作者: 张陈成

学号: 023071910029

K-理论笔记

投射模简介

目录

 1 Abel 中投射对象的的等价定义
 1

2 投射对象的性质 **3**

3 投射对象为自由对象之直和项 3

1 Abel 中投射对象的的等价定义

定义 1 (群, 环, 域, 模以及代数, Abel 范畴等). 略.

定义 2 (投射对象). 称 Abel 范畴 A 中对象 P 为投射对象, 若任意满态射 $X \stackrel{\pi}{\to} Y$ 与态射 $P \stackrel{f}{\to} Y$ 给出提升 \tilde{f} , 使得有交换图

$$P$$

$$\downarrow f$$

$$X \xrightarrow{\pi} Y \longrightarrow 0$$

$$(f = \pi \circ \tilde{f}).$$

命题 1 (投射对象的等价定义). 取 Abel 范畴 A 中对象 P,则以下等价命题成立时 P 为投射对象.

- 1. $\operatorname{Hom}_A(P,-)$ 右正合, 从而为正合函子¹;
- 2. P 符合定义 2 之表述 (由提升性质定义);
- 3. 形如 $X \to P \to 0$ 的正合列均可裂.

证明. 先证明 1 \implies 2 \implies 3. 若 $\operatorname{Hom}_{\mathcal{A}}(P,-)$ (协变) 右正合, 则函子保持任意满态射 $X \stackrel{\pi}{\twoheadrightarrow} Y$. 即, 任意 $P \stackrel{f}{\to} Y$ 有原像 $P \stackrel{\bar{f}}{\to} X$. 遂有交换图

$$\begin{array}{cccc} X & \operatorname{Hom}_{\mathcal{A}}(P,X) & P \xrightarrow{-\tilde{f}} X \\ \pi & & & & \operatorname{id} & \tilde{f} & & \\ Y & \operatorname{Hom}_{\mathcal{A}}(P,Y) & & P \xrightarrow{f} Y \end{array}$$

 $^{^1}$ 试回忆: $\operatorname{Hom}_{\mathcal{A}}(X,-):\mathcal{A}\to\operatorname{Ab}$ 对一切 $X\in\operatorname{Ob}(\mathcal{A})$ 均是左正合的.

可见 P 满足定义 2 之表述. 是故满态射 $X \stackrel{\pi}{\to} P$ 给出可裂短正合列

$$0 \longrightarrow K \longrightarrow X \xrightarrow{\tilde{\mathrm{id}}} P \xrightarrow{\mathrm{id}} 0$$

对 $3 \implies 1$, 注意到 Abel 范畴有拉回 ². 今考虑 $X \stackrel{\pi}{\to} Y \stackrel{f}{\leftarrow} P$ 的拉回 (下图左)

上图 (右) 中 θ 由核之泛性质定义, τ 由拉回之泛性质定义. 遂有 $(C, \binom{a}{-b}) = (\ker(f, \pi), \iota)$. 即,

$$0 \longrightarrow C \xrightarrow{\binom{a}{-b}} X \oplus P \xrightarrow{(f,\pi)} Y$$

为正合列. 由于 π 满, 从而上述正合列补全为短正合列, 因此原拉回也是推出. 作态射 (a,π) 之核, 并约定 $\ker \pi \cong P$ 的零映射, 则下图实线处交换

作出由拉回之泛性质定义的态射 φ , 再经 ker a 作出 $\tilde{\varphi}$. 注意到

$$i \circ \tilde{\varphi} \circ \tilde{b} = \varphi \circ \tilde{b} = i,$$

 $i' \circ \tilde{b} \circ \tilde{\varphi} = b \circ i \circ \tilde{\varphi} = b \circ \varphi = i'.$

因此 \tilde{b} 于 $\tilde{\varphi}$ 给出 $\ker a \simeq \ker \pi$. 请读者自证如下交换图 (上下两行正合)

由己知, 第一行正合列可裂. 不妨取 $P\stackrel{a'}{\to} C\stackrel{a}{\to} P$ 之复合为恒等映射, 则下图给出任意 $f\in \operatorname{Hom}_{\mathcal{A}}(P,Y)$ 之原像 $b\circ a'\in \operatorname{Hom}_{\mathcal{A}}(P,X)$.

 $^{^2}$ Abel 范畴之态射范畴仍为 Abel 范畴, 因此态射范畴中存在二元积. 再由此对应原 Abel 范畴之拉回即可.

注 1 (推出-拉回的对边法则). 对图 $\underbrace{a_1}_{a_2}$ $\underbrace{b_2}_{b_1}$, 有如下结论:

- 1. 若上图为推出且 a_i 单,则上图为拉回且 b_i 单;
- 2. 若上图为拉回且 b_i 满,则上图为推出且 a_i 满.

2 投射对象的性质

命题 2 (投射对象之收缩仍为投射对象). 取投射对象 P, 若存在 Q, a, b 使得 $Q \stackrel{a}{\to} P \stackrel{b}{\to} Q$ 为恒等映射, 则 Q 投射.

证明. 记 g 为投射对象 P 诱导的提升, $\tilde{f} = g \circ a$ 自然是 f 的提升.

命题 3 (余积保持投射模). 对任意集合 I. 余积 $\coprod_{i \in I} P_i$ 为投射对象当且仅当每一 P_i 为投射对象.

证明. 若 $\coprod_{i \in I} P_i$ 投射, 则每一 P_i 作为其收缩仍投射. 反之, 考虑下图

$$P_{i} \xrightarrow{e_{i}} \coprod_{i \in I} P_{i}$$

$$\tilde{f}_{i} \downarrow \qquad \qquad \downarrow_{f}$$

$$X \xrightarrow{\pi} Y$$

其中 \tilde{f}_i 为 $f \circ e_i$ 之提升, \tilde{f} 由余积定义给出. 显然 $\pi \circ \tilde{f} = f$.

命题 4 (态射范畴中的基本投射对象). 选定 Abel 范畴 A 与投射对象 P, 则 $0 \to P$ 与 $P \stackrel{\mathrm{id}}{\to} P$ 为态射范畴的 投射对象. 直接验证之即可.

定义 3. 称 A 有足够多投射对象, 若任意对象 $M \in Ob(A)$ 同构于某一投射模之商.

命题 5. 设 A 为具有足够多投射对象的 Abel 范畴, 则其态射范畴仍有足够多的投射对象,且任意投射对象为 $\stackrel{0}{\rightarrow} \oplus \stackrel{P}{\rightarrow} \stackrel{\text{id}}{\rightarrow}$ 的直和项 (P 与 Q 均为投射对象).

证明. 对任意 $X \stackrel{f}{\to} f'$, 有投射模 $P \mathrel{\vdash} Q$ 使得下图交换

$$P = P \xrightarrow{\pi} X$$

$$(1,0)^{T} \downarrow \qquad \qquad \tilde{f} \circ \pi \downarrow \qquad \tilde{f} \qquad \downarrow f$$

$$P \oplus Q \xrightarrow{(\tilde{f} \circ \pi, \mathrm{id})} Q \xrightarrow{\pi'} X'$$

显然态射范畴中同有足够多的投射对象. 注意到 $\overset{0}{\overset{P}{\downarrow}} \oplus \overset{P}{\overset{P}{\downarrow}} \oplus 1$ 到, $P \overset{\tilde{f} \circ \pi}{\longleftrightarrow} Q$ 满, 遂可裂.

3 投射对象为自由对象之直和项

定义 4 (自由对象). 若存在自由-遗忘伴随 \mathcal{C} \top Set ,则称集合在 F 下的像为自由对象.

- 注 2. 依照 Mitchell 嵌入定理, 小 Abel 范畴与某一模范畴等价. 相应地, 自由对象即自由模.
- 注 3. 类比定义 2. Set 中任意对象既投射且内射.

命题 6. 若右伴随保持满态射,则左伴随保持投射对象. 直接验证即可.

注 4 (自由对象投射的充分条件). 若定义 4 中 U 保持满态射,则左伴随 (自由函子) 保持投射对象.

命题 7. 假定定义 4 中 U 保持满态射, 且 C 允许直和, 则投射模等价于自由模的直和项.

证明. 一方面, 余单位作为自然变换诱导满自函子 $FU: \mathcal{C} \to \mathcal{C}, FU(X) \mapsto X$. 遂可裂满. 因此一切投射模以自由模直和项之形式出现. 另一方面, 命题 6 表明自由对象均投射.

定理 1. 若具体范畴 \mathcal{C} 与集合范畴间存在自由-遗忘伴随, 且遗忘函子 \mathcal{U} 保持满射, 则任意对象是自由对象的商, 故 \mathcal{C} 有足够多投射对象. 若 \mathcal{C} 为 Abel 范畴, 则投射模等价于自由模的直和项.

例 1. 应当留意以下例子:

- 1. 模范畴中, 投射模为自由模直和项, 考虑自然的遗忘函子即可.
- 2. (小) 环范畴中存在某些非满射的满态射 $R \to \operatorname{frac}(R)$, 此时 $\operatorname{frac}(R)$ 自由但不投射.
- 3. 有限 Abel 群范畴与集合范畴间不存在自由-遗忘伴随, 同时没有足够的投射对象.

定理 2. 主理想整环遗传, 其自由模之子模仍自由. 特别地, 自由模与投射模等价.

定理 3. 自由群之子群自由,从而群范畴的自由对象等价于投射对象.

证明. 熟知自由群之子群自由. 应注意: 即便群范畴允许直和与正合列, 一般地有

常将右可裂对应半直积. 同时强调自由群的泛性质: 任意集合 S 至群 G 的映射 $f:S\to G$ 通过 S 生成的自由群与典范映射 $\iota:S\to F(S)$ 唯一分解. 即, 存在唯一的群同态 φ 使得下图交换

$$S \xrightarrow{f} G$$

$$\downarrow \qquad \qquad \downarrow$$

$$F(S)$$

熟知群范畴之满态射与满射等价, 定理 1 表明自由群投射. 反之, 任意投射对象 G 为自由群之商, 且该满同态 $FU(G) \rightarrow G$ 之右逆为 $G \hookrightarrow FU(G)$. 由于 G 为自由群之子群, 从而自由.

注 5. 若群 G 使得一切正合列可裂, 则 G 平凡.³

³证明思路: 若右可裂正合列可裂, 当且仅当收缩之像为中间群的正规子群, 此后不难构造具体例子.