This page contains problems that use techniques you will need for Section 4.5 #231, 235 and 237

For each function, find all the critical points in the given domain.

1.
$$f(x) = e^x \cos(x)$$
 in $[0, 2\pi]$

$$f'(x) = e^{x} \cos(x) - e^{x} \sin(x)$$

= $e^{x} (\cos(x) - \sin(x))$

or
$$1 = +an(x)$$
.

critical pts:

$$X=\frac{\pi}{4}$$
 and $X=\frac{5\pi}{4}$.

2.
$$f(x) = \sin(\pi x/2) - \cos(\pi x/2)$$
 on $[-2, 2]$

or
$$-1 = \tan(\overline{z}^{x})$$

or
$$-1 = +an(\Xi \times)$$
 So We need or $-1 = +an(\Xi \times)$ $\Xi \times = 3\Xi$ or $\Xi \times = -\Xi$

We know $+an\theta = -1$ when -1 $= 3\Xi$ or $= 3\Xi$ or $= -1$
 $= 3\Xi$ or $= 3\Xi$ or $= -1$

3.
$$f(x) = \frac{5}{x+1}$$
 on $(-\infty, -1) \cup (-1, \infty)$

$$\frac{7}{2}$$
 X = $\frac{37}{4}$

or
$$\frac{7}{2}x = \frac{-7}{4}$$

So
$$X = \frac{6}{4} = \frac{3}{2}$$

or
$$X = -\frac{1}{2}$$

$$f(x) = 5(x+1)^{-1}$$

$$f'(x) = -5(x+1)^{2}(1)$$

$$= -5$$

$$= -5$$
No critical

f' is never zero + never undefined in

Math 251: Section 4.5 & 4.6 Algebra/Trig Triage

This page contains skills / facts needed in Section 4.6.

1. Sketch the graph of $y = \tan^{-1}(x)$. Include and label asymptotes. Label at least three points.

2. Graph $y = e^x$ and $y = e^{-x}$ on the same set of axes. Label the points associated with x = -1, x = 0, and x = 1 on both graphs.

end behavoir small x-values ex goes to zero ex goes to oo_

end behavior large x-values ex goestops e goes to zero

4. For all of the graphs above, describe the **end behavior** of the graphs. This means, describe what happens for really large x values (think 10^{100} and really small x-values (think -10^{100} . Note "small" means toward negative infinity, not close to zero.