Linear Regression: Loss function

Fitting an estimator/predictor/model involves solving for the Θ that minimizes the Loss function.

For a Regression task: our goal is to make the discrepancy (error) between y and \hat{y} "small".

• The discrepancy between $\mathbf{y^{(i)}}$ and $\hat{\mathbf{y}^{(i)}}$ is referred to as the *residual*, usually denoted by ϵ

$$\epsilon^{(\mathbf{i})} = \mathbf{y^{(i)}} - \hat{\mathbf{y}}^{(\mathbf{i})}$$

So

$$\mathbf{y} = \hat{\mathbf{y}} + \epsilon$$
 $= \mathbf{X}\Theta + \epsilon$

We define the per-example loss to be the residual squared

$$\mathcal{L}_{\Theta}^{(\mathbf{i})} = (\mathbf{y^{(i)}} - \hat{\mathbf{y}^{(i)}})^2$$

so that the average loss

$$egin{array}{lll} \mathcal{L}_{\Theta} & = & rac{1}{m} \sum_{i=1}^m \mathcal{L}_{\Theta}^{(\mathbf{i})} \ & = & rac{1}{m} \sum_{i=1}^m (\mathbf{y^{(i)}} - \hat{\mathbf{y}^{(i)}})^2 \end{array}$$

This expression on the right is called the *Mean Squared Error (MSE)*.

$$\mathrm{MSE}(\mathbf{y}, \hat{\mathbf{y}}) = \frac{1}{m} \sum_{i=1}^{m} (\mathbf{y^{(i)}} - \hat{\mathbf{y}^{(i)}})^2$$

 You will sometimes see Root Mean Squared Error (RMSE) which is the square root of the MSE

Notice that the Performance Metric and Los	ss Functions are identical in this case.
This will not always be true.	

$oldsymbol{R^2}$ versus RMSE: Absolute versus relative error

One often sees the term \mathbb{R}^2 in the context of Linear Regression.

Whereas RMSE is an absolute error (in same units as ${\bf y}$), R^2 is a relative error (in units of percent).

• it is sometimes easier to understand the error in *relative* terms

The relationship is:

$$egin{array}{lll} R^2 &=& 1-\left(rac{\sum_{i=1}^m \left(\mathbf{y}_i - \hat{\mathbf{y}}_i
ight)^2}{\sum_{i=1}^m \left(\mathbf{y}_i - ar{\mathbf{y}}_i
ight)^2}
ight) \ &=& 1-\left(rac{m\cdot \mathrm{MSE}(\mathbf{y}, \hat{\mathbf{y}})}{\sum_{i=1}^m \left(\mathbf{y}_i - ar{\mathbf{y}}_i
ight)^2}
ight) \ &=& 1-\left(rac{m\cdot \mathrm{RMSE}(\hat{\mathbf{y}}, \mathbf{y})^2}{\sum_{i=1}^m \left(\mathbf{y}_i - ar{\mathbf{y}}_i
ight)^2}
ight) \end{array}$$

The denominator

$$\sum_{i=1}^m \left(\mathbf{y}_i - ar{\mathbf{y}}_i
ight)^2$$

is independent of the model (just a property of the targets)

Treating it as a constant

• we see that \mathbb{R}^2 increases as RMSE decreases.

In addition to changing the units of error, the \mathbb{R}^2 metric has an interesting interpretation.

Consider a naive "baseline" model for prediction

- predict $\bar{\mathbf{y}}$ for every value of \mathbf{x}
 - where $\bar{\mathbf{y}}$ is the average (over the training examples) of the target

The loss for the naive model is

$$\mathcal{L}_{ ext{naive}} = ext{MSE}(\mathbf{y}, ar{\mathbf{y}})$$

Then

$$egin{array}{lll} R^2 &=& 1 - \left(rac{m \cdot ext{MSE}(\mathbf{y}, \hat{\mathbf{y}})}{m \cdot ext{MSE}(\mathbf{y}, ar{\mathbf{y}})}
ight) \ &=& 1 - rac{\mathcal{L}}{\mathcal{L}_{ ext{paire}}} \end{array}$$

Thus, R^2 is the percent reduction in loss achieved by our model compared to the naive model that always predicts $\bar{\mathbf{y}}$.

We now know our Loss function for the Linear Regression model.

Fitting the Linear Regression model solves for the Θ^* that minimizes average loss

$$\Theta^* = \operatorname*{argmin}_{\Theta} \mathcal{L}_{\Theta}$$

which are the parameter values that minimizes MSE.

```
In [3]: print("Done")
```

Done