Aayush Arya

(Submitted: November 15, 2021)

PHY366 Lab Report
Practical: 9 Registration No.: 11912610 Section: G2903

Aim

To profile the output and transfer characteristics of a JFET.

Methods

A JFET circuit with an n-channel was constructed. The circuit is available at https://www.multisim.com/content/RyER9NMjAwDDNWqQmnkheN/output-charactersitics-of-jfet/open/ and is shown in Figure 1.

Figure 1: Circuit diagram of the n-channel JFET

For the output characterisation, we studied the JFET in the shorted input $(V_{GS} = 0)$ configuration and then also varied V_{GS} to obtain characteristics for different input voltages.

Results & Conclusions

We show the output and transfer characteristics in Figure 2. It is evident that in the short-circuit configuration (i.e. $V_{GS}=0$) the drain current saturates at $I_{DSS}=400\mu\mathrm{A}$. The corresponding pinch voltage occurs at $V_{DS}=2\mathrm{V}$, which we highlight using a grey dotted vertical line.

Clearly, if the input is set to the pinch voltage (i.e., 2V), the output current vanishes, which is consistent with what we expect from the relation

$$I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_p} \right)^2$$

from the expression we also see that I_D is not a linear function of the input V_{GS} , a phenomenon that is evident in the transfer characteristics (also shown in Figure 2).

Figure 2: The transfer (left) and output (right) characteristics of the JFET. The pinch voltage V_p for the short-circuit configuration was clearly found to be $V_p = 2V$. The dotted vertical line shows the pinch voltage for the shorted input configuration.

The transfer characteristics show a non-linear relationship of I_D with V_{GS} . These were obtained by finding the saturation points of I_D for different input V_{GS} .

V_{DS} (V)	I_D (μ A)		
	$V_{GS} = 0$	$V_{GS} = 1$	$V_{GS} = 2$
0.10	39	19	-2.01×10^{-6}
0.30	111	51	
0.50	175	75	
1.00	300	100	
1.50	375	100	
1.80	396	100	
2.00	400	100	
3.00	400	100	
10.00	400	100	-2.01×10^{-6}

Table 1: The output characteristics measurements.

The measurements for the output characteristics have been summarized in Table 1.