

Введение в BGP

BGP

- Border Gateway Protocol v4, RFC 4271 и много других
 - Протокол динамической маршрутизации класса EGP
 - Наследник протокола EGP (Exterior Gateway Protocol, RFC 827)
 - Не путайте EGP и EGP, это вам не это!
 - Работает между автономными системами
 - Multiprotocol Extensions (MP-BGP, RFC 4760)
- Использует ТСР-подключение на порт 179
- Масштабируемый и безопасный
 - Создан для работы с миллионами маршрутов
 - Протокол-то выдержит, а вот железо...
 - Создан для работы с недоверенными пирами
 - Не создан для быстрой сходимости

Особенности IGP и EGP

- В своей AS все устройства находятся под общим контролем
 - Любые устройства доверенные
 - Разумное (и предсказуемое) количество префиксов
 - Трафик отправляется по оптимальному маршруту
 - Скорость сходимости сети важна и подконтрольна
 - Если что-то не нравится, можно перенастроить
 - В случае возникновения проблемы понятны зоны ответственности
- При стыке с чужими AS все наоборот

Номера AS

- Важный параметр для работы BGP
 - Изначально определен как 16-битное число (0-65535)
 - В 2007 году расширен до 32 бит (поддержка обязательна с 2010 года)
 - Нотация ASPLAIN одно десятичное число (например, 65550)
 - Нотация ASDOT два 16-битных десятичных числа через точку (например, 1.14)
- Распределяются IANA через региональные регистраторы (RIR)
 - Зарезервированные IANA значения: 0, 65535 и 65535.65535
 - Значения для использования в документации: 64496–64511 и 1.1–1.15
 - Частные номера: 64512-65534 и 64086.59904 (4200000000)-65535.65534

Особенности BGP

- BGP принимает "чужие" маршруты
- BGP выбирает один лучший маршрут до сети (best path)
 - Выбор основывается на атрибутах пути, которые не отражают физические свойства маршрута; лучший не обязательно самый быстрый
 - Исходящий трафик можно контролировать, выбирая лучший маршрут
- BGP анонсирует "свои" префиксы
 - Пользуются анонсируемыми нами маршрутами наши пиры
 - Контролировать выбор маршрута пирами в общем случае нельзя
- Самое главное в BGP политики
 - Политики приема маршрутов от пира
 - Политики выбора маршрутов для отправки пиру
 - Политики модификации маршрутов и выбора лучшего маршрута

Принцип работы BGP

- Path Vector Algorithm
 - Дистанционно-векторный алгоритм дополнен информацией о пути трафика
 - Роутеры получают часть информации о топологии (но не саму топологию)
- BGP отправляет в анонсах лучшие пути трафика и их атрибуты
 - Префиксы, которые доступны по этому пути
 - Список автономных систем на пути

Характеристики BGP

Networking For everyone

- Использует ТСР, порт 179
 - Требует ручного прописывания соседей
 - Keepalive-сообщения для проверки соседства
- Огромный вектор метрик (атрибутов)
 - Список автономных систем по пути маршрута (AS-Path)
 - Несколько вариантов приоритета
 - Приоритет в собственной AS (Local Preference)
 - Рекомендуемый приоритет в соседской AS (Multi-Exit Discriminator)
 - Next-hop
 - Происхождение маршрута (Origin)
 - ...
- IP-адреса и номера AS соседей нужно прописывать вручную

Сообщения BGP

- В TCP-сессии BGP обменивается следующими сообщениями:
 - **Open**: согласование параметров соседства
 - **Keepalive**: проверка соседства
 - **Update**: передача маршрутной информации
 - Notification: завершение сессии

EBGP и IBGP

- BGP, как протокол EGP, рассчитан на работу в определенных условиях
 - Много маршрутов, в том числе и от неподконтрольных соседей
- Некоторые BGP-пиры могут быть из своей автономной системы
 - EBGP: сосед из чужой AS, режим тотального недоверия
 - IBGP: сосед из своей AS, режим частичного доверия
 - Протокол один и тот же, разные именно режимы работы

Характеристики EBGP и IBGP соседств

- Exterior BGP neighborship
 - Соседство между пирами разных AS
 - Должны быть в одном канале
 - Атрибуты модифицируются отправителем
 - В первую очередь AS-Path и Next-Hop

- Соседство между пирами одной AS
- Могут соединяться через транзитные роутеры
 - Требует IGP для нахождения пути до соседей
 - Требует полносвязность соседств
- Атрибуты не модифицируются при отправке

IBGP и Next Hop

- При отправке маршрутов IBGP-соседу атрибуты не меняются
 - Как следствие, атрибут Next Hop для внешних маршрутов будет сохраняться
 - Обычно у IBGP-соседей нет маршрутов до этих адресов

- Два варианта решения проблемы
 - Импортировать адреса EBGP-соседей в IGP
 - Поменять адрес Next Hop перед отправкой маршрутов IBGP-соседям

Дизайн соседства IBGP

- Networking For everyone
- Маршруты от IBGP-соседей не передаются другим IBGP-соседям everyone
 - Между любыми двумя роутерами AS требуется соседство
 - На каждом роутере может быть много адресов
- Сессии ставятся с адресов виртуальных интерфейсов (Loopback)
 - Адреса анонсируются в IGP
 - Отказ отдельного канала не влияет на связь
 - Одна сессия на каждую пару роутеров

Дизайн соседства EBGP

- По умолчанию IP-пакеты до EBGP-соседа отправляются с TTL=1^{For everyone}
 - А принимаются с любым
 - Иногда это неудобно (например, если хочется поднять сессию с Loopback)
 - Иногда это небезопасно (можно устроить SYN DoS атаку)
- Проблему можно решить двумя способами:
 - EBGP Multihop предписывает отправлять пакеты с заданным TTL
 - BGP TTL Security предписывает отправлять пакеты всегда с TTL=255
 - А вот принимать только с указанным, это легко проверить и тяжело подделать
 - Generalized TTL Security Mechanism
 - Нужно включать с обеих сторон

Состояния соседства BGP

Networking For everyone

- Соседство BGP проходит через состояния:
 - **Idle**: роутер не пытается установить соседство
 - Нет маршрута до соседа, наложенные санкции, и т.п.
 - Active: отправлен TCP SYN
 - Connect: получен TCP SYN (в том числе при входящей сессии)
 - OpenSent: TCP-сессия установлена, отправлено Open
 - OpenConfirm: получено корректное Open, ждем Keepalive
 - Established: все в порядке, соседство установлено

Проблемы с установлением соседства

- Неправильный ІР-адрес соседа
 - Также недоизученный в IGP адрес IBGP-соседа
- Неправильный ІР-адрес источника
 - Также недопрописанное соседство на соседе
- Ошибки в указании номеров AS
 - Open будет принято только от правильного IP-адреса и с правильной AS

Networking For everyone