Science Decision | CM: 6

Par Lorenzo

17 octobre 2024

0.1 Ordre faible et ordre total

Soit R une relation binaire sur l'ensemble X.

On définit I et S sur X par $\forall x \in X, y \in X, xIy \text{ si } xRy \land yRx$

 $\forall x \in X, y \in X, xSy \text{ si } xRy \land \neg yRx$

Example 0.1. $A = \{a, b, c\}$

$$R = \{(a, b), (b, a), (a, c), (b, c)\}$$

$$I = \{(a, b), (b, a)\}$$

$$S = \{(a, c), (b, c)\}$$

Proposition 0.1.

si R est un ordre faible sur X, alors

- 1. I est une relation d'équivalence
- 2. S est irréflexive et transitive

Démonstration 0.1.

I relation d'équivalence:

I reflexive

Soit $x \in X, xIx \iff xRx \land xRX \iff xRx \ vrai \ car \ R \ est \ complète$

I symétrique

Soient
$$x \in X, y \in X, xIy \implies xRy \land yRx \implies yRx \land xRy \implies yIx$$

I transitive

 $Soient \; x,y,z \in X, xIy \wedge yIz \implies xRy \wedge yRx \wedge yRz \wedge zRy \implies xRy \wedge yRz \wedge zRy \wedge yRx \implies xRz \wedge zRx \implies xIz$

On définit R^* sur X/I par

 $\forall C_x \in X/I, C_y \in X/I, C_x R^*C_y \text{ lorsque } xRy$

 R^* sur X/I est la réduction (relation quotient) de R sur X

Proposition 0.2.

Si R est un ordre faible alors R^* est un ordre total sur X/I

Démonstration 0.2.

$$R^* \ antisym\acute{e}trique \\ Soient \ C_x, C_y \in X/I, C_x R^* C_y \wedge C_y R^* C_x \implies C_x = C_y \implies xIy \implies y \in C_x \implies C_x = C_y$$

$$R^* \ transitive \\ Soient \ C_x, C_y, C_z \in X/I \\ C_x R^* C_y \wedge C_y R^* C_z \implies xRy \wedge yRz \implies xRz \implies C_x R^* C_z$$

$$R^* \ complète \\ C_x, C_y \in X/I, C_x R^* C_y \vee C_y R^* C_x \ car \ R \ complète$$

0.1.1 Irréflexive et transitive

voir plus tard