Programme n°21

MECANIQUE

M3 Bases de la dynamique newtonienne

Cours et exercices

M4 Approche énergétique du mouvement d'un point matériel

Cours et exercices

M5 Mouvement d'une particule chargée dans un champ électrique ou magnétique (cours uniquement)

- Généralités
 - Validité du modèle
 - Force de Lorentz
 - Ordre de grandeur et comparaison avec le poids
 - Puissance de la force de Lorentz
- Mouvement dans \vec{E} uniforme
 - La vitesse initiale est parallèle au champ
 - La vitesse initiale n'est pas parallèle au champ
 - Bilan énergétique
 - → Introduction du potentiel électrique
 - → Conservation de l'énergie mécanique
 - Application
- Mouvement dans \vec{B} uniforme
 - Observations
 - Etude de la trajectoire
- Applications
 - Le spectromètre de masse
 - Les accélérateurs

- Les acceletateurs	
3. Mouvement de particules chargées dans des	
champs électrique et magnétique, uniformes et	
stationnaires	
Force de Lorentz exercée sur une charge	Évaluer les ordres de grandeur des forces électrique
ponctuelle ; champs électrique et magnétique.	ou magnétique et les comparer à ceux des forces gravitationnelles.
Puissance de la force de Lorentz.	Savoir qu'un champ électrique peut modifier
	l'énergie cinétique d'une particule alors qu'un champ
	magnétique peut courber la trajectoire sans fournir
	d'énergie à la particule.
Mouvement d'une particule chargée dans un	,
champ électrostatique uniforme.	comme un mouvement à vecteur-accélération
	constant.
	Effectuer un bilan énergétique pour calculer la
	vitesse d'une particule chargée accélérée par une
	différence de potentiel.
	amerenee de perennen
	Citer une application.
Mouvement circulaire d'une particule chargée dans	Déterminer le rayon de la trajectoire sans calcul en
un champ magnétostatique uniforme dans le cas	admettant que celle-ci est circulaire.
où le vecteur-vitesse initial est perpendiculaire au	
champ magnétique.	Approche documentaire : analyser des documents
	scientifiques montrant les limites relativistes en
	s'appuyant sur les expressions fournies
	$E_c = (\gamma - 1)mc^2$ et p = γmv .
	Citer une application.

SOLUTIONS AQUEUSES

AQ1 Réactions acide- base en solution aqueuse

Cours et exercices

Attention le calcul de pH n'est pas au programme, on se limitera à une base ou un acide mises en solution ou à un mélange d'un acide et d'une base, les élèves doivent alors être capables de trouver la réaction prépondérante et avec un tableau d'avancement trouver l'état d'équilibre.

<u>TP</u>

lodomètrie et principe d'un dosage en retour (pour l'instant l'oxydoréduction n'a été vu qu'au lycée)