

MAT1011-Calculus for Engineers

- 1. Show that the rectangle that has maximum area for a given perimeter is a square.
- 2. The height of an object moving vertically is given by $s = -16t^2 + 96t + 112$ with s in feet and t in second. Find
 - (a) its velocity when t=0
 - (b) Its maximum height
 - (c) Its velocity when s = 0.
- 3. Determine that constant a and b in order that function $f(x) = x^3 + ax^2 + bx + c$ a relative minima at x = 4 and a point of inflection at x = 1.
- 4. A vertical line passing through the point (1,2) intersects the X axis at A(a,0)and Y axis at B(0,b). Find area of triangle of least area if a and b are positive.
- 5. Determine the absolute extrema of the $f(x) = 8x^3 + 81x^2 42x 8$ on the [-8, 2]
- 6. Give the intervals where the given functions are increasing and decreasing

 - (a) $f(x) = \frac{x^2 3x}{x + 1}$ (b) $f(x) = x^2 e^{-3x}$
 - (c) $f(x) = x^3 x$
 - (d) $f(x) = x \log x$
- 7. Without solving the equations, show that equations
 - (a) $f(x) = 2x^3 3x^2 12x 6$ on [-1,0]
 - (b) $f(x) = x^4 + 2x^3 2$ on [0,1] have exactly one real root.
- 8. A bike drove 30 miles during a one hour trip. Show that bike speed was equal to 30 mile / hour at least once during the trip.
- 9. Find the point at the curves f(x) where tangent is parallel to the chord joining end points of curves.
 - (a) $f(x) = x^2 + 2x 1$ on $\begin{bmatrix} 0 & 1 \end{bmatrix}$.

 - (b) $f(x) = x + \frac{1}{x}$ on $\left[\frac{1}{2}2\right]$ (c) $f(x) = \sqrt{x-1}$ on $\left[1 \ 3\right]$.

- 10. Find the area of the region enclosed by the parabola $y = 2 x^2$ and the line y = -x.
- 11. Find the area of the region in the first quadrant that is bounded above by $y = \sqrt{x}$ and below by the x -axis and the line y = x 2.
- 12. Find the area bounded on the right by x + y = 2, on the left by $y = x^2$ and below by the X axis.
- 13. Find the area of the region bounded by the curve $y=xe^{-x}$ and the x -axis from x=0 to x=4
- 14. Find the volume generated by revolving the given region about the given axis.
 - (a) The region bounded by $y = x^4, x = 1$ and y = 0 about Y axis.
 - (b) The triangle with vertices (1,1),(1,2)(2,2) about X axis.
 - (c) The region in the first quadrant bounded by $x = y y^3$, x = 1 and y = 1 about X axis.
- 15. Find the volume of the solid generated by revolving the region bounded by $y = \sqrt{x}$ and the lines y = 1, x = 4 about the line y = 1

MAT1011-Calculus for Engineers

- 1. Find (a) $L[\cos^4 t]$ (b) $L[\cos(3t-4)]$ (c) $L[t^2e^{-t}\cos t]$
 - (d) $L\left[\frac{e^{-3t}\sin 3t}{t}\right]$ (e) $L\left[te^{-t}\cosh t\right]$ (f) $L\left[\frac{\sin^2 t}{t}\right]$
- 2. Find L[f(t)] if

(a)
$$f(t) = \begin{cases} e^t, & 0 \le t < 1 \\ 0 & t > 1 \end{cases}$$
 (b) $f(t) = \begin{cases} \cos t, & 0 \le t < \pi \\ \sin t, & t > \pi \end{cases}$.

(c)
$$L[f(t)]$$
 if $f(t) = \begin{cases} \sin t, & 0 \le t < \pi \\ 0, & t > \pi \end{cases}$

3. Find the Laplace transform for the square wave given by

$$f(t) = \begin{cases} k & , 0 \le t \le \frac{T}{2} \\ -k & , \frac{T}{2} \le t \le T \end{cases}, f(t+T) = f(t)$$

4. Find the Laplace transform of the Half-sine wave rectifier function

$$f(t) = \begin{cases} \sin \omega t &, 0 \le t \le \frac{\pi}{\omega} \\ 0 &, \frac{\pi}{\omega} \le t \le \frac{2\pi}{\omega} \end{cases}$$

- 5. Find the Laplace transform of the periodic function $f(t) = \begin{cases} \sin t & 0 \le t \le \pi \\ 0 & \pi \le t \le 2\pi \end{cases}$.
- 6. Find (a) $L^{-1} \left[\frac{s-3}{(s^2+4s+13)} \right]$

(b)
$$L^{-1} \left[\frac{s-2}{(6s^2+20)} \right]$$

(c)
$$L^{-1} \left[\frac{s}{(s+2)^2+4)} \right]$$

(d)
$$L^{-1} \left[\log \left(\frac{s+1}{s-1} \right) \right]$$

7. Using convolution theorem, find

(a)
$$L^{-1} \left[\frac{1}{(s+a)(s+b)} \right]$$

(a)
$$L^{-1} \left[\frac{1}{(s+a)(s+b)} \right]$$
 (b) $L^{-1} \left[\frac{2}{(s+1)(s^2+4)} \right]$ (c) $L^{-1} \left[\frac{s}{(s^2+a^2)^2} \right]$

(c)
$$L^{-1} \left[\frac{s}{(s^2+a^2)^2} \right]$$

(d)
$$\frac{s^2}{(s^2+a^2)^2}$$

(d)
$$\frac{s^2}{(s^2+a^2)^2}$$
 (e) $L^{-1} \left[\frac{s^2}{(s^2+a^2)(s^2+b^2)} \right]$

8. Find (a)
$$L\left[e^{-2t}\int_0^t \left(\frac{1-\cos u}{u}\right) du\right]$$
 (b) $L\left[e^{-t}\int_0^t t^2 \cot dt\right]$

(b)
$$L\left[e^{-t}\int_0^t t^2 \cot dt\right]$$

(c)
$$L\left[\int_0^t \frac{\sin x}{x} dx + te^{-t} \cos^2(2t)\right]$$
 (d) $L\left[\frac{\cos(at) - \cos(bt)}{t}\right]$ if it exists.

9. Find
$$L[f(t)]$$
 if $f(t) = |t - 1| + |t + 1|$ for $t \ge 0$

10. Find (a)
$$L[t^2u(t-1) + t\delta(t-1)]$$
 (b) $L[e^{-t}(1+3t+t^{\frac{1}{2}})u(t-2)]$

11. Find Laplace transform of f(t) = tan(t) if it exists, otherwise justify your answer.

12. Find (a)
$$L\left[e^{-2t}\cosh^3(t)\right]$$
 (b) $L\left[\frac{\cos\sqrt{t}}{\sqrt{t}}\right]$

13. Express the following function in terms of Unit Step function and hence find its Laplace transform.

(a)
$$f(t) = \begin{cases} \cos(t), 0 < t < \pi \\ 1, \pi < t < 2\pi \\ \sin(t), t > 2\pi \end{cases}$$
 (b) $f(t) = \begin{cases} \cos(t), 0 < t < \pi \\ \cos(2t), \pi < t < 2\pi \\ \cos(3t), t > 2\pi \end{cases}$

14. Find the Laplace transform of the function f(t) defined by

$$f(t) = |\cos(\omega t)|, t \ge 0$$

15. Find (a)
$$L^{-1} \left\{ \log \left(1 + \frac{\omega^2}{s^2} \right) \right\}$$

(b)
$$L^{-1}\left\{\tan^{-1}\left(\frac{1}{S}\right)\right\}$$

(c)
$$L^{-1} \left[s \log \left(\frac{s-a}{s+a} \right) + a \right]$$

MAT1011-Calculus for Engineers

1. Determine the limits if they exist.

(a)
$$\lim_{(x,y)\to(0,0)} \frac{x}{\sqrt{x^2+y^2}}$$
 (b) $\lim_{(x,y)\to(0,0)} \frac{1-x-y}{x^2+y^2}$

(c)
$$\lim_{(x,y)\to(0,0)} \frac{x^2}{x^3+y^3}$$
 (d) $\lim_{(x,y)\to(0,0)} \frac{x}{x^2+y^2}$
(e) $\lim_{(x,y)\to(2,4)} \frac{(x-2)^2(y-4)^2}{(x-2)^3+(y-4)^3}$.

(e)
$$\lim_{(x,y)\to(2,4)} \frac{(x-2)^2(y-4)^2}{(x-2)^3+(y-4)^3}$$

2. Show that the following limits exist.

(a)
$$\lim_{(x,y)\to(0,0)} \frac{x^3+y^3}{x^2+y^2}$$
 (b) $\lim_{(x,y)\to(0,0)} (x^3+y^3) \cos \frac{1}{xy}$

(c) $\lim_{(x,y)\to(0,0)} y+x\cos\frac{1}{y}$ (d) $\lim_{(x,y)\to(0,0)} \frac{(x^3+y^3)e^{-x^2y^2}}{x^2+y^2}$

(e) $\lim_{(x,y)\to(0,0)} \frac{(x^4-y^4)(1-x^2)}{x^2+y^2}$.

(c)
$$\lim_{(x,y)\to(0,0)} y + x \cos\frac{1}{y}$$
 (d) $\lim_{(x,y)\to(0,0)} \frac{(x^3 + y^3) e^{-x^2y^2}}{x^2 + y^2}$

(e)
$$\lim_{(x,y)\to(0,0)} \frac{(x^4-y^4)(1-x^2)}{x^2+y^2}$$

3. Discuss the continuity of the following functions at (0,0).

(a)

$$f(x,y) = \begin{cases} \frac{(x-y)^2}{x^2+y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

(b)

$$f(x,y) = \begin{cases} \frac{(x-y)xy}{x^2+y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

(c)

$$f(x,y) = \begin{cases} \frac{x^4y^4}{(x^2+y^2)^3} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

(d)

$$f(x,y) = \begin{cases} \frac{x^4 y^5}{x^5 + y^5} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

4. Let $z=\log(u^2+v)$, $u=\exp(x^2+y^2)$, $v=x^2+y$. Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial u}$.

- 5. Let u=f(r,s), r=x+at, s=y+bt, where x,y,t are independent variables and, a and b are constants. Show that $\frac{\partial u}{\partial t}=a\frac{\partial u}{\partial x}+b\frac{\partial u}{\partial y}$
- 6. Find the equation of the tangent plane and normal line to the surface $x^2 + 2y^2 + 3z^2 = 12$ at (1, 2, -1).
- 7. If $z = \sin^{-1}(x y)$, x = 3t, $y = 4t^3$; show that $\frac{dz}{dt} = \frac{3}{\sqrt{1 t^2}}$.
- 8. If z = f(x, y), where $x = e^u + e^{-v}$, $y = e^{-u} e^v$, then find $\frac{\partial(u, v)}{\partial(x, y)}$.

MAT1011-Calculus for Engineers

- 1. Find the relative maxima and minima of the following functions (a) $f(x,y) = xy + \frac{9}{x} + \frac{3}{y}$
 - (b) $f(x,y) = x^2 + y^2 + xy + \frac{1}{x} + \frac{1}{y}$
 - (c) $f(x,y) = x^2 + \frac{2}{x^2y} + y^2$
- 2. Find the relative and absolute maxima and minima of the following functions in the given domain. (a) $f(x,y) = x^2 y^2 2y, x^2 + y^2 \le 1$
 - (b) $f(x,y) = xy, x^2 + y^2 \le 1$
 - (c) $f(x,y) = x + y, 4x^2 + 9y^2 \le 36$
 - (d) $f(x,y) = 4x^2 + y^2 2x + 1, 2x^2 + y^2 \le 1$
 - (e) $f(x,y) = x^2 + y^2 x y + 1, 0 \le x \le 2, 0 \le y \le 2$
 - (f) $f(x,y) = x^3 + y^3 xy$ over the triangular region bounded by the lines x = 0, y = 0, and y = 2x
- 3. Using the Lagrange method of multipliers, solve the following problems.
 - (a) Find the smallest and the largest values of xy on the line segment $x + 2y = 2, x \ge 0, y \ge 0$
 - (b) Find the smallest and the largest values of x + 2y on the circle $x^2 + y^2 = 1$
 - (c) Find the points on the curve $x^2 + xy + y^2 = 16$ which are nearest and farthest form the origin.
 - (d) Find the triangle whose perimeter is constant and has largest area.
 - (e) Find the extreme value of xyz when x + y + z = a, a > 0.
 - (f) Find the extreme value of $a^3x^2 + b^3y^2 + c^3z^2$ such that $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 1$, where

4. Expand $f(x,y) = \sin(x+2y)$ in Taylor's series upto third degree terms about (1,3). Hence, approximate f(0.99,3.01)

MULTIPLE INTEGRALS

PART- A

1. Evaluate the following:

(i)
$$\int_{4}^{3} \int_{1}^{2} (x+y)^{-2} dxdy$$
 (ii) $\int_{2}^{a} \int_{2}^{b} \frac{dxdy}{xy}$ (iii) $\int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}} \sin(x+y) dxdy$ (iv) $\int_{0}^{1} \int_{x}^{\sqrt{x}} xy(x+y) dxdy$

$$(v) \int_{0}^{\pi} \int_{0}^{a\cos\theta} r\sin\theta \, dr d\theta \quad (vi) \int_{0}^{\frac{\pi}{2}} \int_{0}^{\sin\theta} r \, d\theta \, dr \quad (vii) \int_{1}^{2} \int_{0}^{x^{2}} x \, dx dy \quad (viii) \int_{0}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}} dy dx \quad (ix) \int_{1}^{2} \int_{0}^{y} \frac{dx dy}{x^{2}+y^{2}}$$

(x)
$$\int_{0}^{1} \int_{0}^{\sqrt{1+y^2}} \frac{dxdy}{1+x^2+y^2}.$$

[Ans.: (i) log (24/25) (ii) log (a/2) log (b/2) (iii) 2 (iv) 3/56 (v) $a^2/3$ (vi) $\pi/8$ (vii) 15/4 (viii) $\pi a^2/4$ (ix) $\frac{\pi}{4}$ log 2 (x) $\frac{\pi}{4}$ log (1+ $\sqrt{2}$)]

- 2. Find $\iint dxdy$ over the region bounded by $x \ge 0, y \ge 0, x + y \le 1$. [Ans.: 1/2]
- 3. Find the limits of integration in the double integral $\iint f(x, y) dx dy$ over the region bounded by x = 1, y = 0 and $y^2 = 4x$ in the first quadrant.
- 4. Sketch the region of integration for (i) $\int_{0}^{1} \int_{0}^{x} f(x, y) dy dx$ (ii) $\int_{0}^{b} \int_{0}^{\frac{a}{b}(b-y)} f(x, y) dx dy$.
- 5. Shade the region of integration $\int_{0}^{a} \int_{\sqrt{a^2-x^2}}^{\sqrt{a^2-x^2}} dx dy.$
- 6. Change the order of integration in $\int_{0}^{1} \int_{y}^{2-y} xy \, dx \, dy$
- 7. Find the area of a circle of radius 'a' by double integration in polar coordinates. [Ans.: πa^2]
- 8. Transform the following integrations (i) $\int_{0}^{\infty} \int_{0}^{y} dx dy$ (ii) $\int_{-a}^{a} \int_{-\sqrt{a-x^2}}^{\sqrt{a-x^2}} dy dx$ to polar coordinates.
- 9. Express the region $x \ge 0$, $y \ge 0$, $z \ge 0$, $z \ge 0$, $z \ge 0$ by triple integration.
- 10. Evaluate (i) $\int_{0}^{2\pi} \int_{0}^{\pi} \int_{0}^{a} r^{4} \sin\phi \, dr \, d\phi \, d\theta$ (ii) $\int_{\rho=0}^{1} \int_{z=\rho^{2}}^{\rho} \int_{\theta=0}^{2\pi} \rho \, d\rho \, dz \, d\theta$ (iii) $\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{x+y} e^{z} \, dx \, dy \, dz$

(iv)
$$\int_{0}^{1} \int_{0}^{2} \int_{0}^{3} xyz \, dx \, dy \, dz.$$

[Ans.: (i)
$$\frac{4\pi a^5}{5}$$
 (ii) $\frac{\pi}{6}$ (iii) $\frac{1}{2}$ (iv) $\frac{9}{2}$]

PART-B

- 1. Evaluate $\iint (1+xy)dxdy$ in the region bounded by the line y=x-1 and the parabola $y^2=2x+6$.
- [Ans.: 54] 2. Evaluate $\iint xy \, dxdy$ over the region bounded by the x-axis, x = 2a and $x^2 = 4ay$. [Ans.: $4a^3/3$]
- 3. Evaluate $\iint xy \, dx \, dy$ over the positive quadrant of the circle $x^2 + y^2 = a^2$. [Ans.: $a^4/8$]
- 4. Find the value of $\iint xy \, dx \, dy$ taken over the positive quadrant of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.[Ans.: $a^2b^2/8$]

5. Evaluate $\iint r^3 dr d\theta$ over the area bounded between the circles $r = 2\cos\theta$ and $r = 4\cos\theta$. [Ans.: $45\pi/2$] 6. Evaluate $\iint \frac{r dr d\theta}{\sqrt{a^2 + r^2}}$ over the one loop of the lemniscates $r^2 = a^2 \cos 2\theta$. [Ans.: $\frac{a}{2}(4-\pi)$] 7. Show that $\iint r^2 \sin \theta dr d\theta = \frac{2a^3}{3}$, where R is the semicircle $r = 2a \cos \theta$ above the initial line. 8. Change the order the integration and hence evaluate the following i) $\int_{0}^{a} \int_{\frac{x^{2}}{2}}^{2a-x} xy \, dy \, dx$ (ii) $\int_{0}^{4} \int_{\frac{x^{2}}{2}}^{2\sqrt{x}} dy \, dx$ (iii) $\int_{0}^{a} \int_{a-y}^{\sqrt{a^{2}-y^{2}}} y \, dx \, dy$ (iv) $\int_{0}^{b} \int_{0}^{a/b} xy \, dx \, dy$ (v) $\int_{0}^{1} \int_{v}^{\sqrt{y}} \frac{x}{x^{2}+y^{2}} \, dx \, dy$ (vi) $\int_{0}^{\infty} \int_{x}^{\infty} \frac{e^{-y}}{y} dy dx$ (vii) $\int_{0}^{a} \int_{y}^{a} \frac{x}{\sqrt{x^{2} + y^{2}}} dx dy$. [Ans.: (i) $\frac{3a^{4}}{8}$ (ii) 16/3 (iii) $a^{3} / 6$ (iv) $\frac{a^{2}b^{2}}{8}$ (v) $\log \sqrt{2}$ (vi) 1 (vii) $\frac{a^2}{2} \log(1 + \sqrt{2})$] 9. Using double integration, find the area bounded by y = x and $y = x^2$ [Ans: 1/6] 10. Find, by double integration, the area between the parabola $y^2 = 4ax$ and the line y = x. [Ans.: $8a^2/3$] 11. Find the area common to $y^2 = 4ax$ and $x^2 = 4ay$ using double integration. [Ans.: $16a^3/3$] 12. Find the smaller area bounded by y = 2-x and $x^2 + y^2 = 4$. [Ans: π -2] 13. Find the area of the ellipse $\frac{x^2}{x^2} + \frac{y^2}{x^2} = 1$. [Ans: π ab] [Ans: $\frac{3\pi a^2}{2}$] 14. Find the area of the cardioid $r = a (1 + \cos \theta)$ by using double integration.. 15. Find the area which is inside the circle $r = 3a\cos\theta$ and outside the cardioid $r = a(1 + \cos\theta)$. [Ans.: πa^2] 16. By converting in to polar coordinates and evaluate the following: (i) $\int_{0}^{2} \int_{0}^{\sqrt{2x-x^2}} \frac{x}{x^2+y^2} dx dy$ (ii) $\int_{0}^{a} \int_{0}^{a} \frac{x}{x^2+y^2} dx dy$ (iii) $\int_{0}^{a} \int_{0}^{a} \frac{x^2}{\sqrt{x^2+y^2}} dx dy$ (iv) $\int_{0}^{2a} \int_{0}^{\sqrt{2ax-x^2}} (x^2+y^2) dy dx$ [Ans.: (i) $\pi/2$, (ii) $\frac{\pi a}{4}$, (iii) $\frac{a^3}{3}\log(\sqrt{2}+1)$, (iv) $\frac{3\pi a^4}{4}$ (v) $\frac{a}{\sqrt{2}}$] (v) $\int_{0}^{u} \int_{0}^{u} \frac{x^{2}}{(x^{2} + y^{2})^{3/2}} dxdy$. 17. Evaluate $\int_{-\infty}^{\infty} e^{-(x^2+y^2)} dxdy$ by changing in to polar coordinates. Hence show that $\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}/2$. 18. Evaluate the integration $\iiint dx dy dz$, where V is finite region of space formed by the planes x = 0, y = 0, z = 0 and 2x + 3y + 4z = 12. [Ans.:12] 19. Evaluate the integration $\iiint x \, y \, z \, dx \, dy \, dz$ taken throughout the volume for which $x, y, z \ge 0$ an $x^2 + y^2 + z^2 \le 9$. [Ans.: 243/16] 20. Evaluate $\iiint_{z} (x + y + z) dx dy dz$, where V is the region of space inside the cylinder $x^2 + y^2 = a^2$ [Ans.: $\frac{\pi a^2 h^2}{2}$] that is bounded by the planes z = 0 and z = h. 21. Evaluate $\iiint \frac{dxdydz}{\sqrt{a^2-y^2-y^2-z^2}}$ over the first octant of the sphere $x^2+y^2+z^2=a^2$. [Ans.: $\pi^2a^2/8$]

21. Evaluate $\iiint \frac{1}{\sqrt{a^2 - x^2 - y^2 - z^2}}$ over the first octant of the sphere $x^2 + y^2 + z^2 = a^2$. [Ans.: $\frac{\pi}{a} \frac{a}{\sqrt{a^2 - x^2 - y^2 - z^2}}$]

22. Find the volume of the sphere $x^2 + y^2 + z^2 = a^2$ by triple integration. [Ans.: $\frac{4\pi a^3}{a^2}$]

23. Find the volume of the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ triple integration. [Ans.: $\frac{4\pi abc}{3}$]

24. Find the volume of the tetrahedron bounded by the planes x = 0, y = 0, z = 0 and $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$.

CREDIT: PANILA Y BUY BIAR

MAT1011-Calculus for Engineers

- 1. Find the divergence and curl of $e^{xy} \sin z \vec{j} + y \tan^{-1}(x/z)\vec{k}$
- 2. Show that $\vec{F} = y^2 z^3 \vec{i} + 2xyz^3 \vec{j} + 3xy^2 z^2 \vec{k}$ is irrotational and find its scalar potential.
- 3. The force in an electrostatic field f(x, y, z) has the direction of the gradient of f. Find ∇f and its value at P.
 - (a) $f = (x-1)^2 (y+1)^2$, P: (4, -3)
 - (b) $f = y/(x^2 + y^2), P: (5,3)$
 - (c) $f = x^2 2x y^2$, P: (-2, 6)
- 4. Find the directional derivative of f at P in the direction of a.
 - (a) $f = x^2 + y^2 z$, P : (1, 1, -2), $\mathbf{a} = [1, 1, 2]$
 - (b) $f = x^2 + y^2 + z^2$, P : (2, -2, 1), $\mathbf{a} = [-1, -1, 0]$
 - (c) $f = xyz, P : (-1, 1, 3), \mathbf{a} = [1, -2, 2]$
- 5. Let $\mathbf{v}=[x, y, v_3]$. Find a v_3 such that (a) $\operatorname{div}\mathbf{v}>0$ everywhere, (b) $\operatorname{div}\mathbf{v}>0$ if |z|<1 and $\operatorname{div}\mathbf{v}<0$ if |z|>1
- 6. (i) Prove the following vector identities
 - (a) $\operatorname{div}(k\mathbf{v}) = k \operatorname{div} \mathbf{v}$ (k constant)
 - (b) $\operatorname{div}(f\mathbf{v}) = f \operatorname{div} \mathbf{v} + \mathbf{v} \cdot \nabla f$
 - (c) $\operatorname{div}(f\nabla g) = f\nabla^2 g + \nabla f \cdot \nabla g$
 - (d) $\operatorname{div}(f\nabla g) \operatorname{div}(g\nabla f) = f\nabla^2 g g\nabla^2 f$.
 - (ii) Verify (b) for $f = e^{xyz}$ and $\mathbf{v} = ax\mathbf{i} + by\mathbf{j} + cz\mathbf{k}$
- 7. Show that the flow with velocity vector $\mathbf{v} = y\vec{i}$ is incompressible.
- 8. Let $\mathbf{v} = [x, y, v_3]$. Find a v_3 such that (a) $\operatorname{div} \mathbf{v} > 0$ everywhere, (b) $\operatorname{div} \mathbf{v} > 0$ if |z| < 1 and $\operatorname{div} \mathbf{v} < 0$ if |z| > 1.
- 9. Granted sufficient differentiability of a scalar function f and a vector function \mathbf{v} , which of the following make sense? grad f, f grad f, \mathbf{v} grad f, \mathbf{v} grad f, div f, div \mathbf{v} , div f, curl f, curl f, f curl f, f curl f.
- 10. What direction does curl \mathbf{v} have if \mathbf{v} is a vector parallel to the xz-plane?
- 11. Find the tangent plane and normal line to $x^2 + y^2 + z^2 = 30$ at the point (1,-2,5).

MAT1011-Calculus for Engineers

- 1. Compute the line integral of $\mathbf{F} = \langle -y, x \rangle$ along the line segment from (0,0) to (1,1).
- 2. Is the vector field $\mathbf{F} = \langle 0, x \rangle$ conservative? Give reasons to support your
- 3. C is the curve $y = e^x$ from $(2, e^2)$ to (0,1) and $\mathbf{F} = \langle x^2, -y \rangle$, compute $\int_C \mathbf{F} \cdot d\mathbf{r}$.
- 4. C is the part of the circle of radius 3 in the first quadrant from (3,0) to (0,3)and $\mathbf{F} = \langle 1, -y \rangle$, compute $\int_C \mathbf{F} \cdot d\mathbf{r}$.
- 5. C is the part of the curve $x = \cos(y)$ from $(1,2\pi)$ to (1,0) and $\mathbf{F} = \langle y, 2x \rangle$, compute $\int_C \mathbf{F} \cdot d\mathbf{r}$.
- 6. Evaluate $\iint zdS$, where S is the surface whose:

Sides S_1 are given by the cylinder $x^2 + y^2 = 1$, Bottom S_2 is the disk $x^2 + y^2 \le 1$ in the plane z = 0, Top S_3 is the part of the plane z = 1 + x that lies above S_2 .

- 7. Evaluate $\iint \mathbf{F} \cdot d\mathbf{S}$ where: $\vec{F}(x, y, z) = y\vec{i} + x\vec{j} + z\vec{k}$, S is the boundary of the solid region E enclosed by the paraboloid $z = 1 - x^2 - y^2$ and the plane z = 0.
- 8. Let S be the closed surface that consists of the hemisphere $x^2 + y^2 + z^2 = 1$, $z \ge 0$, and its base $x^2 + y^2 \le 1, z = 0$. Let **E** be the electric field defined by $\mathbf{E}(x, y, z) = 2x\mathbf{i} + 2y\mathbf{j} + 2z\mathbf{k}$. Find the electric flux across S.
- 9. Evaluate $\iiint (\nabla \times \bar{F}) dV$, where $\bar{F} = (2x^2 3z)\hat{i} 2xy\hat{j} 4x\hat{k}$ and V is the closed region bounded by the planes x = 0, y = 0, z = 0 and 2x + 2y + z = 4.
- 10. Use Green's theorem to evaluate the line integral $\int (1+xy^2) dx x^2y dy$, where C consists of the arc of the parabola $y = x^2$ from (-1,1) to (1,1) and the line joining the two points.

- 11. Evaluate $\oint_C y^3 dx x^3$ dy where C are the two circles of radius 2 and radius 1 centered at the origin with positive orientation.
- 12. Let $f(x, y, z) = (x^2 + y^2 + z^2)^{-1/2}$. Show that the clockwise circulation of the field $\mathbf{F} = \nabla f$ around the circle $x^2 + y^2 = a^2$ in the xy-plane is zero (a) by taking $\mathbf{r} = (a\cos t)\mathbf{i} + (a\sin t)\mathbf{j}, 0 \le t \le 2\pi$, and integrating $\mathbf{F} \cdot d\mathbf{r}$ over the circle. (b) by applying Stokes' Theorem.
- 13. Let S be the cylinder $x^2 + y^2 = a^2, 0 \le z \le h$, together with its top, $x^2 + y^2 \le a^2, z = h$. Let $\mathbf{F} = -y\mathbf{i} + x\mathbf{j} + x^2\mathbf{k}$. Use Stokes' Theorem to find the flux of $\nabla \times \mathbf{F}$ outward through S.
- 14. Evaluate $\iint_{S} (7x\vec{i} z\vec{k}) \cdot \mathbf{n} dA$ over the sphere $S: x^2 + y^2 + z^2 = 4$
 - (a) by divergence theorem, (b) directly.
- 15. Verify the divergence theorem.
 - (a) $\mathbf{v} = 3r^2\hat{\mathbf{e}}_r r\dot{\mathbf{e}}_\theta + 2\hat{\mathbf{e}}_z$, \mathcal{V} : the cylinder $r \le 4$ $0 \le \theta < 2\pi.0 \le z \le 5$,
 - (b) $\mathbf{v} = z\hat{\mathbf{e}}_z$, \mathcal{V} : the cylinder $r \leq 2, 0 \leq \theta < 2\pi$. $-3 \leq z \leq 6$.