The EXCITING Code Users' Manual Version 0.9.74

J. K. Dewhurst, S. Sharma, C. Ambrosch-Draxl Institut für Physik, Karl-Franzens-Universität, A-8010 Graz, Austria

CH. BROUDER

Institut de minéralogie et de physique des milieux condensés, Université Pierre et Marie Curie, 4 place Jussieu, 75252 Paris cedex, France Bessy GmbH, Albert-Einstein-Str. 15, 12489 Berlin, Germany

Contents

1	Intr 1.1	oductic Acknow	on vledgemer	ıts									•								5 5
${f 2}$	Con	npiling	and run	ni	ne	e E	ΞX	CI	Т	IN	G										6
	2.1		ing the co		_	-							_			_					6
	2.2		g the cod																		6
	2.3		olocks																		7
			atoms .																		7
		_	autokpt																		8
			autormt																		8
			avec																		8
			beta0 .																		8
			betamax																		8
			bfieldc																		9
			bfinite																		9
			chgexs .																		9
			deband .																		9
			deltaem																		10
		2.3.12	deltaph																		10
			dos																		10
			dtauoep																		11
			eminvnl																		11
			epschg.																		11
			epsforce																		11
			epshf .																		11
		2.3.19	epslat.																		12
			epsocc.																		12
		2.3.21	epspot.																		12
			evalmin																		12
			fixspin																		12
			fracinr																		12

2.3.25	gmaxvr	13
2.3.26	hartfock	13
2.3.27	kstlist	13
2.3.28	lmaxapw	13
2.3.29	lmaxinr	13
2.3.30	lmaxmat	13
2.3.31	lmaxvr	14
2.3.32	<pre>lradstp</pre>	14
2.3.33	maxitoep	14
2.3.34	maxscl	14
2.3.35	$\verb molecule $	14
2.3.36	$\verb momfix$	15
2.3.37	${\tt ndspem} \; . \; . \; . \; . \; . \; . \; . \; . \; . \; $	15
2.3.38	${\tt nempty} \; . \; . \; . \; . \; . \; . \; . \; . \; . \; $	15
2.3.39	${\tt ngridk} \; . \; . \; . \; . \; . \; . \; . \; . \; . \; $	15
2.3.40	${\tt ngridq} \; . \; . \; . \; . \; . \; . \; . \; . \; . \; $	16
2.3.41	nosource	16
2.3.42	$\verb"nosym"$	16
2.3.43	notes	16
2.3.44	nprad	16
2.3.45	${\tt nstfsp} \ldots \ldots \ldots \ldots \ldots \ldots$	16
2.3.46	nwrite	17
2.3.47	$\verb"optcomp"$	17
2.3.48	phwrite	17
2.3.49	plot1d	17
2.3.50	plot2d	18
2.3.51	plot3d	18
2.3.52	primcell	18
2.3.53	reducek	18
2.3.54	reduceq	18
2.3.55	rgkmax	19
2.3.56	rlambda	19
2.3.57	$\verb"rmtapm"$	19
2.3.58	scale	19
2.3.59	scale1/2/3	19
2.3.60	scissor	19
2.3.61	scrpath	20
2.3.62	spinorb	20
2.3.63	spinpol	20
2.3.64	spinsprl	20
2.3.65	sppath	20

2.3.66	stype .														20
2.3.67	${\tt swidth} \; .$														21
2.3.68	tasks .														21
2.3.69	tau0atm														23
2.3.70	tau0oep														23
2.3.71	taufsm .														23
2.3.72	tfibs .														23
2.3.73	${\tt tforce}$.														24
2.3.74	tsymctr														24
2.3.75	usegdft														24
2.3.76	vacuum .														24
2.3.77	vklem .														24
2.3.78	vqlss .														24
2.3.79	${\tt vkloff} \ .$														25
2.3.80	xctype.														25

Chapter 1

Introduction

Welcome to the EXCITING code users' manual! The EXCITING code is a state-of-the-art full-potential linearised augmented-planewave (FP-LAPW) code for determining the properties of crystalline solids. It was developed mainly at the Karl-Franzens-Universität Graz as part of the EXCITING EU Research and Training Network project [1]. The guiding philosophy during the implementation of the code was to keep it as simple as possible for both users and developers without compromising on its capabilities. All the routines are released under either the GNU General Public License (GPL) or the GNU Lesser General Public License (LGPL) in the hope that they may inspire other scientists to implement new and, well, exciting developments in the field of density functional theory.

1.1 Acknowledgements

Lots of people contributed to the EXCITING code with ideas, checking and testing, writing code or documentation and general encouragement. They include Lars Nordström, Clas Persson, Christian Brouder, Rickard Armiento, Andrew Chizmeshya, Per Anderson, Igor Nekrasov, Fredrik Bultmark, Sushil Auluck and Frank Wagner. Special mention of David Singh's useful book *Planewaves, Pseudopotentials and the LAPW Method* [2] must also be made. Finally we would like to acknowledge the generous support of Karl-Franzens-Universität Graz, as well as the EU Marie-Curie Research Training Networks initiative.

Kay Dewhurst, Sangeeta Sharma and Claudia Ambrosch-Draxl Graz, 2005.

Chapter 2

Compiling and running EXCITING

2.1 Compiling the code

Unpack the code from the archive file. Run the command

setup

in the exciting directory and select the appropriate system and compiler. We highly recommend that you edit the file make.inc and tune the compiler options for your particular system. You can also make use of machine-optimised BLAS/LAPACK libraries if they are available, but make sure they are version 3.0. Setting the OpenMP options of your compiler will enable EXCITING to run in parallel mode on multiprocessor systems. Following this, run

make all

This will hopefully compile the entire code and all the libraries into one executable, exciting, located in the src directory. It will also compile a few useful auxilliary programs, namely spacegroup for producing crystal geometries from spacegroup data, species for generating species files, and eos for fitting equations of state to energy-volume data. If you want to compile everything all over again, then run make clean from the exciting directory, followed by make all.

2.2 Running the code

As a rule, all input files for the code are in lower case and end with the extension .in. All output files are uppercase and have the extension .OUT.

For most cases, the user will only need to modify the file exciting.in. In this file input parameters are arranged in blocks. Each block consists of a block name on one line and the block variables on subsequent lines. Almost all blocks are optional: the code uses reasonable default values in cases where they are absent. Blocks can appear in any order, if a block is repeated then the second instance is used. Comment lines can be included in the input file and begin with the ! character.

The only other input files are those describing the atomic species which go into the crystal. These files are found in the species directory and are named with the element symbol and the extension .in, for example Sb.in. They contain parameters like the atomic charge, mass, muffin-tin radius, occupied atomic states and the type of linearisation required. Users should not have to modify these files in the majority of cases.

The best way to learn to use EXCITING is to run the examples included with the package. These can be found in the examples directory and use many of the code's capabilities. The following section which describes all the input parameters will be of invaluable assistance.

2.3 Input blocks

This section lists all the input blocks available. It is arranged with the name of the block followed by a table which lists each parameter name, what the parameter does, its type and default value. A horizontal line in the table indicates a new line in exciting.in. Below the table is a brief overview of the block's function.

2.3.1 atoms

nspecies	number of species	integer	0
<pre>spfname(i)</pre>	species filename for species i	string	-
natoms(i)	number of atoms for species i	integer	-
atposl(j,i)	atomic position in lattice coordinates ¹ for	real(3)	-
bfcmt(j,i)	atom j muffin-tin external magnetic field in Cartesian coordinates for atom j	real(3)	-

Defines the atomic species as well as their positions in the unit cell and the external magnetic field applied throughout the muffin-tin. These fields are used to break spin symmetry and should be considered infinitesimal as they

¹When molecule is .true., the atomic positions are in Cartesian coordinates

do not contribute directly to the total energy. Collinear calculations are more efficient if the field is applied in the z-direction. One could, for example, set up an anti-ferromagnetic crystal by pointing the field on one atom in the positive z-direction and in the opposite direction on another atom. See also sppath, bfieldc and molecule.

2.3.2 autokpt

autokpt	.true.	if the k -point set is to be deter-	logical	.false.
	mined a	utomatically		

See rlambda.

2.3.3 autormt

autormt	.true. if muffin-tin radii should be deter-	logical	.false.
	mined automatically		

This variable should be set to true if the muffin-tin radii are to be determined automatically. See rmtapm for details.

2.3.4 avec

avec(1)	first lattice vector	real(3)	(1.0, 0.0, 0.0)
avec(2)	second lattice vector	real(3)	(0.0, 1.0, 0.0)
avec(3)	third lattice vector	real(3)	(0.0, 0.0, 1.0)

Lattice vectors of the crystal in atomic units (Bohr).

2.3.5 beta0

beta0	initial mixing parameter and increment	real	0.1
-------	--	------	-----

This sets the initial parameter used for mixing the old and new potentials during the self-consistent cycle. For some materials, such as magnetic metals, this should be made smaller to avoid instability. The code automatically adjusts the mixing parameter to the optimial size. Making beta0 too large can result in instability and poor convergence. See betamax as well as the routine mixer in the developers' guide.

2.3.6 betamax

				_
betamax	maximum mixing parameter	real	1.0	

The mixing parameter is adjusted in increments of beta0 to optimise that rate of convergece. betamax sets the upper limit to this parameter. Making this too large can result in poor convergence due to charge sloshing.

2.3.7 bfieldc

bfieldc	global external magnetic field in Carte-	real(3)	(0.0, 0.0, 0.0)
	sian coordinates		

This is used to break spin symmetry for spin-polarised calculations. It should considered to be infinitesimal as it has no direct contribution to the total energy. This field is applied throughout the entire unit cell. To apply a magnetic field in particular muffin-tins use the bfcmt vectors in the atoms block. Collinear calculations are more efficient if the field is applied in the z-direction.

2.3.8 bfinite

bfinite	.true.	if the external	magnetic	fields are	logical	.false.
	to be co	onsidered finite				

If bfinite is .false. then the external magnetic fields bfieldc and bfcmt are taken to be infinitesimal (i.e. their only purpose is to break the spin symmetry). In this case the external field contribution to the total energy is set to zero. When bfinite is .true. everything is the same except that the integral over the unit cell

$$E_{\mathbf{Bext}} = \int \mathbf{m}(\mathbf{r}) \cdot \mathbf{B}_{\mathrm{ext}}(\mathbf{r}) d\mathbf{r}$$

is added to the total energy.

2.3.9 chgexs

chgexs	excess electronic charge	real	0.0
--------	--------------------------	------	-----

This controls the amount of charge in the unit cell beyond that required to maintain neutrality. It can be set positive or negative depending on whether electron or hole doping is required.

2.3.10 deband

deband	initial band energy step size	real	0.0025

The initial step length used when searching for the band energy, which is used as the APW linearisation energy. This is done by first searching upwards in energy until the radial wavefunction at the muffin-tin radius is zero. This is the energy at the top of the band, denoted $E_{\rm t}$. A downward search is now performed from $E_{\rm t}$ until the slope of the radial wavefunction at the muffintin radius is zero. This energy, $E_{\rm b}$, is at the bottom of the band. The band energy is taken as $(E_{\rm t}+E_{\rm b})/2$. If either $E_{\rm t}$ or $E_{\rm b}$ cannot be found then the band energy is set to the default value.

2.3.11 deltaem

deltaem	the size of the k-vector displacement used when	real	0.01
	calculating numerical derivatives for the effective		
	mass tensor		

See ndspem and vklem.

2.3.12 deltaph

deltaph	the size of the atomic displacement used for calcu-	real	0.03
	lating dynamical matrices		

Phonon calculations are performed by constructing a supercell corresponding to a particular **q**-vector and making a small periodic displacement of the atoms. The magnitude of this displacement is given by **deltaph**. This should not be made too large, as anharmonic terms could then become significant, neither should it be too small as this can introduce numerical error.

2.3.13 dos

nwdos	number of frequency/energy points in the	integer	500
	DOS or optics plot		
ngrdos	effective k -point mesh size to be used for	integer	100
	Brillouin zone integration		
nsmdos	level of smoothing applied to DOS/optics	integer	0
	output		
wintdos	frequency/energy window for the DOS or	real(2)	(-0.5, 0.5)
	optics plot		

DOS and optics plots require integrals of the kind

$$g(\omega_i) = \frac{\Omega}{(2\pi)^3} \int_{BZ} f(\mathbf{k}) \delta(\omega_i - e(\mathbf{k})) d\mathbf{k}.$$

These are calculated by first interpolating the functions $e(\mathbf{k})$ and $f(\mathbf{k})$ with the trilinear method on a much finer mesh whose size is determined by \mathbf{ngrdos} . Then the ω -dependent histogram of the integrand is accumulated over the fine mesh. If the output function is noisy then either \mathbf{ngrdos} should be increased or \mathbf{nwdos} decreased. Alternatively, the output function can be artificially smoothed up to a level given by \mathbf{nsmdos} . This is the number of successive 3-point averages to be applied to the function.

2.3.14 dtauoep

dtauoep	step length increment for the exact exchange itera-	real	0.5
	tive solver		

See maxitoep and tau0oep

2.3.15 eminvnl

eminvnl	a core state with energy below this value is not	real	-1×10^{6}
	included in the calculation of the non-local		
	matrix elements or the OEP residues		

2.3.16 epschg

epschg	maximum allowed error in the calculated total	real	1×10^{-3}
	charge beyond which a warning message will be		
	issued		

2.3.17 epsforce

epsforce	convergence tolerance for the forces during a	real	1×10^{-3}
	structural optimisation run		

If the mean absolute value of the atomic forces is less than epsforce then the structural optimisation run is ended. See tasks.

2.3.18 epshf

epshf	convergence tolerance for the average absolute	real	1×10^{-4}
	value of eigenvalues in a Hartree-Fock calculation		

See hartfock.

2.3.19 epslat

epslat	vectors with lengths less than this are considered	real	10^{-6}
	zero		

Sets the tolerance for determining if a vector or its components are zero. This is to account for any numerical error in real or reciprocal space vectors.

2.3.20 epsocc

epsocc	smallest occupancy for which a state will con-	real	1×10^{-8}
	tribute to the density		

2.3.21 epspot

epspot	convergence criterion for the effective potential	real	1×10^{-6}
	and field		

If the RMS change in the effective potential and magnetic field is smaller than epspot, then the self-consistent loop is considered converged and exited. For structural optimisation runs this results in the forces being calculated, the atomic positions updated and the loop restarted. See also maxscl.

2.3.22 evalmin

1			1	4 -	
	evalmin	valence eigenvalue minimum	real	-4.5	

Any valence states with eigenvalues below evalmin are not occupied and a warning message is issued.

2.3.23 fixspin

fixspin	.true. if the spin moment should be fixed	logical	.false.
---------	---	---------	---------

Set to .true. for fixed spin moment calculations. See also momfix, taufsm and spinpol.

2.3.24 fracing

fracinr	fraction	of	the	muffin-tin	radius	up	to	which	real	0.25
	lmaxinr	is t	used	as the angu	lmaxinr is used as the angular momentum cut-off					

See lmaxinr.

2.3.25 gmaxvr

gmaxvr	maximum length of $ G $ for expanding the intersti-	real	12.0
	tial density and potential		

See also rgkmax.

2.3.26 hartfock

hartfock	.true. if a Hartree-Fock calculation is re-	logical	.false.
	quired		

Self-consistent Hartree-Fock is available as an experimental feature. See also epshf.

2.3.27 kstlist

kstlist(i)	ith k -point and state pair	integer(2)	(1,1)
------------	------------------------------------	------------	-------

This is a user-defined list of k-point and state index pairs which are those used for plotting wavefunctions and writing L, S and J expectation values. Only the first pair is used by the aforementioned tasks. The list should be terminated by a blank line.

2.3.28 lmaxapw

lmaxapw	angular momentum cut-off for the APW functions	integer	8
---------	--	---------	---

2.3.29 lmaxinr

lmaxinr	angular momentum cut-off for themuffin-tin den-	integer	2
	sity and potential on the inner part of the muffin-		
	tin		

Close to the nucleus, the density and potential is almost spherical and therefore the spherical harmonic expansion can be truncated a low angular momentum. See also fracinr.

2.3.30 lmaxmat

lmaxmat	angular momentum cut-off for the outer-most loop	integer	5
	in the hamiltonian and overlap matrix setup		

2.3.31 lmaxvr

lmaxvr	angular momentum cut-off for the muffin-tin den-	integer	7
	sity and potential		

2.3.32 lradstp

lradstp	radial step	length fo	r determining	coarse radial	integer	4
	mesh					

Some muffin-tin functions (such as the density) are calculated on a coarse radial mesh and then interpolated onto a fine mesh. This is done for the sake of efficiency. lradstp defines the step size in going from the fine to the coarse radial mesh. If it is too large, loss of precision may occur.

2.3.33 maxitoep

maxitoep	maximum number of iterations when solving the	integer	30
	exact exchange integral equations		

See tau0oep and dtauoep

2.3.34 maxscl

maxscl	maximum	number	of	self-consistent	loops	al-	integer	200
	lowed							

This determines after how many loops the self-consistent cycle will terminate if the convergence criterion is not met. If maxscl is 1 then the density and potential file, STATE.OUT, will not be written to disk at the end of the loop. See epspot.

2.3.35 molecule

molecule	.true.	if	the	system	is	an	isolated	logical	.false.
	molecule								

If molecule is .true., then the atomic positions, \mathbf{r} , given in the atoms block are assumed to be in Cartesian coordinates. The lattice vectors are also set up automatically with the ith vector given by

$$\mathbf{A}^i = a_i \hat{\mathbf{e}}^i,$$

where

$$a_i = \max_{\alpha,\beta} \left| \mathbf{r}_i^{\alpha} - \mathbf{r}_i^{\beta} \right| + d_{\text{vac}}$$

with α and β labeling atoms, and d_{vac} determines the size of the vacuum around the molecule. The last variable is set by the input parameter vacuum.

2.3.36 momfix

momfix	the desired moment in fixed spin mo-	real(3)	(0.0, 0.0, 0.0)
	ment calculations		

See fixspin, taufsm and spinpol.

2.3.37 ndspem

ndspem	the number of \mathbf{k} -vector displacements in each direc-	integer	1
	tion around vklem when computing the numerical		
	derivatives for the effective mass tensor		

See deltaem and vklem.

2.3.38 nempty

nempty	the number of empty states	integer	5

Defines the number of eigenstates beyond that required for charge neutrality. When running metals it is not known a priori how many states will be below the Fermi energy for each **k**-point. Setting nempty greater than zero allows the additional states to act as a buffer in such cases. Furthermore, magnetic calculations use the first-variational eigenstates as a basis for setting up the second-variational Hamiltonian, and thus nempty will determine the size of this basis set. Convergence with respect to this quantity should be checked.

2.3.39 ngridk

ngridk	the k -point mesh sizes	integer(3)	(1, 1, 1)

The **k**-vectors are generated using

$$\mathbf{k} = (\frac{i_1}{n_1}, \frac{i_2}{n_2}, \frac{i_3}{n_3}) + \mathbf{v}_{\text{off}},$$

where i_j runs from 0 to $n_j - 1$ and $0 \le \mathbf{v}_{\text{off};j} < 1$ for j = 1, 2, 3. See also reducek and vkloff.

2.3.40 ngridq

ngridq	the phonon q -point mesh sizes	integer(3)	(1, 1, 1)
--------	---------------------------------------	------------	-----------

Same as ngridk, except that this mesh is for the phonon q-points. See also reduceq.

2.3.41 nosource

nosource	when set to .true., source fields are	logical	.false.
	projected out of the exchange-correlation		
	magnetic field		

Experimental feature.

2.3.42 nosym

nosym	when set to .true. no symmetries, apart	logical	.false.
	from the identity, are used anywhere in the		
	code		

2.3.43 notes

notes(i)	the <i>i</i> th line of the notes	string	-]
----------	-----------------------------------	--------	---	---

This block allows users to add their own notes to the file INFO.OUT. The block should be terminated with a blank line, and no line should exceed 80 characters.

2.3.44 nprad

nprad	radial polynomial order	integer	4
-------	-------------------------	---------	---

This sets the polynomial order for the predictor-corrector method when solving the radial Dirac and Schrödinger equations, as well as for performing radial interpolation in the plotting routines.

2.3.45 nstfsp

nstfsp	number of states to be included in the Fermi surface	integer	6	1
	plot file			

2.3.46 nwrite

nwrite	number of iterations after which STATE.OUT is to be	integer	0
	written		

Normally, the density and potentials are written to the file STATE.OUT only after completion of the self-consistent loop. By setting nwrite to a positive integer the file will be written during the loop every nwrite iterations.

2.3.47 optcomp

optcomp	the components of the first- or second-	integer(3)	(1, 1, 1)
	order optical tensor to be calculated		

This selects which components of the optical tensor you would like to plot. Only the first two are used for the first-order tensor.

2.3.48 phwrite

nphwrt	number of q -points for which	integer	1
	phonon modes are to be found		
vqlwrt(i)	the i th \mathbf{q} -point in lattice coordinates	real(3)	(0.0, 0.0, 0.0)

This is used in conjunction with task = 230. The code will write the phonon frequencies and eigenvectors to the file PHONON. OUT for all the **q**-points in the list. The **q**-points can be anywhere in the Brillouin zone and do not have to lie on the mesh defined by ngridq. Obviously, you should have computed all the dynamical matrices first using task = 200.

2.3.49 plot1d

nvp1d	number of vertices	integer	2
npp1d	number of plotting	integer	200
	points		
vvlp1d(i)	lattice coordinates	real(3)	$(0.0, 0.0, 0.0) \rightarrow (1.0, 1.0, 1.0)$
	for vertex i		

Defines the path in either real or reciprocal space along which the 1D plot is to be produced. The user should provide nvp1d vertices in lattice coordinates.

2.3.50 plot2d

vclp2d(1)	first corner (origin)	real(3)	(0.0, 0.0, 0.0)
vclp2d(2)	second corner	real(3)	(1.0, 0.0, 0.0)
vclp2d(3)	third corner	real(3)	(0.0, 1.0, 0.0)
np2d	number of plotting points in both	integer(2)	(40, 40)
	directions		

Defines corners of the parallelogram and the mesh size used for producing 2D plots.

2.3.51 plot3d

nup3d	number of unit cells to plot	integer(3)	(1, 1, 1)
np3d	number of plotting points each direction	integer(3)	(20, 20, 20)

Defines the number of unit cells in each direction to be plotted in 3D as well as the size of the plotting mesh. The nup3d parameter is also used to define the number of reciprocal lattice unit cells to be plotted for Fermi surface plots.

2.3.52 primcell

primcell	.true. if the primitive unit cell should be	logical	.false.
	found		

Allows the primitive unit cell to be determined automatically from the conventional cell. This is done by searching for lattice vectors among all those which connect atomic sites, and using the three shortest which produce a unit cell with non-zero volume.

2.3.53 reducek

reducek	set to .true. if the k-point set is to be re-	logical	.true.
	duced with the crystal symmetries		

See also ngridk and vkloff.

2.3.54 reduceq

reduceq	set to .true. if the q-point set is to be re-	logical	.true.
	duced with the crystal symmetries		

See also ngridq.

2.3.55 rgkmax

]	rgkmax	$R_{\min}^{ ext{MT}} imes \max(\mathbf{G} + \mathbf{k})$	real	7.0

This sets the maximum length for the G + k vectors, defined as rgkmax divided by the smallest muffin-tin radius.

2.3.56 rlambda

rlambda	maximum de Broglie wavelength of k -vectors	real	20.0

Used for the automatic determination of the k-point mesh. If autokpt is set to .true. then the mesh sizes will be determined by $n_i = \lambda/|\mathbf{A}_i| + 1$.

2.3.57 rmtapm

rmtapm	parameters governing the automatic gen-	real(2)	(0.25, 0.95)
	eration of the muffin-tin radii		

When autormt is set to true, the muffin-tin radii are found automatically from the formula

$$R_i \propto 1 + \zeta |Z_i|^{1/3},$$

where Z_i is the atomic number of the *i*th species, ζ is stored in rmtapm(1) and the value which governs the distance between the muffin-tins is stored in rmtapm(2). When rmtapm(2) = 1, the closest muffin-tins will touch.

2.3.58 scale

scale	lattice vector scaling factor	real	1.0	
-------	-------------------------------	------	-----	--

Scaling factor for all three lattice vectors. Applied in conjunction with scale1, scale2 and scale3.

2.3.59 scale1/2/3

scale1/2/3	separate scaling factors for each lattice vector	real	1.0

2.3.60 scissor

scissor	the scissors correction	real	0.0
---------	-------------------------	------	-----

This is the scissors shift applied to states above the Fermi energy. Affects DOS, optics and band structure plots.

2.3.61 scrpath

scrpath scratch space path	string	./	1
------------------------------	--------	----	---

This is the path to scratch space where the eigenvector file EIGVEC.OUT will be written. If the local directory is accessed via a network then scrpath can be set to a directory on the local disk, for example /tmp/. Note that the forward slash / at the end of the string must be included.

2.3.62 spinorb

spinorb	set to .true.	if a spin-orbit coupling is	logical	.false.
	required			

If spinorb is .true., then a $\sigma \cdot \mathbf{L}$ term is added to the second-variational Hamiltonian. See spinpol.

2.3.63 spinpol

spinpol	set to .true.	if a spin-polarised calculation	logical	.false.
	is required			

If spinpol is .true., then the spin-polarised Hamiltonian is solved as a second-variational step using two-component spinors in the effective magnetic field. The first variational scalar wavefunctions are used as a basis for setting this Hamiltonian.

2.3.64 spinsprl

spinsprl	set to .true.	if a spin-spiral calculation	logical	.false.
	is required			

Experimental feature for the calculation of spin-spiral states. See vqlss for details.

2.3.65 sppath

sppath	path where the species files can be found	string	./

Note that the forward slash / at the end of the string must be included.

2.3.66 stype

gtvna	integer defining the type of smearing to be used	integer	Ω
brybe	I mileger defining the type of sinearing to be used	micgei	0

A smooth approximation to the Dirac delta function is needed to compute the occupancies of the Kohn-Sham states. The variable <code>swidth</code> determines the width of the approximate delta function. Currently implemented are

- 0 Gaussian
- 1 Methfessel-Paxton order 1, Phys. Rev. B **40**, 3616 (1989)
- 2 Methfessel-Paxton order 2
- 3 Fermi-Dirac

2.3.67 swidth

swidth	width of the smooth approximation to the Dirac	real	0.01
	delta function		

See stype for details.

2.3.68 tasks

task(i)	the i th task	integer	-1
---------	-----------------	---------	----

A list of tasks for the code to perform sequentially. The list should be terminated with a blank line. Each task has an associated integer as follows:

- -1 Write out the version number of the code.
- O Ground state run starting from the atomic densities.
- 1 Resumption of ground state run using density in STATE.OUT.
- 2 Structural optimisation run starting from the atomic densities, with atomic positions written to GEOMETRY.OUT.
- Resumption of structural optimisation run using density in STATE.OUT but with positions from exciting.in.
- Total, partial and interstitial density of states (DOS).
- Output L, S and J expectation values.
- Band structure plot.
- Band structure plot which includes angular momentum characters for every atom.
- Compute the effective mass tensor at the **k**-point given by vklem.
- 31, 32, 33 1/2/3D charge density plot.
- 41, 42, 43 1/2/3D exchange-correlation and Coulomb potential plots.
- 51, 52, 53 1/2/3D electron localisation function (ELF) plot.
- 61, 62, 63 1/2/3D wavefunction plot: $|\Phi_{i\mathbf{k}}|^2$.
- 72, 73 2/3D plot of magnetisation vector field, **m**.
- 82, 83 2/3D plot of exchange-correlation magnetic vector field, \mathbf{B}_{xc} .
- 91, 92, 93 1/2/3D plot of $\nabla \cdot \mathbf{B}_{xc}$.
- 3D Fermi surface plot using the scalar product $p(\mathbf{k}) = \Pi_i(\epsilon_{i\mathbf{k}} \epsilon_F)$.
- 3D Fermi surface plot using separate bands (minus the Fermi energy).
- 110 Calculation of Mössbauer contact charge densities and magnetic fields at the nuclear sites.
- 115 Calculation of the electric field gradient (EFG) at the nuclear sites.
- Output of the momentum matrix elements $\langle \Phi_{i\mathbf{k}} | -i\nabla | \Phi_{j\mathbf{k}} \rangle$.
- 121 Linear optical response tensor.
- Scanning-tunneling microscopy (STM) image.
- 142, 143 2/3D plot of the electric field $E \equiv \nabla V_{\rm C}$.
- Calculation of dynamical matrices on a **q**-point set defined by ngridq.
- 210 Phonon density of states.
- 220 Phonon dispersion plot.
- 230 Phonon frequencies and eigenvectors for an arbitrary q-point.

2.3.69 tau0atm

tau0atm	the step size to be used for structural optimisation	real	0.2
---------	--	------	-----

The position of atom α is updated on step m of a structural optimisation run using

$$\mathbf{r}_{\alpha}^{m+1} = \mathbf{r}_{\alpha}^{m} + \tau_{\alpha}^{m} \left(\mathbf{F}_{\alpha}^{m} + \mathbf{F}_{\alpha}^{m-1} \right),$$

where τ_{α} is set to tau0atm for m=0, and incremented by the same amount if the atom is moving in the same direction between steps. If the direction changes then τ_{α} is reset to tau0atm.

2.3.70 tau0oep

tau0oep	initial step length for the exact exchange iterative	real	0.5
	solver		

See maxitoep and dtauoep

2.3.71 taufsm

taufsm	the step size to be used when finding the effective	real	0.01
	magnetic field in fixed spin moment calculations		

An effective magnetic field, \mathbf{B}_{FSM} , is required for fixing the spin moment to a given value, $\boldsymbol{\mu}_{\text{FSM}}$. This is found by adding a vector to the field which is proportional to the difference between the moment calculated in the *i*th self-consistent loop and the required moment:

$$\mathbf{B}_{\mathrm{FSM}}^{i+1} = \mathbf{B}_{\mathrm{FSM}}^{i} + \lambda \left(\boldsymbol{\mu}^{i} - \boldsymbol{\mu}_{\mathrm{FSM}} \right),$$

where λ is proportional to taufsm. See also fixspin, momfix and spinpol.

2.3.72 tfibs

tfibs	set to .true. if the IBS correction to the force	logical	.true.
	should be calculated		

Because calculation of the incomplete basis set (IBS) correction to the force is fairly time-consuming, it can be switched off by setting tfibs to .false. This correction can then be included only when necessary, i.e. when the atoms are close to equilibrium in a structural relaxation run.

2.3.73 tforce

tforce	set to .true. if the force should be calcu-	logical	.false.
	lated at the end of the self-consistent cycle		

This variable is automatically set to .true. when performing structural optimisation.

2.3.74 tsymctr

tsymctr	tsymctr set to .true. if the crystal should be shifted			
	to the optimal symmetry center			

By default, the code searches atomic positions as well as mid-points between atoms for the center of highest symmetry, and then shifts the atomic basis vectors so that this point becomes the origin.

2.3.75 usegdft

usegdft	set to .true. if the generalised DFT cor-	logical	.false.
	rection of L. Fritsche and Y. M. Gu, Phys.		
	Rev. B 48 , 4250 (1993), is to be used		

Experimental feature – may not be working correctly.

2.3.76 vacuum

vacuum	the size of the vacuum region around a molecule	real	8.05
See molec			

2.3.77 vklem

vklem	the k -point in lattice coordinates at which	real(3)	(0.0, 0.0, 0.0)
	to compute the effective mass tensors		

See deltaem and ndspem.

2.3.78 vqlss

vqlss	the q -vector of the spin-spiral state in lat-	real(3)	(0.0, 0.0, 0.0)
	tice coordinates		

Spin-spirals arise from spinor states assumed to be of the form

$$\Psi_{\mathbf{k}}^{\mathbf{q}}(\mathbf{r}) = \begin{pmatrix} U_{\mathbf{k}}^{\mathbf{q}\uparrow}(\mathbf{r})e^{i(\mathbf{k}+\mathbf{q}/\mathbf{2})\cdot\mathbf{r}} \\ U_{\mathbf{k}}^{\mathbf{q}\downarrow}(\mathbf{r})e^{i(\mathbf{k}-\mathbf{q}/\mathbf{2})\cdot\mathbf{r}} \end{pmatrix}.$$

These are determined using a second-variational approach, and give rise to a magnetisation density of the form

$$\mathbf{m}^{\mathbf{q}}(\mathbf{r}) = (m_x(\mathbf{r})\cos(\mathbf{q}\cdot\mathbf{r}), m_y(\mathbf{r})\sin(\mathbf{q}\cdot\mathbf{r}), m_z(\mathbf{r})),$$

where m_x, m_y and m_z are lattice periodic. See also spinprl.

2.3.79 vkloff

vkloff	the k-point offset vector in lattice co-	real(3)	(0.0, 0.0, 0.0)
	ordinates		

See ngridk.

2.3.80 xctype

xctype	integer defining the	type	of	exchange-correlation	integer	3	1
	functional to be used						

Currently implemented are:

- 1 No exchange-correlation funtional $(E_{xc} \equiv 0)$
- 2 LDA, Perdew-Zunger/Ceperley-Alder, Phys. Rev. B 23, 5048 (1981)
- 3 LSDA, Perdew-Wang/Ceperley-Alder, Phys. Rev. B 45, 13244 (1992)
- 4 LDA, X-alpha approximation, J. C. Slater, Phys. Rev. 81, 385 (1951)
- 20 GGA, Perdew-Burke-Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)
- 21 GGA, Revised PBE, Zhang-Yang, Phys. Rev. Lett. **80**, 890 (1998)
- 26 GGA, Wu-Cohen exchange (WC06) with PBE correlation, Phys. Rev. B 73, 235116 (2006)
- 30 GGA, Armiento-Mattsson (AM05) spin-unpolarised functional, Phys. Rev. B 72, 085108 (2005)

Bibliography

- [1] EXCITING code developed under the Research and Training Network EXCITING funded by the EU, contract No. HPRN-CT-2002-00317, 2004.
- [2] D. J. Singh. *Planewaves, Pseudopotentials and the LAPW Method.* Kluwer Academic Publishers, Boston, 1994.