Basi di dati

Capitolo 6:

Progettazione di basi di dati: Metodologie e modelli per il progetto

Progettazione di basi di dati

- È una delle attività del processo di sviluppo dei sistemi informativi
- va quindi inquadrata in un contesto più generale:
- il ciclo di vita dei sistemi informativi:
 - Insieme e sequenzializzazione delle attività svolte da analisti, progettisti, utenti, nello sviluppo e nell'uso dei sistemi informativi
 - · attività iterativa, quindi ciclo

3/98

Fasi (tecniche) del ciclo di vita

- · Studio di fattibilità: definizione costi e priorità
- Raccolta e analisi dei requisiti: studio delle proprietà del sistema
- · Progettazione: di dati e funzioni
- Realizzazione
- · Validazione e collaudo: sperimenazione
- · Funzionamento: il sistema diventa operativo

Perché preoccuparci?

- Proviamo a modellare una applicazione definendo direttamente lo schema logico della base di dati:
 - · da dove cominciamo?
 - · rischiamo di perderci subito nei dettagli
 - dobbiamo pensare subito a come correlare le varie tabelle (chiavi etc.)
 - il modello relazionale è "rigido"

2/98

4/98

La progettazione di un sistema informativo riguarda due aspetti:

progettazione dei dati progettazione delle applicazioni

Ma:

i dati hanno un ruolo centrale

· i dati sono più stabili

I prodotti della varie fasi sono schemi di alcuni modelli di dati:

- · Schema concettuale
- Schema logico
- · Schema fisico

- Per garantire prodotti di buona qualità è opportuno seguire una
 - · metodologia di progetto, con:
 - · articolazione delle attività in fasi
 - · criteri di scelta
 - · modelli di rappresentazione
 - · generalità e facilità d'uso

Modello dei dati

- insieme di costrutti utilizzati per organizzare i dati di interesse e descriverne la dinamica
- componente fondamentale: meccanismi di strutturazione (o costruttori di tipo)
- come nei linguaggi di programmazione esistono meccanismi che permettono di definire nuovi tipi, così ogni modello dei dati prevede alcuni costruttori
- ad esempio, il modello relazionale prevede il costruttore relazione, che permette di definire insiemi di record omogenei

11/98

Schemi e istanze

- · In ogni base di dati esistono:
 - lo schema, sostanzialmente invariante nel tempo, che ne descrive la struttura (aspetto intensionale)
 - nel modello relazionale, le intestazioni delle tabelle
 - l'istanza, i valori attuali, che possono cambiare anche molto rapidamente (aspetto estensionale)
 - nel modello relazionale, il "corpo" di ciascuna tabella

13/98

Modelli concettuali, perché?

- Proviamo a modellare una applicazione definendo direttamente lo schema logico della base di dati:
 - · da dove cominciamo?
 - · rischiamo di perderci subito nei dettagli
 - dobbiamo pensare subito a come correlare le varie tabelle (chiavi etc.)
 - · i modelli logici sono rigidi

Due tipi (principali) di modelli

- modelli logici: utilizzati nei DBMS esistenti per l' organizzazione dei dati
 - · utilizzati dai programmi
 - indipendenti dalle strutture fisiche esempi: relazionale, reticolare, gerarchico, a oggetti
- modelli concettuali: permettono di rappresentare i dati in modo indipendente da ogni sistema
 - · cercano di descrivere i concetti del mondo reale
 - sono utilizzati nelle fasi preliminari di progettazione il più noto è il modello Entità-Relazione (nel seguito

il più noto è il modello Entità-Relazione (nel seguito verrà chiamato modello Entity-Relationship per non confondersi con la relazione del modello relazionale)

14/98

Modelli concettuali, perché?

- servono per ragionare sulla realtà di interesse, indipendentemente dagli aspetti realizzativi
- permettono di rappresentare le classi di oggetti di interesse e le loro correlazioni
- prevedono efficaci rappresentazioni grafiche (utili anche per documentazione e comunicazione)

Architettura (semplificata) di un
DBMS
utente
Schema logico
Schema interno

Progettazione concettuale

Progettazione logica

Progettazione fisica

Modello Entity-Relationship (Entità-Relazione)

- Il più diffuso modello concettuale
 - · Ne esistono molte versioni,
 - (più o meno) diverse l'una dall'altra

19/98

Entità

- Classe di oggetti (fatti, persone, cose) della realtà di interesse con proprietà comuni e con esistenza "autonoma"
- Esempi:
 - · impiegato, città, conto corrente, ordine, fattura

21/98

Uno schema E-R, graficamente

I costrutti del modello E-R

- Entità
- Relationship
- Attributo
- Identificatore
- Generalizzazione
-

20/98

Relationship

- Legame logico fra due o più entità, rilevante nell' applicazione di interesse
- Esempi:
 - Residenza (fra persona e città)
 - Esame (fra studente e corso)

Entità

 Classe di oggetti (fatti, persone, cose) della realtà di interesse con proprietà comuni e con esistenza "autonoma"

- Esempi:
 - impiegato, città, conto corrente, ordine, fattura

24/98

22/98

Entità: schema e istanza

- Entità:
 - · classe di oggetti, persone, ... "omogenei"
- Occorrenza (o istanza) di entità:
 - elemento della classe (l'oggetto, la persona, ..., non i dati)
- nello schema concettuale rappresentiamo le entità, non le singole istanze ("astrazione")

25/98

Entità, commenti

- Ogni entità ha un nome che la identifica univocamente nello schema:
 - · nomi espressivi
 - · opportune convenzioni
 - singolare

Rappresentazione grafica di relationship

Studente Esame Corso

Impiegato Residenza Città

Relationship

- Legame logico fra due o più entità, rilevante nell' applicazione di interesse
- · Esempi:
 - Residenza (fra persona e città)
 - Esame (fra studente e corso)
- · Chiamata anche:
 - · relazione, correlazione, associazione

Relationship, commenti

- Ogni relationship ha un nome che la identifica univocamente nello schema:
 - · nomi espressivi
 - · opportune convenzioni
 - singolare
 - sostantivi invece che verbi (se possibile)

30/98

33/98

35/98

"Promuoviamo" la relationship

Relationship, occorrenze

- Una occorrenza di una relationship binaria è coppia di occorrenze di entità, una per ciascuna entità coinvolta
- Una occorrenza di una relationship n-aria è una n-upla di occorrenze di entità, una per ciascuna entità coinvolta
- Nell'ambito di una relationship non ci possono essere occorrenze (coppie, ennuple) ripetute

32/98 **Attenzione** E2 **S1 C1 E3 S2** C2 **S3 E4 S4** C3 **Esame Studente** Corso 34/98

Attributo

- Proprietà elementare di un'entità o di una relationship, di interesse ai fini dell'applicazione
- Associa ad ogni occorrenza di entità o relationship un valore appartenente a un insieme detto dominio dell'attributo

Esempi di occorrenze Matricola: 34567 Data: 25/07/2004 Cognome: Rossi Codice: Inf205 Voto: 26 Nome: Mario Titolo: Basi di dati **E1 E2 S2** Matricola: 46742 Cognome: Neri Nome: Piero Esame Corso Studente 47/98

Attributi, rappresentazione grafica

46/98

Attributi composti

- Raggruppano attributi di una medesima entità o relationship che presentano affinità nel loro significato o uso
- · Esempio:

45/98

 Via, Numero civico e CAP formano un Indirizzo

Rappresentazione grafica Cognome Impiegato Età Via Numero CAP

Altri costrutti del modello E-R

- Cardinalità
 - · di relationship
 - · di attributo
- Identificatore
 - interno
 - esterno
- Generalizzazione

Cardinalità di relationship

- Coppia di valori associati a ogni entità che partecipa a una relationship
- specificano il numero minimo e massimo di occorrenze delle relationship cui ciascuna occorrenza di una entità può partecipare

Esempio di cardinalità

(2,5) (0,50) Impiegato Incarico

per semplicità usiamo solo tre simboli:

• 0 e 1 per la cardinalità minima:

• 0 = "partecipazione opzionale"

• 1 = "partecipazione obbligatoria"

• 1 e "N" per la massima:

"N" non pone alcun limite

54/98

Tipi di relationship

- Con riferimento alle cardinalità massime, abbiamo relationship:
 - uno a uno
 - · uno a molti
 - · molti a molti

Due avvertenze

- Attenzione al "verso" nelle relationship uno a molti
- le relationship obbligatorie-obbligatorie sono molto rare

60/98

Cardinalità di attributi

- E' possibile associare delle cardinalità anche agli attributi, con due scopi:
 - indicare opzionalità ("informazione incompleta")
 - · indicare attributi multivalore

62/98

Rappresentazione grafica

Identificatore di una entità

- "strumento" per l'identificazione univoca delle occorrenze di un'entità
- · costituito da:

63/98

- · attributi dell'entità
 - identificatore interno
- (attributi +) entità esterne attraverso relationship
 - · identificatore esterno

64/98

66/98

Identificatori interni

Cognome Matricola Nome (1,1) Studente Iscrizione Università Anno di corso Indirizzo

Identificatore esterno

Alcune osservazioni

- ogni entità deve possedere almeno un identificatore, ma può averne in generale più di uno
- una identificazione esterna è possibile solo attraverso una relationship a cui l'entità da identificare partecipa con cardinalità (1,1)
- perché non parliamo degli identificatori delle relationship?

67/98

Attenzione

 Differenze apparentemente piccole in cardinalità e identificatori possono cambiare di molto il significato ...

69/98

Generalizzazione

- mette in relazione una o più entità E1, E2, ..., En con una entità E, che le comprende come casi particolari
 - E è generalizzazione di E1, E2, ..., En
 - E1, E2, ..., En sono specializzazioni (o sottotipi) di E

Pipendente Dipendente Impiegato Dirigente 72/98

Proprietà delle generalizzazioni

Se E (genitore) è generalizzazione di E1, E2, ..., En (figlie):

- ogni proprietà di E è significativa per E1, E2, ..., En
- ogni occorrenza di E1, E2, ..., En è occorrenza anche di E

73/98

Ereditarietà

 tutte le proprietà (attributi, relationship, altre generalizzazioni) dell'entità genitore vengono ereditate dalle entità figlie e non rappresentate esplicitamente

Persona

Disoccupat

O

Lavoratore

Tipi di generalizzazioni

- totale se ogni occorrenza dell'entità genitore è occorrenza di almeno una delle entità figlie, altrimenti è parziale
- esclusiva se ogni occorrenza dell'entità genitore è occorrenza di al più una delle entità figlie, altrimenti è sovrapposta
- consideriamo (senza perdita di generalità) solo generalizzazioni esclusive e distinguiamo fra totali e parziali

76/98

Persona
Uomo Donna

Altre proprietà

- possono esistere gerarchie a più livelli e multiple generalizzazioni allo stesso livello
- un'entità può essere inclusa in più gerarchie, come genitore e/o come figlia
- se una generalizzazione ha solo un'entità figlia si parla di sottoinsieme
- · alcune configurazioni non hanno senso
- il genitore di una generalizzazione totale può non avere identificatore, purché ...

Esercizio

• Le persone hanno CF, cognome ed età; gli uomini anche la posizione militare; gli impiegati hanno lo stipendio e possono essere segretari, direttori o progettisti (un progettista può essere anche responsabile di progetto); gli studenti (che non possono essere impiegati) un numero di matricola; esistono persone che non sono né impiegati né studenti (ma i dettagli non ci interessano)

80/98

Documentazione associata agli schemi concettuali

- · dizionario dei dati
 - entità
 - relationship
- vincoli non esprimibili

82/98

Dizionario dei dati (entità)

Entità	Descrizione	Attributi	Identificatore
Impiegato	Dipendente dell'azienda	Codice, Cognome, Stipendio	Codice
Progetto	Progetti aziendali	Nome, Budget	Nome
Dipartimento	Struttura aziendale	Nome, Telefono	Nome, Sede
Sede	Sede dell'azienda	Città, Indirizzo	Città

Dizionario dei dati (relationship)

Relazioni	Descrizione	Componenti	Attributi
Direzione	Direzione di un dipartimento	Impiegato, Dipartimento	
Afferenza	Afferenza a un dipartimento	Impiegato, Dipartimento	Data
Partecipazione	Partecipazione a un progetto	Impiegato, Progetto	
Composizione	Composizione dell'azienda	Dipartimento, Sede	

85/98

Modellazione dei dati in UML

- UML viene talvolta utilizzato in alternativa al modello ER per la rappresentazione concettuale dei dati
- · Si fa uso dei diagrammi delle classi
- Cambia la rappresentazione diagrammatica ma non l'approccio alla progettazione
- Vediamo come sia possibile rappresentare schemi concettuali con UML

87/98

Associazioni

Vincoli non esprimibili

Vincoli di integrità sui dati

- (1) Il direttore di un dipartimento deve a afferire a tale dipartimento(2) Un impiegato non deve avere uno stipendio
- maggiore del direttore del dipartimento al quale afferisce
 (3) Un dipartimento con sede a Roma deve essere
- diretto da un impiegato con più di dieci anni di anzianità
- (4) Un impiegato che non afferisce a nessun dipartimento non deve partecipare a nessun un progetto

86/98

Classi

Impiegato
Codice
Cognome
Stipendio
Età

Progetto

Nome
Budget
Data consegna

88/98

Classe di associazione

89/98

