Methods of Applied Mathematics

Homework 1 (Due on Friday, Sep 16)

Wenhao Wang

CAM Program UT EID: WW745

Exercises 1.4

1. (a) Proof: $\emptyset, X \in T$; Let $\{U_i\}_{i \in I} \subset T$, then

$$\bigcup_{i \in I} U_i = \left\{ \begin{array}{ll} \emptyset & \text{If all } U_i = \emptyset; \\ X & \text{If there is a } U_i \text{ which is } X. \end{array} \right\} \in T$$

Let $\{V_j\}_{j=1}^n \subset T$, then

$$\bigcap_{j=1}^{n} V_{j} = \left\{ \begin{array}{l} \emptyset & \text{If there is a } V_{j} \text{ which is } \emptyset; \\ X & \text{If all } V_{j} = X. \end{array} \right\} \in T$$

Therefore, T is a topology on X.

(b) **Proof:** $\forall x \in X, \exists \{x\} \in T_B \text{ such that } x \in \{x\};$

If $x \in B_1 \cap B_2$, where $B_1, B_2 \in T_B$, then $B_1 = B_2 = \{x\}$. Therefore, there is $\{x\} \in T_B$ such that $x \in \{x\} \subset B_1 \cap B_2$. According to proposition 1.2

$$\tau = \{U \subset X : U \text{ is a union of sets in } T_B\}$$

$$= 2^X \qquad \text{(The collection of all subsets in } X\text{)}$$

is a topology on X.

(c) **Proof:** If X is finite, then any subset in X has finite complements. So $\tau = 2^X$, which is discrete topology on X.

2. Proof: We only need to show that

X is not a Housdorff space.

Since $\tau = \{\emptyset, X, \{a\}\}\$, the unique neighborhood of $b \in X$ is X, so there are no disjoint neighborhoods of a and b. Therefore, X is not a Housdorff space.

- **4. Proof:** If X contains only one point x, then it's obvious that $X = \{x\}$ is closed. Let X contains more than one point and $x_0 \in X, y \in \{x_0\}^c$ (That is $y \neq x_0$).
 - X is Housdorff
 - \Rightarrow There are disjoint neighborhoods U_1 and U_2 such that $x_0 \in U_1, y \in U_2$.
 - $\Rightarrow y \in U_2 \subset \{x_0\}^c$.
 - $\Rightarrow \{x_0\}^c \text{ open } \Rightarrow \{x_0\} \text{ closed.}$

Then we prove: limits of sequences are unique.

If
$$\{x_n\} \subset X, x_n \to x, x_n \to y$$
. Suppose $x \neq y$.

- X is Housdorff
- \Rightarrow There are disjoint neighborhoods U_1 and U_2 such that $x \in U_1, y \in U_2$.
- $x_n \to x \Rightarrow \exists N_1, \forall n > N_1$, we have $x_n \in U_1$.
- $x_n \to y \Rightarrow \exists N_2, \forall n > N_2$, we have $x_n \in U_2$.
- So when $n > \max\{N_1, N_2\}, x_n \in U_1 \cap U_2 = \emptyset$, which is a contradiction!
- **6. Proof:** " \Rightarrow ": If $f: X \to Y$ is continuous, let $F \subset Y$ closed, then
- $\Rightarrow (f^{-1}(F))^c = f^{-1}(F^c)$ open.
- $\Rightarrow f^{-1}(F)$ is a closed set.
- " \Leftarrow ": Let $U \subset Y$ open, then $U^c \subset Y$ closed.
- $\Rightarrow f^{-1}(U) = (f^{-1}(U^c))^c$ open.
- $\Rightarrow f: X \to Y$ is continuous.
- 7. Proof: Let U be an open neighborhood of f(x). Then

f is continuous $\Rightarrow x \in f^{-1}(U)$ open.

$$x_n \to x \Rightarrow \exists N, \forall n > N, \text{ we have } x_n \in f^{-1}(U).$$

- $\Rightarrow f(x_n) \in U \text{ (when } n > N)$
- $\Rightarrow f(x_n) \to f(x) \ (n \to \infty).$

9. Proof: Let (X,d) be a metric space, $x,y \in X, x \neq y$. Then the two open balls

$$B(x, \frac{d(x,y)}{2})$$
 and $B(y, \frac{d(x,y)}{2})$

are disjoint neighborhoods of x and y.

Therefore, (X, d) is Horsdorff.

11. Proof: The infinite open cover of (0,1] that has no finite subcover:

$$\mathcal{A} = \{I_n = (\frac{1}{n}, 2) : n \in \mathbb{N}\}\$$
 $(\mathbb{N} = \{1, 2, 3, \dots\})$

 $\forall x \in (0,1], \exists n \in \mathbb{N}, \text{ such that } \frac{1}{n} < x.$ $\Rightarrow x \in (\frac{1}{n}, 2) = I_n \subset \bigcup_{n \in \mathbb{N}} I_n.$ $\Rightarrow (0,1] \subset \bigcup_{n \in \mathbb{N}} I_n.$

$$\Rightarrow x \in (\frac{1}{n}, 2) = I_n \subset \bigcup_{n \in \mathbb{N}} I_n$$

$$\Rightarrow (0,1] \subset \bigcup_{n \in \mathbb{N}} I_n.$$

So \mathcal{A} is an open cover of (0,1].

Suppose \mathcal{A} has a finite subcover of (0,1]:

$$\mathcal{A}' = \{ I_{n_k} \in \mathcal{A} : 1 \le k \le m \}$$

Let $n_0 = \max_{1 \le k \le m} n_k$, then we have

$$\frac{1}{2n_0} \in (0,1], \text{ but } \frac{1}{2n_0} \in \bigcup_{k=1}^m I_{n_k}.$$

So \mathcal{A} doesn't have a finite subcover of (0,1].

The sequence in (0,1] that doesn't have a convergent subsequence:

$$\{\frac{1}{n}\}_{n=1}^{\infty}$$