Learning Bayesian Networks

Prof. Dr. Peter Haddawy
Faculty of ICT
Mahidol University

Learning Bayesian networks

The Learning Problem

	Known Structure	Unknown Structure
Complete Data	Statistical parametric estimation (closed-form eq.)	Discrete optimization over structures (discrete search)
Incomplete Data	Parametric optimization (EM, gradient descent)	Combined (Structural EM, mixture models)

b

b

?

A Network and Training Data

No Missing Data

- If we have an ample number of training samples, we have only to compute sample statistics for each node and its parents.
- ◆ CPT for some node V given its parents Pa(V)
 - The sample statistics for V and Pa(V):

$$p(V = v_i | Pa = p_j) = \frac{n(V = v_i \land Pa = p_j)}{n(Pa = p_j)}$$

• Given by the number of samples in D having $V = v_i$ and $Pa(V)=p_j$ divided by the number of samples having $Pa(V)=p_j$

An Example for No Missing Data

G	M	В	L	Number of instances
True	True	True	True	54
True	True	True	False	1
True	False	True	True	7
True	False	True	False	27
False	True	True	True	3
False	False	True	False	2
False	False	False	True	4
False	False	False	False	2
				100

$$p(B = True) = 0.94$$

$$p(L = True) = 0.68$$

$$p(M = True \mid B = True, L = False)$$

$$= \frac{1}{30} = 0.03$$

Laplace Smoothing

It is often useful to be able to combine expert opinion with data, particularly when data is scarce. This can be done if we can assign a virtual sample size to the expert's opinion.

$$\hat{P}(A_j = a_{jk} \mid C = c_i) = \frac{n_c + mp}{n + m}$$

 n_c : number of training examples for which $A_j = a_{jk}$ and $C = c_i$

n: number of training examples for which $C = c_i$

p: prior estimate (usually, p = 1/t for t possible values of A_j)

m: weight to prior (number of "virtual" examples, $m \ge 1$)

Incomplete Data

- Data is often incomplete
 - Some variables of interest are not assigned value
- This phenomena may happen when we have
 - Missing values
 - Hidden variables

Hidden (Latent) Variables

- Attempt to learn a model with variables we never observe
- Why should we care about unobserved variables?
 - Limited data
 - Overfitting

MLE from Incomplete Data

◆Finding MLE parameters: nonlinear optimization problem

Explanation (EM):

Bequirement interest of the attemption of the state of th Guaranty: maximum of new function is better scoring than current point

Expectation Maximization (EM)

- ◆A general purpose method for learning from incomplete data Intuition:
- ◆If we had access to counts, then we can estimate parameters
- However, missing values do not allow to perform counts
- "Complete" counts using current parameter assignment

EM (cont.)

The EM Algorithm for Bayes Nets

- ◆First, random values are selected for the parameters in the CPTs for the entire network.
- Secondly, the needed weights are computed by using the Bayes net.
- ◆Thirdly, these weights are in turn used to estimate new CPTs.
- Then, the second step and the third step are iterated until the CPTs converge.

EM in Practice

Initial parameters:

- Random parameter settings
- "Best" guess from other source

Stopping criteria:

- Small change in likelihood of data
- Small change in parameter values

Avoiding bad local maxima:

Multiple restarts

Difficulties:

- ◆ More missing data ⇒ many more local maxima
- ◆ Many hidden variables ⇒ can result in over fitting the data