

Outline

- 5 Reduction of Multiple Subsystems.
 - 5.1 Introduction.
 - 5.2 Block Diagrams.
 - 5.3 Analysis and design of feedback systems.
- 5.4 Signal-Flow Graphs
- 5.5 Mason's Rule.
- 5.6 Signal-Flow Graphs of State Equations.

1. Introduction

- Finding the Transfer function of a system represented by a block diagram is not always straightforward.
- For example, find the transfer function of the system in Figure.
- Reducing (i.e., simplifying) the block diagram is one way to derive the transfer function of such a system.

Figure 1: (Fig. 5.11 of [Nise, 2015])

2. Block Diagram Reduction

1. Cascade Form

2. Parallel form

$$+ G_1(s) \pm G_2(s) \pm G_3(s)$$

$$(b)$$

3. Feedback Form

$$E(s) = R(s) \mp C(s)H(s)$$

$$C(s) = R(s) \mp C(s)H(s)$$
 $G(s)$

$$G_e(s) = \frac{C(s)}{R(s)} = \frac{G(s)}{1 \pm G(s)H(s)}$$

C(s) = E(s)G(s)

We call G(s)H(s) the open loop transfer function or loop gain.

$$\frac{R(s)}{\text{Input}} = \boxed{\begin{array}{c} G(s) \\ 1 \pm G(s)H(s) \end{array}} \boxed{\begin{array}{c} C(s) \\ \text{Output} \end{array}}$$

Feedback

$$\frac{C(s)}{R(s)} = \frac{G(s)}{1 + G(s)H(s)}$$

Moving Blocks to create Familiar Forms

Definitions

In reference to Fig. 2, Feedforward gain =
$$G_1G_2 \cdots G_n(s)$$

Feedback gain =
$$H_1H_2\cdots H_m(s)$$

Open-loop transfer function (OLTF) = feedforward
$$\times$$
 feedback

$$=G_1G_2\cdots G_nH_1H_2\cdots H_m$$

Closed-loop transfer function (CLTF) = System's transfer function

$$= feedforward/(1 + OLTF)$$

$$=\frac{G_1G_2\cdots G_n}{1+G_1G_2\cdots G_nH_1H_2\cdots H_m}$$

For a positive feedback, CLTF = feedforward/(1 - OLTF)

$$=\frac{G_1G_2\cdots G_n}{1-G_1G_2\cdots G_nH_1H_2\cdots H_m}$$

Feedforward

Figure 2: Block diagram of a system with a negative feedback

10

Example 1

Η

Example 5.2: Find the transfer function of the system in Fig

- 1. Move G_2 to left of pickoff point creating parallel form.
- 2. Reduce feedback system (G_3 , H_3).

- **3.** Reduce parallel form containing $\frac{1}{G_2(s)}$ and unity.
- **4.** Push $G_1(s)$ to the right past summing junction. Creates parallel form $(H_1 \text{ and } [\frac{1}{G_1}, H_2])$.
- **5.** Combine serial forms (G_1, G_2) and $(\frac{1}{G_1}, H_2)$.

- 6. Collapse summing junctions, and combine parallel form.
- Combine serial form on right.

- 8. Collapse feedback form.
- 9. Combine the two cascade blocks.

$$\frac{R(s)}{1 + G_2(s)H_2(s) + G_1(s)G_2(s)H_1(s)} = \frac{V_4(s)}{1 + G_2(s)H_2(s) + G_1(s)G_2(s)H_1(s)} = \frac{V_4(s)}{1 + G_3(s)H_3(s)} + \frac{C(s)}{1 + G_3(s)H_3(s)} = \frac{C(s)}{1$$

FIGURE 5.12 Steps in the block diagram reduction for Example 5.2

$$\frac{R(s)}{[1 + G_2(s)H_2(s) + G_1(s)G_2(s)H_1(s)][1 + G_3(s)H_3(s)]} C(s)$$

Exercise 5.1 Find the equivalent transfer function,.

FIGURE 5.13 Block diagram for Skill-Assessment Exercise 5.1[Nise, 2015]

Answer

Combine the parallel blocks in the forward path. Then, push $\frac{1}{s}$ to the left past the pickoff point.

$$T(s) = \frac{s^3 + 1}{2s^4 + s^2 + 2s}$$

3. Analysis and Design of Feedback Systems

$$\frac{Y(s)}{R(s)} = \frac{G(s)G_a(s)G_c(s)}{1 + G(s)G_a(s)G_c(s)H(s)}.$$

Example 5.3: It explains analysis and design of feedback systems that reduce to second-order systems. Percent overshoot, settling time, peak time, and rise time can then be found from the equivalent transfer function. (a=5)

FIGURE 5.15 Feedback system for Example 5.3 [Nise, 2015]

$$T(s) = \frac{25}{s^2 + 5s + 25}$$

$$\omega_n = \sqrt{25} = 5$$
 $2\zeta\omega_n = 5 \quad \Box \qquad \zeta = 0.5$

$$T_p = \frac{\pi}{\omega_n \sqrt{1 - \zeta^2}} = 0.726 \operatorname{second}$$

$$\%OS = e^{-\zeta \pi / \sqrt{1 - \zeta^2}} \times 100 = 16.303$$

$$T_s = \frac{4}{\zeta \omega_n} = 1.6 \operatorname{seconds}$$

Block diagram of a DC motor

$$I(s) = \frac{V(s) - V_b(s)}{Ls + R}$$

$$\omega(s) = \frac{T(s) - T_d(s)}{J_{s+b}}$$

$$T(s) = k_i I(s)$$

$$V_m(s) = k_m \omega(s)$$

$$V(s) = (R + Ls)I(s) + \omega(s)k_m \rightarrow I(s) = \frac{V(s) - \omega(s)k_m}{Ls + R}$$

T(s) =
$$(Js + b)\omega(s) + T_d(s) \rightarrow \omega(s) = \frac{I(s)k_i - T_d(s)}{Js + b}$$

Under steady-state condition:

have two equations. One describes the electrical and describes the one mechanical.

$$\omega = \frac{k_i V - RT_d}{k_i k_m + Rb}, \qquad T = \frac{k_i (Vb + k_m T_d)}{k_m k_i + Rb}$$

Transfer Function

Speed to voltage transfer function for $T_d(s) = 0$

$$S(s) = \frac{\omega(s)}{V(s)}$$

$$V(s) \longrightarrow \boxed{\begin{array}{ccc} k_i & 1 \\ Ls+R & \overline{J}s+b \end{array}} \quad \omega(s)$$

$$S(s) = \frac{\omega(s)}{V(s)} = \frac{k_i}{(Ls+R)(Js+b) + k_i k_m}$$

Position to voltage transfer function for $T_d(s) = 0$

$$P(s) = \frac{\theta(s)}{V(s)} = \frac{k_i}{s[(Ls+R)(Js+b)+k_ik_m]}$$

Transfer function

Torque constant	k _i	mNm/A
Speed constant	k_m	mV/(rad/s)
Resistance	R	Ω
Inductance	L	Н
Rotor inertia	J	kg·m ²
Friction constant	Ь	Nm/(rad/s)

Torque to voltage transfer function for $T_d(s) = 0$.

$$M(s) = \frac{T(s)}{V(s)} = \frac{\frac{k_i}{Ls+R}}{1 + \frac{k_m}{Js+b} \frac{k_i}{Ls+R}}$$

$$M(s) = \frac{T(s)}{V(s)} = \frac{k_i(Js+b)}{(Js+b)(Ls+R) + k_i k_m} = S(s) \text{ (Js+b)}$$

4. Signal-Flow Graphs

- Extracting the transfer function from the system's block diagram is not a systematic procedure.
 - ⇒ cannot be automated or programmed using a computer.
- The transfer function of a system with a complicated block diagram can be derived in a systematic fashion by transforming the block diagram into a signal-flow graph; by applying Mason's formula.
- A block diagram can be transformed into a signal-flow graph by :
 - transforming every signal (link) in the block diagram to a node in the signal-flow graph.
 - 2. Transforming each block (local TF) in the block diagram to a directed link in the signal-flow graph.

Definitions

- A source node is a node from which signals flow only away from it (has no incoming signal).
 In a signal-flow graph, source nodes correspond to the system inputs and initial conditions.
- A sink node is a node that has only incoming signals (branches) and no departing signals.
- A path is a continuous connection of branches from one node to another following the signal flow direction.
- A forward path is path that connects a source node to a sink node without visiting any node more than once.
- Two paths are said to be nontouching if they have no node in common.
- A path gain is the product of the transfer functions of all the branching forming the path.
- A loop is a closed path in which no node is visited more than once (departure node = arrival node).

5.5 Mason's Rule

Definitions

- Loop gain. The product of branch gains found by traversing a path that starts at a node and ends at the same node

 - 1. $G_2(s)H_1(s)$ 3. $G_4(s)G_5(s)H_3(s)$

 - **2.** $G_4(s)H_2(s)$ **4.** $G_4(s)G_6(s)H_3(s)$
- Forward-path gain. The product of gains found by traversing a path from the input node to the output node of the signal-flow graph in the direction of signal flow.
 - 1. $G_1(s)G_2(s)G_3(s)G_4(s)G_5(s)G_7(s)$
 - **2.** $G_1(s)G_2(s)G_3(s)G_4(s)G_6(s)G_7(s)$
- Nontouching loops. Loops that do not have any nodes in common.

 $G_2(s)H_1(s)$ does not touch loops $G_4(s)H_2(s)$, $G_4(s)G_5(s)H_3(s)$, and $G_4(s)G_6(s)H_3(s)$.

Nontouching-loop gain. The product of loop gains from nontouching loops taken two, three, four, or more at a time.

- 1. $[G_2(s)H_1(s)][G_4(s)H_2(s)]$
- **2.** $[G_2(s)H_1(s)][G_4(s)G_5(s)H_3(s)]$
- 3. $[G_2(s)H_1(s)][G_4(s)G_6(s)H_3(s)]$

25

Mason's Rule

■ The transfer function between a source R(s) and a sink C(s) in a signal-flow graph is formulated as :

$$G(s) = \frac{C(s)}{R(s)} = \frac{\sum_{k} T_{k} \Delta_{k}}{\Delta}$$

 $k \equiv$ number of forward paths between R(s) and C(s)

 $T_k \equiv \text{gain of forward path number } k$

$$\Delta = 1 - (\sum \text{loop gains})$$
 $+ (\sum \text{nontouching loop gains taken 2 at a time})$
 $- (\sum \text{nontouching loop gains taken 3 at a time})$
 $+ \cdots$

 Δ_k is calculated in the same way as Δ but with dropping the loops that touch the forward path number k (those having at least one common node with this path).

Example 5.7

Page: 252

 $G_1(s)$

R(s)

Find the transfer function, C(s)/R(s), for the signal-flow graph

Solution

First, identify the forward-path gains

$$G_1(s)G_2(s)G_3(s)G_4(s)G_5(s)$$

Second, identify the *loop gains*. There are four, as follows:

- **1.** $G_2(s)H_1(s)$ **3.** $G_7(s)H_4(s)$
- **2.** $G_4(s)H_2(s)$ **4.** $G_2(s)G_3(s)G_4(s)G_5(s)G_6(s)G_7(s)G_8(s)$

(Fig. 5.21 of [Nise, 2015])

Third, identify the nontouching loops taken two at a time.

Loop 1 and loop 2:
$$G_2(s)H_1(s)G_4(s)H_2(s)$$

Loop 1 and loop 3:
$$G_2(s)H_1(s)G_7(s)H_4(s)$$

Loop 2 and loop 3:
$$G_4(s)H_2(s)G_7(s)H_4(s)$$

Finally, the nontouching loops taken three at a time are as follows:

Loops 1, 2, and 3:
$$G_2(s)H_1(s)G_4(s)H_2(s)G_7(s)H_4(s)$$

Now, we form Δ and Δ_k . Hence,

$$\Delta = 1 - [G_2(s)H_1(s) + G_4(s)H_2(s) + G_7(s)H_4(s) + G_2(s)G_3(s)G_4(s)G_5(s)G_6(s)G_7(s)G_8(s)] + [G_2(s)H_1(s)G_4(s)H_2(s) + G_2(s)H_1(s)G_7(s)H_4(s) + G_4(s)H_2(s)G_7(s)H_4(s)] - [G_2(s)H_1(s)G_4(s)H_2(s)G_7(s)H_4(s)]$$

We form Δ_k by eliminating from Δ the loop gains that touch the kth forward path:

$$\Delta_1 = 1 - G_7(s)H_4(s)$$

$$G(s) = \frac{T_1 \Delta_1}{\Delta} = \frac{[G_1(s)G_2(s)G_3(s)G_4(s)G_5(s)][1 - G_7(s)H_4(s)]}{\Delta}$$

PARTICIPATION ACTIVITY

5.5.3: Application of Mason's rule.

Mason's Rule

$$G(s) = rac{C(s)}{R(s)} = rac{\displaystyle\sum_k T_k \Delta_k}{\Delta}$$

k =forward paths = 1

$$T_k = T_1 = G_1(s)G_2(s)G_3(s)G_4(s)$$

$$\Delta = 1 - \Sigma(\text{loop gains}) + 0$$

$$= 1 - (G_2(s)G_3(s)G_4(s)H_2(s) + G_4(s)H_1(s))$$

 $\Delta_k = \Delta_1 = {
m eliminating \ from \ } \Delta$ the loop gains touching the forward path

$$=1$$

$$G(s) = \frac{G_1(s)G_2(s)G_3(s)G_4(s)(1)}{1 - (G_2(s)G_3(s)G_4(s)H_2(s) + G_4(s)H_1(s))}$$

Example. Find the transfer function of the system using Mason's formula.

(Fig. 5.11 of [Nise, 2015])

29

Forward-path gains are $G_1G_2G_3$ and G_1G_3 .

Loop gains are
$$-G_1G_2H_1$$
, $-G_2H_2$, and $-G_3H_3$

Nontouching loops are $[-G_1G_2H_1][-G_3H_3]=G_1G_2G_3H_1H_3$ and $[-G_2H_2][-G_3H_3]=G_2G_3H_2H_3$.

 $\Delta = 1 - \Sigma$ loop gains $+ \Sigma$ nontouching-loop gains taken two at a time $- \Sigma$ nontouching-loop gains taken three at a time $+ \Sigma$ nontouching-loop gains taken four at a time $- \dots$

$$\Delta = 1 + G_1G_2H_1 + G_2H_2 + G_3H_3 + G_1G_2G_3H_1H_3 + G_2G_3H_2H_3$$

Finally, $\Delta_1=1$ and $\Delta_2=1$.

Substituting these values into

$$T(s) = \frac{C(s)}{R(s)} = \frac{\sum T_k \Delta_k}{\Delta}$$

$$T(s) = \frac{G_1(s)G_3(s)\left[1 + G_2(s)\right]}{\left[1 + G_2(s)H_2(s) + G_1(s)G_2(s)H_1(s)\right]\left[1 + G_3(s)H_3(s)\right]}$$

Exercise 2

Find the transfer function of the system in Fig. 6 using Mason's formula.

Figure 6: (Fig. 5.13 of [Nise, 2015])

Answer
$$T(s) = \frac{s^3 + 1}{2s^4 + s^2 + 2s}$$

6. Signal-Flow Graphs of State Equations

Question

Knowing the state space representation of a system, how to draw its signal-flow graph?

- Create a node for each state variable.
- 2. To the left of each state variable node, create a node that corresponds to its time-derivative.
- 3. Connect each pair of these nodes with links of the following form:

$$SX \xrightarrow{1/s} X$$

- 4. Create nodes corresponding to the system's inputs and outputs.
- 5. Use the state and output equations to interconnect the nodes of the graph.

Example 5

An LTI system is represented by the following state-space model:

$$\dot{x}_1 = 2x_1 - 5x_2 + 3x_3 + 2r$$

$$\dot{x}_2 = -6x_1 - 2x_2 + 2x_3 + 5r$$

$$\dot{x}_3 = x_1 - 3x_2 - 4x_3 + 7r$$

$$y = -4x_1 + 6x_2 + 9x_3$$

Find the system's transfer function using Mason's formula.

1.For the state equations above, nodes are drawn for state variables x1,x2 and x3 in the frequency domain. A node $sX_k(s)$ for each derivative $\dot{x_k}$ is inserted to the left of the state variable. Finally, Input R(s) and output Y(s) nodes are added.

Exercise 3

Draw the signal-flow graph corresponding to the following state space model:

$$\dot{x} = \begin{bmatrix} -2 & 1 & 0 \\ 0 & -3 & 1 \\ -3 & -4 & -5 \end{bmatrix} x + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} r$$

$$y = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix} x$$

7. Alternative Representations in State Space

Figure 5: (Fig. 3.10 of [Nise, 2015])

Problem 5.25 (modified)

An LTI system has the following transfer function:

$$\frac{C(s)}{R(s)} = \frac{20}{s(s-2)(s+5)(s+8)}$$

Express the system in a state-space representation (phase-variable form) and draw its corresponding signal-flow graph.

Exercise 4

In Chapter 2, the transfer function G(s) = VL(s)/V(s) of the circuit in Fig. was derived straight from the system's dynamic equations using (i) mesh analysis, and (ii) nodal analysis techniques. It was found to be:

$$G(s) = \frac{V_L(s)}{V(s)} = \frac{(Ls+R)^2}{L^2s^2 + 5RLs + 2R^2}$$
 $L = 1 \text{ H}, R = 1 \Omega$

Repeat the exercise by : deriving a block diagram for the system → Signal flow graph → Mason's formula.

Figure: Circuit of Skill-Assessment Exercise 2.6 [Nise, 2015].

Summary of the modeling techniques

Fig. shows a summary of the modeling techniques covered so far.

Figure: Summary of the modeling techniques

References

Nise, N. S. (2015). Control Systems Engineering. Wiley, 7 edition.