単元別演習 2次関数③

総合演習(解答)

₽問1

 $f(x) = -x^2 + 2ax - a^2 - 1$ ($-1 \le x \le 1$) の最大値を求めよ.

₩ 解答

- $f(x) = -x^2 + 2ax a^2 1 = -(x^2 2ax + a^2) 1 = -(x a)^2 1$ これは軸が x = a、頂点が (a, -1) で上に凸の放物線である.定義域は $-1 \le x \le 1$ であり、軸の位置で場合分けする.
- (i) a < -1 のとき定義域内で関数は単調減少する. よって、x = -1 で最大値をとる. 最大値は $f(-1) = -(-1-a)^2 1 = -a^2 2a 2$.
- (ii) $-1 \le a \le 1$ のとき頂点が定義域内にあるため、x=a で最大値をとる.最大値は f(a)=-1.
- (iii) a>1 のとき定義域内で関数は単調増加する. よって、x=1 で最大値をとる. 最大値は $f(1)=-(1-a)^2-1=-a^2+2a-2$.

₽問2

x,y を実数とし, $x^2 - xy + y^2 = 1$ を満たすとする. t = x + y とおくとき, 次の問いに答えよ.

- (1) xy を t を用いて表せ.
- (2) t の値の範囲を求めよ.
- (3) 2x + 3xy + 2y の最大値および最小値と、そのときの x, y の値を求めよ.

(22 滋賀大)

₩ 解答

- (1) t=x+y の両辺を 2 乗して $t^2=(x+y)^2=x^2+2xy+y^2$. 与式 $x^2-xy+y^2=1$ より $x^2+y^2=1+xy$ であるから、 $t^2=(1+xy)+2xy=1+3xy$ これを xy について解くと $xy=\frac{t^2-1}{3}$.
- (2) x,y は、u についての 2 次方程式 $u^2-(x+y)u+xy=0$ の実数解である。(1) の結果を代入すると $u^2-tu+\frac{t^2-1}{3}=0$. この方程式が実数解をもつ条件は、判別式 $D\geq 0$ である。 $D=(-t)^2-4\left(\frac{t^2-1}{3}\right)=\frac{3t^2-4t^2+4}{3}=\frac{4-t^2}{3}$ $D\geq 0$ より $4-t^2\geq 0 \implies t^2\leq 4$. よって t の値の範囲は $-2\leq t\leq 2$.
- (3) Z=2x+3xy+2y=2(x+y)+3xy とおく. Z を t で表すと $Z(t)=2t+3\left(\frac{t^2-1}{3}\right)=t^2+2t-1$. 定義域 $-2\leq t\leq 2$ でこの関数の最大・最小を求める. $Z(t)=(t+1)^2-2$ より、頂点は (-1,-2).

1

• t = -1 のとき最小値 -2. このとき x + y = -1, xy = 0 より、(x, y) = (0, -1), (-1, 0). • 軸から最も遠い t=2 のとき最大値 7. このとき x+y=2, xy=1 より、(x,y)=(1,1).

₽問3

a,b を正の定数とする. x,y を $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ を満たす実数とするとき, $z=\left(\frac{x}{a}\right)^4+\left(\frac{y}{b}\right)^4$ のとりうる値の範囲は ② $\leq z \leq$ ③ である. (20 関西大)

₩ 解答

 $u=\frac{x}{a}, v=\frac{y}{b}$ とおくと、条件式は $u^2+v^2=1$ となる.このとき $z=u^4+v^4$ である. $z=(u^2+v^2)^2-2u^2v^2=1^2-2u^2v^2=1-2u^2v^2$ $s=u^2$ とおくと、 $v^2=1-u^2=1-s$. $u^2\geq 0, v^2\geq 0$ より、 $s\geq 0, 1-s\geq 0$ なので、 $0\leq s\leq 1$.z を s で表すと、 $z(s)=1-2s(1-s)=2s^2-2s+1$. $0\leq s\leq 1$ の範囲で z(s) の値域を求める. $z(s)=2\left(s-\frac{1}{2}\right)^2+\frac{1}{2}$ これは頂点が $\left(\frac{1}{2},\frac{1}{2}\right)$ で下に凸の放物線である.

- $s = \frac{1}{2}$ のとき最小値 $\frac{1}{2}$
- s = 0.1 のとき最大値 1

よって z のとりうる値の範囲は $\frac{1}{2} \le z \le 1$. ② は $\frac{1}{2}$, ③ は 1.

❷問4

2 次関数 $f(x) = ax^2 - 2ax + b$ (a, b) は定数) は区間 $0 \le x \le 3$ における最大値が 3, 最小値が -5 である. このとき, a, b の値の組をすべて求めよ. (名城大)

₩ 解答

 $f(x) = ax^2 - 2ax + b = a(x-1)^2 - a + b$. 軸は x = 1. 定義域は 0 < x < 3.

- (i) a > 0 のとき (下に凸) 最小値は頂点 x = 1 でとり、f(1) = -a + b = -5. 最大値は軸から最も遠い x = 3 でとり、 $f(3) = a(3-1)^2 a + b = 3a + b = 3$. この連立方程式を解くと、 $4a = 8 \implies a = 2$. b = -5 + a = -3. a > 0 を満たすので、(a, b) = (2, -3) は解である.
- (ii) a < 0 のとき (上に凸) 最大値は頂点 x = 1 でとり、f(1) = -a + b = 3. 最小値は軸から最も遠い x = 3 でとり、f(3) = 3a + b = -5. この連立方程式を解くと、 $4a = -8 \implies a = -2$. b = 3 + a = 1. a < 0 を満たすので、(a, b) = (-2, 1) は解である.
- (iii) a=0 のとき、f(x)=b (定数) となり最大値と最小値が一致するため不適. 以上より、求める組は $(\mathbf{2},-\mathbf{3}),(-\mathbf{2},\mathbf{1}).$

₽問5

a を定数とするとき, 2 次関数 $y = x^2 - 2ax + 2a^2$ について

- (1) 区間 0 < x < 2 におけるこの関数の最大値と最小値を求めよ.
- (2) 区間 $0 \le x \le 2$ におけるこの関数の最小値が 20 であるとき, a の値を求めよ.

(宇都宮大)

₩ 解答

 $y = x^2 - 2ax + 2a^2 = (x - a)^2 + a^2$. 軸は x = a. 定義域は $0 \le x \le 2$.

- (1) 軸の位置で場合分けして最大値と最小値を求める. 最小値
 - a < 0 のとき、x = 0 で最小値 $2a^2$
 - 0 < a < 2 のとき、x = a で最小値 a^2
 - a > 2 のとき、x = 2 で最小値 $2a^2 4a + 4$

最大値 (定義域の中央 x=1 と軸 x=a の位置関係で場合分け)

- a < 1 のとき、x = 2 で最大値 $2a^2 4a + 4$
- a=1 のとき、x=0,2 で最大値 2
- a > 1 のとき、x = 0 で最大値 $2a^2$
- (2) (1) の最小値の場合分けを用いて、最小値が 20 となる a を求める.
 - a < 0 $\emptyset \$ $\ \ \, \ge \ \ \, 2a^2 = 20 \implies a^2 = 10, \ a < 0 \ \ \, \ \ \, 0 \ \ \, \ \ \, a = -\sqrt{10}.$
 - 0 < a < 2 のとき、 $a^2 = 20 \implies a = \pm \sqrt{20} = \pm 2\sqrt{5}$. これらは範囲外なので不適.
 - a > 2 のとき、 $2a^2 4a + 4 = 20 \implies a^2 2a 8 = 0 \implies (a 4)(a + 2) = 0$. a > 2 より a = 4.

以上より、求める a の値は $-\sqrt{10}$, 4.

₽問6

2 次方程式 $mx^2-x-2=0$ の 2 つの実数解が、それぞれ以下のようになるための m の条件を求めよ.

- (1) 2 つの解がともに -1 より大きい.
- (2) 1 つの解は 1 より大きく, 他の解は 1 より小さい.
- (3) 2つの解の絶対値がともに1より小さい.

(岐阜大)

₩ 解答

 $f(x)=mx^2-x-2$ とおく、2 つの実数解をもつので $m\neq 0$ 、判別式 $D=(-1)^2-4(m)(-2)=1+8m\geqq 0 \Longrightarrow m\geqq -\frac{1}{8}$ 、よって考える m の範囲は $[-\frac{1}{8},0)\cup(0,\infty)$ 、軸は $x=\frac{1}{2m}$.

(1) 2 つの解がともに -1 より大きい.

条件は (i) $D\geq 0$, (ii) 軸 >-1, (iii) mf(-1)>0. (ii) $\frac{1}{2m}>-1 \implies \frac{1+2m}{2m}>0$. よって m>0 または $m<-\frac{1}{2}$. (iii) f(-1)=m-1. m(m-1)>0 より m>1 または m<0. 共通範囲を求めると、 $m\geq -\frac{1}{8}$ と $m<-\frac{1}{2}$ に共通部分はない. m>0 の部分では、m>0, m>1 の共通部分

はm > 1. よってm > 1.

- (2) 1 つの解が 1 より大きく、他の解が 1 より小さい. これは 1 が解の間にある条件なので、mf(1)<0. f(1)=m-3 なので、m(m-3)<0. よって 0< m<3.
- (3) 2 つの解の絶対値がともに 1 より小さい \iff 2 つの解が -1 と 1 の間にある. 条件は (i) $D \geq 0$, (ii) -1 < 軸 < 1, (iii) mf(-1) > 0, (iv) mf(1) > 0. (ii) -1 < $\frac{1}{2m}$ < 1. m > 0 のとき $\frac{1}{2} < m$. m < 0 のとき $m < -\frac{1}{2}$. (iii) m > 1 または m < 0. (iv) m > 3 または m < 0. 共通範囲を求めると、 $m \geq -\frac{1}{8}$ と $m < -\frac{1}{2}$ に共通部分はない. m > 0 の部分では、 $m > \frac{1}{2}$, m > 1, m > 3 の共通部分は m > 3. よって m > 3.

☑ 問 7

- (1) a は実数の定数とする. 2 次関数 $f(x) = 2x^2 4ax + a + 1$ が $x \ge 0$ においてつねに f(x) > 0 を満たすような, a の値の範囲を求めよ.
- (2) $0 \le x \le 2$ を満たすすべての実数 x に対して, $x^2 2ax + a 3 \le 0$ が成り立つような定数 a の値の範囲を求めよ.

(秋田大,千葉工業大)

₩ 解答

 $(1) \ f(x) = 2x^2 - 4ax + a + 1 \ \mathcal{O} \ x \geq 0 \ \text{ con最小値が正であればよい.} \ \text{軸は} \ x = a. \ (i) \ a < 0 \ \mathcal{O}$ とき:最小値は $f(0) = a + 1. \ a + 1 > 0 \implies a > -1. \ \text{よって} \ -1 < a < 0. \ (ii) \ a \geq 0 \ \mathcal{O}$ とき:最小値は頂点 $f(a) = -2a^2 + a + 1. \ -2a^2 + a + 1 > 0 \implies 2a^2 - a - 1 < 0 \implies (2a + 1)(a - 1) < 0 \implies -\frac{1}{2} < a < 1. \ a \geq 0 \ \mathcal{E}$ の共通範囲は $0 \leq a < 1. \ (i), (ii) \ \mathcal{E}$ 合わせて -1 < a < 1.

(2) $g(x)=x^2-2ax+a-3$ の $0\leq x\leq 2$ での最大値が 0 以下であればよい. g(x) は下に凸の放物線なので、最大値は定義域の両端のどちらかでとる. よって、 $g(0)\leq 0$ かつ $g(2)\leq 0$ であればよい.

- $g(0) = a 3 \le 0 \implies a \le 3$
- $g(2) = 4 4a + a 3 = 1 3a \le 0 \implies a \ge \frac{1}{3}$

両方を満たす a の範囲は $\frac{1}{3} \leq a \leq 3$.