This file was provided by: Muath Alghamdi

Sums of two squares 1 (L3)

- 1. (Warm up) Determine whether there exist rational numbers r and q such that $r^2 + q^2 = 15$.
- 2. Prove that there are infinitely many primes of the form 4m + 3.
- 3. Prove that if $a^2 + b^2$ is divisible by a prime p = 4m + 3, then p divides both a and b.
- 4. The product of two numbers, each of which is a sum of two squares, is itself a sum of two squares.
- 5. Prove that if n is a sum of two squares, then 5n is also a sum of two squares.
- 6. Prove that if number n is divisible by 5 and n is a sum of two squares, then n/5 is also a sum of two squares.
- 7. Can 13×29 be expressed as a sum of two squares?

Homework

- 1. Prove that there are infinitely many integers of the form 4m + 1 that are not a sum of two perfect squares.
- 2. Prove that if n is a sum of two squares, then 2n is also a sum of two squares.
- 3. Prove that if n is an even number and a sum of two squares, then n/2 is also a sum of two squares.
- 4. Determine whether there exist numbers $n \ge 15$ and $m \ge 15$ such that $n^2 + m^2 = 29 \cdot 41$.

Sums of two squares 2 (Level 3)

- 1. (Revision) Prove that for any integer m there exists a multiple of m that is not a sum of two squares.
- 2. (Revision) Determine whether number $n^2 + 1$ can have a factor of the form 4m 1.
- 3. (Revision) Prove that if number n is divisible by 13 and n is a sum of two squares, then n/13 is also a sum of two squares.
- 4. Can 19×29 be expressed as a sum of two squares?
- 5. (Generalisation) If a number which is a sum of two squares is divisible by a prime which is a sum of two squares, then the quotient is a sum of two squares.
- 6. If a number which can be written as a sum of two squares is divisible by a number which is not a sum of two squares, then the quotient has a factor which is not a sum of two squares.
- 7. (Wilson's theorem) A natural number n > 1 is a prime number if and only if $(n-1)! + 1 \equiv 0 \pmod{n}$. Prove it.
- 8. Prove that for any prime p = 4n + 1 there exists m such that $m^2 + 1$ is divisible by p.
- 9. Number d is a factor of $n^2 + 1$. Prove that there exist infinitely many numbers m such that d is a factor of $m^2 + 1$.
- 10. How many positive integers n < 1000 satisfy the following condition: $n^2 + 1$ is divisible by 65?
- 11. Find a number that can be expressed as the sum of two squares in at least four different ways.
- 12. Prove that if number can be expressed as the sum of two squares in two different ways, then that number is composite.
- 13. Prove that there are infinitely many primes of the form 4m+1.
- 14. Prove that if $m^2 + 1$ is divisible by a prime p, then p is a sum of two squares.

Homework

- 1. Find all integers a, b, c, d such that $a^2 + b^2 + c^2 = 8d 1$.
- 2. Can number $4^m(8n+7)$ be expressed as a sum of two squares?
- 3. Determine whether there exist integers m and n > 1 such that $\frac{m^2+1}{n^2-1}$ is an integer.
- 4. Factorise $1000009 = 235^2 + 972^2$.
- 5. Let x, y, z be integers and $4xy x y = z^2$. Prove that $x \leq 0$ and $y \leq 0$.

Sum of two squares (final part)

- 1. (Revision) Find all integers x, y, z such that $x^2y^2 = x^2 + y^2 + z^2$.
- 2. (Revision) Prove that number $N = p_1(p_2p_3)^4$, where $p_1 = 4m_1 + 1$, $p_2 = 4m_2 + 1$, and $p_3 = 4m_3 + 3$ are primes, can be expressed as sum of two squares in (at least) 5 different ways.
- 3. Prove that if $m^2 + 1$ is divisible by a prime p, then p is a sum of two squares.
- 4. Prove that there are infinitely many primes of the form 4m + 1.