# Implementation of Bayesian Quantitative Decision Making to early drug development

Gautier Paux<sup>1</sup>, Nicolas Bonnet<sup>2</sup>

<sup>1</sup> Sanofi R&D, Vitry-sur-Seine, France, <sup>2</sup> Sanofi R&D, Montpellier, France

#### Introduction

#### **Context**

- Go/No-go decisions are critical steps where significant decisions can have a major impact on the rest of the development and the company portfolio
- ASA's statement on p-values "Practices that reduce data analysis to mechanical" "bright-line" rules (such as "p < 0.05") for justifying scientific claims or conclusions can lead to erroneous beliefs and poor decision making"
- Proof-of-Concept (PoC) trial design and decision-making process should be aligned
- Frewer et al. (2016) proposed an alternative approach for decision making based on Lalonde et al. (2007) criteria
- Fisch et al. (2015) also provides an alternative to statistical significance

#### 3-Outcome Decision Making framework

- 30DM framework based on Go/Consider/No-go decisions provides a quantitative framework more in line with the traditional approach for decision making
- It overcomes the discouraged bright line decision approach based on a single threshold
- Decisions integrate the concept of **clinically** and **commercially** attractive effect sizes
- In this poster, we discuss key features of the implementation of 30DM for PoC studies with revised decision rules compared to Lalonde et al. (2007)

# Key implementation features of 30DM for PoC studies

Target

effect

sizes

PoC

Risk

assess-

ment

of

Decision

rules

Adaptive

dev.

Actions

#### 1. Target effect sizes

Lower Reference Value ( $\theta_{LRV}$ ) Minimally clinically significant effect size (i.e.., below which the experimental drug is not considered for further development)

#### Target Value ( $\theta_{TV}$ )

Minimally commercially attractive effect size (i.e., desired effect to potentially establish the compound as the treatment of choice)

#### 6. Adaptive development

- Informal interim looks can be planned to adapt the development strategy in case of overwhelming or futility results
- For example, project activities (CMC, new studies,...) can be started earlier (postponed resp.) in case of promising (unpromising resp.) results
- Interim decision rules can be based on the Bayesian

#### 2. Strength of evidence

- Strength of evidence relative to the target effect sizes are assessed through a dual criterion quantifying the significance and relevance of the treatment effect, with regards to the target effect sizes:
  - Significance criterion: confidence that the true effect size is larger than LRV, i.e.,
  - **Relevance criterion:** confidence that the true effect size is larger than TV, i.e.,

- predictive probability of a Go decision

#### 3. Decision rules Strength evidence

Go/Consider/No-go decisions are based on the comparison of the **Bayesian posterior probabilities**  $P(\theta > \theta_{LRV}|X)$  and  $P(\theta > \theta_{TV}|X)$  (where X are the data) to relevant thresholds  $\tau_{LRV}$  and  $\tau_{TV}$  respectively

 $\leftarrow (1 - \tau_{LRV})$ -percentile  $PCT_{1-\tau_{LRV}}$ Must be above  $\theta_{\mathsf{LRV}}$  to meet the significance criterion

 $\rightarrow (1 - \tau_{TV})$ -percentile  $PCT_{1-\tau_{TV}}$ Must be above  $\theta_{TV}$  to meet the relevance criterion



# 5. Actions

- **Clear actions** should be identified for each possible outcome
- In particular, when the outcome falls in the "Consider" zone
- Specify key secondary endpoint(s) and or/subpopulation(s)
- Specify alternative development plan
- Risks are also put into the perspective of defined actions (cost, FTE)
- Higher risks are acceptable for less costly actions

# 4. Risk assessment

- Decision rules are assessed through operating characteristics under several true effect size assumptions
- Depending on the project priority, ranges of risk are considered acceptable by the project team
- Quick kill: focus on P(No-go|LRV) and P(Go|LRV) for lowest priority projects
- **Quick win**: focus on P(Go|TV) and P(No-go|TV) for highest priority projects

# Other considerations

# Sample size

- Sample size justification does not rely on statistical significance framework anymore
- Sample size should ensure good operating characteristics and good estimate **precision** (e.g. width of 90% credible interval)
- **Utility function** can be used to compare several sample sizes, e.g., maximizing the weighted probability of correct decision under LRV, TV and at the mid-point between TV and LRV

#### Leverage prior information

- Objective is to maximize the use of existing knowledge
- In Bayesian setting, informative prior could be used to decrease the uncertainty and/or decrease the sample size
- Unbalanced design could be envisaged when informative prior is specified for the control arm
- Prior specification has an impact on the risk assessment and needs to be taken into account

# Conclusion

### Key messages

- Change in decision-making paradigm
- Quantitative tools are used to assess the significance and relevance of effect sizes with regards to clinically and commercially targets
- "Consider" outcome is used when results are not compelling enough; consistent with the traditional decision-making approach which is often not binary
- Education, communication and standardization are key to ensure a good implementation of this new framework

#### Software development

- Internal development of an interactive web-based application using RShiny
- Interactive assessment of decision rules and sample size by the project team
- Flexibility in terms of trial endpoint, decision rules and paradigm (Bayesian or frequentist)
- Standardized methodology, tool and outputs across project to ease the review by senior leaders

#### References

Lalonde et al. (2007). Modelbased drug development. Frewer et al. (2016). Decision-making in early clinical drug development Fisch et al. (2015). Bayesian Design of Proof-of-Concept Trials

