Venn diegorous

$$\bigcirc$$
 Otoh, $\left(\sqrt{\frac{n}{2}} = \frac{1}{2} \left(n^2 - n \right) \right)$ since each vertex

Holding a circle into a diagram with 4-1 ones,

ve gut plus 2 (n-1	new sourtitu	outcs	by s	pliffing Weden	the ele i	previous	s ouls wost	⁷)
2 (n - 1) our	3	2 Cn-) ruh	erection	u peruts	ou is	H.
			_	2 (n-1)			_	
E121	<i>2</i>	2/10	$\int_{0}^{\infty} \int_{0}^{2}$	$(u \circ) \circ$	(n-2 F)

$$E_{1} = 2 E_{1} + 2 (n-1)$$

 $E_{1} = 2 (n-1) + 2 (n-2) + ... + 2^{n-2} E_{2}$
In particular, $E_{3} \in 2E_{2} + 2 \cdot 2 = 12$
 $E_{2} \in 4$ $E_{4} \in 2E_{3} + 2 \cdot 3 = 30$

© By Euler's formula,
$$F_{q} \leq 2 - V_{q} + E_{q} = 2 - 6 + 30 = 26.$$
 But also $F_{q} \geq 2^{q} = 16$.

-> Connot do with 5 sets.

To do better less compute V_n struiterly to F_n : $V_n = V_{n-1} + 2(n-1) \implies V_q = V_3 + 6 = V_2 + 10$ = 12.

Fy € 2-12+30 = 20. Still not enough!

[n_{25}] $F_{5} \ge 2^{5} \ge 32$.

But also $V_{5} \ge V_{4} + 2 \cdot 4 \ge 20$ $E_{5} \le 2E_{9} + 2 \cdot 4 \ge 38$. $F_{5} \le 2 \cdot 20 + 38 \ge 20$.