$\left(\frac{n+m}{2}\right)^{2-n}$

Terrivlan Zholongen Horbar Space
1011/10 Zectorch Norbar Space
Prov that Plan II
Since we assume that me to remediate
we should have sometimes & I were k - num a pathe (1) D
Since we assume that m is reachable, we should have sometimes & L, were k = numg paths (1) & the Lt num g paths (-1). Since their order doesn't matter, we may find (kth) (kth) paths love a given
moster, we may find (kth) or (kth) posts for a given
1d/t/k/
reachable m, Note that k+k=m.
thus $N(n,m) = (kth) - (t) = (n) = (n-m)$ $\frac{1}{2} = (n-m) = (n-m)$
$\frac{1}{2}$
Sinte
Since $\frac{1}{2} = \frac{1}{2}$ As we have a solution
As we have a poth's,
As we have $\frac{\partial}{\partial x} = \frac{n-n+n}{2} = \frac{n-n}{2}$ $P(\int_{n-m}) = \frac{N(n,m) \cdot 2^{-n}}{2} = \frac{\binom{n}{n-m}}{2}$
$I(J_n=m)=\frac{-\frac{1}{2}}{\sqrt{n}}$
$\frac{1}{a^n}$