Folder: results Date: March 31, 2014

Repository: git@git.rhrk.uni-kl.de:EIT-Wehn/finance.zynqpricer.hls.git Revision: 3cc17b6fe870b602fdb9b1b9ff03d1ff1906d8e4

Revision: 3cc1/b6fe8/0b602fdb9b1b9ff03d1ff1906d86 Author: Christian Brugger (brugger@eit.uni-kl.de)

Heston Classical Monte Carlo, 32bit floating point

Performance Comparison

ReConFig 2011 Demo	Performance [steps/s]	Energy Efficiency [Joule / step]	Process	Float Extensions	Details
Laptop + FPGA (efficiency 48 %)	142.7E+6	245.5E-9	65 nm	(SSSE3)	Core 2 Duo + ML507
Server	62.1E+6	2997.0E-9	45 nm	(SSE4.2)	Intel Xeon W3550 @ 4x3.07 GHz
GPU	345.8E+6	896.5E-9	40 nm	-	Nvidia Tesla C2050

Source: de Schryver, Christian, et al. "An energy efficient FPGA accelerator for Monte Carlo option pricing with the Heston model." Reconfigurable Computing and FPGAs (ReConFig), 2011 International Conference on. IEEE, 2011.

Zync Demo	Performance [steps/s]	Energy Efficiency [Joule / step]	Process	Float Extensions	Details
Server	267.7E+6	694.8E-9	45 nm	SSE4.2	Intel Xeon W3550 @ 4x3.07 GHz
Dell Laptop	141.1E+6	216.9E-9	22 nm	AVX	Intel Core i5-3320M @ 2.60 GHz, 2 cores
Dell Desktop	214.9E+6	716.7E-9	45 nm	SSE4.2	Intel Core i7 860 @ 4x2.8 GHz
Zynq ARM only	10.8E+6	176.2E-9	28 nm	Neon	zc702, ARM Cortex-A9 @ 2 x 0.667 GHz
Zynq FPGA 6x (efficiency 99.9 %)	599.4E+6	4.6E-9	28 nm	-	zc702, XC7Z020-CLG484-1

ARM 23% more power efficient than Intel Laptop

Optimized C++ Implementation 4.3 times faster than ReConFig 2011 implementation (Vectorized, Cache Optimization, Ziggurat)

Zynq 4.2 times faster than ReConFig 2011 Demo

Zyng 53.2 more power efficient than ReConFig 2011 Demo

Zynq 47.0 more power efficient than Intel CPU and 194.2 more power efficient than GPU

Zynq 2.2 faster than Intel Server and 1.7 faster than GPU

Lines of Code Comparison

Implemetation	Heston Accelerator [lines of code]	Host Driver & Demo [lines of code]	Languages		
Heston, ReConFig (Yvan, Daniel)	3705	1330	THDL, Visual Pipeline	THDL, Visual Pipeline, VHDL, USB	
Heston ML, Date 2013 (Pedro, Thomas)	5280	7870	AutoESL, VHDL	Demo work in progress	
New Methodology: HLS + Zynq + Linux	415	540	Vivado HLS & Zynq F	Vivado HLS & Zynq FPGA	
New Software C++	210	150	C++ Software		

⁹ times smaller code for the same functionality

FPGA Ressource Comparison

Target Frequency 100 MHz

	LUTs	FFs	BRAMs	DSPs	Comments
Zynq Implementation	5190	5358	5	36	
Heston Kernel	4457	4443	1	35	
ICDF Gauss	447	592	2	1	Prec: 0.00019
Mersenne Twister	286	323	2	0	
ReConFig 2011	5681	7300	5	43	
Heston Kernel	4969	6619	1	42	
ICDF Gauss	300	450	1	1	Prec: 0.00039, Ressources estimated
Mersenne Twister	412	231	3	0	

Comparable ressources