Evection Resonance Maximum Growth

If we require the evection resonance condition $\dot{\omega} \sim \dot{f}_{\rm out}$, or

$$\frac{3Gm_{12}}{c^2a}\sqrt{\frac{m_{12}a_{\text{out}}^3}{m_{123}a^3}} \sim 1,\tag{1}$$

then this can be rewritten as

$$\frac{a^5}{a_{\text{out}}^3} \sim \frac{9G^2 m_{12}^3}{c^2 m_{123}}. (2)$$

The ϵ associated with the system can then be rewritten as:

$$\epsilon = \frac{m_3 a^4 c^2}{3G m_{12}^2 a_{\text{out}}^3},$$

$$= \frac{3m_3}{m_{123}} \left(\frac{v}{c}\right)^2.$$
(3)

$$=\frac{3m_3}{m_{123}} \left(\frac{v}{c}\right)^2.$$
(4)

Here, $v = \sqrt{Gm_{12}/a}$ is the orbital velocity of the inner binary. Using the above scalings, we find that $v \propto a^{-1/2} \propto a_{
m out}^{-3/10}$, and thus $\Delta e \propto a_{
m out}^{-3/10}$. Is this observed? Well, my $a_{
m out} = 2.38\,{
m AU}$ has $\Delta e = 0.006$ and my $a_{\rm out}$ = 238 AU has $\Delta e \approx 0.0015$, which is in rough agreement.

1.1 With Eccentricity

We showed in our notes that the evection Hamiltonian looks something like

$$H(\Gamma,\phi) = P\Gamma - 4\Gamma^2 + R\cos\phi,$$

$$P = 2\left[1 - \Omega_{\text{out}}/\Omega_{\text{GR},0} + 3\epsilon/4\right],$$

$$R = \frac{15\epsilon}{2}(1 + F_{N2}).$$
(5)

where $\Gamma \approx -e^2/4$, and F_{N2} is the Hansen coefficient. The equilibrium of the Hamiltonian, when it exists is located at

$$\Gamma_{\text{eq}} = \frac{P - R}{8} \sim \mathcal{O}(\epsilon).$$
(6)

Note that even if $e_{\text{out}} = 0.9$, F_{N2} only maximizes at ~ 20 , so the evection eccentricity cannot be enhanced by more than a factor of 4–5 realistically except for extremely strong eccentricities: to leading order, F_{N2} is maximized at $N \simeq \left(1-e_{\rm out}^2\right)^{-3/2}$ at a value of $(1-e_{\rm out}^2)^{-3/2}$, so we expect an enhancement of the evection resonance eccentricity excitation by $\sim (1 - e_{\text{out}}^2)^{-3/4}$, not a lot.

So, basically, without some sort of exotic 2+1+1 system, we're probably out of luck.

The problem here is that $\epsilon \sim \Phi_{ZLK}/\Phi_{GR}$ is too small when $\Omega_{out} \sim \dot{\omega}_{GR}$, i.e. the hierarchy of scales between the quadrupole ZLK coupling and the simple Keplerian coupling is too large.