

1. OBJETIVOS

- Determinar a capacidade térmica do calorímetro;
- Determinar o calor específico de metais;

2. MATERIAIS

- Calorímetro;
- Termômetros digitais;
- Becker;
- Balança;
- Ebulidor;
- Chapa de aquecimento;
- Massa de metal;

3. PROCEDIMENTO EXPERIMENTAL

3.1 Determinação da capacidade térmica do calorímetro

- Determinar a massa do calorímetro seco;
- Colocar cerca de 50g de água fria (temperatura ambiente) no calorímetro;
- Anotar a temperatura da água fria;
- Aquecer cerca de 50g de água (próximo de 65°C);
- Anotar a temperatura da água quente;
- Transferir a água quente para o calorímetro, homogeneizar e anotar a temperatura de equilíbrio do sistema;
- Determinar a capacidade térmica do calorímetro;
- Repetir o procedimento pelo menos 3 vezes;
- Empregando os dados experimentais obtidos, calcule qual deveria ser a temperatura de equilíbrio caso o calorímetro fosse ideal e compare com o valor obtido experimentalmente.

3.2. Determinação do calor específico de sólidos

- Determinar a massa do sólido
- Colocar cerca de 50g de água fria (temperatura ambiente) no calorímetro;
- Anotar a temperatura da água fria;
- Manter o sólido aquecido em um Becker com água (cerca de 90°C);
- Certifique-se que o sólido será mantido na água quente por tempo suficiente para que possa se admitir: $T_{metal} = T_{H2O}^{Quente}$;
- Anotar a temperatura do metal;
- Transferir rapidamente o metal para o calorímetro;
- Determinar a temperatura de equilíbrio do sistema T_{Eq} ;
- Determinar o calor específico do metal;
- Utilizar a capacidade calorífica do calorímetro determinada anteriormente;
- Repetir o procedimento pelo menos 3 vezes;

4. DADOS

TABELA 1 - CALOR ESPECÍFICO DA ÁGUA EM FUNÇÃO DA TEMPERATURA

T(°C)	cp (cal/g°C)	cp (J/g°C)	T(°C)	cp (cal/g°C)	cp (J/g°C)	T(°C)	cp (cal/g°C)	cp (J/g°C)
0	1,0074	4,2150	35	0,9978	4,1748	70	1,0007	4,1869
5	1,0033	4,1978	40	0,9979	4,1752	75	1,0014	4,1899
10	1,0013	4,1894	45	0,9982	4,1765	80	1,0023	4,1936
15	0,9998	4,1832	50	0,9985	4,1777	85	1,0033	4,1978
20	0,9988	4,1790	55	0,9988	4,1790	90	1,0045	4,2028
25	0,9983	4,1769	60	0,9994	4,1815	95	1,0058	4,2083
30	0,9979	4,1752	65	1,0001	4,1844	100	1,0069	4,2129

Fonte: Resnick e Halliday, 1970

QUADRO1 - DETERMINAÇÃO DA CAPACIDADE TÉRMICA DO CALORÍMETRO

Ехр	$m^{Seco}_{Cal}(g)$	$m_{H2O}^{Fria}(g)$	$T_{H2O}^{Fria}({}^{\circ}C)$	$m_{H2O}^{Quente}(g)$	$T_{H2O}^{Quente}(^{\circ}C)$	T_{EQ} (°C)	$C_{cal}(J/^{\circ}C)$
1							
2							
3							

QUADRO2 - DETERMINAÇÃO CALOR ESPECÍFICO DO METAL

Ехр	$m_{metal}(g)$	$m_{H20}^{Fria}(g)$	$T_{H20}^{Fria}(^{\circ}C)$	$T_{metal}(^{\circ}C)$	T_{EQ} (°C)	c (J/g°C)
1						
2						
3						
1						
2						
3						
3						

5. RELATÓRIO

O relatório deverá conter:

- INTRODUÇÃO: SUCINTA, PORÉM SUFICIENTEMENTE INFORMATIVA;
- OBJETIVOS
- MATERIAIS E MÉTODOS:
 - o Materiais utilizados e descrição experimental.
- RESULTADOS E DISCUSSÃO:

- Demonstração detalhada dos cálculos; Descrição de forma clara dos dados obtidos e discussão dos resultados.
- CONCLUSÕES
- REFERÊNCIAS