Tableau Formula for Vexillary Double Edelman–Greene Coefficients

Adam Gregory

Featuring joint work with:

Zachary Hamaker (UF)

Tianyi Yu (UQAM)

18 October 2025

Schubert polynomials

■ Complete flag variety

$$\mathcal{F}\ell(\mathbb{C}^n) = \{ \{0\} \subset V_1 \subset \ldots \subset V_{n-1} \subset \mathbb{C}^n : \dim(V_k) = k \}$$

decomposes into *Schubert varieties* indexed by $w \in S_n$

■ Borel (1953) showed

$$H^*(\mathcal{F}\ell(\mathbb{C}^n);\mathbb{Z}) \simeq \mathbb{Z}[x_1,\ldots,x_n]/\langle \text{nonconstant sym. poly.} \rangle$$

Theorem (Lascoux–Schützenberger, 1982)

Identified Schubert polynomials \mathfrak{S}_w *as reps. for these cohom. classes*

Bumpless Pipe Dreams (BPDs)

Combinatorial model to compute Schubert polynomials

Stanley symmetric function

Stanley defined a symmetric function

$$F_w(\mathbf{x}) = \lim_{k \to \infty} \mathfrak{S}_{1^k \oplus w}(\mathbf{x})$$

as a stable limit of Schubert polynomials

Theorem (Stanley, 1984)

 $F_w(\mathbf{x})$ is a Schur function \iff w is vexillary

Edelman-Greene coefficients

The a_{λ}^{w} below are called *Edelman–Greene coefficients*:

$$F_w(\mathbf{x}) = \sum_{\lambda} a_{\lambda}^w \cdot s_{\lambda}(\mathbf{x}) \quad \text{with} \quad a_{\lambda}^w \in \mathbb{Z}$$

Theorem (Edelman–Greene, 1987)

Each a_{λ}^{w} is actually non-negative and counts something (e.g., tableaux)

Back-stable Schubert polynomials

Lam-Lee-Shimozono, 2018

Studied an infinite flag variety (see Section 6 of [LLS18])

- set of all "admissible" flags
- lacktriangle ind-finite variety over $\Bbb C$
- decomposes into Schubert varieties

Theorem (Theorem 6.7 of LLS18)

Back-stable Schubert's $\tilde{\Xi}_w$ are reps. for these cohom. classes, where w is an $S_{\mathbb{Z}}$ permutation

Z-Permutations

 $S_{\mathbb{Z}} = \{\text{perm. of } \mathbb{Z} \text{ fixing all but finitely many values} \}$

$$= \left\langle \begin{array}{ll} \sigma_i^2 = 1 & \text{for } i \in \mathbb{Z}, \\ \sigma_k \text{ for } k \in \mathbb{Z}: & \sigma_i \sigma_j = \sigma_j \sigma_i & \text{for } |i-j| > 1, \\ \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1} & \text{for } i \in \mathbb{Z} \end{array} \right\rangle$$

Can use one-line notation with a bar " | ":

Example

Observe
$$w = \sigma_2 \, \sigma_0 \, \sigma_{\overline{1}} \, \sigma_1 = \dots \, \overline{3} \, \overline{2} \, 1 \, \overline{1} \, | \, 3 \, 0 \, 2 \, 4 \, 5 \dots$$

Omit the bar if w in S_n (i.e., all non-positive values fixed)

\mathbb{Z} -BPDs

\mathbb{Z} -BPDs

Back-stable double Schubert

Definition (Lam-Lee-Shimozono, 2018)

The back-stable double Schubert for $w \in S_{\mathbb{Z}}$ is

$$\mathfrak{S}_w(\mathbf{x}; \mathbf{y}) = \sum_{B \in \mathbb{Z}\text{-BPD}(w)} \operatorname{wt}(B) \quad \text{where} \quad \operatorname{wt}(B) = \prod_{(i,j) \text{ is a}} (x_i - y_j)$$

Say $f(\mathbf{x})$ back-stable if there is some n with $\sigma_i \cdot f = f$ for $i \le n$

Double Schur

w is called k-Grassmannian if $\{i: w(i) > w(i+1)\} = \{k\}$ partitions are in bijection with 0-Grass. :

$$\lambda \mapsto w_{\lambda}$$
 where $w_{\lambda}(i) = \begin{cases} i - \lambda'_{i} & i > 0 \\ i + \lambda_{1-i} & i \leq 0 \end{cases}$

double Schur may be defined $s_{\lambda}(\mathbf{x}_{-};\mathbf{y}) = \mathbf{\tilde{\Xi}}_{w_{\lambda}}(\mathbf{x}_{-};\mathbf{y})$

Have

$$\tilde{\mathfrak{S}}_w(\mathbf{x};\mathbf{y}) = \sum_{\lambda} b_{\lambda}^w(\mathbf{x};\mathbf{y}) \cdot s_{\lambda}(\mathbf{x}_{-};\mathbf{y})$$

where each $b_{\lambda}^{w}(\mathbf{x}; \mathbf{y})$ is a polynomial

Double Stanley symmetric functions

Have

$$\tilde{\Xi}_w(\mathbf{x};\mathbf{y}) = \sum_{\lambda} b_{\lambda}^w(\mathbf{x};\mathbf{y}) \cdot s_{\lambda}(\mathbf{x}_-;\mathbf{y})$$

where each $b_{\lambda}^{w}(\mathbf{x}; \mathbf{y})$ is a polynomial

Definition (Lam-Lee-Shimozono, 2018)

$$F_w(\mathbf{x}; \mathbf{y}) = \sum_{\lambda} a_{\lambda}^w(\mathbf{y}) \cdot s_{\lambda}(\mathbf{x}_{-}; \mathbf{y})$$
 where $a_{\lambda}^w(\mathbf{y}) := b_{\lambda}^w(\mathbf{x}; \mathbf{y})|_{x_i \mapsto y_i}$

The $a_{\lambda}^{w}(\mathbf{y})$ are called *double Edelman–Greene* coefficients

Theorem (Lam-Lee-Shimozono, 2018)

 $F_w(\mathbf{x}; \mathbf{y})$ is a double Schur \iff w is 0-Grassmannian

Graham positivity

Let \prec be the order on \mathbb{Z} with $1 < 2 < \ldots < \overline{2} < \overline{1} < 0$

Say $f(\mathbf{y})$ is *Graham positive* if $f \in \mathbb{Z}_{\geq 0}[y_i - y_j \mid i < j]$

Theorem (LLS18; Anderson, 2023)

Every $a_{\lambda}^{w}(\mathbf{y})$ is Graham positive, for geometric reasons

$$a_{(2,2)}^{34512}(\mathbf{y}) = y_3^2 - y_3 y_0 - y_{\overline{1}} y_3 + y_{\overline{1}} y_0$$

= $(y_3 - y_{\overline{1}})(y_3 - y_0)$

More examples

Example

$$a_{(2,2)}^{14532}(\mathbf{y}) = y_3 + y_4 - y_{\overline{1}} - y_0 = (y_3 - y_{\overline{1}}) + (y_4 - y_0)$$

$$\begin{split} a_{(2,2)}^{345162}(\mathbf{y}) &= -y_{\overline{1}}^2 y_0 - y_{\overline{1}} y_0^2 + y_{\overline{1}}^2 y_3 + 2 y_{\overline{1}} y_0 y_3 \\ &+ y_0^2 y_3 - y_{\overline{1}} y_3^2 - y_0 y_3^2 + y_{\overline{1}} y_0 y_4 \\ &- y_{\overline{1}} y_3 y_4 - y_0 y_3 y_4 + y_3^2 y_4 + y_{\overline{1}} y_0 y_5 \\ &- y_{\overline{1}} y_3 y_5 - y_0 y_3 y_5 + y_3^2 y_5 \end{split}$$

Main result

Theorem (G.-Hamaker-Yu 2024)

Combinatorial proof that **vexillary** $a_{\lambda}^{w}(\mathbf{y})$ are Graham positive

Say w is vexillary if it avoids the pattern 2143, i.e., has no $i < j < k < \ell$ for which $w(j) < w(\ell) < w(\ell) < w(k)$

$$a_{(2,2)}^{14532}(\mathbf{y}) = y_3 + y_4 - y_{\overline{1}} - y_0 = (y_3 - y_{\overline{1}}) + (y_4 - y_0)$$

Vexillary permutations

Theorem (Wachs, 1985)

Each vexillary $w \in S_{\mathbb{Z}}$ determines a shape $\lambda(w)$ and flag $\phi(w)$

Example

For
$$w = 345162$$
: $\lambda(w) = (2, 2, 2, 1)$ and $\phi(w) = (1, 2, 3, 5)$

Corollary (see also Weigandt, 2021)

For $w \in S_{\mathbb{Z}}$ vexillary one has

$$\tilde{\mathfrak{S}}_w(\mathbf{x};\mathbf{y}) = s_{\lambda(w)}^{\phi(w)}(\mathbf{x};\mathbf{y})$$

\mathbb{Z} -tableaux

$$T = \begin{bmatrix} \overline{3} & \overline{1} & 1 & 1 \\ \overline{2} & 0 & 2 \\ \hline 3 & \end{bmatrix}$$

$$wt(T) = (x_{\overline{3}} - y_{\overline{3}+1-1})(x_{\overline{1}} - y_{\overline{1}+2-1}) \dots (x_3 - y_{3+1-3})$$

= $(x_{\overline{3}} - y_{\overline{3}})(x_{\overline{1}} - y_0) \dots (x_2 - y_3)(x_3 - y_1)$

Flag ϕ says max entry in row i is ϕ_i , so

$$s_{\lambda}(\mathbf{x}_{-};\mathbf{y}) = s_{\lambda}^{(0,\dots,0)}(\mathbf{x}_{-};\mathbf{y}) = \sum_{T} \operatorname{wt}(T)$$

summed over $SSYT^{(0,...,0)}(\lambda)$

Methods

Weigandt BPD(v) \leftrightarrow SSYT $^{\phi}(\lambda)$ extends to \mathbb{Z} - setting:

$$\mathbf{\tilde{\Xi}}_{v}(\mathbf{x};\mathbf{y}) = \sum_{B} \mathrm{wt}(B) = \sum_{T} \mathrm{wt}(T)$$

Sample *T* looks something like

$$T = \begin{bmatrix} \overline{3} & \overline{1} & 1 & 1 \\ \overline{2} & 0 & 2 \\ \hline 3 & \end{bmatrix}$$

Positive flags

For vexillary v whose flag ϕ has only positive entries, each

 $T \in SSYT^{\phi}(\lambda)$ decomposes into (T_-, T_+) :

$$T = \begin{bmatrix} \overline{3} & \overline{1} & 1 & 1 \\ \overline{2} & 0 & 2 \\ \hline 3 & \end{bmatrix}$$

$$SSYT^{\phi}(\lambda) = \bigsqcup_{\mu \subseteq \lambda} (SSYT^{(0,\dots,0)}(\mu) \times SSYT^{\phi}_{+}(\lambda/\mu))$$

Positive flags

On a functional level:

$$\mathbf{\tilde{\Xi}}_{w}(\mathbf{x}; \mathbf{y}) = s_{\lambda}^{\phi}(\mathbf{x}; \mathbf{y}) = \sum_{\mu \subset \lambda} s_{\lambda/\mu}^{\phi}(\mathbf{x}_{+}; \mathbf{y}) \cdot s_{\mu}(\mathbf{x}_{-}; \mathbf{y})$$

Hence

$$a_{\mu}^{w}(\mathbf{y}) = s_{\lambda/\mu}^{\phi}(\mathbf{x}_{+}; \mathbf{y})|_{\mathbf{x} \mapsto \mathbf{y}} = \sum_{T \in SSYT_{+}^{\phi}(\lambda/\mu)} \prod_{(r,c)} (y_{T(r,c)} - y_{T(r,c)+c-r})$$

Above main diagonal (c > r) already Graham positive

Positive flags

$$T = \frac{11}{2} (y_1 - y_3)(y_1 - y_4)(y_2 - y_3)(y_3 - y_1)$$

We solve this by exploiting symmetries of $s^{\phi}_{\lambda/\mu}(\mathbf{x}_+;\mathbf{y})$

Lemma

If i does not appear in ϕ *then*

$$s_{\lambda/\mu}^{\phi}(\sigma_i \cdot \mathbf{x}_+; \mathbf{y}) = s_{\lambda/\mu}^{\phi}(\mathbf{x}_+; \mathbf{y})$$

Non-positive flags

For instance, with $\lambda = (3,2)$ and $\phi = (\overline{1},0)$

$$\begin{bmatrix}
\bar{1} & \bar{1} & 0 \\
0 & 0
\end{bmatrix} - \begin{pmatrix}
\bar{1} & \bar{1} & 0 \\
0 & 0
\end{pmatrix} + \begin{pmatrix}
\bar{1} & \bar{1} & \bar{1} \\
0 & 0
\end{pmatrix} + \begin{pmatrix}
\bar{1} & \bar{1} & \bar{1} \\
0 & 0
\end{pmatrix} + \begin{pmatrix}
\bar{1} & \bar{1} & \bar{1} \\
0 & 0
\end{pmatrix}$$

$$\mu = (3, 2) \qquad \mu = (3, 1) \qquad \mu = (2, 2) \qquad \mu = (2, 1)$$

We found a way around this mess by shifting variables

More results

Theorem (G.-Hamaker-Yu 2024)

Our methods work for vex. in the non-reduced setting

Theorem (G.–Hamaker–Yu 2024)

For vex., our proof further refines what Anderson (2023) showed

K-theoretical extension

Split set-valued tableau

$$T = \begin{bmatrix} \overline{2}, \overline{1} & \overline{1}, 1 & 1, 3 \\ 0, 1 & 2 & 1 \end{bmatrix}$$

into

$$\Gamma' = \begin{bmatrix} \overline{2}, \overline{1} & \overline{1} \\ 0 & \end{bmatrix}$$

and

$$T'' = \begin{array}{|c|c|c|}\hline 1 & 1,3\\\hline 1 & 2\\\hline \end{array}$$

Future Directions

Open problem

Provide combinatorial proof of positivity for any $w \in S_{\mathbb{Z}}$

Thank you for listening!