CS 6604 Final Presentation Computational Linguistics PJ

-Event Extraction from Newswires and Twitter

Client: Mohamed Magdy

by Tianyu Geng, Wei Huang, Ji Wang, and Xuan Zhang

May, 1st, 2014 Blacksburg, VA

Table of Contents

- 1. Introduction
- 2. Approach & Results
- 3. Discussion
- 4. Conclusion

1. Problem to Solve

Motivation: Big data era, much news, much tweets, but...

Mainstream News

Tweets

- Objects:
- 1. Summarize key events in news & tweets
- 2. Explore correlation between news & tweets

2. Approach Overview

Main Process

- 1. Fetch text from news & tweets respectively
- 2. Preprocess texts: stemming, stop-word...
- 3. Extract events from news and tweets
- Event: [Topic, Named entities(who, where, when)]
- 4. Link Twitter Events to News events

2.1 Overall Architecture

2.2 Data Set

Datasets (Feb, 18th ~ Apr, 18th):

1) 4084 news about "Ukraine Crisis" from Reuters.

4084

N/A

N/A

N/A

2) About 130,000 tweets about "Ukraine Crisis" from Twitter.

2.3.1 News Analysis Pipeline

Event: [Topic, Named entities(who, where, when)]

LDA: Latent Dirichlet Allocation NER: Named Entity Recognition

2.3.2 Topic Extraction (LDA)

Result of Topic Modeling

- □ Extract topics from news titles
 - Strength: titles are good summaries of the news
 - Weakness: small data set
- □ Extract topics from key paragraphs
 - Strength: large data set
 - Weakness: more noise

Our experience:

- For news with homogeneous topics (e.g. Ukraine crisis news):
 Titles are better choice
- For news with heterogeneous topics (e.g. Monthly news of Apple Inc.):
 Key paragraphs are better
- Problems:

Overlap & Noise in about 25% topics

Efforts to Improve Topic Modeling

- ☐ Cluster the news by their titles before LDA
 - No good result. News titles are short texts, thus the title vectors are too sparse to be clustered accurately.
- ☐ Cluster the news by entire article before LDA
 - No good result. There is too much noise in the news body, which deteriorates the clustering result.
- ☐ Split the entire dataset into datasets with shorter periods
 - Topics with finer-granularity obtained.
 - However, more noise emerged compared to topics from the entire data set.

Suggestions from Dr.Fox

2.3.3 Named Entity Extraction

- ☐ Hard to find Named Entities (WHO,WHERE,WHEN) in topics.
 - ☐ We need to search NEs in relevant news paragraphs

Extract Named Entities - Methods

Extract Named Entities - Results

Topic: [crimea, ukraine, russian, troops, border]

Method 1: High-frequency 3W named entities

WHO: NATO; Oleksander Turchinov; Kerry; Lavrov; Vladimir Putin;

WHEN: Mar 15, 2014; Thursday; Apr 16, 2014; Mar 3, 2014; Mar 24, 2014;

WHERE: Ukraine; Crimea; Russia; U.S.; Kiev;

Method 2: High-frequency named entities combinations

[Mar 15, 2014; Ukraine; Crimea; Donetsk; Kharkiv; Arbatskaya Strelka; Oleksander Turchinov]

[Mar 29, 2014; Russia; Ukraine; Crimea; Lavrov; Vladimir Putin]

[Apr 12, 2014; Russia; Moscow; Ukraine; Crimea; NATO]

Extracted Events on a Time Line

Extracted Events Sample

2014/03/08 - 2014/03/14;

Topic: [crimea, ukraine, russia, minister, referendum, ukrainian, vote]

WHO: U.N. Security Council; Arseny Yatseniuk; Vladimir Kirichenko; Obama; Putin;

WHERE: Russia; Crimea; Ukraine; Kiev; China;

Combination: [Mar 9, 2014; Russia; Ukraine; Crimea; United States; Vladimir

Kirichenko; Obama]

Combination: [Mar 14, 2014; London; Russia; Ukraine; West; Crimea; Moscow;

Arseny Yatseniuk; Kerry; Russian Federation]

2014/03/20 - 2014/03/21:

Topic: [ukraine, house, imf, u.s, bill, white, aid]

WHO: IMF; Senate; White House; House of Representatives

WHERE: Ukraine; WASHINGTON; Kiev; United States;

Combination: [Mar 21, 2014; Ukraine; U.S.; New York; Senate; Royce; House Foreign

Affairs Democrat; Nita Lowey; Eliot Engel; House Appropriations Committee; IMF]

2.4.1 Approaches

- Tweets are from IDEAL collection.
- Assign topics to each tweet by LDA.
- Apply Method 2 (FP-Growth) in the NER step of tweets analysis.

2.4.2 Results

News Facts:

Feb 20/21: President Yanukovych signed a compromise deal with opposition leaders. Then, he left Ukraine.

Tweets Events Samples

- Topic 1
 - Keywords: live, snipers, protests, control, here, watch, video
 - Events:

```
{Feb 18, 2014; European Union; Ukraine}
{Feb 20, 2014; EU; Ukraine}
{Feb 20, 2014; Hotel Ukraina; Kiev}
{Feb 22, 2014; Peter Brookes; Kiev}
{Mar 06, 2014; EU; Rome}
```

- Topic 2
 - Keywords: today, president, storm, backed, threaten, forces, shooting
 - Events: {Feb 20, 2014; Yanukovich; Kiev}

2.5 Correlation between Twitter Events & News Events

3.1 Issues & Lessons

--- News Analysis

Open Issues:

- 1. Overlap and noise in the extracted topics
- 2. Noise in the extracted named entities
- 3. Similarity model to link the Twitter events to news events

Lessons:

- 1. Collect more data from other news websites
- 2. Remove overlap in topics by splitting the data set
- 3. Remove duplicates from the frequent NE combinations

3.2 Issues, & Lessons --- Tweets Analysis

- 1. There are very big noise in tweets themselves.
- 2. It's not easy to extract Named Entities from tweets.

Lessons:

- 1. topic model tweets via LDA (Python Gensim)
- 2. extract name entities from tweets. (PyNER)
- 3. use FP-Growth algorithm to pick the most high frequency keywords combination in event description.

3.3 Potential Usages

- 1. A tool for event extraction and news summarization
- 2. A tool for the "Computational Linguistic" course
- 3. A component for the IDEAL project
- 4. A tool to extract pure text from archived web pages

4.1 Conclusion

- Developed an effective tool for web page event extraction
- Explored various methods regarding every step of the event extraction
- More efforts are needed to link the tweets events to news events

4.2 Structure of Deliverables

- 1. Presentation slides
- 2. A project report (including tool manual)
- 3. Source code
 - News event extractor (in Java)
 - Twitter event extractor (in Python)
- 4. Data
 - Text version of news dataset
 - Output results

Appendix

4.3 Future Work: Opinion Mining

Topics from Clustered News Titles

Cluster 1:

Ukraine Russia say eastern update Russian hit Ukraine Putin say leader WRAPUP Crimea send Ukraine update crisis say tension police military Crimea russian from order after lawmaker official

Cluster 2:

U.S. IMF gas aid bill reform Kerry
Ukraine EU help ukrainian gas crisis export

Cluster 3:

update Russia may Germany trade Merkel government Ukraine talk House bank White german aid sanction russian EU against Obama over energy Russia EU Ukraine sanction Obama war agree

Topics from Clustered News Bodies

Cluster 1:

Russia Ukraine EU warn Moscow Crimea sanction Russia Ukraine take call say Putin separatist Ukraine after force U.N. putin vote fear

Cluster 2:

Ukraine after eye over rouble import gas Crimea emerge bond Bank bank market more russian say Ukraine gas hit may ukrainian

Cluster 3:

Putin Ukraine Obama call discuss Merkel White Ukraine update against urge aid after leader Ukraine minister Yanukovich gas Poland president polish Ukraine force NATO pm security seize gas

Topics from Key Paragraphs

```
Topic [0]: [ukraine, reuters, Ukraine, russia, crisis, foreign, president]

Topic [1]: [reuters, kiev, yanukovich, president, viktor, ukrainian, ukraine's]

Topic [2]: [military, nato, reuters, ukraine, u.s, russia, crimea]

Topic [3]: [sanctions, crimea, russia, moscow, reuters, russian, referendum]

Topic [4]: [russian, reuters, crimea, ukraine, ukrainian, forces, military]

Topic [5]: [gas, ukraine, reuters, russia, russian, energy, moscow]

Topic [6]: [percent, ukraine, reuters, march, Ukraine, tensions, u.s]
```

Topic [7]: [ukraine, reuters, aid, billion, Ukraine, washington, international]

Topic [8]: [russia, putin, ukraine, russian, vladimir, war, president]

Topic [9]: [rating, fitch, ratings, bank, banks, currency, ukraine]

Topics from Splitted Data Sets

Data set 1:

Ukraine, Kiev, protesters, police, team, Games, square Yanukovich, Ukraine, opposition, crisis, talks, deal, Ukraine's Hryvnia, bank, assets, record, low, foreign, gains

Data set 2:

Ukraine, U.S, Russia's, war, discuss, crisis, Merkel Crimea, Ukraine, Russia, Putin, force, back, troops Ukraine, tensions, China, rise, stocks, tension, ease

Data set 3:

Ukraine, Russia, IMF, aid, crisis, talks, deal Russia, Crimea, military, Crimea's, vote, Moscow, U.N Ukraine, Russia, IMF, aid, crisis, talks, deal

Data set 3:

Russian, Ukraine, Ukraine's, military, embassy, agency, suspected gas, Ukraine, Russia, talks, Europe, supply, debt Ukraine, Putin, Russia, U.S, data, call, House

Progress: Text Extraction

