§1 线性空间与子空间

程光辉

2020年2月28日

定义 1 若 P 是一个数集, 其中任意两个数作加、减、乘、除 (除数不为 0) 四则运算后, 其结果仍在 P 中, 就称 P 是一个数域.

常用的数域: 有理数域 \mathbf{Q} 、实数域 \mathbf{R} 、复数域 \mathbf{C} . 其它数域, 例如:

$$Q(\sqrt{2}) = \{a + b\sqrt{2} | a, b \in Q\}.$$

定义 2 设 V 是一个非空集合,P 是一个数域. 在集合 V 的元素之间定义了一种代数运算,叫做加法: 即对于 V 中的任意两个元素 α , β , 经过加法运算后在 V 中有唯一的元素 γ 与之对应,称 γ 为 α 和 β 的和,记 $\gamma = \alpha + \beta$. 在数域 P 与集合 V 的元素之间还定义了一种运算,叫做数量乘法: 对于数域 P 的任一数 k 和集合 V 中任一元 α , 在 V 中有唯一的元素 δ 与它们对应,称 δ 为 k 与 α 的数量乘积,记 $\delta = k\alpha$. 如果加法和数量乘法还满足以下八条规则 ℓ (假设 α , β , $v \in V$, k, ℓ \in ℓ):

- (1) $\alpha + \beta = \beta + \alpha$
- (2) $(\alpha + \beta) + v = \alpha + (\beta + v)$
- (3) 存在零元 0, 对 V 中任一元素 α , 有 $\alpha + 0 = \alpha$ (加法零元)
- (4) 对 V 中任一元素 α , 都存在 V 中元素 β , 使得 $\alpha + \beta = 0$ (负元素)
- (5) $1\alpha = \alpha$
- (6) $k(l\alpha) = (kl)\alpha$
- (7) $(k+l)\alpha = k\alpha + l\alpha$
- (8) $k(\alpha + \beta) = k\alpha + k\beta$

则称 V 为数域 P 上的线性空间, 其中元素也常称为向量.

例 1 判断下列描述的集合是否是线性空间:

- (1) 所有 $m \times n$ 的实矩阵集合, 在实数域 R 上是否构成线性空间?
- (2) 数域 P 按照本身的加法和数乘?
- (3) 三维空间中所有不平行于某一条直线的向量, 按照向量的加法和数乘构成的集合?
- (4) 全体实函数按照函数的加法与数乘构成的集合, 在实数域 R 上是否构成线性空间?

定义 3 在线性空间 V 中, 如果有 n 个向量 $\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n$ 线性无关, 而 V 中任意 n+1 个向量线性相关, 则称 $\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n$ 为 V 的一组基底. n 称为线性空间 V 的维数, 常记为 dimV=n.

在线性空间 V 中, 由向量组 $\alpha_1, \alpha_2, \ldots, \alpha_s$ 生成的子空间记为

$$L(\alpha_1, \alpha_2, \ldots, \alpha_s)$$
 $\not\equiv \operatorname{span}\{\alpha_1, \alpha_2, \ldots, \alpha_s\},\$

其维数等于 $\alpha_1, \alpha_2, \ldots, \alpha_s$ 的秩, $\alpha_1, \alpha_2, \ldots, \alpha_s$ 的最大无关组为子空间的基.

例 2 构造下列线性空间的一组基, 确定其维数:

- (1) $\mathbf{P}^{m \times n}$?
- (2) $\mathbf{P}^{n \times n}$ 上的所有对称矩阵?
- (3) 复数域 C 在自身以及在实数域 R 上?
- 解: (1) $\mathbf{P}^{m \times n}$ 的基为 E_{ij} , $i = 1, 2, \dots, m, j = 1, 2, \dots, n$, E_{ij} 表示 (i, j) 位置为 1, 其余为 0 的 $m \times n$ 矩阵. 因此, $dim \mathbf{P}^{m \times n} = mn$.
 - (2) $\mathbf{P}^{n \times n}$ 上的所有对称矩阵的基为 $E_{ij} + E_{ji}, i, j = 1, 2, \dots, n$, 其维数为 $\frac{n(n+1)}{2}$.
- (3) 复数域 C 在自身的基为 1, 维数为 1; 复数域 C 在实数域 R 上的基为 1, *i*, 维数为 2.

定义 4 如果数域 P 上的线性空间 V 的一个非空子集 W 对于的两种运算也构成线性空间,则称 W 为 V 的一个线性子空间 (简称子空间).

两个平凡子空间: V 自身与 $\{0\}$.

例 3 回答下列问题, 在实数域 R 上,

(1) R^3 的子空间有几类?

(2)
$$W = \left\{ \begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix} | a, b \in \mathbf{R} \right\}$$
 是 $\mathbf{R}^{2 \times 2}$ 的子空间吗?

- (3) $A \in \mathbb{R}^{n \times n}$, 则 Ax = 0 的所有解向量?
- (4) R^2 是 R^3 的子空间吗?

解: (1) 4 类, 分别是 0 维、1 维、2 维、3 维子空间.

- (2) 是 2 维子空间.
- (3) 是 n rank(A) 维子空间.
- (4) 不是.

例 4 对矩阵 $A \in \mathbb{R}^{m \times n}$, 有如下四个基本子空间:

- (1) 值域空间 $\mathbf{R}(A) = \{Ax | x \in \mathbf{R}^n\} \subseteq \mathbf{R}^m$ 列向量空间;
- (2) 行向量空间 $\mathbf{R}(A^T) = \{A^T y | y \in \mathbf{R}^m\} \subset \mathbf{R}^n$;
- (3) 核空间 $N(A) = \{x | Ax = 0\} \subseteq \mathbb{R}^n$;
- (4) 左核 $N(A^T) = \{y | A^T y = 0\} \subseteq \mathbb{R}^m$.

定理 1 对矩阵 $A \in \mathbb{R}^{m \times n}$ 的四个基本子空间, 有如下性质:

- (1) $\forall b \in \mathbf{R}(A), \ \mathbb{M} \ \exists x \in \mathbf{R}^n, \ s.t. \ Ax = b;$
- (2) $\forall a \in \mathbf{R}(A^T), \ \mathbb{N} \ \exists y \in \mathbf{R}^m, \ s.t. \ y^T A = a^T;$
- (3) $N(A) = \{0\} \Leftrightarrow rank(A) = n$;
- (4) $N(A^T) = \{0\} \Leftrightarrow rank(A) = m$.

例 5 设 V_1,V_2 是线性空间 V 的两个非平凡子空间,证明:存在向量 $\alpha\in V$,使 $\alpha\not\in V_1$, $\alpha\not\in V_2$ 同时成立.

证明:分3种情况进行讨论.

- (1) 因为 V_1 是非平凡子空间,则存在向量 $\alpha \notin V_1$,如果 $\alpha \notin V_2$,则结论成立;
- (2) 同理, V_2 是非平凡子空间,则存在向量 $\beta \notin V_2$,如果 $\beta \notin V_1$,则结论成立;
- (3) 如果 $\alpha \in V_2$,就有 $\alpha \in V_2$, $\beta \notin V_2$;如果 $\beta \in V_1$,就有 $\alpha \notin V_1$, $\beta \in V_1$,这时有 $\gamma = \alpha + \beta \notin V_1, \exists \gamma = \alpha + \beta \notin V_2.$

综上,得证.

定义 5 设向量 $\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_p$ 是线性空间 V 的一组基, 对任一向量 $v \in V$, 如果存在一组标量 c_1, c_2, \cdots, c_p , 有 $v = c_1\varepsilon_1 + c_2\varepsilon_2 + \cdots + c_p\varepsilon_p$, 则称标量 c_1, c_2, \cdots, c_p 为向量 v 在基 $\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_p$ 下的坐标 (coordinates), 称基向量 $\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_p$ 组成了向量表示的坐标系. 若记 $c = (c_1, c_2, \cdots, c_p)^T$, 称向量 c 为向量 v 在基 $\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_p$ 下的坐标向量.

定理 2 令 V 是一向量空间, $\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_p$ 是空间 V 的一组基,则对于任一向量 $v \in V$,存在唯一的一组标量 c_1, c_2, \cdots, c_p ,使得 $v = c_1\varepsilon_1 + c_2\varepsilon_2 + \cdots + c_p\varepsilon_p$,即向量在同一基下坐标唯一.

