Childhood Allergy Prevalence

Alex Hart Lucia Tablas Sara Arasteh Vivian Sun Leah Krause

Introduction

Food Allergy

- What...
 - The immune system reaction to a certain food
- How...
 - Can be moderate or strong

Importance

- The reported food allergy cases increased
- More cases for kids in the early years of their development

Data Set

Demographic Features

Questions Addressed:

- 1. Has the prevalence of food allergies **increased** over time?
- 2. What is the likelihood of allergens in each demographic?
- 3. Are certain allergies correlated?
- 4. Does population **density** define the **severity** level of reactions?

QUESTION

1. Has the prevalence of food allergies **increased** over time?

Allergies Through The Years

The Years Through Allergies

→ We can see increases in peanut, milk, and egg allergies as birth years get later.

→ The rest of the data is very squishy and consistent.

QUESTION

2. What is the **likelihood** of allergens in each demographic?

Study Demographics

Normalized Race Distribution

Normalized Age Group Distribution

Gender Distribution

QUESTION

3. Are certain allergies **correlated**?

Allergen Indicators

→ Through correlation matrices using Pearson's R, we were able to determine which allergies (if any) are correlated

Pearson's Correlation Coefficient	Strength
r < 0.3	None or very weak
0.3 ≤ r < 0.5	Weak
0.5 ≤ r < 0.7	Moderate
r ≥ 0.7	Strong

Overall Highest Correlated: Pecan and Walnut

Pearson's correlation coefficient of

0.29 (Very weak)

Overall Second Highest Correlated: Cashew and Pistachio

Pearson's correlation coefficient of

0.29 (Very weak)

Overall Least Correlated: Soy and Pistachio

Pearson's correlation coefficient of

0.01 (None to very weak)

Correlation Throughout the Study

- → None of the allergens ever indicate a correlation factor above weak
- → We can infer that these allergies are most likely independently developed

QUESTION

4. Does population **density** define the **severity** level of reactions?

Allergen Distribution

- → A quick visual analysis on the total number of each allergen recorded in this test
- → All nut allergens appear to have a lower population in number of reactions recorded

Allergen Reaction

- → Nut allergens appear to be leading in terms of reaction severity levels
- → However, Shellfish has the highest average severity level in reaction in this comparison

Final Comparison

- → Although nuts have a low density in population and have severe allergic reactions, shellfish has both a high population as well as the highest average reaction within this test
- → In this case severity of the reaction may not be directly related with the population density

Conclusions & Limitations

Limitations

- Sample not racially, ethnically, or geographically representative
- No environmental information available

Conclusions

- We can see a rise in allergic responses in kids born between 2004 and 2009
- Within the racial limitations of the study, Asian / Pacific Islanders demonstrated the highest likelihood to have a food sensitivity
- Allergens are most likely independently developed
- Population density in allergen groups does not define severity level

Next Steps

- Research into additives, pesticides in foods, and environmental factors
- Actual increase in allergies or perception due to improved scientific methods & information sharing or perceived
- Increased awareness for potential hazards in food sensitivities in parents and caregivers

Questions?

References

Source from Kaggle:

Childhood Allergies: Prevalence, Demographics

	BIRTH_YEAR	AGE_START_YEARS	AGE_END_YEARS
count	332800.000000	332800.000000	332800.000000
mean	2001.253368	3.946471	10.343178
std	6.601764	4.646859	5.622014
min	1983.000000	0.002738	1.007529
25%	1996.000000	0.021903	5.295003
50%	2002.000000	1.776865	10.201232
75%	2007.000000	7.214237	15.622177
max	2012.000000	17.984942	18.997947

Analysis

Analysis

- Peanut allergies are mostly towards
 <u>High</u> and <u>Moderate</u> sensitivities.
- Low, Very Low and Very High are only happen in 4% of the sample.

SENSITIVITY_START_TAG	
Moderate	49.04%
High	47.18%
Low	2.28%
Very High	1.31%
Very Low	0.20%

Analysis

- Soy allergy is less populated compared to Peanuts.
- More cases with Low, Very Low and Very High (22%)

SENSITIVITY_START_TAG	
42.76%	
35.01%	
12.73%	
8.38%	
1.12%	

Introduction

Motivation:

We were interested in seeing if there was a perceived or actual increase in food allergies in children in recent years

Analyze the prevalence of allergies/sensitivities of the most common food allergens for the population of kids. This analysis is based on the need for the food industry due to food recalls and implementation of allergen control strategies. The population selected

from different:

- Birth rears (1983-2012)
- Ethnicities (Hispanic, non_Hispanic)
- Races (Black, White, Asian and Pacific Islander)

Motivation

Tree nuts* includes: walnut, almond, hazelnut, pecan ,brazil nuts, cashew and pistachio.

	Common Food Allergens	
	Peanuts	
Milk		
Eggs		
Shellfish		
Soy		
Fish		
Wheat		
Sesame		
	Tree nuts*	

- → This very messy graph tells us a few things:
 - Kids that spent longer in the study tended to have worsening asthma throughout time.
 - The color of the dot is the number of asthma prescriptions the kids had, which tends to be on the lower side.
- → My inference from this data is that parents kept their kids with worsening conditions in the study in a hope of finding their asthma triggers

Worsening of Asthma over Time

Highest Allergy Correlations Indexed by Birth Year

	Allergen_1	Allergen2	r_value
Year			
1994	ALMOND	HAZELNUT	0.51
1994	BRAZIL	HAZELNUT	0.62
1999	WALNUT	PECAN	0.58
1990	WALNUT	PECAN	0.58
1990	ALMOND	HAZELNUT	0.69
1996	PISTACH	HAZELNUT	0.53
1991	WALNUT	ALMOND	0.55
1991	WALNUT	HAZELNUT	0.64
1991	ALMOND	HAZELNUT	0.59
1991	ALMOND	CASHEW	0.60
1986	MILK	EGG	0.57
1986	MILK	WHEAT	0.57
1986	EGG	WHEAT	1.00
1984	MILK	EGG	1.00
1983	FISH	MILK	0.69
1983	FISH	EGG	0.69
1983	MILK	EGG	1.00

H_n: Null Hypothesis: If your antibody response to one allergen increases over the span of 6 years, then your response to other allergens will be unchanged.

H_a: Alternate Hypothesis: If your antibody response to one allergen increases over the span of 6 years, then your response to other allergens will also increase.

Data Source

Source from Kaggle:

Childhood Allergies: Prevalence, Demographics

Input source includes related columns for our analysis:

- Differences across different demographics
- Focus on one particular type of allergy
- Correlation of different allergens

- BIRTH YEAR
 - The patient's birth year
- AGE START YEARS
 - The age of the patient tested for the first time
- AGE END YEAR
 - The age of the patient tested for the last time
- [allergen*]_START_YEAR
 - The first year the allergy test started
- [allergen*]_END_YEAR
 - · The last year of the allergy testing
- [allergen*] ALG START
 - · Allergy response number at the beginning of the test
- [allergen*] ALG END
 - · Allergy response number at the end of the test

*allergen includes:[SHELLFISH, FISH, MILK, SOY, EGG, WHEAT, PEANUT, SESAME, WALNUT, PECAN, PISTACH, ALMOND, BRAZIL, HAZELNUT, CASHEW]

Introduction

Correlation between Age and Antibody Response

r-value is: 0.8453348158418111

strong positive correlation

r-value is: -0.8306979666422377

strong negative correlation

Cleaning Data

[allergen*]_ALG_START and [allergen*]_ALG_END Columns:

- Allergy response number (<u>IgE reactivity level</u>)
- Level of antibodies produced after being exposed to the allergen
- How strong your immune system reacts to the allergen

The dataset includes a large number of 'NA' entries:

- Each patient is not necessarily allergic to all allergens
- Not applicable allergen shows with the NA entry
- Considered as 'no allergy'.

There are wrong entries (<u>negative values</u>) for BIRTH_YEAR, AGE_START_YEAR, AGE_END_YEAR,... which were removed from the table.

Interpretation	IgE Level
Very Low	≤ 0.35
Low	0.35 < x ≤ 0.7
Moderate	0.7 < x ≤ 3.5
High	3.5 < x ≤ 17.5
Very High	17.5 < x ≤ 50.0
Very High	50 < x ≤ 100
Very High	> 100

Allergens Processing

"get allergen (allergen name)" function

- Create the allergen dataframe
- Analyze each specific allergen
- Focus on the patients with this particular allergen

Add SENSITIVITY_TAG columns

- Add new columns based on the IgE range to each allergen dataframe
- Analyze the sensitivity range distribution

PEANUT_ALG_START	SENSITIVITY_START_TAG
1.221081	Moderate
2.521561	Moderate
2.313484	Moderate
1.733060	Moderate
5.587953	High

Interpretation	IgE Level
Very Low	≤ 0.35
Low	0.35 < x ≤ 0.7
Moderate	0.7 < x ≤ 3.5
High	3.5 < x ≤ 17.5
Very High	17.5 < x ≤ 50.0
Very High	50 < x ≤ 100
Very High	> 100

SENSITIVITY_TAG columns code

```
#add SENSITIVITY columns
allergen df clean['SENSITIVITY START TAG']=''
allergen df clean['SENSITIVITY END TAG']=''
#fill out the start SENSITIVITY colums based on SENSITIVITY ranges
allergen_df_clean['SENSITIVITY_START_TAG'][allergen_df_clean[allergen_start_column] <= 0.35 ]='Very_Low'
allergen df clean['SENSITIVITY START TAG'][ (0.35 < allergen df clean[allergen start column]) &
                                           (allergen df clean[allergen start column]<= 0.7) ]='Low'
allergen df clean['SENSITIVITY START TAG'][ (0.7 < allergen df clean[allergen start column]) &
                                           (allergen df clean[allergen start column] <= 3.5) ]='Moderate'
allergen df clean['SENSITIVITY START TAG'][ (3.5 < allergen df clean[allergen start column]) &
                                           (allergen df clean[allergen start column] <= 17.5) ]='High'
allergen df clean['SENSITIVITY START TAG'][ allergen df clean[allergen start column] > 17.5 |= Verv High'
#fill out the end SENSITIVITY colums based on SENSITIVITY ranges
allergen df clean['SENSITIVITY END TAG'][allergen df clean[allergen_end_column] <= 0.35 ]='Very Low'
allergen df clean['SENSITIVITY END TAG'][ (0.35 < allergen df clean[allergen end column]) &
                                         (allergen df clean.dropna()[allergen end column] <= 0.7) ]='Low'
allergen df clean['SENSITIVITY END TAG'][ (0.7 < allergen df clean[allergen end column]) &
                                         (allergen df clean.dropna()[allergen end column] <= 3.5) ]='Moderate'
allergen df clean['SENSITIVITY END TAG'][ (3.5 < allergen df clean[allergen end column]) &
                                         ( allergen df clean[allergen end column] <= 17.5) ]='High'
allergen df clean['SENSITIVITY END TAG'][ allergen df clean[allergen end column] > 17.5 ]='Very High'
```

Demographic Overview

- Gender
 - Populations are almost equally distributed in terms of gender

Demographic Overview

- Race
 - Low percentage in Asian/Pacific Islander(2.7%)
 - Undefined races(12.9%)
 - Black and White races are the most represented in the study.

