

Analyse Numérique Corrigé Série 17

1. (Résolution itérative d'un système linéaire avec la méthode du point fixe)

Considérer le système linéaire $A\boldsymbol{x} = \boldsymbol{b}, A \in \mathbb{R}^{n \times n}, \boldsymbol{x}, \boldsymbol{b} \in \mathbb{R}^{n}$.

(a) Considérer la méthode du point fixe dont les itérées sont données par

$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k - \theta(A\boldsymbol{x}_k - \boldsymbol{b}),\tag{1}$$

avec $\theta \neq 0$. En supposant que cette suite converge, montrer que le point fixe x^* équivaut à une solution du système linéaire Ax = b.

Sol.: Si la suite $\{x_k\}$ converge vers le point fixe x^* dans la limite $k \to \infty$, on a

$$\boldsymbol{x}^* = \boldsymbol{x}^* - \theta(A\boldsymbol{x}^* - \boldsymbol{b}),$$

et comme $\theta \neq 0$, on obtient $A\mathbf{x}^* - \mathbf{b} = 0$, c.-à-d., $A\mathbf{x}^* = \mathbf{b}$.

(b) Soit $e_k = x^* - x_k$. Montrer que $e_k = T^k e_0$ où T est à déterminer.

Sol.:

$$x_k = (I - \theta A)x_{k-1} + \theta b$$
$$x^* = (I - \theta A)x^* + \theta b$$

Posons $T = I - \theta A$

$$\Rightarrow e_k = x - x_k = T(x - x_{k-1}) = Te_{k-1} = T^2 e_{k-2} = \dots = T^k e_0.$$

(c) Donner une condition suffisante sur la norme de T pour que la méthode converge.

Sol.: Si ||T|| < 1,

$$||e_k|| = ||T^k e_0|| \le ||T||^k ||e_0|| \to 0$$

quand $k \to \infty$.

(d) Supposons maintenant que A soit une matrice symétrique, définie positive, avec valeurs propres $0 < \lambda_1 \le \lambda_2 \le \ldots \le \lambda_n$. Montrer que $||T||_2 = \max |1 - \theta \lambda_i|$.

Sol.: Comme A est symétrique, on a que $T = I - \theta A$ est symétrique aussi, donc la norme spectrale est donnée par le maximum des valeurs absolues des valeurs propres de $I - \theta A$, c.-à-d.,

$$||T||_2 = ||I - \theta A||_2 = \max_i |1 - \theta \lambda_i|.$$

On remarque que les valeurs propres de $I-\theta A$ sont les mêmes que celles de A, multipliées par $-\theta$ et décalées de 1.

(e) On définit la fonction $f_{\lambda_i}(\theta) = |1 - \theta \lambda_i|$. Trouver les valeurs de θ pour lesquelles (1) converge pour tout \boldsymbol{x}_0 , c.-à-d., trouver les θ pour lesquelles $||T||_2 = \max_i f_{\lambda_i}(\theta) < 1$. Aidez-vous en traçant les graphiques de $f_{\lambda_i}(\theta)$ pour les valeurs propres extrémales λ_1 et λ_n .

Sol.: La plus grande valeur propre λ_n donne la borne supérieure pour θ . On a :

$$f_{\lambda_n}(\theta) = |1 - \theta \lambda_n| < 1, \iff \begin{cases} -1 + \theta \lambda_n < 1, \\ 1 - \theta \lambda_n < 1, \end{cases} \iff \begin{cases} \theta < 2/\lambda_n, \\ \theta > 0. \end{cases}$$
 (2)

Regardez la Figure 1.

- (f) Toujours à l'aide des graphiques de $f_{\lambda_1}(\theta)$ et $f_{\lambda_n}(\theta)$, trouver la valeur optimale θ_{opt} qui minimise $||T||_2$.
 - **Sol.:** En nous aidant des graphiques, on trouve $\theta_{opt} = 2/(\lambda_1 + \lambda_n)$.

FIGURE 1 – Graphique pour l'Exercice 1.

2. (⋆, tout l'exercice)(Norme d'opérateur et rayon spectral) Dans cet exercice, on veut prouver le théorème suivant.

Théorème 1. Pour toute matrice $A \in \mathbb{R}^{n \times n}$ et $\varepsilon > 0$, il existe une norme d'opérateur $\|.\|_{\varepsilon,A}$ satisfaisant

$$||A||_{\varepsilon,A} \le \rho(A) + \varepsilon.$$

On rappelle que le rayon spectral est défini par $\rho(A) = \max\{|\lambda|, \lambda \in \operatorname{Sp}(A)\}.$

- (a) On se propose d'abord de redémontrer quelques propriétés élémentaires sur les matrices et leurs normes.
 - i. (0.25 points) Soit $A \in \mathbb{R}^{n \times n}$, montrer par récurrence qu'il existe $P \in \mathbb{C}^{n \times n}$ inversible telle que $P^{-1}AP$ est triangulaire supérieure.

Indication: On rappelle que toute matrice a au moins un vecteur propre dans \mathbb{C} .

Sol.: Voir cours d'algèbre 1.

ii. (0.5 points) Montrer que

$$\left\|A\right\|_2 = \sqrt{\rho(A^TA)} \qquad \text{et} \qquad \left\|A\right\|_\infty = \max_{1 \leq i \leq n} \sum_{j=1}^n \left|a_{ij}\right|.$$

Sol.: On prend un vecteur v que l'on décompose dans une base de vecteurs propres de A^TA comme $v = \sum_i b_i$. Alors on a

$$||Av||_2^2 = v^T A^T A v = \sum_i \lambda_i b_i^T b_i \le \rho(A^T A) \sum_i b_i^T b_i = \rho(A^T A) ||v||_2^2.$$

Donc on a $\|A\|_2^2 \leq \rho(A^TA)$. L'égalité est obtenue en choisissant v comme un vecteur propre associé à la valeur propre de plus grand module. Pour la norme $\|.\|_{\infty}$, on a

$$||Av||_{\infty} \le \max_{i} \sum_{j=1}^{n} |a_{ij}| |v_{j}| \le \max_{i} \sum_{j=1}^{n} |a_{ij}| ||v||_{\infty},$$

ce qui donne une première inégalité. L'égalité est obtenue en prenant $v = \sum_j \operatorname{sgn}(a_{i_0,j})e_j$ où (e_i) est la base canonique et i_0 réalise le maximum de $\max_i \sum_{j=1}^n |a_{ij}|$.

iii. (0.25 points) Montrer que toute norme d'opérateur ||.|| vérifie

$$\rho(A) \le ||A||, \qquad A \in \mathbb{R}^{n \times n}.$$

Le rayon spectral ρ est-il une norme sur $\mathbb{R}^{n \times n}$ en général?

Sol.: Si v est un vecteur propre associé la plus grande valeur propre en module de A, alors

$$||Av|| = |\lambda| ||v|| = \rho(A) ||v|| \le ||A|| ||v||.$$

En général, le rayon spectral n'est pas une norme. Par exemple, ρ s'annule sur des matrices non-nulles :

$$\rho \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = 0.$$

- (b) Démontrons à présent le théorème 1.
 - i. (0.5 points) On suppose que A est triangulaire supérieure, c'est-à-dire A=D+T avec D diagonale et T triangulaire supérieure stricte. À l'aide d'une norme d'opérateur bien choisie, construire explicitement une norme d'opérateur $\|.\|_{\varepsilon,A}$ vérifiant $\|A\|_{\varepsilon,A} \leq \rho(A) + \varepsilon$.

Indication : On pourra considérer la matrice $D_{\delta}^{-1}AD_{\delta}$ où $D_{\delta}=\mathrm{Diag}(1,\delta,\ldots,\delta^{n-1})$ et δ est choisi assez petit de telle manière que $\sum_{j=i+1}^{n}\left|\delta^{j-1}t_{ij}\right|\leq\varepsilon$ pour tout $1\leq i\leq n$.

Sol.: On pose la norme suivante

$$||B||_{\varepsilon,A} = ||D_{\delta}^{-1}BD_{\delta}||_{\infty}.$$

On vérifie que c'est bien une norme. De plus,

$$||A||_{\varepsilon,A} \le ||D_{\delta}^{-1}DD_{\delta}||_{\infty} + ||D_{\delta}^{-1}TD_{\delta}||_{\infty} = ||D||_{\infty} + \max_{1 \le i \le n} \sum_{j=i+1}^{n} |\delta^{j-1}t_{ij}| \le \rho(A) + \varepsilon.$$

ii. (0.25 points) Démontrer le theorème 1 dans le cas général.

Sol.: On se donne $P \in GL_n(\mathbb{C})$ telle que $P^{-1}AP$ est triangulaire supérieure puis on pose

$$||B||_{\varepsilon,A} = ||D_{\delta}^{-1}P^{-1}BPD_{\delta}||_{\infty}.$$

iii. (0.25 points) En déduire que la suite définie par $x_{k+1} = Ax_k$ converge vers 0 pour tout $x_0 \in \mathbb{R}^n$ si et seulement si $\rho(A) < 1$.

Sol.: Si $\rho(A) < 1$, comme toutes les normes sont équivalentes, on peut choisir la norme $\|.\|_{\varepsilon,A}$ avec $\varepsilon = \frac{1-\rho(A)}{2}$. Alors

$$||x_{k+1}||_{\varepsilon,A} \le ||A||_{\varepsilon,A} ||x_k||_{\varepsilon,A} \le (\rho(A) + \varepsilon) ||x_k||_{\varepsilon,A} = \frac{1 + \rho(A)}{2} ||x_k||_{\varepsilon,A}.$$

Comme $\frac{1+\rho(A)}{2} < 1$, la suite $(\|x_k\|_{\varepsilon,A})$ tend vers 0, donc (x_k) converge vers 0. Pour l'implication réciproque, on suppose $\rho(A) \ge 1$. On prend x_0 un vecteur propre associé à une valeur propre λ de A de plus grand module. Alors $x_k = \lambda^k x_0$. Donc $\|x_k\| = \rho(A)^k \|x_0\| \ge \|x_0\|$. On ne peut pas converger vers 0.