COMPUTER ORGANIZATION AND ARCHITECTURE

Course Code: CSE 2151

Credits: 04

FLOATING-POINT NUMBERS

- A binary floating-point number is represented by (2008 version of IEEE Standard 754):
 - a sign for the number
 - some significant bits
 - a signed scale factor exponent for an implied base of 2

IEEE STANDARD FLOATING-POINT FORMATS (32 BIT)

- The basic IEEE format is a 32-bit representation that comprises of
 - a sign bit,
 - 23 significant bits, and
 - 8 bits for a signed exponent of the scale factor

IEEE STANDARD FLOATING-POINT FORMATS (32 BIT)

- Example:
 - Sign bit: 0, hence +ve number
 - Mantissa, M: 1.0010100000000000000000
 - Exponential, E: E'-127, \rightarrow (E' \rightarrow 00101000₂= 40₁₀)

```
E: 40-127 = -87,
```

F: 2⁻⁸⁷

Value represented = $1.001010 \dots 0 \times 2^{-87}$

- Actual binary number:
- Corresponding decimal value:
 - 0.0000000000000000000000000074720904942534238208598929703585511674646113533526659011 8408203125
- In the value represented, what about the digit found to the left side of the decimal point?
 - always be equal to 1
 - can be left out in IEEE floating-point representation

STEPS TO CONVERT 32-BIT REPRESENTATION TO DECIMAL.

- 1. Obtain the mantissa and rewrite the value as V=1.M
- 2. To obtain E
 - i. Convert E' to its equivalent decimal value
 - ii. $E = E' 127 \rightarrow 2^{E}$
- 3. Move point in V towards left or right based on E
 - i. Move right if +ve
 - ii. Move left if -ve
 - iii. Digits before point is the integral part and after is the fractional part.
- 4. Convert the integral part of binary to decimal equivalent
 - i. Multiply each digit separately from left side of point till the first digit by $2^0, 2^1, 2^2, \dots$ respectively.
 - ii. Find the sum of all the products obtained in step 1.i.
- 5. Convert the fractional part of binary to decimal equivalent
 - i. Divide each digit separately from right side of point till the end by $2^1, 2^2, 2^3, \dots$ respectively.
 - ii. Find the sum of all the products obtained in step 2.i.
- 6. Add both integral and fractional part to obtain decimal number.

32-BIT REPRESENTATION TO DECIMAL: EXAMPLE

- IEEE754 32-bit format: 0 10000001 0100011001100110011
 S E' M
- S=0, hence +ve number
- E'= 10000001₂=129₁₀ • E = E'-127 =129-127 E = 2
- Value represented = $1.0100011001100110011 \times 2^2$
 - = 101.00011001100110011
 - = 5.1

DECIMAL TO 32-BIT REPRESENTATION

- **40.15625**
 - S=0, since it is a positive number
 - Mantissa, M,
 - 40 → 101000_2 0.15625 → $.00101_2$
 - =101000.00101₂ If point moved towards left, then +ve exponent else -ve exponent
 - =1.0100000101 \times 2⁵ Ignore 1 before decimal point

Fill the remaining positions in the right with zeroes

- Exponent, E', in excess-127 representation:
 - E'=E+127
 - **=5+127**
 - **=** 132
 - E'=10000100₂
- 32-bit representation:
 - 0 10000100 010000010100000000000

STEPS TO CONVERT DECIMAL TO 32-BIT REPRESENTATION

A. Sign bit, S:

- i. If positive, the first bit will be a 0
- ii. If negative, the first bit will be a 1.

B. Mantissa, M:

- i. Divide the integral part by 2 to get its binary equivalent, I (remainder in bottom-up)
- ii. Multiply the fractional part by 2 to get its binary equivalent, F (value before point in top-down)
- iii. Represent it as I.F
- iv. Adjust the point to obtain 1.M
- v. M must be 23-bit long. Fill the remaining bits in vector with zeroes

STEPS TO CONVERT DECIMAL TO 32-BIT REPRESENTATION

- C. Exponent, E', in "Excess 127 form":
 - i. Count the number of places the binary point needs to be moved until a single digit of 1 sits by itself on the left side of the binary point.
 - a. Point moved towards left count is positive else it is negative.
 - ii. Add 127 to your result above.
 - a. 8-bit binary numbers can range from 0 to 255,
 - b. exponents in single precision format can range from -126 to +127, that is from 2^{-126} to 2^{127} or,
 - c. approximately, 10^{-38} to 10^{38} in size.
 - d. In "excess 127 form" negative exponents range from 0 to 126, and positive exponents range from 128 to 255.
 - e. 127 represents a power of zero.
 - iii. Translate the sum (which will always be a positive value after adding 127) into binary form.
 - iv. This should be represented using 8 bits, so zeros may be added to the left side to ensure a string length of 8 bits.
 - v. This 8-bit string represents the exponent.

DECIMAL TO 32-BIT REPRESENTATION

- Represent -0.09375 in IEEE754 format
 - **S=1**, since it is a negative number
 - Mantissa, M: 0.09375 to binary

```
• 0.09375 \times 2 = 0.1875 0 (remember, read downwards)

• 0.1875 \times 2 = 0.375 0

• 0.375 \times 2 = 0.75 0

• 0.75 \times 2 = 1.50 1

• 0.50 \times 2 = 1.00 1
```

- $= 0.00011_2$
- $= 1.1 \times 2^{-4}$ If point moved towards left, then +ve exponent else -ve exponent. Ignore 1 before point

Fill the remaining positions in the right with zeroes

- **Exponent, E',** in excess-127 representation:
 - E'=E+127
 - **=-4+127**
 - **=** 123
 - E'=1111011₂= 01111011
- -0.09375 will be represented in IEEE754 format as
 - **1** 01111011 10000000000000000000000

IEEE STANDARD FLOATING-POINT FORMATS (64 BIT)

- IEEE standard also defines a 64-bit representation to accommodate
 - more significant bits, and
 - more bits for the signed exponent, resulting in much higher precision and a much larger range of values
- The 11-bit excess-1023 exponent E' has the
 - range $1 \le E' \le 2046$ for normal values, with 0 and 2047 used to indicate special values,
 - The actual exponent E is in the range $-1022 \le E \le 1023$
 - providing scale factors of 2^{-1022} to 2^{1023} (approximately $10^{\pm 308}$)

IEEE754 FORMAT: FLOATING-POINT NUMBER

- The full 24-bit string, B, of significant bits, called the mantissa, always has a leading 1, with the binary point immediately to its right. Therefore, the mantissa
 - B = 1.M = $1.b_{-1}b_{-2}...b_{-23}$ has the value $V(B) = 1 + b_{-1} \times 2^{-1} + b_{-2} \times 2^{-2} + \cdots + b_{-23} \times 2^{-23}$
- By convention, when the binary point is placed to the right of the first significant bit, the number is said to be normalized.
- Note that the base 2, of the scale factor and the leading 1 of the mantissa are both fixed. They do not need to appear explicitly in the representation.

IEEE754 FORMAT: FLOATING-POINT NUMBER

(There is no implicit 1 to the left of the binary point.)

Value represented =
$$+0.0010110...\times2^9$$

(a) Unnormalized value

Value represented =
$$+1.0110...\times2^6$$

(b) Normalized version

SPECIAL VALUES: 32-BIT REPRESENTATION

Sl.No.	E'	M	Meaning
1.	=0	= 0	value 0 is represented
2.	=255	= 0	value $^{\infty}$ is represented
3.	=0	≠ 0	denormal numbers are represented. Their value is $\pm 0.M \times 2^{-126}$. There is no implied one to the left of the binary point, and M is any nonzero 23-bit fraction
4.	=255	≠ 0	the value represented is called Not a Number (NaN). A NaN represents the result of performing an invalid operation such as $0/0$ or $\sqrt{-1}$

EXCEPTIONS

- In conforming to the IEEE Standard, a processor must set exception flags if any of the following conditions arise when performing operations
 - underflow,
 - overflow,
 - divide by zero,
 - Inexact: name for a result that requires rounding in order to be represented in one of the normal formats
 - Invalid: exception occurs if operations such as 0/0 or $\sqrt{-1}$ are attempted
- When an exception occurs, the result is set to one of the special values.

ADDITION EXAMPLE- BINARY

- A=96.625 + B=12.125
- Step i: Convert A to binary representation
 - 1100000.101 → After normalizing we get 1.100000101 X 2⁶
 - E'= 6+127=133 =10000101
 - In IEEE 32-bit format: A= 01000010110000010100000......
- Step ii: Convert B to binary representation
 - 1100.001 → After normalizing we get 1.100001 X 2³
 - E' = 3 + 127 = 130 = 10000010
 - In IEEE 32-bit format: B= 01000001010000100000......
- Step 1: Choose the number with the smaller exponent and shift its mantissa right a number of steps equal to the difference in exponents (Shift point to left).
 - Shift the mantissa of smaller number, B, to the right by 3 bits we get
 - 1.10000100000 ---Original mantissa (with hidden bit considered)
 - 0.11000010000 ---shifting by 1 bit
 - 0.011000010000 ---shifting by 2 bits
 - 0.001100001000 ---shifting by 3 bits

ADDITION EXAMPLE- BINARY

• Step 2:

- Set the exponent of the result equal to the larger exponent
 - 10000101 (exponent of A)

• Step 3:

Perform addition on the mantissas and determine the sign of the result

1.100000101000000 +

0.001100001000000

1.101100110000000

Step 4:

- Normalize the resulting value, if necessary
 - Result is already normalized
- In 32-bit format: 0 10000101 101100110000
- which is 108.75 in decimal

ADD/SUBTRACT RULE

- 1. Choose the number with the smaller exponent
- 2. Shift its mantissa right to the number of steps equal to the difference in exponents. (Shift point to left)
- 3. Set the exponent of the result equal to the larger exponent.
- 4. Perform addition/subtraction on the mantissas and determine the sign of the result.
- 5. Normalize the resulting value, if necessary.

ADDITION EXAMPLE- BINARY

- Step 1: align radix points
 - shifting the mantissa LEFT by 1 bit DECREASES THE EXPONENT by 1 and RIGHT by 1 INCREASES THE EXPONENT by 1
 - we want to shift the mantissa right, because the bits that fall off the end should come from the least significant end
 of the mantissa
 - choose to shift the .25, since we want to increase it's exponent.
 - shift by

10000101

-01111101

00001000 (8) places.

00000000000000000000000000 (original value)

1000000000000000000000000000 (shifted 1 place)

0100000000000000000000000000 (shifted 2 places)

0010000000000000000000000000 (shifted 3 places)

0010000000000000000000 (shifted 4 places)

0000100000000000000000000000 (shifted 5 places)

0000010000000000000000000000 (shifted 6 places)

000001000000000000000000000 (shifted 7 places)

0000001000000000000000000000 (shifted 8 places)

(note that hidden bit is shifted into msb of mantissa)

ADDITION EXAMPLE- BINARY

- Step 2: add (don't forget the hidden bit for the 100)

 - 0.000000100000000000000 (.25)
- Step 3: normalize the result (get the "hidden bit" to be a 1)
 - Result is already normalized
- In 32-bit format: 0 10000101 10010001000000000000000

- A=96.625 B=12.125
- Convert A to binary representation
 - 1100000.101 → After normalizing we get 1.100000101 X 2⁶
 - E'= 6+127=133 =10000101
 - In IEEE 32-bit format: 01000010110000010100000......
- Convert B to binary representation
 - 1100.001 → After normalizing we get 1.100001 X 2³
 - E'= 3+127=130 = 10000010
 - In IEEE 32-bit format: 01000001010000100000.....
- Step 1:
- Choose the number with the smaller exponent and shift its mantissa right a number of steps equal to the difference in exponents.
 - A=0 10000101 10000010100000...... B=0 10000010 10000100000......
- Shift the mantissa of smaller number, B, to the right by 3 bits we get
 - 1.10000100000 ---Original mantissa (with hidden bit considered)
 - 0.11000010000 ---shifting by 1 bit
 - 0.011000010000 ---shifting by 2 bits
 - 0.001100001000 ---shifting by 3 bits

• Step 2:

- Set the exponent of the result equal to the larger exponent
 - 10000101 (exponent of A)

• Step 3:

- Perform subtraction on the mantissas and determine the sign of the result
 - 1.10000010100000 -
 - 0.00110000100000
 - 1.01010010000000

Step 4:

- Normalize the resulting value, if necessary
 - Result is already normalized
- In 32-bit format: 0 10000101 010100100000000
- which is 84.5 in decimal

- Step 1: align radix points
 - shifting the mantissa LEFT by 1 bit DECREASES THE EXPONENT by 1 and RIGHT by 1 INCREASES THE EXPONENT by 1
 - we want to shift the mantissa right, because the bits that fall off the end should come from the least significant end
 of the mantissa
 - choose to shift the .25, since we want to increase it's exponent.
 - shift by

10000101

-01111101

00001000 (8) places.

00000000000000000000000000 (original value)

1000000000000000000000000000 (shifted 1 place)

01000000000000000000000000000 (shifted 2 places)

0010000000000000000000000000 (shifted 3 places)

0010000000000000000000 (shifted 4 places)

0000100000000000000000000000 (shifted 5 places)

0000010000000000000000000000 (shifted 6 places)

000001000000000000000000000 (shifted 7 places)

0000001000000000000000000000 (shifted 8 places)

(note that hidden bit is shifted into msb of mantissa)

- Step 2: add (don't forget the hidden bit for the 100)
 - 1.100100000000000000000 (100) -
 - 0.000000100000000000000 (.25)
- Step 3: normalize the result (get the "hidden bit" to be a 1)
 - Result is already normalized
- - 133-127=6

 - = 99.75

MULTIPLY AND DIVIDE RULE

Multiply Rule

- A. Add the exponents and subtract 127 to maintain the excess-127 representation.
- B. Multiply the mantissas and determine the sign of the result.
- C. Normalize the resulting value, if necessary.

Divide Rule

- A. Subtract the exponents and add 127 to maintain the excess-127 representation.
- B. Divide the mantissas and determine the sign of the result.
- C. Normalize the resulting value, if necessary.

TOPICS COVERED FROM

- Textbook 1:
 - Chapter 1: 1.4.2,
 - Chapter 9: 9.7, 9.7.1