RÉSUMÉ n°11: LES ÉQUATIONS DIFFÉRENTIELLES

LES ÉQUATIONS DIFFÉRENTIELLES LINÉAIRES DU PREMIER ORDRE

Dans ce qui suit : $\begin{cases}
\overline{I} \text{ est un intervalle} \\
\overline{a,b:I\to\mathbb{C}} \text{ sont deux fonctions$ **continues** $sur } I
\end{cases}$ est une primitive de a sur I

b) b(x) s'appelle le second membre de (E).

D1 a)L'équation (E): y'+a(x).y=b(x) s'appelle une équation différentielle linéaire du premier ordre.

c) L'équation $(E_m): y'+a(x), y=0$ s'appelle l'équation différentielle sans second membre (ou homogène) associée à (E).

P1 L'ensemble des solutions sur I de l'équation sans second membre $(E_m): y'+a(x).y=0$ est constitué des fonctions : $y_m: x \mapsto \lambda.e^{-A(x)}$ où λ est une constante réelle ou complexe quelconque.

E1 Résoudre sur \mathbb{R} l'équation différentielle suivante : (E) : $y' + 2x \cdot y = 0$.

P2 L'ensemble des solutions sur I de l'équation (E) : y'+a(x).y=b(x) est constitué des fonctions y de la forme

 $y = y_0 + y_m$ avec: y_0 solution particulière de (E): $y' + a(x) \cdot y = b(x)$ sur I.

 y_m solution générale de (E_m) : y'+a(x).y=0 sur I.

L'ensemble des solutions sur I de l'équation (E): y'+a(x).y=b(x) est donc constitué des fonctions y de la forme :

 $\forall x \in I : y(x) = y_0(x) + \lambda e^{-A(x)}$ avec :

 y_0 solution particulière de (E) : y'+a(x).y=b(x) sur I.

arbitraire constante réelle ou complexe arbitraire.

Résoudre sur \mathbb{R} l'équation différentielle suivante : (E) : y'+2y=3.

P3 Si $y_0: I \to \mathbb{C}$ est une fonction définie par $\forall x \in I: y_0(x) = \lambda(x).e^{-A(x)}$ avec la condition $\forall x \in I: \lambda'(x).e^{-A(x)} = b(x)$, alors y_0 est une **solution particulière** de (E): y'+a(x).y=b(x) sur I.

D2 C'est la méthode de variation de la constante.

Résoudre sur \mathbb{R} l'équation différentielle suivante : (E) : $y'-y=e^x$.

P4 On considère : $\begin{cases} \text{L'équation } (E) : \boxed{y'+a(x).y=b(x)} \text{ sur } I \\ x_0 \in I \text{ fix\'e} \\ \alpha \in \mathbb{C} \text{ fix\'e} \end{cases}$

Le système suivant (*) : $\begin{cases} y' + a(x).y = b(x) \\ y(x_0) = \alpha \end{cases}$ admet alors une **unique solution** sur I.

D3 La condition $|y(x_0) = \alpha|$ s'appelle une condition initiale de (*).

E4 Résoudre sur \mathbb{R} le système (*) :

RECOLLEMENT D'UNE ÉQUATION DIFFÉRENTIELLE LINÉAIRE DU PREMIER ORDRE

Soit l'équation différentielle (E) : $a(x) \cdot y' + b(x) \cdot y = c(x)$ avec $a,b,c: \mathbb{R} \to \mathbb{C}$ continues sur \mathbb{R} .

D4 L'équation (E): $a(x) \cdot y' + b(x) \cdot y = c(x)$ est dite sous forme non résolue.

Faisons l'étude dans le cas particulier où $\forall x \in \mathbb{R} : |a(x) = x|$.

On considère donc (E): |x.y'+b(x).y=c(x)|. On se sert de l'équivalence :

 $y: \mathbb{R} \to \mathbb{C}$ est solution de (E): [x.y'+b(x).y=c(x)] sur \mathbb{R} \Leftrightarrow $\begin{cases} y \text{ est solution de } (E'): [y'+\frac{b(x)}{x}.y=\frac{c(x)}{x}] \text{ sur }]-\infty, 0[x] \end{cases}$

v est **dérivable** en 0

a) Sur $]0, +\infty[$, (E) est **équivalente** à (E'): $y' + \frac{b(x)}{x}$, $y = \frac{c(x)}{x}$. L'équation (E') est alors sous **forme résolue**.

En résolvant |(E')| sur $]0,+\infty[$, on obtient les solutions de |(E)| sur $]0,+\infty[$ sous la forme

 $\forall x \in]0,+\infty[: \boxed{y(x) = y_1(x) + \lambda e^{-A(x)}}.$

b)Sur] $-\infty$,0[, (E)] est aussi **équivalente** à (E') : $y' + \frac{b(x)}{x} \cdot y = \frac{c(x)}{x}$.

En résolvant $|(E')| \sin]-\infty,0[$, on obtient les solutions de $|(E)| \sin]-\infty,0[$ sous la forme

 $\forall x \in]-\infty, 0[:|y(x) = y_2(x) + \mu e^{-A(x)}|$

c)On veut aussi que y soit continue en 0.

On cherche donc les constantes λ et μ vérifiant $\lim_{\substack{x \to 0 \ x \to 0}} y(x) = \lim_{\substack{x \to 0 \ x \to 0}} y(x)$ c'est à dire :

- (i) $\lim_{x \to 0} \left(y_2(x) + \mu e^{-A(x)} \right) = \lim_{x \to 0} \left(y_1(x) + \lambda e^{-A(x)} \right)$, ces limites devant être <u>finies</u>: leur valeur commune sera appelée y(0).
- d)On veut aussi que y soit dérivable en 0.

On cherche donc les constantes λ et μ vérifiant $\lim_{x \to 0} \frac{y(x) - y(0)}{x - 0} = \lim_{x \to 0} \frac{y(x) - y(0)}{x - 0}$ c'est à dire :

 $\left(\frac{y_2(x) + \mu e^{-A(x)} - y(0)}{x - 0}\right) = \lim_{x \to 0} \left(\frac{y_1(x) + \lambda e^{-A(x)} - y(0)}{x - 0}\right), \text{ ces limites devant être } \underline{\text{finies}}.$

Leur valeur commune sera appelée y'(0).

e) Conclusion : Les solutions $y: \mathbb{R} \to \mathbb{C}$ de (E) sur \mathbb{R} seront donc définies par : $\begin{cases} \forall x \in]-\infty, 0[: y(x) = y_2(x) + \mu e^{-A(x)}] \\ \forall x \in]0, +\infty[: y(x) = y_1(x) + \lambda e^{-A(x)}] \\ y(0) \text{ étant calculé en c} \end{cases}$ les constantes λ et μ vérifiant c) et d.

E5 Résoudre sur \mathbb{R} l'équation différentielle suivante : (E) : x.y'+y=-x.

LES ÉQUATIONS DIFFÉRENTIELLES LINÉAIRES DU SECOND

LES ÉQUATIONS DIFFÉRENTIELLES LINÉAIRES DU SECOND ORDRE À COEFFICIENTS CONSTANTS

- **D5** a)L'équation (E): a.y"+b.y'+c.y=d(x) s'appelle une équation différentielle linéaire du second ordre à coefficients constants.
 - b) d(x) s'appelle le second membre de (E).
 - c)L'équation (E_m) : a.y"+b.y'+c.y=0 s'appelle l'équation différentielle sans second membre (ou homogène) associée à (E).
 - d)L'équation du second degré (*) : $a.r^2 + b.r + c = 0$ s'appelle l'équation caractéristique de (E).
- **P5** On considère l'équation (E_m) : a.y"+b.y'+c.y=0.
 - a) Si l'équation caractéristique (*) : $a.r^2 + b.r + c = 0$ admet deux racines réelles ou complexes r_1 et r_2 distinctes, alors l'ensemble des solutions de (E_m) sur \mathbb{R} est constitué des fonctions :

 $y: x \mapsto \lambda . e^{\eta . x} + \mu . e^{\eta . x}$, λ et μ étant deux constantes réelles ou complexes arbitraires.

b)Si l'équation caractéristique (*) : $a.r^2 + b.r + c = 0$ admet une racine réelle ou complexe r_i double, alors l'ensemble des solutions de (E_m) sur \mathbb{R} est constitué des fonctions :

 $y: x \mapsto \lambda e^{\eta \cdot x} + \mu \cdot x \cdot e^{\eta \cdot x}$, λ et μ étant deux constantes réelles ou complexes arbitraires.

- **E7** Résoudre sur \mathbb{R} l'équation différentielle suivante : (E) : y'' = y.
- **E** Résoudre sur \mathbb{R} l'équation différentielle suivante : (E) : y'' + 2y' + y = 0.

P6 On considère à nouveau l'équation (E_m) : a.y"+b.y'+c.y=0. On suppose que a,b,c sont **réels** et que l'équation (*) : $a.r^2 + b.r + c = 0$ admet un **discriminant strictement négatif**. (*) admet donc deux racines complexes conjuguées $r_1 = \alpha + i \cdot \beta$ et $r_2 = \alpha - i \cdot \beta$. L'ensemble des solutions de (E_m) sur $\mathbb R$ est alors constitué des fonctions : $y: x \mapsto \lambda_1 e^{\alpha x} \cdot \cos(\beta x) + \lambda_2 e^{\alpha x} \cdot \sin(\beta x)$, λ_1 et λ_2 étant deux constantes réelles ou complexes arbitraires. Résoudre sur \mathbb{R} l'équation différentielle suivante : (E) : y'' + y' + y = 0. **P7** L'ensemble des solutions sur I de l'équation (E): a.y"+b.y'+c.y=d(x) est constitué des fonctions y de la forme $y = y_0 + y_m$ avec : y_0 solution particulière de (E): a.y"+b.y'+c.y=d(x) sur I. y_m solution générale de (E_m) : a.y"+b.y'+c.y=0 sur I. **E10** Résoudre sur \mathbb{R} l'équation différentielle suivante : (E) : $y'' + y = e^x$. **Méthode pour obtenir une solution particulière de l'équation** (E) : a.y"+b.y'+c.y=d(x) : a) Si le second membre est de la forme $d(x) = P(x) e^{mx}$ avec P polynôme et m constante complexe, alors on cherche une solution particulière de |E| sur I sous la forme $|y_0(x)| = H(x) e^{mx}$ b)On dérive deux fois y_0 , on remplace les expressions obtenues dans la relation $a.y_0'' + b.y_0' + c.y_0 = P(x).e^{m.x}$ et on en déduit d'abord le **degré** de H avant de déterminer l'**expression** de H, puis celle de y_0 **E11** Résoudre sur \mathbb{R} l'équation différentielle suivante : (E) : $y'' - 5y' + 6y = x \cdot e^{2x}$. **PB** $d_1, d_2 : I \to \mathbb{C}$ sont deux fonctions **continues** sur I. On considère les équations différentielles suivantes : (E) : $a.y'' + b.y' + c.y = d_1(x) + d_2(x)$ (E_1) : $a.y''+b.y'+c.y=d_1(x)$ $(E_2): a.y''+b.y'+c.y=d_2(x)$ Si y_1 est une solution particulière de $|(E_1)|$ sur I. Si y_2 est une solution particulière de (E_2) sur I. Alors $y_1 + y_2$ est une **solution particulière** de |E| sur I. **D6** C'est la méthode de superposition des solutions particulières.

E12 Résoudre sur \mathbb{R} l'équation différentielle suivante : (E) : $y'' + y = \cos(x)$.

P9 On considère :
$$\begin{cases} \text{L'équation } (E) : \boxed{a.y"+b.y'+c.y=d(x)} \text{ sur } I \\ \hline x_0 \in I \text{ fixé} \\ \hline (\alpha,\alpha') \in \mathbb{C}^2 \text{ fixé} \end{cases}$$

Le système suivant (*) :
$$\begin{cases} a.y'' + b.y' + c.y = d(x) \\ y(x_0) = \alpha \\ y'(x_0) = \alpha' \end{cases}$$
 admet alors une **unique solution** sur I .

D7 Les conditions
$$y(x_0) = \alpha$$
 et $y'(x_0) = \alpha'$ s'appellent des **conditions initiales** de (*).

E13 Résoudre sur
$$\mathbb{R}$$
 le système (*) :
$$\begin{cases} y'' + y' - 2y = 0 \\ y(0) = 0 \\ y'(0) = 2 \end{cases}$$
.

QUELQUES PROLONGEMENTS

Voici deux exemples d'équations différentielles linéaires du second ordre à coefficients non constants.

Pour les résoudre, on doit donner une indication.

E14 On considère l'équation différentielle (*) :
$$(1-x^2) \cdot y'' - x \cdot y' + y = 0$$
. On pose $\forall t \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[: z(t) = y(\sin(t))$.

- 1°)Montrer que y est solution de (*) sur]-1,1[si et seulement si z est solution sur $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$ d'une équation différentielle (**) que l'on déterminera.
- 2°)Résoudre (**) sur $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$ puis résoudre (*) sur]-1,1[.

E15 On pose (E):
$$(1+x).y''-2y'+(1-x).y=0$$
.

1°)Chercher une solution particulière non nulle y_0 de (E) sur $\mathbb R$.

2°)On posant $\forall x \in]-1,+\infty[: y(x)=y_0(x)\times z(x)$, résoudre (E) sur $]-1,+\infty[$.

FIN DU RÉSUMÉ