Relating ROC and CMC Curves

Work done with Brian DeCann

Arun Ross

Associate Professor Michigan State University

http://www.cse.msu.edu/~rossarun

Introduction

- Performance of a verification system is summarized using Receiver Operating Characteristic (ROC) curve
- Performance of a closed-set identification system is summarized using Cumulative Match Characteristic (CMC) curve
- Can the CMC curve be derived from the ROC curve and vice-versa?

ROC Curve

- Biometrics samples are compared against each other
- Genuine and impostor scores are generated
- False Match Rate (FMR) and False Non-match Rate (FNMR) are computed at multiple thresholds
- ROC Curve: True Match Rate versus False Match Rate
- ROC Curve: Aggregate Statistics

ROC Curve

Match Score Distributions

ROC Curve

CMC Curve

- Each probe biometric sample is compared against all gallery samples
- The resulting scores are sorted and ranked
- Determine the rank at which a true match occurs
- True Positive Identification Rate (TPIR): Probability of observing the correct identity within the top K ranks
- CMC Curve: Plots TPIR against ranks
- CMC Curve: Rank-based metric

CMC Curve

CMC versus ROC

• It is reasonable to expect a good ROC curve to be associated with a good CMC curve and vice-versa

Predicting CMC from ROC

- The CMC can be predicted from the ROC data
 - Bolle et. al. (2005), Hube (2006)

$$Rank - n = \sum_{k=1}^{n} {N-1 \choose k-1} \int_{0}^{\infty} F_G(s) FAR(s)^{k-1} (1 - FAR(s))^{(N-k)} ds$$

<u>Hube</u>

$$Rank - n = TPR(FAR = \frac{n}{N})$$
, where TPR = (1-FNMR)

- R. Bolle, J. Connell, S. Pankanti, N. Ratha, and A. Senior. The Relation Between the ROC Curve and the CMC. AutoID 2005
- J. Hube. Using Biometric Verification to Estimate Identification Performance. BSYM 2005

Predicting CMC from ROC

 But neither model perfectly predicts the empirical CMC curve

ROC versus CMC

 DeCann and Ross (2012) showed that it is possible for a good ROC curve to be associated with a poor CMC curve and vice-versa

Why did CMC prediction models fail?

One ROC Curve: Multiple CMC Curves

Virtual Identities

- Input: Set of genuine and impostor match scores
- Output: Virtual identities with different rank-based statistics
- Method: "Reassign" match scores to virtual identities according to the "Doddington's Zoo" concept
 - Sheep: Low FMR and FNMR
 - Goats: High FNMR
 - Lambs: High FMR

Reassigning Match Scores

Set of genuine and impostor match scores

Sampling Match Scores

• Depending upon "Sheep", "Goat", "Lamb" labels

Sampling Rationale

- Genuine Scores: Use the label ("Sheep", "Goat", "Lamb") to assign genuine match scores to a virtual identity
- Impostor Scores: Use the labels of "pairs" of virtual identities to assign impostor match scores to a virtual identity

From Real to Virtual

Aggregate Statistics do not change

Reassigning Genuine Scores

Algorithm 1: Reassigning Genuine Scores

Input: Vector \mathbf{s}_{Gen} , containing the genuine scores.

Vector χ , a set containing the labels of each identity (e.g., "Sheep", "Goat", "Lamb").

Define: δ , ϵ_{Gen} : Scaling parameters.

Output: Matrix S populated with genuine scores.

 $\setminus \setminus$ begin algorithm

Step 1: For each identity, note the assigned label.

Step 2a: Draw a genuine score (without replacement), ϕ , \mathbf{s}_{Gen} , from within subset \mathbf{s}_{rng} , where

$$\mathbf{s}_{rng} = (\mu_{Gen} + \sigma_{Gen}, 1), \text{ if } \chi_n = Sheep.$$

$$\mathbf{s}_{rng} = (0, \mu_{Gen} - \sigma_{Gen}), \text{ if } \chi_n = Goat.$$

$$\mathbf{s}_{rng} = (0, \mu_{Gen} + \sigma_{Gen}), \text{ if } \chi_n = Lamb.$$

Reassigning Genuine Scores

```
Step 2b: If \mathbf{s}_{rnq} is a null set, and \mathbf{s}_{rnq} = (a, b),
    set a = \delta \cdot a, b = \frac{b}{\delta} and repeat Step 2a.
Step 3a: Draw \binom{N_G}{2} - 1 scores (without replacement)
    from \mathbf{s}_{Gen} within \phi \pm \epsilon_{Gen}.
Step 3b: If less than \binom{N_G}{2} - 1 scores can be drawn
    set \epsilon_{Gen} = \frac{\epsilon_{Gen}}{\delta} and repeat Step 3a.
Step 4: Store the sampled genuine scores in S.
return S
\setminus \setminus end algorithm
```

Reassigning Impostor Scores

```
Algorithm 2: Reassigning Impostor Scores
```

Input: Vector \mathbf{s}_{Imp} , containing the impostor scores.

Matrix S, where sampled genuine scores are stored (from

Alg. 1) and sampled impostor scores will be stored.

Vector χ , containing the labels of each identity

(e.g., "Sheep", "Goat", "Lamb").

 \mathbf{S}_{Gen}^n , \mathbf{S}_{Gen}^m , Assigned genuine scores for identities n, m.

Define: δ , ϵ_{Imp} : Scaling parameters.

Output: Matrix S populated with genuine and impostor scores.

Step 1: For all combinations of n and m (n = 1, ..., N,

 $m=n+1,\ldots,N$), note χ_n and χ_m .

Reassigning Impostor Scores

Step 2: Draw an impostor score, ϕ from \mathbf{s}_{Imp} , within interval \mathbf{s}_{rng} , where

```
\mathbf{s}_{rng} = (0, min\{max\{\mathbf{S}_{Gen}^n\}, max\{\mathbf{S}_{Gen}^m\}\}), if \chi_n = Sheep or Goat, \chi_m = Sheep or Goat.
\mathbf{s}_{rng} = (0, max\{\mathbf{S}_{Gen}^n\}), if \chi_n = Sheep or Goat, \chi_m = Lamb.
\mathbf{s}_{rng} = (0, max\{\mathbf{S}_{Gen}^m\}), if \chi_n = Lamb, \chi_m = Sheep or Goat.
\mathbf{s}_{rng} = (0, 1), if \chi_n = \chi_m = Lamb.
```

Step 3: If \mathbf{s}_{rng} is a null set, $\mathbf{s}_{rng} = (0, 1)$.

Reassigning Impostor Scores

```
Step 4a: Draw N_G^2 - 1 scores from \mathbf{s}_{Imp} within \phi \pm \epsilon_{Imp}.
```

Step 4b: If less than $N_G^2 - 1$ scores can be drawn

set
$$\epsilon_{Imp} = \frac{\epsilon_{Imp}}{\delta}$$
, and repeat Step 4a.

Step 5: Store the sampled impostor scores in S.

return S

 $\setminus \setminus$ end algorithm

Datasets Used

- Face: WVU Multimodal Dataset
 - 240 subjects, 5 Samples / subject
 - Match scores computed using VeriLook
- Gait: CASIA B dataset
 - 124 subjects, 6 samples / subject
 - Match scores computed using Gait Curves algorithm

Evaluation Criteria

- ROC data: Area underneath the ROC (AUC)
- CMC data: Weighted Rank-M strategy

Generate Virtual Identities

- Generate virtual identities with different input parameters: (% Sheep, % Goats, % Lambs)
- Compute AUC and Rank-M values

Sheep (%)	Goat (%)	Lambs (%)	AUC Face)	Rank-M (Face)		AUC (Gait)	Rank-M (Gait)
100	0	0	0.999	1.0	I	0.980	1.0
82	10	8	0.999	1.0	ı	0.980	0.966
50	26	24	0.999	0.997	I	0.980	0.915
15	10	75	0.999	0.997	i	0.980	0.800
					1		

Same Aggregate Statistics

Different Rank Statistics

Note: Increasing the proportion of Goats or Lambs decreases Rank-M performance

A Closer Look

- ROC and CMC curves for "Original" and "Reassigned"
- (15% Sheep, 10% Goats, 75% Lambs)

100% to 99.7%

99% to 75%

Summary

- It is possible for a single ROC curve to be associated with multiple CMC curves
- The distribution of "Sheep", "Goat", "Lamb" in the target population results in this phenomenon
- Any ROC-CMC prediction model, should account for this variability in user performance
- Soft biometric traits are more likely to exhibit this type of disparity
- Reporting both ROC and CMC curves is recommended
- Note: Closed-set identification

Project sponsored by ONR

Reading Material

- B. DeCann and A. Ross, "Relating ROC and CMC Curves via the Biometric Menagerie," Proc. of 6th IEEE International Conference on Biometrics: Theory, Applications and Systems (BTAS), (Washington DC, USA), September 2013
- B. Decann and A. Ross, "Can a Poor Verification System be a Good Identification System? A Preliminary Study," Proc. of IEEE International Workshop on Information Forensics and Security (WIFS), (Tenerife, Spain), December 2012