

## Institut Agronomique et Vétérinaire Hassan II

Filière de Formation en science géomatique et ingénierie Topographique

## Projet De Compensation



Auteur:
Hiba Doi
Zineb El Abassi
Bilal Gaou
Caouthar Benguitoun

 $\begin{array}{c} \textit{Professeur:} \\ \text{PR. BENAIM EL HASSANE} \end{array}$ 

## REMERCIEMENT

Avant de commencer le développement de ce rapport de projet, nous devons entamer par remercier la personne qui nous a permis d'effectuer ce travail. Nous tenons à témoigner nos vifs remerciements et notre immense gratitude à notre professeur **Mr. El Hassane BENAIM**, pour ces efforts colossaux et ces précieuses informations qui ont permis d'approfondir nos connaissances dans le domaine de topographie. Ces réponses constructives ont été prodiguées avec grand intérêt.

## Sommaire

| 1        | Con  | pensation d'une intersection par méthode de variation de paramètre          |
|----------|------|-----------------------------------------------------------------------------|
|          | 1.1  | Schéma:                                                                     |
|          | 1.2  | Observations:                                                               |
|          | 1.3  | Coordonnées des points d'appui:                                             |
|          | 1.4  | Analyse du problème :                                                       |
|          | 1.5  | Identification des variables et matrice de poid:                            |
|          | 1.6  | Calcul de $\bar{X}^0$ :                                                     |
|          | 1.7  | Pose des équations d'observation :                                          |
|          | 1.8  | La forme matricielle :                                                      |
|          | 1.9  | Solution du système d'équation d'observation :                              |
|          | 1.10 | Calcul des matrices de variances covariances :                              |
|          | 1.11 | Vérification                                                                |
|          |      | Test Khi-Carré                                                              |
|          |      |                                                                             |
| <b>2</b> | Con  | npensation du cheminement par méthode de variation de paramètre : 1         |
|          | 2.1  | Canevas polygonal:                                                          |
|          | 2.2  | Analyse du problème:                                                        |
|          | 2.3  | Observations :                                                              |
|          | 2.4  | Les coordonnées des points d'appui :                                        |
|          | 2.5  | Identification des variables :                                              |
|          | 2.6  | Calcul des valeurs approchées :                                             |
|          | 2.7  | Pose des équations d'observation :                                          |
|          | 2.8  | Solution du système d'équations d'observation :                             |
|          | 2.9  | Contrôle du calcul :                                                        |
|          | _    | Calcul des matrices de variance covariance :                                |
|          |      | Test $X^2 sur\sigma_0^2$                                                    |
|          |      |                                                                             |
| 3        |      | npensation du cheminement par méthode de condition                          |
|          | 3.1  | Analyse du problème:                                                        |
|          | 3.2  | Observations:                                                               |
|          | 3.3  | Les coordonnées des points d'appui:                                         |
|          | 3.4  | Calcul des gisements de départ et d'arrivée et de la fermeture angulaire :  |
|          | 3.5  | Pose des équations de condition :                                           |
|          |      | 3.5.1 Équation de condition de fermeture angulaire :                        |
|          |      | 3.5.2 Équations de condition de fermeture linéaire de X et Y :              |
|          | 3.6  | Calcul des coordonnées lancées $X^L et Y^L$ :                               |
|          | 3.7  | Calcul des coefficients des équations de condition de fermeture en X et Y : |
|          | 3.8  | Le système des équations de condition final                                 |
|          | 3.9  | La forme matricielle de système des équations de condition :                |
|          |      | Résolution du système:                                                      |
|          |      | $3.10.1$ calculer $\hat{K}$ :                                               |
|          |      | 3.10.2 calculer $\hat{V}$ :                                                 |
|          |      | $3.10.3$ Calcul de $\hat{L_D}$ et $\hat{\bar{L_\beta}}$ :                   |
|          | 3 11 | Fermeture angulaire Compensée :                                             |
|          |      | Fermeture linéaire Compensée :                                              |
|          |      | Calcul des matrices de variance covariance :                                |

|   |      | 3.13.1 Calcul de $\Sigma_{\hat{V}}$                      |    |
|---|------|----------------------------------------------------------|----|
|   |      | 3.13.2 Calcul de $\Sigma_{\hat{L}}$                      | 43 |
| 4 | Con  | apensation d'un relèvement par la méthode de direction : | 24 |
|   | 4.1  | Schéma:                                                  | 24 |
|   | 4.2  | Observations:                                            | 24 |
|   | 4.3  |                                                          | 24 |
|   | 4.4  |                                                          | 25 |
|   | 4.5  |                                                          | 25 |
|   | 4.6  |                                                          | 26 |
|   | 4.7  |                                                          | 26 |
|   | 4.8  |                                                          | 27 |
|   | 4.9  | v i                                                      | 28 |
|   | 4.10 |                                                          | 28 |
| 5 | Con  | apensation d'un relèvement par la méthode angulaire      | 29 |
|   | 5.1  | Analyse du problème :                                    | 29 |
|   | 5.2  |                                                          | 29 |
|   | 5.3  |                                                          | 30 |
|   | 5.4  |                                                          | 31 |
|   | 5.5  |                                                          | 32 |
|   | 5.6  | v -                                                      | 33 |
|   | 5.7  |                                                          | 33 |

# 1 Compensation d'une intersection par méthode de variation de paramètre

## 1.1 Schéma:



Figure 1: schéma de intersection sur terrain

## 1.2 Observations:

| Station | Point visée  | Dij       | $\sigma_{cc}$ |
|---------|--------------|-----------|---------------|
| Topo12  | Park 3       | 0.0000    | $30_{cc}$     |
| 100012  | Park 2       | 29.2134   | $30_{cc}$     |
|         | M            | 80.2984   | $30_{cc}$     |
| Park 2  | Topo12       | 0.0000    | $30_{cc}$     |
| I alk 2 | $\mathbf{M}$ | 340.65430 | $30_{cc}$     |
| Park 3  | Topo12       | 0.0000    | $30_{cc}$     |
| Iaiko   | $\mathbf{M}$ | 353.81075 | $30_{cc}$     |

Table 1: Tableau des observation de l'intersection

## 1.3 Coordonnées des points d'appui:

| Points d'appui | X(m)      | Y(m)      |
|----------------|-----------|-----------|
| TOPO 12        | 364229.83 | 376274.66 |
| Park 2         | 364286.75 | 376286.62 |
| Park 3         | 364284.13 | 376312.34 |

Table 2: Coordonnées des points d'appui

## 1.4 Analyse du problème :

Le nombre des observations n=7

Le nombre de variable distinct  $n_0 = 5$ 

Le nombre de paramètres u=5

Le nombre de degrés de liberté  $\nu=3$ 

Le nombre des équations r=7

## 1.5 Identification des variables et matrice de poid:

Vecteur des observations

$$\overline{L} = \begin{pmatrix} \overline{d}_1 \\ \overline{d}_2 \\ \overline{d}_3 \\ \overline{d}_4 \\ \overline{d}_5 \\ \overline{d}_6 \\ \overline{d}_7 \end{pmatrix} \qquad \overline{L} = \begin{pmatrix} 0.0000 \\ 29.2134 \\ 80.2984 \\ 0.0000 \\ 340.65430 \\ 0.0000 \\ 353.81075 \end{pmatrix}$$

Vecteur des résiduels des observations:

$$\hat{V} = \begin{bmatrix} \hat{v}_1 & \hat{v}_2 & \hat{v}_3 & \hat{v}_4 & \hat{v}_5 & \hat{v}_6 & \hat{v}_7 \end{bmatrix}^T$$

Vecteur des observations compensées :

$$\hat{\bar{L}} = \bar{L} + \hat{V} = \begin{bmatrix} \hat{d}_1 & \hat{d}_2 & \hat{d}_3 & \hat{d}_4 & \hat{d}_5 & \hat{d}_6 & \hat{d}_7 \end{bmatrix}^T$$

Vecteur des estimés des paramètres:

$$\hat{\bar{X}} = \bar{X}^0 + \hat{X} = \begin{bmatrix} dG^0_{topo12} & dG^0_{park2} & dG^0_{park3} & \hat{\bar{X}}_m & \hat{\bar{Y}}_m \end{bmatrix}^T$$

Vecteur des corrections des paramètres :

$$\hat{X} = \begin{bmatrix} \hat{dG}_{topo12} & \hat{dG}_{park2} & \hat{dG}_{park3} & \hat{X}_m & \hat{Y}_m \end{bmatrix}^T$$

Vecteur des valeurs approchées

$$\bar{X}_0 = \begin{bmatrix} \bar{dG}^0_{topo12} & \bar{dG}^0_{park2} & \bar{dG}^0_{park3} & \bar{X}^0_m & \bar{Y}^0_m \end{bmatrix}^T$$

Matrice Poids:

$$P = \begin{bmatrix} 1 & 0. & 0. & 0. & 0. & 0. & 0. \\ 0. & 1 & 0. & 0. & 0. & 0. & 0. \\ 0. & 0. & 1 & 0. & 0. & 0. & 0. \\ 0. & 0. & 0. & 1. & 0. & 0. & 0. \\ 0. & 0. & 0. & 0. & 1. & 0. & 0. \\ 0. & 0. & 0. & 0. & 0. & 1. & 0. \\ 0. & 0. & 0. & 0. & 0. & 0. & 1. \end{bmatrix}$$

## 1.6 Calcul de $\bar{X}^0$ :

En utilisant les formules d'intersection suivantes :

$$X_m = X_{topo12} + d_{(M-t12)} \cdot \sin(\bar{\alpha}_{t12-M}^0)$$
$$Y_m = Y_{topo12} + d_{(M-t12)} \cdot \cos(\bar{\alpha}_{t12-M}^0)$$

On trouve:

$$\begin{split} \bar{X}_m^0 &= 364267.77 \mathbf{m} \\ \bar{Y}_m^0 &= 376244.52 \mathbf{m} \end{split}$$

| Station | visée  | $\alpha^0_{ij}$ | $l_{ij}$   | $dG_i^0$ | $dG_i^0$ | $(ij)_0$ |
|---------|--------|-----------------|------------|----------|----------|----------|
|         | park3  | 61.3804         | 0.0000     | 61.3804  |          | 66.093   |
| Topo12  | park2  | 86.8152         | 29.2134    | 61.6018  | 61.4753  | 58.163   |
|         | M      | 141.7386        | 80.2984    | 61.4402  |          | 48.459   |
| park2   | Topo12 | 286.8152        | 0.0000     | 286.8152 | 286.5593 | 58.163   |
| parkz   | M      | 226.9577        | 340.6543   | 286.3034 | 200.5555 | 46.182   |
| park3   | Topo12 | 261.3804        | 0.0000     | 261.3804 | 261.3175 | 66.093   |
| рагко   | M      | 215.065         | 353.810758 | 261.2547 | 201.3173 | 69.768   |

Table 3: Calcul de gisements et distances et  $dG^0_i$  approchés

D'où:

$$\begin{split} \bar{X}_0 = \begin{bmatrix} \bar{dG}^0_{topo12} & \bar{dG}^0_{park2} & \bar{dG}^0_{park3} & \bar{X}^0_m & \bar{Y}^0_m \end{bmatrix}^T \\ \bar{X}_0 = \begin{bmatrix} 61.4753 & 286.5593 & 261.3175 & 364267.77 & 376244.52 \end{bmatrix}^T \end{split}$$

#### 1.7 Pose des équations d'observation :

Généralement équation d'observation de direction s'écrit sous la forme:

$$\hat{v}_{D_{ij}} = -dG_i^{cc} - \rho^{cc} \left( \frac{\cos \bar{\alpha}_{ij}^0}{ij_0} \right) \ \hat{x}_i + \rho^{cc} \left( \frac{\sin \bar{\alpha}_{ij}^0}{ij_0} \right) \ \hat{y}_i + \rho^{cc} \left( \frac{\cos \bar{\alpha}_{ij}^0}{ij_0} \right) \ \hat{x}_j - \rho^{cc} \left( \frac{\sin \bar{\alpha}_{ij}^0}{ij_0} \right) \ \hat{y}_j + w_{D_{ij}}^{cc} + w_{D_{ij}$$

Avec

$$w_{D_{ij}}^{cc} = \bar{\alpha}_{ij}^0 - D_{ij} - G_0^m$$

En appliquant cette relation sur sept les directions :

$$\begin{split} \hat{v}_{D_{T12-P3}} &= -dG_{T12}^{cc} + w_{D_{T12-P3}}^{cc} \\ \hat{v}_{D_{T12-P2}} &= -dG_{T12}^{cc} + w_{D_{T12-P2}}^{cc} \\ \hat{v}_{D_{T12-D2}} &= -dG_{T12}^{cc} + \rho^{cc} \left( \frac{\cos \bar{\alpha}_{T12-M}^0}{T12 - M_0} \right) \; \hat{x}_M - \rho^{cc} \left( \frac{\sin \bar{\alpha}_{T12-M}^0}{ij_0} \right) \; \hat{y}_M + w_{D_{T12-M}}^{cc} \\ \hat{v}_{D_{P2-T12}} &= -dG_{P2}^{cc} + w_{D_{P2-T12}}^{cc} \\ \hat{v}_{D_{P2-M}} &= -dG_{P2}^{cc} + \rho^{cc} \left( \frac{\cos \bar{\alpha}_{P2-M}^0}{P2 - M_0} \right) \; \hat{x}_M - \rho^{cc} \left( \frac{\sin \bar{\alpha}_{P2-M}^0}{P2 - M_0} \right) \; \hat{y}_M + w_{D_{P2-M}}^{cc} \\ \hat{v}_{D_{P3-T12}} &= -dG_{P}^{cc} 3 + w_{D_{P3-T12}}^{cc} \\ \hat{v}_{D_{P3-M}} &= -dG_{P}^{cc} 3 + \rho^{cc} \left( \frac{\cos \bar{\alpha}_{P3-M}^0}{P3 - M_0} \right) \; \hat{x}_M - \rho^{cc} \left( \frac{\sin \bar{\alpha}_{P3-M}^0}{P3 - M_0} \right) \; \hat{y}_M + w_{D_{P3-M}}^{cc} \end{split}$$

#### 1.8 La forme matricielle :

Le système d'équations d'observation du type précédent s'écrit sous la forme matricielle suivante ;

$$\hat{V} = A\hat{X} + W$$

Avec:

$$\hat{V} = \begin{bmatrix} \hat{v}_1 & \hat{v}_2 & \hat{v}_3 & \hat{v}_4 & \hat{v}_5 & \hat{v}_6 & \hat{v}_7 \end{bmatrix}^T$$

$$\hat{X} = \begin{bmatrix} \hat{dG}_{topo12} & \hat{dG}_{park2} & \hat{dG}_{park3} & \hat{X}_m & \hat{Y}_m \end{bmatrix}^T$$

calcul matricielle :

$$A = \begin{bmatrix} -1 & 0 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & \rho^{cc} \left(\frac{\cos \bar{\alpha}_{T12-M}^o}{T12-M_0}\right) & -\rho^{cc} \left(\frac{\sin \bar{\alpha}_{T12-M}^o}{ij_0}\right) \\ 0 & -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & \rho^{cc} \left(\frac{\cos \bar{\alpha}_{P2-M}^o}{P2-M_0}\right) & -\rho^{cc} \left(\frac{\sin \bar{\alpha}_{P2-M}^o}{P2-M_0}\right) \\ 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & \rho^{cc} \left(\frac{\cos \bar{\alpha}_{P3-M}^o}{P3-M_0}\right) & -\rho^{cc} \left(\frac{\sin \bar{\alpha}_{P3-M}^o}{P3-M_0}\right) \end{bmatrix}$$

Numériquement :

$$A = \begin{bmatrix} -1. & 0. & 0. & 0. & 0. \\ -1. & 0. & 0. & 0. & 0. \\ -1. & 0. & 0. & 8171.756 & 10286.2887 \\ 0. & -1. & 0. & 0. & 0. \\ 0. & -1. & 0. & 12567.3878 & -5664.3394 \\ 0. & 0. & -1. & 0. & 0. \\ 0. & 0. & -1. & 8870.5183 & -2139.2707 \end{bmatrix}$$

$$W^{grade} = \begin{bmatrix} -0.0299 \\ -0.0085 \\ 0.0299 \\ 0.2559 \\ -0.2559 \\ 0.0628 \\ -0.0628 \end{bmatrix}$$

## 1.9 Solution du système d'équation d'observation :

Calcul de  $\hat{X}$  :

$$\hat{X} = -(A^T \cdot P \cdot A)^{-1} * A^T \cdot W$$

On pose

$$N = A^T P A$$

et

$$U = A^T P W$$

et donc :

$$\hat{X} = -N^{-1}U$$

Numériquement :

$$N = \begin{bmatrix} 3.0000 & 0.0000 & 0.0000 & -8.1718 \cdot 10^{+03} & -1.0286 \cdot 10^{+04} \\ 0.0000 & 2.0000 & 0.0000 & -1.2567 \cdot 10^{+04} & 5.6643 \cdot 10^{+03} \\ 0.0000 & 0.0000 & 2.0000 & -8.8705 \cdot 10^{+03} & 2.1393 \cdot 10^{+03} \\ -8.1718 \cdot 10^{+03} & -1.2567 \cdot 10^{+04} & -8.8705 \cdot 10^{+03} & 3.0340 \cdot 10^{+08} & -6.1053 \cdot 10^{+06} \\ -1.0286 \cdot 10^{+04} & 5.6643 \cdot 10^{+03} & 2.1393 \cdot 10^{+03} & -6.1053 \cdot 10^{+06} & 1.4247 \cdot 10^{+08} \end{bmatrix}$$

$$U = \begin{bmatrix} 0.0085 \\ 0. \\ 0. \\ 556.9046 \\ 7034.7975 \end{bmatrix} \quad donc \quad \hat{X} = \begin{bmatrix} -0.0208 \\ 0.0415 \\ 0.0861 \\ -0.004 \\ -0.003 \end{bmatrix}$$

on resume:

$$\bar{\hat{X}} = \hat{X} + \bar{X}^0 = \begin{bmatrix} 61.4895 \\ 286.8008 \\ 261.4036 \\ 364267.7733 \\ 376244.5166 \end{bmatrix}$$

Correction des observations (en grade):

$$\hat{V} = A\hat{X} + W$$

donc

$$\bar{V} = \begin{bmatrix} -0.0092\\ 0.0122\\ -0.0031\\ 0.0144\\ -0.0144\\ -0.0233\\ 0.0233 \end{bmatrix}$$

avec

$$\bar{L} = \bar{L} + \bar{X} = \begin{bmatrix} -0.0092 \\ 25.3256 \\ 80.2953 \\ 0.0144 \\ 340.6399 \\ -0.0233 \\ 353.834 \end{bmatrix}$$

## 1.10 Calcul des matrices de variances covariances :

$$\sum x = \sigma_0^2 \cdot N^{-1}$$

$$\sum x = \begin{bmatrix} 448.5729 & -13.3432 & 21.4496 & 0.0128 & 0.0332 \\ 13.3432 & 775.2433 & 200.5497 & 0.0377 & -0.0312 \\ 21.4496 & 200.5497 & 577.6109 & 0.0252 & -0.015 \\ 0.0128 & 0.0377 & 0.0252 & 0 & -0 \\ 0.0332 & -0.0312 & -0.015 & -0 & 0 \end{bmatrix}$$

$$\sum_k = Qk\sigma_0^2$$

$$Q_k = M^{-1}(P^{-1}AN^{-1}A^TM^{-1})$$

$$\begin{bmatrix} 451.4271 & -1.4271 & 13.3432 & -13.3432 & -448.5729 & -1.4271 & -21.4496 & 21.4496 \\ -1.4271 & 451.4271 & -13.3432 & 13.3432 & -1.4271 & -448.5729 & 21.4496 & -21.4496 \\ 13.3432 & -13.3432 & 124.7567 & -124.7567 & 13.3432 & -13.3432 & -200.5497 & 200.5497 \\ -13.3432 & 13.3432 & -124.7567 & 124.7567 & -13.3432 & 13.3432 & 200.5497 & -200.5497 \\ -448.5729 & -1.4271 & 13.3432 & -13.3432 & 451.4271 & -1.4271 & -21.4496 & 21.4496 \\ -1.4271 & -448.5729 & -13.3432 & 13.3432 & -1.4271 & 451.4271 & 21.4496 & -21.4496 \\ -21.4496 & 21.4496 & -200.5497 & 200.5497 & -21.4496 & 21.4496 & 322.3891 & -322.3891 \\ 21.4496 & -21.4496 & 200.5497 & -200.5497 & 21.4496 & -21.4496 & -322.3891 & 322.3891 \end{bmatrix}$$

$$\Sigma_{\hat{V}} = \sigma_0^2 Q_{\hat{V}}$$
 
$$\Sigma_{\hat{V}} = P^{-1} - AN^{-1}A^T$$

$$\Sigma_{\hat{V}} = \begin{bmatrix} -451.4271 & 1.4271 & -13.3432 & 13.3432 & 448.5729 & 1.4271 & 21.4496 & -21.4496 \\ 1.4271 & -451.4271 & 13.3432 & -13.3432 & 1.4271 & 448.5729 & -21.4496 & 21.4496 \\ -13.3432 & 13.3432 & -124.7567 & 124.7567 & -13.3432 & 13.3432 & 200.5497 & -200.5497 \\ 13.3432 & -13.3432 & 124.7567 & -124.7567 & 13.3432 & -13.3432 & -200.5497 & 200.5497 \\ 448.5729 & 1.4271 & -13.3432 & 13.3432 & -451.4271 & 1.4271 & 21.4496 & -21.4496 \\ 1.4271 & 448.5729 & 13.3432 & -13.3432 & 1.4271 & -451.4271 & -21.4496 & 21.4496 \\ 21.4496 & -21.4496 & 200.5497 & -200.5497 & 21.4496 & -21.4496 & -322.3891 & 322.3891 \\ -21.4496 & 21.4496 & -200.5497 & 200.5497 & -21.4496 & 21.4496 & 322.3891 & -322.3891 \end{bmatrix}$$

$$\Sigma_{\hat{\bar{L}}} = Q_{\hat{\bar{L}}} = \sigma_0^2 A N^{-1} A^T$$

Avec :  $\sigma_0^2 = 900^{cc^2}$ 

$$\Sigma_{\hat{L}} = \begin{bmatrix} 1351.426 & -448.574 & -2.8521 & 13.2742 & -13.2742 & -21.4338 & 21.4338 \\ -448.574 & 1351.426 & -2.8521 & 13.2742 & -13.2742 & -21.4338 & 21.4338 \\ -2.8521 & -2.8521 & 905.7041 & -26.5485 & 26.5485 & 42.8676 & -42.8676 \\ 13.2742 & 13.2742 & -26.5485 & 1023.5636 & -123.5636 & -199.517 & 199.517 \\ -13.2742 & -13.2742 & 26.5485 & -123.5636 & 1023.5636 & 199.517 & -199.517 \\ -21.4338 & -21.4338 & 42.8676 & -199.517 & 199.517 & 1222.1583 & -322.1583 \\ 21.4338 & 21.4338 & -42.8676 & 199.517 & -199.517 & -322.1583 & 1222.1583 \end{bmatrix}$$

## 1.11 Vérification

Calculons:

$$A^T \cdot P \cdot V = \begin{bmatrix} 2.2 \cdot e^{-16} \\ -5.6 \cdot e^{-17} \\ -1.4 \cdot e^{-17} \\ -1.8 \cdot e^{-12} \\ 3.5 \cdot e^{-12} \end{bmatrix}$$

## 1.12 Test Khi-Carré

Calcul de l'estimé  $\hat{\sigma}_0^2$  du facteur de variance  $\sigma_0^2$  choisi à priori :

$$\hat{\sigma}_0^2 = \hat{V}^T P V / \nu = 1105$$

Test  $X^2au$  niveau 95% de confiance :

$$\nu \hat{\sigma}_0^2 / \sigma_0^2 = 6.87$$

La table  $X^2 pour \nu = 3$  et  $\alpha = 0.05\%$  donne :

$$X_{3.0.05}^2 = 6.99$$

On remarque alors que :

$$\nu \hat{\sigma}_0^2/\hat{\sigma}_0^2 < X_{3,0.05}^2$$

Ce qui implique l'acceptation de l'hypothèse  $H_0$  telle que  $\sigma_0^2=(\sigma_0^2)_0$ 

# 2 Compensation du cheminement par méthode de variation de paramètre :

## 2.1 Canevas polygonal:



Figure 2: schéma de Cheminement

## 2.2 Analyse du problème:

Le nombre des observations n=7

Le nombre de variable distinct  $n_0 = 4$ 

Le nombre de paramètres u=4

Le nombre de degrés de liberté  $\nu=3$ 

Le nombre des équations r=7

| Point d'appui | X(m)       | Y(m)       |
|---------------|------------|------------|
| Topo 12       | 364227.83  | 376274.66  |
| TR2           | 364182.270 | 376218.180 |
| BS            | 364320.026 | 376378.770 |
| P3            | 364284.13  | 376312.34  |

Table 5: Caption

## 2.3 Observations:

| Station | Points Visées | Lecture (en grade) | $\sigma_L$ | Distance (m) Lij | $\sigma_D$ en mm |
|---------|---------------|--------------------|------------|------------------|------------------|
|         | TR2           | 0.0000             |            |                  |                  |
| Topo12  | 1             | 240.5721           | $30_{cc}$  | 45.55            | $2_{cm}$         |
|         | TR2           | 0.0000             |            |                  |                  |
|         | Topo12        | 0.0000             |            |                  |                  |
| 1       | 1             | 123.5289           | $30_{cc}$  | 68.91            | $2_{cm}$         |
|         | Topo12        | 0.0000             |            |                  |                  |
|         | 1             | 0.0000             |            |                  |                  |
| 2       | BS            | 258.2445           | $30_{cc}$  | 46.93            | $2_{cm}$         |
|         | 1             | 0.0000             |            |                  |                  |
|         | M2            | 0.0000             |            |                  |                  |
| BS      | P3            | 365.9745           | $30_{cc}$  |                  |                  |
|         | M2            | 0.0000             |            |                  |                  |

Table 4: Observation de cheminement

## 2.4 Les coordonnées des points d'appui :

## 2.5 Identification des variables :

Vecteur des observations :

$$\bar{L} = \begin{bmatrix} \bar{l}_1 \\ \bar{l}_2 \\ \bar{l}_3 \\ \bar{\alpha}_1 \\ \bar{\alpha}_2 \\ \bar{\alpha}_3 \\ \bar{\alpha}_4 \end{bmatrix} = \begin{bmatrix} 45.55^m \\ 68.91^m \\ 46.93^m \\ 240.5721^g r \\ 123.5289^g r \\ 258.2445^g r \\ 365.9745^g r \end{bmatrix}$$

Vecteur des résiduels des observations:

$$\hat{V} = \begin{bmatrix} \hat{v}_1 \\ \hat{v}_2 \\ \hat{v}_3 \\ \hat{v}_4 \\ \hat{v}_1 \\ \hat{v}_2 \\ \hat{v}_3 \end{bmatrix}$$

Vecteur des observations compensées :

$$\hat{\bar{L}} = \bar{L} + \hat{V}$$

Vecteur des estimés des paramètres:

$$\hat{\bar{X}} = \begin{bmatrix} \hat{\bar{X}}1\\ \hat{\bar{Y}}1\\ \hat{\bar{X}}2\\ \hat{\bar{Y}}2 \end{bmatrix}$$

$$\hat{\bar{X}} = \bar{X}^0 + \hat{X}$$

Matrice Poids:

$$\Sigma_{\bar{L}} = \begin{bmatrix} 40 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 40 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 40 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 900 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 900 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 900 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 900 & 0 \end{bmatrix}$$

$$P = \sigma_0^2 * \Sigma_L^- 1 = \begin{bmatrix} 2.25 & 0. & 0. & 0. & 0. & 0. & 0. \\ 0. & 2.25 & 0. & 0. & 0. & 0. & 0. \\ 0. & 0. & 2.25 & 0. & 0. & 0. & 0. \\ 0. & 0. & 0. & 1. & 0. & 0. & 0. \\ 0. & 0. & 0. & 0. & 1. & 0. & 0. \\ 0. & 0. & 0. & 0. & 0. & 1. & 0. \\ 0. & 0. & 0. & 0. & 0. & 0. & 1. \end{bmatrix}$$

Avec  $\sigma_0^2 = 900$ 

## 2.6 Calcul des valeurs approchées :

Les valeurs approchées des gisements des lignes (TOPO12-M1) et (M1-M2) et des coordonnées approchées des stations 1 et 2, s'obtiennent par le calcul du cheminement en mode lancé.

Le gisement de départ :  $G_{TR2-Topo12} = 43.2129 \text{ gr}$ 

Les gisements approchés sont fournis par la formule classique suivantes :

$$\bar{\alpha}_{i+1}^0 = \bar{\alpha}_i^0 + \bar{\theta}_i + 200gr$$

Ainsi:

$$\bar{\alpha}_{Topo12-M1}^0 = 83.785gr$$

$$\bar{\alpha}_{M1-M2}^0 = 7.3139gr$$

Les coordonnées approchées des stations M1 et M2, s'obtiennent par la formule suivante :

$$\bar{x}_{i+1}^0 = \bar{x}_i^0 + \bar{l}_i \cdot \sin \bar{\alpha}_i^0$$

$$\bar{y}_{i+1}^0 = \bar{y}_i^0 + \bar{l}_i \cdot \cos \bar{\alpha}_i^0$$

Ainsi:

$$x_1^0 = 364271.91m$$
 ;  $x_2^0 = 364279.81m$   
 $y_1^0 = 376286.14m$  ;  $y_2^0 = 376354.59m$ 

Ces valeurs approchées sont utilisées dans le calcul des côtés et des gisements approchés, ainsi :

$$\bar{l}_1^0 = 45.550m$$
 ;  $\bar{l}_2^0 = 68.910m$  ;  $\bar{l}_3^0 = 46.925m$ 

$$\bar{\alpha}^{0}_{Topo12-M1} = 83.7845 gr \quad ; \quad \bar{\alpha}^{0}_{M1-M2} = 7.3135 gr \quad ; \quad \bar{\alpha}^{0}_{M1-M2} = 65.5414 gr \quad ; \quad \bar{\alpha}^{0}_{M2-BorneSude} = 231.5388 gr \quad ; \quad \bar{\alpha}^{0}_{M2-BorneSude} = 231.5388 gr \quad ; \quad \bar{\alpha}^{0}_{M1-M2} = 65.5414 gr \quad ; \quad \bar{\alpha}^{0}_{M2-BorneSude} = 231.5388 gr \quad ; \quad \bar{\alpha}^{0}_{M1-M2} = 65.5414 gr \quad ; \quad \bar{\alpha}^{0}_{M2-BorneSude} = 231.5388 gr \quad ; \quad \bar{\alpha}^{0}_{M1-M2} = 65.5414 gr \quad ; \quad \bar{\alpha}^{0}_{M2-BorneSude} = 231.5388 gr \quad ; \quad \bar{\alpha}^{0}_{M1-M2} = 65.5414 gr \quad ; \quad \bar{\alpha}^{0}_{M2-BorneSude} = 231.5388 gr \quad ; \quad \bar{\alpha}^{0}_{M1-M2} = 65.5414 gr \quad ; \quad \bar{\alpha}^{0}_{M2-BorneSude} = 231.5388 gr \quad ; \quad \bar{\alpha}^{0}_{M1-M2} = 65.5414 gr \quad ; \quad \bar{\alpha}^{0}_{M2-BorneSude} = 231.5388 gr \quad ; \quad \bar{\alpha}^{0}_{M1-M2} = 65.5414 gr \quad ; \quad \bar{\alpha}^{0}_{M2-BorneSude} = 231.5388 gr \quad ; \quad \bar{\alpha}^{0}_{M1-M2} = 65.5414 gr \quad ; \quad \bar{\alpha}^{0}_{M2-BorneSude} = 231.5388 gr \quad ; \quad \bar{\alpha}^{0}_{M1-M2} = 65.5414 gr \quad ; \quad \bar{\alpha}^{0}_{M2-BorneSude} = 231.5388 gr \quad ; \quad \bar{\alpha}^{0}_{M1-M2} = 65.5414 gr \quad ; \quad \bar{\alpha}^{0}_{M2-BorneSude} = 231.5388 gr \quad ; \quad \bar{\alpha}^{0}_{M1-M2} = 65.5414 gr \quad ; \quad \bar{\alpha}^{0}_{M2-BorneSude} = 231.5388 gr \quad ; \quad \bar{\alpha}^{0}_{M1-M2} = 65.5414 gr$$

## 2.7 Pose des équations d'observation :

Pour les observations d'un angle :

$$\begin{split} \hat{V}^{cc}_{jik} &= \rho_{cc} \left[ \frac{\cos \bar{\alpha}^0_{ij}}{ij_0} - \frac{\cos \bar{\alpha}^0_{ik}}{ik_0} \right] \cdot \hat{x}_i + \rho_{cc} \left[ \frac{\sin \bar{\alpha}^0_{ik}}{ik_0} - \frac{\sin \bar{\alpha}^0_{ij}}{ij_0} \right] \cdot \hat{y}_i \\ &- \rho_{cc} \left[ \frac{\cos \bar{\alpha}^0_{ij}}{ij_0} \right] \cdot \hat{x}_j + \rho_{cc} \left[ \frac{\sin \bar{\alpha}^0_{ij}}{ij_0} \right] \cdot \hat{y}_j \\ &+ \rho_{cc} \left[ \frac{\cos \bar{\alpha}^0_{ik}}{ik_0} \right] \cdot \hat{x}_k - \rho_{cc} \left[ \frac{\sin \bar{\alpha}^0_{ik}}{ik_0} \right] \cdot \hat{y}_k + W^{cc}_{ijk} \end{split}$$

Avec

$$W_{ijk}^{cc} = \bar{\theta}_{ijk}^0 - \bar{\theta}_{ijk}$$

Pour les observation de distance:

$$\hat{V}_{lij} = -sin\bar{\alpha}^0_{ij} \cdot \hat{x}_i - cos\bar{\alpha}^0_{ij} \cdot \hat{y}_i + sin\bar{\alpha}^0_{ij} \cdot \hat{x}_j + cos\bar{\alpha}^0_{ij} \cdot \hat{y}_j + w_{ij}$$

Avec:

$$w_{ij} = (ij)_0 - \bar{l}_{ij}$$

En appliquant cette relation sur les angles on obtient :

$$\hat{v}_{TR2-Topo12-1} = \rho_{cc} \left[ \frac{\cos \bar{\alpha}_{Topo12-1}^0}{Topo12-1_0} \right] \cdot \hat{x}_1 - \rho_{cc} \left[ \frac{\sin \bar{\alpha}_{Topo12-1}^0}{Topo12-1_0} \right] \cdot \hat{y}_1 + W_{TR2-Topo12-1}^{cc}$$

$$\hat{v}_{Topo12-1-2}^{cc} = \rho_{cc} \left[ \frac{\cos \bar{\alpha}_{1-Topo12}^{0}}{1 - Topo12_{0}} - \frac{\cos \bar{\alpha}_{1-2}^{0}}{1 - 2_{0}} \right] \cdot \hat{x}_{1} + \rho_{cc} \left[ \frac{\sin \bar{\alpha}_{1-2}^{0}}{1 - 2_{0}} - \frac{\sin \bar{\alpha}_{1-Topo12}^{0}}{1 - Topo12_{0}} \right] \cdot \hat{y}_{1} + \rho_{cc} \left[ \frac{\cos \bar{\alpha}_{1-2}^{0}}{1 - 2_{0}} \right] \cdot \hat{x}_{2} - \rho_{cc} \left[ \frac{\sin \bar{\alpha}_{1-2}^{0}}{1 - 2_{0}} \right] \cdot \hat{y}_{2} + W_{12-1-2}^{cc}$$
(1)

$$\hat{v}_{1-2-BS}^{cc} = \rho_{cc} \left[ \frac{\cos \bar{\alpha}_{2-1}^0}{2 - 1_0} - \frac{\cos \bar{\alpha}_{2-BS}^0}{2 - BS_0} \right] \cdot \hat{x}_2 + \rho_{cc} \left[ \frac{\sin \bar{\alpha}_{2-BS}^0}{2 - BS_0} - \frac{\sin \bar{\alpha}_{2-1}^0}{2 - 1_0} \right] \cdot \hat{y}_2$$

$$-\rho_{cc} \left[ \frac{\cos \bar{\alpha}_{2-1}^0}{2 - 1_0} \right] \cdot \hat{x}_1 + \rho_{cc} \left[ \frac{\sin \bar{\alpha}_{2-1}^0}{2 - 1_0} \right] \cdot \hat{y}_1 + W_{1-2-BS}^{cc}$$
(2)

$$\hat{v}_{2-BS-Park3}^{cc} = \rho_{cc} \left[ \frac{\cos \bar{\alpha}_{BS-2}^0}{BS - 2_0} \right] \cdot \hat{x}_2 + \rho_{cc} \left[ \frac{\sin \bar{\alpha}_{BS-2}^0}{BS - 2_0} \right] \cdot \hat{y}_2 + W_{2-BS-Park3}^{cc}$$
(3)

En appliquant cette relation sur les distances on obtient :

$$\hat{V}_{lT10-M1} = \sin \bar{\alpha}_{T10-M1}^0 \cdot \hat{x}_M 1 + \cos \bar{\alpha}_{T10-M1}^0 \cdot \hat{y}_m 1 + w_{T10-M1}$$

$$\begin{split} \hat{V}_{lM1-M2} &= -sin\bar{\alpha}^{0}_{M1-M2} \cdot \hat{x}_{M}1 - cos\bar{\alpha}^{0}_{M1-M2} \cdot \hat{y}_{M}1 + sin\bar{\alpha}^{0}_{M1M2} \cdot \hat{x}_{M}2 + cos\bar{\alpha}^{0}_{M1-M2} \cdot \hat{y}_{M}2 + w_{M1-M2} \\ \hat{V}_{lM2-BS} &= -sin\bar{\alpha}^{0}_{M2-BS} \cdot \hat{x}_{M}2 - cos\bar{\alpha}^{0}_{M2-BS} \cdot \hat{y}_{M}2 + w_{M2-BS} \end{split}$$

Le système d'équations d'observation du type précédent s'écrit sous la forme matricielle suivante

 $\hat{V} = A\hat{X} + W$ 

Avec:

$$\begin{bmatrix} \hat{v}_1 & \hat{v}_2 & \hat{v}_3 & \hat{v}_4 & \hat{v}_5 & \hat{v}_6 & \hat{v}_7 \end{bmatrix}^T$$
 
$$\begin{bmatrix} \hat{x}_1 & \hat{v}_2 & \hat{v}_3 & \hat{v}_4 & \hat{v}_5 & \hat{v}_6 & \hat{v}_7 \end{bmatrix}^T$$

Calcul de A et W:

$$\begin{bmatrix} sin\bar{\alpha}_{T12-M1}^{0} & cos\bar{\alpha}_{T12-M1}^{0} & 0 & 0 \\ -sin\bar{\alpha}_{M1-M2}^{0} & -cos\bar{\alpha}_{M1-M2}^{0} & sin\bar{\alpha}_{M1M2}^{0} & cos\bar{\alpha}_{M1-M2}^{0} \\ 0 & 0 & -sin\bar{\alpha}_{M2-BS}^{0} & -cos\bar{\alpha}_{M2-BS}^{0} \\ \rho_{cc} \left[ \frac{\cos\bar{\alpha}_{Topo12-1}^{0}}{Topo12-1_{0}} \right] & -\rho_{cc} \left[ \frac{\sin\bar{\alpha}_{1-2}^{0}}{Topo12-1_{0}} \right] & 0 & 0 \\ \rho_{cc} \left[ \frac{\cos\bar{\alpha}_{1-Topo12}^{0}}{1-Topo12_{0}} - \frac{\cos\bar{\alpha}_{1-2}^{0}}{1-2_{0}} \right] & +\rho_{cc} \left[ \frac{\sin\bar{\alpha}_{1-2}^{0}}{1-Topo12_{0}} \right] & +\rho_{cc} \left[ \frac{\sin\bar{\alpha}_{1-2}^{0}}{1-2_{0}} - \frac{\sin\bar{\alpha}_{1-Topo12}^{0}}{1-2_{0}} \right] \\ -\rho_{cc} \left[ \frac{\cos\bar{\alpha}_{2-1}^{0}}{2-1_{0}} \right] & \rho_{cc} \left[ \frac{\sin\bar{\alpha}_{2-1}^{0}}{2-1_{0}} \right] & \rho_{cc} \left[ \frac{\sin\bar{\alpha}_{2-BS}^{0}}{2-BS_{0}} \right] & +\rho_{cc} \left[ \frac{\sin\bar{\alpha}_{2-BS}^{0}}{2-BS_{0}} - \frac{\sin\bar{\alpha}_{2-1}^{0}}{2-1_{0}} \right] \\ 0 & 0 & -\rho_{cc} \left[ \frac{\cos\bar{\alpha}_{BS-2}^{0}}{BS-2_{0}} \right] & \rho_{cc} \left[ \frac{\sin\bar{\alpha}_{BS-2}^{0}}{BS-2_{0}} \right] \end{bmatrix}$$

$$A = \begin{bmatrix} 0.97 & 0.25 & 0. & 0. \\ -0.11 & -0.99 & 0.11 & 0.99 \\ 0. & 0. & -0.86 & -0.52 \\ 3.52 & -13.53 & 0. & 0. \\ -12.7 & 14.58 & 9.18 & -1.06 \\ 9.18 & -1.06 & -16.17 & 12.69 \\ 0. & 0. & -6.99 & -11.63 \end{bmatrix}$$

$$W_i^{cc}jk = \bar{\theta}_{ijk}^0 - \bar{\theta}_{ijk}$$

$$W = \begin{bmatrix} -0mm \\ 0mm \\ -10mm \\ -5cc \\ 1cc \\ -166cc \\ 229cc \end{bmatrix}$$

#### 2.8 Solution du système d'équations d'observation :

Calcul de  $\hat{X}$ :

$$\hat{X} = -(A^T \cdot P \cdot A)^{-1} * A^T \cdot W$$

On pose:

$$N = A^T P A$$
 et  $U = A^T P W$  
$$\hat{X} = -N^{-1} U$$

Numériquement :

$$N = \begin{bmatrix} 260.03 & -241.75 & -264.95 & 129.62 \\ -241.75 & 399.13 & 150.71 & -31.1 \\ -264.95 & 150.71 & 396.16 & -132.3 \\ 129.62 & -31.1 & -132.3 & 300.08 \end{bmatrix}$$

$$U = \begin{bmatrix} -1553.77 \\ 258.00 \\ 111.56 \\ -4758.11 \end{bmatrix}$$

$$U = \begin{bmatrix} -1553.77 \\ 258.00 \\ 1111.56 \\ -4758.11 \end{bmatrix}$$

D'où

$$\hat{X} = \begin{bmatrix} 2.32\\0.5\\4.14\\16.73 \end{bmatrix} mm$$

Paramètres compensés:

$$\hat{\bar{X}} = \bar{X}^0 + \hat{X} = \begin{bmatrix} 364271.91 \\ 376286.14 \\ 364279.81 \\ 376354.61 \end{bmatrix} m$$

Vecteurs des résiduelles :

$$\hat{V} = A\hat{X} + W$$

$$\hat{V}^{cc} = \begin{bmatrix} 2.37 \\ 16.34 \\ -22.17 \\ -3.56 \\ -0.89 \\ 0.04 \\ 5.47 \end{bmatrix}$$

$$\hat{\bar{L}} = \bar{L} + \hat{V} = \begin{bmatrix} 45.5524m \\ 68.9124m \\ 46.9324m \\ 240.5723gr \\ 123.5291gr \\ 258.2447gr \\ 365.9747gr \end{bmatrix}$$

#### 2.9 Contrôle du calcul:

S'obtient par la vérification de la relation suivante :

$$A^T P \hat{V} = 0$$

L'application numérique :

$$A^T P \hat{V} = 10^{-12} \begin{bmatrix} -2.80 \\ 2.12 \\ 2.89 \\ -1.36 \end{bmatrix}$$

Ce résultat est très satisfaisant, compte tenu des erreurs d'arrondi.

#### 2.10 Calcul des matrices de variance covariance :

$$\Sigma_{\hat{x}} = \sigma_0^2 Q_{\hat{x}} = \sigma_0^2 N^{-1} = \Sigma_{\hat{x}}$$

$$\Sigma_{\hat{x}} = \begin{bmatrix} 59.02 & 24.98 & 26.17 & -11.36 \\ 24.98 & 13.22 & 10.01 & -5.01 \\ 26.17 & 10.01 & 14.71 & -3.78 \\ -11.36 & -5.01 & -3.78 & 5.72 \end{bmatrix}$$

la matrice de variance covariances de résiduelles est obtenue comme suit :

$$\Sigma_{\hat{V}} = \sigma_0^2 Q_{\hat{V}}$$
 
$$Q_{\hat{V}} = P^{-1} - AN^{-1}A^T$$
 
$$Q_{\hat{V}} = P^{-1} - AN^{-1}A^T$$
 
$$= \begin{bmatrix} 331.71 & 43.58 & 17.55 & 148.69 & 135.53 & 53.00 & 52.11 \\ 43.58 & 366.01 & -6.93 & -127.69 & -67.22 & -44.07 & 29.09 \\ 17.55 & -6.93 & 391.02 & -22.7 & -24.99 & -30.23 & -71.02 \\ 148.69 & -127.69 & -22.7 & 129.84 & 98.52 & 47.64 & 20.72 \\ 135.53 & -67.22 & -24.99 & 98.52 & 78.46 & 36.72 & 22.49 \\ 53.00 & -44.07 & -30.23 & 47.64 & 36.72 & 18.72 & 11.63 \\ 52.11 & 29.09 & -71.02 & 20.72 & 22.49 & 11.63 & 23.31 \end{bmatrix}$$

Quand à la matrice de variance covariances des observations compensées est fournie par :

$$\Sigma_{\hat{L}=Q_{\hat{L}}=\sigma_0^2AN^{-1}A^T}$$
 
$$\Sigma_{\hat{L}}=\begin{bmatrix} 68.29 & -43.58 & -17.55 & -148.69 & -135.53 & -53. & -52.11 \\ -43.58 & 33.99 & 6.93 & 127.69 & 67.22 & 44.07 & -29.09 \\ -17.55 & 6.93 & 8.98 & 22.7 & 24.99 & 30.23 & 71.02 \\ -148.69 & 127.69 & 22.7 & 770.16 & -98.52 & -47.64 & -20.72 \\ -135.53 & 67.22 & 24.99 & -98.52 & 821.54 & -36.72 & -22.49 \\ -53. & 44.07 & 30.23 & -47.64 & -36.72 & 881.28 & -11.63 \\ -52.11 & -29.09 & 71.02 & -20.72 & -22.49 & -11.63 & 876.69 \end{bmatrix}$$

## **2.11** Test $\mathbf{X}^2 sur\sigma_0^2$

Calcul de l'estimé  $\hat{\sigma}_0^2$  du facteur de variance  $\sigma_0^2$  choisi à priori :

$$\hat{\sigma}_0^2 = \hat{V}^T P V / \nu = 587.5974$$

Test  $X^2au$  niveau 95% de confiance :

$$\nu \hat{\sigma}_0^2 / \sigma_0^2 = 1.9587$$

La table  $X^2 pour \nu = 3$  et  $\alpha = 0.05\%$  donne :

$$X_{3,0.05}^2 = 7.82$$

On remarque alors que :

$$\nu \hat{\sigma}_0^2 / \hat{\sigma}_0^2 < X_{3,0,05}^2$$

Ce qui implique l'acceptation de l'hypothèse  $H_0$  telle que  $\sigma_0^2=(\sigma_0^2)_0$ 

## 3 Compensation du cheminement par méthode de condition

## 3.1 Analyse du problème:

Le nombre des observations n=7

Le nombre de variable distinct  $n_0 = 4$ 

Le nombre de paramètres u=0

Le nombre de degrés de liberté  $\nu = 3$ 

Le nombre des équations r=0

## 3.2 Observations:

| Station | Points Visées | Lecture (en grade) | $\sigma_L$ | Distance (m) Lij | $\sigma_D$ en mm |
|---------|---------------|--------------------|------------|------------------|------------------|
|         | TR2           | 0.0000             |            |                  |                  |
| Topo12  | 1             | 240.5721           | $30_{cc}$  | 45.55            | $2_{cm}$         |
|         | TR2           | 0.0000             |            |                  |                  |
|         | Topo12        | 0.0000             |            |                  |                  |
| 1       | 1             | 123.5289           | $30_{cc}$  | 68.91            | $2_{cm}$         |
|         | Topo12        | 0.0000             |            |                  |                  |
|         | 1             | 0.0000             |            |                  |                  |
| 2       | BS            | 258.2445           | $30_{cc}$  | 46.93            | $2_{cm}$         |
|         | 1             | 0.0000             |            |                  |                  |
|         | M2            | 0.0000             |            |                  |                  |
| BS      | P3            | 365.9745           | $30_{cc}$  |                  |                  |
|         | M2            | 0.0000             |            |                  |                  |

Table 6: Les observations de cheminement

## 3.3 Les coordonnées des points d'appui:

| Point d'appui | X(m)       | Y(m)       |
|---------------|------------|------------|
| Topo 12       | 364227.83  | 376274.66  |
| TR2           | 364182.270 | 376218.180 |
| BS            | 364320.026 | 376378.770 |
| P3            | 364284.13  | 376312.34  |

Table 7: Coordonnées des points d'appui

# 3.4 Calcul des gisements de départ et d'arrivée et de la fermeture angulaire :

|                    |                       | $\alpha_{ij}$ |
|--------------------|-----------------------|---------------|
| gisement de départ | $\alpha_{TR2-Topo12}$ | 43.2129       |
| gisement d'arrivée | $\alpha_{BS-P3}$      | 231.5388      |

Table 8: gisement départ et d'arrivée

#### Fermeture angulaire :

| Station | Angle Observée | Angle $\theta_i$ avec $\theta_i = \alpha_i - 200$ | gisement(grade) |
|---------|----------------|---------------------------------------------------|-----------------|
| TR2     |                |                                                   | 43.2129         |
| /       |                |                                                   |                 |
| Topo12  | 240.5721       | 40.5721                                           | 83.785          |
|         |                |                                                   |                 |
| 1       | 123.5289       | -76.4711                                          | 7.3139          |
|         |                |                                                   |                 |
| 2       | 258.2445       | 58.2445                                           | 65.5584         |
| Da      |                | 1050545                                           | 224 7222        |
| BS      | 365.9745       | 165.9745                                          | 231.5329        |
| / /     |                |                                                   |                 |
| Park 3  |                |                                                   |                 |
|         |                | $\sum_{i=1}^{4} \theta_i = 188.3200$              |                 |

Table 9: Fermeture Angulaire

## 3.5 Pose des équations de condition :

## 3.5.1 Équation de condition de fermeture angulaire :

$$v_{\beta_1} + v_{\beta_2} + v_{\beta_3} + v_{\beta_4} - 0.0059 = 0$$

## 3.5.2 Équations de condition de fermeture linéaire de X et Y :

$$\rho^{cc}*(X_{BS}-X_{BS}^L)=(Y_{BS}^L-Y_{Topo12})+(Y_{BS}^L-Y_1^L)+(Y_{BS}^L-Y_2^L)+(X_1^L-X_{Topo12})+(X_2^L-X_1^L)+(X_{BS}^L-X_2^L)$$

$$\rho^{cc}*(Y_{BS}-Y_{BS}^L) = (X_{BS}^L-X_{Topo12}) + (X_{BS}^L-X_1^L) + (X_{BS}^L-X_2^L) + (Y_1^L-Y_{Topo12}) + (Y_2^L-Y_1^L) + (Y_{BS}^L-Y_2^L)$$

## 3.6 Calcul des coordonnées lancées $X^L e t Y^L$ :

| Station | Gisement (grades) | Distance(m) | X(m)                | Y(m)                |
|---------|-------------------|-------------|---------------------|---------------------|
| Topo12  |                   |             | 364227.83           | 376274.66           |
|         | 83.785            | 45.55       |                     |                     |
| $1^L$   |                   |             | 364271.910          | 376286.137          |
|         | 7.3139            | 68.91       |                     |                     |
| $2^L$   |                   |             | 364279.810          | 376354.593          |
|         | 65.5584           | 46.93       |                     |                     |
| $BS^L$  |                   |             | 364320.038          | 376378.761          |
| BS      |                   |             | 364320.026          | 376378.770          |
|         |                   |             | $X_{BS} - X_{BS}^L$ | $Y_{BS} - Y_{BS}^L$ |
|         |                   |             | -0.01               | 0.01                |

Table 10: coordonnées Lancées

# 3.7 Calcul des coefficients des équations de condition de fermeture en X et Y:

|                 | $\delta X$ | $\delta Y$ |
|-----------------|------------|------------|
| $BS - BS^L$     | -0.01      | 0.01       |
| $BS^L - Topo12$ | 104.1014   | 92.2079    |
| $BS^L - 1^L$    | 92.6247    | 48.1274    |
| $BS^L - 2^L$    | 24.1689    | 40.228     |
| $1^L - Topo12$  | 44.0805    | 11.4767    |
| $2^{L}-1^{L}$   | 7.8995     | 68.4557    |
| $BS^L - 2^L$    | 40.228     | 24.1689    |

Table 11: Coefficients des équations

## 3.8 Le système des équations de condition final

$$\hat{v}_{\beta_1} + \hat{v}_{\beta_2} + \hat{v}_{\beta_3} - 0.0059 = 0$$

 $104.1014\cdot\hat{v}_{\beta_1}+92.624\cdot\hat{v}_{\beta_2}+24.1689v_{\beta_3}+24.1689\cdot\hat{v}_{\beta_1}+44.0805\cdot\hat{v}_{D_1}+7.8995\cdot\hat{v}_{D_2}+40.22\cdot\hat{v}_{D_3}+7551.9285=0$ 

 $92.2079 \cdot \hat{v}_{\beta_1} + 48.1274 \cdot \hat{v}_{\beta_2} + 24.1689 v_{\beta_3} + 40.228 \cdot \hat{v}_{\beta_1} + 11.4767 \cdot \hat{v}_{D_1} + 68.4557 \cdot \hat{v}_{D_2} + 24.1689 \cdot \hat{v}_{D_3} - 5480.415 = 0$ 

## 3.9 La forme matricielle de système des équations de condition :

les équation s'écrivent sous la forme :

$$B \cdot \hat{V} + W = 0$$

Avec:

$$B = \begin{bmatrix} 1. & 1. & 1. & 1. & 0. & 0. & 0. \\ 104.1014 & 92.6247 & 24.1689 & 0. & 44.0805 & 7.8995 & 40.228 \\ 92.2079 & 48.1274 & 40.228 & 0. & 11.4767 & 68.4557 & 24.1689 \end{bmatrix}$$

et

$$W^{cc} = \begin{bmatrix} -58.9227 \\ 7551.9285 \\ -5480.415 \end{bmatrix}$$

et

$$\hat{V}^{cc} = \begin{bmatrix} \hat{v}_{\beta_1} \\ \hat{v}_{\beta_2} \\ \hat{v}_{\beta_3} \\ \hat{v}_{\beta_4} \\ \hat{v}_{D_1} \\ \hat{v}_{D_2} \\ \hat{v}_{D_3} \end{bmatrix}$$

## 3.10 Résolution du système:

## 3.10.1 calculer $\hat{K}$ :

On a :

$$\hat{K} = -M^{-1} \cdot W = \begin{bmatrix} 15.324 \\ -0.0183 \\ 0.0092 \end{bmatrix}$$

Avec:

$$M = B \cdot P^{-1} \cdot B^{T} = \begin{bmatrix} 4. & 220.895 & 180.5632 \\ 220.895 & 835350.2396 & 469288.0254 \\ 180.5632 & 469288.0254 & 1227895.6353 \end{bmatrix}$$

## 3.10.2 calculer $\hat{V}$ :

$$\hat{V} = P^{-1} \cdot B^{T} \cdot \hat{K} = \begin{bmatrix} 14.2709 \\ 14.0754 \\ 15.2524 \\ 15.324 \\ -157.3164 \\ 109.0452 \\ -115.2614 \end{bmatrix}$$

D'Où:

$$\hat{V}_{\beta}^{cc} = \begin{bmatrix} 14\\14\\15\\15 \end{bmatrix}$$

$$\hat{V}_D^{cc} = \begin{bmatrix} -157.3164 \\ 109.0452 \\ -115.2614 \end{bmatrix}$$

$$\hat{V}_{D}^{m} = \begin{bmatrix} 0.0078 \\ 0.0118 \\ 0.008 \end{bmatrix}$$

$$\hat{V}_{D}^{cm}$$

## 3.10.3 Calcul de $\hat{L_D}$ et $\hat{L_\beta}$ :

$$\hat{L_D} = \bar{L}_D + \hat{V}_D = \begin{bmatrix} 45.55 \\ 68.91 \\ 46.93 \end{bmatrix} + \begin{bmatrix} -0.0113 \\ 0.0118 \\ -0.0085 \end{bmatrix} = \begin{bmatrix} 45.539 \\ 68.922 \\ 46.922 \end{bmatrix}$$

$$\hat{\bar{L}_\beta} = \bar{L}_\beta + \hat{V}_\beta = \begin{bmatrix} 240.5721 \\ 123.5289 \\ 258.2445 \\ 365.9745 \end{bmatrix} + \begin{bmatrix} 0.0015 \\ 0.0014 \\ 0.0015 \\ 0.0015 \end{bmatrix} = \begin{bmatrix} 240,5736 \\ 123,5303 \\ 258,2460 \\ 365,9760 \end{bmatrix}$$

## 3.11 Fermeture angulaire Compensée:

| Station | Angle Observée | Angle $\theta_i$ avec $\theta_i = \alpha_i - 200$ | gisement(grade) |
|---------|----------------|---------------------------------------------------|-----------------|
| TR2     |                |                                                   | 43.2129         |
| /       |                |                                                   |                 |
| Topo12  | 240,5736       | 40.5736                                           | 83.7865         |
|         |                |                                                   |                 |
| 1       | 123,5303       | -76.5303                                          | 7.3168          |
|         |                |                                                   |                 |
| 2       | 258,2460       | 58.2460                                           | 65.5628         |
| DC      | 265 0760       | 105.0500                                          | 001 5000        |
| BS      | 365,9760       | 165.9760                                          | 231.5388        |
| D 1 2   |                |                                                   |                 |
| Park 3  |                |                                                   |                 |
|         |                | $\sum_{i=1}^{4} \theta_i = 188.3259$              |                 |

Nous vérifions la condition de la fermeture angulaire après compensation:

$$\sum_{i=1}^{4} v_{\beta_i} = G_a + G_d - \sum_{i=1}^{4} \theta_i = 0$$

## 3.12 Fermeture linéaire Compensée :

| Station | Gisement (grades) | Distance(m) | X(m)                | Y(m)                |
|---------|-------------------|-------------|---------------------|---------------------|
| Topo12  |                   |             | 364227.83           | 376274.66           |
|         | 83.7865           | 45.539      |                     |                     |
| $1^L$   |                   |             | 364271.900          | 376286.133          |
|         | 7.3168            | 68.922      |                     |                     |
| $2^L$   |                   |             | 364279.804          | 376354.600          |
|         | 65.5628           | 46.922      |                     |                     |
| $BS^L$  |                   |             | 364320.026          | 376378.770          |
| BS      |                   |             | 364320.026          | 376378.770          |
|         |                   |             | $X_{BS} - X_{BS}^L$ | $Y_{BS} - Y_{BS}^L$ |
|         |                   |             | 0                   | 0                   |

## 3.13 Calcul des matrices de variance covariance :

## 3.13.1 Calcul de $\Sigma_{\hat{V}}$

$$\Sigma_{\hat{V}} = \hat{\sigma}_0^2 \cdot P^{-1} \cdot B^T \cdot M^{-1} \cdot B \cdot P^{-1}$$

| 1679.27 | 220.61  | 88.86   | 334.56  | 304.94  | 119.26 | 117.26 |
|---------|---------|---------|---------|---------|--------|--------|
| 220.61  | 1852.92 | -35.07  | -287.31 | -151.24 | -99.16 | 65.45  |
| 88.86   | -35.07  | 1979.55 | -51.08  | -56.23  | -68.01 | -159.8 |
| 334.56  | -287.31 | -51.08  | 129.84  | 98.52   | 47.64  | 20.72  |
| 304.94  | -151.24 | -56.23  | 98.52   | 78.46   | 36.72  | 22.49  |
| 119.26  | -99.16  | -68.01  | 47.64   | 36.72   | 18.72  | 11.63  |
| 117.26  | 65.45   | -159.8  | 20.72   | 22.49   | 11.63  | 23.31  |

Avec  $\sigma_0^2 = 900^{cc}$ 

## 3.13.2 Calcul de $\Sigma_{\hat{L}}$

$$\Sigma_{\hat{L}} = \begin{bmatrix} 68.29 & -43.58 & -17.55 & -148.69 & -135.53 & -53. & -52.11 \\ -43.58 & 33.99 & 6.93 & 127.69 & 67.22 & 44.07 & -29.09 \\ -17.55 & 6.93 & 8.98 & 22.7 & 24.99 & 30.23 & 71.02 \\ -148.69 & 127.69 & 22.7 & 770.16 & -98.52 & -47.64 & -20.72 \\ -135.53 & 67.22 & 24.99 & -98.52 & 821.54 & -36.72 & -22.49 \\ -53. & 44.07 & 30.23 & -47.64 & -36.72 & 881.28 & -11.63 \\ -52.11 & -29.09 & 71.02 & -20.72 & -22.49 & -11.63 & 876.69 \end{bmatrix}$$

# 4 Compensation d'un relèvement par la méthode de direction :

## 4.1 Schéma:



Figure 3: schéma de relévement

## 4.2 Observations:

| Station | Point visé       | Lecture horizontale en grade $D_{ij}$ | $\sigma_0^{cc}$ |
|---------|------------------|---------------------------------------|-----------------|
|         | Mosquée Soukaina | 0.0000                                | 15              |
|         | Acima            | 74.2201                               | 15              |
| M       | Project.SO       | 145.3681                              | 15              |
|         | Mosquée2         | 168.6658                              | 15              |
|         | MosquéeSI        | 243.5179                              | 15              |
|         | Mosquée Soukaina | 0.0000                                | 15              |

Tableau 1 : Observation du relèvement

## 4.3 Les coordonnées des points d'appui :

| Point visé       | $X_m$     | $Y_m$     |
|------------------|-----------|-----------|
| Mosquée Soukaina | 364824.49 | 375997.93 |
| Acima            | 364767.96 | 373965.44 |
| Project.SO       | 362154.53 | 374493.02 |
| Mosquée2         | 363236.12 | 377657.88 |
| MosquéeS1        | 364951.76 | 377249.94 |

Tableau 2 : Coordonnées des points d'appui

## 4.4 Analyse de problème :

Le nombre des observations n=5Le nombre de variable distinct  $n_0=3$ Le nombre de paramètres u=3Le nombre de degrés de liberté  $\nu=2$ Le nombre des équations r=5

## 4.5 Identification des variables :

vecteur des observations :

$$\bar{L} = \begin{bmatrix} 0.0000 \\ 74.2201 \\ 145.3681 \\ 168.6658 \\ 243.5179 \end{bmatrix} gr = \begin{bmatrix} \bar{l}_1 \\ \bar{l}_2 \\ \bar{l}_3 \\ \bar{l}_4 \\ \bar{l}_5 \\ \bar{l}_6 \end{bmatrix}; \Sigma_L = \begin{bmatrix} 225 & 0 & 0 & 0 & 0 \\ 0 & 225 & 0 & 0 & 0 \\ 0 & 0 & 225 & 0 & 0 \\ 0 & 0 & 0 & 225 & 0 \\ 0 & 0 & 0 & 0 & 225 \end{bmatrix}$$

Sachant que:

$$\sigma_{Lm}^2 = \frac{1}{4} \cdot \sigma_L^2 = 225$$

Vecteur des Observations est :

$$\hat{L} = \begin{bmatrix} \hat{7}_1 \\ \hat{7}_2 \\ \hat{7}_3 \\ \hat{7}_4 \\ \hat{7}_5 \end{bmatrix}$$

vecteur des résiduelles est :

$$\hat{V} = \hat{\bar{L}} - \bar{L} = \begin{bmatrix} \hat{v_1} \\ \hat{v_2} \\ \hat{v_3} \\ \hat{v_4} \\ \hat{v_5} \end{bmatrix}$$

Vecteur des estimés des paramètres est :

$$\hat{\bar{X}} = \bar{X}^0 - \hat{X} = \begin{bmatrix} \hat{G_M} \\ \hat{x_M} \\ \hat{y_M} \end{bmatrix}$$

Vecteur des valeurs approchées des paramètres est :

$$ar{X}^0 = egin{bmatrix} ar{G}_M^{ar{0}} \\ x_M^{ar{0}} \\ y_M^0 \end{bmatrix}$$

Prenons 225 comme valeur à priori de la variance  $\sigma_0^2$  pour l'unité de poids, c'est à dire que :  $\sigma_0^2 = 225$  ce qui permet d'évaluer la matrice de poids des observations telle que :

$$P = \sigma_0^2 \Sigma_0^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

#### 4.6 calcul des valeurs approchées

Les coordonnées approchées obtenues une combinaison de 3 points d'appui :

$$\bar{X}^0 = \begin{bmatrix} 364413.27 \\ 376098.64 \end{bmatrix}$$

les coordonnées sont utilisées pour calculer les gisements, les distances approchées et la constante d'orientation tels qu'ils sont présentés dans la table suivante :

| N | $D_{ij}$         | $\bar{lpha}^0$ | $L_{ij}$ en (cm) | $G_0^M$       | Lecture(gr) | angle   |
|---|------------------|----------------|------------------|---------------|-------------|---------|
| 1 | Mosquée Soukaina | 115.2902       | 42337            | 115.2902      | 0           | -       |
| 2 | Acima            | 189.5108       | 216249           | 115.2907      | 74.2201     | 74.2201 |
| 3 | Project.SO       | 260.6589       | 277127           | 115.2908      | 145.3681    | 71.1480 |
| 4 | Mosquée2         | 358.83228      | 195369           | 115.3143      | 243.5179    | 98.1498 |
| 5 | MosquéeSI        | 27.8518        | 127101           | 115.3405      | 312.5113    | 68.9934 |
|   |                  |                |                  | $\bar{G}_0^M$ | 115.3053    |         |

Table 12: Gisements, Distances approchées et Constante d'orientation

#### 4.7Pose des équations d'observation :

Le modèle d'une équation d'observation d'une direction dans le cas général :

$$\hat{v}_{Dij} = -dG^{cc} - \rho^{cc} \frac{\cos \bar{\alpha}_{ij}^0}{(ij)_0} \hat{x}_i + \rho^{cc} \frac{\sin \bar{\alpha}_{ij}^0}{(ij)_0} \hat{y}_i + \rho^{cc} \frac{\cos \bar{\alpha}_{ij}^0}{(ij)_0} \hat{x}_j - \rho^{cc} \frac{\sin \bar{\alpha}_{ij}^0}{(ij)_0} \hat{y}_j + W_{D_{ij}}^{cc}$$

dans le relèvement, les coordonnées du point cible en occurrence le point j sont connues et par conséquent l'équation devient :

$$\hat{v}_{Dij} = -dG^{cc} - \rho^{cc} \frac{\cos \bar{\alpha}_{ij}^0}{(ij)_0} \hat{x}_i + \rho^{cc} \frac{\sin \bar{\alpha}_{ij}^0}{(ij)_0} \hat{y}_i + W_{D_{ij}}^{cc}$$

le système d'équation d'observation du type précédent s'écrit sous la forme matricielle suivante :  $\hat{V} = A\hat{X} + W$  on a:

$$\hat{V} = \begin{bmatrix} \hat{v}_1 \\ \hat{v}_2 \\ \hat{v}_3 \\ \hat{v}_4 \\ \hat{v}_5 \end{bmatrix} \text{ et } \hat{X} = \begin{bmatrix} dG \\ \hat{x}_M \\ \hat{y}_M \end{bmatrix}$$

$$\hat{V} = \begin{bmatrix} \hat{v}_1 \\ \hat{v}_2 \\ \hat{v}_3 \\ \hat{v}_4 \\ \hat{v}_5 \end{bmatrix} \text{ et } \hat{X} = \begin{bmatrix} dG \\ \hat{x}_M \\ \hat{y}_M \end{bmatrix}$$

$$W = \begin{bmatrix} w_1 \\ w_2 \\ w_3 \\ w_4 \\ w_5 \end{bmatrix} \text{ avec } W_j = \bar{\alpha}_{ij}^0 - \bar{G}_0^M - D_{ij}$$

$$\text{et}: A = \begin{bmatrix} -1 & -\rho^{cc} \frac{\cos\bar{\alpha}_{M1}^0}{(M1)_0} & \rho^{cc} \frac{\sin\bar{\alpha}_{M1}^0}{(M1)_0} \\ -1 & -\rho^{cc} \frac{\cos\bar{\alpha}_{M2}^0}{(M2)_0} & \rho^{cc} \frac{\sin\bar{\alpha}_{M2}^0}{(M2)_0} \\ -1 & -\rho^{cc} \frac{\cos\bar{\alpha}_{M3}^0}{(M3)_0} & \rho^{cc} \frac{\sin\bar{\alpha}_{M3}^0}{(M3)_0} \\ -1 & -\rho^{cc} \frac{\cos\bar{\alpha}_{M4}^0}{(M4)_0} & \rho^{cc} \frac{\sin\bar{\alpha}_{M4}^0}{(M4)_0} \\ -1 & -\rho^{cc} \frac{\cos\bar{\alpha}_{M5}^0}{(M5)_0} & \rho^{cc} \frac{\sin\bar{\alpha}_{M5}^0}{(M5)_0} \end{bmatrix}$$

Numériquement : 
$$A = \begin{bmatrix} -1 & 3.5770 & -14.6052 \\ -1 & 2.9040 & -0.4829 \\ -1. & 1.3310 & 1.8724 \\ -1. & -2.6006 & 1.9634 \\ -1. & -4.5370 & 2.1221 \end{bmatrix}$$

$$\text{Et}: W^{cc} = \begin{bmatrix} -147 \\ -148 \\ -148 \\ 1 \\ 89 \\ 352 \end{bmatrix}$$

#### Solution du système d'équations d'observation 4.8

la solution consiste à calculer le vecteur  $\hat{X}$  des paramètres :

$$\hat{X} = -(A^T P A)^{-1} A^T P W$$

ou encore:

$$-N^{-1}U$$

Avec:

$$N = A^T P A$$
 Et :  $U = A^T P W$ 

Numériquement :

$$N = \begin{bmatrix} 6 & -130.5051 & -1092.2456 \\ -130.5051 & 507457.3359 & 450842.0696 \\ -1092.2456 & 450842.0696 & 2314180.6843 \end{bmatrix}$$
$$N^{-1} = \begin{bmatrix} 0.1829 & 0 & 0.0001 \\ 0 & 0 & 0 \\ 0.0001 & 0 & 0 \end{bmatrix}$$

$$N^{-1} = \begin{bmatrix} 0.1829 & 0 & 0.0001 \\ 0 & 0 & 0 \\ 0.0001 & 0 & 0 \end{bmatrix}$$

$$U = \begin{bmatrix} 0 \\ -29.7848 \\ -13.7155 \end{bmatrix}$$

D'où:

$$\hat{X} = \begin{bmatrix} -4.1\\ 6.8\\ 7.3 \end{bmatrix}$$

Et par conséquent :

$$\hat{X} = \bar{X}^0 + \hat{X} = \begin{bmatrix} 115.30488 \\ 364413.958 \\ 376098.713 \end{bmatrix}$$

Le vecteur des résiduelles peut être calculé par la relation suivante :

$$\hat{V} = A\hat{X} + W$$

Ainsi:

$$\hat{V}^{cc} = \begin{bmatrix} -7.3 \\ 54.6 \\ -35.9 \\ -70.5 \\ 59.1 \end{bmatrix}$$

Et par conséquent :

$$\hat{L} = \bar{L} + \hat{V} = \begin{bmatrix} -0.00073 \\ 74.22556 \\ 145.36451 \\ 243.51085 \\ 312.51712 \end{bmatrix}$$

#### 4.9 Contrôle du calcul:

ceci s'obtient par la vérification de la relation suivante :

$$A^T P \hat{V} = 0$$

L'application numérique :

$$A^T P \hat{V} = 10^{-5} \begin{bmatrix} 0.20 \\ 0.34 \\ 0.53 \end{bmatrix}$$

#### 4.10 Calcul des matrices de variance covariance:

$$\Sigma_{\hat{x}} = \sigma_0^2 Q_{\hat{x}} = \sigma_0^2 N^{-1} = \Sigma_{\hat{x}}$$

$$\Sigma_{\hat{x}} = \Sigma_{\hat{x}} = \begin{bmatrix} 49.98 & -3.21 & -2.96 \\ -3.21 & 7.44 & 2.31 \\ -2.96 & 2.31 & 1.79 \end{bmatrix}$$

par ailleurs, la matrice de variance covariance des résiduelles est obtenue comme suit :

$$\Sigma_{\hat{V}} = \sigma_0^2 Q_{\hat{V}}$$
 
$$\Sigma_{\hat{V}} = P^{-1} - AN^{-1}A^T$$
 
$$\Sigma_{\hat{V}} = \begin{bmatrix} 63.06 & -20.34 & 38.65 & 9.28 & -90.65 \\ -20.34 & 8.18 & -24.40 & 11.31 & 25.25 \\ 38.65 & -24.40 & 111.38 & -99.38 & -26.25 \\ 9.28 & 11.31 & -99.38 & 127.25 & -48.46 \\ -90.65 & 25.25 & -26.25 & -48.46 & 140.12 \end{bmatrix}$$

Quand à la matrice de variance covariances des observations compensées est fournie par :

$$\sum_{\hat{\bar{L}}=Q_{\hat{\bar{L}}}=\sigma_0^2AN^{-1}A^T}$$

$$\Sigma_{\hat{L}} = \begin{bmatrix} 223.01 & 14.26 & -14.94 & -1.20 & 3.87 \\ 14.26 & 122.46 & 105.87 & 13.46 & -31.05 \\ -14.94 & 105.87 & 100.56 & 32.89 & 0.63 \\ -1.20 & 13.46 & 32.89 & 78.63 & 101.22 \\ 3.87 & -31.05 & 0.63 & 101.22 & 150.34 \end{bmatrix}$$

## 5 Compensation d'un relèvement par la méthode angulaire

Lectures adoptées

| Point observé    | Lecture en gr $D_{Mj}$ | Angle $\alpha_i$ |
|------------------|------------------------|------------------|
| Mosquée Soukaina | 0                      | 74.2201          |
| Acima            | 74.2201                | 71.1480          |
| Project.SO       | 145.5179               | 98.1498          |
| Mosquée2         | 243.5179               | 68.9934          |
| MosquéeSI        | 312.5113               | 87.4887          |

Table 13: Lectures adoptées

Les coordonnées des points d'appui :

| Point visé       | $X_m$     | $Y_m$     |
|------------------|-----------|-----------|
| Mosquée Soukaina | 364824.49 | 375997.93 |
| Acima            | 364767.96 | 373965.44 |
| Project.SO       | 362154.53 | 374493.02 |
| Mosquée2         | 363236.12 | 377657.88 |
| MosquéeS1        | 364951.76 | 377249.94 |

Table 14: Les coordonnées des points d'appui

## 5.1 Analyse du problème :

Le nombre des observations n=5

Le nombre de variable distinct  $n_0 = 2$ 

Le nombre de paramètres u=2

Le nombre de degrés de liberté  $\nu=3$ 

Le nombre des équations r=5

#### 5.2 Identification des variables

vecteur des observations :

$$\bar{\theta} = \begin{bmatrix} 74.2201 \\ 71.1480 \\ 98.1498 \\ 68.9934 \\ 87.4887 \end{bmatrix} gr = \begin{bmatrix} \bar{\theta}_1 \\ \bar{\theta}_2 \\ \bar{\theta}_3 \\ \bar{\theta}_4 \\ \bar{\theta}_5 \end{bmatrix}; \Sigma_{\bar{L}} = \begin{bmatrix} 450 & 0 & 0 & 0 & 0 \\ 0 & 450 & 0 & 0 & 0 \\ 0 & 0 & 450 & 0 & 0 \\ 0 & 0 & 0 & 450 & 0 \\ 0 & 0 & 0 & 0 & 450 \end{bmatrix}$$

Sachant que :  $\sigma^2_{\theta M}=(\frac{1}{4})^2\cdot 4\cdot \sigma^2_{\theta}=\frac{1}{4}\cdot 2\cdot \sigma^2_L=450$ Vecteur des observations compensées est :

$$\hat{\bar{L}} = \begin{bmatrix} \hat{\theta}_1 \\ \hat{\theta}_2 \\ \hat{\theta}_3 \\ \hat{\theta}_4 \\ \hat{\theta}_5 \end{bmatrix}$$

Vecteur des résiduelles est :

$$\hat{\bar{V}} = \hat{\bar{L}} - \bar{L} = \begin{bmatrix} \hat{v_1} \\ \hat{v_2} \\ \hat{v_3} \\ \hat{v_4} \\ \hat{v_5} \end{bmatrix}$$

Vecteur des estimés des paramètres est :

$$\hat{\bar{X}} = \bar{X}^0 + \hat{X} = \begin{bmatrix} \hat{x}_M \\ \hat{y}_M \end{bmatrix}$$

Vecteur des valeurs approchées des paramètres est :

$$\bar{X}^0 = \begin{bmatrix} \bar{x}_M^0 \\ \bar{y}_M^0 \end{bmatrix}$$

prenons 450 comme valeur à priori de la variance  $\sigma_0^2$  pour l'unité de poids,c'est-à-dire que : ce qui permet d'evaluer la matrice de poids des observations telle que :

$$P = \sigma_0^2 \Sigma_L^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

## 5.3 calcul des valeurs approchées :

voici les coordonnées approchées obtenues à travers la moyenne des résultats des 8 combinaisons de 3 points d'appui :  $\bar{X}^0 = \begin{bmatrix} 364413.27\\ 376098.64 \end{bmatrix}$ 

ces coordonnées sont utilisées pour calculer les gisements et les distances approchées tels qu'ils sont présentés dans le tableau ci-dessous :

| N du point | $D_{ij}$         | $\bar{\alpha}^0$ | distance $L_{ij}$ en (cm) |
|------------|------------------|------------------|---------------------------|
| 1          | Mosquée Soukaina | 115.2902         | 42337                     |
| 2          | Acima            | 189.5108         | 216249                    |
| 3          | Project.SO       | 260.6589         | 277127                    |
| 4          | Mosquée2         | 358.83228        | 195369                    |
| 5          | MosquéeSI        | 27.8518          | 127101                    |

## 5.4 Pose des équations d'observation :

$$\hat{v}_{jik} = \rho^{cc} \left[ \frac{cos\bar{\alpha}_{ij}^{0}}{(ij)_{0}} - \frac{cos\bar{\alpha}_{ik}^{0}}{(ik)_{0}} \right] \hat{x}_{i} + \rho^{cc} \left[ \frac{sin\bar{\alpha}_{ik}^{0}}{(ik)_{0}} - \frac{sin\bar{\alpha}_{ij}^{0}}{(ij)_{0}} \right] \hat{y}_{i} + W_{jik}^{cc}$$

avec:

$$W_{jik}^{cc} = \bar{\theta}_{jik}^{0} - \bar{\theta}_{jik} = \bar{\alpha}_{ik}^{0} - \bar{\alpha}_{ij}^{0} - \bar{\theta}_{jik}$$

En appliquant cette relation sur les angles :

$$\begin{split} \hat{v}_{1M2} &= \rho^{cc} \left[ \frac{\cos \bar{\alpha}_{M1}^0}{(M1)_0} - \frac{\cos \bar{\alpha}_{M2}^0}{(M2)_0} \right] \hat{x}_M + \rho^{cc} \left[ \frac{\sin \bar{\alpha}_{M2}^0}{(M2)_0} - \frac{\sin \bar{\alpha}_{M1}^0}{(M1)_0} \right] \hat{y}_M + W_{1M2}^{cc} \\ \hat{v}_{2M3} &= \rho^{cc} \left[ \frac{\cos \bar{\alpha}_{M2}^0}{(M2)_0} - \frac{\cos \bar{\alpha}_{M3}^0}{(M3)_0} \right] \hat{x}_M + \rho^{cc} \left[ \frac{\sin \bar{\alpha}_{M3}^0}{(M3)_0} - \frac{\sin \bar{\alpha}_{M2}^0}{(M2)_0} \right] \hat{y}_M + W_{2M3}^{cc} \\ \hat{v}_{3M4} &= \rho^{cc} \left[ \frac{\cos \bar{\alpha}_{M3}^0}{(M3)_0} - \frac{\cos \bar{\alpha}_{M4}^0}{(M4)_0} \right] \hat{x}_M + \rho^{cc} \left[ \frac{\sin \bar{\alpha}_{M4}^0}{(M4)_0} - \frac{\sin \bar{\alpha}_{M3}^0}{(M3)_0} \right] \hat{y}_M + W_{3M4}^{cc} \\ \hat{v}_{4M5} &= \rho^{cc} \left[ \frac{\cos \bar{\alpha}_{M4}^0}{(M4)_0} - \frac{\cos \bar{\alpha}_{M5}^0}{(M5)_0} \right] \hat{x}_M + \rho^{cc} \left[ \frac{\sin \bar{\alpha}_{M5}^0}{(M5)_0} - \frac{\sin \bar{\alpha}_{M4}^0}{(M4)_0} \right] \hat{y}_M + W_{4M5}^{cc} \\ \hat{v}_{5M1} &= \rho^{cc} \left[ \frac{\cos \bar{\alpha}_{M5}^0}{(M5)_0} - \frac{\cos \bar{\alpha}_{M1}^0}{(M1)_0} \right] \hat{x}_M + \rho^{cc} \left[ \frac{\sin \bar{\alpha}_{M1}^0}{(M1)_0} - \frac{\sin \bar{\alpha}_{M5}^0}{(M5)_0} \right] \hat{y}_M + W_{5M1}^{cc} \\ \end{pmatrix} \end{split}$$

Le système d'équations d'observation du type précèdent s'écrit sous la forme matricielle suivante :

$$\hat{V} = A\hat{X} + W$$

Avec:

$$\hat{V} = \begin{bmatrix} \hat{v_1} \\ \hat{v_2} \\ \hat{v_3} \\ \hat{v_4} \\ \hat{v_5} \end{bmatrix}$$

et

$$\hat{X} = \begin{bmatrix} \hat{X}_M \\ \hat{Y}_M \end{bmatrix}$$

$$W = \begin{bmatrix} w_1 \\ w_2 \\ w_3 \\ w_4 \\ w_5 \end{bmatrix}$$

Avec:

$$\begin{split} W^{cc}_{jik} &= \bar{\alpha}^0_{ik} - \bar{\alpha}^0_{ij} - \bar{\theta}_{jik} \\ & \rho^{cc} \begin{bmatrix} \frac{\cos \bar{\alpha}^0_{M1}}{(M1)_0} - \frac{\cos \bar{\alpha}^0_{M2}}{(M2)_0} \end{bmatrix} \rho^{cc} \begin{bmatrix} \frac{\sin \bar{\alpha}^0_{M2}}{(M2)_0} - \frac{\sin \bar{\alpha}^0_{M1}}{(M1)_0} \\ \rho^{cc} \begin{bmatrix} \cos \bar{\alpha}^0_{M2}}{(M2)_0} - \frac{\cos \bar{\alpha}^0_{M2}}{(M3)_0} \end{bmatrix} \rho^{cc} \begin{bmatrix} \frac{\sin \bar{\alpha}^0_{M2}}{(M3)_0} - \frac{\sin \bar{\alpha}^0_{M1}}{(M2)_0} \\ \frac{\cos \bar{\alpha}^0_{M3}}{(M3)_0} - \frac{\cos \bar{\alpha}^0_{M4}}{(M4)_0} \end{bmatrix} \rho^{cc} \begin{bmatrix} \frac{\sin \bar{\alpha}^0_{M3}}{(M3)_0} - \frac{\sin \bar{\alpha}^0_{M3}}{(M3)_0} \\ \rho^{cc} \begin{bmatrix} \frac{\cos \bar{\alpha}^0_{M4}}{(M4)_0} - \frac{\cos \bar{\alpha}^0_{M3}}{(M5)_0} \\ \frac{\cos \bar{\alpha}^0_{M3}}{(M5)_0} - \frac{\cos \bar{\alpha}^0_{M1}}{(M1)_0} \end{bmatrix} \rho^{cc} \begin{bmatrix} \frac{\sin \bar{\alpha}^0_{M3}}{(M5)_0} - \frac{\sin \bar{\alpha}^0_{M3}}{(M5)_0} \\ \frac{\sin \bar{\alpha}^0_{M3}}{(M5)_0} - \frac{\sin \bar{\alpha}^0_{M3}}{(M5)_0} \end{bmatrix} \end{split}$$

$$\mbox{Num\'eriquement}: A = \begin{bmatrix} -0.6728 & -14.1224 \\ -1.5731 & -2.3552 \\ -3.9316 & -0.0910 \\ -1.9364 & 4.0854 \\ 8.1139 & 12.4832 \end{bmatrix}$$

$$\text{Et}: W^{cc} = \begin{bmatrix} 5\\1\\235\\262\\-503 \end{bmatrix}$$

## 5.5 Solution du système d'équations d'observation :

La solution consiste à calculer le vecteur  $\hat{X}$  des paramètres par la relation suivante :

$$\hat{X} = -N^{-1}U$$

Avec:

$$N = A^T P A \quad \text{Et} : \quad U = A^T P W$$
   
 Numériquement : 
$$N = \begin{bmatrix} 87.9704 & 106.9416 \\ 106.9416 & 377.5173 \end{bmatrix}$$

Et: 
$$U = \begin{bmatrix} -5514.8748 \\ -5297.1168 \end{bmatrix}$$

Et par conséquent : 
$$\hat{X} = \begin{bmatrix} 7.6 \\ -5.7 \end{bmatrix}^{cm}$$

$$\hat{X} = \bar{X}^0 + \hat{X} = \begin{bmatrix} 364413.966 \\ 376098.583 \end{bmatrix}$$

Le vecteur des résiduelles peut être calculé par la relation suivante :

$$\hat{V} = A\hat{X} + W$$

Ainsi:

$$\hat{V}^{cc} = \begin{bmatrix} 38.3 \\ -95.5 \\ -37.7 \\ 103.7 \\ -8.9 \end{bmatrix}$$

Et par conséquent :

$$\hat{\bar{L}} = \bar{L} + \hat{V} = \begin{bmatrix} 74.22393 \\ -71.13485 \\ 98.14603 \\ 69.00377 \\ 87.48781 \end{bmatrix}^{gr}$$

#### 5.6 Contrôle du calcul:

ceci s'obtient par la vérification de la relation suivante :

$$A^T P \hat{V} = 0$$

L'application numérique :

$$A^T P \hat{V} = 10^{-13} \begin{bmatrix} -0.1197 \\ 0.4067 \end{bmatrix}$$

ce Résultat est très satisfaisant compte tenu des erreurs arrondies

## 5.7 Calcul des matrices de variance covariance :

$$\Sigma_{\hat{x}} = \sigma_0^2 Q_{\hat{x}} = \sigma_0^2 N^{-1} = \Sigma_{\hat{x}}$$

$$\Sigma_{\hat{x}} = \Sigma_{\hat{x}} = \begin{bmatrix} 7.80 & -2.21 \\ -2.21 & 1.82 \end{bmatrix}^{cm^2}$$

par ailleurs, la matrice de variance covariances :

$$\Sigma_{\hat{V}} = \sigma_0^2 Q_{\hat{V}}$$
 
$$Q_{\hat{V}} = P^{-1} - AN^{-1}A^T$$
 
$$\Sigma_{\hat{V}} = \begin{bmatrix} 125.87 & -16.13 & 99.88 & 149.10 & 91.29 \\ -16.13 & 436.98 & -27.86 & -10.40 & 67.40 \\ 99.88 & -27.86 & 330.96 & -93.83 & 140.86 \\ 149.10 & -10.40 & -93.83 & 355.43 & 49.70 \\ 91.29 & 67.40 & -140.86 & 49.70 & 100.75 \end{bmatrix}$$

Quand à la matrice de variance covariances des observations compensées est fournie par :

$$\Sigma_{\hat{L}} = \begin{bmatrix} 324.13 & 16.13 & -99.88 & -149.10 & -91.29 \\ 16.13 & 13.02 & 27.86 & 10.40 & -67.40 \\ -99.88 & 27.86 & 119.04 & 93.83 & -140.86 \\ -149.10 & 10.40 & 93.83 & 94.57 & -49.70 \\ -91.29 & -67.40 & -140.86 & -49.70 & 349.25 \end{bmatrix}$$