

System Modeling – HS 2020

Exercise Set 2 Discussion

Jonathan Becker Marc Neumann, Camillo Balerna Prof. Dr. Lino Guzzella

Figure 1: Schematic description of the hydroelectric powerplant

Exercise 2 – Hydraulic Systems

Duct, Compressibility, Reservoir

Pipe Modeling – Lumped Parameter

Duct

$$m \cdot \frac{d}{dt}v(t) = \sum Forces$$

$$F_{pressure}(t) = A \cdot p(t)$$

$$F_{gravity} = A \cdot \rho g h$$

$$F_{fric}(t) = A\rho l \cdot \lambda (v(t)) \cdot \frac{1}{2d} v(t)^{2} \cdot sign(v)$$

$$m = A\rho l$$

$$m \cdot \frac{d}{dt}v(t) = A \cdot (p_1(t) - p_2(t)) + A\rho \cdot gh - F_{fric}(t)$$

Duct – Useful Extras

$$m \cdot \frac{d}{dt}v(t) = A \cdot (p_1(t) - p_2(t)) + A\rho \cdot gh - F_{fric}(t)$$

$$\begin{array}{c}
\div m = \div A\rho l \\
\hline
\end{array}$$

$$\frac{d}{dt}v(t) = \frac{\left(p_1(t) - p_2(t)\right)}{\rho l} + \frac{gh}{l} - \frac{F_{fric}(t)}{m}$$

with
$$\frac{F_{fric}(t)}{m} = \lambda (v(t)) \cdot \frac{1}{2} v(t)^2$$

- $\dot{m} = v \cdot \rho \cdot A$, for a tube: $\dot{m} = v \cdot \rho \cdot \pi \frac{D^2}{4}$
- $dm = \rho \cdot A \cdot dl$
- $\sin(\alpha) = \frac{dh}{dl}$ shape factor: $\frac{l}{d}$

Pipe Modeling

Compressibility

- σ_0 : compressibility $\left[\frac{1}{Pa}\right]$
- $k_0 = \frac{1}{\sigma_0}$: elasticity constant [Pa]
- σ_0 must be determined experimentally
- $V_0 = l \cdot A$: Volume of the duct

Model elasticity of the pipe → Compressible element at the end

$$\frac{d}{dt}V(t) = \dot{V}_{in}(t) - \dot{V}_{out}(t) = A_{in} \cdot v_{in}(t) - A_{out} \cdot v_{out}(t)$$

$$p(t) = k\Delta V(t) + p_{stat} = \frac{1}{\sigma_0} \frac{\Delta V(t)}{V_0} + p_{stat}$$

With:

$$\Delta V = V(t) - V_0$$

$$p_{stat} = p_0$$
 If open-end duct

$$p_{stat} = \rho g h_{duct}$$
 If closed-end duct (has a valve)

Compressibility

Model elasticity of the pipe → Compressible element at the end

$$\frac{d}{dt}V(t) = \dot{V}_{in}(t) - \dot{V}_{out}(t) = A_{in} \cdot v_{in}(t) - A_{out} \cdot v_{out}(t)$$

$$p(t) = k\Delta V(t) + p_{stat} = \frac{1}{\sigma_0} \frac{\Delta V(t)}{V_0} + p_{stat}$$

Overview

Valve – Algebraic Block

Often interested in velocity and mass/volume-flow:

- Find function for the open area of the valve
- Bernouilli for the velocity:

$$v_{out}(t) = c_d \sqrt{\frac{2}{\rho} \cdot (p_{in}(t) - p_{out})}$$
, $v_{out} \gg v_{in}$

Overview

Water Tank

Water Tank

Bernoulli

Incompressible Fluid, no friction, along a streamline:

$$h_w \qquad \int_{1}^{2} \frac{\partial v}{\partial t} dS + \left[\frac{p}{\rho} + \frac{1}{2} v^2 + g \cdot h(s) \right]_{1}^{2} = 0$$

Simplified for stationary flow:

$$v_1^2 + \frac{p_1}{\rho} + gh_1 = v_2^2 + \frac{p_2}{\rho} + g \cdot h_2$$

Here:

$$0^{2} + \frac{p_{0}}{\rho} + gh_{w} = v_{exit}^{2} + \frac{p_{0}}{\rho} + g \cdot 0$$

Your SpaghETH is growing every week more and although no particular production issues occur you are concerned about ecology. Since each tank of pasta you cook needs water and a correct salt seasoning for it to taste that delicious, you need a lot of salt and water, which are often wasted. For this reason, you open a research branch in your startup which decides to design a duct-hydraulic system to counteract the waste of water and salt. The tank where the pasta cooks is connected to a duct (diameter d_T), the Tunnel. Before the water enters a second duct (diameter d_T), the Seasoner, a pump increases its pressure by Δp . Note that only compressibility effects of the Tunnel should be taken into account. The pressure at the water's surface p_{∞} is assumed to be known. Assume a circular tunnel, whose area reads $A_T = \pi d_T^2/4$. The area of the water tank is A_W (with $A_W \gg A_T$). A sketch of the system with the relative parameters is shown in Figure 4.

- 1. List all the reservoirs and the relative state variables.
- 2. Find the pressure $p_1(t)$ at the beginning of the *Tunnel* as a function of the velocity in the *Tunnel* $v_{\rm BP}(t)$.
- 3. Formulate the differential equation for $v_{\rm BP}(t)$ as function of the pressure right before the pump $p_2(t)$.
- 4. Exploiting the compressibility of the *Tunnel*, find the pressure $p_2(t)$ explicitly.
- 5. Formulate the differential equation for $v_{AP}(t)$.
- 6. Formulate the differential equation for h(t).

1. List all the reservoirs and the relative state variables.

3. Formulate the differential equation for $v_{\rm BP}(t)$ as function of the pressure right before the pump $p_2(t)$.

4. Exploiting the compressibility of the *Tunnel*, find the pressure $p_2(t)$ explicitly.

5. Formulate the differential equation for $v_{\rm AP}(t)$.

6. Formulate the differential equation for h(t).

