Дипломная работа на тему:

Проект модернизации автоматизированной системы диспетчерского управления подстанции «Левашово»

Студент: Шишминцев Владимир Викторович

Руководитель: Иванова Ирина Александровна

Курган

Техническое задание дипломного проекта

- Анализ существующей системы диспетчерского управления, определение объема необходимых разработок;
- Разработка структуры информационной системы РДУ;
- Выбор технических средств проектируемой системы;
- Разработка системы управления, шкафа управления, электрических принципиальных схем и схем подключения контроллера;
- Разработка алгоритмов и программы контроля параметров подстанции;
- Подготовка эксплуатационной документации для инженеров и программистов;
- Анализ техногенных и индивидуальных рисков, влияние подстанции на окружающую среду, профилактика ЧС;
- У Экономический расчет проекта, инвестиции и окупаемость.

Задачи диспетчерского управления

- Непрерывное (круглосуточное), централизованное оперативно-технологическое (диспетчерское) управление работой объектов диспетчерского управления;
- Принятие мер по обеспечению сбалансированности потребления и нагрузки электростанций с учетом внешних перетоков региональной энергосистемы;
- Осуществление краткосрочного планирования за счет расчета балансов электрической энергии и мощности объектов оперативно-технологического (диспетчерского) управления региональной энергосистемы.

Анализ существующей системы диспетчерского управления

_Рисунок 1 – Структура информационной системы РДУ

Рисунок 2 – Структурная схема телемеханизации подстанции

Цель модернизации

- Обеспечение обратной связи с энергообъектами введением управляющих сигналов;
- Повышение эффективности управления подстанцией с целью ведения заданного режима;
- Увеличение надежности работы энергосистемы;
- Обеспечение возможности подробного ретроспективного анализа режимов работы основного электрооборудования.

Выбор технических средств

Таблица 1 – Выбор ПЛК

Критерий/ контроллер	Овен ПЛК 110-30	Omron ZEN-20C	Siemens Simatic S7-300
1	2	3	4
К-во релейных входов/выходов	12	8	16
ЗУПП/ЗУПД	1 МБ/ 128 КБ	96 строк LD/ -	ММС/ 96 КБ
Время цикла, мс	0.25 - 1	0.4	0.4
Среда разработки	CoDeSys	Zen Software	Step 7
Поддерживаемые языки	LD, SFC, FBD, ST, IL	LD	LD, FBD, ST
Modbus TCP	есть	нет	модуль
Цена			

Овен ПЛК-110-30

Рисунок 3 – Внешний вид контроллера Овен ПЛК-110-30

Выбор коммутационного оборудования

Электромагнитное реле

Транзистор MOSFET

Рисунок 4 – Коммутационные устройства (реле, транзистор)

Таблица 2 – Выбор ключевого устройства

Критерий/ устройство	Реле R4-WTL	Транзистор FDMC2674
1	2	3
Комм. напряжение, В	250	220
Группа ключей	4	1
Монтаж	панель	пайка
Сложность схемы	простая	сложная
Время срабатывания	20 мс	34 нс
Долговечность	20x10^6 циклов	-

Программа контроля параметров

Рисунок 5 – Главное окно программы контроля

Протокол передачи управления

Рисунок 6 – Структура кадра протокола <u>FOCT</u> Р МЭК 60870-5-104 Стандарт МЭК 870-5-101 регламентирует следующее распределение типов информационных объектов:

- <1..127> для стандартных определений (совместимый диапазон);
- <128..135> резерв будущего расширения стандарта;
- <136..255> для специальных применений.

Используемые команды

При определении типов информационных объектов используются следующие условные обозначения (метки):

- 1-й элемент метки М передача в направлении контроля, С
- передача в направлении управления, Р передача параметров, F передача файлов;
- 2-й элемент метки (две буквы)** вид информации;
- 3-й элемент метки наличие (T), отсутствие (N) метки времени;
- > <5> информация о положении шинных переключателей М ST NA Q;
- > <9> значение измеряемой величины М ME NA Q
- > <45> однопозиционная команда С SC NA;
- > <46> двухпозиционная команда С DC NA;
- > <47> команда пошагового регулирования С RC NA;
- > <51> строка из 32 битов С_ВО_NA.

Безопасность проекта

- В проекте произведен анализ условий труда диспетчера;
- Приведена количественная оценка влияния подстанции на окружающую среду;
- Рассмотрены возможные ЧС на подстанции и приведены меры по их профилактике;
- Произведен расчет молниезащиты оборудования подстанции.

Экономический анализ проекта

По расчетам окупаемость проекта достигается за счет:

- отсутствия необходимости выезда бригады электриков для коммутации оборудования;
- повышения эффективности управления энергосистемой:

Рисунок 7 – График окупаемости проекта

Результаты

- Внедрено удаленное управление параметрами энергообъектов из диспетчерского пункта;
- повышение эффективности диспетчерского управления;
- повышение безопасности труда ввиду отсутствия необходимости ручной коммутации;
- сокращение расходов на обслуживание подстанции, частичное исключение человека из процесса.