Ćwiczenie projektowe

Analizy Mikrosymulacyjne Funkcjonowania Skrzyżowań

Problem:

Dla zadanej **sieci drogowej** oraz popytu na przejazd przez nią, określ **wskaźniki funkcjonowania sieci** oraz ich wrażliwość na zmianę sytuacji drogowej (zmiany popytu, oraz zmiany sieci). Wykorzystaj narzędzie do symulacji mikroskopowej ruchu drogowego (np. Vissim, Aimsun). Wyniki analiz zapisz w formie tabel, wykresów i syntetycznego komentarza.

Sieć:

Sieć ćwiczeniowa to sekwencja odcinków łączących źródło (lewy kraniec) z celem (prawy kraniec).

W narożnikach sieci znajdują się odpowiednio: rejon źródłowy o o określonej generacji ruchu q, rejon docelowy d będący celem podróży dla wyjeżdżających z rejonu źródłowego.

Tablica 1: Struktura sieci

lp.	nazwa	długość [km]	liczba pasów	prędkość swobodna $[km/h]$
1	konektor źródłowy	0.1	-	-
2	strefa akumulacji	0.6	4	70
3	odcinek początkowy	1	2	70
4	pierwsze zwężenie	0.1	2	70
5	odcinek środkowy	1	2	70
6	drugie zwężenie	0.1	2	70
7	odcinek końcowy	1	2	70
8	konektor docelowy	0.1	-	-

Sieć skonstruowana jest tak, by umożliwić analizy funkcjonowania:

- 1. drogi jednopasowej,
- 2. drogi wielopasowej,
- 3. drogi wielopasowej ze zwężeniem,
- 4. ciągu drogowego ze skrzyżowaniem bez pierwszeństwa przejazdu (podporządkowana),
- 5. ciągu drogowego ze skrzyżowaniem sygnalizowanym,
- 6. ciągu drogowego z sekwencją dwóch skrzyżowań sygnalizowanych (z synchronizacją, lub bez),
- 7. użytkowników o różnych modelach zachowania.

Wskaźniki funkcjonowania sieci:

Sieć będziemy oceniać obserwując wybrane wskaźniki funkcjonowania sieci, w szczególności interesują nas:

lp	Zmienna	${f jednostka}$			
1	Delay Time	sec/km			
2	Density	veh/km			
3	Flow	veh/h			
4	Harmonic Speed	$\mathrm{km/h}$			
5	Input Count	veh			
6	Input Flow	veh/h			
7	Mean Queue	veh			
8	Mean Virtual Queue	veh			
9	Number of Stops	#/veh/km			
10	Speed	$\mathrm{km/h}$			
11	Stop Time	m sec/km			
12	Total Travel Time	h			
13	Total Travelled Distance	km			
14	Travel Time	sec/km			
15	Vehicles Inside	veh			
16	Vehicles Outside	veh			
17	Vehicles Waiting to Enter	veh			

Zmienne:

Będziemy badać jak zmieniają się powyższe wskaźniki funkcjonowania sieci w funkcji:

- 1. parametrów odcinków (przepustowość, liczba pasów, prędkość dopuszczalna)
- 2. parametrów skrzyżowań (czas przejazdu, sygnalizacja, organizacja ruchu)
- 3. popytu (liczba pojazdów, struktura rodzajowa)
- 4. sterowania (udział sygnału zielonego, algorytm sterowania, długość cyklu, offset)
- 5. modelu zachowania kierowców (czasy reakcji, losowość zachowania, itp.)

Przedział zmienności:

Dla każdej zmiennej modelu określamy jego przedział zmienności i próbkujemy ją. Proponowana metoda: pierwsza próbka dla wartości minimalnej x_{min} , osiem dla losowych wartości pomiędzy minimum i maksimum $rand(x_{min}, x_{max})$, jedna dla wartości maksymalnej x_{max} .

Wyniki: // Wyniki prezentujemy w formie wykresu gdzie na osi x jest zmienna której wpływ analizujemy a na osi y wybrany wskaźnik którego zmianę mierzymy. Np. wpływ liczby pojazdów na prędkość ruchu $k = f(v_0)$.

Zadania:

0.0.1 1. Zmiana warunków ruchu wraz ze wzrostem popytu.

Zbadamy wpływ liczby pojazdów jakie chcą przejechać przez sieć (popyt) na warunki ruchu. Rozpoczynając od niewielkiej wartości 600 poj./h (10 pojazdów/minutę) stopniowo zwiększamy popyt aż do osiągnięcia maksymalnej wartości liczby pojazdów faktycznie przejeżdżających przez sieć (Flow). Zbadaj jak w miarę wzrostu liczby pojazdów zmieniają się wartości:

- 1. Flow
- 2. Speed
- 3. Travel time
- 4. Vehicles Waiting to Enter

Wyniki zapisz w formie wykresu.

2. Zmienność wyników kolejnych symulacji i szacowanie średniej procesu stochastycznego.

Zbadamy jak zmieniają się wyniki kolejnych symulacji. Są one pojedynczymi realizacjami procesu losowego, więc wyniki różnią się. Zbadajmy dla umiarkowanie obciążonej sieci (600 poj./h) jak zmieniają się wyniki prędkości (Speed) i czasu przejazdu (Travel time) w kolejnych symulacjach.

Wartości uzyskane w kolejnych symulacjach x_n nanieś na wykres punktowy (oś x to kolejne symulacje, oś y to wartość prędkości lub czasu). Średnią z n symulacji $(\bar{t_n} = \sum_{i=0}^n x_i/n)$ w formie wykresu liniowego. Na osobnych wykresach zaznacz odchylenie standardowe z kolejnych symulacji (σ_n) , oraz zbieżność średniej $(|\bar{t_n} - t_n - 1|/\bar{t_n})$.

3. Wpływ udziału pojazdów ciężkich na warunki ruchu

Zwiększmy liczbę pasów na wszystkich odcinkach do dwóch. W pierwszej części określmy przepustowość takiego układu analogicznie do ćwiczenia 1. Będziemy symulować warunki ruchu dla popytu równego 80% tej wartości, ale z różnym udziałem pojazdów ciężkich. Stworzymy dodatkową macierz, której udział w całkowitym potoku będzie rosnąć w kolejnych symulacjach. Rozpoczniemy od wartości 1% a skończymy na 50%. Określmy jak wpłynie to na wybrane wskaźniki.

4. Zwężenie drogi jednopasowej.

Dla symulowanego uprzednio układu dwupasowego środkowy odcinek zawęź do jednego pasa. Symuluj przepływ pojazdów odpowiadający przepustowości układu jednopasowego (wyniki z ćwiczenia 1). Opisz czym różnią się wyniki dla układu jednopasowego i dwupasowego ze zwężeniem.

5. Sygnalizacja na drodze dwupasowej - przepustowość.

Na pierwszym zwężeniu w układzie dwupasowym bez zwężenia zakoduj sygnalizację świetlną stałoczasową o cyklu równym 120s. Zbadaj dla jakiej wartości udziału sygnalu zielonego g przepustowość tego układu dwupasowego sygnalizowanego bedzie równała się przepustowości układu jednopasowego niesygnalizowanego.

6. Sygnalizacja na drodze dwupasowej - wpływ udziału sygnalu zielonego.

Symuluj przejazd 1500 pojazdów przez układ dwupasowy sygnalizowany. Sprawdź jak zmieniają się warunki ruchu przy zmianie udziału sygnału zielonego g.

7. Sygnalizacja na drodze dwupasowej - wpływ długości cyklu na warunki.

Symuluj przejazd 1500 pojazdów przez układ dwupasowy sygnalizowany o udziale sygnału zielonego g zgodnym z obliczonym powyżej. Sprawdź jak zmieniają się warunki ruchu przy zmianie długości cyklu C (g pozostaje bez zmian).

8. Optymalna koordynacja sygnalizacji na drodze dwupasowej.

Symuluj przejazd 1500 pojazdów przez układ dwupasowy z sekwencją dwóch skrzyżowań. Na pierwszego skrzyżowania użyj C i g z ćw. , określ offset o, długosć cyklu C i udział zielonego g na drugim skrzyżowaniu dla któRego warunki ruchu (mierzone wybranym wskaźnikiem są najlepsze).

9. Koordynacja sygnalizacji na drodze dwupasowej - wpływ offestu na warunki ruchu.

Symuluj przejazd 1500 pojazdów przez układ dwupasowy z sekwencją dwóch skrzyżowań o parametrach c i G określonych w poprzednim ćwiczeniu. Określ wpływ zmiany offsetu na drugiej sygnalizacji na warunki ruchu.

0.0.2 Inne:

Wykonaj wybrane zadania:

- 1. Wpływ liczby pojazdów na czas przejazdu.
- 2. Wpływ prędkości w ruchu swobodnym na liczbę pojazdów jaka dojechała do celu.
- 3. Wpływ liczby pojazdów na predkość.
- 4. Wpływ podporządkowania ruchu na stratę czasu.
- 5. Wpływ udziału pojazdów ciężkich na prędkość przejazdu.
- 6. Wpływ zwężenia drogi na przepustowość.
- 7. Wpływ udziału sygnału zielonego na liczbę zatrzymań.
- 8. Wpływ synchronizacji.

9.	Wpływ	parametrów	modelu	zachowania	kierowcy	(profil	przyśpieszania	i	hamownia,	czas	reakcji,
	uprzejm	ność, itp.) na	przepust	towość.							

10. itp.

