Innehåll

Introduktion	2
Bakgrund	2
Några tidigare exempel, historiska och nutida	2
Radio	3
Sonifiering	3
Diabetes	3
Blodsockervärden	3
Förhållandet till mätandet	3
Datainsamling	3
Process	5
SuperCollider-system	5
$K\"{o}systemet$	6
Webbplats	6
Front end	6
$Back\ end$	7
Tillvägagångssätt	7
Musiken	8
Rumslighet	8
Temporalitet	8
Generativt	8
Slutsatser	9
Utvecklingsmöjligheter	9
Referenser	9
Bilagor	11
Ordlista	11

Introduktion

Denna text kompletterar mitt examensprojekt, $Radio\ Diabetes$, en interaktiv komposition/installation som generarar musik av blodsockervärden. Installationen består av ett SuperCollider-program som skapar själva musiken och en webbplats där man kan lyssna på den, läsa om projektet och ladda upp sina egna blodsockervärden. När en deltagare laddar upp sina värden slussas dessa direkt vidare till SuperCollider-programmet, som i sin tur inkluderar dem i musiken, antingen direkt eller att de blir schemalagda i en kö. Musiken strömmas till webbplatsen (och vidare till lyssnaren) via en internetradiostation. På så sätt utgör musiken ett kontinuerligt flöde som deltagare och åhörare hör samtidigt: det finns ingen början, mitten eller slut, utan endast ett nu.

Bakgrund

Idéen om att göra musik av blodsockervärden föddes dagen då jag fick en Freestyle Libremätare, en så kallad kontinuerlig blodsockermätare (en. continous glucose monitoring, eller CGM). Denna typ av blodsockermätare skiljer sig från tradionella mätare — som man är tvungen att sticka sig i fingret och på så sätt mäta blodsockert med — i att den regelbundet gör mätningar, vilket ger en kontinuerlig kurva över ens blodsockervärden. Kurvorna påminde mig om hur ljudsignaler ofta representeras visuellt (en horisontell tidsaxel och en linjär vertikal axel) och i ett tidigt experiment gjorde jag en direkt översättning av mina blodsockerkurvor till ljudfiler: en så kallad audifiering (en. audification). Dessa ljud använde jag som samplingar i mitt stycke Värden och en vagga (2017), som var ett av arbetsproverna jag sökte till Musikhögskolan med.

Jag utvecklade vidare och förbättrade mitt första program som jag hade skrivit för att översätta mina kurvor till ljudfiler, så att vem som helst skulle kunna använda programmet och översätta sina enga värden till ljud. Jag byggde också en wavetable-synth i SuperCollider som använde dessa ljudfiler som källmaterial. Detta instrument har jag använt i ett antal olika kompositioner som jag skrivit under min skoltid. Båda dessa program (översättaren och wavetable-synthen) har jag publicerat på min Github¹. En del av denna kod återanvände jag även i detta projekt.

Några tidigare exempel, historiska och nutida

Här har jag valt ut tre exempel ...

Det konstnärliga användandet av biologiska singaler och data har en historia som sträcker sig åtminstone till Alvin Luciers experiment med att komponera musik av hjärnvågor, Music for Solo Performer² från 1965. I detta verk använder Lucier elektroder kopplade till interpretens huvud för att sonifiera dennes alfavågor. De sonifierade hjärnvågorna förstärks och spelas upp i 16 högtalare, som i sin tur exiterar diverse slagverk. I ett seminarium 2001 ska Lucier ha sagt:

I thought, 'I don't have a structure for this.' I mean, I'm a composer. I should impose some kind of structure, but then I thought, no, brain waves are a natural phenomen. They should just flow out ...

¹Karl Johannes Jondell (26 jan. 2021a). *kj-jondell/Diabetes-Synth*. URL: https://github.com/kj-jondell/Diabetes-Synth (hämtad 2021-04-05).

²Volker Straebel och Wilm Thoben (april 2014). "Alvin Lucier's Music for Solo Performer: Experimental music beyond sonification". I: *Organised Sound* 19.1. Publisher: Cambridge University Press, s. 17–29.

Radio

En del av installationen består av en internetradiostation, som strömmar ut den genererade musiken. Just denna ...

Radion som konstmedium har länge inspirerat mig, från hörspelen av bland andra Öyvind Fahlström, till John Cages radiokompositioner, till mer sentida radioqualia...

Hot/cool media (McLuhan), interaktion,

"Ring så spelar vi" och "Ring P1" är två exempel på interaktiva radioprogram, där lyssnarna till hög grad styr och påverkar programmets innehåll. I Ring P1", som sänds live, är interaktionen så hög att diskussioner kan uppstå lyssnare emellan, där en lyssnare replikerar en annan lyssnares inlägg eller deltagande. Men trots denna höga grad av fri interaktion behöver varje deltagare först passera en telefonsluss.

Sonifiering

Sonifiering

Sonifiering (eller är det verkligen sonifiering).

Mappning

Audification³ är en form av sonifiering där mätdatan översätts direkt till ljudkurvor... fyra grupper av data (sound recording, general acoustic, physical, och **abstract**)...

Diabetes

Blodsockervärden

Blodsocker mäts i mmol/L och varierar hos en icke-diabetiker mellan 4 och 6 mmol/L [källa]. Hos en diabetiker kan detta värde variera från under 1 till över 30 mmol/L, och Freestyle Libre-sensorn har ett spann på att mäta från lägst 2,2 till 27,7 mmol/L (annars visar den LO respektive HI). Freestyle Libre-sensorn mäter kontinuerligt var 15:e minut.

Förhållandet till mätandet

I sin text *Det autoimmuna jaget* — *om att sätta gränser*⁴ skriver Mats Arvidson om kravet som diabetiker på disciplin *och* prestation.

Prestation, utmattning (bornemark...utmattning...)? Krav och värden...

Ett sentiment som ofta förekommande ("jag är **inte** min diabetes, mina blodsockervärden...", t.ex. artikel i *Hälsoportalen*(????))

Datainsamling

Eftersom detta projekt beror av insamling av biometrisk data, som enligt *Dataskyddsförordningen* (GDPR)⁵ är en känslig personuppgift, krävs ett uttryckligt samtycke från varje deltagare att denna är införstådd i hur datan behandlas. Jag har försökt vara så transparent som möjligt i hur datan behandlas, genom att dels dela **all** källkod som jag använder, och även i den kommunikation jag lagt ut på webbplatsen och i övriga dokument berörande projektet (såsom denna text). All data som samlas in anonymiseras/avidentifieras så fort

³ The Sonification Handbook (2011). OCLC: 805139776. Berlin: Logos, s. 302.

⁴Mats Arvidson (9 juli 2016). "Det autoimmuna jaget – om att sätta gränser". I: Socialmedicinsk tidskrift 93.3. Number: 3, s. 280–287, s. 286.

⁵Integritetsskyddsmyndigheten (2021). *Känsliga personuppgifter*. Känsliga personuppgifter. URL: https://www.imy.se/lagar--regler/dataskyddsforordningen/kansliga-personuppgifter/ (hämtad 2021-04-05).

som möjligt och den är inte sparad någonstans utöver arbetsminnet som SuperCollider använder. I enlighet med "God forskningssed" ⁶ är anonymitet och integritet av största vikt i detta projekt, även fast det är ett konstprojekt och inte ett forskningsprojekt. Jag har inget kommersiellt intresse i insamlingen av datan, jag delar den inte med någon extern part heller, och allt deltagande är valfritt. Min ambition är **inte** att samla data för sakens skull, utan att diabetiker ska kunna dela med sig av sina värden utan att de på något sätt bedöms eller värderas: helt enkelt, att själva delandet och deltagandet i sig står i fokus.

 $^{^6}$ lägg till referens

Process

Installationen består som tidigare nämnt av två delar: ett musikgenererande program (SuperCollider) och en webbplats (se figur 2 på nästa sida). Här nedan följer en teknisk beskrivning av detta system.

Figur 1: Översiktsdiagram av system

SuperCollider-system

När en deltagare laddar upp en fil med sina mätvärden så skickas de vidare, via Pythonservern, till SuperCollider-programmet, som spelar upp en tack-hälsning för att ge en direkt återkoppling till deltagandet. Varje instans av mätdata — det vill säga varje bidrag till, eller varje interaktion med, installationen — gestaltas av en specifik musikalisk funktion, för att på sätt ge deltagaren en koppling och förståelse till hur dennes bidrag påverkar musiken. Till exempel kan ett uppladdat paket av data ge upphov till ett arpeggio, någon form av melodi eller en underliggande ljudmatta. I SuperCollider-programmet representeras varje sådan instans av mätdata av ett objekt, som innehåller attribut som bland annat: register, skala, speltid, panorering, klangkälla/SynthDef, och tillhörande Pattern. Dessa attribut är antingen direkt bestämda av mätdatan (en så kallad mappning)

eller bestämda utifrån de andra aktiva objekten, till exempel förhåller de sig till redan "upptagna" register. Skapandet av dessa objekt gör programmet så fort det mottagit ett nytt paket av mätdata från Python-servern. Samtidigt avgör programmet om objektet ska spelas upp direkt, eller om det ska läggas på kö.

Kösystemet

Behovet av ett kösystem kommer ur scenariot att flera deltagare laddar upp värden inom en relativt kort tidsram. Om detta händer utan ett kösystem, kan systemet reagera på två sätt: antingen spelas alla objekt upp samtidigt, med risk för att överrösta varandra och bli en kakofoni, eller så ersätter de varandra, vilket skulle leda till att ens bidrag inte skulle höras mer än en väldigt kort stund. En kompromiss är att använda ett kösystem, så att antalet samtidigt spelande objekt begränsas, och att dessa spelas minst en given längd tid, men inte längre än en annan bestämd tid, om det står väntande deltagare på kö. Allt som allt har jag begränsat antalet samtidigt spelande objekt till tre stycken, och när dessa är fyllda ställs antingen ett nytt bidrag på kö — om inte de spelande objekten har varit aktiva i den givna minimumtiden — eller så ersätter det nya bidraget det äldsta spelande objektet. Kösystemet är i tekniska termer alltså ett FIFO-system.

Figur 2: Skärmdump av hemsida (temporär)

Webbplats

Webbplatsen finns i skrivande stund tillgänglig på domänen: https://radiodiabetes.eu/7. I figur 2 på föregående sida visas en skärmdump av webbplatsen tagen den...

Webbplats består av en s.k. Front end och en $Back\ end$. Linux (Ubuntu $20.04)/{\rm Nginx/gunicorn}$ Stack.

 $^{^7}$ Karl Johannes Jondell (2021b). *Radio Diabetes*. Radio Diabetes. url: https://radiodiabetes.eu/(hämtad 2021-04-07).

Front end

 $1.\ beskriv vad frontend är för något <math display="inline">2.\ beskriv tekniken (react.js)$

Back end

1. beskriv vad backend är för något (API?) 2. flask, darkice/icecast också kanske?

Tillvägagångssätt

Hur jag gjort/reflektioner/vad jag ändrat

Musiken

De musikaliska funktioner jag har representerade är dels ett fundament eller grund som utgörs av ett

Rumslighet

Varje objekt ges en unik position i stereofältet, och på så sätt en plats i rummet i musiken. Presentationen av radioströmmen genom hemsidan som jag har utformat påverkar också den upplevda rumsligheten i musiken.

Ett planerat konserttillfälle kommer att ske den 20e maj i Lilla Salen i Musikhögskolan. Då spelas ett utdrag ur radioströmmen upp, som den hörs i realtid. I och med de rådande restriktionerna så kommer ingen publik kunna närvara, utan konserten strömmas vidare till en publik i etern. Själva konserttillfället blir därför en sorts manifestation av radioströmmen i tid och rum.

Temporalitet

Den tidsmässiga uppfattningen av musiken. En 24/7 livestream av musiken (hur utgörs lyssnadet? formen? Slow as possible, Longplayer och liknande...)

Generativt

Musiken är generativ. Serialism?

Slutsatser

Lärdomar etc...

${\bf Utvecklingsm\"{o}jligheter}$

För mig är detta endast startskottet på ett projekt som kan växa på alla sätt. Jag har byggt en infrastruktur till en installation som går att utveckla.

- Gästbok/lämna röstmeddelanden... - Två strömmmar: kunna växla mellan dem för att möjliggöra enklare utveckling av SuperCollider-systemet (utan att det behöver stängas ned för underhåll). - Möjligheten att spela upp binauralt - Internationellaisera (översätt hemsida etc...)

Referenser

Böcker

The Sonification Handbook (2011). Berlin: Logos.

Artiklar

Arvidson, Mats (9 juli 2016). "Det autoimmuna jaget – om att sätta gränser". I: Social-medicinsk tidskrift 93.3, s. 280–287.

Straebel, Volker och Wilm Thoben (april 2014). "Alvin Lucier's Music for Solo Performer: Experimental music beyond sonification". I: Organised Sound 19.1, s. 17–29.

Hemsidor

Integritetsskyddsmyndigheten (2021). Känsliga personuppgifter. Känsliga personuppgifter. URL: https://www.imy.se/lagar--regler/dataskyddsforordningen/kansliga-personuppgifter/ (hämtad 2021-04-05).

- Jondell, Karl Johannes (26 jan. 2021a). *kj-jondell/Diabetes-Synth*. URL: https://github.com/kj-jondell/Diabetes-Synth (hämtad 2021-04-05).
- (2021b). Radio Diabetes. Radio Diabetes. URL: https://radiodiabetes.eu/ (hämtad 2021-04-07).

Bilagor

Ordlista

Audification Att direktöversätta en dataserie till ljudkur-

vor.

Back end Allt som rör sig "under huven", server-side

programmering..

FIFO-system First in, First out. En typ av kösystem. Front end Användargränssnittet i webbutveckling..

Mappning en. mapping. Ihopkopplingen av ett datavärde

till en parameter. Olika typer av mappningar finns, till exempel one-to-one och one-to-

many.

Pattern Ett verktyg i SuperCollider för att generera

• • • •

Sonifiering en. sonification. Att översätta en dataserie.

Stack Alla delar som utgör en plattform eller ett

system. Finns olika vanligt använda.

SuperCollider Ett programmeringsspråk och plattform för

syntes av ljud, och musikalisk programme-

ring..