

#2
11-27-01
Docket No. 0558-4017 RP

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant(s): DE FERRA, et al

Group Art Unit: TBA

Serial No.: TBA

Examiner: TBA

Filed: October 18, 2001

For: PURIFYING PROCESS FOR PHOSPHATIDYL SERINE

J1002 U.S. PTO
09/982468
10/16/01

CLAIM TO CONVENTION PRIORITY

Commissioner for Patents
Washington, D.C. 20231

Sir:

In the matter of the above-identified application and under the provisions of 35 U.S.C. §119 and 37 C.F.R. §1.55, applicant(s) claim(s) the benefit of the following prior application(s):

Application(s) filed in: ITALY

In the name of: Chemi S.p.A.

Serial No(s): MI2000A002631

Filing Date(s): December 5, 2000

Pursuant to the Claim to Priority, applicant(s) submit(s) a duly certified copy of said foreign application.

A duly certified copy of said foreign application is in the file of application Serial No. _____, filed _____.

Respectfully submitted,
MORGAN & FINNEGAN, L.L.P.

Dated: October 18, 2001

By: William S. Feiler
William S. Feiler
Registration No. 26,728

Correspondence Address:

MORGAN & FINNEGAN, L.L.P.
345 Park Avenue
New York, NY 10154-0053
(212) 758-4800 Telephone
(212) 751-6849 Facsimile

Ministero delle Attività Produttive

Direzione Generale per lo Sviluppo Produttivo e la Competitività

Ufficio Italiano Brevetti e Marchi

Ufficio G2

J10002 U.S. PTO
09/982468
10/18/01

Autenticazione di copia di documenti relativi alla domanda di brevetto per:

Invenzione Industriale

N. MI2000 A 002631

Si dichiara che l'unità copia è conforme ai documenti originali depositati con la domanda di brevetto sopraspecificata, i cui dati risultano dall'accleso processo verbale di deposito.

CERTIFIED COPY OF
PRIORITY DOCUMENT

6 AGO. 2001

IL DIRIGENTE
Ing. Giorgio ROMANI

Quale: *firmato*

2586PTIT

AL MINISTERO DELL'INDUSTRIA DEL COMMERCIO E DELL'ARTIGIANATO

UFFICIO ITALIANO BREVETTI E MARCHI - ROMA

DOMANDA DI BREVETTO PER INVENZIONE INDUSTRIALE, DEPOSITO RISERVE, ANTICIPATA ACCESSIBILITÀ AL PUBBLICO

A. RICHIEDENTE (I)

1) Denominazione CHEMI S.p.A.Residenza PATRICA (FR)codice 001488706032) Denominazione Residenza codice

B. RAPPRESENTANTE DEL RICHIEDENTE PRESSO L'U.I.B.M.

cognome nome Dr. Diego Pallini ed altricod. fiscale denominazione studio di appartenenza Notarbartolo & Gervasi S.p.A.via C.so di Porta Vittoria n. 9 città Milanocap 20122 (prov) MIC. DOMICILIO ELETTIVO destinatario via n. città cap (prov)

D. TITOLO

classe proposta (sez/cl/sc) G07F gruppo/sottogruppo 9/10Processo di purificazione di fosfatidilserina.ANTICIPATA ACCESSIBILITÀ AL PUBBLICO: SI NO SE ISTANZA: DATA / / N° PROTOCOLLO

E. INVENTORI DESIGNATI cognome nome

cognome nome

1) DE FERRA Lorenzo 3) L2) MASSARDO Pietro 4)

F. PRIORITY

nazione o organizzazione tipo di priorità numero di domanda data di deposito

allegato

S/R

SCIOLGIMENTO RISERVE
Data N° Protocollo 1) nessuna 2) G. CENTRO ABILITATO DI RACCOLTA COLTURE DI MICRORGANISMI, denominazione

H. ANNOTAZIONI SPECIALI

nessuna

DOCUMENTAZIONE ALLEGATA

N. es.

Doc. 1) 2 PROV. n. pag. 15

riassunto con disegno principale, descrizione e rivendicazioni (obbligatorio 1 esemplare)

Doc. 2) 0 PROV. n. tav.

disegno (obbligatorio se citato in descrizione, 1 esemplare)

Doc. 3) 0 RIS.

lettera d'incarico, procura o riferimento procura generale

Doc. 4) 0 RIS.

designazione inventore

Doc. 5) 0 RIS.

documenti di priorità con traduzione in italiano

Doc. 6) 0 RIS.

autorizzazione o atto di cessione

Doc. 7) 0

nominativo completo del richiedente

8) attestati di versamento, totale lire Trecentosessantacinquemila.=COMPILATO IL 05/12/2000FIRMA DEL(I) RICHIEDENTE(I) Diego Pallini

SCIOLGIMENTO RISERVE Data <u></u> N° Protocollo <u></u>
<u></u> <u></u> <u></u> <u></u>
<u></u> <u></u> <u></u> <u></u>
<u></u> <u></u> <u></u> <u></u>
<u></u> <u></u> <u></u> <u></u>
confronta singole priorità <u></u> <u></u> <u></u> <u></u>

CONTINUA SI/NO NODEL PRESENTE ATTO SI RICHIEDE COPIA AUTENTICA SI/NO SIC.C.I.A.A.
UFFICIO PROVINCIALE IND. COMM. ART. DI

MILANO

codice 15VERBALE DI DEPOSITO NUMERO DI DOMANDA MI2000A 002631 Reg. A.L'anno 2000 il giorno 12 del mese di DICEMBRE CINQUEil(i) richiedente(i) sopraindicato(i) ha(hanno) presentato a me sottoscritto la presente domanda, corredata da 100 fogli aggiuntivi per la concessione del brevetto sopra riportato.

I. ANNOTAZIONI VARIE DELL'UFFICIALE ROGANTE

IL DEPOSITANTE R. PALLINIUFFICIALE ROGANTE M. CORTONESI

2586PTIT

RIASSUNTO INVENZIONE CON DISEGNO PRINCIPALE, DESCRIZIONE E RIVENDICAZIONE

NUMERO DOMANDA

112004002636

REG. A

DATA DI DEPOSITO

05/12/2009

NUMERO BREVETTO

DATA DI RILASCIO

11/11/2009

D. TITOLO

Processo di purificazione di fosfatidilserina.

L. RIASSUNTO

La presente invenzione riguarda un processo di purificazione di fosfatidilserina, preparata mediante transfosfatidilazione della fosfatidilcolina con serina in presenza dell'enzima fosfolipasi D e contenente come impurezze composti idrofili-ci, proteine e sali inorganici.

M. DISEGNO

Descrizione dell'invenzione industriale dal titolo :

"Processo di purificazione di fosfatidilserina"

MI 2000 A 002631

Titolare : CHEMI S.p.A.

con sede in : PATRICA (FR)

Inventori designati : DE FERRA Lorenzo, MASSARDO Pietro

* * * * *

CAMPO DELL'INVENZIONE

La presente invenzione riguarda un processo di purificazione di fosfatidilserina, un fosfolipide utile in particolare per la preparazione di composizioni farmaceutiche per il trattamento di sindromi cerebrali involutive di diversa natura, ma anche per la preparazione di particolari formulazioni liposomiali e di composizioni dietetiche a base di lecitine naturali.

STATO DELL'ARTE

La fosfatidilserina è un fosfolipide ampiamente distribuito in natura; è uno dei componenti principali delle membrane cellulari degli organismi animali ed è particolarmente abbondante nei tessuti cerebrali dei mammiferi. Nella letteratura medica sono riportate interessanti proprietà della fosfatidilserina; tra queste la più significativa riguarda l'efficacia nel migliorare le capacità di memoria.

La transfosfatidilazione della fosfatidilcolina con serina in presenza dell'enzima fosfolipasi D secondo lo schema qui di seguito riportato, è la reazione più conveniente per la produzione industriale di fosfatidilserina.

MP

La reazione può essere condotta sia in ambiente acquoso, come descritto nella domanda di brevetto italiano N. MI99A000895, che in un sistema in cui è presente, oltre ad una fase acquosa, anche un solvente organico immiscibile con l'acqua, preferibilmente il toluene ; questa seconda procedura è descritta nel brevetto statunitense N. 5,700,668.

Quale che sia la procedura di transfosfatidilazione impiegata, la fosfatidilserina che si isola al termine del processo è risultata in ogni caso contenere quantità non trascurabili di impurezze idrofiliche, quali la serina, la colina, e i loro sali presenti nella fase acquosa.

Un altro fatto degno di nota è che, sottponendo il prodotto della reazione alla misura dell'attività enzimatica del tipo fosfolipasi D secondo la metodica descritta in letteratura (*Biotechn. Techn.*, 7, 795 (1993)), si trova che in ogni grammo di prodotto sono presenti circa 2 unità internazionali di attività enzimatica.

Coerentemente con la generale richiesta di criteri di purezza stringenti, la rimozione di tali impurezze dal prodotto finale riveste notevole importanza.

I metodi comunemente impiegati per la rimozione di sostanze idrofiliche da soluzioni organiche di fosfolipidi si sono dimostrati inefficaci. Infatti, estraendo una soluzione toluenica della miscela di fosfolipidi ottenuta

✓P

come descritto nel brevetto statunitense N. 5,700,668, con un uguale quantitativo di acqua, e separando poi le fasi, si trova che il contenuto di serina nella fase organica e l'attività della fosfolipasi D sono praticamente inalterate rispetto a quelle trovate prima dell'estrazione con acqua.

In modo simile, l'eluizione della medesima soluzione organica su una colonna cromatografica contenente silice per cromatografia, condizionata in toluene, dove l'eluizione del prodotto è completata con toluene, porta ad una rimozione praticamente trascurabile della serina e dell'attività enzimatica dal fosfolipide.

In un altro esperimento, alla soluzione organica di fosfatidilserina da purificare per la presenza di serina è stato aggiunto acetone: è precipitato in questo caso un prodotto che, analizzato, mostrava un rapporto sostanzialmente invariato tra serina e fosfatidilserina rispetto al prodotto di partenza.

Resta pertanto aperto il problema di disporre di un efficace processo di purificazione di fosfatidilserine preparate mediante transfosfatidilazione della fosfatidicolina con serina in presenza dell'enzima fosfolipasi D e contenenti come impurezze composti idrofilici, proteine e sali inorganici.

SOMMARIO DELL'INVENZIONE

Ora la Richiedente ha sorprendentemente trovato che si possono efficacemente rimuovere le impurezze idrofiliche, le proteine e i sali inorganici da una soluzione di fosfatidilserina in un solvente organico mediante estrazione con acqua, a condizione che si aggiunga al sistema un solvente organico polare.

Rappresenta pertanto oggetto della presente invenzione il processo per la purificazione di fosfatidilserine di formula (I)

dove R₁ e R₂, uguali o diversi tra loro, sono un gruppo acile C₁₀-C₃₀; X è OH oppure OM, dove M è scelto nel gruppo costituito da metalli alcalini, metalli alcalino-terrosi, ammonio e alchilammonio,
e dove la porzione serinica è in forma D, L o racemica, e preferibilmente in forma L,

comprendente l'estrazione di dette fosfatidilserine da una soluzione in un solvente idrocarburico con una miscela costituita da acqua ed un solvente organico polare.

DESCRIZIONE DETTAGLIATA DELL'INVENZIONE

Nel caso specifico delle fosfatidilserine preparate secondo quanto descritto nel brevetto statunitense N. 5,700,668 mediante transfosfatidilazione in sistema bifasico costituito da una fase acquosa e una fase toluenica, il processo secondo l'invenzione può essere condotto direttamente sulla fase toluenica dopo averla separata dalla fase acquosa al termine della reazione.

Nel caso di fosfatidilserine preparate seguendo altre metodiche, la purificazione può essere condotta altrettanto vantaggiosamente dibattendo il prodotto in una miscela costituita da un solvente idrocarburico, acqua e un solvente organico polare.

Anche in questo caso il fosfolipide di interesse sarà presente nella fase

AF

idrocarburica, mentre le impurezze idrofiliche si ritroveranno nella fase acquosa.

Dopo la separazione delle fasi, l'isolamento della fosfatidilserina si può realizzare seguendo tecniche note come la precipitazione con acetone.

Secondo il presente processo come solvente idrocarburico si possono utilizzare solventi aromatici o alifatici ; tra i solventi aromatici è preferito il toluene o lo xilene; tra i solventi alifatici è preferibile usare il n-eptano, il n-esano o il cicloesano.

Come solvente organico polare si possono impiegare solventi alcolici, contenenti ad esempio da 1 a 5 atomi di carbonio. Secondo forme di realizzazione preferite dell'invenzione, il solvente alcolico è scelto tra alcoli secondari e terziari ; più preferibilmente si usa isopropanolo.

L'estrazione secondo l'invenzione può essere condotta a temperature comprese tra 0 e 70°C, e preferibilmente tra 20 e 30°C.

La quantità di solvente idrocarburico è compresa tra 4 e 30 litri per ogni chilogrammo di fosfolipide da purificare, e preferibilmente tra 6 e 12 litri.

Il rapporto in volume tra il quantitativo di acqua e quello di solvente idrocarburico è compreso tra 0.2 e 5, e preferibilmente tra 0.3 e 1. Il rapporto in volume tra il quantitativo di solvente organico polare e quello di solvente idrocarburico è invece compreso tra 0.2 e 2, e preferibilmente tra 0.3 e 1.2.

La procedura descritta può essere applicata a fosfatidilserine con differenti catene aciliche e permette di realizzare la purificazione sia di prodotti derivanti dalla transfosfatidilazione di fosfatidicoline di origine naturale come la soia, il ravizzone o il tuorlo d'uovo, che fosfatidicoline

sintetizzate con acidi grassi, saturi come l'acido miristico, l'acido palmitico o l'acido stearico, e insaturi come l'acido oleico o l'acido linoleico.

I seguenti esempi sono riportati a scopo illustrativo e non limitativo della presente invenzione.

ESEMPIO 1

Preparazione di fosfatidilserina in sistema bifasico

400 g di una frazione di lecitina di soia non deoleata costituita per il 32% da fosfatidicolina e per il 50% da trigliceridi è caricata in un pallone insieme a 3 l di toluene. A parte si prepara una soluzione di 22.7 g di calcio cloruro, 27.6 g di sodio acetato triidrato e 62.5 g L-serina in 1.3 l di una soluzione di fosfolipasi D di attività pari a 3 KU/l. La soluzione viene portata a pH = 4.2 con acido acetico. Le due soluzioni vengono unite e mantenute sotto agitazione a 25°C per 8 ore. Dopo filtrazione le fasi vengono separate un decimo della fase toluenica viene concentrato sotto vuoto (la parte restante viene utilizzata per la sperimentazione descritta negli esempi 2, 3, 4, 5); il residuo viene aggiunto a 500 ml acetone a temperatura ambiente. Il prodotto viene filtrato e seccato. Si ottengono 27 g di una miscela di fosfolipidi con tenore di fosfatidilserina del 50%.

L'analisi TLC (eluente: miscela costituita da cloroformio, metanolo, acqua, e soluzione acquosa di ammoniaca al 28% 300:100:10:12 ; rivelatore: ninidrina) mostra la presenza del 1.5% di L-serina nel prodotto finale.

La presenza di fosfolipasi D nel prodotto è stata determinata con un metodo di letteratura (*Biotechn. Techn.*, 7, 795 (1993)); si è trovata una

attività di 2.1 UI/g.

ESEMPIO 2

Purificazione di fosfatidilserina mediante estrazione con i-propanolo e acqua

Si utilizzano 330 ml della soluzione toluenica preparata come descritto nell'Esempio 1. A questi si aggiungono 240 ml di i-propanolo e 150 ml di acqua. Si agita a temperatura ambiente, si lascia decantare e si separano le fasi. La fase toluenica viene concentrata e il residuo aggiunto sotto agitazione a 500 ml di acetone.

Il prodotto ha un contenuto di L-Serina dello 0.3%. La fosfolipasi D è inferiore al limite di determinazione del metodo (0.1 UI/g).

ESEMPIO 3

Purificazione di fosfatidilserina mediante estrazione con i-propanolo e acqua in diversi rapporti

Si utilizzano 330 ml della soluzione toluenica preparata come descritto nell'Esempio 1. A questi si aggiungono 150 ml di isopropanolo e 240 ml di acqua. Si agita a temperatura ambiente, si lascia decantare e si separano le fasi. La fase toluenica viene concentrata e il residuo aggiunto sotto agitazione a 500 ml di acetone.

Il prodotto ha un contenuto di L-serina dello 0.2%. La fosfolipasi D è inferiore al limite di determinazione del metodo (0.1 UI/g).

ESEMPIO 4

Purificazione di fosfatidilserina mediante estrazione con etanolo e acqua

Si utilizzano 330 ml della soluzione toluenica preparata come descritto nell'Esempio 1. A questi si aggiungono 150 ml di etanolo e 150 ml di

acqua. Si agita a temperatura ambiente, si lascia decantare e si separano le fasi. La fase toluenica viene concentrata e il residuo aggiunto sotto agitazione a 500 ml di acetone.

Il prodotto ha un contenuto di L-serina dello 0.2%. La fosfolipasi D è inferiore al limite di determinazione del metodo (0.1 UI/g).

ESEMPIO 5

Preparazione di fosfatidilserina in sistema bifasico acqua/n-eptano e purificazione con i-propanolo e acqua

40 g dello stesso tipo di lecitina di soia impiegata come materia prima nell'Esempio 1 è caricata in un pallone insieme a 300 ml di n-eptano. A parte si prepara una soluzione di 2.3 g di calcio cloruro, 2.8 g di sodio acetato triidrato e 6.3 g L-serina in 0.13 l di una soluzione di fosfolipasi D di attività pari a 3 KU/l. La soluzione viene portata a pH = 4.2 con acido acetico. Le due soluzioni vengono unite e mantenute sotto agitazione a 25°C per 24 ore. Dopo filtrazione le fasi vengono separate; alla fase eptanica vengono aggiunti 150 ml di i-propanolo e 150 ml di acqua. Dopo agitazione e decantazioni le fasi vengono separate. La fase eptanica si concentra a pressione ridotta. Il residuo viene aggiunto a 500 ml di acetone a temperatura ambiente. Il prodotto viene filtrato e seccato. Si ottengono 26.5 g di una miscela di fosfolipidi con tenore di fosfatidilserina del 48%.

Il prodotto ha un contenuto di L-serina dello 0.2%. La fosfolipasi D è inferiore al limite di determinazione del metodo (0.1 UI/g).

ESEMPIO 6

Preparazione di fosfatidilserina mediante transfosfatidilazione in assenza

di solvente organico

40 g di una miscela di fosfolipidi ottenuta per estrazione con alcol etilico della lecitina di soia, il cui principale costituente è la fosfatidilcolina (65%), sono stati caricati in un imbuto separatore insieme ad una soluzione preparata sciogliendo 60 g di cloruro di calcio in 800 ml di acqua; la miscela è stata mantenuta in agitazione a 25°C per un'ora. Dopo 4 ore in quiete 700 ml di fase acquosa sono stati scaricati dal rubinetto di fondo. A parte è stata preparata una soluzione con 64 g di L-serina in 130 ml di tampone acetato 0.1 M a pH 4.5. A questa soluzione sono stati aggiunti 300 mg di fosfolipasi D in forma liofilizzata di attività di 1.0 UI/mg. La soluzione risultante è stata aggiunta alla dispersione acquosa di fosfolipidi precedentemente preparata. La miscela è stata mantenuta in agitazione a 45°C per 3 ore. Per filtrazione si separa il prodotto di reazione che, dopo lavaggio con acqua pesa 60 g.

Una aliquota è stata seccata per la determinazione della serina e della fosfolipasi D. E' risultato che la serina è pari al 7% in peso e l'attività della fosfolipasi D di 2 UI/g.

ESEMPIO 7Purificazione della fosfatidilserina ottenuta nell'Esempio 6

Aliquote da 5 g ciascuna del prodotto umido ottenuto come descritto nell'Esempio 6 sono state usate per prove di purificazione mediante dissoluzione in una miscela di solventi costituita da acqua, un solvente idrocarburico (solvente 1) e un solvente alcolico (solvente 2).

In tutte le prove la fosfatidilserina è presente, dopo agitazione e decantazione, unicamente nella fase idrocarburica. La fase idrocarburica

è stata concentrata e precipitata da acetone. I prodotti essiccati sono stati analizzati misurando il tenore di serina e l'attività fosfolipasi D. Nella seguente Tabella 1 sono riportate le condizioni di purificazione della fosfatidilserina utilizzate, e le quantità di serina e fosfolipasi D presenti nel prodotto finale.

Tabella 1 – Purificazione di fosfatidilserina

prova	1	2	3	4	5	6
solvente 1	n-eptano	n-eptano	n-eptano	n-eptano	n-eptano	toluene
quantità del solvente 1 (ml)	50	50	50	50	50	50
solvente 2	metanolo	i-propanolo	i-propanolo	i-propanolo	i-propanolo	i-propanolo
quantità del solvente 2 (ml)	60	15	15	30	30	50
quantità di acqua (ml)	25	15	30	15	30	40
serina nel prodotto finale (%)	1.0	0.8	0.2	1.3	0.3	0.6
fosfolipasi D nel prodotto finale (Ui/g)	<0.1	<0.1	<0.1	0.1	<0.1	<0.1

ESEMPIO 8

Preparazione e purificazione di dioleoifosfatidilserina (DOPS)

40 g di dioleoifosfatidilcolina (DOPC) vengono caricati in un pallone insieme a 0.3 l di toluene. A parte si prepara una soluzione di 2.3 g di calcio cloruro, 2.8 g di sodio acetato triidrato e 6.3 g L-serina in 0.13 l di una soluzione di fosfolipasi D di attività pari a 3 KU/l. La soluzione viene

portata a pH = 4.2 con acido acetico. Le due soluzioni vengono unite e mantenute sotto agitazione a 25°C per 8 ore. Si separano le fasi, alla fase superiore si aggiungono 240 ml di i-propanolo e 150 ml di acqua. Si agita a temperatura ambiente, si lascia decantare e si separano le fasi. La fase toluenica viene concentrata e il residuo aggiunto sotto agitazione a 500 ml acetone. Il solido si filtra e si essicca sotto vuoto ottenendo 39 g DOPS come sale di calcio.

Il prodotto ha un contenuto di L-serina dello 0.2%. La fosfolipasi D è inferiore al limite di determinazione del metodo (0.1 UI/g).

RIVENDICAZIONI

1. Processo per la purificazione di fosfatidilserine di formula (I)

dove R₁ e R₂, uguali o diversi tra loro, sono un gruppo acile C₁₀-C₃₀; X è OH oppure OM, dove M è scelto nel gruppo costituito da metalli alcalini, metalli alcalino-terrosi, ammonio e alchilammonio, e dove la porzione serinica è in forma D, L o racemica, e preferibilmente in forma L,

comprendente l'estrazione di dette fosfatidilserine da una soluzione in un solvente idrocarburico con una miscela costituita da acqua ed un solvente organico polare.

2. Il processo secondo la rivendicazione 1 in cui detto solvente idrocarburico è scelto tra toluene, xilene, n-eptano, n-esano o cicloesano.

3. Il processo secondo la rivendicazione 1, in cui detto solvente idrocarburico è usato in una quantità compresa tra 4 e 30 litri per ogni chilogrammo di fosfatidilserina da purificare.

4. Il processo secondo la rivendicazione 3, in cui detto solvente idrocarburico è usato in quantità compresa tra 6 e 12 litri per ogni chilogrammo di fosfatidilserina da purificare.

5. Il processo secondo la rivendicazione 1, in cui detto solvente organico polare è un solvente alcolico.

6. Il processo secondo la rivendicazione 5, in cui detto solvente alcolico

10

è scelto tra gli alcoli contenenti da 1 a 5 atomi di carbonio.

7. Il processo secondo la rivendicazione 5, in cui detto solvente alcolico è scelto tra gli alcoli secondari e terziari.

8. Il processo secondo la rivendicazione 5, in cui detto solvente alcolico è i-propanolo.

9. Il processo secondo la rivendicazione 1, in cui detto solvente organico polare è usato in quantità compresa tra 0.2 e 2 litri per ogni litro di solvente idrocarburico usato.

10. Il processo secondo la rivendicazione 9, in cui detto solvente organico polare è usato in quantità compresa tra 0.3 e 1.2 litri per ogni litro di solvente idrocarburico usato.

11. Il processo secondo la rivendicazione 1, in cui la quantità di acqua utilizzata è compresa tra 0.2 e 5 litri per ogni litro di solvente idrocarburico usato.

12. Il processo secondo la rivendicazione 11, in cui la quantità di acqua utilizzata è compresa tra 0.3 e 1 litro, per ogni litro di solvente idrocarburico usato.

13. Il processo secondo la rivendicazione 1, in cui detta estrazione è condotta ad una temperatura compresa tra 0 e 70°C.

14. Il processo secondo la rivendicazione 13, in cui detta estrazione è condotta ad una temperatura compresa tra 20 e 30°C.

15. Il processo secondo la rivendicazione 1, in cui dette fosfatidilserine di formula (I) sono preparate mediante transfosfatidilazione di fosfatidilcoline di origine naturale o di sintesi.

(BRA/pd)

✓P

Milano, 5 Dicembre 2000

p. CHEMI S.p.A.

Il Mandatario

Dr. Diego Pallini

NOTARBARTOLO & GERVASI S.p.A.

