Querying Zip Codes from U.S. Census

To run the data, you can also add the 1000 zipcodes and 26000 zip codes CSV manually. They're included in the Actual Dataset folder in the Google Drive! There are preloadded cells below to load in the precleaned CSVs.

Importing State Data by Zip Code

df_zip_states = pd.read_csv("uszips.csv")
df_zip_states["zip"] = df_zip_states["zip"].astype(str).str.zfill(5)
df_zip_states

∓	zip	lat	lng	city	state_id	state_name	zcta	parent_zcta	population	density	county_fips	county_name	county_weights	county_names_all	county_fips_all	imprecise mi
	00601	18.18027	-66.75266	Adjuntas	PR	Puerto Rico	True	NaN	16721.0	100.2	72001	Adjuntas	{"72001": 98.74, "72141": 1.26}	Adjuntas Utuado	72001 72141	False
	00602	18.36075	-67.17541	Aguada	PR	Puerto Rico	True	NaN	37510.0	477.6	72003	Aguada	{"72003": 100}	Aguada	72003	False
	00603	18.45744	-67.12225	Aguadilla	PR	Puerto Rico	True	NaN	48317.0	543.1	72005	Aguadilla	{"72005": 99.76, "72099": 0.24}	Aguadilla Moca	72005 72099	False
	00606	18.16585	-66.93716	Maricao	PR	Puerto Rico	True	NaN	5435.0	47.3	72093	Maricao	{"72093": 82.27, "72153": 11.66, "72121": 6.06}	Maricao Yauco Sabana Grande	72093 72153 72121	False
	00610	18.29110	-67.12243	Anasco	PR	Puerto Rico	True	NaN	25413.0	264.4	72011	Añasco	{"72011": 96.71, "72099": 2.82, "72083": 0.37,	Añasco Moca Las Marías Aguada	72011 72099 72083 72003	False
33	778 99923	55.98043	-130.03803	Hyder	AK	Alaska	True	NaN	25.0	0.6	2198	Prince of Wales-Hyder	{"02198": 100}	Prince of Wales-Hyder	02198	False
33	779 99925	55.55398	-132.96276	Klawock	AK	Alaska	True	NaN	854.0	6.1	2198	Prince of Wales-Hyder	{"02198": 100}	Prince of Wales-Hyder	02198	False
33	780 99926	55.12617	-131.48928	Metlakatla	AK	Alaska	True	NaN	1385.0	4.0	2198	Prince of Wales-Hyder	{"02198": 100}	Prince of Wales-Hyder	02198	False
33	781 99927	56.33305	-133.60044	Point Baker	AK	Alaska	True	NaN	18.0	1.5	2198	Prince of Wales-Hyder	{"02198": 100}	Prince of Wales-Hyder	02198	False
33	782 99929	56.36089	-132.00635	Wrangell	AK	Alaska	True	NaN	2105.0	0.3	2275	Wrangell	{"02275": 100}	Wrangell	02275	False
337	33 rows × 18	3 columns														

∨ Merging State Data to Zip Codes

df_zips_and_states = top_1000_zips.merge(right=df_zip_states[["zip", "state_id", "lat", "lng", "city", "density", "county_fips", "county_name"]], left_on="Zip Code", right_on="zip") df_zips_and_states = df_zips_and_states[df_zips_and_states["Population Size"] != 0]
df_zips_and_states = df_zips_and_states["Population Size", "Zip Code", "state_id", "lat", "lng", "city", "density", "county_fips", "county_name"]] df_zips_and_states.columns = ['Population Size', 'Zip Code', 'State', 'Latitude', 'Longitude', 'City', 'Population Density', 'County FIPS', 'County Name'] df_zips_and_states

₹		Population Size	Zip Code	State	Latitude	Longitude	City	Population Density	County FIPS	County Name
	0	137213	77494	TX	29.74566	-95.82302	Katy	1398.4	48157	Fort Bend
	1	136784	08701	NJ	40.07635	-74.20311	Lakewood	2135.0	34029	Ocean
	2	123042	77449	TX	29.83674	-95.73547	Katy	1756.9	48201	Harris
	3	118437	78660	TX	30.44361	-97.59558	Pflugerville	1025.1	48453	Travis
	4	112211	77433	TX	29.94920	-95.73979	Cypress	734.7	48201	Harris
	33171	2	72636	AR	35.99121	-92.71651	Gilbert	4.9	5129	Searcy
	33172	1	99638	AK	53.01329	-168.75359	Nikolski	0.0	2016	Aleutians West
	33173	1	57439	SD	45.33464	-98.10007	Ferney	1.0	46013	Brown
	33174	1	82224	WY	42.93677	-104.88811	Lost Springs	0.0	56009	Converse
	33175	1	99903	AK	55.73414	-132.10669	Meyers Chuck	0.0	2275	Wrangell
	33176 rc	ws × 9 columns								

Convert Zip Codes to List for Subsequent API Querying

zip_codes = df_zips_and_states["Zip Code"].tolist()
zip_codes = zip_codes[:1000]
zip_codes

Đ

```
13/05/2025, 15:18
```

```
93727,
'11377',
'93727',
'9377',
'95804',
'95823',
'66864',
'77379',
'92154',
'79928',
'11233',
'34953',
'95076',
'11235',
'27587',
'84043',
'77469',
'92592',
'93033',
'92704',
'28269',
'91710',
'27610',
'92590',
```

Query Federal Government GSA API for Per Diem Rates

```
import requests
import pandas as pd import time
headers = {
       "x-api-key": "QMVs4H9JiK1KF23lDzesf1GNbHIJ3IhaSraQxU5r",
# Year for which to retrieve per diem rates
year = "2024"
\mbox{\#} Initialize an empty list to store DataFrames dataframes = []
# Loop through each zip code
for zip_code in zip_codes:
    url = f"https://api.gsa.gov/travel/perdiem/v2/rates/zip/{zip_code}/year/{year}"
              # Send GET request
response = requests.get(url, headers=headers)
               # Check if the request was successful
if response.status_code == 200:
    # Parse JSON response
                      data = response.json()
                      # Extract relevant data for DataFrame
rates = data.get('rates', [])
                      rates = data.get('rates', [])
if rates: # Ensure rates exist
   for rate in rates:
      for rate_detail in rate.get('rate', []):
            months = rate_detail.get('months', {}).get('month', [])
            for month in months:
            # Create a DataFrame row for each month
                                                    'Zip Code': rate_detail.get('zip'),
'City': rate_detail.get('city'),
'County': rate_detail.get('county'),
'State': rate.get('state'),
'Year': rate.get('year'),
'Month': month.get('long'),
'Rate': month.get('walue'),
'Meals': rate_detail.get('meals')
                      dataframes.append(pd.DataFrame([row]))
time.sleep(0.1) # Add a delay of 0.1 seconds between requests
                      print(f"Failed to retrieve data for {zip_code}. Status code: {response.status_code}")
       except Exception as e:
print(f"An error occurred for {zip_code}: {e}")
# Combine all DataFrames into a single DataFrame
if dataframes: # Ensure there are DataFrames to concatenate
    final_dataframe = pd.concat(dataframes, ignore_index=True)
       # Display the combined DataFrame
print(final_dataframe.head())
else:
        print("No data available to concatenate.")
 Show hidden output
```

Zip Codes and Per Diem Rates for Each Month

final_dataframe

_									
₹		Zip Code		County	State	Year	Month	Rate	Meals
	0	77494	Standard Rate	None	TX	2024	January	107	59
	1	77494	Standard Rate	None	TX	2024	February	107	59
	2	77494	Standard Rate	None	TX	2024	March	107	59
	3	77494	Standard Rate	None	TX	2024	April	107	59
	4	77494	Standard Rate	None	TX	2024	May	107	59
	13231	27265	Greensboro	Guilford	NC	2024	August	116	64
	13232	27265	Greensboro	Guilford	NC	2024	September	116	64
	13233	27265	Greensboro	Guilford	NC	2024	October	120	64
	13234	27265	Greensboro	Guilford	NC	2024	November	120	64
	13235	27265	Greensboro	Guilford	NC	2024	December	120	64
	13236 rd	ws × 8 colum	nns						

Zip Codes and Averaged Per Diem Rates

	Rate	isStandard				
Zip Code						
10002	256.666667	New York City				
10003	256.666667	New York City				
10009	256.666667	New York City				
10016	256.666667	New York City				
10023	256.666667	New York City				
98661	164.500000	Vancouver				
98682	164.500000	Vancouver				
99208	127.000000	Spokane				
99301	118.000000	Richland / Pasco				
99336	118.000000	Richland / Pasco				
978 rows × 2	columns					

Zip Codes and Averaged Meal Rates

```
meals = final_dataframe.groupby('Zip Code')['Meals'].mean()
meals = pd.DataFrame(meals)
meals

Tip Code
```

	Meals
Zip Code	
10002	79.0
10003	79.0
10009	79.0
10016	79.0
10023	79.0
98661	74.0
98682	74.0
99208	74.0
99301	69.0
99336	69.0
978 rows × 1	columns

▼ Import House Prices by Zip Code Nationwide

```
df_house_prices=pd.read_csv("zillow.csv")
df_house_prices['Zip Code'] = df_house_prices['RegionName'].astype(str).str.zfill(5)
df_house_prices
```

∑ •	RegionID	SizeRank	RegionName	RegionType	StateName	State	City	Metro	CountyName	2000-01-31	 2024-05-31	2024-06-30	2024-07-31	2024-08-31	2024-09-30	2024-10-3:
C	91982	1	77494	zip	TX	TX	Katy	Houston- The Woodlands- Sugar Land, TX	Fort Bend County	209050.476760	 495075.413843	495380.402566	495002.983332	495408.561941	496096.305465	497215.16189°
1	61148	2	8701	zip	NJ	NJ	Lakewood	New York- Newark- Jersey City, NY-NJ-PA	Ocean County	129618.780605	 574111.688523	579228.585853	583825.798950	588765.877710	594583.485735	599788.27507!
2	91940	3	77449	zip	TX	TX	Katy	Houston- The Woodlands- Sugar Land, TX	Harris County	103655.528341	 282147.022097	282107.280779	281872.890421	281691.186379	281502.991848	281086.410278
3	62080	4	11368	zip	NY	NY	New York	New York- Newark- Jersey City, NY-NJ-PA	Queens County	146323.411563	 452805.954270	453500.452732	452997.379756	452371.998659	453320.495788	453075.343776
2	91733	5	77084	zip	TX	TX	Houston	Houston- The Woodlands- Sugar Land, TX	Harris County	102106.861831	 274613.196678	274446.918170	274155.370186	273883.459171	273631.254558	273125.765642
263	1 8 63527	39992	14441	zip	NY	NY	Dresden	Rochester, NY	Yates County	95200.506993	 212859.345739	217705.207088	220747.040461	223033.160778	225156.691276	227314.268636
263	99927	39992	98628	zip	WA	WA	Klickitat	NaN	Klickitat County	NaN	 183691.428602	184378.493108	182270.098233	179856.661697	177621.288376	176436.410504
263	20 80861	39992	52163	zip	IA	IA	Protivin	NaN	Howard County	NaN	 110531.058676	112546.786601	114074.312787	114923.348472	114988.321750	115144.245078
263	93941	39992	82515	zip	WY	WY	Hudson	Riverton, WY	Fremont County	NaN	 173795.269429	174129.180796	173601.285437	173438.172525	173265.888713	173444.634292
263	80190	39992	50160	zip	IA	IA	Martensdale	Des Moines- West Des Moines, IA	Warren County	NaN	 197239.571536	197434.125142	197622.447782	197875.013913	198489.179930	199001.795336

26323 rows × 311 columns

Merge Zip Codes, Census Data, Per Diem Data, and House Price Data

→ Load in precollected CSV with 1000 zip codes

NameError: name 'per diem' is not defined

import pandas as pd

 $\label{lem:diem:and:nouse_and:nouse} diem: and: house_and: info = pd. read_csv("https://raw.githubusercontent.com/AlexanderCalafiura/DataScience112FinalProject/refs/heads/main/AC_ML_dataset_1000.csv") \\ diem: and: house_and: house_and:$

₹		Zip Code	Per Diem Daily Rate	Rate Zone	House Price	City	State	Population Size	Population Density	County FIPS	County Name	isStandard	Cluster	Price_to_PerDiem_Ratio
	0	10002	256.666667	New York City	1.007951e+06	New York	NY	75517	35458.5	36061	New York	False	2	3927.083523
	1	10003	256.666667	New York City	1.396697e+06	New York	NY	53825	36357.3	36061	New York	False	2	5441.678039
	2	10009	256.666667	New York City	8.344787e+05	New York	NY	58341	36524.7	36061	New York	False	2	3251.215762
	3	10016	256.666667	New York City	9.288574e+05	New York	NY	54297	38131.6	36061	New York	False	2	3618.924930
	4	10023	256.666667	New York City	1.337869e+06	New York	NY	67468	26875.1	36061	New York	False	2	5212.475343
	931	98661	164.500000	Vancouver	3.321296e+05	Vancouver	WA	52027	1842.8	53011	Clark	False	0	2019.024970
	932	98682	164.500000	Vancouver	3.498594e+05	Vancouver	WA	67297	911.2	53011	Clark	False	0	2126.804651
	933	99208	127.000000	Spokane	3.130112e+05	Spokane	WA	58834	466.1	53063	Spokane	False	0	2464.654825
	934	99301	118.000000	Richland / Pasco	2.813411e+05	Pasco	WA	86467	68.7	53021	Franklin	False	1	2384.246692
	935	99336	118.000000	Richland / Pasco	2.628567e+05	Kennewick	WA	51180	1475.2	53005	Benton	False	0	2227.599373
	936 rov	vs × 13 colu	mns											

Load in precollected CSV with all 26000 zip codes

import pandas as pd

₹		Zip Code	Per Diem Daily Rate	Rate Zone	House Price	City	State	Population Size	Population Density	County FIPS	County Name	isStandard
	0	1001	122.0	Springfield	219508.964752	Agawam	MA	16136	551.7	25013	Hampden	False
	1	1002	146.0	Northampton	339812.737345	Amherst	MA	24726	179.3	25015	Hampshire	False
	2	1005	130.0	Worcester	244509.442046	Barre	MA	4786	42.8	25027	Worcester	False
	3	1007	146.0	Northampton	295540.622491	Belchertown	MA	15406	108.4	25015	Hampshire	False
	4	1008	122.0	Springfield	232702.865612	Blandford	MA	1324	8.4	25013	Hampden	False
			***					***	***			
	26176	99360	107.0	Standard Rate	348803.942100	Touchet	WA	1299	3.1	53071	Walla Walla	True
	26177	99361	107.0	Standard Rate	249922.063928	Waitsburg	WA	1800	3.1	53071	Walla Walla	True
	26178	99362	107.0	Standard Rate	270400.509440	Walla Walla	WA	42794	54.5	53071	Walla Walla	True
	26179	99402	107.0	Standard Rate	283674.534416	Asotin	WA	1628	1.9	53003	Asotin	True
	26180	99403	107.0	Standard Rate	254236.175503	Clarkston	WA	20483	55.1	53003	Asotin	True
	26181 rd	ws x 11 colu	mns									

∨ K Neighbors Classifer

```
import matplotlib.pyplot as plt
from sklearn.model_selection import GridSearchCV
from sklearn.pipeline import make_pipeline
 from sklearn.neighbors import KNeighborsClassifier from sklearn.preprocessing import StandardScaler, OneHotEncoder
 from sklearn.compose import make_column_transformer
from sklearn.impute import SimpleImputer
from sklearn.metrics import classification_report
import pandas as pd
df = diem_and_house_and_info
X = df[["House Price", "Population Size", "Population Density", "County Name"]]
num_cols = ["House Price", "Population Size", "Population Density"]
cat_cols = ["County Name"]
# Add imputation steps for both numerical and categorical columns
# Add imputation steps for both numerical and categorical columns

col_transformer = make_column_transformer(
    (make_pipeline(SimpleImputer(strategy="median"), StandardScaler()), num_cols),
    (make_pipeline(SimpleImputer(strategy="most_frequent"), OneHotEncoder(handle_unknown="ignore")), cat_cols),
pipeline = make_pipeline(col_transformer, KNeighborsClassifier())
grid_cv = GridSearchCV(
       param_grid={"kneighborsclassifier__n_neighbors": range(1, 400, 10)},
        scoring="f1_macro",
       return_train_score=True
grid cv.fit(X, y)
results = pd.DataFrame(grid_cv.cv_results_)
plt.figure(figsize=(10, 6))
plt.plot(results["param_kneighborsclassifier__n_neighbors"], results["mean_train_score"], label="Training Score")
plt.plot(results["param_kneighborsclassifier__n_neighbors"], results["mean_test_score"], label="Test Score")
plt.xlabel("K (Number of Neighbors)")
plt.ylabel("FI Macro Score")
plt.title("KNN Classifier Performance vs k Value")
plt.title("KNN Classifier Performance vs k Value")
plt.legend()
plt.grid(True)
plt.show()
# Get the best model and refit on all data
best_model = grid_cv.best_estimator_
# Make predictions on the same data to get the classification report y_pred = best_model.predict(X)
# Generate and print classification report
report = classification_report(y, y_pred)
print("\nClassification Report:")
print( niclassification report. ,
print(report)
print("Best parameters:", grid_cv.best_params_)
print("Best F1 macro score:", grid_cv.best_score_)
```


Classification Report: precision recall f1-score support 0.93 696 240 0.53 True 0.72 0.61 accuracy 0.83 936 macro avg weighted avg 0.79 0.82 0.73 0.83 0.75 0.82 936

Best parameters: {'kneighborsclassifier__n_neighbors': 31} Best F1 macro score: 0.6741562538013064

K Neighbors Regressor

```
import matplotlib.pyplot as plt
from sklearn.model_selection import GridSearchCV
from sklearn.pipeline import make_pipeline
from sklearn.neighbors import KNeighborsRegressor
from sklearn.preprocessing import StandardScaler, OneHotEncoder
from sklearn.compose import make_column_transformer
from sklearn.impute import SimpleImputer
from sklearn.metrics import mean_squared_error, r2_score
import pandas as pd
import numpy as np
X = df[["House Price", "Population Size", "Population Density", "County Name", "isStandard"]] y = df["Per Diem Daily Rate"]
num_cols = ["House Price", "Population Size", "Population Density"]
cat_cols = ["County Name", "isStandard"]
# Add imputation steps for both numerical and categorical columns
col_transformer = make_column_transformer(
    (make_pipeline(SimpleImputer(strategy="median"), StandardScaler()), num_cols),
       (make_pipeline(SimpleImputer(strategy="most_frequent"), OneHotEncoder(handle_unknown="ignore")), cat_cols),
pipeline = make_pipeline(col_transformer, KNeighborsRegressor())
grid_cv = GridSearchCV(
      estimator=pipeline,
param_grid={"kneighborsregressor__n_neighbors": range(1, 500, 10)},
       scoring="neg_root_mean_squared_error",
      cv=5,
return_train_score=True
grid_cv.fit(X, y)
results = pd.DataFrame(grid_cv.cv_results_)
plt.figure(figsize=(10, 6))
plt.plot(results("param_kneighborsregressor_n_neighbors"], -results("mean_train_score"), label="Training RMSE")
plt.plot(results("param_kneighborsregressor_n_neighbors"), -results("mean_test_score"), label="Test RMSE")
plt.xlabel("k (Number of Neighbors)")
plt.ylabel("Root Mean Squared Error")
plt.title("KNN Regressor Performance vs k Value")
plt.legend()
plt.grid(True)
plt.show()
# Get the best model and refit on all data
best_model = grid_cv.best_estimator_
\ensuremath{\textit{\#}} Make predictions on the same data to evaluate regression performance
y_pred = best_model.predict(X)
# Generate and print regression metrics
rmse = np.sqrt(mean_squared_error(y, y_pred))
r2 = r2_score(y, y_pred)
print("\nRegression Metrics:")
print(f"RMSE: {rmse:.4f}")
print(f"R2 Score: {r2:.4f}")
print("Best parameters:", grid_cv.best_params_)
print("Best neg RMSE score:", grid_cv.best_score_)
print("Best RMSE score:", -grid_cv.best_score_)
```


Regression Metrics: RMSE: 19.7652 R² Score: 0.8203 Best parameters: ('kneighborsregressor_n_neighbors': 21} Best neg RMSE score: -27.796335882362815 Best RMSE score: 27.796335882362815

```
    Random Forest Regressor

   import matplotlib.pyplot as plt
 from sklearn.model_selection import GridSearchCV, train_test_split
from sklearn.pipeline import make_pipeline
from sklearn.ensemble import RandomForestRegressor
  from sklearn.preprocessing import StandardScaler, OneHotEncoder
from sklearn.compose import make_column_transformer
from sklearn.impute import SimpleImputer
  from sklearn.metrics import mean_squared_error, r2_score
  import pandas as pd
import numpy as np
 df = diem_and_house_and_info
 X = df[["House Price", "Population Size", "Population Density", "County Name", "isStandard"]]
 y = df["Per Diem Daily Rate"]
 # Split data into train and test sets
  X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
 num_cols = ["House Price", "Population Size", "Population Density"]
cat_cols = ["County Name", "isStandard"]
  # Add imputation steps for both numerical and categorical columns
  "Add Impleted Telps Telps To Continuous Teleps To Continuous Teleps Teleps
 pipeline = make_pipeline(col_transformer, RandomForestRegressor(random_state=42))
 param grid = {
            am_ylu = {
    "randomforestregressor_n_estimators": [20, 100, 200],
    "randomforestregressor_max_features": ["sqrt", "log2"],
    "randomforestregressor_min_samples_split": [2, 5, 10],
    "randomforestregressor_max_depth": [None, 20, 50]
 grid\_cv = GridSearchCV(
             estimator=pipeline,
param_grid=param_grid,
               scoring="neg_root_mean_squared_error",
               return train score=True
 # Fit on training data only
 grid_cv.fit(X_train, y_train)
  # Get the best model
 best_model = grid_cv.best_estimator_
 # Make predictions on test data
y_train_pred = best_model.predict(X_train)
y_test_pred = best_model.predict(X_test)
# Calculate metrics on both training and test sets
train_rmse = np.sqrt(mean_squared_error(y_train, y_train_pred))
test_rmse = np.sqrt(mean_squared_error(y_test, y_test_pred))
train_r2 = r2_score(y_train, y_train_pred)
test_r2 = r2_score(y_test, y_test_pred)
print("\nRegression Metrics:")
print(f"Training RMSE: {train_rmse:.4f}")
print(f"Test RMSE: {test_rmse:.4f}")
print(f"Training R² Score: {train_r2:.4f}")
print(f"Test R² Score: {test_r2:.4f}")
print("Best parameters:", grid_cv.best_params_)
print("CV Best RMSE score:", -grid_cv.best_score_)
  # Create a scatterplot of actual vs predicted rates
# Create a Scatterplot of actual vs predicted rates
pltt.figure(figsize=[0, 6])
plt.scatter(y_test, y_test_pred, alpha=0.5, label='Test Data')
plt.plot([y_test.min(), y_test.max()], [y_test.min(), y_test.max()], 'k---', lw=2, label='Perfect Prediction')
plt.xlabel('Actual Per Diem Daily Rate')
plt.ylabel('Predicted Per Diem Daily Rate')
plt.title('Actual vs Predicted Per Diem Daily Rate')
plt.title('Actual vs Predicted Per Diem Daily Rate')
```

```
plt.grid(True, alpha=0.3)
plt.tight_layout()
plt.show()
```

Regression Metrics:
Training RMSE: 7.9703
Test RMSE: 10.4568
Training R* Score: 0.9782
Training R* Score: 0.9782
Test R* Score: 0.9695
Best parameters: {'randomforestregressor_max_depth': 20, 'randomforestregressor_max_features': 'sqrt', 'randomforestregressor_min_samples_split': 2, 'randomforestregressor_n_estimators': 100}
CV Best RMSE score: 20.599490350298964

Data Analysis

Plot Experimentation

Box plot to help us visualize the spread of data: where are the standard rates concentrated? Non standard rates?

```
import matplotlib.pyplot as plt
import seaborn as sns
# create the boxplot
plt.figure(figsize=(8, 6))
sns.boxplot(data=df, x="isStandard", y="Per Diem Daily Rate")
plt.title("Boxplot of Per Diem Daily Rates by Rate Type (Non-Standard vs Standard)")
plt.xlabel("Rate Type")
plt.ylabel("Per Diem Daily Rate ($)")
plt.grid(axis="y", linestyle="--", alpha=0.5)
plt.show()
```


Histogram to help us visualize the spread of per-diem rates. Where do we see standard per diem rates concentrated? What per diem rates are in the highest range?

```
# create the histrogram
plt.figure(figsize=(8, 6))
sns.histplot(df["Per Diem Daily Rate"], bins=10, kde=True, color="blue")
plt.title("Distribution of Per Diem Daily Rates")
plt.xlabel("Per Diem Daily Rate ($)")
plt.ylabel("Frequency")
plt.grid(axis="y", linestyle="--", alpha=0.5)
 plt.show()
```


Check the number of standard and non-standard rates

```
# count the number of rows where isStandard is True and False
is_standard_counts = df["isStandard"].value_counts()
print("Standard rate:")
print(is_standard_counts)

→ Standard rate:

       isStandard
False 696
       True 240
Name: count, dtype: int64
```

Check summary statistics for all per diem rates.

```
print(per_diem_summary)
              Statistics for Per Diem Daily Rate:
     count
                936.000000
157.332591
     mean
```

Calculate summary statistics for Per Diem Daily Rate
per_diem_summary = df["Per Diem Daily Rate"].describe()
print("\nSummary Statistics for Per Diem Daily Rate:")

std 46.645857 107.000000 min 107.000000 25% 118.000000 50% 144.666667 75% 180.666667 max 291.750000 Name: Per Diem Daily Rate, dtype: float64

```
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from \ sklearn.preprocessing \ import \ StandardScaler
df = diem_and_house_and_info
df = df.dropna()
plt.figure(figsize=(15, 10))
```

1. Per Diem Rate vs House Price
plt.subplot(2, 3, 1)
plt.scatter(df['Per Diem Daily Rate'], df['House Price'], alpha=0.5, c=df['isStandard'].map({True: 'green', False: 'blue'})) plt.title('Per Diem Rate vs House Price')
plt.xlabel('Per Diem Daily Rate (\$)') plt.ylabel('House Price (\$)') plt.grid(True)

2. Per Diem Rate vs Population Density plt.subplot(2, 3, 2)
plt.scatter(df['Per Diem Daily Rate'], df['Population Density'], alpha=0.5, c=df['isStandard'].map({True: 'green', False: 'blue'})) plt.title('Per Diem Rate vs Population Density')
plt.xlabel('Per Diem Daily Rate (\$)')
plt.ylabel('Population Density') plt.arid(True)

3. House Price vs Population Size plt.subplot(2, 3, 3)
plt.scatter(df['House Price'], df['Population Size'], alpha=0.5, c=df['isStandard'].map({True: 'green', False: 'blue'}))
plt.stile('House Price vs Population Size')
plt.xlabel('House Price (\$)') plt.ylabel('Population Size')
plt.grid(True)

4. Log-transformed House Price vs Log-transformed Population Density plt.subplot(2, 3, 4)
plt.scatter(np.log1p(df['House Price']), np.log1p(df['Population Density']), alpha=0.5, c=df['isStandard'].map({True: 'green', False: 'blue'})) plt.:itle('Log House Price vs Log Population Density')
plt.xlabel('Log House Price')
plt.ylabel('Log Population Density') plt.grid(True)

5. Population Size vs Population Density # 5. Population Size vs Population Density
plt.subplot(2, 3, 5)
plt.scatter(df['Population Size'], df['Population Density'], alpha=0.5, c=df['isStandard'].map({True: 'green', False: 'blue'}))
plt.viabel('Population Size vs Population Density')
plt.vlabel('Population Size')
plt.vlabel('Population Density') plt.grid(True)

```
# 6. House Price to Per Diem Ratio vs Population Density
 df['Price_to_Diem_Ratio'] = df['House Price'] / df['Per Diem Daily Rate']
plt.subplot(2, 3, 6)
plt.scatter(df['Price_to_Diem_Ratio'], df['Population Density'], alpha=0.5, c=df['isStandard'].map({True: 'green', False: 'blue'}))
 plt.title('Price-to-Diem Ratio vs Population Density')
plt.xlabel('House Price / Per Diem Rate')
 plt.ylabel('Population Density')
plt.grid(True)
plt.tight_layout()
plt.savefig('scatterplots_set1.png')
 plt.close()
# Create a second set of plots
plt.figure(figsize=(15, 10))
 # 7. Per Diem Rate vs Population Size
plt.subplot(2, 3, 1)
plt.scatter(df['Per Diem Daily Rate'], df['Population Size'], alpha=0.5, c=df['isStandard'].map({True: 'green', False: 'blue'}))
 plt.title('Per Diem Rate vs Population Size')
plt.xlabel('Per Diem Daily Rate ($)')
 plt.ylabel('Population Size')
# 8. Create Urban Index (Pop Density * Pop Size / 10000)
df['Urban_Index'] = df['Population Density'] * df['Population Size'] / 10000
ptl:subplot(2, 3, 2)
ptl.scatter(df['Urban_Index'], df['Per Diem Daily Rate'], alpha=0.5, c=df['isStandard'].map({True: 'green', False: 'blue'}))
 plt.xiabel('Urban Index vs Per Diem Rate')
plt.xiabel('Urban Index')
plt.ylabel('Per Diem Daily Rate ($)')
 plt.grid(True)
 # 9. House Price vs Per Diem Rate by State
 plt.subplot(2, 3, 3)
for state in df['State'].unique()[:5]: # Limit to 5 states for clarity
 state_data = df[df['State'] == state]
plt.scatter(state_data['Per Diem Daily Rate'], state_data['House Price'], alpha=0.7, label=state)
plt.xitle('House Price vs Per Diem Rate by State')
plt.xlabel('Per Diem Daily Rate (s)')
 plt.ylabel('House Price ($)')
 plt.legend()
 plt.grid(True)
 # 10. Standardized House Price vs Standardized Per Diem Rate
 scaler = StandardScaler()
plt.subplot(2, 3, 4)
plt.ylabel('Standardized House Price')
 plt.grid(True)
# 11. House Price vs Population Density by Standard Rate
plt.subplot(2, 3, 5)
standard_rate = df[df['isStandard'] == True]
non_standard_rate = df[dff['isStandard'] == False]
plt.scatter(standard_rate['Population Density'], standard_rate['House Price'], alpha=0.5, label='Standard Rate', color='green')
plt.scatter(non_standard_rate['Population Density'], non_standard_rate['House Price'], alpha=0.5, label='Non-Standard Rate', color='blue')
plt.stite('House Price vs Population Density by Rate Type')
plt.ylabel('Population Density')
plt.ylabel('House Price ($)')
plt.label('House Price ($)')
plt.label('House Price ($)')
plt.legend()
plt.grid(True)
# 12. Per Diem Rate vs State (boxplot)
plt.subplot(2, 3, 6)
top_states = df.groupby('State').size().nlargest(10).index
state_data = df.dff'[State'].isin(top_states)]
sns.boxplot(x='State', y='Per Diem Daily Rate', data=state_data)
plt.title('Per Diem Rate Distribution by State')
plt.xlabel('State')
plt.ylabel('Per Diem Daily Rate ($)')
plt.ylabel('Per Diem Daily Rate ($)')
 plt.xticks(rotation=45)
 plt.tight_layout()
 plt.savefig('scatterplots_set2.png')
 plt.close()
 # Create a third set of plots
 plt.figure(figsize=(15, 10))
 # 13. Per Diem Rate vs isStandard (boxplot)
 plt.subpot(2, 2, 1)
sns.boxplot(x='isStandard', y='Per Diem Daily Rate', data=df)
plt.title('Per Diem Rate by Standard Status')
plt.xlabel('Is Standard Rate')
 plt.ylabel('Per Diem Daily Rate ($)')
 plt.arid(True)
# 14. House Price vs County FIPS (for top counties)
top_counties = df.groupby('County Name').size().nlargest(10).index
county_data = df[df['County Name'].isin(top_counties)]
plt.subplot(2, 2, 2)
plt.subplot(2, 2, 2)
for county in top_counties:
    county_subset = county_data[county_data['County Name'] == county]
    plt.scatter(county_subset['Per Diem Daily Rate'], county_subset['House Price'], alpha=0.7, label=county)
plt.title('House Price vs Per Diem Rate by County')
plt.xlabel('Per Diem Daily Rate ($)')
plt.ylabel('House Price ($)')
plt.legend(loc='upper left', bbox_to_anchor=(1, 1))
elt.scid(True)
 plt.grid(True)
 # 15. Create Cost of Living Index (House Price / National Median)
# 15. Create Cost of Living Index (House Price / National Median)
national_median = df['House Price'] / Mational Median)
df['Cost_of_Living_Index'] = df['House Price'] / national_median
plt.subplot(2, 2, 3)
plt.scatter(df['Cost_of_Living_Index'], df['Per Diem Daily Rate'], alpha=0.5, c=df['isStandard'].map({True: 'green', False: 'blue'}))
plt.scatter(df['Cost_of_Living_Index' y Per Diem Rate')
plt.xlabel('Cost_of_Living_Index' y Per Diem Rate')
plt.xlabel('Per Diem Daily Rate ($)')
plt.ylabel('Per Diem Daily Rate ($)')
 # 16. Per Diem Rate vs House Price with Population Size as marker size
```

∨ Plot Experimentation #2

```
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import StandardScaler
from sklearn.cluster import KMeans
from scipy import stats
import plotly.express as px
import plotly graph objects as go
from matplotlib.colors import LinearSegmentedColormap
df = diem_and_house_and_info
plt.style.use('ggplot')
sns.set(style="whitegrid", font_scale=1.1)
plt.rcParams['figure.figsize'] = [12, 8]
plt.rcParams['figure.dpi'] = 100
fig = plt.figure(figsize=(25, 30))
# 1. Per Diem Rate Distribution
# 1. ** Order Marke Distribution
ax1 = fig.add_subplot(5, 3, 1)
sns.histplot(df['Per Diem Daily Rate'], kde=True, ax=ax1, color='steelblue')
ax1.set_title('Distribution of Per Diem Rates')
ax1.set_xlabel('Per Diem Rate ($)')
ax1.set_ylabel('Count')
# 2. House Price Distribution
# 2. House Price Distribution
ax2 = fig.add_subplot(5, 3, 2)
sns.histplot(df['House Price'], kde=True, ax=ax2, color='darkgreen')
ax2.set_title('Distribution of House Prices')
ax2.set_tabel('House Price ($)')
ax2.set_ylabel('Count')
ax3.set xlahel('House Price ($)'
ax3.set_ylabel('Per Diem Rate ($)')
# 4. Top 10 states by average Per Diem Rate
ax4 = fig.add_subplot(5, 3, 4)
state_avg = df.groupby('State')['Per Diem Daily Rate'].mean().sort_values(ascending=False).head(10)
state_avg.plot(kind='bar', ax=ax4, color='coral')
ax4.set_title('Top 10 States by Average Per Diem Rate')
ax4.set_tiabel('State')
ax4.set_ylabel('Average Per Diem Rate ($)')
ax4.set_vlabel('Average Per Diem Rate ($)')
plt.setp(ax4.xaxis.get_majorticklabels(), rotation=45)
# 5. Box plot: Per Diem by Standard vs Non-Standard ax5 = fig.add_subplot(5, 3, 5) sns.boxplot(x='isStandard', y='Per Diem Daily Rate', data=df, ax=ax5, palette='Set2') ax5.set_xlabel('Per Diem Rates: Standard vs Non-Standard Areas') ax5.set_xlabel('Ins Standard Rate Area')
ax5.set_ylabel('Per Diem Rate ($)')
# 6. Correlation Heatmap
# 0. COTTECTATION THEATMRD/
ax6 = fig.add_subplot(5, 3, 6)
numeric_cols = ['Per Diem Daity Rate', 'House Price', 'Population Size', 'Population Density']
corr = df[numeric_cols].corr()
sns.heatmap(corr, annot=True, cmap='coolwarm', vmin=-1, vmax=1, ax=ax6, fmt='.2f')
ax6.set_title('Correlation Matrix')
# 7. Population Size vs Per Diem Rate
ax7 = fig.add_subplot(5, 3, 7)
sns.scatterplot(x='Population Size', y='Per Diem Daily Rate', data=df, alpha=0.5, ax=ax7, hue='isStandard', palette='Set1')
ax7.set_title('Population Size vs Per Diem Rate')
ax7.set_xlabel('Population Size')
ax7.set_ylabel('Per Diem Rate ($)')
ax7.set_xscale('log') # Log scale for better visualization
# 8. Population Density vs Per Diem Rate
ax8 = fig.add_subplot(5, 3, 8)
scatter = sns.scatterplot(
       x='Population Density',
y='Per Diem Daily Rate',
       data=df.
```

```
alpha=0.5.
       ax=ax8,
hue='isStandard',
        palette='Set1'
        hue_order=[True, False] # Adjust based on your actual values
 ax8.set title('Population Density vs Per Diem Rate'
ax8.set_xlabel('Population Density (people per sq mile)')
ax8.set_ylabel('Per Diem Rate ($)')
 ax8.set_xscale('log') # Log scale for better visualization
# Create custom legend with explicit mapping
custom labels = ("True": "Standard Rate", "False": "Non-Standard Rate"}  # Adjust based on your values
handles, labels = ax8.get_legend_handles_labels()
ax8.legend(handles, [custom_labels[label] for label in labels])
# 9. Per Diem Rate by Rate Zone (Top 10)
ax9 = fig.add_subplot(5, 3, 9)
zone_avg = df.groupby('Rate Zone')['Per Diem Daily Rate'].mean().sort_values(ascending=False).head(10)
zone_avg.plot(kind='bar', ax=ax9, color='purple')
ax9.set_title('Top 10 Rate Zones by Average Per Diem')
ax9.set_xlabel('Rate Zone')
ax9.set_ylabel('Average Per Diem Rate ($)')
plt.setp(ax9.xaxis.get_majorticklabels(), rotation=45)
# 10. House Price by Rate Zone (Top 10)
ax10 = fig.add_subplot(5, 3, 10)
zone_house = df.groupby('Rate Zone')['House Price'].mean().sort_values(ascending=False).head(10)
zone_house.plot(kind='bar', ax=ax10, color='teal')
ax10.set_title('Top 10 Rate Zones by Average House Price')
ax10.set_xlabel('Rate Zone')
ax10.set_ylabel('Average House Price ($)')
plt.setp(ax10.xaxis.get_majorticklabels(), rotation=45)
# 11. K-means clustering
ax11 = fig.add_subplot(5, 3, 11)
# Select features for clustering
features = ['Per Diem Daily Rate', 'House Price', 'Population Size', 'Population Density']
X = df[features].copy()
# Handle missing values
X = X.fillna(X.mean())
# Standardize the data
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
# Apply K-means clustering
kmeans = KMeans(n_clusters=4, random_state=42)
df['Cluster'] = kmeans.fit_predict(X_scaled)
# Visualize clusters
* Visualize Cluster's sns.scatterplot(x='Mouse Price', y='Per Diem Daily Rate', hue='Cluster', data=df, palette='viridis', alpha=0.6, s=50, ax=ax11) ax11.set_title('K-means Clustering of ZIP Codes') ax11.set_xlabel('House Price ($)') ax11.set_ylabel('Per Diem Rate ($)')
# 12. Per Diem Rate Distribution by State (Violin Plot)
# 12. Feb Date Make Distribution by State (Violin Foot)
ax12 = fig.add_subplot(5, 3, 12)
# Select top 5 states by count
top_states = df['State'].value_counts().head(5).index.tolist()
top_states = dTi'state'].value_counts().nead(5).index.tolist()
state_subset = df[df['State'].isin(top_states)]
sns.violinplot(x='State', y='Per Diem Daily Rate', data=state_subset, ax=ax12, palette='pastel')
ax12.set_title('Per Diem Rate Distribution by State (Top 5)')
ax12.set_tlabel('State')
ax12.set_ylabel('Per Diem Rate ($)')
# 13. House Price to Per Diem Ratio by State
ax13 = fig.add_subplot(5, 3, 13)
 # Calculate ratio
# Catchacte Tuber | df['House Price'] / df['Per Diem Daily Rate']
ratio_by_state = df.groupby('State')['Price_to_PerDiem_Ratio'].mean().sort_values(ascending=False).head(10)
ratio_by_state.plot(kind='bar', ax=ax13, color='darkred')
ax13.set_title('Top 10 States by House Price to Per Diem Ratio') ax13.set_xlabel('State')
 ax13.set_ylabel('Average Ratio (House Price / Per Diem)'
 plt.setp(ax13.xaxis.get_majorticklabels(), rotation=45)
# 14. Joint Distribution Plot
ax14 = fig.add_subplot(5, 3, 14)
# Create a custom colormap
 create a custom cotormap
cmap = LinearSegmentedColormap.from_list('custom_cmap', ['#f7fbff', '#08306b'])
cmap = LinearSegmentedColormap.from_List('custom_cmap', ['#f/fbff', #88306b'])
# Create a 2D histogram
h = ax14.hist2d(df['House Price'], df['Per Diem Daily Rate'], bins=50, cmap=cmap)
fig.colorbar(h[3], ax=ax14, label='Count')
ax14.set_title('Joint Distribution of House Prices and Per Diem Rates')
ax14.set_xlabel('House Price ($)')
ax14.set_ylabel('Per Diem Rate ($)')
 # 15. Per Diem Rate by Population Size Categories
ax15 = fig.add_subplot(5, 3, 15)
# Create population size categories
df['Population_Category'] = pd.cut(df['Population Size'],
bins=[0, 1000, 5000, 10000, 50000, 100000],
labels=['Very Small', 'Small', 'Medium', 'Large', 'Very Large'])
sns.boxplot(x='Population_Category', y='Per Diem Daily Rate', data=df, ax=ax15, palette='Blues')
ax15.set_title('Per Diem Rates by Population Size Category')
ax15.set_xlabel('Population Size Category')
ax15.set_ylabel('Per Diem Rate ($)')
# Adjust layout
plt.tight_layout(pad=3.0)
 plt.savefig('per_diem_analysis.png', dpi=300, bbox_inches='tight')
 plt.show()
 # Additional interactive visualizations with Plotly
# Additional interactive Visualizations with Piotry
# Create a choropleth map of average per diem rates by state
state_data = df.groupby('State').agg({
    'Per Diem Daily Rate': 'mean',
    'House Price': 'mean',
    'Population Size': 'sum'
}).reset_index()
 fig_map = px.choropleth(state_data,
                                          locations='State'.
                                          locationmode='USA-states'
                                          color='Per Diem Daily Rate',
                                          scope='usa',
                                          color continuous scale='Viridis'
                                          title='Average Per Diem Rate by State')
fig_map.show()
```

```
# Create a bubble chart of per diem rates, house prices, and population
fig_bubble = px.scatter(state_data,
                          x='House Price'
                          y='Per Diem Daily Rate',
                          size='Population Size',
color='State',
                          hover_name='State',
size_max=60,
title='Per Diem Rate vs House Price by State (Bubble Size = Population)')
fia bubble.show()
# Create a sunburst chart of per diem rates by state and rate zone
sunburst_data = df.groupby(['State', 'Rate Zone']).agg({
    'Per Diem Daily Rate': 'mean',
    'Zip (Code': 'count'
}).reset_index()
sunburst_data = sunburst_data.rename(columns={'Zip Code': 'Count'})
color='Per Diem Daily Rate'.
                              color_continuous_scale='RdBu',
title='Per Diem Rates by State and Rate Zone')
fig sunburst.show()
 <ipython-input-142-ac1e7d67b317>:53: FutureWarning:
     Passing 'palette' without assigning 'bue' is deprecated and will be removed in v0.14.0. Assign the 'x' variable to 'bue' and set 'legend=False' for the same effect.
     <ipython-input-142-ac1e7d67b317>:138: FutureWarning:
     Passing `palette' without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.

- $ frames --
/usr/local/lib/python3.11/dist-packages/numpy/lib/_histograms_impl.py in _get_outer_edges(a, range)
321     first_edge, last_edge = a.min(), a.max()
322     if not (np.isfinite(first_edge) and np.isfinite(last_edge)):
          322
323
                            raise ValueError
                                 "autodetected range of [{}, {}] is not finite".format(first edge, last edge))
          324
325
     ValueError: autodetected range of [nan, nan] is not finite
                               Distribution of Per Diem Rates
                                                                                                          Distribution of House Prices
                                                                                                                                                                                    Per Diem Rate vs House Price
          250
                                                                                    140
                                                                                                                                                               350
          200
                                                                                    120
                                                                                                                                                           € 300
                                                                                    100
                                                                                                                                                           Rate 250
          150
                                                                                     80
          100
                                                                                     60
                                                                                                                                                               200
                                                                                                                                                            Je.
                                                                                      40
           50
                                                                                                                                                               150
                                                                                     20
                                                                                                                                                               100
                                                    225
                      125
                                                                   275
                                                                                                       0.50 0.75 1.00
                                                                                                                                                                   0.00
                                                                                                                                                                                      0.75
                                                                                                                                                                                              1.00
                                     Per Diem Rate ($)
                                                                                                                House Price ($)
                                                                                                                                                   1e6
                                                                                                                                                                                          House Price ($)
                                                                                                                                                                                                                             1e6
                          Top 10 States by Average Per Diem Rate
                                                                                                Per Diem Rates: Standard vs Non-Standard Areas
                                                                                                                                                                                   Correlation Matrix
                                                                                    300
                                                                                                                                                                                                                           1.00
                                                                                                        0
   Plot Experimentation #3
                                                                                                                                               Per Diem Daily Rate
                                                                                                                                                                                                0.16
 import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
 from sklearn.preprocessing import StandardScaler
 from sklearn.cluster import KMeans
from scipy import stats import plotly.express as p
import plotly.graph_objects as go
from \ matplotlib.colors \ import \ Linear Segmented Color map
df = diem_and_house_and_info
# Set up the visualization environment
plt.style.use('ggplot')
sns.set(style="whitegrid", font_scale=1.1)
plt.rcParams['figure.dpi'] = 100
# Function to save plot
def create and save plot(plot num, plot function):
    try:
plt.figure(figsize=(12, 8))
         plot_function()
plt.tight_layout()
plt.savefig(f'plot_{plot_num}.png', dpi=300, bbox_inches='tight')
         plt.close()
         print(f"Successfully created plot_{plot_num}.png")
     except Exception as e:

print(f"Error creating plot_{plot_num}: {str(e)}")
         traceback.print_exc()
plt.close() # Close the figure even if there was an error
```

```
and plt.vlabel('Per Diem Rate ($)')
                                and plt.xscale('log'))
 Suce essful
            8.0 B
                                                                                                                      225
      PlotÿExperi
                                                                                                                      200
            운 0.6
 import pandas as pd
 import numpy as np
 import matplotlib.pyplot as plt
 import seaborn as sns
from sklearn.preprocessing import StandardScaler
 from matplotlib.colors import LinearSegmentedColormap
 df = diem_and_house_and_info
df = df.dropna(subset=['House Price'. 'Per Diem Daily Rate'. 'Population Size'. 'Population Density'])
 # Create a figure with multiple subplots
fig, axes = plt.subplots(4, 4, figsize=(20, 20))
axes = axes.flatten()
axes[0].grid(True)
 # 2. Per Diem Rate vs Population Density
axes[1].scatter(df'|Per Diem Daily Rate'], df'('Population Density'], alpha=0.5,
c=df['isStandard'].map({True: 'green', False: 'blue'}))
axes[1].set_title('Per Diem Rate vs Population Density')
axes[1].set_xlabel('Per Diem Daily Rate ($)')
axes[1].set_ylabel('Population Density')
axes[1].grid(True)
axes[2].grid(True)
\# 4. Log-transformed House Price vs Log-transformed Population Density
# 4. Log-transformed House Price vs Log-transformed Population Density

# Add small value to avoid log(0)

axes[3].scatter(np.log1p(df['House Price']), np.log1p(df['Population Density']), alpha=0.5,

c=df['isStandard'].map({True: 'green', False: 'blue'}))

axes[3].set_title('Log House Price') axes[3].set_xlabel('Log House Price')

axes[3].set_xlabel('Log Population Density')

axes[3].set_vlabel('Log Population Density')
 axes[3].grid(True)
# 5. Population Size vs Population Density
axes[4].grid(True)
 # 6. House Price to Per Diem Ratio vs Population Density
"" or nouse rice to Per Diem Ratio vs Population Density (fighter Diem Baily Rate') adf[Price_to_Diem_Ratio'] = df[!Plouse Price'] / df[!Per Diem Daily Rate'] axes[5].scatter(df[!Price_to_Diem_Ratio'], df[!Population Density'], alpha=0.5, caff[!isStandard'].map(ffrue: 'green', False: 'blue'})) axes[5].set_title('Price-to-Diem Ratio vs Population Density') axes[5].set_vlabel('House Price / Per Diem Rate') axes[5].set_vlabel('Population Density')
 axes[5].grid(True)
 # 7. Per Diem Rate vs Population Size
# 9. House Price vs Per Diem Rate by State (top 5 states)
top_states = df['State'].value_counts().nlargest(5).index
for state in top_states:
    state_data = df[df['State'] == state]
    axes[8].scatter(state_data['Per Diem Daily Rate'], state_data['House Price'], alpha=0.7, label=state)
axes[8].set_title('House Price vs Per Diem Rate by State')
axes[8].set_xlabel('Per Diem Daily Rate ($)')
axes[8].set_xlabel('House Price ($)')
 axes[8].legend()
 axes[8].grid(True)
 # 10. Standardized House Price vs Standardized Per Diem Rate
# 10. StandardIzed nouse Frice vs StandardIzed Fer Die
scaler = StandardScaler()
numeric_cols = ['House Price', 'Per Diem Daily Rate']
df_scaled = pd.DataFrame(
      scaler.fit_transform(df[numeric_cols]),
columns=['Standardized House Price', 'Standardized Per Diem Daily Rate']
 df_scaled['isStandard'] = df['isStandard'].values
axes[9].scatter(df_scaled['Standardized Per Diem Daily Rate'],
                          df_scaled['Standardized House Price'], alpha=0.5,
alpna=0.5,

c=df_scaled['isStandard'].map({True: 'green', False: 'blue'}))

axes[9].set_title('Standardized House Price vs Per Diem Rate')

axes[9].set_xlabel('Standardized Per Diem Daily Rate')

axes[9].set_ylabel('Standardized House Price')
```

```
axes[9].grid(True)
 # 11. House Price vs Population Density by Standard Rate
 standard_rate = df[df['isStandard'] == True]
non_standard_rate = df[df['isStandard'] == False]
axes[10].scatter(standard_rate['Population Density'], standard_rate['House Price'],
axes[10].scatter(standard_rate['roputation Density'], standard_rate['nouse Price'],
alpha=0.5, label='Standard Rate', color='green')
axes[10].scatter(non_standard_rate['Population Density'], non_standard_rate['House Price'],
axes[10].set_title('House Price vs Population Density by Rate Type')
axes[10].set_xlabel('Population Density')
axes[10].set_ylabel('House Price ($)')
axes[10].set_ylabel('House Price ($)')
 axes[10].legend()
 axes[10].grid(True)
 # 12. Per Diem Rate vs State (boxplot)
# 12. Per Diem Rate vs State (boxplot)
top_states = df['State'].value_counts().nlargest(5).index
state_data = df[df['State'].isin(top_states)]
sns.boxplot(x='State', y='Per Diem Daily Rate', data=state_data, ax=axes[11], hue='State', legend=False)
axes[11].set_title('Per Diem Rate Distribution by State')
axes[11].set_ylabel('State')
axes[11].set_ylabel('Per Diem Daily Rate ($)')
axes[11].tick_params(axis='x', rotation=45)
 # 13. Per Diem Rate vs isStandard (boxplot)
# 13. Per Diem Rate vs isStandard (boxplot)
sns.boxplot(x='isStandard', y='per Diem Daily Rate', data=df, ax=axes[12], hue='isStandard', legend=False)
axes[12].set_title('Per Diem Rate by Standard Status')
axes[12].set_xlabel('Is Standard Rate')
axes[12].set_ylabel('Per Diem Daily Rate ($)')
axes[12].grid(True)
 # 14. House Price vs County Name (for top counties)
top_counties = df['County Name'].value_counts().nlargest(5).index
county_data = df[df['County Name'].isin(top_counties)]
county_data = df[df['County Name'].isin(top_counties)]
for county in top_counties:
    county_subset = county_data[county_data['County Name'] == county]
    axes[13].scatter(county_subset['Per Diem Daily Rate'], county_subset['House Price'],
        alpha=0.7, label=county]
axes[13].set_xlabet('Per Diem Daily Rate ($)')
axes[13].set_xlabet('Per Diem Daily Rate ($)')
axes[13].legend()
axes[13].legend()
axes[13].legend()
 axes[13].grid(True)
 # 15. Create Cost of Living Index (House Price / National Median)
# 16. Per Diem Rate vs House Price with Population Size as marker size
**Normalize population size for better visualization

pop_size_normalized = df['Population Size'] / df['Population Size'].max() * 100

axes[15].scatter(df['Per Diem Daily Rate'], df['House Price'],
c=df['isStandard'].map({True: 'green', False: 'blue'})
s=pop_size_normalized)
axes[15].set_title('Per Diem Rate vs House Price (Size = Population)')
axes[15].set_xlabel('Per Diem Daily Rate ($)')
axes[15].grid(True)
                                    alpha=0.5,
c=df['isStandard'].map({True: 'green', False: 'blue'}),
 plt.tight layout()
 plt.savefig('scatterplots_all.png', dpi=300)
plt.show()
```

```
→ <ipython-input-144-a9711a30a838>:58: SettingWithCopyWarning:
```

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

<ipython-input-144-a9711a30a838>:75: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

<ipython-input-144-a9711a30a838>:156: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

Loop over every column in df_house_prices

or over every contains in dijiouse_prices

Skip 'Zip Code' as it's used for merging and not a numerical value for correlation

if col in "Zip Code RegionID SizeRank RegionName RegionType StateName Stat State City Metro CountyName":

Merge per diem with df house prices on the current column merged_df = per_diem.merge(right=df_house_prices[["Zip Code", col]], left_on="Zip Code", right_on="Zip Code")

Rename columns for clarity

merged_df.columns = ["Zip Code", "Per Diem Daily Rate", "isStandrd", col]

Calculate correlation

merged_df[col].corr(merged_df["Per Diem Daily Rate"])

Store the correlation in the list

correlations.append({"Column": col, "Correlation": corr})

Create a DataFrame from the correlations list correlation_df = pd.DataFrame(correlations)

Sort the DataFrame by correlation in descending order
sorted_correlation_df = correlation_df.sort_values(by="Correlation", ascending=False)

Display the sorted correlations

sorted_correlation_df.sort_values(by="Column", ascending=True)
sorted_correlation_df = sorted_correlation_df.sort_values(by="Column", ascending=True)

 $\verb"px.bar(data_frame=sorted_correlation_df, x="Column", y="Correlation")"$

_

▼ Relationship Between House Prices and Per Diem Rates by Zip Code

```
import plotly.express as px
px.scatter(data_frame=diem_and_house_and_info, x="House Price", y="Per Diem Daily Rate", hover_name="Zip Code", color="isStandard")
```


correlation = diem_and_house_and_info["House Price"].corr(diem_and_house_and_info["Per Diem Daily Rate"])
correlation

→ np.float64(0.6311908691904375)

Experimentation That Was Not Used in Final Analysis

Google Hotels Web Scraping

```
import requests
from bod import BeautifulSoup
Import inclass as pd
Import inclass inclass inclass as pd
Import inclass incla
```

```
# List of top 1000 zip codes
top_1000_zips = top_1000_zips[:10] # for example purposes
# Create a list to store results
results = []
# Loop through each zip code
for zip_code in top_1000_zips:
    print(f"Scraping data for zip code: {zip_code}")
# Get prices for the current zip code
    prices = scrape_hotel_prices(zip_code)
# Calculate average price if prices were found
if prices:
    avg_price = sum(prices) / len(prices)
    results.append({
        'Zip_Code': zip_code,
        'Average_Price': round(avg_price, 2),
        'Number_of_Hotels': len(prices)
    }
else:
    results.append({
        'Zip_Code': zip_code,
        'Average_Price': None,
        'Number_of_Hotels': 0
    })
# Add a delay to avoid being blocked
time.sleep(0.1)
# Create a DataFrame from the results
avg_prices_df = pd.DataFrame(results)
print(avg_prices_df)
```