pomegranate

fast and flexible probabilistic modelling in python

Jacob Schreiber
Paul G. Allen School of Computer Science
University of Washington

jmschreiber91

@jmschrei

@jmschreiber91

Overview

pomegranate is more flexible than other packages, faster, is intuitive to use, and can do it all in parallel

Probability
Distributions

Bayes Classifiers

Bayesian Networks

Hidden Markov Models **Markov Chains**

General Mixture Models

Overview

The API

Major Models/Model Stacks

- 1. General Mixture Models
- 2. Hidden Markov Models
- 3. Bayesian Networks
- 4. Bayes Classifiers

Parallelization

Finale: Train a mixture of hidden markov models in parallel

All models share most methods

model.log_probability(X) / model.probability(X)

model.sample()

model.fit(X, weights, inertia)

All models have these methods!

model.summarize(X, weights)

model.from_summaries(inertia)

model.predict(X)

model.predict_proba(X)

model.predict_log_proba(X)

Model.from_samples(X, weights)

All models composed of distributions (like GMM, HMM...) have these methods too!

All models except HMMs have this (coming soon!)

All models share most methods

model.log_probability(X) / model.probability(X)

model.sample()

model.fit(X, weights, inertia)

All models have these methods!

model.summarize(X, weights)

model.from_summaries(inertia)

model.predict(X)

model.predict_proba(X)

model.predict_log_proba(X)

Model.from_samples(X, weights)

All models composed of distributions (like GMM, HMM...) have these methods too!

All models except HMMs have this (coming soon!)

pomegranate supports many distributions

Univariate Distributions

- 1. UniformDistribution
- 2. BernoulliDistribution
- 3. NormalDistribution
- 4. LogNormalDistribution
- 5. Exponential Distribution
- 6. BetaDistribution
- 7. GammaDistribution
- 8. DiscreteDistribution
- 9. PoissonDistribution

Kernel Densities

- 1. GaussianKernelDensity
- 2. UniformKernelDensity
- 3. TriangleKernelDensity

Multivariate Distributions

- 1. IndependentComponentsDistribution
- 2. MultivariateGaussianDistribution
- 3. DirichletDistribution
- 4. ConditionalProbabilityTable
- 5. JointProbabilityTable

Models can be created from known values

mu, sig = 0, 2
$$X = [0, 1, 1, 2, 1.5, 6, 7, a = NormalDistribution(mu, sig) a = GaussianKernelDensity(X)$$

X = [0, 1, 1, 2, 1.5, 6, 7, 8, 7]

Models can also be learned directly from data

X = numpy.random.normal(0, 1, 100)

a = NormalDistribution.from_samples(X)

pomegranate can be faster than numpy

Fitting a Normal Distribution to 1,000 samples

```
data = numpy.random.randn(1000)
print "numpy time:"
%timeit -n 100 data.mean(), data.std()
print
print "pomegranate time:"
%timeit -n 100 NormalDistribution.from samples(data)
numpy time:
100 loops, best of 3: 46.6 µs per loop
pomegranate time:
100 loops, best of 3: 22.2 μs per loop
```

pomegranate can be faster than numpy

Fitting Multivariate Gaussian to 10,000,000 samples of 10 dimensions

```
data = numpy.random.randn(100000000, 10)
print "numpy time:"
%timeit -n 10 data.mean(), numpy.cov(data.T)
print
print "pomegranate time:"
%timeit -n 10 MultivariateGaussianDistribution.from samples(data)
numpy time:
10 loops, best of 3: 1.02 s per loop
pomegranate time:
10 loops, best of 3: 799 ms per loop
```

pomegranate can be faster than numpy

pomegranate reduces data to sufficient statistics for updates and so only has to go datasets once (for all models).

Here is an example of the Normal Distribution sufficient

statistics

$$\sum_{i=1}^{n} w_{i} \sum_{i=1}^{n} w_{i}x_{i} \sum_{i=1}^{n} w_{i}x_{i}^{2} \longrightarrow \sigma^{2} = \frac{\sum_{i=1}^{n} w_{i}x_{i}^{2}}{\sum_{i=1}^{n} w_{i}} - \frac{\left(\sum_{i=1}^{n} w_{i}x_{i}\right)^{2}}{\left(\sum_{i=1}^{n} w_{i}\right)^{2}}$$

pomegranate supports out of core learning

Due to the use of sufficient statistics that are additive, pomegranate can natively support out-of-core/online learning, where you may not have the entire dataset in memory at a time

```
a.fit(data)
b.summarize(data[:1000])
b.summarize(data[1000:2000])
b.summarize(data[2000:3000])
b.summarize(data[3000:4000])
b.summarize(data[4000:])
b.from summaries()
```


Summarize Mean: -0.0174820965846, Summarize STD: 0.986767322871

pomegranate can be faster than scipy

logp difference: -3.99236199655e-13

```
from scipy.stats import norm
d = NormalDistribution(0, 1)
print "scipy time:"
%timeit -n 100 norm.logpdf(2, 0, 1)
print
print "pomegranate time:"
%timeit -n 100 NormalDistribution(0, 1).log probability(2)
print
print "pomegranate with (w/ created object)"
%timeit -n 100 d.log probability(2)
print
print "logp difference: {}".format( norm.logpdf(2, 0, 1) - No
scipy time:
100 loops, best of 3: 96.3 μs per loop
                                          scipy: 96.3 us
pomegranate time:
                                          pomegranate: 560 ns
100 loops, best of 3: 560 ns per loop
                                          pomegranate (w/ precreated object): 119 ns
pomegranate with (w/ created object)
100 loops, best of 3: 119 ns per loop
```

pomegranate can be faster than scipy

pomegranate uses aggressive caching of values required for probability calculations to speed them up

$$P(X|\mu,\sigma) = \frac{1}{\sqrt{2\pi}\sigma} exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$
$$log P(X|\mu,\sigma) = -\log\left(\sqrt{2\pi}\sigma\right) - \frac{(x-\mu)^2}{2\sigma^2}$$
$$log P(X|\mu,\sigma) = \alpha - \frac{(x-\mu)^2}{\beta}$$

Example 'blast' from Gossip Girl

Spotted: Lonely Boy. Can't believe the love of his life has returned. If only she knew who he was. But everyone knows Serena. And everyone is talking. Wonder what Blair Waldorf thinks. Sure, they're BFF's, but we always thought Blair's boyfriend Nate had a thing for Serena.

Example 'blast' from Gossip Girl

Why'd she leave? Why'd she return? Send me all the deets. And who am I? That's the secret I'll never tell. The only one. —XOXO. Gossip Girl.

How do we encode these blasts?

Better lock it down with Nate, B. Clock's ticking.

- +1 Nate
- -1 Blair

How do we encode these blasts?

Better lock it down with Nate, B. Clock's ticking.

- +1 Nate
- -1 Blair

This just in: S and B committing a crime of fashion. Who doesn't love a five-finger discount. Especially if it's the middle one.

- -1 Blair
- -1 Serena

Simple summations don't distinguish well

Beta distributions can model uncertainty well

Beta distributions capture our certainty about the identity of Gossip Girl

The distributions converge as the show progresses

Overview

The API

Major Models/Model Stacks

- 1. General Mixture Models
- 2. Hidden Markov Models
- 3. Bayesian Networks
- 4. Bayes Classifiers

Parallelization

Finale: Train a mixture of hidden markov models in parallel

General Mixture Models (GMMs) can model multi-component distributions

GMMs use Expectation-Maximization (EM) to fit

- 1. Initialize clusters using kmeans++ or kmeans||
- 2. Assign weights to all points equal to the posterior P(M|D) (E step)
- 3. Update distribution using weighted points (M step)
- 4. Repeat 2 and 3 forever until convergence

General Mixture Models (GMMs) can model multi-component distributions

model = GeneralMixtureModel.from_samples(NormalDistribution, 2, X)

GMMs are not limited to Gaussian distributions

A single exponential distribution does not model this data well 20

model = ExponentialDistribution.from_samples(X)

A mixture of two exponentials models the data much better

model = GeneralMixtureModel.from_samples(ExponentialDistribution, 2, X)

Heterogeneous mixtures are natively supported

model = GeneralMixtureModel.from_samples([ExponentialDistribution, UniformDistribution], 2, X)

general mixture models are faster than sklearn

Overview

The API

Major Models/Model Stacks

- 1. General Mixture Models
- 2. Hidden Markov Models
- 3. Bayesian Networks
- 4. Bayes Classifiers

Parallelization

Finale: Train a mixture of hidden markov models in parallel

CG enrichment detection HMM

GACTACGACTCGCGCTCGCGCGACGCGCTCGACATCATCGACACGACACTC

example: CG enrichment detector

GACTACGACTCGCGCTCGCGCGACGCGCTCGACATCATCGACACGACACTC

```
d1 = DiscreteDistribution(\{'A': 0.25, 'C': 0.25, 'G': 0.25, 'T': 0.25\})
d2 = DiscreteDistribution(\{'A': 0.10, 'C': 0.40, 'G': 0.40, 'T': 0.10\})
s1 = State(d1, name="background")
s2 = State(d2, name="CG island")
hmm = HiddenMarkovModel("CG-detector")
hmm.add states(s1, s2)
hmm.add transition(hmm.start, s1, 0.5)
hmm.add transition(hmm.start, s2, 0.5)
hmm.add transition(s1, s1, 0.9)
hmm.add transition(s1, s2, 0.1)
hmm.add transition(s2, s1, 0.1)
hmm.add transition(s2, s2, 0.9)
hmm.bake()
```

example: CG enrichment detector


```
d1 = DiscreteDistribution({'A': 0.25, 'C': 0.25, 'G': 0.25, 'T': 0.25})
d2 = DiscreteDistribution({'A': 0.10, 'C': 0.40, 'G': 0.40, 'T': 0.10})
s1 = State(d1, name="background")
s2 = State(d2, name="CG island")
hmm = HiddenMarkovModel("CG-detector")
hmm.add states(s1, s2)
hmm.add transition(hmm.start, s1, 0.5)
hmm.add transition(hmm.start, s2, 0.5)
hmm.add transition(s1, s1, 0.9)
hmm.add transition(s1, s2, 0.1)
hmm.add transition(s2, s1, 0.1)
hmm.add transition(s2, s2, 0.9)
hmm.bake()
```

hmm state 0: CG island hmm state 1: background

example: CG enrichment detector


```
hmm = HiddenMarkovModel("CG-detector")
hmm.add_states(s1, s2)
hmm.add_transition(hmm.start, s1, 0.5)
hmm.add_transition(hmm.start, s2, 0.5)
hmm.add_transition(s1, s1, 0.89)
hmm.add_transition(s1, s2, 0.10)
hmm.add_transition(s1, hmm.end, 0.01)
hmm.add_transition(s2, s1, 0.1)
hmm.add_transition(s2, s1, 0.1)
hmm.add_transition(s2, s2, 0.9)
hmm.bake()
```

hidden markov models

Feature	pomegranate	hmmlearn
Graph Structure	,	
Silent States	✓	
Optional Explicit End State	√	
Sparse Implementation	✓	
Arbitrary Emissions Allowed on States	✓	
Discrete/Gaussian/GMM Emissions	✓	✓
Large Library of Other Emissions	✓	
Build Model from Matrices	√	✓
Build Model Node-by-Node	✓	
Serialize to JSON	✓	
Serialize using Pickle/Joblib	√	√

Algorithms		
Priors		1
Sampling	✓	√
Log Probability Scoring	√	✓
Forward-Backward Emissions	✓	1
Forward-Backward Transitions	✓	
Viterbi Decoding	✓	✓
MAP Decoding	√	✓
Baum-Welch Training	✓	✓
Viterbi Training	✓	
Labeled Training	✓	
Tied Emissions	√	
Tied Transitions	1	
Emission Inertia	√	
Transition Inertia	√	
Emission Freezing	√	✓
Transition Freezing	✓	1
Multi-threaded Training	✓	4

hidden markov models

Feature	pomegranate	hmmlearn
Graph Structure		
Silent States	✓	
Optional Explicit End State	✓	
Sparse Implementation	✓	
Arbitrary Emissions Allowed on States	✓	
Discrete/Gaussian/GMM Emissions	✓	✓
Large Library of Other Emissions	✓	
Build Model from Matrices	✓	✓
Build Model Node-by-Node	✓	
Serialize to JSON	1	
Serialize using Pickle/Joblib	✓	√

Algorithms		
Priors		√
Sampling	√	✓
Log Probability Scoring	√	✓
Forward-Backward Emissions	✓	✓
Forward-Backward Transitions	√	
Viterbi Decoding	✓	✓
MAP Decoding	√	✓.
Baum-Welch Training	✓	✓
Viterbi Training	√	
Labeled Training	1	
Tied Emissions	✓	
Tied Transitions	1	
Emission Inertia	√	
Transition Inertia	✓	
Emission Freezing	✓	✓
Transition Freezing	✓	✓
Multi-threaded Training	√	4

example: GMM-HMM

```
d1 = GeneralMixtureModel([NormalDistribution(5, 2), NormalDistribution(5, 4)])
d2 = GeneralMixtureModel([NormalDistribution(15, 1), NormalDistribution(15, 5)])
s1 = State(d1, name="GMM1")
s2 = State(d2, name="GMM2")
model = HiddenMarkovModel()
model.add states(s1, s2)
model.add transition(model.start, s1, 0.75)
model.add transition(model.start, s2, 0.25)
model.add transition(s1, s1, 0.85)
model.add transition(s1, s2, 0.15)
model.add transition(s2, s2, 0.90)
model.add transition(s2, s1, 0.10)
model.bake()
```

hidden markov models are faster than hmmlearn

Overview

The API

Major Models/Model Stacks

- 1. General Mixture Models
- 2. Hidden Markov Models
- 3. Bayesian Networks
- 4. Bayes Classifiers

Parallelization

Finale: Train a mixture of hidden markov models in parallel

Bayesian networks

Bayesian networks are powerful inference tools which define a dependency structure between variables.

Bayesian networks

Two main non-trivial tasks:

- (1) Inference given incomplete information
- (2) Learning the dependency structure from data

Inference given incomplete information


```
d = model.predict proba()
print "\t".join( "{:7}".format(state.name) for state in model.states )
print "\t".join( "{:4.2}".format(model.parameters[0][1]) for model in d )
BRCA1
        BRCA2
                LCT
                        OC
                                 LI
                                         PREG
                                                 LE
                                                         BLOAT
                                                                          VOM
                                                                                  AC
                                                                  LOA
                                                 0.014
0.001
        0.015
                0.05
                        0.005
                                0.05
                                          0.1
                                                         0.16
                                                                  0.017
                                                                          0.091
                                                                                  0.15
```

Inference given incomplete information


```
d = model.predict_proba({'VOM' : 1, 'BLOAT' : 1, 'LE' : 1})
print "\t".join( "{:7}".format(state.name) for state in model.states )
print "\t".join( "{:4.2}".format(model.parameters[0][1]) for model in d )
        BRCA2
                LCT
BRCA1
                        OC
                                 LI
                                         PREG
                                                 LE
                                                         BLOAT
                                                                 LOA
                                                                          VOM
                                                                                  AC
0.056
        0.68
                0.087
                        0.91
                                0.096
                                         0.2
                                                          1.0
                                                                 0.52
                                                  1.0
                                                                           1.0
                                                                                  0.204
```

Sometimes we want to learn structure from data

Sometimes we want to learn structure from data

Three primary ways:

- "Search and score" / Exact
- "Constraint Learning" / PC
- Heuristics

Sometimes we want to learn structure from data

pomegranate supports

- "Search and score" / Exact
- "Constraint Learning" / PC
- Heuristics

Structure learning can be super-exponential in time

pomegranate supports 4 structure learning algos

Constraint graphs can merge expert knowledge with data

Structure learning with Constraint Graphs

Structure learning with constraint graphs

Constraint graphs can also encode possible dependencies as layers.

Constraint graphs can model the global stock market

Overview

The API

Major Models/Model Stacks

- 1. General Mixture Models
- 2. Hidden Markov Models
- 3. Bayesian Networks
- 4. Bayes Classifiers

Parallelization

Finale: Train a mixture of hidden markov models in parallel

Bayes' Rule

P(M|D) = P(D|M)P(M) / P(D)

Posterior = Likelihood * Prior / Normalization

Let's build a simple classifier on this data

The likelihood function itself ignores class imbalance

The prior probabilities can model class imbalance

The posterior models the original data more faithfully

The ratio of the posterior is a good classifier

model = NaiveBayes.from_samples(NormalDistribution, X, y) posteriors = model.predict_proba(idxs)

Naive Bayes assumes all dimensions are independent

```
P(M|D) = \prod P(D|M) P(M) / P(D)
```

Posterior = Likelihood * Prior / Normalization

Gaussian naive Bayes produces spherical distributions

model = NaiveBayes.from_samples(NormalDistribution, X, y)

Naive Bayes does not need to be homogenous

Different features fall under different distributions

Explicitly modeling these distributions yields better classifiers

```
model = NaiveBayes.from_samples(NormalDistribution, X_train, y_train)

print "Gaussian Naive Bayes: ", (model.predict(X_test) == y_test).mean()

clf = GaussianNB().fit(X_train, y_train)

print "sklearn Gaussian Naive Bayes: ", (clf.predict(X_test) == y_test).mean()

model = NaiveBayes.from_samples([NormalDistribution, LogNormalDistribution, ExponentialDistribution], X_train, y_train)

print "Heterogeneous Naive Bayes: ", (model.predict(X_test) == y_test).mean()
```

Gaussian Naive Bayes: 0.798 sklearn Gaussian Naive Bayes: 0.798 Heterogeneous Naive Bayes: 0.844

pomegranate is just as fast as sklearn

Bayes Classifiers are more general than naive Bayes

```
P(M|D) = P(D|M) P(M) / P(D)
```

Posterior = Likelihood * Prior / Normalization

Gaussian Bayes Classifiers model the full covariance

naive training accuracy: 0.9286

bayes classifier training accuracy: 0.9657

Real data isn't as clean (which is why we get paid)

Creating mixture model Bayes classifiers is simple

```
gmm_a = GeneralMixtureModel.from_samples(MultivariateGaussianDistribution, 2, X[y == 0]) gmm_b = GeneralMixtureModel.from_samples(MultivariateGaussianDistribution, 2, X[y == 1]) model_b = BayesClassifier([gmm_a, gmm_b], weights=numpy.array([1-y.mean(), y.mean()]))
```

Creating any Bayes classifiers is simple

```
mc a = MarkovChain.from samples(X[y == 0])
mc b = MarkovChain.from samples(X[y == 1])
model b = BayesClassifier([mc a, mc_b], weights=numpy.array([1-y.mean(), y.mean()]))
hmm a = HiddenMarkovModel...
hmm b = HiddenMarkovModel...
model b = BayesClassifier([hmm a, hmm b], weights=numpy.array([1-y.mean(), y.mean()]))
bn a = BayesianNetwork.from samples(X[y == 0])
bn b = BayesianNetwork.from samples(X[y == 1])
model b = BayesClassifier([bn a, bn_b], weights=numpy.array([1-y.mean(), y.mean()]))
```

Overview

The API

Major Models/Model Stacks

- 1. General Mixture Models
- 2. Hidden Markov Models
- 3. Bayesian Networks
- 4. Bayes Classifiers

Parallelization

Finale: Train a mixture of hidden markov models in parallel

pomegranate has built in parallelization

```
%timeit model.predict(X)
%timeit predict(model, X, n_jobs=1)
%timeit predict(model, X, n_jobs=4)

1 loop, best of 3: 3.79 s per loop
1 loop, best of 3: 3.78 s per loop
1 loop, best of 3: 2.05 s per loop
```

pomegranate has built in parallelization

```
model = NaiveBayes(distributions)

%timeit model.predict_proba(X)
%timeit predict_proba(model, X, n_jobs=4)

1 loop, best of 3: 6.43 s per loop
1 loop, best of 3: 3.53 s per loop
```

```
(model.predict_proba(X[:100]) - predict_proba(model, X[:100], n_jobs=4)).sum()
```

0.0

Overview

The API

Major Models/Model Stacks

- 1. General Mixture Models
- 2. Hidden Markov Models
- 3. Bayesian Networks
- 4. Bayes Classifiers

Parallelization

Finale: Train a mixture of hidden markov models in parallel

Mixture of Hidden Markov Models

Creating a mixture of HMMs is just as simple as passing the HMMs into a GMM as if it were any other distribution

```
model_C = create_profile_hmm(dC, I)
model_mC = create_profile_hmm(dmC, I)
model_hmC = create_profile_hmm(dhmC, I)

model = GeneralMixtureModel([model_C, model_mC, model_hmC])
return model
```

parallel training of a mixture of hmms

Creation is just as simple as passing the HMMs into the GMM object. In this case, each model has 307 edges and 39 states to train

```
model_C = create_profile_hmm(dC, I)
model_mC = create_profile_hmm(dmC, I)
model_hmC = create_profile_hmm(dhmC, I)

model = GeneralMixtureModel([model_C, model_mC, model_hmC])
return model
```

Parallel Training of a Mixture of HMMs

fit(model, X, n_jobs=n)

Overview

pomegranate can do more than other packages, faster, is intuitive to use, and can do it in parallel

Tutorials for each model are available on github

Branch: master ▼ pomegranate / tutorials /		Create new file	Upload files	Find file	History	
jmschrei ADD bayes backend		Latest commit 724510d 10 hours ago				
☐ GGBlasts.xlsx	PyData Chicago 2016	8 months ago				
PyData_2016_Chicago_Tutorial.ipynb	FIX markov chain notebooks		3 months ago			
README.md	Update README.md			2 y	ears ago	
Tutorial_0_pomegranate_overview.ipynb	Minor typos			3 moi	nths ago	
☐ Tutorial_1_Distributions.ipynb	ENH tutorials			2 y	ears ago	
Tutorial_2_General_Mixture_Models.ipynb	FIX hmm dimensionality			11 moi	nths ago	
☐ Tutorial_3_Hidden_Markov_Models.ipynb	edit tutorial 3 to remove deprecated bake			7 moi	nths ago	
☐ Tutorial_4_Bayesian_Networks.ipynb	ENH pomegranate vs libpgm tutorial			7 moi	nths ago	
Tutorial_4b_Bayesian_Network_Structure_Learning.i	ENH a* search			28 0	days ago	
■ Tutorial_5_Bayes_Classifiers.ipynb	ADD bayes backend	10 hours ago				
■ Tutorial_6_Markov_Chain.ipynb	FIX markov chain notebooks	3 months ago				
■ Tutorial_7_Parallelization.ipynb	ADD tutorial 7 parallelization			8 moi	nths ago	

https://github.com/jmschrei/pomegranate/tree/master/tutorials

Thank you for your time.