	DAY:	DATE:		
	IDS-15 (20/03/24)			
	KNN = reg + classification.			
	K-mean => elustering.			
	Classification (3-paviscel learning)			
	Goldel = categorical.			
	KNN => classification + req.			
	Lyno learning Taif numbers => 1/0 of yes	0		
	(just store dota during training) + actual - calculate	= 61101		
	La for classification. => data is used as it is			
	=> lazy learner (learn while predicting).			
	=> k => usually odd value. scleeted. V => relatively better at binary classifi	estion.		
	rather than motto class.			
	1- Find distance from all pts 2- Sort distance			
	3- select top k values.			
-	Lo usually exclident distance used.			
	$\sqrt{(7-3)^2+(7-7)^2} = \sqrt{16+6} = 4, A$	3		
	$\overline{(1-3)^2+(4-7)^2} = \overline{(16+9)} = 5, A$	4		
,	$\sqrt{(3-3)^2+(4-7)^2} = \sqrt{0+9} = 3, B.$	1		
,	$\sqrt{(1-3)^2+(4-7)^2} = \sqrt{14+9} = 3.61, B$	2		
	3,B 3,41,B = B	I		
)—	4, A J Se point is B.	В		
	S, A			

DA	Y: DATE:	
	IOS-16 (22/03)	(4 ت
	Unsupervised Learning:	8
	Clustering => K-mean.	1 8
	1 I ber Noter distance: distance blue pte in det	Inles
	+ Intra cluster distance: " " " within	Juster
- 11	K>-2	
-	La particular method used to find value of k.	114
	(n,y) (n,y) (n-n,y-y)=> distance	
.)	k=3.	-
2)	c,,c2,c3 => select randomly but have	difference.
3)	distance of each point from every centroid. assign point to centroid with min distance	-
Herati	Avg the distance, update the controid.	
	La regeat until no updation in central	values
		-
	Elbon Melhol (for value of k)	-
	La generally used to find h.	-
		-
	Expectation - Maximization	
	$\frac{\sum_{j=1}^{2} \sum_{i=1}^{2} \left \left n_{i} - c_{j} \right \right ^{2}}{j^{2}}$	
	date points no stabotes.	
	prince prince	

		8:22
-	DA	9.50 10:45 DATE:
1		11:49
-	-1)-	Elban Methol:
1		- sum (distance of point from cluster-assigned)2) 4 for diff values of k. (e.g. 1 to 10)
-		4 for def values of k. (e.g 1 to 10)
J.		
L.		wess k = this point
		2 3 R
5.		C-III I NA IN O
1		Silhoute Method:
10		La usually used for verification.
		a = distance of point from centroid it belongs.
6 6 6		b = distance // 1 to does not belong.
		more tre value => good no of k
		more -ve value => moist no of k.
•		from -1 to +1.
0		
9		IDS-17 (27/03/24)
-9		Evaluation Metric
•		> Confusion Matrix (for classification)
	d	4 False Alam (FP)
		overfit => Type 1 error => atl IP
3		
-		
3	-	
6	11	

DAT:	DATE:
Confusion Matrix Example.	8
TP: 3 TN:4 FP: 1	FN: 2
Positive class: Dog	
3 1	- 7
2 4	
Accuracy: 3+4 - 7	= 70%
3+4+142 10	
Precision: TP 3	- 75./.
TP+FP 3+1	
Recall: TP = 3	
TP+FN 3+2	
305-18	(29/03/24)
Naire Bayes -> collections of alg	
Conditional Probability	
1) Assume features are in	00-1
	agrel contribution
Noire -> Basse	on the
2/4/4/ 2/4/4	PI.)
$P(y) \times y = P(x y) \times y$	112
	(y) * P(y)
· · · · · · · · · · · · · · · · · · ·	n_1, n_2
"	"

	P(y/n, n2) = P(n, 17) P(n2/y) P(7)
	P(21) P(212)
•	> reglecting denuminator, as always
•	biviling by I value (fixed), and (diff)
•	will be some for all values
9	Esemple:
3	> P(suny) yes) = len(suny & yes)
•	4 model will have calculated all individual
3	probabilities.
•	Sconvert etrings to numbers.
*	All probabilities are multiplied, if one
•	$is \approx 0 \Rightarrow Ans 0$
	Laplacian Smoothing:
•	> Start with 1 instead of 0.
)	· Multinomal Bayes -> dor classification
2)	· Bernoull: Naire Bayes -> Boolean value (2 depes)
3)	· Coassian Naive Baye -> when normally dist
-	Bamples
•	P(Read) = 4/7 P(Extentable) = 5/7 P(small) = 2/7
-	P(wite) = 3/7 P(Non-Exec) = 2/7 P(median) = 3/7
-0-	P(Large) = 2/7
c.	

0,	AY:	DATE:	-
	Planitelinsected) = 4 71.	unite clean) = 3	
	P(exectiofeded) = 4 P	exect clean) = 3	
	P (large limberted) = 17	teclorge (clear)	3
_Aply	Laplacian Smoothing		
	P(Write) Interted) = 2/5	P(write clean) = =	4
	P (Exer Steeted) = 8/5	P(Execteleon)=	1/4
	P/Large (Antected) = 1/5	Playe Iclean =	3/4
	P(Reid) = 5/8		-0
	P(nrite) = 4/8		0
	M(Gree) = 5/8		-
	P(Large) = 3/8		
	P		
	IDS-19	(03/04/24)	
	Spam- filter		
	P = p1* p2 * pr	multiply probabili	7
	1-7 >	. of n word	
	Beample:		-
	P(S/W) = P(W/S)	* P(s)	-5
	P(.	w)	-5
			-

DAY:		DATE:	
- Remove Ira	levant Date:		
100./-	same or 100	·/- d/f => no in	Ç.
(varia	m(e = 0) (e	mails)	
Standardize	Capitalization		
Ly when	working with text		_
La sole g	enerally all text e	onverted to lower	ase
			-
Convert D	octa Type:		
Handle N	Missing Values		-
1	models don't wou	,	·cs
11	MAR	MNAR	
4 no relationship of missing dat	why date is	y incontrication	
to why missing?	X missing .	Li not relates	
		range with collecte	اه
Transformation		1 .	
	oding > biceness	A	11
	enoding => vertor	V	T
4 No one	hat encode for la		-
	to only for feature	•	

DAY:_	DATE:
	standardization Normalization. L to (0-1)
	(prefer) as we assume data is normalized.
9)	
•	
3	
9	
3	
3	
3	