

# Al Visual Inspection system for road defection (L2)

YOUTH COLLEGE (INTERNATIONAL)

## **Reference Websites**



## 1. Introduction

Computer vision is an interdisciplinary scientific field that deals with how computers can gain high-level understanding from digital images or videos.

Machine vision (MV) is the technology and methods used to provide imaging based automatic inspection and analysis for such applications as automatic inspection, process control, and robot guidance, usually in industry.

## 1.1 Applications:

#### Industrial





#### Manufacture





# Agriculture





# Aquaculture





## Healthcare



 $\underline{https://developer.nvidia.com/blog/automatically-segmenting-brain-tumors-with-ai/}$ 

# 1.2 Surface defect inspection



Surface defects of mobile panel

## Classification

| Code | Defect pattern | Sample image | Code | Defect pattern   | Sample image |
|------|----------------|--------------|------|------------------|--------------|
| A    | White spot     | 0            | В    | Gray dots        | 0            |
| С    | Strip defect   | 0            | D    | Black spot halo  | 0            |
| Е    | Bubble defect  |              | F    | Solid black spot | 0            |
| I    | Defect-free    |              |      |                  |              |

#### Detection





# Segmentation



# 2. Artificial Intelligence

## 2.1 Al vs Machine Learning vs Deep Learning



## **Traditional Computer Vision**



## Machine Learning



## Deep Learning



## 2.2 Machine learning process



#### 2.3 Define Model

## Perceptron/neuron



## **Binary Classification**



#### 2.4 Loss function

- It indicates the error between prediction and truth.
- How good is the model?



## Regression loss function

MSE (Mean square error) 
$$\frac{\sum (y - \hat{y})^2}{N}$$

MAE (Mean absulute error) 
$$\frac{\sum |y - \hat{y}|}{N}$$

y: prediction  $\hat{y}$ : answer

 $\hat{y}$ : answer N: number of sample

## Binary Cross Entropy (BCE)

$$BCE = -rac{1}{N}\sum_{i=1}^{N}\hat{y_i}logy_i + (1-\hat{y_i})log(1-y_i) egin{array}{c} y:0\sim 1 \ \hat{y}:0,1 \end{array}$$



## 2.5 Multi-class Classification

#### Softmax

## softmax



$$softmax(z) = rac{e^{z_j}}{\sum_{k=1}^K e^{z_k}}$$

## One hot encoding



## 2.6 Optimization



## 2.7 Learning rate



#### 2.8 Batch size



## 2.9 Activation Layer



## 2.10 Early Stopping



## 2.11 Over-fitting





Over-fit Model

# **Exercise 1 – MNIST Handwritten Digit Classification**

File: handwritten.ipynb



# **Exercise 2 – CIFAR10 Object Recognition**

File: objectRecognition.ipynb

