Vivek Convultion Networking Assignment

Report: Exploring the Relationship Between Training Sample Size and Choice of Network for Cats vs. Dogs Classification

Objective

The goal of this project was to investigate the impact of training sample size on the performance of convolutional neural networks (CNNs) trained from scratch versus using pretrained networks. Specifically, we aimed to:

- 1. Apply CNNs to image data and explore overfitting reduction techniques.
- 2. Compare the performance of models trained from scratch and pretrained models across different training sample sizes (1500, 2000, and 2500).
- 3. Optimize model architectures and techniques to achieve the best performance.

Methodology

I trained two types of models on a subset of the Cats vs. Dogs dataset:

- 1. Scratch Model: A CNN model built from scratch with multiple convolutional layers, pooling layers, and dropout regularization to reduce overfitting.
- 2. Pretrained Model: A transfer learning approach using the ResNet50 architecture pretrained on the ImageNet dataset, with fine-tuning applied on the final layers.

Both models were trained on three different sample sizes: 1500, 2000, and 2500 training samples, with 500 validation and 500 test samples for each scenario. Techniques such as data augmentation, dropout, and regularization were applied to mitigate overfitting.

Results

The following table summarizes the performance of both models across different sample sizes:

Sample Size	Model Type	Training Accuracy	Validation Accuracy	Training Loss	Validation Loss
1500	Scratch	0.6007	0.562	1.8124	1.8398
1500	Pretrained	0.9473	0.966	0.1224	0.0985
2000	Scratch	0.6375	0.552	1.7352	2.1645
2000	Pretrained	0.9415	0.958	0.1472	0.1302
2500	Scratch	0.6264	0.616	1.3995	1.3633
2500	Pretrained	0.9448	0.966	0.1357	0.0932

Analysis and Key Findings

1. Performance of Scratch Models:

- The scratch models exhibited lower training and validation accuracy compared to the pretrained models across all sample sizes. The best validation accuracy achieved by the scratch model was 0.616 for the 2500 sample size.
- The models trained from scratch were prone to overfitting, as indicated by a significant gap between training accuracy and validation accuracy, particularly with the 2000 and 2500 sample sizes.
- Regularization techniques (such as dropout and data augmentation) were effective at mitigating overfitting, but their overall impact was limited compared to the performance of pretrained models.

2. Performance of Pretrained Models:

- Pretrained models consistently outperformed the scratch models, achieving validation accuracies of 0.958 to 0.966 across all sample sizes, with minimal overfitting. The validation losses were also significantly lower than those of the scratch models.
- Pretrained models demonstrated that even with smaller datasets (1500 samples), transfer learning provided excellent generalization, confirming that pretrained networks are highly effective for small to moderately sized datasets.

3. Impact of Sample Size:

- Increasing the training sample size improved the performance of both scratch and pretrained models, but the improvement was marginal for pretrained models since they already achieved high accuracy even with smaller sample sizes.
- Scratch models benefitted slightly more from larger sample sizes, but still underperformed compared to pretrained models. The training process for scratch models appeared to stabilize around the 2500 sample size but did not close the performance gap.

4. Overfitting and Regularization:

- Overfitting was more pronounced in scratch models, which had lower validation accuracy and higher validation loss compared to training loss. This suggests that scratch models required larger datasets and additional regularization techniques to improve generalization.
- Pretrained models, benefiting from their pretrained weights, were less susceptible to overfitting and required fewer overfitting prevention techniques.

Conclusion

In conclusion, this project highlights a clear relationship between training sample size and the choice of network:

- Pretrained Models: Transfer learning with pretrained models (like ResNet50) is highly effective, especially when working with small to moderate sample sizes. Pretrained models are able to generalize well with less data and require less fine-tuning compared to scratch models.
- Scratch Models: While scratch models can achieve reasonable performance, they require much larger datasets to avoid overfitting and reach the same level of generalization as pretrained models. For smaller datasets, scratch models are prone to overfitting and underperformance, even with regularization techniques applied.

Based on these findings, pretrained models are recommended when working with smaller datasets due to their superior performance and generalization ability. Scratch models may be suitable for larger datasets or when a custom architecture is required, but they demand more careful tuning and regularization.

Loading Libraries

```
In [1]: from google.colab import drive
   import zipfile
   import os
   import shutil
   import random
   import matplotlib.pyplot as plt
   from tensorflow.keras.preprocessing.image import ImageDataGenerator
   from tensorflow.keras.models import Sequential
   from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout, Bat
   from tensorflow.keras.regularizers import 12
   from tensorflow.keras.applications import InceptionV3
   from tensorflow.keras.layers import GlobalAveragePooling2D
   from tensorflow.keras.models import Model
```

Loading Dataset

```
In [2]: # Mount Google Drive
    drive.mount('/content/drive')

Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.m
    ount("/content/drive", force_remount=True).

In [3]: # Define paths
    base_dir = '/content/drive/MyDrive'
    zip_file_path = os.path.join(base_dir, 'cats_vs_dogs_small_dataset.zip')
    extracted_dir_path = os.path.join(base_dir, 'cats_vs_dogs_small_dataset')

In [4]: # Unzip dataset
    with zipfile.ZipFile(zip_file_path, 'r') as zip_ref:
        zip_ref.extractall(extracted_dir_path)

In [4]: # Dataset directories for 'cat' and 'dog' folders
    cat_folder_path = os.path.join(extracted_dir_path, 'cats_vs_dogs_small_dataset/cat')
    dog_folder_path = os.path.join(extracted_dir_path, 'cats_vs_dogs_small_dataset/dog')
```

Splitting The Dataset

```
random.shuffle(dog_images)
            def copy_images(src_dir, dst_dir, file_list):
                for file in file_list:
                    src_path = os.path.join(src_dir, file)
                    dst path = os.path.join(dst dir, file)
                    shutil.copyfile(src_path, dst_path)
            copy_images(cat_folder_path, os.path.join(train_dir, 'cat'), cat_images[:train_sam'
            copy_images(dog_folder_path, os.path.join(train_dir, 'dog'), dog_images[:train_sam
            copy_images(cat_folder_path, os.path.join(validation_dir, 'cat'),
                         cat_images[train_samples // 2:train_samples // 2 + validation_samples
            copy_images(dog_folder_path, os.path.join(validation_dir, 'dog'),
                         dog_images[train_samples // 2:train_samples // 2 + validation_samples
            copy_images(cat_folder_path, os.path.join(test_dir, 'cat'),
                         cat_images[train_samples // 2 + validation_samples // 2:
                                    train samples // 2 + validation samples // 2 + test samples
            copy_images(dog_folder_path, os.path.join(test_dir, 'dog'),
                         dog_images[train_samples // 2 + validation_samples // 2:
                                    train_samples // 2 + validation_samples // 2 + test_samples
            return train_dir, validation_dir, test_dir
In [6]: # Image augmentations and data generators
        def create_data_generators(train_dir, validation_dir, test_dir, image_size, batch_size
            train_datagen = ImageDataGenerator(
                rescale=1./255,
                rotation_range=40,
                width_shift_range=0.2,
                height_shift_range=0.2,
                shear_range=0.2,
                zoom range=0.2,
                horizontal_flip=True,
                fill_mode='nearest'
            validation_datagen = ImageDataGenerator(rescale=1./255)
            test_datagen = ImageDataGenerator(rescale=1./255)
            train_generator = train_datagen.flow_from_directory(
                train dir,
                target_size=image_size,
                batch_size=batch_size,
                class_mode='binary'
            validation generator = validation datagen.flow from directory(
                validation_dir,
                target_size=image_size,
                batch_size=batch_size,
                class_mode='binary'
            test_generator = test_datagen.flow_from_directory(
                test_dir,
                target_size=image_size,
                batch_size=batch_size,
                class mode='binary'
```

random.shuffle(cat images)

```
return train_generator, validation_generator, test_generator
```

Building Optimized Scratch Model

```
In [7]:
        # Improved Scratch Model
        def build optimized scratch model(image size):
            model = Sequential([
                Conv2D(64, (3, 3), activation='relu', input_shape=(image_size[0], image_size[1
                BatchNormalization(),
                MaxPooling2D((2, 2)),
                Conv2D(128, (3, 3), activation='relu', kernel_regularizer=12(0.001)),
                BatchNormalization(),
                MaxPooling2D((2, 2)),
                Conv2D(256, (3, 3), activation='relu', kernel_regularizer=12(0.001)),
                BatchNormalization(),
                MaxPooling2D((2, 2)),
                Conv2D(512, (3, 3), activation='relu', kernel_regularizer=12(0.001)),
                BatchNormalization(),
                MaxPooling2D((2, 2)),
                Flatten(),
                Dense(512, activation='relu', kernel_regularizer=12(0.001)),
                Dropout(0.5), # Prevent overfitting
                Dense(1, activation='sigmoid')
            model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
            return model
```

Inception Model

```
In [8]: # Pretrained InceptionV3 Model
        def build inception pretrained model(image size):
            base_model = InceptionV3(weights='imagenet', include_top=False, input_shape=(image
            for layer in base_model.layers:
                layer.trainable = False # Freeze the base model Layers
            x = GlobalAveragePooling2D()(base_model.output)
            x = Dense(512, activation='relu')(x)
            Dropout(0.5)
            output = Dense(1, activation='sigmoid')(x)
            model = Model(inputs=base_model.input, outputs=output)
            model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
            return model
In [9]: # Train the model and plot results
        def train_and_evaluate_model(model, train_generator, validation_generator, epochs):
            history = model.fit(
                train generator,
                epochs=epochs,
                validation_data=validation_generator
            return history
```

```
In [10]: # Plot performance metrics
         def plot_training_metrics(history):
```

```
plt.plot(history history['val_accuracy'], label='Validation Accuracy')
             plt.title('Training and Validation Accuracy')
             plt.xlabel('Epoch')
             plt.ylabel('Accuracy')
             plt.legend()
             plt.show()
             plt.plot(history.history['loss'], label='Training Loss')
             plt.plot(history.history['val_loss'], label='Validation Loss')
             plt.title('Training and Validation Loss')
             plt.xlabel('Epoch')
             plt.ylabel('Loss')
             plt.legend()
             plt.show()
In [23]: # Plot accuracy comparison for scratch vs pretrained model for different sample sizes
         def plot_accuracy_comparison(results, sample_size):
             # Access the history attributes correctly
             scratch_acc = results[sample_size]['scratch']['history['accuracy']
             scratch_val_acc = results[sample_size]['scratch']['history'].history['val_accuracy
             pretrained_acc = results[sample_size]['pretrained']['history'].history['accuracy']
             pretrained_val_acc = results[sample_size]['pretrained']['history'].history['val_ac
             plt.plot(scratch_acc, label='Scratch Model Training Accuracy')
             plt.plot(scratch_val_acc, label='Scratch Model Validation Accuracy')
             plt.plot(pretrained acc, label='Pretrained Model Training Accuracy')
             plt.plot(pretrained_val_acc, label='Pretrained Model Validation Accuracy')
             plt.title(f'Training vs Validation Accuracy for {sample_size} Samples')
             plt.xlabel('Epochs')
             plt.ylabel('Accuracy')
             plt.legend()
             plt.show()
In [24]: # Plot loss comparison for scratch vs pretrained model for different sample sizes
         def plot_loss_comparison(results, sample_size):
             # Access the history attributes correctly
             scratch_loss = results[sample_size]['scratch']['history'].history['loss']
             scratch_val_loss = results[sample_size]['scratch']['history'].history['val_loss']
             pretrained_loss = results[sample_size]['pretrained']['history'].history['loss']
             pretrained_val_loss = results[sample_size]['pretrained']['history'].history['val_]
             plt.plot(scratch_loss, label='Scratch Model Training Loss')
             plt.plot(scratch val loss, label='Scratch Model Validation Loss')
             plt.plot(pretrained_loss, label='Pretrained Model Training Loss')
             plt.plot(pretrained_val_loss, label='Pretrained Model Validation Loss')
             plt.title(f'Training vs Validation Loss for {sample_size} Samples')
             plt.xlabel('Epochs')
             plt.ylabel('Loss')
             plt.legend()
             plt.show()
In [15]: # Setting up parameters
         image size = (150, 150)
         batch_size = 32
         validation_samples = 500
         test_samples = 500
         cat_images = os.listdir(cat_folder_path)
         dog_images = os.listdir(dog_folder_path)
```

plt.plot(history.history['accuracy'], label='Training Accuracy')

```
In [16]: # Train and validate models for both 1500 and 2000 sample sizes
    sample_sizes = [1500, 2000,2500]
    results = {}
```

In [17]: scratch_model = build_optimized_scratch_model(image_size)
 scratch_model.summary()

/usr/local/lib/python3.10/dist-packages/keras/src/layers/convolutional/base_conv.py:1 07: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When u sing Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.

super().__init__(activity_regularizer=activity_regularizer, **kwargs)

Model: "sequential"

Layer (type)	Output Shape	Pa
conv2d (Conv2D)	(None, 148, 148, 64)	
batch_normalization (BatchNormalization)	(None, 148, 148, 64)	
max_pooling2d (MaxPooling2D)	(None, 74, 74, 64)	
conv2d_1 (Conv2D)	(None, 72, 72, 128)	-
batch_normalization_1 (BatchNormalization)	(None, 72, 72, 128)	
max_pooling2d_1 (MaxPooling2D)	(None, 36, 36, 128)	
conv2d_2 (Conv2D)	(None, 34, 34, 256)	29
batch_normalization_2 (BatchNormalization)	(None, 34, 34, 256)	
max_pooling2d_2 (MaxPooling2D)	(None, 17, 17, 256)	
conv2d_3 (Conv2D)	(None, 15, 15, 512)	1,18
batch_normalization_3 (BatchNormalization)	(None, 15, 15, 512)	
max_pooling2d_3 (MaxPooling2D)	(None, 7, 7, 512)	
flatten (Flatten)	(None, 25088)	
dense (Dense)	(None, 512)	12,84
dropout (Dropout)	(None, 512)	
dense_1 (Dense)	(None, 1)	

Total params: 14,400,897 (54.94 MB)

Trainable params: 14,398,977 (54.93 MB)

↓

Layer (type)	Output Shape	Param #	Connected
<pre>input_layer_1 (InputLayer)</pre>	(None, 150, 150, 3)	0	_
conv2d_4 (Conv2D)	(None, 74, 74, 32)	864	input_lay
batch_normalization_4 (BatchNormalization)	(None, 74, 74, 32)	96	conv2d_4
activation (Activation)	(None, 74, 74, 32)	0	batch_nor
conv2d_5 (Conv2D)	(None, 72, 72, 32)	9,216	activation
batch_normalization_5 (BatchNormalization)	(None, 72, 72, 32)	96	conv2d_5
activation_1 (Activation)	(None, 72, 72, 32)	0	batch_nor
conv2d_6 (Conv2D)	(None, 72, 72, 64)	18,432	activation
batch_normalization_6 (BatchNormalization)	(None, 72, 72, 64)	192	conv2d_6
activation_2 (Activation)	(None, 72, 72, 64)	0	batch_nor
<pre>max_pooling2d_4 (MaxPooling2D)</pre>	(None, 35, 35, 64)	0	activation
conv2d_7 (Conv2D)	(None, 35, 35, 80)	5,120	max_pool:
batch_normalization_7 (BatchNormalization)	(None, 35, 35, 80)	240	conv2d_7
activation_3 (Activation)	(None, 35, 35, 80)	0	batch_nor
conv2d_8 (Conv2D)	(None, 33, 33, 192)	138,240	activation
batch_normalization_8 (BatchNormalization)	(None, 33, 33, 192)	576	conv2d_8
activation_4 (Activation)	(None, 33, 33, 192)	0	batch_nor
<pre>max_pooling2d_5 (MaxPooling2D)</pre>	(None, 16, 16, 192)	0	activation
conv2d_12 (Conv2D)	(None, 16, 16, 64)	12,288	max_pool:
batch_normalization_12 (BatchNormalization)	(None, 16, 16, 64)	192	conv2d_12
activation_8 (Activation)	(None, 16, 16, 64)	0	batch_nor
conv2d_10 (Conv2D)	(None, 16, 16, 48)	9,216	max_pool:
conv2d_13 (Conv2D)	(None, 16, 16, 96)	55,296	activatio

<pre>batch_normalization_10 (BatchNormalization)</pre>	(None, 16, 16, 48)	144	conv2d_10
batch_normalization_13 (BatchNormalization)	(None, 16, 16, 96)	288	conv2d_1
activation_6 (Activation)	(None, 16, 16, 48)	0	batch_nor
activation_9 (Activation)	(None, 16, 16, 96)	0	batch_nor
average_pooling2d (AveragePooling2D)	(None, 16, 16, 192)	0	max_pool:
conv2d_9 (Conv2D)	(None, 16, 16, 64)	12,288	max_pooli
conv2d_11 (Conv2D)	(None, 16, 16, 64)	76,800	activatio
conv2d_14 (Conv2D)	(None, 16, 16, 96)	82,944	 activatio
conv2d_15 (Conv2D)	(None, 16, 16, 32)	6,144	 average_p
<pre>batch_normalization_9 (BatchNormalization)</pre>	(None, 16, 16, 64)	192	 conv2d_9
batch_normalization_11 (BatchNormalization)	(None, 16, 16, 64)	192	conv2d_1
batch_normalization_14 (BatchNormalization)	(None, 16, 16, 96)	288	conv2d_14
batch_normalization_15 (BatchNormalization)	(None, 16, 16, 32)	96	conv2d_1
activation_5 (Activation)	(None, 16, 16, 64)	0	 batch_nor
activation_7 (Activation)	(None, 16, 16, 64)	0	batch_nor
activation_10 (Activation)	(None, 16, 16, 96)	0	 batch_nor
activation_11 (Activation)	(None, 16, 16, 32)	0	batch_nor
mixed0 (Concatenate)	(None, 16, 16, 256)	0	activation activation activation activation activation
conv2d_19 (Conv2D)	(None, 16, 16, 64)	16,384	mixed0[0]
batch_normalization_19 (BatchNormalization)	(None, 16, 16, 64)	192	conv2d_19
activation_15 (Activation)	(None, 16, 16, 64)	0	 batch_nor

conv2d_17 (Conv2D)	(None, 16, 16, 48)	12,288	mixed0[0]
conv2d_20 (Conv2D)	(None, 16, 16, 96)	55,296	activatio
batch_normalization_17 (BatchNormalization)	(None, 16, 16, 48)	144	conv2d_17
batch_normalization_20 (BatchNormalization)	(None, 16, 16, 96)	288	conv2d_2(
activation_13 (Activation)	(None, 16, 16, 48)	0	batch_nor
activation_16 (Activation)	(None, 16, 16, 96)	0	batch_nor
average_pooling2d_1 (AveragePooling2D)	(None, 16, 16, 256)	0	mixed0[0]
conv2d_16 (Conv2D)	(None, 16, 16, 64)	16,384	mixed0[0]
conv2d_18 (Conv2D)	(None, 16, 16, 64)	76,800	activation
conv2d_21 (Conv2D)	(None, 16, 16, 96)	82,944	activation
conv2d_22 (Conv2D)	(None, 16, 16, 64)	16,384	average_p
batch_normalization_16 (BatchNormalization)	(None, 16, 16, 64)	192	conv2d_16
batch_normalization_18 (BatchNormalization)	(None, 16, 16, 64)	192	conv2d_1
batch_normalization_21 (BatchNormalization)	(None, 16, 16, 96)	288	conv2d_2í
batch_normalization_22 (BatchNormalization)	(None, 16, 16, 64)	192	conv2d_22
activation_12 (Activation)	(None, 16, 16, 64)	0	batch_nor
activation_14 (Activation)	(None, 16, 16, 64)	0	batch_nor
activation_17 (Activation)	(None, 16, 16, 96)	0	batch_nor
activation_18 (Activation)	(None, 16, 16, 64)	0	batch_nor
mixed1 (Concatenate)	(None, 16, 16, 288)	0	activation activation activation activation activation
conv2d_26 (Conv2D)	(None, 16, 16, 64)	18,432	mixed1[0]

<pre>batch_normalization_26 (BatchNormalization)</pre>	(None, 16, 16, 64)	192	conv2
activation_22 (Activation)	(None, 16, 16, 64)	0	batch
conv2d_24 (Conv2D)	(None, 16, 16, 48)	13,824	 mixed
conv2d_27 (Conv2D)	(None, 16, 16, 96)	55,296	activ
batch_normalization_24 (BatchNormalization)	(None, 16, 16, 48)	144	conv2
batch_normalization_27 (BatchNormalization)	(None, 16, 16, 96)	288	conv2
activation_20 (Activation)	(None, 16, 16, 48)	0	batch
activation_23 (Activation)	(None, 16, 16, 96)	0	batch
average_pooling2d_2 (AveragePooling2D)	(None, 16, 16, 288)	0	mixed
conv2d_23 (Conv2D)	(None, 16, 16, 64)	18,432	mixed
conv2d_25 (Conv2D)	(None, 16, 16, 64)	76,800	activ
conv2d_28 (Conv2D)	(None, 16, 16, 96)	82,944	activ
conv2d_29 (Conv2D)	(None, 16, 16, 64)	18,432	 avera
batch_normalization_23 (BatchNormalization)	(None, 16, 16, 64)	192	conv2
batch_normalization_25 (BatchNormalization)	(None, 16, 16, 64)	192	conv2
batch_normalization_28 (BatchNormalization)	(None, 16, 16, 96)	288	conv2
batch_normalization_29 (BatchNormalization)	(None, 16, 16, 64)	192	conv2
activation_19 (Activation)	(None, 16, 16, 64)	0	batch
activation_21 (Activation)	(None, 16, 16, 64)	0	batch
activation_24 (Activation)	(None, 16, 16, 96)	0	batch
activation_25 (Activation)	(None, 16, 16, 64)	0	batch

mixed2 (Concatenate)	(None, 16, 16, 288)	0	activat activat activat activat
conv2d_31 (Conv2D)	(None, 16, 16, 64)	18,432	mixed2[
batch_normalization_31 (BatchNormalization)	(None, 16, 16, 64)	192	conv2d_
activation_27 (Activation)	(None, 16, 16, 64)	0	batch_r
conv2d_32 (Conv2D)	(None, 16, 16, 96)	55,296	activat
batch_normalization_32 (BatchNormalization)	(None, 16, 16, 96)	288	conv2d_
activation_28 (Activation)	(None, 16, 16, 96)	0	batch_ı
conv2d_30 (Conv2D)	(None, 7, 7, 384)	995,328	mixed2
conv2d_33 (Conv2D)	(None, 7, 7, 96)	82,944	activa
batch_normalization_30 (BatchNormalization)	(None, 7, 7, 384)	1,152	conv2d
<pre>batch_normalization_33 (BatchNormalization)</pre>	(None, 7, 7, 96)	288	conv2d
activation_26 (Activation)	(None, 7, 7, 384)	0	batch_
activation_29 (Activation)	(None, 7, 7, 96)	0	batch_
<pre>max_pooling2d_6 (MaxPooling2D)</pre>	(None, 7, 7, 288)	0	mixed2
mixed3 (Concatenate)	(None, 7, 7, 768)	0	activat activat max_pod
conv2d_38 (Conv2D)	(None, 7, 7, 128)	98,304	 mixed3
batch_normalization_38 (BatchNormalization)	(None, 7, 7, 128)	384	conv2d
activation_34 (Activation)	(None, 7, 7, 128)	0	batch_
conv2d_39 (Conv2D)	(None, 7, 7, 128)	114,688	activa
<pre>batch_normalization_39 (BatchNormalization)</pre>	(None, 7, 7, 128)	384	conv2d

	1		l
activation_35 (Activation)	(None, 7, 7, 128)	0	batch_nor
conv2d_35 (Conv2D)	(None, 7, 7, 128)	98,304	mixed3[0]
conv2d_40 (Conv2D)	(None, 7, 7, 128)	114,688	activatio
batch_normalization_35 (BatchNormalization)	(None, 7, 7, 128)	384	conv2d_3
batch_normalization_40 (BatchNormalization)	(None, 7, 7, 128)	384	conv2d_4
activation_31 (Activation)	(None, 7, 7, 128)	0	batch_noi
activation_36 (Activation)	(None, 7, 7, 128)	0	batch_nor
conv2d_36 (Conv2D)	(None, 7, 7, 128)	114,688	activatio
conv2d_41 (Conv2D)	(None, 7, 7, 128)	114,688	activatio
batch_normalization_36 (BatchNormalization)	(None, 7, 7, 128)	384	conv2d_3
batch_normalization_41 (BatchNormalization)	(None, 7, 7, 128)	384	conv2d_4
activation_32 (Activation)	(None, 7, 7, 128)	0	batch_noi
activation_37 (Activation)	(None, 7, 7, 128)	0	batch_noi
average_pooling2d_3 (AveragePooling2D)	(None, 7, 7, 768)	0	mixed3[0]
conv2d_34 (Conv2D)	(None, 7, 7, 192)	147,456	mixed3[0]
conv2d_37 (Conv2D)	(None, 7, 7, 192)	172,032	activatio
conv2d_42 (Conv2D)	(None, 7, 7, 192)	172,032	activatio
conv2d_43 (Conv2D)	(None, 7, 7, 192)	147,456	average_p
<pre>batch_normalization_34 (BatchNormalization)</pre>	(None, 7, 7, 192)	576	conv2d_34
<pre>batch_normalization_37 (BatchNormalization)</pre>	(None, 7, 7, 192)	576	conv2d_37
batch_normalization_42 (BatchNormalization)	(None, 7, 7, 192)	576	conv2d_42
batch_normalization_43	(None, 7, 7, 192)	576	conv2d_4

(BatchNormalization)			
activation_30 (Activation)	(None, 7, 7, 192)	0	batch_nor
activation_33 (Activation)	(None, 7, 7, 192)	0	batch_nor
activation_38 (Activation)	(None, 7, 7, 192)	0	batch_nor
activation_39 (Activation)	(None, 7, 7, 192)	0	batch_nor
mixed4 (Concatenate)	(None, 7, 7, 768)	0	activation activation activation activation activation activation
conv2d_48 (Conv2D)	(None, 7, 7, 160)	122,880	mixed4[0]
batch_normalization_48 (BatchNormalization)	(None, 7, 7, 160)	480	conv2d_4
activation_44 (Activation)	(None, 7, 7, 160)	0	batch_nor
conv2d_49 (Conv2D)	(None, 7, 7, 160)	179,200	activatio
batch_normalization_49 (BatchNormalization)	(None, 7, 7, 160)	480	conv2d_49
activation_45 (Activation)	(None, 7, 7, 160)	0	batch_nor
conv2d_45 (Conv2D)	(None, 7, 7, 160)	122,880	mixed4[0]
conv2d_50 (Conv2D)	(None, 7, 7, 160)	179,200	activatio
batch_normalization_45 (BatchNormalization)	(None, 7, 7, 160)	480	conv2d_4
batch_normalization_50 (BatchNormalization)	(None, 7, 7, 160)	480	conv2d_50
activation_41 (Activation)	(None, 7, 7, 160)	0	batch_nor
activation_46 (Activation)	(None, 7, 7, 160)	0	batch_nor
conv2d_46 (Conv2D)	(None, 7, 7, 160)	179,200	activation
conv2d_51 (Conv2D)	(None, 7, 7, 160)	179,200	activation
batch_normalization_46 (BatchNormalization)	(None, 7, 7, 160)	480	conv2d_4

<pre>batch_normalization_51 (BatchNormalization)</pre>	(None, 7, 7, 160)	480	conv2d_51
activation_42 (Activation)	(None, 7, 7, 160)	0	batch_nor
activation_47 (Activation)	(None, 7, 7, 160)	0	batch_nor
average_pooling2d_4 (AveragePooling2D)	(None, 7, 7, 768)	0	mixed4[0]
conv2d_44 (Conv2D)	(None, 7, 7, 192)	147,456	mixed4[0]
conv2d_47 (Conv2D)	(None, 7, 7, 192)	215,040	 activation
conv2d_52 (Conv2D)	(None, 7, 7, 192)	215,040	activatio
conv2d_53 (Conv2D)	(None, 7, 7, 192)	147,456	 average_p
batch_normalization_44 (BatchNormalization)	(None, 7, 7, 192)	576	conv2d_4/
batch_normalization_47 (BatchNormalization)	(None, 7, 7, 192)	576	conv2d_47
batch_normalization_52 (BatchNormalization)	(None, 7, 7, 192)	576	conv2d_52
batch_normalization_53 (BatchNormalization)	(None, 7, 7, 192)	576	conv2d_5
activation_40 (Activation)	(None, 7, 7, 192)	0	batch_nor
activation_43 (Activation)	(None, 7, 7, 192)	0	batch_nor
activation_48 (Activation)	(None, 7, 7, 192)	0	batch_nor
activation_49 (Activation)	(None, 7, 7, 192)	0	batch_nor
mixed5 (Concatenate)	(None, 7, 7, 768)	0	activation activation activation activation activation
conv2d_58 (Conv2D)	(None, 7, 7, 160)	122,880	mixed5[0]
batch_normalization_58 (BatchNormalization)	(None, 7, 7, 160)	480	conv2d_58
activation_54 (Activation)	(None, 7, 7, 160)	0	 batch_nor

conv2d_59 (Conv2D)	(None, 7, 7, 160)	179,200	activati
batch_normalization_59 (BatchNormalization)	(None, 7, 7, 160)	480	conv2d_5
activation_55 (Activation)	(None, 7, 7, 160)	0	batch_no
conv2d_55 (Conv2D)	(None, 7, 7, 160)	122,880	mixed5[0
conv2d_60 (Conv2D)	(None, 7, 7, 160)	179,200	activati
batch_normalization_55 (BatchNormalization)	(None, 7, 7, 160)	480	conv2d_5
batch_normalization_60 (BatchNormalization)	(None, 7, 7, 160)	480	conv2d_6
activation_51 (Activation)	(None, 7, 7, 160)	0	batch_no
activation_56 (Activation)	(None, 7, 7, 160)	0	batch_no
conv2d_56 (Conv2D)	(None, 7, 7, 160)	179,200	activati
conv2d_61 (Conv2D)	(None, 7, 7, 160)	179,200	activati
batch_normalization_56 (BatchNormalization)	(None, 7, 7, 160)	480	conv2d_5
batch_normalization_61 (BatchNormalization)	(None, 7, 7, 160)	480	conv2d_6
activation_52 (Activation)	(None, 7, 7, 160)	0	batch_no
activation_57 (Activation)	(None, 7, 7, 160)	0	 batch_no
average_pooling2d_5 (AveragePooling2D)	(None, 7, 7, 768)	0	mixed5[0
conv2d_54 (Conv2D)	(None, 7, 7, 192)	147,456	mixed5[0
conv2d_57 (Conv2D)	(None, 7, 7, 192)	215,040	activati
conv2d_62 (Conv2D)	(None, 7, 7, 192)	215,040	activati
conv2d_63 (Conv2D)	(None, 7, 7, 192)	147,456	average_
batch_normalization_54 (BatchNormalization)	(None, 7, 7, 192)	576	conv2d_5
batch_normalization_57 (BatchNormalization)	(None, 7, 7, 192)	576	conv2d_5

	ı	ı	ı
<pre>batch_normalization_62 (BatchNormalization)</pre>	(None, 7, 7, 192)	576	conv2d_62
<pre>batch_normalization_63 (BatchNormalization)</pre>	(None, 7, 7, 192)	576	conv2d_6:
activation_50 (Activation)	(None, 7, 7, 192)	0	batch_nor
activation_53 (Activation)	(None, 7, 7, 192)	0	batch_nor
activation_58 (Activation)	(None, 7, 7, 192)	0	batch_nor
activation_59 (Activation)	(None, 7, 7, 192)	0	batch_nor
mixed6 (Concatenate)	(None, 7, 7, 768)	0	activatic activatic activatic activatic
conv2d_68 (Conv2D)	(None, 7, 7, 192)	147,456	mixed6[0]
batch_normalization_68 (BatchNormalization)	(None, 7, 7, 192)	576	conv2d_68
activation_64 (Activation)	(None, 7, 7, 192)	0	batch_nor
conv2d_69 (Conv2D)	(None, 7, 7, 192)	258,048	activation
batch_normalization_69 (BatchNormalization)	(None, 7, 7, 192)	576	conv2d_69
activation_65 (Activation)	(None, 7, 7, 192)	0	batch_nor
conv2d_65 (Conv2D)	(None, 7, 7, 192)	147,456	mixed6[0]
conv2d_70 (Conv2D)	(None, 7, 7, 192)	258,048	activation
batch_normalization_65 (BatchNormalization)	(None, 7, 7, 192)	576	conv2d_6!
<pre>batch_normalization_70 (BatchNormalization)</pre>	(None, 7, 7, 192)	576	conv2d_7
activation_61 (Activation)	(None, 7, 7, 192)	0	batch_nor
activation_66 (Activation)	(None, 7, 7, 192)	0	
conv2d_66 (Conv2D)	(None, 7, 7, 192)	258,048	activation

conv2d_71 (Conv2D)	(None, 7, 7, 192)	258,048	activatio
<pre>batch_normalization_66 (BatchNormalization)</pre>	(None, 7, 7, 192)	576	conv2d_6
batch_normalization_71 (BatchNormalization)	(None, 7, 7, 192)	576	conv2d_7:
activation_62 (Activation)	(None, 7, 7, 192)	0	batch_no
activation_67 (Activation)	(None, 7, 7, 192)	0	batch_no
average_pooling2d_6 (AveragePooling2D)	(None, 7, 7, 768)	0	mixed6[0]
conv2d_64 (Conv2D)	(None, 7, 7, 192)	147,456	mixed6[0]
conv2d_67 (Conv2D)	(None, 7, 7, 192)	258,048	activatio
conv2d_72 (Conv2D)	(None, 7, 7, 192)	258,048	activatio
conv2d_73 (Conv2D)	(None, 7, 7, 192)	147,456	average_p
batch_normalization_64 (BatchNormalization)	(None, 7, 7, 192)	576	conv2d_64
batch_normalization_67 (BatchNormalization)	(None, 7, 7, 192)	576	conv2d_67
batch_normalization_72 (BatchNormalization)	(None, 7, 7, 192)	576	conv2d_72
batch_normalization_73 (BatchNormalization)	(None, 7, 7, 192)	576	conv2d_7
activation_60 (Activation)	(None, 7, 7, 192)	0	batch_noi
activation_63 (Activation)	(None, 7, 7, 192)	0	batch_noi
activation_68 (Activation)	(None, 7, 7, 192)	0	batch_noi
activation_69 (Activation)	(None, 7, 7, 192)	0	batch_no
mixed7 (Concatenate)	(None, 7, 7, 768)	0	activation activation activation activation activation
conv2d_76 (Conv2D)	(None, 7, 7, 192)	147,456	mixed7[0]

<pre>batch_normalization_76 (BatchNormalization)</pre>	(None, 7, 7, 192)	576	conv2d_76
activation_72 (Activation)	(None, 7, 7, 192)	0	batch_nor
conv2d_77 (Conv2D)	(None, 7, 7, 192)	258,048	activatio
batch_normalization_77 (BatchNormalization)	(None, 7, 7, 192)	576	conv2d_77
activation_73 (Activation)	(None, 7, 7, 192)	0	batch_nor
conv2d_74 (Conv2D)	(None, 7, 7, 192)	147,456	mixed7[0]
conv2d_78 (Conv2D)	(None, 7, 7, 192)	258,048	activatio
batch_normalization_74 (BatchNormalization)	(None, 7, 7, 192)	576	conv2d_74
batch_normalization_78 (BatchNormalization)	(None, 7, 7, 192)	576	conv2d_78
activation_70 (Activation)	(None, 7, 7, 192)	0	batch_nor
activation_74 (Activation)	(None, 7, 7, 192)	0	batch_nor
conv2d_75 (Conv2D)	(None, 3, 3, 320)	552,960	activatio
conv2d_79 (Conv2D)	(None, 3, 3, 192)	331,776	activatio
batch_normalization_75 (BatchNormalization)	(None, 3, 3, 320)	960	conv2d_7!
batch_normalization_79 (BatchNormalization)	(None, 3, 3, 192)	576	conv2d_79
activation_71 (Activation)	(None, 3, 3, 320)	0	batch_nor
activation_75 (Activation)	(None, 3, 3, 192)	0	batch_nor
<pre>max_pooling2d_7 (MaxPooling2D)</pre>	(None, 3, 3, 768)	0	mixed7[0]
mixed8 (Concatenate)	(None, 3, 3, 1280)	0	activation activation activation max_pooli
conv2d_84 (Conv2D)	(None, 3, 3, 448)	573,440	mixed8[0]
<pre>batch_normalization_84 (BatchNormalization)</pre>	(None, 3, 3, 448)	1,344	conv2d_84

	1		
activation_80 (Activation)	(None, 3, 3, 448)	0	batch_nor
conv2d_81 (Conv2D)	(None, 3, 3, 384)	491,520	mixed8[0]
conv2d_85 (Conv2D)	(None, 3, 3, 384)	1,548,288	activatio
batch_normalization_81 (BatchNormalization)	(None, 3, 3, 384)	1,152	conv2d_81
batch_normalization_85 (BatchNormalization)	(None, 3, 3, 384)	1,152	conv2d_8!
activation_77 (Activation)	(None, 3, 3, 384)	0	batch_nor
activation_81 (Activation)	(None, 3, 3, 384)	0	batch_nor
conv2d_82 (Conv2D)	(None, 3, 3, 384)	442,368	activatio
conv2d_83 (Conv2D)	(None, 3, 3, 384)	442,368	activatio
conv2d_86 (Conv2D)	(None, 3, 3, 384)	442,368	activatio
conv2d_87 (Conv2D)	(None, 3, 3, 384)	442,368	activatio
average_pooling2d_7 (AveragePooling2D)	(None, 3, 3, 1280)	0	mixed8[0]
conv2d_80 (Conv2D)	(None, 3, 3, 320)	409,600	mixed8[0]
batch_normalization_82 (BatchNormalization)	(None, 3, 3, 384)	1,152	conv2d_82
batch_normalization_83 (BatchNormalization)	(None, 3, 3, 384)	1,152	conv2d_8
batch_normalization_86 (BatchNormalization)	(None, 3, 3, 384)	1,152	conv2d_86
batch_normalization_87 (BatchNormalization)	(None, 3, 3, 384)	1,152	conv2d_87
conv2d_88 (Conv2D)	(None, 3, 3, 192)	245,760	average_r
batch_normalization_80 (BatchNormalization)	(None, 3, 3, 320)	960	conv2d_80
activation_78 (Activation)	(None, 3, 3, 384)	0	batch_nor
activation_79 (Activation)	(None, 3, 3, 384)	0	batch_nor
activation_82	(None, 3, 3, 384)	0	batch_nor

(Activation)			
activation_83 (Activation)	(None, 3, 3, 384)	0	batch_nor
batch_normalization_88 (BatchNormalization)	(None, 3, 3, 192)	576	conv2d_8
activation_76 (Activation)	(None, 3, 3, 320)	0	batch_nor
mixed9_0 (Concatenate)	(None, 3, 3, 768)	0	activation activation
concatenate (Concatenate)	(None, 3, 3, 768)	0	activation activation
activation_84 (Activation)	(None, 3, 3, 192)	0	batch_nor
mixed9 (Concatenate)	(None, 3, 3, 2048)	0	activation mixed9_0[concatena activation
conv2d_93 (Conv2D)	(None, 3, 3, 448)	917,504	mixed9[0]
batch_normalization_93 (BatchNormalization)	(None, 3, 3, 448)	1,344	conv2d_9
activation_89 (Activation)	(None, 3, 3, 448)	0	batch_nor
conv2d_90 (Conv2D)	(None, 3, 3, 384)	786,432	mixed9[0]
conv2d_94 (Conv2D)	(None, 3, 3, 384)	1,548,288	activatio
batch_normalization_90 (BatchNormalization)	(None, 3, 3, 384)	1,152	conv2d_90
batch_normalization_94 (BatchNormalization)	(None, 3, 3, 384)	1,152	conv2d_94
activation_86 (Activation)	(None, 3, 3, 384)	0	batch_nor
activation_90 (Activation)	(None, 3, 3, 384)	0	batch_nor
conv2d_91 (Conv2D)	(None, 3, 3, 384)	442,368	activation
conv2d_92 (Conv2D)	(None, 3, 3, 384)	442,368	activation
conv2d_95 (Conv2D)	(None, 3, 3, 384)	442,368	activatio
conv2d_96 (Conv2D)	(None, 3, 3, 384)	442,368	activatio

<pre>average_pooling2d_8 (AveragePooling2D)</pre>	(None, 3, 3, 2048)	0	mixed9[0
conv2d_89 (Conv2D)	(None, 3, 3, 320)	655,360	mixed9[0
batch_normalization_91 (BatchNormalization)	(None, 3, 3, 384)	1,152	conv2d_9
batch_normalization_92 (BatchNormalization)	(None, 3, 3, 384)	1,152	conv2d_9
batch_normalization_95 (BatchNormalization)	(None, 3, 3, 384)	1,152	conv2d_9
batch_normalization_96 (BatchNormalization)	(None, 3, 3, 384)	1,152	conv2d_9
conv2d_97 (Conv2D)	(None, 3, 3, 192)	393,216	average_
batch_normalization_89 (BatchNormalization)	(None, 3, 3, 320)	960	conv2d_8
activation_87 (Activation)	(None, 3, 3, 384)	0	batch_no
activation_88 (Activation)	(None, 3, 3, 384)	0	batch_no
activation_91 (Activation)	(None, 3, 3, 384)	0	batch_no
activation_92 (Activation)	(None, 3, 3, 384)	0	batch_no
batch_normalization_97 (BatchNormalization)	(None, 3, 3, 192)	576	conv2d_9
activation_85 (Activation)	(None, 3, 3, 320)	0	batch_no
mixed9_1 (Concatenate)	(None, 3, 3, 768)	0	activati activati
concatenate_1 (Concatenate)	(None, 3, 3, 768)	0	activati activati
activation_93 (Activation)	(None, 3, 3, 192)	0	batch_no
mixed10 (Concatenate)	(None, 3, 3, 2048)	0	activati mixed9_1 concaten activati
<pre>global_average_pooling2d (GlobalAveragePooling2D)</pre>	(None, 2048)	0	mixed10[

dense_2 (Dense)	(None, 512)	1,049,088	global_a\
dense_3 (Dense)	(None, 1)	513	dense_2[{

Total params: 22,852,385 (87.17 MB)
Trainable params: 1,049,601 (4.00 MB)

Model Training

```
In [20]: for sample_size in sample_sizes:
             # Split dataset for current sample size
             train dir, validation dir, test dir = split data folders(extracted dir path, cat i
             train_generator, validation_generator, test_generator = create_data_generators(tra
             # Train scratch model
             scratch_model = build_optimized_scratch_model(image_size)
             history_scratch = train_and_evaluate_model(scratch_model, train_generator, validat
             test_loss_scratch, test_accuracy_scratch = scratch_model.evaluate(test_generator)
             # Train pretrained InceptionV3 model
             pretrained_model = build_inception_pretrained_model(image_size)
             history pretrained = train and evaluate model(pretrained model, train generator, v
             test_loss_pretrained, test_accuracy_pretrained = pretrained_model.evaluate(test_ge
             # Store results for later comparison
             results[sample size] = {
                 'scratch': {'model': scratch model, 'history': history scratch, 'test loss': t
                  'pretrained': {'model': pretrained_model, 'history': history_pretrained, 'test
             }
             # Plot training and validation performance
             print(f"\nResults for CNN Model {sample size} samples:")
             plot_training_metrics(history scratch)
             print(f"\nResults for Pre Trained Model {sample_size} samples:")
             plot_training_metrics(history_pretrained)
         Found 1500 images belonging to 2 classes.
         Found 500 images belonging to 2 classes.
```

Found 500 images belonging to 2 classes.

Found 500 images belonging to 2 classes.

Found 500 images belonging to 2 classes.

/usr/local/lib/python3.10/dist-packages/keras/src/layers/convolutional/base_conv.py:1

07: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When u sing Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.

super().__init__(activity_regularizer=activity_regularizer, **kwargs)

```
Epoch 1/10
                ———— 32s 482ms/step - accuracy: 0.5472 - loss: 7.4070 - val acc
47/47 -----
uracy: 0.5020 - val_loss: 6.7758
Epoch 2/10
                       - 20s 362ms/step - accuracy: 0.5454 - loss: 5.8942 - val_acc
47/47 -
uracy: 0.5080 - val_loss: 4.1834
Epoch 3/10
47/47 ---
                    19s 351ms/step - accuracy: 0.5697 - loss: 3.6160 - val_acc
uracy: 0.5260 - val_loss: 3.0504
Epoch 4/10
47/47 -----
               uracy: 0.5040 - val_loss: 3.3322
Epoch 5/10
                     19s 355ms/step - accuracy: 0.5310 - loss: 2.4724 - val_acc
47/47 ----
uracy: 0.6080 - val loss: 2.3365
Epoch 6/10
                    —— 21s 364ms/step - accuracy: 0.5584 - loss: 2.3234 - val acc
uracy: 0.5440 - val_loss: 2.2301
Epoch 7/10
                    20s 350ms/step - accuracy: 0.5928 - loss: 2.1722 - val acc
47/47 ---
uracy: 0.5080 - val_loss: 3.0899
Epoch 8/10
               20s 359ms/step - accuracy: 0.6407 - loss: 2.0324 - val_acc
47/47 -----
uracy: 0.5740 - val loss: 2.0331
Epoch 9/10
                   22s 422ms/step - accuracy: 0.6032 - loss: 1.9424 - val_acc
47/47 -
uracy: 0.5840 - val_loss: 1.8505
Epoch 10/10
47/47 ----
                 41s 420ms/step - accuracy: 0.6155 - loss: 1.8153 - val acc
uracy: 0.5620 - val_loss: 1.8398
16/16 -----
                    ---- 3s 163ms/step - accuracy: 0.5343 - loss: 1.8164
Epoch 1/10
                61s 943ms/step - accuracy: 0.7164 - loss: 2.2800 - val_acc
47/47 -----
uracy: 0.9680 - val loss: 0.0916
Epoch 2/10
47/47 -
                     21s 404ms/step - accuracy: 0.9205 - loss: 0.1786 - val_acc
uracy: 0.9640 - val_loss: 0.1082
Epoch 3/10
47/47 -
                       - 19s 358ms/step - accuracy: 0.9159 - loss: 0.2050 - val acc
uracy: 0.9620 - val_loss: 0.0905
Epoch 4/10
               23s 415ms/step - accuracy: 0.9263 - loss: 0.1524 - val_acc
47/47 -----
uracy: 0.9520 - val loss: 0.0908
Epoch 5/10
47/47 ---
              ————— 19s 354ms/step - accuracy: 0.9374 - loss: 0.1591 - val_acc
uracy: 0.9620 - val_loss: 0.0844
Epoch 6/10
                   23s 417ms/step - accuracy: 0.9214 - loss: 0.1613 - val_acc
47/47 -
uracy: 0.9680 - val_loss: 0.0863
Epoch 7/10
47/47 -
                       - 19s 358ms/step - accuracy: 0.9408 - loss: 0.1312 - val_acc
uracy: 0.9640 - val_loss: 0.1005
Epoch 8/10
                19s 360ms/step - accuracy: 0.9451 - loss: 0.1290 - val_acc
47/47 -----
uracy: 0.9560 - val_loss: 0.1121
Epoch 9/10
                   20s 343ms/step - accuracy: 0.9544 - loss: 0.1147 - val acc
47/47 -
uracy: 0.9580 - val_loss: 0.0883
Epoch 10/10
47/47 ----
                    18s 339ms/step - accuracy: 0.9530 - loss: 0.1092 - val_acc
```

Results for CNN Model 1500 samples:

Training and Validation Loss

Results for Pre Trained Model 1500 samples:

Training and Validation Loss


```
Found 2000 images belonging to 2 classes.
Found 500 images belonging to 2 classes.
Found 500 images belonging to 2 classes.
Epoch 1/10
                      - 42s 519ms/step - accuracy: 0.5371 - loss: 9.3586 - val_acc
63/63 -
uracy: 0.5000 - val_loss: 5.8278
Epoch 2/10
63/63 -
                    29s 363ms/step - accuracy: 0.5154 - loss: 4.8557 - val_acc
uracy: 0.5000 - val_loss: 4.5087
Epoch 3/10
63/63 -----
               uracy: 0.5220 - val_loss: 2.5862
Epoch 4/10
                    42s 361ms/step - accuracy: 0.6022 - loss: 2.5199 - val_acc
63/63 ----
uracy: 0.5040 - val loss: 2.8582
Epoch 5/10
                    25s 356ms/step - accuracy: 0.6036 - loss: 2.3387 - val acc
uracy: 0.4800 - val_loss: 2.8316
Epoch 6/10
                    26s 365ms/step - accuracy: 0.6289 - loss: 2.1685 - val acc
63/63 -
uracy: 0.5580 - val_loss: 2.1522
Epoch 7/10
               25s 364ms/step - accuracy: 0.6198 - loss: 2.0263 - val_acc
63/63 -----
uracy: 0.5720 - val_loss: 2.0322
Epoch 8/10
                   41s 365ms/step - accuracy: 0.6357 - loss: 1.8809 - val_acc
63/63 -
uracy: 0.5360 - val_loss: 2.2022
Epoch 9/10
63/63 -
                 ———— 24s 342ms/step - accuracy: 0.6400 - loss: 1.7775 - val_acc
uracy: 0.5440 - val_loss: 2.4304
Epoch 10/10
63/63 -
                24s 337ms/step - accuracy: 0.6430 - loss: 1.7204 - val_acc
uracy: 0.5520 - val loss: 2.1645
16/16 -----
                  2s 138ms/step - accuracy: 0.6269 - loss: 1.9761
Epoch 1/10
                 48s 506ms/step - accuracy: 0.8193 - loss: 0.7808 - val_acc
63/63 -----
uracy: 0.9460 - val_loss: 0.1630
Epoch 2/10
63/63 -
                       - 24s 350ms/step - accuracy: 0.9277 - loss: 0.1984 - val_acc
uracy: 0.9600 - val_loss: 0.1108
Epoch 3/10
63/63 — 23s 332ms/step - accuracy: 0.9316 - loss: 0.1667 - val_acc
uracy: 0.9440 - val loss: 0.1672
Epoch 4/10
63/63 ----
           ______ 25s 351ms/step - accuracy: 0.9430 - loss: 0.1343 - val_acc
uracy: 0.9280 - val_loss: 0.1747
Epoch 5/10
                  24s 350ms/step - accuracy: 0.9056 - loss: 0.2149 - val_acc
63/63 -
uracy: 0.9380 - val_loss: 0.1887
Epoch 6/10
63/63 -
                      - 43s 386ms/step - accuracy: 0.9339 - loss: 0.1473 - val_acc
uracy: 0.9440 - val_loss: 0.1384
Epoch 7/10
63/63 ----
                26s 373ms/step - accuracy: 0.9485 - loss: 0.1252 - val_acc
uracy: 0.9540 - val_loss: 0.1103
Epoch 8/10
                   23s 327ms/step - accuracy: 0.9397 - loss: 0.1436 - val acc
63/63 -
uracy: 0.9660 - val_loss: 0.0969
Epoch 9/10
63/63 ---
                    24s 338ms/step - accuracy: 0.9462 - loss: 0.1346 - val_acc
```

uracy: 0.9620 - val_loss: 0.1094

Epoch 10/10

63/63 — **41s** 334ms/step - accuracy: 0.9426 - loss: 0.1443 - val_acc

uracy: 0.9580 - val_loss: 0.1302

16/16 — **3s** 190ms/step - accuracy: 0.9621 - loss: 0.1031

Results for CNN Model 2000 samples:

Training and Validation Loss

Results for Pre Trained Model 2000 samples:

Training and Validation Loss


```
Found 2500 images belonging to 2 classes.
Found 500 images belonging to 2 classes.
Found 500 images belonging to 2 classes.
Epoch 1/10
                       - 46s 475ms/step - accuracy: 0.5313 - loss: 6.8356 - val_acc
79/79 -
uracy: 0.4680 - val_loss: 3.3398
Epoch 2/10
79/79 -
                   31s 367ms/step - accuracy: 0.5419 - loss: 3.7844 - val_acc
uracy: 0.4940 - val_loss: 2.6578
Epoch 3/10
79/79 -----
               uracy: 0.5000 - val_loss: 2.4924
Epoch 4/10
79/79 -----
                     --- 31s 367ms/step - accuracy: 0.6107 - loss: 2.2325 - val_acc
uracy: 0.5040 - val loss: 2.9432
Epoch 5/10
79/79 -
                    ——— 31s 360ms/step - accuracy: 0.6394 - loss: 2.0145 - val acc
uracy: 0.5640 - val_loss: 1.9163
Epoch 6/10
                    40s 359ms/step - accuracy: 0.6264 - loss: 1.8425 - val acc
79/79 ---
uracy: 0.5720 - val_loss: 2.0305
Epoch 7/10
               33s 373ms/step - accuracy: 0.5675 - loss: 2.0198 - val_acc
79/79 -----
uracy: 0.5700 - val loss: 1.9591
Epoch 8/10
                   41s 379ms/step - accuracy: 0.6313 - loss: 1.7120 - val_acc
79/79 -
uracy: 0.5860 - val_loss: 1.6105
Epoch 9/10
79/79 -
                 ———— 31s 361ms/step - accuracy: 0.6317 - loss: 1.5143 - val_acc
uracy: 0.6260 - val_loss: 1.4046
Epoch 10/10
79/79 -
                41s 363ms/step - accuracy: 0.6450 - loss: 1.3951 - val_acc
uracy: 0.6160 - val_loss: 1.3633
16/16 -----
                  2s 146ms/step - accuracy: 0.6096 - loss: 1.3484
Epoch 1/10
                 54s 507ms/step - accuracy: 0.7597 - loss: 1.9802 - val_acc
79/79 -----
uracy: 0.9580 - val_loss: 0.0997
Epoch 2/10
79/79 -
                       - 30s 350ms/step - accuracy: 0.9270 - loss: 0.1758 - val_acc
uracy: 0.9600 - val_loss: 0.1051
Epoch 3/10
               30s 352ms/step - accuracy: 0.9276 - loss: 0.1675 - val_acc
79/79 -----
uracy: 0.9560 - val loss: 0.1132
Epoch 4/10
79/79 -----
             41s 345ms/step - accuracy: 0.9450 - loss: 0.1422 - val_acc
uracy: 0.9620 - val_loss: 0.0888
Epoch 5/10
                  29s 349ms/step - accuracy: 0.9338 - loss: 0.1544 - val_acc
79/79 -
uracy: 0.9620 - val_loss: 0.1071
Epoch 6/10
79/79 -
                       - 30s 348ms/step - accuracy: 0.9348 - loss: 0.1516 - val_acc
uracy: 0.9580 - val_loss: 0.1040
Epoch 7/10
                41s 344ms/step - accuracy: 0.9419 - loss: 0.1516 - val_acc
79/79 -----
uracy: 0.9560 - val_loss: 0.1044
Epoch 8/10
                   41s 343ms/step - accuracy: 0.9485 - loss: 0.1343 - val acc
79/79 -
uracy: 0.9600 - val_loss: 0.1222
Epoch 9/10
79/79 ----
                    29s 339ms/step - accuracy: 0.9363 - loss: 0.1484 - val_acc
```

uracy: 0.9640 - val_loss: 0.0942

Epoch 10/10

79/79 41s 334ms/step - accuracy: 0.9410 - loss: 0.1451 - val_acc

uracy: 0.9660 - val_loss: 0.0932

16/16 — **3s** 159ms/step - accuracy: 0.9840 - loss: 0.0584

Results for CNN Model 2500 samples:

Training and Validation Loss

Results for Pre Trained Model 2500 samples:

Training and Validation Loss

Model Comparison

```
In [25]: # Plot accuracy and loss comparison for both models for all sample sizes
for sample_size in sample_sizes:
    print(f"\nResults for {sample_size} samples:")
    plot_accuracy_comparison(results, sample_size)
    plot_loss_comparison(results, sample_size)
```

Results for 1500 samples:

Training vs Validation Accuracy for 1500 Samples

Training vs Validation Loss for 1500 Samples

Results for 2000 samples:

Training vs Validation Accuracy for 2000 Samples

Training vs Validation Loss for 2000 Samples

Results for 2500 samples:

Training vs Validation Accuracy for 2500 Samples

Training vs Validation Loss for 2500 Samples

import pandas as pd
def display_results_table(results, sample_sizes):

```
# Prepare lists to store the data
data = {
    'Sample Size': [],
    'Model Type': [],
    'Training Accuracy': [],
    'Validation Accuracy': [],
    'Training Loss': [],
    'Validation Loss': []
}
for sample_size in sample_sizes:
    # Scratch Model Results
   scratch_acc = results[sample_size]['scratch']['history'].history['accuracy'][-
    scratch_val_acc = results[sample_size]['scratch']['history'].history['val_acct
    scratch_loss = results[sample_size]['scratch']['history'].history['loss'][-1]
    scratch_val_loss = results[sample_size]['scratch']['history'].history['val_los
    # Pretrained Model Results
    pretrained_acc = results[sample_size]['pretrained']['history'].history['accura
    pretrained val acc = results[sample size]['pretrained']['history'].history['va
    pretrained_loss = results[sample_size]['pretrained']['history'].history['loss'
    pretrained_val_loss = results[sample_size]['pretrained']['history'].history['\]
    # Append data for scratch model
    data['Sample Size'].append(sample_size)
    data['Model Type'].append('Scratch')
    data['Training Accuracy'].append(scratch_acc)
    data['Validation Accuracy'].append(scratch_val_acc)
    data['Training Loss'].append(scratch_loss)
    data['Validation Loss'].append(scratch_val_loss)
    # Append data for pretrained model
    data['Sample Size'].append(sample_size)
    data['Model Type'].append('Pretrained')
    data['Training Accuracy'].append(pretrained_acc)
    data['Validation Accuracy'].append(pretrained_val_acc)
    data['Training Loss'].append(pretrained_loss)
    data['Validation Loss'].append(pretrained_val_loss)
# Create a DataFrame
df = pd.DataFrame(data)
# Print the DataFrame
return df
```

```
In [31]: df = display_results_table(results, sample_sizes)
    df
```

ut[31]:		Sample Size	Model Type	Training Accuracy	Validation Accuracy	Training Loss	Validation Loss
	0	1500	Scratch	0.600667	0.562	1.812383	1.839815
	1	1500	Pretrained	0.947333	0.966	0.122357	0.098470
	2	2000	Scratch	0.637500	0.552	1.735171	2.164541
	3	2000	Pretrained	0.941500	0.958	0.147226	0.130177
	4	2500	Scratch	0.626400	0.616	1.399527	1.363309
	5	2500	Pretrained	0.944800	0.966	0.135690	0.093156

Distributions

Categorical distributions

2-d distributions

Time series

Values

Faceted distributions

<string>:5: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14. 0. Assign the `y` variable to `hue` and set `legend=False` for the same effect.

<string>:5: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14. 0. Assign the `y` variable to `hue` and set `legend=False` for the same effect.

<string>:5: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14. 0. Assign the `y` variable to `hue` and set `legend=False` for the same effect.

<string>:5: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14. 0. Assign the `y` variable to `hue` and set `legend=False` for the same effect.

