Gaussian Mixture Model: Definitions

1/1 point (graded)

Assume a Gaussian mixture model with K Gaussians such that we know all the means and variances. Assume that we also know the mixture weights p_1,\ldots,p_K . Let $\mathbf x$ be an observation obtained from the Gaussian mixture model. Let all of the parameters of the Gaussian mixture model be collectively represented as θ .

Which of the following are true?

- Arr We should be able to compute the probability density function (likelihood) $p\left(\mathbf{x}|\theta\right)$ given the information that we know. Arr
- lackloss We should be able to compute the probability that ${f x}$ belongs to each Gaussian component $j=1,\dots,K$ given the information that we know. \checkmark

Solution:

Both the statements are true. The generative Gaussian mixture model means that if we know all of the parameters of the K Gaussians and the mixture weights, the probability density function $p\left(\mathbf{x}|\theta\right)$ can be computed using the law of total probability as

$$p\left(\mathbf{x}| heta
ight) = \sum_{j=1}^{K} p_{j} \mathcal{N}\left(\mathbf{x}; \mathbf{\mu}^{(j)}, \sigma_{j}^{2}
ight).$$

The posterior probability that ${\bf x}$ belongs to a Gaussian component j can then be computed using Bayes rule.

Submit

You have used 1 of 2 attempts