Prova Scritta di Ricerca Operativa

(Prof. Fasano Giovanni)

Università Ca'Foscari Venezia - Sede di via Torino

8 gennaio 2015

Regole per l'esame: la violazione delle seguenti regole comporta il ritiro dell'elaborato e l'allontanamento dello studente dall'aula

- È necessario rispondere alle domande e risolvere gli esercizi usando esclusivamente i fogli distribuiti dal docente.
- Ogni risposta/calcolo deve essere opportunamente motivata/o dallo studente.
- È necessario scrivere Nome-Cognome-Matricola sul presente foglio e su ciascun foglio contenente le risposte dello studente (i fogli privi di tale informazione saranno cestinati e non considerati per la valutazione).
- L'elaborato deve essere completato in un tempo non superiore a 2h40'.
- È vietato parlare durante la prova.
- È vietato usare durante la prova: testi, appunti, note, dispense, dispositivi cellulari, tablets, palmari, calcolatori/calcolatrici programmabili.
- Durante la prova non è possibile allontanarsi dall'aula.

Nome													
Cognome													
Matricola													

Esercizio 1

Con l'avvicinarsi delle partenze estive per le ferie annuali, l'azienda Autostrade S.p.a. vuole far fronte al flusso degli spostamenti dalle città di Milano e Torino verso le città di Agrigento, Bari e Catania. Più esattamente, si stima che gli spostamenti di automobili siano compresi tra un valore minimo ed uno massimo, espressi (in migliaia di unità) dalla seguente tabella:

	Agri	gento	B	ari	Catania			
	min	max	min	max	min	max		
Torino	35	65	50	100	60	90		
Milano	28	42	60	80	20	45		

È necessario effettuare una previsione per dimensionare il numero di addetti da assegnare ai caselli autostradali delle 5 città sopraindicate, rispettando i seguenti vincoli di legge e le disponibilità di personale:

- in ciascuno dei caselli delle 5 città, deve essere presente un numero di addetti non inferiore al 0.01% dei transiti medi (media algebrica tra il valore minimo e quello massimo);
- per ciascun casellante è previsto un costo per l'impresa, dato dalla seguente tabella (10³ Euro):

Torino	Milano	Agrigento	Bari	Catania			
3,5	3,6	2,8	2,9	2,8			

- il numero totale degli addetti di Milano e Torino non deve superare le 35 unità, mentre nel casello di Bari devono essere presenti almeno 16 addetti;
- il numero complessivo di casellanti di Torino e Milano deve essere non inferiore alla metà dei casellanti di Agrigento, Bari e Catania (complessivamente), ma non superiore al doppio dei casellanti di Bari e Catania (complessivamente);
- la società ha deciso che almeno uno dei seguenti vincoli deve valere:
 - 1. il numero dei casellanti nella città di Torino non può superare il tetto di 19 unità;
 - 2. il numero dei casellanti nella città di Bari non può superare le 18 unità;
 - il numero dei casellanti nella città di Agrigento deve essere non superiore a 9 unità.

Si formuli un modello di PLM sulla base dei soli dati forniti, minimizzando il costo complessivo associato agli addetti dei caselli nelle 5 città suindicate.

Esercizio 2

Applicando il metodo del Simplesso risolvere il seguente problema di programmazione lineare:

$$\begin{aligned} \min & -x_1 + x_2 + x_3 \\ & -x_1 + 2x_2 - x_4 = -2 \\ & -\frac{1}{2}x_1 - x_2 + 2x_3 - 3x_5 \ge -4 \\ & x \ge 0. \end{aligned}$$

Esercizio 3

Si determini preliminarmente in \mathbb{R}^3 il numero massimo di vertici del seguente poliedro. Si determinino poi tali vertici (se esistono).

$$\begin{cases} y_1 + y_2 \ge 5 \\ y_3 \ge 0 \\ 3y_1 \ge 7 \\ y_2 - y_3 = 2 \end{cases}$$

Esercizio 4

Dato il seguente grafo: verificare se il vettore di flusso è ammissibile, calcolare il massimo valore del flusso per il nodo 's', ed indicare un taglio a capacità minima del grafo.

Domanda Scritta 1

Si dimostri che dato il problema

$$\min f(x)$$

$$x \in C,$$

$$(P)$$

se C è un insieme convesso ed f(x) è convessa su C, allora ogni minimo locale di (P) è anche un suo minimo globale.

Domanda Scritta 2

Si enunci e si dimostri il Criterio di Ottimalità per il problema di Programmazione Lineare

$$\max_{Ax = b, \\ x \ge 0.} c^T x$$