CCP 2006- Epreuve de mathématiques I- Corrigé

Problème

I- Découverte des fonctions tests

1. Soit A une partie de \mathbb{R} ,

 \Rightarrow) Si A est bornée dans \mathbb{R} , alors il existe r>0 tel que $A\subset [-r,r]$, donc

 $\overline{A} \subset [-r, r] = [-r, r]$ et par suite \overline{A} est bornée.

On sait que \overline{A} est toujours fermée, et puisque \mathbb{R} est de dimension finie, on déduit que \overline{A} est une partie compacte de \mathbb{R} .

 \Leftarrow) Si \overline{A} est une partie compacte de \mathbb{R} , alors A est bornée dans \mathbb{R} et puisque $A \subset \overline{A}$, on déduit que A est bornée dans \mathbb{R} .

2. Quelques exemples:

a. Soit $u: \mathbb{R} \to \mathbb{R}$ une application paire telle que :

$$u(x) = \begin{cases} 4 - x^2 & \text{si } x \in [0, 2] \\ 0 & \text{si } x > 2 \end{cases}$$

Il est clair que l'application u est continue sur \mathbb{R} et que $u(x) \neq 0$ si et seulement si $x \in]-2,2[$, donc Supp(u) = [-2, 2]

u est donc a support compact, mais u n'est pas une fonction test car u n'est pas dérivable en 2 $(D_q(u)(2) = -4 \neq 0 = D_d(u)(2)$

Représentation graphique de u:

b. La fonction sin est une fonction de classe C^{∞} sur \mathbb{R} , mais son support est non borné car $(x_n = \frac{\pi}{2} + 2n\pi)_n$ est une suite de points de support de sin telle que $\lim_{n \to \infty} x_n = +\infty$. Donc l'application sin n'est pas une fonction test.

3. Soit la fonction h définie par : $h(x) = \begin{cases} \exp(-\frac{1}{x}) & si \ x > 0 \\ 0 & si \ x \leqslant 0 \end{cases}$

a. h est C^{∞} sur \mathbb{R}^* (par opérations) avec $h^{(k)}(x)=0$ pour tout $x\leqslant 0$ et tout entier $k\in\mathbb{N}$. Pour x>0, $h'(x)=\frac{1}{x^2}\exp(-\frac{1}{x}),$ on pose $P_1(X)=X^2$. Soit $k\in\mathbb{N}^*$, supposons que $h^{(k)}(x)=P_k(\frac{1}{x})\exp(-\frac{1}{x})$ pour tout x>0, alors :

$$h^{(k+1)}(x) = \left(-\frac{1}{x^2}P_k'(\frac{1}{x}) + \frac{1}{x^2}P_k(\frac{1}{x})\right)\exp(-\frac{1}{x}) \text{ pour } x > 0$$

Par le principe de récurrence la suite polynomiale $(P_k)_k$ vérifie : $P_{k+1}(X) = -X^2 P_k' + X^2 P_k$ et $\deg(P_{k+1}) = \deg(P_k) + 2.$

Donc pour $k \in \mathbb{N}^*$, $\sum_{j=0}^{k-1} (\deg(P_{j+1}) - \deg(P_j)) = \sum_{j=0}^{k-1} 2 = 2k$ et par suite $\deg(P_k) = 2k$ car $\deg(P_0) = 0 \ (P_0 = 1)$

Conclusion:

$$\forall x > 0, \ \forall k \in \mathbb{N}, \ h^{(k)}(x) = P_k(\frac{1}{x}) \exp(-\frac{1}{x}) \ et \ \deg(P_k) = 2k$$

La fonction h est continue sur \mathbb{R} , et de classe C^{∞} sur \mathbb{R}^* et de plus

$$\lim_{x \to 0^+} h^{(k)}(x) = \lim_{x \to 0^+} P_k(\frac{1}{x}) \exp(-\frac{1}{x}) + 0 , \quad \lim_{x \to 0^-} h^{(k)}(x) = 0.$$

 $\lim_{x\to 0^+} h^{(k)}(x) = \lim_{x\to 0^+} P_k(\frac{1}{x}) \exp(-\frac{1}{x}) + 0 , \quad \lim_{x\to 0^-} h^{(k)}(x) = 0.$ par le principe de récurrence, via le théorème du prolongement de la dérivée, on déduit que hest de classe C^{∞} sur \mathbb{R} et que pour tout $k \in \mathbb{N}$, $h^{(k)}(0) = 0$.

b. La fonction h est de classe C^{∞} sur \mathbb{R} mais n'est pas a support compact car h(x) > 0 pour tout x > 0, donc h n'est pas une fonction test .

h n'est pas développable en série entière au voisinage de 0 en effet : si h bes développable en série entière sur un voisinage de 0, alors, il existe r > 0 tel que :

$$\forall x \in]-r, r[, h(x) = \sum_{k=0}^{\infty} \frac{h^{(k)}(0)}{k!} x^k = 0 \text{ car } h^{(k)}(0) = 0 \text{ pour tout } k,$$

ce qui est impossible car h n'est pas identiquement nulle sur]0, r[.

4. Soit la fonction φ définie par $\varphi(x) = h(-(x+1)(x-1))$

a. Soit $x \in \mathbb{R}$, $\varphi(x) \neq 0 \Leftrightarrow h(-(x+1)(x-1)) \neq 0 \Leftrightarrow (x-1)(x+1) > 0 \Leftrightarrow x \in]-1,1[$, Donc, $\operatorname{Supp}(\varphi) = [-1,1]$.

La fonction φ est de classe C^{∞} sur \mathbb{R} comme composée de deux fonctions de classe C^{∞} et puisque son support est compact, l'application est donc une fonction test.

Variations de la fonction φ :

x		-1		+1	
-(x-1)(x+1)	-	0	+	0	-
$\varphi(x)$	0		$e^{\frac{1}{(x-1)(x+1)}}$		0

$$\varphi'(x) = -2xh'(-(x^2-1))$$
 où $h'(x) = \frac{1}{x^2}e^{-\frac{1}{x}} > 0$ pour tout $x > 0$

b. La fonction $x \to h(-(x-3)(x-8))$ est une fonction test dont le support est [3,8]. La fonction $x \to h(-(x-1)(x-2)) + h(-(x-5)(x-6))$ est une fonction test car elle est de classe C^{∞} et dont son support est $[1,2] \cup [5,6]$

5. Si une fonction est a support compact, alors celle-ci est nulle au voisinage de ∞ , donc de limite nulle à l'infini.

6. Construction d'une suite régularisante :

a. Comme la fonction φ est continue sur \mathbb{R} et a support compact (la foction est nulle en dehors de [-1,1]), alors φ est intégrable sur \mathbb{R} et $\int_{\mathbb{R}} \varphi = \int_{-1}^{+1} \varphi > 0$ car φ est continue et strictement positive sur]-1,1[.

Posons $c = \int_{-1}^{+1} \varphi = \int_{\mathbb{R}} \varphi$ et $\rho(x) = \frac{1}{c} \varphi(x)$ pour tout x, alors ρ , comme φ , est une fonction test

dont le support est [-1,1] et que ρ est une fonction intégrable sur \mathbb{R} avec $\int_{\mathbb{R}} \rho = \frac{1}{c} \int_{\mathbb{R}} \varphi = 1$.

Pour $n \in \mathbb{N}$, on pose $\rho_n(x) = n\rho(nx)$ pour tout $x \in \mathbb{R}$.

b. Soit $n \in \mathbb{N}^*$, l'application ρ_n est de classe C^{∞} (opérations sur les foctions de classe C^{∞}) sur \mathbb{R} . De plus

$$\rho_n(x) \neq 0 \Leftrightarrow \rho(nx) \neq 0 \Leftrightarrow nx \in]-1, 1[\Leftrightarrow x \in]-\frac{1}{n}, \frac{1}{n}[$$

donc $Supp(\rho_n) = [-\frac{1}{n}, \frac{1}{n}].$

La fonction ρ_n est intégrable sur \mathbb{R} et $\int\limits_R \rho_n = n \int\limits_{-1}^{\frac{1}{n}} \rho(nx) dx = \int\limits_{-1}^{1} \rho(t) dt = 1$.

En conclusion : Pour tout $n \in \mathbb{N}^*$, ρ_n est une fonction test et que $\int_{\mathbb{R}} \rho_n = 1$.

II- Approximation uniforme sur $\mathbb R$ par des fonctions de classe C^{∞} ou par des fonctions tests.

7. L'approximation polynomiale ne convient plus

Soit $(P_n)_n$ une suite de fonctions plynomiales qui converge uniformément vers f sur $\mathbb R$ tout entier .

a. Soit $\varepsilon = 1 > 0$, comme $(p_n)_n$ est de Cauchy pour la norme de convergence uniforme, il existe $N \in \mathbb{N}^*$, tel que : $\forall n, m \in \mathbb{N}, n \geqslant m \geqslant N \Rightarrow \forall x \in \mathbb{R}, |P_n(x) - P_m(x)| \leqslant \varepsilon = 1$. En particulier pour m = N, on a le résultat demandé .

Pour $n \ge N$, la fonction poynomiale $P_n - P_n$ est bornée sur \mathbb{R} , donc constante, et par suite $\deg(P_n - P_N) \in \{-\infty, 0\}$.

b. D'après la question 7.a), il existe $N \in \mathbb{N}^*$ tel que : $\forall n \geqslant N, \exists C_n \in \mathbb{R}$; $\forall x \in R, P_n(x) - P_N(x) = C_n$. Comme la suite $(P_n)_n$ converge simplement vers f sur, il en résulte que la suite $(C_n)_n$ converge. Si $C = \lim_n C_n$, alors $C = \lim_n C_n = \lim_n (P_n(x) - P_N(x)) = f(x) - P_N(x)$ pour tout $x \in \mathbb{R}$, et par suite $f(x) = P_N(x) + C$ pour tout x.

Conclusion : $f = P_N + C$ est donc une fonction polynôme sur \mathbb{R} .

8. Approximation d'une fonction continue à l'infini par une suite de fonctions continues à support compact :

Pour $n \in \mathbb{N}$, z_n est une fonction définie sur \mathbb{R} paire telle que :

$$z_n(x) = \begin{cases} 1 & \text{si } x \in [0, n[\\ -x + n + 1 & \text{si } x \in [n, n + 1[\\ 0 & \text{si } x \in [n + 1, +\infty[\end{cases}]$$

a. Représentation garphique de z_n :

Limite simple de la suite (z_n) :

Comme z_n est paire pour tout entier n, il suffit d'étudier la convergence pour $x \ge 0$.

Soit $x \ge 0$, pour tout entier $n \ge E(x) + 1$, on a alors $x \in [0, n[$ et par suite $z_n(x) = 1$ et donc $\lim_{n \to \infty} z_n(x) = 1$.

En conclusion : la suite de fonctions $(z_n)_n$ converge simplement vers la fonction constante 1 . La convergence de la suite n'est pas uniforme, car pour $x_n = n+1$, on a $|z_n(x_n)-1|=1$ ne tend pas vers 0 quand n tend vers $+\infty$.

b. Soit g une fonction continue sur \mathbb{R} , nulle à l'infini

Montrons que g est bornée sur \mathbb{R} :

Soit $\varepsilon = 1 > 0$, comme $\lim_{|x| \to +\infty} g(x) = 0$, il existe a > 0 tel que : $\forall x \in R, |x| \geqslant a$ on a $|g(x)| \leqslant 1$, donc q est bornée sur $]-\infty, -a] \cup [a, +\infty[$.

g étant continue sur \mathbb{R} , en particulier g est continue sur le compact [-a,a] et par suite g est bornée sur [-a,a]

En conclusion : g est bien bornée sur $\mathbb R$.

Pour $n \in \mathbb{N}$, posons $\alpha_n = \sup_{|x| > n} |g(x)|$

c. Etude de la monotonie de la suite $(\alpha_n)_n$:

Soit $n \in \mathbb{N}$, comme $\{|g(x)|\,,\,|x|\geqslant n+1\,\}\subset\{|g(x)|\,,\,|x|\geqslant n\},$ il en résulte que

$$\alpha_{n+1} = \sup\{|g(x)|, |x| \ge n+1\} \le \sup\{|g(x)|, |x| \ge n\} = \alpha_n.$$

Donc la suite $(\alpha_n)_n$ est monotone décroissante .De plus $(\alpha_n)_n$ est minorée par 0, donc converge dans \mathbb{R} .

Montrons que $\lim \alpha_n = 0$:

soit $\varepsilon > 0$, puisque $\lim_{|x| \to +\infty} g(x) = 0$, il exite c > 0 etl que : $\forall x \in \mathbb{R}, \ |x| \geqslant c, \ |g(x)| \leqslant \varepsilon$

En particulier pour $n \ge c$, on a : $\forall x$, $|x| \ge n \Rightarrow |g(x)| \le \varepsilon$ et par suite pour tout $n \ge c$, $0 \le \alpha_n = \sup_{|x| \ge n} |g(x)| \le \varepsilon$.

En définitive :

$$\lim_{n} \alpha_n = 0.$$

d. Pour $n \in \mathbb{N}$, on pose $g_n = gz_n$:

Pour
$$n \in \mathbb{N}$$
 et $x \in \mathbb{R}$, on a : $g(x) - g_n(x) = g(x)(z_n(x) - 1)$, et que pour $x \ge 0$, $z_n(x) - 1 = \begin{cases} 0 & \text{si } x \in [0, n] \\ -x + n & \text{si } x \in [n, n + 1[& \text{(on n'oublie pas que la fonction } z_n \text{ est paire).} \\ -1 & \text{si } |x| \ge n + 1 \end{cases}$

D'autre part
$$||g_n - g||_{\infty} = \max(\sup_{x \in [-n,n]} |g(x) - g_n(x)|, \sup_{|x| \ge n} |g(x) - g_n(x)|)$$

= $\sup_{|x| \ge n} |g(x) - g_n(x)| \operatorname{car} g(x) - g_n(x) = 0 \operatorname{pour} x \in [-n,n]$

Mais pour

$$|x| \ge n$$
, $|g(x) - g_n(x)| = |g(x)| |z_n(x) - 1| \le |g(x)| (|z_n(x)| + 1) \le \alpha_n (|z_n(x)| + 1) \le 2\alpha_n$.

En conclusion:

$$||g_n - g||_{\infty} \leqslant 2\alpha_n$$
.

e. Comme la suite $(\alpha_n)_n$ converge vers 0 (indépendement de x), il en résulte, d'après l'inégalité précèdente, que $(g_n)_n$ converge uniformément vers g sur \mathbb{R} tout entier. De plus, pour tout $n \in \mathbb{N}$, g_n est une fonction continue sur \mathbb{R} de support [-n-1,n+1] qui est compact.

En conclusion : Toute fonction g continue sur \mathbb{R} , nulle à l'infini est limùite uniforme de suite de fonctions continue sur \mathbb{R} à support compact .

f est une fonction continue sur \mathbb{R} et q continue sur \mathbb{R} et à support compact :

$$\exists R > 0, \; Supp(g) \subset [-R, R]$$

9. Convolution:

- a. Pour x un réel fixé, l'application $t\mapsto g(t)f(x-t)$ est continue sur \mathbb{R} (par opérations) et nulle sur $]-\infty, -R[\cup]R, +\infty[$, donc intégrable sur \mathbb{R} . On pose $g*f(x)=\int_{\mathbb{R}}g(t)f(x-t)dt$
- b. Pour x fixé, l'application $t\mapsto f(t)g(x-t)$ est continue sur \mathbb{R} , et nulle sur $]-\infty, -R-x[\cup]R-x, +\infty[$, donc intégrable sur \mathbb{R} .

On note $f * g(x) = \int_{\mathbb{R}} f(t)g(x-t)dt$.

On fait le changement de variable $t\mapsto u=x-t$ qui est un C¹-différomorphisme , dans l'intégrale f*g(x), on aura :

$$f * g(x) = \int_{-\infty}^{+\infty} f(t)g(x-t)dt$$

=
$$\int_{+\infty}^{+\infty} f(x-u)g(u)(-du)$$

=
$$\int_{-\infty}^{+\infty} f(x-u)g(u)du = g * f(x).$$

10. Support d'une convolution :

a. Ici on suppose de plus que f est à support compact : $\exists S>0$ tel que $Supp(f)\subset [-S,S]$ Si x>S+R, alors $(f*g)(x)=\int\limits_{-S}^S f(t)g(x-t)dt$ car f est nulle en dehors de [-S,S]. Si $t\in [-S,S]$, alors $x-t\in [-S+x,S+x]$ et comme x>R+S, on a $x-t>R+\underbrace{S-t}_{\geqslant 0}\geqslant R$, donc g(x-t)=0 et par suite (f*g)(x)=0. Si x<-R-S, alors $(f*g)(x)=(g*f)(x)\int\limits_{-R}^R f(x)g(t)dt$ car gest nulle en dehors de [-R,R] S $t\in [-R,R]$, alors $x-t\in [-R+x,R+x]$ et comme x<-R-S, on a $x-t<-R-\underbrace{S-t}_{>S}$,

donc f(x-t) = 0 et par suite (f * g)(x) = 0.

En conclusion : f * g est à support compact .

b. Supposons f n'est pas à support compact, montrons que f*g n'est pas necessairement a support comapet.

Prendre par exemple g positive non ulle et f = 1.

11. Dérivation d'une convolution :

a. Soit a un réel strictement positif et $x \in [-a, a]$, on a :

$$(f*g)(x) = \int_{-\infty}^{+\infty} f(x-t)g(t)dt = \int_{-R}^{R} f(x-t)g(t)dt \text{ car } g \text{ est nulle en } dehors \text{ de } [-R,R].$$

Avec le chagement de variable affine $t \to u = x - t$, on a : $f * g(x) = -\int_{x-D}^{x-R} f(u)g(x-u)du =$

$$\int_{x-R}^{x+R} f(u)g(x-u)du$$

Pour $u \in [-a-R, x-R]$, on a: -u > R-x et puis x-u > R, donc g(x-u) = 0.

De même pour $u \in]x + R, a + R]$, on a : -u < -x - R et puis x - u < R, donc g(x - u) = 0En concluison:

$$f * g(x) = \int_{x-R}^{x+R} f(u)g(x-u)du = \int_{-a-R}^{a+R} f(u)g(x-u)du.$$

b. On suppose de plus que q est de classe C^1 sur \mathbb{R} , alors l'application

$$\Psi: \mathbb{R} \times [-a-R, a+R] \rightarrow \mathbb{R}$$

$$(x,t) \mapsto f(t)g(x-t)$$

est continue et admet une dérivée partielle par rapport à x: de plus l'application $(x,t) \mapsto$ $\frac{\partial}{\partial x}\Psi(x,t)=f(t)g'(x-t)$ qui est continue sur $\mathbb{R}\times[-a-R,a+R]$, donc par le théorème de

dérivation sous le signe intgrale, la fonction f * g est de classe C^1 et $(f * g)'(x) = \int_{a}^{a+R} f(t)g'(x-t) dt$

$$t)dt = \int_{-\infty}^{+\infty} f(t)g'(x-t)dt$$
 car g' est aussi a support compact avec $Supp(g') \subset [-R,R]$ (g est

toujours nulle en dehors de [-R, R], donc aussi g'...).

En conclusion : (f * q)' = f * q'.

Par le principe de rédurence on démontre que si g est calsse C^{∞} alors f * g est de classe C^{∞} sur \mathbb{R} et que $(f * g)^{(k)} = f * g^{(k)}$ pour tout entier k.

12. Application à l'approximation :

a. Soit $n \in \mathbb{N}^*$, et $x \in \mathbb{R}$, on a :

Soit
$$n \in \mathbb{N}^*$$
, et $x \in \mathbb{R}$, on a:

$$f * \rho_n(x) - f(x) = \int_{-\infty}^{+\infty} f(x-t)\rho_n(tdt - f(x))$$

$$= \int_{-\infty}^{+\infty} f(x-t)\rho_n(tdt - \int_{-\infty}^{+\infty} f(x)\rho_n(t)dt \operatorname{car} \int_{-\infty}^{+\infty} \rho_n(t)dt = 1$$

$$= \int_{-\infty}^{+\infty} (f(x-t) - f(x))\rho_n(tdt)$$

$$\int_{-\frac{1}{n}}^{\frac{1}{n}} (f(x-t) - f(x))\rho_n(tdt) \operatorname{car} \operatorname{Supp}(\rho_n) = [-\frac{1}{n}, \frac{1}{n}]$$

D'où
$$|f * \rho_n(x) - f(x)| = \left| \int_{-\frac{1}{n}}^{\frac{1}{n}} (f(x-t) - f(x)) \rho_n(t) dt \right| \le \int_{-\frac{1}{n}}^{\frac{1}{n}} |f(x-t) - f(x)| \rho_n(t) dt.$$

b. On suppose ici f est de plus uniformément continue, soit $\varepsilon > 0$, il existe alors un réel $\eta > 0$ tel que : $\forall y, z \in R, |y - z| \leq \eta \Rightarrow |f(y) - f(z)| \leq \varepsilon$

Posons $n_0 = E(\eta) + 1 \ge 1$, pour $n \in \mathbb{N}^*$ tel que $n \ge n_0$, et pour tous $x \in \mathbb{R}$, $t \in [-\frac{1}{n}, \frac{1}{n}]$, on a : $|(x-t)-x| = |t| \le \frac{1}{n} \le \eta$ et par (*), on déduit que $|f(x-t)-f(x)| \le \varepsilon$.

Doù
$$|f * \rho_n(x) - f(x)| \le \int_{-\frac{1}{n}}^{\frac{1}{n}} |f(x-t) - f(x)| \rho_n(tdt) \le \varepsilon \int_{-\frac{1}{n}}^{\frac{1}{n}} \rho_n(tdt) = \varepsilon$$
 pour tout x et tout entier

 $n \geqslant n_0$.

En conclusion : $\forall \varepsilon > 0$, $\exists n_0 \in \mathbb{N}^*$, $\forall n \in \mathbb{N}$, $n \ge n_0 \Rightarrow \forall x \in \mathbb{R}$, $|f * \rho_n(x) - f(x)| \le \varepsilon$ c'est à dire la suite de fonctions $(f * \rho_n)_{n \in \mathbb{N}^*}$ converge uniformément sur \mathbb{R} vers la fonction f.

c. Soit f une fonction continue sur R a support compact.

Pour $n \in \mathbb{N}^*$, la fonction $f * \rho_n$ est aussi a support compact (question 10) et comme ρ_n est de classe C^{∞} sur \mathbb{R} (Questions 4 et 6), on a $f * \rho_n$ est une fonction de classe C^{∞} sur R et par suite $f * \rho_n$ est une fonction test. La fonction f est nulle a l'infini, car f est support compact, donc f est uniformément continue sur \mathbb{R} . Par la question 12, la suite de fonction $(f * \rho_n)_{n \geq 1}$ converge unformément vers f sur R.

III. Théorème de Whitney

13. Soit f une fonction de classe C^{∞} sur R, posons $Z(f) = \{x \in \mathbb{R}, f(x) = 0\}$ ensemble des zeros de f

On a alors $Z(f) = f^{-1}\{0\}$ est un fermé comme image réciproque d'un fermé par une fonction continue.

14. Une première tentative de preuve...infructueuse

Soit F une partie fermée de \mathbb{R} .

Cherchons $Z(d_F)$ où $d_F(x) = d(x, F)$.

Soit $x \in \mathbb{R}$, on a : $x \in Z(d_F) \Leftrightarrow d(x, F) = 0 \Leftrightarrow x \in \overline{F} = F$ car F est fermée, donc $Z(d_F) = F$.

Si l'application d_F est C^{∞} sur \mathbb{R} , alors le théorème de Witney est démontré.

Représentation de d_F dans le cas de $F =]-\infty, -1] \cup [1, +\infty[$:

on a
$$d_F(x) = \begin{cases} 1 - x & si & x \in [0, 1] \\ x + 1 & si & x \in [-1, 0[\\ 0 & ailleurs \end{cases}$$

 d_F ne vérifie la propriété car d_F n'est pas dérivable sur $\mathbb R$, donc d_F n'est pas de classe C^∞ .

- 15. Utilisation de foction test
- On suppose que F est le complémentaire de [a, b] avec a < b, donc $F =]-\infty, a] \cup [b, +\infty[$: On considère la fonction f telle f(x) = h(-(x-a)(x-b)) où h est la fonction définie dans la question 3, alors f est une fonction test (f est de classe C^{∞} et a support compact : Supp(f) = [a, b]), avec Z(f) = F. Donc le théorème est démontré.
- ii) On suppose que F est le complémentaire de $]a,b[\cup [c,d]]$ avec a < b < c < d: On considère la fonction f telle f(x) = h(-(x-a)(x-b)) + h(-(x-c)(x-d)) où h est la fonction définie dans la question 3, alors f est une fonction test (f est de classe C^{∞} et a support compact : $Supp(f) = [a, b] \cup [c, d]$), avec Z(f) = F. Donc le théorème est démontré.
- 16. Démontrons le Théorème dans le cas général :

Soit F une partie fermée de \mathbb{R} , notons par Ω le complémentaire de F dans \mathbb{R} , alors Ω est un ouvert de \mathbb{R} . Soit $(a_k, b_k)_{k \in I}$ une partion de Ω , où I est une partie non vide de \mathbb{N} et $a_k < b_k$ pour tout k,

on a : $\Omega = \bigcup_{k \in I}]a_k, b_k[$. Si I est fini, la fonction f telle que $f(x) = \sum_{k \in I} h(-(x - a_k)(x - b_k))$ pour tout x, est une fonction de classe C^{∞} a support compact($Supp(f) \subset \bigcup_{k \in I} [a_k, b_k]$.) avec Z(f) = F. Donc la théorème est

Si I est infini, on se ramène à $I = \mathbb{N}$ et on considère la fonction

$$f = \sum_{k=0}^{\infty} h_k$$
 où $h_k(x) = h(-(x - a_k)(x - b_k))$ pour tout x ,

on a : f est de classe C^{∞} et que Z(f) = F.