Example similar to homework

inputs in order: D, F, X, T, B, Q, G, Y, C, Z, S, A

If the new input coming in is larger, it goes to the right, if it is smaller, it goes to the left.

Resulting Binary Search Tree

How to store the Binary Search Tree using Key, Left and Right from previous problem

Sorting a Binary Search Tree of order 3 using previous inputs

**order 3 means every node can hold 3 inputs

inputs in order: D, F, X, T, B, Q, G, Y, C, Z, S, A

inserting D, F, X is straight forward because a single node can hold the 3 inputs

Insert T: T does not fit so the node is split, and T is placed before X

Insert B:

Insert Q:

Insert C: C does not fit so the nodes are split again BUT now there are 4 max nodes so the root node needs to be split and a new root is created

Insert Z: split node remember to update root

