ENGSCI 233 Lecture 11.2

High-Level Networking

MAP OF THE INTERNET THE IPV4 SPACE, 2006

Today's learning objectives:

- Understand how the Internet works (at a very basic level)
- Discuss ways to manage network congestion
- Discuss ways to manage network reliability

The Internet is like an onion...

Internet is short for "internetworking."

 Originally, different networks used different protocols.

 The Internet Protocol (IP) was developed to communicate across them.

Internet Protocol is a bridge.

 Allows packets to be split up and reassembled

Throws out old/stuck packets

 Assigns globally unique virtual addresses

There are two IP versions.

IPv4 was the original practical version.

- 32-bit addresses
 - Written like 192.168.0.1
- There are more than 4 billion computers now!
- IPv6 deals with address exhaustion.
 - 128-bit addresses
 - 2001:0db8:0000:0000:0000:ff00:0042:8329
 - First 64 bits give network, second
 64 give device

Some IP addresses are special.

- Private addresses only work in the local network
 - 10.x.x.x, 172.16.x.x, 192.168.x.x
- Multicast addresses are received by many
 - 224.0.0.0 239.255.255.255
- Loopback addresses refer to the local computer
 - 127.x.x.x, 0:0:0:0:0:0:0:1

How does the data get there?

- Networks are connected by devices called routers
- You probably have a home router

 Network backbones are made of routers.

```
1 2 ms 2 ms 2 ms 2 ms net-208-gw-new.net.auckland.ac.nz [130.216.209.254]
2 2 ms 3 ms 1 ms cx-beta-sxj-400.net.auckland.ac.nz [172.18.0.66]
3 2 ms 2 ms 2 ms cxj-chi-to-cxj-beta.net.auckland.ac.nz [172.18.0.177]
4 1 ms 1 ms 1 ms br-cpf4-south.net.auckland.ac.nz [130.216.252.173]
5 2 ms 2 ms 2 ms 2 ms br-asr2-br-cpf4-bond1.net.auckland.ac.nz [130.216.252.169]
6 1 ms 1 ms 1 ms 210.7.37.37
7 132 ms 132 ms 133 ms reannz-1-lo-jmb-706.sttlwa.pacificwave.net [207.231.240.33]
8 133 ms 132 ms 145 ms abilene-1-lo-jmb-706.sttlwa.pacificwave.net [207.231.240.8]
9 166 ms 165 ms 165 ms ae-1.4079.rtsw.minn.net.internet2.edu [162.252.70.173]
10 221 ms 174 ms 174 ms ae-1.4079.rtsw.eqch.net.internet2.edu [162.252.70.166]
11 175 ms 174 ms 211 ms ae-0.4079.rtsw.eqch.net.internet2.edu [162.252.70.163]
12 180 ms 181 ms 180 ms ae-1.4079.rtsw.leqch.net.internet2.edu [162.252.70.163]
13 187 ms 189 ms 188 ms et-4-0-0.4079.rtsw.alba.net.internet2.edu [162.252.70.130]
14 190 ms 189 ms 190 ms i2-re-chic-nox-mghpcc-gwl.nox.org [192.5.89.253]
15 199 ms 198 ms 198 ms 199 ms nox1sumgwl-mit-re.nox.org [18.2.4.110]
17 199 ms 199 ms 199 ms nox1sumgwl-mit-re.nox.org [18.2.4.110]
18 199 ms 199 ms 199 ms dmz-rtr-1-external-rtr-3.mit.edu [18.0.161.13]
18 199 ms 199 ms 199 ms dmz-rtr-2-dmz-rtr-1-2.mit.edu [18.0.162.6]
19 206 ms 218 ms 200 ms 18.4.213.65
20 200 ms 199 ms 199 ms bucket.mit.edu [18.25.0.50]
```

How do we know the route?

- Routers use a routing table to know where to send traffic
- Different groups of addresses can be routed different ways

- High-level protocols discover the route
- Choosing the best route uses algorithms like Dijkstra's

Example routing table contents

Network destination	Netmask	Gateway	Interface	Metric		
0.0.0.0	0.0.0.0	192.168.0.1	192.168.0.100	10		
127.0.0.0	255.0.0.0	127.0.0.1	127.0.0.1	1		
192.168.0.0	255.255.255.0	192.168.0.100	192.168.0.100	10		
192.168.0.100	255.255.255.255	127.0.0.1	127.0.0.1	10		
192.168.0.1	255.255.255.255	192.168.0.100	192.168.0.100	10		

How do you find the MAC address?

- The address resolution protocol (ARP) operates at the same layer as IP
 - Neighbor discovery protocol for IPv6
- Send a message to all MAC addresses, looking for the owner of an IP address

What data do we actually send?

- Packet ID and fragment offset to deal with fragmentation
- TTL = time to live
 - Number of router hops before abandoning transmission
- Protocol helps deal with next layer up
- Checksum for header, but nothing for data

How do we maintain a connection?

- IP can get data from one computer to another, but what does it mean?
- The transport layer tells the destination computer how to combine packets into useful data.

UDP is as reliable as the network.

- UDP = User Datagram
 Protocol
- Ports define different purposes for communication (application layer)
 - Port 80 is used for web browsing via HTTP

- We do get a data checksum this time
- No effort to deal with missing or out-of-order packets
- Good for streaming audio/video, or simple requests

	UDP datagram header																																
Offsets	Octet	0							1								2								3								
Octet	Bit	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
0	Source port									Destination port																							
4	32		Length									Checksum																					

TCP adds reliability, but at a cost.

- Transmission Control Protocol
- Have to exchange connection requests and acknowledgements to start a connection
- Reassembles packets in order
- Resends packets if not acknowledged
 - Vulnerable to denial of service
- Controls congestion

The application layer has cats.

- There are a wide range of different protocols
- All relate to exchanging useful information
 - Some help run the internet
 - Some make web browsing, email, and other common apps work
 - Some have special purposes

Some protocols form the plumbing.

- BGP (border gateway protocol)
 - How routers exchange routing information
- DHCP (dynamic host configuration protocol)
 - How new devices on a network get IP addresses
- DNS (domain name system)
 - How domain names (google.com) are translated to IP addresses (172.217.25.174)
- NTP (network time protocol)
 - Synchronizes time across a network

Web browsers use HTTP and HTTPS.

- Hyper text transport protocol
- Implements commands to get information from a server, or change data
 - GET retrieves data from a specified location
 - POST sends data for server use/interpretation
 - PUT places data at a specified location
- Secure version adds encryption to prevent eavesdropping and spoofing

There are many application protocols.

- Email
 - POP, SMTP, IMAP
- Instant messaging
 - XMPP, IRC
- Telephone
 - SIP

- File transfer
 - FTP, BitTorrent
- Stock market data
 - FIX
- Remote desktop
 - RDP

Next week: Computer Software Architecture

Thank you!

Image References

- Slide 1: Map of the Internet, by Randall Munroe, from https://xkcd.com/195/ (CC BY-NC 2.5)
- Slide 3: by Microchip Technology, from https://microchipdeveloper.com/tcpip:tcp-ip-five-layer-model
- Slides 4-5: by SRI International, from https://commons.wikimedia.org/wiki/File:SRI First Internetworked Connection diagram.jpg (CC BY-SA 3.0)
- Slide 6: by Jroehl, from https://commons.wikimedia.org/wiki/File:List_of_countries_by_IPv4_address_allocation_per_1000_population.jpg (CC BY-SA 4.0)
- Slide 7: from https://19216811.vn/en
- Slide 9: from https://en.wikipedia.org/wiki/Routing table (CC BY-SA 3.0)
- Slide 10: by Raimond Spekking, from https://commons.wikimedia.org/wiki/File:Intel Centrino Wireless-N 1000-0659.jpg (CC BY-SA 4.0)
- Slide 11: by Michel Bakni, from https://commons.wikimedia.org/wiki/File:IPv4 Packet-en.svg (CC BY-SA 4.0)
- Slide 12: from https://www.minitool.com/lib/transport-layer.html
- Slide 13: from https://en.wikipedia.org/wiki/User Datagram Protocol (CC BY-SA 3.0)
- Slide 14: from https://en.wikipedia.org/wiki/Transmission Control Protocol (CC BY-SA 3.0)
- Slide 15: by Neil Drumm, from https://www.flickr.com/photos/drumm/2989736147 (CC BY-SA 2.0)