

TOPIC OUTLINE

Phasor Diagram

Series R-L Circuit

Series R-C Circuit

Series R-L-C Circuit

Power Factor

PHASOR DIAGRAM

PHASOR DIAGRAM

Phasor diagram is a graphical representation of **magnitude** and **phase** relationship between sinusoidal quantities.

IMPEDANCE

The <u>impedance</u> **Z** represents the <u>total</u>

<u>opposition</u> offered by circuit elements

(including resistance and reactance) to the flow

of alternating current (AC).

Formula:

$$Z = R + j(X_L - X_C)$$

INDUCTIVE REACTANCE

The <u>inductive reactance</u> X_L represents the opposition offered by the <u>inductor</u> to the flow of alternating current (AC).

Formula:

$$X_L = 2\pi f L$$

where:

$$f = \text{frequency}(Hz)$$

$$L = inductance(H)$$

CAPACITIVE REACTANCE

The <u>capacitive reactance</u> X_C represents the opposition offered by the <u>capacitor</u> to the flow of alternating current (AC).

Formula:

$$X_C = \frac{1}{2\pi f C}$$

where:

$$f = \text{frequency}(Hz)$$

$$C = \text{capacitance}(F)$$

Circuit Diagram:

Formula:

$$Z = R + jX_L$$

Impedance Phasor Diagram:

Circuit Diagram:

Formula:

$$\boldsymbol{v_o} = \boldsymbol{v_R} + \boldsymbol{j}\boldsymbol{v_L}$$

Voltage Phasor Diagram:

TOTAL INDUCTANCE

In a series circuit, the <u>total inductance</u> L_o is the <u>sum</u> of all individual inductances.

Formula:

$$L_o = L_1 + L_2 + L_3 + \cdots L_n$$

Series network:

A **240** V, **60** Hz source is connected to a coil of wire that has a resistance of **7.5** Ω and an inductance of **0.0477** H.

Determine the following:

- a. Impedance **Z**
- b. Total current i_0
- c. Voltage across the resistor v_R
- d. Voltage across the inductor v_L

Solution:

Circuit Diagram:

Formula:

$$Z = R + jX_C$$

Impedance Phasor Diagram:

Circuit Diagram:

Formula:

$$\boldsymbol{v_o} = \boldsymbol{v_R} + \boldsymbol{j}\boldsymbol{v_C}$$

Voltage Phasor Diagram:

TOTAL CAPACITANCE

In a series circuit, the <u>total capacitance</u> C_o is analogous to total resistance in parallel circuit.

Formula:

$$\frac{1}{C_o} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \cdots + \frac{1}{C_n}$$

Series network:

A **125** V, **25** Hz source is connected to a series circuit consisting of a **30** Ω and a **159** μF capacitor.

Determine the following:

- a. Impedance **Z**
- b. Total current i_0
- c. Voltage across the resistor v_R
- d. Voltage across the capacitor $v_{\mathcal{C}}$

Solution:

Circuit Diagram:

Formula:

$$Z = R + j(X_L - X_C)$$

Impedance Phasor Diagram:

Circuit Diagram:

Formula:

$$Z = R + j(X_L - X_C)$$

Impedance Phasor Diagram:

Circuit Diagram:

Formula:

$$\boldsymbol{v_o} = \boldsymbol{v_R} + \boldsymbol{j}(\boldsymbol{v_L} - \boldsymbol{v_C})$$

Voltage Phasor Diagram:

Circuit Diagram:

Formula:

$$\boldsymbol{v_o} = \boldsymbol{v_R} + \boldsymbol{j}(\boldsymbol{v_L} - \boldsymbol{v_C})$$

Voltage Phasor Diagram:

A series circuit consisting an $80~\Omega$ resistor, a

Solution:

0.3 H inductor, and a **50** μF capacitor is connected to a **120** V, **60** Hz source.

Determine the following:

- a. Equivalent impedance **Z**
- b. Total current i_0
- c. Voltage drop across the resistor v_R
- d. Voltage drop across the capacitor $v_{\mathcal{C}}$
- e. Voltage drop across the inductor v_L

A series circuit consisting of a $30 \, \mu F$ capacitor, and a $0.155 \, H$ inductor is connected to a $120 \, V$ $60 \, Hz$ source. Calculate the circuit <u>current</u> and indicate whether it <u>lags</u> or <u>leads</u> the voltage.

Solution:

If a variable <u>inductor</u> is substituted for the one in the previous problem, what should be its value if an **equal current** is to **lag** behind the voltage? Assume all other conditions to remain unchanged.

Solution:

POWER FACTOR

POWER FACTOR

The **power factor** represents the ratio of true power to apparent power.

Formula:

$$\cos \theta = \frac{P}{S}$$

Power Triangle:

TRUE POWER

<u>Power Triangle:</u>

The <u>true power</u> *P* is the <u>actual power</u> consumed by resistive components of a circuit.

Formula:

$$P = vi \cos \theta$$

unit: Watt (W)

REACTIVE POWER

Power Triangle:

The <u>reactive power</u> *Q* is the power consumed by <u>inductive</u> or <u>capacitive</u> components of a circuit.

Formula:

$$Q = vi \sin \theta$$

unit: Volt-Ampere Reactive (VAR)

APPARENT POWER

<u>Power Triangle:</u>

The <u>apparent power</u> *S* is the vector sum of true power and reactive power, representing the <u>total power</u> supplied by the source.

Formula:

$$S = P + jQ$$

$$S = vi$$

unit: Volt-Ampere (VA)

A series circuit consisting an $80~\Omega$ resistor, a

Solution:

0.3~H inductor, and a $50~\mu F$ capacitor is connected to a 120~V, 60~Hz source.

Determine the following:

- a. Power factor $\cos \theta$
- b. True power **P**
- c. Reactive power \boldsymbol{Q}
- d. Apparent power S

LABORATORY

