Formulas

The trigonometric identity is $\sin^2(heta) + \cos^2(heta) = 1$.

Formulas

The trigonometric identity is $\sin^2(\theta) + \cos^2(\theta) = 1$.

```
The trigonometric identity is \$ \sin^2(\theta) + \cos^2(\theta) = 1 \$.
```

Formulas

The trigonometric identity is $\sin^2(\theta) + \cos^2(\theta) = 1$.

```
The trigonometric identity
is $\sin^2(\theta) + \cos^2(\theta) = 1 $.
```

```
\usepackage{amsmath,amssymb}
\usepackage{commath,mathtools}
```

Formula	Code	Formula	Cod	e	
$\sqrt{2}$	\$	\$ $\sqrt[3]{8}$	\$		\$
$\frac{2}{3}$	\$	\$ x_1	\$	\$	
$6 \geq 3$	<i>\$</i>	\$ x_1^2	\$	\$	
$a^2 + b^2$	\$	\$ a^{2+b^2}	\$		\$

Formula	Code		Formula	Cod	Code		
$\sqrt{2}$	\$\sqrt{2} \$		$\sqrt[3]{8}$	\$ \$		\$	
$\frac{2}{3}$	\$	\$	x_1	\$	\$		
$6 \geq 3$	\$	\$	x_1^2	\$	\$		
$a^{2} + b^{2}$	\$	\$	a^{2+b^2}	\$		\$	

Formula	Code		Formula	Coc	Code		
$\sqrt{2}$	\$\sqrt{2} \$		√3/8	\$ \$		\$	
$\frac{2}{3}$	\$ \frac{2}{3} \$		x_1	\$	\$		
$6 \geq 3$	<i>\$</i>	\$	x_1^2	\$	\$		
$a^2 + b^2$	\$	\$	a^{2+b^2}	\$		\$	

Formula	Code	Formula	Code		
$\sqrt{2}$	\$ \sqrt{2} \$	$\sqrt[3]{8}$	\$	\$	
$\frac{2}{3}$	<pre>\$ \frac{2}{3} \$</pre>	x_1	\$ \$		
$6 \geq 3$	\$ 6\geq 3 \$	x_1^2	\$ \$		
$a^2 + b^2$	\$ \$	a^{2+b^2}	\$	\$	

Formula	Code	Formula	Cod	е	
$\sqrt{2}$	\$ \sqrt{2} \$	√3/8	\$		\$
$\frac{2}{3}$	\$\frac{2}{3} \$	x_1	\$	\$	
$6 \geq 3$	\$ 6\geq 3 \$	x_1^2	\$	\$	
$a^2 + b^2$	\$ a^2 + b^2 \$	a^{2+b^2}	\$		\$

Formula	Code	Formula	Code
$\sqrt{2}$	\$ \sqrt{2} \$	√3/8	\$ \sqrt[3]{8} \$
$\frac{2}{3}$	<pre>\$ \frac{2}{3} \$</pre>	<i>x</i> ₁	\$ \$
$6 \geq 3$	\$ 6\geq 3 \$	x_1^2	\$ \$
$a^2 + b^2$	\$ a^2 + b^2 \$	a^{2+b^2}	\$ \$

Formula	Code	Formula	Code
$\sqrt{2}$	\$\sqrt{2} \$	√38	\$\sqrt[3]{8} \$
$\frac{2}{3}$	<pre>\$ \frac{2}{3} \$</pre>	x_1	\$ x_1 \$
$6 \geq 3$	\$ 6\geq 3 \$	x_1^2	\$ \$
$a^2 + b^2$	\$ a^2 + b^2 \$	a^{2+b^2}	\$ \$

Formula	Code	Formula	Code
$\sqrt{2}$	\$ \sqrt{2} \$	³ √8	\$\sqrt[3]{8} \$
$\frac{2}{3}$	<pre>\$ \frac{2}{3} \$</pre>	x_1	\$ x_1 \$
$6 \geq 3$	\$ 6\geq 3 \$	x_1^2	\$ x_1^2 \$
$a^2 + b^2$	\$ a^2 + b^2 \$	a^{2+b^2}	\$ \$

Formula	Code	Formula	Code
$\sqrt{2}$	\$\sqrt{2} \$	√38	\$\sqrt[3]{8} \$
$\frac{2}{3}$	<pre>\$ \frac{2}{3} \$</pre>	x_1	\$ x_1 \$
$6 \geq 3$	\$ 6\geq 3 \$	x_1^2	\$ x_1^2 \$
$a^2 + b^2$	\$ a^2 + b^2 \$	a^{2+b^2}	\$ a^{2 + b^2} \$

Formula	Code	Formula	Code
$\sqrt{2}$	\$ \sqrt{2} \$	√3/8	\$ \sqrt[3]{8} \$
$\frac{2}{3}$	\$\frac{2}{3} \$	x_1	\$ x_1 \$
$6 \geq 3$	\$ 6\geq 3 \$	x_1^2	\$ x_1^2 \$
$a^{2} + b^{2}$	\$ a^2 + b^2 \$	a^{2+b^2}	\$ a^{2 + b^2} \$

Formula	Code	Formula	Code
$\sqrt{2}$	\$ \sqrt{2} \$	$\sqrt[3]{8}$	\$ \sqrt[3]{8} \$
$\frac{2}{3}$	\$\frac{2}{3} \$	x_1	\$ x_1 \$
$6 \geq 3$	\$ 6\geq 3 \$	x_1^2	\$ x_1^2 \$
$a^2 + b^2$	\$ a^2 + b^2 \$	a^{2+b^2}	\$ a^{2 + b^2} \$

$$$x^22 $: x^2 | $x^{22} $: x^2$$

Formula	Code		Formula	Code	
x_1,\ldots,x_n	\$	\$	5 · 6	\$	\$
α,β,γ	\$	\$	A,B,Γ	\$	\$
$\epsilon, arepsilon$	\$	\$	${\cal P}$	<i>\$</i>	\$
$\phi, arphi$	\$	\$	${\mathbb P}$	\$	\$

Formula	Code		Formula	Code	
x_1,\ldots,x_n	\$ x_1,\dots,x_	n \$	5 · 6	\$	\$
α,β,γ	<i>\$</i>		\$ A,B,Γ	<i>\$</i>	\$
$\epsilon, arepsilon$	\$		\$ ${\cal P}$	\$	\$
$\phi, arphi$	<i>\$</i>	\$	\mathbb{P}	\$	\$

Formula	Code		Formula	Code	
x_1,\ldots,x_n	\$ x_1,\dots,x	_n \$	5 · 6	\$	\$
α, β, γ	<pre>\$ \alpha,\bet</pre>	a,\gamma \$	A,B,Γ	<i>\$</i>	\$
$\epsilon, arepsilon$	\$	\$	${\cal P}$	<i>\$</i>	\$
$\phi, arphi$	\$	\$	\mathbb{P}	\$	\$

Formula	Code		Formula	Code	
x_1,\ldots,x_n	<pre>\$ x_1,\dots,x_n \$</pre>		5 · 6	\$	\$
α, β, γ	<pre>\$ \alpha,\beta,\gamma \$</pre>		A,B,Γ	\$	\$
$\epsilon, arepsilon$	<pre>\$ \epsilon,\varepsilon \$</pre>		${\cal P}$	\$	\$
$\phi, arphi$	\$	\$	\mathbb{P}	\$	\$

Formula	Code	Formula	Code	
x_1,\ldots,x_n	<pre>\$ x_1,\dots,x_n \$</pre>	5 · 6	\$	\$
α,β,γ	\$\alpha,\beta,\gamma \$	A,B,Γ	<i>\$</i>	\$
$\epsilon, arepsilon$	$\$$ \epsilon,\varepsilon $\$$	${\cal P}$	<i>\$</i>	\$
$\phi, arphi$	<pre>\$ \phi,\varphi \$</pre>	\mathbb{P}	\$	\$

Formula	Code	Formula	Code	
x_1,\ldots,x_n	\$ x_1,\dots,x_n \$	5 · 6	\$5\cdot 6 \$	3
α,β,γ	<pre>\$ \alpha,\beta,\gamma \$</pre>	A,B,Γ	\$	\$
$\epsilon, arepsilon$	$\$$ \epsilon,\varepsilon $\$$	${\cal P}$	\$	\$
$\phi, arphi$	<pre>\$ \phi,\varphi \$</pre>	\mathbb{P}	\$	\$

Formula	Code	Formula	Code
x_1,\ldots,x_n	\$ x_1,\dots,x_n \$	5 · 6	\$5\cdot 6 \$
$lpha,eta,\gamma$	<pre>\$ \alpha,\beta,\gamma \$</pre>	A,B,Γ	\$ A,B,\Gamma \$
$\epsilon, arepsilon$	<pre>\$ \epsilon,\varepsilon \$</pre>	${\cal P}$	\$
$\phi, arphi$	<pre>\$ \phi,\varphi \$</pre>	\mathbb{P}	\$

Formula	Code	Formula	Code
x_1,\ldots,x_n	\$ x_1,\dots,x_n \$	5 · 6	\$ 5\cdot 6 \$
$lpha,eta,\gamma$	\$\alpha,\beta,\gamma \$	A,B,Γ	\$ A,B,\Gamma \$
$\epsilon, arepsilon$	<pre>\$\epsilon,\varepsilon \$</pre>	${\cal P}$	<pre>\$ \mathcal{P} \$</pre>
$\phi, arphi$	<pre>\$ \phi,\varphi \$</pre>	\mathbb{P}	\$

Formula	Code	Formula	Code
x_1,\ldots,x_n	\$ x_1,\dots,x_n \$	5 · 6	\$ 5\cdot 6 \$
α,β,γ	\$\alpha,\beta,\gamma \$	A,B,Γ	$\$$ A,B,\Gamma $\$$
$\epsilon, arepsilon$	$\$$ \epsilon,\varepsilon $\$$	${\cal P}$	<pre>\$ \mathcal{P} \$</pre>
$\phi, arphi$	<pre>\$\phi,\varphi \$</pre>	\mathbb{P}	<pre>\$ \mathbb{P} \$</pre>

nathcal \ma

\vec

Formulas: Vectors

Formula	Code	Formula	Code
\vec{x}	\$ \vec{x} \$	\vec{F}_{tot}	<pre>\$ \vec{F}_{\text{tot}} \$</pre>
x	<pre>\$ \mathbf{x} \$</pre>	$\hat{\imath}+6\hat{k}$	<pre>\$ \hat{\imath} + 6\hat{k} \$</pre>
$\ \vec{x}\ $	<pre>\$ \norm{\vec{x}} \$</pre>	$ abla imes \mathbf{A}$	$$ \ \ \ \ $

$$\vec{F}_{tot}$$
, \vec{F}_{tot}

 \vec{F}_{tot}

```
$ sin(x) $
$ \vec{F}_{tot}$
```

```
\sin(x)
\vec{F}_{tot}
```

```
$\sin(x) $
$\vec{F}_{\text{tot}}$
```

Formulas: Calculus

\usepackage{commath}

$$\label{eq:condition} $$ \dod{\sin(x)}{x}, \dpd{f(x,y)}{x}, \partial_x f $$ \int_{0}^{\infty}e^{-x}\dif x = 1 $$$$

$$\frac{\mathsf{d} \sin(x)}{\mathsf{d} x}, \frac{\partial f(x, y)}{\partial x}, \partial_x f$$

$$\int_0^\infty e^{-x}\,\mathrm{d}x=1$$

mathbb | \vec | \text | \int | \dod | \neq

Formulas: Mathematical relations

Formula	Code	Formula	Code
$a \leq b$	$\$$ a \leq b $\$$	$a \geq b$	\$ a \geq b \$
a < b	\$ a < b \$	a > b	\$ a > b \$
$a\ll b$	\$ a \11 b \$	$a\gg b$	\$ a \gg b \$
a = b	\$ a = b \$	$a\simeq b$	$\$$ a \simeq b $\$$
a eq b	\$ a \neq b \$	approx b	<pre>\$ a \approx b \$</pre>
$\mathit{a}\sim\mathit{b}$	\$ a \sim b \$	$a\stackrel{*}{=}b$	<pre>\$ a \stackrel{*}{=}b \$</pre>

Formulas: Arrows and operators

```
\DeclareMathOperator{\Image}{Image}
a \iff b, a\implies b, a\mapsto b
\lim_{x\to 0} \frac{x \to 0}{\frac{\sin(x)}{x}} = 1
\Image(f) = \mathbb{R}_{\leq 0}
```

$$a \iff b, a \implies b, a \mapsto b$$

$$\lim_{x\to 0}\frac{\sin(x)}{x}=1$$

$$\mathsf{Image}(f) = \mathbb{R}_{\geq 0}$$

So many! And there are lots more :-)

CTAN symbol list:

http://mirrors.ctan.org/info/symbols/comprehensive/ symbols-a4.pdf

Detexify:

http://detexify.kirelabs.org/classify.html

\mathbb \ \vec \ \text \ \int \ \dod \ \ \neq \ x\to 0

Equation

```
The trigonometric identity is
$\sin^2(\theta) + \cos^2(\theta) = 1 $.

The trigonometric identity is
\begin{equation}
  \sin^2(\theta) + \cos^2(\theta) = 1.
\end{equation}
```

De trigonometric identity is $\sin^2(\theta) + \cos^2(\theta) = 1$.

De trigonometric identity is

$$\sin^2(\theta) + \cos^2(\theta) = 1. \tag{1}$$

\nea

bob/

 $x \to 0$

Align

\int

```
The double-angle formula can now be rewritten as 

\begin{align}
  \cos(2\theta) = \cos^2(\theta) - \sin^2(\theta)\\
  = 2\cos^2(\theta)-1.
\end{align}
```

$$\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta) \tag{1}$$

$$=2\cos^2(\theta)-1. (2)$$

 $x \to 0$

Align

bob/

```
The double-angle formula can now be rewritten as
\begin{align}
    \cos(2 \theta) &= \cos^2(\theta) - \sin^2(\theta)
    &= 2 \cos^2(\theta) - 1.
\end{align}
```

$$\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta) \tag{1}$$

$$=2\cos^2(\theta)-1. (2)$$

\nea

align

Align

\int

```
The double-angle formula can now be rewritten as
\begin{align}
    \cos(2\theta) &= \cos^2(\theta) - \sin^2(\theta)
    \nonumber \\
    &= 2 \cos^2(\theta) - 1
\end{align}
```

$$\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta)$$
$$= 2\cos^2(\theta) - 1. \tag{1}$$

Align

```
The double-angle formula can now be rewritten as 

\begin{align*}
  \cos(2\theta) &= \cos^2(\theta) - \sin^2(\theta)\\
  &= 2\cos^2(\theta)-1.
\end{align*}
```

$$\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta)$$
$$= 2\cos^2(\theta) - 1.$$

\nea

align

Align

```
We do this with the double-angle formula
\begin{align*}
    \cos(2\theta) &= \cos^2(\theta) - \sin^2(\theta)
\end{align*}
which we can rewrite as
\begin{align*}
    \&= \cos^2(\theta) - (1 - \cos^2(\theta))
    \&= 2 \cos^2(\theta) - 1.
\end{align*}
```

We do this with the double-angle formula

$$cos(2\theta) = cos^2(\theta) - sin^2(\theta),$$

which we can rewrite as

=
$$\cos^2(\theta) - (1 - \cos^2(\theta))$$

= $2\cos^2(\theta) - 1$.

Align

equation

```
We do this with the double-angle formula
\begin{align*}
  \cos(2\theta) &= \cos^2(\theta) - \sin^2(\theta),
\intertext{which we can rewrite as}
  &= \cos^2(\theta) - (1 - \cos^2(\theta))\\
  &= 2\cos^2(\theta)-1.
\end{align*}
```

We do this with the double-angle formula

$$\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta),$$

which we can rewrite as

=
$$\cos^2(\theta) - (1 - \cos^2(\theta))$$

= $2\cos^2(\theta) - 1$.

align | \nonumber

align*

\intertext

\[... \]

Also in use

equation

```
AA \(\sqrt{2}\)
BB \[\sqrt{3}\]
CC $$ \sqrt{4} $$
```

```
AA \sqrt{2} BB \sqrt{3} CC \sqrt{4}
```

align

\nonumber

align*

\intertext

\[...\

Left-right

equation

```
\begin{align*}
  &f(\sum_{i=1}^{n}x_i)\\
  &f\left(\sum_{i=1}^{n}x_i\right)
\end{align*}
```

$$f\left(\sum_{i=1}^{n} x_i\right)$$

$$f\left(\sum_{i=1}^{n} x_i\right)$$

equation

align

Delimiter point

```
\label{lem:left} $$ \left( \frac{a \cdot x^2 \cdot x^2 \cdot x^2 \cdot x^2}{x^2 \cdot x^2} \right)^{x=2} = 4 \\ \left( \frac{a \cdot x^2 \cdot x^2 \cdot x^2}{x^2 \cdot x^2} \right)^{x=2} = 4 \\ \left( \frac{a \cdot x^2 \cdot x^2}{x^2 \cdot x^2} \right)^{x=2} = 4 \\ \left( \frac{a \cdot x^2 \cdot x^2}{x^2 \cdot x^2} \right)^{x=2} = 4 \\ \left( \frac{a \cdot x^2 \cdot x^2}{x^2 \cdot x^2} \right)^{x=2} = 4 \\ \left( \frac{a \cdot x^2 \cdot x^2}{x^2 \cdot x^2} \right)^{x=2} = 4 \\ \left( \frac{a \cdot x^2 \cdot x^2}{x^2 \cdot x^2} \right)^{x=2} = 4 \\ \left( \frac{a \cdot x^2 \cdot x^2}{x^2 \cdot x^2} \right)^{x=2} = 4 \\ \left( \frac{a \cdot x^2 \cdot x^2}{x^2 \cdot x^2} \right)^{x=2} = 4 \\ \left( \frac{a \cdot x^2 \cdot x^2}{x^2 \cdot x^2} \right)^{x=2} = 4 \\ \left( \frac{a \cdot x^2 \cdot x^2}{x^2 \cdot x^2} \right)^{x=2} = 4 \\ \left( \frac{a \cdot x^2 \cdot x^2}{x^2 \cdot x^2} \right)^{x=2} = 4 \\ \left( \frac{a \cdot x^2 \cdot x^2}{x^2 \cdot x^2} \right)^{x=2} = 4 \\ \left( \frac{a \cdot x^2 \cdot x^2}{x^2 \cdot x^2} \right)^{x=2} = 4 \\ \left( \frac{a \cdot x^2 \cdot x^2}{x^2 \cdot x^2} \right)^{x=2} = 4 \\ \left( \frac{a \cdot x^2 \cdot x^2}{x^2 \cdot x^2} \right)^{x=2} = 4 \\ \left( \frac{a \cdot x^2 \cdot x^2}{x^2 \cdot x^2} \right)^{x=2} = 4 \\ \left( \frac{a \cdot x^2 \cdot x^2}{x^2 \cdot x^2} \right)^{x=2} = 4 \\ \left( \frac{a \cdot x^2 \cdot x^2}{x^2 \cdot x^2} \right)^{x=2} = 4 \\ \left( \frac{a \cdot x^2 \cdot x^2}{x^2 \cdot x^2} \right)^{x=2} = 4 \\ \left( \frac{a \cdot x^2 \cdot x^2}{x^2 \cdot x^2} \right)^{x=2} = 4 \\ \left( \frac{a \cdot x^2 \cdot x^2}{x^2 \cdot x^2} \right)^{x=2} = 4 \\ \left( \frac{a \cdot x^2 \cdot x^2}{x^2 \cdot x^2} \right)^{x=2} = 4 \\ \left( \frac{a \cdot x^2 \cdot x^2}{x^2 \cdot x^2} \right)^{x=2} = 4 \\ \left( \frac{a \cdot x^2 \cdot x^2}{x^2 \cdot x^2} \right)^{x=2} = 4 \\ \left( \frac{a \cdot x^2 \cdot x^2}{x^2 \cdot x^2} \right)^{x=2} = 4 \\ \left( \frac{a \cdot x^2 \cdot x^2}{x^2 \cdot x^2} \right)^{x=2} = 4 \\ \left( \frac{a \cdot x^2}{x^2 \cdot x^2} \right)^{x=2} = 4 \\ \left( \frac{a \cdot x^2}{x^2 \cdot x^2} \right)^{x=2} = 4 \\ \left( \frac{a \cdot x^2}{x^2 \cdot x^2} \right)^{x=2} = 4 \\ \left( \frac{a \cdot x^2}{x^2 \cdot x^2} \right)^{x=2} = 4 \\ \left( \frac{a \cdot x^2}{x^2 \cdot x^2} \right)^{x=2} = 4 \\ \left( \frac{a \cdot x^2}{x^2 \cdot x^2} \right)^{x=2} = 4 \\ \left( \frac{a \cdot x^2}{x^2 \cdot x^2} \right)^{x=2} = 4 \\ \left( \frac{a \cdot x^2}{x^2 \cdot x^2} \right)^{x=2} = 4 \\ \left( \frac{a \cdot x^2}{x^2 \cdot x^2} \right)^{x=2} = 4 \\ \left( \frac{a \cdot x^2}{x^2 \cdot x^2} \right)^{x=2} = 4 \\ \left( \frac{a \cdot x^2}{x^2 \cdot x^2} \right)^{x=2} = 4 \\ \left( \frac{a \cdot x^2}{x^2 \cdot x^2} \right)^{x=2} = 4 \\ \left( \frac{a \cdot x^2}{x^2 \cdot x^2} \right)^{x=2} = 4 \\ \left( \frac{a \cdot x^2}{x^2 \cdot x^2} \right)^{x=2} = 4 \\ \left( \frac{a \cdot x^2}{x^2 \cdot x^2} \right)^{x=2} = 4 \\ \left( \frac{a \cdot x^2}{x^2 \cdot x^2} \right)^{x=2} = 4 \\ \left( \frac{a \cdot x^2}{x^2 \cdot x^2} \right)^{x=2} = 4 \\ \left( \frac{a \cdot x^2}{x^2 \cdot x^2} \right)^{x=2} = 4 \\ \left( \frac{a \cdot x^2}{x^2 \cdot x^2} \right)^{x=2} = 4 \\ \left( \frac
```

$$\left[x^2\right]\Big|_{x=0}^{x=2}=4$$

equation | align | \nonumber | align* | \intertext | \[\ldots \]...

```
\begin{align*}
R(\theta) = \begin{pmatrix}
    \cos(\theta) & -\sin(\theta)\\
    \sin(\theta) & \cos(\theta)
\end{pmatrix},\quad
\abs{x} = \begin{cases}
    x & \text{if $ x \geq 0$}\\
    -x & \text{if $ x < 0$}
\end{cases}
\end{align*}</pre>
```

$$R(\theta) = egin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}, \quad |x| = egin{cases} x & \text{if } x \geq 0 \\ -x & \text{if } x < 0 \end{cases}$$

Chemical formulas \usepackage{mhchem}

nonumber

```
\ce{CO2 + C -> 2 CO}\\
$\ce{CO2 + C -> 2 CO}$\\
\ce{CH4 + 2 $\left(\ce{O2 + 79/21 N2}\right)$}
%$\ce{CH4 + 2 \left(\ce{O2 + 79/21 N2}\right)}$ % Error
```

$$\begin{array}{l} \mathsf{CO_2} + \mathsf{C} \longrightarrow 2\,\mathsf{CO} \\ \mathsf{CO_2} + \mathsf{C} \longrightarrow 2\,\mathsf{CO} \\ \mathsf{CH_4} + 2\left(\mathsf{O_2} + \frac{79}{21}\,\mathsf{N_2}\right) \end{array}$$

align

Some examples are taken from the mhchem package documentation (see below)

More example can be found in the documentation of mhchem, see https://ctan.org/pkg/mhchem

