WO2006022712

	tion	itle	

METHODS AND AGENTS FOR SCREENING FOR COMPOUNDS CAPABLE OF MODULATING GENE EXPRESSION

Abstract:

Abstract of WO 2006022712

(A1) The invention relates to the fields of screening assays, compounds, and methods for altering gene expression and protein levels. In particular, the invention includes assays to screen for agents capable of modulating gene expression in a UTR-dependent manner and agents capable of modulating gene expression.

Courtesy of http://v3.espacenet.com

(43) International Publication Date 2 March 2006 (02.03,2006)

(21) International Application Number:

(10) International Publication Number WO 2006/022712 A1

(51) International Patent Classification : C12O 1/70. 1/68, C12N 15/63

English

PCT/US2004/026309

(22) International Filing Date: 16 August 2004 (16.08.2004)

(25) Filing Language: English

(30) Priority Data:

10/895,393 21 July 2004 (21.07.2004) US

(71) Applicant (for all designated States except US): PTC THERAPEUTICS, INC. [US/US]; 100 Corporate Court, Middlesex Business Center, South Plainfield, New Jersey 07080 (US).

(72) Inventors and

(26) Publication Language:

(75) Inventors/Applicants (for US only): CAO, Liangxian [CN/US]; 6 Mioduski Court, Parlin, New Jersey 08859 (US). MEHTA, Anuradha [IN/US]; 431 Lancaster Court, Piscataway, New Jersey 08854 (US). NARYSHKIN, Nikolai A. [RU/US]; 137 Windsong Circle, East Brunswick, New Jersey 08816 (US). PELLI-GRINI, Matthew C. [US/US]; 76 Autumn Ridge Road, Bedminster, New Jersey 07921 (US). ROMFO, Charles M. [US/US]: 87 Jonathan Drive, Easton, Pennsylvania 18045 (US). TRIFILLIS, Panaviota [US/US]: 309 Rivercrest Drive, Piscataway, New Jersey 08854 (US). TROTTA, Christopher R. [US/US]; 198 Scobee Lane, Somerset, New Jersey 08873 (US),

- (74) Agents: MARSH, David R. et al.; ARNOLD & PORTER LLP, 555 Twelfth St., N.W., IP Docketing, Washington, District of Columbia 20004 (US).
- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SL SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GO, GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: METHODS AND AGENTS FOR SCREENING FOR COMPOUNDS CAPABLE OF MODULATING GENE EX-PRESSION

(57) Abstract: The invention relates to the fields of screening assays, compounds, and methods for altering gene expression and protein levels. In particular, the invention includes assays to screen for agents capable of modulating gene expression in a UTRdependent manner and agents capable of modulating gene expression.

TITLE OF THE INVENTION

Methods and Agents for Screening for Compounds Capable of Modulating Gene Expression

INCORPORATION OF THE SEQUENCE LISTING

A paper copy of the Sequence Listing and a computer readable form of the sequence listing on diskette, containing the file named "19025.023.SeqList.txt", which is 124,429 bytes in size (measured in MS-DOS), and which was recorded on August 16, 2004, are herein incorporated by reference.

BACKGROUND OF THE INVENTION

Gene expression, defined as the conversion of the nucleotide sequence of a gene into the nucleotide sequence of a stable RNA or into the amino acid sequence of a protein, is very tightly regulated in every living organism. Regulation of gene expression both of mRNA stability and translation is important in cellular responses to development or environmental stimuli such as nutrient levels, cytokines, hormones, and temperature shifts, as well as environmental stresses like hypoxia, hypocalcemia, viral infection, and tissue injury (reviewed in Guhaniyogi & Brewer, 2001, Gene 265(1-2):11-23). Furthermore, alterations in mRNA stability have been causally connected to specific disorders, such as neoplasia, thalassemia, and Alzheimer's disease (reviewed in Guhaniyogi & Brewer, 2001, Gene 265(1-2):11-23 and Translational Control of Gene Expression, Sonenberg, Hershey, and Mathews, eds., 2000, CSHL Press).

Giordano et al., U.S. Patent No. 6,558,007 (hereafter referred to as "the '007 patent"), assert that they provide a screening assay using a 5' mRNA UTR biased cDNA library or a 3' mRNA UTR biased cDNA library. The '007 patent further asserts that they provide a method of identifying a regulatory UTR sequence using their 5' or 3' mRNA UTR biased cDNA libraries. The '007 patent does not provide assays that mimic the *in vivo* state of a gene controlled by the presence of more than one UTR, for example, genes which are flanked by a 5' UTR and a 3' UTR. Moreover, the approach of the '007 patent requires the libraries described therein.

Pesole et al. assert that the 5'- and 3'-UTRs of eukaryotic mRNAs are known to play a crucial role in post-transcriptional regulation of gene expression. Pesole et al., (2002)

Nucleic Acids Research, 3(1):335-340, which is hereby incorporated by reference in its entirety. They develop and describe several databases with nucleic acid sequences from UTRs. Many of their database entries are enriched with specialized information including the presence of sequence patterns demonstrated by experimental evidence to play a functional role in gene regulation. Pesole et al. do not provide assays to obtain such experimental evidence, nor do they suggest that such experiments mimicked the in vivo state of the UTR database entry. Moreover, the methodology of Pesole et al. is based on sequence analysis and prior experimental evidence. Pesole et al. do not provide experimental screening methods for developing agents to modulate the 5'- and 3'-UTRs of eukaryotic mRNAs that are known to play a crucial role in post-transcriptional regulation of gene expression nor do they suggest a methodology to find novel 5'- and 3'-UTRs of eukaryotic mRNAs that play a crucial role in post-transcriptional regulation of gene expression. In addition, the approach of Pesole et al. requires the databases described therein.

Trotta et al. assert that a the interaction of the La antigen with mdm2 5' UTR enhances mdm2 mRNA translation. Trotta et al., (2003) Cancer Cell 3:145-160, which is hereby incorporated by reference in its entirety. They do not suggest methods or agents to screen or identify more UTRs with a similar role in translational regulation of gene expression. Moreover, no agents are provided to screen for compounds that would modulate the regulation of mdm2 mRNA translation.

SUMMARY OF THE INVENTION

The present invention includes a nucleic acid construct comprising a high-level mammalian expression vector, an intron, and a nucleic acid sequence encoding a reporter polypeptide, wherein said nucleic acid sequence encoding a reporter polypeptide is proximally linked to a target untranslated region (UTR).

The present invention also includes a nucleic acid construct comprising a high-level mammalian expression vector and a nucleic acid sequence encoding a reporter polypeptide, wherein said nucleic acid sequence encoding a reporter polypeptide is directly linked to one or more target UTRs.

The present invention also includes a nucleic acid molecule comprising a nucleic acid sequence encoding a reporter polypeptide directly linked to one or more target UTRs.

The present invention also includes a heterologous population of nucleic acid molecules, wherein said heterologous population comprises a reporter nucleic acid sequence, wherein said nucleic acid sequence encoding a reporter polypeptide is directly linked to one or more target UTRs.

The present invention also includes a method of making a nucleic acid construct to screen for a compound comprising: a) cloning a gene and a vector in said nucleic acid construct; b) engineering said nucleic acid construct to prevent an expressed gene product from having a UTR not found in a target gene; and c) directly linking a target UTR to said gene.

The present invention also includes a method of screening for a compound that modulates expression of a polypeptide comprising: a) maintaining a cell, wherein said cell has a nucleic acid molecule and said nucleic acid molecule comprises a gene encoding a reporter polypeptide and said reporter gene is flanked by a target 5' UTR and a target 3' UTR; b) forming a UTR-complex in said cell; c) contacting a compound with said UTR-complex; and d) detecting an effect of said compound on said UTR-complex.

The present invention also includes a method of screening *in vivo* for a compound that modulates UTR-dependent expression comprising: a) providing a cell having a nucleic acid construct comprising a high-expression, constitutive promoter upstream from a target 5' UTR, said target 5' UTR upstream from a nucleic acid sequence encoding a reporter polypeptide, and said nucleic acid sequence encoding a reporter polypeptide upstream from a target 3' UTR; b) contacting said cell with a compound; c) producing a nucleic acid molecule that contains a nucleic acid sequence encoding a reporter polypeptide and does not contain UTR not found in a target gene; and d) detecting said reporter polypeptide.

The present invention also includes a method of screening in vitro for a compound that modulates UTR-affected expression comprising: a) providing an in vitro translation system; b) contacting said in vitro translation system with a compound and a nucleic acid molecule comprising a target 5' UTR, said target 5' UTR upstream from a nucleic acid sequence encoding a reporter polypeptide and said nucleic acid sequence encoding a reporter polypeptide upstream from a target 3' UTR, wherein said nucleic acid molecule is in an absence of a UTR not found in a target gene; and c) detecting said reporter polypeptide in vitro.

The present invention also includes a method of expressing a nucleic acid molecule in a cell comprising: a) providing a heterologous nucleic acid molecule to a cell, wherein said nucleic acid molecule comprises a nucleic acid sequence encoding a reporter polypeptide flanked by target UTRs in an absence of a UTR not found in a target gene; and b) detecting said reporter polypeptide in vivo.

The present invention also includes a method of screening for a compound that modulates protein expression through a main ORF-independent, UTR-affected mechanism comprising: a) growing a stable cell line having a reporter gene proximally linked to a target UTR; b) comparing said stable cell line in the presence of a compound relative to in an absence of said compound; and c) selecting for said compound that modulates protein expression through a main ORF-independent, UTR-affected mechanism.

The present invention also includes a method of screening for a compound that modulates protein expression through a main ORF-independent, UTR-affected mechanism comprising: a) substituting in a cell a target gene with a reporter gene, wherein proximally linked target UTRs of said target gene remain intact and said cell is a differentiated cell; b) growing said cell line; and c) selecting for said compound that modulates protein expression of said reporter gene through a main ORF-independent, UTR-affected mechanism.

The present invention also includes a method of screening for a compound that modulates protein expression through a UTR-affected mechanism comprising: a) growing a stable cell line having a reporter gene proximally linked to a target UTR, wherein said stable cell line mimics post-transcriptional regulation of a target gene found *in vivo*; b) growing said stable cell line; and c) selecting for said compound that modulates protein expression of said reporter gene through a UTR-affected mechanism.

The present invention also includes a method of screening for a compound that modulates protein expression through a UTR-affected mechanism comprising: a) growing a stable cell line having a reporter gene proximally linked to more than one target UTR; b) comparing said stable cell line in the presence of a compound relative to in an absence of said compound, wherein said compound does not modulate UTR-dependent expression if only one target UTR is proximally linked to a reporter gene; and e) selecting for said compound that modulates protein expression of said reporter gene through a UTR-affected mechanism.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 sets forth the UTR specificity for reporter gene expression when flanked by the HIF 1α 5' and 3' UTR (5+3 UTR). The reporter gene is operably linked to the HIF 1α 5' and 3' UTR (5+3 UTR), the HIF 1α 5' UTR (5' UTR), the HIF 1α 3' UTR (3' UTR), or no HIF 1α UTR (No UTR) under conditions of normoxia and hypoxia.

Figure 2A sets forth a schematic of the construct indicating the locations of primers used

Figure 2B sets forth the results of RT-PCR described in Example 2 to determine the quality of stable clones using using the primers indicated in Figure 2A.

Figure 2C sets forth the results of RT-PCR described in Example 2 to determine the quality of stable clones using using the primers indicated in Figure 2A.

Figure 3 sets forth the luciferase activity per microgram of total protein for each stable clonal cell line indicated.

Figure 4 sets forth sets forth the luciferase activity per microgram of total protein as a function of the fold increase over the level of actin RNA.

Description of the Nucleic Acid Sequences

SEQ ID NO: 1 sets forth a luciferase 5' reverse primer.

SEQ ID NO: 2 sets forth a luciferase 3' forward primer.

SEQ ID NO: 3 sets forth a FLuc F.

SEQ ID NO: 4 sets forth a FLuc R.

SEQ ID NO: 5 sets forth a FLuc probe.

SEQ ID NO: 6 sets forth a homo sapiens VEGF 5' UTR, derived from Accession No. NM_03376 of AF095785.

SEQ ID NO: 7 sets forth a 3* UTR is derived from Accession No. AF022375, genomic contig where sequences are derived is VEGF - NT_007592.

SEQ ID NO: 8 sets forth a homo sapiens TNF-alpha 5' UTR derived from Accession No. NM 00594.

SEQ ID NO: 9 sets forth a homo sapiens TNF-alpha 3' UTR derived from Accession No. NM 00594.

SEQ ID NO: 10 sets forth an ARE 1 from homo sapiens TNF-alpha 3' UTR derived from Accession No. NM 00594.

SEQ ID NO: 11 sets forth an ARE 1 from homo sapiens TNF-alpha 3' UTR derived from Accession No. NM 00594.

SEQ ID NO: 12 sets forth an ARE 1 from homo sapiens TNF-alpha 3' UTR derived from Accession No. NM 00594.

SEQ ID NO: 13 sets forth a constitutive decay element (hereinafter "CDE") derived from homo sapiens TNF-alpha 3' UTR as discussed in Stoecklin et al., (2003) Molecular and Cellular Biology, 23(10):3506-3515, which is hereby incorporated by reference in its entirety.

SEQ ID NO: 14 sets forth a putative second ARE from homo sapiens TNF-alpha 3' UTR derived from Accession No. NM_00594.

SEQ ID NO: 15 sets forth a putative poly(A) signal from homo sapiens TNF-alpha 3* UTR derived from Accession No. NM_00594.

SEQ ID NO: 16 sets forth a homo sapiens MDM2 5' UTR as derived from Accession No. NM 002392.

SEQ ID NO: 17 sets forth a homo sapiens Her-2 5' UTR sequence derived from Accession No. NM_004448.

SEQ ID NO: 18 sets forth a homo sapiens Her-2 5' uORF sequence derived from Accession No. NM_004448.

SEO ID NO: 19 sets forth a Her-2 3' UTR derived from Accession No. NM_004448.

SEQ ID NO: 20 sets forth a 336 nucleotide region of a VEGF 5' UTR

SEQ ID NO: 21 sets forth a 476 nucleotide region of a VEGF 5' UTR.

SEQ ID NO: 22 sets forth a 73 nucleotide sequence from a Her-2 3' UTR.

SEQ ID NO: 23 sets forth a 81 nucleotide region native to pcDNATM3.1/Hygro (Invitrogen Corp., Carlsbad, CA).

SEQ ID NO: 24 sets forth a 134 nucleotide region native to pcDNATM3.1/Hygro (Invitrogen Corp., Carlsbad, CA).

Definitions

As used herein, the term "construct" refers to an artificially manipulated nucleic acid molecule.

As used herein, the term "gene" is a segment of DNA that is capable of producing a polypeptide.

As used herein, the term "heterologous" refers to ingredients or constituents of dissimilar or diverse origin.

As used herein, the term "mammalian cancer cell" or "mammalian tumor cell" refers to a cell derived from a mammal that proliferates inappropriately.

As used herein, the term "main ORF-independent mechanism" refers to a cellular pathway or process, wherein at least one step relates to gene expression and is not dependent on the nucleic acid sequence of the main open reading frame.

As used herein, the term "reporter gene" refers to any gene whose expression can be measured.

As used herein, the term "RNA induced gene silencing, or RNA interference (RNAi)" refers to the mechanism of double-stranded RNA (dsRNA) introduced into a system to reduce protein expression of specific genetic sequence.

As used herein, the term "specifically bind" means that a compound binds to another compound in a manner different from a similar type of compounds, e.g. in terms of affinity, avidity, and the like. In a non-limiting example, more binding occurs in the presence of a competing reagent, such as casein. In another non-limiting example, antibodies that specifically bind a target protein should provide a detection signal at least 2-, 5-, 10-, or 20-fold higher relative to a detection signal provided with other molecules when used in Western blots or other immunochemical assays. In an alternative non-limiting example, a nucleic acid can specifically bind its complementary nucleic acid molecule. In another non-limiting example, a transcription factor can specifically bind a particular nucleic acid sequence.

As used herein, the term "secondary structure" means the alpha-helical, beta-sheet, random coil, beta turn structures and helical nucleic acid structures that occur in proteins, polypeptides, nucleic acids, compounds comprising modified nucleic acids, compounds comprising modified amino acids and other types of compounds as a result of, at least, the compound's composition.

As used herein, the term "non-peptide therapeutic agent" and analogous terms include, but are not limited to organic or inorganic compounds (i.e., including heteroorganic and organometallic compounds but excluding proteins, polypeptides and nucleic acids).

As used herein, the term "uORF" refers to an upstream open reading frame that is in the 5' UTR of the main open reading frame, i.e., that encodes a functional protein, of a mRNA.

As used herein, the term "UTR" refers to the untranslated region of a mRNA.

As used herein, the term "untranslated region-dependent expression" or "UTR-dependent expression" refers to the regulation of gene expression through UTRs at the level of mRNA expression, i.e., after transcription of the gene has begun until the protein or the RNA product(s) encoded by the gene has been degraded or excreted.

As used herein, the term "vector" refers to a nucleic acid molecule used to introduce a nucleic acid sequence in a cell or organism.

DETAILED DESCRIPTION OF THE INVENTION

The present invention includes and utilizes the fact that an untranslated region (UTR) is capable of modulating expression of a gene and that such modulation of expression is capable of being altered or modulated by the addition of compounds. In a preferred embodiment, a UTR is a region of a RNA that is not translated into protein. In a more preferred embodiment, a UTR is a flanking region of the RNA transcript that is not translated into the targeted protein, and can include a 5' UTR that has a short, putative open reading frame. In a most preferred embodiment, the UTR is a 5' UTR, i.e., upstream of the coding region, or a 3' UTR, i.e., downstream of the coding region.

Moreover, the present invention includes and provides agents and methods useful in screening for a compound capable of modulating gene expression and also hybrid molecules.

Nucleic Acid Agents and Constructs

One skilled in the art may refer to general reference texts for detailed descriptions of known techniques discussed herein or equivalent techniques. These texts include Ausubel et al., Current Protocols in Molecular Biology, John Wiley and Sons, Inc. (1995); Sambrook et al., Molecular Cloning, A Laboratory Manual (2d ed.), Cold Spring Harbor Press, Cold Spring Harbor, New York (1989); Birren et al., Genome Analysis: A Laboratory Manual, volumes 1 through 4, Cold Spring Harbor Press, Cold Spring Harbor, New York (1997-

1999). These texts can, of course, also be referred to in making or using an aspect of the invention.

UTRs

The present invention includes nucleic acid molecules with UTRs that comprise or consist of a gene expression modulator (GEM), fragments thereof, and complements of each. As used herein, a UTR can be a naturally occurring genomic DNA sequence. In a preferred embodiment, a UTR is a 5' UTR, i.e., upstream of the coding region, or a 3' UTR, i.e., downstream of the coding region.

In one embodiment, a UTR of the present invention comprises or consists of a nucleic acid sequence selected from a group consisting of SEQ ID NOs: 6-22, and including fragments of each, and complements of all. In another embodiment, a nucleic acid molecule of the present invention contains or comprises a nucleic acid sequence that is greater than 85% identical, and more preferably greater than 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99% identical to a UTR of the present invention, a GEM nucleic acid sequence, a complement of either, and a fragment of any of these sequences.

The hybridization conditions typically involve nucleic acid hybridization in about 0.1X to about 10X SSC (diluted from a 20X SSC stock solution containing 3 M sodium chloride and 0.3M sodium citrate, pH 7.0 in distilled water), about 2.5X to about 5X Denhardt's solution (diluted from a 50X stock solution containing 1% (w/v) bovine serum albumin, 1% (w/v) Ficoli[®] (Amersham Biosciences Inc., Piscataway, NJ), and 1% (w/v) polyvinylpyrrolidone in distilled water), about 10 mg/ml to about 100 mg/ml salmon sperm DNA, and about 0.02% (w/v) to about 0.1% (w/v) SDS, with an incubation at about 20° C to about 70° C for several hours to overnight.

In a preferred aspect, the moderate stringency hybridization conditions are provided by 6X SSC, 5X Denhardt's solution, 100 mg/ml salmon sperm DNA, and 0.1% (w/v) SDS, with an incubation at 55° C for several hours. The moderate stringency wash conditions are about 0.02% (w/v) SDS, with an incubation at about 55° C overnight. In a more preferred aspect, the high stringency hybridization conditions are about 2X SSC, about 3X Denhardt's solution, and about 10 mg/ml salmon sperm DNA. The high stringency wash conditions are about 0.05% (w/v) SDS, with an incubation at about 65° C overnight.

The percent identity is preferably determined using the "Best Fit" or "Gap" program of the Sequence Analysis Software Package™ (Version 10; Genetics Computer Group, Inc., University of Wisconsin Biotechnology Center, Madison, WI). "Gap" utilizes the algorithm of Needleman and Wunsch to find the alignment of two sequences that maximizes the number of matches and minimizes the number of gaps. "BestFit" performs an optimal alignment of the best segment of similarity between two sequences and inserts gaps to maximize the number of matches using the local homology algorithm of Smith and Waterman. The percent identity calculations may also be performed using the Megalign program of the LASERGENE bioinformatics computing suite (default parameters, DNASTAR Inc., Madison, Wisconsin). The percent identity is most preferably determined using the "Best Fit" program using default parameters.

Any of a variety of methods may be used to obtain one or more of the abovedescribed nucleic acid molecules of the present invention. Automated nucleic acid synthesizers may be employed for this purpose. In lieu of such synthesis, the disclosed nucleic acid molecules may be used to define a pair of primers that can be used with the polymerase chain reaction (PCR) to amplify and obtain any desired nucleic acid molecule or fragment.

Short nucleic acid sequences having the ability to specifically hybridize to complementary nucleic acid sequences may be produced and utilized in the present invention, e.g., as probes to identify the presence of a complementary nucleic acid sequence in a given sample. Alternatively, the short nucleic acid sequences may be used as oligonucleotide primers to amplify or mutate a complementary nucleic acid sequence using PCR technology. These primers may also facilitate the amplification of related complementary nucleic acid sequences (e.g., related sequences from other species).

Use of these probes or primers may greatly facilitate the identification of transgenic cells or organisms that contain the presently disclosed structural nucleic acid sequences. Such probes or primers may also, for example, be used to screen cDNA, mRNA, or genomic DNA libraries for additional nucleic acid sequences related to or sharing homology with the presently disclosed promoters and structural nucleic acid sequences. The probes may also be PCR probes, which are nucleic acid molecules capable of initiating a polymerase activity while in a double-stranded structure with another nucleic acid.

A primer or probe is generally complementary to a portion of a nucleic acid sequence that is to be identified, amplified, or mutated and of sufficient length to form a stable and sequence-specific duplex molecule with its complement. The primer or probe preferably is about 10 to about 200 residues long, more preferably is about 10 to about 100 residues long, even more preferably is about 10 to about 50 residues long, and most preferably is about 14 to about 30 residues long.

The primer or probe may, for example without limitation, be prepared by direct chemical synthesis, by PCR (U.S. Patent Nos. 4,683,195 and 4,683,202), or by excising the nucleic acid specific fragment from a larger nucleic acid molecule. Various methods for determining the sequence of PCR probes and PCR techniques exist in the art. Computergenerated searches using programs such as Primer3 (www-genome.wi.mit.edu/cgi-bin/primer/primer3.cgi), STSPipeline (www-genome.wi.mit.edu/cgi-bin/www-STS_Pipeline), or GeneUp (Pesole et al., BioTechniques 25:112-123, 1998), for example, can be used to identify potential PCR primers.

Furthermore, sequence comparisons can be done to find nucleic acid molecules of the

present invention based on secondary structure homology. Several methods and programs are available to predict and compare secondary structures of nucleic acid molecules, for example, GeneBee (available on the world wide web at genebee.msu.su/services/rna2_reduced.html); the Vienna RNA Package (available on the world wide web at tbi.univie.ac.at/~ivo/RNA/); SstructView (available on the world wide web at the Stanford Medical Informatics website, under: projects/helix/sstructview/home.html and described in "RNA Secondary Structure as a Reusable Interface to Biological Information Resources." 1997. Gene vol. 190GC59-70). For example, comparisons of secondary structure are preformed in Le et al., A common RNA

Nuc. Acid. Res. vol. 25(2):362-369.

UTR-complexes

The present invention also includes a UTR that is complexed. A UTR-complex includes a complex of two or more identical UTRs, one or more different UTRs, a pair of UTRs from the same gene, one or more UTRs and one or more proteins, one or more UTRs and one or more nucleic acids, one or more UTRs and one or more nucleic acid molecules.

structural motif involved in the internal initiation of translation of cellular mRNAs. 1997.

By way of non-limiting examples, a UTR-complex can be a complex of a UTR and a small interfering RNAs (siRNA), a UTR and a RNA/DNA sense strand, or a UTR and a RNA/DNA antisense strand.

A UTR-complex of the present invention can refer to a non-covalent or covalent attachment to a UTR. In a preferred embodiment, a GEM or UTR of a nucleic acid molecule modulates attachment of complex constituents to the nucleic acid molecule that has a UTR. In a more preferred embodiment, a UTR-complex varies depending on the nucleic acid sequence of the UTR within the nucleic acid molecule. In a most preferred embodiment, the nucleic acid sequence of the UTR that affects a UTR-complex indicates the presence of a GEM. In a preferred embodiment, the UTR, a GEM, or a fragment of either, modulates the formation of a UTR-complex. In an alternate embodiment, the UTR, or a fragment thereof, modulates the disassociation, the stability, or the constituents of the UTR-complex. In a more preferred embodiment, the non-covalent or covalent attachment is a transient attachment. In a more preferred embodiment, the constituents of a UTR-complex vary during processing. In a most preferred embodiment, the constituents of the UTR-complex vary depending on the nucleic acid sequence of the UTR within the nucleic acid molecule, which is in the presence of cellular proteins that can be cell-type specific.

A UTR-complex of the present invention can include the non-covalent or covalent attachment of one or more ribonucleoproteins to a nucleic acid molecule that contains a UTR. In a preferred embodiment, a GEM of the present invention or a UTR of a nucleic acid molecule of the present invention modulates the attachment of the nucleic acid molecule and one or more ribonucleoproteins.

By way of non-limiting examples, UTR-complexes are provided in Pesole et al. and Trotta et al., cited and incorporated by reference above, as well as on the world wide web, including at the ftp site: bighost.ba.itb.cnr.it/pub/Embnet/Database/UTR/ (as available on July 20, 2004), which is hereby incorporated by reference in its entirety. Furthermore, a GEM or UTR of the present invention can interact with a protein from the large family of AU-rich containing mRNAs associated with Hu-Antigen R (HuR)-mediated regulation (including IL-3, c-fos, c-myc, GM-CSF, AT-R1, Cox-2, IL-8 or TNF-α as cited in WO 03/087815), the RNA recognition motif (RRM) superfamily, the small nuclear RNPs (snRNP), hnRNP proteins, mRNA proteins, exon junction complex (EJC) proteins,

cytoplasmic exon junction complex (cEIC) proteins, U snRNA proteins, nuclear pore complex proteins, dead-box family proteins, splicing factors, ribosomal proteins, and translation-specific proteins that are non-ribosomal, non-regulatory ribosomal protein, and chromatin-associated protein. For specific examples see Dreyfuss, et al. (2002) Nature Reviews: Molecular Cell Biology 3:195-205, hereby incorporated in its entirety. See also on the world wide web at the ftp site: ftp.ebi.ac.uk/pub/databases/UTR/ (as available on July 21, 2004), which is hereby incorporated by reference in its entirety. In the present invention, splicing factors include, but are not limited to, serine-argenine (SR) proteins. In the present invention, translation-specific proteins that are non-ribosomal include, without limitation, exon-function complex proteins, poly-A binding proteins, and cap-binding proteins.

Other examples of UTR-complexes include a TNF- α mRNA complexed with the tristetraprolin protein (TTP; see Lai et al., (1999) Molecular and Cellular Biology, 19(6):4311-4323, hereby incorporated by reference in its entirety) and TIA-1 bound to AREs in the 3' UTRs. The TIA-1 recognition results in more TIAs binding to the first TIA-1. This TIA complex recognizes the 40 S ribosome subunit which is bound to the 5' UTR. Therefore, preventing the TIA-1 from binding to the AREs prevents translation of the encoded protein upstream of the bound ARE in the 3' UTR. See Kedersha and Anderson, (2002) Biochemical Society Transactions, 30(6):963-969, hereby incorporated by reference in its entirety.

Constructs of the Present Invention

The present invention includes and provides nucleic acid constructs. It is understood that any of the constructs and other nucleic acid agents of the present invention can be either DNA or RNA. In a preferred embodiment, a construct can be a nucleic acid molecule having a UTR, a coding sequence, or both. In another embodiment, a construct is composed of at least one UTR of the present invention, a sequence encoding a reporter polypeptide, and a vector. Moreover, any of the nucleic acid molecules of the present invention can be used in combination with a method of the present invention.

Vectors

Exogenous genetic material may be introduced into a host cell by use of a vector or construct designed for such purpose. Any of the nucleic acid sequences of the present invention can be incorporated into a vector or construct of the present invention. A vector or

construct of the present invention includes, without limitation, linear or closed circular plasmids. A vector system may be a single vector or plasmid or two or more vectors or plasmids that together contain the total DNA to be introduced into the genome of the host. In a preferred embodiment, a vector contains a promoter functional in mammalian cells or bacteria or both. Methods for preparing vectors or constructs are well known in the art.

Vectors suitable for replication in mammalian cells may include viral replicons, or sequences that insure integration of the appropriate sequences encoding HCV epitopes into the host genome. For example, another vector used to express foreign DNA is vaccinia virus. Such heterologous DNA is generally inserted into a gene that is non-essential to the virus, for example, the thymidine kinase gene (tk), which also provides a selectable marker. Expression of the HCV polypeptide then occurs in cells or animals that are infected with the live recombinant vaccinia virus.

In general, plasmid vectors containing replicon and control sequences that are derived from species compatible with the host cell are used in connection with bacterial hosts. The vector ordinarily carries a replication site, as well as marking sequences that are capable of providing phenotypic selection in transformed cells. For example, *E. coli* is typically transformed using a construct with a backbone derived from a vector, such as pBR322, which contains genes for ampicillin and tetracycline resistance and thus provides easy approach for identifying transformed cells. The pBR322 plasmid, or other microbial plasmid or phage, also generally contains, or is modified to contain, promoters that can be used by the microbial organism for expression of the selectable marker genes.

In a preferred embodiment of the present invention, an expression vector can be a high-level mammalian expression vector designed to randomly integrate into the genome, for example, pCMR1. A high-level expression vector will have about 100 to about 1000 copies per cell, about 500 to about 1000 copies per cell, or about 250 to about 1000 copies per cell. In one embodiment, a high-level mammalian expression vector is derived from the family of pUC vectors. In a preferred embodiment of the present invention, an expression vector can be a high-level mammalian expression vector designed to site-specifically integrate into the genome of cells. For example, pMCP1 can site-specifically integrate into the genome of cells genetically engineered to contain the FRT

site-specific recombination site via the Flp recombinase (see, e.g., Craig, 1988, Ann. Rev. Genet. 22: 77-105; and Sauer, 1994, Curr. Opin. Biotechnol. 5: 521-527).

Promoters

A construct can include a promoter, e.g., a recombinant vector typically comprises, in a 5' to 3' orientation: a promoter to direct the transcription of a nucleic acid molecule of interest.

In a preferred aspect of the present invention, a construct can include a mammalian promoter and can be used to express a nucleic acid molecule of choice. As used herein, a "mammalian promoter" refers to a promoter functional in a mammalian cell, derived from a mammalian cell, or both. A number of promoters that are active in mammalian cells have been described in the literature. A promoter can be selected on the basis of the cell type into which the vector will be inserted.

A preferred promoter of the present invention is an endogenous promoter. A particularly preferred promoter is upstream from the target gene that has its expression modulated by a GEM. Other promoter sequences can be utilized in a construct or other nucleic acid molecules, suitable promoters include, but are not limited to, those described herein.

Suitable promoters for mammalian cells are known in the art and include viral promoters, such as those from Simian Virus 40 (SV40), Rous sarcoma virus (RSV), adenovirus (ADV), cytomegalovirus (CMV), and bovine papilloma virus (BPV) as well as the parvovirus B19p6 promoter and mammalian cell-derived promoters. A number of viral-based expression systems can be used to express a reporter gene in mammalian host cells. For example, if an adenovirus is used as an expression vector, sequences encoding a reporter gene can be ligated into an adenovirus transcription/translation complex comprising the late promoter and tripartite leader sequence.

Other examples of preferred promoters include tissue-specific promoters and inducible promoters. Other preferred promoters include the hematopoietic stem cell-specific, e.g., CD34, glucose-6-phosphotase, interleukin-1 alpha, CD11c integrin gene, GM-CSF, interleukin-5R alpha, interleukin-2, c-fos, h-ras and DMD gene promoters. Other promoters include the herpes thymidine kinase promoter, and the regulatory sequences of the metallothionein gene.

Inducible promoters suitable for use with bacteria hosts include the β -lactamase and lactose promoter systems, the arabinose promoter system, alkaline phosphatase, a tryptophan (trp) promoter system and hybrid promoters such as the tac promoter. However, other known bacterial inducible promoters are suitable. Promoters for use in bacterial systems also generally contain a Shine-Dalgarno sequence operably linked to the DNA encoding the polypeptide of interest.

A promoter can also be selected on the basis of their regulatory features, e.g., enhancement of transcriptional activity, inducibility, tissue specificity, and developmental stage-specificity. A promoter can work in vitro, for example the T7-promoter. Particularly preferred promoters can also be used to express a nucleic acid molecule of the present invention in a nonhuman mammal. Additional promoters that may be utilized are described, for example, in Bernoist and Chambon, Nature 290:304-310 (1981); Yamamoto et al., Cell 22:787-797 (1980); Wagner et al., PNAS 78:1441-1445 (1981); Brinster et al., Nature 296:39-42 (1982).

Main ORF

Agents and constructs of the invention can include nucleic acid molecules with a main ORF. As used herein, a "main ORF" is a nucleic acid sequence, including sequence in deoxyribonucleic acid or ribonucleic acid molecules, that codes for a polypeptide. As used herein, the term "main ORF DNA" refers to the open reading frame of a gene, i.e., the region of the gene that is translated into protein. As used herein, the term "ORF" refers to the open reading frame of a mRNA, i.e., the region of the mRNA that is translated into protein. In a preferred embodiment of the present invention, a main ORF can be in a gene with an upstream open reading frame ("uORF") contained in the 5' UTR of the gene. As used herein, the term "uORF" refers to an upstream open reading frame that is in the 5' UTR of the main open reading frame, i.e., that encodes a functional protein, of a mRNA.

As used herein, a "control gene" can be any gene that is not identical to a target gene being used. In a preferred embodiment, a control gene is a gene that does not contain a GEM. In a most preferred embodiment, a control gene is a target gene with GEM sequence removed or altered to be ineffective.

Target genes

As used herein, the term "target gene" refers to a gene or nucleotide sequence encoding a protein or polypeptide of interest. In a preferred embodiment, target genes are selected for investigation based on 1) role of a target gene in a disease phenotype; 2) post-transcriptional control of a target gene's expression; and 3) commercial considerations, including but not limited to medical need, market size, and competition.

In a highly preferred embodiment, a target gene can be myostatin, utrophin, alpha 7 integrin, insulin like growth factor 1, or phospholamban. In a most preferred embodiment, a target gene can be utrophin isoform A, alpha 7 integrin isoforms X2A, X2DA, X2B, and X2DB (which are muscle specific), insulin like growth factor 1 isoform exon1-Ea expressed in extrahepatic tissues, or insulin like growth factor 1 isoform exon1-MGF expressed specifically in skeletal muscle.

In a preferred embodiment, target genes are selected from the group of target genes with a role in a disease or condition including, but not limited to, skin disease, cancer, inflammatory diseases, asthma, rheumatoid arthritis, multiple sclerosis (MS), Alzheimer's disease, autoimmunity, systemic lupus erythematosus (SLE), Crohn's disease, genetic diseases, diabetes, obesity, neurologic disease, central nervous system (CNS) diseases, Parkinson's disease, pain response abnormality, schizophrenia, Huntington's disease, cardiovascular disease, anti-infective diseases, human immune dificiency (HIV), hepatitis C virus (HCV), hepatitis B virus (HBV), hepatitis A virus (HAV), and cholera.

Particularly preferred target genes can have a role in more than one disease, including, but not limited to, combinations such as cancer and inflammatory diseases; inflammatory diseases and asthma, rheumatoid arthritis, multiple sclerosis, Alzheimer's disease, autoimmunity, SLE, Crohn's disease, or combinations of any or all of these; diabetes and obesity; diabetes and neurologic disease; CNS and Alzheimer's disease, pain response abnormality, Parkinson's disease, Huntington's disease, schizophrenia, anti-infective diseases and inflammatory diseases, cancer, HIV, HCV, HBV, HAV, cholera, or combinations of any or all of these; and combinations of these disease combinations.

In a most preferred embodiment, target genes have specific functions in promoting the disease or condition, such as, but not limited to, enzymes of sugar metabolism, involved in glucose homeostasis control, and involved in satiety and weight control. In a preferred

embodiment, target genes do not include bovine growth factor hormone, adenaline repeats, reporter sequences, or epitope tags like myc or HLA.

Reporter genes

As used herein, a "reporter gene" is any gene whose expression can be measured. In a preferred embodiment, a reporter gene does not have any UTRs. In a more preferred embodiment, a reporter gene is a contiguous open reading frame. In another preferred embodiment, a reporter gene can have a previously determined reference range of detectable expression.

Constructs of the invention can comprise one or more reporter genes fused to one or more UTRs. For example, specific RNA sequences, RNA structural motifs, and/or RNA structural elements that are known or suspected to modulate UTR-dependent expression of a target gene can be fused to the reporter gene. A reporter gene of the present invention encoding a protein, a fragment thereof, or a polypeptide, can also be linked to a propeptide encoding region. A propeptide is an amino acid sequence found at the amino terminus of a proprotein or proenzyme. The resulting polypeptide is known as a propolypeptide or proenzyme (a zymogen in some cases). Propolypeptides are generally inactive and can be converted to mature active polypeptides by catalytic or autocatalytic cleavage of the proportion the propolypeptide or proenzyme.

A reporter gene can express a selectable or screenable marker. Selectable markers may also be used to select for organisms or cells that contain exogenous genetic material. Examples of such include, but are not limited to: a neo gene (which codes for kanamycin resistance and can be selected for using kanamycin), GUS, green fluorescent protein (GFP), neomycin phosphotransferase II (nptID, luciferase (LUX), or an antibiotic resistance coding sequence. Screenable markers can be used to monitor expression. Exemplary screenable markers include: a β-glucuronidase or uidA gene (GUS) which encodes an enzyme for which various chromogenic substrates are known; a β-lactamase gene, a gene which encodes an enzyme for which various chromogenic substrates are known (e.g., PADAC, a chromogenic cephalosporin); a luciferase gene; a tyrosinase gene, which encodes an enzyme capable of oxidizing tyrosine to DOPA and dopaquinone which in turn condenses to melanin; and α-galactosidase, which can be used in colormetric assays.

Included within the terms "selectable or screenable marker genes" are also genes that encode a secretable marker whose secretion can be detected as a method of identifying or selecting for transformed cells. Examples include markers that encode a secretable antigen that can be identified by antibody interaction, or even secretable enzymes, which can be detected utilizing their inherent biochemical properties. Secretable proteins fall into a number of classes, including small, diffusible proteins which are detectable, (e.g., by ELISA), or small active enzymes which are detectable in extracellular solution (e.g., α -amylase, β -lactamase, phosphinothricin transferase). Other possible selectable or screenable marker genes, or both, are apparent to those of skill in the art.

A reporter gene can express a fusion protein. As such, the fusion protein can be a fusion of any reporter gene operably linked to another gene, or fragment thereof. For instance, the expressed fusion protein can provide a "tagged" epitope to facilitate detection of the fusion protein, such as GST, GFP, FLAG, or polyHIS. Such fusions preferably encode between 1 and 50 amino acids, more preferably between 5 and 30 additional amino acids, and even more preferably between 5 and 20 amino acids. In one embodiment, a fusion protein can be a fusion protein that includes in whole or in part of a target protein sequence.

Alternatively, the fusion can provide regulatory, enzymatic, cell signaling, or intercellular transport functions. For example, a sequence encoding a signal peptide can be added to direct a fusion protein to a particular organelle within a eukaryotic cell. Such fusion partners preferably encode between 1 and 1000 additional amino acids, more preferably between 5 and 500 additional amino acids, and even more preferably between 10 and 250 amino acids.

In one embodiment, a reporter gene includes one or more mutations (e.g., one or more substitutions, deletions and/or additions) that do not alter the ability of reporter gene expression to be measured. In a highly preferred embodiment, the reporter gene contains one or more restriction sites that can be used for cloning, such as a BamHI and a $Not\ I$ site, and the restriction sites do not alter the function of the reporter gene. In a particularly preferred embodiment, a restriction site is downstream from the start codon of the open reading frame that encodes the reporter polypeptide, and another restriction site is upstream from the stop codon of the open reading frame that encodes the reporter polypeptide.

The present invention also provides for a reporter gene flanked by one or more

untranslated regions (e.g., the 5' UTR, 3' UTR, or both the 5' UTR and 3' UTR of the target gene). In addition, the present invention provides for a reporter gene flanked by one or more UTRs of a target gene, where the UTR contains one or more mutations (e.g., one or more substitutions, deletions and/or additions). In a preferred embodiment, the reporter gene is flanked by both 5' and 3' UTRs so that compounds that interfere with an interaction between the 5' and 3' UTRs can be identified.

In another preferred embodiment, a stable hairpin secondary structure is inserted into the UTR, preferably the 5' UTR of the target gene. For example, in cases where the 5' UTR possesses IRES activity, the addition of a stable hairpin secondary structure in the 5' UTR can be used to separate cap-dependent from cap-independent translation (see, e.g., Muhlrad et al., 1995, Mol. Cell. Biol. 15(4):2145-56, the disclosure of which is incorporated by reference in its entirety). In another embodiment, an intron is inserted into a UTR (preferably, the 5' UTR) or at the 5' end of an ORF of a reporter gene. For example, but not as a limitation, in cases where an RNA possesses instability elements, an intron, e.g., first intron of the human elongation factor one alpha (EF-1 alpha), can be cloned into a UTR (preferably, the 5' UTR) or a 5' end of the ORF to increase expression (see, e.g., Kim et al., 2002, J Biotechnol 93(2):183-7, the disclosure of which is incorporated by reference in its entirety). As used herein, an intron can be naturally occurring in a gene having at least two splice sites. In a preferred embodiment, an intron can be naturally occurring in a UTR. In an alternative embodiment, an intron can be naturally occurring in a heterologous gene. In an alternative embodiment, an intron can be an unnatural sequence bordered by 5' and 3' splice sites. In a preferred embodiment, both a stable hairpin secondary structure and an intron are added to the reporter gene construct. In a more preferred embodiment, the stable hairpin secondary structure is cloned into the 5' UTR and the intron is added at the 5' end of the sequence encoding the reporter polypeptide.

The reporter gene can be positioned such that the translation of that reporter gene is dependent upon the mode of translation initiation, such as, but not limited to, cap-dependent translation or cap-independent translation (i.e., translation via an internal ribosome entry site). Alternatively, where the UTR contains an upstream open reading frame, the reporter gene can be positioned such that the reporter protein is translated only in the presence of a compound that shifts the reading frame of the UTR so that the formerly untranslated open

reading frame is then translated.

The reporter gene constructs can be monocistronic or multicistronic. A multicistronic reporter gene construct may encode 2, 3, 4, 5, 6, 7, 8, 9, 10 or more, or in the range of 2-5, 5-10 or 10-20 reporter genes. For example, a bicistronic reporter gene construct comprising, in the following order going downstream, a promoter, a first reporter gene, a 5' UTR of a target gene, a second reporter gene and optionally, a 3' UTR of a target gene. In such a reporter construct, the transcription of both reporter genes is capable of being driven by the promoter. In this example construct, the present invention includes the translation of the mRNA from the first reporter gene by a cap-dependent scanning mechanism and the translation of the mRNA from the second reporter gene by a cap-independent mechanism, for example by an IRES. In such a case, the IRES-dependent translation of a mRNA of the second reporter gene can be normalized against the cap-dependent translation of the first reporter gene. In a particularly preferred embodiment of the present invention, a stable hairpin secondary structure is inserted immediately downstream of the stop codon of the first reporter gene to ensure that translation of the second reporter gene cannot occur via cap-dependent

Reporter genes can be expressed in vitro or in vivo. In vivo expression can be in a suitable bacterial or eukaryotic host. Suitable methods for expression are described by Sambrook et al., Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989); Haymes et al., Nucleic Acid Hybridization, A Practical Approach, IRL Press, Washington, DC (1985); or similar texts. Fusion protein or peptide molecules of the invention are preferably produced via recombinant approach. These proteins and peptide molecules can be derivatized to contain carbohydrate or other moieties (such as keyhole limpet hemocyanin, etc.).

Linked

As used herein, linked can mean physically linked, operably linked, flanked, or any of these in combination. In a preferred embodiment, the promoter is operably linked and physically linked to a nucleic acid sequence of the present invention.

As used herein, physically linked means that the physically linked nucleic acid sequences are located on the same nucleic acid molecule, for example a promoter can be physically linked to a reporter gene as part of a construct. If a physical linkage is proximal,

the linkage can be either direct or indirect. By way of example, a promoter that is proximally linked to a reporter gene as part of a construct can be directly linked to the reporter gene so that there is no gap between the promoter and the reporter gene. In such a case, the promoter is immediately followed by the reporter gene and there are no nucleic acid residues which do not belong to either the promoter or the reporter gene between the two elements of the construct. In an example of a promoter indirectly proximally linked to a reporter gene, nucleic acid residues which are not a part of the promoter or reporter gene exist between the promoter and reporter gene. The gap, where the nucleic acid sequence that is not derived from the promoter or reporter gene, may include for example, without limitation, a fragment, or a portion of a bovine growth hormone gene, in particular the UTR or a fragment thereof; thymidine kinase; lambda; SV40. A gap can be composed of more than approximately three stop codons. A gap can have less than five stop codons in different codon reading frames. Moreover, in one embodiment there can be multiple restriction sites, also referred to as a polylinker, between the promoter and reporter gene. In an alternative embodiment there are not multiple restriction sites, also referred to as a polylinker, between the promoter and reporter gene. In a preferred embodiment, the nucleic acid sequence in the gap is located on the nucleic acid sequence of the vector prior to cloning in the an agent of the present invention.

If the reporter gene is directly linked to a UTR of a target gene, at least one of the terminal nucleic acid residues of the reporter gene can be chemically bonded to a nucleic acid sequence from a UTR of a target gene. A UTR of a target gene (herein referred to as a "target UTR") can be the entire UTR or a fragment thereof. The reporter gene can be proximally linked indirectly to a UTR of a target gene if a terminal nucleic acid residue of the reporter gene is not chemically bonded to a nucleic acid residue from a UTR of a target gene. In a preferred embodiment, if the reporter gene is proximally linked indirectly to a UTR of a target gene, the last nucleic acid residue of the reporter gene can be about 3 residues away from a UTR of a target gene or greater than 5 but less than 20 residues away from a UTR of a target gene is directly linked to a UTR of a target gene, but that UTR of a target gene is directly followed by a UTR not in a target gene, the reporter gene is directly linked to the UTR of a target gene. In a most preferred embodiment, the reporter gene is directly linked to a UTR of a target gene as a mature mRNA, such as after a splicing event,

and can have been interrupted by a UTR not in a target gene at an earlier stage in the gene expression process.

A preferred embodiment of the present invention also provides for specific nucleic acid molecules containing a reporter gene flanked by one or more UTRs of a target gene. A UTR of a target gene refers to the nucleic acid sequence of any UTR in a target gene. In this preferred embodiment, the one or more UTRs of a target gene can be physically linked, operably linked, or operably and physically linked to the reporter gene. In a more preferred embodiment, a reporter gene is flanked by both a 5' and 3' UTR of a target gene so that compounds that effect an interaction between 5' and 3' UTRs can be identified. The effect can result in an increase or decrease in the free energy of such an interaction.

In a preferred embodiment, the reporter gene is flanked by both 5' and 3' UTRs of one or more target genes so that compounds that interfere with an interaction between the 5' and 3' UTRs can be identified. In a more preferred embodiment, the reporter gene is flanked by a 5' and 3' UTRs of one target gene, and the reporter gene is physically, operably, or physically and operably linked to the UTRs of one target gene. In a most preferred embodiment, a reporter gene is proximally linked, either directly or indirectly, to one or more UTRs of a target gene.

TITRS

Agents and constructs of the invention include nucleic acid molecules with an untranslated region (UTR). In a preferred aspect, a UTR refers to a UTR of an mRNA, i.e. the region of the mRNA that is not translated into protein. In a preferred embodiment, a UTR contains one or more regulatory elements that modulate untranslated region-dependent regulation of gene expression. In a particularly preferred embodiment, a UTR is a 5' UTR, i.e., upstream of the coding region, or a 3' UTR, i.e., downstream of the coding region. In a more preferred embodiment, a UTR contains one or more GEMs.

A UTR of the present invention can be operatively, physically, or operatively and physically linked to a target gene, target RNA, or reporter gene. In a preferred embodiment of the present invention, a UTR of the present invention is physically linked to a reporter gene. The physical, operable, or physical and operable linkage may be upstream, downstream, or internal to the reporter gene. As used herein, operably linked means that the operably linked nucleic acid sequences exhibit their deserved function. For example, a

promoter can be operably linked to a reporter gene.

In a preferred embodiment of the present invention, a UTR of the present invention is physically linked upstream of the reporter gene and another UTR is physically linked downstream of the reporter gene. In a particularly preferred embodiment, a 5' UTR of the present invention contains or consists of a GEM and is physically and operatively linked upstream of a reporter gene, and a 3' UTR is physically and operatively linked downstream of the reporter gene. In an alternatively preferred embodiment, a 3' UTR of the present invention contains or consists of a GEM and is physically and operatively linked downstream of a reporter gene, and a 5' UTR is physically and operatively linked upstream of the reporter gene. In an alternatively preferred embodiment, a 5' UTR of the present invention contains or consists of a GEM and is physically and operatively linked upstream of a reporter gene, and a 3' UTR of the present invention contains or consists of a GEM and is physically and operatively linked downstream of the reporter gene. One or more GEMs in a 5' UTR, in a 3' UTR, or both in the 5' and 3' UTRs can act independently or dependently of linked nucleic acid sequence.

In a preferred embodiment of the present invention, a UTR of the present invention is physically linked to reporter gene containing an intron. In a more preferred embodiment of the present invention, a UTR of the present invention containing a GEM is physically linked to a reporter gene containing an intron. In a preferred embodiment of the present invention, a 5' UTR of the present invention is physically linked upstream of a reporter gene and contains an intron internal to the UTR. In a preferred embodiment of the present invention, a UTR of the present invention is physically linked upstream of a reporter gene and a UTR is physically linked downstream of the reporter gene.

A gene can include regions preceding and following a nucleic acid sequence encoding a polypeptide as well as introns between the exons of the coding region. A typical mRNA contains a 5' cap, a 5' untranslated region ("5' UTR") upstream of a start codon, an open reading frame, which is also referred to as a coding sequence that encodes a stable RNA or a functional protein, a 3' untranslated region ("3' UTR") downstream of the termination codon, and a poly(A) tail. A nucleic acid of the present invention can include a UTR containing a GEM, a GEM, a fragment of either, or a complement of any of these. In a preferred

embodiment, a cis-dependent RNA-based GEM maps to the 5' UTR, the 3' UTR, or the 5' UTR and 3' UTR.

GEMs

As referred to herein, a GEM is a gene expression modulator that regulates expression of a target gene after transcription. In one aspect, a GEM is not a full-length sequence of a UTR from a target gene (hereafter referred to as "a target UTR"). In a preferred aspect, a GEM is not a full-length 5' UTR or a full-length 3' UTR. A GEM can include the nucleic acid sequence involved in modulation of expression as a result of interaction between UTRs, preferably the interaction between a 5' UTR and a 3' UTR from the same gene, a UTR pair. In one embodiment, a GEM in one target gene can have primary nucleic acid sequence similarity to a GEM in a different target gene. Alternatively, there may not be any primary nucleic acid sequence similarity in GEMs of similar function. In a preferred embodiment, a GEM in one target gene can have a secondary, tertiary, or secondary and tertiary structure similar to a GEM in a different target gene. Examples of GEMs include, but are not limited to IRES elements, upstream ORFs, and AREs.

In one embodiment, a GEM of the present invention is a nucleic acid sequence in a UTR, which modulates UTR-dependent gene expression after transcription of the gene. A GEM can be a nucleic acid sequence located anywhere in a target gene. Examples of 5' UTR regulatory elements, such as GEMs of the present invention, include the iron response element ("IRE"), internal ribosome entry site ("IRES"), upstream open reading frame ("uORF"), male specific lethal element ("MSL-2"), G-quartet element, and 5'-terminal oligopyrimidine tract ("TOP") (reviewed in Keene & Tenenbaum, 2002, Mol Cell 9:1161 and Translational Control of Gene Expression, Sonenberg, Hershey, and Mathews, eds., 2000, CSHL Press). Examples of 3' UTR regulatory elements, such as GEMs of the present invention, include AU-rich elements ("AREs"), Selenocysteine insertion sequence ("SECIS"), histone stem loop, cytoplasmic polyadenylation elements ("CPEs"), nanos translational control element, amyloid precursor protein element ("APP"), translational regulation element ("TGE"), direct repeat element ("DRE"), bruno element ("BRE"), 15lipoxygenase differentiation control element (15-LOX-DICE), and G-quartet element (reviewed in Keene & Tenenbaum, 2002, Mol Cell 9:1161). GEMs include nucleic acid sequences in a UTR that modulate other GEM sequences.

By way of example, a GEM in the 5' UTR of a target gene can modulate the GEM-dependent expression of a GEM in the same or another UTR, for example, a GEM in the 3' UTR of the same target gene. In a particularly preferred embodiment, a GEM can consist of the interaction between sequences of the 5' and 3' UTR of the same target gene where the GEM activity requires the presence of both the 5' and 3' UTR whose sequence elements cannot function independently). GEMs of the present invention can be located in any position within a construct and not limited to the 5' UTR or 3' UTR regions of a molecule. A GEM of the present invention can be operatively, physically, or operatively and physically linked to a UTR. In an alternative embodiment of the present invention, a GEM of the present invention is a UTR of the present invention.

In one embodiment of the present invention, a GEM is located between about 1 to about 100 residues upstream from the initiation codon of an open reading frame in a mRNA, between about 150 to about 250 residues upstream from the initiation codon, or between about 300 to about 500 residues upstream from the initiation codon. In a most preferred embodiment, a GEM is within about 30 residues upstream from the initiation codon. In addition to or independent of other GEMs in a nucleic acid molecule, a GEM of the present invention can be located between about 1 to about 100 residues downstream from the stop codon of an open reading frame in a mRNA, between about 150 to about 250 residues downstream from the stop codon. In a preferred embodiment, a GEM is within about 30 residues downstream from the stop codon.

Further examples of embodiments of the present invention include a GEM within about 1000 residues upstream from the 5' end of a main ORF, within about 500 residues upstream from the 5' end of a main ORF, or within about 200 residues upstream from the 5' end of a main ORF, or within about 100 residues upstream from the 5' end of a main ORF, or within about 100 residues upstream from the 5' end of a main ORF. A GEM of the present invention can also be located within about 1000 residues downstream from the 3' end of a main ORF, within about 500 residues downstream from the 3' end of a main ORF or within about 100 residues downstream from the 3' end of a main ORF. In a preferred embodiment, a GEM is about 5 residues down stream from the stop codon of a main ORF.

Constructs of the present invention can have more or fewer components than described above. For example, constructs of the present invention can include genetic elements, including but not limited to, 3' transcriptional terminators, 3' polyadenylation signals, other untranslated nucleic acid sequences, transit or targeting sequences, selectable or screenable markers, promoters, enhancers, and operators, as desired. Constructs of the present invention can also contain a promoterless gene that may utilize an endogenous promoter upon insertion into a host cell chromosome.

Alternatively, sequences encoding nucleic acid molecules of the present invention can be cloned into a vector for the production of an mRNA probe. Such vectors are known in the art, are commercially available, and can be used to synthesize RNA probes in vitro by addition of labeled nucleotides and an appropriate RNA polymerase such as T7, T3, or SP6. These procedures can be conducted using a variety of commercially available kits (for example, Amersham Biosciences Inc., Piscataway, NJ; and Promega Co, Madison, WI).

Modulation of Gene Expression by Nucleic Acid Molecules of the Present Invention

Modulation of gene expression can result in more or less gene expression. Many approaches for modulating gene expression using nucleic acid molecules of the present invention are known to one skilled in the art. For example, over-expression of a gene product can be the result from transfection of a construct of the present invention into a mammalian cell. Similarly, down-regulation can be the result from transfection of a construct of the present invention into a mammalian cell. Other non-limiting examples include anti-sense techniques like RNA interference (RNAi), transgenic animals, hybrids, and ribozymes. The following examples are provided by way of illustration, and are not intended to be limiting of the present invention.

Cellular Mechanisms

As used herein, the term "UTR-dependent expression" refers to the regulation of gene expression through a UTR at the level of mRNA expression, i.e., after transcription of the gene has begun until the protein or the RNA product(s) encoded by the gene has been degraded. In a preferred embodiment, the term "UTR-dependent expression" refers to the regulation of mRNA stability or translation. In a more preferred embodiment, the term "UTR-dependent expression" refers to the regulation of gene expression through regulatory

elements present in a UTR. Altering the sequence of a GEM within a UTR of target gene can change the amount of UTR-dependent expression observed for that target gene.

As used herein, a "UTR-affected mechanism" is a cellular mechanism that discriminates between UTRs based on their nucleic acid sequence or based on properties that are a function of their sequence such as the secondary, tertiary, or quaternary structure. In an embodiment of the present invention, a UTR-affected mechanism discriminates between UTRs based on a UTR sequence-dependent higher order complex assembly of trans-acting factors. Modulation of the UTR-dependent expression of a target gene can be due to a change in how a UTR-affected mechanism acts on the target gene. For example, a UTR in a target gene can contain an IRES, which affects target gene expression via a UTR-affected mechanism.

In a preferred embodiment, a UTR-affected mechanism can be a main ORF-independent mechanism. As used herein, a "main ORF-independent mechanism" refers to a cellular pathway or process, wherein at least one step relates to gene expression and is not dependent on the nucleic acid sequence of the main open reading frame. In a preferred embodiment, a UTR-affected mechanism is a main ORF-independent, UTR-affected mechanism.

In order to exclude the possibility that a particular compound is functioning solely by modulating the expression of a target gene in a UTR-independent manner, one or more mutations may be introduced into the UTRs operably linked to a reporter gene and the effect on the expression of the reporter gene in a reporter gene-based assay described herein can be determined. For example, a reporter gene construct comprising the 5' UTR of a target gene may be mutated by deleting a fragment of the 5' UTR of the target gene or substituting a fragment of the 5' UTR of the target gene with a fragment of the 5' UTR of another gene and measuring the expression of the reporter gene in the presence and absence of a compound that has been identified in screening assays of the present invention or of an assay well known to the skilled artisan. If the deletion of a fragment of the 5' UTR of the target gene or the substitution of a fragment of the 5' UTR of the target gene with a fragment of the 5' UTR of another gene affects the ability of the compound to modulate the expression of the reporter gene, then the fragment of the 5' UTR deleted or substituted plays a role in the ability of the compound to regulate reporter gene expression and the regulation, at least in part, is UTR-

dependent.

Alternatively or in conjunction with the tests described above, the possibility that a particular compound is functioning solely by modulating the expression of a target gene in an UTR-independent manner can be determined by changing the vector utilized as a reporter construct. The UTRs flanked by a reporter gene from the first reporter construct in which an effect on reporter gene expression was detected following exposure to a compound may be inserted into a new reporter construct that has, e.g., different transcriptional regulation elements (e.g., a different promoter) and a different selectable marker. The level of reporter gene expression in the presence of the compound can be compared to the level of reporter gene expression in the absence of the compound or in the presence of a control (e.g., PBS). If there is no change in the level of expression of the reporter gene in the presence of the compound relative to the absence of the compound or in the presence of a control, then the compound probably is functioning in an UTR-independent manner.

By way of further example, additional tests can be used to evaluate that a particular compound functions by modulating the expression of a target gene in an UTR-independent manner. This can be done, for example, by measuring the effect of the compound when the reporter gene is operably linked to UTRs from another target gene. The potency with which the compound effects the level of reporter gene expression operably linked to the original UTRs can be compared to the potency with which the compound effects the level of reporter gene expression operably linked to the control UTRs. If the compound is active only when the original UTRs are operably linked to the reporter gene and shows a significant decrease in activity when the control UTRs are operably linked to the reporter gene, then the compound is a candidate compound that functions in a UTR-independent manner.

Compounds, identified in assays of the present invention, that are capable of modulating UTR-dependent expression of a target gene (for convenience referred to herein as a "lead" compound) can be further tested for UTR-dependent binding to the target RNA (which contains at least one UTR, and preferably at least one element of an UTR, for example a GEM). Furthermore, by assessing the effect of a compound on target gene expression, cis-acting elements, i.e., specific nucleotide sequences, that are involved in UTR-dependent expression may be identified. RNA binding assays, subtraction assays, and

expressed protein concentration and activity assays are examples methods to determine UTRdependent expression of a gene.

Hybrids

In one aspect of the present invention, a hybrid of a compound and a GEM of the present invention is a hybrid formed between two non-identical molecules. In a preferred aspect, a hybrid can be formed between two nucleic acid molecules. For example, a hybrid can be formed between two ribonucleic acid molecules, between a ribonucleic acid molecule and a deoxyribonucleic acid molecule, or between derivatives of either. In alternative embodiment, a hybrid can be formed between a nucleic acid of the present invention and a non-nucleic acid molecule. In a preferred embodiment, a hybrid can be formed between a nucleic acid molecule and a non-nucleic acid molecule, for example, a polypeptide or a non-peptide therapeutic agent.

Ribozvmes

In one aspect of the present invention, the activity or expression of a gene is regulated by designing trans-cleaving catalytic RNAs (ribozymes) specifically directed to a nucleic acid molecule of the present invention. In an alternate aspect, the activity or expression of a gene is regulated by designing trans-cleaving catalytic RNAs (ribozymes) specifically directed to a nucleic acid molecule of the present invention.

Ribozymes are RNA molecules possessing endoribonuclease activity. Ribozymes are specifically designed for a particular target, and the target message contains a specific nucleotide sequence. They are engineered to cleave any RNA species site-specifically in the background of cellular RNA. The cleavage event renders the mRNA unstable and prevents protein expression. Importantly, ribozymes can be used to inhibit expression of a gene of unknown function for the purpose of determining its function in an *in vitro* or *in vivo* context, by detecting a phenotypic effect.

One commonly used ribozyme motif is the hammerhead, for which the substrate sequence requirements are minimal. Design of the hammerhead ribozyme, and the therapeutic uses of ribozymes, are disclosed in Usman et al., Current Opin. Strict. Biol. 6:527-533 (1996). Ribozymes can also be prepared and used as described in Long et al., FASEB J. 7:25 (1993); Symons, Ann. Rev. Biochem. 61:641 (1992); Perrotta et al., Biochem.

31:16-17 (1992); Ojwang et al., PNAS 89:10802-10806 (1992); and U.S. Patent No. 5.254.678.

Ribozyme cleavage of HIV-I RNA, methods of cleaving RNA using ribozymes, methods for increasing the specificity of ribozymes, and the preparation and use of ribozyme fragments in a hammerhead structure are described in U.S. Patent Nos. 5,144,019; 5,116,742; and 5,225,337 and Koizumi et al., Nucleic Acid Res. 17:7059-7071 (1989). Preparation and use of ribozyme fragments in a hairpin structure are described by Chowrira and Burke, Nucleic Acids Res. 20:2835 (1992). Ribozymes can also be made by rolling transcription as described in Daubendiek and Kool, Nat. Biotechnol. 15(3):273-277 (1997).

The hybridizing region of the ribozyme may be modified or may be prepared as a branched structure as described in Horn and Urdea, Nucleic Acids Res. 17:6959-67 (1989). The basic structure of the ribozymes may also be chemically altered in ways familiar to those skilled in the art, and chemically synthesized ribozymes can be administered as synthetic oligonucleotide derivatives modified by monomeric units. In a therapeutic context, liposome mediated delivery of ribozymes improves cellular uptake, as described in Birikh et al., Eur. J. Biochem. 245:1-16 (1997).

Ribozymes of the present invention also include RNA endoribonucleases (hereinafter "Cech-type ribozymes") such as the one which occurs naturally in *Tetrahymena thermophila* (known as the IVS, or L-19 IVS RNA) and which has been extensively described by Thomas Cech and collaborators (Zaug et al., Science 224:574-578 (1984); Zaug and Cech, Science 231:470-475 (1986); Zaug et al., Nature, 324:429-433 (1986); W0 88/04300; Been and Cech, Cell 47:207-216 (1986)). The Cech-type ribozymes have an eight base pair active site which hybridizes to a target RNA sequence whereafter cleavage of the target RNA takes place. The invention encompasses those Cech-type ribozymes which target eight base-pair active site sequences that are present in a target gene.

Ribozymes can be composed of modified oligonucleotides (e.g., for improved stability, targeting, etc.) and should be delivered to cells which express the target gene in vivo. A preferred method of delivery involves using a DNA construct "encoding" the ribozyme under the control of a strong constitutive pol III or pol II promoter, so that transfected cells will produce sufficient quantities of the ribozyme to destroy endogenous

messages and inhibit translation. Because ribozymes, unlike antisense molecules, are catalytic, a lower intracellular concentration is required for efficiency.

Using the nucleic acid sequences of the invention and methods known in the art, ribozymes are designed to specifically bind and cut the corresponding mRNA species. Ribozymes thus provide a method to inhibit the expression of any of the proteins encoded by the disclosed nucleic acids or their full-length genes. The nucleid acid sequence of the full-length gene need not be known in order to design and use specific inhibitory ribozymes. In the case of a nucleic acid or cDNA of unknown function, ribozymes corresponding to the specific nucleotide sequence can be tested in vitro for efficacy in cleaving the target transcript. Those ribozymes that effect cleavage in vitro are further tested in vivo. The ribozyme can also be used to generate an animal model for a disease, as described in Birikh et al., Eur. J. Biochem. 245:1-16 (1997). An effective ribozyme is used to determine the function of the gene of interest by blocking its expression and detecting a phenotypic change in the cell. Where the gene is found to be a mediator in a disease, an effective ribozyme is designed and delivered in a gene therapy for blocking expression of the gene.

Therapeutic and functional genomic applications of ribozymes begin with knowledge of a portion of the coding sequence of the gene to be inhibited. Thus, for many genes, a partial nucleic acid sequence provides adequate sequence for constructing an effective ribozyme. A target cleavage site is selected in the target sequence, and a ribozyme is constructed based on the 5' and 3' nucleotide sequences that flank the cleavage site. Retroviral vectors are engineered to express monomeric and multimeric hammerhead ribozymes targeting the mRNA of the target coding sequence. These monomeric and multimeric ribozymes are tested in vitro for an ability to cleave the target mRNA. A cell line is stably transduced with the retroviral vectors expressing the ribozymes, and the transduction is confirmed by Northern blot analysis and reverse-transcription polymerase chain reaction (RT-PCR). The cells are screened for inactivation of the target mRNA by such indicators as reduction of expression of disease markers or reduction of the gene product of the target mRNA.

Cells and Organisms

Nucleic acid molecules that may be used in cell transformation or transfection can be any of the nucleic acid molecules of the present invention. Nucleic acid molecules of the

present invention can be introduced into a cell or organism. A heterologous nucleic acid molecule can be an RNA molecule produced in a different cell or produced by *in vitro* transcription (Ambion, Inc., Austin, TX) and transfected directly into a cell of interest.

A host cell strain can be chosen for its ability to modulate the expression of the inserted sequences, to process an expressed reporter gene in the desired fashion, or based on the expression levels of endogenous or heterologous target genes. Mammalian cell lines available as hosts for expression are known in the art and include many immortalized cell lines available from the American Type Culture Collection (ATCC, Manassas, VA), such as HeLa cells, Chinese hamster ovary (CHO) cells, baby hamster kidney (BHK) cells and a number of other cell lines. Non-limiting examples of suitable mammalian host cell lines include those shown below in Table 1.

Table 1: Mammalian Host Cell Lines

Host Cell	Origin Source	
HepG-2	Human Liver Hepatoblastoma	ATCC HB 8065
CV-1	African Green Monkey Kidney	ATCC CCL 70
LLC-MK ₂	Rhesus Monkey Kidney	ATCC CCL 7
3T3	Mouse Embryo Fibroblasts	ATCC CCL 92
AV12-664	Syrian Hamster	ATCC CRL 9595
HeLa	Human Cervix Epitheloid	ATCC CCL 2
RPMI8226	Human Myeloma	ATCC CCL 155
H4IIEC3	Rat Hepatoma	ATCC CCL 1600
C127I	Mouse Fibroblast	ATCC CCL 1616
293	Human Embryonal Kidney	ATCC CRL 1573
HS-Sultan	Human Plasma Cell Plasmocytoma	ATCC CCL 1484
BHK-21	Baby Hamster Kidney	ATCC CCL 10
CHO-K1	Chinese Hamster Ovary	ATCC CCL 61

In a preferred aspect, cells of the present invention can be cells of an organism. In a more preferred aspect, the organism is a mammal. In a most preferred aspect, the mammal is a human. In another more preferred aspect, the organism is a non-human mammal,

preferably a mouse, rat, or a chimpanzee. In one aspect of the present invention, cells can be pluripotent or differentiated.

A nucleic acid of the present invention can be naturally occurring in the cell or can be introduced using techniques such as those described in the art. There are many methods for introducing transforming DNA segments into cells, but not all are suitable for delivering DNA to eukaryotic cells. Suitable methods include any method by which DNA can be introduced into a cell, such as by direct delivery of DNA, by desiccation/inhibition-mediated DNA uptake, by electroporation, by agitation with silicon carbide fibers, by acceleration of DNA coated particles, by chemical transfection, by lipofection or liposome-mediated transfection, by calcium chloride-mediated DNA uptake, etc. For example, without limitation, Lipofectamine® (Invitrogen Co., Carlsbad, CA) and Fugene® (Hoffmann-La Roche Inc., Nutley, NI) can be used for transfection of nucleic acid molecules, such as constructs and small interfering RNAs (siRNA), into several mammalian cells. Alternatively, in certain embodiments, acceleration methods are preferred and include, for example, microprojectile bombardment and the like. Within the scope of this invention, the transfected nucleic acids of the present invention may be expressed transciently or stably. Such transfected cells can be in a two- or three-dimensional cell culture system or in an organism.

For example, without limitation, the construct may be an autonomously replicating construct, i.e., a construct that exists as an extrachromosomal entity, the replication of which is independent of chromosomal replication, e.g., a plasmid, an extrachromosomal element, a minichromosome, or an artificial chromosome. The construct may contain any approach for assuring self-replication. For autonomous replication, the construct may further comprise an origin of replication enabling the construct to replicate autonomously in the host cell. Alternatively, the construct may be one which, when introduced into the cell, is integrated into the genome and replicated together with the chromosome(s) into which it has been integrated. This integration may be the result of homologous or non-homologous recombination.

Integration of a construct or nucleic acid into the genome by homologous recombination, regardless of the host being considered, relies on the nucleic acid sequence of the construct. Typically, the construct contains nucleic acid sequences for directing integration by homologous recombination into the genome of the host. These nucleic acid

sequences enable the construct to be integrated into the host cell genome at a precise location or locations in one or more chromosomes. To increase the likelihood of integration at a precise location, there should be preferably two nucleic acid sequences that individually contain a sufficient number of nucleic acids, preferably 400 residues to 1500 residues, more preferably 800 residues to 1000 residues, which are highly homologous with the corresponding host cell target sequence. This enhances the probability of homologous recombination. These nucleic acid sequences may be any sequence that is homologous with a host cell target sequence and, furthermore, may or may not encode proteins.

Stable expression is preferred for long-term, high-yield production of recombinant proteins. For example, to generate cell lines that stably express a reporter gene, cell lines can be transformed using expression constructs that can contain viral origins of replication and/or endogenous expression elements and a selectable marker gene on the same or on a separate construct. Following the introduction of the construct, cells can be allowed to grow for 1-2 days in an enriched medium before they are switched to a selective medium. The purpose of the selectable marker is to confer resistance to selection, and its presence allows growth and recovery of cells that successfully express the introduced construct. Resistant clones of stably transformed cells can be proliferated using tissue culture techniques appropriate to the cell type. See, for example, Animal Cell Culture, R.I. Freshney, ed., 1986.

Any number of selection systems can be used to recover transformed cell lines. These include, but are not limited to, the herpes simplex virus thymidine kinase (Wigler et al., Cell 1:223-32 (1977)) and adenine phosphoribosyltransferase (Lowy et al., Cell 2:817-23 (1980)) genes which can be employed in tk or aprt cells, respectively. Also, antimetabolite, antibiotic, or herbicide resistance can be used as the basis for selection. For example, dhfr confers resistance to methotrexate (Wigler et al., Proc. Natl. Acad. Sci.77:3567-70 (1980)), npt confers resistance to the aminoglycosides, neomycin and G-418 (Colbere-Garapin et al., J. Mol. Biol. 150: 1-14 (1981), and als and pat confer resistance to chlorsulfuron and phosphinotricin acetyltransferase, respectively. Additional selectable genes have been described. For example, trpB allows cells to utilize indole in place of tryptophan, and hisD allows cells to utilize histinol in place of histidine (Hartman & Mulligan, Proc. Natl. Acad. Sci. 85:8047-51 (1988)). Visible markers such as anthocyanins, β-glucuronidase and its

substrate GUS, and luciferase and its substrate luciferin, can be used to identify transformants and to quantify the amount of transient or stable protein expression attributable to a specific construct system (Rhodes et al., Methods Mol. Biol. 55:121-131 (1995)).

Although the presence of marker gene expression suggests that a reporter gene is also present, its presence and expression may need to be confirmed. For example, if a sequence encoding a reporter gene is inserted within a marker gene sequence, transformed cells containing sequences that encode a reporter gene can be identified by the absence of marker gene function. Alternatively, a marker gene can be placed in tandem with a sequence encoding a reporter gene under the control of a single promoter. Expression of the marker gene in response to induction or selection usually indicates expression of a reporter gene.

Alternatively, host cells which contain and express a reporter gene and can be identified by a variety of procedures known to those of skill in the art. These procedures include, but are not limited to, DNA-DNA or DNA-RNA hybridizations and protein bioassay or immunoassay techniques that include membrane, solution, or chip-based technologies for the detection and/or quantification of nucleic acid or protein. For example, the presence of a reporter gene can be detected by DNA-DNA or DNA-RNA hybridization or amplification using probes or fragments or fragments of polynucleotides encoding a reporter gene. Nucleic acid amplification-based assays involve the use of oligonucleotides selected from sequences encoding a reporter gene to detect transformants that contain a reporter gene.

Screening Methods of the Present Invention

Another aspect of the present invention includes screening methods to identify agents and compounds that modulate gene expression and can result in more or less gene expression. Many methods for screening agents and compounds that modulating gene expression are known to one skilled in the art. For example, over-expression of a gene product can be the result from transfection of a construct of the present invention into a mammalian cell. Similarly, down-regulation can be the result from transfection of a construct of the present invention into a mammalian cell. Other non-limiting examples include anti-sense techniques like RNA interference (RNAi), transgenic animals, hybrids, and ribozymes. The following examples are provided by way of illustration, and are not intended to be limiting of the present invention.

Compound

The present invention includes methods for screening compounds capable of modulating gene expression.

Any compound can be screened in an assay of the present invention. In an embodiment, a compound includes a nucleic acid or a non-nucleic acid, such as a polypeptide or a non-peptide therapeutic agent. In a preferred embodiment, a nucleic acid can be a polynucleotide, a polynucleotide analog, a nucleotide, or a nucleotide analog. In a more preferred embodiment, a compound can be an antisense oligonucleotide, which are nucleotide sequences complementary to a specific DNA or RNA sequence of the present invention. Preferably, an antisense oligonucleotide is at least 11 nucleotides in length, but can be at least 12, 15, 20, 25, 30, 35, 40, 45, or 50 or more nucleotides long. Longer sequences also can be used. Antisense oligonucleotides can be deoxyribonucleotides, ribonucleotides, or a combination of both.

Nucleic acid molecules, including antisense oligonucleotide molecules, can be provided in a DNA construct and introduced into a cell. Nucleic acid molecules can be antisense or sense and double- or single-stranded. In a preferred embodiment, nucleic acid molecules can be interfering RNA (RNAi) or microRNA (miRNA). In a preferred embodiment, the dsRNA is 20-25 residues in length, termed small interfering RNAs (siRNA).

Oligonucleotides can be synthesized manually or by an automated synthesizer, by covalently linking the 5' end of one nucleotide with the 3' end of another nucleotide with non-phosphodiester internucleotide linkages such alkylphosphonates, phosphorothioates, phosphorodithioates, alkylphosphonothioates, alkylphosphonates, phosphoramidates, phosphate esters, carbamates, acetamidate, carboxymethyl esters, carbonates, and phosphate triesters. See Brown, 1994 Meth. Mol. Biol. vol. 20:1-8; Sonveaux, 1994. Meth. Mol. Biol. Vol. 26:1-72; and Uhlmann et al., 1990. Chem. Rev. vol. 90:543-583. Salts, esters, and other pharmaceutically acceptable forms of such compounds are also encompassed.

In a preferred embodiment, a compound can be a peptide, polypeptide, polypeptide analog, amino acid, or amino acid analog. Such a compound can be synthesized manually or by an automated synthesizer. Any peptide, polypeptide, polypeptide analog, amino acid, or amino acid analog can be involved in UTR-dependent modulation of gene expression

mediated by a GEM. Compounds detected by an assay of the present invention can modulate interactions of a GEM including of a UTR-complex containing a protein or a ribonucleoprotein. Such a compound can increase or decrease the interaction of a GEM and protein or protein complex.

A compound can be a member of a library of compounds. In a specific embodiment, the compound is selected from a combinatorial library of compounds comprising peptoids; random biooligomers; diversomers such as hydantoins, benzodiazepines and dipeptides; vinylogous polypeptides; nonpeptidal peptidomimetics; oligocarbamates; peptidyl phosphonates; peptide nucleic acid libraries; antibody libraries; carbohydrate libraries; and small organic molecule libraries. In a preferred embodiment, the small organic molecule libraries are libraries of benzodiazepines, isoprenoids, thiazolidinones, metathiazanones, pyrrolidines, morpholino compounds, or diazepindiones.

In another embodiment, a compound can have a molecular weight less than about 10,000 grams per mole, less than about 5,000 grams per mole, less than about 1,000 grams per mole, less than about 500 grams per mole, less than about 100 grams per mole, and salts, esters, and other pharmaceutically acceptable forms of such compounds.

Compounds can be evaluated comprehensively for cytotoxicity. The cytotoxic effects of the compounds can be studied using cell lines, including for example 293T (kidney), HuH7 (liver), and Hela cells over about 4, 10, 16, 24, 36 or 72-hour periods. In addition, a number of primary cells such as normal fibroblasts and peripheral blood mononuclear cells (PBMCs) can be grown in the presence of compounds at various concentrations for about 4 days. Fresh compound can be added every other day to maintain a constant level of exposure with time. The effect of each compound on cell-proliferation can be determined by CellTiter 96® AQueous One Solution Cell Proliferation Assay (Promega Co, Madison, WI) and [³H]-thymidine incorporation. Treatment of some cells with some of the compounds may have cytostatic effects. A selective index (ratios of CC₃₀ in cytotoxicity assays to the EC₃₀ in ELISA or FACS or the reporter gene assays) for each compound can be calculated for all of the UTR-reporters and protein inhibition assays. Compounds exhibiting substantial selective indices can be of interest and can be analyzed further in the functional assays.

The structure of a compound can be determined by any well-known method such as mass spectroscopy, NMR, vibrational spectroscopy, or X-ray crystallography as part of a

method of the present invention.

Compounds can be pharmacologic agents already known in the art or can be compounds previously unknown to have any pharmacological activity. The compounds can be naturally occurring or designed in the laboratory. They can be isolated from microorganisms, animals, or plants, and can be produced recombinantly, or synthesized by chemical methods known in the art. If desired, compounds can be obtained using any of the numerous combinatorial library methods known in the art, including but not limited to, biological libraries, spatially addressable parallel solid phase or solution phase libraries, synthetic library methods requiring deconvolution, the "one-bead one-compound" library method, and synthetic library methods using affinity chromatography selection. Methods for the synthesis of molecular libraries are well known in the art (see, for example, DeWitt et al., Proc. Natl. Acad. Sci. U.S.A. 90, 6909, 1993; Erb et al. Proc. Natl. Acad. Sci. U.S.A. 91, 11422, 1994; Zuckermann et al., J. Med. Chem. 37, 2678, 1994; Cho et al., Science 261, 1303, 1993; Carell et al., Angew. Chem. Int. Ed. Engl. 33, 2059, 1994; Carell et al., Angew. Chem. Int. Ed. Engl. 33, 2061; Gallop et al., J. Med. Chem. 37, 1233, 1994). Libraries of compounds can be presented in solution (see, e.g., Houghten, BioTechniques 13, 412-421, 1992), or on beads (Lam, Nature 354, 82-84, 1991), chips (Fodor, Nature 364, 555-556, 1993), bacteria or spores (Ladner, U.S. Pat. No. 5,223,409), plasmids (Cull et al., Proc. Natl. Acad. Sci. U.S.A. 89, 1865-1869, 1992), or phage (Scott & Smith, Science 249, 386-390, 1990; Devlin, Science 249, 404-406, 1990); Cwirla et al., Proc. Natl. Acad. Sci. 97, 6378-6382, 1990; Felici, J. Mol. Biol. 222, 301-310, 1991; and Ladner, U.S. Pat. No. 5,223,409).

Methods of the present invention for screening compounds can select for compounds capable of modulating gene expression, which are capable of directly binding to a ribonucleic acid molecule transcribed from a target gene. In a preferred embodiment, a compound identified in accordance with the methods of the present invention may be capable of binding to one or more trans-acting factors (such as, but not limited to, proteins) that modulate UTR-dependent expression of a target gene. In another preferred embodiment, a compound identified in accordance with the methods of invention may disrupt an interaction between the 5' UTR and the 3' UTR.

Compounds can be tested using in vitro assays (e.g., cell-free assays) or in vivo assays (e.g., cell-based assays) well known to one of skill in the art or as provided in the present

invention. A compound that modulates expression of a target gene can be determined from the methods provided in the present invention. A UTR of the present invention includes UTRs capable of modulating gene expression in the presence, in the absence, or in the presence and absence of a compound. In a preferred embodiment, the effect of a compound on the expression of one or more genes can be determined utilizing assays well known to one of skill in the art or provided by the present invention to assess the specificity of a particular compound's effect on the UTR-dependent expression of a target gene. In a more preferred embodiment, a compound has specificity for a plurality of genes. In another more preferred embodiment, a compound identified utilizing the methods of the present invention is capable of specifically effect the expression of only one gene or, alternatively, a group of genes within the same signaling pathway. Compounds identified in the assays of the present invention can be tested for biological activity using host cells containing or engineered to contain the target RNA element involved in UTR-dependent gene expression coupled to a functional readout system.

Screening assays

The present invention includes and provides for assays capable of screening for compounds capable of modulating gene expression. In a preferred aspect of the present invention, an assay is an *in vitro* assay. In another aspect of the present invention, an assay is an *in vivo* assay. In another preferred aspect of the present invention, an assay measures translation. In a preferred aspect of the present invention, the assay includes a nucleic acid molecule of the present invention or a construct of the present invention. A nucleic acid molecule or construct of the present invention includes, without limitation, a GEM, or a sequence that differs from any of the residues in a GEM in that the nucleic acid sequence has been deleted, substituted, or added in a manner that does not alter the function. The present invention also provides fragments and complements of all the nucleic acid molecules of the present invention.

In one aspect of a preferred, present invention, the activity or expression of a reporter gene is modulated. Modulated means increased or decreased expression during any point before, after, or during translation. In a preferred embodiment, activity or expression of a reporter gene is modulated during translation. For example, inhibition of translation of the reporter gene can modulate expression. In an alternative example, the expression level of a

reporter gene is modulated if the steady-state level of the expressed protein decreased even though translation was not inhibited. As a further example, a change in the half-life of a mRNA can modulate expression.

In an alternative embodiment, modulated activity or expression of a reporter gene means increased or decreased expression during any point before, during, or after translation.

In a more preferred aspect, the activity or expression of a reporter gene or a target gene is modulated by greater than 30%, 40%, 50%, 60%, 70%, 80% or 90% in the presence of a compound. In a highly preferred aspect, more of an effect is observed in cancer cells.

Expression of a reporter gene can be detected with, for example, techniques known in the art. Translation of a reporter gene can be detected in vitro or in vivo. In detection assays, either the compound or the reporter gene can comprise a detectable label, such as a fluorescent, radioisotopic or chemiluminescent label or an enzymatic label, such as horseradish peroxidase, alkaline phosphatase, or luciferase.

Using an assay of the present invention, a compound that affects a UTR or multiple UTRs from one target gene can be determined. In a preferred embodiment, a compound that affects the 5' UTR, 3' UTR, or the 5' and 3' UTRs from a single target gene can be detected. In another preferred embodiment, the 5' and 3' UTRs from multiple target genes are each reacted with multiple compounds, and an effect of a compound on a UTR can be detected.

In an assay of the present invention, the result of one or more UTRs being affected by a compound is qualitatively, quantitatively, or qualitatively and quantitatively determined based on the modulation of expression from a reporter gene operatively linked to the UTRs. The modulation of expression from a reporter gene operatively linked to the UTR can be relative to the expression from a reporter gene operatively linked to the UTR in the absence of the compound, in comparison to a different dosage of the same compound, in comparison to another compound, in comparison to the reaction of another UTR/compound effect, or by combining the results of these comparisons.

A compound can be reacted with one or multiple UTRs operatively linked to a reporter gene. If the compound modulates the expression of a reporter gene operatively linked to a UTR, the compound can be determined to be specifically active, nonspecifically active, or inactive with respect to the one or more UTRs being tested. The compound is specifically active if it modulates the expression of a reporter gene operatively linked to some

UTRs, but not all UTRs, being tested. The compound is nonspecifically active if it similarly modulates the expression of a reporter gene operatively linked to all of the UTRs being tested. Whether the compound similarly modulates the expression of a reporter gene operatively linked to more than one UTR can be determined statistically. Similar modulation occurs when the effect of the compound modulates the reporter gene expression within an order of magnitude for the UTRs tested. The compound is inactive if it does not modulate the expression from a reporter gene operatively linked to any of the UTRs tested.

One or more UTRs can be tested with one or more compounds. In a preferred embodiment, there can be any number of UTRs tested, for example without limitation, one, ten, hundreds, thousands, tens of thousands, or hundreds of thousands of UTRs or UTR pairs, where UTR pairs refers to a 5' UTR and a 3' UTR from the same target gene. In a preferred embodiment, a single pair of UTRs is reacted with about 2,000 – about 5,000 compounds. In a more preferred embodiment, each UTR reacts with each compound at about 3 – about 7 concentrations, for example, without limitation, using a 4-point 10-fold dose-response.

Compounds of the present invention can be categorized based on their effect on UTRs from target genes. In a preferred embodiment, compounds can be categorized based on their ability to modulate the expression from a reporter gene operatively linked to a UTR.

Categories of compounds can include, for example without limitation, compounds that modulate greater than or equal to 50% of the UTRs tested, compounds that modulate at least one UTR from a target gene at any concentration, compounds that modulate greater than or equal to 25% of the UTRs tested, compounds that modulate at least one UTR from a target gene at any concentration, compounds that modulate greater than or equal to 25% of the UTRs tested, compounds where the difference in modulation of at least one target UTR is greater than or equal to 25% of any other target UTR at any concentration tested, compounds where the difference in modulation of at least one target UTR is greater than or equal to 25% of any other UTR target for at least one concentration tested, and compounds with oddly-shaped dose-response curves for at least one target UTR tested. Compounds of the present invention can alternatively be classified based on the concentration where the compound is capable of modulating the expression from a reporter gene operatively linked to at least one target UTR.

In a preferred embodiment, most compounds lack UTR selectivity and similarly modulate the expression from a reporter gene operatively linked to at least one target UTR.

In a more preferred embodiment, most compounds lack UTR selectivity and similarly modulate the expression from a reporter gene operatively linked to at least one target UTR from at least four different target genes. In a most preferred embodiment, about 10 - about 50 compounds out of about 5,000 randomly chosen compounds will have pairwise IC50 ratios of 4-fold or more across at least four different target genes.

In a most preferred aspect, the activity or expression of a reporter gene is modulated without altering the activity of a control gene for general, indiscriminate translation activity. As used herein, indiscriminate translation activity refers to modulation in translation levels or activity that is random or unsystematic. One assay for modulation in general, indiscriminate translation activity uses a general translational inhibitor, for example puromycin, which is an inhibitor that causes release of nascent peptide and mRNA from actively translating ribosomes.

High-throughput screening can be done by exposing nucleic acid molecules of the present invention to a library of compounds and detecting gene expression with assays known in the art, including, for example without limitation, those described above. In one embodiment of the present invention, cancer cells, such as MCF-7 cells, expressing a nucleic acid molecule of the present invention are treated with a library of compounds. Percent inhibition of reporter gene activity can be obtained for all of the library compounds and can be analyzed using, for example without limitation, a scattergram generated by SpotFire® (SpotFire, Inc., Somerville, MA). The high-throughput screen can be followed by subsequent selectivity screens. In a preferred embodiment, a subsequent selectivity screen can include detection of reporter gene expression in cells expressing, for example, a reporter gene linked to a GEM or flanked by a 5' and 3' UTR of the same gene, either of which can contain a GEM of the present invention. In an alternative preferred embodiment, a subsequent selectivity screen can include detection of reporter gene expression in cells in the presence of a various concentrations of compounds.

Once a compound has been identified to modulate UTR-dependent expression of a target gene and preferably, the structure of the compound has been identified by the methods described in the present invention and well known in the art, the compounds are tested for biological activity in further assays and/or animal models. Further, a lead compound may be used to design congeners or analogs.

A wide variety of labels and conjugation techniques are known by those skilled in the art and can be used in various nucleic acid and amino acid assays. Methods for producing labeled hybridization or PCR probes for detecting sequences related to GEMs of the present invention include oligolabeling, nick translation, end-labeling, or PCR amplification using a labeled nucleotide. Suitable reporter molecules or labels which can be used for ease of detection include radionuclides, enzymes, and fluorescent, chemiluminescent, or chromogenic agents, as well as substrates, cofactors, inhibitors, magnetic particles, and the like.

In vitro

The present invention includes and provides for assays capable of screening for compounds capable of modulating gene expression. In a preferred aspect of the present invention, an assay is an *in vitro* assay. In a preferred aspect of the present invention, an *in vitro* assay that measures translation. In a preferred aspect of the present invention the *in vitro* assay includes a nucleic acid molecule of the present invention or a construct of the present invention.

In one embodiment, a reporter gene of the present invention can encode a fusion protein or a fusion protein comprising a domain that allows the expressed reporter gene to be bound to a solid support. For example, glutathione-S-transferase fusion proteins can be adsorbed onto glutathione sepharose beads (Sigma Chemical, St. Louis, MO) or glutathione derivatized microtiter plates, which are then combined with the compound or the compound and the non-adsorbed expressed reporter gene; the mixture is then incubated under conditions conducive to complex formation (e.g., at physiological conditions for salt and pH). Following incubation, the beads or microtiter plate wells are washed to remove any unbound components. Binding of the interactants can be determined either directly or indirectly, as described above. Alternatively, the complexes can be dissociated from the solid support before binding is determined.

Other techniques for immobilizing an expressed reporter gene or compound on a solid support also can be used in the screening assays of the invention. For example, either an expressed reporter gene or compound can be immobilized utilizing conjugation of biotin and streptavidin. Biotinylated expressed reporter genes or compounds can be prepared from biotin-NHS(N-hydroxysuccinimide) using techniques well known in the art (e.g.,

biotinylation kit, Pierce Chemicals, Rockford, IL) and immobilized in the wells of streptavidin-coated 96 well plates (Pierce Chemicals, Rockford, IL). Alternatively, antibodies which specifically bind to an expressed reporter gene or compound, but which do not interfere with a desired binding or catalytic site, can be derivatized to the wells of the plate. Unbound target or protein can be trapped in the wells by antibody conjugation.

Methods for detecting such complexes, in addition to those described above for the GST-immobilized complexes, include immunodetection of complexes using antibodies which specifically bind to an expressed reporter gene or compound, enzyme-linked assays which rely on detecting an activity of an expressed reporter gene, electrophoretic mobility shift assays (EMSA), and SDS gel electrophoresis under reducing or non-reducing conditions.

In one embodiment, translation of a reporter gene *in vitro* can be detected following the use of a reticulocyte lysate translation system, for example the TNI[®] Coupled Reticulocyte Lysate System (Promega Co., Madison, WI). In this aspect, for example, without limitation, RNA (100 ng) can be translated at 30° C in reaction mixtures containing 70% reticulocyte lysate, 20 μM amino acids and RNase inhibitor (0.8 units/μl). After 45 minutes of incubation, 20 μl of Luclite can be added and luminescence can be read on the View-Lux. Different concentrations of compounds can be added to the reaction in a final DMSO concentration of 2% and the EC₃₀ values calculated. Puromycin can be used as control for general indiscriminate translation inhibition. *In vitro* transcripts encoding a reporter gene linked to specific UTRs from target genes, including GAPDH, XIAP, TNF-α, and HIF-1α, can also be used.

To study the influence of cell-type specific factors, capped RNA can be translated in translation extracts prepared from specialized cells or cancer cell lines, for example without limitation, HT1080 cells (a human fibrosarcoma cell line). Briefly, the cells can be washed with PBS and swollen in hypotonic buffer (10 mM Hepes, pH 7.4, 15 mM KCl, 1.5 mM Mg(OAc)₂, 2 mM DTT and 0.5 mM Pefabloc (Pentapharm Ltd. Co., Switzerland) for 5 minutes on ice. The cells can be lysed using a Dounce homogenizer (100 strokes), and the extracts can be spun for 10 minutes at 10,000 x g. These clarified extracts can then be flashfrozen in liquid nitrogen and stored in aliquots at -70°C. The translation reaction can be capped RNA (50 ng) in a reaction mixture containing 60% clarified translation extract, 15 µM total amino acids, 0.2 mg/ml Creatine phosho-kinase, which are all in 1X translation

buffer (15 mM Hepes, pH 7.4, 85 mM KOAc, 1.5 mM Mg(OAc)₂, 0.5 mM ATP, 0.075 mM GTP, 18 mM creatine diphosphate and 1.5 mM DTT). After incubation of the translation reaction for 90 min at 37°C, activity of the protein encoded by the reporter gene can be detected. For activity of luciferase, encoded by the luciferase gene serving as the reporter gene, addition of 20 µl of LucLite® (Packard Instrument Co., Inc., Meriden, CT) can be used. Capped and uncapped RNAs can be synthesized *in vitro* using the T7 polymerase transcription kits (Ambion Inc., Austin, TX) and can be used in a similar *in vitro* system to study the influence of cell-type specific factors on translation.

In vivo

The present invention includes and provides for assays capable of screening for compounds capable of modulating gene expression. In a preferred aspect of the present invention, an assay is an *in vivo* assay. One preferred aspect of the present invention is an assay that measures translation. In a preferred embodiment of the present invention, an *in vivo* assay includes a nucleic acid molecule of the present invention or a construct of the present invention and can include the use of a cell or a cell or tissue within an organism. In a more preferred embodiment, an *in vivo* assay includes a nucleic acid molecule of the present invention present in a cell or a cell or tissue within an organism.

In another embodiment, in vivo translation of a reporter gene can be detected. In a preferred embodiment, a reporter gene is transfected into a cancer cell obtained from a cell line available at the (American Type Culture Collection (ATCC), Manassas, VA), for example HeLa, MCF-7, and COS-7, BT474. In a more preferred embodiment, a cancer cell has an altered genome relative to a similarly derived normal, primary cell, and the mammalian cancer cell proliferates under conditions where such a primary cell would not.

Screening for compounds that modulate reporter gene expression can be carried out in an intact cell. Any cell that comprises a reporter gene can be used in a cell-based assay system. A reporter gene can be naturally occurring in the cell or can be introduced using techniques such as those described above (see Cells and Organisms). In one embodiment, a cell line is chosen based on its expression levels of a naturally occurring protein, for example without limitation, VEGF, Her2, or survivin. Modulation of reporter gene expression by a compound can be determined in vitro as described above or in vivo as described below.

To detect expression of endogenous or heterologous proteins, a variety of protocols for detecting and measuring the expression of a reporter gene are known in the art. For example, Enzyme-Linked Immunosorbent Assays (ELISAs), western blots using either polyclonal or monoclonal antibodies specific for an expressed reporter gene, Fluorescence-Activated Cell Sorter (FACS), electrophoretic mobility shift assays (EMSA), or radioimmunoassay (RIA) can be performed to quantify the level of specific proteins in lysates or media derived from cells treated with the compounds. In a preferred embodiment, a phenotypic or physiological readout can be used to assess UTR-dependent activity of the target RNA in the presence and absence of the lead compound.

A wide variety of labels and conjugation techniques are known by those skilled in the art and can be used in various nucleic acid and amino acid assays. Methods for producing labeled hybridization or PCR probes for detecting sequences related to polynucleotides having a GEM of the present invention include oligolabeling, nick translation, end-labeling, or PCR amplification using a labeled nucleotide. Alternatively, sequences having a GEM of the present invention can be cloned into a vector for the production of a mRNA probe. Such vectors are known in the art, are commercially available, and can be used to synthesize RNA probes in vitro by addition of labeled nucleotides and an appropriate RNA polymerase such as T7, T3, or SP6. These procedures can be conducted using a variety of commercially available kits (Amersham Biosciences Inc., Piscataway, NJ; and Promega Co, Madison, WI). Suitable reporter molecules or labels which can be used for ease of detection include radionucleotides, enzymes, and fluorescent, chemiluminescent, or chromogenic agents, as well as substrates, cofactors, inhibitors, magnetic particles, and the like.

Therapeutic Uses

The present invention also provides for methods for treating, preventing or ameliorating one or more symptoms of a disease or disorder associated with the aberrant expression of a target gene, said method comprising administering to a subject in need thereof a therapeutically or prophylactically effective amount of a compound, or a pharmaceutically acceptable salt thereof, identified according to the methods described herein. In one embodiment, the target gene is aberrantly overexpressed. In another embodiment, the target gene is expressed at an aberrantly low level. In particular, the invention provides for a method of treating or preventing a disease or disorder or

ameliorating a symptom thereof, said method comprising administering to a subject in need thereof an effective amount of a compound, or a pharmaceutically acceptable salt thereof, identified according to the methods described herein, wherein said effective amount increases the expression of a target gene beneficial in the treatment or prevention of said disease or disorder. The invention also provides for a method of treating or preventing a disease or disorder or ameliorating a symptom thereof, said method comprising administering to a subject in need thereof an effective amount of a compound, or a pharmaceutically acceptable salt thereof, identified according to the methods described herein, wherein said effective amount decreases the expression of a target gene whose expression is associated with or has been linked to the onset, development, progression or severity of said disease or disorder. In a specific embodiment, the disease or disorder is a proliferative disorder, an inflammatory disorder, an infectious disease, a genetic disorder, an autoimmune disorder, a cardiovascular disease, or a central nervous system disorder. In an embodiment wherein the disease or disorder is an infectious disease, the infectious disease can be caused by a fungal infection, a bacterial infection, a viral infection, or an infection caused by another type of pathogen.

In addition, the present invention also provides pharmaceutical compositions that can be administered to a patient to achieve a therapeutic effect. Pharmaceutical compositions of the invention can comprise, for example, ribozymes or antisense oligonucleotides, antibodies that specifically bind to a GEM of the present invention, or mimetics, activators, inhibitors of GEM activity, or a nucleic acid molecule of the present invention. The compositions can be administered alone or in combination with at least one other agent, such as stabilizing compound, which can be administered in any sterile, biocompatible pharmaceutical carrier, including, but not limited to, saline, buffered saline, dextrose, and water. The compositions can be administered to a patient alone, or in combination with other agents, drugs or hormones.

In addition to the active ingredients, these pharmaceutical compositions can contain suitable pharmaceutically-acceptable carriers comprising excipients and auxiliaries which facilitate processing of the active compounds into preparations which can be used pharmaceutically. Pharmaceutical compositions of the invention can be administered by any number of routes including, but not limited to, oral, intravenous, intramuscular, intra-arterial, intramedullary, intrathecal, intraventricular, transdermal, subcutaneous, intraperitoneal,

intranasal, parenteral, topical, sublingual, or rectal means. Pharmaceutical compositions for oral administration can be formulated using pharmaceutically acceptable carriers well known in the art in dosages suitable for oral administration. Such carriers enable the pharmaceutical compositions to be formulated as tablets, pills, dragees, capsules, liquids, gels, syrups, slurries, suspensions, and the like, for ingestion by the patient.

Pharmaceutical preparations for oral use can be obtained through combination of active compounds with solid excipient, optionally grinding a resulting mixture, and processing the mixture of granules, after adding suitable auxiliaries, if desired, to obtain tablets or dragee cores. Suitable excipients are carbohydrate or protein fillers, such as sugars, including lactose, sucrose, mannitol, or sorbitol; starch from corn, wheat, rice, potato, or other plants; cellulose, such as methyl cellulose, hydroxypropylmethyl-cellulose, or sodium carboxymethylcellulose; gums including arabic and tragacanth; and proteins such as gelatin and collagen. If desired, disintegrating or solubilizing agents can be added, such as the cross-linked polyvinyl pyrrolidone, agar, alginic acid, or a salt thereof, such as sodium alginate.

Pharmaceutical preparations that can be used orally include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a coating, such as glycerol or sorbitol. Push-fit capsules can contain active ingredients mixed with fillers or binders, such as lactose or starches, lubricants, such as talc or magnesium stearate, and, optionally, stabilizers. In soft capsules, the active compounds can be dissolved or suspended in suitable liquids, such as fatty oils, liquid, or liquid polyethylene glycol with or without stabilizers.

Pharmaceutical formulations suitable for parenteral administration can be formulated in aqueous solutions, preferably in physiologically compatible buffers such as Hanks' solution, Ringer's solution, or physiologically buffered saline. Aqueous injection suspensions can contain substances that increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran. Additionally, suspensions of the active compounds can be prepared as appropriate oily injection suspensions. Suitable lipophilic solvents or vehicles include fatty oils such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate or triglycerides, or liposomes. Non-lipid polycationic amino polymers also can be used for delivery. Optionally, the suspension also can contain suitable stabilizers or agents that increase the solubility of the compounds to allow for the preparation of highly concentrated solutions. For topical or nasal administration, penetrants appropriate to the

particular barrier to be permeated are used in the formulation. Such penetrants are generally known in the art.

The pharmaceutical compositions of the present invention can be manufactured in a manner that is known in the art, e.g., by methods of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping, or lyophilizing processes. The pharmaceutical composition can be provided as a salt and can be formed with many acids, including but not limited to, hydrochloric, sulfuric, acetic, lactic, tartaric, malic, succinic, etc. Salts tend to be more soluble in aqueous or other protonic solvents than are the corresponding free base forms. In other cases, the preferred preparation can be a lyophilized powder which can contain any or all of the following: 1-50 mM histidine, 0.1%-2% sucrose, and 2-7% mannitol, at a pH range of 4.5 to 5.5, that is combined with buffer prior to use. Further details on techniques for formulation and administration can be found in the latest edition of Remington's Pharmaceutical Sciences (Maack Publishing Co., Easton, Pa.). After pharmaceutical compositions have been prepared, they can be placed in an appropriate container and labeled for treatment of an indicated condition. Such labeling would include amount, frequency, and method of administration.

Determination of a Therapeutically Effective Dose

A therapeutically effective dose refers to that amount of active ingredient that increases or decreases reporter gene activity relative to reporter gene activity that occurs in the absence of the therapeutically effective dose. For any compound, the therapeutically effective dose can be estimated initially either in cell culture assays or in animal models, usually mice, rabbits, dog, or pigs. The animal model also can be used to determine the appropriate concentration range and route of administration. Such information can then be used to determine useful doses and routes for administration in humans.

Therapeutic efficacy and toxicity, e.g., ED_{50} (the dose therapeutically effective in 50% of the population) and LD_{50} (the dose lethal to 50% of the population), can be determined by standard pharmaceutical procedures in cell cultures or experimental animals. The dose ratio of toxic to therapeutic effects is the therapeutic index, and it can be expressed as the ratio, LD_{50}/ED_{50} .

Pharmaceutical compositions that exhibit large therapeutic indices are preferred. The data obtained from cell culture assays and animal studies is used in formulating a range of

dosage for human use. The dosage contained in such compositions is preferably within a range of circulating concentrations that include the ED₅₀ with little or no toxicity. The dosage varies within this range depending upon the dosage form employed, sensitivity of the patient, and the route of administration.

The exact dosage will be determined by the practitioner, in light of factors related to the subject that requires treatment. Dosage and administration are adjusted to provide sufficient levels of the active ingredient or to maintain the desired effect. Factors that can be taken into account include the severity of the disease state, general health of the subject, age, weight, and gender of the subject, diet, time and frequency of administration, drug combination(s), reaction sensitivities, and tolerance/response to therapy. Long-acting pharmaceutical compositions can be administered every 3 to 4 days, every week, or once every two weeks depending on the half-life and clearance rate of the particular formulation.

Normal dosage amounts can vary from 0.1 to 100,000 micrograms, up to a total dose of about 1 g, depending upon the route of administration. Guidance as to particular dosages and methods of delivery is provided in the literature and generally available to practitioners in the art. Those skilled in the art will employ different formulations for nucleotides than for proteins or their inhibitors. Similarly, delivery of polynucleotides or polypeptides will be specific to particular cells, conditions, locations, etc.

If the reagent is a single-chain antibody, polynucleotides encoding the antibody can be constructed and introduced into a cell either ex vivo or in vivo using well-established techniques including, but not limited to, transferrin-polycation-mediated DNA transfer, transfection with naked or encapsulated nucleic acids, liposome-mediated cellular fusion, intracellular transportation of DNA-coated latex beads, protoplast fusion, viral infection, electroporation, "gene gun," and DEAE- or calcium phosphate-mediated transfection.

Effective in vivo dosages of an antibody are in the range of about 5 μg to about 50 μg/kg, about 50 μg/kg, about 50 μg/kg of patient body weight, and about 200 to about 250 μg/kg of patient body weight. For administration of polynucleotides encoding single-chain antibodies, effective in vivo dosages are in the range of about 100 ng to about 200 ng, 500 ng to about 50 mg, about 1 μg to about 2 mg, about 5 μg to about 500 μg, and about 20 μg to about 100 μg of DNA.

If the expression product is mRNA, the reagent is preferably an antisense

oligonucleotide or a ribozyme. Polynucleotides that express antisense oligonucleotides or ribozymes can be introduced into cells by a variety of methods, as described above.

Preferably, a reagent reduces expression of a reporter gene or the activity of a reporter gene by at least about 10, preferably about 50, more preferably about 75, 90, or 100% relative to the absence of the reagent. Alternatively, a reagent increases expression of a reporter gene or the activity of a reporter gene by at least about 10, preferably about 50, more preferably about 75, 90, or 100% relative to the absence of the reagent. The effectiveness of the reagent or mechanism chosen to modulate the level of expression of a reporter gene or the activity of a reporter gene can be assessed using methods well known in the art, such as hybridization of nucleotide probes to reporter gene-specific mRNA, quantitative RT-PCR, immunologic detection of an expressed reporter gene, or measurement of activity from an expressed reporter gene.

In any of the embodiments described above, any of the pharmaceutical compositions of the invention can be administered in combination with other appropriate therapeutic agents. Selection of the appropriate agents for use in combination therapy can be made by one of ordinary skill in the art, according to conventional pharmaceutical principles. The combination of therapeutic agents can act synergistically to effect the treatment or prevention of the various disorders described above. Using this approach, one may be able to achieve therapeutic efficacy with lower dosages of each agent, thus reducing the potential for adverse side effects.

Any of the therapeutic methods described above can be applied to any subject in need of such therapy, including, for example, mammals such as dogs, cats, cows, horses, rabbits, monkeys, and most preferably, humans.

Administration of a Therapeutically Effective Dose

A reagent which affects translation, either in vitro or in vivo, can be administered to a human cell to specifically reduce translational activity of a specific gene. In a preferred embodiment, the reagent preferably binds to a 5' UTR of a gene. In an alternate embodiment, the present invention the reagent preferably binds to a GEM of the present invention. In a preferred embodiment, the reagent is a compound. For treatment of human cells ex vivo, an antibody can be added to a preparation of stem cells which have been

removed from the body. The cells can then be replaced in the same or another human body, with or without clonal propagation, as is known in the art.

In one embodiment, the reagent is delivered using a liposome. Preferably, the liposome is stable in the animal into which it has been administered for at least about 30 minutes, more preferably for at least about 1 hour, and even more preferably for at least about 24 hours. A liposome comprises a lipid composition that is capable of targeting a reagent, particularly a polynucleotide, to a particular site in an animal, such as a human. Preferably, the lipid composition of the liposome is capable of targeting to a specific organ of an animal, such as the lung, liver, spleen, heart brain, lymph nodes, and skin.

A liposome useful in the present invention comprises a lipid composition that is capable of fusing with the plasma membrane of the targeted cell to deliver its contents to the cell. Preferably, the transfection efficiency of a liposome is about 0.5 µg of DNA per 16 nmole of liposome delivered to about 10⁶ cells, more preferably about 1.0 µg of DNA per 16 nmole of liposome delivered to about 10⁶ cells, and even more preferably about 2.0 µg of DNA per 16 nmol of liposome delivered to about 10⁶ cells. Preferably, a liposome is between about 100 and 500 nm, more preferably between about 150 and 450 nm, and even more preferably between about 200 and 400 nm in diameter.

Suitable liposomes for use in the present invention include those liposomes standardly used in, for example, gene delivery methods known to those of skill in the art. More preferred liposomes include liposomes having a polycationic lipid composition and/or liposomes having a cholesterol backbone conjugated to polyethylene glycol. Optionally, a liposome comprises a compound capable of targeting the liposome to a particular cell type, such as a cell-specific ligand exposed on the outer surface of the liposome.

Complexing a liposome with a reagent such as an antisense oligonucleotide or ribozyme can be achieved using methods that are standard in the art (see, for example, U.S. Pat. No. 5,705,151). Preferably, from about 0.1 µg to about 10 µg of polynucleotide is combined with about 8 nmol of liposomes, more preferably from about 0.5 µg to about 5 µg of polynucleotides are combined with about 8 nmol liposomes, and even more preferably about 1.0 µg of polynucleotides is combined with about 8 nmol liposomes.

In another embodiment, antibodies can be delivered to specific tissues in vivo using receptor-mediated targeted delivery. Receptor-mediated DNA delivery techniques are taught

in, for example, Findeis et al. Trends in Biotechnol. 11, 202-05 (1993); Chiou et al., Gene Therapeutics: Methods And Applications Of Direct Gene Transfer (J. A. Wolff, ed.) (1994); Wu & Wu, J. Biol. Chem. 263, 621-24 (1988); Wu et al., J. Biol. Chem. 269, 542-46 (1994); Zenke et al., Proc. Natl. Acad. Sci. U.S.A. 87, 3655-59 (1990); Wu et al., J. Biol. Chem. 266, 338-42 (1991).

Diagnostic Methods

Agents of the present invention can also be used in diagnostic assays for detecting diseases and abnormalities or susceptibility to diseases and abnormalities related to the presence of mutations in the nucleic acid sequences that encode a GEM of the present invention. For example, differences can be determined between the cDNA or genomic sequence encoding a GEM in individuals afflicted with a disease and in normal individuals. If a mutation is observed in some or all of the afflicted individuals but not in normal individuals, then the mutation is likely to be the causative agent of the disease.

For example, the direct DNA sequencing method can reveal sequence differences between a reference gene and a gene having mutations. In addition, cloned DNA segments can be employed as probes to detect specific DNA segments. The sensitivity of this method is greatly enhanced when combined with PCR. For example, a sequencing primer can be used with a double-stranded PCR product or a single-stranded template molecule generated by a modified PCR. The sequence determination is performed by conventional procedures using radiolabeled nucleotides or by automatic sequencing procedures using fluorescent tags.

Moreover, for example, genetic testing based on DNA sequence differences can be carried out by detection of alteration in electrophoretic mobility of DNA fragments in gels with or without denaturing agents. Small sequence deletions and insertions can be visualized, for example, by high-resolution gel electrophoresis. DNA fragments of different sequences can be distinguished on denaturing formamide gradient gels in which the mobilities of different DNA fragments are retarded in the gel at different positions according to their specific melting or partial melting temperatures (see, e.g., Myers et al., Science 230, 1242, 1985). Sequence changes at specific locations can also be revealed by nuclease protection assays, such as RNase and S1 protection or the chemical cleavage method (e.g., Cotton et al., Proc. Natl. Acad. Sci. USA 85, 4397-4401, 1985). Thus, the detection of a specific DNA sequence can be performed by methods such as hybridization, RNase protection, chemical

cleavage, direct DNA sequencing or the use of restriction enzymes and Southern blotting of genomic DNA. In addition to direct methods such as gel-electrophoresis and DNA sequencing, mutations can also be detected by *in situ* analysis.

Altered levels of a GEM of the present invention can also be detected in various tissues. For example, one or more genes having a GEM can be detected by assays used to detect levels of particular nucleic acid sequence, such as Southern hybridization, northern hybridization, and PCR. Alternatively, assays can be used to detect levels of a reporter polypeptide regulated by a GEM or of a polypeptide encoded by a gene having a GEM. Such assays are well known to those of skill in the art and include radioimmunoassays, competitive binding assays, western blot analysis, and ELISA assays. A sample from a subject, such as blood or a tissue biopsy derived from a host, may be the material on which these assays are conducted.

Having now generally described the invention, the same will be more readily understood through reference to the following examples that are provided by way of illustration, and are not intended to be limiting of the present invention, unless specified.

Each periodical, patent, and other document or reference cited herein is herein incorporated by reference in its entirety.

Examples

Example 1. Identification of compounds that specifically inhibit reporter gene expression post-transcriptionally.

A monocistronic reporter construct (pLuc/vegf5'+3'UTR) is under the transcriptional control of the CMV promoter and contains the VEGF 5' UTR driving the luciferase reporter upstream of the VEGF 3'UTR. Stable cell lines are generated by transfecting 293 cells with the pLuc/vegf5'+3'UTR construct. A stable cell line is cultured under hygromyein B selection to create clonal cell lines consistent with protocols well known in the art. After two weeks of selection, clonal cell lines are screened for luciferase activity. The luciferase activity of several clonal cell lines (hereafter "Clones") are compared and normalized against total protein content. Clones are maintained under hygromycin B selection for more than three months with intermittent monitoring of luciferase activity. Clones are stable and maintain a high level of luciferase expression. Many Clones, for example, about twenty, may be compared to each other with respect to luciferase activity. In comparison to Clones B9,

D3, and H6, clone B9 exhibits the highest level of luciferase activity. In addition, semiquantitative PCR analysis is performed, and the results indicate that multiple copies of the reporter are integrated per cell. Particular parameters for Clones are studied prior to selection for use in post-transcriptional, high-throughput screening (HTS). Relevant parameters for HTS include, but are not limited to, cell number, incubation time, DMSO concentration, and volume of substrate.

Chemical libraries in excess of 150,000 compounds are screened by HTS with a Clone containing the monocistronic reporter construct, pLuc/vegf5°+3°UTR. Screens are performed in duplicate with each molecule at a single concentration of about 7.5 µM. Bright-Glow (Promega Co., Madison, WI) is used as a substrate to measure firefly luciferase activity. Active compounds are identified by reporting the average percent inhibition of the duplicate compounds followed by rejecting those compounds that did not provide satisfactory reproducibility. The average percent inhibition of compounds that provide satisfactory reproducibility is within a range of about 10%, about 25% or about 35% in the duplicate compounds. Data is analyzed as a normal distribution, which is apparent from graphical and statistical analysis of skewness and kurtosis. Hits are then reported at about a 99% confidence level, usually representing a selection of 3 standard deviations from the mean, or a hit lower limit of observed inhibition about equal to 50%. These selection criteria result in a hit rate of about 1%.

Certain compounds that are identified through the HTS-screening tier by screening with clone B9 modulate hypoxia-inducible endogenous VEGF expression. Endogenous VEGF protein levels are monitored by an ELISA assay (R&D Systems, Minneapolis, MN). HeLa cells are used to evaluate hypoxia-inducible expression. HeLa cells demonstrate about a three- to five-fold hypoxia-inducible window as compared to normoxic conditions (about 1000 - about 1500 pg/ml under hypoxia compared to about 200 - about 400 pg/ml under normoxia). Cells are cultured overnight to 48 hrs under hypoxic conditions (about 1% O₂, about 5% CO₂, and balanced with nitrogen) in the presence or absence of compounds. The conditioned media is assayed by ELISA. The concentration of VEGF is calculated from the standard ELISA curve of each assay. The assays are performed in duplicate at a compound concentration of about 7.5 µM. A threshold of about 50% inhibition for a compound is selected as a criterion for further investigation. Further evaluation of about 100 to about 150 compounds is conducted from about 700 to about 800 initial HTS hits. The activity of the

identified compounds is confirmed by repeating the experiments described above. The identified compounds are then acquired as dry powders and analyzed further. The purity and molecular weight of the identified compounds are confirmed by LC-MS.

A dose-response analysis is performed using the ELISA assay and conditions described above. The conditions for the dose-response ELISA are analogous to those described above. A series of seven different serially-diluted concentrations are analyzed. In parallel, a dose-response cytotoxicity assay is performed under the same conditions as the ELISA to ensure that the inhibition of VEGF expression is not due to cytotoxicity. Dose-response curves are plotted using percentage inhibition versus log of concentration of the compound.

For each compound, the maximal inhibition is set as 100% and the minimal inhibition is set as 0% to generate EC₅₀ and CC₅₀ values. An identified compound from HTS shows a sigmoidal curve over a compound concentration range from about 10^{11} nM to about 10^{4} nM when plotted as the log of concentration against the percent inhibition of VEGF expression on the y-axis. The same identified compound from HTS shows a convex curve over the same compound concentration range plotted against the percent of cytotoxicity. The ELISA EC₅₀ (50% inhibition of VEGF expression) for this particular compound is about 7 nM, while its CC₅₀ (50% cytotoxicity) is greater than about 2000 nM. Subsets of compounds that show similar efficacy/cytotoxicity windows are also identified.

The B9 cell line harbors the firefly luciferase reporter driven by the CMV promoter and flanked by the 5' and 3'UTRs of VEGF. Use of the B9 cell line with the HTS identifies compounds that specifically target the function of VEGF UTRs to modulate expression. Cell line B12 harbors the luciferase operably linked to control UTRs to replace the VEGF UTRs. Compounds that inhibit luciferase activity in both the B9 and B12 cell lines are general transcription and/or translation inhibitors or luciferase enzyme inhibitors. Several UTR specific compounds are identified in experiments with HTS identified compounds adsecribed above. The dose-response curves of an identified compound show a sigmoidal curve in B9 cells and a concave curve in B12 cells when the percent luciferase inhibition of each is plotted over a compound concentration range from about 10'1nM to about 10'4 nM on the x-axis. The difference between the two cell lines (B9 and B12) shows that inhibition of VEGF production by this compound is through the VEGF UTRs, i.e., by a post-transcriptional control mechanism. A control is experiment is performed with a

general translation inhibitor, puromycin. No difference in inhibition of luciferase expressionis observed with puromycin treatment in these two cell lines.

Example 2. Characteristics of UTR-specific VEGF inhibitors

All identified compounds are re-synthesized and shown by LC/MS and combustion analysis to be greater than 95% pure. Subsequently, the re-synthesized compounds are tested in the dose-response VEGF ELISA and luciferase assays are used to initially assess UTR specificity. All identified compounds that retain UTR specificity are defined as bona fide UTR-specific inhibitors of VEGF expression.

High-throughput screening using B9 cells, followed by endogenous VEGF ELISAs identified compounds that specifically inhibit hypoxia inducible VEGF expression for the treatment of ocular neovascular diseases and cancer. Compounds that target multiple angiogenesis factors (including VEGF) for the treatment of cancers are also identifiable. Several targets are used for these purposes, including TNF- α , FGF-2, G-CSF, IGF-1, PDGF, and HIF-1 α .

ELISA assays analyze levels of expression of these factors using commercially available kits from R&D Systems (Minneapolis, MN). UTR-specific HTS identified compounds are tested for their ability to inhibit the expression of a subset of these proteins, including FGF-2 and IGF-1 in HeLa cells. Identified compounds that are very potent inhibitors of VEGF production as assayed in HeLa cells have EC₅₀ values ranging from low nM to high nM. Treatment with a general translation inhibitor (puromycin) results in similar inhibition for all these cytokines, with EC₅₀ values ranging from about 0.2 to about 2 uM.

Lead compounds are further characterized and optimized. Analogs are synthesized and identified compounds exhibit excellent potency in the VEGF ELISA assay (EC_{50} values ranging from 0.5 nM to 50 nM). In another embodiment, an analog exhibits low nM potency. In an additional embodiment, several analogs are synthesized and a subset of identified compounds are very active (EC_{50} values ranging from 1 nM to 50 nM) in the VEGF ELISA assay. Activity of a very potent analog is improved about 500-fold compared to its parent (EC_{50} of 1 nM vs. 500 nM). Further characterization and optimization for selectivity and pharmaceutical properties (ADMET) of the most active compounds will develop a drug candidate(s) for clinical trials.

Example 3. HIF 1a UTR modulates reporter gene expression

Transient Transfections:

The HIF-1 α reporter constructs pGEMS HIF-1α5F3, pGEMS HIF-1α5F and pGEMS HIF-1αF3 and pGEMS F are each transfected in equal amounts into 293 and MCF7 cells using FuGENETM 6 (Fugent, LLC) transfection reagent (F. Hoffmann-La Roche Ltd, Basel, Switzerland) according to the manufacturer's instructions. The plasmid phRL-CMV is co-transfected with each reporter to normalize for transfection efficiencies. After 24 hours, transfected cells are washed with PBS, washed again with new media, and placed either under normoxia or hypoxia for another 24 hours. At that time, cells are harvested and assayed for Renilla and Firefly luciferase activities using the Dual-Luciferase reporter assay system (Promega, Inc., Madison, WI) according to the manufacturer's instructions.

DNA Transfection and Generation of Stable Cell Line:

To generate a stable cell line, 293 cells are transiently transfected with pGEMS HIF-10.5F3 as described above. Forty-eight hours later, cells are trypsinized, counted and seeded (10 ml) in 10 cm petri dishes at a concentration of 5000 cells/ml. The next day, 200 µg/ml hygromycin B is added to the culture media in order to select for cells in which the transfertly transfected plasmid has stably integrated into the genome. Following ten to fourteen days of hygromycin B selection, individual hygromycin-resistant clones are expanded by transferring the cells from the petri dish to a single well in a twenty-four well plate using trypsin-soaked filter discs according to manufacturer's instructions. Individual cell lines are then selected for further studies based on firefly luciferase expression levels. Luciferase Assay:

Firefly and Renilla luciferase activities or Firefly luciferase activity only are measured using the Dual Luciferase or the Luciferase reporter assay systems (Promega Inc., Madison, WD, according to the manufacturer's instructions respectively.

Quality control of stable clones using RT-PCR:

Total RNA is isolated from each stably transfected clone obtained using Trizol® reagent (Invitrogen Co., Carlsbad, CA) according to the manufacturer's instructions. RT-PCR is then used in order to confirm the presence of the correct-sized HIF-1 α UTRs in the firefly reporter mRNAs isolated from the stable clones. Either a HIF-1 α 5' UTR forward primer and a luciferase 5' reverse primer (5'

CTGCAACTCCGATAAATAACGCGCCCAACA 3', SEQ ID NO:1) or a luciferase 3'

forward primer (5' CGGGTACCGAAAGGTCTTACC 3', SEQ ID NO: 2) and the HIF-1 α 3' UTR reverse primer are used to amplify the 5' and 3' ends of the mRNA, respectively, from reverse-transcribed RNA using random hexamers.

Quantitation of luciferase reporter RNA using Real Time RT-PCR:

Luciferase reporter mRNA levels from all stable clones obtained are quantified using TaqMan[®] Real Time RT-PCR (Applied Biosystems, Foster City, CA) according to the manufacturer's instructions. The following firefly luciferase specific primers and probe are used: FLuc F (5' TTCTTCATAGTTGACCGCTTGA 3', SEQ ID NO: 3), FLuc R (5' GTCATCGTCGGGAAGACCT 3', SEQ ID NO: 4) and FLuc probe (5' 6FAM-CGATATTGTTACAACAACCCAACATCTTCG-TAMRA 3', SEQ ID NO: 5 labeled with 6FAM at the 5' end and TAMRA at the 3' end). The luciferase reporter mRNA levels are normalized to actin mRNA levels using a commercially available actin-specific primers/probe set (Applied Biosystems, Foster City, CA).

High Throughput Screening:

High throughput screening ("HTS") for compounds that inhibit untranslated regiondependent expression of HIF-1 α is accomplished using stable cell line generated as described above. A 293 cell line contains stably integrated copies of the firefly luciferase gene flanked by both the 5' and 3' UTRs of HIF-1 α . The selected stable cell line is then used in a cell-based assay that has been optimized for cell number and percentage DMSO used for HTS.

Screening of compounds is accomplished within a week at a rate of 140 384-well plates per day. Each 384-well plate contains a standard puromycin titration curve that is used as a reference to calculate percent inhibition and the statistical significance of the data points generated in the assay. This curve is set-up in columns 3 and 4 of the 384-well plate and starts at a puromycin concentration of 20 μ M that is then serially diluted 2-fold down to 0.078 μ M and plated in quadruplicate. Columns 1 and 2 contain 16 standards each of a positive control consisting of cells in 0.5% DMSO and a negative control consisting of cells in 20 μ M puromycin. The difference between the two controls is used as the window to calculate the percentage of inhibition of luciferase expression in the presence of a compound. Columns 5 through 24 contain compounds from a library of small molecules.

HIF-1 α stable cells at a ~ 70 % confluency are used for HTS. Briefly, the cells are dislodged from the flask with 4 ml of 0.25 % trypsin-EDTA (Gibco BRL, cat no. 25200-056) and diluted to 10 ml with non-selection media. This is repeated for all fourteen flasks and the cells are combined, passed through a filter, counted and diluted to a concentration of 1.3×10⁵ cells/ml. Cells in a volume of 38 μl are added to each well containing 2 μl of compound from a small molecule library to yield a final compound concentration of 7.5 μM (3.75 mg/ml) in 0.5 % DMSO. The puromycin standard curve also contains 0.5 % DMSO. The compound-treated cells are incubated overnight (approximately 16 hours) under normoxic conditions and 37° C in 5 % CO₂. To monitor firefly luciferase activity, SteadyLite HTS (PerkinElmer Life and Analytical Sciences, Inc., Boston, MA) is prepared according to manufacturer's instructions and 20 μl are added to each well. Firefly luciferase activity in each well is detected with the ViewLuxTM 1430 ultraHTS Microplate Imager (PerkinElmer Life and Analytical Sciences, Inc., Boston, MA. All data obtained is uploaded into Activity Base for calculations and statistical analyses of the percentages of inhibition of luciferase activity. Example 4. A preferred construct of the present invention

A high-level expression vector, pcDNATM3.1/Hygro (Invitrogen Corp., Carlsbad, CA), is prepared as follows. In a pcDNATM3.1/Hygro vector, the untranslated regions (UTRs) and restriction sites associated with cloning, expressing, or cloning and expressing a gene of interest or a reporter gene are removed or replaced.

Certain UTRs and restriction sites are native to high-copy mammalian expression vectors. A vector without UTRs and restriction sites is prepared as follows. Deletion mutagenesis is undertaken to remove UTRs and restriction sites from commercially-available vector, pcDNATM3.1/Hygro (Invitrogen Corp., Carlsbad, CA). The vector is constructed to remove a region that starts at the putative transcription start site of a UTR found upstream of the cloning site and continues in the 3' direction to the Hind III restriction site at the multiple cloning site of pcDNATM3.1/Hygro (Invitrogen Corp., Carlsbad, CA). The nucleic acid sequence removed is SEQ ID NO: 23 (5'-AGAGAACCCA CTGCTTACTG GCTTATCGAA ATTAATACGAC TCACTATAGG, GAGACCCAAGC TGGCTAGCGT TTAAACTTA - 3'). As such, UTRs that are native to the vector and heterologous to the target gene are removed. In pcDNATM3.1/Hygro (Invitrogen Corp., Carlsbad, CA), the UTR removed is from the bovine growth hormone gene. Another nucleic acid sequence that is

removed is the UTR formed in the region starting at the Xho I site of pcDNA™3.1/Hygro (Invitrogen Corp., Carlsbad, CA) continuing in the 3' direction and ending at the poly(A) tail, which in pcDNA™3.1/Hygro (Invitrogen Corp., Carlsbad, CA) corresponding to the poly(A) tail from bovine growth hormone gene. By removing the nucleic acids from the Xho I site to the poly(A) tail, the 3' UTR native to the vector is removed, and the nucleic acid sequence that is removed is SEQ ID NO: 24. (5' - CTCGAGTCTA GAGGGCCCGT TTAAACCCGCT GATCAGCCTC GACTGTGGCC TTCTAGTTGCC AGCCATCTGTTG TTGTCCCCTC CCCCGTCCCTT CCTTGACCCT GGAAGGTGCC ACTCCCACTG TCCTTTCCT - 3').

A target UTR is cloned into the vector using a *Hind III* site and a *BamHI* site, which is downstream of the *Hind III* site. A target 5' UTR is inserted with a start codon upstream of the *BamHI* site. The reporter gene replaces the sequence between the *BamHI* site and a *Not I* site. Between the *Not I* site and a downstream *Xho I* site, the target 3' UTR is inserted with a stop codon downstream of the *Not I* site. The reporter gene is flanking and directly linked to the target 5' UTR and the target 3' UTR.

WHAT IS CLAIMED:

 A nucleic acid construct comprising a high-level mammalian expression vector, an intron, and a nucleic acid sequence encoding a reporter polypeptide, wherein said nucleic acid sequence encoding a reporter polypeptide is proximally linked to a target untranslated region (UTR).

- The nucleic acid construct according to claim 1, wherein said intron is located within a 5° LITR.
- The nucleic acid construct according to claim 1, wherein said intron is located within a 3'
 UTR.
- The nucleic acid construct according to claim 1, wherein said intron is located within said nucleic acid sequence encoding a reporter polypeptide.
- The nucleic acid construct according to claim 4, wherein said intron located within said nucleic acid sequence encoding a reporter polypeptide is spliced out during pre-mRNA processing.
- The nucleic acid construct according to claim 1, wherein said nucleic acid sequence encoding a reporter polypeptide is directly linked to a target UTR.
- 7. A nucleic acid construct comprising a high-level mammalian expression vector and a nucleic acid sequence encoding a reporter polypeptide, wherein said nucleic acid sequence encoding a reporter polypeptide is directly linked to one or more target UTRs.
- The nucleic acid molecule according to claim 7, wherein said one or more target UTRs
 has an element selected from the group consisting of an iron response element ("IRE"),
 internal ribosome entry site ("IRES"), upstream open reading frame ("uORF"), male
 specific lethal element ("MSL-2"), G-quartet element, and 5'-terminal oligopyrimidine
 tract ("TOP").
- The nucleic acid molecule according to claim 7, wherein said one or more target UTRs are from the same target gene.

10. The nucleic acid construct according to claim 7, wherein said high-level mammalian expression vector integrates randomly into the genome.

- 11. The nucleic acid construct according to claim 7, wherein said high-level mammalian expression vector integrates site-selectively into the genome.
- 12. The nucleic acid construct according to claim 7, wherein said high-level mammalian expression vector is an episomal mammalian expression vector.
- 13. The nucleic acid construct according to claim 7, wherein said reporter gene contains an intron.
- 14. The nucleic acid construct according to claim 7, wherein said one or more target UTRs contains an intron.
- 15. A nucleic acid molecule comprising a nucleic acid sequence encoding a reporter polypeptide directly linked to one or more target UTRs.
- 16. The nucleic acid molecule according to claim 15, wherein said nucleic acid sequence encoding a reporter polypeptide contains an intron.
- 17. A heterologous population of nucleic acid molecules, wherein said heterologous population comprises a reporter nucleic acid sequence, wherein said nucleic acid sequence encoding a reporter polypeptide is directly linked to one or more target UTRs.
- 18. The heterologous population of nucleic acid molecules according to claim 17, wherein said heterologous population is isolated from a stable cell line.
- 19. The heterologous population of nucleic acid molecules according to claim 17, wherein said heterologous population is produced in vitro.
- 20. The heterologous population of nucleic acid molecules according to claim 17, wherein said heterologous population is used to produce polypeptides in vitro.
- 21. The heterologous population of nucleic acid molecules according to claim 17, wherein said heterologous population of nucleic acid molecules each have a 5' cap.

22. The heterologous population of nucleic acid molecules according to claim 17, wherein said heterologous population is selected to exclude molecules with a 5' cap.

- 23. The heterologous population of nucleic acid molecules according to claim 17, wherein said heterologous population is poly-adenylated.
- 24. The heterologous population of nucleic acid molecules according to claim 17, wherein said heterologous population is not poly-adenylated.
- 25. A method of making a nucleic acid construct to screen for a compound comprising:
 - a) cloning a gene and a vector in said nucleic acid construct;
 - b) engineering said nucleic acid construct to prevent an expressed gene product from having a UTR not found in a target gene; and
 - c) directly linking a target UTR to said gene.
- 26. The method according to claim 25, further comprising: d) expressing said gene linked to a target UTR in an absence of a UTR not found in a target gene.
- 27. The method according to claim 25, wherein said gene encodes a reporter polypeptide.
- 28. The method according to claim 25, wherein a target UTR is a 5' UTR from a target gene and a second target UTR is a 3' UTR.
- 29. The method according to claim 28, wherein said first target UTR is from the same target gene as said second target UTR.
- 30. The method according to claim 28, wherein said first target UTR is from a different target gene as said second target UTR.
- 31. A method of screening for a compound that modulates expression of a polypeptide comprising:
 - a) maintaining a cell, wherein said cell has a nucleic acid molecule and said nucleic acid molecule comprises a gene encoding a reporter polypeptide and said reporter gene is flanked by a target 5' UTR and a target 3' UTR;
 - b) forming a UTR-complex in said cell;

- c) contacting a compound with said UTR-complex; and
- d) detecting an effect of said compound on said UTR-complex.
- The method according to claim 31, wherein said UTR-complex contains a gene expression modulator (GEM).
- 33. The method according to claim 31, wherein said detecting is selected from the group consisting of an RNA-protein interaction assay, mass spectroscopy, RNA footprint analysis, and an RNA subcellular localization assay.
- 34. The method according to claim 31, wherein said detecting is based on comparing the level of reporter polypeptide expressed by said cell in a presence of said compound relative to in an absence of said compound.
- 35. A method of screening in vivo for a compound that modulates UTR-dependent expression comprising:
 - a) providing a cell having a nucleic acid construct comprising a high-expression, constitutive promoter upstream from a target 5' UTR, said target 5' UTR upstream from a nucleic acid sequence encoding a reporter polypeptide, and said nucleic acid sequence encoding a reporter polypeptide upstream from a target 3' UTR;
 - b) contacting said cell with a compound;
 - c) producing a nucleic acid molecule that contains a nucleic acid sequence encoding a reporter polypeptide and does not contain UTR not found in a target gene; and
 - d) detecting said reporter polypeptide.
- 36. A method of screening in vitro for a compound that modulates UTR-affected expression comprising:
 - a) providing an in vitro translation system;
 - b) contacting said in vitro translation system with a compound and a nucleic acid molecule comprising a target 5' UTR, said target 5' UTR upstream from a nucleic acid sequence encoding a reporter polypeptide and said nucleic acid sequence encoding a reporter polypeptide upstream from a target 3' UTR, wherein said nucleic acid molecule

- is in an absence of a UTR not found in a target gene; and
- c) detecting said reporter polypeptide in vitro.
- 37. A method of expressing a nucleic acid molecule in a cell comprising:
 - a) providing a heterologous nucleic acid molecule to a cell, wherein said nucleic acid molecule comprises a nucleic acid sequence encoding a reporter polypeptide flanked by target UTRs in an absence of a UTR not found in a target gene; and
 - b) detecting said reporter polypeptide in vivo.
- 38. The method according to claim 37, wherein said heterologous nucleic acid molecule is produced by in vitro transcription.
- 39. The method according to claim 37, wherein said heterologous nucleic acid molecule is a synthetically produced RNA molecule.
- 40. The method according to claim 37, wherein said heterologous nucleic acid molecule is a small interfering RNA (siRNA) molecule.
- 41. A method of screening for a compound that modulates protein expression through a main ORF-independent, UTR-affected mechanism comprising:
 - a) growing a stable cell line having a reporter gene proximally linked to a target UTR:
 - b) comparing said stable cell line in the presence of a compound relative to in an absence of said compound; and
 - c) selecting for said compound that modulates protein expression through a main ORFindependent, UTR-affected mechanism.
- 42. A method of screening for a compound that modulates protein expression through a main ORF-independent, UTR-affected mechanism comprising:
 - a) substituting in a cell a target gene with a reporter gene, wherein proximally linked target UTRs of said target gene remain intact and said cell is a differentiated cell;
 - b) growing said cell line; and
 - e) selecting for said compound that modulates protein expression of said reporter gene through a main ORF-independent, UTR-affected mechanism.

43. A method of screening for a compound that modulates protein expression through a UTRaffected mechanism comprising:

- a) growing a stable cell line having a reporter gene proximally linked to a target UTR, wherein said stable cell line mimics post-transcriptional regulation of a target gene found in vivo:
- b) growing said stable cell line; and
- c) selecting for said compound that modulates protein expression of said reporter gene through a UTR-affected mechanism.
- 44. The method according to claim 43, wherein the nucleic acid sequence of said target UTR is specific to said target gene in mammals.
- 45. The method according to claim 43, wherein the nucleic acid sequence of said target UTR is specific to said target gene in plants.
- 46. The method according to claim 43, wherein said target gene is an isoform.
- 47. The method according to claim 43, wherein said target gene contains a UTR also found in one or more different genes.
- 48. The method according to claim 47, wherein said target gene is indicative of a disease state.
- 49. The method according to claim 43, wherein said stable cell line is a cancer cell.
- 50. A method of screening for a compound that modulates protein expression through a UTRaffected mechanism comprising:
 - a) growing a stable cell line having a reporter gene proximally linked to more than one target UTR;
 - b) comparing said stable cell line in the presence of a compound relative to in an absence of said compound, wherein said compound does not modulate UTR-dependent expression if only one target UTR is proximally linked to a reporter gene; and
 - c) selecting for said compound that modulates protein expression of said reporter gene through a UTR-affected mechanism.

51. The method according to claim 50, further comprising: d) comparing said modulation of UTR-dependent protein expression with a UTR not found in a target gene proximally linked to a reporter gene relative to modulation of UTR-dependent protein expression with a reporter gene flanked by a proximally linked target 5° UTR and a proximally linked target 3° UTR.

- 52. The method according to claim 50, further comprising: d) comparing modulation of UTR-dependent protein expression with a reporter gene having an intron relative to modulation of UTR-dependent protein expression to said reporter gene without said intron.
- 53. The method according to claim 50, wherein said compound affects a UTR-complex and said UTR-complex contains a protein selected from the group consisting of a small nuclear RNPs (snRNP), hnRNP proteins, mRNA proteins, splicing factors, ribosomal proteins, and translation-specific proteins that are non-ribosomal.
- 54. The method according to claim 53, wherein said UTR-complex does not include a protein selected from the group consisting of a non-regulatory ribosomal protein and a chromatinassociated protein.

FIG.1

FIG.2A

FIG.2B

12 34 567 8 91011121314

~0.5 kb

FIG. 3

FIG. 4

SEQUENCE LISTING

```
<110> PTC Therapeutics, Inc.
<120> Methods and Agents for Screening for Compounds Capable of Mod. `ting
Gene Expression
<130> 19025.023
<140> To Be Determined
<141> 2004-08-16
<150> 10/895,393
<151> 2004-07-21
<160> 118
<170> PatentIn version 3.2
<210> 1
<211> 14
<212> DNA
<213> Artificial
<220>
<223> Description of Artificial Sequence: Motif
<220>
<221> misc_feature
<222> 3, 7, 8, 11
<223> n = a, t, c, or g
<220>
<221> misc_feature
<222> (7)..(8)
<223> This represents one form of the sequence as described, other forms
       described may have up to five nucleotides in this variable region
<400> 1
                                                                     14
gantgannag ntgg
<210> 2
<211> 14
<212> DNA
<213> Artificial
<220>
<223> Description of Artificial Sequence: Motif
<220>
<221> misc feature
<222> 3, 4, 7, 8, 11, 12
<223> n = a, t, g or c
```

1

<220>		
	misc_feature (2) (12) This represents one form of the sequence as described, other described have longer variable regions, typical is 2 - 10 nucleotides	form
<400> ggnngg	2 nngg nngg	14
<210> <211> <212> <213>		
<220> <223>	Description of Artificial Sequence: Motif	
<222>	misc_feature 3, 4, 7, 8, 11, 12 n = a, t, g, or c	
	misc_feature (2)(12) This represents one form of the sequence as described, other described have longer variable regions, typical is 2 - 10 nucleotides	forms
<400>	3	
ggnnggr	nngg nngg	14
<211> <212>	4 19 RNA Artificial	
<220> <223>	Description of Artificial Sequence: Motif	
<400>	4	
cccrcc	сене инссесаад	19
<211> <212>	5 152 DNA Homo sapiens	
	5 (acc agctaagagg gagagaagca actacagace eeeeetgaaa acaaceetca	60

gacgccacat cccctgacaa gctgccaggc aggttetett ceteteacat actgacccac	120
ggotocacco tototococt ggaaaggaca co	152
<210> 6 <211> 79 <212> DNA <213> Homo sapiens	
<400> 6	
tgaggaggac gaacatccaa cetteccaaa egeeteecet geeccaatee etttattaee	60
coctcettca gacaccetca acetettetg geteaaaaag agaattgggg gettagggte	120
ggaacccaag cttagaactt taagcaacaa gaccaccact tcgaaacctg ggattcagga	180
atgtgtggcc tgcacagtga attgctggca accactaaga attcaaactg gggcctccag	240
aactcactgg ggcctacagc tttgatccct gacatctgga atctggagac cagggagcct	300
ttggttctgg ccagaatgct gcaggacttg agaagacctc acctagaaat tgacacaagt	360
ggaccttagg cettectete tecagatgtt tecagaette ettgagaeae ggageceage	420
cotcoccatg gagccagctc cctctattta tgtttgcact tgtgattatt tattatttat	480
ttattattta tttatttaca gatgaatgta tttatttggg agaccggggt atcctggggg	540
acccaatgta ggagctgcct tggctcagac atgttttccg tgaaaacgga gctgaacaat	600
aggetgttee catgtageee eetggeetet gtgeettett ttgattatgt tttttaaaat	660
atttatctga ttaagttgtc taaacaatgc tgatttggtg accaactgtc actcattgct	720
gagcetetge tecceagggg agttgtgtet gtaategeec tactatteag tggegagaaa	780
taaagtttgc tt	792
<pre><210> 7 <211> 21 <212> RNA <213> Artificial <220> <223> Description of Artificial Sequence: Motif</pre>	
•	
<400> 7 auuuauuuau uuauuuauuu a	21
<210> 8 <211> 40 <212> DNA <213> Homo sapiens	

<400> 8 ketggaggat gtggetgeag ageetgetge tettgggeae	40
<210> 9 <211> 289 <212> DNA <213> Homo sapiens	
<400> 9	60
gccggggagc tgctctctca tgaaacaaga gctagaaact caggatggtc atcttggagg	
gaccaagggg tgggccacaag ccatggtggg agtggcctgg acctgccctg ggccacactg	120
accotgatac aggcatggca gaagaatggg aatattttat actgacagaa atcagtaata	180
tttatatatt tatattttta aaatatttat ttatttattt atttaagttc atattccata	240
tttattcaag atgttttacc gtaataatta ttattaaaaa tatgcttct	289
<210> 10 <211> 21 <212> RNA <213> Artificial <220> <223> Description of Artificial Sequence: Motif <400> 10 augusuusu uusuuusuu a	21
autoautoau toautoauto a	21
<210> 11 <221> 47 <211> DNA <212> DNA <213> Homo sapiens	
atcactetet ttaatcacta etcacattaa eetcaactee tgecaca	47
<210> 12 <211> 307 <212> DNA <213> Homo sapiens	
<400> 12	60
taattaagtg cttcccactt aaaacatatc aggccttcta tttatttatt taaatattta	
aattttatat ttattgttga atgtatggtt gctacctatt gtaactatta ttcttaatct	120
taaaactata aatatggatc ttttatgatt ctttttgtaa gccctagggg ctctaaaaatg	180
gtttacctta tttatcccaa aaatatttat tattatgttg aatgttaaat atagtatcta	240
tgtagattgg ttagtaaaac tatttaataa atttgataaa tataaaaaaa aaaaacaaaa	300

aaaaaaa	307
<210> 13 <211> 15 <212> RPA <213> Artificial	
<220> <223> Description of Artificial Sequence: Motif	
<220> <221> misc_feature <222> (1)(15) <223> n = a, t, g or c	
<400> 13 nauuuauuua uuuan	15
<210> 14 <211> 62 <212> DNA <213> Homo sapiens	
<400> 14 ttetgeeete gageecaceg ggaacgaaag agaageteta tetegeetee aggageecag	60
ct	62
<210> 15 <211> 427 <212> DNA <213> Homo sapiens	
<400> 15 tagcatgggc acctcagatt gttgttgtta atgggcattc cttcttctgg tcagaaacct	60
gtccactggg cacagaactt atgttgttct ctatggagaa ctaaaagtat gagcgttagg	120
acactatttt aattatttt aattattaa tattaaata tgtgaagctg agttaattta	180
tgtaagtcat atttatattt ttaagaagta ccacttgaaa cattttatgt attagttttg	240
aaataataat ggaaagtggc tatgcagttt gaatatcctt tgtttcagag ccagatcatt	300
tottggaaag tgtaggotta ootcaaataa atggotaaot tatacatatt tttaaagaaa	360
tatttatatt gtatttatat aatgtataaa tggtttttat accaataaat ggcattttaa	420
aaaattc	427

5

<210> 16

<211> <212> <213>	15 RNA Art	ificial					
<220> <223>	Des	cription of	Artificial	Sequence:	Motif		
	(1)	c_feature (15) a, t, g or	С				
<400> nauuuau	16 uuua	uuuan					15
<210> <211> <212> <213>	17 701 DNA Home	o sapiens					
<400> aagagct	17 tcca	gagagaagtc	gaggaagaga	gagacggggt	cagagagagc	gcgcgggcgt	60
gcgagca	agcg	aaagcgacag	gggcaaagtg	agtgacctgc	ttttgggggt	gaccgccgga	120
gcgcgg	egtg	agccctcccc	cttgggatcc	cgcagctgac	cagtcgcgct	gacggacaga	180
cagacag	gaca	ccgcccccag	ccccagttac	cacctcctcc	ccggccggcg	gcggacagtg	240
gacgcgg	gegg	cgagccgcgg	gcaggggccg	gagecegece	ccggaggcgg	ggtggagggg	300
gtcggag	gete	geggegtege	actgaaactt	ttcgtccaac	ttetgggetg	ttctcgcttc	360
ggaggag	geeg	tggtccgcgc	gggggaagcc	gageegageg	gageegegag	aagtgctagc	420
teggge	eggg	aggagccgca	gccggaggag	ggggaggagg	aagaagagaa	ggaagaggag	480
aggggg	eege	agtggcgact	eggegetegg	aagccgggct	catggacggg	tgaggcggcg	540
gtgtgcg	gcag	acagtgctcc	agegegegeg	ctccccagcc	ctggcccggc	ctcgggccgg	600
gaggaag	gagt	agetegeega	ggcgccgagg	agagegggee	gccccacagc	ccgagccgga	660
gagggad	egeg	agccgcgcgc	cccggtcggg	cctccgaaac	с		701
<210> <211> <212> <213>	18 1892 DNA Homo	sapiens					
<400> tgagccg	18 1 g gc	aggaggaagg	agcctccctc	agggtttcgg	gaaccagatc	tetetecagg	60
aaagact	gat	acagaacgat	cgatacagaa	accacgctgc	cgccaccaca	ccatcaccat	120

cgacagaaca	gtccttaatc	cagaaacctg	aaatgaagga	agaggagact	ctgcgcagag	180
cactttgggt	ccggagggcg	agactccggc	ggaagcattc	ccgggcgggt	gacccagcac	240
ggtccctctt	ggaattggat	tegecatttt	atttttcttg	ctgctaaatc	accgagcccg	300
gaagattaga	gagttttatt	tetgggatte	ctgtagacac	acccacccac	atacatacat	360
ttatatatat	atatattata	tatatataaa	aataaatatc	tctattttat	atatataaaa	420
tatatatatt	cttttttaa	attaacagtg	ctaatgttat	tggtgtcttc	actggatgta	480
tttgactgct	gtggacttga	gt'tgggaggg	gaatgttccc	actcagatcc	tgacagggaa	540
gaggaggaga	tgagagactc	tggcatgatc	tttttttgt	cccacttggt	ggggccaggg	600
tectetecee	tgcccaagaa	tgtgcaaggc	cagggcatgg	gggcaaatat	gacccagttt	660
tgggaacacc	gacaaaccca	gccctggcgc	tgagcctctc	taccccaggt	cagacggaca	720
gaaagacaaa	tcacaggttc	cgggatgagg	acaccggctc	tgaccaggag	tttggggagc	780
ttcaggacat	tgctgtgctt	tggggattcc	ctccacatgc	tgcacgcgca	tetegecece	840
aggggcactg	cctggaagat	tcaggagcct	gggcggcctt	cgcttactct	cacctgcttc	900
tgagttgccc	aggaggccac	tggcagatgt	cccggcgaag	agaagagaca	cattgttgga	960
agaagcagcc	catgacagcg	cocottootg	ggactcgccc	tcatcctctt	cetgetecec	1020
ttcctggggt	gcagcctaaa	aggacctatg	tcctcacacc	attgaaacca	ctagttctgt	1080
cccccagga	aacctggttg	tgtgtgtgtg	agtggttgac	cttcctccat	cccctggtcc	1140
ttcccttccc	ttcccgaggc	acagagagac	agggcaggat	ccacgtgccc	attgtggagg	1200
cagagaaaag	agaaagtgtt	ttatatacgg	tacttattta	atatcccttt	ttaattagaa	1260
attagaacag	ttaatttaat	taaagagtag	ggttttttt	cagtattctt	ggttaatatt	1320
taatttcaac	tatttatgag	atgtatcttt	tgctctctct	tgctctctta	tttgtaccgg	1380
tttttgtata	taaaattcat	gtttccaatc	tetetetece	tgatcggtga	cagtcactag	1440
cttatcttga	acagatattt	aattttgcta	acactcagct	ctgccctccc	cgatcccctg	1500
getececage	acacatteet	ttgaaagagg	gtttcaatat	acatctacat	actatatata	1560
tattgggcaa	cttgtatttg	tgtgtatata	tatatatata	tgtttatgta	tatatgtgat	1620
cctgaaaaaa	taaacatcgc	tattctgttt	tttatatgtt	caaaccaaac	aagaaaaaat	1680
agagaattct	acatactaaa	teteteteet	tttttaattt	taatatttgt	tatcatttat	1740
++»++aataa	tactotttat	ccgtaataat	tgtggggaaa	agatattaac	atcacgtctt	1800

egicecetagi geagiittie ga	agatattee gtagi	acata tttatttta	aacaacgaca 1800
aagaaataca gatatatett aa	aaaaaaaa aa		1892
<210> 19 <211> 249 <212> RNA <213> Homo sapiens			
<400> 19			
ccgggcucau ggacggguga gg	geggeggug ugege	agaca gugcuccage	gcgcgcgcuc 60
cccagecoug geoeggeoue go	ggccgggag gaaga	guage uegeegagge	gccgaggaga 120
gegggeegee ceacageeeg ag	gccggagag ggacg	cgage egegegeeee	ggucgggccu 180
ccgaaaccau gaacuuucug cu	ugucuuggg ugcau	uggag ccuugccuug	cugcucuacc 240
uccaccaug			249
<210> 20 <211> 15 <212> RNA <213> Artificial			
<220> <223> Description of Ar	rtificial Seque	nce: Motif	
<220> <221> misc_feature <222> (1)(15) <223> n = a, t, g or c			
<400> 20 nauuuauuua uuuan			15
<210> 21 <211> 49 <212> DNA <213> Homo sapiens			
<400> 21 ccgccagatt tgaatcgcgg ga	accegttgg cagag	gtgge ggeggegge	49
<210> 22 <211> 1141 <212> DNA <213> Homo sapiens			
<400> 22 qqcctctqgc cqqaqctqcc tq	ratcocada ataza	tacac cactteeraa	gtttattccc 60
ggcccccggc cggagccgcc cg	galoccaya yiygo	cycuo caccicolayy	galeaticoo 00

8

tggtgccacc	agccttcctg	tgggcccctt	agcaatgtct	taggaaagga	gatcaacatt	120
ttcaaattag	atgtttcaac	tgtgctcctg	ttttgtcttg	aaagtggcac	cagaggtgct	180
totgcctgtg	cagegggtge	tgctggtaac	agtggctgct	tetetetete	tctctcttt	240
ttgggggctc	atttttgctg	ttttgattcc	cgggcttacc	aggtgagaag	tgagggagga	300
agaaggcagt	gtcccttttg	ctagagctga	cagctttgtt	cgcgtgggca	gageetteea	360
cagtgaatgt	gtctggacct	catgttgttg	aggetgteae	agtcctgagt	gtggacttgg	420
caggtgcctg	ttgaatctga	gctgcaggtt	ccttatctgt	cacacctgtg	cctcctcaga	480
ggacagtttt	tttgttgttg	tgtttttttg	tttttttt	ttggtagatg	catgacttgt	540
gtgtgatgag	agaatggaga	cagagtccct	ggctcctcta	ctgtttaaca	acatggcttt	600
cttattttgt	ttgaattgtt	aattcacaga	atagcacaaa	ctacaattaa	aactaagcac	660
aaagccattc	taagtcattg	gggaaacggg	gtgaacttca	ggtggatgag	gagacagaat	720
agagtgatag	gaagegtetg	gcagatactc	cttttgccac	tgctgtgtga	ttagacaggc	780
ccagtgagcc	gcggggcaca	tgctggccgc	teeteeetea	gaaaaaggca	gtggcctaaa	840
teetttttaa	atgacttggc	tegatgetgt	gggggactgg	ctgggctgct	gcaggccgtg	900
tgtctgtcag	cccaacette	acatctgtca	cgttctccac	acgggggaga	gacgcagtcc	960
geceaggtee	ccgctttctt	tggaggcagc	agetecegea	gggctgaagt	ctggcgtaag	1020
atgatggatt	tgattcgccc	tectecetgt	catagagetg	cagggtggat	tgttacagct	1080
tegetggaaa	cctctggagg	tcatctcggc	tgttcctgag	aaataaaaag	cctgtcattt	1140
С						1141
<210> 23 <211> 247 <212> DNA <213> Homo	sapiens					
<400> 23	gegeggeege	agcagcetee	qcccccqca	cagtatgage	gcccgacgcg	60
	ceggagtece					120
	gteggegtee					180
	ctgactccgt					240
gcagcag			333.3.5.	23-3-3-9-		247

<210> 24

<211> 1716 <212> DNA <213> Homo sapiens

<400> 24

tgaccacgga ggatagtatg agccctaaaa atccagactc tttcgatacc caggaccaag 60 ccacagcagg tectecatee caacagceat geoegeatta getettagae ccacagactg 120 gttttgcaac gtttacaccg actagccagg aagtacttcc acctcgggca cattttggga 180 agttgcattc ctttgtcttc aaactgtgaa gcatttacag aaacgcatcc agcaagaata 240 ttgtcccttt gagcagaaat ttatctttca aagaggtata tttgaaaaaa aaaaaaaaag 300 360 tatatgtgag gatttttatt gattggggat cttggagttt ttcattgtcg ctattgattt ttacttcaat gggetettee aacaaggaag aagettgetg gtageacttg ctaccetgag 420 480 ttcatccagg cccaactgtg agcaaggagc acaagccaca agtcttccag aggatgcttg attocagtgg ttotgottca aggottccac tgcaaaacac taaagatcca agaaggoott 540 catggcccca gcaggccgga tcggtactgt atcaagtcat ggcaggtaca gtaggataag 600 ccactetate cetteetaga caaaqaaqaa acqqaqqqqa tqaattette ettaqaetta 660 720 cttttgtaaa aatgtcccca cggtacttac tccccactga tggaccagtg gtttccagtc atgagogita gactgacttg tttgtcttcc attccattgt tttgaaactc agtatgccgc 780 ccctgtcttg ctgtcatgaa atcagcaaga gaggatgaca catcaaataa taactcggat 840 900 tecageecac attggattea teageatttg gaccaatage ceacagetga gaatgtggaa 960 tacctaagga taacaccgct tttgttctcg caaaaacgta tctcctaatt tgaggctcag atqaaatqca tcaggtcctt tggggcatag atcagaagac tacaaaaatg aagctgctct 1020 qaaatctcct ttaqccatca ccccaacccc ccaaaattaq tttgtgttac ttatggaaga 1080 tagttttctc cttttacttc acttcaaaag ctttttactc aaagagtata tgttccctcc 1140 aggtcagetg cccccaaacc ccctccttac gctttgtcac acaaaaagtg tctctgcctt gagteateta tteaageact tacagetetg gecacaacag ggcattttac aggtgcgaat 1260 gacagtagca ttatgagtag tgtgaattca ggtagtaaat atgaaactag ggtttgaaat 1320 tgataatgct ttcacaacat ttgcagatgt tttagaagga aaaaagttcc ttcctaaaat 1380 aatttotota caattggaag attggaagat toagctagtt aggagoccat tttttootaa 1440 tctqtgtgtg ccctgtaacc tgactggtta acagcagtcc tttgtaaaca gtgttttaaa 1500 ctctcctagt caatatccac cccatccaat ttatcaagga agaaatggtt cagaaaatat . 1560

tttcagccta	cagttatgtt	cagtcacaca	cacatacaaa	atgttccttt	tgcttttaaa	1620
gtaatttttg	acteceagat	cagteagage	ccctacagca	ttgttaagaa	agtatttgat	1680
ttttgtctca	atgaaaataa	aactatattc	atttcc			1716
<210> 25 <211> 160 <212> DNA <213> Hom						
<400> 25			-44			60
	gggccggcgc					
	ctccgggtgg			ggctggaggc	egeegagget	120
cgccatgccg	ggagaactct	aactccccca	tggagtcggc			160
<210> 26 <211> 130 <212> DNA <213> Home	6 o sapiens					
<400> 26	ggctgtggga	ceacec†aaa	ccaacc†cca	acadadaccc	agggagtggt	60
	cggatctcga					120
						180
	aaagcctggc					
	gatgaggggg					240
ggggctgagc	tgggagcccg	gcaactctag	tatttaggat	aacttgtgcc	ttggaaatgc	300
aaactcaccg	ctccaatgcc	tactgagtag	ggggagcaaa	tegtgeettg	tcattttatt	360
tggaggtttc	ctgcctcctt	cccgaggcta	cagcagaccc	ccatgagaga	aggagggag	420
caggcccgtg	gaggagggg	gctcagggag	ctgagatccc	gacaagcccg	ccagccccag	480
ccgctcctcc	acgcctgtcc	ttagaaaggg	gtggaaacat	agggacttgg	ggcttggaac	540
ctaaggttgt	tccctagttc	tacatgaagg	tggaggtctc	tagttccacg	cctctcccac	600
ctccctccgc	acacacccca	cccagcctgc	tataggctgg	ctttcccttg	gggctggaac	660
tcactgcgat	ggggtcacca	ggtgaccagt	ggagccccca	ccccgagtca	gaccagaaag	720
ctaggtcgtg	ggtcagctct	gaggatgtat	acccctggtg	ggagaggag	acctagagat	780
ctggctgtgg	ggcgggcatg	gggggtgaag	ggccactggg	acceteagee	ttgtttgtac	840
tgtatgcctt	cagcattgcc	taggaacacg	aagcacgatc	agtccatcca	gagggaccgg	900
agttatgaca	agetteccaa	atattttgct	ttatcagccg	atatcaacac	ttgtatctgg	960

cctctgtgcc	cagcagtgcc	ttgtgcaatg	tgaatgtacc	gtctctgcta	aaccaccatt	1020
ttatttggtt	ttgttttgtt	tggttttctc	ggatacttgc	caaaatgaga	ctctccgtcg	1080
gcagctgggg	gaagggtctg	agactctctt	tecttttggt	tttgggatta	cttttgatcc	1140
tgggggacca	atgaggtgag	gggggttctc	ctttgccctc	agettteeca	geecteegge	1200
ctgggctgcc	cacaaggctt	ctcccccaga	ggccctggct	cctggtcggg	aagggaggtg	1260
cetecegeca	acgcatcact	ggggctggga	gcagggaagg	gaattc		1306
	o sapiens					
<400> 27 agcgagagcg	cccccgagca	gegeeegege	ceteegegee	tteteegeeg	ggacctcgag	60
cgaaagacgc	ccgcccgccg	cccagccctc	geeteeetge	ccaccgggca	caccgcgccg	120
ccaccccgac	cccgctgcgc	acggectgte	cgctgcacac	cagcttgttg	gcgtcttcgt	180
cgccgcgctc	geceeggget	actcctgcgc	gccaca			216
	o sapiens					
<400> 28 taaatgctac	ctgggtttcc	agggcacacc	tagacaaaca	rgggagaaga	gtgtcagaat	60
cagaatcatg	gagaaaatgg	gcgggggtgg	tgtgggtgat	gggactcatt	gtagaaagga	120
ageettgete	attcttgagg	agcattaagg	tatttcgaaa	ctgccaaggg	tgctggtgcg	180
gatggacact	aatgcagcca	cgattggaga	atactttgct	tcatagtatt	ggagcacatg	240
ttactgcttc	attttggagc	ttgtggagtt	gatgactttc	tgttttctgt	ttgtaaatta	300
tttgctaagc	atattttctc	taggcttttt	teettttggg	gttctacagt	cgtaaaagag	360
ataataagat	tagttggaca	gtttaaagct	tttattcgtc	ctttgacaaa	agtaaatggg	420
agggcattcc	atcccttcct	gaagggggac	actccatgag	tgtctgtgag	aggcagctat	480
ctgcactcta	aactgcaaac	agaaatcagg	tgttttaaga	ctgaatgttt	tatttatcaa	540
aatgtagett	ttggggaggg	aggggaaatg	taatactgga	ataatttgta	aatgatttta	600
	cantnaaaan					660

	aaaaaaaa	aaaaaa				687
<210> 29 <211> 310 <212> DNA <213> Home	o sapiens					
<400> 29	aaaceegage	anathaaaaa	caacacacaca	anaaaaaaa	aactagggg	60
						120
	ggtgggtgtc					
	tagcggacgg					180
ggaggcggct	ctccccaggc	ggcgtccgcg	gagacaccca	tccgtgaacc	ccaggtcccg	240
ggccgccggc	tegeegegea	ccaggggccg	gcggacagaa	gageggeega	gcggctcgag	300
gctgggggac						310
<210> 30						
<211> 588	2					
<212> DNA	sapiens					
<400> 30						
ctgctaagag	ctgattttaa	tggccacatc	taatctcatt	tcacatgaaa	gaagaagtat	60
	ctgattttaa tttgttaatg					60 120
attttagaaa	-	agagtaaaag	aaaataaatg	tgtatagctc	agtttggata	
attttagaaa attggtcaaa	tttgttaatg	agagtaaaag tccagtagta	aaaataaatg aaatatgtaa	tgtatagete ccattgtccc	agtttggata agtaaagaaa	120
attttagaaa attggtcaaa aataacaaaa	tttgttaatg caattttta	agagtaaaag tccagtagta gtatattctc	aaaataaatg aaatatgtaa ccttttatat	tgtatagete ccattgtece tgcatetget	agtttggata agtaaagaaa gttacccagt	120 180
attttagaaa attggtcaaa aataacaaaa gaagcttacc	tttgttaatg caattttta gttgtaaaat	agagtaaaag tccagtagta gtatattctc atctttttca	aaaataaatg aaatatgtaa ccttttatat cgcatttgct	tgtatagete ccattgtccc tgcatctgct ttattcgaaa	agtttggata agtaaagaaa gttacccagt agaggotttt	120 180 240
attttagaaa attggtcaaa aataacaaaa gaagcttacc aaaatgtgca	tttgttaatg caattttta gttgtaaaat tagagcaatg	agagtaaaag tccagtagta gtatattotc atctttttca caaaatttct	aaaataaatg aaatatgtaa ccttttatat cgcatttgct tcatggaaat	tgtatagete ceattgtece tgcatetget ttattegaaa catatacatt	agtttggata agtaaagaaa gttacccagt agaggctttt agaaaatcac	120 180 240 300
attttagaaa attggtcaaa aataacaaaa gaagettaee aaaatgtgea agtcagatgt	tttgttaatg caattttta gttgtaaaat tagagcaatg tgtttagaaa	agagtaaaag tccagtagta gtatattotc atctttttca caaaatttct caaaatgtcc	aaaataaatg aaatatgtaa ccttttatat cgcatttgct tcatggaaat actatttctt	tgtatagete ceattgtece tgcatetget ttattcgaaa catatacatt atgtcattcg	agtttggata agtaaagaaa gttacccagt agaggctttt agaaaatcac ttagtctaca	120 180 240 300 360
attttagaaa attggtcaaa aataacaaaa gaagcttacc aaaatgtgca agtcagatgt tgtttctaaa	titgttaatg caattttta gttgtaaaat tagagcaatg tgtttagaaa ttaatcaatc	agagtaaaag tccagtagta gtatattctc atctttttca caaaatttct caaaatgtcc tgaatttaat	aaaataaatg aaatatgtaa ccttttatat cgcatttgct tcatggaaat actatttctt caattccttt	tgtatagete ccattgtccc tgcatetget ttattcgaaa catatacatt atgtcattcg catagtttta	agtttggata agtaaagaaa gttacccagt agaggctttt agaaaatcac ttagtctaca taattctctg	120 180 240 300 360 420
attttagaaa attggtcaaa aataacaaaa gaagcttacc aaaatgtgca agtcagatgt tgtttctaaa gcagttcctt	tttgttaatg caattttta gttgtaaaat tagagcaatg tgtttagaaa ttaatcaatc catataaatg	agagtaaaag tccagtagta gtatattctc atcttttca caaaatttct caaaatgtcc tgaatttaat ttataaaaca	aaaataaatg aaatatgtaa cottttatat cgcatttgct tcatggaaat actattcctt caattccttt gtcctgtgta	tgtatagete ceattgteec tgcatetget ttattegaaa catatacatt atgteatteg catagttta aactgetgga	agtttggata agtaaagaaa gttacccagt agaggctttt agaaaatcac ttagtctaca taattctctg agttottcca	120 180 240 300 360 420 480
attttagaaa attggtcaaa aataacaaaa gaagcttacc aaaatgtgca agtcagatgt tgtttctaaa gcagttcctt cagtcaggtc	tttgttaatg caattttta gttgtaaaat tagagcaatg tgtttagaaa ttaatcaatc catataaatg atgatagagt	agagtaaaag tccagtagta gtatattctc atcttttca caaaattct caaaattct tgaattaat ttataaaaca aacccttctc	aaaataaatg aaatatgtaa ccttttatat cgcatttgct tcatggaaat actattctt caattccttt gtcctgtgta tgtacccata	tgtatagctc ccattgtccc tgcatctgct ttattcgaaa catatacatt atgtcattcg catagttta aactgctgga cagcagcagc	agtttggata agtaaagaaa gttacccagt agaggctttt agaaaatcac ttagtctaca taattctctg agttcttcca ctagcaactc	120 180 240 300 360 420 480 540
attttagaaa attggtcaaa aataacaaaa gaagcttacc aaaatgtgca agtcagatgt tgtttctaaa gcagttcctt cagtcaggtc	tttgttaatg caatttttta gttgtaaaat tagagcaatg tgtttagaaa ttaatcaatc catataaatg atgatagagt aatttgtca	agagtaaaag tccagtagta gtatattctc atctttttca caaaatttct caaaatgtcc tgaatttaat ttataaaaca aaccettctc ttttcagtct	aaaataaatg aaatatgtaa cottttatat cgcatttgot tcatggaaat actattctt caattccttt gtcctgtgta tgtacccata tcgccaggtc	tgtatagete ceattgteee tgcatetget ttattegaaa catatacatt atgteatteg catagttta aactgetgga cageageage attgagatee	agtttggata agtaaagaaa gttacccagt agaggotttt agaaaatcac ttagtctaca taattctctg agttettcca ctagcaactc atccactcac	120 180 240 300 360 420 480 540
attttagaaa attggtcaaa aataacaaaa gaagcttacc aaaatgtgca agtcagatgt tgtttctaaa gcagttcett cagtcaggtc tgctggtgat atcttaagca	tttgttaatg caatttttta gttgtaaaat tagagcaatg tgtttagaaa ttaatcaatc catataaatg atgatagagt aattttgtca gggagttgta	agagtaaaag tccagtagta gtatattctc atcattttca casaatttct casaatgtcc tgaattaat ttataaaaca aaccettctc ttttcagtct casaasttta	aaataaatg aaatatgtaa cottttatat cgcatttgot toatggaaat actattctt caattcettt gtcctgtgta tggccata tcgccaggtc tggtgaatga	tgtatagctc ccattgtccc tgcatctgct ttattcgaaa catatacatt atgtcattcg catagtttta aactgctgga cagcagcagc attgagatcc atatggcttt	agtttggata agtaaagaaa gttacccagt agaggctttt agaaatcac ttagtctaca taattctctg agttottcca ctagcaactc atccactcac aggcggcaga	120 180 240 300 360 420 480 540 600

ctcctacgta aaaaaagaga tgtacaaatc aataataatt acacttttag aaactgtatc 900

960	cctaacaaag	aaaacattac	gtaaaggctc	gtagcattat	ttcagttaaa	atcaaa g att
1020	aatattttct	gaaatcccaa	tggatatcaa	ctttgccttg	aatacaaatt	taaagttttc
1080	gctacttgga	ttctttggct	tgctgaatat	gcttttgaaa	aattcaagaa	taccactgta
1140	gctctttttc	acttcttgct	gctctttta	tttggggtca	cctgtacatt	ggettateta
1200	agttcctttg	gcatggctgc	aaaacatttt	ttgaaaagtt	aaaatataga	ccaaaaggta
1260	aatgctggag	tcaacaccga	attcatttct	aagaacttag	taagattcca	tttcttgaga
1320	aacaaaggtt	tttataattc	tataaataat	aaacttggaa	agttttcaag	gtgtttgatc
1380	ggatttttat	ttgtgtggca	aaatgcaaat	tttttcaatt	ataaggttga	ttcacatttt
1440	ctctaactgg	cagatggtcc	tctacacatc	ggctgctttt	atatttttgt	tgccattaac
1500	agaagccctt	agtatttagg	tgtctcccaa	gttctgtcat	attttgtgat	gctttctcta
1560	cagacaaaga	acaattgtca	ggaaagcttc	ccactttgct	ccttcctcta	taaaaagctg
1620	taaatgatat	tgtcaaatag	ttttcttgtt	ttgcctctat	aatactcgtt	tttttgttcc
1680	cacagaaaca	aagaggaagt	acatgcaaag	ctggtgaaaa	agtaattcta	ttgcccttgc
1740	cttacccatc	catagactgt	actgtcttac	gtgactgtag	cccatgtgct	tgtctcaatt
1800	agaaagagta	aaagatgcat	atagctatgg	tttccctcta	gctcttgttt	ccctggatat
1860	gaetteeett	attacatgct	ccatttttca	cattcatctg	aaacataagg	taatgtttta
1920	ataaaagaaa	aactgaaagc	ggttagaaac	ggttaaacat	tttgcccata	acaattgaga
1980	ggccaaagca	cactttggga	atattccctg	gctcatgcct	gggtgcagtg	aatctaggcc
2040	ctctacaaaa	gaaaccccgt	ccaacctggt	gagttcaaga	ttgagcccag	ggaggatege
2100	cttgggaggc	gtctcagata	tgtacatgtg	catggtggcg	aatagccagg	aaacacaaaa
2160	gccataatcg	gttgcagtga	agaggtcaag	cttgaggctg	gggttgatca	tgaggtggga
2220	agagaaattt	teteaaaaaa	tgagactttg	ggcaacagag	gtccagccta	gecactgca
2280	taaatttatt	catttgttat	atgtgcaata	ttttactctg	gaaaagtaat	ccttaataa
2340	gtttaaatgt	cccctaacat	tataaaatat	tcttaaattg	gtagcactag	atttaagatg
2400	tgttattaaa	aatacatgtt	attatgggga	ttgaaaaata	tcattatgct	ccatttttat
2460	taacttgttt	taacatctcc	aaatttgata	cactagtctt	aagatagtag	ttattatta
2520	tttagctctt	ggggatccta	aataaattat	tatgcttgaa	ttttattctt	aatgtccat

agtaccacta atcaaaagtt cggcatgtag ctcatgatct atgctgtttc tatgtcgtgg 2580 aagcaccgga tgggggtagt gagcaaatct gccctgctca gcagtcacca tagcagctga 2640 ctgaaaatca qcactgcctg agtagttttg atcagtttaa cttgaatcac taactgactg 2700 2760 aaaattgaat qqqcaaataa qtqcttttgt ctccagagta tgcgggagac ccttccacct caagatqqat atttcttccc caaggatttc aagatgaatt gaaattttta atcaagatag 2820 tqtqctttat tctgttgtat tttttattat tttaatatac tgtaagccaa actqaaataa 2880 catttgctgt tttataggtt tgaagaacat aggaaaaact aagaggtttt gtttttattt 2940 ttgctgatga agagatatgt ttaaatatgt tgtattgttt tgtttagtta caqqacaata 3000 atgaaatgga gtttatattt gttatttota ttttgttata tttaataata gaattagatt 3060 qaaataaaat ataatgggaa ataatetgea gaatgtgggt tteetggtgt tteetetgae 3120 totaqtqcac tqatqatoto tgataaggot cagotgottt atagttotot ggotaatgca 3180 gcagatactc ttcctgccag tggtaatacg atttttaag aaggcagttt gtcaatttta 3240 atcttgtgga tacctttata ctcttagggt attattttat acaaaagcct tgaggattgc 3300 attotattit ctatatgacc ctcttgatat ttaaaaaaca ctatggataa caattottca 3360 tttacctagt attatgaaag aatgaaggag ttcaaacaaa tgtgtttccc agttaactag 3420 ggtttactgt ttgagccaat ataaatgttt aactgtttgt gatggcagta ttcctaaagt 3480 3540 acattgcatg ttttcctaaa tacagagttt aaataatttc agtaattctt agatgattca getteateat taagaatate ttttgtttta tgttgagtta gaaatgeett catatagaca 3600 tagtotttca gacctotact gtcagttttc atttctagct gctttcaggg ttttatgaat 3660 tttcaqqcaa agctttaatt tatactaagc ttaggaagta tggctaatgc caacggcagt 3720 ttttttcttc ttaattccac atgactgagg catatatgat ctctgggtag gtgagttgtt 3780 3840 gtgacaacca caagcacttt ttttttttt aaagaaaaaa aggtagtgaa tttttaatca 3900 totggactit aagaaggatt otggagtata ottaggootg aaattatata tatttggott ggaaatgtgt ttttcttcaa ttacatctac aagtaagtac agctgaaatt cagaggaccc 3960 ataagagttc acatgaaaaa aatcaattca tttgaaaagg caagatgcag gagagaggaa 4020 gccttgcaaa cctgcagact gctttttgcc caatatagat tgggtaaggc tgcaaaacat 4080 aagettaatt ageteacatg etetgetete aegtggeace agtggatagt gtgagagaat 4140 taggetgtag aacaaatgge ettetettte ageatteaca ceactacaaa atcatetttt 4200 atatcaacag aagaataagc ataaactaag caaaaggtca ataagtacct gaaaccaaga 4260

4320 ttggctagag atatatctta atgcaatcca ttttctgatg gattgttacg agttggctat ataatgtatg tatggtattt tgatttgtgt aaaagtttta aaaatcaagc tttaagtaca 4380 tgcacatttt taaataaaat atttaaagac aatttagaaa attgccttaa tatcattgtt 4440 ggctaaatag aataggggac atgcatatta aggaaaaggt catggagaaa taatattggt 4500 atcaaacaaa tacattgatt tgtcatgata cacattgaat ttgatccaat agtttaagga 4560 ataqqtaqqa aaatttggtt tetatttttc gattteetgt aaateagtga cataaataat 4620 tettagetta tittatatit cettgtetta aatactgage teagtaagtt gtgttagggg 4680 attatttctc agttgagact ttcttatatg acattttact atgttttgac ttcctgacta 4740 ttaaaaaataa atagtagaaa caattttcat aaagtgaaga attatataat cactgcttta 4800 taactgactt tattatattt atttcaaagt tcatttaaag gctactattc atcctctgtg 4860 4920 atggaatggt caggaatttg ttttctcata gtttaattcc aacaacaata ttagtcgtat ccaaaataac ctttaatgct aaactttact gatgtatatc caaagcttct ccttttcaga 4980 cagattaatc cagaagcagt cataaacaga agaataggtg gtatgttcct aatgatatta 5040 tttctactaa tggaataaac tgtaatatta gaaattatgc tgctaattat atcagctctg 5100 5160 aggtaatttc tgaaatgttc agactcagtc ggaacaaatt ggaaaattta aatttttatt 5220 cttagctata aagcaagaaa gtaaacacat taatttooto aacatttta agccaattaa 5280 aaatataaaa gatacacacc aatatettet teaggetetg acaggeetee tggaaactte cacatatttt tcaactgcag tataaagtca gaaaataaag ttaacataac tttcactaac 5340 acacacatat gtagatttca caaaatccac ctataattgg tcaaagtggt tgagaatata 5400 5460 ttttttagta attgcatgca aaatttttct agcttccatc ctttctccct cgtttcttct ttttttgggg gagctggtaa ctgatgaaat cttttcccac cttttctctt caggaaatat 5520 aagtggtttt gtttggttaa cgtgatacat tctgtatgaa tgaaacattg gaqqqaaaca 5580 totactgaat ttotgtaatt taaaatattt tgotgotagt taactatgaa cagatagaag 5640 aatottacag atgotgotat aaataagtag aaaatataaa tttoatcact aaaatatgot 5700 attttaaaat ctatttccta tattgtattt ctaatcagat gtattactct tattatttct 5760 attotatoto ttaatgattt tatgtaaaaa tgtaattgct tttcatgagt agtatgaata 5820 5880 5882 aa

<210> 31 <211> 310 <212> DNA <213> Homo sapiens	
<400> 31 cggccccaga aaacccgagc gagtaggggg cggcgcgcag gagggaggag aactgggggc	60
gegggagget ggtgggtgte gggggtggag atgtagaaga tgtgaegeeg eggeeeggeg	120
ggtgccagat tagcggacgg ctgcccgcgg ttgcaacggg atcccgggcg ctgcagcttg	180
ggaggegget etecceagge ggegteegeg gagacaceca teegtgaace ceaggteeeg	240
ggccgccggc tcgccgcgca ccaggggccg gcggacagaa gagcggccga gcggctcgag	300
gctgggggac	310
<210> 32 <211> 3212 <212> DNA <213> Homo sapiens <400> 32	
tgagggegec aggeaggegg gegeeacege caccegeage gagggeggag ceggeeceag	60
gtgeteccet gacagtecet eeteteegga geattttgat accagaaggg aaagetteat	120
teteettgtt gtiggttgtt tttteetttg etettteece etteeatete tgaettaage	180
aaaagaaaaa gattacccaa aaactgtctt taaaagagag agagagaaaa aaaaaatagt	240
atttgcataa ccctgagcgg tgggggagga gggttgtgct acagatgata gaggatttta	300
taccccaata atcaactcgt ttttatatta atgtacttgt ttctctgttg taagaatagg	360
cattaacaca aaggaggggt ctcgggagag gattaggtte catectttac gtgtttaaaa	420
aaaagcataa aaacatttta aaaacataga aaaattcagc aaaccatttt taaagtagaa	480
gagggtttta ggtagaaaaa catattcttg tgcttttcct gataaagcac agctgtagtg	540
gggttctagg catctctgta ctttgcttgc tcatatgcat gtagtcactt tataagtcat	600
tgtatgttat tatattccgt aggtagatgt gtaacctctt caccttattc atggetgaag	660
tcacctcttg gttacagtag cgtagcgtgg ccgtgtgcat gtcctttgcg cctgtgacca	720
ccaccccaac aaaccatcca gtgacaaacc atccagtgga ggtttgtcgg gcaccagcca	780
gogtagcagg gtogggaaag gocacotgto coactoctac gatacgotac tataaagaga	840
agacgaaata gtgacataat atattotatt tttatactot tootattttt gtagtgacot	900
gtttatgaga tgctggtttt ctacccaacg gccctgcagc cagctcacgt ccaggttcaa	960

cccacageta	cceggeeege	geeesteste	acaccccaaa	accarrecar	CECCAAGCAC	1020
tttcagtcca	ataggtgtag	gaaatagcgc	tgtttttgtt	gtgtgtgcag	ggagggcagt	1080
tttctaatgg	aatggtttgg	gaatatccat	gtacttgttt	gcaagcagga	ctttgaggca	1140
agtgtgggcc	actgtggtgg	cagtggaggt	ggggtgtttg	ggaggetgeg	tgccagtcaa	1200
gaagaaaaag	gtttgcattc	tcacattgcc	aggatgataa	gttcctttcc	ttttctttaa	1260
agaagttgaa	gtttaggaat	cctttggtgc	caactggtgt	ttgaaagtag	ggacctcaga	1320
ggtttaccta	gagaacaggt	ggtttttaag	ggttatctta	gatgtttcac	accggaaggt	1380
tttaaacac	taaaatatat	aatttatagt	taaggctaaa	aagtatattt	attgcagagg	1440
atgttcataa	ggccagtatg	atttataaat	gcaatctccc	cttgatttaa	acacacagat	1500
acacacacac	acacacacac	acacacaaac	cttctgcctt	tgatgttaca	gatttaatac	1560
agtttattt	taaagataga	tccttttata	ggtgagaaa	aaacaatctg	gaagaaaaaa	1620
accacacaa	gacattgatt	cagcctgttt	ggcgtttccc	agagtcatct	gattggacag	1680
gcatgggtgc	aaggaaaatt	agggtactca	acctaagttc	ggttccgatg	aattcttatc	1740
ccctgcccct	tcctttaaaa	aacttagtga	caaaatagac	aatttgcaca	tcttggctat	1800
gtaattcttg	taatttttat	ttaggaagtg	ttgaagggag	gtggcaagag	tgtggaggct	1860
gacgtgtgag	ggaggacagg	cgggaggagg	tgtgaggagg	aggetecega	ggggaagggg	1920
cggtgcccac	accggggaca	ggccgcagct	ccattttctt	attgcgctgc	taccgttgac	1980
ttccaggcac	ggtttggaaa	tattcacatc	gcttctgtgt	atctctttca	cattgtttgc	2040
tgctattgga	ggatcagttt	tttgttttac	aatgtcatat	actgccatgt	actagtttta	2100
gttttctctt	agaacattgt	attacagatg	cctttttgt	agttttttt	ttttttatgt	2160
gatcaatttt	gacttaatgt	gattactgct	ctattccaaa	aaggttgctg	tttcacaata	2220
cctcatgctt	cacttagcca	tggtggaccc	agcgggcagg	ttctgcctgc	tttggcgggc	2280
agacacgcgg	gegegatece	acacaggctg	gcgggggccg	gccccgaggc	cgcgtgcgtg	2340
agaaccgcgc	cggtgtcccc	agagaccagg	ctgtgtccct	cttctcttcc	ctgcgcctgt	2400
gatgetggge	acttcatctg	atcgggggcg	tagcatcata	gtagtttta	cagctgtgtt	2460
attctttgcg	tgtagctatg	gaagttgcat	aattattatt	attattatta	taacaagtgt	2520
gtcttacgtg	ccaccacggc	gttgtacctg	taggactctc	attegggatg	attggaatag	2580
cttctggaat	ttgttcaagt	tttgggtatq	tttaatctgt	tatgtactac	tgttctgttt	2640

gttattgttt tg	ttaattac	accataatge	taatttaaag	agactccaaa	tctcaatgaa	2700
gccageteae ag	tgctgtgt	gccccggtca	cctagcaagc	tgccgaacca	aaagaatttg	2760
caccccgctg cg	ggcccacg	tggttggggc	cctgccctgg	cagggtcatc	: ctgtgctcgg	2820
aggecatete gg	gcacaggc	ccaccccgcc	ccacccctcc	agaacacggc	tcacgettae	2880
ctcaaccatc ct	ggctgegg	cgtctgtctg	aaccacgegg	gggccttgag	ggacgetttg	2940
tetgtegtga tg	gggcaagg	gcacaagtcc	tggatgttgt	gtgtatcgag	aggccaaagg	3000
ctggtggcaa gt	gcacgggg	cacageggag	tctgtcctgt	gacgcgcaag	totgagggto	3060
tgggcggcgg ge	ggctgggt	ctgtgcattt	ctggttgcac	cgcggcgctt	cccagcacca	3120
acatgtaacc gg	catgtttc	cagcagaaga	caaaaagaca	aacatgaaag	totagaaata	3180
aaactggtaa aa	ccccaaaa	aaaaaaaaa	aa			3212
<210> 33 <211> 1043 <212> DNA <213> Homo sa	apiens					
<pre><220> <221> misc_fe <222> (409) <223> n = a,</pre>		c				
:400> 33 jcacegegge gag	ettgget (gcttctgggg	cctgtgtggc	cctgtgtgtc	ggaaagatgg	60
gcaagaagc cga	gcccgag q	gggcggccgc	gacccctctg	accgagatcc	tgctgctttc	120
cagccagga gca	ccgtccc t	tccccggatt	agtgcgtacg	agegeceagt	gccctggccc	180
gagagtgga atg	atccccg a	aggcccaggg	cgtcgtgctt	ccgcgcgccc	cgtgaaggaa	240
ctggggagt ctt	gagggac c	cccgactcc	aagcgcgaaa	accccggatg	gtgaggagca	300
gtactggcc cgg	cagegag c	eggtcacttt	tgggtctggg	ctctgacggt	gtcccctcta	360
cgctggttc cca	geetetg e	cccgttcgca	gcctttgtgc	ggttegtgne	tgggggctcg	420
ggcgcggggg cgc	ggggcat g	ggncacgtg	gctttgcgga	ggttttgttg	gactggggct	480
gacagtece ege	cagggag g	jagggcggga	tttcggacgg	ctctcgcggc	ggtgggggtg	540
gggtggttc g ga	ggtctcc g	cgggagtte	agggtaaagg	tcacggggcc	ggggctgcgg	600

geogettegg egegggaggt eeggatgate geagtgeetg tegggteact agtgtgaacg 660

ctgcgcgtag tctgggcggg attgggccgg ttcagtgggc aggttgactc agcttttcct	720
cttgagctgg tcaagttcag acacgttccg aaactgcagt aaaaggagtt aagtcctgac	780
ttgtctccag ctggggctat ttaaaccatg cattttccca gctgtgttca gtggcgattg	840
gagggtagac ctgtgggcac ggacgcacge cactttttct ctgctgatcc aggtaagcac	900
cgacttgett gtagetttag ttttaactgt tgtttatgtt etttatatat gatgtatttt	960
ccacagatgt ttcatgattt ccagttttca tcgtgtcttt tttttccttg taggcaaatg	1020
tgcaatacca acatgtetgt acc	1043
<210> 34 <211> 1153 <212> DNA <213> Homo sapiens <400> 34	
tagttgacct gtctataaga gaattatata tttctaacta tataacccta ggaatttaga	60
caacctgaaa tttattcaca tatatcaaag tgagaaaatg cctcaattca catagatttc	120
ttctctttag tataattgac ctactttggt agtggaatag tgaatactta ctataatttg	180
acttgaatat gtagctcatc ctttacacca actcctaatt ttaaataatt tctactctgt	240
cttaaatgag aagtacttgg tttttttttt cttaaatatg tatatgacat ttaaatgtaa	300
cttattattt tttttgagac cgagtcttgc tctgttaccc aggctggagt gcagtgggtg	360
atottggete actgeaaget etgeeeteee egggttegea ceatteteet geeteageet	420
cccaattagc ttggcctaca gtcatctgcc accacacctg gctaattttt tgtactttta	480
gtagagacag ggtttcaccg tgttagccag gatggtctcg atctcctgac ctcgtgatcc	540
geocaccteg geoteceaaa gtgetgggat tacaggeatg ageoaccgtg etetecagee	600
taggcaacag agtgagacte tgtctccaaa aaaaaaaaa aaaaaagggg actataacac	660
ccccagggaa agggacaggt gggacattct tattcttaat ttaaataaat tgacaggga	720
aagttgggcc actcttgagc ttgtgggtgc tcaccaggtt gaccccaaaa aaagaagcct	780
tccacaaaac attaatttat ttccctaata tacccgcctc tgtgagttaa gggataatgc	840
atcaggactc ttgcaaccag acaaaattat ttaaaaacgc cacttggggg ggaggcgggt	900
ccctcctggg gattcgcctt tgtgggagag aaaactgcac agacttgggc aaataatgtt	960
ttttgtcace ccaaaacgta ttcgcgagac atttcattag aacgaagctt taccctaata	1020
ttgaactccc catttaaaca gtttccacac acacttaggg agatttttcc ctctgtgagt	1080

tecgcagaac aatagttgga egggaataga accetgaaac actttagtte accaegaact	1140
attatagggc ggg	1153
<210> 35 <211> 334 <212> DNA <213> Homo sapiens	
<400> 35 tgactatcca gctctgagag acgggagttt ggagttgccc gctttacttt ggttgggttg	60
ggggggggg cggctgttt tgttcctttt cttttttaag agttgggttt tctttttaa	120
ttatccaaac agtgggcagc ttcctcccc acacccaagt atttgcacaa tatttgtgcg	180
gggtatgggg gtgggttttt aaatotogtt totottggac aagcacaggg atotogttot	240
	300
cctcattttt tgggggtgtg tggggacttc tcaggtcgtg tccccagcct tctctgcagt	334
cccttctgcc ctgccgggcc cgtcgggagg cgcc	224
<210> 36 <211> 543 <212> DNA <213> Homo sapiens	
<400> 36 tagctcagga ccttggctgg gcctggtcgt catgtaggtc aggaccttgg ctggacctgg	60
aggccctgcc cagccctgct ctgcccagcc cagcagggc tccaggcctt ggctggcccc	120
acatogoott ttootocoog acacotocgt goacttgtgt cogaggagog aggagocoot	180
egggeeetgg gtggeetetg ggeeetttet cetgteteeg ceaetecete tggeggeget	240
ggccgtggct ctgtctctct gaggtgggtc gggcgccctc tgcccgcccc ctcccacacc	300
agccaggctg gtotoctota gcctgtttgt tgtggggtgg gggtatattt tgtaaccact	360
gggcccccag cccctctttt gcgacccctt gtcctgacct gttctcggca ccttaaatta	420
ttagaccccg gggcagtcag gtgctccgga cacccgaagg caataaaaca ggagccgtga	480
алдалалана планалана алананалага анананана анананана аланалана	540
aaa	543
,	
<210> 37 <211> 511 <212> DNA <213> Home sapiens	

<400> 37

geteageaag	gggtccgtcc	ttctctgtca	ctgtctcttt	tgcctgttgt	aattctgtct	60
geetetetgg	gactctgcct	gtctcactct	ttctgtctgt	gcctctcctc	actcttgttc	120
tttctgcctg	aatcacagcc	ctcagttttt	ctgtcctcat	gcatttgtct	ttgtggctct	180
ttccgtcttt	ctgcccttga	caccatcccc	tctcccagtg	cttcccctct	gcttccagat	240
cgcttcatga	cttaggcagg	gaaacagagg	tcagggcctc	cttccaggct	tccctctgca	300
tottactgag	tatgcaggtc	ggaagagcct	cgggtcctgc	ctccgcgggt	ggcctagagc	360
caaaggaagg	cggagcccgt	cggggcggga	ttggccctta	gggccacctc	ataaagcctg	420
gggcgagggg	cacaacggcc	ttgggaagga	gccctgctgg	ggccgtccag	tcccccagac	480
ctcacaggct	cagtcgcgga	totgcagtgt	C			511
<210> 38 <211> 458 <212> DNA <213> Homo	o sapiens					
	cagtgaccat	cacatccctt	caagagtcct	gaagatcaag	ccagttctcc	60
ttccctgcag	agctttggcc	attaccacct	gacctcttgc	tgccagctaa	taagaagtgc	120
caagtggaca	gtctggccac	tgtcaaggca	gggaaggggc	catgactttt	ctgccctgcc	180
ctcagcctgt	tgccctgcct	cccaaacccc	attagtctag	ccttgtagct	gttactgcaa	240
gtgtttcttc	tggcttagtc	tgttttctaa	agccaggact	attccctttc	ctccccagga	300
atatgtgttt	tcctttgtct	taatcgatct	ggtaggggag	aaatggcgaa	tgtcatacac	360
atgagatggt	atatccttgc	gatgtacaga	atcagaaggt	ggtttgacag	catcataaac	420
aggotgactg	gcaggaatga	aaaaaaaaa	aaaaaaaa			458
	o sapiens					
<400> 39 ggggccgccg	agagccgcag	cgccgctcgc	ccgccgcccc	ccaccccgcc	gccccgcccg	60
gcgaattgcg	cccgcgccc	tecectegeg	ccccgagac	aaagaggaga	gaaagtttgc	120
geggeegage	gggcaggtga	ggagggtgag	ccgcgcggag	gggcccgcct	cggccccggc	180
teageccccg	cccgcgcccc	cagecegeeg	ccgcgagcag	cgcccggacc	ccccagcggc	240
agececaece	geceageeee	ceancecase				270

<210> 40 <211> 751 <212> DNA <213> Hom						
<222> (53	c_feature 5)(739) a, t, g or	c				
<400> 40 taagcaggcc	tccaacgccc	ctgtggccaa	ctocaaaaaa	agcctccaag	ggtttcgact	60
					cccatgggtc	120
					gtctggaggg	180
agacgtgggt	ccaaggtcct	catcccatcc	tecetetgee	aggcactatg	tgtctggggc	240
ttcgatcctt	gggtgcaggc	agggctggga	cacgcggctt	ccctcccagt	ccctgccttg	300
gcaccgtcac	agatgccaag	caggcagcac	ttagggatct	cccagctggg	ttagggcagg	360
gcctggaaat	gtgcattttg	cagaaacttt	tgagggtcgt	tgcaagactg	tgtagcaggc	420
ctaccaggtc	cctttcatct	tgagagggac	atggcccctt	gttttctgca	gcttccacgc	480
ctctgcactc	cctgcccctg	gcaagtgctc	ccatcgcccc	cggtgcccac	catgnagctc	540
cccgcacctg	actccccca	catccaaggg	cagccctgga	accagtgggc	tagttccttg	600
aaggaagccc	cactcattcc	tattaatccc	tcagaattcc	cggggggagc	cttccctcct	660
gaaccttggt	aaaaaatggg	gaacgagaaa	aacccccgct	tggagctgtg	cgtttccagc	720
ccctacttga	gagncttttt	tttgggggcc	g		•	751
<210> 41 <211> 229 <212> DNA <213> Homo	o sapiens					
<400> 41	connetonne	0002000000	teegegeggg			60
			ctggggcgct			120
			agatttgaaa			180
			gagtcagcct		Cauacoacc	229
	33	- y	5-5-149000	Juangada		223

<210> 42

<pre><211> 233 <212> DNA <213> Homo sapiens</pre>	
<400> 42	
tagcagagag tcctgagcca ctgccaacat ttcccttctt ccagttgcac tattctgagg	60
gaaaatctga cacctaagaa atttactgtg aaaaagcatt ttaaaaagaa aaggttttag	120
aatatgatct attttatgca tattgtttat aaagacacat ttacaattta cttttaatat	180
taaaaattac catattatga aaaaaaaaaaa aaaaaaaaaa	233
<210> 43 <211> 349 <212> DNA <213> Homo sapiens	
<400> 43 ggcacgaggg gcgagaggaa gcagggagga gagtgatttg agtagaaaag aaacacagca	60
ttccaggctg gccccacctc tatattgata agtagccaat gggagcgggt agccctgatc	120
cctggccaat ggaaactgag gtaggcgggt catcgcgctg gggtctgtag tctgagcgct	180
accoggttgc tgctgcccaa ggaccgcgga gtcggacgca ggcagaccat gtggaccctg	240
gtgagctggg tggccttaac agcagggctg gtggctggaa cgcggtgccc agatggtcag	300
ttctgccctg tggcctgctg cctggacccc ggaggagcca gctacagct	349
<210> 44 <211> 337 <212> DNA <213> Homo sapiens	
<400> 44 tgagggacag tactgaagac tctgcagccc tcgggacccc actcggaggg tgccctctgc	60
teaggeetee etageacete eccetaacea aatteteeet ggaceceatt etgageteee	120
catcaccatg ggaggtgggg cctcaatcta aggccttccc tgtcagaagg gggttgtggc	180
aaaagccaca ttacaagctg ccatcccctc cccgtttcag tggaccctgt ggccaggtgc	240
ttttccctat ccacaggggt gtttgtgtgt gtgcgcgtgt gcgtttcaat aaagtttgta	300
cactttcasa aasaasaasa sasaasaasa sasaasaa	337
<210> 45 <211> 1700 <212> DNA <213> Homo sapiens	

60	tgcaaattag	caacaccaaa	gtaatggaat	attataattt	aagttcatag	<400> 45 tgtttgcatt
120	aacgttgggg	gtaaccatag	gtcttcccat	acccagtcac	cactttgctc	aaagagagcc
180	accacaggcc	ggctagccac	tctcagaaca	acagtcttgc	ttctagatcc	tcctgtgtct
240	cagcaatatc	cttctgtgaa	ctcagactcc	tttttttaag	acccatggcc	tagtgccagg
300	tgatacgaaa	cagaactatt	gcaagggcta	ggtgcttcct	gtacaacatt	cccacaactt
360	taatttaatg	aattaataat	caaaataaaa	aagagaagca	acttacacac	atgttcattg
420	ttacacttaa	aagaattgta	ttggggtcat	atttttacat	tgtaccattt	tctttgaaaa
480	tcagtatgtg	tgagaatttc	tetecetttg	atcagatttt	caatttgaag	gaatgcaata
540	taaacgaaca	gagttactca	taaattcagt	tagccagtca	caagaaatca	tgatgactac
600	tacaactgct	caactcagga	tgcttccctt	gaggtaggtc	acttcttggg	agaaccacct
660	aaacaatttt	agcctgtcgt	attagctaga	tagctgacta	ttcttcacat	ttcaactgct
720	caaatcccgg	gagaggtccc	ccctagaaca	gctcagggtt	ccttccctgg	atggttgact
780	attagattct	agcaggcagc	ctgccagatc	gctctgcctc	gtccgcctaa	tetgtggcct
840	gtgcactctt	gatccagatt	gcatgtgcgg	tgtgaactgc	ggacgcctat	cataggagct
900	atcctgaaac	gaacaatttc	atctgaacca	ttgatgatct	taactaatgc	tatgagaatc
960	gtgccaaaaa	atgatecetg	ttccacaaaa	aaatactgtc	caatccatag	catcccccac
1020	ttactatctc	acctcctgta	cttagctctc	aaactctctt	cactccccta	tgttagagac
1080	tattagggag	cctcatttcc	cccatggatg	ccatcttttc	attgaagccc	atctcagtac
1140	tgtcgccaag	agtotogoto	tccgagacgg	tttattttt	attttttgtt	gcatttttt
1200	gttcacgcca	cgcctcccgg	ctgcaagctc	tctcggctca	agtggcgcga	gctggagtgc
1260	cgcccggcta	gcccgcacta	gactacaggc	aagtagctgg	tcagcctccc	ttctcctgcc
1320	gtctcgatct	agccaggatg	tcaccgtggt	agacggggtt	tttttagtag	attttttgta
1380	ggcgtgagac	tgggattaca	cccaaagtgc	gccttggcct	tgatccgccc	cctgacctcg
1440	agtccctggt	gacctagcac	tgtgcctcag	tatgtcttaa	cgtcatttgg	cgcgcccggc
1500	ttaaagagtg	aatacatgaa	ttcaataata	atgttcgtta	gacctatgta	acccagtaga
1560	aagggatggg	cagtgattet	gagaaatagt	acqactqata	ttgtaatgtt	
1620					tggagetaga	
			~ggaaactat	gguegegete	cygaycraya	gaagaacggt

agggattgac	gaagtgtgag	gttaatgagg	aagggaaaat	agaatataaa	atttggtggt	1680
ggaaaagatc	tgattcatga					1700
<210> 46 <211> 241: <212> DNA <213> Home						
<400> 46 taaccagcgg	gcccctggtc	aagtgctggc	tetgetgtee	ttgccttcca	tttcccctct	60
gcacccagaa	cagtggtggc	aacattcatt	gccaagggcc	caaagaaaga	gctacctgga	120
ccttttgttt	tctgtttgac	aacatgttta	ataaataaaa	atgtcttgat	atcagtaaga	180
atcagagtct	tctcactgat	tctgggcata	ttgatctttc	ccccattttc	tctacttggc	240
tgctccctga	gaggactgca	taggatagaa	atgccttttt	cttttctttt	cgttttttt	300
tttttttt	tttgagatgg	agtctcactc	tgtcgcccag	gcttaagtgc	aatggcacaa	360
tctcggctca	ctgcaacctc	teteteetgg	gttcaagtga	ttctcctgcc	tcagcctccc	420
aaatagctga	gattacaggc	atgcaccacc	acacctggct	aatttttgtg	ttttagtag	480
agacagggtt	tcaccgtttt	ggccaggttg	gtcttgaact	cctgacctcg	ggagatccgc	540
ccaccttggc	ctctcttgt	gctgggatta	caggcatgag	ccactgagcc	gggccacttt	600
ttccttatca	gtcagttttt	acaagtcatt	agggaggtag	actttacctc	tctgtgaagg	660
aaagtatggt	atgttgatct	acagagagag	atggaaaaat	tccagggctc	gtagctacta	720
agcagaattt	ccaagatagg	caaattgttt	tttctgtcaa	ataataagct	aatattactt	780
ctacaaatat	gagaccttgg	agagaagttt	ccaaggacca	agtaccaaca	taccaacaga	840
ttattatagt	ttctctcact	cttacacaca	cacacacaca	tatacacata	tgtaatccag	900
catgaatacc	aaaattcatt	cagggtagcc	accttttgtc	ttaatcgaga	gataattttg	960
atgtttgaat	ggaatgctcc	caggatattc	tcttgtcatg	gttattttat	ataaaattca	1020
aaaaccaatt	acattatttc	ctctgtaatc	ttttacttta	tcaactaatg	tctggcaagt	1080
gtgatgtttt	ggggaagtta	tagaagattc	cggccaggcg	cttatctcac	gcttgtaatc	1140
cagcactttg	ggaagctgag	gcggacagat	cacgaggtca	agagatcaag	accatcctgg	1200
acaacatggt	gaaaccttgt	ctctactaaa	aatgtgaaaa	ttagetgggc	gtggtggcac	1260
acacctatag	teccagetae	tegggagget	gaggcaggag	aatcgcttga	acctaggagg	1320
cggaggttgc	actgagccga	gatcacgcca	ctgcactcca	geetgggega	cagagcgaga	1380

ctccatctca	aaaaaaaaa	aaaaagaaag	atcccagttt	atcccagttt	atcccttatt	1440
cttcctcaat	teteaagatt	tgtttttaag	ttaacataac	ttaggttaac	acactctttg	1500
taaaatacac	tgttcaatct	acagactcag	tggttagctt	cctgttaact	aatttctgtt	1560
gacaggtact	tggatatttt	atttagaaag	tggttgccaa	taaattagtt	ataagtcgcc	1620
agtttcactg	ccttgtgaac	acataattat	tgtggtctca	gtattcccta	tggtggcttc	1680
teetgeteet	ggtattgccc	tgaaatgggc	caaaagccgt	ggctccccaa	tgctcaggtt	1740
atagaacatt	gtccaggtac	cacctaggag	agcccagcct	cactgaaagt	attcaaattt	1800
aggaatgggt	ttgagaagta	ggtagctggt	atgtgcttag	cacaagaatc	tetetteett	1860
gggttagtct	gtttcaaaac	tgaaaacact	gtcattcctt	aagaaaatag	gaaaaagtat	1920
tccaaacctc	tgtcactaga	aaatttgcca	tattaccaaa	tctcaaaaac	ctctcaggaa	1980
atgagaaagt	cccagtttct	ggtaaactat	ttgggccctt	ttctcaagtt	ctccttccag	2040
tgctatttcc	ttgaggtgag	gcaaagttac	tcaagatcat	cgctgccact	caaggccttg	2100
atagggcaag	tgaaaggcat	ggaccattat	tatattgatc	acagcataag	ctgtgaaaac	2160
ccacatette	tocaaacate	tgcttggagc	attatcatcg	catagtttgc	tctggtgttc	2220
agggaaatcg	ctgtttcata	ggaaatcaca	tggcagtggg	atgggagtgt	ttcctgacct	2280
gccgatggta	ctggcacctg	agcaagcatt	cctagtcctt	tttggtctgg	gcctcttgtt	2340
ctatcacaac	cacaagctgt	ttaaaataaa	aacgtcaagt	cacaggcagg	tcattttatc	2400
ctgcgtgaat	caattgaag					2419
	o sapiens					
<400> 47 tcctcagtgc	acagtgctgc	ctcgtctgag	gggacaggag	gatcaccctc	ttcgtcgctt	60
cggccagtgt	gtcgggctgg	gecetgacaa	gccacctgag	gagaggeteg	gageegggee	120
cggaccccgg	cgattgccgc	ccgcttctct	ctagtctcac	gaggggtttc	ccgcctcgca	180
ccccacctc	tggacttgcc	tttccttctc	ttctccgcgt	gtggagggag	ccagcgctta	240
ggccggagcg	agectggggg	cegeeegeeg	tgaagacatc	gcggggaccg	attcacc	297

<210> 48 <211> 1192

<212> DNA <213> Homo sapiens					
<400> 48 tgagettttt ettaatttea	ttccttttt	tggacactgg	tggctcacta	cctaaagcag	60
totatttata ttttctacat	ctaattttag	aagcctggct	acaatactgo	acaaacttgg	120
ttagttcaat ttttgatccc	ctttctactt	aatttacatt	aatgctcttt	tttagtatgt	180
totttaatgo tggatcacag	acagctcatt	ttctcagttt	tttggtattt	aaaccattgc	240
attgcagtag catcatttta	aaaaatgcac	ctttttattt	atttatttt	ggctagggag	300
tttatccctt tttcgaatta	ttttaagaa	gatgccaata	taatttttgt	aagaaggcag	360
taacctttca tcatgatcat	aggcagttga	aaaattttta	caccttttt	ttcacatttt	420
acataaataa taatgctttg	ccagcagtac	gtggtagcca	caattgcaca	atatatttc	480
ttaaaaaata ccagcagtta	ctcatggaat	atattctgcg	tttataaaac	tagtttttaa	540
gaagaaattt tttttggcct	atgaaattgt	taaacctgga	acatgacatt	gttaatcata	600
taataatgat tottaaatgo	tgtatggttt	attatttaaa	tgggtaaagc	catttacata	660
atatagaaag atatgcatat	atctagaagg	tatgtggcat	ttatttggat	aaaattctca	720
attcagagaa atcatctgat	gtttctatag	tcactttgcc	agctcaaaag	aaaacaatac	780
cctatgtagt tgtggaagtt	tatgctaata	ttgtgtaact	gatattaaac	ctaaatgttc	840
tgcctaccct gttggtataa	agatattttg	agcagactgt	aaacaagaaa	aaaaaaatca	900
tgcattctta gcaaaattgc	ctagtatgtt	aatttgctca	aaatacaatg	tttgatttta	960
tgcactttgt cgctattaac	atccttttt	tcatgtagat	ttcaataatt	gagtaatttt	1020
agaagcatta ttttaggaat	atatagttgt	cacagtaaat	atcttgtttt	ttctatgtac	1080
attgtacaaa tttttcattc	cttttgctct	ttgtggttgg	atctaacact	aactgtattg	1140
ttttgttaca tcaaataaac	atcttctgtg	gaccaggaaa	aaaaaaaaa	aa	1192
<210> 49 <211> 197 <212> DNA <213> Homo sapiens					
<400> 49 agacageett aacceaeggg	cgcgggcgag	togtatgggc	aggggcaggc	gggagcgacg	60
tggggegaeg etcaegaaeg	atcagagetg	cgggcgacgc	aacgaagccc	ggaggccgca	120
ggetgegege tecetegeag	cagccgggcg	ggcaaaagcc	cccagtcctc	ggcccccgcg	180

caagegaege	cgggaaa					197
<210> 50 <211> 329 <212> DNA <213> Hom						
<400> 50 taattattta	tattgtaaag	aattttaaca	gtcctgggga	cttccttgaa	ggatcatttt	60
cacttttgct	cagaagaaag	ctctggatct	atcaaataaa	gaagtccttc	gtgtgggcta	120
catatataga	tgttttcatg	aagaggagtg	aaaagccaga	aggatataga	caaatgaggc	180
ctaagacctt	teetgecagt	aactatactg	tcagtagccg	gcaaatgtta	caagaaattc	240
gggaatccct	taggaattta	tctaaaccat	ctgatgctgc	taaggetgag	cataacatga	300
gtaaaatgtc	aaccgaagat	cctcgacaag	tcagaaatcc	acccaaattt	gggacgcatc	360
ataaagcctt	gcaggaaatt	cgaaactctc	tgcttccatt	tgcaaatgaa	acaaattctt	420
ctcggagtac	ttcagaagtt	aatccacaaa	tgcttcaaga	cttgcaagct	gctggatttg	480
atgaggatat	ggttatacaa	gctcttcaga	aaactaacaa	cagaagtata	gaagcagcaa	540
ttgaattcat	tagtaaaatg	agttaccaag	atcctcgacg	agagcagatg	gctgcagcag	600
ctgccagacc	tattaatgcc	agcatgaaac	cagggaatgt	gcagcaatca	gttaaccgca	660
aacagagctg	gaaaggttct	aaagaatcct	tagttcctca	gaggcatggc	ccgccactag	720
gagaaagtgt	ggcctatcat	tctgagagtc	ccaactcaca	gacagatgta	ggaagacctt	780
tgtctggatc	tggtatatca	gcatttgttc	aagctcaccc	tagcaacgga	cagagagtga	840
accccccacc	accacctcaa	gtaaggagtg	ttactcctcc	accacctcca	agaggccaga	900
ctccccatcc	aagaggtaca	actccacctc	ccccttcatg	ggaaccaaac	totcaaacaa	960
agcgctattc	tggaaacatg	gaatacgtaa	tctcccgaat	ctctcctgtc	ccacctgggg	1020
catggcaaga	gggctatcct	ccaccacctc	tcaacacttc	ccccatgaat	cctcctaatc	1080
aaggacagag	aggcattagt	totgttcctg	ttggcagaca	accaatcatc	atgcagagtt	1140
-t-eccsastt	taactttooa	+020000000	ctggaatgca	anntaation		1200
			ctggcactgt			1260
			gecettetge			1320
			ttcctcagtc			1380
ıcagıcataa	catggaacta	tataacatta	gtgtacctgg	actgcaaaca	aattggcctc	1440

agteatette tgetecagee cagteatece egageagtgg geatgaaate cetacatgge 1500 aacctaacat accaqtqaqq tcaaattctt ttaataaccc attaqqaaat agaqcaagtc 1560 actotgotaa ttotoagoot totgotacaa cagtoactgo aattacacca gotootatto 1620 aacagcctgt gaaaagtatg cgtgtattaa aaccagagct acagactgct ttagcaccta 1680 1740 cacaccette ttggatacca cagecaatte aaactgttea acceagteet ttteetgagg 1800 gaaccgette aaatgtgact gtgatgeeac etgttgetga ageteeaaac tateaaggac caccaccacc ctacccaaaa catctgctgc accaaaaccc atctgttcct ccatacgagt 1860 caatcagtaa gcctagcaaa gaggatcagc caagcttgcc caaggaagat gagagtgaaa 1920 1980 agagttatga aaatgttgat agtggggata aagaaaagaa acagattaca acttcaccta ttactgttag gaaaaacaag aaagatgaag agcgaaggga atctcgtatt caaagttatt 2040 ctcctcaagc atttaaattc tttatggagc aacatgtaga aaatgtactc aaatctcatc 2100 2160 aggagggtct acategtaga agacaattag aggatgaaat gatgegggtt ggattatete 2220 aagatgecca ggatcaaatg agaaagatge tttgccaaaa agaatetaat tacateegte ttaaaaqqqc taaaatqqac aaqtctatgt ttgtqaaqat aaagacacta qqaataqqaq 2280 catttqqtqa aqtctqtcta qcaaqaaaaq tagatactaa qqctttqtat qcaacaaaaa 2340 ctcttcgaaa gaaagatgtt cttcttcgaa atcaagtcgc tcatgttaag gctgagagag 2400 atateetgge tgaagetgae aatgaatggg tagttegtet atattattea tteeaagata 2460 2520 aggacaattt atactttgta atggactaca ttcctggggg tgatatgatg agcctattaa ttagaatggg catctttcca gaaagtctgg cacgattcta catagcagaa cttacctgtg 2580 cagttgaaag tgttcataaa atgggtttta ttcatagaga tattaaacct gataatattt 2640 2700 tgattgatcg tgatggtcat attaaattga ctgactttgg cctctgcact ggcttcagat 2760 qqacacacga ttctaagtac tatcaqaqtq gtqaccatcc acggcaagat agcatggatt tcaqtaatqa atqqqqqqat ccctcaaqct qtcqatqtqq agacagactq aagccattag 2820 ageggagage tgcacgecag caccagegat gtctagcaca ttctttggtt gggactccca 2880 attatattgc acctgaagtg ttgctacgaa caggatacac acagttgtgt gattggtgga 2940 gtgttggtgt tattetttt gaaatgttgg tgggacaace teettettg gcacaaacac 3000 cattagaaac acaaatgaaq qtcacctgct gctatataca tcattggctc gagaagaaac 3060 tactgaacac cctgcgagag agaagcctag aaaagaaaga aagggccaaa aggttttgaa 3120

ctetteatce	ctaatttgct	acactgatca	aaaccaagta	agggeteetg	aagtccatga	3100
gtctatcatc	aatcagcaca	aatgctatac	tagtttgtaa	ctgcggggtc	agttgtgaag	3240
gggaaggaca	gcagtcttat	ccatattcca	ggaagccaca	gtaaactgct	cga	3293
<210> 51 <211> 424 <212> DNA <213> Home	o sapiens					
<400> 51 cctactctat	tcagatattc	tecagattee	taaagattag	agatcatttc	teatteteet	60
aggagtactc	acttcaggaa	gcaaccagat	aaaagagagg	tgcaacggaa	gccagaacat	120
tcctcctgga	aattcaacct	gtttcgcagt	ttctcgagga	atcagcattc	agtcaatccg	180
ggccgggagc	agtcatctgt	ggtgaggctg	attggctggg	caggaacagc	gccggggcgt	240
gggctgagca	cagegetteg	ctctctttgc	cacaggaage	ctgagctcat	tcgagtagcg	300
gotottocaa	gctcaaagaa	gcagaggccg	ctgttcgttt	cctttaggtc	tttccactaa	360
agtcggagta	tettetteca	agatttcacg	tettggtgge	cgttccaagg	agcgcgaggt	420
cggg						424
<210> 52 <211> 706 <212> DNA <213> Home	o sapiens					
<400> 52 tgaactctga	ctgtatgaga	tgttaaatac	tttttaatat	ttgtttagat	atgacattta	60
ttcaaagtta	aaagcaaaca	cttacagaat	tatgaagagg	tatctgttta	acatttcctc	120
agtcaagttc	agagtettea	gagacttcgt	aattaaagga	acagagtgag	agacatcatc	180
aagtggagag	aaatcatagt	ttaaactgca	ttataaattt	tataacagaa	ttaaagtaga	240
tttaaaaga	taaaatgtgt	aattttgttt	atattttccc	atttggactg	taactgactg	300
ccttgctaaa	agattataga	agtagcaaaa	agtattgaaa	tgtttgcata	aagtgtctat	360
aataaaacta	aactttcatg	tgactggagt	catcttgtcc	aaactgcctg	tgaatatatc	420
tteteteaat	tggaatattg	tagataactt	ctgctttaaa	aaagttttct	ttaaatatac	480
ctactcattt	ttgtgggaat	ggttaagcag	tttaaataat	tcctgtgtat	atgtctatca	540
cataggggtc	taacagaaca	atctggattc	attatttcta	ggacttgatc	ctgctgatgc	600

tgaatttgca	cattaaggtg	tgttaacaac	caaaacacag	atcgatataa	gaagtaagga	660
g gt g gggaga	ggcaaattat	gatgtgctat	gagttagatg	tatagt		706
<210> 53 <211> 239 <212> DNA <213> Hom						
<400> 53	atteccease	tacaaccaaa	3000000000	ggagtgagtg	ageceeggge	60
					gcgcggagca	120
					gcacaggcag	180
aagtgggccc	tgtgaccagc	tgcactggtt	tcgtggaagg	aagctccagg	actggcggg	239
<210> 54 <211> 641 <212> DNA <213> Hom						
<400> 54 tgaggcagct	gctatcccca	tetecetgee	tggcccccaa	cctcagggct	cccaggggtc	60
	cctcctccag					120
	gtagggggct					180
	ctggctgttc					240
	aaaatgctcc					300
	tgtgtatatt					360
	gctcacgcct					420
gaggtcagga	gatcgagacc	atcctggcta	acatggtgaa	accccgtctc	tactaaaaat	480
acaaaaaaa	tttagccggg	cgcggtggcg	ggcacctgta	gtcccagcta	cttgggaggc	540
tgagg cag ga	gaatggtgtg	aacccgggag	cggaggttgc	agtgagctga	gatcgtgcta	600
ctgcactcca	gcctggggga	cagaaagaga	ctccgtctca	a		641
<210> 55 <211> 493 <212> DNA <213> Homo	sapiens					
tttctgtgaa	gcagaagtct	gggaatcgat	ctggaaatcc	tcctaatttt	tactccctct	60

ccccccgact	cctgattcat	tgggaagttt	caaatcagct	ataactggag	agagctgaag	120
attgatggga	tegttgeett	atgcctttgt	tttggtttta	caaaaaggaa	acttgacaga	180
ggatcatgct	atacttaaaa	aatacaacat	cgcagaggaa	gtagactcat	attaaaaata	240
cttactaata	ataacgtgcc	tcatgaagta	aagatccgaa	aggaattgga	ataaaacttt	300
cctgcatctc	aagccaaggg	ggaaacacca	gaatcaagtg	ttccgcgtga	ttgaagacac	360
cccctcgtcc	aagaatgcaa	agcacatcca	ataaaagagc	tggattataa	ctcctcttct	420
ttctctgggg	gccgtggggt	gggagctggg	gcgagaggtg	ccgttggccc	ccgttgcttt	480
teetetggga	ggg					493
<400> 56 tgaagtcaac	atgcctgccc	caaacaaata	tgcaaaaggt	tcactaaagc	agtagaaata	60
atatgcattg	tcagtgatgt	tccatgaaac	aaagctgcag	gctgtttaag	aaaaaataac	120
acacatataa	acatcacaca	cacagacaga	cacacacaca	cacaacaatt	aacagtette	180
aggcaaaacg	tcgaatcagc	tatttactgc	caaagggaaa	tatcatttat	tttttacatt	240
attaagaaaa	aaagatttat	ttatttaaga	cagtoccato	aaaactcctg	tctttggaaa	300
tccgaccact	aattgccaag	caccgcttcg	tgtggctcca	cctggatgtt	ctgtgcctgt	360
aaacatagat	tcgctttcca	tgttgttggc	cggatcacca	tctgaagagc	agacggatgg	420
aaaaaggacc	tgatcattgg	ggaagctggc	tttctggctg	ctggaggctg	gggagaaggt	480
gttcattcac	ttgcatttct	ttgccctggg	ggctgtgata	ttaacagagg	gagggttcct	540
gtgggggaa	gtccatgcct	ccctggcctg	aagaagagac	tctttgcata	tgactcacat	600
gatgcatacc	tggtgggagg	aaaagagttg	ggaacttcag	atggacctag	tacccactga	660
gatttccacg	ccgaaggaca	gcgatgggaa	aaatgccctt	aaatcatagg	aaagtatttt	720
ttaagctac	caattgtgcc	gagaaaagca	ttttagcaat	ttatacaata	tcatccagta	780
ettaagcee	tgattgtgta	tattcatata	ttttggatac	gcacccccca	actcccaata	840
etggctctgt	ctgagtaaga	aacagaatcc	tctggaactt	gaggaagtga	acatttcggt	900
gacttccgca	tcaggaagge	tagagttacc	cagagcatca	ggccgccaca	agtgcctgct	960
ttaggagac	cgaagt ccgc	agaacctgcc	tatataccaa	cttagaaacc	taataataa	1020

actgageegg	ggccctcact	ggcctcctcc	agggatgatc	aacagggcag	tgtggtctcc	1080
gaatgtctgg	aagctgatgg	agctcagaat	tccactgtca	agaaagagca	gtagaggggt	1140
gtggctgggc	ctgtcaccct	ggggccctcc	aggtaggccc	gttttcacgt	ggagcatggg	1200
agccacgacc	cttcttaaga	catgtatcac	tgtagaggga	aggaacagag	gccctgggcc	1260
cttcctatca	gaaggacatg	gtgaaggetg	ggaacgtgag	gagaggcaat	ggccacggcc	1320
cattttggct	gtagcacatg	gcacgttggc	tgtgtggcct	tggcccacct	gtgagtttaa	1380
agcaaggctt	taaatgactt	tggagagggt	cacaaatcct	aaaagaagca	ttgaagtgag	1440
gtgtcatgga	ttaattgacc	cctgtctatg	gaattacatg	taaaacatta	tcttgtcact	1500
gtagtttggt	tttatttgaa	aacctgacaa	aaaaaaagtt	ccaggtgtgg	aatatggggg	1560
ttatctgtac	atcctggggc	attaaaaaaa	aaatcaatgg	tggggaacta	taaagaagta	1620
acaaaagaag	tgacatcttc	agcaaataaa	ctaggaaatt	tttttttttt	ccagtttaga	1680
atcageettg	aaacattgat	ggaataactc	tgtggcatta	ttgcattata	taccatttat	1740
ctgtattaac	tttggaatgt	actctgttca	atgtttaatg	ctgtggttga	tatttcgaaa	1800
gctgctttaa	aaaaatacat	gcatctcagc	gttttttgt	tttaattgt	atttagttat	1860
ggcctataca	ctatttgtga	gcaaaggtga	tegttttetg	tttgagattt	ttatctcttg	1920
attetteaaa	agcattctga	gaaggtgaga	taagccctga	gtctcagcta	cctaagaaaa	1980
acctggatgt	cactggccac	tgaggagctt	tgtttcaacc	aagtcatgtg	catttccacg	2040
tcaacagaat	tgtttattgt	gacagttata	tetgttgtcc	ctttgacctt	gtttcttgaa	2100
ggtttecteg	tccctgggca	attccgcatt	taattcatgg	tattcaggat	tacatgcatg	2160
tttggttaaa	cccatgagat	tcattcagtt	aaaaatccag	atggcaaatg	accagcagat	2220
tcaaatctat	ggtggtttga	cctttagaga	gttgctttac	gtggcctgtt	tcaacacaga	2280
cccacccaga	geceteetge	cctccttccg	cgggggcttt	ctcatggctg	tccttcaggg	2340
tetteetgaa	atgcagtggt	gcttacgctc	caccaagaaa	gcaggaaacc	tgtggtatga	2400
agecagaect	ccccggcggg	cctcagggaa	cagaatgatc	agacctttga	atgattctaa	2460
tttttaagca	aaatattatt	ttatgaaagg	tttacattgt	caaagtgatg	aatatggaat	2520
atccaatcct	gtgctgctat	cctgccaaaa	tcattttaat	ggagtcagtt	tgcagtatgc	2580
tccacgtggt	aagatcctcc	aagctgcttt	agaagtaaca	atgaagaacg	tggacgcttt	2640
taatataaag	cctgttttgt	cttctgttgt	tgttcaaacg	ggattcacag	agtatttgaa	2700

asatgtatat atattaaqaq qtcacqqqqq ctaattgctq gctggctqcc ttttqctgtq 2760 contitiont acctomatt aataacagta aatqtqccca qcctcttggc cccagaactg 2820 tacactatto tooctocact toctctaaga gtagttgatg ttgcattttc cttattgtta 2880 assacatett agaaqcaatg aatgtatata aaagcetcaa ctagtcattt tttteteete 2940 3000 ttettttttt teattatate taattatttt geagttggge aacagagaac catecetatt 3060 ttgtattgaa gagggattca catctgcatc ttaactgctc tttatgaatg aaaaaacagt cetetgtatg tacteetett tacactggcc agggtcagag ttaaatagag tatatgcact 3120 ttocaaattq qqqacaaqqq ctctaaaaaa agccccaaaa qqaqaaqaac atctqaqaac 3180 ctcctcggcc ctcccagtcc ctcgctgcac aaatactccg caagagaggc cagaatgaca 3240 3300 gctgacaggg tctatggcca tcgggtcgtc tccgaagatt tggcaggggc agaaaactct ggcaggctta agatttggaa taaagtcaca gaatcaagga agcacctcaa tttagttcaa 3360 acaagacqcc aacattetet ccacagetea ettacetete tgtgtteaga tgtggcette 3420 3480 catttatatq tgatctttgt tttattagta aatgcttatc atctaaagat gtagctctgg cccagtggga aaaattagga agtgattata aatcgagagg agttataata atcaagatta 3540 3600 aatgtaaata atcagggcaa toccaacaca tgtotagott toacotocag gatotattga gtgaacagaa tigcaaatag tototatttg taattgaact tatootaaaa caaatagttt 3660 ataaatgtga acttaaactc taattaattc caactgtact tttaaggcag tggctgtttt 3720 3780 tagactttct tatcacttat agttagtaat gtacacctac tctatcagag aaaaacagga aaggotogaa atacaagoca ttotaaggaa attagggagt cagttgaaat totattotga 3840 tottattotg tggtgtcttt tgcagcccag acaaatgtgg ttacacactt tttaagaaat 3900 acaattctac attgtcaagc ttatgaaggt tccaatcaga tctttattgt tattcaattt 3960 qqatctttca qqqatttttt ttttaaatta ttatqqqaca aaggacattt qttqqaqqqq 4020 4080 tgggagggag gaacaatttt taaatataaa acattcccaa gtttggatca gggagttgga agttttcaga ataaccagaa ctaaqqqtat qaaqqacctq tattqqqqtc gatgtqatgc 4140 ctctgcgaag aaccttgtgt gacaaatgag aaacattttg aagtttgtgg tacgaccttt 4200 4260 agattecaga gacatcagea tggetcaaag tgeageteeg tttggeagtg caatggtata aatttcaaqc tqqatatqtc taatgggtat ttaaacaata aatgtgcagt tttaactaac 4320 aggatattta atgacaacet tetggttggt agggacatet gtttetaaat gtttattatg 4380 tacaatacag aaaaaaattt tataaaatta agcaatgtga aactgaattg gagagtgata 4440

atacaagtcc	tttagtctta	cccagtgaat	cattctgttc	catgtctttg	gacaaccatg	4500
accttggaca	atcatgaaat	atgcatctca	ctggatgcaa	agaaaatcag	atggagcatg	4560
aatggtactg	taccggttca	tetggaetge	cccagaaaaa	taacttcaag	caaacatcct	4620
atcaacaaca	aggttgttct	gcataccaag	ctgagcacag	aagatgggaa	cactggtgga'	4680
ggatggaaag	getegeteaa	tcaagaaaat	tctgagacta	ttaataaata	agactgtagt	4740
gtagatactg	agtaaatcca	tgcacctaaa	ccttttggaa	aatctgccgt	gggccctcca	4800
gatagctcat	ttcattaagt	ttttccctcc	aaggtagaat	ttgcaagagt	gacagtggat	4860
tgcatttctt	ttggggaagc	tttcttttgg	tggttttgtt	tattatacct	tcttaagttt	4920
tcaaccaagg	tttgcttttg	ttttgagtta	ctggggttat	ttttgtttta	aataaaaata	4980
agtgtacaat	aagtgtttt	gtattgaaag	cttttgttat	caagattttc	atacttttac	5040
cttccatggc	tctttttaag	attgatactt	ttaagaggtg	gctgatattc	tgcaacactg	5100
tacacataaa	aaatacggta	aggatacttt	acatggttaa	ggtaaagtaa	gtctccagtt	5160
ggccaccatt	agctataatg	gcactttgtt	tgtgttgttg	gaaaaagtca	cattgccatt	5220
aaactttcct	tgtctgtcta	gttaatattg	tgaagaaaaa	taaagtacag	tgtgagatac	5280
tg						5282
<210> 57 <211> 117 <212> DNA	o sapiens					5282
<210> 57 <211> 117 <212> DNA <213> Home <4400> 57		aagaagcgga	ggaggcggct			5282
<210> 57 <211> 117 <212> DNA <213> Home <4400> 57 attcggggcg	o sapiens			cccgctcgca	gggccgtgca	
<pre>c210> 57 <211> 117 <211> 117 <212> DNA <213> Home <4400> 57 attcggggcg cctgcccgcc <210> 58 <211> 430 <212> DNA <213> Home <213> Home </pre>	o sapiens agggaggagg			cccgctcgca	gggccgtgca	60
<pre>c210> 57 <211> 17 <211> 17 <212> DNA <213> Home <440> 57 attcggggcg cctgcccgcc <210> 58 <211> 430 <212> DNA <213> Home <400> 57</pre>	o sapiens agggaggagg cgcccgctcg	ctcgctcgcc	cgccgcgccg	ceegetegea	gggccgtgca cgccagc	60
<pre> <210> 57 <211> 117 <2211> 127 <212> NA <213> Homo <213> Homo <210> 57 attcggggcg cctgcccgcc <210> 58 <211> 430 <212> DNA <212> DNA <212> DNA <400> 58 tgatccaggg</pre>	o sapiens agggaggagg cgcccgctcg o sapiens	ctcgctcgcc	cgccgcgccg	cccgctcgca cgctgccgac	gggccgtgca cgccagc tacaatgagc	60 117
c210> 57 c212> DNA c212> DNA c213> Homo c400> 57 cctpcccgcc cctpcccgcc c210> 58 c211> 430 c212> DNA c212> DNA c212> DNA c212> CA c210> 58 c211> GNA c212> CA c212> CA c213> CA	o sapiens agggaggagg cgcccgctcg o sapiens agccccacc	ctcgctcgcc	cgccgcgccg accccgagtg ggatgcagta	cccgctcgca cgctgccgac tcatctcttc gaccgcagcc	gggccgtgca cgccagc tacaatgagc agccggtgcc	60 117

accgageteg	gcacctcccc	ggcctctctc	ttcccagctg	cagatgccac	acctgctcct	300
tettgettte	cccgggggag	gaagggggtt	gtggtcgggg	agctggggta	caggtttggg	360
gagggggaag	agaaattttt	atttttgaac	ccctgtgtcc	cttttgcata	agattaaagg	420
aaggaaaagt						430
<210> 59 <211> 192 <212> DNA <213> Homo	sapiens					
<400> 59 tcctaggcgg	cggccgcggc	ggcggaggca	gcagcggcgg	cggcagtggc	ggcggcgaag	60
gtggcggcgg	ctcggccagt	actcccggcc	cccgccattt	cggactggga	gcgagcgcgg	120
cgcaggcact	gaaggcggcg	geggggeeag	aggctcagcg	gctcccaggt	gcgggagaga	180
ggcctgctga	aa					192
	sapiens					
<400> 60 taaatacaat	ttgtactttt	ttcttaaggc	atactagtac	aagtggtaat	ttttgtacat	60
tacactaaat	tattagcatt	tgttttagca	ttacctaatt	ttttcctgc	tccatgcaga	120
ctgttagctt	ttaccttaaa	tgcttatttt	aaaatgacag	tggaagtttt	tttttcctcg	180
aagtgccagt	attcccagag	ttttggtttt	tgaactagca	atgcctgtga	aaaagaaact	240
gaatacctaa	gatttctgtc	ttggggtttt	tggtgcatgc	agttgattac	ttcttatttt	300
tottaccaag	tgtgaatgtt	ggtgtgaaac	aaattaatga	agcttttgaa	tcatccctat	360
totgtgtttt	atctagtcac	ataaatggat	taattactaa	tttcagttga	gaccttctaa	420
ttggttttta	ctgaaacatt	gagggacaca	aatttatggg	cttcctgatg	atgattcttc	480
taggcatcat	gtcctatagt	ttgtcatccc	tgatgaatgt	aaagttacac	tgttcacaaa	540
ggttttgtct	cctttccact	gctattagtc	atggtcactc	tccccaaaat	attatatttt	600
ttctataaaa	agaaaaaaat	ggaaaaaaat	tacaaggcaa	tggaaactat	tataaggcca	660
tttccttttc	acattagata	aattactata	aagactccta	atagctttt	cctgttaagg	720
cagacccagt	atgaatggga	ttattatage	aaccattttq	gggctatatt	tacatgctac	780

taaattttta	taataattga	aaagatttta	acaagtataa	aaaaattctc	ataggaatta	840
aatgtagtct	ccctgtgtca	gactgctctt	tcatagtata	actttaaatc	ttttcttcaa	900
cttgagtctt	tgaagatagt	tttaattctg	cttgtgacat	taaaagatta	tttgggccag	960
ttatagctta	ttaggtgttg	aagagaccaa	ggttgcaagc	caggccctgt	gtgaaccttg	1020
agctttcata	gagagtttca	cagcatggac	tgtgtgcccc	acggtcatcc	gagtggttgt	1080
acgatgcatt	ggttagtcaa	aaatggggag	ggactagggc	agtttggata	gctcaacaag	1140
atacaatctc	actctgtggt	ggtcctgctg	acaaatcaag	agcattgctt	ttgtttctta	1200
agaaaacaaa	ctctttttta	aaaattactt	ttaaatatta	actcaaaagt	tgagattttg	1260
gggtggtggt	gtgccaagac	attaattttt	ttttaaaca	atgaagtgaa	aaagttttac	1320
aatctctagg	tttggctagt	tctcttaaca	ctggttaaat	taacattgca	taaacacttt	1380
tcaagtctga	tocatattta	ataatgcttt	aaaataaaaa	taaaaacaat	ccttttgata	1440
aatttaaaat	gttacttatt	ttaaaataaa	tgaagtgaga	tggcatggtg	aggtgaaagt	1500
atcactggac	taggttgttg	gtgacttagg	ttctagatag	gtgtctttta	ggactctgat	1560
tttgaggaca	tcacttacta	tccatttctt	catgttaaaa	gaagtcatct	caaactctta	1620
gtttttttt	tttacactat	gtgatttata	ttccatttac	ataaggatac	acttatttgt	1680
caageteage	acaatctgta	aatttttaac	ctatgttaca	ccatcttcag	tgccagtctt	1740
gggcaaaatt	gtgcaagagg	tgaagtttat	atttgaatat	ccattctcgt	tttaggactc	1800
ttcttccata	ttagtgtcat	cttgcctccc	taccttccac	atgccccatg	acttgatgca	1860
gttttaatac	ttgtaattcc	cctaaccata	agatttactg	ctgctgtgga	tatctccatg	1920
aagttttccc	actgagtcac	atcagaaatg	ccctacatct	tattttcctc	agggctcaag	1980
agaatctgac	agataccata	aagggatttg	acctaatcac	taattttcag	gtggtggctg	2040
atgctttgaa	catctcttg	ctgcccaatc	cattagcgac	agtaggattt	ttcaaccctg	2100
gtatgaatag	acagaaccct	atccagtgga	aggagaattt	aataaagata	gtgcagaaag	2160
aattccttag	gtaatctata	actaggacta	ctcctggtaa	cagtaataca	ttccattgtt	2220
ttagtaacca	gaaatcttca	tgcaatgaaa	aatactttaa	ttcatgaagc	ttactttttt	2280
ttttttggtg	tcagagtctc	gctcttgtca	cccaggctgg	aatgcagtgg	cgccatctca	2340
gctcactgca	accttccatc	ttcccaggtt	caagcgattc	tegtgeeteg	gcctcctgag	2400
tagctgggat	tacaggcgtg	tgcactacac	tcaactaatt	tttgtatttt	taggagagac	2460
ggggtttcac	ctgttggcca	ggctggtctc	gaactcctga	cctcaagtga	ttcacccacc	2520

ttggcctcat	aaacctgttt	tgcagaactc	atttattcag	caaatattta	ttgagtgcct	2580
accagatgcc	agtcaccgca	caaggcactg	ggtatatggt	atccccaaac	aagagacata	2640
atcccggtcc	ttaggtactg	ctagtgtggt	ctgtaatatc	ttactaaggc	ctttggtata	2700
cgacccagag	ataacacgat	gcgtattta	gttttgcaaa	gaaggggttt	ggtctctgtg	2760
ccagctctat	aattgttttg	ctacgattcc	actgaaactc	ttcgatcaag	ctactttatg	2820
taaatcactt	cattgtttta	aaggaataaa	cttgattata	ttgtttttt	atttggcata	2880
actgtgattc	ttttaggaca	attactgtac	acattaaggt	gtatgtcaga	tattcatatt	2940
gacccaaatg	tgtaatattc	cagttttctc	tgcataagta	attaaaatat	acttaaaaat	3000
taatagtttt	atctgggtac	aaataaacag	tgcctgaact	agttcacaga	caagggaaac	3060
ttctatgtaa	aaatcactat	gatttctgaa	ttgctatgtg	aaactacaga	tctttggaac	3120
actgtttagg	tagggtgtta	agacttgaca	cagtacctcg	tttctacaca	gagaaagaaa	3180
tggccatact	tcaggaactg	cagtgcttat	gaggggatat	ttaggcctct	tgaatttttg	3240
atgtagatgg	gcatttttt	aaggtagtgg	ttaattacct	ttatgtgaac	tttgaatggt	3300
ttaacaaaag	atttgttttt	gtagagattt	taaaggggga	gaattctaga	aataaatgtt	3360
acctaattat	tacagcctta	aagacaaaaa	tccttgttga	agtttttta	aaaaaagact	3420
aaattacata	gacttaggca	ttaacatgtt	tgtggaagaa	tatagcagac	gtatattgta	3480
tcatttgagt	gaatgttccc	aagtaggcat	tctaggctct	atttaactga	gtcacactgc	3540
ataggaattt	agaacctaac	ttttataggt	tatcaaaact	gttgtcacca	ttgcacaatt	3600
ttgtcctaat	atatacatag	aaactttgtg	gggcatgtta	agttacagtt	tgcacaagtt	3660
catctcattt	gtattccatt	gattttttt	tttcttctaa	acatttttc	ttcaaaacag	3720
tatatata'ac	tttttttagg	ggatttttt	tagacagcaa	aaaactatct	gaagatttcc	3780
atttgtcaaa	aagtaatgat	ttcttgataa	ttgtgtagtg	aatgttttt	agaacccagc	3840
agttaccttg	aaagctgaat	ttatatttag	taacttctgt	gttaatactg	gatagcatga	3900
attetgeatt	gagaaactga	atagctgtca	taaaatgctt	tctttcctaa	agaaagatac	3960
tcacatgagt	tcttgaagaa	tagtcataac	tagattaaga	tctgtgtttt	agtttaatag	4020
+++~~~~+~~	a+a+++aaa	++	taatttagat			1000
						4080
	ttatcccaaa		tececcaca	ceceeacaga	yctaactggg	4140

<210> 61 <211> 238 <212> DNA <213> Hom						
<400> 61 ccattgtgct	ggaaaggcgc	gcaacggcgg	cgacggcggc	gaccccaccg	cgcatcctgc	60
caggeeteeg	cgcccagccg	cccacgcgcc	cccgcgcccc	gegeeeegae	cctttcttcg	120
cgccccgcc	ceteggeeeg	ccaggccccc	ttgccggcca	cccgccaggc	cccgcgccgg	180
cccgcccgcc	geecaggaee	ggcccgcgcc	ccgcaggccg	cccgccgccc	gcgccgcc	238
<210> 62 <211> 547 <212> DNA <213> Hom						
<400> 62 ggccccgcag	ctctggccac	agggacctct	gcagtgcccc	ctaagtgacc	cggacacttc	60
cgaggggcc	atcaccgcct	gtgtatataa	cgtttccggt	attactctgc	tacacgtagc	120
ctttttactt	ttggggtttt	gtttttgttc	tgaactttcc	tgttaccttt	tcagggctga	180
tgtcacatgt	aggtggcgtg	tatgagtgga	gacgggcctg	ggtcttgggg	actggagggc	240
aggggtcctt	ctgcccctgg	ggtcccaggg	tgctctgcct	gctcagccag	gcctctcctg	300
ggagccacto	gcccagagac	tcagcttggc	caacttgggg	ggctgtgtcc	acccagcccg	360
cccgtcctgt	gggctgcaca	gctcaccttg	ttccctcctg	ccccggttcg	agagccgagt	420
ctgtgggcac	tototgoott	catgcacctg	tcctttctaa	cacgtcgcct	tcaactgtaa	480
tcacaacato	ctgactccgt	catttaataa	agaaggaaca	tcaggcatgc	taaaaaaaaa	540
aaaaaaa						547
<400> 63 gaattccggc	: aaacatgagg	cagctgccag	ccggcctggg	cagtettgte	tgcctcggct	60
gtgaagtggg	gaggetggea	acagttttct	tcagcgccca	gg		102
<210> 64 <211> 201	.7					

<212> DNA <213> Homo sapiens

<400> 64 gacacgteca aaggagtgea tggccacage cacetecace eccaagaaac etecateetg 60 ccaggagcag cctccaagaa acttttaaaa aatagatttg caaaaagtga acagattgct 120 acacacaca acacacaca acacacaca acacacage atteatetgg getggcagag 180 gggacagagt tcagggaggg gctgagtctg gctaggggcc gagtccagag gccccagcca 240 qcccttccca ggccagcgag gcgaggctgc ctctgggtga gtggctgaca gagcaggtct 300 gcaggccacc agctgctgga tgtcaccaag aaggggctcg agtgccctgc aggagqqtcc 360 aatoctoogg toccacctog toccgttoat coattotgot ttottgocac acagtggoog 420 geocaggete coetggtete eteccegtag ceactetetg eccactacet atgettetag 480 aaagcccctc acctcaggac cccagaggac cagctggggg gcagggggga gagggggtaa 540 tqqaqqccaa gcctgcagct ttctggaaat tcttccctgg gggtcccagt atcccctgct 600 actocactga cotggaagag ctgggtacca ggccacccac tgtggggcaa gcctgagtgg 660 tgaggggcca ctggcatcat totocotoca tggcaggaag gogggggatt tcaagtttag 720 ggattgggtc gtggtggaga atctgagggc actctgccag ctccacaggt ggatgagcct 780 840 ctccttgccc cagtcctggt tcagtgggaa tgcagtgggt ggggctgtac acaccctcca quadaqactq ttocctccaa ggtoctctta ggtoccgggg aggaacgtgg ttcagagact 900 ggcagccagg gagcccgggg cagagctcag aggagtctgg gaaggggcgt gtccctcctc 960 ttoctgtagt geceeteeca tggcccagea gettggetga geceetetee tgaageaget 1020 gtgcgccgtc cctctgcctt gcacaaaaag cacaagacat tccttagcag ctcagcgcag 1080 ccctagtggg agcccagcac actgcttctc ggaggccagg ccctcctgct ggctgagctt 1140 gggcccggtg gccccaatat ggtggccctg gggaagaggc cttgggggtc tgctctgtgc 1200 ctgggatcag tggggcccca aagcccagcc cggctgacca acattcaaaa gcacaaaccc 1260 1320 tggggactet gettggetgt eccetecate tggggatgga gaatgeagee caaagetgga 1380 qccaatqqtq agggctgaga gggctgtggc tgggtggtca gcagaaaccc caggaggaga gagatgetge tecegeetga ttggggeete acceagaagg aacceggtee cageegeatg 1440 gecectecaq quacattece acataataca ttecateaca gecageceag etecaeteag 1500 ggetggeeeg gggagteeee gtgtgeeeea agaggetage cecagggtga geagggeeet 1560 cagaggaaag gcagtatggc ggaggccatg ggggcccctc ggcattcaca cacagcctqq 1620

ceteceetge ggagetgeat ggaegeetgg etecaggete	c caggetgaet	ggggcctctg	1680
ectecaggag ggcatcaget ttecetgget cagggatet	t etecetecce	tcacccgctg	1740
cccagccctc ccagctgatg tcactctgcc tctaagcca	a ggcctcagga	gagcatcacc	1800
accacaccct geggeettge ettggggeea gaetggetge	c acageccaae	caggaggggt	1860
ctgcctccca cgctgggaca cagaccggcc gcatgtctg	c atggcagaag	cgtctccctt	1920
gccacggcct gggagggtgg ttcctgttct cagcatcca	taatattcag	tcctgtatat	1980
tttaataaaa taaacttgac aaaggaaaaa aaaaccg			2017
<210> 65 <211> 97 <212> DNA <213> Homo sapiens			
<400> 65 gtccaggaac teetcagcag egecteette agetecacaç	g ccagacgccc	tcagacagca	60
aagestasse eegegeege eestgeeege egetgeg			97
<pre><210> 66 <211> 1474 <212> DNA <213> Homo sapiens</pre>			
<400> 66 aagtotaatg atcatattta titatttata tgaaccatgt	ctattaattt	aattatttaa	60
taatatttat attaaactcc ttatgttact taacatctto	tgtaacagaa	gtcagtactc	120
ctgttgcgga gaaaggagtc atacttgtga agacttttat	gtcactactc	taaagatttt	180
gctgttgctg ttaagtttgg aaaacagttt ttattctgtt	ttataaacca	gagagaaatg	240
agttttgacg tctttttact tgaatttcaa cttatattat	aaggacgaaa	gtaaagatgt	300
ttgaatactt aaacactatc acaagatgcc aaaatgctga	aagttttac	actgtcgatg	360
tttccaatgc atcttccatg atgcattaga agtaactaat	gtttgaaatt	ttaaagtact	420
tttgggtatt tttctgtcat caaacaaaac aggtatcagt	gcattattaa	atgaatattt	480
aaattagaca ttaccagtaa tttcatgtct actttttaaa	atcagcaatg	aaacaataat	540
ttgaaattto taaattoata gggtagaato acctgtaaaa	gcttgtttga	tttcttaaag	600
tattaaact tgtacatata ccaaaaagaa gctgtcttgg	atttaaatct	gtaaaatcag	660
atgaaatttt actacaattg cttgttaaaa tattttataa	gtgatgttcc	tttttcacca	720

agagtataaa (cctttttagt	gtgactgtta	aaacttcctt	ttaaatcaaa	atgccaaatt	780
tattaaggtg (gtggagccac	tgcagtgtta	tctcaaaata	agaatatcct	gttgagatat	840
tccagaatct (gtttatatgg	ctggtaacat	gtaaaaaccc	cataaccccg	ccaaaagggg	900
toctaccott	gaacataaag	caataaccaa	aggagaaaag	cccaaattat	tggttccaaa	960
tttagggttt	aaactttttg	aagcaaactt	ttttttagcc	ttgtgcactg	cagacctggt	1020
actcagattt	tgctatgagg	ttaatgaagt	accaagetgt	gcttgaataa	cgatatgttt	1080
teteagattt	tetgttgtac	agtttaattt	agcagtccat	atcacattgc	aaaagtagca	1140
atgacctcat	aaaatacctc	ttcaaaatgc	ttaaattcat	ttcacacatt	aattttatct	1200
cagtcttgaa	gccaattcag	taggtgcatt	ggaatcaagc	ctggctacct	gcatgctgtt	1260
ccttttcttt	tettettta	gecattttge	taagagacac	agtettetea	aacacttcgt	1320
ttctcctatt .	ttgttttact	agttttaaga	tcagagttca	ctttctttgg	actctgccta	1380
tattttctta	cctgaacttt	tgcaagtttt	caggtaaacc	tcagctcagg	actgctattt	1440
agctcctctt	aagaagatta	aaaaaaaaa	aaaa			1474
<210> 67 <211> 99 <212> DNA <213> Homo <400> 67 gcgcccggcc cggagccatg				cecteccage	cgggtccagc	60 99
<210> 68 <211> 614 <212> DNA <213> Homo	sapiens					
<400> 68 tgaaccagaa	ggccaagtcc	gcagaagccc	tgatgtgtcc	tcagggagca	gggaaggcct	60
gacttctgct	ggcatcaaga	ggtgggaggg	céctecgace	acttccaggg	gaacctgcca	120
tgccaggaac	ctgtcctaag	gaaccttcct	tcctgcttga	gttcccagat	ggctggaagg	180
ggtccagcct	cgttggaaga	ggaacagcac	tggggagtct	ttgtggattc	tgaggccctg	240
cccaatgaga	ctctagggtc	cagtggatgc	cacageceag	cttggccctt	teetteeaga	300
toctgggtac	tgaaagcctt	agggaagctg	gcctgagagg	ggaageggee	ctaagggagt	360
ot ctaagaac	aaaaaccaacc	cattcagaga	ctgtccctga	aacctagtac	tgcccccat	420

gaggaa	ggaa	cagcaat	ggt	gtcagtatcc	aggetttgt	a cagagtgett	ttctgtttag	480
ttttta	ettt	ttttgtt	ttg	ttttttaaa	gacgaaata	a agacccaggg	gagaatgggt	540
gttgtai	tggg	gaggcaa	gtg	tggggggtcc	ttctccaca	c ccactttgtc	catttgcaaa	600
tatatti	tgg	aaaa						614
<210> <211> <212> <213>	69 36 DNA Arti	ificial						
<220> <223>	Desc	ription	of	Artificial	Sequence:	Primer		
<400> aaagto	69 Jacg	taatogo	gga	ggcttggggc	agccgg			36
<210> <211> <212> <213>	70 30 DNA Arti	ficial						
<220> <223>	Desc	ription	of	Artificial	Sequence:	Primer		
<400> tttgcga	70 actg	gtcagcto	geg	ggatcccaag				30
<210> <211> <212> <213>	33 DNA	ficial						
<220> <223>	Desc	ription	of	Artificial	Sequence:	Primer		
<400> aagtcga	71 cgt	aagagcto	cca	gagagaagtc	gag			33
<210> <211> <212> <213>	33 DNA	ficial						
<220> <223>	Desc	ription	of	Artificial	Sequence:	Primer		
	72 Igge	agcaaggo	aa	ggctccaatg	cac			33

<210>	73					
<211>	39					
<212>	DNA					
	Artificial					
\Z13>	MICTITUDE					
<220>			_	m /		
<223>	Description of	Artificial	Sequence:	Primer		
<400>	73					
accaaaa	agg aggaaggagc	ctccctcagg	gtttcggga			39
5555	-55 -55 -55					
	74					
<211>						
<212>	DNA					
<213>	Artificial					
<220>						
-2207	B		Comionaci	Brimor		
<223>	Description of	MICITICIAL	sequence.	LITIMET		
<400>						
ctocact	aga gacaaagacg	tgatgttaat				30
-						
<210>	26					
<211>						
<212>						
<213>	Artificial					
<220>						
<223>	Description of	Artificial	Sequence:	Polvlinker		
~223/	Description or	III CIII CIGI	coquence.			
<400>	/5					60
gaacaaa	atgt cgacgggggc	ccctagcaga	tctagcgct	g gatcccccgg	ggageteaug	00
gaagac						66
-						
<210>	76					
<211>						
<212>						
<213>	Artificial					
<220>						
	Description of	Artificial	Segmence:	Primer		
~223/	percentage of		quonos.			
<400>						
cggtgti	ggg cgcgttattt	atcggagttg				30
<210>	77					
<211>						
<212>						
<213>	Artificial					
<220>						

<223>	Description of Artificial Sequence: Primer	
<400>	77	
ttggcg	aaga atgaaaatag ggttggtact	30
<210>	78	
<211>	22	
<212>	Artificial	
12132	hitilitial	
<220>		
<223>	Description of Artificial Sequence: Primer	
<400>	78	
ggtgaa	ggtc ggagtcaacg ga	22
<210>	79	
<211>	21	
	DNA	
<213>	Artificial	
<220>		
<223>	Description of Artificial Sequence: Primer	
<400>	79	
gagggai	ctc gctcctggaa g	21
<210>		
<211>		
<212>		
<213>	Artificial	
<220>		
<223>	Description of Artificial Sequence: Primer	
<400>	80	
aaagtcg	acg taaccgccag atttgaatcg cgggacccgt tggcagaggt ggcgg	55
<210>		
<211>		
<212>	DNA Artificial	
\Z137	ALCILICIAL	
<220>		
<223>	Description of Artificial Sequence: Primer	
	81	
aaaggat	ccg ggcaacgtcg gggcacccat geegeegeeg ceacetetge caac	54
	82	
	40	
<212>	DNA	

<213>	Artificial	
<220>		
<223>		
<400>	82	
	ggccg eggeetetge eggagetgee tggteecaga	40
aaago	ggoog oggeototige oggagetydd teggtedeaga	40
-010-		
<210> <211>		
<211>		
	Artificial	
16207	HILLICIAL	
<220>		
<223>	Description of Artificial Sequence: Primer	
<400>	83	
aaacct	cagac tcaggaacag ccgagatgac ctccaga	37
<210>	84	
	67	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	Description of Artificial Sequence: Primer	
<400>	84	
ctagaa	gott agggoogogg atcogogog ggttogoogo gogoggatoo goggtagoaa	60
gttagt	c	67
		0 /
	0.0	
<210>	85	
<211> <212>	68 DNA	
(213>	Artificial	

220>		
:223>	Description of Artificial Sequence: Primer	
100>	85	
400>		
accaa	gett getaeegegg ateegegege ggegaaeege gegeggatee geggeeetaa	60
cttct	ag	68
		••
2105	0.6	
210>	86 32	
212>		
	Artificial	
220>		
223>	Description of Artificial Sequence: Primer	

<400> caagaa	86 gett gegeeeggee	cccacccct	cg	32
<210> <211> <212> <213>				
<220> <223>	Description of	Artificial	Sequence: Primer	
	87 tggt gctcactgcg	gataaggaaa	С	31
<210> <211> <212> <213>	88 22 DNA Artificial			
<220> <223>	Description of	Artificial	Sequence: Primer	
<400> agacto	88 tgaa ccagaaggcc	aa		22
	89 36 DNA Artificial			
<220> <223>	Description of	Artificial	Sequence: Primer	
<400> ctcggt	89 acca gttttccaaa	atatatttgc	aaatgg	36
<210> <211> <212> <213>	90 58 DNA Artificial			
<220> <223>	Description of	Artificial	Sequence: Primer	
<400> cccaage	90 ette gegeeeggee	ecccacccct	cgcagcaccc cgcgccccgc gccctccc	58
<210> <211> <212> <213>	91 61 DNA Artificial			

<220>

<223> I	Desc	ription	of	Artificial	Sequence:	Primer		
	91 tgg	ctccggct	gg	acccggctgg	gacccggctg	ggagggcgcg	ggagggcgcg	60
g								61
<211> 7	92 7008 DNA Arti	ficial						
<220> <223> I	Desc	ription	of	Artificial	Sequence: 1	Expression '	Vector	
	92 ogg	gagatete	ccc	gatcccctat	ggtgcactct	cagtacaatc	tgctctgatg	60
ccgcataç	gtt	aagccagt	at	ctgctccctg	cttgtgtgtt	ggaggtcgct	gagtagtgcg	120
cgagcaaa	aat	ttaagcta	ıca	acaaggcaag	gcttgaccga	caattgcatg	aagaatctgc	180
ttagggtt	ag	gegttttg	ıcg	ctgcttcgcg	atgtacgggc	cagatatacg	cgttgacatt	240
gattatto	gac	tagttatt	aa	tagtaatcaa	ttacggggtc	attagttcat	agcccatata	300
tggagtto	ccg	cgttacat	aa	cttacggtaa	atggcccgcc	tggctgaccg	cccaacgacc	360
ecegecea	att	gacgtcaa	ta	atgacgtatg	ttcccatagt	aacgccaata	gggactttcc	420
attgacgt	ca	atgggtgg	jag	tatttacggt	aaactgccca	cttggcagta	catcaagtgt	480
atcatato	gcc	aagtacgo	cc	cctattgacg	tcaatgacgg	taaatggccc	gcctggcatt	540
atgcccag	gta	catgacct	ta	tgggactttc	ctacttggca	gtacatctac	gtattagtca	600
togotatt	ac	catggtga	ıtg	cggttttggc	agtacatcaa	tgggcgtgga	tagcggtttg	660
actcacgo	ggg	atttccaa	ıgt	ctccacccca	ttgacgtcaa	tgggagtttg	ttttggcacc	720
aaaatcaa	acg	ggactttc	ca	aaatgtcgta	acaactccgc	cccattgacg	caaatgggcg	780
gtaggcgt	gt	acggtggg	ag	gtctatataa	gcagagctct	ctggctaact	aagctttcgg	840
ege g eega	ıgg	taccatgo	ga	tccgaagacg	ccaaaaacat	aaagaaaggc	ccggcgccat	900
tetateet	ct	agaggatg	ga	accgctggag	agcaactgca	taaggctatg	aagagatacg	960
ecctggtt	.cc	tggaacaa	tt	gcttttacag	atgcacatat	cgaggtgaac	atcacgtacg	1020
eggaatae	ett	cgaaatgt	cc	gtteggttgg	cagaagctat	gaaacgatat	gggctgaata	1080
caaatcac	ag	aatcgtcg	ta	tgcagtgaaa	actotottoa	attetttatg	ccggtgttgg	1140
gegegtta	tt	tatoggag	tt	gcagttgcgc	ccgcgaacga	catttataat	gaacgtgaat	1200

tgetcaacag tatgaacatt tegcageeta cegtagtgtt tgtttecaaa aaggggttge 1260 aaaaaatttt qaacqtgcaa aaaaaattac caataatcca qaaaattatt atcatqqatt 1320 ctaaaacgga ttaccaggga tttcagtcga tgtacacgtt cgtcacatet catctacetc 1380 1440 coggttttaa tgaatacgat tttgtaccag agtcctttga tcgtgacaaa acaattgcac tgataatgaa ttoototgga totactgggt tacctaaggg tgtggccctt ccgcatagaa 1500 ctgcctgcgt cagattctcg catgccagag atcctatttt tggcaatcaa atcattccgg 1560 1620 atactgcgat tttaagtgtt gttccattcc atcacggttt tggaatgttt actacactcg 1680 gatatttgat atgtggattt cgagtcgtct taatgtatag atttgaagaa gagctgtttt tacqatccet tcaqqattac aaaattcaaa qtqcqttqct aqtaccaacc ctattttcat 1740 tettegecaa aageactetg attgacaaat aegatttate taatttacae gaaattgett 1800 ctggggggg acctetteg aaagaagteg gggaageggt tgcaaaaege ttccatette 1860 cagggatacg acaaggatat gggctcactg agactacatc agctattctg attacacccg 1920 1980 agggggatga taaaccgggc gcggtcggta aagttgttcc attttttgaa gcgaaggttg tggatctgga taccgggaaa acgctgggcg ttaatcagag aggcgaatta tgtgtcagag 2040 gacctatgat tatgtccggt tatgtaaaca atccggaagc gaccaacgcc ttgattgaca 2100 aggatggatg gctacattct ggagacatag cttactggga cgaagacgaa cacttcttca 2160 2220 tagttgaccg cttgaagtet ttaattaaat acaaaggata tcaggtggcc cccgctgaat 2280 tggaatcgat attgttacaa caccccaaca tcttcgacgc gggcgtggca ggtcttcccg acqatqacqc cqqtqaactt cccqccqccq ttqttqtttt qqaqcacqqa aaqacqatqa 2340 cqqaaaaaqa qatcqtqqat tacqtcqcca qtcaaqtaac aaccqcqaaa aaqttqcqcq 2400 gaggagtigt gtttgtggac gaagtaccga aaggtcttac cggaaaactc gacgcaagaa 2460 aaatcagaga qatcctcata aaggccaaga agggcggaaa gtccaaattg cgcggccgct 2520 2580 ggggggtggg gtggggagg acagcaaggg ggaggattgg gaagacaata gcaggcatgc 2640 tggggatgcg gtgggctcta tggcttctga ggcggaaaga accagctggg gctctagggg 2700 2760 gtatececae gegeeetgta geggegeatt aagegeggeg ggtgtggtgg ttaegegeag egtgaeeget acaettgeea gegeeetage geeegeteet ttegetttet teeetteett 2820 tetegecacg ttegecgget tteccegtea agetetaaat egggggetee etttagggtt 2880

ccgatttagt	gerrraegge	acceegacce	Caaaaaaccc	gaccagggcg	acggecoacg	25.0
tagtgggcca	tegecetgat	agacggtttt	togccctttg	acgttggagt	ccacgttctt	3000
taatagtgga	ctcttgttcc	aaactggaac	aacactcaac	cctatctcgg	tctattcttt	3060
tgatttátaa	gggattttgc	cgatttcggc	ctattggtta	aaaaatgagc	tgatttaaca	3120
aaaatttaac	gcgaattaat	tctgtggaat	gtgtgtcagt	tagggtgtgg	aaagtcccca	3180
ggctccccag	caggcagaag	tatgcaaagc	atgcatctca	attagtcagc	aaccaggtgt	3240
ggaaagtccc	caggeteecc	agcaggcaga	agtatgcaaa	gcatgcatct	caattagtca	3300
gcaaccatag	teccgcccct	aactccgccc	atecegecee	taactccgcc	cagttccgcc	3360
cattctccgc	cccatggctg	actaattttt	tttatttatg	cagaggccga	ggeegeetet	3420
gcctctgagc	tattccagaa	gtagtgagga	ggctttttg	gaggeetagg	cttttgcaaa	3480
aagctcccgg	gagcttgtat	atccattttc	ggatctgatc	agcacgtgat	gaaaaagcct	3540
gaactcaccg	cgacgtctgt	cgagaagttt	ctgatcgaaa	agttcgacag	cgtctccgac	3600
ctgatgcagc	tctcggaggg	cgaagaatct	cgtgctttca	gcttcgatgt	aggagggcgt	3660
ggatatgtcc	tgcgggtaaa	tagctgcgcc	gatggtttct	acaaagatcg	ttatgtttat	3720
cggcactttg	catcggccgc	gctcccgatt	ccggaagtgc	ttgacattgg	ggaattcagc	3780
gagagcctga	cctattgcat	ctcccgccgt	gcacagggtg	tcacgttgca	agacctgcct	3840
gaaaccgaac	tgcccgctgt	tetgcageeg	gtcgcggagg	ccatggatgc	gatcgctgcg	3900
gccgatctta	gccagacgag	cgggttcggc	ccattcggac	cgcaaggaat	cggtcaatac	3960
actacatggc	gtgatttcat	atgcgcgatt	gctgatcccc	atgtgtatca	ctggcaaact	4020
gtgatggacg	acaccgtcag	tgcgtccgtc	gegeaggete	tcgatgagct	gatgctttgg	4080
gccgaggact	geceegaagt	ceggcacete	gtgcacgcgg	atttcggctc	caacaatgtc	4140
ctgacggaca	atggccgcat	aacageggte	attgactgga	gcgaggcgat	gttcggggat	4200
toccaatacg	aggtcgccaa	catcttcttc	tggaggccgt	ggttggcttg	tatggagcag	4260
cagacgcgct	acttcgagcg	gaggcatccg	gagettgeag	gatcgccgcg	gctccgggcg	4320
tatatgctcc	gcattggtct	tgaccaactc	tatcagaget	tggttgacgg	caatttcgat	4380
gatgcagctt	gggcgcaggg	tegatgegae	gcaatcgtcc	gateeggage	cgggactgtc	4440
gggcgtacac	aaatcgcccg	cagaagcgcg	gccgtctgga	ccgatggctg	tgtagaagta	4500
ctcgccgata	gtggaaaccg	acgccccagc	actcgtccga	gggcaaagga	atagcacgtg	4560
ctacqaqatt	tegattecae	caccaccttc	tatgaaaggt	taaacttcaa	aatcqttttc	4620

4680

egggaegeeg getggatgat cetecagege ggggatetea tgetggagtt ettegeecae cccaacttgt ttattgcage ttataatggt tacaaataaa gcaatagcat cacaaatttc 4740 4800 acaaataaag cattititic actgcattct agttgtggtt tgtccaaact catcaatgta tottatcatg totgtatacc gtcgacctct agctagaget tggcgtaatc atggtcatag 4860 4920 ctgtttcctg tgtgaaattg ttatccqctc acaattccac acaacatacg agccggaagc ataaagtgta aageetgggg tgeetaatga gtgagetaac teacattaat tgegttgege 4980 teactgooog etttecagte gggaaacetg tegtgecage tgeattaatg aateggecaa 5040 cgcgcggga gaggcggttt gcgtattggg cgctcttccg cttcctcgct cactgactcg 5100 ctgcgctcgg tcgttcggct gcggcgagcg gtatcagctc actcaaaggc ggtaatacgg 5160 ttatccacag aatcagggga taacgcagga aagaacatgt gagcaaaaagg ccagcaaaag 5220 gecaggaace gtaaaaagge egegttgetg gegtttttee ataggeteeg ecceetgae 5280 5340 gagcatcaca aaaatcgacg ctcaagtcag aggtggcgaa acccgacagg actataaaga 5400 taccaggegt ttccccctgg aagetecete gtgcgctcte ctgttccgac cctgccgctt accggatace tgtccgcctt tctcccttcg ggaagcgtgg cgctttctca tagctcacgc 5460 tgtaggtatc tcagttcggt gtaggtcgtt cgctccaagc tgggctgtgt gcacgaaccc 5520 cccqttcage ccgaccgctg cgccttatec ggtaactate gtettgagte caacceggta 5580 agacacqact tatcgccact ggcagcagcc actggtaaca ggattagcag agcgaggtat 5640 5700 gtaggcggtg ctacagagtt cttgaagtgg tggcctaact acggctacac tagaagaaca gtatttggta tetgegetet getgaageea gttacetteg gaaaaagagt tggtagetet 5760 tgatccggca aacaaaccac cgctggtagc ggttttttttg tttgcaagca gcagattacg 5820 5880 cocagaaaaa aaggatotoa agaagatoot ttgatotttt otacggggto tgacgotoag 5940 tggaacgaaa actcacgtta agggattttg gtcatgagat tatcaaaaag gatcttcacc tagatoottt taaattaaaa atgaagtttt aaatcaatot aaagtatata tgagtaaact 6000 tggtctgaca gttaccaatg cttaatcagt gaggcaccta tctcagcgat ctgtctattt 6060 cqttcatcca tagttgcctg actccccgtc gtgtagataa ctacgatacg ggagggctta 6120 ccatctggcc ccagtgctgc aatgataccg cgagacccac gctcaccggc tccagattta 6180 tcagcaataa accagccagc cggaagggcc gagcgcagaa gtggtcctgc aactttatcc 6240 gcctccatcc agtctattaa ttgttgccgg gaagctagag taagtagttc gccagttaat 6300

agtttgcgca	acgttgttgc	cattgctaca	ggcatcgtgg	tgtcacgctc	gtcgtttggt	6360
atggcttcat	tcagctccgg	ttcccaacga	tcaaggcgag	ttacatgatc	ccccatgttg	6420
tgcaaaaaag	cggttagctc	cttcggtcct	ccgatcgttg	tcagaagtaa	gttggccgca	6480
gtgttatcac	tcatggttat	ggcagcactg	cataattctc	ttactgtcat	gccatccgta	6540
agatgetttt	ctgtgactgg	tgagtactca	accaagtcat	tctgagaata	gtgtatgcgg	6600
cgaccgagtt	getettgeee	ggcgtcaata	cgggataata	ccgcgccaca	tagcagaact	6660
ttaaaagtgc	tcatcattgg	aaaacgttct	tcggggcgaa	aactctcaag	gatcttaccg	6720
ctgttgagat	ccagttcgat	gtaacccact	cgtgcaccca	actgatcttc	agcatctttt	6780
actttcacca	gcgtttctgg	gtgagcaaaa	acaggaaggc	aaaatgccgc	aaaaaaggga	6840
ataagggcga	cacggaaatg	ttgaatactc	atactcttcc	tttttcaata	ttattgaagc	6900
atttatcagg	gttattgtct	catgagcgga	tacatatttg	aatgtattta	gaaaaataaa	6960
caaatagggg	ttccgcgcac	atttccccga	aaagtgccac	ctgacgtc		7008
<220> <223> Desc	ficial	Artificial	Sequence: I	Expression '	/ector	
<400> 93 gttgacattg	attattgact	agttattaat	agtaatcaat	tacggggtca	ttagttcata	60
gcccatatat	ggagttccgc	gttacataac	ttacggtaaa	tggcccgcct	ggctgaccgc	120
ccaacgaccc	cegcccattg	acgtcaataa	tgacgtatgt	tcccatagta	acgccaatag	180
ggactttcca	ttgacgtcaa	tgggtggagt	atttacggta	aactgcccac	ttggcagtac	240
atcaagtgta	tcatatgcca	agtccgcccc	ctattgacgt	caatgacggt	aaatggcccg	300
cctggcatta	tgcccagtac	atgaccttac	gggactttcc	tacttggcag	tacatctacg	360
tattagtcat	cgctattacc	atggtgatgc	ggttttggca	gtacaccaat	gggcgtggat	420
ageggittga	ctcacgggga	tttccaagtc	tecaccccat	tgacgtcaat	gggagtttgt	480
		tttccaagtc gactttccaa				480 540
ttggcacca	aaatcaacgg		aatgtcgtaa	taaccccgcc	ccgttgacgc	

geceggegee attetateet etagaggatg gaacegetgg agageaactg cataaggeta 720

tgaagagata egeeetggtt eetggaacaa ttgettttac agatgeacat ategaggtga 780 acatcacgta cgcggaatac ttcgaaatgt ccgttcggtt ggcagaagct atgaaacgat 840 atgggctgaa tacaaatcac agaatcgtcg tatgcagtga aaactctctt caattcttta 900 tgccggtgtt gggcgcgtta tttatcggag ttgcagttgc gcccgcgaac gacatttata 960 atgaacgtga attgctcaac agtatgaaca tttcgcagcc taccgtagtg tttgtttcca 1020 1080 aaaaqqqqtt gcaaaaaatt ttgaacqtqc aaaaaaaatt accaataatc cagaaaatta ttatcatqqa ttctaaaacg gattaccagg gatttcagtc gatgtacacg ttcgtcacat 1140 ctcatctacc tcccggtttt aatgaatacg attttgtacc agagtccttt gatcgtgaca 1200 aaacaattgc actgataatg aattcctctg gatctactgg gttacctaag ggtgtggccc 1260 ttccgcatag aactgcctgc gtcagattct cgcatgccag agatcctatt tttggcaatc 1320 aaatcattcc ggatactgcg attttaagtg ttgttccatt ccatcacggt tttggaatgt 1380 ttactacact cggatatttg atatgtggat ttcgagtcgt cttaatgtat agatttgaag 1440 1500 aagagetgtt tttacqatee etteaggatt acaaaattea aagtgegttg etagtaceaa ccctattttc attcttcgcc aaaagcactc tgattgacaa atacgattta tctaatttac 1560 acqaaattgc ttctgggggc gcacctcttt cgaaagaagt cggggaagcg gttgcaaaac 1620 gettecatet tecagggata egacaaggat atgggeteae tgagactaca teagetatte 1680 tgattacacc cgaggggat gataaaccgg gcgcggtcgg taaagttgtt ccattttttg 1740 aagegaaggt tgtggatetg gataceggga aaaegetggg egttaateag agaggegaat 1800 tatgtgtcag aggacctatg attatgtccg gttatgtaaa caatccggaa gcgaccaacg 1860 ccttgattga caaggatgga tggctacatt ctggagacat agcttactgg gacgaagacg 1920 aacacttett cataqttgac cgcttgaaqt etttaattaa atacaaagga tatcaqqtgg 1980 2040 ceceegetga attggaateg atattgttac aacaceecaa catettegae gegggegtgg caggtettee egacgatgae geeggtgaae tteeegeege egttgttgtt ttggageaeg 2100 qaaaqacgat gacggaaaaa gagatcgtgg attacgtcgc cagtcaagta acaaccgcga 2160 aaaagttgcg cggaggagtt gtgtttgtgg acgaagtacc gaaaggtctt accggaaaac 2220 tegacgcaag aaaaatcaga gagateetca taaaggccaa gaaggqcqqa aagtecaaat 2280 tgegeggeeg ctaactegag satssscaag ttaacaacaa caattgeatt cattttatgt 2340 ttcaggttca gggggaggtg tgggaggttt tttaaagcaa gtaaaacctc tacaaatgtg 2400

gtatggctga	ttatgatccg	getgeetege	gcgtttcggt	gatgacggtg	aaaacctctg	2460
acacatgcag	ctcccggaga	cggtcacagc	ttgtctgtaa	gcggatgccg	ggagcagaca	2520
agcccgtcag	gcgtcagcgg	gtgttggcgg	gtgtcggggc	gcagccatga	ggtcgactct	2580
agaggatcga	tgccccgccc	cggacgaact	aaacctgact	acgacatctc	tgccccttct	2640
tegeggggca	gtgcatgtaa	tecetteagt	tggttggtac	aacttgccaa	ctgggccctg	2700
ttccacatgt	gacacggggg	gggaccaaac	acaaaggggt	tctctgactg	tagttgacat	2760
ccttataaat	ggatgtgcac	atttgccaac	actgagtggc	tttcatcctg	gagcagactt	2820
tgcagtctgt	ggactgcaac	acaacattgc	ctttatgtgt	aactcttggc	tgaagctctt	2880
acaccaatgc	tgggggacat	gtacctccca	ggggcccagg	aagactacgg	gaggetacac	2940
caacgtcaat	cagaggggcc	tgtgtagcta	ccgataagcg	gaccctcaag	agggcattag	3000
caatagtgtt	tataaggccc	ccttgttaac	cctaaacggg	tagcatatgc	ttcccgggta	3060
gtagtatata	ctatccagac	taaccctaat	tcaatagcat	atgttaccca	acgggaagca	3120
tatgctatcg	aattagggtt	agtaaaaggg	tcctaaggaa	cagcgatatc	teccacecca	3180
tgagctgtca	cggttttatt	tacatggggt	caggattcca	cgagggtagt	gaaccatttt	3240
agtcacaagg	gcagtggctg	aagatcaagg	agcgggcagt	gaactctcct	gaatcttcgc	3300
ctgettette	attctccttc	gtttagctaa	tagaataact	gctgagttgt	gaacagtaag	3360
gtgtatgtga	ggtgctcgaa	aacaaggttt	caggtgacgc	ccccagaata	aaatttggac	3420
ggggggttca	gtggtggcat	tgtgctatga	caccaatata	accctcacaa	accccttggg	3480
caataaatac	tagtgtagga	atgaaacatt	ctgaatatct	ttaacaatag	aaatccatgg	3540
ggtggggaca	agccgtaaag	actggatgtc	catctcacac	gaatttatgg	ctatgggcaa	3600
cacataatcc	tagtgcaata	tgatactggg	gttattaaga	tgtgtcccag	gcagggacca	3660
agacaggtga	accatgttgt	tacactctat	ttgtaacaag	gggaaagaga	gtggacgccg	3720
acagcagcgg	actccactgg	ttgtctctaa	cacccccgaa	aattaaacgg	ggctccacgc	3780
caatggggcc	cataaacaaa	gacaagtggc	cactctttt	tttgaaattg	tggagtgggg	3840
gcacgcgtca	geececacac	gccgccctgc	ggttttggac	tgtaaaataa	gggtgtaata	3900
acttggctga	ttgtaacccc	gctaaccact	gcggtcaaac	cacttgccca	caaaaccact	3960
aatggcaccc	cggggaatac	ctgcataagt	aggtgggcgg	gccaagatag	gggcgcgatt	4020
gctgcgatct	ggaggacaaa	ttacacacac	ttgcgcctga	gcgccaagca	cagggttgtt	4080
ggtcctcata	ttcacgaggt	cgctgagagc	acggtgggct	aatgttgcca	tgggtagcat	4140

atactaccca	aatatotgga	tagcatatgc	tatcctaatc	tatatctggg	tagcataggc	4200
tatcctaatc	tatatctggg	tagcatatgc	tatcctaatc	tatatctggg	tagtatatgc	4260
tatectaatt	tatatctggg	tagcataggc	tatcctaatc	tatatctggg	tagcatatgc	4320
tatcctaatc	tatatctggg	tagtatatgc	tatcctaatc	tgtatccggg	tagcatatgc	4380
tatcctaata	gagattaggg	tagtatatgc	tatcctaatt	tatatctggg	tagcatatac	4440
tacccaaata	tctggatagc	atatgctatc	ctaatctata	tctgggtagc	atatgctatc	4500
ctaatctata	tctgggtagc	ataggetate	ctaatctata	tctgggtagc	atatgctatc	4560
ctaatctata	tctgggtagt	atatgctatc	ctaatttata	tctgggtagc	ataggctatc	4620
ctaatctata	tctgggtagc	atatgctatc	ctaatctata	tctgggtagt	atatgctatc	4680
ctaatctgta	tccgggtagc	atatgctatc	ctcatgcata	tacagtcagc	atatgatacc	4740
cagtagtaga	gtgggagtgc	tatcctttgc	atatgccgcc	acctcccaag	ggggcgtgaa	4800
ttttcgctgc	ttgtcctttt	cctgctggtt	gctcccattc	ttaggtgaat	ttaaggaggc	4860
caggctaaag	ccgtcgcatg	tctgattgct	caccaggtaa	atgtcgctaa	tgttttccaa	4920
cgcgagaagg	tgttgagcgc	ggagctgagt	gacgtgacaa	catgggtatg	cccaattgcc	4980
ccatgttggg	aggacgaaaa	tggtgacaag	acagatggcc	agaaatacac	caacagcacg	5040
catgatgtct	actggggatt	tattctttag	tgcgggggaa	tacacggctt	ttaatacgat	5100
tgagggcgtc	tectaacaag	ttacatcact	cctgcccttc	ctcaccctca	tctccatcac	5160
ctccttcatc	teegteatet	ccgtcatcac	cctccgcggc	agccccttcc	accataggtg	5220
gaaaccaggg	aggcaaatct	actccatcgt	caaagctgca	cacagtcacc	ctgatattgc	5280
aggtaggagg	gggctttgtc	ataacaaggt	ccttaatcgc	atccttcaaa	acctcagcaa	5340
atatatgagt	ttgtaaaaag	accatgaaat	aacagacaat	ggactccctt	agegggeeag	5400
gttgtgggc	gggtccaggg	gccattccaa	aggggagacg	actcaatggt	gtaagacgac	5460
attgtggaat	agcaagggca	gttcctcgcc	: ttaggttgta	aagggaggtc	ttactacctc	5520
catatacgaa	cacaccggcg	acccaagtto	cttcgtcggt	agtcctttct	acgtgactcc	5580
tagecaggag	g agetettaaa	ccttctgcaa	tgttctcaaa	tttcgggttg	gaacctcctt	5640
gaccacgato	g cttttccaaa	ccaccctcct	tttttgcgcc	etgcctccat	caccetgace	5700
ccggggtcca	gtgcttgggc	cttctcctgg	g gtcatctgcg	gggccctgct	ctategetee	5760
cgggggcac	g tcaggctcac	catctgggc	accttcttgg	g tggtattcaa	aataatcggc	5820

ttcccctaca qqqtggaaaa atggccttct acctggaggg ggcctgcgcg gtggagaccc 5880 ggatgatgat gactgactac tgggactcct gggcctcttt tctccacgtc cacgacctct 5940 cccctggct ctttcacgac ttcccccct ggctctttca cgtcctctac cccggcggcc 6000 tecactacet cetegacece ggeetecact acetectega ecceggeete caetgeetec 6060 togaccoegg cotocaccto otgotoctgo cootoctgot cotgococto otcotqotoc 6120 6180 taccetect geoectectg etectgeece tectgeecet cetgetectg eccetectge contracted categorate atgazentes teatgetest gasentests accetactes 6240 tgeteetgee ceteetgeee etcetgetee tgecceteet gecceteetg etcetgeece 6300 tectgoccet cetgetectg cocctcetge tectgoccet cetgetectg cocctcetge 6360 tectgocct catgoccate atgoccate teatgotect goodcated atcatgocca 6420 tectgeceet cetgeceete etgeteetge ecctectect geteetgece etcetgecee 6480 tectgecect ectectgete etgecectee tgececteet cetgeteetg cecetectee 6540 tgetectgee cetectgeee etectgeeee tectectget cetgeceete etgeceetee 6600 tectgetect geocctecte etgetectge ecctectgee ectectgece etcetectge 6660 tectgecect cetectgete etgecectee tgecectect gecectectg eccetectee 6720 tgetectgee cetectectg etectgeece teetgeteet geoceteceg etectgetee 6780 tgctcctgtt ccaccgtggg tccctttgca gccaatgcaa cttggacgtt tttggggtct 6840 coggacacca tototatgto ttggccctga tcctgagccg cccggggctc ctggtcttcc 6900 6960 geotectegt cotegtecte treecegtee tegtecatgg trateacece ctettetttg aggtecactg cogcoggage ettetggtee agatgtgtet coettetete ctaggecatt 7020 tccaggtcct gtacctggcc cctcgtcaga catgattcac actaaaagag atcaatagac 7080 atctttatta gacgacgete agtgaataca gggagtgcag actcetgccc cetecaacag 7140 7200 coccccacc ctcatcccct tcatggtcgc tgtcagacag atccaggtct gaaaattccc catectecga accatecteg tecteateae caattacteg cageceggaa aacteeeget 7260 gaacatcctc aagatttgeg teetgageet caagecagge etcaaattce tegteeceet 7320 ttttgctgga cggtagggat ggggattete gggacccete etetteetet tcaaqgtcac 7380 caqacagaga tgctactggg gcaacggaag aaaagctggg tgcggcctgt gaggatcagc 7440 ttatcgatga taagctgtca aacatgagaa ttcttgaaga cgaaagggcc tcgtgatacg 7500 cctattttta taggttaatg tcatgataat aatggtttct tagacgtcag gtggcacttt 7560

7620 toggggaaat gtgcgcggaa cocctatttg tttatttttc taaatacatt caaatatgta tecgeteatg agacaataac cetgataaat getteaataa tattgaaaaa ggaagagtat 7680 gagtattcaa cattteegtg tegeeettat teeetttttt geggeatttt geetteetgt 7740 7800 ttttgctcac ccagaaacgc tggtgaaagt aaaagatgct gaagatcagt tgggtgcacg agtgggttac atcgaactgg atctcaacag cggtaagatc cttqagaqtt ttcqccccqa 7860 agaacgtttt ccaatgatga gcacttttaa agttctgcta tgtggcgcgg tattatcccg 7920 7980 tqttqacqcc gggcaagagc aactcggtcg ccgcatacac tattctcaga atgacttggt 8040 tgagtactca ccagtcacag aaaagcatct tacggatggc atgacagtaa gagaattatg cagtgctgcc ataaccatga gtgataacac tgcggccaac ttacttctga caacgatcgg 8100 aggaccgaag gagctaaccg cttttttgca caacatgggg gatcatgtaa ctcgccttga 8160 torttorgaa coggagetga atgaageeat accaaacgae gagegtgaca ccaegatgee 8220 tgcagcaatg gcaacaacgt tgcgcaaact attaactggc gaactactta ctctagctto 8280 ccggcaacaa ttaatagact ggatggaggc ggataaagtt gcaggaccac ttctqcqctc 8340 ggcccttccg gctggctggt ttattgctga taaatctgga gccggtgagc gtgggtctcg 8400 8460 contateatt geageactog ggccagatog taagecetee egtategtag ttatetacae gacgggagt caggcaacta tggatgaacg aaatagacag atcgctgaga taggtgcctc 8520 8580 actgattaag cattggtaac tgtcagacca agtttactca tatatacttt agattgattt aaaacttcat ttttaattta aaaggatcta ggtgaagatc ctttttgata atctcatgac 8640 caaaatccct taacgtgagt tttcgttcca ctgagcgtca gaccccgtag aaaagatcaa 8700 aggatettet tgagateett tttttetgeg egtaatetge tgettgeaaa caaaaaaace 8760 8820 acceptacca geggtggttt gtttgccgga tcaagagcta ccaactettt ttccgaaggt aactggette agcagagege agataccaaa tactgteett etagtgtage egtagttagg 8880 ccaccacttc aagaactctg tagcaccgcc tacatacctc gctctgctaa tcctgttacc 8940 9000 agtggctgct gccagtggcg ataagtcgtg tcttaccggg ttggactcaa gacgatagtt 9060 accognitant general account and account and account ac gegaacqace tacaccqaac tqagatacct acagcgtgag ctatgagaaa gegecacgct 9120 toccgaaggg agaaaggcgg acaggtatoc ggtaagcggc agggtcggaa caggagagcg 9180 9240 cacgaggag cttccagggg gaaacgcctg gtatctttat agtcctgtcg ggtttcgcca

9300 cetetgaett gagegtegat ttttgtgatg etegteaggg gggeggagee tatggaaaaa cgccagcaac gcggcctttt tacggttcct ggccttttgc tggccttgaa gctgtccctg 9360 atggtcgtca tctacctgcc tggacagcat ggcctgcaac gcgggcatcc cgatgccgcc 9420 qqaaqcqaqa aqaatcataa tggggaaggc catccagcct cgcgtcgcga acgccagcaa 9480 qacqtaqccc agcgcgtcgg ccccgagatg cgccgcgtgc ggctgctgga gatggcggac 9540 qcqatqqata tgttctgcca agggttggtt tgcgcattca cagttctccg caagaattga 9600 ttggctccaa ttcttggagt ggtgaatccg ttagcgaggt gccgccctgc ttcatccccg 9660 tggcccgttg ctcgcgtttg ctggcggtgt ccccggaaga aatatatttg catgtcttta 9720 gttctatgat gacacaaacc ccgcccagcg tcttgtcatt ggcgaattcg aacacgcaga 9780 tgcagtcggg gcggcgcggt ccgaggtcca cttcgcatat taaggtgacg cgtgtggcct 9840 cgaacaccga gegaccetge agegaccege ttaacagegt caacagegtg cegcagatee 9900 cggggggcaa tgagatatga aaaagcctga actcaccgcg acgtctgtcq agaagtttct 9960 gatcgaaaag ttcgacagcg tctccgacct gatgcagctc tcggagggcg aagaatctcg 10020 tgctttcagc ttcgatgtag gagggcgtgg atatgtcctg cgggtaaata gctgcgccga 10080 tggtttctac aaagatcgtt atgtttatcg gcactttgca tcggccgcgc tcccgattcc 10140 ggaagtgett gacattgggg aattcagega gageetgaee tattgeatet eeegeegtge 10200 acagggtgte acgttgcaag acctgcctga aaccgaactg cccgctgttc tgcagccggt 10260 cgcggaggcc atggatgcga tcgctgcggc cgatcttagc cagacgagcg ggttcggccc 10320 attoggacog caaggaatog gtcaatacac tacatggogt gatttcatat gogogattgc 10380 tgatececat gtgtateact ggcaaactgt gatggacgae accgteagtg egteegtege 10440 gcaggetete gatgagetga tgetttggge egaggaetge ecegaagtee ggcacetegt 10500 gcacgcggat ttbggctcca acaatgtcct gacggacaat ggccgcataa cagcggtcat tgactggagc gaggcgatgt tcggggattc ccaatacgag gtcgccaaca tcttcttctg 10620 gaggccgtgg ttggcttgta tggagcagca gacgcgctac ttcgagcgga ggcatccgga 10680 gettgeagga tegeegegge teegggegta tatgeteege attggtettg accaacteta 10740 teagagettg gttgacggea atttcgatga tgcagettgg gcgcagggte gatgcgacge 10800 aategteega teeggageeg ggaetgtegg gegtacacaa ategeeegea gaagegegge 10860 cgtctggacc gatggctgtg tagaagtact cgccgatagt ggaaaccgac gccccagcac 10920 tcgtccggat cgggagatgg gggaggctaa ctgaaacacg gaaggagaca ataccggaag 10980

gaacccgcgc ta	tgacggca a	ataaaaagac	agaataaaac	gcacgggtgt	tgggtcgttt	11040
gttcataaac gc	ggggttcg	gtcccagggc	tggcactctg	tegatacece	accgagaccc	11100
cattggggcc aa						11160
gaaggcccag gg						11220
gtgggttagg ga						11280
gggcgttgcg tg						11340
tggcctgggc at						11400
aaacaccccc ga						11460
aattctcatg tt						11520
ggcgcagaac tg						11580
attagtcatt gg						11640
totatatoat as						11693
	-					
<210> 94 <211> 4825						
<212> DNA						
<213> Artifi	.cial					
<220> <223> Descri	iption of	Artificial	Sequence:	Expression	vector	
<400> 94					+aa+a+aa+a	60
gacggatcgg ga						
ccgcatagtt as	agccagtat	ctgctccctg	cttgtgtgtt	ggaggtcgct	gagtagtgcg	120
cgagcaaaat ti	taagctaca	acaaggcaag	gcttgaccga	caattgcatg	aagaatctgc	180
ttagggttag g	gttttgcg	ctgcttcgcg	atgtacgggc	cagatatacg	cgttgacatt	240
gattattgac ta	agttattaa	tagtaatcaa	ttacggggtc	attagttcat	agcccatata	300
tggagttccg c	gttacataa	cttacggtaa	atggcccgcc	tggctgaccg	cccaacgacc	360
cccgcccatt g	acgtcaata	atgacgtatg	ttcccatagt	aacgccaata	gggactttcc	420
attgacgtca a	tgggtggag	tatttacggt	aaactgccca	cttggcagta	catcaagtgt	480
atcatatgcc a						540
atgeceagta c	atgacctta	tgggactttc	ctacttggca	gtacatctac	gtattagtca	600
						660

actcacgggg	atttccaagt	ctccacccca	ttgacgtcaa	tgggagtttg	ttttggcacc	720
aaaatcaacg	ggactttcca	aaatgtcgta	acaactccgc	cccattgacg	caaatgggcg	780
gtaggcgtgt	acggtgggag	gtctatataa	gcagagetet	ctggctaact	aagctttcgg	840
egegeegagg	taccatggga	teegaagaeg	ccaaaaacat	aaagaaaggc	ccggcgccat	900
tctatcctct	agaggatgga	accgctggag	agcaactgca	taaggctatg	aagagatacg	960
ccctggttcc	tggaacaatt	gcttttacag	atgcacatat	cgaggtgaac	atcacgtacg	1020
cggaatactt	cgaaatgtcc	gttcggttgg	cagaagctat	gaaacgatat	gggctgaata	1080
caaatcacag	aatcgtcgta	tgcagtgaaa	actctcttca	attctttatg	ccggtgttgg	1140
gegegttatt	tatcggagtt	gcagttgcgc	ccgcgaacga	catttataat	gaacgtgaat	1200
tgctcaacag	tatgaacatt	tegeageeta	ccgtagtgtt	tgtttccaaa	aaggggttgc	1260
aaaaaatttt	gaacgtgcaa	aaaaaattac	caataatcca	gaaaattatt	atcatggatt	1320
ctaaaacgga	ttaccaggga	tttcagtcga	tgtacacgtt	cgtcacatct	catctacctc	1380
ccggttttaa	tgaatacgat	tttgtaccag	agtcctttga	tcgtgacaaa	acaattgcac	1440
tgataatgaa	ttcctctgga	tctactgggt	tacctaaggg	tgtggccctt	ccgcatagaa	1500
ctgcctgcgt	cagatteteg	catgccagag	atcctattt	tggcaatcaa	atcattccgg	1560
atactgcgat	tttaagtgtt	gttccattcc	atcacggttt	tggaatgttt	actacactcg	1620
gatatttgat	atgtggattt	cgagtcgtct	taatgtatag	atttgaagaa	gagctgtttt	1680
tacgatecet	tcaggattac	aaaattcaaa	gtgcgttgct	agtaccaacc	ctattttcat	1740
tettegecaa	aagcactctg	attgacaaat	acgatttatc	taatttacac	gaaattgctt	1800
ctgggggcgc	acctctttcg	aaagaagtcg	gggaagcggt	tgcaaaacgc	ttccatcttc	1860
cagggatacg	acaaggatat	gggctcactg	agactacato	agctattctg	attacacccg	1920
agggggatga	taaaccgggc	geggteggta	aagttgttcc	attttttgaa	gcgaaggttg	1980
tggatctgga	taccgggaaa	acgctgggcg	ttaatcagag	aggcgaatta	tgtgtcagag	2040
gacctatgat	tatgtccggt	tatgtaaaca	atccggaagc	gaccaacgcc	ttgattgaca	2100
aggatggatg	gctacattct	ggagacatag	cttactggga	cgaagacgaa	cacttcttca	2160
tagttgaccg	cttgaagtct	ttaattaaat	acaaaggata	teaggtgge	cccgctgaat	2220
tggaatcgat	attgttacaa	caccccaaca	tettegaege	gggcgtg g ca	ggtcttcccg	2280
acgatgacgo	eggtgaactt	cccgccgccg	ttgttgttt	ggagcacgga	aagacgatga	2340
cggaaaaaga	gatcgtggat	: tacgtcgcca	gtcaagtaac	e aaccgcgaaa	aagttgcgcg	2400

gaggagttgt	gtttgtggac	gaagtaccga	aaggtcttac	cggaaaactc	gacgcaagaa	2460
aaatcagaga	gatectcata	aaggccaaga	agggcggaaa	gtccaaattg	cgcggccgct	2520
aactcgagaa	taaaatgagg	aaattgcatc	gcattgtctg	agtaggtgtc	attctattct	2580
ggggggtggg	gtggggcagg	acagcaaggg	ggaggattgg	gaagacaata	gcaggcatgc	2640
tggggatgcg	gtgggctcta	tggcttctga	ggcggaaaga	accagctggg	gctctagggg	2700
	gegeeetgta					2760
cgtgaccgct	acacttgcca	gcgccctagc	gcccgctcct	ttegetttet	tecetteett	2820
totogocacg	ttcgccggct	ttccccgtca	agctctaaat	cgggggtccc	tttagggttc	2880
cgatttagtg	ctttacggca	cctcgacccc	aaaaaacttg	attagggtga	tggttcacgt	2940
acctagaagt	tectattecg	aagttcctat	tctctagaaa	gtataggaac	ttccttggcc	3000
aaaaagcctg	aactcaccgc	gacgtctgtc	gagaagtttc	tgatcgaaaa	gttcgacagc	3060
gteteegace	tgatgcagct	ctcggagggc	gaagaatctc	gtgctttcag	cttcgatgta	3120
ggagggcgtg	gatatgtcct	gcgggtaaat	agetgegeeg	atggtttcta	caaagatcgt	3180
tatgtttatc	ggcactttgc	ateggeegeg	ctcccgattc	cggaagtgct	tgacattggg	3240
gaattcagcg	agagcctgac	ctattgcatc	tecegeegtg	cacagggtgt	cacgttgcaa	3300
gacctgcctg	aaaccgaact	gecegetgtt	ctgcagccgg	tegeggagge	catggatgcg	3360
ategetgegg	ccgatcttag	ccagacgagc	gggttcggcc	catteggace	gcaaggaatc	3420
ggtcaataca	ctacatggcg	tgatttcata	tgcgcgattg	ctgatcccca	tgtgtatcac	3480
tggcaaactg	tgatggacga	caccgtcagt	gcgtccgtcg	cgcaggctct	cgatgagctg	3540
atgctttggg	ccgaggactg	ccccgaagtc	eggeaceteg	tgcagcaaac	aaaccaccgc	3600
tggtagcggt	ttttttgttt	gcaagcagca	gattacgcgc	agaaaaaaag	gatctcaaga	3660
agatcctttg	atcttttcta	cggggtctga	cgctcagtgg	aacgaaaact	cacgttaagg	3720
gattttggto	atgagattat	caaaaaggat	cttcacctag	atccttttaa	attaaaaatg	3780
aagttttaaa	tcaatctaaa	gtatatatga	gtaaacttgg	tetgacagtt	accaatgctt	3840
aatcagtgag	gcacctatct	cagcgatctg	tctatttcgt	tcatccatag	ttgcctgact	3900
ccccgtcgtg	tagataacta	cgatacggga	gggcttacca	tetggeecea	gtgctgcaat	3960
gataccgcga	gacccacgct	caccggctcc	agatttatca	gcaataaacc	agccagccgg	4020
aagggeegag	gegeagaagtg	gtcctgcaac	tttatccgcc	tccatccagt	ctattaattg	4080

ttgccgggaa	gctagagtaa	gtagttcgcc	agttaatagt	ttgcgcaacg	ttgttgccat	4140
tgctacaggc	atcgtggtgt	cacgctcgtc	gtttggtatg	gcttcattca	gctccggttc	4200
ccaacgatca	aggcgagtta	catgatcccc	catgttgtgc	aaaaaagcgg	ttagctcctt	4260
cggtectecg	atcgttgtca	gaagtaagtt	ggccgcagtg	ttatcactca	tggttatggc	4320
	aattctctta					4380
	aagtcattct					4440
	gataataccg					4500
	gggcgaaaac					4560
	gcacccaact					4620
	ggaaggcaaa					4680
	ctcttccttt					4740
	atatttgaat					4800
	gtgccacctg					4825
<210> 95	gryccaccry	acgeo				
<211> 30						
<212> DNA	4					
	ificial					
<220> <223> Syr	thetic Cons	truct				
<400> 95						
	gataaataac	gegeecaaca				30
cegcaacco	gacaaa	9-9-				
<210> 96						
<211> 21						
<212> DN	tificial					
<213> Ar	CITICIAL					
<220>						
<223> Sy	nthetic Cons	struct				
<400> 96						21
cgggtaccg	a aaggtotta	e c				21
<210> 97						
<211> 22						
<212> DN	A					
	tificial					
<220>						
<223> Sy	nthetic Con	struct				

<400>	97						22
ttcttca	itag	ttgaccgctt	ga				
<210>	98						
<211>	19						
<212>	DNA						
<213>	Arti	ficial					
<220>							
<223>	Synt	hetic Const	ruct				
	0.0						
<400>	98 rt.ca	ggaagacct					19
gecaeog	juog	955					
<210>	99						
<211>	30						
<212>	DNA						
<213>	Artı	ficial					
<220>							
<223>	Synt	hetic Const	ruct				
<400>	99						
		acaacaaccc	aacatottoo				30
cyacaci	cycc	acaucuucoo					
<210>	100						
<211>	1038	3					
<212>	DNA						
<213>	Arti	ficial					
<220>							
<223>	Synt	hetic Const	ruct				
<400>	100	ttggggcagc	caaataactc	agaggt cata	acactaaaaa	ctagcaccag	60
cgctct	gtcg	ggaggcgcag	cggttaggtg	gaccggtcag	cggactcacc	ggccagggcg	120
	acta	gaatttgata	ttcattgatc	caaattttat	ccctcttctt	ttttcttaaa	180
catttt	tttt	taaaactgta	ttgtttctcg	ttttaattta	tttttgcttg	ccattcccca	240
		gccgacggct	tagggagatt	actotactto	cccaaatcac	tatagatttt	300
ggaaac	cagc	agaaagagga	aagaggtagc	aagagctcca	gagagaagtc	gaggaagaga	360
		cagagagagc	aaacaaacat	acaaacaaca	авасспасас	gggcaaagtg	420
agtgac	ctgc	ttttgggggt	gaccgccgga	gcgcggcgtg	agccctcccc	cttgggatcc	480
							540
cgcagc	tgac	cagtcgcgct	gacggacaga	cagacagaca	cogococoay	Josephia	0.10
cacete	etee	ccaaccaaca	acagacagta	qacqcqqcgg	cgagccgcgg	gcaggggccg	600

gagecegege	ccggaggcgg	ggtggagggg	gtcggggctc	geggegtege	actgaaactt	660
ttegtecaac	ttctgggctg	ttetegette	ggaggagccg	tggtccgcgc	gggggaagcc	720
gageegageg	gagccgcgag	aagtgctagc	tegggeeggg	aggagccgca	gccggaggag	780
ggggaggagg	aagaagagaa	ggaagaggag	agggggccgc	agtggcgact	cggcgctcgg	840
aagccgggct	catggacggg	tgaggcggcg	gtgtgcgcag	acagtgctcc	agccgcgcgc	900
gctccccagg	ccctggcccg	ggecteggge	cggggaggaa	gagtagctcg	ccgaggcgcc	960
gaggagagcg	ggccgcccca	cagecegage	cggagaggga	gcgcgagccg	cgccggcccc	1020
ggtegggeet	ccgaaacc					1038
<220>) ificial chetic Cons	truct				
<400> 101						
gccgggcagg	aggaaggagc	ctccctcagg	gtttcgggaa	ccagatctct	ctccaggaaa	60
gactgataca	gaacgatcga	tacagaaacc	acgctgccgc	caccacacca	tcaccatcga	120
cagaacagtc	cttaatccag	aaacctgaaa	tgaaggaaga	ggagactctg	cgcagagcac	180
tttgggtccg	gagggcgaga	ctccggcgga	agcattcccg	ggcgggtgac	ccagcacggt	240
ccctcttgga	attggattcg	ccattttatt	tttcttgctg	ctaaatcacc	gagcccggaa	300
gattagagag	ttttatttct	gggattcctg	tagacacacc	cacccacata	catacattta	360
tatatatata	tattatatat	atataaaaat	aaatatctct	attttatata	tataaaatat	420
atatattctt	tttttaaatt	aacagtgcta	atgttattgg	tgtcttcact	ggatgtattt	480
gactgctgtg	gacttgagtt	gggaggggaa	tgttcccact	cagatectga	cagggaagag	540
gaggagatga	gagactctgg	catgatcttt	tttttgtccc	acttggtggg	gccagggtcc	600
tatacactga	ccaagaatgt	gcaaggccag	ggcatggggg	caaatatgac	ccagttttgg	660
gaacaccgac	aaacccagcc	ctggcgctga	gcctctctac	cccaggtcag	acggacagaa	720
agacaaatca	caggttccgg	gatgaggaca	ccggctctga	ccaggagttt	ggggagcttc	780
aggacattgc	tgtgctttgg	ggattccctc	cacatgctgc	acgcgcatct	cgcccccagg	840
ggcactgcct	ggaagattca	ggagcctggg	cggccttcgc	ttactctcac	ctgcttctga	900

gttgcccagg	aggccactgg	cagatgtccc	ggcgaagaga	agagacacat	tgttggaaga	960
agcagcccat	gacagegeee	cttcctggga	ctcgccctca	tectettect	geteccette	1020
ctggggtgca	gcctaaaagg	acctatgtcc	tcacaccatt	gaaaccacta	gttctgtccc	1080
cccaggaaac	ctggttgtgt	gtgtgtgagt	ggttgacctt	cctccatccc	ctggtccttc	1140
ccttcccttc	ccgaggcaca	gagagacagg	gcaggatcca	cgtgcccatt	gtggaggcag	1200
agaaaagaga	aagtgtttta	tatacggtac	ttatttaata	tcccttttta	attagaaatt	1260
agaacagtta	atttaattaa	agagtagggt	ttttttcag	tattcttggt	taatatttaa	1320
tttcaactat	ttatgagatg	tatcttttgc	tctctcttgc	totottattt	gtaccggttt	1380
ttgtatataa	aattcatgtt	tccaatctct	ctctccctga	teggtgacag	tcactagett	1440
atcttgaaca	gatatttaat	tttgctaaca	ctcagctctg	ccctccccga	teceetgget	1500
cccagcaca	cattcctttg	aaagagggtt	tcaatataca	tctacatact	atatatatat	1560
tgggcaactt	gtatttgtgt	gtatatatat	atatatatgt	ttatgtatat	atgtgatcct	1620
gaaaaaataa	acatcgctat	totgtttttt	atatgttcaa	accaaacaag	aaaaaataga	1680
gaattctaca	tactaaatct	ctctccttt	ttaattttaa	tatttgttat	catttattta	1740
ttggtgctac	tgtttatccg	taataattgt	ggggaaaaga	tattaacatc	acgtctttgt	1800
ctctagtgca	gtttttcgag	atattccgta	gtacatattt	atttttaaac	aacgacaaag	1860
aaatacagat	atatcttaaa	aaaaaaaa				1889
<210> 102 <211> 179 <212> DNA <213> Art.	ificial					
	thetic Cons	truct				
<400> 102 ctccctcage	aaggacagca	gaggaccagc	taagagggag	agaagcaact	acagaccccc	60
cctgaaaaca	accctcagac	gccacatccc	ctgacaagct	gccaggcagg	ttctcttcct	120
ctcacatact	gacccacggc	tccaccctct	ctcccctgga	aaggacacca	tgagcactg	179
<210> 103 <211> 798 <212> DNA <213> Art						

<220>

<223> Synthetic	Construct				
<400> 103 ggaggacgaa catcca	aacet te cc aaaege	ctcccctgcc	ccaatccctt	tattaccccc	60
tccttcagac acccto	caacc tettetgget	caaaaagaga	attgggggct	tagggtcgga	120
acccaagett agaact	ttaa gcaacaagac	caccacttcg	aaacctggga	ttcaggaatg	180
tgtggcctgc acagto	gaagt getggeaace	actaagaatt	caaactgggg	cctccagaac	240
tcactggggc ctacaç	gettt gateeetgae	atctggaatc	tggagaccag	ggagcctttg	300
gttctggcca gaatgo	ctgca ggacttgaga	agacctcacc	tagaaattga	cacaagtgga	360
cettaggeet teetet	totoc agatgtttcc	agacttcctt	gagacacgga	gcccagccct	420
ccccatggag ccagct	teect ctatttatgt	ttgcacttgt	gattatttat	tatttattta	480
ttatttattt atttac	cagat gaatgtattt	atttgggaga	ccggggtatc	ctgggggacc	540
caatgtagga gctgc	cttgg ctcagacatg	ttttccgtga	aaacggagct	gaacaatagg	600
ctgttcccat gtage	ccct ¹ ggcctctgtg	ccttcttttg	attatgtttt	ttaaaatatt	660
tatctgatta agttg	tctaa acaatgctga	tttggtgacc	aactgtcact	cattgctgag	720
cototgetec ccagge	ggagt tgtgtctgta	atogocotac	tattcagtgg	cgagaaataa	780
agtttgctta gaaaa	gaa				798
<pre><210> 104 <211> 7 <212> DNA <221> Calls 7 <212> Calls 7 <213> Artificial <220> <223> Synthetic <400> 104 tattat <210> 105 <211> 33 <212> DNA <213> Artificial </pre>	Construct				7
<400> 105	Construct				
ttatttatta tttatt	ttatt atttatttat	tta			33
<210> 106					

67

<212>	8 DNA Artificial	
<220>		
<223>	Synthetic Construct	
<400> tatttat		8
<210>	107	
<211>		
<212>		
<213>	Artificial	
<220>		
<223>	Synthetic Construct	
<400>	107	48
taggago	ctgc cttggctcag acatgttttc cgtgaaaacg gagctgaa	40
<210>	108	
<211>		
<212>		
<213>	Artificial	
<220>		
<223>	Synthetic Construct	
<400>		28
ttttga	ttat gttttttaaa atatttat	20
<210>	109	
<211>		
<212>		
<213>	Artificial	
<220>		
<223>	Synthetic Construct	
<400>		6
aataaa		٥
<210>	110	
<211>		
<212>	DNA	
<213>	Artificial	
<220>		
<223>	Synthetic Construct	
<400>	110	60
cgagct	tggc tgcttctggg gcctgtgtgg ccctgtgtgt cggaaagatg gagcaagaag	00

ccgagcccga	ggggcggccg	cgacccctct	gaccgagatc	ctgctgcttt	cgcagccagg	120
agcaccgtcc	ctccccggat	tagtgcgtac	gagegeecag	tgccctggcc	cggagagtgg	180
aatgatcccc	gaggcccagg	gcgtcgtgct	teegegegee	ccgtgaagga	aactggggag	240
tettgaggga	cccccgactc	caagegegaa	aaccccggat	ggtgaggagc	aggcaa	296
<210> 111 <211> 150 <212> DNA <213> Art						
<220> <223> Syn	thetic Cons	truct				
<400> 111 aattctcgag	ctcgtcgacc	ggtcgacgag	ctcgagggtc	gacgageteg	agggegegeg	60
cccggccccc	acccctcgca	gcaccccgcg	ccccgcgccc	teccageegg	gtccagccgg	120
agccatgggg	ccggagccgc	agtgagcacc				150
<220> <223> Syn <400> 112 atggggccgg <210> 113 <211> 612 <212> DNA <213> Art <220> <223> Syn	ificial thetic Const agccgcagtg ificial thetic Const	a				21
<400> 113 accagaagge	caagtccgca	gaagccctga	tgtgtcctca	gggagcaggg	aaggcctgac	60
ttctgctggc	atcaagaggt	gggagggccc	tccgaccact	tccaggggaa	cctgccatgc	120
caggaacctg	tcctaaggaa	ccttccttcc	tgcttgagtt	cccagatggc	tggaaggggt	180
ccagcctcgt	tggaagagga	acagcactgg	ggagtctttg	tggattctga	ggccctgccc	240
aatgagacto	tagggtccag	tggatgccac	agcccagctt	ggccctttcc	ttccagatcc	300

gggtactga	aagccttagg	gaagctggcc	tgagagggga	agcggcccta	agggagtgtc	360
aagaacaaa	agcgacccat	tcagagactg	tccctgaaac	ctagtactgc	ccccatgag	420
gaaggaacag	caatggtgtc	agtatccagg	ctttgtacag	agtgcttttc	tgtttagttt	480
ttactttttt	tgttttgttt	ttttaaagac	gaaataaaga	cccaggggag	aatgggtgtt	540
gtatggggag	gcaagtgtgg	ggggtccttc	tccacaccca	ctttgtccat	ttgcaaatat	600
attttggaaa	ac					612
<210> 114 <211> 336 <212> DNA <213> Arti	ficial					
<220> <223> Synt	hetic Const	ruct				
<400> 114 tcgcggaggc	ttggggcagc	cgggtagctc	ggaggtcgtg	gcgctggggg	ctagcaccag	60
cgctctgtcg	ggaggcgcag	cggttaggtg	gaccggtcag	cggactcacc	ggccagggcg	120
eteggtgetg	gaatttgata	ttcattgatc	cgggttttat	ccctcttctt	ttttcttaaa	180
cattttttt	taaaactgta	ttgtttctcg	ttttaattta	tttttgcttg	ccattcccca	240
cttgaatcgg	gccgacggct	tggggagatt	gctctacttc	cccaaatcac	tgtggatttt	300
ggaaaccagc	agaaagagga	aagaggtagc	aagagc			336
<210> 115 <211> 476 <212> DNA <213> Art:	ificial					
<220> <223> Synt	thetic Cons	truct				
<400> 115 tcgcggaggc	ttggggcagc	cgggtagctc	ggaggtcgtg	gcgctggggg	ctagcaccag	60
cgctctgtcg	ggaggcgcag	cggttaggtg	gaccggtcag	cggactcacc	ggccagggcg	120
cteggtgctg	gaatttgata	ttcattgatc	cgggttttat	ccctcttctt	ttttcttaaa	180
cattttttt	taaaactgta	ttgtttctcg	tttaattta	tttttgcttg	ccattcccca	240
cttgaatcgg	gccgacggct	tggggagatt	gctctacttc	cccaaatcac	tgtggatttt	300
ggaaaccagc	agaaagagga	aagaggtagc	aagagctcca	gagagaagto	gaggaagaga	360
gagacggggt	cagagagagc	gegegggegt	gegageageg	aaagcgacag	gggcaaagtg	420

agtgacci	tgc	ttttgggggt	gaccgccgga	gegeggegtg	agecetecee	cttggg	476
<211> <212>	116 73 DNA Arti	ficial					
<220> <223>	Synt	hetic Cons	ruct				
<400> ctttct	116 gtt	tagtttttac	tttttttgtt	ttgtttttt	aaagacgaaa	taaagaccca	60
ggggaga	atg	ggt					73
<211> <212> <213> <213> <220> <223> <400> agagaac	Synt 117 cca	ificial chetic Cons ctgcttactg gtttaaactt	gcttatcgaa	attaatacga	ctcactatag	ggagacccaa	60 81
<210> <211> <212> <213>	118 134 DNA Art	ificial				,	
<220> <223>	Syn	thetic Cons	truct				
<400> ctcgagt	118 cta	gagggcccgt	ttaaacccgc	tgatcagcct	cgactgtggc	cttctagttg	60
ccagcca	atct	gttgttgtco	cctcccccgt	ecettecttg	accctggaag	gtgccactcc	120
cactgto	ectt	teet					134

International application No.

PCT/US04/26309

A.	CIA	SCIEIC ATIO	N OF SURJECT	MATTED

IPC(7) : C12Q 1/70; C12Q 1/68; C12N 15/63

US CL : 435/6, 320.1

According to International Patent Classification (IPC) or to both national classification and IPC FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) U.S.: 435/6, 320.1

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) Please See Continuation Sheet

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	US 6,448,007 B1 (GIORDANO et al.) 10 September 2002 (10.09.2002), see entire	1-24, 41, 43-49
	document.	***************************************
A		31-35, 37-40, 42, 50- 54
Y	US 5,859,227 A (GIORDANO et al.) 12 January 1999 (12.01.1999), see entire document.	1-24
Y	ISMAEL et al. Split-intron retroviral vectors: enhanced expression with improved safety. J Virol., March 2000, Vol. 74, No. 5, pages 2365-2371.	1-24
Α	US 6,465,176 B1 (GIORDANO et al.) 15 October 2002 (15.10.2002), see entire document.	31-35, 37-54
A	US 5,928,888 A (WHITNEY) 27 July 1999 (27.07.1999), see entire document.	31-35, 37-54
	•	

	Further documents are listed in the continuation of Box C.		See patent family annex.
*	Special categories of cited documents:	*T"	later document published after the international filing date or priority
"A"	document defining the general state of the art which is not considered to be of particular relevance		date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"E"	earlier application or parent published on or after the international filing date	*X*	document of particular relevance; the claimed inventon cannot be considered novel or cannot be considered to inventor an inventive step when the document is taken along
"L"	document which may throw doubts on priority claim(s) or which is clied to establish the publication date of another clienton or other special reason (as specified)	чү»	document of particular relevance; the claimed inventon cannot be considered to involve an inventive step when the document is combined
O	document referring to an oral disclosure, use, exhibition or other means		with one or more other such documents, such combination being obvious to a person skilled in the art
P	document published prior to the international filing date but later than the priority date claimed	"&"	document member of the same patent family
Date	of the actual completion of the international search	Date of	mailing of the international search report
_18 Jı	ine 2005 (18.06.2005)		
Name and mailing address of the ISA/US		Authoria	sed officer
Mail Stop PCT, Attn: ISA/US Commissioner for Patents P.O. Box 1450			M. Sullivan 7. Roberts for
			(1.10000) 401
Alexandria, Virginia 22313-1450			ne No. (571) 272-1600
Facsimile No. (703) 305-3230			

Form PCT/ISA/210 (second sheet) (January 2004)

International application No.	
PCT/US04/26309	

Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)					
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:					
Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:					
Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:					
Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).					
Box No. III Observations where unity of invention is lacking (Continuation of Item 3 of first sheet)					
This International Searching Authority found multiple inventions in this international application, as follows: Please See Continuation Sheet					
As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.					
As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.					
As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.: 1-24 (in part), 31-35 and 37-34					
 No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: 					
Remark on Protest					
No protest accompanied the payment of additional search fees.					

International application No.

BOX III. OBSERVATIONS WHERE UNITY OF INVENTION IS LACKING

This application contains the following inventions or groups of inventions which are not so linked as to form a single general inventive concept under PCT Rule 13.1. In order for all inventions to be examined, the appropriate additional examination fees must be read.

Group I, claim(s) 1-24, drawn to A nucleic acid construct comprising a high-level mammalian expression vector and a nucleic acid sequence encoding a reporter polypeptide wherein said nucleic acid sequence encoding a reporter polypeptide is linked to an iron response elements.

Group II, claim(s) 1-24, drawn to A nucleic acid construct comprising a high-level mammalian expression vector and a nucleic acid sequence encoding a reporter polypeptide wherein said nucleic acid sequence encoding a reporter polypeptide is linked to an internal ribasomal entry site.

Group III, claim(s) 1-24, drawn to A moteic acid construct comprising a high-level mammalian expression vector and a nucleic acid sequence encoding a reporter polypeptide wherein said nucleic acid sequence encoding a reporter polypeptide is linked to an upstream open reading frame.

Group IV, claim(s) 1-24, drawn to A nucleic acid construct comprising a high-level mammalian expression vector and a nucleic acid sequence encoding a reporter polypeptide wherein said nucleic acid sequence encoding a reporter polypeptide is linked to a maic specific lethal element.

Group V, claim(s) 1-24, drawn to A nucleic acid construct comprising a high-level mammalian expression vector and a nucleic acid sequence encoding a reporter polypeptide wherein said nucleic acid sequence encoding a reporter polypeptide is linked to a G-quartet element.

Group VI, claim(s) 1-24, drawn to A nucleic acid construct comprising a high-level mammalian expression vector and a nucleic acid sequence encoding a reporter polypeptide wherein said nucleic acid sequence encoding a reporter polypeptide is linked to a 5'-terminal oligopyrimidine tract.

Group VII, claim(s) 25-30, drawn to A method of making a mucleic acid construct comprising cloning a gene and a vector in said nucleic acid construct, conjuncting an uncleic acid construct to prevent an expressed gene product form having a UTR not found in a target gene and inking a struct UTR to said gene.

Group VIII, claim(s) 31-34, 41-54, drawn to A method of screening for a compound that modulates expression of a polypeptide comprising maintaining a cell comprising a nucleic acid molecule comprising a gene encoding a reporter polypeptide flanked by a target 5° UTR and a target 31 UTR, forming a complex with the UTR and detecting the effect of a compound on the UTR-complex.

Group Dx, chilm(s) 35 and 37-40, drawn to A method of screening in vivo for a compound that modulates UTR-dependent expression comprising providing a cell lawing a high-expression constitutive promoter traptram of a target 51 UTR, as distance 15 UTR systems from a mucleic acid encoding a reporter polypeptide, said macleic acid encoding a reporter polypeptide suid macleic acid encoding a reporter polypeptide up at ream of a 31 UTR,

Form PCT/ISA/210 (extra sheet) (January 2004)

International application No. PCT/IJS04/26309

Group X., chim(a) 36, drawn to A method of screening in vitro for a compound that modulates UTR-affected expression comprising providing an in Vitro translation system, constancing the in vitro translation system with a compound and a sanchel cald sequence comprising a target 5 UTR, said target 5 UTR upstream from a metick seld encoding a reporter polypepide, said nucleic acid encoding a reporter polypepide upstream of a 3 UTR, and detecting said reporter polypepide, said nucleic acid

The inventions listed as Groups I-X do not relate to a single general inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons:

According to FCT Rule 13.2, unity of invention exists only when the shared same or corresponding technical feature is a contribution over the prior art. The inventions listed as Groups 18.7 do not relate to a single general inventive concept because they lack the same or corresponding special technical feature. The Groups are united by the technical feature of a nucleic acid construct comprising a high-level mammalian expression vector and a nucleic acid sequence encoding a reporter polypopidio listed on one or new target UTRs, which target UTRs include an internal ribosomal entry site. On page 7 of the specification, reporter gone is defined as any gene whose expression can be measured. Thus, the unifying technical feature reads on any high-level mammalian expression vector comprising a nucleic acid sequence encoding a gene whose expression can be measured by nother bib letting linked to an IRES. ON 9867118 because a high-level mammalian expression vector comprising a nucleic acid sequence encoding a gene whose expression can be measured by numinalism expression vector comprising a nucleic acid sequence encoding a gene whose expression can be measured by unifying special technical feature that unifies the Groups is not a contribution over the art and the claims lake a unifying special technical feature that

The special technical feature of Group I is considered to be a reporter polypeptide linked to an iron response element, which technical feature is not shared by the nucleic acid construct of the other Groups.

The special technical feature of Group II is considered to be a reporter polypeptide linked to an internal ribosomal entry site, which technical feature is not shared by the nucleic acid construct of the other Groups.

The special technical feature of Group III is considered to be a reporter polypeptide linked to an upstream open reading frame, which technical feature is not shared by the nucleic acid construct of the other Groups.

The special technical feature of Group IV is considered to be a reporter polypeptide linked to a male specific lethal element, which technical feature is not shared by the nucleic acid construct of the other Groups.

The special technical feature of Group V is considered to be a reporter polypeptide linked to a G-quartet element, which technical feature is not shared by the nucleic acid construct of the other Groups.

The special technical feature of Group VI is considered to be a reporter polypeptide linked to a 5'-terminal oligopyrimidine tract, which technical feature is not shared by the nucleic acid construct of the other Groups.

The special technical feature of Group VII is considered to be engineering said nucleic acid construct to prevent an expressed gene product from having a UTR not found in a target gene and linking a target UTR to said gene, which process steps are not comprised by the methods of Groups VIII-X.

The special technical feature of Group VIII is considered to be forming a complex with the UTR and detecting the effect of a compound on the UTR-complex, which process steps are not comprised by the methods of Groups VII, IX and X.

The special sechnical feature of Group IX is considered to be providing a cell having a high-expression constitutive promoter upstream of a target 5 UTR, said target 5 UTR upstream from a nucleic acid encoding a reporter polypeptide, animatedic acid encoding a reporter polypeptide upstream of a 5 UTR, contenting the cell vivil a compound, and detecting the reporter polypeptide, which process steps are not comprised by the methods of Groups VII, VIII and X.

The special technical finance of Group X is considered to be providing an in vitro translation system, contacting the in vitor translation system, contacting the in vitor translation system, contacting the invitor comprising a future? UTR, said target? UTR, said target? UTR poster from a meleic acid encoding a reporter polypeptide, said nucleic acid encoding a reporter polypeptide, said nucleic acid encoding a reporter polypeptide special polypeptide, said nucleic acid encoding a reporter polypeptide special polypeptide, said nucleic acid encoding a reporter polypeptide special polypeptide in vitro, which process steps are not comprised by the methods of Groups VILTs.

Accordingly, Groups I-X are not so linked by the same or corresponding special technical feature as to for a single general inventive concept.

	International application No.
INTERNATIONAL SEARCH REPORT	PCT/US04/26309
Continuation of B. FIELDS SEARCHED Item 3:	
APS (EAST); STN (MEDLINE BIOSIS CAPLUS EMBASE CANCERLIT)	
KEYWORDS: UTR, iron response element, intron screen	
1	