# Lecture 4: Transforms

Computer Graphics CMU 15-462/15-662, Fall 2016

## Brief recap from last class

- How to draw a triangle
  - Why focus on triangles, and not quads, pentagons, etc?
  - What was specific to triangles in what we discussed last class?

#### What in the world is this?



## Cube





# f transforms x to f(x)



# And what is our favorite type of transformation?



But what does it mean?

$$f(u + v) = f(u) + f(v)$$
$$f(au) = af(u)$$

If a map can be expressed as

$$f(u) = \sum_{i=1}^{m} u_i a_i$$

with fixed vectors  $a_i$ , then it is linear



- Do you know...
  - what  $u_1$  and  $u_2$  are?
  - what  $a_1$  and  $a_2$  are?



- u is a linear combination of  $e_1$  and  $e_2$
- f(u) is that same linear combination of  $a_1$  and  $a_2$
- $a_1$  and  $a_2$  are  $f(e_1)$  and  $f(e_2)$
- by knowing what  $e_1$  and  $e_2$  map to, you know how to map the entire space!

#### An example: Coordinate transformations



My friend says, look at 3 o'clock (in their coordinate frame that means one "forward" and one to the "right")!

Where should I look?

Direction in my friend's coordinate frame

$$\underline{f(\mathbf{u})} = f(u_1\hat{\mathbf{i}} + u_2\hat{\mathbf{j}}) = u_1f(\hat{\mathbf{i}}) + u_2f(\hat{\mathbf{j}}) = u_1\begin{bmatrix}1\\1\end{bmatrix} + u_2\begin{bmatrix}-2\\1\end{bmatrix}$$

Same direction in my coordinate frame

## Linear maps

- In graphics we often talk about changing coordinate frames (go from local to world to camera to screen coordinates)
- Equally useful to think about maps transforming a space (and everything in it!)



# Let's look at some transforms that are important in graphics...







# Non-uniform scale $S(x) = x_1 a e_1 + x_2 b e_2$



#### Is uniform scale a linear transform?



$$S_{2}(\mathbf{x} + \mathbf{y}) = 2(\mathbf{x} + \mathbf{y})$$

$$S_{2}(\mathbf{x}) + S_{2}(\mathbf{y}) = 2\mathbf{x} + 2\mathbf{y}$$

$$S_{2}(\mathbf{x} + \mathbf{y}) = S_{2}(\mathbf{x}) + S_{2}(\mathbf{y})$$

$$S_{2}(\mathbf{x}) \quad S_{2}(\mathbf{y}) \quad S_{2}(\mathbf{x} + \mathbf{y})$$

$$\mathbf{x} + \mathbf{y} \quad S_{2}(\mathbf{y})$$

#### Yes!



 $R_{ heta}$  = rotate counter-clockwise by heta



 $R_{ heta}$  = rotate counter-clockwise by heta As angle changes, points move along *circular* trajectories.



 $R_{\theta}$  = rotate counter-clockwise by  $\theta$ As angle changes, points move along *circular* trajectories. Shape (distance between any two points) does not change! (Rigid or isometric transformation)

### Rotation

What does  $R_{ heta}$  look like?



- From x, compute  $\alpha$  and r
- Write down  $R_{\theta}(x)$  as a function of  $\alpha$ ,  $\theta$  and r (i.e. vector (r,0) rotated by  $\alpha + \theta$ )
- Apply sum of angle formulae...
- Fine, but remember, we only need to know how  $e_1$  and  $e_2$  are transformed!

#### Rotation

So, what happens to vectors (1, 0) and (0, 1) after rotation by  $\theta$ ?



#### **Answer:**

$$R_{\theta}(\mathbf{e}_1) = (\cos \theta, \sin \theta) = \mathbf{a}_1$$
  
 $R_{\theta}(\mathbf{e}_2) = (-\sin \theta, \cos \theta) = \mathbf{a}_2$ 

#### So:

$$R_{\theta}(\mathbf{x}) = x_1 \mathbf{a}_1 + x_2 \mathbf{a}_2$$

### Is rotation linear?



#### Yes!

#### Rotation

- Note: all points are rotated about the origin
  - By the way, what are we actually transforming here?
- What if we want to rotate about another point?



CMU 15-462/662, Fall 2016

#### Reflection



 $Re_y(x)$ : reflection about y-axis
Reflections change "handedness"...
Do you know what  $Re_y(x)$  looks like?
Is reflection a linear transform?

Do you know how to reflect about an arbitrary axis?

# Shear (in x direction)



What does H(x) look like?

$$\boldsymbol{H}_a(\boldsymbol{x}) = x_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} a \\ 1 \end{bmatrix}$$

Is shearing a linear transformation?

## Translation





Let's write  $T_b(x)$  in the form

$$T_{\boldsymbol{b}}(\boldsymbol{x}) = x_1 \begin{bmatrix} ? \\ ? \end{bmatrix} + x_2 \begin{bmatrix} ? \\ ? \end{bmatrix}$$

such that  $T_b(x) = x + b$ 

#### Is translation linear?



#### No. Translation is affine.

## Summary of basic transforms

#### Linear:

$$f(\mathbf{x} + \mathbf{y}) = f(\mathbf{x}) + f(\mathbf{y})$$
$$f(a\mathbf{x}) = af(\mathbf{x})$$

Scale Rotation

Reflection

Shear

#### **Not linear:**

**Translation** 

#### **Affine:**

Composition of linear transform + translation (all examples on previous two slides)

$$f(\mathbf{x}) = g(\mathbf{x}) + \mathbf{b}$$

Not affine: perspective projection (will discuss later)

#### **Euclidean: (Isometries)**

Preserve distance between points (preserves length)

$$|f(\mathbf{x}) - f(\mathbf{y})| = |\mathbf{x} - \mathbf{y}|$$

**Translation** 

**Rotation** 

Reflection

"Rigid body" transforms are Euclidean transforms that also preserve "winding" (does not include reflection)

# When at first you don't succeed...

We'll turn affine transformations into linear ones via

Homogeneous coordinates (aka projective coordinates)

 But first, let's use matrix notation to represent linear transforms

$$\begin{bmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{bmatrix} \begin{bmatrix}
x_1 \\
x_2
\end{bmatrix} = \begin{bmatrix}
a_{11}x_1 + a_{12}x_2 \\
a_{21}x_1 + a_{22}x_2
\end{bmatrix} 
= x_1 \begin{bmatrix}
a_{11} \\
a_{21}
\end{bmatrix} + x_2 \begin{bmatrix}
a_{12} \\
a_{22}
\end{bmatrix} = x_1 a_1 + x_2 a_2 
f(x) = \sum_{i=1}^m x_i a_i = Ax$$

#### Change of coordinate systems

$$f(\mathbf{x}) = x_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + x_2 \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & -2 \\ 1 & 1 \end{bmatrix} \mathbf{x}$$



#### Non-uniform scale

$$S(\mathbf{x}) = x_1 a \mathbf{e}_1 + x_2 b \mathbf{e}_2$$
$$= \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \mathbf{x}$$



#### Rotation

$$R_{\theta}(\mathbf{e}_{1}) = (\cos \theta, \sin \theta) = \mathbf{a}_{1}$$

$$R_{\theta}(\mathbf{e}_{2}) = (-\sin \theta, \cos \theta) = \mathbf{a}_{2}$$

$$R_{\theta}(\mathbf{x}) = x_{1}\mathbf{a}_{1} + x_{2}\mathbf{a}_{2}$$

$$= \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \mathbf{x}$$



#### Shear

$$H(\mathbf{x}) = x_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} a \\ 1 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix} \mathbf{x}$$



## Shear



## Linear transforms as matrix-vector products

Translation
Not a linear map\*...



\*when we're using Cartesian coordinates

## 2D homogeneous coordinates (2D-H)

Key idea: lift 2D points to a 3D space

So the point  $(x_1, x_2)$  is represented as the 3-vector:  $\begin{bmatrix} x_1 \\ x_2 \\ 1 \end{bmatrix}$ 

$$\begin{bmatrix} x_1 \\ x_2 \\ 1 \end{bmatrix}$$

And 2D transforms are represented by 3x3 matrices

For example: 2D rotation in homogeneous coordinates:

$$\begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ 1 \end{bmatrix}$$

Q: how do the transforms we've seen so far affect the last coordinate?

#### Translation in 2D-H coords

Translation expressed as 3x3 matrix multiplication:

$$T(x) = x + b = \begin{bmatrix} 1 & 0 & b_1 \\ 0 & 1 & b_2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ 1 \end{bmatrix} = \begin{bmatrix} x_1 + b_1 \\ x_2 + b_2 \\ 1 \end{bmatrix}$$

In homogeneous coordinates, translation is a linear transformation!

#### Translation in 2D-H coords

What is this magic?

$$\begin{bmatrix} 1 & 0 & b_1 \\ 0 & 1 & b_2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 + b_1 \\ x_2 + b_2 \\ x_3 \end{bmatrix}$$

Translation in 2D homogeneous coordinates is equivalent to shearing along x & y axes - a linear operation

But why is  $\chi_3$  set to 1? Could it not be 3.4182 instead?

## Homogeneous coordinates



 $(wx_1, wx_2, w), \forall w > 0$ 

- Homogenous coordinates are scale invariant
- x and wx correspond to the same 2D point (divide by w to convert 2D-H back to 2D)
- 2D-H points with w = 0 correspond to 2D vectors (technically, points at infinity)
- In homogenous coordinates, points and vectors are distinguishable from each other!

# Homogeneous coordinates: points vs. vectors



### Summary so far...

- We know how to transform (scale, rotate, reflect, shear, translate) 2D points and vectors
  - All these transforms are linear maps expressed as matrix-vector products when using (slightly) higher-dimensional homogenous coordinates
  - How about other types of transforms (e.g. rotate about an arbitrary point)?
  - How about 3D transforms?

## Onto more complex transforms

- How would you transform this object such that it gets twice as large?
  - but remains where it is...



## Composition of basic transforms

Scale by 0.5, then translate by (3,1)





Translate by (3,1), then scale by 0.5



Note 1: order of composition matters!

Note 2: common source of bugs!

#### How do we compose linear transforms?



Compose linear transforms via matrix multiplication.

Enables simple & efficient implementation: reduce complex chain of transforms to a single matrix.

#### How would you perform these transformations?





#### Common pattern: rotation about point x



Q: In homogenous coordinates, what does the corresponding transformation matrix look like?

CMU 15-462/662, Fall 2016

## Exercise

Reflection about an arbitrary line

