CHENNAI MATHEMATICAL INSTITUTE

MSc Applications of Mathematics Entrance Examination $18~{ m May}~2017$

Instructions:					
• Enter your Admit Card Number:	A				

- The allowed time is 3 hours.
- This examination has two parts. Part A has multiple-choice questions, while questions in Part B require detailed answers.
- The score in Part A will be used for screening purposes. Your answers to the questions in Part B will be marked only if your score in Part A places you over the cut-off. However, the scores in both the sections will be taken into account to decide whether you qualify for the interview.
- Answers to questions in Part A must be recorded on the sheet provided for the purpose.
- You may use the blank pages at the end for your rough-work.

For office use only

Part B

Qno	1	2	3	4	5	6	7	8
Marks								

	Part A	Part B	Total
Score			

CHENNAI MATHEMATICAL INSTITUTE

MSc Applications of Mathematics Entrance Examination $18~\mathrm{May}~2017$

• Enter your Admit Card Number: A							
You must record your answers to Part A here by filling in the appropriate circles: For example, if your answer to question number 7 is (A) and (D), record it as follows:							
7.	● B C ●						
Part A							
1.	(A) (B) (C) (D)						
2.	$oxed{A}$ $oxed{B}$ $oxed{C}$ $oxed{D}$						
3.	$egin{array}{cccc} egin{array}{cccc} egin{array}{ccccc} egin{array}{cccc} egin{array}{cccc} egin{array}{ccccc} egin{array}{ccccc} egin{array}{ccccc} egin{array}{cccc} egin{array}{cccc} egin{array}{ccccc} egin{array}{ccccc} egin{array}{ccccc} egin{array}{ccccc} egin{array}{ccccc} egin{array}{ccccc} egin{array}{cccc} egin{array}{cccc} egin{array}{ccccc} egin{array}{cccc} egin{array}{ccccc} egin{array}{ccccc} egin{array}{ccccc} egin{array}{ccccccc} egin{array}{ccccc} egin{array}{ccccc} egin{array}{cccc} egin{array}{cccc}$						
4.	$egin{array}{cccc} egin{array}{cccc} egin{array}{ccccc} egin{array}{cccc} egin{array}{cccc} egin{array}{ccccc} egin{array}{ccccc} egin{array}{ccccc} egin{array}{cccc} egin{array}{cccc} egin{array}{ccccc} egin{array}{ccccc} egin{array}{ccccc} egin{array}{ccccc} egin{array}{ccccc} egin{array}{ccccc} egin{array}{cccc} egin{array}{cccc} egin{array}{ccccc} egin{array}{cccc} egin{array}{ccccc} egin{array}{ccccc} egin{array}{ccccc} egin{array}{ccccccc} egin{array}{ccccc} egin{array}{ccccc} egin{array}{cccc} egin{array}{cccc}$						
5.	$egin{array}{cccc} egin{array}{cccc} egin{array}{ccccc} egin{array}{cccc} egin{array}{cccc} egin{array}{ccccc} egin{array}{ccccc} egin{array}{ccccc} egin{array}{cccc} egin{array}{cccc} egin{array}{ccccc} egin{array}{ccccc} egin{array}{ccccc} egin{array}{ccccc} egin{array}{ccccc} egin{array}{ccccc} egin{array}{cccc} egin{array}{cccc} egin{array}{ccccc} egin{array}{cccc} egin{array}{ccccc} egin{array}{ccccc} egin{array}{ccccc} egin{array}{ccccccc} egin{array}{ccccc} egin{array}{ccccc} egin{array}{cccc} egin{array}{cccc}$						
6.	$egin{array}{cccc} egin{array}{cccc} egin{array}{ccccc} egin{array}{cccc} egin{array}{cccc} egin{array}{ccccc} egin{array}{ccccc} egin{array}{ccccc} egin{array}{cccc} egin{array}{cccc} egin{array}{ccccc} egin{array}{ccccc} egin{array}{ccccc} egin{array}{ccccc} egin{array}{ccccc} egin{array}{ccccc} egin{array}{cccc} egin{array}{cccc} egin{array}{ccccc} egin{array}{cccc} egin{array}{ccccc} egin{array}{ccccc} egin{array}{ccccc} egin{array}{ccccccc} egin{array}{ccccc} egin{array}{ccccc} egin{array}{cccc} egin{array}{cccc}$						
7.	$egin{array}{cccc} egin{array}{cccc} egin{array}{ccccc} egin{array}{cccc} egin{array}{cccc} egin{array}{ccccc} egin{array}{ccccc} egin{array}{ccccc} egin{array}{cccc} egin{array}{cccc} egin{array}{ccccc} egin{array}{ccccc} egin{array}{ccccc} egin{array}{ccccc} egin{array}{ccccc} egin{array}{ccccc} egin{array}{cccc} egin{array}{cccc} egin{array}{ccccc} egin{array}{cccc} egin{array}{ccccc} egin{array}{ccccc} egin{array}{ccccc} egin{array}{ccccccc} egin{array}{ccccc} egin{array}{ccccc} egin{array}{cccc} egin{array}{cccc}$						
8.	$egin{array}{cccc} egin{array}{cccc} egin{array}{ccccc} egin{array}{cccc} egin{array}{cccc} egin{array}{ccccc} egin{array}{ccccc} egin{array}{ccccc} egin{array}{cccc} egin{array}{cccc} egin{array}{ccccc} egin{array}{ccccc} egin{array}{ccccc} egin{array}{ccccc} egin{array}{ccccc} egin{array}{ccccc} egin{array}{cccc} egin{array}{cccc} egin{array}{ccccc} egin{array}{cccc} egin{array}{ccccc} egin{array}{ccccc} egin{array}{ccccc} egin{array}{ccccccc} egin{array}{ccccc} egin{array}{ccccc} egin{array}{cccc} egin{array}{cccc}$						
9.	$egin{array}{cccc} egin{array}{cccc} egin{array}{ccccc} egin{array}{cccc} egin{array}{cccc} egin{array}{ccccc} egin{array}{ccccc} egin{array}{ccccc} egin{array}{cccc} egin{array}{cccc} egin{array}{ccccc} egin{array}{ccccc} egin{array}{ccccc} egin{array}{ccccc} egin{array}{ccccc} egin{array}{ccccc} egin{array}{cccc} egin{array}{cccc} egin{array}{ccccc} egin{array}{cccc} egin{array}{ccccc} egin{array}{ccccc} egin{array}{ccccc} egin{array}{ccccccc} egin{array}{cccc} egin{array}{ccccc} egin{array}{ccccc} egin{array}{cccc} egin{array}{cccc}$						
10.	$ \begin{array}{cccc} $						
7. 8. 9.	 A B C D A B C D A B C D A B C D 						

Important

The score in Part A will be used for screening purposes. Your answers to the questions in Part B will be marked only if your score in Part A places you over the cut-off. However, the scores in both the sections will be taken into account to decide whether you qualify for the interview.

Part A

This section consists of $\underline{\text{Ten}}$ (10) multiple-choice questions, each with one or more correct answers. Record your answers on the attached sheet by filling in the appropriate circles. Each question carries 5 marks. A solution receives credit if and only if <u>all the correct answers</u> are chosen, and <u>no incorrect answer</u> is chosen. Throughout, R denotes the set of real numbers.

1. For subsets U, V of a non-empty set Ω , let

$$U\Delta V = (U \cap V^c) \cup (U^c \cap V).$$

Which of the following statements is/are true for subsets A, B, C of Ω :

- (A) $(A\Delta B)\Delta C = A\Delta (B\Delta C)$.
- (B) $(A\Delta B) \cap C = (A \cap C)\Delta(B \cap C)$.
- (C) $(A\Delta B) \cup C = (A \cup C)\Delta(B \cup C)$.
- (D) $(A\Delta B) = (A^c \Delta B^c)^c$.
- 2. Which of the following statements is/are true?
 - (A) $(n+1)^n \le n^{(n+1)}$ for all $n \ge 100$.
 - (B) $2^n < n^2$ for all n > 100.
 - (C) $(n!)^n \le n^{(n!)}$ for all $n \ge 100$.
 - (D) $n^{\log(n)} \leq (\log(n))^n$ for all $n \geq 100$.
- 3. Let $\{a_n : n \ge 1\}$ be a sequence such that $a_n \ge 0$ for all $n \ge 1$. Which of the following sets of conditions implies that the sequence $\{a_n : n \ge 1\}$ is convergent:
 - (A) The subsequences $\{a_{2n}: n \geq 1\}$, $\{a_{3n}^2: n \geq 1\}$ and $\{a_{2n+1}^3: n \geq 1\}$ are convergent.
 - (B) The subsequences $\{a_{3n}:n\geq 1\}$, $\{a_{5n}^2:n\geq 1\}$ and $\{a_{2n+1}^3:n\geq 1\}$ are convergent.
 - (C) The subsequences $\{a_{5n}:n\geq 1\}, \{a_{7n}^2:n\geq 1\}$ and $\{a_{2n+1}^3:n\geq 1\}$ are convergent.
 - (D) The subsequences $\{a_{7n}\,:\,n\geq 1\},\,\{a_{2n}^2\,:\,n\geq 1\}$ and $\{a_{2n+1}^3\,:\,n\geq 1\}$ are convergent.
- 4. For $n \geq 1$ and $x \in [0,1]$ let

$$f_n(x) = \frac{1}{nx+1}$$

$$g_n(x) = \frac{x}{nx+1}.$$

Which of the following statements is/are true?

- (A) The sequence of functions $\{f_n\}$ converges pointwise on [0,1].
- (B) The sequence of functions $\{g_n\}$ converges pointwise on [0,1].
- (C) The sequence of functions $\{f_n\}$ converges uniformly on [0,1].
- (D) The sequence of functions $\{g_n\}$ converges uniformly on [0,1].

- 5. Let A, B be $n \times n$ symmetric real matrices. Which of the following statements is/are true?
 - (A) AB = 0 and B invertible implies A = 0.
 - (B) $A^2 = 0$ implies A = 0.
 - (C) AB = 0 implies BA = 0.
 - (D) AC = 0 for all singular $n \times n$ matrices C implies A = 0.
- 6. Which of the following sets are Vector spaces under usual operations?
 - (A) $\{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 + x_3 = 2x_2\}.$
 - (B) $\{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 + x_3 = 2 + x_2\}.$
 - (C) The set of all $n \times n$ matrices A such that det(A) = 0.
 - (D) The set of all $n \times n$ matrices A such that tr(A) = 0.

(Here det(A) denotes the determinant and tr(A) denotes the trace of the matrix A.)

- 7. Which of the following sets of vectors in \mathbb{R}^3 forms a basis of \mathbb{R}^3 ?
 - (A) $\{(1,1,0), (0,1,1), (1,0,1)\}.$
 - (B) $\{(1,-1,0), (0,1,-1), (-1,0,1)\}.$
 - (C) $\{(1,2,3), (2,3,1), (3,1,2)\}.$
 - (D) $\{(1,2,3), (4,5,6), (7,8,9)\}.$
- 8. Let $f:(0,1)\mapsto(0,1)$ be a continuously differentiable function. Then we can conclude that
 - (A) $g = \frac{1}{f}$ is a continuous function on (0,1).
 - (B) $g = \frac{1}{f}$ is a continuously differentiable function on (0,1).
 - (C) $g = \frac{1}{f}$ is a uniformly continuous function on (0,1).
 - (D) h defined by h(x) = x(1-x)f(x) for $x \in (0,1)$ is uniformly continuous.
- 9. Let $f: \mathsf{R} \mapsto \mathsf{R}$ be function such that

$$|f(x) - f(y)| \le 100|x - y| \quad \forall x, y \in \mathbb{R}.$$

Which of the following statements is/are always true?

- (A) f is uniformly continuous on [0, 1].
- (B) f is uniformly continuous on R.
- (C) f is a differentiable function on [0, 1].
- (D) If f is differentiable at $x = x_0$ then $|f'(x_0)| \le 100$ where f' denotes the derivative of f.
- 10. Let p(x) be an odd degree polynomial and let $q(x) = (p(x))^2 + 2p(x) + 2$.
 - (A) The equation q(x) = 5p(x) admits at least two distinct real solutions.
 - (B) The equation q(x) = 4p(x) admits at least one real solution.
 - (C) The equation p(x)q(x) = -4 admits at least two distinct real solutions.
 - (D) The equation q(x) = 3 admits at least two distinct real solutions.

Part B

Answer all questions. Each question carries 10 marks.

1. Show that

$$(1-p)^n \le 1 - p^n \quad \text{for} \quad 0 \le p \le 1.$$

2. Let a_1, a_2, \dots, a_n be strictly positive real numbers. Show

$$\left(\sum_{1}^{n} a_{i}\right) \left(\sum_{1}^{n} \frac{1}{a_{i}}\right) \ge n^{2}.$$

3. Let f be a real valued continuous function on [0, 1]. Prove that there is a number $c \in [0, 1]$ such that

$$\int_0^1 f(x)x^2 dx = \frac{f(c)}{3}.$$

4. Let f be a real valued uniformly continuous function on $[0, \infty)$. Show that there are numbers A > 0 and B > 0 such that

$$|f(x)| < Ax + B$$
 for all $x \ge 0$

5. Let a_1, a_2, \dots, a_{17} be numbers each in [0, 1]. Find

$$\max \left\{ \sum_{1}^{17} |x - a_i| : -5 \le x \le 5 \right\}$$

- 6. State the spectral decomposition theorem for real symmetric matrices. If A is a real symmetric nonnegative definite matrix of rank one, prove that there is a (column) vector v such that $A = vv^t$ where v^t is transpose of v.
- 7. Let A be a square matrix such that A^2 is invertible. Show that A is invertible.
- 8. There are 15 people in a party, which includes three people A, B and C. They are to be divided into three groups of five each. In how many ways can it be done if no two of A, B, C should be in the same group.