Recompiling to Single Qubit And CNOT

SetDirectory @ NotebookDirectory[];
Import["../Link/QuESTlink.m"];

? QuEST`Gate`*

Testing doc

? RecompileCircuit

Symbol

RecompileCircuit[circuit, method] returns an equivalent circuit,

transpiled to a differnet gate set. The input circuit can contain any unitary gate, with any number of control qubits. Supported methods include:

• "SingleQubitAndCNOT" decompiles the circuit into canonical single-qubit gates (H, Ph, T, S, X, Y, Z, Rx, Ry, Rz), a global phase G, and two-qubit C[X] gates. This method uses a combination of 23 analytic and numerical decompositions.

• "CliffordAndRz" decompiles the circuit into Clifford gates

(H, S, X, Y, Z, CX, CY, CZ, SWAP), a global phase G, and non-Clifford Rz.

Note that the returned circuits are not necessarily

optimal/minimal, and may benefit from a subsequent call to SimplifyCircuit[].

Testing decomp gates

G

testRecomp @ G[x]

 $\{G[x]\}$

» error: 0

Н

testRecomp @ H₀

>> { H₀ }

» error: 0

Id

testRecomp @ Id_{0,1}

- » $\{Id_{0,1}\}$
- » error: 0

Ph

testRecomp @ Ph₀[θ]

- \rightarrow $\{Ph_0[\theta]\}$
- » error: 0

Rx, Ry, Rz

$\texttt{testRecomp} \ @ \ \mathsf{Rx}_{0} \ [\theta]$

- $\mathbf{x} \in \{Rx_{0}[\theta]\}$
- » error: 0

$\texttt{testRecomp} \; @ \; \mathsf{Ry}_{\scriptscriptstyle{0}}[\theta]$

- » {Ry₀[Θ]}
- » error: 0

testRecomp @ $Rz_{\theta}[\theta]$

- angle { $Rz_0[\theta]$ }
- » error: 0

S

$\texttt{testRecomp} \ \texttt{@} \ \mathsf{S}_{\texttt{0}}$

- \gg {S₀}
- » error: 0

$\texttt{testRecomp} \ \texttt{@} \ \mathsf{T}_{\texttt{0}}$

- \rightarrow { T_0 }
- » T | T |
- » error: 0

X, Y, Z

testRecomp @ X₀

- $X \in \{X_0\}$
- » error: 0

$\texttt{testRecomp} \; @ \; Y_{\theta}$

- $\rightarrow \{Y_0\}$
- » Y Y
- » error: 0

testRecomp @ Z₀

- $\textcolor{red}{\boldsymbol{>}} \quad \{\, Z_{\,0} \,\}$
- » z z
- » error: 0

Testing canonical gates

Un-controlled

Ph

testRecomp @ $Ph_{0,1}[x]$

»
$$\left\{ Ph_1\left[\frac{x}{2}\right], Ph_0\left[\frac{x}{2}\right], C_0[X_1], Ph_1\left[-\frac{x}{2}\right], C_0[X_1] \right\}$$

testRecomp @ Ph_{0,1,2}[x]

» error: 0

testRecomp[$Ph_{0,1,2,3}[-1.2]$, False]

» error: 0

R

testRecomp @ R[x, X₀] testRecomp @ $R[x, Y_0]$ testRecomp @ R[x, Z₀]

- » error: 0
- » {Ry₀[x]}

>> { Rx₀ [x] }

- » error: 0
- >> {Rz₀[x]}

» error: 0

testRecomp @ $R[x, X_0 Y_1]$

» $\{H_0, C_0[X_1], Ry_1[x], C_0[X_1], H_0\}$

» error: 0

testRecomp @ $R[x, Z_0 Y_1]$

» $\{C_0[X_1], Ry_1[x], C_0[X_1]\}$

» error: 0

testRecomp @ $R[x, Z_0 X_1]$

» $\{H_1, C_1[X_0], Rz_0[x], C_1[X_0], H_1\}$

» error: 0

testRecomp @ $R[x, X_0 X_1 Y_2 Z_3 X_4]$

 $>\!\!\!> \{C_3[X_2],\,H_0,\,C_0[X_2],\,H_1,\,C_1[X_2],\,H_4,\,C_4[X_2],\,Ry_2[x],\,C_4[X_2],\,H_4,\,C_1[X_2],\,H_1,\,C_0[X_2],\,H_0,\,C_3[X_2]\}$

» error: 0

Rz^(n)

testRecomp @ Rz_{0,1,2}[x]

» $\{C_1[X_0], C_2[X_0], Rz_0[x], C_2[X_0], C_1[X_0]\}$

» error: 0

SWAP

testRecomp @ SWAP_{0,1}

» $\{C_0[X_1], C_1[X_0], C_0[X_1]\}$

» error: 0

Singly-controlled

C[G]

(* cannot draw ill-formed input *)

 $\label{eq:complex} DrawCircuit @ RecompileCircuit[C_0@G[x], "SingleQubitAndCNOT"]$

••• DrawCircuit: Invalid arguments. See ?DrawCircuit

\$Failed

C[H]

testRecomp @ $C_0[H_1]$

» error: 0

C[Ph]

testRecomp @ $C_0[Ph_1[x]]$

»
$$\left\{ Ph_1\left[\frac{x}{2}\right], Ph_0\left[\frac{x}{2}\right], C_0[X_1], Ph_1\left[-\frac{x}{2}\right], C_0[X_1] \right\}$$

» error: 0

C[R]

testRecomp @ C_1 @ $R[x, X_0]$ testRecomp @ C_1 @ $R[x, Y_0]$

testRecomp @ C_1 @ $R[x, Z_0]$

»
$$\left\{ Rz_0 \left[\frac{\pi}{2} \right], Ry_0 \left[\frac{x}{2} \right], C_1 [X_0], Ry_0 \left[-\frac{x}{2} \right], C_1 [X_0], Rz_0 \left[-\frac{\pi}{2} \right] \right\}$$

- » $\left\{ Ry_{\theta} \left[\frac{x}{2} \right], C_{1}[X_{\theta}], Ry_{\theta} \left[-\frac{x}{2} \right], C_{1}[X_{\theta}] \right\}$

- » $\left\{ Rz_{\theta} \left[\frac{x}{2} \right], C_{1}[X_{\theta}], Rz_{\theta} \left[-\frac{x}{2} \right], C_{1}[X_{\theta}] \right\}$

testRecomp @ C_2 @R[x, X_0 Y_1 X_4]

» $\left\{H_{0}, C_{0}[X_{1}], H_{4}, C_{4}[X_{1}], Ry_{1}\left[\frac{x}{2}\right], C_{2}[X_{1}], Ry_{1}\left[-\frac{x}{2}\right], C_{2}[X_{1}], C_{4}[X_{1}], H_{4}, C_{0}[X_{1}], H_{0}\right\}$

» error: 0

C[Rx]

testRecomp @ C_1 @ Rx_0 [x]

$$> \quad \left\{ \mathsf{Rz}_{\theta} \left[\frac{\pi}{2} \right], \; \mathsf{Ry}_{\theta} \left[\frac{\mathsf{x}}{2} \right], \; \mathsf{C}_{1} \left[\mathsf{X}_{\theta} \right], \; \mathsf{Ry}_{\theta} \left[-\frac{\mathsf{x}}{2} \right], \; \mathsf{C}_{1} \left[\mathsf{X}_{\theta} \right], \; \mathsf{Rz}_{\theta} \left[-\frac{\pi}{2} \right] \right\}$$

» error: 0

C[Ry], C[Rz]

testRecomp @ C₁@Ry₀[x]

»
$$\left\{ Ry_{\theta} \left[\frac{x}{2} \right], C_{1}[X_{\theta}], Ry_{\theta} \left[-\frac{x}{2} \right], C_{1}[X_{\theta}] \right\}$$

» error: 0

$\texttt{testRecomp} \ @ \ C_1@Rz_0 \ [x]$

»
$$\left\{ Rz_0 \left[\frac{x}{2} \right], C_1[X_0], Rz_0 \left[-\frac{x}{2} \right], C_1[X_0] \right\}$$

C[S], C[T]

testRecomp @ C₁@S₀

»
$$\left\{ \mathsf{Ph}_{0}\left[\frac{\pi}{4}\right],\; \mathsf{Ph}_{1}\left[\frac{\pi}{4}\right],\; \mathsf{C}_{1}[\mathsf{X}_{0}],\; \mathsf{Ph}_{0}\left[-\frac{\pi}{4}\right],\; \mathsf{C}_{1}[\mathsf{X}_{0}] \right\}$$

$\texttt{testRecomp} \ \texttt{@} \ \mathsf{C_1} \texttt{@} \mathsf{T_0}$

»
$$\left\{ Ph_0 \left[\frac{\pi}{8} \right], Ph_1 \left[\frac{\pi}{8} \right], C_1 [X_0], Ph_0 \left[-\frac{\pi}{8} \right], C_1 [X_0] \right\}$$

» error: 0

C[SWAP]

testRecomp @ $C_1@SWAP_{0,2}$

»
$$\left\{C_{0}[X_{2}], H_{0}, C_{1}[X_{2}], T_{0}, Ph_{2}\left[-\frac{\pi}{4}\right], T_{1}, C_{0}[X_{2}], C_{1}[X_{0}], T_{2}, C_{1}[X_{2}], Ph_{0}\left[-\frac{\pi}{4}\right], Ph_{2}\left[-\frac{\pi}{4}\right], C_{1}[X_{0}], C_{0}[X_{2}], H_{0}, T_{2}, C_{0}[X_{2}]\right\}$$

C[Y]

testRecomp @ C₁@Y₀

»
$$\left\{Ph_0\left[-\frac{\pi}{2}\right], C_1[X_0], S_0\right\}$$

» error: 0

C[Z]

testRecomp @ C₁@Z₀

 \rightarrow {H₀, C₁[X₀], H₀}

» error: 0

Multi-controlled

C*[G]

(* cannot draw ill-formed input *)

 $\label{eq:complex} DrawCircuit\, \texttt{@ RecompileCircuit} \big[C_{\theta,1,2} @G[x] \,, \,\, "SingleQubitAndCNOT" \big]$

C*[H]

$\mathsf{testRecomp}\big[\mathsf{C}_{\mathsf{0},2}[\mathsf{H}_{\mathsf{1}}]\,,\;\mathsf{False}\big]$

» error: 0

$\mathsf{testRecomp}\big[\mathsf{C}_{0,1,3}[\mathsf{H}_2]\,,\;\mathsf{False}\big]$

» error: 0

C*[Ph]

$\mathsf{testRecomp}\big[\mathsf{C}_{0,2}\big[\mathsf{Ph}_{1,3}\,\boldsymbol{[.1]}\big],\;\mathsf{False}\big]$

» error: 0

C*[R]

testRecomp @ $C_{1,2}$ @ R[-.1, X_0] testRecomp @ $C_{1,2}$ @ $R[x, Y_0]$ testRecomp @ $C_{1,2}$ @ $R[x, Z_0]$

$$\begin{cases} \mathsf{Rz}_{0} \left[\frac{\pi}{2}\right], \, \mathsf{Ry}_{0} \left[-0.025\right], \, \mathsf{C}_{1} \left[\mathsf{X}_{0}\right], \, \mathsf{Ry}_{0} \left[0.025\right], \, \mathsf{C}_{1} \left[\mathsf{X}_{0}\right], \, \mathsf{Rz}_{0} \left[-\frac{\pi}{2}\right], \\ \mathsf{C}_{2} \left[\mathsf{X}_{1}\right], \, \mathsf{Rz}_{0} \left[\frac{\pi}{2}\right], \, \mathsf{Ry}_{0} \left[0.025\right], \, \mathsf{C}_{1} \left[\mathsf{X}_{0}\right], \, \mathsf{Ry}_{0} \left[-0.025\right], \, \mathsf{C}_{1} \left[\mathsf{X}_{0}\right], \, \mathsf{Rz}_{0} \left[-\frac{\pi}{2}\right], \\ \mathsf{C}_{2} \left[\mathsf{X}_{1}\right], \, \mathsf{Rz}_{0} \left[\frac{\pi}{2}\right], \, \mathsf{Ry}_{0} \left[-0.025\right], \, \mathsf{C}_{2} \left[\mathsf{X}_{0}\right], \, \mathsf{Ry}_{0} \left[0.025\right], \, \mathsf{C}_{2} \left[\mathsf{X}_{0}\right], \, \mathsf{Rz}_{0} \left[-\frac{\pi}{2}\right] \right\} \end{aligned}$$

- » $\left\{ Ry_{\theta} \left[\frac{x}{4} \right], C_{1}[X_{\theta}], Ry_{\theta} \left[-\frac{x}{4} \right], C_{1}[X_{\theta}], C_{2}[X_{1}], Ry_{\theta} \left[-\frac{x}{4} \right], \right\}$ $C_{1}[X_{0}]$, $Ry_{0}[\frac{x}{4}]$, $C_{1}[X_{0}]$, $C_{2}[X_{1}]$, $Ry_{0}[\frac{x}{4}]$, $C_{2}[X_{0}]$, $Ry_{0}[-\frac{x}{4}]$, $C_{2}[X_{0}]$

- » $\left\{ Rz_{\theta} \left[\frac{x}{4} \right], C_{1}[X_{\theta}], Rz_{\theta} \left[-\frac{x}{4} \right], C_{1}[X_{\theta}], C_{2}[X_{1}], Rz_{\theta} \left[-\frac{x}{4} \right], \right\}$ $C_{1}[X_{0}]$, $Rz_{0}[\frac{x}{4}]$, $C_{1}[X_{0}]$, $C_{2}[X_{1}]$, $Rz_{0}[\frac{x}{4}]$, $C_{2}[X_{0}]$, $Rz_{0}[-\frac{x}{4}]$, $C_{2}[X_{0}]$

testRecomp @ $C_{2,3}$ @ $R[x, X_0 Y_1 X_4]$

» $\left\{H_{0}, C_{0}[X_{1}], H_{4}, C_{4}[X_{1}], Ry_{1}\left[\frac{x}{4}\right], C_{2}[X_{1}], Ry_{1}\left[-\frac{x}{4}\right], C_{2}[X_{1}], C_{3}[X_{2}], Ry_{1}\left[-\frac{x}{4}\right], C_{2}[X_{1}], C_{3}[X_{2}], Ry_{1}\left[-\frac{x}{4}\right], C_{2}[X_{1}], C_{3}[X_{2}], C_{3}[X_{2}], C_{4}[X_{1}], C_{5}[X_{1}], C$ $Ry_1\left[\frac{x}{4}\right]$, $C_2[X_1]$, $C_3[X_2]$, $Ry_1\left[\frac{x}{4}\right]$, $C_3[X_1]$, $Ry_1\left[-\frac{x}{4}\right]$, $C_3[X_1]$, $C_4[X_1]$, $C_4[X_1]$, $C_{0}[X_1]$, $C_{0}[X_1]$

C*[Rx]

testRecomp @ $C_{0,1}[Rx_3[.1]]$

» $\left\{ Rz_3 \left[\frac{\pi}{2} \right], Ry_3 [0.025], C_0 [X_3], Ry_3 [-0.025], C_0 [X_3], Rz_3 \left[-\frac{\pi}{2} \right], \right\}$ $C_1[X_0]$, $Rz_3\left[\frac{\pi}{2}\right]$, $Ry_3[-0.025]$, $C_0[X_3]$, $Ry_3[0.025]$, $C_0[X_3]$, $Rz_3\left[-\frac{\pi}{2}\right]$, $C_1[X_0]$, $Rz_3\left[\frac{\pi}{2}\right]$, $Ry_3[0.025]$, $C_1[X_3]$, $Ry_3[-0.025]$, $C_1[X_3]$, $Rz_3\left[-\frac{\pi}{2}\right]$

» error: 0

$\texttt{testRecomp}\big[\;C_{0,1,2}[\mathsf{Rx}_3[\textbf{.1}]]\,,\;\mathsf{False}\big]$

» error: 0

$\mathsf{testRecomp}\big[\mathsf{C}_{0,1,2,4}[\mathsf{Rx}_3[.1]]\,,\;\mathsf{False}\big]$

» error: 0

C*[Ry]

testRecomp @ $C_{0,1}[Ry_3[x]]$

$$\begin{cases} Ry_{3} \left[\frac{x}{4}\right], C_{0}[X_{3}], Ry_{3} \left[-\frac{x}{4}\right], C_{0}[X_{3}], C_{1}[X_{0}], Ry_{3} \left[-\frac{x}{4}\right], \\ C_{0}[X_{3}], Ry_{3} \left[\frac{x}{4}\right], C_{0}[X_{3}], C_{1}[X_{0}], Ry_{3} \left[\frac{x}{4}\right], C_{1}[X_{3}], Ry_{3} \left[-\frac{x}{4}\right], C_{1}[X_{3}] \end{cases}$$

testRecomp @ $C_{0,1,2}[Ry_3[.1]]$

» $\{Ry_3[0.0125], C_2[X_3], Ry_3[-0.0125], C_2[X_3], C_2[X_1], Ry_3[-0.0125],$ $C_1[X_3]\,,\,Ry_3[0.0125]\,,\,C_1[X_3]\,,\,C_2[X_1]\,,\,Ry_3[0.0125]\,,\,C_1[X_3]\,,\,Ry_3[-0.0125]\,,$ $C_1[X_3]$, $C_1[X_0]$, $Ry_3[-0.0125]$, $C_0[X_3]$, $Ry_3[0.0125]$, $C_0[X_3]$, $C_2[X_0]$, $Ry_{3} \texttt{[0.0125]} \,,\, C_{0} \texttt{[X_{3}]} \,,\, Ry_{3} \texttt{[-0.0125]} \,,\, C_{0} \texttt{[X_{3}]} \,,\, C_{1} \texttt{[X_{0}]} \,,\, Ry_{3} \texttt{[-0.0125]} \,,\, C_{0} \texttt{[X_{3}]} \,,$ $Ry_3[0.0125]$, $C_0[X_3]$, $C_2[X_0]$, $Ry_3[0.0125]$, $C_0[X_3]$, $Ry_3[-0.0125]$, $C_0[X_3]$ }

» error: 0

testRecomp $[C_{0,1,2,4}[Ry_3[.1]], False]$

» error: 0

C*[Rz]

testRecomp @ $C_{0,1}[Rz_3[x]]$

testRecomp @ $C_{0,1,2}[Rz_3[.1]]$

» $\{Rz_3[0.0125], C_2[X_3], Rz_3[-0.0125], C_2[X_3], C_2[X_1], Rz_3[-0.0125],$ $C_1[X_3]\,,\,Rz_3[0.0125]\,,\,C_1[X_3]\,,\,C_2[X_1]\,,\,Rz_3[0.0125]\,,\,C_1[X_3]\,,\,Rz_3[-0.0125]\,,$ $C_1[X_3]$, $C_1[X_0]$, $Rz_3[-0.0125]$, $C_0[X_3]$, $Rz_3[0.0125]$, $C_0[X_3]$, $C_2[X_0]$, $Rz_{3}[\text{0.0125}]\,,\,C_{0}[X_{3}]\,,\,Rz_{3}[\text{-0.0125}]\,,\,C_{0}[X_{3}]\,,\,C_{1}[X_{0}]\,,\,Rz_{3}[\text{-0.0125}]\,,\,C_{0}[X_{3}]\,,$ $Rz_{3}[0.0125]\,,\,C_{0}[X_{3}]\,,\,C_{2}[X_{0}]\,,\,Rz_{3}[0.0125]\,,\,C_{0}[X_{3}]\,,\,Rz_{3}[-0.0125]\,,\,C_{0}[X_{3}]\,\}$

» error: 0

testRecomp $[C_{0,1,2,4}[Rz_3[.1]], False]$

» error: 0

C*[S]

testRecomp @ $C_{0,1}[S_2]$

testRecomp $[C_{0,1,3}[S_2], False]$

» error: 0

C*[T]

testRecomp @ $C_{0,1}[T_2]$

» error: 0

 $testRecomp[C_{0,1,3}[T_2], False]$

C*[X]

testRecomp @ $C_{0,1}[X_2]$

$$\begin{cases} H_{2}, C_{0}[X_{2}], Ph_{2}\left[-\frac{\pi}{4}\right], C_{1}[X_{2}], T_{2}, C_{0}[X_{2}], \\ Ph_{2}\left[-\frac{\pi}{4}\right], C_{1}[X_{2}], T_{2}, T_{0}, C_{1}[X_{0}], T_{1}, Ph_{0}\left[-\frac{\pi}{4}\right], C_{1}[X_{0}], H_{2} \end{cases}$$

» error: 0

testRecomp @ $C_{0,1,3}[X_2]$

» error: 0

$\mathsf{testRecomp}\big[\mathsf{C}_{0,1,3,4}[\mathsf{X}_2]\,,\;\mathsf{False}\big]$

» error: 0

C*[Y]

testRecomp @ C_{0,1}[Y₂]

» $\left\{ Ph_2\left[-\frac{\pi}{4}\right], Ph_1\left[-\frac{\pi}{4}\right], C_1[X_2], Ph_2\left[\frac{\pi}{4}\right], C_1[X_2], H_2, C_0[X_2], \right\}$ $Ph_{2}\left[-\frac{\pi}{4}\right],\;C_{1}\left[X_{2}\right],\;T_{2},\;C_{0}\left[X_{2}\right],\;Ph_{2}\left[-\frac{\pi}{4}\right],\;C_{1}\left[X_{2}\right],\;T_{2},\;T_{0},\;C_{1}\left[X_{0}\right],\;T_{1},$ $Ph_{0}\!\left[-\frac{\pi}{4}\right],\;C_{1}\!\left[X_{0}\right],\;H_{2},\;Ph_{2}\!\left[\frac{\pi}{4}\right],\;Ph_{1}\!\left[\frac{\pi}{4}\right],\;C_{1}\!\left[X_{2}\right],\;Ph_{2}\!\left[-\frac{\pi}{4}\right],\;C_{1}\!\left[X_{2}\right]\right\}$

» error: 0

testRecomp $[C_{0,1,3}[Y_2], False]$

» error: 0

testRecomp[$C_{0,1,3,4}[Y_2]$, False]

» error: 0

C*[Z]

testRecomp @ $C_{0,1}[Z_2]$

testRecomp[$C_{0,1,3}[Z_2]$, False]

» error: 0

testRecomp[$C_{0,1,3,4}[Z_2]$, False]

» error: 0

C*[SWAP]

testRecomp @ $C_{0,1}[SWAP_{2,3}]$

$$\begin{cases} G\left[\frac{\pi}{16}\right], \ C_{2}[X_{3}], \ H_{2}, \ Rz_{0}\left[\frac{\pi}{8}\right], \ Rz_{1}\left[\frac{\pi}{8}\right], \ Rz_{3}\left[\frac{\pi}{8}\right], \ Rz_{2}\left[\frac{\pi}{8}\right], \ C_{3}[X_{1}], \\ Rz_{1}\left[-\frac{\pi}{8}\right], \ C_{3}[X_{1}], \ C_{1}[X_{0}], \ Rz_{0}\left[-\frac{\pi}{8}\right], \ C_{3}[X_{0}], \ Rz_{0}\left[\frac{\pi}{8}\right], \ C_{1}[X_{0}], \ Rz_{0}\left[-\frac{\pi}{8}\right], \\ C_{3}[X_{0}], \ C_{0}[X_{2}], \ Rz_{2}\left[-\frac{\pi}{8}\right], \ C_{1}[X_{2}], \ Rz_{2}\left[\frac{\pi}{8}\right], \ C_{0}[X_{2}], \ Rz_{2}\left[-\frac{\pi}{8}\right], \ C_{3}[X_{2}], \ Rz_{2}\left[\frac{\pi}{8}\right], \\ C_{0}[X_{2}], \ Rz_{2}\left[-\frac{\pi}{8}\right], \ C_{3}[X_{2}], \ Rz_{2}\left[\frac{\pi}{8}\right], \\ C_{0}[X_{2}], \ Rz_{2}\left[-\frac{\pi}{8}\right], \ C_{3}[X_{2}], \ H_{2}, \ C_{2}[X_{3}] \end{cases}$$

» error: 0

Testing U (matrix)

Un-controlled

$U^{(1)}$

testRecomp[U₀ @ RandomVariate @ CircularUnitaryMatrixDistribution @ 2, False]

testRecomp[$U_0 @ \{\{Exp[i.1], 0\}, \{0, Exp[-i\pi/3]\}\}, False]$

» error: 0

RecompileCircuit[U0@{{a,b}, {c,d}}, "SingleQubitAndCNOT"]

$$\begin{cases} G\Big[ArcTan[Re[a], Im[a]] + \\ & \frac{1}{2} \left(-2 \, ArcTan[Re[a], Im[a]] + ArcTan[-Re[b], -Im[b]] + ArcTan[Re[c], Im[c]] \right) \Big], \\ Rz_{\theta}[-ArcTan[Re[a], Im[a]] + ArcTan[-Re[b], -Im[b]]], Ry_{\theta}\Big[2 \, ArcTan\Big[\frac{Abs[b]}{Abs[a]} \Big] \Big], \\ Rz_{\theta}[-ArcTan[Re[a], Im[a]] + ArcTan[Re[c], Im[c]]] \Big\}$$

U^(n)

 $\mathsf{testRecomp} \left[\mathsf{U}_{0,1} \ @ \ \mathsf{RandomVariate} \ @ \ \mathsf{CircularUnitaryMatrixDistribution} \left[2^2 \right], \ \mathsf{False} \right]$

» error: 0

testRecomp[

 $\mathsf{UNonNorm}_{0,1,2}$ @ RandomVariate @ CircularUnitaryMatrixDistribution[2³], False]

» error: 0

testRecomp[

 $\mathsf{UNonNorm}_{0,2,1,3}$ @ $\mathsf{RandomVariate}$ @ $\mathsf{CircularUnitaryMatrixDistribution}[2^4]$, False

Singly-controlled

C[U^(1)]

 $\texttt{testRecomp} \, [\, \texttt{C}_0 \, @ \, \texttt{U}_1 \, \, @ \, \, \texttt{RandomVariate} \, \, @ \, \, \texttt{CircularUnitaryMatrixDistribution} \, \, @ \, \, \texttt{2} \,]$

» $\{Rz_1[-1.56961], C_0[X_1], Rz_1[-1.62996], Ry_1[-0.645443],$ $C_0[X_1]$, $Ry_1[0.645443]$, $Rz_1[3.19956]$, $Ph_0[-0.693822]$

» error: 0

testRecomp[$C_1@U_0$ @ {{Exp[i.1], 0}, {0, $Exp[-i\pi/3]$ }}]

» $\{Rz_0[0.573599], C_1[X_0], Rz_0[0.573599], C_1[X_0], Rz_0[-1.1472], Ph_1[-0.473599]\}$

» error: 0

$C[U^{(n)}]$

testRecomp[

 $\textbf{C}_1 @ \textbf{U}_{0,2} \ @ \ \textbf{RandomVariate} \ @ \ \textbf{CircularUnitaryMatrixDistribution[2^2], False}]$

» error: 0

testRecomp[C₀@

UNonNorm_{1,2,3} @ RandomVariate @ CircularUnitaryMatrixDistribution[2³], False

Multi-controlled

C*[U^(1)]

 $testRecomp \left[\textbf{C}_{0,2} @ \textbf{U}_1 \ @ \ Random Variate \ @ \ Circular \textbf{U} nitary \textbf{Matrix} \textbf{Distribution} \ @ \ 2 \text{, } \textbf{False} \right]$

» error: 0

testRecomp $[C_{0,2}@U_1 @ {\{Exp[i.1], 0\}, \{0, Exp[-i\pi/3]\}\}, False]}$

» error: 0

testRecomp[

 $C_{0,2,3}@U_1$ @ RandomVariate @ CircularUnitaryMatrixDistribution @ 2, False

» error: 0

 $\texttt{testRecomp} \big[\texttt{C}_{\texttt{0},2,3} @ \texttt{U}_1 \ @ \ \{ \{ \texttt{Exp} [\texttt{i.1}] \ , \ \texttt{0} \} \ , \ \{ \texttt{0} \ , \ \texttt{Exp} [- \texttt{i.} \ \pi \ / \ 3] \} \} \ , \ \ \texttt{False} \big]$

testRecomp[

C_{0,2,3,4}@U₁ @ RandomVariate @ CircularUnitaryMatrixDistribution @ 2, False

» error: 0

C*[U^(n)]

testRecomp[

 $C_{0,2}@U_{1,3}$ @ RandomVariate @ CircularUnitaryMatrixDistribution[2^2], False

» error: 0

testRecomp[

 $C_{0,2,3}@U_{1,4}$ @ RandomVariate @ CircularUnitaryMatrixDistribution[2^2], False

» error: 0

Testing U (vector)

Un-controlled

```
U^(1)
```

```
testRecomp @ U_0[\{Exp[i.2], Exp[-i\pi/3]\}]
```

```
» \{G[-0.423599], Rz_0[-1.2472]\}
```


» error: 0

U^(n)

not yet supported

Singly-controlled

C[U^(1)]

not yet supported

C[U^(n)]

not yet supported

Multi-controlled

C*[U^(1)]

not yet supported

C*[U^(n)]

not yet supported

Testing errors

invalid arguments

```
RecompileCircuit[bleh]
```

··· RecompileCircuit: Invalid arguments. See ?RecompileCircuit

\$Failed

unrecognised method

```
RecompileCircuit[X<sub>0</sub>, "eh"]
```

RecompileCircuit: Unrecognised method. See available methods via ?RecompileCircuit

unrecognised gates

```
RecompileCircuit[{Y₀, Poop₀, X₀, Blob₃}, "SingleQubitAndCNOT"]
```

RecompileCircuit: Recompilation failed. Could not recompile unrecognised gate: Poop

\$Failed

unsupported gates

```
RecompileCircuit[Damp<sub>0</sub>[x], "SingleQubitAndCNOT"]
```

RecompileCircuit: Recompilation failed. Could not recompile unrecognised gate: Dampo[x]

\$Failed

RecompileCircuit $[U_{0,1} @ \{a, b, c, d\}, "SingleQubitAndCNOT"]$

RecompileCircuit: Recompilation failed. Many-qubit diagonal gates are not yet supported by the recompiler.

\$Failed

RecompileCircuit[C_{1,2}@U₀ @ {a, b}, "SingleQubitAndCNOT"]

... RecompileCircuit: Recompilation failed. Controlled diagonal gates are not yet supported by the recompiler.

\$Failed

numerical issues

```
RecompileCircuit[
```

```
U_{0,1}[\{\{a,b\},\{c,d\}\}],
"SingleQubitAndCNOT"]
```

... RecompileCircuit: Recompilation failed. Encountered a non-numerical matrix in a two (or more) qubit U gate, which cannot be decomposed.

\$Failed

RecompileCircuit[

```
U_{0,1} @ RandomComplex[\{-i-1, i+1\}, \{2^2, 2^2\}],
"SingleQubitAndCNOT"]
```

••• RecompileCircuit: Recompilation failed. Encountered a non–unitary U gate matrix which cannot be (spectrally) decomposed. Please use UNonNorm instead.

\$Failed

RecompileCircuit[

```
U_{0,1} @ (2 IdentityMatrix @ 4),
"SingleQubitAndCNOT"]
```

••• RecompileCircuit: Recompilation failed. The cosine-sine decomposition involved in recompiling a U (or UNonNorm) gate failed.

\$Failed