

CSE330

COMPETITIVE CODING APPROACHES-TECHNIQUES

Lecture #0

Course Details

- Course Code:- CSE330
- •LTP:- 2 0 1 [2 lectures, 1 practical's /week]
- Credits: 3

Vision

To be a globally recognized school through excellence in teaching, learning and research for creating Computer Science professionals, leaders and entrepreneurs of future contributing to society and industry for sustainable growth.

Mission

- To build computational skills through hands-on and practice-based learning with measurable outcomes.
- To establish a strong connect with industry for in-demand technology driven curriculum.
- To build the infrastructure for meaningful research around societal problems.
- To nurture future leaders through research-infused education and lifelong learning.
- To create smart and ethical professionals and entrepreneurs who are recognized globally

Revised Bloom's Taxonomy

Course Outcomes

CO1:: Analyse the space and time complexity of an algorithms

CO2:: Determine primality testing on different algorithm

CO3:: Apply recursion techniques on various dynamic programming problems

CO4:: Apply tabulation and memorization in dynamic programming problem.

CO5 :: Apply various sorting techniques by computing O(n log n) complexity

CO6:: Identify the sorting algorithm in real world problem solving

POs Specific to the course

- Apply the acknowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences.
- Design solutions for complex engineering problems and Design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.

PSOs specific to the course

Apply acquired skills in software engineering, networking, security, databases, intelligent systems, cloud computing and operating systems to adapt and deploy innovative software solutions for diverse applications.

Course Content

- Behaviour Analysis
- Primality Testing
- Recursion Techniques
- Advanced Techniques
- Basic Dynamic Programming
- Dynamic Programming Problems
- Efficient Sorting Algorithms & Analysis

Unit-wise course content

Unit I

Behaviour Analysis: Introduction to limits and behaviour of logic, understanding taxonomy in worst case, analysing the effectiveness and efficiency of algorithms, measuring time and space complexity of algorithm, trade-off concept.

Unit II

Primality Testing: Introduction to Primality Testing, O(sqrt(n)) Algorithm for Primality Testing, Factorization of a number, Finding prime factors by taking the square root, Fermat method, Sieve of Eratosthenes, Segmented Sieve, Sieve of Atkins, Mansi and her series, Collections of Pens, next prime palindrome.

Unit III

Recursion and Advanced Techniques: Introduction to recursion: base condition, solving problems using recursion: Classic and Modern Approaches, Direct vs. Indirect Recursion, Tailed vs. Non-Tailed Recursion, Memory Allocation in Recursion, Advantages & disadvantages of recursive programming, Backtracking, Memoization, recursive problems- next happy number, sum string, water overflow.

Unit-wise course content

Unit IV

Basic Dynamic Programming: Introduction to Dynamic Programming, Dynamic Programming Process and Techniques, Tiling problem, Tabulation vs Memoization, Optimal Substructure Property, Overlapping Subproblems Property, Formulating Dynamic Programming Problems.

Unit V

Dynamic Programming Problems: Longest Increasing Subsequence(LIS), Longest Common Subsequence (LCS), Binomial coefficient, Box Stacking, Integer Knapsack Problem (Duplicate Items Forbidden), Edit Distance, Balanced Partition Problem,

Unit VI

Efficient Sorting Algorithms & Analysis: Introduction to O(n log n) Sorting Algorithms, Iterative & Recursive Merge Sort, Quick Sort, Sorting Elements by Frequency, Finding Minimum Length Sorted Subarray to Sort an Array, Sorting Strings, case-specific sorting of strings, Count Distinct Pairs with Difference of K.

Blended/Practical base Learning

HackerRank

Course Assessment Model

CSE330	Marks break up*
Attendance	05
CA (Two best out of Three CBTs)	50
ETP	45
Total	100

Note: No MTE

Detail of Academic Tasks

AT 1: BYOD PRACTICAL Week 5

AT 2: BYOD PRACTICAL Week 9 (After MTT)

AT 3: BYOD PRACTICAL Week 13 (After MTT)

Note: CA is based on Mix of MCQs(10 Marks) + Coding Problems(20 Marks)

Evaluation and ETP exam pattern

ETP components	Marks Distribution		
Written	20		
Viva	30		
Execution	50		
Total	100		

Details of Academic Task(s)

Academi c Task	Objective	Detail of Academic Task		Academic Task Mode	Marks	Allottme nt / submissi on Week
BYOD-	To evaluate the understanding of	Unit1, Unit 2 syllabus will	Individual	Online	30	4/5
Practical	student related to Primality	be considered for				
1	testing and Recursion.	evaluation.				
BYOD-	To evaluate the understanding of	Unit 3 and unit 4 syllabus	Individual	Online	30	8/9
Practical	student related to Dynamic	will be considered for the				
2	programming concepts to solve	evaluation				
	the problem.					
BYOD-	To evaluate the understanding of	Unit 5 and Unit 6 will be	Individual	Online	30	12 / 13
Practical	student related to nlogn sorting	considered for the				
3	techniques and dynamic	evaluation				
	programming.					

Why Star Course?

- ➤ Weightage in Gate/Govt. exams
- ➤ Industry demand
 - ➤ Product Based
 - > Service Based
- ➤ Higher Studies
- **>**Government Jobs

Execution strategy for star courses

Topic: Activities	Details of the Activities Planned	Activity a part of	week of conduct of activity	Responsibility: Who will ensure the conduct of the activity (specify the plan for the same)	Outcome	Referen ces	Qua ntifi catio n	Start date	End date	Status	Proof reso urce
MCQ + Code Based Test MCQ + Code Based Test	10 MCQ Question 1 Code Based Question. 10 MCQ Question 1 Code Based Question.	(CA 1)	5 th Week 9 th Week	Shruti (24096) Shruti (24096)	Complexity Analysis of the Problem. Understanding Recursive Concept.	Self- Prepared Self- Prepared	1	12 th September 2024 10 th October 2024	12 th Septemb er 2024 10 th October 2024	Pendin g Pendin g	
MCQ + Code Based Test	10 MCQ Question 1 Code Based Question.	(CA 2)	13 th Week	Shruti (24096)	Understanding and Analysis the dynamic concepts.		1	8 th November 2024	8 th Novemb er 2024	Pendin g	

Details of Course Enrichment Activities Details for Pedagogical Initiatives for the above-mentioned course

Lecture Number	Pedagogical Initiative	Expected Outcomes	References	Quantif ication
12,17 and 21	Students will receiving a unique problem from www.leetcode.com , problem description will be discussed and provided the link of question which is going to solve by each student	 Learn methods for the factorization of numbers. Explore the Fermat method for primality testing. 	common-factors/	3
	Students will receiving a unique problem from www.leetcode.com , problem description will be discussed and provided the link of question which is going to solve by each student.	 Understand memory allocation for different function calls in recursive programming. Solve the tiling problem using dynamic programming techniques. Apply dynamic programming techniques to solve problems 	 https://leetcode.com/problems/rings-and-rods/ https://leetcode.com/problems/encode-and-decode-tinyurl/ 	3
34, 36, 38	Students will receiving a unique problem from www.leetcode.com , problem description will be discussed and provided the link of question which is going to solve by each student	 Students will learn multiple approaches to solve a single problem and gain an understanding of how to implement different types of recursions. 	increasing-subsequence/https://leetcode.com/problems/partition-	3

Evaluation strategy for all Components of the courses

Assessment	Assessment e.g. Test/Term Paper/project		Parameters/Rubric of Evaluation	External / Internal	Details of External Evaluation s	Referenc es	Quantific ation
CA 1	MCQ + Code Based Test	To evaluate student's capability to solve competitive problems on prime numbers and primality testing on Online platform HackerRank	Code Structure and Organization: 5 Algorithmic Efficiency: 10 Documentation and Comments: 2 Error Handling and Exception Handling: 3 Coding Standards and Best Practices: 5 Performance Optimization: 5 Total: 30	Internal	NA	Self- Prepared	1
CA 2	MCQ + Code Based Test	To evaluate student's capability to solve competitive problems on Dynamic programming and recursion on Online platform HackerRank	Code Structure and Organization: 5 Algorithmic Efficiency: 10 Documentation and Comments: 2 Error Handling and Exception Handling: 3 Coding Standards and Best Practices: 5 Performance Optimization: 5 Total: 30	Internal	NA	Self- Prepared	1

Evaluation strategy for all Components of the courses

Type of Assessment (Add rows in case some other assessments are applicable)	Type of Assessment e.g. Test/Term Paper/project etc.	Details of academic task	Parameters/Rubric of Evaluation	External/ Internal	Details of External Evaluati ons	Reference s	Quanti ficatio n
CA 3	MCQ + Code Based Test	To evaluate student's capability to solve competitive problems on Dynamic programming and Sorting techniques on Online platform HackerRank	Code Structure and Organization: 5 Algorithmic Efficiency: 10 Documentation and Comments: 2 Error Handling and Exception Handling: 3 Coding Standards and Best Practices: 5 Performance Optimization: 5 Total: 30	Internal	NA	Self- Prepared	1
ЕТР	Code Based Question + Viva	Competitive Coding based challenges on Online platform HackerRank related to course syllabus	Code Structure and Organization: 5 Algorithmic Efficiency: 10 Documentation and Comments: 2 Error Handling and Exception Handling:3 Coding Standards and Best Practices: 5 Performance Optimization: 5 Total: 70 + 30=100	Internal	NA	self prepared	1

Text & References Books Details

Text Books: 1. CRACKING THE CODING INTERVIEW by GAYLE LAAKMANN MCDOWELL, CAREERCUP

References: 1. PROGRAMMING PEARLS by JOE

BENTLEY, PEARSON

Course add On

Note: There is no course add on like MOOC/ certification applicable for this course.

Cohort

- Software Development
 - **✓**Product based
 - **✓** Service based

Open Educational Resources (OER)

Unit mapped	Broad topic	Sub Topic	Source Type	Source Title	*%age mapping (approx)	Source URL
Unit 1	Asymptotic Analysis (Big-O notation)	Introducti on to asymptoti c notations	Web Link	Types of Asymptotic Notations in Complexity Analysis of Algorithms	12%	https://www.geeksforgeeks. org/types-of-asymptotic- notations-in-complexity- analysis-of-algorithms/
Unit 2	Sqrt(n) Primality Testing	Fermat method	Web Link	Fermat's Factorization Method	17%	https://www.naukri.com/code360/library/fermat-s-factorization-method
Unit 3	Basic Recursion		Web Link	Backtracking Algorithm	13%	https://www.geeksforgeeks. org/backtracking- algorithms/

Open Educational Resources (OER)

Unit mapped	Broad topic	Sub Topic	Source Type	Source Title	*%age mapping (approx)	Source URL
Unit 4	Basic Dynamic Programmi ng	Optimal Substruct ure Property	Web Link	Optimal Substructure Property in Dynamic Programming	26%	https://www.geeksforgeeks.org/optimal- substructure-property-in-dynamic- programming-dp-2/
Unit 5	Dynamic Programmi ng Problems	Longest increasin g subseque nce	Web Link	Longest Increasing Subsequence (LIS)	11%	https://www.geeksforgeeks.org/longest-increasing-subsequence-dp-3/#:~:text=Longest%20Increasing%20Se quence%20using%20Recursion,all%20L%5Bi%5D%20values.
Unit 6	O(n logn) Sorting	Recursive Merge Sort	Web Link	merge sort using recursion in C++	13%	https://www.naukri.com/code360/camp us/lovely-professional- university/discussions/exams-and-study- resources/4736

Skill Set

- Programming Skills
- Logic building
- Code analysis

Next Class:

Competitive Coding Approaches-techniques