WDWR Projekt 20602

Student: Anton Pylkevych 308821 Prowadzący:

Dr inż. Adam Krzemienowski

- 1. Opis
- 2. Zadanie 1
- 3. Zadanie 2

2. Zadanie 1

Zaproponować jednokryterialny model wyboru w warunkach ryzyka z wartością oczekiwaną jako miarą kosztu. Wyznaczyć rozwiązanie optymalne.

2.1.Dane

- Do produkcji pięciu podzespołów (A, B, C, D i E) przedsiębiorstwo musi wydzierżawić trzy maszyny.
- Każdy podzespół może być produkowany na każdej maszynie, maszyny różnią się jednak wydajnością przy produkcji poszczególnych podzespołów, co przedstawia tabela:

Maszyna	11.00000-100	Wydajność maszyny (szt./godz.) przy produkcji podzespołu				
100000000000000000000000000000000000000	A	В	C	D	E	
M1	0,85	1,30	0,65	1,50	0,40	
M2	0,65	0,80	0,55	1,50	0,70	
M3	1,20	0,95	0,35	1,70	0,40	

• Każdą z maszyn można wydzierżawić na co najwyżej 180 godz. w ciągu miesiąca. Koszty 1 godz. pracy maszyn (zł) określają składowe wektora losowego $\mathbf{R} = (R_1, R_2, R_3)^T$:

$$\begin{array}{c|cccc}
M1 & M2 & M3 \\
\hline
R_1 & R_2 & R_3
\end{array}$$

• Wektor losowy ${\bf R}$ opisuje 3-wymiarowy rozkład t-Studenta z 5 stopniami swobody, którego wartości składowych zostały zawężone do przedziału [20; 50]. Parametry ${\boldsymbol \mu}$ oraz ${\boldsymbol \Sigma}$ niezawężonego rozkładu t-Studenta są następujące:

$$\mu = \begin{pmatrix} 45 \\ 35 \\ 40 \end{pmatrix}, \qquad \Sigma = \begin{pmatrix} 1 & -2 & -1 \\ -2 & 36 & -8 \\ -1 & -8 & 9 \end{pmatrix}.$$

- Należy rozdzielić miesięczną produkcję podzespołów pomiędzy maszyny tak, aby wyprodukować co najmniej po 60 szt. podzespołów A, B, C oraz co najmniej 120 szt. podzespołów D i E.
- Przy dzierżawie dowolnej z maszyn na okres do 100 godz., koszt 1 godz. pracy maszyny maleje o 20%.

2.2. Rozwiązanie

Na Początku liczymy wartości oczekiwane zawężonych rozkładów brzegowych. Robimy to zgodnie z formulą:

$$\mathbb{E}(R) = \mu + \sigma * \frac{(\Gamma((v-1)/2)((v+a^2)^{-(v-1)/2} - (v+b^2)^{-(v-1)/2})v^{v/2})}{2(F_v(b)-F_v(b))\Gamma(v/2)\Gamma(1/2)} , dla v > 1$$

Gdzie:

- Γ() funkcja gamma Eulera
- (a, b) przedział
- $a = (\alpha \mu)/\sigma$,
- $b = (\beta \mu)/\sigma$,
- v liczba stopni swobody
- μ wartość oczekiwana

Do obliczeń wykorzystamy możliwości pakietu R. (Plik –,,*Gen_exp.r*") Skąd otrzymujemy:

$$E(R1) \approx 44,99;$$

 $E(R2) \approx 35.00;$
 $E(R3) \approx 39.88.$

2.2.1. model

Teraz budujemy model jednokryterialny:

model;

```
param M; # liczba maszyn
param N; # liczba czesci
param efficiency {1..M, 1..N}; # wydajnosc [szt/h]
param C {1..N}; # minimalne ilosci wypr. czesci
param R_exp {1..M}; # wartosci oczekiwane kosztow maszyn [pln/h]
```

```
var bool{1..M} binary; #okresla czy nadwyzka zostala przekroczona
var t_first {1..M, 1..N}; # czas 80% malej [maszyna,czesc]
var t_sec {1..M, 1..N}; # czas 100% wydajności [maszyna,czesc]
var gen_t {m in 1..M} = sum {n in 1..N} (t_first[m,n] + t_sec[m,n]); #ogolny czas pracy masz
var t_mach_comp {m in 1..M, n in 1..N} = t_first[m,n] + t_sec[m,n]; #czas pracy masz\czeszc
var c {n in 1..N} = sum {m in 1..M} efficiency[m,n] * (t_first[m,n] + t_sec[m,n]);
```

```
\mathbf{var} \ total\_cost = (\mathbf{sum} \{ \mathbf{m} \ \mathbf{in} \ 1..M, \ \mathbf{n} \ \mathbf{in} \ 1..N \} \ 0.8*t\_first[\mathbf{m},\mathbf{n}]*R\_exp[\mathbf{m}]) + (\mathbf{sum} \{ \mathbf{m} \ \mathbf{in} \ 1..M, \ \mathbf{n} \ \mathbf{in} \ 1..N \} \ t\_sec[\mathbf{m},\mathbf{n}]*R\_exp[\mathbf{m}]) + \mathbf{sum} \{ \mathbf{m} \ \mathbf{in} \ 1..M \} \ bool[\mathbf{m}]*20*R\_exp[\mathbf{m}];
```

```
subject to c2: total_cost >= 0;

subject to c1 {n in 1..N}:
    c[n] >= C[n];

subject to t1 {m in 1..M}:
    sum {n in 1..N} (t_first[m,n] + t_sec[m,n]) <= 180;

subject to t2 {m in 1..M, n in 1..N}:
    t_first[m,n] >= 0;

subject to t3 {m in 1..M}:
    sum {n in 1..N} t_first[m,n] <= 100;

subject to t4 {m in 1..M, n in 1..N}:
    t_sec[m,n] >= 0;

subject to t5 {m in 1..M}:
    sum {n in 1..N} t_first[m,n] >= 100 * bool[m];

subject to t6 {m in 1..M}:
    sum {n in 1..N} t_sec[m,n] <= 180 * bool[m];</pre>
```

minimize model: total cost;

2.2.2. Zmienne:

Wszystkie wartości oprócz liczby wytworzonych podzespołów mogą nie być liczbami całkowitymi.

- **bool{1..M} binary** - przyjmuje wartość 1, jeśli liczba godzin pracy maszyny jest większa niż 100, a 0, jeśli jest mniejsza.

całkowity maksymalny czas pracy (180h) maszyn jest podzielony na 2 dwie części:

- t_first {1..M, 1..N} odpowiada za pierwsze 100 godzin pracy
- t_sec {1..M, 1..N} odpowiada za pozostałe godziny pracy (80)
- gen t {m in 1..M} oznacza całkowity czas działania maszyny
- gen_t {m in 1..M} oznacza całkowity czas działania maszyny
- t_mach_comp {m in 1..M, n in 1..N} oznacza czas pracy maszyny na każdym podzespołem
- c {n in 1..N} oznacza wyprodukowaną liczbę podzespołów (A, B, C, D i E)

total_cost - oznacza całkowity koszt produkcji zgodnie z treścią problemu. Zastosowanie zniżki 20%, gdy czas pracy maszyny nie przekracza 100h. Zmienna binarna bool wykorzystywana jest, gdy trzeba dodać 20 jednostek kosztu, po przekroczoniu 100h limitu czasu pracy maszyny.

2.2.3 Parametry:

- M oznacza liczbę maszyn
- N oznacza ilość podzespołów
- efficiency {1..M, 1..N} oznacza wydajnośc [num/h]
- C {1..N} oznacza minimalne ilosci wypr. czesci
- R_exp {1..M} oznacza wartości oczekiwane kosztow pracy maszyn [pln/h]

Ograniczenia:

- total_cost >= 0;

Koszty nie moga być liczbami nienaturalnymi;

-c[n] >= C[n];

Ograniczenia zgodnie z treścią zadania. (Ilosci wyprodukowanych częsci muszą być co najmniej w określonej ilości).

 $- sum \{n in 1..N\} (t first[m,n] + t sec[m,n]) <= 180$

Określa podział całkowitego czasu pracy na dwie części, suma godzin nie może być większa niż maksymalna ustawiona.

- $-t_first[m,n] >= 0;$
- sum $\{n \text{ in } 1..N\} t_{first}[m,n] \le 100;$

Ograniczenia określające wielkość pierwszej części godzin pracy maszyny.

 $-t_{sec[m,n]} >= 0;$

Czas pracy musi być wartością naturalną

- sum $\{n \text{ in 1..N}\}\ t_{\text{first}}[m,n] >= 100 * bool[m];$
- sum $\{n \text{ in 1..N}\}\ t_{sec}[m,n] <= 180 * bool[m];$

Ograniczenia, które decydują o akceptacji wartości zmiennej logicznej. 0 - jeśli liczba godzin pracy maszyny jest mniejsza niż 100, a 1 w innym przypadku.

2.2.4 Funkcja celu:

minimize model: total cost;

Rozwiązujemy problemy związane z optymalizacją poprzez minimalizację kosztów.

2.2.5 Rozwiązanie optymalne

Na podstawie modelu my wyznaczamy rozwiązanie optymalne:

Funkcja celu przyjmuje wartość = 16383.1

Przy następnych zmiennych decyzyjnych:

	M1	M2	M3
A	0	0	50
В	46.1538	0	0
С	92.3077	0	0
D	14.7619	8.57143	50
Е	0	171.429	0

Godziny pracy każdej maszyny:

M1	153.223
M2	180
M3	100

3. Zadanie 2

3.1. Treść

Scenariusze potrzebne do rozwiązania danego zadania zostały wygenerowane przy użyciu poniżej funkcji **rtmvt** dostępnej w bibliotece «**tmvtnorm**» w programie R-statistics.

 $rtmvt(n,\mu,sigma,df,lower,upper)$

- n liczba generowanych scenariuszy;
- μ oraz Σ zmienne podane w treści zadania;
- df liczba stopni swobody równa 5;
- lower wektor dolnej granicy przedziału równy [20, 20, 20];
- upper wektor górnej granicę przedziału równy [50, 50, 50].

```
Plik – Scen.r
Kod:
```

```
library(tmvtnorm)

df = 5
mu = c(45, 35, 40)
sigma = matrix(c(1, -2, -1, -2, 36, -8, -1, -8, 9), 3, 3)
lower = c(20,20,20)
upper = c(50,50,50)
data <- rtmvt(n=5000, mu, sigma, df, lower, upper)
write.table(data, ''d:/WDWR/Scenarios.txt'', sep='' '', col.names = F, row.names = F)
```

Scenariusze zostały zapisane do pliku Scenarios.txt

Zagadnienie odchylenia przeciętego jako miary ryzyka można sformułować używając modelu **MAD**, które odpowiada zadaniu programowania liniowego:

MAD:
$$\max \{ \mu(\mathbf{x}) - \lambda \delta(\mathbf{x}) : \mathbf{x} \in Q \}$$

$$\max \sum_{j=1}^{n} \mu_{j} x_{j} - \lambda \sum_{t=1}^{T} p_{t} (d_{t}^{+} + d_{t}^{-})$$

$$\mathbf{x} \in Q$$

$$d_{t}^{+} - d_{t}^{-} = \sum_{j=1}^{n} (\mu_{j} - r_{jt}) x_{j} \quad \text{dla } t = 1, \dots, T$$

$$d_{t}^{+}, d_{t}^{-} \geqslant 0 \quad \text{dla } t = 1, \dots, T$$

3.1. Model

Dla modelu dwukryterialnego zastosujemy metodę punktu odniesienia.

Więc dodajemy dodajemy niektóre zmienne, parametry i ograniczenia. A także zmodyfikujemy funkcję celu, aby uwzględniała oba kryterie.

Stała **a** zawiera punkt aspiracji i jest zmieniana w skrypcie przygotowanym do projektu w celu wyznaczenia zbioru rozwiązań efektywnych przestrzeni ryzyko–koszt. W zależności od punktu startowego uzyskiwane są różne rozwiązania niezdominowane. Metoda punktu odniesienia wykorzytuje maksymilizacje po wszystkich ocenach. Zostało zastosowane odwrócenie znaku \mathbf{y} w ograniczeniach na definicje zmiennej \mathbf{z} . W ten sposob mniejsze wartości \mathbf{y} , będą większe dla $-\mathbf{y}$. Wszystkie oceny są przeskalowane za pomocą mnożnika λ (przyjęto $\lambda = 1$) dla znormalizowania ich zakresów zmienności. Dalej, wartości wyrażające znormalizowane nadmiary wartości ocen ponad poziom aspiracji są pomniejszane przez czynnik β , rzędu 10^{-3} . W konsekwencji przyrost wartości oceny ponad poziomem apsiracji powoduje znacznie mniejszy przyrost wartości funkcji osiągnięcia niż w przypadku nieosiągania poziomu aspiracji.

3.1.1 Zmienne:

- $y \{k \text{ in } K\} >= 0$ zawiera 2 kryteria: Koszt i ryzyko.
- v zmienna pomocnicza do metody punktu odniesienia
- z {k in K} zmienna pomocnicza do metody punktu odniesienia

3.1.2 Parametry:

set **K** - określa liczbę kryteriów;
param **R** {i in 1..500, 1..M} - scenariusze kosztow maszyn;
param **pk** {**m** in 1..M} = **max**{**p** in 1..500} **R**[**p**,**m**] - koszt pesymistyczny;
param **eps** - mala stala do metody punktu odniesienia;
param **a** {**k** in **K**} - punkt aspiracji w metodzie punktu odniesienia;
param **lambda** -stala skalujaca w metodzie punktu odniesienia;
param **beta** - krok w metodzie punktu odniesienia;

3.1.3 Ograniczenia:

- subject to koszt:

 $y[1] = (sum\{m in 1..M, n in 1..N\} 0.8*t_first[m,n]*R_exp[m]) + (sum\{m in 1..M, n in 1..N\} t_sec[m,n]*R_exp[m]) + sum\{m in 1..M\} bool[m]*20*R_exp[m];$

Zmienna **y[1]** odpowiada zmiennej *total_cost* z jednokryterialnej modeli; Teraz to jest definicją **kosztu**.

- **subject to** ryzyko:

 $y[2] = (sum\{m in 1..M, n in 1..N\} (0.8*t_first[m,n] + t_sec[m,n])*pk[m]) + sum\{m in 1..M\} bool[m]*20*pk[m] - y[1];$

Ograniczenie określające drugie kryterium (ryzyko). Definicje ryzyka.

- **subject to** odniesienie1 {k **in** K}:

$$v \leq z[k];$$

Definicja zmiennej v.

- **subject to** odniesienie2 {k **in** K}:

beta*lambda *(-y[k]+a[k]) >= z[k];

- **subject to** odniesienie3 {k **in** K}:

lambda*(-y[k]+a[k]) >= z[k];

Definicje zmiennej z[k].

3.1.4 Funkcja celu:

maximize cost: $v + sum\{k \text{ in } K\} eps*(-y[k]);$

3.2. (a) Zbiór rozwiązań efektywnych w przestrzeni ryzyko-koszt

Rysunek 1 oraz 2 przestawiają zbiór rozwiązań efektywnych w przestrzeni ryzyko-koszt.

Rysunek 1: Obraz zbioru rozwiązań efektywnych w przestrzeni ryzyko-koszt, w zł/zł

Rysunek 2: Obraz zbioru rozwiązań efektywnych w przestrzeni ryzyko-koszt, w zł/zł

3.2.1. (b) Rozwiązania efektywne minimalnego kosztu i minimalnego ryzyka

Rozwiązania efektywne minimalnego kosztu i minimalnego ryzyka odpowiadają skrajnym rozwiązaniom w przestrzeni ryzyko–koszt.

Minimalny koszt

dla funkcji celu min(y1)

koszt = 16383.1ryzyko = 3903,57

	M1	M2	M3
A	0	0	50
В	46.1538	0	0
С	92.3077	0	0
D	14.7619	8.57143	50
E	0	171.429	0

Tablica 1: Czas pracy m-tej maszyny nad e-tym podzespołem przy minimalizacji kosztu, w godz

Minimalne ryzyko

dla funkcji celu min(y2)

koszt = 16923.61

ryzyko = 3721.75

	M1	M2	M3
A	0	0	50
В	46.1538	0	0
С	92.3077	0	0
D	23.3333	0	50
E	18.2051	161.026	0

Tablica 2: Czas pracy m-tej maszyny nad e-tym podzespołem przy minimalizacji ryzyko, w godz

Podsumowanie

	min koszt	min ryzyko
M1	153.223	180
M2	180	161.026
M3	100	100

Tablica 3: Czas pracy maszyn

3.2.2 (c) Trzy rozwiązania efektywne minimalnego kosztu i minimalnego ryzyka

Tabela 4 przedstawia wybrane wyniki minimalnego ryzyka i minimalnego kosztu. Pierwszy wynik osiąga lepszy koszt, trzeci wynik osiąga lepsze ryzyko, drugi - zajmuje między nimi pozycję pośrednią.

Nr	a1	a2	Koszt	Ryzyko
1	1000	11000	16383.1	4019.11
2	16000	3000	16754.03	3754.03
3	14000	1000	16923.61	3721.75

Tablica 4: Trzy rozwiązania efektywne minimalnego kosztu i minimalnego ryzyka

Podsumowanie

	1	2	3
M1	153.223	173.213	180
M2	180	164.904	161.026
M3	100	100	100

Tablica 5: Czas pracy maszyn

Relacja dominancji stochastycznej pierwszego rzędu

Teoria

Dominacja stochastyczna

Dominacja stochastyczna pierwszego rzędu

$$Y' \succeq_{FSD} Y'' \quad \Leftrightarrow \quad F_{Y'}(v) \leqslant F_{Y''}(v) \quad \forall v \in \mathbb{R}$$

$$Y' \succ_{FSD} Y'' \quad \Leftrightarrow \quad Y' \succeq_{FSD} Y'' \quad \text{i} \quad Y'' \not\succeq_{FSD} Y'$$

• Zmienna losowa Y' dominuje zmienną losową Y'' w sensie dominacji stochastycznej pierwszego rzędu jeżeli dla każdego $v \in \mathbb{R}$ prawdziwa jest nierówność $F_{Y'}(v) \leqslant F_{Y''}(v)$ i dla przynajmniej jednej wartości $v_0 \in \mathbb{R}$ jest to nierówność ostra

$$F_Y^{(-1)}(p) = \inf \{ v : F_Y(v) \ge p \} \quad \text{dla } 0
$$\theta_i(\mathbf{y}) = F_Y^{(-1)}(\frac{i}{m}) \quad \text{dla } i = 1, 2, \dots, m$$$$

Sprawdzenie

Możliwości techniczne uniemożliwiły niestety poprowadzenie prawdziwych wykresów dystrybuant, ale to nie powstrzymuje nas przed znaniem odpowiedzi na pytanie.

Dystrybuanta kosztu wybranych przypadków ukazuje dominowanie wartości kosztów przypadku nr 1 (skrajny przypadek o minimalnym koszcie). Wykresy dystrybuant Przypadków nr 2 i 3 zawierają się w całości pod wykresem przypadku nr 1. Jednocześnie, wykresy nr 2 i 3 przecinają się, a więc między tymi przypadkami nie ma relacji dominacji stochastycznej pierwszego rzędu. A więc ostatecznie jedynie Przypadek nr 1 dominuje nad przypadkami 2 i 3 na podstawie relacji stochastycznej pierwszego stopnia dla miary kosztu.

 $Przypadek1 >_{FSD} Przypadek2$

 $Przypadek1 >_{FSD} Przypadek3$

Analogicznie do dystrybuanty kosztu, dystrybuanta ryzyka została poprowadzona dla każdego przypadku odejmując od ryzyka uzyskany w danym przypadku koszt. W obrębie przypadku wartość ryzyka była stała, gdyż był to przypadek pesymistyczny - wartość maksymalna kosztu. Z wykresu dystrybuant nie można zauważyć żadnych relacji dominacji. Wszystkie przypadki są niezdominowane, dla każdego z nich mogą istnieć decydencji, którzy go wybiorą.