Dynamic System Modeling & PID Controller Design for a Molten Salt Microreactor

Sam J. Root

University of Idaho - Idaho Falls Center for Higher Education Department of Nuclear Engineering and Industrial Management

December 6th, 2023

University of Idaho

Department of Nuclear Engineering and Industrial Management

About the Author

Experience

B.S Chemical Engineering (2015-2019) - Michigan Technological University M.S. Nuclear Engineering (2021-2023) - University of Idaho - NRC Fellow Modeling and Simulation Intern at Idaho National Lab

Select Publications

Root, S. J., et al., 2023. Thermodynamic analysis on xenon stripping to shorten restart time in molten salt microreactors.

Nuclear Engineering and Design 414, 112606

Root, S. J., et al., 2023. Cyber hardening of nuclear power plants with real-time nuclear reactor operation, 1. preliminary operational testing. Progress in Nuclear Energy 162, 104742

MSNB Modeling & Control

Sam J. Root

The Molten Salt Nuclear Battery

Control Engineering

Reactor Characterization

Analysis

Conclusions

Outline

- 1 The Molten Salt Nuclear Battery
- 2 Process Control Engineering
- 3 Reactor Characterization
- 4 Results and Analysis
- 5 Conclusions

- The Molten Salt Nuclear Battery
 - Introduction
 - Xenon-135 Stripping In-Brief
- 2 Process Control Engineering
- Reactor Characterization
- 4 Results and Analysis
- 5 Conclusions

Modeling & Control

Sam J. Root

The Molten Salt Nuclear Battery

Control Engineering

Introduction

Reactor Characterization

Analysis

Conclusions

Background

Gen-IV

- Complete re-designs
- Smaller footprint
- Deployability
- Versatility

Molten Salt Reactors

Microreactors

MSNB Modeling & Control

Sam J. Root

The Molten Salt Nuclear Battery

Process Control Engineering

Reactor Characterization

esults and nalysis

onclusions

Background

Gen-IV

Molten Salt Reactors

- High temperature
- Low pressure
- High specific heat

Microreactors

MSNB Modeling & Control

Sam J. Root

The Molten Salt Nuclear Battery

Process Control Engineering

Reactor Characterization

esults and nalysis

nclusions

Background

Gen-IV

Molten Salt Reactors

Microreactors

- Less than 50 MW
- Assembly line manufacturing
- Deliver/installation vs. construction

MSNB Modeling & Control

Sam J. Root

The Molten Salt Nuclear Battery

> Process Control Engineering

Reactor Characterization

Results and Analysis

Conclusions

Molten Salt Nuclear Battery

Fuel/Primary Coolant

- Self-Contained liquid fueled molten salt micro-reactor
- 10 year design
- ullet 10 MWth using HALEU UF_4 dissolved in FLiNaK
- Natural circulation driven

Control Drums

Simplified schematic drawing of an MSNB

MSNB Modeling & Control

Sam J. Root

The Molten Salt Nuclear Battery

Process Control Engineering

leactor Char cterization

nalysis

Conclusions

Molten Salt Nuclear Battery

Fuel/Primary Coolant

Control Drums

- Criticality is manipulated using axial control drums
- Neutron absorber plate covering cylinders of neutron reflector
- Drums are rotated to point more absorber towards the core to insert negative control reactivity

MsNB Control Drums

MSNB Modeling & Control

Sam J. Root

The Molten Salt Nuclear Battery

Process Control Engineering

Reactor Characterization

nalysis

Conclusions

Reference:

Previous and Present Work

Neutronics [3]

- Control drums give a uniform axial and radial flux profile for all reactivity insertions
- Control drum vs. reactivity curve is sinusoidal

Thermal Hydraulics [4]

Process Control

[3] Peterson, J., 8 2019. An analysis of the nuclear characteristics of a molten salt microreactor. Master's thesis. University of Idaho

[4] Carter, J. P., 2022. Multi-physics investigation of a natural circulation molten salt micro-reactor that utilizes an experimental in-pile device to improve core physics and system thermal-hydraulic performance. Ph.D. thesis. University of Idaho

MSNB Modeling & Control

Sam J. Root

The Molten Salt Nuclear Battery

Previous and Present Work

Neutronics [3]

Thermal Hydraulics [4]

- Transient simulations can be reduced to 1D and still correspond to STAR-CCM+
- Stable autonomous load following for relatively small ramp function power demand transients

Process Control

MSNB Modeling & Control

Sam J. Root

The Molten Salt Nuclear Battery

Process Control Engineering

> Reactor Characterization

> > esults and nalysis

onclusions

^[3] Peterson, J., 8 2019. An analysis of the nuclear characteristics of a molten salt microreactor. Master's thesis, University of Idaho

^[4] Carter, J. P., 2022. Multi-physics investigation of a natural circulation molten salt micro-reactor that utilizes an experimental in-pile device to improve core physics and system thermal-hydraulic performance. Ph.D. thesis, University of Idaho

Previous and Present Work

Neutronics [3]

Thermal Hydraulics [4]

Process Control

- Design controller *compliment* the autonomous capabilities provided by the passive feedback mechanisms
- Allow larger faster, more aggressive power changes
- Return MSNB to steady-state operation faster

MSNB Modeling & Control

Sam J. Root

The Molten Salt Nuclear Battery

Control Engineering

Reactor Characterization

Analysis

onclusions

^[3] Peterson, J., 8 2019. An analysis of the nuclear characteristics of a molten salt microreactor. Master's thesis, University of Idaho

^[4] Carter, J. P., 2022. Multi-physics investigation of a natural circulation molten salt micro-reactor that utilizes an experimental in-pile device to improve core physics and system thermal-hydraulic performance. Ph.D. thesis, University of Idaho

Xenon-135 Stripping In-Brief

Modeling & Control

Sam J. Root

The Molten Salt Nuclear Battery

Process Control Engineering

Reactor Characterization

Results and Analysis

Conclusions

Conclusions

Fission Product Poisoning

MSNB Modeling & Control

Sam J. Root

The Molten Salt Nuclear Battery

Process Control Engineering

> Reactor Characterization

Results and Analysis

Conclusions

D (

Fission Product Poisoning

MSNB Modeling & Control

Sam J. Root

The Molten Salt Nuclear Battery

Process Control Engineering

Reactor Characterization

Results and Analysis

Conclusions

D (

Fission Product Poisoning

MSNB Modeling & Control

Sam J. Root

The Molten Salt Nuclear Battery

Process Control Engineering

Reactor Characterization

Results and Analysis

Conclusions

5.6

Xenon Dynamics

Concentration of ^{135}I and ^{135}Xe vs. time following start-up

Concentration of ^{135}I and ^{135}Xe vs. time following reactor scram

MSNB Modeling & Control

Sam J. Root

The Molten Salt Nuclear Battery

Process Control Engineering

Reactor Char acterization

Results and Analysis

Conclusions

Xenon Stripper

Schematic Drawing of Xenon Stripping Module

MSNB Modeling & Control

Sam J. Root

The Molten Salt Nuclear Battery

Process Control Engineering

Reactor Characterization

Results and Analysis

Conclusions

5.6

2

Xenon Stripper

Schematic Drawing of Xenon Stripping Module

$$\frac{dXe}{dt} = \underbrace{\gamma_{Xe}\Sigma_{f}^{F}\phi(t)}_{\text{Fission Yield}} + \underbrace{\lambda_{I}I(t)}_{\text{Precursor Decay}} - \underbrace{\lambda_{Xe}Xe(t)}_{\text{Beta Decay}} - \underbrace{\underbrace{Xe(t)\sigma_{a}^{Xe}\phi(t)}_{\text{Radiative Capture}}}_{\text{Radiative Capture}} - \underbrace{\underbrace{\frac{Xe(t)}{\dot{V}_{salt}}\left(H^{*}\frac{\dot{V}_{salt}}{\dot{V}_{He}} + 1\right)^{-1}}_{\text{Stripping}}$$

MSNB Modeling & Control

Sam J. Root

The Molten Salt Nuclear Battery

Process Control Engineering

Reactor Characterization

Results and Analysis

Conclusions

Xenon Stripping Dynamics

Concentration of ^{135}I and ^{135}Xe vs. time following reactor scram - Restart Mode

Concentration of ^{135}I and ^{135}Xe vs. time following reactor scram - Standby Mode

MSNB Modeling & Control

Sam J. Root

The Molten Salt Nuclear Battery

Control Engineering

ecterization

nalysis

- The Molten Salt Nuclear Battery
- 2 Process Control Engineering
 - Control Theory
 - Transport Delay Problem
- Reactor Characterization
- 4 Results and Analysis
- 5 Conclusions

Control Theory

Modeling & Control Sam J. Root

The Molten Salt Nuclear Battery

Process
Control
Engineering

Reactor Char acterization

Results and

Conclusions

Conclusions

Feedback Control

MSNB Modeling & Control

Sam J. Root

The Molten Salt Nuclear Batterv

Process Control Engineering

Reactor Characterization

Results and Analysis

Conclusions

Poforoncos

Feedforward Control

Modeling & Control

Sam J. Root

The Molten Salt Nuclear Battery

Process Control Engineering

Reactor Characterization

Results and Analysis

Conclusions

 $u(t) = \underbrace{K_P e(t)}_{\text{Proportional}} + \underbrace{K_I \int_0^t e(t) dt}_{0} + \underbrace{K_D \frac{de(t)}{dt}}_{0}$

Integral

Derivative

MSNB Modeling & Control

Sam J. Root

The Molten Salt Nuclear Battery

Process Control Engineering

Reactor Characterization

Results and Analysis

Conclusions

$$u(t) = \underbrace{K_P e(t)}_{\text{Proportional}} + \underbrace{K_I \int_0^t e(t) dt}_{\text{Integral}} + \underbrace{K_D \frac{de(t)}{dt}}_{\text{Derivative}}$$

Proportional

- Control output is manipulated in proportion to the error defined by the proportional gain constant
- High gain yields an aggressive controller that is prone to overshooting the setpoint
- Low gain may result in steady-state offset

Integral

Derivative

MSNB Modeling & Control

Sam J. Root

The Molten Salt Nuclear Battery

Process Control Engineering

Reactor Characterization

Results and Analysis

onclusions

Conclusions

ererences

$$u(t) = \underbrace{K_P e(t)}_{\text{Proportional}} + \underbrace{K_I \int_0^t e(t) dt}_{\text{Integral}} + \underbrace{K_D \frac{d e(t)}{dt}}_{\text{Derivative}}$$

Proportional

Integral

- Considers cumulative error to help eliminate steady-state offset
- As the process variable settles around the set-point, the cumulative error approaches a constant value and the effect of the integral controller diminishes.

Derivative

MSNB Modeling & Control

Sam J. Root

The Molten Salt Nuclear Battery

Process Control Engineering

Reactor Characterization

Results and Inalysis

onclusions

Lonclusions

$$u(t) = \underbrace{K_P e(t)}_{\text{Proportional}} + \underbrace{K_I \int_0^t e(t) dt}_{\text{Integral}} + \underbrace{K_D \frac{de(t)}{dt}}_{\text{Derivative}}$$

Proportional

Integral

Derivative

- Estimates the time rate of change of the error to dampen overshoot
- Backs-off the proportional response when the process variable rapidly approaches the set-point
- Can be difficult to tune

MSNB Modeling & Control

Sam J. Root

Process ontrol Engineering

Transport Delay Problem

Modeling & Control

Sam J. Root

The Molten Salt Nuclear Battery

Process
Control
Engineering

Reactor Characterization

Results and

Conclusions

Conclusions

Passive Feedback

Simplified block diagram of two primary passive feedback mechanisms in an MSNB

MSNB Modeling & Control

Sam J. Root

The Molten Salt Nuclear Battery

Process Control Engineering

Reactor Charcterization

esults and nalysis

onclusions

Conclusions

Passive Feedback Temperature Reactivity

Doppler broadening

- Resonance peaks lower and broaden with increased temperature
- High kinetic energy of target nucleus introduces more relative uncertainty of the center-of-mass energy [5, Ch. 7]
- More epithermal neutrons absorbed by ^{238}U etc. [6, Ch. 6]

Thermal Expansion

MSNB Modeling & Control

Sam J. Root

Process Control Engineering

^[5] Kerlin, T. W. et al., 2019. Dynamics and Control of Nuclear Reactors. Knoxville, Tennessee: Elsevier Inc

Passive Feedback Temperature Reactivity

Doppler broadening

Thermal Expansion

- Increased temperature leads to lower heavy metal density and smaller macroscopic fission cross-section at high temperature [3]
- Similar to moderator thinning in LWRs

MSNB Modeling & Control

Sam J. Root

Process Control Engineering

Delayed Neutron Precursors

- Most fission events release daughter neutrons promptly
- Sometimes, unstable nuclides which decay by neutron emission are produced instead
- $t_{1/2}$ from less than a second to over a minute [7, Ch. 6]

$$^{87}Br \xrightarrow{\beta^-}_{56sec} ^{87}Kr^* \rightarrow ^{86}Kr + n$$

Flowing Fuel

MSNB Modeling & Control

Sam J. Root

The Molten Salt Nuclear Battery

Process Control Engineering

> Reactor Charcterization

esults and nalysis

nclusions

eterences

Passive Feedback

Flow Reactivity

Delayed Neutron Precursors

Flowing Fuel

- Precursors produced near the core exit and long lived precursors may emit their neutrons outside of the core
- These neutrons are effectively lost from the fission chain reaction [5, Ch. 3]
- Larger power transport requires a higher flow rate
- Greater delayed neutron losses
- Negative feedback

Modeling & Control Sam J. Root

MSNB

Process Control Engineering

Main Operational Control Problem - Transport Delay

Dynamics associated with anticipated transients

- Natural circulation flow mode
- Passive feedback mechanisms
- Transport delays separating heat exchanger and core

Thought Experiment

- Step increase in power demand to a steady-state critical MSNB
- Set-point is instantaneously equal to heat exchanger power consumption
- Ideal controller which produces rapid load following with minimal overshoot

MSNB Modeling & Control

Sam J. Root

The Molten Salt Nuclear Battery

Process Control Engineering

Reactor Characterization

esults and nalysis

Conclusions

Conclusions

Main Operational Control Problem - Transport Delay

Simplified schematic drawing of a natural circulation MSNB

MSNB Modeling & Control

Sam J. Root

The Molten Salt Nuclear Battery

Process Control Engineering

Reactor Characterization

Results and Analysis

Conclusions

Main Operational Control Problem - Transport Delay Immediate Response

Simplified schematic drawing of a natural circulation $\ensuremath{\mathsf{MSNB}}$

MSNB Modeling & Control

Sam J. Root

The Molten Salt Nuclear Battery

Process Control Engineering

Reactor Characterization

Results and Analysis

Conclusions

Poforoncos

Main Operational Control Problem - Transport Delay Heat Exchanger Perturbation

Simplified schematic drawing of a natural circulation $\ensuremath{\mathsf{MSNB}}$

MSNB Modeling & Control

Sam J. Root

The Molten Salt Nuclear Battery

Process Control Engineering

Reactor Characterization

Results and Analysis

Conclusions

Main Operational Control Problem - Transport Delay

Simplified schematic drawing of a natural circulation MSNB

MSNB Modeling & Control

Sam J. Root

The Molten Salt Nuclear Battery

Process Control Engineering

Reactor Characterization

Results and Analysis

Conclusions

Pre-Filter

Pre-Filter on a step-function

Pre-Filter on a ramp-function

MSNB Modeling & Control

Sam J. Root

The Molten Salt Nuclear Battery

Process Control Engineering

Reactor Characterization

Results and Analysis

Conclusions

- 1 The Molten Salt Nuclear Battery
- 2 Process Control Engineering
- Reactor Characterization
 - Neutronics Modeling
 - Process Simulation
- 4 Results and Analysis
- 5 Conclusions

MSNB Control Loop

MSNB Modeling & Control

Sam J. Root

The Molten Salt Nuclear Battery

Process Control Engineering

Reactor Characterization

Results and Analysis

Conclusions

Modeling & Control

Sam J. Root

Salt Nuclear Battery

Control Engineering

Neutronics Modeling

Reactor Characterization

Results and Analysis

Conclusions

Serpent Modeling

Modeling & Control

Sam J. Root

The Molten Salt Nuclear Battery

Control Engineering

Reactor Characterization

Results and Analysis

Conclusions

Process Simulation

Modeling & Control

The Molten
Salt Nuclear
Battery

Process
Control
Engineering

Reactor Characterization

Results and Analysis

Conclusions

_ .

- The Molten Salt Nuclear Battery
- 2 Process Control Engineering
- Reactor Characterization
- 4 Results and Analysis
 - Control-Reactivity Curve
 - Controller Tuning
 - Demand Response
- 5 Conclusions

Control-Reactivity Curve

Modeling & Control

Sam J. Root

The Molten Salt Nuclear Battery

Process Control Engineering

Reactor Characterization

Results and Analysis

Conclusions

Modeling & Control

Sam J. Root

The Molten Salt Nuclear Battery

Control Engineering

Controller Tuning

Reactor Chai acterization

Results and Analysis

Conclusions

Demand Response

Modeling & Control

Sam J. Root

The Molten Salt Nuclear Battery

Process Control Engineering

Reactor Characterization

Results and Analysis

Conclusions

- The Molten Salt Nuclear Battery
- 2 Process Control Engineering
- Reactor Characterization
- 4 Results and Analysis
- 5 Conclusions

Acknowledgements

This work and my coursework is being completed under a Graduate Fellowship funded by Nuclear Regulatory Commission (NRC).

This research made use of the resources of the High Performance Computing Center at Idaho National Laboratory, which is supported by the Office of Nuclear Energy of the U.S. Department of Energy and the Nuclear Science User Facilities under Contract No. DE-AC07-05ID14517.

MSNB Modeling & Control

Sam J. Root

The Molten Salt Nuclear Battery

Control Engineering

Reactor Characterization

Results and analysis

Conclusions

University of Idaho

Department of Nuclear Engineering and Industrial Management

References I

- 1. Root, S. J., et al., 2023. Thermodynamic analysis on xenon stripping to shorten restart time in molten salt microreactors. Nuclear Engineering and Design 414, 112606.
- 2. Root, S. J., et al., 2023. Cyber hardening of nuclear power plants with real-time nuclear reactor operation, 1. preliminary operational testing. Progress in Nuclear Energy 162, 104742.
- 3. Peterson, J., 8 2019. An analysis of the nuclear characteristics of a molten salt microreactor. Master's thesis. University of Idaho.
- 4. Carter, J. P., 2022. Multi-physics investigation of a natural circulation molten salt micro-reactor that utilizes an experimental in-pile device to improve core physics and system thermal-hydraulic performance. Ph.D. thesis, University of Idaho.
- 5. Kerlin, T. W. et al., 2019. Dynamics and Control of Nuclear Reactors. Knoxville, Tennessee: Elsevier Inc.
- Duderstadt, J. J. et al., 1976. Nuclear Reactor Analysis. New York, NY: Wiley & Sons, first edition.
- 7. Lamarsh, J. R. et al., 2001. Introduction to Nuclear Engineering. Upper Sadle River, New Jersey: Pretice Hall, third edition.

MSNB Modeling & Control

Sam J. Root

The Molten Salt Nuclear Battery

Process Control Engineering

Reactor Characterization

nalysis . .

onclusions