COM307000 - Cryptography **Secret Sharing, Random Numbers & Info Hiding**

Dr. Anca Jurcut
E-mail: anca.jurcut@ucd.ie

School of Computer Science and Informatics University College Dublin, Ireland

Secret Sharing

Shamir's Secret Sharing

- Two points determine a line
- \square Give (X_0, Y_0) to Alice
- \Box Give (X_1,Y_1) to Bob
- Then Alice and Bob must cooperate to find secret S
- Also works in discrete case
- Easy to make "m out of n" scheme for any m ≤ n

Shamir's Secret Sharing

- \square Give (X_0, Y_0) to Alice
- \Box Give (X_1, Y_1) to Bob
- \square Give (X_2, Y_2) to Charlie
- Then any two can cooperate to find secret S
- No one can determine S
- □ A "2 out of 3" scheme

Shamir's Secret Sharing

- \square Give (X_0, Y_0) to Alice
- \Box Give (X_1,Y_1) to Bob
- \square Give (X_2, Y_2) to Charlie
- 3 pts determine parabola
- □ Alice, Bob, and Charlie must cooperate to find S
- □ A "3 out of 3" scheme
- What about "3 out of 4"?

Secret Sharing Use?

- Key escrow suppose it's required that your key be stored somewhere
- Key can be "recovered" with court order
- But you don't trust FBI to store your keys
- We can use secret sharing
 - Say, three different government agencies
 - Two must cooperate to recover the key

Secret Sharing Example

- Your symmetric key is K
- \square Point (X_0, Y_0) to FBI
- \square Point (X_1,Y_1) to DoJ
- \square Point (X_2, Y_2) to DoC
- □ To recover your key K, two of the three agencies must cooperate
- No one agency can get K

Visual Cryptography

- Another form of secret sharing...
- Alice and Bob "share" an image
- Both must cooperate to reveal the image
- Nobody can learn anything about image from Alice's share or Bob's share
 - That is, both shares are required
- Is this possible?

Visual Cryptography

- ☐ How to "share" a pixel?
- □ Suppose image is black and white
- □ Then each pixel is either black or white
- We split pixels as shown

	Pixel	Share 1	Share 2	Overlay
a.				
b.				
c.				
d.				

Sharing Black & White Image

- □ If pixel is white, randomly choose a or b for Alice's/Bob's shares
- □ If pixel is black, randomly choose c or d
- No information in one "share"

Visual Crypto Example

□ Alice's share

Bob's share

Overlaid shares

Visual Crypto

- □ Visual crypto no exhaustive search...
- How does visual crypto compare to crypto?
 - Visual crypto is "information theoretically" secure
 also true of secret sharing schemes
 - With regular encryption, goal is to make cryptanalysis computationally infeasible
- □ Visual crypto an example of secret sharing
 - Not really a form of crypto, in the usual sense

Random Numbers in Cryptography

Random Numbers

- Random numbers used to generate keys
 - Symmetric keys
 - o RSA: Prime numbers
 - o Diffie Hellman: secret values
- Random numbers used for nonces
 - Sometimes a sequence is OK
 - But sometimes nonces must be random
- Random numbers also used in simulations, statistics, etc.
 - o In such apps, need "statistically" random numbers

Random Numbers

- Cryptographic random numbers must be statistically random and unpredictable
- Suppose server generates symmetric keys
 - o Alice: K_A
 - o Bob: K_B
 - o Charlie: K_C
 - o Dave: K_D
- □ Alice, Bob, and Charlie don't like Dave...
- □ Alice, Bob, and Charlie, working together, must not be able to determine K_D

Non-random Random Numbers

- Online version of Texas Hold 'em Poker
 - o ASF Software, Inc.

Player's hand

Community cards in center of the table

- Random numbers used to shuffle the deck
- Program did not produce a random shuffle
- A serious problem, or not?

Card Shuffle

- □ There are $52! > 2^{225}$ possible shuffles
- □ The poker program used "random" 32-bit integer to determine the shuffle
 - o So, only 2³² distinct shuffles could occur
- Code used Pascal pseudo-random number generator (PRNG): Randomize()
- Seed value for PRNG was function of number of milliseconds since midnight
- \square Less than 2^{27} milliseconds in a day
 - o So, less than 2²⁷ possible shuffles

Card Shuffle

- Seed based on milliseconds since midnight
- PRNG re-seeded with each shuffle
- By synchronizing clock with server, number of shuffles that need to be tested < 2¹⁸
- □ Could then test all 2¹⁸ in real time
 - o Test each possible shuffle against "up" cards
- Attacker knows every card after the first of five rounds of betting!

Poker Example

- □ Poker program is an extreme example
 - o But common PRNGs are predictable
 - o Only a question of how many outputs must be observed before determining the sequence
- Crypto random sequences not predictable
 - o For example, keystream from RC4 cipher
 - o But "seed" (or key) selection is still an issue!
- How to generate initial random values?
 - Keys (and, in some cases, seed values)

What is Random?

- □ True "random" hard to even define
- □ Entropy is a measure of randomness
- Good sources of "true" randomness
 - Radioactive decay but, radioactive computers are not too popular
 - Hardware devices many good ones on the market
 - o <u>Lava lamp</u> relies on chaotic behavior

Randomness

- □ Sources of randomness via software
 - Software is supposed to be deterministic
 - So, must rely on external "random" events
 - Mouse movements, keyboard dynamics, network activity, etc., etc.
- Can get quality random bits by such methods
- □ But quantity of bits is very limited
- Bottom line: "The use of pseudo-random processes to generate secret quantities can result in pseudo-security"

Information Hiding

Information Hiding

Digital Watermarks

- o Example: Add "invisible" info to data
- Defense against music/software piracy

Steganography

- o "Secret" communication channel
- o Similar to a covert channel
- o Example: Hide data in an image file

Watermark Examples

- □ Add robust invisible mark to digital music
 - o If pirated music appears on Internet, can trace it back to original source of the leak
- □ Add **fragile invisible** mark to audio file
 - o If watermark is unreadable, recipient knows that audio has been tampered with (integrity)
- Combinations of several types are sometimes used
 - o E.g., visible plus robust invisible watermarks

Watermark Example (1)

□ Non-digital watermark: U.S. currency

- □ Image embedded in paper on rhs
 - Hold bill to light to see embedded info

Watermark Example (2)

- □ Add invisible watermark to photo
- □ Claim is that 1 inch² contains enough info to reconstruct entire photo
- ☐ If photo is damaged, watermark can be used to reconstruct it!

Steganography

- □ According to Herodotus (Greece 440 BC)
 - Shaved slave's head
 - Wrote message on head
 - Let hair grow back
 - Send slave to deliver message
 - Shave slave's head to expose a message warning of Persian invasion
- Historically, steganography used by military more often than cryptography

Images and Steganography

- □ Images use 24 bits for color: **RGB**
 - o 8 bits for red, 8 for green, 8 for blue
- □ For example
 - o 0x7E 0x52 0x90 is this color
 - o 0xFE 0x52 0x90 is this color
- □ While
 - o 0xAB 0x33 0xF0 is this color
 - o 0xAB 0x33 0xF1 is this color
- □ Low-order bits don't matter...

Images and Stego

- □ Given an uncompressed image file...
 - o For example, BMP format
- ...we can insert information into low-order RGB bits
- Since low-order RGB bits don't matter, changes will be "invisible" to human eye
 - o But, computer program can "see" the bits

Stego Example 1

- □ Left side: plain Alice image
- □ Right side: Alice with entire *Alice in Wonderland* (pdf) "hidden" in the image

Non-Stego Example

■ Walrus.html in web browser

```
"The time has come," the Walrus said,
"To talk of many things:
Of shoes and ships and sealing wax
Of cabbages and kings
And why the sea is boiling hot
And whether pigs have wings."
```

"View source" reveals:

```
<font color=#000000>"The time has come," the Walrus said,</font><br><font color=#000000>"To talk of many things: </font><br><font color=#000000>Of shoes and ships and sealing wax </font><br><font color=#000000>Of cabbages and kings </font><br><font color=#000000>And why the sea is boiling hot </font><br><font color=#000000>And whether pigs have wings." </font><br></font><br/><font color=#000000>And whether pigs have wings." </font><br/></for>
```

Stego Example 2

stegoWalrus.html in web browser

```
"The time has come," the Walrus said,
"To talk of many things:
Of shoes and ships and sealing wax
Of cabbages and kings
And why the sea is boiling hot
And whether pigs have wings."
```

"View source" reveals:

```
<font color=#000101>"The time has come," the Walrus said,</font><br><font color=#000100>"To talk of many things: </font><br><font color=#010000>Of shoes and ships and sealing wax </font><br><font color=#010000>Of cabbages and kings </font><br><font color=#000000>And why the sea is boiling hot </font><br><font color=#010001>And whether pigs have wings." </font><br></font><br/><font color=#010001>And whether pigs have wings." </font><br/><br/></font><br/></font></for>
```

"Hidden" message: 011 010 100 100 000 101

Steganography

- □ Some formats (e.g., image files) are more difficult than html for humans to read
 - But easy for computer programs to read…
- □ Easy to hide info in unimportant bits
- Easy to damage info in unimportant bits
- □ To be *robust*, must use **important bits**
 - But stored info must not damage data
 - o Collusion attacks are also a concern
- Robust steganography is tricky!

Information Hiding: The Bottom Line

- □ Not-so-easy to hide digital information
 - o "Obvious" approach is **not** robust
 - o Stirmark: tool to make most watermarks in images unreadable without damaging the image
 - Stego/watermarking are active research topics
- □ If information hiding is suspected
 - Attacker may be able to make information/watermark unreadable
 - Attacker may be able to read the information, given the original document (image, audio, etc.)