PHYS 373 – Introduction to Computational Physics Spring 2023 (Term 222)

Quiz 3

Date: Tuesday, Feb 28th, 2023

Q1 (6 Points): The following data is given:

X	У
2	3
4	6
6	10

- **a.** (4 Points) Determine the parameters a and b that result in the least-squares fit for a power equation (i.e., $y=ax^b$) of the above data set.
- **b.** (2 Points) Use the resulting power equation to predict x at y=8.

Solution:

(a) (6 Points) $y=ax^b$

We regress $log_{10}(y)$ versus $log_{10}(x)$ to give:

$$\log_{10} y = \log_{10} a + b \log_{10} x$$

$$Y = \alpha + bX$$

X	У	X=log ₁₀ x	Y=log ₁₀ y	X ²	XY
2	3	0.3010	0.4771	0.0906	0.1436
4	6	0.6021	0.7782	0.3625	0.4686
6	10	0.7782	1	0.6056	0.7782
		1.6813	2.2553	1.0587	1.3904

Construct
$$\Phi: \Phi(a,b) = \sum_{i=0}^{n} (a+bx_i - f_i)^2$$

differentiate with respect to aand b

$$\frac{\partial \Phi(a,b)}{\partial a} = 0 = \sum_{k=1}^{N} 2(a + bx_k - y_k)$$

$$\frac{\partial \Phi(a,b)}{\partial b} = 0 = \sum_{k=1}^{N} 2(a + bx_k - y_k)x_k$$

Normal Equations

$$N a + \left(\sum_{k=1}^{N} x_k\right) b = \left(\sum_{k=1}^{N} y_k\right)$$
$$\left(\sum_{k=1}^{N} x_k\right) a + \left(\sum_{k=1}^{N} x_k^2\right) b = \left(\sum_{k=1}^{N} x_k y_k\right)$$

The results can be summarized as follows:

$$3\alpha + 1.6813b = 2.2553$$

 $1.6813 \alpha + 1.0587b = 1.3904$

$$Y = 0.1434 + 1.0856X$$
, $\alpha = 0.1434$ (Intercept), $b = 1.0856$ (Slope)

$$\log_{10} y = 0.1434 + 1.0856 \log_{10} x$$

Therefore,
$$a = 10^{0.1434} = 1.3912$$
 and $b = 1.0856$, and the power model is $v = 1.3912x^{1.0856}$

(b) (2 Points) Use the resulting power equation to predict x at y=8.

$$8 = 1.3912x^{1.0856} \Rightarrow x^{1.0856} = 5.7504 \Rightarrow 1.0856 \log x = \log 5.7504 = 0.7597 \Rightarrow \log x = \frac{0.7597}{1.0856} = 0.6998 \Rightarrow x = 10^{0.6998} = 5.0096$$

Q2(4 Points): Use Gaussian elimination to solve the following system of equations. Check the solution. Show all details

$$\begin{bmatrix} -4 & 1 & 8 & 3 \\ 2 & 1 & 4 & 1 \\ -3 & 2 & 6 & 4 \\ 2 & 0 & 2 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 1 \\ -2 \\ -2 \\ 2 \end{bmatrix}$$

Solution:

1.0000

-8.5000

0.0000

4.5000

Residue R=|AX-B|=0