CS 320: Principles of Programming Languages

Mark P Jones, Portland State University

Spring 2019

Week 2: Describing Syntax

syntax: the written/spoken/symbolic/physical form; how things are communicated

1

concrete syntax: the representation of a program text in its source form as a sequence of bits/bytes/characters/lines

$$language = \begin{cases} syntax = \begin{cases} concrete \\ abstract \end{cases}$$

abstract syntax: the representation of a program structure, independent of written form

$$language = \begin{cases} syntax &= \begin{cases} concrete \\ \\ abstract \end{cases}$$

$$semantics$$

syntax analysis: This is one of the areas where theoretical computer science has had major impact on the practice of software development

Wanted!

- We want methods for describing language syntax that are:
 - clear, precise, and unambiguous
 - expressive (e.g., finite descriptions of infinite languages)
 - suitable for use in the implementation of practical syntax analysis tools (lexical analyzers, parsers, ...)
- Formal language theory provides a rigorous foundation for specifying syntax. In particular:
 - Regular languages are well-suited to describing lexical syntax (what sequences of characters are valid tokens?)
 - <u>Context-free languages</u> are well-suited to describing grammatical structure (what sequences of tokens are valid sentences?)

Formal languages

 Pick a set, A, of symbols, which we refer to as the alphabet

> For lexical analysis, "symbols" are typically characters For parsing, "symbols" are typically tokens

- The set of all finite strings of symbols taken from A is written as A*
- A language (over A) is a subset of A*

Examples

• If A = { 0, I }, then:

 $A^* = \{ \text{```'}, \text{``0''}, \text{``1''}, \text{``00''}, \text{``01''}, \text{``10''}, \text{``11''}, \text{``000''}, \dots \}$

• Bytes form a finite language over A:

Bytes = { $b_0 b_1 b_2 b_3 b_4 b_5 b_6 b_7 | b_i \in \{0, 1\} }$

• Even length bitstreams form an infinite language over A

Evens =
$$\{"","00","01","10","11"\} \cup \{xy \mid x,y \in \text{Evens }\}$$

10

concatenation

English as a formal language

- With alphabet A = { "a", "b", "c", ..., "z" }:
 - A* = all strings with zero or more letters from A
 - Words = the subset of A* containing only those strings that are valid words in English e.g., "language" ∈ Words, "jubmod" ∉ Words
 - English = the subset of Words* containing only those strings that are valid sentences in English ["languages", "are", "interesting"] ∈ English
- But how do we specify which subsets to use?

A list of English words (/usr/share/dict/words)

- 1

Prop as a formal language

• With alphabet $A = \{ \text{``A''}, \text{``B''}, \text{``C''}, \dots, \text{``Z''}, \text{``('', `')''}, \dots \}$:

 A^* = all strings with zero or more letters from A

Tokens = Keywords: "AND", "OR", "NOT";

Literals: "TRUE", "FALSE";
Punctuation: "(" and ")"

Variable names: all nonempty subsets of A*

containing only letters

Prop = the subset of Tokens* corresponding to

valid circuits

• But how do we specify these details?

Finite Automata and Regular Languages

Terminology

A **finite automaton** (or state machine) describes a system that can transition (or move) between a finite set of states in response to particular inputs (or actions).

A deterministic finite automaton (DFA) has at most one way to transition out of any state in response to a given input

A nondeterministic finite automaton (NFA) may allow multiple transitions from some state in response to a given input

Finite automata building blocks

We use the following symbols to describe automata:

state, labeled n

start state

accept state

a transition on input a

a transition without consuming any input,

sometimes written: ϵ

Example: multiples of 3 represents four transitions/arrows from State 2 to State 2, each sum so far is 3n+1 0,3,6,9 with a different input (for some n) character 0,3,6,9 1,4,7 1,4,7 2,5,8 2,5,8 2,5,8 0 sum so far is 3n+2 sum so far is 3n+0 1,4,7 (for some n) (for some n) a number is divisible by three if the sum of its digits is divisible by three

Finite automata as language recognizers

- Every finite automaton defines a formal language:
 - The set of strings corresponding to paths from the start state to an accept state
- Example: what language does this automaton describe?

Answer: {"ab", "aab", "bab", "aaab", "abab", "baab", "bbab", ...}

- · However:
 - "a" is not included (does not reach an accept state)
 - "cab" is not included (gets stuck at state 0)

33

Regular expressions

- A widely used notation for describing patterns in text strings: emacs, vi, grep, awk, perl, ruby, python, javascript, ...
- Also good for describing the lexical structure of programming languages ...
- · Every regular expression corresponds to a DFA
- Every regular expression defines a language (the language that is recognized by the corresponding DFA)

Regular expressions

Expression	Meaning
3	Empty : matches the empty string
С	Constant : matches the single character c
r ₁ r ₂	Alternatives : matches text matching r_1 or text matching r_2
r ₁ r ₂	Sequencing : matches text matching r_1 followed by text matching r_2
r*	Repetition : matches a sequence of zero or more items, each of which matches \mathbf{r}
(r)	Grouping : matches text matching r

Derived forms

Expression	Meaning
r+	Repetition : a sequence of one or more items, each of which matches r. r+ = rr*.
r?	Optional : optional text matching \mathbf{r} . \mathbf{r} ? = $(\mathbf{r} \mid \mathbf{\epsilon})$.
[abc]	Character classes: short for (a b c) Also allows ranges of characters. e.g., [a-zA-Z].
•	Wildcard: matches any character (except newline)

Programming language examples

Regular expression	Describes
if	the keyword if
[A-Za-z][A-Za-z0-9_]*	identifiers
0 [1-9][0-9]*	integer literals (without leading zeros)
[\t\n]*	whitespace
<pre>{int}{frac}?{exp}?</pre>	floating point literals
<pre>where {int} = 0 [1-9][0-9]*</pre>	(using auxiliary definitions)

Key things to know (see CS 311 for proofs, etc.)

There is a <u>deterministic finite</u> automaton (DFA) that recognizes language L

There is a nondeterministic finite automaton (NFA) that recognizes language L

There is a regular <u>expression</u> that describes language L

In any/all of these situations, we say that L is a regular language

Wanted! (reprise)

- We want methods for describing language syntax that are:
 - clear, precise, and unambiguous
 - expressive (e.g., finite descriptions of infinite languages)
 - suitable for use in the implementation of practical syntax analysis tools (lexical analyzers, parsers, ...)
- · Regular expressions work really well for describing lexical syntax ...
- · But the set of regular languages that they describe is quite limited ...

A simple language of Brackets

- Brackets = { "" } ∪ { [b] | b ∈ Brackets }
- So the "words" in Brackets are:

- In other words, nested pairs of bracket characters:
 - a sequence of n open brackets ...
 - ... followed by exactly n close brackets
- · A subset of any language that uses parentheses/brackets
- · But is it a regular language?

Brackets is not regular

• If brackets is regular, then we can recognize it using a **finite** automaton that would look something like this:

- If s_n is the state that we can reach after n open brackets and $n \neq m$, then $s_n \neq s_m$
- · So this machine must have infinitely many states (at least one distinct state s_n for each n)
- So Brackets cannot be regular

Iteration vs recursion

- Regular expressions don't allow recursion, just iteration
- But it is easy enough to give a simple recursive characterization for B ∈ Brackets:

meaning: B is empty

B → [B] meaning: B consists of an initial [symbol, another element from Brackets; and a closing] symbol

Generating brackets

- · We have two rewrite rules:
 - $B \longrightarrow \text{replace a B with the empty string}$ $B \longrightarrow [B] \text{replace a B with the string } [B]$
- Either rule can be used to rewrite an occurrence of B
- We say that "B **derives** s" if the string s can be obtained from B by repeated rewriting/replacement

55

Context-Free Grammars and Languages

6

Context-free grammars (CFGs)

A context-free grammar G = (T, N, P, S) consists of

a set **T** of **terminal** symbols ("tokens")

a set N of **nonterminal** symbols

a set **P** of **productions**, each of which is a rule of the form $n \longrightarrow w$ where $n \in \mathbb{N}$, and $w \in (T \cup \mathbb{N})^*$

a start symbol $S \in N$

Example

- A CFG for Brackets: ($\{[,]\}, \{B\}, \{B \rightarrow \epsilon, B \rightarrow [B]\}, B$)
- In practice, it is often sufficient just to write down the productions for a CFG:

the sets of terminals and nonterminals can usually be inferred from the productions

the start symbol can either be identified explicitly, or assumed as the first nonterminal

• For example, we can describe Brackets by: B \longrightarrow

 $B \longrightarrow [B]$

-

 $W \longrightarrow t W$

More examples

Prop: $P \longrightarrow TRUE$ Regexps: $P \longrightarrow FALSE$ \longrightarrow VAR $R \longrightarrow RR$ \longrightarrow (P) $R \longrightarrow R \mid R$ \longrightarrow AND P P R * \longrightarrow OR P P CFGs: $P \longrightarrow NOT P$ $G \longrightarrow P ; G$ $P \longrightarrow n -> W$ Arithmetic: E → n $\mathsf{E} \longrightarrow (\mathsf{E})$ $W \longrightarrow$ $E \longrightarrow E + E$ $W \longrightarrow n W$

 $E \longrightarrow E * E$

Context-free grammars and languages

- What is the relationship between context-free grammars and languages (i.e., sets of strings)?
- A **derivation** is a sequence of strings:

 $s_1 \longrightarrow s_2 \longrightarrow s_3 \longrightarrow s_4 \longrightarrow s_5 \longrightarrow s_6 \longrightarrow s_7 \longrightarrow ...$ in which each string s_{i+1} is obtained from the previous string s_i by choosing a production $n \longrightarrow w$ and replacing an occurrence of n in s_i with w

- In this case, we say that s_1 **derives** s_i for each i = 1, 2, ...
- We say that a context-free grammar G = (T, N, P, S)
 generates the language that contains all strings in T* that
 can be derived from S

Brackets is a "context-free language"

- Any language that is generated from a context-free grammar is said to be a context-free language
- Sample derivations for Brackets:

$$\begin{split} \mathbf{B} &\longrightarrow \\ \mathbf{B} &\longrightarrow [\mathbf{B}] &\longrightarrow [\] \\ \mathbf{B} &\longrightarrow [\mathbf{B}] &\longrightarrow [[\mathbf{B}]] &\longrightarrow [[\]] \\ & ... \\ \mathbf{B} &\longrightarrow [\mathbf{B}] &\longrightarrow [[\mathbf{B}]] &\longrightarrow [[[\mathbf{B}]]] &\longrightarrow [[[[\mathbf{B}]]]] &\longrightarrow [[[[\]]]] \end{split}$$

Derivations and parse trees

62

 $E \longrightarrow E + E$

A language of arithmetic expressions

- Many computer languages are naturally described as contextfree languages (i.e., using a context-free grammar)
- Example: a simple language of expressions:

$$\begin{array}{ll} E \longrightarrow n & \text{(n is an integer literal)} \\ E \longrightarrow E + E & \\ E \longrightarrow E * E & \\ E \longrightarrow (E) & \end{array}$$

• Terminology:

E is a nonterminal

+, *, (,), and n are terminals (i.e., tokens)

Deriving expressions

For example, 1+(2*3) is an expression:

one expression, multiple derivations

44

Multiple derivations

- In a <u>right-most</u> derivation, we replace the right-most nonterminal at each step
- In a <u>left-most</u> derivation, we replace the left-most nonterminal at each step
- There are other choices between these extremes
- Does it matter which derivation we use?

Deriving expressions

For example, 1 + 2 * 3 is an expression (no parentheses):

two valid derivations, but a fundamental difference this time

65

Productions in graphical form

To understand the essential structure of a derivation, we will use a graphical notation to represent the productions in a grammar:

I+(2*3) revisited

7

Right-most vs left-most

Parse trees

leaves are terminals, every terminal appears

interior nodes correspond to productions

Parse trees vs abstract syntax trees

CFGs and parse trees

- Context-free grammars don't just define languages (i.e., they don't just derive sets of strings) ...
- ... they actually define sets of trees!
- The strings in the corresponding context-free language can be recovered from the leaf nodes of each tree
- Parsing works in reverse: start with a string and try to construct the original tree
- What happens in there are <u>distinct</u> tree structures with the <u>same</u> sequence of symbols on their leaves?

1+2*3 revisited

Ambiguity

- A grammar is ambiguous if there is a string in the corresponding language with more than one parse tree
- Example: Our grammar for expressions is ambiguous because the string "I+2*3" has two distinct parse trees

(We could find plenty of other examples of the same problem in this grammar, but finding just one is enough to demonstrate ambiguity)

Ambiguity is a property of a grammar, NOT a language

We can have multiple grammars describing the same language, some ambiguous and some unambiguous

Dealing with ambiguity

- Does it matter?
- If any parse tree is as good as any other (i.e., they all have the same meaning), then just take whichever tree we get

Example: for regular expressions, $r_1(r_2r_3)$ matches exactly the same set of strings as $(r_1r_2)r_3$, so we can parse $r_1r_2r_3$ either way

• If different trees have different meanings, then we need to choose between them:

Disambiguating rules (e.g., operator precedence) Rewrite the grammar to avoid ambiguity

Precedence and grouping (fixity)

- If \otimes has **higher precedence** than \oplus , then a \otimes b \oplus c should be parsed in the same way as $(a \otimes b) \oplus c$
- If \otimes groups/associates to the left, then a \otimes b \otimes c should be parsed in the same way as $(a \otimes b) \otimes c$
- If \otimes **groups/associates** to the right, then $a \otimes b \otimes c$ should be parsed in the same way as a \otimes (b \otimes c)
- If \otimes is **nonassociative**, then $a \otimes b \otimes c$ should be treated as an error
- The combination of an operator's precedence and grouping is known as its fixity

Order of operations

- There are widely used conventions for the precedence of standard arithmetic operations. (e.g., "PEMDAS")
- Parentheses first, then multiplications, then addition Example: (1+2)+3*4 == (1+2)+(3*4)
- But the final decision about what fixity each operator should have rests with the language designer
- Let's suppose we want to resolve our ambiguities using:
 - * has higher precedence than +
 - * and + both group to the left

An unambiguous grammar for expressions

Here is an unambiguous grammar for our language of expressions:

 $E \longrightarrow E + P$ expressions

 $E \longrightarrow P$

P*Aproducts How were these properties met? * has higher precedence than +

* and + both group to the left

 \longrightarrow (E)

(n is an integer literal)

atoms

An unambiguous grammar for expressions

Here is an unambiguous grammar for our language of expressions:

 $E \longrightarrow E + P$ expressions are sums of products

 $\mathsf{E} \longrightarrow \mathsf{P}$

 $P \longrightarrow P*A$ products of atoms

 $P \longrightarrow A$

 $A \longrightarrow (E)$ atoms

 $A \longrightarrow n$

An unambiguous grammar for expressions

An expression is a sum of products, each of which is a product of atoms.

Example: if a_1 , ..., a_8 are atoms, then:

must be parsed as:

$$(a_1 * a_2 * a_3) + (a_4 * a_5) + (a_6) + (a_7 * a_8)$$

Multiply has been given a higher precedence than addition!

80

An unambiguous grammar for expressions

The right argument of + must be a product

Example: if $p_1, ..., p_4$ are products, then:

must be parsed as:

$$(((p_1 + p_2) + p_3) + p_4)$$

In other words: + groups to the left

Controlling grouping

82

Fragments from the official Java grammar

Context free languages summary

- Context free grammars can be used to describe a significantly larger family of languages than regular expressions
 - including many of the languages we encounter in practice
- Parse trees are graphical descriptions of derivations that
 - can reflect the grammatical structure of the input
 - can highlight ambiguities in the grammar
 - include more detail than is typically needed for an AST
- Grammars can be written so that operators are treated as having different precedence and grouping behaviors
 - This can help to avoid ambiguity