

NORMAL DISTRIBUTION

- ❖ The normal distribution is a continuous distribution looking like a bell.
- Statisticians use the expression "Bell Shaped Distribution".
- ❖ It is a beautiful distribution in which the mean, the median, and the mode are all equal to one another.
- ❖ It is symmetrical about its mean.
- ❖ If the tails of the normal distribution are extended, they will run parallel to the horizontal axis without actually touching it. (asymptotic to the x-axis)
- **The normal distribution has two parameters** namely the mean μ and the standard deviation σ

Empirical Rule

- * The empirical rule approximates the variation of data in the bell-shaped distribution.
- $_*$ Approximately 68% of the data in a bell shaped distribution is within 1standard deviation of the mean or $\mu \pm 1\sigma$
- * Approximately 95% of the data is a bell-shaped distribution lies within two standard deviations of the mean, or $\mu \pm 2\sigma$
- * Approximately 99.7% of the data is a bell-shaped distribution lies within three standard deviations of the mean, or $\mu \pm 3\sigma$

Case Study-2

The mean weight of a morning breakfast cereal pack is 0.295 kg with a standard deviation of 0.025 kg. The random variable weight of the pack follows a normal distribution.

- a) What is the probability that the pack weighs less than 0.280 kg?
- b) What is the probability that the pack weighs more than 0.350 kg?
- c)The sales team is negotiating with a new customer who has more stringent quality requirements. The new customer requires packs which should be between 0.260 and
 - 0.340 kg. What is the probability that a pack produces by the current process will be acceptable to the new customer?
- d) What is the weight for which 99% of the packs produced will be less than the weight?

What is the probability that the pack weighs less than 0.280 kg?

Mean	0.295
Std	0.025
X	0.28
Probability	0.274

❖ So here the probability that the pack will weigh less than 0.280 kg is 27.4 %.

What is the probability that the pack weighs more than 0.350 kg?

Mean	0.295
Std	0.025
Χ	0.35
Probability	0.014

❖ So here the probability that the pack will weigh more than 0.350 kg is 1.4 %.

customer?

The sales team is negotiating with a new customer who has more stringent quality requirements. The new customer requires packs which should be between 0.260 and 0.340 kg. What is the probability that a pack produces by the current process will be acceptable to the new

Diagra	m for (c)	
		Between 0.260 kg and 0.340 kg
0.260	0.295	0.340

❖ Here the probability that the pack will weigh between 0.26kg and 0.34kg is 88.3%.

Mean	0.295
Std	0.025
X1	0.26
X2	0.34
Cummulative	
Probability of	
X1	0.080757
Cummulative	
Probability of	
X2	0.96407
Required	
Probability	0.883

What is the weight for which 99% of the packs produced will be less than the weight?

Mean	0.295
Std	0.025
Probability	0.99
Χ	0.353

Here 99% of the packs produced will be below 0.353 Kg weight