2.3 事件独立性 41

定义 2.4 设 (Ω, Σ, P) 是一个概率空间, 事件 $C \in \Sigma$ 有 P(C) > 0 成立, 若事件 $A, B \in \Sigma$ 满足

$$P(AB|C) = P(A|C)P(B|C)$$
 \vec{g} $P(A|BC) = P(A|C),$

则称事件 A 和 B 在 C 发生的情况下是 **条件独立的** (conditional independent).

下面给出一个关于条件独立性的例子:

例 2.12 盒子中有 k+1 枚不均匀的硬币, 分别标号为 $0,1,2,\cdots,k$, 投掷第 i 号硬币正面向上的概率为 i/k. 现从箱子中任意取出一枚硬币并任意投掷多次, 若前 n 次正面向上, 求第 n+1 次正面向上的概率.

解 用 A 表示第 n+1 次投掷正面向上的事件, 用 B 表示前 n 次正面向上的事件, 用 C_i 表示从 盒子中取出第 i 号硬币的事件. 根据条件概率的定义可知

$$P(A|B) = P(AB)/P(B) .$$

根据全概率公式和条件独立性有

$$P(AB) = \sum_{i=0}^{k} P(C_i)P(AB|C_i) = \sum_{i=0}^{k} P(C_i)P(A|C_i)P(B|C_i) = \frac{1}{k+1} \sum_{i=0}^{k} \frac{i^{n+1}}{k^{n+1}} ,$$

以及

$$P(B) = \sum_{i=0}^{k} P(C_i)P(B|C_i) = \frac{1}{k+1} \sum_{i=0}^{k} \frac{i^n}{k^n} ,$$

由此可得

$$P(A|B) = \frac{\sum_{i=0}^{k} (i/k)^{n+1}}{\sum_{i=0}^{k} (i/k)^{n}}.$$

当 k 非常大或 $k \to +\infty$ 时可利用积分近似

$$\frac{1}{k} \sum_{i=1}^{k} (i/k)^n \approx \int_0^1 x^n dx = \frac{1}{n+1} \quad \text{fil} \quad \frac{1}{k} \sum_{i=1}^{k} (i/k)^{n+1} \approx \int_0^1 x^{n+1} dx = \frac{1}{n+2},$$

此时有 $P(A|B) \approx (n+1)/(n+2)$.

2.3.2 多个事件的独立性

定义 2.5 设 (Ω, Σ, P) 是一个概率空间, 若事件 $A, B, C \in \Sigma$ 满足

- 两两相互独立, 即 P(AB) = P(A)P(B), P(AC) = P(A)P(C) 和 P(BC) = P(B)P(C),
- P(ABC) = P(A)P(B)P(C),

则称事件 A, B, C 是 相互独立的.

根据定义可知若事件 A,B,C 是相互独立的,则事件 A,B,C 是两两相互独立的;但反之不一定成立,还需满足 P(ABC) = P(A)P(B)P(C).下面给出一个简单的例子说明:三事件的两两独立并不能得出三事件相互独立.

[Bernstein 反例] 一个均匀的正四面体第一面是红色, 第二面是白色, 第三面是黑色, 第四面同时有红、白、黑三种颜色. 任意投掷一次, 用 A,B,C 分别表示红色、白色、黑色朝下的事件, 因为有一面同时包含三种颜色. 有

$$P(A) = P(B) = P(C) = 1/2$$
 A $P(AB) = P(BC) = P(AC) = 1/4,$

由此可得事件 A, B, C 两两独立. 但由于

$$P(ABC) = 1/4 \neq 1/8 = P(A)P(B)P(C),$$

由此可知 A, B, C 不是相互独立的.

定义 2.6 设 (Ω, Σ, P) 是一个概率空间, 若事件 $A_1, A_2, \dots, A_n \in \Sigma$ 满足

- 对任意 $1 \leq i_1 < i_2 \leq n$ 有 $P(A_{i_1}A_{i_2}) = P(A_{i_1})P(A_{i_2})$ 成立;
- 对任意 $1 \leq i_1 < i_2 < i_3 \leq n$ 有 $P(A_{i_1}A_{i_2}A_{i_3}) = P(A_{i_1})P(A_{i_2})P(A_{i_3})$ 成立;
-
- $\bullet \ P(A_1 A_2 \cdots A_n) = P(A_1) P(A_2) \cdots P(A_n),$

则称事件 A_1, A_2, \cdots, A_n 是 相互独立的.

相互独立性的 n 个事件应满足 $\binom{n}{2} + \binom{n}{3} + \cdots + \binom{n}{n} = 2^n - n - 1$ 个独立性相关等式. 多个事件的相互独立性不同于多个事件的两两独立性, 同理可定义多个事件的条件独立性. 下面看一个关于独立性的例子.

例 2.13 三个人破译一份密码,每人单独破译成功的概率分别为 1/5,1/3,1/4,问三人中至少有一人破译成功的概率.

 \mathbf{H} 用事件 A_i 表示第 i 个人破译密码 ($i \in [3]$), 根据题意有

$$P(A_1) = 1/5,$$
 $P(A_2) = 1/3,$ $P(A_3) = 1/4.$

根据容斥原理和独立性, 三人中至少有一人能破译密码的概率为

$$P(A_1 \cup A_2 \cup A_3) = P(A_1) + P(A_2) + P(A_3) - P(A_1A_2) - P(A_1A_3) - P(A_2A_3) + P(A_1A_2A_3) = 3/5$$
.

2.3 事件独立性 43

也可以根据对偶性和独立性来求解该问题,三人中至少有一人能破译密码的概率为

$$P(A_1 \cup A_2 \cup A_3) = 1 - P(\bar{A}_1 \bar{A}_2 \bar{A}_3) = 1 - P(\bar{A}_1) P(\bar{A}_2) P(\bar{A}_3) = 1 - \frac{4}{5} \times \frac{2}{3} \times \frac{3}{4} = \frac{3}{5}.$$

从上例可知, 尽管每个人能破译成功的概率都不大于 1/3, 根据独立性假设, 至少有一人破译成功的概率则为 3/5, 独立性能有效提高了破译成功的概率.

推广到更一般的情况: 如果事件 A_1, A_2, \dots, A_n 相互独立, 分别发生的概率为 p_1, p_2, \dots, p_n , 则 事件 A_1, A_2, \dots, A_n 中至少有一事件发生的概率为

$$P(A_1 \cup A_2 \cup \cdots \cup A_n) = 1 - P(\bar{A}_1 \bar{A}_2 \cdots \bar{A}_n) = 1 - (1 - p_1)(1 - p_2) \cdots (1 - p_n);$$

事件 A_1, A_2, \cdots, A_n 中至少有一事件不发生的概率为

$$P(\bar{A}_1 \cup \bar{A}_2 \cup \cdots \cup \bar{A}_n) = 1 - P(A_1 A_2 \cdots A_n) = 1 - p_1 p_2 \cdots p_n$$

尽管每个事件发生的概率 p_i 都非常小, 但若 n 非常大, 则 n 个相互独立的事件中 "至少有一事件发生" 或 "至少有一事件不发生" 的可能性很大.

定义 2.7 (小概率原理) 若事件 A 在一次试验中发生的概率很小, 但经过多次独立地重复试验, 事件 A 的发生是必然的, 称之为 **小概率原理**.

小概率原理可通过严格的数学证明得到: 若事件 $A_1, A_2, \dots, A_n, \dots$ 独立且每事件发生的概率 $P(A_i) = p > 0$ 非常小,则有

$$P(A_1 \cup A_2 \cup \dots \cup A_n) = 1 - P(\bar{A}_1 \bar{A}_2 \cdots \bar{A}_n) = 1 - (1 - p)^n \to 1 \quad \stackrel{\text{def}}{=} \quad n \to \infty,$$

即独立重复多次的小概率事件亦可成为必然事件.

例 2.14 冷战时期美国的导弹精度为 90%, 苏联的导弹精度为 70% 但数量特别多, 导弹的数量能否弥补精度的不足?

解 假设每次独立发射 n 枚导弹,用事件 A_i 表示第 i 枚导弹命中目标,则 n 枚导弹击中目标的概率为

$$P(A_1 \cup A_2 \cup \dots \cup A_n) = 1 - (1 - 0.7)^n \ge 0.9 \implies n \ge 2,$$

因此每次独立发射2枚导弹, 击中目标的概率高于90%.

例 2.15 市场上有 m 种不同的邮票, 每次收集到第 i 种邮票的概率为 p_i ($p_1+p_2+\cdots+p_m=1$). 假设每次集邮的事件是独立的, 若一人已收集了 n 次邮票且每次一张, 用 A_i 表示收集到第 i 种邮票的事件(至少一张), 求概率 $P(A_i)$, $P(A_i \cup A_j)$ 以及 $P(A_i|A_j)$ ($i \neq j$).

解 根据题意有

$$P(A_i) = 1 - P(\bar{A}_i) = 1 - P($$
收集的 n 张邮票中没有第 i 种邮票 $) = 1 - (1 - p_i)^n$.

同理可得

$$P(A_i \cup A_j) = 1 - P(\bar{A}_i \cap \bar{A}_j) = 1 - (1 - p_i - p_j)^n$$
.

利用容斥原理和条件概率的定义有

$$P(A_i|A_j) = \frac{P(A_iA_j)}{P(A_j)} = \frac{P(A_i) + P(A_j) - P(A_i \cup A_j)}{P(A_j)}$$
$$= \frac{1 - (1 - p_i)^n - (1 - p_j)^n + (1 - p_i - p_j)^n}{1 - (1 - p_j)^n}.$$

为保证系统的可靠性, 电子系统通常由多个独立的元件构成, 一个元件能正常工作的概率称为 这个元件的可靠性. 由元件组成的系统能正常工作的概率称为系统的可靠性.

例 2.16 设构成系统的每个元件的可靠性均为 $p \in (0,1)$, 各元件是否正常工作相互独立. 设有 2n 个元件按下图所示, 两种不同连接方式构成两个不同的系统, 比较这两种系统的可靠性大小.

解 可以发现系统 I 有两条通路,它能正常工作当且仅当两条通路至少有一条能正常工作,而每一条通路能正常工作当且仅当它的每个元件能正常工作,因此有系统 I 的可靠性为

$$P((A_1 A_2 \cdots A_n) \cup (B_1 B_2 \cdots B_n))$$

$$= P(A_1 A_2 \cdots A_n) + P(B_1 B_2 \cdots B_n) - P(A_1 A_2 \cdots A_n B_1 B_2 \cdots B_n)$$

$$= 2p^n - p^{2n} = p^n (2 - p^n).$$

系统 II 由 n 对并联元件 $\{A_i, B_i\}$ 组成, 它能正常工作当且仅当每对并联元件组能够正常工作, 因此系统 II 的可靠性为

$$P\left(\bigcap_{i=1}^{n} (A_i \cup B_i)\right) = \prod_{i=1}^{n} P(A_i \cup B_i) = (2p - p^2)^n = p^n (2 - p)^n.$$

利用数学归纳法可证明当 $n \ge 2$ 时有 $(2-p)^n > 2-p^n$ 成立, 由此可知系统 II 的可靠性更好.

2.4 案例分析 45

2.4 案例分析

下面给出一些利用本节知识求解实际问题的案例, 值得注意的是贝叶斯公式在人工智能的决策任务中有诸多的应用, 例如朴素贝叶斯分类器等, 由于涉及到多维随机变量, 我们将在后面介绍.

2.4.1 主观概率

在很多实际应用中的概率可能由某一种主观的方式给出,例如人们对未来宏观经济形势、或对某人诚信度的判断,这种将概率解释为信任程度的做法明显带有主观性,通常被称为**主观概率**.

伊索寓言"孩子与狼"讲一个小孩每天到山上放羊, 山里有狼出没, 第一天他在山上喊"狼来了!", 山下的村民闻声便去打狼, 到了山上发现没有狼; 第二天仍是如此; 第三天狼真来了, 可无论小孩怎么喊叫, 也没有人来救他. 将这个寓言故事抽象为一个主观概率的例子, 并利用贝叶斯公式来分析村民的心理活动.

例 2.17 村民最初认为讲真话和谎话的小孩喊狼来了的概率一样,均为 1/2. 讲谎话的小孩喊狼来了狼真来的概率为 1/3,而讲真话的小孩喊狼来了时狼真来的概率为 3/4. 无论谁喊狼来了,假设狼第一天和第二天来的两个事件相互独立,请分析村民们的心理活动.

解 用 A 和 \bar{A} 分别表示小孩讲谎话和讲真话喊狼来了的事件, 用 B 和 C 分别表示第一天和第二天狼没来的事件. 根据题意可知

$$P(A) = P(\bar{A}) = 1/2, \quad P(B|A) = P(C|A) = 2/3 \quad \text{All} \quad P(B|\bar{A}) = P(C|\bar{A}) = 1/4.$$

根据全概率公式有事件 B 发生的概率为

$$P(B) = P(A)P(B|A) + P(\bar{A})P(B|\bar{A}) = 11/24,$$

由此根据贝叶斯公式,村民对小孩的认识体现在条件概率

$$P(A|B) = \frac{P(AB)}{P(B)} = \frac{P(A)P(B|A)}{P(B)} = \frac{8}{11} \approx 0.7273,$$

村民认为讲谎话的小孩喊狼来了的概率从 50% 上升到 72.72%. 第二天事件 C 发生了, 再根据全概率公式和条件独立性有

$$P(BC) = P(A)P(BC|A) + P(\bar{A})P(BC|\bar{A})$$

= $P(A)P(B|A)P(C|A) + P(\bar{A})P(B|\bar{A})P(C|\bar{A}) = (4/9 + 1/16)/2.$

再根据贝叶斯公式, 村民对小孩的认识体现在条件概率

$$P(A|BC) = \frac{P(ABC)}{P(BC)} = \frac{P(A)P(B|A)P(C|A)}{P(BC)} = \frac{64}{73} \approx 0.8767.$$

因此村民认为讲谎话的小孩说狼来了的概率从 72.72% 上升到 87.67%. 经过前两次事件, 村民们认为讲谎话的小孩说狼来了的概率为 87.67%, 因此第三次听到呼喊时他们不会上山打狼了.

2.4.2 大矩阵乘法

给定三个矩阵 $A, B, C \in \{0, 1\}^{n \times n}$, 其中 n 非常大, 如 $n \ge 10000000$, 如何快速判断

$$AB=C$$
?

直接计算矩阵相乘 **AB**, 然后和矩阵 **C** 进行比较, 此时计算复杂度为 $O(n^3)$. 也可采用矩阵分块相乘等优化方法, 目前最好的确定性算法计算复杂度为 $O(n^{2.37})$.

这里采用概率方法进一步降低计算复杂度, 首先随机选取一个向量 $\bar{\mathbf{r}} = (r_1, r_2, \dots, r_n)^{\mathsf{T}}$, 其中每个元素 r_1, r_2, \dots, r_n 都是独立地从 $\{0,1\}$ 中等可能性随机选取所得. 然后验证

$$\mathbf{A}\mathbf{B}\mathbf{\bar{r}} = \mathbf{A}(\mathbf{B}\mathbf{\bar{r}}) = \mathbf{C}\mathbf{\bar{r}}$$
?

注意计算 $A(B\bar{r})$ 和 $C\bar{r}$, 以及比较两个向量是否相等的计算复杂度为 $O(n^2)$.

若 $\mathbf{A}(\mathbf{B}\bar{\mathbf{r}}) \neq \mathbf{C}\bar{\mathbf{r}}$, 则可直接得到 $\mathbf{A}\mathbf{B} \neq \mathbf{C}$; 若 $\mathbf{A}(\mathbf{B}\bar{\mathbf{r}}) = \mathbf{C}\bar{\mathbf{r}}$, 不能直接得到 $\mathbf{A}\mathbf{B} = \mathbf{C}$. 此时可以利用小概率原理, 将上述过程独立地进行 k 次, 以较大的概率保证 $\mathbf{A}\mathbf{B} = \mathbf{C}$ 成立. 此过程被称为 Freivalds 算法, 伪代码如下所示:

输入: 矩阵 A, B, C

输出: 是/否

%% 验证 $\mathbf{AB} = \mathbf{C}$?

For i = 1:k

随机选择向量 $\mathbf{\bar{r}}_i = (r_{i1}, r_{i2}, \cdots, r_{in})$, 其每个元素是独立地从 $\{0,1\}$ 等可能性随机采样所得计算向量 $\mathbf{\bar{p}}_i = \mathbf{A}(\mathbf{B}\mathbf{\bar{r}}_i) - \mathbf{C}\mathbf{\bar{r}}_i$

If $\{\bar{\mathbf{p}}_i \, \text{不是零向量} \}$ then

返回"否"

EndIf

 EndFor

返回"是".

算法有效性分析: 若该算法返回"否", 则直接得到 $\mathbf{AB} \neq \mathbf{C}$, 因为找到了一个 \mathbf{r} 使得 $\mathbf{A}(\mathbf{B})\mathbf{r} \neq \mathbf{C}\mathbf{r}$ 成立; 若算法返回"是", 则不能直接有 $\mathbf{AB} = \mathbf{C}$ 成立, 但可以以很大的概率确保 $\mathbf{AB} = \mathbf{C}$ 成立.

2.4 案例分析 47

定理 2.4 设随机向量 $\bar{\mathbf{r}}_1, \bar{\mathbf{r}}_2, \cdots, \bar{\mathbf{r}}_k \in \{0,1\}^n$ 中每个元素都是独立地从 $\{0,1\}$ 中等可能性随机选取, 若 $\mathbf{AB} \neq \mathbf{C}$, 则有

$$P\left(\bigcap_{i=1}^{k} \left\{ \mathbf{A}(\mathbf{B}\bar{\mathbf{r}}_i) = \mathbf{C}\bar{\mathbf{r}}_i \right\} \right) \leqslant \frac{1}{2^k}$$
.

根据该定理选择 $k = \log_2 n$, 则 Freivalds 算法计算复杂度为 $O(n^2 \log n)$, 若算法返回 "否", 则有 $\mathbf{AB} \neq \mathbf{C}$; 若返回 "是", 则有 $P(\mathbf{AB} = \mathbf{C}) \geqslant 1 - 1/n$, 根据问题可知 n 非常大, 由此判断 $\mathbf{AB} = \mathbf{C}$ 成立的可能性非常高.

证明 首先根据随机向量 $\bar{\mathbf{r}}_1, \bar{\mathbf{r}}_2, \cdots, \bar{\mathbf{r}}_k$ 的独立同分布性有

$$P\left(\bigcap_{i=1}^{k} \{\mathbf{A}(\mathbf{B}\bar{\mathbf{r}}_{i}) = \mathbf{C}\bar{\mathbf{r}}_{i}\}\right) = \prod_{i=1}^{k} P(\mathbf{A}(\mathbf{B}\bar{\mathbf{r}}_{i}) = \mathbf{C}\bar{\mathbf{r}}_{i}) = (P(\mathbf{A}(\mathbf{B}\bar{\mathbf{r}}_{1}) = \mathbf{C}\bar{\mathbf{r}}_{1}))^{k} . \tag{2.1}$$

若 **AB** \neq **C**, 则必有 **D** = **AB** – **C** = $(d_{ij})_{n\times n} \neq (0)_{n\times n}$, 此时不妨假设 $d_{11} \neq 0$. 随机向量 $\bar{\mathbf{r}}_1 = (r_{11}, r_{12}, \dots, r_{1n})^{\top}$ 中每个元素都是从 $\{0,1\}$ 独立等可能随机选取, 由于结果返回 "是" 可知 $\mathbf{D}\bar{\mathbf{r}}_1 = 0$, 由此可得

$$d_{11}r_{11} + d_{12}r_{12} + \dots + d_{1n}r_{1n} = 0 \implies r_1 = -\frac{d_{12}r_{12} + \dots + d_{1n}r_{1n}}{d_{11}}$$
.

因此无论 r_{12}, \ldots, r_{1n} 取何值,等式 $d_{11}r_{11} + d_{12}r_{12} + \cdots + d_{1n}r_{1n} = 0$ 是否成立可根据 r_{11} 的值决定. 再根据 $P(r_{11} = 0) = P(r_{11} = 1) = 1/2$ 得到等式 $d_{11}r_{11} + d_{12}r_{12} + \cdots + d_{1n}r_{1n} = 0$ 成立的概率不超过 1/2,因此有

$$P(\mathbf{A}(\mathbf{B}\overline{\mathbf{r}}_1) = \mathbf{C}\overline{\mathbf{r}}_1) \leqslant 1/2.$$

结合 (2.1) 完成证明.

证明的思想又被称为 **延迟决策原理** (Principle of deferred decision), 当有多个随机变量解决一个问题时,可以先着重考虑其中一个或一些变量,而让其它剩余的变量保持随机性,即延迟甚至不需考虑剩余变量对决策的影响. 在上面的证明过程中,针对多个随机变量 $r_{11}, r_{12}, \cdots, r_{1n}$,着重考虑随机变量 r_{11} ,通过 r_{11} 概率的取值直接解决问题,而没有考虑其它变量的可能性.

2.4.3 隐私问题的调查*

现实生活中的每个人都有一些隐私,相关信息不希望被外人知晓,然而对于一些具有社会普遍性的隐私问题,需要对此进行一定的了解和调查,例如在校大学生有抑郁倾向的同学占有多少比例,家庭不和谐的同学占有多少比例,等等.这些信息属于个人隐私不便直接咨询,可借助全概率公式来设计一种解决方案:使被调查者愿意作出真实回答,且又能较好地保护个人隐私.

经过多年研究与实践,心理学家和统计学家设计了一种巧妙的方案,核心有如下两个问题:

[**问题 A**:] 是男性还是女性? [**问题 B**:] 否有抑郁的倾向?

再准备一个盒子, 里面装有 m 个白球和 n 个红球. 被调查者随机抽取一球, 若抽到白球回 答问题 A, 否则回答问题 B. 在问卷的答案上只有两选项: "是"或"否", 无论哪个问题都只需选 择"是"或"否",最后将答卷放入一个投票盒内密封.

上述的抽球与回答过程都在一间无人的房间内进行,任何人都不知道被调查者抽到什么颜色的 球,也不知道答案,很好地保护了个人隐私.如果解释清楚了该方案并严格执行,那么被调查者很容 易确信他/她参加这次调查不会泄露个人隐私,从而愿意配合调查.

当有 N > 500 个人参加调查后, 就可以打开投票盒进行统计. 设有 N_u 张答卷选择"是", 于是有

$$P(回答"是") \approx N_y/N$$
.

设有抑郁倾向的概率为p,即

$$P(回答"是"|红球) = p.$$

不妨假设男性和女性参与的概率相同, 均为 1/2, 即

$$P(回答"是"|白球) = 1/2.$$

根据全概率公式有

P(回答"是") = P(回答"是"|抽到红球)P(抽到红球) + P(回答"是"|抽到白球)P(抽到白球).

由此可得

$$\frac{N_y}{N} \approx \frac{m}{m+n} \times \frac{1}{2} + \frac{n}{m+n} \times p,$$

进一步估计出具有抑郁倾向的学生比例为 $p \approx (m+n)N_y/nN - m/2n$.

2.4.4 完全图着色*

平面上有n个顶点,其中任意三个顶点不在同一条直线上,用n(n-1)/2条边将这些顶点连接 起来的图称为 n 个顶点的 完全图, 例如三个、四个、五个顶点的完全图如下所示:

三个顶点的完全图

四个顶点的完全图

五三个顶点的完全图

将图中的每条边都分别染成红色或蓝色, 给定正整数 $n \ge 10$ 和 k > n/2, 是否存在一种染色方法, 使 图上任意 k 个顶点所构成的完全子图所对应的 k(k-1)/2 条边不是同一颜色?

可以利用概率方法来求解这类存在性的问题: 假设每条边等可能独立地被染成红色或蓝色. 即 每条边为红色或为蓝色的概率均为 1/2. 从 n 个顶点中选出 k 个顶点共有 $\binom{n}{k}$ 中不同的方法, 分别 对应于 $\binom{n}{k}$ 个不同的完全子图,将这些完全子图分别标号为 $1,2,\cdots,\binom{n}{k}$.

2.4 案例分析 49

用 E_i 表示第 i 个完全子图中 k(k-1)/2 条边染成相同颜色的事件, 根据题意可得

$$P(E_i) = 2(1/2)^{k(k-1)/2}$$
 $i = 1, 2, \dots, \binom{n}{k}$.

所有完全子图中至少有一个被染成同一颜色的事件可表示为 $\bigcup_{i=1}^{\binom{n}{k}} E_i$. 根据布尔不等式有

$$P\left(\bigcup_{i=1}^{\binom{n}{k}} E_i\right) \leqslant \sum_{i=1}^{\binom{n}{k}} P(E_i) = \binom{n}{k} (1/2)^{k(k-1)/2-1}.$$

当 $n \ge 10$ 和 k > n/2 时有 $P\left(\bigcup_{i=1}^{\binom{n}{k}} E_i\right) < 1$,因此事件"完全图中任意 k 个顶点,其相应的 k(k-1)/2 条边不是同一颜色"的概率大于零. 这意味着至少存在一种染色方法,使得对任意 k 顶点集合所对应的 k(k-1)/2 边染色不全相同.

这种将概率用于求解纯粹确定性问题的方法称为 概率化方法 (probabilistic method), 在计算 机或人工智能中经常用到. 前面的分析说明了完全图染色满足要求的存在性, 如何涂颜色: 一种方法 是随机涂色, 然后检查所涂的颜色是否满足所要求的性质; 重复这个过程直到成功为止.