AAMEG - MATEMÁTICA DISCRETA

O presente questionário faz parte do projeto de ensino "Ações de apoio à melhoria do ensino de Matemática Discreta", associado ao programa "Ações de Apoio à Melhoria do Ensino de Graduação (AAMEG)", sob a coordenação da Pró-Reitoria de Graduação (PROGRAD). Este formulário tem como propósito primordial identificar as principais questões enfrentadas pelos estudantes de Matemática Discreta, com enfoque específico no conteúdo de *teoria dos conjuntos - demonstração direta e demonstração direta e por casos*.

* Indica uma pergunta obrigatoria			
1.	E-mail *		
•	L man		
0	No. 20 de		
2.	Nome *	1 pc	onto
3.	Matrícula *	1 pc	onto
4.	1. Tendo como base o enunciado a seguir, "Den demonstração direta, que para todo conjunto X considerando que a demonstração seja iniciada "Sejam A, B dois conjuntos particulares e arbitra melhor representa o OBJETIVO da questão.	,Y, X∩(X∪Y)=X.", e a da seguinte forma:	onto
	Marcar apenas uma oval.		
	$\triangle A \cap (A \cup B) = A$		
	$A \cap (A \cup B) \subseteq A$		
	Para todo $z \in U$, se $z \in A \cap (A \cup B)$ então $z \in A$		
	Para todo $z \in U$, se $z \in A$ então $z \in A \cap (A \cup B)$		

5. 2. Tendo como base o enunciado a seguir, "Demonstre, por * 1 ponto demonstração direta, que para todo conjunto X,Y,Z, se X ⊆ Y e X ⊆ Z então X ⊆ Y∩Z", e considerando que a demonstração seja iniciada da seguinte forma: "Sejam A, B, C três conjuntos particulares e arbitrários, tal que A ⊆ B e A ⊆ C.", qual alternativa melhor representa o OBJETIVO PARCIAL da questão?

Marcar apenas uma oval.

\bigcirc A \subseteq B
\bigcirc A \subseteq C
\bigcirc A \subseteq B \cap C
Para todo $z \in U$, se $z \in A$ então $z \in B \cap C$.

6. 3. Qual das alternativas a seguir representa corretamente a definição de * 1 ponto igualdade de conjuntos?

Marcar apenas uma oval.

Para todo conjunto X, Y, X = Y $\leftrightarrow \forall w \in U$, $w \in X \rightarrow w \in Y$
Para todo conjunto X, Y, X = Y $\leftrightarrow \forall w \in U$, $w \in X$ ou $w \in Y$
Para todo conjunto X, Y, X = Y \leftrightarrow X \nsubseteq Y ou Y \nsubseteq X
Para todo conjunto X, Y, X = Y $\leftrightarrow \forall w \in U$, $w \in X$ e $w \in Y$
Para todo conjunto X, Y, X = Y \leftrightarrow X \subseteq Y e Y \subseteq X

7.	 4. Tendo como base o enunciado a seguir: "Demonstre, por * 1 ponto demonstração direta e por casos, que para todo conjunto X, Y, se X ⊆ Y então X∪Y ⊆ Y", selecione a alternativa que representa corretamente o início da demonstração. Marcar apenas uma oval.
	"Seja $k \in U$ um elemento particular e arbitrário, tal que $k \in A \cup B$. Logo, pela definição de união de conjuntos, podemos concluir que $k \in A$ ou $k \in B$.".
	"Sejam A, B dois conjuntos particulares e arbitrários, tal que $A \subseteq B$. Seja $k \in U$ um elemento particular e arbitrário, tal que $k \in A \cup B$. Logo, pela definição de união de conjuntos, podemos concluir que $k \in A$ e $k \in B$.".
	"Sejam A, B dois conjuntos particulares e arbitrários, tal que $A \subseteq B$. Seja $k \in U$ um elemento particular e arbitrário, tal que $k \in A \cup B$. Logo, pela definição de união de conjuntos, podemos concluir que $k \in A$ ou $k \in B$.".
	"Sejam A, B dois conjuntos particulares e arbitrários, tal que A∪B ⊆ B.".
	"Sejam A, B dois conjuntos particulares e arbitrários. Seja $k \in U$ um elemento particular e arbitrário, tal que $k \in A \cup B$. Logo, pela definição de união de conjuntos, podemos concluir que $k \in A$ ou $k \in B$.
8.	5. Considerando que durante uma demonstração obtemos o seguinte: " * 1 ponto Seja k ∈ U um elemento particular e arbitrário, tal que k ∈ A∪(B∩C)." Quais os possíveis casos existentes nessa demonstração?
	Marcar apenas uma oval.
	Caso $k \in A$ ou caso $k \in (B \cap C)$.
	Caso $k \in A$ e B ou caso $k \in A$ e C.
	Caso $k \in A$ ou caso $k \in C$.
	Caso $k \in A$ ou caso $k \in B$ ou caso $k \in C$.
	Caso $k \in A$ ou caso $k \in B$.

Este conteúdo não foi criado nem aprovado pelo Google.

Google Formulários