MA 166: Quiz 7 Solutions

TA: Carlos Salinas

March 4, 2016

You have 15 minutes to complete this quiz. You may work in groups, but you are not allowed to use any other resources.

Problem 1. For **one** of the following integrals, determine whether it is convergent or divergent. If it is convergent, evaluate it

(a)
$$\int_0^1 \frac{dx}{\sqrt{x}}$$

(b) $\int_1^5 \frac{dx}{(5-x)^2}$
(c) $\int_0^\infty xe^{-x^2} dx$.

Problem 2. Find the length of the curve

$$y = \ln(x^2 - 1), \qquad 2 \le x \le 5.$$

Solutions

Here are the solutions to the quiz.

Solution. For the following problems, let t be a dummy variable.

(a) Take the limit as $t \to 0$ of the indefinite integral

$$I_{1} = \lim_{t \to 0} \int_{t}^{1} \frac{dx}{\sqrt{x}}$$

$$= \lim_{t \to 0} \int_{t}^{1} x^{-1/2} dx$$

$$= \lim_{t \to 0} \left[\frac{1}{2} x^{1/2} \right]_{t}^{1}$$

$$= \lim_{t \to 0} \frac{1}{2} - \frac{1}{2} t^{1/2}$$

$$= \frac{1}{2}.$$

So the integral converges and its value is 1/2.

(b) Take the limit as $t \to 5$ of the indefinite integral

$$I_2 = \lim_{t \to 5} \int_t^1 \frac{dx}{(5-x)^2}$$
$$= \lim_{t \to 5} \int_1^t (5-x)^{-2} dx$$

 $\begin{aligned} \text{make the substitution } u &= 5 - x, \, du = -dx \\ &= \lim_{t \to 5} - \int_{5 - t}^4 u^{-2} \, du \\ &= \lim_{t \to 5} \int_{5 - t}^4 u^{-2} \, du \\ &= \lim_{t \to 5} - \left[-u^{-1} \right]_{5 - t}^4 \\ &= \lim_{t \to 5} \left[u^{-1} \right]_{5 - t}^4 \\ &= \lim_{t \to 5} \frac{1}{4} - \frac{1}{5 - t} \end{aligned}$

So the integral converges and its value is 1/2.

(c) Take the limit as $t \to 0$ of the indefinite integral

$$I_{3} = \lim_{t \to 0} \int_{t}^{1} \frac{dx}{\sqrt{x}}$$

$$= \lim_{t \to 0} \int_{t}^{1} x^{-1/2} dx$$

$$= \lim_{t \to 0} \left[\frac{1}{2} x^{1/2} \right]_{t}^{1}$$

$$= \lim_{t \to 0} \frac{1}{2} - \frac{1}{2} t^{1/2}$$

$$= \frac{1}{2}.$$

 $= \frac{1}{4} - \lim_{t \to 5} \frac{1}{5 - t}$

So the integral converges and its value is 1/2.

Solution.

(