Esercizi per la Prima Settimana

Esercizio 1.1 Siano \underline{v} e \underline{w} due vettori assegnati diversi dal vettore nullo e supponiamo che \underline{v} + \underline{w} non sia parallelo nè a \underline{v} nè a \underline{w} . Quali sono i vettori \underline{t} paralleli sia a \underline{v} che \underline{w} ?

Esercizio 1.2 Siano \underline{v} , \underline{w} , \underline{t} non complanari. Cosa si può dire di un vettore che è complanare con \underline{v} e \underline{w} e al tempo stesso complanare con \underline{w} e \underline{t} ?

Esercizio 1.3 Siano \underline{v} , \underline{w} e \underline{t} complanari. Per quali vettori \underline{s} , la seguente equazione nelle variabili x_1, x_2, x_3

$$x_1\underline{v} + x_2\underline{w} + x_3\underline{t} = \underline{s}$$

ammette soluzione? Quando tale equazione è risolubile, è vero che ammette infinite soluzioni? (Ricordarsi che per soluzione si intende una terna x_1, x_2, x_3 che rende l'uguaglianza un'identità)

Esercizio 1.4 Siano \underline{v} , \underline{w} e \underline{t} non complanari. È vero che anche \underline{v} , $\underline{v} + \underline{w}$, v + w + t non sono complanari?

Esercizio 1.5 Indichiamo con A l'insieme dei vettori complanari con i due vettori non paralleli \underline{v} e \underline{w} e sia B l'insieme dei vettori complanari con i vettori \underline{t} e \underline{s} (non necessariamente non paralleli). Supponendo che A e B abbiano un elemento non nullo in comune, mostrare che necessariament hanno infiniti elementi in comune.

Esercizio 1.6 Siano O un punto fissato e P_1, \ldots, P_n punti del piano. Si definisce baricentro G di tali punti il punto G che verifica la seguente relazione

$$G - O = \frac{1}{n} \sum_{i=1}^{n} (P_i - O)$$

Mostrare che la definizione del punto G non dipende dalla scelta del punto O.

Esercizio 1.7 Sia \underline{w} un vettore fissato e sia T la funzione che ad ogni vettore \underline{v} associa il vettore $\underline{v} + \underline{w}$.

- a) Mostrare che T è biunivoca e trovarne l'inversa.
- b) Sia $\underline{t} = P O$ un vettore assegnato ed A l'insieme dei vettori paralleli a quest'ultimo. Si descrivano geometricamente l'insieme dei punti P' tale che $P' O \in A$ e l'insieme dei punti P'' tali che $P'' O \in T(A)$.

Esercizio 1.8 Sia U l'insieme dei vettori paralleli al piano del foglio $\underline{v} = P - O$ e $\underline{t} = Q - O$ due vettori di U. Successivamente consideriamo i vettori \underline{w} di U tali che

$$(\underline{v} + \underline{w})||\underline{t}|$$

Scrivendo $\underline{w} = R - P$, descrivere l'insieme dei punti R al variare di \underline{w} .

Esercizio 1.9 Sia \underline{t} , diverso dal vettore nullo, complanare con due vettori tra loro non paralleli \underline{v} e \underline{w} .

Se \underline{t} e' parallelo a \underline{z} mostrare che necessariamente \underline{z} e' complanare con \underline{v} e \underline{w} .

Esercizio 1.10 Siano \underline{v} e \underline{w} due vettori arbitrari assegnati. Mostrare che qualsiasi sia la scelta di $a,b,c,d,e,f\in\mathbb{R}$ i tre vettori $a\underline{v}$ + $b\underline{w}$, $c\underline{v}$ + $d\underline{w}$, $e\underline{v}$ + $f\underline{w}$ sono complanari.

Esercizio 1.11 Siano \underline{v} - \underline{w} , \underline{t} - $\sqrt{3}$ \underline{v} , $7\underline{w}$ - π \underline{t} non complanari. Mostrare che in questo caso anche \underline{v} , \underline{w} , \underline{t} sono non complanari,