# Artificial Intelligence and Machine Learning (AIML)

Attendance Code: 98446577



- Last lectures:
  - Introduction to ML
    - Sequential Gradient Descent (SGD) algorithm
    - Supervised learning: regression
    - Unsupervised learning: clustering and K-means
- This lecture: classification in ML

#### Example: health insurance company

Data on the annual premium paid by customers who bought insurance

| Client | Age (yrs) | Income (k £) | Premium (£) |
|--------|-----------|--------------|-------------|
| 1      | 25        | 30           | 800         |
| 2      | 45        | 60           | 1500        |
| 3      | 30        | 50           | 1200        |
| 4      | 22        | 25           | 700         |
| 5      | 35        | 45           | 1400        |
| 6      | 55        | 70           | 1800        |
| 7      | 40        | 55           | 1300        |
| 8      | 60        | 80           | 2000        |
| 9      | 50        | 40           | 1600        |
| 10     | 28        | 35           | 900         |

 Task: predict the annual premium of a new customer, given their age and income. How can we approach this problem?

#### Example: health insurance company

Data on the annual premium paid by customers who bought insurance

| Client | Age (yrs) | Income (k £) | Premium (£) |
|--------|-----------|--------------|-------------|
| 1      | 25        | 30           | 800         |
| 2      | 45        | 60           | 1500        |
| 3      | 30        | 50           | 1200        |
| 4      | 22        | 25           | 700         |
| 5      | 35        | 45           | 1400        |
| 6      | 55        | 70           | 1800        |
| 7      | 40        | 55           | 1300        |
| 8      | 60        | 80           | 2000        |
| 9      | 50        | 40           | 1600        |
| 10     | 28        | 35           | 900         |

- Task: predict the annual premium of a new customer, given their age and income. How can we approach this problem?
- Regression model using gradient descent:

$$f(w, x) = w_1 + w_2 x^1 + w_3 x^2$$

$$= [w_1 \quad w_2 \quad w_3] \begin{bmatrix} 1 \\ x^1 \\ x^2 \end{bmatrix}$$

$$= w^T x$$

$$F(w) = \sum_{i=1}^{N} (w^T x_i - y_i)^2$$



#### Example: health insurance company

Data on the annual premium paid by customers who bought insurance

| Client | Age (yrs) | Income (k £) | Premium (£) |
|--------|-----------|--------------|-------------|
| 1      | 25        | 30           | 800         |
| 2      | 45        | 60           | 1500        |
| 3      | 30        | 50           | 1200        |
| 4      | 22        | 25           | 700         |
| 5      | 35        | 45           | 1400        |
| 6      | 55        | 70           | 1800        |
| 7      | 40        | 55           | 1300        |
| 8      | 60        | 80           | 2000        |
| 9      | 50        | 40           | 1600        |
| 10     | 28        | 35           | 900         |

- Task: predict the annual premium of a new customer, given their age and income. How can we approach this problem?
- Regression model using gradient descent:

$$f(w,x) = w_1 + w_2 x^1 + w_3 x^2$$

$$= [w_1 \quad w_2 \quad w_3] \begin{bmatrix} 1 \\ x^1 \\ x^2 \end{bmatrix}$$

$$= w^T x$$

$$F(w) = \sum_{i=1}^{N} (w^T x_i - y_i)^2$$

$$w_0 = [0 \quad 0 \quad 0]^T$$

$$w_n = w_{n-1} - \alpha F_w(w, x)$$

$$w^* = [1.6 \quad 26.4 \quad 5.8]$$



#### Example: health insurance company

| Client | Age (yrs) | Income (k £) | Bought? |
|--------|-----------|--------------|---------|
| 1      | 25        | 30           | No      |
| 2      | 45        | 60           | Yes     |
| 3      | 30        | 50           | Yes     |
| 4      | 22        | 25           | No      |
| 5      | 35        | 45           | Yes     |
| 6      | 55        | 70           | Yes     |
| 7      | 40        | 55           | No      |
| 8      | 60        | 80           | Yes     |
| 9      | 50        | 40           | No      |
| 10     | 28        | 35           | No      |

- Task: predict whether a new customer is likely to buy or not the plan, given their age and income.
- How does this problem compare with the previous one?

#### Example: health insurance company

| Client | Age (yrs) | Income (k £) | Bought? |
|--------|-----------|--------------|---------|
| 1      | 25        | 30           | No      |
| 2      | 45        | 60           | Yes     |
| 3      | 30        | 50           | Yes     |
| 4      | 22        | 25           | No      |
| 5      | 35        | 45           | Yes     |
| 6      | 55        | 70           | Yes     |
| 7      | 40        | 55           | No      |
| 8      | 60        | 80           | Yes     |
| 9      | 50        | 40           | No      |
| 10     | 28        | 35           | No      |

- Task: predict whether a new customer is likely to buy or not the plan, given their age and income.
- How does this problem compare with the previous one?
  - Supervised Problem (labelled data)

#### Example: health insurance company

| Client | Age (yrs) | Income (k £) | Bought? |
|--------|-----------|--------------|---------|
| 1      | 25        | 30           | No      |
| 2      | 45        | 60           | Yes     |
| 3      | 30        | 50           | Yes     |
| 4      | 22        | 25           | No      |
| 5      | 35        | 45           | Yes     |
| 6      | 55        | 70           | Yes     |
| 7      | 40        | 55           | No      |
| 8      | 60        | 80           | Yes     |
| 9      | 50        | 40           | No      |
| 10     | 28        | 35           | No      |

- Task: predict whether a new customer is likely to buy or not the plan, given their age and income.
- How does this problem compare with the previous one?
  - Supervised Problem (labelled data)
  - Prediction of a categorical label: classification model

#### Example: health insurance company

| Client | Age (yrs) | Income (k £) | Bought? |
|--------|-----------|--------------|---------|
| 1      | 25        | 30           | No      |
| 2      | 45        | 60           | Yes     |
| 3      | 30        | 50           | Yes     |
| 4      | 22        | 25           | No      |
| 5      | 35        | 45           | Yes     |
| 6      | 55        | 70           | Yes     |
| 7      | 40        | 55           | No      |
| 8      | 60        | 80           | Yes     |
| 9      | 50        | 40           | No      |
| 10     | 28        | 35           | No      |

- Task: predict whether a new customer is likely to buy or not the plan, given their age and income.
- How does this problem compare with the previous one?
  - Supervised Problem (labelled data)
  - Prediction of a categorical label: classification model
  - Goal: split the data into 2 classes (bought/didn't buy) that best match classlabeled training data.

#### Example: health insurance company



- Task: predict whether a new customer is likely to buy or not the plan, given their age and income.
- How does this problem compare with the previous one?
  - Supervised Problem (labelled data)
  - Prediction of a categorical label: classification model
  - Goal: split the data into 2 classes (bought/didn't buy) that best match classlabeled training data.
  - Hypothesis: there is some **decision boundary** in the data which makes this classification possible

#### Machine learning (ML): classification



- Medical decision-making: automate process of triage (eliminating nonsuspect cases), train a classification algorithm on healthy/pathological features, minimizing false positives/false negatives
- Email Classification: find spams to automatically send to Junk
- Service Business: churn prediction
- etc.

#### Machine learning (ML): classification



## How to solve this problem?

#### The perfect classifier



 In principle, any supervised machine learning problem can be completely solved by storing a table of all possible input-output pairs, then prediction is just table look-up

#### The perfect classifier?



f(w, x) = in table w, label y of column containing x

Simple image: 16×16×8 bits

- Problem: automated handwriting transcription from digital images
- **Proposed classifier** f(w, x): for every possible handwritten letter, store image and associated label in table w; **look up** letter for any new input image



#### The perfect classifier - impractical



- In principle, any supervised machine learning problem can be completely solved by storing a table of all possible input-output pairs, then prediction is just table look-up
- Impractical due to combinatorial explosion, so in practice all useful ML classifiers are imperfect models

#### The perfect classifier - impractical



- In principle, any supervised machine learning problem can be completely solved by storing a table of all possible input-output pairs, then prediction is just table look-up
- Impractical due to combinatorial explosion, so in practice all useful ML classifiers are imperfect models
- **Takeaway**: machine learning is more than just **memorization**

#### Classification - outline

We will go through the same conceptual journey as before:

- 1) Model formulation
- 2) Cost function
- 3) Learning algorithm by gradient descent

- We want to put a boundary between 2 classes
- If x has a single attribute, we can do it with a point



- We want to put a boundary between 2 classes
- If x has a single attribute, we can do it with a point



- We want to put a boundary between 2 classes
- If x has a single attribute, we can do it with a point
- If x has 2 attributes, we can do it with a line



- We want to put a boundary between 2 classes
- If x has a single attribute, we can do it with a point
- If x has 2 attributes, we can do it with a line



- We want to put a boundary between 2 classes
- If x has a single attribute, we can do it with a point
- If x has 2 attributes, we can do it with a line

If x has 3 attributes, we can do it with a plane



#### #Code

- We want to put a boundary between 2 classes
- If x has a single attribute, we can do it with a point
- If x has 2 attributes, we can do it with a line

- If x has 3 attributes, we can do it with a plane
- If x has more than 3 attributes, we can do it with a hyperplane (can't draw it anymore)
- If the classes are linearly separable, the training error will be 0.



Q: Can you plug classification data into linear regression?



A: Yes. But it might not perform very well. No ordering between categories, like there is between real numbers. We need a better model

#### **ML Classification: Model**



- We need a classification model, f(w,x), to predict class y<sub>i</sub>
- Previous: regression model

$$f(w,x) = w^T x$$

 $f: \mathbb{R}^D \to \mathbb{R}$ 

Classification model:

#### **ML Classification: Model**



- We need a **classification model**, f(w,x), to predict class  $y_i$
- Previous: regression model

$$f(w,x) = w^T x$$

$$f: \mathbb{R}^D \to \mathbb{R}$$

Classification model:

$$f(w, x) = \operatorname{sign}(w^{T} x)$$
$$f: \mathbb{R}^{D} \to \{-1, 0, 1\}$$

• Decision boundary occurs where  $w^T x = 0$ 

#### **ML Classification: Model**

#### A note about classifiers' complexity



- Complex classifiers can achieve zero training set error but this is the wrong decision boundary if there is randomness to the data
- Linear classifiers may be too simple for most ML applications in the real world
- Best model is usually as simple as possible, but no simpler (Occam's razor)

#### **ML Classification: Objective Function**



ML problem to be solved:

$$w^* = \arg\min_{w' \in \mathcal{W}} F(w')$$

#### **ML Classification: Objective Function**



#### Find the best parameters that minimize the cost function

ML problem to be solved:

$$w^* = \arg\min_{w' \in \mathcal{W}} F(w')$$

 The misclassification error can be expressed mathematically as

$$F(w) = \sum_{i=1}^{N} \mathbb{I}[f(w, x_i) \neq y_i]$$

where the indicator I[P] = 1 if logical condition P is true, and 0 otherwise.

#### SGD: algorithm (Section 9 Lecture Notes)

- **Step 1**. *Initialization*: Select an initial guess for  $w_0$ , a convergence tolerance  $\varepsilon > 0$ , step size (learning rate) parameter  $\alpha > 0$ , set iteration number n=0
- Step 2. Gradient descent step: Compute new model parameters,

$$W_{n+1} = W_n - \alpha F_w(W_n)$$

- **Step 3**. Convergence test: Compute new loss function value  $F(w_{n+1})$ , and loss function improvement,  $\Delta F = |F(w_{n+1}) F(w_n)|$  and if  $\Delta F < \varepsilon$ , exit with solution  $w^* = w_{n+1}$
- **Step 4**. *Iteration*: update n=n+1 and go to step 2.

#### **ML Classification: Objective Function**



ML problem to be solved:

$$w^* = \arg\min_{w' \in \mathcal{W}} F(w')$$

 Binary nature of classification: misclassification error, which can be expressed mathematically as

$$F(w) = \sum_{i=1}^{N} \mathbb{I}[f(w, x_i) \neq y_i]$$

where the indicator  $\mathbb{I}[P] = 1$  if logical condition P is true, and 0 otherwise.

#### **ML Classification: Objective Function**



ML problem to be solved:

$$w^* = \arg\min_{w' \in \mathcal{W}} F(w')$$

Binary nature of classification:
 misclassification error, which can be expressed mathematically as

$$F(w) = \sum_{i=1}^{N} \mathbb{I}[f(w, x_i) \neq y_i]$$

where the indicator I[P] = 1 if logical condition P is true, and 0 otherwise.

 Problem: Very challenging to solve the optimal misclassification error problem (bad gradients: 0 or not defined!)

#### **ML Classification: Objective Function**



ML problem to be solved:

$$w^* = \arg\min_{w' \in \mathcal{W}} F(w')$$

**Proxy or surrogate error (loss)** that is easier to optimize:

Perceptron loss:

$$F(w) = \sum_{i=1}^{N} \max [0, -y_i f(w, x_i)]$$

#### **ML Classification: Objective Function**



ML problem to be solved:

$$w^* = \arg\min_{w' \in \mathcal{W}} F(w')$$

**Proxy or surrogate error (loss)** that is easier to optimize: 代理或替代误差 (损失)

Perceptron loss:

$$F(w) = \sum_{i=1}^{N} \max [0, -y_i f(w, x_i)]$$

Logistic loss:

$$F(w) = \sum_{i=1}^{N} \log \left[ 1 + e^{-y_i f(w, x_i)} \right]$$

Hinge loss:

$$F(w) = \sum_{i=1}^{N} \max \left[ 0.1 - y_i f(w, x_i) \right]$$

#### **ML Classification: Comparisons**

Model [f(w,x)]

| Regression        | Classification |
|-------------------|----------------|
| $w^T x$           | sign $(w^T x)$ |
| > 0<br>(positive) |                |
| < 0<br>(negative) |                |

#### **ML Classification: Comparisons**

Model [f(w,x)]

| Regression        | Classification |
|-------------------|----------------|
| $w^T x$           | sign $(w^T x)$ |
| > 0<br>(positive) | +1             |
| < 0<br>(negative) | -1             |

#### **ML Classification: Comparisons**

Model [f(w,x)]

| Regression        | Classification |
|-------------------|----------------|
| $w^T x$           | sign $(w^T x)$ |
| > 0<br>(positive) | +1             |
| < 0<br>(negative) | -1             |

| Misclassification error        |  |
|--------------------------------|--|
| $\mathbb{I}[f(w,x_i)\neq y_i]$ |  |
|                                |  |
|                                |  |
|                                |  |
|                                |  |

#### **ML Classification: Comparisons**

Model [f(w,x)]

| Regression        | Classification |
|-------------------|----------------|
| $w^T x$           | sign $(w^T x)$ |
| > 0<br>(positive) | +1             |
| < 0<br>(negative) | -1             |

| True<br>Label | Misclassification error        |
|---------------|--------------------------------|
| y             | $\mathbb{I}[f(w,x_i)\neq y_i]$ |
| +1            |                                |
| -1            |                                |
| -1            |                                |
| +1            |                                |

#### **ML Classification: Comparisons**

Model [f(w,x)]

| Regression        | Classification |
|-------------------|----------------|
| $w^T x$           | $sign(w^Tx)$   |
| > 0<br>(positive) | +1             |
| < 0<br>(negative) | -1             |

| True<br>Label | Misclassification error        |  |
|---------------|--------------------------------|--|
| у             | $\mathbb{I}[f(w,x_i)\neq y_i]$ |  |
| +1            | 0                              |  |
| -1            | 1                              |  |
| -1            | 0                              |  |
| +1            | 1                              |  |

#### **ML Classification: Comparisons**

Model [f(w,x)]

| Regression        | Classification |
|-------------------|----------------|
| $w^T x$           | sign $(w^T x)$ |
| > 0<br>(positive) | +1             |
| < 0<br>(negative) | -1             |

| True<br>Label | Misclassification error        | Perceptron loss  |  |
|---------------|--------------------------------|------------------|--|
| у             | $\mathbb{I}[f(w,x_i)\neq y_i]$ | $max(0, -yw^Tx)$ |  |
| +1            | 0                              |                  |  |
| -1            | 1                              |                  |  |
| -1            | 0                              |                  |  |
| +1            | 1                              |                  |  |

#### **ML Classification: Comparisons**

Model [f(w,x)]

| Regression        | Classification |
|-------------------|----------------|
| $w^T x$           | sign $(w^T x)$ |
| > 0<br>(positive) | +1             |
| < 0<br>(negative) | -1             |

| True<br>Label | Misclassification error        | Perceptron loss |                  |
|---------------|--------------------------------|-----------------|------------------|
| у             | $\mathbb{I}[f(w,x_i)\neq y_i]$ | $-yw^Tx$        | $max(0, -yw^Tx)$ |
| +1            | 0                              |                 |                  |
| -1            | 1                              |                 |                  |
| -1            | 0                              |                 |                  |
| +1            | 1                              |                 |                  |

#### **ML Classification: Comparisons**

Model [f(w,x)]

| Regression        | Classification |
|-------------------|----------------|
| $w^T x$           | sign $(w^T x)$ |
| > 0<br>(positive) | +1             |
| < 0<br>(negative) | -1             |

| True<br>Label | Misclassification error        | Perceptron loss |                  |
|---------------|--------------------------------|-----------------|------------------|
| у             | $\mathbb{I}[f(w,x_i)\neq y_i]$ | $-yw^Tx$        | $max(0, -yw^Tx)$ |
| +1            | 0                              | $-w^Tx$         |                  |
| -1            | 1                              | $w^T x$         |                  |
| -1            | 0                              | $w^T x$         |                  |
| +1            | 1                              | $-w^Tx$         |                  |

#### **ML Classification: Comparisons**

Model [f(w,x)]

| Regression        | Classification |
|-------------------|----------------|
| $w^T x$           | sign $(w^T x)$ |
| > 0<br>(positive) | +1             |
| < 0<br>(negative) | -1             |

| True<br>Label | Misclassification error        | Perceptron loss |                  |
|---------------|--------------------------------|-----------------|------------------|
| у             | $\mathbb{I}[f(w,x_i)\neq y_i]$ | $-yw^Tx$        | $max(0, -yw^Tx)$ |
| +1            | 0                              | $-w^Tx$         | 0                |
| -1            | 1                              | $w^T x$         | $w^T x$          |
| -1            | 0                              | $w^T x$         | $w^T x$          |
| +1            | 1                              | $-w^Tx$         | 0                |

#### To recap

- We learned the principles of classifier model training and contrasted it with memorization.
- We appreciated the difficulties in using the misclassification error and analyzed one alternative of surrogate loss (perceptron loss).
  - Mathematically convenient but in general not guaranteed to find the classifier which globally minimizes the misclassification error.

#### **Further Reading**

- **R&N**, Section 18.8
- PRML, Section 2.5
- **H&T**, Section 13.3

#### To recap

- We learned the principles of classifier model training and contrasted it with memorization.
- We appreciated the difficulties in using the misclassification error and analyzed one alternative of surrogate loss (perceptron loss).
  - Mathematically convenient but in general not guaranteed to find the classifier which globally minimizes the misclassification error.
- **Next**: how to use this classification framework to solve ML classification problems

#### **Further Reading**

- **R&N**, Section 18.8
- **PRML**, Section 2.5
- **H&T**, Section 13.3