Unravelling the phenology-phylogeny tangle.

June 7, 2022

Authors:

The Wolkovich Lab in 2019 & collaborators 1,2,3,4

Author affiliations:

¹Forest & Conservation Sciences, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4;

²Arnold Arboretum of Harvard University, 1300 Centre Street, Boston, Massachusetts, USA;

 $^3 Organismic \ \& \ Evolutionary \ Biology, \ Harvard \ University, \ 26 \ Oxford \ Street, \ Cambridge, \ Massachusetts, \ USA;$

⁴Edificio Ciencias, Campus Universitario 28805 Alcalá de Henares, Madrid, Spain

 ${\rm *Corresponding\ author:\ ignacio.moralesc@uah.es}$

Abstract

Plants have evolved responses to environmental cues able to inform them about the temporal distribution of key resources—i.e. energy and light. The responses to individual cues such as forcing (or spring warming) have shown to be subjected to some degree of evolutionary conservatism. Yet, plants do not respond to isolated cues but to a combination of interacting cues, which difficults accurate predictions of phenology in the face of environmental change. Whether and how evolution has constrained phenological responses to combinations of interacting cues is not yet understood even when this knowledge could enhance model predictions and inform how different plant lineages have adapted to environmental change along their evolutionary histories. Here we use Bayesian hierarchical models and the most complete dataset on tree species phenological responses measured in experimental conditions to: (a) test if phenological responses to three major interacting cues are conserved phylogenetically when considered jointly, (b) compare the phylogenetic signal in the responses to different cues and, (c) test whether coefficient estimates differ between models assuming phylogenetic independence among species and models that explicitly incorporate phylogeny. Results show non-random phylogenetic structuring of phenological responses, highly variable across species and cues. More interestingly, regression coefficients shift when models control for phylogenetic effects, particularly so for forcing, which becomes the most important cue. Taken together, our results suggest that phylogeny should be incorporated into studies modelling multi-species phenological responses, as such responses have been jointly constrained through evolution and thus are not independent.

Introduction

Forecasting remains a major challenge in ecology, especially as anthropogenic climate change drives demand for more accurate forecasts across species. As global temperatures warm, plant species are shifting the timing of their life cycles (Cleland et al., 2007) and their geographical distributions towards higher latitudes and altitudes (Chen et al., 2011), but responses are highly variable across species (Menzel et al.). Some of this variability is due to the complexity of climate change itself—the regional and seasonal variation in warming underlying average trends and shifts in other climate axes (e.g. precipitation)—however, much of it is driven by species-specific variation in response to environmental change, which we can only predict for a few well-studied species. More accurate forecasts will require efforts to scale our understanding across more plant species. Understanding how different plant lineages have evolved their phenotypic responses to the combined effects of multiple dimensions of environmental change would greatly aid prediction.

Decades of research show that plants use environmental cues to time their phenotypic responses with the

temporal distribution of key resources and to avoid periods of high abiotic or biotic stress (Larcher, 1980; Chuine, 2000). Commonly, responses to environmental cues, and their evolution, are studied individually, assuming that a given phenotypic response is predominantly linked to a single cue: for example, that time of leafout is driven by summed heat during early spring (Wolkovich et al., 2012; Davies et al., 2013). Such efforts ignore a more likely scenario for most phenotypic traits where multiple cues interacting along evolutionary history have shaped plant responses (). For example, species-level growth rates or plant height may be determined by the interaction among several cues—e.g. soil nutrients, water availability and light (Larcher, 1980). Similarly, the timing of recurring life cycle events (phenology) is determined by a combination of temperature and light (Chuine and Regniere, 2017).

Phenology may provide an ideal case study to gain insights on how species responses to interacting environmental cues have evolved because the basic cue system is well established (Chuine and Regniere, 2017). In temperate plants, phenology is generally determined by forcing—warm temperatures during the growing season, chilling—cool temperatures during dormancy period over winter, and photoperiod (Chuine and Regniere, 2017). Further, phenology is one of few phenotypic traits where decades of research provide multi-species experimental data on plant responses to these three major cues. Recent multi-species analyses considering forcing, chilling and photoperiod have shown that chilling and forcing together determine complex non-linear responses to warming (Flynn and Wolkovich, 2018; Ettinger et al., 2020), complicating forecasting. In addition, studies found remarkable variation across species in their responses to cues, raising the question of whether such variation is phylogenetically structured. If phylogenetically close species have evolved similar responses to cues it could facilitate forecasting to unmeasured species, and provide insights into how cues have evolved in the past.

Accumulating literature on the evolutionary constraints of phenological responses to cues suggests that phenology is phylogenetically conserved, at least to some extent (Davies et al., 2013). For example, dates of budburst, leafout or first flowering, and shifts in these dates in response to warming are significantly conserved (Davies et al., 2013; Joly et al., 2019), as are traits correlated with phenology, such as seed size (Bolmgren and D. Cowan, 2008; Willis et al., 2008). Almost all of this literature has focused on the phenotype, which may be more strongly determined by the local environment (e.g., the climate where phenology was measured), rather than species' intrinsic responses to the environment through time (but see). And out of the few studies looking at phylogenetic structuring of responses to cues, the typical focus is on one single cue (), even if the evolution of responses to one environmental cue would have not occurred in isolation from the influence of others. Tackling the evolutionary constraints of phenological responses to multiple cues simultaneously would allow answering questions such as: have specific lineages adapted more strongly to some of the cues or

to any combination of cues? Is there any cue that is particularly labile? These questions are highly relevant because answering them would (i) inform about the need to account for phylogeny in phenological models and predictions, and (ii) expand our knowledge on how phenological responses have been constrained so far, which would be relevant in a context where species' sensitivities to warming temperatures seem to decline.

While current methods have advanced much of our understanding of how specific lineages adapted phenotypic responses to the environment, they were not originally designed to capture the complexity of phenotypes evolved in response to multiple interacting cues. For example, typical phylogenetic regression accounts for phylogenetic relationships as a grouping factor either explicitly (Phylogenetic Mixed Model; Housworth et al. (2004)) or implicitly (Phylogenetic Generalized Linear Models; Revell (2010)), assuming all phylogenetic structuring to only affect model intercepts (or residuals). This assumption is known to be little reallistic, particularly in presence of type II error hidden by markedly different clade-structured responses (or phylogenetic non-stationarity) (Davies et al., 2019). Here we present one possible approach that accounts for more complex interactions among predictors, which would be reflected in the species-level slopes being allowed to vary as a function of the phylogeny, rather than keeping slopes constant and only allowing the intercepts (or residuals) to vary. Beyond answering the above questions, our approach has the potential to provide further insights as to whether or not accounting for phylogeny is needed in multi-species phenological studies.

Based on previous research on phylogenetic signal of phenological responses, we expect non-random phylogenetic structuring of the responses to environmental cues (Davies et al., 2013; Rafferty and Nabity, 2017; Joly et al., 2019) and expect that temperature-related cues display higher phylogenetic signal than photoperiod because the latter has remained more constant through evolutionary time. Yet, rather than specific hypotheses for different lineage-level responses, our work aims at exploring and discussing the following questions:

- 1. Do we need to account for phylogeny in multi-species, multi-cue modelling of the magnitude (strength) and variation of phenological responses to cues? This is, we worry about what are the biggest cues, and we think we may know which are those but if we have the wrong model, we may make the wrong inference or get estimates wrong.
- 2. If so, can accounting for phylogeny shed light on the ongoing debate on declining sensitivities? For example, if particular lineages have very different evolutionary constraints on their responses to the cues, they may also display very differ declines in their sensitivities to the cues.
- 3. How can we interpret lambdas and sigmas for each cue, and for the intercept?
- 4. What are the implications for phenological predictions and forecasts?
- 5. Is this approach transferable to different taxa or biological responses?

Methods

Phenological and Phylogenetic Data

Phenological data: To estimate phenological responses to chilling, forcing and photoperiod we used data from phenological experiments of temperate woody species conducted in controlled environments, brought together in the Observed Spring Phenology Responses in Experimental Environments (OSPREE) database. In July 2019, we updated an earlier version of this database (Wolkovich et al., 2019) by reviewing all papers found through searching ISI Web of Science and Google Scholar with the following terms:

- 1. TOPIC = (budburst OR leaf-out) AND (photoperiod OR daylength) AND temperature*, which yielded 623 publications
- 2. TOPIC = (budburst OR leaf-out) AND dorman*, which yielded 270 publications

We scraped data from all papers of woody species that tested for photoperiod and/or temperature effects on budburst, leafout, or flowering, resulting in 56 papers. ? used a portion (72 experiments across 49 papers) of the earlier OSPREE database and provides extensive methods on the database creation and cleaning. For our analysis here, we included all budburst experiments where we could quantify chilling, forcing and photoperiod levels, resulting in 44 studies from 33 papers. Across experiments chilling treatments were often fully or partially applied in the field, thus we estimated field chilling ourselves using daily temperature data from ... [Cat and Nacho – add here: Be sure to include updated info on our datasets and which chilling metric we used]. ? provides additional details on these calculations (however, to have climate data through all our study years, we used a different climate dataset here for North America).

We analyze 2 different subsets of species in the OSPREE database to explore differences across two major groups of taxa, angiosperms and gymnosperms, for which there are markedly different number of species (194 angiosperms vs. 19 gymnosperms), and whose deep evolutionary divergence advises for separate analyses ().

We used the phylogenetic megatree for seed plant from Smith and Brown (2018) to extract a subset phylogenetic tree containing only the species in the OSPREE dataset (Wolkovich et al., 2019). We pruned the megatree to generate to sub-trees containing only the species in each subset of data. The species that were not present in the megatree were added as polytomies at the generic level (using the function *congeneric.merge*; (Pearse et al., 2015)) with a branch length of zero. Polytomies represent 26.8% of the full angiosperm dataset. To test for the ability of polytomies to bias our results we run sensitivity analyses excluding these species from models (which lead to 142 angiosperms; see Supporting Information).

Bayesian hierarchical phylogenetic model

Commonly used phylogenetic regression methods today (e.g., PGLS and PMM) were originally conceived as statistical corrections for phylogenetic non-independence across observations—generally species—thus allowing multi-species studies to meet the assumptions linear regression (Freckleton et al., 2002). These corrections incorporated phylogenetic structure in the regression by modifying the residual variance-covariance matrix to substitute off-diagonal elements of zero (the value given the assumption of independence across observations) for shared phylogenetic branch lengths representing pairwise covariances (under phylogenetic non-independence among observations). Off-diagonals were also allowed to include a multiplying parameter—generally referred to as lambda—which is a transformation indicating the amount of phylogenetic relatedness among species (see below). Because the original aim of these methods was to correct for statistical nuance, the underlying assumption of phylogenetic regressions is that phylogenetic relatedness would only affect either model residuals (in PGLS approaches, Freckleton et al., 2002), or the model intercepts (e.g., in many PMM approaches, Housworth et al., 2004).

Because our aim is to understand how evolution may have imprinted biological responses to multiple interactive cues, our approach expands the above methods by explicitly incorporating phylogenetic structure accross model intercepts and slopes. Doing so allows explicitly estimating the amount of phylogenetic relatedness in species' sensitivities to each cue, when these sensitivities are modelled in a multi-predictor regression setting.

For each j species, we assumed that data were generated from the following sampling distribution:

$$y_i \sim \mathcal{N}(\mu_i, \sigma_e^2)$$
 (1)

where

$$\mu_j = \alpha_j + \beta_{1,j} X_2 + \beta_{2,j} X_2 + \beta_{3,j} X_3 \tag{2}$$

Predictors X_1 , X_2 , X_3 are standardized forcing, chilling, and photoperiod, and their effects on the phenology of species j are determined by parameters $\beta_{1,j}$, $\beta_{2,j}$, $\beta_{3,j}$, representing species' responses (or sensitivities) to each of the cues. These responses, including the species-specific intercept α_j , are elements of the following normal random vectors:

$$\boldsymbol{\alpha} = \{\alpha_1, \dots, \alpha_n\}^T \text{ such that } \boldsymbol{\alpha} \sim \mathcal{N}(\mu_{\alpha}, \boldsymbol{\Sigma}_{\alpha})$$

$$\boldsymbol{\beta}_1 = \{\beta_{1,1}, \dots, \beta_{1,n}\}^T \text{ such that } \boldsymbol{\beta}_1 \sim \mathcal{N}(\mu_{\beta_1}, \boldsymbol{\Sigma}_{\beta_1})$$

$$\boldsymbol{\beta}_2 = \{\beta_{2,1}, \dots, \beta_{2,n}\}^T \text{ such that } \boldsymbol{\beta}_2 \sim \mathcal{N}(\mu_{\beta_2}, \boldsymbol{\Sigma}_{\beta_2})$$

$$\boldsymbol{\beta}_3 = \{\beta_{3,1}, \dots, \beta_{3,n}\}^T \text{ such that } \boldsymbol{\beta}_3 \sim \mathcal{N}(\mu_{\beta_3}, \boldsymbol{\Sigma}_{\beta_3})$$
(3)

where the means of the multivariate normal distributions are root trait values (i.e., values of cue responses prior to evolving across a phylogenetic tree) and Σ_i are $n \times n$ phylogenetic variance-covariance matrices of the form:

$$\begin{bmatrix} \sigma_i^2 & \lambda_i \times \sigma_i \times \rho_{12} & \dots & \lambda_i \times \sigma_i \times \rho_{1n} \\ \lambda_i \times \sigma_i \times \rho_{21} & \sigma_i^2 & \dots & \lambda_i \times \sigma_i \times \rho_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \lambda_i \times \sigma_i \times \rho_{n1} & \lambda_i \times \sigma_i \times \rho_{n2} & \dots & \sigma_i^2 \end{bmatrix}$$

$$(4)$$

where σ_i^2 is the rate of evolution across a tree for trait i (here assumed to be constant along all branches), λ_i scales branch lengths and therefore is a measure of the "phylogenetic signal" or extent of phylogenetic relatedness on each model parameter (i.e., α_j , $\beta_{1,j}$, $\beta_{2,j}$, $\beta_{3,j}$), and ρ_{xy} is the phylogenetic correlation between species x and y, or the fraction of the tree shared by the two species.

The above specification is equivalent to writing equation 2 in terms of root trait values and residuals, such that:

$$\mu_j = \mu_\alpha + \mu_{\beta_1} X_1 + \mu_{\beta_2} X_2 + \mu_{\beta_3} X_3 + e_{\alpha_j} + e_{\beta_{1,j}} + e_{\beta_{2,j}} + e_{\beta_{3,j}}$$

$$\tag{5}$$

where the residual error terms (e.g., e_{α_j}) are elements of normal random vectors from multivariate normal distributions centered on 0 with the same phylogenetic variance-covariance matrices as in equation 4.

Interpretation of λ_j and σ_j^2 on slopes and intercepts

Most current phylogenetic regression approaches aimed at controlling for phylogenetic non-independence of analysis units (i.e. species, see Revell, 2010) assume the λ scaling parameter is constant across the full set of predictors in the model. Thus, λ is estimated as a single parameter based on one single residual term VCV matrix. While useful for correcting for phylogenetic non-independence this approach does not allow

the phylogeny to differentially affect different predictors (i.e. environmental cues in our example, which refer to simply as cues hereafter). In models with multiple cues, species responses to all cues are estimated as similarly phylogenetically structured, but this may not be the case. For example, in a PGLS model with three cues, it would be possible to have a high (i.e. close to 1) value of λ , due to either a strong phylogenetic signal in the response, but no phylogenetic structuring in the cues, or one or more predictors being strongly phylogenetically structured. In the latter case, phylogenetic structuring of responses to cues could be correlated (i.e., responses to cues evolving in a correlated fashion) or uncorrelated (i.e., independent evolution of responses to cues). Discerning these different situations is not trivial as they would inform whether responses to predictors configure in a structured fashion along the evolutionary process. However, most current approaches act as a black box regarding this information; they simply inform whether or not model residuals are phylogenetically structured (i.e. in PGLS) or the amount of model variance attributable to the phylogeny and independent from other sources of variation (i.e., in PMM, see Housworth et al. (2004)).

Because we are specifically interested in estimating the phylogenetic structure of each cues, our approach explicitly partitions variance into specific components relative to the model intercept and predictor (cue) slopes (see equation 5). The multivariate normal distributions of the intercept and slope terms include each a variance term (see equation 3), modelled with a λ scaling parameter. The interpretation of λ s in our models are analogous to Pagel's Pagel (1999) λ parameter (Housworth et al., 2004), constrained to range from 0 to 1, with values of 0 indicating absence of phylogenetic relatedness, and values of 1 indicating Brownian Motion evolution (BM). Estimated λ s are not fully equivalent to computing phylogenetic signal of the slopes of each cue separately (i.e., fitting a multilevel regression model with species as a grouping factor on intercepts, and subsequently estimating phylogenetic signal for model slopes). Instead, they are a relative metric of phylogenetic relatedness allowing us to compare among responses known to interact with each other and estimated simultaneously. This approach has the further benefit of adjusting our partial pooling ('random effect' of species) based on evolutionary distance, more strongly pooling closely related species, and only weakly pooling distantly related species (see Gaussian process models in Gelman et al., 2014).

A traditional interpretation of σ^2 s under Brownian Motion evolution, is an 'evolutionary rate' or phenotypic accumulation over time (Revell et al., 2008). In PGLS, σ_{ϵ}^2 is estimated for the model error term, which is distributed as a multivariate normal with VCV matrix given by $\sigma_{\epsilon}^2 \Sigma_i$. Here, similar to our approach to λ , we estimate four σ^2 values, corresponding to each model parameter. In our particular case (i.e., modelling a phenological response to three environmental cues), σ_{α}^2 for the intercept could be interpreted as the phenological variation across species accumulated along evolution independently from the cues. The $\sigma_{\beta_1}^2$, $\sigma_{\beta_2}^2$, and $\sigma_{\beta_3}^2$, corresponding to model slopes, would represent the phylogenetic variance linked to species responses to

each of the modelled cues (i.e., forcing, chilling, and photoperiod, respectively). This is, the variability in how species shift their phenology responding to temperature and light, accumulated along the evolutionary process and considered in concert.

Results & Discussion

Tree phenological responses to environmental cues have been subjected to evolutionary constraints so that closely related species tend to show similar responses to forcing and to less extent, to chilling, but not to photoperiod (Fig. 1). Although our findings coincide in their ranking of cue importance with previous ones (Ettinger et al., 2020), they highlight the need to account for phylogeny in multi-species, multi-predictor modelling of phenological responses to cues.

Most analyzed angiosperm species were sensitive to all three environmental cues—i.e., forcing, chilling, and photoperiod (Figs. 1, Supporting Table ??). Cue sensitivity led to average phenological advances of 7.2 days per unit of standardized chilling, 5.8 days per unit of forcing, and 1.4 days/standard unit of photoperiod (see Table ??). For gymnosperms we had far less data—i.e., a tenth of the species and a fifth of the observations we had for angiosperms—however, the direction of the effects and ranking of cue sentivities were qualitatively similar (see Table ??).

Phylogenetic signal differs markedly across cues (Fig. 3). Tree phenological responses to environmental cues were strongly phylogenetically clustered for forcing ($\lambda=0.68$), moderately so for chilling ($\lambda=0.56$) and weakly for photoperiod ($\lambda=0.24$) (see Fig. ??, Table ??), suggesting that cue responses widely differ in how they are affected by evolutionary relatedness. Sensitivity to photoperiod treatments did not vary across clades while responses to forcing tend to be more similar among closely related species (Fig. 1). Along evolution, tree species would have been constrained in their ability to develop responses to forcing that differ much from those of their close relatives, and somewhat less constrained in their responses to chilling. In contrast, responses to photoperiod seem evolutionarily labile, with little variation across most species (0.86 days per standard unit of photoperiod) and a few exceptions from the genus Fagus, known as particularly sensitive to photoperiod (Fu et al., 2019). Specifically, Fagus sylvatica is nearly five times more sensitive to photoperiod than most tree species. The question arises as to whether species with outlying responses should be chosen as the model from which to extrapolate knowledge as done with Fagus sylvatica in the phenology literature (REFs for PEP75?!).

Why would distantly related species respond more similarly to photoperiod than they do to forcing or chilling? Clearly, daylength is a more 'reliable' cue in temperate latitudes, as it varies less than forcing or chilling both across years and along evolutionary time. As such, it would have enabled species scheduling their phenological events to match most suitable environmental conditions (Jackson, 2009). The adaptation to shifting daylength may have occurred very early in the evolution of photoperiodic sensing—i.e., as early as in cianobacteria (Hut and Beersma, 2011; Serrano-Bueno et al., 2017). If responses to photoperiod had evolved early in plants and kept more or less constant afterwards in absence of novel selective advantages—i.e., consistent with an Early Burst model of evolution—that would be consistent with our pattern of little variation in the responses to photoperiod across species and clades. Further analyses of Early Burst evolution in photoperiodic responses for a wider set of species could test this interpretation.

Phenological responses to forcing are strongly structured across the phylogeny, with certain clades emerging as significantly more sensitive than others (Fig. 1 a). For example, species from the Ericaceae, Rhamnaceae, Ulmaceae, or from the genus Quercus are particularly sensitive to forcing (advancing their budburst more than 10 days per standardized unit of forcing). Low sensitivity to forcing is also structured and patent for clades such as the Sapindaceae, Cornaceae or Juglandaceae families. Less than forcing but still phylogenetically structured, responses to chilling were coincident in their higher sensitivity for clades such as Rhamnaceae, Ulmaceae, or Fagacea. These coincidences would suggest the existance of syndromes where genetic basis for responses to one cue (e.g., forcing) could have been selected for along responses to another cue (e.g. chilling). However, correlation among responses to both cues is significant but weak (r = 0.31) as responses to chilling are more variable, the relationship among responses is non-linear (see Supporting Information XX), and there are clades such as Tilia and Ericaceae with strong responses to forcing and weak responses to chilling. Further, species in genera such as Betula and Populus display strong intra-clade differences in their responses to chilling.

Identifying strong patterns in clade-level responses to cues may open (at least for clades with the strongest signal) a venue for imputation of phenological sensitivities in unmeasured species. Imputation must be done with extreme care (Molina-Venegas et al., 2018), but would allow expanding the short list of plant species for which forecasting phenology is feasible. In any case, the above results have implications for future analyses of phenological responses to cues as they support use of species complexes as done in Ettinger et al. (2020), given the strong structuring of closely related species.

From a statistical perspective, accounting for the effects of phylogenetic structuring on the effects of jointly modelled cues had an effect on model coefficients both for angiosperms (Fig. 4) and gymnosperms (Fig. 5). Not accounting for phylogeny (or assuming $\lambda = 0$) biased model coefficients, particularly so for forcing and somewhat less for chilling (Fig. 4). Specifically, species sensitivities to forcing and chilling were underestimated on average (model slopes shifted by 7.2% and 3.7%, respectively). Sensitivities to photoperiod, which showed weak phylogenetic signal were not biased in non-phylogenetic models (Fig. 4), likely associated to their low estimated λ values. Model intercepts were not affected either (Fig. 4).

Not accounting for phylogeny also had a strong effect in decreasing cross-species variance in their responses to forcing (Var $\beta_{phylo} = 9.13$; Var $\beta_{non-phylo} = 4.99$), chilling (Var $\beta_{phylo} = 22.71$; Var $\beta_{non-phylo} = 16.53$), and somewhat less to photoperiod (Var $\beta_{phylo} = 0.86$; Var $\beta_{non-phylo} = 0.67$). Counterintuitively, these artificial/induced reductions in cross-species variance, far from increasing estimation accuracy could lead to increased type-II error by failing to detect actual relationships among cue responses that would only emerge clearly when phylogeny is accounted for (see Supporting Information XX). For example, the correlation between species responses to forcing and chilling decreased by 50% when model lambda was equal zero (e.g. $r_{force-chill} = 0.14$). Importantly, not accounting for phylogeny increased the uncertainty around each individual species estimation of their responses to forcing and chilling (see Fig. SXX in Supporting Information), which could lead to less precise predictions and forecasts of phenology.

Assuming phylogenetic structuring to follow a Brownian Model of evolution ($\lambda = 1$) biased model coefficients too (Fig. 4) although in the opposite direction. Doing so overestimated sensitivities to forcing and chilling (model slopes shifted by 20.5% and 11.8%, respectively) and even more to photoperiod (model slopes shifts of 33.1%; Fig. 4). Bias in model coefficients due to either ignoring or overestimating phylogenetic structuring of predictors seems to correlate with the estimated value of λ so that, if their actual value is high, coefficients may suffer stronger bias if phylogeny is disregarded. In contrast, if predictor's λ is actually low, bias would arise by imposing a Brownian Motion on the evolution of those predictors. Results coincided qualitatively with those of gymnosperms, which were more variable as sample size is smaller (Fig. 4). Beyond leading to coefficient shifts, overestimation of phylogenetic structuring of predictors significantly decreased model accuracy—i.e., Bayes R^2 —in both angiosperms (1%) and gymnosperms (3%). Ignoring phylogeny did not affect accuracy with respect to our approach (see Appendix XX in Supporting Information).

Our models found non-negligible phylogenetic signal in model intercepts (see 3). This indicates that the intrinsic variation across species in the timing of budbreak before experiencing the effects of any environmental

cue, is also phylogenetically patterned. This is, regardless the action of cues some tree species budbreak earlier than others, and these differences tend to be smaller, at least to some extent (the signal is weak $\lambda = 0.35$), among closely related species. Previous work had already shown large variation across species in their model intercepts (Davies et al., 2013). While fitted species-level intercepts did not change between the phylogenetic and non-phylogenetic model (4), our approach suggests that the mechanisms underlying species' baseline phenological differences would not operate randomly across the phylogeny.

Accurate forecasts of phenology remain elusive, partly due to recent records of declines in species phenological sensitivity to increasing temperatures (Fu et al., 2015; Piao et al., 2017)—although such declines could derive from statistical artifacts (Wolkovich et al., 2021). Whatever the case, tests of declines in phenological sensitivity to warming will rely in accurate estimation of responses to cues, and we show here that such estimations are improved by accounting for phylogenetic relationships. The need to incorporate phylogenetic information into the phenology research programme has been suggested before (Davies et al., 2013; Joly et al., 2019), mostly grounded on findings of non-random phylogenetic signal in both phenological traits (Davies et al., 2013; Rafferty and Nabity, 2017) and phenological responses to cues (Davies et al., 2013; Joly et al., 2019). Yet, our approach differs from previous research in that it estimates simultaneously phylogenetic signal for each environmental cue driving phenological sensitivity to such cues. Doing so provides insights on how responses to cues have configured along evolutionary time—e.g., if such responses have evolved independently or in concert with each other, and/or if they tend to be shared within certain clades.

Ultimately, this knowledge would inform which clades will be more sensitive to specific climate shifts—e.g., changes in cold temperatures over winter or in warm temperatures in spring and summer—or, which clades emerge as particularly sensitive to cues only after phylogeny is accounted for. For example, the genus *Quercus* would not be amongst the most sensitive ones to forcing and chilling in non-phylogenetic models (see e.g., (Ettinger et al., 2020)), but its species gain sensitivity (2 days per standard unit of forcing and 4 days per standard unit of chilling, on average) through the phylogenetic Bayesian models used here.

In sum, non-phylogenetic models can (i) induce significant bias in estimated model coefficients, (ii) decrease variability in cross-species biological responses and, (iii) increase uncertainty around estimates of individual species sensitivity to cues. Further, non-phylogenetic models hide information on whether the evolution of species responses—i.e., phenological shift in our case—to their determining environmental cues has occurred in a correlated fashion, and if so, identifying which clades are more likely to respond in concert to a set of cues (see Fig. 1). Together, our results indicate that either ignoring the phylogeny or imposing stronger

phylogenetic relationships than actual ones would compromise model ability to generate accurate inference and prediction, which are increasingly needed in a warming world.

References

- Bolmgren, K., and P. D. Cowan. 2008. Time–size tradeoffs: A phylogenetic comparative study of flowering time, plant height and seed mass in a north-temperate flora. Oikos 117:424–429.
- Chen, I.-C., J. K. Hill, R. Ohlemüller, D. B. Roy, and C. D. Thomas. 2011. Rapid range shifts of species associated with high levels of climate warming. Science 333:1024–1026.
- Chuine, I. 2000. A unified model for budburst of trees. Journal of Theoretical Biology 207:337 347.
- Chuine, I., and J. Regniere. 2017. Process-based models of phenology for plants and animals. Annual Review of Ecology, Evolution, and Systematics 48:159–182.
- Cleland, E. E., I. Chuine, A. Menzel, H. A. Mooney, and M. D. Schwartz. 2007. Shifting plant phenology in response to global change. Trends in Ecology & Evolution 22:357–365.
- Davies, T., E. Wolkovich, N. Kraft, N. Salamin, and S. E. Travers. 2013. Phylogenetic conservatism in plant phenology. Journal of Ecology 101:1520–1530.
- Davies, T. J., J. Regetz, E. M. Wolkovich, and B. J. McGill. 2019. Phylogenetically weighted regression: A method for modelling non-stationarity on evolutionary trees. Global ecology and biogeography 28:275–285.
- Ettinger, A., C. Chamberlain, I. Morales-Castilla, D. Buonaiuto, D. Flynn, T. Savas, J. Samaha, and E. Wolkovich. 2020. Winter temperatures predominate in spring phenological responses to warming. Nature Climate Change pages 1–6.
- Flynn, D. F. B., and E. M. Wolkovich. 2018. Temperature and photoperiod drive spring phenology across all species in a temperate forest community. New Phytologist 219:1353–1362.
- Freckleton, R. P., P. H. Harvey, and M. Pagel. 2002. Phylogenetic analysis and comparative data: a test and review of evidence. The American Naturalist 160:712–726.
- Fu, Y. H., S. Piao, X. Zhou, X. Geng, F. Hao, Y. Vitasse, and I. A. Janssens. 2019. Short photoperiod reduces the temperature sensitivity of leaf-out in saplings of *Fagus sylvatica* but not in horse chestnut. Global Change Biology 25:1696–1703.

- Fu, Y. S. H., H. F. Zhao, S. L. Piao, M. Peaucelle, S. S. Peng, G. Y. Zhou, P. Ciais, M. T. Huang, A. Menzel, J. P. Uelas, Y. Song, Y. Vitasse, Z. Z. Zeng, and I. A. Janssens. 2015. Declining global warming effects on the phenology of spring leaf unfolding. Nature 526:104–107.
- Gelman, A., J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, and D. B. Rubin. 2014. Bayesian Data Analysis. 3rd ed. CRC Press, New York.
- Housworth, E. A., E. P. Martins, and M. Lynch. 2004. The phylogenetic mixed model. The American Naturalist 163:84–96.
- Hut, R. A., and D. G. Beersma. 2011. Evolution of time-keeping mechanisms: early emergence and adaptation to photoperiod. Philosophical Transactions of the Royal Society B: Biological Sciences 366:2141–2154.
- Jackson, S. D. 2009. Plant responses to photoperiod. New Phytologist 181:517–531.
- Joly, S., D. F. Flynn, and E. M. Wolkovich. 2019. On the importance of accounting for intraspecific genomic relatedness in multi-species studies. Methods in Ecology and Evolution.
- Larcher, W. 1980. Plant Physiological Ecology. Springer-Verlag.
- Menzel, A., Y. Yuan, M. Matiu, T. Sparks, H. Scheifinger, R. Gehrig, and N. Estrella. ???? Climate change fingerprints in recent european plant phenology. Global Change Biology.
- Molina-Venegas, R., J. C. Moreno-Saiz, I. Castro Parga, T. J. Davies, P. R. Peres-Neto, and M. Á. Rodríguez. 2018. Assessing among-lineage variability in phylogenetic imputation of functional trait datasets. Ecography 41:1740–1749.
- Pagel, M. 1999. Inferring the historical patterns of biological evolution. Nature 401:877–884.
- Pearse, W. D., M. W. Cadotte, J. Cavender-Bares, A. R. Ives, C. M. Tucker, S. C. Walker, and M. R. Helmus. 2015. Pez: Phylogenetics for the environmental sciences. Bioinformatics 31:2888–2890.
- Piao, S., Z. Liu, T. Wang, S. Peng, P. Ciais, M. Huang, A. Ahlstrom, J. F. Burkhart, F. Chevallier, I. A. Janssens, et al. 2017. Weakening temperature control on the interannual variations of spring carbon uptake across northern lands. Nature climate change 7:359.
- Rafferty, N. E., and P. D. Nabity. 2017. A global test for phylogenetic signal in shifts in flowering time under climate change. Journal of Ecology 105:627–633.
- Revell, L. J. 2010. Phylogenetic signal and linear regression on species data. Methods in Ecology and Evolution 1:319–329.

- Revell, L. J., L. J. Harmon, and D. C. Collar. 2008. Phylogenetic signal, evolutionary process, and rate. Systematic biology 57:591–601.
- Serrano-Bueno, G., F. J. Romero-Campero, E. Lucas-Reina, J. M. Romero, and F. Valverde. 2017. Evolution of photoperiod sensing in plants and algae. Current opinion in plant biology 37:10–17.
- Smith, S. A., and J. W. Brown. 2018. Constructing a broadly inclusive seed plant phylogeny. American journal of botany 105:302–314.
- Willis, C. G., B. Ruhfel, R. B. Primack, A. J. Miller-Rushing, and C. C. Davis. 2008. Phylogenetic patterns of species loss in thoreau's woods are driven by climate change. Proceedings of the National Academy of Sciences 105:17029–17033.
- Wolkovich, E., J. Auerbach, C. Chamberlain, D. Buonaiuto, A. Ettinger, I. Morales-Castilla, and A. Gelman. 2021. A simple explanation for declining temperature sensitivity with warming. Global Change Biology 27:4947–4949.
- Wolkovich, E. M., B. I. Cook, J. M. Allen, T. M. Crimmins, J. L. Betancourt, S. E. Travers, S. Pau,
 J. Regetz, T. J. Davies, N. J. B. Kraft, T. R. Ault, K. Bolmgren, S. J. Mazer, G. J. McCabe, B. J. McGill,
 C. Parmesan, N. Salamin, M. D. Schwartz, and E. E. Cleland. 2012. Warming experiments underpredict
 plant phenological responses to climate change. Nature 485:494–497.
- Wolkovich, E. M., A. K. Ettinger, D. Flynn, T. Savas, C. Chamberlain, D. Buonaiuto, and J. Samaha. 2019. Observed Spring Phenology Responses in Experimental Environments (OSPREE). doi:10.5063/F1CZ35KB.

Tables and Figures

Figure 1: Phenological sensitivity to thee environmental cues, forcing (a), chilling (b) and photoperiod (c) measured in change in days to budburst per standardized unit (z-transformation) of the cues across 192 angiosperm species. The same phylogenetic tree is shown in each panel, colored acording to an estimation of ancestral character states, being the states at the tips the model slopes of our hierarchical phylogenetic model. Note that the color scale varies in each panel. Total tree depth is 81. My.

Figure 2: Phenological sensitivity to thee environmental cues, forcing (a), chilling (b) and photoperiod (c) measured in change in days to budburst per standardized unit (z-transformation) of the cues across 19 gymnosperm species. The same phylogenetic tree is shown in each panel, colored acording to an estimation of ancestral character states, being the states at the tips the model slopes of our hierarchical phylogenetic model. Note that the color scale varies in each panel. Total tree depth is 81. My.

Figure 3: Density plots for the posterior distribution of phylogenetic signal measured by lambda for each cue included as a predictor in the model for angiosperms: forcing (red), chilling (blue), photoperiod (orange) and for the model intercept (grey). Panels correspond to angiosperms (a-d) and gymnosperms (e-h). Note that lambda estimations corresponding to panels c-d and g-h as they are constrained to be either equal zero or equal 1.

Figure 4: Correlations between model parameters as estimated by the full model and the models where lambda is constrained to be equal zero (upper row) or one (bottom row), for angiosperms. Panels correspond to sensitivity to forcing (a,e), to chilling (b,f), to photoperiod (c,g) and to model intercepts (d,h).

Figure 5: Correlations between model parameters as estimated by the full model and the models where lambda is constrained to be equal zero (upper row) or one (bottom row), for gymnosperms. Panels correspond to sensitivity to forcing (a,e), to chilling (b,f), to photoperiod (c,g) and to model intercepts (d,h).

Table 1: Full model parameters estimated for 192 angiosperm species.

parameter	mean	sd	$\boldsymbol{2.50\%}$	50%	97.50%	$n_{-}eff$
μ_{lpha}	30.57	3.41	23.68	30.59	37.14	5031.19
$\mu_{etaforcing}$	-5.84	2.01	-9.72	-5.89	-1.79	2374.73
$\mu_{eta chilling}$	-7.19	2.03	-11.15	-7.18	-3.18	3694.93
μ_{\betaphotoperiod}	-1.37	0.76	-2.92	-1.35	0.14	1565.41
λ_{lpha}	0.35	0.10	0.16	0.34	0.56	3416.51
$\lambda_{etaforcing}$	0.68	0.20	0.23	0.71	0.98	185.35
$\lambda_{eta chilling}$	0.56	0.15	0.25	0.56	0.83	738.57
$\lambda_{\betaphotoperiod}$	0.36	0.24	0.02	0.33	0.88	296.51
σ_{α}^2	15.93	1.17	13.84	15.85	18.41	2988.37
$\sigma^2_{\beta forcing}$	5.84	1.04	4.03	5.78	8.15	502.74
$\sigma^2_{eta chilling}$	7.05	0.87	5.48	7.02	8.92	1026.77
$\sigma^2_{\beta photoperiod}$	2.45	0.41	1.74	2.42	3.32	469.46
$\frac{\sigma_y^2}{}$	12.81	0.18	12.47	12.80	13.17	4017.16

Table 2: Full model parameters estimated for 19 gymnosperm species.

parameter	mean	sd	$\boldsymbol{2.50\%}$	50%	97.50%	$n_{-}eff$
μ_{α}	25.75	4.50	16.88	25.73	34.73	33151.86
$\mu_{\beta forcing}$	-5.92	3.80	-12.97	-6.05	1.90	16443.03
$\mu_{eta chilling}$	-8.11	3.63	-15.31	-8.09	-0.94	21379.81
μ_{\betaphotoperiod}	-0.88	3.33	-8.01	-0.67	5.19	16301.93
λ_{lpha}	0.47	0.26	0.02	0.48	0.90	15934.03
$\lambda_{etaforcing}$	0.36	0.23	0.02	0.33	0.84	14336.60
$\lambda_{eta chilling}$	0.32	0.23	0.01	0.28	0.82	13230.88
$\lambda_{eta photoperiod}$	0.37	0.24	0.02	0.34	0.88	11199.49
σ_{α}^2	23.47	6.20	13.87	22.59	37.81	18272.58
$\sigma^2_{eta forcing}$	8.89	2.45	4.96	8.60	14.51	8126.51
$\sigma^2_{eta chilling}$	10.47	2.66	5.78	10.30	16.17	8539.38
$\sigma^2_{eta photoperiod}$	7.18	2.29	3.29	6.96	12.25	5625.69
σ_y^2	15.81	0.41	15.04	15.81	16.63	28640.16