Appendix B: Exercises

MATLAB® Fundamentals for Aerospace Applications

MathWorks Training Services

Exercises

All exercise and solution files are found in the exercises subfolder of the C:\class\coursefiles\mlbe_o folder created by the course installer.

Standard Atmosphere I

Standard Atmosphere II

The Cassini-Huygens Spacecraft I

- 1. Load the file cassiniData1.mat.
- 2. Plot Radius vs. Time as a blue, dashed line.
- 3. Add annotations to the plot.
- 4. The maximum radius occurs at the last time. What is the maximum radius? Plot this value as a red circle on the plot.

Cassini-Huygens Radius vs Time

Following a Flight I

- 1. Load the file flightData.mat.
- 2. Plot altitude vs. time in black, with points and a solid line.
- 3. Add a title and axis labels.

HL-20 Flight Data

The Cassini-Huygens Spacecraft II

- 1. Start with cassiniPath1.
- 2. Find the smallest distance to the sun and the year and month that it occurred.
- 3. Plot the path in Cartesian coordinates:
 - Convert to radians.
 - Use sph2cart to convert from spherical to Cartesian coordinates.
 - Plot the *x-y* location.

Bonus: Use the **plot3** function to plot the x-y-z location.

Following a Flight II

- 1. Start with plotFlight1.
- 2. Find the time at which the altitude was incorrectly recorded.
- 3. Replace the value of the altitude at that time with the average of the altitude at the times on either side.
- 4. Plot altitude vs. time.

Following a Flight III

- 1. Start with plotFlight2.
- 2. Add vertical lines at the times between centers.

3. Add text to indicate which center each region

corresponds to.

Spectral Measurement

- Import the first column of spectra.
 xlsx.
- 2. Create variables lambdastart,
 dlambda, nObs, and
 lambdaend = lambdastart +
 (nObs 1) *dlambda
- Make a vector lambda from lambdastart to lambdaend in steps of dlambda.
- 4. Plot the spectrum as a function of lambda.

- 5. Add a vertical dashed line at $\lambda = 656.28$.
- 6. Calculate the average flux.
- 7. Calculate the flux anomaly (absolute difference from mean).
- 8. Plot the anomaly.
- Find the location of the maximum anomaly.
- 10. Calculate the speed of the star relative to Earth.

Delta-v for a Booster Rocket I

Delta-v for a Booster Rocket II

Wright Flyer Wind Tunnel Test I

Wright Flyer Wind Tunnel Test II

Satellite Terrain Image

UAV Capabilities I

UAV Capabilities II

L-444		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~ ~~~~~~~~~	`1
Cypher	2.5	45	5000	
Darkstar	8	1000	45000	
Eagle Eye	8	300	20000	
Firebee	1.25	470	60000	
Freewing	3.5	50	15000	
Hawk-i 7B	1	3	3000	
Hawk-i 7F	2	12	3000	
Hawk-i 7H	1	5	3000	
Huntair	7.5	80	17000	
Hunter	12	200	15000	
Javelin	1.5	6	3000	
Model 324	2.5	200	43000	
Model 350	1	400	40000	
Model 410	12	300	30000	
Outrider	4	160	15000	T i
Pathfinder	16	88	70000	
Perseus B	72	441	65620	
Porter	4	75	5000	T ' 🛦
Predator	29	700	40000	
Prowler	6	50	21000	T
Raptor	8	75	65000	
SASS Lite	5	100	9850	
Seabat	3	50	10000	
Shadow 600	14	100	17000	
Skyeye	10	175	18000	
Comment - war		~~~~~		_]

The Cassini-Huygens Spacecraft III

1. Load cassiniData2.mat and extract the columns Year, Month, Day, X, Y, and Z. Using X, Y, and Z, compute the radius.

2. Determine the dates when the craft crossed each planet's orbit.

- 3. Plot the position of the craft for each year in a different color.
- 4. Add the orbits of Mercury, Venus, Earth, Mars, Jupiter, and Saturn.

Atlantic Hurricanes

- 1. Load hurricaneData.mat.
- 2. Plot the wind speeds through time.
- 3. Find when the top 10 wind speeds were recorded.
- 4. Find the month in which each observation was made.
- 5. Make a histogram of the number of observations by month.

Wing Loading

Solar Radiation I

Solar Radiation II

UAV Capabilities III

Boeing® 747® Wing Area

Escape Velocity I

Escape Velocity II

Radius [m]

 2.44×10^{6}

 3.40×10^{6}

 7.15×10^{7}

 2.56×10^{7}

Escape Velocity III

