Bayesian Reordering Model with Feature Selection

Abdullah Alrajeh and Mahesan Niranjan

The Ninth Workshop on Statistical Machine Translation Baltimore, Maryland USA June 26-27, 2014

Translation System Overview

Given a foreign sentence **f**, the best translation **e** is (Brown et al., 1993):

$$\begin{aligned} \mathbf{e}_{\text{best}} &= \arg\max_{\mathbf{e}} \; p(\mathbf{e}|\mathbf{f}) \\ &= \arg\max_{\mathbf{e}} \; \frac{p(\mathbf{f}|\mathbf{e})p(\mathbf{e})}{p(\mathbf{f})} \\ &= \arg\max_{\mathbf{e}} \; \operatorname{Translation} \operatorname{Model} \times \operatorname{Language} \operatorname{Model} \end{aligned}$$

Translation System Overview

Given a foreign sentence \mathbf{f} , the best translation \mathbf{e} is (Brown et al., 1993):

$$\begin{aligned} \mathbf{e}_{\text{best}} &= \arg\max_{\mathbf{e}} \; p(\mathbf{e}|\mathbf{f}) \\ &= \arg\max_{\mathbf{e}} \; \frac{p(\mathbf{f}|\mathbf{e})p(\mathbf{e})}{p(\mathbf{f})} \\ &= \arg\max_{\mathbf{e}} \; \text{Translation Model} \times \text{Language Model} \end{aligned}$$

$$\mathbf{e}_{\text{best}} = \arg \max_{\mathbf{e}} \ \{ p_t(\mathbf{f}|\mathbf{e})^{\lambda_t} p_{lm}(\mathbf{e})^{\lambda_{lm}} p_{lex}(\mathbf{f}|\mathbf{e})^{\lambda_{lex}} p_{reo}(\mathbf{f},\mathbf{e})^{\lambda_{reo}} w^{|\mathbf{e}|\lambda_w} \}$$

$$= \arg \max_{\mathbf{e}} \ \sum_{i} \lambda_i \log p_i(\mathbf{f},\mathbf{e})$$

Translation System Overview

Given a foreign sentence \mathbf{f} , the best translation \mathbf{e} is (Brown et al., 1993):

$$\begin{aligned} \mathbf{e}_{\text{best}} &= \arg\max_{\mathbf{e}} \; p(\mathbf{e}|\mathbf{f}) \\ &= \arg\max_{\mathbf{e}} \; \frac{p(\mathbf{f}|\mathbf{e})p(\mathbf{e})}{p(\mathbf{f})} \\ &= \arg\max_{\mathbf{e}} \; \operatorname{Translation Model} \times \operatorname{Language Model} \end{aligned}$$

$$\begin{aligned} \mathbf{e}_{\text{best}} &= \arg\max_{\mathbf{e}} \; \{ p_t(\mathbf{f}|\mathbf{e})^{\lambda_t} p_{lm}(\mathbf{e})^{\lambda_{lm}} p_{lex}(\mathbf{f}|\mathbf{e})^{\lambda_{lex}} p_{reo}(\mathbf{f},\mathbf{e})^{\lambda_{reo}} w^{|\mathbf{e}|\lambda_w} \} \\ &= \arg\max_{\mathbf{e}} \; \sum_{i} \lambda_i \log p_i(\mathbf{f},\mathbf{e}) \end{aligned}$$

In general, reordering model is defined as:

$$p_{reo}(\mathbf{f}, \mathbf{e}) = \prod_{n} p(o_n | \bar{f}_n, \bar{e}_n) = \prod_{n} \frac{h(\bar{f}_n, \bar{e}_n, o_n)}{\sum_{k} h(\bar{f}_n, \bar{e}_n, o_k)}$$

Reordering Models

Foreign sentence $\mathbf{f}:$ \overline{f}_1 \overline{f}_2 \overline{f}_3 English sentence $\mathbf{e}:$ $\overline{\mathbf{e}}_1$ $\overline{\mathbf{e}}_3$ $\overline{\mathbf{e}}_2$.

$$\textit{p}_\textit{reo}(\textbf{f},\textbf{e}) = \textit{p}(\textit{o}_1 = \text{mono}|\bar{\textit{f}}_1,\bar{\textit{e}}_1) \times \textit{p}(\textit{o}_2 = \text{swap}|\bar{\textit{f}}_2,\bar{\textit{e}}_2) \times \textit{p}(\textit{o}_3 = \text{other}|\bar{\textit{f}}_3,\bar{\textit{e}}_3)$$

Reordering Models

Foreign sentence
$$\mathbf{f}:$$
 \overline{f}_1 \overline{f}_2 \overline{f}_3 English sentence $\mathbf{e}:$ \overline{e}_1 \overline{e}_3 \overline{e}_2 .

$$\textit{p}_{\textit{reo}}(\textbf{f},\textbf{e}) = \textit{p}(\textit{o}_1 = \text{mono}|\bar{\textit{f}}_1,\bar{\textit{e}}_1) \times \textit{p}(\textit{o}_2 = \text{swap}|\bar{\textit{f}}_2,\bar{\textit{e}}_2) \times \textit{p}(\textit{o}_3 = \text{other}|\bar{\textit{f}}_3,\bar{\textit{e}}_3)$$

 Lexicalized Reordering Model (Tillmann, 2004; Kumar and Byrne, 2005; Koehn et al., 2005; Galley and Manning, 2008)

$$p(o_k|\bar{t}_n,\bar{e}_n) = \frac{\operatorname{count}(\bar{t}_n,\bar{e}_n,o_k)}{\sum_{k'}\operatorname{count}(\bar{t}_n,\bar{e}_n,o_{k'})}$$

Reordering Models

Foreign sentence $\mathbf{f}:$ \overline{f}_1 \overline{f}_2 \overline{f}_3 . English sentence $\mathbf{e}:$ \overline{e}_1 \overline{e}_3 \overline{e}_2 .

$$p_{reo}(\mathbf{f},\mathbf{e}) = p(o_1 = \text{mono}|\bar{\mathit{f}}_1,\bar{e}_1) \times p(o_2 = \text{swap}|\bar{\mathit{f}}_2,\bar{e}_2) \times p(o_3 = \text{other}|\bar{\mathit{f}}_3,\bar{e}_3)$$

 Lexicalized Reordering Model (Tillmann, 2004; Kumar and Byrne, 2005; Koehn et al., 2005; Galley and Manning, 2008)

$$p(o_k|\bar{t}_n,\bar{e}_n) = \frac{\operatorname{count}(\bar{t}_n,\bar{e}_n,o_k)}{\sum_{k'}\operatorname{count}(\bar{t}_n,\bar{e}_n,o_{k'})}$$

 Discriminative Reordering Model (Zens and Ney, 2006; Xiong et al., 2006; Nguyen et al., 2009; Xiang et al., 2011; Ni et al., 2011)

$$p(o_k|\bar{f}_n,\bar{e}_n) = \frac{\exp(\mathbf{w}_k^T \phi(\bar{f}_n,\bar{e}_n))}{\sum_{k'} \exp(\mathbf{w}_{k'}^T \phi(\bar{f},\bar{e}))} \equiv \frac{\exp(\mathbf{w}^T \phi(\bar{f}_n,\bar{e}_n,o_k))}{\sum_{k'} \exp(\mathbf{w}^T \phi(\bar{f},\bar{e},o_{k'}))}$$

Feature Extraction

Foreign sentence \mathbf{f} : f_1 f_2 f_3 f_4 f_5 f_6 f_6 3. English sentence \mathbf{e} : \mathbf{e}_1 \mathbf{e}_2 \mathbf{e}_3 \mathbf{e}_4 \mathbf{e}_5 \mathbf{e}_5 \mathbf{e}_6 \mathbf{e}_6 \mathbf{e}_6 \mathbf{e}_7 \mathbf{e}_8 \mathbf{e}_8 \mathbf{e}_9 $\mathbf{e}_$

Feature Extraction

Foreign sentence \mathbf{f} : f_1 f_2 f_3 f_4 f_5 f_6 f_6 3. English sentence \mathbf{e} : \mathbf{e}_1 \mathbf{e}_2 \mathbf{e}_3 \mathbf{e}_4 \mathbf{e}_5 \mathbf{e}_5 \mathbf{e}_6 \mathbf{e}_6 \mathbf{e}_7

Extracted phrase pairs :

\overline{f}_n		$ar{e}_n$		On		word al	ignme	nt conte	xt feature
$\overline{f_1}$ $\overline{f_2}$		<i>e</i> ₁		mono		0-0	1-0	$ + f_3$	
f_3 f_4 f_5	6	e ₄ e ₅		swap		0-1	2-0	$ - f_2 $	+ <i>f</i> ₆
<i>f</i> ₆	(e ₂ e ₃	Ш	other	Ш	0-0	0-1	$ - f_5$	

Feature Extraction

Foreign sentence \mathbf{f} : f_1 f_2 f_3 f_4 f_5 f_6 f_6 3. English sentence \mathbf{e} : \mathbf{e}_1 \mathbf{e}_2 \mathbf{e}_3 \mathbf{e}_4 \mathbf{e}_5 \mathbf{e}_5 \mathbf{e}_6 \mathbf{e}_6 \mathbf{e}_7

Extracted phrase pairs :

\overline{f}_n	$ \bar{e}_n$	$ o_n v$	word alignme	nt context feature
f_1 f_2	e ₁	mono	0-0 1-0	$ + f_3$
f_3 f_4 f_5	$ e_4 e_5$	swap	0-1 2-0	$ -f_2 +f_6$
<i>f</i> ₆	$ e_2 e_3$	other	0-0 0-1	$ - f_5$

All linguistic features:

$$(f_1\&e_1)^1 (f_2\&e_1)^2 (+f_3)^3 (f_3\&e_5)^4 (f_5\&e_4)^5 (-f_2)^6 (+f_6)^7 (f_6\&e_2)^8 (f_6\&e_3)^9 (-f_5)^{10}$$

Bag-of-words representation (0=not exist):

$$\frac{\phi(\bar{f}_n, \bar{e}_n)}{\phi(\bar{f}_1, \bar{e}_1)} = 12345678910$$

$$\frac{\phi(\bar{f}_1, \bar{e}_1)}{\phi(\bar{f}_2, \bar{e}_2)} = 0001111000$$

$$\frac{\phi(\bar{f}_2, \bar{e}_2)}{\phi(\bar{f}_3, \bar{e}_3)} = 0000000111$$

Naive Bayes

$$p(o_k|\bar{f}_n,\bar{e}_n) = \frac{p(f_n,\bar{e}_n|o_k)p(o_k)}{\sum_{k'}p(\bar{f}_n,\bar{e}_n|o)p(o_{k'})}.$$

Multinomial distribution:

$$p(\bar{f}_n, \bar{e}_n | \mathbf{q}_k) = C \prod_m^M q_{km}^{\phi_m(\bar{f}_n, \bar{e}_n)}$$

Naive Bayes

$$p(o_k|\bar{f}_n,\bar{e}_n) = \frac{p(f_n,\bar{e}_n|o_k)p(o_k)}{\sum_{k'}p(\bar{f}_n,\bar{e}_n|o)p(o_{k'})}.$$

Multinomial distribution:

$$p(\bar{f}_n, \bar{e}_n | \mathbf{q}_k) = C \prod_m^M q_{km}^{\phi_m(\bar{f}_n, \bar{e}_n)}$$

Maximum-likelihood estimation:

$$\boldsymbol{q}_{km}^* = \arg\max_{\boldsymbol{q}_k} \prod_n^{N_k} \rho(\bar{\boldsymbol{f}}_n, \bar{\boldsymbol{e}}_n | \boldsymbol{q}_k) = \frac{\sum_n^{N_k} \phi_m(\bar{\boldsymbol{f}}_n, \bar{\boldsymbol{e}}_n)}{\sum_{m'}^{M} \sum_n^{N_k} \phi_{m'}(\bar{\boldsymbol{f}}_n, \bar{\boldsymbol{e}}_n)}.$$

Naive Bayes

$$p(o_k|\bar{f}_n,\bar{e}_n) = \frac{p(f_n,\bar{e}_n|o_k)p(o_k)}{\sum_{k'}p(\bar{f}_n,\bar{e}_n|o)p(o_{k'})}.$$

Multinomial distribution:

$$p(\bar{f}_n, \bar{e}_n | \mathbf{q}_k) = C \prod_{m}^{M} q_{km}^{\phi_m(\bar{f}_n, \bar{e}_n)}$$

Maximum-likelihood estimation:

$$q_{km}^* = \arg\max_{\mathbf{q}_k} \prod_{n}^{N_k} p(\bar{f}_n, \bar{e}_n | \mathbf{q}_k) = \frac{\sum_{n}^{N_k} \phi_m(\bar{f}_n, \bar{e}_n)}{\sum_{m'}^{M} \sum_{n}^{N_k} \phi_{m'}(\bar{f}_n, \bar{e}_n)}.$$

Maximum a posteriori (MAP) estimation:

$$q_{km}^* = \arg\max_{\mathbf{q}_k} \prod_{n}^{N_k} p(\bar{f}_n, \bar{e}_n | \mathbf{q}_k) p(\mathbf{q}_k | \alpha) = \frac{\alpha - 1 + \sum_{n}^{N_k} \phi_m(\bar{f}_n, \bar{e}_n)}{M(\alpha - 1) + \sum_{n}^{M} \sum_{n}^{N_k} \phi_{m'}(\bar{f}_n, \bar{e}_n)}$$

Bayesian Naive Bayes (Barber, 2012)

$$p(o_k|\bar{f}_n,\bar{e}_n) = \frac{p(\bar{f}_n,\bar{e}_n|o_k)p(o_k)}{\sum_{k'}p(\bar{f}_n,\bar{e}_n|o)p(o_{k'})}.$$

Full Bayesian Inference

Multinomial-Dirichlet

$$\begin{aligned}
& \rho(\overline{f}_n, \overline{e}_n | o_k) = \int \rho(\overline{f}_n, \overline{e}_n | \mathbf{q}_k) \rho(\mathbf{q}_k | \alpha_k) \, \mathrm{d}\mathbf{q}_k \\
&= C \frac{\Gamma(\sum_m \alpha_{km})}{\prod_m \Gamma(\alpha_{km})} \frac{\prod_m \Gamma(\alpha_{km} + \phi_m(\overline{f}_n, \overline{e}_n))}{\Gamma(\sum_m \alpha_{km} + \phi_m(\overline{f}_n, \overline{e}_n))} \\
& \rho(\mathbf{q}_k | \alpha_k) = \frac{\rho(\mathbf{q}_k | \alpha) \prod_n^{N_k} \rho(\overline{f}_n, \overline{e}_n | \mathbf{q}_k)}{\int \rho(\mathbf{q}_k | \alpha) \prod_n^{N_k} \rho(\overline{f}_n, \overline{e}_n | \mathbf{q}_k) \, \mathrm{d}\mathbf{q}_k}
\end{aligned}$$

Prior and Posterior

$$\alpha_k = \alpha + \sum_n^{N_k} \phi(\bar{f}_n, \bar{e}_n)$$

Classification Results

3-class problem: mono , swap , other

Table: Arabic-English MultiUN corpus (Eisele and Chen, 2010)

Statistics	Arabic	English	
Sentence Pairs	9.7 M		
Running Words	255.5 M	285.7 M	
Word/Line	22	25	
Vocabulary Size	677 K	410 K	

Classification Results

3-class problem: mono, swap, other

Table: Arabic-English MultiUN corpus (Eisele and Chen, 2010)

Statistics	Arabic	English	
Sentence Pairs	9.7 M		
Running Words	255.5 M	285.7 M	
Word/Line	22	25	
Vocabulary Size	677 K	410 K	

Table: Error rate based on 3-fold cross-validation

Classifier	Error Rate
Lexicalized model	25.2%
Bayes-MAP estimate	19.53%
Bayes-Bayesian inference	20.13%

Feature Selection

Normalized mutual information (Estevez et al., 2009):

$$I_{norm}(X;Y) = \frac{I(X;Y)}{\min(H(X),H(Y))}.$$

Translation Results

Table: NIST test sets (4 references for each Arabic sentence)

Evaluati	Arabic	English	
NIST MT06	MT06 sentences		7188
	words	49 K	223 K
NIST MT08	sentences	813	3252
	words	25 K	117 K

Translation Results

Table: NIST test sets (4 references for each Arabic sentence)

Evaluati	Arabic	English	
NIST MT06	sentences	1797	7188
	words	49 K	223 K
NIST MT08	sentences	813	3252
	words	25 K	117 K

Table: BLEU Score (Papineni et al., 2002)

Translation System	ReoM Size	Speed	MT06	MT08
Baseline	-	-	28.92	32.13
BL + Lexicalized ReoM	604 MB	2.2 sec/s	30.86	34.22
BL + Bayes-MAP ReoM	18 MB	2.6 sec/s	31.21	34.72
BL + Bayes-Baysien ReoM	18 MB	2.6 sec/s	31.20	34.69

Thank you for your attention.