

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

Licenciatura en Ciencias de la Computación Facultad de Ciencias

Programa de la asignatura

_						
1100	\sim mina	AIAN	\sim	-	20121	atura:
1 /611	()			14	4510111	allia.
	O		u	•••	40.911	aca: a:

Matemáticas para Ciencias Aplicadas II

Clave:	Semestre:	Eje temático:			No. Créditos:	
1216	2	Fundam	Fundamentos Matemáticos			12
Carácter: Obligatoria			Но	oras	Horas por semana	Total de Horas
Tipo: Teórica		Teoría:	Práctica:			
		6	0	6	96	
Modalidad: Curso			Duración del programa: Semestral			

Asignaturas con seriación obligatoria antecedente: Ninguna

Asignaturas con seriación obligatoria subsecuente: Ninguna

Asignatura con seriación indicativa antecedente: Matemáticas para Ciencias Aplicadas I

Asignatura con seriación indicativa subsecuente: Matemáticas para Ciencias Aplicadas III

Objetivos generales:

Aqduirir la comprensión intuitiva sobre la geometría en varias dimensiones. Resolver y plantear problemas lineales en varias dimensiones.

Utilizar el concepto de integral para el cálculo de sólidos de revolución. Comprender los conceptos básicos relacionados con curvas y su geometría y su relación con conceptos físicos de trayectorias.

Conocer los conceptos relacionados con funciones reales de varias variables (campos escalares) y su diferenciabilidad; así como de su interpretación en distintos campos de la Física. Comprender y saber utilizar las técnicas del cálculo en la solución de problemas de optimización y de optimización restringida.

Índice temático					
Unidad	T	Horas			
	Temas	Teóricas	Prácticas		
	Espacio Euclidiano de dimensión n	30	0		
[]	Sólidos de revolución	12	0		
III	Curvas	14	0		
IV	Campos escalares	22	0		
V	Máximos y mínimos	18	0		
	Total de horas:	96	0		
	Suma total de horas: 96)6		

Contenido temático						
Unidad	Tema					
I Espacio	Euclidiano de dimensión <i>n</i>					
I.1	Suma de vectores. Producto por escalares.					
1.2	Producto interno. Distancia.					
1.3	Producto cruz. Triple producto escalar.					
1.4	Área de paralelogramos y volumen de paralelepípedos.					
1.5	Transformación lineal y matrices.					
1.6	Vector propio. Forma canónica de Jordan en 2 y 3 dimensiones.					
1.7	Ecuaciones Lineales.					
II Sólidos	II Sólidos de revolución					
II.1	Volúmenes de sólidos.					
II.2	Área de superficies de revolución.					
II.3	Coordenadas polares. Área y Longitud en coordenadas polares.					
III Curvas						
III.1	Trayectoria y velocidad.					
III.2	Longitud de arco.					
III.3	Geometría de curvas en el espacio.					
IV Campo	s escalares					
IV.1	Funciones reales de varias variables. Representación gráfica de funciones reales (gráficas y conjuntos de nivel).					
IV.2	Límite y derivada.					
IV.3	Propiedades de la derivada.					
IV.4	Gradiente y derivada direccional.					
V Máximo	V Máximos y mínimos					
V.1	Aproximación polinomial.					
V.2	Puntos críticos de funciones reales.					
V.3	Máximos y mínimos.					
V.4	Máximos y mínimos con restricciones.					

Bibliografía básica:

- 1. Davis, H., Zinder, A. D., *Análisis vectorial*, McGraw Hill, México, 1992.
- 2. Lovric, M., Vector Calculus, Addison Wesley PL, Ontario, 1997.
- 3. Stewart J., *Multivariable Calculus, Concepts and Contexts*, Brooks/Cole Publishing, Boston, 1998.
- 4. Thomas, G. B., Finney, M. D., *Cálculo de varias variables*, Pearson Educación, México, 1999.

Bibliografía complementaria:

- 1. Gutiérrez Sánchez, J. L., Sánchez Garduño, F., *Matemáticas para las ciencias naturales*, Aportaciones Matemáticas, México, 1998.
- 2. Kline, M., *Calculus, an Intuitive and Physical Approach*, Dover Publications, New York, 1998.
- 3. Marsden, J., Tromba A. J., *Cálculo vectorial*, Addison-Wesley Iberoamericana, Argentina, 1991.
- 4. Schey, H. M., DIV, GRAD, CURL and All That, Norton Company, New York, 1973.
- 5. Swokowski E. W., *Calculus with Analytic Geometry*, Prindle, Weber and Schmidt Incorporated, Boston, 1975.

Sugerencias didácticas:		Métodos de evaluación:	
Exposición oral	(X)	Exámenes parciales	(X)
Exposición audiovisual	(X)	Examen final escrito	(X)
Ejercicios dentro de clase	(X)	Trabajos y tareas fuera del aula	(X)
Ejercicios fuera del aula	(X)	Exposición de seminarios por los alumnos	()
Seminarios	()	Participación en clase	(X)
Lecturas obligatorias	(X)	Asistencia	(X)
Trabajo de investigación	()	Seminario	()
Prácticas de taller o laboratorio	()		
Prácticas de campo	()	Otras:	
Otras:			

Perfil profesiográfico:

Matemático, Físico Actuario o Licenciado en Ciencias de la Computación, especialista en el área de la asignatura a juicio del comité de asignación de cursos. Con experiencia docente.