SphereFace: Deep Hypersphere Embedding for Face Recognition

Weiyang Liu¹ Yandong Wen² Zhiding Yu² Ming Li³ Bhiksha Raj² Le Song¹

¹Georgia Institute of Technology

²Carnegie Mellon University

³Sun Yat-Sen University

wyliu@gatech.edu, {yandongw,yzhiding}@andrew.cmu.edu, lsong@cc.gatech.edu

Abstract

we propose the angular softmax (A-Softmax) loss that enables convolutional neural networks (CNNs) to learn angularly discriminative features.

1. Introduction

Figure 1: Comparison of open-set and closed-set face recognition.

Yellow dots represent the first class face features, while purple dots represent

the second class ace feature

2. Related Work

Wi and bi are weights and bias of last fully connected layer corresponding to class i, respectively

softmax loss, multi-class classification problem

$$p_1 = \frac{\exp(\boldsymbol{W}_1^T \boldsymbol{x} + b_1)}{\exp(\boldsymbol{W}_1^T \boldsymbol{x} + b_1) + \exp(\boldsymbol{W}_2^T \boldsymbol{x} + b_2)}$$

$$p_2 = \frac{\exp(\boldsymbol{W}_2^T \boldsymbol{x} + b_2)}{\exp(\boldsymbol{W}_1^T \boldsymbol{x} + b_1) + \exp(\boldsymbol{W}_2^T \boldsymbol{x} + b_2)}$$

$$p_3 = \frac{\exp(\boldsymbol{W}_2^T \boldsymbol{x} + b_2)}{\exp(\boldsymbol{W}_1^T \boldsymbol{x} + b_1) + \exp(\boldsymbol{W}_2^T \boldsymbol{x} + b_2)}$$
class 1 if p1 >p2 and class 2 if p1

class 1 if p1 >p2 and class 2 if p1 <p2.

$$(\mathbf{W}_1 - \mathbf{W}_2)\mathbf{x} + b_1 - b_2 = 0.$$

decision boundary

In CNNs, f is usually the output of a fully connected layer W, so $f_j = W_j^T x_i + b_j$ and $f_{y_i} = W_{y_i}^T x_i + b_{y_i}$ where x_i , W_j , W_{y_i} are the i-th training sample, the j-th and y_i th column of W respectively.

$$L = \frac{1}{N} \sum_{i} L_{i} = \frac{1}{N} \sum_{i} -\log\left(\frac{e^{f_{y_{i}}}}{\sum_{j} e^{f_{j}}}\right)$$

$$L_{i} = -\log\left(\frac{e^{\mathbf{W}_{y_{i}}^{T}\mathbf{x}_{i} + b_{y_{i}}}}{\sum_{j} e^{\mathbf{W}_{j}^{T}\mathbf{x}_{i} + b_{j}}}\right)$$

$$= -\log\left(\frac{e^{\|\mathbf{W}_{y_{i}}\| \|\mathbf{x}_{i}\| \cos(\theta_{y_{i},i}) + b_{y_{i}}}}{\sum_{j} e^{\|\mathbf{W}_{j}\| \|\mathbf{x}_{i}\| \cos(\theta_{j,i}) + b_{j}}}\right)$$

$$L_{\text{modified}} = \frac{1}{N} \sum_{i} -\log \Big(\frac{e^{\|\boldsymbol{x}_i\| \cos(\theta_{y_i,i})}}{\sum_{i} e^{\|\boldsymbol{x}_i\| \cos(\theta_{j,i})}} \Big) \boldsymbol{V}$$

$$L_{\text{ang}} = \frac{1}{N} \sum_{i} -\log \left(\frac{e^{\|\boldsymbol{x}_i\| \cos(m\theta_{y_i,i})}}{e^{\|\boldsymbol{x}_i\| \cos(m\theta_{y_i,i})} + \sum_{j \neq y_i} e^{\|\boldsymbol{x}_i\| \cos(\theta_{j,i})}} \right)$$

Loss Function	Decision Boundary		
Softmax Loss	$(W_1 - W_2)x + b_1 - b_2 = 0$		
Modified Softmax Loss	$\ \boldsymbol{x}\ (\cos\theta_1-\cos\theta_2)=0$		
A-Softmax Loss	$\ \boldsymbol{x}\ (\cos m\theta_1 - \cos \theta_2) = 0$ for class 1 $\ \boldsymbol{x}\ (\cos \theta_1 - \cos m\theta_2) = 0$ for class 2		
	CI I date A./D.		

→ Class | 이려면 O1< 02

decision boundaries can greatly affect the feature distribution

Assume a learned feature x from class 1 is given and θ i is the angle between x and Wi, it is known that the modified softmax loss requires $\cos(\theta 1) > \cos(\theta 2)$ to correctly classify x.

The decision boundary for class 1 is $\cos(m\theta 1) = \cos(\theta 2) = \cos(\theta 3) = \cos(\theta 4) =$

the decision boundary for class 2 is $\cos(m\theta 2) = \cos(\theta 1) = \cos(\theta 3) = \cos(\theta 4) = \dots$

such decision boundaries will produce an angular margin of $\frac{m-1}{m+1}\theta_2^1$ where θ_2^1 is the angle between W_1 and W_2 .

3.3. Hypersphere Interpretation of A-Softmax Loss

4.2. Exploratory Experiments

Dataset	Original	m=1	m=2	m=3	m=4
LFW	97.88	97.90	98.40	99.25	99.42
YTF	93.1	93.2	93.8	94.4	95.0

Method	Models	Data	LFW	YTF
DeepFace [30]	3	4M*	97.35	91.4
FaceNet [22]	1	200M*	99.65	95.1
Deep FR [20]	1	2.6M	98.95	97.3
DeepID2+ [27]	1	300K*	98.70	N/A
DeepID2+ [27]	25	300K*	99.47	93.2
Baidu [15]	1	1.3M*	99.13	N/A
Center Face [34]	1	0.7M*	99.28	94.9
Yi et al. [37]	1	WebFace	97.73	92.2
Ding et al. [2]	1	WebFace	98.43	N/A
Liu et al. [16]	1	WebFace	98.71	N/A
Softmax Loss	1	WebFace	97.88	93.1
Softmax+Contrastive [26]	1	WebFace	98.78	93.5
Triplet Loss [22]	1	WebFace	98.70	93.4
L-Softmax Loss [16]	1	WebFace	99.10	94.0
Softmax+Center Loss [34]	1	WebFace	99.05	94.4
SphereFace	1	WebFace	99.42	95.0

40.49M