DERT

Paper Details

- Paper Title: End-to-End Object Detection with Transformers
- Publication Date: 28 May 2020
- Publisher: Nicolas Carion, Francisco Massa, ...
- Affiliation: Fackbook Al

Objectives

• end-to-end object detection

Motivation

- detectors do set prediction task in an indirect way
 - simplify the pipeline
- Transformer in other fields
 - Bridge the gap

- Backbone
- Transformer Encoder
- Transformer Decoder
- Prediction feed-forward network

• Backbone

$$C = 2048$$
 and $H, W = \frac{H_0}{32}, \frac{W_0}{32}$.

• Backbone

ImageNet-pretrained ResNet model

• Backbone

- Backbone
- Transformer Encoder

• Backbone

Self-Attention
$$(\boldsymbol{X})_{t,:} := \operatorname{softmax}(\boldsymbol{A}_{t,:}) \boldsymbol{X} \boldsymbol{W}_{val},$$

- Transformer Encoder
 - positional encodings

$$oldsymbol{A} := oldsymbol{X} oldsymbol{W}_{qry} oldsymbol{W}_{key}^ op oldsymbol{X}^ op$$

$$oldsymbol{A} := (oldsymbol{X} + oldsymbol{P}) oldsymbol{W}_{qry} oldsymbol{W}_{key}^ op (oldsymbol{X} + oldsymbol{P})^ op$$

Backbone

Self-Attention
$$(\boldsymbol{X})_{t,:} := \operatorname{softmax}(\boldsymbol{A}_{t,:}) \boldsymbol{X} \boldsymbol{W}_{val},$$

- Transformer Encoder
 - positional encodings

$$oldsymbol{A} := oldsymbol{X} oldsymbol{W}_{qry} oldsymbol{W}_{key}^ op oldsymbol{X}^ op$$

$$\boldsymbol{A} := (\boldsymbol{X} + \boldsymbol{P}) \boldsymbol{W}_{qry} \boldsymbol{W}_{key}^{\top} (\boldsymbol{X} + \boldsymbol{P})^{\top}$$

Absolute Encoding

$$\mathbf{A}_{m{q},m{k}}^{ ext{abs}} = (\mathbf{X}_{m{q},:} + \mathbf{P}_{m{q},:}) W_{qry} W_{key}^{ op} (\mathbf{X}_{m{k},:} + \mathbf{P}_{m{k},:})^{ op}$$

Relative Encoding $\mathbf{A}_{q,k}^{\mathrm{rel}} := \mathbf{X}_{q,:}^{\top} W_{qry}^{\top} W_{key} \, \mathbf{X}_{k,:} + \mathbf{X}_{q,:}^{\top} W_{qry}^{\top} \widehat{W}_{key} \, r_{\delta} + u^{\top} W_{key} \, \mathbf{X}_{k,:} + v^{\top} \widehat{W}_{key} \, r_{\delta}$

Backbone

Self-Attention
$$(\boldsymbol{X})_{t,:} := \operatorname{softmax}(\boldsymbol{A}_{t,:}) \boldsymbol{X} \boldsymbol{W}_{val},$$

- Transformer Encoder
 - positional encodings

$$oldsymbol{A} := oldsymbol{X} oldsymbol{W}_{qry} oldsymbol{W}_{key}^ op oldsymbol{X}^ op$$

$$oldsymbol{A} := (oldsymbol{X} + oldsymbol{P}) oldsymbol{W}_{qry} oldsymbol{W}_{key}^ op (oldsymbol{X} + oldsymbol{P})^ op$$

Absolute Encoding

spatial j encoder	pos. enc. decoder	output pos. enc. decoder	AP	Δ	AP ₅₀	Δ
none sine at input learned at attn. none sine at attn.	none sine at input learned at attn. sine at attn. sine at attn.	learned at input learned at input learned at attn. learned at attn. learned at attn.	32.8 39.2 39.6 39.3 40.6	-7.8 -1.4 -1.0 -1.3	55.2 60.0 60.7 60.3 61.6	-6.5 -1.6 -0.9 -1.4

Attention Augmented Convolutional Networks

	Position Encodings	mAP _{COCO}	mAP_{50}	mAP ₇₅
ve	None	37.7	56.0	40.2
ling	CoordConv [29]	37.4	55.5	40.1
3	Relative (ours)	38.2	56.5	40.7

Relative Encoding

- Backbone
- Transformer Encoder
- Transformer Decoder

- Backbone
- Transformer Encoder
- Transformer Decoder

N input embeddings

different

learnt positional encodings

- Backbone
- Transformer Encoder
- Transformer Decoder
- Prediction feed-forward network

ReLU activation function

Linear projection layer

Prediction Loss

Bipartite matching

bipartite matching loss

$$\hat{\sigma} = \operatorname*{arg\,min}_{\sigma \in \mathfrak{S}_N} \sum_{i}^{N} \mathcal{L}_{\mathrm{match}}(y_i, \hat{y}_{\sigma(i)})$$

Prediction Loss

- Bipartite matching
 - Hungarian Algorithm

$$\hat{\sigma} = \operatorname*{arg\,min}_{\sigma \in \mathfrak{S}_N} \sum_{i}^{N} \mathcal{L}_{\mathrm{match}}(y_i, \hat{y}_{\sigma(i)})$$

$$\mathcal{L}_{\text{Hungarian}}(y, \hat{y}) = \sum_{i=1}^{N} \left[-\log \hat{p}_{\hat{\sigma}(i)}(c_i) + \mathbb{1}_{\{c_i \neq \varnothing\}} \mathcal{L}_{\text{box}}(b_i, \hat{b}_{\hat{\sigma}}(i)) \right]$$

Trick : we down-weight the log-probability term when $ci = \emptyset$ by a factor 10 to account for class imbalance

$$\mathcal{L}_{\text{box}}(b_i, \hat{b}_{\sigma(i)}) \qquad \lambda_{\text{iou}} \mathcal{L}_{\text{iou}}(b_i, \hat{b}_{\sigma(i)}) + \lambda_{\text{L1}} ||b_i - \hat{b}_{\sigma(i)}||_1$$

Classification loss
11 bounding box distance loss
GloU loss

- Dataset
- Training

- Dataset
 - COCO 2017
 - Average 7 instance in an image (maximal 63 instances)
 - AP refers to bbox AP

- Dataset
- Training
 - Whole Architecture
 - Data Process
 - Backbone
 - Transformer
 - Losses

- Dataset
- Training
 - Whole Architecture
 - AdamW with improved weight decay 10⁽⁻⁴⁾, maximum gradient norm

- Dataset
- Training
 - Whole Architecture
 - Data Process
 - Scale augementation resize images

- Dataset
- Training
 - Whole Architecture
 - Data Process
 - Backbone
 - Backbone batch normalization weights and statistics are frozen during training
 - Learning rate 10^(-5)

- Dataset
- Training
 - Whole Architecture
 - Data Process
 - Backbone
 - Transformer
 - Learning rate 10⁽⁻⁴⁾
 - Dropout 0.1

- Dataset
- Training
 - Whole Architecture
 - Data Process
 - Backbone
 - Transformer
 - Losses

$$\lambda_{L1} = 5 \text{ and } \lambda_{iou} = 2$$

Panoptic segmentations

- Predicting Box
- Mask Head

Panoptic segmentations

- Predicting Box
- Mask Head

