USB 转 8 串口芯片 CH348

手册 版本: 1.4 https://wch.cn

1、概述

CH348 是一款高速 USB 总线的转接芯片, 实现 USB 转八个异步串口 UARTO/1/2/3/4/5/6/7 功能, 用于为计算机扩展异步串口,或者将普通的串口设备或者 MCU 直接升级到 USB 总线。

2、特点

- 480Mbps 高速 USB 设备接口,外围元器件只需晶体和电容
- 内置固件,仿真标准串口,用于升级原串口外围设备,或者通过 USB 增加额外串口
- 计算机端 Windows 操作系统下的串口应用程序完全兼容,无需修改
- 硬件全双工串口,内置独立的收发缓冲区,通讯波特率支持 1200bps~6Mbps
- 串口支持 5/6/7/8 个数据位,支持无校验/奇校验/偶校验/空白校验/标志校验,支持 1/2 个停止位
- 每个串口内置 2048 字节的接收 FIF0, 1024 字节的发送 FIF0
- 支持常用的 MODEM 联络信号 RTS、DTR、DCD、RI、DSR、CTS
- 支持 CTS 和 RTS 硬件自动流控
- 支持半双工,提供串口正在发送状态指示 TNOW,可用于控制 RS485 收发切换
- 支持最多 48 路 GPIO 输入输出功能
- 通过外加电平转换器件,支持 RS232、RS485、RS422 等接口
- CH348L 的串口 I/O 可独立供电,支持 3.3V、2.5V、1.8V 电源电压
- 内置 EEPROM, 可配置芯片 VID、PID、最大电流值、厂商和产品信息字符串等参数
- 单一 3.3V 供电
- 提供 LQFP48 和 LQFP100 无铅封装, 兼容 RoHS

3、引脚排列

封装形式	塑体尺寸	引脚节距		封装说明	订货型号
LQFP48	7*7mm	0. 5mm	19.7mil	标准 LQFP48 脚贴片	CH348Q
LQFP100	14*14mm	0. 5mm	19.7mil	标准 LQFP100 脚贴片	CH348L

注: CH348 的 USB 收发器按 USB2. 0 全内置设计, UD+和 UD-引脚不能串接电阻, 否则影响信号质量。

4、引脚定义

210						
」 I OFD100		引脚名称	类型	引脚说明		
LQFP100	LQFP48					
11、28、 75	9、24、 36、48	VCC	Р	正电源输入端,需要外接退耦电容。		
21、22、 50、100	_	VIO	Р	1/0 端口电源输入端,需要外接退耦电容。		
10、19、 20、27、 37、49、 74、99	8、20、 23、35、 47	GND	Р	公共接地端,需要连接 USB 总线的地线。		
14	7	RESET	I	外部复位输入端,低电平有效,内置上拉电阻。		
93	43	UD+ VCC	USB	直接连到 USB 总线的 D+数据线, 不能额外串接电阻。		
92	42	UD-	USB	直接连到 USB 总线的 D-数据线, 不能额外串接电阻。		
12	5	ΧI	I	晶体振荡输入端。		
13	6	X0	0	晶体振荡反相输出端。		
68	30	TXD0	0	UARTO 的串行数据输出,空闲态为高电平。		
69	31	RXD0	I (FT)	UARTO 的串行数据输入,内置上拉电阻。		
25	12	TXD1	0	UART1 的串行数据输出,空闲态为高电平。		
26	13	RXD1	1	UART1 的串行数据输入,内置上拉电阻。		
47	21	TXD2	0	UART2 的串行数据输出,空闲态为高电平。		
48	22	RXD2	I (FT)	UART2 的串行数据输入,内置上拉电阻。		
78	18	TXD3	0	UART3 的串行数据输出,空闲态为高电平。		
79	19	RXD3	I	UART3 的串行数据输入,内置上拉电阻。		
80	40	TXD4	0	UART4 的串行数据输出,空闲态为高电平。		
83	41	RXD4	I (FT)	UART4 的串行数据输入,内置上拉电阻。		
15	45	TXD5	0	UART5 的串行数据输出,空闲态为高电平。		
16	46	RXD5	I	UART5 的串行数据输入,内置上拉电阻。		
17	16	TXD6	0	UART6 的串行数据输出,空闲态为高电平。		
18	17	RXD6	I	UART6 的串行数据输入,内置上拉电阻。		
33	37	TXD7	0	UART7 的串行数据输出,空闲态为高电平。		
34	38	RXD7	I (FT)	UART7 的串行数据输入,内置上拉电阻。		
72	34	DTRO/ TNOWO/ GP108	I/0 (FT)	UARTO 的 MODEM 输出信号,数据终端就绪,低有效; UARTO 的 RS485 发送和接收控制引脚; 通用 GP108,用于 10 口输入或输出。		
30	15	DTR1/ TNOW1/ GP109	1/0	UART1 的 MODEM 输出信号,数据终端就绪,低有效; UART1 的 RS485 发送和接收控制引脚; 通用 GP109,用于 10 口输入或输出。		
67	29	DTR2/ TNOW2/ GPI010	I/0 (FT)	UART2 的 MODEM 输出信号,数据终端就绪,低有效; UART2 的 RS485 发送和接收控制引脚; 通用 GP1010,用于 10 口输入或输出。		
89	39	DTR3/ TNOW3/ GPI011	I/0 (FT)	UART3 的 MODEM 输出信号,数据终端就绪,低有效; UART3 的 RS485 发送和接收控制引脚; 通用 GP1011,用于 10 口输入或输出。		
63	_	DTR4/	1/0	UART4的 MODEM 输出信号,数据终端就绪,低有效;		

		TNOW4/	(FT)	UART4 的 RS485 发送和接收控制引脚;
		GP1020		通用 GP1020, 用于 10 口输入或输出。
		DTR5/	1/0	UART5 的 MODEM 输出信号,数据终端就绪,低有效;
64	_	TNOW5/		UART5 的 RS485 发送和接收控制引脚;
		GP1021	(FT)	通用 GP1021, 用于 10 口输入或输出。
		DTR6/	1/0	UART6 的 MODEM 输出信号,数据终端就绪,低有效;
65	_	TNOW6/	(FT)	UART6 的 RS485 发送和接收控制引脚;
		GP1022	(11)	通用 GP1022, 用于 10 口输入或输出。
		DTR7/	1/0	UART7 的 MODEM 输出信号,数据终端就绪,低有效;
66	_	TNOW7/	(FT)	UART7 的 RS485 发送和接收控制引脚;
		GP1023	(11)	通用 GP1023,用于 10 口输入或输出。
70	32	CTSO/	1/0	UARTO 的 MODEM 输入信号,清除发送,低有效;
		GP100	(FT)	通用 GP100,用于 10 口输入或输出。
				UARTO 的 MODEM 输出信号,请求发送,低有效;
71	33	RTSO/	1/0	通用 GP101,用于 10 口输入或输出。
		GP I 01	., •	上电期间如果RTSO引脚检测到外接了下拉电阻则禁用
				内部EEPROM中配置参数,启用芯片自带默认参数。
23	10	CTS1/	1/0	UART1 的 MODEM 输入信号,清除发送,低有效;
		GP102		通用 GP102,用于 10 口输入或输出。
				UART1 的 MODEM 输出信号,请求发送,低有效;
24	11	RTS1/ GPI03	1/0	通用 GP103,用于 10 口输入或输出。
24	11			CH348Q: 上电期间如果 RTS1 引脚检测到外接了下拉电
				阻则将 CTS2、RTS2、CTS3 和 RTS3 引脚分别切换成 TNOW4、TNOW5、TNOW6、TNOW7 功能。
		CTS2/		UART2 的 MODEM 输入信号,清除发送,低有效;
52	26	TNOW4/	1/0	CH348Q: UART4 的 RS485 发送和接收控制引脚;
02	20	GP104	(FT)	通用 GP104, 用于 10 口输入或输出。
		RTS2/		UART2 的 MODEM 输出信号,请求发送,低有效;
53	27	TNOW5/	1/0	CH348Q: UART5 的 RS485 发送和接收控制引脚;
		GP105		通用 GP105, 用于 10 口输入或输出。
		CTS3/	1.70	UART3 的 MODEM 输入信号,清除发送,低有效;
51	25	TNOW6/	1/0	CH348Q: UART6 的 RS485 发送和接收控制引脚;
		GP106	(FT)	通用 GP106, 用于 10 口输入或输出。
		RTS3/		UART3 的 MODEM 输出信号,请求发送,低有效;
54	28	TNOW7/	1/0	CH348Q: UART7 的 RS485 发送和接收控制引脚;
		GP107		通用 GP107, 用于 10 口输入或输出。
90	_	CTS4/	1/0	UART4的 MODEM 输入信号,清除发送,低有效;
		GP1012	(FT)	通用 GP1012, 用于 10 口输入或输出。
91	_	RTS4/	1/0	UART4的 MODEM 输出信号,请求发送,低有效;
		GP1013		通用 GPI013, 用于 I0 口输入或输出。
95	_	CTS5/	1/0	UART5 的 MODEM 输入信号,清除发送,低有效;
		GP1014	(FT)	通用 GP1014,用于 10 口输入或输出。
96	_	RTS5/	1/0	UART5 的 MODEM 输出信号,请求发送,低有效;
		GP1015		通用 GP1015,用于 10 口输入或输出。
31	_	CTS6/	1/0	UART6的 MODEM 输入信号,清除发送,低有效;
		GP1016		通用 GP1016,用于 10 口输入或输出。
32	_	RTS6/	1/0	UART6的 MODEM 输出信号,请求发送,低有效;
35	_	GPI017 CTS7/	1/0	通用 GP1017, 用于 10 口输入或输出。 UART7 的 MODEM 输入信号, 清除发送, 低有效;
30	_	013//	1/0	UNIT I I IIIUULIII

		GP1018		通用 GP1018, 用于 10 口输入或输出。
		RTS7/		UART7 的 MODEM 输出信号,请求发送,低有效;
36	_	GP1019	1/0	近ARI / 的 MODEM 制出信号,请求发送,低有效; 通用 GP1019,用于 10 口输入或输出。
		1	1./0	
60	_	DSR0/ GP1024	I/0 (FT)	UARTO 的 MODEM 输入信号,数据装置就绪,低有效;
				通用 GP1024,用于 10 口输入或输出。
62	_	RIO/	1/0	UARTO 的 MODEM 输入信号,振铃指示,低有效;
		GP1025	(FT)	通用 GP1025,用于 10 口输入或输出。
61	_	DCDO/	1/0	UARTO 的 MODEM 输入信号,载波检测,低有效;
		GP1026	(FT)	通用 GP1026,用于 10 口输入或输出。
3	_	DSR1/	1/0	UART1 的 MODEM 输入信号,数据装置就绪,低有效;
		GP1027	(FT)	通用 GP1027,用于 10 口输入或输出。
5	_	RI1/	1/0	UART1 的 MODEM 输入信号,振铃指示,低有效;
		GP1029	(FT)	通用 GP1029,用于 10 口输入或输出。
4	_	DCD1/	1/0	UART1 的 MODEM 输入信号,载波检测,低有效;
		GP1028	(FT)	通用 GP1028, 用于 10 口输入或输出。
55	_	DSR2/	1/0	UART2 的 MODEM 输入信号,数据装置就绪,低有效;
		GP1030	(FT)	通用 GP1030, 用于 10 口输入或输出
57	_	RI2/	1/0	UART2 的 MODEM 输入信号,振铃指示,低有效;
		GP1032	(FT)	通用 GP1032,用于 10 口输入或输出。
56	_	DCD2/	1/0	UART2 的 MODEM 输入信号,载波检测,低有效;
		GP1031	(FT)	通用 GP1031, 用于 10 口输入或输出。
44	_	DSR3/	1/0	UART3 的 MODEM 输入信号,数据装置就绪,低有效;
		GP1033	(FT)	通用 GP1033,用于 10 口输入或输出。
46	_	RI3/	1/0	UART3 的 MODEM 输入信号,振铃指示,低有效;
		GP1035	(FT)	通用 GP1035,用于 10 口输入或输出。
45	_	DCD3/	1/0	UART3 的 MODEM 输入信号,载波检测,低有效;
		GP1034	(FT)	通用 GP1034,用于 10 口输入或输出。
86	_	DSR4/	1/0	UART4的 MODEM 输入信号,数据装置就绪,低有效;
		GP1036	(FT)	通用 GP1036,用于 10 口输入或输出。
88	_	R14/	1/0	UART4的 MODEM 输入信号,振铃指示,低有效;
		GP1038	(FT)	通用 GP1038,用于 10 口输入或输出。
87	_	DCD4/	1/0	UART4的 MODEM 输入信号,载波检测,低有效;
		GP1037	(FT)	通用 GP1037,用于 10 口输入或输出。
98	_	DSR5/	1/0	UART5 的 MODEM 输入信号,数据装置就绪,低有效;
		GP1039	(FT)	通用 GP1039,用于 10 口输入或输出。
2	_	RI5/	1/0 (ET)	UART5 的 MODEM 输入信号,振铃指示,低有效;
		GP1041	(FT)	通用 GP1041,用于 10 口输入或输出。
1	_	DCD5/	1/0 (ET)	UART5 的 MODEM 输入信号,载波检测,低有效;
		GP1040	(FT)	通用 GP1040,用于 10 口输入或输出。
41	_	DSR6/	1/0 (ET)	UART6的 MODEM 输入信号,数据装置就绪,低有效;
		GP1042	(FT)	通用 GP1042,用于 10 口输入或输出。
43	_	R16/	1/0 (ET)	UART6的 MODEM 输入信号,振铃指示,低有效;
		GP1044	(FT)	通用 GP1044,用于 10 口输入或输出。
42	_	DCD6/	1/0 (ET)	UART6的 MODEM 输入信号,载波检测,低有效;
		GP1043	(FT)	通用 GP1043,用于 10 口输入或输出。
38	_	DSR7/	1/0 (ET)	UART7的 MODEM 输入信号,数据装置就绪,低有效;
		GP1045	(FT)	通用 GP1045,用于 10 口输入或输出。
40	_	R17/	1/0 (ET)	UART7的 MODEM 输入信号,振铃指示,低有效;
		GP1047	(FT)	通用 GP1047, 用于 10 口输入或输出。

39	_	DCD7/ GP1046	I/0 (FT)	UART7的 MODEM 输入信号,载波检测,低有效; 通用 GP1046,用于 10 口输入或输出。		
29	14	ACT	0	USB 配置完成状态输出,低电平有效。		
94	44	TEST	I	内部测试引脚,建议对地接1个下拉电阻(通常4.7KΩ) 或直接接地。		
7	2	CFG	I	TNOW 和 DTR 功能配置引脚,可选统一配置或独立配置。统一配置:上电期间, CFG 引脚接高电平或悬空,则所有 DTRx/TNOWx 引脚配置成 TNOW 功能; CFG 引脚接低电平,则所有 DTRx/TNOWx 引脚配置成 DTR 功能。独立配置:上电期间, CFG 引脚接低电平,需要配置成TNOW 功能的串口,则在对应串口的 DTRx/TNOWx 引脚上再对地接 1 个下拉电阻(如 4. 7K \(\Omega\)),未接下拉电阻的引脚则配置成 DTR 功能。		
76	_	TX_S	0	串口数据发送状态输出。		
77	_	RX_S	0	串口数据接收状态输出。		
6、8、9、 58、59、 73、81、 82、84、 85、97	1, 3, 4	NC	NC	禁止连接,必须悬空。		

注 1: CH348L 的 RTSO、CTSO、DTR4、DTR5、DTR6 和 DTR7 引脚的电源来自 VCC, 为 3. 3V 信号电平; 其它串口和 MODEM 信号引脚的电源来自 VIO, 为 VIO 相匹配的 3. 3V/2. 5/1. 8V 信号电平。

注 2: 引脚类型缩写解释:

USB = USB 信号引脚;

I = 信号输入;

0 = 信号输出;

P = 电源或地;

NC = 空脚;

FT = 耐受 5V 电压。

5、功能说明

5.1 一般说明

CH348L 芯片有 2 个电源端 VCC 和 VI0, CH348Q 芯片仅有 1 个电源端 VCC, VCC 是主电源输入端, VI0 是 I/0 引脚电源输入端, VCC 支持 3. 3V 电源电压, VI0 支持 1. 8V、2. 5V、3. 3V 电源电压。电源引脚 VCC 和 VI0 应该分别对地外接容量为 0. 1uF 左右的电源退耦电容。对于批号第 5 位 ≥ 4 的 CH348L 芯片, VI0 支持 1. 2V 电源电压。

CH348 芯片内置了电源上电复位电路, 芯片正常工作时需要外部向 XI 引脚提供 8MHz 时钟信号,时钟信号可通过 CH348 内置的反相器通过晶体稳频振荡产生。外围电路需要在 XI 和 X0 引脚之间连接一个 8MHz 晶体, XI 和 X0 引脚对地接 22pF 左右的振荡电容。

CH348 芯片内置了 USB 总线所需要的所有外围电路,包括内嵌 USB 控制器和 USB-PHY、USB 信号线的串联匹配电阻、Device 设备所需的 1.5K 上拉电阻等。UD+和 UD-引脚应该直接连接到 USB 总线上,如果需要可以并联 ESD 保护器件。

5.2 串口说明

CH348 芯片提供 8 组异步串口 UARTO-7, 每组串口包括 TXD 和 RXD 等引脚, 全功能封装包含全部

MODEM 信号引脚, 可实现 3 线串口、5 线串口或 9 线串口通信。

异步串口方式下 CH348 芯片的引脚包括:数据传输引脚、MODEM 联络信号引脚和辅助引脚。

数据传输引脚包括:8组 TXD0-7和 RXD0-7。串口输入空闲时,RXDx 为高电平,串口输出空闲时,TXDx 为高电平。

MODEM 联络信号引脚和 RS485 发送和接收控制引脚:

CH348Q 包含 4 组 CTS0-3、RTS0-3 引脚和 4 组 DTR0-3 (TNOW0-3) 引脚。通过 RTS1 引脚接下拉电阻进行配置后,可将 CTS2、RTS2、CTS3 和 RTS3 引脚切换成 TNOW4-7 引脚功能。

CH348L 包含 8 组 CTSO-7、RTSO-7、DSRO-7、DCDO-7、R10-7 引脚和 8 组 DTRO-7 (TNOWO-7) 引脚。 其它辅助引脚包括: ACT、TX_S、RX_S 和 CFG 等。ACT 为 USB 设备配置完成状态输出引脚,上电默认输出高电平,USB 主机对 CH348 芯片进行 USB 配置后则输出低电平。TX_S 为芯片串口发送数据状态输出引脚,任意串口有数据正在发送时,TX_S 引脚输出周期为 200mS 的脉冲电平。RX_S 为芯片串口接收数据状态输出引脚,任意串口有数据正在接收时,RX_S 引脚输出周期为 200mS 的脉冲电平。CFG 为 TNOW 和 DTR 功能配置引脚,可选统一配置或独立配置。

统一配置:上电期间,CFG 引脚接高电平或悬空,则所有 DTRx/TNOWx 引脚配置成 TNOW 功能;CFG 引脚接低电平,则所有 DTRx/TNOWx 引脚默认配置成 DTR 功能。

独立配置:上电期间,CFG 引脚接低电平,需要配置成 TNOW 功能的串口,则在对应串口的 DTRx/TNOWx 引脚上再对地接 1 个下拉电阻 (如 4. $7K\Omega)$,未接下拉电阻的引脚则配置成 DTR 功能。

例如: CH348L 的 UARTO-3 需要使用 DTR 功能, UART4-7 需要使用 TNOW 功能,则需要在 CFG、DTR4/TNOW4、DTR5/TNOW5、DTR6/TNOW6 和 DTR7/TNOW7 引脚上均对地接 1 个下拉电阻。

CH348 芯片的各个串口内置了独立的收发缓冲区,支持单工、半双工或者全双工异步串行通讯。CH348 的串行数据包括 1 个低电平起始位、5/6/7/8 个数据位、1 个/2 个高电平停止位,支持无校验/奇校验/偶校验/空白校验/标志校验。支持常用通讯波特率: 1200、1800、2400、3600、4800、9600、14400、19200、28800、33600、38400、56000、57600、76800、115200、128000、153600、230400、460800、921600、1M、1.5M、2M、3M、4M、5M、6M等。

CH348 芯片的 8 个异步串口均支持 CTSx 和 RTSx 硬件自动流控制,默认不启用,可以通过 VCP 厂商驱动程序控制启用。如果启用,那么仅在检测到 CTSx 引脚输入有效(低电平有效)时串口才继续发送下一包数据,否则暂停串口发送;当接收缓冲区空时,串口会自动有效 RTSx 引脚(低电平有效),直到接收缓冲区的数据较满时,串口才自动无效 RTSx 引脚,并在缓冲区空时再次有效 RTSx 引脚。使用硬件自动速率控制,可以将己方的 CTSx 引脚接到对方的 RTSx 引脚,并将己方的 RTSx 引脚送到对方的 CTSx 引脚。

CH348 串口接收信号的允许波特率误差不大于 4%, 串口发送信号的波特率误差小于 1%。

在计算机端的 Windows 操作系统下,安装高速率的 VCP 厂商驱动程序后,能够仿真标准串口, 所以绝大部分串口应用程序完全兼容,通常无需任何修改。

CH348 芯片支持最多 48 路 GP10 输入输出控制功能。

CH348 可以用于升级原串口外围设备,或者通过 USB 总线为计算机增加额外串口。通过外加电平转换器件,可以进一步提供 RS232、RS485、RS422 等接口。

5.3 芯片参数配置

在较大批量应用时,CH348 的厂商识别码VID 和产品识别码PID 以及产品信息可以定制。

在少量应用时,可以使用内置的 EEPROM 进行参数配置。用户安装 VCP 厂商驱动程序后,可以通过芯片厂家提供的配置软件 CH34xSer Cfg. exe, 灵活配置芯片的厂商识别码 VID、产品识别码 PID、最大电流值、BCD 版本号、厂商信息和产品信息字符串描述符等参数。

6、参数

6.1 绝对最大值(临界或者超过绝对最大值将可能导致芯片工作不正常甚至损坏)

名称	参数说明	最小值	最大值	单位
TA	工作时的环境温度	-40	85	°C
TS	储存时的环境温度	-40	125	°C
VCC	电源电压(VCC 引脚供电,GND 引脚接地)	-0. 3	4. 0	V
VIO	串口 1/0 电源电压	-0. 3	4. 0	V
VUSB	USB 信号引脚上的电压	-0.5	3. 8	٧
V105V	耐受 5V 的串口引脚上的电压	-0. 5	5. 6	V
VUART	串口及其它引脚上的电压	-0. 5	VCC+0. 3	٧

6.2 电气参数(测试条件: TA=25℃, VCC=3.3V, 不含 USB 引脚)

名称	参数	最小值	典型值	最大值	单位	
VCC	电源电压(VCC 引脚位	3. 0	3. 3	3. 6	٧	
V10	串口 1/0 电源 批号	·第五位<4的CH348L	1. 7	3. 3	3. 6	٧
VIO	电压 批号	1.1	3. 3	3. 6	٧	
ICC	芯片正常工作	时的电源电流	28	40	55	mA
ISLP	USB 挂起时	的电源电流	180	260	360	uA
VII	((山立松) 山口	V10=3. 3V	0		0.8	٧
VIL	低电平输入电压	VI0=1.8V	0		0. 55	٧
VIII	不耐受 5V 引脚的高	V10=3. 3V	2. 0		VCC	٧
VIH	电平输入电压	VI0=1.8V	1. 3		VCC	٧
VIIIE	耐受 5V 的引脚的高	V10=3. 3V	2. 0		5. 0	٧
VIH5	电平输入电压	VI0=1.8V	1. 3		5. 0	٧
VOI	松山作市厅	IOL=8mA, VIO=3. 3V			0. 4	٧
VOL	输出低电压	IOL=5mA, VIO=1. 8V			0. 4	٧
VOL	松山古山亚	IOL=8mA, VIO=3. 3V	VCC-0. 4			٧
VOH	输出高电平	IOL=5mA, VIO=1. 8V	VCC-0. 4			٧
RPU	内置上拉的	30	40	60	ΚΩ	
VP0R	上电/掉电复	1. 9	2. 2	2. 5	٧	
VESD	ESD静电耐受电压(人	4			KV	

6.3 时序参数 (测试条件: TA=25℃, VCC=3.3V)

名称	参数说明	最小值	典型值	最大值	单位
TRSTD	电源上电或外部复位输入后的复位延时	15	30	40	mS
TSUSP	检测 USB 自动挂起时间	3	5	9	mS
TWAKE	芯片睡眠后唤醒完成时间	0. 3	0. 5	4	mS

7、封装信息

说明:尺寸标注的单位是 mm (毫米)。 引脚中心间距是标称值,没有误差,除此之外的尺寸误差不大于±0.2mm。

7.1 LQFP48 封装

7.2 LQFP100 封装

8、应用

8.1 USB 转八路 TTL 串口

下图是由 CH348 芯片实现的 USB 转八路 TTL 串口的参考电路图。图中的信号线可以只连接 RXDx、 TXDx 以及公共地线,其它信号线 CTSx、RTSx、TNOWx 根据需要选用,不需要时都可以悬空。

P1 是 USB 端口, USB 总线包括一对 5V 电源线和一对数据信号线,通常,+5V 电源线是红色,接 地线是黑色, D+信号线是绿色, D-信号线是白色。USB 总线提供的电源电流可以达到 500mA。

P2、P3、P4、P5、P6、P7、P8 和 P9 为各路串口的 TTL 连接引脚,包括 VCC、GND、RXDx、TXDx、 RTSx、CTSx 和 DTRx/TNOWx 等引脚。可以外加电平转换器件(须支持高波特率), 实现 TTL 转 RS232、 RS485、RS422 等信号转换。需要更多 MODEM 信号时可以换用 CH348L。

CH348 芯片的 VCC 引脚输入 3.3V 电源电压, 每个电源引脚应外接容量为 0.1uF 左右的电源退耦 电容,如图中 C8、C10、C12 和 C13 即为电源退耦电容。需要支持 2.5V 或 1.8V 等信号电平时可以换 用带 VIO 电源引脚的 CH348L。

晶体 X1、电容 C5 和 C6 用于 CH348 的时钟振荡电路。X1 的频率为 8MHz±0. 4%,C5 和 C6 是容 量约为 22pF 的独石或高频瓷片电容。R2 和 C7 为可选器件。

建议为 USB 信号线增加 ESD 保护器件, ESD 芯片寄生电容需小于 2pF, 例如 CH412K。

建议串口外设与 CH348 使用同一电源,否则需考虑分开供电时的 10 引脚倒灌电流问题。

在设计印刷线路板 PCB 时,需要注意:退耦电容 C8、C11、C12 和 C13 尽量靠近 CH348 相连的电 源引脚; USB 口的 D+和 D-信号线按高速 USB 规范贴近平行布线, 保证特性阻抗, 尽量在两侧提供地 线或者覆铜,减少来自外界的信号干扰。

图 8-1 USB 转八路 TTL 串口的参考电路图

