

UZUPEŁNIA ZDAJĄCY		
KOD	PESEL	miejsce na naklejkę

EGZAMIN MATURALNY Z MATEMATYKI

POZIOM ROZSZERZONY

DATA: **9 maja 2018 r.**GODZINA ROZPOCZĘCIA: **9:00**

CZAS PRACY: 180 minut

LICZBA PUNKTÓW DO UZYSKANIA: 50

UZUPEŁNIA ZESPÓŁ NADZORUJĄCY		
Uprawnienia zdającego do:		
	dostosowania kryteriów oceniania	
	nieprzenoszenia zaznaczeń na kartę	

Instrukcja dla zdającego

- Sprawdź, czy arkusz egzaminacyjny zawiera 18 stron (zadania 1–15). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to przeznaczonym.
- 3. Odpowiedzi do zadań zamkniętych (1–4) zaznacz na karcie odpowiedzi w części karty przeznaczonej dla zdającego. Zamaluj pola do tego przeznaczone. Błędne zaznaczenie otocz kółkiem i zaznacz właściwe.
- 4. W zadaniu 5. wpisz odpowiednie cyfry w kratki pod treścią zadania.
- 5. Pamiętaj, że pominięcie argumentacji lub istotnych obliczeń w rozwiązaniu zadania otwartego (6–15) może spowodować, że za to rozwiązanie nie otrzymasz pełnej liczby punktów.
- 6. Pisz czytelnie i używaj tylko długopisu lub pióra z czarnym tuszem lub atramentem.
- 7. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 8. Pamiętaj, że zapisy w brudnopisie nie będą oceniane.
- 9. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora prostego.
- 10. Na tej stronie oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 11. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

MMA-R1_**1**P-182

NOWA FORMUŁA

W zadaniach od 1. do 4. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź.

Zadanie 1. (0-1)

Dane są liczby: $a = \frac{\sqrt[4]{8}}{2}$, $b = \frac{1}{2\sqrt[4]{8}}$, $c = \sqrt[4]{8}$, $d = \frac{2}{\sqrt[4]{8}}$ oraz $k = 2^{-\frac{1}{4}}$. Prawdziwa jest równość

- **A.** k = a
- **B.** k = b
- $\mathbf{C.} \quad k = c$
- $\mathbf{D.} \quad k = d$

Zadanie 2. (0-1)

Równanie |x|-2=|x|+2

- A. nie ma rozwiązań.
- **B.** ma dokładnie jedno rozwiązanie.
- C. ma dokładnie dwa rozwiązania.
- **D.** ma dokładnie cztery rozwiązania.

Zadanie 3. (0-1)

Wartość wyrażenia $2\log_5 10 - \frac{1}{\log_{20} 5}$ jest równa

- **A.** -1
- **B.** 0
- **C.** 1
- **D.** 2

Zadanie 4. (0-1)

Granica $\lim_{x \to 3^{-}} \frac{-x+2}{x^2-5x+6}$ jest równa

- **A.** −∞
- **B.** −1
- **C.** 0
- **D.** +∞

BRUDNOPIS (nie podlega ocenie)

Zada	nia	5	()	2)
Laua	ше	J.	l V-	-2]

Punkt A = (-5,3) jest środkiem symetrii wykresu funkcji homograficznej określonej wzorem

$$f(x) = \frac{ax+7}{x+d}$$
, gdy $x \neq -d$. Oblicz iloraz $\frac{d}{a}$.

W poniższe kratki wpisz kolejno cyfrę jedności i pierwsze dwie cyfry po przecinku nieskończonego rozwinięcia dziesiętnego otrzymanego wyniku.

BRUDNOPIS (nie podlega ocenie)

Zadanie 6. (0-3)

Styczna do paraboli o równaniu $y = \sqrt{3}x^2 - 1$ w punkcie $P = (x_0, y_0)$ jest nachylona do osi Ox pod kątem 30°. Oblicz współrzędne punktu P.

Zadanie 7. (0–3)

Trójkąt ABC jest ostrokątny oraz |AC| > |BC|. Dwusieczna d_C kąta ACB przecina bok AB w punkcie K. Punkt L jest obrazem punktu K w symetrii osiowej względem dwusiecznej d_A kąta BAC, punkt M jest obrazem punktu L w symetrii osiowej względem dwusiecznej d_C kąta ACB, a punkt N jest obrazem punktu M w symetrii osiowej względem dwusiecznej d_B kąta ABC (zobacz rysunek).

Udowodnij, że na czworokącie KNML można opisać okrąg.

	Nr zadania	5.	6.	7.
Wypełnia	Maks. liczba pkt	2	3	3
egzaminator	Uzyskana liczba pkt			

Zadanie 8. (0-3)

Udowodnij, że dla każdej liczby całkowitej k i dla każdej liczby całkowitej m liczba $k^3m - km^3$ jest podzielna przez 6.

Zadanie 9. (0–4)

Z liczb ośmioelementowego zbioru $Z = \{1, 2, 3, 4, 5, 6, 7, 9\}$ tworzymy ośmiowyrazowy ciąg, którego wyrazy się nie powtarzają. Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że żadne dwie liczby parzyste nie są sąsiednimi wyrazami utworzonego ciągu. Wynik przedstaw w postaci ułamka zwykłego nieskracalnego.

Odpowiedź:

_	Nr zadania	8.	9.
Wypełnia	Maks. liczba pkt	3	4
egzaminator	Uzyskana liczba pkt		

Zadanie 10. (0-4)

Objętość stożka ściętego (przedstawionego na rysunku) można obliczyć ze wzoru $V = \frac{1}{3}\pi H \left(r^2 + rR + R^2\right)$, gdzie r i R są promieniami podstaw (r < R), a H jest wysokością bryły. Dany jest stożek ścięty, którego wysokość jest równa 10, objętość 840π , a r = 6. Oblicz cosinus kąta nachylenia przekątnej przekroju osiowego tej bryły do jednej z jej podstaw.

Zadanie 11. (0-4)

Rozwiąż równanie $\sin 6x + \cos 3x = 2\sin 3x + 1$ w przedziale $\langle 0, \pi \rangle$.

	Nr zadania	10.	11.
Wypełnia	Maks. liczba pkt	4	4
egzaminator	Uzyskana liczba pkt		

Zadanie 12. (0-6)

Wyznacz wszystkie wartości parametru m, dla których równanie $x^2 + (m+1)x - m^2 + 1 = 0$ ma dwa rozwiązania rzeczywiste x_1 i x_2 ($x_1 \neq x_2$), spełniające warunek $x_1^3 + x_2^3 > -7x_1x_2$.

	Nr zadania	12.
Wypełnia	Maks. liczba pkt	6
egzaminator	Uzyskana liczba pkt	

Zadanie 13. (0-4)

Wyrazy ciągu geometrycznego (a_n) , określonego dla $n \ge 1$, spełniają układ równań

$$\begin{cases} a_3 + a_6 = -84 \\ a_4 + a_7 = 168 \end{cases}$$

Wyznacz liczbę n początkowych wyrazów tego ciągu, których suma S_n jest równa 32769.

	Nr zadania	13.
Wypełnia	Maks. liczba pkt	4
egzaminator	Uzyskana liczba pkt	

Zadanie 14. (0–6)

Punkt A = (7, -1) jest wierzchołkiem trójkąta równoramiennego ABC, w którym |AC| = |BC|. Obie współrzędne wierzchołka C są liczbami ujemnymi. Okrąg wpisany w trójkąt ABC ma równanie $x^2 + y^2 = 10$. Oblicz współrzędne wierzchołków B i C tego trójkąta.

	Nr zadania	14.
Wypełnia	Maks. liczba pkt	6
egzaminator	Uzyskana liczba pkt	

Zadanie 15. (0-7)

Rozpatrujemy wszystkie trapezy równoramienne, w które można wpisać okrąg, spełniające warunek: suma długości dłuższej podstawy *a* i wysokości trapezu jest równa 2.

- a) Wyznacz wszystkie wartości a, dla których istnieje trapez o podanych własnościach.
- b) Wykaż, że obwód L takiego trapezu, jako funkcja długości a dłuższej podstawy trapezu, wyraża się wzorem $L(a) = \frac{4a^2 8a + 8}{a}$.
- c) Oblicz tangens kąta ostrego tego spośród rozpatrywanych trapezów, którego obwód jest najmniejszy.

	Nr zadania	15.
Wypełnia egzaminator	Maks. liczba pkt	7
	Uzyskana liczba pkt	

BRUDNOPIS (nie podlega ocenie)