#### Notes on Helix Fit

Kang, Byungmin

May 8, 2025

#### 1 Introduction to Helix Fit

Let us say, we want to determine a helical trajectory from a set of measured spatial points(or, hits). A point in a helical trajectory,  $\mathcal{H}(c_x, c_y, r, z0, dz; \theta)$ , can be represented by a parameter  $\theta$  and five coefficients, which corresponds to the radius r, x and y of the center of the circle  $c_x, c_y$ , axis position at  $\theta = 0$   $z_0$ , and helical pitch dz.

To conduct a  $\chi^2$  fit of the track from a set of measured spatial points(or, **hits**), we need to evaluate the distance of each point from the trajectory, estimate the pull by dividing it into spatial residual  $\sigma$ , and then sum up the square of the pulls to determine the  $\chi^2$ . Each hit comprise of three measurements,  $\mathbf{X}_i \equiv (x_i, y_i, z_i)$ . However, to define the distance between helical track and spatial point, we need to define a specific point( $\mathbf{h}_i$ ) by selecting specific parameter,  $\theta_i$ , in the helix( $H(c_x, c_y, r, z0, dz; \theta)$ ) for each measurement  $\mathbf{X}_i$ . This point selection will be discussed in the next session. Selection of the point results in a loss of one degree of freedom, giving only two degrees of freedom for each hit. Then, the summation for pull squared should have two spatial components. Our intuition says that, **radial**(along the plane where the circle lies) component and **vertical**(along the axis) component are the best choices.

$$\chi^2 = \sum_{i}^{n} \left(\frac{\delta_{r,i}}{\sigma_{r,i}}\right)^2 + \left(\frac{\delta_{V,i}}{\sigma_{V,i}}\right)^2 - Cov(r, V) \frac{\delta_{r,i}}{\sigma_{r,i}} \frac{\delta_{V,i}}{\sigma_{V,i}}$$
(1)

where  $\delta_r$  and  $\delta_V$  are the radial and vertical component squared, respectively, for the position difference  $\mathbf{D}_i = \mathbf{h}_i - \mathbf{X}_i$ , and Cov(r, V) is the covariance between  $\delta_r$  and  $\delta_V$ .

#### 2 Point Selection in Helical Track

To evaluate (1) properly, we need a good criteria to define  $\mathbf{h}_i$ . The simplest way is to get  $\theta_i$  by minimizing

$$\delta_i^2 = (\mathbf{h}_i - \mathbf{X}_i)^2$$

$$= \underbrace{(c_x + r\cos\theta - x_i)^2 + (c_y + r\sin\theta - y_i)^2}_{\delta_r^2} + \underbrace{(z_0 + dz\theta - z_i)^2}_{\delta_V^2}. \tag{2}$$

This is known as  $Point\ of\ Closest\ approach(PoC)$  method. However, with this definition, we have non-zero (anti) correlation between r and V, arising from the minimizing condition:

$$\frac{\partial \delta_i^2}{\partial \theta} = \frac{\partial \delta_r^2}{\partial \theta} + \frac{\partial \delta_V^2}{\partial \theta} = 0. \tag{3}$$

In order to avoid this problem, we could define  $\mathbf{h}_i$  by implying criteria other than (2) to avoid (anti) correlation between two variables from (3). We can either minimize  $\delta_r^2$  or  $\delta_V^2$  only.

If we minimize  $\delta_V^2$ , resulting  $\theta$  from

$$\frac{\partial \delta_V^2}{\partial \theta} = dz(z_0 + dz\theta - z_i) = 0 \to \theta = \frac{z_0 - z_i}{dz}$$
 (4)

will be is extremely sensitive to small variance in vertical direction for tracks with low pitch angle  $(dz \to 0)$ , leading to high instability for  $\theta_i$  selection, hence degrading the fitting result.

Another choice, say Minimal Radial Distance (MRD)<sup>1</sup> method is to minimize  $\delta_r^2$ , which would obviously be unstable for small radius  $(r \simeq \sigma_r)$ . However, this is not the usual case because r typically ranges from few hundreds to thousands of millimeters, while  $\sigma_r < 10$  mm. Then, we have

$$\frac{\partial \delta_r^2}{\partial \theta} = -r(c_x + r\cos\theta - x_i)\sin\theta + r(c_y + r\sin\theta - y_i)\cos\theta = 0$$
 (5)

$$\tan \theta = \frac{\delta_y}{\delta_x}.\tag{6}$$

Figure 1 illustrates the (a) PoC method and (b) MRD method. Note that, for small dz tracks,  $(4) \approx 0$  hence  $(3) \approx (5)$  so that PoC and MRD becomes essentially similar.



Figure 1

 $<sup>^{1}\</sup>mathrm{I}$  can't find conventional name for this method

# 3 Position Residual Comparison with HypTPC Data



Figure 2

Figure 2 shows the comparison of radial residuals between (a) PoC Method and (b) MRD method for scattered  $\pi s$  from <sup>12</sup>C target, in 1T B-field. As discussed in the above section, PoC method minimizes  $\delta_r^2 + \delta_T^2$ , hence  $\delta_r$  may not be in minimum. As so we observe a dip structure in (a).

#### 4 Position Resolution

#### 4.1 Radial Resolution

To be written... Check [1]

#### 4.2 Vertical Resolution

To be written...

### 5 Momentum Resolution in HypTPC Beamthrough Analysis

To be written...

## References

 $[1] \ \ TPC \ Spatial \ Resolution \ Study \ from \ W.S. \ Jung \\ https://lambda.phys.tohoku.ac.jp/hyptpc-wiki/lib/exe/fetch.php?media=document:analysis:tpcspatialresolution \ Study \ from \ W.S. \ Jung \\ https://lambda.phys.tohoku.ac.jp/hyptpc-wiki/lib/exe/fetch.php?media=document:analysis:tpcspatialresolution \ for \ figure \ figure \ for \ figure \ for \ figure \ figure \ figure \ for \ figure \ f$