考试科目: 概率论与数理统计

考试科目:_	概率论与数理统计	开课单位:_	数学系
考试时长:	2 小时	命题教师:	概率统计教学组

题号	Part 1	Part 2	Part 3					
,2 3	1 410 1	1 410 2	1 2 3 4 5					6
分值								

本试卷共三大部分,满分100分(考试结束后请将试卷、答题本、草稿纸一起交给监考老师)

第一部分 选择题 (每题 4 分,总共 20 分)

Part One -	Single	Choice (4 marks	each o	nuestion	20	marks	in	total)
I alt Olic –	Silleit	CHUICE	T IIIAI KS	cacii u	aucsuon,	∠ ∪	mai no	ш	totai,

1.	设 A,B,C 三个事件两两独立,则 A,B	2, C相互独立的充分必要条件是().
	(A) A与BC独立	(B) AB与A∪C独立
	(C) AB与AC独立	(D) A∪B与A∪C独立
	Let A, B, C be three events that a conditions must hold if A, B, C are	are pairwise independent. Which of the following to be mutually independent?
	(A) A and BC are independent	(B) AB and $A \cup C$ are independent
	(C) AB are AC are independent	(D) $A \cup B$ and $A \cup C$ are independent
2.	设 $X \sim N(2,1), Y \sim N(-1,1), 且X,X$	Y独立,记 $Z = 3X - 2Y - 6$,则 $Z \sim ($).
	(A) $N(2,1)$	(B) N(2,13)
	(C) N(1,1)	(D) N(1,5)
	Independent random variables X respectively. Let $Z = 3X - 2Y - 6$. (A) $N(2,1)$; (C) $N(1,1)$;	and Y have distributions $X \sim N(2,1)$, $Y \sim N(-1,1)$, then the distribution $Z \sim ()$. (B) $N(2,13)$; (D) $N(1,5)$.
3.		r 零,则 X 和 Y 的相关系数为 $ ho_{XY}=1$ 的充分必要条 (B) $Cov(X+Y,Y)=0$
	·	
	(C) $Cov(X + Y, X - Y) = 0$ Two random variables X and Y hav	(D) $Cov(X - Y, X) = 0$ we the same variance. The correlation coefficient ρ_{XY}
	between X and Y equals 1 if () holds.
	(A) $Cov(X + Y, X)=0$	(B) $Cov(X + Y, Y)=0$
	(C) $Cov(X + Y, X - Y)=0$	(D) $Cov(X - Y, X)=0$

从总体 $X \sim N(\mu, \sigma^2)$ 中抽取简单随机样本 X_1, X_2, X_3 ,统计量

$$\hat{\mu}_1 = \frac{1}{2}X_1 + \frac{1}{3}X_2 + \frac{1}{6}X_3 \qquad \qquad \hat{\mu}_2 = \frac{1}{2}X_1 + \frac{1}{4}X_2 + \frac{1}{4}X_3$$

$$\hat{\mu}_3 = \frac{1}{3}X_1 + \frac{1}{3}X_2 + \frac{1}{3}X_3 \qquad \qquad \hat{\mu}_4 = \frac{1}{5}X_1 + \frac{2}{5}X_2 + \frac{2}{5}X_3$$

都是总体均值 $EX = \mu$ 的无偏估计量,则有效的估计量是().

- (A) $\hat{\mu}_1$;
- (B) $\hat{\mu}_2$; (C) $\hat{\mu}_3$;
- (D) $\hat{\mu}_4$.

Let X_1, X_2, X_3 be a random sample from a population $X \sim N(\mu, \sigma^2)$. For the following unbiased estimators, which is more efficient?

$$\hat{\mu}_1 = \frac{1}{2}X_1 + \frac{1}{3}X_2 + \frac{1}{6}X_3 \qquad \hat{\mu}_2 = \frac{1}{2}X_1 + \frac{1}{4}X_2 + \frac{1}{4}X_3$$

$$\hat{\mu}_3 = \frac{1}{3}X_1 + \frac{1}{3}X_2 + \frac{1}{3}X_3 \qquad \hat{\mu}_4 = \frac{1}{5}X_1 + \frac{2}{5}X_2 + \frac{2}{5}X_3$$

- (A) $\hat{\mu}_1$;
- (B) $\hat{\mu}_2$; (C) $\hat{\mu}_3$;
- (D) $\hat{\mu}_{4}$.

5. 己知两个独立的随机变量和分布是 $X \sim N(\mu_1, \sigma_1^2), Y \sim N(\mu_2, \sigma_2^2),$ 为检验总体X的均 值大干总体Y的均值,则应做检验假设是()

- (A) H_0 : $\mu_1 > \mu_2$; H_1 : $\mu_1 \le \mu_2$.
 - (B) H_0 : $\mu_1 \ge \mu_2$; H_1 : $\mu_1 < \mu_2$.
- (C) H_0 : $\mu_1 < \mu_2$; H_1 : $\mu_1 \ge \mu_2$. (D) H_0 : $\mu_1 \le \mu_2$; H_1 : $\mu_1 > \mu_2$.

Let X and Y be two independent random variables having distributions $X \sim N(\mu_1, \sigma_1^2)$ and $Y \sim N(\mu_2, \sigma_2^2)$. In order to test that the mean of population X is greater than the mean of population Y, the null and alternative hypotheses should be ()

- (A) H_0 : $\mu_1 > \mu_2$; H_1 : $\mu_1 \le \mu_2$. (B) H_0 : $\mu_1 \ge \mu_2$; H_1 : $\mu_1 < \mu_2$.
- (C) H_0 : $\mu_1 < \mu_2$; H_1 : $\mu_1 \ge \mu_2$. (D) H_0 : $\mu_1 \le \mu_2$; H_1 : $\mu_1 > \mu_2$.

第二部分 填空题 (每空 2 分, 总共 20 分)

Part Two – Blank Filling (2 marks each blank, 20 marks in total)

- 1. 设A,B是两事件, $P(A) = P(\bar{B})$,P(A|B) = 0.2,P(B|A) = 0.3,则 $P(A) = _____$. Let A,B be two events. If $P(A) = P(\bar{B})$,P(A|B) = 0.2,P(B|A) = 0.3, then $P(A) = _____$.
- 2. 设 $(X,Y) \sim N(\mu, \mu, \sigma^2, \sigma^2, 0)$,则 $P\{X < Y\} =$ _____. If $(X,Y) \sim N(\mu, \mu, \sigma^2, \sigma^2, 0)$, then $P\{X < Y\} =$ _____.

conditional probability $P\{X \le 2 | X \ge 1\} =$ _____.

- 3. 设随机变量 X 的密度函数为 $f(x) = \begin{cases} e^{-x}, x > 0 \\ 0, x \le 0 \end{cases}$,则条件概率 $P\{X \le 2 | X \ge 1\} =$ _____.

 If the density function of a random variable X is $f(x) = \begin{cases} e^{-x}, x > 0 \\ 0, x \le 0 \end{cases}$, then the
- 4. 设随机变量X的密度函数为 $f(x) = \begin{cases} 2x, 0 < x < 1 \\ 0, \quad \text{其它} \end{cases}$,则 $P\{X \ge -1\} = \underline{\hspace{1cm}}$.

 If the density function of a random variable X is $f(x) = \begin{cases} 2x, \ 0 < x < 1 \\ 0, \quad \text{other} \end{cases}$ then $P\{X \ge -1\} = \underline{\hspace{1cm}}$.
- 5. 设随机变量 $X \sim U(0,1), Y \sim U(0,1), 且 X 与 Y 独立, 记(X,Y)$ 的概率密度为f(x,y),则 $f\left(\frac{1}{2},\frac{1}{2}\right) = \underline{\qquad}.$

X and Y are independent random variables having distributions $X \sim U(0,1)$ and $Y \sim U(0,1)$. If the joint density function of (X,Y) is f(x,y), then $f\left(\frac{1}{2},\frac{1}{2}\right) =$ _____.

6. 已知随机变量X服从二项分布b(n,p),且E(X) = 2.4,D(X) = 1.44,则二项分布的参数 $n = ______,<math>p = _____$ (这里每空各一分).

参数)

- 7. 设随机变量 X_1, X_2, X_3 相互独立,且都服从参数为 λ 的泊松分布,令 $Y = \frac{1}{3}(X_1 + X_2 + X_3)$,则 Y^2 的数学期望等于______.

 Let X_1, X_2, X_3 be independent Poisson random variables each with parameter λ .

 If $Y = \frac{1}{3}(X_1 + X_2 + X_3)$, then the mathematical expectation of Y^2 is ______.

- 10. 考虑两个总体 $N(\mu_1, \sigma_1^2), N(\mu_2, \sigma_2^2)$ 的假设问题: $H_0: \sigma_1^2 \leq \sigma_2^2; \quad H_1: \sigma_1^2 > \sigma_2^2,$ 在各总体中分别抽取容量为m=21, n=27的样本, S_1^2, S_2^2 分别为样本方差,且设两组样本相互独立. 则当 $\sigma_1^2 = \sigma_2^2$ 时,统计量 $\frac{S_1^2}{S_2^2} \sim$ _______. (请写出分布类型及其

The hypothesis for two populations $N(\mu_1, \sigma_1^2), N(\mu_2, \sigma_2^2)$ is as follows:

$$H_0: \sigma_1^2 \le \sigma_2^2; \quad H_1: \sigma_1^2 > \sigma_2^2,$$

Independent samples of size m=21 and n=27 are taken from the two populations. The sample variances are denoted by S_1^2 , S_2^2 respectively. If $\sigma_1^2 = \sigma_2^2$, then the statistic $\frac{S_1^2}{S_2^2}$ follows _____ distribution?

(List the distribution type and its degrees of freedom)

考试科目: 概率论与数理统计

第三部分 大题 (每题 10 分,总共 60 分)

Part Three – Question Answering (10 marks each question, 60 marks in total)

- 1. 同时掷两个不同颜色的骰子,观察其朝上的点数,记事件A = "两个骰子的点数和等于 3",B = "两个骰子的点数和等于 7",C = "至少有一个骰子的点数为 1",求:
 - (1) P(A|C);
 - (2) P(B|C);
 - (3) A和C是否独立?说明理由。

Roll two dice at the same time and observe the results. Let event A be "the sum of the numbers from the two dice is 3". Let event B be "the sum of the numbers from the two dice is 7". Let event C be "at least one of the numbers is 1".

- (1) What is P(A|C)?
- (2) What is P(B|C)?
- (3) Are events A and C dependent? Why?
- 2. 设离散型随机变量X的期望为 $\frac{11}{18}$, 且其频率函数如下, 其中a和b为常数:

X	а	1	b
p	b	1/2	а

(1) 求 $a^2 + b^2$ 的值;

(2) 求 $Z = \frac{1}{2}X - \frac{1}{4}$ 的方差D(Z).

Let X be a discrete random variable with expectation $\frac{11}{18}$. Suppose the probability frequency function of X is as follows, where a and b are constants.

X	а	1	b
p	b	1/2	а

- (1) Find the value of $a^2 + b^2$;
- (2) Calculate the variance D(Z) of $Z = \frac{1}{2} X \frac{1}{4}$.

第7页 /共17页

3. 假设连续型随机变量X和Y的联合概率密度函数为

$$f(x,y) = \begin{cases} be^{-3x-2y}, & x > 0, y > 0, \\ 0, & \text{其他.} \end{cases}$$

- (1) 确定常数b;
- (2) 求X和Y的边缘概率密度函数 $f_X(x)$ 和 $f_Y(y)$,并确定(给出原因)它们是否独立.

Assume X and Y are two continuous random variables with the joint probability density function

$$f(x,y) = \begin{cases} be^{-3x-2y}, & x > 0, y > 0, \\ 0, & \text{otherwise.} \end{cases}$$

- (1) Find the value of b;
- (2) Find the marginal probability density functions $f_X(x)$ and $f_Y(y)$ of X and Y respectively. Determine with reasons whether X and Y are independent.

4. 令 $\{X_1, X_2, \dots\}$ 是独立同分布的N(2, 5)-随机变量序列. 对于正整数n, 定义

$$S_n = \sum_{i=1}^n X_i, \ \bar{X}_n = S_n/n.$$

- (1) S_{10} , S_{20} , 与 \bar{X}_{20} 分别服从何种分布?
- (2) S_{10} 与 S_{20} 是否相关? 求出 S_{10} 与 S_{20} 的相关系数 $\rho(S_{10},S_{20})$ 来证明你的结论.

Assume $\{X_1, X_2, \dots\}$ is a sequence of independent and identically distributed N(2,5) random variables. Denote $S_n = \sum_{i=1}^n X_i$ and $\bar{X}_n = S_n/n$.

- (1) What distributions do S_{10} , S_{20} and \bar{X}_{20} follow?
- (2) Are S_{10} and S_{20} correlated? Find the correlation coefficient $\rho(S_{10}, S_{20})$ of S_{10} and S_{20} to support your conclusion.

5. 设总体X的频率函数为

X	1	2	3
p_k	θ^2	$2\theta(1-\theta)$	$(1-\theta)^2$

其中 $\theta(0<\theta<1)$ 为未知参数。已知取得了样本值 $x_1=1,x_2=2,x_3=1$ 。

- (1) 求 θ 的最大似然估计值。
- (2) 求 θ 的矩估计值;

Let the frequency function of a random variable *X* be as follows:

X	1	2	3
p_k	θ^2	$2\theta(1-\theta)$	$(1-\theta)^2$

where θ is an unknown parameter (0 < θ < 1). The observed sample x_1 = 1, x_2 = 2, x_3 = 1 has been obtained to estimate θ .

- (1) Compute the Maximum Likelihood estimator of θ ;
- (2) Compute the Moment Estimator of θ .

6. 求解以下两个问题:

- (1) 设雷达速度测量值 $X \sim N(\mu, \sigma^2)$,且雷达没有系统误差. 今用雷达测得飞机的 9个飞行数据(样本)的平均值为 760,方差为 64. 求飞机飞行速度的置信区间 (1 $\alpha = 95\%$).
- (2) 从甲地发送一个信号到乙地,由于存在线路噪声干扰,使得甲地发送一个幅值为 μ 的信号,而乙地收到的信号是一个服从 $N(\mu,4)$ 分布的随机变量.在测试中,甲地将同一信号发送了 4 次,乙地收到的信号值为

接收方有某种理由猜测甲地发送的信号值为 10,问这种猜测是否正确? ($\alpha = 0.05$)

(附注:
$$u_{0.95} = 1.65$$
; $u_{0.975} = 1.96$; $t_{0.95}(9) = 1.833$; $t_{0.95}(10) = 1.812$;

$$t_{0.95}(8) = 1.860; t_{0.975}(8) = 2.306; t_{0.975}(9) = 2.262; t_{0.975}(10) = 2.228;$$

$$\chi^2_{0.95}(9) = 16.92 \; ; \; \; \chi^2_{0.95}(10) = 18.31 ; \\ \chi^2_{0.975}(9) = 19.02 \; ; \; \; \chi^2_{0.975}(10) = 20.48.)$$

Answer the following two questions:

- (1) Assume the speed of a plane measured by radar follows $X \sim N(\mu, \sigma^2)$ with no systematic error. Nine random measurements are obtained with sample mean 760 and variance 64. Find a 95% confidence interval for the average plane speed?
- (2) A signal is sent from location A to location B. Due to noise, a signal with amplitude μ sent out from location A, will be received at location B with distribution $N(\mu, 4)$.

In a test, a signal was sent out from location A four times. The values that location B received were 6 7 9 10.

The receiver guesses the amplitude value of the signal sent from location A is 10. Is this guess acceptable? ($\alpha = 0.05$)

```
 (u_{0.95} = 1.645 \; ; \; u_{0.975} = 1.96 \; ; \; t_{0.95}(9) = 1.833 \; ; \; t_{0.95}(10) = 1.812 ; \\ t_{0.95}(8) = 1.860 \; ; t_{0.975}(8) = 2.306 \; ; \; t_{0.975}(9) = 2.262 \; ; \; t_{0.975}(10) = 2.228 ; \\ \chi^2_{0.95}(9) = 16.92 \; ; \; \chi^2_{0.95}(10) = 18.31 \; ; \chi^2_{0.975}(9) = 19.02 \; ; \; \chi^2_{0.975}(10) = 20.48. )
```

答案:

第一部分

A B D C D

第二部分

- 1. 0.4
- $2.\frac{1}{2}$
- 3. $1 e^{-1}$
- 4. 1
- 5. 1
- 6. 6, 0.4
- $7. \lambda^2 + \frac{1}{3}\lambda$
- 8. *t*(1)
- 9. F(1, n-1)
- 10. *F*(20,26)

第三部分

- 1. 同时掷两个不同颜色的骰子,观察其朝上的点数,记事件A="两个骰子的点数和等于 3", B="两个骰子的点数和等于 7",C="至少有一个骰子的点数为 1",求:
- (1) P(A|C);
- (2)P(B|C);
- (3)A和C是否独立?说明理由。

Solution. Sample space

$$\Omega = \{(1,1), (1,2), (1,3), \dots, (6,6)\} = \{(i,j) \mid i,j=1,2,3,4,5,6\}$$

(Each outcome is equally likely, with probability 1/36.)

$$A = \{(1,2), (2,1)\}$$

$$B = \{(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)\}$$

$$C = \{(1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,1), (3,1), (4,1), (5,1), (6,1)\}$$

- $\begin{array}{l} (1)\ P(A\mid C) = \frac{P(A\cap C)}{P(C)} = \frac{2/36}{11/36} = \frac{2}{11}.\\ (2)\ P(B\mid C) = \frac{P(B\cap C)}{P(C)} = \frac{2/36}{11/36} = \frac{2}{11}.\\ (3)\ P(A) = 2/36 \neq P(A\mid C), \ \text{so they are not independent.} \end{array}$

2. 设离散型随机变量X的期望为 $\frac{11}{18}$,且其频率函数如下,其中a和b为常数:

X	а	1	b
p	b	1/2	а

(i)求
$$a^2 + b^2$$
的值; [6 分]

(ii)求
$$Z = \frac{1}{2} X - \frac{1}{4}$$
 的方差 $D(Z)$. [4 分]

- (i) By the property of frequency function, $b+a+\frac{1}{2}=1$ [2 marks]. Moreover, by the definition of the expectation, we have $ab+1\cdot\frac{1}{2}+ba=\frac{11}{18}$ [2 marks]. Solving these two equalities, we obtain $a=\frac{1}{3},\ b=\frac{1}{6}$ or $a=\frac{1}{6},\ b=\frac{1}{3}$ [1 mark]. In both these cases, $a^2+b^2=\frac{5}{36}$ [1 mark].
- (ii) Direct calculations yield that $D(X) = EX^2 (EX)^2 = a^2b + 1^2 \cdot \frac{1}{2} + b^2 \cdot a (\frac{11}{18})^2 = \frac{1}{36} + \frac{1}{2} \frac{121}{324} = \frac{25}{162} \ [\mbox{2 marks}].$ By the property of the variance, we have $D(Z) = \frac{1}{4}D(X) = \frac{25}{648} \ [\mbox{2 marks}].$

3. 假设连续型随机变量X和Y的联合概率密度函数为

$$f(x,y) = \begin{cases} be^{-3x-2y}, & x > 0, y > 0, \\ 0, & \text{其他.} \end{cases}$$

- (a) 确定常数b;
- (b) 求X和Y的边缘概率密度函数 $f_X(x)$ 和 $f_Y(y)$,并确定(给出原因)它们是否独立.

Let X and Y be two continuous random variables with the joint probability density function

$$f(x,y) = \begin{cases} be^{-3x-2y}, & x > 0, y > 0, \\ 0, & \text{otherwise.} \end{cases}$$

- (a) Find the value of b;
- (b) Find the marginal probability density functions $f_X(x)$ and $f_Y(y)$ of X and Y, respectively, and determine with reasons whether X and Y are independent.
- (i) By the property $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) dx dy = 1$, we have

$$1 = \int_0^\infty \int_0^1 b e^{-3x-2y} dx dy = \frac{b}{6} \quad [\mathbf{2} \ \mathbf{marks}] \quad \Rightarrow \mathbf{b} = \mathbf{6}. \quad [\mathbf{2} \ \mathbf{marks}]$$

(ii) If x < 0, $f_X(x) = 0$. If x > 0, $f_X(x) = \int_0^\infty f(x, y) dy = \int_0^\infty 6e^{-3x-2y} dy = 3e^{-3x}$. Hence, $f_X(x) = \begin{cases} 3e^{-3x}, & x > 0 \\ 0, & x \le 0 \end{cases}$ [2 marks]

Similarly, if
$$y < 0$$
, $f_Y(y) = 0$.
If $y > 0$, $f_Y(y) = \int_0^\infty f(x, y) dx = \int_0^\infty 6e^{-3x-2y} dx = 2e^{-2y}$. Hence, $f_Y(y) = \begin{cases} 2e^{-2y}, & y > 0 \\ 0, & y \le 0 \end{cases}$ [2 marks]

Since $f_X(x)f_Y(y) = f(x,y)$, X are Y independent. [2 marks]

4. 令 $\{X_1, X_2, \cdots\}$ 是独立同分布的N(2, 5)-随机变量序列. 对 于正整数n, 定义 $S_n = \sum_{i=1}^n X_i, \ \bar{X}_n = S_n/n$.

- (a) S_{10} , S_{20} , 与 \bar{X}_{20} 分别服从何种分布?
- (b) S_{10} 与 S_{20} 是否相关? 求出 S_{10} 与 S_{20} 的相关系数 $\rho(S_{10},S_{20})$ 来证明你的结论.

Assume $\{X_1, X_2, \dots\}$ is a sequence of independent identically distributed N(2,5) random variables. Denote $S_n = \sum_{i=1}^n X_i$ and $\overline{X}_n = S_n/n$.

- (a) What distributions do S_{10} , S_{20} and \bar{X}_{20} follow?
- (b) Are S_{10} and S_{20} uncorrelated or correlated? Find the correlation coefficient $\rho(S_{10}, S_{20})$ of S_{10} and S_{20} to support your conclusion.
- (i) The independence of $\{X_1, X_2, \ldots\}$ and $X_i \sim N(2,5)$ imply that S_{10}, S_{20} , and \overline{X}_{20} are both normally distributed. [3 marks] Moreover, by the properties of expectation and variance, we have $S_{10} \sim N(20,50)$, [1 mark] $S_{20} \sim N(40,100)$, [1 mark] and $\overline{X}_{20} \sim N(2,1/4)$. [1 mark]
- (ii) By the (i) we know $D(S_{20}) = 100$, $D(S_{10}) = 50$, then

$$\begin{split} \sigma(S_{10},S_{20}) &= \frac{Cov(S_{10},S_{20})}{\sqrt{D(S_{10})}\sqrt{D(S_{20})}} \quad [\mathbf{1} \ \mathbf{mark}] \\ &= \frac{Cov\left(S_{10},S_{10} + \sum_{i=11}^{20} X_i\right)}{50\sqrt{2}} \\ &= \frac{D(S_{10})}{50\sqrt{2}} = \frac{\sqrt{2}}{2} > 0. \quad [\mathbf{1} \ \mathbf{mark}] \end{split}$$

So S_{10} and S_{20} are (positively) correlated. [2 marks]

5. 设总体X的频率函数为

X	1	2	3
p_k	θ^2	$2\theta(1-\theta)$	$(1-\theta)^2$

其中 $\theta(0 < \theta < 1)$ 为未知参数。已知取得了样本值 $x_1 = 1, x_2 = 2, x_3 = 1$ 。

- (1) 求 θ 的矩估计值;
- (2) 求 θ 的最大似然估计值。

(解)

(1) 由

$$\mu_1 = \theta^2 + 2 \times 2\theta(1 - \theta) + 3 \times (1 - \theta)^2 = 3 - 2\theta$$

解得

$$\theta = \frac{1}{2} \left(3 - \mu_1 \right)$$

故得的 的矩估计为

$$\hat{\theta} = \frac{1}{2}(3 - \bar{X})$$

矩估计值为

$$\hat{\theta} = \frac{1}{2}(3 - \bar{x})$$

今

$$\bar{x} = \frac{1}{3}(x_1 + x_2 + x_3) = \frac{1}{3}(1 + 2 + 1) = \frac{4}{3}$$

故 θ 的矩估计值为 $\hat{\theta} = \frac{5}{6}$.

(2) 由给定的样本值, 得似然函数为

$$L = \prod_{i=1}^{3} P\{X_i = x_i\} = P\{X_1 = 1\} P\{X_2 = 2\} P\{X_3 = 1\}$$
$$= \theta^2 \cdot 2\theta (1 - \theta) \cdot \theta^2 = 2\theta^5 (1 - \theta),$$
$$\ln L = \ln 2 + 5 \ln \theta + \ln(1 - \theta)$$
$$\frac{d}{d\theta} \ln L = \frac{5}{\theta} - \frac{1}{1 - \theta} = 0,$$

得θ 的最大似然估计值为 $\hat{\theta} = \frac{5}{6}$.

6. 求解以下两个问题:

- (1) 设雷达速度测量值 $X \sim N(\mu, \sigma^2)$, 且雷达没有系统误差. 今用雷达测得飞机的 9 个飞行数据(样本)的平均值为 760,方差为 64. 求飞机飞行速度的置信区间($1 \alpha = 95\%$).
- (2) 从甲地发送一个信号到乙地,由于存在线路噪声干扰,使得甲地发送一个幅值为 μ 的信号,而乙地收到的信号是一个服从 $N(\mu,4)$ 分布的随机变量.在测试中,甲地将同一信号发送了 4 次,乙地收到的信号值为

接收方有某种理由猜测甲地发送的信号值为 10 ,问这种猜测是否正确? (显著性水平 $\alpha = 0.05$)

(附注
$$u_{0.95} = 1.65$$
; $u_{0.975} = 1.96$; $t_{0.95}(9) = 1.833$; $t_{0.95}(10) = 1.812$
$$t_{0.95}(8) = 1.860; t_{0.975}(8) = 2.306; t_{0.975}(9) = 2.262; t_{0.975}(10) = 2.228$$

$$\chi_{0.95}^2(9) = 16.92; \; \chi_{0.95}^2(10) = 18.31; \chi_{0.975}^2(9) = 19.02; \; \chi_{0.975}^2(10) = 20.48$$

【解】

(1) 由枢轴法可求得 μ 的 $1-\alpha$ 的置信区间是

$$\left(\bar{X} - \frac{S}{\sqrt{n}}t_{1-\alpha/2}(n-1), \bar{X} + \frac{S}{\sqrt{n}}t_{1-\alpha/2}(n-1)\right)$$

由题给数据,得

$$n = 9, \alpha = 0.05, t_{1-\frac{\alpha}{2}}(n-1) = t_{0.975}(8) = 2.306$$

 $\bar{x} = 760, s = 8, \frac{s}{\sqrt{n}}t_{0.975}(8) = 6.15$

故巡航导弹飞行速度μ的95%置信度的置信区间是

$$(\bar{x} - 6.15, \bar{x} + 6.15) = (766.15, 753.85)$$

(2) 解: 已知 $X \sim N(\mu, 4)$, 其中 σ_0^2 已知,且 $\sigma_0 = 2$, n = 4, $\alpha = 0.05$ 根据提议,原假设和备择假设取为:

$$\mathbf{H}_0: \mu = \mu_0 = 10, \quad \mathbf{H}_1: \mu \neq \mu_0$$

采用u 检验法,求得 H_0 的拒绝域为

$$\left|\bar{X} - \mu_0\right| > \frac{\sigma_0}{\sqrt{n}} u_{1-\frac{\alpha}{2}} = \frac{2}{\sqrt{4}} \times u_{0.975} = 1.96$$

又算得x=8, 因为

$$|\bar{x} - \mu_0| = |8 - 10| = 2 > 1.96$$

故拒绝 H_0 ,不能认为甲地发送的信号值为10。