Resolva somente quatro dos cinco exercícios abaixo.

→ 1. Considere a matriz quadrada A de dimensão n com autovalores distintos: $|\lambda_1| > |\lambda_2| > \cdots > |\lambda_n|$ e autovalores associados v_i . Considere o vetor $q = \sum_{i=0}^{\infty} \alpha_i v_i$. O que acontece com os métodos das potências quando usamos qcomo vetor inicial? (Observe que o primeiro termo do somatório tem índice 2).

Opine o que poderia ocorrer com suas conclusões do item acima na presença de erros de arrendodamento.

2. Considere a matriz não singular A particionada da seguinte forma:

$$A = \left[\begin{array}{cc} A_{11} & A_{12} \\ 0 & A_{22} \end{array} \right]$$

onde A_{11} e A_{22} são matrizes quadradas. Seja A=QR e $A^{(1)}=RQ$. Considere as matrizes ortogonal Q, triangular superior R e $A^{(1)}$ particionadas de forma equivalente. Mostre que $A_{21}^{(1)}=0$ e que Q_{11} e Q_{22} são ortogonais. Mostre também que $A_{11}=Q_{11}R_{11}$, $A_{22}=Q_{22}R_{22}$, $A_{11}^{(1)}=R_{11}Q_{11}$ e que $A_{22}^{(1)}=R_{22}Q_{22}$.

Em que contexto do curso estes resultados são úteis?

- \mathbb{R}^{-1} 3. Seja o sistema linear $Ax = b, A: m \times n, m > n, posto(A) = n$. Analise a relação entre a solução de Quadrados Mínimos:
 - (i) usando decomposição SVD de A e
 - (ii) através da decomposição QR de A.
- A. Seja a decomposição SVD de uma matriz $A = U \Sigma V^t$ de dimensão $n \times m$, posto(A) = m.
 - (a) Escreva A^t , AA^t e A^tA em termos de $U\Sigma V^t$.
 - (b) Encontre a decomposição SVD das matrizes $(A^tA)^{-1}$, $(A^tA)^{-1}A^t$, $A(A^tA)^{-1}$ e $A(A^tA)^{-1}A^t$ em função da decomposição SVD de A.
 - (c) Encontre a norma-2 das matrizes do item anterior.
 - (d) Suponha que A seja quadrada e não singular. Como você resolveria o sistema linear Ax = b utilizando $U\Sigma V^t$?
- 5. Justifique a utilização de métodos iterativos para a solução de sistemas lineares em oposição a métodos diretos.

