Lemma 121=122 $|0| = \sqrt{0^2}$ $|x| = x = \sqrt{2}^2$ |x| = |x| = -2 |x| = -2Proof of Dinequality: 23/1/3 1>c+y1 < 1>c1+1y) Lemma says we have to prome 1 (2cty)2 < 152 + Tyz (=> (\frac{1}{2} + \frac{1}{2})^2 (x,y same sign: =)

Aitterent signs: =)

Mathematical Inductions $IN = \{0, 1/2,\}$ $P(n) = (1 + 3 + 5 + ... + (2n-1) = n^2$ Method of Proof P(0) $0 = 6^2 = 1$ Base P(1) $1 = 1^2 = 1$ Figure ! Inductive Step P(n) => P(n+1) $SoP(n) \forall n.$ # if $1+3+5+...+(2n-1)=n^2$ then H3+5-...+(2n-1)+(2(n+1)-1)= $n^2 + 2(n+1) - 1 = (n+1)^2$

Base case 100/ Fo Fm + F, Fm+1 = Fm+1 VM O×Fm + 1× Fmr = Fmx1 true Vm. $F_{n+1} = F_n + F_{n-1}$ Proposition: Fr2+Fn+1 = Fzn+1 Vm Fn+Fn+Fn+ = Fn+M P(n-1) Proposition: $F_n^2 + F_{n+1} = F_{2n+1}$ $\forall m \text{ } f_{n+1} \text{ } f_{m} + F_{n+2} F_{m+1} = F_{n+n/2} P(n+1)$ r=3 $2^2 + 3^2 = 13$ $(F_n + F_{n-1}) F_m$ $so P(n-1), P(n) \Rightarrow P(n+1)$ f(n+1) = f(n+1) f(n+1) = f(n+1)Lemma: (*) Fr Fm + Fn+, Fm+1 = Fn+m+1 Ym, n ell (Put M=n => Proposition) Let P(n) be (x) Am,

Chapter 2 Limits "Yero 78,0,12-c1<5=>1f6(1-L1<E" 20#-1: f(oc) = oc-1 >c->-1 "him f(sc) = 1"