

礼 欣 北京理工大学

# NumPy的安装

- NumPy系统是Python的一种开源的数值计算扩展
  - ■可用来存储和处理大型矩阵
  - ■使用前需要安装
    - 可以利用Python自带的pip工具自动安装
    - 或者选择访问下面的网站,下载与Python版本匹配的 exe安装文件
      - http://sourceforge.net/projects/numpy/files/ NumPy/
    - 安装完成后,打开Python3.4,运行命令import numpy,若不出现错误则说明安装成功。

# NumPy的组成与功能

- Numpy(Numeric Python)可以被理解为一个用python实现的科学计算包,包括:
  - 强大的N维数组对象Array;
  - 成熟的函数库;
  - 实用的线性代数、傅里叶变换和随机数生成函数。
- 世提供了许多高级的数值编程工具,如:矩阵数据类
- python。 矢量处理,以及精密的运算库。

#### 基础知识

- NumPy的主要对象是同种元素的多维数组
  - 维度(dimensions)叫做轴(axes)
  - 轴的个数叫做秩(rank)。
  - 例如,在3D空间一个点的坐标 [1, 2, 3] 是一个秩为1的数组, 因为它只有一个轴。轴长度为3.
  - 例如,在[[1.,0.,0.],[0.,1.,2.]]这个例子中,数组的秩为2(它有两个维度).第一个维度长度为2,第二个维度长度为3.



#### 基础知识

- NumPy的数组类被称作ndarray,通常被称作数组。
  - ■注意numpy.array和标准Python库类 array.array并不相同,后者只处理一维数组和提供少量功能。
  - ndarray对象属性主要见下表: 例如其中.shape表示数组的维度 , .size表示数组元



# 基础知识

| 属性               | 解释                                            |
|------------------|-----------------------------------------------|
| Ndarray.shape    | 数组的维度,这是一个指示数组在每个维度上大小的整数元组。                  |
| ndarray.size     | 数组元素的总个数,等于shape属性中元组<br>元素的乘积。               |
| ndarray.dtype    | 一个用来描述数组中元素类型的对象,可以<br>通过使用标准Python类型创造dtype。 |
| ndarray.itemsize | 数组中每个元素字节的大小。                                 |
| ndarry.data      | 包含实际数组元素的缓冲区,通常我们通过索引引用数组元素,不使用这个属性。          |

# 例子

```
>>> a.size
15
>>> type(a)
<class 'numpy.ndarray'>
>>> b = array([6, 7, 8])
>>> b
array([6, 7, 8])
>>> type(b)
<class 'numpy.ndarray'>
>>>
```



# 创建数组(方法一)

■ 创建数组的方法有多种,比如可以使用array函数利用常规的Python列表和元组创造数组。所创建的数组类型由原序列中的元素类型决定。示例如下:

>>> a

>>> from numpy import \*
>>> a = array([2, 3, 4])

array([[ 1.+0.j, 2.+0.j],

[3.+0.j, 4.+0.j]

array([2, 3, 4])

```
>>> a.dtype
dtype('int32')
>>> b = array([1.2, 3.5, 5.1])
>>> b.dtype
dtype('float64')
>>> #一个常见的错误包括用多个数值参数调用`array`而不是
提供一个由数值组成的列表作为一个参数。
>>> a = array(1, 2, 3, 4) #WRONG
Traceback (most recent call last):
    File "<pyshell#7>", line 1, in <module>
        a = array(1, 2, 3, 4) #WRONG
ValueError: only 2 non-keyword arguments accepted
>>> a = array([1, 2, 3, 4]) #RIGHT
>>> c = array([[1, 2], [3, 4]], dtype = complex)
>>> c
```



## 创建数组(方法二)

- NumPy提供了一些使用占位符创建数组的函数。
  - 例如:函数zeros创建一个全是0的数组,函数ones 创建一个全1的数组,函数empty创建一个内容随机并且依赖与内存状态的数组。默认创建的数组类型 (dtype)都是float64。示例如下:



```
>>> zeros((3, 4))
array([[ 0., 0., 0., 0.],
       [ 0., 0., 0., 0.],
       [ 0., 0., 0., 0.]])
>>> ones((2, 3, 4), dtype = int16) # dtype can also be specified
array([[[1, 1, 1, 1],
       [1, 1, 1, 1],
       [1, 1, 1, 1]],
       [[1, 1, 1, 1],
       [1, 1, 1, 1],
       [1, 1, 1, 1]]], dtype=int16)
>>> empty((2, 3))
array([[ 7.17065762e-310, 4.62140475e-273,
                                             5.00016999e+173],
      [ 7.17065513e-310, 1.98488126e-263,
                                             5.00258533e+173]])
```

## 创建数组(方法三)

■此外NumPy提供一个arange的函数返回数组,示例如下:

```
>>> arange(10, 30, 5)
array([10, 15, 20, 25])
>>> arange(0, 2, 0.3) # it accepts float arguments
array([ 0. , 0.3, 0.6, 0.9, 1.2, 1.5, 1.8])
```



# 打印数组

- 打印数组时, NumPy以类似嵌套列表的形式显示
  - 示例如下:其中一维数组被打印成行,二维数组成 矩阵,三维数组成矩阵列表。

```
>>> a = arange(6) # 1d array
>>> print(a)
[0 1 2 3 4 5]
>>> b = arange(12).reshape(4, 3) # 2d array
>>> print(b)
[[0 1 2]
[ 3 4 51
[6 7 8]
[ 9 10 11]]
>>>
>>> c = arange(24).reshape(2, 3, 4) # 3d array
>>> print(c)
[[[ 0 1 2 3]
 [4 5 6 7]
 [ 8 9 10 11]]
 [[12 13 14 15]
 [16 17 18 19]
 [20 21 22 23]]]
>>>
```



#### 基本运算

- 数组的算术运算是按元素进行。
  - NumPy中的乘法运算符\*指示按元素计算
- 矩阵乘法可以使用dot函数或创建矩阵对象实现。

```
示例如下: >>> a = array([20, 30, 40, 50])
                   >>> b = arange(4)
                   >>> b
                   array([0, 1, 2, 3])
                   >>> c = a - b
                   >>> c
                   array([20, 29, 38, 47])
                   >>> b ** 2
                   array([0, 1, 4, 9])
                   >>> 10 * sin(a)
                   array([ 9.12945251, -9.88031624, 7.4511316 , -2.62374854])
                   >>> a < 35
                   array([ True, True, False, False], dtype=bool)
```



#### 基本运算

- 非数组的运算可以利用ndarrary类方法实现。
- I 通用函数(ufunc) -- NumPy提供常见的数学函数如sin, cos和exp。
  - 在NumPy里这些函数作用按数组的元素运算,产生 一个数组作为输出。示例如下:



#### 通用函数示例

```
>>> a = random.random((2, 3))
>>> a
array([[ 0.52732678, 0.92066148, 0.25701814],
       [ 0.66596685, 0.24443251, 0.39027655]])
>>> a.sum()
3.0056823003535524
>>> a.min()
0.24443250574359088
>>> a.max()
0.92066148305911222
>>> b = arange(12).reshape(3, 4)
>>> b
array([[ 0, 1, 2, 3],
      [4, 5, 6, 7],
       [8, 9, 10, 11]])
>>> b.sum(axis = 0)
array([12, 15, 18, 21])
>>> #sum of each column
>>>
>>> b.min(axis = 1) # min of each row
array([0, 4, 8])
>>>
>>> b.cumsum(axis = 1) # cumulative sum along each row
array([[ 0, 1, 3, 6],
       [4, 9, 15, 22],
       [ 8, 17, 27, 38]], dtype=int32)
```

#### 索引、切片与迭代

9.0

■数组还可以被索引、切片和迭代,示例如下:

```
>>> a = arange(10) ** 3
>>> a
array([ 0, 1, 8, 27, 64, 125, 216, 343, 512, 729], dtype=int32)
>>> a[2]
>>> a[2:5]
array([ 8, 27, 64], dtype=int32)
>>> a[:6:2] = -1000 \# equivalent to a[0:6:2] = -1000; from start to posi
tion6, exclusive, set every 2nd element to -1000
>>> a
array([-1000, 1, -1000, 27, -1000, 125, 216, 343, 512,
729], dtype=int32)
>>> a[::-1] # reversed a
array([ 729, 512, 343, 216, 125, -1000, 27, -1000,
1000], dtype=int32)
>>> for i in a:
       print(i ** (1 / 3.),)
nan
1.0
nan
3.0
nan
5.0
6.0
7.0
8.0
```



### 矩阵运算

- NumPy对于多维数组的运算,缺省情况下并不使用矩阵运算, 对数组进行矩阵运算,可调用相应的函数。
- numpy库也提供了matrix类,使用matrix类创建的是矩阵对象, 它们的加减乘除运算缺省采用矩阵方式计算,用法和matlab十分

■ 矩阵中更高级的一些运算可以在NumPy的线性代数子库linalg中 找到。例如inv函数计算逆矩阵, solve函数可以求解多元一次方

### 函数和方法的总览

NumPy库提供作用丰富的函数和方法,下面是一个分类排列目录总揽,大家可以通过手册即用即学。

| 分类       | 函数                                                                                                                                                                                  |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 创建数<br>组 | arange, array, copy, empty, empty_like, eye, fromfile, fromfunction, identity, linspace, logspace, mgrid, ogrid, ones, ones_like, r , zeros, zeros_like                             |
| 转化       | astype, atleast 1d, atleast 2d, atleast 3d, mat                                                                                                                                     |
| 操作       | array split, column stack, concatenate, diagonal, dsplit, dstack, hsplit, hstack, item, newaxis, ravel, repeat, reshape, resize, squeeze, swapaxes, take, transpose, vsplit, vstack |