Universidade da Beira Interior Departamento de Informática

Nº 112 - 2019: Codificação da Cor de Hologramas Digitais Usando Multivistas

Elaborado por:

Raquel Sofia Brás Guerra

Orientador:

Professora Doutora Maria Manuela Areias da Costa Pereira de Sousa

27 de Agosto de 2020

Agradecimentos

Conteúdo

Co	nteú	do		iii
Li	sta de	Figura	ıs	v
Li	sta de	Tabela	ıs	vii
1	Intr	odução		1
	1.1	Enqua	adramento	 1
	1.2	Motiv	ração	 1
	1.3	Objeti	ivos	 2
	1.4	Organ	nização do Documento	 2
2	Esta	ido da A	Arte	3
	2.1	Introd	lução	 3
	2.2	Objeti	ivos	 3
	2.3	Perspe	etiva Histórica	 3
	2.4	Conce	eitos Base	 3
		2.4.1	Holografia	 3
			2.4.1.1 Princípios de Holografia	 3
			2.4.1.2 Representação de Dados Holográficos .	 4
			2.4.1.3 Reconstrução de Holograma	 4
		2.4.2	Compressão	 4
		2.4.3	JPEG2000	 4
		2.4.4	Cor	 4
			2.4.4.1 RGB	 4
			2.4.4.2 YCBCR	 4
	2.5	Estado	o da Arte	 4
	2.6	Concl	lusões	 6
3	Tecı	nologias	s e Ferramentas Utilizadas	7
	3.1	_	łução	 7
	3.2	Tecno	ologias e Ferramentas	 7

iv CONTEÚDO

		3.2.1	Software de Reconstrução de Hologramas e sua Trans-	8
		2 2 2	crição para Python	8
		3.2.2	Kakadu Software	_
	3.3	Materi	ais Utilizados	9
		3.3.1	Hardware	9
		3.3.2	Hologramas	10
	3.4	Conclu	ısões	12
4	Etap	oas de D	esenvolvimento e Implementação	13
	4.1	Introd	ução	13
	4.2	Recons	strução de hologramas	13
	4.3	Compi	essão do hologramas	13
	4.4	Medid	a da qualidade de reconstrução	13
	4.5	Visuali	zação de dados	13
	4.6	Conclu	ısões	13
5	Con	clusões	e Trabalho Futuro	15
	5.1	Conclu	ısões Principais	15
	5.2	Traball	no Futuro	15

Lista de Figuras

3.1	Holograma Dices4k (imagem original)	11
3.2	Holograma DiffuseCar4k (imagem original)	11
3.3	Holograma Piano4k (imagem original)	12

Lista de Tabelas

Acrónimos

JPEG Joint Photographic Experts Group

SDK Software Development Kit

1

Introdução

1.1 Enquadramento

A história da captura, armazenamento e visualização de imagens é extremamente rica e milenar. Marcos importantes destacam-se, sendo do particular interesse no Século XXI os grandes passos dados na imagem digital.

Contudo, a vasta maioria da fotografia tem-se centrado na captura de imagens estáticas em duas dimensões. O interesse na captura e representação de objetos e momentos em três dimensões tem ganho um interesse crescente nas últimas décadas.

A área dedicada ao estudo deste modelo, a **holografia**, carece de vários marcos que já fazem parte do quotidiano da fotografia clássica, nomeadamente padrões *standardizados* para a codificação e compressão de **hologramas** em formato digital.

1.2 Motivação

Dada a referida ausência de *standards* no armazenamento e representação da informação, reconstrução e codificação de um holograma, é do interesse da comunidade do JPEG Pleno estudar os codificadores existentes para melhor perceber qual a sua adaptabilidade aos hologramas e quais as modificações necessárias para resolver a falta de padrões nos pontos mencionados.

2 Introdução

1.3 Objetivos

Tendo em mente a motivação apresentada na secção 1.2, o presente projeto tem por objetivo principal investigar o desempenho do codec JPEG2000 na codificação de hologramas a cores em multivistas.

Por seu turno, os objetivos secundários — os quais refletem as diferentes fases da investigação — são os seguintes:

- 1. Implementar um reconstrutor para hologramas com cor;
- 2. Comprimir hologramas reconstruidos com recurso ao codificador JPEG2000;
- 3. Avaliar a qualidade da imagem comprimida face ao holograma original.

Os objetivos supra-mencionados refletem o objetivo geral de estudar holografia e, assim, expandir o conhecimento na área das tecnologias multimédia.

1.4 Organização do Documento

2

Estado da Arte

2.1 Introdução

Cada capítulo <u>intermédio</u> deve começar com uma breve introdução onde é explicado com um pouco mais de detalhe qual é o tema deste capítulo, e como é que se encontra organizado (i.e., o que é que cada secção seguinte discute).

2.2 Objetivos

2.3 Perspetiva Histórica

2.4 Conceitos Base

2.4.1 Holografia

Quando um objeto é iluminado, a luz é dispersa pela superfície desse objeto, criando uma onde. Esta onda contém toda a informação sobre a luz: a amplitude define o brilho e a fase representa a forma do objeto. Enquanto as fotografias clássicas gravam apenas a intensidade da luz, um holograma preserva a fase do objeto através das características de interferência e difração da luz, guardando assim toda a informação necessária à reconstrução 3D do objeto original.

2.4.1.1 Princípios de Holografia

O principio de holografia foi descoberto em 1948 pelo físico Dennis Gabor enquanto investigava microscopia de eletrões.

4 Estado da Arte

Ao contrário da fotografia convencional, que permite a captura da intensidade da luz, holografia permite guardar a amplitude e a fase da onde de luz dispersa por um objeto. Com a iluminação correta, o holograma produz a onda de luz original, permitindo ao utilizador observar o objeto tal como se estivesse fisicamente presente.

2.4.1.2 Representação de Dados Holográficos

Os dados holográficos podem ser representados de várias formas. Embora sejam todas equivalentes no sentido em que representam o mesmo objeto, algumas tornam a compressão mais eficiente.

No âmbito deste projeto, apenas é relevante a representação no campo de onda complexo.

- Dados reais e imaginários Utiliza um sistema de coordenadas cartesiano para representar amplitudes complexas;
- Dados da amplitude e fase Os valores complexos são expressos num sistema de coordenadas polares.

Os hologramas utilizados neste projeto são representados pelo formato de amplitude-fase.

2.4.1.3 Reconstrução de Holograma

- 2.4.2 Compressão
- 2.4.3 **JPEG2000**
- 2.4.4 Cor
- 2.4.4.1 RGB
- 2.4.4.2 YCBCR

2.5 Estado da Arte

Primeira proposta para codificação digital de hologramas data 1991, Sato et al. captura franjas holográficos usando uma câmara que foram por sua vez modulados em sinal TV e transmitidos para um recetor [1]. (captured the holographic fringes using a camera, which was then modulated into a TV signal and transmitted to the receiver.);

2.5 Estado da Arte 5

Em 1993, Yoshikawa notou que não era prática a aplicação da compressão de imagem 2d diretamente no holograma. Propôs a compressão do holograma em segmentos que correspondem a diferentes perspetivas de reconstrução. Segmentos foram comprimidos com MPEG-1 e MPEG-2 [2,3]. (ver resultados)

Em 2002, Naughton et al. estudou a compressibilidade da holografia digital de mudança de fase usando vários algoritmos de compressão sem perdas [4]. Concluiram que são esperadas melhores taxas de compressão quando o holograma digital é codificado em componentes reais e imaginarias independentemente.

Em [4] foram também estudadas outras técnicas de compressão com perdas tais como subamostragem e quantificação, sendo a última muito eficaz. A eficácia da quantização tanto na simulação numérica como na ótica foi confirmada por Mills e Yamaguchi [5].

A quantização no domínio da reconstrução (não sei o que isto quer dizer) de hologramas de mudança de fase de foram analisados por Darakis and Soraghan [6].

Naughton et al. em 2003 e Darakis et al. em 2006 demonstraram que a aplicação direta de wavelets standard em hologramas não é muito eficiente, visto que as wavelets standard são tipicamente usadas no processamento de sinais com poucas variações (smooth signals). Propuseram a utilização de uma outra familia de wavelets Fresnelets. Fresnelets foram também aplicadas em 2003 por Liveling et al. [8]

Em 2006, Seo et al. propôs comprimir segmentos do holograma usando multi-vistas e temporal prediction dentro de MPEG-2 modificado.

Em 2010 Darkis et al. Determinaram a taxa de compressão mais elevada que pode ser obtida em hologramas mantendo uma qualidade de reconstrução visualmente sem perdas. Nos seus ensaios foram usados MPEG-4 e Dirac. Na informação amplitude-fase foi aplicado um método multiple description coding utilizando máximo à posterior. Mostrou-se um mecanismo poderoso para mitigar erros no canais em hologramas digitais.

Em 2013 Blinder investigou a decomposição alternativa em hologramas off-axis. Em 2014 Still, Xing e Dufaux estudaram codificação sem perdas baseada em quantização vetorial.

Recentemente Peixeiro et al. [9] realizou um benchmark dos codificadores standard de imagens aplicados em hologramas digitais, em conjunto com os formatos de representação principais. Foram comparados os seguintes codificadores de imagem padrão JPEG; JPEG 2000; H.264/AVC intra; HEVC intra. Os autores concluiram que os melhores formatos de representação são phase-shiffted e real-imaginário

6 Estado da Arte

Em 2016, Dufaux review o estado da arte da compressão de hologramas digitais

2.6 Conclusões

Cada capítulo <u>intermédio</u> deve referir o que demais importante se conclui desta parte do trabalho, de modo a fornecer a motivação para o capítulo ou passos seguintes.

3

Tecnologias e Ferramentas Utilizadas

3.1 Introdução

O projeto apresentado só foi possível ser concluído devido à existência de tecnologias e ferramentas, assim como de materiais, os quais se revelaram essenciais.

Em particular, este Capítulo aborda:

- O software de reconstrução de hologramas;
- A escolha da linguagem de programação para o projeto;
- O Software Development Kit (SDK) de codificação de imagens no formato JPEG2000;
- O hardware utilizado;
- Os hologramas testados.

3.2 Tecnologias e Ferramentas

O desenvolvimento do projeto envolveu o trabalho conjunto de diversas ferramentas, nomeadamente Python 3, *Kakadu Software* e *software* escrito no âmbito do projeto JPEG Pleno.

3.2.1 Software de Reconstrução de Hologramas e sua Transcrição para Python

Do 80º Encontro do Grupo JPEG, realizado em Berlim entre 7 e 13 de julho de 2018, resultou um software desenvolvido por Antonin Gilles e Patrick Gioia, do *Institute of Research & Technology b<>com*. O respetivo código, fornecido pela professora orientadora, encontra-se implementado em MATLAB.

Dada a ausência de uma licença do MATLAB para utilizar este *sofware* desenvolvido no âmbito do JPEG Pleno, foi necessário transcrever o código para uma nova linguagem de programação. Neste sentido, optou-se pelo Python 3.

O recurso a Python apresenta uma miríade de vantagens, entre elas:

- Linguagem open source;
- Utilização e distribuição gratuita da linguagem;
- Maior eficiência face ao MATLAB;
- Utilização comum no contexto de processamento multimédia e respetivos projetos;
- Vasto leque de bibliotecas, facilitando a implementação de software específico;
- Abundância de documentação;
- Forte comunidade *online* de suporte.

A escolha do Python foi, portanto, natural no âmbito do presente projeto. Durante a fase de transcrição decorreu uma atualização do Python, tendo sido a última versão do código executada e testada na versão 3.8.2 em três distribuições GNU/Linux de 64 bits: Ubuntu 18.04 LTS, Fedora 31 e Linux Mint 20.

3.2.2 Kakadu Software

Uma vez que o JPEG2000 é o formato alvo deste projeto, e tendo em conta a dificuldade encontrada em projetos anteriores no contexto da holografia em utilizar a ferramenta *FFmpeg*, foi recomendado pela professora orientadora a utilização do *Kakadu Software*.

Este é um SDK para codificação e descodificação de imagens com recurso ao formato JPEG2000, segundo o *standard* pela *Joint Photographic Experts Group* (JPEG).

Os comandos deste SDK de relevo para o projeto são os seguintes:

kdu_compress: codifica uma imagem para o formato JPEG2000.
 Sintaxe:

```
kdu_compress -i input_file -o output_file -rate n

-- Cycc=<yes|no> -precise -quiet
```

onde:

- -i input_file: imagem de *input*;
- -o output_file: ficheiro de *output*;
- -rate n: número de *bits* por amostra (*n* pode ser um número flutuante);
- Cycc=<yes|no>: yes caso seja usada a codificação com transformada de cor de RGB para YCbCr, no em caso contrário;
- -precise: força o uso de representações de 32 bits;
- -quiet: suprime o *output* do programa.
- kdu_expand: descodifica uma imagem no formato JPEG2000. Sintaxe:

```
kdu_expand -i input_file -o output_file -rate n -quiet
```

onde:

- -i input file: imagem de *input*;
- -o output_file: ficheiro de *output*;
- -rate n: número de *bits* por amostra (*n* pode ser um número flutuante).
- -quiet: suprime o *output* do programa.

3.3 Materiais Utilizados

3.3.1 Hardware

De notar que esta implementação do *software* de reconstrução de hologramas requer computadores com especificações mais generosas.

Para este projeto, dois computadores em particular executaram as várias iterações de desenvolvimento do *software* transcrito em Python:

- 1. *Desktop*: processador Ryzen™ 7 2700X 3.7–4.3GHz, placa gráfica NVidia[®] Quadro K5000 (4GB), memória RAM de 32GB e *swap* de 96GB, armazenamento SSD de 1TB;
- 2. Portátil: Intel® CoreTM i5-10210U 1.6-4.2GHz, memória RAM de 16GB e swap de 8GB, armazenamento SSD de 512GB.

3.3.2 Hologramas

Os hologramas reconstruidos com o *software* desenvolvido no âmbito deste projeto são fornecidos pelo *Institute of Research & Technology b<>com.* De entre os disponíveis, foram utilizados os seguintes hologramas com as respetivas características:

- 1. Dices4k (Figura 3.1):
 - Resolução: 4096×4096;
 - Pixel pitch: 0.4 µm;
 - Comprimento de onda vermelho: 640 nm;
 - Comprimento de onda verde: 532 nm;
 - Comprimento de onda azul: 473 nm;
 - Localização da cena: entre 0.164 e 0.328 cm.
- 2. DiffuseCar4k (Figura 3.2):
 - Resolução: 4096×4096
 - Pixel pitch: 0.4 µm;
 - Comprimento de onda vermelho: 640 nm;
 - Comprimento de onda verde: 532 nm;
 - Comprimento de onda azul: 473 nm;
 - Localização da cena: entre 0.11 e 0.25 cm.
- 3. Piano4k (Figura 3.3):
 - Resolução: 4096×4096
 - *Pixel pitch*: 0.4 µm;
 - Comprimento de onda vermelho: 640 nm;
 - Comprimento de onda verde: 532 nm;
 - Comprimento de onda azul: 473 nm;
 - Localização da cena: entre 0.17 and 0.313 cm.

Figura 3.1: Holograma Dices4k (imagem original)

Figura 3.2: Holograma DiffuseCar4k (imagem original)

Figura 3.3: Holograma Piano4k (imagem original)

3.4 Conclusões

Após a seleção das tecnologias e materiais, conforme supra-mencionados, irse-á proceder no Capítulo 4 ao delineamento da estratégia de investigação do projeto, a qual está intimamente ligada às escolhas apresentadas no presente Capítulo, entre elas a escolha da linguagem Python para transcrição do *software* original de reconstrução de hologramas, o SDK para realizar a codificação no formato JPEG2000 e os hologramas testados.

4

Etapas de Desenvolvimento e Implementação

4.1 Introdução

Cada capítulo <u>intermédio</u> deve começar com uma breve introdução onde é explicado com um pouco mais de detalhe qual é o tema deste capítulo, e como é que se encontra organizado (i.e., o que é que cada secção seguinte discute).

- 4.2 Reconstrução de hologramas
- 4.3 Compressão do hologramas
- 4.4 Medida da qualidade de reconstrução
- 4.5 Visualização de dados

4.6 Conclusões

Cada capítulo <u>intermédio</u> deve referir o que demais importante se conclui desta parte do trabalho, de modo a fornecer a motivação para o capítulo ou passos seguintes.

5

Conclusões e Trabalho Futuro

5.1 Conclusões Principais

Esta secção contém a resposta à questão:

Quais foram as conclusões princípais a que o(a) aluno(a) chegou no fim deste trabalho?

5.2 Trabalho Futuro

Esta secção responde a questões como:

O que é que ficou por fazer, e porque?

O que é que seria interessante fazer, mas não foi feito por não ser exatamente o objetivo deste trabalho?

Em que outros casos ou situações ou cenários – que não foram estudados no contexto deste projeto por não ser seu objetivo – é que o trabalho aqui descrito pode ter aplicações interessantes e porque?