Lesson 4: Formalism

Clara E. Alonso Alonso

November 9, 2011

C	perators in Quantum Mechanics	2
		. 3
		. 4
		. 7
		. 8
		. 9
		10
		11
		12
Di	irac notation	13
		14
		15
		16
В	asic Postulates of Quantum Mechanics	17
		18
		19
		20
		21
		22
		23
		24
		25
		26
		27
Ti	me dependence of the wave function	28
		29
		30
		31
		32
		33
C	ompatibility of observables	34
		35
		36

Evolution of mean values	37
	38
	39
	40
Ehrenfest's Theorem	41
	42
	43
	44
	45
Constants of the motion and conservation laws	48
	49
Bibliography	55
	56

Operator $\hat{O} f = g$ f, g functions

Linear operator $\hat{L}\left(c_1f_1+c_2f_2\right)=c_1\hat{L}f_1+c_2\hat{L}f_2$

Examples $\hat{O} f(x) = f(x) + x^2$ no linear

$$\hat{O} f(x) = \frac{df(x)}{dx} - 2f(x)$$
 linear

$$\hat{O} f(x) = \lambda f(x)$$
 linear

Hermitian or self-adjoint linear operator

$$\int_{a.s.} d\tau \Psi_1^* \left(\hat{L} \Psi_2 \right) = \left[\int_{a.s.} d\tau \Psi_2^* \left(\hat{L} \Psi_1 \right) \right]^* \\
= \int_{a.s.} d\tau \left(\hat{L} \Psi_1 \right)^* \Psi_2 ; \quad \forall \Psi_1, \Psi_2$$

3/56

 $\int_{a.s.} d au \Psi_1^* \left(\hat{L} \Psi_2
ight)$ matrix element of \hat{L} between Ψ_1 and Ψ_2 .

Diagonal matrix element if $\Psi_1=\Psi_2$ (and equal to the expectation value of \hat{L} in Ψ_1 if it is normalized)

- 1) Linear Hermitian operators have real expectation values
- 2) we call **observables** to physical magnitudes (represented by linear Hermitian operators)

Demonstration 1). Let \hat{L} be a linear Hermitian operator

$$\langle \hat{L} \rangle_{\Psi} = \int_{a.s.} d\tau \Psi^* \left(\hat{L} \Psi \right) = \left[\int_{a.s.} d\tau \Psi^* \hat{L} \Psi \right]^* = \langle \hat{L} \rangle_{\Psi}^*$$

 $\to <\hat{L}>_{\Psi}$ is real

- \blacksquare Sum of operators $\ \hat{C} = \hat{A} + \hat{B} \
 ightarrow \ \hat{C} \ \Psi = \hat{A} \ \Psi + \hat{B} \ \Psi$
- If \hat{A} and \hat{B} are Hermitian \rightarrow \hat{A} + \hat{B} is Hermitian Product of operators \hat{C} = \hat{A} \hat{B} \rightarrow \hat{C} Ψ = \hat{A} \hat{B} Ψ = \hat{A} $\left(\hat{B}$ $\Psi\right)$
 - In general the product of operators is not commutative
- $\qquad \qquad \textbf{Conmutator} \ \text{of} \ \ \hat{A} \ \ \text{y} \ \ \hat{B} \quad : \quad [\hat{A},\hat{B}] \ = \ \hat{A} \ \hat{B} \ \ \hat{B} \ \hat{A}$
 - If $[\hat{A},\hat{B}] = 0 \quad o \quad \hat{A} \text{ and } \hat{B} \text{ conmute}$
 - $\Box \quad [\hat{A}, \hat{B}] \ = \ \ [\hat{B}, \hat{A}]$
 - $\Box \ [\hat{A} + \hat{B}, \hat{C}] = [\hat{A}, \hat{C}] + [\hat{B}, \hat{C}]$
 - $\Box \quad [\hat{A}, \lambda \hat{B}] = \lambda \, [\hat{A}, \hat{B}] \quad ; \; \lambda \in \; \mathcal{C}$ $\Box \quad [\hat{A}, \hat{B}\hat{C}] = \hat{B}[\hat{A}, \hat{C}] \; + \; [\hat{A}, \hat{B}]\hat{C}$

5 / 56

Hermitian conjugate or adjoint operator of \hat{A} , \hat{A}^{\dagger}

$$\int_{a.s.} d\tau \Phi^* \hat{A} \Psi \ = \ \left[\int_{a.s.} d\tau \Psi^* \hat{A}^\dagger \Phi \right]^* \ ; \quad \forall \ \Phi, \ \Psi$$

- $\qquad \qquad \text{If } \hat{A} \text{ is Hermitian } \hat{A} \ = \ \hat{A}^{\dagger}$

- lacksquare $\left(\lambda\hat{A}
 ight)^{\dagger} \ = \ \lambda^* \ \hat{A}^{\dagger} \ \ ; \ \ \lambda \in \ \ \mathcal{C} \ (\lambda \ \ ext{is an operator}, \ \lambda\hat{A} \ ext{operator product})$
- \blacksquare If \hat{A} and $\,\hat{B}$ are Hermitian and $\,[\hat{A},\hat{B}]\,=\,0\,$ $\,\to\,\hat{A}\,\hat{B}$ is Hermitian
- If \hat{A} is Hermitian so is \hat{A}^n
- $\hat{O} = \sum_{n} c_n \hat{A}^n \; ; \; c_n \in \mathcal{C} \to \hat{O}^{\dagger} = \sum_{n} c_n^* \left(\hat{A}^n \right)^{\dagger}$

$$\Box \quad \text{If } \hat{A} \ = \ \hat{A}^\dagger \ \to \ \hat{A}^n \ = \ \left(\hat{A}^\dagger\right)^n \ = \ \left(\hat{A}^n\right)^\dagger \ \to \\ \hat{O}^\dagger \ = \ \sum_n c_n^* \hat{A}^n$$

 \Box If in addition $c_n \in \mathcal{R} \ o \ \hat{O}^\dagger \ = \ \sum_n c_n \hat{A}^n \ = \ \hat{O}$

7 / 56

Eigenfunctions and eigenvalues

- Eigenvalue equation $\hat{O}f_{\lambda}=e_{\lambda}\,f_{\lambda}\;;\;e_{\lambda}\in\mathcal{C}$ f_{λ} is eigenfunction of \hat{O} associated to the eigenvalue e_{λ}
- \blacksquare If more than one f_{λ} is associated with the same e_{λ} there is **degeneration**

 e_λ is a $g(\lambda)$ times degenerate eigenvalue if $\exists \ f_{\lambda_1}, \ f_{\lambda_2}, \cdots f_{\lambda_{g(\lambda)}}$ linearly independent $/\ \hat{O}\ f_{\lambda_i} = e_\lambda\ f_{\lambda_i}$; $i=1,2\cdots g(\lambda)$

 $\sum_{i=1}^{g(\lambda)} b_i \; f_{\lambda_i}$ is eigenfunction of \hat{O} associated to e_{λ}

$$\hat{O}\left(\sum_{i=1}^{g(\lambda)} b_i f_{\lambda_i}\right) = \sum_{i=1}^{g(\lambda)} b_i e_{\lambda} f_{\lambda_i} = e_{\lambda} \left(\sum_{i=1}^{g(\lambda)} b_i f_{\lambda_i}\right)$$

■ For a given operator → solving the eigenvalue equation ⇒ finding its eigenvalues and eigenfunctions $\hat{H} \Psi = E \Psi$

$$\hat{H}=\hat{E}_c+\hat{V}=i\hbar \frac{\partial}{\partial t}$$
 operator

$$E$$
 eigenvalue of \hat{H}

$$\Psi$$
 eigenfunction of \hat{H} (assoc. to E)

eigenvalues of Hermitian operators are real

$$<\hat{O}>_{f_{\lambda}}=\int_{a.s.}d\tau\;f_{\lambda}{}^{*}\hat{O}\;f_{\lambda}=\int_{a.s.}d\tau\;f_{\lambda}{}^{*}\;e_{\lambda}\;f_{\lambda}=e_{\lambda}\;\to\;$$
 real (expectation value calculated in eigenfunction = eigenvalue)

■ Scalar product of two functions Φ y Ψ

$$\begin{array}{rcl} (\Phi, \ \Psi) &=& \int_{a.s.} \ d\tau \ \Phi^* \ \Psi \\ (\Phi, \ \Psi) &=& (\Psi, \ \Phi)^* \end{array}$$

$$(\Phi, \Psi) = (\Psi, \Phi)^*$$

9/56

Properties of the eigenfunctions

■ Eigenfunctions of Hermitian operators associated with different eigenvalues are orthogonal $\hat{A} \, \Psi_1 \, = \, a_1 \, \Psi_1 \quad {\sf y} \quad \hat{A} \, \Psi_2 \, = \, a_2 \, \Psi_2 \quad {\sf con} \quad a_1 \,
eq \, a_2 \, \Psi_2 \quad {\sf con} \quad a_1 \,
eq \, a_2 \, \Psi_3 \quad {\sf con} \quad a_3 \,
eq \, a_4 \, \Psi_4 \quad {\sf con} \quad a_4 \,
eq \, a_5 \, \Psi_4 \quad {\sf con} \quad a_5 \,
eq \, a_5 \, \Psi_5 \quad {\sf con} \quad a_5 \,
eq \, a_5 \, \Psi_5 \quad {\sf con} \quad a_5 \,
eq \, a_5 \, \Psi_5 \quad {\sf con} \quad a_5 \,
eq \, a_5 \,
eq \, a_5 \,
eq \, a_5 \, \Psi_5 \quad {\sf con} \quad a_5 \,
eq \, a_5$

$$\int_{a.s.} d\tau \ \Psi_2^* \ \hat{A} \Psi_1 = a_1 \int_{a.s.} d\tau \ \Psi_2^* \ \Psi_1$$
 (1)

$$\int_{a.s.} d\tau \ \Psi_1^* \ \hat{A} \Psi_2 = a_2 \int_{a.s.} d\tau \ \Psi_1^* \ \Psi_2$$
 (2)

 \hat{A} Hermitian + (2) \rightarrow $\int_{a.s.} d au \; \left(\hat{A}\Psi_1\right)^* \; \Psi_2 \; = \; a_2 \; \int_{a.s.} d au \; \Psi_1^* \; \Psi_2$

c.c.
$$\to \int_{a.s.} d\tau \, \Psi_2^* \left(\hat{A} \Psi_1 \right) = a_2 \int_{a.s.} d\tau \, \Psi_2^* \, \Psi_1$$
 (3)

From (1)
$$-$$
 (3) $(a_1 - a_2)$ $\int_{a.s.} d\tau \ \Psi_2^* \ \Psi_1 = 0 \rightarrow \int_{a.s.} d\tau \ \Psi_2^* \ \Psi_1 = (\Psi_2, \ \Psi_1) = 0$

- If there is degeneration $a_1=a_2$ and methods of ortogonalization must be used (the orthogonality is not guaranteed)
- All linearly independent eigenfunctions of any dynamic variable (= observable → Hermitian operator) span a function space, known as Hilbert space, in the sense that an arbitrary wave function which satisfies the same boundary conditions can be expanded in terms of them

$$\Psi(\vec{r}) = \sum_{n} c_n \, \phi_n(\vec{r}) \; ; \; c_n \in \mathcal{C}$$

 $\phi_n(\vec{r})$ set of eigenfunctions of the observable

11 / 56

$$\int_{a.s.} d\tau \; \phi_{n'}^* \Psi(\vec{r}) = \int_{a.s.} d\tau \; \phi_{n'}^* \sum_n c_n \; \phi_n = \sum_n c_n \; \delta_{nn'} = c_{n'}$$

$$c_n = \int_{a.s.} d\tau \; \phi_n^* \Psi(\vec{r}) = (\phi_n, \Psi)$$

(We have assumed that $\int_{a.s.} d\tau \; \phi_{n'}^* \phi_n = \delta_{nn'} \; ; \; \; \forall n,n'$)

Dirac notation 13 / 56

It associates $\Psi \quad \rightarrow \quad |\Psi> \>\>\>$ ket

$$\Psi^* \ o \ < \Psi | \$$
 bra

$$(\Phi, \Psi) \rightarrow \langle \Phi | \Psi \rangle$$
 bracket

Therefore $\ <\Phi |\ \Psi>\ =\ <\Psi |\ \Phi>^*$

Matrix element $\int_{a.s.} d au \Phi^* \hat{A} \Psi \ = \ <\Phi |\hat{A}| \Psi> \ = \ <\Phi |\hat{A}\Psi>$

Adjoint or Hermitian operator of \hat{A} (\hat{A}^{\dagger})

$$\begin{array}{lcl} <\Psi_{1}|\hat{A}|\Psi_{2}> & = & <\Psi_{2}|\hat{A}^{\dagger}|\Psi_{1}>^{*} \\ & = & <\hat{A}^{\dagger}\Psi_{1}|\Psi_{2}> \; \; ; \; \; \forall \; \Psi_{1} \; , \; \Psi_{2} \end{array}$$

$$(\phi, a\psi) = a (\phi, \psi) \rightarrow \langle \phi \mid a\psi \rangle = a \langle \phi \mid \psi \rangle; a \in \mathcal{C}$$

$$(a \phi, \psi) = a^* (\phi, \psi) \rightarrow \langle a \phi \mid \psi \rangle = a^* \langle \phi \mid \psi \rangle$$

14 / 56

- Eigenvalue eq. (Dirac notation) $\hat{A} |a>=a|a>$
- lacksquare orthonormality condition $<\Psi_i \mid \Psi_j> = \delta_{ij}$
- Eigenfunctions of a Hermitian operator with different eigenvalues are orthogonal

$$\hat{A} | a > = a | a > ; \hat{A} | b > = b | b >$$
 $< b | \hat{A} | a > = a < b | a >$
 $< a | \hat{A} | b > = b < a | b >$
 $\qquad \qquad \qquad \qquad \downarrow c.c.$
 $< b | \hat{A}^{\dagger} | a > = b^* < b | a >$

but

$$\hat{A} = \hat{A}^{\dagger} \rightarrow a < b | a > = b^* < b | a > \tag{4}$$

- cont.
 - \Box (I) If $\mid b> = \mid a> \to a=b \to a=a^* \to {
 m eigenvalues}$ of Hermitian operators are real
 - □ (II) from (I)

$$\begin{array}{lll} \mbox{(4)} & \rightarrow a < b|\ a> = b < b|a> \\ \rightarrow & (a-b) < b|\ a> = 0 \\ \rightarrow & \mbox{if } a \neq b \rightarrow & < b|\ a> = 0 \\ \end{array}$$

 \blacksquare Hermitian operator $\,\hat{L}\,=\,\hat{L}^{\dagger}$

$$<\Psi_1|\hat{L}|\Psi_2> = <\Psi_2|\hat{L}|\Psi_1>^* = <\hat{L}\Psi_1|\Psi_2> ;$$

 $\forall\,\Psi_1\,,\,\Psi_2$

16 / 56

Basic Postulates of Quantum Mechanics

17 / 56

- 1) The quantum state of a system is described by means of a wave function, $\Psi(\vec{r},t)$ (or ket $|\Psi>$). It contains all the information that can be known about the system. The "solution space" for a given problem is defined to be the set of all **physically acceptable** wave functions for that problem.
- \blacksquare 2) Associated with every measurable quantity A there is some linear, Hermitian operator (**observable**) \hat{A} .

 \blacksquare 3) In any measurement of the observable associated with operator \hat{A} , the only values that will ever be observed are the **eigenvalues** a_i , which satisfy the eigenvalue equation

$$\hat{A} \, \phi_i = a_i \, \phi_i$$

If the system is in an eigenstate of \hat{A} with eigenvalue a_i , then any measurement of the quantity A will yield a_i .

Although measurements must always yield an eigenvalue, the state does not have to be an eigenstate of \hat{A} initially. An arbitrary state can be expanded in the **complete set** of eigenfunctions of \hat{A} as

$$\Psi = \sum_{i}^{n} c_i \, \phi_i$$

19 / 56

 \blacksquare 3) (cont.) where n may go to infinity. In this case we only know that the measurement of A will yield one of the values a_i , but we don't know which one.

- **4**) Quantum mechanics is a theory of **probabilities**. Measurements carried out in identical systems described by the same wave function, $\Psi(\vec{r},t)$ do not necessarily yield identical results.
 - □ 4.1) For

$$\Psi(\vec{r},t) \; = \; \sum_n c_n \; \phi_n \; \; ; \quad c_n \; = \; (\phi_n,\Psi) \label{eq:psi_def}$$

where
$$\hat{A}$$
 $\phi_n = a_n \phi_n$

the probability $P(a_n)$ that a measurement of A will give the **nondegenerate** eigenvalue a_n is

$$P(a_n) = |\int_{a.s.} d\tau \, \phi_n^* \, \Psi(\vec{r}, t)|^2 = |c_n|^2$$

if $\Psi(\vec{r},t)$ normalized ightarrow $\sum_n |c_n|^2 = 1$

and ϕ_n orthonormal basis $\to \int_{a.s.} d au \phi_n^* \phi_{n'} = \delta_{nn'}$

21 / 56

- 4) (cont.)
 - $\ \Box$ $\$ 4.2) If a_n is degenerate and $\Psi(\vec{r},t)$ is normalized and ϕ^i_n are a orthonormal basis

$$\Psi(\vec{r},t) = \sum_{n} \sum_{i=1}^{g_n} c_n^i \phi_n^i \; ; \; c_n^i = (\phi_n^i, \Psi)$$

where

$$\hat{A} \phi_n^i = a_n \phi_n^i \; ; \; i = 1, 2, 3, \cdots g_n$$

$$P(a_n) = \sum_{i=1}^{g_n} |\int_{a.s.} d\tau \, (\phi_n^i)^* \, \Psi|^2 = \sum_{i=1}^{g_n} |c_n^i|^2$$

where $\Psi(\vec{r},t)$ normalized $~\rightarrow~~\sum_{n}~\sum_{i=1}^{g_{n}}|c_{n}^{i}|^{2}~=1$

orthonormal basis $\ \rightarrow \ \ <\phi^i_n|\phi^j_{n'}>=\ \delta_{nn'}\delta_{ij}$

■ 4) (cont.)

□ 4.2) (cont.)

from 4)
$$<\Psi|\hat{A}|\Psi> = \sum_{nn'} \sum_{ij} \int_{a.s.} d\tau (c_n^i)^* (\phi_n^i)^* \hat{A} c_{n'}^j \phi_{n'}^j$$

 $= \sum_{nn'} \sum_{ij} a_{n'} (c_n^i)^* c_{n'}^j \delta_{ij} \delta_{nn'} = \sum_{ni} |c_n^i|^2 a_n$

23 / 56

To make sure that, when measuring a magnitude A, we are going to get a certain value, the system has to be in an eigenstate of \hat{A}

$$(\Psi, \Psi) = \int_{a.s.} d\tau \Psi^* \Psi$$

$$= \int_{a.s.} d\tau \sum_{i=1}^{g_n} \sum_{j=1}^{g_n} c_n^{i*} \phi_n^{i*} c_n^j \phi_n^j$$

$$= \sum_{i,j=1}^{g_n} c_n^{i*} c_n^j \delta_{ij} = \sum_{i=1}^{g_n} |c_n^i|^2$$

■ 5) If a measurement of A in state Ψ gives the result a_n , the wavefunction immediately **collapses** into the corresponding eigenstate ϕ_n (in the case that a_n is degenerate, then becomes the projection of Ψ onto the degenerate subspace).

Measurement affects the state of the system

Dirac notation, before measuring

$$|\Psi> \ = \ \sum_k \ \sum_{i=1}^{g_k} <\phi_k^i |\Psi> \ |\phi_k^i> \ \rightarrow$$

After getting $a_n \rightarrow$ eigenstate

$$\mathcal{N}\sum_{i=1}^{g_n} <\phi_n^i|\Psi> \ |\phi_n^i>$$

25 / 56

■ 5) (cont.) If a second measurement of A is performed after the first, the second measurement will give the same result as the first (with unit probability) provided that the second measurement is performed immediately after the first.

■ 6) The wavefunction of a system evolves in time according to the time-dependent Schrödinger equation

$$\hat{H}\Psi(\vec{r},t) = i\hbar \frac{\partial \Psi(\vec{r},t)}{\partial t}$$

(or, in Dirac notation,
$$i\hbar \frac{\partial |\Psi>}{\partial t} = \hat{H} |\Psi>)$$

The central equation of quantum mechanics must be accepted as a postulate

27 / 56

Time dependence of the wave function

28 / 56

Time-Dependent Schrödinger Equation, TDSE in one dimension

$$i\hbar\frac{\partial\Psi(x,t)}{\partial t}\ =\ \left(-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}\ +\ \hat{V}(x)\right)\Psi(x,t)$$

We assume $V = \hat{V}(x)$ (local and time independent)

For this case. Schrödinger eq. can be solved using the method of **separation of variables**We seek solutions of the type:

$$\Psi(x,t) = \phi(x) T(t)$$

(from them we can build the most general solution)

$$i\hbar \phi(x)\frac{dT(t)}{dt} = -\frac{\hbar^2}{2m}T(t)\frac{d^2\phi(x)}{dx^2} + \hat{V}(x)T(t)\phi(x)$$

$$i\hbar \frac{1}{T} \frac{dT(t)}{dt} = -\frac{\hbar^2}{2m} \frac{1}{\phi} \frac{d^2\phi(x)}{dx^2} + \hat{V}(x)$$

The left hand side of the equality is a function only of t, the right one of $x \to -\infty$

$$i\hbar \frac{1}{T} \frac{dT(t)}{dt} = E$$

$$T(t) = T(0) \exp(-\frac{iEt}{\hbar})$$

30 / 56

$$-\frac{\hbar^2}{2m} \frac{1}{\phi} \frac{d^2 \phi(x)}{dx^2} + \hat{V}(x) = E$$

$$-\frac{\hbar^2}{2m}\frac{d^2\phi(x)}{dx^2} + \hat{V}(x)\phi(x) = E\phi(x)$$

Time independent Schrödinger equation (TISE)

We will solve it for different potentials $\hat{V}(x)$

$$\Psi(x,t) = \phi(x) \exp(-\frac{iEt}{\hbar})$$

where $\phi(x)$ is solution of the t independent Schrödinger Eq.

The solutions are **stationary states** (\leftrightarrow eigenstates of \hat{H}) \rightarrow probability density independent on t \rightarrow so does the expected value of any observable independent of t

These states have well-defined energy

$$\hat{H}\Psi(x,t) = E\Psi(x,t) \rightarrow \langle \hat{H} \rangle_{\Psi} = E$$

The general solution of Schrödinger Eq. is a linear combination of separable solutions

32 / 56

By the principle of superposition

If
$$\Psi(x,0) = \sum_i c_i \phi_i(x)$$
 where

$$\hat{H} \phi_i(x) = E_i \phi_i(x)$$

$$\Psi(x,t) = \sum_{i} c_{i} \phi_{i}(x) e^{-\frac{iE_{i}t}{\hbar}}$$

In order to have well-defined eigenvalues of two observables \hat{A} and $\hat{B} \rightarrow \text{simultaneous eigenstate}$ of both \hat{A} and \hat{B} compatible (=simultaneous measurable) = eigenvalues of both can be assigned simultaneously to every eigenfunction \rightarrow there is a complete set of common eigenfunctions

■ Condition for two observables to be measured simultaneously

$$\left[\hat{A}, \hat{B}\right] = 0$$

35 / 56

 $\blacksquare \quad \text{If } \left[\hat{A}, \hat{B} \right] \ = \ 0 \ \ \text{there is a common set of eigenfunctions}$

Let $\Psi_b \ / \ \hat{B}\Psi_b \ = \ b \ \Psi_b \$ with nondegenerate $\ b$

$$\hat{A}\hat{B}\Psi_b = \hat{B}(\hat{A}\Psi_b) = b(\hat{A}\Psi_b) \rightarrow \hat{A}\Psi_b = a \Psi_b$$

(because b is nondegenerate)

 Ψ_b eigenfunction of $\hat{B} \ \rightarrow \ \ \mbox{eigenfunction of} \ \hat{A}$

One can also get a common eigenbasis of \hat{A} and \hat{B} for degenerate eigenvalues when $\left[\hat{A},\hat{B}\right]=0$ (we will not study how to get it).

The expected value of an operator \hat{O} in a normalized state Ψ is

$$<\hat{O}>_{\Psi} = \bar{\hat{O}}_{\Psi} = \int_{a.s.} d\tau \Psi^* \hat{O}\Psi = <\Psi |\hat{O}|\Psi>$$

 $\Psi \text{ and } \hat{O} \text{ in general also depend on time } t \ \to \ <\hat{O}>_{\Psi}.$

 $<\hat{O}>_{\Psi}$ only depends on t

$$\frac{\partial \, \dot{\hat{O}}}{\partial t} \, = \, \frac{d \, \dot{\hat{O}}}{dt} \, = \, \int_{a.s.} d\tau \, \Psi^* \frac{\partial \hat{O}}{\partial t} \Psi \, + \, \int_{a.s.} d\tau \, \left(\frac{\partial \Psi^*}{\partial t} \hat{O} \Psi \, + \, \Psi^* \hat{O} \frac{\partial \Psi}{\partial t} \right)$$

TDSE

$$i\hbar \frac{\partial \Psi}{\partial t} = \hat{H}\Psi$$

$$\frac{\partial \Psi}{\partial t} \; = \; -\frac{i}{\hbar} \hat{H} \Psi \quad \rightarrow \quad \left(\frac{\partial \Psi}{\partial t}\right)^* \; = \; \frac{\partial \Psi^*}{\partial t} \; = \; \frac{i}{\hbar} \left(\hat{H} \Psi\right)^*$$

38 / 56

Therefore

$$\frac{d\,\hat{\hat{O}}}{dt} = \int_{\hat{O}} d\tau \Psi^* \frac{\partial \hat{O}}{\partial t} \Psi + \frac{i}{\hbar} \int_{\hat{O}} d\tau \left[\left(\hat{H} \, \Psi \right)^* \hat{O} \, \Psi - \Psi^* \hat{O} \, \hat{H} \, \Psi \right]$$

 \hat{H} is Hermitian $~\to~ \int_{a.s.} d\tau \left(\hat{H} ~\Psi \right)^* ~\Phi ~=~ \int_{a.s.} d\tau \Psi^* \hat{H} \Phi$

taking $\Phi = \hat{O}\Psi \rightarrow \int_{a.s.} d\tau \left(\hat{H}\Psi\right)^* \hat{O}\Psi = \int_{a.s.} d\tau \Psi^* \hat{H} \hat{O}\Psi$ (because \hat{H} is Hermitian)

$$\frac{d\hat{\hat{O}}}{dt} = \int_{a.s.} d\tau \Psi^* \frac{\partial \hat{O}}{\partial t} \Psi + \frac{i}{\hbar} \int_{a.s.} d\tau \left[\Psi^* \hat{H} \, \hat{O} \, \Psi - \Psi^* \hat{O} \, \hat{H} \, \Psi \right]
= \int_{a.s.} d\tau \Psi^* \frac{\partial \hat{O}}{\partial t} \Psi + \frac{i}{\hbar} \int d\tau \Psi^* \left[\hat{H} \, , \hat{O} \right] \Psi$$

Time evolution of the mean value of an operator \hat{O}

$$\frac{d < \hat{O} >_{\Psi}}{dt} \; = \; < \frac{\partial \hat{O}}{\partial t} >_{\Psi} \; + \; \frac{i}{\hbar} \; < [\hat{H} \; , \hat{O}] >_{\Psi}$$

40 / 56

Ehrenfest's Theorem

41 / 56

Calculation of basic conmutators

$$\begin{split} \left[\hat{x},\hat{p}_{x}\right]\Psi &= \left[\hat{x},-i\hbar\frac{\partial}{\partial x}\right]\Psi \\ &= -i\hbar\hat{x}\frac{\partial\Psi}{\partial x} + i\hbar\frac{\partial(\hat{x}\Psi)}{\partial x} \\ &= -i\hbar\hat{x}\frac{\partial\Psi}{\partial x} + i\hbar\Psi + i\hbar\hat{x}\frac{\partial\Psi}{\partial x} \\ &= i\hbar\Psi \end{split}$$

$$[\hat{x}, \hat{p}_x] = i\hbar$$

$$[\hat{x}, \hat{x}] = [\hat{x}, \hat{y}] = [\hat{x}, \hat{z}] = 0$$

$$[\hat{x}, \hat{p}_y] = [\hat{x}, \hat{p}_z] = 0$$

$$[\hat{x}_i, \hat{x}_j] = 0$$

$$[\hat{x}_i, \hat{p}_j] = i\hbar \delta_{ij}$$

$$[\hat{p}_i, \hat{p}_j] = 0$$

43 / 56

Calculation of $[\hat{V},\hat{p}_x]$

$$\begin{split} [\hat{V}, \hat{p}_x] \Psi &= -i\hbar [\hat{V}, \frac{\partial}{\partial x}] \Psi \\ &= -i\hbar \hat{V} \frac{\partial \Psi}{\partial x} + i\hbar \frac{\partial \left(\hat{V}\Psi\right)}{\partial x} \\ &= -i\hbar \hat{V} \frac{\partial \Psi}{\partial x} + i\hbar \frac{\partial \hat{V}}{\partial x} \Psi + i\hbar \hat{V} \frac{\partial \Psi}{\partial x} \\ &= i\hbar \frac{\partial \hat{V}}{\partial x} \Psi \\ \hline \left[\hat{V}, \hat{p}_x\right] &= i\hbar \frac{\partial \hat{V}}{\partial x} \end{split}$$

We will see how average values of $\,\hat{O}\,=\,\hat{x},\hat{p}_x\,\,$ evolve over time

 \hat{x},\hat{p}_x as quantum operators do not depend explicitly on t , so

$$\frac{d < \hat{x} >}{dt} = \frac{i}{\hbar} < [\hat{H}, \hat{x}] > \; ; \; \frac{d < \hat{p}_x >}{dt} = \frac{i}{\hbar} < [\hat{H}, \hat{p}_x] >$$

If

$$\hat{H} = \frac{1}{2m} \left(\hat{p}_x^2 + \hat{p}_y^2 + \hat{p}_z^2 \right) + \hat{V}(x, y, z)$$

 $\qquad \qquad \qquad \qquad \hat{[\hat{H},\hat{x}]} \; = \; \frac{1}{2m} [\hat{p}_x^2,\hat{x}] = \frac{1}{2m} \left\{ \hat{p}_x [\hat{p}_x,\hat{x}] \; + \; [\hat{p}_x,\hat{x}] \hat{p}_x \right\}$

45 / 56

$$= \frac{1}{2m} \left\{ -2i\hbar \hat{p}_x \right\} = \frac{\hbar}{im} \hat{p}_x$$

 $\qquad \qquad \left[\hat{H}, \hat{p}_x \right] \; = \; \left[\hat{V}(x,y,z), \hat{p}_x \right] \; = \; i\hbar \frac{\partial \hat{V}}{\partial x}$

$$\frac{d < \hat{x} >}{dt} = \frac{< \hat{p}_x >}{m} \quad ; \quad \frac{d < \hat{p}_x >}{dt} = -\left\langle \frac{\partial \hat{V}}{\partial x} \right\rangle$$

In three dimensions, Ehrenfest's Theorem

$$\frac{d < \hat{\vec{r}}>}{dt} \; = \; \frac{<\hat{\vec{p}}>}{m} \quad ; \quad \frac{d < \hat{\vec{p}}>}{dt} \; = \; -\left\langle \vec{\bigtriangledown} \hat{V} \right\rangle$$

Classical equations of Hamilton-Jacobi

$$\frac{d\vec{r}}{dt} = \frac{\vec{p}}{m} \quad ; \quad \frac{d\vec{p}}{dt} = -\vec{\nabla}V$$

- Quantum equations are similar to the classical ones
- **Calculation** of the classical ones at $<\vec{r}>$ and $<\vec{p}>$ match the quantum ones in cases where

$$\frac{\partial V}{\partial x}|_{\bar{x}} = \left\langle \frac{\partial \hat{V}}{\partial x} \right\rangle$$

Not always the case

In general \Rightarrow force estimated at $<\vec{r}> \neq$ expected value of the force

 \blacksquare In general $<\vec{r}>$ and $<\vec{p}>$ do not obey the classical equations

47 / 56

Constants of the motion and conservation laws

48 / 56

An observable \hat{A} is a **constant of motion** if

$$\frac{\partial \hat{A}}{\partial t} = 0 \quad y \quad [\hat{A}, \hat{H}] = 0$$

- $\begin{tabular}{ll} \blacksquare & \begin{tabular}{ll} If \hat{A} is a confstant of motion & $\frac{d<\hat{A}>_{\Psi}}{dt}$ & = & 0 \\ & <\hat{A}>_{\Psi}$ & does not vary over time in any state, & < & $\hat{A}>_{\Psi}$ is conserved \\ \end{tabular}$
- lacksquare If $\hat{H}
 eq \hat{H}(t)
 ightarrow < \hat{H}>_{\Psi}$ is constant ightarrow energy is conserved (conservative system)
- $\blacksquare \quad \text{If } \frac{\partial \hat{V}}{\partial x} \ = \ 0 \quad \text{(the force } F_x \text{ is zero)}$

$$\rightarrow \ \ [\hat{H},\hat{p}_x] \ = \ i\hbar \frac{\partial \hat{V}}{\partial x} \ = \ 0 \ \ \rightarrow \quad \text{is conserved} < \hat{p}_x>_{\Psi} \quad \rightarrow \quad \hat{p}_x \text{ is a constant of motion}$$

- $\hspace{-0.5cm} \blacksquare \hspace{0.5cm} \text{If} \hspace{0.1cm} \vec{\bigtriangledown} \hat{V} \hspace{0.1cm} = \hspace{0.1cm} 0 \hspace{0.2cm} \rightarrow \hspace{0.2cm} < \hat{\vec{p}} >_{\Psi} \hspace{0.1cm} = \hspace{0.1cm} \text{is conserved}$
- Central forces $\,\hat{V}\,=\,\hat{V}(r)$ (spherical coordinates)

$$\hat{L}_x = i\hbar \left(\sin \phi \frac{\partial}{\partial \theta} + \cot \theta \cos \phi \frac{\partial}{\partial \phi} \right)$$

$$\hat{L}_y = i\hbar \left(-\cos \phi \frac{\partial}{\partial \theta} + \cot \theta \sin \phi \frac{\partial}{\partial \phi} \right)$$

$$\hat{L}_z = -i\hbar \frac{\partial}{\partial \phi}$$

$$[\hat{L}_i, \hat{L}_j] = i\hbar \epsilon_{ijk} \hat{L}_k \tag{5}$$

50 / 56

$$\hat{L}^{2} = -\hbar^{2} \left(\frac{1}{\sin^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}} + \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) \right)$$

$$\hat{L}^{2} = \hat{L}^{2}(\theta, \phi) \; ; \quad \hat{\vec{L}} = \hat{\vec{L}}(\theta, \phi)$$

$$\hat{H}_{0} = \hat{T} + \hat{V}(r) = \hat{T}_{r} + \frac{\hat{L}^{2}}{2mr^{2}} + \hat{V}(r)$$

(spherical coordinates)

$$[\hat{L}^2, \hat{V}(r)] = 0 \; ; \; [\hat{H}_0, \hat{L}^2] = 0 \rightarrow$$

 $\begin{array}{lll} [\hat{L}^2,\hat{V}(r)] \ = \ 0 & ; & [\hat{H}_0,\hat{L}^2] \ = \ 0 & \to \\ & <\hat{L}^2>_{\Psi} & & {\rm independent\ on\ } t, {\rm it\ is\ conserved} \end{array}$

$$[\hat{L}^2, \hat{\vec{L}}] = 0 \tag{6}$$

 $ightarrow \; [\hat{H}_0,\hat{ec{L}}] \; = \; 0 \; \;
ightarrow \; <\hat{ec{L}}>_{\Psi} \; \; \; {
m independent \ on} \; \; t, {
m it \ is \ conserved}$

 $\hat{L}^2\,,\,\hat{ec{L}}$ are constants of motion if $\,\hat{V}\,=\,\hat{V}(r)\,$

- If $\hat{H}_1 = \hat{H}_0 + \alpha \, \hat{L}_z$ (magnetic field with direction z)
 - $\begin{array}{lll} \square & [\hat{H}_1,\hat{L}_z] \ = \ 0 \ \rightarrow & <\hat{L}_z>_{\Psi} \ = \ \mathrm{cte.} \\ \square & [\hat{H}_1,\hat{L}_x] \ = \ i\hbar\alpha\hat{L}_y \ \neq 0 \\ \square & [\hat{H}_1,\hat{L}_y] \ = \ -i\hbar\alpha\hat{L}_x \ \neq 0 \end{array}$

 \hat{L}_x y \hat{L}_y are not constants of motion for \hat{H}_1 for this case $<\hat{L}_x>_{\Psi}$ and $<\hat{L}_y>_{\Psi}$ depend on t for any state

52 / 56

Demonstration of (5)

$$\begin{aligned} [\hat{L}_x, \hat{L}_y] &= & [y \ p_z - z \ p_y, z \ p_x - x \ p_z] \\ &= & [y \ p_z, z \ p_x] \ + \ [z \ p_y, x \ p_z] \\ &= & y \ [p_z, z] \ p_x \ + \ x \ [z, p_z] \ p_y \\ &= & -i\hbar y \ p_x \ + i\hbar x \ p_y \ = i\hbar \hat{L}_z \end{aligned}$$

analogously $[\hat{L}_i,\hat{L}_j]=i\hbar\epsilon_{ijk}\hat{L}_k$ $(\sum_k
ightarrow$ repeated index)

 $\text{Levy-Civita tensor } \epsilon_{ijk} = \left\{ \begin{array}{ll} 0 & \text{if any index is repeated} \\ 1 & \text{if ijk is cyclic permutation of 123} \\ -1 & \text{if ijk is non-cyclic permutation of 123} \end{array} \right.$

 $i=1 \rightarrow x \; ; \; i=2 \rightarrow y \; ; \; i=3 \rightarrow z$

Cyclic permutations: (123) (231) (312)

Non-cyclic permutations: (132) (213) (321)

Demonstration of (6)

$$\begin{split} [\hat{L}^2,\hat{L}_x] &= & [\hat{L}_x^2 \,+\, \hat{L}_y^2 \,+\, \hat{L}_z^2,\hat{L}_x] \,=\, [\hat{L}_y^2,\hat{L}_x] \,+\, [\hat{L}_z^2,\hat{L}_x] \\ &= & \hat{L}_y \,[\hat{L}_y,\hat{L}_x] \,+\, [\hat{L}_y,\hat{L}_x] \,\hat{L}_y + \hat{L}_z \,[\hat{L}_z,\hat{L}_x] + [\hat{L}_z,\hat{L}_x] \,\hat{L}_z \\ &= & -i\hbar\hat{L}_y\hat{L}_z - i\hbar\hat{L}_z\hat{L}_y \,+\, i\hbar\hat{L}_z\hat{L}_y \,+\, i\hbar\hat{L}_y\hat{L}_z \,=\, 0 \end{split}$$

analogously $[\hat{L}^2,\hat{L}_y] = [\hat{L}^2,\hat{L}_z] = 0$

54 / 56

Bibliography 55 / 56

- [1] S. Gasiorowicz, "Quantum Physics", ed. John Wiley, 2003
- [2] D. Park, "Introduction to the quantum theory", ed. McGraw-Hill, 1992
- [3] D.J. Griffiths, "Introduction to Quantum Mechanics", ed. Pearson Education Inc., 2005
- [4] J.L.Basdevant y J. Dalibard, "Quantum mechanics", ed. Springer, 2002