# A functional MRI mind-reading game

### Charles Zheng and Yuval Benjamini

Stanford University

January 27, 2016

## Functional MRI



## Functional MRI

| Stimuli x                                                      | Response y                                                 |
|----------------------------------------------------------------|------------------------------------------------------------|
| $ \begin{pmatrix} 1.0 \\ 0 \\ 3.0 \\ 0 \\ -1.2 \end{pmatrix} $ | $\begin{pmatrix} 1.2 \\ 0 \\ -1.8 \\ -1.2 \end{pmatrix}$   |
| $\begin{pmatrix} 0 \\ -2.2 \\ -3.1 \\ 4.5 \\ 0 \end{pmatrix}$  | $\begin{pmatrix} -1.2 \\ -1.9 \\ 0.5 \\ 0.6 \end{pmatrix}$ |

# **Encoding vs Decoding**

- Encoding: predict y from x.
- Decoding: reconstruct x from y (mind-reading).

# A mind-reading game: Classification



# A mind-reading game: Classification



# A mind-reading game: Identification



## Test Data (new images!)



## Section 2

# Theory

### Statistical formulation I

#### Training data.

- Given training classes  $S_{\text{train}} = \{ \text{train}: 1, \dots, \text{train}: k \}$  where each class train: i has features  $x_{\text{train}:i}$ .
- For  $t = 1, ..., T_{train}$ , choose class label  $z_{train:t} \in S_{train}$ ; generate

$$y_{\mathsf{train}:t} = f(x_{z_{\mathsf{train}:t}}) + \epsilon_t$$

where f is an unknown function, and  $\epsilon_t$  is i.i.d. from a known or unknown distribution.

#### Test data.

- Given test stimuli  $S_{\text{test}} = \{\text{test:}1, \dots, \text{test:}\ell\}$  with features  $\{x_{\text{test:}1}, \dots, x_{\text{test:}\ell}\}$
- Task: for  $t = 1, ..., T_{\text{test}}$ , label  $y_{\text{test}:t}$  by stimulus  $\hat{z}_{\text{test}:t} \in S_{\text{train}}$ ; try to minimize misclassification rate

### Statistical formulation II

- f is an unknown function
- P is a known or unknown distribution over image features
- Training data. Draw  $x_{\text{train}:i} \sim P$  for i = 1 hdots, k.
- Test data. Draw  $x_{\text{train}:i} \sim P$  for  $i = 1 \text{ hdots}, \ell$ .
- Theoretical question: Analyze average misclassification rate when classes are generated this way

# Toy example I



- Features x are one-dimensional real numbers, as are responses y. Parameter  $\beta$  is also a real number.
- Model is linear:  $y \sim N(x\beta, \sigma_{\epsilon}^2)$



Suppose we estimated  $\hat{\beta}$  from training data.



Generate features  $x_{\text{test}:1}, \dots, x_{\text{test}:\ell}$  iid  $N(0, \sigma_x^2)$ .



Hidden labels  $z_{\text{test}:t}$  are iid uniform from  $S_{\text{train}}$ . Generate  $y_{\text{test}:t} \sim N(\beta x_{z_{\text{test}:t}}, \sigma_{\epsilon}^2)$ 

#### Information given



Classify  $\hat{y}_{\text{test}:t}$ 



$$\hat{\mu}_{\mathsf{test}:i} = \hat{\beta} x_{\mathsf{test}:i}$$



х

#### Classification



$$\hat{z}_{\text{test}:t} = \operatorname{argmin}_{z} \ell_{\hat{\mu}_{z}}(y_{\text{test}:t})$$



#### Classification



$$\hat{z}_{\text{test}:t} = \operatorname{argmin}_{z}(\hat{\mu}_{z} - y_{\text{test}:t})^{2}$$



#### Classification



#### Misclassification



# Toy example I



- Generate features  $x_{\text{test}:1}, \dots, x_{\text{test}:\ell}$  iid  $N(0, \sigma_x^2)$ .
- Hidden labels  $z_{\text{test}:t}$  are iid uniform from  $S_{\text{train}}$ . Generate  $y_{\text{test}:t} \sim N(\beta x_{z_{\text{test}:t}}, \sigma_{\epsilon}^2)$
- ullet Classify  $\hat{y}_{ ext{test}:t}$  by maximum likelihood assuming  $\hat{eta}$  is correct. Thus:

$$\hat{z}_{\text{test}:t} = \operatorname{argmin}_{z} (\hat{\beta} x_{z} - y_{\text{test}:t})^{2}$$



# Toy example I: Questions

- We know the prediction error is minimized when  $\hat{\beta}=\beta$ . Is it also true that misclassification error in the mind-reading game is minimized when  $\hat{\beta}=\beta$ ?
- ② Even if the answer to 1. is yes, should we estimate  $\hat{\beta}$  using the same methods as in least-squares regression?

# Toy example I: Analysis

• The expected misclassification error is the same if we take  $T_{\text{test}} = 1$ . Then let  $(x_*, y_*)$  be the feature-response pair in the test set, where

$$y_* = x_*\beta + \epsilon_*$$

- Denote the features for the incorrect classes as  $x_1, \ldots, x_{\ell-1}$ .
- Let  $\delta = \hat{\beta} \beta$ .

Ignore the possibility of ties. The response  $y_*$  is misclassified if and only if

$$\min_{i=1,...,\ell-1} |y_* - x_i \hat{\beta}| < |y_* - x_* \hat{\beta}|$$

equivalently

$$\cup_{i=1,\ldots,\ell-1} E_i$$

where  $E_i$  is the event

$$|x_*\beta + \epsilon_* - x_i(\beta + \delta)| < |-\delta x_* + \epsilon_*|$$

with probability

$$\Pr[E_i] = \left| \Phi\left(\frac{x_*}{\sigma_X}\right) - \Phi\left(\frac{x_*(\beta - \delta) + 2\epsilon_*}{\sigma_X(\beta + \delta)}\right) \right|$$

## Toy example I: Analysis

• Use the following conditioning

$$\mathbf{E}[\mathsf{misclassification}] = \mathbf{E}[\mathbf{E}[\Pr_{x_1, \dots, x_\ell}[\cup_i E_i] | x_* = x, \epsilon_* = \epsilon]]$$

An exact expression for expected misclassification is therefore

$$1-\int_{\epsilon}\left[\int_{x}\left(1-\left|\Phi\left(rac{x}{\sigma_{x}}
ight)-\Phi\left(rac{x(eta-\delta)+2\epsilon}{\sigma_{x}(eta+\delta)}
ight)
ight|
ight)^{\ell-1}d\Phi(rac{x}{\sigma_{x}})
ight]d\Phi(rac{\epsilon}{\sigma_{\epsilon}})$$

• Question 1: Is this minimized at  $\hat{\beta} = \beta$ ?

Answer: yes. (Part of a proof:)

Fix  $\epsilon > 0$ . The derivative of the inner integral wrt  $\delta = 0$  is proportional to

$$\int_{x} (1 - \Phi(\frac{x\beta + 2\epsilon}{\sigma_{x}\beta}) + \Phi(\frac{x}{\sigma_{x}})) \phi(\frac{x\beta + 2\epsilon}{\sigma_{x}\beta}) (x + \frac{\epsilon}{\beta}) \phi(\frac{x}{\sigma_{x}}) dx$$

In turn

$$\phi\left(\frac{x\beta + 2\epsilon}{\sigma_x\beta}\right)\phi\left(\frac{x}{\sigma_x}\right) \propto \phi\left(\frac{\sqrt{2}(x + \frac{\epsilon}{\beta})}{\sigma_x}\right)$$

which is the density of a normal variate with mean  $-\epsilon/\beta$  But now note that the other terms

$$\left(1 - \Phi\left(\frac{x\beta + 2\epsilon}{\sigma_x\beta}\right) + \Phi\left(\frac{x}{\sigma_x}\right)\right) \left(x - \frac{\epsilon}{\beta}\right)$$

are symmetric about  $x = -\frac{\epsilon}{\beta}$ .

Thus by symmetry, the derivative of the inner integral  $\delta=0$  vanishes. The same argument works for  $\epsilon<0$ , hence the misclassification rate is stationary at  $\hat{\beta}=\beta$ .

## Toy example I: Estimation

- Second question: what about estimation?
- Take a Bayesian viewpoint: suppose we have a posterior distribution for  $\hat{\beta}$ , e.g.  $\beta \sim N(\hat{\beta}_{MAP}, \sigma_{\beta}^2)$ .
- For *least-squares regression*, we would use  $\hat{\beta} = \hat{\beta}_{MAP}$ , the posterior mean.
- For identification, we would choose

$$\hat{\beta}_{Bayes} = \operatorname{argmin}_{\hat{\beta}} \int R(\beta; \hat{\beta}) \phi \left( \frac{\beta - \hat{\beta}_{MAP}}{\sigma_{\beta}} \right) d\beta$$

where R is the expected misclassification rate.

## Toy example I: Estimation



The Bayes point estimate for identification is larger than the Bayes point estimate for least-squares prediction.

## More questions

- **3** What happens if the true regression function f is nonlinear, but we restrict  $\hat{f}$  to be linear?
- What happens when the number of classes  $\ell$  increases? What if  $\ell$  increases while  $\sigma^2_\epsilon$  decreases?

# Toy example IIa



# Toy example IIa



Effect of increasing  $\ell$ .





# Why is this?

- We can relate identification to regression with a different loss function
- Least squares loss

$$\mathbf{E}[(y-\hat{y})^2]$$

Identification loss

$$\mathsf{E}[1 - \mathsf{Pr}[|y - \hat{y}'| < |y - \hat{y}|]^{\ell-1}]$$

where  $\hat{y}'$  is the predicted value for a randomly drawn x.

# Why is this?

Identification loss more closely resembles 0-1 loss as  $\ell$  increases.



## Section 3

# Methodology

### Linear identification

### Model fitting

- Inputs: features for training classes  $\{x_{\text{train}:i}\}_{i=1}^k$  and points  $y_t$  with labels  $z_t$  for t = 1, ..., T. Features x have dimension p, responses y have dimension q.
- Outputs:  $p \times q$  coefficient matrix B and  $1 \times q$  intercept term b for a linear model

$$y \approx B^T x + b^T$$

and estimated covariance  $\hat{\Sigma}_{\epsilon}$  for noise in y.

#### Identification

- Inputs: test class features  $x_{\text{test: }i}$  for  $i=1,\ldots,\ell$ . New point  $y_*$ .
- Output: label  $\hat{z}_*$  given by

$$\hat{z}_* = \operatorname{argmin}_{z = \mathsf{test}: 1, \dots, \mathsf{test}: \ell} d_{\hat{\Sigma}_{\epsilon}} (B^T x_z + b, y_*)^2$$

where  $d_{\Sigma}(\cdot,\cdot)$  is the Mahalanobis distance.

• Evaluation: misclassification comparing  $\hat{z}_*$  with true label  $z_*$ .



# Model fitting

• Inputs: features for training classes  $\{x_{\text{train}:i}\}_{i=1}^k$  and points  $y_t$  with labels  $z_t$  for  $t=1,\ldots,T$ .

#### Procedure

- Estimate  $\hat{\Sigma}_x$  from sample covariance of  $\{x_{\text{train}:i}\}_{i=1}^k$  and  $\hat{\mu}_x$  from sample mean. Let  $\hat{P}_x$  be the distribution of  $N(\hat{\mu}_x, \hat{\Sigma}_x)$
- **2** Estimate  $\hat{\Sigma}_{\epsilon}$  from pooled sample within-class covariance of  $y_t$
- $\odot$  Maximize for B, b:

$$\sum_{t=1}^{T} \left[ \int_{\mathbb{R}^{p}} I\{d(B^{T}x + b^{T}, y_{t}) < d(B^{T}x_{z_{t}} + b^{T}, y_{t})\}d\hat{P}_{x}(x) \right]^{\ell-1}$$

**1** Output B, b,  $\hat{\Sigma}_{\epsilon}$ 

## Computation

• Maximize for *B*, *b*:

$$\sum_{t=1}^{T} 1 - \mathcal{L}((x_{z_t}, y_t); B, b)$$

where

$$\mathcal{L}((x_{z_t}, y_t), B, b) = 1 - \left[ \int_{\mathbb{R}^p} I\{d(B^T x + b^T, y_t) < d(B^T x_{z_t} + b^T, y_t)\} d\hat{F}_{t_t} \right]$$

ullet Use iteratively reweighted least squares. In iteration k+1, update

$$(B^{(k+1)}, b^{(k+1)}) = \operatorname{argmin}_{B,b} \sum_{t=1}^{T} w_t^{(k)} ||y_t - B^T x_{z_t} - b^T||^2$$

where

$$w^{(k)} = \frac{\mathcal{L}((x_{z_t}, y_t), B^{(k)}, b^{(k)})}{||y_t - (B^{(k)})^T x_{z_t} - (b^{(k)})^T||^2}$$

### Section 4

## Issues

# Toy example IIb





# Toy example IIb



Effect of increasing  $\ell$ .



Effect of increasing  $\ell$ : global trends will become ignored in favor of locally linear trends!

## **Implications**

- "The model is always wrong"
- Statistical methods should be robust to small deviations from the model
- Even when minor nonlinearities exist in the model, identification performance fails to reflect global fit

### Solution: Label sets

- One option is to only use small  $\ell$ . However, this is not satisfactory since with good signal-to-noise ratio, we should be able to identify a stimuli from a large set of candidates.
- Develop a method for producing a set of labels for each point rather than a single label. Evaluate the method using a metric such as precision-recall.
- The labeller would assign a proportional number of labels to each point as  $\ell$  increases, thus maintaining coverage probability. Thus, it will no longer become optimal to just "give up" on global estimation as  $\ell$  increases.
- It would be desirable to find a loss function so that the optimal parametric model is fixed as  $\ell$  varies.

### References

- Kay, KN., Naselaris, T., Prenger, R. J., and Gallant, J. L. "Identifying natural images from human brain activity". *Nature* (2008)
- Vu, V. Q., Ravikumar, P., Naselaris, T., Kay, K. N., and Yu, B. "Encoding and decoding V1 fMRI responses to natural images with sparse nonparametric models", The Annals of Applied Statistics. (2011)
- Chen, M., Han, J., Hu, X., Jiang, Xi., Guo, L. and Liu, T. "Survey of encoding and decoding of visual stimulus via fMRI: an image analysis perspective." *Brain Imaging and Behavior*. (2014)