

团队编号:	apmcm2213610
选择的问题:	Е

2022年APMCM汇总表

核武器是大规模杀伤性武器,其存在对世界格局有重大影响。本文通过建立数学模型,分析核武器的发展现状并预测未来趋势,对深入了解核武器具有重要意义。对于问题一,本文利用Excel、Python等软件对所附数据进行了基本的数据分析,最后回答了问题中的:拥有过核武器的国家有:中国、美国、英国、法国、

印度、巴基斯坦、伊朗、南非、北韩和俄罗斯。减少最多的是在美国,增幅最大的是巴基斯坦,它在1962-1966年进行了最多的核试验。在过去十年中,朝鲜的核研究最为活跃,美国的转变速度最快。

对于问题二,我们利用附录中的时间序列数据建立了一个ARIMA模型。首先,我们为每个国家分别建立并测试ARIMA模型,然后用该模型对试验通过后的100年进行预测。我们假设在未来100年内不会有新的核国家出现。根据预测结果,我们发现在100年后,拥有核武器的国家是:中国、朝鲜、印度、巴基斯坦、俄罗斯、英国和美国。他们的核库存也被计算出来。100年后,世界上的核武器数量将是12,726件。

在回答问题3时,我们根据当量和半径的方程式,以及摧毁地球所需的最小当量,计算出摧毁地球表面所需的 "大埃文斯 "数量。最后发现,摧毁地球需要 248,775个 "大埃文斯";今天最强大的核弹也无法摧毁地球;我们应该限制世界上的核弹总数,使其永远不超过足以摧毁地球的最低数量,即约248,775枚;此外,对于已经拥有核武器的国家,我们需要确保所有这些国家的总核当量至少不超过345464769.374万吨。

最后,我们报告了我们的结果,并向所有国家提出了一些建议。 联合国。

关键词:核武器,ARIMA模型。 时间序列

内容

1.	简介		1
	1.1.	背景介绍	1
	1.2.	问题要求	
2.	问题分	· · · · · · · · · · · · · · · · · · ·	2
	2.1.		
	2.2.	对问题二的分析	
	2.3.	对问题三的分析	
3.	模型個	设设	3
4.	符号指	苗述	3
5.		的解决方案	
	5.1.	问题a	4
	5.2.	问题b	
	5.3.	问题c	5
	5.4.	问题d	5
	5.5.	问题e	5
6.	模型的	り建立和问题2的解决	6
	6.1.	建立模型	6
	6.2.	解决方案和分析	16
		6.2.1. 问题a和b	16
7.	模型的	り建立和问题3的解决	17
	7.1.	模型建立	17
	7.2.	解决方案和分析	18
		7.2.1. 问题a、b和c	18
8.	问题4	的解决方案	19
9.	模型的	为优势和劣势	20
	9.1.	优势	20
	9.2.	弱点	20
10.	参考	(本文	20

团队# apmcm2213610 页码 1的22

1. 简介

1.1. 背景介绍

自核武器问世以来,人类的战争进入了一个以核武器为基础的新时代。核 武器是人类发明的最强大的武器,利用核反应释放的巨大能量作为破坏力。 1945年,美国在日本的广岛和长崎投下两颗原子弹,让世界看到了核武器的恐 怖威力。在本文中,我们通过建立一个数学模型来分析核武器的发展现状并预 测未来的趋势,这对于深入了解核武器具有重要意义。

1.2. 问题要求

- 基本数据分析
- a. 哪些国家曾经拥有过核武器?
- b. 在过去20年中,哪个国家减少和增加的核武器库存最多?
- c. 哪五年的核武器试验最多?
- d. 在过去十年中,哪个国家在核武器研究方面最为活跃?
- e. 从 "不考虑核武器 "到 "拥有核武器 "转变最快的是哪个国家?
- 预测核武器的数量
- a. 根据所附数据或你收集的数据,建立一个数学模型来预测未来100年的核武器数量和拥有核武器的国家;
- b. 预测未来100年的核武器数量,2123年的核武器总数,以及各国核武器数量的变化趋势。
- 保护我们的星球
- a. 建立核武器引爆位置的数学模型,至少计算出摧毁地球需要多少枚核弹?
- b. 通过数学模型,目前拥有的核弹的最大破坏力是多少?它是否足以摧毁地球?
- c. 为了保护地球和我们赖以生存的环境,世界上的核弹总数应该限制多少,已经拥有核武器的国家在理论上应该限制多少?
- 准备一篇非技术性的文章(最多1页)。你应该给联合国(U.N.)写一篇 非技术性的文章(最多1页),解释你的团队的发现并为所有国家提出一些 建议。

团队# apmcm2213610 页码 2的22

2. 问题分析

2.1. 对问题一的分析

问题1要求我们对问题中给出的数据进行初步分析。对于a小题,我们可以通过3种方式得到答案: 1.搜索事实情况; 2.观察出现在表2中的国家,有库存可以说明曾经拥有过核武器; 3.过滤表4中的国家,状态=3。对于子问题b,我们分别找出增加和减少最多的国家。首先可以直观地显示数据,然后对于那些难以确定的数据,可以计算出幅度。对于子问题c,我们统计了从1945年到2022年每个五年期的核试验总数,并找出核试验数量最多的连续五年。对于子问题d,我们计算不同国家在过去十年的核武器试验数量,并确定数量最多的国家。对于子问题e,我们将 "过渡率 "定义为从第一个1状态到最后2状态的年数。我们用python来计算床单的 "位置"。

2.2. 对问题二的分析

问题2是一个预测类型的问题。对于时间序列数据,通常使用ARIMA来预测。在本文中,建模的思路是对每个国家进行预测,如果预测结果为负数,那么这个国家在100年后将不再拥有核武器。通过观察每个国家100年后的结果,得出100年后仍然拥有核武器的国家。最后,将每个国家的结果相加,预测100年后全世界核武器的变化。

2.3. 对问题三的分析

这个问题有a、b、c三个小问题层层递进,首先要求建立核武器引爆位置的数学模型,确定核武器的位置及其影响范围,并利用建立的模型,根据收集的相关数据计算出相关核弹爆炸时释放的总能量,计算出足以摧毁地球的最小核弹数量;然后要求利用已经建立的模型计算出威力最大的核弹--最后,根据前两个问题的结果,我们需要考虑实际情况,对核武器的发展程度做出限制。

根据该问题,核武器对地球的破坏并不意味着地球被炸成碎片,而只是地球上人类和生物的生存环境被破坏,换句话说,该模型只需要考虑核弹对地球表面生存环境的影响。此外,核弹的影响范围很广,不同地区的核弹对生存环境的影响程度也不同。本体论的困难在于如何确定核弹爆炸后具有破坏性的影响范围。

第一个问题要求摧毁的核弹的最低数量

团队# apmcm2213610 页码 3的22

地球,所以我们使用威力最大的核弹(设计TNT当量为50兆吨),使每颗核弹的有效影响最大化,同时,我们假设每颗核弹的有效影响不相互重叠,总之,核武器的引爆位置应在地球表面,根据核弹的影响范围,核弹爆炸后具有破坏性 核弹的数量可以通过均匀分布达到最小。

核弹的毁伤范围,影响因素很多,包括核弹当量、爆炸地点、地形、天气等,而核武器的杀伤因素还包括光辐射、冲击波、早期核辐射和放射性污染四种,而且在地球表面不同地点进行爆炸的情况不一,效果也不一样,所以根据这些影响因素很难确定核弹的毁伤范围,这里采用国际标准。

最终,利用上述模型我们可以计算出 "大伊万 "的毁灭面积,同时也计算出了 "大伊万 "的破坏力,根据地球的总面积,利用覆盖问题的数学模型,可以得到毁灭地球的最小核弹数量。理论上,世界上的核弹总数不应超过足以摧毁地球的最低数量,由于不是每颗核弹的当量都与 "大伊万 "相同,实际破坏力不应足以摧毁整个地球,但保守地说,我们应该限制世界上的核弹总数,使其永远不超过足以摧毁地球的最低数量。最低数量核弹。

3. 模型假设

- 2017年,联合国大会通过了《禁止核武器条约》,因此我们假设在未来100 年内不会产生新的核武国。
- 对于问题3,我们假设地球是平的,地形不影响核武器的引爆范围。
- 假设未来不会出现有关核武器或可能影响核武器储存的新政策。

4. 符号描述

重要性	符号	重要性	符号
期间	t	t时期的误差	€ (t)
t期间的数据	y(t)	比例常数	C
误差	ε	破坏半径	R

团队# apmcm2213610 页码 4的22

5. 问题1的解决方案

5.1. 问题a

本题需要从表中获取拥有核武器的国家的数据。根据实际情况,拥有过核武器的国家有:中国、美国、英国、法国、印度、巴基斯坦、伊朗、南非、北朝鲜和俄罗斯。对于表中的数据,我们可以通过 "库存 "表来找到曾经拥有核武器库存的国家:中国、美国、英国、法国、印度、巴基斯坦、伊朗、南非、朝鲜和俄罗斯。同样地,我们可以用表 "位置 "来过滤出状态为3的国家:中国、美国、英国、法国、印度、巴基斯坦、伊朗、南非、朝鲜和俄罗斯。结果是一致的,所以拥有过核武器的国家是:中国、美国、英国、法国、印度、巴基斯坦、伊朗、南非、北朝鲜和俄罗斯。

5.2. 问题b

对于这个问题,我们在 "库存 "表中显示了2002-2022年期间所有国家的折线图,为了便于表述,美国和俄罗斯在一个图中,其他国家在另一个图中。结果显示如下。

图5.1: 2002-2022年按每个国家分列的库存折线图

从图片中可以看出,美国在这20年中的核武器储备减少得最多。对于增长的幅度,需要计算所有增加库存的国家的增长幅度。增长幅度的公式是增长后减去增长前。计算结果显示在下图中。

图5.2: 库存的增加

团队# apmcm2213610 页码 5的22

因此,增幅最大的国家是巴基斯坦。

5.3. 问题c

我们统计了1945-2022年每个五年期的核试验总数,结果显示如下

图5.3:核试验的数量

我们可以清楚地看到,在1962-1966年的五年中,共有422次核试验。

5.4. 问题d

首先,我们团队认为,衡量核武器研究是否活跃的标准是核试验的数量, 所以只有朝鲜在2010-2019年期间共进行了7次核试验,是过去十年中核武器研 究最活跃的国家。

5.5. 问题e

对于这个问题,我们将 "过渡速度 "定义为从第一个1状态到最后一个2状态之间所经过的年数。使用python,对床单 "位置 "的统计计算如下。

图5.4: 转型年限

美国的转型速度最快,为6年。

团队# apmcm2213610 页码 6的22

6. 模型的建立和问题2的解决

6.1. 模型建立

对于预测时间序列数据,ARIMA(自回归综合移动平均模型)模型,也被称为ARIMA(p,d,q),是一个常用的预测统计方法。其中p代表预测模型中使用的时间序列数据本身的滞后期,也被称为AR/自动回归项;d代表时间序列数据稳定所需的差分阶数,也被称为综合项;q代表预测模型中使用的预测误差的滞后期,也被称为MA/移动平均项[11 。

下图清楚地说明了ARIMA的工作流程

图5.4: ARIMA的算法流程图

以下是对现今每个有核国家的核武器储备的预测。

(1) 中国

为了避免影响模型的准确性,首先删除了库存为零的数据,共得到59个有效数据。

使用SPSSPRO软件对数据进行建模,建模过程如下。

ADF检查表

	表6.1: ADF	检查表	
变量	差额订单	t	P
储存	0	1.837	0.998
	1	-5.023	0.000***
	2	-6.727	0.000***

ADF检验显示,在1阶差值下的显著性P值为0.000***,呈现出水平上的显著性,拒绝了该序列是平稳时间序列的原始假设。

ACF

图6.1: 中国的ACF图

可以注意到,ACF图显示了一个尾随现象,顺序为3

PACF

图6.2: 中国的PACF图

PACF图还显示了一个尾随现象,阶数为1,因此p,q = min(1,3) = 1

● 定义模型

基于上述分析,模型被确认为ARIMA(1,1,1),接下来对模型进行测试,结果列表如下。

项目 符号 价值 55 Df 残差 N 59 样本数量 Q-statistic Q6 (P-value) 0.01 (0.919) Q12 (P-value) 0.82 (0.992) 1.277 (1.000) 问题18 (P值) 1.583 (1.000) Q24 (P值) 2.376 (1.000) Q30(P值) AIC 429.876 信息准则 BIC 438.118 \mathbb{R}^2 0.982 契合度很高

表6.2: 中国的模型参数表

从Q统计结果的分析中可以得到,Q6不存在水平上的显著性,模型的残差 是白噪声系列的假设不能被拒绝,而模型的拟合度,R²,是 团队# apmcm2213610 页码 8的22

0.982,这是一个很好的拟合。

● 用模型进行预测

在AIC方法的基础上寻找最佳参数,可以得出递归公式。

 $y(t) = 6.381 + 0.825 * y(t - 1) - 0.564 * \epsilon(t - 1)$ 计算出未来100年的数据,并以图像形式呈现。

图6.3: 中国的预测结果图

上图表示这个时间序列模型的原始数据(蓝色)、模型拟合值(绿色)和模型预测值(黄色)。从图中可以看出,拟合的系列趋势与真实的系列趋势非常接近,表明拟合效果良好。

该模型预测,100年后,中国将拥有1000枚核弹。

以下国家遵循同样的方法,使用AIC方法指南来确定最佳参数。

(2) 法国

为了避免影响模型的准确性,首先删除了库存为零的数据,共得到59个有效数据。

● 定义模型 模型:

ARIMA(0,2,1)

	表6.3: 法国的模型参数表	
项目	符号	价值
	Df残差	55
样本数量	N	59
Q统计量	Q6(P值)	0.053 (0.818) 。
	Q12(P值)	3.853 (0.697)
	Q18(P值)	14.773 (0.254) 。
	Q24(P值)	20.91 (0.284)
	Q30 (P值)	29.9 (0.188)
信息准则	AIC	550.113
	BIC	556.242
拟合度	\mathbb{R}^2	0.95

从Q统计结果的分析中可以得出,Q6并没有

团队# apmcm2213610 页码 10的

呈现水平上的显著性,模型的残差是白噪声序列的假设不能被拒绝,而模型的 拟合度R²为0.95,是一个良好的拟合。

● 用模型进行预测

在AIC方法的基础上寻找最佳参数,可以得出递归公式。

 $y(t) = -0.531 - 1.0 * \epsilon(t - 1)$ 计算出未来100年的数据,并以图像形式呈现。

图6.4: 法国的预测结果图

上图表示这个时间序列模型的原始数据(蓝色)、模型拟合值(绿色)和模型预测值(黄色)。从图中可以看出,拟合的系列趋势与真实的系列趋势非常接近,表明拟合效果良好。

根据该模型的预测,在2041年,法国的核弹头数量将减少到零。100年后, 将没有核武器。

(3) 印度

为了避免影响模型的准确性,首先删除存量为0的数据,共获得26个有效数据。

● 定义模型模型:

ARIMA(0,1,0)

	表6.4: 印度的模型参数表			
项目	符号	价值		
	Df残差	24		
样本数量	N	26		
Q-	statisticQ6 (P值)	0.254 (0.614)		
	Q12(P值)	4.356 (0.629) 。		
	Q18(P值)	8.604 (0.736)		
	Q24(P值)	9.613 (0.944) 。		
信息准则	AIC	151.485		
	BIC	153.923		

团队# apmcm2213610		页码 11的
拟合度	\mathbb{R}^2	0.991

团队# apmcm2213610 页码 12的22

从Q统计量结果的分析可以得到,Q6不存在水平上的显著性,不能拒绝模型的残差是白噪声序列的假设,而模型的拟合度R²为0.991,是一个很好的拟合

0

● 用模型进行预测

在AIC方法的基础上寻找最佳参数,可以得出递归公式。

y(t) = 6.4 + y(t - 1) 计算出未来100年的数据,并以图像形式呈现。

图6.5: 印度的预测结果图

上图表示这个时间序列模型的原始数据(蓝色)、模型拟合值(绿色)和模型预测值(黄色)。从图中可以看出,拟合的系列趋势与真实的系列趋势非常接近,表明拟合效果良好。

该模型预测,100年后,印度将拥有800枚核弹。

(4) ÄÄÄ

为了避免影响模型的准确性,首先删除存量为0的数据,共获得26个有效数据。

● 定义模型 模型:

ARIMA(0,2,1)

—————————————————————————————————————		
项目	符号	价值
	Df残差	52
样本数量	N	56
Q-	statisticQ6 (P值)	0.064 (0.801) 。
	Q12 (P值)	0.463 (0.998)
	Q18 (P值)	1.185 (1.000) 。
	Q24 (P值)	4.206 (1.000) 。
	Q30(P值)	5.136 (1.000) 。
信息准则	AIC	203.17

团队# apmcm2213610		页码 13的22
	BIC	209.137
机人产	D.	0.006
拟合度	\mathbb{R}^2	0.996

团队# apmcm2213610 页码 14的22

从Q统计量结果的分析可以得到,Q6不存在水平上的显著性,不能拒绝模型的残差是白噪声序列的假设,而模型的拟合度R²为0.996,属于良好的拟合。

用模型进行预测

在AIC方法的基础上寻找最佳参数,可以得出递归公式。

$$y(t) = -0.036 - 1.0 * \epsilon(t - 1)$$

计算出未来100年的数据,并以图像形式呈现。

图6.6: 以色列的预测结果图

上图表示这个时间序列模型的原始数据(蓝色)、模型拟合值(绿色)和模型预测值(黄色)。从图中可以看出,拟合的系列趋势与真实的系列趋势非常接近,表明拟合效果良好。

根据模型预测,以色列的核弹数量将在2112年减少到零。

(5) 北朝鲜

为了避免影响模型的准确性,首先删除存量为0的数据,共获得9个有效数据。

● 定义模型模型:

ARIMA(1,0,0)

表6.5: 北朝鲜的模型参数表

项目	符号	价值
	Df 残差	7
样本数量	N	9
Q-statistic	Q6 (P-value)	0.042 (0.837)
信息准则	AIC	67.397
	BIC	67.989
契合度很高	R ²	0.387

从Q统计结果的分析中可以得到,Q6不存在水平上的显著性,模型的残差 是白噪声序列的假设不能被拒绝,而模型的拟合度R²为 团队# apmcm2213610 页码 15的22

0.387, 由于数据量小, 拟合效果不好。

● 用模型进行预测

在AIC方法的基础上寻找最佳参数,可以得出递归公式。

y(t) = 14.083 + 0.74 * y(t - 1) 计算出未来100年的数据,并以图像形式呈现。

图6.7: 北朝鲜的预测结果图

上图表示这个时间序列模型的原始数据(蓝色)、模型拟合值(绿色)和模型预测值(黄色)。从图中可以看出,拟合的系列趋势与真实的系列趋势相对吻合,而且吻合度很平均。

该模型预测,在100年后,朝鲜将拥有14枚核弹。

(6) 巴基斯坦

为了避免影响模型的准确性,首先删除了库存为零的数据,共获得25个有效数据。

● 定义模型模型:

ARIMA(0,1,0)

表6.6: 巴基斯坦的模型参数表			
项目	符号	价值	
	Df残差	23	
样本数量	N	25	
Q-	statisticQ6 (P值)	0.386 (0.534) 。	
	Q12 (P值)	5.346 (0.500) 。	
	Q18 (P值)	9.891 (0.626)	
	Q24(P值)	11.778 (0.858) 。	
信息准则	AIC	123.7	
	BIC	126.056	
拟合度	R ²	0.996	

从Q统计量结果的分析可以得到,Q6不存在水平上的显著性,不能拒绝模型的残差是白噪声序列的假设,而模型的拟合度R²为0.996,属于良好的拟合。

团队# apmcm2213610 页码 16的22

用模型进行预测

在AIC方法的基础上寻找最佳参数,可以得出递归公式。

y(t) = 6.792 + y(t - 1) 计算出未来100年的数据,并以图像形式呈现。

图6.8: 巴基斯坦的预测结果图

上图表示这个时间序列模型的原始数据(蓝色)、模型拟合值(绿色)和模型预测值(黄色)。从图中可以看出,拟合的系列趋势与真实的系列趋势非常接近,表明拟合效果良好。

该模型预测,100年后,巴基斯坦将拥有844枚核弹。

(7) 俄罗斯

为了避免影响模型的准确性,首先删除了库存为零的数据,共获得77个有效数据。

● 定义模型 模型:

ARIMA(0,2,0)

表6.7:俄罗斯的模型参数表		
项目	符号	价值
	Df残差	74
样本数量	N	77
Q统计量	Q6(P值)	0.495 (0.482) 。
	Q12(P值)	17.307 (0.008***) 。
	Q18(P值)	21.12 (0.049**) 。
	Q24(P值)	26.001 (0.100*) 。
	Q30(P值)	30.108 (0.181)
信息准则	AIC	1179.694
	BIC	1184.329
拟合度	\mathbb{R}^2	0.982

从Q统计量结果的分析可以得到,Q6没有呈现水平上的显著性,不能拒绝模型的残差是白噪声序列的假设,而模型的拟合度R²是0.982,是一个很好的拟

合。

● 用模型进行预测

在AIC方法的基础上寻找最佳参数,可以得出递归公式。

$$y(t) = -0.503 - 0.999 * \epsilon(t - 1) + 0.25 * y(t - 1)$$

计算出未来100年的数据,并以图像形式呈现。

图6.9: 俄罗斯的预测结果图

上图表示这个时间序列模型的原始数据(蓝色)、模型拟合值(绿色)和模型预测值(黄色)。从图中可以看出,拟合的系列趋势与真实的系列趋势非常接近,表明拟合效果良好。

该模型预测,100年后,俄罗斯将拥有1465枚核弹。

(8) 英国

为了避免影响模型的准确性,首先删除了库存为零的数据,共获得了71个 有效数据。

● 定义模型 模型:

ARIMA(2,0,1)

表6.8: 英国的模型参数表

项目	符号	价值
	Df 残差	67
样本数量	N	71
Q-statistic	Q6 (P-value)	0.004 (0.948)
	Q12 (P-value)	0.597 (0.996)
	问题18(P值)	2.323 (0.999)
	Q24 (P值)	10.858 (0.900)
	Q30(P值)	17.576 (0.823)
信息准则	AIC	682.297
	BIC	693.611
契合度很高	\mathbb{R}^2	0.896

从Q统计量结果的分析可以得到,Q6不存在水平上的显著性,不能拒绝模型的残差是白噪声序列的假设,而模型的拟合度R²是0.896,是一个很好的拟合

● 用模型进行预测

团队# apmcm2213610 页码 20的22

在AIC方法的基础上寻找最佳参数,可以得出递归公式。

$$y(t) = 275.813 + 1.971 * y(t - 1) - 0.982 * y(t - 2) - 1.0 * $\epsilon(t - 1)$ 计算出未来 100 年的数据,并以图像形式呈现。$$

图6.10: 英国的预测结果图

上图表示这个时间序列模型的原始数据(蓝色)、模型拟合值(绿色)和模型预测值(黄色)。从图中可以看出,拟合的系列趋势与真实的系列趋势非常接近,表明拟合效果良好。

该模型预测,在100年后,英国将拥有274枚核弹。

(9) 美国

● 定义模型 模型:

ARIMA(2,1,2)

表6.9: 美国的模型参数表

项目	符号	价值
	Df 残差	72
样本数量	N	78
Q-statistic	Q6 (P-value)	0.007 (0.933)
	Q12 (P-value)	1.295 (0.972)
	问题18(P值)	6.037 (0.914)
	Q24 (P值)	7.963 (0.979)
	Q30(P值)	14.125 (0.944)
信息准则	AIC	1278.752
	BIC	1292.815
契合度很高	\mathbb{R}^2	0.992

从Q统计量结果的分析可以得到,Q6没有呈现水平上的显著性,不能拒绝模型的残差是白噪声序列的假设,而模型的拟合度R²是0.992,是一个很好的拟合。

● 用模型进行预测

在AIC方法的基础上寻找最佳参数,可以得出递归公式。

团队# apmcm2213610 页码 21的22

 $y(t) = 48.13 + 0.358 * y(t - 1) + 0.299 * y(t - 2) + 0.587 * \epsilon (t - 1) - 0.066 * \epsilon (t - 2)$ 计算出未来100年的数据,并以图像形式呈现。

图6.11: 美国的预测结果图

上图表示这个时间序列模型的原始数据(蓝色)、模型拟合值(绿色) 和模型预测值(黄色)。从图中可以看出,拟合的系列趋势与真实的系列趋势非常接近,表明拟合效果良好。

该模型预测,100年后,美国将拥有8330枚核弹

6.2. 解决方案和分析

6.2.1. 问题a和b

根据之前的模型,我们把每个国家的

预测,得到核武器总数的最终预测。最后的结果如下图所示。总结上述模型结果,最终结果如下。

图6.12: 世界和每个国家的预测结果图

从图中可以看出,100年后核武器的总数将达到12,726件。

团队# apmcm2213610 页码 22的22

7. 模型的建立和问题3的解决

7.1. 模型建立

图7.1:核弹爆炸范围示范图

根据国际标准,核武器的有效杀伤半径公式为

公式中,R为核武器的有效杀伤半径,单位为前,C为比例常数,一般取为: 1.493885, T代表核武器的当量,单位为吨。

如问题中所述,"大伊万 "的设计TNT当量是50兆吨,也就是5000万吨。因此,单个 "大伊万 "的有效杀伤半径为

假设核弹的爆炸威力在以爆炸地点为中心的圆内扩散,"大伊万 "的有效杀 伤面积为

$$\frac{1}{3.1415926 * 25.5450742 \approx 2050.048782公里}^{2}$$

根据现有数据,地球是一个不规则的球体,两极略微扁平,赤道略微隆起 ,赤道半径为6378.137公里,极地半径为6356.752公里,表面积约为5.1亿平方 公里。

在覆盖问题的数学模型中。

* =

在公式中,n代表单位的数量,s代表一个单位所覆盖的面积,S代表要覆盖的总面积。

因此,摧毁地球的最低核弹数量约为

团队# apmcm2213610 页码 23的22

除此之外,通过对上述过程进行反向思考,我们可以计算出摧毁地球的最小 当量:

$$=^2 = \star \left(\frac{1}{2} \right)^2$$

在公式中,S代表地球的表面积,C是核武器有效杀伤半径的比例常数,所以最小当量为

$$\left(\frac{\sqrt{5.1 * ^{108}}}{1.493885}\right)^3 = 34546476937400447.51 \ (\ \ \mathbf{e}\)$$

7.2. 解决方案和分析

7.2.1. 问题a、b和c

理论计算和核弹模拟器的模拟显示,:

- a. 根据核武器有效杀伤半径的国际标准模型,至少需要大约248,775枚核弹才能摧毁地球。
- b. 根据上述模型,目前核弹的最大破坏力来自于 "大伊万",总破坏面积约为 2050平方公里,这显然不足以摧毁地球,但对人类和我们生活环境的影响 仍然是悲惨的。
- c. 理论上,世界上的核弹总数不应超过足以摧毁地球的最低数量,由于不是 每颗核弹都有"大伊万"的当量,实际破坏力不应足以摧毁整个地球,但保 守地说,我们应该限制世界上的核弹总数,使其永远不超过足以摧毁地球 的最低数量。此外,对于已经拥有核武器的国家,我们应该确保所有这些 国家的核弹总产量至少不超过345,464,769,374百万吨,保守地说,我们应该 在此基础上乘以一定的比例常数。

8. 问题4的解决方案

在核战争中,没有胜利者

尊敬的联合国秘书长,你好。我们是一个来自中国的研究核武器相关问题的团队。接下来,我们团队将向您报告我们的研究结果,并就控制世界上的核Percentage of Nuclear Weapons in 2022 武器数量提出我们的意见。

目前,世界各地的核武器分布情况如右图所示。 通过收集数据和分析,当今世界的核武器储备约为 9,000件,具体国家的百分比如左图所示。我们对数 据建立了一个预测模型,发现在未来100年里,核武 器的数量将继续上升,但每个国家拥有的核武器的 百分比将继续持平。

核武器作为一种大规模杀伤性武器效应,对世界战略格局也有重要影响。如果只有一个国家拥有核武器,将对世界和平,甚至文明的生存产生非常大的影响。幸运的是,在美国拥有核武器后,越来越多的国家相继获得了核武器技术,避免了当时的冷战两大阵营恶化为热战。但这种和平状态靠核武器能维持多久?核武器的数量在不断增加,其中的风险也会越来越大。近年来的一些会议和协议,如核安全峰会[2];美国发布的新的《核态势评估报告》[3];以及包括秘书长潘基文呼吁所有国家努力使《全面禁试条约》尽快生效[4],都是为了实现一个无核世界。

虽然我们的研究结论是,目前存在的核武器远不足以消灭地球,但它们足以消灭一个国家,成千上万的无辜者将因此而死亡。这不是我们希望看到的, 所以尽管预测模型表明核武器的数量在未来会增加,但各国应该有意识地停止 生产核武器。

我们建议拥有核武器的国家明确承诺,它们的核武器将只用于威慑核攻击,在任何情况下都不会首先使用核武器。俄罗斯和美国作为拥有最多核武器的国家,需要起到带头作用。如果所有有核国家都做出承诺,这将不会对无核国家构成威胁,扩散问题将得到缓解。同样地,无核国家也需要自觉遵守《全面禁试条约》。让我们一起努力实现一个无核世界。

团队# apmcm2213610 页码 20of 22

9. 模式的优势和劣势

9.1. 优势

● ARIMA模型非常简单,只需要内生变量,不需要借助其他外生变量。

9.2. 弱点

- ARIMA要求时间序列是稳定的,或经过差分后是稳定的,差分的数量越多 ,损失的信息就越多。
- ARIMA模型在本质上只能捕捉到线性关系,而不能暴露出非线性关系。

10. 参考文献

- [1] 简一宁,朱迪,周冬楠,李娜娜,杜晗,董雪,付学猛,陶冬,韩冰.预测中国慢性肾脏病并估计其经济负担的ARIMA模型[J].BMC Public Health,2022,22(1).
- [2] Loukianova Anya 改善核安全--一次一个峰会[J]。 全球峰会,2015
- [3] 张 金 荣 , 詹 家 峰 .奥 巴 马 政 府 《 核 态 势 评 估 》 报 告 评 析 [J].国 际 论坛 ,2010,12(04):7-14+79.DOI:10.13549/j.cnki.cn11-3959/d.2010.04.002.
- [4] https://www.un.org/zh/86111

团队# apmcm2213610 页码 21of 22

附录

```
# %%
#基本分析包 import
numpy as np import
pandas as pd
# %%
#读取原始数据
position=pd.read_excel('2022_APMCM_E_Data.xlsx',sheet_name='positio
n')
# %%
#变量初始化
Countrytemp="Bestti
melong=1e3
BestCountry="
starttime=0
endtime=0
Valid_Dict={}
flag=False
# %%
#统计学上的遍历
for index,row in position.iterrows():
国家,缩写,年份,状态=row['Country'],row['Abbreviation'],row['
Year'],row['Status']
   如果Status == 0:
       starttime=Year
       flag=True
   elif Status == 3:
       endtime = Year
       if flag == True
          Valid_Dict[Country]=endtime - starttime-1
          flag=False
       如果Besttimelong > endtime - starttime-1:
          Besttimelong = endtime - starttime-1
          BestCountry = Country
   Countrytemp = 国家
print('The country has made the fastest transition from "not considering
nuclear weapons" to "assisting nuclear weapons" is', Best Country, 'only
using', Bestttimelong, 'year./n')
```

团队# apmcm2213610 页码 22of 22

 $print('the\ time\ used\ of\ other\ succeed\ countries:\n',\Valid_Dict)$

团队# apmcm2213610 页码 23of 22

```
import numpy
import pandas
从spsspro.algorithm导入 statistical_model_analysis #
data = pandas.DataFrame({
    "A": numpy.random.random(size=20)。
})
result = statistical_model_analysis.arima_analysis(data=data, p=0, d=0, q=0, forecast_num=10)
print(result)
```