1 measure theory

Definition 1 (Sigma Algebra) \mathcal{F} σ -algebra:

- $\Omega \in \mathcal{F}$
- $A \in \mathcal{F} \Rightarrow A^c \in \mathcal{F}$
- $\bigcup_n A_n \in \mathcal{F}$

Definition 2 (Probability measure) Probability measure

- $\mathbb{P}(A) \in [0,1]$
- $\mathbb{P}(\Omega) = 1$
- $A \cap B = \emptyset \to \mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B)$

Theorem 1 (Equivalence additive measure) The following are equivalent fo μ finitely additive measure:

- $\mu\sigma$ additive
- μ continuous from below / above/ at 0.

Definition 3 (Monotone class theorem) Monotne class $\mathcal{M} \subset \mathcal{P}(\Omega)$, and is closed under countable monotone unions and intersections.

Theorem 2 (Monote class theorem) G an algebra, $\sigma(G) = M(G)$

Theorem 3 $(\lambda - \pi)$ *D is a Dynkin system if:*

- $\Omega \in D$
- $A \in D \Rightarrow A^c \in D$
- $A_1, \ldots \in D$ pariwise disjoint, $\cup A_i \in D$

Equivalently 5

- $\Omega \in D$
- $A, B \in D; A \subset B \Rightarrow B \setminus A \in D$
- $A_1, \ldots \in D$ increasing, $\cup A_i \in D$

 $P\pi$ -system: closed under finite interesection.

 $P \subset D \Rightarrow \sigma(P) \subset P$

Theorem 4 (Sigma in out)

$$\sigma(f^{-1}(A):A\in\epsilon)=\{f^{-1}(A):A\in\sigma(\epsilon)\}$$

Definition 4 (Semi-ring) • $\emptyset \in S$

- $A \cap B \in S \forall A, B \in S$
- For al $A, B \in S$ there exist pairwise disjoint subset $C_1, ..., C_n \in S$ such that $A \setminus B = \bigcup_{i \le n} C_i$

Theorem 5 (Caratheodory's Extension Theorem) • A measure μ on a semi-ring S can be extended to a measure on $\sigma(S)$.

• If μ is σ -finite, the extension is unique.

• $\mathbb{P}^{i_1,...,i_n}[A_1 \times ... \times A_n] = \mathbb{P}^{\pi(i_1),...,\pi(i_n)}[A_{\pi(1)} \times ... \times A_{\pi(n)}]$ Definition 5 (Consistence)

• $\mathbb{P}^{i_1,\dots,i_{n-1}}[A_1\times\dots\times A_{n-1}] = \mathbb{P}^{i_1,\dots,i_n}[A_1\times\dots\times A_{n-1}\times\mathbb{R}]$

Theorem 6 (Kolmogorov's Extension Theorem) I non empty. $(\mathbb{P}^{i_1,\dots,i_n})_{i_1,\dots,i_n\in I}$ consistent family. There exists a unique probability measure on \mathbb{P} on $(\mathbb{R}^I, \mathbb{B}(\mathbb{R})^{\times I})$ such that

$$\mathbb{P}[\{\omega \in R^I : (\omega_{i_1}, ..., \omega_{i_n}) \in B] = \mathbb{P}^{i_1, ..., i_n}[B]$$

2 Integrals

Theorem 7 (Monotone Convergencen) f_1, \ldots be a pointwise non-decreasing sequence of non-negative valued measurable functions, set $\sup f_n = f$. Then f is measurable and $\lim_{k \to \infty} \int f_k d\mu = \int f d\mu$.

Theorem 8 (Fatou) Let $f1, f2, f3, \ldots$ be a sequence of non-negative measurable functions. Define $f = \liminf_{n \to \infty} f_n$. Then f is measurable and $\int_S f d\mu \leq \liminf_n \int_S f_n d\mu$.

Theorem 9 (Dominated Convergence) g, f_1, f_2, \ldots measurable functions such at $\int |g| < \infty$, $|f_n| \leq g \forall n$ a.s., $f_n \stackrel{a.s.}{\to} f$, then $\int |f| \leq \int |g| < \infty$ and $\lim \int |f_n - f| \to 0$, $\lim \int f_n \to \int f$

Theorem 10 (Funbini) μ_1, μ_2 are σ -finite.

- $\int_{\Omega_1 \times \Omega_2} |f| d(\mu_1 \times \mu_2) < \infty \Rightarrow \int_{\Omega_1 \times \Omega_2} f d(\mu_1 \times \mu_2) = \int_{\Omega_1} \int \Omega_2 f$
- $f \ge 0$ a.s $\Rightarrow \int_{\Omega_1 \times \Omega_2} f d(\mu_1 \times \mu_2) = \int_{\Omega_1} \int \Omega_2 f$

Theorem 11 (Inequalities) • Holder: $\frac{1}{p} + \frac{1}{q} = 1 \Rightarrow \int |fg| \le (\int |f|^p)^{\frac{1}{p}} (\int |g|^q)^{\frac{1}{q}}$

• Minkowsky: $\forall p \leq 0 ||f + g||_p \leq ||f||_p + ||g||_p$

Theorem 12 (Borel Cantelli) • $\sum \mathbb{P}(A_n) < \infty \Rightarrow \mathbb{P}[\cap_m \cup_{n \geq m} A_n] = 0$

• (A_n) , independent, $\sum \mathbb{P}(A_n) = \infty \Rightarrow \mathbb{P}[\cap_m \cup_{n \geq m} A_n] = 1$

3 Random Variables

Definition 6 (Uniform integrability) (X_i) u.i iff $\lim_c \sup_i \int_{|X_i|>c} |X_i| d\mathbb{P} = 0$ iff $\lim_n \sup_i \mathbb{E}[1_{|X_i|>c}|X_i|] = 0$

Theorem 13 (Caracterisation) • $\forall i | X_i | \leq X \in L_1 \Rightarrow (X_i) \ uc$

- uc iff:
 - $-\sup E[|X_i|] < \infty$
 - $\forall \epsilon > 0, \exists \delta > 0 \forall A \mathbb{P}(A) < \delta \Rightarrow \forall i \int_{A} |X_i| < \epsilon$

Theorem 14 (L_1 Convergencen) $X_i \stackrel{\mathbb{P}}{\to} X$, X_i uc. Then $X \in L_1$, $X_i \stackrel{L_1}{\to} X$

Theorem 15 (De la Valle-Pousson) X_i $uc \iff \exists \Phi : \mathbb{R}^+ \to \mathbb{R}^+, \frac{\Phi(x)}{x} \to \infty st \sup E[\Phi|X_i|] < \infty.$ Φ can be assumed convex and non-decreasing.

Theorem 16 (Week Law of large numbers) $X_i \in L_2$ uncorrelated, $E[X_i] = m$, $\sup E[X_i^2] < \infty$, then $\frac{\sum_i X_i}{n} \to m$ in L_2 .

Theorem 17 (Caracteristic Function) • $|\Phi_X(u)| < \Phi_X(0) = 1$

- $\bullet \ \Phi_X(-u) = \bar{\Phi_X(y)}$
- $\Phi_X \in \mathbb{R} \iff X \stackrel{\mathbb{D}}{=} -X$
- Φ_x is unifromly continuous.
- $E[|X|^n] < \infty \Rightarrow \exists \Phi_X^k \forall k \leq n$, and $\Phi_X^k(u) = E[(iX)^k e^{iuX}]$, and $\Phi_X(u) = \sum_k^n \frac{(iu)^k}{k!} E[X^k] + \frac{(iu)^n}{n!} \mathcal{E}_n(u)$, with $\mathcal{E}_n \to_0 0$
- $\exists \Phi_X^{2k}(0) \Rightarrow E[X^{2k}] < \infty$
- Inversion Formula: $\frac{F_X(b) + F_X(b^-)}{2} \frac{F_X(a) + F_X(a^-)}{2} = \lim_{n \to \infty} \frac{1}{2\pi} \int_{-c}^{c} \frac{e^{-iua} e^{-iub}}{iu} \Phi_X(u) du$
- $\int_R |\Phi_X| < \infty \Rightarrow f_X(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{iux} \Phi_X(u) du$
- $X = (X_1, \dots X_n)$ independent $\iff \Phi_X = \prod \Phi_{X_i}$

Theorem 18 (Continuity Theorem) • $X_n \stackrel{D}{\rightarrow} X \iff \Phi_{X_n} \rightarrow \Phi_X$

- $\Phi_{X_n} \to \Phi$ and Φ continuous at 0 then $\exists X \ X_n \stackrel{D}{\to} X$
- $\bullet \ X_n \stackrel{D}{\to} X \iff F_n \stackrel{in C(F_X)}{\to} F_X$

Theorem 19 (LLN) X_i iid in L_1 , $\frac{\sum X_i}{n} \to E[X]$ as and in L_1

Theorem 20 (CLT) X_n iid $Var(X) = \sigma^2 < \infty$ then $\frac{1}{\sqrt{n}} \sum \frac{X_i - E[X]}{\sigma} \to \mathcal{N}(0, 1)$

4 Martingales

Theorem 21 (Radon-Nikodym) $\mu_2 \ll \mu_1 \Rightarrow \exists f unique \ \mu_1 - a.s \ f = \frac{d\mu_2}{d\mu_1}$

Theorem 22 (Stopping times) • $X_n^{\tau} = X_0 + (V.X)_n$ is martingale because V is predictable.

- If τ bounded $E[X_0] = E[X_\tau]$
- $M \ge \tau \ge \sigma$ stopping times, then $E[X_{\tau}|F_{\sigma}] = X_{\sigma}$

Theorem 23 (Upcrossing inequality) X_n submartingale. $E[B_n(a,b)] \leq \frac{E[(X_n-a)^+]}{b-a}$

Theorem 24 (Convergence) • X_n submartingale, L_1 bounded, then there exists X_{∞} such that $X_n \stackrel{a.s}{\to} X_{\infty}$, and $E[|X_{\infty}|] < \sup E[|X_n|]$

- a submartingale that is bounded above converges a.s.
- X_n ui submartingale, then there exists $X_\infty \in L_1$ such that $X_n \to X_\infty$ in L_1 . Moreover $E[X_\infty|F_n] \ge X_n$.
- (F_n) filtration, $E[X|F_n] \to E[X| \cup F_n]$ a.s and L_1 (because u.i.)
- X_i iid, $\mathcal{G} = \bigcup \sigma(X_n, \ldots)$, then $\forall A \in \mathcal{G} \ P(A) \in \{0, 1\}$ (because $1_A = E[1_A]$)
- (G_i) dec-filtration, $E[X|G_n] \to E[X|\cap G_n]$ as and in L_1 .

Theorem 25 (Doob Maximal inequality) X_n non-negative submartingale.

- $\forall \lambda > 0$, then $\lambda^p \mathbb{P}[\max_{k \leq n} X_k \geq \lambda] \leq E[X_n^p]$
- $|\max_{k \le n} X_k|_p \le \frac{p}{p-1} |X_n|_p$
- $|\max_{k \le n} X_k|_1 \le \frac{e}{e-1} (1 + |X_n \log(X_n)|_1)$

Theorem 26 (Random Walk) • Fair random walk, $S_0 = 0, \tau = \inf\{n : S_n \in \{A, -B\}\}$:

$$P(X_{\tau} = A) = \frac{B}{A + B}$$

$$E[\tau] = AB$$

$$P(\tau < \infty) > P(\tau_A < \tau_{-B}) \to 1$$

•
$$p \neq \frac{1}{2}$$
, $P(X_{\tau} = A) = \frac{(\frac{1-p}{p})^B - 1}{(\frac{1-p}{p})^{A+B} - 1}$,

$$P(\tau_A < \infty) = \lim_{B} P(\tau_A < \tau_{-B}) = \begin{cases} 1 & \text{if } p > \frac{1}{2} \\ (\frac{p}{1-p})^A & \text{else} \end{cases}$$

$$E[\tau_A] = \lim E[\tau_A \wedge \tau_{-B}] = \begin{cases} \frac{A}{2p-1} & if \ p > \frac{1}{2} \\ \infty & else \end{cases}$$

5 Markov

Theorem 27 (Markov property) • (X_n) markov (λ, P) . Conditional on $X_m = i$, X_{n+m} is markov (δ_i, P) independent of $X_0, ..., X_m$.

• (X_n) markov (λ, P) . Conditional on $X_T = i$, X_{n+T} is markov (δ_i, P) independent of $X_0, ..., X_T$.

Definition 7 (Some defs) • Communicating classes: I/\sim where $i\sim j\iff i\leftrightarrow j$

- C Closed $\iff i \in C, i \to j \Rightarrow j \in C$
- P irreducible $\iff \forall i, j, i \to j \iff$ there is only one communicating class.
- $H_i = \inf\{n \ge 0; X_n = i\}, T_i = \inf\{n \ge 1; X_n = i\}, V_i := \sum_n 1_{\{X_n = i\}}, f_i = P_i(T_i < \infty), m_i = E[T_i]$
- i is reccurrent if $P_i(V_i = \infty) = 1 \iff f_i = 1 \iff \sum p_{ij}^{(n)} = \infty$, otherwise transient.
- i is positibe recurrent $\iff m_i < \infty$
- $P_i(V_i \ge k+1) = f_i^k$

- In a communcating class all estates are transient or all are reccurrent.
- $recurrence \Rightarrow closed$
- $finite + closed \Rightarrow recurrent$.
- P irreducible + recurrent $\Rightarrow P(T_j < \infty)$
- $i \ aperiodic \iff p_{ii}^n > 0 \ for \ large \ n$
- $\lambda_i p_{ij} = \lambda_j p_{ji} \Rightarrow \lambda$ is invariant.

Theorem 28 (Invariant Distribution) • I finite, if for some $i \in I$ $p_{ij}^{(n)} \to \pi_j \forall j \in I$ then π is an invariant distribution.

- if P irreducible and $\lambda \geq 0$ invariant, then $\lambda \in \{0, \infty, \mathbb{R}^n\}$
- $\gamma_i^k = E_k[\sum_{n=0}^{T_k-1} 1_{X_n=i}]$. If P irreducible and recurrent, then $-\gamma_k^k = 1$ $-\gamma^k \text{ is invariant}$
 - $-\ 0<\gamma^k<\infty$
- If P irreducible and λ invariant with $\lambda_k = 1$ then $\lambda \geq \gamma^k$. If P is recurrent, $\lambda = \gamma^k$.
- If P irreducible, every state is positive recurrent \iff state i is pos rec \iff P has invariant distribution π . Moreover $\pi_i = 1/m_i$

Theorem 29 (Convergences) P transition matrix of an ergodic Markov chain (irreducible, aperiodic and positive recurrent), with invariant measure π , then for any initial distribution, $P(X_n = j) \to \pi_j$

Theorem 30 (Ergodic theorem) • P irreducible, then $\frac{V_n(n)}{n} \to \frac{1}{m_i}$ as. If P is irreducible and positive recurrent, for every bounded function: $\frac{1}{n} \sum_{i=1}^{n-1} f(X_k) \to \sum_{i=1}^{n} \pi_i f(i)$ a.s

Theorem 31 (Time reversal) P irreducible and have an invariant distribution π . if $X_i \sim Markov(\pi, (P_{ij}))$ then $X_{N-i} \sim Markov(\pi, (P_{ii}))$

Theorem 32 (Coupling theorem) $X, Y \sim Markov(\lambda/\pi, P)$ independent, $W_n = (X_n, Y_n) \sim Markov(\lambda \otimes \pi, P \otimes P)$

6 Complex Analysis

Theorem 33 (Cauchy) Suppose U is an open subset of the complex plane \mathbb{C} , $f:U\to\mathbb{C}$ is a holomorphic function and the closed disk $D=\{z:|z-z_0|\leq r\}$ is completely contained in U. Let γ be the circle forming the boundary of D. Then for every a in the interior of D:

$$f(a) = \frac{1}{2\pi i} \oint_{\gamma} \frac{f(z)}{z - a} \, dz$$

where the contour integral is taken counter-clockwise.

7 Annexe

Theorem 34 (Tower)

$$\begin{split} E[1_{Y \in B}F(y)] &= \int 1_{y \in B}F(y)f(y)dy \\ &= \int 1_{y \in B}(\int 1_{x \leq y}f(x)dx)f(y)dy \\ &= \int 1_{y \in B}1_{x \leq y}f(x)f(y)dxdy & Tonnelli, positive \\ &= \int 1_{y \in B}1_{x \leq y}dP_{X,Y} \\ &= E[1_{Y \in B}1_{X \leq Y}] \end{split}$$

F(Y) is $\sigma(Y)$ -measurable. So $P(X \le Y|Y) = E[1_{X \le Y}|Y] = F(Y)$

1. Continuous distributions.

	Name	Parameters	Density $f_X(x)$	Ch. function $\varphi_X(t)$
1	Uniform	a < b	$\frac{1}{b-a} 1_{[a,b]}(x)$	$\frac{e^{-ita} - e^{-itb}}{it(b-a)}$
2	Symmetric Uniform	<i>a</i> > 0	$\frac{1}{2a} 1_{[-a,a]}(x)$	sin(at) at
3	Normal	$\mu \in \mathbb{R}, \sigma > 0$	$\frac{1}{\sqrt{2\pi\sigma^2}} \exp(-\frac{(x-\mu)^2}{2\sigma^2})$	$\exp(i\mu t - \frac{1}{2}\sigma^2 t^2)$
4	Exponential	$\lambda > 0$	$\lambda \exp(-\lambda x) 1_{[0,\infty)}(x)$	$\frac{\lambda}{\lambda - it}$
5	Double Exponential	$\lambda > 0$	$\frac{1}{2} \lambda \exp(-\lambda x)$	$\frac{\lambda^2}{\lambda^2 + t^2}$
6	Cauchy	$\mu \in \mathbb{R}, \gamma > 0$	$\frac{\gamma}{\pi(\gamma^2+(x-\mu)^2)}$	$\exp(i\mu t - \gamma t)$

2. Discrete distributions.

	Name	Parameters	Distribution μ_X ,	Ch. function $\varphi_X(t)$
7	Dirac	$c \in \mathbb{R}$	δ_c	exp(itc)
8	Biased Coin-toss	$p \in (0,1)$	$p\delta_1 + (1-p)\delta_{-1}$	$\cos(t) + (2p-1)i\sin(t)$
9	Geometric	<i>p</i> ∈ (0,1)	$\sum_{n\in\mathbb{N}_0} p^n (1-p) \delta_n$	$\frac{1-p}{1-e^{it}p}$
10	Poisson	$\lambda > 0$	$\sum_{n\in\mathbb{N}_0}e^{-\lambda}\frac{\lambda^n}{n!}\delta_n,n\in\mathbb{N}_0$	$\exp(\lambda(e^{it}-1))$

3. A singular distribution.

Gamma

Figure 1: Distributions(gamma mean var)

8 Common distribution

Order	Non-central moment	Central moment
1	$\mid \mu$	0_
2	$\mu^2 + \sigma^2$	σ^2
3	$\mu^3 + 3\mu\sigma^2$	0
4	$\mu^4 + 6\mu^2\sigma^2 + 3\sigma^4$	$3\sigma^4$
5	$\mu^{5} + 10\mu^{3}\sigma^{2} + 15\mu\sigma^{4}$	0
6	$\mu^6 + 15\mu^4\sigma^2 + 45\mu^2\sigma^4 + 15\sigma^6$	$15\sigma^6$
7	$\mu^7 + 21\mu^5\sigma^2 + 105\mu^3\sigma^4 + 105\mu\sigma^6$	0
8	$\mu^{8} + 28\mu^{6}\sigma^{2} + 210\mu^{4}\sigma^{4} + 420\mu^{2}\sigma^{6} + 105\sigma^{8}$	$105\sigma^8$