Medizinische Bildanalyse Wintersemester 2024/25

Kapitel 4: Bildsegmentierung

Prof. Dr.-Ing. Thomas Schultz

URL: http://cg.cs.uni-bonn.de/schultz/

E-Mail: schultz@cs.uni-bonn.de

Büro: Friedrich-Hirzebruch-Allee 6, Raum 2.117

2./9./16. Dezember 2024

4.1 Problemstellung und Evaluierung

Zielsetzung

- Grundlegende Aufgabe bei der Interpretation von Bildern ist das Erkennen relevanter Bildinhalte (z.B. Organ, Tumor, Gewebetyp)
 - Diese lassen sich meist nicht aus den Intensitäten einzelner Pixel schließen, sondern erfordern die sinnvolle Gruppierung von Pixeln
- Segmentierung bezeichnet eine vollständige und überdeckungsfreie Zerlegung eines Bildes nach bestimmten Kriterien
 - z.B. Regionen- oder Kantenbasiert
 - Berücksichtigung von Vorwissen, z.B. über die gesuchte Form
- Bildet u.a. die Grundlage von **Quantifizierung** (z.B. Volumen, Form, Textur) und **Behandlungsplänen**

Verschiedene Arten der Segmentierung

- Semantische Segmentierung ordnet jedem Pixel eine klare Bedeutung zu ("Label")
- Instanz-Segmentierung zerlegt ein Bild pixelgenau in einzelne Objekte (z.B. einzelne Zellen in einem Gewebeschnitt)
- Die Kombination beider Aufgaben (Zerlegung in Instanzen und Benennung/Labeling dieser) wird manchmal als panoptische Segmentierung bezeichnet

Evaluierung von Segmentierungen: Überlapp

- Den **Überlapp** zwischen
 - Segmentierung A und
 - Referenz ("Ground Truth") B
 quantifiziert man häufig per
 - Dice-Score (DSC) oder
 - Verhältnis von Schnitt- und Vereinigungsmenge
 - IoU = Intersection over Union

Evaluierung von Segmentierungen: Kontur-basiert

- Die maximale Abweichung der Konturen von
 - Segmentierung A und
 - Referenz ("Ground Truth") B
 - quantifiziert man häufig per
 - Hausdorff-Distanz (HD)
 - Robuster: HD mit Perzentil

4.2 Grundlegende Verfahren

Schwellenwert-Segmentierung

- Histogrammbasierte Segmentierung klassifiziert die Pixel nur aufgrund ihrer individuellen Intensität
 - Anwendung von einem oder mehreren Schwellenwerten
 - Täler im Histogramm sind häufig sinnvolle Schwellenwerte

Bild $g(\mathbf{x})$

Histogramm von g mit Schwellenwert $\theta = 75$

Binarisiertes Bild $g(\mathbf{x}) \ge \theta$

Otsu-Verfahren zur Schwellenwert-Bestimmung

- Idee von Otsu: Optimaler Schwellenwert θ sollte das Verhältnis σ_B^2/σ_W^2 der Varianz zwischen (between) und innerhalb (within) der Klassen maximieren
- Berechnung basiert auf Intensitäten g, Histogramm h(g)
 - Zahl der Pixel in den beiden Klassen:

$$N_1 = \sum_{g=0}^{\theta-1} h(g), \qquad N_2 = \sum_{g=\theta}^{g_{\text{max}}} h(g), \qquad N = N_1 + N_2$$

Mittelwerte

$$\mu_1 = \frac{1}{N_1} \sum_{g=0}^{\theta-1} g \cdot h(g), \qquad \mu_2 = \frac{1}{N_2} \sum_{g=\theta}^{g_{\text{max}}} g \cdot h(g), \qquad \mu = \frac{N_1 \mu_1 + N_2 \mu_2}{N}$$

Varianzen

$$\sigma_1^2 = \frac{1}{N_1} \sum_{g=0}^{\theta-1} (g - \mu_1)^2 h(g), \qquad \sigma_2^2 = \frac{1}{N_2} \sum_{g=\theta}^{g_{\text{max}}} (g - \mu_2)^2 h(g)$$

$$\sigma_B^2 = \frac{N_1 (\mu_1 - \mu)^2 + N_2 (\mu_2 - \mu)^2}{N}, \qquad \sigma_W^2 = \frac{N_1 \sigma_1^2 + N_2 \sigma_2^2}{N}$$

Ergebnis des Otsu-Verfahrens

• Optimierung von σ_B^2/σ_W^2 durch Ausprobieren aller θ ergibt in unserem Beispielbild $\theta=90$

Bilder von scikit image

Adaptive Schwellenwerte

 Bei ungleichmäßigen Hintergründen können Schwellenwerte adaptiv aufgrund des Histogramms lokaler Nachbarschaften

Original

at us first determine markers of the coins and the

Region-based segmentation

bestimmt werden

Local Otsu (radius=15)

Vor- und Nachverarbeitung

- Probleme der histogrammbasierten Segmentierung:
 - Variationen um den Schwellenwert führen leicht zu kleinen Löchern oder Inseln
 - Rauschen kann Täler im Histogramm verwischen
- Häufige Schritte zur Vor- und Nachverarbeitung:
 - Glättung des Bildes (s. Kapitel 1)
 - Nachbearbeitung der Segmentierungsmaske mit morphologischen Operationen
 - Analyse von Zusammenhangskomponenten

(a)

(b

(0

Morphologische Bildverarbeitung

Morphologische Operationen

- Können auf Graustufen- oder Binärbilder angewandt werden (0=Hintergrund, 1=Vordergrund)
- Nutzen ein Strukturelement, dessen Ankerpunkt ähnlich dem Kern einer Kreuzkorrelation – auf alle Pixel verschoben wird
 - Form des Strukturelements kann an die relevanter Objekte angepasst werden
 - Grundoperationen ähneln der Median-Filterung, aber nutzen Minimum und Maximum

Erosion

• Gegeben: Binärbild A und Strukturelement B:

- **Erosion** ⊖ entspricht Minimum-Filterung
 - Ausgabe-Pixel p ist genau dann Vordergrund, wenn das auf p zentrierte
 Strukturelement B vollständig im Vordergrund von A liegt
 - Am Rand wird A mit Null (Hintergrund) aufgefüllt

Erosion: Einfluss des Struktur-Elements

Dilatation

- Dilatation

 entspricht

 Maximum-Filterung
 - Ausgabe-Pixel p ist genau dann
 Vordergrund, wenn das auf p
 zentrierte Strukturelement B mit
 mindestens einem Vordergrund Pixel von A überlappt

Morphologisches Öffnen und Schließen

 Definition des morphologischen Öffnens (Opening)

$$A \circ B = (A \ominus B) \oplus B$$

- Beseitigt schmale Vorsprünge / Verbindungen
- Glättet Objektränder
- Definition des morphologischen
 Schließens (Closing)

$$A \bullet B = (A \oplus B) \ominus B$$

- Beseitigt kleine Löcher
- Füllt schmale Lücken und enge Einbuchtungen auf

Zusammenhangskomponenten

- Die Definition von **Zusammenhangskomponenten** in Binärbildern entspricht der aus der Graphentheorie
 - Vordergrund-Pixel als Knoten, Kanten verbinden benachbarte Pixel
 - Reicht in manchen Fällen aus um Objekte zu trennen
 - Leider verhindern oft wenige Pixel erwünschte Trennung / Verbindung
 - Beispiel: Versuch der Hirnsegmentierung als Zusammenhangskomponente nach Otsu-Schwellenwert und morphologischer Öffnung:

Binarisiertes Bild

Opening mit Kreis (11x11)

Zusammenhangskomponenten

Region Growing

- Region Growing fügt der Segmentierung von einem Startpunkt ausgehend so lange benachbarte Pixel hinzu, wie ein Homogenitätskriterium erfüllt ist
 - Basiert meist auf Intensitätsunterschieden (z.B. bezüglich des Startpunkts, des Nachbarpixels, des aktuellen Mittelwerts der Region)

Bild

Startpunkt im Kleinhirn, Schwelle=20

Startpunkt im Hirnstamm, Schwelle=17

Probleme des Region Growing

- Übliche Probleme des region growing sind
 - Plötzliches "Auslaufen" oberhalb eines Schwellenwerts
 - Auslassen einzelner Pixel aufgrund von Bildrauschen
- Lösungsansätze ähnlich wie bei Schwellenwert-Segmentierung

Startpunkt im Hirnstamm, Schwelle=12

Startpunkt im Hirnstamm, Schwelle=17

Startpunkt im Hirnstamm, Schwelle=18

Wasserscheidentransformation

Die Wasserscheidentransformation (engl. watershed transformation) fasst alle Punkte im Bild zusammen, von denen aus ein Gradientenabstieg im selben Minimum endet

- Wenn wir Intensitäten als Höhenfeld auffassen, trennen Wasserscheiden im geografischen Sinne diese Gebiete
- Häufige Vorstellung: Steigendes Wasserniveau im Gebirge, "Dämme" verhindern Zusammenfließen verschiedener Staubecken

Bildsegmentierung per Wasserscheidentransformation

- Wendet man die Wasserscheiden-Transformation auf die Gradientenstärke an, erhält man Wasserscheiden an Kanten
- Führt meist zu einer Übersegmentierung des Bildes. *Ansätze*:
 - Zusammenfassen von Regionen
 - Quellen durch Marker vorgeben

3ild von scikit image

Trennung von Objekten: Distanztransformation

- Die Distanztransformation weist jedem Pixel einer binären Maske seinen Abstand vom Hintergrund zu
- Die Wasserscheidentransformation der Distanztransformation eignet sich dafür, sich berührende Objekte in einer Segmentierungsmaske zu trennen

Ursprüngliche Maske

Distanztransformation

Getrennte Objekte

Zusammenfassung: Einfache Segmentierungsverfahren

Grundlegende Segmentierungsverfahren sind:

- Segmentierung per Schwellenwert
 - Häufig per Histogramm bestimmt (Beispiel: Otsu)
 - Bei ungleichmäßigen Hintergründen adaptiv (lokale Nachbarschaft)
- Region Growing (flood fill)
- Wasserscheidentransformation
 - Anwendung meist auf Gradientenbilder oder Distanztransformation
- Vor- und Nachverarbeitung per Glättung, morphologischen
 Operationen und Zusammenhangskomponenten

4.3 Deformierbare Modelle

Grundidee: Segmentierung mit Aktiven Konturen

- Aktive Konturen werden im Bild initialisiert und verformen sich mit dem Ziel eine Energie zu minimieren, die meist aus zwei Teilen besteht:
 - Externe Energie verbindet die Kontur mit Bildinhalten, zieht sie z.B. in Richtung von Bildkanten
 - Interne Energie bewertet die Plausibilität der Kontur an sich, z.B. glatt und nicht zu lang
- Beispiel: Segmentierung des Balkens im Gehirn mittels einer aktiven Kontur

Explizite Deformierbare Modelle

• **Deformierbare Modelle** in 2D lassen sich explizit als Kurven mit Parameter $s \in [0,1]$ schreiben:

$$\mathbf{v}(s) = \begin{pmatrix} x(s) \\ y(s) \end{pmatrix}$$

• Aktive Konturen optimieren v(s) im Hinblick auf eine Energie, die aus einer externen (Bildterm) und einer internen Energie (Glattheitsterm) besteht:

$$E = E_{\text{ext}} + E_{\text{int}}$$

 Betrachtet man den Prozess der iterativen Energieminimierung als Animation, kriechen die Kurven wie Schlangen über das Bild. Aktive Konturen werden daher auch als "Snakes" bezeichnet.

Bild von Klaus Tönnies

Externe Energie

- Externe Energie $E_{\text{ext}} = \frac{1}{2} \int_0^1 P(\mathbf{v}(s)) ds$ zieht die Kontur in Richtung der gewünschten Bildstrukturen. *Beispiele* für Potentialfunktionen $P(\mathbf{x})$:
 - Suche nach einer bestimmten Bildintensität:

$$P(\mathbf{v}(s)) = (I(\mathbf{v}(s)) - I_{\text{target}})^2$$

– Suche nach Bildkanten:

$$P(\mathbf{v}(s)) = -\|\nabla I(\mathbf{v}(s))\|^2$$

Ableitungen erfordern in der Regel eine Glättung (s. Kapitel 1)

Interne Energie

 Interne Energie beruht bei [Kass et al. 1998] auf den ersten und zweiten Ableitungen von v(s):

$$E_{\text{int}} = \frac{1}{2} \int_0^1 \left[w_1(s) \left\| \frac{d\mathbf{v}(s)}{ds} \right\|^2 + w_2(s) \left\| \frac{d^2 \mathbf{v}(s)}{ds^2} \right\|^2 \right] ds$$

- Erster Term macht die Kurve kürzer
 - Optimum wenn v(0)≠v(1) fest sind: Gerade Verbindung
 - Optimum mit Randbedingung $\mathbf{v}(0)=\mathbf{v}(1)$: Kurve schrumpft auf einen Punkt
- Zweiter Term macht die Kurve glatter
- Gewichte w_1 und w_2 bestimmen den jeweiligen Einfluss
 - $w_2(s)=0$ ermöglicht an der Stelle s eine scharfe Ecke

Anschauung: Länge einer Parametrischen Kurve

Approximation der Länge durch n Liniensegmente:

$$l \approx \sum_{i=0}^{n-1} \left\| \mathbf{v} \left(\frac{i+1}{n} \right) - \mathbf{v} \left(\frac{i}{n} \right) \right\| = \sum_{i=0}^{n-1} \left\| \frac{\mathbf{v} \left(\frac{i}{n} + \Delta s \right) - \mathbf{v} \left(\frac{i}{n} \right)}{\Delta s} \right\| \Delta s$$

• Im Grenzfall $n \to \infty$ erhalten wir die genaue Länge:

$$l = \int_0^1 \left\| \frac{d\mathbf{v}(s)}{ds} \right\| ds$$

Anschauung: Was ist mit dem Quadrat?

- Statt $\int_0^1 \left\| \frac{d\mathbf{v}(s)}{ds} \right\| ds$ minimiert die Snake $\int_0^1 \left\| \frac{d\mathbf{v}(s)}{ds} \right\|^2 ds$
 - Das Quadrat vereinfacht spätere Rechnungen
- Aufgrund der Cauchy-Schwarz-Ungleichung gilt

$$\left(\int_0^1 \left\| \frac{d\mathbf{v}(s)}{ds} \right\| ds \right)^2 \le \int_0^1 \left\| \frac{d\mathbf{v}(s)}{ds} \right\|^2 ds$$

- Die Snake minimiert eine obere Schranke der Länge
- Zusätzlich bevorzugt sie gleichmäßig verteilte Stützpunkte
- Bei perfekter Verteilung erhalten wir das Quadrat der Länge

$$2 + 8 = 10$$
 $5 + 5 = 10$
 $5 + 8^2 = 68$ $5^2 + 5^2 = 50$

Anschauung: Krümmung

- Krümmung κ gibt die lokale Abweichung der Kurve von einer Geraden an
 - Ihre Definition basiert auf der Ableitung des Einheitstangentenvektors

$$\mathbf{T}(s) = \frac{\frac{d\mathbf{v}(s)}{ds}}{\left\|\frac{d\mathbf{v}(s)}{ds}\right\|} \qquad \mathbf{T}(s_1) \mathbf{T}(s_1 + \Delta s)$$

– Im Falle einer *Parametrisierung nach Bogenlänge* (d.h. $\left\|\frac{d\mathbf{v}(s)}{ds}\right\| = 1$) ist

$$\kappa = \left\| \frac{d^2 \mathbf{v}(s)}{ds^2} \right\|$$

 Wir dürfen diese Formel verwenden, wenn wir die Stützpunkte ungefähr in festen Abständen verteilen (gleichmäßig, weder zu dicht noch zu weit)

Illustration: Interne Energie

Wenig dehnfähig (großes w_1)

Dehnfähiger, aber steif (kleineres w_1 , großes w_2)

Dehnfähig und biegsam (kleines w_1 , kleines w_2)

Variationsrechnung

- Differentialrechnung:
 - Betrachtet Funktionen f(x) die reelle Zahlen auf reelle Zahlen abbilden
 - **Minima** sind Punkte x, für die für alle hinreichend kleinen Δx gilt:

$$f(x + \Delta x) > f(x)$$

– Notwendige Bedingung:

$$\frac{df(x)}{dx} = 0$$

- Variationsrechnung:
 - Betrachtet Funktionale F(f), die Funktionen auf reelle Zahlen abbilden
 - **Minima** sind Funktionen f(x), für die für alle hinreichend kleinen ε und jede beliebig oft differenzierbare Testfunktion $\eta(x)$ gilt:

$$F(f + \varepsilon \cdot \eta) > F(f)$$

Notwendige Bedingung: Euler-Lagrange-Gleichung

Euler-Lagrange-Gleichung

• Satz aus der Variationsrechnung:

Eine notwendige Bedingung für die Minimierung eines Funktionals, das sich mittels einer Lagrange-Funktion *L* in der Form

$$F(f) = \int_a^b L(x, f(x), f'(x), f''(x)) dx$$

darstellen lässt, ist die Erfüllung der Euler-Lagrange-Gleichung

$$\frac{\partial L}{\partial f} - \frac{\partial}{\partial x} \left(\frac{\partial L}{\partial f'} \right) + \frac{\partial^2}{\partial x^2} \left(\frac{\partial L}{\partial f''} \right) = 0$$

Kurze Erinnerung: Taylor-Entwicklung

• Die **Taylor-Entwicklung** ermöglicht die Approximation glatter Funktionen in der Umgebung einer Stelle x_0 durch Polynome

$$f(x) \approx f(x_0) + \frac{d}{dx} f(x_0)(x - x_0) + \frac{1}{2} \frac{d^2}{dx^2} f(x_0)(x - x_0)^2 + \dots + \frac{1}{n!} \frac{d^n}{dx^n} f(x_0)(x - x_0)^n + O((x - x_0)^{n+1})$$

Bildquelle: Wikipedia

Herleitung der Euler-Lagrange-Gleichung, Teil 1

- Betrachte $F(f) = \int_a^b L(x, f(x), f'(x)) dx$
 - Zur Vereinfachung der Notation schreiben wir ab jetzt L(x, f, f')
- Notwendige Bedingung für Extrema: Für jede Testfunktion $\eta(x)$ ist

$$\lim_{\epsilon \to 0} \frac{1}{\epsilon} \int_{a}^{b} L(x, f + \epsilon \eta, f' + \epsilon \eta') - L(x, f, f') dx = 0$$

Einsetzen der Taylor-Entwicklung von L:

$$\lim_{\epsilon \to 0} \frac{1}{\epsilon} \int_{a}^{b} L(x, f, f') + \frac{\partial L}{\partial f} \epsilon \eta + \frac{\partial L}{\partial f'} \epsilon \eta' + O(\epsilon^{2}) - L(x, f, f') dx = 0$$

$$\Rightarrow \int_{a}^{b} \frac{\partial L}{\partial f} \eta + \frac{\partial L}{\partial f'} \eta' dx = 0$$

Herleitung der Euler-Lagrange-Gleichung, Teil 2

- Notwendige Bedingung (aus Teil 1): $\int_a^b \frac{\partial L}{\partial f} \eta + \frac{\partial L}{\partial f'} \eta' dx = 0$
- Partielle Integration von $\int_a^b \frac{\partial L}{\partial f'} \eta' dx$ mit $u = \frac{\partial L}{\partial f'} \ dv = \eta'$:

$$\left[\frac{\partial L}{\partial f'}\eta\right]_{a}^{b} - \int_{a}^{b} \frac{\partial}{\partial x} \left(\frac{\partial L}{\partial f'}\right) \eta \, dx$$

• Fordern wir zur Einhaltung der Randbedingungen $\eta(a) = \eta(b) = 0$, wird die notwendige Bedingung zu

$$\int_{a}^{b} \frac{\partial L}{\partial f} \eta - \frac{\partial}{\partial x} \left(\frac{\partial L}{\partial f'} \right) \eta \, dx = \int_{a}^{b} \left(\frac{\partial L}{\partial f} - \frac{\partial}{\partial x} \left(\frac{\partial L}{\partial f'} \right) \right) \eta \, dx = 0$$

Um für beliebige η Null zu erhalten muss dieser Teil Null sein -> Euler-Lagrange

Anwendung auf das Snake-Modell

Dritter Term der ELG analog (wiederholte partielle Integration):

$$\frac{\partial L}{\partial f} - \frac{\partial}{\partial x} \left(\frac{\partial L}{\partial f'} \right) + \frac{\partial^2}{\partial x^2} \left(\frac{\partial L}{\partial f''} \right) = 0$$

Anwendung der ELG auf das Snake-Modell

$$E = \frac{1}{2} \int_0^1 P(\mathbf{v}(s)) \, ds + \frac{1}{2} \int_0^1 \left[w_1(s) \left\| \frac{d\mathbf{v}(s)}{ds} \right\|^2 + w_2(s) \left\| \frac{d^2 \mathbf{v}(s)}{ds^2} \right\|^2 \right] ds$$

mit externem Potential P ergibt

$$\frac{1}{2}\nabla P(\mathbf{v}(s)) - \frac{d}{ds}\left(w_1(s)\frac{d\mathbf{v}(s)}{ds}\right) + \frac{d^2}{ds^2}\left(w_2(s)\frac{d^2\mathbf{v}(s)}{ds^2}\right) = \mathbf{0}$$

Da $\mathbf{v}(s)$ vektorwertig ist, ergibt sich ein **System zweier Gleichungen** (in 2D-Bildern) für die x- bzw. y-Koordinaten unserer Kurve

Energieminimierung im Snake-Modell

Die linke Seite der Euler-Lagrange-Gleichung des Snake-Modells

$$\frac{1}{2}\nabla P(\mathbf{v}(s)) - \frac{d}{ds}\left(w_1(s)\frac{d\mathbf{v}(s)}{ds}\right) + \frac{d^2}{ds^2}\left(w_2(s)\frac{d^2\mathbf{v}(s)}{ds^2}\right) = \mathbf{0}$$

gibt eine lokale Änderung an $\mathbf{v}(s)$ an, die E so steil wie möglich ansteigen lässt.

- Wir nutzen sie zum Gradientenabstieg:
- Einführung eines (künstlichen) Zeitparameters $\mathbf{v}(s,t)$
- Ersetzen der rechten Seite durch $-\partial_t \mathbf{v}(s,t)$
- Diskretisierung der Zeit in uniforme Schritte
- Diskretisierung der Kurve $\mathbf{v}(s,t)$ als Polygonzug
- Iterative Anwendung der Updates auf $\mathbf{v}(s,t)$ bis $\partial_t \mathbf{v}(s,t) \approx 0$

Interpretation als Summe von Kräften

Die Ableitung nach der Zeit in

$$\frac{1}{2}\nabla P(\mathbf{v}(s,t)) - \frac{\partial}{\partial s}\left(w_1(s)\frac{\partial \mathbf{v}(s,t)}{\partial s}\right) + \frac{\partial^2}{\partial s^2}\left(w_2(s)\frac{\partial^2 \mathbf{v}(s,t)}{\partial s^2}\right) = -\frac{\partial \mathbf{v}(s,t)}{\partial t}$$

durch finite Differenzen zu ersetzen ergibt

Linke Seite =
$$-\frac{\mathbf{v}(s, t + \Delta t) - \mathbf{v}(s, t)}{\Delta t}$$

 $\Rightarrow \mathbf{v}(s, t + \Delta t) = \mathbf{v}(s, t) + \Delta t \times (-\text{L. S.})$

- Aus jedem Energieterm wird eine Kraft, iterative Updates verschieben $\mathbf{v}(s,t)$ aufgrund der Summe dieser Kräfte mit Schrittweite Δt
- Mit geeigneter Schrittgröße konvergieren die Updates zu einer Lösung der Euler-Lagrange-Gleichung, am Optimum gleichen die Kräfte einander aus

Beispiel: Tumorsegmentierung per Snake

Initialkontur

2. Iterationsschritt

Konvergenz

Bildquelle: [Smith 2002]

Fallbeispiel: Brain Extraction Tool (BET)

- Brain Extraction Tool (BET) aus FSL, http://fsl.fmrib.ox.ac.uk/
 - Bis heute sehr aktiv genutzt (>12000 Zitationen auf google scholar)
 - Fast vollständig automatisiert
 - Zwei Parameter für 1) Über-/Untersegmentierung 2) Intensitätsgradienten
 - Basiert auf einem deformierbaren Modell
 - 1. Explizite Repräsentation als Dreiecksnetz
 - 2. Heuristische Initialisierung: Kleine Kugel innerhalb des Gehirns

BET: Grundidee und Beispiel

Entwicklung der Fläche durch die Summe von drei ad hoc definierten Kräften:

- Drückt die Fläche nach außen, bis die Bildintensität unter einen adaptiven Schwellenwert sinkt
- 2. Wirkt starken Krümmungen entgegen
- 3. Verteilt die Stützpunkte möglichst gleichmäßig über die Fläche

Vor- und Nachteile Aktiver Konturen

Vorteile:

- Transparent: Energiefunktional drückt in klarer mathematischer Sprache die Ziele der Segmentierung aus
- Relativ schnell: Updates der Stützpunkte meist leicht auszurechnen
- Enorme Flexibilität in der Formulierung von Potentialen
 - z.B. Integration von manuellen Vorgaben, Ballon-Kräften, Vorwissen

Nachteile:

- Berechnung der Euler-Lagrange-Gleichung zuweilen kompliziert
 - Alternative: Statt sie aus einem Energiefunktional herzuleiten werden die Kräfte manchmal einfach "ad hoc" angegeben
- Beibehalten gleichverteilter Stützpunkte und Änderungen in der Topologie erfordern komplexen Programmcode

4.4 Level-Set-Methode

Nachteile Expliziter Repräsentationen

- Explizite Repräsentation von Kurven durch Polygonzüge hat Vorteile:
 - Verschieben der Stützpunkte in jedem Schritt einfach und effizient
- Nachteile: Benötigt nichttrivialen Code um
 - eine angemessene Zahl von Stützpunkten sicherzustellen
 - topologische Änderungen durchzuführen
 - Verbinden oder Auftrennen von Kurven
 - Erzeugen oder Verschwinden von Komponenten

Alternative: Darstellung durch Level Sets

- Implizit können Kurven als Niveaumenge (level set) einer Höhenfunktion $\phi(x,y)$ dargestellt werden
- **Definition** einer Niveaumenge:

$$\{(x,y) \mid \phi(x,y) = c\}$$

Vorteile:

- Topologische Änderungen der Kurve entsprechen kontinuierlichen Änderungen von ϕ , stellen keine besonderen Schwierigkeit mehr dar
- Darstellung komplexer Formen erfordert keine Erhöhung der Zahl von Stützpunkten

Vorzeichenbehaftete Distanztransformation

- Aus der initialen Kurve gewinnen wir ein entsprechendes Höhenfeld mit der vorzeichenbehafteten **Distanztransformation** (engl. signed distance transform, SDT)
 - Betrag gibt Abstand von der Kurve an
 - Vorzeichen gibt Vorder- oder Hintergrund an
 - Konvention: Vordergrund positiv, Hintergrund negativ

Kurve

Entwicklung von Level Sets

- Durch Level Sets dargestellte Kurven werden durch iterative
 Updates ihrer Höhenfunktion deformiert
 - Genaue Formel ergibt sich häufig aus einem Energiefunktional

Entwicklung der Kontur

Entsprechendes Höhenfeld

Bild: Chan/Vese 2001

Beispiel: Energie-Funktional zur Segmentierung

- Erneut formalisiert ein Energie-Funktional unser Segmentierungsziel
 - Beispiel: Segmentierung in Regionen ungefähr konstanter Intensität, die durch möglichst kurze Kurven getrennt werden

- Vereinfachte Version des Modells von [Mumford/Shah 1989]
- Formalisierung: Bestimme Partition Ω_1,Ω_2 des Definitionsbereichs eines Bildes Ω ($\Omega_2=\Omega\backslash\Omega_1$) und Intensitäten μ_1,μ_2 , die die folgende Energie $E_{\rm MS}$ minimieren:

$$E_{\text{MS}}(\mu_i, \Omega_i) = \int_{\Omega_1} (I(x) - \mu_1)^2 dx + \int_{\Omega_2} (I(x) - \mu_2)^2 dx + \nu |\partial \Omega_1|$$

Update-Gleichung: Skizze der Herleitung

Zunächst schreiben wir

$$E_{\rm MS}(\mu_i, \Omega_i) = \int_{\Omega_1} (I(x) - \mu_1)^2 dx + \int_{\Omega_2} (I(x) - \mu_2)^2 dx + \nu |\partial \Omega_1|$$

mittels der Heaviside (Sprung-)Funktion H als Funktional der Höhenfunktion $\phi(x,y)$

$$E_{MS}(\mu_{i}, \phi)$$

$$= \int_{\Omega} H(\phi(x)) (I(x) - \mu_{1})^{2} + (1 - H(\phi(x))(I(x) - \mu_{2})^{2} + \nu \|\nabla H(\phi(x))\| dx$$

- Nach jedem Update von ϕ werden μ_1 und μ_2 auf Mittelwerte von I inner- bzw. außerhalb gesetzt
- Gradientenabstieg per Euler-Lagrange-Gleichung erfordert eine Regularisierung von *H.*

Update-Regel nach Chan und Vese

 Nach Regularisierung von H lässt sich folgende Update-Regel herleiten [Chan/Vese 2001]:

$$\frac{\partial \phi}{\partial t} = \delta_{\epsilon}(\phi) \left[(I - \mu_2)^2 - (I - \mu_1)^2 + \nu \operatorname{div} \left(\frac{\nabla \phi}{|\nabla \phi|} \right) \right]$$
wobei $\delta_{\epsilon}(\phi) = \frac{1}{\pi} \frac{\epsilon}{\epsilon^2 + \phi^2} \operatorname{mit} \epsilon > 0$

- Hinweis: Die genaue Herleitung des Divergenz-Terms zeigen wir nicht.
- Außerdem zu beachten:
 - Kontinuierliches "Nachführen" von μ_1 und μ_2
 - $-\phi$ sollte eine gültige Distanzfunktion bleiben
 - Weiterer Term in der Update-Funktion, den wir nicht weiter besprechen

Beispiel: Effekt des Regularisierungs-Parameters

Wahl von ν :

Wie stark bestrafen wir die Länge der Kontur?

$$\nu = 1$$

$$\nu = 10$$

Ausblick: Varianten der Level Sets

- Formulierung verschiedener Energiefunktionale ermöglicht hohe **Flexibilität** im Hinblick auf Segmentierungsziele, z.B.
 - Kantenbasierte Modelle
 - Komplexere regionenbasierte Modelle
 - Berücksichtigung von Vorwissen und interaktivem Feedback
- Verarbeitung von Farb- und 3D-Bildern
- Einteilung in mehrere Klassen (gekoppelte Level Sets)

Zusammenfassung: Level Sets

Vorteile der Level Sets

- Einfach: Topologische Änderungen verursachen keinen besonderen Implementierungsaufwand
- Transparent: Im Energie-Funktional sind die Modell-Annahmen explizit ablesbar
- Flexibel: Sowohl im Hinblick auf komplexe Konturen, als auch auf Umsetzbarkeit verschiedener Zielkriterien

Nachteile der Level Sets

- Rechenaufwand, insbesondere für große und 3D-Bilder
 - Ansatz: Update der Höhenfunktion nur in schmalem Band um die Kontur
- Abhängigkeit von der Initialisierung

4.5 Aktive Formmodelle

Ein berühmtes Beispiel zur Motivation

- Was zeigt dieses Bild?
- Wie könnten wir es sinnvoll segmentieren?

Grundidee: Modellbasierte Segmentierung

- Modellbasierte Segmentierung nutzt spezifisches Vorwissen über das gesuchte Objekt aus
 - Statistische Modelle werden aus Beispielen gelernt
- Formmodelle sind hilfreich, wenn das gesuchte Objekt eine charakteristische Form hat (z.B. Knochen, Organe)
 - Modellieren typische Form und mögliche Abweichungen davon
 - Getrennt betrachtet werden Größe, Position und Orientierung, die zusammen als **Pose** der Form bezeichnet werden
- Bei der **Bildsegmentierung** mittels Formmodellen werden Pose und Formparameter bestimmt, die am besten zu dem Bildinhalt passen

Beispiel: Segmentierung mit Aktiven Formmodellen

Beispiel aus Cootes et al., *Active Shape Models – Their Training and Application* (1995):

 Segmentierung einer Herzkammer in einem Echokardiogramm

Initialisierung

Nach 200 Iterationen

Nach 80 Iterationen

Punktverteilungsmodell

- Ein **Punktverteilungsmodell** stellt eine Form durch die Koordinaten von n Stützpunkten in einer Referenzpose sowie durch ihre Verbindungen dar
 - Die Stützpunkte umfassen
 - Landmarken, eindeutig erkennbare Punkte, die in verschiedenen Bildern in Korrespondenz gebracht werden
 - Genügend **Hilfspunkte**, um die genaue Form zwischen den Landmarken hinreichend genau linear zu approximieren
 - 2D-Formen werden durch 2n-dimensionale Vektoren \mathbf{x}_i beschrieben
 - Wir lernen das Formmodell aus m Beispielen, i=1,2,...,m
 - Mögliche Variationen der Form werden durch eine gemeinsame
 Wahrscheinlichkeitsverteilung der Punktkoordinaten erfasst

Erlernen des Formmodells aus Beispielen

- Um die typische Form und ihre möglichen Variationen zu erlernen, werden zunächst Trainingsbilder von Hand annotiert
 - Punkte in jedem Beispiel müssen
 korrespondieren, daher ist die Auswahl geeigneter Landmarken wichtig
 - Anhaltspunkt zur **benötigten Zahl** von Trainingsbildern: Kann jede Form sinnvoll durch ein Modell erzeugt werden, das aus den übrigen m-1 trainiert wurde?

Ausrichtung zweier Formen

- Um die Abweichung zwischen zwei Formen \mathbf{x}_1 und \mathbf{x}_2 zu bestimmen, benötigen wir zunächst ihre **relative Pose**, d.h. Skalierung s, Verschiebung \mathbf{t} und Rotation θ , die $\|T_{s,\mathbf{t},\theta}(\mathbf{x}_1) \mathbf{x}_2\|$ minimieren
- Die entsprechende Ausrichtung von Formen bezeichnet man als Prokrustes-Analyse
- Beliebte Implementierung im Kontext von Formmodellen:
 - 1. Verschiebung um die Differenz der Mittelpunkte $\mathbf{t} = \mathbf{m}_2 \mathbf{m}_1$
 - 2. Skalierung auf dieselbe **Norm**, $s = \frac{\|\mathbf{z}_2\|}{\|\mathbf{z}_1\|}$
 - \mathbf{z}_1 und \mathbf{z}_2 sind \mathbf{x}_1 und \mathbf{x}_2 nach Zentrierung auf den Ursprung
 - 3. Rotation mittels der Singulärwertzerlegung (s. nächste Folie)

Singulärwertzerlegung

• Satz: Für jede Matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ existiert eine Singulärwert-zerlegung (engl. Singular value decomposition, SVD)

$$\mathbf{A} = \mathbf{U}\mathbf{\Sigma}\mathbf{V}^T$$

- Spaltenvektoren der orthogonalen Matrizen $\mathbf{U} \in \mathbb{R}^{m \times m}$ und $\mathbf{V} \in \mathbb{R}^{n \times n}$ heißen Links- bzw. Rechts-Singulärvektoren
- positive Diagonalelemente $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_p \geq 0 \ (p = \min\{m, n\})$ der diagonalen Matrix $\mathbf{\Sigma} \in \mathbb{R}^{m \times n}$ heißen Singulärwerte

Rotation per Singulärwertzerlegung

Algorithmus zur Berechnung der Rotation der auf den Ursprung zentrierten Formen \mathbf{z}_1 und \mathbf{z}_2 :

- 1. Stelle die 2D-Formen durch $n \times 2$ Matrizen \mathbf{Z}_1 und \mathbf{Z}_2 dar
- 2. Berechne die 2×2 Kreuzkovarianzmatrix $\mathbf{W} = \mathbf{Z}_1^T \mathbf{Z}_2$
- 3. Berechne die Singulärwertzerlegung $\mathbf{W} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$
- 4. Die Rotation, die \mathbf{z}_1 optimal auf \mathbf{z}_2 abbildet, ergibt sich als $\mathbf{R} = \mathbf{V}\mathbf{U}^T$
 - Streng genommen müssen wir überprüfen, dass $det(\mathbf{R}) = 1$. Dies ist in der Praxis jedoch meistens der Fall.

Berechnung der Referenzform: Problemstellung

- Mittels Prokrustes-Analyse können wir nun aus allen m Formen eine mittlere **Referenzform** berechnen
- Die **Pose** der Referenzform $\bar{\mathbf{x}}$ geben wir dabei vor:
 - **Skalierung** des Formvektors $\bar{\mathbf{x}}$ auf Norm $\|\bar{\mathbf{x}}\| = 1$
 - Position: Zentrierung auf den Ursprung
 - Orientierung: Durch ein initiales Beispiel festgelegt
- Ziel ist die Berechnung einer mittleren Form $\overline{\mathbf{x}}$ und von Posen der einzelnen Formen, um die quadratische Abweichung

$$D = \sum_{i} ||T_{S_{i},\mathbf{t}_{i},\theta_{i}}(\mathbf{x}_{i}) - \overline{\mathbf{x}}||^{2} \text{ zu minimieren}$$

Berechnung der Referenzform: Vorgehen

Algorithmus zur iterativen Berechnung der Referenzform:

- 1. Zentriere jede Form um den Ursprung und normiere sie auf $\|\mathbf{x}_i\| = 1$
- 2. Wähle ein so normiertes Beispiel als initiale Referenz $\overline{\mathbf{x}}_0$ aus
- 3. Wiederhole für j=0,1,2,..., bis $\|\bar{\mathbf{x}}_{j+1}-\bar{\mathbf{x}}_j\|<\epsilon$:
 - i. Richte alle \mathbf{x}_i an $\mathbf{\bar{x}}_j$ aus, nenne die Resultate \mathbf{x}_i'
 - ii. Berechne $\bar{\mathbf{x}}_{j+1} \coloneqq \frac{1}{m} \sum_{i=1}^{m} \mathbf{x}_i'$
 - iii. Richte $\bar{\mathbf{x}}_{j+1}$ an $\bar{\mathbf{x}}_0$ aus und normiere auf $\left\|\bar{\mathbf{x}}_{j+1}\right\|=1$

Hauptkomponenten-Analyse: Anschauung

- Die **Hauptkomponentenanalyse** (*engl*. Principal Component Analysis, PCA) bestimmt aus m gegebenen Punkten $\mathbf{x}_i \in \mathbb{R}^p$ so p orthogonale Richtungen \mathbf{v}_i , dass die Projektionen von \mathbf{x}_i auf die Unterräume $<\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_t>$ jeweils so viel Varianz wie möglich erhalten.
- Formmodelle nutzen sie dazu, die an $\bar{\mathbf{x}}$ ausgerichteten Trainingsformen $\mathbf{x}_i \in \mathbb{R}^{2n}$ auf eine handhabbare Zahl von Formparametern zu reduzieren
 - Schränkt das Modell auf plausible
 Deformationen ein

Hauptkomponenten-Analyse: Algorithmus

Algorithmus zur Berechnung der Hauptkomponenten-Analyse:

- 1. Berechne den **Mittelwert** der Punkte, $\mu = \frac{1}{m} \sum_{i=1}^{m} \mathbf{x}_i$
- 2. Berechne die Kovarianzmatrix der Punkte,

$$S = \frac{1}{m-1} \sum_{i=1}^{m} (\mathbf{x}_i - \boldsymbol{\mu}) (\mathbf{x}_i - \boldsymbol{\mu})^T$$

3. Berechne die **Eigenvektoren** \mathbf{v}_i von S und die zugehörigen **Eigenwerte** λ_i . Sortiere sie absteigend ($\lambda_i \geq \lambda_{i+1}$)

Die Eigenvektoren \mathbf{v}_i sind die Hauptkomponenten, die Eigenwerte λ_i geben die Varianz in der jeweiligen Richtung an. Die totale Varianz ergibt sich als Summe aller Eigenwerte.

Dimensionsreduktion per Hauptkomponenten

- Formmodelle nutzen nur die wichtigsten Hauptkomponenten
 - Mögliches Kriterium: Kleinste Dimension t, die mindestens z.B. $\theta = 98\%$ der totalen Varianz erhält:

$$\frac{\sum_{i=1}^{t} \lambda_i}{\sum_{i=1}^{p} \lambda_i} \ge \theta$$

Bilde aus den entsprechenden Spaltenvektoren \mathbf{v}_i eine Matrix \mathbf{P}

- Berechnung der Formparameter $\mathbf{b} \in \mathbb{R}^t$ per Projektion

$$\mathbf{b} = \mathbf{P}^{\mathrm{T}}(\mathbf{x} - \overline{\mathbf{x}})$$

- Erzeugen einer Form aus **b** per $\mathbf{x} = \overline{\mathbf{x}} + \mathbf{P}\mathbf{b}$
- Koeffizienten von **b** sollten im Rahmen der Trainingsvarianz liegen, z.B. $b_i \in \left[-3\sqrt{\lambda_i}, 3\sqrt{\lambda_i}\right]$

Eigenvalue

Illustration: Hauptkomponenten eines Formmodells

 Visualisierung der Hauptkomponenten zeigt die vom Modell zugelassenen Deformationen

Technisches Detail: Tangentialraum von $\bar{\mathbf{x}}$

- Deformationen von $\bar{\mathbf{x}}$ in Richtung $\bar{\mathbf{x}}$ skalieren die Form. Da Skalierung Teil der Pose ist, ist dies unerwünscht.
- Zentrierte Formen z werden daher vor ihrer Einbettung in den Formenraum so auf x' abgebildet, dass die entsprechende Deformation zu \bar{x} orthogonal ist
 - Kriterium: $(\mathbf{x}' \bar{\mathbf{x}}) \cdot \bar{\mathbf{x}} = 0$
 - Wegen $\| \overline{\mathbf{x}} \| = 1$ ergibt sich die Bedingung $\mathbf{x}' \cdot \overline{\mathbf{x}} = 1$
 - Führt zur Skalierung $\mathbf{x}' = \frac{1}{\mathbf{z} \cdot \overline{\mathbf{x}}} \mathbf{z}$
 - Wird als "Projektion auf den Tangentialraum" bezeichnet

Punkte von $\frac{\mathbf{z}}{\|\mathbf{z}\|}$

Anpassen des Modells an gegebene Punkte

Algorithmus zur iterativen Berechnung der Form- und Posenparameter aus gegebenen Punkten y_B im Bildraum:

- 1. Initialisiere die Formparameter auf $\mathbf{b} = 0$
- 2. Wiederhole, solange Pose oder Form sich um mehr als ϵ ändern:
 - i. Erzeuge die aktuelle Form: $\mathbf{x} = \overline{\mathbf{x}} + \mathbf{Pb}$
 - ii. Bestimme s, t, θ , die x an y_B ausrichten.
 - iii. Transformiere \mathbf{y}_B in den Modellraum: $\mathbf{y} = T_{s,\mathbf{t},\theta}^{-1}(\mathbf{y}_B)$
 - iv. Projiziere \mathbf{y} in den Tangentialraum von $\mathbf{\bar{x}}$: $\mathbf{y}' = \frac{1}{\mathbf{y} \cdot \mathbf{\bar{x}}} \mathbf{y}$
 - v. Berechne die zu \mathbf{y}' passenden Modellparameter: $\mathbf{b} = \mathbf{P}^T(\mathbf{y}' \overline{\mathbf{x}})$

Bildsegmentierung mit Formmodellen

- Ähnlich wie **aktive Konturen** können sich grob initialisierte Formmodelle zur Segmentierung aktiv an Bildinhalte anpassen
- Grundsätzlich iteriert man dabei folgende Schritte, bis sich die Modell-Parameter kaum noch ändern:
 - 1. Finde in der Umgebung jeden Punkts der aktuellen Form eine optimale Position im Bild (Details: nächste Folien)
 - 2. Passe das Modell an diese neuen Punkte \mathbf{y}_B an
 - 3. Schränke die gefundenen Parameter auf plausible Werte ein
 - Übliche Bedingung: $|b_i| < 3\sqrt{\lambda_i}$

Suche nach stärkster Kante

- Einfache kantenbasierte Suche in Schritt 1:
 - Bestimme innerhalb eines Suchradius senkrecht zur aktuellen Kontur den Ort der stärksten Kante (s. Kapitel 1)
 - Nutze ggf. Vorwissen über die Orientierung: Ist das gesuchte Objekt heller oder dunkler als seine Umgebung?

Lernen eines Kantenprofils

- Idee: Lerne aus den Trainingsbildern für jeden Stützpunkt nicht nur die Position, sondern auch ein Kantenprofil, um in Schritt 1 eine gezieltere Suche zu ermöglichen
 - Bestimme für k Pixel auf jeder Seite der Kontur die Intensitätsableitungen entlang der Normalen. Normiere die resultierenden Vektoren $\mathbf{g}_i \in \mathbb{R}^{2k+1}$

$$\tilde{\mathbf{g}}_i = \frac{\mathbf{g}_i}{\|\mathbf{g}_i\|_1}$$

um globale Unterschiede im Kontrast auszugleichen

- Berechne für jeden Punkt ein mittleres Profil $\overline{\mathbf{g}}$ und eine Kovarianz $\mathbf{S}_{\mathbf{g}}$

Suche nach plausiblem Kantenprofil

- Verfeinerte Suche mittels des gelernten Kantenprofils:
 - Berechne in Schritt 1 für jeden Kandidatenpixel p senkrecht zur Kontur das entsprechende normierte Kantenprofil $\tilde{\mathbf{g}}_p$
 - Wähle den Kandidaten mit der geringsten
 Mahalanobis-Distanz als optimale Position

$$D(\tilde{\mathbf{g}}_p) = (\tilde{\mathbf{g}}_p - \bar{\mathbf{g}})^T \mathbf{S}_{\mathbf{g}}^{-1} (\tilde{\mathbf{g}}_p - \bar{\mathbf{g}})$$

Beispiele: Segmentierung mit Aktiven Formmodellen

Gesichtserkennung

Knorpelschicht in Knie-MRT

Zusammenfassung: Aktive Formmodelle

- Aktive Formmodelle nutzen zur Segmentierung Vorwissen über die Form der gesuchten Struktur
 - Vorteil: Hohe Robustheit, wenn das Modell tatsächlich passt
 - Nicht geeignet für anomales Wachstum (z.B. Tumore) oder andere Verletzungen der Modellannahmen (z.B. Knochenbrüche)
- Wesentliche Ideen und Bausteine der Formmodelle sind:
 - Erlernen eines Modells aus annotierten Trainingsdaten
 - Prokrustes-Analyse zur Bestimmung relativer Posen
 - Hauptkomponenten-Analyse zur Dimensionsreduktion
 - Suche nach geeigneten Modellparametern über stärkste Kanten oder erlernte Kantenprofile

Ausblick: Aktive Erscheinungsmodelle

Aktive Erscheinungsmodelle (engl. Active Appearance Models) erweitern aktive Formmodelle um ein statistisches Modell des erwarteten Erscheinungsbilds (Graubzw. Farbwerte) in der Referenzform

Ansatz: Analyse durch Synthese

Initial 2 its Converged (11 its)

Zum Nach- und Weiterlesen

- Heinz Handels: Medizinische Bildverarbeitung.
 Vieweg+Teubner, 2. Auflage, 2009
- Klaus D. Toennies: *Guide to Medical Image Analysis. Methods and Algorithms*. Springer, 2012
- I.N. Bankman: *Handbook of Medical Imaging. Processing and Analysis.* Academic Press, 2000

Zum Nach- und Weiterlesen: Level-Set-Methode

YouTube-Video:

 Vorlesung "Variational Methods for Computer Vision" von Prof. Daniel Cremers (TUM)

• Bücher:

- Sethian: Level Set Methods and Fast Marching Methods, Cambridge University Press, 1999
- Osher/Fedkiw: Level Set Methods and Dynamic Implicit Surfaces,
 Springer 2003
- Mitiche/Ayed: Variational and Level Set Methods in Image Segmentation, Springer 2011

Zum Nach- und Weiterlesen: Aktive Formmodelle

- TF Cootes, CJ Taylor, DH Cooper, J Graham: Active Shape Models Their Training and Application. Computer Vision and Image Understanding, 1995
- Tim Cootes: An Introduction to Active Shape Models. Kapitel 7 in "Model-Based Methods in Analysis of Biomedical Images", Oxford University Press, 2000
- TF Cootes, GJ Edwards, CJ Taylor: *Active Appearance Models*. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001
- Mikkel B. Stegmann: Active Appearance Models. Theory, Extensions & Cases. MSc-Arbeit an der Technical University of Denmark (DTU), 2000