PONTIFÍCIA UNIVERSIDADE CATÓLICA DE MINAS GERAIS Programa de Graduação em Engenharia de Software

André Fernandez Mendes Leonardo Augusto Pereira do Carmo

RELATÓRIO DO TRABALHO PRÁTICO

Belo Horizonte 2024

André Fernandez Mendes Leonardo Augusto Pereira do Carmo

RELATÓRIO DO TRABALHO PRÁTICO

Trabalho apresentado à disciplina Fundamentos de Projeto e Análise de Algoritmos da Graduação de Engenharia de Software da Pontifícia Universidade Católica de Minas Gerais

Professor: João Caram

Belo Horizonte 2024

RESUMO

Este trabalho trata do estudo de problemas intratáveis, tipicamente pertencente às classes NP, e nas técnicas de projeto de algoritmos que podem nos ajudar a encontrar soluções de compromisso adequadas.

São duas as tarefas do grupo:

- Projetar e implementar uma solução para o problema apresentado utilizando backtracking. A solução deve incluir uma estratégia de poda para soluções não promissoras. Gerar conjuntos de teste de tamanho crescente, a partir de 10 interessadas e incrementando de 1 em 1, até atingirum tamanho T que não consiga ser resolvido em até 30 segundos pelo algoritmo. Na busca do tempo limite de 30 segundos, faça o teste com 10 conjuntos de cada tamanho, contabilizando a média das execuções.
- Projetar e implementar uma solução para o problema apresentado utilizando programação dinâmica. O grupo deverá decidir se vai utilizar o método demonstrado em aula ou outro à escolha. Para este teste, utilize os mesmos conjuntos de tamanho T encontrados no backtracking. Em seguida, aumente os tamanhos dos conjuntos de T em T até atingir o tamanho 10T, sempre executando 10 testes de cada tamanho para utilizar a média

SUMÁRIO

Nenhuma entrada de sumário foi encontrada.

1. SOLUÇÃO DO PROBLEMA UTILIZANDO BACKTRACKING

O backtracking é uma técnica de projeto de algoritmos que consiste no refinamento da busca exaustiva/ força bruta, pois não testa todas as soluções, eliminando algumas sem examinar. A técnica consiste em realizar uma busca em profundidade e, quando a busca falha ou não tem como continuar, retorna pelo mesmo caminho percorrido com a finalidade de encontrar soluções alternativas.

Para aplicação da técnica em questão, é necessário a implementação de uma estrutura de dados de controle.

Conforme estabelecido no problema, foram cadastrados ...

A estratégia de poda utilizada consiste na comparação dos valores obtidos em cada combinação de venda, podando quando a soma dos megawatts disponíveis ultrapassa a quantidade existente.

Assim, evita-se a venda o cálculo de combinações que ultrapassam a quantidade de megawatts que pode ser vendida.

Após medir o tempo de execução de conjuntos de tamanho crescente, iniciando com 10 interessadas e aumentando o número de interessadas até que o tempo médio do algoritmo excedesse 30 segundos, chegou-se a conclusão que podem ser combinadas

2. SOLUÇÃO DO PROBLEMA UTILIZANDO PROGRAMAÇÃO DINÂMICA

Modelagem do Problema:

 O problema foi modelado de forma semelhante ao problema clássico da mochila, onde cada empresa representa um item, a quantidade de megawatts representa o peso do item, e o valor da oferta representa o valor do item.

Estrutura de Dados:

- Utilizamos um array dp de tamanho capacidade + 1 para armazenar o valor máximo que pode ser obtido para cada capacidade de megawatts, onde capacidade é o total de megawatts disponíveis para venda.
- Utilizamos uma matriz taken para rastrear quais empresas foram selecionadas na solução ótima.

Atualização dos Estados:

 Para cada empresa, atualizamos o array dp de forma que dp[j] represente o valor máximo obtido ao considerar a inclusão ou exclusão da oferta da empresa atual.

FUNCIONAMENTO DO ALGORITMO

Inicialização:

• Inicializamos o array dp com zeros, representando o valor inicial para cada capacidade de megawatts.

Processamento das Empresas:

 Para cada empresa, percorremos o array dp de trás para frente (para evitar a reutilização dos mesmos itens na mesma iteração) e atualizamos o valor máximo que pode ser obtido para cada capacidade de megawatts.

Rastreamento das Empresas Selecionadas:

 Após preencher o array dp, utilizamos a matriz taken para rastrear quais empresas foram selecionadas na solução ótima.

Construção da Solução Ótima:

 Percorremos a matriz taken para construir a lista de empresas selecionadas e calcular o valor total obtido.

Comparação de Resultados Tempo de Execução

A programação dinâmica se mostrou eficiente em termos de tempo de execução, especialmente quando comparada ao backtracking. Ao evitar a exploração de soluções não promissoras e utilizando subproblemas já resolvidos, a programação dinâmica reduziu significativamente o tempo necessário para encontrar a solução ótima.

Qualidade do Resultado

A qualidade do resultado obtido pela programação dinâmica foi excelente, atingindo o valor máximo possível de forma consistente. A matriz taken garantiu que a solução encontrada fosse rastreável e verificável, o que é uma vantagem em termos de clareza e confiabilidade.

Avaliando os Resultados:

Colocando o Primeiro Grupo de Interessados:

E1;430;1043

E2;428;1188

E3;410;1565

E4;385;1333

E5;399;1214

E6;382;1498

E7;416;1540

E8;436;1172

E9;416;1386

E10;423;1097

E11;400;1463

E12;406;1353

E13;403;1568

E14;390;1228

E15;387;1542

E16;390;1206

E17;430;1175

```
E18;397;1492
E19;392;1293
E20;393;1533
E21;439;1149
E22;403;1277
E23;415;1624
E24;387;1280
E25;417;1330
Conseguimos os seguintes resultados:
```

```
O valor máximo que pode ser obtido é: 26725
Empresas selecionadas:
Empresa: E25, Megawatts: 417, Valor: 1330
Empresa: E24, Megawatts: 387, Valor: 1280
Empresa: E23, Megawatts: 415, Valor: 1624
Empresa: E22, Megawatts: 403, Valor: 1277
Empresa: E20, Megawatts: 393, Valor: 1533
Empresa: E19, Megawatts: 392, Valor: 1293
Empresa: E18, Megawatts: 397, Valor: 1492
Empresa: E16, Megawatts: 390, Valor: 1206
Empresa: E15, Megawatts: 387, Valor: 1542
Empresa: E14, Megawatts: 390, Valor: 1228
Empresa: E13, Megawatts: 403, Valor: 1568
Empresa: E12, Megawatts: 406, Valor: 1353
Empresa: E11, Megawatts: 400, Valor: 1463
Empresa: E9, Megawatts: 416, Valor: 1386
Empresa: E7, Megawatts: 416, Valor: 1540
Empresa: E6, Megawatts: 382, Valor: 1498
Empresa: E5, Megawatts: 399, Valor: 1214
Empresa: E4, Megawatts: 385, Valor: 1333
Empresa: E3, Megawatts: 410, Valor: 1565
Valor total obtido em dinheiro: 26725
Tempo gasto para o cálculo: 0.0077131 segundos
```

Agora usando o segundo conjunto de interessados:

- E1;313;1496
- E2;398;1768
- E3;240;1210
- E4;433;2327
- E5;301;1263
- E6;297;1499
- E7;232;1209
- E8;614;2342
- E9;558;2983
- E10;495;2259
- E11;310;1381
- E12;213;961
- E13;213;1115
- E14;346;1552
- E15;385;2023
- E16;240;1234
- E17;483;2828
- E18;487;2617
- E19;709;2328
- E20;358;1847
- ___,__,
- E21;467;2038
- E22;363;2007
- E23;279;1311
- E24;589;3164
- E25;476;2480

Obtemos o seguinte resultado:

```
O valor máximo que pode ser obtido é: 40348
Empresas selecionadas:
Empresa: E25, Megawatts: 476, Valor: 2480
Empresa: E24, Megawatts: 589, Valor: 3164
Empresa: E23, Megawatts: 279, Valor: 1311
Empresa: E22, Megawatts: 363, Valor: 2007
Empresa: E21, Megawatts: 467, Valor: 2038
Empresa: E20, Megawatts: 358, Valor: 1847
Empresa: E18, Megawatts: 487, Valor: 2617
Empresa: E17, Megawatts: 483, Valor: 2828
Empresa: E16, Megawatts: 240, Valor: 1234
Empresa: E15, Megawatts: 385, Valor: 2023
Empresa: E14, Megawatts: 346, Valor: 1552
Empresa: E13, Megawatts: 213, Valor: 1115
Empresa: E11, Megawatts: 310, Valor: 1381
Empresa: E10, Megawatts: 495, Valor: 2259
Empresa: E9, Megawatts: 558, Valor: 2983
Empresa: E7, Megawatts: 232, Valor: 1209
Empresa: E6, Megawatts: 297, Valor: 1499
Empresa: E4, Megawatts: 433, Valor: 2327
Empresa: E3, Megawatts: 240, Valor: 1210
Empresa: E2, Megawatts: 398, Valor: 1768
Empresa: E1, Megawatts: 313, Valor: 1496
Empresa: E1, Megawatts: 313, Valor: 1496
Valor total obtido em dinheiro: 40348
Tempo gasto para o cálculo: 0.0074129 segundos
(O console do Eclipse não coube tudo em uma foto só, então dividi em duas).
```

Agora eu deveria utilizar os mesmos conjuntos de testes utilizados no Algoritmo Guloso, porém como meu grupo não fez o Guloso, vou considerar o T = 29. Que foi mais ou menos a margem registrada pelos outros grupos que presentaram:

T1 – 29: 0.0072782 segundos T2 – 58: 0.0089673 segundos T3 – 87: 0.0094695 segundos T4 – 116: 0.0090344 segundos T5 – 145: 0.0101989 segundos T6 – 174: 0.0091016 segundos T7 – 203: 0.0124749 segundos T8 – 232: 0.011177 segundos T9 – 261: 0.0111038 segundos T10 – 290: 0.0119611 segundos

Considerações Finais

A programação dinâmica provou ser uma técnica eficaz para resolver o problema de venda de energia, oferecendo um balanço ideal entre tempo de execução e qualidade do resultado. A implementação cuidadosa das estruturas de dados e a abordagem sistemática na atualização dos estados garantiram que a solução fosse tanto eficiente quanto precisa.