Final Project Presentation Group 2 UrbanSounds8k

By: Tristin Johnson

DATS 6203 – Machine Learning II

December 6th, 2021

Overview

- Introduction
- Data Analysis
- Data Preprocessing
- CNN Architecture
- Training & Validation
- Results Testing the Model
- Future Work
- Conclusion
- References

Introduction

- UrbanSounds8K Dataset
 - 8732 labeled audio files (.wav format)
 - 10 classes
 - air_conditioner, car_horn, children_playing, dog_bark, drilling, engine_idling, gun_shot, jackhammer, siren, street_music
 - Each audio file ~ 4 seconds (around 9.5 hours total)
 - Pre-sorted into 10 folds
 - Metadata included (.csv)
- Deep Speech topic
 - Network: CNN
 - Framework: PyTorch
 - Librosa, TorchAudio

Data Analysis: Metadata

	slice_file_name	fsID	start	end	salience	fold	classID	class	num_channels	sampling_rate
0	177742-0-0-99.wav	177742	49.500000	53.500000	2	3	Θ	air_conditioner	2	48000
1	24074-1-0-10.wav	24074	18.060993	22.060993	1	1	1	car_horn	2	44100
2	60591-2-0-4.wav	60591	2.000000	6.000000	1	2	2	children_playing	2	44100
3	174026-3-1-5.wav	174026	11.719766	15.719766	2	4	3	dog_bark	2	48000
4	59594-4-0-3.wav	59594	1.500000	5.500000	2	2	4	drilling	2	44100
5	154758-5-0-7.wav	154758	3.500000	7.500000	1	4	5	engine_idling	2	48000
6	148841-6-2-0.wav	148841	9.132153	10.787741	1	5	6	gun_shot	2	44100
7	162134-7-7-0.wav	162134	129.628486	133.628486	1	10	7	jackhammer	2	96000
8	118279-8-0-13.wav	118279	6.500000	10.500000	2	1	8	siren	2	48000
9	89443-9-0-16.wav	89443	8.000000	12.000000	1	7	9	street_music	2	44100

Data Analysis: Audio Files per Class

Data Preprocessing

- 1. Load Audio File
- 2. Convert to Two Channels
- 3. Standardize Sampling Rate
- 4. Add Padding to Resize Audio to Same Length
- 5. Data Augmentation
 - Random Time Shift
 - Mel Spectrogram
 - Time & Frequency Masking

1. Load Audio Files

2. Convert to Two Channels

3. Standardize Sampling Rate

- Majority of Audio files are sampled at 44.1
 kHz (44,100 Hz)
 - 1 second of audio will have an array of size 44,100
- Other sample rates will have dimensions of num_channels x (sample_rate x time)
- Standardize sampling rates of all audio files to 44.1 kHz

3. Standardize Sampling Rate

4. Add Padding to Resize Audio to Same Length

- Before Padding:
 - Time: ~ 1.75 seconds

- After Padding:
 - Time: 4 seconds

5. Data Augmentation: Time Shift

5. Data Augmentation: Mel Spectrogram

Spectrograms

- Chops up duration of a sound signal (waveform) into smaller segments
- Plots Frequency (y-axis) vs. Time (x-axis)
- Colors indicate amplitude of each frequency

Mel Spectrograms

- The Mel Scale instead of Frequency
- Decibel Scale instead of Amplitude
 - Provides more useful information to a deep learning model

5. Data Augmentation: Time & Frequency Masking

Frequency Masking

 Randomly mask out a range of consecutive frequencies (horizontal bars)

Time Masking

 Similar to Frequency Masking, but instead masks out a range of time (vertical bars)

CNN Architecture

- 4-layer network
 - Convolution-2D
 - Kernel Size = $(5, 5) \rightarrow (3, 3)$
 - Stride = (2, 2)
 - Padding = $(2, 2) \rightarrow (1, 1)$
 - Batch Normalization
 - Zero-Pad-2D
 - Max-Pooling-2D
 - Adaptive-Average-Pooling-2D
 - Fully-Connected-Linear-Layer
 - Activation Function: ReLU

```
AudioClassifier(
   (conv1): Conv2d(2, 8, kernel_size=(5, 5), stride=(2, 2), padding=(2, 2))
   (batch1): BatchNorm2d(8, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
   (pad1): ZeroPad2d(padding=(2, 2, 2, 2), value=0.0)
   (pool1): MaxPool2d(kernel_size=5, stride=2, padding=0, dilation=1, ceil_mode=False)
   (conv2): Conv2d(8, 32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
   (batch2): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
   (pad2): ZeroPad2d(padding=(2, 2, 2, 2), value=0.0)
   (conv3): Conv2d(32, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
   (batch3): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
   (conv4): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
   (batch4): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
   (act): ReLU()
   (pool2): AdaptiveAvgPool2d(output_size=1)
   (linear1): Linear(in_features=128, out_features=10, bias=True)
}
```

CNN Architecture

- Input size: (batch_size, num_channels, mel_freq, time_steps)
 - (16, 2, 64, 344)
- Image width and height are reduced with kernels and strides
- After forward propagation through CNN layers, pooling layer, and linear layer, output is (batch_size, num_classes)
 - (16, 10)

Image by: Ketan Doshi

Training & Validation

- Model Parameters:
 - Epochs: 20
 - Batch Size: 16
 - Learning Rate: 0.001
 - Optimizer: AdamW
 - Scheduler: ReduceLROnPlateau
 - Loss Function: CrossEntropyLoss

- Training Results (70%):
 - Accuracy: 91.95%
 - Total Training Time: 39 min 33 secs
 - Avg Time per Epoch: 1 min 58 secs
- Validation Results (15%):
 - Accuracy: 90.992%
 - Total Validation Time: 7 min 58 secs
 - Avg Time per Epoch: 24 secs

Results - Testing the Model

- Testing Results (15%):
 - Accuracy: 91.145%
 - Total Testing Time: 21 seconds
- Performance Highlights:
 - Time Shift \rightarrow + 3.16% ~ 4.33%
 - Mel Spectrogram → + 5.14% ~ 8.04%
 - Time & Freq. Mask \rightarrow + 3.2% ~ 5.47%

Future Work

- Apply Transformers to UrbanSounds8K
 - Wav2Vec2 (Hugging Face)
 - "A framework for self-supervised learning of speech representations."
 - XLSR-Wav2Vec2 (Hugging Face)
 - "Unsupervised cross-lingual representation learning for speech recognition"

Conclusion

- Ability to work with and preprocess Audio data (Librosa & TorchAudio)
 - Reading in audio as a wave-plot
 - Standardizing audio files (channels, sampling rate, padding time)
 - Convert wave-plot to Mel Spectrogram
 - Data Augmentation (random time shifts, frequency & time masking)
- Achieved high levels of accuracy with CNN
 - Training, Validation, Testing > 90% Accuracy
- Increased experience using PyTorch

References

- 1. UrbanSounds8K Official Website
- 2. UrbanSounds8K Data Download (Kaggle)
- 3. Audio Classification Analysis using Librosa (GitHub)
- 4. <u>UrbanSound8K Audio Analysis</u>
- 5. Audio Deep Learning Made Simple: Sound Classification
- 6. Audio Deep Learning: Why Mel Spectrograms Perform Better
- 7. <u>UrbanSound8K Benchmarks (PapersWithCode)</u>