Title: MICLEIC ACID AMPLIFICATION First tor: Mark G. ERLANDER et al App. No.: 10/062,857 - Filed: 10/25/01

Docket No. 485772002900

Title: NUCLEIC ACID AMPLIFICATION First Contor: Mark G. ERLANDER et al Application No.: 10/062,857 - Filed: 10/25/01 Docket No. 485772002900

Sheet 2 of 8

Title: NUCLEIC ACID AMPLIFICATION Mark G. ERLANDER et al Application No.: 10/062,857 - Filed: 10/25/01 Docket No. 485772002900

Sheet 3 of 8

Title: NUCLEIC ACID AMPLIFICATION
Fix yentor: Mark G. ERLANDER et al
Application No.: 10/062,857 - Filed: 10/25/01

Docket No. 485772002900

Sheet 4 of 8

Title: NUCLEIC ACID AMPLIFICATION Fine entor: Mark G. ERLANDER et al Application No.: 10/062,857 - Filed: 10/25/01 Docket No. 485772002900

Sheet 5 of 8

Figure 2B:Yiel	felds From Exogenous Priming of 2nd Strand Synthesis Using Different Enzymes	g Different Enzymes
SAMPLES	Condition Tested	ug of amplified RNA
-	no RNaseH, no Primer, Exo-Klenow and Taq	3.6
2		3.4
3	no RNaseH, with Primer, Exo-Klenow and Taq	15.5
4		19.2
ည	with RNaseH, no Primer, Exo-Klenow and Tag	3.4
9		3.0
7	with RNaseH, with Primer, Exo-Klenow and Tag	16.9
8		17.5
6	with RNaseH, with Primer, Exo-Klenow alone	18.7
10		16.8
11	with RNaseH, with Primer, Tag alone	2.8
12		3.6
13	with RNaseH, with Primer, Sequenase alone	0.0
14		10.4
15	with RNaseH, with Primer, regular Klenow alone	16.0
16		15.2
17	with RNaseH, with Primer, regular Klenow and Taq	13.7
18		15.2
19 1	with RNaseH, with Primer, Reverse Transcriptase alone	7.2
. 20		6.5
21 Eberwine1	endogenous priming method with DNA Pol1, Ligase and RNaseH	10.2
22 Eberwine2		11.7 .

Title: NUCLEIC ACID AMPLIFICATION Firmentor: Mark G. ERLANDER et al Application No.: 10/062,857 - Filed: 10/25/01

Sheet 6 of 8

	Figure 2C: Comparison of Yields and Fold Amplifcation	mplifcation		
		(2007)	Ho of Hit Ale	est fold amp*
SAMPLES	Condition Tested	ave (ug)	IOI CA IIII PIOI	
		3.5	0.3	174
1	no RNaseH, no Primer, Exo-Klenow and Iad	200		
2		27.0	2 7	865
3	no RNaseH, with Primer, Exo-Klenow and Taq	17.3	0.1	3
4			C	150
5	with RNaseH, no Primer, Exo-Klenow and Tag	3.2	0.0	
9		0.17		1 AR2
2	with RNaseH, with Primer, Exo-Klenow and Tag	7.71	0.1	700
8				700
	with RNaseH, with Primer, Exo-Klenow alone	17.7	1.6	000
				707
	with RNaseH, with Primer, Tag alone	3.2	0.3	101
12				307
	with RNaseH, with Primer, Sequenase alone	9.7	6.0	400
				077
15	with RNaseH, with Primer, regular Klenow alone	15.6	1.4	0//
16			'	707
17	with RNaseH, with Primer, regular Klenow and Tag	14.4	1.3	17/
18				240
19	with RNaseH, with Primer, Reverse Transcriptase alone	6.8	0.0	740
20				
21 Eberwine1 endog	endogenous priming method with DNA Pol1, Ligase and RNaseH	11.0	1.0	240
22 Eberwine 2.				

*fold-amplification calculated as follows: (final μg yield)/(0.020 μg) where 0.020 μg is an estimate based on the assumption that 2% of 1 μg of total RNA (the amount of starting material) is poly(A) RNA Title: NUCLEIC ACID AMPLIFICATION First Ir r: Mark G. ERLANDER et al Applica. A No.: 10/062,857 - Filed: 10/25/01

Docket No. 485772002900

Sheet 7 of 8

Figure 3A:

Title: NUCLEIC ACID AMPLIFICATION

Figure ventor: Mark G. ERLANDER et al Application No.: 10/062,857 - Filed: 10/25/01 Docket No. 485772002900

Sheet 8 of 8

Total RNA			conc (ng/ml)	yield
10 ng	-	Eberwine method	1860	101.0
10 ng	2	Eberwine method	1800	97.4
2 ng	က	Eberwine method	448	26.9
2 ng	4	Eberwine method	439	26.3
10 ng	5	exo-klenow + tag with t7a1	946	46.2
10 ng	9	exo-klenow + tag with t7a1	945	46.1
2 ng	7	exo-klenow + taq with t7a1	518	20.5
2 ng	8	exo-klenow + tag with t7a1	464	17.2
		·		
10 ng	6	exo-klenow + taq with t7a1dt	1700	91.4
10 ng	10	exo-klenow + taq with t7a1dt	1825	98.9
2 ng	11	exo-klenow + taq with t7a1dt	2400	144.0
2 ng	12	exo-klenow + taq with t7a1dt	648	38.9
10 ng	13	regular klenow + taq with t7a1	780	36.2
10 ng	14	regular klenow + taq with t7a1	808	37.9
2 ng	15	regular klenow + taq with t7a1	313	8.2
2 ng	16	regular klenow + taq with t7a1	298	7.3