$Solutions \ MP/MP^* \ R\'eduction \ des \ endomorphismes$

Solution 1.

1. On a

$$\begin{array}{cccc}
f^k : & E & \to & E \\
 & M & \mapsto & A^k M
\end{array} \tag{1}$$

donc pour tout polynôme P, on a P(f) = P(A)M par combinaison linéaire. Si P(A) = 0, alors P(f) = 0. Donc si A est diagonalisable, f l'est aussi. Si P(f) = 0 alors avec $M = I_n$, on a P(A) = 0 et A est diagonalisable si f l'est.

Même résultat avec g et B.

2. Soit $(\lambda_{i,j})_{1\leqslant i,j\leqslant n}$ tel que $\sum_{(i,j)\in [\![1,n]\!]^2}\lambda_{i,j}X_iY_j^\mathsf{T}=0$. Alors on a

$$\sum_{i=1}^{n} \left(\sum_{i=1}^{n} \lambda_{i,j} X_i \right) Y_j^{\mathsf{T}} = 0 \tag{2}$$

Soit $k \in [1, n]$, la k-ième ligne de notre matrice est

$$\sum_{j=1}^{n} \left(\sum_{i=1}^{n} \lambda_{i,j} X_{i,k} \right) Y_j^{\mathsf{T}} = 0 \tag{3}$$

Puisque $(Y_j^{\mathsf{T}})_{1 \leq j \leq n}$ est libre, on a pour tout $j \in [1, n]$,

$$\sum_{i=1}^{n} \lambda_{i,j} X_{i,k} = 0 \tag{4}$$

Puisque $(X_i)_{1\leqslant i\leqslant n}$ est libre, pour tout $(i,j)\in [1,n]^2$, $\lambda_{i,j}=0$, d'où le résultat.

3. Puisque B est diagonalisable, B^T l'est aussi. On prend $(X_i)_{1\leqslant i\leqslant n}$ une base de vecteurs propres de A avec pour tout $i\in [\![1,n]\!]$, $AX_i=\lambda_iX_i$. Prenons $(Y_j)_{1\leqslant j\leqslant n}$ une base de vecteurs propres de B^T avec pour tout $j\in [\![1,n]\!]$, $B^\mathsf{T}Y_j=\mu_jY_j$ et $Y_jB^\mathsf{T}=\mu_jY_j^\mathsf{T}$. Ainsi,

$$h\left(X_{i}Y_{j}^{\mathsf{T}}\right) = AX_{i}Y_{j}^{\mathsf{T}}B = \mu_{j}AX_{i}Y_{j}^{\mathsf{T}} = \mu_{j}\lambda_{i}X_{i}Y_{j}^{\mathsf{T}} \tag{5}$$

et les $(X_iY_j^{\mathsf{T}})_{1\leqslant i,j\leqslant n}$ forment une base de E d'après ce qui précède. Donc h est diagonalisable.

Réciproquement, on a le contre-exemple A=0 et B non diagonalisable : h est l'endomorphisme nul.

Remarque 1. Généralement, soit $A \in \mathcal{M}_n(\mathbb{K})$ et $B \in \mathcal{M}_p(\mathbb{K})$, on définit

$$h_{A,B}: \mathcal{M}_{n,p}(\mathbb{K}) \to \mathcal{M}_{n,p}(\mathbb{K})$$

$$M \mapsto AMB$$
(6)

La matrice de $h_{A,B}$ dans la base canonique de $\mathcal{M}_{n,p}(\mathbb{K})$ s'appelle le produit tensoriel de A et B noté

$$A \otimes B = \begin{pmatrix} a_{1,1}B & \dots & a_{1,n}B \\ \vdots & & \vdots \\ a_{n,1}B & \dots & a_{n,n}B \end{pmatrix}$$

$$(7)$$

On a toujours

$$\operatorname{Tr}(A \otimes B) = \sum_{i=1}^{n} a_{i,i} \operatorname{Tr}(B) = \operatorname{Tr}(A) \operatorname{Tr}(B)$$
(8)

Si A et B sont diagonalisables, $h_{A,B}$ l'est.

Solution 2. On pose $P = DP_1$ et $Q = DQ_1$ avec $P_1 \wedge Q_1 = 1$. Il existe $(U, V) \in \mathbb{K}[X]^2$ telles que $UP_1 + VQ_1 = 1$. On a MD = PQ donc $M = DP_1Q_1 = PQ_1 = P_1Q$.

1. Soit $x \in \ker(D(f))$. On a

$$P(f)(x) = DP_1(f)(x) = P_1(f) \circ D(f)(x) = 0 \tag{9}$$

De même pour Q(f)(x) = 0, donc

$$\ker(D(f)) \subset \ker(P(f)) \cap \ker(Q(f))$$
 (10)

Soit $x \in \ker(P(f)) \cap \ker(Q(f))$. On a

$$DUP_1 + DVQ_1 = 0 (11)$$

d'où

$$UP + VQ = 0 (12)$$

et

$$D(f)(x) = UP(f)(x) + VQ(f)(x) = 0$$
(13)

Donc

$$\ker(D(f)) = \ker(P(f)) \cap \ker(M(f))$$
(14)

2. On a $P \mid M$ donc $\ker(P(f)) \subset \ker(M(f))$. De même, $\ker(Q(f)) \subset \ker(M(f))$ donc

$$\ker(P(f)) + \ker(Q(f)) \subset \ker(M(f))$$
 (15)

Si $x \in \ker(M(f))$, on a

$$x = \underbrace{UP_1(f)(x)}_{\in \ker(Q(f))} + \underbrace{VQ_1(f)(x)}_{\in \ker(P(f))}$$
(16)

 $\operatorname{car} M = P_1 Q = Q_1 P$. Donc

$$\ker(M(f)) = \ker(P(f)) + \ker(Q(f))$$
(17)

3. Si $i \in \text{Im}(P(f))$, il existe $x \in E$ tel que $y = P(f)(x) = D(f) \circ P_1(f)(x) \in \text{Im}(D(f))$. De même pour $\text{Im}(Q(f)) \subset \text{Im}(D(f))$. Donc

$$\operatorname{Im}(P(f)) + \operatorname{Im}(Q(f)) \subset \operatorname{Im}(D(f)) \tag{18}$$

Soit $y \in \text{Im}(D(f))$, alors il existe $x \in E$ tel que

$$y = D(f)(x) = \underbrace{UP(f)(x)}_{\in \operatorname{Im}(P(f))} + \underbrace{VQ(f)(x)}_{\in \operatorname{Im}(Q(f))}$$
(19)

Donc

$$\operatorname{Im}(D(f)) = \operatorname{Im}(P(f)) + \operatorname{Im}(Q(f))$$
(20)

4. On a $P \mid M$ d'où $\operatorname{Im}(M(f)) \subset \operatorname{Im}P(f)$ et $\operatorname{Im}(M(f)) \subset \operatorname{Im}Q(f)$. Ainsi,

$$\operatorname{Im}(M(f)) \subset \operatorname{Im}(Q(f)) \cap \operatorname{ImIm}(Q(f))$$
 (21)

Si $y \in \operatorname{Im}(P(f)) \cap \operatorname{Im}(Q(f))$ alors il existe $(x, x') \in E^2$ tels que

$$y = P(f)(x) = P(f)(x')$$
(22)

Or $M = P_1Q = PQ_1$ donc

$$y = UP_1(f)(y) + VQ_1(f)(y) = UP_1Q(f)(x') + VQ_1P(f)(x) \in Im(M(f))$$
 (23)

donc

$$\operatorname{Im}(M(f)) = \operatorname{Im}(P(f)) \cap \operatorname{Im}(Q(f))$$
(24)

Solution 3. On a

$$A\left(\frac{-1}{5}A + \frac{4}{5}I_n\right) = I_n \tag{25}$$

donc A est inversible.

$$X^{2} - 4X + 5 = (X - 2 + i)(X - 2 - i)$$
(26)

est scindé à racines simples sur \mathbb{C} . Donc A est diagonalisable sur \mathbb{C} , semblable sur \mathbb{C} à

$$\begin{pmatrix} \lambda_1 I_{n_1} & 0\\ 0 & \lambda_2 I_{n_2} \end{pmatrix} \tag{27}$$

où $\lambda_1=2+\mathrm{i}$ et $\lambda_2=2-\mathrm{i}$. $A\in\mathcal{M}_n(\mathbb{R})$ donc $\mathrm{Tr}(A)=n_1\lambda_1+n_2\lambda_2\in\mathbb{R}$ Donc

$$\Im(n_1\lambda_1 + n_2\lambda_2) = 0 = n_1 - n_2 \tag{28}$$

Ainsi $n_1 = n_2$ donc n est pair.

A est semblable sur \mathbb{C} à

$$\begin{pmatrix}
\lambda_1 & 0 & \dots & 0 \\
0 & \overline{\lambda_1} & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
\vdots & & \ddots & \lambda_1 & 0 \\
0 & \dots & \dots & 0 & \overline{\lambda_1}
\end{pmatrix}$$
(29)

Soit

$$A_0 = \begin{pmatrix} 0 & -5 \\ 1 & 4 \end{pmatrix} \tag{30}$$

On a $\chi_{A_0} = X^2 - 4X + 5$. A_0 est diagonalisable sur \mathbb{C} et est semblable à

$$\begin{pmatrix} \lambda_1 & 0 \\ 0 & \overline{\lambda_1} \end{pmatrix} \tag{31}$$

Donc A est semblable sur \mathbb{C} à

$$\begin{pmatrix}
A_0 & & \\ & \ddots & \\ & & A_0
\end{pmatrix}$$
(32)

donc A est semblable sur \mathbb{R} à cette même matrice.

Soit $l \in \mathbb{N}$, on a

$$X^{l} = Q_{p}(X^{2} - 4X + 5) + \alpha_{l}X + \beta_{l}$$
(33)

par division euclidienne. Donc

$$A^{l} = \alpha_{l} A + \beta_{l} I_{n} \tag{34}$$

On a notamment

$$\begin{cases} (2+i)^{l} = \alpha_{l}(2+i) + \beta_{l} \\ (2-i)^{l} = \alpha_{l}(2-i) + \beta_{l} \end{cases}$$
 (35)

On a donc

$$\begin{cases} \alpha_l = \frac{(2+i)^l - (2-i)^l}{2i} \\ \beta_l = (2+i)^l - \frac{(2+i)}{2i} \left[(2+i)^l - (2-i)^l \right] \end{cases}$$
(36)

Remarque 2. On a $2 + i = \sqrt{5}e^{i\theta}$ avec $\theta = \arccos\left(\frac{2}{\sqrt{5}}\right) \in]0, \pi[$. Donc $\alpha_l = \left(\sqrt{5}\right)^l \sin(l\theta)$.

Remarque 3. On a

$$I_n - 4A^{-1} + 5A^{-2} = 0 (37)$$

De même, $\left(X - \frac{1}{2-i}\right)\left(X - \frac{1}{2+i}\right)$ annule A^{-1} et on a pour tout $l \in -\mathbb{N}^*$,

$$A^{l} = \alpha_{l}A + \beta_{l}I_{n} \tag{38}$$

Remarque 4. $(A-2I_n)^2 = -I_n \ donc \ det(-I_n) = (-1)^n > 0 \ donc \ n \ est \ pair.$ Solution 4.

1. On a

$$A \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} \tag{39}$$

et $\begin{pmatrix} 1 & \dots & 1 \end{pmatrix}^\mathsf{T} \neq 0$ donc

$$1 \in \mathrm{Sp}_{\mathbb{R}}(A) \tag{40}$$

2. Soit $X = \begin{pmatrix} x_1 & \dots & x_n \end{pmatrix}^\mathsf{T} \neq 0$ associé à λ . Pour tout $i \in [1, n]$, on a

$$\lambda x_i = \sum_{j=1}^n a_{i,j} x_j \tag{41}$$

Soit $i_0 \in \llbracket 1, n \rrbracket$ tel que $|x_{i_0}| = \max_{i \in \llbracket 1, n \rrbracket} |x_i| > 0$ car $X \neq 0$. On a alors

$$|\lambda| |x_{i_0}| = \left| \sum_{j=1}^n a_{i_0,j} x_j \right| \leqslant \sum_{j=1}^n a_{i_0,j} |x_j| \leqslant \left(\sum_{j=1}^n a_{i_0,j} \right) |x_{i_0}|$$
 (42)

donc

$$|\lambda| \leqslant 1 \tag{43}$$

3. Soit $J_i = \{j \in [1, n] | a_{i,j} > 0\}$. On a

$$|\lambda| |x_{i_0}| = \left| \sum_{j \in J_{i_0}}^n a_{i_0, j} x_j \right| \leqslant \sum_{j \in J_{i_0}}^n a_{i_0, j} |x_j| \leqslant \left(\sum_{j \in J_{i_0}}^n a_{i_0, j} \right) |x_{i_0}| = |x_{i_0}|$$
 (44)

On a égalité partout donc pour tout $j \in J_{i_0}$, $|x_j| = |x_{i_0}|$ et $x_j = |x_{i_0}|$ e^{i θ}. En reportant, on a

$$\lambda |x_{i_0}| = \sum_{j \in J_{i_0}} a_{i_0,j} |x_{i_0}| \tag{45}$$

donc

$$\lambda = 1 \tag{46}$$

4. Si $|\lambda| = 1$ et $\lambda \neq 1$, on a $i_0 \notin J_{i_0}$ car sinon $\lambda = 1$. Donc il existe $i_1 \in J_{i_0} \setminus \{i_0\}$ tel que $x_{i_1} = |x_{i_0}| e^{i\theta} = \lambda x_{i_0}$. Ainsi, il existe $i_2 \neq i_1$ tel que $x_{i_2} = \lambda x_{i_1}$. De proche en proche, il existe $i_q \neq i_{q-1}$ tel que $x_{i_q} = \lambda x_{i_{q-1}}$ (avec $q \geqslant 1$) et $x_{i_q} = \lambda^q x_{i_0}$. Or

$$\varphi: \mathbb{N} \to \llbracket 1, n \rrbracket \\ k \mapsto i_k$$
 (47)

n'est pas injective. Donc il existe k>l tel que $i_k=i_l$ et $x_{i_k}=\lambda^{k-k}x_{i_k}$ et k-l>1 donc

$$\lambda \in \mathbb{U}_{k-l} \tag{48}$$

5. L'identité convient, les matrices de permutation aussi. En effet, si $\sigma \in \Sigma_n$, on a $P_{\sigma}^{n!} = I_n$ donc les valeurs propres sont racines de $X^{n!} - 1$ donc $\operatorname{Sp}_{\mathbb{C}}(P_{\sigma}) \subset \mathbb{U}_{n!}$. Réciproquement, soit A stochastique telle que $\operatorname{Sp}_{\mathbb{C}}(A) \subset (\mathbb{U})$. Soit $i \in [1, n]$, supposons $|J_{i_0}| \geq 2$. D'après la décomposition de Dunford, il existe D diagonale et N nilpotente qui commutent telles que A = D + N et $\operatorname{Sp}_{\mathbb{C}}(D) = \operatorname{Sp}_{\mathbb{C}}(A)$. Si N est nilpotente d'indice $r \geq 2$, on a pour tout $k \in \mathbb{N}^*$ avec $k \geq r$, on a

$$A^{k} = \sum_{j=1}^{k} {k \choose j} N^{j} D^{k-j} = \sum_{j=1}^{r} {k \choose j} N^{j} D^{k-j}$$
 (49)

Pour tout $j \in [1, r]$, on a

$$\binom{k}{j} = \frac{k(k-1)\dots(k-j+1)}{j!} \underset{k\to+\infty}{\sim} \frac{k^j}{j!}$$
 (50)

Comme $N^{r-1} \neq 0$, on a

$$A^{k} \underset{k \to +\infty}{sim} \frac{k^{r-1}}{(r-1)!} N^{r-1} D^{k-r+1}$$
(51)

et les coefficients de D^{k-r+1} sont bornés car $\mathrm{Sp}(D)\subset \mathbb{U}$.

Or, notons que si A et B sont stochastiques, AB l'est aussi (1 est toujours valeur propre). Par récurrence, A^k l'est. Donc $A^k \in \mathcal{M}_n([0,1])$, et l'équivalent est impossible si $r \ge 2$. Donc r = 1 donc N = 0 et A = D est diagonalisable.

Les valeurs propres de A sont des racines de l'unité, soit m le ppcm des ordres de ces racines (dans (\mathbb{U}, \times)). On a alors

$$A = P\operatorname{diag}(\lambda_1, \dots, \lambda_n)P^{-1}$$
(52)

d'où

$$A^{m} = P\operatorname{diag}(\lambda_{1}^{m}, \dots, \lambda_{n}^{m})P^{-1}$$
(53)

Notons $M = \max_{j \in J_{i_0}} |a_{i_0,j}| < 1$ (car $|J_{i_0}| \ge 2$ donc pour tout $j \in J_{i_0}$, $a_{i_0,j} \ne 1$). On note $a_{i_0,i_0}^{(m)}$ le coefficient (i_0,i_0) de A^m . On a alors

$$a_{i_0,i_0}^{(m)} = 1 = \sum_{j \in J_{i_0}} a_{i_0,j} a_{j,i_0}^{(m-1)} \leqslant M \sum_{j \in J_{i_0}} a_{j,i_0}^{(m-1)} \leqslant M \sum_{j=1}^n a_{j,i_0}^{(m-1)} = M$$
 (54)

car A^{m-1} est stochastique. Donc M=1 ce qui n'est pas possible (par définition de M). Ainsi, pour tout $i \in [1, n]$, on a $|J_i| = 1$ donc il existe un unique $j_i \in [1, n]$ avec $a_{i,j_i} = 1$ et pour tout $j \neq j_i$, $a_{i,j} = 0$.

 $i \mapsto j_i$ est injective, sinon $rg(A) \leqslant n - 1$ et $0 \in Sp(A)$.

Remarque 5. On peut avoir $|\lambda| < 1$ pour la question 2, par exemple

$$A = \begin{pmatrix} \frac{1}{n} & \cdots & \frac{1}{n} \\ \vdots & & \vdots \\ \frac{1}{n} & \cdots & \frac{1}{n} \end{pmatrix}$$
 (55)

On $a A^2 = A \text{ et } rg(A) = 1$, $Sp(A) = \{0, 1\}$.

Remarque 6. Par exemple, pour 4, on a

$$A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \tag{56}$$

On a $\chi_A = X^2 - 1$ et $Sp(A) = \{-1, 1\}$.

Remarque 7. Si pour tout $(i, j) \in [1, n]$, $a_{i,j} > 0$ (i.e. pour tout $i \in [1, n]$, $J_i = [1, n]$). D'après 3, on a $\operatorname{Sp}_{\mathbb{C}}(A) \cap \mathbb{U} = \{1\}$. De plus, si $X = \begin{pmatrix} x_1 & \dots & x_n \end{pmatrix}^{\mathsf{T}} \in \mathcal{M}_{n,1}(\mathbb{C}) \setminus \{0\}$ vérifie AX = X, d'après ce qui précède, on a $x_1 = \dots = x_n$ et le sous-espace propre associé à 1 est de dimension 1.

Solution 5.

1. Soit $(\lambda, \mu) \in \operatorname{Sp}_{\mathbb{C}}(A) \times \operatorname{Sp}_{\mathbb{C}}(B)$. On a $\mu \in \operatorname{Sp}_{\mathbb{C}}(B^{\mathsf{T}})$. Soit $(X, Y) \in \mathcal{M}_{n-1}(\mathbb{C}) \setminus \{0\}$ vecteurs propres associés respectivement à λ et à μ . On pose $M = XY^{\mathsf{T}}$. Alors

$$\Phi_{A,B}(M) = AXY^{\mathsf{T}} - XY^{\mathsf{T}}B = (\lambda - \mu)XY^{\mathsf{T}} = (\lambda - \mu)M \tag{57}$$

donc

$$\lambda - \mu \in \operatorname{Sp}(\Phi_{A,B}) \tag{58}$$

Réciproquement, soit $\alpha \in \operatorname{Sp}(\Phi_{A,B})$. Il existe $M \in \mathcal{M}_n(\mathbb{C}) \setminus \{0\}$ tel que l'on ait $AM - MB = \alpha M$ d'où $AM = M(\alpha I_n + B)$. Par récurrence, $A^k M = M(\alpha I_n + B)^k$ et par combinaison linéaire, pour tout $P \in \mathbb{C}[X]$ on a $P(A)M = MP(\alpha I_n + B)$. En particulier, on prend $P = \chi_A$. D'après le théorème de Cayley-Hamilton, on a

$$0 = M\chi_A(\alpha I_n + B) \tag{59}$$

On a $M \neq 0$ donc $\chi_A(\alpha I_n + B)$ n'est pas inversible. On écrit

$$\chi_A(X) = \prod_{k=1}^n (X - \lambda_k) \tag{60}$$

d'où

$$\chi_A(\alpha I_n + B) = \prod_{k=1}^n (B + (\alpha - \lambda_k)I_n)$$
(61)

donc il existe $k_0 \in [1, n]$ tel que $B + (\alpha - \lambda_{k_0})I_n$ est non inversible. Donc $\lambda_{k_0} - \alpha \in \operatorname{Sp}(B)$ et donc α est une différence d'un élément de $\operatorname{Sp}(A)$ et de $\operatorname{Sp}(B)$.

2. On forme

$$f_A: \mathcal{M}_n(\mathbb{C}) \to \mathcal{M}_n(\mathbb{C})$$

$$M \mapsto AM$$
(62)

et

$$g_B: \mathcal{M}_n(\mathbb{C}) \to \mathcal{M}_n(\mathbb{C})$$

$$M \mapsto MB$$
(63)

Toujours par récurrence et combinaison linéaires, pour tout $P \in \mathbb{C}[X]$,

$$P(f_A)M = P(A)M \tag{64}$$

Si P(A) = 0, on a $P(f_A) = 0$. Si $P(f_A) = 0$, pour $M = I_n$, on a P(A) = 0. De même pour B. Donc $\Pi_A = \Pi_{f_A}$ (polynômes minimaux) et A est diagonalisable si et seulement si $f_A(M)$ est diagonalisable. f_A et g_B commutent car

$$(f_A \circ g_B)(M) = AMB = (g_B \circ f_A)(M) \tag{65}$$

Donc f_A et g_B sont codiagonalisables et donc $\Phi_{A,B}$ l'est.

Remarque 8. $Si(X_1, ..., X_n)$ (respectivement $(Y_1, ..., Y_n)$) est une base de vecteurs propres de A (respectivement de B^{T}), alors $(X_i Y_j^{\mathsf{T}})_{1 \leq i,j \leq n}$ est une base de vecteurs propres pour $\Phi_{A,B}$.

Remarque 9. C'est faux sur \mathbb{R} , par exemple

$$A = B = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \tag{66}$$

On a $\operatorname{Sp}_{\mathbb{R}} = \emptyset$ et $\Phi_{A,A}(I_2) = 0$ donc $0 \in \operatorname{Sp}_{\Phi_{A,A}}$.

Remarque 10. Si $\Phi_{A,B}$ est diagonalisable, soit $(M_{i,j})_{1 \leq i,j \leq n}$ une base de vecteurs propres de $\Phi_{A,B}$. Soit $\lambda \in \operatorname{Sp}_{\mathbb{C}}(B)$ et $X \in \mathcal{M}_{n,1}(\mathbb{C}) \setminus \{0\}$ tel que $BX = \lambda X$. On a

$$AM_{i,j} = M_{i,j}(B + \lambda_{i,j}I_n) \tag{67}$$

avec $\Phi_{A,B}(M_{i,j}) = \lambda_{i,j} M_{i,j}$. Donc

$$AM_{i,j}X = (\lambda + \lambda_{i,j})M_{i,j}X \tag{68}$$

Pour tout $X_0 \in \mathcal{M}_{n,1}(\mathbb{C})$, il existe $M \in \mathcal{M}_n(\mathbb{C})$ tel que $X_0 = MX$. $M \in \text{Vect}(M_{i,j})_{1 \leq i,j \leq n}$ donc

$$Vect(M_{i,j}X)_{1 \leqslant i,j \leqslant n} = M_{n,1}(\mathbb{C})$$
(69)

On peut donc en extraire une base : c'est une base de vecteurs propres de A.

Solution 6.

- 1. Par récurrence, pour tout $k \in \mathbb{N}$, on a $A^k M = \theta^k M A^k$, or F est un sous-espace vectoriel donc par combinaisons linéaires, pour tout $P \in \mathbb{K}[X]$, on a $P(A)M = MP(\theta A)$.
- 2. Soit $X \in \ker(A \lambda I_n)$. On a $AMX = \theta MAX = \lambda \theta MX$. On a donc $MX \in \ker(A \lambda \theta I_n)$.

Si pour tout $\lambda \in \operatorname{Sp}_{\mathbb{C}}(A)$, on a $\theta \lambda \notin \operatorname{Sp}_{\mathbb{C}}(A)$, alors si $\lambda \in \operatorname{Sp}_{\mathbb{C}}(A)$ et $X \in \ker(A - \lambda I_n)$, alors $\ker(A - \lambda \theta I_n) = \{0\}$. Donc MX = 0. Or les vecteurs propres forment une famille génératrice donc M = 0 et $F = \{0\}$.

S'il existe $\lambda_0 \in \operatorname{Sp}_{\mathbb{C}}(A)$ tel que $\theta \lambda_0 \in \operatorname{Sp}_{\mathbb{C}}(A)$. Soit X_1 un vecteur propre de A associé à λ_0 . On complète (X_1) en $\mathcal{B} = (X_1, \dots, X_n)$ base de \mathbb{C}^n formé de vecteurs propres de A. On définit $MX_1 = Y_1 \in \ker(A - \lambda_0 \theta I_n) \setminus \{0\}$ et pour tout $i \in [2, n]$, on a $MX_i = 0$. Ainsi, pour tout $i \in [2, n]$, on a

$$AMX_i = 0 = \theta MAX_i = \theta \lambda_i MX_i \tag{70}$$

et

$$AMX_1 = AY_1 = \lambda_0 \theta Y_1 = \theta M A X_1 = \theta \lambda_0 X_1 \tag{71}$$

Donc $M \neq 0$ et $M \in F$. Finalement, on a $F = \{0\}$ si et seulement si pour tout $\lambda \in \operatorname{Sp}_{\mathbb{C}}(A), \theta \lambda \notin \operatorname{Sp}_{\mathbb{C}}(A)$.

3. On écrit $\chi_A = \prod_{j=1}^r (X - \lambda_j)^{m_j}$ avec λ_j distincts et $m_j \ge 1$. D'après le théorème de Cayley-Hamilton et le lemme des noyaux, on a

$$\mathbb{C}^n = \bigotimes_{j=1}^r \ker(A - \lambda_j I_n)^{m_j} \tag{72}$$

Supposons $\theta \neq 0$. Si $M \in F$ et si $x \in \ker(A - \lambda_j I_n)^{m_j}$. On a

$$\left(\left(\frac{X}{\theta} - \lambda_j\right)^{m_j}\right)(A)(Mx) = M\left(A - \lambda_j I_n\right)^{m_j}(x) = 0 \tag{73}$$

Donc

$$Mx \in \ker\left(\frac{1}{\theta}A - \lambda_j I_n\right)^{m_j} = \ker\left(A - \theta \lambda_j I_n\right)^{m_j}$$
 (74)

 $car \theta \neq 0$.

De plus, $\ker(A - \theta \lambda_j I_n)^{m_j} \neq \{0\}0$ si et seulement si $\ker(A - \theta \lambda_j I_n) \neq \{0\}$ car

$$\det\left[(A - \theta \lambda_i I_n)^{m_j} \right] = \det\left[(A - \theta \lambda_i I_n) \right]^{m_j} \tag{75}$$

Si pour tout $\lambda \in \operatorname{Sp}_{\mathbb{C}}(A)$, $\lambda \theta \notin \operatorname{Sp}_{\mathbb{C}}(A)$, soit $x \in \ker(A - \lambda_{i}I_{n})^{m_{j}}$. On a

$$Mx \in \ker(A - \theta \lambda_i I_n)^{m_j} = \{0\} \tag{76}$$

donc M = 0 car $\mathbb{C}^n = \bigotimes_{j=1}^r \ker(A - \lambda_j I_n)^{m_j}$.

S'il existe $\lambda_0 \in \operatorname{Sp}_{\mathbb{C}}(A)$ tel que $\lambda_0 \theta \in \operatorname{Sp}_{\mathbb{C}}(A)$, soit $x_1 \in \ker(A - \lambda_0 I_n) \neq \{0\}$. On pose

$$Mx_1 = y_1 \in \ker(A - \lambda_0 \theta I_n) \setminus \{0\} \tag{77}$$

On complète (x_1) en $\mathcal{B} = (x_1, \dots, x_n)$ base de \mathbb{C}^n formée de vecteurs appartenant à

$$\bigcup_{j=1}^{r} \ker(A - \lambda_j I_n)^{m_j} \tag{78}$$

On a pour tout $i \in [2, n]$, $Mx_i = 0$. On a $M \neq 0$ et

$$AMx_1 = Ay_1 = \theta \lambda_0 y_1 = \theta \lambda_0 M x_1 \tag{79}$$

Pour tout $i \in [2, n]$, on a $AMx_i = 0$ si $x_i \in \ker(A - \lambda_{j_i}I_n)^{m_{j_i}}$ et si $\lambda_{j_i} \neq \lambda_0$. On a $Ax_i \in \ker(A - \lambda_{j_i}I_n)^{m_{j_i}}$ donc

$$Ax_i \in Vect(x_2, \dots, x_n) \tag{80}$$

et $MAx_i = 0$ donc $AMx_i = \theta MAx_i$.

Si $F \neq \{0\}$, il existe $M \neq 0$ tel que $AM = \theta MA$. Pour tout $P \in \mathbb{C}[X]$, on a $P(A)M = MP(\theta A)$. En particulier, pour $P = \chi_A$, on a

$$M\chi_A(\theta A) = 0 \tag{81}$$

 $M \neq 0$ et donc $\chi_A(\theta A)$ n'est pas inversible. Si $\chi_A = \prod_{k=1}^n (X - \lambda_k)$, il existe $k \in [1, n]$, $(\theta A - \lambda_k I_n)$ est non inversible, d'où

$$\lambda_k \in \mathrm{Sp}_{\mathbb{C}}(A) \cap \mathrm{Sp}_{\mathbb{C}}(\theta A)$$
 (82)

10

Solution 7. On a

$$\chi_A(\lambda) = \begin{vmatrix} \lambda - 1 & -1 & 0 & -1 \\ -1 & \lambda - 1 & -1 & 0 \\ -1 & 0 & \lambda - 1 & -1 \\ 0 & -1 & -1 & \lambda - 1 \end{vmatrix}$$
(83)

$$\begin{vmatrix} 0 & -1 & -1 & \lambda - 1 \\ -1 & \lambda - 1 & -1 & 0 \\ -1 & 0 & \lambda - 1 & -1 \\ 0 & -1 & -1 & \lambda - 1 \end{vmatrix}$$

$$= (\lambda - 3) \begin{vmatrix} 1 & 0 & 0 & 0 \\ -1 & \lambda - 1 & -1 & 0 \\ -1 & 0 & \lambda - 1 & -1 \\ 0 & -1 & -1 & \lambda - 1 \end{vmatrix}$$

$$= (\lambda - 3) \begin{vmatrix} \lambda & 0 & 1 \\ 1 & \lambda & 0 \\ -1 & -1 & \lambda - 1 \end{vmatrix}$$

$$= (\lambda - 3) \begin{vmatrix} \lambda & 0 & 1 \\ 1 & \lambda & 0 \\ -1 & -1 & \lambda - 1 \end{vmatrix}$$

$$= (\lambda - 3) \begin{vmatrix} \lambda - 1 & 0 & 1 \\ 1 - \lambda & \lambda & 0 \\ 1 - \lambda & -1 & \lambda - 1 \end{vmatrix}$$

$$= (\lambda - 3) \begin{vmatrix} \lambda - 1 & 0 & 1 \\ 1 - \lambda & \lambda & 0 \\ 1 - \lambda & -1 & \lambda - 1 \end{vmatrix}$$

$$= (\lambda - 3) \begin{vmatrix} \lambda - 1 & 0 & 1 \\ 1 - \lambda & \lambda & 0 \\ 1 - \lambda & -1 & \lambda - 1 \end{vmatrix}$$

$$= (\lambda - 3) \begin{vmatrix} \lambda - 1 & 0 & 1 \\ 1 - \lambda & \lambda & 0 \\ 1 - \lambda & -1 & \lambda - 1 \end{vmatrix}$$

$$= (\lambda - 3) \begin{vmatrix} \lambda - 1 & 0 & 1 \\ 1 - \lambda & \lambda & 0 \\ 1 - \lambda & -1 & \lambda - 1 \end{vmatrix}$$

$$= (\lambda - 3) \begin{vmatrix} \lambda - 1 & 0 & 1 \\ 1 - \lambda & \lambda & 0 \\ 1 - \lambda & -1 & \lambda - 1 \end{vmatrix}$$

$$= (\lambda - 3) \begin{vmatrix} \lambda - 1 & 0 & 1 \\ 1 - \lambda & \lambda & 0 \\ 1 - \lambda & -1 & \lambda - 1 \end{vmatrix}$$

$$= (\lambda - 3) \begin{vmatrix} \lambda - 1 & 0 & 1 \\ 1 - \lambda & \lambda & 0 \\ 1 - \lambda & -1 & \lambda - 1 \end{vmatrix}$$

$$= (\lambda - 3) \begin{vmatrix} \lambda - 1 & 0 & 1 \\ 1 - \lambda & \lambda & 0 \\ 1 - \lambda & -1 & \lambda - 1 \end{vmatrix}$$

$$= (\lambda - 3) \begin{vmatrix} 1 & 0 & 0 & 0 \\ -1 & \lambda - 1 & -1 & 0 \\ -1 & 0 & \lambda - 1 & -1 \\ 0 & -1 & -1 & \lambda - 1 \end{vmatrix}$$
 (85)

$$= (\lambda - 3) \begin{vmatrix} \lambda & 0 & 1 \\ 1 & \lambda & 0 \\ -1 & -1 & \lambda - 1 \end{vmatrix}$$
 (86)

$$= (\lambda - 3) \begin{vmatrix} \lambda - 1 & 0 & 1 \\ 1 - \lambda & \lambda & 0 \\ 1 - \lambda & -1 & \lambda - 1 \end{vmatrix}$$

$$(87)$$

$$= (\lambda - 3)(\lambda - 1) \begin{vmatrix} 1 & 0 & 1 \\ -1 & \lambda & 0 \\ -1 & -1 & \lambda - 1 \end{vmatrix}$$
 (88)

$$= (\lambda - 3)(\lambda - 1) \begin{vmatrix} 1 & 0 & 1 \\ 0 & \lambda & 1 \\ 0 & -1 & \lambda \end{vmatrix}$$
 (89)

$$= (\lambda - 3)(\lambda - 1)(\lambda^2 + 1) \tag{90}$$

où l'on a fait successivement les opérations suivantes : $L_1 \leftarrow L_1 + L_2 + L_3 + L_4$, $C_i \leftarrow C_i - C_1$ pour $i \in \{2,3,4\}$, développement selon la première ligne, $C_1 \leftarrow C_1 - C_2 - C_3$, $L_i \leftarrow L_i + L_1$ pour $i \in \{2, 3\}$, développement selon la première colonne.

 χ_A est scindé à racines simples sur $\mathbb C$ donc A est diagonalisable. On trouve ensuite un vecteur propre dans chaque sous-espace propre (qui sont de dimension un).

Solution 8.

1. On a $\lambda \in \operatorname{Sp}_{\mathbb{R}}(A)$ si et seulement s'il existe $X \in \mathcal{M}_{n,1}(\mathbb{R}) \setminus \{0\}$ telle que $AX = \lambda X$ si et seulement si

$$\begin{cases}
\sum_{i \neq 1} a_i x_i &= \lambda x_1 \\
\vdots & & \\
\sum_{i \neq j} a_i x_i &= \lambda x_1 \\
\vdots & & \\
\sum_{i \neq n} a_i x_i &= \lambda x_1
\end{cases}$$
(91)

Soit $S = \sum_{i=1}^{n} a_i x_i$. Ce système équivaut à

$$S = (\lambda + a_1)x_1 = \dots = (\lambda + a_n)x_n \tag{92}$$

Si S=0, pour tout $i \in [1, n]$, on a $\lambda=-a_i$ ou $x_i=0$ (et $X \neq 0$). Les $(a_i)_{1 \leq i \leq n}$, il existe un unique $i_0 \in [1, n]$ tel que $\lambda=-a_{i_0}$ et pour tout $i \neq i_0$, on a $x_i=0$. En reportant, on a $S=0=\lambda x_{i_0}$ donc $\lambda=0$ ce qui est impossible car $0=\lambda=-a_{i_0}>0$. Donc $S \neq 0$ et pour tout $i \in [1, n]$, $\lambda+a_i \neq 0$ et pour tout $i \in [1, n]$, $x_i=\frac{S}{\lambda+a_i}$. On a alors

$$S = \sum_{i=1}^{n} a_i x_i = \sum_{i=1}^{n} \frac{a_i S}{\lambda + a_i}$$
 (93)

donc

$$\sum_{i=1}^{n} \frac{a_i}{\lambda + a_i} = 1 \tag{94}$$

Réciproquement, on prend $x_i = \frac{1}{\lambda + a_i}$ et on a bien $AX = \lambda X$.

2. On définit

$$f: \mathbb{R} \setminus \{-a_n, \dots, -a_1\} \to \mathbb{R}$$

$$x \mapsto \sum_{i=1}^n \frac{a_i}{x + a_i}$$

$$(95)$$

3. Posons $-a_{n+1} = -\infty$ et $-a_0 = +\infty$. Sur $] - a_{k+1}, -a_k[$, on a

$$f'(x) = \sum_{i=1}^{n} \frac{-a_i}{(x+a_i)^2}$$
 (96)

Les $(a_i)_{1 \le i \le n}$ étant positifs, on a $\lim_{x \to -a_{k+1}^+} f(x) = +\infty$ et $\lim_{x \to -a_k^-} f(x) = -\infty$ (si $k \ne n$) (et $\lim_{x \to -\infty} f(x) = \lim_{x \to +\infty} f(x) = 0$).

D'après le théorème des valeurs intermédiaires, pour tout $k \in [0, n-1]$, il existe un unique $\lambda_k \in]-a_{k+1}, -a_k[$ tel que $f(\lambda_k)=1$. Donc A admet exactement n valeurs propres réelles distinctes. Donc A est diagonalisable sur \mathbb{R} .

Remarque 11. Soit

$$F(X) = -\sum_{k=1}^{n} \frac{a_k}{X + a_k} + 1 = \frac{P(X)}{(X + a_1 \dots (X + a_n))}$$
(97)

avec $P = (X + a_1) \dots (X + a_n) - \sum_{k=1}^n a_k P_k$ où $P_k = \prod_{\substack{i=1 \ i \neq k}} (X + a_i)$ de degré n-1. On a $\deg(P) = n$ et son coefficient dominant est 1. De plus, pour tout $\lambda \in \mathbb{R}$, on a $P(\lambda) = 0$ si et seulement si $\sum_{k=1}^n \frac{a_k}{\lambda + a_k} = 1$ si et seulement si $\lambda \in \operatorname{Sp}(A)$ donc $P = \chi_A$.

Solution 9. On a

où le coefficient est à la *i*-ième ligne et la *j*-ième colonne. La matrice à gauche est diagonalisable car son polynôme caractéristique est scindé à racines simples. Donc les matrices de transvections sont dans G. De plus, les matrices de dilatations sont aussi dans G. Donc $G = GL_n(\mathbb{R})$.

Solution 10. Supposons u diagonalisable, il existe un base \mathcal{B} telle que

$$\operatorname{mat}_{\mathcal{B}}(u) = A = \operatorname{diag}(0, \dots, 0, \lambda_1, \dots, \lambda_r)$$
(99)

avec $\lambda_i \neq 0$. Donc $\operatorname{mat}_{\mathcal{B}}(u^p) = A^p) \operatorname{diag}(0, \dots, 0, \lambda_1^p, \dots, \lambda_r^p)$ donc u^p est diagonalisable. On a toujours $\ker(u) \subset \ker(u^2)$ et la forme diagonale implique $\ker(u) = \ker(u^2)$.

Supposons u^p diagonalisable, on écrit $\Pi_{u^p} = (X - \lambda_0) \dots (X - \lambda_r) = R$ (avec $\lambda_k \neq 0$ pour tout $k \geq k$) qui est scindé à racines simples. On a

$$P(u^p) = 0 = (u^p - \lambda_0 i d_E) \circ \dots \circ (u^p - \lambda_r i d_E) = Q(u)$$
(100)

avec $Q(X) = P(X^p)$.

Si $\lambda_0 \neq 0$, chaque λ_k admet p racines p-ièmes distinctes et si μ_k est l'une de ses racines, on a

$$X^{p} - \lambda_{k} = \prod_{j=1}^{p} \left(X - \mu_{k} e^{i\frac{2j\pi}{p}} \right)$$
 (101)

De plus, les racines p-ièmes des $(\lambda_k)_{kk \in [\![1,r]\!]}$ sont deux à deux distinctes. Donc Q est scindé à racines simples, et donc u est diagonalisable.

Si $\lambda_0 = 0$, on a $Q = X^p A(X)$ avec A scindé à racines simples non nulles et $X^p \wedge A = 1$. D'après le lemme des noyaux, on a

$$\ker(Q(u)) = \mathbb{C}^n = \ker(u^p) \otimes \ker(A(u)) = \ker(u^p) \otimes_{i \in I} \ker(u - \mu_i id)$$
 (102)

car A est scindé à racines simples. Montrons que $\ker(u) = \ker(u^p)$. L'inclusion directe est évidente. Réciproquement, montrons que pour tout $k \in \mathbb{N}$, on a $\ker(u^k) \subset \ker(u^{k+1})$ et si $\ker(u^k) = \ker(u^{k+1})$, alors $\ker(u^{k+1}) = \ker(u^{k+2})$. L'inclusion est évidente, et si on a l'égalité, si $x \in \ker(u^{k+2})$, on a $u(x) \in \ker(u^{k+1}) = \ker(u^k)$ donc $x \in \ker(u^{k+1})$. Comme $\ker(u) = \ker(u^2)$, d'après ce qui précède, par récurrence, on a $\ker(u) = \ker(u^p)$, donc u est diagonalisable.

Solution 11. Soit (e_1, \ldots, e_n) la base canonique de \mathbb{C}^n , u canoniquement associée à

$$J_{n} = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ 0 & & & \ddots & 1 \\ 1 & 0 & \dots & \dots & 0 \end{pmatrix}$$
 (103)

. On a

$$\begin{cases}
 u(e_1) &= e_n \\
 u(e_2) &= e_1 \\
 \vdots \\
 u(e_n) &= e_{n-1}
\end{cases}$$
(104)

d'où

$$\begin{cases} u^{k}(e_{1}) &= e_{n+1-k} \\ \vdots u^{k}(e_{k-1}) &= e_{n-1} \\ \vdots \\ u^{k}(e_{n}) &= e_{n-k} \end{cases}$$
(105)

et donc

$$J_n^k = \begin{pmatrix} 0 & \dots & 0 & 1 & 0 & \dots & 0 \\ \vdots & \ddots & & & \ddots & \ddots & \vdots \\ \vdots & & \ddots & & & \ddots & \ddots & 0 \\ 0 & & & \ddots & & & \ddots & 1 \\ 1 & \ddots & & & \ddots & & & 0 \\ 0 & \ddots & \ddots & & & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & & & \ddots & \vdots \\ 0 & \dots & 0 & 1 & 0 & \dots & \dots & 0 \end{pmatrix}$$

$$(106)$$

où les 1 commencent à la k + 1-ième colonne sur la première ligne et à la n - k + 1-ième ligne sur la première colonne. Notamment, le 1 sur la dernière colonne est à la n - k-ième ligne.

On a $A(a_0,\ldots,a_n)=\sum_{k=0}^{n-1}a_kJ_n^k$. En développant par rapport à la première ligne, on a

Le premier déterminant vaut X^{n-1} et le deuxième vaut $-(-1)^n \times (-1)^{n-2} = -1$ donc $\chi_{J_n}(X) = X^n - 1$. Ainsi, χ_{J_n} est scindé à racines simples sur $\mathbb C$ donc J_n est diagonalisable avec des sous-espaces propres de dimension 1. Soit $\omega = \mathrm{e}^{\frac{2\mathrm{i}\pi}{n}}$, on a $\mathrm{Sp}(J_n) = \{\omega^k, 0 \leq k \leq n-1\}$. On a $J_n X = \omega^k X$ si et seulement si

$$\begin{cases}
x_2 = \omega^k x_1 \\
\vdots \\
x_n = \omega^k x_{n-1} \\
x_1 = \omega^k x_n
\end{cases}$$
(108)

si et seulement si

$$X = x_1 \begin{pmatrix} 1 \\ \omega^k \\ \omega^{2k} \\ \vdots \\ (\omega^k)^{n-1} \end{pmatrix} = x_1 X_k \tag{109}$$

avec X_k vecteur propre de J_n associé à ω^k . Posons

$$P = \begin{pmatrix} 1 & 1 & \dots & 1 \\ \vdots & \omega & & \omega^{n-1} \\ \vdots & \vdots & & \vdots \\ 1 & \omega^{n-1} & \dots & (\omega^{n-1})^{n-1} \end{pmatrix}$$
(110)

et $P^{-1}J_nP=\operatorname{diag}(1,\omega,\ldots,\omega^{n-1})$. On a donc $P^{-1}A(a_0,\ldots,a_n)P=\operatorname{diag}(Q(1),Q(\omega),\ldots,Q(\omega^{n-1}))$ où $Q=\sum_{k=0}^{n-1}a_kX^k$. Donc A est diagonalisable de valeurs propres $Q(1),\ldots,Q(\omega^{n-1})$ et donc

$$\det(A) = \prod_{k=0}^{n-1} Q(\omega^k) \tag{111}$$

15

Remarque 12. On a

$$\begin{vmatrix} a & b & c \\ c & a & b \\ b & c & a \end{vmatrix} = (a+b+c)(a+jb+j^2c)(a+j^2b+jc) = (a+b+c)(a^2+b^2+c^2-ab-bc-ac)$$
(112)

Si $a, b, c \in \mathbb{R}_+$ vérifient a + b + c = 1, on a

$$|a + jb + j^2c| = |a + j^2b + jc| \le a + b + c = 1$$
 (113)

si et seulement si a, jb, j^2c ont même argument si et seulement si $\{a, b, c\} = \{1, 0, 0\}$.

Solution 12. On sait que que $f^n = 0$ d'après le théorème de Cayley-Hamilton et que pour tout $k \in \mathbb{N}$, $\ker(f^k) \subset \ker(f^{k+1})$ et si $\ker(f^k) = \ker(f^{k+1})$, alors $\ker(f^k) = \ker(f^m)$ pour tout $m \ge k$.

Soit $k \in [0, n-1]$ et

$$u: \ker(f^{+1}) \to \ker(f^k)$$

$$x \mapsto u(x)$$
(114)

est bien définie car si $x \in \ker(f^{k+1}), f(x) \in \ker(f^k)$. Comme $\ker(f) \subset \ker(f^{k+1}), \ker(u) = \ker(f)$ et $\dim(\ker(u)) = 1$. D'après le théorème du rang, on a $\dim(\ker(f^{k+1})) = \operatorname{rg}(u) + 1 \leq \dim(\ker(f^k)) + 1$. Par récurrence, on a pour tout $k \in \mathbb{N}$, $\dim(\ker(f^k)) \leq k$ (car on ne peut croître au lus de 1 à chaque itération).

Si $f^{n-1}=0$, on a dim $(\ker(f^{n-1}))=n\leqslant n-1$ ce qui est absurde. Donc

$$f^{n-1} \neq 0 \tag{115}$$

Soit $x \notin \ker(f^{n-1})$. Soit $(\alpha_0, \dots, \alpha_{n-1}) \in \mathbb{K}^n$. Si $\alpha_0 x + \dots + \alpha_{n-1} f^{n-1}(x) = 0$, en appliquant f^{n-1} , on a $\alpha_0 f^{n-1}(x) = 0$ donc $\alpha_0 = 0$. Puis on applique f^{n-2} , etc. De proche en proche, $\alpha_0 = \alpha_1 = \dots = \alpha_{n-1} = 0$. Ainsi, $\mathcal{B} = (x, f(x), \dots, f^{n-1}(x))$ est libre en dimension n, c'est donc une base et on a

$$\operatorname{mat}_{\mathcal{B}}(f) = \begin{pmatrix} 0 & \dots & \dots & 0 \\ 1 & \ddots & & \vdots \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & 1 & 0 \end{pmatrix}$$
 (116)

qui est une matrice nilpotente d'indice n. Matriciellement, on a $\ker(f^k) = \operatorname{Vect}(e_{n-k+1}, \dots, e_n)$.

Solution 13. Supposons qu'il existe $x \in V$, $(x, u(x), \dots, u^{n-1}(x))$ soit une base de V. Notons $u^n(x) = a_0x + \dots + a_{n-1}u^{n-1}(x)$. Soit $y \in V$ tel que $u(y) = \lambda y$. Pour $y = \sum_{i=0}^{n-1} y_i u^i(x)$. On a donc

$$u(y) = \sum_{i=0}^{n-1} y_i u^{i+1}(x) = \sum_{i=0}^{n-1} \lambda y_i u^i(x) = \sum_{i=1}^{n-1} y_{i-1} u^i(x) + y_{n-1} \sum_{i=0}^{n-1} a_i u^i(x)$$
(117)

Donc $u(y) = \sum_{i=1}^{n-1} u^i(x)(y_{i-1} + y_{n-1}a_i) + y_{n-1}a_0x$ donc

$$\begin{cases}
\lambda y_0 &= y_{n-1}a_0 \\
\lambda y_1 &= y_0 + a_1 y_{n-1} \\
\vdots & & \\
\lambda y_{n-2} &= y_{n-3} + a_{n-2} y_{n-1} \\
\lambda y_{n-1} &= y_{n-2} + a_{n-1} y_{n-1}
\end{cases}$$
(118)

donc par récurrence

$$\begin{cases}
\lambda y_{n-2} &= (\lambda - a_{n-1})y_{n-1} \\
\lambda y_{n-3} &= (\lambda(\lambda - a_{n-1}) - a_{n-2})y_{n-1} \\
\vdots \\
\lambda y_0 &= (\lambda^{n-1} - a_{n-1}\lambda^{n-2} - \dots - a_1)y_{n-1}
\end{cases} (119)$$

Donc les sous-espaces propres sont de dimension 1.

Supposons que les sous-espaces propres de u sont de dimension 1. On écrit $\chi_u = \prod_{i=1}^r (X - \lambda_i)^{n_i}$. D'après le théorème de Cayley-Hamilton et le lemme des noyaux, on a

$$V = \bigotimes_{i=1}^{r} \underbrace{\ker(u - \lambda_i i d_V)^{n_i}}_{F_i}$$
 (120)

et les sous-espaces caractéristiques F_i sont stables par u. Soit $v_i = u_{|F_i} - \lambda_i i d_{F_i}$. On a $\chi_u = \prod_{i=1}^r \chi_{u_{|F_i}}$ (matrice diagonale par blocs dans un base adaptée). $(X - \lambda_i)^n$ annule $u_{|F_i}$ et $\operatorname{Sp}_{F_i}(u_{|F_i}) = \{\lambda_i\}$. Alors $\chi_{u_{|F_i}} = (X - \lambda_i)^{\dim(F_i)}$. En reportant, on a $\dim(F_i) = n_i$. De plus, $V_i^{n_i} = 0$ donc v_i est nilpotent. On a donc $\dim(\ker(v_i)) = \dim(\ker(u - \lambda_i i d_E)) = 1$. Donc il existe $x_i \in F_i$ tel que $(x_i, v_i(x_i), \dots, v_i^{n_i-1}(x_i))$ soit une base de F_i .

On forme $x = \sum_{i=1}^r x_i$. Soit $(\alpha_0, \dots, \alpha_{r-1})$ tel que $\sum_{j=0}^{n-1} \alpha_j u^j(x) = 0 = \sum_{i=1}^r \left(\sum_{j=0}^{n-1} \alpha_j u^j(x_i)\right)$. Les F_i sont en somme directe donc

$$\sum_{j=0}^{n-1} \alpha_j u^j(x_i) = 0 \tag{121}$$

Soit $P(X) = \sum_{j=0}^{n-1} \alpha_j X^j$. $I_{x_i} = \{A \in \mathbb{C}[X] | A(u)(x_i) = 0\}$ est un idéal de $\mathbb{C}[X]$ donc est principal et il existe $\Pi_i \in I_{x_i}$ minimal et

$$\Pi_i \mid P \tag{122}$$

On a $(X - \lambda_i)^{n_i}(u)(x_i) = 0$ et $(x_i, u(x_i), \dots, u^{n_i-1}(x))$ est libre, donc si $P \in I_{x_i}$, deg $(P) \ge n_i$ donc deg $(\Pi_i) = n_i$ et $\Pi_i = (X - \lambda_i)^{n_i}$. Ainsi, pour tout $i \in [1, r]$, $\Pi_i \mid P$ et donc

$$\prod_{i=1}^{r} (X - \lambda_i)^{n_i} \mid P \tag{123}$$

Mais P est de degré $\leq n-1$, nécessairement P=0 et $(x,u(x),\ldots,u^{n-1}(x))$ est libre.

Remarque 13. Autre méthode pour le sens direct : on a

$$mat_{(x,u(x),\dots,u^{n-1}(x))}(u) = \begin{pmatrix} 0 & \dots & 0 & a_0 \\ 1 & \ddots & & \vdots & \vdots \\ 0 & \ddots & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & 0 & \vdots \\ 0 & \dots & 0 & 1 & a_{n-1} \end{pmatrix} = A \tag{124}$$

 $Si \lambda \in Sp(u)$, on a

$$A - \lambda I_{n} = \operatorname{mat}_{(x,u(x),\dots,u^{n-1}(x))}(u) = \begin{pmatrix} -\lambda & \dots & 0 & a_{0} \\ 1 & \ddots & \vdots & \vdots \\ 0 & \ddots & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & -\lambda & \vdots \\ 0 & \dots & 0 & 1 & a_{n-1} - \lambda \end{pmatrix}$$
(125)

qui est non inversible, mais donc les (n-1) première colonnes sont libres, donc est de rang n-1.

Solution 14.

1. On utilise le fait que pour tout $k \in \mathbb{N}$ tel que $\operatorname{Im}(f^{k+1}) \subset \operatorname{Im}(f^k)$. S'il existe $k \in \mathbb{N}$, $\operatorname{Im}(f^{k+1}) = \operatorname{Im}(f^k)$ alors pour tout $l \geq k$, $\operatorname{Im}(f^k) = \operatorname{Im}(f^l)$.

En effet, si $x = f^{k+1}(x') \in \text{Im}(f^{k+1})$,, on a $x = f^k(f(x)) \in \text{Im}(f^k)$. Si on a égalité des espaces, soit $x = f^{k+1}(x') = f(f^k(x')) \in \text{Im}(f^{k+1})$. Alors $f^k(x') \in \text{Im}(f^k) = \text{Im}(f^{k+1})$ donc il existe x'' tel que $f^k(x') = f^{k+1}(x'')$, mais alors $x = f^{k+2}(x'') \in \text{Im}(f^{k+2})$. On a donc le résultat en itérant.

Ainsi, pour tout $n \ge d$, on a $\operatorname{rg}(f^n) = \operatorname{rg}(f^d)$ donc $(\operatorname{rg}(f^n))_{n \in \mathbb{N}}$ est stationnaire au moins à partir de d et $r(f) = \operatorname{rg}(f^d)$.

2. Comme f et g commutent, on a

$$(f+g)^{2d} = \sum_{k=0}^{2d} {2d \choose k} f^k g^{2d-k}$$
 (126)

Pour tot $k \in [0, 2d]$, on a $k \ge d$ ou $2d - k \ge d$ donc

$$\begin{cases}
\operatorname{Im}(f^k g^{2d-k}) \subset \operatorname{Im}(f^d) \\
\operatorname{ou} \\
\operatorname{Im}(f^k g^{2d-k}) \subset \operatorname{Im}(g^d)
\end{cases}$$
(127)

et donc $\operatorname{Im}(f^k g^{2d-k}) \subset \operatorname{Im}(f^d) + \operatorname{Im}(g^d)$. Finalement, $\operatorname{Im}(f+g)^{2d} \subset \operatorname{Im}(f^d) + \operatorname{Im}(g^d)$. On a donc

$$r(f+g) = \dim(\operatorname{Im}(f+g)^{2d}) \tag{128}$$

$$\leq \dim(\operatorname{Im}(f^d) + \operatorname{Im}(g^d))$$
 (129)

$$\leq \dim(\operatorname{Im}(f^d)) + \operatorname{Im}(g^d)$$
 (130)

$$\leqslant r(f) + r(g) \tag{131}$$

Pour un contre-exemple, on utilise $A = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ et $B = A^{\mathsf{T}}$. On a $A^2 = B^2$ donc $r(A^2) = r(B^2) = 0$ et A + B inversible donc r(A + B) = 2 > r(A) + r(B).

3. On a $\chi_f = X^{m_0}Q$ avec $\deg(Q) = d - m_0$ et Q(0) = 0. D'après le lemme des noyaux, on a

$$V = \ker(f^{m_0}) \otimes \ker(Q(f)) \tag{132}$$

Dans une base adaptée \mathcal{B} , on a $\operatorname{mat}_{\mathcal{B}}(f) = \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}$ avec $A^{m_0} = 0$ et B inversible. Alors pour tout $k \geqslant m_0$, $\operatorname{mat}_{\mathcal{B}}(f^k) = \begin{pmatrix} 0 & 0 \\ 0 & B^k \end{pmatrix}$ et $\operatorname{rg}(f^k) = \operatorname{rg}(B^k) = d - m_0 = r(f)$.

Solution 15. On munit $\mathcal{M}_n(\mathbb{C})$ de la norme $||A|| = \sup_{\|X\|_{\infty}=1} \|AX\|_{\infty}$. Notons que si $\lambda \in \operatorname{Sp}_{\mathbb{C}}(A)$, alors $|\lambda| \leq \|A\|$. En effet, si X est un vecteur propre associé à λ , on a

$$||AX||_{\infty} = |\lambda| \, ||X||_{\infty} \leqslant |||A|| \, ||X||_{\infty}$$
 (133)

et $X \neq 0$ donc $||X||_{\infty} \neq 0$.

Soit $A = e^{\frac{2ik\pi}{q}} I_n$, soit $B \in \mathcal{G}_q$ telle que $|||B - A||| \leq \sin\left(\frac{\pi}{q}\right)$. Soit $\mu \in \operatorname{Sp}_{\mathbb{C}}(B)$, on a $\mu \in \mathbb{U}_q$ car $B^q = I_n$. Donc $\mu - e^{\frac{2ik\pi}{q}} \in \operatorname{Sp}_{\mathbb{C}}(B - A)$ et

$$\left|\mu - e^{\frac{2ik\pi}{q}}\right| \leqslant \sin\left(\frac{\pi}{q}\right)$$
 (134)

Si $\mu = e^{\frac{2il\pi}{q}}$, on a

$$\left|\mu - e^{\frac{2ik\pi}{q}}\right| = 2\left|\sin\left(\frac{(l-k)\pi}{q}\right)\right| > \sin\left(\frac{\pi}{q}\right)$$
 (135)

si $l \neq k$. Nécessairement, on a $\mu = e^{\frac{2ik\pi}{q}}$, donc B = A car B est diagonalisable et $\operatorname{Sp}_{\mathbb{C}}(B) = \left\{e^{\frac{2ik\pi}{q}}\right\}$. Donc A est un point isolé de \mathcal{G}_q .

Soit maintenant $A \in \mathcal{G}_q$, on suppose que A n'est pas une matrice scalaire, donc $|\operatorname{Sp}_{\mathbb{C}}(A)| \geq 2$. Soit $\lambda \in (\operatorname{Sp}_{\mathbb{C}}(A))$. Il existe $P \in GL_n(\mathbb{C})$ telle que $P^{-1}AP = \operatorname{diag}(\lambda, \ldots, \lambda, \mu_1, \ldots, \mu_r)$

avec $\mu_1, \ldots, \mu_r \neq \lambda$. Soit $\varepsilon > 0$, posons

On a $A_{\varepsilon} \xrightarrow[\varepsilon \to 0]{} A$ et $A_{\varepsilon} \neq A$. Montrons que $A_{\varepsilon} \in \mathcal{G}_q$. On a $\chi_{A_{\varepsilon}} = \chi_A$, $\operatorname{rg}(A_{\varepsilon} - \lambda I_n) = \operatorname{rg}(A - \lambda I_n)$ (observer les colonnes) et pour $\mu_l \in \operatorname{Sp}(A)$, $\mu_l \neq \lambda$, on a $\operatorname{rg}(A_{\varepsilon} - \mu_l I_n) = \operatorname{rg}(A - \mu_l I_n)$ (observer les lignes). La dimension des sous-espaces propres de A et A_{ε} sont les mêmes donc A_{ε} est diagonalisable. De plus, $\operatorname{Sp}(A_{\varepsilon}) \subset \operatorname{Sp}(A) \subset \mathbb{U}_q$ donc $A_{\varepsilon} \in \mathcal{G}_q$. Ainsi, A n'est pas isolé dans \mathcal{G}_q .

Solution 16. On a

$$\chi_M(\lambda) = \begin{vmatrix} \lambda - 1 & 1 & 0 \\ 1 & \lambda - 2 & -1 \\ -1 & 0 & \lambda - 1 \end{vmatrix} = (\lambda - 1)(\lambda - 2)(\lambda - 1) - ((\lambda - 1) - 1) = \lambda(\lambda - 2)^2$$
(137)

Soit $X = \begin{pmatrix} x & y & z \end{pmatrix}^\mathsf{T}$. On a MX = 0 si et seulement si y = x et z = -x donc $E_0 = \mathrm{Vect} \begin{pmatrix} 1 & 1 & -1 \end{pmatrix} = \mathrm{Vect}(\varepsilon_1)$.

On a $(M-2I_3)X=0$ si et seulement si y=z=-x donc $E_2=\mathrm{Vect}\begin{pmatrix}1&-1&-1\end{pmatrix}=\mathrm{Vect}(\varepsilon_2)$.

M n'est pas diagonalisable sur $\mathbb R$ mais trigonalisable. D'après le théorème de Cayley-Hamilton et le lemme des noyaux, on a

$$\mathbb{R}^3 = \ker(u) \otimes \ker(u - 2id)^2 \tag{138}$$

Soit $P \in GL_n(\mathbb{C})$ tel que

$$P^{-1}MP = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 2 & \star \\ 0 & 0 & 2 \end{pmatrix} \tag{139}$$

avec $\varepsilon_3 \in \ker(u-2id)^2$ et $\varepsilon_3 \notin \operatorname{Vect}(\varepsilon_2)$. On a

$$(M - 2I_3)^2 = \begin{pmatrix} 2 & 1 & -1 \\ 2 & 1 & -1 \\ -2 & -1 & 1 \end{pmatrix}$$
 (140)

donc $(M-2I_3)^2X=0$ si et seulement si 2x-y+z=0. On pose $\varepsilon_3=\begin{pmatrix}0\\1\\1\end{pmatrix}$. On a

 $M\varepsilon_3 = -\varepsilon_2 + 2\varepsilon_3$ donc si

$$P = \begin{pmatrix} 1 & 1 & 0 \\ 1 & -1 & 1 \\ -1 & 1 & 1 \end{pmatrix} \tag{141}$$

on a

$$P^{-1}MP = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 2 & -1 \\ 0 & 0 & 2 \end{pmatrix} \tag{142}$$

Les sous-espaces stables de dimension $0: \{0\}$. Les sous-espaces stables de dimension 1: ils sont engendrés par les vecteurs propres, ce sont donc $\text{Vect}(\varepsilon_1)$ et $\text{Vect}(\varepsilon_2)$. Si maintenant F est un sous-espace stable de dimension 2, montrons que l'on a

$$F = (F \cap \ker(u)) \otimes (F \cap \ker(u - 2id)^2) = F_0 \otimes F_2$$
(143)

En effet, on a $F_0 \otimes F_2 \subset F$. Si maintenant $x \in F$, a priori on a $x = x_0 + x_2$ avec $x_0 \in \ker(u)$ et $x_2 \in \ker(u - 2id)^2$. On a $u(x) = u(x_2) \in F$ par stabilité, $u^2(x) = u^2(x_2) \in F$, et $(u - 2id)^2(x_2) = 0$ donc $x_2 = \frac{1}{4}(-u^2(x) + 4u(x_2)) \in F$ et $x_0 = x - x_2 \in F$.

On a $F_0 = \{0\}$ ou $\ker(u)$. Ŝi $F_0 = \{0\}$, on a $F = F_2$. Si $F_0 = \ker(u)$, on a $\dim(F_2) = 1$ donc $F_2 = \operatorname{Vect}(\varepsilon_2)$.

Donc les sous-espaces stables de dimension 2 sont $\ker(u-2id)^2$ et $\mathrm{Vect}(\varepsilon_1,\varepsilon_2)$. Enfin, les sous-espaces stables de dimension 3 : \mathbb{R}^3 .

Remarque 14. Plus généralement, si $\chi_u = \prod_{i=1}^r (X - \lambda_i)^{m_i}$. On écrit

$$E = \bigotimes_{i=1}^{r} \ker(u - \lambda_i i d_E)^{m_i} = \bigotimes_{i=1}^{r} F_i$$
(144)

Si F est stable, on note Π_i le projecteur sur F_i parallèlement à $\bigotimes_{\substack{j=1 \ j\neq i}}^r F_i \in \mathbb{K}[u]$. On a pour tout $x \in F$, $\Pi_i(x) \in F$ par stabilité, il s'ensuit que

$$F = \bigotimes_{i=1}^{r} (F \cap F_i) \tag{145}$$

Solution 17.

1. Si $(a_1, \ldots, a_n) \neq (0, \ldots, 0)$, on a

$$A - I_{n+1} = \begin{pmatrix} 0_n & \begin{vmatrix} a_1 \\ \vdots \\ a_n \end{vmatrix} \vdots \\ a_1 & \dots & a_n \end{vmatrix} 0$$
 (146)

donc $\operatorname{rg}(A - I_{n+1}) = 2$ et $\chi_{A - I_{n+1}} = X^{n-1}(X - \lambda)(X - \mu)$ (sur \mathbb{C}). On a $\operatorname{Tr}(A - I_{n+1}) = 0 = \mu + \lambda$ et $\operatorname{Tr}(A - I_{n+1})^2 = 2\sum_{i=1}^n a_i^2 = \lambda^2 + \mu^2$ donc $\{\lambda, \mu\} \in \{\pm \sqrt{\sum_{i=1}^n a_i^2}\}$ et $A - I_{n+1}$ est semblable à

$$\begin{pmatrix}
0 & \star & \dots & \star \\
0 & \ddots & \ddots & \vdots \\
\vdots & \ddots & 0 & \ddots & \vdots \\
\vdots & \ddots & \lambda & \star \\
0 & \dots & \dots & 0 & \mu
\end{pmatrix}$$
(147)

2. On note $\lambda = \sqrt{\sum_{i=1}^n a_i^2}$. Soit X tel que $A'X = \pm \lambda$ où $A' = A - I_{n+1}$. Alors en écrivant le système, on vérifie que l'on peut prendre

$$f_{\pm} = \begin{pmatrix} a_1 \\ \vdots \\ a_n \\ \lambda \end{pmatrix} \tag{148}$$

et si X est tel que A'X = 0, si i_0 est tel que $a_{i_0} \neq 0$, on récupère une bas de $\ker(A')$ avec

$$f_{i} = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \cdots \\ 0 \\ -\frac{a_{i}}{a_{i_{0}}} \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

$$(149)$$

où $i \in [1, n] \setminus \{i_0\}$. Le 1 est à la *i*-ième ligne, $-\frac{a_i}{a_{i_0}}$ est à la ligne i_0 .

Solution 18. On pose $||A|| = \sup_{\|X\|_{\infty}=1} ||AX||_{\infty}$. On montre d'abord que si $A \in \mathcal{M}_n(\mathbb{C})$, alors pour tout $\lambda \in \operatorname{Sp}_{\mathbb{C}}(A)$ $|\lambda| \leq ||A||$. En effet, si X non nul est tel que $AX = \lambda X$, on a $||AX||_{\infty} \leq ||A|| \, ||X||_{\infty} \, \operatorname{donc} \, |\lambda| \, ||X||_{\infty} \leq ||A|| \, ||X||_{\infty}$, d'où le résultat. Soit alors $m = \sup \{||M|| \, ||M| \in G\}$. Soit $M \in G$ et $\lambda \in \operatorname{Sp}_{\mathbb{C}}(M)$. On a $|\lambda| \leq m$. Comme

Soit alors $m = \sup \{ |||M||| ||M \in G \}$. Soit $M \in G$ et $\lambda \in \operatorname{Sp}_{\mathbb{C}}(M)$. On a $|\lambda| \leq m$. Comme $M^k \in G$ pour tout $k \in \mathbb{Z}$, on a aussi $|\lambda|^k \leq m$ donc $|\lambda| = 1$ (faire tendre k vers $-\infty$ et $+\infty$).

Grâce à la décomposition de Dunford, on a M = D + N avec D diagonalisable, N nilpotente et D et N qui commutent. Soit $r \in \mathbb{N}^*$ telle que $N^{r-1} \neq 0$ et $N^r = 0$. On a $\operatorname{Sp}_{\mathbb{C}}(D) = \operatorname{Sp}_{\mathbb{C}}(M) \subset \mathbb{U}$ donc $G \in GL_n(\mathbb{C})$ et $MD^{-1} = I_n + ND^{-1}$ avec ND^{-1} est nilpotente d'indice r. On a pour tout $k \geq r$, on a

$$(MD^{-1})^k = M^k (D^{-1})^k (150)$$

$$= \sum_{i=0}^{k} {k \choose i} (ND^{-1})^{i} \tag{151}$$

$$=\sum_{i=0}^{r-1} \binom{k}{i} (ND^{-1})^i \tag{152}$$

$$\underset{k \to +\infty}{\sim} \frac{k^{r-1}}{(r-1)!} N^{r-1} D^{k-r+1} \tag{153}$$

Notons que pour tout $(A, B) \in \mathcal{M}_n(\mathbb{C})$, pour tout $X \in \mathcal{M}_{n,1}(\mathbb{C})$ si $||X||_{\infty} = 1$, on a

$$\|(AB)X\|_{\infty} \leqslant \|A\| \|BX\|_{\infty} \leqslant \|A\| \|B\| \tag{154}$$

donc $|||AB||| \le |||A||| |||B|||$.

La suite $(MD^{-1})^k$ est bornée, donc r=1 et N=0, donc M est diagonalisable.

Prenons ensuite $\alpha = \sqrt{3}$. Soit $\lambda \in \operatorname{Sp}_{\mathbb{C}}(M)$, on a $\lambda - 1 \in \operatorname{Sp}_{\mathbb{C}}(M - I_n)$. Si $\lambda = e^{i\theta}$ avec $\theta \in]-\pi, \pi[$, on a $|e^{i\theta}-1| < \sqrt{3}$ si et seulement si $2\sin\left(\frac{\theta}{2}\right) < \sqrt{3}$ si et seulement si $\theta \in]-\frac{2\pi}{3}, \frac{2\pi}{3}[$.

Pour tout $k \in \mathbb{R}$, on a $\left(e^{i\theta}\right)^k \in \operatorname{Sp}(M^k)$. Donc on a aussi $\left|\sin\left(\frac{k\theta}{2}\right)\right| < \frac{\sqrt{3}}{2}$. Quitte à changer θ en $-\theta$, on peut supposer $\theta \in \left[0, \frac{2\pi}{3}\right[$. Si $\theta \geqslant 0$, posons l'unique $k \in \mathbb{N}$ tel que $k\theta \geqslant \frac{2\pi}{3}$ et $(k-1)\theta \in \left[0, \frac{2\pi}{3}\right[$. On a alors

$$k\theta = (k-1)\theta + \theta < \frac{4\pi}{3} \tag{155}$$

ce qui est absurde si et seulement si $\left|\sin\left(\frac{k\theta}{2}\right)\right| \geqslant \frac{\sqrt{3}}{2}$.

Ainsi, $\theta = 0$ et $Sp(M) = \{1\}$, et puisque M est diagonalisable, $M = I_n$ et $G = \{I_n\}$.

Remarque 15. Soit $\alpha > \sqrt{3}$ et $G = \{I_n, jI_n, j^2I_n\}$. Pour tout $M \in G$, $||M - I_n|| < \alpha$ et $G \neq \{I_n\}$.

Solution 19.

1. On vérifie que $\chi_A(\lambda) = \lambda^3$. On a AX = 0 si et seulement si $x_1 = x_3$ et $x_2 = -2x_1$. On prend $\varepsilon_1 = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$. u est nilpotente et $\dim(\ker(u)) = 1$. On a $u^3 = 0$ et on a

$$A^{2} = \begin{pmatrix} 1 & 1 & 1 \\ -2 & -2 & -2 \\ 1 & 1 & 1 \end{pmatrix} \neq 0 \tag{156}$$

Soit $e_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, on a $u^2(e_1) \neq 0$ donc $(u^2(e_1), u(e_1), e_1)$ est une base de \mathbb{R}^3 . On a

$$mat_{\mathcal{B}}(u) = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \tag{157}$$

 $\dim(\ker(u^k)) = k$ pour $k \in \{0, 1, 2, 3\}$, notamment car $\operatorname{rg}(u^2) = 1$ pour justifier que $\dim(\ker(u^2)) = 2$.

Soit F stable par u de dimension $i \in \{0, 1, 2, 3\}$. $u_{|F}$ est nimpotente et $u_{|F}^i = 0$. Donc $F \subset \ker(u^i)$ qui est de dimension i. Donc $F = \ker(u^i)$.

2. Si $B^2 = A$, $B^6 = 0$ donc $B^3 = 0$. Alors $B^4 = 0 = A^2$ ce qui n'est pas vrai. Donc il n'y a pas de B tel que $B^2 = A$.

Solution 20. Soit $u \in \mathcal{L}(\mathbb{R}^3)$ canoniquement associé à A. On a $X^3 + X^2 + X + 1 = (X+1)(X^2+1)$. D'après le lemme des noyaux, on a

$$\mathbb{R}^3 = \ker(u+id) \otimes \underbrace{\ker(u^2+id)}_F \tag{158}$$

On a $F \neq \{0\}$ car $u \neq -id$. On note $v = u_{|F}$. On a $v^2 = -id_F$ et $\det(v^2) = (\det(v))^2 = (-1)^{\dim(F)} > 0$ donc $\dim(F)$ est pair. Nécessairement, on a $\dim(F) = 2$ et $\dim(\ker(u + id)) = 1$. Soit ε_3 vecteur propre associé à -1. Soit $x \in F \setminus \{0\}$. Si (x, u(x)) est lié, x est vecteur propre de v et $v^2 + id_F = 0$ ce qui est impossible car il n'y a pas de valeur propre réelle. Donc on pose $\mathcal{B} = (x, u(x), \varepsilon_3)$ base de \mathbb{R}^3 . On a $u^2(x) = -x$, donc

Remarque 16. Sur \mathbb{C} , on peut prendre

$$A = \begin{pmatrix} i & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \tag{160}$$

ou i I_3 .

Solution 21.

- 1. $I_x = \{A \in \mathbb{K}[X] | A(f)(x) = 0\}$ est un idéal de $\mathbb{K}[X]$ non vide car $\mu_f \in I_x$. Donc il existe un unique P_x unitaire tel que $I_x = P_x \mathbb{K}[X]$.
- 2. Soit $A \in \mathbb{K}[X]$, on a A(f) = 0 si et seulement si pour tout $x \in E$, $P_x \mid A$ si et seulement si $\bigvee_{x \in E} P_x \mid A$ donc $\mu_f = \bigvee_{x \in E} P_x$.
- 3. On a

$$P_x P_y(f)(x+y) = P_x P_y(f)(x) + P_x P_y(f)(y)$$
(161)

$$= P_f(f) (P_x(f)(x)) + P_x(f) (P_y(f)(y))$$
(162)

$$=0 (163)$$

Donc $P_{x+y} \mid P_x P_y$.

Soit $A \in \mathbb{K}[X]$. Supposons A(f)(x+y) = 0. On a $P_x(f)(A(f)(x+y)) = 0$, $P_x(f)(A(f)(x)) = A(f)(P_x(f)(x)) = 0 = -AP_x(f)(y)$. Donc $P_y \mid AP_x$. D'après le théorème de Gauss, $P_y \mid A$. De même, $P_x \mid A$. On prend $A = P_{x+y}$. Comme $P_x \wedge P_y = 1$ et $P_x P_y \mid P_{x+y}$, on a

$$P_x P_y = P_{x+y} \tag{164}$$

- 4. On décompose $\mu_f = \prod_{i=1}^r A_i^{\alpha_i}$ avec pour tout $i \in [1, r]$, A_i irréductible sur $\mathbb{K}[X]$ et $\alpha_i \geqslant 1$. Comme $\mu_f = \bigvee_{x \in E} P_x$, pour tout $i \in [1, r]$, il existe $y_i \in E$ tel que $P_{y_i} = A_i^{\alpha_i} Q_i$. On pose $x_i = Q_i(f)(y_i)$. Pour tout $A \in \mathbb{K}[X]$, on a $A(f)(x_i) = 0$ si et seulement si $AQ_i(f)(y_i) = 0$ si et seulement si $A_i^{\alpha_i} Q_i \mid AQ_i$ si et seulement si $A_i^{\alpha_i} \mid A$. Ainsi, $P_{x_i} = A_i^{\alpha_i}$. En utilisant le point précédent par récurrence, on a $\mu_f = P_{\sum_{i=1}^r x_i}$ et on pose donc $x = \sum_{i=1}^r x_i$.
- 5. Supposons que ce v existe. D'après le théorème de Cayley-Hamilton, $\deg(\mu_f) \leq n$. Soit $(\alpha_0, \ldots, \alpha_{n-1}) \in \mathbb{K}^n$. Si $\alpha_0 id + \alpha_1 f + \cdots + \alpha_{n-1} f^{n-1} = 0$. En appliquant en v, comme la famille est libre, on a de proche en proche $\alpha_0 = \cdots = \alpha_{n-1} = 0$. Donc pour tout $A \in \mathbb{K}_{n-1}[X]$, si A(f) = 0, alors A = 0. Donc $\deg(\mu_f) \geq n$, donc $\deg(\mu_f) = n$. Réciproquement, soit $v \in E$ tel que $P_v = \mu_f$ qui existe d'après le point précédent. Soit $(\alpha_0, \ldots, \alpha_{n-1}) \in \mathbb{K}^n$ tel que $\alpha_0 v + \cdots + \alpha_{n-1} f^{n-1}(v) = 0$. On forme $A = \alpha_0 + \cdots + \alpha_{n-1} X^{n-1}$. On a A(f)(v) = 0, donc $P_v \mid A$ mais P_v est de degré n donc A = 0. Donc la famille est libre et de cardinal n: c'est une base.

Solution 22.

1. φ est linéaire, soit $(s,t) \in S^2$. On a $\varphi(s) = t$ si et seulement si $\frac{1}{n} \sum_{k=1}^n s_k = t_n$ pour

tout $n \ge 1$ si et seulement si

$$\begin{cases}
s_1 &= t_1 \\
s_1 + s_2 &= 2t_2 \\
\vdots \\
s_1 + \dots + s_{n-1} &= (n-1)t_{n-1} \\
s_1 + \dots + s_n &= nt_n \\
\vdots
\end{cases}$$
(165)

si et seulement si

donc φ est bijective.

2. Soit $\lambda \in \mathbb{R}$, il existe $s \in S \setminus \{0\}$ tel que $\varphi(s) = \lambda s$ si et seulement si $\frac{1}{n} \sum_{k=1}^{n} s_k = \lambda s_n$ pour tout $n \geqslant 1$ si et seulement si $s \in S \setminus \{0\}$ tel que $s = \lambda \varphi^{-1}(s)$ si et seulement si $s \in S \setminus \{0\}$ tel que $s_1 = \lambda s_1$ et pour tout $n \geqslant 2$, $s_n = \lambda (ns_n - (n-1)s_{n-1})$ i.e. $(\lambda n - 1)s_n = \lambda (n-1)s_{n-1}$.

Si c'est le cas, si $s_1 \neq 0$, on a $\lambda = 1$ et pour tout $n \geq 2$, $s_n = s_{n-1}$ donc s est constante.

Sinon, soit $n_0 = \min \{ n \in \mathbb{N}^* | s_{n_0} \neq 0 \}$. On a $(\lambda n_0 - 1) s_{n_0} = 0$ donc $\lambda = \frac{1}{n_0}$ et pour tout $n > n_0$, on a $s_n = \frac{\frac{1}{n_0}(n-1)}{\frac{n}{n_0}-1} s_{n-1} = \frac{n-1}{n-n_0} s_{n-1}$. Ainsi,

$$s_n = \frac{(n-1)!}{(n_0-1)!(n-n_0)!} s_{n_0} = \binom{n-1}{n_0-1} s_{n_0}$$
(167)

Réciproquement, en posant $s_{n_0} = 1$ et en définissant pour tout $n > n_0$, $s_n = \binom{n-1}{n_0-1}$ et pour tout $n \le n_0 - 1$, $s_n = 0$, alors on a $\varphi(s) = \frac{1}{n_0}s$. Ainsi,

$$\operatorname{Sp}(\varphi) = \left\{ \frac{1}{n} \middle| n \in \mathbb{N}^* \right\}$$
 (168)

et les sous-espaces propres sont de dimension 1.

Remarque 17. Si on se limite à \mathbb{R}^p , en définissant $\varphi_p(s_1,\ldots,s_p)=(s_1,\frac{s_1+s_2}{2},\ldots,\frac{s_1+\cdots+s_p}{p})$. Alors en écrivant la matrice de φ_p dans la base canonique, on a $\chi_{\varphi_p}=(X-1)(X-\frac{1}{2})\ldots(X-\frac{1}{p})$.

Solution 23.

- 1. Soit $\lambda \in \operatorname{Sp}(A)$. Supposons que pour tout $i \in [\![1,n]\!]$, $|\lambda a_{i,i}| > L_i$. $\lambda I_n A$ est une matrice à diagonale strictement dominante donc inversible : absurde. Donc il existe $i \in [\![1,n]\!]$ tel que $\lambda \in D_i$. Comme $\lambda \in \operatorname{Sp}(A^\mathsf{T})$, il existe $i \in [\![1,n]\!]$ tel que $\lambda \in S_i$. D'où le résultat.
- 2. Soit X non nul (dans \mathbb{C}^n) tel que $AX = \lambda X$. Soit $i_1 \in [\![1,n]\!]$ tel que $|x_i| = |\![X|\!]_{\infty} > 0$. On a, pour tout $i \in [\![1,n]\!]$, $(\lambda a_{i,i})x_i = \sum_{j \neq i} a_{i,j}x_j$. Soit $i_2 \in [\![1,n]\!]$ tel que $|x_{i_2}| = \max_{i \neq i_1} |x_i|$. Si $x_{i_2} = 0$, on a $\lambda = a_{i_1,i_1}$ et $|\lambda a_{i_1,a_1}| = 0$ et $|\lambda a_{i_1,a_1}| |\lambda a_{i_2,i_2}| = 0 \leqslant L_{i_1}L_{i_2}$. Sinon, on a $|\lambda a_{i_1,i_1}| |x_{i_1}| \leqslant |x_{i_2}| L_{i_1}$ et de même $|\lambda a_{i_2,i_2}| |x_{i_2}| \leqslant |x_{i_1}| L_{i_2}$ d'où le résultat.

Remarque 18. On peut avoir égalité, par exemple avec la matrice nulle.

Solution 24. A est symétrique réelle, donc diagonalisable. Si pour tout $i \in [1, n]$, $a_i = 0$ alors A = 0.

Sinon, $\operatorname{rg}(A) = 2$. Soit $u \in \mathcal{L}(\mathbb{R}^{n+1})$ canoniquement associée à A. On a $\dim(\ker(u)) = n-1$ et $\chi_A = X^{n-1}(X-\lambda)(X-\mu)$ sur \mathbb{C} . On a $\operatorname{Tr}(A) = \lambda + \mu = 0$ donc $\mu = -\lambda$ et $\operatorname{Tr}(A^2) = \lambda^2 + \mu^2 = 2\sum_{i=1}^n a_i^2$ donc

$$\{\lambda, \mu\} = \left\{ \pm \sqrt{\sum_{i=1}^{n} a_i^2} \right\} \tag{169}$$

Les deux valeurs propres sont de multiplicité 1 dans χ_A : les sous-espaces propres sont de dimension 1.

A est diagonalisable sur \mathbb{R} , semblable à diag $(0,\ldots,0,\sqrt{\sum_{i=1}^n a_i^2},-\sqrt{\sum_{i=1}^n a_i^2})$. On a AX=0 si et seulement si

$$\begin{cases} a_1 x_{n+1} & = 0 \\ \vdots & & \\ a_n x_{n+1} & = 0 \\ a_1 x_1 + \dots + a_n x_n & = 0 \end{cases}$$
(170)

si et seulement si

$$\begin{cases} x_{n+1} = 0 \\ x_{i_0} = \sum_{\substack{i=1 \ i \neq i_0}} a_i x_i \end{cases}$$
 (171)

avec i_0 indice tel que $a_{i_0} \neq 0$. Une base de $\ker(u)$ est donc

$$f_{i} = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \cdots \\ 0 \\ -\frac{a_{i}}{a_{i_{0}}} \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

$$(172)$$

où $i \in [\![1,n]\!] \setminus \{i_0\}$. Le 1 est à la *i*-ième ligne, $-\frac{a_i}{a_{i_0}}$ est à la ligne i_0 .

On a $AX = \sqrt{\sum_{i=1}^n a_i^2} X = \alpha X$ si et seulement si

$$\begin{cases}
a_1 x_{n+1} = \alpha x_1 \\
\vdots \\
a_n x_{n+1} = \alpha x_n \\
\sum_{i=1}^n a_i x_i = \alpha x_{n+1}
\end{cases}$$
(173)

si et seulement si

$$\begin{cases} x_1 &= \frac{a_1}{\alpha} x_{n+1} \\ \vdots \\ x_n &= \frac{a_n}{\alpha} x_{n+1} \end{cases}$$
 (174)

Une base de $ker(u - \alpha id)$ est donc

$$\begin{pmatrix} \frac{a_1}{\alpha} \\ \dots \\ \frac{a_n}{\alpha} \\ 1 \end{pmatrix} \tag{175}$$

De même pour $-\alpha$, on vérifie qu'une base de $\ker(u + \alpha id)$ est

$$\begin{pmatrix} -\frac{a_1}{\alpha} \\ \dots \\ -\frac{a_n}{\alpha} \\ 1 \end{pmatrix} \tag{176}$$

Solution 25. Pour le sens direct, f et g ont les mêmes espaces propres distincts. Pour tout $i \in [1, r]$, $E_i = \ker(f - \lambda_i id) = \ker(g - \mu_i id)$ avec $\lambda_1, \ldots, \lambda_r$ valeurs propres distinctes deux à deux de f et μ_1, \ldots, μ_r pour g.

On pose

$$Q = \sum_{i=1}^{r} \mu_i \prod_{\substack{j=1 \ j \neq i}}^{r} \frac{X - \lambda_j}{\lambda_i - \lambda_j}$$

$$P = \sum_{i=1}^{r} \lambda_i \prod_{\substack{j=1 \ j \neq i}}^{r} \frac{X - \mu_j}{\mu_i - \mu_j}$$

$$(177)$$

Soit $i \in [1, r]$ et $x \in E_i$. On a $Q(f)(x) = Q(\lambda_i)x = \mu_i x = g(x)$. Q(f) et g coïncident sur les vecteurs d'une base, donc ils sont égaux, donc Q(f) = g. De même, f = P(g).

Réciproquement, s'il existe $(P,Q) \in \mathbb{K}_{n-1}[X]^2$ tel que f = P(g) et g = Q(f). On prend $\lambda \in \operatorname{Sp}(f)$, soit $x \in \ker(f - \lambda id)$. On a $g(x) = Q(f)(x) = Q(\lambda)x$ donc $x \in \ker(g - Q(\lambda)id)$. On a

$$\ker(f - \lambda id) \subset \ker(g - Q(\lambda)id) \subset \ker(f - P(Q(\lambda))id)$$
 (178)

Or $P(Q(\lambda)) = \lambda$ car pour $x \in \ker(f - \lambda id) \setminus \{0\}$, on a $\lambda x = P(Q(\lambda))x$. Donc $\ker(f - \lambda id) = 0$ $\ker(g - Q(\lambda)id)$ donc f et g ont les mêmes sous-espaces propres.

Remarque 19. C'est faux si f et g ne sont pas diagonalisables, par exemple

A et B ont les mêmes sous-espaces propres (un seul : $Vect(e_1, e_4)$). On a $A^2 = 0$ donc pour tout $P \in \mathbb{C}[X]$, il existe $(\alpha, \beta) \in \mathbb{C}^2$,

$$P(A) = \alpha I_4 + \beta A = \begin{pmatrix} \alpha & \beta & 0 & 0 \\ 0 & \alpha & 0 & 0 \\ 0 & 0 & \alpha & 0 \\ 0 & 0 & \beta & \alpha \end{pmatrix} \neq B$$
 (180)

Solution 26. Soit m = |G|. On a pour tout $M \in G$, on a $M^m = I_2$ donc M est diagonalisable sur \mathbb{C} et $\mathrm{Sp}_{\mathbb{C}}(M) \subset \mathbb{U}_m$. Notons que G étant abélien, toutes les matrices sont co-diagonalisables.

Si $\operatorname{Sp}_{\mathbb{C}}(M) = \{1\}$, alors $M = I_2$. Si $\operatorname{Sp}_{\mathbb{C}}(M) = \{-1\}$, alors $M = -I_2$. Dans ces deux cas, on a det(M) = 1 et $Tr(M) = \pm 2$. On note ce cas 1.

Si $\operatorname{Sp}_{\mathbb{C}}(M) = \{-1, 1\}, M \text{ est semblable à } \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \text{ et } M^2 = I_2.$ Dans ce cas, on a det(M) = -1 et Tr(M) = 0. On note ce cas 2.

Notons que l'on a $\chi_M = X^2 - \text{Tr}(M)X + \det(M)$ et $\Delta = (\text{Tr}(M))^2 - 4\det(M)$. Comme χ_M est un polynôme réel, si $\delta < 0$, on écrit $\chi_M(X - e^{i\theta})(X - e^{-i\theta})$. Comme Tr(M) = 0 $2\cos(\theta) \in \mathbb{Z}$, on a $\theta \in \left\{\frac{2\pi}{3}, \frac{\pi}{2}, \frac{\pi}{3}\right\}$. Si $\theta = \frac{2\pi}{3}$, M est semblable à

$$\begin{pmatrix} e^{i\frac{2\pi}{3}} & 0\\ 0 & e^{-i\frac{2\pi}{3}} \end{pmatrix} \tag{181}$$

et $M^3 = I_2$. On a det(M) = 1 et Tr(M) = -1. On note ce cas 3.

Si $\theta = \frac{\pi}{2}$, M est semblable à

$$\begin{pmatrix} e^{i\frac{\pi}{2}} & 0\\ 0 & e^{-i\frac{\pi}{2}} \end{pmatrix} \tag{182}$$

et $M^4 = I_2$. On a det(M) = 1 et Tr(M) = 0. On note ce cas 4.

Si $\theta = \frac{\pi}{3}$, M est semblable à

$$\begin{pmatrix} e^{i\frac{\pi}{3}} & 0\\ 0 & e^{-i\frac{\pi}{3}} \end{pmatrix} \tag{183}$$

et $M^6 = I_2$. On a det(M) = 1 et Tr(M) = 1. On note ce cas 5.

Par ailleurs, il existe $P \in GL_2(\mathbb{C})$ telle que pour tout $M \in G$, $P^{-1}MP = I_2$.

S'il existe $M \in G$ du type 2, alors les types 3 et 5 sont exclus car on obtiendrait par produit $\begin{pmatrix} e^{i\theta} & 0 \\ 0 & -e^{i\theta} \end{pmatrix}$ avec Tr(M) = 0 car χ_m est un polynôme réel, et $\theta \in \left\{\frac{\pi}{3}, \frac{2\pi}{3}\right\}$, ce qui n'est pas

Ainsi.

$$P^{-1}GP \subset \left\{ I_2, -I_2, \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} \mathbf{i} & 0 \\ 0 & -\mathbf{i} \end{pmatrix}, \begin{pmatrix} -\mathbf{i} & 0 \\ 0 & \mathbf{i} \end{pmatrix} \right\} \tag{184}$$

Ainsi,

$$G = \begin{cases} \{I_2\} \\ \{-I_2, I_2\} \\ \{I_2, B\} \end{cases} & B \text{ matrice de type 2} \\ \{I_2, A, A^2, A^3\} \cong \mathbb{Z}/4\mathbb{Z} & A \text{ matrice de type 4} \\ \{I_2, A, B, A^2, A^3, -B\} \cong \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} & A, B \text{ matrices de type 4}, 2 \\ \{I_2, B, -B, -I_2\} \cong (\mathbb{Z}/2\mathbb{Z})^2 & B \text{ matrice de type 2} \end{cases}$$
Still pits a pass de matrice de type 2. on a

S'il n'y a pas de matrice de type 2, on a

$$P^{-1}GP \subset \left\{ I_2, -I_2, \begin{pmatrix} \mathbf{j} & 0 \\ 0 & \mathbf{j}^2 \end{pmatrix}, \begin{pmatrix} \mathbf{i} & 0 \\ 0 & -\mathbf{i} \end{pmatrix}, \begin{pmatrix} -\mathbf{i} & 0 \\ 0 & \mathbf{i} \end{pmatrix}, \begin{pmatrix} -\mathbf{j} & 0 \\ 0 & -\mathbf{j}^2 \end{pmatrix}, \begin{pmatrix} -\mathbf{j}^2 & 0 \\ 0 & -\mathbf{j} \end{pmatrix} \right\}$$
(186)

On ne peut pas avoir une matrice de type 3 ou 5 car $\pm ij$ et $\pm ij^2$ ne sont pas des valeurs propres possibles. Donc

$$G = \begin{cases} \{I_2, C, C^2\} \cong \mathbb{Z}/3\mathbb{Z} & C \text{ matrice de type 3} \\ \{I_2, D, D^2, D^3, D^4, D^5\} \cong \mathbb{Z}/6\mathbb{Z} & D \text{ matrice de type 5} \end{cases}$$
(187)

Notons que dans le deuxième cas, D^2 est de type 3.

On a donc bien
$$|G| \in \{1, 2, 3, 4, 6\}$$
.

Solution 27. Si u est diagonalisable, la famille des vecteurs propres est génératrice. En prenant un sous-espace de E de base \mathcal{B} , on complète avec des vecteurs propres, ce qui forme un sous-espace stable par u.

Réciproquement, soit

$$F = \bigotimes_{\lambda \in \operatorname{Sp}(u)} \ker(u - \lambda id) \tag{188}$$

stable par u. F admet un supplémentaire stable qu'on nommera G. Si $G \neq \{0\}$, $u_{|G}$ admet nécessairement un vecteur propre, or les vecteurs propres sont dans $F \setminus \{0\}$; absurde. Donc $G = \{0\}$ et E = F donc u est diagonalisable.

Solution 28. Plus généralement, soit $A=(a_{i,j})\in\mathcal{M}_n(\mathbb{K})$ et $B=(b_{k,l})\in\mathcal{M}_p(\mathbb{K})$. On définit

$$M = B \otimes A = \begin{pmatrix} b_{1,1}A & \dots & b_{1,p}A \\ \vdots & & \vdots \\ b_{p,1}A & \dots & b_{p,p}A \end{pmatrix}$$

$$(189)$$

Si B est diagonalisable, il existe $Q \in GL_p(\mathbb{K})$ tel que $Q^{-1}BQ = \operatorname{diag}(\mu_1, dots, \mu_p)$. On note $Q = (q_{i,j})$ et $Q^{-1} = (q'_{i,j})$. Par produits par blocs, on a

$$\underbrace{\begin{pmatrix} q'_{1,1}I_n & \dots & q'_{1,p}I_n \\ \vdots & & \vdots \\ q'_{p,1}I_n & \dots & q'_{p,p}I_n \end{pmatrix}}_{=Q^{-1}\otimes I_n = (Q\otimes I_n)^{-1}} M \underbrace{\begin{pmatrix} q_{1,1}I_n & \dots & q_{1,p}I_n \\ \vdots & & \vdots \\ q_{p,1}I_n & \dots & q_{p,p}I_n \end{pmatrix}}_{Q\otimes I_n} = \operatorname{diag}(\mu_1 A, \dots, \mu_p A) = M_1 \qquad (190)$$

Si de plus A est diagonalisable, il existe $P \in GL_n(\mathbb{K})$ tel que $P^{-1}AP = \operatorname{diag}(\lambda_1, dots, \lambda_n)$. Alors

$$\operatorname{diag}(P^{-1},\ldots,P^{-1})M_1\operatorname{diag}(P,\ldots,P) = \operatorname{diag}(\mu_1,\lambda_1,\ldots,\mu_1,\lambda_n,\ldots,\mu_p\lambda_1,\ldots,\mu_p\lambda_n)$$
(191)

Donc $B \otimes A$ est diagonalisable et $\operatorname{Sp}(B \otimes A) = \{\lambda_i \mu_j | 1 \leqslant i \leqslant n, 1 \leqslant j \leqslant p\}.$

Remarque 20. On a $\operatorname{Tr}(B \otimes A) = \operatorname{Tr}(B) \times \operatorname{Tr}(A)$ et $\det(B \otimes A) = \det(B)^n \det(A)^p$.

Remarque 21. Si B est diagonalisable et non nulle, si $B \otimes A$ est diagonalisable, il existe $i \in [1, p]$ tel que $\mu_i \neq 0$ et $\mu_i A$ est diagonalisable (restriction à un sous-espace stable d'un endomorphisme diagonalisable) donc A est diagonalisable.

Solution 29.

1. On note (e_1, \ldots, e_n) la base canonique de \mathbb{C}^n et $u \in \mathcal{L}(\mathbb{C}^n)$ canoniquement associé à A.

Si n = 2m avec $m \in \mathbb{N}^*$, on pose pour $k \in [1, m]$, $F_k = \text{Vect}(e_k, \dots, e_{n-k+1})$. On a $u(e_k) = x_k e_{n-k+1}$ et $u(e_{n-k+1}) = x_{n-k+1} e_k$ donc F_k est stable par u. Ainsi, $\max_{(e_k, e_{n-k+1})} (u_{|F_k}) = \begin{pmatrix} 0 & x_{n-k+1} \\ x_k & 0 \end{pmatrix}$.

Étudions, pour tout $(a,b) \in \mathbb{C}^2$, $M = \begin{pmatrix} 0 & a \\ b & 0 \end{pmatrix}$. On a $\chi_M = X^2 - ab$.

Si $ab \neq 0$, on note λ une racine carrée de ab sur \mathbb{C} . On a $\chi_M(X - \lambda)(X + \lambda)$ qui est scindé à racines simples donc M est diagonalisable et semblable à diag $(\lambda, -\lambda)$.

Si ab = 0: si a = b = 0 alors M = 0. Si a ou $b \neq 0$, alors M n'est pas diagonalisable puisque si elle l'était, comme sa seule valeur propre est 0, elle serait semblable donc égale à 0 ce qui n'est pas. Donc A est diagonalisable si et seulement si pour tout $k \in [1, m]$, x_k et x_{n-k+1} non nuls ou $x_k = 0 = x_{n-k+1}$.

Si n = 2m + 1, on fait le même raisonnement avec $u(e_m) = x_m e_m$.

2. $(A^p)_{p\in\mathbb{N}}$ converge si et seulement si pour tout $k\in[1,m]$, $\left(u^p_{|F_k}\right)_{p\in\mathbb{N}}$ converge. Soit $k\in[1,m]$. Si $x_kx_{n+1-k}\neq 0$, soit $\lambda\in\mathbb{C}$ tel que $\lambda^2=x_kx_{n+1-k}$. Dans une base de vecteurs propres \mathcal{B} , on a

$$\operatorname{mat}_{\mathcal{B}}(u_{|F_k}^p) = \begin{pmatrix} \lambda^p & 0\\ 0 & (-\lambda)^p \end{pmatrix}$$
 (192)

Cela converge si et seulement si $|\lambda| < 1$ si et seulement si $|x_k x_{n+1-k}| < 1$. Si $x_k = x_{n+1-k} = 0$, alors pour tout $p \ge 2$, $u_{|F_k|}^p = 0$ donc on a convergence.

Solution 30.

1. On a

$$mat_{(1,X,\dots,X^n)}(\varphi) = diag(-n, 1-n, \dots, 0)$$
(193)

donc les valeurs propres sont $(k-n)_{k\in[0,n]}$. On a n+1 valeurs propres distinctes donc φ est diagonalisable et les sous-espaces propres sont de dimension 1. Les vecteurs propres sont les (X^k) pour $k \in [1, n]$.

2. Si $\varphi(P) = kP$, alors $\deg(P) = k$. Si $P = \sum_{i=0}^k a_i X^i$ donc

$$XP' - nP'' - kP = 0 = \sum_{i=0}^{k-2} (ia_i - n(i+1)(i+2) - ka_i) X^i - a_{k-1}X^{k-1}$$
 (194)

Ainsi, par récurrence, pour tout $p \in \{0, ; \lfloor \frac{k-1}{2} \rfloor \}$, $a_{k-(2p+1)} = 0$ et pour tout $p \in \{0, \ldots, \lfloor \frac{k}{2} \rfloor \}$,

$$a_{k-2p} = \frac{n^p(k-2p+1)\dots(k-1)k}{(-2p)\dots(-4)(-2)}a_k = \frac{n^p(-1)^p}{2^p p!} \times \frac{k!}{(k-2p)!}a_k$$
(195)

donc les vecteurs propres correspondent aux polynômes ayant ces coefficients.

Solution 31.

32

1. On a

$$A = aI_3 + c\underbrace{\begin{pmatrix} 0 & 0 & 1\\ 1 & 0 & 0\\ 0 & 1 & 0 \end{pmatrix}}_{G} + b\underbrace{\begin{pmatrix} 0 & 1 & 0\\ 0 & 0 & 1\\ 1 & 0 & 0 \end{pmatrix}}_{B}$$
(196)

avec $B=C^2$ et C est la matrice compagnon du polynôme X^3-1 , donc $\chi_C=X^3-1$. Ainsi, C est diagonalisable sur $\mathbb C$ et $\mathrm{Sp}_{\mathbb C}(C)=\{1,\mathrm{j},\mathrm{j}^2\}$. On a

$$C \begin{pmatrix} 1\\1\\1 \end{pmatrix} = \begin{pmatrix} 1\\1\\1 \end{pmatrix}$$

$$C \begin{pmatrix} 1\\j^2\\j \end{pmatrix} = j \begin{pmatrix} 1\\j^2\\j \end{pmatrix}$$

$$C \begin{pmatrix} 1\\j\\j^2 \end{pmatrix} = j^2 \begin{pmatrix} 1\\j\\j^2 \end{pmatrix}$$

$$(197)$$

donc si

$$P = \begin{pmatrix} 1 & 1 & 1 \\ 1 & j^2 & j \\ 1 & j & j^2 \end{pmatrix} \tag{198}$$

alors on a

$$P^{-1}AP = \begin{pmatrix} 1 & 0 & 0 \\ 0 & a + bj^2 + cj & 0 \\ 0 & 0 & a + bj + cj^2 \end{pmatrix}$$
 (199)

et

$$\operatorname{Sp}_{\mathbb{C}}(A) = \{1, a + c\mathbf{j} + b\mathbf{j}^2, a + b\mathbf{j} + c\mathbf{j}^2\}$$
 (200)

2. On a

$$A^{n} = P \begin{pmatrix} 1 & 0 & 0 \\ 0 & (a+bj^{2}+cj)^{n} & 0 \\ 0 & 0 & (a+bj+cj^{2})^{n} \end{pmatrix} P^{-1}$$
 (201)

Tout d'abord, on a $|a+c\mathbf{j}+b\mathbf{j}^2| \leq |a|+|b|+|c|=1$ et on a égalité si et seulement si $a,c\mathbf{j}$ et $b\mathbf{j}^2$ ont le même argument si et seulement si $\{a,b,c\} \in \{\{1,0,0\},\{0,1,0\},\{0,0,1\}\}$. Si a=1 et b=c=0, la suite $(A^n)_{n\in\mathbb{N}}$ converge.

Si (b=1 et a=c=0) ou $(c=1 \text{ et } a=b=0), \ (A^n)_{n\in\mathbb{N}}$ diverge. Sinon,

$$A^{n} \xrightarrow[n \to +\infty]{} P \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} P^{-1}$$
 (202)

Solution 32.

1. On vérifie en calculant les premiers termes puis par récurrence que

$$A^{k} = \begin{pmatrix} B^{k} & \sum_{i=1}^{k} B^{i-1}CD^{k-i} \\ 0 & D^{k} \end{pmatrix}$$
 (203)

2. On a

$$\mu_A(A) = 0 = \begin{pmatrix} \mu_A(B) & \star \\ 0 & \mu_A(D) \end{pmatrix} \tag{204}$$

donc $\mu_A(B) = \mu_A(D) = 0$. Ainsi, $\mu_B \mid \mu_A$ et $\mu_D \mid \mu_A$ donc $\mu_B \vee \mu_D \mid \mu_A$.

Si B et D sont de tailles 1, $\chi_A(X) = (X-b)(X-d)$ d'où $\mu_B = X-b$ et $\mu_D = X-d$. Si $b \neq d$, X-b et X-d divise μ_A donc $\mu_A \mid \chi_A$ d'après le théorème de Cayley-Hamilton.

Si b = d, si c = 0 on a $\mu_A = X - b$ donc $\mu_A \mid \mu_B \mu_D = (X - b)^2$. Si $c \neq 0$, $\mu_A = X - b$ ou $\mu_A = (X - b)^2$ et $A - bI_n \neq 0$ donc $\mu_A = (X - b)^2$.

- 3. Si C = 0, on a $\mu_A = \mu_B \vee \mu_D$.
- 4. Si B = D et $C = I_{n_1}$, on a $A^0 = I_{n_1+n_2}$ et pour $k \ge 1$,

$$A^k = \begin{pmatrix} B^k & kB^{k-1} \\ 0 & B^k \end{pmatrix} \tag{205}$$

Ainsi

$$P(A) = \begin{pmatrix} P(B) & P'(B) \\ 0 & P(B) \end{pmatrix} = 0 \tag{206}$$

si et seulement si P(B) = P'(B) = 0 donc $\mu_B \mid P$ et $\mu_B \mid P'$ donc $\mu_B \mid P \lor P'$.

On a

$$\mu_B^2(A) = \begin{pmatrix} 0 & 2\mu_B \mu_B'(B) \\ 0 & 0 \end{pmatrix} = 0 \tag{207}$$

donc $\mu_A \mid \mu_B^2$.

On décompose $\mu_B = (X - \lambda_1)^{m_1} \times \cdots \times (X - \lambda_r)^{m_r}$. On a P(A) = 0 si et seulement si pour tout $i \in \{1, \dots, r\}$, λ_i est racine de P d'ordre plus grand que $m_i + 1$.

5. On prend

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \tag{208}$$

On a

$$B = D = \begin{pmatrix} 0 & 1\\ 0 & 0 \end{pmatrix} \tag{209}$$

 $\mu_B = \mu_D = X^2$, et $\mu_A \mid X^3$. Or $u^2(e_4) \neq 0$ donc $\mu_A = X^3 \neq X^2 = \mu_B \vee \mu_D \neq X^4 = \mu_B \mu_D$.

Solution 33. On décompose sur $\mathbb{C}: P(X) - \lambda = \alpha \prod_{i=1}^m (X - \mu_i)$ avec $\alpha \neq 0$. On a

$$\underbrace{g - \lambda id}_{\substack{\text{non inversible} \\ \text{(respectivement non injectif)}}} = \alpha \prod_{i=1}^{m} (f - \mu_i id)$$
(210)

donc il existe $i \in [1, m]$, $f - \mu_i id$ est non inversible (respectivement non injectif), d'où le résultat.

Solution 34.

- 1. Soit (f_1, \ldots, f_r) une base de V et $x \in E \setminus \{0\}$. Soit $(\alpha_1, \ldots, \alpha_r) \in \mathbb{K}^r$ tels que $\alpha_1 f_1(x) + \cdots + \alpha_r f_r(x) = 0$. Or V est un sous-espace, donc $\alpha_1 f_1 + \cdots + \alpha_r f_r \in V$ et $\alpha_1 f_1 + \cdots + \alpha_r f_r \notin GL(E)$ car $x \neq 0$. D'où $\alpha_1 f_1 + \cdots + \alpha_r f_r = 0$ et donc $\alpha_1 = \cdots = \alpha_r = 0$ car (f_1, \ldots, f_r) est une base de V. Ainsi $(f_1(x), \ldots, f_r(x))$ est libre donc $r = \dim(V) \leqslant \dim(E)$.
- 2. Si $\dim(V) = 1$, alors $V = \mathbb{C}f$ avec $f \in GL(E)$. Si $\dim(V) \geq 2$, soient $(f,g) \in V^2$ tels que (f,g) soit libre alors pour tout $\alpha \in \mathbb{C}$, $f + \alpha g \neq 0$ et $f + \alpha g \in V \setminus \{0\}$. Or $f + \alpha g = g(g^{-1} \circ f + \alpha id)$. Pour $\alpha \in \operatorname{Sp}(-g^{-1} \circ f)$ (existe car on est dans \mathbb{C}), on obtient une contradiction. Donc de même, $V = \mathbb{C}f$ avec $f \in GL(E)$.
- 3. Comme $\dim(E) = 2$, on a $\dim(V) \leq 2$. Si $\dim(V) = 1$, comme précédemment, on a $V = \mathbb{R}f$ avec $f \in GL(E)$. Si $\dim(V) = 2$, soit (f,g) une base de V. D'après ce qui précède, on a $\operatorname{Sp}_{\mathbb{R}}(g^{-1} \circ f) = \emptyset$. Soit \mathcal{B} une base de E et $A = \operatorname{mat}_{\mathcal{B}}(f)$ et $B = \operatorname{mat}_{\mathcal{B}}(g)$. On écrit $\chi_{A^{-1}B} = (X \lambda)(X \overline{\lambda})$ avec $\lambda = \alpha + \mathrm{i}\beta$, $\beta > 0$. $A^{-1}B$ est diagonalisable sur \mathbb{C} et semblable à $\operatorname{diag}(\lambda, \overline{\lambda})$ et $\frac{A^{-1}B \alpha I_2}{\beta}$ est semblable sur \mathbb{C} à $\operatorname{diag}(\mathrm{i}, -\mathrm{i})$ semblable sur \mathbb{R} à $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ donc $\frac{A^{-1}B \alpha I_2}{\beta}$ est semblable sur \mathbb{R} à $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$. Il existe $P \in GL_2(\mathbb{R})$ tel que

$$A^{-1}B = P \begin{pmatrix} \alpha & -\beta \\ \beta & \alpha \end{pmatrix} P^{-1} \tag{211}$$

Pour tout $(\lambda, \mu) \in \mathbb{R}^2$,

$$\lambda A + \mu B = A(\lambda I_2 + \mu A^{-1}B) = \underbrace{AP}_{\in GL_2(\mathbb{R})} \begin{pmatrix} \lambda + \alpha \mu & -\beta \\ \beta & \lambda + \alpha \mu \end{pmatrix} \underbrace{P^{-1}}_{\in GL_2(\mathbb{R})}$$
(212)

avec $\beta > 0, \alpha \in \mathbb{R}$.

4. Avec les notations précédentes, si $(A, B) \in V^2$ est libre, on a

$$i \in \operatorname{Sp}\left(\frac{A^{-1}B - \alpha I_2}{\beta}\right) = \operatorname{Sp}\left((BA)^{-1}(B - \alpha A)\right)$$
 (213)

et on pose $A' = \beta A \in V$ et $B' = B - \alpha A \in V$.

Solution 35.

1. En notant $c_{i,j}$ les cofacteurs d'indice (j,i), on a

$$\left[\text{com}(\lambda I_n - A)^{\mathsf{T}}\right]_{i,j} = (-1)^{i+j} c_{j,i} (\lambda - I_n)$$
 (214)

En développant, on obtient des polynômes en λ de degré plus petit que n-1. En regroupant selon les puissances de λ , on a

$$com(\lambda I_n - A)^{\mathsf{T}} = M_0 + M_1 \lambda + \dots + \lambda^{n-1} M_{n-1}$$
 (215)

2. On a $(\lambda I_n - A) \operatorname{com}(\lambda I_n - A)^{\mathsf{T}} = \det(\lambda I_n - A) I_n = \chi_A(\lambda) I_n$ En identifiant les coefficients, on a

$$\begin{cases}
M_{n-1} &= I_n \\
M_{n-2} &= A + a_{n-1}I_n \\
M_{n-3} &= A^2 + a_{n-1}A + a_{n-2}I_n \\
\vdots \\
M_{n-k} &= A^{k-1} + a_{n-1}A^{k-2} + \dots + a_{n-k+1}I_n \\
\vdots \\
M_0 &= A^{n-1} + a_{n-1}A^{n-2} + \dots + a_1I_n
\end{cases} (216)$$

et $-AM_0 = a_0I_n$. En reportant, on a bien $\chi_A(A) = O_{\mathcal{M}_n(\mathbb{K})}$: on a une preuve du théorème de Cayley-Hamilton.

3. Soit $\lambda \in \mathbb{K}$. On forme $\lambda I_n - A = (c_1(\lambda), \dots, c_n(\lambda))$ avec

$$c_{j}(\lambda) = \begin{pmatrix} -a_{1,j} \\ \cdots \\ -a_{j-1,j} \\ \lambda - a_{j,j} \\ -a_{j+1,j} \\ \cdots \\ -a_{n,j} \end{pmatrix}$$

$$(217)$$

On a $\chi_A(\lambda) = \det(c_1(\lambda), \dots, c_n(\lambda))$. det étant une forme *n*-linéaire, on a

$$\chi_A'(\lambda) = \sum_{k=1}^n \det(c_1(\lambda), \dots, c_{k-1}(\lambda), c_k'(\lambda), c_{k+1}(\lambda), \dots, c_n(\lambda))$$
 (218)

En développant le terme k par rapport à la k-ième colonne, on trouve qu'il vaut $_{k,k}(\lambda I_n - A)$. Ainsi,

$$\chi'_A(\lambda) = \text{Tr}(\text{com}(\lambda I_n - A)^\mathsf{T})$$
 (219)

- 4. On a donc $a_1 + 2a_2\lambda + \cdots + (n-1)a_{n-1}\lambda^{n-2} + n\lambda^{n-1} = \sum_{k=0}^{n-1} \lambda^k \operatorname{Tr}(M_k)$ pour tout $\lambda \in \mathbb{K}$ (par linéarité de Tr). Donc pour tout $k \in [0, n-2]$, $\operatorname{Tr}(M_k)$, $\operatorname{Tr}(M_k) = (k+1)a_{k+1}$ (et $\operatorname{Tr}(M_{n-1}) = \operatorname{Tr}(I_n) = n$). On a $\operatorname{Tr}(M_{n-2}) = (n-1)a_{n-1} = \operatorname{Tr}(A) + na_{n-1}$ donc $a_{n-1} = \operatorname{Tr}(A)$. Puis $\operatorname{Tr}(M_{n-3}) = (n-2)a_{n-2} = \operatorname{Tr}(A^2) + a_{n-1}\operatorname{Tr}(A) + a_{n-2}n$ donc $a_{n-2} = -\frac{\operatorname{Tr}(A^2)}{2} + \frac{\operatorname{Tr}(A)^2}{2}$. De proche en proche, on a $a_{n-k} = f_k(\operatorname{Tr}(A), \dots, \operatorname{Tr}(A^k))$ avec f_k indépendante de A.
- 5. D'après ce qui précède, pour tout $k \in [0, n-1]$, $a_k = b_k$ car f est indépendante de A. Donc $\chi_A = \chi_B$.

Remarque 22. Si $\operatorname{Tr}(A) = \operatorname{Tr}(A^2) = \cdots = \operatorname{Tr}(A^n) = 0$, alors $\chi_A = \chi_0 = X^n$ et A est nilpotente. On peut le vérifier à la main sur \mathbb{C} : si $(\lambda_1, \ldots, \lambda_r)$ sont les valeurs propres non nulles distinctes de A et m_i la multiplicité de λ_i dans χ_A , alors on a le système

$$\begin{cases}
\operatorname{Tr}(A) &= m_1 \lambda_1 + \dots + m_r \lambda_r = 0 \\
\operatorname{Tr}(A^2) &= m_1 \lambda_1^2 + \dots + m_r \lambda_r^2 = 0 \\
\vdots \\
\operatorname{Tr}(A^r) &= m_1 \lambda_1^r + \dots + m_r \lambda_r^r = 0
\end{cases} (220)$$

donc

$$\begin{pmatrix} \lambda_1 & \dots & \lambda_r \\ \vdots & & \vdots \\ \lambda_1^r & \dots & \lambda_r^r \end{pmatrix} \begin{pmatrix} m_1 \\ \vdots \\ m_r \end{pmatrix} = 0$$
 (221)

et la matrice est inversible car les λ_i sont distincts non nuls. Donc $m_1 = \cdots = m_r = 0$ et $\operatorname{Sp}_{\mathbb{C}}(A) = \{0\}$ et $\chi_A = X^n$.

Solution 36. On définit, pour $A = (a_{i,j}) \in \mathcal{M}_n(\mathbb{Z})$, $\overline{A} = (\overline{a_{i,j}}) \in \mathcal{M}_n(\mathbb{Z}/p\mathbb{Z})$. Comme p est premier, $\mathbb{Z}/p\mathbb{Z}$ est un corps. On a $\chi_A \in \mathbb{Z}/p\mathbb{Z}[X]$ donc il existe \mathbb{L} un sur-corps de $\mathbb{Z}/p\mathbb{Z}$ où χ_A est scindé sur \mathbb{L} . On écrit $\chi_A = (X - \lambda_1) \dots (X - \lambda_n)$ avec $\lambda_1, \dots, \lambda_n \in \mathbb{L}$. On peut trigonaliser \overline{A} sur \mathbb{L} et on a $\text{Tr}(\overline{A}^p) = \sum_{i=1}^n \lambda_i^p$. Or la caractéristique de \mathbb{L} vaut p donc on a $(x + y)^p = x^p + y^p$ (binôme de Newton et utiliser le fait que $p \mid \binom{p}{k}$ pour $k \in [1, p - 1]$). Ainsi,

$$\operatorname{Tr}(\overline{A}^p) = \left(\sum_{i=1}^n \lambda_i\right)^p = \operatorname{Tr}(\overline{A})^p$$
 (222)

et on peut appliquer le petit théorème de Fermat : on a bien $\text{Tr}(\overline{A}^p) = \text{Tr}(\overline{A})$ et en remontant dans \mathbb{Z} ,

$$\operatorname{Tr}(A^p) \equiv \operatorname{Tr}(A)[p]$$
 (223)

37

Solution 37. Si on a (i), soit x un vecteur propre associé à $\rho(u) = \rho e^{i\theta}$. On a $||u(x)|| = ||\rho(u)x|| = \rho(u)||x||$ et comme $x \neq 0$, on a $\rho(u) \leq |||\rho(u)|| < 1$ d'où (ii).

Si (ii), on utilise la décomposition de Dunford u = n + d avec n nilpotent, d diagonalisable et dn = nd. Soit $m = \dim(E)$. Pour tout $p \ge m$, on a

$$u^{p} = \sum_{k=0}^{p} \binom{p}{k} n^{k} d^{p-k} = \sum_{k=0}^{m-1} \binom{p}{k} n^{k} \underbrace{d^{p-k}}_{n \to +\infty} 0$$
 (224)

En effet, on a $k \ge m-1$ fixé, il existe une base \mathcal{B} de E telle que

$$\binom{p}{k} \operatorname{mat}_{\mathcal{B}}(d^p) = \binom{p}{k} \operatorname{diag}(\lambda_1^p, \dots, \lambda_m^p) \xrightarrow[p \to +\infty]{} 0$$
 (225)

 $\operatorname{car} |\lambda_i| < 1 \text{ pour tout } i \in \{1, \dots, m\} \text{ et}$

$$\binom{p}{k} \underset{p \to +\infty}{\sim} \frac{p^k}{k!} = \underset{p \to +\infty}{o} \left(\frac{1}{\rho(u)^p}\right)$$
 (226)

donc on a (iii).

Si (iii), soit x un vecteur propré associé à $\lambda \in \mathbb{C}$, on a $u^p \xrightarrow[p \to +\infty]{} 0$ donc en particulier, $u^p(x) = \lambda^p \xrightarrow[p \to +\infty]{} 0$, donc $\rho(u)^p \xrightarrow[p \to +\infty]{} 0$ et $\rho(u) \geqslant 0$ donc $\rho(u) < 1$. Posons encore u = d + n la décomposition de Dunford de u. Soit $\varepsilon > 0$, il existe $\mathcal{B}_0 = (e_1, \dots, e_n)$ base de E dans laquelle les coefficients de $\text{mat}_{\mathcal{B}_0}(n)$ sont en module $\leqslant \varepsilon$. Définissons sur E

$$\left\| \sum_{i=1}^{m} x_i e_i \right\|_{\infty} = \max_{1 \leqslant i \leqslant m} |x_i| \tag{227}$$

Soit $M = \max_{\mathcal{B}_0}(u) = (m_{i,j})_{1 \leq i,j \leq m}$ triangulaire supérieure avec $m_{ii} = \lambda_i$ et pour tout $j \neq i, |m_{i,j}| < \varepsilon$. Soit donc $x = \sum_{i=1}^m x_i e_i \in \mathbb{C}^m$, on a

$$||Mx||_{\infty} = \max_{1 \leqslant i \leqslant n} \left(\sum_{j=1}^{m} m_{i,j} x_j \right)$$

$$(|\lambda_i| + (m-1)\varepsilon)||x||_{\infty}$$

$$(228)$$

donc

$$|||u||| \leqslant \underbrace{\rho(u)}_{<1} + (m-1)\varepsilon \tag{229}$$

et on choisit

$$\varepsilon < \frac{1 - \rho(u)}{\underbrace{m - 1}_{0}} \tag{230}$$

d'où ||u|| < 1 et donc on a (i) et finalement on a bien l'équivalence.

Remarque 23. $u \mapsto \rho(u)$ n'est pas une norme car pour u nilpotente non nulle, $\rho(u) = 0$.

Solution 38. Supposons (i), soit Y un vecteur propre de A avec $AY = \lambda Y$ pour $\lambda \in \mathbb{C}$. Pour tout $k \in \mathbb{N}$, $BA^kY = \lambda^k BY$ et il existe $k_0 \in \mathbb{N}$ tel que $\lambda^{k_0}BY \neq 0$ et $BY \neq 0$ donc on a (ii).

Si (ii), supposons qu'il existe $Y \in \mathbb{C}^n \setminus \{0\}$ tel que $\varphi = 0$. On note

$$\chi_A = \prod_{i=1}^r (X - \lambda_i)^{m_i} \tag{231}$$

avec les λ_i distincts. Alors $Y = \sum_{i=1}^r Y_i$ où $Y_i \in \ker(A - \lambda_i I_n)$. Il existe $i_0 \in \{1, \dots, n\}$ tel que $Y_{i_0} \neq 0$ car $Y \neq 0$. On a alors, pour $t \in \mathbb{R}$,

$$B\exp(tA)Y = \sum_{i=1}^{r} B\exp(t\lambda_i)Y_i = 0$$
(232)

Pour tout $k \in \{0, \ldots, r-1\}$, on a $\varphi^{(k)}(t) = \sum_{i=1}^r B\lambda_i^k \exp(t\lambda_i) Y_i = 0$. Pour t = 0 on a $\sum_{i=1}^r \lambda_i^k BY_i = 0$ ce qui, pour t = 0, donne le système

$$\begin{cases}
BY_1 + \dots + BY_r &= 0 \\
\lambda_1 BY_1 + \dots + \lambda_r BY_r &= 0 \\
\vdots &\vdots \\
\lambda_1^{r-1} BY_1 + \dots + \lambda_r^{r-1} BY_r &= 0
\end{cases}$$
(233)

Pour tout $P \in \mathbb{C}_{r-1}[X]$, on a donc $\sum_{i=1}^r P(\lambda_i)BY_i = 0$. Pour $i \in \{0, \dots, r-1\}$ et $P = \prod_{i \neq j} \frac{(X-\lambda_j)}{\lambda_i - \lambda_j}$, on obtient pour tout $i \in \{1, \dots, r\}, BY_i = 0$. En particulier, $BY_{i_0} = 0$ et Y_{i_0} est un vecteur propre de A car non nul. C'est une contradiction. On a donc (iii).

Soit $Y \in \mathbb{C}^n \setminus \{0\}$, supposons que pour tout $k \in \{0, \dots, n-1\}$, $BA^kY = 0$. Soit $k \ge n$, il existe $(Q_k, R_k) \in \mathbb{C}[X] \times \mathbb{C}_{n-1}[X]$ tel que

$$X^k = Q_k \chi_A + R_k \tag{234}$$

et le théorème de Cayley-Hamilton donne donc $A^k = R_k(A)$ d'où $BA^kY = BR_k(A)Y = 0$. Alors pour tout $t \in \mathbb{R}$,

$$B\exp(tA)Y = B\sum_{k=0}^{+\infty} \frac{t^k A^k}{k!} Y$$
(235)

$$=\sum_{k=0}^{+\infty} \frac{t^k (BA^k Y)}{k!} \tag{236}$$

$$=0 (237)$$

Par contraposée, on a bien ce qu'il faut, d'où l'équivalence.

Solution 39. Noter d'abord que le résultat ne dépend pas de la norme (équivalente). Si $A = \lambda I_n$ on vérifie que $||A^p||^{\frac{1}{p}} \xrightarrow{p \to +\infty} |\lambda|$. On choisit $||A|| = \sup_{||X||_{\infty}=1} ||AX||_{\infty}$ et on vérifie que si A est diagonalisable avec $|\lambda_1| \leq |\lambda_2|$ ses valeurs propres (complexes), alors le résultat est $|\lambda_2|$. Si A est juste trigonalisable (son spectre contient juste $\lambda \in \mathbb{C}$), on écrit A comme somme d'une matrice scalaire et d'une matrice nilpotente, et on calcule explicitement $||A^p||$. Le résultat est alors $|\lambda|$, et de manière générale, il s'agit du rayon spectral. En dimension quelconque, on utilise la décomposition de Dunford.

Solution 40.

1. M est la matrice compagnon de P, donc $\chi_M = P$. Si $\lambda \in \operatorname{Sp}_{\mathbb{K}}(M)$, $\operatorname{rg}(M - \lambda I_n) = n - 1$ car les n - 1 premières lignes sont indépendantes. Ainsi, $\dim(E_{\lambda}) = 1$. Pour la condition nécessaire et suffisante, M est diagonalisable et si et seulement si P est scindé à racines simples.

40