,

Orthogonal Projection

Alvin Kim July 21, 2024

Orthogonal Projection

Alvin Kim

July 21, 2024

Next Steps

Introduction ■ Definitions

> $P = P^2$ Sanity Check: E = E²

■ Projection Minimizes $P = P^T$

- Introduction
 - Definitions
 - Example
- Formulas
 - Projection onto a Vector
 - Projection onto a Subspace
 - The Projection Matrix
 - The Error Matrix
- 3 Properties
 - Projection Minimizes Error
 - $P = P^T$
 - $P = P^2$
 - Sanity Check: $E = E^2$

- 4 Special Cases
 - Sanity Check: A has One Column
 - \blacksquare A is an Orthonormal Matrix
 - Projection from \mathbb{R}^3 onto the xz-plane
 - More Special Cases
- 5 Conclusion
 - Key Ideas
 - Next Steps

Alvin Kim Orthogonal Projection

Introduction
Definitions
Example

- IntroductionDefinitions
 - Example

What is a projection?

 $\operatorname{proj}_S \vec{b}$, the projection of vector \vec{b} onto subspace S, is the vector inside of S closest to \vec{b} .

Orthogonal Projection

Introduction
Definitions
What is a projection?

 $\operatorname{proj}_S \tilde{b},$ the projection of vector \tilde{b} onto subspace S, is the vector inside of S closest to $\tilde{b}.$

What is a projection?

 $\operatorname{proj}_S \vec{b}$, the projection of vector \vec{b} onto subspace S, is the vector inside of S closest to \vec{b} .

Note

Definitions

In this presentation, projection refers to specifically orthogonal projection, \vec{p} refers to proj_S \vec{b} , and \vec{e} refers to the error vector $\vec{e} = \vec{b} - \vec{p}$. The error vector is also called the rejection.

Orthogonal Projection
Introduction
Definitions
What is a projection?

hat is a projection?

 $\operatorname{proj}_S \vec{b}$, the projection of vector \vec{b} onto subspace S, is the vector inside of S closest to \vec{b} .

Note In this presentation, projection refers to specifically orthogonal projection, \vec{p} refers to $\operatorname{proj}_S \vec{b}$, and \vec{e} refers to the error vector $\vec{e} - \vec{b} = \vec{p}$. The error vector is also called the rejection.

What is a projection?

Definitions

 $\operatorname{proj}_{S} \vec{b}$, the projection of vector \vec{b} onto subspace S, is the vector inside of S closest to \vec{b} .

Closest means that the error is orthogonal to S.

same.

 $\operatorname{proj}_{S} \vec{b}$, the projection of vector \vec{b} onto subspace S, is the

Closest means that the error is orthogonal to S

The reason why I am using this meaning rather than the minimizing error meaning is because this meaning is simpler to work with. Ultimately, it can be proven that both meanings are the

Definitions

What is a projection?

 $\operatorname{proj}_S \vec{b}$, the projection of vector \vec{b} onto subspace S, is the vector inside of S closest to \vec{b} .

Closest means that the error is orthogonal to S.

Note

The dimension of subspace S can be anything from 0 to the dimension of the space we are working inside.

The reason why I am using this meaning rather than the minimizing error meaning is because this meaning is simpler to work with. Ultimately, it can be proven that both meanings are the same.

Orthogonal Projection Introduction Example Example

Example

Draw $\operatorname{proj}_{\vec{a}} \vec{b}$.

Example

Note

When projecting a vector onto another vector \vec{a} , the subspace S is the span of \vec{a} .

Orthogonal Projection
Introduction
Example
Example
Example

Example

Example

- Projection onto a Vector
- Projection onto a Subspace
- The Projection Matrix
- The Error Matrix

Orthogonal Projection
Formulas
Formulas

nulas

Projection onto

Projection onto a Vector
Projection onto a Subspace
The Projection Matrix
The Error Matrix

Consider projecting \vec{b} onto \vec{a} .

Consider projecting \vec{b} onto \vec{a} . What we know:

$$\vec{e} = \vec{b} - \vec{p}$$
$$\vec{p} = c\vec{a}$$
$$\vec{e} \cdot \vec{a} = 0$$

From that:

Consider projecting \vec{b} onto \vec{a} . What we know:

$$\vec{e} = \vec{b} - \vec{p}$$
$$\vec{p} = c\vec{a}$$
$$\vec{e} \cdot \vec{a} = 0$$

$$\vec{e} = \vec{b} - c\vec{a}$$

$$(\vec{b} - c\vec{a}) \cdot \vec{a} = 0$$

$$\vec{b} \cdot \vec{a} - c\vec{a} \cdot \vec{a} = 0$$

$$\vec{b} \cdot \vec{a} = c\vec{a} \cdot \vec{a}$$

$$c = \frac{\vec{a} \cdot \vec{b}}{\vec{a} \cdot \vec{a}}$$

$$\vec{p} = \frac{\vec{a} \cdot \vec{b}}{\vec{c} \cdot \vec{c}} \vec{a}$$

Orthogonal Projection 2024-07-2 -Formulas -Projection onto a Vector Projection onto a Vector

Projection onto a Vector

From that:

$$\vec{e} = \vec{b} - c\vec{a}$$

Consider projecting \vec{b} onto \vec{a} . What we know:

$$ec{e} = ec{b} - ec{p}$$
 $ec{p} = cec{a}$ $ec{e} \cdot ec{a} = 0$

$$e = b - ca$$

$$(\vec{b} - c\vec{a}) \cdot \vec{a} = 0$$

$$\vec{b} \cdot \vec{a} - c\vec{a} \cdot \vec{a} = 0$$

$$\vec{b} \cdot \vec{a} = c\vec{a} \cdot \vec{a}$$

$$c = \frac{\vec{a} \cdot \vec{b}}{\vec{a} \cdot \vec{a}}$$

$$\vec{p} = \frac{\vec{a} \cdot \vec{b}}{\vec{a} \cdot \vec{a}}$$

Orthogonal Projection 2024-07-2 -Formulas $\vec{e} = \vec{b} - c\vec{a}$ —Projection onto a Vector $\vec{b} \cdot \vec{a} - c\vec{a} \cdot \vec{a} = 0$ Projection onto a Vector

From that:

Consider projecting \vec{b} onto \vec{a} . What we know:

$$\vec{e} = \vec{b} - \vec{p}$$
$$\vec{p} = c\vec{a}$$
$$\vec{e} \cdot \vec{a} = 0$$

$$\vec{e} = \vec{b} - c\vec{a}$$

$$(\vec{b} - c\vec{a}) \cdot \vec{a} = 0$$

$$\vec{b} \cdot \vec{a} - c\vec{a} \cdot \vec{a} = 0$$

$$\vec{b} \cdot \vec{a} = c\vec{a} \cdot \vec{a}$$

$$c = \frac{\vec{a} \cdot \vec{b}}{\vec{a} \cdot \vec{a}}$$

$$\vec{p} = \frac{\vec{a} \cdot \vec{b}}{\vec{c} \cdot \vec{c}} \vec{a}$$

Orthogonal Projection 2024-07-2 -Formulas -Projection onto a Vector Projection onto a Vector

From that:

Consider projecting \vec{b} onto \vec{a} . What we know:

$$\vec{e} = \vec{b} - \vec{p}$$
$$\vec{p} = c\vec{a}$$
$$\vec{e} \cdot \vec{a} = 0$$

$$\vec{e} = \vec{b} - c\vec{a}$$

$$(\vec{b} - c\vec{a}) \cdot \vec{a} = 0$$

$$\vec{b} \cdot \vec{a} - c\vec{a} \cdot \vec{a} = 0$$

$$\vec{b} \cdot \vec{a} = c\vec{a} \cdot \vec{a}$$

$$c = \frac{\vec{a} \cdot \vec{b}}{\vec{a} \cdot \vec{a}}$$

$$\vec{p} = \frac{\vec{a} \cdot \vec{b}}{\vec{a} \cdot \vec{a}}$$

Orthogonal Projection 2024-07-2 -Formulas —Projection onto a Vector Projection onto a Vector

the audience to try this

-Projection onto a Vector

Projection onto a Vector

2024-07-2

Projection onto a Vector

Projection onto a Vector

Consider projecting \vec{b} onto \vec{a} .

 $\vec{e} = \vec{b} - \vec{p}$

 $\vec{p} = c\vec{a}$ $\vec{e} \cdot \vec{a} = 0$

What we know:

From that:

 $\vec{e} = \vec{b} - c\vec{a}$ $(\vec{b} - c\vec{a}) \cdot \vec{a} = 0$

 $\vec{b} \cdot \vec{a} - c\vec{a} \cdot \vec{a} = 0$

 $\vec{b} \cdot \vec{a} = c\vec{a} \cdot \vec{a}$

$$o \cdot \vec{a} = c\vec{a} \cdot \vec{a}$$

$$c = \frac{\vec{a} \cdot \vec{b}}{\vec{a} \cdot \vec{a}}$$

$$\vec{p} = \frac{\vec{a} \cdot \vec{b}}{\vec{a} \cdot \vec{a}} \vec{a}$$

If $\vec{a} = \vec{0}$, then p will be 0 because p must be in the zero subspace. If $\vec{a} \neq 0$, then we are projecting b onto the line that spans \vec{a} .tell

Alvin Kim

From that:

Consider projecting \vec{b} onto \vec{a} . What we know:

$$\vec{e} = \vec{b} - \vec{p}$$
$$\vec{p} = c\vec{a}$$
$$\vec{e} \cdot \vec{a} = 0$$

$$\vec{e} = \vec{b} - c\vec{a}$$

$$(\vec{b} - c\vec{a}) \cdot \vec{a} = 0$$

$$\vec{b} \cdot \vec{a} - c\vec{a} \cdot \vec{a} = 0$$

$$\vec{b} \cdot \vec{a} = c\vec{a} \cdot \vec{a}$$

$$c = \frac{\vec{a} \cdot \vec{b}}{\vec{a} \cdot \vec{a}}$$

Orthogonal Projection 2024-07-2 -Formulas —Projection onto a Vector Projection onto a Vector

If $\vec{a} = \vec{0}$, then p will be 0 because p must be in the zero subspace. If $\vec{a} \neq 0$, then we are projecting b onto the line that spans \vec{a} .tell the audience to try this

 $\vec{e} = \vec{b} - c\vec{a}$

 $\vec{b} \cdot \vec{a} - c\vec{a} \cdot \vec{a} = 0$

Project \vec{b} onto S

the a vecs are LI, but the A matrix might be rectangular so it isn't invertable there is guranteed to be exactly one c for a specific p and A bc p is in S and A has LI colsthe orthogonal complement of col space is the left null spacethe orthogonal complement of col space is the left null spacetell them to try this proofHint: ATA is invertible by A has LI columnsthe coefficients vector is also good to remember, because it is sometimes more useful than the projectionas mentioned before, we can't distribute the inverse sign because A might be rectangular

Projection onto a Subspace

Project \vec{b} onto S

Suppose that $\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n$ are a basis of S, let

$$A = \begin{bmatrix} | & | & & | \\ \vec{a}_1 & \vec{a}_2 & \dots & \vec{a}_n \\ | & | & & | \end{bmatrix}$$

and let $\vec{p} = A\vec{c}$. We also know:

$$ec{e} = ec{b} - ec{p}$$
 $C(A)^{\perp} = N(A^T)$

the a vecs are LI, but the A matrix might be rectangular so it isn't invertable there is guranteed to be exactly one c for a specific p and A bc p is in S and A has LI colsthe orthogonal complement of col space is the left null spacethe orthogonal complement of col space is the left null spacetell them to try this proofHint: ATA is invertible by A has LI columnsthe coefficients vector is also good to remember, because it is sometimes more useful than the projectionas mentioned before, we can't distribute the inverse sign because A might be rectangular

Project \vec{b} onto S

Suppose that $\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n$ are a basis of S, let

$$A = \begin{bmatrix} | & | & & | \\ \vec{a}_1 & \vec{a}_2 & \dots & \vec{a}_n \\ | & | & & | \end{bmatrix}$$

and let $\vec{p} = A\vec{c}$. We also know:

$$\vec{e} = \vec{b} - \vec{p}$$
$$A^T \vec{e} = \vec{0}$$

Orthogonal Projection -Formulas Projection onto a Subspace \sqsubseteq Project \vec{b} onto S

the a vecs are LI, but the A matrix might be rectangular so it isn't invertable there is guranteed to be exactly one c for a specific p and A bc p is in S and A has LI colsthe orthogonal complement of col space is the left null spacethe orthogonal complement of col space is the left null spacetell them to try this proofHint: ATA is invertible by A has LI columnsthe coefficients vector is also good to remember, because it is sometimes more useful than the projectionas mentioned before, we can't distribute the inverse sign because A might be rectangular

Project \vec{b} onto S

Suppose that $\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n$ are a basis of S, let

$$A = \begin{bmatrix} | & | & & | \\ \vec{a}_1 & \vec{a}_2 & \dots & \vec{a}_n \\ | & | & & | \end{bmatrix}$$

and let $\vec{p} = A\vec{c}$. We also know:

$$\vec{e} = \vec{b} - \vec{p}$$
$$A^T \vec{e} = \vec{0}$$

Then,

$$A^{T}(\vec{b} - A\vec{c}) = \vec{0}$$

$$A^{T}\vec{b} - A^{T}A\vec{c} = \vec{0}$$

$$A^{T}\vec{b} = A^{T}A\vec{c}$$

 $\vec{e} = \vec{b} - A\vec{c}$

 $(A^T A)^{-1} A^T \vec{b} = \vec{c}$

$$\vec{c} = (A^T A)^{-1} A^T \vec{b}$$

$$\overrightarrow{\vec{p}} = A(A^T A)^{-1} A^T \overrightarrow{\vec{b}}$$

Orthogonal Projection -Formulas Projection onto a Subspace \sqsubseteq Project \vec{b} onto S

the a vecs are LI, but the A matrix might be rectangular so it isn't invertable there is guranteed to be exactly one c for a specific p and A bc p is in S and A has LI colsthe orthogonal complement of col space is the left null spacethe orthogonal complement of col space is the left null spacetell them to try this proofHint: ATA is invertible by A has LI columnsthe coefficients vector is also good to remember, because it is sometimes more useful than the projections mentioned before, we can't distribute the inverse sign because A might be rectangular

The Projection Matrix

Recall that for some matrix A, the projection $\vec{p} = A(A^T A)^{-1} A^T \vec{b}$.

Observation

For a specific A, \vec{p} is an unchanging linear transformation of \vec{b} . So, we can represent the linear transformation with a matrix P.

To multiply some vector by a matrix is to apply a linear transformation to the vector.

The Projection Matrix

Recall that for some matrix A, the projection $\vec{p} = A(A^T A)^{-1} A^T \vec{b}$.

Recall that for some matrix A, the projection $e^{-A} A^{T} A^{-1} A^{T}$

The Projection Matrix

Recall that for some matrix A, the projection $\vec{p} = A(A^T A)^{-1} A^T \vec{b}.$ Let $P = A(A^TA)^{-1}A^T$. Then, $\vec{p} = P\vec{b}$.

Note

A must have linearly independent columns.

The Error Matrix

The error vector is \vec{b} projected onto S^{\perp} .

Orthogonal Projection Formulas The Error Matrix The Error Matrix

Effor Matrix

The error vector is \vec{b} projected onto $S^\perp.$

The Error Matrix

The Error Matrix

The error vector is \vec{b} projected onto S^{\perp} . Since finding the error vector is also a projection, there should be an error matrix E for some P such that $\vec{e} = E\vec{b}$.

The Error Matrix └The Error Matrix

The Error Matrix

The error vector is \vec{b} projected onto S^{\perp} . Since finding the error vector is also a projection, there should be an error matrix E for some P such that $\vec{e} = E\vec{b}$.

$$\vec{e} = \vec{b} - \vec{p}$$

$$\vec{e} = I\vec{b} - P\vec{b}$$

$$\vec{e} = (I - P)\vec{b}$$

$$E = I - P$$

Orthogonal Projection 2024-07-2 -Formulas The Error Matrix └The Error Matrix

matrix E for some P such that $\vec{e} = E\vec{b}$

 $\vec{e} - \vec{b} - \vec{v}$ $\vec{e} = I\vec{h} - P\vec{h}$ $\vec{e} = (I - P)\vec{b}$ E = I - P

Properties

3 Properties

- Projection Minimizes Error
- $P = P^T$
- $P = P^2$
- Sanity Check: $E = E^2$

2024-07-21

└─Properties

Prove that for a vector $\vec{x} \in S$ where $\vec{x} \neq \vec{p}$ and $\vec{d} = \vec{b} - \vec{x}$, that $||\vec{d}|| > ||\vec{e}||$.

Hint

$$||\vec{d}|| > ||\vec{e}|| \iff \vec{d}^2 > \vec{e}^2$$

Orthogonal Projection

—Properties

—Projection Minimizes Error

—Projection Minimizes Error

ojection Minimizes Error $Prove \text{ that for a vector } \vec{x} \in S \text{ where } \vec{x} \neq \vec{p} \text{ and } \vec{d} - \vec{b} - \vec{x},$ that $||\vec{q}|| > ||\vec{q}||$. Here $||\vec{d}|| > ||\vec{e}|| \iff \vec{d}^2 > \vec{e}^2$

magnitudes must be non-negative vector squared = magnitude of vector squared = vector dot prod with itself thus, projection minimizes the error's magnitude as well as the error's magnitude squared (foreshadowing LSR)

Prove that for a vector $\vec{x} \in S$ where $\vec{x} \neq \vec{p}$ and $\vec{d} = \vec{b} - \vec{x}$, that $||\vec{d}|| > ||\vec{e}||$.

$$\vec{d}^2 = (\vec{b} - \vec{x})^2$$

magnitudes must be non-negative vector squared = magnitude of vector squared = vector dot prod with itself thus, projection minimizes the error's magnitude as well as the error's magnitude squared (foreshadowing LSR)

Prove that for a vector $\vec{x} \in S$ where $\vec{x} \neq \vec{p}$ and $\vec{d} = \vec{b} - \vec{x}$, that $||\vec{d}|| > ||\vec{e}||$.

$$\vec{d}^2 = (\vec{b} + \vec{0} - \vec{x})^2$$

Prove that for a vector $\vec{x} \in S$ where $\vec{x} \neq \vec{p}$ and $\vec{d} = \vec{b} - \vec{x}$, $\vec{d}^2 = (\vec{b} + \vec{0} - \vec{x})^2$

magnitudes must be non-negative vector squared = magnitude of vector squared = vector dot prod with itselfthus, projection minimizes the error's magnitude as well as the error's magnitude squared (foreshadowing LSR)

Prove that for a vector $\vec{x} \in S$ where $\vec{x} \neq \vec{p}$ and $\vec{d} = \vec{b} - \vec{x}$, that $||\vec{d}|| > ||\vec{e}||$.

$$\vec{d}^2 = (\vec{b} - \vec{p} + \vec{p} - \vec{x})^2$$

Prove that for a vector $\vec{x} \in S$ where $\vec{x} \neq \vec{p}$ and $\vec{d} = \vec{b} - \vec{x}$, that $||\vec{p}|| > ||\vec{q}||$: $\hat{\mathcal{E}} = (\vec{b} - \vec{p} + \vec{p} - \vec{x})^2$

magnitudes must be non-negative vector squared = magnitude of vector squared = vector dot prod with itself thus, projection minimizes the error's magnitude as well as the error's magnitude squared (foreshadowing LSR)

Prove that for a vector $\vec{x} \in S$ where $\vec{x} \neq \vec{p}$ and $\vec{d} = \vec{b} - \vec{x}$, that $||\vec{d}|| > ||\vec{e}||$.

$$\vec{d}^2 = (\vec{b} - \vec{p} + \vec{p} - \vec{x})^2$$

magnitudes must be non-negative vector squared = magnitude of vector squared = vector dot prod with itself thus, projection minimizes the error's magnitude as well as the error's magnitude squared (foreshadowing LSR)

Projection Minimizes Error

Prove that for a vector $\vec{x} \in S$ where $\vec{x} \neq \vec{p}$ and $\vec{d} = \vec{b} - \vec{x}$, that $||\vec{d}|| > ||\vec{e}||$.

$$\vec{d}^2 = (\vec{e} + \vec{p} - \vec{x})^2$$

Prove that for a vector $\vec{x} \in S$ where $\vec{x} \neq \vec{p}$ and $\vec{d} - \vec{b} - \vec{x}$, that $||\vec{p}|| > ||\vec{q}||$. $\vec{d'} = (\vec{e} + \vec{p} - \vec{x})^2$

Prove that for a vector $\vec{x} \in S$ where $\vec{x} \neq \vec{p}$ and $\vec{d} = \vec{b} - \vec{x}$, that $||\vec{d}|| > ||\vec{e}||$.

$$\vec{d}^2 = \vec{e}^2 + 2\vec{e} \cdot (\vec{p} - \vec{x}) + (\vec{p} - \vec{x})^2$$

operation Minimizes Error Prove that for a vector $\vec{x} \in S$ where $\vec{x} \neq \vec{p}$ and $\vec{d} = \vec{b} - \vec{x}$, that $||\vec{d}|| > ||\vec{e}||$, $\vec{d}^2 = \vec{e}^2 + 2\vec{e} \cdot (\vec{p} - \vec{x}) + (\vec{p} - \vec{x})^2$

Prove that for a vector $\vec{x} \in S$ where $\vec{x} \neq \vec{p}$ and $\vec{d} = \vec{b} - \vec{x}$, that $||\vec{d}|| > ||\vec{e}||$.

$$\vec{d}^2 = \vec{e}^2 + 2\vec{e} \cdot (\vec{p} - \vec{x}) + (\vec{p} - \vec{x})^2$$

Prove that for a vector $\vec{x} \in S$ where $\vec{x} \neq \vec{p}$ and $\vec{d} = \vec{b} - \vec{x}$, that $||\vec{d}|| > ||\vec{e}||$.

$$\vec{d}^2 = \vec{e}^2 + (\vec{p} - \vec{x})^2$$

Prove that for a vector $\vec{x} \in S$ where $\vec{x} \neq \vec{p}$ and $\vec{d} = \vec{b} - \vec{x}$, that $||\vec{d}|| > ||\vec{d}||$. $d^2 = e^2 + (\vec{p} - \vec{x})^2$

Prove that for a vector $\vec{x} \in S$ where $\vec{x} \neq \vec{p}$ and $\vec{d} = \vec{b} - \vec{x}$, that $||\vec{d}|| > ||\vec{e}||$.

$$\vec{d}^2 = \vec{e}^2 + (\vec{p} - \vec{x})^2$$
$$\vec{d}^2 - \vec{e}^2 = (\vec{p} - \vec{x})^2$$

rojection Minimizes Error

Prove that for a vector $\vec{x} \in S$ where $\vec{x} \neq \vec{p}$ and $\vec{d} = \vec{b} - \vec{x}$, that $||\vec{d}|| > ||\vec{e}||$, $\vec{d} = -\vec{e}^2 + (\vec{p} - \vec{x})^2$ $\vec{d}^2 = -\vec{e}^2 - (\vec{p} - \vec{y})^2$

Projection Minimizes Error

 $\vec{d}^2 = \vec{e}^2 + (\vec{p} - \vec{x})^2$ $\vec{d}^2 - \vec{c}^2 = (\vec{p} - \vec{x})^2 > 0$

Projection Minimizes Error

Projection Minimizes Error

Prove that for a vector $\vec{x} \in S$ where $\vec{x} \neq \vec{p}$ and $\vec{d} = \vec{b} - \vec{x}$, that $||\vec{d}|| > ||\vec{e}||$.

$$\vec{d}^2 = \vec{e}^2 + (\vec{p} - \vec{x})^2$$
$$\vec{d}^2 - \vec{e}^2 = (\vec{p} - \vec{x})^2 > 0$$

Prove that for a vector $\vec{x} \in S$ where $\vec{x} \neq \vec{p}$ and $\vec{d} = \vec{b} - \vec{x}$, that $||\vec{d}|| > ||\vec{e}||$.

$$\vec{d}^2 = \vec{e}^2 + (\vec{p} - \vec{x})^2$$

$$\vec{d}^2 - \vec{e}^2 = (\vec{p} - \vec{x})^2 > 0$$

$$\vec{d}^2 > \vec{e}^2$$

Prove that for a vector $\vec{x} \in S$ where $\vec{x} \neq \vec{p}$ and $\vec{d} - \vec{b} - \vec{x}$, that $|\vec{x}|| > |\vec{x}||$. $|\vec{d}| = -\vec{e}^2 + (\vec{p} - \vec{x})^2$ $|\vec{d}^2 - \vec{e}^2 + (\vec{p} - \vec{x})^2 > 0$ $|\vec{d}^2 > \vec{e}^2$

$$P = P^T$$

Prove that $P = P^T$.

Properties

Hint

Start with $P = A(A^T A)^{-1} A^T$.

ATzy

Orthogonal Projection Properties $P = P^{T}$ $Prove that <math>P = P^{T}$.

Hint $\label{eq:start_def} \text{Start with } P = A(A^TA)^{-1}A^T.$

 $P = P^T$

 $\square P = P^T$

 $P = A(A^{T}A)^{-1}A^{T}$ $P^{T} = (A(A^{T}A)^{-1}A^{T})^{T}$ $P^{T} = (A^{T})^{T}((A^{T}A)^{-1})^{T}A^{T}$ $P^{T} = A(A^{T}(A^{T})^{T})^{-1}A$ $P^{T} = A(A^{T}A)^{-1}A^{2}$

Prove that $P = P^T$.

$$P = A(A^{T}A)^{-1}A^{T}$$

$$P^{T} = (A(A^{T}A)^{-1}A^{T})^{T}$$

$$P^{T} = (A^{T})^{T}((A^{T}A)^{-1})^{T}A^{T}$$

$$P^{T} = A((A^{T}A)^{T})^{-1}A^{T}$$

$$P^{T} = A(A^{T}(A^{T})^{T})^{-1}A^{T}$$

$$P^{T} = A(A^{T}A)^{-1}A^{T}$$

$$P^{T} = P$$

Properties

recommend them to try this

 \vdash Prove that $P = P^T$.

Properties

Orthogonal Projection -Properties $\Box P = P^2$

explain why this logically makes senserecommend them to try this

 \vdash Prove that $P = P^2$.

Orthogonal Projection

Prove that $P = P^2$.

-Properties

 $P = P^2$

Prove that $P = P^2$.

$$P = A(A^{T}A)^{-1}A^{T}$$

$$P^{2} = (A(A^{T}A)^{-1}A^{T})^{2}$$

$$P^{2} = (A(A^{T}A)^{-1}A^{T})(A(A^{T}A)^{-1}A^{T})$$

$$P^{2} = A(A^{T}A)^{-1}(A^{T}A)(A^{T}A)^{-1}A^{T}$$

$$P^{2} = A(A^{T}A)^{-1}IA^{T}$$

$$P^{2} = A(A^{T}A)^{-1}A^{T}$$

$$P^{2} = A(A^{T}A)^{-1}A^{T}$$

$$P^{2} = P$$

explain why this logically makes senserecommend them to try this

Prove that $E = E^2$.

Reminder

E is also a projection matrix and E = I - P.

Orthogonal Projection
Properties
Sanity Check: $E = E^2$ Prove that $E = E^2$.

 \sqsubseteq Sanity Check: $E = E^2$

 \sqsubseteq Prove that $E=E^2$.

Sanity Check: $E = E^2$

Prove that
$$E = E^2$$
.

$$E = I - P$$

$$E^{2} = (I - P)^{2}$$

$$E^{2} = I - 2IP + P^{2}$$

$$E^{2} = I - 2P + P$$

$$E^{2} = I - P$$

Special Cases

- 4 Special Cases
 - Sanity Check: A has One Column
 - \blacksquare A is an Orthonormal Matrix
 - Projection from \mathbb{R}^3 onto the xz-plane
 - More Special Cases

- Special Cases
 Sanity Check: A has One Column
- A is an Orthonormal Matrix ■ Projection from ℝ³ onto the xz-plane ■ More Special Cases

Sanity Check: A has One Column

Suppose
$$A = [\vec{a}]$$
. Then, $\vec{p} = A(A^TA)^{-1}A^Tb$ and $\vec{p} = \frac{\vec{a} \cdot \vec{b}}{\vec{c} \cdot \vec{a}}\vec{a}$.

This is an informal sanity checkmention inner product = dot productIt is easy to see that A^TA in the former equation corresponds to $\vec{a} \cdot \vec{a}$ and since it is inverted, it is the divisor in the latter equation. A^Tb corresponds to $\vec{a} \cdot \vec{b}$ the orders do seem off, but since many of the terms in the latter equation are scalars, the order is flexible.

Sanity Check: A has One Column

A is an Orthonormal Matrix

Note

An orthonormal matrix has unit columns all orthogonal to each other. In other words, an orthonormal matrix Q will satisfy $Q^TQ = I$.

Orthogonal Projection

Special Cases A is an Orthonormal Matrix A is an Orthonormal Matrix

is an Orthonormal Matrix

Note
An orthonormal matrix has unit columns all orthogonal to each other. In other words, an orthonormal matrix Q will

A is an Orthonormal Matrix

Note

An orthonormal matrix has unit columns all orthogonal to each other. In other words, an orthonormal matrix Q will satisfy $Q^TQ = I$.

Then,
$$P = A(A^{T}A)^{-1}A^{T} = AIA^{T} = AA^{T}$$
.

A is an Orthonormal Matrix

Note
An orthonormal matrix has unit columns all orthogona
each other. In other words, an orthonormal matrix Q w
satisfy $Q^TQ = I$.

Then, $P = A(A^TA)^{-1}A^T = AIA^T = AA^T$.

A is an Orthonormal Matrix

Note

An orthonormal matrix has unit columns all orthogonal to each other. In other words, an orthonormal matrix Q will satisfy $Q^TQ = I$.

Then, $P = A(A^{T}A)^{-1}A^{T} = AIA^{T} = AA^{T}$.

Additionally, the coefficients vector, $\vec{c} = (A^T A)^{-1} A^T \vec{b}$, will just be $\vec{c} = A^T \vec{b}$.

Orthogonal Projection

Special Cases

A is an Orthonormal Matrix

A is an Orthonormal Matrix

A is an Orthonormal Matrix

An orthonormal matrix has unit columns all orthogonal to each other. In other words, an orthonormal matrix Q will satisfy $Q^TQ = I$. Thus, $P = M(A^TA)^{-1}A^T = MA^T = AA^T$

nen, $P = A(A^TA)^{-1}A^T = AIA^T = AA^T$. Iditionally, the coefficients vector, $\vec{c} = (A^TA)^{-1}A^T\vec{b}$ at the $\vec{c} = A^T\vec{b}$.

Orthogonal Projection

Special Cases

Projection from \mathbb{R}^3 onto the xz-plane

Projection from \mathbb{R}^3 onto the xz-plane

Hint

What are a basis of the xz-plane?

WAT,

Orthogonal Projection

Special Cases

Projection from \mathbb{R}^3 onto the xz-plane

Projection from \mathbb{R}^3 onto the xz-plane

Hint
What are a basis of the xz-plane?

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix}$$

Orthogonal Projection

Special Cases

Projection from \mathbb{R}^3 onto the xz-plane

Projection from \mathbb{R}^3 onto the xz-plane

 $1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix}$$

Note

A is orthonormal.

Orthogonal Projection

Special Cases

Projection from \mathbb{R}^3 onto the xz-plane

Projection from \mathbb{R}^3 onto the xz-plane

Projection from \mathbb{R}^3 onto the xz-plane

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$P = AA^{T} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Orthogonal Projection

Special Cases

Projection from \mathbb{R}^3 onto the xz-plane

Projection from \mathbb{R}^3 onto the xz-plane

$$P = AA^T = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Example

$$P \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x \\ 0 \\ z \end{bmatrix}$$

Orthogonal Projection -Special Cases \square Projection from \mathbb{R}^3 onto the xz-plane \square Projection from \mathbb{R}^3 onto the xz-plane

- Find the projection matrix from \mathbb{R}^3 onto the y-axis.
- What would \vec{p} be if $\vec{b} \perp S$? What if $\vec{b} \in S$?

u Find the projection matrix from \mathbb{R}^3 onto the y-axis. **u** What would \vec{p} be if $\vec{b} \perp S$? What if $\vec{b} \in S$?

emphasize that these are just the special, interesting cases, and that these problems don't represent most problems.

Conclusion Key Ideas Next Steps

Conclusio.

- 5 Conclusion
 - Key Ideas
 - Next Steps

■ The orthogonal projection of b onto subspace S $\vec{p} = \text{proj}_S \vec{b} \in S$, makes the error $\vec{c} = \vec{b} - \vec{p}$ orthogona

Key Ideas

Key Ideas

- \blacksquare The orthogonal projection of b onto subspace S, $\vec{p} = \text{proj}_{S} \vec{b} \in S$, makes the error $\vec{e} = \vec{b} - \vec{p}$ orthogonal to S.
- The projection also minimizes the error.

$$P = A(A^T A)A^T$$

- $P = P^2$
- Other useful equations: $\vec{p} = Pb$, E = I P, $\vec{c} = (A^T A)A^T b$, $P = P^T$, $c = \frac{\vec{a} \cdot \vec{b}}{\vec{c} \cdot \vec{d}}$, $\vec{p} = \frac{\vec{a} \cdot \vec{b}}{\vec{c} \cdot \vec{d}} \vec{a}$, $\vec{p} = c\vec{a}$, $\vec{p} = A\vec{c}$

A must have LI cols

└─Kev Ideas

Introduction Formulas Properties Special Cases Conclusion

Next Steps

- Applications
 - Graphics
 - Least Squares Regression
 - Orthonormal and Orthogonal Matrices
- Further Learning
 - Practice
 - Introduction to Linear Algebra 6th Edition Chapter 4.2 by Gilbert Strang

