COMPUTER PROGRAMS FOR PLANE COLLISIONLESS SHEATHS BETWEEN FIELD-MODIFIED EMITTER AND THERMALLY IONIZED PLASMA EXEMPLIFIED BY CESIUM

By Susan L. Button and James F. Morris

Lewis Research Center Cleveland, Ohio

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

COMPUTER PROGRAMS FOR PLANE COLLISIONLESS SHEATHS BETWEEN FIELD-MODIFIED EMITTER AND THERMALLY IONIZED PLASMA EXEMPLIFIED BY CESIUM

by Susan L. Button and James F. Morris
Lewis Research Center

SUMMARY

Two computer programs coded in FORTRAN IV are described for plane collision-less positive-ion and electron emission sheaths. Given the emitter temperature, emitter work function, atomic ionization potential, plasma electron and ion number density, and plasma electron, ion, and atom temperatures, the programs compute current densities, potential drop through the sheath, charge density, electron field, and sheath distance.

INTRODUCTION

Methods to calculate the properties of sheaths between a thermally ionized plasma and a field-modified emitter of electrons, ions, and atoms are programmed in FORTRAN IV for the IBM 7094. References 1 and 2 give the background, theory, and many results for emission sheaths and also graphic correlations for sheath characteristics in cesium plasmas. The examples herein are specific for a cesium plasma. The programs are general and convert readily to other plasmas by replacing the minimum mean free path, vapor pressure, ionization potential, and masses of the atom and ion of cesium with those of the desired chemical. Computing procedures for the positive-ion and electron sheaths appear as FORTRAN programs in appendixes A and B. Appendix C defines the FORTRAN variables and corresponding output labels. Appendix D defines additional FORTRAN variables and constants. Flow diagrams of the programs appear in figures 1 and 2.

SYMBOLS

```
electronic unit charge
е
h
        Planck's constant
Ι
        ionization potential
J
        overall net current
        current density or net particle current density
j
        particle mass
m
Ν
        particle number density
p
        pressure
\mathbf{T}
        temperature
V
        potential
\Delta V
        potential relative to plasma potential
X
        distance from emitter
        Boltzmann constant
к
        mean free path for charge exchange in emitter temperature range
λ
        plasma Debye length, \approx 6.9 (T_{ep}/N_{ep})^{1/2}
^{\lambda}D
        emission Debye length, \approx 6.0 (T_E/N_{ep})^{1/2}
^{\lambda}DE
        work function
\varphi
        plasma potential for near-equilibrium positive-ion sheath
\varphi_{\mathbf{0}}
Subscripts:
a
        atom
\mathbf{E}
        emitter
         electron
e
i
        ion
p
        plasma
S
        overall sheath
\Delta V
        potential relative to plasma potential
vp
        vapor pressure
```

 \mathbf{E}

electric field

DESCRIPTION OF INPUT

The input for one case requires one value each of T_E , φ , N_{ep} , T_{ep} , and T_{ip} . The ranges of the conditions used in the calculations for cesium plasmas are $1400^{\rm O}$ to $2400^{\rm O}$ K for the electrode temperature, $1600^{\rm O}$ to $2400^{\rm O}$ K for the plasma atom and ion temperatures, $1700^{\rm O}$ to $2700^{\rm O}$ K for the plasma electron temperature, 10^{12} to 10^{15} for electron number density, and 1.5 to 5.0 volts for the work function. The work function is an assigned variable; the equilibrium value for no sheath was obtained by solving for the Saha-Langmuir null point

$$\varphi_{O} = \frac{\kappa T}{e} \left(\frac{3}{2} \ln T - \ln N_{ep} + \frac{3}{2} \ln \frac{2\pi m_{e} \kappa}{h^{2}} + \ln 2 \right)$$
 (1)

and choosing three or four values of φ above this point for the positive ion sheath calculations, and three or four values below the null point for the electron sheath calculations.

More than one case can be run during one machine access. On the 7094 II-DCS, approximately six cases can be run in 1 minute.

Input card preparations for the Positive-Ion and Electron Sheath Programs are identical. A single digit integer in column 5 of the first card is IWRITE, the variable that controls the desired output. If IWRITE = 0, results for Richardson-Dushman (refs. 3 to 5) and Schottky (ref. 6) are printed. If IWRITE = 1, the Richardson-Dushman output is eliminated. The remaining cards are in five groups. In each group the first card (an integer in cc4-5) indicates the number of values to be read from the successive cards of that group (Format 8E10.2):

Group	Fortran variable name of count (≤10)	Fortran array variable	Description	Equation variable
I	п	TE	Emitter temperature	${ m T_E}$
II	JJ	РШ	Emitter work function	$\mathrm{e} arphi$
ш	кк	EPN	Plasma electron number density	N _{ep}
IV	LL	TEP	Plasma electron temperature	T _{ep}
v	LA	TIPP	Plasma ion temperature	T _{ip}

A second set of five groups of input data cards may follow; IWRITE is not included after the first set is read in.

In order to convert the programs from a cesium plasma to a plasma of another element, replace the ionization potential, AI, (FORTRAN statement 301; mass of the atom, AM, (302); vapor pressure, PTEST, (303); and minimum mean free path, AMTEST, (304) with those of the desired element.

METHOD OF CALCULATION

The programs described deal specifically with a cesium plasma; therefore, the tests and constants used are characteristic of cesium. As mentioned earlier in the section DESCRIPTION OF INPUT, the programs can be converted to handle another chemical if desired. The calculations in the programs assume $m_i = m_a$ and $N_{ip} = N_{ep}$.

Before major calculations begin, the input values must satisfy two tests. First, the Debye shielding length (AMDA) must be less than the low-energy mean free path for cesium charge exchange (AMTEST). This enables the model to be collisionless. Second, the vapor pressure of cesium at the emitter temperature (PTEST) must be less than the effective plasma pressure (PPT). The equations for these variables are as follows:

AMDA =
$$\left[\frac{\kappa}{(4\pi)(0.511 \times 10^6)(2.82 \times 10^{-13})} \right]^{1/2} \left(\frac{T_{ep}}{N_{ep}} \right)^{1/2}, \text{ cm}$$
 (2)

AMTEST =
$$10^{12} N_{ap}^{-1}$$
, cm (3)

$$PTEST = \frac{\text{anti log}\left(-\frac{3920.38}{T_{E}} - 0.51978 \log T_{E} + 10.71914\right)}{133.322}, \text{ torr}$$
 (4)

$$PPT = \frac{(82.06)(760)}{6.023 \times 10^{23}} (2N_{ep}T_{ip} + N_{ap}T_{ap}), \text{ torr}$$
 (5)

If the input for one case passes the preceding tests, calculations continue; otherwise, another case with a new $\rm\,N_{ep}\,$ is begun.

The Richardson-Dushman equation and $e\varphi' = e\varphi$ yield the current densities if the effects of the sheath field at the emitter, E_E are omitted. Electron emission current density:

$$j_{eE} = 120 T_E^2 \exp\left(-\frac{e\varphi'}{\kappa T_E}\right)$$
 (6)

Plasma current density:

Electron:

$$j_{ep} = \frac{1.602 \times 10^{-19} \text{ N}_{ep}}{2} \left(\frac{2 \kappa T_{ep}}{\pi m_e} \right)^{1/2}$$
 (7)

Ion:

$$j_{ip} = \frac{1.602 \times 10^{-19} \text{ N}_{ip}}{2} \left(\frac{2 \kappa T_{ip}}{\pi m_i} \right)^{1/2}$$
 (8)

Atom:

$$j_{ap} = \frac{1.602 \times 10^{-19} \text{ N}_{ep}^2 \left(\frac{2\kappa T_{ap}}{\pi m_a}\right)^{1/2}}{2\left(\frac{2\pi m_e \kappa T_{ep}}{h^2}\right)^{3/2} \exp\left(-\frac{eI}{\kappa T_{ep}}\right)}$$
(9)

Equations (6) to (9) are the same for positive-ion and electron sheaths.

In order to calculate the current densities through the sheath, a need arises for the overall potential sheath drop ΔV_S . A first approximation is made by using the charge density equations $\rho_{\Delta V}$ and conditions at the plasma, sheath interface, where $\Delta V=0$. The following equations define the charge density, equation (10) for the positive-ion sheath and equation (11) for the electron sheath.

Positive-ion sheath (ΔV_S positive):

$$\rho_{\Delta V} = \frac{\mathrm{j_{eE}} \left\{ 1 - \mathrm{erf} \left[\frac{\mathrm{e}(\Delta V_{\mathrm{S}} - \Delta V)}{\kappa T_{\mathrm{E}}} \right]^{1/2} \right\} \mathrm{exp} \left[\frac{\mathrm{e}(\Delta V_{\mathrm{S}} - \Delta V)}{\kappa T_{\mathrm{E}}} \right]}{\left(\frac{2\kappa T_{\mathrm{E}}}{\pi \mathrm{m_e}} \right)^{1/2}}$$

$$+ \frac{j_{ep} \left\{ 1 + \operatorname{erf} \left[\frac{e(\Delta V_{S} - \Delta V)}{\kappa T_{ep}} \right]^{1/2} \right\} \exp \left(-\frac{e \Delta V}{\kappa T_{ep}} \right)}{\left(\frac{2\kappa T_{ep}}{\pi m_{e}} \right)^{1/2}}$$

$$- \frac{j_{iE} \left[1 + \operatorname{erf} \left(\frac{e \Delta V}{\kappa T_{E}} \right)^{1/2} \right] \exp \left[-\frac{e(\Delta V_{S} - \Delta V)}{\kappa T_{E}} \right]}{\left(\frac{2\kappa T_{E}}{\pi m_{i}} \right)^{1/2}}$$

$$- \frac{j_{ip} \left[1 - \operatorname{erf} \left(\frac{e \Delta V}{\kappa T_{ip}} \right)^{1/2} \right] \exp \left(\frac{e \Delta V}{\kappa T_{ip}} \right)}{\left(\frac{2\kappa T_{ip}}{\pi m_{i}} \right)^{1/2}}$$

$$(10)$$

Electron sheath (ΔV_S negative):

$$\rho_{\Delta V} = \frac{i_{eE} \left[1 + erf \left(-\frac{e \Delta V}{\kappa T_{E}} \right)^{1/2} \right] exp \left[\frac{e(\Delta V_{S} - \Delta V)}{\kappa T_{E}} \right]}{\left(\frac{2\kappa T_{E}}{\pi m_{e}} \right)^{1/2}} \\
+ \frac{i_{ep} \left[1 - erf \left(-\frac{e \Delta V}{\kappa T_{ep}} \right)^{1/2} \right] exp \left(-\frac{e \Delta V}{\kappa T_{ep}} \right)}{\left(\frac{2\kappa T_{ep}}{\pi m_{e}} \right)^{1/2}} \\
- \frac{i_{iE} \left\{ 1 - erf \left[-\frac{e(\Delta V_{S} - \Delta V)}{\kappa T_{E}} \right]^{1/2} \right\} exp \left[-\frac{e(\Delta V_{S} - \Delta V)}{\kappa T_{E}} \right]}{\left(\frac{2\kappa T_{E}}{\pi m_{i}} \right)^{1/2}} \\
- \frac{i_{ip} \left\{ 1 + erf \left[-\frac{e(\Delta V_{S} - \Delta V)}{\kappa T_{ip}} \right]^{1/2} \right\} exp \left(\frac{e \Delta V}{\kappa T_{ip}} \right)}{\left(\frac{2\kappa T_{ip}}{\kappa T_{ip}} \right)^{1/2}} exp \left(\frac{e \Delta V}{\kappa T_{ip}} \right)}{\left(\frac{2\kappa T_{ip}}{\kappa T_{ip}} \right)^{1/2}} exp \left(\frac{e \Delta V}{\kappa T_{ip}} \right)$$
(11)

When $\Delta V = 0$, equations (10) and (11) reduce to the charge density in the plasma $\rho_p = 0$.

Positive-ion sheath:

$$\rho_{p} = 0 = \frac{j_{eE} \left[1 - erf \left(\frac{e \Delta V_{S}}{\kappa T_{E}} \right)^{1/2} \right] exp \left(\frac{e \Delta V_{S}}{\kappa T_{E}} \right)}{\left(\frac{2\kappa T_{E}}{\pi m_{e}} \right)^{1/2}} + \frac{j_{ep} \left[1 + erf \left(\frac{e \Delta V_{S}}{\kappa T_{ep}} \right)^{1/2} \right]}{\left(\frac{2\kappa T_{ep}}{\pi m_{e}} \right)^{1/2}} - \frac{j_{ip}}{\left(\frac{2\kappa T_{ip}}{\pi m_{i}} \right)^{1/2}} - \frac{j_{ip}}{\left(\frac{2\kappa T_{ip}}{\pi m_{i}} \right)^{1/2}}$$

$$(12)$$

Electron sheath:

$$\rho_{p} = 0 = \frac{j_{eE} \exp\left(\frac{e \Delta V_{S}}{\kappa T_{E}}\right)}{\left(\frac{2\kappa T_{E}}{\pi m_{e}}\right)^{1/2}} + \frac{j_{ep}}{\left(\frac{2\kappa T_{ep}}{\pi m_{e}}\right)^{1/2}} - \frac{j_{iE} \left[1 - \operatorname{erf}\left(-\frac{e \Delta V_{S}}{\kappa T_{E}}\right)^{1/2}\right] \exp\left(-\frac{e \Delta V_{S}}{\kappa T_{E}}\right)}{\left(\frac{2\kappa T_{E}}{\pi m_{i}}\right)^{1/2}} - \frac{j_{ip} \left[1 + \operatorname{erf}\left(-\frac{e \Delta V_{S}}{\kappa T_{ip}}\right)^{1/2}\right]}{\left(\frac{2\kappa T_{ip}}{\pi m_{i}}\right)^{1/2}}$$

$$(13)$$

In equation (12), the third term equals one-half the ion charge density N_{ip} ; equation (16) is substituted for j_{iE} . In equation (13), the first term equals one-half the electron charge density N_{ep} ; therefore, an approximation of ΔV_S can be made.

Positive-ion sheath:

$$\Delta V_{S} = e \varphi' - eI + \frac{\kappa T_{E}}{e} \ln \left[\frac{\left(\frac{T_{ip}}{T_{E}}\right)^{1/2} + \frac{N_{ap}}{N_{ep}} \left(\frac{T_{ap}}{T_{E}}\right)^{1/2} - 1}{2} \right]$$
(14)

Electron sheath:

$$\Delta V_{S} = \kappa T_{E} \ln \left[\frac{1.602 \times 10^{-19} N_{ep} \left(\frac{2 \kappa T_{E}}{\pi m_{e}} \right)^{1/2}}{2 j_{eE}} \right]$$
 (15)

A test is made on ΔV_S to assure that it is positive for the ion sheath and negative for the electron sheath. If the test is not satisfied, a new case is begun by using another value of φ .

With the first estimate of ΔV_S , one can solve for the current densities from the emitter and the net negative current densities through the sheath into the plasma. Ion current density from emitter:

Positive-ion sheath:

$$j_{iE} = \frac{j_{ip} + j_{ap}}{2 \exp\left[\frac{e(I - \varphi')}{\kappa T_E}\right] + \exp\left(-\frac{e \Delta V_S}{\kappa T_E}\right)}$$
(16)

Electron sheath:

$$j_{iE} = \frac{j_{ap} + j_{ip} \exp\left(\frac{e \Delta V_{S}}{\kappa T_{ip}}\right)}{1 + 2 \exp\left[\frac{e(I - \phi')}{\kappa T_{E}}\right]}$$
(17)

Atom current density from emitter:

Positive-ion sheath:

$$j_{aE} = \frac{j_{ip} + j_{ap}}{1 + \frac{1}{2} \exp\left[-\frac{e(\Delta V_S - \varphi' + I)}{\kappa T_E}\right]}$$
(18)

Electron sheath:

$$j_{aE} = \frac{j_{ap} + j_{ip} \exp\left(\frac{e \Delta V_{S}}{\kappa T_{ip}}\right)}{1 + \frac{1}{2} \exp\left[-\frac{e(I - \varphi')}{\kappa T_{E}}\right]}$$
(19)

Net negative current density through sheath into plasma:

Electron:

Positive-ion sheath:

$$j_e = j_{eE} - j_{ep} \exp \left(-\frac{e \Delta V_S}{\kappa T_{ep}}\right)$$
 (20)

Electron sheath:

$$j_e = j_{eE} \exp\left(\frac{e \Delta V_S}{\kappa T_E}\right) - j_{ep}$$
 (21)

Ion:

Positive-ion sheath:

$$j_i = j_{ip} - j_{iE} \exp\left(-\frac{e \Delta V_S}{\kappa T_E}\right)$$
 (22)

Electron sheath:

$$j_{i} = j_{ip} \exp\left(\frac{e \Delta V_{S}}{\kappa T_{ip}}\right) - j_{iE}$$
 (23)

Atom:

Positive-ion and electron sheath:

$$j_a = j_{aE} - j_{an} \tag{24}$$

Overall:

$$J = j_e + j_i \tag{25}$$

The overall potential drop ΔV_S is then divided into 20 equal increments ΔV , and the net negative charge density in the sheath equations (10) or (11) is calculated for increasing potentials. The error function in equations (10) and (11) was evaluated by using the Lewis library subroutine for error functions.

Integration of the net negative charge density yields the electron field in the sheath $E_{\Delta V}$. The calculations use the sheath fields and voltages given in terms of electron potential; therefore, positive signs correspond to ion sheath and negative signs correspond to electron sheath:

$$E_{\Delta V} = \pm \left(-72 \pi \times 10^{11} \int_0^{\pm \Delta V} \rho_{\Delta V} d\Delta V\right)^{1/2}$$
 (26)

The numerical integration of $\, \rho_{\Delta V} \,$ is performed by using the trapezoidal rule based on 20 equal increments of $\, \Delta V \,$ from 0.0 to $\, \Delta V_{S} .$

With the field at the Schottky emitter $E_E = E_{\Delta V_S}$, a Schottky correction $e\varphi' = e\varphi - e\Big[(0.511\times10^6)(2.82\times10^{-13}~E_E)\Big]^{1/2}$ is used in equation (6) for the ion sheath program, and $e\varphi' = e\varphi + e\Big[(-0.511\times10^6)(2.82\times10^{-13}~E_E)\Big]^{1/2}$ is substituted in equation (17) for the electron sheath program. The Schottky correction is used in the recalculation of the values of current densities, overall potential drop, charge density, and electron field. This cycle continues until no boundary current density affected by the Schottky correction (for example CAT in the Positive-Ion Sheath Program) changes by more than 0.1 percent of the smallest boundary (plasma or emitter) current density (TENT). Once the preceding test is satisfied, the sheath distances X are computed:

$$X_{\Delta V} = -\int_{\Delta V_{S}}^{0} \frac{d\Delta V}{E} + \int_{\Delta V}^{0} \frac{d\Delta V}{E}$$
 (27)

As in the electron field calculations, the trapezoidal rule is used for numerical integration. However, at zero ΔV , E equals zero, and equation (27) is not defined. The programs deal with this singularity by using E/2 at $\Delta V_{\rm S}/20$ as the average for the first increment and compute a finite X at this point.

DESCRIPTION OF OUTPUT

Examples of the output are shown in figure 3 for the positive-ion sheath and in figure 4 for the electron sheath. Following the numerical values (figs. 3(a) and 4(a)) are plots which show sheath voltages, fields, and charge densities as functions of distances from the electrode. The sheath properties vary with the plasma electron concentration N_{ep} , electron and ion temperatures T_{ep} and T_{ip} , electrode work function φ , and emitter temperature T_{E} . The first set of five plots (plotted by the method of ref. 7) shows the Richardson-Dushman and Schottky results (figs. 3(b) and 4(b)); the second set shows only the Schottky results (figs. 3(c) and 4(c)). If IWRITE = 1, the second set of five plots is eliminated. The sample output corresponds to the input listed at the end of the Fortran programs (appendixes A and B).

An explanation of the output labels and corresponding FORTRAN variables is given in appendix C. Appendix D gives an alphabetical listing of important FORTRAN variables, not defined in appendix C. The recorded plasma and electrode properties, overall sheath characteristics, and tabulated and graphic incremental data are sufficient to detail the structure and transport of an emission sheath.

Lewis Research Center,

National Aeronautics and Space Administration, Cleveland, Ohio, December 4, 1967, 120-33-02-01-22.

APPENDIX A

POSITIVE-ION SHEATH PROGRAM LISTING

```
$IBFTC ION
С
      A PLANAR ION SHEATH BETWEEN AN EMITTER AND A
С
С
         NEAR - EQUILIBRIUM PLASMA
C
      COMMON /MV/ PI, EM, AK, AM
      COMMON /MP/ XDV(50), XDS(50), RHODOP(50), RHDS(50), EDV(50), EDS(50),
      1DV(50), DVSAVE(50), RHOEOP(50), RHES(50), RHOIOP(50), RHIS(50), NBB
      DIMENSION TE(10), PHI(10), EPN(10), TEP(10), EJ(30), EPJ(30), PIJ(30),
      1APJ(30),PP(30),DVS(100),EIJ(30),AEJ(30),CJ(30),RHOD(40),
      2ESAVE(40), XSAVE(40), RHDE(40), TIPP(10), EJS(50), AMDA(10), SJE(20),
      3SJA(20), SDJA(20), SDJE(20), SDJI(20),
                                                       J1(100), J2(100),
      4J3(100), J4(100), RHOI(40), AMDATE(10), Y(40), SJI(20)
      REAL J1, J2, J3, J4, JA, JB, JC
С
С
       AI , IONIZATION POTENTIAL
  301 \text{ AI} = 3.893
       AK = 8.617E-5
       \Delta KT = 2.0 \times \Delta K
       EM = .511E+6/((2.998E+10)**2)
          = 3.14159
       PΙ
       PIEM = PI*EM
       SE = 1.602E-19
С
       MA , MASS OF ATOM
  302 AM = 931.478E+6*132.9/((2.998E+10)**2)
       PIAM = PI*AM
       AP1 = 6.6256E-34/SE
       AP2 = AM
       C1 = SORT(AK/(4.0*PI*.511E+6*2.82E-13))
       C2 = AP1**2
       C3 = 82.06*760./6.023E+23
       C4 = .511E + 6 * 2 .82E - 13
       C5 = -72.0 \times PI \times 1.0E + 11
C
С
       IWRITE = 1 FOR SCHOTTKY OUTPUT
C
       IWRITE = O FOR RICHARDSON - DUSHMAN AND SCHOTTKY DUTPUT
С
       READ (5,12) IWRITE
С
С
       READ INPUT TE , PHI , EPN , TEP , TIP
C
     1 READ (5,2) II, (TE(I), I=1, II)
       READ (5,2) JJ, (PHI(J), J=1,JJ)
       READ (5,2) KK, (EPN(K), K=1, KK)
       READ (5,2) LL, (TEP(L), L=1, LL)
       READ (5,2) LA, (TIPP(LB),LB=1,LA)
       DO 1000 I =1,II
С
       COMPUTE PTEST , VAPOR PRESSURE
   303 PTEST = 10.**(-3920.38/TE(I)-.519781*ALOG10(TE(I))+10.71914)/
      1 133,322
       AKTE = AK * TE(I)
```

```
TAKTE = 2.0*AKTE
      SA = SORT(TAKTE/PIAM)
      FD = SA**2
      CII = PIEM*TAKTE
      CI2 = SORT(TAKTE/PIEM)
      TES = TE(I)**2
      DO 995 LB = 1, LA
      TIP = TIPP(LB)
      CLB1 = SQRT(AKT*TIP/PIAM)
C
      SET TAP = TIP FOR THESE SOLUTIONS
      TAP = TIP
      DO 990 L=1,LL
      AKTP = AK*TEP(L)
      TAKTP = 2.0*AKTP
      SB = TAKTP*PIEM
      SB15 = SB**1.5
      CL1 = EXP(AI/AKTP)
      CL2 = SQRT(TAKTP/PIEM)
      FB = CL2**2
      DO 980 K=1,KK
C
      COMPUTE PHIZZ , AMDA , AMDATE , APN , AMTEST , PPT
      APN = (EPN(K)*C2)*(EPN(K)*(AP1))*CL1/SB15
      CK1 = AKTE*ALOG(.5*((TIP/TE(I))**.5+(APN/EPN(K))*(TAP/TE(I))**.5
     1-1.0))
      SEE = SE*EPN(K)
      PHIZZ = -AKTE*ALOG((SEE/(240.*TES))*CI2)
      AMDA(K) = C1*SQRT(TEP(L)/EPN(K))
      AMDATE(K) = C1*SQRT(TE(I)/EPN(K))
С
С
      AMTEST, MINIMUM MEAN FREE PATH
  304 \text{ AMTEST} = 1.0E+12/APN
      PPT = C3*(2.0*EPN(K)*TIP+APN*TAP)
C
С
      TEST ON AMDA , AND AMTEST
      IF (AMDA(K).LT.AMTEST) GO TO 9
      WRITE (6,7) AMDA(K), AMTEST, TE(I), EPN(K), TEP(L)
      GO TO 980
C
      TEST ON PPT AND PTEST
C
    9 IF (PPT -PTEST) 40,40,5
    5 WRITE (6,6) PPT ,PTEST,TE(I),EPN(K),TEP(L)
      GO TO 980
   40 CONTINUE
      D0 970 J = 1,JJ
      KOUNT = 0
      METS = 0
      IPRINT = IWRITE
    3 PHD = PHI(J)
C
С
      COMPUTE EJ , EPJ , PIJ , APJ , PP
С
      EJ(J) = 120.*TES*EXP(-PHD/AKTF)
      EPJ(J) = SEE*.5*CL2
```

```
PIJ(J) = .5*SEE*CLB1
      APJ(J) = (SE*EPN(K)**2*AP1)*(CL1*C2)
                                                )*SORT(AKT *[AP/(PI*AP2))
     1/(SB15*2.0)
      PP(J) = C3*(EPN(K)*(TEP(L)+TIP*1.0+TAP*((EPN(K)*C2)*CL1*AP1)/SB15)
     1)
      IF (IWRITE.EQ.1.OR.METS.EQ.1) GO TO 38
      WRITE (6,799)
    8 WRITE (6,800) AI, TE(I), PHI(J), EPN(K), TEP(L), TIP, AMDA(K), PTEST
     1, AMDATE(K)
   38 CONTINUE
      KOUNT = KOUNT + 1
С
С
      COMPUTE DVS
  105 DVS(J) = CK1+PHD-AI
      IF (METS.E0.0) DVSRD = DVS(J)
      PHIZ = PHI(J) - DVSRD
      DRDK = ABS(DVSRD/AKTP)
      DVSPZ = DVS(J)/DVSRD
  115 IF (DVS(J )) 108,106,102
  108 WRITE (6,109)
      GO TO 970
  106 WRITE (6,107)
      GO TO 970
C
С
      COMPUTE EIJ , AEJ , SJE , SJI , CJ , SDJA , SDJE , SDJI , J1
C
      J2 , J3 , J4, SJA
  102 \text{ EIJ}(J) = (\text{PIJ}(J) + \text{APJ}(J)) / (2.0 \times \text{EXP}((\text{AI-PHD})/\text{AKTE}) + \text{EXP}(-\text{DVS}(J)/\text{AKTE})
     1)
      AEJ(J) = (PIJ(J)+APJ(J))/(1.0+.5*EXP(-(DVS(J)-PHD+AI)/AKTE))
      SJE(J) = EJ(J)-EPJ(J)*EXP(-DVS(J)/AKTP)
       SJI(J) = -EIJ(J)*EXP(-DVS(J)/AKTE)+PIJ(J)
      CJ(J) = SJE(J)+SJI(J)
       SJA(J) = AEJ(J)-APJ(J)
       SDJA(J) = SJA(J)/APJ(J)
       SDJE(J) = SJE(J)/EPJ(J)
       SDJI(J) = SJI(J)/PIJ(J)
       J1(KOUNT) = EJ(J)
      J2(KOUNT) = EPJ(J)*EXP(-DVS(J)/AKTP)
       J3(KOUNT) = EIJ(J)*EXP(-DVS(J)/AKTE)
       J4(KOUNT) = PIJ(J)
C
С
       IN = 20
C
       COMPUTE - IN - VALUES OF DV FROM 0.0 TO DVS
C
       IN = 20
  112 DVI = DVS(J)/FLOAT(IN)
       DV(1) = 0.0
       DO 120 NB = 1, IN
       NBB = NB + 1
       DV(NBB) = DV(NB) + DVI
  120 CONTINUE
С
       COMPUTE RHOEOP , RHOIOP , RHODOP
C
       ERF IS THE ERROR FUNCTION SUBROUTINE
C
        VIN IS A SUBROUTINE TO CALCULATE SORT(2KT/PI*M)*EXP(-DV/KT)/
С
                 (1.0-ERF(SORT(DV/KT)))
  121 DO 200 NB = 1,NBB
```

```
X = SQRT (DV(NB)/AKTE)
    ERC = ERF(X)
    X = SORT ((DVS(J)-DV(NB))/AKTP)
    ERD = ERF(X)
    DVP = DVS(J)-DV(NB)
    IF (DVP.EQ.O.O) GO TO 160
    CALL VIN (1,DVP,TE(I),ANS)
    AV1 = ANS
    GO TO 161
160 \text{ AV1} = \text{CI2}
161 CONTINUE
    DVP = DV(NB)
    IF (DVP.E0.0.0) GO TO 165
    CALL VIN (2, DVP, TIP, ANS)
    AV2 = ANS
    GO TO 166
165 \text{ AV2} = \text{CLB1}
166 CONTINUE
    FA = EXP(-DV(NB)/AKTP)
    AE1 = EPJ(J)*FA*(1.0+ERD)/(FB**.5)
    FC = EXP(-(DVS(J)-DV(NB))/AKTE)
    AE2 = EIJ(J)*FC*(1.0+ERC)/(FD**.5)
    AE3 = EJ(J)/AV1
    AE4 = PIJ(J)/AV2
185 \text{ RHOE(NB)} = AE3+AE1
    RHOI(NB) = -AE2-AE4
    RHOD(NB) = RHOE(NB) + RHOI(NB)
    IF (DV(NB) \cdot EQ \cdot Q \cdot Q) RHOD(NB) = Q \cdot Q
    RHOEOP(NB) = RHOE(NB)/SE
    RHODOP(NB) = RHOD(NB)/SE
    RHOIOP(NB) = RHOI(NB)/SE
200 CONTINUE
    WNEPA = RHOEOP(1)
    COMPUTE EDV BY INTEGRATING RHOD (TRAPEZUIDAL RULE)
202 CALL TRAP(RHOD, DV, NBB, EDV)
    DO 210 NB = 1.NBB
    IF (EDV(NB) \cdot GT \cdot O \cdot O) EDV(NB) = O \cdot O
    EDV(NB) = SORT(C5*EDV(NB))
210 CONTINUE
    EDVS = EDV(NBB)
    EDPZL = EDVS/(DVSRD/AMDA(K))
    EE = EDVS
    IF (METS.EQ.O) GO TO 400
    COMPUTE SC , EJS , TENT
260 SC = SORT(C4*EE)
    PHD = -SC + PHI(J)
    EJS(J) = 120.*TES*EXP(-PHD/AKTE)
    TENT = .001*AMIN1(J1(KOUNT), J2(KOUNT), J3(KOUNT), J4(KOUNT), APJ(J),
    1 \text{ AEJ(J)}
    IF (KOUNT.EQ.1) GO TO 340
     JA = J1(KOUNT)-J1(KOUNT-1)
    JB = J2(KOUNT)-J2(KOUNT-1)
    JC = J3(KOUNT) - J3(KOUNT-1)
    CAT = AMAX1(JA, JB, JC)
     IF (CAT.LE.TENT) GO TO 400
    GO TO 350
```

C

C

C

```
340 IF (ABS(EJ(J)-EJS(J)).LE.TENT) GO TO 400
С
      IF TEST IS NOT SATISFIED SET EJ = EJS
С
      RETURN TO COMPUTE A NEW DVS
С
  350 EJ(J) = EJS(J)
      GO TO 38
  400 DO 405 NB = 1.NBB
      IF (EDV(NB).EQ.O.O) GO TO 403
      ESAVE(NB) = 1.0/EDV(NB)
      GO TO 405
  403 ESAVE(NB) = 0.0
  405 CONTINUE
C
       COMPUTE XDVS BY INTEGRATING 1.0/EDV (TRAPEZOIDAL RULE)
C
С
       CALL TRAP (ESAVE, DV, NBB, XSAVE)
С
       COMPUTE XLAM , TPN , CEN , TNE , PHAT , XAMTE , EAMPHZ
С
       XDVS = XSAVE(NBB)
       XLAM = XDVS/AMDA(K)
       TPN = 2.0 \times EPN(K) + APN
       CEN = ABS(RHOIOP(NBB)) + ABS(RHOEOP(NBB))
       THE = CEN + APN
       PHAT = (PHI(J)-PHIZ)/(AK*TE(I))
       XAMTE = XDVS/AMDATE(K)
       EAMPHZ = EDVS*AMDATE(K)/(PHI(J)-PHIZ)
С
       COMPUTE XDVS
С
С
       00 460 NB = 1, NBB
       XDV(NB) = XDVS - XSAVE(NB)
       IF (NB.EQ.NBB) XDV(NB) = 0.0
   460 CONTINUE
       IF (IPRINT.EQ.1) GO TO 496
       IF (METS.EQ.O) GO TO 480
       WRITE (6,798)
       WRITE (6,800) AI, TE(I), PHI(J), EPN(K), TEP(L), TIP, AMDA(K), PTEST
      1.AMDATE(K)
   480 WRITE (6,810)
       WRITE (6,820) (DV(NB),RHODOP(NB),RHOEOP(NB),RHOIOP(NB),EDV(NB),XDV
      1(NB),NB=1,NBB)
       IF (METS.EQ.1) GO TO 490
       WRITE (6,830) EJ(J), EPJ(J), PIJ(J), APJ(J), CJ(J), PP(J), EIJ(J), AEJ(J)
      1,SJA(J),SJI(J),SJE(J),SDJA(J),SDJE(J),SDJI(J),DVS(J),XDVS ,APN
      2, XLAM, PHIZZ, EDVS
      3, TPN, CEN, TNE, PHAT, XAMTE, EAMPHZ, WNEPA
       GO TO 496
   490 WRITE (6,831) EJ(J), EPJ(J), PIJ(J), APJ(J), CJ(J), PP(J), EIJ(J), AEJ(J)
      1,SJA(J),SJI(J),SJE(J),SDJA(J),SDJE(J),SDJI(J),DVS(J),XDVS
      2,XLAM,SC,PHIZ ,EDVS,DVSRD,DVSPZ,EDPZL,PHIZZ,DRDK
      3, TPN, CEN, TNE, PHAT, XAMTE, EAMPHZ, WNEPA
   496 IF (METS.EQ.1) GO TO 599
 C
       SAVE RICHARDSON - DUSHMAN VALUES OF DV , RHODOP , RHOEOP , EDV ,
 C
 С
        XDV , RHOIOP
        DO 870 NB = 1, NBB
        DVSAVE(NB) = DV(NB)
```

```
RHDS(NB) = RHODOP(NB)
     RHES(NB) = RHOEOP(NB)
      EDS(NB) = EDV(NB)
      XDS(NB) = XDV(NB)
      RHIS(NB) = RHOIOP(NB)
  870 CONTINUE
      METS = 1
      IPRINT = 2
      GO TO 260
C
      CALL PLOTTING SUBROUTINE
C.
  599 CALL PLOT
  970 CONTINUE
  980 CONTINUE
  990 CONTINUE
  995 CONTINUE
 1000 CONTINUE
      GO TO 1
    2 FORMAT (15/(8E10.2))
    6 FORMAT (1H1,10X,90HPLASMA TEST PRESSURE(PPT) IS GREATER THAN THE V
     1APOR PRESSURE OF THE PLASMA CHEMICAL(PTEST)/1H0,10X,6HPPT = ,E12.5
     2,10x,8HPTEST = ,E12.5/1H0,10x,5HTE = ,F8.0,10x,6HNEP = ,E8.1,10x,6
     3HTEP = ,F8.0)
    7 FORMAT (1H1,10X,99HDEBYE LENGTH(LAMBDA) LONGER THAN MINIMUM MEAN F
     IREE PATH OF THE CHEMICAL (AMTEST) -- COLLISIONAL CASE/1HO, 10X, 10HLA
     2MBDA = ,E15.8,10X,9HAMTEST = ,E15.8/1H0,10X,5HTE = ,F8.0,6HNEP = ,
     3E8.1,10X,6HTEP = ,F8.0
   12 FORMAT (I5)
  107 FORMAT (1H0,20X,11HDVS IS ZERO)
  109 FORMAT (1H0,20X,20HDVS IS NEGATIVE STOP)
  798 FORMAT (1H1,54X,8HSCHOTTKY)
  799 FORMAT
                    (1H1,48X,18HRICHARDSON-DUSHMAN)
  800 FORMAT (1H0,2X,4HI = ,F5.3,5X,5HTE = ,F5.0,5X,6HPHI = ,F5.3,5X,6HN
     1EP = ,1PE8.2,5X,6HTEP = ,1PE8.2,5X,6HTIP = ,0PF7.1,5X,9HLAMBDA = ,
     21PE11.4/1H0,1X,5HPV = ,1PE13.6,5X,12HLAMBDA(TE) =,1PE11.4)
  801 FORMAT (1H1,2X,4HI = ,F5.3,5X,5HTE = ,F5.0,5X,6HPHI = ,F5.3,5X,6HN
     1EP = ,1PE8.2,5X,6HTEP = ,1PE8.2,5X,6HTIP = ,0PF7.1,5X,9HLAMBDA = ,
     21PEll.4/1H0,1X,5HPV = ,1PEl3.6,5X,12HLAMBDA(TE) =,1PEll.4)
  810 FORMAT (1HL,10X,2HDV,12X,6HND(DV),12X,6HNE(DV),12X,6HNI(DV),12X,5H
     2E(DV),12X,5HX(DV)/1H0)
  820 FORMAT (OPF16.5,1PE19.6,1P2E18.6,1PE17.6,1PE18.6)
                           = ,1PE13.6,4X,9HJEP = ,1PE13.6,4X,6HJIP
  830 FORMAT (1HL,2X,9HJEE
                              = ,1PE13.6/
     1 = ,1PE13.6,4X,9HJAP
                  = ,1PE13.6,4X,9HPP
     23X,9HJ
                                         = ,1PE13.6,4X,6HJIE = ,1PE13.6,
     34X,9HJAE
                  = ,1PE13.6/
                                         = ,1PE13.6,4X,6HJE = ,1PE13.6,
     43X,9HJA
                  = ,1PE13.6,4X,9HJI
     54X,9HJA/JAP = ,1PE13.6/
     63X,9HJE/JEP = ,1PE13.6,4X,9HJI/JIP = ,1PE13.6,4X,6HDVS = ,0PF8.5,9
                                       = ,1PE13.6,4X,9HXD/LAM = ,1PE13.
                = ,1PE13.6/3X,9HNAP
     7X • 9HXDVS
     86,4X,6HPHZZ= ,OPF8.5,9X,9HEDVS
                                        = ,1PE13.6/
                                        = ,1PE13.6,4X,6HNTE = ,1PE13.6,
                 = ,1PE13.6,4X,9HNCE
     93X,9HNTP
     14x,9HRD/KTE = ,1PE13.6/3x,9HX/LMTE = ,1PE13.6,4X,9HELT/RD = ,1PE13
     2.6,4X,6HNEPA= ,1PE13.6)
                                                      = ,1PE13.6,4X,6HJIP
  831 FORMAT (1HL, 2X, 9HJEE
                               = ,1PE13.6,4X,9HJEP
     1 = ,1PE13.6,4X,9HJAP
                              = ,1PE13.6/
     23X,9HJ
                                         = ,1PE13.6,4X,6HJIE = ,1PE13.6,
                  = ,1PE13.6,4X,9HPP
     34X,9HJAE
                  = ,1PE13.6/
                                          = ,1PE13.6,4X,6HJE = ,1PE13.6,
     43X,9HJA
                  = ,1PE13.6,4X,9HJI
     54X,9HJA/JAP = ,1PE13.6/
```

```
63X,9HJE/JEP = ,1PE13.6,4X,9HJI/JIP = ,1PE13.6,4X,6HDVS = ,0PF8.5,9
                                         = ,1PE13.6,4X,9HXD/LAM = ,1PE13.
     7X,9HXDVS
                 = ,1PE13.6/3X,9HNAP
     86,4X,6HSC
                 = ,1PE13.6,4X,9HPHZ
                                          = ,0PF8.5/
                 = ,1PE13.6,4X,9HDVSRD = ,1PE13.6,27X,9HDVS/RD = ,1PE1
     93X,9HEDVS
     13.6/
     23X \cdot 9HELM/RD = \cdot 1PE13 \cdot 6 \cdot 4X \cdot 9HPHZZ
                                           = ,1PE13.6,27X,9HDRD/KT = ,1PE1
     33.6/
     43X,9HNTP
                  = ,1PE13.6,4X,9HNCE
                                           = ,1PE13.6,4X,6HNTE = ,1PE13.6,
     54X,9HRD/KTE = ,1PE13.6/3X,9HX/LMTE = ,1PE13.6,4X,9HELT/RD = ,1PE13
     6.6,4X,6HNEPA = ,1PE13.6)
  840 FORMAT (1HL,2X,9HRHO(DV)= ,1PE13.6,3H + ,1PE13.6,6H*DV + ,1PE13.6,
     19H*DV**2 + ,1PE13.6,9H*DV**3 + ,1PE13.6,6H*DV**4)
  850 FORMAT (1H1)
  860 FORMAT (1HL/1HL,2X,4HI = ,F5.3,5X,5HTE = ,F5.0,5X,6HPHI = ,F5.3,5X
     1,6HNEP = ,1PE8.2,5X,6HTEP = ,1PE8.2,5X,6HTIP = ,0PF7.1,5X,9HLAMBDA
     2 = ,1PE11.4/1H0,1X,5HPV = ,1PE13.6,5X,12HLAMBDA(TE) =,1PE11.4)
      END
$IBFTC PLOTA
      SUBROUTINE PLOT
      COMMON /MP/ XDV(50), XDS(50), RHODOP(50), RHDS(50), EDV(50), EDS(50),
     1DV(50), DVSAVE(50), RHOEOP(50), RHES(50), RHOIOP(50), RHIS(50), NBB
     2, IWRITE
      DIMENSION KKK(14), P(10), Z(100), ZA(100), ZB(100), ZC(100), ZD(100),
     1 ZE(100)
  599 \text{ ND} = 0
      DO 600 NB = 1,NBB
      NE = NBB - ND
      NET = 2*NBB - ND
      ND = ND + 1
      Z(NE) = XDV(NB)
      Z(NET) = XDS(NB)
      ZA(NE) = RHODOP(NB)
      ZA(NET) = RHDS(NB)
      ZB(NE) = EDV(NB)
      ZB(NET) = EDS(NB)
      ZC(NE) = DV(NB)
      ZC(NET) = DVSAVE(NB)
      ZD(NE) = RHOEOP(NB)
      ZD(NET) = RHES(NB)
      ZE(NE) = RHOIOP(NB)
      ZE(NET) = RHIS(NB)
  600 CONTINUE
      P(1) = 5.0
      KKK(1) = 64
      KKK(2) = 2
      KKK(3) = NBB
      KKK(5) = NBB
      NB2 = 2*NBB
      CALL SCALE (NB2, ZA, KRSTR)
      CALL PLOTMY (Z,ZA,KKK,P)
      WRITE (6,602) KRSTR
      ND = 0
      DO 607 NB = 1, NBB
      NE = NBB - ND
      NET = 2*NBB - ND
      Z(NE) = XDV(NB)
      Z(NET) = XDS(NB)
      ND = ND + 1
  607 CONTINUE
      CALL SCALE (NB2, ZD, KRSTR)
```

```
CALL PLOTMY (Z,ZD,KKK,P)
   WRITE (6,603) KRSTR
    ND = 0
    00 601 NB = 1, NBB
    NE = NBB - ND
    NET = 2*NBB - ND
    ND = ND + 1
    Z(NE) = XDV(NB)
    Z(NET) = XDS(NB)
601 CONTINUE
    CALL SCALE (NB2, ZE, KRSTR)
    CALL PLOTMY (Z, ZE, KKK, P)
    WRITE (6,610) KRSTR
    ND = 0
    DO 611 NB = 1, NBB
    NE = NBB-ND
    NET = 2*NBB-ND
    ND = ND+1
    Z(NE) = XDV(NB)
    Z(NET) = XDS(NB)
611 CONTINUE
    CALL SCALE (NB2, ZB, KRSTR)
    CALL PLOTMY (Z,ZB,KKK,P)
    WRITE (6,604) KRSTR
    ND = 0
    DO 606 NB = 1,NBB
    NE - NBB - ND
    NET = 2*NBB - ND
    ND = ND + 1
    Z(NE) = XDV(NB)
     Z(NET) = XDS(NB)
606 CONTINUE
     CALL SCALE (NB2,ZC,KRSTR)
     CALL PLOTMY (Z,ZC,KKK,P)
     WRITE (6,605) KRSTR
     IF (IWRITE.EO.1) RETURN
     P(1) = NBB
     KODE = 64
     ND = 0
     DO 500 NB = 1,NBB
     NE = NBB - ND
     Z(NE) = XDV(NB)
     ZA(NE) = RHODOP(NB)
     ZD(NE) = RHOEOP(NB)
     ZB(NE) = EDV(NB)
     ZC(NE) = DV(NB)
     ZE(NE) = RHOIOP(NB)
     ND = ND + 1
 500 CONTINUE
     WRITE (6,501)
     CALL SCALE (NBB, ZA, KRSTR)
     CALL PLOTXY (Z,ZA,KODE,P)
     WRITE (6,502) KRSTR
     WRITE (6,501)
     CALL SCALE (NBB, ZD, KRSTR)
     CALL PLOTXY(Z,ZD,KODE,P)
     WRITE (6,505) KRSTR
     WRITE (6,501)
     CALL SCALE (NBB, ZE, KRSTR)
     CALL PLOTXY (Z,ZE,KODE,P)
```

```
WRITE (6,510) KRSTR
      WRITE (6,501)
      CALL SCALE (NBB, ZB, KRSTR)
      CALL PLOTXY (Z,ZB,KUDE,P)
      WRITE (6,503) KRSTR
      WRITE (6,501)
      CALL SCALE (NBB, ZC, KRSTR)
      CALL PLOTXY (Z,ZC,KODE,P)
      WRITE (6,504) KRSTR
  501 FORMAT (2HPT)
  502 FORMAT (2HPL, 47X, 8HND(X10**, I3, 6H) VS X)
  503 FORMAT (2HPL, 47X, 7HE(X10**, I3, 6H) VS X)
  504 FORMAT (2HPL,47X,8HDV(X10**,13,6H) VS X)
  505 FORMAT (2HPL, 47X, 8HNE(X10**, 13, 6H) VS X)
  510 FORMAT (2HPL,47X,8HNI(X10**,13,6H) VS X)
602 FORMAT (2HPL,47X,8HND(X10**,13,6H) VS X/
     12HPL, 44X, 20H+ RICHARDSON-DUSHMAN/2HPL, 44X, 10H* SCHOTTKY)
  603 FORMAT (2HPL,47X,8HNE(X10**,13,6H) VS X/
     12HPL,44X,2OH+ RICHARDSON-DUSHMAN/2HPL,44X,10H* SCHOTTKY)
  604 FORMAT (2HPL, 47X, 7HE(X10**, 13, 6H) VS X/
     12HPL,44X,2OH+ RICHARDSON-DUSHMAN/2HPL,44X,10H* SCHOTTKY)
  605 FORMAT (2HPL,47X,8HDV(X10**,13,6H) VS X/
     12HPL,44X,20H+ RICHARDSON-DUSHMAN/2HPL,44X,10H* SCHOTTKY)
  610 FORMAT (2HPL, 47X, 8HNI(X10**, I3, 6H) VS X/
     12HPL,44X,2OH+ RICHARDSON-DUSHMAN/2HPL,44X,10H≭ SCHOTTKY)
      RETURN
      END
$IBFTC VINE
      SUBROUTINE VIN (NV, DVV, T, ANS)
      COMMON /MV/ PI, EM, AK, AM
        IF NV = 1 COMPUTATIONS FOR ELECTRONS
        IF NV = 2 COMPUTATIONS FOR ATOMS AND IONS
       THE PROPER T AND DV IS SPECIFIED IN MAIN PROGRAM
      IF (NV.EQ.1) GO TO 10
      C = SORT(2 \cdot 0 * AK * T / (PI * AM))
      GO TO 20
   10 C = SQRT(2.0*AK*T/(PI*EM))
   20 XE = SQRT(DVV/(AK*T))
      Y = ERF(XE)
      ERFC = 1.0-Y
      ANS = C*EXP(-DVV/(AK*T))/ERFC
      RETURN
      END
SIBETC TRAPE
       SUBROUTINE TRAP (X, DV, NBB, ANS)
      DIMENSION X(40), DV(50), ANS(40)
       SUBROUTINE TO INTEGRATE TRAPEZOIDALLY
      H = DV(2) /2.0
       SUME = 0.0
      DO 60 NB = 1,NBB
       IF (NB.EQ.1) GO TO 50
      SUME = SUME + X(NB-1) + X(NB)
       ANS(NB) = SUME*H
      GO TO 60
   50 \text{ ANS(NB)} = 0.0
   60 CONTINUE
```

C

С

С С

> C С

C

RETURN END \$DATA 1 2.4E+3 1 4.0E+0 1 1.E+13 1 2.5E+3 1 2.4E+3

APPENDIX B

ELECTRON SHEATH PROGRAM LISTING

```
$IBFTC ELECT
С
      A PLANAR ELECTRON SHEATH BETWEEN AN EMITTER AND A
С
С
         NEAR-EQUILIBRIUM PLASMA
C
      COMMON /MV/ PI, EM, AK, AM
      COMMON /MP/ XDV(50),XDS(50),RHODUP(50),RHDS(50),EDV(50),EDS(50),
     1DV(50),DVSAVE(50),RH0EOP(50),RHES(50),RH0IOP(50),RHIS(50),NBB,
     2 I WRITE
      DIMENSION TE(10), PHI(10), EPN(10), TEP(10), TIPP(10), EJ(10), EPJ(10),
     1PIJ(10),APJ(10),PP(10),DVS(10),EIJ(10),AEJ(10),SJE(10),SJI(10),
     2SJA(10),CJ(10),SDJA(10),SDJI(10),SDJE(10),RHOD(50),RHOI(50),
                         ESAVE(50), XSAVE(50),
                                                        EIJS(10), AMDA(10).
     3RHOE (50).
     4AMDATE(10)
C
      AI , IONIZATION POTENTIAL
С
  301 \text{ AI} = 3.893
      AK = 8.617E-5
      AKT = 2.0*AK
       EM = .511E+6/((2.998E+10)**2)
      PI = 3.14159
       PIEM = PI*EM
       SE = 1.602E-19
C
С
      MA . MASS OF ATOM
  302 AM = 931.478E+6*132.9/((2.998E+10)**2)
       PIAM = PI*AM
       AP1 = 6.6256E - 34/SE
       \Delta P2 = \Delta M
      C1 = SQRT(AK/(4.0*PI*.511E+6*2.82E-13))
       C2 = AP1**2
       C3 = 82.06*760./6.023E+23
       C5 = -72.0 *PI *1.0E+11
С
C
                    FOR SCHOTTKY OUTPUT
С
       IWRITE = O FOR RICHARDSON-DUSHMAN AND SCHOTTKY OUTPUT
C
       READ (5,12) IWRITE
C
C
       READ INPUT VALUES OF TE , PHI , EPN , TEP , TIP
    1 READ (5,2) II, (TE(I), I=1, II)
       READ (5,2) JJ, (PHI(J), J=1, JJ)
       READ (5,2) KK, (EPN(K),K=1,KK)
       READ (5,2) LL, (TEP(L), L=1, LL)
       READ (5,2) LA, (TIPP(LB), LB=1, LA)
       00\ 1000\ I = 1,II
C
С
       COMPUTE PTEST , VAPOR PRESSURE
   303 PTEST = 10.**(-3920.38/TE(I)-.519781*AL@G10(TE(I))+10.71914)/
      1133.322
       AKTE = AK*TE(I)
       TAKTE = 2.0*AKTE
```

```
TES = TE(I) * TE(I)
      SB = SQRT(TAKTE/PIEM)
      DO 960 LB = 1, LA
      TIP = TIPP(LB)
      AKTP = AK*TIP
      TAKTIP = AKT*TIP
C
      SET TAP = TIP FOR THESE SOLUTIONS
С
С
      TAP = TIP
      TAKTAP = AKT*TAP
      SI = SQRT(TAKTIP/PIAM)
      SIA = SQRT(TAKTAP/PIAM)
      D0.990 L = 1, LL
      AKTEP = AK*TEP(L)
      TAKTEP = 2.0*AKTEP
      SA = SQRT(TAKTEP/PIEM)
      CL1 = TAKTEP*PIEM
      D0 980 K = 1,KK
      SEE = SE*EPN(K)
      COMPUTE PHIZZ , AMDA , AMDATE , APN , PPT , AMTEST
C
С
      PHIZZ = -AKTE*ALOG((SEE/(240.*TES))*SB)
      AMDA(K) = C1*SQRT(TEP(L)/EPN(K))
      AMDATE(K) = C1*SQRT(TE(I)/EPN(K))
      APN = (EPN(K)*C2)*(EPN(K)*(AP1))*EXP(AI/AKTEP)/(CL1**1.5)
      PPT = C3*(2.0*EPN(K)*TIP+APN*TAP)
С
      AMTEST, MINIMUM MEAN FREE PATH
С
C
  304 \text{ AMTEST} = 1.0E+12/APN
C
      TEST ON AMDA AND AMTEST
С
C
      IF (AMDA(K).LT.AMTEST) GO TO 9
      WRITE (6,7) AMDA(K), AMTEST, TE(I), EPN(K), TEP(L)
      GO TO 980
С
      TEST ON PPT AND PTEST
С
C
    9 IF (PPT -PTEST) 40,40,5
    5 WRITE (6,6) PPT, PTEST, TE(I), EPN(K), TEP(L)
      GU TU 980
   40 CONTINUE
      DO 970 J = 1,JJ
      METS = 0
      IPRINT = IWRITE
    3 PHD = PHI(J)
С
       COMPUTE EPJ , PIJ , APJ , PP
       EPJ(J) = SEE*.5*SA
      PIJ(J) = SEE*.5*SI
       APJ(J) = SE*APN*SIA/2.0
      PP(J) = C3*(EPN(K)*TEP(L)+EPN(K)*TIP+TAP*APN)
       IF (IWRITE.E0.1.0R .METS.EQ.1) GO TO 38
      WRITE (6,799)
     8 WRITE (6,800) AI, TE(I), PHI(J), EPN(K), TEP(L), TIP, AMDA(K), PTEST
     1,AMDATE(K)
```

```
38 CONTINUE
C
С
      COMPUTE EJ
С
      EJ(J) = 120.*TES*EXP((-PHD)/AKTE)
С
      COMPUTE DVS
С
С
      DVS(J) = AKTE*ALOG(SEE*SB/(2.0*EJ(J)))
      IF (METS.EQ.O) DVSRD = DVS(J)
      PHIZ = PHI(J) - DVSRD
      DRDK = ABS(DVSRD/AKTEP)
      DVSPZ = DVS(J)/DVSRD
  115 IF (DVS(J ))102,106,108
  108 WRITE (6,109)
      GO TO 970
  106 WRITE (6,107)
      GO TO 970
C
С
      COMPUTE EIJ , AEJ , SJE , SJI , SJA , CJ , SDJI , SDJE , SDJA
  102 EIJ(J) = (APJ(J)+PIJ(J)*EXP(DVS(J)/AKTP)
                                                 ))/(1.0+2.0*EXP((
     1AI-PHD)/AKTE))
      AEJ(J) = (APJ(J)+PIJ(J)*EXP(DVS(J)/AKTP
                                                 ))/(1.0+.5*EXP(~(
     1(AI-PHD)/AKTE)))
      SJE(J) = EJ(J)*EXP(DVS(J)/AKTE
                                          )-EPJ(J)
      SJI(J) = PIJ(J)*EXP(DVS(J)/AKTP) - EIJ(J)
      SJA(J) = AEJ(J) - APJ(J)
      CJ(J) = SJE(J) + SJI(J)
      SDJI(J) = SJI(J) / PIJ(J)
      SDJE(J) = SJE(J) / EPJ(J)
      SDJA(J) = SJA(J) / APJ(J)
C
      IN = 20
С
      COMPUTE - IN - VALUES OF DV FROM 0.0 TO DVS
      IN = 20
  112 DVI = DVS(J)/FLOAT(IN)
      DV(1) = 0.0
      00 \ 120 \ NB = 1.IN
      NBB = NB + 1
      DV(NBB) = DV(NB) + DVI
  120 CONTINUE
C
C
      COMPUTE RHOEOP , RHOIOP , RHODOP
      ERF IS THE ERROR FUNCTION SUBROUTINE
C
       VIN IS A SUBROUTINE TO CALCULATE SORT(2KT/PI*M)*EXP(-DV/KT)/
                (1.0-ERF(SQRT(DV/KT)))
  121 DO 200 NB = 1, NBB
      X = SQRT(-DV(NB)/AKTE)
      ERA = ERF(X)
      X = SQRT(-(DVS(J)-DV(NB))/AKTP)
      ERB = ERF(X)
      DVP = DV(NB)
      IF (DVP.EQ.O.O) GO TO 160
      CALL VIN (1, DVP, TEP(L), ANS)
      AV1 = ANS
      GO TO 161
  160 AV1 = SQRT(TAKTEP/PIEM)
```

```
161 CONTINUE
      DVP = DVS(J) - DV(NB)
      IF (DVP.EQ.O.O) GO TO 165
      CALL VIN (2, DVP, TE(I), ANS)
      AV2 = ANS
      GO TO 166
  165 AV2 = SQRT(TAKTE/PIAM)
  166 CONTINUE
      FA = EXP((DVS(J)-DV(NB))/AKTE)
      AE1 = EJ(J)*FA*(1.0+ERA)/SB
      AE2 = EPJ(J)/AV1
      AE3 = EIJ(J)/AV2
      FB = EXP(DV(NB)/AKTP)
      AE4 = PIJ(J)*FB*(1.0+ERB)/SI
      RHOE(NB) = AE1+AE2
      RHDI(NB) = -AE3-AE4
      RHOD(NB) = RHOE(NB) + RHOI(NB)
      IF (DV(NB) \cdot EO \cdot O \cdot O) RHOD(NB) = O \cdot O
      RHOEOP(NB) = RHOE(NB)/SE
      RHODOP(NB) = RHOD(NB)/SE
      RHOIOP(NB) = RHOI(NB)/SE
  200 CONTINUE
      WNIPA = RHOIOP(1)
C
С
       COMPUTE EDV BY INTEGRATING RHOD (TRAPEZOIDAL RULE)
  202 CALL TRAP(RHOD, DV, NBB, EDV)
      00\ 210\ NB = 1,NBB
      IF (EDV(NB) \cdot GT \cdot O \cdot O) \cdot EDV(NB) = O \cdot O
      EDV(NB) = -SQRT(C5*EDV(NB))
  210 CONTINUE
      EDVS = EDV(NBB)
      EDPZL = EDVS/(DVSRD/AMDA(K))
      EE = EDVS
       IF (METS.E0.0) GO TO 402
C
C
       COMPUTE SC , EIJS
С
  260 \text{ SC} = \text{SQRT}(-.511E+6*2.82E-13*EE)
      PHD = SC + PHI(J)
      EIJS(J) = (APJ(J)+PIJ(J)*EXP(DVS(J)/AKTP)
                                                       ))/(1.0+2.0*EXP((AI-
      1PHD)/AKTE))
       TENT=.001 *AMIN1(EJ(J), EPJ(J), PIJ(J), EIJ(J), APJ(J), AEJ(J))
       IF (ABS(EIJ(J)-EIJS(J)
                                  ).LE.TENT) GO TO 402
С
       IF TEST IS NOT SATISFIED SET EIJ = EIJS AND RETURN
С
       TO COMPUTE A NEW DVS
       EIJ(J) = EIJS(J)
      GO TO 38
  402 D0 405 NB = 1, NBB
       IF (EDV(NB).EQ.O.O) GO TO 403
       ESAVE(NB) = 1.0/EDV(NB)
      GO TO 405
  403 \text{ ESAVE(NB)} = 0.0
  405 CONTINUE
С
       COMPUTE XDVS BY INTEGRATING 1.0/EDV (TRAPEZOIDAL RULE)
C
      CALL TRAP (ESAVE, DV, NBB, XSAVE)
```

```
XDVS = XSAVE(NBB)
С
      COMPUTE XLAM , TPN , CEN , TNE , PHAT , XAMTE , EAMPHZ
C
C
      XLAM = XDVS/AMDA(K)
      TPN = APN+2 \cdot U \times EPN(K)
      CEN = RHOEOP(NBB) + ABS(RHOIOP(NBB))
      TNE = CEN + APN
      PHAT = (PHI(J)-PHIZ)/(AK*TE(I))
      XAMTE = XDVS/AMDATE(K)
      EAMPHZ = EDVS*AMDATE(K)/(PHI(J)-PHIZ)
C
       COMPUTE XDV
С
С
       DO 460 NB = 1,NBB
       XDV(NB) = XDVS - XSAVE(NB)
       IF (NB.EQ.NBB) XDV(NB) = 0.0
  460 CONTINUE
       IF (IPRINT.EQ.1) GO TO 496
       IF (METS.EQ.O) GO TO 480
       WRITE (6,798)
       WRITE (6,800) AI, TE(I), PHI(J), EPN(K), TEP(L), TIP, AMDA(K), PTEST
      1.AMDATE(K)
  480 WRITE (6,810)
       WRITE (6,820) (DV(NB),RHODOP(NB),RHOEOP(NB),RHOIOP(NB),EDV(NB)
      1, XDV(NB), NB=1, NBB)
       IF (METS.EQ.1) GO TO 490
       WRITE (6,830) EJ(J), EPJ(J), PIJ(J), APJ(J), CJ(J), PP(J), EIJ(J), AEJ(J)
      1,SJA(J),SJI(J),SJE(J),SDJA(J),SDJE(J),SDJI(J),DVS(J),XDVS
      2, XLAM, PHIZZ, EDVS
      3, TPN, CEN, TNE, PHAT, XAMTE, EAMPHZ, WNIPA
       GO TO 496
   490 WRITE (6,831) EJ(J), EPJ(J), PIJ(J), APJ(J), CJ(J), PP(J), EIJ(J), AEJ(J)
      1,SJA(J),SJI(J),SJE(J),SDJA(J),SDJE(J),SDJI(J),DVS(J),XDVS
      2XLAM, SC, PHIZ, EDVS, DVSRD, DVSPZ, EDPZL, PHIZZ, DRDK
      3, TPN, CEN, TNE, PHAT, XAMTE, EAMPHZ, WNIPA
   496 IF (METS.EQ.1) GO TO 599
С
       SAVE RICHARDSON - DUSHMAN VALUES FOR DV , RHODOP , RHOEOP ,
 C
C
       RHOIOP , EDV , XDV
 С
       DO 870 NB = 1, NBB
       DVSAVE(NB) = DV(NB)
       RHDS(NB) = RHODOP(NB)
       RHES(NB) = RHOEOP(NB)
       EDS(NB) = EDV(NB)
       XDS(NB) = XDV(NB)
       RHIS(NB) = RHOIOP(NB)
   870 CONTINUE
        METS = 1
        IPRINT = 2
       GO TO 260
 C
        CALL PLUTTING SUBROUTINE
 C
   599 CALL PLOT
   970 CONTINUE
   980 CONTINUE
   990 CONTINUE
   960 CONTINUE
```

```
1000 CONTINUE
    GO TO 1
   2 FORMAT (15/(8E10.2))
  6 FORMAT (1H1,10X,90HPLASMA TEST PRESSURE(PPT) IS GREATER THAN THE V
    1APOR PRESSURE OF THE PLASMA CHEMICAL(PTEST)/1HO,10X,6HPPT = ,E12.5
    2,10X,8HPTEST = ,E12.5/1H0,10X,5HTE = ,F8.0,10X,6HNEP = ,E8.1,10X,6
    3HTEP = ,F8.0)
   7 FORMAT (1H1,10X,99HDEBYE LENGTH(LAMBDA) LONGER THAN MINIMUM MEAN F
    TREE PATH OF THE CHEMICAL(AMTEST) -- COLLISIONAL CASE/1H0,10X,10HLA
    2MBDA = ,E15.8,10X,9HAMTEST = ,E15.8/1H0,10X,5HTE = ,F8.0,6HNEP = ,
    3E8.1,10X,6HTEP = ,F8.0)
 12 FORMAT (15)
 107 FORMAT (1HO, 20X, 11HDVS IS ZERO)
 109 FORMAT (1H1,20X,20HDVS IS PUSITIVE STOP)
 798 FORMAT (1H1,54X,8HSCHOTTKY)
 799 FORMAT (1H1,48X,18HRICHARDSON-DUSHMAN)
 800 FORMAT (1H0,2X,4HI = ,F5.3,5X,5HTE = ,F5.0,5X,6HPHI = ,F5.3,5X,6HN
1EP = ,1PE8.2,5X,6HTEP = ,0PF7.1,5X,6HTIP = ,0PF7.1,5X,9HLAMBDA = ,
    21PE11.4/1HO,1X,5HPV = ,1PE13.6,5X,12HLAMBDA(TE) =,1PE11.4)
 801 FORMAT (1H1,2X,4HI = ,F5.3,5X,5HTE = ,F5.0,5X,6HPHI = ,F5.3,5X,6HN
    1EP = ,1PE8.2,5X,6HTEP = ,0PF7.1,5X,6HTIP = ,0PF7.1,5X,9HLAMBDA = ,
    21PE11.4/1H0,1X,5HPV = ,1PE13.6,5X,12HLAMBDA(TE) =,1PE11.4)
 810 FORMAT (1HL,10X,2HDV,12X,6HND(DV),12X,6HNE(DV),12X,6HNI(DV),12X,5H
    1E(DV),12X,5HX(DV)/1H0)
 820 FORMAT (OPF16.5,1PE19.6,1P2E18.6,1PE17.6,1PE18.6)
 830 FORMAT (1HL,2X,9HJEE
                                                    = ,1PE13.6,4X,6HJIP
                             = ,1PE13.6,4X,9HJEP
    1 = ,1PE13.6,4X,9HJAP
                             = ,1PE13.6/
    23X,9HJ
                 = ,1PE13.6,4X,9HPP
                                        = ,1PE13.6,4X,6HJIE = ,1PE13.6,
                 = ,1PE13.6/
    34X,9HJAE
    43X,9HJA
                 = ,1PE13.6,4X,9HJI
                                        = ,1PE13.6,4X,6HJE = ,1PE13.6,
    54X,9HJA/JAP = ,1PE13.6/
    63X,9HJE/JEP = ,1PE13.6,4X,9HJI/JIP = ,1PE13.6,4X,6HDVS = ,0PF8.5,9
    7X,9HXDVS
               = ,1PE13.6/3X,9HNAP
                                       = ,1PE13.6,4X,9HXD/LAM = ,1PE13.
                                       = ,1PE13.6/
    86,4X,6HPHZZ= ,0PF8.5,9X,9HEDVS
    93X,9HNTP
                = ,1PE13.6,4X,9HNCE
                                        = ,1PE13.6,4X,6HNTE = ,1PE13.6,
    14X,9HRD/KTE = ,1PE13.6/3X,9HX/LMTE = ,1PE13.6,4X,9HELT/RD = ,1PE13
    2.6,4X,6HNIPA= ,1PE13.6)
                             = ,1PE13.6,4X,9HJEP
                                                     = ,1PE13.6,4X,6HJIP
 831 FORMAT (1HL,2X,9HJEE
    1 = ,1PE13.6,4X,9HJAP
                             = ,1PE13.6/
    23X,9HJ
                 = ,1PE13.6,4X,9HPP
                                         = ,1PE13.6,4X,6HJIE = ,1PE13.6,
    34X,9HJAE
                 = ,1PE13.6/
    43X,9HJA
                 = ,1PE13.6,4X,9HJI
                                         = ,1PE13.6,4X,6HJE = ,1PE13.6,
    54X,9HJA/JAP = ,1PE13.6/
    63X,9HJE/JEP = ,1PE13.6,4X,9HJI/JIP = ,1PE13.6,4X,6HDVS = ,0PF8.5,9
    7X,9HXDVS
               = ,1PE13.6/3X,9HNAP
                                       = ,1PE13.6,4X,9HXD/LAM = ,1PE13.
               = ,1PE13.6,4X,9HPHZ
                                        = ,0PF8.5/
    86,4X,6HSC
    93X,9HEDVS
                = ,1PE13.6,4X,9HDVSRD = ,1PE13.6,27X,9HDVS/RD = ,1PE1
    13.6/
    23X,9HELM/RD = ,1PE13.6,4X,9HPHZZ
                                       = ,1PE13.6,27X,9HDRD/KT = ,1PE1
    33.6/
                                        = ,1PE13.6,4X,6HNTE = ,1PE13.6,
    43X,9HNTP
                = ,1PE13.6,4X,9HNCE
    54X,9HRD/KTE = ,1PE13.6/3X,9HX/LMTE = ,1PE13.6,4X,9HELT/RD = ,1PE13
    6.6,4X,6HNIPA= ,1PE13.6;
 840 FORMAT (1HL,2X,9HRHO(DV)= ,1PE13.6,3H + ,1PE13.6,6H*DV + ,1PE13.6,
    19H*DV**2 + ,1PE13.6,9H*DV**3 + ,1PE13.6,6H*DV**4)
 850 FORMAT (1H1)
 860 FORMAT (1HL/1HL,2X,4HI = ,F5.3,5X,5HTE = ,F5.0,5X,6HPHI = ,F5.3,5X
    1,6HNEP = ,1PE8.2,5X,6HTEP = ,0PF7.1,5X,6HTIP = ,0PF7.1,5X,9HLAMBDA
    2 = ,1PE11.4/1H0,1X,5HPV = ,1PE13.6,5X,12HLAMBDA(TE) =,1PE11.4)
```

```
$IBFTC PLOTA
      SUBROUTINE PLOT
      COMMON /MP/ XDV(50), XDS(50), RHODOP(50), RHDS(50), EDV(50), EDS(50),
     1DV(50), DVSAVE(50), RHOEOP(50), RHES(50), RHOIOP(50), RHIS(50), NBB,
     2IWRITE
      DIMENSION KKK(14),P(10),Z(100),ZA(100),ZB(100),ZC(100),ZD(100),
     1ZE(100)
 599 \text{ ND} = 0
      DO 600 NB = 1, NBB
      NE = NBB - ND
      NET = 2*NBB - ND
      ND = ND + 1
      Z(NE) = XDV(NB)
      Z(NET) = XDS(NB)
      ZA(NE) = RHODOP(NB)
      ZA(NET) = RHDS(NB)
      ZB(NE) = EDV(NB)
      ZB(NET) = EDS(NB)
      ZC(NE) = DV(NB)
      ZC(NET) = DVSAVE(NB)
      ZD(NE) = RHOEOP(NB)
      ZD(NET) = RHES(NB)
      ZE(NE) = RHOIOP(NB)
      ZE(NET) = RHIS(NB)
  600 CONTINUE
      P(1) = 5.0
      KKK(1) = 64
      KKK(2) = 2
      KKK(3) = NBB
      KKK(5) = NBB
      NB2 = 2*NBB
      CALL SCALE (NB2, ZA, KRSTR)
      CALL PLOTMY (Z,ZA,KKK,P)
      WRITE (6,602) KRSTR
      ND = 0
      DO 606 NB = 1,NBB
      NE = NBB - ND
      NET = 2*NBB - ND
      Z(NE) = XDV(NB)
      Z(NET) = XDS(NB)
      ND = ND + 1
  606 CONTINUE
      CALL SCALE (NB2, ZD, KRSTR)
      CALL PLOTMY (Z,ZD,KKK,P)
      WRITE (6,603) KRSTR
      ND = 0
      DO 601 NB = 1,NBB
      NE = NBB - ND
       NET = 2*NBB - ND
      ND = ND + 1
       Z(NE) = XDV(NB)
      Z(NET) = XDS(NB)
  601 CONTINUE
      CALL SCALE (NB2,ZE,KRSTR)
       CALL PLOTMY (Z,ZE,KKK,P)
      WRITE (6,610) KRSTR
       ND = 0
       DO 611 NB = 1,NBB
       NE = NBB - ND
      NET = 2*NBB - ND
```

```
ND = ND + 1
    Z(NE) = XDV(NB)
    Z(NET) = XDS(NB)
611 CONTINUE
    CALL SCALE (NB2, ZB, KRSTR)
    CALL PLOTMY (Z,ZB,KKK,P)
    WRITE (6,604) KRSTR
    ND = O
    DO 608 NB = 1, NBB
    NE = NBB - ND
    NET = 2*NBB - ND
    Z(NE) = XDV(NB)
    Z(NET) = XDS(NB)
    ND = ND + 1
608 CONTINUE
    CALL SCALE (NB2, ZC, KRSTR)
    CALL PLOTMY (Z,ZC,KKK,P)
    WRITE (6,605) KRSTR
    IF (IWRITE.EQ.1) RETURN
    P(1) = NBB
    KODE = 64
    ND = 0
    DO 500 NB = 1, NBB
    NE = NBB - ND
    Z(NE) = XDV(NB)
    ZA(NE) = RHODOP(NB)
    ZD(NE) = RHOEUP(NB)
    ZB(NE) = EDV(NB)
    ZC(NE) = DV(NB)
    ZE(NE) = RHOIOP(NB)
    ND = ND + 1
500 CONTINUE
    WRITE (6,501)
    CALL SCALE (NBB, ZA, KRSTR)
    CALL PLOTXY (Z,ZA,KODE,P)
    WRITE (6,502) KRSTR
    WRITE (6,501)
    CALL SCALE (NBB, ZD, KRSTR)
    CALL PLOTXY(Z,ZD,KODE,P)
    WRITE (6,505) KRSTR
    WRITE (6,501)
    CALL SCALE (NBB, ZE, KRSTR)
    CALL PLOTXY (Z,ZE,KODE,P)
    WRITE (6,510) KRSTR
    WRITE (6,501)
    CALL SCALE (NBB, ZB, KRSTR)
CALL PLOTXY (Z, ZB, KODE, P)
    WRITE (6,503) KRSTR
    WRITE (6,501)
    CALL SCALE (NBB, ZC, KRSTR)
    CALL PLOTXY (Z,ZC,KODE,P)
    WRITE (6,504) KRSTR
501 FORMAT (2HPT)
502 FORMAT (2HPL,47X,8HND(X10**,13,6H) VS X)
503 FORMAT (2HPL, 47X, 7HE(X10**, 13, 6H) VS X)
504 FURMAT (2HPL,47X,8HDV(X10**,13,6H) VS X)
505 FORMAT (2HPL,47X,8HNE(X10**,13,6H) VS X)
510 FORMAT (2HPL,47X,8HNI(X10**,13,6H) VS X)
602 FORMAT (2HPL, 47X, 8HND(X10**, I3, 6H) VS X/
   12HPL,44X,20H+ RICHARDSON-DUSHMAN/2HPL,44X,10H* SCHOTTKY)
```

```
603 FORMAT (2HPL, 47X, 8HNE(X10**, 13, 6H) VS X/
     12HPL,44X,20H+ RICHARDSON-DUSHMAN/2HPL,44X,10H* SCHOTTKY)
  604 FORMAT (2HPL, 47X, 7HE(X10**, I3, 6H) VS X/
     12HPL,44X,20H+ RICHARDSON-DUSHMAN/2HPL,44X,10H* SCHOTTKY)
  605 FORMAT (2HPL, 47X, 8HDV(X10**, I3, 6H) VS X/
     12HPL,44X,20H+ RICHARDSON-DUSHMAN/2HPL,44X,10H* SCHOTTKY)
  610 FORMAT (2HPL, 47X, 8HNI(X10**, I3, 6H) VS X/
     12HPL,44X,20H+ RICHARDSON-DUSHMAN/2HPL,44X,10H* SCHOTTKY)
      RETURN
      END
$IBFTC VINE
      SUBROUTINE VIN (NV, DVV, T, ANS)
      COMMON /MV/ PI, EM, AK, AM
С
       IF NV = 1 COMPUTATION FOR ELECTRONS
IF NV = 2 COMPUTATIONS FOR ATOMS AND IONS
C
С
C
      THE PROPER T AND DV IS SPECIFIED IN THE MAIN PROGRAM
      IF (NV.EQ.1) GO TO 10
      C = SQRT (2.0*AK*T/(PI*AM))
      GO TO 20
   10 C = SQRT (2.0*AK*T/(PI*EM))
   20 XE =ASQRT(DVV/(AK*T))
      Y = ERF(XE)
      ERFC = 1.0-Y
      ANS = C*EXP(-ABS(DVV)/(AK*T))/ERFC
      RETURN
      END
$IBFTC TRAPE
      SUBROUTINE TRAP (X,DV,NBB,ANS)
       DIMENSION X(40), DV(50), ANS(40)
C
C
        SUBROUTINE TO INTEGRATE TRAPEZOIDALLY
      H = DV(2)/2.0
      SUME = 0.0
       DO 60 NB = 1,NBB
       IF (NB.EQ.1) GO TO 50
       SUME = SUME + X(NB-1) + X(NB)
       ANS(NB) = SUME*H
       GO TO 60
   50 ANS(NB) = 0.0
   60 CONTINUE
      RETURN
       END
$DATA
    1
    2.4E+3
    3.0E+0
    1
    1.E+13
    1
    2.5E+3
    1
     2.4E+3
```

APPENDIX C

SYMBOLS FOR IBM OUTPUT SHEETS AND FORTRAN IV LISTING

The symbols are presented here in the order of appearance on the output sheets.

Output labels	FORTRAN variables	Symbols	Description	Units
I	AI	I	ionization poten- tial for plasma atoms	v
TE	TE	$^{\mathrm{T}}\mathrm{_{E}}$	emitter temper- ature	°К
PHI	PHI	$\mathbf{e} arphi$	work function	v
NEP	EPN	N_{ep}	plasma electron number density	cm^{-3}
TEP	TEP	T_{ep}	plasma electron temperature	°К
TIP	TIP, TIPP	T_{ip}	plasma ion tem- perature	°К
LAMBDA	AMDA	$^{\lambda}{}_{\mathrm{DT}}{}_{\mathrm{ep}}$	plasma Debye length	cm
PV	PTEST	$\mathbf{p}_{\mathbf{vp}}$	vapor pressure of plasma element at $T_{ m E}$	torr (133.322 (N/m ²)/torr)
LAMBDA(TE)	AMDATE	$^{\lambda}{ ext{DT}}_{ ext{E}}$	emission Debye length	cm
DV	DV	ΔV	sheath potential measured from plasma electron potential	v
ND(DV)	RHODOP	$ ho_{\Delta m V}$	net number density of charge at ΔV	
NE(DV)	RHOEOP	$ ho_{ m e}$	electron number density at ΔV	cm^{-3}

Output labels	FORTRAN variables	Symbols	Description	Units
NI(DV)	RHOIOP	$ ho_{f i}$	ion number density at ΔV	cm ⁻³
E(DV)	EDV	$^{ m E}_{\Delta m V}$	electron electro- static field at ΔV	V/cm
X(DV)	XDV	$\mathbf{x}_{\Delta \mathbf{V}}$	distance from emitter to ΔV	cm
JEE	EJ	${f j}_{f e}$	emitted electron current density	A/cm^2
JEP	EPJ	j _{ep}	plasma electron random current density	A/cm ²
ЛР	PIJ	^j ip	plasma ion random current density	A/cm ²
JAP	APJ	^j ap	plasma atom equiv- alent random current density	A/cm ²
J	CJ	J	net current density through sheath	A/cm ²
PP	PP	$p_{\mathbf{p}}$	plasma pressure	torr (133.322 N/m ²)/torr)
JIE	EIJ	$j_{\mathbf{iE}}$	emitted ion current density	A/cm ²
JAE	AEJ	^j aE	emitted equivalent atom current density	A/cm ²
JA	SJA	$^{\mathrm{j}}\mathrm{_{a}}$	net equivalent atom current density	A/cm ²
JI	SJI	$\boldsymbol{\mathfrak{j}_i}$	net ion current density	A/cm ²
JE	SJE	j _e	net electron current density	A/cm ²

Output labels	FORTRAN variables	Symbols	Description	Units
JA/JAP	SDJA		j _a /j _{ap}	
JE/JEP	SDJE		j _e /j _{ep}	
JI/JIP	SDJI		j _i /j _{ip} -	
DVS	DVS	ΔV_{S}	overall sheath voltage drop	V
XDVS	XDVS	$X_{\Delta V_{S}}$	effective sheath thickness	cm
NAP	APN	N _{ap}	plasma atom number density	cm^{-3}
XD/LAM	XLAM		x_S/λ_D -	
SC	sc	$(\pm 0.511 \times 10^6 \times 2.82 \times 10^{-13} E_{\rm E})^{1/2}$	Schottky depression of work function	V
PHZ	PHIZ	$\varphi_{_{f O}}$	plasma potential (work function for no sheath)	V
EDVS	EDVS	$E_{\Delta V_S} = E_E$	electrostatic field at emitter	V/cm
DVSRD	DVSRD	$\varphi - \varphi_0$	Richardson-Dushman overall sheath voltage drop	n V
DVS/RD	DVSPZ		$\Delta V_{S}/\Delta V_{O} = \Delta V_{S}/(\varphi)$	$-\varphi_{0}$)
ELM/RD	EDPZL		${\rm E_{E}}{\scriptstyle \lambda_{D}}/(\varphi - \varphi_{o})$	
PHZZ	PHIZZ	$(\varphi_{OO} = \varphi_{O} \text{ for }$ equilibrium and electron sheath)	plasma potential at equilibrium (work function for no sheath and no net current)	V
DRD/KT	DRDK		$\mathrm{e} \varphi - \varphi_{\mathrm{o}} / \kappa \mathrm{T}_{\mathrm{e}}$ -	
NTP	TPN		total particle num- ber density in plasma	cm ⁻³

Output labels	FORTRAN variables	Symbols	Description	Units
NCE	CEN		total charge number density at emitter	
NTE	TNE		total particle num- ber density at emitter	cm^{-3}
RD/KTE	PHAT		$e \varphi - \varphi_{O} / \kappa T_{E}$	
X/LMTE	XAMTE		X_{S}/λ_{DE} -	
ELT/RD	EAMPHZ		$E_{E}^{\lambda}DE/(\varphi - \varphi_{o})$	
NEPA	WNEPA		$NE(\Delta V)$ at $\Delta V = 0.0$, approximate value of N_{ep} from sheath calculations (Positive-Ion Sheath Program)	
NIPA	WNIPA		NI(ΔV) at $\Delta V = 0.0$, approximate value of N _{ip} from sheath calculations (Electron Sheath Program)	
			ND, NE, NI, E, DV, and X on plots correspond to ND(DV), NE(DV), NI(DV), E(DV), DV, and X(DV) in the pre- ceding list.	

APPENDIX D

IMPORTANT VARIABLES AND CONSTANTS IN FORTRAN IV LISTING

The variables given in the following list are not included in the output.

AK Boltzmann constant, κ

AM atom particle mass, ma

AP1 (Planck's constant)/(electronic charge), h/e

C3 gas constant

C4 electronic charge, e

CAT value of JA, JB, JC whichever is largest (Positive-Ion Sheath Program)

DVSAVE Richardson-Dushman value of ΔV

EDS Richardson-Dushman value of $E_{\Lambda V}$

EE field at Schottky emitter, E_E or $E_{\Delta V_S}$

EIJS emitted ion current density j_{ie} with Schottky correction (Electron Sheath

Program)

 ${ t EJS}$ emitted electron current density ${ t j}_{ t eE}$ with Schottky correction (Positive-Ion

Sheath Program)

EM electron particle mass, m_e

J1 emitted electron current density, jeE

J2 electron current from plasma that reaches emitter, $j_{ep} \exp(-\Delta V_S / \kappa T_{ep})$

j3 ion current from emitter that reaches plasma, $j_{ie} \exp(-\Delta V_S / \kappa T_E)$

J4 plasma ion random current density, jip

JA J1_{kount} - J1_{kount-1}

JB J2_{kount} - J2_{kount-1}

JC J3_{kount} - J3_{kount-1}

KOUNT counter

PHD work function with or without Schottky correction, $e\varphi$ or $e\varphi \pm e \left(\pm eE_{E}\right)^{1/2}$

PI 3. 14159

RHDS Richardson-Dushman value of $\, \rho_{\Delta V} \,$

RHES Richardson-Dushman value of ρ_{e}

RHIS Richardson-Dushman value of ρ_i

RHOD (Net number density of charge) (Electronic charge)

RHOE (Electron number density) (Electronic charge)

RHOI (Ion number density) (Electronic charge)

SE electronic charge

TAP plasma atom temperature, $T_{ap} = T_{ip}$

TENT 0.1 percent of either J1, J2, J3, J4, j_{ap}, j_{ae} whichever is smallest (Positive-Ion Sheath Program); 0.1 percent of either j_e, j_{ep}, j_{ip}, j_{ie}, j_{ep}, j_{ae} whichever is smallest (Electron Sheath Program)

REFERENCES

- 1. Morris, James F.: Collisionless Sheaths Between a Field-Modified Emitter and a Thermally Ionized Plasma Exemplified by Cesium. NASA TN D-4376, 1968.
- 2. Morris, James F.: Pairs of Emitter and Collector Sheaths for Cesium Thermionic Diodes. NASA TN D-4419, 1968.
- 3. Richardson, O. W.: Negative Radiation from Hot Platinum. Cambridge Phil. Soc. Proc., vol. 11, Feb. 1902, pp. 286-295.
- 4. Dushman, S.: Electron Emission from Metals as a Function of Temperature. Phys. Rev., vol. 21, June 1923, pp. 623-636.
- 5. Dushman, Saul: Thermionic Emission. Rev. Mod. Phys., vol. 2, no. 4, Oct. 1930, pp. 381-476.
- 6. Schottky, W.: Emission of Electrons from an Incandescent Filament Under the Action of a Retarding Potential. Ann. d. Physik, vol. 44, no. 7, July 17, 1914, pp. 1011-1032.
- 7. Dellner, Lois T.: A Set of Fortran IV Subroutines for Generating Printed Plots. NASA TM X-1419, 1967.

Figure 1. - Flow diagram for

Figure 2. - Flow diagram for

	1.0907E-04				
	LAMBDA =			######################################	
	2400.0		(AG)X	2.165515E-C4 1.904072E-04 1.56246E-04 1.26288F-04 1.085789E-04 9.441045-05 8.256636-05 7.237776-05 6.343331E-05 5.54636-05 7.237776-05 6.343331E-05 5.54634E-05 3.01522E-05 3.01522E-05 1.140752E-05 1.140752E-06 1.140752E-06	5.786600E-02 5.786600E-02 7.24251E-03 2.165515E-04 1.563543E-03
	= d11		~		
	2.50E 03		E(CA)	1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3	JAP JAE JA/JAP XLVS ELVS RC/KTE
HMAN	TEP = 2.		NI(DV)	-1.000000E 13 -1.004219E 13 -1.069610E 13 -1.106211E 13 -1.144065E 13 -1.223703E 13 -1.399995E 13 -1.399995E 13 -1.447902E 13 -1.447902E 13 -1.656498E 13 -1.656491E 13 -1.713178E 13 -1.713178E 13 -1.713178E 13 -1.731801E 13 -1.731801E 13 -1.731801E 13 -1.731801E 13 -1.731801E 13 -1.731801E 13 -1.731801E 13	2.476505E-02 4.853910E-02 -3.768474E 00 0.13917 3.69222 4.671535E 13 9.265926E 12
RICHARDSON-DUSHMAN	NEP = 1.00E 13		Z	11.00000000000000000000000000000000000	JIP JIE = 24 JE = -3 DNS = 0 DNS = 0 NTE = 4
RICHA		7E-04	NE (DV)	9.265926E 12 8.618612E 12 8.308889E 12 8.308889E 12 8.705952E 12 7.15426E 12 7.430912E 12 7.45436E 12 6.814896E 12 6.814896E 12 6.364936E 12 6.364936E 12 6.364936E 12 6.364936E 12 6.364936E 12 6.364936E 12 6.364936E 12 6.364936E 12 6.4642123E 12 4.6853486E 12 4.6853486E 12 7.15461E 12 7.15461E 12 7.15461E 12 7.15461E 12 7.15461E 12 7.1646123E 12 7.1646123E 12 7.1646123E 12 7.1646123E 12 7.1646123E 12	1.244062E 01 1.28422E-02 -3.255629E-09 -1.316221E-07 1.565429E 00 2.334936E 13 1.523154E 00
	= 4.000	× 1.068		0,99,99,6,6,00,00,00,00,4,4,4,00 0,99,99,6,6,6,0,0,0,0,0,0,0,0,0,0,0,0,0,	1,24 = 1,24 = -3,25 = -1,31 = 1,58 = 1,58
	PHI	LAMBDA(TE) = 1.0687E-04	(101)	74896 132216 12656 12656 12656 12656 12740 127406 127406 127406 127406 127406 127406 127406 127406 127406 1	JEP PP JI JI / JI P XD / LAM NCE EL I / RD
	= 2400.	LC)	S	0. -1.4046966 -2.6774856 -3.733216 -3.432656 -4.11672656 -4.8061156 -5.5617406 -6.5167476 -6.5167476 -6.5167476 -6.5167476 -6.5167476 -1.405476 -1.405476 -1.3032676 -1.3032676 -1.3032676 -1.3032676 -1.3032676 -1.3032676 -1.3032676 -1.3032676 -1.3032676 -1.3032676 -1.3032676 -1.3032676	520C1E 00 629C1E 00 62952E 05 23165E 01 36595E 13 36595E 13
	= 3.893 TE	1.59e737E 0	ΛΟ	0.00656 0.01292 0.01292 0.02783 0.02783 0.05567 0.05567 0.06558 0.06568 0.07654 0.07654 0.07654 0.07654 0.07654 0.07654 0.07654	H H H H H H H H H H H H H H H H H H H
	#	A			L L L L L L L L L L L L L L L L L L L

	LAMBDA = 1.0907E-04
	IIP = 2400.0
	TEP = 2.50E 03
SCHUTTRY	NEP = 1.00E 13
	DHI = 4.000
	TE = 2460.

LAMBDA ≖	1 - 40 -	444 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		
2400.0 xf0V1	2.080556E-04 1.835106E-04	1.456598E-04 1.229480E-04 1.66000E-04 9.236287E-05 8.091191E-05 7.102640E-05	6.22270E-C5 5.45450E-C5 4.715151E-C5 4.11C088E-05 3.520372E-05 2.46701E-05 1.992602E-05 1.57312E-05 1.5732E-05 7.317293E-05 7.317292E-06	5.786600E-02 3.216696E-02 3.216996E-04 2.080556E-04 3.6605 8.65523E-01 6.460157E-01
= d11	23	333333	0.000.000.000.000.000.000.000.000.000.	•
2.50 E 03	-0. 1.255216E	2. 2224546 3.24748936 4.12873996 5.853896 5.853896 5.853896 5.853896 5.853896 5.853896 5.853896	7.5551206 9.204665 1.0044966 1.0044966 1.0044966 1.004965 1.004965 1.004965 1.004965 1.004965 1.004965 1.004965 1.004965 1.004965 1.004965 1.004965 1.004965 1.004965 1.004965	JAP JAE JAKJAP = :: X DV X N X Y PV X = :: DV S/RD :: RC/KT E ::
TEP =			-1.269166E 13 -1.307550E 13 -1.347095E 13 -1.42809E 13 -1.473051E 13 -1.517601E 13 -1.517601E 13 -1.503498E 13 -1.659499E 13 -1.709689E 13 -1.701395E 13	2.476505E-02 = 4.494028E-02 = -4.046589E 00 = 0.12324 = 1.598907E-02 = 4.555370E 13
NEP = 1.00E 13				LIP LIP LIP DVS SC SC SC SC SC SC SC SC SC SC SC SC SC
4.000 1.0687E-04			7. C2.7866E 12 6. 785101E 12 6. 54712E 12 6. 313486E 12 6. 03556E 12 5. 632650E 12 5. 632650E 12 5. 469514E 12 7. 723820E 12 4. 723820E 12 4. 723820E 12 4. 66448E 12 4. 66648E 12	1.244C62E U1 1.C68G42E-02 -6.84919E-10 -2.82C474E-08 1.5C7529E U0 1.351688E-01 3.65223E 00 2.218771E 13
= 1.91	12	22222		
HBDA (C. 411273E	-2.0C880CE -2.6C867IE -3.211457E -3.817747E -4.428144E	-5.663798 -6.290402E -7.564871E -8.214406 -8.214406 -1.002547E -1.052547E -1.163569E -1.133669E -1.314750E	JEP PP JI /JIP JI /JIP XO /LAM XO /LAM DV SRD PH ZZ NC E EL T/RO
TE = 2466.	0.1	N (VM M V III)		-4.045385E 0C -1.045385E 0C -1.2862645E 0S -3.286313E 0S 1.374052E 03 1.350405E 05 4.33659E 13 1.946864E 0C
E 737E	0.00¢16	0.01232 0.01649 0.02465 0.03(61 0.03(57	0.05529 0.05146 0.06178 0.061794 0.06210 0.06221 0.06239 0.05259 0.11709 0.11709	
8938 = 1 964 = 1	00	0000000	33333333333333333333333333333333333333	JEE JACAEP = = 1 JEZJEP = = 1 EDVS = = 1 X/LMTE = = 1

(a) Numerical values.

Figure 3. - Example output for Positive-Ion Sheath Program.

(b) Continued. Richardson-Dushman and Schottky results. Figure 3. - Continued.

1000		 	*+	-1000
-1100.		 		11000
1200.	* +			1200.
-1300.	* * 			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
+ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	**			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
- 1 2000 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				111111111111111111111111111111111111111
10000				× -1600.
1700.				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
+ + 1 1 1 1 1 1 1 1 1				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1900-				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
-2066. 1	C.6C0C5C;	C.0001001	C.CC01501 1 1 1 1 1 1 1 1 C.CC02001	1 1 1 1 1 1 1 1 1 1 2002501
X*E 4 0 0.00 4 0 0.00 4 0 0.11 4 0 0.20 6 0 0.20 6 0 0.30 7 0 0.30 7 0 0.30 7	0.6526 0.6533 0.6533 0.6534 0.6536 0.6536 0.6536		1.502 C. 1.835 1.504	2.081

(b) Continued. Richardson-Dushman and Schottky results. Figure 3. - Continued.

Figure 3. - Continued.

Figure 3. - Continued.

Figure 3. - Concluded.

							RICHA	RICHAROS GN-DUS HMAN	Z					
*	3.893	16 *	= 2400.	PHI	4	3.000	NEP =	NEP = 1.00E 13	TEP =	2500.0	1 1P =	2400.0	LAMBDA *	1.09C7E-04
	1.598737E 05	7E 05	LAMBI	DA (TE		LAMBDA(TE) = 1.0687E-04	\$							
	2		ND (D A)	7		Ä	NE (DV)	NICOV	(^0	E(CA)		(VQ)X		
	0.03461	_	C. 3.414446E		~	1.000	1. C00000E 13	-9.973218E -8.431615E		0. -4.627274E	. 02	2.532789E-04 2.158798E-04	19E - 04 18E - 04	
	-0.06522	2	6.875106E		15	1.40	1.400256E 13	-7 -127 454E	454E 12	-5.270193E	2 E	1.287538E-04	8E-04	
	-0-10383	2 1	1.052536E		uj m	1.95	1.654949E 13	-5.090691E		-1.875¢¢¢		1.071360E-04	,0E-04	
	-0-17-0-	<u></u>	1.881674	. –	<u> </u>	2.31		-4.300933E		-2.367532E		9. C59586E-05	36E-05.	
	-0.20767	-	2.369114E	_	.	2.13		-3.632702E	702E 12	-2.8755G6E	11 L	6-617206E-05	34E - 05	
	-0.24228	.	2.922960E		<u> </u>	3.22	3.229625E 13	-2.5887136		-3.956455E		5.671469E-05	59E-05	
	-0.27689	<u>o</u> c	4.254009E		3.3	4.51	4.512376E 13	-2.183672E	672E 12	-4.536317E		4.852584E-05	34E-05	
	1.3461	? -	5.149829E	' -	<u>س</u>	5.33	5.333905E 13	-1.840764E		-5.147845E	_	4.134924E-05	245-05	
	-0.38072	2 2	6.150069E	. –	<u></u>	6.36		-1.550370E		-5.795375E		3.500143E-05	43E-05	
	-0-41533	2	7.322812E	7	m	7.45		-1.304341E	341E 12	10046344/	ם ה ה	2.427902F-05	25-05	
	45544.0-	4	8.700985E		<u>13</u>	8.8		3092 (60 T+		-1 -2 1000 to 1		1.9718136-05	3F-05	
	-0.48456	99	1.032328E		<u> </u>	1.04	1.041516E 14	-9.18/0//E		-8.84C 154E		1.559770E-05	70E-05	
	-0.51517	<u>.</u>	1-223525		<u> </u>	1.65		-6.401391E	391E 11	-9.742646E		1.186356E-05	56E-05	
	9/255-0-	9)			1.17		-5.303731F		-1.071272E	2E C4	8.472274E-06	74E-06	
	-0.58639	<u> </u>	2.026413F		* 4	2, 63		-4.354417E	417E 11	-1.175761E	1E C4	5.385016E-06	16E-06	
	10.65260	37	2.46055E		4	2.40		-3.511035E		-1.288525E	5E C4	2.576134E-06	34E-06	
	-0.65222	55	2.839518E		14	2.84	2.842463E 14	-2.544639E	639E 11	-1.4103016	e 04	.		
į	ı	76777		ā	П	1.2440	62E 01		2.476505E-02	A C S		5 - 7 E ¢ ¢ C O E - 0 2		
¥ -		-2.50£6£8E-01		ام	"	1. 6880	1. C88042E-02	#	8878546-0	•	18 1	7. 234634E- 04		
. 4	H	4.8253E7E-04		7	H	4.8253	82 E-04		-2.513514E-01		1	10000000000000000000000000000000000000		
JE/JEP	1	-2.0204CSE-C2	F- C2	JI/JIP	# d_	1.5484	1.548464E-02	•	-0.69222	SADA	7	= 2.532109E-C4		
NAP	#	2.336559E	E 13	XD /LAM	H I	2, 322152E	52E 00	PH22= 3.	3.69222 3.078667F 14					
d IV	H (4.33655E	E 13	NCE	# # 3	2. 043CUTE		1	-9.973218E 12		1			
3		- 722 00		:			111							

	E-04																										
	1. 0907E-04																										
	# 4																										
	LAMBDA =			10E-04 4E-04	1E-04	0E-04	7E-05	31E-05	7E-05	2E-05	0E-05	201100	ZE-05	0E-05	4E-05	7E-05	7E-06	7E-06	5F-06								
	2400.0		KODA	2.546730E-04 2.173214E-04	1.613111E-04	1.302550E-04 1.086162F-04	9.204307E-05	7.866681E-05	5.797937E-05	4.971275E-05	4.245080E-05	3.0010896103	3.025752E-U5 2.508712E-05	2.041850E-05	1.618664E-05	1.2338476-05	8.830037E-06	5.624377E-06	2.690045E-06	•	5.786600E-C2	72 F 92 F - C2	2.546730E-04	3.65222	5.3E6C38E-C1		
	# di 1			25	2	m m	6.0	ω r.		63	93	7 :	9 m 2 C	C3	03	СЭ	63	4.	4	*	414		2	3.6	V 1	1	
	-		-																			1 H	. 11	Ħ	# 1 J +		
	2500.0		E(CV)	0. -4.348701E	-8.705254E	-1.310224E	-2.215560E	-2.687C69E	-3.682531E	-4-212660E	-4.768715E	3001100000	-5.9/2534E -6.627737E	-7.323751E	-8.06495£	-8.855529E	-9.701478E	-1.060687E	-1.157770E	-1.262003E	de C	10/16	XCVS	P. 2	CV6/RC	RL/KTE	
				010	~	~ ~	. ~	~! ^	. ~.	~	N F	u -	N ~I	~	_	_	_	_	_		6.2	50	:	-02		4.	77
	TEP =		_	36 1		3E 12		4E 12			3E 12		3E 12	JE 12	5E 1	, E	3E 1	٦. ٣) E 11	505	200	72	472		1272	505
>			N I (DV)	-9.966303E -8.511927E	5882	06258 9798	2154	5776	464	0666	3485	7070	803	9690	9697	1238	3759	109	5205	2698	2.476505E-62	= 4-103/00 E-U4 = -2.513511 F-C1	-0.64972	4.264472E-02		2.551272E 14	Š
SCHOTTKY	E 13		Z	-9.966303E -8.511927E	-7.268820E	-6.206258E	4.521545E	-3.857764E	-2.804947E	-2.389903E	-2.034853E		-1.4/0899E -1.248038E	-1.056900E	-8.926965E	-7.512384E	-6.287595E	-5.216017E	-4.252053E	-3.126986£		,	۲. ۳	IF			
SCH	NEP = 1.00E 13			• •	•		•	. ,	•	•	•	•	•	·	•	•	•	•	•	•	4 .	1	DVS	သွ		ATE =	NI FA
	H GL			13	13	2.5		13			13		13	13	7		14	7		1 4				_			_
	Ž	*	?	300E	309E	1.604788E	2.196143E	2.569194E	3.516437E	4.11405BE	4.813336E	3007000	6. 588969E	9.020051E	1.055384E	1.234852E	444847E	.690562E	578071E 14	2.314485E	20	300	2.385386E-02	2.334934E 00	6. \$22226E-01	1 min	
	_)-9/	AE (DV)	1. C00000E	.371809E	604	1961	2.569194E	5164	1140	8133	1700	7092	0500	0553	2346	4445	6905	37.80	3144	4,062	7377	53.86	4634	2226	2.317612E	1. 548312E
	PHI = 3.000	LAMBDA(TE) = 1.0687E-04			-		7	2.4	'n	4	÷ 1	'n	۰,	ď	-	÷	.	٠.	-	5	1.244C62E 01	•	2.38	2,33	-6. \$22226E-01	2.31	
	#	-									_											H 11		Ħ	11 (н
	PHI	(TE)		£ 12		E 12		E 13					13 13 13 13 13 13 13 13 13 13 13 13 13 1		E 14	E 14	E 14			# *	۵.		JI/JIP	XD / LAM	DVSRD	NCE NCE	¥
		MBDA	(A Q) Q N	2568	5.449273E	341624E	1.743585E	.163418E	3.235542E	5068	5851		7.584428E	8.914361E	1.046457E	.227340E	.43855E	. 685345E	1.573819E	2.311358E	a d	-	; 7	Š	0 0	. <u>Ş</u>	ij
	= 2400•	7	Š	C. 3.212568E	44.0	9.84	1.74	2.1E3418E	3.23	3.875068E	4.6C5851E	10000000000000000000000000000000000000	7.584428	8.91	1.04	1.22	1.43	1.68	1.57	2.31	25	٠. د د	: 3	E	35	3 = 3	<u>ر</u>
	= 2	r.														1					0.3	100	C 7E-	365			
	16	76 0		•	~	vo ve		~ .		_	.	٠,	7 0.	_			۰,	'n		~	6076	200	200	2.33655E	-3.2620C3E	4.33655E	4.563082E
	~	= 1.598737E 05	٥	0.03249	-0.06457	-0.09746	-0-16243	-0.15492	-0.25589	-0.29238	-0.32486	0010000	-0.38563 -0.42232	-0.45481	-0.48129	-0.51578	-0.55226	-0.56475	-0.61724	-0.64572	2.820903E C2	1	= -2.02C4C7E-C2	, ,	-	•	•
	= 3.893	1.5	_	00	3	99	ò	9 0	0	0	o c	֓֞֞֜֞֜֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֓֓֓֡֓֓֡֓֡֓֡	99	0	9	0	0	ö	0	ē P	11	H H	11		H (9 9	II II
																					JE E	, 4	JE/JEP	NAP	EDVS	NT P	Z [M] E
		2																			7)	•	, -,	~		- 45)	~

Figure 4. - Example output for Electron Sheath Program.

(a) Numerical values.

57

Figure 4. - Continued.

X*E 4 Y*E-4	-14000	-12000•	-10000		-8000	-6000		-4000-	-2000-	• 0	•	2000	4000	•0009
01.262	٠,				1			1	1			1		
0.056-1.061	٦.	* 	*	•				 -				t-		
0-147-0-586	- -	٦-		•	.	•			. ~		•	٠ -	4	-
0.204-0.732	٠				-			-	-		~ 1	٦.	٦.	٦.
0.251-0.663	-4	-	~		٦.	*		٦.			- 4 .	٠,	٠,	-
755-0-205-0	. 4	-	٦ -			• ~	*	٦.	-		- -	٦ -		٠.
0.425-0.477	- -						*		•		· ·	44 -	٠.	1-4
	1	٦,	٦,		۰.	 -		;	-		-	.	.	
0.457-0.421 (.ccoc501	10420031		7-	1					7		1			<u> </u>
0.586-0.368	· ·	·			.	٦.		*	٠.		٦.	٦.	- -	
0.675-0.318	- -	- 1 - -1	-11			-		*				٠.		
345 04.86 0					-				*				- -	-44
6350 1 8150	• -	44			٠									-
C.92C-0.222	-	- -				-			* -			~ ~	,-d ,-d	
-	c.cco1coî	1	-1		[!	
1.084-0.176			- -		-							- -		-
	~ 1 ~	-4 -	٦.			٦.		٦.			٦			
	- -				٠.						4 ~4	•	• ~•	
1.303-0.131		· п -	٦,		-d -	~ .		-4 -	-	*	~ -		- -	~ ~
	 -	◄ ~						-	٦ -		٠.	٠.	- ref	- ،
	4 -4	1 1 .	• ~• •		ı	• ~• •					· ,	ı 1 .		-
_	C.0CC1501								-					
1.613-0.087		4 ~	•		٠	• ~				*			l	·
	, i	٦.			-	-		- -	-		- -	- 1 -	- -	
	-	-	- ~			-44			- -		.	٠.	• ~	•
	-	- A	-		.	٦.		→.	·		~ ,		-	 4 -
	r4 -		-			→ ~		- -			٠.	→ →	-	
			• ~		4	• -			• ~					· ·
-	C.0002001		1											
						-						-		٠
2.173-0.643		-	-		⊶.			٦.	٦.	*	٦.	-4 -		٦.
	-	 1			-			-			٠	٦.,		
	· -	ı ~				-		·~·	-		٦,	٦,	٦.	- -
		-, -			-			-			-		- -	- -
		٦.	⊸,		-			-	7		-	1	7	
2.547 C.			1	 	,	. 7		 1			*	-		- -
		· ~			· ~ ·			٦,				·		,d
	-	~4 ~				 -		-	7 ~		·		- 11	
	-	4 -4			٠.							• -		
	i et e		-		-	-		,-4	٦,		٦.	,t ,	- -	
	4 -4	- -			٦,	-			• -		• ~	٠	۱ ،	۱
	1		7		7			7 -		1	1	7		
	-14000	-12	-10000-		-8000	-60009-		-4000-	-2000-	•		2000.	4000	•0009
		;												
	E(XIC** 0) VS X	×												

Figure 4. - Concluded.