

NUMBER OF EFFECTIVE DRUGS IN THE SHORT COURSE MDR-TB REGIMEN ACCORDING TO STANDARD OF CARE DRUG SUSCEPTIBILITY TESTING AND WHOLE GENOME SEQUENCING

Verboven L., Dippenaar A., Scott L., De Vos E., Heupink T., Stevens W., Warren R., Van Rie A.

RIFAMPICIN RESISTANT TB

- Global burden: 600 000 of the 10.4 million annual TB cases
- Treatment success rate: 54% compared to 83% for all TB
- Important determinant of treatment success is the number of effective drugs administered
 - Treatment success improves stepwise as the number of effective drugs increases
 - PZA and FQ are important components of the MDR-TB treatment
- Key = timely, comprehensive knowledge of drug resistance profile
 - Phenotypic DST slow, not standardized for all drugs
 - Incomplete implementation of standard of care DST
 - Targeted sequencing and molecular assays target a small number of genomic regions

WHO GUIDELINES FOR MANAGEMENT OF RR-TB

At least 5 effective drugs:

- PZA
- I Fluoroquinolone
- I Second line injectable
- ≥2 Other core second line drugs

Group A. Fluoroquinolones ^b	Levofloxacin	Lfx
	Moxifloxacin	Mfx
	Gatifloxacin	Gfx
Group B. Second-line injectable agents	Amikacin	Am
	Capreomycin	Cm
	Kanamycin	Km
	(Streptomycin)°	(S)
Group C. Other core second-line agents ^b	Ethionamide / prothionamide	Eto / Pto
	Cycloserine / terizidone	Cs / Trd
	Linezolid	Lzd
	Clofazimine	Cfz
Group D. Add-on agents (not part of the core MDR-TB regimen)	D1 Pyrazinamide	Z
	Ethambutol	E
	High-dose isoniazid	Hh
	D2 Bedaquiline	Bdq
	Delamanid	Dlm
	D3 p-aminosalicylic acid	PAS
	Imipenem-cilastatind	Ipm
	Meropenem ^d	Mpm
	Amoxicillin-clavulanated	Amx-Clv

MANAGEMENT OF RR-TB: SOUTH AFRICAN STANDARD OF CARE

RESEARCH QUESTIONS

- 1. Determine the drug resistance profile
 - SOC as implemented
 - SOC as intended
 - WGS
- 2. Determine the number of effective drugs in the starting regimen
 - Standard 20-24 month regimen
 - Standard short course (9 month) regimen
 - New injectable free regimen (recommended in SA since June 2018)

METHODS

Secondary analysis: cohort study: **E**valuating **X**pert **I**mpact on **T**B outcomes-**Rif** Resistance' (EXIT-Rif)

- Prospective cohort of patients diagnosed with RRTB
- Collection of routine data
- Comprehensive assessment of routine MTB isolates at research laboratory

METHODS: DETERMINE THE RESISTANCE PROFILE

- SOC "as implemented"
 - Review of medical files and electronic lab data
- Simulating the SOC "as intended"
 - INH → MTBDRplus (simulate using Sanger sequencing of katG and inhA)
 - inhA promotor mutation → low level INH resistance
 - katG mutation → high level INH resistance
 - Injectables → pDST
 - Fluoroquinolones → pDST
- WGS
 - Illumina sequencing of MTB culture isolates
 - Resistance calling using the list suggested by Coll F. et al.

METHODS: DETERMINE THE NUMBER OF EFFECTIVE DRUGS

Comparison of number of effective drugs between methods of diagnosis (routine SOC, optimal SOC, WGS) in three different treatment regimens:

- Standard 20 months standard WHO approved regimen
- Short 9 month WHO approved regimen
- New SA injectable-free regimen (since June 19 2018)

Drug	Standard	Short 9-month	Injectable free
Ethionamide	X		
Pyrazinamide	X	X	X
Kanamycin (INJ)	X	X	
Moxifloxacin (FLQ)	X	X	X
Terizidone	X		
Prothionamide		X	X
Ethambutol		X	X
Clofazimine		X	X
Isoniazid (high dose)		X	X
Bedaquiline			X

RESULTS: DRUG RESISTANCE PROFILE

STRENGTHS AND LIMITATIONS

Strengths:

- 3 regimens and 2 standards of care
- 3 provinces
- Most recent (2018) resistance conferring variant list

Limitations:

- Missing culture isolates → selection bias
- SOC defined based on guidelines → implementation varies
- SA is not representative for the world
- Knowledge on DR variants is incomplete

CONCLUSION

Conclusion:

- Standard of care is rarely accurately followed → patients may receive suboptimal treatment (ineffective or unnecessarily toxic)
- Even under optimal SOC, MDR-TB regimen is initiated without sufficient knowledge of the resistance profile of the patient \rightarrow increased risk for acquired resistance to drugs
- Uncertainty of drug resistance profile under SOC could compromise new drugs
- Changes in regimen recommendations requires a flexible DST approach \rightarrow WGS is rapid, easily adaptable, and provides the most complete resistance profile

Future direction:

- Public health perspective → WGS could improve patient care
- Research perspective

 replicate the study in settings with different drug resistance patterns

ACKNOWLEDGEMENTS

EXIT-Rif:

- Yara Voss De Lima
- Violet Molepo
- Pedro De Silva
- Cindy Hayes
- Lesley Scott
- Wendy Stevens
- Michael Whitfield
- Rob Warren
- Annelies Van Rie
- · All participants and their caregivers

TORCH:

- Tim Heupink
- Emmanuel Riviere
- Elise De Vos
- Annelies Van Rie
- Rob Warren
- Lizma Streicher
- Anzaan Dippenaar

Funding:

