Homework1 Rostagno

295706

November 10, 2024

• Esercizio 1: La fotocamera scatta foto con un processo di Poisson con tasso $\lambda=6$ foto orarie. Durante le 100 ore di durata della batteria vengono scattate $6\cdot 100=600$ foto. Di queste 600 foto solo i $\frac{2}{5}$ sono di buona qualità, quindi $600\cdot \frac{2}{5}=240$ foto di buona qualità ogni 100 ore. Un anno ha $365 \cdot 24 = 8760$ ore.

Indichiamo con T il tempo medio di un ciclo del rover (tempo di operatività più tempo di ricarica), avremo quindi T = 100 + 20 ore.

Adesso calcoliamo quanti cicli vengono fatti in un anno: $\frac{8760}{120}=73$ cicli all'anno. In un anno verranno quindi scattate $73\cdot 240=17520$ foto di buona qualità.

Infine ci basta dividere il numero totale di foto di buona qualità per il numero di ore in un anno e otteniamo: $\frac{17520}{8760} = 2$ foto di buona qualità

Essendo un processo di Poisson si poteva anche risolvere facendo:

$$\frac{6 \cdot 100 \cdot \frac{2}{5}}{100 + 20} = \frac{240}{120} = 2$$

• Esercizio 2: Procediamo a scrivere le tre variabili aleatorie relative al tempo di creazione di un pezzo al minuto, sapendo che la media di una variabile aleatoria esponenziale è $E[X] = \frac{1}{\lambda}$:

$$-T_A \sim exp(\frac{1}{5})$$

$$-T_B \sim exp(\frac{1}{10})$$

$$-T_C \sim exp(\frac{1}{20})$$

a) Il tasso complessivo di produzione è:

$$\lambda = \frac{1}{5} + \frac{1}{10} + \frac{1}{20} = \frac{7}{20}$$
 pezzi al minuto.

 $\lambda = \frac{1}{5} + \frac{1}{10} + \frac{1}{20} = \frac{7}{20}$ pezzi al minuto. Avremo quindi $\frac{7}{20} \cdot 60 = 21$ pezzi all'ora.

Dobbiamo quindi calcolare P(X > 10) dove $X \sim \text{Poisson}(21)$.

Si può scrivere come $1 - P(x \le 10)$ che fa 0.9937.

- b) Per produrre il primo pezzo abbiamo $T \sim exp(\frac{7}{20})$ che deve essere superiore a 15 minuti, quindi: $P(T>15)=e^{-\frac{7}{20}\cdot 15}=e^{-5.25}$. La probabilità che Bob sia il primo a finire il primo pezzo è $\frac{0.1}{0.2+0.1+0.05}=\frac{0.1}{0.35}=0.2857$
- c)