SMZ

ZANZIBAR EXAMINATIONS COUNCIL FORM THREE ENTRANCE EXAMINATION

054

ENGINEERING SCIENCE

TIME 2:30 HOURS

FRIDAY 05TH NOVEMBER, 2021 A.M

INSTRUCTIONS TO CANDIDATES

- 1. This paper consists of THREE (3) sections A, B and C.
- 2. Answer ALL questions in sections A, B and C.
- 3. ALL answers must be written in the space provided.
- 4. All working must be written in black or blue ink and diagrams must be in pencil.
- 5. Write your examination number on every page of this booklet.
- 6. Calculators, cellular phones and unauthorized materials are not allowed in the examination room.

	FOR EXAMINER'S USE ONLY					
QUESTION NUMBER	MARKS	SIGNATURE	QUESTION NUMBER	MARKS	SIGNATURE	
1			6			
2			7			
3			8			
4			9			
5			10			
TOTAL						

This paper consists of 12 printed pages

SECTION A: (15 Marks)

Answer all questions from this section

1.		se the letter o below.	f the correct	answer a	nd write it below tl	he item number in the
	i)	One of the u	ınits used to	express v	vork done is	
		A: J/s	B: m/s	C: Nm	D: N	
	ii)	The ability o	f an object t	o float is l	known as	
		A: Archimed	es principle		B. Buoyancy	
		C: Floatation	1		D. Law of floatation	on
	iii)	The work do	ne by a crar	ne used to	lift a weight of 40	00kg through a
		height of 12	2m is			
		A: 48KJ	B: 4	4.893KJ	C: 470.88KJ	D: 3.27KJ
	iv)	The ratio of	power outpu	ut to powe	er input is known as	S
		A: Efficiency			B: Effort	
		C: Mechanic	al advantage	е	D. Velocity ratio	
	v)	The internal	and externa	ıl diamete	rs of a tube can be	measured by using
		A: Micromete	er screw gau	ıge	B: Meter rule	
		C. Vernier he	eight gauge		D: Vernier calipe	rs
	vi)	This is not a	n example o	f force		
		A: Gravity	B: Nev	vton	C: Repulsion	D. Tensional
	vii)	F= ma. This	s is a			
		A: law of ine	ertia		B: momentum	change
		C: Newton's	second law	of motion	D: Newton's thi	rd law of motion
	viii)	For a body r	noving upwa	ard, then		
		A: Accelerati	on is zero		B: Acceleration	is 10ms ⁻²
		C. Final velo	city is zero		D: Initial velocit	ty is zero

ix) Given the figure below

If the rod is balanced, then the weight W is equal to:

A: 6000N

B: 600N

C: 60N

D: 6N

x) Which of the following is not a form of energy?

A: Heat

B: Light

C: Sound

D. Weight

Answers

i	ii	iii	iv	٧	vi	vii	viii	ix	Х

2. Match the term related to light energy in **Column A** with the meaning of the term in **Column B** by writing its letter below the item number in a given table.

Column A	Column B
i. Transparent materials	A: A group of light rays
ii. Light ray	B: Allow only part of the light to pass through them
iii. Opaque materials	C: material that allows light to pass through them
	D. A straight line with an arrow
iv. Translucent materials	E: The path along which light energy travel in a Medium
v. Beam of light	F: Materials that do not light to pass through at all
	G: Materials that allow heat to pass through them

Answers

i	ii	iii	iv	V

SECTION B: (70 Marks)

Answer ALL questions from this section.

b)	State the kinetic theory	of matter.	
c)		s its specific examples. Support th	nis statement b
	filling the table below State	Examples	
	i)	a) Wooden box	
		b) lead shots	
	ii) Gas	a)	
		b)	
	iii)	a) Milk	
	"")	'	

Candidate's Examination Number.....b) Briefly explain the following types of errors.

i) Parallax error		
ii) Zero error		
iii) Instrumental error		
c) Mention the quantity the i) Beam balance ii) Measuring cylinder iii) Tape measure	nat can be measured b	y each of the following instruments
One of the students in Fo and asked you to give him a) Give the meaning of the	m brief information rela	ng the Engineering Sciences lesson ated to sound wave.
i) Sound wave	ii) Reflection	iii) Refraction

5.

	I of sound in a mency is 2 kHz?	netal is 1000 r	n s $^{-1}$. What is	s the waveler	ngth if the
a) i) Ar	alyze three (3) a	dvantages of	friction.		
a) i) Ar	alyze three (3) a	dvantages of	friction.		
	alyze three (3) a			o minimize fr	iction.
				o minimize fr	iction.
ii) Lis		nethods that o	can be used to		

a) Efficiency of a machine never reaches 100%. As a young scientist, give the reason(s). b) People use different types of simple machines to simplify their works. Idea any four (4) examples of simple machines. c) A machine having a velocity ratio of 5 requires 600J of work to raise a load 400J, If the load moved through a distance of 0.5m. Calculate i) The mechanical advantage ii) Efficiency of a machine		
b) People use different types of simple machines to simplify their works. Ideany four (4) examples of simple machines. c) A machine having a velocity ratio of 5 requires 600J of work to raise a load 400J, If the load moved through a distance of 0.5m. Calculate i) The mechanical advantage		
b) People use different types of simple machines to simplify their works. Ideany four (4) examples of simple machines. c) A machine having a velocity ratio of 5 requires 600J of work to raise a load 400J, If the load moved through a distance of 0.5m. Calculate i) The mechanical advantage		
b) People use different types of simple machines to simplify their works. Ideany four (4) examples of simple machines. c) A machine having a velocity ratio of 5 requires 600J of work to raise a load 400J, If the load moved through a distance of 0.5m. Calculate i) The mechanical advantage		
b) People use different types of simple machines to simplify their works. Ideany four (4) examples of simple machines. c) A machine having a velocity ratio of 5 requires 600J of work to raise a load 400J, If the load moved through a distance of 0.5m. Calculate i) The mechanical advantage		
any four (4) examples of simple machines. c) A machine having a velocity ratio of 5 requires 600J of work to raise a loa 400J, If the load moved through a distance of 0.5m. Calculate i) The mechanical advantage	a)	
any four (4) examples of simple machines. c) A machine having a velocity ratio of 5 requires 600J of work to raise a loa 400J, If the load moved through a distance of 0.5m. Calculate i) The mechanical advantage		
400J, If the load moved through a distance of 0.5m. Calculate i) The mechanical advantage	_	
400J, If the load moved through a distance of 0.5m. Calculate i) The mechanical advantage		
i) The mechanical advantage	c)	
ii) Efficiency of a machine		i) The mechanical advantage
		ii) Efficiency of a machine
~		

	Candidate 3 Examination	
a) i) Name any three	3) sources of light.	
, ,	,	
ii) Distinguish betw	een luminous bodies and nor	n-luminous bodies.
b) Explain five (5) Cha	acteristics of an image forme	ed by a plan mirror.
a) State five (5) applic	tions of science in real life.	
a) State IIVe (3) applied	dons of science in real inc.	

Candidate's Examination Number..... b) i) Give the difference between derived physical quantities and fundamental physical quantities. ii) Identify any three (3) fundamental physical quantities. **SECTION C: (15 Marks)** Answer ALL questions from this section. a) Your brother has a radio set that needs 9V and a calculator that requires 0.75V to operate. He has a box containing ten 1.5V dry cells. Show how you will obtain 9V for the radio and 0.75V for his calculator. b) Suppose that your engineering science teacher has kept a swath, 3V battery, two electric bulbs and a piece of wire 1m long on a bench. Construct an electric circuit that will be used to light ON and OFF a light bulb using the given materials.

10.

 	 	1 1 1 1 1 1 1 1 1 1

Candidate's Examination Number			

Candidate's Examination Number