Типовой Расчёт Вариант 4 Крюк В.В. 221703

```
-0.5 0.419945
                -0.412 0.395988
                -0.324 0.391402
                -0.236 0.374437
                -0.148 0.375642
                -0.06 0.364857
                0.028 0.371704
                0.116 0.366656
                0.204 0.379343
                0.292 0.379948
                0.38 0.399032
                0.468 0.405545
                0.556 0.43196
 In[•]:= data =
                0.644 0.444969
                0.732 0.480039
                0.82 0.500438
                0.908 0.545871
                0.996 0.574811
                1.084 0.632645
                1.172 0.67142
                 1.26 0.743887
                1.348 0.793733
                1.436 0.882993
                1.524 0.944755
                1.612 1.05247
       a = -0.5;
       b = 1.7;
       h = 0.088;
       dots = \frac{(b-a)}{b} + 1;
       dataTable = Table[{data[i, 1], data[i, 2]}, {i, 1, dots}]
Out[0]=
       \{\{-0.5, 0.419945\}, \{-0.412, 0.395988\}, \{-0.324, 0.391402\},
        \{-0.236, 0.374437\}, \{-0.148, 0.375642\}, \{-0.06, 0.364857\},
        \{0.028, 0.371704\}, \{0.116, 0.366656\}, \{0.204, 0.379343\}, \{0.292, 0.379948\},
        \{0.38, 0.399032\}, \{0.468, 0.405545\}, \{0.556, 0.43196\}, \{0.644, 0.444969\},
        \{0.732, 0.480039\}, \{0.82, 0.500438\}, \{0.908, 0.545871\}, \{0.996, 0.574811\},
        \{1.084, 0.632645\}, \{1.172, 0.67142\}, \{1.26, 0.743887\}, \{1.348, 0.793733\},
        \{1.436, 0.882993\}, \{1.524, 0.944755\}, \{1.612, 1.05247\}, \{1.7, 1.12614\}\}
       (*График заданной функции*)
```


Задание 1.

Постройте для функции f(x) интерполяционный многочлен степени n=25 и многочлены меньшей степени на отрезке, используя не все узлы сетки:

- используете значения функции в нечетных узлах (n=12);
- используете значения функции в каждом 3- узле (n=8);
- используете значения функции в каждом 5- узле (n=5).

Выведите графики интерполяционных многочленов и оцените их поведение на отрезке. Сравните результаты и сделайте выводы о зависимость погрешности интерполирования от числа узлов.

```
(∗Построение многочлена степенью 25:∗)
In[@]:= Polynomial25 = InterpolatingPolynomial[dataTable, x];
     plot25 = Plot[Polynomial25, {x, a, b}, PlotStyle → {Red}];
     dots25 = ListPlot[dataTable, PlotStyle → {PointSize[0.015], Green}];
     Show[plot25, dots25]
```



```
(*Найдём абсолютную погрешность многочлена в заданных точках*)
 In[*]:= Diff25 =
           Table[{data[i, 1]], (Polynomial25 /. x \rightarrow data[i, 1]) - data[i, 2]}, {i, 1, dots}];
 In[*]:= Show[ListPlot[Diff25, PlotStyle → {PointSize[0.015], Green}]]
Out[0]=
                 3 \times 10^{-16}
                 2 \times 10^{-16}
                 1 × 10<sup>-16</sup>
        -0.5
                                    0.5
                                                  1.0
                -1 \times 10^{-16}
                -2 \times 10^{-16}
                -3 \times 10^{-16}
 In[a]:= Sum[(Polynomial25 /. x \rightarrow data[i, 1]) - data[i, 2])^2, {i, dots}]
Out[0]=
        \textbf{6.22461} \times \textbf{10}^{-31}
        (*Используя значения функции в нечетных узлах:*)
 in[*]:= data12 = Table[{data[i, 1], data[i, 2]}, {i, 1, 25, 2}];
        Polynomial12 = InterpolatingPolynomial[data12, x];
        plot12 = Plot[Polynomial12, \{x, a, b\}, PlotStyle \rightarrow \{Red\}];
        dots12 = ListPlot[data12, PlotStyle → {PointSize[0.015], Green}];
        Show[plot12, dots12]
Out[0]=
                     1.0
                     8.0
                     0.6
                                    0.5
                                                  1.0
                                                               1.5
        (*Найдём абсолютную погрешность многочлена в заданных точках*)
 In[@]:= Diff12 =
           Table[{data[i, 1]], (Polynomial12 /. x \rightarrow data[i, 1]) - data[i, 2]}, {i, 1, dots}];
```

```
In[*]:= Show[ListPlot[Diff12, PlotStyle → {PointSize[0.015], Green}]]
Out[0]=
                 0.020
                 0.015
                 0.010
                 0.005
       -0.5
                                0.5
                                             1.0
 In[\circ]:= Sum[(Polynomial12 /. x \rightarrow data[i, 1]) - data[i, 2])^2, {i, dots}]
Out[0]=
       0.00199129
        (*Используя значения функции в каждом третьем узле:*)
 in[*]:= data8 = Table[{data[i, 1], data[i, 2]}, {i, 1, 25, 3}];
       Polynomial8 = InterpolatingPolynomial[data8, x];
       plot8 = Plot[Polynomial8, {x, a, b}, PlotStyle → {Red}];
       dots8 = ListPlot[data8, PlotStyle → {PointSize[0.015], Green}];
       Show[plot8, dots8]
Out[0]=
                   1.4
                   1.2
                   1.0
                   8.0
                   0.6
                                             1.0
                                0.5
                                                         1.5
       (*Найдём абсолютную погрешность многочлена в заданных точках*)
 In[@]:= Diff8 =
          Table[\{data[i, 1], (Polynomial8 /. x \rightarrow data[i, 1]) - data[i, 2]\}, \{i, 1, dots\}];
```

```
In[o]:= Show[ListPlot[Diff8, PlotStyle → {PointSize[0.015], Green}]]
Out[0]=
                  0.02
       -0.5
                 -0.02
                 -0.04
 In[a]:= Sum[(Polynomial8 /. x \rightarrow data[i, 1]) - data[i, 2])^2, {i, dots}]
Out[0]=
       0.0942995
       (*Используя значения функции в каждом пятом узле:*)
 In[*]:= ind = {1, 6, 11, 16, 21, 25};
       data5 = Table[{data[ind[i], 1], data[ind[i], 2]}, {i, 1, 6}];
       Polynomial5 = InterpolatingPolynomial[data5, x];
       plot5 = Plot[Polynomial5, \{x, a, b\}, PlotStyle \rightarrow \{Red\}];
       dots5 = ListPlot[data5, PlotStyle → {PointSize[0.015], Green}];
       Show[plot5, dots5]
Out[0]=
                   1.0
                   8.0
                   0.6
                   0.4
                                0.5
       (*Найдём абсолютную погрешность многочлена в заданных точках*)
 In[ • ]:= Diff5 =
          Table[\{data[i, 1]], (Polynomial5 /. x \rightarrow data[i, 1]]) - data[i, 2]\}, \{i, 1, dots\}];
```

```
in[*]:= Show[ListPlot[Diff5, PlotStyle → {PointSize[0.015], Green}]]
Out[0]=
                    0.02
                    0.01
        -0.5
                                                               1.5
                                    0.5
                                                  1.0
                   _0.01
 In[a]:= Sum[((Polynomial5 /. x \rightarrow data[i, 1]) - data[i, 2])^2, {i, dots}]
Out[0]=
        0.002037
```

Вывод: наилучшим в сравнении по сумме квадратов разностей функции в заданных узлах оказался многочлен 25-й степени.

По графикам можно заметить, что погрешность увеличивается ближе к крайним значениям интерполируемой функции. Но несмотря на это, интерполяция не гарантирует, что поведение полученной функции между узлами интерполяции будет повторять поведение исходной функции (погрешность увеличивается в узлах, которые не были выбраны для интерполяции 5, 8 и 12 степеней).

Задание 2

Постройте сплайны, аппроксимирующие функцию f(x) по значениям в узлах, выведите графики и сравните с графиками интерполяционных многочленов степени n = 5, 8, 12, 25, построенных по тем же узлам.

```
(*Построим аппроксимирующий сплайн заданного многочлена 5 степени*)
In[@]:= Spline5 := Interpolation[data5, x, Method → "Spline"]
     SplinePlot5 = Plot[Spline5, {x, a, b}, PlotStyle → {Red}];
```

In[*]:= Show[ListPlot[data5, PlotStyle → {PointSize[0.015], Orange}], SplinePlot5]

Out[0]=

 $In[\circ]:= Sum[((Spline5 /. x \rightarrow data[i, 1]) - data[i, 2])^2, \{i, dots\}]$

Out[0]=

0.00179072

(*Построим аппроксимирующий сплайн заданного многочлена 8 степени*)

In[@]:= Spline8 := Interpolation[data8, x, Method → "Spline"] SplinePlot8 = Plot[Spline8, {x, a, b}, PlotStyle → {Red}]; $Show[ListPlot[data8, PlotStyle \rightarrow \{PointSize[0.015], Orange\}], SplinePlot8]$

Out[0]=

 $In[e]:= Sum[((Spline8 /. x \rightarrow data[i, 1]) - data[i, 2])^2, {i, dots}]$

Out[0]=

0.00382718

(*Построим аппроксимирующий сплайн заданного многочлена 12 степени*)

Вывод: наилучшим в сравнении по сумме квадратов разностей функции в заданных узлах оказался сплайн 25ой степени. Погрешность оказалась меньше, чем в случае интерполяционного многочлена из Задания 1.

 $\textbf{1.20178} \times \textbf{10}^{-31}$

Постройте для функции f(x) многочлены наилучшего среднеквадратичного приближения $Pn^*(x)$ степени n = 1, 2. Вычислите для каждого многочлена сумму квадратов отклонения в узлах, сравните их значения и сделайте выводы. Выведите графики узлов и многочленов $Pn^*(x)$, аппроксимирующих функцию.

```
In[*]:= P1 = Fit[data, {1, x}, x];
        P2 = Fit [data, \{1, x, x^2\}, x];
        PPlot = Plot[{P1, P2}, {x, a, b},
            PlotStyle \rightarrow {Red, Blue}, PlotLegends \rightarrow {"P1*(x)", "P2*(x)"}];
        Show[ListPlot[data, PlotStyle → {PointSize[0.015], Orange}], PPlot]
Out[0]=
                     1.0
                     8.0
                                                                              P1*(x)
                     0.6
                                                                              P2*(x)
                     ٥4
                     0.2
        -0.5
                                    0.5
                                                                1.5
 In[\bullet]:= Sum[(P1/.x \rightarrow data[i, 1]) - data[i, 2])^2, \{i, dots\}]
Out[0]=
        0.308321
 In[\circ]:= Sum[(P2/.x \rightarrow data[i, 1]) - data[i, 2])^2, {i, dots}]
Out[0]=
        0.00603807
```

Вывод: многочлен наилучшего среднеквадратичного приближения второго порядка показал лучшую точность графически и исходя из высчитанной суммы квадратов разностей.й

Задание 4

Вычислите определенный интеграл следующими методами:

- -методами левых, правых и средних прямоугольников;
- -методом трапеций;
- -методом парабол (Симпсона).

Сравните полученные приближенные значения интеграла и сделайте

выводы о точности результата.

```
(*Метод левых прямоугольников*)
  In[*]:= LeftRectangle = h * \sum_{i=1}^{dots-1} data[i, 2]
Out[0]=
         1.17256
          (*Метод правых прямоугольников*)
  In[\circ]:= RightRectangle = h * \sum_{i=2}^{dots} data[i, 2]
Out[0]=
         1.2347
          (*Метод средних прямоугольников*)
  In[*]:= \mbox{MiddleRectangle} = \mbox{$h$} * \sum_{i=1}^{dots-1} \frac{\mbox{data[i, 2]} + \mbox{data[i+1, 2]}}{2}
Out[0]=
         1.20363
          (*Метод трапеций*)
  In[*]:= TrapezoidMethod = h * \sum_{i=1}^{dots-1} \frac{data[i, 2] + data[i + 1, 2]}{2}
Out[0]=
         1.20363
          (*Метод парабол*)
  In[-]:= n = 12;
         h = \frac{(b-a)}{2n};
         For [i = 0, i \leq 2 * n, i++, y_i = data[i+1, 2];]
         SimpsonFormula = \sum_{i=0}^{n-1} \frac{h}{3} * (y_{2i} + 4 y_{2i+1} + y_{2i+2})
Out[0]=
         1.14925
```

Вывод: Методы средних треугольников, трапеций позволяют получить более точный результат.

Задание 5

Постройте с помощью формул численного дифференцирования первого и второго порядка точности таблицу первых и вторых производных функции f (x) в узлах сетки. Сравните полученные результаты и сделайте

выводы.

(*Первый уровень точности первой производной*)

$$In[*]:= \text{FirstFirst} = \text{Table}\left[\left\{i, \, \text{data}[i, 1], \, \frac{\text{data}[i+1, 2] - \text{data}[i, 2]}{h}\right\}, \, \{i, 1, \, \text{dots} - 1\}\right];$$

 $\label{eq:total_constraints} Table Form [\texttt{FirstFirst}, \texttt{Table} \texttt{Headings} \rightarrow \{\texttt{None}, \, \{\texttt{"Node"}, \, \texttt{"x}_i\texttt{"}, \, \texttt{"y'}_i\texttt{"}\}\} \;]$

Out[]//TableForm=

Node	x_i	y' _i
1	-0.5	-0.272239
2	-0.412	-0.0521136
3	-0.324	-0.192784
4	-0.236	0.0136932
5	-0.148	-0.122557
6	-0.06	0.0778068
7	0.028	-0.0573636
8	0.116	0.14417
9	0.204	0.006875
10	0.292	0.216864
11	0.38	0.0740114
12	0.468	0.30017
13	0.556	0.14783
14	0.644	0.398523
15	0.732	0.231807
16	0.82	0.516284
17	0.908	0.328864
18	0.996	0.657205
19	1.084	0.440625
20	1.172	0.823489
21	1.26	0.566432
22	1.348	1.01432
23	1.436	0.701841
24	1.524	1.22403
25	1.612	0.837159

(*Второй уровень точности первой производной*)

$$\label{eq:local_local_local_local_local_local} $$ In[\ensuremath{\text{o}}\ensuremath{\text{:=}}$ FirstSecond = Table[\ensuremath{\text{i}}, data[i, 1]], $$ $$ $$ $$ $$ $2 * h$ $$ $$ $$ TableForm[FirstSecond, TableHeadings $$ $$ $$ {None, {"Node", "x_i", "y'_i"}}] $$$$

Out[•]//TableForm=

x_i	y' _i
-0.412	-0.162176
-0.324	-0.122449
-0.236	-0.0895455
-0.148	-0.0544318
-0.06	-0.022375
0.028	0.0102216
0.116	0.0434034
0.204	0.0755227
0.292	0.111869
0.38	0.145437
0.468	0.187091
0.556	0.224
0.644	0.273176
0.732	0.315165
0.82	0.374045
0.908	0.422574
0.996	0.493034
1.084	0.548915
1.172	0.632057
1.26	0.69496
1.348	0.790375
1.436	0.85808
1.524	0.962938
1.612	1.0306
	-0.412 -0.324 -0.326 -0.148 -0.06 0.028 0.116 0.204 0.292 0.38 0.468 0.556 0.644 0.732 0.82 0.908 0.908 1.084 1.172 1.26 1.348 1.436 1.524

(*Первый уровень точности второй производной*)

In[@]:= SecondSecond =

$$Table \Big[\Big\{ i, \, \mathsf{data}[i, \, 1] , \, \frac{\mathsf{data}[i+1, \, 2] - 2 * \mathsf{data}[i, \, 2] * \mathsf{data}[i-1, \, 2] }{\mathsf{h}^2} \Big\}, \, \{i, \, 2, \, \mathsf{dots} - 1\} \Big];$$

TableForm[SecondSecond, TableHeadings \rightarrow {None, {"Node", "x_i", "y''_i"}},]

Out[]]//TableForm=

Node	x_i	y'' _i
2	-0.412	2.50142
3	-0.324	-1.59853
4	-0.236	2.34633
5	-0.148	-1.5483
6	-0.06	2.27686
7	0.028	-1.53603
8	0.116	2.29016
9	0.204	-1.56018
10	0.292	2.38623
11	0.38	-1.62332
12	0.468	2.56999
13	0.556	-1.73115
14	0.644	2.84879
15	0.732	-1.8945
16	0.82	3.2327
17	0.908	-2.12978
18	0.996	3.73115
19	1.084	-2.46113
20	1.172	4.35072
21	1.26	-2.9211
22	1.348	5.08962
23	1.436	-3.55088
24	1.524	5.93401
25	1.612	-4.39631

Вывод: мы можем получить удовлетворительные результаты при нахождении производных 1 и 2 порядка. Однако при шаге сетки, близком к нулю, неустранимые погрешности в значениях функции оказывают сильное влияние на результат, о чём свидетельствуют вычисленные значения 2ой производной.