

<u>Homework 3: Introduction to</u>

课程 🗆 Unit 2 Foundation of Inference 🗆 Hypothesis Testing

□ 5. P-Values Formulas

5. P-Values Formulas

In each of the following questions, you are given an i.i.d. sample and two hypotheses. For any $lpha \in (0,1)$, define a test with asymptotic level α , then give a formula for the asymptotic p-value of your test.

(a)

1.0/1 point (graded)

 $X_1,\ldots,X_n \overset{i.i.d.}{\sim} \mathsf{Poiss}(\lambda)$ for some unknown $\lambda>0$;

$$H_0: \lambda = \lambda_0 \quad ext{ v.s.} \quad H_1: \lambda
eq \lambda_0 \quad ext{ where } \lambda_0 > 0.$$

(Type $\mathsf{barX_n}$ for \overline{X}_n , $\mathsf{lambda_0}$ for λ_0 . . If applicable, type $\mathsf{abs}(\mathsf{x})$ for |x|, $\mathsf{Phi}(\mathsf{x})$ for $\Phi\left(x\right) = \mathbf{P}\left(Z \leq x\right)$ where $Z \sim \mathcal{N}\left(0,1\right)$, and **q(alpha)** for q_{α} , the $1-\alpha$ quantile of a standard normal variable, e.g. enter **q(0.01)** for $q_{0.01}$.)

Asymptotic p-value =

2*(1-Phi(sqrt(n/lambda_0)*abs(barX_n-lambda_0)))

Answer: 2*(1-Phi(sqrt(n)*abs(barX_n-lambda_0)/sqrt(lambda_0)))

STANDARD NOTATION

Solution:

Since $X_i \sim \mathsf{Poiss}\,(\lambda)$, $\mathbb{E}\,[X_i] = \lambda$ and $\sigma = \sqrt{\lambda}$. Hence, under $H_0: \lambda = \lambda_0$, the central limit theorem gives

$$T_{n,\lambda_0}\left(\overline{X}_n
ight) = \sqrt{n}\left(rac{\overline{X}_n - \lambda_0}{\sqrt{\lambda_0}}
ight) \stackrel{(d)}{\longrightarrow} \mathcal{N}\left(0,1
ight).$$

A test ψ with asymptotic level lpha is therefore

$$|\psi_{n,\lambda_0,lpha}| = |\mathbf{1}\left(\left|T_{n,\lambda_0}\left(\overline{X}_n
ight)
ight| > q_{lpha/2}
ight).$$

The asymptotic p-value is

$$egin{aligned} p ext{-value} &=& \mathbf{P}\left(|Z|>|T_{n,\lambda_0}\left(\overline{X}_n
ight)|
ight) & ext{where} Z\sim\mathcal{N}\left(0,1
ight) \ &=& 2\left(1-\Phi\left(T_{n,\lambda_0}\left(\overline{X}_n
ight)
ight)
ight). \end{aligned}$$

Alternatively, define the test $oldsymbol{\psi}$ and the $oldsymbol{p}$ -value usig

$$T_{n,\lambda_0}\left(\overline{X}_n
ight)=\sqrt{n}\left(rac{\overline{X}_n-\lambda_0}{\sqrt{\overline{X}_n}}
ight).$$

By Slutsky and CLT, $T_{n,\lambda_0}\left(\overline{X}_n
ight) \stackrel{(d)}{\longrightarrow} \mathcal{N}\left(0,1
ight).$

☐ Answers are displayed within the problem

(b)

1.0/1 point (graded)

 $X_1,\ldots,X_n \overset{i.i.d.}{\sim} \mathsf{Poiss}(\lambda)$ for some unknown $\lambda > 0$;

$$H_0: \lambda \geq \lambda_0$$
 v.s. $H_1: \lambda < \lambda_0$ where $\lambda_0 > 0$.

(Type barX_n for \overline{X}_n , lambda_0 for λ_0 . If applicable, type abs(x) for |x|, Phi(x) for $\Phi\left(x\right)=\mathbf{P}\left(Z\leq x\right)$ where $Z\sim\mathcal{N}\left(0,1\right)$, and q(alpha) for q_{α} , the $1-\alpha$ quantile of a standard normal variable.)

Answer: Phi(sqrt(n)*(barX_n-lambda_0)/sqrt(lambda_0))

STANDARD NOTATION

Solution:

As in the previous problem, since $X_i \sim \mathsf{Poiss}\,(\lambda)$, $\mathbb{E}\,[X_i] = \lambda$ and $\sigma = \sqrt{\lambda}$. Hence, assuming $\lambda = \lambda_0$, which is at the boundary of Θ_0 and Θ_1 , the central limit theorem gives again

$$T_{n,\lambda_0}\left(\overline{X}_n
ight) = \sqrt{n}\left(rac{\overline{X}_n - \lambda_0}{\sqrt{\lambda_0}}
ight) \stackrel{(d)}{\longrightarrow} \mathcal{N}\left(0,1
ight).$$

A candidate test ψ with asymptotic level lpha is therefore

$$|\psi_{n,\lambda_0,lpha}| = |\mathbf{1}\left(T_{n,\lambda_0}\left(\overline{X}_n
ight) < -q_lpha
ight).$$

This is because as argued in lecture exercises, $\mathbf{P}_{\lambda}\left(T_{n,\lambda_{0}}\left(\overline{X}_{n}\right)<-q_{\alpha}\right)$ Recall the (asymptotic) level α is an upper bound of the type 1 error. As argued in lecture and lecture exercises, the maximum of the type 1 error is achieved at the boundary of Θ_{0} and Θ_{1} for a one-sided tests where the parameter space is 1-dimensional.

The asymptotic p-value is

$$egin{aligned} p ext{-value} &=& \mathbf{P}\left(Z < T_{n,\lambda_0}\left(\overline{X}_n
ight)
ight) right) & ext{where} Z \sim \mathcal{N}\left(0,1
ight) \ &=& \Phi\left(T_{n,\lambda_0}\left(\overline{X}_n
ight)
ight). \end{aligned}$$

Alternatively, again define the test $oldsymbol{\psi}$ and the $oldsymbol{p}$ -value usig

$$T_{n,\lambda_0}\left(\overline{X}_n
ight)=\sqrt{n}\left(rac{\overline{X}_n-\lambda_0}{\sqrt{\overline{X}_n}}
ight).$$

By Slutsky and CLT, $T_{n,\lambda_0}\left(\overline{X}_n
ight) \stackrel{(d)}{ \longrightarrow \infty} \mathcal{N}\left(0,1
ight).$

提交 你已经尝试了1次 (总共可以尝试3次)

Answers are displayed within the problem

1.0/1 point (graded)

 $X_1,\ldots,X_n \overset{i.i.d.}{\sim} \mathsf{Exp}(\lambda)$ for some unknown $\lambda>0$;

$$H_0: \lambda = \lambda_0 \quad ext{ v.s.} \quad H_1: \lambda
eq \lambda_0 \qquad ext{where } \lambda_0 > 0.$$

(Type barX_n for \overline{X}_n , lambda_0 for λ_0 . If applicable, type abs(x) for |x|, Phi(x) for $\Phi\left(x\right)=\mathbf{P}\left(Z\leq x\right)$ where $Z\sim\mathcal{N}\left(0,1\right)$, and q(alpha) for q_{α} , the $1-\alpha$ quantile of a standard normal variable.)

Asymptotic p-value = $2*(1-Phi(sqrt(n)*abs(barX_n*lambda_0-1)))$

Answer: 2*(1-Phi(sqrt(n)*abs(1/barX_n-lambda_0)/lambda_0))

STANDARD NOTATION

Solution:

Since $X_i \sim \mathsf{Exp}(\lambda)$, $\mathbb{E}[X_i] = \sigma = \frac{1}{\lambda}$. Hence, assuming $H_0: \lambda = \lambda_0$, the central limit theorem and the delta method gives:

$$T_{n,\lambda_0}\left(\overline{X}_n
ight) = \sqrt{n}\left(rac{g\left(\overline{X}_n
ight) - g\left(1/\lambda_0
ight)}{\left|g'\left(1/\lambda_0
ight)
ight|\left(1/\lambda_0
ight)}
ight) \,\, rac{{}^{(d)}}{{}^{n o\infty}} \,\, \mathcal{N}\left(0,1
ight) \qquad ext{where} \,\, g\left(x
ight) := 1/x. \ \ \iff \qquad \sqrt{n}\left(rac{1/\overline{X}_n-\lambda_0}{\lambda_0}
ight) \qquad rac{{}^{(d)}}{{}^{n o\infty}} \,\, \mathcal{N}\left(0,1
ight) \qquad ext{since} \,\, g'\left(1/\lambda
ight) = -\lambda^2. \ \ \end{cases}$$

As in Part (a), a test ψ with asymptotic level lpha is therefore

$$|\psi_{n,\lambda_0,lpha}| = |\mathbf{1}\left(|T_{n,\lambda_0}\left(\overline{X}_n
ight)|>-q_{lpha/2}
ight).$$

with asymptotic p-value:

$$egin{aligned} p ext{-value} &=& \mathbf{P}\left(|Z| < |T_{n,\lambda_0}\left(\overline{X}_n
ight)|
ight) & ext{where } Z \sim \mathcal{N}\left(0,1
ight) \ &=& 2\left(1 - \Phi\left(|T_{n,\lambda_0}\left(\overline{X}_n
ight)|
ight)
ight). \end{aligned}$$

Alternatively, define the test $oldsymbol{\psi}$ and the $oldsymbol{p}$ -value using

$$T_{n,\lambda_0}\left(\overline{X}_n
ight)=\sqrt{n}\left(rac{1/\overline{X}_n-\lambda_0}{1/\overline{X}_n}
ight).$$

where we plug-in the estimator $1/\overline{X}_n$ for λ_0 .

提交

你已经尝试了1次(总共可以尝试3次)

☐ Answers are displayed within the problem

讨论

显示讨论

主题: Unit 2 Foundation of Inference:Homework 3: Introduction to Hypothesis Testing / 5. P-Values Formulas