Anotações Máquinas de Estados Finitas Yuri Kaszubowski Lopes UDESC Maquinas de Estados Finitos Anotações • Utilizadas para, por exemplo, modelar circuitos sequenciais O circuito passa por uma sequência de estados O próximo estado depende do anterior Os estados são sincronizados ► E.g., via clock • Útil, especialmente para sistemas complexos Representação gráfica Anotações • Podemos representar uma máquina de estados finita como um grafo dirigido (digrafo) Os vértices representam os estados do sistema As arestas representam as possíveis transições de estado O estado inicial é representado apontando-se uma seta para ele

Exemplo 01: Semáforo

- Modelagem de um semáforo (de rua)

 - Três estados possíveis (vermelho, amarelo e verde)
 Os estados possuem uma sequência pré-determinada
 - * E.g., não podemos ir do vermelho para o amarelo
 - Quando inicializado, o semáforo sempre é vermelho
 - * Estado inicial

Exemplo 01: Sistema de catraca

- A catraca permanece bloqueada enquanto o usuário não passa o cartão
- ② Ao passar o cartão, a catraca é liberada e o usuário pode empurrá-la
- Após empurrada, a catraca deve bloquear
- Passar o cartão quando a catraca já está aberta a mantém aberta
- Empurrar uma catraca bloqueada a mantém bloqueada
- A catraca inicia bloqueada

Complete a máquina de estados!

Anotações

Anotações

Exemplo 01: Sistema de catraca

- A catraca permanece bloqueada enquanto o usuário não passa o cartão
- 2 Ao passar o cartão, a catraca é liberada e o usuário pode empurrá-la
- Após empurrada, a catraca deve bloquear
- Passar o cartão quando a catraca já está aberta a mantém aberta
- Empurrar uma catraca bloqueada a mantém bloqueada
- A catraca inicia bloqueada

Anotações			

Modelo de Moore

- A saída depende exclusivamente do estado dos flip-flops
 E.g., flip-flops do tipo D
- A saída é totalmente sincronizada com o clock
- Os flip-flops são utilizados para armazenar o estado atual do sistema

Modelando

- Continuando com o exemplo da catraca, podemos fazer uma tabela
 - ► Quais são as entradas? Quais as saídas?

Anotações

Modelando

YKL (UDESC)	

\sim	iOto	ıçu	CO

Circuito Combinacional

- O circuito combinacional é dado pela tabela verdade
 soma dos produtos + simplificação;
 produto das somas + simplificação;
 mapas de Karnaugh

Anotações		

Modelando

Saída

			▼
Estado Anterior	Cartão	Empurrar	Próx. Estado
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

- Para a tabela verdade, a expressão simplificada é
 - $ightharpoonup S' = C + S.\overline{E}$
 - * S': Próximo Estado * S: Estado atual * C: Cartão * E: Empurrar

Anotações			

Modelando

- O estado é representado por flip-flops D
 Como no exemplo só precisamos indicar se a catraca está aberta ou fechada, um único flip-flop é o suficiente

Anotações

Modelando

- $S' = C + S.\overline{E}$
 - S': Próximo Estado
 - ► S: Estado atual

 - ► E: Empurrar

Anotações

Maquinas de Estados Finitos

- Essa é apenas uma introdução ao tema de Máquinas de Estados Finitas
 - Existem vários outros tópicos úteis e interessantes sobre o tema
 - E.g., Modelo de Mealy: similar a Moore, mas a saída pode ainda ser controlada por entradas extras (saídas assincronas)
 - ► Formalismos matemáticos sobre máquinas de estados Finitas
 - * Permitem técnicas de simplificação, modularização, composição (sincronização)
 - Representações em linguagens de descrição de hardware, como VHDL Utilização de outros formalismos
 - - * Redes de Petri

'KL (UDESC)	Máguinas de Estados Finitas	14.

Exercícios

- Modifique o modelo do semáforo para incluir um estado prepare para ir, que é mostrado antes do verde. Neste estado é mostrado as cores amarelo e vermelho.
- 2 Modele um semáforo de dois estágios em um cruzamento de duas ruas. Em cada estágio ambos os lados da mesma rua ficam aberto. Cada rua deverá ver verde, amarelo e vermelho.
- Modifique o modelo anterior para incluir o estado prepare para ir.
- Modifique o modelo anterior para quatro estágio, assim em cada estágio apenas um dos sentidos de cada rua é aberto
- Modifique o modelo anterior para incluir um filtro de conversão apenas para a direita. Considere uma via A na qual a via B fica a sua direita. Quando estiver totalmente aberto para a via B, a via A abre o filtro para conversão à direita.

Anotações	
Anotações	

Referências

 Ronald Tocci, Neal Widmer, Greg Moss. Digital Systems. 12 ed. Pearson Education. 2016. Anotações

- www.facom.ufu.br/~abdala/sd/MEFs.pdf
- D. Patterson; J. Henessy. Organização e Projeto de Computadores: a Interface Hardware/Software. 5a Edição. Elsevier Brasil, 2017.
- MELO, M. Eletrônica Digital. Makron Books.2003.

Anotações			
	Anotações		
Anotações	7111010000		
Anotações			
	Anotações		