CS2336 DISCRETE MATHEMATICS

Exam 3 January 12, 2015 (2 hours)

Total marks is 105. Maximum score is 100.

1.1.

- Answer all seven questions.
- Question 6 is tricky. Question 2 and Question 7(c) need some thinking.
 - 1. (10%) Prove that the function $f(x) = 2^x$ is not bijective when the domain and codomain are both \mathbb{R} .

 2. (15%) Construct a relation on a set $\{a, b, c\}$ which is not reflexive, not symmetric, not
 - antisymmetric, but transitive. (Double check your answer for transitivity!)
 - 3. (10%) Is the following relation a equivalence relation? Write down your proof.

$$\{ (a,b) \mid a,b \in \mathbb{N}, \gcd(a,b) > 1 \},\$$

where gcd(a, b) denotes the greatest common divisor of a and b.

4. (15%) The girth of a graph is the length of the smallest cycle in the graph; if there is no cycle, the girth is defined as ∞ . For example, the girth of the graph in Figure 1 is 5.

Let G be a finite, connected, simple, planar graph with V vertices and E edges. Suppose that the girth of G is k. Show that $E \times (k-2) \le k \times (V-2)$.

Figure 1: A graph with girth 5

Hint: Find an upper bound on F (the number of regions in a planar depiction of G), and then apply Euler formula.

5. (20%) For each graph in Figure 2, prove or disprove that the graph is planar. (No marks if no proof is written down.)

Figure 2: Planar or non-planar?

6. (20%) Show that the two graphs G_1 and G_2 in Figure 3 are non-isomorphic. (No marks if no proof is written down.)

Figure 3: Non-isomorphic graphs.

Hint: Try all graph properties you have learnt. Some leads to a very simple proof.

- 7. Prove or disprove the following:
 - (a) (5%) There exists a graph G isomorphic to \overline{G} such that $G \cup \overline{G}$ equals to K_4 .
 - (b) (5%) There exists a graph H isomorphic to \overline{H} such that $H \cup \overline{H}$ equals to K_5 .
 - (c) (5%) There exists a graph F isomorphic to \overline{F} such that $F \cup \overline{F}$ equals to K_6 .