MICROCONTROLADORES (Baseado no PIC18F4520)

Professor: Wagner da Silva Zanco

Arquivo 01

SOBRE ESTE MATERIAL

- Este material é para uso individual. Todos os direitos reservados. Proibida a distribuição total ou parcial deste material, por qualquer meio ou processo, sem a expressa autorização do autor. Essas proibições aplicam-se também às características gráficas da obra e à sua editoração.
- A violação dos direitos autorais é punível como crime (art. 184 e parágrafos, do Código Penal, cf. Lei no 6.895, de 17.12.80) com pena de prisão e multa, conjuntamente com busca e apreensão e indenizações diversas (artigos 102, 103 parágrafo único, 104, 105, 106 e 107 itens 1, 2 e 3 da Lei no 9.610, de 19/06/98, Lei dos Direitos Autorais).
- Certos materiais contidos neste arquivo foram incluídos com a permissão da *Microchip Technology Incorporated*. Nenhuma distribuição, reimpressão ou reprodução do material citado pode ser feita sem o consentimento por escrito da Microchip Technology Inc.

EMENTA

Ementa: Botão e LED, Teclado matriz, *Displays* multiplexados, *Display* de cristal líquido, Conversão A/D, Modulação por largura de pulso PWM, Comunicação serial RS232 e RS485, Protocolos I2C e SPI.

Material didático: ZANCO, W. S. Microcontroladores PIC18F4520 com Linguagem C - uma abordagem prática e objetiva. 1ª edição. São Paulo: Érica, 2010.

Material de apoio: site: http://www.wagnerzanco.com.br

OBJETIVOS

Objetivo geral:

Desenvolver projetos de circuitos eletrônicos microcontrolados para fins profissionais, incluindo interface homem-máquina e comunicação de dados.

Objetivos específicos:

- 1 Empregar as técnicas utilizadas para interfacear microcontroladores com dispositivos periféricos utilizados na construção de interface homem-máquina.
- 2 Compreender os protocolos de comunicação mais utilizados na troca de informações entre microcontroladores e outros dispositivos.
- 3 Aplicar a Linguagem C no desenvolvimento de aplicações profissionais para microcontroladores.

MICROCONTROLADORES Baseado no PIC18F4520

ARQUIVO 1 - VISÃO GERAL

SUMÁRIO ARQUIVO 1

- Resumo da Eletrônica
- Arquitetura de Microcomputadores
- Memórias Semicondutoras
- Microcontroladores
- Família PIC
- Arquitetura interna do PIC18F4520
- Pinagem do PIC18F4520
- Oscilador do PIC18F4520
- Modo de Energia Gerenciada
- Exercícios

OBJETIVOS

- Ao final da aula o aluno deverá ser capaz de:
- 1. Diferenciar as diversas arquiteturas utilizadas no projeto de microcomputadores.
- Identificar os diversos blocos que compõem a arquitetura interna do microcontrolador PIC18F4520.
- 3. Classificar os tipos de osciladores e configurar o oscilador do microcontrolador para uma dada aplicação.
- 4. Distinguir os diferentes modos de gerenciamento de energia do microcontrolador PIC18F4520.

FUNÇÃO BÁSICA DE UM COMPUTADOR

- O computador basicamente é um processador de informações.
- O usuário introduz as informações no computador por meio de um dispositivo de entrada como o teclado, mouse etc.
- O computador processa as informações e retorna o resultado para o usuário por meio de um dispositivo de saída como o vídeo ou impressora.

MÓDULOS BÁSICOS DE UM MICROCOMPUTADOR

ARQUITETURA VON-NEUMANN

CPU – é um circuito integrado (CI) capaz de executar um conjunto de tarefas denominadas instruções. A CPU gerencia todo o sistema e executa os programas.

Memória – armazena os dados que serão processados e os programas que serão executados.

Dispositivos de I/O – são os responsáveis pela entrada e saída de dados do sistema.

ARQUITETURA HARVARD

ORGANIZAÇÃO DA MEMÓRIA

- Do ponto de vista lógico, a memória é composta por várias localidades podendo armazenar um conjunto de bits em cada uma. Cada localidade possui seu próprio endereço, sendo este um valor numérico representado no sistema hexadecimal.
- A unidade padrão de armazenamento de dados na memória é o byte.

W	00h
Α	01h
G	02h
N	03h
E	04h
R	05h
	06h
	07h
	08h
	09h
	0Ah

VON-NEUMANN versus HARVARD

CPU CISC – as CPUs utilizadas em computadores que seguem a arquitetura Von-Neumann são do tipo CISC, as quais possuem um set de instruções ampliado (muitas instruções).

CPU RISC – as CPUs utilizadas em computadores que seguem a arquitetura Harvard são do tipo RISC, as quais possuem um set de instruções reduzido (poucas instruções).

GERENCIANDO O SISTEMA

"Para gerenciar o sistema a CPU precisa se comunicar com a memória e com os dispositivos de I/O. Esta comunicação pode ser de leitura ou de escrita."

Escrita - quando a CPU envia uma informação para ser armazenada numa localidade de memória ou para um dispositivo de I/O. Por exemplo, quando a CPU envia uma informação para o vídeo, dizemos que ela escreveu no vídeo.

Leitura - quando a CPU busca uma informação na memória ou num dispositivo de I/O. Quando uma tecla é pressionada no teclado e aparece no vídeo, é porque a CPU efetuou uma leitura no teclado e escreveu o dado lido no vídeo.

GERENCIANDO O SISTEMA

"A CPU reconhece cada um dos dispositivos de I/O, assim como cada localidade de memória pelo seu respectivo endereço".

CAPACIDADE DE PROCESSAMENTO DE UMA CPU

- SET(conjunto) de instruções;
- Velocidade com que as instruções são executadas;
- Multiprocessamento (execução de várias instruções simultâneas);
- -Quantidade de memória que é capaz de endereçar;
- Comprimento da via de dados
- Etc.

MEMÓRIAS SEMICONDUTORAS

São memórias implementadas em circuitos integrados (chips de memória).

Estão divididas em dois grupos: Volátil e não-volátil.

Volátil – É a memória que perde os dados armazenados quando a energia é desligada.

Não-volátil – É a memória que não perde os dados armazenados quando a energia é desligada.

ROM

- Somente leitura
- Vem programada de fábrica
- Não pode ser reprogramada

PROM

- Somente leitura
- É programada eletricamente pelo usuário
- Uma vez programada se transforma numa ROM
- Não pode ser reprogramada

EPROM

- Somente Leitura
- Programável Eletricamente pelo usuário
- Possui uma janela que quando exposta a raios ultravioletas seus dados são apagados, podendo ser reprogramada.

E²PROM

- Somente Leitura
- Programável Eletricamente pelo usuário
- É semelhante a uma EPROM só que seus dados são apagados por meio de uma tensão elétrica aplicada a um de seus pinos, podendo ser reprogramada da mesma forma que uma EPROM.

FLASH-ROM:

- Somente Leitura
- Programável Eletricamente pelo usuário
- Pode ser reprogramada por software.

MEMÓRIA NÃO-VOLÁTIL

DRAM

- Leitura e escrita
- Fabricada com capacitores
- Precisa de refresh

SRAM

- Leitura e escrita
- Fabricada com flip flop
- Não precisa de refresh
- É mais rápida do que DRAM

MEMÓRIA NÃO-VOLÁTIL

MICROCONTROLADOR

"É um computador em um único chip. O microcontrolador integra em um único invólucro CPU, memória e dispositivos de I/O. O primeiro microcontrolador, o 8048, foi desenvolvido pela empresa Intel no final da década de setenta."

Ao contrário do microcontrolador, para se construir um computador com um microprocessador é necessário utilizar memória externa e dispositivos de I/O externos.

DIAGRAMA EM BLOCOS BÁSICO DE UM MICROCONTROLADOR COM **ARQUITETURA HARVARD**

ESTADO DA ARTE DOS MICROCONTROLADORES

- Família 8051 (8 bits)
- Família PIC (8, 16 e 32 bits)
- Família ARM (32 bits)
- Família MIPS (32 bits)

FAMÍLIA PIC

Desenvolvida pela empresa Microchip **Technology Inc.**

- PIC10 (8 bits) (menor microcontrolador do mundo)
- PIC12 (8 bits)
- PIC14 (8 bits)
- PIC16 (8 bits)
- PIC18 (8 bits)
- PIC24 (16 bits)
- PIC32 (32 bits)
- DSPIC (16 bits) (processador digital de sinais + microcontrolador)

TIPOS DE MEMÓRIA DE PROGRAMA

ROM TIPO MÁSCARA - O chip já sai da fábrica com o programa gravado nele, não podendo ser regravado de forma nenhuma pelo usuário. O custo destes componentes é bem reduzido, mas só são viáveis se adquiridos em grande quantidade. Estes componentes são identificados pelo sufixo "CR".

OTP - Estes dispositivos utilizam memória PROM para armazenar os programas. Eles vem de fábrica vazios, sendo a gravação do programa feita pelo usuário, não podendo o mesmo ser regravado. Isto impede a utilização destes componentes na fase de desenvolvimento e teste de programas. Os mesmos são identificados pelo sufixo "C".

EPROM - Estes componentes possuem uma janela onde podemos, através da exposição a raios ultravioletas, apagar os programas gravados no chip. Embora seja trabalhoso efetuar o apagamento do programa, estes componentes podem ser utilizados na fase de testes e desenvolvimento de programas. O sufixo pode ser "JW" para dispositivos com encapsulamento do tipo DIP ou "CL" para dispositivos com encapsulamento do tipo PLCC.

FLASH - Identificados pelo sufixo "F", estes componentes permitem ser apagados/regravados milhares de vezes através de sinais elétricos aplicados em alguns de seus pinos, o que pode ser feito automaticamente por um circuito gravador de Flash como o Picstart Plus, fabricado pela Microchip ou o JDM, cujo hardware é encontrado facilmente na internet. Estes componentes são a melhor opção para teste de programas e implementação final dos circuitos, visto que estão ficando cada dia mais baratos.

VISÃO GERAL DO PIC18

Características	PIC18F2420	PIC18F2520	PIC18F4420	PIC18F4520
Frequência de operação	DC - 40MHz	DC - 40MHz	DC - 40MHz	DC - 40MHz
Memória de programa (Bytes)	16384	32768	16384	32768
Memória de programa (Instruções)	8192	16384	8192	16384
Memória de dados	768	1536	768	1536
Memória de dados EEPROM	256	256	256	256
Fontes de interrupção	19	19	20	20
Ports de I/O	Ports A, B, C, (E)	Ports A, B, C, (E)	Ports A, B, C, D, E	Ports A, B, C, D, E
Timers	4	4	4	4
Capture/Compare/PWM Modules	2	2	1	1
Enhanced Capture/Compare/PWM Modules	0	0	1	1
Comunicação serial	MSSP, Enhanced USART	MSSP, Enhanced USART	MSSP, Enhanced USART	MSSP, Enhanced USART
Comunicação paralela (PSP)	Não	Não	Sim	Sim
Conversor A/D de 10 bits	10 canais de entrada	10 canais de entrada	13 canais de entrada	13 canais de entrada
Resets (e Delays)	POR, BOR, instrução RESET, Stack Full, Stack Underflow (PWRT, OST), (opcional), WDT	POR, BOR, instrução RESET, Stack Full, Stack Underflow (PWRT, OST), (opcional), WDT	POR, BOR, instrução RESET, Stack Full, Stack Underflow (PWRT, OST), (opcional), WDT	POR, BOR, instrução RESET, Stack Full, Stack Underflow (PWRT, OST), (opcional), WDT
Detecção de programação em alta/baixa tensão	Sim	Sim	Sim	Sim
Brown-out Detect Programável	Sim	Sim	Sim	Sim
Set de instruções	75 instruções; 83 com set de instruções estendido habilitado			
Encapsulamentos	28 - Pin SPDIP 28 - Pin SOIC 28 - Pin QFN	28 - Pin SPDIP 28 - Pin SOIC 28 - Pin QFN	40 - Pin PDIP 44 - Pin QFN 44 - Pin TQFP	40 - Pin PDIP 44 - Pin QFN 44 - Pin TQFP

ARQUITETURA INTERNA DO PIC18F4520

Arquitetura Harvard

PRINCIPAIS CARACTERÍSTICAS DO PIC18F4520

A partir da série PIC18, a arquitetura RISC foi otimizada para obter alta performance com a utilização de um compilador C.

- Capacidade para executar até 10 milhões de instruções por segundo 10MIPS);
- Até 40MHz de sinal de clock:
- De 4MHz a 10MHz de sinal de clock com o PLL ativo;
- Instruções com 16 bits de tamanho;
- Níveis de prioridade no tratamento da interrupção;
- Multiplicação por hardware entre operandos de 8 bits em um único ciclo de instrução;
- Set de instruções estendido;
- Modos de gerenciamento de energia.

PERIFÉRICOS DO PIC18F4520

- Capacidade de corrente de 20 mA pino;
- Três pinos de interrupção externa;
- Módulo temporizador/contadorTimer0 de 16 bits;
- Módulo temporizador/contadorTimer1 de 16 bits;
- Módulo temporizadorTimer2 de 8 bits;
- Módulo temporizador/contadorTimer3 de 16 bits;
- Treze canais de conversor A/D de 10 bits:
- Dois módulos Capture/Compare/PWM(CCP);
- Módulo de detecção de alta e baixa tensão;
- Módulo MSSP podendo operar nos modos I2C[™] e SPI[™];
- Módulo EUSART com endereçamento avançado com suporte para RS232, RS485 e LIN 1.2;
- Dois comparadores analógicos com entradas multiplexadas;
- Módulo PSP (Parallel Slave Port).

PINAGEM DO PIC18F4520

PINO MULTIPLEXADO

• Um pino está multiplexado quando ele é capaz de desempenhar mais de uma função. É necessário, no entanto, que o pino seja configurado para executar uma das funções para as quais ele está apto. A configuração que define como o pino irá funcionar é normalmente feita por meio do programa. Algumas funções, entretanto, podem ser ativadas por meio dos bits de configuração na hora da gravação. Vejamos o caso a seguir.

Pino 1	/MCLR/VPP/RE3		
/MCLR	Função Reset	ST	
VPP	Tensão de programação		
RE3	Pino digital	TTL	

 Veja que o pino 1 do PIC18F4520 é multiplexado com três funções diferentes. importante observar que somente uma das funções pode esta ativa de cada vez. Quando uma função é ativada, automaticamente são desativadas as outras funções. Neste caso a função reset é ativada na hora da programação por meio dos bits de configuração. Estando a função /MCLR desativada a função digital do pino será ativada (RE3).

PINO DIGITAIS (pinos de I/O)

- O PIC18F4520 possui 40 pinos.
- Port A, Port B, Port C, Port D e Port E.
- Todos os pinos são multiplexados.
- Port A (RA7:RA0)
- Port B (RB7:RB0)
- Port C (RC7:RC0)
- Port D (RD7:RD0)
- Port E (RE3:RE0).
- 36 pinos de I/O.
- O pino RE3 só pode ser configurado como entrada digital.

CONFIGURAÇÃO DO OSCILADOR

• O PIC18F4520 possui dez formas diferentes de funcionamento do oscilador. Os bits de configuração FOSC2:FOSC0 (CONFIG1H<2:0>) são os responsáveis pela configuração do oscilador. As opções disponíveis para o oscilador são:

LP: cristal de baixa potência (até 200KHz).

XT: cristal/ressonador (até 4MHz).

HS: cristal/ressonador de alta frequência (acima de 4MHz).

HSPLL: cristal/ressonador de alta frequência com o PLL habilitado.

RC: RC externo com saída de *clock*. Essa opção fornece ao pino OSC2/CLKO/RA6 um sinal digital com frequência quatro vezes menor que a do oscilador principal (Fosc/4).

RCIO: RC externo. Nessa opção o RA6 funciona como pino digital.

INTIO1: oscilador interno com Fosc/4 no pino RA6 e pino RA7 configurado como digital.

INTIO2: oscilador interno com RA6 e RA7 configurados como pinos digitais.

EC: oscilador externo com saída de *clock*. Essa opção fornece no pino OSC2/CLKO/RA6 um sinal digital com frequência quatro vezes menor que a do oscilador principal.

ECIO: oscilador externo. Nessa opção o pino RA6 funciona como digital.

OSCILADOR

 Qualquer instrução executada pela CPU utiliza como referência um sinal de clock que é gerado por um oscilador. O Oscilador pode ser externo ou interno.

SINAL DE CLOCK

• O sinal de *clock* é uma onda quadrada que sincroniza a execução das instruções executadas pela CPU.

 Os Microcontroladores PIC gastam quatro ciclos de clock (ciclo de instrução) para executar uma instrução, salvo algumas exceções. O ciclo de instrução também é chamado de *clock* interno.

$$T_{(ciclo_de_instrução)} = \frac{1}{\frac{f_{osc}}{4}}$$

OSCILADOR CRISTAL/RESSONADOR

Figura 1.4: Oscilador a cristal.

Figura 1.5: Oscilador a Ressonador.

- Boa precisão do oscilador, como aquelas que envolvem o uso de temporizadores, por exemplo.
- Figura 1.4: Oscilador a cristal
- Figura 1.5: Ressonador de três pinos.
- A opção para os bits de configuração deve ser LP, XT, HS ou HSPLL e a frequência do oscilador será definida pelo cristal/ressonador.

Tipo de oscilador	Frequência do cristal	Valores típicos de capacitores testados	
		C1	C2
LP	32kHz	30pF	30pF
XT	1MHz	15pF	15pF
	4MHz	15pF	15pF
HS	4MHz	15pF	15pF
	10MHz	15pF	15pF
	20MHz	15pF	15pF
	25MHz	0pF	5pF
	25MHz	15pF	15pF

OSCILADOR RC

 Quando a precisão do clock não é essencial para uma determinada aplicação, o oscilador com RC externo pode ser uma boa opção. A frequência do sinal de *clock* é determinada pela tensão de alimentação, pelos valores de RC e pela variação de temperatura.

 Na configuração RC do oscilador, um sinal digital com Fosc/4 é fornecido no pino OSC2/CLK0/RA6. Na configuração RCIO é ativada a função RA6 no pino 14.

OSCILADOR INTERNO

- O PIC18F4520 possui dois osciladores internos que, se ativados, dispensam a utilização de componentes externos.
 - > INTOSC frequência de 8MHz e pode ser utilizado como oscilador de *clock*. Tem associado um recurso chamado postscaler que permite prover frequências na faixa de 31kHz - 4MHz. É habilitado quando é selecionada uma frequência de clock dentro da faixa de 125kHz a 8MHz.
 - > INTRC, provê uma frequência de 31kHz. É habilitado se ele for selecionado como origem do sinal de clock. Ele também é habilitado automaticamente quando um dos seguintes recursos é selecionado:
- Power-up Timer
- Fail-Safe Clock Monitor
- Watchdog Timer
- Two-Speed Start-up
- O oscilador interno descarta a utilização de componentes externos. O pino 13 pode ser utilizado como digital e o pino 14 pode ser configurado como pino digital ou fornecer um sinal digital com a Fosc/4.

Registrador OSCTUNE			Endereço F98h				
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
R/W - 0	R/W - 0	-	R/W - 0	R/W - 0	R/W - 0	R/W - 0	R/W - 0
INTSRC	PLLEN	-	TUN4	TUN3	TUN2	TUN1	TUN0

Bit 7: INTSCR: bit de seleção da origem da baixa frequência do oscilador interno

1 = 31,25kHz derivado do oscilador principal INTOSC (divisor por 256 habilitado)

0 = 31kHz derivado diretamente do oscilador INTRC

Bit 6: **PLLEN**: bit de seleção PLL para o oscilador INTOSC

1 = PLL habilitado para o oscilador principal INTOSC (4MHz e 8MHz somente)

0 = desabilita o PLL para o oscilador principal INTOSC

Bit 5: Não implementado: lido como 0

Bit 4:0: **TUN4:TUN0**: bits de seleção de frequência do *clock*

01111: frequência máxima

00000: frequência central. O módulo oscilador funciona na frequência calibrada.

11111:

10000: frequência mínima

OSCILADOR EXTERNO

- Seja para obter um alto nível de precisão do *clock* ou para sincronizar o microcontrolador com outros dispositivos presentes no sistema, o PIC18F4520 permite que um sinal de *clock* externo seja aplicado ao pino OSC1, como mostra a figura abaixo.
- Na configuração EC do oscilador um sinal digital com Fosc/4 é fornecido no pino OSC2/CLKO/RA6. Na configuração ECIO é ativada a função RA6 no pino 14.
- Um oscilador externo pode ser conectado ao pino OSC1 com uma das seguintes opções: EC, ECIO ou HS habilitada.

HSPLL (*High Speed Phased Looked Loop*)

- O PLL (*Phase Looked Loop*) é um recurso utilizado em associação à opção HS e pode ser utilizado para se obter uma frequência de *clock* quatro vezes maior do que aquela fornecida pelo cristal.
- Com um cristal de 10MHz pode-se obter uma frequência de *clock* de 40MHz com a habilitação do PLL. O PLL será útil quando o projetista desejar reduzir a emissão de EMI que é maior com a utilização de cristais de alta frequência.
- O PLL só pode ser habilitado com a opção HS e é ativado quando é selecionada a opção HSPLL do oscilador.

CHAVEAMENTO DO OSCILADOR

• O PIC18F4520 possui três fontes diferentes que podem gerar o sinal de clock. O sinal de clock pode vir do oscilador primário, do oscilador secundário ou de um dos osciladores internos.

Oscilador primário: inclui as opções cristal/ressonador externo, RC externo, oscilador externo e os osciladores internos.

Oscilador secundário: está associado ao módulo Timer1 e inclui a conexão de um cristal de baixa frequência entre os pinos T1OSO e T1OS1. Para que o oscilador secundário possa ser utilizado é necessário que o módulo Timer1 esteja habilitado. O cristal de baixa frequência conectado entre os pinos T1OSO e T1OS1 normalmente é de 32,768kHz e pode ser utilizado como base de tempo para um RTC (*Real Time Clock*).

Osciladores internos: além de fazerem parte do set de opções do oscilador primário, estão disponíveis como fontes de clock para o modo de energia gerenciado (power-managed). O oscilador interno INTRC ainda é utilizado como fonte de *clock* para vários recursos especiais, tais como WDT e *Fail-Safe* Clock Monitor.

Registrador OSCCON			Endereço FD3h				
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
R/W - 0	R/W - 1	R/W - 0	R/W - 0	R ⁽¹⁾	R - 0	R/W - 0	R/W - 0
IDLEN	IRCF2	IRCF1	IRCF0	OSTS	IOFS	SCS1	SCS0

Bit 7: **IDELN**: bit de seleção do modo *Idle*

1 = dispositivo entra no modo *Idle* quando a instrução SLEEP é executada

0 = dispositivo entra no modo Sleep quando a instrução SLEEP é executada

Bit 6:4: IRCF2:IRCF0: bit de seleção da frequência do oscilador interno

111 = 8MHz

110 = 4MHz

101 = 2MHz

100 = 1MHz (saída frequência *default* do INTOSC no *Reset*)

011 = 500kHz

010 = 250kHz

001 = 125kHz

000 = 31kHz (de um ou outro INTOSC/256 ou INTRC)⁽²⁾

Registrador OSCCON			Endereço FD3h				
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
R/W - 0	R/W - 1	R/W - 0	R/W - 0	R ⁽¹⁾	R - 0	R/W - 0	R/W - 0
IDLEN	IRCF2	IRCF1	IRCF0	OSTS	IOFS	SCS1	SCS0

Bit 3: **OSTS**: bit de *status* de *Time-out* do *Oscillator Start-up Timer*

1 = ocorreu *Time-out* do *Oscillator Start-up Timer*, oscilador primário está sendo executado

0 = Oscillator Start-up Timer está sendo executado; oscilador primário não está pronto

Bit 2: **OOFS**: bit de sinalização de estabilidade da frequência do INTOSC

1 = frequência do INTOSC está estabilizada

0 = frequência do INTOSC não está estabilizada

Bit 1:0: **SCS1:SCS0**: bits de seleção do sistema de *clock*

1x: osciladores internos01: oscilador secundário00: oscilador principal

Notas: (1) - Nível lógico após o Reset depende do status do bit de configuração IESO.

(2) - Origem selecionada pelo bit OSCTUNE<7>.

OSCILADOR DO PIC18F4520

Fonte: PIC18F2420/2520/4420/4520 Data Sheet DS39631D. Baixado de www.microchip.com

MODOS DE ENERGIA GERENCIADA (power-managed)

- O PIC18F4520 dispõe de um total de sete modos de funcionamento aplicados à gerência e conservação eficiente de energia. Os modos de energia gerenciada estão divididos em três categorias. São elas:
- Run modes
- Idle modes
- Sleep mode
- Essas categorias definem que parte do microcontrolador receberá o sinal de clock e, às vezes, com que velocidade.

MODOS DE ENERGIA GERENCIADA (power-managed)

- As categorias Run e Idle modes estão disponíveis para qualquer origem do sinal de *clock*, seja o oscilador principal, oscilador secundário ou um dos osciladores internos.
- O Sleep mode (modo Sleep), quando ativado, desliga o oscilador.
- Quando um determinado modo de gerenciamento é ativado, duas decisões precisam ser tomadas: se a CPU irá ou não receber o sinal de *clock* e qual a origem do sinal de *clock*.
- O bit IDELN (OSCCON<7>) define se a CPU irá ou não receber o sinal de clock, enquanto os bits SCS1:SCS0(OSCCON<1:0>) indicam a origem do clock.

MODOS DE ENERGIA GERENCIADA (power-managed)

 A Tabela abaixo resume como a CPU e os periféricos do microcontrolador são afetados pelos diversos modos de gerenciamento, derivados de uma das três categorias.

OSCCON<7,1:0>		Sinal de clock		Disponibilidade do <i>clock</i>	
IDLEN ⁽¹⁾	SCS1:SCS0	CPU	Periféricos	e origem do oscilador	
0	N/A	Off	Off	Nenhum - todos os <i>clocks</i> estão desligados	
N/A	00	Recebe	Recebe	Primário - LP, XT, HS, HSPLL, RC, EC e oscilador interno ⁽²⁾ Este é o modo de execução normal	
N/A	01	Recebe	Recebe	Secundário - oscilador do Timer1	
N/A	1x	Recebe	Recebe	Osciladores internos ⁽²⁾	
1	00	Off	Recebe	Primário - LP, XT, HS, HSPLL, RC, EC	
1	01	Off	Recebe	Secundário - oscilador do Timer1	
1	1x	Off	Recebe	Osciladores internos ⁽²⁾	
	O N/A N/A	IDLEN(1) SCS1:SCS0 0 N/A N/A 00 N/A 01 N/A 1x 1 00 1 01	IDLEN ⁽¹⁾ SCS1:SCS0 CPU 0 N/A Off N/A 00 Recebe N/A 01 Recebe N/A 1x Recebe 1 00 Off 1 01 Off	IDLEN(1)SCS1:SCS0CPUPeriféricos0N/AOffOffN/A00RecebeRecebeN/A01RecebeRecebeN/A1xRecebeRecebe100OffRecebe101OffRecebe	

Nota: 1. O bit IDELN reflete o valor quando a instrução SLEEP é executada.

2. Inclui o postscaler do oscilador INTOSC e o oscilador INTRC.

EXERCÍCIOS

- 1. Qual a frequência de *clock* máxima na qual pode operar o PIC18F4520?
- 2. Quantos pinos de I/O possui o PIC18F4520 e como eles estão divididos?
- 3. De quantas maneiras diferentes pode funcionar o oscilador do PIC18F4520? Quais são elas?
- 4. Quando é indicada a utilização de um oscilador a cristal no PIC18F4520?
- 5. O PIC18F4520 possui quantos osciladores internos? Quais são eles?
- 6. O PIC18F4520 dispõe de três fontes diferentes que podem gerar o sinal de *clock*. Como elas são classificadas?
- 7. O PIC18F4520 dispõe de sete modos de funcionamento aplicados à gerência e à conservação de energia. Quais são eles e como afetam a disponibilidade do *clock* para a CPU e os demais periféricos?