

Definition. A tree

Definition. A *tree* is a connected graph

Definition. A *tree* is a connected graph with no cycles (acyclic).

Observations about trees:

1. Any two vertices of a tree

Observations about trees:

1. Any two vertices of a tree are connected by exactly one path

- 1. Any two vertices of a tree are connected by exactly one path
- 2. Deleting any edge

- 1. Any two vertices of a tree are connected by exactly one path
- 2. Deleting any edge will disconnect the tree

- 1. Any two vertices of a tree are connected by exactly one path
- 2. Deleting any edge will disconnect the tree
- 3. Adding any edge between two vertices

- 1. Any two vertices of a tree are connected by exactly one path
- 2. Deleting any edge will disconnect the tree
- 3. Adding any edge between two vertices will create at least one cycle

Observations about trees:

- 1. Any two vertices of a tree are connected by exactly one path
- 2. Deleting any edge will disconnect the tree
- 3. Adding any edge between two vertices will create at least one cycle

Number of edges of a tree with n vertices:

Observations about trees:

- 1. Any two vertices of a tree are connected by exactly one path
- 2. Deleting any edge will disconnect the tree
- 3. Adding any edge between two vertices will create at least one cycle

Number of edges of a tree with n vertices: n-1

Observations about trees:

- 1. Any two vertices of a tree are connected by exactly one path
- 2. Deleting any edge will disconnect the tree
- 3. Adding any edge between two vertices will create at least one cycle

Number of edges of a tree with n vertices: n-1

Theorem.

Observations about trees:

- 1. Any two vertices of a tree are connected by exactly one path
- 2. Deleting any edge will disconnect the tree
- 3. Adding any edge between two vertices will create at least one cycle

Number of edges of a tree with n vertices: n-1

Theorem. A connected graph with n vertices is a tree if and only if it has n-1 edges

Observations about trees:

- 1. Any two vertices of a tree are connected by exactly one path
- 2. Deleting any edge will disconnect the tree
- 3. Adding any edge between two vertices will create at least one cycle

Number of edges of a tree with n vertices: n-1

Theorem. A connected graph with n vertices is a tree if and only if it has n-1 edges

Proof.

Observations about trees:

- 1. Any two vertices of a tree are connected by exactly one path
- 2. Deleting any edge will disconnect the tree
- 3. Adding any edge between two vertices will create at least one cycle

Number of edges of a tree with n vertices: n-1

Theorem. A connected graph with n vertices is a tree if and only if it has n-1 edges

Proof. Assume the tree has n vertices and m edges. \Box

Observations about trees:

- 1. Any two vertices of a tree are connected by exactly one path
- 2. Deleting any edge will disconnect the tree
- 3. Adding any edge between two vertices will create at least one cycle

Number of edges of a tree with n vertices: n-1

Theorem. A connected graph with n vertices is a tree if and only if it has n-1 edges

Proof. Assume the tree has n vertices and m edges. Delete 1 leaf

Observations about trees:

- 1. Any two vertices of a tree are connected by exactly one path
- 2. Deleting any edge will disconnect the tree
- 3. Adding any edge between two vertices will create at least one cycle

Number of edges of a tree with n vertices: n-1

Theorem. A connected graph with n vertices is a tree if and only if it has n-1 edges

Proof. Assume the tree has n vertices and m edges. Delete 1 leaf to get a tree with

Observations about trees:

- 1. Any two vertices of a tree are connected by exactly one path
- 2. Deleting any edge will disconnect the tree
- 3. Adding any edge between two vertices will create at least one cycle

Number of edges of a tree with n vertices: n-1

Theorem. A connected graph with n vertices is a tree if and only if it has n-1 edges

Proof. Assume the tree has n vertices and m edges. Delete 1 leaf to get a tree with n-1 vertices \square

Observations about trees:

- 1. Any two vertices of a tree are connected by exactly one path
- 2. Deleting any edge will disconnect the tree
- 3. Adding any edge between two vertices will create at least one cycle

Number of edges of a tree with n vertices: n-1

Theorem. A connected graph with n vertices is a tree if and only if it has n-1 edges

Proof. Assume the tree has n vertices and m edges. Delete 1 leaf to get a tree with n-1 vertices and m-1 edges. \Box

Observations about trees:

- 1. Any two vertices of a tree are connected by exactly one path
- 2. Deleting any edge will disconnect the tree
- 3. Adding any edge between two vertices will create at least one cycle

Number of edges of a tree with n vertices: n-1

Theorem. A connected graph with n vertices is a tree if and only if it has n-1 edges

Proof. Assume the tree has n vertices and m edges. Delete 1 leaf to get a tree with n-1 vertices and m-1 edges. By induction, m-1=

Observations about trees:

- 1. Any two vertices of a tree are connected by exactly one path
- 2. Deleting any edge will disconnect the tree
- 3. Adding any edge between two vertices will create at least one cycle

Number of edges of a tree with n vertices: n-1

Theorem. A connected graph with n vertices is a tree if and only if it has n-1 edges

Proof. Assume the tree has n vertices and m edges. Delete 1 leaf to get a tree with n-1 vertices and m-1 edges. By induction, m-1=n-2,

Observations about trees:

- 1. Any two vertices of a tree are connected by exactly one path
- 2. Deleting any edge will disconnect the tree
- 3. Adding any edge between two vertices will create at least one cycle

Number of edges of a tree with n vertices: n-1

Theorem. A connected graph with n vertices is a tree if and only if it has n-1 edges

Proof. Assume the tree has n vertices and m edges. Delete 1 leaf to get a tree with n-1 vertices and m-1 edges. By induction, m-1=n-2, i.e. m=n-1. \square

Observations about trees:

- 1. Any two vertices of a tree are connected by exactly one path
- 2. Deleting any edge will disconnect the tree
- 3. Adding any edge between two vertices will create at least one cycle

Number of edges of a tree with n vertices: n-1

Theorem. A connected graph with n vertices is a tree if and only if it has n-1 edges

Proof. Assume the tree has n vertices and m edges. Delete 1 leaf to get a tree with n-1 vertices and m-1 edges. By induction, m-1=n-2, i.e. m=n-1. \square

Definition. A *tree* is a connected graph with no cycles Conversely, If the graph with n vertices and n-1 edges (acyclic). A vertex of degree 1 is a *leaf* is not a tree,

Observations about trees:

- 1. Any two vertices of a tree are connected by exactly one path
- 2. Deleting any edge will disconnect the tree
- 3. Adding any edge between two vertices will create at least one cycle

Number of edges of a tree with n vertices: n-1

Theorem. A connected graph with n vertices is a tree if and only if it has n-1 edges

Proof. Assume the tree has n vertices and m edges. Delete 1 leaf to get a tree with n-1 vertices and m-1 edges. By induction, m-1=n-2, i.e. m=n-1. \square

(acyclic). A vertex of degree 1 is a *leaf*

Definition. A tree is a connected graph with no cycles Conversely, If the graph with n vertices and n-1 edges is not a tree, delete k edges to make it a tree.

Observations about trees:

- 1. Any two vertices of a tree are connected by exactly one path
- 2. Deleting any edge will disconnect the tree
- 3. Adding any edge between two vertices will create at least one cycle

Number of edges of a tree with n vertices: n-1

Theorem. A connected graph with n vertices is a tree if and only if it has n-1 edges

Proof. Assume the tree has n vertices and m edges. Delete 1 leaf to get a tree with n-1 vertices and m-1edges. By induction, m-1=n-2, i.e. m=n-1. \square (acyclic). A vertex of degree 1 is a *leaf*

Observations about trees:

- 1. Any two vertices of a tree are connected by exactly one path
- 2. Deleting any edge will disconnect the tree
- 3. Adding any edge between two vertices will create at least one cycle

Number of edges of a tree with n vertices: n-1

Theorem. A connected graph with n vertices is a tree if and only if it has n-1 edges

Proof. Assume the tree has n vertices and m edges. Delete 1 leaf to get a tree with n-1 vertices and m-1edges. By induction, m-1=n-2, i.e. m=n-1. \square

Definition. A tree is a connected graph with no cycles Conversely, If the graph with n vertices and n-1 edges is not a tree,

delete k edges to make it a tree.

Theorem.

Conversely, If the graph with n vertices and n-1 edges is not a tree,

delete k edges to make it a tree.

Theorem. G connected,

Conversely, If the graph with n vertices and n-1 edges is not a tree,

delete k edges to make it a tree.

Theorem. G connected, $e \in E(G)$,

Conversely, If the graph with n vertices and n-1 edges is not a tree,

delete k edges to make it a tree.

Theorem. G connected, $e \in E(G)$, G - e can have

Conversely, If the graph with n vertices and n-1 edges is not a tree,

delete k edges to make it a tree.

Theorem. G connected, $e \in E(G)$, G - e can have Conversely, If the graph with n vertices and n - 1 edges at most 2 components

is not a tree,

delete k edges to make it a tree.

Theorem. G connected, $e \in E(G)$, G - e can have Conversely, If the graph with n vertices and n - 1 edges at most 2 components is not a tree, delete k edges to make it a tree. Proof. \Box The resulting tree has n vertices but n - k - 1 edges.

Theorem. G connected, $e \in E(G)$, G - e can have Conversely, If the graph with n vertices and n - 1 edges at most 2 components

Proof. $e = \{x, y\}.$

is not a tree,

delete k edges to make it a tree.

Proof. $e = \{x, y\}.$

Case 1:

is not a tree,

delete k edges to make it a tree.

Proof. $e = \{x, y\}.$

Case 1: There is another path P linking x and y

is not a tree,

delete k edges to make it a tree.

Proof. $e = \{x, y\}.$

Case 1: There is another path P linking x and yClaim:

is not a tree,

delete k edges to make it a tree.

Proof. $e = \{x, y\}.$

Case 1: There is another path P linking x and yClaim: G - e is connected.

is not a tree,

delete k edges to make it a tree.

Proof. $e = \{x, y\}.$

Case 1: There is another path P linking x and y Claim: G - e is connected.

If a path linking two points, a and b, does not contain e

is not a tree,

delete k edges to make it a tree.

Proof. $e = \{x, y\}.$

Case 1: There is another path P linking x and y Claim: G - e is connected.

If a path linking two points, a and b, does not contain e it still links a and b in G - e.

is not a tree,

delete k edges to make it a tree.

at most 2 components

Proof. $e = \{x, y\}.$

Case 1: There is another path P linking x and y Claim: G - e is connected.

If a path linking two points, a and b, does not contain eit still links a and b in G - e.

If the path contains e

Theorem. G connected, $e \in E(G)$, G - e can have Conversely, If the graph with n vertices and n - 1 edges is not a tree,

delete k edges to make it a tree.

Proof. $e = \{x, y\}.$

Case 1: There is another path P linking x and y Claim: G - e is connected.

If a path linking two points, a and b, does not contain eit still links a and b in G - e.

If the path contains e Replace e by P

is not a tree,

delete k edges to make it a tree.

Proof. $e = \{x, y\}.$

Case 1: There is another path P linking x and y Claim: G - e is connected.

If a path linking two points, a and b, does not contain eit still links a and b in G - e.

If the path contains e Replace e by P

Case 2:

is not a tree,

delete k edges to make it a tree.

Proof. $e = \{x, y\}.$

Case 1: There is another path P linking x and y Claim: G - e is connected.

If a path linking two points, a and b, does not contain eit still links a and b in G - e.

If the path contains e Replace e by P

Case 2: There is no other path linking x and y

is not a tree,

delete k edges to make it a tree.

Theorem. G connected, $e \in E(G)$, G - e can have Define $A := \{v \in at \ most \ 2 \ components \ V(G) \mid \text{ there is a path from v to x not containing } e\}$

Proof. $e = \{x, y\}$.

Case 1: There is another path P linking x and y

Claim: G - e is connected.

If a path linking two points, a and b, does not contain e it still links a and b in G - e.

If the path contains e Replace e by P

Case 2: There is no other path linking x and y

Theorem. G connected, $e \in E(G)$, G - e can have Define A := at most 2 components V(G) | there is a path from v to

V(G) | there is a path from v to x not containing e}

Proof. $e = \{x, y\}.$

A is in one connected component containing x

Case 1: There is another path P linking x and y Claim: G - e is connected.

If a path linking two points, a and b, does not contain e it still links a and b in G - e.

If the path contains e Replace e by P

Case 2: There is no other path linking x and y

Proof. $e = \{x, y\}.$

Case 1: There is another path P linking x and y Claim: G - e is connected.

If a path linking two points, a and b, does not contain eit still links a and b in G - e.

If the path contains e Replace e by P

Case 2: There is no other path linking x and y

V(G) | there is a path from v to x not containing e}

A is in one connected component containing x

Any $v \in A^c$, can only be connected to x via path containing e.

Proof. $e = \{x, y\}.$

Case 1: There is another path P linking x and y Claim: G - e is connected.

If a path linking two points, a and b, does not contain eit still links a and b in G - e.

If the path contains e Replace e by P

Case 2: There is no other path linking x and y

V(G) | there is a path from v to x not containing e}

A is in one connected component containing x

Any $v \in A^c$, can only be connected to x via path containing e.

e is the last edge of the path.

Proof. $e = \{x, y\}.$

Case 1: There is another path P linking x and y Claim: G - e is connected.

If a path linking two points, a and b, does not contain eit still links a and b in G - e.

If the path contains e Replace e by P

Case 2: There is no other path linking x and y

V(G) | there is a path from v to x not containing e}

A is in one connected component containing x

Any $v \in A^c$, can only be connected to x via path containing e.

e is the last edge of the path.

v links with y.

Proof. $e = \{x, y\}.$

Case 1: There is another path P linking x and y Claim: G - e is connected.

If a path linking two points, a and b, does not contain eit still links a and b in G - e.

If the path contains e Replace e by P

Case 2: There is no other path linking x and y

V(G) | there is a path from v to x not containing e}

A is in one connected component containing x

Any $v \in A^c$, can only be connected to x via path containing e.

e is the last edge of the path.

v links with y.

 A^c is in one connected component containing y

Proof. $e = \{x, y\}.$

Case 1: There is another path P linking x and y Claim: G - e is connected.

If a path linking two points, a and b, does not contain eit still links a and b in G - e.

If the path contains e Replace e by P

Case 2: There is no other path linking x and y

V(G) | there is a path from v to x not containing e}

A is in one connected component containing x

Any $v \in A^c$, can only be connected to x via path containing e.

e is the last edge of the path.

v links with y.

 A^c is in one connected component containing y

Definition.

Proof. $e = \{x, y\}.$

Case 1: There is another path P linking x and y Claim: G - e is connected.

If a path linking two points, a and b, does not contain eit still links a and b in G - e.

If the path contains e Replace e by P

Case 2: There is no other path linking x and y

V(G) | there is a path from v to x not containing e}

A is in one connected component containing x

Any $v \in A^c$, can only be connected to x via path containing e.

e is the last edge of the path.

v links with y.

 A^c is in one connected component containing y

Definition. $e \in E(G)$ is a bridge if G has fewer components than G - e.

Theorem.

Proof. $e = \{x, y\}.$

Case 1: There is another path P linking x and y Claim: G - e is connected.

If a path linking two points, a and b, does not contain eit still links a and b in G - e.

If the path contains e Replace e by P

Case 2: There is no other path linking x and y

V(G) | there is a path from v to x not containing e}

A is in one connected component containing x

Any $v \in A^c$, can only be connected to x via path containing e.

e is the last edge of the path.

v links with y.

 A^c is in one connected component containing y

Definition. $e \in E(G)$ is a bridge if G has fewer components than G - e.

Theorem. $e \in E(G)$ is a bridge if and only if

Proof. $e = \{x, y\}.$

Case 1: There is another path P linking x and y Claim: G - e is connected.

If a path linking two points, a and b, does not contain eit still links a and b in G - e.

If the path contains e Replace e by P

Case 2: There is no other path linking x and y

V(G) | there is a path from v to x not containing e}

A is in one connected component containing x

Any $v \in A^c$, can only be connected to x via path containing e.

e is the last edge of the path.

v links with y.

 A^c is in one connected component containing y

Definition. $e \in E(G)$ is a bridge if G has fewer components than G - e.

Theorem. $e \in E(G)$ is a bridge if and only if e is not part of a cycle.

Proof. $e = \{x, y\}.$

Case 1: There is another path P linking x and y Claim: G - e is connected.

If a path linking two points, a and b, does not contain e it still links a and b in G - e.

If the path contains e Replace e by P

Case 2: There is no other path linking x and y

V(G) | there is a path from v to x not containing e}

A is in one connected component containing x

Any $v \in A^c$, can only be connected to x via path containing e.

e is the last edge of the path.

v links with y.

 A^c is in one connected component containing y

Definition. $e \in E(G)$ is a bridge if G has fewer components than G - e.

Theorem. $e \in E(G)$ is a bridge if and only if e is not part of a cycle.

Exercise.

Proof. $e = \{x, y\}.$

Case 1: There is another path P linking x and y Claim: G - e is connected.

If a path linking two points, a and b, does not contain e it still links a and b in G - e.

If the path contains e Replace e by P

Case 2: There is no other path linking x and y

V(G) | there is a path from v to x not containing e}

A is in one connected component containing x

Any $v \in A^c$, can only be connected to x via path containing e.

e is the last edge of the path.

v links with y.

 A^c is in one connected component containing y

Definition. $e \in E(G)$ is a bridge if G has fewer components than G - e.

Theorem. $e \in E(G)$ is a bridge if and only if e is not part of a cycle.

Exercise. G connected.

Proof. $e = \{x, y\}.$

Case 1: There is another path P linking x and y Claim: G - e is connected.

If a path linking two points, a and b, does not contain e it still links a and b in G - e.

If the path contains e Replace e by P

Case 2: There is no other path linking x and y

V(G) | there is a path from v to x not containing e}

A is in one connected component containing x

Any $v \in A^c$, can only be connected to x via path containing e.

e is the last edge of the path.

v links with y.

 A^c is in one connected component containing y

Definition. $e \in E(G)$ is a bridge if G has fewer components than G - e.

Theorem. $e \in E(G)$ is a bridge if and only if e is not part of a cycle.

Exercise. G connected. G is a tree if and only if every edge is a bridge.

Proof.

Definition.

 \square Define $A:=\{v\in V(G)\mid \text{ there is a path from v to x not containing }e\}$

A is in one connected component containing x

Any $v \in A^c$, can only be connected to x via path containing e.

e is the last edge of the path.

v links with y.

 A^c is in one connected component containing y

Definition. $e \in E(G)$ is a bridge if G has fewer components than G - e.

Theorem. $e \in E(G)$ is a bridge if and only if e is not part of a cycle.

Exercise. G connected. G is a tree if and only if every edge is a bridge.

Proof.

Definition. $H \subset G$ is a spanning subgraph if V(H) =V(G).

Define A :=

V(G) | there is a path from v to x not containing e}

A is in one connected component containing x

Any $v \in A^c$, can only be connected to x via path containing e.

e is the last edge of the path.

v links with y.

 A^c is in one connected component containing y

Definition. $e \in E(G)$ is a bridge if G has fewer components than G - e.

Theorem. $e \in E(G)$ is a bridge if and only if e is not part of a cycle.

Exercise. G connected. G is a tree if and only if every edge is a bridge.

Proof.

Definition. $H \subset G$ is a spanning subgraph if V(H) = V(G). If H is a tree, it is called a spanning tree.

Theorem. A graph is connected if and only if it has a spanning tree.

Define $A:=\{v\in V(G)\mid \text{ there is a path from v to x not containing }e\}$ A is in one connected component containing x

Any $v \in A^c$, can only be connected to x via path containing e.

e is the last edge of the path.

v links with y.

 A^c is in one connected component containing y

Definition. $e \in E(G)$ is a bridge if G has fewer components than G - e.

Theorem. $e \in E(G)$ is a bridge if and only if e is not part of a cycle.

Exercise. G connected. G is a tree if and only if every edge is a bridge.