PROBLEM SET 01

Day 1

The hardest step in writing an $\epsilon - \delta$ proof is the first step, once you know how to start the proof the rest is mechanical.

- **Q.1.** Explain in your own words how the provisional definition is equivalent to the more rigorous $\epsilon \delta$ definition of limit.
 - **Provisional definition:** The function f approaches a limit l near a i.e. $\lim_{x\to a} f(x) = l$, if we can make f(x) as close to l as we like by requiring that x be sufficiently close to, but unequal to, a.
 - $\epsilon-\delta$ **definition:** The function f approaches a limit l near a i.e. $\lim_{x\to a}f(x)=l$, if for every $\epsilon>0$ there is some $\delta>0$ such that, for all x, if $0<|x-a|<\delta$, then $|f(x)-l|<\epsilon$.

Explain how this is equivalent to the standard $\epsilon - \delta$ definition.

- **Q.2.** For each of the following functions f and real numbers a,
 - Guess the limit $L = \lim_{x \to a} f(x)$.
 - Find a δ corresponding to $\epsilon = 0.1$ in the $\epsilon \delta$ definition of limit.
 - Find a δ corresponding to an arbitrary real number ϵ and **prove** that L is indeed the limit.
 - (1) f(x) = x + 2, a = 0
 - (2) f(x) = 7x + 2, a = 0
 - (3) $f(x) = x^2 2$, a = 0
 - (4) f(x) = 1/x, a = 1

Day 2

Its tedious to use $\epsilon - \delta$ proofs in practice, instead we use Theorem 2 and it's analogues.

- **Q.3.** Let n be a positive integer. Prove that the function $f(x) = x^n$ is continuous at 0.
 - Use Theorem 2 to prove that every polynomial p(x) is continuous at 0.
 - Prove that a function f(x) is continuous at a if and only if the function g(x) = f(x+a) is continuous at 0.
 - Prove that x^n is continuous at every real number a.
 - Use Theorem 2 to prove that every polynomial p(x) is continuous at all real numbers.
 - What are the real numbers at which the ratio of two polynomials $\frac{p(x)}{q(x)}$ is continuous?
- **Q.4.** Using the $\epsilon \delta$ definition of limit to prove that if $\lim_{x \to a} f(x) = l$ and $\lim_{x \to a} g(x) = m$ then

$$\lim_{x \to a} (f(x) - g(x)) = l - m$$

Trigonometric functions, exponential functions and logarithms are continuous wherever they are defined. We will assume this fact without proof for now and come back to it later.

Day 3

To understand continuity it is equally important to understand discontinuity.

- **Q.5.** Determine, with proof, $\lim_{x \to \infty} 1/x$.
 - Prove that for no real number l do we have $\lim_{x\to 0^+} 1/x = l$.
- Q.6. For the function

$$f(x) = \begin{cases} 0 & \text{if } x < 0\\ 1 & \text{otherwise} \end{cases}$$

determine, with proof, the limits $\lim_{x\to 0^+}$, $\lim_{x\to 0^-}$. How will you answers change if we replace x<0 by $x\le 0$ in the definition of f(x)?

Q.7. Prove that the function

$$f(x) = \begin{cases} 0 & \text{if } x \text{ is rational} \\ 1 & \text{otherwise} \end{cases}$$

is discontinuous everywhere. What can you say about the continuity of the function $g(x) = x \cdot f(x)$?

- **Q.8.** Give examples to show that the following definitions of $\lim_{x\to a} f(x) = L$ are not correct. (Hint: Think graphically)
 - For all $\delta>0$ there exists an $\epsilon>0$ such that if $0<|x-a|<\delta$ then $|f(x)-L|<\epsilon.$
 - For every $\epsilon>0$ there is some $\delta>0$ such that, for all x, if $|f(x)-L|<\epsilon$ then $0<|x-a|<\delta$.