КР2, тренировочный вариант

Задача 1

Существует ли интеграл Лебега:

$$\int_{0+}^{1} x^{-1} \sin(x^{-1}) d\mu?$$

Решение

Функция на (0,1] непрерывна и поэтому измерима. Исследуем, являются ли интегральные суммы абсолютно сходящимися. Для любого $1>\varepsilon>0$ интеграл Лебега $\int_{\varepsilon}^1 x^{-1} sin(x^{-1}) d\mu$ совпадает с интегралом Римана $\int_{\varepsilon}^1 x^{-1} sin(x^{-1}) dx$. Вопрос о существовании указанного интеграла Лебега эквивалентен вопросу о том, является ли несобственный интеграл Римана первого рода абсолютно сходящимся? Сделаем замену переменной $x\mapsto y=x^{-1},\,dy=-x^2dx,$ интеграл первого рода перейдет в интеграл второго рода

$$\int_{1}^{+\infty} y^{-1} \sin(y) dy.$$

Выделим область знакопостоянства подынтегральной функции. Условие $sin(y) \geq 0$ при $y \geq 2\pi$ эквивалентно условию: $y \in [\pi 2k, \pi(2k+1)], k \in \mathbb{N}$. На каждом интервале при интегрировании по ча-

стям получится:

$$-\int_{\pi 2k}^{\pi(2k+1)} y^{-1} d(\cos(y)) =$$

$$-\cos(y)y^{-1}|_{y=2k}^{y=2k+1} + \int_{\pi 2k}^{\pi(2k+1)} \cos(y) dy^{-1}.$$

Интеграл $\int_1^{+\infty} \cos(y) dy^{-1} = -\int_1^{+\infty} \cos(y) y^{-2} dy$ абсолютно сходится. Поэтому вопрос об интегрируемости по области $\sin(y) \geq 0$ приводит к ряду:

$$\sum_{k=1}^{+infty} \pi^{-1}((2k)^{-1}) = +\infty.$$

Интеграл Римана не является абсолютно сходящимся, поэтому интеграл Лебега не существует.

□

Задача 2

Мера Лебега-Стильтьеса задана обобщенной функцией распределения:

$$F(x)=0, x\leq 0, \quad F(x)=x+1, 0< x\leq 2, \quad F(x)=x^2, x>2.$$
 Найти меру промежутков $[0,1], [1,2),$ и ${\bf Q}.$

Решение

Следует воспользоваться формулой:

$$m([a,b]) = F(b+0) - F(a),$$

для отрезка или точки и формулой:

$$m([a,b)) = F(b) - F(a),$$

для полуинтервала с левым открытым концом (гл.V, параграф 1, раздел 3). Получим: $m([0,1])=2-0=2,\ m([1,2))=4-2=2.\ \mu(\mathbf{Q})=\sum_i \mu(q_i),\$ где q_i - произвольная нумерация множества рациональных чисел. В сумме всего два слагаемых $\mu(0)=1,\ \mu(1)=1.$ Поэтому $\mu(\mathbf{Q})=2.$

Задача 3

Будет ли линейное нормированное пространство l_8 евклидовым?

Решение

Для обоснования отрицательного ответа следует воспользоваться теоремой о параллелограмме (гл.III, параграф 4, раздел 8, Теорема 8). Достаточно доказать, что найдутся два вектора $f,g \in l^8$, для которых:

$$||f+g||^2 + ||f-g||^2 \neq 2(||f||^2 + ||g||^2).$$

Вспомним, что пространство l_8 – это линейное нормированное пространство, состоящее из последовательностей $\mathbf{x}=(x_1,\ldots,x_n,\ldots)$ с нормой

$$||\mathbf{x}|| = \sum_{i=1}^{\infty} |x_i|^8.$$

Выберем $f=(1,1,0,\ldots),\ g=(1,-1,0,\ldots).$ Тогда $f+g=(2,0,\ldots),\ f-g=(0,2,0,\ldots).$ Вычислим l_8 —норму четырех векторов:

$$||f+g|| = 32, \quad ||f-g|| = 32, \quad ||f|| = 2, \quad ||g|| = 2.$$

Очевидно, $32^2+32^2\neq 2^2+2^2$. Пространство l_8 не является евклидовым.

Задача 4

Докажите, что если $f: X \to \mathbb{R}$ -измеримая функция, то $g(x) = f^2(x)$ -измеримая функция.

Решение

Воспользуемся теоремой о том, что композиция двух измеримых функций есть измеримая функция. Представим функцию $x\mapsto f^2(x)=g(x)$ в виде композиции $x\mapsto f(x)=y,\ y\mapsto y^2$. Достаточно доказать, что функция $y\mapsto y^2$ измеримая. Воспользуемся критерием измеримости: проверим, что прообраз f^{-1} произвольного луча $(c,+\infty)$ является измеримым. Прообраз $f^{-1}((c,+\infty))$ -это либо два луча $(-\infty,-\sqrt{c})\cup(+\sqrt{c},+\infty)$, если $c\geq 0$, или вся прямая \mathbb{R} , если c<0. В каждом случае получается открытое подмножество в \mathbb{R} , которое измеримо. Следовательно, $f^2(x)$ -измерима.