Started on	Thursday, 8 February 2024, 9:16 AM
State	Finished
Completed on	Thursday, 8 February 2024, 9:21 AM
Time taken	5 mins
Marks	3.50/9.00
Grade	3.89 out of 10.00 (38.89 %)
Question 1	
Correct	
Mark 2.00 out of 2.00	

Which of the following strings can be generated from the regular expression $(b|ab)^+(a|ba)^*$?

Select one or more:

- 🗸 a. abbaa 🗸
- b. aaabaa
- c. baab
- 🗹 d. abbb 🗸
- e. bb

 ✓
- f. Λ

Question 2 Partially correct Mark 1.00 out of 2.00

Consider the finite automaton with the following transition table. q0 is the start state and q3 is the accepting state.

Current State	Input		
Current State	0	1	
q0	q1	q2	
q1	q1	q3	
q2	q0	q3	
q3	q2	q3	

Which strings are accepted by this finite automaton?

20	lect	one	٥r	more	•
oe	ıecı	one	OI	HIOLE	

- ☑ a. 1011
 ✓
- b. 100100
- c. 001
- d. 01001

Question 3

Partially correct

Mark 0.50 out of 1.00

Which of the following statements is/are correct about Finite Automata? (Select all that apply)

Select one or more:

- a. From an accepting state of a Finite Automaton, the next state for any input must be another accepting state.
- b. Any state of a Finite Automaton can be reached from only one other state.
- ☑ c. For a particular Finite Automaton, there must be only one initial state.

 ✓
- d. For a given regular expression, there exists a Finite Automaton that accepts any string in the corresponding regular language.

Question 4							
Not answered Marked out of 1.00							
Marked Out Of 1.00							
Select the regular expression/s representing strings over {1, 0} that do not end with '1'.							
Select one or more:							
a. (1 0)*(10)*							
□ b. (1 0)*(10)*							
□ c. (1 0) ⁺ (10*) ⁺							
□ d. (1 0)*(10)*							
Question 5							
Not answered Marked out of 3.00							
ividined out of 3.00							
How many strings of length less than or equal to 3 can be generated from the regular expression (x y)*ba*?							
Answer:							