Tests & Quizzes

Quiz 02

Return to Assessment List

Part 1 of 13 / 1.0 Points	P	a	rt	1	of	ີ 1	3	/	1.	.0	P	0	ir	its
---------------------------	---	---	----	---	----	-----	---	---	----	----	---	---	----	-----

Question 1 of 13		1.0 Points
------------------	--	------------

Click to see additional instructions

The maximum number of possible values that can be encoded in 11 bits is \thickapprox 2047. Do not use any character other than digits.

Answer Key: 2048

Part 2 of 13 / 2.0 Points

Question 2 of 13	2.0 Points
Q a c 3 a 6 a 7 a 7 a 7	 1 OIII c.

Click to see additional instructions

The range of possible unsigned values that can be represented in 6 bits is from $\checkmark 0$ to $\checkmark 63$. Do not use any character other than digits.

Answer Key: 0, 63

Part 3 of 13 / 1.0 Points

Question 3 of 13 1.0 Points

Click to see additional instructions

What is the minimum number of bits that are needed to represent 2050 different values? \checkmark 12

Answer Key: 12

Part 4 of 13 / 2.5 Points

Question 4 of 13 2.5 Points

Click to see additional instructions

What is the unsigned decimal equivalent of the following unsigned binary integer value?

Answer Key: 118

Part 5 of 13 / 2.5 Points

Question 5 of 13	2.5 Points
Click to see additional instructions	
What is the unsigned <u>binary</u> equivalent of th	ne following <i>unsigned</i> decimal integer value
85 v 1010101	

Answer Key: 1010101

Part 6 of 13 / 2.5 Points

Question 6 of 13		2.5 Points			
Click to see additional instructions					
What is the unsigned decimal equivalent of the following <i>unsigned <u>binary</u></i> value?					
1011.11 🗸 <u>1</u>	<u>1.75</u>				

Answer Key: 11.75

Part 7 of 13 / 2.5 Points

Question 7	' of 13	2.5 Points
Click to see	e additional instructions	
	e unsigned <u>binary</u> equivalent (with decimal number?	ា 3 digits after the radix point, truncated) of the followinន
18.625	✓ <u>10010.101</u>	

Answer Key: 10010.101

Part 8 of 13 / 1.0 Points

Question 8 of 13	1.0 Points
Click to see additional instructions	

In 9-bit sign-and-magnitude representation, the total number of zero value that can be represented is

✓ <u>2</u>

Answer Key: 2

Part 9 of 13 / 1.0 Points

Question 9 of 13 1.0 Points

Click to see additional instructions

In 9-bit 2's complement representation, the total number of zero value that can be represented is $\checkmark 1$

Answer Key: 1

Part 10 of 13 / 1.0 Points

Question 10 of 13 1.0 Points

Click to see additional instructions

In 10-bit sign-and-magnitude representation, the total number of non-zero positive values that can be represented is $\checkmark 511$

Answer Key: 511

Part 11 of 13 / 1.0 Points

Question 11 of 13 1.0 Points

Click to see additional instructions

In 15-bit sign-and-magnitude representation, the total number of non-zero negative values that can be represented is \checkmark 16383

Answer Key: 16383

Part 12 of 13 / 1.0 Points

Question 12 of 13 1.0 Points

Click to see additional instructions

In 10-bit word 2's complement representation, the total number of non-zero positive values that can be represented is $\checkmark 511$

Answer Key: 511

Part 13 of 13 / 1.0 Points

Question 13 of 13		1.0 Points		
Click to see additional instructions In 9-bit word 2's complement representation, the total number of non-zero negative values that can be represented is <u>4</u> 256				

Answer Key: 256