# Heater Control System - System Design Document

#### Introduction

This document outlines the design for a Heater Control System implemented using an ESP32 microcontroller and the ESP-IDF framework. The system reads temperature values from a digital TMP117 sensor connected via  $I^2C$  and controls the heater ON/OFF state based on predefined thresholds. It also logs system states via UART for monitoring. The design prioritizes scalability and reliability with digital sensing and structured communication.

## 1. Sensors

- Digital Temperature Sensor: TMP117 (I<sup>2</sup>C)
- Provides high-accuracy temperature readings with minimal noise.
- Communicates with the ESP32 via I<sup>2</sup>C for robust and scalable integration.
- The sensor is placed close to the heater element to provide real-time temperature feedback for precise control.

## 2. Communication Protocol

Communication in this system occurs in two parts:

#### 2.1 Sensor to MCU (ESP32)

- Protocol Used: I<sup>2</sup>C
- TMP117 uses I<sup>2</sup>C for reliable digital data exchange.
- Supports multiple devices on the same bus (scalable in future).
- Ensures noise immunity and accuracy over analog voltage-based methods.

## 2.2 MCU to External System (Logging and Monitoring)

- Protocol Used: UART (Serial)
- Transmits temperature readings and system state logs to the PC.
- Simple and efficient for real-time logging.
- Easily supported in Wokwi and ESP-IDF.

## 3. System Overview, Block Diagram and States

## **Key Modules:**

- ESP32 Microcontroller for processing and control

- TMP117 Digital Temperature Sensor via I<sup>2</sup>C
- Heater Simulation (LED) to represent ON/OFF operation
- UART Logger for transmitting logs to PC

## **Block Diagram:**

#### SYSTEM DESIGN



**Block Diagram** 

## **System States:**

| State          | Condition                        | Action                         |
|----------------|----------------------------------|--------------------------------|
| Idle           | Temperature > 52°C               | Heater OFF                     |
| Heating        | Temperature < 48°C               | Heater ON                      |
| Stabilizing    | 48°C ≤ Temperature ≤ 52°C        | Toggle to maintain temperature |
| Target Reached | Stable around 50°C for 5 seconds | Heater OFF                     |
| Overheat       | Temperature > 60°C               | Heater OFF (safety shutdown)   |

## 4. Future Roadmap

## **Multiple Heating Profiles**

- Define selectable profiles with varying target temperatures (e.g., Low: 40°C, Medium: 50°C, High: 60°C)
- Allow switching profiles via UART commands or mobile app (future BLE integration).
- Software logic dynamically adjusts control thresholds and behavior for each profile.
- Profiles can be tuned for different environmental or application needs.

#### **Overheating Protection Enhancements**

- Implement dual sensor setup: one sensor close to the heater, one at a safer distance for ambient monitoring.
- If the temperature exceeds a safety threshold (e.g., 60°C), disable the heater instantly.
- Add fail-safe cutoff via software and optionally hardware (relay or safety circuit).
- Integrate user alerts using buzzer or flashing LED in overheated condition.

#### **BLE Integration (Optional Future Scope)**

- Use ESP32 BLE capabilities for wireless control and mobile app connectivity.
- Enables wireless monitoring of temperature, heater state, and profile switching.

## Conclusion

This design provides a robust and scalable Heater Control System. The current implementation uses a digital TMP117 sensor with I<sup>2</sup>C communication and UART-based logging for monitoring. An LED simulates heater ON/OFF states. The system is well-positioned for upgrades including multiple heating profiles, BLE control, and smart safety mechanisms.