Medical Transformers

Ahmet Emir Kocaaga, Ramiz Dundar¹

¹Advisor: Pinar Yanardag, Fatma Basak Aydemir

Introduction

- Transformers [3] are a widely adopted technique in the natural language processing research community due to their powerful attention and parallelization capabilities.
- In the computer vision scene, before vision transformer (ViT) [1], pure applications of transformers on images often are underperformed compared to convolutional neural networks or hybrid models.
- Vision transformer (ViT), although a relatively new approach, has the state of the art results in image classification.
- We apply vision transformers (ViT) to the medical domain for the first time.
- We also propose a strided (SViT) approach that improves both vision transformer (ViT) and vision transformer trained with distillation tokens (DViT) [2].

Dataset

- We use the Irvin et al. (2019) dataset. Chexpert is a large chest X-ray imagedataset with 224,316 chest radiographs of 65,240 patients.
- Each X-ray image is either takenfrom the side (lateral) or taken from the front (frontal).

Fig. 1: Chexpert dahaset example image.

- The National Institutes of Health's Clinical Center CT image dataset.
- DeepLesion dataset has over 32,000 publicly available CT images.

Fig. 2: Deeplesion dahaset example image.

Methodology

- Dosovitskiy et al. [1] proposed a new approach for transformers in visual domain.
- Instead of receiving a 1D sequence of tokens, their patch-based strategy reshapes the image $\mathbf{x} \in \mathbb{R}^{H \times W \times C}$ into a sequence of flattened 2D patches $\mathbf{x_p} \in \mathbb{R}^{N \times P^2 \dot{C}}$ where P represents the size of the original image, P represents the size of each image patch, and P represents the length of the sequence for the Transformer.

$$\mathbf{z}_0 = [\mathbf{x}_{class}; \mathbf{x}_p^1 \mathbf{E}; \dots; \mathbf{x}_p^N \mathbf{E};] + \mathbf{E}_{pos}$$
 (1

$$\mathbf{z}_{l}' = \mathbf{MSA}(\mathbf{LN}(\mathbf{z}_{l-1})) + \mathbf{z}_{l-1}$$
 (2)

$$\mathbf{z}_l = \mathbf{MLP}(\mathbf{LN}(\mathbf{z}_l')) + \mathbf{z}_l' \tag{3}$$

$$\mathbf{y} = \mathbf{L}\mathbf{N}(\mathbf{z}_l^0) \tag{4}$$

• \mathbf{MSA} represents multi-headed self attention, \mathbf{MLP} represents multi-layer percepetron that contains two layers with a GELU non-linearity. A learnable embedding \mathbf{z}_0^0 is appended to the sequence of embedded patches and \mathbf{z}_0^L represents the image representation denoted with \mathbf{y} . \mathbf{MSA} is an extension of self-attention that projects the outputs of multiple self-attention operations run in parallel.

Fig. 3: Strided Vision Transformer.

- We propose a "strided" approach to provide memory efficiency
- In this approach, we again split the image into the patches, but this time those parts of those patches overlap, in a strided fashion.

Working on 3D Images

- To use our classification model on 3D CT images, we need to convert 3D images to 2D vectors. We tried following approaches.
- Calculate average of the 2D image vectors in 3D CT scans.
- Converting 3D to 2D by concatenating slices.
- Using 3D to 2D autoencoder.

Fig. 4: 3D to 2D autoencoder.

Results

- We tried Vision Transformer (ViT) and our approach, Strided ViT.
- We further improved the results with Distillable ViT and Disttillable Strided ViT.

	Cardiomegaly	Edema	Consolidation	Atelectasis	Pleural Effusion	Mean AUC
ViT	0.825	0.873	0.888	0.815	0.888	0.858
S-ViT	0.809	0.899	0.900	0.828	0.898	0.867
D-ViT	0.827	0.892	0.896	0.824	0.909	0.870
DS-ViT	0.829	0.894	0.922	0.836	0.917	0.880

Fig. 5: 2D Classification results.

	Mean AUC
Vector Mean	0.437
Concatenation	0.611
3D to 2D	0.727

Fig. 6: 3D Classification results.

References

- [1] Alexey Dosovitskiy et al. "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale". In: *arXiv preprint arXiv:2010.11929* (2020).
- [2] Hugo Touvron et al. "Training data-efficient image transformers & distillation through attention". In: (2021). arXiv: 2012.12877 [cs.CV].
- [3] Ashish Vaswani et al. "Attention is all you need". In: (2017), pp. 5998-6008.