Please check the examination details belo	ow before ente	ring your candidate information
Candidate surname		Other names
Centre Number Candidate Nu	ımber	
Pearson Edexcel Inter	nation	al Advanced Leve
Thursday 6 June 202	24	
Morning (Time: 1 hour 30 minutes)	Paper reference	WMA14/01
Morning (Time: 1 hour 30 minutes) Mathematics	Paper	WMA14/01
Mathematics	Paper reference	WMA14/01
Mathematics International Advanced Le	Paper reference	WMA14/01
Mathematics	Paper reference	WMA14/01
Mathematics International Advanced Le	Paper reference	WMA14/01
Mathematics International Advanced Le	Paper reference	WMA14/01
Mathematics International Advanced Le	Paper reference	Total Marks

Candidates may use any calculator permitted by Pearson regulations. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 9 questions in this question paper. The total mark for this paper is 75.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- If you change your mind about an answer, cross it out and put your new answer and any working underneath.

Turn over

1.	In this question you must show all stages of your working. Solutions relying entirely on calculator technology are not acceptable.	
	Find	
	$\int_0^{\frac{\pi}{6}} x \cos 3x \mathrm{d}x$	
	giving your answer in simplest form.	(5)

Question 1 continued	
(Total for Question 1 is 5 marks)	
(Total for Question 1 is 3 marks)	·

2. With respect to a fixed origin, O, the point A has position vector

$$\overrightarrow{OA} = \begin{pmatrix} 7 \\ 2 \\ -5 \end{pmatrix}$$

Given that

$$\overrightarrow{AB} = \begin{pmatrix} -2 \\ 4 \\ 3 \end{pmatrix}$$

(a) find the coordinates of the point B.

(2)

The point C has position vector

$$\overrightarrow{OC} = \begin{pmatrix} a \\ 5 \\ -1 \end{pmatrix}$$

where a is a constant.

Given that \overrightarrow{OC} is perpendicular to \overrightarrow{BC}

(b) find the possible values of *a*.

(4)

Question 2 continued	
(Total for Question 2 is 6 marks)	

3.	The curve	C is	defined	by the	equation
•	I IIC CUI VC	C 10	actifica	O y the	equation

$$8x^3 - 3y^2 + 2xy = 9$$

Find an equation of the normal to C at the point $(2, 5)$, giving your answer	in the
form $ax + by + c = 0$, where a, b and c are integers.	

(7)

Question 3 continued	
(Total for C	Question 3 is 7 marks)

Figure 1

Figure 1 shows a sketch of a segment *PQRP* of a circle with centre *O* and radius 5 cm.

Given that

- angle POR is θ radians
- θ is increasing, from 0 to π , at a constant rate of 0.1 radians per second
- the area of the segment PQRP is $A \text{ cm}^2$
- (a) show that

$$\frac{\mathrm{d}A}{\mathrm{d}\theta} = K(1 - \cos\theta)$$

where K is a constant to be found.

(2)

(b) Find, in cm² s⁻¹, the rate of increase of the area of the segment when $\theta = \frac{\pi}{3}$

Question 4 continued	
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
(Total for Question 4 is 6 marks)	_

Figure 2

Figure 2 shows a sketch of the curve defined by the parametric equations

$$x = t^2 + 2t y = \frac{2}{t(3-t)} a \leqslant t \leqslant b$$

where a and b are constants.

The ends of the curve lie on the line with equation y = 1

(a) Find the value of a and the value of b

(2)

The region R, shown shaded in Figure 2, is bounded by the curve and the line with equation y = 1

(b) Show that the area of region R is given by

$$M - k \int_{a}^{b} \frac{t+1}{t(3-t)} dt$$

where M and k are constants to be found.

(5)

- (c) (i) Write $\frac{t+1}{t(3-t)}$ in partial fractions.
 - (ii) Use algebraic integration to find the exact area of R, giving your answer in simplest form.

(6)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Question 5 continued

Question 5 continued	
(Tota	l for Question 5 is 13 marks)

6. With respect to a fixed origin O, the line l_1 is given by the equation

$$\mathbf{r} = \mathbf{i} + 2\mathbf{j} + 5\mathbf{k} + \lambda(8\mathbf{i} - \mathbf{j} + 4\mathbf{k})$$

where λ is a scalar parameter.

The point A lies on l_1

Given that $|\overrightarrow{OA}| = 5\sqrt{10}$

(a) show that at A the parameter λ satisfies

$$81\lambda^2 + 52\lambda - 220 = 0$$

(3)

Hence

- (b) (i) show that one possible position vector for A is $-15\mathbf{i} + 4\mathbf{j} 3\mathbf{k}$
 - (ii) find the other possible position vector for A.

(3)

The line l_2 is parallel to l_1 and passes through O.

Given that

- $\overrightarrow{OA} = -15\mathbf{i} + 4\mathbf{j} 3\mathbf{k}$
- point *B* lies on l_2 where $|\overrightarrow{OB}| = 4\sqrt{10}$
- (c) find the area of triangle OAB, giving your answer to one decimal place.

(4)

Question 6 continued

Question 6 continued

Question 6 continued	
	(Total for Question 6 is 10 marks)

7. The current, x amps, at time t seconds after a switch is closed in a particular electric circuit is modelled by the equation

$$\frac{\mathrm{d}x}{\mathrm{d}t} = k - 3x$$

where k is a constant.

Initially there is zero current in the circuit.

(a) Solve the differential equation to find an equation, in terms of k, for the current in the circuit at time t seconds.

Give your answer in the form x = f(t).

(6)

Given that in the long term the current in the circuit approaches 7 amps,

(b) find the value of k.

(2)

(c) Hence find the time in seconds it takes for the current to reach 5 amps, giving your answer to 2 significant figures.

(3)

Question 7 continued

Question 7 continued

Question 7 continued	
	(Total for Question 7 is 11 marks)
	(Total for Question / 18 11 marks)

$$f(x) = (8 - 3x)^{\frac{4}{3}}$$
 $0 < x < \frac{8}{3}$

(a) Show that the binomial expansion of f(x) in ascending powers of x up to and including the term in x^3 is

$$A - 8x + \frac{x^2}{2} + Bx^3 + \dots$$

where A and B are constants to be found.

(4)

(b) Use proof by contradiction to prove that the curve with equation

$$y = 8 + 8x - \frac{15}{2}x^2$$

does not intersect the curve with equation

$$y = A - 8x + \frac{x^2}{2} + Bx^3 \qquad 0 < x < \frac{8}{3}$$

where A and B are the constants found in part (a).

(Solutions relying on calculator technology are not acceptable.)

(4)

Question 8 continued

Question 8 continued

Question 8 continued	
	(Total for Question 8 is 8 marks)

Figure 3

The curve C, shown in Figure 3, has equation

$$y = \frac{x^{-\frac{1}{4}}}{\sqrt{1+x} \left(\arctan \sqrt{x}\right)}$$

The region R, shown shaded in Figure 3, is bounded by C, the line with equation x = 3, the x-axis and the line with equation $x = \frac{1}{3}$

The region R is rotated through 360° about the x-axis to form a solid.

Using the substitution $\tan u = \sqrt{x}$

(a) show that the volume V of the solid formed is given by

$$k \int_a^b \frac{1}{u^2} du$$

where k, a and b are constants to be found.

(6)

(b) Hence, using algebraic integration, find the value of V in simplest form.

(3)

Question 9 continued

Question 9 continued	
	(Total for Question 9 is 9 marks)
7	TOTAL FOR PAPER IS 75 MARKS

