USN										
-----	--	--	--	--	--	--	--	--	--	--

RV COLLEGE OF NGINEERING®

 $(An\ Autonomous\ Institution\ Affiliated\ to\ VTU)$

III Semester B. E. Examinations April/May-2023

Computer Science and Engineering FOUNDATIONS OF COMPUTER SYSTEMS DESIGN

Time: 03 Hours Maximum Marks: 100

Instructions to candidates:

- 1. Answer all questions from Part A. Part A questions should be answered in first three pages of the answer book only.
- 2. Answer FIVE full questions from Part B. In Part B question number 2 is compulsory. Answer any one full question from 3 and 4, 5 and 6, 7 and 8, 9 and 10.

PART-A

PART-B

2	a	A small company has 100 shares of stock and each share entities its owner to vote at a stockholders meeting. Mr. A owns 10 shares, Mr. B owns 20 shares, Mr. C owns 30 shares and Mr. D owns 40 shares. A two-thirds majority is required in order to pass a measure at a stockholders meeting, Each of the four stockholders has a switch which he or she closes to vote 'yes' for all of his or her shares and opens to vote 'no'. A switching circuit is to be designed to turn on a light if the measure passes i) Derive a truth table for the output function Z ii) Write the minterm expansion for Z and simplify using K map iii) Design two level gate logic diagram using the simplified SoP. A logic network has two data inputs A and B, and two control inputs C0 and C1. It implements the function F according to the following table USING 4 TO 1 MUX and appropriate gates.	06				
			06				
	С	Using restoring division algorithm, divide 1000 by 0011, show the steps.	04				
3	а	Mention the problem posed by <i>JK</i> flip flop, realize the Master Slave <i>JK</i> flip flop using only <i>NAND</i> gates, and describe how the Master Slave <i>JK</i> flip flop solves this issue. Show the truth table and waveforms.	06				
	b	Derive the characteristic equation and excitation table for SR and JK flip flops.	04				
	С	Explicate 0 's and 1 's catching problem present in JK flip flop. How can this problem be resolved?					
		OR					
4	а	A positive edge triggered <i>D</i> flip flop is connected to a positive edge triggered <i>JK</i> flip flop. The <i>Q</i> output of the <i>D</i> flip flop is connected to both the <i>J</i> and <i>K</i> inputs of the <i>JK</i> flip flop, while the <i>Q</i> output of the <i>JK</i> flipflop is connected to the input of the <i>D</i> flip flop. Initially, the output of the <i>D</i> flip flop is set to logic one and and the output of the <i>JK</i> flip flop is cleared. What is the bit sequence generated at the <i>Q</i> output of the <i>JK</i> flip flop when the flip flops are connected to a free running common clock? Both the flip flops have non zero propagation delays.	02				
	b	Design a self-correcting <i>Mod</i> 5 Synchronous up counter using <i>JK</i> flip					
	0	flops, move the unused states to 0 state.	08				
	С	Design a $4 - bit$ Universal shift register using positive edge triggered D					
		flip- flops to operate as indicted in the table below. Mode Select Register Operation					
		A1 A0					
		0 0 Complement contents					
		0 1 Circular Shift Right					
		1 0 Shift left					
		1 1 Parallel load	06				

Analyze the following circuit in Fig. 5.a by der equations, transition equations, excitation table, state diagram.	_					
X2	-, Z					
X1 •	- Z					
y ₁ y _y D y ₁						
y1						
у у1						
у у1						
у у1						
y2 y D y2						
y2 y y2						
Fig. 5.a		10				
b Model the serial binary adder Mealy and Moore	networks and show	06				
the state table.		06				
6 a Give any four differences between mealy as						
Recognize the sequence 0110/1001 using mealy mo		08				
b For the state table given in Table 6.b, eliminate the using Row elimination implication table method.						
state table and state transition diagram.	Show the reduced					
Present State Next State Outp	ut					
$x = 0 \mid x = 1$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$egin{array}{ c c c c c c c c c c c c c c c c c c c$						
$egin{array}{ c c c c c c c c c c c c c c c c c c c$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
S_5 S_4 S_3 0						
S_6 S_5 S_6 O		08				
7 a List and explain the basic steps needed to ex	pouto the machine					
7 a List and explain the basic steps needed to ex instruction ADD LOCA, RO in terms of trans						
components of processor, memory and some contr		04				
b List and explain any five addressing modes						
processor has 40 distinct instructions and						
registers. A 32 – <i>bit</i> instruction word has an op operands and an immediate operand. Give the	_					
available for the immediate operand field.	c mamber of bits	08				
c Describe the factors that affect the performance	-					
Explain any two ways in which performance can b	e improved.	04				
OR						
	_					
	Illustrate with a neat diagram, connections between the processor					
and the memory. b Define subroutine linkage. Explain different med	Define subroutine linkage. Explain different mechanism of passing					
parameters to subroutines.	and the passing	05				

			1			
	С	Write a sequence of instructions that will compute the value of				
		$y = x^2 + 3x + 6$ for a given x using:				
		i) Three-address instructions				
		ii) Two-address instructions				
		iii) Zero-address instructions	06			
9	а	Identify various mapping techniques in cache memory along with				
		necessary diagrams.				
		A computer has an 8GB memory with 64 bit word sizes.				
		(1 word = 4 bytes). Each block of memory stores 16 words. The				
		computer has a direct-mapped cache of 128 blocks. The computer				
		uses word level addressing. What is the address format?	08			
	b	Write the control sequence, with comments for the execution of the				
		following instructions, using Single bus and Three bus data paths.				
		ADD (R5), R3.	08			
		OR				
10	a	Examine all the memory types available under RAM and ROM, which				
		are used in building embedded systems and Personal computers.				
		Design $2M \times 32$ memory chip using $512k \times 8$ memory chip along with				
		external connections.	08			
	b	Illustrate with neat diagrams, hardwired control unit and micro				
		programmed control unit and discuss their advantages and				
		disadvantages.	08			