PROJECT FORMULATION

Data and Variables

- $E = \{e_1, e_2, ..., e_i\}$ $\exists i = 1, ..., n : set of exams, i \in N$
- $S = \{ s_1, s_2, ..., s_i \}$ $\exists i = 1, ..., n : set of students, i \in N$
- $\bullet \quad \mathbf{T} = \{\ t_1, \, t_2, \, \, t_i\ \} \quad \exists \ i = 1, \, ..., \, n \qquad \exists \ t_1 < t_2 < < t_i \ : \text{set of ordered timeslots, } i \in N$
- $\bullet \quad X_{ij} = \text{student } s_i \text{ is enrolled in exam } e_j \text{ , } X_{ij} \in \{0,1\}, \quad \exists \ s_i \in S, \quad e_j \in E$
- $Y_{ij} = \text{exam } e_i \text{ takes place at timeslot } t_j, Y_{ij} \in \{0, 1\}, \quad \exists e_i \in E, \quad t_j \in T$
- $n_{e_j} = \sum_{i=1}^n X_{ij}$: number of students enrolled in exam e_j , $n_{e_j} \in \{0, ..., n\}$
 - $W_{m,p} = [e_m, e_p]$: set of pairs of conflicting exams e_m and e_p
 - If 2 exams e_m and e_p are conflicting, we have: $Y_{mj} = 1, \quad \exists \ m \in E \text{, for the first exam}$ $Y_{p,j+k} = 1 \quad \exists \ p \in E \ and \ p \neq m, \ \exists \ 1 \leq k < 5 \text{ , for the next exam and the}$ penalty is: $Z_{m, p, j, j+k} = 2^{5-k} \cdot \frac{n_{e_{m,p}}}{|S|}$

Constraints

- $\sum_{i=m,p} Y_{ij} = 1$: conflicting exams e_m and e_p can't take place in the same time-slots.
- $\sum_{i=1}^{n} \sum_{j=1}^{n} Y_{ij} = 1$: each exam is scheduled exactly once during the examination period (= sum of all the timeslots).

PROJECT FORMULATION

Objective function

$$\operatorname{Min} \sum_{j=0}^{n} \sum_{i=0}^{n} Z_{m,p,j,j+k}$$