

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
17 July 2003 (17.07.2003)

PCT

(10) International Publication Number
WO 03/057705 A1

(51) International Patent Classification⁷: **C07F 17/00** Casalecchio di Reno-Bologna (IT). **BALBONI, Davide** [IT/IT]; Via Bastianino, 8, I-44100 Ferrara (IT).

(21) International Application Number: **PCT/EP02/14899**

(74) Agent: **COLUCCI, Giuseppe**; Basell Poliolefine Italia S.p.a., Intellectual Property, P.le G. Donegani 12, I-44100 Ferrara (IT).

(22) International Filing Date:
30 December 2002 (30.12.2002)

(25) Filing Language:

English

(81) Designated States (*national*): JP, US.

(26) Publication Language:

English

(84) Designated States (*regional*): European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SI, SK, TR).

(30) Priority Data:
02075040.2 8 January 2002 (08.01.2002) EP

Declaration under Rule 4.17:

— of inventorship (Rule 4.17(iv)) for US only

Published:

— with international search report

(71) Applicant (*for all designated States except US*): **BASELL**

POLYOLEFINE GMBH [DE/DE]; Brühler Strasse 60,
50389 Wesseling (DE).

(72) Inventors; and

(75) Inventors/Applicants (*for US only*): **RESCONI, Luigi** [IT/IT]; Via Arianuova, 56/B, I-44100 Ferrara (IT).
GUIDOTTI, Simona [IT/IT]; Via Gaspari, 12, I-40033

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 03/057705 A1

(54) Title: PREPARATION OF SILICON-BRIDGED METALLOCENE COMPOUNDS

(57) Abstract: A process for obtaining silicon-bridged metallocene compounds comprising the following steps: a) reacting, at a temperature of between 10° C and 70° C, the starting ligand with about 2 molar equivalents of an alkylating agent; b) after the reaction has been completed, adding at least 2 molar equivalents of an alkylating agent that can be also different from the first one; and c) reacting, at a temperature of between 10° C and 70° C, the product obtained from step b) with at least 1 molar equivalent of a compound of formula ML's, wherein M is a transition metal; s is an integer corresponding to the oxidation state of the metal; and L' is an halogen atom selected from chlorine, bromine and iodine.

PREPARATION OF SILICON-BRIDGED METALLOCENE COMPOUNDS

The present invention relates to a process, for the preparation of silicon-bridged metallocene compounds. These metallocenes are useful as catalyst components, e.g. in the polymerization, oligomerization and hydrogenation of olefins, in association with alumoxanes and/or compounds able to form alkylmetallocene cations. Homogeneous catalytic systems based on metallocenes in association with an aluminum alkyl compound or an alumoxane are well known in the state of the art and are widely used in the polymerization reactions of olefins.

When the sigma ligands of the central metal atom are alkyl or aryl groups, the above metallocenes are usually obtained according to a process comprising the following steps:

- 1) preparing the metallocene dihalide, usually the metallocene dichloride, by reacting suitable ligand/s with MX_4 , wherein X is halogen (usually TiCl_4 or ZrCl_4);
- 2) converting the metallocene dihalide obtained in step (1) into the corresponding dialkyl or diaryl complex, by substitution of the halogens linked to the metal atom with the desired alkyl or aryl groups, by means of an alkylating agent such as alkylolithium, dialkylmagnesium or the corresponding Grignard reagent.

Nevertheless, the above metallocenes can not be expediently synthesized by the existing methodology; in fact, prior art processes imply always the synthesis of the metallocene dihalide, that is subsequently transformed into the target product, thus leading to unsatisfactory total yields and requiring at least two process steps.

WO 99/36427 discloses a process for the preparation of a dialkyl or monoalkyl metallocene compounds that comprises the following steps:

1. contacting the cyclopentadienyl ligand with at least 4 equivalents of an alkylating agent; and
2. contacting the reaction mixture with a metal halide of formula MX_4 , wherein X is halogen (usually TiCl_4 or ZrCl_4).

WO 99/36427 identifies four temperature ranges for the four different phases of the process, specifically:

- phase 1) the addition of the alkylating agent is carried out within a preferred temperature range of from -80°C to -20°C ;
- phase 2) the alkylating agent is allowed to react within a preferred temperature range of from -10°C to $+80^\circ\text{C}$; more preferably at room temperature;

phase 3) the addition of the metal halide is done within a preferred temperature range of from -80°C to -70°C; and

phase 4) the metal halide is allowed to react within a preferred temperature range of from -50°C to 0°C.

In the examples only carbon-bridged metallocenes were synthesized and step 1) was carried out in a single addition of the 4 equivalents of alkylating agent.

The temperatures used in the examples of WO 99/36427 are not of industrial interest. Moreover, as shown in the present comparatives examples, this process, when used for synthesizing silicon-bridged metallocene compounds, gives rise to yields that are not completely satisfactory, and when applied to ligands having a particular structure, gives rise to the formation of monohalide monoalkyl derivatives as undesirable by-products.

In "Inorganic Chemistry" 2001, 40, 6588-6597 higher temperatures have been used for obtaining carbon bridged metallocene compounds, but the alkylating agent is always added in a single addition. Thus it would be desirable to provide an industrial process that permits to obtain silicon-bridged metallocene compounds in higher yields.

It has now been found that by a proper selection of the temperatures and by adding the alkylating agent in two steps, it is possible to improve the yields of this process.

Thus the present invention relates to a process for preparing silicon-bridged metallocene compounds of formula (I):

wherein (SiR^1_2) is a divalent group bridging the two Cp rings, the R^1 groups, equal to or different from each other, are hydrogen atoms, or a linear or branched, saturated or unsaturated C_1-C_{20} alkyl, C_3-C_{20} cycloalkyl, C_6-C_{20} aryl, C_7-C_{20} alkylaryl or C_7-C_{20} arylalkyl group, two R^1 can optionally join to form a 3-7 membered ring; Cp, equal to or different from each other, is a substituted or unsubstituted cyclopentadienyl group, optionally condensed to one or more substituted or unsubstituted, saturated, unsaturated or aromatic rings, containing from 4 to 6 carbon atoms, optionally containing one or more heteroatoms; M is a transition metal belonging to group 3, 4, 5, 6 or to the lanthanide or actinide groups of the Periodic Table of the Elements (IUPAC version); the substituents L, equal to or different from each other, are monoanionic sigma ligands selected from the group consisting of linear or branched, saturated or unsaturated C_1-C_{20} alkyl, C_3-C_{20} cycloalkyl, C_6-C_{20} aryl, C_7-C_{20}

alkylaryl and C₇-C₂₀ arylalkyl groups, optionally containing one or more Si or Ge atoms; preferably, the substituents L are the same;

q is an integer ranging from 0 to 2, being equal to the oxidation state of the metal M minus 2; said process comprises the following steps:

- a) reacting, at a temperature of between -10°C and 70°C, a ligand of formula (Y-Cp)(SiR¹)₂(Cp-Y) with about 2 molar equivalents of an alkylating agent of formula TH_w, L_jB or LMgL', wherein Cp, R¹, and L have the meaning reported above; T is lithium, sodium or potassium, H is an hydrogen atom, w is 0 or 1, when w is 0 the compound TH_w is metallic lithium, sodium or potassium, when w is 1 the compound of formula TH_w is an hydride of lithium, sodium or potassium, L' is an halogen atom selected from chlorine, bromine and iodine; B is an alkali or alkali-earth metal; and j is 1 or 2, j being equal to 1 when B is an alkali metal, and j being equal to 2 when B is an alkali-earth metal; the groups Y, the same or different from each other, are suitable leaving groups;
- b) after the reaction has been completed, i.e. in a time ranging from 1 minute to 6 hours, preferably from 20 minutes to 5 hours, more preferably from 40 minutes to 5 hours, adding at least q molar equivalents, preferably at least 1+q molar equivalents, of an alkylating agent of formula L_jB or LMgL'; and
- c) reacting, at a temperature of between -10°C and 70°C, the product obtained from step b) with at least 1 molar equivalent of a compound of formula ML'_s, wherein M have the meaning reported above; s is an integer corresponding to the oxidation state of the metal and ranges from 3 to 6; and L' is an halogen atom selected from chlorine, bromine and iodine.

In the metallocenes of formula (I), preferably R¹ is a hydrogen atom, a methyl or a phenyl radical;

the ligand Cp, which is π -bonded to said metal M, is preferably selected from the group consisting of cyclopentadienyl, mono-, di-, tri- and tetra-methyl cyclopentadienyl; 4'-butyl-cyclopentadienyl; 4-adamantyl-cyclopentadienyl; indenyl; mono-, di-, tri- and tetra-methyl indenyl; 4,5,6,7-tetrahydroindenyl; 2-methyl-indenyl; 2-methyl-4-phenyl-indenyl; 2-isopropyl-4-phenyl-indenyl; 2-methyl-4(4'-tert-butyl-phenyl)-indenyl; fluorenyl; 5,10-dihydroindeno[1,2-b]indol-10-yl; N-methyl- or N-phenyl-5,10-dihydroindeno [1,2-b]indol-10-yl; 5,6-dihydroindeno[2,1-b]indol-6-yl; N-methyl- or N-phenyl-5,6-dihydroindeno[2,1-

b]indol-6-yl; azapentalene-4-yl; thiapentalene-4-yl; azapentalene-6-yl; thiapentalene-6-yl; mono-, di- and tri-methyl-azapentalene-4-yl, 3-phenyl-2-5-dimethyl-thiapentalene-4-yl; 1-thio-3-phenyl-2,5-methyl-pentalene-6-yl]

The metal M is preferably Ti, Zr or Hf, more preferably it is Zr.

The substituents L are preferably the same and preferably they are C₁-C₇ alkyl groups, C₆-C₁₄ aryl groups and C₇-C₁₄ arylalkyl groups, optionally containing one or more Si or Ge atoms; more preferably, the substituents L are selected from the group consisting of methyl, ethyl, n-butyl, sec-butyl, phenyl, benzyl and -CH₂Si(CH₃)₃.

Non-limiting examples of metallocene compounds of formula (I) are:

dimethylsilanediylbis(indenyl)zirconium dimethyl,
dimethylsilanediylbis(2-methyl-4-phenylindenyl)zirconium dimethyl,
dimethylsilanediylbis(4-naphthylindenyl)zirconium dimethyl,
dimethylsilanediylbis(2-methylindenyl)zirconium dimethyl,
dimethylsilanediylbis(2-methyl-4-t-butylindenyl)zirconium dimethyl,
dimethylsilanediylbis(2-methyl-4-isopropylindenyl)zirconium dimethyl,
dimethylsilanediylbis(2,4-dimethylindenyl)zirconium dimethyl,
dimethylsilanediylbis(2-methyl-4,5-benzoindenyl)zirconium dimethyl,
dimethylsilanediylbis(2,4,7-trimethylindenyl)zirconium dimethyl,
dimethylsilanediylbis(2,4,6-trimethylindenyl)zirconium dimethyl,
dimethylsilanediylbis(2,5,6-trimethylindenyl)zirconium dimethyl,
methyl(phenyl)silanediylbis(2-methyl-4,6-diisopropylindenyl)-
zirconium dimethyl,
methyl(phenyl)silanediylbis(2-methyl-4-isopropylindenyl)-
zirconium dimethyl,
dimethylsilandiylbis (4,7-dimethylindenyl)zirconium dimethyl,
dimethylsilandiylbis (2-methyl-4,6-diisopropylindenyl)zirconium dimethyl,
dimethylsilanediyl(3-tert-butyl-cyclopentadienyl)(9-fluorenyl)zirconium dimethyl,
dimethylsilanediyl(3-isopropyl-cyclopentadienyl)(9-fluorenyl)zirconium dimethyl,
dimethylsilanediyl(3-methyl-cyclopentadienyl)(9-fluorenyl)zirconium dimethyl,
dimethylsilanediyl(3-ethyl-cyclopentadienyl)(9-fluorenyl)zirconium dimethyl,
dimethylsilanediylbis-6-(3-methylcyclopentadienyl-[1,2-b]-thiophene) dimethyl;
dimethylsilanediylbis-6-(4-methylcyclopentadienyl-[1,2-b]-thiophene)zirconium dimethyl;

dimethylsilanediylbis-6-(4-isopropylcyclopentadienyl-[1,2-b]-thiophene)zirconium dimethyl;

dimethylsilanediylbis-6-(4-ter-butylcyclopentadienyl-[1,2-b]-thiophene)zirconium dimethyl;

dimethylsilandiylbis-6-(3-isopropylcyclopentadienyl-[1,2-b]-thiophene)zirconium dimethyl;

dimethylsilandiylbis-6-(3-phenylcyclopentadienyl-[1,2-b]-thiophene)zirconium dimethyl;

dimethylsilandiylbis-6-(2,5-dimethyl-3-phenylcyclopentadienyl-[1,2-b]-thiophene)zirconium dimethyl;

dimethylsilandiylbis-6-[2,5-dimethyl-3-(2-methylphenyl)cyclopentadienyl-[1,2-b]-thiophene]zirconium dimethyl;

dimethylsilandiylbis-6-[2,5-dimethyl-3-(2,4,6-trimethylphenyl)cyclopentadienyl-[1,2-b]-thiophene]zirconium dimethyl;

dimethylsilandiylbis-6-[2,5-dimethyl-3-mesitylenecyclopentadienyl-[1,2-b]-thiophene]zirconium dimethyl;

dimethylsilandiylbis-6-(2,4,5-trimethyl-3-phenylcyclopentadienyl-[1,2-b]-thiophene)zirconium dimethyl;

dimethylsilandiylbis-6-(2,5-diethyl-3-phenylcyclopentadienyl-[1,2-b]-thiophene)zirconium dimethyl;

dimethylsilandiylbis-6-(2,5-diisopropyl-3-phenylcyclopentadienyl-[1,2-b]-thiophene)zirconium dimethyl;

dimethylsilandiylbis-6-(2,5-diter-butyl-3-phenylcyclopentadienyl-[1,2-b]-thiophene)zirconium dimethyl;

dimethylsilandiylbis-6-(2,5-ditrimethylsilyl-3-phenylcyclopentadienyl-[1,2-b]-thiophene)zirconium dimethyl;

dimethylsilandiylbis-6-(3-methylcyclopentadienyl-[1,2-b]-silole)zirconium dimethyl;

dimethylsilandiylbis-6-(3-isopropylcyclopentadienyl-[1,2-b]-silole)zirconium dimethyl;

dimethylsilandiylbis-6-(3-phenylcyclopentadienyl-[1,2-b]-silole)zirconium dimethyl;

dimethylsilandiylbis-6-(2,5-dimethyl-3-phenylcyclopentadienyl-[1,2-b]-silole)zirconium dimethyl;

dimethylsilandiylbis-6-[2,5-dimethyl-3-(2-methylphenyl)cyclopentadienyl-[1,2-b]-silole]zirconium dimethyl;

dimethylsilandiylbis-6-[2,5-dimethyl-3-(2,4,6-trimethylphenyl)cyclopentadienyl-[1,2-b]-silole]zirconium dimethyl;

dimethylsilandiylbis-6-[2,5-dimethyl-3-mesitylenecyclopentadienyl-[1,2-b]-silole]zirconium dimethyl;

dimethylsilandiylbis-6-(2,4,5-trimethyl-3-phenylcyclopentadienyl-[1,2-b]-silole)zirconium dimethyl;

[dimethylsilyl(2-methyl-1-indenyl)][(N-methyl-1,2-dihydrocyclopenta[2,1-b]indol-2-yl)]titanium dimethyl;

[dimethylsilyl(2-methyl-1-indenyl)][(6-methyl-N-methyl-1,2-dihydrocyclopenta[2,1-b]indol-2-yl)]titanium dimethyl;

[dimethylsilyl(2-methyl-1-indenyl)][(6-methoxy-N-methyl-1,2-dihydrocyclopenta[2,1-b]indol-2-yl)]titanium dimethyl;

[dimethylsilyl(2-methyl-1-indenyl)][(N-ethyl-1,2-dihydrocyclopenta[2,1-b]indol-2-yl)]titanium dimethyl;

[dimethylsilyl(2-methyl-1-indenyl)][(N-phenyl-1,2-dihydrocyclopenta[2,1-b]indol-2-yl)]titanium dimethyl;

[dimethylsilyl(2-methyl-1-indenyl)][(6-methyl-N-phenyl-1,2-dihydrocyclopenta[2,1-b]indol-2-yl)]titanium dimethyl;

[dimethylsilyl(2-methyl-1-indenyl)][(6-methoxy-N-phenyl-1,2-dihydrocyclopenta[2,1-b]indol-2-yl)]titanium dimethyl;

[dimethylsilyl(2-methyl-1-indenyl)][(N-methyl-3,4-dimethyl-1,2-dihydrocyclopenta[2,1-b]indol-2-yl)]titanium dimethyl;

[dimethylsilyl(2-methyl-1-indenyl)][(N-ethyl-3,4-dimethyl-1,2-dihydrocyclopenta[2,1-b]indol-2-yl)]titanium dimethyl;

[dimethylsilyl(2-methyl-1-indenyl)][(N-phenyl-3,4-dimethyl-1,2-dihydrocyclopenta[2,1-b]indol-2-yl)]titanium dimethyl;

as well as the corresponding dibenzyl and diphenyl, compounds.

In an embodiment, the present invention relates to a process for preparing a silicon-bridged metallocene compound of formula (II):

wherein:

M, L, q and R¹ have the meaning reported above;

R², equal to or different from each other, is a hydrogen atom or a linear or branched, saturated or unsaturated C₁-C₂₀-alkyl, C₃-C₂₀-cycloalkyl, C₆-C₂₀-aryl, C₇-C₂₀-alkylaryl or C₇-C₂₀-arylalkyl radical, optionally containing heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements;

R³, R⁴, R⁵, R⁶ and R⁷, equal to or different from each other, are hydrogen atoms or linear or branched, saturated or unsaturated C₁-C₂₀-alkyl, C₃-C₂₀-cycloalkyl, C₆-C₂₀-aryl, C₇-C₂₀-alkylaryl or C₇-C₂₀-arylalkyl radicals, optionally containing heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements; two vicinal R³, R⁴, R⁵, R⁶ and R⁷ can also form one or more condensed 5 or 6 membered saturated or unsaturated rings optionally containing heteroatoms belonging to groups 13-16 of the Periodic Table of the Elements, said rings can bear alkyl substituents;

said process comprises the following steps:

- a) reacting, at a temperature of between -10°C and 70°C, a ligand of formula (III)

and/or one of its double bond isomers;

wherein R^1 , R^2 , R^3 , R^4 , R^5 , R^6 and R^7 have the meaning described above; with about 2 molar equivalents of an alkylating agent of formula TH_w , L_jB or $LMgL'$, wherein L has the meaning reported above; T is lithium, sodium or potassium, H is an hydrogen atom, w is 0 or 1, when w is 0 the compound TH_w is metallic lithium, sodium or potassium, when w is 1 the compound of formula TH_w is an hydride of lithium, sodium or potassium, L' is an halogen atom selected from chlorine, bromine and iodine; B is an alkali or alkali-earth metal; and j is 1 or 2, j being equal to 1 when B is an alkali metal, and j being equal to 2 when B is an alkali-earth metal; the groups Y, the same or different from each other, are suitable leaving groups as reported above;

- b) after the reaction has been completed, i.e. in a time ranging from 1 minute to 6 hours, preferably from 20 minutes to 5 hours, more preferably from 40 minutes to 5 hours, adding at least q molar equivalents, preferably at least $1+q$ molar equivalents, of a compound of formula L_jB or $LMgL'$; and
- c) reacting, at a temperature between $-10^\circ C$ and $70^\circ C$, the product obtained from step b) with at least 1 molar equivalent of a compound of formula ML'_s , wherein M have the meaning reported above; s is an integer corresponding to the oxidation state of the metal and ranges from 3 to 6; and L' is an halogen atom selected from chlorine, bromine and iodine.

In the compounds of formulas (II) and (III) R^2 is preferably a linear or branched, saturated or unsaturated C_1-C_{20} -alkyl radical;

R^4 is preferably a hydrogen atom, a C_1 - C_{20} -alkyl radical, a C_6 - C_{20} -aryl radical or form with R^5 a condensed benzene ring;

R^5 preferably is a hydrogen atom, a C_1 - C_{20} -alkyl radical or form with R^4 a condensed benzene ring;

R^6 and R^7 are preferably hydrogen atoms or linear or branched, saturated or unsaturated C_1 - C_{20} -alkyl radicals.

In a further embodiment, the present invention relates to a process for preparing a silicon-bridged metallocene compound of formula (IV):

(IV)

wherein:

M , L , q , R^1 , R^2 , R^3 , R^5 , R^6 and R^7 have the same meaning as above; and R^8 , equal to or different from each other, is a hydrogen atom, or a linear or branched, saturated or unsaturated C_1 - C_{20} -alkyl, C_3 - C_{20} -cycloalkyl, C_6 - C_{20} -aryl, C_7 - C_{20} -alkylaryl or C_7 - C_{20} -arylalkyl radical, optionally containing heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements; preferably the R^8 substituent on position 4 of the phenyl ring is or a linear or branched, saturated or unsaturated C_1 - C_{20} -alkyl, more preferably a tert-butyl radical; preferably the R^8 substituents on positions 2,3,4 and 5 are hydrogen atoms; said process comprises the following steps;

- a) reacting, at a temperature between -10°C and 70°C , a ligand of formula (V)

(V)

or one of its double bond isomers;

wherein $\text{R}^1, \text{R}^2, \text{R}^3, \text{R}^4, \text{R}^5, \text{R}^6, \text{R}^7$ and R^8 have the meaning described above;

with about 2 molar equivalents of an alkylating agent of formula $\text{TH}_w, \text{L}_j\text{B}$ or LMgL' , wherein L has the meaning reported above; T is lithium, sodium or potassium, H is an hydrogen atom, w is 0 or 1, when w is 0 the compound TH_w is metallic lithium, sodium or potassium, when w is 1. the compound of formula TH_w is an hydride of lithium, sodium or potassium, L' is an halogen atom selected from chlorine, bromine and iodine; B is an alkali or alkali-earth metal; and j is 1 or 2, j being equal to 1 when B is an alkali metal, and j being equal to 2 when B is an alkali-earth metal; the groups Y, the same or different from each other, are suitable leaving groups;

- b) after the reaction has been completed, i.e. in a time ranging from 1 minute to 6 hours, preferably from 20 minutes to 5 hours, more preferably from 40 minutes to 5 hours, adding at least q molar equivalents, preferably at least $1+q$ molar equivalents, of a compound of formula L_jB or LMgL' ; and
- c) reacting, at a temperature between -10°C and 70°C , the product obtained from step b) with at least 1 molar equivalent of a compound of formula ML'_s , wherein M have the

meaning reported above; s is an integer corresponding to the oxidation state of the metal and ranges from 3 to 6; and L' is an halogen atom selected from chlorine, bromine and iodine.

The metallocene compounds of formulas (I), (II) and (IV) can be finally isolated from the reaction mixture obtained in step c) and optionally purified according to standard procedures. Said process allows to obtain the cyclopentadienyl metallocene compounds of formula (I) in very high yields, by means of a very practical and convenient one-pot reaction.

The leaving group Y is preferably an hydrogen atom a -SiR₃ or -SnR₃ group, wherein the groups R are linear or branched, saturated or unsaturated C₁-C₂₀-alkyl, C₃-C₂₀-cycloalkyl, C₆-C₂₀-aryl, C₇-C₂₀-alkylaryl or C₇-C₂₀-arylalkyl radicals; more preferably Y is a hydrogen atom. In the reactant ML's, the metal M is preferably Ti, Zr or Hf, and the substituents L' are preferably the same and are chlorine atoms; the variable s ranges from 3 to 6 and corresponds to the oxidation state of the metal M; examples of compounds ML_s are ZrCl₄, ZrBr₄, ZrF₄, HfCl₄, HfBr₄, HfF₄, TiCl₄, TiBr₄ and TiF₄. Compounds of formula ML_s can be used in the form of a stabilized derivative, such as an etherate complex. Examples of compound of formula TH_w are metallic sodium or potassium, sodium hydride and potassium hydride.

In the L_jB and LMgL' alkylating agents, L is preferably a C₁-C₇ alkyl group, a C₆-C₁₄ aryl group, or a C₇-C₁₄ arylalkyl group, optionally substituted with Si or Ge, and more preferably L is selected from the group consisting of methyl, ethyl, n-butyl, sec-butyl, phenyl, benzyl and -CH₂Si(CH₃)₃; even more preferably, L is methyl. In the compound L_jB, B is an alkali or alkali-earth metal, and preferably B is Li or Mg; j can be 1 or 2, as already reported.

The compound LMgL' is a Grignard reagent, wherein Mg is magnesium and L and L' have the meanings reported above; L' is preferably Cl or Br. The alkylating agents used in steps a) and b) can be the same or different. For example, butyllithium or sodium hydride can be used in step a) and methyl lithium can be used in step b). This gives rise to a further advantage for the reason that it is possible to use stronger and sometimes less expensive reagents in step a) without influencing the choose of the substituents L in step b). According to an embodiment of the process of the invention, said alkylating agent is methyllithium.

According to an embodiment, the process of the invention is carried out in an aprotic solvent, either polar or apolar; said aprotic solvent is preferably an aromatic or aliphatic hydrocarbon or an ether. Steps a) and b) are more preferably carried out in etherate solvents or mixtures of etherate solvents with hydrocarbons. Examples of etherate solvents

are diethylether, tetrahydrofuran diisopropylether, dioxane, dimethoxyethane or mixtures thereof. In step c) the compound ML'_s can be added as such, as a suspension or solution in a hydrocarbon solvent, or as a solution or a suspension in an etherate solvent. According to another embodiment of the process of the invention, in step a) the starting ligands are previously dissolved in an aprotic solvent and to the resulting solution about 2 equivalents of the alkylating agent TH_w , L_jB or $LMgL'$ are added; this addition is preferably carried out at a temperature ranging from -5°C to +30°C, and more preferably from 0°C to 25°C, over a period of 5-45 minutes, and more preferably of 10-20 minutes. The alkylating agent is preferably added slowly in the form of a solution in one of the above mentioned aprotic solvents. The thus obtained reaction mixture is preferably allowed to react, under stirring, for a period ranging from 1 minute to 6 hours, and more preferably from 20 minutes to 5 hours, at a temperature preferably comprised between -5°C and +55°C, and more preferably at a temperature between 0°C and 50°C. After the reaction has been completed, i.e. all the cyclopentadienyl ligand reacted with the alkylating agent, at least q equivalents preferably q+1 equivalents of said alkylating agent are added at a temperature comprised between -10°C and +70°C, preferably at a temperature between -5°C and 55°C. Then the mixture obtained from step b) is preferably heated at a temperature comprised between 0°C and 60°C, and more preferably between 20°C and 50°C. Afterwards the compound ML'_s is quickly added to the mixture, in the form of a solution or suspension in one of the above mentioned aprotic solvents, preferably toluene. The reaction mixture is then allowed to react for a period ranging from 10 minutes to 36 hours, and more preferably from 1 hour to 18 hours, at a temperature comprised between 0°C and 60°C, and more preferably between 20°C and 50°C. The thus obtained metallocene compounds of formula (I) can be isolated according to customary procedures. Mixtures of racemic and meso isomers can be obtained and pure isomers can be separated in high yields by using standard procedures. The metallocene compounds obtained with the process according to the present invention can be used as catalyst for the homo or co-polymerization of olefins, in particular of α -olefins of formula $CH_2=CHT$ wherein T is hydrogen or a C₁-C₂₀ alkyl, such as ethylene propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene and 1-octene, in combination with alumoxanes and/or organometallic aluminum compounds. They can be advantageously used for the production of polyethylene, especially HDPE and LLDPE, isotactic, syndiotactic or atactic polypropylene. Furthermore, they can be used in the copolymerization of ethylene

with cycloolefins, such as cyclopentene, cyclohexene, norbornene and 4,6-dimethyl-1-heptene, or in ethylene copolymerization with polyenes, such as 1,4-hexadiene, isoprene, 1,3-butadiene, 1,5-hexadiene and 1,6-heptadiene. Finally, they can be advantageously used in olefin oligomerization and hydrogenation reactions. The above metallocenes form suitable polymerization catalytic systems in association with alumoxanes of formula:

wherein the substituents R^{u} can be $\text{C}_1\text{-C}_{10}$ alkyl, alkenyl or alkylaryl radicals, optionally containing one or more Si or Ge; or in association with an organometallic aluminum compound of formula $\text{AlR}^{\text{u}}_{3-z}\text{H}_z$, wherein R^{u} can be $\text{C}_1\text{-C}_{10}$ alkyl, alkenyl or alkylaryl radicals, optionally containing one or more Si or Ge atoms, and z ranges from 0 to 2 being also a non integer number, and water. Particularly suitable alumoxanes, acting as cocatalysts with the above metallocenes, are methylalumoxane (MAO), tris(2-methyl-propyl)alumoxane (TIBAO) and 2,4,4-trimethyl-pentylalumoxane (TIOAO). Non-limiting examples of organometallic aluminum are trimethylaluminum (TMA), tris(2,4,4-trimethyl-pentyl)aluminum (TIOA), tris(2-methyl-propyl)aluminum (TIBA), tris(2,3,3-trimethyl-butyl)aluminum, tris(2,3-dimethyl-hexyl)aluminum, tris(2,3-dimethyl-butyl)aluminum, tris(2,3-dimethyl-pentyl)aluminum, tris(2,3-dimethyl-heptyl)aluminum, tris(2-methyl-3-ethyl-pentyl)aluminum and tris(2-ethyl-3,3-dimethyl-butyl). Other suitable cocatalysts are compounds capable of forming a metallocene cation, having formula Y^+Z^- , wherein Y^+ is a Brønsted acid (such as Ph_3C^+ or $\text{HN}^+(\text{n-Bu})_3$) and Z^- is a non-coordinating anion (such as $[\text{B}(\text{C}_6\text{F}_5)_4]^-$ = tetrakis-pentafluorophenyl borate), able to stabilize the active catalyst species and sufficiently labile to be displaced by an olefinic substrate. The above catalysts can be used on inert supports, such as silica, alumina, styrene/divinylbenzene copolymers, polyethylene or polypropylene. Those supported catalysts are particularly suitable in gas phase polymerizations.

The polymerization processes can be carried out in liquid phase, optionally in the presence of an inert hydrocarbon solvent either aromatic (e.g. toluene) or aliphatic (e.g. propane, hexane, heptane, isobutane, cyclohexane and 2,2,4-trimethylpentane). The polymerization temperature generally ranges from about 0°C to about 250°C, and preferably from 20 to 150°C.

The following examples are given for illustrative and not limitative purposes.

EXAMPLES

General procedures and characterizations.

All operations were performed under nitrogen by using conventional Schlenk-line techniques. Solvents were purified by degassing with N₂ and passing over activated (8 hours, N₂ purge, 300 °C) Al₂O₃, and stored under nitrogen. MeLi (Acros or Aldrich or Fluka) and ZrCl₄ (Aldrich) were used as received. The exact concentration of the commercial MeLi solution in diethyl ether was determined by a potentiometric titration with HCl of 2 mL of MeLi solution, previously treated with 20 mL of deionized water to form LiOH. Bis(2-methyl-4-phenyl-indenyl)dimethylsilane was prepared by following the procedure described in Example A of the European Patent Application No. 0576970 A1. Me₂SiCl₂ (Aldrich) was used as received, while technical indene (Aldrich) was purified by passing over activated Al₂O₃. The proton spectra of ligands and metallocenes were obtained on a Bruker DPX 200 spectrometer operating in the Fourier transform mode at room temperature at 200.13 MHz. The samples were dissolved in CD₂Cl₂ or C₆D₆. C₆D₆ (Aldrich, 99.6 atom % D) was stored over molecular sieves (4-5 Å), while CD₂Cl₂ (Aldrich, 99.8 atom % D) was used as received. Preparation of the samples was carried out under nitrogen using standard inert atmosphere techniques. The residual peak of CHDCl₂ or C₆HD₅ in the ¹H spectra (5.35 ppm and 7.15 ppm, respectively) was used as a reference. Proton spectra were acquired with a 15° pulse and 2 seconds of delay between pulses; 32 transients were stored for each spectrum. The element contents were determined by different analytical techniques: for C-H by Elemental Analyser (CHNS-O), a Carlo Erba instrument mod. EA 1108 (applied directly on the sample); for Zr by Inductively Coupled Plasma (ICP) on an ARL 3580 instrument, after strong acidic decomposition of the sample.

Example 1

Synthesis of Me₂Si(2-Me-4-PhInd)₂ZrMe₂

A 1.6 M MeLi solution in ethyl ether (23.7 mL, 37.92 mmol, MeLi:Me₂Si(2-Me-4-Ph-Ind)₂ = 2.10:1) was added dropwise at room temperature to an orange solution of 8.45 g of bis(2-methyl-4-phenyl-indenyl)dimethylsilane (MW = 468.72, 18.03 mmol) in 7.6 mL of THF and 140 mL of toluene. At the end of the addition, the reaction mixture was stirred for 1 h at room temperature and then for 1 h at 40°C. Additional 35.3 mL of MeLi 1.6 M in Et₂O (56.48 mmol, total eq. of MeLi = 5.24 with respect to the starting ligand) were added 7 minutes before the metallation. Then the dilithium salt solution (containing an excess of MeLi) was added at 45°C in 20 min to a slurry of ZrCl₄ (4.20 g, MW = 233.03, 18.02

mmol, ZrCl₄:Me₂Si(2-Me-4-Ph-Ind)₂ = 1.0:1) in 160 mL of toluene, previously heated at 45°C too. At the end of the addition a dark brown (almost black) suspension was obtained. After 10 min stirring a ¹H NMR analysis in CD₂Cl₂ showed complete conversion of the starting ligand to the dimethyl compound. The reaction mixture was concentrated to a final volume of 40 mL and under stirring filtered on a G3 frit. The residue was extracted at 60°C with toluene until the solution resulted to be colourless. The extract in toluene was dried under reduced pressure to give a yellow powder as product. Yield 70%.

Anal. Calcd. for C₃₆H₃₆SiZr: C, 73.54%; H, 6.17%; Si, 4.78%; Zr, 15.51%; Found: C, 73.2%; H, 5.9%; Zr, 14.7%.

Comparative Example 2

Synthesis of Me₂Si(2-Me-4-PhInd)₂ZrMe₂

A 1.6 M MeLi solution in ethyl ether (7.60 mL, 12.16 mmol, MeLi:Me₂Si(2-Me-4-Ph-Ind)₂ = 4:1) was added dropwise at room temperature to a yellow solution of 1.42 g of bis(2-methyl-4-phenyl-indenyl)dimethylsilane (MW = 468.72, 3.03 mmol) in 32 mL of *i*-Pr₂O and 30 mL of toluene. During the addition the colour turned from yellow to orange and a light exothermicity (+ 4°C) was observed. The dilithium salt solution containing a MeLi excess was stirred for 1 h at room temperature, then a slurry of ZrCl₄ (0.70 g, MW = 233.03, 3.00 mmol, ZrCl₄:Me₂Si(2-Me-4-Ph-Ind)₂ = 1:1) in 10 mL of toluene was added at the same temperature. After 2 h stirring the resulting brown suspension was analysed by ¹H NMR in CD₂Cl₂, which showed mainly formation of Me₂Si(2-Me-4-Ph-Ind)₂ZrCl₂ and only traces of the desired dimethyl compound.

This example shows that if step a) and b) of the present invention are carried out in one sequence it is not possible to achieve the desired product.

Comparative Example 3

Synthesis of Me₂Si(2-Me-4-PhInd)₂ZrMe₂

A 1.72 M MeLi solution in ethyl ether (6.25 mL, 10.75 mmol, MeLi:Me₂Si(2-Me-4-Ph-Ind)₂ = 4:1) was added dropwise at 0°C to a yellow solution of 1.26 g of bis(2-methyl-4-phenyl-indenyl)dimethylsilane (MW = 468.72, 2.69 mmol) in 15 mL of *i*-Pr₂O, 5 mL of THF and 10 mL of toluene. During the addition the colour turned from yellow to orange-brownish. The dilithium salt solution containing a MeLi excess was allowed to warm up to room temperature and stirred for 1 h. Then a slurry of ZrCl₄ (0.63 g, MW = 233.03, 2.70

mmol, $\text{ZrCl}_4:\text{Me}_2\text{Si}(2\text{-Me-4-Ph-Ind})_2 = 1:1$) in 15 mL of toluene was added at room temperature. After 1 h stirring the resulting brown suspension was analysed by ^1H NMR in CD_2Cl_2 , which showed mainly formation of $\text{Me}_2\text{Si}(2\text{-Me-4-Ph-Ind})_2\text{ZrCl}_2$ and only traces of the desired dimethyl compound. This example shows that, if step b) of the present invention is carried out without allowing the reaction of step a) to be completed, it is not possible to achieve the desired product even if a different solvent is used.

Comparative Example 4

Synthesis of $\text{Me}_2\text{Si}(2\text{-Me-4-PhInd})_2\text{ZrMe}_2$

A 1.6 M MeLi solution in ethyl ether (6.70 mL, 10.72 mmol, $\text{MeLi}:\text{Me}_2\text{Si}(2\text{-Me-4-Ph-Ind})_2 = 2.01:1$) was added dropwise at room temperature to a suspension of 2.50 g of bis(2-methyl-4-phenyl-indenyl)dimethylsilane (MW = 468.72, 5.33 mmol) in 5.0 mL of $i\text{Pr}_2\text{O}$ and 35 mL of toluene. At the end of the addition, the reaction mixture was heated at 40°C for 1.5 h, then the resulting orange solution was added of additional 8.4 mL of MeLi 1.6 M in Et_2O (13.44 mmol, total eq. of MeLi = 4.5 with respect to the starting ligand). After 5 min the dilithium salt solution (containing an excess of MeLi) kept at 45°C was added in 15 min to a slurry of ZrCl_4 (1.25 g, MW = 233.03, 5.36 mmol, $\text{ZrCl}_4:\text{Me}_2\text{Si}(2\text{-Me-4-Ph-Ind})_2 = 1.0:1$) in 30 mL of toluene, at 75°C. At the end of the addition a dark brown (almost black) suspension was obtained. After 5 min stirring a ^1H NMR analysis in CD_2Cl_2 showed traces of the dimethyl compound.

This example shows that, if step b) of the present invention is carried out without allowing the reaction of step a) to be completed, and if the temperature of step c) is out of the claimed range it is not possible to achieve the desired product.

Example 5

Synthesis of $\text{Me}_2\text{Si}(2\text{-Me-Ind})_2\text{ZrMe}_2$

A 3.05 M MeLi solution in diethoxymethane (8.5 mL, 25.92 mmol, $\text{MeLi}:\text{Me}_2\text{Si}(2\text{-MeIndH})_2 = 2.05:1$) was added dropwise at 0°C to a solution of 4.00 g of bis(2-methylindenyl)dimethylsilane (MW = 316.52, 12.64 mmol) in 40 mL of THF. At the end of the addition, the reaction mixture was allowed to warm up to room temperature and stirred for 1 h and 30 min. Additional 8.5 mL of MeLi 3.05 M in diethoxymethane (25.92 mmol, total eq. of MeLi = 4.10 with respect to the starting ligand) were added dropwise at 0°C few minutes before the metallation. Then a slurry of ZrCl_4 (2.95 g, MW = 233.03, 12.66 mmol,

$\text{ZrCl}_4:\text{Me}_2\text{Si}(2\text{-MeIndH})_2 = 1.00:1$) in 40 mL of toluene was added at 0°C to the dilithium salt solution (containing an excess of MeLi). At the end of the addition, the reaction mixture was allowed to warm up to room temperature and heated at 40°C for 1 h and 30 min with final formation of a dark brown (almost black) suspension. A ^1H NMR analysis in CD_2Cl_2 showed nearly complete conversion of the starting ligand to the dimethyl compound. The solvents were then removed under reduced pressure giving a black residue. The latter was extracted in a Soxhlet apparatus with 150 mL of pentane. The filtrate was evaporated to dryness under reduced pressure to give 3.60 g of a yellow powder (65.2 % metal-based yield), which was characterized by ^1H NMR as spectroscopically pure $\text{Me}_2\text{Si}(2\text{-MeInd})_2\text{ZrMe}_2$.

$^1\text{H-NMR}$ (CD_2Cl_2 , δ , ppm, *rac*): -1.28 (s, 6H, Zr- CH_3); 1.12 (s, 6H, Si- CH_3); 2.09 (s, 6H, 2- CH_3); 6.78 (s, *H*₃, 2H); 6.95 (ddd, *H*₅ or *H*₆, 2H, $J = 1.57, 6.65, 8.61$ Hz); 7.28 (ddd, *H*₆ or *H*₅, 2H, $J = 1.57, 6.65, 8.61$ Hz); 7.53-7.59 (m, Ar, 4H).

$^1\text{H-NMR}$ (CD_2Cl_2 , δ , ppm, *meso*): -2.35 (s, 3H, Zr- CH_3); 0.02 (s, 3H, Zr- CH_3); 1.04 (s, 3H, Si- CH_3); 1.23 (s, 3H, Si- CH_3); 2.35 (s, 6H, 2- CH_3); 6.67 (ddd, *H*₅ or *H*₆, 2H, $J = 1.57, 6.65, 8.61$ Hz); 6.80 (s, *H*₃, 2H); 7.05 (ddd, *H*₆ or *H*₅, 2H, $J = 1.57, 6.65, 8.61$ Hz); 7.38-7.53 (m, Ar, 4H).

Comparative example 6

Synthesis of $\text{Me}_2\text{Si}(2\text{-Me-Ind})_2\text{ZrMe}_2$

A titrated 1.66 M MeLi solution in Et_2O (22.6 mL, 37.52 mmol, MeLi: $\text{Me}_2\text{Si}(2\text{-MeIndH})_2 = 4:1$) was added dropwise at room temperature to a solution of 3.00 g of bis(2-methylindenyl)dimethylsilane (MW = 316.52, 98.9% by GC-MS, 9.37 mmol) in 40 mL of Et_2O . At the end of the addition, the reaction mixture was stirred for 3 h with final formation of a white suspension. Then a slurry of ZrCl_4 (2.19 g, MW = 233.03, 9.40 mmol, $\text{ZrCl}_4:\text{Me}_2\text{Si}(2\text{-MeIndH})_2 = 1:1$) in 60 mL of toluene was quickly added to the lithium salt suspension, previously cooled to 16°C by a water bath. During the addition the colour turned from white to yellow and a light exothermicity (+ 5°C ÷ 6°C) was observed. After 1 h stirring at room temperature a ^1H NMR in C_6D_6 showed the presence of a large amount of polymeric by-products and only a small amount of the desired dimethyl metallocene.

This example shows that, if step b) of the present invention is carried out without allowing the reaction of step a) to be completed, it is not possible to achieve the desired product.

CLAIMS

1. A process for preparing silicon-bridged metallocene compounds of formula (I):

wherein (SiR^1_2) is a divalent group bridging the two Cp rings, the R^1 groups, equal to or different from each other, are hydrogen atoms, or linear or branched, saturated or unsaturated C_1-C_{20} alkyl, C_3-C_{20} cycloalkyl, C_6-C_{20} aryl, C_7-C_{20} alkylaryl or C_7-C_{20} arylalkyl groups, two R^1 can optionally join to form a 3-7 membered ring;

Cp , equal to or different from each other, is a substituted or unsubstituted cyclopentadienyl group, optionally condensed to one or more substituted or unsubstituted, saturated, unsaturated or aromatic rings, containing from 4 to 6 carbon atoms, optionally containing one or more heteroatoms;

M is a transition metal belonging to group 3, 4, 5, 6 or to the lanthanide or actinide groups of the Periodic Table of the Elements (IUPAC version);

the substituents L , equal to or different from each other, are monoanionic sigma ligands selected from the group consisting of linear or branched, saturated or unsaturated C_1-C_{20} alkyl, C_3-C_{20} cycloalkyl, C_6-C_{20} aryl, C_7-C_{20} alkylaryl and C_7-C_{20} arylalkyl groups, optionally containing one or more Si or Ge atoms;

q is an integer ranging from 0 to 2, being equal to the oxidation state of the metal M minus 2;

said process comprises the following steps:

- a) reacting, at a temperature of between $-10^\circ C$ and $70^\circ C$, a ligand of formula $(Y-Cp)(SiR^1_2)(Cp-Y)$ with about 2 molar equivalents of an alkylating agent of formula TH_w, L_jB or $LMgL'$, wherein Cp , R^1 , and L have the meaning reported above; T is lithium, sodium or potassium, H is an hydrogen atom, w is 0 or 1, when w is 0 the compound TH_w is metallic lithium, sodium or potassium, when w is 1 the compound of formula TH_w is an hydride of lithium, sodium or potassium; L' is an halogen atom selected from chlorine, bromine and iodine; B is an alkali or alkali-earth metal; and j is 1 or 2, j being equal to 1 when B is an alkali metal, and j being equal to 2 when B is an alkali-earth metal; the groups Y , the same or different from each other, are suitable leaving groups;
- b) after the reaction has been completed, adding at least q molar equivalents of an alkylating agent of formula L_jB or $LMgL'$; and

- c) reacting, at a temperature of between -10°C and 70°C, the product obtained from step b) with at least 1 molar equivalent of a compound of formula ML'_s , wherein M have the meaning reported above; s is an integer corresponding to the oxidation state of the metal and ranges from 3 to 6; and L' is an halogen atom selected from chlorine, bromine and iodine.
2. The process according to claim 1, for preparing a silicon-bridged metallocene compound of formula (II):

wherein:

M , L , q and R^1 have the meaning reported in claim 1;

R^2 , equal to or different from each other, are hydrogen atoms or linear or branched, saturated or unsaturated C_1-C_{20} -alkyl, C_3-C_{20} -cycloalkyl, C_6-C_{20} -aryl, C_7-C_{20} -alkylaryl or C_7-C_{20} -arylalkyl radicals, optionally containing heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements;

R^3 , R^4 , R^5 , R^6 and R^7 , equal to or different from each other, are hydrogen atoms or linear or branched, saturated or unsaturated C_1-C_{20} -alkyl, C_3-C_{20} -cycloalkyl, C_6-C_{20} -aryl, C_7-C_{20} -alkylaryl or C_7-C_{20} -arylalkyl radicals, optionally containing heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements; two vicinal R^3 , R^4 , R^5 , R^6 and R^7 can also form one or more condensed 5 or 6 membered saturated or unsaturated rings optionally containing heteroatoms belonging to groups 13-16 of the Periodic Table of the Elements, said rings can bear alkyl substituents; said process comprises the following steps:

- a) reacting, at a temperature of between -10°C and 70°C , a ligand of formula (III)

(III)

or one of its double bond isomers;

wherein R^1 , R^2 , R^3 , R^4 , R^5 , R^6 and R^7 have the meaning described above; with about 2 molar equivalents of an alkylating agent of formula TH_w , L_jB or LMgL' , wherein L has the meaning reported above; T is lithium, sodium or potassium, H is an hydrogen atom, w is 0 or 1, when w is 0 the compound TH_w is metallic lithium, sodium or potassium, when w is 1 the compound of formula TH_w is an hydride of lithium, sodium or potassium, L' is an halogen atom selected from chlorine, bromine and iodine; B is an alkali or alkali-earth metal; and j is 1 or 2, j being equal to 1 when B is an alkali metal, and j being equal to 2 when B is an alkali-earth metal; the groups Y, the same or different are suitable leaving groups;

- b) after the reaction has been completed, adding at least q molar equivalents, of a compound of formula L_jB or LMgL' ; and
- c) reacting, at a temperature of between -10°C and 70°C , the product obtained from step b) with at least 1 molar equivalent of a compound of formula ML'_s , wherein M have the meaning reported above; s is an integer corresponding to the oxidation state of the metal and ranges from 3 to 6; and L' is an halogen atom selected from chlorine, bromine and iodine.
3. The process according to claims 1 or 2, for preparing a silicon-bridged metallocene compound of formula (IV):

(IV)

wherein:

M, L, q, R¹, R², R³, R⁵, R⁶ and R⁷ have the meaning described in claims 1 or 2; and R⁸ is a hydrogen atom, or a linear or branched, saturated or unsaturated C₁-C₂₀-alkyl, C₃-C₂₀-cycloalkyl, C₆-C₂₀-aryl, C₇-C₂₀-alkylaryl or C₇-C₂₀-arylalkyl radical, optionally containing heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements;

said process comprises the following steps;

- a) reacting, at a temperature of between -10°C and 70°C, a ligand of formula (V)

(V)

or one of its double bond isomers;

wherein $R^1, R^2, R^3, R^4, R^5, R^6, R^7$ and R^8 have the meaning described above;

with about 2 molar equivalents of an alkylating agent of formula TH_w, L_jB or $LMgL'$, wherein L has the meaning reported above; T is lithium, sodium or potassium, H is an hydrogen atom, w is 0 or 1, when w is 0 the compound TH_w is metallic lithium, sodium or potassium, when w is 1 the compound of formula TH_w is an hydride of lithium, sodium or potassium, L' is an halogen atom selected from chlorine, bromine and iodine; B is an alkali or alkali-earth metal; and j is 1 or 2, j being equal to 1 when B is an alkali metal, and j being equal to 2 when B is an alkali-earth metal; the groups Y , the same or different from each other, are suitable leaving groups;

- b) after the reaction has been completed, adding at least q molar equivalents of a compound of formula L_jB or $LMgL'$; and
- c) reacting, at a temperature of between $-10^\circ C$ and $70^\circ C$, the product obtained from step b) with at least 1 molar equivalent of a compound of formula ML'_s , wherein M have the meaning reported above; s is an integer corresponding to the

oxidation state of the metal and ranges from 3 to 6; and L' is an halogen atom selected from chlorine, bromine and iodine.

4. The process according to anyone of claims 1 to 3 wherein step b) is carried out in a time ranging from 1 minute to 6 hours after step a).
5. The process according to anyone of claims 1 to 4 wherein Y is a hydrogen atom or a -SiR₃ or -SnR₃ group, wherein the groups R are linear or branched saturated or unsaturated C₁-C₂₀-alkyl, C₃-C₂₀-cycloalkyl, C₆-C₂₀-aryl, C₇-C₂₀-alkylaryl or C₇-C₂₀-arylalkyl radicals.
6. The process according to anyone of claims 1 to 5 wherein the metal M is Ti, Zr or Hf.
7. The process according to anyone of claims 1 to 6 wherein the compounds ML_s are ZrCl₄, ZrBr₄, ZrF₄, HfCl₄, HfBr₄, HfF₄, TiCl₄, TiBr₄ and TiF₄;
8. The process according to anyone of claims 1 to 7 wherein in step b) 1+q molar equivalents of a compound of formula L_jB or LMgL' wherein L, L' and B have the meaning as described in claim 1 is added.
9. The process according to anyone of claims 1 to 8 wherein step a) and b) are carried out at a temperature ranging from -5°C and +55°C.
10. The process according to anyone of claims 1 to 9 wherein step c) is carried out at a temperature ranging from 0°C and 60°C.

INTERNATIONAL SEARCH REPORT

International Application No

PCT/EP 02/14899

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C07F17/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 C07F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, PAJ, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO 99 36427 A (RESCONI LUIGI ;BALBONI DAVIDE (IT); PRINI GIANSIRO (IT); MONTELL T) 22 July 1999 (1999-07-22) cited in the application the whole document ---	1-10
A	EP 0 604 908 A (SPHERILENE SRL) 6 July 1994 (1994-07-06) example 1 ---	1-10
A	WO 96 19488 A (EXXON CHEMICAL PATENTS INC ;FISHER RICHARD ALLEN (US); BURKHARDT T) 27 June 1996 (1996-06-27) example 1 ---	1-10
A	WO 98 43989 A (MONTELL TECHNOLOGY COMPANY BV) 8 October 1998 (1998-10-08) page 26, line 6 - line 17 ---	1-10
-/-		

 Further documents are listed in the continuation of box C. Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

& document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the International search report

15 April 2003

29/04/2003

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax (+31-70) 340-3018

Authorized officer

Zellner, A

BEST AVAILABLE COPY

INTERNATIONAL SEARCH REPORT

International Application No

PCT/EP 02/14899

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	EP 0 576 970 A (HOECHST AG) 5 January 1994 (1994-01-05) the whole document -----	1-10

INTERNATIONAL SEARCH REPORT

International Application No

PCT/EP 02/14899

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
WO 9936427	A	22-07-1999	CN DE WO EP JP US	1255925 T 69903388 D1 9936427 A1 0979232 A1 2001516367 T 6191294 B1		07-06-2000 14-11-2002 22-07-1999 16-02-2000 25-09-2001 20-02-2001
EP 0604908	A	06-07-1994	IT CA DE DE EP ES FI JP RU	1256259 B 2112598 A1 69330780 D1 69330780 T2 0604908 A2 2162802 T3 935913 A 6256369 A 2169152 C2		29-11-1995 01-07-1994 25-10-2001 04-07-2002 06-07-1994 16-01-2002 01-07-1994 13-09-1994 20-06-2001
WO 9619488	A	27-06-1996	AU WO	4527196 A 9619488 A1		10-07-1996 27-06-1996
WO 9843989	A	08-10-1998	AU BR CA CA CN CN CZ DE DE WO WO EP EP HU JP JP NO PL US US ZA	7758198 A 9804807 A 2257132 A1 2257177 A1 1226894 T 1226882 T 9804345 A3 69803652 D1 69803652 T2 9843931 A1 9843989 A1 0920403 A1 0914323 A1 0003603 A2 2000511566 T 2000512310 T 985579 A 330222 A1 6162937 A 6268518 B1 9804651 A		22-10-1998 17-08-1999 08-10-1998 08-10-1998 25-08-1999 25-08-1999 11-08-1999 14-03-2002 14-08-2002 08-10-1998 08-10-1998 09-06-1999 12-05-1999 28-02-2001 05-09-2000 19-09-2000 28-01-1999 10-05-1999 19-12-2000 31-07-2001 21-12-1998
EP 0576970	A	05-01-1994	AT AT AU CA DE DE EP EP ES ES FI JP RU US US US	162194 T 209964 T 4149193 A 2099214 A1 59307969 D1 59310245 D1 0576970 A1 0790076 A2 2112355 T3 2169288 T3 932961 A 6100579 A 2118961 C1 6242544 B1 6051727 A 6255506 B1		15-01-1998 15-12-2001 06-01-1994 28-12-1993 19-02-1998 17-01-2002 05-01-1994 20-08-1997 01-04-1998 01-07-2002 28-12-1993 12-04-1994 20-09-1998 05-06-2001 18-04-2000 03-07-2001

INTERNATIONAL SEARCH REPORT

International Application No

PCT/EP 02/14899

Patent document cited in search report	Publication date		Patent family member(s)	Publication date
EP 0576970	A	US	5786432 A	28-07-1998
		US	5770753 A	23-06-1998
		US	5840644 A	24-11-1998
		US	2001021755 A1	13-09-2001
		ZA	9304577 A	01-02-1994

BEST AVAILABLE COPY