Discrete Mathematics

Logic

Logic is the discipline that deals with the methods of reasoning.

On an elementary level, logic provides rules and techniques for determining whether a given argument is valid.

Propositions and Logical Operations

Statement of Proposition

- Statement of proposition a declarative sentence that is either true or false, but not both
- Examples:
 - ► The earth is round: statement that is true 2+3=5: statement that is true
 - Do you speak English? This is a question, not a statement

More Examples of Statements of Proposition

- > 3-x=5: is a declarative sentence, but not a statement since it is true or false depending on the value of x.
- Take two aspirins: is a command, not a statement.
- The temperature on the surface of the planet Venus is 800°F: is a declarative statement of whose truth is unknown to us.
- The sun will come out tomorrow: a statement that is either true or false, but not both, although we will have to wait until tomorrow to determine the answer.

Logical Connectives and Compound Statements

- \rightarrow x, y, z, ... denote variables that can represent real numbers
- p, q, r,... denote prepositional variables that can be replaced by statements.
 - p: The sun is shining today
 - q: It is cold

Logical connectives can combine statements or propositional variables to obtain compound statements.

Logical Operations:

Negation

- If p is a statement, the negation of p is the statement not p
- Denoted ~p
- If p is true, ~p is false
- ► If *p* is false, ~*p* is true
- ~p is not actually connective, i.e., it doesn't join two of anything
- not is a unary operation for the collection of statements and
 p is a statement if p is
- If p: 2+3 > 1 then If $\sim p: 2+3 \le 1$
- If q: It is cold then ~q: It is not the case that it is cold, i.e., It is not cold.

- 1. Give the negation of each of the following statements.
- (a) It will rain tomorrow or it will snow tomorrow.
- (b) If you drive, then I will walk
- 2. In each of the following, form the conjunction and the disjunction of p and q.
- (a) p: I will drive my car. q: I will be late.
- (b) p: $NUM > 10 q: NUM \le 15$

Solutions:

- 1. (a) It will not rain tomorrow and it will not snow tomorrow. (b) It is not the case that if you drive, I will walk.
- 2. (a) I will drive my car and I will be late. I will drive my car or I will be late. (b) $10 < NUM \le 15$. NUM > 10 or $NUM \le 15$.

Conjunction

- If p and q are statements, then the *conjunction* of p and q is the compound statement "p and q"
- ▶ Denoted p ∧ q
- \rightarrow p \land q is true only if both p and q are true
- Example:
 - ► p: : It is snowing.
 - q: I am cold.
 - \rightarrow p \land q = ? It is snowing and I am cold.

Disjunction

- If p and q are statements, then the disjunction of p and q is the compound statement "p or q"
- Denoted p V q
- p V q is true if either p or q are true
- Example:
 - Form the disjunction of p and q for each of the following.
 - ► (a) p: 2 is a positive integer, q: $\sqrt{2}$ is a rational number. p \sqrt{q} = ? true
 - ► (b) p: $2 + 3 \neq 5$, q: London is the capital of France.
 - $p \lor q = ? \dots false$

- 3. Write each of the following in terms of p, q, r, and logical connectives.
- (a) Today is Monday and the dish did not run away with the spoon.
- (b) Either the grass is wet or today is Monday.
- (c) Today is not Monday and the grass is dry.
- (d) The dish ran away with the spoon, but the grass is wet.

Exclusive Disjunction

- If p and q are statements, then the *exclusive* disjunction is the compound statement, "either p or q may be true, but both are not true at the same time."
- Example:
 - p: It is daytime
 - q: It is night time
 - p V q (in the exclusive sense) = ?

Inclusive Disjunction

- If p and q are statements, then the *inclusive* disjunction is the compound statement, "either p or q may be true or they may both be true at the same time."
- Example:
 - ► p: It is cold
 - q: It is night time
 - \rightarrow p \vee q (in the inclusive sense) = ?

Exclusive versus Inclusive

- Depending on the circumstances, some disjunctions are inclusive and some of exclusive.
- Examples of Inclusive
 - "I have a dog" or "I have a cat"
 - "It is warm outside" or "It is raining"
- Examples of Exclusive
 - Today is either Tuesday or it is Thursday
 - Pat is either male or female

Compound Statements

- A compound statement is a statement made from other statements
- For n individual propositions, there are 2ⁿ possible combinations of truth values
- A truth table contains 2ⁿ rows identifying the truth values for the statement represented by the table.
- Use parenthesis () to denote order of precedence
- A has precedence over V

Truth Tables are Important Tools for this Material!

р	q	p∧q	_	p	q	рVq
Т	Т	Т		Т	Т	Т
Т	F	F		Т	F	Т
F	Т	F		F	Т	Т
F	F	F		F	F	F

Make a truth table for the statement $(p \land q) \lor (\sim p)$.

Compound Statement Example $(p \land q) \lor (\sim p)$

p	q	p∧q	~p	(p ∧ q) ∨ (~p)
Т	Т	Т	F	T
Т	F	F	F	F
F	Т	F	Т	Т
F	F	F	Т	T

4. Make the Truth Table for the following:

- $(a) (^p \land q) \lor p$
- **►** (b) (p ∨ q) ∧ r

Quantifiers

- Back in Section 1.1, a set was defined {x | P(x)}
- For an element t to be a member of the set, P(t) must evaluate to "true"
- P(x) is called a predicate or a propositional function

```
If Q(n): n + 3 = 6, then
(a) Q(5) is the statement-----
(b) Q(m) is the statement ------
```

Computer Science Functions

- \rightarrow if P(x), then execute certain steps
- \triangleright while Q(x), do specified actions

The predicates P(x) and Q(x) are called the guards for the block of

programming code. Often the **guard** for a block is a conjunction or disjunction.

```
1. IF N < 10 THEN
    a. Replace N with N + 1
    b. RETURN</pre>
```

Here the statement N < 10 is the guard.

```
1. WHILE t \in T and s \in S a. PRINT t + s b. RETURN
```

Here the compound statement $t \in T$ and $s \in S$ is the guard.

Universal quantification of a predicate P(x)

- Universal quantification of predicate P(x) = For all values of x, P(x) is true
- ightharpoonup Denoted $\forall x P(x)$
- ► The symbol ∀ is called the universal quantifier
- The order in which multiple quantifications are considered does not affect the truth value (e.g., $\forall x \forall y P(x,y) \equiv \forall y \forall x P(x,y)$)

Examples:

- P(x): -(-x) = x
 - This predicate makes sense for all real numbers x.
 - The universal quantification of P(x), $\forall x P(x)$, is a true statement, because for all real numbers, -(-x) = x
- \sim Q(x): x+1<4
 - \triangleright \forall x Q(x) is a false statement, because, for example, Q(5) is not true

Existential quantification of a predicate P(x)

- Existential quantification of a predicate P(x) is the statement "There exists a value of x for which P(x) is true."
- ightharpoonup Denoted $\exists x P(x)$
- Existential quantification may be applied to several variables in a predicate
- The order in which multiple quantifications are considered does not affect the truth value
- (a) Let Q(x): x + 1 < 4. The existential quantification of Q(x), $\exists x \ Q(x)$, is a true statement, because Q(2) is a true statement.
- (b) The statement $\exists y \ y + 2 = y$ is false. There is no value of y for which the propositional function y + 2 = y produces a true statement.

Applying both universal and existential quantification

- Order of application does matter
- Example: Let *A* and *B* be n x n matrices
- ► The statement $\forall A \exists B A + B = I_n$
- Reads "for every A there is a B such that $A + B = I_n$ "

 $\exists \mathbf{B} \, \forall \mathbf{A} \, \mathbf{A} + \mathbf{B} = \mathbf{A}$ is true. What is the value for \mathbf{B} that makes the statement true?

- 1. Write an English sentence corresponding to each of the following.
- (a) $\forall x \exists y R(x, y)$ (b) $\exists x \forall y R(x, y)$
 - 2. Write an English sentence corresponding to each of the following.

(a)
$$\sim$$
 ($\exists x P(x)$) (b) \sim ($\forall x Q(x)$)

Answers:

- 1.
- (a) For all x there exists a y such that x + y is even
- (b) There exists an x such that, for all y, x + y is even

2.

(a) It is not true that there is an x such that x is even. (b) It is not true that, for all x, x is a prime number.

Assigning Quantification to Proposition

- Let p: $\forall x P(x)$
- The negation of p is false when p is true and true when p is false
- For p to be false, there must be at least one value of x for which P(x) is false.
- ► Thus, p is false if $\exists x \sim P(x)$ is true.
- If $\exists x \ ^P(x)$ is false, then for every x, $^P(x)$ is false; that is $\forall x \ P(x)$ is true.

Okay, what exactly did the previous slide say?

- Assume a statement is made that "for all x, P(x) is true."
 - If we can find one case that is not true, then the statement is false.
 - If we cannot find one case that is not true, then the statement is true.
- Example: \forall positive integers, n, P(n) = n^2 + 41n + 41 is a prime number.
 - This is false because ∃ an integer resulting in a non-prime value, i.e., ∃n such that P(n) is false.
 - Why? What is that value of n?

In Exercises 8 and 9, find the truth value of each proposition if p and r are true and q is false.

8. (a)
$$\sim p \wedge \sim q$$
 (b) $(\sim p \vee q) \wedge r$

(b)
$$(\sim p \vee q) \wedge r$$

(c)
$$p \vee q \vee r$$

(c)
$$p \lor q \lor r$$
 (d) $\sim (p \lor q) \land r$

9. (a)
$$\sim p \wedge (q \vee r)$$
 (b) $p \wedge (\sim (q \vee \sim r))$

(b)
$$p \wedge (\sim (q \vee \sim r))$$

(c)
$$(r \land \sim q) \lor (p \lor r)$$
 (d) $(q \land r) \land (p \lor \sim r)$

(d)
$$(q \wedge r) \wedge (p \vee \sim r)$$

FTTF