USAAVLABS TECHNICAL REPORT 68-80

CH-47A CHINOOK ENGINE LOAD SHARING

ENGINEERING LABORATORY REPORT

By

- L. R. Bartek
 - R. Hunt

November 1968

U. S. ARMY AVIATION MATERIEL LABORATORIES FORT EUSTIS, VIRGINIA

This is numerically been approxito a public release and successive instributions is unlimited.

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder of the person or corporation, or conveying any rights or permission, to manufacture, use, or sell any patented invention that may in any way be related thereto.

Disposition Instructions

Destroy this report when no longer needed. Do not return it to the originator.

MC NO:223331 13		
080 080 08311		7
95.6 \$11 71 114		
	n arakasilin des araka aac er spesi 	
1/ \		

のでは、100mmのでは、100mmのでは、100mmのできない。 100mmのできないできない。 100mmのできない。 10

Project 1M131201D14415, House Task EL 65-29 USAAVLABS Technical Report 68-80 November 1968

CH-47A CHINOOK ENGINE LOAD SHARING

Engineering Laboratory Report

By

L. R. Bartek R. Hu:t

U. S. ARMY AVIATION MATERIEL ! ABORATORIES FORT EUSTIS, VIRGINIA

This document has been approved for public release and sale; its distribution is unlimited.

SUMMARY

The Army is concerned with the problem of unequal load sharing by the engines in its multiengine helicopters. Findings of an engine load-sharing study conducted on the CH-54A Skycrane helicopter in 1965 led to a similar study on the CH-47A Chinook helicopter.

Airspeed, altitude, engine gas producer rpm, engine torque, exhaust gas temperature, main rotor rpm, and outside air temperature were recorded during various flight conditions. The gross weight at takeoff and landing and the barometric pressures were also recorded as supplemental data. The data are presented in a series of histograms and tables showing the variations is engine load sharing as a function of the other aircraft parameters.

It was found that for the CH-47A Chinook, the relative frequency of occurrence of torque splits greater than 20 percent is less than one-half that for the CH-54A Skycrane.

FOREWORD

This report was prepared under Project 1M131201D14415, House-Task 65-29 as a follow-up to an earlier engine load-sharing study performed on the CH-54A Skycrane helicopter.

Acknowledgment is given to Technology Incorporated for acquiring the engine load-sharing data in conjunction with a concurrent operational flight-loads study in Vietnam. Mr. Joseph F. Braun, the project engineer, and Mr. Bob Englehart, a field technician, were primarily responsible for the recording of 346.59 hours of operational flight data on the unarmed CH-47A aircraft.

٧

TABLE OF CONTENTS

																	Page
SUMMAR	7.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	iii
FOREWOR	RD	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	v
L i st of I	LL	UST	RA'	TIC	NS	•	•	•	•	•	•	•	•	•	•	•	viii
INTRODU	CTI	ON	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
OBJECTIV	/ES	•	•	•	•	•	•	•	•	•	•	ı	•	•	•	•	2
PROCEDU	IRE	s	•	•	•	•	•	•	•	•	•	•	•	•	•	•	3
RESULTS	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	8
CONCLUS	ION	IS	•	•	•	•	•	•	•	•	•	•	•	•	•	•	11
DYCED IN I	mtc																71

LIST OF ILLUSTRATIONS

Figure		Page
1	Block Diagram of CH-47A Instrumentation	
	System	12
2	Sample Oscillograph Record	13
3	Summary: Torque Splits Versus Frequency of	
	Occurrence	14
4	Summary: Torque Splits Versus Frequency of	
	Occurrence	14
5	Summary: Average Torque Versus Frequency	
	of Occurrence	15
6	Average Torque Versus Frequency of Occur-	
0	rence at 0- to 10-Percent Torque Split	15
7	Average Torque Versus Frequency of Occur-	
	rence at 10- to 20-Percent Torque Split	16
8	Average Torque Versus Frequency of Occur-	
	rence at 20- to 30-Percent Torque Split	16
9	Average Torque Versus Frequency of Occur-	
,	rence at 30- to 40-Percent Torque Split	16
••		
10	Average Torque Versus Frequency of Occur-	17
	rence at 40- to 50-Percent Torque Split	11
11	Average Torque Versus Frequency of Occur-	
	rence at 50- to 60-Percent Torque Split	17
12	Average Torque Versus Frequency of Occur-	
	rence at 60- to 70-Percent Torque Split	17
13	Average Torque Versus Frequency of Occur-	18
	PARCA ST (US TO LUIUS MARCART TOPOMA STUT	1 1 1

Figure		Page
14	Average Torque Versus Frequency of Occurrence During Descent Operations With Torque Split Greater Than 10 Percent	18
15	Average Torque Versus Frequency of Occurrence During Steady Operations With Torque Split Greater Than 10 Percent	19
		• /
16	Average Torque Versus Frequency of Occurrence During Ascent, Hover, and Maneuver Operations With Torque Split Greater Than 10 Percent	19
17	Torque Splits Versus Frequency of Occurrence During Descent Operations With Torque Split Greater Than 10 Percent	20
18	Torque Splits Versus Frequency of Occurrence During Steady Operations With Torque Split Greater Than 10 Percent	20
19	Torque Splits Versus Frequency of Occurrence During Ascent, Hover, and Maneuver Operations With Torque Split Greater Than 10 Percent	20
20	Exhaust Gas Temperature Splits Versus Frequency of Occurrence During Descent Operations With Torque Split Greater Than 10 Percent	21
21	Exhaust Gas Temperature Splits Versus Frequency of Occurrence During Steady Operations With Torque Split Greater Than 10 Percent	21
22	Exhaust Gas Temperature Splits Versus Frequency of Occurrence During Ascent, Hover, and Maneuver Operations With Torque Split Greater than	
	10 Percent	21
23	Summary: Exhaust Gas Temperature Splits Versus Frequency of Occurrence	22
24	Exhaust Gas Temperature Splits Versus Frequency of Occurrence at 0- to 10-Percent Torque Split .	22

Figure		Page
25	Exhaust Gas Temperature Splits Versus Frequency of Occurrence at 10- to 20-Percent Torque Split .	23
26	Exhaust Gas Temperature Splits Versus Frequency of Occurrence at 20- to 30-Percent Torque Split .	23
27	Exhaust Gas Temperature Splits Versus Frequency of Occurrence at 30- to 40-Percent Torque Split .	24
28	Exhaust Gas Temperature Splits Versus Frequency of Occurrence at 40- to 50-Percent Torque Split .	24
29	Exhaust Gas Temperature Splits Versus Frequency of Occurrence at 50- to 60-Percent Torque Split .	25
30	Exhaust Gas Temperature Splits Versus Frequency of Occurrence at 60- to 70-Percent Torque Split .	25
31	Exhaust Gas Temperature Splits Versus Frequency of Occurrence at 70- to 80-Percent Torque Split .	26
32	Exhaust Gas Temperature Splits Versus Frequency of Occurrence at 80- to 100-Percent Torque Split.	26
33	Summary: Gas Producer RPM Splits Versus Frequency of Occurrence	27
34	Gas Producer RPM Splits Versus Frequency of Occurrence at 0- to 10-Percent Torque Split	27
35	Gas Producer RPM Splits Versus Frequency of Occurrence at 10- to 20-Percent Torque Split	28
36	Gas Producer RPM Splits Versus Frequency of Occurrence at 20- to 30-Percent Torque Split	28
37	Gas Producer RPM Splits Versus Frequency of Occurrence at 30- to 40-Percent Torque Split	28
38	Gas Producer RPM Splits Versus Frequency of Occurrence at 40- to 50-Percent Torque Split	29
39	Gas Producer RPM Splits Versus Frequency of Occurrence at 50- to 60-Percent Torque Split	29

Figure			Page
40	Gas Producer RPM Splits Versus Frequency of Occurrence at 60- to 70-Percent Torque Split.	•	29
41	Gas Producer RPM Splits Versus Frequency of Occurrence at 70- to 80-Percent Torque Split.	•	30
42	Gas Producer RPM Splits Versus Frequency of Occurrence at 80- to 90-Percent Torque Split.	•	30
43	Gas Producer RPM Splits Versus Frequency of Occurrence at 90- to 100-Percent Torque Split.	•	30
44	Summary: Gross Weight Versus Frequency of Occurrence	•	31
45	Gross Weight Versus Frequency of Occurrence at 0- to 10-Percent Torque Split	•	31
46	Gross Weight Versus Frequency of Occurrence at 10- to 20-Percent Torque Split	•	32
47	Gross Weight Versus Frequency of Occurrence at 20. to 30-Percent Torque Split	•	32
48	Gross Weight Versus Frequency of Occurrence at 30- to 40-Percent Torque Split	•	33
49	Gross Weight Versus Frequency of Occurrence at 40- to 50-Percent Torque Split	•	33
50	Gross Weight Versus Frequency of Occurrence at 50- to 60-Percent Torque Split	•	33
51	Gross Weight Versus Frequency of Occurrence at 60- to 70-Percent Torque Split		34
52	Gross Weight Versus Frequency of Occurrence at 70- to 80-Percent Torque Split.	•	34
53	Gross Weight Versus Frequency of Occurrence at 80- to 100-Percent Torque Split	•	35
	at ov- to tov-rercent torque spirt	•	22

Figure		Page
54	Gross Weight Versus Frequency of Occurrence During Descent Operations With Torque Split Greater Than 10 Percent	35
55	Gross Weight Versus Frequency of Occurrence During Steady Operations With Torque Split Greater Than 10 Percent	36
56	Gross Weight Versus Frequency of Occurrence	
	During Ascent, Hover, and Maneuver Operations With Torque Split Greater Than 10 Percent	36
57	Summary: Percentage of Samples in Various Flight Modes During Torque Splits	37
58	Summary: Main Rotor RPM Versus Frequency of Occurrence	37
59	Main Rotor RPM Versus Frequency of Occurrence at 0- to 10-Percent Torque Split	38
60	Main Rotor RPM Versus Frequency of Occurrence at 10- to 20-Percent Torque Split	38
61	Main Rotor RPM Versus Frequency of Occurrence at 20- to 30-Percent Torque Split	39
62	Main Rotor RPM Versus Frequency of Occurrence at 30- to 40-Percent Torque Split	39
63	Main Rotor RPM Versus Frequency of Occurrence at 40- to 50-Percent Torque Split	39
64	Main Rotor RPM Versus Frequency of Occurrence at 50- to 60-Percent Torque Split ,	40
65	Main Rotor RPM Versus Frequency of Occurrence at 60- to 70-Percent Torque Split	40
66	Main Roter RPM Versus Frequency of Occurrence at 70- to 100-Percent Torque Split	40
67	Main Rotor RPM Versus Frequency of Occurrence at Torque Split of 100 Percent and Greater	41

Figure		Page
68	Summary: Airspeed Versus Frequency of Occurrence	41
69	Airspeed Versus Frequency of Occurrence at 0- to 10-Percent Jorque Split	41
70	• •	
70	Airspeed Versus Frequency of Occurrence at 10-to 20-Percent Torque Split	42
71	Airspeed Versus Frequency of Occurrence at 20- to 30-Percent Torque Split	42
72	Airspeed Versus Frequency of Occurrence at 30-	
	to 40-Percent Torque Split	4S
73	Airspeed Versus Frequency of Occurrence at 40-to 50-Percent Torque Split	43
74	Airspeed Versus Frequency of Occurrence at 50-to 60-Percent Torque Split	43
75	Airspeed Versus Frequency of Occurrence at 60- to 70-Percent Torque Split	43
76	Airspeed Versus Frequency of Occurrence at 70-to 80-Percent Torque Split	43
17	Airspeed Versus Frequency of Occurrence at 80-to 100-Percent Torque Split	44
78	Airspeed Versus Frequency of Occurrence During Steady Operations With Torque Split Greater Than 10 Percent	44
79	Airspeed Versus Frequency of Occurrence During Descent Operations With Torque Split Greater	
	Than 10 Percent	45
80	Airspeed Versus Frequency of Occurrence During Ascent, Hover, and Maneuver Operations With	
	Torque Split Greater Than 10 Percent	45

INTRODUCTION

The U. S. Army Aviation Materiel Laboratories (USAAVLABS) is involved in research and advanced development of multiengine heavy-lift helicopters. An important consideration in the design of these aircraft is the load distribution between the engines. In 1965 a study was conducted of engine load-sharing characteristics of three instrumented twinengine CH-54A Skycrane helicopters at Fort Benning, Georgia.* As a follow-up to that program, data were collected from four instrumented twin-engine CH-47A Chinook helicopters operating in Vietnam from January 1966 to May 1967.

The same parameters were measured for the CH-47A Chinook as for the CH-54A Skycrane except that two exhaust gas temperature measurements were added to the Chinook instrumentation in order to obtain a more accurate gage of engine performance.

An oscillograph recording system was used to record data on the following parameters: airspeed, altitude, main rotor rpm, engine gas producer rpm, engine torque, outside air temperature, and exhaust gas temperature. Vertical acceleration at the aircraft's center of gravity, barometric pressure, and aircraft gross weight were also measured and recorded as supplemental data.

The data were scanned for significant engine torque splits, and sample points were selected for presentation. The measured parameters were reduced by standard methods, and histograms were drawn to relate the torque splits to the other parameters.

^{*}L. R. Bartek and David Chestnutt, CH-54A SKYCRANE ENGINE LOAD SHARING, USAAVLABS Technical Report 66-47, U. S. Army Aviation Materiel Laboratories, Fort Eustis, Virginia, May 1966, AD 634503.

OBJECTIVES

Following are the objectives of this study:

- 1. To obtain an estimate of the frequency of occurrence and the severity of unbalanced engine loading conditions on the CH-47A Chinook helicopter.
- 2. To establish the aircraft flight conditions at which the engine load unbalance is most severe.
- 3. To compile data to permit a comparison of the engine torque splitting characteristics of the CH-47A Chinook with those of the CH-54A Skycrane previously investigated.

PROCEDURES

INSTRUMENTATIC'N

The engine parame ers (exhaust gas temperature, torque, gas producer rpm, and main rot r rpm) were obtained in a manner such that the values recorded were equivalent to cockpit instrument readings. The actual aircraft instrumentation systems were used for signal generators.

Airspeed was measured by attaching a differential pressure transducer to the aircraft pitot system, pressure altitude was measured by tapping the aircraft static pressure system and utilizing an absolute pressure strain-gage transducer, and outside air temperature was measured by gluing a resist ince-type thermoribbon to the underside of the aircraft.

This engine load-sharing study was conducted in conjunction with an operational flight-loads measurement program. Parameters recorded but not used in the engine load-sharing study included: vertical acceleration at the aircraft's center of gravity, collective stick position, and longitudinal cyclic stick position. All of the signals generated by the instrumentation systems aboard the aircraft were recorded on a Century Model 409B oscillograph recording unit. A block diagram of the instrumentation and recording system is presented in Figure 1.

DATA REDUCTION

Sample Selection

The data from which samples were collected were grouped into two categories: (1) data in which instrumentation was complete and operating properly, and (2) data in which one or more channels were malfunctioning but the torque instruments were operating as intended. Also included in category 2 were data collected early in the program, when only one exhaust gas temperature and one gas producer rpm were being monitored. Tables I and II constitute the compilation of data samples representing category 1 and category 2, respectively.

Data accumulated totaled 346.59 hours; 202.57 hours were in category 1, and 144.02 hours were in category 2. Data samples were selected by scanning the total 346.59 hours of data and looking for instances in which

the torque difference between the two engines was greater than 10 percent. When this type of condition was located and the data were in category 1, data points were calculated for all pertinent parameters. The data samples included points in the steady-state portions of the record, preceding and following the torque split, as well as points during the peak split period. The 186 samples in category 1 contained a total of 613 data points. This indicates a ratio of 3.32 data points per sample. Thus, most of the torque splits were defined by taking only one or two points at the extreme torque-split portions of a sample. For the data in category 2, only torque was calculated. The data were segregated to promote uniform comparability among data samples. If malfunctioned or incomplete data had been included with category 1 data, the frequency-of-occurrence distributions might have been distorted by the absence of affected parameters.

Whenever a torque split of greater than 10 percent occurred and remained steady, only one sample was selected for calculations. If the torque-split condition was cyclic in occurrence, with splitting and balancing alternating, a sample was selected for each cycle that occurred. Because this method of selecting samples was used, the total time during which torque splits of greater than 10 percent existed is larger than the total time utilized in calculating data points.

The total time represented by the sample points in category 1 is 4.34 hours; this time represents 2.1 percent of the total time from which data were selected.

Data Processing

After the data samples were selected for analysis, the individual points were calculated for tabulation. The oscillograph record contained a reference trace, and measurements were made to establish the deflection existing between each active channel and the reference. This deflection was compared with the amount of deflection present at a zero point or known magnitude level for each channel. A calibration factor was applied to the deflection between an active data point and its respective known reference level in order to calculate the physical magnitude of the quantity being measured. This general method of data reduction was applied to all parameters except gross weight and time.

Initial oscillograph chart speed was set at 4 inches per minute, but the actual speed varied from +23 percent to -11 percent. To correct for fluctuations in paper speed, a time calibration was run for each chart. This was accomplished by turning the voltage channel off for a known time while the recorder chart was running. The ratio of chart length

run in a known time to the distance it should have run at the rate of 4 inches per minute yielded a multiplying factor with which to calculate the correct chart speed. Time was calculated to the nearest 0. I minute. When a record was edited for processing, a template was used which marked time panels as if the 4-inch-per-minute chart speed were always in effect. Later, when the data were analyzed, the time correction factor was applied. The gross weights were calculated by using a supplemental data sheet which accompanied each record. The takeoff gross weight and the fuel consumption rate were listed by the technician in the field. To calculate the gross weight at any known time, the fuel consumption rate was multiplied by the time from takeoff; this weight was then subtracted from the takeoff gross weight. Any cargo pickups or drops were added to or subtracted from the weight calculated on the basis of fuel consumption rate.

To illustrate, sample calculation 4, point 1, flight 84A follows:

Time

AND CASE WAS A SURFACE

Time panel, 55.4 minutes
Volts off, 60 seconds
Length of deflected voltage trace, 4.46 inches
Theoretical length of trace, 4.00 inches
Time correction factor = 4.00 inches
4.46 inches
True time = (time panel) (time correction factor)
True time = (55.4) (0.897) = 49.69 minutes
True time to nearest 0.1 minute = 49.7 minutes

Gross Weight

The takeoff gross weight was listed as 23,087 pounds. The fuel consumption rate was 39.0 pounds per minute for 30.8 minutes; it then changed to 34.0 pounds per minute when a 1200-pound load was picked up by the aircraft. The amount of fuel used in 30.8 minutes, at 39.0 pounds per minute, was 1201 pounds. An additional 643 pounds of fuel was used when flying for 18.9 minutes at a fuel rate of 34.0 pounds. Thus, the gross weight of the helicopter at 49.7 minutes was 22,443 (23,087 - 1201 + 1200 - 643). Since only three significant digits were carried, the value 22,400 pounds appears in the table.

Torque

To calculate the torque on each engine, the deflection of each torque trace from the reference was measured with zero torque applied. In this case, the deflection was 2.32 inches for torque 1 and 2.01 inches for torque 2. At 49.7 minutes, the deflections of torques 1 and 2 from the reference were 2.74 inches and 2.48 inches, respectively. The difference in deflections from the zero loading condition was proportional to the torque applied on each engine. The slopes on the torque-measuring instruments for engines 1 and 2 were 0.770 percent per 0.01-inch deflection and 0.730 percent per 0.01-inch deflection, respectively. From this information, the following calculations were made:

Torque 1: (2.74 in. - 2.32 in.) (0.770 pct/0.01 in.) = 32.3 pct

Torque 2: (2.48 in. - 2.01 in.) (0.730 pct/0.01 in.) = 34.3 pct

Torque split: 34.3 pct - 32.3 pct = 2.0 pct

Average torque =
$$\left(\frac{\text{Torque } 1 + \text{Torque } 2}{2}\right)$$

= $\left(\frac{32.3 + 34.3}{2}\right)$ = 33.3 pct

Other Engine Parameters

Main rotor rpm, gas producer rpm, and exhaust gas temperature were calculated similarly to the torques.

Airspeed

A slightly varied calculation procedure was adapted for airspeed calculations. The differential pressure of the aircraft's pitot-static airspeed instrumentation system was used in conjunction with a table of differential pressures and airspeeds to calculate airspeed. At 49.7 minutes, the airspeed trace was 1.30 inches

from the reference. The calibration factor for the pressuremeasuring instrument in use was 0.4846 inch of mercury. The calibration pulse with a known resistance in the circuit was a 1.66-inch deflection. Therefore, the calibration constant was 0.4846 inch of mercury per 1.66-inch deflection. Following are the steps used to calculate a pressure difference due to airspeed:

Pressure differential = (1.30 in. - 0.38 in.) (0.4846 in. Hg/ 1.66 in. deflection) = 0.2686 in. Hg

From a table of differential pressures in inches of mercury and velocities in knots, interpolation will yield the airspeed in knots, as follows:

0.2686 in. Hg corresponds to 74.7 km

Figure 2 shows a reproduction of the segment of an oscillograph record from which sample 4 was calculated.

RESULTS

For the data sampled, a torque split of 20 percent or less occurs 85 percent of the time (see Figures 3 and 4). Since almost two-thirds of the sample points are the steady values preceding or following the torque split, this distribution appears to be reasonable. The remaining 15 percent of the torque-split points are spread fairly evenly from 20 percent to 100 percent.

The average torque level of more than 85 percent of the data points is between 10 percent and 50 percent (see Figure 5). This figure and all succeeding histograms are based on the category 1 data in which each sample point consists of a complete set of parameters.

Figures 6 through 13 show the ranges of average torque versus frequency of occurrence by 10-percent torque-split brackets up to the 70- to 100-percent range. These histograms illustrate how the torque splits are distributed by average torque level.

Figures 14, 15, and 16 show requency of occurrence versus average torque ranges in percent for torque splits of greater than 10 percent during descent, steady-state, and high-power conditions (ascent, hover, and maneuver), respectively. During descent, more than 70 percent of the points fell in the category of less than 30 percent average torque. The bulk of the data in the steady-state and high-power distributions was between 20 percent and 70 percent. It would be expected that the average torque for torque splits in descent would be lower than in the other operational conditions since descent is ordinarily a low-power flying condition.

Table III lists the sample points and indicates which flight-mode category each falls into. Nearly two-hirds of the 186 data samples are in the descent mission segment. This indicates that most torque splits occur at low-power conditions and are necessarily of small magnitude.

Frequency of occurrence versus ranges of torque splits for torque splits of greater than 10 percent for various mission segments is plotted in Figures 17, 18, and 19; these figures can be used in conjunction with Figures 14, 15, and 16 to show the distribution of torque splits by descent, steady-state, and high-power operating conditions, respectively. These histograms also give an indication of how much power the aircraft were using during the torque splits. The significance of a given

magnitude torque split is deper sent upon average torque of the two engines as well as absolute magnitude

Figures 20, 21, and 22 show exhaust gas temperature splits versus frequency of occurrence for descent, steady-state, and high-power mission segments with torque splits of greater than 10 percent. In all three operating conditions, 75 percent of the exhaust gas temperature splits were 200°F or less. Figure 23 shows exhaust gas temperature splits versus frequency of occurrence for the 618 sample points; 92 percent of them are less than 200°F. Since the torque-split sample points of less than 10 percent are included in these data, one would expect exhaust gas temperature splits to be smaller on a percentage basis. Figures 24 through 3? break down frequency of occurrence of exhaust gas temperature splits by 10-percent torque split, with brackets from 0 to 80 percent; the last bracket extends from 80 to 100 percent.

Frequency of occurrence versus variation in gas producer rpm between two engines for the total 618 sample points is plotted in Figure 33. At 80 percent of the points, the difference in rpm between the engines is less than 4,000. These data correlate well with torque-split data, since torque is a function of gas producer rpm. Figures 34 through 43 display the variation in gas producer rpm between two engines versus frequency of occurrence over the range of torque splits from 0 to 100 percent.

Nearly 70 percent of the torque-split sample points occurred at gross weights of 20,000-24,000 pounds (see Figure 44). This is to be expected, as the aircraft takeoff weight with crew and a full load of fuel with no cargo is 23,087 pounds. In Figures 44 through 53, gross weight is plotted versus frequency of occurrence of sample points at torque-split brackets of 10 percent from 0 to 80 percent; the last bracket extends from 80 to 100 percent.

In Figures 54, 55, and 56, gross weight versus frequency of occurrence is plotted for each category of operating conditions. The 20,000-24,000-pound gross weight range still dominates the figures.

Two-thirds of the torque-split samples occurred in descent mission segments (see Figure 57). The fewest torque splits occurred during high-power mission segments.

Ninety-four percent of the torque-split sample points occurred at main rotor rpm's between 225 and 240 (see Figure 53). This distribution could be expected, since the normal operating rpm for this helicopter is between 230 and 233.

In Figures 59 through 67, main rotor rpm is plotted vers as frequency of occurrence for torque-split brackets covering the full range of torque splits.

The histogram of airspeed versus frequency of occurrence of sample points (Figure 68) shows that one-fourth of the data points occurred at less than 10 knots' airspeed and 70 percent at less than 70 knots' airspeed. Since so many of the torque splits occurred during descents and ascents, one would expect the low-airspeed data points to dominate the distribution of data.

Figures 69 through 77 show distribution of airspeed versus frequency of occurrence by ranges of torque splits; Figures 78, 79, and 80 show distribution of airspeed versus frequency of occurrence by mission segment.

CONCLUSIONS

It is concluded that:

- 1. Torque splits of greater than 10 percent for the CH-47A Chinook occur about once per flight hour. (During the 346.59-hour sample period, momentary torque splits of greater than 100 percent were experienced five times.)
- Torque splits occur most frequently in the descending mode of flight. High-power conditions are least susceptible to unbalanced engine loading.
- 3. The CH-47A Chinook encountered torque splits of greater than 20 percent on 15.6 percent of the sample points in the study. (The CH-54A Skycrane encountered torque splits of greater than 20 percent on 36.5 percent of the sample points.)
- 4. Engine torque splits are not a significant problem at highgross-weight flying conditions.

Negatile famous problem to the m

Figure 1. Block Diagram of CH-47A Instrumentation System.

Figure 2. Sample Oscillograph Record.

Section to the Control of the

RANGES OF TORQUE SPLITS IN PERCENT

Figure 3. Summary: Torque Splits Versus Frequency of Occurrence (1059 Sample Points, All Data).

Figure 4. Summary: Torque Splits Versus Frequency of Occurrence (618 Sample Points, Table I Data).

Figure 5. Summary: Average Torque Versus Frequency of Occurrence (618 Sample Points, Table I Data).

Figure 6. Average Torque Versus Frequency of Occurrence at 0- to 10-Percent Torque Split (338 Sample Points, Table I Data).

Figure 7. Average Torque Versus Frequency of Occurrence at 10- to 20-Percent Torque Split (194 Sample Points, Table I Date).

Figure 8. Average Torque Versus Frequency of Occurrence at 20- to 30-Percent Torque Split (26 Sample Points, Table I Data).

Figure 9. Average Torque Versus Frequency of Occurrence at 30- to 40-Percent Torque Split (6 Sample Points, Table I Data).

Figure 10. Average Torque Versus Frequency of Occurrence at 40- to 50-Percent Torque Split (5 Sample Points, Table I Data).

Figure 11. Average Torque Versus Frequency of Occurrence at 50- to 60-Percent Torque Split (10 Sample Points, Table I Data).

Figure 12. Average Torque Versus Frequency of Occurrence at 60- to 70-Percent Torque Split (12 Sample Points, Table I Data).

Figure 13. Average Torque Versus Frequency of Occurrence at 70- to 100-Percent Torque Split (27 Sample Points, Table I Data).

Figure 14. Average Torque Versus Frequency of Occurrence During Descent Operations With Torque Split Greater Than 10 Percent (161 Sample Points, Table I Data).

Figure 15. Average Torque Versus Frequency of Occurrence During Steady Operations With Torque Split Greater Than 10 Percent (68 Sample Points, Table I Data).

Figure 16. Average Torque Versus Frequency of Occurrence During Ascent, Hover, and Maneuver Operations With Torque Split Greater Than 10 Percent (51 Sample Points, Table I Data).

William Control of the Control of th

Figure 17. Torque Splits Versus Frequency of Occurrence During Descent Operations
With Torque Split Greater Than 10 Percent (161 Sample Points, Table I Data).

Figure 18. Torque Splits Versus Frequency of Occurrence During Descent Operations With Torque Split Greater Than 10 Percent (68 Sample Points, Table I Data).

Figure 19. Torque Splits Versus Frequency of Occurrence During Ascent, Hover, and Maneuver Operations With Torque Split Greater Than 10 Percent (51 Sample Points, Table I Data).

Figure 20. Exhaust Gas Temperature Splits Versus Frequency of Occurrence During Descent Operations With Torque Split Greater Than 10 Percent (161 Sample Points, Table I Data).

Figure 21. Exhaust Gas Temperature Splits Versus Frequency of Occurrence During Steady Operations With Torque Split Greater Than 10 Percent (68 Sample Points, Table I Data).

Figure 22. Exhaust Gas Temperature Splits Versus Frequency of Occurrence During Ascent, Hover, and Maneuver Operations With Torque Split Greater Than 10 Percent (51 Sample Points, Table I Data).

Figure 23. Summary: Exhaust Gas Temperature Splits Versus Frequency of Occurrence (518 Sample Points, Table I Data).

EXHAUST GAS TEMPERATURE NANCES IN DEGREES PARREMENT

Figure 24. Exhaust Gas Temperature Splits Versus Frequency of Occurrence at 0- to 10-Percent Torque Split (338 Sample Points, Table I Data).

EXHAUST GAS TEMPERATURE RANGES IN DEGREES FAHRENHEIT

Figure 25. Exhauzt Gas Temperature Splits Versus Frequency of Occurrence at 10- to 20-Percent Torque Split (194 Sample Points, Table I Data).

Figure 26. Exhaust Gas Temperature Splits Versus Frequency of Occurrence at 20- to 30-Percent Torque Split (26 Sample Points, Table I Data).

Figure 27. Exhaust Gas Temperature Splits Ver-

sus Frequency of Occurrence at 30- to 40-Percent Torque Split (6 Sample Points, Table I Data).

EXHAUST GAS TEMPERATURE RANGES IN DECREES PARREMENT

Figure 28. Exhaust Gas Temperature Splits Versus Frequency of Occurrence at 40- to 50-Percent Torque Split (5 Sample Points, Table I Data).

Figure 29. Exhaust Gas Temperature Splits Versus Frequency of Occurrence at 50- to 60-Percent Torque Split (10 Sample Points, Table I Data).

Figure 30. Exhaust Gas Temperature Splits Versus Frequency of Occurrence at 60- to 70-Percent Torque Split (12 Sample Points, Table I Data).

Figure 31. Exhaust Gas Temperature Splits Versus Frequency of Occurrence at 70- to 80-Percent Torque Split (10 Sample Points, Table I Data).

EXMAUST GAS TEMPERATURE BANGES IN DEGREES PAHRENHEIT

Figure 32. Exhaust Gas Temperature Splits Versus Frequency of Occurrence at 80- to 100-Percent Torque Split (17 Sample Points, Table I Data).

Figure 33. Summary: Gas Producer RPM Splits Versus Frequency of Occurrence (618 Sample Points, Table I Data).

Figure 34. Gas Producer RPM Splits Versus Frequency of Occurrence at 0- to 10-Percent Torque Split (338 Sample Points, Table I Data).

Figure 35. Gas Producer RPM Splits Versus Frequency of Occurrence at 10- to 20-Percent Torque Split (194 Sample Points, Table I Data).

Figure 36. Gas Producer RPM Splits Versus Frequency of Occurrence at 20- to 30-Percent Torque Split (27 Sample Points, Table I Data).

Figure 37. Gas Producer RPM Splits Versus Frequency of Occurrence at 30- to 40-Percent Torque Split (6 Sample Points, Table I Data).

Figure 38. Gas Producer RPM Splits Versus Frequency of Occurrence at 40- to 50-Percent Torque Split (5 Sample Points, Table I Data).

Figure 39. Gas Producer RPM Splits Versus Frequency of Occurrence at 50- to 60-Percent Torque Split (10 Sample Points, Table I Data).

Figure 40. Gas Producer RPM Splits Versus Frequency of Occurrence at 60- to 70-Percent Torque Split (12 Sample Points, Table I Data).

Figure 41. Gas Producer RPM Splits Versus Frequency of Occurrence at 70- to 80-Percent Torque Split (10 Sample Points, Table I Data).

Figure 42. Gas Producer RPM Splits Versus Frequency of Occurrence at 80- to 90-Percent Torque Split (8 Sample Points, Table I Data).

Figure 43. Gas Producer RPM Splits Versus Frequency of Occurrence at 90- to 100-Percent Torque Split (9 Sample Points, Table I Data).

Figure 44. Summary: Gross Weight Versus Frequency of Occurrence (618 Sample Points, Table I Data).

Figure 45. Gross Weight Versus Frequency of Occurrence at 0- to 10-Percent Torque Split (338 Sample Points, Table I Data).

Figure 46. Gross Weight Versus Frequency of Occurrence at 10-to 20-Percent Torque Split (194 Sample Points, Table I Data).

GROSS WEIGHT RANGES IN THOUSANDS OF POUNDS

Figure 47. Gross Weight Versus Frequency of Occurrence at 20to 30-Percent Torque Split (26 Sample Points, Table I Data).

Figure 48. Gress Weight Versus Frequency of Occurrence at 30- to 40-Percent Torque Split (6 Sample Points, Table I Data).

Figure 49. Gross Weight Versus Frequency of Occurrence at 40- to 50-Percent Torque Split (5 Sample Points, Table I Data).

Figure 50. Gross Weight Versus Frequency of Occurrence at 50- to 60-Percent Torque Split (10 Sample Points, Table I Data).

GROSS WEIGHT RANGES IN THOUSANDS OF POUNDS

Figure 51. Gross Weight Versus Frequency of Occurrence at 60to 70-Percent Torque Spit (12 Sample Points, Table I Data).

GROSS WEIGHT RANGES IN THOUSANDS OF POUNDS

Figure 52. G. 738 Weight Versus Frequency of Occurrence at 70-to 89-Percent Torque Split (10 Sample Points, Table I Data).

GROSS WEIGHT RANGES IN THOUSANDS OF FOUNDS

Figure 53. Gross Weight Versus Frequency of Occurrence at 80- to 100-Percent Torque Split (17 San.ple Points, Table I Data).

GROSS WEIGH. RANGES IN THOUSANDS OF POUNDS

Figure 54. Gross Weight Versus Frequency of Occurrence During Descent Operations With Torque Split Greater Than 10 Percent (161 Sample Points, Table I Data).

GROSS WEIGHT BANGES IN THOUSANDS OF POUNDS

Figure 55. Gross Weight Versus Frequency of Occurrence Juring Steady Operations With Torque Split Greater Than 10 Percent (68 Sample Points, Table I Data).

Figure 56. Gross Weight Versus Frequency of Occurrence During Ascent, Hover, and Maneuver Operations With Torque Split Greater Than 10 Percent (51 Sample Points, Table I Data).

Figure 57. Summary: Percentage of Samples in Various Flight Modes During To que Splits (618 Sample Points, Table I Data).

Figure 58. Summary: Main Rotor RPM Versus Frequency of Occurrence (618 Sample Points, Table I Data).

Figure 59. Main Rotor RPM Versus Frequency of Occurrence at 0- to 10-Percent Torque Split (338 Sample Points, Table I Data).

Figure 60. Main Rotor RPM Versus Frequency of Occurrence at 10- to 20-Percent Torque Split (194 Sample Points, Table I Data).

Figure 61. Main Rotor RPM Versus Frequency of Occurrence at 20- to 30-Percent Torque Split (26 Sample Points, Table 1 Data).

Figure 62. Main Rotor RPM Versus Frequency of Occurrence at 30- to 40-Percent Torque Split (6 Sample Points, Table I Data).

Figure 63. Main Rotor RPM Versus Frequency of Occurrence at 40- to 50-Percent Torque Split (5 Sample Points, Table I Data).

Figure 64. Main Rotor RPM Versus Frequency of Occurrence at 50- to 60-Percent Torque Split (5 Sample Points, Table I Data).

Figure 55. Main Rotor RPM Versus Frequency of Occurrence at 60- to 70-Percent Torque Split (12 Sample Points, Table I Data).

Figure 66. Main Rotor RPM Versus Frequency of Occurrence at 70- to 100-Percent Torque Split (21 Sample Points, Table I Data).

一下をは ついかい

Figure 67. Main Rotor RPM Versus Frequency of Occurrence at Torque Split of 100 Percent and Greater (6 Sample Points, Table I Data).

Figure 68. Summary: Airspeed Versus Frequency of Occurrence (618 Sample Points, Table I Data).

Figure 69. Airspeed Versus Frequency of Occurrence at 0-to 10-Percent Torque Split (338 Sample Points, Table I Data).

Figure 70. Airspeed Versus Frequency of Occurrence at 10- to 20-Percent Torque Split (194 Sample Points, Table 7 Data).

Figure 71. Airspeed Versus Frequency of Occurrence at 20- to 30-Percent Torque Split (26 Sample Points, Table I D_ta).

Figure 72. Airspeed Versus Frequency of Occurrence at 30- to 40-Percent Torque Split (6 Sample Points, Table I Data).

Figure 73. Airspeed Versus Frequency of Occurrence at 40- to 50-Percent Torque Split (5 Sample Points, Table I Data).

Figure 74. Airspeed Versus Frequency of Occurrence at 50- to 60-Percent Torque Split (10 Sample Points, Table I Data).

Figure 75., Airspeed Versus Frequency of Occurrence at 60- to 70-Percent Torque Split (12 Sample Points, Table I Data).

Figure 76. Airspeed Versus Frequency of Occurrence at 70- to 80-Percent Torque Split (10 Sample Points, Table I Data).

Figure 77. Airspeed Versus Frequency of Occurrence at 80- to 100-Percent Torque Split (17 Sample Points, Table I Data).

Figure 78. Airspeed Versus Frequency of Occurrence During Steady Operations With Torque Split Greater Than 10 Percent (68 Sample Points, Table I Data).

THE THE PROPERTY OF THE PROPER

Figure 79. Airspeed Versus Frequency of Occurrence During Descent Operations With Torque Split Greater Than 10 Percent (161 Sample Points, Table I Data).

Figure 80. Airspeed Versus Frequency of Occurrence During Ascent, Hover, and Maneuver Operations With Torque Split Greater Than 10 Percent (51 Sample Points, Table I Data).

TABLE I. INVESTIGATION OF CH-47A HELICOPTER ENGINE LOAD SHAPING (INSTRUMENTATION COMPLETE)

Sam-				Gross	Torque	Gas Pr	educer		sest Gae emp	Main	Air-	Den- sity	Out- side Air
ple	Acft	Fit	Time	Wt	(pct)	RP	M _	•	or)	Rotor	spred	Alt	Temp
No.	No.	No.	(min)	(16)	1 2	1	7	1	- E	RPM	(kn)	(U)	(°F)
1	908	ASB	5.4	22,800	6.16 0.00	12,946	10,090	743	749	232, 5	68. 8	5161	96. 37
1	1	82A	5.8	22,800	34.65 20.45		12.813	822	847	229.5	44. 5	4606	95.02
1		82A	6.0	22,800	43. 12 37. 96	17.818	14,014	811	849	231.5	51. 9	4653	95. 02
2	1	ASS	22. 3	21.900	32, 34 34, 33	16,426	13,213	754	782	234, 5	82.5	5305	98. 37
2	- 1	82A	23, 1	21, 900	29. 26 16. 07	16,704		799	849	230.5	77.9	4623	96.70
2	- 1	82A	23, 8	21,900	21.56 8.77	15, 147	11,532	822	916	235.5	42. 3	4337	95,86
2	1	82A	24. 4	21,800	37.73 35.06	17,540	13,854	799	849	230, 5	0. 0	4126	95. 86
3	- 1	844	44. 0	22,660	25.41 27.03	17,818	13,213	743	816	233.5	86, 1	6499	99. 93
3	- 1	MA	45.0	22,690	56.21 0.00	18,514	7,527	766	637	217.6	80.0	5853	99.09
3	ı	84A	46.0	22,600	61.60 1.46 60.83 2.19	18, 932	6,406	912	760	231 5	74. 9	5756	98. 26
3	- 1	84A 84A	47.0 48.0	22,500 22,500	60.83 2.19 63.91 2.19	18, 932 18, 932	6,486 6,566	924 924	760 760	231.5	75. Ł	5731	98. 2
ś	- 1	SHA	49. 0	22,500	52.36 2.19	18,514	6,406	747	760	229.5 227.5	77. 7 72. 2	5682 5632	97.42 96.58
3	ł	84A	49. 3	22,500	35.42 29.21		13,213	812	\$83	234.5	74. 9	5461	94. 91
4	1	84.4	49. 7	22, 400		16 003	17.463			224 6			** **
-	- 1	844	50.0	22,400	32. 34 34, 33 43, 12 12. 42	16, 983 18, 096		788 822	827 760	234. 5 234. 5	74. 7 75. 1	5534 5584	95, 74 96, 58
4	- 1	BAA	50, 3	22,400	60. Cá 13. 15	18,792		912	794	232, 5	82. 3	5486	95.74
4	- 1	BIA	50. 8	22,400	63. 91 10. 96		11,692	901	771	233.5	85. 9	5608	96.58
4	1	84A	51.1	22,400	33. 11 35. 79		13,613	788	872	233.5	82. 2	5730	97.42
5	ſ	85A	10.5	29,700	21 12 23, 37	16,426	13,213	742	827	232, 5	70. 9	6428	90.72
5	- 1	85A	11.7	29,600	23. 10 11, 69		12, 172	743	816	234.5	50.5	4947	86.53
5	ĺ	85A	12.0	29,600	52.36 45.29	18, 375		879	902	233, 5	25. 3		85,70
6	- 1	85A	17.0	22,400	29. 26 28, 49	16,704	13,693	743	816	236.5	86. 3	6615	90, 72
6	- 1	85A	17.4	22,400	33, 11 21, 18	17, 122		766	850	230.5	89.5	6204	89. 05
6	i	85A	17. 9	22,400	23. 10 14. 61	16,287	11,611	743	837	230, 5	89. 9	5708	89. 21
6	- 1	85A	18.7	22,400	36. 96 21. 18	17,400	13,373	788	850	230, 5	70.0	4612	83. 19
6		85A	19.4	22, 300	36.96 37.96	17,400	13, 934	788	925	229.5	86. 1	4288	80.67
7	- 1	87.A	14.6	22,500	12. 32 13. 88	14,895	12,012	784	857	225.6	63.2	4791	78. 35
7	- 1	87.A	15. 3	22,500	43.89 31.41		13,453	852	879	227.5	0. 0	4266	78. 35
7	- 1	87A	15.8	22,400	53.90 40.90		13,693	877	960	223.6	0.0	4182	78.35
7	ı	87.A	16, 4	22,400	32, 34 29, 21	17,400	13,533	7%	868	230. 5	0.0	4013	74. 55
		87A	115.0	21,600	36, 96 43, 10	17,540	14, 174	818	946	228.5	0.0	3502	67.47
	- 1	87.A	115.4	27,600	36.24 65.01	19.466		1010		229.5	27.1	3624	67.47
8		87 A	116.0	27.500	63.91 65.01	14,209	14, 975	931	1047	232. 5	65.7	4167	68, 30
•	l	87A	195. 9	26,400	15.40 22.64	15, 312		784	868	227.5	50. G	1750	67.47
•	- 1	87.A	1%.6	26,400	48.51 35.79	18,0%	13,693	886	924	232.5	9. 1	1278	66.63
•	- 1	87.A	197.2	26,400	52, 36 51, 86	18,236	14,414	897	980	232. 5	6. 5	1108	65.79
10	İ	88A	63.7	24,000	28, 49 24, 10	16.843		750	845	228.5	65. 1	3687	74.84
10	-	88A	66. 9	23,700	52, 36 39, 44	18,375		828	923	226.5	9. 1	3019	73. 16
10		88A	65. 2	19, 700	47,74 44,56	18,0%	14,414	885	956	237.5	31.6	2153	£9. 31
11		89A	55.6	20,500	13.09 19.72	15,451		798	848	227.5	74. 9		103. 23
11	1	89A	56.0	20,500	21, 56 10, 96	16,287		753	826	232.5	73. 4		190.72
11	- 1	89A	56.6	20, 500	17.71 21.18	15,034	12,492	753	\$ 60	233.5	73.6	5075	95.70
12	- 1	90A	4.6	28,900	40, 81 43, 10	17,540			981	230.5	0.0	3539	86.33
12	1	90A	5.0	28,900	79. 31 54. 05	19,488		1015		231.5	44. 3	3751	86.33
12		90A	5. 4	28, 900	50, 82 54, 05	18,236	14,494	926	993	235.5	64. 3	4085	87. 16
13		91A	56,6	28, 900	3, 85 5, 84	13,503		696		231.5	63. ì	4868	86.21
13	1	91.A	57.0	28, 900	60,06 40.90	18,792			997	229.5	46.0	4010	82. 02
13	1	91A	57. 1	28, 900	83, 16 54, 05	17.906		1012		225.6	72.7	4979	81.19
13	•	91 A	57.4	28, 900	53,90 57,70	18,514	14,734	922	1055	224,6	39. 5	4220	80.35

Sam- ple	Acft	Flt	Time	Gross W:	tı	eque	R	reducer PM	1	met Gas (estip (°F)	Maia Reter	Air-	Dea- sity Ak	Out- side Air Tem
No.	No.	No.	(mms)	(1b)	1	7	T				APM	(R:N)	(ft)	رين
14	908	A59	0.9	23.0CC		39. 44	-	14, 914	794	878	235.5	68.7	3780	85.8
14 14	- 1	A56	1.4	23,000	21.56	3.65		11,211	772	755	235.5	49. 1	3839	85.8
	-	92A	1.9	23,000	38.50	36.52	17.818	13, 934	845	734	227.5	9. 1	3685	85. 8
15	ł	32A	24. 3	26,605	41.58	46.01	17,540	14, 174	761	889	231.5	0.0	3375	78.3
15	- 1	92A	24.8	26,663		56. 97	•	14, 815		1012	233.5	68.3	3514	77.4
15	- 1	92A	25.0	26,600	60.06	59. 9 0	18,792	14,815	718	1023	230, 5	76. 9	3892	81.6
16	- 1	92A	51.8	30,000	44.66	44. 56	18,0%	14, 334	873	990	234.5	0.0	3634	82.4
16	1	92A	32.0	30,003		52.59	19,767	14,734		1001	232.5	0. 0	3670	82.4
16	1	92A	÷2.4	30,000	58, 52	57.70	18,792	14,654	907	1012	230.5	54.6	4031	83. 3
17	I	92A	54.2	29, 900	14 44	34. 33	17,400	13.693	772	900	234.5	51.5	5321	26.67
17	1	92A	35.1	29, 900		41.63		14, 254		1001	225.6	0.0	5163	₩. 67
17	-	92A	55.6	22, 900		45. 29	18,096	14, 254	885	990	224.6	●. 0	4928	85.90
18	ı	62.4	••	21,600		27 37		12		-6-	***		****	
18 18	ı	92A 92A	85.8 86.3	21,600		37. 25 61. 36	17,540 19,628	13,854 14,815	851	957 1068	230.5 227.5	0. 0 31. 9	3736 3547	84. 16 84. 16
18	ı	92A	86.7	21,600		61. 36	18, 932	14, 815		1045	231.5	66.4	4046	84. 16
19	1	94A	4.7	22, 900	71 54	13.88	16,287	12, 332	829	368	226 6	55.6	1010	
19	į	94A	5, 3	22, 900		15. 88 35. 79	10,287	13,613	827 886	957	235.5 223.6	55. 6 0. 0	3919 3255	81.70 77.5
19	ı	94A	5. 5	22,900		32, 87	18,096	14, 334	863	870	226.5	0. 0	3203	76.61
	ı													
20 20	- 1	95A 95A	8. 5 9. 1	22,700 22,700	-	56. 97 59. 16	0	15,215 15,215		1047 1080	232.5 233.5	0.0	3293 3237	83. 47
20		95A	9. 3	22,700		56. 24	Ö	15,215	120	1047	232.5	0. 0 0. 8	3326	82. 94 84. 94
	- 1			-							-			
21	- 1	962.	11.9	22,500		40. 50		14.414	852	777	234.5	0.0	4285	93.41
21 21	Ì	96A 96A	12. 5 12. 9	22,500 22,500		€8. 38 40. 90	7.517 7.517	16,016 14,414	852 841	935 788	229.5 233.5	0. 0 0. C	4226 4253	93, 41 92, 80
	- (74.	**. 7	22, 500	0, 00	40. 70		,	•••		233.3	•••		,
22		96A	12, 9	22,500	56.21	0.00	18,653	6.807	905	777	234.5	0.0	4230	92. 84
22 22	- 1	96A 96A	13, 4 13, 6	22,500 22,500	80 08 67.76	0. 00 0. 00	18, 375 19, 488	6,727 6,887	1009	777 7 66	228.5 239.5	●. ● 0. 0	4285 4230	93. 41 92. 80
**	- {	70A	13.0	22, 300	67.10	0.00	A 7, 100	4,007	704		279.3	U. U	42.50	74
23	- [97 A	17.3	22,500	\$7.01	0. 90	19,488	0	964	152	229.5	0.0	1290	73.4
23	ı	97.A	17. 5	22,500	82.35	0.00	18,653	0	1009	141	235.5	76.5	1405	72.94
23	- 1	97 A	18. 3	22, 400	80.85	0.00	20,045	0	998	119	236.5	72. 3	1796	73.47
24	-	97 A	18, 8	22,400	72. 38	0.00	19, 349	o	953	108	233.5	75.6	2187	74.5
24		97 A	19.5	22,400	65.45	0.00	19, 349	0	930	96	233.5	77.9	2748	75.0
24	-	97 A	20, 8	22,400	58.52	0.00	18,792	0	905	96	233.5	76. 1	3017	75.59
25	1	97.A	33, 7	21, 900	61,60	0.00	18,792	0	905	74	231.5	75.9	4096	78.70
25		97 A	34, 9	21,800	30, 80	0.00	17,122	o	772	74	234.5	30, 3	3348	78.2
25	1	97 A	35, 9	21,600	80.85	0.00	19,767	0	1009	74	238.5	0.0	2951	74. >
ZŚ	-	39A	25. 4	21,709	58 57	40, 90	17,400	14,414	946	782	240.5	0. 0	3784	96.24
26 26	ı	99A	25.6	21,700		16. 47	16.565	14,654	788	894	234.5	37.5	3877	94.2
26		99A	26. 2	21,600		45.29		14,414	878	782	233.5	80. 1	4158	94.2
				33 000	30 00		14 ***		***		335 -	•••		
27 27	İ	01B	5, 4 6, 3	22,800 22,800		23. 37 23. 37		13,453 13,053	762 751	723 6 89	235. 5 233. 5	90. 9 55. 7	5499 4821	90.2
27	1	018	7.9	22,700		27.76		14,414	795	734	233.5	69. 1	3217	90.2
	-													
28	- 1	01B	9.8	28,600		46, 21		15.055	976	857	2:0.5	0.0	2791	90.2
28 28	1	01B	10, 1 10, 9	28,600 28,600		39, 44 46, 75		14,094 14,494	905 818	723 812	235.5 234.5	79. 0 77. 2	2745 3578	90. 2·
-0		VIB	10, 7	20,000	,0. 50	₩.,,,		, 479	3.5	~-*		••••	,,,,	,
29	1	01B	27.2	26,700		30, 68		13,693	773	700	235.5	86. 1	5633	90.2
29 29	i	01B	28.7 29.7	26,700 26,600		11.69 42.36		12.012	740 840	-	228.5 232.5	79. 0 0. 0	390€ 2357	90. 2 90. 2

						TAB	LE 1 - conf	id.						
Sem- ple No.	Acft No.	Fit No.	Time (min)	Gress Wt (3b)		rque ict)		roducer PM	T	oust Gas emp (°F')	Main Roter RPM	Air- speed (kn)	Den- sity Alt (ft)	Out- side Air Temp (°F)
30	706	013	29. 9	21,600	52 %	50. 40	18, 375	14 684	106	790	230.5	C, 0	2301	90, 24
30		013	30. :	21,600		59. 90		15,215	#4	890	238.5	51.5	2688	90.24
30	- 1	01B	30.6	21,600	54, 67	55. 51	18.653	14, 895	908	968	233.5	70.3	3182	90.24
31	ł	01B	34.4	21,400	48 84	39, 44	17 818	14,414	240	767	234.5	50. 2	6101	90, 24
31	- 1	013	34.7	21, 400		30.68		13,774	762	723	235.5	13. 1	6039	90. 24
31	- 1	01B	35. 1	21, 300	58.52	70. 12		15,455	_	890	228.5	13. 1	6002	90.24
32	i	01B	63, 4	22,600		23. 37	14		750		***	75.8		
32	ŧ	013	64.5	22,500		24. 10		13,533 13,293	759	489 711	233.5 228.5	13.8 64.4	5560 4569	90, 24 90, 24
32		01B	65.4	22, 500		25. 57		13,533	750	723	227.5	66. 3	3484	90.24
••	- (24.4.									
33 33	- 1	013 013	70. 2 70. 7	28, 300 28, 300		29. 94 18. 99		13, 854 13, 213	750 750	689 678	234.5 23,5	82, 3 50, 5	5159 4701	90. 24 90. 24
33	1	91B	71.2	28, 300		45. 29		14,574	784	778	226.5	13. 1	4177	90.24
	1			-				-						
34 34	1	913	71.5 71.8	28, 200		40.90		14,414		734	235.5	0.0	4118	90.24
34	- 1	01B	72.4	28, 260 28, 200		64. 28 53. 32	19,628	15,295 14,895	976 987	879 834	235.5 235.5	45. 4 80. 5	4201 4486	90. 24 90. 24
	1			33,333			,-,-	,.,.	,					,
35	- 1	013	90.2	21,500		33.60		14,734	750	689	236.5	80.5	5316	90.24
35 35	- 1	OIB	91. 1 91. 4	21,400 21,400		37. 96 25. 57		13, 854 12, 893	741 750	711 700	227.5 234.5	55.7 46.3	4059 3 96 4	90, 24 90, 24
~	- 1		78. 4	**, ***	43.41	43. 31	17. 716	14,673	130	,,,,	£.74. 5	40.)	3764	70.24
36	- 1	-43	25.3	23, 100	13, 86	18.99	16.147	13,453	877	798	234, 5		2691	89.54
36	- 1	943	26.0	23, 900		21. 9!		13, 293	950	793	240.5	0.0	2691	89, 54
36	ı	943	27.0	23,000	39, 80	40, 70	16.704	13, 934	866	776	235.5	20. 8	2725	89. 54
37	i	85B	24. 2	22, 200	23, 87	30, 68	17.818	15,776	834	795	232, 5	9. 0	2562	91.54
37	- 1	05B	24. 4	22, 108		45.75		14,734	924	817	236.5	J. 0	25%	91.54
37	ı	953	24.7	22, 100	46. 71	50, 40	17,540	13,774	913	862	233.5	ı i. 5	2710	91.54
38	- 1	653	27.7	22,000	19.25	24. 83	18,514	13, 934	854	761	235.5	9. 0	25%	91,54
36	- 1	05B	27. 9	22,000		32. 14	18,0%	14,654	935	750	238.5	0.0	2676	91.54
38	- [673	28. 9	22, 900	55.44	59. 16	17,400	14, 254	746	892	233.5	87.6	3458	91.54
39	- 1	673	\$1.8	28,000	45. 43	44, 56	18.096	14,574	873	756	231.5	0. O	5558	87, 15
39	- 1	973	92, 2	23,000		37. 98	19, 932	15,055	J95	789	232.5	0. 0	5375	87.13
39]	973	82.4	20,500	42. 35	41.63	18, 8%	14,734	# 2	733	231.5	9. 1	5558	87, 15
40	ı	963	●. ●	23, 100		25.60	15,934	13,053	819	780	230.52	C. 0	3452	88,00
**	1	963	0. 1 0. 2	23, 100 23, 100		36.60	18,514	14,414	921	758	239.46	5. 1	3688	88.00
•		943	0.3	23, 100		460 38. 80		14,494 14,494	910 89 5	791 780	239. 46 237, 47	37. 7 50. 2	3744 3885	88, 60 88, 60
	1			-		52. 60	,.,.	,.,.	•,,		231,41	A. L	3643	S C. 0 0
41 41	ı	942	9. 0 9. 2	22, 800		23.40		12,813	7.36	679	231.51		3383	88.00
41	- 1	***	9.4	22, 800 22, 800		23, 40 30, 70	14, 338 15, 173	12,412 13,533	830 864	6 ?¢ 723	227.43		3383	99.58
41	1	CSB	9.6	22, 800		54.20		13,693	808	723	?25.55 228.53		3081 2385	88.00 88.00
42	- 1	063	9. 9	22,700	14 40	12.40	10							
42	1	063	10.0	22,780		17.60 46.18		12.572 13,693		690 835	231.51 226.54	0. 0 0. 0	2988 2953	88, 00 53, 00
42	1	993	10. 1	22,700		41.70		14,254		769	234.49	0.0	2953	85.00
43	1	063	72. 1	23, 100	17 70	74	16 446							
43	1	163	72. 2	23, 100		24. 20 52. 70	15, 669 17, 261	13,453 14,494	797	701 835	236, 48 233, 50	0. 0 0. 0	2930 2838	88, 00 88 69
43	1	043	72. 3	23, 100		38. 10		14, 334	896	712	239.46	0.0	2861	8# 00
43	-	963	72.5	23, 100	42, 26	42. 50		14,494	864	768	231.51	0.0	2896	88,60
44		003	128. 9	20, 900	7.70	22, 70	14, 334	12, 973	766	699	235, 48	0.0	3011	88, 00
44	- 1	963	129.0	20, 900	12. 30	30, 78	16.565	14,574	775		234.49	0.0	2965	88.00
44 45	Ť	963 963	129. 1 129. 3	20, 900 20, 900		36. 10 44. 60	18,236	14,334 14,414	853		231.51	0.0	2988	88, 50
			444. 3	<i>~</i> ==	48 7ft				797		233.50	0.0	3611	88, OC

						TAB:	LE I - coa	tó.						
Sam- ple No.	Acf	Fit No.	Time (n.ia)	Gross Wi (lb)	Torq (pc			roducer PM		List Gas Temp (°F)	Main Rotor RPM	Air-	Den- exty Alt	Out- side Air Temp
45 45	908	12B	2. 2 2. 5	21,000 23,000	41.58 Z			14,414	902 834	739 940	234.5 227,5	ა. 0 0. 0	3781 3833	23.57 89.43
45	ı	120	3. 0	23.000	0.60 8			15,576	846	929	230 5	0.0	3816	88.57
15	- 1	12B	3.4	22,900		C. 00	20, 645	0,727	902	772	222.6	0, 0	3712	86.86
45	- 1	12B	4. 3	22,900		0.00	19, 906	6,727	913	772	2*+ 5	0.0	3712	35.84
15	1	12B	4. 7	22.300	34, 65	35, 96	17,418	14.815	523	761	235.5	0.0	3748	36. 8 6
16	- 1	LLB	5.4	22,800	36, 19 3	2 87	17.818	14, 174	891	717	235, 5	0.0	4245	96, 99
lé.	- 1	128	6.7	22,800	0.00 9			16.736	823	940	255.5	0.0	4296	97.14
i.	- 1	123	7. 0	22,800	0.00 6			16,416	345	195	233.5	0.0	3810	89.43
4		12B	7. 6	22,700	36.19 3	14. 33	17,816	14, 334	457	717	236.5	0.0	4084	94. 57
17	ı	128	11.7	22,600	42 35 4	12. 36	18.0%	14,734	891	761	234.5	0. 9	42 50	98. 84
17	- 1	128	12. 1	22,500	0.00 9			16,736	834	918	233.5	0. 0	4281	98. 84
7	1	128	12.5	22,500	0.00 10			16,736	814	906	233.5	0.0	4316	98. 84
7	1	128	12. 9	22,500	0.00 3			14, 334	823	772	223.6	0 0	4281	98.86
7 7	1	12B	13. 1	22,500 22,400		0 00	20, 184 19, 488	7,64?	967 756	750	232.5	0.0	4281	98. 86
7	1	12B	14. 0 14. 2	22,400 22,400	66 99 43.12 4	0. OC 3 33	19,488	7,047 14,734	756 891	739 772	235, 5 235, 5	0. 0 9. 0	4265 4316	98.00 98.84
	- 1													, ••
ið.	- 1	19B	42. 1	23, 300	50.05 3			14,574	921	736	234, 48	0.0	1129	82. 00
. 8	- 1	19B	42, 6 43, 5	23,300 22,790	47.74 3 50.05 4		18,653	14,414	943	758 669	236, 48	64.7	4587	84.57
•	- 1		*,,,	22,.30	,0.0,	. 11	10,000	14,77	954	069	234,50	0. 0	4146	8 5.43
•	- 1	218	25, 7	26,400	20.02 1	8. 26	16.287		686	£81	235, 48	56.4	4537	75.43
9	1	21B	26, 3	26, 300	47 74 3		18.0%		900	692	231.49	14.6	4281	75.43
9	- 1	218	26, ō	26, 300	34.65 2	8. 49	17,400	13, 934	810	714	231, 51	0.0	4207	75.43
0	- 1	22B	81, 0	25,900	20.79 2	0. 45	16.008	13,453	738	649	233, 50	0.0	2672	85.86
0	- 1	22B	81, 2	25, 900	71.61 5	9. 16	19,488	15,535	907	875	236.48	9.0	3419	93.57
9	- 1	22B	81, 4	25, 910	51 5 , 4	7. 48	18,236	14, 895	916	656	234, 50	67.8	3669	92.71
1	1	24B	32, 3	21,700	40.81 3	3.60	17.557	14.254	870	696	234, 49	12.5	3030	74.29
1	1	24B	33.0	21,600	£J. Cé 4		18, 932		904	78č	231.51		2983	74.29
1	- 1	24B	33, 4	21.600	£1.55 2	3. 37	16.426	13.533	756	685	238, 46	0.0	2971	74.29
2	- 1	24B	219 9	24, 50C		4 10	14 043							
Z	- 1	24B	220, 3	24, 400	27.72 2 48.51 4		16,843 18,514		724 915	696 730	235, 48 234, 49		1732 1399	74.29
2		24B	220.9	24, 400	51.59 4		18,514	-	927	775	234, 49		1491	74.29
2	- 1	24B	221. 3	24,400	32.34 3		17,400		769	707	237.47		1548	74.29
3	- 1	29B	17, e	22, 300	2. 31	3. 65	12,528	10 330	733	661	236, 47	47.0	5089	26.86
3	- 1	29B	17 3	22, 360	29. 26 1		16,843		733	583	235.48	_	4537	95. 14
3	- [29B	17.5	22, 300	28.49 2		16,843		744	594	237.47		4485	\$4.29
4	1	319		28, 200	21 66 3		14 24-		***					
4	1	31B 31B	9, 1 5, 4	28, 200 28, 100	21.56 2 32.36 1		16.565 17.261		738 750	687 721	235, 48	0.0	3837	73.57
4		31B	4.7	26. 100	50.82 4		18, 375		422	799	233, 50 233, 50	0. 0 0. 0	3819 3910	74 71 73.57
		••-												
5 5	1	32B 32B	C. 0	23, 100	21.56 3		16, 147		762	723	233.50	0.0	3991	75.86
5	- 1	32B	0. 3 0. 9	23, 100 23, 100	58.52 4 56.21 4		18.932		942	a23	238, 46	0.0	4117	76.71
Ś	- 1	32.P	1.3	23,000	42.58 4		18,792		74Z 875	790	227, 53 236, 48			76.71 75.86
_	- 1							-						
4	1	32B	6.5	22,700	20.77 2		16,565		706	678	233.50		4607	80.14
6	-	32B	6.8	22,700	55 44 4		19,67		908		233.50		4441	78.43
6	- 1	32 D	7, 3	26, 300	37.73 4	v. 9 3	17.957	14.815	864	779	234. 49	20.5	4335	76.71
7	!	33B	19.6	22.300	33, 11 2		17,540		791	625	234.49	43. 2	2253	67.43
7	1	33B	20.0	22,300	70.84 5		19.488		892	829	227.53	13. 1	2182	67.43
7		33B	20.5	22, 200	66,2Z b	3. 55	19,468	15.615	914	785	234.49	~ 0	2029	67. 63
8	- 1	3÷B	63, 3	24.800	12, 32 1	2. 42	15, 173	13.053	722	éo1	233.50	80. 3	5528	91. 14
8	ŧ	34B	63. 9	24,700	20.79		16,008		733		226.54		4592	89.43
8	•	34B	o4 5	24,700	36.19 4		18, 096			795	228.55		4135	88,57

						TAB	EI - cont	đ.						
										ust Gas			Den-	Out-
Sam-				Gross	Torqu		Gas Pro		1	emp (°F)	Mein	Air-	sity	Air
ple No.	Acft No.	Fit No.	Time (min)	₩t	(pct	7	T API	* -	1	2	Rotor RPM	speed (kn)	Alt (ft)	Temp (°F)
														44 43
59 59	908	35B 35B	50. 5 50. 8	26, 400 26, 400	2c, 18 2 59, 29 4		16,704 18,996		711 933	662 706	233, 50 227, 53	39. 6 24. 9	1649 1556	56.43 66.43
59	1	35B	51.6	26.300	43.89 4		18,0%		550	761	237.47	0.0	1197	65.57
.0	- 1	36B	200.7	21,200	26.18 2	4 10	16,704	13 254	801	672	235.48	56. 9	3250	77, 43
ic .	ı	34B	201. 3	21,200	70.07 5		19,485	15,245	865	817	229.12		3220	80.00
.0	ı	34 B	202. 2	21,100	51.59 5		18,653	15, 135	857	851	233. •0	0 0	2770	74.86
5 1	l	39B	0.0	23, 100	9, 20 2	0 49	14,477	13.293	758	707	235.48	0.0	3856	90,00
51	1	39B	0.4	23, 100	20,00		16,287		747	774	238.46	0.0	3950	90.00
61		39B	0. 8	23, 100	39. 30 4		17.957	14,654	938	797	235.48	0.0	3832	90.00
SZ.	ļ	40B	c. 0	23, 100	25, 40	2. 90	16,565	14,294	825	752	235, 48	0.0	3685	87.90
12	1	403	0.5	23, 100	32. 30		17,540	15, 215	792	875	236,45	53. Z	3839	87.00
2	i	40B	0. 9	23, 100	39 30 4	15. 40	17.957	14,895	916	853	234, 49	90. 2	4076	87.00
63		41B	20.0	25,200	26.20	26. 30	16,704		740	701	233.50		3853	87, 14
63	-	41B	20.6	25,200	54.70		18, 375		557	757	225.55		3202	87.14
63	1	41B	21. 1	25, 100	45, 40	33, 60	17, 957	14, 334	920	701	231.51	77.7	3261	87.14
64		41B	52.4	22,000	27.00			13.854	695	690	233.50	92.0	5057	e . 14
54	- 1	41B	53. 3	21,900	21.60			11.852	740	668	227.53		3753	87.14 87.14
64 64		41B	54. 1 54. 4	21,900 21,900	34, 60 42, 30			12,492 14,414	662 865	679 723	230.52 230.52	30. Z 0 0	2774 2590	87.14
	- 1						-							
65 65		42B 42B	89. 5 89. 9	21,100 21,100	19, 25 . 34, 65 .		16,426	13, 854 13, 453	649 750	667 678	237.47 232.50	83. 9 39. 2	3654 3578	92, 80 93, 7
65	ı	42B	90. 4	21,000	44.66			14,014	674	700	231.51		3427	93.7
65		42B	91. 2	21.000	21.50			13,934	705	659	235.48	0.0	3283	92.84
66		42B	118.6	25, 300	6, 16	13.88	14.059	13, 133	716	656	236, 48	93.7	3977	92. 0
66	ł	42B	118.9	25, 300	11.55	0 00	15,034	11, 131	795	667	228, 53		3509	92.0
66		42B	119 6	25, 300	2:.56	25, 57	16.565	14, 494	683	700	236,48	00	2868	89 4
67		42B	138.3	24,600	33 11	32. 14	17.261	14, 254	772	700	235.48		4803	91.1
67	- 1	42B	138. 8	24,600	61.60		-	14,734	907	776	228.53		4671	91.1
67	- 1	42B	139, 1	24,600	11.55	17. 53	15, 312	13,293	750	689	229. 52	9 0	4533	89. 4
68	- 1	42B		26.100	22. 33			13, 934	6#3	689	234. 49		4394	92.8
68	ı	42B		26, 100	21.56	6.57		12.252	750	667	227.53		4000 3249	92. 9 91. 1
68 68		42B 42B		26,000 26,600	29. 26 17, 71	9.50 18 26		12,412	727 750	678 687	227.53 225.55		2873	67.7
69 69		42B 42B		20,000 20,000	17.71 35.42		16,008 17,400	-	694 750	678 711	236.48		5279	92.8
69	ļ	42B		19, 900	35. 42 16. 94		16, 147		672	667	232, 50 234, 49		4854 4525	92.0 90.2
70		42B	199. 9	24,600	11 04	17 51	16 440	13 177	44,	674	235, 48	40 5	4344	
70 70	i	42B		24,600	13. S6 22. 33			13, 373	661 750	67 6 667		89. 5 72. 9	4266 4017	88, 5 88, 5
70		42B	260.7	24.500	14.63			13,453	672	678		39. 2	3185	85. 1
71		42B	219. 3	21,200	47,74	54. 05	18 234	15,535	AA 1	634	*35 20	116.2	5773	92 0
71	Į	42B		21,200	44.66			14,514	K-5			97.3	5565	
71		42B	220.5	21, 100	38 50			14,654	:::			98. 2	5555	
72	1	42B	249. 0	19, 900	13.0?	17.53	15, 173	13, 133	726	657	234, 49	83.7	4421	88. 5
72	- 1	42B		19, 900	23.87			11.531	75C			111.9	3466	
72	-	428	250. 3	19, 900	21,56	24, 83		14,574	705	700	235.48		2729	
73		42B	268.7	25,000	17.71	24. 53	16,426	13.934	649	678	237 47	:10 3	6257	92. 8
73	1	42B	269. I	25,000	33, 86		16.983	12,252	808			66 3	5826	
73	ŧ	42B	269.5	25.000	17.71	21. 16	16,287	13,854	661	678	236.48	73.5	5+94	92.0

						TARI	LE I - coat	d. 						
Sam- ple No.	Acft No	Fli No.	Time (min)	Grot. W: (lb)	Torque (pct)			roducer PM Z	Te	ust Gas imp F)	Main Rotor RPM	Air- speed (kn)	Den- sity Alt (ft)	Out- eide Air Temp (°F)
74	708	43ь	17.5	24, 6:-0	17,71 23	. 37	16,287	13.854	679	674	236, 48	67.7	3861	85, 43
74	1	43B	16 0	24.867	32 34 10		17,540		780	696	232, 50	30. 7	340#	84, 57
74		43B	18. 3	24, 509	60,00 62	09	14, 349	15,695	870	864	232 50	20. 1	3074	83.71
75	- !	43B	50 9	24, 900	22 33 19	99	16,426	13,613	701	674	232, 50	62. 1	3308	82.00
75	- 1	43B	51 4	24. Qr	73 15 59		19,488		854	842	226.54	21.2	2968	8Z. GO
75		13B	52 0	24 909	b6.22 54	. 05	19.071	15, 375	903	853	227.53	0 0	2804	80.29
76	1	43B	125 1	21.6 "	16,46 16	. 25	16,008	13,533	723	674	234, 49	55. 3	3250	8Z, 00
76	i	43B	128.9	24, 800	75.46 61	. 36	19,628	15,535	427	875	232,50	0. 0	2649	76.86
76	İ	43B	129 3	24, 500	65.45 60	. 63	19,488	15,615	916	875	233, 50	0.0	2649	76.86
77	- 1	43B	268. 1	23,000	21.56 31	. 41	17,400	14,414	745	696	235, 18	117.2	3203	76.86
77	-	43B	268. 7	23,000	80.85 60		20,045		905	864	230, 52		2743	76.00
77	-	43B	2t9 7	23,000	29, 26 26	. 49	17,957	14.654	758	707	235, 48	0.0	2725	7.71
78	1	43B	321. 3	23,500	21.56 21	. 91	16,704	13, 934	668	685	235, 48	8 9. 2	4621	78.57
78	ı	43B	321. 8	23,500	43, 89 24		15,096		905	718	230.52	9. 1	4381	79.43
78		43B	322, 2	23,500	15.40 16		15,869		679	£74	233, 50	0.0	4292	76.57
79	-	49B	21. 9	25,500	17 71 19	. 72	16,704	13, 373	675	66Z	235, 48	88.7	3111	75.00
79	- 1	49B	22. 4	25.500	23, 67 10		15,981		712	662	234, 49		2685	75.00
79	- 1	49B	22. 8	25,400	26.95 1:	. 88	17,261	17,813	757	673	233, 50	28. 1	2415	75, 03
79		49B	23.2	25.400	40,04 37	. 98	18,514	14, 514	903	684	234, 49		2240	75.00
60	- 1	49B	59.0	22.700	20.02 27		15.843		706	662	?35, 48		3914	75.00
80	- 1	49B	59 8	22,600		. 30	16.426		746	651	229.52		2779	75.00
80 80	- {	49B 49B	60, 3 61, 1	22,600 22,600	24.64 7 46.91 23	. 30	17,261 18,514		735 869	673 706	231, 51 228, 53	0. 0	2124 1375	75, 00 75, 00
80 80		49B	61.6	22,600	43.69 37		18,0%		926	695	232, 50	0.0	1261	75.00
81	- 1	49B	87 9	22, 900	15,40 21		16,426	: 2 5 3 3	689	662	235, 48		4254	75.00
81	1	49B	88. 4	22. 700	23.10			12.092	802	651	228, 53		3600	75.00
81		49B	89. 0	22, 900	18.48 15		16.565		768	662	236, 48		3325	75.00
82	Ì	49B	109. 0	25,500	20.02 2	. 18	16,565	13.613	745	673	235, 48	52. 2	2897	75.00
62	ĺ	49B	109. 4	25,500		. 03	17.122		745	662	233.50		2474	75.00
82	- [49B	110.1	25, 400	18.48		16,565		723	651	231, 51		1524	75.00
62	-	49B	110 5	25, - 00	44.66 42	2. 36	18, 375	14,654	914	762	233.50	0.0	1239	75.00
83		49B	124.5	23, 300	16 94 16	. 60	16,565	13,293	723	662	236, 48	57.7	2779	75.00
83	I	49B	125. 3	23, 300		. 46		11,932	723	í	235, 48	39. 4	1846	75.00
83		49B	125 8	23, 300	38.50 25	. 49	18,236	14,094	881	695	235. 48	21.3	1558	75, 09
54		£7B	7,8	22,500	16 94 20			13,533	713	763	234. 49		3112	73.51
64	ı	57B	8.2	22,600	27.72 13			11,932	803	774	226.54		2.21	73.51
84	- 1	67B	6. 4	22,500	22. 33 33	. 14	15,451	14, 094	702	774	233, 50	0.0	2609	72.67
85	1	87B	9 5	22,500	28, 49 39			14,094	721	763	235, 48		3172	73.51
85	- 1	87B	9. 9	22,400	13 02 11			12.492	713	730	229 52		2875	73.51
85	İ	87B	10 4	22, 406	35 42 49	27	16.008	19,3/4	124	807	231, 51	Z. I	2633	72.67
86		89B	46,6	21,200	16.94 2			13,293	716	722	228.53		2428	53.79
30	ı	89B	48.0	21,200	12, 32			10,650	765	677	229.52		753	51.24
86 86	- 1	89B 89B	48. 4 49. 1	21,200 21,100	16 17 (35, 42 3			10,731 14,174	750 806	732 767	229, 52 30, 52		753 -507	51.24 46.29
	j	פרט	₹7. 1	21, 100	JJ. 76 3'	. ,,	10,303	17,177	300		JU. 72	0.0	-301	 -
87	1	89B	161.2	21, 100	23. 87 3			14,014	705	722	232.50		2069	52. 9
87	1	89B	162.0	21, 100	13.86 13			12.092	705	688	239. 52		1330	52. 17
87 57		89B 89B	162. 9 103. 7	21,600 21,000	20 02 15 35,42 46			12, 172 14, 334	716 806	722 789	229. 52 233. 50		272 -261	51.24 51.24
	1													
88	I	90B	55. s 55. 6	22,600 22,500	24.64 3			13,693	702	719	231.51 226.54		3071 2.45	67.5 64.1
88		90B			24.64		15, 312		735	685				

						TAB	LE I - coa	td .						
Sers. ple No.	Acft No.	Fit No.	Time (min)	Grees Wt (lb)		rque sct) Z		roducer PM	T	east Gas imp "F)	Main Rotor RPM	Air- speed (km)	Den- sity Alt (ft)	Out- side Air Terrp (°F)
89	906	913	33. ●	28, 300	15.40		14,616	12,813	714	697	231.51	74. 5	748Z	77.86
87	- 1	91B	34, 1	28, 200	20.02			11,852	725	697	229.52		2490	76.19
89 89	ı	91B 91B	34. 9	28, 209	20.02	-		11,692	736	709	227.53		1626	75.35
-7	ł	710	35. ●	28, 200	23. 10	13. 15	14,755	11,652	748	709	226,54	23. 2	1473	76.19
90	į	91B	71.8	22, 300	23.87			13,533		709	212.50		5848	856
**	- 1	913	73. 3	22,200	9. 24	5. 84		11,531		675	230.52		3260	77.02
96 96	- 1	91B 91B	73, 9 74, 4	22, 200 22, 100	10.01 20.02	1. 46 8. 03		10.650		675 686	728, 53 229, 52		1954 1310	74,51 74,51
~	- 1	***		20,100	24. 42	4 . 4 ,	14.133	**.			CC 7. JC	**.	.,	
91	i	91B	154. 1	21,600	23,87	29. 94	15,451	13,613	714	720	230.52	66.5	2713	74 51
91	1	•1B	155. 1	21,600		6.57	14, 55	11.451	714	686	229.52		899	69, 49
9 1	ı	713	155. 8	21,600	35.42	42, 36	16,287	14,094	793	775	234.49	o. o	529	67.81
92		د 91	210. G	22,406	20.02	35.70	14 005	13,293	725	720	230,52	31 9	2077	67.81
74 4 2	ı		210. 8	22,400 22,400	15.40	8. 03		11,692		697	229.52		1533	66.98
92	1		211.4	22, 300	17.71	8.77		12.572	725	764	228.53		557	62.79
	1			-	_									
93	- 1	913	238.5	21,600	23 67			13,213	725	709	231.51		1626	66.98
93	ł		229. 3	21,600	20.02	9. 50		11,531	725	657 700	228.53		1077	65.30
73	1	91B	230. 2	21,600	20. OZ	13. 55	19,575	12,492	736	709	230.52	77. 0	164	60.28
94	I	91B	230. 8	21,200	16. 17	23, 37	14.755	13,053	714	697	231.51	77.3	3051	73, 67
94	ſ		239.7	21,200		14,61		12,492	714		22A.53		2021	71, 16
94	ı	-	240.7	21, 100		9. 50		1:,531	826	657	227.53		654	67.61
96	I	713	241. 2	21,100	34.65	38 71	15,869	13.293	793	175	229 52	4. 1	305	66. 98
95	1	923	19. 4	22,500	17 71	24. 10	14.755	11, 131	701	685	230, 52	53. 2	2109	62, 23
77 7 5	1	72.B	20, 3	22,500		10.23		11,692		485	227.53		830	29.74
95	ı	928	21.4	22,500	40. 21			14,094		752	229.52		-351	53.02
	- 1									4.55	*** **		****	4
% %	- 1	92B 92B	68, 0 68, 5	21, 100 21, 100	20.02 16.17	23. 37 8. 03		13,213	701 690	685 663	233.50 230.52		2342 1728	61, 40 60, 56
77 %	1	923	69. 0	21, 100		8. 03		11, 451	731	674	230.52		1039	59.72
Ñ.	1	923	69.6	21, 100		11.69		12.012	712	707	228.53		260	57.21
%	1	92B	70.6	21, 100		33.60		13,693	746	741	230,52	0.0	-467	52.19
	- 1				10 40	**	14 444	11 614	~	227	236 44	102 4	244	45 44
97 97	- 1	94B 64B	32. 7 33. 2	21,800 21,800		38.71 17.53		13, 934 12, 492	715 69 8	737 726	239.46 231.51		-245 -273	45, 84 48, 35
97	ı	143	33. 2	21,800		40. 90		14, 174	792	748	232.50		-491	47.51
	1			,	•		,							
98	į	MB	55. 9	20, 900		29. 94		13,293	658	704	233.50		~ 56	50.02
54	1	94B	56.3	20, 900		15, 34		12, 332	698	693	231.51		~195	50.02
96	- 1	943	56. 9	20, 900	24.64	32. 14	16, 147	13, 854	686	682	234.49	21. 3	-460	50.02
79	1	960	66.0	20,5čú	24.64	22.64	14.495	13,053	586	671	231.51	86. 1	704	50, 02
**	ĺ	148	66.6	20,590		10.27		11,772		671	231.51	52. 2	305	50.02
17	- 1	MB	66.8	20,500	24,64	22.64	14,755	12,973	636	471	231.51	50, 3	223	50.02
06	- 1	94B	97. 1	26, 300	17.71	21 61	14 336	12, 973	698	682	232.50	• • •		
90	i	MB	97.6	26, 300		23 37			749			83, 8 24, 3	-510 -856	44. 16 43. 33
00	1	94B	57. 9	26, 300		36. 52		13.693		748	229.52		-856	43, 33
	1									•	-			
01	1	953	95. 2	30, 300		34. 33		14,094	673	712	234.49		-691	46.19
01 01		95B 95B	95.4	30 300	27.72			12.572	706	734	225.55		-801	47.86
~.	- 1	77.0	% . 0	30, 100	31.38	44. 54	. 0, 147	14. ,34	673	757	231.51	41, Z	-779	48.70
02	- 1	953	145. 2	30, 400	23.87	24 63	14,635	13, 293	718	723	233.50	86.1	851	52.05
02		953	145. 8	30,400	50.82	40 90		11,932	729	712	232.50		282	50. 37
32		95B	146.6	30, 400	25.41		15,034	12, 973	751	734	232 50	54, 9	-140	52. 05
62	į.	95B	147.2	30, 300	29. 26			.2. 492	740	734	229.52		-610	51.21
loz	Ţ	95 B	147. 9	30, 300	18.48	Z3. 37	14,755	12.572	706	712	233.50	27. 1	-838	51.21

						TAB	LEI-com	id.						
Sam- ple No.	Acft No.	Fit No.	Time	Gross Wt (lb)	Tord (po	•		roducer PM	r	ust Gas	Main Potor SPM	Air-	Den- sity Alt	Out- eide Air Temp
				(,-,	<u> </u>					<u> </u>	ЛРМ	(ka)	(ft)	(°F)
103	908	95 B	157. 1	30,700	16 17	21 01	14, 338	12.062	706	714	234 49	96.2	648	49.53
103	102	95B	157 8	30,700		5.84	13,751		740	576	226.54		-306	47.86
103	ı	95B	156 5	30,600	41 58		16,008		773	656	230, 52		-1269	44,51
104	- 1	95B	194.4	21,200	19 25	22 64	14,616	12.893	684	oś¢	233.50	82, 3	-175	46, 19
104	- 1	95B	: 35.0	21, 100	35 42	9, 50	14,755		773	712	222.57		-1062	42.84
104	I	95B	195.4	21, 100	40.04	42 36	15,869	14,094	765	757	232 50	25.0	-1442	41, 16
105	- 1	95B	208. 9	27,900	26, 15	27 03	15.312	13 453	645	*23	237, 47	70 4	209	47,02
105	- 1	9525	209.5	27,960	24 64	9. >.	14,755		729	701	232.50		-993	42.84
105	- 1	95B	210 2	27, 200	47.74		16,704		854	601	232.50		-1555	42,00
	1	. –			-			•						
106	ı	95 B	212.4	20, 300	26 18		15, 173		664	701	236 48		132	45, 35
106	1	958	213.2	20, 300		7, 30	14,616		695	678	231.51	48. 1	-1120	42, 00
106	1	75B	213 6	20, 306	31 57	26. 30	15,312	13,293	705	712	232.50	25.0	-1407	41.16
107	ı	9£ B	28. 1	26,500	24.64	22 64	14 725	12 122	690	695	216 40	77.4		47 60
107	i	96B	28.1	26,500	24.04		14,735	13, 133	735	707	235.48 232.50		0 - 68 3	47.05
107	i	%B	29. 1	26,500	44.66			14.094	768	74%	232,50		-1325	42.86
•	ı			,				, - , - , -				-		
108	- 1	46B	39.6	21,600	16. 94	21. 91	14, 199	12,652	701	707	232.50	õ1. 2	98	45, 37
108	- 1	% B	40 0	21,600	21.56		14,616		679	685	231.51		-668	42. 86
108		96B	40 6	21,500	52. 36			12,412	848	762	222.57		- 1405	41.19
108	- 1	%B	40.7	21,500	47 74	44. 56	16,287	14, 174	804	751	231.51	25 2	-1498	40. 35
109		96B	98.7	30,560	24.64	75 67	16 212	13,373	690	707	234 42		-403	44.53
109		76B	99.1	30,500		4 38	14, 895		712	718	236, 48		- 10 3 - 99 2	42, 36
109	- 1	96B	99.6	30, 500	20.02		14,755		701	7%	234.49		-1291	42,02
	ļ		,,,,	,			,		. • •			-5	/-	
110		96B	110. Z	22, 100	16. 94	15, 34	14,477	12,733	679	662	233.50	82, 3	-343	43.70
110	- 1	%3	110.7	22, 100		7.30	14,616		712	796	228.53		-992	42.86
110	1	96B	111.3	22,000	38. 50	35 06	16,908	13,934	735	729	232, 50	25.0	-1314	42.02
111		968	114. 3	21,900	16. 74	18. 99	14.616	13,213	665	673	236.48	82. 1	-16	44, 53
111	j	96B	114.7	21,900		7. 30		11,611	690	796	232, 50		-669	43,70
111	i	96 B	115. 3	21,900	43.89			13, 133	768	740	231 51	27. 2	-1119	42.86
	1													
112	- 1	96B	125. 0	21,500	19. 25			13,052	690	796	233.50		131	46.21
112	- 1	96B	125.8	21,590	20.79			11,692	679	673	230.52		-912	43,70
112	- 1	%B	126. 3	21, 500	40.04	38. 71	16, 147	14,094	746	?29	232.50	Z7. Z	-1257	42.02
113	1	983	6. 5	23,400	16. 94	17 53	14, 395	13,533	728	712	233.50	52. 3	3541	81.55
113	i	98B	7.5	23,400	28.49			13,213	739	767	229.52		3120	79.91
113	- 1	983	7.9	23,400	40.04			14,414	507	756	231.51	0.0	2788	76.64
	1													
114	l	OZC	79. 8	28,600	37.73		16, 147	14,414	730	756	234, 49		1182	75.00
114	ł	02C	80, 2	28,600	19.48			13,613	739	734	233, 50		2165	74.18
114 114	- 1	02C 02ご	80.5	28,600	35 42 26, 18			13,293	750 866	77 8 767	230.52		898 894	75, 00 75, 82
	- 1	٥٤٥	80.7	28,600	40. 15	£6, 09	17, 575	13,293	600	101	229 52	30, U	674	. J. 44
115	ı	02C	182. 2	19,700	24.64	23. 37	15.173	13,373	728	712	233, 50	87.3	1312	74, 18
115	1	OZC	182.6	19,700	26.18		15.312	12,652	725	723	232.50		1021	73. 37
115	1	02C	183.0	19,700	32, 34	16.26	15,591	12, 973	739	745	210.52		742	72.55
115	- 1	02C	183.6	19,760	36. 5C	32. 87	10,257	14,014	750	767	2.2.50	50.2	577	71.73
16	1	03C	23.6	22,200	19. 25	21 17	15 501	14 614	224	732	226 45	10	4045	
116	1	030	24. 4	22,200	24.64	7. 30	15,591 15,451		724 735	737 71 :	236, 48 230 52		4449 3110	84, 09 81, 64
116	1	03C	24. 9	27,200	12.55	6 57	16,287		746	-5	235. 48		3142	80. 82
	ì													
17	}	03C	75.6	22,500	16.96	21. 18	15, 312		735	730	234.49	107.1	3091	80.00
17	- 1	03C	75. 8	22,800		9.50	14.895		746	71,	232.50	91. 1	2097	79.18
17	- 1	03C	76 3	22,700	28, 49		15,591		735	741	233.50		1400	77.55
17	ı	03C	76.5 76.7	22,700 22,700	24.64		15, 173		735	730	233.50		1377	77.55
17	1	93C	77.0	22,700	25. 41 33. 88	8.77 30.65	15, 312 15, 730		724 746	730 763	231.51		1200	76.73
		-30		, , , ,	· · · · · · · ·	-4. 70	.,,,,,	. 7, 4.4	. —	103	232.50	77. 1	1064	76.73

TABLE 1 - ccatd.

Sam- p.e No.	Acft No.	Fit No.	Time (mm)	Gross Wt (lb)	forque (pct)		roducer PM Z		uet Gas emp F)	Main Rotor RPM	Air- speed (kn)	Den- sity Alt (ft)	Out- oide Air Temp (°F)
118	908	03C	105.4	27,700	33, 87 21, 18	15,034		735	741	232 50	57, 3	1343	77.55
118	- 1	03C	165.6	27.600	27.72 14.61	15, 312		746	752	226.53	46 1	1173	77.55
118		0;C	105. 9	27,600	28 44 29.21	15,451	13,774	746	752	231.51	39 9	974	76.73
119	1	03C	136.2	22, 300	20.02 23 37	14,895		735	716	234.49		3638	80.82
119		03C	136.7	22, 300	17.71 8.77	14, '38		724	70-		90.0	2699	79.18
119		03C	137,2	22, 300	19.25 9.50	14.616	11,692	735	697	230.52		2076	77.55 73.45
119 119	į	03C	137.7 138.1	22,300 22,200	17 71 7 30 32, 34 30 68	14,338 15,730	11,532	724 746	697 76 1	232, 50 232, 50	72 3 47.3	1061 624	72.64
114		v.C	138. 1	22,200	32. 34 30 00	15,730	13,074	,40	16	232.30	**. ,	024	,
120	- 1	03C	197.2	22, 300	16.94 21,91	14,477	15,373	702	708	233 50	96 8	3980	80.82
120	- 1	03C	197.6	22,300	19.25 7.30		12,012	711	697	231.51	87.6	3528	80.00
120	-	03C	198.5	22, 300	26, 95 14, 61		12,572	724	752	230.52	80, 5	1910	73.45
120		03C	199. 4	22,200	44.66 50.40	16,426	14,494	813	774	232.50	30.6	466	70. 18
121		03C	258. 3	22,300	31 57 34.33		14,014	724	741	232.50		3605	78. 36
121	1	03C	258. 9	22, 300	29.26 9.50		12,252	713	741	230.52	80.2	2528	77.55
121		03C	259. Z	22.300	20.79 11.69		12,012	724	719	230.52	79.5	1610	73.45
121		03C	260.5	22, 200	22. 33 29 21	16, 147	13,854	746	763	231.51	30.6	561	69. 36
122		03C	308. 9	22,700	34.65 34.35		14,414	713	697	236.48		7960	93.09
122		03C	309.6	22,700	23.10 8.77	15,312	12,492	702	686	232.50		663C	93.09
122	- 1	03C	310. 1	22,700	26. 95 24, 83	16,287	14,014	713	666	233.50	103. 2	6014	89.82
123	- 1	04C	25. 9	23,900	21.56 22 64	15, 173	13,613	732	738	234.49	84. 1	2585	88.00
123		04C	26.4	23, 900	28.49 17.53	15.869	13,213	732	771	232.50	49 1	1967	85.55
123		∂4C	26.8	23,900	28.49 29.21	15.730	13,934	754	760	232 50	39. 4	1684	83. 91
124	1	05C	92.0	21,800	20.79 23.37	14,895	13,533	714	720	233.50	83 \$	3287	90. 22
124	1	95C	92. 4	21,800	23, 10 13, 15		12,733	725	731	230.52	72. 1	2623	59.18
124	ı	05C	92.7	21,800	24.64 17.53		12,813	725	742	230.52		2310	88. 36
124		05C	93. 2	21,700	74.64 37.25	15,312	14,414	714	753	231.51	33, 4	1966	87.55
125		08C	29. 0	22,000	21.56 18 99		13,293	748	709	235, 48	62. 3	2553	82.43
125	- 1	0&C	29. 3	22,000	26.18 9.50		12, 172	7 37	731	233.50	30. 5	1976	81.65
125	j	08C	29.6	22,000	31 57 29.21	15,591	13,854	748	753	231.49	17.7	1842	82. 43
126	İ	08C	58. 9	29,000	3.47 18.99	14,616	13,453	715	720	234.49	80. 5	3106	79. 30
126		08C	:9.2	29,000	13.09 4.38		11,371	726	698	232, 50	5b. 9	2460	76.96
126	ł	08C	60.0	29.000	45, 43 44, 56	16,426	14,895	782	786	234.49	0.0	1278	73.83
127	1	08C	68. 2	21, 900	17.71 18.99	14,616	13,373	715	709	234.49	78.6	2774	77.74
127	1	08C	68.6	21,900	10.01 0.00		11,291	726	687	232 50	57.7	2056	/5. 39
127		08C	69. 2	21.900	36.19 32.14	16,147	14, 334	715	764	234.49	0.0	1171	73.04
128	1	08C	107.4	22.400	15.40 17.53	14, 199	13, 373	715	698	235.48	74. 3	1873	73, 04
128	1	08C	107.9	22,400	18.48 8.03		12,012	7 37	709	232 50	20.5	1135	68. 35
128	-	08C	108.3	22,400	23. 10 25 57		13,934	7 37	753	238 46	G. 0	821	67.57
129	1	090	32.5	26, 900	15 40 16 07	14,477	13,213	705	699	239.46	96 1	1554	69. 30
129	ļ	09C	32. 9	26,900	30.03 10.23		12,492	749	721	233.50	22.7	1269	70 09
129	- 1	09C	33. 3	26,800	33.88 14.61	16,008	13,934	738	754	233.50	44. 2	1063	70.09
129	1	09C	33.7	26,800	33.88 27.76	16,008	1 934	760	743	235.48	4 1	983	70 09
130		09C	51.5	22,600	16 17 16.60	14,059	13,293	705	699	235,48	77.2	146.	69. 30
130	- 1	090	51.8	22,600	19. 25 8. 77		12, 172	772	710	233.50	53.1	1169	68.52
130	1	09C	52. 1	22,500	32.34 29 94		13,854	727	754	234.49		962	68.52
131	1	09C	159.5	21,600	23 57 26 30	15,034	13,774	727	721	236.48		1058	63 04
131	1	09C	160.0	21,500	23 10 5 11	14,755	11.692	760	732	229 52		477	62 26
131	•	09C	160.5	21,500	49. 28 44 56	16.565	15,055	783	760	238.46	0.0	197	59.91

						TAB	LEI-con	tđ.						
Sam- ple No	Acf: No	Flt No.	Time (min,	Gross W; (lb)		que :t)		roducer PM	T	ust Gas emp (F)	Main Rotor RPM	Air- speed (km)	Den- sity Alt (ft)	Out- side Air Temp (°F)
132	908	096	220. 4	19, 300	19. 25	21 18	14,755	13,693	705	699	234, 49	91. 9	1665	63.04
132	1	09C	220, 8	19, 300	19. 25	6.57	14,616	12,012	716	688	232.50	65. 3	677	59. 91
132	- 1	09C	221, 2	19, 300	20.79	22, 64	14,895	13,854	716	710	237.47	53. 1	370	58.35
133	1	0°C	282 9	22, 100	20.79	17.53	14,895	12,973	727	688	235. 48	90, 2	926	58. 35
133	i	09C	283 3	22,100	29. 26	8 03	15,312	12, 172	749	743	232.50		508	58. 35
133	- 1	09C	283.8	22,000	30 03	24. 10	15,730	13,774	738	754	235.48	30.5	197	56.78
34		10C	232 0	22,5.0	3, 08	0 00	11,971	10,891	755	727	245.42	87.2	3436	66.43
134	- 1	10C	233.5	22,500	23,87	4. 38	14.755	11,451	800	738	229.52	96, 1	2585	71.91
134	- 1	10C	234. 4	22,500	34,65	30.68	16.008	14,574	744	749	235. 48	108. 3	1191	71.91
135	- 1	110	59.4	20, 300	30 03	27.76	15, 173	13,774	785	734	235.48	65, 5	1027	64.00
135	- 1	110	59.6	20,900	35, 42	18. 99	15, 451	13,453	829	756	229.52	63.2	854	64. 90
35	ł	110	60.0	20.900	26.18	22.64	15,034	13,693	785	723	235.48	52.4	542	63, 22
136	- 1	12C	50. 2	24, 900	20, 02	11.69	14,755	12,172	711	661	232.50	72.2	2966	63, 73
136	- 1	12C	50.7	24, 900	12, 32	0.00		10,891	706	661	231.51	62.7	1994	62.65
136		12C	51.0	24, 900	16, 17	0.73		10, 971	706	672	229. 52		1120	59.52
36		12C	51.5	24, 800	27.72	22. 64	15,173	13,693	634	750	234.49	34. 3	431	57. 17
37		IZC	97.4	24,700	24.64	22.64	15,451	13,854	700	705	235. 48	92.6	3440	62.65
137	1	12C	97.9	24,600	23, 87			12.252	634	716	227.53		2613	61.87
137	- 1	12C	98.4	24,600	45, 43	44. 56	16,565	15,215	623	772	234. 49	18. 1	2185	59.52
38		18C	96.2	24,000	40.04	31.41	16,287	14, 494	765	793	235. 48	75.6	3803	91.45
136	- 1	18C	96.7	24,000	21,56	9. 50		12,813	765	759	234. 49		3288	90.64
138	- 1	18C	97.6	23, 900	20.02	27.76	15,451	13,854	798	793	234. 49	18.6	2065	83. 27
139		18C	222.0	22,600	19.25	28.49	16,008	14,414	754	826	241.44	67. 2	5801	96. 82
139	ı	18C	222. 9	22,600	17.71	5. 11		12,092	743	737	236.48		4119	95.55
139	- 1	18C	223.6	22,600	39, 27	37. 25	16,426	14,494	820	804	234. 49	c. ^	2910	91.45
140		18C	230.3	22, 300	20.02	25. 57	15, 173	13,613	743	748	235. 48	96.7	4087	93.09
140	- 1	18C	231.2	22,200		0.00		11,131	798	726	228.53		2243	88. 18
140	- 1	18C	231.6	22,200	48, 51	37. 25	17,679	14,494	900	\$15	233. 50	6. 0	1964	84. 91
41	ı	18C	247.6	21,500	26, 95	27.03	15,451	13,774	743	759	234.49	96.2	3103	88.18
141	- 1	18C	246, 3	21,500		0.00		11,451	75+	770	227.53	44. 2	2169	87.36
141	•	18C	248.6	21,500	37.73	37. 25	16,565	14, 494	787	792	233.50	13.2	1964	84. 91
42	914	10B	2. 0	22,800	22.20	26. 00	13,956	13,322	683	731	234. 17	79.9	6276	78.43
142	1	103	3. 3	22,800	24 30	8. 40		11,226	683	753		35.6	6253	75.80
42	ĺ	10B	3. 9	22,700	37, 40	41. 30	15,339	14,294	758	800	231.81	13. 1	5739	75.00
43		10B	21.8	24,700	29.10		13.830		683	731	234. 17		6979	86, 14
43	j	10B	22. 2	24,700	69 30	0.00	15,339	6,736	893	777	222. 35		7554	87.86
43	- 1	10B 10B	25. Z 25. 9	24,600 24,600	69, 30 28, 40	0, 00 35, 20	14,082 13,705	8,382 13,546	882 672	903 720	229. 44 232. 99	77.3 80.6	7062 6 98 2	88.71 87.86
43	1	100	63 7	24,000	20. 10	37. 20	15,105	15,540	012	. 25	CJ6. 77	₩. •	- 762	
44		11B	0.0	27,300		22.20		13, 172	644	763	237.72	0.0	5467	73 00
44	1	11B 11B	0. 4 0. 9	27.300 27.300	36.00 43.70			15,118 13,995	767 756	878 798	234. 17 230. 81		5685 3235	73.86 74.71
***		***	0.7	21,300	77,70	40. QU	. ,, 103	43,773	, 30	170	£30.81	44. I	<i>3</i> 633	14.71
145	1	16B	42.5	21.700	22, 18		13,202			730	225. 90		5448	96.56
145	1	16B	42.6	21,700	29.11			11,301	694	742	223.53	0.0	5398	97.72
45		16B	42. 9	21,700	29. 11	10.05	14, 082	12, 349	719	788	232. 99	0.0	5325	%. 38
46		16B	63.3	20,600	15.94		14,208		694	715	232. 99		6383	99.40
46	1	16B	64. 1	20,600		30. 58		13,471		754	232. •9		5724	97.72
146 146	1	16B	64. 7 65. 3	20,600 20,500	45.71 15.25			10, 103 13, 322		754 766	218.80 228.26		5421 5296	%. 88 94. 37
. 40		16B	03, 3	20, 300	. 5. 23	JV. 30	10,023	,	U 74	, 55	-L-3. LO	9.7	J470	74. Jf

						TABI	LE I - conf	d.						
Seen- ple No.	Acft No.	Fit No.	Time (min)	Gross Wt (lb)		que :t) Z		roducer PM	T	ust Gas emp F)	Main Rotor RPM	Air- speed (kn)	Den- sity Alt (ft)	Out- side Air Temp (°F)
		173	33, 9	72,800	24. 95	10 50	13, 956	12 798	675	715	229.44	19.6	4760	82, 84
147 147	914	173	34.7	22, 800		6.88	14, 082		700	761	221.16	54. 9	3878	82.99
47	ì	173	36. 3	22,700		48, 16	14,711		8:2	807	229.44	11. Z	3268	81, 16
	ı								700	***	333 00	95.3	4755	81, 16
148	- 1	173 173	51.8 53,6	22, 100 22, 000	36.04	50. 52 48. 16	14.208 14.082		700 725	72 6 77 2	232. 99 224. 71	3.5	2886	76. 14
146 146	- 1	17B	53. 8	22,000		51.99	14,585		812	839	227.08	9 7	2852	74 47
				•										
149	- 1	17B	66.5	21,500	-	42. 05		13,845	712	750	230.63 221.16		4131 3302	79.49 78.65
149	- [17B -	67.6 68.3	21,500 21,500		14. 53 45. 11		11,900 14,145	700 775	750 7 %	228.26	19. Z	2879	76. 98
149	- 1	112	46. 3	21, 500	40. 20	•>. ••				. ,				
150	- 1	172	78.5	26,100		41, 28		13, 920	712	738	232. 99	34. 2	4027	77.81
150	ı	173	79.6	26, 100		9. 17		11,301	675	715	222. 35	50, 2 3 5	3421 2751	78, 63 75, 30
150	1	178	80. 5	26,000	39. 71	32. 23	14, 333	13, 845	737	761	232 99	37	4171	. 5. 30
151	I	17B	90.4	25,600	38.81	43. 58	14,208	13, 920	737	772	231.81	34, 2	7741	78,65
151	I	178	91.5	25,600		20, 64		12, 349	725	722	222. 35	9.7	2957	76. 14
151	1	17B	92.0	25,600	25.64	23.70	13,328	12,972	675	715	232. 9 9	9.7	2611	71.95
152	- 1	178	104, 1	20, 100	47 61	63, 45	16 212	14.968	889	845	222.00	44.3	3105	71, 12
152 152		173	105.2	20, 100		44. 34		14, 294	877	807	232.99 232.99	77 2	4505	75. 30
152	ì	173	105.5	20,100	-	50. 52		13,995	775	761	232. 99	_	4635	77.81
	- 1													
153 153		17B 17B	106.5 107.5	20, 000 20, 000		32, 11 9, 54	14,208 13,956	13,471 11,301	700	715 738	232. 99 225. 90		4655	80.33 77,81
153		173	100.5	20,000		7. 70 48, 16	15,088	14, 369	712 825	735 518	234. 17	99. 1 0. 0	3179 2234	70.20
	1			-			-							
154 154	- 1	183	33. 6 34. 4	21,600 21,600		38. 23 17. 58		13. 6% 12,049	724 774	735 792	231.81		406 8 3296	79, 84 78, 16
154	- 1	163	35. 1	21,600		48, 16		14, 220		815	232.99	-	3033	75.65
	1													
155	j	183	35. 8	24, 106		51, 22		14,294	761	835	230.63	0.0	293d 3044	75. 65
155 155	- 1	18 D 18 D	36, 2 37, 0	24,000 24,000		74, 16 58, 87		15,118 14,594	935 861	894 349	230.63 234.17		3869	78, 16
	- 1			24,000	****	20.0								
156	- 1	183	83. 9	21,800		3°.75		13,920	737	872	234. 17		4644	74,81
156	- 1	18B	83. 8 84. 4	24,700 24,700		48. 16 23, 70		11.825 12.872	699 674	735 735	228.26 230.63		3403 2897	71, 47 68, 95
156	- 1	100	61. 1	24, 100	24.24	23.70	13,477	12,012	4/4	*33	230.03	•••. 1	2071	••. ,,
157	-	25B	32. 9	23, 900	35.35	38, 23		13,6%	712	746	231.81			186,77
157	- 1	258	34.5	23, 900		6. 12		10,852	662	712	224.71		6696	99.93
157 157	1	25B 25B	35. 1 35. 7	23, 900 23, 800		6, 88 32, 11		11,001 13,322	687 723	724 735	222, 35 225, 90	29. Z 0. 0	5962 5437	98, 24 94, 93
.71	1	475	23. 1	23,000	33. 79	J. 11	. J. 7J	.,, ,,,				•	-401	. •.
158	ı	25B	42, 1	25, 200		45, 87		14,294	324	815	232.99		5030	90.72
150	1	253	42,7	25, 200		71. 10		15.118	923	376	234. 17 234. 17		5103	90.72
158	- 1	25B	44. 5	25, 100	>#. 14	55. 81	17.213	14,667	176	850	234.17	13.7	6084	98. 26
159	ı	253	142, 7	23, 900	42. 97	48. 16	14,711	14.294	799	815	234. 17	37.9	3965	92.40
159		259	143, 3	23, 900		21.40		13,995		78C	234. 17		4412	95.74
159	1	253	144. 0	23,800	29. 11	31. 34	14,208	13.62i	723	735	235. 36	79. 9	454u	94. 91
160	1	27B	16, 1	22, 300	35. 35	50. 52	14.834	14, 145	777	782	234, 17	77. 3	5210	66.21
160	I	273	16.5	22, 300		18. 35	13,956	13,471			234, 17	79.8	5505	
160	l	273		22, 300		8, 41		13,546		701	234.17		5454	68,72
160	ı	27 B	18.7	22, 200	33.27	38, 99	14, 333	13, 845	715	757	234. 17	94. 2	5531	67, 81
161	ı	273	20, 1	22, 20G	35. 35	50, 52	14.459	13, 920	752	770	234, 17	112.1	5479	67.05
161	l	273		22, 100	32.58	11.47	14,200	13,546		689	232. 49	98. 9	5352	67,05
161	ł	273	21.6	22, 100	36 . 64	32, 87	14,082	13,546	703	701	234. 17	103.0	5135	67.80
142	I	37B	21. 9	23, 600	34 84	50. 52	14 440	14, 145	74.0	996	234. 17	0.0	833	60,69
162 162	1	37 B		23, \$00			15, 445					107.5		68.11
162	Ŧ	373		22, 800	54. 06		15, 339					111.2		76,50

Sam-	Acft	Fit	Time	Gross Wt	Torque		roducer PM		met Gas	Main	Air-	Den-	Out- side Air
No.	No.	No.	(mia)	(ip)	(pct)		PM	T	}}_	Rotor PつM	speed (kn)	Alt (ft)	Temp (*F)
			(· •					(84)	μι,	(-7)
163	914	37 B	33, 9	21,700	29. 11 32,	87 14, 208	13.696	672	9:5	234, 17	108.6	7479	79.07
163	1	37 B	34, ?	21,700	15. 25 0.	76 12,825	10,403	623	904	231, 81	95. 0	3616	76.56
163	- 1	37 B	35.7	21,600	24.95 7.	65 13,202	12, 124	660	950	224 71	53. 3	3801	78. 23
163	- 1	37 B	36. 3	21,600	34.66 46.	63 14,208	14, 369	722	1068	234, 17	J. 0	2949	69. 02
164	- 1	37 B	53. 9	22, 300	31.88 39	75 14,459	14, 145	722	996	234, 17	99. 1	4265	73.21
164	- 1	37 B	54.6	22, 300	28.42 31.		13, 795	710	962	232, 99		4302	73.21
164	1	37 B	56.2	22,200	30.50 13.	•	13,920	710	950	232 99		4240	73.21
164	ļ	37B	57.3	22,200	31.88 33.		13,696	722	925	234, 17		4191	73.21
165	1	37 B	186.0	26, 100	36.04 42.	CS 14 711	14, 220	734	996	234 17	00 3	3827	70.70
165	- 1	37B	186.5	26,100	36. 04 42, 36. 12 17,		13, 920	710	950	234, 17		3027 3750	69.86
165	- 1	37 B	187.2	26,100	29. 11 37.			697	938	234, 17		3600	69.02
	- 1			J-,		, 477		-,.	,,,,	J		,,,,,	J 7. VE
166	1	38B	2. 3	22.900	27 72 32	11 13, 956	13.546	67?	689	234, 17	112. 1	2940	54.33
166	- 1	38B	3. 3	22. 9 00	19.41 6.		11, 151	64C	689	228.26	62. 1	2323	55. 16
165	İ	38B	3. 0	22,800	42. 97 25.	99 14,585	13,622	727	769	223.53	28. 9	2081	55. 16
167		38B	87. 8	24, 200	30 50 32.	87 14, 208	13.621	699	669	234, 17	119.5	3138	54, 33
167]	38B	88, 9	24, 200	24. 95 11.	47 13,830		652	689	229, 44		1736	52.65
167	- 1	35B	90.0	24,200	37.43 39.	75 14,459	13,920	739	746	228.26	16. 6	453	50. 14
106	i	35B	95. 4	23, 900	25, 42 31,	34 14.082	13,546	701	-89	234, 17	103.9	2554	53, 49
168	1	38B	96.3	23, 900	21.49 8.		11, 376	652	689	231, 81		1318	50.14
168	- 1	38B	97.0	23, 900	50.60 39.		13, 995	782	769	223.54		594	50.14
169	1	38B	125. 8	23, 360	20.10 25.	23 13 #30	13,247	652	689	232, 99	67.4	1958	51.81
169	- 1	34B	126. 8	23,200	27.03 9.		11,525	652	701	225.89		934	50. 96
169		38 B	127.5	23,200	37. 43 36.		13,621	727	70i	229.44		350	49.30
170	- 1	38B	132, 2	21.800	21.49 24.	44 13 453	12 022	564	701	331 41	100.3	2202	** **
170	- 1	38B	132.2	21.800	20.10 €,	•	13,022 11,301	652	10; 689	231.61 227.08		3257 1278	52. 65 50. 98
170	i	38B	134.4	21,800	45.74 28.		13, 172	176	769	222, 35		500	50. 14
	ł										-		•
171	- 1	38B	158.0	21.000	29.11 32.		13,621	677	677	234. 17		4237	56.84
171 171	- 1	38B 38B	159. 9 160. 6	21,000	26 34 10. 47.13 46.		11, 974 13, 9 9 5	664 764	701 746	225, 53 229, 44		223 8 1 88 7	53. 49 53. 49
•••		,eD	100.	4010	Tr. 63 40.	-> :4,3 6 3	43,773	:04	140	647. 44	JU. 4	195/	33. 47
172	- 1	38B	173.9	22.500	0.00 95.		15.866		1137	231.81	8. 9	301	50.14
172	- 1	35B	174. 3	22,500	0.00 105.		15, 866		1163	226.25	29.4	407	50. 14
172		34B	175.5	22.400	0.00 101.	.68 251	15,941	105	1160	223.53	81. 2	>5 6	47.63
173	-	38B	176.7	22.300	0.00 71.	:0 126	15, 118	80	1068	232. 99	73.2	1219	50. 96
173	ì	38B	177.5	22. 300	0.00 74.		15, 342	85	1037	232, 99	66. 3	1350	50. 98
173		3 8B	178.4	22, 300	0.00 74.	16 251	15,417	69	1079	231.81	68. 0	1477	51.81
174		34.B	187.2	21,900	0.90 74.	92 126	15.267	130	1057	231. 61	85. 9	3068	55. 16
174	- 1	38B	188.4	21, 900	0.00 75.		15, 342		1048	231, 81		3308	56.00
174	ŧ	38B	189. 5	21,900	0.00 76.	45 126	15.342	117	1079	231.61		3480	56.84

TABLE I - contd.												
Sam-	Acft	Flt	Time	Gross Wt	Torque (pct)		roducer PM	Exhaust Gas Tem; (°F)	Main Rotor	Air-	Den- sity Alt	Out- side Air Temp
No.	No.	No.	(min)	(16)	1 2	1	2	1 2	RPM	(kn)	(ft)	(°F)
175	914	38B	193.2	21,700	0.00 55.81		14,743	130 1034		78. 9	3693	58.51
175 175	ı	38B	194. 9	21,700	0.00 78.74		15,417	130 1092	228, 26	22.7	2973	57.67
. 12	- 1	38B	195.5	21,600	0.00 103 21	126	15, 941	142 1160	211.70	0.0	2826	57.67
176	- 1	38B	195.7	21,600	0,00 104,74	126	15,866	142 11c3	211.70	0.0	2657	56.00
176	Į.	38B	196.0	21,690	0.00 103.21	126	15,866	130 1183	211.70	0.0	2681	56.00
176	- 1	38B	196.6	31,600	0.00 65.77	377	15.716	130 1103	238. 91	0.0	2760	56.8
177	1	56B	1. 3	22, 100	26. 34 39. 75	13,830	13,771	828 755	235, 36	76.2	4172	86.43
177	- 1	56 B	1.8	22,000	9.70 2.29	12,196	11,451	817 8-1		31.2	3728	85.57
177		56 B	2. 3	22,000	32, 58 34, 40	14,082	13,771	825 755	232. 99	0.0	3622	85.57
178	ı	57B	70. 1	19,000	36.73 35.17	14,208	13,771	924 862	231, 81	102. 1	4992	80, 83
'78	1	57B	72.0	19,000	20.10 7.65	12,950	11,226	775 747	225.90	0. 0	3417	79, 16
178	i	47B	72.4	18, 900	36.73 45.87	14,082	14, 145	837 805	230.63	0.0	3138	80,00
179	ł	57 B	82. 2	21,700	58. 22 45, 87	14,585	14,070	887 794	229, 44	0.0	4713	81.67
179	į	57B	82.5	21,700	59.61 45.87	14,836	14,220	912 805	232, 99	93. 2	4519	81.67
179	- 1	57B	83. 2	21.700	48.52 49.69	14,836	14, 369	862 817	232. 99 1	101.8	5176	80,83
180	- 1	57B	122. 9	20,200	41.59 39.75	14,208	14,070	812 758	232. 99 1	109. 1	5648	81.67
:00	- 1	57B	123. 8	20, 100	30.50 12.23	12,825		775 747	221.16	0.0	4955	6C. 83
180	- 1	57B	124. 1	20, 100	29.80 29 05	13,830	13,471	801 747	231.81	0.9	4672	80.00
181	- 1	57B	125. 2	20, 100	40.89 36.70		14,070	850 794		78.2	5386	80.83
181	- 1	57B	125.6	20.100	20.10 6.88	12,950	11,675	775 75e	230.63	0.0	5399	80,83
181	- 1	57 B	126. 9	20,000	49, 90 39, 75	14,836	13, 920	887 794	231.51	106.5	4574	80.00
182	- 1	57 B	153. 3	21,100	13, 17 11, 47	12,573		701 701	232. 99	77.3	7835	89. 21
182	- 1	57B	154, 3	21.100	24. 26 12. 23	13,202		775 770		59.5	6113	84. 19
182		57B	155. 4	21.000	24. 26 26. 76	13,453	13,396	786 758	231.81	0.0	5351	81.67
163	ı	58B	0. 1	23,000	75.55 64.98	15,213		910 813	231, 81	-	266	54. 85
183	İ	58B	1. 1	23,000	74.85 64.98	15.591	14, 968	985 846	232.99	-	2598	52.29
183		58B	2, 3	22,900	31.88 35.93	14,082	13,845	811 756	232. 99	90. 3	4782	57.43
154		58B	15.7	25, 900	41.59 42.05	14,585		844 779	231, 81		5250	59.14
:84	ı	58B	17.0	25,800	20.10 1.53	12,825	10, 103	737 687	227.08		4613	54.00
184		58B	17. 1	25,800	24.95 10.70	12,825	11,600	748 720	231.81	48, 1	2029	54.00
185		60B	18. 3	22,200	34.66 53,52	14,208	14,893	821 846	234, 17	0.0	2291	69. 14
185	1	60B	20, 0	22, 100	61.69 49.69	15,213	-	920 813	232. 99		4031	75.14
185		60B	20.6	22, 100	61.69 49.69	15, 339	14,519	950 813	232.99	104, 1	5134	77.71
106	1	61B	55, 4	26,200	72.06 57.34	15.339	14, 145	971 671	232, 99	0.0	3336	77.86
186	ı	61B	55.7	26,200	69.31 67.28	15,464		995 904	232. 99		3467	77.86
186	1	61B	56.5	26,200	59.61 56.5	14,836	14,594	896 836	232, 99	104. 1	4697	81.29

TABLE II. INVESTIGATION OF CH-47A HELICOPTER ENGINE LOAD SHARING (INSTRUMENTATION INCOMPLETE)

					rque		
Sampie Number	Aircraft Number		Time (min)	(pct)		Flight Condition	
					·		
1	908	2.A	7.7	48, 51	29. 21	A	
1	908	2A	8. 1	66, 99	48. 21	A	
1	908	2A	8.6	58. 52	50.40	A	
1	908	2.A	9. 4	48, 51	43. 10	A	
2	908	2.A	14.6	49, 28	35. 06	S	
2	908	2A	15. 4	20.79	48. 21	5	
2	908	2.A	16. 4	36. 19	33.60	S	
3	908	3A	7.6	30, 80	21. 91	D	
3	908	3A	8. 4	23. 10	13, 15	D	
3	908	3A	9. 0	3. 24	6.57	D	
3	908	3A	9.7	27.72	11.69	D	
4	908	4.6	1. 2	26 95	22.64	S	
4	908	4.4	1. 9	1	41.63	S	
4	908	4.4	2.7	6.78	40. 90	Š	
5	908	7.A	68.6	26. 95	8.77	D	
5	908	7.A	69. 5	26. 95	14.61	D	
5	908	7A	70.7	40, 04	39. 44	D	
6	908	16A	17. 9	36. 19	37. 98	S	
6	908	16A	20. 5	21.56	6.57	D	
6	908	16A	21.9	28.49	22,64	D	
7	309	17A	17.4	34.65	35.79	D	
7	908	17.A	19. 0	21.56	8,77	D	
7	908	17A	20.4	31.57	13.88	Ð	
7	908	17A	21.6	42. 35	32. 87	D	
8	908	17A	40.8	54.67	52, 59	A	
8	908	17A	43. 0	46. 20	27.76	D	
8	908	17A	44. 2	50. 82	47.48	A	
9	908	17.A	62. 2	31, 57	27.76	S	
9	90s	17A	63.2	36. 96	21. 18	D	
9	908	17A	64.1	23.87	7.30	D	
10	908	17.A	65. 3	34, 65	32. 14	٨	
10	908	17A	66.5	23. 10	6, 57	Ď	
10	908	17A 17A	67. l	49, 28	32. 14	D	
11	908	18A	23.8	49. 28	47.48	S	
11	908	18A	24.5	29. 26	25, 57	\$	
11	908	18A	25. 8	40. 81	37. 98	S	
12	908	18A	29. 1	36. 96	33.60	D	
12	908	18A	30. Z	27.72	8.77	D	
12	908	18A	32. 3	47.74	40. 17	D	

*D - Descent; S - Steady; A - Ascent; M - Maneuver; H - Hover

TABLE II - contd.

	Aircraft Number	Flight Number	Time		rque ctì	
Sample Number			(min)	(pct) 2		Flight Condition
13	908	18A	54, 1	27.72	23. 37	D
13	908	18A	55.6	7.70	0.60	D
i3	908	18A	57, i	62. 37	54.78	D
14	908	18A	64. 3	29. 26	27. 03	S
14	908	18A	65. 2	20. 62	6. 57	D
14	908	18A	66. 1	11.55	7. 30	D
15	908	18A	68. 3	39. 27	35.79	D
15	908	18A	76. 2	39. 27	39. 44	S
15	908	18A	79.4	29. 26	10.96	D
15	908	18A	80.8	56, 21	46, 91	D
16	908	18A	120.4	31. 57	29. 21	s
16	908	18A	122. 2	23, 87	9. 50	D
16	908	18A	123. 4	46. 20	40. 17	D
17	908	18A	124. 1	64. 68	58. 43	٨
17	908	137	126. 9	33. 88	20.45	D
17	908	18A	127.2	39. 27	34. 33	Ď
18	908	19A	29.4	21.56	33.60	A
18	908	19A	29.6	62. 37	68.66	Ā
18	908	19A	30.6	43. 89	46.75	Ä
**	908	19A	52.0	27.72	29. 21	Ð
19	908	19A	59. 5	8, 47	3.65	D
19 1 9	908 908	19A	60. 2	31. 57	14.61	Ď
34	908	19A	82.6	30. 80	29. 21	D
20		19A	83. 6	0. 00	38, 71	D
20	798		83. 0 84. 7	50. 82	47. 48	D
20	908	19A	04. /	50. 82	77. 70	b
21	908	19A	89.4	50. 05	41.63	D
21	908	19A	89. 9	13. 86	3.65	D
21	908	19A	91.4	29. 26	3. 65	D
22	908	19A	110.3	44.66	43.83	D
22	908	19A	111.7	21.56	9.50	Ð
22	908	19A	112.5	75. 4 6	66.47	D
23	908	19A	131.9	26. 95	18. 99	D
23	938	19A	132. 3	21. 56	7. 30	D
23	908	19A	133.5	36. 19	16. 80	D
24	908	ZOA	8.6	34. 65	33.60	D
24	908	?0A	10. Z	23. 88	8. 03	D
24	908	20.	10.4	42. 35	2i. 91	D
25	908	20A	44. 9	31.57	26.3C	Ð
25	908	20A	45.6	29. 26	8.77	D
25	908	20A	46. 9	46. 91	36, 52	D

TABLE II - contd.

				To	rque	······
			Time	(p	ct)	!
Sample Number	Aircraft Number	Flight Number	(mia)	1	2	Flight Condition*
26	908	20A	73.0	34, 65	31.41	D
26	908	20A	74.5	22 33	7.30	D
26	908	20A	75.6	39. 27	32. 14	D
47	908	20A	84. 8	42. 35	39. 44	D
27	508	20A	86.4	29. 26	2.19	D
27	938	A05	87.7	52. 36	36. 52	Ď
61	,,,,	CON	01.1	<i>72. 70</i>	30. 32	
28	908	AIS	13. 9	39 27	39. 44	S
28	908	21A	14. 3	70.84	0.00	S
28	908	21A	15. 3	62. 37	10. 96	S
29	908	21A	36.7	26. 95	22.64	ם
29	908	21A	37.4	21, 56	8. 03	D
29	908	21A	38. 1	22, 33	6.77	D
30	908	21A	97. 3	36. 96	33.60	D
30	•					
30	908	21A	98.4	13.09	0.00	D D
30	908	21A	98. 9	36, 19	16. 80	D
31	908	22.A	50.8	28.49	21. 30	Œ
31	908	A22	51.6	0. 00	43. 83	D
31	909	22A	52.6	18.48	4. 38	D
32	90 €	23A	7, 3	33, 86	29. 94	D
32	908	23A	8. 5	18. 48	6.57	Ď
32	908	23A	10. 1	40.81	38.71	D
33	908	23A	23. Z	23. 10	21. 91	D
33	908	23A	24. 1	23. 87	13. 15	D
33	908	23A	24. 9	14.63	7. 30	D
33	908	23A	25. 9	30. 80	14.61	D
34	908	23A	73.5	33. 80	26. 30	D
34	908	23A	75.2	39. 27	4. 38	D
34	908	23A	75.6	34.65	31,41	D
••	000	214	77 7	12 00	46.01	H
35	908	23A	77.7	33. 88		n K
35	908	23A	78.4	39. 27	48, 21	H H
35	908	23A	78.7	34. 65	42, 36	n
34	908	23A	138.8	33. 88	27.76	D
36	908	23A	139. 9	23. 10	8. 03	D
36	908	23A	141.4	11. 55	4. 38	D
37	908	23A	198, 1	37.73	37. 25	Þ
37	908	23A	199.6	26, 18	7. 30	ā
37	908	23A	199. 9	23. 10	24, 10	Ď
37	908	23A	201.7	29. 47	33.60	Ď
7	,			••		-
1						

*D - Descent; S - Steady; A - Ascent; M - Maneuver; H - Hover

TABLE II - contd.

			Time		rque (ct)	
Sample Number	Aircraft Number	Flight Number	(min)	1	2	Flight Condition
38	914	42A	8. 1	27.72	35, 17	м
38	914	42A	8. 5	0.00	12.23	M
38	914	42A	9. 0	36. 81	42.81	M
38	914	42A	9. 8	6. 93	27.52	М
39	914	42A	11.5	17. 33	27.52	D
39	914	42A	11. 9	0.69	22. 94	D
39	914	42A	12. 5	39. 51	23.70	D
40	914	43A	8. 4	18. 02	16. 05	D
40	914	43A	8. 9	17. 33	4.59	D
40	914	43A	9. 4	35. 35	19. 11	D
41	914	44A	1.8	56. 16	44. 34	A
41	914	44A	5.3	36. 04	47.40	A
41	914	44A	7. 1	35. 35	41.28	A
42	914	44A	27. 0	76. 24	58. 10	A
42	914	44A	27.2	72.78	63.45	A
42	914	44A	27.6	49. 90	58. 10	A
43	914	44A	49.8	5.05	49.69	s
43	914	44A	50.7	51. ^9	46.63	S
43	914	11 A	51.6	32. 58	49.69	S
44	914	45A	14.7	60. 99	28. 29	A
44	914	45A	14. 9	27.03	2i. 40	A
44	914	45A	15. 1	51. 98	40.52	A
45	914	45A	27.6	15. 25	25.23	p
45	914	45A	28.5	0. 00	19.88	D
45	914	45A	29.6	40, 20	35. 93	D
46	914	46A	10.7	39. 51	36.70	s
46	914	46 A	11. 1	0.00	42. 81	S
46	914	46A	11.6	39. 51	45. 87	S
47	914	46.A	15.8	9.70	9. 17	D
47	914	46 A	16.7	41.59	18. 35	D
47	914	46A	17. 1	51. 9 8	40. 52	D
48	914	46A	17.4	50.60	25. 23	н
48	914	46 A	17. E	51.29	43, 58	H
48	914	46.A	18. 1	49. 90	54. 28	Н
49	914	46A	41, 4	77.63	58. 10	A
49	914	46A	41.7	65. 84	50. 46	A
49	914	46 A	42, 2	37.43	42. 81	A
50	914	46A	42, 4	36.04	42.81	D
50	914	46A	42, 8	0.69	17.58	D
50	914	46 A	43, 2	38. 12	39. 75	. D
51	914	47.A	11.0	41.59	31, 34	н
51	914	47 A	11, 2	48. 52	38. 99	H
51	914	47.A	11,7	0.00	50. 4 6	H

TABLE II - contd. Torque (pct) Time Flight Condition* Sample Number Aircraft Number Flight Number (min) 76. 24 67. 23 11.7 64. 98 65. 77 914 47 A 52 12.0 914 47 A A A 52 62.38 914 47 A 12.4 64. 98 53 914 50A 49. 90 D 2. 9 45. 11 53 50A 7.62 914 3.3 68.04 D 53 914 50A 4. 1 46.44 55.04 D 914 50A 37.4 55.45 68. 81 S 54 914 50A 38. 1 58. 22 62.69 54 914 50A 38.6 40, 20 47.40 S 914 79.5 D 55 50A 2.08 25, 23 55 914 50A 80. Z 43.67 49.69 D 55 914 5UA 80. 2 40.89 45.11 D 56 914 51A 0.1 71.39 48, 16 A 49. 21 22. 67 56 914 SIA 0.4 52,75 A Ā 56 914 51A 0.6 37.46 57 914 51A 29. 80 39.75 S 2.4 57 29. 80 38, 99 34, 40 914 51A 57 51A 2.5 22. 83 S 914 58 914 51A 20. 10 29. 05 D 4.6 58 51A 77.63 64. 98 D 914 914 51 A 4.6 40. 20 59 914 51A 7.8 29. 11 37.46 D 59 914 51 A 76. 93 64. 98 D 59 914 51A 7.9 48. 52 50.46 D 914 51A 8. 0 18.71 27.52 60 D 60 914 51A 8. 1 6. 93 29.05 D 44. 36 60 914 51A 8. 1 45, 11 D 914 51A 41.59 49.69 71.10 61 8.5 S 0.00 61 914 51A 8.6 S 914 51A 8.7 0.00 93. 27 S 61 51A 0.00 100, 15 s 61 914 8.8 62 914 51A 8.8 0.00 91.74 D 62 514 €. 00 25.23 D 914 8. 9 62 51A 0.00 16, 82 914 9. C Ð 62 914 51A 0.00 29. 82 914 51A 40. 20 54. 28 S 914 51A 42. 97 35. 93 63 914 51A 9.7 38. 81 35. 93 s 64 914 51A 10.0 18.71 21.40 D 64 914 51A 10.0 71. 39 50.46 D 64 914 51A 12.7 43.67 37.46

*D - Descent; S - Steady; A - Ascent; M - Moneuver; H - Hover

ができるながらいませんができました。

TABLE II - contd.

			Time		rque ct)	
ample Number	Aircraft Number	Flight Number	(min)	1	2	Flight Condition
65	914	52A	0. 1	72.78	60.40	٨
65	914	52.A	0.5	61.69	57.34	A
65	914	52A	0.8	39. 51	47.40	A
66	914	52A	1. 3	32. 58	42. 95	а
66	914	52A	1.8	13.86	35. 17	Þ
66	914	52.A	2. 3	1. 39	14.53	D
66	914	52A	2, 5	43,67	42.81	D
67	914	52A	2. 8	8. 32	6 3. 40	٨
67	914	52A	3. 1	36.04	37.46	A
67	914	52A	3. 4	20. 10	25.23	A
68	914	32A	3. 6	18.71	29. 82	D
68	914	52A	3. 9	9. 01	24. 46	Ď
68	914	52.A	4. 1	47.13	41.28	Ď
69	914	52A	18. 4	26. 34	35. 17	D
69	914	52A	18.7	13, 86	33.64	D
69	914	52A	19. 3	78. 32	68. 04	D
70	914	52A	20. 1	74. 16	65, 77	A
70	914	52A	20. 1	67. 23	64. 98	
70	914	52A	20. 8	41.59	56.10	A A
••	•••					_
71	914	52A	31.0	35. 35	37.46	Ď
71 71	914	52A	31.6	4, 16 49, 90	16.82	D
**	914	52A	32. 4	17. 70	42. 81	Ð
72	914	52A	32.6	76. 93	61. 16	A
72	914	52A	32. 9	48, 52	62.69	A
72	914	52A	33. 4	45.74	52.75	A
73	914	52A	42. 9	11.09	23, 70	D
73	914	52A	43.7	33.96	35, 17	D
73	914	52A	44. 2	7.62	19.11	D
73	914	52A	45, 1	69. 31	\$5, 04	D
74	914	52.A	59. 2	24. 95	32, 11	D
74	914	52A	59.6	8. 32	23,70	D
74	914	52A	60.4	53. 37	13, 00	D
75	914	52.A	60.6	78, 32	71, 10	٨
75	914	52A	61. 1	51.29	61, 92	Ä
75	914	52A	61.7	29. 80	45, 87	Ä
76	914	52A	62. 1	27.03	42, 81	Ð
76	914	52A	62, 5	11.09	26.76	ā
76	914	52A	63. 3	74, 16	50.46	õ
77	914	53A	10.7	22. 87	32, 11	n
77	914	53A	11.0	5.54	29.82	D.
77	914 914	53A 53A	11.5	5. 3 4 6. 24	17.58	D D
70	014	234	22.0	10.41	22 11	
78 70	914	53A	32. 9	19.41	32. 11	D
78	914 914	53A 53A	35, 8 34, 2	6. 24 35. 35	18, 35 41, 28	D D
78						

TABLE II - contd.

			~ :		rque	
		Planta Manhan	Time	<u> </u>	et)	Flight Condition
Sample Number	Aircraft Number	Flight Number	(min)	:	<u> </u>	Fight Condition
79	914	53A	46.8	55.84	65.77	н
79	914	53A	47. 3	67 92	70.33	н
79	914	53A	47.7	33. 27	45, 11	H
• 7	714	728	****	37. 6.	17, 11	••
80	914	53A	69. 1	36 73	47.40	S
80	914	53A	70. G	40. 40	49.69	S
80	914	53A	70. 3	34.66	45. 87	s
81	914	53A	73.7	18. 02	35. 93	D
		53A			27 52	Ď
81	914		74.4	5. 54		
51	014	53A	74. ć	3č. 81	65.79	Ð
82	014	53A	81. 4	32 58	45. 87	D
82	914	53A	82. 2	7.62	29, 26	D
82	914	53A	32. 8	6. 24	71, 10	D
92	71.7	7./N	32.0	. •		•
63	214	53A	90.1	41.59	51.99	н
83	914	53A	90. 4	40.20	48, 16	н
83	914	53A	90.7	42. 23	49.59	н
0.4		634	02.1	22 56	47 40	ъ
84	914	53A	98. 4	32 55	47.40	D
84	914	53A	99. 1	2. 70	25. 99	D
84	914	53A	7 9. 8	74. 16	68.04	Đ
85	911	53A	105.4	26, 34	35, 93	D
85	914	53A	106. 1	÷ 85	29.05	D
85	914	53A	106.8	45. 44	46.c3	D
						_
56	914	53A	115 3	se 12	42. 95	D
86	914	53A	115. 9	15 71	29. 52	D
86	914	53A	! 16. 3	4, 85	54. 3 3	D
87	914	54A	; e	9 OC	13, 00	D
97	914	54A	2. 2	39. 51	38. 23	ā
87	914	54A	2.2	43. 67	42, 05	D
	•••					
38	914	54A	3, 2	2 98	50, 10	H
88	914	54A	1 1	4c. 44	19, 75	H
88	914	54A	4. 4	10. S ^c	39. 75	Н
89	914	54A	9 . 3	42 ?8	55 (4	s
89	9:4	54A	10.0	45.74	44, 34	S
89	914	54A	:0 o	42. 28	-1. 28	s
		_				
90	914	54A	14 3	22. 18	21 40	Ð
90	914	5÷A	14.6	71. 39		D
90	914	>4A	15 1	46 44	52.75	D
91	914	54A	15. 2	53. 37	36, 70	н
	914	54A	15. 4	40, 90	38, 23	 H
91						
91	914	54A	15. 9	69. 31	37.46	Н
92	914	54A	17.6	55 45	56.57	s
92	914	54A	18. 3	54. 05	50, 46	S
92	914	54A	15. 5	31. 19	43, 58	Š
	• •			34.60	5C 52	→

TABLE II - contd.

			Time	To: (p		
Sample Number	Aircraft Number	Flight Number	(min)	1 1	~~	Flight Conditio
93	914	54A	25.4	21.49	33.64	D
93	914	54A	26. 3	32. 63	46.63	D
93	914	54A	26.3	42. 28	38. 99	D
94	914	54A	29. 9	50.60	48, 93	н
94	914	54A	30.5	18.71	70.33	H
94	914	54A	30.7	63.07	54, 28	н
95	914	54A	34. 8	34.66	45, 11	s
95	914	54A	35. 1	41.59	37, 46	S
95	914	54A	35. 5	40. 20	38. 99	s
					45 11	_
96	914	54A	81.7	32. 58	45, 11	D
96	914	54A	82. 3	2. 08	11.47	D
96	914	54A	82.7	48. 52	53. 52	D
97	908	64A	18.6	36. 96	37.98	D
97	908	64A	19. 1	36.19	27.03	D
97	908	64A	20.0	40.81	30.68	D
98	908	67 A	23. 1	26. 18	25, 57	D
98	908	67 A	23.4	23. 10	15.34	Ď
98	908	67 A	24.5	23. 10	9.50	Ď
98	908	67 A	25.0	30, 03	8.77	ŭ
	222	40.	0.7	21 54	14 25	.
99	908	68A	8.7	21.56	46.75	D
99	908	68A	9.7	25, 41	19.72	D
99	908	68A	10. 3	28, 49	19.72	D
100	908	68A	15. 3	33, 88	45. 29	A
100	908	68A	16.0	72, 38	69. 39	A
100	908	68A	16.6	60, 06	63.55	A
101	908	68A	26.3	20,79	21.18	D
101	908	68A	26. 9	27.72	19.72	D
101	908	68A	27.3	33, 11	34. 33	D
102	908	68A	71.6	33, 88	31, 41	a
102	908	68A	72.8	22, 33	10.23	D
102	908	68A	73.4	8. 47	7. 30	D
102	908	68A	74.5	29. 26	12.42	D
103	206	604	99 0	23, 87	27.03	D
103	908	68A	100.4	13.86	8.03	Ď
103	908	68A	100.9	33, 11	17.53	D
103	908	68A	101.3			_
103	908	68.↑	,	45, 43	44. 56	Б
104	908	68 A	117 6	16, 17	8, 03	D
104	908	68A	118.3	24.64	8, 03	D
104	906	68A	118 8	26, 95	8. 03	D
165	908	69A	40. 2	21.56	21.18	D
105	905	69A	40.6	29, 26	16.07	D
105	908	69A	41, 2	23. 10	18. 99	D
105	908	69A	41.8	36. 96	35.06	D

TABLE II - contd.

			Time		rque ct)		
Sample Number	Aircraft Number	Flight Number	(min)	7-7	2	Flight Condition	
106	908	72A	27.8	22, 33	18. 26	D	
106	908	72A	28. 4	31. 57	18. 26		
						D	
106	908	72A	28. 9	51.59	45. 29	D	
107	908	74A	9. 8	33. 11	35.06	S	
107	908	74A	11.6	30. 03	20. 45	S	
107	908	74A	13. 3	35. 42	26.30	S	
107	968	74A	15. 1	37.73	8. 03	s	
107	908	74A	16.5	28. 49	29. 94	s	
108	908	74A	20. 8	15. 4 0	15. 34	D	
108	908	74A	21. 1	45. 43	27.76	D	
108	908	74A	21.4	43. 89	35.79	D	
109	908	2B	43. 5	39. 27	44. 56	D	
109	908	2B	44. 0	20. 02	18. 99	D	
109	908	2B	44. 3	23. 10	27.03	D	
109	908	2B	44.7	7.70	26. 30	D	
110	908	3B	19. 0	12. 32	29. 21	D	
110	908	3B	19. 3	30, 80	24. 10	D	
110	908	3B	20. 0	25, 41	22.64	D	
110	908	3B	20.7	58. 52	51. 66	D	
						_	
111	908	9B	32.7	30. 03	29. 21	D	
111	908	9B	33. 4	10. 01	21. 18	D	
111	908	9B	34. 3	28. 49	24. 10	D	
112	968	53B	0. 0	23. 90	2. 90	A	
112	908	53B	0. 1	47.70	17.50	A	
112	908	53B	0. 3	41.60	52.60	Ā	
112	908	53B	0.7	43. 90	48. 20	Ä	
113	908	54B	142. 9	42, 40	41.60	D	
113	908	54B	143.7	26. 20	11.70	D	
113	908	54B	144. 8	24, 60	10. 20	D	
113	908	54B	145.4	37.70	38. 00	D	
114	908	55B	174. 9	18, 50	19.70	D	
114	908	55B	175. 4	11.60	3.60	D	
114	908	55B	175.7	20.80	31.40	D	
115	908	63B	64. 3	23, 10	26.60	D	
115	908	63B	65.6	23. 90	7.70	۵	
115	908	63B	66. 4	47.70	44. 80	D	
116	908	93B	5. 2	32, 30	34. 30	D	
116	908	93B	5. 9	15. 40	3.60	D	
116	908	93B	6. 3	36, 20	10. 20	D	
116	908	93B	6.6	40.00	39. 40	D	
***	700	,,,,	0.0	10.00	J 7. 40	•	

*D - Descent; S - Steady; A - Ascent; M - Maneuver; H - Hover

TABLE II - contd.

Sample Number Aircraft Number Flight Number (min) 1 2 Flight Class 117 908 93B 11. 2 39. 30 40. 90 D. 117 908 93B 11. 6 26. 20 11. 70 D. 117 908 93B 12. 3 34. 70 38. 70 D. 118 908 93B 12. 3 34. 70 38. 70 D. 118 908 93B 12. 5 23. 10 9.50 A. 118 908 93B 12. 6 55. 40 35. 80 A. 118 908 93B 30. 8 34. 70 35. 80 A. 118 908 93B 30. 8 34. 70 35. 80 A. 119 908 93B 31. 5 19. 20 3. 60 D. 119 908 93B 31. 5 19. 20 3. 60 D. 119 908 93B 32. 2 46. 20 40. 20 D. 120 908 93B 32. 5 31. 60 0. 70 H. 120 908 93B 32. 8 40. 00 59. 20 H. 120 908 93B 33. 0 46. 20 48. 20 H. 121 908 93B 33. 0 46. 20 48. 20 H. 121 908 93B 34. 0 45. 40 59. 20 A. 40. 121 908 93B 34. 0 45. 40 59. 20 A. 121 908 93B 34. 8 44. 70 46. 10 A. 122 908 93B 34. 8 44. 70 46. 10 A. 122 908 93B 37. 1 23. 90 6. 60 D. 122 908 93B 87. 7 32. 30 35. 10 D. 123 908 93B 157. 2 40. 80 19. 70 D. 123 908 93B 157. 2 40. 80 19. 70 D. 123 908 93B 157. 2 40. 80 19. 70 D. 124 908 93B 157. 5 33. 90 32. 10 D. 125 908 93B 249. 3 9.20 25. 40 D. 124 908 93B 179. 5 45. 40 44. 60 D. 124 908 93B 179. 5 45. 40 44. 60 D. 124 908 93B 179. 5 45. 40 44. 60 D. 125 908 93B 179. 5 45. 40 44. 60 D. 125 908 93B 179. 5 45. 40 44. 60 D. 126 908 93B 249. 6 46. 20 65. 00 A. 125 908 93B 249. 6 46. 20 65. 00 A. 125 908 93B 249. 6 46. 20 59. 00 A. 125 908 93B 249. 6 46. 20 65. 00 A. 125 908 93B 249. 6 46. 20 59. 00 A. 125 908 93B 249. 6 46. 20 59. 00 A. 126 908 93B 249. 6 46. 20 59. 00 A. 126 908 93B 249. 6 46. 20 65. 00 A. 126 908 93B 249. 6 46. 20 13. 90 A. 126 908 93B 249. 6 46. 20 13. 90 A. 126 908 93B 24							
117 908 93B 11.6 26.20 11.70 DD 117 908 93B 12.3 34.70 38.70 DD 118 908 93B 12.5 23.10 9.50 AD 118 908 93B 12.6 55.40 35.80 AD 118 908 93B 12.9 53.10 58.40 AD 119 908 93B 31.5 19.20 3.60 DD 119 908 93B 31.5 19.20 3.60 DD 119 908 93B 32.2 46.20 40.20 DD 119 908 93B 32.5 31.60 0.70 H 120 908 93B 32.5 31.60 0.70 H 120 908 93B 33.0 46.20 48.20 H 120 908 93B 33.0 46.20 48.20 H 121 908 93B 33.0 46.20 48.20 H 121 908 93B 33.0 46.20 48.20 H 121 908 93B 34.0 45.40 59.20 AD 121 908 93B 34.0 45.40 59.20 AD 121 908 93B 34.0 45.40 59.20 AD 121 908 93B 34.0 45.40 59.20 AD 121 908 93B 34.8 44.70 46.10 AD 122 908 93B 37.7 32.30 35.10 DD 122 908 93B 87.7 32.30 35.10 DD 123 908 93B 87.7 32.30 35.10 DD 123 908 93B 157.2 40.80 19.70 DD 123 908 93B 157.5 33.90 32.10 DD 124 908 93B 179.5 45.40 14.60 DD 125 908 93B 179.5 45.40 14.60 DD	mple Number	Aircraft Number	Flight Number	Time (min)			Flight Condition
117 908 93B 11.6 26.20 11.70 D 117 908 93B 12.3 34.70 38.70 D 118 908 93B 12.5 23.10 9.50 A 118 908 93B 12.6 55.40 35.80 A 118 908 93B 12.9 53.10 58.40 A 119 908 93B 30.8 34.70 35.10 D 119 908 93B 31.5 19.20 3.60 D 119 908 93B 32.2 46.20 40.20 D 120 908 93B 32.5 31.60 0.70 H 120 908 93B 32.5 31.60 0.70 H 120 908 93B 32.8 40.00 59.20 H 120 908 93B 33.0 46.20 48.20 H 121 908 93B 33.0 46.20 48.20 H 121 908 93B 33.0 46.20 48.20 H 121 908 93B 34.0 45.40 59.20 A 121 908 93B 34.0 45.40 59.20 A 122 908 93B 34.0 46.40 59.20 A 122 908 93B 37.7 32.30 35.10 D 122 908 93B 87.7 32.30 35.10 D 123 908 93B 87.7 32.30 35.10 D 124 908 93B 156.6 20.00 22.00 D 123 908 93B 157.2 40.80 19.70 D 123 908 93B 157.2 40.80 19.70 D 124 908 93B 179.5 45.40 14.60 D 125 908 93B 179.5 45.40 14.60 D 126 908 93B 179.5 45.40 14.60 D 127 908 93B 179.5 45.40 14.60 D 126 908 93B 179.5 45.40 14.60 D 127 908 93B 249.6 46.20 65.00 A 126 908 93B 249.6 46.20 65.00 A 126 908 93B 226.5 46.20 13.90 A 126 908 93B 226.5 46.20 13.90 A 126 908 93B 226.5 46.20 13.90 A 127 908 93B 226.5 46.20 13.90 A 128 908 93B 226.5 46.20 13.90 A 127 908 93B 226.5 46.20 13.90 A 128 908 93B 218.5 70.10 46.10 D 127 908 93B 218.5 70.10 46.10 D 127 908 93B 218.5 70.10 46.10 D 127 908 93B 218.5 70.10 46.10 D 127 908 93B 218.5 70.10 46.10 D 127 908 93B 218.5 70.10 46.10 D 127 908 93B 218.5 70.10 46.10 D 127 908 93B 218.5 70.10 46.10 D 128 908 93B 218.5 70.10 46.10 D 127 908 93B 218.5 70.10 46.10 D 128 908 93B 218.5 70.10 46.10 D 127 908 93B 218.5 70.10 46.10 D 128 908 93B 218.5 70.10 46.10 D 127 908 93B 218.5 70.10 46.10 D 128 908 93B 218.5 70.10 46.10 D 127 908 93B 218.5 70.10 46.10 D 128 908 93B 218.5 70.10 46.10 D 128 908 93B 218.5 70.10 46.10 D 128 908 93B 218.5 70.10 46.10 D 128 908 93B 218.5 70.10 46.10 D 128 908 93B 218.5 70.10 46.10 D 128 908 93B 218.5 70.10 46.10 D 128 908 93B 218.5 70.10 46.10 D 128 908 93B 218.5 70.10 46.10 D 128 908 93B 218.5 70.10 46.10 D 128 908 93B 218.5 70.10 46.10 D 128 908 93B 218.5 70.10 46.10 D 128 908 93B 218.5 70.10 46.10 D 128 908 93B 218.5 70.1	117	908	93B	11. 2	39, 30	40. 90	D
117 908 93B 12.3 34.70 38.70 D 118 908 93B 12.5 23.10 9.50 A 118 908 93B 12.6 55.40 35.80 A 118 908 93B 12.6 55.40 35.80 A 119 908 93B 30.8 34.7C 35.10 D 119 908 93B 31.5 19.20 3.60 D 119 908 93B 32.2 46.20 40.20 D 120 908 93B 32.2 46.20 40.20 D 120 908 93B 32.8 40.00 59.20 H 120 908 93B 33.0 46.20 48.20 H 121 908 93B 33.6 13.90 16.10 A 121 908 93B 34.0 45.40 59.20 A 121 908 93B 34.0 45.40 59.20 A 121 908 93B 34.8 44.70 46.10 A 122 908 93B 34.8 44.70 46.10 A 122 908 93B 87.1 23.90 6.60 D 122 908 93B 87.1 23.90 6.60 D 123 908 93B 87.1 23.90 6.60 D 124 908 93B 156.6 20.00 22.00 D 123 908 93B 157.2 40.80 19.70 D 124 908 93B 157.2 40.80 19.70 D 125 908 93B 178.8 19.20 23.40 D 124 908 93B 179.5 45.40 14.60 D 125 908 93B 179.5 45.40 14.60 D 126 908 93B 179.7 32.30 29.90 D 127 908 93B 249.3 9.20 15.30 A 126 908 93B 249.3 9.20 15.30 A 127 908 93B 226.4 25.40 6.60 A 126 908 93B 226.5 46.20 13.90 A 127 908 93B 226.5 46.20 13.90 A 127 908 93B 226.5 46.20 13.90 A 127 908 93B 226.5 46.20 13.90 A 127 908 93B 226.5 46.20 13.90 A 127 908 93B 218.5 29.30 32.10 D 127 908 93B 218.5 29.30 32.10 D		908					D
118 908 93B 12.6 55.40 35.80 A 118 908 93B 12.9 53.10 58.40 A 119 908 93B 30.8 34.70 35.10 D 119 908 93B 31.5 19.20 3.60 D 119 908 93B 32.2 46.20 40.20 D 120 908 93B 32.2 46.20 40.20 D 120 908 93B 32.2 8 40.00 59.20 H 120 908 93B 33.0 46.20 48.20 H 121 908 93B 33.6 13.90 16.10 A 121 908 93B 34.0 45.40 59.20 H 121 908 93B 34.0 45.40 59.20 H 121 908 93B 34.0 45.40 59.20 A 122 908 93B 34.0 45.40 59.20 A 122 908 93B 87.1 23.90 6.60 D 122 908 93B 87.7 32.30 35.10 D 123 908 93B 87.7 32.30 35.10 D 124 908 93B 156.6 20.00 22.00 D 123 908 93B 157.2 40.80 19.70 D 123 908 93B 157.5 33.90 32.10 D 124 908 93B 179.5 45.40 14.60 D 124 908 93B 179.5 45.40 14.60 D 125 908 93B 179.7 32.30 29.90 D 126 908 93B 179.7 32.30 29.90 D 127 908 93B 179.7 32.30 29.90 D 128 908 93B 179.7 32.30 29.90 D 126 908 93B 179.7 32.30 29.90 D 127 908 93B 249.6 46.20 65.00 A 126 908 93B 249.6 46.20 65.00 A 126 908 93B 249.6 46.20 65.00 A 127 908 93B 226.5 46.20 13.90 A 126 908 93B 226.5 46.20 13.90 A 127 908 93B 226.8 40.80 46.80 D 127 908 93B 226.8 40.80 46.80 D 127 908 93B 226.8 40.80 46.80 D 127 908 93B 218.2 70.10 46.10 D 127 908 93B 218.2 70.10 46.10 D 127 908 93B 218.5 29.30 32.10 D							D
118 908 93B 12. 9 53. 10 58. 40 A 119 908 93B 30. 8 34.7C 35. 10 D 119 908 93B 31. 5 19. 20 3. 60 D 119 908 93B 32. 2 46. 20 40. 20 D 120 908 93B 32. 5 31. 60 0. 70 H 120 908 93B 32. 8 40. 00 59. 20 H 120 908 93B 33. 0 46. 20 48. 20 H 121 908 93B 33. 6 13. 90 16. 10 A 121 908 93B 34. 0 45. 40 59. 20 A 121 908 93B 34. 0 45. 40 59. 20 A 121 908 93B 34. 0 45. 40 59. 20 A 122 908 93B 34. 8 44. 70 46. 10 A 122 908 93B 37. 1 23. 90 6. 60 D 122 908 93B 87. 1 23. 90 6. 60 D 122 908 93B 87. 1 23. 90 6. 60 D 122 908 93B 87. 7 32. 30 35. 10 D 123 908 93B 157. 2 40. 80 19. 70 D 123 908 93B 157. 2 40. 80 19. 70 D 123 908 93B 157. 5 33. 90 32. 10 D 124 908 93B 179. 5 33. 90 32. 10 D 125 908 93B 179. 7 32. 30 29. 90 D 125 908 93B 179. 7 32. 30 29. 90 D 125 908 93B 249. 3 9. 20 15. 30 A 126 908 93B 249. 6 46. 20 65. 00 A 126 908 93B 226. 4 25. 40 6. 60 D 127 908 93B 226. 5 46. 20 J3. 90 A 126 908 93B 226. 5 46. 20 J3. 90 A 127 908 93B 226. 5 46. 20 J3. 90 A 127 908 93B 218. 5 70. 10 46. 10 D 127 908 93B 218. 5 70. 10 46. 10 D 127 908 93B 218. 5 70. 10 46. 10 D 127 908 93B 218. 5 70. 10 46. 10 D 127 908 93B 218. 5 70. 10 46. 10 D 127 908 93B 218. 5 70. 10 46. 10 D 127 908 93B 218. 5 29. 30 32. 10 D	118	908	93B	12.5	23, 10	9. 50	A
119 908 93B 30.8 34.7C 35.10 D 119 908 93B 31.5 19.20 3.60 D 119 908 93B 32.2 46.20 40.20 D 120 908 93B 32.2 46.20 40.20 D 120 908 93B 32.5 31.60 0.70 H 120 908 93B 32.8 40.00 59.20 H 120 908 93B 33.0 46.20 48.20 H 121 908 93B 33.6 13.90 16.10 A 121 908 93B 34.0 45.40 59.20 A 121 908 93B 34.0 45.40 59.20 A 121 908 93B 34.0 45.40 59.20 A 122 908 93B 34.0 45.40 59.20 A 122 908 93B 37.1 23.90 6.60 D 122 908 93B 87.1 23.90 6.60 D 122 908 93B 87.1 23.90 6.60 D 122 908 93B 87.7 32.30 35.10 D 123 908 93B 87.7 32.30 35.10 D 124 908 93B 157.2 40.80 19.70 D 125 908 93B 157.5 33.90 32.10 D 124 908 93B 179.5 33.90 32.10 D 125 908 93B 179.5 45.40 14.60 D 126 908 93B 179.7 32.30 29.90 D 127 908 93B 249.6 46.20 65.00 A 126 908 93B 249.6 46.20 65.00 A 126 908 93B 249.6 46.20 65.00 A 126 908 93B 249.6 46.20 65.00 A 127 908 93B 226.5 46.20 13.90 A 127 908 93B 226.5 46.20 13.90 A 127 908 93B 218.2 70.10 46.10 D 127 908 93B 218.2 70.10 46.10 D 127 908 93B 218.5 29.30 32.10 D 128 908 93B 218.5 29.30 32.10 D	118	908	93B	12.6	55. 40	35.80	A
119 908 93B 31.5 19.20 3.60 DD 119 908 93B 32.2 46.20 40.20 DD 120 908 93B 32.5 31.60 0.70 H 120 908 93B 32.8 40.00 59.20 H 120 908 93B 33.0 46.20 48.20 H 121 908 93B 33.6 13.90 16.10 A 121 908 93B 34.0 45.40 59.20 A 121 908 93B 34.0 45.40 59.20 A 121 908 93B 34.0 45.40 59.20 A 122 908 93B 86.7 30.80 31.40 DD 122 908 93B 87.1 23.90 6.60 DD 122 908 93B 87.7 32.30 35.10 DD 123 908 93B 87.7 32.30 35.10 DD 123 908 93B 157.2 40.80 19.70 DD 123 908 93B 157.2 40.80 19.70 DD 123 908 93B 157.5 33.90 32.10 DD 124 908 93B 179.5 45.40 14.60 DD 124 908 93B 179.5 45.40 14.60 DD 125 908 93B 179.7 32.30 29.90 DD 125 908 93B 249.3 9.20 15.30 A 126 908 93B 249.3 9.20 15.30 A 125 908 93B 249.6 46.20 65.00 A 126 908 93B 226.4 25.40 6.60 DD 127 908 93B 226.4 25.40 6.60 DD 126 908 93B 226.5 46.20 13.90 A 126 908 93B 226.5 46.20 13.90 A 127 908 93B 226.5 46.20 13.90 A 127 908 93B 226.5 46.20 13.90 A 127 908 93B 226.5 46.20 13.90 A 127 908 93B 226.5 46.20 13.90 A 127 908 93B 226.5 46.20 13.90 A 127 908 93B 226.5 46.20 13.90 A 127 908 93B 226.5 46.20 13.90 A 127 908 93B 226.5 46.20 13.90 A 127 908 93B 226.5 46.20 13.90 A 127 908 93B 226.5 46.20 13.90 A 127 908 93B 226.5 46.20 13.90 A 127 908 93B 226.5 46.20 13.90 A 127 908 93B 226.5 46.20 13.90 A 127 908 93B 226.5 46.20 13.90 A 127 908 93B 226.5 46.20 13.90 A 127 908 93B 226.5 46.20 13.90 A 127 908 93B 218.5 29.30 32.10 D	118	908	93B	12. 9	53. 10	58. 40	A
119 908 93B 32.2 46.20 40.20 D 120 908 93B 32.5 31.60 0.70 H 120 908 93B 32.8 40.00 59.20 H 120 908 93B 33.0 46.20 48.20 H 121 908 93B 33.6 13.90 16.10 A 121 908 93B 34.0 45.40 59.20 A 121 908 93B 34.0 45.40 59.20 A 121 908 93B 34.0 46.10 A 122 908 93B 86.7 30.80 31.40 D 122 908 93B 87.1 23.90 6.60 D 122 908 93B 87.1 23.90 6.60 D 122 908 93B 87.7 32.30 35.10 D 123 908 93B 156.6 20.00 22.00 D 123 908 93B 157.2 40.80 19.70 D 123 908 93B 157.5 33.90 32.10 D 124 908 93B 179.5 45.40 14.60 D 124 908 93B 179.5 45.40 14.60 D 125 908 93B 179.5 45.40 14.60 D 125 908 93B 179.7 32.30 29.90 D 125 908 93B 249.3 9.20 15.30 A 125 908 93B 249.3 9.20 15.30 A 126 908 93B 249.6 46.20 65.00 A 126 908 93B 226.4 25.40 6.60 A 126 908 93B 226.5 46.20 13.90 A 127 908 93B 226.5 46.20 13.90 A 127 908 93B 226.5 46.20 13.90 A 127 908 93B 226.5 46.20 13.90 A 127 908 93B 226.5 46.20 13.90 A 127 908 93B 226.5 46.20 13.90 A 127 908 93B 226.5 46.20 13.90 A 127 908 93B 226.5 46.20 13.90 A 127 908 93B 226.5 46.20 13.90 A 127 908 93B 226.5 46.20 13.90 A 127 908 93B 226.5 46.20 13.90 A 127 908 93B 226.5 46.20 13.90 A 127 908 93B 226.5 46.20 13.90 A 127 908 93B 226.5 46.20 13.90 A 127 908 93B 226.5 46.20 13.90 A 127 908 93B 226.5 46.20 13.90 A 127 908 93B 226.5 46.20 13.90 A 127 908 93B 226.5 46.20 13.90 A 127 908 93B 218.5 29.30 32.10 D	119	908	93B				D
120 908 93B 32.5 31.60 0.70 He 120 908 93B 32.8 40.00 59.20 He 120 908 93B 33.0 46.20 48.20 He 121 908 93B 33.0 46.20 48.20 He 121 908 93B 33.6 13.90 16.10 A 121 908 93B 34.0 45.40 59.20 A 121 908 93B 34.8 44.70 46.10 A 122 908 93B 34.8 44.70 46.10 A 122 908 93B 87.1 23.90 6.60 E 122 908 93B 87.7 32.30 35.10 E 122 908 93B 87.7 32.30 35.10 E 123 908 93B 156.6 20.00 22.00 E 123 908 93B 157.2 40.80 19.70 E 123 908 93B 157.5 33.90 32.10 E 124 908 93B 178.8 19.20 23.40 E 124 908 93B 179.5 45.40 14.60 E 124 908 93B 179.5 45.40 14.60 E 124 908 93B 179.7 32.30 29.90 E 125 908 93B 249.3 9.20 15.30 A 126 908 93B 126.5 45.40 14.60 E 126 908 93B 249.3 9.20 15.30 A 126 908 93B 249.6 46.20 65.00 A 126 908 93B 226.5 46.20 13.90 A 126 908 93B 226.5 46.20 13.90 A 126 908 93B 226.5 46.20 13.90 A 126 908 93B 226.5 46.20 13.90 A 126 908 93B 226.5 46.20 13.90 A 126 908 93B 226.5 46.20 13.90 A 127 908 93B 218.2 70.10 46.10 E 127 908 93B 218.2 70.10 46.10 E 127 908 93B 218.2 70.10 46.10 E 127 908 93B 218.2 70.10 46.10 E 127 908 93B 218.2 70.10 46.10 E 127 908 93B 218.2 70.10 46.10 E 127 908 93B 218.2 70.10 46.10 E 127 908 93B 218.5 29.30 32.10 E 128 908 9		• • • • • • • • • • • • • • • • • • • •					D
120 908 93B 32.8 40.00 59.20 H 120 908 93B 33.0 46.20 48.20 H 121 908 93B 33.6 13.90 16.10 A 121 908 93B 34.0 45.40 59.20 A 121 908 93B 34.8 44.70 46.10 A 122 908 93B 86.7 30.80 31.40 D 122 908 93B 87.1 23.90 6.60 D 122 908 93B 87.1 23.90 6.60 D 122 908 93B 87.7 32.30 35.10 D 123 908 93B 156.6 20.00 22.00 D 123 908 93B 157.2 40.80 19.70 D 123 908 93B 157.5 33.90 32.10 D 124 908 93B 178.8 19.20 23.40 D 124 908 93B 179.5 45.40 14.60 D 124 908 93B 179.7 32.30 29.90 D 125 908 93B 179.7 32.30 29.90 D 125 908 93B 249.6 46.20 65.00 A 126 908 93B 249.6 46.20 65.00 A 126 908 93B 226.5 46.20 13.90 A 126 908 93B 226.5 46.20 13.90 A 126 908 93B 226.8 40.80 48.20 A 127 908 93B 218.2 70.10 46.10 D 127 908 93B 218.2 70.10 46.10 D 127 908 93B 218.2 70.10 46.10 D 127 908 93B 218.2 70.10 46.10 D 127 908 93B 218.2 70.10 46.10 D 127 908 93B 218.5 29.30 32.10 D	119	908	93B	32. 2	46. 20	40. 20	D
120 908 93B 33.0 46.20 48.20 H 121 908 93B 33.6 13.90 16.10 A 121 908 93B 34.0 45.40 59.20 A 121 908 93B 34.8 44.70 46.10 A 122 908 93B 86.7 30.80 31.40 D 122 908 93B 87.1 23.90 6.60 D 122 908 93B 87.1 23.90 6.60 D 122 908 93B 87.7 32.30 35.10 D 123 908 93B 156.6 20.00 22.00 D 123 908 93B 157.2 40.80 19.70 D 123 908 93B 157.5 33.90 32.10 D 124 908 93B 178.8 19.20 23.40 D 124 908 93B 179.5 45.40 14.60 D 124 908 93B 179.7 32.30 29.90 D 125 908 93B 249.3 9.20 15.30 A 126 908 93B 249.6 46.20 65.00 A 126 908 93B 226.4 25.40 6.60 A 126 908 93B 226.5 46.20 13.90 A 126 908 93B 226.5 46.20 13.90 A 127 908 93B 217.6 45.40 46.80 D 127 908 93B 217.6 45.40 46.80 D 127 908 93B 218.2 70.10 46.10 D 127 908 93B 218.2 70.10 46.10 D 127 908 93B 218.5 29.30 32.10 D	120	908	93B				н
121 908 93B 33.6 13.90 16.10 A 121 908 93B 34.0 45.40 59.20 A 121 908 93B 34.8 44.70 46.10 A 122 908 93B 86.7 30.80 31.40 E 122 908 93B 87.1 23.90 6.60 E 122 908 93B 87.7 32.30 35.10 E 123 908 93B 156.6 20.00 22.00 E 123 908 93B 157.2 40.80 19.70 E 123 908 93B 157.5 33.90 32.10 E 124 908 93B 178.8 19.20 23.40 E 124 908 93B 179.5 45.40 14.60 E 124 908 93B 179.5 45.40 14.60 E 124 908 93B 179.5 45.40 14.60 E 125 908 93B 179.7 32.30 29.90 E 125 908 93B 249.3 9.20 15.30 A 125 908 93B 249.6 46.20 65.00 A 126 908 93B 249.6 46.20 65.00 A 126 908 93B 260.2 48.50 46.80 A 126 908 93B 226.4 25.40 6.60 A 126 908 93B 226.5 46.20 13.90 A 126 908 93B 226.5 46.20 13.90 A 127 908 93B 218.2 70.10 46.10 E 127 908 93B 218.2 70.10 46.10 E 127 908 93B 218.2 70.10 46.10 E 127 908 93B 218.2 70.10 46.10 E 127 908 93B 218.2 70.10 46.10 E 127 908 93B 218.2 70.10 46.10 E 127 908 93B 218.5 29.30 32.10		•					н
121 908 93B 34.0 45.40 59.20 A 121 908 93B 34.8 44.70 46.10 A 122 908 93B 86.7 30.80 31.40 D 122 908 93B 87.1 23.90 6.60 D 122 908 93B 87.7 32.30 35.10 D 123 908 93B 156.6 20.00 22.00 D 123 908 93B 157.2 40.80 19.70 D 123 908 93B 157.5 33.90 32.10 D 124 908 93B 178.8 19.20 23.40 D 124 908 93B 179.5 45.40 14.60 D 124 908 93B 179.7 32.30 29.90 D 125 908 93B 179.7 32.30 29.90 D 126 908 93B 249.3 9.20 15.30 A 127 908 93B 226.4 25.40 6.60 A 126 908 93B 226.5 46.20 13.90 A 126 908 93B 226.5 46.20 13.90 A 127 908 93B 217.6 45.40 46.80 D 127 908 93B 217.6 45.40 46.80 D 127 908 93B 218.2 70.10 46.10 D 127 908 93B 218.2 70.10 46.10 D 127 908 93B 218.2 70.10 46.10 D 127 908 93B 218.2 70.10 46.10 D 127 908 93B 218.2 70.10 46.10 D 127 908 93B 218.2 70.10 46.10 D 127 908 93B 218.2 70.10 46.10 D 127 908 93B 218.2 70.10 46.10 D 127 908 93B 218.5 29.30 32.10 D	120	908	93B	33. 0	4 6. 20	48. 20	н
121 908 93B 34.8 44.70 46.10 A 122 908 93B 86.7 30.80 31.40 D 122 908 93B 87.1 23.90 6.60 D 122 908 93B 87.7 32.30 35.10 D 123 908 93B 156.6 20.00 22.00 D 123 908 93B 157.2 40.80 19.70 D 123 908 93B 157.5 33.90 32.10 D 124 908 93B 178.8 19.20 23.40 D 124 908 93B 179.5 45.40 14.60 D 124 908 93B 179.5 45.40 14.60 D 125 908 93B 179.7 32.30 29.90 D 125 908 93B 249.3 9.20 15.30 A 125 908 93B 249.6 46.20 65.00 A 126 908 93B 250.2 48.50 46.80 A 126 908 93B 226.4 25.40 6.60 A 126 908 93B 226.4 25.40 6.60 A 127 908 93B 218.2 70.10 46.10 D 127 908 93B 218.2 70.10 46.10 D 127 908 93B 218.2 70.10 46.10 D 128 908 93B 218.5 29.30 32.10 D		•					A
122 908 93B 86.7 30.80 31.40 ED 122 908 93B 87.1 23.90 6.60 ED 122 908 93B 87.7 32.30 35.10 ED 123 908 93B 156.6 20.00 22.00 ED 123 908 93B 157.2 40.80 19.70 ED 123 908 93B 157.5 33.90 32.10 ED 124 908 93B 178.8 19.20 23.40 ED 124 908 93B 179.5 45.40 14.60 ED 124 908 93B 179.5 45.40 14.60 ED 124 908 93B 179.7 32.30 29.90 ED 125 908 93B 179.7 32.30 29.90 ED 125 908 93B 249.3 9.20 15.30 AD 126 908 93B 249.6 46.20 65.00 AD 127 908 93B 226.5 46.20 13.90 AD 126 908 93B 226.5 46.20 13.90 AD 126 908 93B 226.5 46.20 13.90 AD 127 908 93B 226.8 40.80 48.20 AD 127 908 93B 217.6 45.40 46.80 ED 127 908 93B 218.2 70.10 46.10 ED 127 908 93B 218.5 29.30 32.10 ED 128 908 93B 218.5 29.30 32.10 ED 128 908 93B 218.5 29.30 32.10 ED 128 908 93B 218.5 29.30 32.10 ED 128 908 93B 218.5 29.30 32.10 ED 128 908 93B 218.5 29.30 32.10 ED 128 908 93B 218.5 29.30 32.10 ED 128 908 93B 218.5 29.30 32.10 ED 128 908 93B 218.5 29.30 32.10 ED 128 908 93B 218.5 29.30 32.10 ED 128 908 93B 218.5 29.30 32.10 ED 128 908 93B 218.5 29.30 32.10 ED 128 908 93B 218.5 29.30 32.10 ED 128 908 93B 201.0 19.20 1.80		-					A
122 908 93B 87. 1 23. 90 6. 60 ED 122 908 93B 87. 7 32. 30 35. 10 ED 123 908 93B 156. 6 20. 00 22. 00 ED 123 908 93B 157. 2 40. 80 19. 70 ED 123 908 93B 157. 5 33. 90 32. 10 ED 124 908 93B 178. 8 19. 20 23. 40 ED 124 908 93B 179. 5 45. 40 14. 60 ED 124 908 93B 179. 7 32. 30 29. 90 ED 125 908 93B 249. 3 9. 20 15. 30 AD 125 908 93B 249. 6 46. 20 65. 00 AD 125 908 93B 250. 2 48. 50 40. 80 AD 126 908 93B 226. 5 46. 20 13. 90 AD 126 908 93B 226. 5 46. 20 13. 90 AD 126 908 93B 226. 8 40. 80 48. 20 AD 127 908 93B 218. 2 70. 10 46. 10 ED 127 908 93B 218. 2 70. 10 46. 10 ED 127 908 93B 218. 2 70. 10 46. 10 ED 127 908 93B 218. 5 29. 30 32. 10 ED 128 908 93B 218. 5 29. 30 32. 10 E	121	908	93 B	34. 8	44.70	46. 10	A
122 908 93B 87.7 32.30 35.10 E 123 908 93B 156.6 20.00 22.00 E 123 908 93B 157.2 40.80 19.70 E 123 908 93B 157.5 33.90 32.10 E 124 908 93B 178.8 19.20 23.40 E 124 908 93B 179.5 45.40 14.60 E 124 908 93B 179.7 32.30 29.90 E 125 908 93B 249.6 46.20 65.00 A 125 908 93B 249.6 46.20 65.00 A 126 908 93B 250.2 48.50 46.80 A 126 908 93B 226.4 25.40 6.60 A 126 908 93B 226.5 46.20 13.90 A 126 908 93B 226.5 46.20 13.90 A 127 908 93B 218.5 29.30 32.10 E 127 908 93B 218.5 29.30 32.10 E		• • •	•				D
123 908 93B 156.6 20.00 22.00 E 123 908 93B 157.2 40.80 19.70 E 123 908 93B 157.5 33.90 32.10 E 124 908 93B 178.8 19.20 23.40 E 124 908 93B 179.5 45.40 14.60 E 124 908 93B 179.7 32.30 29.90 E 125 908 93B 249.6 46.20 65.00 A 125 908 93B 249.6 46.20 65.00 A 125 908 93B 250.2 48.50 46.80 A 126 908 93B 250.2 48.50 46.80 A 126 908 93B 226.4 25.40 6.60 A 126 908 93B 226.5 46.20 13.90 A 126 908 93B 226.5 46.20 13.90 A 126 908 93B 226.5 46.20 13.90 A 127 908 93B 218.5 29.30 32.10 E 127 908 93B 218.5 29.30 32.10 E							D
123 908 93B 157. 2 40. 80 19.70 E 123 908 93B 157. 5 33. 90 32. 10 E 124 908 93B 178. 8 19. 20 23. 40 E 124 908 93B 179. 5 45. 40 14. 60 E 124 908 93B 179. 7 32. 30 29. 90 E 125 908 93B 249. 3 9. 20 15. 30 A 125 908 93B 249. 6 46. 20 65. 00 A 125 908 93B 250. 2 48. 50 40. 80 A 126 908 93B 226. 5 46. 20 13. 90 A 126 908 93B 226. 5 46. 20 13. 90 A 126 908 93B 226. 8 40. 80 48. 20 A 127 908 93B 218. 2 70. 10 46. 10 E 127 908 93B 218. 2 70. 10 46. 10 E 127 908 93B 218. 5 29. 30 32. 10 E 128 908 93B 218. 5 29. 30 32. 10 E 128	122	908	93B	87.7	32. 30	35. 10	D
123 908 93B 157. 5 33. 90 32. 10 D 124 908 93B 178. 8 19. 20 23. 40 D 124 908 93B 179. 5 45. 40 14. 60 D 124 908 93B 179. 7 32. 30 29. 90 D 125 968 93B 249. 3 9. 20 15. 30 A 125 908 93B 249. 6 46. 20 65. 00 A 125 908 93B 250. 2 48. 50 46. 80 A 126 908 93B 226. 4 25. 40 6. 60 A 126 908 93B 226. 5 46. 20 13. 90 A 126 908 93B 226. 5 46. 20 13. 90 A 126 908 93B 226. 8 40. 80 48. 20 A 127 908 93B 217. 6 45. 40 46. 80 D 127 908 93B 218. 2 70. 10 46. 10 D 127 908 93B 218. 5 29. 30 32. 10 D		•					D
124 908 93B 178.8 19.20 23.40 E 124 908 93B 179.5 45.40 14.60 E 124 908 93B 179.7 32.30 29.90 E 125 968 93B 249.3 9.20 15.30 A 125 908 93B 249.6 46.20 65.00 A 125 908 93B 250.2 48.50 46.80 A 126 908 93B 250.2 48.50 46.80 A 126 908 93B 226.4 25.40 6.60 A 126 908 93B 226.5 46.20 13.90 A 126 908 93B 226.5 46.20 13.90 A 126 908 93B 226.8 40.80 48.20 A 127 908 93B 218.5 29.30 32.10 E							
124 908 93B 179.5 45.40 14.60 E 124 908 93B 179.7 32.30 29.90 E 125 908 93B 249.6 46.20 65.00 A 125 908 93B 250.2 48.50 46.80 A 126 908 93B 226.4 25.40 6.60 A 126 908 93B 226.5 46.20 13.90 A 126 908 93B 226.5 46.20 13.90 A 126 908 93B 226.5 46.20 13.90 A 126 908 93B 226.5 46.20 13.90 A 126 908 93B 226.5 46.20 13.90 A 127 908 93B 218.5 29.30 32.10 E 127 908 93B 218.5 29.30 32.10 E 128 908 93B 218.5 29.30 32.10 E 128	123	908	938	157. 5	33, 90	32. 10	D
124 908 93B 179.7 32.30 29.90 E 125 968 93B 249.3 9.20 15.30 A 125 908 93B 249.6 46.20 65.00 A 126 908 93B 250.2 48.50 46.80 A 126 908 93B 226.4 25.40 6.60 A 126 908 93B 226.5 46.20 13.90 A 126 908 93B 226.5 46.20 13.90 A 126 908 93B 226.5 46.20 13.90 A 127 908 93B 218.2 70.10 46.10 E 127 908 93B 218.5 29.30 32.10 E 128 908 93B 218.5 29.30 32.10 E		•					D
125 968 93B 249.3 9.20 15.30 A 125 908 93B 249.6 46.20 65.00 A 126 908 93B 250.2 48.50 46.80 A 126 908 93B 226.4 25.40 6.60 A 126 908 93B 226.5 46.20 13.90 A 126 908 93B 226.5 46.20 13.90 A 126 908 93B 226.8 40.80 48.20 A 127 908 93B 217.6 45.40 46.80 I 127 908 93B 218.2 70.10 46.10 I 127 908 93B 218.5 29.30 32.10 I 128 908 93B 201.0 19.20 1.80 A		-					
125 908 93B 249.6 46.20 65.00 A 126 908 93B 250.2 48.50 46.80 A 126 908 93B 226.4 25.40 6.60 A 126 908 93B 226.5 46.20 13.90 A 126 908 93B 226.8 40.80 48.20 A 127 908 93B 217.6 45.40 46.80 I 127 908 93B 218.2 70.10 46.10 I 127 908 93B 218.5 29.30 32.10 I 128 908 93B 201.0 19.20 1.80 A	124	708	93B	179.7	32. 30	29. 90	Б
908 93B 250.2 48.50 40.80 A 126 908 93B 226.4 25.40 6.60 A 126 908 93B 226.5 46.20 13.90 A 126 908 93B 226.8 40.80 48.20 A 127 908 93B 217.6 45.40 46.80 E 127 908 93B 218.2 70.10 46.10 E 127 908 93B 218.5 29.30 32.10 E 128 908 93B 201.0 19.20 1.80 A		-					Λ
126 908 93B 226.4 25.40 6.60 A 126 908 93B 226.5 46.20 13.90 A 126 908 73B 226.8 40.80 48.20 A 127 908 93B 217.6 45.40 46.80 I 127 908 93B 218.2 70.10 46.10 I 127 908 93B 218.5 29.30 32.10 I 128 908 93B 201.0 19.20 1.80 A		•					,
126 908 93B 226.5 46.20 13.90 A 126 908 75B 226.8 40.80 48.20 A 127 908 93B 217.6 45.40 46.80 I 127 908 93B 218.2 70.10 46.10 I 127 908 93B 218.5 29.30 32.10 I 128 908 93B 201.0 19.20 1.80 A	, 76	908	93 B	250. 3	48. 50	40.80	A
126 908 73B 226.8 40.80 48.20 A 127 908 93B 217.6 45.40 46.80 I 127 908 93B 218.2 70.10 46.10 I 127 908 93B 218.5 29.30 32.10 I 128 908 93B 201.0 19.20 1.80 A		•					A
127 908 93B 217.6 45.40 46.80 II 127 908 93B 218.2 70.10 46.10 II 127 908 93B 218.5 29.30 32.10 II 128 908 93B 201.0 19.20 1.80 A		-					A
127 908 93B 218.2 70.10 46.10 II 127 908 93B 218.5 29.30 32.10 II 128 908 93B 201.0 19.20 1.80 A	126	908	,525	220. 8	40, 80	5 5. 20	A
127 908 93B 218.5 29.30 32.10 I 128 908 93B 201.0 19.20 1.80 A		•					D
128 908 93B 201.0 19.20 1.80 A		-					D
	127	908	93 B	218.5	29. 30	32. 10	D
		•					A
128 908 93B 201.2 57.00 57.20 A	128	908	73B	201. Z	57,00	57.20	*
129 908 933 201.5 44.70 46.80 A	129	908	933	201.5	44.70	46. 80	A

*D - Descent; S - Steady; A - Arcent; M - Maneuver; H - Hover

TABLE II - contd.

			Time.	Torque Time (pct)					
Sample Number	Aircraft Number	Flight Number	(min)	<u> </u>	2	Flight Condition			
130	908	93B	191.4	25. 40	10 20	A			
130	908	93B	191.5	48, 50	19.70	A			
130	908	93B	191.7	57.80	63.60	A			
131	908	93 P	180. 1	46.40	3.10	A			
131	908	93B	180. 2	50.10	22.60	٨			
131	908	93 B	180.4	77.00	80. 30	A			
132	908	15C	12.0	19. 25	18. 99	D			
132	908	15C	12. 3	23. 87	6.57	D			
132	908	15C	12.5	23. 87	25. 57	D			
133	908	15C	136. 0	23, 10	19.72	D			
133	908	15C	136.4	20. 02	8,77	Ď			
133	908	15C	137.0	39. 27	34. 33	D			
134	908	15C	303. 2	16. 94	18. 26	D			
134	908	15C	303.7	25, 41	10. 23	D			
134	908	15C	304. 1	30. 03	27. 03	D			
135	908	16C	105.5	30. 03	28. 49	Þ			
135	908	16C	108. 3	16. 94	7.30	D			
135	908	16C	115.0	27.72	12.42	D			
135	908	16C	119.7	49. 28	39. 44	D			
136	908	17C	69. 1	22. 33	18. 99	D			
136	908	17C	69. 4	24.64	6.57	D			
136	28	17C	69.7	31.57	28. 49	D			
137	908	17C	75.6	20.79	18, 26	D			
137	908	17C	75. 9	20.02	9. 50	D			
137	908	17C	76. 3	30. 03	37.03	D			
138	908	17 C	202. 4	33. 11	34. 33	D			
138	908	17C	202. 9	28, 49	18. 26	D			
138	908	17C	203. 1	23. 87	26. 30	D			
139	908	53B	18.7	24, 60	11.00	D			
139	908	53B	18. 8	48.50	38.00	D			
139	908	53B	19. 5	42. 40	48. 90	D			
140	908	9 B	22. 8	72. 33	17.53	D			
140	908	9 B	22. 9	20.79	15, 34	D			
140	908	9B	22. 9	3. 85	13.88	D			

*D - Descent; S - Steady; A - Ascent; M - Maneuver; H - Hover

TABLE III. TABULATION OF FLIGHT MODES DURING TORQUE SPLITS

Sample Sample Sample

Sample		Sampla		Sample	
Number	Condition	Number	Condition	Number	Condition
•	_		_		
1	D	63	D	125	D
2	ν.	44	D	126	D
3	\$	65	D	127	D
4	S	66	М	128	D
5 6	Ð	67	S	129	D
	S	68	D	130	D
7	D	69	D	131	g
8	۸	70	D	132	D
9 10	D	71	S	133	D
	D	72	D	134	D
11 12	D	73	D	135	D
13	A	74	D	136	D
13	D	75	S	137	D
15	D	76 77	S	138	D
16	, A	78	S	139	D
17	A		D	140	D
18	D A	79 80	D	141	D
19	D D	80 81	D	142	D
20	H	82	D D	143 144	S
21	S	83	D D		A
22	5 S	84	D D	145 146	s
23	A	85	D	140 147	D D
24	Š	86	Đ	148	
25	D	87	D	149	D
26	Ä	88	D	150	D D
27	Ď	89	ם	151	D
28	Ä	90	Ď	152	S
29	Ď	91	Ď	153	D D
30	Ä	92	Ď	154	D
31	Ď	93	D	155	A
32	S	94	Ď	156	Ď
33	D	95	ñ	157	Ď
34	Ā	76	Ď	158	Š
35	D	97	D	159	s
36	D	98	Ď	160	Š
37	Ä	99	Ď	161	Š
38	S	100	D	162	Ā
39	S	101	D	163	D
40	A	102	Ď	164	Š
41	D	103	D	165	Š
42	A	104	Ď	166	D
43	A	105	D	167	Ď
44	A	106	D	168	D
45	s	107	D	169	D
46	S	108	D	170	Ð
47	s	109	D	171	D
48	S	110	D	172	A
49	D	111	D	173	S
50	A	112	D	174	s
51	D	113	ø	175	D
52	S	114	D	176	н
53	м	115	D	177	D
54	s	116	D	178	D
55	S	117	Ð	179	A
56	D	118	D	180	D
57	D	119	D	181	D
58	D	120	D	182	D
59	D	121	D	183	A
60	S	122	D	184	Q
61	A	123	D	185	Ā
62	A	124	D	186	A
92	••				

Unclassified

Security Classification	
DOCUMENT CONTI	
: ORIGINATING ACTIVITY (Corporate author)	modelles must be entered when the everall report is classified)
	Unclassified
US Army Aviation Materiel Laboratories	M. GROUP
Fort Eustis, Virginia	
3. REPORT TITLE	
CH-47A CHINOOK ENGINE LOAD SHARII	NG
4. DESCRIPTIVE HOTES (Type of report and Inclusive dates)	
Engineering Laboratory Report	
5. AU Treo fitti (Piret mape, middle inidio), (pat mame)	
L. R. Bartek	
R. Hunt	
6. REPORT DATE	76. TOTAL NO. OF PAGES 76. NO. OF REPS
November 1968	81 1
M. CONTRACT OR GRANT NO.	14. GRIGHATOR'S REPORT HUMBERIN
A PROJECT NO. 1M131201D14415	USAAVLABS Technical Report 68-80
House Task EL 65-29	•
e.	16. OTHER REPORT HOUS (Any other numbers that may be assigned
	Ale report)
	<u> </u>
19. DISTRIBUTION STATEMENT	
This document has been approved for pub	lic release and sale; its distribution
is unlimited.	
11. SUPPLEMENTARY NOTES	12. SPONSORING MILITARY ACTIVITY
	US Army Aviation Materiel Laboratories
	Fort Eustis, Virginia
IS. ABSTRACT	<u> </u>
•	of unequal load sharing by the engines in
	an engine load-sharing study conducted on
the CH-54A Skycrane helicopter in 1965 1	ed to a similar study on the CH-47A
Chinook helicopter.	
	rpm, engine torque, exhaust gas tempera-
ture, main rotor rpm, and outside air ter	
flight conditions. The gross weight at tal	
pressures were also recorded as supplem	_
•	the variations in engine load sharing as a
function of the other aircraft parameters.	•
It was found that for the CH-47A Chinook	the relative frequency of occurrence of
torque splits greater than 20 percent is le	- · ·
Skycrane.	ess than one-had that for the Oli-Jan
DD 1650 4.4.72 REPLACED SO PORM 1475, 1 JAN 94, 1	Najya id
DD 187 1473 POPLETE POR AREN LEE. JAN 14.	Unclassified

Security Classification

Unclassified

Unclassified						
	LINK A LIN		time a time a			
14. KEY WORDS			LINK B		LINKE	
	ROLE	WT	ROLE	WT	ROLE	WT
Vasure I ift Valicantons		l			,	
Heavy-Lift Helicopters	1				1	
Helicopter Engine Load Sharing	l l				1 1	
Operational Helicopte: Data						
	•		ĺ		i i	
	ļ	1				
		l				
		1	1			
	1	[(ſ	
	1	l	1	l		
			l	ŧ		
	1	1	ļ	1	!	
	l i	ł	1			
		l	1	ŀ		
])	}	ì	}	
		l	1	Ī]	
]	j	l		
		1	ł	I		
		1		l	Į į	
	1	[[
	- 1	ł	1	ŧ		
	- 1	ľ	Ì	ł	i i	
	1	1				
	i i	ł	ł	Ī	1 1	
		ŀ	ĺ			
	1	j	}	ŀ		
		ļ]	ļ		
	1	ł	1	l		
		ĺ	•			
		i	1	ŀ	1	
	- 1	[i i	
		i				
	l	ł			ł	
			i		1	
		1				
		ł			1	
		I				
					<u> </u>	
		1		ŀ		
		ł		ŀ	Į į	
		l				
				Ī	{	
		Ī	-			
					i i	
			İ		} i	
		l		Ī]	
					l i	
				l		
	1			1		
					ł I	
					j f	
						1
					l i	1
		L	L			

Unclassified

12510-68