COMP319 Algorithms 1 Lecture 16 Shortest Paths part 2

Instructor: Gil-Jin Jang

School of Electronics Engineering, Kyungpook National University

Textbook Chapters 25 and 26

Slide credits: 홍석원, 명지대학교; 김한준, 서울시립대학교; J. Lillis, UIC; Roger Crawfis, CSE 680;

> George Bebis, Analysis of Algorithms, CS 477/677 David Luebke, CS332, Virginia University

Table of Contents

Definition of shortest path problem

- Single-source shortest path
 - Bellman-Ford Algorithm
 - Dijkstra's Algorithm

- All-source shortest path
 - Floyd-Warshall algorithm for multiple paths

Single-Source Shortest Path without negative edge weight

DIJKSTRA'S ALGORITHM

Dijkstra's Algorithm

- Single-source shortest path problem:
 - No negative-weight edges: w(u, v) > 0, $\forall (u, v) \in E$
- Each edge is relaxed only once!
- Maintains two sets of vertices:

Dijkstra's Algorithm (cont.)

- Vertices in V—S reside in a min-priority queue
 - Keys in Q are estimates of shortest-path weights d[u]
- Repeatedly select a vertex $u \in V-S$, with the minimum shortest-path estimate d[u]
- Relax all edges leaving u
- Steps
 - Extract a vertex u from Q (i.e., with the highest priority)
 - Insert u to S
 - Relax all edges leaving u
 - Update Q

Dijkstra Algorithm

```
Dijkstra(G, r)
\triangleright G=(V, E): given graph
                                         All the edge weights are non-negative
> r: source vertex, given

    ▷ S : set of chosen vertices

       S \leftarrow \{\};
      for each u∈V
             d_{ij} \leftarrow \infty;
      d_r \leftarrow 0;
      while (S \neq V) \triangleright repeat n times
             u \leftarrow extractMin(V-S, d);
             S \leftarrow S \cup \{u\};
            for each v \in L(u) \triangleright L(u): set of vertices connected from u
                   if (v \subseteq V-S \text{ and } d_v < d_u + w_{u,v}) \text{ then } d_v \leftarrow d_u + w_{u,v};
                                 relaxation
extractMin(Q, d)
                                                                               ✓ Time complexity: O(|E|log|V|)
                                                                                                        Using heap
      Returns a vertex u \in Q whose value of d is the smallest;
}
```

Dijkstra (G, w, s)

Example (cont.)

$$S=Q=$$

Example (cont.)

Dijkstra Algorithm Illustration

Dijkstra Algorithm Illustration

Dijkstra (G, w, s)

- 1. INITIALIZE-SINGLE-SOURCE(V, s) $\longleftarrow \Theta(V)$
- 2. $S \leftarrow \emptyset$
- 3. $Q \leftarrow V[G] \leftarrow O(V)$ build min-heap
- 4. while $Q \neq \emptyset$ — Executed O(V) times
- 5. do $u \leftarrow EXTRACT-MIN(Q) \leftarrow O(lgV)$ O(VlgV)
- 6. $S \leftarrow S \cup \{u\}$
- 7. for each vertex $v \in Adj[u] \leftarrow O(E)$ times
- 8. **do** RELAX(u, v, w)
- 9. Update Q (DECREASE_KEY)

← O(E) times (total) O(I

 \leftarrow O(lgV)

Running time: O(VlgV + ElgV) = O(ElgV)

Binary Heap vs Fibonacci Heap

Running time depends on the implementation of the heap

	EXTRACT-MIN	DECREASE-KEY	Total
binary heap	O(lgV)	O(lgV)	O(ElgV)
Fibonacci heap	O(lgV)	O(1)	O(VlgV + E)

Correctness Of Dijkstra's Algorithm

- Note that $d[v] \ge \delta(s,v) \ \forall v$
- Let u be first vertex picked s.t. \exists shorter path than d[u] \Rightarrow d[u] > δ (s,u)
- Let y be first vertex \in V-S on actual shortest path from s \rightarrow u \Rightarrow d[y] = δ (s,y)
 - Because d[x] is set correctly for y's predecessor $x \in S$ on the shortest path, and
 - When we put x into S, we relaxed (x,y), giving d[y] the correct value

Correctness Of Dijkstra's Algorithm

- Note that $d[v] \ge \delta(s,v) \ \forall v$
- Let u be first vertex picked s.t. \exists shorter path than d[u] \Rightarrow d[u] > δ (s,u)
- Let y be first vertex \in V-S on actual shortest path from s \rightarrow u \Rightarrow d[y] = δ (s,y)

•
$$d[u] > \delta(s,u)$$

= $\delta(s,y) + \delta(y,u)$ (*Why?*)
= $d[y] + \delta(y,u)$
 $\geq d[y]$ But if $d[u] > d[y]$, wouldn't have chosen u. Contradiction.

문병로, 쉽게 배우는 알고리즘

Cevdet Aykanat and Mustafa Ozdal, CS473, Bilkent Univ

Andreas Klappenecker

THE FLOYD-WARSHALL ALGORITHM

All-Pairs Shortest Path Problem

- Suppose we are given a directed graph G and a weight function w:
 - G=(V,E); ω : E->R
- We assume that G does not contain cycles of weight 0 or less.
- The All-Pairs Shortest Path Problem asks to find the length of the shortest path between <u>any pair of</u> <u>vertices</u> in G.
- Applications
 - Network communications

All Pairs Shortest Paths (APSP)

given: directed graph G = (V, E), weight function $\omega: E \to R$, |V| = n

goal : create an $n \times n$ matrix $D = (d_{ij})$ of shortest path distances

i.e.,
$$d_{ij} = \delta(v_i, v_j)$$

trivial solution: run a SSSP algorithm *n* times, one for each vertex as the source.

All Pairs Shortest Paths (APSP)

- ▶ all edge weights are nonnegative : use Dijkstra's algorithm
 - PQ = linear array : O ($V^3 + VE$) = O (V^3)
 - PQ = binary heap : O ($V^2 lgV + EV lgV$) = O ($V^3 lgV$) for dense graphs
 - o better only for sparse graphs
 - PQ = fibonacci heap : O ($V^2 \lg V + EV$) = O (V^3) for dense graphs
 - o better only for sparse graphs
- negative edge weights : use Bellman-Ford algorithm
 - O (V^2E) = O (V^4) on dense graphs

Floyd-Warshall Algorithm

- A dynamic programming solution that solved the APSP problem with time complexity $O(n^3)$ for a graph with n vertices.
 - Dynamic programming

Adjacency Matrix Representation of Graphs

 $\triangleright n \times n$ matrix $\mathbf{W} = (\omega_{ij})$ of edge weights:

$$\omega_{ij} = \begin{cases} \omega(v_i, v_j) & \text{if } (v_i, v_j) \in E \\ \omega_{ij} = \begin{cases} \infty & \text{if } (v_i, v_j) \notin E \end{cases} \end{cases}$$

- ightharpoonup assume $\omega_{ii} = 0$ for all $v_i \in V$, because
 - no neg-weight cycle
 - ⇒ shortest path to itself has no edge,

i.e.,
$$\delta (v_i, v_i) = 0$$

Intermediate Vertices

- Without loss of generality, we will assume that $V=\{1,2,...,n\}$, i.e., that the vertices of the graph are numbered from 1 to n.
- Given a path $p=(v_1, v_2,..., v_m)$ in the graph, we will call the vertices v_k with index k in $\{2,...,m-1\}$ the intermediate vertices of path p.
- If k is an intermediate vertex of path p, then we break p down into:
 - $i \rightarrow k \rightarrow j$ (p1 and p2)
 - p1 is a shortest path from i to k with all intermediate vertices in the set {1,2,...,k-1}
 - p2 is a shortest path from k to j with all intermediate vertices in the set {1,2,...,k-1}

All intermediate vertices in {1, 2, ..., *k*-1}

All intermediate vertices ϵ {1, 2, ..., k}

Figure 2. Path p is a shortest path from vertex i to vertex j, and k is the highest-numbered intermediate vertex of p. Path p1, the portion of path p from vertex i to vertex k, has all intermediate vertices in the set $\{1, 2, ..., k-1\}$. The same holds for path p2 from vertex k to vertex j.

Key Idea

- Let $d_{ij}^{(k)}$ denote the length of the shortest path from i to j such that all intermediate vertices are contained in the set $\{1,...,k\}$.
- Consider a shortest path *p* from *i* to j such that the intermediate vertices are from the set {1,...,*k*}.
 - If the vertex k is not an intermediate vertex on p, then $d_{ij}^{(k)} = d_{ij}^{(k-1)}$.
 - If the vertex k is an intermediate vertex on p, then $d_{ij}^{(k)} = d_{ik}^{(k-1)} + d_{ki}^{(k-1)}$.
 - Interestingly, in either case, the subpaths contain merely nodes from $\{1,...,k-1\}$.

Recursive Formulation

If we do not use intermediate nodes, i.e., when k=0, then

$$d_{ij}^{(0)} = w_{ij}$$

If k>0, then

$$d_{ij}^{(k)} = \min\{d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\}$$

The Floyd-Warshall Algorithm

```
Floyd-Warshall(W)
n = # of rows of W;
D^{(0)} = W; /* initialization, equivalent to the next nested loop */
/* for (i,j) = (1, 1) to (n, n) do; d_{ii}^{(k)} = w_{ij}; od; */
for k = 1 to n do
    for i = 1 to n do
            for j = 1 to n do
                        d_{ii}^{(k)} = \min\{d_{ii}^{(k-1)}, d_{ik}^{(k-1)} + d_{ki}^{(k-1)}\};
            od;
    od;
                                  \checkmark d^{(k)}_{ii}: shortest path from i to j using intermediate
                                  edges in \{1, 2, ..., k\}
od;
 return D<sup>(n)</sup>;
```

Example: Floyd-Warshall Algorithm

Quiz

Run Floyd-Warshall algorithm for the following graph:

Alternate Implementation of the Floyd-Warshall

```
EXTEND (D, W)

 D = (d_{ij}) \text{ is an n x n matrix} 
 \text{for } i \leftarrow 1 \text{ to } n \text{ do} 
 \text{for } j \leftarrow 1 \text{ to } n \text{ do} 
 d_{ij} \leftarrow \infty 
 \text{for } k \leftarrow 1 \text{ to } n \text{ do} 
 d_{ij} \leftarrow \min\{d_{ij}, d_{ik} + \omega_{kj}\} 
 \text{return D}
```


	1	2	3	4	5
1	0	3	8	8	-4
2	8	0	8	1	7
3	8	4	0	8	8
4	2	8	-5	0	8
5	8	∞	8	6	0

$$D^{I} = D^{0}W$$

	1	2	3	4	5
1	0	3	8	2	-4
2	3	0	-4	1	7
3	8	4	0	5	11
4	2	-1	-5	0	-2
5	8	∞	1	6	0

$$D^2 = D^I W$$

	1	2	3	4	5
1	0	3	-3	2	-4
2	3	0	-4	1	-1
3	7	4	0	5	11
4	2	-1	-5	0	-2
5	8	5	1	6	0

$$D^3 = D^2 W$$

	1	2	3	4	5
1	0	1	-3	2	-4
2	3	0	-4	1	-1
3	7	4	0	5	3
4	2	-1	-5	0	-2
5	8	5	1	6	0

$$D^4 = D^3 W$$

Time and Space Requirements

The running time is obviously $O(n^3)$.

However, in this version, the space requirements are high. One can reduce the space from O(n³) to O(n²) by using a single array d.

Conclusion

- Negative weights and negative cycles.
 - If no negative cycles, can find shortest paths via Bellman-Ford.
 - If negative cycles, can find one via Bellman-Ford.
- Dijkstra's algorithm.
 - Nearly linear-time when weights are nonnegative.
- All-pair shortest path.
 - can be solved via Floyd-Warshall
 - Floyd-Warshall can also compute the transitive closure of directed graph.

Next topic: NP-Completeness

END OF LECTURE 17