

About the reconstruction filter...

A hybrid digital-analog system for processing baseband signals has usually the following basic components:

- The anti-aliasing filter is a low-pass filter used in order to guarantee that the maximum frequency in $x_a(t)$ satisfies that $\Omega_{\max} < \Omega_s / 2$. If this block is absent and for certain input signal $\Omega_{\max} \ge \Omega_s / 2$ we will have aliasing and perfect reconstruction will not be possible. The shape of $H_0(j\Omega)$ is sketched below.
- The reconstruction filter in the C/D converter is exactly the same as the anti-aliasing filter but with a gain T_s.
- The C/D converter might use an impulse train $P_{T_{D/C}}(t)$ with a different period ($T_{D/C}$) than the period (T_s) of the impulse train used in the C/D converter $P_{T_s}(t)$. However, the cutoff filter of the reconstruction filter is defined by the sampling rate used in the C/D converter and not by the period $T_{D/C}$ used in the D/C converter.
- **NOTE:** An alternative way of defining the cut-off of the reconstruction filter is to use $\Omega_c = \Omega_{max}$ where Ω_{max} is the maximum frequency in $x_a(t)$. However, this makes the definition of the reconstruction filter dependent on the input to the system.

