Math 210A Lecture 1 Notes

Daniel Raban

September 28, 2018

1 Introduction to Category Theory

1.1 Categories and subcategories

Definition 1.1. A category C is

- 1. a class¹ Obj(\mathcal{C}) of **objects**,
- 2. for each $A, B \in \text{Obj } \mathcal{C}$), a set $\text{Hom}_{\mathcal{C}}(A, B)$ of **morphisms** from A to B (we write $f: A \to B$ for $f \in \text{Hom}_{\mathcal{C}}(A, B)$),
- 3. a composition map $\operatorname{Hom}_{\mathcal{C}}(A,B) \times \operatorname{Hom}_{\mathcal{C}}(B,C) \to \operatorname{Hom}_{\mathcal{C}}(A,C)$ for all $A,B,C \in \operatorname{Obj}(\mathcal{C})$ (we write this as $(f,g) \mapsto g \circ f$),

such that

- 1. for each $A \in \text{Obj}(\mathcal{C})$, we have an **identity morphism** $\text{id}_A : A \to A$ such that $f \circ \text{id}_A = f$ and $\text{id}_A \circ g = g$ for all $f : A \to B, g : B \to A$ and $B \in \text{Obj}(\mathcal{C})$.
- 2. $h \circ (g \circ f) = (h \circ g) \circ f$ for all $f: A \to B, g: B \to C, h: C \to D$ with $A, B, C, D \in \text{Obj}(\mathcal{C})$.

Notation: we usually say $A \in \mathcal{C}$ to mean $A \in \text{Obj}(\mathcal{C})$.

Definition 1.2. A category is small if $Obj(\mathcal{C})$ is a set.

Example 1.1. Set is the category of sets. $Obj(Set) = \{sets\}$. $Hom_{Set}(A, B) = \{functions f : A \to B\}$.

Definition 1.3. A semigroup S is a pair (S, \cdot) of a set S and a binary operation \cdot : $S \times S \to S$ on S that is associative. A **homomorphism of semigroups** is a function $f: S \to T$ of semigroups such that $f(a \cdot_S b) = f(a) \cdot_T f(b)$ for all $a, b, \in S$.

¹We cannot use sets here because, for example, there is no set of all sets.

The idea of a homomorphism is that the function "respects" the operations on S and T. Sometimes, we write ab when we mean $a \cdot b$.

Example 1.2. The category Semi is the category with objects being semigroups and morphisms being homomorphisms of semigroups.

Definition 1.4. A subcategory \mathcal{D} of a category \mathcal{C} is a category with

- 1. $Obj(\mathcal{D})$ a subclass of $Obj(\mathcal{C})$,
- 2. $\operatorname{Hom}_{\mathcal{D}}(A, B) \subseteq \operatorname{Hom}_{\mathcal{C}}(A, B)$ for all $A, B \in \mathcal{D}$,
- 3. the composition in \mathcal{D} agrees with the composition in \mathcal{C} ,
- 4. the identity $\mathrm{id}_A \in \mathrm{Hom}_{\mathcal{C}}(A,A)$ for $A \in \mathcal{D}$ is the identity in $\mathrm{Hom}_{\mathcal{D}}(A,A)$.

Example 1.3. Here is a nonexample. Semi is not a subcategory of Set.

1.2 Monoids and groups

Definition 1.5. A monoid S is a semigroup with an identity element $e \in S$ such that ex = x = xe for all $x \in S$. A homorphism of monoids is a function $f : S \to T$ of monoids such that f(ab) = f(a)f(b) for all $a, b \in S$ and $f(e_S) = e_T$.

Example 1.4. The category Mon is the category with objects being monoids and morphisms being homomorphisms of monoids. Mon is a subcategory of Semi.

Example 1.5. A monoid G gives a category \mathbb{G} with $\mathrm{Obj}(\mathbb{G}) = \{G\}$ and $\mathrm{Hom}_{\mathbb{G}}(G, G) = \{\text{elements of } G\} = G$. For all $g, h \in G$, we define $g \circ h = g \cdot h$.

This goes the other way, as well. If you have a category with one object, then its morphisms form a monoid.

Definition 1.6. A group G is a monoid in which every element has an inverse; i.e. for every $g \in G$, there exists a $g^{-1} \in G$ such that $g \cdot g^{-1} = e = g^{-1} \cdot g$.

Example 1.6. Grp is the category of groups. The objects are groups, and the morphisms are homomorphisms of semigroups between groups ("group homomorphisms"). These are also monoid homomorphisms because f(g) = f(eg) = f(e)f(g) implies that e = f(e) by multiplication by $f(g)^{-1}$. Also, $e = f(gg^{-1}) = f(g)f(g^{-1})$ implies that $f(g^{-1}) = f(g)^{-1}$.

Definition 1.7. A subcategory \mathcal{D} of a category \mathcal{C} is **full** if $\operatorname{Hom}_{\mathcal{D}}(A, B) = \operatorname{Hom}_{\mathcal{C}}(A, B)$ for all $A, B \in \mathcal{D}$.

Example 1.7. Grp is a full subcategory of Semi.

Definition 1.8. A group G is **abelian** if its operation is commutative; i.e. gh = hg for all $g, h \in G$.

Example 1.8. Ab is the category of abelian groups. This is a full subcategory of Grp. with objects the abelian groups.

Notation: If the operation on a group is +, then the group is assumed to be abelian. The identity element is denoted 0, and the inverse of a is denoted -a.

Definition 1.9. Cyclic groups are the groups $\langle x \rangle$ consisting of powers

$$x^{n} = \begin{cases} x \cdots x & n > 0 \\ e & n = 0 \\ (x^{-n})^{-1} & n < 0 \end{cases}$$

of a single element.

Example 1.9. $\mathbb{Z} = \langle 1 \rangle$, and $\mathbb{Z}/n\mathbb{Z} = \langle 1 \pmod{n} \rangle = \{\text{integers } (\text{mod } n)\}.$

Definition 1.10. A ring R is a triple $(R, +, \cdot)$ of an abelian group (R, +) and an associative operation \cdot on R with identity denoted 1 such that the distributive laws a(b+c) = ab + ac and (a+b)c = ac + b hold. A **ring homomorphism** is a function $f: R \to R'$ of rings such that f(x+y) = f(x) + f(y), f(xy) = f(x)f(y), and f(1) = 1 for all $x, y \in R$.

1.3 Rings, fields, and modules

Definition 1.11. A **commutative ring** is a ring for which \cdot is commutative. A **division ring** (or skew field) is a ring such that $R \setminus \{0\}$ is a group under \cdot . A **field** is a commutative division ring.

Example 1.10. Ring is the category of rings. It has the full subcategories CRing of commutative rings and Fld of fields.

Definition 1.12. A (left) **module** A for a ring R is a triple $(A, +, \cdot)$, where (A, +) is an abelian group and $\cdot : R \times A \to A$

- 1. is associative $((rs)a = r(sa) \text{ for all } r, s \in R \text{ and } a \in A)$
- 2. satisfies $1 \cdot a = a$ for all $a \in A$
- 3. is distributive $((r+s)a = ra + sa \text{ and } r(a+b) = ra + rb \text{ for all } r, s \in R \text{ and } a, b \in A)$.