# Generative Modeling: Introduction & Overview

## Artificial Intelligence

- The field dealing with enabling computer-based systems to perform sophisticated tasks, such as automated reasoning, language translation, or visual perception.
- Siri, Alexa.
  Amazon/Netflix recommendations.
  Knowledge Graphs.
  Rules engines.





## Artificial Intelligence

 The field dealing with enabling computer-based systems to perform sophisticated tasks, such as automated reasoning, language translation, or visual perception.

Siri, Alexa.
 Amazon/Netflix recommendations.
 Knowledge Graphs.
 Rules Engines.



## Machine Learning

 A branch of AI that specifically focuses on enabling computer-based systems to infer models from data. The "learning" expresses the ability of an algorithm to progressively improve its performance by processing data and information.

Siri, Alexa (?).
 Amazon/Netflix recommendations.
 Knowledge Graphs.
 Rules Engines.



## Machine Learning

 A branch of AI that specifically focuses on enabling computer-based systems to infer models from data. The "learning" expresses the ability of an algorithm to progressively improve its performance by processing data and information.

 Random Forests, Gradient Boosted Trees, PGMs, Neural Networks.



## Deep Learning

- Deep learning is a class of ML in which multilayer representations are utilized to extract hierarchical features from a complex input.
- Common deep learning models are based on neural network architectures and include CNNs, RNNs, deep belief networks, etc.



## Machine Learning: Types of learning

- Supervised.
- Unsupervised.
- Semi-supervised/Weak supervision.
- Reinforcement learning.



## Generative Modeling

- Focus on not prediction/classification of samples, but creation of new samples or refinement of extant samples.
- LLMs (Large Language Models),
   GANs (Generative Adversarial Networks),
   Normalizing Flows,
   Variational Auto-Encoders (VAEs),
   Diffusion Models,
   Autoregressive Models....



## Discriminative Versus Generative Modeling

|                        | Discriminative Models                                                   | Generative Models                                        |
|------------------------|-------------------------------------------------------------------------|----------------------------------------------------------|
| Objective              | Used to <i>predict or classify</i> samples. (Regression/Classification) | Used to <i>create</i> samples inspired by training data. |
| Learning               | Learn conditional distribution of target/label, given the input: P(y x) | Learn joint distribution of input and output: P(x,y)     |
| Example<br>Application | Given an image, predict its class.                                      | Given a class, generate an image form this class.        |
| Example<br>Algorithm   | Logistic Regression                                                     | GAN                                                      |

## Example: A (naïve) Generative model



## Contrast Example: MNIST Discriminative



## Contrast Example: MNIST Generative







Epoch 1

Epoch 100

Epoch 200

## How to "Spot" Generative Models?

- Output is a new object from the same space as the training samples.
  Example 1.
- Output dimensionality is higher than input significantly. Eg images, videos, audio.

## Examples of Generative Model Applications

| Input                       | Output                                        |
|-----------------------------|-----------------------------------------------|
| Low resolution Image        | High resolution image (Super Resolution)      |
| Image with missing sections | Completed Image (Image completion/Inpainting) |
| Noisy Image                 | Clean Image (Denoising)                       |
| Image (Black & White)       | Image (Eastman Color)                         |
| Image                       | Description (Captioning)                      |
| Image                       | Animation (Sequencing)                        |
| Text                        | Image (Image Generation)                      |

## Super Resolution



## Inpainting



## Denoising

Input Image



SM-GAN De-nosing Image



## Colorizing



#### Generative Adversarial Networks



## Encoder-Decoder Approaches



## Autoencoders



### Variational Auto Encoders



## VAEs vs GANs



#### Diffusion Models

- Derive inspiration from physics (thermodynamics).
- Unconditional Generation (image synthesis) or Conditioned synthesis (Text to Image: Flying Dog eating Pizza).

#### Diffusion Models

• Forward Diffusion: Destroy the structure in image via adding noise, iteratively.

Reverse Diffusion: Attempt to remove noise, iteratively

Forward / noising process



Reverse / denoising process

#### Diffusion Models

- Add noise to pristine images. Train model to denoise noisy image to get original images.
- Denoising Diffusion Probabilistic Model (DDPM): Generate images starting from noise/static.
- ~1000 steps of noising and denoising
- Forward: P(xt|xt-1) Reverse: P(xt-1|xt)

#### Forward / noising process



○ Sample noise  $p_T(\mathbf{x}_T)$  → turn into data

Questions?