

Universidade Federal do Pará Instituto de Tecnologia Faculdade de Engenharia Mecânica

MECÂNICA GERAL

PROFESSOR: IGOR DOS SANTOS GOMES

E-MAIL: IGOR.GOMES@ITEC.UFPA.BR

ATRITO

5.1. Características do atrito seco

5.2. Problemas envolvendo atrito seco

- ➤ Se um corpo rígido está em equilíbrio quando sujeito a um sistema de forças que inclui o efeito do atrito, o sistema de forças precisa satisfazer não apenas as equações de equilíbrio, mas *também* as leis que governam as forças de atrito.
- > Em geral, existem três tipos de problemas de estática envolvendo atrito seco;
- ➤ Eles podem ser facilmente classificados uma vez que os diagramas de corpo livre forem desenhados e o número total de incógnitas for identificado e comparado com o número total de equações de equilíbrio disponíveis.
- 1) Nenhuma iminência de movimento aparente;
- 2) Iminência de movimento em todos os pontos de contato;
- 3) Iminência de movimento em alguns pontos de contato.

1) Nenhuma iminência de movimento aparente

- Os problemas nessa categoria são estritamente problemas de equilíbrio, que exigem que o número de incógnitas seja igual ao número de equações de equilíbrio disponíveis;
- > Sempre que as forças de atrito são determinadas a partir da solução, seus valores numéricos precisam ser verificados para garantir que satisfaçam a desigualdade $F \leq \mu_s N$;
- > Caso contrário, ocorrerá deslizamento e o corpo não permanecerá em equilíbrio.

1) Nenhuma iminência de movimento aparente

- Um problema desse tipo é mostrado na Figura a;
- ➤ Aqui, precisamos determinar as forças de atrito em A e C para verificar se a posição de equilíbrio da estrutura de dois elementos pode ser mantida;
- ➤ Se os elementos forem uniformes e tiverem pesos conhecidos de **100** N cada, os diagramas de corpo livre serão como mostra a Figura b;
- Existem seis componentes de força incógnitas que podem ser determinadas estritamente pelas seis equações de equilíbrio (três para cada elemento);
- ightharpoonup Quando F_A , N_A , F_C e N_C são determinados, as barras permanecerão em equilíbrio desde que $F_A \leq 0$, $3N_A$ e $F_C \leq 0$, $5N_C$ sejam satisfeitos.

- 1) Nenhuma iminência de movimento aparente
- Aplicando a condição de equilíbrio de forças na barra AB:

$$+ \rightarrow \sum F_x = 0$$

$$-B_x + F_A = 0$$

$$+ \uparrow \sum F_y = 0$$

$$-B_y - 100 + N_A = 0$$

Aplicando a condição de equilíbrio de momento na barra AB:

$$\sum M_A = 0$$

$$B_x(y) - 100\left(\frac{1}{3}x\right) - B_y(x) = 0$$

1) Nenhuma iminência de movimento aparente

> As barras permanecerão em equilíbrio desde que:

$$F_A \leq 0,3N_A$$
 e $F_C \leq 0,5N_C$

$$F_A - B_x = 0$$

$$-B_y + N_A - 100 = 0$$

$$> B_x(y) - 100\left(\frac{1}{3}x\right) - B_y(x) = 0$$

Logo, para a barra BC:

$$\triangleright -F_C + B_x = 0$$

$$> B_v + N_C - 100 = 0$$

$$> -B_x(y) + 100\left(\frac{1}{3}x\right) + B_y(x) = 0$$

2) Iminência de movimento em todos os pontos de contato;

- Neste caso, o número total de incógnitas se igualará ao número total de equações de equilíbrio disponíveis mais o número total de equações de atrito disponíveis, $F = \mu N$;
- P Quando o movimento é iminente nos pontos de contato, então $F_s = \mu_s N$; ao passo que, se o corpo estiver em deslizamento, então $F_k = \mu_k N$;
- Por exemplo, considere o problema de determinar o menor ângulo θ com que a haste de 100 N na Figura a pode ser colocada contra a parede sem deslizar;
- \triangleright O diagrama de corpo livre é mostrado na Figura b. Aqui, as cinco incógnitas são determinadas a partir das três equações de equilíbrio e duas equações de atrito estático que são aplicadas em ambos os pontos de contato, de modo que $F_A = 0,3N_A$ e $F_B = 0,4N_B$.

- 2) Iminência de movimento em todos os pontos de contato;
- Aplicando a condição de equilíbrio de forças na barra AB:

$$+ \rightarrow \sum_{A} F_{x} = 0$$
$$-N_{B} + F_{A} = 0$$

$$+\uparrow \sum F_y = 0$$

$$N_A - 100 + F_B = 0$$

$$\sum M_A = 0$$

$$N_B(y) - 100(x\cos\theta) + F_B(2x\sin\theta) = 0$$

2) Iminência de movimento em todos os pontos de contato;

As três equações de equilíbrio e as duas equações de atrito estático são aplicadas em ambos os pontos de contato, de modo que $F_A = 0.3N_A$ e $F_B = 0.4N_B$;

Logo, para a barra AB:

$$> -N_B + F_A = 0$$

$$> N_A - 100 + F_R = 0$$

$$\triangleright N_B(y) - 100(x\cos\theta) + F_B(2x\sin\theta) = 0$$

3) Iminência de movimento em alguns pontos de contato;

- Aqui, o número de incógnitas será menor do que o número de equações de equilíbrio disponíveis mais o número de equações de atrito disponíveis ou equações condicionais para o tombamento;
- Como resultado, haverá muitas possibilidades para movimento ou iminência de movimento, e o problema envolverá uma determinação do tipo de movimento que realmente ocorre;
- Por exemplo, considere a estrutura de dois elementos na Figura a;
- Neste problema, queremos determinar a força horizontal
 P necessária para causar movimento;
- > Se cada elemento tem peso de 100 N, então os diagramas de corpo livre são os mostrados na Figura b.

(b)

3) Iminência de movimento em alguns pontos de contato;

- Existem sete incógnitas. Para uma solução única, temos de satisfazer as seis equações de equilíbrio (três para cada elemento) e apenas uma das duas equações de atrito estático possíveis;
- Isso significa que, à medida que P aumenta, ele causará deslizamento em A e nenhum deslizamento em C, de modo que $F_A = 0,3N_A$ e $F_C \le 0,5N_C$;
- ightharpoonup Ou, então, o deslizamento ocorrerá em C e nenhum deslizamento em A, quando $F_C = 0,5N_C$ e $F_A \leq 0,3N_A$.

3) Iminência de movimento em alguns pontos de contato;

- ➢ A situação real pode ser determinada calculando-se P para cada caso e depois escolhendo-se o caso para o qual P é menor;
- ➢ Se, nos dois casos, for calculado o mesmo valor para ₱, o que na prática seria altamente improvável, então o deslizamento nos dois pontos ocorre simultaneamente, ou seja, as sete incógnitas satisfariam oito equações.

(b)

Exercício 30:

ightharpoonup A caixa uniforme mostrada na figura abaixo tem massa de 20~kg. Se uma força P=80~N for aplicada à caixa, determine se ela permanece em equilíbrio. O coeficiente de atrito estático é $\mu_s=0,3$.

Solução:

1) Diagrama de corpo livre:

- \triangleright Como vemos na figura abaixo, a força normal resultante N_c precisa atuar a uma distância x da linha de centro a fim de combater o efeito de tombamento causado por P;
- \succ Existem três incógnitas, F, N_c e x, que podem ser determinadas estritamente pelas três equações de equilíbrio.

Solução:

2) Equações de equilíbrio:

$$\pm \Sigma F_x = 0;$$
 80 cos 30° N − F = 0
+↑ΣF_ν = 0; -80 sen 30° N + N_C − 196,2 N = 0

$$\zeta + \Sigma M_O = 0$$
; 80 sen 30° N(0,4 m) $-$ 80 cos 30° N(0,2 m) $+$ $N_C(x) = 0$

$$F = 69,3 \text{ N}$$

$$N_C = 236,2 \text{ N}$$

$$x = -0,00908 \text{ m} = -9,08 \text{ mm}$$

- Como x é negativo, isso indica que a força normal resultante atua (ligeiramente) à esquerda da linha de centro da caixa;
- ightharpoonup Não haverá tombamento, pois $x < 0.4 \, m$. Além disso, a força de atrito *máxima* que pode ser desenvolvida na superfície de contato é $F_{m\acute{a}x} = \mu_s N_c = 0.3(236, 2 \, N) = 70.9 \, N$;
- ightharpoonup Como F=69,3~N<70,9~N, a caixa não deslizará, embora esteja muito próximo de fazer isso.

Exercício 31:

 \blacktriangleright A escada uniforme de 10~kg, mostrada na Figura abaixo, apoia-se contra a parede lisa em B e sua extremidade em A repousa no plano horizontal áspero para o qual o coeficiente de atrito estático é $\mu_s=0,3$. Determine o ângulo de inclinação θ da escada e a reação normal em B se a escada estiver na iminência de deslizamento.

Solução:

1) Diagrama de corpo livre:

 \succ Conforme mostra o diagrama de corpo livre (figura abaixo) a força de atrito F_A deve atuar para a direita, pois a iminência de movimento em A é para a esquerda.

Solução:

2) Equações de equilíbrio e de atrito

- \succ Como a escada está na iminência de deslizamento, então $F_A = \mu_s N_A = 0,3 \ N_A;$
- \succ Por observação, N_A pode ser obtido diretamente.

$$+\uparrow\Sigma F_{y}=0;$$

$$N_A - 10(9,81) \,\mathrm{N} = 0$$

$$N_A = 98,1 \text{ N}$$

Solução:

2) Equações de equilíbrio e de atrito

- \triangleright Usando esse resultado de N_A :
- $F_A = 0.3(98.1 N) = 29.43 N;$
- \triangleright Agora, N_B pode ser encontrado:

$$\stackrel{+}{\Rightarrow} \Sigma F_x = 0;$$

$$29,43 \text{ N} - N_B = 0$$

$$N_B = 29,43 \text{ N} = 29,4 \text{ N}$$

Solução:

2) Equações de equilíbrio e de atrito

Finalmente, o ângulo θ pode ser determinado somando os momentos em torno do ponto A:

$$\zeta + \Sigma M_A = 0;$$

$$(29,43 \text{ N})(4 \text{ m}) \operatorname{sen} \theta - [10(9,81) \text{ N}](2 \text{ m}) \cos \theta = 0$$

$$\frac{\sin \theta}{\cos \theta} = \operatorname{tg} \theta = 1,6667$$

$$\theta = 59,04^{\circ} = 59,0^{\circ}$$

ATÉ A PRÓXIMA!