Understanding Deep Neural Networks

Chapter Three

Backpropagation Algorithm

Zhang Yi, *IEEE Fellow* Autumn 2019

Outline

- ■Brief Review of Computational Model of Neural Networks
- Network Performance: Cost Function
- ■Steepest Gradient Method
- Backpropagation
- ■Three Pages to Understand BP
- Only One Page to Understand BP
- ■The BP Algorithm
- Assignment

Computational Model of Neurons

w > 0, exciting connection

w = 0, no connection

w < 0, inhibition connection

Computational Model of Neurons

Computational Model of Neural Networks

Basic Model 3

Forward Computing

Local activation function f

Computing unit

l+1 layer i^{th} neuron

Layer *l*

Layer l+1

Computing unit

One page to understand forward computing

Forward computing a^l

Component form

$$\begin{cases} a_i^{l+1} = f(z_i^{l+1}) \\ z_i^{l+1} = \sum_{j=1}^{n_l} w_{ij}^l a_j^l \end{cases}$$

$$a_i^{l+1} = f\left(\sum_{j=1}^{n_l} w_{ij}^l a_j^l\right)$$

Vector form

$$\begin{cases} a^{l+1} = f(z^{l+1}) \\ z^{l+1} = w^l a^l \end{cases}$$

Algorithm:

Input
$$W^l$$
, a^1
for $l = 1$: L
 $a^{l+1} = fc(W^l, a^l)$
return

Function
$$fc(W^l, a^l)$$

 $for i = 1: n_{l+1}$
 $z_i^{l+1} = \sum_{j=1}^{n_l} w_{ij}^l a_j^l$
 $a_i^{l+1} = f(z_i^{l+1})$
 end

External Inputs

Internal representations / outputs / predictions

External inputs:

If neurons in l layer are not connected to any neurons in previous layer, these neurons are called external inputs of l+1 layer. External inputs can exist in any layer except the last one.

Nonlinear Mapping / Dynamical Systems

A neural network can be looked as a nonlinear mapping or a dynamical system.

$$\begin{bmatrix} a^{L} = f\left(W^{L-1}f\left(W^{L-2}f\left(W^{L-3}\cdots f(W^{1}a^{1})\right)\right)\right) \\ R^{n_{1}} & \\ & \text{Nonlinear mapping} \end{bmatrix}$$

$$a_i^{l+1} = f\left(\sum_{j=1}^{n_l} w_{ij}^l a_j^l\right) \xrightarrow{l \to t} a_i(t+1) = f\left(\sum_{j=1}^{n_t} w_{ij}(t) a_j(t)\right)$$

Discrete time dynamical system

Handwritten digits recognition

Outline

- ■Brief Review of Computational Model of Neural Networks
- Network Performance: Cost Function
- ■Steepest Gradient Method
- ■Backpropagation
- ■Three Pages to Understand BP
- Only One Page to Understand BP
- ■The BP Algorithm
- Assignment

Good Performance!

The father knows the correct answer.

Supervised Learning

Two important factors:

- 1. There must be a measure to measure the correctness between correct answer and the boy's real output. ----Performance function.
- 2. There must be a mechanism to change the knowledge system of the boy. ---- Learning algorithm.

updating the weights: Learning algorithm

Network prediction

$$a^L = \begin{bmatrix} a_1^L \\ \vdots \\ a_{n_L}^L \end{bmatrix}$$

Target

$$y^L = \begin{bmatrix} y_1^L \\ \vdots \\ y_{n_L}^L \end{bmatrix}$$

 $J(a^L, y^L)$

Performance function $J(a^L, y^L)$, or cost function, is used to describe the distance between a^L and y^L , $J(a^L, y^L)$ is indeed a function of (w^1, \dots, w^L) , i. e.,

$$J = J(w^1, \cdots, w^L).$$

Supervised Learning

Training Data

A training sample (x, y^L)

Network prediction Target

$$a^{L} = \begin{bmatrix} a_{1}^{L} \\ \vdots \\ a_{n_{L}}^{L} \end{bmatrix} \qquad y^{L} = \begin{bmatrix} y_{1}^{L} \\ \vdots \\ y_{n_{L}}^{L} \end{bmatrix}$$

Cost function

$$J(a^L, y^L) = J(w^1, \dots, w^L)$$

updating the weights: Learning algorithm

Problem: How to construct a cost function?

In supervised learning, each training sample contains input and the associated target output.

A cost function *J* describes the performance of the network. If the J is small, it implies that the network prediction a^L close to the target y^L , the network is called in good performance. Since *I* is a function with variables (w^1, \dots, w^L) , good performance means to find suitable (w^1, \dots, w^L) such that J is small. The process of looking for suitable (w^1, \dots, w^L) is called network learning.

Problem: How to learn?

Target

Network prediction

$$y^{L} = \begin{bmatrix} y_{1}^{L} \\ \vdots \\ y_{n_{L}}^{L} \end{bmatrix} \qquad \qquad a^{L} = \begin{bmatrix} a_{1}^{L} \\ \vdots \\ a_{n_{L}}^{L} \end{bmatrix}$$

$$a^L = \begin{bmatrix} a_1^L \\ \vdots \\ a_{n_L}^L \end{bmatrix}$$

There are many ways to construct cost functions. A frequently used cost is as follows:

$$e_{j} = a_{j}^{L} - y_{j}^{L}$$

$$J = \frac{1}{2} \sum_{j=1}^{n_{L}} e_{j}^{2} = J(w^{1}, \dots, w^{L})$$

Clearly, I is a function of w^1, \dots, w^L .

Learning is a process such that a^L is close to y^L , i.e., the cost function *J* reaches minimum. A cost function $J = J(w^1, \dots, w^{L-1})$ is a function with variables $w^l (l = 1, \dots, L)$, thus the network learning is to looking for some $w^l(l=1,\cdots,L)$ such that $w^l(l=1,\cdots,L)$ is a minimum point of *J*.

Problem: How to find out the minimum points of *J*?

Network prediction

$$a^L = \begin{bmatrix} a_1^L \\ \vdots \\ a_{n_L}^L \end{bmatrix}$$

Target

Network prediction

$$y^{L} = \begin{bmatrix} y_{1}^{L} \\ \vdots \\ y_{n_{L}}^{L} \end{bmatrix} \qquad \qquad a^{L} = \begin{bmatrix} a_{1}^{L} \\ \vdots \\ a_{n_{L}}^{L} \end{bmatrix}$$

$$a^L = \begin{bmatrix} a_1^L \\ \vdots \\ a_{n_L}^L \end{bmatrix}$$

A frequently used cost function:

$$J = \frac{1}{2} \sum_{j=1}^{n_L} e_j^2 = J(w^1, \dots, w^L)$$

J is a function of w^1, \dots, w^L .

Learning = Looking for minimum points $w^l(l = 1, \dots, L)$ of J

Outline

- ■Brief Review of Neural Networks Structure
- Network Performance: Cost Function
- ■Steepest Gradient Method
- Backpropagation
- ■Three Pages to Understand BP
- Only One Page to Understand BP
- ■The BP Algorithm
- Assignment

Minimum Points

$$J(w_1, w_2) = (w_2 - w_1)^4 + 8w_1w_2 - w_1 + w_2 + 3$$

Minima

General Nonlinear function $J(w), w \in \mathbb{R}^n$ w^* is a minimum point if $J(w^*) \leq J(w)$ for any w that very close to w^* .

$$J(w_1, w_2) = (w_1^2 - 1.5w_1w_2 + 2w_2^2)w_1^2$$

Contour

Minimum points

Problem:

How to find the minimum points?

Iteration Method

Finding a minimum point step by step

$$w(k+1) = w(k) + \alpha_k \cdot p_k$$

To begin the iteration, you must need a given starting point w_0 .

Problem: How to get the searching direction p_k ?

Steepest Descent Method

Slowest changing direction

Fastest increasing direction

$$g_{k} = \nabla J(w) \Big|_{w(k)} = \frac{\partial J}{\partial w} \Big|_{w(k)} = \begin{pmatrix} \overline{\partial w_{1}} \\ \vdots \\ \overline{\partial J} \\ \overline{\partial w_{n}} \end{pmatrix} \Big|_{w(k)}$$

Steepest Descent Algorithm:

$$p_k = -g_k$$

$$w(k+1) = w(k) - \alpha_k \cdot g_k$$

or

$$w(k+1) = w(k) - \alpha_k \cdot \frac{\partial J}{\partial w}\Big|_{w(k)}$$

Steepest descent direction

Steepest Descent Method

Steepest Descent Method

Steepest Descent Method

$$J = \frac{1}{2} \sum_{j=1}^{n_L} e_j^2 = \frac{1}{2} \sum_{j=1}^{n_L} (a_j^L - y_j^L)^2 = J(\dots, w_{ij}^l, \dots)$$

1. Computing

$$\frac{\partial J}{\partial w_{ji}^l}$$

2. Updating

$$w_{ji}^l \leftarrow w_{ji}^l - \alpha \cdot \frac{\partial J}{\partial w_{ji}^l}$$

Target

prediction

$$y^L = \begin{bmatrix} y_1^L \\ \vdots \\ y_{n_L}^L \end{bmatrix}$$

$$a^L = \begin{bmatrix} a_1^L \\ \vdots \\ a_{n_I}^L \end{bmatrix}$$

l + 1 layer

$$a^{L} = f(W^{L-1}a^{L-1}) = f\left(W^{L-1}f\left(W^{L-2}f\left(W^{L-3}\cdots f(W^{1}a^{1})\right)\right)\right)$$

Problem: How to compute $\frac{\partial J}{\partial w_{ii}^l}$?

Answer:

Using the well-known BP method.

Outline

- ■Brief Review of Neural Networks Structure
- Network Performance: Cost Function
- ■Steepest Gradient Method
- ■Backpropagation
- ■Three Pages to Understand BP
- ■Only One Page to Understand BP
- ■The BP Algorithm
- Assignment

Backpropagation

Backpropagation is a efficient way to calculate $\frac{\partial J}{\partial J}$

Cost function:

$$J = \frac{1}{2} \sum_{j=1}^{n_L} e_j^2 = \frac{1}{2} \sum_{j=1}^{n_L} (a_j^L - y_j^L)^2$$

Local function defined on neuron

Local activation function *f*

Global cost function J

$$\delta_{i}^{l} = \frac{\partial J}{\partial z_{i}^{l}}$$

$$\delta_{i}^{l} = \begin{bmatrix} \delta_{1}^{l} \\ \delta_{2}^{l} \\ \vdots \\ \delta_{n_{l}}^{l} \end{bmatrix}$$

Global function defined on network

$l ext{ layer}$ $a_i^l = f(z_i^l)$ define $\delta_i^l = rac{\partial J}{\partial z_i^l}$

Problem 1:

What's the relation between
$$\delta_i^l$$
 and $\frac{\partial J}{\partial w_{ji}^l}$?

$$J(W^1,\cdots,W^{L-1})$$

Relation between δ_i^l and $\frac{\partial J}{\partial w_{ji}^l}$

$$\frac{\partial J}{\partial w_{ji}^l} = \delta_j^{l+1} \cdot a_i^l$$

Why? $\frac{\partial J}{\partial w_{ii}^{l}} = \frac{\partial J}{\partial z_{i}^{l+1}} \cdot \frac{\partial z_{j}^{l+1}}{\partial w_{ii}^{l}} = \delta_{j}^{l+1} \cdot a_{i}^{l}$

l+1 layer

Problem 2: How to calculate the last layer's δ_i^L ?

By definition

$$\delta_i^L = \frac{\partial J}{\partial z_i^L}$$

If

$$J = \frac{1}{2} \sum_{j=1}^{n_L} (a_j^L - y_j^L)^2$$

then,

$$\delta_i^L = \frac{\partial J}{\partial z_i^L} = \left(a_i^L - y_i^L\right) \cdot \frac{\partial a_i^L}{\partial z_i^L} = \left(a_i^L - y_i^L\right) \cdot \dot{f}(z_i^L)$$

L layer i^{th} neuron

$$\delta_{i}^{l} = \frac{\partial J}{\partial z_{i}^{l}} = \sum_{j=1}^{n_{l+1}} \frac{\partial J}{\partial z_{j}^{l+1}} \cdot \frac{\partial z_{j}^{l+1}}{\partial z_{i}^{l}} = \sum_{j=1}^{n_{l+1}} \delta_{j}^{l+1} \cdot \frac{\partial z_{j}^{l+1}}{\partial z_{i}^{l}} = \sum_{j=1}^{n_{l+1}} \delta_{j}^{l+1} \cdot w_{ji}^{l} \dot{f}(z_{i}^{l}) = \dot{f}(z_{i}^{l}) \cdot \left(\sum_{j=1}^{n_{l+1}} \delta_{j}^{l+1} \cdot w_{ji}^{l}\right)$$

Outline

- ■Brief Review of Neural Networks Structure
- Network Performance: Cost Function
- ■Steepest Gradient Method
- Backpropagation
- ■Three Pages to Understand BP
- ■Only One Page to Understand BP
- ■The BP Algorithm
- Assignment

Three Pages to Understand BP: The first page

Cost function: $J(w^1, \dots, w^L)$

Updating rule: $w_{ji}^l \leftarrow w_{ji}^l - \alpha \cdot \frac{\partial J}{\partial w_{ji}^l}$

Relationship: $\frac{\partial J}{\partial w_{ji}^l} = \delta_j^{l+1} \cdot a_i^l$

Three Pages to Understand BP: The second page

Three Pages to Understand BP: The third page

Outline

- ■Brief Review of Neural Networks Structure
- Network Performance: Cost Function
- ■Steepest Gradient Method
- Backpropagation
- ■Three Pages to Understand BP
- ■Only One Page to Understand BP
- ■The BP Algorithm
- Assignment

Only One Page to Understand BP

Cost function: $J(w^1, \dots, w^L)$

Updating rule: $w_{ji}^l \leftarrow w_{ji}^l - \alpha \cdot \frac{\partial J}{\partial w_{ji}^l}$

Relationship: $\frac{\partial J}{\partial w_{ii}^l} = \delta_j^{l+1} \cdot a_i^l$

l layer ith neuron

Outline

- ■Brief Review of Neural Networks Structure
- Network Performance: Cost Function
- ■Steepest Gradient Method
- Backpropagation
- ■Three Pages to Understand BP
- ■Only One Page to Understand BP
- ■The BP Algorithm
- Assignment

function
$$fc(W^l, a^l)$$

 $for i = 1: n_{l+1}$
 $z_i^{l+1} = \sum_{j=1}^{n_l} w_{ij}^l a_j^l$
 $a_i^{l+1} = f(z_i^{l+1})$
end

function
$$bc(W^l, \delta^{l+1})$$
 $for \ i = 1: n_l$

$$\delta_i^l = \dot{f}(z_i^l) \cdot \left(\sum_{j=1}^{n_{l+1}} w_{ji}^l \delta_j^{l+1}\right)$$
 end

Training Data

 $D = \{(x, y^L) | m \text{ samples} \}$

x: input sample y^L : target output

There are two ways to train the network.

1. Online training: For each sample $(x, y) \in D$, define a cost function, for example, as

$$J(x,y) = \frac{1}{2} \sum_{j=1}^{n_L} (a_j^L - y_j^L)^2$$

2. Batch training: Define cost function as

$$J = \frac{1}{m} \sum_{(x,y) \in D} J(x,y)$$

Online BP Algorithm:

Step 1. Input the training data set $D = \{(x, y^L)\}$

Step 2. Initial each w_{ij}^l , and choose a learning rate α .

Step 3. Choose a sample
$$(x, y^L) \in D$$
, define $J(x, y^L)$, set $a^1 = x$ for $l = 1$: L $fc(w^l, a^l)$; end

$$\delta^L = \frac{\partial J(x, y^L)}{\partial z^L};$$

for
$$l = L - 1:1$$

$$bc(w^l, \delta^{l+1});$$

end

Step 4. Updating

$$\frac{\partial J}{\partial w_{ji}^{l}} = \delta_{j}^{l+1} \cdot \alpha_{i}^{l}$$

$$w_{ji}^{l} \leftarrow w_{ji}^{l} - \alpha \cdot \frac{\partial J(x, y)}{\partial w_{ii}^{l}}$$

Step 5. Return to Step 3 until each w^l converge.

function
$$fc(w^l, a^l)$$

 $for i = 1: n_{l+1}$
 $z_i^{l+1} = \sum_{j=1}^{n_l} w_{ij}^l a_j^l$
 $a_i^{l+1} = f(z_i^{l+1})$
 end

Relationship:
$$\frac{\partial J}{\partial w_{ii}^l} = \delta_j^{l+1} \cdot a_i^l$$

function
$$bc(w^l, \delta^{l+1})$$
 $for \ i = 1: n_l$

$$\delta_i^l = \dot{f}(z_i^l) \cdot \left(\sum_{j=1}^{n_{l+1}} w_{ji}^l \delta_j^{l+1}\right)$$
 end

Batch BP Algorithm:

Step 1. Input the training data set $D = \{(x, y^L)\}$

Step 2. Initial each w_{ij}^l , and choose a learning rate α .

Step 3. For each sample
$$(x, y^L) \in D$$
, set $a^1 = x$

for
$$l = 1: L$$

 $fc(w^l, a^l);$

end

$$\delta^L = \frac{\partial J}{\partial z^L};$$

for
$$l = L - 1:1$$

$$bc(w^l, \delta^{l+1});$$

end

$$\frac{\partial J}{\partial w_{ii}^l} \leftarrow \frac{\partial J}{\partial w_{ii}^l} + \delta_j^{l+1} \cdot a_i^l$$

Step 4. Updating

$$w_{ji}^l \leftarrow w_{ji}^l - \alpha \cdot \frac{\partial J}{\partial w_{ji}^l}$$

Step 5. Return to Step 3 until each w^l converge.

function
$$fc(w^l, a^l)$$

 $for i = 1: n_{l+1}$
 $z_i^{l+1} = \sum_{j=1}^{n_l} w_{ij}^l a_j^l$
 $a_i^{l+1} = f(z_i^{l+1})$
 end

$$\frac{\partial J}{\partial w_{ii}^l} = \delta_j^{l+1} \cdot a_i^l$$

function
$$bc(w^l, \delta^{l+1})$$

$$for \ i = 1: n_l$$

$$\delta_i^l = \dot{f}(z_i^l) \cdot \left(\sum_{j=1}^{n_{l+1}} w_{ji}^l \delta_j^{l+1}\right)$$

end

Outline

- ■Brief Review of Neural Networks Structure
- Network Performance: Cost Function
- ■Steepest Gradient Method
- Backpropagation
- ■Three Pages to Understand BP
- ■Only One Page to Understand BP
- ■The BP Algorithm
- Assignment

Assignment

Assignment 1: Encoding the BP algorithms by MATLAB.

Batch BP Algorithm:

Step 1. Input the training data set $D = \{(x, y^L)\}$

Step 2. Initial each w_{ij}^l , and choose a learning rate α .

Step 3. For each sample
$$(x, y^L) \in D$$
, set $a^1 = x$

for
$$l = 1: L$$

 $fc(W^l, a^l)$;
end

$$\delta^L = \frac{\partial J}{\partial z^L};$$

for $l = L - 1: 1$
 $bc(\delta^{l+1});$
end

$$\frac{\partial J}{\partial w_{ji}^l} \leftarrow \frac{\partial J}{\partial w_{ji}^l} + \delta_j^{l+1} \cdot a_i^l$$

Step 4. Updating

$$w_{ji}^l \leftarrow w_{ji}^l - \alpha \cdot \frac{\partial J}{\partial w_{ji}^l}$$

Step 5. Return to Step 3 until each w^l converge.

Function
$$fc(W^l, a^l)$$

 $for i = 1: n_{l+1}$

$$z_i^{l+1} = \sum_{j=1}^{n_l} w_{ij}^l a_j^l$$

$$a_i^{l+1} = f(z_i^{l+1})$$
end

Function
$$bc(W^l, \delta^{l+1})$$
 $for \ i = 1: n_l$

$$\delta_i^l = \dot{f}(z_i^l) \cdot \left(\sum_{j=1}^{n_{l+1}} w_{ji}^l \delta_j^{l+1}\right)$$
 end

Online BP Algorithm:

Step 1. Input the training data set $D = \{(x, y^L)\}$

Step 2. Initial each w_{ij}^l , and choose a learning rate α .

Step 3. Choose a sample $(x, y^L) \in D$, define $J(x, y^L)$, set $a^1 = x$

for
$$l = 1:L$$

 $fc(W^l, a^l)$;
end

$$\delta^L = \frac{\partial J(x, y^L)}{\partial z^L};$$

for $l = L - 1:1$
 $bc(\delta^{l+1});$
end

Step 4. Updating

$$w_{ji}^l \leftarrow w_{ji}^l - \alpha \cdot \frac{\partial J(x, y^L)}{\partial w_{ii}^l}$$

Step 5. Return to Step 3 until each w^l converge.

Assignment

Assignment 2: Reform the following two networks to be in standard form, i.e., no any connection in any layer, no connection across any layer.

Thanks