T951/09 – Sistemas Inteligentes Prof. Bruno Lopes Alcantara Batista, Me bruno.lopes@unifor.br

Processo de Destilação

Pela análise de um processo de destilação fracionada de petróleo observou-se que determinado óleo poderia ser classificado em duas classes de pureza P_1 e P_2 a partir da medição de três grandezas x_1 , x_2 e x_3 , que representam algumas de suas propriedades físico químicas. A equipe de engenheiros e cientistas pretende usar uma rede *Perceptron* para executar a classificação automática das duas classes. Para tanto, o neurônio constituinte do *Perceptron* terá três entradas e uma saída conforme ilustrado na Figura 1.

Figura 1 - Arquitetura do Perceptron para o projeto prático

Utilizando o algoritmo supervisionado de Hebb (regra de Hebb) para classificação de padrões, e assumindo-se que a taxa de aprendizagem como 0,01, realize as seguintes atividades:

- 1. Execute cinco treinamentos para a rede *Perceptron* (os dados de treinamento estão no arquivo *dataset-treinamento.csv*), iniciando-se o vetor de pesos *w* em cada treinamento com valores aleatórios entre zero e um. Se for o caso, reinicie o gerador de números aleatórios em cada treinamento de tal forma que os elementos do vetor de pesos iniciais não sejam os mesmos.
- 2. Registre os resultados dos cinco treinamentos em uma tabela (pode ser uma planilha Microsoft Excel, LibreOffice Calc ou Google Planilhas) de acordo com o seguinte layout:

	Vetor de Pesos Iniciais				Vetor de Pesos Finais				
Amostra	$\mathbf{W_0}$	\mathbf{w}_1	\mathbf{W}_2	\mathbf{W}_3	\mathbf{W}_0	\mathbf{W}_1	\mathbf{W}_2	\mathbf{W}_3	Número de Épocas
1° (T1)									
2° (T2)									
3° (T3)									
4° (T4)									
5° (T5)									

Tabela 1 - Resultados dos treinamentos do Perceptron

3. Após o treinamento do *Perceptron*, coloque este em operações, aplicando-o na classificação automática das amostras de óleo na tabela a seguir, indicando ainda nesta tabela aqueles resultados das saídas (classes) referentes aos cinco processos de treinamento do Item 1 (os dados de testes estão no arquivo *dataset-teste.csv*).

Amostra	x1	x 2	х3	y (T1)	y (T2)	y (T3)	y (T4)	y (T5)
1	-0,3665	0,0620	5,9891					
2	-0,7842	1,1267	5,5912					
3	0,3012	0,5611	5,8234					
4	0,7757	1,0648	8,0677					
5	0,1570	0,8028	6,3040					
6	-0,7014	1,0316	3,6005					
7	0,3748	0,1536	6,1537					
8	-0,6920	0,9404	4,4058					
9	-1,3970	0,7141	4,9263					
10	-1,8842	-0,2805	1,2548					

Tabela 2 - Amostras de óleo para validar a rede Perceptron

- 4. Explique por que o número de épocas de treinamento, em relação a esta aplicação, varia cada vez que executamos o *Perceptron*.
- 5. Para a Aplicação em questão discorra se é possível afirmar se as suas classes são linearmente separáveis.

Deve ser enviado um arquivo **ZIP** contendo o código fonte utilizado para realizar as atividades e o relatório com as respostas de cada uma das atividades propostas (para evitar problemas recomendase enviar o relatório no formato PDF). Além das respostas as atividades acima descritas, também será levado em consideração na correção do trabalho a organização do relatório final e a clareza da escrita.

Quaisquer dúvidas ou pontos não abordados nesse documento devem ser dirimidos com o professor da disciplina antes do término do prazo de submissão do trabalho via Unifor online. Caso contrário, prevalecerá a interpretação deste documento na ótica do professor da disciplina.