

⁽¹⁹⁾ RU ⁽¹¹⁾ 2 048 268 ⁽¹³⁾ C1

(51) MUK⁶ B 22 F 3/16

AI

РОССИЙСКОЕ АГЕНТСТВО ПО ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ

- (21), (22) Заявка: 5046757/02, 09.06.1992
- (46) Дата публикации: 20.11.1995
- (56) Ссылки: Переработка лома и отходов металлов//Metall, 1985, Vol.39, N 2, p.140-144.
- (71) Заявитель: Малое предприятие "Порошковый инструмент"
- (72) Изобретатель: Гиршов В.Л., Петров Н.П.
- (73) Патентообладатель: Малое предприятие "Порошковый инструмент"

(54) СПОСОБ ИЗГОТОВЛЕНИЯ ДЕФОРМИРОВАННЫХ ПОЛУФАБРИКАТОВ ИЗ ТИТАНОВОЙ СТРУЖКИ

(57) Реферат:

Использование: для переработки титановой стружки. Стружку перед холодным прессованием подвергают вакуумному обжигу при 700 - 800°С с выдержкой 0,5 1 ч. После горячего прессования полученные брикеты

подвергают гомогенизации при температуре 1150 1220°С с выдержкой 3 4 ч. Холодное прессование проводят при давлении 370 - 550 МПа, а горячее прессование при давлении 400 600 МПа и температуре 1100 1200°С. 1 з.п. ф-лы, 1 табл.

—

⁽¹⁹⁾ RU ⁽¹¹⁾ 2 048 268 ⁽¹³⁾ C1

(51) Int. Cl.⁶ B 22 F 3/16

RUSSIAN AGENCY FOR PATENTS AND TRADEMARKS

(12) ABSTRACT OF INVENTION

(21), (22) Application: 5046757/02, 09.06.1992

(46) Date of publication: 20.11.1995

- (71) Applicant: Maloe predprijatie "Poroshkovyj instrument"
- (72) Inventor: Girshov V.L., Petrov N.P.
- (73) Proprietor:

 Maloe predprijatie "Poroshkovyj instrument"

(54) METHOD FOR MAKING DEFORMED HALF-PRODUCTS FROM TITANIUM CHIPS

(57) Abstract:

FIELD: processing of titanium chips. SUBSTANCE: before cold-pressing, the chips are roasted in vacuum at 700-800 C for 0.5-1 h. After hot-pressing the resulting briquettes are homogenized at 1150-1220 C

for 3-4 h. Cold-pressing is carried out at a pressure of 370-550 MPa while hot-pressing, at 400-600 MPa and a temperature of 1100-1200 C. EFFECT: higher efficiency. 2 cl, 1 tbl

 ∞

Изобретение относится к области цветной металлургии, в частности, к способам переработки промышленных отходов, преимущественно в виде титановой стружки.

Известен способ получения титана из промышленных отходов, содержащих титан (патент Румынии N 60160, кл. G 01 G 23/08, 1987), включающий растворение сырья в кислотах и последующее извлечение титана путем восстановления, например тетрахлорида (TiCl4) металлическим магнием.

Недостатки такого способа-высокая трудоемкость, возможность дополнительного загрязнения титана посторонними примесями, повышенный экологический ущерб окружающей среде, типичный для химических производств.

По способу (патент Австрии N 380491, кл. С 22 В 7/00, 1986) стружку титана смешивают со связкой, уплотняют и расплавляют.

Недостатки этого способа загрязнение титана материалом связки и, как спедствие, низкое значение пластичности переплавленного металла.

Наиболее близким по технической сущности и достигаемому результату является способ переработки титановой стружки, включающий ее измельчение, очистку, холодное и горячее прессование. Данный способ выбран в качестве прототипа.

Недостатком прототипа является наличие технологической операции травления стружки в кислотах, что может приводить к увеличению экологического ущерба окружающей среде. Операция травления часто не обеспечивает необходимый уровень пластичности деформированного полуфабриката (относительное удлинение δ≥5%).

Цель изобретения снижение экологического ущерба за счет исключения из технологического процесса операции травления и повышение пластичности деформированного полуфабриката.

Сущность изобретения состоит в том, что, кроме известных операций измельчения стружки, ее очистки, холодного и горячего прессования, дополнительно перед холодным прессованием стружку подвергают вакуумному отжигу при температуре 700-800 °C с выдержкой 0,5-1 ч, а после горячего прессования проводят гомогенизацию при температуре 1150-1220°C с выдержкой 3-4 ч. Холодное прессование проводят при давлении 370-550 МПа, а горячее прессование при температуре 1100-1200°С и давлении 400-600 МПа. Достигаемый технический и экологический результаты находятся в прямой причинно-следственной СВЯЗИ существенными признаками изобретения, а именно реализация последовательности операций и режимов их проведения обеспечивают снижение экологического ущерба окружающей среде и повышение пластичности деформированного полуфабриката. Оптимальные значения технологии параметров определены В процессе экспериментальным путем. вакуумного отжига с поверхности стружки удаляются посторонние примеси, оставшиеся после операции очистки стружки путем ее горячей промывки. Если температура отжига менее 700°С и выдержка меньше 0,5 ч, то

4

 ∞

N

ത

 ∞

C

оставшаяся после очистки смазочно-охлаждающая жидкость удаляется не полностью. Увеличение температуры отжига свыше 800°С и выдержка более 1 ч приводят к неоправданному расходу энергии и лишено практического смысла. Вакуумный отжиг снижает также наклеп стружки после ее механического измельчения и этим улучшает прессуемость стружки.

При холодном прессовании стружки с давлением менее 370 МПа не достигается требуемая плотность брикета (60% от теоретической) и последний осыпается или разрушается. Увеличение давления прессования свыше 550 МПа существенно не влияет на повышение плотности брикета и в то же время приводит к повышенному износу элементов прессовой оснастки.

Температурный интервал горячего прессования в пределах 1100-1200 °C и параметры давления 400-600 МΠа определены из условия получения брикета с плотностью более 95% от теоретической. При температуре меньше 1100°С и давлении менее 400 МПа указанная плотность не обеспечивается. Увеличение температуры свыше 1200°C и давления более 600 МПа в малой степени влияют на дальнейшее повышение плотности брикета и приводят к увеличению расхода энергии и повышенному износу оснастки. Критическое значение плотности брикета 95% определено по результатам его последующего горячего деформирования. При плотности менее 95% от теоретической брикеты часто разрушаются при деформации.

Гомогенизация горячепрессованного брикета при температуре 1150-1220°C с выдержкой 3-4 ч способствует увеличению поверхности контакта между частицами стружки, по которой обеспечивается прочное диффузионное "схватывание". Это повышает пластичность прессованного брикета до требуемого уровня. При температуре гомогенизации ниже 1150°C и выдержке менее 3 ч диффузионный по природе процесс "схватывания" протекает медленно и не обеспечивает развития поверхности контакта. Увеличение температуры гомогенизации свыше 1220°С и выдержки более 4 ч не имеет практического смысла из-за слабого влияния этих параметров на дальнейшее развитие поверхности контакта и увеличение расхода энергии. Способ осуществляют следующим образом (CM. пример 3 Вьюнообразную титановую стружку дробили в молотковой дробилке с таким расчетом, чтобы размер (длина) отдельных частиц стружки не превышала 0,2 от диаметра контейнера, в котором производится последующее холодное брикетирование. Размолотую стружку подвергали магнитной сепарации, затем промывали в горячем содовом растворе, после чего отжигали в вакууме при температуре 750°C с выдержкой 0,8 ч. Окончательно очищенную стружку брикетировали на прессе в цилиндрическом контейнере при давлении 450 МПа до плотности брикета не менее 60% от теоретической. Фактическая плотность 61-62% составляла брикета Затем холоднопрессованный брикет поместили в тонкостенную стальную капсулу, которую загерметизировали путем приварки крышек.

 ∞

2 တ ∞

Капсулу с брикетом нагрели до 1150°C и при этой температуре произвели горячее прессование (осадку) капсулы цилиндрическом контейнере (штампе) при давлении 500 МПа. После прессования брикет подвергали гомогенизации при температуре 1200°C с выдержкой 3,5 ч. Стальная оболочка брикета (капсула) удалялась обточкой на токарном станке непосредственно после гомогенизации, или после дополнительной горячей деформации брикета, которая осуществляется способами экструзии, ковки или прокатки. В результате могут быть изготовлены деформированные полуфабрикаты, прутки, поковки, трубы и др.

Примеры 1, 2, 4 и 5 осуществлялись в аналогичном порядке. Технические результаты и параметры проведенных опробований заявляемого способа и способа-прототипа приведены в таблице.

В результате проведенных экспериментов

заявленный способ изготовления деформированных полуфабрикатов титановой стружки обеспечивает повышение пластичности заготовок в 1,5-2 раза по сравнению с прототипом.

Формула изобретения:

СПОСОБ изготовления ДЕФОРМИРОВАННЫХ ПОЛУФАБРИКАТОВ ИЗ ТИТАНОВОЙ СТРУЖКИ, включающий измельчение, очистку, холодное и горячее прессование, отличающийся тем, что стружку перед холодным прессованием подвергают вакуумному отжигу при 700 800°C с выдержкой 0,5 1 ч, а после горячего прессования проводят гомогенизацию при 1050 1220°C с выдержкой 3 4 ч.

2. Способ по п.1, отличающийся тем, что холодное прессование проводят при давлении 370 550 МПа, а горячее прессование при давлении 400 600 МПа и температуре 1100 1200°С.

9

20

25

30

35

40

45

50

55

60

RU 2048268 C1

				1		21: -	2				
Пример				Параметры	7				Результаты экспериментов	сперименто	
	Вакуумн	Вакуумный обжиг	Холодное	Горячее прессование	ессование	Гомоге	Гомогенизация	Плотность	Плотность брикета. %	Пластич-	Пластич- Наличие де-
			прессова-							ность* де-	фектов
			ние							формиро-	-
	Темпера-	Выдерж-	Давле-	Давле-	Темпера-	Темпера-	Выдержка,	Холодное	Горячее	ванного	
	тура, °С	Ка, ч	ние, МПа	ние, МПа	тура, °С	тура, °С	3	прессова-	прессова-	полуфаб-	
								ние	ние	риката, %	
-	620	1,2	350	320	1000	1100	5,5	55-58	87-90	0,2-3	Трещины,
				-							разруше-
	-			_		- · · · · ·					ние брике-
		-				·					идп вот
											деформа-
											TRN
7	9	0,1	370	009	1100	1150	4,0	60-61	92-96	8-9	Нет замеча-
,											ī
3	750	0.8	420	200	1150	1200	3,5	61-62	95-97	6-10	:
4	800	9'0	550	400	1200	1220	3.0	60-63	96-97	6-12	
2	820	0,5	009	. 650	1250	1300	3.0	62-64	97-98	7-12	
Прототип	1	ı	200	200	1150	1	•	60-62	95-96	3-6	Возможен
							-				брак в виде
				,							трешин

* Характеристика пластичности представляет собой относительное удлинение образцов, вырезанных из прутков D 20 мм и испытанных при комнатной температуре.

RU 2048268 C1