# CSE 304 Design & Analysis of Algorithms

Greedy Algorithms (Part 2)

## **Greedy Algorithm**

- Greedy algorithms make the choice that looks best at the moment.
- This locally optimal choice may lead to a globally optimal solution (i.e. an optimal solution to the entire problem).

#### When can we use Greedy algorithms?

We can use a greedy algorithm when the following are true:

- **1) The greedy choice property:** A globally optimal solution can be arrived at by making a locally optimal (greedy) choice.
- **2) The optimal substructure property:** The optimal solution contains within its optimal solutions to subproblems.

## **Designing Greedy Algorithms**

#### 1. Cast the optimization problem as one for which:

 we make a choice and are left with only one subproblem to solve

#### Prove the GREEDY CHOICE

 that there is always an optimal solution to the original problem that makes the greedy choice

#### 3. Prove the OPTIMAL SUBSTRUCTURE:

 the greedy choice + an optimal solution to the resulting subproblem leads to an optimal solution

## Example: Making Change

- Instance: amount (in cents) to return to customer
- Problem: do this using fewest number of coins
- Example:
  - Assume that we have an unlimited number of coins of various denominations:
    - 1c (pennies), 5c (nickels), 10c (dimes), 25c (quarters), 1\$ (loonies)
  - Objective: Pay out a given sum \$5.64 with the smallest number of coins possible.

## The Coin Changing Problem

- Assume that we have an unlimited number of coins of various denominations:
  - 1c (pennies), 5c (nickels), 10c (dimes), 25c (quarters), 1\$ (loonies)
- Objective: Pay out a given sum S with the smallest number of coins possible.
- The greedy coin changing algorithm:
  - This is a  $\Theta(m)$  algorithm where m = number of denominations.

```
while S > 0 do
   c := value of the largest coin no larger than S;
   num := S / c;
   pay out num coins of value c;
   S := S - num*c;
```

## Example: Making Change

• E.g.:

$$$5.64 = $2 + $2 + $1 + .25 + .25 + .10 + .01 + .01 + .01 + .01$$

## Making Change – A big problem

- Example 2: Coins are valued \$.30, \$.20, \$.05,
   \$.01
  - Does not have greedy-choice property, since \$.40 is best made with two \$.20's, but the greedy solution will pick three coins (which ones?)

#### The Fractional Knapsack Problem

- Given: A set S of n items, with each item i having
  - b<sub>i</sub> a positive benefit
  - w<sub>i</sub> a positive weight
- Goal: Choose items with maximum total benefit but with weight at most W.
- If we are allowed to take fractional amounts, then this is the fractional knapsack problem.
  - In this case, we let x<sub>i</sub> denote the amount we take of item i
  - Objective: maximize

$$\sum_{i \in S} b_i(x_i / w_i)$$

Constraint:

$$\sum_{i \in S} x_i \leq W, 0 \leq x_i \leq w_i$$

#### Example

- Given: A set S of n items, with each item i having
  - b<sub>i</sub> a positive benefit
  - w<sub>i</sub> a positive weight
- Goal: Choose items with maximum total benefit but with total weight at most W.





10 ml

"knapsack"

## Solution:

- 1 ml of 5 50\$
- 2 ml of 3
- 40\$
- 6 ml of 4 30\$
- 1 ml of<sub>10</sub> 4\$

#### The Fractional Knapsack Algorithm

 Greedy choice: Keep taking item with highest value (benefit to weight ratio)

- Since 
$$\sum_{i \in S} b_i(x_i / w_i) = \sum_{i \in S} (b_i / w_i) x_i$$

```
Algorithm fractionalKnapsack(S, W)
```

**Input:** set *S* of items w/ benefit  $b_i$  and weight  $w_i$ ; max. weight *W* 

Output: amount  $x_i$  of each item i to maximize benefit w/ weight at most W

```
for each item i in S
```

```
x_i \leftarrow 0
v_i \leftarrow b_i / w_i {value}
w \leftarrow 0 {total weight}
while w < W
remove item i with highest v_i
x_i \leftarrow \min\{w_i, W - w\}
w \leftarrow w + \min\{w_i, W - w\}
```

#### The Fractional Knapsack Algorithm

- Running time: Given a collection S of n items, such that each item i
  has a benefit b<sub>i</sub> and weight w<sub>i</sub>, we can construct a maximum-benefit
  subset of S, allowing for fractional amounts, that has a total weight W in
  O(nlogn) time.
  - Use heap-based priority queue to store S
  - Removing the item with the highest value takes O(logn) time
  - In the worst case, need to remove all items

## An Activity Selection Problem (Conference Scheduling Problem)

- Input: A set of activities  $S = \{a_1, ..., a_n\}$
- Each activity has start time and a finish time  $-a_i=(s_i, f_i)$
- Two activities are compatible if and only if their interval does not overlap
- Output: a maximum-size subset of mutually compatible activities

Here are a set of start and finish times

- What is the maximum number of activities that can be completed?
  - $\{a_3, a_9, a_{11}\}$  can be completed
  - But so can  $\{a_1, a_4, a_8, a_{11}\}$  which is a larger set
  - But it is not unique, consider  $\{a_2, a_4, a_9, a_{11}\}$

**Input:** list of time-intervals L

Output: a non-overlapping subset S of the intervals



Input: list of time-intervals L

Output: a non-overlapping subset S of the intervals



- 1. sort the activities by the starting time
- 2. pick the first activity a
- 3. remove all activities conflicting with a
- 4. repeat

- 1. sort the activities by the starting time
- 2. pick the <u>first activity</u> "a"
- 3. <u>remove</u> all activities conflicting with "a"
- 4. repeat



- 1. sort the activities by the starting time
- 2. pick the <u>first activity</u> "a"
- 3. <u>remove</u> all activities conflicting with "a"
- 4. repeat



- 1. sort the activities by length
- 2. pick the shortest activity "a"
- 3. remove all activities conflicting with "a"
- 4. repeat



- 1. sort the activities by length
- 2. pick the shortest activity "a"
- 3. remove all activities conflicting with "a"
- 4. repeat



- 1. sort the activities by length
- 2. pick the shortest activity "a"
- 3. remove all activities conflicting with "a"
- 4. repeat

- 1. sort the activities by ending time
- 2. pick the activity which ends first
- 3. remove all activities conflicting with a
- 4. repeat



- 1. sort the activities by ending time
- 2. pick the activity which ends first
- 3. remove all activities conflicting with a
- 4. repeat

- 1. sort the activities by ending time
- 2. pick the activity which ends first
- 3. remove all activities conflicting with a
- 4. repeat



- 1. sort the activities by ending time
- 2. pick the activity which ends first
- 3. remove all activities conflicting with a
- 4. repeat



#### Algorithm 3:

- 1. sort the activities by ending time
- 2. pick the activity a which ends first
- 3. remove all activities conflicting with a
- 4. repeat

#### Theorem:

Algorithm 3 gives an optimal solution to the activity selection problem.

## **Activity Selection Algorithm**

**Idea:** At each step, select the activity with the smallest finish time that is compatible with the activities already chosen.

```
Greedy-Activity-Selector(s, f)

n <- length[s]

A <- {1}

j <- 1

for i <- 2 to n do

if si >= fj then

A <- A U {i}

for i <- a U {i}

fo
```

Here are a set of start and finish times

- What is the maximum number of activities that can be completed?
  - $\{a_3, a_9, a_{11}\}$  can be completed
  - But so can  $\{a_1, a_4, a_8, a_{11}\}$  which is a larger set
  - But it is not unique, consider  $\{a_2, a_4, a_9, a_{11}\}$

## **Interval Representation**

| i                | 1 | 2 | 3 | 4 | 5 | 6 | 7  | 8  | 9  | 10 | 11 |
|------------------|---|---|---|---|---|---|----|----|----|----|----|
| $\overline{s_i}$ | 1 | 3 | 0 | 5 | 3 | 5 | 6  | 8  | 8  | 2  | 12 |
| $f_i$            | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |





0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 31 15



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 32 15



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 315



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 34 15



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 35 15



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 36 15



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 3 15

#### Why this Algorithm is Optimal?

- We will show that this algorithm uses the following properties
  - The problem has the optimal substructure property
  - The algorithm satisfies the greedy-choice property
- Thus, it is Optimal

## **Greedy-Choice Property**

- Show there is an optimal solution that begins with a greedy choice (with activity 1, which as the earliest finish time)
- Suppose  $A \subseteq S$  in an optimal solution
  - Order the activities in A by finish time. The first activity in A is k
    - If k = 1, the schedule A begins with a greedy choice
    - If  $k \neq 1$ , show that there is an optimal solution B to S that begins with the greedy choice, activity 1
  - Let B =  $A \{k\} \cup \{1\}$ 
    - $f_1 \le f_k \rightarrow$  activities in B are disjoint (compatible)
    - B has the same number of activities as A
    - Thus, B is optimal

#### Optimal Substructures

- Once the greedy choice of activity 1 is made, the problem reduces to finding an optimal solution for the activity-selection problem over those activities in S that are compatible with activity 1
  - Optimal Substructure
  - If A is optimal to S, then  $A' = A \{1\}$  is optimal to  $S' = \{i \in S: s_i \ge f_1\}$
  - Why?
    - If we could find a solution B' to S' with more activities than A', adding activity 1 to B' would yield a solution B to S with more activities than A → contradicting the optimality of A
- After each greedy choice is made, we are left with an optimization problem of the same form as the original problem
  - By induction on the number of choices made, making the greedy choice at every step produces an optimal solution