Rank-65613 over GF(2)

January 15, 2021

The equation

The equation of the surface is:

$$X_1^3 + X_3^3 + X_0^2 X_3 + X_0 X_1 X_2 = 0$$

(0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0)The point rank of the equation over GF(2) is 65613

General information

Number of lines	5
Number of points	9
Number of singular points	2
Number of Eckardt points	1
Number of double points	4
Number of single points	4
Number of points off lines	0
Number of Hesse planes	0
Number of axes	0
Type of points on lines	3^{5}
Type of lines on points	$3, 2^4, 1^4$

Singular Points

The surface has 2 singular points:

$$0: P_2 = \mathbf{P}(0,0,1,0) = \mathbf{P}(0,0,1,0)$$
$$1: P_9 = \mathbf{P}(1,0,0,1) = \mathbf{P}(1,0,0,1)$$

The 5 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array} \right]_4 = \left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array} \right]_4 = \mathbf{Pl}(0,0,1,0,0,0)_2$$

$$\ell_{1} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{18} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{18} = \mathbf{Pl}(0, 1, 1, 0, 0, 0)_{4}$$

$$\ell_{2} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{31} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{31} = \mathbf{Pl}(0, 1, 0, 0, 0, 1)_{21}$$

$$\ell_{3} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}_{9} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}_{9} = \mathbf{Pl}(1, 1, 0, 0, 1, 1)_{29}$$

$$\ell_{4} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{17} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{17} = \mathbf{Pl}(1, 1, 1, 1, 1, 1, 0)_{18}$$

Rank of lines: (4, 18, 31, 9, 17)

Rank of points on Klein quadric: (2, 4, 21, 29, 18)

Eckardt Points

The surface has 1 Eckardt points:

$$0: P_2 = \mathbf{P}(0, 0, 1, 0) = \mathbf{P}(0, 0, 1, 0). T = -1$$

Double Points

The surface has 4 Double points:

The double points on the surface are:

$$P_6 = (1,0,1,0) = \ell_0 \cap \ell_3$$

$$P_9 = (1,0,0,1) = \ell_1 \cap \ell_4$$

$$P_{10} = (0,1,0,1) = \ell_2 \cap \ell_3$$

$$P_{14} = (0, 1, 1, 1) = \ell_2 \cap \ell_4$$

Single Points

The surface has 4 single points:

The single points on the surface are:

0:
$$P_0 = (1, 0, 0, 0)$$
 lies on line ℓ_0
1: $P_4 = (1, 1, 1, 1)$ lies on line ℓ_3
2: $P_8 = (1, 1, 1, 0)$ lies on line ℓ_4

$$3: P_{13} = (1,0,1,1)$$
 lies on line ℓ_1

The single points on the surface are:

Points on surface but on no line

The surface has 0 points not on any line:

The points on the surface but not on lines are:

Line Intersection Graph

$$\begin{array}{c|c} 01234 \\ \hline 0011110 \\ 110101 \\ 211011 \\ 310100 \\ 401100 \end{array}$$

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1	ℓ_2	ℓ_3
in point	P_2	P_2	P_6

Line 1 intersects

Line	ℓ_0	ℓ_2	ℓ_4
in point	P_2	P_2	P_9

Line 2 intersects

Line	ℓ_0	ℓ_1	ℓ_3	ℓ_4
in point	P_2	P_2	P_{10}	P_{14}

Line 3 intersects

Line	ℓ_0	ℓ_2
in point	P_6	P_{10}

Line 4 intersects

Line	ℓ_1	ℓ_2
in point	P_9	P_{14}

The surface has 9 points:

The points on the surface are:

$$\begin{array}{lll} 0: \, P_0 = (1,0,0,0) & 4: \, P_8 = (1,1,1,0) \\ 1: \, P_2 = (0,0,1,0) & 5: \, P_9 = (1,0,0,1) \\ 2: \, P_4 = (1,1,1,1) & 6: \, P_{10} = (0,1,0,1) \\ 3: \, P_6 = (1,0,1,0) & 7: \, P_{13} = (1,0,1,1) \end{array}$$