511506022 何佳玲 312605003 王語 312611096 黄鉦淳

- 1. Explanation of your firmware code
 - How does it execute a multiplication in assembly code

在 FIR.C 檔案中分兩個部分:

1. Initial fir

Outputsignal 預先歸 0

```
//initial your fir
for(int a=0 a<N;a++){
    outputsignal[a] = 0;
}
```

2. Main fir.c

累加 inputsignal 和 taps 的乘積,計算 outputsignal 的值

```
for(int i=0;i<N;i++){
    for(int j=0;j<=i;j++){
        outputsignal[i] = outputsignal[i] + inputsignal[i-j] * taps[j];
    }
}</pre>
```

What address allocate for user project and how many space is required to allocate to firmware code

From 0x3800_0000 to 0x3800_0308 (actually is 0x3800_030A) 780*8bits = 780 Bytes

2. Interface between BRAM and wishbone

Waveform from xsim

1. Wishbond:

Cyc_i & ack_o 差 10cycle

Input:

Valid = wbs_cyc_i && wbs_stb_i; wstrb= wbs_sel_i & {4{wbs_we_i}};

Output:

wbs_dat_o = ready;

if(vaild && !ready) => ready 下一個 clk 輸入 1

2. Bram:

藍色: 表示 wishbond input signal

黄色: 表示 Bram get signal

3. Simulation result

```
a605@605:~/soclab/lab4_1/lab-exmem_fir/testbench/counter_la_fir$ source run_sim
Reading counter la fir.hex
counter_la_fir.hex_loaded into memory
Memory 5 bytes = 0x6f 0x00 0x00 0x0b 0x13
VCD info: dumpfile counter_la_fir.vcd opened for output.
          0 mprj: D data = -1
1 mprj: D data = 0
                                         H data = ffff
                                         H data = 0000
          2 mprj: D data = -21696
                                         H data = ab40
LA Test 1 started
          3 mprj: D data =
                                         H data = 0000
                              -10
-29
-25
          4 mprj: D data =
                                         H data = fff6
          5 mprj: D data =
                                         H data = ffe3
          6 mprj: D data =
                                         H data = ffe7
                                      H data = 0023
H data = 009e
H data = 0151
                               35
          7 mprj: D data =
                              158
          8 mprj: D data =
          9 mprj: D data =
                               337
                                         H data = 0151
         10 mprj: D data =
                             539
                                         H data = 021b
         11 mprj: D data =
                             732
                                         H data = 02dc
         12 mprj: D data = 915
13 mprj: D data = 1098
                                         H data = 0393
                                         H data = 044a
         14 mprj: D data = -21679
                                         H data = ab51
LA Test 2 passed
a605@605:~/soclab/lab4_1/lab-exmem_fir/testbench/counter_la_fir$
```

4. Synthesis report

```
1. Slice Logic
                       | Used | Fixed | Prohibited | Available | Util% |
 Slice LUTs*
                         23
                                 0 |
                                             0 |
                                                     53200 | 0.04
   LUT as Logic
                                 0 |
                                             0 |
                                                    53200 0.04
   LUT as Memory
                          0
                                 0 |
                                             0 |
                                                     17400 | 0.00
 Slice Registers
                                 0 |
                                             0 |
                                                    106400 | 0.02
   Register as Flip Flop
                                 0 l
                                             0 |
                                                    106400 | 0.02
   Register as Latch
                          0 |
                                 0 l
                                             0 l
                                                    106400 | 0.00
 F7 Muxes
                                  0 l
                                                     26600 | 0.00
                          0 |
                                              0 l
                           0
                                               0 l
                                                     13300 | 0.00
 F8 Muxes
                                   0 |
```

1.1 Summary of Registers by Type							
+ Total	Clock Enable	Synchronous	++ Asynchronous				
+	_ _ _ Yes Yes Yes Yes Yes	- Set Reset - - Set Reset	- Set Reset - - Set Reset -				

2. Memory

+	+	+	+	·	++
Site Type	Used	Fixed	Prohibited	Available	Util%
	+		+	+	++
Block RAM Tile	1		0	140	0.71
RAMB36/FIFO*	1		0	140	0.71
RAMB36E1 only	1				1 1
RAMB18	0		0	280	0.00

* Note: Each Block RAM Tile only has one FIFO logic available and therefore can acacommodate a RAMB18E1

| Site Type | Used | Fixed | Prohibited | Available | Util% |
| DSPs | 0 | 0 | 0 | 220 | 0.00 |

+	+	+		+	++
Site Type	Used	Fixed	Prohibited	Available	Util%
	+	+		+	++
Bonded IOB	84	0		125	67.20
Bonded IPADs	0	0		2	0.00
Bonded IOPADs	0	0		130	0.00
PHY_CONTROL	0	0		4	0.00
PHASER_REF	0	0		4	0.00
OUT_FIFO	0	0		16	0.00
IN_FIFO	0	0		16	0.00
IDELAYCTRL	0	0		4	0.00
IBUFDS	0	0		121	0.00
PHASER_OUT/PHASER_OUT_PHY	0	0		16	0.00
PHASER_IN/PHASER_IN_PHY	0	0		16	0.00
IDELAYE2/IDELAYE2_FINEDELAY	0	0		200	0.00
ILOGIC	0	0		125	0.00
OLOGIC	0	0		125	0.00
	+	+		+	++

5. Clocking

_						
	Site Type	Used	Fixed	Prohibited	Available	Util%
1	BUFGCTRL	1	0	0	32	3.13
	BUFIO	0	0	0	16	0.00
	MMCME2_ADV	0	0	0	4	0.00
	PLLE2 ADV	0	0	0	4	0.00
	BUFMRCE	0	0	0	8	0.00
	BUFHCE	0	0	0	72	0.00
	BUFR	0	0	0	16	0.00

6. Specific Feature

Site Type	Used	Fixed	Prohibited	Available	++ Util%
BSCANE2	0	0	0	4	0.00
CAPTUREE2	0	0	0	1	0.00
DNA_PORT	0	0	0	1	0.00
EFUSE_USR	0	0	0	1	0.00
FRAME_ECCE2	0	0	0	1	0.00
ICAPE2	0	0	0	2	0.00
STARTUPE2	0	0	0	1	0.00
XADC	0	0	0	1	0.00
+	+	+	+	+	++

7. Primitives					
+	+	·			
Ref Name	Used	Functional Category			
+ IBUF	 51	+ l 10			
OBUF	33	10			
LUT2	22	LUT			
FDRE	17	Flop & Latch			
CARRY4	4	CarryLogic			
LUT4	3	LUT			
LUT5	2	LUT			
LUT3	2	LUT			
RAMB36E1	1	Block Memory			
LUT6	1	LUT			
BUFG	1	Clock			
+		+			

Setup		Hold		Pulse Width		
Worst Negative Slack (WNS):	0.347 ns	Worst Hold Slack (WHS):	0.207 ns	Worst Pulse Width Slack (WPWS):	1.056 ns	
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns	
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	
Total Number of Endpoints:	33	Total Number of Endpoints:	33	Total Number of Endpoints:	20	
All user specified timing cons	trainte are	mot				

reate_clock -period 6.000 -name sys -waveform {0.000 3.000} -add [get_ports wb_clk_i]

5. Other discoveries

在做 syn 時因為只有針對 counter.v & bram.v syn 因此 default_nettype 需要 改成 wire (原本定義在 define 的檔案)

`default_nettype wire

```
Valid 打解:

Slave only "strab & cycle"==| roo logic output

slave would drive "read-data"

WStrb I 有語:

decoder 根状 怎

wbs-sel-i & wbs-we_i = output 4 bit for BRAM Decoder
```

