DIGITAL CIRCUITS

Week-8, Lecture-3 Encoders

Sneh Saurabh 28th September, 2018

Digital Circuits: Announcements/Revision

Digital Circuits **Encoders**

Encoder: Basics

- A binary encoder is a combinational circuit with:
 - $> 2^n$ inputs: $w_0, w_1, ..., w_{2^{n}-1}$
 - \triangleright *n* outputs: $y_0, y_1, ..., y_{n-1}$
- Exactly one of the input signals should have a value of 1
- The outputs present the binary number that identifies which input is equal to 1

Encoder: 4-to-2 encoder

- Four data inputs w_0, w_1, w_2 and w_3 and two outputs y_0 and y_1
- Only one of w_0, w_1, w_2 and w_3 can have a value of 1
- The outputs $\{y_1y_0\}$ gets the binary number that identifies which inputs $\{w_0, w_1, w_2 \text{ or } w_3\}$ is equal to 1

w_3	w_2	w_1	w_0	y_1	y_0
0	0	0	1	0	0
0	0	1	0	0	1
0	1	0	0	1	0
1	0	0	0	1	1

•
$$y_0 = w_1 + w_3$$

$$y_1 = w_2 + w_3$$

Encoder-Decoder: Application

- Encoders are used to *reduce the number of bits* needed to represent given information.
- A practical use of encoders is for transmitting information in a digital system.
- Encoding the information allows the transmission link to be built using fewer wires.

Encoder: 8-to-3 Encoder

Inputs								Output	ts	
D ₀	D ₁	D ₂	D ₃	D_4	D ₅	D ₆	D ₇	X	y	Z
1	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	0	0	1	0	0	0	0	0	1	1
0	0	0	0	1	0	0	0	1	0	0
0	0	0	0	0	1	0	0	1	0	1
0	0	0	0	0	0	1	0	1	1	0
0	0	0	0	0	0	0	1	1	1	1

Find an implementation of the 8:3 encoder using OR gates.

$$x = D_4 + D_5 + D_6 + D_7$$

$$y = D_2 + D_3 + D_6 + D_7$$

$$z = D_1 + D_3 + D_5 + D_7$$

Issues:

- 1. If two inputs are active simultaneously, the output produces an undefined combination
 - \triangleright If D_3 and D_6 are 1 simultaneously, the output of the encoder will be 111
 - > The output 111 does not represent either binary 3 or binary 6
- 2. If all the inputs are 0, then output is 0: This is same as when $D_0 = 1$ and all other bits are 1

Priority Encoder: Basics

- A priority encoder is an encoder circuit that includes the priority function.
- The operation of the priority encoder is such that if two or more inputs are equal to 1 at the same time, the input having the highest priority will take precedence.

- In addition to the normal outputs of an encoder, the circuit has a third output designated by *V*
 - > This is a valid bit indicator that is set to 1 when one or more inputs are equal to 1
 - ➤ The other outputs are not inspected when V equals 0 and are specified as don't care conditions

Priority Encoder: Truth Table

	Inputs			Outputs			
Do	D ₁	D ₂	D_3	X	y	V	
0	0	0	0	X	X	0	
1	0	0	0	0	0	1	
X	1	0	0	0	1	1	
X	X	1	0	1	0	1	
X	X	X	1	1	1	1	

Priority Encoder: Implementation

Problem:

Implement the priority encoder (as shown in the truth table) using AND/OR/NOT gates

Inputs			Outputs			
D_0	D ₁	D ₂	D ₃	X	y	V
0	0	0	0	X	X	0
1	0	0	0	0	0	1
\mathbf{X}	1	0	0	0	1	1
\mathbf{X}	X	1	0	1	0	1
X	X	X	1	1	1	1

$$x = D_3 + D_2 D_3'$$

= $(D_3 + D_2).(D_3 + D_3')$
= $(D_3 + D_2)$

$$y = D_3 + D_1 D_2' D_3'$$

$$= (D_3 + D_1 D_2') \cdot (D_3 + D_3')$$

$$= (D_3 + D_1 D_2')$$

$$V = D_0 + D_1 + D_2 + D_3$$

Priority Encoder: Implementation

Problem:

Implement the priority encoder (as shown in the truth table0 using AND/OR/NOT gates

Inputs			Outputs			
D ₀	D ₁	D ₂	D ₃	X	y	V
0	0	0	0	X	X	0
1	0	0	0	0	0	1
X	1	0	0	0	1	1
X	X	1	0	1	0	1
X	X	X	1	1	1	1

Digital Circuits: Practice Problems

Problems 4.29-4.30

from "Digital Design" – M. Morris Mano & Michael D. Ciletti, Ed-5, Pearson (Prentice-Hall).

