Jaspreet Singh 00513207218 CSE- 1

MACHINE LEARNING LAB PROGRAM Submission -4

Github link: LAB Program - 4

EXPERIMENT-4

AIM:

Estimate the precision recall accuracy f-measure of the decision classifier on a breast cancer dataset using 10 fold cross validation.

ALGORITHM:

- 1. Select the best attribute using Attribute Selection Measures (ASM) to split the records.
- 2. Make that attribute a decision node and breaks the dataset into smaller subsets.
- 3. Starts tree building by repeating this process recursively for each child until one of the conditions will match:
 - a. All the tuples belong to the same attribute value.
 - b. There are no more remaining attributes.
 - c. There are no more instances.

PROGRAM CODE SNIPPET:

LOADING DATA SET:

		ndas as p mpy as np											
	<pre>bc_data=pd.read_csv('cancer.csv') bc_data</pre>												
]:		id diagn	osis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	compactness_mean	concavity_mean	concave points_mean		
	0 842	302	М	17.99	10.38	122.80	1001.0	0.11840	0.27760	0.30010	0.14710		
	1 842	2517	М	20.57	17.77	132.90	1326.0	0.08474	0.07864	0.08690	0.07017		
	2 84300	903	М	19.69	21.25	130.00	1203.0	0.10960	0.15990	0.19740	0.12790		
	3 84348	301	M	11.42	20.38	77.58	386.1	0.14250	0.28390	0.24140	0.10520		
	4 84358	3402	М	20.29	14.34	135.10	1297.0	0.10030	0.13280	0.19800	0.10430		
56	64 926	424	М	21.56	22.39	142.00	1479.0	0.11100	0.11590	0.24390	0.13890		
56	65 926	682	М	20.13	28.25	131.20	1261.0	0.09780	0.10340	0.14400	0.09791		
56	66 926	954	М	16.60	28.08	108.30	858.1	0.08455	0.10230	0.09251	0.05302		
56	67 927	241	М	20.60	29.33	140.10	1265.0	0.11780	0.27700	0.35140	0.15200		
	68 92	751	В	7.76	24.54	47.92	181.0	0.05263	0.04362	0.00000	0.00000		

PREPROCESSING:

In [3]: bc_data.drop('Unnamed: 32', inplace=True, axis=1)
bc_data

Out[9]: DecisionTreeClassifier(random_state=0)

]:	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	compactness_mean	concavity_mean	concave points_mean
	0 842302	М	17.99	10.38	122.80	1001.0	0.11840	0.27760	0.30010	0.14710
	1 842517	М	20.57	17.77	132.90	1326.0	0.08474	0.07864	0.08690	0.07017
	2 84300903	М	19.69	21.25	130.00	1203.0	0.10960	0.15990	0.19740	0.12790
	84348301	M	11.42	20.38	77.58	386.1	0.14250	0.28390	0.24140	0.10520
	4 84358402	М	20.29	14.34	135.10	1297.0	0.10030	0.13280	0.19800	0.10430
56	926424	M	21.56	22.39	142.00	1479.0	0.11100	0.11590	0.24390	0.13890
56	926682	М	20.13	28.25	131.20	1261.0	0.09780	0.10340	0.14400	0.09791
56	926954	М	16.60	28.08	108.30	858.1	0.08455	0.10230	0.09251	0.05302
56	927241	M	20.60	29.33	140.10	1265.0	0.11780	0.27700	0.35140	0.15200
56	8 92751	В	7.76	24.54	47.92	181.0	0.05263	0.04362	0.00000	0.00000

In [4]:	<pre>from sklearn.model_selection import train_test_split, cross_val_score</pre>
In [5]:	<pre>x= bc_data.drop('diagnosis', axis=1) y=bc_data.diagnosis</pre>
In [6]:	<pre>x_train, x_test, y_train, y_test = train_test_split(x,y, test_size=0.2)</pre>
In [7]:	<pre>from sklearn.tree import DecisionTreeClassifier as dt</pre>
In [8]:	<pre>classify=dt(random_state=0) classify</pre>
Out[8]:	DecisionTreeClassifier(random_state=0)
In [9]:	<pre>classify.fit(x_train, y_train)</pre>

ML ALGORITHM IMPLEMENTATION:

10 Cross Validation

Precision

```
In [16]: precision = tp/(tp+fp)
precision
```

Out[16]: 0.7619047619047619

Recall

```
In [17]: recall = tp/(tp+fn)
recall
```

Out[17]: 0.8648648648648649

F-Measure

```
In [18]: f1= (2*precision*recall)/(precision+recall)
f1
Out[18]: 0.810126582278481
```

In []: