

2016中国数据库技术大会

DATABASE TECHNOLOGY CONFERENCE CHINA 2016

数据定义未来

叶祺

北京搜狗科技发展有限公司

基于大数据的查询意图识别其应用

- * 动机与目标
- * 现有方法
- * 框架与方法
- * 效果与应用

- * 动机与目标
- * 现有方法
- * 框架与方法
- * 效果与应用

动机与目标

- *搜索广告的现状
 - + 当前的搜索广告中,搜索引擎主要基于关键字匹 配的搜索模式。
- *问题
 - +查询短、特征稀疏、歧义强
 - +字面匹配缺乏意图相关特征
 - +广告缺乏相关性
 - +伤害用户体验、造成客户无效消耗

动机与目标

* 目标

- +挖掘海量细粒度查询意图
- +建立查询与意图间映射关系
- +处理高频与长尾查询
- +高精确性与较高覆盖率

- * 动机与目标
- * 现有方法
- * 框架与方法
- * 效果与应用

现有方法

- ★ Google 的Google Rephil 系统
 - + Google广告相关性的头号秘密武器
 - +对词或短语片段聚类发现概念
 - +百万量级的概念
 - + 基于Bayesian网络的推断方法
 - +细节不公开

现有方法

- *识别意图的3类方法
 - +短文本聚类
 - + Topic Modeling
 - +查询分类
- ×特点
 - +可发现细粒度意图、难覆盖长尾查询
 - +不同数据集Topic难对应,短文本分析精确不足
 - +一般含几十到上千个类, 粒度较粗

- * 动机与目标
- * 现有方法
- * 框架与方法
- * 效果与应用

框架与方法

* 细粒度意图识别方法

* 星辰系统整体框架

查询聚类

- ×构建Query同点击网络
 - +基本假设:点击相同网页的查询意图相似
- * 对网络进行社团划分
 - +查询间的意图会有细微差别、误点情况
 - + 聚类算法要具有一定抗噪性
 - +图挖掘中的社团发现算法

社团发现算法

- * 社团的定义
 - +网络中一群节点集合。
 - +集合中节点间的内部链接很多,而集合中节点与外部网络的链接却很少。
- * 传统方法
 - + 主要发端于 Girvan 与 Newman 于 2002 年提出的开创性工作
 - + 定义了一个质量函数

$$Q = \sum_{s=1}^{m} \left[\frac{l_s}{L} - \left(\frac{d_s}{2L} \right)^2 \right],$$

M. Girvan and M. E. J. Newman, PNAS **99**, 7821 (2002). M. E. J. Newman and M. Girvan, Phys. Rev. E **69**, 026113 (2004).

MMO算法

0.2 0.3 0.4 Mixing parameter μ

MMO算法的优点

De 0.6-AGN CNM CNM LPA +BGLL O.2-MCL

LPA BGLL

- + 易于实现
- + 时间复杂度近似线性,空间复杂度为线性。
- + 推广到 Hadoop 并行环境中的运行
- + 避免生成极大的社团

同点击网络构造

- * 数据集
 - +2年的匿名点击日志
- * 具体步骤
 - + 抽取query-URL的关系(1300万查询,1650万URL)
 - +如果两个query间有一个同点击,则在两个query间 连接一条边
 - +得到查询同点击网络(1300万查询节点,8亿条边)

概念质量优化

- * 聚类存在的问题
 - +过大的不纯类
 - +太多的细粒度聚类
- * 聚类质量评估
 - + 聚类纯度
 - + 聚类间的相关性

$$r(c) = \frac{\sum_{q,s \in c, q \neq s} f(q,s)}{|c| \times (|c| - 1)},$$

$$r(c_i, c_j) = \frac{\sum_{q \in c_i, s \in c_j} f(q, s)}{|c_i| \times |c_j|}$$

文本相关性计算方法

• 组合方法

——Stacking Learning

查询意图推断

- * 问题定义
 - +将query的意图识别变为一个大规模多分类问题
- * 关键步骤
 - +候选分类概念
 - + 拒绝分类结果

询意图推断

* 候选概念的发现

$$c = \underset{c \in C}{\operatorname{argmax}} p(c|\mathbf{x}_q)$$

$$\propto \underset{c \in C}{\operatorname{argmax}} p(\mathbf{x}_q|c) \times p(c)$$

$$= \underset{c \in C}{\operatorname{argmax}} \prod_{i=1}^{n} p(x_i|c) \times p(c)$$

$$\propto \underset{c \in C}{\operatorname{argmax}} \sum_{i=1}^{n} \log p(x_i|c) + \log p(c).$$

 x_q : feature vector of query q.

* 拒绝项

+ Query侧相关性: $s_q(\mathbf{v}_q, c) = \frac{\sum_{x_i \in \mathbf{x}_q, \mathbf{x}_c} \mathbf{v}_q(x_i)}{\sum_{x_i \in \mathbf{v}_q} \mathbf{v}_q(x_i)}$

+ 概念侧相关性: $s_c(\mathbf{v}_q, c) = \frac{\sum_{x_i \in \mathbf{x}_q, \mathbf{x}_c} \mathbf{v}_c(x_i)}{\sum_{x_i \in \mathbf{x}_c} \mathbf{v}_c(x_i)} \propto \sum_{x_i \in \mathbf{x}_c, \mathbf{x}_c} \mathbf{v}_c(x_i).$

$$\lambda_c = \frac{\sum_{q \in c} s_c(\mathbf{v}_q, c)}{|c|} \propto \frac{\sum_{q \in c} \sum_{x_i \in \mathbf{x}_q, \mathbf{x}_c} \mathbf{v}_c(x_i)}{|c|}$$

- * 动机与目标
- * 现有方法
- * 框架与方法
- * 效果与应用

文本相关性模型的效果

*对比方法:

- +查询扩展
- + w2v
- +字面匹配
- + LDA

概念发现的结果

*概念分布

(b) Concept Quality

*概念举例

ID	查询抽样	最高频查询	关键短语
265211	苹果批发价,苹果批发价格,红富士批发价格	苹果批发价	苹果批发价, 苹果批发价格
195748	苹果配件批发, 苹果手机配件批发, 苹果手机配件 批发网	苹果手机配件批发网	苹果配件批发
403304	减肥抽脂,抽脂手术,吸脂减肥的价格,吸脂整形	吸脂	抽脂减肥,吸脂手术,抽脂手术,吸脂减肥
1399473	1111购物狂欢节, 双11天猫, 11.11淘宝	双十一	双十一, 天猫双十一, 双11, 双十一网 购

精确性与覆盖率

- * 星辰系统的精确性与覆盖率
 - +统计查询次数
 - ×精确性 97.4%
 - ×覆盖率 61.3%

意图追踪

询意图追踪

线上DEMO系统

线上DEMO系统

线上DEMO系统

广告召回中的应用

- *广告召回应用
 - +训练针对概念的商业性分类器
 - +判断每个概念是否适合召回广告
 - +线下计算每个概念和关键词的相关性
 - +线下选择每个概念适合召回的关键词链
 - +线上判断query所属概念,根据概念召回

广告质量保证中的应用

- *广告质量保证
 - +线下确定概念是否适合展示广告
 - +线下确定概念不适合展示的关键词
 - +线下确定概念不适合展示的广告类别
 - +黑名单过滤

一般的技术性研究

- * 增强查询分类准确性
 - +为概念中的每个查询分类
 - +确定每个概念的类别分布
 - +选择出类别纯净的概念
 - +该星辰系统置于分类器前端

Qi Ye, Feng Wang, and Bo Li. 2016. StarrySky: A Practical System to Track Millions of High-Precision Query Intents. In Proceedings of the 25th International Conference Companion on World Wide Web (WWW '16 Companion). 961-966.

