

Schletter, Inc.		30° Tilt w/o Seismic Design
HCV	Standard PVMax Racking System	
	Representative Calculations - ASCE 7-05	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row =

Module Tilt = 30° Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-05 Chapter 6, Wind Loads
- ASCE 7-05 Chapter 7, Snow Loads
- ASCE 7-05 Chapter 2, Combination of Loads
- International Building Code, IBC, 2003, 2006, 2009
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
$g_{MIN} =$	1.75 psf

Self-weight of the PV modules.

2.2 Snow Loads

Ground Snow Load,
$$P_g =$$
 30.00 psf Sloped Roof Snow Load, $P_s =$ 16.49 psf (ASCE 7-05, Eq. 7-2) $I_s =$ 1.00 $C_s =$ 0.73 $C_e =$ 0.90 $C_t =$ 1.20

2.3 Wind Loads

Design Wind Speed, V =	110 mph	Exposure Category = C
Height <	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z =$ Including the gust factor, G=0.85. (ASCE 7-05, Eq. 6-15) 19.00 psf

Pressure Coefficients

Cf+ TOP	=	1.150 (Draggura)	
Cf+ BOTTOM	=	1.150 1.850 <i>(Pressure)</i>	Provided pressure coefficients are the result of wind tunnel
Cf- TOP, OUTER PURLIN	=	-2.600	testing done by Ruscheweyh Consult. Coefficients are located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-2.000 (Suction)	applied away from the surface.
Cf- porrow	_	-1 100	applied away from the darkeet.

2.4 Seismic Loads - N/A

S _S =	0.00	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S of 1.5
$S_{DS} =$	0.00	$C_S = 0$	may be used to calculate the base shear, C_s , of
$S_1 =$	0.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	0.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S $_{ds}$ of 1.0 was used
$T_a =$	0.00	$C_{d} = 1.25$	to calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.8W 1.2D + 1.6W + 0.5S 0.9D + 1.6W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

 $\begin{array}{c} 1.0 \text{D} + 1.0 \text{S} \\ 1.0 \text{D} + 1.0 \text{W} \\ 1.0 \text{D} + 0.75 \text{L} + 0.75 \text{W} + 0.75 \text{S} \\ 0.6 \text{D} + 1.0 \text{W} & \text{(ASCE 7, Eq 2.4.1-1 through 2.4.1-8) \& (ASCE 7, Section 12.4.3.2)} \\ 1.238 \text{D} + 0.875 \text{E} & \text{0} \\ 1.1785 \text{D} + 0.65625 \text{E} + 0.75 \text{S} & \text{0} \\ 0.362 \text{D} + 0.875 \text{E} & \text{0} \end{array}$

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	Location	<u>Diagonal Struts</u>	<u>Location</u>	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	<u>Location</u>	Rear Struts	<u>Location</u>	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	<u>Location</u>			
M4	Outer			
M8	Inner			
M12	Outer			

[™] Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

^o Includes overstrength factor of 1.25. Used to check seismic drift.

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u> <u>Front</u> <u>Rear</u>	
Tensile Load = <u>266.96</u> <u>7001.35</u>	k
Compressive Load = <u>3465.08</u> <u>5319.24</u>	k
Lateral Load = <u>13.44</u> <u>4362.68</u>	k
Moment (Weak Axis) = $\frac{0.03}{0.00}$	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC tables 1804.2 (2003, 2006) & 1806.2 (2009).

Concrete Properties

Weight of Concrete = 145 pcf Compressive Strength = 2500 psi

Overturning Check

 $M_O = 178350.1 \text{ in-lbs}$

60000 psi

Resisting Force Required = 2702.27 lbs

Yield Strength =

S.F. = 1.67

Weight Required = 4503.79 lbs Minimum Width = <u>36 in</u> in

Weight Provided = 7177.50 lbs

Sliding

Force = 1048.52 lbs Friction = 0.4

Weight Required = 2621.30 lbs

Resisting Weight = 7177.50 lbs

Additional Weight Required = 0 lbs

Cohesion

Sliding Force = 1048.52 lbs

Cohesion = 130 psf

33.00 ft² Area = Resisting = 3588.75 lbs

Additional Weight Required = 0 lbs

Shear Key

Additional Force = 0 lbs

Lateral Bearing Pressure = 200 psf/ft Required Depth = 0.00 ft

2500 psi $f'_c =$

Length = 8 in Footing Reinforcement

Use fiber reinforcing with (3) #5 rebar.

A minimum 132in long x 36in wide x

18in tall ballast foundation is required to resist overturning.

Use a 132in long x 36in wide x 18in tall

ballast foundation to resist sliding.

Friction is OK.

Use a 132in long x 36in wide x 18in tall ballast foundation. Cohesion is OK.

Shear key is not required.

Bearing Pressure

Ballast Width <u>36 in</u> <u>39 in</u> <u>37 in</u> <u>38 in</u> $P_{ftg} = (145 \text{ pcf})(11 \text{ ft})(1.5 \text{ ft})(3 \text{ ft}) =$ 7178 lbs 7377 lbs 7576 lbs 7776 lbs

ASD LC		1.0D + 1.0S 1.0D + 1.0W				1.0D + 0.75L + 0.75W + 0.75S										
Width	36 in	37 in	38 in	39 in	36 in	37 in	38 in	39 in	36 in	37 in	38 in	39 in	36 in	37 in	38 in	39 in
FA	1166 lbs	1166 lbs	1166 lbs	1166 lbs	1374 lbs	1374 lbs	1374 lbs	1374 lbs	1781 lbs	1781 lbs	1781 lbs	1781 lbs	-122 lbs	-122 lbs	-122 lbs	-122 lbs
F _B	1107 lbs	1107 lbs	1107 lbs	1107 lbs	2343 lbs	2343 lbs	2343 lbs	2343 lbs	2470 lbs	2470 lbs	2470 lbs	2470 lbs	-3361 lbs	-3361 lbs	-3361 lbs	-3361 lbs
F _V	173 lbs	173 lbs	173 lbs	173 lbs	1895 lbs	1895 lbs	1895 lbs	1895 lbs	1534 lbs	1534 lbs	1534 lbs	1534 lbs	-2097 lbs	-2097 lbs	-2097 lbs	-2097 lbs
P _{total}	9451 lbs	9650 lbs	9850 lbs	10049 lbs	10894 lbs	11094 lbs	11293 lbs	11493 lbs	11428 lbs	11628 lbs	11827 lbs	12026 lbs	823 lbs	943 lbs	1062 lbs	1182 lbs
М	3270 lbs-ft	3270 lbs-ft	3270 lbs-ft	3270 lbs-ft	3914 lbs-ft	3914 lbs-ft	3914 lbs-ft	3914 lbs-ft	5039 lbs-ft	5039 lbs-ft	5039 lbs-ft	5039 lbs-ft	4275 lbs-ft	4275 lbs-ft	4275 lbs-ft	4275 lbs-ft
е	0.35 ft	0.34 ft	0.33 ft	0.33 ft	0.36 ft	0.35 ft	0.35 ft	0.34 ft	0.44 ft	0.43 ft	0.43 ft	0.42 ft	5.19 ft	4.53 ft	4.02 ft	3.62 ft
L/6	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft
f _{min}	232.3 psf	231.9 psf	231.6 psf	231.2 psf	265.4 psf	264.1 psf	262.9 psf	261.7 psf	263.0 psf	261.8 psf	260.6 psf	259.5 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	340.4 psf	337.1 psf	334.0 psf	331.0 psf	394.8 psf	390.0 psf	385.5 psf	381.2 psf	429.6 psf	423.9 psf	418.4 psf	413.3 psf	597.8 psf	211.2 psf	151.6 psf	128.8 psf

Maximum Bearing Pressure = 598 psf Allowable Bearing Pressure = 1500 psf Use a 132in long x 36in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Weak Side Design

Overturning Check

 $M_O = 1021.1 \text{ ft-lbs}$

Resisting Force Required = 680.72 lbs

S.F. = 1.67

Weight Required = 1134.54 lbs
Minimum Width = 36 in in
Weight Provided = 7177.50 lbs

A minimum 132in long x 36in wide x 18in tall ballast foundation is required to resist overturning

overturning.

Bearing Pressure

ASD LC	1	.238D + 0.875	5E	1.1785D + 0.65625E + 0.75S			0.362D + 0.875E			
Width		36 in		36 in			36 in			
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer	
F _Y	240 lbs	599 lbs	240 lbs	693 lbs	1913 lbs	693 lbs	70 lbs	175 lbs	70 lbs	
F _V	2 lbs	0 lbs	2 lbs	5 lbs	0 lbs	5 lbs	0 lbs	0 lbs	0 lbs	
P _{total}	9126 lbs	7178 lbs	9126 lbs	9152 lbs	7178 lbs	9152 lbs	2668 lbs	7178 lbs	2668 lbs	
M	5 lbs-ft	0 lbs-ft	5 lbs-ft	18 lbs-ft	0 lbs-ft	18 lbs-ft	1 lbs-ft	0 lbs-ft	1 lbs-ft	
е	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	
L/6	0.50 ft	0.50 ft	0.50 ft	0.50 ft	0.50 ft	0.50 ft	0.50 ft	0.50 ft	0.50 ft	
f _{min}	276.2 psf	217.5 psf	276.2 psf	276.2 psf	217.5 psf	276.2 psf	80.8 psf	217.5 psf	80.8 psf	
f _{max}	276.9 psf	217.5 psf	276.9 psf	278.4 psf	217.5 psf	278.4 psf	80.9 psf	217.5 psf	80.9 psf	

Maximum Bearing Pressure = 278 psf Allowable Bearing Pressure = 1500 psf

Use a 132in long x 36in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 132in long x 36in wide x 18in tall ballast foundation and fiber reinforcing with (3) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut		Poor Strut
Front Strut		Rear Strut
Maximum Axial Load =	2.665 k	Maximum Axial Load = 4.668 k
M12 Bolt Capacity =	12.808 k	M12 Bolt Capacity = 12.808 k
Strut Bearing Capacity =	7.421 k	Strut Bearing Capacity = 7.421 k
Utilization =	<u>36%</u>	Utilization = 63%
Diagonal Strut		
Maximum Axial Load =	2.815 k	
M12 Bolt Shear Capacity =	12.808 k	Bolt and bearing capacities are accounting for double shear.
Strut Bearing Capacity =	7.421 k	(ASCE 8-02, Eq. 5.3.4-1)
Utilization =	<u>38%</u>	
0 0		

Struts under compression are shown to demonstrate the load transfer from the girder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift - N/A

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

Mean Height, h_{sx} = 48.27 in Allowable Story Drift for All Other Structures, $\Delta = \{$ $0.020h_{sx}$ 0.965 in Max Drift, $\Delta_{MAX} =$ 0.046 in

N/A

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

Strong Axis:

3.4.14

$$\begin{array}{ll} L_b = & 114 \text{ in} \\ J = & 0.432 \\ 315.377 \\ \\ S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ S1 = & 0.51461 \\ \\ S2 = & \left(\frac{C_c}{1.6}\right)^2 \\ S2 = & 1701.56 \\ \phi F_L = & \phi b [Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}] \end{array}$$

Weak Axis:

3.4.14

$$\begin{split} L_b &= & 114 \\ J &= & 0.432 \\ & 200.561 \\ S1 &= & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc} \right)^2 \\ S1 &= & 0.51461 \\ S2 &= & \left(\frac{C_c}{1.6} \right)^2 \\ S2 &= & 1701.56 \\ \phi F_L &= & \phi b [Bc-1.6Dc^* \sqrt{((LbSc)/(Cb^* \sqrt{(lyJ)/2}))}] \end{split}$$

3.4.16

$$b/t = 32.195$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

 $\phi F_L = 27.5 \text{ ksi}$

3.4.16

 $\phi F_L =$

b/t = 37.0588

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 23.1 \text{ ksi}$$

3.4.16.1

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y Fcy$$

$$\phi F_L = 38.9 \text{ ksi}$$

Not Used

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 37.0588

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.2$$

$$\phi F_L = \phi b [Bbr-mDbr^*h/t]$$

h/t = 32.195

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 45.5$$

$$Cc = 45.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{rll} \phi F_L St = & 25.1 \text{ ksi} \\ lx = & 897074 \text{ mm}^4 \\ & 2.155 \text{ in}^4 \\ y = & 41.015 \text{ mm} \\ Sx = & 1.335 \text{ in}^3 \\ M_{max} St = & 2.788 \text{ k-ft} \end{array}$$

2.788 k-ft

 $\phi F_L = 43.2 \text{ ksi}$

$$\phi F_L W k = 23.1 \text{ ksi}$$

$$ly = 446476 \text{ mm}^4$$

$$1.073 \text{ in}^4$$

$$x = 45.5 \text{ mm}$$

$$Sy = 0.599 \text{ in}^3$$

$$M_{max} W k = 1.152 \text{ k-ft}$$

Compression

3.4.9

$$b/t = 32.195$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

$$b/t = 37.0588$$

$$S1 = 12.21$$

$$S2 = 32.70$$

$$\varphi F_L = (\varphi ck2^* \sqrt{(BpE)})/(1.6b/t)$$

$$\phi F_L = 21.9 \text{ ksi}$$

3.4.10

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 21.94 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$P_{max} = 41.32 \text{ kips}$$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = BF0

Strong Axis:

3.4.14

$$L_b = 88.9 \text{ in}$$
 $J = 1.08$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = \begin{pmatrix} 1.6 \end{pmatrix}$$

 $S2 = 1701.56$

$$\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\omega F_{i} = 29.4 \text{ ksi}$$

$$\phi F_L = 29.4 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_b = 88.9$$
 $J = 1.08$
 161.829

$$\left(Bc - \frac{\theta_y}{\theta_x}Fcy\right)$$

$$S1 = \left(\frac{Bc}{\theta_b} \frac{\theta_b}{1.6Dc}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_{L} = 29.2$$

3.4.16

$$b/t = 16.2$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

46.7

$$\phi F_L = 31.6 \text{ ksi}$$

3.4.16

$$D/t = 7.2$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$k_1Bp$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

S2 =

3.4.16.1
$$U$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = \begin{bmatrix} 1.6Dt \\ 1.1 \end{bmatrix}$$

$$S2 = C_t$$

$$S2 = C_t$$

$$\phi F_L = \phi b[Bt-Dt^*\sqrt{(Rb/t)}]$$

$$\phi F_L = 31.1 \text{ ksi}$$

3.4.18

$$h/t = 7.4$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 35.2$$

$$m = 0.68$$

$$C_0 = 41.067$$

$$Cc = 43.717$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$\phi F_L = 43.2 \text{ ksi}$$

 $\phi F_L = 1.3 \phi y F c y$

73.8

3.363 k-ft

S2 =

$$\phi F_L St = 29.4 \text{ ksi}$$
 $lx = 984962 \text{ mm}^4$
 2.366 in^4
 $y = 43.717 \text{ mm}$
 $Sx = 1.375 \text{ in}^3$

3.4.16.1

N/A for Weak Direction

$$h/t = 16.2$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40$$

$$Cc = 40$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{ccc} \phi F_L W k = & 33.3 \text{ ksi} \\ ly = & 923544 \text{ mm}^4 \\ & 2.219 \text{ in}^4 \\ x = & 40 \text{ mm} \\ Sy = & 1.409 \text{ in}^3 \\ M_{max} W k = & 3.904 \text{ k-ft} \end{array}$$

Compression

 $M_{max}St =$

3.4.9

$$b/t = 16.2$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 31.6 \text{ ksi}$$

$$b/t = 7.4$$

S1 = 12.21

$$S2 = 32.70$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.10

Rb/t = 18.1

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi c[Bt-Dt^*\sqrt{(Rb/t)}]$$

$$\phi F_L = 31.09 \text{ ksi}$$

$$\phi F_L = 31.09 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$P_{max} = 58.55 \text{ kips}$$

1.88 in²

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$\begin{split} L_b &= & 24.8 \text{ in} \\ J &= & 0.942 \\ & 38.7028 \\ S1 &= & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ S1 &= & 0.51461 \\ S2 &= & \left(\frac{C_c}{1.6}\right)^2 \\ S2 &= & 1701.56 \\ \phi F_L &= & \phi b [Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}] \end{split}$$

Weak Axis:

3.4.14

$$\begin{split} \mathsf{L}_{b} &= 24.8 \\ \mathsf{J} &= 0.942 \\ 38.7028 \\ S1 &= \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2} \\ S1 &= 0.51461 \\ S2 &= \left(\frac{C_{c}}{1.6}\right)^{2} \\ S2 &= 1701.56 \\ \phi \mathsf{F}_{L} &= \phi b [\mathsf{Bc-1.6Dc*} \sqrt{((\mathsf{LbSc})/(\mathsf{Cb*} \sqrt{(\mathsf{lyJ})/2}))}] \\ \phi \mathsf{F}_{L} &= 31.4 \end{split}$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

 $\phi F_L = 31.4 \text{ ksi}$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y Fcy$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$

$$k = 279836 \text{ mm}^4$$

0.672 in⁴

0.621 in³

1.460 k-ft

27.5 mm

3.4.18

 $M_{max}Wk =$

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 28.2 \text{ ksi}$$

$$V = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$V = 27.5 \text{ mm}$$

$$V = 0.621 \text{ in}^3$$

1.460 k-ft

y =

Sx =

 $M_{max}St =$

SCHLET

Compression

3.4.7
$$\lambda = 0.57371$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.87952$$

$$\varphi F_L = \varphi cc(Bc - Dc^*\lambda)$$

$$\varphi F_L = 28.0279 \text{ ksi}$$
3.4.9
$$b/t = 24.5$$

$$S1 = 12.21 \text{ (See 3.4.16 above for formula)}$$

$$S2 = 32.70 \text{ (See 3.4.16 above for formula)}$$

$$\varphi F_L = \varphi c[Bp - 1.6Dp^*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$S1 = 12.21$$

$$S2 = 32.70$$

$$\varphi F_L = \varphi c[Bp - 1.6Dp^*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$
3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$
 $\phi F_L = 28.03 \text{ ksi}$
 $\phi F_L = 663.99 \text{ mm}^2$
1.03 in²
 $\phi F_L = 28.85 \text{ kips}$

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:	Weak Axis:
3.4.14	3.4.14
$L_{b} = 86.60 \text{ in}$	$L_{b} = 86.6$
J = 0.942	J = 0.942
135.148	135.148
$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$	$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$
S1 = 0.51461	S1 = 0.51461
$S2 = \left(\frac{C_c}{1.6}\right)^2$	$S2 = \left(\frac{C_c}{1.6}\right)^2$
S2 = 1701.56	S2 = 1701.56
$\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$	$\phi F_L = \phi b[Bc-1.6Dc^* \sqrt{((LbSc)/(Cb^* \sqrt{(lyJ)/2}))}]$
$\varphi F_L = 29.6 \text{ ksi}$	$\phi F_{L} = 29.6$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

S1 = 1.1
 $S2 = C_t$
S2 = 141.0
 $\phi F_L = 1.17 \phi y Fcy$
 $\phi F_L = 38.9 \text{ ksi}$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$\varphi F_L St =$ 28.2 ksi

$$lx = 279836 \text{ mm}^4$$
 0.672 in^4
 $y = 27.5 \text{ mm}$
 $Sx = 0.621 \text{ in}^3$
 $M_{max}St = 1.460 \text{ k-ft}$

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W k = 28.2 \text{ ksi}$$
 $y = 279836 \text{ mm}^4$
 0.672 in^4
 $x = 27.5 \text{ mm}$
 $y = 0.621 \text{ in}^3$

1.460 k-ft

 $M_{max}Wk =$

Compression

3.4.7

$$\lambda = 2.00335$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\phi cc = 0.86047$$

$$\phi F_L = (\phi cc Fcy)/(\lambda^2)$$

$$\phi F_L = 7.50396 \text{ ksi}$$

3.4.9

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$S2 = 32.70$$

$$\phi F_L = \phi c [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.10

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.50 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{max} = 7.72 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$L_b = 70.83 \text{ in}$$
 $J = 0.942$
 110.537

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$
$$S2 = 1701.56$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc\text{*}\sqrt{((LbSc)/(Cb\text{*}\sqrt{(lyJ)/2}))}]$$

$$\phi F_L =$$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_b = 70.83$$
 $J = 0.942$
 110.537

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

S2 = 1701.56

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_{L} = 30.0$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$
$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

3.4.16.1 Not Used N/A for Weak Direction $\phi F_L =$ 38.9 ksi

3.4.18 3.4.18 h/t =24.5 h/t =24.5 S1 = -S1 = mDbrmDbrS1 = S1 = 36.9 36.9 0.65 0.65 m =m = $C_0 =$ 27.5 $C_0 =$ 27.5 27.5 Cc = 27.5 Cc = k_1Bbr k_1Bbr mDbrmDbrS2 = S2 = 77.3 77.3 $\phi F_L = 1.3 \phi y F c y$ $\phi F_L = 1.3 \phi y F c y$ 43.2 ksi 43.2 ksi $\varphi F_L =$ $\phi F_L =$ $\phi F_1 St =$ 28.2 ksi $\phi F_L W k =$ 28.2 ksi $lx = 279836 \text{ mm}^4$ $ly = 279836 \text{ mm}^4$ 0.672 in^4 0.672 in⁴ 27.5 mm 27.5 mm y = x =Sx =0.621 in³ Sy = 0.621 in³ $M_{max}St =$ 1.460 k-ft $M_{max}Wk =$ 1.460 k-ft

Compression

3.4.7 λ = 1.63853 0.81 in $S1^* = \frac{Bc - Fcy}{1.6Dc^*}$ S1^{*} = 0.33515 $S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$ 1.23671 $\phi cc = 0.80939$ $\phi F_L = (\phi cc Fcy)/(\lambda^2)$ $\phi F_{L} = 10.5516 \text{ ksi}$

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \end{array}$$

28.2 ksi

 $\phi F_L =$

3.4.10

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 10.55 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{max} = 10.86 \text{ kips}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

: Schletter, Inc.

: HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:___

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me.	.Surface(
1	Dead Load, Max	DĽ	•	-1				4	,	,
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL								

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M14	Υ	-8.366	-8.366	0	0
3	M15	Υ	-8.366	-8.366	0	0
4	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M14	Υ	-4.45	-4.45	0	0
3	M15	Υ	-4.45	-4.45	0	0
4	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3 : Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-39.836	-39.836	0	0
2	M14	Υ	-39.836	-39.836	0	0
3	M15	Υ	-39.836	-39.836	0	0
4	M16	Y	-39 836	-39 836	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-60.928	-60.928	0	0
2	M14	V	-60.928	-60.928	0	0
3	M15	V	-98.014	-98.014	0	0
4	M16	V	-98.014	-98.014	0	0

Member Distributed Loads (BLC 5 : Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	137.749	137.749	0	0
2	M14	٧	105.961	105.961	0	0
3	M15	V	58.278	58.278	0	0
4	M16	V	58 278	58 278	0	0

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	. B	Fa	В	Fa	В	Fa	. B	Fa	В	. Fa
1	LRFD 1.2D + 1.6S + 0.8W	Yes	Υ		1	1.2	3	1.6	4	.8														
2	LRFD 1.2D + 1.6W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1.6														
3	LRFD 0.9D + 1.6W	Yes	Υ		2	.9					5	1.6												
4	LATERAL - LRFD 1.54D + 1.3E				1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												

Model Name

Schletter, Inc.HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

Load Combinations (Continued)

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 1.0W	Yes	Υ		1	1			4	1														
11	ASD 1.0D + 0.75L + 0.75W + 0	Yes	Υ		1	1	3	.75	4	.75														
12	ASD 0.6D + 1.0W	Yes	Υ		2	.6					5	1												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
	LATERAL - ASD 1.1785D + 0.65				1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	872.538	2	1262.497	2	.6	1	.003	1	Ö	1	Ó	1
2		min	-1059.952	3	-1656.494	3	.033	15	0	15	0	1	0	1
3	N7	max	.032	9	1021.811	1	507	15	0	15	0	1	0	1
4		min	219	2	-32.033	3	-10.342	1	02	1	0	1	0	1
5	N15	max	.029	9	2665.445	1	0	14	0	9	0	1	0	1
6		min	-2.358	2	-205.357	3	0	11	0	11	0	1	0	1
7	N16	max	3089.558	2	4091.721	2	0	2	0	2	0	1	0	1
8		min	-3355.908	3	-5385.65	3	0	3	0	3	0	1	0	1
9	N23	max	.032	9	1021.811	1	10.342	1	.02	1	0	1	0	1
10		min	219	2	-32.033	3	.507	15	0	15	0	1	0	1
11	N24	max	872.538	2	1262.497	2	033	15	0	15	0	1	0	1
12		min	-1059.952	3	-1656.494	3	6	1	003	1	0	1	0	1
13	Totals:	max	4831.837	2	10928.84	2	0	9						
14		min	-5476.043	3	-8968.061	3	0	3						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	_LC_		LC		LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M13	1	max	99.356	1_	439.134	2	-8.155	15	0	3	.237	1_	0	2
2			min	4.75	15	-768.958	3	-171.912	1	015	2	.011	15	0	3
3		2	max	99.356	1	307.199	2	-6.27	15	0	3	.077	1	.691	3
4			min	4.75	15	-541.214	3	-132.022	1	015	2	.004	15	394	2
5		3	max	99.356	1	175.263	2	-4.384	15	0	3	0	3	1.143	3
6			min	4.75	15	-313.47	3	-92.132	1	015	2	042	1	649	2
7		4	max	99.356	1	43.328	2	-2.498	15	0	3	004	12	1.353	3
8			min	4.75	15	-85.726	3	-52.242	1	015	2	118	1	764	2
9		5	max	99.356	1	142.018	3	613	15	0	3	007	12	1.324	3
10			min	4.75	15	-88.608	2	-12.352	1	015	2	152	1	74	2
11		6	max	99.356	1	369.762	3	27.538	1	0	3	007	15	1.053	3
12			min	4.75	15	-220.543	2	.286	12	015	2	144	1	577	2
13		7	max	99.356	1	597.506	3	67.428	1	0	3	004	15	.543	3
14			min	4.75	15	-352.478	2	2.172	12	015	2	094	1	274	2
15		8	max	99.356	1	825.251	3	107.317	1	0	3	.002	2	.167	2
16			min	4.75	15	-484.414	2	4.057	12	015	2	005	3	208	3
17		9	max	99.356	1	1052.995	3	147.207	1	0	3	.133	1	.748	2
18			min	4.75	15	-616.349	2	5.943	12	015	2	.002	12	-1.199	3
19		10	max	99.356	1	748.285	2	-7.828	12	.015	2	.309	1	1.468	2
20			min	4.75	15	-1280.739	3	-187.097	1	0	3	.01	12	-2.431	3
21		11	max	99.356	1	616.349	2	-5.943	12	.015	2	.133	1	.748	2
22			min	4.75	15	-1052.995	3	-147.207	1	0	3	.002	12	-1.199	3
23		12	max	99.356	1	484.414	2	-4.057	12	.015	2	.002	2	.167	2
24			min	4.75	15	-825.251	3	-107.317	1	0	3	005	3	208	3
25		13	max	99.356	1	352.478	2	-2.172	12	.015	2	004	15	.543	3
26			min	4.75	15	-597.506	3	-67.428	1	0	3	094	1	274	2

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC		LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
27		14	max	99.356	1_	220.543	2	286	12	.015	2	007	15	1.053	3
28			min	4.75	15	-369.762	3	-27.538	1	0	3	144	1	577	2
29		15	max	99.356	1	88.608	2	12.352	1	.015	2	007	12	1.324	3
30			min	4.75	15	-142.018	3	.613	15	0	3	152	1	74	2
31		16	max	99.356	1	85.726	3	52.242	1	.015	2	004	12	1.353	3
32			min	4.75	15	-43.328	2	2.498	15	0	3	118	1	764	2
33		17	max	99.356	1	313.47	3	92.132	1	.015	2	0	3	1.143	3
34			min	4.75	15	-175.263	2	4.384	15	0	3	042	1	649	2
35		18	max	99.356	1	541.214	3	132.022	1	.015	2	.077	1	.691	3
36			min	4.75	15	-307.199	2	6.27	15	0	3	.004	15	394	2
37		19	max	99.356	1	768.958	3	171.912	1	.015	2	.237	1	0	2
38		1.0	min	4.75	15	-439.134	2	8.155	15	0	3	.011	15	0	3
39	M14	1	max	47.562	1	472.423	2	-8.419	15	.01	3	.272	1	0	1
40	IVIIT		min	2.274	15	-608.247	3	-177.474	1	011	2	.013	15	0	3
41		2	max	47.562	1	340.488	2	-6.533	15	.01	3	.106	1	.55	3
42			min	2.274	15	-434.19	3	-137.584	1	011	2	.005	15	429	2
43		3		47.562		208.553			15	.01	3	.003			3
		3	max		1		2	-4.647			2		3	.917	
44		1	min	2.274	15	-260.132	3	-97.694	1_	011		018	1	719	2
45		4	max	47.562	1	76.617	2	-2.762	15	.01	3	003	12	1.099	3
46		-	min	2.274	15	-86.074	3	-57.804	1_	011	2	1	1	869	2
47		5	max	47.562	1	87.984	3	876	15	.01	3	006	12	1.098	3
48			min	2.274	15	-55.318	2	-17.914	1	011	2	14	1	881	2
49		6	max	47.562	1_	262.041	3	21.976	1	.01	3	007	15	.914	3
50			min	2.274	15	-187.254	2	047	3	011	2	138	1	753	2
51		7	max	47.562	1	436.099	3	61.866	1	.01	3	004	15	.545	3
52			min	2.274	15	-319.189	2	1.918	12	011	2	094	1	485	2
53		8	max	47.562	1	610.157	3	101.756	1	.01	3	0	10	001	15
54			min	2.274	15	-451.124	2	3.804	12	011	2	007	1	079	2
55		9	max	47.562	1	784.215	3	141.646	1	.01	3	.121	1	.467	2
56			min	2.274	15	-583.06	2	5.689	12	011	2	.002	12	743	3
57		10	max	47.562	1	714.995	2	-7.575	12	.011	2	.292	1	1.152	2
58			min	2.274	15	-958.272	3	-181.536	1	01	3	.009	12	-1.663	3
59		11	max	47.562	1	583.06	2	-5.689	12	.011	2	.121	1	.467	2
60			min	2.274	15	-784.215	3	-141.646		01	3	.002	12	743	3
61		12	max	47.562	1	451.124	2	-3.804	12	.011	2	0	10	001	15
62		1	min	2.274	15	-610.157	3	-101.756	1	01	3	007	1	079	2
63		13	max	47.562	1	319.189	2	-1.918	12	.011	2	004	15	.545	3
64		1.0	min	2.274	15	-436.099	3	-61.866	1	01	3	094	1	485	2
65		14	max	47.562	1	187.254	2	.047	3	.011	2	007	15	.914	3
66		17	min	2.274	15	-262.041	3	-21.976	1	01	3	138	1	753	2
67		15	max		1	55.318	2	17.914	1	.011	2	006	12	1.098	3
68		10	min	2.274	15	-87.984	3	.876	15	01	3	14	1	881	2
69		16	max	47.562	1	86.074	3	57.804	1	.011	2	003	12	1.099	3
70		10	min	2.274	15	-76.617	2	2.762	15	01	3	1	1	869	2
71		17		47.562	1	260.132	3	97.694	1	.011	2	.003	3	.917	3
72		17	max	2.274		-208.553	2	4.647	15		3	018	1	719	2
		10	min		15					01			_		
73 74		18	max	47.562 2.274	1_	434.19	3	137.584	1	.011	3	.106	1 15	. <u>55</u> 429	2
		40	min		15	-340.488	2	6.533	15	01					
75		19	max	47.562	1_	608.247	3	177.474	1	.011	2	.272	1	0	1
76	N 4 4 5		min	2.274	15	-472.423	2	8.419	15	01	3	.013	15	0	3
77	M15	1_	max	-2.388	15	683.844	2	-8.417	15	.012	2	.272	1	0	2
78			min	-49.804	1_	-336.686	3	-177.459		009	3	.013	15	0	3
79		2	max	-2.388	15	489.275	2	-6.531	15	.012	2	.106	1	.306	3
80			min	-49.804	1	-243.159	3	-137.569		009	3	.005	15	619	2
81		3	max	-2.388	15	294.705	2	-4.645	15	.012	2	.003	3	.513	3
82			min	-49.804	1	-149.633		-97.679	1	009	3	018	1	-1.033	2
83		4	max	-2.388	15	100.136	2	-2.759	15	.012	2	003	12	.622	3

Model Name

Schletter, Inc. HCV

:

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

Best		Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
B6				min		_						3		1		
B8			5	max		15		3		15		2		12		
B8				min		1				1		_				
89			6	max	-2.388	15	130.946				.012			15	.543	
90				min		1				3	009	3		1		
91			7	max	-2.388	15				1	.012	2	004	15	.355	3
92	90			min	-49.804	1	-483.573	2	1.997	12	009	3	094	1	634	2
93	91		8	max	-2.388	15	317.999	3	101.77	1	.012	2	0	10	.069	3
94	92			min	-49.804	1	-678.142	2		12	009	3	007	1	03	1
95	93		9	max	-2.388	15	411.526	3	141.66	1	.012	2	.121	1	.797	2
96	94			min	-49.804	1	-872.712	2	5.768	12	009	3	.002	12	316	3
98	95		10	max	-2.388	15	1067.281	2	-7.653	12	.009	3	.292	1	1.821	2
98	96			min	-49.804	1	-505.052	3	-181.55	1	012	2	.009	12	8	3
98	97		11	max	-2.388	15	872.712	2	-5.768	12	.009	3	.121	1	.797	2
99														12		
100			12			15				12						
101											012		007	1		
102			13							12				15		
103																
104			14											•		
105																
106			15			_				-						
107			10													
108			16													
109			10													
110			17			_								•		
111			17	_												
112			10													
113			10													
114			10													
115 M16			19													
116		M16	1			_										_
117		IVITO														
118			2													
119																
120			2			_										
121 4 max -5.111 15 68.106 2 -2.506 15 .01 2 005 12 .537 3 122 min -106.856 1 -29.424 3 -52.531 1 012 3 117 1 -1.14 2 123 5 max -5.111 15 64.103 3 621 15 .01 2 007 12 .519 3 124 min -106.856 1 -126.464 2 -12.641 1 012 3 151 1 -1.109 2 125 6 max -5.111 15 157.629 3 27.249 1 .01 2 007 15 .402 3 126 min -106.856 1 -321.033 2 2.439 12 012 3 144 1 873 2 127 7 max			3	_												
122 min -106.856 1 -29.424 3 -52.531 1 012 3 117 1 -1.14 2 123 5 max -5.111 15 64.103 3 621 15 .01 2 007 12 .519 3 124 min -106.856 1 -126.464 2 -12.641 1 012 3 151 1 -1.109 2 125 6 max -5.111 15 157.629 3 27.249 1 .01 2 007 15 .402 3 126 min -106.856 1 -321.033 2 .549 12 012 3 144 1 873 2 127 7 max -5.111 15 251.156 3 67.139 1 .01 2 .004 15 .186 3 129 8 max <t< td=""><td></td><td></td><td>4</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>			4													
123 5 max -5.111 15 64.103 3 621 15 .01 2 007 12 .519 3 124 min -106.856 1 -126.464 2 -12.641 1 012 3 151 1 -1.109 2 125 6 max -5.111 15 157.629 3 27.249 1 .01 2 007 15 .402 3 126 min -106.856 1 -321.033 2 .549 12 012 3 144 1 873 2 127 7 max -5.111 15 251.156 3 67.139 1 .01 2 004 15 .186 3 128 min -106.856 1 -515.603 2 2.435 12 012 3 094 1 431 2 129 8 max <			4													
124 min -106.856 1 -126.464 2 -12.641 1 012 3 151 1 -1.109 2 125 6 max -5.111 15 157.629 3 27.249 1 .01 2 007 15 .402 3 126 min -106.856 1 -321.033 2 .549 12 012 3 144 1 873 2 127 7 max -5.111 15 251.156 3 67.139 1 .01 2 004 15 .186 3 128 min -106.856 1 -515.603 2 2.435 12 012 3 094 1 431 2 129 8 max -5.111 15 344.682 3 107.029 1 .01 2 .001 2 .216 2 130 min -106.856			_											•		
125 6 max -5.111 15 157.629 3 27.249 1 .01 2 007 15 .402 3 126 min -106.856 1 -321.033 2 .549 12 012 3 144 1 873 2 127 7 max -5.111 15 251.156 3 67.139 1 .01 2 004 15 .186 3 128 min -106.856 1 -515.603 2 2.435 12 012 3 094 1 431 2 129 8 max -5.111 15 344.682 3 107.029 1 .01 2 .001 2 .216 2 130 min -106.856 1 -710.172 2 4.32 12 012 3 003 3 128 3 131 9 max -5.111 15 438.209 3 146.919 1 .01 2 .132			5							15						
126 min -106.856 1 -321.033 2 .549 12 012 3 144 1 873 2 127 7 max -5.111 15 251.156 3 67.139 1 .01 2 004 15 .186 3 128 min -106.856 1 -515.603 2 2.435 12 012 3 094 1 431 2 129 8 max -5.111 15 344.682 3 107.029 1 .01 2 .001 2 .216 2 130 min -106.856 1 -710.172 2 4.32 12 012 3 003 3 128 3 131 9 max -5.111 15 438.209 3 146.919 1 .01 2 .132 1 1.068 2 132 min -106.856										1						
127 7 max -5.111 15 251.156 3 67.139 1 .01 2 004 15 .186 3 128 min -106.856 1 -515.603 2 2.435 12 012 3 094 1 431 2 129 8 max -5.111 15 344.682 3 107.029 1 .01 2 .001 2 .216 2 130 min -106.856 1 -710.172 2 4.32 12 012 3 003 3 128 3 131 9 max -5.111 15 438.209 3 146.919 1 .01 2 .132 1 1.068 2 132 min -106.856 1 -904.742 2 -6.206 12 012 3 .308 1 2.126 2 133 10 max -5.111 15 1099.311 2 -8.091 12 .012 3 .308			6													
128 min -106.856 1 -515.603 2 2.435 12 012 3 094 1 431 2 129 8 max -5.111 15 344.682 3 107.029 1 .01 2 .001 2 .216 2 130 min -106.856 1 -710.172 2 4.32 12 012 3 003 3 128 3 131 9 max -5.111 15 438.209 3 146.919 1 .01 2 .132 1 1.068 2 132 min -106.856 1 -904.742 2 6.206 12 012 3 .308 1 2.126 2 133 10 max -5.111 15 1099.311 2 -8.091 12 .012 3 .308 1 2.126 2 134 min -106.856																
129 8 max -5.111 15 344.682 3 107.029 1 .01 2 .001 2 .216 2 130 min -106.856 1 -710.172 2 4.32 12 012 3 003 3 128 3 131 9 max -5.111 15 438.209 3 146.919 1 .01 2 .132 1 1.068 2 132 min -106.856 1 -904.742 2 6.206 12 012 3 .003 12 541 3 133 10 max -5.111 15 1099.311 2 -8.091 12 .012 3 .308 1 2.126 2 134 min -106.856 1 -531.735 3 -186.809 1 01 2 .011 12 -1.053 3 135 11 max -5.111 15 904.742 2 -6.206 12 .012 3 .132 1 1.068 2 136 min -106.856 1 -438.209 3 -146.919 1 01 <			7													
130 min -106.856 1 -710.172 2 4.32 12 012 3 003 3 128 3 131 9 max -5.111 15 438.209 3 146.919 1 .01 2 .132 1 1.068 2 132 min -106.856 1 -904.742 2 6.206 12 012 3 .003 12 541 3 133 10 max -5.111 15 1099.311 2 -8.091 12 .012 3 .308 1 2.126 2 134 min -106.856 1 -531.735 3 -186.809 1 01 2 .011 12 -1.053 3 135 11 max -5.111 15 904.742 2 -6.206 12 .012 3 .132 1 1.068 2 136 min -106.856 </td <td></td>																
131 9 max -5.111 15 438.209 3 146.919 1 .01 2 .132 1 1.068 2 132 min -106.856 1 -904.742 2 6.206 12 012 3 .003 12 541 3 133 10 max -5.111 15 1099.311 2 -8.091 12 .012 3 .308 1 2.126 2 134 min -106.856 1 -531.735 3 -186.809 1 01 2 .011 12 -1.053 3 135 11 max -5.111 15 904.742 2 -6.206 12 .012 3 .132 1 1.068 2 136 min -106.856 1 -438.209 3 -146.919 1 01 2 .003 12 541 3 137 12 max -5.111 15 710.172 2 -4.32 12 .012 3 .001			8								_					
132 min -106.856 1 -904.742 2 6.206 12 012 3 .003 12 541 3 133 10 max -5.111 15 1099.311 2 -8.091 12 .012 3 .308 1 2.126 2 134 min -106.856 1 -531.735 3 -186.809 1 01 2 .011 12 -1.053 3 135 11 max -5.111 15 904.742 2 -6.206 12 .012 3 .132 1 1.068 2 136 min -106.856 1 -438.209 3 -146.919 1 01 2 .003 12 541 3 137 12 max -5.111 15 710.172 2 -4.32 12 .012 3 .001 2 .216 2 138 min -106.856																
133 10 max -5.111 15 1099.311 2 -8.091 12 .012 3 .308 1 2.126 2 134 min -106.856 1 -531.735 3 -186.809 1 01 2 .011 12 -1.053 3 135 11 max -5.111 15 904.742 2 -6.206 12 .012 3 .132 1 1.068 2 136 min -106.856 1 -438.209 3 -146.919 1 01 2 .003 12 541 3 137 12 max -5.111 15 710.172 2 -4.32 12 .012 3 .001 2 .216 2 138 min -106.856 1 -344.682 3 -107.029 1 01 2 003 3 128 3 139 13 max -5.111 15 515.603 2 -2.435 12 .012 3			9													
134 min -106.856 1 -531.735 3 -186.809 1 01 2 .011 12 -1.053 3 135 11 max -5.111 15 904.742 2 -6.206 12 .012 3 .132 1 1.068 2 136 min -106.856 1 -438.209 3 -146.919 1 01 2 .003 12 541 3 137 12 max -5.111 15 710.172 2 -4.32 12 .012 3 .001 2 .216 2 138 min -106.856 1 -344.682 3 -107.029 1 01 2 003 3 128 3 139 13 max -5.111 15 515.603 2 -2.435 12 .012 3 004 15 .186 3				min										12		
135 11 max -5.111 15 904.742 2 -6.206 12 .012 3 .132 1 1.068 2 136 min -106.856 1 -438.209 3 -146.919 1 01 2 .003 12 541 3 137 12 max -5.111 15 710.172 2 -4.32 12 .012 3 .001 2 .216 2 138 min -106.856 1 -344.682 3 -107.029 1 01 2 003 3 128 3 139 13 max -5.111 15 515.603 2 -2.435 12 .012 3 004 15 .186 3			10								.012			1_	2.126	
136 min -106.856 1 -438.209 3 -146.919 1 01 2 .003 12 541 3 137 12 max -5.111 15 710.172 2 -4.32 12 .012 3 .001 2 .216 2 138 min -106.856 1 -344.682 3 -107.029 1 01 2 003 3 128 3 139 13 max -5.111 15 515.603 2 -2.435 12 .012 3 004 15 .186 3				min		1		3	-186.809	1	01	2	.011	12	-1.053	3
136 min -106.856 1 -438.209 3 -146.919 1 01 2 .003 12 541 3 137 12 max -5.111 15 710.172 2 -4.32 12 .012 3 .001 2 .216 2 138 min -106.856 1 -344.682 3 -107.029 1 01 2 003 3 128 3 139 13 max -5.111 15 515.603 2 -2.435 12 .012 3 004 15 .186 3	135		11				904.742	2			.012	3	.132	1	1.068	2
137 12 max -5.111 15 710.172 2 -4.32 12 .012 3 .001 2 .216 2 138 min -106.856 1 -344.682 3 -107.029 1 01 2 003 3 128 3 139 13 max -5.111 15 515.603 2 -2.435 12 .012 3 004 15 .186 3														12		
138 min -106.856 1 -344.682 3 -107.029 1 01 2 003 3 128 3 139 13 max -5.111 15 515.603 2 -2.435 12 .012 3 004 15 .186 3			12			15										
139																
			13													

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]	LC			Torque[k-ft]	LC	y-y Mome		z-z Mome	LC_
141		14	max	-5.111	15	321.033	2	549	12	.012	3	007	15	.402	3
142			min	-106.856	1	-157.629	3	-27.249	1	01	2	144	1_	873	2
143		15	max	-5.111	15	126.464	2	12.641	1	.012	3	007	12	.519	3
144			min	-106.856	1	-64.103	3	.621	15	01	2	151	1	-1.109	2
145		16	max	-5.111	15	29.424	3	52.531	1	.012	3	005	12	.537	3
146			min	-106.856	1	-68.106	2	2.506	15	01	2	117	1	-1.14	2
147		17	max	-5.111	15	122.95	3	92.421	1	.012	3	0	3	.457	3
148			min	-106.856	1	-262.675	2	4.392	15	01	2	041	1	965	2
149		18	max	-5.111	15	216.477	3	132.31	1	.012	3	.078	1	.278	3
150			min	-106.856	1	-457.245	2	6.278	15	01	2	.004	15	585	2
151		19	max	-5.111	15	310.003	3	172.2	1	.012	3	.239	1	0	2
152			min	-106.856	1	-651.815	2	8.164	15	01	2	.011	15	0	3
153	M2	1	max		2	1.929	4	.459	1	0	3	0	3	0	1
154	··· -		min	-1434.999	3	.454	15	.022	15	0	1	0	2	0	1
155		2	max	1050.86	2	1.844	4	.459	1	0	3	0	1	0	15
156			min	-1434.642	3	.434	15	.022	15	0	1	0	15	0	4
157		3	max		2	1.758	4	.459	1	0	3	0	1	0	15
158			min	-1434.285	3	.414	15	.022	15	0	1	0	15	001	4
159		4		1051.811	2	1.673	4	.459	1	0	3	0	1	0	15
160			min	-1433.929	3	.394	15	.022	15	0	1	0	15	002	4
161		5	max		2	1.587	4	.459	1	0	3	0	1	0	15
162			min	-1433.572	3	.374	15	.022	15	0	1	0	15	002	4
163		6		1052.763	2	1.501	4	.459	1	0	3	0	1	0	15
164		-0	min	-1433.215	3	.353	15	.022	15	0	1	0	15	003	4
165		7		1053.238				.459	1		-	_	1	003 0	
				-1432.858	2	1.416	15			0	3	0	15		15
166		0	min		3	.333		.022	15	0		_		003	4
167		8	max		2	1.33	4	.459	1	0	3	.001	1	0	15
168			min	-1432.501	3	.313	15	.022	15	0	1	0	15	004	4
169		9	max		2	1.245	4	.459	1	0	3	.001	1_	0	15
170		40	min	-1432.145	3	.283	12	.022	15	0	1	0	15	004	4
171		10		1054.666	2	1.159	4	.459	1	0	3	.001	1	001	15
172		44	min	-1431.788	3	.25	12	.022	15	0	1	0	15	005	4
173		11		1055.141	2	1.074	2	.459	1	0	3	.001	1_	001	15
174		40	min	-1431.431	3	.217	12	.022	15	0	1	0	15	005	4
175		12		1055.617	2	1.007	2	.459	1	0	3	.002	1_	001	15
176		40	min	-1431.074	3	.183	12	.022	15	0	1	0	15	005	4
177		13		1056.093	2	.941	2	.459	1	0	3	.002	1	001	15
178			min	-1430.717	3	.15	12	.022	15	0	1	0	15	006	4
179		14		1056.569	2	.874	2	.459	1	0	3	.002	1	001	15
180			min	-1430.361	3	.117	12	.022	15	0	1	0	15	006	4
181		15		1057.044		.807	2	.459	1	0	3	.002	1	001	15
182			min	-1430.004	3	.083	12	.022	15	0	1	0	15	006	4
183		16		1057.52	2	.741	2	.459	1	0	3	.002	1	001	12
184			min		3	.05	12	.022	15	0	1	0	15	006	4
185		17		1057.996	2	.674	2	.459	1	0	3	.002	1	001	12
186				-1429.29	3	.004	3	.022	15	0	1	0	15	006	4
187		18		1058.472	2	.607	2	.459	1	0	3	.003	1_	001	12
188			min	-1428.933	3	046	3	.022	15	0	1	0	15	007	4
189		19		1058.947	2	.54	2	.459	1	0	3	.003	1	001	12
190			min	-1428.576	3	096	3	.022	15	0	1	0	15	007	4
191	M3	1	max		2	7.779	4	.228	1	0	5	0	1	.007	4
192			min		3	1.829	15	.011	15	0	1	0	15	.001	12
193		2	max		2	7.014	4	.228	1	0	5	0	1	.004	2
194			min		3	1.649	15	.011	15	0	1	0	15	0	12
195		3	max		2	6.25	4	.228	1	0	5	0	1	.002	2
196			min		3	1.47	15	.011	15	0	1	0	15	001	3
197		4	max	755.469	2	5.485	4	.228	1	0	5	0	1	0	2

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	<u>LC</u>
198			min	-894.921	3	1.29	15	.011	15	0	1	0	15	002	3
199		5	max	755.299	2	4.721	4	.228	1	0	5	0	1	0	15
200			min	-895.049	3	1.11	15	.011	15	0	1	0	15	004	4
201		6	max	755.128	2	3.957	4	.228	1	0	5	0	1	001	15
202			min	-895.176	3	.93	15	.011	15	0	1	0	15	005	4
203		7	max	754.958	2	3.192	4	.228	1	0	5	0	1	002	15
204			min	-895.304	3	.751	15	.011	15	0	1	0	15	007	4
205		8	max	754.787	2	2.428	4	.228	1	0	5	.001	1	002	15
206			min	-895.432	3	.571	15	.011	15	0	1	0	15	008	4
207		9	max	754.617	2	1.663	4	.228	1	0	5	.001	1	002	15
208		<u> </u>	min	-895.56	3	.391	15	.011	15	0	1	0	15	009	4
209		10	max		2	.899	4	.228	1	0	5	.001	1	002	15
210		10	min	-895.687	3	.194	12	.011	15	0	1	0	15	01	4
211		11	max		2	.289	2	.228	1	0	5	.001	1	002	15
212		- ' '	min	-895.815	3	172	3	.011	15	0	1	0	15	002	4
213		12	max	754.106	2	172	15	.228	1	0	5	.001	1	002	15
214		12		-895.943		63	4	.011	15	0	1	0	15	002	4
		12	min		3		15								15
215		13	max	753.936	2	327		.228	1	0	<u>5</u>	.002	1_	002	
216		4.4	min	-896.071	3	-1.395	4	.011	15	0		0	15	009	4
217		14	max	753.765	2	507	15	.228	1	0	5	.002	1	002	15
218		4.5	min	-896.199	3	-2.159	4	.011	15	0	1_	0	15	008	4
219		15	max		2	687	15	.228	1_	0	5	.002	1	002	15
220			min	-896.326	3	-2.923	4	.011	15	0	1_	0	15	007	4
221		16	max	753.425	2	867	15	.228	1	0	5	.002	1	001	15
222			min	-896.454	3	-3.688	4	.011	15	0	1_	0	15	006	4
223		17	max	753.254	2	-1.046	15	.228	1_	0	5	.002	1_	001	15
224			min	-896.582	3	-4.452	4	.011	15	0	1	0	15	004	4
225		18	max	753.084	2	-1.226	15	.228	1	0	5	.002	1_	0	15
226			min	-896.71	3	-5.217	4	.011	15	0	1	0	15	002	4
227		19	max	752.914	2	-1.406	15	.228	1_	0	5	.002	1_	0	1
228			min	-896.837	3	-5.981	4	.011	15	0	1	0	15	0	1
229	M4	1		1018.745	1_	0	1	507	15	0	1	.002	1_	0	1
230			min	-34.333	3	0	1	-10.645	1	0	1	0	15	0	1
231		2		1018.915	1	0	1	507	15	0	1	0	1	0	1
232			min	-34.205	3	0	1	-10.645	1	0	1	0	15	0	1
233		3	max	1019.085	1	0	1	507	15	0	1	0	12	0	1
234			min	-34.077	3	0	1	-10.645	1	0	1	0	1	0	1
235		4	max	1019.256	1	0	1	507	15	0	1	0	15	0	1
236			min	-33.95	3	0	1	-10.645	1	0	1	002	1	0	1
237		5	max	1019.426	1	0	1	507	15	0	1	0	15	0	1
238			min	-33.822	3	0	1	-10.645	1	0	1	003	1	0	1
239		6	max	1019.597	1	0	1	507	15	0	1	0	15	0	1
240			min		3	0	1	-10.645	1	0	1	004	1	0	1
241		7	max	1019.767	1	0	1	507	15	0	1	0	15	0	1
242			min	-33.566	3	0	1	-10.645	1	0	1	006	1	0	1
243		8	max	1019.937	1	0	1	507	15	0	1	0	15	0	1
244			min	-33.439	3	0	1	-10.645	1	0	1	007	1	0	1
245		9	max	1020.108	1	0	1	507	15	0	1	0	15	0	1
246				-33.311	3	0	1	-10.645	1	0	1	008	1	0	1
247		10		1020.278	1	0	1	507	15	0	1	0	15	0	1
248				-33.183	3	0	1	-10.645	1	0	1	009	1	0	1
249		11		1020.448	1	0	1	507	15	0	1	0	15	0	1
250			min		3	0	1	-10.645	1	0	1	01	1	0	1
251		12		1020.619	_	0	1	507	15	0	1	0	15	0	1
252		14	min	-32.927	3	0	1	-10.645	1	0	1	012	1	0	1
253		13		1020.789		0	1	507	15	0	1	0	15	0	1
254		1.0	min	-32.8	3	0	1	-10.645	1	0	1	013	1	0	1
207				02.0				10.040		<u> </u>		.010			

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

N	/lember	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
255		14	max	1020.959	1	0	1	507	15	0	1	0	15	0	1
256			min	-32.672	3	0	1	-10.645	1	0	1	014	1	0	1
257		15	max	1021.13	1	0	1	507	15	0	1	0	15	0	1
258			min	-32.544	3	0	1	-10.645	1	0	1	015	1	0	1
259		16	max		_1_	0	_1_	507	15	0	1	0	15	0	1
260			min	-32.416	3	0	1	-10.645	1	0	1	017	1	0	1
261		<u> 17</u>		1021.47	_1_	0	_1_	507	15	0	1	0	15	0	1
262				-32.289	3	0	1_	-10.645	1	0	1	018	1	0	1
263		18		1021.641	1_	0	1_	507	15	0	1	0	15	0	1
264		4.0		-32.161	3	0	1	<u>-10.645</u>	1_	0	1	019	1	0	1
265		19		1021.811	1_	0	1	507	15	0	1	0	15	0	1
266	140			-32.033	3	0	1	-10.645	1	0	1_	02	1	0	1
267	M6	_1_		3358.757	2	2.327	2	0	1	0	1	0	1	0	1
268				-4668.302	3	.094	3	0	1	0	1	0	1	0	1
269		2		3359.233	2	2.26	2	0	1	0	1	0	1	0	3
270				-4667.946	3	.043	3	0	1	0		0		0	2
271		_3_		3359.709 -4667.589	2	2.194	2	0	1	0	1	0	1	0	3
272					3	007	3	0		0	1		1	001	2
273		_4_		3360.185 -4667.232	2	2.127	2	0	1	0	1	0	1	0	3
274 275		5	min	3360.66	<u>3</u> 2	057 2.06	2	0	1	0	1	0	1	002 0	3
276				-4666.875	3	107	3	0	1	0	1	0	1	003	2
277		6		3361.136	2	1.994	2	0	1	0	1	0	1	<u>003</u> 0	3
278				-4666.518	3	157	3	0	1	0	1	0	1	003	2
279		7		3361.612	2	1.927	2	0	1	0	1	0	1	<u>.003</u>	3
280				-4666.162	3	207	3	0	1	0	1	0	1	004	2
281		8		3362.088	2	1.86	2	0	1	0	1	0	1	<u>.00+</u>	3
282				-4665.805	3	257	3	0	1	0	1	0	1	005	2
283		9		3362.563	2	1.794	2	0	1	0	1	0	1	<u></u>	3
284				-4665.448	3	307	3	0	1	0	1	0	1	005	2
285		10		3363.039	2	1.727	2	0	1	0	1	0	1	0	3
286				-4665.091	3	357	3	0	1	0	1	0	1	006	2
287		11		3363.515	2	1.66	2	0	1	0	1	0	1	0	3
288				-4664.734	3	407	3	0	1	0	1	0	1	006	2
289		12	max	3363.991	2	1.594	2	0	1	0	1	0	1	0	3
290			min	-4664.378	3	457	3	0	1	0	1	0	1	007	2
291		13		3364.466	2	1.527	2	0	1	0	1	0	1	0	3
292			min	-4664.021	3	507	3	0	1	0	1	0	1	007	2
293		14		3364.942	2	1.46	2	0	1	0	1	0	1	0	3
294				-4663.664	3	557	3	0	1	0	1	0	1	008	2
295		<u> 15</u>		3365.418	2	1.393	2	0	1	0	1	0	1	.001	3
296				-4663.307	3	607	3	0	1	0	1	0	1	008	2
297		16		3365.894	2	1.327	2	0	1	0	1	0	1	.001	3
298				-4662.95	3	657	3	0	1	0	1	0	1	009	2
299		17		3366.369	2	1.26	2	0	1	0	1	0	1	.002	3
300			min	-4662.593	3	707	3	0	1	0	1	0	1	009	2
301		<u> 18</u>		3366.845	2_	1.193	2	0	1	0	1_	0	1	.002	3
302				-4662.237	3_	757	3	0	1	0	1	0	1	01	2
303		19		3367.321	2	1.127	2	0	1	0	1	0	1	.002	3
304				-4661.88	3	807	3	0	1	0	1	0	1	01	2
305	M7	_1_		2729.549	2	7.809	4	0	1	0	1	0	1	.01	2
306		_		-2812.256	3	1.834	15	0	1	0	1_	0	1	002	3
307		2		2729.378	2	7.045	4	0	1	0	1	0	1	.007	2
308				-2812.383	3	1.654	15	0	1	0	1	0	1	004	3
309		3		2729.208	2	6.28	4	0	1	0	1	0	1	.005	2
310			_	-2812.511	3	1.474	15	0	1	0	1	0	1	005	3
311		4	max	2729.037	2	5.516	4	0	1	0	1	0	1	.003	2

Model Name

Schletter, Inc.

: HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
312			min	-2812.639	3	1.294	15	0	1	0	1	0	1	006	3
313		5	max	2728.867	2	4.751	4	0	1	0	1	0	_1_	0	2
314			min	-2812.767	3	1.115	15	0	1	0	1	0	1_	007	3
315		6	max	2728.697	2	3.987	4	0	1	0	1	0	_1_	0	2
316			min	-2812.894	3	.935	15	0	1	0	1	0	1	008	3
317		7		2728.526	2	3.222	4	0	1_	0	1	0	_1_	002	15
318			min	-2813.022	3	.743	12	0	1	0	1	0	1_	008	3
319		8	max	2728.356	2	2.53	2	0	1	0	1	0	_1_	002	15
320			min	-2813.15	3	.445	12	0	1	0	1	0	1	008	3
321		9	max	2728.186	2	1.935	2	0	1	0	1	0	_1_	002	15
322			min	-2813.278	3	.147	12	0	1	0	1	0	1	009	4
323		10	max	2728.015	2	1.339	2	0	1	0	1	0	<u>1</u>	002	15
324			min	-2813.406	3	277	3	0	1	0	1	0	1_	009	4
325		11	max	2727.845	2	.743	2	0	1	0	1	0	_1_	002	15
326			min	-2813.533	3	723	3	0	1	0	1	0	1	01	4
327		12	max	2727.675	2	.148	2	0	1	0	1	0	1_	002	15
328			min	-2813.661	3	-1.17	3	0	1	0	1	0	1	01	4
329		13	max	2727.504	2	323	15	0	1	0	1	0	1	002	15
330			min	-2813.789	3	-1.617	3	0	1	0	1	0	1	009	4
331		14	max	2727.334	2	502	15	0	1	0	1	0	1	002	15
332			min	-2813.917	3	-2.129	4	0	1	0	1	0	1	008	4
333		15	max	2727.164	2	682	15	0	1	0	1	0	1	002	15
334			min	-2814.044	3	-2.893	4	0	1	0	1	0	1	007	4
335		16	max	2726.993	2	862	15	0	1	0	1	0	1	001	15
336			min	-2814.172	3	-3.658	4	0	1	0	1	0	1	006	4
337		17	max	2726.823	2	-1.042	15	0	1	0	1	0	1	001	15
338			min	-2814.3	3	-4.422	4	0	1	0	1	0	1	004	4
339		18	max	2726.653	2	-1.221	15	0	1	0	1	0	1	0	15
340			min	-2814.428	3	-5.186	4	0	1	0	1	0	1	002	4
341		19	max	2726.482	2	-1.401	15	0	1	0	1	0	1	0	1
342			min	-2814.555	3	-5.951	4	0	1	0	1	0	1	0	1
343	M8	1	max	2662.379	1	0	1	0	1	0	1	0	1	0	1
344			min	-207.656	3	0	1	0	1	0	1	0	1	0	1
345		2	max	2662.549	1	0	1	0	1	0	1	0	1	0	1
346			min	-207.529	3	0	1	0	1	0	1	0	1	0	1
347		3	max	2662.719	1	0	1	0	1	0	1	0	1	0	1
348			min	-207.401	3	0	1	0	1	0	1	0	1	0	1
349		4	max		1	0	1	0	1	0	1	0	1	0	1
350			min	-207.273	3	0	1	0	1	0	1	0	1	0	1
351		5	max		1	0	1	0	1	0	1	0	1	0	1
352				-207.145	3	0	1	0	1	0	1	0	1	0	1
353		6	max		1	0	1	0	1	0	1	0	1	0	1
354			min		3	0	1	0	1	0	1	0	1	0	1
355		7		2663.401	1	0	1	0	1	0	1	0	1	0	1
356			min		3	0	1	0	1	0	1	0	1	0	1
357		8		2663.571	1	0	1	0	1	0	1	0	1	0	1
358			min		3	0	1	0	1	0	1	0	1	0	1
359		9		2663.741	1	0	1	0	1	0	1	0	1	0	1
360				-206.634	3	0	1	0	1	0	1	0	1	0	1
361		10		2663.912	1	0	1	0	1	0	1	0	1	0	1
362		10		-206.506	3	0	1	0	1	0	1	0	1	0	1
363		11		2664.082	1	0	1	0	1	0	1	0	1	0	1
364			min		3	0	1	0	1	0	1	0	1	0	1
365		12	+	2664.252	1	0	1	0	1	0	1	0	1	0	1
366		14			3	0	1	0	1	0	1	0	1	0	1
367		13	min		_		1		1		1		1		1
		13		2664.423		0	1	0	1	0	1	0	1	0	1
368			min	-206.123	3	0		0		0		0		0	

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
369		14		2664.593	<u>1</u>	0	1	0	1	0	1	0	1	0	1
370				-205.995	3	0	1	0	1	0	1	0	1	0	1
371		15		2664.764	_1_	0	1	0	1	0	1	0	1	00	1
372				-205.868	3	0	1	0	1	0	1	0	1	0	1
373		16		2664.934	1_	0	1	0	1	0	1	0	1	0	1
374			min	-205.74	3	0	1	0	1	0	1	0	1	0	1
375		17		2665.104	1_	0	1	0	1	0	1	0	1	0	1
376		40		-205.612	3	0	1	0	1	0	1_	0	1	0	1
377		18		2665.275	1	0	1	0	1	0	1_	0	1	0	1
378		40	min	-205.484	3	0	1	0	1	0	1_	0	1	0	1
379		19		2665.445	1	0	1	0	1	0	1	0	1	0	1
380	M40	4		-205.357	3	0	1	0	1	0	1_	0	1	0	1
381	M10	1		1050.384 -1434.999	2	1.929	15	022	15	0	3	0	2	0	1
382		2	min	1050.86	<u>3</u> 2	.454 1.844	4	459 022	15	<u> </u>	<u> </u>	0	3 15	<u> </u>	15
383 384			max	-1434.642	3	.434	15	022 459	1	0	3	0	1	0	4
385		3		1051.335	2	1.758	4	022	15	0	1	0	15	0	15
386		<u> </u>	min	-1434.285	3	.414	15	459	1	0	3	0	1	001	4
387		4		1051.811	2	1.673	4	022	15	0	1	0	15	0	15
388		_	min	-1433.929	3	.394	15	459	1	0	3	0	1	002	4
389		5		1052.287	2	1.587	4	022	15	0	1	0	15	0	15
390			min	-1433.572	3	.374	15	459	1	0	3	0	1	002	4
391		6		1052.763	2	1.501	4	022	15	0	1	0	15	0	15
392			min	-1433.215	3	.353	15	459	1	0	3	0	1	003	4
393		7			2	1.416	4	022	15	0	1	0	15	0	15
394				-1432.858	3	.333	15	459	1	0	3	0	1	003	4
395		8	max	1053.714	2	1.33	4	022	15	0	1	0	15	0	15
396			min	-1432.501	3	.313	15	459	1	0	3	001	1	004	4
397		9	max	1054.19	2	1.245	4	022	15	0	1	0	15	0	15
398			min	-1432.145	3	.283	12	459	1	0	3	001	1	004	4
399		10	max	1054.666	2	1.159	4	022	15	0	1	0	15	001	15
400			min	-1431.788	3	.25	12	459	1	0	3	001	1	005	4
401		11		1055.141	2	1.074	2	022	15	0	1	0	15	001	15
402				-1431.431	3	.217	12	459	1	0	3	001	1	005	4
403		12		1055.617	2	1.007	2	022	15	0	_1_	0	15	001	15
404				-1431.074	3	.183	12	459	1	0	3	002	1	005	4
405		13		1056.093	2	.941	2	022	15	0	1	0	15	001	15
406				-1430.717	3_	.15	12	459	1	0	3	002	1	006	4
407		14		1056.569	2_	.874	2	022	15	0	1	0	15	001	15
408		4.5	min	-1430.361	3	.117	12	459	1	0	3	002	1	006	4
409		15		1057.044		.807	2	022	15	0	1	0	15	001	15
410		4.0		-1430.004	3	.083	12	459	1	0	3	002	1	006	4
411		16		1057.52	2	.741	2	022	15	0	1	0	15	001	12
412		17		-1429.647	3	.05	12	459	1 1 5	0	3	002	1 1 5	006	4
413		17		1057.996	2	.674	3	022 459	15	0	3	002	15 1	001	12
414		10		-1429.29 1058.472	3	.004	2	459 022	15	0				006 001	12
		18		-1428.933	3	.607	3				3	0	15 1	001 007	12
416 417		19		1058.947	2	046 .54	2	459 022	15	<u> </u>	<u>3</u> 1	003 0	15	007 001	12
417		19	min	-1428.576	3	096	3	022 459	15	0	3	003	1	007	4
419	M11	1		755.98	2	7.779	4	459 011	15	0	<u> </u>	003 0	15	007 .007	4
420	IVIII			-894.538	3	1.829	15	228	1	0	5	0	1	.007	12
421		2		755.81	2	7.014	4	011	15	0	1	0	15	.004	2
422				-894.665	3	1.649	15	228	1	0	5	0	1	0	12
423		3	max		2	6.25	4	011	15	0	1	0	15	.002	2
424				-894.793	3	1.47	15	228	1	0	5	0	1	001	3
425		4		755.469	2	5.485	4	011	15	0	1	0	15	0	2
			,			J									

Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
426			min	-894.921	3	1.29	15	228	1	0	5	0	1	002	3
427		5	max	755.299	2	4.721	4	011	15	0	_1_	0	<u>15</u>	0	15
428			min	-895.049	3	1.11	15	228	1	0	5	0	1	004	4
429		6	max	755.128	2	3.957	4	011	15	0	1	0	15	001	15
430			min	-895.176	3	.93	15	228	1	0	5	0	1	005	4
431		7	max	754.958	2	3.192	4	011	15	0	1	0	15	002	15
432			min	-895.304	3	.751	15	228	1	0	5	0	1	007	4
433		8	max	754.787	2	2.428	4	011	15	0	_1_	0	15	002	15
434			min	-895.432	3	.571	15	228	1	0	5	001	1	008	4
435		9	max	754.617	2	1.663	4	011	15	0	_1_	0	15	002	15
436			min	-895.56	3	.391	15	228	1	0	5	001	1	009	4
437		10	max	754.447	2	.899	4	011	15	0	1	0	15	002	15
438			min	-895.687	3	.194	12	228	1	0	5	001	1	01	4
439		11	max	754.276	2	.289	2	011	15	0	1	0	15	002	15
440			min	-895.815	3	172	3	228	1	0	5	001	1	01	4
441		12	max	754.106	2	148	15	011	15	0	1	0	15	002	15
442			min	-895.943	3	63	4	228	1	0	5	001	1	01	4
443		13	max	753.936	2	327	15	011	15	0	1	0	15	002	15
444			min	-896.071	3	-1.395	4	228	1	0	5	002	1	009	4
445		14	max	753.765	2	507	15	011	15	0	1	0	15	002	15
446			min	-896.199	3	-2.159	4	228	1	0	5	002	1	008	4
447		15	max	753.595	2	687	15	011	15	0	1	0	15	002	15
448			min	-896.326	3	-2.923	4	228	1	0	5	002	1	007	4
449		16	max	753.425	2	867	15	011	15	0	1	0	15	001	15
450			min	-896.454	3	-3.688	4	228	1	0	5	002	1	006	4
451		17	max	753.254	2	-1.046	15	011	15	0	1	0	15	001	15
452			min	-896.582	3	-4.452	4	228	1	0	5	002	1	004	4
453		18	max	753.084	2	-1.226	15	011	15	0	1	0	15	0	15
454			min	-896.71	3	-5.217	4	228	1	0	5	002	1	002	4
455		19	max	752.914	2	-1.406	15	011	15	0	1	0	15	0	1
456		1.0	min	-896.837	3	-5.981	4	228	1	0	5	002	1	0	1
457	M12	1		1018.745	1	0	1	10.645	1	0	1	0	15	0	1
458	14112		min	-34.333	3	0	1	.507	15	0	1	002	1	0	1
459		2	+	1018.915	1	0	1	10.645	1	0	1	0	15	0	1
460			min	-34.205	3	0	1	.507	15	0	1	0	1	0	1
461		3		1019.085	1	0	1	10.645	1	0	1	0	1	0	1
462		<u> </u>	min	-34.077	3	0	1	.507	15	0	1	0	12	0	1
463		4	max		1	0	1	10.645	1	0	1	.002	1	0	1
464			min	-33.95	3	0	1	.507	15	0	1	0	15	0	1
465		5		1019.426	1	0	1	10.645	1	0	1	.003	1	0	1
466				-33.822	3	0	1	.507	15	0	1	0	15	0	1
467		6	_	1019.597	1	0	1	10.645	1	0	1	.004	1	0	1
468			min	-33.694	3	0	1	.507	15	0	1	0	15	0	1
469		7	+	1019.767		0	1	10.645	1	0	1	.006	1	0	1
470		'	min		3	0	1	.507	15	0	1	0	15	0	1
471		8		1019.937	<u> </u>	0	1	10.645	1	0	1	.007	1 1	0	1
472		- 0			3	0	1	.507	15	0	1	0	15	0	1
473		9	min	1020.108	<u> </u>	0	1	10.645	1	0	1	.008	1 <u>15</u> 1	0	1
474		3		-33.311	3	0	1	.507	15	0	1	.008	15	0	1
		10		1020.278			1								
475		10		-33.183	1	0	1	10.645	15	0	<u>1</u> 1	.009	<u>1</u> 15	0	1
476		4.4			3	0		.507		0		0		0	-
477		11		1020.448	1	0	1	10.645	1	0	1	.01	1 1 5	0	1
478		40	min		3_	0	1	.507	15	0	1_1	0	15	0	1
479		12		1020.619	1	0	1	10.645	1	0	1_	.012	1_	0	1
480		40	min	-32.927	3	0	1	.507	15	0	1_	0	15	0	1
481		13		1020.789		0	1	10.645	1	0	1	.013	1_	0	1
482			min	-32.8	3	0	1	.507	15	0	_1_	0	15	0	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
483		14	max	1020.959	1	0	1	10.645	1	0	1	.014	1	0	1
484			min	-32.672	3	0	1	.507	15	0	1	0	15	0	1
485		15	max	1021.13	1	0	1	10.645	1	0	1	.015	1	0	1
486			min	-32.544	3	0	1	.507	15	0	1	0	15	0	1
487		16	max	1021.3	1	0	1	10.645	1	0	1	.017	1	0	1
488			min	-32.416	3	0	1	.507	15	0	1	0	15	0	1
489		17	max	1021.47	1	0	1	10.645	1	0	1	.018	1	0	1
490			min	-32.289	3	0	1	.507	15	0	1	0	15	0	1
491		18	max	1021.641	1	0	1	10.645	1	0	1	.019	1	0	1
492			min	-32.161	3	0	1	.507	15	0	1	0	15	0	1
493		19	max	1021.811	1	0	1	10.645	1	0	1	.02	1	0	1
494			min	-32.033	3	0	1	.507	15	0	1	0	15	0	1
495	M1	1	max	171.919	1	768.918	3	-4.75	15	0	2	.237	1	0	3
496			min	8.155	15	-438.476	2	-99.237	1	0	3	.011	15	015	2
497		2	max	172.635	1	767.988	3	-4.75	15	0	2	.185	1	.217	2
498			min	8.372	15	-439.716	2	-99.237	1	0	3	.009	15	405	3
499		3	max	553.386	3	529.401	2	-4.729	15	0	3	.132	1	.438	2
500			min	-319.6	2	-566.838	3	-98.959	1	0	2	.006	15	794	3
501		4	max	553.923	3	528.161	2	-4.729	15	0	3	.08	1	.159	2
502			min	-318.883	2	-567.768	3	-98.959	1	0	2	.004	15	494	3
503		5	max	554.46	3	526.92	2	-4.729	15	0	3	.028	1	003	15
504			min	-318.167	2	-568.699	3	-98.959	1	0	2	.001	15	194	3
505		6	max		3	525.68	2	-4.729	15	0	3	001	15	.106	3
506			min	-317.451	2	-569.629	3	-98.959	1	0	2	024	1	397	2
507		7	max	555.535	3	524.439	2	-4.729	15	0	3	004	15	.407	3
508			min	-316.735	2	-570.56	3	-98.959	1	0	2	076	1	674	2
509		8	max		3	523.199	2	-4.729	15	0	3	006	15	.708	3
510			min	-316.018	2	-571.49	3	-98.959	1	0	2	129	1	951	2
511		9	max		3	52.947	2	-7.003	15	0	9	.076	1	.826	3
512			min	-241.689	2	.379	15	-146.563	1	0	3	.004	15	-1.089	2
513		10	max		3	51.706	2	-7.003	15	0	9	0	15	.805	3
514			min	-240.972	2	.004	15		1	0	3	0	1	-1.117	2
515		11	max		3	50.466	2	-7.003	15	0	9	004	15	.785	3
516			min	-240.256	2	-1.516	4	-146.563	1	0	3	078	1	-1.144	2
517		12	max	586.472	3	377.824	3	-4.616	15	0	2	.127	1	.685	3
518			min	-165.884	2	-633.014	2	-96.801	1	0	3	.006	15	-1.014	2
519		13	max		3	376.893	3	-4.616	15	0	2	.076	1	.486	3
520		1	min	-165.168	2	-634.254	2	-96.801	1	0	3	.004	15	68	2
521		14	max		3	375.963	3	-4.616	15	0	2	.025	1	.287	3
522			min	-164.451	2	-635.495	2	-96.801	1	0	3	.001	15	345	2
523		15		588.083		375.033	3	-4.616	15		2	001	15	.089	3
524				-163.735	2	-636.735		-96.801	1	0	3	026	1	03	1
525		16		588.621	3	374.102	3	-4.616	15	0	2	004	15	.327	2
526				-163.019	2	-637.976		-96.801	1	0	3	077	1	109	3
527		17	max		3	373.172	3	-4.616	15	0	2	006	15	.664	2
528			min		2	-639.216	2	-96.801	1	0	3	128	1	306	3
529		18	max		15	653.617	2	-5.111	15	0	3	009	15	.334	2
530		'	min		1	-309.158	3	-106.971	1	0	2	182	1	151	3
531		19	max		15	652.377	2	-5.111	15	0	3	011	15	.012	3
532		'	min	-172.195	1	-310.089	3	-106.971	1	0	2	239	1	01	2
533	M5	1	max		1	2561.353		0	1	0	1	0	1	.029	2
534	1410		min	15.658	12	-1492.776	2	0	1	0	1	0	1	002	3
535		2		374.897	1	2560.423		0	1	0	1	0	1	.817	2
536			min		12	-1494.016	2	0	1	0	1	0	1	-1.353	3
537		3	max		3	1584.906	2	0	1	0	1	0	1	1.569	2
538			min		2	-1803.918	3	0	1	0	1	0	1	-2.651	3
539		4		1772.507	3	1583.665	2	0	1	0	1	0	1	.733	2
UUU		_ 4	πιαλ	1112.001	<u> </u>	1000.000		U		U		U		.133	

Model Name

Schletter, Inc.

: HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC_
540			min	-1097.294	2	-1804.848	3	0	1	0	1	0	1_	-1.699	3
541		5		1773.044	3_	1582.425	2	0	1	0	1_	0	_1_	.008	9
542			min	-1096.578	2	-1805.779	3	0	1	0	1	0	_1_	747	3
543		6		1773.582	3	1581.184	2	0	1	0	1	0	_1_	.206	3
544		_	min	-1095.862	2	-1806.709	3	0	1	0	1	0	_1_	937	2
545		7	max		3_	1579.944	2	0	1	0	1	0	_1_	1.16	3
546			min	-1095.145	2	-1807.64	3	0	1_	0	1_	0	_1_	-1.771	2
547		8		1774.656	3	1578.703	2	0	1	0	1	0	_1_	2.114	3
548			min	-1094.429	2	-1808.57	3	0	1	0	1	0	_1_	-2.605	2
549		9		1797.726	3_	177.537	2	0	1	0	1	0	_1_	2.43	3
550		1.0	min	-939.202	2	.374	15	0	1	0	1	0	1_	-2.97	2
551		10		1798.263	3_	176.297	2	0	1	0	1	0	_1_	2.356	3
552			min	-938.485	2	0	15	0	1	0	1	0	_1_	-3.064	2
553		11	max	1798.8	3_	175.056	2	0	1	0	1	0	1_	2.283	3
554		1.0	min	-937.769	2	-1.401	4	0	1	0	1	0	1_	-3.156	2
555		12		1822.118	3_	1187.088	3	0	1	0	1	0	1_	2.006	3
556		1.0	min	-782.627	2	-1938.795	2	0	1	0	1_	0	1_	-2.828	2
557		13		1822.655	3_	1186.158	3	0	1	0	1	0	_1_	1.38	3
558			min	-781.911	2	-1940.035	2	0	1	0	1	0	1_	-1.805	2
559		14		1823.192	3_	1185.228	3	0	1	0	1	0		.754	3
560		4.5	min	-781.195	2	-1941.276	2	0	1	0	1_	0	1_	78	2
561		15		1823.729	3_	1184.297	3	0	1	0	1	0	1_	.244	2
562		10	min	-780.478	2	-1942.516	2	0	1	0	1_	0	1_	003	13
563		16		1824.266	3_	1183.367	3	0	1	0	1	0	1_	1.27	2
564		4.7	min	-779.762	2	-1943.757	2	0	1	0	1_	0	1_	495	3
565		17	max		3_	1182.436	3	0	1	0	1	0	1_	2.295	2
566		4.0	min	-779.046	2	-1944.997	2	0	1	0	1_	0	1_	-1.12	3
567		18	max	-16.539	12	2202.903	2	0	1	0	1	0	1_	1.183	2
568		4.0	min	-374.346	1_	-1063.01	3	0	1	0	1	0	1_	586	3
569		19	max	-16.181	12	2201.663	2	0	1	0	1	0	1_	.021	2
570	MO	1	min	-373.63	1_	-1063.94	3	0 00 007	1	0	1	0	1_	025	3
571	<u>M9</u>	1	max	171.919	1_	768.918	3	99.237	1	0	3	011	<u>15</u>	0	3
572		2	min	8.155	<u>15</u>	-438.476	2	4.75	15	0	2	237	1_	015	2
573			max	172.635	1_	767.988	3	99.237	1	0	3	009	<u>15</u>	.217	2
574		2	min	8.372	<u>15</u>	<u>-439.716</u>	2	4.75	15	0	2	185	1_	405	3
575		3	max	553.386	3_	529.401	2	98.959	1	0	2	006	<u>15</u> 1	.438	3
576		1	min	-319.6	2	<u>-566.838</u> 528.161	3	4.729	1 <u>5</u>	0	3	132	15	794	2
577 578		4	max	553.923	3_	-567.768	2	98.959	15	0	2	004	1 <u>1</u>	.159	3
579		5	min	<u>-318.883</u> 554.46	3	526.92	2	4.729 98.959	1	0	2	08 001	15	494	15
		5	max					4.729					-	003 194	
580 581		6	max	-318.167 554.998	3	<u>-568.699</u> 525.68		98.959	1 <u>5</u>	0	2	028 .024	<u>1</u> 1	.106	3
582		0	min	-317.451	2	-569.629	3	4.729	15	0	3	.024	15	397	2
583		7		555.535	3	524.439	2	98.959	1	0	2	.076	1 <u>15</u>	.407	3
584		-	min		2	-570.56	3	4.729	15	0	3	.004	15	674	2
585		8		556.072	3	523.199	2	98.959	1	0	2	.129	1 <u>15</u>	.708	3
586		0	min		2	-571.49	3	4.729	15	0	3	.006	15	951	2
587		9		570.797	3	52.947	2	146.563	1	0	3	004	15	.826	3
588		3		-241.689	2	.379	15		15	0	9	076	1	-1.089	2
589		10		571.334	3	51.706	2	146.563	1	0	3	0	1	.805	3
590		10		-240.972	2	.004	15		15	0	9	0	15	-1.117	2
591		11		571.871	3	50.466	2	146.563	1	0	3	.078	1 <u>15</u>	.785	3
592		11	min		2	-1.516	4	7.003	15	0	9	.004	15	-1.144	2
593		12		586.472	3	377.824	3	96.801	1	0	3	006	15	.685	3
594		14	min	-165.884	2	-633.014	2	4.616	15	0	2	127	1	-1.014	2
595		13		587.009	3	376.893	3	96.801	1	0	3	004	15	.486	3
596		13	min		2	-634.254		4.616	15	0	2	076	1	68	2
030			1111111	100.100		004.204		7.010	IJ	U		070		00	

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
597		14	max	587.546	3	375.963	3	96.801	1	0	3	001	15	.287	3
598			min	-164.451	2	-635.495	2	4.616	15	0	2	025	1	345	2
599		15	max	588.083	3	375.033	3	96.801	1	0	3	.026	1	.089	3
600			min	-163.735	2	-636.735	2	4.616	15	0	2	.001	15	03	1
601		16	max	588.621	3	374.102	3	96.801	1	0	3	.077	1	.327	2
602			min	-163.019	2	-637.976	2	4.616	15	0	2	.004	15	109	3
603		17	max	589.158	3	373.172	3	96.801	1	0	3	.128	1	.664	2
604			min	-162.303	2	-639.216	2	4.616	15	0	2	.006	15	306	3
605		18	max	-8.38	15	653.617	2	106.971	1	0	2	.182	1	.334	2
606			min	-172.911	1	-309.158	3	5.111	15	0	3	.009	15	151	3
607		19	max	-8.164	15	652.377	2	106.971	1	0	2	.239	1	.012	3
608			min	-172.195	1	-310.089	3	5.111	15	0	3	.011	15	01	2

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M13	1	max	0	1	.113	2	.01	3	9.473e-3	2	NC	1_	NC	1
2			min	0	15	021	3	005	2	-2.081e-3	3	NC	1	NC	1
3		2	max	0	1	.291	3	.034	1	1.082e-2	2	NC	5	NC	2
4			min	0	15	051	1	0	10	-2.164e-3	3	730.164	3	6809.588	1
5		3	max	0	1	.544	3	.082	1	1.217e-2	2	NC	5	NC	3
6			min	0	15	167	2	.004	15	-2.247e-3	3	403.432	3	2806.772	1
7		4	max	0	1	.698	3	.123	1	1.352e-2	2	NC	5	NC	3
8			min	0	15	234	2	.006	15	-2.33e-3	3	317.198	3	1865.304	1
9		5	max	0	1	.734	3	.143	1	1.487e-2	2	NC	5	NC	3
10			min	0	15	234	2	.007	15	-2.413e-3	3	302.163	3	1595.019	1
11		6	max	0	1	.654	3	.138	1	1.622e-2	2	NC	5	NC	3
12			min	0	15	174	1	.007	15	-2.495e-3	3	337.74	3	1660.426	1
13		7	max	0	1	.483	3	.107	1	1.757e-2	2	NC	5	NC	5
14			min	0	15	071	1	.003	10	-2.578e-3	3	452.182	3	2135.562	1
15		8	max	0	1	.266	3	.061	1	1.892e-2	2	NC	4	NC	2
16			min	0	15	.001	15	004	10	-2.661e-3	3	794.05	3	3787.557	1
17		9	max	0	1	.202	2	.031	3	2.027e-2	2	NC	4	NC	1
18			min	0	15	.004	15	011	2	-2.744e-3	3	2527.422	3	NC	1
19		10	max	0	1	.257	2	.03	3	2.162e-2	2	NC	3	NC	1
20			min	0	1	02	3	021	2	-2.827e-3	3	1592.467	2	NC	1
21		11	max	0	15	.202	2	.031	3	2.027e-2	2	NC	4	NC	1
22			min	0	1	.004	15	011	2	-2.744e-3	3	2527.422	3	NC	1
23		12	max	0	15	.266	3	.061	1	1.892e-2	2	NC	4	NC	2
24			min	0	1	.001	15	004	10	-2.661e-3	3	794.05	3	3787.557	1
25		13	max	0	15	.483	3	.107	1	1.757e-2	2	NC	5	NC	5
26			min	0	1	071	1	.003	10	-2.578e-3	3	452.182	3	2135.562	1
27		14	max	0	15	.654	3	.138	1	1.622e-2	2	NC	5	NC	3
28			min	0	1	174	1	.007	15	-2.495e-3	3	337.74	3	1660.426	1
29		15	max	0	15	.734	3	.143	1	1.487e-2	2	NC	5	NC	3
30			min	0	1	234	2	.007	15	-2.413e-3	3	302.163	3	1595.019	1
31		16	max	0	15	.698	3	.123	1	1.352e-2	2	NC	5	NC	3
32			min	0	1	234	2	.006	15	-2.33e-3	3	317.198	3	1865.304	1
33		17	max	0	15	.544	3	.082	1	1.217e-2	2	NC	5	NC	3
34			min	0	1	167	2	.004	15	-2.247e-3	3	403.432	3	2806.772	1
35		18	max	0	15	.291	3	.034	1	1.082e-2	2	NC	5	NC	2
36			min	0	1	051	1	0	10	-2.164e-3	3	730.164	3	6809.588	1
37		19	max	0	15	.113	2	.01	3	9.473e-3	2	NC	1	NC	1
38			min	0	1	021	3	005	2	-2.081e-3	3	NC	1	NC	1
39	M14	1	max	0	1	.25	3	.009	3	5.511e-3	2	NC	1	NC	1
40			min	0	15	366	2	005	2	-4.355e-3	3	NC	1	NC	1

Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

14		Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC			(n) L/y Ratio			
44	41		2	max	0	1	.566	3	.023	1	6.577e-3	2	NC	_5_	NC	1
44																-
46			3		_											
46																
48			4													_3_
48				min		15				15				_		1
49			5	max												3
Solution				min	0	15				15		3			1807.381	•
51	49		6	max	0	-		3	.125			2		15		3
Second Color	50			min	0	15	-1.215		.006	15	-8.999e-3	3	263.66	3	1837.308	1
Sample	51		7	max	0	1	1.033	3	.099	1	1.19e-2	2		15		3
Second Part	52			min	0	15	-1.18	2	.003	10		3	280.339			1
Second Color	53		8	max	0	1	.904	3	.057		1.297e-2	2	NC	15	NC	2
Second Color	54			min	0	15	-1.102	2	003	10	-1.086e-2	3	309.677	2	4059.894	1
Second	55		9	max	0	1	.777	3	.028			2	NC	5	NC	1
The color of the				min	0	15	-1.019	2	01	2	-1.179e-2	3	349.014	2	NC	1
Second Color	57		10	max	0	1	.718	3	.027	3	1.51e-2	2	NC	5	NC	1
59	58			min	0	1	979	2	019	2	-1.271e-2	3	372.175	2	NC	1
60			11		0	15	.777	3	.028					5	NC	1
61																1
62			12			15						2		15		2
63					_					10						1
64			13			_										3
66					_											
66			14													
67 15 max 0 15 1.117 3 .127 1 9.773e-3 2 NC 15 NC 3 68 min 0 1 -1.184 2 .006 15 -8.07e-3 2 NC 15 NC 3 70 min 0 1 -1.077 2 .005 15 -7.142e-3 3 294.578 3 2193.838 1 71 17 max 0 15 .835 3 .065 1 7.642e-3 2 NC 5 NC 3 72 min 0 1 -884 2 .003 15 -6.213e-3 3 389.822 3 353.326 1 73 18 max 0 15 .566 3 .023 1 6.577e-3 2 NC 5 NC 1 74 min 0 1 649 2			1.7													1
Color			15		_	_										3
69			10		_											
To min O 1 -1.077 2 .005 15 -7.142e-3 3 294.578 3 2193.838 1			16													-
The number of			10													
72 min 0 1 894 2 .003 15 -6.213e-3 3 389.822 3 3533.326 1 73 18 max 0 15 .566 3 .023 1 6.577e-3 2 NC 5 NC 1 74 min 0 1 649 2 0 0 15.284e-3 3 721.321 3 NC 1 75 19 max 0 15 .255 3 .009 3 5.511e-3 2 NC 1 NC 1 76 min 0 1 366 2 005 2 -4.355e-3 3 NC 1 NC 1 78 min 0 1 365 2 005 2 -5.766e-3 2 NC 1 NC 1 79 2 max 0 15 .642 3 <td< td=""><td></td><td></td><td>17</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></td<>			17													-
73 18 max 0 15 .566 3 .023 1 6.577e-3 2 NC 5 NC 1 74 min 0 1 649 2 0 10 -5.284e-3 3 721.321 3 NC 1 75 19 max 0 15 .25 3 .009 3 5.511e-3 2 NC 1 NC 1 76 min 0 1 366 2 005 2 -4.355e-3 3 NC 1 NC 1 77 M15 1 max 0 15 .462 3 .023 1 4.592e-3 3 NC 1 NC 1 79 2 max 0 15 .462 3 .023 1 4.592e-3 3 NC 5 NC 1 80 min 0 1 -7.33			17		_											
74 min 0 1 649 2 0 10 -5.284e-3 3 721.321 3 NC 1 75 19 max 0 15 .25 3 .009 3 5.511e-3 2 NC 1 NC 1 76 min 0 1 366 2 005 2 -4.355e-3 3 NC 1 NC 1 77 M15 1 max 0 15 .255 3 .008 3 3.78e-3 3 NC 1 NC 1 78 min 0 1 365 2 005 2 -5.766e-3 2 NC 1 NC 1 80 min 0 15 .462 3 .023 1 4.592e-3 3 NC 5 NC 1 81 3 3 3 3 .023 1			10													
75 19 max 0 15 .25 3 .009 3 5.511e-3 2 NC 1 NC 1 76 min 0 1 366 2 005 2 -4.355e-3 3 NC 1 NC 1 77 M15 1 max 0 15 .255 3 .008 3 3.78e-3 3 NC 1 NC 1 78 min 0 1 365 2 005 2 -5.766e-3 2 NC 1 NC 1 79 2 max 0 15 .462 3 .023 1 4.592e-3 3 NC 5 NC 1 80 min 0 1 733 2 0 10 -6.886e-3 2 619.403 2 NC 1 81 min 0 1 -1.048 2 .006			10													_
76 min 0 1 366 2 005 2 -4.355e-3 3 NC 1 NC 1 77 M15 1 max 0 15 .255 3 .008 3 3.78e-3 3 NC 1 NC 1 78 min 0 1 365 2 005 2 -5.766e-3 2 NC 1 NC 1 79 2 max 0 15 .462 3 .023 1 4.592e-3 3 NC 5 NC 1 80 min 0 1 733 2 0 10 -6.886e-3 2 619.403 2 NC 1 81 3 max 0 15 .642 3 .065 1 5.404e-3 3 NC 15 NC 3 82 min 0 1 -1.048 2			10													•
77 M15 1 max 0 15 .255 3 .008 3 3.78e-3 3 NC 1 NC 1 78 min 0 1 365 2 005 2 -5.766e-3 2 NC 1 NC 1 79 2 max 0 15 .462 3 .023 1 4.592e-3 3 NC 5 NC 1 80 min 0 1 733 2 0 10 -6.886e-3 2 619.403 2 NC 1 81 3 max 0 15 .642 3 .065 1 5.404e-3 3 NC 5 NC 3 82 min 0 1 -1.048 2 .003 15 -8.06e-3 2 33.839 2 3522.054 1 83 4 max 0 15 .778<			19													
78 min 0 1 365 2 005 2 -5.766e-3 2 NC 1 NC 1 79 2 max 0 15 .462 3 .023 1 4.592e-3 3 NC 5 NC 1 80 min 0 1 733 2 0 10 -6.886e-3 2 619.403 2 NC 1 81 3 max 0 15 .642 3 .065 1 5.404e-3 3 NC 5 NC 3 82 min 0 1 -1.048 2 .003 15 -8.006e-3 2 333.839 2 3522.054 1 83 4 max 0 15 .78 3 .105 1 6.216e-3 3 NC 15 NC 3 84 min 0 1 -1.273 2		NAC	4		_	_						_				•
79 2 max 0 15 .462 3 .023 1 4.592e-3 3 NC 5 NC 1 80 min 0 1 733 2 0 10 -6.886e-3 2 619.403 2 NC 1 81 3 max 0 15 .642 3 .065 1 5.404e-3 3 NC 5 NC 3 82 min 0 1 -1.048 2 .003 15 -8.006e-3 2 333.839 2 3522.054 1 83 4 max 0 15 .778 3 .105 1 6.216e-3 3 NC 15 NC 3 84 min 0 1 -1.273 2 .005 15 -9.125e-3 2 251.096 2 2188.008 1 85 max 0 15 .86 3 .127 1 <td< td=""><td></td><td>W15</td><td>1</td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		W15	1		_											
80 min 0 1 733 2 0 10 -6.886e-3 2 619.403 2 NC 1 81 3 max 0 15 .642 3 .065 1 5.404e-3 3 NC 5 NC 3 82 min 0 1 -1.048 2 .003 15 -8.006e-3 2 333.839 2 3522.054 1 83 4 max 0 15 .778 3 .105 1 6.216e-3 3 NC 15 NC 3 84 min 0 1 -1.273 2 .005 15 -9.125e-3 2 251.096 2 2188.008 1 85 5 max 0 15 .86 3 .127 1 7.027e-3 3 NC 15 NC 3 86 min 0 1 -1.39 2			_											•		
81 3 max 0 15 .642 3 .065 1 5.404e-3 3 NC 5 NC 3 82 min 0 1 -1.048 2 .003 15 -8.006e-3 2 333.839 2 3522.054 1 83 4 max 0 15 .778 3 .105 1 6.216e-3 3 NC 15 NC 3 84 min 0 1 -1.273 2 .005 15 -9.125e-3 2 251.096 2 2188.008 1 85 5 max 0 15 .86 3 .127 1 7.027e-3 3 NC 15 NC 3 86 min 0 1 -1.39 2 .006 15 -1.025e-2 2 222.475 2 1802.68 1 87 6 max 0 15 .8			2													
82 min 0 1 -1.048 2 .003 15 -8.006e-3 2 333.839 2 3522.054 1 83 4 max 0 15 .778 3 .105 1 6.216e-3 3 NC 15 NC 3 84 min 0 1 -1.273 2 .005 15 -9.125e-3 2 251.096 2 2188.008 1 85 5 max 0 15 .86 3 .127 1 7.027e-3 3 NC 15 NC 3 86 min 0 1 -1.39 2 .006 15 -1.025e-2 2 222.475 2 1802.68 1 87 6 max 0 15 .887 3 .125 1 7.839e-3 3 NC 15 NC 3 88 min 0 1 -1.398 <																•
83 4 max 0 15 .778 3 .105 1 6.216e-3 3 NC 15 NC 3 84 min 0 1 -1.273 2 .005 15 -9.125e-3 2 251.096 2 2188.008 1 85 5 max 0 15 .86 3 .127 1 7.027e-3 3 NC 15 NC 3 86 min 0 1 -1.39 2 .006 15 -1.025e-2 2 222.475 2 1802.68 1 87 6 max 0 15 .887 3 .125 1 7.839e-3 3 NC 15 NC 3 88 min 0 1 -1.398 2 .006 15 -1.136e-2 2 220.685 2 1831.912 1 89 7 max 0 15 .866 3 .099 1 8.651e-3 3 NC 15 NC 3			3													
84 min 0 1 -1.273 2 .005 15 -9.125e-3 2 251.096 2 2188.008 1 85 5 max 0 15 .86 3 .127 1 7.027e-3 3 NC 15 NC 3 86 min 0 1 -1.39 2 .006 15 -1.025e-2 2 222.475 2 1802.68 1 87 6 max 0 15 .887 3 .125 1 7.839e-3 3 NC 15 NC 3 88 min 0 1 -1.398 2 .006 15 -1.136e-2 2 220.685 2 1831.912 1 89 7 max 0 15 .866 3 .099 1 8.651e-3 3 NC 15 NC 3 90 min 0 1 -1.316 <						-										
85 5 max 0 15 .86 3 .127 1 7.027e-3 3 NC 15 NC 3 86 min 0 1 -1.39 2 .006 15 -1.025e-2 2 222.475 2 1802.68 1 87 6 max 0 15 .887 3 .125 1 7.839e-3 3 NC 15 NC 3 88 min 0 1 -1.398 2 .006 15 -1.136e-2 2 220.685 2 1831.912 1 89 7 max 0 15 .866 3 .099 1 8.651e-3 3 NC 15 NC 3 90 min 0 1 -1.316 2 .004 10 -1.248e-2 2 239.786 2 2313.94 1 91 8 max 0 15 .8			4		_											
86 min 0 1 -1.39 2 .006 15 -1.025e-2 2 222.475 2 1802.68 1 87 6 max 0 15 .887 3 .125 1 7.839e-3 3 NC 15 NC 3 88 min 0 1 -1.398 2 .006 15 -1.136e-2 2 220.685 2 1831.912 1 89 7 max 0 15 .866 3 .099 1 8.651e-3 3 NC 15 NC 3 90 min 0 1 -1.316 2 .004 10 -1.248e-2 2 2313.94 1 91 8 max 0 15 .814 3 .057 1 9.463e-3 3 NC 15 NC 2 92 min 0 1 -1.179 2 003 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>						-										
87 6 max 0 15 .887 3 .125 1 7.839e-3 3 NC 15 NC 3 88 min 0 1 -1.398 2 .006 15 -1.136e-2 2 220.685 2 1831.912 1 89 7 max 0 15 .866 3 .099 1 8.651e-3 3 NC 15 NC 3 90 min 0 1 -1.316 2 .004 10 -1.248e-2 2 239.786 2 2313.94 1 91 8 max 0 15 .814 3 .057 1 9.463e-3 3 NC 15 NC 2 92 min 0 1 -1.179 2 003 10 -1.36e-2 2 280.103 2 4030.989 1 93 9 max 0 15 .758 3 .026 3 1.027e-2 3 NC 5 NC 1			5													3_
88 min 0 1 -1.398 2 .006 15 -1.136e-2 2 220.685 2 1831.912 1 89 7 max 0 15 .866 3 .099 1 8.651e-3 3 NC 15 NC 3 90 min 0 1 -1.316 2 .004 10 -1.248e-2 2 239.786 2 2313.94 1 91 8 max 0 15 .814 3 .057 1 9.463e-3 3 NC 15 NC 2 92 min 0 1 -1.179 2 003 10 -1.36e-2 2 280.103 2 4030.989 1 93 9 max 0 15 .758 3 .026 3 1.027e-2 3 NC 5 NC 1 94 min 0 1 -1.042																1
89 7 max 0 15 .866 3 .099 1 8.651e-3 3 NC 15 NC 3 90 min 0 1 -1.316 2 .004 10 -1.248e-2 2 239.786 2 2313.94 1 91 8 max 0 15 .814 3 .057 1 9.463e-3 3 NC 15 NC 2 92 min 0 1 -1.179 2 003 10 -1.36e-2 2 280.103 2 4030.989 1 93 9 max 0 15 .758 3 .026 3 1.027e-2 3 NC 5 NC 1 94 min 0 1 -1.042 2 009 2 -1.472e-2 2 336.889 2 NC 1 95 10 max 0 1 977 2 018 2 -1.584e-2 2 372.796 2 NC 1			6													
90 min 0 1 -1.316 2 .004 10 -1.248e-2 2 239.786 2 2313.94 1 91 8 max 0 15 .814 3 .057 1 9.463e-3 3 NC 15 NC 2 92 min 0 1 -1.179 2 003 10 -1.36e-2 2 280.103 2 4030.989 1 93 9 max 0 15 .758 3 .026 3 1.027e-2 3 NC 5 NC 1 94 min 0 1 -1.042 2 009 2 -1.472e-2 2 336.889 2 NC 1 95 10 max 0 1 .73 3 .025 3 1.109e-2 3 NC 5 NC 1 96 min 0 1 977 2 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>15</td> <td></td> <td>2</td> <td></td> <td></td> <td></td> <td></td>										15		2				
91 8 max 0 15 .814 3 .057 1 9.463e-3 3 NC 15 NC 2 92 min 0 1 -1.179 2 003 10 -1.36e-2 2 280.103 2 4030.989 1 93 9 max 0 15 .758 3 .026 3 1.027e-2 3 NC 5 NC 1 94 min 0 1 -1.042 2 009 2 -1.472e-2 2 336.889 2 NC 1 95 10 max 0 1 .73 3 .025 3 1.109e-2 3 NC 5 NC 1 96 min 0 1 977 2 018 2 -1.584e-2 2 372.796 2 NC 1			7	max	0	15						3		15		3
92 min 0 1 -1.179 2 003 10 -1.36e-2 2 280.103 2 4030.989 1 93 9 max 0 15 .758 3 .026 3 1.027e-2 3 NC 5 NC 1 94 min 0 1 -1.042 2 009 2 -1.472e-2 2 336.889 2 NC 1 95 10 max 0 1 .73 3 .025 3 1.109e-2 3 NC 5 NC 1 96 min 0 1 977 2 018 2 -1.584e-2 2 372.796 2 NC 1				min	0	_	-1.316					2			2313.94	1
93 9 max 0 15 .758 3 .026 3 1.027e-2 3 NC 5 NC 1 94 min 0 1 -1.042 2 009 2 -1.472e-2 2 336.889 2 NC 1 95 10 max 0 1 .73 3 .025 3 1.109e-2 3 NC 5 NC 1 96 min 0 1 977 2 018 2 -1.584e-2 2 372.796 2 NC 1	91		8		0	15	.814	3	.057	1	9.463e-3	3		15	NC	2
93 9 max 0 15 .758 3 .026 3 1.027e-2 3 NC 5 NC 1 94 min 0 1 -1.042 2 009 2 -1.472e-2 2 336.889 2 NC 1 95 10 max 0 1 .73 3 .025 3 1.109e-2 3 NC 5 NC 1 96 min 0 1 977 2 018 2 -1.584e-2 2 372.796 2 NC 1	92			min	0	1	-1.179	2	003	10	-1.36e-2	2	280.103	2	4030.989	1
94 min 0 1 -1.042 2 009 2 -1.472e-2 2 336.889 2 NC 1 95 10 max 0 1 .73 3 .025 3 1.109e-2 3 NC 5 NC 1 96 min 0 1 977 2 018 2 -1.584e-2 2 372.796 2 NC 1	93		9	1	0	15	.758	3	.026	3		3	NC	5	NC	1
95	94									2		2				1
96 min 0 1977 2018 2 -1.584e-2 2 372.796 2 NC 1			10			1										1
			11			1										1

Model Name

: Schletter, Inc. : HCV

. . Otanadanad DV/Mana

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

98 min 0 15 -1.042 2 009 2 -1.472e-2 2 336.889 99 12 max 0 1 .814 3 .057 1 9.463e-3 3 NC 100 min 0 15 -1.179 2 003 10 -1.36e-2 2 280.103 101 13 max 0 1 .866 3 .099 1 8.651e-3 3 NC	15 2 15	NC NC 4030.989	2
100 min 0 15 -1.179 2 003 10 -1.36e-2 2 280.103 101 13 max 0 1 .866 3 .099 1 8.651e-3 3 NC	2 15		
101 13 max 0 1 .866 3 .099 1 8.651e-3 3 NC	15	4030.989	
		NC	3
102 min 0 15 -1.316 2 .004 10 -1.248e-2 2 239.786	2	2313.94	1
103	15	NC	3
104 min 0 15 -1.398 2 .006 15 -1.136e-2 2 220.685	2	1831.912	1
105	15	NC	3
	2	1802.68	2
	15	NC 2188.008	3
108 min 0 15 -1.273 2 .005 15 -9.125e-3 2 251.096 109 17 max 0 1 .642 3 .065 1 5.404e-3 3 NC	5	NC	3
110 min 0 15 -1.048 2 .003 15 -8.006e-3 2 333.839	2	3522.054	
111	5	NC	1
112 min 0 15733 2 0 10 -6.886e-3 2 619.403	2	NC	1
113	1	NC	1
114 min 0 15365 2005 2 -5.766e-3 2 NC	1	NC	1
115 M16 1 max 0 15 .1 2 .007 3 6.715e-3 3 NC	1	NC	1
116 min 0 1083 3004 2 -7.803e-3 2 NC	1	NC	1
117 2 max 0 15 .023 3 .034 1 7.864e-3 3 NC	5	NC	2
118 min 0 1147 2 0 10 -8.76e-3 2 921.437	2	6850.454	
119 3 max 0 15 .106 3 .081 1 9.012e-3 3 NC	5	NC	3
120 min 0 1345 2 .004 15 -9.718e-3 2 512.775	2	2812.778	
121 4 max 0 15 .149 3 .123 1 1.016e-2 3 NC	5	NC	3
122 min 0 1458 2 .006 15 -1.067e-2 2 408.598	2	1864.926	1
123 5 max 0 15 .145 3 .144 1 1.131e-2 3 NC	5	NC	3
124 min 0 1472 2 .007 15 -1.163e-2 2 398.53	2	1591.224	1
125 6 max 0 15 .096 3 .138 1 1.246e-2 3 NC	5	NC	3
126 min 0 139 2 .007 15 -1.259e-2 2 465.638	2	1651.753	
127 7 max 0 15 .012 3 .108 1 1.361e-2 3 NC	5	NC	3
128 min 0 1231 2 .005 15 -1.355e-2 2 687.708	2	2113.572	1
129 8 max 0 15 .016 9 .062 1 1.475e-2 3 NC	3	NC	2
130 min 0 1087 3001 10 -1.45e-2 2 1666.694		3698.085	
131 9 max 0 15 .138 1 .023 3 1.59e-2 3 NC	4	NC	1
132 min 0 1175 3008 10 -1.546e-2 2 2482.552		NC NC	1
133	4	NC	1
134 min 0 1214 3017 2 -1.642e-2 2 1743.231		NC NC	1
135	4	NC NC	1
136 min 0 15175 3008 10 -1.546e-2 2 2482.552		NC NC	2
137	3	NC 3698.085	2
139	5	NC	3
139	2	2113.572	
141	5	NC	3
141	2	1651.753	
143	5	NC	3
144 min 0 15472 2 .007 15 -1.163e-2 2 398.53	2	1591.224	
145	5	NC	3
146 min 0 15458 2 .006 15 -1.067e-2 2 408.598	2	1864.926	
147	5	NC	3
148 min 0 15345 2 .004 15 -9.718e-3 2 512.775	2	2812.778	
149 18 max 0 1 .023 3 .034 1 7.864e-3 3 NC	5	NC	2
150 min 0 15147 2 0 10 -8.76e-3 2 921.437	2	6850.454	
151	1	NC	1
152 min 0 15083 3004 2 -7.803e-3 2 NC	1	NC	1
153 M2 1 max .007 2 .009 2 .008 1 -1.029e-5 15 NC	1	NC	2
154 min01 3014 3 0 15 -2.153e-4 1 7982.141	2	9067.772	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r					
155		2	max	.007	2	.008	2	.007	1	-9.707e-6	<u>15</u>	NC	1_	NC	2
156			min	009	3	014	3	0	15	-2.031e-4	1_	9198.847	2	9887.996	1
157		3	max	.006	2	.006	2	.006	1	-9.121e-6	<u>15</u>	NC	1_	NC	1
158			min	009	3	013	3	0		-1.908e-4	1_	NC	1_	NC	1
159		4	max	.006	2	.005	2	.006	1	-8.534e-6	<u>15</u>	NC	1_	NC	1
160			min	008	3	013	3	0	15	-1.785e-4	_1_	NC	1_	NC	1
161		5	max	.006	2	.004	2	.005	1	-7.948e-6	15	NC	_1_	NC	1
162			min	007	3	012	3	0	15	-1.662e-4	1_	NC	1_	NC	1
163		6	max	.005	2	.003	2	.005	1	-7.361e-6	15	NC	_1_	NC	1
164			min	007	3	012	3	0	15	-1.539e-4	1_	NC	1_	NC	1
165		7	max	.005	2	.002	2	.004	1	-6.775e-6	<u>15</u>	NC	_1_	NC	1_
166			min	006	3	011	3	0	15	-1.417e-4	1_	NC	1_	NC	1
167		8	max	.004	2	.001	2	.003	1	-6.188e-6	15	NC	_1_	NC	1
168			min	006	3	01	3	0	15	-1.294e-4	1_	NC	1_	NC	1
169		9	max	.004	2	0	2	.003	1	-5.602e-6	<u>15</u>	NC	1_	NC	1_
170			min	005	3	01	3	0	15	-1.171e-4	1_	NC	1	NC	1
171		10	max	.004	2	0	2	.002	1	-5.015e-6	<u>15</u>	NC	_1_	NC	1
172			min	005	3	009	3	0	15	-1.048e-4	1	NC	1	NC	1
173		11	max	.003	2	0	2	.002	1	-4.429e-6	15	NC	1	NC	1
174			min	004	3	008	3	0	15	-9.255e-5	1	NC	1	NC	1
175		12	max	.003	2	001	2	.002	1	-3.842e-6	15	NC	1	NC	1
176			min	004	3	007	3	0	15	-8.027e-5	1	NC	1	NC	1
177		13	max	.002	2	001	15	.001	1	-3.256e-6	15	NC	1	NC	1
178			min	003	3	006	3	0	15	-6.799e-5	1	NC	1	NC	1
179		14	max	.002	2	001	15	0	1	-2.669e-6	15	NC	1	NC	1
180			min	003	3	005	3	0	15	-5.571e-5	1	NC	1	NC	1
181		15	max	.002	2	0	15	0	1	-2.083e-6	15	NC	1	NC	1
182			min	002	3	004	3	0	15	-4.343e-5	1	NC	1	NC	1
183		16	max	.001	2	0	15	0	1	-1.496e-6	15	NC	1	NC	1
184		-10	min	002	3	003	3	0	15	-3.115e-5	1	NC	1	NC	1
185		17	max	0	2	0	15	0	1	-9.097e-7	15	NC	1	NC	1
186			min	001	3	002	3	0	15	-1.887e-5	1	NC	1	NC	1
187		18	max	0	2	0	15	0	1	-3.232e-7	15	NC	1	NC	1
188		10	min	0	3	001	4	0	15	-6.588e-6	1	NC	1	NC	1
189		19	max	0	1	0	1	0	1	5.692e-6	1	NC	1	NC	1
190		13	min	0	1	0	1	0	1	1.193e-7	12	NC	1	NC	1
191	M3	1	max	0	1	0	1	0	1	-1.007e-7	12	NC	1	NC	1
192	IVIO	_	min	0	1	0	1	0	1	-2.626e-6	1	NC NC	1	NC	1
193		2		0	3	0	15	0	1	1.838e-5	1	NC	1	NC	1
			max	0	2		4		_	8.764e-7		NC NC	1		1
194		2	min			002 0		0	12		<u>15</u>		1	NC NC	1
195		3	max	0	2		15	0 0	12	3.938e-5	15	NC NC	1	NC NC	1
196 197		1	min	0		004 001	15		12	1.876e-6	<u>15</u>	NC NC		NC NC	
		4	max	.001	3	001		0	1	6.038e-5	1_		1		1
198		-	min	001	2	006	4	0	12	2.875e-6	15	NC NC		NC NC	
199		5	max	.002	3	002	15	0	1	8.138e-5	1_	NC NC	1	NC NC	1
200		_	min	001	2	008	4	0	12	3.875e-6	<u>15</u>	NC NC	1_	NC NC	1
201		6	max	.002	3	002	15	0	1	1.024e-4	1_	NC 0004 440	1_4	NC NC	1
202		-	min	002	2	01	4	0	15	4.874e-6		9631.142	4	NC NC	1
203		7	max	.003	3	003	15	0	1	1.234e-4	1_	NC	1	NC NC	1
204			min	002	2	<u>011</u>	4	0	15	5.873e-6		8295.619	4_	NC	1
205		8	max	.003	3	003	15	0	1_	1.444e-4	1_	NC NC	1	NC NC	1
206			min	003	2	012	4	0	15	6.873e-6	<u>15</u>	7472.52	4_	NC	1
207		9	max	.003	3	003	15	.001	1	1.654e-4	1_	NC	2	NC	1
208			min	003	2	013	4	0	15	7.872e-6		6988.863	4	NC	1
209		10	max	.004	3	003	15	.001	1	1.864e-4	_1_	NC	5_	NC	1_
210			min	003	2	014	4	0	15	8.872e-6	15	6760.997	4	NC	1
211		11	max	.004	3	003	15	.002	1	2.074e-4	1_	NC	5	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio	LC		LC
212			min	004	2	014	4	0	15	9.871e-6		6755.538	4	NC	1
213		12	max	.005	3	003	15	.002	1	2.284e-4	_1_	NC	2	NC	1
214			min	004	2	013	4	0	15	1.087e-5	15	6976.575	4	NC	1
215		13	max	.005	3	003	15	.003	1_	2.494e-4	_1_	NC	_1_	NC	1
216			min	004	2	013	4	0	15	1.187e-5	15	7468.892	4	NC	1
217		14	max	.006	3	003	15	.003	1_	2.704e-4	_1_	NC	_1_	NC	1
218			min	005	2	011	4	0	15	1.287e-5		8340.908	4_	NC	1
219		15	max	.006	3	002	15	.004	1_	2.914e-4	_1_	NC	_1_	NC	1
220			min	005	2	01	4	0	15	1.387e-5		9831.854	4	NC	1
221		16	max	.006	3	002	15	.005	1_	3.124e-4	_1_	NC	_1_	NC	1
222			min	005	2	008	4	0	15	1.487e-5	15	NC	1	NC	1
223		17	max	.007	3	001	15	.005	1_	3.334e-4	_1_	NC	_1_	NC	1
224			min	006	2	006	4	0	15	1.587e-5	15	NC	<u>1</u>	NC	1
225		18	max	.007	3	0	15	.006	1_	3.544e-4	_1_	NC	_1_	NC	1
226			min	006	2	004	1	0	15	1.687e-5	15	NC	_1_	NC	1
227		19	max	.008	3	0	10	.007	1_	3.754e-4	_1_	NC	_1_	NC	1
228			min	007	2	002	3	0	15	1.787e-5	15	NC	_1_	NC	1
229	<u>M4</u>	1_	max	.002	1	.006	2	0	15	9.272e-5	_1_	NC	_1_	NC	3
230			min	0	3	008	3	007	1	4.429e-6	15	NC	1_	3373.73	1
231		2	max	.002	1	.006	2	0	15	9.272e-5	_1_	NC	_1_	NC	3
232			min	0	3	008	3	007	1	4.429e-6	15	NC	1	3662.996	1
233		3	max	.002	1	.006	2	0	15	9.272e-5	_1_	NC	_1_	NC	3
234			min	0	3	007	3	006	1	4.429e-6	<u> 15</u>	NC	<u>1</u>	4007.618	1
235		4	max	.002	1	.005	2	0	15	9.272e-5	_1_	NC	_1_	NC	2
236			min	0	3	007	3	006	1	4.429e-6	15	NC	1_	4421.913	1
237		5	max	.002	1	.005	2	0	15	9.272e-5	_1_	NC	_1_	NC	2
238			min	0	3	006	3	005	1	4.429e-6	15	NC	1	4925.343	1
239		6	max	.002	1	.004	2	0	15	9.272e-5	_1_	NC	_1_	NC	2
240			min	0	3	006	3	004	1	4.429e-6	15	NC	1_	5544.899	
241		7	max	.002	1	.004	2	0	15	9.272e-5	_1_	NC	_1_	NC	2
242			min	0	3	005	3	004	1	4.429e-6	15	NC	1_	6318.893	1
243		8	max	.001	1	.004	2	0	15	9.272e-5	1	NC	1	NC	2
244			min	0	3	005	3	003	1	4.429e-6	15	NC	_1_	7303.193	1
245		9	max	.001	1	.003	2	0	15	9.272e-5	_1_	NC	_1_	NC	2
246			min	0	3	004	3	003	1	4.429e-6	<u> 15</u>	NC	_1_	8581.897	1
247		10	max	.001	1	.003	2	0	15	9.272e-5	_1_	NC	_1_	NC	1
248			min	0	3	004	3	002	1	4.429e-6	15	NC	1_	NC	1
249		11	max	.001	1	.003	2	0	15	9.272e-5	_1_	NC	1	NC	1
250			min	0	3	004	3	002	1	4.429e-6	15	NC	1_	NC	1
251		12	max	0	1	.002	2	0	15	9.272e-5	_1_	NC	1_	NC	1
252			min	0	3	003	3	002		4.429e-6			1	NC	1
253		13	max	0	1	.002	2	0	15		_1_	NC	_1_	NC	1
254			min	0	3	003	3	<u>001</u>	1_	4.429e-6	<u>15</u>	NC	_1_	NC NC	1
255		14	max	0	1	.002	2	0			_1_	NC	1_	NC	1
256		4-	min	0	3	002	3	0	1	4.429e-6	<u> 15</u>	NC	1_	NC	1
257		15	max	0	1	.001	2	0	15	9.272e-5	1_	NC	1	NC	1
258		4.0	min	0	3	002	3	0	1_	4.429e-6	<u>15</u>	NC	1_	NC	1
259		16	max	0	1	.001	2	0	15		1_	NC	1	NC	1
260		4-	min	0	3	<u>001</u>	3	0	1	4.429e-6		NC	1_	NC	1
261		17	max	0	1	0	2	0	15	9.272e-5	1_	NC	1_	NC NC	1
262		10	min	0	3	0	3	0	1	4.429e-6	<u>15</u>	NC NC	1_	NC NC	1
263		18	max	0	1	0	2	0	15	9.272e-5	1_	NC	1	NC	1
264		4.0	min	0	3	0	3	0	1	4.429e-6	<u>15</u>	NC	_1_	NC NC	1
265		19	max	0	1	0	1	0	1	9.272e-5	1_	NC		NC	1
266	140		min	0	1	0	1	0	1	4.429e-6	<u> 15</u>	NC	1_	NC NC	1
267	M6	1	max	.023	2	.032	2	0	1	0	1_	NC 4550 000	4_	NC	1
268			min	031	3	045	3	0	1	0	1	1550.986	3	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC		LC
269		2	max	.021	2	.029	2	0	1	0	_1_	NC	4	NC	1
270			min	03	3	043	3	0	1	0	1	1644.604	3	NC	1
271		3	max	.02	2	.027	2	0	1	0	1	NC	4	NC	1
272			min	028	3	04	3	0	1	0	1	1750.274	3	NC	1
273		4	max	.019	2	.024	2	0	1	0	1	NC	4	NC	1
274			min	026	3	037	3	0	1	0	1	1870.492	3	NC	1
275		5	max	.018	2	.021	2	0	1	0	1	NC	4	NC	1
276			min	024	3	035	3	0	1	0	1	2008.468	3	NC	1
277		6	max	.016	2	.019	2	0	1	0	1	NC	4	NC	1
278			min	023	3	032	3	0	1	0	1	2168.402	3	NC	1
279		7	max	.015	2	.016	2	0	1	0	1	NC	1	NC	1
280			min	021	3	03	3	0	1	0	1	2355.9	3	NC	1
281		8	max	.014	2	.014	2	0	1	0	1	NC	1	NC	1
282			min	019	3	027	3	0	1	0	1	2578.609	3	NC	1
283		9	max	.013	2	.012	2	0	1	0	1	NC	1	NC	1
284			min	017	3	025	3	0	1	0	1	2847.243	3	NC	1
285		10	max	.011	2	.01	2	0	1	0	1	NC	1	NC	1
286			min	016	3	022	3	0	1	0	1	3177.284	3	NC	1
287		11	max	.01	2	.008	2	0	1	0	1	NC	1	NC	1
288			min	014	3	019	3	0	1	0	1	3591.969	3	NC	1
289		12	max	.009	2	.006	2	0	1	0	1	NC	1	NC	1
290			min	012	3	017	3	0	1	0	1	4127.83	3	NC	1
291		13	max	.008	2	.005	2	0	1	0	1	NC	1	NC	1
292		1.0	min	01	3	014	3	0	1	0	1	4845.773	3	NC	1
293		14	max	.006	2	.003	2	0	1	0	1	NC	1	NC	1
294		17	min	009	3	012	3	0	1	0	1	5855.461	3	NC	1
295		15	max	.005	2	.002	2	0	1	0	1	NC	1	NC	1
296		10	min	007	3	009	3	0	1	0	1	7376.271	3	NC	1
297		16	max	.004	2	.003	2	0	1	0	1	NC	1	NC	1
298		10	min	005	3	007	3	0	1	0	1	9920.151	3	NC	1
299		17	max	.003	2	<u>.007</u>	2	0	1	0	1	NC	1	NC	1
300		11/	min	003	3	005	3	0	1	0	1	NC	1	NC	1
301		18	max	.001	2	<u>005</u>	2	0	1	0	1	NC	1	NC	1
302		10	min	002	3	002	3	0	1	0	1	NC NC	1	NC	1
303		19		<u>002</u> 0	1	0	1	0	1	0	1	NC NC	1	NC NC	1
304		19	max	0	1	0	1	0	1	0	1	NC NC	1	NC NC	1
305	M7	1		0	1	0	1	0	1	0	1	NC NC	1	NC NC	1
306	IVI /		max	0	1	0	1	0	1	0	1	NC NC	1	NC NC	1
307		2	min	.001	3	<u> </u>	2		1	0	1	NC NC	1	NC NC	1
		-	max					0	1		1	NC NC	1		1
308 309		3	min max	001 .003	3	003 0	2	0	1	0	1	NC NC	1	NC NC	1
310		3		003	2	006	3	0	1	0	1	NC NC	1	NC NC	1
311		4	min	003 .004	3	006 001	15	0	1	0	1	NC NC	1	NC NC	1
312		4	max				3	0	1		1	NC NC	1		1
		E	min	004	2	008			1	0	_		1	NC NC	-
313		5	max	.005	3	002 01	15	<u>0</u> 	1	0	<u>1</u> 1	NC NC	1	NC NC	1
		6	min	005							•		_		
315		6	max	.007	3	002	15	0	1	0	1	NC SCOE COA	1	NC NC	1
316		7	min	007	2	012	3	0	1	0	1_	8605.604	3	NC NC	1
317		7	max	.008	3	003	15	0	1	0	1_	NC 7004 04 0	1	NC NC	1
318			min	008	2	014	3	0	1	0	1	7694.216	3	NC NC	1
319		8	max	.009	3	003	15	0	1	0	1	NC 7450 407	1	NC NC	1
320			min	009	2	015	3	0	1	0	1_	7156.187	3	NC NC	1
321		9	max	.011	3	003	15	0	1	0	1	NC cooo coo	1_	NC NC	1
322		40	min	011	2	016	3	0	1	0	1_	6880.208	3	NC NC	1
323		10	max	.012	3	003	15	0	1	0	1	NC CO4.C.FOF	1_	NC NC	1
324			min	012	2	016	3	0	1	0	1_		3	NC NC	1
325		11	max	.014	3	003	15	0	1	0	_1_	NC	1_	NC	1

Model Name

: Schletter, Inc. : HCV

. : Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio			LC
326			min	013	2	017	3	0	1	0	1	6856.129	4	NC	1
327		12	max	.015	3	003	15	0	1	0	1	NC	1_	NC	1
328			min	014	2	016	3	0	1	0	1_	7075.796	4	NC	1
329		13	max	.016	3	003	15	0	1	0	_1_	NC	_1_	NC	1
330		4.4	min	016	2	016	3	0	1	0	_1_	7570.916	4_	NC	1
331		14	max	.018	3	003	15	0	1	0	1	NC 0.450.04	1_	NC NC	1
332		45	min	017	2	015	3	0	1	0	1_	8450.94	4	NC NC	1
333		15	max	.019	3	002	15	0	1	0	1	NC	1_	NC NC	1
334		10	min	018	2	013	3	0	1	0	1_	9957.795	4	NC NC	1
335		16	max	.02 02	3	002 012	15	<u>0</u> 	1	0	<u>1</u> 1	NC NC	1	NC NC	1
336		17	min	.022	3				1		•	NC NC	1	NC NC	1
337		17	max min	021	2	001 01	15	0	1	0	1	NC NC	1	NC NC	1
339		18		.023	3	<u>01</u> 0	10	0	1	0	1	NC NC	1	NC NC	1
340		10	max min	022	2	008	3	0	1	0	1	NC NC	1	NC NC	1
341		19	max	.024	3	<u>008</u> 0	10	0	1	0	1	NC	1	NC	1
342		13	min	024	2	006	3	0	1	0	1	NC	1	NC	1
343	M8	1	max	.006	1	.023	2	0	1	0	1	NC	1	NC	1
344	IVIO	'	min	0	3	025	3	0	1	0	1	NC	1	NC	1
345		2	max	.006	1	.022	2	0	1	0	1	NC	1	NC	1
346		_	min	0	3	024	3	0	1	0	1	NC	1	NC	1
347		3	max	.006	1	.02	2	0	1	0	1	NC	1	NC	1
348			min	0	3	022	3	0	1	0	1	NC	1	NC	1
349		4	max	.005	1	.019	2	0	1	0	1	NC	1	NC	1
350			min	0	3	021	3	0	1	0	1	NC	1	NC	1
351		5	max	.005	1	.018	2	0	1	0	1	NC	1	NC	1
352			min	0	3	02	3	0	1	0	1	NC	1	NC	1
353		6	max	.005	1	.017	2	0	1	0	1	NC	1	NC	1
354			min	0	3	018	3	0	1	0	1	NC	1	NC	1
355		7	max	.004	1	.015	2	0	1	0	1_	NC	1_	NC	1_
356			min	0	3	017	3	0	1	0	1	NC	1_	NC	1
357		8	max	.004	1	.014	2	0	1	0	1	NC	1_	NC	1
358			min	0	3	015	3	0	1	0	1_	NC	1_	NC	1
359		9	max	.004	1	.013	2	0	1	0	_1_	NC	_1_	NC	1
360			min	0	3	014	3	0	1	0	1_	NC	1_	NC	1
361		10	max	.003	1	.011	2	0	1	0	1_	NC	_1_	NC	1
362			min	0	3	<u>013</u>	3	0	1	0	1_	NC	1_	NC	1
363		11	max	.003	1	.01	2	0	1	0	1	NC		NC NC	1
364		40	min	0	3	011	3	0	1	0	1_	NC	1_	NC NC	1
365		12	max	.002	1	.009	2	0	1	0	1_	NC	1_	NC NC	1
366		40	min		3	01	3	0	1	0	1	NC NC	1	NC NC	1
367		13	max	.002	3	.008	2	0	1	0	1	NC NC	1	NC NC	1
368		1.1	min	002	1	008 006	2	0	1	0	<u>1</u> 1	NC NC	<u>1</u> 1	NC NC	1
369		14	max	.002	3	.006	3	0 0	1	0	1	NC NC	1	NC NC	1
370 371		15	min max	.001	1	007 .005	2	0	1	0	<u>1</u> 1	NC NC	1	NC NC	1
372		10	min	0	3	005 006	3	0	1	0	1	NC NC	1	NC NC	1
373		16	max	.001	1	006 .004	2	0	1	0	1	NC NC	1	NC NC	1
374		10	min	0	3	004 004	3	0	1	0	1	NC NC	1	NC NC	1
375		17	max	0	1	.003	2	0	1	0	1	NC NC	1	NC NC	1
376		17	min	0	3	003	3	0	1	0	1	NC NC	1	NC NC	1
377		18	max	0	1	.003	2	0	1	0	1	NC	1	NC	1
378		10	min	0	3	001	3	0	1	0	1	NC	1	NC	1
379		19	max	0	1	0	1	0	1	0	1	NC	1	NC	1
380		1.5	min	0	1	0	1	0	1	0	1	NC	1	NC	1
381	M10	1	max	.007	2	.009	2	0	15	2.153e-4	1	NC	1	NC	2
382			min	01	3	014	3	008	1	1.029e-5	15		2	9067.772	1
													_		

Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]			LC	(n) L/y Ratio	LC		
383		2	max	.007	2	.008	2	0	15	2.031e-4	_1_	NC	_1_	NC	2
384			min	009	3	014	3	007	1	9.707e-6	15	9198.847	2	9887.996	1
385		3	max	.006	2	.006	2	0	15	1.908e-4	_1_	NC	_1_	NC	1
386			min	009	3	013	3	006	1	9.121e-6	15	NC	1	NC	1
387		4	max	.006	2	.005	2	0	15	1.785e-4	1_	NC	_1_	NC	1_
388			min	008	3	013	3	006	1	8.534e-6	15	NC	1_	NC	1
389		5	max	.006	2	.004	2	0	15	1.662e-4	_1_	NC	_1_	NC	1
390			min	007	3	012	3	005	1	7.948e-6	15	NC	1_	NC	1
391		6	max	.005	2	.003	2	0	15	1.539e-4	1_	NC	1_	NC	1
392			min	007	3	012	3	005	1	7.361e-6	15	NC	1_	NC	1
393		7	max	.005	2	.002	2	0	15	1.417e-4	_1_	NC	_1_	NC	1_
394			min	006	3	011	3	004	1	6.775e-6	15	NC	1	NC	1
395		8	max	.004	2	.001	2	0	15	1.294e-4	_1_	NC	_1_	NC	1
396			min	006	3	01	3	003	1	6.188e-6	15	NC	1	NC	1
397		9	max	.004	2	0	2	0	15	1.171e-4	1_	NC	_1_	NC	1_
398			min	005	3	01	3	003	1	5.602e-6	15	NC	1_	NC	1
399		10	max	.004	2	0	2	0	15	1.048e-4	1_	NC	_1_	NC	1_
400			min	005	3	009	3	002	1	5.015e-6	15	NC	1	NC	1
401		11	max	.003	2	0	2	00	15	9.255e-5	1_	NC	1	NC	1
402			min	004	3	008	3	002	1	4.429e-6	15	NC	1_	NC	1
403		12	max	.003	2	001	2	0	15	8.027e-5	_1_	NC	_1_	NC	1_
404			min	004	3	007	3	002	1	3.842e-6	15	NC	1_	NC	1
405		13	max	.002	2	001	15	0	15	6.799e-5	_1_	NC	_1_	NC	1_
406			min	003	3	006	3	001	1	3.256e-6	15	NC	1	NC	1
407		14	max	.002	2	001	15	0	15	5.571e-5	1	NC	1_	NC	1
408			min	003	3	005	3	0	1	2.669e-6	15	NC	1	NC	1
409		15	max	.002	2	0	15	0	15	4.343e-5	1_	NC	1	NC	1
410			min	002	3	004	3	0	1	2.083e-6	15	NC	1	NC	1
411		16	max	.001	2	0	15	0	15	3.115e-5	1	NC	1	NC	1
412			min	002	3	003	3	0	1	1.496e-6	15	NC	1	NC	1
413		17	max	0	2	0	15	0	15	1.887e-5	1	NC	1	NC	1
414			min	001	3	002	3	0	1	9.097e-7	15	NC	1	NC	1
415		18	max	0	2	0	15	0	15	6.588e-6	1	NC	1	NC	1
416			min	0	3	001	4	0	1	3.232e-7	15	NC	1	NC	1
417		19	max	0	1	0	1	0	1	-1.193e-7	12	NC	1	NC	1
418			min	0	1	0	1	0	1	-5.692e-6	1	NC	1	NC	1
419	M11	1	max	0	1	0	1	0	1	2.626e-6	1	NC	1	NC	1
420			min	0	1	0	1	0	1	1.007e-7	12	NC	1	NC	1
421		2	max	0	3	0	15	0	12	-8.764e-7	15	NC	1	NC	1
422			min	0	2	002	4	0	1	-1.838e-5	1	NC	1	NC	1
423		3	max	0	3	0	15	0	12	-1.876e-6	15	NC	1	NC	1
424			min	0	2	004	4	0	1	-3.938e-5	1	NC	1	NC	1
425		4	max	.001	3	001	15	0	12	-2.875e-6	15	NC	1	NC	1
426			min	001	2	006	4	0	1	-6.038e-5	1	NC	1	NC	1
427		5	max	.002	3	002	15	0	12	-3.875e-6	15	NC	1	NC	1
428			min	001	2	008	4	0	1	-8.138e-5	1	NC	1	NC	1
429		6	max	.002	3	002	15	0	15	-4.874e-6	15	NC	1	NC	1
430			min	002	2	01	4	0	1	-1.024e-4	1	9631.142	4	NC	1
431		7	max	.003	3	003	15	0	15	-5.873e-6	15	NC	1	NC	1
432			min	002	2	011	4	0	1	-1.234e-4	1	8295.619	4	NC	1
433		8	max	.003	3	003	15	0	15	-6.873e-6	15	NC	1	NC	1
434			min	003	2	012	4	0	1	-1.444e-4	1	7472.52	4	NC	1
435		9	max	.003	3	003	15	0	_	-7.872e-6	15	NC	2	NC	1
436			min	003	2	013	4	001	1	-1.654e-4	1	6988.863	4	NC	1
437		10	max	.004	3	003	15	0		-8.872e-6		NC	5	NC	1
438			min	003	2	014	4	001	1	-1.864e-4	1	6760.997	4	NC	1
439		11	max	.004	3	003	15	0		-9.871e-6	_	NC	5	NC	1
		<u> </u>													$\overline{}$

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC		LC			(n) L/z Ratio	LC
440			min	004	2	014	4	002	1	-2.074e-4	1	6755.538	4	NC	1
441		12	max	.005	3	003	15	00	15			NC	2	NC	1_
442			min	004	2	013	4	002	1	-2.284e-4		6976.575	4_	NC	1
443		13	max	.005	3	003	15	0	15			NC	1	NC	1
444		4.4	min	004	2	013	4	003	1	-2.494e-4	1_	7468.892	4_	NC NC	1_
445		14	max	.006	3	003	15	0	15	-1.287e-5	<u>15</u>	NC 0040,000	1_	NC	1
446		4.5	min	005	2	011	4	003	1	-2.704e-4	1_	8340.908	4	NC NC	1
447		15	max	.006	3	002	15	0	15	-1.387e-5		NC 0024 054	<u>1</u> 4	NC NC	1
448		16	min	005		01	4	004	1	-2.914e-4	1_	9831.854	<u>4</u> 1	NC NC	1
449 450		16	max	.006 005	3	002 008	15 4	0 005	1 <u>5</u>	-1.487e-5 -3.124e-4	<u>15</u> 1	NC NC	1	NC NC	1
451		17	min max	.005	3	008 001	15	005 0	15	-3.124e-4 -1.587e-5		NC	+	NC NC	1
452		17	min	00 <i>1</i>	2	001 006	4	005	1	-3.334e-4	1	NC	1	NC NC	1
453		18	max	.007	3	000	15	003	15	-1.687e-5		NC	1	NC	1
454		10	min	006	2	004	1	006	1	-3.544e-4	1	NC	1	NC	1
455		19	max	.008	3	<u>004</u>	10	<u>.000</u>	15		15	NC	1	NC	1
456		10	min	007	2	002	3	007	1	-3.754e-4	1	NC	1	NC	1
457	M12	1	max	.002	1	.006	2	.007	1	-4.429e-6		NC	1	NC	3
458	10112		min	0	3	008	3	0	15		1	NC	1	3373.73	1
459		2	max	.002	1	.006	2	.007	1	-4.429e-6	15	NC	1	NC	3
460		_	min	0	3	008	3	0	15	-9.272e-5	1	NC	1	3662.996	1
461		3	max	.002	1	.006	2	.006	1	-4.429e-6	15	NC	1	NC	3
462			min	0	3	007	3	0	15	-9.272e-5	1	NC	1	4007.618	1
463		4	max	.002	1	.005	2	.006	1	-4.429e-6	15	NC	1	NC	2
464			min	0	3	007	3	0	15	-9.272e-5	1	NC	1	4421.913	1
465		5	max	.002	1	.005	2	.005	1	-4.429e-6	15	NC	1	NC	2
466			min	0	3	006	3	0	15	-9.272e-5	1	NC	1	4925.343	1
467		6	max	.002	1	.004	2	.004	1	-4.429e-6	15	NC	1_	NC	2
468			min	0	3	006	3	0	15		1_	NC	1_	5544.899	1
469		7	max	.002	1	.004	2	.004	1	-4.429e-6	15	NC	_1_	NC	2
470			min	0	3	005	3	0	15	-9.272e-5	1_	NC	1	6318.893	1
471		8	max	.001	1	.004	2	.003	1	-4.429e-6		NC	1	NC	2
472			min	0	3	005	3	0	15	-9.272e-5	_1_	NC	<u>1</u>	7303.193	1
473		9	max	.001	1	.003	2	.003	1	-4.429e-6		NC	1_	NC	2
474		40	min	0	3	004	3	0	15	-9.272e-5	1_	NC NC	1_	8581.897	1
475		10	max	.001	1	.003	2	.002	1	-4.429e-6	<u>15</u>	NC	1	NC NC	1
476		4.4	min	0	3	004	3	0	15	-9.272e-5	1_	NC	1_	NC NC	1
477		11	max	001	1	.003	2	.002	1	-4.429e-6	<u>15</u>	NC	1	NC	1
478		12	min	0	3	004	3	0	15	-9.272e-5 -4.429e-6	1 =	NC NC	1	NC NC	1
479 480		12	max min	0	3	.002 003	3	.002 0	1	-4.429e-6 -9.272e-5	15	NC NC	1	NC NC	1
481			max	0	1	.002	2	.001	1	-4.429e-6		NC	+	NC NC	1
482		13	min	0	3	003	3	0		-4.429e-0		NC	1	NC NC	1
483		14	max	0	1	.002	2	0	1	-4.429e-6		NC	1	NC	1
484		14	min	0	3	002	3	0	15	-9.272e-5		NC	1	NC	1
485		15	max	0	1	.002	2	0	1	-4.429e-6		NC	1	NC	1
486		10	min	0	3	002	3	0	15			NC	1	NC	1
487		16	max	0	1	.002	2	0	1	-4.429e-6		NC	1	NC	1
488		-10	min	0	3	001	3	0		-9.272e-5		NC	1	NC	1
489		17	max	0	1	0	2	0	1	-4.429e-6		NC	1	NC	1
490			min	0	3	0	3	0	15			NC	1	NC	1
491		18	max	0	1	0	2	0	1	-4.429e-6		NC	1	NC	1
492			min	0	3	0	3	0	15			NC	1	NC	1
493		19	max	0	1	0	1	0	1	-4.429e-6		NC	1	NC	1
494			min	0	1	0	1	0	1	-9.272e-5		NC	1	NC	1
495	M1	1	max	.01	3	.113	2	0	1	1.293e-2	2	NC	1	NC	1
496			min	005	2	021	3	0	15	-2.558e-2	3	NC	1	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC		LC	(n) L/y Ratio	LC		LC
497		2	max	.01	3	.053	2	0	15	6.343e-3	2	NC	4	NC	1
498			min	005	2	007	3	005	1	-1.266e-2	3		2	NC	1
499		3	max	.01	3	.015	3	0	15	2.718e-5	<u>10</u>	NC	5	NC	1
500			min	005	2	011	2	008	1	-1.468e-4	1_	924.219	2	NC	1
501		4	max	.009	3	.052	3	0	15	4.237e-3	2	NC 504.545	5	NC NC	1
502		_	min	005	2	084	2	007	1	-4.866e-3	3	584.045	2	NC NC	1
503		5	max	.009	3	.098	3	0	15	8.471e-3	2	NC 404 004	5	NC NC	1
504			min	005	2	<u>16</u>	2	005	1	-9.598e-3	3	421.894	2	NC NC	1
505		6	max	.009	3	.149	3	0	15	1.271e-2	2		15	NC NC	1
506		7	min	005	2	<u>233</u> .197	3	002	1	-1.433e-2	3	332.514 NC	2 15	NC NC	1
507			max	.009 005	2	299	2	0 0	12	1.694e-2	2	279.728		NC NC	1
508 509		8	min	.009	3	<u>299</u> .238	3	0	1	-1.906e-2 2.117e-2	2		2 15	NC NC	1
510		0	max	005	2	35	2	0	15	-2.38e-2	3	248.494	2	NC	1
511		9	max	.008	3	.264	3	0	15	2.418e-2	2		15	NC	1
512		-	min	005	2	383	2	0	1	-2.401e-2	3	232.231	2	NC	1
513		10	max	.008	3	.273	3	0	1	2.637e-2	2		15	NC	1
514		10	min	005	2	394	2	0	15	-2.121e-2	3	227.473	2	NC	1
515		11	max	.008	3	.266	3	0	1	2.856e-2	2		15	NC	1
516			min	005	2	383	2	0	15	-1.842e-2	3	233.076	2	NC	1
517		12	max	.008	3	.244	3	0	15	2.769e-2	2		15	NC	1
518			min	005	2	349	2	0	1	-1.551e-2	3	251.067	2	NC	1
519		13	max	.008	3	.208	3	0	15	2.221e-2	2		15	NC	1
520			min	005	2	294	2	0	1	-1.241e-2	3	285.993	2	NC	1
521		14	max	.008	3	.162	3	.002	1	1.673e-2	2		15	NC	1
522			min	005	2	226	2	0	15	-9.318e-3	3	345.902	2	NC	1
523		15	max	.007	3	.11	3	.005	1	1.125e-2	2	NC	5	NC	1
524			min	004	2	151	2	0	15	-6.223e-3	3	449.45	2	NC	1
525		16	max	.007	3	.056	3	.007	1	5.771e-3	2	NC	5	NC	1
526			min	004	2	075	2	0	15	-3.128e-3	3	642.159	2	NC	1
527		17	max	.007	3	.005	3	.007	1	5.061e-4	1_	NC	5	NC	1
528			min	004	2	006	2	0	15	-3.314e-5	3	1056.077	2	NC	1
529		18	max	.007	3	.05	2	.005	1	1.013e-2	2	NC	4	NC	1
530			min	004	2	04	3	0	15	-4.32e-3	3	2252.142	2	NC	1
531		19	max	.007	3	1	2	0	15	2.032e-2	2	NC	1	NC	1
532			min	004	2	083	3	0	1	-8.78e-3	3	NC	1	NC	1
533	<u>M5</u>	1	max	.03	3	.257	2	0	1	0	1_	NC	1	NC NC	1
534			min	021	2	02	3	0	1	0	1_	NC	1	NC NC	1
535		2	max	.03	3	.118	2	0	1	0	1_	NC	5	NC NC	1
536			min	021	2	0	3	0	1	0	1_	836.622	2	NC NC	1
537		3	max	.03	3	.048	3	0	1	0	11	NC 204 FCO	5	NC NC	1
538		1	min	021	2	037	2	0	1	0	1_	394.569	2	NC NC	1
539		4	max	.029	3	.145	2	<u> </u>	1	0	1		15 2	NC NC	1
540		-	min	021	2	221	3		1	0	1			NC NC	1
541 542		5	max min	.029 02	3	<u>.275</u> 419	2	<u>0</u> 	1	0	1		1 <u>5</u>	NC NC	1
543		6	max	.028	3	.421	3	0	1	0	1		15	NC	1
544		-0	min	02	2	616	2	0	1	0	1	132.411	2	NC	1
545		7	max	.028	3	.563	3	0	1	0	1		15	NC	1
546			min	02	2	793	2	0	1	0	1	109.994	2	NC	1
547		8	max	.027	3	793 .681	3	0	1	0	1		<u></u>	NC NC	1
548			min	019	2	936	2	0	1	0	1		2	NC	1
549		9	max	.026	3	<u>930</u> .757	3	0	1	0	1		15	NC	1
550			min	019	2	-1.026	2	0	1	0	1	90.158	2	NC	1
551		10	max	.026	3	.784	3	0	1	0	1		15	NC NC	1
552			min	019	2	-1.056	2	0	1	0	1		2	NC	1
553		11	max	.025	3	.764	3	0	1	0	1		15	NC	1
			max	.020								.0.0.100	. •		

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:__

5556		Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
See				min		2	-1.026	2		1	•	1	90.502	2		1
557	555		12	max	.025		.698		0	1	0	1_	4324.693	15	NC	1
558	556			min	018		931		0	1	0	1	98.021	2		1
569	557		13	max	.024	3	.592	3	0	1	0	1_	4922.528			1
Secondary Seco				min					0	1	0	1				1
561			14						0	1	0	_1_				_
662 min .017 2 .39 2 0 1 0 1 185.271 2 NC 1 563 16 max .022 3 .158 3 0 1 0 1 XR 15 NC 1 566 min .017 2 .02 2 0 1 0 1 XR 0 1 NC 5 NC 1 567 18 max .022 3 .11 0 1 NC 5 NC 1 569 19 max .022 3 .11 0 1 NC 1 NC <td>560</td> <td></td> <td></td> <td>min</td> <td>018</td> <td></td> <td>593</td> <td></td> <td>0</td> <td>1</td> <td>0</td> <td>1</td> <td>138.975</td> <td>2</td> <td>NC</td> <td>1</td>	560			min	018		593		0	1	0	1	138.975	2	NC	1
F653	561		15	max	.023		.309		0	1	0	1_	7732.852	15		1
Se64	562			min				2	0	1	0	1		2		1
565	563		16	max					0	1	0	1		15		1
See	564			min	017		193	2	0	1	0	1	274.561	2	NC	1
S68	565		17	max	.022	3	.016	3	0	1	0	1	NC	5	NC	1
Fight Decomposition Fight Decomposition Decompositio	566			min	017	2	02	2	0	1	0	1	474.044	2	NC	1
569	567		18	max	.022	3	.11	2	0	1	0	1	NC	5	NC	1
STO	568			min	017	2	105		0	1	0	1	1051.879	2	NC	1
S71	569		19	max	.022	3	.216	2	0	1	0	1	NC	1	NC	1
S72	570			min	017	2	214	3	0	1	0	1	NC	1	NC	1
573	571	M9	1	max	.01	3	.113	2	0	15	2.558e-2	3	NC	1	NC	1
S74	572			min	005	2	021	3	0	1	-1.293e-2	2	NC	1	NC	1
S75	573		2	max	.01	3	.053	2	.005	1	1.266e-2	3	NC	4	NC	1
	574			min	005	2	007	3	0	15	-6.343e-3	2	1916.205	2	NC	1
577	575		3	max	.01	3	.015	3	.008	1	1.468e-4	1	NC	5	NC	1
578	576			min	005	2	011	2	0	15	-2.718e-5	10	924.219	2	NC	1
578	577		4	max	.009	3	.052	3	.007	1	4.866e-3	3	NC	5	NC	1
579 5 max 009 3 098 3 005 1 9,598e-3 3 NC 5 NC 1										15						1
S80			5		.009	3	.098	3	.005	1		3	NC	5	NC	1
581 6 max .009 3 .149 3 .002 1 1.433e-2 3 NC 15 NC 1 582 min 005 2 233 2 0 15 -1.271e-2 2 332.514 2 NC 1 583 7 max .009 3 .197 3 0 12 1.906e-2 3 NC 15 NC 1 584 min 005 2 299 2 0 1 -1.694e-2 2 279.728 2 NC 1 585 8 max .009 3 .238 3 0 15 2.38e-2 3 9897.19 15 NC 1 586 8 max .009 3 .238 2 0 1 -2.171e-2 2 248.494 2 NC 1 587 9 max .008 3 <td></td> <td></td> <td></td> <td>min</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>15</td> <td></td> <td></td> <td>421.894</td> <td></td> <td>NC</td> <td>1</td>				min						15			421.894		NC	1
583 7 max .009 3 .197 3 0 12 1.906e-2 3 NC 15 NC 1 584 min 005 2 299 2 0 1 -1.694e-2 2 279.728 2 NC 1 585 8 max .009 3 .238 3 0 15 2.38e-2 3 .9897.19 15 NC 1 586 min 005 2 38 2 0 1 2.418e-2 2 248.494 2 NC 1 587 9 max .008 3 .264 3 0 1 2.401e-2 3 .9252.401 15 NC 1 589 10 max .008 3 .273 3 0 15 2.418e-2 2 .232.471 2 NC 1 590 min 005 2			6		.009	3	.149	3	.002	1		3		15	NC	1
583 7 max .009 3 .197 3 0 12 1.906e-2 3 NC 15 NC 1 584 min 005 2 299 2 0 1 -1.694e-2 2 279.728 2 NC 1 585 8 max .009 3 .238 3 0 15 2.38e-2 3 .9897.19 15 NC 1 586 min 005 2 38 2 0 1 2.418e-2 2 248.494 2 NC 1 587 9 max .008 3 .264 3 0 1 2.401e-2 3 .9252.401 15 NC 1 589 10 max .008 3 .273 3 0 15 2.418e-2 2 .232.401 1 NC 1 590 min 005 2	582			min	005	2	233	2	0	15	-1.271e-2	2	332.514	2	NC	1
584 min 005 2 299 2 0 1 -1.694e-2 2 279.728 2 NC 1 585 8 max .009 3 .238 3 0 15 2.38e-2 3 .9897.19 15 NC 1 586 min 005 2 35 2 0 1 -2.17e-2 2 248.494 2 NC 1 587 9 max .008 3 .264 3 0 1 2.41e-2 3 .252.401 15 NC 1 588 min 005 2 383 2 0 15 2.41e-2 3 9255.866 15 NC 1 589 10 max .008 3 .266 3 0 15 2.12e-2 2 27.473 2 NC 1 591 11 max .008 3 <t< td=""><td></td><td></td><td>7</td><td></td><td></td><td></td><td></td><td></td><td>0</td><td></td><td></td><td>3</td><td></td><td>15</td><td></td><td>1</td></t<>			7						0			3		15		1
585 8 max .009 3 .238 3 0 15 2.38e-2 3 9897.19 15 NC 1 586 min 005 2 35 2 0 1 -2.117e-2 2 248.494 2 NC 1 587 9 max .008 3 .264 3 0 1 2.401e-2 3 9252.401 15 NC 1 588 min 005 2 383 2 0 15 2.2418e-2 2 232.231 2 NC 1 589 10 max .008 3 .266 3 0 15 2.121e-2 3 9055.866 15 NC 1 590 min 005 2 383 2 0 1 2.637e-2 2 227.473 2 NC 1 592 min 005 2 383 2				min		2	299	2	0	1		2		2	NC	1
586 min 005 2 35 2 0 1 -2.117e-2 2 248.494 2 NC 1 587 9 max .008 3 .264 3 0 1 2.401e-2 3 9252.401 15 NC 1 588 min 005 2 383 2 0 15 -2.418e-2 2 232.231 2 NC 1 589 10 max .008 3 .273 3 0 15 -2.121e-2 3 9055.866 15 NC 1 590 min 005 2 394 2 0 1 -2.637e-2 2 227.473 2 NC 1 591 11 max .008 3 .266 3 0 15 1.842e-2 3 9251.989 15 NC 1 592 min 005 2 383 <td></td> <td></td> <td>8</td> <td>max</td> <td>.009</td> <td>3</td> <td>.238</td> <td>3</td> <td>0</td> <td>15</td> <td>2.38e-2</td> <td>3</td> <td>9897.19</td> <td>15</td> <td>NC</td> <td>1</td>			8	max	.009	3	.238	3	0	15	2.38e-2	3	9897.19	15	NC	1
588 min 005 2 383 2 0 15 -2.418e-2 2 232.231 2 NC 1 589 10 max .008 3 .273 3 0 15 2.121e-2 3 9055.866 15 NC 1 590 min 005 2 394 2 0 1 -2.637e-2 2 227.473 2 NC 1 591 11 max .008 3 .266 3 0 15 1.842e-2 2 227.473 2 NC 1 592 min 005 2 383 2 0 1 2.856e-2 2 233.076 2 NC 1 593 12 max .008 3 .244 3 0 1 1.551e-2 3 996.317 15 NC 1 594 min 005 2 294				min	005	2	35	2	0	1	-2.117e-2	2	248.494	2	NC	1
588 min 005 2 383 2 0 15 -2.418e-2 2 232.231 2 NC 1 589 10 max .008 3 .273 3 0 15 2.121e-2 3 9055.866 15 NC 1 590 min 005 2 394 2 0 1 -2.637e-2 2 227.473 2 NC 1 591 11 max .008 3 .266 3 0 15 1.842e-2 2 227.473 2 NC 1 592 min 005 2 383 2 0 1 2.856e-2 2 233.076 2 NC 1 593 12 max .008 3 .244 3 0 1 1.551e-2 3 996.317 15 NC 1 594 min 005 2 294	587		9	max	.008	3	.264	3	0	1	2.401e-2	3	9252.401	15	NC	1
589 10 max .008 3 .273 3 0 15 2.121e-2 3 9055.866 15 NC 1 590 min 005 2 394 2 0 1 -2.637e-2 2 227.473 2 NC 1 591 11 max .008 3 .266 3 0 15 1.842e-2 3 9251.989 15 NC 1 592 min 005 2 383 2 0 1 -2.856e-2 2 233.076 2 NC 1 593 12 max .008 3 .244 3 0 1 1.551e-2 3 9896.317 15 NC 1 594 min 005 2 349 2 0 15 -2.769e-2 2 251.067 2 NC 1 595 13 max .008 3				min	005	2	383	2	0	15	-2.418e-2	2		2	NC	1
590 min 005 2 394 2 0 1 -2.637e-2 2 227.473 2 NC 1 591 11 max .008 3 .266 3 0 15 1.842e-2 3 9251.989 15 NC 1 592 min 005 2 383 2 0 1 -2.856e-2 2 233.076 2 NC 1 593 12 max .008 3 .244 3 0 1 1.551e-2 3 9896.317 15 NC 1 594 min 005 2 349 2 0 15 -2.769e-2 2 251.067 2 NC 1 595 13 max .008 3 .208 3 0 1 1.241e-2 3 NC 15 NC 1 596 min 005 2 294			10		.008	3	.273	3	0	15		3		15	NC	1
592 min 005 2 383 2 0 1 -2.856e-2 2 233.076 2 NC 1 593 12 max .008 3 .244 3 0 1 1.551e-2 3 9896.317 15 NC 1 594 min 005 2 349 2 0 15 -2.769e-2 2 251.067 2 NC 1 595 13 max .008 3 .208 3 0 1 1.241e-2 3 NC 15 NC 1 596 min 005 2 294 2 0 15 -2.221e-2 2 285.993 2 NC 1 597 14 max .008 3 .162 3 0 15 9.318e-3 3 NC 15 NC 1 598 min 005 2 206				min	005	2	394	2	0	1	-2.637e-2	2	227.473	2	NC	1
592 min 005 2 383 2 0 1 -2.856e-2 2 233.076 2 NC 1 593 12 max .008 3 .244 3 0 1 1.551e-2 3 9896.317 15 NC 1 594 min 005 2 349 2 0 15 -2.769e-2 2 251.067 2 NC 1 595 13 max .008 3 .208 3 0 1 1.241e-2 3 NC 15 NC 1 596 min 005 2 294 2 0 15 -2.221e-2 2 285.993 2 NC 1 597 14 max .008 3 .162 3 0 15 9.318e-3 3 NC 15 NC 1 598 min 005 2 206			11		.008	3	.266	3	0	15	1.842e-2	3		15	NC	1
594 min 005 2 349 2 0 15 -2.769e-2 2 251.067 2 NC 1 595 13 max .008 3 .208 3 0 1 1.241e-2 3 NC 15 NC 1 596 min 005 2 294 2 0 15 -2.221e-2 2 285.993 2 NC 1 597 14 max .008 3 .162 3 0 15 9.318e-3 3 NC 15 NC 1 598 min 005 2 226 2 002 1 -1.673e-2 2 345.902 2 NC 1 599 15 max .007 3 .11 3 0 15 6.223e-3 3 NC 5 NC 1 600 min 004 2 151 <td< td=""><td>592</td><td></td><td></td><td>min</td><td>005</td><td>2</td><td>383</td><td>2</td><td>0</td><td>1</td><td>-2.856e-2</td><td>2</td><td>233.076</td><td>2</td><td>NC</td><td>1</td></td<>	592			min	005	2	383	2	0	1	-2.856e-2	2	233.076	2	NC	1
594 min 005 2 349 2 0 15 -2.769e-2 2 251.067 2 NC 1 595 13 max .008 3 .208 3 0 1 1.241e-2 3 NC 15 NC 1 596 min 005 2 294 2 0 15 -2.221e-2 2 285.993 2 NC 1 597 14 max .008 3 .162 3 0 15 9.318e-3 3 NC 15 NC 1 598 min 005 2 226 2 002 1 -1.673e-2 2 345.902 2 NC 1 599 15 max .007 3 .11 3 0 15 6.223e-3 3 NC 5 NC 1 600 min 004 2 151 <td< td=""><td></td><td></td><td>12</td><td></td><td></td><td>3</td><td></td><td></td><td>0</td><td>1</td><td></td><td>3</td><td></td><td>15</td><td></td><td>1</td></td<>			12			3			0	1		3		15		1
595 13 max .008 3 .208 3 0 1 1.241e-2 3 NC 15 NC 1 596 min 005 2 294 2 0 15 -2.221e-2 2 285.993 2 NC 1 597 14 max .008 3 .162 3 0 15 9.318e-3 3 NC 15 NC 1 598 min 005 2 226 2 002 1 -1.673e-2 2 345.902 2 NC 1 599 15 max .007 3 .11 3 0 15 6.223e-3 3 NC 5 NC 1 600 min 004 2 151 2 005 1 -1.125e-2 2 449.45 2 NC 1 601 max .007 3 .056 <th< td=""><td>594</td><td></td><td></td><td>min</td><td>005</td><td>2</td><td>349</td><td>2</td><td>0</td><td>15</td><td>-2.769e-2</td><td>2</td><td>251.067</td><td>2</td><td>NC</td><td>1</td></th<>	594			min	005	2	349	2	0	15	-2.769e-2	2	251.067	2	NC	1
596 min 005 2 294 2 0 15 -2.221e-2 2 285.993 2 NC 1 597 14 max .008 3 .162 3 0 15 9.318e-3 3 NC 15 NC 1 598 min 005 2 226 2 002 1 -1.673e-2 2 345.902 2 NC 1 599 15 max .007 3 .11 3 0 15 6.223e-3 3 NC 5 NC 1 600 min 004 2 151 2 005 1 -1.125e-2 2 449.45 2 NC 1 601 16 max .007 3 .056 3 0 15 3.128e-3 3 NC 5 NC 1 602 min 004 2 007 <			13													
597 14 max .008 3 .162 3 0 15 9.318e-3 3 NC 15 NC 1 598 min 005 2 226 2 002 1 -1.673e-2 2 345.902 2 NC 1 599 15 max .007 3 .11 3 0 15 6.223e-3 3 NC 5 NC 1 600 min 004 2 151 2 005 1 -1.125e-2 2 449.45 2 NC 1 601 16 max .007 3 .056 3 0 15 3.128e-3 3 NC 5 NC 1 602 min 004 2 075 2 007 1 -5.771e-3 2 642.159 2 NC 1 603 17 max .007 3 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td><td>15</td><td></td><td></td><td></td><td></td><td></td><td>1</td></t<>									0	15						1
598 min 005 2 226 2 002 1 -1.673e-2 2 345.902 2 NC 1 599 15 max .007 3 .11 3 0 15 6.223e-3 3 NC 5 NC 1 600 min 004 2 151 2 005 1 -1.125e-2 2 449.45 2 NC 1 601 16 max .007 3 .056 3 0 15 3.128e-3 3 NC 5 NC 1 602 min 004 2 075 2 007 1 -5.771e-3 2 642.159 2 NC 1 603 17 max .007 3 .005 3 0 15 3.314e-5 3 NC 5 NC 1 604 min 004 2 007			14						0							1
599 15 max .007 3 .11 3 0 15 6.223e-3 3 NC 5 NC 1 600 min 004 2 151 2 005 1 -1.125e-2 2 449.45 2 NC 1 601 16 max .007 3 .056 3 0 15 3.128e-3 3 NC 5 NC 1 602 min 004 2 075 2 007 1 -5.771e-3 2 642.159 2 NC 1 603 17 max .007 3 .005 3 0 15 3.314e-5 3 NC 5 NC 1 604 min 004 2 007 1 -5.061e-4 1 1056.077 2 NC 1 605 18 max .007 3 .05 2																1
600 min 004 2 151 2 005 1 -1.125e-2 2 449.45 2 NC 1 601 16 max .007 3 .056 3 0 15 3.128e-3 3 NC 5 NC 1 602 min 004 2 075 2 007 1 -5.771e-3 2 642.159 2 NC 1 603 17 max .007 3 .005 3 0 15 3.314e-5 3 NC 5 NC 1 604 min 004 2 007 1 -5.061e-4 1 1056.077 2 NC 1 605 18 max .007 3 .05 2 0 15 4.32e-3 3 NC 4 NC 1 606 min 004 2 04 3 005			15					3		15		3				1
601 16 max .007 3 .056 3 0 15 3.128e-3 3 NC 5 NC 1 602 min 004 2 075 2 007 1 -5.771e-3 2 642.159 2 NC 1 603 17 max .007 3 .005 3 0 15 3.314e-5 3 NC 5 NC 1 604 min 004 2 006 2 007 1 -5.061e-4 1 1056.077 2 NC 1 605 18 max .007 3 .05 2 0 15 4.32e-3 3 NC 4 NC 1 606 min 004 2 04 3 005 1 -1.013e-2 2 2252.142 2 NC 1 607 19 max .007 3 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>005</td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td></t<>									005							1
602 min 004 2 075 2 007 1 -5.771e-3 2 642.159 2 NC 1 603 17 max .007 3 .005 3 0 15 3.314e-5 3 NC 5 NC 1 604 min 004 2 006 2 007 1 -5.061e-4 1 1056.077 2 NC 1 605 18 max .007 3 .05 2 0 15 4.32e-3 3 NC 4 NC 1 606 min 004 2 04 3 005 1 -1.013e-2 2 2252.142 2 NC 1 607 19 max .007 3 .1 2 0 1 8.78e-3 3 NC 1 NC 1			16							15		3				
603 17 max .007 3 .005 3 0 15 3.314e-5 3 NC 5 NC 1 604 min 004 2 006 2 007 1 -5.061e-4 1 1056.077 2 NC 1 605 18 max .007 3 .05 2 0 15 4.32e-3 3 NC 4 NC 1 606 min 004 2 04 3 005 1 -1.013e-2 2 2252.142 2 NC 1 607 19 max .007 3 .1 2 0 1 8.78e-3 3 NC 1 NC 1									-							
604 min 004 2 006 2 007 1 -5.061e-4 1 1056.077 2 NC 1 605 18 max .007 3 .05 2 0 15 4.32e-3 3 NC 4 NC 1 606 min 004 2 04 3 005 1 -1.013e-2 2 2252.142 2 NC 1 607 19 max .007 3 .1 2 0 1 8.78e-3 3 NC 1 NC 1			17													1
605 18 max .007 3 .05 2 0 15 4.32e-3 3 NC 4 NC 1 606 min 004 2 04 3 005 1 -1.013e-2 2 2252.142 2 NC 1 607 19 max .007 3 .1 2 0 1 8.78e-3 3 NC 1 NC 1																
606 min 004 2 04 3 005 1 -1.013e-2 2 2252.142 2 NC 1 607 19 max .007 3 .1 2 0 1 8.78e-3 3 NC 1 NC 1			18													_
607 19 max .007 3 .1 2 0 1 8.78e-3 3 NC 1 NC 1																
			19													
	608			min	004	2	083	3	0	15		2	NC	1	NC	1

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14	-42 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	42 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1723.0	23.0	593.0	593.4	
Sum	1723 0	23.0	593.0	593 4	

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1723

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'vx (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'_c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_N$	$_{lc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec.	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247 75	0.967	1.00	1 000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

$ au_{k,cr}$ (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)			
1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N_{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,i}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a)			
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ extsf{p}, extsf{Na}}$	N _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

Company:	Schletter, Inc.	Date:	11/17/2015			
Engineer:	HCV	Page:	4/5			
Project:	Standard PVMax - Worst Case, 14-42 Inch Width					
Address:						
Phone:						
E-mail:						

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

$V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq.	. D-24)
--	---------

le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cby} = \phi (A_1)$	$_{ m Vc}$ / $A_{ m Vco}$) $\Psi_{ m ed,V}$ $\Psi_{ m c}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934

Shear perpendicular to edge in x-direction:

V _{bv} = '	7(1,/	$d_{a})^{0.2}$	Vd-22	f'cCa1 1.5	(Fa	D-24)
v bx -	/ Vie/	uai	VUaz V	I cLai	ıLu.	D-241

l _e (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	vc / A vco) Ψed, v Ψc,	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

I _e (in)	d _a (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) $\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\varPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

	u)	(-4)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)	
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875	

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \mathcal{Y}_{ed,Na} \mathcal{Y}_{p,Na} N_{a0}; k_{cp} (A_{Nc}/A_{Nco}) \mathcal{Y}_{ed,N} \mathcal{Y}_{c,N} \mathcal{Y}_{c,N} \mathcal{Y}_{cp,NNb}| \text{ (Eq. D-30a)}$

Kcp	A _{Na} (In²)	A _{Na0} (In²)	$arPsi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	Na0 (ID)	Na (ID)			
2.0	109.66	109.66	1.000	1.000	9755	9755			
4 (:-2)	A (:2)	177	177	177	A / /II- \	A / /II- \	,		
A_{Nc} (in ²)	A_{Nco} (in ²)	$arPsi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	N_{cb} (lb)	ϕ	ϕV_{cp} (lb)	
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298	

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1723	6071	0.28	Pass
Concrete breakout	1723	5710	0.30	Pass
Adhesive	1723	5365	0.32	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	593	3156	0.19	Pass (Governs)
T Concrete breakout y+	593	3934	0.15	Pass
T Concrete breakout x+	23	3018	0.01	Pass
Concrete breakout y+	23	8508	0.00	Pass
Concrete breakout x+	593	6875	0.09	Pass
Concrete breakout, combined	-	-	0.15	Pass
Pryout	593	12298	0.05	Pass
Interaction check Nu	a/φNn Vua/φVn	Combined Rat	o Permissible	Status
Sec. D.7.1 0.3	32 0.00	32.1 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 36	Inch Wic	lth
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2 Load combination: not set

Seismic design: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 36	Inch Wic	lth
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 36	Inch Wid	lth
Address:		•	
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	2718.0	1678.0	0.0	1678.0	
2	2718.0	1678.0	0.0	1678.0	
Sum	5436.0	3356.0	0.0	3356.0	_

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 5436 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	ř _c (psi)	n _{ef} (in)	N_b (ID)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_I)$	Nc / A_{Nco}) $\Psi_{ec,N}$ Ψ_{ec}	$_{d,N} arPsi_{c,N} arPsi_{cp,N} N_b$ (S	Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$arPsi_{ec,N}$	$\mathscr{V}_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
408.24	324.00	1.000	1.000	1.00	1.000	12492	0.65	10231

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

τ _{k,cr} (psi)	f _{short-term}	K _{sat}	τ _{k,cr} (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_N$	a / A_{Na0}) $\Psi_{ ext{ed},Na}$ $\Psi_{ ext{g}}$	$_{ extstyle I,Na}arPsi_{ extstyle ec,Na}arPsi_{ extstyle p,Na} \Lambda$	I _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$\mathscr{\Psi}_{ extsf{ extsf{p}}, extsf{Na}}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 36	Inch Wic	lth
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/d$	a) ^{0.2} √ d aλ√ f ′c C a1 ^{1.9}	⁵ (Eq. D-24)						
le (in)	da (in)	λ	f'_c (psi)	Ca1 (in)	V _{bx} (lb)			
4.00	0.50	1.00	2500	12.00	15593			
$\phi V_{cbgx} = \phi (A$	vc/Avco) Yec, v Ye	$_{\text{ed,V}} \varPsi_{\text{c,V}} \varPsi_{\text{h,V}} V_{\text{bx}}$	(Sec. D.4.1 & Ed	դ. D-22)				
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec,V}$	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbgx} (lb)
648.00	648.00	1.000	0.961	1.000	1.000	15593	0.70	10490

Shear parallel to edge in x-direction:

$V_{by} = 7(I_e/d$	$(a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$	⁵ (Eq. D-24)					
I _e (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	15.66	23247		
$\phi V_{cbx} = \phi (2)$	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V} \Psi_{h,V} V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
845.64	1103.56	1.000	1.000	1.000	23247	0.70	24939

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{cpg} = \phi \text{mi}$	n kcpNag; kcpN	$_{cbg} = \phi \min k_{cp} $	(ANa/ANa0)Ψe	$_{d,Na} arPsi_{g,Na} arPsi_{ec,Na} arP$	Ψ _{p,Na} Na0 ; Kcp(A	Nc / ANco) $\Psi_{\text{ec},N} \Psi$	$\mathscr{C}_{ed,N}\mathscr{V}_{cp,N}\mathscr{N}_{b}$	(Eq. D-30b)
Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\varPsi_{g,Na}$	$\Psi_{\sf ec,Na}$	$\varPsi_{ ho,Na}$	N _{a0} (lb)	Na (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
Anc (in²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	Ncb (lb)	ϕ
408.24	324.00	1.000	1.000	1.000	1.000	12492	15740	0.70

φV_{cpg} (lb) 20601

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, N _{ua} (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2718	6071	0.45	Pass
Concrete breakout	5436	10231	0.53	Pass
Adhesive	5436	8093	0.67	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1678	3156	0.53	Pass (Governs)
T Concrete breakout x+	3356	10490	0.32	Pass
Concrete breakout y-	1678	24939	0.07	Pass
Pryout	3356	20601	0.16	Pass
Interaction check Nua	/φNn Vua/φVn	Combined Rati	o Permissible	Status

Company:	Schletter, Inc.	Date:	11/17/2015		
Engineer:	HCV	Page:	5/5		
Project:	Standard PVMax - Worst Case, 36 Inch Width				
Address:					
Phone:					
E-mail:					

	Sec. D.7.3	0.67	0.53	120.3 %	1.2	Pass
--	------------	------	------	---------	-----	------

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.