Question 1

An LSTM unit is design for sequential data. LSTM is therefore not a permutation invariant model and is poorly adapted for data structure like set or graph.

Figure 1: Evaluation of LSTM model

Figure 2: Evaluation od Deepsets model

As expected, LSTM is a poor architecture to deal with data structures like sets.

Question 2

If we consider a set as a graph without edges, then its adjacency matrix is A=0 and we feed $\widetilde{A}=I_n$ and X the vector of the labels of the nodes in a GNN. Then the GNN just learn an embedding for the set like in Deepsets.

Question 3

- 1. An edge probability matrice P which induces an homophilic cluster structure would be $P = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. An edge probability matrice P which induces an heterophilic cluster structure would be $P = \begin{pmatrix} 1/2 & 1/2 \\ 1/2 & /2 \end{pmatrix}$.
- 2. Inside the block B_i , there are at most $\binom{|B_i|}{2} = \binom{5}{2} = 10$ edges. It gives us the expected number of edges inside this block : $10 \times P_{i,i} = 10 \times 0.8 = 8$ edges. Between two blocks B_i and B_j , there are at most $|B_i| \times |B_j| = 5 \times 5 = 25$ edges. It gives us the expected number of edges inside this block : $25 \times 0.05 = 1.25$ edges.

Question 4

If the graph has weights, we can use the generalization of binary cross entropy called cross entropy loss.

References