ЗАДАНИЕ ЗА КУРСОВА РАБОТА

<u>Зад. 1.</u> Съставете верностната таблица и проверете дали:

- а) твърдението : $(Q \land (Q \to P)) \to P$ е тавтология;
- б) логическите изрази: $(P \to Q) \leftrightarrow (P \to R)$ и $(Q \land R) \lor \ \ \ P$ са еквивалентни.

<u>Зад. 2.</u> Нека $A=\{2,1,4\}$, $B=\{3,1,5\}$, $C=\{7,9,2\}$; U е множеството на цифрите в десетична БС. Намерете множествата и определете тяхната мощност:

- 1. $M = A \cup B$
- 2. $N = \overline{A} \cap C$
- 3. $P = (A \cup B) \cap C$

- 4. $Q = \overline{(A \cap B)} \cup C$
- 5. L = U B
- 6. $K = A \times B$

3ад. 3. Как ще обходим дадените дървета, ако използваме

а) преордер за генериране списък на възлите;	б) постордер за генериране списък на възлите.	
g m n p r	a c h g j m	

Зад. 4. Намерете полинома на Жигалкин за следната двоична функция.

x_1	x_2	<i>x</i> ₃	f
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

<u>Зад.5</u> За функциите от *Таблица 1* намерете:

x_1	x_2	<i>x</i> ₃	f_1	f_2	f_3
0	0	0	1	1	1
0	0	1	0	1	0
0	1	0	1	0	1
0	1	1	1	0	1
1	0	0	0	1	1
1	0	1	1	1	0
1	1	0	0	0	1
1	1	1	0	0	0

Таблица 1

- а) двойнствените и проверете за самодвойнственост;
- б) проверете за монотонност;
- в) проверете дали са линейни.

Зад. 6. Пълно ли е множеството $F1 = \{0, 1, \overline{x1} \lor \overline{x2} \}$?

Зад. 7. Конструирайте *неавтоматна* и *автоматна* граматики, пораждащи езика

$$L = \{a^{2n}b^m, m, n \ge 1\}$$

<u>Зад. 8.</u> За ДКА A1 =<{q0, q1, q2}, {a, b}, δ , q0, {q1}> с функция на преходите:

 $\delta(q0,a)=q1$

 $\delta(q0,b) = q0 \qquad \qquad \delta(q2,a) = q0$

 $\delta(q1,b)=q1$

 $\delta(q_{1,a}) = q_{2}$ $\delta(q_{2,b}) = q_{1}$

- а) Начертайте графичната диаграма
- б) Проверете дали ДКА ще разпознае думите: aabba; abbab; bbaba
- в) Напълно определен ли е ДКА?

3ад. 9. За НДКА $A = < \{S, A, B, E\}, \{a, b\}, \delta, S, \{E\} > c$ функция на преходите:

 $\delta(S, a) = \{S, A\} \qquad \delta(B, a) = \{E\}$

 $\delta(S, b) = \{A\} \qquad \delta(B, b) = \emptyset$

 $\delta(A, a) = \emptyset$ $\delta(E, a) = \emptyset$

 $\delta(A, b) = \{B\}$ $\delta(E, b) = \emptyset$

- а) Начертайте диаграмата на преходите;
- б) Разпознава ли думите: aaabb; aba; aaaaba;

<u>Зад. 10</u>. Конструирайте краен автомат, който разпознава езика $L = \{a^{2n}b^m, m, n \ge 0\}$.