Computer Vision

Betreff

- Überschrift
 - Blumenklassifikation Anhand von Blüten: HOG-Merkmale und VGG-16 Architektur im Vergleich
- Einsatzmöglichkeiten
 - Hobbygärtner
 - Blumenpopulation messen und überwachen —> Informationen über das Ökosystem (Bauern, Studien über Einfluss und Erfolg von z. B. Pestiziden, Rückschlüsse über Insektenpopulation z. B. Bienen)
- Aufgabe:
 - Blumen mit klassischer Bildererkennung und mit Neuronalen Netzen klassifizieren
 - Verschiedene Deskriptoren ausprobieren (HOG, HOG+NNK, VGG-16 CNN, VGG-19 CNN)
 - Analysieren und sinnvolle Deskriptoren und Methoden herausfinden
 - Methoden in Python implementieren
 - Genutzte Methoden vergleichen
 - Genutzte Methoden verbessern
 - Ergebnisse auswerten (Confusion Matrix)
- Grundlagen:
 - Datensätze beschreiben
 - Woher haben wir unsere Daten
 - Was wurde mit den Daten bereits gemacht (Preprocessing: Segmentieren von Vordergrund und Hintergrund)
 - · Wie viele Klassen
 - · Wie sehen Klassen aus
 - · Wie viele Datensätze pro Klasse
- Klassifikation:

- Was ist der klassische Ansatz?
 - HOG, Farbmean, Kombination mit Nearest Neighbour performt schlecht (20%, 44%, 44%)
 - HOG mit NN, Farbmean (HOG ohne NN kommt nur auf 20%)
 - erklären, wie HOG und Farbmean verbunden sind
- Was ist der neuronale Ansatz?
 - vortrainiertes VGG-16 Deep CNN, letzte Layer werden mit unseren Daten trainiert
 - Input: 224x224 RGB Image

- Ergebnisse:

- Erkennungsraten mit den unterschiedlichen Methoden
- Confusion Matrix; Erklärung, welche Blumenarten als was erkannt wurden.
 - Wieso wurde Blumenart x überwiegend als y eingestuft?
- Trainingsdauer
- Daten

- Probleme:

- Klasse 4 hat die Erkennungsrate um 10 Prozent gesenkt. Ein Testdurchlauf ohne diese "schlechte" Klasse hat zu einer Erkennungsrate von über 90% geführt
- Langsame Ausführung durch fehlende Typisierung —> Nutzung von C integriert in Python mithilfe von Cython