FICHE 04-02 : Générateurs de $\mathcal{O}(E)$ ALG?

Yvann Le Fay Juin 2019

Enoncé

Soit $u \in \mathcal{O}(E)$, montrer que u s'écrit comme un produit de k réflexions avec $k \leq \operatorname{rg} u - \operatorname{Id}_E$.

Solution

Procédons par récurrence sur rg $u-\operatorname{Id}_E$. Si $u=\operatorname{Id}_E$ alors u s'écrit comme le produit de 0 transposition. Soit $u\in\mathcal{O}(E)$ telle que $r=\operatorname{rg} u-\operatorname{Id}_E>0$, supposons le résultat vrai pour $0,1,\ldots r-1$. Il existe alors $e\in E$ tel que $u(e)\neq e$.

Posons $H = (u(e) - e)^{\perp}$, c'est un hyperplan. Soit $s \in \mathcal{O}(E) \setminus \mathcal{SO}(E)$ la réflexion orthogonale par rapport à H.

Montrons que $\operatorname{rg} su - \operatorname{Id}_E < \operatorname{rg} u - \operatorname{Id}_E$, ou encore $\dim \ker u - \operatorname{Id}_E < \dim \ker su - \operatorname{Id}_E$.

Plus précisément $\ker u - \operatorname{Id}_E \subsetneq \ker su - \operatorname{Id}_E$. Si u(x) = x alors $\langle u(x), u(e) - e \rangle = \langle u(x), u(e) \rangle - \langle x, e \rangle = 0$, donc $x \in H$ puis su(x) = u(x) = x. De plus, ||u(e)|| = e donc $\langle u(e) - e, u(e) + e \rangle = 0$, donc s(u(e) + e) = u(e) + e et s(u(e) - e) = e - u(e), d'où su(e) = e, ainsi $e \in \ker su - \operatorname{Id}_E \setminus \ker u - \operatorname{Id}_E$.

L'hypothèse de récurrence s'applique pour su, il existe $s_1, \ldots, s_k \in \mathcal{O}(E) \setminus \mathcal{SO}(E)$ avec $k \leq \operatorname{rg} su - \operatorname{Id}_E < \operatorname{rg} u - \operatorname{Id}$ tels que

$$su = \prod_{j=1}^{k} s_j$$

Soit encore,

$$u = s \prod_{j=1}^{k} s_j$$

Ce qui permet de conclure.