De-Quantizing Quantum Algorithms by Retrodictive Execution

Jacques Carette McMaster University Gerardo Ortiz* Indiana University Amr Sabry Indiana University

February 3, 2022

Abstract

The quantum circuit model consists of two classes of gates: (i) quantum counterparts to classical reversible gates (e.g., Toffoli gates), and (ii) genuine quantum gates with no classical counterpart (e.g., Hadamard and phase gates). We make the remarkable observation, that, for a number of quantum algorithms, judicious reasoning about the classical components, ignoring all the quantum gates, is sufficient. Put differently, in those cases, the quantum gates serve no fundamental purpose and are actually distracting from an underlying efficient classical algorithm. The result relies on the ability to symbolically execute circuits, especially in a retrodictive fashion, i.e., by making partial observations at the output site and proceeding backwards to infer the implied initial conditions.

13 Main

2

10 11

12

15

16

17

18

19

21

23

4 Retrodictive Quantum Mechanics meets Partial Evaluation

You can't connect the dots looking forward; you can only connect them looking backwards. So you have to trust that the dots will somehow connect in your future. Steve Jobs

Retrodictive quantum theory [3], retrocausality [1], and the time-symmetry of physical laws [9] suggest that partial knowledge about the future can be exploited to understand the present. We demonstrate the even stronger proposition that, in concert with the computational concepts of demand-driven lazy evaluation [5] and symbolic partial evaluation [4], retrodictive reasoning can be used to de-quantize some quantum algorithms, i.e., to provide efficient classical algorithms inspired by their quantum counterparts.

We begin by introducing the principles of demand-driven lazy evaluation, symbolic partial evaluation, and then apply them to the quantum circuit model to de-quantize quantum algorithms.

Lazy Evaluation. Consider a program that searches for three different numbers x, y, and z each in the range [1..n] and that sum to s. A well-established design principle for solving such problems is the *generate-and-test* computational paradigm. Following this principle, a simple program to solve this problem in the programming language Haskell is:

```
generate :: Int -> [(Int,Int,Int)]
generate n = [(x,y,z) | x <- [1..n], y <- [1..n], z <- [1..n]]

test :: Int -> [(Int,Int,Int)] -> [(Int,Int,Int)]
test s nums = [(x,y,z) | (x,y,z) <- nums, x /= y, x /= z, y /= z, x+y+z == s]

find :: Int -> Int -> (Int,Int,Int)
find s = head . test s . generate
```

The program consists of three functions: generate that produces all triples (x,y,z) from (1,1,1) to 36 (n,n,n); test that checks that the numbers are different and that their sum is equal to s; and find that composes the two functions: generating all triples, testing the ones that satisfy the condition, and returning 38 the first solution. Running this program to find numbers in the range [1..6] that sum to 15 immediately produces (4,5,6) as expected. But what if the range of interest was [1..10000000]? A naïve execution of 40 the generate-and-test method would be prohibitively expensive as it would spend all its time generating an enormous number of triples that are un-needed. 42

Lazy demand-driven evaluation as implemented in Haskell succeeds in a few seconds with the result (1, 2, 12), however. The idea is simple: instead of eagerly generating all the triples, generate a process that, when queried, produces one triple at a time on demand. Conceptually the execution starts from the observer side which is asking for the first element of a list; this demand is propagated to the function test which itself propagates the demand to the function generate. As each triple is generated, it is tested until one triple passes the test. This triple is immediately returned without having to generate any additional values.

Partial Evaluation. Below is a Haskell program that computes a^n by repeated squaring:

```
power :: Int -> Int -> Int
50
   power a n
51
     | n == 0
                   = 1
52
     | n == 1
53
                   = let r = power a (n 'div' 2) in r * r
       even n
54
     | otherwise = a * power a (n-1)
55
```

37

43

44

47

When both inputs are known, e.g., a = 3 and n = 5, the program evaluates as follows:

```
power 3 5
57
      3 * power 3 4
58
      3 * (let r1 = power 3 2 in r1 * r1)
      3 * (let r1 = (let r2 = power 3 1 in r2 * r2) in r1 * r1)
      3 * (let r1 = (let r2 = 3 in r2 * r2) in r1 * r1)
      3 * (let r1 = 9 in r1 * r1)
62
```

Partial evaluation is used when we only have partial information about the inputs. Say we only know 64 n=5. A partial evaluator then attempts to evaluate power with symbolic input a and actual input n=5. This evaluation proceeds as follows:

```
power a 5
      a * power a 4
68
      a * (let r1 = power a 2 in r1 * r1)
      a * (let r1 = (let r2 = power a 1 in r2 * r2) in r1 * r1)
      a * (let r1 = (let r2 = a in r2 * r2) in r1 * r1)
71
      a * (let r1 = a * a in r1 * r1)
72
      let r1 = a * a in a * r1 * r1
73
```

All of this evaluation, simplification, and specialization happens without knowledge of a. Just knowing n was enough to produce a residual program that is much simpler. 75

Quantum Circuit Model. Many quantum algorithms can be ex-76 pressed using circuits consisting of three stages: preparation, unitary 77 evolution, and measurement. For a large number of quantum algorithms, the unitary evolution is a quantum oracle U_f that encapsulates a classical 79 function f to be analyzed as shown in Fig. 1.

Figure 1: Quantum oracle

Figure 3: Finding the period of $4^x \mod 15$

In the conventional execution model of quantum circuits, which is the conventional way to use quantum mechanics as a predictive theory, the U_f block receives both inputs and evolves in the forwards direction to produce the outputs. The preceding discussion about lazy evaluation and partial evaluation suggests, however, more creative ways to execute the

 U_f block as shown in Fig. 2. In this scenario, the second register has both a known initial and final observed result. Using this knowledge, it is possible to perform a demand-driven partial evaluation with a symbolic placeholder for x. This execution produces information about the necessary initial conditions on x that lead to the observed final result..

The circuit in Fig. 3 explains the idea in a simple but realistic scenario. The circuit uses a hand-optimized U_f that implements the modular exponentiation $4^x \mod 15$ in order to factor 15 using Shor's algorithm. In a conventional setting, the execution proceeds as follows. At step (1), we have the initial state $(1/2\sqrt{2})\sum_{i=0}^{7}|i\rangle|0\rangle$. The state evolves through the U_f block between (1) and (2) to become:

$$x$$
 U_f
 $|0\rangle$
 $|3\rangle$

$$\frac{1}{2\sqrt{2}}((|0\rangle+|2\rangle+|4\rangle+|6\rangle)|1\rangle+(|1\rangle+|3\rangle+|5\rangle+|7\rangle)|4\rangle)$$

Figure 2: Retrodictive execution flow

At this point, the second register is measured. The result of the measurement can be either $|1\rangle$ or $|4\rangle$. In either case, the top register snaps to a state of the form $\sum_{r=0}^{3} |a+2r\rangle$ whose QFT has peaks at $|0\rangle$ or $|4\rangle$. If we measure $|0\rangle$ we repeat the experiment; otherwise we infer that the period is 2.

Instead of this forward execution, we can reason as follows. Since $x^0 = 1$ for all x, we know that $|1\rangle$ is a possible measurement of the second register. We can therefore proceed in a retrodictive fashion with the state $|x_2x_1x_0\rangle|001\rangle$ at step 2 and computing backwards. In this symbolic execution, the first CX-gate changes the state to $|x_2x_1x_0\rangle|x_001\rangle$ and the second CX-gate produces $|x_2x_1x_0\rangle|x_00x_0\rangle$. At that point, we reconcile the retrodictive result of the second register $|x_00x_0\rangle$ with the initial condition $|000\rangle$ to conclude that $x_0 = 0$. In other the first register must be in a superposition of basis states of the form $|??0\rangle$ where the least significant bit must be 0 and the other two bits are unconstrained. Expanding the possibilities, the first register need to be in a superposition of the states $|000\rangle$, $|010\rangle$, $|100\rangle$ or $|110\rangle$. We have just inferred, using purely classical but retrodictive reasoning, that the period is 2.

In order to assess whether this idea works for a broader class of situations including different algorithms and different circuit sizes, we implemented the demand-driven symbolic partial evaluator and ran it on a variety of circuits. It turns that retrodictive symbolic evaluation is powerful enough to solve some instances of Deutsch-Jozsa, Bernstein-Vazirnani, and Simon problems, as well as some instances of Grover's and Shor's

107 algorithms.

Easy De-quantized Instances. The problem is to determine if a function $[2] \rightarrow [2]$ is constant or balanced. The only relevant part of the circuit is:

We fix the ancillary output to a possible boundary condition, say $|0\rangle$, and perform a retrodictive execution of the circuit. This execution produces a formula for y that depends on the function f in the black box. When the function f is a constant function, the formula is the corresponding constant 0 or 1. When the function is balanced the resulting formula is x (when the function is the identity) or 1+x (when the function is boolean negation).

Running retro in deutsch gives:

```
> retroDeutsch deutschId
117
    Х
118
119
      retroDeutsch deutschNot
120
    >
    1
121
122
      retroDeutsch deutsch0
123
    >
    0
124
125
      retroDeutsch deutsch1
126
    1
127
```

The problem is a generalization of the previous one: the question is to determine if a function $\mathbb{B}^n \to \mathbb{B}$ is constant or balanced. The circuit is identical to above except that x is now a collection of qubits:

Again, we fix the ancillary output to a possible boundary condition, say $|0\rangle$, and perform a retrodictive execution of the circuit. This execution produces a formula for y that depends on the function f in the black box. When the function f is a constant function, the formula is the corresponding constant 0 or 1. When the function is balanced the resulting formula involves at least one variable x_i .

The conventional statement of the problem is to determine if a function $[2] \rightarrow [2]$ is constant or balanced. An equivalent statement is to answer a query about the cardinality of a pre-image. In this case, if the

Figure 4: Example Circuit for Bernstein-Vazirani Algorithm

cardinality of the pre-image of any value in the range is even i.e. 0 or 2, the function must be constant and if it is odd, i.e., it contains just one element, the function must be balanced.

The problem is a generalization of the previous one: the question is to determine if a function $[2^n] \to [2]$ for some n is constant or balanced. When expressed as a pre-image computation, the problem reduces to a query distinguishing the following three situations about the pre-image of a value in the range of the function: is the cardinality of the pre-image equal to $0, 2^n$, or 2^{n-1} ? In the first two cases, the function is constant and in the last case, the pre-image contains half the values in the domain indicating that the function is balanced.

Show experiments for Deutsch Jozsa

Bernstein-Vazirani We are given a function $f:[2^{\mathbf{n}}] \to [2]$ that hides a secret number $s \in [2^{\mathbf{n}}]$. We are promised the function is defined using the binary representations $\sum_{i=1}^{n-1} x_i$ and $\sum_{i=1}^{n-1} s_i$ of x and s respectively as follows:

$$f(x) = \sum_{i=0}^{n-1} s_i x_i \mod 2$$

The goal is to determine the secret number s.

Expressing the problem as a pre-image calculation is slightly more involved than in the previous two cases. To determine s, we make n queries to the pre-image of a value in the range of the function. Query i asks whether 2^i is a member of the pre-image and the answer determines bit i of the secret s. Indeed, by definition, $f(2^i) = s_i$ and hence s_i is 1 iff 2^i is a member of the pre-image of 1.

The circuit in Fig. 4 solves the problem for n=8 and a hidden number 92 (= 00111010 in binary notation). As required, the circuit between slice (1) and slice (2), collects the sum of the x_i at positions that match the occurrences of 1 in the secret string. The evolution proceeds as follows. At slice (1), the top 8 qubits are each in the state $|+\rangle$ and the bottom qubit is in the state $|-\rangle$, i.e., the state is (1/3) $|+++++++-\rangle$. In the evolution between slices (1) and (2), qubits 0, 2, 6, and 7 are untouched and remain in the state $|+\rangle$. Each of the other four qubits becomes $|-\rangle$ as the phase of the target qubit is kicked back to the control qubit by the CX operation. The full state at slice (2) is (1/3) $|+-+--++\rangle$. At this point, we perform

a measurement on the bottom qubit which returns 0 or 1 with equal probability. This measurement causes collapses the top 8 qubits to $\pm (1/2\sqrt{2})$ $|+-+--++\rangle$. After applying all the Hadamard gates, the measurement is deterministically $|01011100\rangle$ with the most significant bit at the right. This is the secret number.

Instead of this execution model, we now explore an alternative execution that starts from the observation w and proceeds from slice (2) back towards slice (1) collecting the information necessary to answer the required pre-image query. As explained in the previous section, the secret number can be reconstructed once we know, for each i, whether the number 2^i is a member of the pre-image. When expressed in terms of bits, this means that we need to know, for each bit position i, whether the corresponding qubit contributes to the definition of the pre-image. We therefore start a backwards execution starting with the state $|x_0x_1x_2x_3x_4x_5x_6x_7F()\rangle$ where F() expresses that the last qubit has not been shown to depend on any qubit so far and the x_i symbols are placeholders for unknown values. We trace the execution symbolically:

```
 \begin{array}{cccc} |x_0x_1x_2x_3x_4x_5x_6x_7F()\rangle & \leftarrow & |x_0x_1x_2x_3x_4x_5x_6x_7F(x_5)\rangle \\ & \leftarrow & |x_0x_1x_2x_3x_4x_5x_6x_7F(x_4,x_5)\rangle \\ & \leftarrow & |x_0x_1x_2x_3x_4x_5x_6x_7F(x_3,x_4,x_5)\rangle \\ & \leftarrow & |x_0x_1x_2x_3x_4x_5x_6x_7F(x_1,x_3,x_4,x_5)\rangle \end{array}
```

For each operation CX(x, v), we add x to the list of variables on which v depends. At the end of the execution, we conclude that x_1, x_3, x_4 , and x_5 are the relevant qubits, from which we infer that the secret string must be 00111010.

Simon. We are given a 2-1 function $f : [2^n] \to [2^n]$ with the property that there exists an a such $f(x) = f(x \oplus a)$ for all x; the goal is to determine a. When expressed as a computation of pre-images, the problem statement becomes the following. Pick an arbitrary x and compute the pre-image of f(x). It must contain exactly two values one of which is x. The problem then reduces to finding the other value in the pre-image.

We are given a 2-1 function $f: \mathbb{B}^n \to \mathbb{B}^n$ where there exists an a such $f(x) = f(x \oplus a)$ for all x; the goal is to determine a.

The circuit below demonstrates the situation when n=2 and a=3.

The circuit implements the black box $U_f(x, a) = (x, f(x) \oplus a)$. We first pick a random x, say x = 3, fix the initial condition a = 0 and run the circuit forward. This execution produces, in the second register, the value of f(x) = 0. We now run a symbolic retrodictive execution with a = 0 at the output site. That execution produces information on all values of a that are consistent with the observed result. In this case, we get: $a_0 = x_0 + x_1$ and $a_1 = x_0 + x_1$. In other words, when $x_0 = x_1$, we have a = 0, and when $x_0 \neq x_1$, we have a = 3 which is indeed the desired hidden value.

179 Grover.

Shor. The first experiment generalizes the simple example above by using more qubits and circuits that are constructed automatically without any manual optimization. In particular, we generated 8 qubit modular exponentiations circuits to compute $a^x \mod 15$ for $a \in \{2, 4, 7, 8, 11, 13, 14\}$. Each of the circuits, automatically constructed from first principles using adders and multipliers, has 26244 CX(controlled not) gates, 27378

Figure 5: Equations generated by retrodictive execution of $a^x \mod 15$ starting from observed result 1 and unknown $x_7x_6x_5x_4x_3x_2x_1x_0$. The solution for the unknown variables is given in the last column.

CCX(Toffoli) gates, and 2916 CCCX (generalized Toffoli) gates. Running the retrodictive partial evaluator with an observed value of 1, produces the equations in Fig. 5.

Perhaps surprisingly, even though there are 8 qubits in the circuit and thousands of controlled gates, the equations are trivial and immediately solvable as they only involve either the least significant bit x_0 (when $a \in \{4, 11, 14\}$) or the least significant two bits x_0 and x_1 (when $a \in \{2, 7, 8, 13\}$). When the solution is $x_0 = 0$, the period is 2. When the solution is $x_0 = 0$, $x_1 = 0$, the period is 4.

Pre-images and NP-Complete Problems. we have a couple of success stories

then 21 huge

Given finite sets A and B, a function $f: A \to B$ and an element $y \in B$, we define $\{\cdot \xleftarrow{f} y\}$, the pre-image of y under f, as the set $\{x \in A \mid f(x) = y\}$. For example, let $A = B = \{0, 1, ..., 15\}$ and let $f(x) = 7^x$ mod 15, then the collection of values that f maps to 4, $\{\cdot \xleftarrow{f} 4\}$, is the set $\{2, 6, 10, 14\}$.

Finding the pre-image of a function is a mathematical question that subsumes several practical computational problems such as pre-image attacks on hash functions [8], predicting environmental conditions that allow certain reactions to take place in computational biology [2, 6], and finding the pre-image of feature vectors in the space induced by a kernel in neural networks [7].

To appreciate the difficulty of computing pre-images in general, note that SAT is a boolean function over the input variables and that solving a SAT problem is asking for the pre-image of true. Indeed, based on the conjectured existence of one-way functions which itself implies $P \neq NP$, all these pre-images calculations are believed to be computationally intractable in their most general setting. What is however intriguing is that many computational problems that have efficient quantum algorithms are essentially queries over pre-images. We illustrate this connection briefly in the remainder of this section and analyze it further in the remainder of the paper.

then pre-image story; np-complete; not even quantum computer can solve it luckily we don't actually need to solve it; we need stats about it; explain common algos

Let [n] denote the finite set $\{0, 1, \ldots, (n-1)\}$. The parameter n determines the problem size in all the problems below (except Deutsch which is a fixed sized problem).

Deutsch. The conventional statement of the problem is to determine if a function $[2] \rightarrow [2]$ is constant or balanced. An equivalent statement is to answer a query about the cardinality of a pre-image. In this case, if the cardinality of the pre-image of any value in the range is even i.e. 0 or 2, the function must be constant and if it is odd, i.e., it contains just one element, the function must be balanced.

Deutsch-Jozsa. The problem is a generalization of the previous one: the question is to determine if a function $[2^n] \to [2]$ for some n is constant or balanced. When expressed as a pre-image computation, the problem reduces to a query distinguishing the following three situations about the pre-image of a value in the range of the function: is the cardinality of the pre-image equal to $0, 2^n$, or 2^{n-1} ? In the first two cases, the function is constant and in the last case, the pre-image contains half the values in the domain indicating that the function is balanced.

Bernstein-Vazirani. We are given a function $f:[2^n] \to [2]$ that hides a secret number $s \in [2^n]$. We are promised the function is defined using the binary representations $\sum_{i=1}^{n-1} x_i$ and $\sum_{i=1}^{n-1} s_i$ of x and s respectively as follows:

$$f(x) = \sum_{i=0}^{n-1} s_i x_i \mod 2$$

The goal is to determine the secret number s.

221

222

223

224

225

226

227

228

229

231

233

234

235

236

237

238

239

240

241

242

244

245

Expressing the problem as a pre-image calculation is slightly more involved than in the previous two cases. To determine s, we make n queries to the pre-image of a value in the range of the function. Query i asks whether 2^i is a member of the pre-image and the answer determines bit i of the secret s. Indeed, by definition, $f(2^i) = s_i$ and hence s_i is 1 iff 2^i is a member of the pre-image of 1.

Simon. We are given a 2-1 function $f: [2^n] \to [2^n]$ with the property that there exists an a such $f(x) = f(x \oplus a)$ for all x; the goal is to determine a. When expressed as a computation of pre-images, the problem statement becomes the following. Pick an arbitrary x and compute the pre-image of f(x). It must contain exactly two values one of which is x. The problem then reduces to finding the other value in the pre-image.

Shor. The quantum core of the algorithm is the following. We are given a periodic function $f(x) = a^x \mod 2^n$ and the goal is to determine the period. As a computation over pre-images, the problem can be recast as follows. For an arbitrary x, compute the pre-image of f(x) and query it to determine the period.

core of many quantum algos is quantum oracle uf two inputs; two outputs system; ancilla; normal eval; control ancilla; system unknown; so throw in complete superposition and eval forward

insight 1: qft does not care about 0+2+4.... vs 1+3+5....

00?01?10?11?

equiv no matter what ? is ? is used in the computation (don't care about value) others not used so we just need to keep track of which vars are used

run again; refined pe; var used; if used twice then disappears

go back to that stupid paper about logic programming and xor

The equations turn out to be trivial when the period is a power of 2. This occurs when the number to factor is a product of Fermat primes: 3, 5, 17, 257, 65537, The equations generated for some of these cases are in Fig. ??.

Retrodictive QFT. only need number of vars!!!!

solve other problems with just knowing which vars are involved

Conclusion. Provide a general introduction to the topic and a brief non-technical summary of your main
 results and their implication.

200 words ??

248

251

253

256

257

258

261

main text 2000-2500 words 3-4 figures 30-50 references

Methods section 3000 words more references ok

Author contributions

252 Code available

https://quantumalgorithmzoo.org

every quantum circuit can be written using Toffoli and Hadamard retro just go through Toffoli; ignore
Had; but of course we are using symbolic eval

can H be moved past Toffoli?

universe uses lazy evaluation?

algebra of Toffoli and Hadamard ZX calcululs

fourier transform classical efficient in some cases

Ewin Tang papers

kochen specker??

262 References

- Yakir Aharonov and Lev Vaidman. "The Two-State Vector Formalism: An Updated Review". In: *Time* in Quantum Mechanics. Ed. by J.G. Muga, R. Sala Mayato, and Í.L. Egusquiza. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 399–447.
- Tatsuya Akutsu, Morihiro Hayashida, Shu-Qin Zhang, Wai-Ki Ching, and Michael K Ng. "Analyses and algorithms for predecessor and control problems for Boolean networks of bounded indegree". In: *Information and Media Technologies* 4.2 (2009), pp. 338–349.
- ²⁶⁹ [3] Stephen M. Barnett, John Jeffers, and David T. Pegg. "Quantum Retrodiction: Foundations and Controversies". In: *Symmetry* 13.4 (2021).
- Yoshihiko Futamura. "Partial computation of programs". In: RIMS Symposia on Software Science and Engineering. Ed. by Eiichi Goto, Koichi Furukawa, Reiji Nakajima, Ikuo Nakata, and Akinori Yonezawa. Berlin, Heidelberg: Springer Berlin Heidelberg, 1983, pp. 1–35.
- Peter Henderson and James H. Morris. "A Lazy Evaluator". In: Proceedings of the 3rd ACM SIGACT-SIGPLAN Symposium on Principles on Programming Languages. POPL '76. Atlanta, Georgia: Association for Computing Machinery, 1976, pp. 95–103.
- Johannes Georg Klotz, Martin Bossert, and Steffen Schober. "Computing preimages of Boolean networks". In: *BMC Bioinformatics* 14.10 (Aug. 2013), S4.
- ²⁷⁹ [7] J.T.-Y. Kwok and I.W.-H. Tsang. "The pre-image problem in kernel methods". In: *IEEE Transactions* on Neural Networks 15.6 (2004), pp. 1517–1525.
- Phillip Rogaway and Thomas Shrimpton. "Cryptographic Hash-Function Basics: Definitions, Implications, and Separations for Preimage Resistance, Second-Preimage Resistance, and Collision Resistance".
 In: Fast Software Encryption. Ed. by Bimal Roy and Willi Meier. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 371–388.
- Satosi Watanabe. "Symmetry of Physical Laws. Part III. Prediction and Retrodiction". In: Rev. Mod. Phys. 27 (2 Apr. 1955), pp. 179–186.

287 2 Methods

The evolution of a quantum system is typically understood as proceeding forwards in time — from the present to the future. As shown in Fig. 6(a),

Figure 6: Template quantum circuit

Since the conventional execution starts with complete ignorance about the future, the initial state is prepared as a superposition that includes every possibility. In a well-designed algorithm, , by the time the computation reaches the measurement stages, the relative phases and probability amplitudes in that enormous superposition have become biased towards states of interest which are projected to produce the final answer.

Data Availability.

Discussion. Possibility that collapse of wave function is information flow back from measured future to present unknown initial conditions and then back to rest of wave that was not measured

transactional interpretation?

Luckily, the problems of concern to us are quite special: (i) the functions are not arbitrary but have additional structure that can be exploited, and (ii) we never need access to all the elements in the pre-image; we just need to answer aggregate queries about the pre-images. Quantum algorithms somehow exploit these properties along with some physical principles to solve these problems efficiently. To understand the precise way in which this is happening, we start with the template of the quantum circuit used for solving all the problems above in Fig. 6.

The core of the circuit is the U_f block which can be assumed to be implemented using only generalized Toffoli gates. The block implements the unitary transformation: $U_f(|x\rangle|y\rangle) = |x\rangle|f(x) \oplus y\rangle$ where \oplus is the (bitwise) exclusive-or operation; it defines the function of interest whose pre-image properties are to be calculated. The inputs of the U_f block are grouped in two registers: the top register contains an equal superposition of all possible inputs to f; the second register is prepared in initial states that depend on the specific algorithm. Thus, the state at slice (1) in the figure is:

$$\frac{1}{\sqrt{2^{n}}\sqrt{2^{m}}}\sum_{x=0}^{2^{n}-1}\sum_{y=0}^{2^{m}-1}\left. |x\rangle \left| y\right\rangle$$

This is transformed by U_f to:

$$\frac{1}{\sqrt{2^{n}}\sqrt{2^{m}}} \sum_{x=0}^{2^{n}-1} \sum_{y=0}^{2^{m}-1} |x\rangle |f(x) \oplus y\rangle$$

So far, nothing too interesting is happening: we have just produced a superposition of states where each state is a possible input to f, say x, tensored with $f(x) \oplus y$, the result of applying f to this particular input adjusted by the second register y. At slice (3), something remarkable occurs; the result w of measuring the second register "kicks back" information to the first register whose state becomes a superposition of those values x that are consistent with the measurement, i.e., the pre-image of w under f! That pre-image representation is then analyzed using the Quantum Fourier Transform (QFT) to produce the final result.

Quantum algorithms typically operate on a black box holding a classical function whose properties need to be computed. The general structure of these algorithms is to (i) create a superposition of values to be passed as inputs to the black box, (ii) apply the operation inside the black box, and (iii) post-process the

output of the black box. We observe that, in quite a few cases, steps (i) and (iii) are actually unnecessary and that the entire "quantum" algorithm can be executed by forward or backward, full or partial, efficient classical *symbolic execution* of the black box.

typical use: superposition, Uf, measure second register; we only care about which x has f(x) = r By default all functions are reversible.

To make them irreversible you fix h and delete g. If you delete too much the function becomes very expensive to reverse. So one way functions emerge

simplify function has polynomial realization and we want statistics about the kernel (not necessarily compute it exactly)

collect assumptions:

important that no matter what measurement we do on w, properly we want is the same since we say that algos related to pre-images lets do naive thing and eval backwards

assumptions we have a rev circuit efficient forward two inputs: first is full superposition; second whatever first output same as first input; but that is only at point 2; at point 3 explain kick back; misleading to think it is the same after 3 second output is result of function; measure; have element of range; go back with that elem if we knew first output as well as w then eval backwards same complexity but we only know w and we don't know first output; because we are starting at 3 not 2

we have no use for H block; it was only there for the forward exec to express our complete ignorance of the future; prepared with every x but if we have knowledge about future (w measured) we go back to find the values of x in the present that would be consistent with w so general circuit reduces to:

...

fix pics to have amplitudes with y (most general)

To what extent are the quantum algorithms above taking advantage of non-classical features. We posit that pre-image computation can be, at least for some of the some of the algorithms, be performed classically. The main insight needed for that is to perform the execution *symbolically*. We illustrate the idea with two examples.

We need to explain ideas about time-reversal, prediction and retrodiction in physics. The laws of computation and the laws of physics are intimately related. When does knowing something about the future help us unveil the structure or symmetries of the past? It is like a detective story, but one with ramifications in complexity and/or efficiency. Problems involving questions where answers demand a Many(past)-to-one(future) map are at the root of our proposal.... Difference between exploiting or not entanglement in the unitary evolution.

As we demonstrate, the family of quantum algorithms initiated by Deutsch's algorithm and culminating with Shor's algorithm (i) solves variants of the pre-image problem efficiently, and, in that context, (ii) answering queries about pre-images is closely related to retrodictive quantum theory [2], retrocausality [1], and the time-symmetry of physical laws [3].

- Retrodictive execution more efficient in some cases. What cases?
- Here are three examples: Deutsch-Jozsa, Simon, Shor when period is close to a power of 2
- Symbolic (retrodictive) evaluation as a broader perspective to classical computation
- Symbolic execution allows you to express/discover interference via shared variables
- When interference pattern is simple symbolic execution reveals solutions faster (and completely classically)
- Symbolic execution as a "classical waves" computing paradigm

to represent unequal superpositions do multiple runs with vars the first has $x1 \ x2$ etc the second has $y1 \ 2y2$ etc or y2/2 etc, or with various patterns of negative weights.... And then the punchline would be to interpret the negative backwards. So instead of all forward or all retro we have some values going forward and then backwards

Start with the story about function many to one etc why superpositions because we don't know which values so we try all easy to represent by unknown vars so we can represent superpositions as vars and equations between them but at the end we want stats about superpositions slow way is to generate all equations and solve faster way is generate many sets of equations with different weights and sum to get your stats

Partial Symbolic Evaluation with Algebraic Normal Form (ANF). We should use two prototypical examples to illustrate main ideas before going to the complex ones. The examples I have in mind are: Deutsch-Josza and Simon (precursor of Shor's). There are prior works on de-quantization of the first problem and should make contact with their resolution. Perhaps we can show that they are as efficient classically? That would justify retrodiction alone. The more complex (and important) case of factorization should be the natural follow up.

The idea of symbolic execution is not tied to forward or backward execution. We should introduce it in a way that is independent of the direction of execution. What the idea depends on however is that the wave function, at least in the cases we are considering, can be represented as equations over booleans.

Wave Functions as Equations over Booleans

in the typical scenario for using quantum oracles, we can represent wave function as equations over booleans; equations represent the wave function but the solution is unobservable just like the components of the superposition in the wave function are not observable; just like we don't directly get access to the components of the wave function; we don't directly get access to the solution of the equations; need to "observe" the equations

we can go backwards with an equation (representing a wave function sigma x where f(x) = r and go back towards the present to calculate the wave function (represented as equations again)

Musing: how to explain complementarity when wave function is represented as an equation? Kochen specker;

or contextuality

observer 1 measures wires a,b; obs2 measures wires b,c; not commuting; each obs gives partial solution to equations; but partial solutions cannot lead to a global solution

KS suggests that equations do not have unique solutions; only materialize when you measure; can associate a probability with each variable in a equation: look at all solutions and see the contribution of each variable to these solutions.

³⁹¹ Complexity Analysis. one pass over circuit BUT complexity of normalizing to ANF not trivial; be careful

Supplementary Information. Equations generated by retrodictive execution of $4^x \mod 21$ starting from observed result 1 and unknown x. The circuit consists of 9 qubits, 36400 CX-gates, 38200 CCX-gates, and 4000 CCCX-gates. There are only three equations but each equation is exponentially large.

```
1 \oplus x_0 \oplus x_0 x_1 x_2 \oplus x_0 x_1 x_2 x_3 x_4 \oplus x_0 x_1 x_2 x_3 x_4 x_5 x_6 \oplus x_0 x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_8 \oplus x_0 x_1 x_2 x_3 x_4 x_5 x_6 x_8 x_9 \oplus x_0 x_1 x_2 x_3 x_4 x_5 x_7 \oplus x_0 x_1 x_2 x_3 x_4 x_5 x_7 x_8 x_9 \oplus x_0 x_1 x_2 x_3 x_4 x_5 x_7 x_8 \oplus x_0 x_1 x_2 x_3 x_4 x_5 x_7 x_8 \oplus x_0 x_1 x_2 x_3 x_4 x_5 x_7 x_8 \oplus x_0 x_1 x_2 x_3 x_4 x_5 x_7 x_8 \oplus x_0 x_1 x_2 x_3 x_4 x_5 x_7 x_8 \oplus x_0 x_1 x_2 x_3 x_4 x_5 x_7 x_8 \oplus x_0 x_1 x_2 x_3 x_4 x_6 x_7 x_8 \oplus x_0 x_1 x_2 x_3 x_4 x_6 x_7 x_8 \oplus x_0 x_1 x_2 x_3 x_4 x_6 x_7 x_8 \oplus x_0 x_1 x_2 x_3 x_4 x_6 x_7 x_8 \oplus x_0 x_1 x_2 x_3 x_4 x_6 x_7 x_8 \oplus x_0 x_1 x_2 x_3 x_4 x_7 x_8 \oplus x_0 x_1 x_2 x_3 x_4 x_7 x_9 \oplus x_0 x_1 x_2 x_3 x_4 x_8 x_9 \oplus x_0 x_1 x_2 x_3 x_4 x_8 x_9 \oplus x_0 x_1 x_2 x_3 x_5 x_6 x_7 \oplus x_0 x_1 x_2 x_3 x_5 x_6 x_7 x_9 \oplus x_0 x_1 x_2 x_3 x_5 x_6 x_8 \oplus x_0 x_1 x_2 x_3 x_5 x_6 x_9 \oplus x_0 x_1 x_2 x_3 x_5 x_7 \oplus x_0 x_1 x_2 x_3 x_5 x_7 x_8 x_9 \oplus x_0 x_1 x_2 x_3 x_5 x_8 x_9 \oplus x_0 x_1 x_2 x_3 x_5 x_9 \oplus x_0 x_1 x_2 x_3 x_5 x_6 x_7 x_8 \oplus x_0 x_1 x_2 x_3 x_6 x_8 \oplus x_0 x_1 x_2 x_3 x_5 x_8 \oplus x_0 x_1 x_2 x_3 x_5 x_7 x_8 \oplus x_0 x_1 x_2 x_3 x_5 x_8 x_9 \oplus x_0 x_1 x_2 x_3 x_5 x_9 \oplus x_0 x_1 x_2 x_3 x_7 x_8 x_9 \oplus x_0 x_1 x_2 x_3 x_7 x_8 \oplus x_0 x_1 x_2 x_4 x_5 x_6 x_7 x_8 \oplus x_0 x_1 x_2 x_4 x_5 x_6 x_7 x_8 \oplus x_0 x_1 x_2 x_4 x_5 x_6 x_7 x_8 \oplus x_0 x_1 x_2 x_4 x_5 x_6 x_8 \oplus x_0 x_1
```

```
409
410
                                                                     x_0x_1x_3x_4x_5x_7x_8x_9 \oplus x_0x_1x_3x_4x_5x_8x_9 \oplus x_0x_1x_3x_4x_5x_9 \oplus x_0x_1x_3x_4x_6 \oplus x_0x_1x_3x_4x_6x_7x_8 \oplus x_0x_1x_3x_4x_6x_7x_9 \oplus x_0x_1x_3x_4x_6x_7x_8 \oplus x_0x_1x_3x_4x_6x_7x_9 \oplus x_0x_1x_3x_4x_6x_7x_8 \oplus x_0x_1x_5x_6x_8 \oplus x_0x_1x_5x_6x_8 \oplus x_0x_1x_6x_8 \oplus x_0x_1x
                                                                     411
                                                                     412
                                                                     x_0x_1x_3x_5x_7x_8 \oplus x_0x_1x_3x_5x_7x_9 \oplus x_0x_1x_3x_5x_8 \oplus x_0x_1x_3x_5x_8 \oplus x_0x_1x_3x_6x_7 \oplus x_0x_1x_3x_6x_7x_8x_9 \oplus x_0x_1x_3x_6x_7x_9 \oplus x_0x_1x_3x_6x_7x_8 \oplus x_0x_1x_3x_6x_7 \oplus x_0x_1x_3x_6x_7 \oplus x_0x_1x_3x_6x_7x_8 \oplus x_0x_1x_3x_6x_7x_8 \oplus x_0x_1x_3x_6x_7 \oplus x_0x_1x_3x_6x_7x_8 \oplus x_0x_1x_3x_6x_7x_8 \oplus x_0x_1x_3x_6x_7x_8 \oplus x_0x_1x_3x_6x_7x_8 \oplus x_0x_1x_3x_6x_7 \oplus x_0x_1x_6x_7 \oplus x_0x_1x_7 \oplus x_0x_1x_6x_7 \oplus x_0x_1x_7 \oplus x_0x_1x_6x_7 \oplus x_0x_1x_7 \oplus x_0x_1x_6x_7 \oplus x_0x_1x_6x_7 \oplus x_0x_1x_6x_7 \oplus x_0x_1x_6x_7 \oplus x
413
                                                                     414
                                                                     x_0x_1x_4x_5x_6 \oplus x_0x_1x_4x_5x_6x_7x_8 \oplus x_0x_1x_4x_5x_6x_7x_9 \oplus x_0x_1x_4x_5x_6x_8 \oplus x_0x_1x_4x_5x_6x_8x_9 \oplus x_0x_1x_4x_5x_7 \oplus x_0x_1x_4x_5x_7x_8x_9 \oplus x_0x_1x_4x_5x_6x_8x_9 \oplus x_0x_1x_6x_9 \oplus x_0x_1x_4x_5x_6x_8x_9 \oplus x_0x_1x_5x_9 \oplus x_0x_1x_1x_5x_6x_9 \oplus x_0x_1x_5x_9 \oplus x_0x_1x_5x_9 \oplus x_0x_1x_1x_5x_6x_9 \oplus x_0x_1x_1x_5x
415
                                                                     x_0x_1x_4x_5x_7x_9 \oplus x_0x_1x_4x_5x_8 \oplus x_0x_1x_4x_5x_9 \oplus x_0x_1x_4x_6 \oplus x_0x_1x_4x_6x_7 \oplus x_0x_1x_4x_6x_7x_8 \oplus x_0x_1x_4x_6x_7x_8x_9 \oplus x_0x_1x_4x_6x_7x_8 \oplus x_0x_1x_4x_6x_7 \oplus x_0x_1x_4x_6x_7 \oplus x_0x_1x_4x_6x_7 \oplus x_0x_1x_4x_6x_7x_8 \oplus x_0x_1x_4x_6x_7 \oplus x_0x_1x_4x_6x_7 \oplus x_0x_1x_4x_6x_7 \oplus x_0x_1x_4x_6x_7 \oplus x_0x_1x_4x_6x_7 \oplus x_0x_1x_4x_6x_7 \oplus x_0x_1x_6x_7 \oplus x_0x_1x_7 \oplus x_0x_1x_6x_7 \oplus x_0x_1x_7 \oplus x_0x_1x_7 \oplus x_0x_1x_7 \oplus x_0x_1x_7 \oplus x_0x_1x_7 \oplus x_0x_1x_7 \oplus x
416
                                                                     x_0x_1x_4x_6x_8x_9 \oplus x_0x_1x_4x_6x_9 \oplus x_0x_1x_4x_7x_8 \oplus x_0x_1x_4x_7x_9 \oplus x_0x_1x_4x_8 \oplus x_0x_1x_4x_8x_9 \oplus x_0x_1x_5 \oplus x_0x_1x_5x_6x_7 \oplus x_0x_1x_5x_7 \oplus x_0x_1x_5x_6x_7 \oplus x_0x_1x_5x_7 \oplus x_0x_1x_7 \oplus x_0x_1x_5x_7 \oplus x_0x_1x_5x_7 \oplus x_0x_1x_5x_7 \oplus x_0x_1x_5x_7 \oplus x
417
                                                                     x_0x_1x_5x_6x_7x_8x_9 \oplus x_0x_1x_5x_6x_7x_9 \oplus x_0x_1x_5x_6x_8 \oplus x_0x_1x_5x_6x_9 \oplus x_0x_1x_5x_7 \oplus x_0x_1x_5x_7x_8 \oplus x_0x_1x_5x_7x_8x_9 \oplus x_0x_1x_5x_7x_8 \oplus x_0x_1x_5x_8 \oplus x_0x_1x_1x_5x_8 \oplus x_0x_1x_5x_8 \oplus x
418
                                                                     x_0x_1x_5x_8x_9 \oplus x_0x_1x_5x_9 \oplus x_0x_1x_6 \oplus x_0x_1x_6x_7x_8 \oplus x_0x_1x_6x_7x_9 \oplus x_0x_1x_6x_8 \oplus x_0x_1x_6x_8x_9 \oplus x_0x_1x_7 \oplus x_0x_1x_7x_8x_9 \oplus x_0x_1x_6x_8x_9 \oplus x_0x_1x_6x_9 
419
                                                                     x_0x_1x_7x_9 \oplus x_0x_1x_8 \oplus x_0x_1x_9 \oplus x_0x_2 \oplus x_0x_2x_3 \oplus x_0x_2x_3x_4 \oplus x_0x_2x_3x_4x_5 \oplus x_0x_2x_3x_4x_5x_6 \oplus x_0x_2x_3x_4x_5x_6x_7 \oplus x_0x_2x_3x_4x_5x_6 \oplus x_0x_2x_3x_4x_5 \oplus x_0x_2x_3x_5 \oplus x_0x_2x_5 \oplus x_0x_2x_5 \oplus x_0x_2x_5 \oplus x_0x_5 \oplus x
420
                                                                     421
422
                                                                     x_0x_2x_3x_4x_5x_8 \oplus x_0x_2x_3x_4x_5x_8x_9 \oplus x_0x_2x_3x_4x_6x_7 \oplus x_0x_2x_3x_4x_6x_7x_8x_9 \oplus x_0x_2x_3x_4x_6x_7x_9 \oplus x_0x_2x_3x_4x_6x_8 \oplus x_0x_2x_3x_4x_6x_7x_9 \oplus x_0x_2x_3x_4x_6x_7 \oplus x_0x_2x_3x_7 \oplus x_0x_2x_7 \oplus x_0x_2x_2x_7 \oplus x_0x_2x_2x_7 \oplus x_0x_2x_2x_2x_2x_2x_2x_2x_2x
                                                                     423
                                                                       424
                                                                     x_0x_2x_3x_5x_7x_9 \oplus x_0x_2x_3x_5x_8 \oplus x_0x_2x_3x_5x_9 \oplus x_0x_2x_3x_6 \oplus x_0x_2x_3x_6x_7 \oplus x_0x_2x_3x_6x_7x_8 \oplus x_0x_2x_3x_6x_7x_8x_9 \oplus x_0x_2x_3x_6x_7x_8 \oplus x_0x_2x_3x_6x_7 \oplus x_0x_2x_3x_6x_7 \oplus x_0x_2x_3x_6x_7x_8 \oplus x_0x_2x_3x_6x_7 \oplus x_0x_2x_2x_3x_6x_7 \oplus x_0x_2x_3x_6x_7 \oplus x_0x_2x_7 
425
                                                                     426
427
                                                                     428
                                                                     x_0x_2x_4x_6x_8x_9 \oplus x_0x_2x_4x_7 \oplus x_0x_2x_4x_7x_8x_9 \oplus x_0x_2x_4x_7x_9 \oplus x_0x_2x_4x_8 \oplus x_0x_2x_4x_9 \oplus x_0x_2x_5 \oplus x_0x_2x_5x_6 \oplus x_0x_2x_5 \oplus x_0x_5 \oplus x_0x
429
                                                                     x_0x_2x_5x_6x_7 \oplus x_0x_2x_5x_6x_7x_8 \oplus x_0x_2x_5x_6x_7x_8x_9 \oplus x_0x_2x_5x_6x_8x_9 \oplus x_0x_2x_5x_6x_9 \oplus x_0x_2x_5x_7x_8 \oplus x_0x_2x_5x_7x_9 \oplus x_0x_2x_5x_6x_9 \oplus x_0x_5x_6x_9 \oplus x_0x_5x_6x_6x_9 \oplus x_0x_5x_6x_6x_9 \oplus x_0x_5x_6x_9 \oplus x_0x_5x_6x_6x_5x_6x_5x_6x_5x_6x_5x_6x_5x_6x_5x_6x_5x_6x_5x_6x_5x_6x_5x_6x_5x_6x_5x_6x_5x_6x_5x_6x_5x_6x
430
                                                                     x_0x_2x_5x_8 \oplus x_0x_2x_5x_8x_9 \oplus x_0x_2x_6x_7 \oplus x_0x_2x_6x_7x_8x_9 \oplus x_0x_2x_6x_7x_9 \oplus x_0x_2x_6x_8 \oplus x_0x_2x_6x_9 \oplus x_0x_2x_7 \oplus x_0x_2x_6x_8 \oplus x_0x_2x_6x_9 \oplus x_0x_2x_6x
431
                                                                     x_0x_2x_7x_8 \oplus x_0x_2x_7x_8x_9 \oplus x_0x_2x_8x_9 \oplus x_0x_2x_9 \oplus x_0x_3x_4 \oplus x_0x_3x_4x_5x_6 \oplus x_0x_3x_4x_5x_6x_7x_8 \oplus x_0x_3x_4x_5x_6x_7x_9 \oplus x_0x_5x_6x_7x_9 \oplus x_0x_5x_9 
432
433
                                                                       x_0x_3x_4x_5x_6x_8 \oplus x_0x_3x_4x_5x_6x_8x_9 \oplus x_0x_3x_4x_5x_7 \oplus x_0x_3x_4x_5x_7x_8x_9 \oplus x_0x_3x_4x_5x_7x_9 \oplus x_0x_3x_4x_5x_8 \oplus x_0x_3x_4x_5x_9 \oplus x_0x_3x_4x_5x_8 \oplus x_0x_3x_4x_5x_9 \oplus x_0x_3x_4x_5x_8 \oplus x_0x_5x_8 \oplus x_0x_8 \oplus x_0x_8 \oplus x_0x_8 \oplus x_0x_8 \oplus x_0x
                                                                     x_0x_3x_4x_6 \oplus x_0x_3x_4x_6x_7 \oplus x_0x_3x_4x_6x_7x_8 \oplus x_0x_3x_4x_6x_7x_8x_9 \oplus x_0x_3x_4x_6x_8x_9 \oplus x_0x_3x_4x_6x_9 \oplus x_0x_3x_4x_7x_8 \oplus x_0x_3x_4x_6x_9 \oplus x_0x_3x_6x_9 \oplus x_0x_5x_6x_9 \oplus x_0x_6x_9 \oplus x_0x_9 \oplus x_0x
434
                                                                     435
                                                                     x_0x_3x_5x_6x_9 \oplus x_0x_3x_5x_7 \oplus x_0x_3x_5x_7x_8 \oplus x_0x_3x_5x_7x_8x_9 \oplus x_0x_3x_5x_8x_9 \oplus x_0x_3x_5x_9 \oplus x_0x_3x_6 \oplus x_0x_3x_6x_7x_8 \oplus x_0x_3x_5x_7x_8 \oplus x_0x_5x_7x_8 \oplus x_0x_7x_8 \oplus x_0x_8 
436
                                                                       x_0x_3x_6x_7x_9 \oplus x_0x_3x_6x_8 \oplus x_0x_3x_6x_8x_9 \oplus x_0x_3x_7 \oplus x_0x_3x_7x_8x_9 \oplus x_0x_3x_7x_9 \oplus x_0x_3x_8 \oplus x_0x_3x_9 \oplus x_0x_4 \oplus x_0x_4x_5 \oplus x_0x_3x_6x_8 \oplus x_0x_6x_8 \oplus x_0x_6x
437
438
                                                                     x_0x_4x_5x_6 \oplus x_0x_4x_5x_6x_7 \oplus x_0x_4x_5x_6x_7x_8 \oplus x_0x_4x_5x_6x_7x_8x_9 \oplus x_0x_4x_5x_6x_8x_9 \oplus x_0x_4x_5x_6x_9 \oplus x_0x_4x_5x_7x_8 \oplus x_0x_4x_5x_6x_9 \oplus x_0x_6x_9 \oplus x_0x_9 \oplus x_0x_9 \oplus x_0x_9 \oplus x_0x_9 \oplus x_0x_9 \oplus x_0x
                                                                       x_0x_4x_5x_7x_9 \oplus x_0x_4x_5x_8 \oplus x_0x_4x_5x_8x_9 \oplus x_0x_4x_6x_7 \oplus x_0x_4x_6x_7x_8x_9 \oplus x_0x_4x_6x_7x_9 \oplus x_0x_4x_6x_8 \oplus x_0x_4x_6x_9 \oplus x_0x_4x_6x_8 \oplus x_0x_4x_6x_9 \oplus x_0x_4x_6x_8 \oplus x_0x_6x_6 \oplus x_0x_6 \oplus x_0x_6x_6 \oplus x_0x_6x_6 \oplus x_0x_6x_6 \oplus x_0x_6x_6 \oplus x_0x_6x_6 \oplus x_0x_6x_6 \oplus x_0x
439
                                                                     440
                                                                     x_0x_5x_6x_8x_9 \oplus x_0x_5x_7 \oplus x_0x_5x_7x_8x_9 \oplus x_0x_5x_7x_9 \oplus x_0x_5x_8 \oplus x_0x_5x_9 \oplus x_0x_6 \oplus x_0x_6x_7 \oplus x_0x_6x_7x_8 \oplus x_0x_6x_7x_8x_9 \oplus x_0x_6x_7x_8 \oplus x_0x_6x_8 \oplus x_0x
441
                                                                     x_0x_6x_8x_9 \oplus x_0x_6x_9 \oplus x_0x_7x_8 \oplus x_0x_7x_9 \oplus x_0x_8 \oplus x_0x_8x_9 \oplus x_1 \oplus x_1x_2x_3 \oplus x_1x_2x_3x_4x_5 \oplus x_1x_2x_3x_5 \oplus x_1x_2x_5 \oplus x_1x_2x_3x_5 \oplus x_1x_2x_3x_5 \oplus x_1x_2x_3x_5 \oplus x_1x_2x_3x_5 \oplus x_1x_2x_3x_5 \oplus x_1x_2x_5 \oplus x_1x_5 \oplus x
442
                                                                     x_1x_2x_3x_4x_5x_6x_7x_8x_9 \oplus x_1x_2x_3x_4x_5x_6x_7x_9 \oplus x_1x_2x_3x_4x_5x_6x_8 \oplus x_1x_2x_3x_4x_5x_6x_9 \oplus x_1x_2x_3x_4x_5x_7 \oplus x_1x_2x_3x_4x_5x_7x_8 \oplus x_1x_2x_3x_4x_5x_6x_7 \oplus x_1x_2x_3x_4x_5x_7 \oplus x_1x_2x_3x_4x_5x_7 \oplus x_1x_2x_3x_4x_5x_7 \oplus x_1x_2x_3x_7 \oplus x_1x_2x_3x_7 \oplus x_1x_2x_3x_7 \oplus x_1x_2x_3x_7 \oplus x_1x_2x_3x_7 \oplus x_1x_2x_7 \oplus x_1x_7 
443
                                                                     444
                                                                     445
                                                                     x_1x_2x_3x_5 \oplus x_1x_2x_3x_5x_6 \oplus x_1x_2x_3x_5x_6x_7 \oplus x_1x_2x_3x_5x_6x_7x_8 \oplus x_1x_2x_3x_5x_6x_7x_8x_9 \oplus x_1x_2x_3x_5x_6x_8x_9 \oplus x_1x_2x_3x_5x_6x_9 \oplus x_1x_2x_3x_5x_6x_7x_8 \oplus x_1x_2x_5x_6x_7x_8 \oplus x_1x_2x_3x_5x_6x_7x_8 \oplus x_1x_2x_5x_6x_7x_8 \oplus x_1x_2x_3x_5x_6x_7x_8 \oplus x_1x_2x_3x_5x_6x_7x_8 \oplus x_1x_2x_3x_5x_6x_7x_8 \oplus x_1x_2x_5x_6x_7x_8 \oplus x_1x_2x_5x_6x_7x_8 \oplus x_1x_2x_5x_6x_7x_8x_6x_7x_8x_6x_7x_8x_6x_7x_8x_6x_7x_8x_6x_7x_8x_7x_8x_6x_7x_8x_6x_7x_8x_6x_7x_8x_6x_7x_8x_6x_7x_8x_6x_7x_8x_6x_7x
446
                                                                     x_1x_2x_3x_5x_7x_8 \oplus x_1x_2x_3x_5x_7x_9 \oplus x_1x_2x_3x_5x_8 \oplus x_1x_2x_3x_5x_8 \oplus x_1x_2x_3x_6x_7 \oplus x_1x_2x_3x_7 \oplus x_1x_2x_7 \oplus x_1x_2x_3x_7 \oplus x_1x_2x_7 \oplus x_1x_7 \oplus x_1x_2x_7 \oplus x
447
448
                                                                       x_1x_2x_3x_6x_8 \oplus x_1x_2x_3x_6x_9 \oplus x_1x_2x_3x_7 \oplus x_1x_2x_3x_7x_8 \oplus x_1x_2x_3x_7x_8x_9 \oplus x_1x_2x_3x_8x_9 \oplus x_1x_2x_3x_9 \oplus x_1x_2x_4 \oplus x_1x_2x_3x_1 \oplus x_1x_2x_1 \oplus x_1x_1 
                                                                     x_1x_2x_4x_5x_6 \oplus x_1x_2x_4x_5x_6x_7x_8 \oplus x_1x_2x_4x_5x_6x_7x_9 \oplus x_1x_2x_4x_5x_6x_8 \oplus x_1x_2x_4x_5x_6x_8x_9 \oplus x_1x_2x_4x_5x_7 \oplus x_1x_2x_4x_5x_7x_8x_9 \oplus x_1x_2x_4x_5x_6x_8x_9 \oplus x_1x_2x_6x_8x_9 \oplus x_1x_2x_4x_5x_6x_8x_9 \oplus x_1x_2x_6x_8x_9 \oplus x_1x_2x_6x_8x_9 \oplus x_1x_2x_6x_8x_9 \oplus x_1x_2x_6x_9 \oplus x_1x_2x_6x_9 \oplus x_1x_2x_6x_9 
449
450
                                                                     x_1x_2x_4x_5x_7x_9 \oplus x_1x_2x_4x_5x_8 \oplus x_1x_2x_4x_5x_9 \oplus x_1x_2x_4x_6 \oplus x_1x_2x_4x_6x_7 \oplus x_1x_2x_4x_6x_7x_8 \oplus x_1x_2x_4x_6x_7x_8x_9 \oplus x_1x_2x_4x_6x_7x_8 \oplus x_1x_2x_4x_6x_7 \oplus x_1x_2x_4x_7 \oplus x_1x_2x_4x_6x_7 \oplus x_1x_2x_4x_7 \oplus x_1x_2x_7 \oplus x_1x_2x_7 \oplus x_1x_2x_7 \oplus x_1x_2x_7 \oplus x_1x_7 \oplus x_1x
                                                                     x_1x_2x_4x_6x_8x_9 \oplus x_1x_2x_4x_6x_9 \oplus x_1x_2x_4x_7x_8 \oplus x_1x_2x_4x_7x_9 \oplus x_1x_2x_4x_8 \oplus x_1x_2x_4x_8x_9 \oplus x_1x_2x_5 \oplus x_1x_2x_5x_6x_7 \oplus x_1x_2x_4x_6x_9 \oplus x_1x_2x_4x_6x_9 \oplus x_1x_2x_4x_7x_8 \oplus x_1x_2x_4x_7x_9 \oplus x_1x_2x_4x_8 \oplus x_1x_2x_4x_8x_9 \oplus x_1x_2x_5 \oplus x
451
                                                                     452
                                                                     x_1x_2x_5x_8x_9 \oplus x_1x_2x_5x_9 \oplus x_1x_2x_6 \oplus x_1x_2x_6x_7x_8 \oplus x_1x_2x_6x_7x_9 \oplus x_1x_2x_6x_8 \oplus x_1x_2x_6x_8x_9 \oplus x_1x_2x_7 \oplus x_1x_2x_7x_8x_9 \oplus x_1x_2x_6x_8x_9 \oplus x_1x_2x_6x_9 \oplus x_1x_2x_6x_8x_9 \oplus x_1x_2x_6x_9 \oplus x_1x_2x
453
                                                                     x_1x_2x_7x_9 \oplus x_1x_2x_8 \oplus x_1x_2x_9 \oplus x_1x_3 \oplus x_1x_3x_4 \oplus x_1x_3x_4x_5 \oplus x_1x_3x_4x_5x_6 \oplus x_1x_3x_4x_5x_6x_7 \oplus x_1x_3x_4x_5x_6x_7x_8 \oplus x_1x_3x_4x_5x_6x_7 \oplus x_1x_3x_5x_6x_7 \oplus x_1x_3x_5x_6x_7 \oplus x_1x_3x_5x_6x_7 \oplus x_1x_3x_7 \oplus x_1x_3x_7 \oplus x_1x_5x_7 \oplus x_1x_3x_7 \oplus x_1x_7 \oplus x_1x_5x_7 \oplus x
454
                                                                     x_1x_3x_4x_5x_6x_7x_8x_9 \oplus x_1x_3x_4x_5x_6x_8x_9 \oplus x_1x_3x_4x_5x_6x_9 \oplus x_1x_3x_4x_5x_7x_8 \oplus x_1x_3x_4x_5x_7x_9 \oplus x_1x_3x_4x_5x_8 \oplus x_1x_3x_4x_5x_6x_9 \oplus x_1x_5x_6x_9 \oplus x_1x_5x
455
                                                                     x_1x_3x_4x_5x_8x_9 \oplus x_1x_3x_4x_6x_7 \oplus x_1x_3x_4x_6x_7x_8x_9 \oplus x_1x_3x_4x_6x_7x_9 \oplus x_1x_3x_4x_6x_8 \oplus x_1x_3x_4x_6x_9 \oplus x_1x_3x_4x_7 \oplus x_1x_3x_4x_6x_9 \oplus x_1x_3x_6x_6x_9 \oplus x_1x_3x_6x_6x_9 \oplus x_1x_5x_6x_6x_9 \oplus x_1x_5x_6x_6x_9 \oplus x_1x_5x_6x_6x_9 \oplus x_1x_5x_6x_6x_9 \oplus x_1x_5x_6x_6x_9 \oplus x_1x_5x_6x_9 \oplus x_1x_5x_6x_9 \oplus x_1x_5x_6x_9 \oplus x_1x_5x_6x_9 \oplus x_1x_5x_6x_6x_9 \oplus x_1x_5x_6x_9 \oplus x_1x_5x_9 \oplus x_1x_5x_6x_9 \oplus x_1x_5x_6x_9 \oplus x_1x_5x_6x_9 \oplus x_1x_5x_6x_9 \oplus x
456
                                                                     457
                                                                     x_1x_3x_5x_6x_8x_9 \oplus x_1x_3x_5x_7 \oplus x_1x_3x_5x_7x_8x_9 \oplus x_1x_3x_5x_7x_9 \oplus x_1x_3x_5x_8 \oplus x_1x_3x_5x_9 \oplus x_1x_3x_6 \oplus x_1x_3x_6x_7 \oplus x_1x_5x_6x_7 \oplus x_1x_5x_7 \oplus x
458
                                                                     x_1x_3x_6x_7x_8 \oplus x_1x_3x_6x_7x_8x_9 \oplus x_1x_3x_6x_9 \oplus x_1x_3x_6x_9 \oplus x_1x_3x_7x_8 \oplus x_1x_3x_7x_9 \oplus x_1x_3x_8 \oplus x_1x_3x_8x_9 \oplus x_1x_4x_5 \oplus x_1x_3x_6x_9 \oplus x_1x_5x_6x_9 \oplus x
```

```
x_1x_4x_5x_6x_7 \oplus x_1x_4x_5x_6x_7x_8x_9 \oplus x_1x_4x_5x_6x_7x_9 \oplus x_1x_4x_5x_6x_8 \oplus x_1x_4x_5x_6x_9 \oplus x_1x_4x_5x_7 \oplus x_1x_4x_5x_7x_8 \oplus x_1x_4x_5x_6x_7 \oplus x_1x_4x_5x_6x_9 \oplus x_1x_4x_5x_6x_5x_9 \oplus x_1x_4x_5x_6x_5x_9 \oplus x_1x_4x_5x_6x_5x_9 \oplus x_1x_5x_6x_9 \oplus x_1x_5x_6x_5x_9 \oplus x_1x_5x_6x_5x_5x_6x_5x_5x_6x_5x_5x_6x_5x_5x_6x_5x_5x_5x_6x_5x_5x_6x_5x_5x_5x_6x_5x_5x_6x_5x_5x_6x_5x_5x_6x
460
                                                                                               x_{1}x_{4}x_{5}x_{7}x_{8}x_{9} \oplus x_{1}x_{4}x_{5}x_{8}x_{9} \oplus x_{1}x_{4}x_{5}x_{9} \oplus x_{1}x_{4}x_{6} \oplus x_{1}x_{4}x_{6}x_{7}x_{8} \oplus x_{1}x_{4}x_{6}x_{7}x_{9} \oplus x_{1}x_{4}x_{6}x_{8} \oplus x_{1}x_{4}x_{6}x_{8}x_{9} \oplus x_{1}x_{8}x_{9} \oplus x_{1}x_{8}x_{9} \oplus x_{1}x_{8}x_{9} \oplus x_{1}x_{8}x_{9} \oplus
461
                                                                                               x_1x_4x_7 \oplus x_1x_4x_7x_8x_9 \oplus x_1x_4x_7x_9 \oplus x_1x_4x_8 \oplus x_1x_4x_9 \oplus x_1x_5 \oplus x_1x_5x_6 \oplus x_1x_5x_6x_7 \oplus x_1x_5x_6x_7x_8 \oplus x_1x_5x_6x_7x
462
                                                                                               x_{1}x_{5}x_{6}x_{8}x_{9} \oplus x_{1}x_{5}x_{6}x_{9} \oplus x_{1}x_{5}x_{7}x_{8} \oplus x_{1}x_{5}x_{7}x_{9} \oplus x_{1}x_{5}x_{8} \oplus x_{1}x_{5}x_{8}x_{9} \oplus x_{1}x_{6}x_{7} \oplus x_{1}x_{6}x_{7}x_{8}x_{9} \oplus x_{1}x_{6}x_{7}x_{9} \oplus x_{1}x_{7}x_{9} \oplus
463
                                                                                               x_1x_6x_8 \oplus x_1x_6x_9 \oplus x_1x_7 \oplus x_1x_7x_8 \oplus x_1x_7x_8x_9 \oplus x_1x_8x_9 \oplus x_1x_9 \oplus x_2 \oplus x_2x_3x_4 \oplus x_2x_3x_4x_5x_6 \oplus x_2x_3x_4x_5x_6x_7x_8 \oplus x_1x_6x_8 \oplus x_1x_6x
464
                                                                                                   x_2x_3x_4x_5x_6x_7x_9 \oplus x_2x_3x_4x_5x_6x_8 \oplus x_2x_3x_4x_5x_6x_8x_9 \oplus x_2x_3x_4x_5x_7 \oplus x_2x_3x_4x_5x_7x_8x_9 \oplus x_2x_3x_4x_5x_7x_9 \oplus x_2x_3x_4x_5x_7x_8x_9 \oplus x_2x_3x_4x_5x_7x_9 \oplus x_2x_3x_4x_5x_7x_8x_9 \oplus x_2x_3x_4x_5x_7x_9 \oplus x_2x_3x_4x_5x_7x_8x_9 \oplus x_2x_3x_4x_5x_7x_9 \oplus x_2x_3x_4x_7x_9 \oplus x_2x_3x_4x_7x_9 \oplus x_2x_3x_4x_7x_9 \oplus x_2x_3x_4x_7x_9 \oplus x_2x_3x_4x_7x_9 \oplus x_2x_3x_7x_9 \oplus x_2x_7x_9 \oplus x_2x_9 \oplus x_2x_9 \oplus x_2x_7x_9 \oplus x_2x_9 \oplus x
465
                                                                                               x_2x_3x_4x_5x_8 \oplus x_2x_3x_4x_5x_9 \oplus x_2x_3x_4x_6 \oplus x_2x_3x_4x_6x_7 \oplus x_2x_3x_4x_6x_7x_8 \oplus x_2x_3x_4x_6x_7 \oplus x_2x_3x_4x_6x_7x_8 \oplus x_2x_3x_4x_6x_7x_8 \oplus x_2x_3x_4x_6x_7x_8 \oplus x_2x_3x_4x_6x_7 \oplus x_2x_3x_4x_6x_7 \oplus x_2x_3x_4x_6x_7x_8 \oplus x_2x_3x_4x_6x_7 \oplus x_2x_3x_4x_6x_7 \oplus x_2x_3x_4x_6x_7x_8 \oplus x_2x_3x_4x_6x_7 \oplus x_2x_5x_7 \oplus x_2x_7 \oplus x_2x
466
                                                                                                   x_2x_3x_4x_6x_9 \oplus x_2x_3x_4x_7x_8 \oplus x_2x_3x_4x_7x_9 \oplus x_2x_3x_4x_8 \oplus x_2x_3x_4x_8x_9 \oplus x_2x_3x_5 \oplus x_2x_3x_5x_6x_7 \oplus x_2x_3x_5x_6x_7x_8x_9 \oplus x_2x_3x_5x_6x_7 \oplus x_2x_5x_6x_7 \oplus x_2x_5x_7 \oplus x_2x_5x_6x_7 \oplus x_2x_5x_7 \oplus x_2x_7 \oplus x_2x_5x_7 \oplus x_2x_7 \oplus x_2x
467
                                                                                                   x_2x_3x_5x_6x_7x_9 \oplus x_2x_3x_5x_6x_8 \oplus x_2x_3x_5x_6x_9 \oplus x_2x_3x_5x_7 \oplus x_2x_3x_5x_7x_8 \oplus x_2x_3x_5x_7x_8x_9 \oplus x_2x_3x_5x_8x_9 \oplus x_2x_3x_5x_9 \oplus x_2x_3x_5x_8x_9 \oplus x_2x_5x_9 
468
                                                                                                   x_2x_3x_6 \oplus x_2x_3x_6x_7x_8 \oplus x_2x_3x_6x_7x_9 \oplus x_2x_3x_6x_8 \oplus x_2x_3x_6x_8 \oplus x_2x_3x_7 \oplus x_2x_3x_7 \oplus x_2x_3x_7x_8 \oplus x_2x_3x_7x_9 \oplus x_2x_3x_8 \oplus x_2x_3x_6x_8 \oplus x_2x_6x_6x_8 \oplus x_2x_6x_6x_8 \oplus x_2x_6x_6x_6x_6x_6x_6x_6x
469
                                                                                               x_2x_3x_9 \oplus x_2x_4 \oplus x_2x_4x_5 \oplus x_2x_4x_5x_6 \oplus x_2x_4x_5x_6x_7 \oplus x_2x_4x_5x_6x_7x_8 \oplus x_2x_4x_5x_6x_7x_8x_9 \oplus x_2x_4x_5x_6x_8x_9 \oplus x_2x_4x_5x_6x_7x_8 \oplus x_2x_4x_5x_8x_7x_8 \oplus x_2x_4x_5x_8 \oplus x_2x_5x_8 \oplus x_2x_5x_8 \oplus x_2x_5x_8 \oplus x_2x_5x_8 \oplus x_2x_5x_8 \oplus x_2x_5x_8 \oplus x_2x
470
                                                                                               x_2x_4x_5x_6x_9 \oplus x_2x_4x_5x_7x_8 \oplus x_2x_4x_5x_7x_9 \oplus x_2x_4x_5x_8 \oplus x_2x_4x_5x_8x_9 \oplus x_2x_4x_6x_7 \oplus x_2x_4x_6x_7x_8 \oplus x_2x_4x_6x_7x_9 \oplus x_2x_6x_7x_9 \oplus x_2x_4x_6x_7x_9 \oplus x_2x_6x_7x_9 \oplus x_2x_4x_6x_7x_9 \oplus x_2x_4x_6x_7x_9 \oplus x_2x_4x_7x_9 \oplus x_2x_4x_6x_7x_9 \oplus x_2x_4x_7x_9 \oplus x_2x_7x_9 \oplus x_2x_7x
471
                                                                                               472
473
                                                                                                   x_2x_5x_6x_7x_9 \oplus x_2x_5x_6x_8 \oplus x_2x_5x_6x_8x_9 \oplus x_2x_5x_7 \oplus x_2x_5x_7x_8x_9 \oplus x_2x_5x_7x_9 \oplus x_2x_5x_8 \oplus x_2x_5x_9 \oplus x_2x_6 \oplus x_2x_6x_7 \oplus x_2x_6x
                                                                                               x_2x_6x_7x_8 \oplus x_2x_6x_7x_8x_9 \oplus x_2x_6x_8x_9 \oplus x_2x_6x_9 \oplus x_2x_7x_8 \oplus x_2x_7x_9 \oplus x_2x_8 \oplus x_2x_8x_9 \oplus x_3 \oplus x_3x_4x_5 \oplus x_3x_4x_5x_6x_7 \oplus x_3x_4x_5 \oplus x_3x_5 \oplus x_5 \oplus x
474
                                                                                                   x_3x_4x_5x_6x_7x_8x_9 \oplus x_3x_4x_5x_6x_7x_9 \oplus x_3x_4x_5x_6x_8 \oplus x_3x_4x_5x_6x_9 \oplus x_3x_4x_5x_7 \oplus x_3x_4x_5x_7x_8 \oplus x_3x_4x_5x_7x_8x_9 \oplus x_3x_4x_5x_7x_8 \oplus x_3x_4x_5x_8 \oplus x_3x_5x_8 \oplus x_5x_8 \oplus x
475
                                                                                               x_3x_4x_5x_8x_9 \oplus x_3x_4x_5x_9 \oplus x_3x_4x_6 \oplus x_3x_4x_6x_7x_8 \oplus x_3x_4x_6x_7x_9 \oplus x_3x_4x_6x_8 \oplus x_3x_4x_6x_8 \oplus x_3x_4x_7 \oplus x_3x_7 \oplus x_7 \oplus x
476
                                                                                               x_3x_4x_7x_9 \oplus x_3x_4x_8 \oplus x_3x_4x_9 \oplus x_3x_5 \oplus x_3x_5x_6 \oplus x_3x_5x_6x_7 \oplus x_3x_5x_6x_7x_8 \oplus x_3x_5x_6x_7x_8x_9 \oplus x_3x_5x_6x_8x_9 \oplus x_3x_5x_6x_9 \oplus x_5x_6x_9 \oplus x_5x_6x
477
478
                                                                                               x_3x_5x_6x_9 \oplus x_3x_5x_7x_8 \oplus x_3x_5x_7x_9 \oplus x_3x_5x_8 \oplus x_3x_5x_8x_9 \oplus x_3x_6x_7 \oplus x_3x
                                                                                                   x_3x_7 \oplus x_3x_7x_8 \oplus x_3x_7x_8x_9 \oplus x_3x_8x_9 \oplus x_3x_9 \oplus x_4 \oplus x_4x_5x_6 \oplus x_4x_5x_6x_7x_8 \oplus x_4x_5x_6x_7x_9 \oplus x_4x_5x_6x_8 \oplus x_4x_5x_6x_8x_9 \oplus x_5x_6x_9 \oplus x_5x_9 \oplus x_5x_6x_9 \oplus x_5x_6x_9 \oplus x_5x_6x_9 \oplus x_5x_6x_9 \oplus x_5x_6x_9 \oplus x
479
                                                                                                   x_4x_5x_7 \oplus x_4x_5x_7x_8x_9 \oplus x_4x_5x_7x_9 \oplus x_4x_5x_8 \oplus x_4x_5x_9 \oplus x_4x_6 \oplus x_4x_6x_7 \oplus x_4x_6x_7x_8 \oplus x_4x_6x_7x_8x_9 \oplus x_4x_6x_8x_9 \oplus x_4x_6x_9 \oplus x_6x_9 \oplus x
480
                                                                                               x_4x_6x_9 \oplus x_4x_7x_8 \oplus x_4x_7x_9 \oplus x_4x_8 \oplus x_4x_8x_9 \oplus x_5 \oplus x_5x_6x_7 \oplus x_5x_6x_7x_8x_9 \oplus x_5x_6x_7x_9 \oplus x_5x_6x_8 \oplus x_5x_6x_9 \oplus x_5x_7 \oplus x_5x_6x_7 \oplus x_5x_6x
481
                                                                                               x_5x_7x_8 \oplus x_5x_7x_8x_9 \oplus x_5x_8x_9 \oplus x_5x_9 \oplus x_6 \oplus x_6x_7x_8 \oplus x_6x_7x_9 \oplus x_6x_8 \oplus x_6x_8x_9 \oplus x_7 \oplus x_7x_8x_9 \oplus x_7x_9 \oplus x_8 \oplus x_9 = 1
482
```

 $x_0x_1x_2x_3x_4x_5x_8x_9 \oplus x_0x_1x_2x_3x_4x_5x_9 \oplus x_0x_1x_2x_3x_4x_6 \oplus x_0x_1x_2x_3x_4x_6x_7x_8 \oplus x_0x_1x_2x_3x_4x_6x_7x_9 \oplus x_0x_1x_2x_3x_4x_6x_8 \oplus x_0x_1x_2x_3x_4x_6x_7x_8 \oplus x_0x_1x_2x_3x_4x_6x_8 \oplus x_0x_1x_2x_3x_4x_8 \oplus x_0x_1x_2x_2x_3x_4x_8 \oplus x_0x_1x_2x_3x_4x_8 \oplus x_0x_1x_2x_3x_4x_8 \oplus x_0x_1x$ $x_0x_1x_2x_3x_7x_8x_9 \oplus x_0x_1x_2x_3x_8x_9 \oplus x_0x_1x_2x_3x_9 \oplus x_0x_1x_2x_4 \oplus x_0x_1x_2x_4x_5x_6 \oplus x_0x_1x_2x_4x_5x_6x_7x_8 \oplus x_0x_1x_2x_1x_2x_4x_5x_6x_7x_8 \oplus x_0x_1x_2x_4x_5x_6x_7x_8 \oplus x_0x_1x_2x_6x_6x_7x_8 \oplus x_0x_1x_2x_6x_7x_8 \oplus x_0x_1x_2x_6x_7x_8 \oplus x_0x_1x_2x_6x_7x_8 \oplus x_0x_1x_2x_6x_7x_8 \oplus x_0x_1x_2x_6x_7x_8 \oplus x_0x_1x_2x_6x_7x_8 \oplus x_0x_1x$ $x_0x_1x_2x_4x_5x_9 \oplus x_0x_1x_2x_4x_6 \oplus x_0x_1x_2x_4x_6x_7 \oplus x_0x_1x_2x_4x_6x_7x_8 \oplus x_0x_1x_2x_4x_6x_7x_8x_9 \oplus x_0x_1x_2x_4x_6x_8x_9 \oplus x_0x_1x_2x_4x_6x_7x_8 \oplus x_0x_1x_2x_6x_7x_8 \oplus x_0x_1x_2x_6x_7x_8 \oplus x_0x_1x_2x_6x_7x_8 \oplus x_0x_1x_2x_6x_7x_8 \oplus x_0x_1x_2x_6x_7x_8 \oplus x_0x_1x_2x_6x_7x_8 \oplus x_0x_1x$ $x_0x_1x_2x_5x_7x_8x_9 \oplus x_0x_1x_2x_5x_8x_9 \oplus x_0x_1x_2x_5x_9 \oplus x_0x_1x_2x_6 \oplus x_0x_1x_2x_6x_7x_8 \oplus x_0x_1x_2x_6x_7x_9 \oplus x_0x_1x_2x_6x_8 \oplus x_0x_1x_2x_6x_7x_9 \oplus x_0x_1x_2x_6x_8 \oplus x_0x_1x_2x_6x_7x_9 \oplus x_0x_1x_2x_6x_8 \oplus x_0x_1x_2x$ $x_0x_1x_3x_8 \oplus x_0x_1x_3x_8x_9 \oplus x_0x_1x_4x_5 \oplus x_0x_1x_4x_5x_6x_7 \oplus x_0x_1x_4x_5x_6x_7x_8x_9 \oplus x_0x_1x_4x_5x_6x_7x_9 \oplus x_0x_1x_4x_5x_6x_8 \oplus x_0x_1x_4x_5x_6x_7x_9 \oplus x_0x_1x_4x_5x_6x_8 \oplus x_0x_1x_4x_5x_6x_7 \oplus x_0x_1x_5x_7 \oplus x$ $x_0x_1x_6x_8 \oplus x_0x_1x_6x_9 \oplus x_0x_1x_7 \oplus x_0x_1x_7x_8 \oplus x_0x_1x_7x_8x_9 \oplus x_0x_1x_8x_9 \oplus x_0x_1x_9 \oplus x_0x_2 \oplus x_0x_2x_3x_4 \oplus x_0x_2x_3x_3x_4 \oplus x_0x_2x_3x_4 \oplus x_0x_2x_3x$

```
511
512
                                                                             x_0x_2x_3x_5x_7x_8 \oplus x_0x_2x_3x_5x_7x_8x_9 \oplus x_0x_2x_3x_5x_8x_9 \oplus x_0x_2x_3x_5x_9 \oplus x_0x_2x_3x_6 \oplus x_0x_2x_3x_6x_7x_8 \oplus x_0x_2x_3x_6x_7x_9 \oplus x_0x_2x_3x_6x_9 \oplus x_0x_2x_3x_6x_9 \oplus x_0x_2x_3x_6x_9 \oplus x_0x_2x_3x_6x_9 \oplus x_0x_2x_3x_9 \oplus x_0x
513
                                                                             514
                                                                             x_0x_2x_4x_5 \oplus x_0x_2x_4x_5x_6 \oplus x_0x_2x_4x_5x_6x_7 \oplus x_0x_2x_4x_5x_6x_7x_8 \oplus x_0x_2x_4x_5x_6x_7x_8x_9 \oplus x_0x_2x_4x_5x_6x_8x_9 \oplus x_0x_2x_4x_5x_6x_9 \oplus x_0x_2x_4x_5x_6x_7x_8 \oplus x_0x_2x_4x_5x_6x_7x_8x_9 \oplus x_0x_2x_6x_9 \oplus x_0x_2x_6x
515
                                                                                x_0x_2x_4x_5x_7x_8 \oplus x_0x_2x_4x_5x_7x_9 \oplus x_0x_2x_4x_5x_8 \oplus x_0x_2x_4x_5x_8x_9 \oplus x_0x_2x_4x_6x_7 \oplus x_0x_2x_4x_7 \oplus x_0x_2x_7 \oplus x_0x_2x_7 \oplus x_0x_2x_7 \oplus x_0x_2x_7 \oplus x_0x_2x_7 \oplus x
516
                                                                             x_0x_2x_4x_6x_8 \oplus x_0x_2x_4x_6x_9 \oplus x_0x_2x_4x_7 \oplus x_0x_2x_4x_7x_8 \oplus x_0x_2x_4x_7x_8x_9 \oplus x_0x_2x_4x_8x_9 \oplus x_0x_2x_4x_9 \oplus x_0x_2x_5x_6 \oplus x_0x_2x_4x_6x_9 \oplus x_0x_2x_4x_7 \oplus x_0x_2x_7 \oplus x_0x_2x_4x_7 \oplus x_0x_2x_4x_7 \oplus x_0x_2x_4x_7 \oplus x_0x_2x_4x_7 \oplus x
517
                                                                             x_0x_2x_5x_6x_7x_8 \oplus x_0x_2x_5x_6x_7x_9 \oplus x_0x_2x_5x_6x_8 \oplus x_0x_2x_5x_6x_8x_9 \oplus x_0x_2x_5x_7 \oplus x_0x_2x_5x_7x_8x_9 \oplus x_0x_2x_5x_7x_9 \oplus x_0x_2x_5x_7x_8x_9 \oplus x_0x_2x_5x_7x_9 \oplus x_0x_2x_5x_7x_8x_9 \oplus x_0x_2x_5x_7x_8x_9 \oplus x_0x_2x_5x_7x_8x_9 \oplus x_0x_2x_5x_7x_8x_9 \oplus x_0x_2x_5x_7x_9 \oplus x_0x_2x_7x_9 \oplus x
518
                                                                             x_0x_2x_5x_8 \oplus x_0x_2x_5x_9 \oplus x_0x_2x_6 \oplus x_0x_2x_6x_7 \oplus x_0x_2x_6x_7x_8 \oplus x_0x_2x_6x_7x_8x_9 \oplus x_0x_2x_6x_8x_9 \oplus x_0x_2x_6x_9 \oplus x_0x_2x_7x_8 \oplus x_0x_2x_6x_7 \oplus x_0x_2x_6x
519
                                                                                x_0x_2x_7x_9 \oplus x_0x_2x_8 \oplus x_0x_2x_8x_9 \oplus x_0x_3 \oplus x_0x_3x_4x_5 \oplus x_0x_3x_4x_5x_6x_7 \oplus x_0x_3x_4x_5x_6x_7x_8x_9 \oplus x_0x_3x_4x_5x_6x_7x_9 \oplus x_0x_5x_6x_7x_9 \oplus x_0x_5x_6x_7x_9x_9 \oplus x_0x_5x_6x_7x_9x_9 \oplus x_0x_5x_6x_7x_9x_9 \oplus x_0x_5x_6x_9 \oplus x_0x_5x_9 \oplus x_0x_5x_6x_9 \oplus x_0x_5x_6x_9 \oplus x_0x_5x_6x_9 \oplus x_0x_5x_6x_9 \oplus x
520
                                                                             521
                                                                             x_0x_3x_4x_6 \oplus x_0x_3x_4x_6x_7x_8 \oplus x_0x_3x_4x_6x_7x_9 \oplus x_0x_3x_4x_6x_8 \oplus x_0x_3x_4x_6x_8x_9 \oplus x_0x_3x_4x_7 \oplus x_0x_3x_4x_7x_8x_9 \oplus x_0x_3x_4x_7x_8x_9 \oplus x_0x_3x_4x_7x_8x_9 \oplus x_0x_3x_4x_6x_8x_9 \oplus x_0x_3x_4x_7x_8x_9 \oplus x_0x_3x_4x_6x_8x_9 \oplus x_0x_5x_6x_9 \oplus x_0x_5x_6x_9 \oplus x_0x_5x_6x_9 \oplus x_0x_5x_6x_9 \oplus x_0x_5x_6x_9 \oplus x_0x_5x_6x_9 \oplus x_0x_6x_6x_9 \oplus x_0x_6x_9 \oplus x_0x_9 \oplus x_0x_9x_9 \oplus x_0x_9 
522
                                                                             523
                                                                             x_0x_3x_5x_6x_8x_9 \oplus x_0x_3x_5x_6x_9 \oplus x_0x_3x_5x_7x_8 \oplus x_0x_3x_5x_7x_9 \oplus x_0x_3x_5x_8 \oplus x_0x_3x_5x_8x_9 \oplus x_0x_3x_6x_7 \oplus x_0x_3x_6x_7 \oplus x_0x_3x_5x_8x_9 \oplus x_0x_3x_5x_6x_9 \oplus x_0x_5x_6x_9 
524
                                                                             x_0x_3x_6x_7x_9 \oplus x_0x_3x_6x_8 \oplus x_0x_3x_6x_9 \oplus x_0x_3x_7 \oplus x_0x_3x_7x_8 \oplus x_0x_3x_7x_8x_9 \oplus x_0x_3x_8x_9 \oplus x_0x_3x_9 \oplus x_0x_4 \oplus x_0x_4x_5x_6 \oplus x_0x_3x_6x_9 \oplus x_0x_6x_9 \oplus x_0x_6x
525
                                                                             526
                                                                             527
                                                                             x_0x_4x_7x_9 \oplus x_0x_4x_8 \oplus x_0x_4x_8x_9 \oplus x_0x_5 \oplus x_0x_5x_6x_7 \oplus x_0x_5x_6x_7x_8x_9 \oplus x_0x_5x_6x_7x_9 \oplus x_0x_5x_6x_8 \oplus x_0x_5x_6x_9 \oplus x_0x
528
529
                                                                             x_0x_5x_7 \oplus x_0x_5x_7x_8 \oplus x_0x_5x_7x_8x_9 \oplus x_0x_5x_8x_9 \oplus x_0x_5x_9 \oplus x_0x_6 \oplus x_0x_6x_7x_8 \oplus x_0x_6x_7x_9 \oplus x_0x_6x_8 \oplus x_0x_6x_8x_9 \oplus x_0x_6x_9 \oplus x
                                                                             x_0x_7 \oplus x_0x_7x_8x_9 \oplus x_0x_7x_9 \oplus x_0x_8 \oplus x_0x_9 \oplus x_1 \oplus x_1x_2 \oplus x_1x_2x_3 \oplus x_1x_2x_3x_4 \oplus x_1x_2x_3x_4x_5 \oplus x_1x_2x_3x_4 \oplus x_1x_2x_4 \oplus x_1x_2x_4 \oplus x_1x_2x_4 \oplus x_1x_2x_4 \oplus x_1x_2x_4 \oplus x_1x_2x_4 \oplus x
530
                                                                             x_1x_2x_3x_4x_5x_6x_7 \oplus x_1x_2x_3x_4x_5x_6x_7x_8 \oplus x_1x_2x_3x_4x_5x_6x_7x_8x_9 \oplus x_1x_2x_3x_4x_5x_6x_8x_9 \oplus x_1x_2x_3x_4x_5x_6x_9 \oplus x_1x_2x_3x_4x_5x_6x_7x_8x_9 \oplus x_1x_2x_3x_7x_8x_9 \oplus x_1x_2x_3x_4x_5x_6x_7x_8x_9 \oplus x_1x_2x_5x_7x_8x_9 \oplus x_1x_2x_5x_7x_8x_9 \oplus x_1x_2x_5x_7x_8x_9 \oplus x_1x_2x_5x_7x_8x_9 \oplus x_1x_2x_5x_7x_8x_9 \oplus x_1x_2x_5x_7x_8x_9 \oplus x_1x_2x_7x_8x_9 \oplus x_1x_2x_5x_8x_9 \oplus x_1x_2x_5x_8x_9 \oplus x_1x_2x_5x_8x_9 \oplus x_1x_2x_5x_8x_9 \oplus x_1x_2x_5x_9 \oplus x_1x_2x_5x
531
                                                                             x_1x_2x_3x_4x_5x_7x_9 \oplus x_1x_2x_3x_4x_5x_8 \oplus x_1x_2x_3x_4x_5x_8 \oplus x_1x_2x_3x_4x_6x_7 \oplus x_1x_2x_3x_4x_7 \oplus x_1x_2x_3x_7 \oplus x_1x_2x_7 \oplus x_1x_2x
532
                                                                             533
                                                                             x_1x_2x_3x_5x_6 \oplus x_1x_2x_3x_5x_6x_7x_8 \oplus x_1x_2x_3x_5x_6x_7x_9 \oplus x_1x_2x_3x_5x_6x_8 \oplus x_1x_2x_3x_5x_6x_8x_9 \oplus x_1x_2x_3x_5x_7 \oplus x_1x_2x_3x_5x_7x_8x_9 \oplus x_1x_2x_3x_5x_6x_8x_9 \oplus x_1x_2x_5x_6x_8x_9 \oplus x_1x_2x_5x_6x_8x_9 \oplus x_1x_2x_3x_5x_6x_8x_9 \oplus x_1x_2x_5x_6x_8x_9 \oplus x_1x_2x_5x_6x_8x_9 \oplus x_1x_2x_5x_6x_8x_9 \oplus x_1x_2x_5x_6x_5x_6x_7x_9 \oplus x_1x_2x_5x_6x_7x_9 \oplus x_1x_2x_5x_6x_7x_9 \oplus x_1x_2x_5x_6x_7x_9 \oplus x_1x_2x_5x_6x_7x
534
535
                                                                                x_1x_2x_3x_5x_7x_9 \oplus x_1x_2x_3x_5x_8 \oplus x_1x_2x_3x_5x_9 \oplus x_1x_2x_3x_6 \oplus x_1x_2x_3x_6x_7 \oplus x_1x_2x_3x_6x_7x_8 \oplus x_1x_2x_3x_6x_7x_8x_9 \oplus x_1x_2x_3x_6x_7x_8 \oplus x_1x_2x_3x_6x_7 \oplus x_1x_2x_5x_7 \oplus x_1x_2x_5x_7 \oplus x_1x_2x_7 \oplus x_1x
                                                                             x_1x_2x_3x_6x_8x_9 \oplus x_1x_2x_3x_6x_9 \oplus x_1x_2x_3x_7x_8 \oplus x_1x_2x_3x_7x_9 \oplus x_1x_2x_3x_8 \oplus x_1x_2x_3x_8x_9 \oplus x_1x_2x_4x_5 \oplus x_1x_2x_4x_5 \oplus x_1x_2x_3x_6x_9 \oplus x_1x_2x_3x_1x_2x_3x_6x_9 \oplus x_1x_2x_3x_6x_9 \oplus x_1x_2x_6x_9 \oplus x_1x_2x_3x_6x_9 \oplus x_1x_2x_3x_6x_9 \oplus x_1x_2x_6x_9 \oplus x_1x_2x_3x_6x
536
                                                                             x_1x_2x_4x_5x_6x_7x_8x_9 \oplus x_1x_2x_4x_5x_6x_7x_9 \oplus x_1x_2x_4x_5x_6x_8 \oplus x_1x_2x_4x_5x_6x_9 \oplus x_1x_2x_4x_5x_7 \oplus x_1x_2x_4x_5x_7x_8 \oplus x_1x_2x_4x_5x_6x_7 \oplus x_1x_2x_4x_7 \oplus x_1x_2x_7 \oplus x_1x_2x_4x_7 \oplus x_1x_2x_7 \oplus x_1x_2x_7 \oplus x_1x_7 \oplus x_1x
537
                                                                             x_1x_2x_4x_5x_7x_8x_9 \oplus x_1x_2x_4x_5x_8x_9 \oplus x_1x_2x_4x_5x_9 \oplus x_1x_2x_4x_6 \oplus x_1x_2x_4x_6x_7x_8 \oplus x_1x_2x_4x_6x_7x_9 \oplus x_1x_2x_4x_6x_8 \oplus x_1x_2x_4x_8 \oplus x_1x_2x_8 \oplus x_1x_2x_4x_8 \oplus x_1x_2x_4x_8 \oplus x_1x_2x_4x_8 \oplus x_1x_2x_4x_8 \oplus x
538
                                                                             x_1x_2x_4x_6x_8x_9 \oplus x_1x_2x_4x_7 \oplus x_1x_2x_4x_7x_8x_9 \oplus x_1x_2x_4x_7x_9 \oplus x_1x_2x_4x_8 \oplus x_1x_2x_4x_9 \oplus x_1x_2x_5 \oplus x_1x_2x_5x_6 \oplus x_1x_2x_5 \oplus x_1x
539
540
                                                                             x_1x_2x_5x_8 \oplus x_1x_2x_5x_8x_9 \oplus x_1x_2x_6x_7 \oplus x_1x_2x_6x_7x_8x_9 \oplus x_1x_2x_6x_7x_9 \oplus x_1x_2x_6x_8 \oplus x_1x_2x_6x_9 \oplus x_1x_2x_7 \oplus x_1x_2x_6x_8 \oplus x_1x_2x_6x_9 \oplus x_1x_2x_6x
541
                                                                             542
                                                                             x_1x_3x_4x_5x_6x_8 \oplus x_1x_3x_4x_5x_6x_8x_9 \oplus x_1x_3x_4x_5x_7 \oplus x_1x_3x_4x_5x_7x_8x_9 \oplus x_1x_3x_4x_5x_7x_9 \oplus x_1x_3x_4x_5x_8 \oplus x_1x_3x_4x_5x_9 \oplus x_1x_3x_4x_5x_8 \oplus x_1x_3x_4x_5x_9 \oplus x_1x_3x_4x_5x_8 \oplus x_1x_3x_4x_5x_8 \oplus x_1x_3x_4x_5x_9 \oplus x_1x_3x_4x_5x_8 \oplus x_1x_5x_8 \oplus x_1x
543
                                                                             544
                                                                             x_1x_3x_4x_7x_9 \oplus x_1x_3x_4x_8 \oplus x_1x_3x_4x_8x_9 \oplus x_1x_3x_5 \oplus x_1x_3x_5x_6x_7 \oplus x_1x_3x_5x_6x_7x_8x_9 \oplus x_1x_3x_5x_6x_7x_9 \oplus x_1x_5x_6x_7x_9 \oplus x_1x_5x_7x_9 \oplus x_1x
545
                                                                             x_1x_3x_5x_6x_9 \oplus x_1x_3x_5x_7 \oplus x_1x_3x_5x_7x_8 \oplus x_1x_3x_5x_7x_8x_9 \oplus x_1x_3x_5x_8x_9 \oplus x_1x_3x_5x_9 \oplus x_1x_3x_6 \oplus x_1x_3x_6x_7x_8 \oplus x_1x_6x_8 \oplus x
546
                                                                             x_1x_3x_6x_7x_9 \oplus x_1x_3x_6x_8 \oplus x_1x_3x_6x_8x_9 \oplus x_1x_3x_7 \oplus x_1x_3x_7x_8x_9 \oplus x_1x_3x_7x_9 \oplus x_1x_3x_8 \oplus x_1x_3x_9 \oplus x_1x_4 \oplus x_1x_4x_5 \oplus x_1x_3x_6x_7x_9 \oplus x_1x_3x_6x_8 \oplus x_1x_6x_8 \oplus x_1x_6x_6x_8 \oplus x_1x_6x_6x_8 \oplus x_1x_6x_6x_8 \oplus x_1x_6x_6x_8 \oplus x_1x_6x_8 \oplus x
547
                                                                             x_1x_4x_5x_6 \oplus x_1x_4x_5x_6x_7 \oplus x_1x_4x_5x_6x_7x_8 \oplus x_1x_4x_5x_6x_7x_8x_9 \oplus x_1x_4x_5x_6x_8x_9 \oplus x_1x_4x_5x_6x_9 \oplus x_1x_4x_5x_7x_8 \oplus x_1x_4x_5x_6x_9 \oplus x_1x_5x_6x_9 \oplus x_1x_5x_6x
548
                                                                             549
                                                                                x_1x_4x_7 \oplus x_1x_4x_7x_8 \oplus x_1x_4x_7x_8x_9 \oplus x_1x_4x_8x_9 \oplus x_1x_4x_9 \oplus x_1x_5x_6 \oplus x_1x_5x_6x_7x_8 \oplus x_1x_5x_6x_7x_9 \oplus x_1x_5x_6x_8 \oplus x_1x_5x_6x_7x_9 \oplus x_1x_5x_6x_8 \oplus x_1x_5x_6x_7x_9 \oplus x_1x_5x_6x_8 \oplus x_1x_5x_6x_7x_9 \oplus x_1x_5x_6x_8 \oplus x_1x_5x_6x_7x_9 \oplus x_1x_5x_6x_9 \oplus x_1x
550
                                                                             x_1x_5x_6x_8x_9 \oplus x_1x_5x_7 \oplus x_1x_5x_7x_8x_9 \oplus x_1x_5x_7x_9 \oplus x_1x_5x_8 \oplus x_1x_5x_9 \oplus x_1x_6 \oplus x_1x_6x_7 \oplus x_1x_6x_7x_8 \oplus x_1x_6x_7x_8x_9 \oplus x_1x_6x_7x_8 \oplus x_1x_6x_8 \oplus x_1x
551
552
                                                                             x_1x_6x_8x_9 \oplus x_1x_6x_9 \oplus x_1x_7x_8 \oplus x_1x_7x_9 \oplus x_1x_8 \oplus x_1x_8x_9 \oplus x_2x_3 \oplus x_2x_3 \oplus x_2x_3x_4x_5 \oplus x_2x_3x_4x_5x_6x_7 \oplus x_2x_3x_4x_5x_6x_7 \oplus x_2x_3x_4x_5x_6x_7 \oplus x_2x_3x_4x_5 \oplus x_2x_3x_4 \oplus x_2x_3x_5 \oplus x_2x_3x_4 \oplus x_2x_3x_5 \oplus x_2x_3x_5 \oplus x_2x_3x_5 \oplus x_2x_3x_5 \oplus x_2x_3x_5 \oplus x_2x_5 \oplus x
                                                                             x_2x_3x_4x_5x_6x_7x_9 \oplus x_2x_3x_4x_5x_6x_8 \oplus x_2x_3x_4x_5x_6x_9 \oplus x_2x_3x_4x_5x_7 \oplus x_2x_3x_4x_5x_7x_8 \oplus x_2x_3x_4x_5x_7x_8y \oplus x_2x_3x_4x_5x_6x_9 \oplus x_2x_5x_6x_9 \oplus x_2x_5x_6x_9
553
                                                                             x_2x_3x_4x_5x_9 \oplus x_2x_3x_4x_6 \oplus x_2x_3x_4x_6x_7x_8 \oplus x_2x_3x_4x_6x_7x_9 \oplus x_2x_3x_4x_6x_8 \oplus x_2x_3x_4x_6x_8 \oplus x_2x_3x_4x_7 \oplus x_2x_3x_4x_7 \oplus x_2x_3x_4x_7 \oplus x_2x_3x_4x_6 \oplus x_2x_3x_4 
554
                                                                             x_2x_3x_4x_7x_9 \oplus x_2x_3x_4x_8 \oplus x_2x_3x_4x_9 \oplus x_2x_3x_5 \oplus x_2x_3x_5x_6 \oplus x_2x_3x_5x_6x_7 \oplus x_2x_3x_5x_6x_7x_8 \oplus x_2x_3x_5x_6x_7x_8x_9 \oplus x_2x_3x_5x_6x_7x_8 \oplus x_2x_5x_6x_7x_8 \oplus x_2x_5x_6x_7x_6x_7x_8 \oplus x_2x_5x_6x_7x_6x_7x_6x_7x_8 \oplus x_2x_5x_6x_7x_6x
555
                                                                             x_2x_3x_5x_6x_8x_9 \oplus x_2x_3x_5x_6x_9 \oplus x_2x_3x_5x_7x_8 \oplus x_2x_3x_5x_7x_9 \oplus x_2x_3x_5x_8 \oplus x_2x_3x_5x_8x_9 \oplus x_2x_3x_6x_7 \oplus x_2x_5x_6x_7 \oplus x_2x_5x_7 \oplus x_2x_7 \oplus x_2x
556
                                                                             x_2x_3x_6x_7x_9 \oplus x_2x_3x_6x_8 \oplus x_2x_3x_6x_9 \oplus x_2x_3x_7 \oplus x_2x_3x_7x_8 \oplus x_2x_3x_7x_8x_9 \oplus x_2x_3x_8x_9 \oplus x_2x_3x_9 \oplus x_2x_4 \oplus x_2x_4x_5x_6 \oplus x_2x_3x_6x_9 \oplus x_2x_6x_9 \oplus x
557
                                                                             x_2x_4x_5x_6x_7x_8 \oplus x_2x_4x_5x_6x_7x_9 \oplus x_2x_4x_5x_6x_8 \oplus x_2x_4x_5x_6x_8x_9 \oplus x_2x_4x_5x_7 \oplus x_2x_4x_5x_7x_8x_9 \oplus x_2x_4x_5x_7x_9 \oplus x_2x_4x_7x_7x_9 \oplus x_2x_7x_7x_9 \oplus x_2x_7x_9 \oplus x_2x_7x_7x_9 \oplus x_2x_7x_7x_9 \oplus x_2x
558
                                                                             x_2x_4x_5x_8 \oplus x_2x_4x_5x_9 \oplus x_2x_4x_6 \oplus x_2x_4x_6x_7 \oplus x_2x_4x_6x_7x_8 \oplus x_2x_4x_6x_7x_8 \oplus x_2x_4x_6x_9 \oplus x_2x_4x_6x_9 \oplus x_2x_4x_6x_7x_8 \oplus x_2x_4x_6x_7 \oplus x_2x_4x_7 \oplus x_2x_7 \oplus x
559
                                                                             x_2x_4x_7x_9 \oplus x_2x_4x_8 \oplus x_2x_4x_8x_9 \oplus x_2x_5 \oplus x_2x_5x_6x_7 \oplus x_2x_5x_6x_7x_8x_9 \oplus x_2x_5x_6x_7x_9 \oplus x_2x_5x_6x_8 \oplus x_2x_5x_6x_9 \oplus x_2x_5x_6x_5x_6x_7 \oplus x_2x_5x_6x_7 \oplus x_2x_5x_6x_7 \oplus x_2x_5x_6x_7 
560
                                                                                x_2x_5x_7 \oplus x_2x_5x_7x_8 \oplus x_2x_5x_7x_8x_9 \oplus x_2x_5x_8x_9 \oplus x_2x_5x_9 \oplus x_2x_6 \oplus x_2x_6x_7x_8 \oplus x_2x_6x_7x_9 \oplus x_2x_6x_8 \oplus x_2x_6x_8x_9 \oplus x_2x_6x_9 \oplus x
```

```
x_{2}x_{7} \oplus x_{2}x_{7}x_{8}x_{9} \oplus x_{2}x_{7}x_{9} \oplus x_{2}x_{8} \oplus x_{2}x_{9} \oplus x_{3} \oplus x_{3}x_{4} \oplus x_{3}x_{4}x_{5} \oplus x_{3}x_{4}x_{5}x_{6} \oplus x_{3}x_{4}x_{5}x_{6}x_{7} \oplus x_{5}x_{6}x_{7} \oplus x_{5}x_{7} \oplus x_{7}x_{7} \oplus x_{7}x_{7
562
                                                                                      x_3x_4x_5x_6x_7x_8x_9 \oplus x_3x_4x_5x_6x_8x_9 \oplus x_3x_4x_5x_6x_9 \oplus x_3x_4x_5x_7x_8 \oplus x_3x_4x_5x_7x_9 \oplus x_3x_4x_5x_8 \oplus x_3x_4x_5x_8x_9 \oplus x_3x_4x_5x_9 \oplus x_3x_5x_9 \oplus x_3x_5x_9 \oplus x_3x_5x_9 \oplus x_3x_5x_9 \oplus x_3x_5x_9 \oplus x
563
                                                                                      x_3x_4x_6x_7 \oplus x_3x_4x_6x_7x_8x_9 \oplus x_3x_4x_6x_7x_9 \oplus x_3x_4x_6x_8 \oplus x_3x_4x_6x_9 \oplus x_3x_4x_7 \oplus x_3x_4x_7x_8 \oplus x_3x_4x_7x_8x_9 \oplus x_3x_4x_8x_9 \oplus x_3x_4x_6x_7 \oplus x_3x_4x_7 \oplus x_3x_7 \oplus x_3x_7 \oplus x_3x_7 \oplus x_3x_7 \oplus x_3x_7 \oplus x_7 \oplus x
564
                                                                                      x_3x_4x_9 \oplus x_3x_5x_6 \oplus x_3x_5x_6x_7x_8 \oplus x_3x_5x_6x_7x_9 \oplus x_3x_5x_6x_8 \oplus x_3x_5x_6x_8 \oplus x_3x_5x_7 \oplus x_3x_5x_7 \oplus x_3x_5x_7x_8 \oplus x_3x_5x_7x_9 \oplus x_3x_5x_7 \oplus x_3x_7 \oplus x_7 
565
                                                                                      x_{3}x_{5}x_{8} \oplus x_{3}x_{5}x_{9} \oplus x_{3}x_{6} \oplus x_{3}x_{6}x_{7} \oplus x_{3}x_{6}x_{7}x_{8} \oplus x_{3}x_{6}x_{7}x_{8} \oplus x_{3}x_{6}x_{9} \oplus x_{3}x_{6}x_{9} \oplus x_{3}x_{7}x_{8} \oplus x_{3}x_{7}x_{9} \oplus x_{3}x_{8} \oplus x_{3}x_{7}x_{8} \oplus x_{3}x_{7}x_{9} \oplus x_{3}x_{8} \oplus x_{3}x_{7}x_{8} \oplus x_{7}x_{7}x_{8} \oplus x_{7}x_{7}x_{7} \oplus x_{7}x_{7} \oplus x_{
566
                                                                                          x_3x_8x_9 \oplus x_4x_5 \oplus x_4x_5x_6x_7 \oplus x_4x_5x_6x_7x_8x_9 \oplus x_4x_5x_6x_7x_9 \oplus x_4x_5x_6x_8 \oplus x_4x_5x_6x_9 \oplus x_4x_5x_7 \oplus x_4x_5x_7x_8 \oplus x_4x_5x_6x_9 \oplus x_5x_6x_9 
567
                                                                                      x_4x_5x_7x_8x_9 \oplus x_4x_5x_8x_9 \oplus x_4x_5x_9 \oplus x_4x_6 \oplus x_4x_6x_7x_8 \oplus x_4x_6x_7x_9 \oplus x_4x_6x_8 \oplus x_4x_6x_8x_9 \oplus x_4x_7 \oplus x_4x_7x_8x_9 \oplus x_4x_6x_8x_9 \oplus x_4x_5x_8x_9 \oplus x_4x_5x_8x_9 \oplus x_4x_5x_8x_9 \oplus x_4x_5x_8x_9 \oplus x_4x_5x_8x_9 \oplus x_4x_5x_8x_9 \oplus x_4x_6x_8x_9 \oplus x_4x_6x_9 \oplus x_4x_6x_8x_9 \oplus x_4x_6x_8x_9 \oplus x_4x_6x_8x_9 \oplus x_4x_6x_8x_9 \oplus x_4x_6x_8x_9 \oplus x_4x_6x_8x_9 \oplus x_6x_6x_9 \oplus x_6x_9 \oplus x_6x
568
                                                                                          x_4x_7x_9 \oplus x_4x_8 \oplus x_4x_9 \oplus x_5 \oplus x_5x_6 \oplus x_5x_6x_7 \oplus x_5x_6x_7x_8 \oplus x_5x_6x_7x_8x_9 \oplus x_5x_6x_8x_9 \oplus x_5x_6x_9 \oplus x_5x_7x_8 \oplus x_5x_6x_9 \oplus x_5x_6x
569
                                                                                      x_5x_7x_9 \oplus x_5x_8 \oplus x_5x_8x_9 \oplus x_6x_7 \oplus x_6x_7x_8x_9 \oplus x_6x_7x_9 \oplus x_6x_8 \oplus x_6x_9 \oplus x_7 \oplus x_7x_8 \oplus x_7x_8x_9 \oplus x_8x_9 \oplus x_9 = 0
570
                                                                                                                                                               571
```

 $x_0x_1x_2x_4x_5x_8x_9 \oplus x_0x_1x_2x_4x_5x_9 \oplus x_0x_1x_2x_4x_6 \oplus x_0x_1x_2x_4x_6x_7x_8 \oplus x_0x_1x_2x_4x_6x_7x_9 \oplus x_0x_1x_2x_4x_6x_8 \oplus x_0x_1x_2x_4x_6x_7x_8 \oplus x_0x_1x_2x_4x_6x_7x_9 \oplus x_0x_1x_2x_4x_6x_8 \oplus x_0x_1x_2x_4x_6x_7x_8 \oplus x_0x_1x_2x_4x_6x_8 \oplus x_0x_1x_2x_4x_6x_7x_8 \oplus x_0x_1x_2x_4x_6x_8 \oplus x_0x_1x_2x$ $x_0x_1x_2x_5x_6 \oplus x_0x_1x_2x_5x_6x_7 \oplus x_0x_1x_2x_5x_6x_7x_8 \oplus x_0x_1x_2x_5x_6x_7x_8x_9 \oplus x_0x_1x_2x_5x_6x_8x_9 \oplus x_0x_1x_2x_5x_6x_9 \oplus x_0x_1x_2x_5x_9 \oplus x_0x_1x_2x_5x_6x_9 \oplus x_0x_1x_2x_5x_6x_9 \oplus x_0x_1x_2x_5x_6x_9 \oplus x_0x_1x_2x_5x_9 \oplus x_0x_1x_2x$ $x_0x_1x_3x_4x_5x_6 \oplus x_0x_1x_3x_4x_5x_6x_7x_8 \oplus x_0x_1x_3x_4x_5x_6x_7x_9 \oplus x_0x_1x_3x_4x_5x_6x_8 \oplus x_0x_1x_3x_4x_5x_6x_8 \oplus x_0x_1x_3x_4x_5x_6 \oplus x_0x_1x_5x_6 \oplus x_0x$ $x_0x_1x_3x_4x_5x_7x_8x_9 \oplus x_0x_1x_3x_4x_5x_7x_9 \oplus x_0x_1x_3x_4x_5x_8 \oplus x_0x_1x_3x_4x_5x_9 \oplus x_0x_1x_3x_4x_6 \oplus x_0x_1x_3x_4x_6x_7 \oplus x_0x_1x_5x_7 \oplus x_0x_1x_7 \oplus x_0x_1x_5x_7 \oplus x_0x_1x_7 \oplus x$ $x_0x_1x_3x_4x_8 \oplus x_0x_1x_3x_4x_8x_9 \oplus x_0x_1x_3x_5 \oplus x_0x_1x_3x_5x_6x_7 \oplus x_0x_1x_3x_5x_6x_7x_8x_9 \oplus x_0x_1x_3x_5x_6x_7x_9 \oplus x_0x_1x_3x_5x_6x_8 \oplus x_0x_1x_3x_5x_6x_7x_8 \oplus x_0x_1x_3x_5x_6x_7 \oplus x_0x_1x_3x_5x_6x_7x_8x_9 \oplus x_0x_1x_3x_5x_6x_7x_8 \oplus x_0x_1x_3x_5x_6x_7 \oplus x_0x_1x_3x_5x_6x_7 \oplus x_0x_1x_3x_5x_6x_7x_8x_9 \oplus x_0x_1x_3x_5x_6x_7 \oplus x_0x_1x_5x_7 \oplus x_0x_1x_7 \oplus x_0x_1x_5x_7 \oplus x_0x_1x_7 \oplus x_0x_1x_5x_7 \oplus x_0x_1x_5x_7 \oplus x_0x_1x_7 \oplus x_0x_1x_5x_7 \oplus x_0x$ $x_0x_1x_3x_8 \oplus x_0x_1x_3x_9 \oplus x_0x_1x_4 \oplus x_0x_1x_4x_5 \oplus x_0x_1x_4x_5x_6 \oplus x_0x_1x_4x_5x_6x_7 \oplus x_0x_1x_4x_5x_6x_7x_8 \oplus x_0x_1x_5x_6x_7x_8 \oplus x_0x_1x_6x_7x_8 \oplus x_0x_1x_7x_8 \oplus x_0x_1x_6x_7x_8 \oplus x_0x_1x_6x_7x_8 \oplus x_0x_1x_6x_7x_8 \oplus x_0x$ $x_0x_1x_5x_7x_8x_9 \oplus x_0x_1x_5x_7x_9 \oplus x_0x_1x_5x_8 \oplus x_0x_1x_5x_9 \oplus x_0x_1x_6 \oplus x_0x_1x_6x_7 \oplus x_0x_1x_6x_7x_8 \oplus x_0x_1x_6x_7x_8x_9 \oplus x_0x_1x_6x_7x_8 \oplus x_0x_1x_6x_8 \oplus x_0x_1x_6x_8 \oplus x_0x_1x_6x_7x_8 \oplus x_0x_1x_6x_8 \oplus x_0x_1x_1x_6x_8 \oplus x_0x_1x_6x_8 \oplus x_0x_1x$ $x_0x_1x_6x_8x_9 \oplus x_0x_1x_6x_9 \oplus x_0x_1x_7x_8 \oplus x_0x_1x_7x_9 \oplus x_0x_1x_8 \oplus x_0x_1x_8x_9 \oplus x_0x_2x_3 \oplus x_0x_2x_3 + x_0x_2x_3x_4x_5 \oplus x_0x_2x_3x_4x_5 + x_0x_2x_3x_4x_5 \oplus x_0x_2x_3 + x_0x_3x_3 + x_0x$ $x_0x_2x_3x_4x_5x_7x_8x_9 \oplus x_0x_2x_3x_4x_5x_8x_9 \oplus x_0x_2x_3x_4x_5x_9 \oplus x_0x_2x_3x_4x_6 \oplus x_0x_2x_3x_4x_6x_7x_8 \oplus x_0x_2x_3x_4x_6x_7x_9 \oplus x_0x_2x_5x_9 \oplus x_0x_2x_5x_9 \oplus x_0x_2x_5x_9 \oplus x_0x_2x_5x_9 \oplus x_0x_2x_5x_9 \oplus x_0x_2x$ $x_0x_2x_3x_4x_6x_8 \oplus x_0x_2x_3x_4x_6x_8y \oplus x_0x_2x_3x_4x_7 \oplus x_0x_2x_3x_4x_7x_8y \oplus x_0x_2x_3x_4x_7x_9 \oplus x_0x_2x_3x_4x_8 \oplus x_0x_2x_3x_4x_9 \oplus x_0x_2x_3x_4x_8 \oplus x_0x_2x_3x_4x_3x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_4x_3x_3x_4x_3x_4x_3x_3x_4x_3x_3x_4x_3x_3x_4x_3x_3x_4x_3x_3x_4x_3x_3x_4x_3x_3x_$ $x_0x_2x_3x_5 \oplus x_0x_2x_3x_5x_6 \oplus x_0x_2x_3x_5x_6x_7 \oplus x_0x_2x_3x_5x_6x_7x_8 \oplus x_0x_2x_3x_5x_6x_7x_8x_9 \oplus x_0x_2x_3x_5x_6x_8x_9 \oplus x_0x_2x_3x_5x_6x_9 \oplus x_0x_2x_3x_5x_6x_7x_8 \oplus x_0x_2x_5x_6x_7x_8 \oplus x_0x_2x_5x_6x_7x_8 \oplus x_0x_2x_3x_5x_6x_7x_8 \oplus x_0x_2x_5x_6x_7x_8 \oplus x_0x_2x_5x_6x_7x_6x_7x_8x_6x_7x_8x_6x_7x_8x_6x_7x_8x_6x_7x_8x_6x_7x_8x_6x_7x_8x_6x_7x_8x_6x_7x_8x_6x_7x_8x_6x_7x_8x_6x_7x_8x_6x_7x_8x_6x_7x_8x_6x_7x_8x$ $x_0x_2x_3x_5x_7x_8 \oplus x_0x_2x_3x_5x_7x_9 \oplus x_0x_2x_3x_5x_8 \oplus x_0x_2x_3x_5x_8x_9 \oplus x_0x_2x_3x_6x_7 \oplus x_0x_2x_7 \oplus x_0x_2x_3x_6x_7 \oplus x_0x_2x_7 \oplus x_0x_2x_3x_6x_7 \oplus x_0x_2x_6x_7 \oplus x_0x_2x_6x_7 \oplus x_0x_2x_6x_7 \oplus x_0x_2x_6x_7 \oplus x_0x_2x_6x_7 \oplus x_0x_2x_6x$ $x_0x_2x_4x_5x_6 \oplus x_0x_2x_4x_5x_6x_7x_8 \oplus x_0x_2x_4x_5x_6x_7x_9 \oplus x_0x_2x_4x_5x_6x_8 \oplus x_0x_2x_4x_5x_6x_8x_9 \oplus x_0x_2x_4x_5x_7 \oplus x_0x_2x_4x_5x_7x_8x_9 \oplus x_0x_2x_4x_5x_6x_8x_9 \oplus x_0x_5x_6x_8x_9 \oplus x_0x_5x_6x_8x_9 \oplus x_0x_5x_6x_9 \oplus x_0x_5x_6x_9 \oplus x_0x_5x_6x_6x_8x_9 \oplus x_0x_5x_6x_8x_9 \oplus x_0x_5x_6x_8x_9 \oplus x_0x_5x_6x_9 \oplus x_0x_5x_6x_8x_9 \oplus x_0x_5x_6x_8x_9 \oplus x_0x_5x_6x_8x_9 \oplus x_0x_5x_6x_8x_9 \oplus x_0x_5x_6x_8x_9 \oplus x_0x_5x_6x_8x_9 \oplus x_0x_5x_6x_9 \oplus x_0x_5x_6x_9 \oplus x_0x_5x_6x_6x_9 \oplus x_0x_5x_6x_6x_9 \oplus x_0x_5x_6x_9 \oplus x_0x_5x_6x_6x_5x_6x_5x_6x_6x_5x_6x_6x$ $x_0x_2x_4x_5x_7x_9 \oplus x_0x_2x_4x_5x_8 \oplus x_0x_2x_4x_5x_9 \oplus x_0x_2x_4x_6 \oplus x_0x_2x_4x_6x_7 \oplus x_0x_2x_4x_6x_7x_8 \oplus x_0x_2x_4x_6x_7x_8x_9 \oplus x_0x_2x_4x_6x_7x_8 \oplus x_0x_2x_6x_7x_8 \oplus x_0x_2x_6x_8 \oplus x$ $x_0x_2x_4x_6x_8x_9 \oplus x_0x_2x_4x_6x_9 \oplus x_0x_2x_4x_7x_8 \oplus x_0x_2x_4x_7x_9 \oplus x_0x_2x_4x_8 \oplus x_0x_2x_4x_8x_9 \oplus x_0x_2x_5 \oplus x_0x_2x_5x_6x_7 \oplus x_0x_2x_5x_7 \oplus x_0x_2x_5x_6x_7 \oplus x_0x_2x_5x_6x_7 \oplus x_0x_2x_5x_6x_7 \oplus x_0x_2x_5x_6x_7 \oplus x_0x_2x_5x_7 \oplus x_0x_5x_7 \oplus x_0x_7 \oplus x_0x_7$ $x_0x_2x_5x_6x_7x_8x_9 \oplus x_0x_2x_5x_6x_7x_9 \oplus x_0x_2x_5x_6x_8 \oplus x_0x_2x_5x_6x_9 \oplus x_0x_2x_5x_7 \oplus x_0x_2x_5x_7x_8 \oplus x_0x_2x_5x_7x_8x_9 \oplus x_0x_2x_5x_7x_8 \oplus x_0x_2x_7x_8 \oplus x_0x_2x_5x_8 \oplus x_0x_2x_7x_8 \oplus x_0x$ $x_0x_2x_5x_8x_9 \oplus x_0x_2x_5x_9 \oplus x_0x_2x_6 \oplus x_0x_2x_6x_7x_8 \oplus x_0x_2x_6x_7x_9 \oplus x_0x_2x_6x_8 \oplus x_0x_2x_6x_6x_8 \oplus x_0x_2x_6x_8 \oplus x_0x_2x_6x_8 \oplus x_0x_2x_6x_8 \oplus x_0x_2x_6x$ $x_0x_2x_7x_9 \oplus x_0x_2x_8 \oplus x_0x_2x_9 \oplus x_0x_3 \oplus x_0x_3x_4 \oplus x_0x_3x_4x_5 \oplus x_0x_3x_4x_5x_6 \oplus x_0x_3x_4x_5x_6x_7 \oplus x_0x_3x_4x_5x_6x_7x_8 \oplus x_0x_3x_4x_5x_6x_7 \oplus x_0x_5x_6x_7 \oplus x_0x_5x_7 \oplus x_0x_5x_6x_7 \oplus x_0x_5x_7 \oplus x_0x_5x_6x_7 \oplus x_0x_5x_6x_7 \oplus x_0x_5x_7 \oplus x_0x_5x_7 \oplus x_0x_5x$ $x_0x_3x_4x_5x_6x_7x_8x_9 \oplus x_0x_3x_4x_5x_6x_8x_9 \oplus x_0x_3x_4x_5x_6x_9 \oplus x_0x_3x_4x_5x_7x_8 \oplus x_0x_3x_4x_5x_7x_9 \oplus x_0x_3x_4x_5x_8 \oplus x_0x_3x_4x_5x_6x_9 \oplus x_0x_5x_6x_9 \oplus x_0x_5x_6x_6x_9 \oplus x_0x_5x_6x_6x_9 \oplus x_0x_5x_6x_9 \oplus x_0x_5x_6x_6x_9 \oplus x_0x_5x_6x_9 \oplus x_0x_6x_9 \oplus x_0x_5x_6x_9 \oplus x_0x_6x_6x_9 \oplus x_0x_6x_6x_9 \oplus x_0x_6x_6x_9 \oplus x_0x_6x_9 \oplus x_0x_6x_9 \oplus x_0x_6x_6x_9 \oplus x_0x_6x_6x_9 \oplus x_0x_6x_9 \oplus x_0x_6x_6x_9 \oplus x_0x_6x_9 \oplus x_0x_9 \oplus x_0x_9$ $x_0x_3x_4x_5x_8x_9 \oplus x_0x_3x_4x_6x_7 \oplus x_0x_3x_4x_6x_7x_8x_9 \oplus x_0x_3x_4x_6x_7x_9 \oplus x_0x_3x_4x_6x_8 \oplus x_0x_3x_4x_6x_9 \oplus x_0x_3x_4x_7 \oplus x_0x_3x_4x_6x_9 \oplus x_0x_5x_6x_9 \oplus x_0x_6x_6x_9 \oplus x_0x_6x_6x_9 \oplus x_0x_6x_9 \oplus x_0x_9x_9 \oplus x_0x_9 \oplus x$ $x_0x_3x_5x_6x_8x_9 \oplus x_0x_3x_5x_7 \oplus x_0x_3x_5x_7x_8x_9 \oplus x_0x_3x_5x_7x_9 \oplus x_0x_3x_5x_8 \oplus x_0x_3x_5x_9 \oplus x_0x_3x_6 \oplus x_0x_3x_6x_7 \oplus x_0x_5x_6x_7 \oplus x_0x_5x_6x_7 \oplus x_0x_5x_6x_7 \oplus x_0x_6x_7 \oplus x_0x_7 \oplus x$

```
x_0x_3x_6x_7x_8 \oplus x_0x_3x_6x_7x_8x_9 \oplus x_0x_3x_6x_8x_9 \oplus x_0x_3x_6x_9 \oplus x_0x_3x_7x_8 \oplus x_0x_3x_7x_9 \oplus x_0x_3x_8 \oplus x_0x_3x_8x_9 \oplus x_0x_4x_5 \oplus x_0x_3x_6x_7x_8 \oplus x_0x_3x_6x_7 \oplus x_0x_7 \oplus x
613
614
                                                                                    x_0x_4x_5x_6x_7 \oplus x_0x_4x_5x_6x_7x_8x_9 \oplus x_0x_4x_5x_6x_7x_9 \oplus x_0x_4x_5x_6x_8 \oplus x_0x_4x_5x_6x_9 \oplus x_0x_4x_5x_7 \oplus x_0x_4x_5x_7x_8 \oplus x_0x_4x_5x_6x_9 \oplus x_0x_6x_9 \oplus x_0x_9 
                                                                                    x_0x_4x_5x_7x_8x_9 \oplus x_0x_4x_5x_8x_9 \oplus x_0x_4x_5x_9 \oplus x_0x_4x_6 \oplus x_0x_4x_6x_7x_8 \oplus x_0x_4x_6x_7x_9 \oplus x_0x_4x_6x_8 \oplus x_0x_4x_6x_8x_9 \oplus x_0x_4x_6x_9 \oplus x_0x_6x_9 \oplus x_0x_9 \oplus x
615
                                                                                    x_0x_4x_7 \oplus x_0x_4x_7x_8x_9 \oplus x_0x_4x_7x_9 \oplus x_0x_4x_8 \oplus x_0x_4x_9 \oplus x_0x_5 \oplus x_0x_5x_6 \oplus x_0x_5x_6x_7 \oplus x_0x_5x_6x_7x_8 \oplus x_0x_5x_6x_7x_8x_9 \oplus x_0x_6x_6x_9 \oplus x_0x_6x_6x_9 \oplus x_0x_6x_9 \oplus x
616
                                                                                    x_0x_5x_6x_8x_9 \oplus x_0x_5x_6x_9 \oplus x_0x_5x_7x_8 \oplus x_0x_5x_7x_9 \oplus x_0x_5x_8 \oplus x_0x_5x_8x_9 \oplus x_0x_6x_7 \oplus x_0x_6x_7x_8x_9 \oplus x_0x_6x_7x_9 \oplus x_0x_6x_7x_8 \oplus x_0x_6x_8 \oplus x
617
                                                                                       x_0x_6x_8 \oplus x_0x_6x_9 \oplus x_0x_7 \oplus x_0x_7x_8 \oplus x_0x_7x_8x_9 \oplus x_0x_8x_9 \oplus x_0x_9 \oplus x_1x_2 \oplus x_1x_2x_3x_4 \oplus x_1x_2x_3x_4x_5x_6 \oplus x_1x_2x_3x_4x_5x_6 \oplus x_1x_2x_3x_4x_5x_6 \oplus x_1x_2x_3x_4x_5x_6 \oplus x_1x_2x_3x_4x_5x_6 \oplus x_1x_2x_3x_4x_5x_6 \oplus x_1x_2x_3x_4 \oplus x_1x_2x_3x_4 \oplus x_1x_2x_3x_4x_5x_6 \oplus x_1x_2x_3x_4 \oplus x_1x_2x
618
                                                                                    619
                                                                                    x_1x_2x_3x_4x_5x_7x_9 \oplus x_1x_2x_3x_4x_5x_8 \oplus x_1x_2x_3x_4x_5x_9 \oplus x_1x_2x_3x_4x_6 \oplus x_1x_2x_3x_4x_6x_7 \oplus x_1x_2x_3x_4x_6x_7x_8 \oplus x_1x_2x_3x_4x_6x_7 \oplus x_1x_2x_3x_7 \oplus x_1x_2x_3x_4x_6x_7 \oplus x_1x_2x_3x_4x_7 \oplus x_1x_2x_3x_4x_7 \oplus x_1x_2x_3x_7 \oplus x_1x_2x_7 \oplus x_1x_2x_3x_4x_7 \oplus x_1x_2x_3x_4x_7 \oplus x_1x_2x_3x_4x
620
                                                                                    621
                                                                                       x_1x_2x_3x_5x_6x_7 \oplus x_1x_2x_3x_5x_6x_7x_8x_9 \oplus x_1x_2x_3x_5x_6x_7x_9 \oplus x_1x_2x_3x_5x_6x_8 \oplus x_1x_2x_3x_5x_6x_9 \oplus x_1x_2x_3x_5x_7 \oplus x_1x_2x_3x_5x_6x_9 \oplus x_1x_2x_5x_6x_9 \oplus x_1x_2x_5x_6x_9 \oplus x_1x_2x_5x_6x_9 \oplus x_1x_2x_5x_6x_7 \oplus x_1x_2x_5x_6x_7 \oplus x_1x_2x_5x_7 \oplus x_1x_2x_7 \oplus x_1x_2x_5x_7 \oplus x_1x_2x_5x_7 \oplus x_1x_2x_7 
622
                                                                                    x_1x_2x_3x_5x_7x_8 \oplus x_1x_2x_3x_5x_7x_8x_9 \oplus x_1x_2x_3x_5x_8x_9 \oplus x_1x_2x_3x_5x_9 \oplus x_1x_2x_3x_6 \oplus x_1x_2x_3x_6x_7x_8 \oplus x_1x_2x_3x_6x_7x_9 \oplus x_1x_2x_3x_6x_9 \oplus x_1x_2x_3x_6x_9 \oplus x_1x_2x_3x_6x_9 \oplus x_1x_2x_3x_6x_9 \oplus x_1x_2x_3x_9 \oplus x_1x
623
                                                                                    x_1x_2x_3x_6x_8 \oplus x_1x_2x_3x_6x_8x_9 \oplus x_1x_2x_3x_7 \oplus x_1x_2x_3x_7x_8x_9 \oplus x_1x_2x_3x_7x_9 \oplus x_1x_2x_3x_8 \oplus x_1x_2x_3x_9 \oplus x_1x_2x_4 \oplus x_1x_2x_3x_1 \oplus x_1x_2x_1 \oplus x_1x_1 
624
                                                                                    x_1x_2x_4x_5 \oplus x_1x_2x_4x_5x_6 \oplus x_1x_2x_4x_5x_6x_7 \oplus x_1x_2x_4x_5x_6x_7x_8 \oplus x_1x_2x_4x_5x_6x_7x_8x_9 \oplus x_1x_2x_4x_5x_6x_8x_9 \oplus x_1x_2x_4x_5x_6x_9 \oplus x_1x_2x_4x_5x_6x_7 \oplus x_1x_2x_4x_7 \oplus x_1x_2x_7 \oplus x_1x_2x
625
                                                                                    x_1x_2x_4x_5x_7x_8 \oplus x_1x_2x_4x_5x_7x_9 \oplus x_1x_2x_4x_5x_8 \oplus x_1x_2x_4x_5x_8x_9 \oplus x_1x_2x_4x_6x_7 \oplus x_1x_2x_4x_7 \oplus x_1x_2x_7 \oplus x
626
                                                                                    x_1x_2x_4x_6x_9 \oplus x_1x_2x_4x_6x_9 \oplus x_1x_2x_4x_7 \oplus x_1x_2x_4x_7x_8 \oplus x_1x_2x_4x_7x_8x_9 \oplus x_1x_2x_4x_8x_9 \oplus x_1x_2x_4x_9 \oplus x_1x_2x_5x_6 \oplus x_1x_2x_4x_6x_9 \oplus x_1x_2x_4x_7 \oplus x_1x_2x_7 \oplus x_1x_2x_7 \oplus x_1x_2x_7 \oplus x_1x_2x_7 \oplus x_1x_2x_7 \oplus x_1x_2x_7 \oplus x
627
                                                                                    x_1x_2x_5x_6x_7x_8 \oplus x_1x_2x_5x_6x_7x_9 \oplus x_1x_2x_5x_6x_8 \oplus x_1x_2x_5x_6x_8x_9 \oplus x_1x_2x_5x_7 \oplus x_1x_2x_5x_7x_8x_9 \oplus x_1x_2x_5x_7x_9 \oplus x_1x_2x_5x_7x_8 \oplus x_1x_2x_7x_8 \oplus x_1x_2x_5x_8 \oplus x_1x
628
                                                                                    x_1x_2x_5x_8 \oplus x_1x_2x_5x_9 \oplus x_1x_2x_6 \oplus x_1x_2x_6x_7 \oplus x_1x_2x_6x_7x_8 \oplus x_1x_2x_6x_8 \oplus x_1x_2x_8 \oplus x_1x_2x_6x_8 \oplus x_1x_2x_6x_8 \oplus x_1x_2x_6x_8 \oplus x_1x_2x_6x_8 \oplus x
629
                                                                                    x_1x_2x_7x_9 \oplus x_1x_2x_8 \oplus x_1x_2x_8x_9 \oplus x_1x_3 \oplus x_1x_3x_4x_5 \oplus x_1x_3x_4x_5x_6x_7 \oplus x_1x_3x_4x_5x_6x_7x_9 \oplus x_1x_5x_7x_9 \oplus x_1x_5x_9 \oplus x_1x_5x_9 \oplus x_1x_5x_9 \oplus x_1x_5x_9 \oplus x_1x_5x_9 \oplus x_1x
630
631
                                                                                    x_1x_3x_4x_5x_6x_8 \oplus x_1x_3x_4x_5x_6x_9 \oplus x_1x_3x_4x_5x_7 \oplus x_1x_3x_4x_5x_7x_8 \oplus x_1x_3x_4x_5x_7x_8x_9 \oplus x_1x_3x_4x_5x_8x_9 \oplus x_1x_5x_8x_9 \oplus x_1x_5x_9 \oplus x_1x_5x_8x_9 \oplus x_1x_5x_9 \oplus x_1x_5x
                                                                                    x_1x_3x_4x_6 \oplus x_1x_3x_4x_6x_7x_8 \oplus x_1x_3x_4x_6x_7x_9 \oplus x_1x_3x_4x_6x_8 \oplus x_1x_3x_4x_6x_8x_9 \oplus x_1x_3x_4x_7 \oplus x_1x_3x_4x_7x_8x_9 \oplus x_1x_3x_4x_6x_8x_9 \oplus x_1x_3x_6x_6x_9 \oplus x_1x_3x_6x_9 \oplus x_1x_5x_6x_9 \oplus x_1x_5x_9 \oplus x_1x_5x_6x_9 \oplus x_1x_5x_6x
632
                                                                                    633
                                                                                    x_1x_3x_5x_6x_8x_9 \oplus x_1x_3x_5x_6x_9 \oplus x_1x_3x_5x_7x_8 \oplus x_1x_3x_5x_7x_9 \oplus x_1x_3x_5x_8 \oplus x_1x_3x_5x_8x_9 \oplus x_1x_3x_6x_7 \oplus x_1x_6x_7 
634
                                                                                    636
637
                                                                                       x_1x_4x_5x_7x_9 \oplus x_1x_4x_5x_8 \oplus x_1x_4x_5x_9 \oplus x_1x_4x_6 \oplus x_1x_4x_6x_7 \oplus x_1x_4x_6x_7x_8 \oplus x_1x_4x_6x_7x_8x_9 \oplus x_1x_4x_6x_8x_9 \oplus x_1x_4x_6x_9 \oplus x_1x_6x_9 \oplus x_1x_6x
                                                                                    x_{1}x_{4}x_{6}x_{9} \oplus x_{1}x_{4}x_{7}x_{8} \oplus x_{1}x_{4}x_{7}x_{9} \oplus x_{1}x_{4}x_{8} \oplus x_{1}x_{4}x_{8}x_{9} \oplus x_{1}x_{5} \oplus x_{1}x_{5}x_{6}x_{7} \oplus x_{1}x_{5}x_{6}x_{7}x_{8}x_{9} \oplus x_{1}x_{5}x_{6}x_{7}x_{9} \oplus x_{1}x_{7}x_{9} \oplus x_{1}x_{7}x_{9}
638
                                                                                    x_1x_5x_6x_8 \oplus x_1x_5x_6x_9 \oplus x_1x_5x_7 \oplus x_1x_5x_7x_8 \oplus x_1x_5x_7x_8x_9 \oplus x_1x_5x_8x_9 \oplus x_1x_5x_9 \oplus x_1x_6 \oplus x_1x_6x_7x_8 \oplus x_1x_6x_7x_9 \oplus x_1x_6x_9 \oplus x_1x
639
                                                                                    x_1x_6x_8 \oplus x_1x_6x_8x_9 \oplus x_1x_7 \oplus x_1x_7x_8x_9 \oplus x_1x_7x_9 \oplus x_1x_8 \oplus x_1x_9 \oplus x_2 \oplus x_2x_3 \oplus x_2x_3x_4 \oplus x_2x_3x_4x_5 \oplus x_2x_3x_4x_5x_6 \oplus x_1x_6x_8 \oplus x_1x_6x_8 \oplus x_1x_7 
640
                                                                                       x_2x_3x_4x_5x_6x_7 \oplus x_2x_3x_4x_5x_6x_7x_8 \oplus x_2x_3x_4x_5x_6x_7x_8x_9 \oplus x_2x_3x_4x_5x_6x_9 \oplus x_2x_3x_4x_5x_6x_9 \oplus x_2x_3x_4x_5x_7x_8 \oplus x_2x_3x_4x_5x_6x_9 \oplus x_2x_5x_6x_9 \oplus x_2x_5x_6x_5x_6x_9 \oplus x_2x_5x_6x_9 \oplus x_2x_5x_5x_6x_9 \oplus x_2x_5x_5x_6x_9 \oplus x_2x_5x_6x_9 \oplus x_2x_5x
641
                                                                                    x_2x_3x_4x_5x_7x_9 \oplus x_2x_3x_4x_5x_8 \oplus x_2x_3x_4x_5x_8x_9 \oplus x_2x_3x_4x_6x_7 \oplus x_2x_3x_4x_6x_7x_8x_9 \oplus x_2x_3x_4x_6x_7x_9 \oplus x_2x_3x_4x_6x_8 \oplus x_2x_3x_4x_6x_7 \oplus x_2x_3x_7 \oplus x_2x_3x_4x_6x_7 \oplus x_2x_3x_4x_6x_7 \oplus x_2x_3x_4x_6x_7 \oplus x_2x_3x_4x_6x_7 \oplus x_2x_3x_7 \oplus x_2x_3x_7 \oplus x_2x_3x_7 \oplus x_2x_3x_7 \oplus x_2x_7 
642
                                                                                       643
                                                                                    x_2x_3x_5x_6x_7x_9 \oplus x_2x_3x_5x_6x_8 \oplus x_2x_3x_5x_6x_8x_9 \oplus x_2x_3x_5x_7 \oplus x_2x_3x_5x_7x_8x_9 \oplus x_2x_3x_5x_7x_9 \oplus x_2x_3x_5x_8 \oplus x_2x_3x_5x_9 \oplus x_2x_3x_5x_8 \oplus x_2x_5x_8 \oplus x
644
                                                                                    x_2x_3x_6 \oplus x_2x_3x_6x_7 \oplus x_2x_3x_6x_7x_8 \oplus x_2x_3x_6x_7x_8 \oplus x_2x_3x_6x_9 \oplus x_2x_3x_6x_9 \oplus x_2x_3x_7x_8 \oplus x_2x_3x_7x_9 \oplus x_2x_3x_6x_9 \oplus x_2x_3x_7x_8 \oplus x_2x_3x_7x_9 \oplus x_2x_3x_6x_9 \oplus x_2x_5x_9 \oplus x_2x_6x_9 \oplus x_2x_6x_9 \oplus x_2x_6x_9 \oplus x_2x_6x_9 \oplus x
645
                                                                                    x_{2}x_{4}x_{5}x_{7} \oplus x_{2}x_{4}x_{5}x_{7}x_{8} \oplus x_{2}x_{4}x_{5}x_{7}x_{8}x_{9} \oplus x_{2}x_{4}x_{5}x_{8}x_{9} \oplus x_{2}x_{4}x_{5}x_{9} \oplus x_{2}x_{4}x_{6} \oplus x_{2}x_{4}x_{6}x_{7}x_{8} \oplus x_{2}x_{4}x_{6}x_{7}x_{9} \oplus x_{2}x_{4}x_{5}x_{7}x_{8} \oplus x_{2}x_{4}x_{5}
647
                                                                                    x_2x_4x_6x_8 \oplus x_2x_4x_6x_8x_9 \oplus x_2x_4x_7 \oplus x_2x_4x_7x_8x_9 \oplus x_2x_4x_7x_9 \oplus x_2x_4x_8 \oplus x_2x_4x_9 \oplus x_2x_5 \oplus x_2x_5x_6 \oplus x_2x_5x_6x_7 \oplus x_2x_5x_6 \oplus x_2x_6 
648
                                                                                    x_{2}x_{5}x_{6}x_{7}x_{8} \oplus x_{2}x_{5}x_{6}x_{7}x_{8}x_{9} \oplus x_{2}x_{5}x_{6}x_{9} \oplus x_{2}x_{5}x_{6}x_{9} \oplus x_{2}x_{5}x_{7}x_{8} \oplus x_{2}x_{5}x_{7}x_{9} \oplus x_{2}x_{5}x_{8} \oplus x_{2}x_{5}x_{8}x_{9} \oplus x_{2}x_{6}x_{7} \oplus x_{2}x_{5}x_{6}x_{7} \oplus x_{2}x_{5}x_{7} \oplus x_{2}x_{7} \oplus x_{2}x_{7} \oplus x_{2}x_{7} \oplus x_{2}x_{7} \oplus x_{2}x_{7} \oplus x_{2}x_{7} \oplus x_{2}x_
649
                                                                                    x_2x_6x_7x_8x_9 \oplus x_2x_6x_7x_9 \oplus x_2x_6x_8 \oplus x_2x_6x_9 \oplus x_2x_7 \oplus x_2x_7x_8 \oplus x_2x_7x_8x_9 \oplus x_2x_8x_9 \oplus x_2x_9 \oplus x_3x_4 \oplus x_3x_4x_5x_6 \oplus x_3x_5x_6 \oplus x_3x_6 \oplus x_3x_6 \oplus x_3x_6 \oplus x_3x_6 \oplus x_3x_6 \oplus x_5x_6 \oplus x_5x
650
                                                                                    651
652
                                                                                       x_3x_4x_5x_8 \oplus x_3x_4x_5x_9 \oplus x_3x_4x_6 \oplus x_3x_4x_6x_7 \oplus x_3x_4x_6x_7x_8 \oplus x_3x_4x_6x_7x_8x_9 \oplus x_3x_4x_6x_8x_9 \oplus x_3x_4x_6x_9 \oplus x_3x_4x_7x_8 \oplus x_3x_4x_6x_7x_8 \oplus x_3x_6x_8 \oplus x_3x_6x_7x_8 \oplus x_3x_6x_8 \oplus x_3x_6x_8 \oplus x_3x_6x_8 \oplus x_3x_6x_8 \oplus x_3x_6x
                                                                                    x_3x_4x_7x_9 \oplus x_3x_4x_8 \oplus x_3x_4x_8x_9 \oplus x_3x_5 \oplus x_3x_5x_6x_7 \oplus x_3x_5x_6x_7x_8x_9 \oplus x_3x_5x_6x_7x_9 \oplus x_3x_5x_6x_8 \oplus x_3x_5x_6x_9 \oplus x_5x_6x_9 \oplus x_5x_6x
653
654
                                                                                    x_3x_5x_7 \oplus x_3x_5x_7x_8 \oplus x_3x_5x_7x_8x_9 \oplus x_3x_5x_8x_9 \oplus x_3x_5x_9 \oplus x_3x_6 \oplus x_3x_6x_7x_8 \oplus x_3x_6x_7x_9 \oplus x_3x_6x_8 \oplus x_3x_6x_8x_9 \oplus x_6x_8x_9 \oplus x_6x_9 \oplus x
                                                                                    x_3x_7 \oplus x_3x_7x_8x_9 \oplus x_3x_7x_9 \oplus x_3x_8 \oplus x_3x_9 \oplus x_4 \oplus x_4x_5 \oplus x_4x_5x_6 \oplus x_4x_5x_6x_7 \oplus x_4x_5x_6x_7x_8 \oplus x_4x_5x_6x_7x_8x_9 \oplus x_5x_6x_7x_8x_9 \oplus x_5x_6x_7x_8 \oplus x
655
                                                                                       x_4x_5x_6x_8x_9 \oplus x_4x_5x_6x_9 \oplus x_4x_5x_7x_8 \oplus x_4x_5x_7x_9 \oplus x_4x_5x_8 \oplus x_4x_5x_8x_9 \oplus x_4x_6x_7 \oplus x_4x_6x_7x_8x_9 \oplus x_4x_6x_7x_9 \oplus x_4x_6x_7x_8 \oplus x_4x_6x_7 \oplus x_4x_6x_7x_8 \oplus x_4x_6x_8 \oplus x_4x_6x_8 \oplus x_4x_6x_7 \oplus x_6x_8 
656
                                                                                    x_4x_6x_8 \oplus x_4x_6x_9 \oplus x_4x_7 \oplus x_4x_7x_8 \oplus x_4x_7x_8x_9 \oplus x_4x_8x_9 \oplus x_4x_9 \oplus x_5x_6 \oplus x_5x_6x_7x_8 \oplus x_5x_6x_7x_9 \oplus x_5x_6x_8 \oplus x_5x_6x_7x_9 \oplus x_5x_6x_8 \oplus x_5x_6x_7x_9 \oplus x_5x_6x_8 \oplus x_5x_6x_7x_9 \oplus x_5x_6x_9 \oplus x
657
                                                                                       x_5x_6x_8x_9 \oplus x_5x_7 \oplus x_5x_7x_8x_9 \oplus x_5x_7x_9 \oplus x_5x_8 \oplus x_5x_9 \oplus x_6 \oplus x_6x_7 \oplus x_6x_7x_8 \oplus x_6x_7x_8x_9 \oplus x_6x_8x_9 \oplus x_6x_9 \oplus x_6x
658
                                                                                    x_7x_8 \oplus x_7x_9 \oplus x_8 \oplus x_8x_9 = 0
659
```

660 Author Contributions.

61 Competing Interests.

662 Materials & Correspondence.

References

- Yakir Aharonov and Lev Vaidman. "The Two-State Vector Formalism: An Updated Review". In: *Time* in Quantum Mechanics. Ed. by J.G. Muga, R. Sala Mayato, and Í.L. Egusquiza. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 399–447.
- [2] Stephen M. Barnett, John Jeffers, and David T. Pegg. "Quantum Retrodiction: Foundations and Controversies". In: Symmetry 13.4 (2021).
- [3] Satosi Watanabe. "Symmetry of Physical Laws. Part III. Prediction and Retrodiction". In: Rev. Mod.
 Phys. 27 (2 Apr. 1955), pp. 179–186.