Московский физико-технический институт

Лабораторная работа

Компьютерная сцинтилляционная γ -спектрометрия

выполнил студент группы Б03-903 Деревянкин Иван

1 Цель работы

Снять и исследовать спектры излучения различных источников, характеризовать различные пики в спектрах радиоактивных веществ.

2 В работе используются:

- сцинтиллятор
- ФЭУ
- предусилитель импульсов
- высоковольтный блок питания для ФЭУ
- АЦП
- компьютер.

3 Теоретические положения

Фотоэффект - это процесс взаимодействия гамма-кванта с электроном, связанным с атомом, при котором электрону передается вся энергия гамма-кванта. При этом электрону сообщается кинетическая энергия $T_e = E_{\gamma} - I_i$, где E_{γ} — энергия гамма-кванта, I_i — потенциал ионизации i-той оболочки атома. Фотоэффект особенно существенен для тяжелых веществ, где он идет с заметной вероятностью даже при высоких энергиях гамма-квантов. В легких веществах фотоэффект становится заметен лишь при относительно небольших энергиях гамма-квантов.

Эффект Комптона - это упругое рассеяние фотона на свободном электроне, сопровождающееся изменением длины волны фотона. Максимальная энергия образующихся комптоновских электронов соответствует рассеянию гамма-квантов на 180° и равна

$$E_{\text{max}} = \frac{\eta \omega}{1 + \frac{mc^2}{2\eta \omega}}.$$
 (1)

Процесс образования электрон-позитронных пар. При достаточно высокой энергии гамма-кванта наряду с фотоэффектом и эффектом Комптона может происходить третий вид взаимодействия гамма-квантов с веществом – образование электрон-позитронных пар. Процесс образования пар не может происходить в пустоте, так как в этом случае не выполняются законы сохранения энергии и импульса. В присутствии ядра или электрона процесс образования пары гамма-квантов возможен, так как можно распределить энергию и импульс гамма-кванта между тремя частицами без противоречия с законами сохранения. При этом если процесс образования пары идет в кулоновском поле ядра или протона, то энергия образующегося ядра отдачи оказывается весьма малой, так что пороговая энергия гамма-кванта E_0 , необходимая для образования пары, практически совпадает с удвоенной энергией покоя электрона $E_0 \cong 2mc^2 = 1.022$ МэВ.

Появившийся в результате процесса образования пар электрон свою энергию на ионизацию среды. Таким образом, вся энергия электрона остается в детекторе. Позитрон будет двигаться до тех пор, пока практически не остановится, а затем аннигилирует с электроном среды, в результате чего появятся два гамма-кванта. Т.е., кинетическая энергия позитрона также останется в детекторе. Далее возможны три варианта развития событий:

- 1. оба родившихся гамма-кванта не вылетают из детектора, и тогда вся энергия первичного гамма-кванта останется в детекторе, а в спектре появится пик с $E=E_{\gamma}$;
- 2. один из родившихся гамма-квантов покидает детектор, и в спектре появляется пик, соответствующий энергии $E=E_{\gamma}-E_{0}$, где $E_{0}=mc^{2}=511$ кэВ;
- 3. оба родившихся гамма-кванта покидают детектор, и в спектре появляется пик, соотвествующий энергии $E=E_{\gamma}-2E_0$, где $2E_0=2mc^2=1022$ кэВ.

Таким образом, любой спектр, получаемый с помощью гамма-спектрометра, описывается несколькими компонентами, каждая из которых связана с определенным физическим процессом. Как описано выше, основными физическими процессами взаимодействия гамма-квантов с веществом является фотоэффект, эффект Комптона и образование электрон-позитронных пар, и каждый из них вносит свой вклад в образование спектра. Помимо этих процессов, добавляется экспонента, связанная с наличием фона, $nu\kappa$

характеристического излучения, возникающий при взаимодействии гамма-квантов с окружающим веществом, а также $nu\kappa$ обратного рассеяния, образующийся при энергии квантов $E_{\gamma}\gg mc^2/2$ в результате рассеяния гамма-квантов на большие углы на материалах конструктивных элементов детектора и защиты. Положение пика обратного рассеяния определяется по формуле:

$$E_{\rm o6p} = \frac{E}{1 + 2E/mc^2},\tag{2}$$

где E – энергия фотопика.

Энергетическое разрешение спектрометра. Даже при поглощении частиц с одинаковой энергией амплитуда импульса на выходе фотоприёмника сцинтилляционного детектора меняется от события к событию. Это связано:

- 1. со статистическим характером процессов сбора фотонов на фотоприёмнике и последующего усиления,
- 2. с различной вероятностью доставки фотона к фотоприемнику из разных точек сцинтиллятора,
- 3. с разбросом высвечиваемого числа фотонов

В результате в набранном спектре линия (которая для идеального детектора представляла бы дельтафункцию) оказывается размытой, её часто описывают гауссианом.

Энергетическим разрешением спектрометра называется величина

$$R_i = \frac{\Delta E_i}{E_i},\tag{3}$$

где ΔE_i — ширина пика полного поглощения, измеренная на половине высоты, E_i — энергия регистрируемого γ -излучения. Значение E_i пропорционально среднему числу фотонов $\overline{n_i}$ на выходе $\Phi \ni V$, т.е.:

$$E_i = \alpha \overline{n_i}. \tag{4}$$

Полуширина пика полного поглощения ΔE_i пропорциональна среднеквадратичной флуктуации $\overline{\Delta n_i}$. Т.к. n_i является дискретной случайной величиной, которая распределена по закону Пуассона, то $\overline{\Delta n_i} = \sqrt{\overline{n_i}}$ и поэтому

$$\Delta E_i = \alpha \overline{\Delta n_i} = \alpha \sqrt{\overline{n_i}}.$$
 (5)

Из (4), (5) получаем, что

$$R_i = \frac{\Delta E_i}{E_i} = \frac{\text{const}}{\sqrt{E_i}}.$$
 (6)

Поскольку энергетическое разрешение зависит от энергии, его следует указывать для конкретной энергии. Чаще всего разрешение указывают для энергии гамма-линии 137 Cs (661.7 кэВ).

4 Ход работы

Проведем измерения гамма-спектров для всех препаратов:

4.1 ⁶⁰Co

Co60

Рис.2. Спектр ^{60}Co

4.2 ^{22}Na

Рис.3. Спектр ^{22}Na

4.3 ^{152}Eu

4.4 ^{137}Cs

Cs137

Рис. 5. Спектр ^{137}Cs

4.5 ^{241}Am

Используя известные значения пиков в спектрах натрия и цезия, построим калибровочный график соответствия номера канала определённому значению энергии и получим уравнение для перехода от номера канала к значению энергии в кэВ:

Рис.6. Спектр ^{241}Am

$$E = 0.75N_i - 55, 2$$

где $a=0.75\pm0.02, b=55.2\pm9.0.$ Погрешности посчитаны согласно методу наименьших квадратов.

Используя калибровочный график, определим значения энергии пиков полного поглощения E_i , их ширины на половине высоты $\triangle E_i$ и энергетическое разрешение R_i . Результаты занесём в таблицу 1.

Таблица погрешностей:

Построим график зависимости $R^2 = f(1/E)$ на рис.7. Наблюдаем линейную зависимость.

Источник	N_i	ΔN_i	E_i , МэВ	ΔE_i , Мэв	R_i
^{22}Na	1730	123	1275	94	0,074
^{60}Co	1827	89	1173	80	0,068
^{137}Cs	937	75	661	56	0,084
^{241}Am	160	19	67	14,8	0,220
^{152}Eu	526	47	347	36	0,104

Таблица 1: Пики полного поглощения

Источник	σ_E	σ_{Δ_E}	σ_{Δ_R}
^{22}Na	34,60	1,88	0,05
^{60}Co	36,54	1,60	0,04
^{137}Cs	18,74	1,12	0,06
^{241}Am	3,20	0,296	0,09
^{152}Eu	10,52	0,72	0,07

Таблица 2: Таблица погрешностей

Рис.7. График зависимости \mathbb{R}^2 от $1/\mathbb{E}$

Определим энергии края комптоновского поглощения для образцов 22 Na, 137 Cs, 60 Co, сравним их с соответствующими справочными значениями.

²² Na:	$E_{Cexp} = 0,999 \text{ MeV}$	$E_{Cth} = 1.062 \text{ MeV}$
⁶⁰ Co:	$E_{Cexp} = 0,922 \text{ MeV}$	$E_{Cth} = 0.963 \text{ MeV}$
$^{137}{\rm Cs}$:	$E_{Cexp} = 0,448 \text{ MeV}$	$E_{Cth} = 0.477 \text{ MeV}$

5 Вывод

В ходе лабораторной работы был разобран принцип устройства сцинтиллятора. Также был изучен ряд радиоактивных источников и снят спектр образцов $^{22}Na,\,^{137}Cs,\,^{60}Co,\,^{152}Eu,\,^{214}Am$. Был построен график и была проверена линейная зависимость квадрата спектрального разрешения прибора от величины, обратной энергии полного поглощения.

Список литературы

[1] Лабораторный практикум по общей физике: Учеб. пособие для вузов. Т. 3. Квантовая физика / Игошин Ф.Ф., Самарский Ю.А., Ципенюк Ю.М.; Под ред. Ципенюка Ю.М. - М.:Физматкнига, 2005. 432 стр.