a. class 1: 
$$M_{17} = \frac{1}{n_{1}} Z x_{1} = \frac{1}{4} (0.8 \pm 0.9 \pm 1.2 \pm 1.1) = ($$

$$M_{12} = \frac{1}{n_{1}} Z x_{1} = \frac{1}{4} (1.2 \pm 1.4 \pm 1.4 \pm 1.4 \pm 1.5) = 1.375$$

$$M_{12} = \begin{bmatrix} M_{11} \\ M_{12} \end{bmatrix} = \begin{bmatrix} 1 \\ 1.375 \end{bmatrix}$$

$$M_{12} = \begin{bmatrix} M_{11} \\ M_{12} \end{bmatrix} = \begin{bmatrix} 1 \\ 1.375 \end{bmatrix}$$

$$= \frac{1}{3} x \left( (1.2 \pm 0.1)^{2} + (1-0.9)^{2} + (1-1.1)^{2} + (1-1.1)^{2} \right) = \frac{1}{3} x \left( (1.375 \pm 0.1)^{2} + (1.375 \pm 0.1)^{2} +$$

in conclusion, the mean of class 1 is 
$$M_1 = [1375]$$

- 0.017

the covariance is 
$$Z_1 = \begin{bmatrix} 0.033 & 0.017 \\ 0.017 & 0.158 \end{bmatrix}$$

$$\frac{1}{2} \sum_{i=1}^{n} \frac{1}{n_{i}} \frac{1}{n_{i}} \sum_{i=1}^{n} \frac{1}{n_{i}} \sum_{i=1}$$

1) (

Mahalanobis distance.  $d_{m} = \sqrt{(\vec{x} - \vec{\mu})^{T}} Z^{-1}(\vec{x} - \vec{\mu})$  where  $\vec{x} = [\vec{x}], \vec{\mu} = [\vec{x}]$  $dm = \int \left[ \begin{bmatrix} 0.85 \\ 1.15 \end{bmatrix} - \begin{bmatrix} 1.375 \end{bmatrix} \right]^{7} = 0.033 \quad 0.016 \left[ \begin{bmatrix} 0.85 \\ 0.017 \end{bmatrix} - \begin{bmatrix} 1.375 \end{bmatrix}$ = \[ [-0.15, -0.225] \] \[ \oldots \] \[ \ol = (-0.15.0,033 -0.215x2,317, -0.15.0,317 - 0.225x0,016) [-0.15] = 0.15 - 0.033 + 0.215xv.017x0,15 + 0.15x0,225.0.033 + 1.215.0.017 + 0.15.0.017 to.225.2016-0.15 + 0.225.2016-0.15 + 0.225.2016

Euclidean distance

ole 
$$\frac{1}{2} \left( \frac{1}{2} - \frac{1}{2} \right)^{T} \left( \frac{1}{2} - \frac{1$$

Mahalanubis distance. the Mahalandis distance is where \$ 12 = 521  $olm = \int \left( \overrightarrow{X} - \overrightarrow{M} \right)^{7} Z^{-1} \left( \overrightarrow{X} - \overrightarrow{M} \right)$ - \[ \langle \ = \[ \land{\land{\text{a-M\_1}} \land{\text{b-M\_2}} \cdot \frac{1}{\sigma\_1 \text{T\_{12}} - \sigma\_{11} \text{T\_{12}}} \cdot \frac{1}{\sigma\_1 \text{T\_12}} \cdot \frac{1}{\sigma\_1 \text{T\_12}} \cdot \frac{1}{\sigma July July (6-M2) July (6-M2) July (6-M2) July (6-M2) July (6-M2) July (6-M2) July (70-M1)  $= \int \frac{1}{\sqrt{1/\sqrt{2}}} \frac{1}{\sqrt{1/2}} \frac{1}{\sqrt{1/$  $\frac{\int_{12} - \int_{21} = \int_{1}^{1} \sqrt{1 - \sqrt{1 + 1}} \left( b - M_2 \right) \left( atb - M_1 - M_2 \right) \sqrt{1 - \left( atb - M_1 - M_2 \right) \sqrt{1 - \left( atb - M_1 - M_2 \right) \sqrt{1 + \left( atb - M_1 - M_2 \right) \sqrt{1 - \left( atb - M_1 - M_2 \right) \sqrt{1 - \left( atb - M_1 - M_2 \right) \sqrt{1 - \left( atb - M_1 - M_2 \right) \sqrt{1 - \left( atb - M_1 - M_2 \right) \sqrt{1 - \left( atb - M_1 - M_2 \right) \sqrt{1 - \left( atb - M_1 - M_2 \right) \sqrt{1 - \left( atb - M_1 - M_2 \right) \sqrt{1 - \left( atb - M_1 - M_2 \right) \sqrt{1 - \left( atb - M_1 - M_2 \right) \sqrt{1 - \left( atb - M_1 - M_2 \right) \sqrt{1 - \left( atb - M_1 - M_2 \right) \sqrt{1 - \left( atb - M_1 - M_2 \right) \sqrt{1 - \left( atb - M_1 - M_2 \right) \sqrt{1 - \left( atb - M_1 - M_2 \right) \sqrt{1 - \left( atb - M_1 - M_2 \right) \sqrt{1 - \left( atb - M_1 - M_2 \right) \sqrt{1 - \left( atb - M_1 - M_2 \right) \sqrt{1 - \left( atb - M_1 - M_2 \right) \sqrt{1 - \left( atb - M_1 - M_2 \right) \sqrt{1 - \left( atb - M_1 - M_2 \right) \sqrt{1 - \left( atb - M_1 - M_2 \right) \sqrt{1 - \left( atb - M_1 - M_2 \right) \sqrt{1 - \left( atb - M_1 - M_2 \right) \sqrt{1 - \left( atb - M_1 - M_2 \right) \sqrt{1 - \left( atb - M_1 - M_2 \right) \sqrt{1 - \left( atb - M_1 - M_2 \right) \sqrt{1 - \left( atb - M_1 - M_2 \right) \sqrt{1 - \left( atb - M_1 - M_2 \right) \sqrt{1 - \left( atb - M_1 - M_2 \right) \sqrt{1 - \left( atb - M_1 - M_2 \right) \sqrt{1 - \left( atb - M_1 - M_2 \right) \sqrt{1 - \left( atb - M_1 - M_2 \right) \sqrt{1 - \left( atb - M_1 - M_2 \right) \sqrt{1 - \left( atb - M_1 - M_2 \right) \sqrt{1 - \left( atb - M_1 - M_2 \right) \sqrt{1 - \left( atb - M_1 - M_2 \right) \sqrt{1 - \left( atb - M_1 - M_2 \right) \sqrt{1 - \left( atb - M_1 - M_2 \right) \sqrt{1 - \left( atb - M_1 - M_2 \right) \sqrt{1 - \left( atb - M_1 - M_2 \right) \sqrt{1 - \left( atb - M_1 - M_2 \right) \sqrt{1 - \left( atb - M_1 - M_2 \right) \sqrt{1 - \left( atb - M_1 - M_2 \right) \sqrt{1 - \left( atb - M_1 - M_2 \right) \sqrt{1 - \left( atb - M_1 - M_2 \right) \sqrt{1 - \left( atb - M_1 - M_2 \right) \sqrt{1 - \left( atb - M_1 - M_2 \right) \sqrt{1 - \left( atb - M_1 - M_2 \right) \sqrt{1 - \left( atb - M_1 - M_2 \right) \sqrt{1 - \left( atb - M_1 - M_2 \right) \sqrt{1 - \left( atb - M_1 - M_2 \right) \sqrt{1 - \left( atb - M_1 - M_2 \right) \sqrt{1 - \left( atb - M_1 - M_2 \right) \sqrt{1 - \left( atb - M_1 - M_2 \right) \sqrt{1 - \left( atb - M_1 - M_2 \right) \sqrt{1 - \left( atb - M_1 - M_2 \right) \sqrt{1 - \left( atb - M_1 - M_2 \right) \sqrt{1 - \left( atb - M_1 - M_2 \right) \sqrt{1 - \left( atb - M_1 - M_2 \right) \sqrt{1 - \left( atb - M_1 - M_2 \right) \sqrt{1 - \left( atb - M_1 - M_2 \right) \sqrt{1 - \left( atb - M_1 - M_2 \right) \sqrt{1 - \left( atb - M_1 - M_2 \right) \sqrt{1 - \left( atb - M_1 - M_2 \right) \sqrt{1 - \left( atb - M_1 - M_2 \right) \sqrt{1 - \left( atb - M_1 - M_2 \right) \sqrt{1 - \left( atb - M_1 - M_2 \right) \sqrt{1 - \left( atb - M_1 -$ 

1)(

Euclideen distance

$$de = \sqrt{(x-n)^{T}(x-n)}$$

$$= \sqrt{(x-n)^{T}(x-n)}$$

## O use amin method

|                 | 1  | _        |          | 1    | ) [                     |
|-----------------|----|----------|----------|------|-------------------------|
| Value           | 28 |          | Σ        | 31   | 4   5                   |
| id              | D  |          | 1        | 2    | 3 4                     |
| step 1.         |    | D        |          | 2    | 3 4                     |
|                 | 0  | Ø        | 1-2      | 2.3  | 3.3 42                  |
| •               | /  | N        | ×        | [-]  | 2-1 3                   |
|                 | 2  | X        | <u> </u> | ×    | 1 . 1.9                 |
|                 | 3  | P        | ( / )    | 7    | × 0-9                   |
| 0.8 2 3-1 4.1 5 | 4  | X        | ×        | X    | XIR                     |
| stepl 2.        |    | ·<br>  0 |          | 2    | 34                      |
|                 | 0  | <b>X</b> | 1-2      | 2.3  | min [(0,3), (0,4)] = 33 |
|                 | /  | X        | 4        | 1-1  | nin [[1,3],(1,4)]=2.1   |
| 0.8 2 3-1 4.1 5 | 2  | ×        | X        | otag | am[(1,3),(2,4)]= 1      |
|                 | 34 | X        | X        | X    | ×                       |
|                 |    |          |          |      |                         |

Step 3.



Or use donox nethod: use the maximum distance between clusters elements while use minimum distance to incorporate

| -   |        |      | -          |        |     | 1          | to incorp |
|-----|--------|------|------------|--------|-----|------------|-----------|
|     | value  | 28   | Σ          | 3      | 4   | 5          |           |
|     | id     | D    | 1          |        | 2 3 | 4          |           |
|     |        |      |            |        | ٨   |            |           |
|     |        |      | 0          | ) 1    | 2   | 3          | 4         |
|     |        | 0    | Ŕ          | 1.2    | 2 3 | 3,3        | 4-2       |
|     |        |      | A          | JB.    | )-  | 2-1        | 3         |
|     |        | 7, 2 | $\searrow$ | $\sim$ |     | 1          | 1009      |
| 2 3 | 1 41 1 | 3    | X          | X      | X   |            | 0, 9      |
|     |        | 4    | X          | У      |     | $\searrow$ | <b>X</b>  |

|                | 0  |               |     |          |                    |
|----------------|----|---------------|-----|----------|--------------------|
|                |    | $\mathcal{D}$ | '   | 2        | 34                 |
|                | 0  | X             | 1.2 | 1,3      | max[(0,3)(0,4)=42  |
|                |    | $\times$      | 76  |          | ma-[(4,3)(1,4)]=3  |
| 28 2 3-1 4-1 5 | 2  | $\times$      | X   |          | mex[(203)/204)]=19 |
|                | 34 | X             | *   | <u> </u> | ×                  |



4 We NE to derive the equation for mean and variance assuming 1-0 Gasian.

$$p(x|n,\sigma) = \frac{1}{\sqrt{2\pi}} \exp\left[-\frac{1}{2} \frac{x}{(x-n)^2}\right]^2$$

Find the bod  $\Rightarrow L(n,\sigma) = \left(\frac{1}{\sqrt{2\pi}} \frac{n}{\sigma}\right)^n \exp\left[-\frac{1}{2} \frac{x}{(x-n)^2}\right]$ 

$$= n \cdot \log 1 - n \cdot \log \sqrt{n} = -\frac{1}{2} \frac{x}{(x-n)^2} \left(\frac{x-n}{\sigma}\right)^2$$

$$= -\frac{n}{2} \log \sqrt{n} - \frac{1}{2} \frac{x}{(x-n)^2} \left(\frac{x-n}{\sigma}\right)^2$$

$$= -\frac{n}{2} \log \sqrt{n} - \frac{1}{2} \frac{x}{(x-n)^2} \left(\frac{x-n}{\sigma}\right)^2$$

$$= -\frac{n}{2} + \frac{n}{2} \frac{(x-n)^2}{\sigma^2} = 0 \qquad (1)$$
From equation (1) we can get  $\frac{n}{2} = \frac{x}{n} = 0$ 

$$= -\frac{n}{2} + \frac{n}{2} \frac{(x-n)^2}{\sigma^2} = 0$$

$$= -\frac{1}{2} \frac{n}{2} \frac{(x-n)^2}{\sigma^2} = 0$$

$$= -\frac{1}{2} \frac{n}{2} \frac{(x-n)^2}{\sigma^2} = 0$$
where  $n$  is solved by equation (1)