CALCULUS 2402A LECTURE 7

14.7 Maximum and minimum values Part B

The Second Derivative Test of functions of two variables Suppose the 2nd partial derivatives of f are continuous on a disk with center (a_1b) and suppose that $f_x(a_1b) = 0$ and $f_y(a_1b) = 0$, ie, (a_1b) is a CP of f. Let

$$D = \begin{cases} f_{xx}(a_1b) & f_{xy}(a_1b) \\ f_{yx}(a_1b) & f_{yy}(a_1b) \end{cases} = f_{xx}(a_1b) & f_{yy}(a_1b) - f_{xy}(a_1b) \\ f_{yx}(a_1b) & f_{yx}(a_1b) \end{cases}$$

= fxx(a,b) fyy (a,b) - (fxy (a,b))

a) If D>O and
$$f_{xx}(a,b)>0$$
, then $f(a,b)$ is a local minimum

b) If D>O and
$$f_{xx}(a,b) < 0$$
, then $f(a,b)$ is a hal maximum

 $\frac{\text{Ex6}}{\text{Sind}}$ the local min or max values and Saddle points of $f(z,y) = x^2 + xy + y^2 + y$

Solution

$$\int_{X} = 2x + y = 0 \Rightarrow y = -\frac{2}{3}$$

$$\int_{Y} = x + 2y + 1 = 0 \Rightarrow x + 2(-2x) = -1$$

$$-3x = -1 \Rightarrow x = \frac{1}{3}$$

! The point $\left(\frac{1}{3}, -\frac{2}{3}\right)$ is a CP.

$$\int x_x = 2$$
, $\int x_y = 1$

$$f_{\gamma\gamma} = 2$$
 , $f_{\gamma \times} = 1$

$$D = \begin{vmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{vmatrix} = \begin{vmatrix} 2 & 1 \\ 1 & 2 \end{vmatrix} = 4 - 1 = 3 > 0$$

Beause
$$f_{xx}=2>0$$
, $\left(\frac{1}{3},-\frac{2}{3}\right)$ is a local min

and
$$f(\frac{1}{3}, -\frac{2}{3}) = (\frac{1}{3})^2 + (\frac{1}{3})(-\frac{2}{3}) + (-\frac{2}{3})^2 + (-\frac{2}{3})$$

$= \frac{1}{9} - \frac{2}{9} + \frac{4}{9} - \frac{2}{3} = \frac{1}{3} - \frac{2}{3} = -\frac{1}{3} \text{ // Ans}.$
We note that $J(x,y)$ can be written as
$f(z,y) = (z + \frac{y}{2})^2 + \frac{3}{4}(y + \frac{1}{3})^2 - \frac{1}{3}$
>0 >0
$f(z,y)$ has a local min value $-\frac{1}{3}$ if
$x + \frac{9}{2} = 0 \Rightarrow x = -\frac{9}{2} = -\frac{1}{2}\left(-\frac{2}{3}\right) = \frac{1}{3}$
$y + \frac{2}{3} = 0 \implies y = -\frac{2}{3} \vdash$
The Hessian
Consider the function $f(x,y)$. The matrix
$H(x,y) = \int f_{xx}(x,y) f_{xy}(x,y)$
fyx (x,5) fyy (2,5)
is called the Hessian of f at (a,y). We define the trace H, denoted as Tr (H), as
$T_{\Lambda}(H) = f_{XX}(x,y) + f_{YY}(x,y)$
because $f_{xy}(x,y) = f_{yx}(z,y)$, $H(z,y)$ is a symmetric matrix
det (+(2,5)) = fxx(2,5) fyy(2,5) - (fxy(2,5))2 (=)
The Second Derivative Test in terms of the Hessian
Suppose that (a,b) is a CP of f and f has continuous
2nd order partial derivatives in some neighborhood of (a,b). Then
a) f has a local minimum value at (a,h) if Tr (H(a,b)) > 0
and det $(H(a,b)) > O(N,B: If Tr(H(a,b)) > O fleen for (a,b) > O)$
b) I have been maximum value at (a,b) if Te (H(a,b)) < 0
and let $(H(a,b)) > 0$
c) f has (a,b) as a saddle point if $det(H(a,b)) < 0$
d) If det (H(a,b)) = 0, the test is inconclusive.

```
Recall Eigenvalues and Eigenvectors
     A non-zero vecho V is called an eigenvector of a matrix A
    corresponding to an eigenvalue of if
                                                          (1)
                      A \underline{Y} = \lambda \underline{Y}
          all eigenvalues of A are positive, A is called are definite.
    If all eigenvalues of A are negative, A is called -ve definite
   If some are tre and some are -ve, A is called indefinite
    Rewriting () as
                       AV = NIV where I is the identity matix
                                                           ( I \underline{\vee} = \underline{\vee} )
                   Av - \lambda Iv = 0
                   (A - \lambda I) V = O
         Since V is a non-zero vector, we must have
                    \left| \det \left( A - \lambda I \right) = 0 \right| \qquad (2)
        Which is called the Characteristic Equation.
          Consider A as a 2x2 matrix. Let
                       A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}
                and V = \begin{vmatrix} h \\ k \end{vmatrix}
             A - \lambda I = \begin{bmatrix} a & b \\ c & d \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} a - \lambda & b \\ c & d - \lambda \end{bmatrix}
            det (A- NI) = 0
                  \begin{vmatrix} a - \lambda & b \\ c & d - \lambda \end{vmatrix} = 0
                                                                   A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}
             Expandy
                                                                     In(A) = a + d
                   (a-\lambda)(d-\lambda) - bc = 0
                                                                       det (A) = ad - be
                     ad - a\lambda - d\lambda + \lambda^2 - bc = 0
                      \lambda^2 - (a+d)\lambda + ad -bc = 0
                      \lambda^2 - \lambda \operatorname{Tr}(A) + \operatorname{det}(A) = 0
                                                                   (3)
                      \lambda_1 + \lambda_2 = Tr(A)
```

	A is +ve definite if Tn(A) > O and det(A) > O
	A is -ve definite if $T_{A}(A) < 0$ and $det(A) > 0$
	A is indefinite if det (A) < 0
	Goback to the Hessian
	$H(x_{17}) = \int f_{xx}(x_{17}) \int xy(x_{17})$
	$H(x_{1/3}) = \begin{bmatrix} f_{xx}(x_{1/3}) & f_{xy}(x_{1/3}) \\ f_{yx}(x_{1/3}) & f_{yy}(x_{1/3}) \end{bmatrix}$
	At the CP (a,b)
	$H(a_1b) = \begin{bmatrix} f_{xx}(a_1b) & f_{xy}(a_1b) \\ f_{yx}(a_1b) & f_{yy}(a_1b) \end{bmatrix}$
	[fyx (a,b) fyy (a,b)]
	$\overline{\Lambda} \left(H(a,b) \right) = f \times \left(a,b \right) + f_{yy} \left(a,b \right)$
	$\det (H(a_1b)) = \int x_x (a_1b) \int f_{yy} (a_1b) - (\int x_y (a_1b))^2$
	(1) I has a local minimum value at (a,b) if H (a,b) is
	+ve definite
	ii) f has a local maximum value at (a,b) if H(a,b) is
	-ve definite
((ii) f has (a,b) as a saddle point if H(a,b) is indufinite
	We will generalize to the case of f is a function of 3 variables
	or more in the next lecture.
	See you on Friday.