11 Publication number:

0 362 531

(12)

EUROPEAN PATENT APPLICATION

- (21) Application number: 89115358.7
- (s) Int. Cl.5: C07K 13/00 , A61K 37/02 , C12P 21/00

- 2 Date of filing: 19.08.89
- Priority: 01.09.88 US 23957125.10.88 US 26242810.08.89 US 390662
- Date of publication of application: 11.04.90 Bulletin 90/15
- ② Designated Contracting States:
 AT BE CH DE ES FR GB GR IT LI LU NL SE
- Applicant: Molecular Therapeutics, Inc.
 400 Morgan Lane
 West Haven, Connecticut 06516(US)
- Inventor: Greve, Jeffrey, Dr. 64 Wildwood Drive Branford, CT 06405(US) Inventor: McClelland, Alan, Dr. 300 Schoolhouse Road Old Saybrook, CT 06475(US) Inventor: Davis, Gary 42 Holbrook Street Milford, CT 06460(US)
- Representative: Dänner, Klaus, Dr. et al o/o Bayer AG Konzernverwaltung RP Patente Konzern D-5090 Leverkusen 1 Bayerwerk(DE)
- A human rhinovirus receptor protein that inhibits virus infectivity.
- (iii) A water soluble human rhinovirus (HRV) major receptor preparation comprising detergent-complexed glycoprotein isolated from animal cells, preferably mammalian cells, that express the HRV major receptor and which exhibits the ability to bind to HRV capsids to substantially reduce infectivity of the virus. The purified, water soluble receptor is obtained by extracting cells expressing the receptor with detergent and isolating the solubilized detergent-glycoprotein complexes by binding to monoclonal antibody selective for the HRV receptor protein.

EP 0 362 531 A1

A HUMAN RHINOVIRUS RECEPTOR PROTEIN THAT INHIBITS VIRUS INFECTIVITY

BACKGROUND OF THE INVENTION

The present invention relates to the isolation of proteins from animal cells, particularly mammalian cells, that bind to human rhinovirus (HRV). More particularly, the invention relates to the isolation of HRV receptor proteins that can bind to HRV and thereby block the infectivity of the virus. This property can serve as a basis for inhibiting the initiation or the spread of HRV infections, better known as the common cold.

In order to infect host cells, viruses must bind to and then enter cells to initiate an infection. Since 1959, evidence has accumulated in the literature indicating that the presence of specific binding sites (receptors) on host cells could be a major determinant of tissue tropism of certain viruses. [Holland, J.J., and McLaren, L.C., The mammalian cell-virus relationship. II. Absorption, reception, and eclipse of poliovirus by HeLa cells, J. Exp. Med. 109, 487-504 (1959). Holland, J.J., Receptor affinities as major determinants of enterovirus tissue tropisms in humans, Virology 15, 312-326 (1961).] Among picornaviruses such as poliovirus, coxsacchie virus, and rhinoviruses, specific binding to host cells has been demonstrated. By competition experiments, it has been demonstrated that some of these receptors are distinct from one another in that the saturation of the receptor of one virus had no effect on the binding of a second virus. [Lonberg-Holm, K, Crowell, R.L., and Philipson, L. Unrelated animal viruses share receptors, Nature 259, 679-681 (1976)].

Rhinoviruses form the largest family of picornaviruses, with 115 distinct serotypes identified to date. A large fraction of rhinoviruses (estimated to be 80%) appear to bind to a common receptor on human cells. [Abraham, G., and Colonno, R. J., Many rhinovirus serotypes share the same cellular receptor, J. of Virology 51, 340-345 (1984).] In 1985, the isolation of a monoclonal antibody that appeared to be directed against the major rhinovirus receptor was described. [Colonno, R.J., Callahan, P.L., and Long, W. J., Isolation of a monoclonal antibody that blocks attachment of the major group of human rhinoviruses, J. of Virology 57, 7-12 (1986).] It inhibited infection of cells with the appropriate serotypes of rhinovirus and it inhibited binding of radiolabeled rhinovirus to cells. This group subsequently reported that the monoclonal antibody bound to a protein with an apparent molecular weight of 90,000 daltons. Tomassini, J.E., and Colonno, R.J., Isolation of a receptor protein involved in attachment of human rhinoviruses, J. of Virology 58, 290-295 (1986).] This monoclonal antibody has been utilized in clinical trials with primates and humans and is understood to provide some protection against rhinovirus infection.

There are several other reports of attempts at therapeutic intervention in rhinovirus infections. Intranasal application of interferon in humans has been attempted. [Douglas, R.M., et al., Prophylactic efficacy of intranasal alpha2-interferon against rhinovirus infections in the family setting, The New England J. of Medicine, 314, 65-75 (1986).] In this case, significant reduction in the severity of the infection was found, although nosebleeds were observed as a side-effect. Also, several analogs of disoxaril ("WIN" compounds) that reduce the infectivity of a number of picornaviruses (with widely varying effectiveness, depending on the serotype) have been tested in tissue culture and in some animal models. [Fox, M.P., Otto, M.J., and McKinlay, M.A., Antimicrob. Ag. and Chemotherapy 30, 110-116 (1986).] These compounds appear to inhibit replication at a step subsequent to receptor binding, probably at some step of virus uncoating. The atomic coordinates of the binding sites of these compounds within the viral capsid of the serotype HRV14 have been determined by x-ray crystallography, and are located in a hydrophobic pocket present in each protomeric unit of the capsid. [Smith, T.J., et al., The site of attachment in human rhinovirus 14 for antiviral agents that inhibit uncoating, Science 233, 1286-1293 (1986).] The specific function of the binding pocket, if any, is unknown, but drug-resistant mutants with single amino acid interchanges in this region arise at high frequency and are viable. [Badger, J. et al., Structural analysis of a series of antiviral agents complexed with human rhinovirus 14, PNAS 85, 3304-3308 (1988).] This result calls into question the efficacy of such compounds as drugs. The production of anti-peptide antibodies in rabbits has been reported using peptides derived from amino acid sequence of the viral capsid proteins that line the "receptor canyon" of HRV14. [McCray, J., and Werner, G., Different rhinovirus serotypes neutralized by antipeptid antibodies, Nature 329:736-738 (1987).] While the titers of these sera are quite low, cross-serotype protection of cells in tissue cultur from rhinovirus infection was demonstrated, raising the possibility of a vaccine.

It is an object of the present invention to isolate an HRV receptor prot in from cells having the property of blocking HRV infection. Given the high affinity the virus has for its receptor, it was hypothesized that a therapeutic agent effective against HRV infection might be the receptor itself, or more specifically, the virus binding domain of the receptor. A protein, protein fragment, or peptide that comprises the virus binding

domain could block the ability of virus to bind to host cells by occupying (blocking) the receptor binding cleft on the virus. Furthermore, since such a molecule would make some or all of the molecular contacts with the virus capsid that the receptor does, virus mutations that adversely affect binding of the molecule would adversely affect binding of the receptor, and would thus be deleterious or lethal for the virus; therefore, the likelihood of drug-resistant mutants would be very low. Furthermore, such a molecule would be human, lowering the likelihood of being antigenic in humans.

SUMMARY OF THE INVENTION

10

It has been found that the human rhinovirus (HRV) major receptor can be isolated as a water soluble preparation which exhibits the desired property of binding to HRV capsids and substantially reducing infectivity of the virus. The preparation is in the form of detergent-complexed glycoprotein isolated from animal cells, preferably mammalian cells, that express the HRV major receptor. The purified receptor protein is characterized as follows. It is a glycoprotein with an apparent molecular weight of 95,000 daltons and includes the binding site for HRV. The glycoprotein contains 6-7 asparagine-linked oligosaccharide chains and exists in the preparation in the form of a detergent micelle-bound protein.

20

DESCRIPTION OF THE PREFERRED EMBODIMENTS

In general terms, the HRV major receptor preparation of the present invention can be obtained by extraction of appropriate animal cells that are known to express the HRV major receptor with a nonionic detergent, followed by immunopurification. Many human cell lines express the receptor, such as HeLa and WI38. Any of these human sources of HRV receptor can be extracted. Particularly useful are HeLa cells. Furthermore, non-human mammalian transfectant cell lines that express the HRV receptor are known or can be prepared which provide another useful source of the receptor. In particular, transfectant cell lines as described in European Patent Application Publication No. 0 319 815 provide a ready source of receptor, particularly those secondary transfectants that have been selected for overexpression of receptor. Other animal cells as are known in the art or developed hereafter, such as insect tissue culture cells that have been transfected with the gene and express the receptor, can also be used.

Essentially any nonionic detergent can be used for the extraction provided the native conformation of the protein receptor is not destroyed. Denaturation of the receptor can be determined by monitoring the ability of the extracted protein to inhibit virus infectivity or by sensitivity to proteolysis. It has been determined that the receptor can be denatured by heating at 60 °C for 30 minutes or by treatment with 1% SDS indicating that care need be taken to maintain the native conformation of the HRV binding site. Examples of useful non-ionic detergents are the alkyl polyoxyethylene ethers (such as Brij), alkylphenyl polyoxyethelene ethers (such as Triton X-100 and Nonidet P-40), acyl polyoxyethylene sorbitan esters (such as Tween), and beta-D-alkyl glucosides, with Triton X-100 being considered particularly preferred.

The key step in the purification of the receptor is fractionation with highly selective anti-receptor antibody. The most ready means to obtain such an antibody is by monoclonal techniques. It is particularly preferred to produce mouse monoclonal antibodies by generating hybridoma cell lines from fusion of murine myeloma cells and mouse transfectant cells expressing the HRV receptor. Further details are available in European Patent Application Publication No. 0 319 815. After binding the detergent-glycoprotein complexes obtained from the cell extract to the selected monoclonal antibody, complexes bound to antibody are separated from the remainder of the mixture. Thereafter, detergent-receptor complexes bound to antibody are dissociated, taking steps to again prevent denaturation, and the resulting water soluble receptor preparation isolated. Appropriate conditions for dissociating detergent-receptor complexes from the antibody can be determined empirically and can be expected to vary somewhat from antibody to antibody. Dissociation by raising pH has been found in some cases to be most effective with low pH or high salt conditions being operable but producing lower protein yields.

It is preferabl to perform an intermediary purification before purification with antibody. Such intermediary steps comprise adsorbing the detergent extracted protein complexes to a lectin capable of binding HRV receptor, separating absorbed complexes from the remainder of the mixture, and dissociating such complexes for subsequent treatment with antibody. The selection of lectin and dissociating conditions is usually empirical. It has been found that the HRV receptor binds suitably to wheat germ agglutinin lectin

and is dissociated effectively by washing with a solution of N-acetyl glucosamine. Because the oligosaccharides on the receptor protein are not completely characterized, and because the receptor protein can be glycosylated differently on different cell types (e.g., mouse cell transfectants), other lectins would be expected also to be suitable. The selection of an appropriate alternative to wheat germ agglutinin and/or eluting agent can be left to the ordinary skill in the art.

The resulting preparation can be treated with proteolytic agents such as proteases, e.g., trypsin, to produce smaller glycoprotein fragments that retain the ability to bind and reduce infectivity of HRV. For example, peptide fragments can be cleaved from a terminal region of the glycoprotein, e.g., the C-terminus, to yield glycoprotein fragments that retain HRV binding. Such glycoprotein fragments can, for example, have apparent molecular weights of between about 80,000 daltons and about 95,000 daltons. Smaller fragments which retain the HRV binding domain of the receptor are also considered to be within the scope of the present invention.

The receptor preparation of the present invention has been shown to inhibit the infectivity of the virus, presumably by binding to the HRV capsid to block its ability then to bind and infect human cells. Such an observation indicates that the receptor preparation will be useful in reducing the infection of host human cells in vivo by contacting the virus with the preparation under conditions favorable to binding with the virus. A therapeutic form would be that of an aqueous solution of the receptor in the presence of nonionic detergent to maintain the receptor in solution and in its native conformation. Detergents with lower critical micelle concentrations, such as the alkyl polyoxyethylene ether Brij 58, would be preferred in order to reduce the concentration of the detergent in the therapeutic solution. The receptor preparation can be administered in vivo by appropriate contact with those areas of the body susceptible to infection by HRV, e.g., by intranasal spray.

The present invention will now be illustrated, but is not intended to be limited, by the following examples.

Preparation of Purified Human Rhinovirus Receptor (HRR) Protein

25

- (1) Human cells (for example, Hela) or mouse L-cell transfectants (for example, the cell lines described in European Patent Application Publication No. 0 319 815,
- "Transfectant Cell Lines Which Express the Major Human Rhinovirus Receptor") were grown up in large numbers as cellular monolayers in standard tissue culture medium (Dulbecco's modified essential medium containing l0% fetal bovine serum; transfectant cells were maintained in the same medium containing HAT (hypoxanthanine/aminoptherin/thymidine) to maintain selective pressure for the selectable marker (Herpes TK). Cells were solubilized for 1 hour at 4°C in a physiological buffer (Phosphate-buffered saline) containing a nonionic detergent (for example, Triton X-100) (T buffer) and a cocktail of protease inhibitors (aprotinin, leupeprin at 10 μg/ml, EDTA at 1 mM) to prevent proteolytic degradation of the receptor. Insoluble material was removed by filtration through a 0.22 μ filter.
 - (2) The extract was absorbed onto an affinity resin containing Wheat Germ Agglutinin (WGA) (Sigma Chemical Co., St. Louis, MO, USA) crosslinked to Sepharose for 18 hours at 4 °C with gentle mixing (2 ml packed resin, containing 5 mg WGA/ml resin, per 109 cells). The affinity resin was then washed extensively with buffer to remove unbound glycoproteins and eluted with the competing monosaccharide N-acetyl glucosamine (0.3M N-acetyl glucosamine in T buffer) for 1 hour at room temperature.
 - (3) The WGA-Sepharose eluant is then absorbed to an affinity resin to which purified monoclonal antibody to the HRR has been coupled (e.g., ATCC HB 9a594, referred to in the European Patent Application Publication No. 0 319 815). The monoclonal antibody IgG was purified by ammonium sulfate precipitation [Parham, P., Meth. Enzymol. 92:110-138 (1983)], followed by affinity chromatography on either protein A Sepharose [Ey, P.L., et al., Immunochem. 15:429-436 (1978)] or an Abx column [J.T. Baker Co., Phillipsburg, NJ, USA] following the procedure described by the manufacturer. Monoclonal IgG affinity resin is prepared by coupling IgG to cyanogen bromide-activated Sepharose [Parham, P., supra].
 - After adding 10 ug/ml human transferrin to block adsorption of transferrin receptor to the resin, the eluant is incubated at 4°C for 18 hours with the resin with mixing (40-200 µl of resin, containing 5 mg lgG/ml resin, per 10⁹ cells), washed extensively with T buffer to remov unbound proteins, and thin eluted under nondenaturing conditions with a high pH buffer (0.05 M diethanolamine (pH 11.5) with 0.1% Triton X-100) for 1 hour at room temperature. The eluant is removed, neutralized by the addition of 0.2 volumes of 1 M HEPES (pH 7.2), and dialysed against three changes of a physiological buffer containing a small amount of nonionic detergent to maintain the solubility of the receptor (0.01 M HEPES, 0.150 M NaCl, 0.001 M CaCl₂.

0.1% Triton X-100, pH 7.5).

25

55

The receptor may be further purified by velocity sedimentation through sucrose gradients to remove a group of minor high molecular weight (>200,000 daltons) contaminants. The receptor preparation is layered on top of a 15-35% sucrose gradient (total volume about 4.5 ml, and centrifuged at 300,000 X g for 18 hours at 4°C. Fractions are collected from the gradient and fractions containing the rhinovirus receptor, which sediments about 1/3 of the way down the gradient, are pooled, concentrated (if necessary), and dialysed.

- (4) The resultant preparation from Hela cells was found to contain a glycoprotein with an apparent molecular weight of 95,000 daltons. From mouse transfectant cells, a protein of the same molecular weight but of greater heterogenity (upon analysis by SDS-PAGE) was isolated. The isolated protein has been shown to comprise the rhinovirus receptor by:
- (a) Immunoprecipitation from ¹²⁵I-surface labeled Hela cells and mouse transfectants expressing the human rhinovirus receptor with a monoclonal antibody that inhibits rhinovirus binding to cells.
- (b) Immunoprecitation of purified, ¹²⁵ I-labeled receptor with the ATCC HB 9594 monoclonal antibody.
- (5) A tryptic fragment was prepared by digesting the receptor with 1% (wt E/wt receptor protein) trypsin for 1 hour at 37°C. The reaction mixture was applied to a GF-450 gel filtration column (Dupont) equilibrated in N buffer and the proteolytic fragment separated from the enzyme. Analysis of the resultant fragments by SDS-PAGE indicated a mixture of a 90,000 dalton and an 83,000 dalton fragment of the receptor. These fragments eluted in the same position on a gel filtration column as intact receptor, suggesting that it is bound to a detergent micelle. Amino acid sequencing of the fragments yielded no sequence, indicating that they, like the intact receptor, have a blocked N-terminus, and further indicating that peptides lost from the 90,000 and 83,000 dalton fragments are from the C-terminus of the protein.

Characterization of the Preparation

- (1) The purity of the receptor preparation was assessed by SDS-PAGE followed by silver staining. Quantitation of protein was determined by comparing silver stained protein with a series of standard proteins of known amount on SDS-PAGE and confirmed by amino acld analysis, assuming a protein molecular weight of 50,000 daltons (determined by determining the apparent molecular weight on SDS-PAGE of deglycosylated receptor).
- (2) The protein was shown to be a glycoprotein containing 6-7 asparagine-linked oligosaccharide chains by digestion of core-glycosylated receptor with endoglycosidase H. Upon gel filtration, the receptor eluted with a volume consistent with a protein molecular weight of 250,000 daltons. This data, along with evidence from chemical cross-linking experiments indicating the receptor is a monomer, are consistent with the receptor behaving like a protein bound to a detergent micelle.
- (3) The purified receptor protein was shown to bind to rhinovirus in vitro. When incubated for 30 minutes at 34°C with 1 μg/ml HRV14 or HRV3, unlabeled, ¹²⁵ l-labeled, and ³⁵ S-cysteine metabolically labeled HRR could be shown to associate with virus by sedimentation in sucrose gradients or by pelleting in a high speed centrifuge. This binding could be shown to be specific by competing the binding of radiolabeled receptor with unlabeled receptor. The in vitro reaction had the same temperature-dependency as in vivo: receptor bound to the virus at 37°C but not at 4°C.
- (4) The receptor was shown to inhibit infectivity of rhinovirus by incubating HRR with virus (under the same conditions as described above in which binding could be demonstrated) and then testing the resultant mixtures for infectivity by a standard limiting dilution infectivity assay. A Hela cell suspension was prepared by detaching with 0.03% EDTA/PBS for 10 minutes, and the cells washed in 2% FBS/DMEM (I medium) with 10 mM HEPES and adjusted to a concentration of 1.1 x 10⁷ cells/ml. Virus or virus-receptor mixtures were serially diluted in I medium, and 20 μl of virus was mixed with 180 μl of cells and incubated for 60 minutes at room temperature. The mixture was then diluted with 9 volumes of I medium and plated out into 8-10 wells of a 96 well tissue culture plate (approximately 200 μl/well), and cultured at 34°C for 5 days. Cultures were then scored by CPE (cytopathic effect) and the titer of the original stock determined by the following formula:

dead wells/10 X 50 X dilution factor = PFU/ml

The results are shown in the Table below.

Tabl

5

10

15

20

Virus	HRR (M/L)	Virus Titer (PFV/ml)
HRV14	0	2 x 10 ⁷
HRV14	6.6 x 10 ⁹	3.5 x 10 ⁶
HRV14	2 x 10 ⁻⁸	4.5 x 10 ⁶
HRV14	6.6 x 10 ⁻⁸	2 x 10 ⁶
HRV14	2 x 10 ⁻⁷	3 x 10 ⁴
HRV3	0	2.5 x 10 ⁶
HRV3	6.6 x 10 ⁻⁹	3 x 10 ⁵
HRV3	2 x 10 ⁻⁸	3.5 x 10 ⁵
HRV3	6.6 x 10 ⁻⁸	3.5 x 10 ⁴
HRV3	2 x 10 ⁻⁷	5 x 10 ³

Additional HRV serotypes were tested. HRV 4, 11, 17 and 89 serotypes (major class) were inhibited by the virus, whereas HRV 1a and 2 (minor class) were not.

The results described above indicate that the purified HRR can block the infectivity of rhinoviruses belonging to the major receptor class of rhinoviruses. The infectivity inhibition property of the receptor protein is correlated with its ability to bind to the virus, and is presumed to act by blocking the receptor binding site on the virus. This property of the receptor is manifested at low concentrations of the receptor protein, and indicates a high affinity of the receptor for the virus. The significance of these results is that the purified, soluble receptor could be used to inhibit the initiation or the spread of rhinovirus infections in vivo. The purified protein also provides a source of material from which smaller protein fragments and peptides could be derived which have the same activity as the intact receptor.

Figure 1. Amino acid sequence of ICAM (minus signal sequence). Sequences obtained from peptide fragments of HRR are indicated as dotted or dashed lines under corresponding sequence of ICAM; dashed means confidently assigned peptide sequences, dotted means ambiguous assignments, and xx means incorrect determinations of ambiguous assignments. The numbers under peptide sequences indicate code name of protein sequencing experiment.

Purified protein was then subjected to limited or complete proteolytic degradation, peptides were purified by either reverse-phase chromatography, gel filtration, or SDS-PAGE, and then subjected to automated protein sequencing. These sequences were used to search protein sequence (NRFB and MIPSX) and DNA sequence (Genbank) databases. A match of all known peptide sequences determined from HRR protein was made. (Intercellular Adhesion Molecule-1 Simmons et al, "ICAM, An Adhesion Ligand of LFA-1, Is Homologous To The Neural Cell Adhesion Molecule of NCAM", Nature, 331., 624-627 (1988)). ICAM was under investigation by other researchers because of its role in the adhesion of T lymphocytes to a variety of different cell types. It is hypothesized that ICAM (present on fibroblasts, epithelial cells, leukocytes, and endothelial cells) interacts with a structure called LFA-1 (lymphocyte-function associated antigen-1) present on the surface of T lymphocytes, and is thereby responsible for the adhesion to these cell types.

We had determined the sequence of 106 amino acids of the rhinovirus receptor, and all 106 matched exactly the sequence of ICAM (out of a total of 507 amino acids predicted for the ICAM sequence). Other biochemical information supports the identity of HRR with ICAM. First, the primary mRNA translation product synthesized in an in vitro translation system has an apparent molecular weight of 55,000 daltons which is the same as ICAM. Secondly, the HRR protein species found in cells poisoned with tunicamycin, a specific inhibitor of asparagine-linked glycosylation, has an apparent molecular weight of 54,000 daltons, consistent with the removal of a signal sequence from the N-terminus of the protein. Third, partial digestion of core-glycosylated HRR protein indicates the presence of seven asparagine-linked carbohydrate groups, consistent with the presence of eight pot ntial carbohydrate acceptor s quences (N-S/T) in the amino acid sequence of ICAM. Finally, the chromosome map position of HRR was determined to be human chromosome 19, identical to that determined for ICAM.

Since the complete nucleotide and amino acid sequence of ICAM has been determined, and there is substantial, if not overwhelming evidence that ICAM and the HRR ar the same or very similar molecules, the complete amino acid sequence of the rhinovirus receptor is now known. The determination of this amino acid sequence, which is a partial chemical structure of this molecule, provides the ability to design and

produce large amount of receptor protein, fragments, functional domains, and truncated versions, and analogs of receptor protein, and peptides that have inhibitory activity towards rhinovirus and coxsackie A virus infection. The complete amino acid sequence also provides information needed for biophysical and biochemical studies of rhinovirus-receptor interaction which will lead to the identification of crucial molecular contacts, which can be used for design of novel inhibitory molecules.

Since the ICAM molecule is a member of the immunoglobulin supergene family that maps to chromosome 19, (Eur. J. Immunol., 15, 103-106 (1984) and since other picornaviruses, such as poliovirus and coxsackie virus, bind to receptors whose genes are located on chromosome 19, it is possible that ICAM can be used as a basis for the development of therapeutics to counter infections by those other picornaviruses as well. It is possible that ICAM or fragments thereof would be useful directly as therapeutics for other viruses and inflammatory diseases. Alternatively, knowledge of ICAM structure will be useful in the identification of the receptors of those viruses. Further, ICAM-1 is closely related to two adhesion proteins of the adult nervous system, neural cell adhesion molecule (NCAM) and myelin-associated glycoprotein (MAG) and a family of epithelial cell molecules including CEA, NCA, TM-CEA, and the pregnancy-specific B1-glycoproteins. NCAM, MAG and ICAM-1 each have five immunoglobulin-like domains, see Dustin et al "Supergene Families Meet In The Immune System", Commentary, Elsevier Publications, Cambridge, 1988. The relationship of the picornaviruses and the supergene family of ICAM, NCAM and MAG provide the basis of developing proteins, protein fragments, functional domains, analogs and mixtures thereof for inhibiting infectivity of this class of viruses.

Knowledge of the amino acid sequence, and information about the ICAM protein coupled with the knowledge of HHR and rhinovirus provide the basis for the following approaches to design protein fragments and analogs for treatment of rhinovirus infection and for treatment of inflammation.

Soluble forms of biologically active host cell protein could be used to inhibit virus infection, in contrast to the cell membrane bound receptor protein that normally facilitates the infection. Soluble forms of biologically active receptor protein, protein fragments, functional domains or analogs could include use of detergents as described supra. Alternatively, elimination of the C-terminus could render the protein(s) soluble. A biologically active tryptic fragment is a mixture of two species, one with an apparent molecular weight of 83,000 daltons and one of 90,000 daltons (relative to HRR of 95Kd). The N-terminus of both species is blocked, indicating that they start from residue 1 of the intact HRR molecule, and peptides are removed from C-termius: the largest possible fragment would be from residue 1 to residue 488. The downward shift in apparent molecular weight relative to intact HRR indicates a loss of > 5,000 daltons, or 45 amino acid residues, which would plae the new C-termini of fragments at positions proximal (N-terminal) to the transmembrane segment.

Examples of soluble fragments could include the entire extracellular domain (up to a.a. 480) or could include either/or both distinct parts of the extracellular domain (a.a. 1-200; 200-460) of the amino acid sequence of the receptor protein. It is further anticipated that smaller peptide fragments may provide biologically active analogs for inhibiting virus infection.

A full length cDNA clone of the HRR will be isolated from a cDNA library of He1 or other cells expressing the receptor by screening with ollgonucleotides made from the published sequence of ICAM-1. Construction and expression of domain fragments of the HRR will be achieved using established recombinant DNA methodologies (Fisher et al, Nature, 331, 76-78 (1988); Hussey et al, Nature, 331, 78-81 (1988); Deen et al, Nature, 331, 82-86 (1988). A soluble extracellular domain will be made by cleaving a cDNA clone of the HRR coding sequence with Thal which cuts at position 37 in the signal peptide region and at position 1415, 12 amino acids before the start of the transmembrane domain. Synthetic oligonucleotide linkers will be added in a stepwise fashion to the 5' and 3' ends of the molecule to restore the signal peptide and initiator ATG at the N termnus and to introduce an in frame translational stop codon at the Cterminus. The position of the stop codon may be varied to produce alternative truncated forms of the molecule. Similarly, different infrequently cutting restriction enzymes will be used to insert stop codons in other regions of the molecule. Restriction enzyme sites will be included at the ends of the linkers to allow directional cloning into a variety of expression vectors. Oligonucleotide site directed mutagenesis, using conventional methods, will be used to introduce restriction enzyme sites where no convenient naturally occurring sites exist. Additionally, the polymerase chain reaction (PCA) technique will be used to produce specific DNA fragments encoding domains and other sub-regions of the molecule.

The approach described above will also be used to produce additional subfragments of the rec ptor such as the five immunoglobulin-like domains (residues 1-88, 89-185, 186-284, 285-385, 386-453, Staunton et al. Cell, 52, 925-933 (1988). In this case appropriate signal sequences to direct protein secretion for the expression system being used will be included. Various expression systems will be used including viral promoters in mammalian cells (Cate et al, Cell, 45, 685-698 (1986), insect cells (Smith et al Pros. Acad. Sci.

U.S.A., 82, 8404-8408 (1985); and E. coli (Sk rra and Pluckthun, Science, 240, 1038-1041 (1988). Subfragments of the receptor pr duced in the above manner will be tested for the ability to bind major rhinovirus serotypes and to reduce virus infectivity. Expression of the extra-cellular domain as described above will also be used to derive sufficient quantities of the soluble receptor for structural studies such as X-ray crystallography.

Structural studies utilizing enzymatic and chemical fragmentation of nonreduced ICAM-1 have mapped three disulfide bonds out of the total of 7 potential pairs and have tentatively mapped two adidtional disulfide bonds. These results indicate disulfide bonds between C108 and C159, between C210 and C263, and between C305 and C344; cleavage at M64 with CNBr indicates that C21 and C25 pair with C65 and C69, and model building based on the Iq-like fold indicates pairing C21 to C65 and C25 to C69. These data provide evidence to support a structural model of ICAM-1 with three N-terminal Ig-like domains (see figure 2.)

A series of cDNA's (tICAM's, or truncated ICAM's) were constructed from ICAM-1 cDNA to contain premature stop codons at amino acid positions 454, 284, or 185 of the mature protein in order to produce secreted proteins progressively truncated from the C-terminus. The positions of the truncations were selected based on the predicted borders of the transmembrane domain (tlCAM(1-453)), immunoglobulin-like domains 1+2+3 (tICAM (1-283)), and immunogobulin-like domains 1+2 (tICAM(1-183)) and immunoglobulin-like domain 1 (tlCAM(1-88). The protein products of these genes are diagramed in figure 2. They were constructed by Polymerase Chain Reactions (PCR) using 5 and 3 oligonuceotide primers that overlap the ICAM-2 coding sequence and contain restriction enzyme sites; the 5 primer contained an additional EcoR1 site and the 3 primers contained an additional translation stop codon and a Baml site. These DNA's were directionally cloned into the Bluescript-SK vector (Strategene), cut out with a HindIII/Xba digest. These genes and a control full length ICAM-1 cDNA were then directionally cloned into the expression vector CDM8 (Seed, et. al.) using the HindIII site at the $5^{'}$ end and the Xba site at the $3^{'}$ end of the gene. These plamids were transfected into COS cells using the DEAE-dextran technique and the cells cultured 72 hr. before assay. Surface expression was monitored by FACS using indirect immunofluorescence and a monoclonal antibody specific for ICAM-1. Secretion of ICAM-1 into the medium was monitored by metabolic labeling of cells for 7 hr. with 35 S cysteine followed by immunoabsorption of the culture supernatants with a monoclonal anti-ICAM-1-sepharose resin. The FACS analysis clearly showed surface expression of ICAM-1 in cells transfected with full-length ICAM-1; cells transfected with the CMS8 vector alone or with tICAM (1-453) showed no surface expression. When the material isolated from the metabolically-labeled culture supernatants were analysed by SDS-PAGE followed by fluorography, no ICAM-1 was observed in control or fullOlength ICAM-1 transfectants, while and 80,000 dalton species was secreted by tICAM(1-453) transfectants, a 65,000 dalton protein was secreted by tICAM (1-283) transfectants, and a 43,000 dalton protein was secreted by tICAM (1-184) transfectants. When the same material was stained for protein by silver staining, it was apparent that the tICAM(1-453) was substantially pure. Stable transfectants were generated by transfecting the same cDNA's mixed with the gene for a selectable marker (thymidine kinase for mouse L cells dihydrofolate reductase for CHO cells) into mouse Ltk- cells or hamster CHO(dhfr-) cells and subjected to drug selection (HAT selection for Ltk- cells and methatrexate for CHO (dhfr-) cells). Surviving cells were cloned and culture supernatants from these cells were screened by a radioimmune assay in which MAb c78.5 was absorbed to microtiter dishes, purified ICAM-1 or culture supernatants incubated with the MAb-coated dishes, and then bound ICAM-1 detected by incubation with 125-labeled MAb c78.4. Several L cell transfectants and one CHO cell transfectant secreting tlCAM(1-453) and L cells expressing tICAM(1-183) were obtained. Expression was confirmed by metabolic labeling of cells followed by immunoabsorption of culture supernatants as described above. tICAM(1-88) has been expressed in E Coli using the OmpA secretion vector of Inoue. In this system, the OmpA signal peptide is fused to the N-terminus of mature ICAM-1 protein. tICAM(1-88) and tICAM(1-183) have been placed into the OmpA vector; E Coli transformed with these vectors express protein products of the expected size as detected by western blotting of SDS-PAGE gels of cell extracts with anti-peptide antibodies to a sequence within domain 1 of ICAM-1.

Blocking studies with the panel of 6 MAbs to ICAM-1 (all of which inhibit virus binding to ICAM-1) indicate that there are two distinct epitopes defined by these antiboldes, one defined by c78.4 (containing c78.1, c78.2, c92.1, and c92.5). Immunoprecipitation studies with proteolytic fragments of ICAM-1 and with in vitro translations of truncat d ICAM-1 cDNA's indicate that both of these epitopes are contained within the first Ig-like domain.

In vitro virus-binding studies utilizing radiolabeled tICAM(1-453) and purified rhinovirus have indicated that it can bind to rhinovirus in solution.

Additional bi logically active fragments will be evaluated utilizing overlapping sets of synthetic peptides

of 10-20 residues corresponding to part or all of the HRR protein. The peptides will be made and individually tested for the ability to inhibit virus binding to receptor.

These peptide fragments could be direct copies of a portion of the rhinovirus receptor, or could contain sequences from non-contiguous regions of the receptor.

ICAM has been predicted, based on homology to NCAM, to be a member of the immunoglobulin g n superfamily. One would expect that the immunoglobulin-lik, domains in ICAM would have the basic "immunoglobulin fold", as has been shown for two other members of this family, beta-2-microglobulin and the HLA-A2 alpha-3 domain. This fold consists of a "beta-barrel" conformation consisting of two antiparallel beta-pleated sheets, one composed of three and one composed of four beta strands; a disulfide bond between two cysteine residues (separated by approximately 60 amino acids along the chain) connects the two sheets (Williams, A. F., Immun. Today 8, 298-303 (1987). Two of the disulfide bonds, those corresponding to domains 2 (C110-C161) and 3 (C212-C265), have been experimentally determined by us, providing support for the model. This model for the structure provides a basis for designing unique analogs that could mimic the virus binding site and be useful as receptor blockers. Each pair of antiparallel beta strands in the beta-barrel is linked by a hairpin turn of variable size; such turns or loops that protrude from secondary structures are often found to play roles in recognition of ligands (Lezczynski and Rose, Science. 224, 849-855 (1986). Such protruding structures may be of particular interest in the rhinovirus receptor, since the receptor binding site on the virus capsid is proposed to be in a recessed cavity. Using the sequence of the HRR, such turns and loops could be predicted based on a beta-barrel structure and produced as synthetic peptides with addition of novel cysteine residues at the N- and C-terminus of the peptides; a disulfide bond would then be formed between such residues on the same peptide to close the loop covalently (in contrast to the native protein, wherein the loop would be closed by noncovalent interactions between the adjacent beta-strands). Such peptides would have a conformation more analogous to the conformation in the native protein than a simple linear peptide, and would be tested for virus-binding activity.

Method of localizing the region or domain of the molecule responsible for virus-binding activity. Site-directed antibodies directed against specific portion of the HRR (predicted from a working model based on an immunoglobulin fold) could be produced by making synthetic peptides corresponding to selected regions of the protein, coupling such peptides to larger carrier proteins, and immunizing rabbits or other animals with such conjugates by standard methodology. Such antibodies could be tested for the ability to inhibit virus binding; inhibition with a subset of such antibodies would direct attention to specific domains or parts of domains.

Specific reactive groups on some amino acid residues on the receptor protein can be chemically modified under non-denaturing conditions. As a consequence of the modification of some residues virus-binding ability may be lost. By the use of radioactive tracers in the modifying reagent, the modification of some amino acid residues may be correlated with loss of binding activity, implicating those groups in recognition. This would direct attention towards a specific part of the molecule or a specific amino acid residue as playing a specific role in virus binding. Such residues could then be experimentally modified in in vitro mutagenesis experiments. As an example, it has been found that labelling HRR with radioactive Bolton/Hunter reagent (an N-hydroxysuccinimide ester, which specifically modifies N-termini and lysine residues) substantially reduces its ability to bind to rhinovirus.

Determination of the three dimensional structure of the virus-binding domain of the HRR by X-ray crystallography and/or Nuclear Magnetic Resonance. Using the three-dimensional coordinates of HRV14 (from the Brookhaven Data Bank), find the optimal "docking" of the two molecules by computer graphics methodology. The structure of the "docked" complex could then be used to refine and improve the properties of the protein or peptide fragment of the receptor. Examples of such improvements would be: (1) increasing the affinity of virus-binding reaction; (2) producing a smaller molecule; and (3) deleting or damaging other regions of the molecule, such as that needed for binding to LFA-1. If the binding site for LFA-1 is on a different domain, the domain could be deleted. Alternatively, if the binding site for LFA-1 is on the virus-binding domain, site directed mutagenesis of specific amino acids could be used to inhibit the ability to binding.

Key residues of the receptor involved in virus binding will be determined by oligonucleotide site directed mutagenesis. For example, pools of mutants produced by saturation mutagen sis will be screened by the method of Peterson and Seed (Cell, 54, 65-72 (1988), using either HRV14 or m noclonal antibody/complement killing as the negative selection, and a rabbit polyclonal antibody as the positive selection. Synthetic peptides corresponding to regions of the molecule identified in this way will be made and tested for virus binding and the ability to reduce infectivity.

Pharmaceutical preparations of proteins, protein fragments, functinal domain and analogs have an

EP 0 362 531 A1

application in a plurality or diseases. With the knowledge that HRV and LFA-1 both bind to ICAM it is anticipated that analogs of ICAM could be designed that bind to rhinovirus and thereby inhibit rhinovirus infection, but which do not disrupt the interaction of ICAM and LFA-1. Alternatively, mitogenesis of selected residues (amino acids) will be made based on structural predictions and biochemical structure.

Again with the knowledge that ICAM and HRR are the same molecule, it is anticipated that it may have application in tragments, functional domains or analogs of LFA-1 could be utilized to disrupt interactions between HRR and rhinovirus and thereby treat rhinovirus infections.

HRR or fragments of it may have application in the disruption of interactions between ICAM and LFA-1, which could be useful for the treatment of inflammation.

Peptides derived from the known capsid proteins of rhinovirus could be useful for the disruption of interactions between ICAM and LFA-1, which could be useful for the treatment of inflammation. Carbohydrate groups that are not nec for biological activity will be removed to enhance production of peptides in bacteria.

Site-directed mutagenesis of cystines may be useful to limit refolding to biologically active conformations.

Claims

10

- 1. A water soluble human rhinovirus (HRV) major receptor preparation comprising detergent-complexed glycoprotein isolated from animal cells that express the HRV major receptor and which exhibits the ability to bind to HRV capsids and substantially reduce infectivity of the virus.
 - 2. The preparation of claim 1 isolated from mammalian cells that express the HRV major receptor.
 - 3. The preparation of any of claims 1 and 2 wherein the glycoprotein has an apparent molecular weight of about 95,000 daltons or less.
 - 4. The preparation of any of claims 1 to 3 obtained by detergent extraction of HeLa cells.
 - 5. The preparation of any of claims 1 to 4 obtained by detergent extraction of nonhuman transfectant cells expressing the HRV major receptor.
 - 6. A human rhinovirus receptor protein selected from the group consisting of biologically active receptor protein fragments, functional domains and analogs thereof which exhibits the ability to bind to human rhinovirus capsid of the major receptor class and inhibits infectivity of the virus.
 - 7. A method for obtaining a water soluble human rhinovirus (HRV) major receptor preparation according to any one of the claims 1 to 5 comprising the steps of:
 - a) extracting animal cells that express the HRV major receptor with a nonionic detergent,
 - b) binding resulting detergent-glycoprotein complexes with an antibody selective for binding to HRV receptor protein,
 - c) separating the complexes bound to the antibody from the mixture,
 - d) dissociating the detergent-HRV glycopeptide complexes from the antibody, and
 - e) isolating the resulting water soluble preparation of HRV major receptor.
- 8. The method of claim 7 wherein detergent-glycoprotein complexes solubilized from the mamalian cells in step a) are adsorbed to a lectin capable of binding HRV major receptor protein, separated the complexes adsorbed to the lectin from the mixture, and the detergent-HRV glycoprotein complexes dissociated from the lectin are applied to the antibody of step b).
 - 9. A pharmaceutical composition for use in the treatment of human rhinovirus which comprises an effective amount of the protein of Claim 6 in admixture with a pharmaceutically acceptable recipient.
 - 10. Use of protein of Claim 6 in the treatment of human rhinovirus.

50

35

55

Asn Ala Glu Lys Leu Leu Val Glu Asp See Leu Thr Val Arg Arg Asp	10 Asn Aia Gin Thr Ser Val Ser Pro Ser Lys Val Ile Leu Pro Arg Gly Gly Ser Val Leu Val Thr C <u>ys</u> Ser Thr Ser <u>Cys</u> Asp Gin Pro	40 Lys Leu Leu Gly 11e Glu Thr Pro Leu Pro 1,ys Lys Glu Leu Leu Pro Gly Asn Asn Ang 1,ys Val Tyr Glu Leu Ser Asn Val Glu 94t9694t96	50 80 80 Glu Neo Mel Cys Tyr Ser Asn Cys Pro Asp Gly Gln Ser Thr Ala Lys Thr Phe Leu Thr Val Tyr Trp Thr Pro Glu Arg	120 Val Glu Leu Ala Pro Leu Pro Ser Trp Gln Pro Val Gly Lys Asn Leu Thr Leu Arg Cys Gln Val Glu Gly Gly Ala Pro Arg Ala Asn	130 Leu Thr Val Val Leu Leu Arg Glu Lys Glu Lys Arg Glu Pro Ala Val Gly Glu Pro Ala Glu Val Thr Thr Thr Val Leu Vol (34k)-10341141214135	180 Arg Arg Asp His His Gly Ala Asn Phe Ser Cys Arg Thr Glu Leu Asp Leu Arg Pro Gln Gly Leu Glu Leu Phe Glu Asn Thr Ser Ala	190 Tyr Gln Leu Gln Thr Phe Val Leu Pro Ala Thr Pro Pro Gln Leu Val Ser Pro Arg Val Leu Glu Val Asp Thr Gln Gly Thr Val (x)
--	--	--	--	--	--	--	---

Intercellular adhesion malgrule-1 ICMI-1

Val Cys Ser Leu Asp Gly Leu Phe Pro Val Ser Glu Ala Gln Val His Leu Ala Leu Gly Asp Gln Arg Leu Asn Pro Thr Val Thr Tyr

270 Cys Ala Val Ile Leu Gly	300 Ser Glu Gly	320 Val'Pro Ala Gin Pro Leu Gly Pro Arg Ala Gin	360 5 Lys Asn	390 g Gln Gln	420 Ser val	440 Glu Val Thr Arg Glu Val Thr Val Asn Val Leu	.480 Leu Tyr Asn Arg	
116		Arc	Ile Kis	Sei	5	ysi 1	7,	. 0
Val	Pro Glu Val	P	11	Pro Glu Asn Ser	Ile Gly Glu	*		507) Pro
Ala	61u	Gly	Glu Val Ala Gly Gln Leu	G).	i	Ť	Ser Thr Tyr	Pro
ઠ	Pro	25	G1n	Pro	Pro Leu Pro 9746	Val	Ť	The state of the s
The	Lys	Pro	Gly	Arp	ro Leu 97446	GJu		718
Lea	Thr	Gln	Ala	Thr	Pro	Arg	Zez	Gln
Gln Arg Leu Thr	Ile Leu Thr	Ala	Val	Asn Trp Thr	Thr Phe	Thr	470 Thr Ala Gly Leu	Asn The Gln Ala The
	Ile	Pro	Glu		The	Val	Ala	
260 Thr	290 Val	320 Val	350 Leu	380 Gly	410 617	440 Glu		500 Pro
	Asn	Gly	Ser Ala Thr	Pro	Lys Asp	Gly	Ile Met Gly	pro Met Lys 916142
Glu	Pro	Asn	Ala	S	Lys	Gln	Met	pro Met f. -916142
Asp	Ala	The Leu Asn Gly		Asp	3	The		
Ser Val Thr Ala Glu Asp Glu Gly	Ser Phe Pro Ala Pro Asn	Thr.	5/5	Arg Leu Asp Glu Arg Asp	Cys	Ala Arg Ser Thr Gln Gly	Val Ala Ala Ala Val	Gln Lys Gly Thr
Ala	Pho	Lys Val	Ser Phe Ser	Glu	Pro Glu Leu Lys	Arg	۸Ĭa	61.
Ħ	Ser	Lys	Phe	Asp	Leu	Ala	Ala	\$
Val	Tyr	Arg Ala	Ser	Leu	Glu	Arg	Ala	611
Ser	ile Tyr	Arg	Gly Arg	Arg	Pro	\$ \$ **	Val	490 Gln Gln Ala
Val	The	Pro	G1y	Pro	2	re c	460 Thr Val	61,
250 Ser	280 Val	310 His	340 Asn	370 Gly	400 Pro	430 Tyr	460 Thr	61n 61n
Ala	The	Ala	Asp	Tyr	Asn	The -	11e	
Ĺys	Gln	Glu	Glu	Leu	Gly	Gly	11e	Arg
Ser Ala Lys Ala	Çez	Cys	Pro	Val	112	gla	Val	, + + :
Ser	The	Ĺys	护	Arg	Ala	Le C	116	tys :
Phe	G1u	Val	Ala	ي گ	Gln	Asp	Glu	Lys.
Ser	GIn	Thr	Lys	Glu	Š	Arg	Tyr	116
Asp	Ser	The Glu Val The Val Lys Cys Glu Ala	Lau Leu Leu Lys Ala The Pro Glu Asp	Gin The Arg Glu Leu Arg Val Leu Tye	The Pro Met Cys Gin Ala Tep Gly Asn	The Val The Arg Asp Leu Glu Gly The	Ser Pro Arg Tyr Glu ile Val Ile Ile	Gin Arg Lys lie Lys Lys Tyr Arg Leu
Asn	Gln	6] u	3	ř.	01	Val	Pro	Arg
Gly Asn Asp Ser Phe	Asn Gin Ser Gin Glu Thr Leu Gin Thr	The	Š	Gla	The	¥		Gln
								•

FIG. 2

Europ an Patent PARTIAL EUROPEAN SEARCH REPORT 11Ch under Rule 45 of the European Patent Convention shall be considered, for the purposes of subsequent proceedings, as the European search report

Application number

EP 89 11 5358

	DOCUMENTS CONS	IDERED TO BE RE	LEVANT				
Category		th indication, where appropri vant passages		Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int. Ci 4)		
D,X	JOURNAL OF VIRO 2, May 1986, pa American Societ J.E. TOMASSINI of a receptor p in attachment o viruses"		C 07 K 13/00 A 61 K 37/02 C 12 P 21/00				
	* Whole article	*	:	1-9			
х	CELL, vol. 52, pages 925-933, D.E. STAUNTON e structure of IC interaction bet the immunoglobu supergene famil	Cell Press, t al.: "Prima: AM-1 demonstra ween members o lin and integ:	ry ates of				
	* Whole article	*	-	1-9	TECHNICAL FIELDS SEARCHED (Int. Cl. 4)		
			A 61 K C 12 P C 12 N				
INCON	IPLETE SEARCH				C 12 N		
The Search Division considers that the present European patent application does not comply with the provisions of the European Patent Convention to such an extent that it is not possible to carry out a meaningful search into the state of the art on the basis of some of the claims. Claims searched completely: 1-9 Claims searched incompletely: Claims not searched: 10 Reason for the limitation of the search: Method for treatment of the human or animal body by surgery or therapy (see art. 52(4) of the European Patent Convention).							
	Place of search	1	Examiner				
The 1	Hague 29.11.1989				J. SKELLY		
CATEGORY OF CITED DOCUMENTS X: particularly relevant if taken alone Y: particularly relevant if combined with another document of the same category A: techn logical background O: non-written discl sure P: intermediate document T: theory r principle underlying the invention E: earlier patent document, but published on, after th filing date O: document cited in the application L: d cument cited for other reasons A: member of th sam patent family, correspond to cument							

PARTIAL EUROPEAN SEARCH REPORT

EP 89 11 5358

	DOCUMENTS CONSIDERED TO BE RELEVANT	CLASSIFICATION OF THE APPLICATION (Int. Cl.4)		
Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim		
х	CELL, vol. 51, 4th December 1987, pages 813-819, Cell Press, S.D. MARLIN et al.: "Purified intercellular adhesion molecule-1 (ICAM-1) is a ligand for lymphocyte function-associated antigen 1 (LFA-1)"			
	* Whole article *	1-9		
A	THE JOURNAL OF IMMUNOLOGY, vol. 137, no. 4, 15th August 1986, pages 1270-1274, The American Association of Immunologists, R. ROTHLEIN et al.: "A human intercellular adhesion molecule (ICAM-1) distinct from LFA-1"		TECHNICAL FIELDS SEARCHED (Int. CI.4)	
A	EP - A - 0 169 146 (MERCK & CO.)			
	* Pages 6-8; examples 12-17; claims 10-20 *	1		
P,X	EP - A - 0 289 949 (DANA FARBER CANCER INSTITUTE)			
ŀ	* Claims *	1-9		
D,P	EP - A - 0 319 815 (MOLECULAR THERAPEUTICS INC.)			
	* Column 17, line 46 - column 23, line 43 *	1-9		
A	NATURE, vol. 331, 18th February 1988, pages 624-627, D. SIMMONS et al.: "ICAM, an adhesion ligand of LFA-1, is homo- logous to th n ural cell adhesion molecule NCAM"	,		
	* Whole article *	5,8	•	