TAREA 1 UNIDAD 2

Tópicos de Inteligencia Artificial [10:00 – 11:00]

Instituto Tecnológico de Culiacán Ingeniería de Sistemas Computacionales Semestre X

Maestro: Zuriel Dathan Mora Félix

Alumno: Fernando Alonso Moreno Millan

L20170759@culiacan.tecnm.mx

Los problemas clásicos de optimización combinatoria, como el Problema de Programación de Trabajos (Job Shop Scheduling Problem, JSSP), el Problema de las N Reinas, el Árbol de Expansión Mínima (Minimum Spanning Tree, MST) y el Problema del Agente Viajero (Traveling Salesman Problem, TSP), han sido objeto de extensas investigaciones debido a su complejidad y aplicabilidad en diversas áreas. A continuación, se presenta un ensayo que aborda cada uno de estos problemas, sustentado en fuentes científicas y citado según las normas de la APA 8.

Problema de Programación de Trabajos (JSSP)

El JSSP es un desafío fundamental en la teoría de la programación y la optimización, donde se busca determinar la secuencia óptima de operaciones en máquinas para minimizar el tiempo total de procesamiento o makespan. Este problema es conocido por ser NP-difícil, lo que implica que no existe un algoritmo eficiente que garantice una solución óptima en todos los casos (Garey & Johnson, 1979).

Diversas metodologías han sido propuestas para abordar el JSSP. Entre ellas, los Algoritmos Genéticos han mostrado eficacia al explorar múltiples soluciones simultáneamente y aplicar operadores genéticos para converger hacia soluciones óptimas o cercanas a óptimas. Anaya Fuentes et al. (2016) propusieron una codificación del JSSP como un TSP y lo resolvieron utilizando Algoritmos Genéticos, comparando dos tipos de selección: por torneo y por ruleta. Los resultados demostraron la viabilidad de esta aproximación y su efectividad en la obtención de soluciones de calidad.

Problema de las N Reinas

El Problema de las N Reinas consiste en colocar N reinas en un tablero de ajedrez de NxN de manera que ninguna reina amenace a otra, es decir, que no compartan la misma fila, columna o diagonal. Este problema es un caso particular de problemas de satisfacción de restricciones y ha sido ampliamente estudiado en el campo de la inteligencia artificial y la teoría de algoritmos.

Las técnicas utilizadas para resolver el Problema de las N Reinas incluyen métodos de backtracking, algoritmos de búsqueda local y enfoques basados en programación de restricciones. Estos métodos han permitido no solo encontrar soluciones para valores específicos de N, sino también entender mejor las propiedades combinatorias y las estructuras de solución del problema (Bitner & Reingold, 1975).

Árbol de Expansión Mínima (MST)

El MST es un concepto fundamental en la teoría de grafos y tiene aplicaciones en el diseño de redes eficientes, como redes eléctricas, de comunicación y de transporte. Dado un grafo conexo y ponderado, el MST es un subgrafo que conecta todos los nodos con el peso total mínimo y sin ciclos.

Algoritmos clásicos como el de Kruskal (1956) y el de Prim (1957) han sido desarrollados para encontrar el MST de manera eficiente. Estos algoritmos son fundamentales en cursos de estructuras de datos y algoritmos debido a su simplicidad y eficiencia. Además, el MST tiene aplicaciones prácticas en problemas como el diseño de circuitos eléctricos y la optimización de rutas de transporte (Cormen et al., 2009).

Problema del Agente Viajero (TSP)

El TSP es uno de los problemas más estudiados en la optimización combinatoria. Consiste en encontrar la ruta más corta que permite a un agente visitar una serie de ciudades exactamente una vez y regresar al punto de partida. Al igual que el JSSP, el TSP es un problema NP-difícil, lo que ha motivado el desarrollo de diversas aproximaciones para su resolución.

Entre las técnicas exactas para resolver el TSP se encuentran los algoritmos de ramificación y poda, que pueden manejar instancias de tamaño moderado. Para instancias más grandes, se utilizan algoritmos heurísticos y metaheurísticos, como el método del vecino más cercano y los Algoritmos Genéticos. Anaya Fuentes et al. (2016) demostraron que es posible codificar el JSSP como un TSP y resolverlo mediante Algoritmos Genéticos, lo que resalta la versatilidad de estas técnicas en la resolución de problemas complejos.

Conclusión

Los problemas abordados en este ensayo representan desafíos significativos en el campo de la optimización combinatoria y la teoría de algoritmos. Las soluciones desarrolladas para estos problemas no solo han enriquecido el conocimiento teórico, sino que también han tenido un impacto práctico en diversas industrias y aplicaciones. La continua investigación en estos temas es esencial para abordar problemas cada vez más complejos en el mundo real.

Referencias

Anaya Fuentes, G. E., Hernández Gress, E. S., Seck Tuoh Mora, J. C., & Medina Marín, J. (2016). Solución al Problema de Secuenciación de Trabajos mediante el Problema del Agente Viajero. *Revista Iberoamericana de Automática e Informática Industrial*, 13(4), 430–437. https://doi.org/10.1016/j.riai.2016.07.003

Bitner, J. R., & Reingold, E. M. (1975). Backtrack Programming Techniques. *Communications of the ACM*, 18(11), 651–656. https://doi.org/10.1145/361219.361224

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). *Introduction to Algorithms* (3rd ed.). MIT Press.

Garey, M. R., & Johnson, D. S. (1979). *Computers and Intractability: A Guide to the Theory of NP-Completeness*. W. H. Freeman.