Banco de Dados

Modelo de Dados Relacional

João Eduardo Ferreira Osvaldo Kotaro Takai

jef@ime.usp.br DCC-IME-USP

- O Modelo Relacional (MR) é um modelo de dados lógico utilizado para desenvolver projetos lógicos de bancos de dados.
- Os SGBDs que utilizam o MR são denominados SGBD Relacionais.
- O MR representa os dados do BD como relações.
 - A palavra relação é utilizada no sentido de lista ou rol de informações e não no sentido de associação ou relacionamento.

- Cada relação pode ser entendida como uma tabela ou um simples arquivo de registros.
- Uma relação DEPENDENTE, com seus atributos e valores de atributos.

- Os valores de atributos são indivisíveis, ou seja, atômicos.
- O conjunto de atributos de uma relação é chamado de relação esquema.
- Cada atributo possui um domínio.
- O grau de uma relação é o número de atributos da relação.

- **DEPENDENTE**(CódigoCliente, Nome, TipoRelação, Sexo, DataNasc)
 - É a relação esquema.
 - **DEPEDENTE** é o nome da relação.
 - O Grau da Relação é 5.
 - Os Domínios dos Atributos são:
 - dom(CódigoCliente) = 4 dígitos que representam o Código do Cliente.
 - dom(Nome) = Caracteres que representam nomes dos dependentes.
 - dom(TipoRelação) = Tipo da Relação (filho, esposa, pai, mãe e outras) do dependente em relação do seu cliente.
 - dom(Sexo) = Caractere: (M: Masculino, F: Feminino) do dependente.
 - dom(DataNasc) = Datas de Nascimento do dependente.

Notação Relacional

- A relação esquema R de grau n:
 - \blacksquare R(A₁, A₂, ..., A_n).
- □ A tupla t em uma relação r(R) :
 - $t = \langle v_1, v_2, ..., v_n \rangle$
 - v_i é o valor do atributos A_i.
- □ t[A_i] indica o valor v_i em t para o atributo A_i.
- t[A_u, A_w, ..., A_z] indica o conjunto de valores <v_u, v_w, ..., v_z> de t correspondentes aos atributos A_u, A_w, ..., A_z de R.

Exemplo

		Atributo				
	CódigoCliente	Nome	TipoRelação	Sexo	DataNasc	
	0001	Maria	Esposa	F	01/01/1970	
	0001	Vítor	Filho	М	02/02/2002	
→	0001	Ana	Filha	F	03/03/2003	
	1000	João	Filho	М	02/02/2002	
Tupla	1000	Vítor	Filho	М	02/02/2002	
	1000	Vítor	Marido	М	02/02/1971	
	9876	Sônia	Esposa	F	01/01/1970	
Valor						

- A figura apresenta a Relação DEPENDENTE
- □ t = <0001, Ana, Filha, F, 03/03/2003> é uma tupla
- t[CódigoCliente] = 0001
- t[Nome, Sexo] = <Ana, F>.

- Superchave: Subconjunto de atributos de uma relação cujos valores são distintos:
 - t₁[SC] ≠ t₂[SC]
- Chave: É uma Superchave mínima
- Chave-Candidata: Chaves de uma relação
- Chave-Primária: Uma das Chaves escolhidas entre as Chaves-Candidatas de uma relação.

- Superchave trivial da relação DEPENDENTE:
 - SC_a = { CódigoCliente, Nome, TipoRelação, Sexo, DataNasc }
- Outras superchaves:
 - SC_b = { CódigoCliente, Nome, TipoRelação, Sexo }
 SC_b = SC_a − { DataNasc }
 - SC_c = { CódigoCliente, Nome, TipoRelação, DataNasc }
 SC_c = SC_a { Sexo }
 - SC_d = { CódigoCliente, Nome, TipoRelação }
 SC_d = SC_a { DataNasc, Sexo }
 - SC_e = { CódigoCliente, Nome }
 SC_e = SC_a { DataNasc, Sexo , TipoRelação}

- □ SC_e uma superchave mínima:
 - Pois não é possível retirar de SC_e nenhum de seus atributos: CódigoCliente ou Nome, e o subconjunto resultante continuar com a propriedade de superchave.
- Assim, SC_e, além de ser superchave, é uma **chave** da relação esquema DEPENDENTE.

- Uma relação esquema pode possuir mais de uma chave.
- Nestes casos, tais chaves são chamadas de chaves-candidatas.
- O esquema da relação EMPREGADO possui três chaves-candidatas:

EMPREGADO(Nome, Código, Rg, Cpf, Endereço, Salário)

```
CC1 = { Código }
```

- As chaves-candidatas são candidatas à chaveprimária.
- A chave-primária é a escolhida, dentre as chaves-candidatas, para identificar de forma única, tuplas de uma relação.
- A chave-primária é indicada na relação esquema sublinhando-se os seus atributos.

EMPREGADO(Nome, Código, Rg, Cpf, Endereço, Salário)

Esquema de um BD Relacional

- O esquema de um BD relacional é o conjunto de todos os esquemas de relações.
- Esquema do BD relacional do Sistema Companhia:

EMPREGADO									
PNOME MNOME	SNOME	<u>N88</u>	DATANASC	ENDEREÇO	SEXO	SALARIO	NSSSUPER	NDEP	
DEPARTAMENTO	DEPARTAMENTO								
DNOME <u>DNÚMERO</u> SNNGER DATINICGER									
LOCAIS_DEPTO									
<u>DNÚMERO</u> <u>DLOCA</u>									
PROJETO									
PNOME <u>PNÚMERO</u> PLOCALIZAÇÃO DNUM									
TRABALHA_EM									
NSSEMP PNRO HORAS									
DEPENDENTE									
NSSEMP NOMEDER	PENDENTE	SEXO	DATANIV	TIPORELAÇÃO					
LOCAIS_DEPTO DNÚMERO DLOCA PROJETO PNOME PNÚMERO TRABALHA EM NSSEMP PNRO DEPENDENTE	LIZAÇÃO	1		TIPORELAÇÃO					

Restrições de integridade

- Restrição de Integridade são regras que restringem os valores que podem ser armazenados nas relações.
- Um SGBD relacional deve garantir:
 - Restrição de Chave: os valores das chavescandidatas devem ser únicos em todas as tuplas de uma relação.
 - Restrição de Entidade: chaves-primárias não podem ter valores nulos.
 - Restrição de Integridade Referencial: Usada para manter a consistência entre tuplas. Estabelece que um valor de atributo, que faz referência a uma outra tupla, deve-se referir a uma tupla existente.

Restrição de Integridade Referencial

Chave-Primária

	•		
EMPREGADO	Nome	NSS	Endereço
	Joaquim	305	R. X, 123
	Katarina	381	Av. K, 43
	Daví	422	R. D, 12
	Carlos	489	R. H, 9
	Barbara	533	R.II. 55

Chave-Primária

TELEFONE	<u>NSS</u>	<u>NÚMERO</u>
	305	555-444
	381	555-333
	489	555-376
	533	555-999
	381	555-101
	489	555-222
	489	555-376

Valores da Chave-Estrangeira

Mapeamento do DER / MDR

- É comum, em projetos lógicos de BD, realizar a modelagem dos dados através de um modelo de dados de alto-nível
- O produto desse processo é o esquema do BD
- O modelo de dados de alto-nível normalmente adotado é o MER e o esquema do BD especificado em MR

O DER do Sistema Companhia

Esquema do BD Companhia

- Para cada tipo de entidade normal E no DER, crie uma relação R que inclua todos os atributos simples de E.
- Inclua também os atributos simples dos atributos compostos.
- Escolha um dos atributos-chave de E como a chaveprimária de R.
- Se a chave escolhida é composta, então o conjunto de atributos simples que o compõem formarão a chaveprimária de R.

Passo 1: Resultado

EMPREGADO

PNOME MNOME SNOME NSS DATANASC ENDERECO SEXO SALARIO

PROJETO

PNOME PNUMERO PLOCALIZACAO

DEPARTAMENTO

DNOME DNUMERO

- Para cada tipo de entidade fraca W do DER com o tipo de entidade de identificação E, crie uma relação R e inclua todos os atributos simples (ou os atributos simples de atributos compostos) de W como atributos de R.
- Além disso, inclua como a chave-estrangeira de R a chave-primária da relação que corresponde ao tipo de entidade proprietário da identificação.
- A chave-primária de R é a combinação da chaveprimária do tipo de entidade proprietário da identificação e a chave-parcial do tipo de entidade fraca W.

Passo 2: Resultado

EMPREGADO

PNOME MNOME SNOME NSS DATANASC ENDERECO SEXO SALARIO

PROJETO

PNOME PNUMERO PLOCALIZACAO

DEPARTAMENTO

DNOME DNUMERO

DEPENDENTE

ENSS NOMEDEPENDENTE SEXO DATANASC RELAÇÃO

се

- Para cada tipo de relacionamento binário 1:1, R, do DER, identifique as relações S e T que correspondem aos tipos de entidade que participam de R.
- Escolha uma das relações, por exemplo S, e inclua como chave-estrangeira de S a chave-primária de T.
 - É melhor escolher o tipo de entidade com participação total em R como sendo a relação S.
- Inclua todos os atributos simples (ou os atributos simples de atributos compostos) do tipo de relacionamento 1:1, R, como atributos de S.

Passo 3: Resultado

- Para cada tipo de relacionamento binário regular 1:N (não fraca), R, identificar a relação S que representa o tipo de entidade que participa do lado N de R.
- Inclua como chave-estrangeira de S a chave-primária de T que representa o outro tipo de entidade que participa em R; isto porque cada entidade do lado 1 está relacionada a mais de uma entidade no lado N.
- Inclua também quaisquer atributos simples (ou atributos simples de atributos compostos) do tipo de relacionamento 1:N, como atributos de S.

Passo 4: Resultado

- Para cada tipo de relacionamento binário M:N, R, crie uma nova relação S para representar R.
- Inclua como chave-estrangeira de S as chaves-primárias das relações que representam os tipos de entidade participantes; sua combinação irá formar a chaveprimária de S.
- Inclua também qualquer atributo simples do tipo de relacionamento M:N (ou atributos simples dos atributos compostos) como atributos de S.
 - Note que não se pode representar um tipo de relacionamento M:N como uma simples chave-estrangeira em uma das relações participantes - como foi feito para os tipos de relacionamentos 1:1 e 1:N. Isso ocorre porque o MR não permite a representação de atributos multivalorados.

Passo 5: Resultado

- Para cada atributo A multivalorado, crie uma nova relação R que inclua o atributo A e a chave-primária, K, da relação que representa o tipo de entidade ou o tipo de relacionamento que tem A como atributo.
- A chave-primária de R é a combinação de A e K.
- Se o atributo multivalorado é composto inclua os atributos simples que o compõem.

Passo 6: Resultado

- Para cada tipo de relacionamento n-ário, R, n>2, crie uma nova relação S para representar R.
- Inclua como chave-estrangeira em S as chaves-primárias das relações que representam os tipos de entidades participantes.
- Inclua também qualquer atributo simples do tipo de relacionamento n-ário (ou atributos simples dos atributos compostos) como atributo de S.
- A chave-primária de S é normalmente a combinação de todas as chaves-estrangeiras que referenciam as relações que representam os tipos de entidades participantes.
 - Porém, se a restrição estrutural (min, max) de um dos tipos de entidades E que participa em R, tiver max=1, então a chaveprimária de, S, pode ser a chave-estrangeira que referencia a relação E; isto porque cada entidade e em E irá participar em apenas uma instância em R e, portanto, pode identificar univocamente esta instância de relacionamento.

Passo 7: Resultado

Considere o tipo de relacionamento FORNECE:

PECA

NÚMERO

FORNECEDOR
SNOME
PNOME
PNOME

FORNECE
SNOME PNOME NÚMERO QUANTIDADE

Questões

Dado o DER de uma locadora de vídeo (próximo slide), obtenha o esquema do BD Relacional utilizando os passos de mapeamento do DER / MDR

