Algorithm for the skip gram word2vec model

let $\mathbf{U} \in \mathbb{R}^{K imes N}$ be our center word embeddings corresponding to $\mathbf{x}_{\scriptscriptstyle w}$

 $\forall (\mathbf{x}_w, \mathbf{x}_c) \in D \text{ do:}$

 $\mathbf{U}_{w} \leftarrow \mathbf{U}_{w} - \eta \nabla_{\mathbf{U}_{w}} NLL$

set $\mathbf{u}_{\scriptscriptstyle W} = \mathbf{U}_{\scriptscriptstyle W}$ via the non-zero indice of our one-hot center word $\mathbf{x}_{\scriptscriptstyle W}$

cross entropy loss: $\mathbf{L}(U, V | \mathbf{x}_w, \mathbf{x}_c) = -\mathbf{x}_c \cdot \log p(\mathbf{x}_c | \mathbf{x}_w; \mathbf{U}, \mathbf{V})$

gradient descent:

let $\mathbf{V} \in \mathbb{R}^{K imes N}$ be our center word embeddings corresponding to \mathbf{x}_c

compute inner product between \mathbf{u}_w and all context vectors $\mathbf{V}:\mathbf{u}_w\cdot\mathbf{V}\in\mathbb{R}^N$

 $\exp(\mathbf{u}_{w}\cdot\mathbf{V})$

 $\sum_{i=1}^{N} \exp(\mathbf{u}_{w} \cdot \mathbf{V})_{j}$

compute probability over all context words given center word: $\frac{chp(\mathbf{u}_w - \mathbf{v})}{dt}$

gradients: $\nabla_{U_w} NLL = \mathbf{V} \cdot (P_{\mathbf{x}_c | \mathbf{x}_w} - \mathbf{x}_c)^T \in \mathbb{R}^K$

$$\nabla_{V} NLL = \mathbf{u}_{w} \cdot \left(P_{\mathbf{x}_{c} | \mathbf{x}_{w}} - \mathbf{x}_{c} \right) \in \mathbb{R}^{K \times N}$$

$$\mathbf{V} \leftarrow \mathbf{V} - \eta \, \nabla_{\mathbf{V}} NLL$$

encodes distributional hypothesis

only w^{th} row of ${f U}$ gets updated

entire V gets updated

Algorithm for the skip gram word2vec model

let $\mathbf{U} \in \mathbb{R}^{K \times N}$ be our center word embeddings corresponding to \mathbf{x}_w

let $\mathbf{V} \in \mathbb{R}^{K \times N}$ be our center word embeddings corresponding to \mathbf{x}_c

$$\forall (\mathbf{x}_w, \mathbf{x}_c) \in D \text{ do:}$$

set $\mathbf{u}_{w} = \mathbf{U}_{w}$ via the non-zero indice of our one-hot center word \mathbf{x}_{w}

compute inner product between \mathbf{u}_w and all context vectors $\mathbf{V}:\mathbf{u}_w\cdot\mathbf{V}\in\mathbb{R}^N$

compute probability over all context words given center word : $\frac{\exp(\mathbf{u}_w \cdot \mathbf{V})}{\sum_{j=1}^N \exp(\mathbf{u}_w \cdot \mathbf{V})_j}$

cross entropy loss: $\mathbf{L}(U, V | \mathbf{x}_w, \mathbf{x}_c) = -\mathbf{x}_c \cdot \log p(\mathbf{x}_c | \mathbf{x}_w; \mathbf{U}, \mathbf{V})$

gradients: $\nabla_{U_w} NLL = \mathbf{V} \cdot (P_{\mathbf{x}_c | \mathbf{x}_w} - \mathbf{x}_c)^T \in \mathbb{R}^K$

 $\nabla_{V} NLL = \mathbf{u}_{w} \cdot \left(P_{\mathbf{x}_{c} | \mathbf{x}_{w}} - \mathbf{x}_{c} \right) \in \mathbb{R}^{K \times N}$

gradient descent: $\mathbf{U}_w \leftarrow \mathbf{U}_w - \eta \nabla_{\mathbf{U}_w} NLL$ only w^{th} row of \mathbf{U} gets updated

 $\mathbf{V} \leftarrow \mathbf{V} - \eta \nabla_{\mathbf{V}} NLL$ entire \mathbf{V} gets updated

encodes

distributional

hypothesis

For large N, we need to avoid the partition function

- The approach on the previous slide is the preferred method when N is a manageable size, say $N < 10^5$.
- When $N>10^6$, the partition function (denominator of the softmax function) becomes prohibitively expensive to compute due the ${\rm O}(NK)$ scaling.
- There are several approaches to get around having to compute the (full) partition function:
 - Hierarchical softmax
 - Importance sampling (IS)
 - Adaptive IS
 - Target sampling
 - Noise contrastive estimation (NCE)
 - Negative sampling

 $\sim 10 - 100x$ speedup