11. Метод Зейделя. Условия применения.

Этот метод является модификацией метода простых итераций и в некоторых случаях приводит к более быстрой сходимости. Итерации по методу Зейделя отличаются от простых итераций тем, что при нахождении i-i компоненты (k+1)-i0 приближения сразу используются уже найденные компоненты (k+1)-i0 приближения с меньшими номерами (k+1)-i1. При рассмотрении развернутой формы системы итерационный процесс записывается в виде:

$$\begin{cases} x_1^{(k+1)} = \alpha_{11} \cdot x_1^{(k)} + \alpha_{12} \cdot x_2^{(k)} + \alpha_{13} \cdot x_3^{(k)} + \dots + \alpha_{1n} \cdot x_n^{(k)} + \beta_1 \\ x_2^{(k+1)} = \alpha_{21} \cdot x_1^{(k+1)} + \alpha_{22} \cdot x_2^{(k)} + \alpha_{23} \cdot x_3^{(k)} + \dots + \alpha_{2n} \cdot x_n^{(k)} + \beta_2 \\ x_3^{(k+1)} = \alpha_{31} \cdot x_1^{(k+1)} + \alpha_{32} \cdot x_2^{(k+1)} + \alpha_{33} \cdot x_3^{(k)} + \dots + \alpha_{3n} \cdot x_n^{(k)} + \beta_3 \\ \dots \\ x_n^{(k+1)} = \alpha_{n1} \cdot x_1^{(k+1)} + \alpha_{n2} \cdot x_2^{(k+1)} + \alpha_{n3} \cdot x_3^{(k+1)} + \dots + \alpha_{n-1} \cdot x_{n-1}^{(k+1)} + \alpha_{nn} \cdot x_n^{(k)} + \beta_n \end{cases}$$

$$(1)$$

В каждое последующее уравнение подставляются значения неизвестных, полученных из предыдущих уравнений.

 α - квадратная матрица порядка n, β - столбец свободных коэффициентов, верхним индексом в скобках обозначается номер итерации.

Теорема 1 о достаточном условии сходимости метода простых итераций: Метод простых итераций, реализующийся в процессе последовательных приближений, сходится к единственному решению исходной системы Ax = b при любом начальном приближении x^0 со скоростью не медленнее геометрической прогрессии, если какая-либо норма матрицы α меньше единицы, т.е. $\|\alpha\| < 1$

Теорема 2 о необходимом и достаточном условии сходимости метода простых итераций: Для сходимости метода простых итераций при любых x^0 и β необходимо и достаточно, чтобы собственные значения матрицы α были по модулю меньше единицы, т.е. || $\lambda_i(\alpha)$ || < 1, i = 1, ..., n.

Теорема 3 о достаточном условии сходимости метода Зейделя: Если для системы $x = \alpha \cdot x + \beta$ какая - либо норма матрицы α меньше единицы, то есть $\|\alpha\|_s < 1$, $s \in \{1, 2, 3\}$, то процесс последовательных приближений (1) сходится к единственному решению исходной системы Ax = b при любом начальном приближении $x^{(0)}$.

Записывая (1) в матричной форме, получаем: $x^{(k+1)} = L \cdot x^{(k+1)} + U \cdot x^{(k)} + \beta$ (2), где L, U являются разложениями матрицы α :

$$L = \begin{pmatrix} 0 & 0 & 0 & \cdots & 0 \\ \alpha_{21} & 0 & 0 & \cdots & 0 \\ \alpha_{31} & \alpha_{32} & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \alpha_{n1} & \alpha_{n2} & \alpha_{n3} & \cdots & 0 \end{pmatrix}, \qquad U = \begin{pmatrix} \alpha_{11} & \alpha_{12} & \alpha_{13} & \cdots & \alpha_{1n} \\ 0 & \alpha_{22} & \alpha_{23} & \cdots & \alpha_{2n} \\ 0 & 0 & \alpha_{33} & \cdots & \alpha_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \alpha_{nn} \end{pmatrix}.$$

Преобразуя (2) к виду $x = \alpha \cdot x + \beta$, получаем матричную форму итерационного процесса метода Зейделя:

$$x^{(k+1)} = (E - L)^{-1} \cdot U \cdot x^{(k)} + (E - L)^{-1} \cdot \beta \tag{3}$$

Тогда достаточное, а также необходимое и достаточное условия сходимости будут соответственно такими по теоремам 1 и 2:

$$\|\alpha\| = \|(E-L)^{-1} \cdot U\| < 1, |\lambda_i(\alpha)| = |\lambda_i[(E-L)^{-1} \cdot U]| < 1$$

Алгоритм метода Зейделя:

- 1. Преобразовать систему Ax = b к виду $x = \alpha \cdot x + \beta$ одним из описанных способов.
- 2. Задать начальное приближение решения $x^{(0)}$ произвольно или положить $x^{(0)} = \beta$, а также малое положительное число ε (точность). Положить k = 0.
- 3. Произвести расчеты по формулам (1) или (2) и найти $x^{(k+1)}$.
- 4. Если выполнено условие окончания $\|x^{(k+1)} x^{(k)}\| < \varepsilon$, процесс завершить и в качестве приближенного решения задачи принять $x_* \cong x^{(k+1)}$. Иначе положить k = k + l и перейти к пункту 3.