge \overrightarrow{\mathcal{D}_4 \mathcal{J}} \\ & = -h \sin \theta_4 \dot{\theta}_4 \vec{x}_{0,5} + \left(\dot{\theta}_6 + \dot{\theta}_4\right) \vec{z}_{0,5} \wedge r \vec{y}_{0,5} \\ & = \left[-h \sin \theta_4 \dot{\theta}_4 - r (\dot{\theta}_6 + \dot{\theta}_4)\right] \vec{x}_{0,5} \quad \text{dans le plan tangent.} \end{split}$$

4.2.  $\vec{V}(J, 6/5) = \vec{0}$ , J n'est lié à aucun solide.

D'où 
$$-h\sin\theta_4\dot{\theta}_4 - r(\dot{\theta}_6 + \dot{\theta}_4) = 0.$$

- 4.3.  $\vec{\Omega}(6/5) = (\dot{\theta}_6 + \dot{\theta}_4)\vec{z}_{0,5}$  donc  $\vec{R}(J, 6/5) = (\dot{\theta}_6 + \dot{\theta}_4)\vec{z}_{0,5}$  et  $\vec{P}(J, 6/5) = \vec{0}$ .
- 4.4. Non glissement en J donc l'axe de viration du mouvement de  $S_6/S_5$  passe par J. Le mouvement de  $S_6$  par rapport à  $S_5$  est plan de normale  $\vec{z}_{0,5}$  qui est donc la direction de  $\vec{\Omega}(6/5)$ . L'axe de viration, colinéaire à ce dernier, est  $(J, \vec{z}_{0,5})$ .