

Centro Federal de Educação Tecnológica de Minas Gerais Departamento de Eletrônica e Biomédica Curso Técnico de Eletrônica

_

Emanuel Do Nascimento Pedreira Rocha Gustavo Santos De Carvalho

_

Eletrônica 3B

_

Sistemas Digitais

_

Relatório Final – Roleta Botafogo

Belo Horizonte 26/06/2023

> INTRODUÇÃO

O presente relatório foi redigido por Emanuel Do Nascimento Pedreira Rocha e Gustavo Santos De Carvalho, estudantes acadêmicos, com o valioso apoio dos professores ilustres Denny Daniel e John Kennedy. Neste relatório, discutiremos aspectos relacionados ao hardware da placa Roleta Botafogo, incluindo o seu diagrama, bem como a implementação das funções para o código desenvolvido.

No projeto, utilizamos o método de multiplexação de dados para exibir as informações necessárias nos displays. Essa abordagem foi considerada interessante com o objetivo principal de aprimorar nossos conhecimentos em linguagem C e maximizar a eficiência do projeto como um todo. Além disso, abordaremos as expectativas de cada um dos envolvidos para a conclusão do projeto, bem como nossas considerações finais.

> OBJETIVO

O trabalho tem como objetivo a construção de uma placa eletrônica e o desenvolvimento de um software correspondente, voltado para uma aplicação na Roleta Botafogo. Pretende-se realizar o projeto e a implementação da placa, levando em consideração os requisitos técnicos e úteis, bem como a viabilidade econômica. Além disso, o software será desenvolvido para possibilitar a interação com a placa, visando a execução e controle das funcionalidades desejadas.

> DESCRIÇÃO

A montagem de uma placa para o funcionamento de uma roleta de estádio é um processo crucial para o sucesso da implementação de um sistema de controle de público eficiente e confiável.

Inicialmente, é necessário projetar a placa levando em consideração todas as conexões necessárias para o funcionamento da roleta. Para isso, devem ser definidos os componentes eletrônicos solicitados (Figura 1.0 – Especificações Dos Componentes), como os displays de 7 segmentos, as chaves pushbutton e as chaves on-off, além dos microcontroladores MSP430F2553 ou MSP430F2452.

Após a definição dos componentes, é necessário realizar o desejo dos mesmos na placa de circuito impresso (PCI), seguindo as orientações do esquema elétrico (Figura 1.1 – Diagrama Elétrico). A placa deve ser cuidadosamente montada e soldada, garantindo a correta conexão dos componentes e evitando possíveis problemas no funcionamento do sistema.

O projeto em questão consiste na criação de uma placa (Figura 1.1 – Diagrama Elétrico) que será conectada às portas P1 e P2 do microcontrolador MSP430F2553 ou MSP430F2452. Para a entrada de dados, são utilizados botões de pressão de três chaves, que simulam as roletas de um estádio, sendo denominados ROL0, ROL1 e ROL2. Cada vez que uma dessas chaves é pressionada, é contabilizada a entrada de uma pessoa na respectiva função. A seleção do tipo de público a ser apresentado nos displays é determinada pela combinação de duas chaves on-off, chamadas Sel0 e Sel1. Dependendo da posição dessas chaves, será apresentado ao público total ou individual.

(Figura 1.0 – Especificações Dos Componentes)

IDENTIFICAÇÃO	CODIGO/VALOR	DESCRIÇAO				
C1,C2	10μF/16V	Capacitor Cerámico Multicamada SMD 1210, será utilizado no circuito como armazenador de carga elétrica e o liberara rapidamente quando necessário, irá atuar na estabilidade sêrmica e alta frequência de operação. O capacitor cerámico poderá ser usado para estabilizar a tensão no circuito, onde pode haver flutuações na tensão de alimentação.				
D1	VSBB310	O Diodo Schottky SMD será utilizado neste circuito com a proposta de uma resposta rápida em alta frequência elou ala eficiência energética atribuindo também com a principal característica em uma queda de tensão extremamente baixa em comparação com outros tipos de diodos.				
Q1,Q2	IRLL014N	O Mosfet de potência, canal N, baixo VGS(th), SMD pode ser usado em uma variedade de aplicações. Neste projeto ele será essencial para o acionamento dos display quanto da dezena quanto na unidade.				
R2 até R8	220R	O Resistor SMD 1206 será util neste circuito para a aplicação em que o espaço é limitado, pois será montado diretamente na placa de circuito impresso, economizando espaço e simplificando o processo de montagem. Além dis eles serão projetados neste circuito para ter uma alta estabilidade de temperatura e uma tolerincia de resistência prec				
SEL_SW5		O Dipswitch duplo SMD será usado neste circuito impresso para permitir que configuremos as opções do projeto Roleta Botafogo, Dipswitch dupla SMD terá como objetivo selecionar os estados a serem exibidos no display.				
UI	SPX2945M3-3.3	O Regulador de tensão LDO 3,3V 400ma SMD & especialmente útil neste circuito onde a tensão de entrada é próximo da tensão de saida desejada, permitindo assim que a tensão de salida seja mantida próxima da tensão de entrada, com uma queda de tensão minima.				
U2	MSP430G2452	O Microcontrolador Texas Instruments MSP430G2452 pode ser usado para controlar e monitorar o sensor (led), os atuadores e os displays. Ele poderá executar tarefas complexas de controle do sistema em tempo real e fornecer funcionalidades personalizadas para uma ampla variedade de aplicações. Com ele é contido as seguintes específicações: Arquitetura de 16 bits RISC, baixo consumo de energia, com várias opções de modos de economia de energia, canacidade de operar com frequências de clock de até 16 MHz				
DY1,DY2	SM42056IN	O Display de 7 segmentos serà essencial neste circuito onde, o catodo comum-terminal negativo de todos os segmentos estará conectado em um mesmo ponto onde será conectado ao terra (GND) do circuito para que os segmentos ascendam. Quando um segmento for conectado, uma corrente fluirá através do segmento e acenderá o LED vermelho, tornando-o visivel para o observador.				
R9,R10	47K.	O resistor SMD 1206 47k 5% 1/4W servirá para limitar a corrente elétrica neste circuito. Ele é um componente eletrónico passivo que oferece uma resistència elétrica específica à passagem de corrente elétrica. A sua principal função é reduzir a tensão elétrica em um determinado ponto do circuito, garantindo que a corrente elétrica flua em um nivel seguro para os componentes conectados a ele.				
R11	2 K 7	O resistor SMD 1206 2k7 5% 1/4W é um componente eletrônico que terá como fanção limitar a corrente elétrica que passa pelo circuito da Roleta Botafogo. Ele será usado para ajustar a tensão e corrente, de forma a garantir que o componente operará dentro dos parámetros corretos e com segurança.				
R1,C3	47K e 1nF/50V	O resistor SMD 1206 4% 1/4W terá o papel de garantir no circuito uma tensão constante (estavel). Juntamente ao Capacitor cerâmico multicamada SMD 1nF/50V terá uma determinada constante de tempo para garantir o correto funcionamento do MSP430.				
ROL0_SW4 ROL1_SW3 ROL2_SW2 RST_SW1		A Chave táctil 4 terminas (ou micro switch tactil), será utilizada neste circuito para ativar ou desativar a energia deste circuito Essa chave é composta por quatro terminais que permitirá que a corrente elétrica flun através do circuito quando a chave é pressionada. Quando a chave não está pressionada, os contatos dentro da chave são abertos e a corrente elétrica é interrompida.				
XC1		A Barra de Pinos 40 vias 11.2mm 180 graus passo 2.54mm é um tipo de conector que será utilizado neste circuito para fornecer uma interface de conexão para vários componentes eletrônicos. Essa barra de pinos é utilizada para conectar diversos componentes eletrônicos, como resistores, capacitores, diodos e outros dispositivos.				

(Figura 1.1 – Diagrama Elétrico)

Após a montagem da placa, é necessário escrever o programa em linguagem C que possibilitará o correto funcionamento da roleta. Esse programa deve ser capaz de realizar a contagem de pessoas que passam pelas roletas, detectar o estouro de capacidade de público do estádio, além de monitorar e exibir uma informação que será exibida nos displays em função da seleção das chaves on-off. Dessa forma, o programa será capaz de acionar todos os segmentos dos dois displays, além de testar o estado das teclas on-off e push button.

Para isso, foi necessário escrever o fluxograma (Figura 1.2 – Fluxograma Roleta Botafogo) e codificá-lo em linguagem C. O software deve ser capaz de executar diversas operações, como configurar as portas 1 e 2 para o correto funcionamento do sistema, monitorar as entradas do sistema para realizar a contagem de pessoas que passam pelas roletas, detectar o estouro de capacidade de público do estádio e monitoram qual a informação que será exibida nos displays em função da seleção das chaves (Sel0 e Sel1).

Além disso, o programa principal deverá chamar a função "mostra_display" para apresentar o público relativo à combinação das chaves Sel0 e Sel1. Para garantir o correto funcionamento do sistema, é obrigatória a implementação de duas funções: "mostra display" e "publico total".

A função "mostra_display" recebe o público como parâmetro e mostra nos displays o respectivo valor. Já a função "publico_total" recebe uma referência do vetor das roletas como parâmetro e retorna o somatório das roletas. É obrigatório alocar as variáveis relativas às funções em um vetor do tipo unsigned char, sendo que o primeiro elemento do vetor é relativo ao público total.

Dessa forma, com a utilização do programa em C e as funções obrigatórias, é possível desenvolver um sistema eficiente de roleta eletrônica, capaz de realizar a contagem de pessoas que passam pelas roletas e apresentar informação de público total ou individual nos displays de 7 segmentos de Dezena e Unidade. Por fim, após a montagem da placa e implementação do programa, é possível testar o funcionamento da roleta em todas as suas funcionalidades. É importante garantir que a contagem de pessoas e a exibição das informações nos displays estejam corretas, além de garantir a integridade do sistema como um todo.

Com uma placa bem montada e um programa eficiente, conclui-se que a roleta de estádio poderá ser um importante instrumento para o controle de público em eventos, garantindo a segurança e o conforto dos espectadores.

(Figura 1.2 – Fluxograma Roleta Botafogo) Roleta Configura I/Os Periodo ←30000 publico ← 0 (Roleta+0) ← 0 delay cycles (Roleta+1) ← 0 (Roleta+2) ← 0 Periodo←30000 roleta ←Roleta SW3 delay_cycles zeroRoleta (B) SW4 (Roleta+1)←(Roleta+1)+1 roleta ← Roleta SW4 totalRoleta (Roleta+0)←(Roleta+0)+1 roleta ← Roleta F publico← publico+total totalRoleta Publico >99 F publico← publico+total SW3 F SW₂ Periodo←30000 delay cycles acabou FIM SW2 (Roleta+2)←(Roleta+2)+1 roleta ← Roleta totalRoleta publico← publico+total SELO SEL1 SELO publico← publico+total publico← publico+total publico← publico+total publico← publico+total MostraDisplay B

TotalRoletas Total←0 Cont←0 Mostra Display Cont< 3 Unidade ← Valor Dezena ← 0 Total ←total+(roleta+cont) RETORNA Cont←cont+1 Unidade >9 zeraRoletas V Cont←0 Unidade ← Unidade-10 Dezena ← Dezena +1 Cont< 3 Q1←1 DY2←(cod+Dezena) Periodo ←4000 (roleta+cont) ←0 RETORNA Cont ← cont+1 delay cycles Q1←0 Acabou DY2←0 Q1←1 Q2**←**1 DY1←(cod +Unidade) DY2← 'E' Periodo ←4000 Periodo ←4000 delay cycles delay cycles Q2←0 Q1←0 DY1←0 DY2←0 Q2**←**1 RETORNA DY1← 'G' Periodo ←4000 delay_cycles Q2←0 DY1←0

(Figura 1.2 – Fluxograma Roleta Botafogo)

1. delay cycles

Essa função é utilizada para introduzir uma pausa ou atraso específico neste programa, medido em ciclos de clock do MSP. Um ciclo de clock é a menor unidade de tempo em um processador, representando um pulso de oscilação do relógio interno que sincroniza as operações da CPU.

Ao chamar a função "__delay_cycles(n)", onde "n" representa o número de ciclos de clock desejado, o MSP irá executar instruções de espera ou de looping vazio, a fim de consumir o número de ciclos especificados antes de esperar com as instruções a seguir.

É uma função que é especifica do MSP430, onde através do clock o período que foi passado é igual ao tempo que o MSP será retardado em (μs).

(Figura 1.3 – Configuração I/Os)

7	6	5	4	3	2	1	0	Configuração dos entrados (O) utilando o norto
?	?	?	?	?	?	?	?	Configuração das entradas (0), utilando a porta AND
0	0	0	0	0	1	1	1	Máscara 0x07
0	0	0	0	0	?	?	?	Mascara 0x07
								I
			P1					
7	6	5	4	3	2	1	0	
0	0	0	0	0	?	?	?	Configuração dad saídas (1), utilando a porta OR
0	0	0	0	0	0	1	1	Máscara 0x03
0	0	0	0	0	?	1	1	
_	-	_		REN				5 N L L L
7	6	5	4	3	2	1	0	De acordo com a configuração de entradas é
?	?	?	?	?	?	?	?	necessário ativar os resistores de PullUP/PullDown
1	1	1	1	1	0	0	0	dos bits 3 ao 7 e vamos fazer isso com a porta OR
1	1	1	1	1	?	?	?	Máscara 0xF8
			P10	OUT				
7	6	5	4	3	2	1	0	
?	?	?	?	?	?	?	?	Habilitação dos resistores de PullUP nos bits 3 a 7
0	0	0	0	0	1	1	1	Máscara 0xF8
0	0	0	0	0	?	?	?	
P2DIR								
7	6	5	4	3	2	1	0	
?	?	?	?	?	?	?	?	Configuração das saídas (1), utilando a porta OR
0	1	1	1	1	1	1	1	Máscara 0x7F
?	1	1	1	1	1	1	1	

Após a configuração dos I/Os, podemos prosseguir para a parte de ativação das chaves do circuito. Iniciaremos testando a chave SW4, que corresponde à roleta de número 1.

Caso está chave esteja pressionada, os displays mostrarão "R" no display das dezenas e "1" no display das unidades. O mesmo procedimento será realizado para a chave SW3 da roleta 2, onde aparecerá "R" no display das dezenas e "2" no display das unidades, e para a chave SW2 da roleta 3, que mostrará "R" e "3".

As chaves sell1 e sell0 também irão alterar os displays de acordo com suas posições, seguindo a ordem a seguir:

- 1. Quando sell1 e sell0 forem "00", os displays mostrarão "FF".
- 2. Quando sell1 for "0" e sell0 for "1", os displays mostrarão "F1".
- 3. Quando sell1 for "1" e sell0 for "0", os displays mostrarão "F2".
- 4. Quando sell1 e sell0 forem "11", os displays mostrarão "F3".

Esses símbolos nos displays têm os seguintes significados:

"R1": Roleta 1. "F1": Total da roleta 1.

"R2": Roleta 2. "F2": Total da roleta 2. "FF": Total das roletas.

"R3": Roleta 3. "F3": Total da roleta 3.

> RESULTADOS

Através da montagem de uma placa para o funcionamento de uma roleta de estádio e da implementação de um programa eficiente, é possível alcançar diversos resultados importantes. Um dos principais resultados é a eficiência no controle de público em eventos, garantindo a segurança e o conforto dos espectadores. Com a contagem precisa de pessoas que passam pelas roletas, é possível controlar o fluxo de público, evitando a superlotação do espaço e garantindo a integridade de todos. Além disso, a função de estádio pode ser um instrumento importante para o monitoramento do público presente no evento, permitindo a gestão de estatísticas e análises do perfil dos espectadores. Isso pode auxiliar na tomada de decisões estratégicas para a realização de eventos futuros, efetivamente a experiência dos espectadores e aumentar a rentabilidade dos organizadores.

Outro resultado importante é a economia de recursos, uma vez que o controle de eficiência pública evita o desperdício de recursos como energia elétrica, água e alimentos, entre outros. Além disso, a otimização do fluxo de pessoas pode reduzir o tempo de espera nas filas, evitando o desgaste dos espectadores e conseguindo a satisfação com o evento.

Por fim, a montagem de uma placa para a roleta de estádio e a implementação de um programa eficiente podem trazer benefícios para os organizadores do evento, uma vez que a eficiência no controle de público pode melhorar a imagem da empresa e aumentar a confiança junto ao público.

Em resumo, a montagem de uma placa para a roleta de estádio e a implementação de um programa eficiente são fundamentais para garantir o sucesso e a segurança de eventos, além de trazer diversos beneficios para os organizadores e espectadores.

(Figura 1.4 – Roleta Botafogo)

> CONCLUSÃO

Realizar um projeto como "Roleta Botafogo" pode proporcionar diversas oportunidades de aprendizado abrangendo diferentes áreas do conhecimento da eletrônica. Ao realizar a montagem da placa para a roleta de estádio, é possível aprender sobre os princípios básicos em que colocamos em prática nas aulas de Sistemas Digitais, Laboratório de Sistemas Digitais e Eletrônica de Potência, como o funcionamento das portas P1 e P2, a utilização dos displays de 7 segmentos e das teclas push-button, entre outros componentes chave. Já na etapa de programação, o projeto permite o aprendizado e a utilização da programação, como C, além de técnicas de programação para sistemas embarcados, tais como a configuração de portas e monitoração de entradas do sistema. Além disso, a implementação das funções obrigatórias, como a função mostra_display e a função publico_total, pode fornecer o aprendizado sobre estruturas de dados e o uso de vetores para a alocação de variáveis relacionadas às funções.

Ao finalizar o projeto e colocá-lo em funcionamento, o aprendizado se estende para a análise dos resultados obtidos, a avaliação da eficiência do sistema e realização de possíveis melhorias, proporcionando uma experiência prática e completa para nós alunos. Enfim é possível relatar se foram obtidos os resultados esperados de acordo com os processos citados acima, já que o projeto em questão foi simulado e testado. Os relatos acima descrevem um projeto para a construção de uma placa de roleta de estádio e um programa em C capaz de testar todas as conexões das portas P1 e P2, além de realizar a contagem de pessoas que passam pelas roletas e apresentar os resultados nos displays.

Foi possível constatar e avaliar que todos os componentes e funções foram implementados corretamente e os resultados obtidos estão de acordo com o esperado, embora nós tenhamos encontrando uma certa dificuldade na montagem do protótipo. Em contrapartida seria necessário revisar o projeto e identificar possíveis erros ou melhorias a serem realizadas.

Em todo caso, é importante lembrar que a realização de projetos é um processo contínuo de aprendizado e evolução, onde os resultados esperados podem mudar ao longo do caminho e devem ser garantidos constantemente para garantir o sucesso do projeto.

DETALHAMENTO DE CADA INTEGRANTE

Emanuel Do Nascimento Pedreira Rocha foi responsável pelo desenvolvimento do (Hardware), construção e montagem da placa Roleta Botafogo (Figura 1.4 – Roleta Botafogo). No decorrer do tempo, foi necessário que o mesmo fizesse testes e ajustes para o correto funcionamento.

Gustavo Santos De Carvalho foi responsável pelo desenvolvimento do (Software), fluxograma e programação em linguagem (C).

É de extrema importância destacarmos que os presentes integrantes se ajudaram em determinadas situações envolvendo tanto a parte do Hardware; alinhamento da placa, perfuração, soldagem, e na parte do Software; testes da placa, lógicas a ser seguidas no fluxograma e codificação.