Splitting a measure along a fixed direction

June 14, 2023

Notation

- A measure μ on \mathbb{R}^d is nice if it is Borel, $\mu(\mathbb{R}^d) = 1$, $\mu(H) = 0$ for all affine hyperplanes and it has connected support.
- Given an arrangement \mathcal{H} of k oriented affine hyperplanes and a sign pattern $\alpha \in (\mathbb{Z}_2)^k$, the orthant $\mathcal{O}(\mathcal{H}, \alpha)$ is defined as

$$\mathcal{O}(\mathcal{H}, \alpha) := \{ x \in \mathbb{R}^d | (-1)^{\alpha_i} ((h_i | x) - a_i) > 0 \}$$

Intuitively, $\mathcal{O}(\mathcal{H}, \alpha)$ is the set of point lying on the side of H_i determined by α_i (positive if $\alpha_i = 0$, negative otherwise).

- $G = \mathbb{Z}_4 \times \mathbb{Z}_2$ with generators $g_1 = (1,0)$ and $g_2 = (0,1)$.
- If $v \in \mathbb{R}^d$ is a non-zero vector, \overline{v} is its normalization $\overline{v} = \frac{v}{\|v\|}$
- An oriented affine hyperplane $H = \{x \in \mathbb{R}^d | (h|x) a = 0\}$ defines a point $\frac{(h,a)}{\|(\bar{h},a)\|}$ in S^d ; likewise, a point on $x = (\bar{x},a) \in S^d$ defines an oriented affine hyperplane $H(x) = \{p \in \mathbb{R}^d | (\bar{x}|p) a = 0\}$.
- Given a nice measure μ in \mathbb{R}^3 , define the standard test map $F: (S^3)^3 \times \mathbb{Z}_2^3 \to \mathbb{R}$:

$$F(x,\omega) = \mu(\mathcal{O}(x,\omega)) - \frac{1}{8}$$

x is an equipartition $\iff F(x,\alpha) = 0 \ \forall \alpha.$

• Given a test map F, the alternating sum functions are the discrete Fourier transform of the test map. More precisely, if $\alpha \in (\mathbb{Z}_2)^3$ $\alpha \neq 0$, then the alternating sum with parameter α is:

$$F_{\alpha}(x) = \sum_{\omega \in \mathbb{Z}_{2}^{3}} (-1)^{(\alpha|\omega)} F(x, \omega)$$

x is an equipartition $\iff F_{\alpha}(x) = 0 \ \forall \alpha \neq 0$

• The group \mathbb{Z}_2^3 acts on $(S^3)^3$ by coordinate-wise antipodality and, given $\alpha, g \in \mathbb{Z}_2^3$ with $\alpha \neq 0$ and a test map F:

$$F_{\alpha}(g \cdot x) = (-1)^{(\alpha|g)} F_{\alpha}(x)$$

The Result

Our goal is to prove the following result:

Theorem 1. Given a nice measure μ and a direction $p \in S^2$ it is possible to find 3 affine oriented planes that equipartition the measure and the first two have the prescribed oriented intersection p. Formally, $\exists \mathcal{H} = ((h_1, a_1), (h_2, a_2), (h_3, a_3))$ configuration of oriented planes such that:

- $\forall \alpha \in (\mathbb{Z}_2)^k$, $\mu(\mathcal{O}(\mathcal{H}, \alpha)) = \frac{1}{8}$.
- $\overline{h}_1 \wedge \overline{h}_2 = p$.

Proof. Without loss of generality, let z=(0,0,1). The proof will be split in two sections: the first deals with constructing a map $\Phi: S^1 \times S^3 \to \mathbb{R}^4$ in \mathbb{R}^4 whose zeros codify equipartitions of the mass. The second step will be to show that the map will respect a suitable action of G on the two space and that such equivariance forces the existence of a zero.

Step 1

The key step in constructing the map is to show that we can parametrize pair of planes that have intersection direction z and split the mass in 4 equal parts with vector in S^1 .

Project the mass on the xy plane to obtain a nice measure $\mu^{\#}$ on \mathbb{R}^2 . The following bisecting lemma applies:

Lemma 1 (Bisecting). Let $\mu^{\#}$ be a nice measure on \mathbb{R}^2 and $v \in S^1$ a direction. Then there exists two oriented affine lines $l_0 = \mathbb{R}\vec{l_0} + a_0$ and $l_1 = \mathbb{R}\vec{l_1} + a_1$ in \mathbb{R}^2 such that:

- l_0 and l_1 equipartition $\mu^{\#}$
- v bisects the angle between l_0 and l_1

What is more, we can choose consistently the direction $\vec{l_0}$ (e.g. fix $\vec{l_0}$ to be the first direction clockwise, while the first one contraclockwise is $\vec{l_1}$). Once this choice is made, $\vec{l_0}$ and $\vec{l_1}$ are unique and depend continuously on v.

The lemma guarantees that, once we fix a direction $v \in S^1 \subseteq S^2$ (inclusion as the horizontal equator in S^2) there are two affine lines in the xy plane $l_0 = \mathbb{R}\vec{l_0}(v) + a_0(v)$) and $l_1 = \mathbb{R}\vec{l_1}(v) + a_1(v)$) that bisect the projected measure $\mu^{\#}$.

Define $H_i(v) = (h_i(v), a_i(v))$ to be the affine (oriented) span of $l_i(v)$ and z, the two planes now equipartition the measure μ and have the desired intersection.

Let now $\mathbb{Z}_4 = \langle g_1 \rangle$ act on S^1 by $\frac{\pi}{2}$ rotation counter clockwise. Then, by construction we have that:

$$H_0(g_1 \cdot v) = H_1(v)$$

$$H_1(g_1 \cdot v) = -H_0(v)$$

In other words, if we consider the planar problem with the bisecting vector rotated by $\frac{\pi}{2}$, the new first line is the previous second while the new second is is the old first with opposite orientation.

We can now define a map $S^1 \times S^3 \to (S^3)^3$, $(v, w) \mapsto (H_0(v), H_1(v), w)$.

To check now that a configuration of 3 planes equipartition the measure, it is equivalent to check that the alternating sum functions F_{α} are 0 for all signed patterns $\alpha \in \mathbb{Z}_2^3 \setminus 0$. However, by construction the first two planes split equally the mass, thus it is sufficient to check the 4 patterns involving the last one; i.e. $\alpha = (0,0,1), (1,0,1), (0,1,1)$ and (1,1,1).

What is more, it is straightforward how the alternating sum functions behave under the G-action. Explicitly, $\forall (v, w) \in S^1 \times S^3$ the following equalities hold:

$$\begin{split} F_{(0,0,1)}(g_1\cdot(v,w)) &= F_{(0,0,1)}(v,w) \\ F_{(0,1,1)}(g_1\cdot(v,w)) &= -F_{(1,0,1)}(v,w) \\ F_{(1,0,1)}(g_1\cdot(v,w)) &= F_{(0,1,1)}(v,w) \\ F_{(1,1,1)}(g_1\cdot(v,w)) &= -F_{(1,1,1)}(v,w) \end{split}$$

$$\begin{split} F_{(0,0,1)}(g_2\cdot(v,w)) &= -F_{(0,0,1)}(v,w) \\ F_{(0,1,1)}(g_2\cdot(v,w)) &= -F_{(1,0,1)}(v,w) \\ F_{(1,0,1)}(g_2\cdot(v,w)) &= -F_{(0,1,1)}(v,w) \\ F_{(1,1,1)}(g_2\cdot(v,w)) &= -F_{(1,1,1)}(v,w) \end{split}$$

Additionally, we can choose a linear G-action on \mathbb{R}^4 that is consistent with the previous equations. In particular, if we define:

$$g_1 \cdot (x, y, z, u) = (x, -z, y, -u)$$

$$g_2 \cdot (x, y, z, u) = (-x, -y, -z, -u)$$

Then it is easy to check that the alternating sum map $\Psi: S^1 \times S^3 \to \mathbb{R}^4$

$$(v,w) \mapsto (F_{(0,0,1)}(v,w), F_{(0,1,1)}(v,w), F_{(1,0,1)}(v,w), F_{(1,1,1)}(v,w))$$

is actually a G-equivariant map whose zeros are exactly the configurations of planes that equipartition the measure and have the desired intersection property.

Step 2

Suppose now by contradiction that Ψ does not have a zero. This means that $\overline{\Psi}: S^1 \times S^3 \to S^3$ is a well defined G-equivariant map.

Denote by $\Psi_a, a \in S^1$, the map $\Psi_a: S^3 \to S^3, \Psi_a(p) = \overline{\Psi}(a, p)$; this function have two key properties:

- 1. $\forall a \in S^1, \Psi_a \text{ is antipodal}$
- 2. $\forall a, b \in S^1$, Ψ_a and Ψ_b are homotopic

However, the map induced by g_1 on the sphere has degree -1 and thus we have:

$$[\Psi_a] = [\Psi_{g_1 \cdot a}] = [g_1 \cdot \Psi_a] = -[\Psi_a]$$

Thus Ψ_a is null-homotopic, but Borsuk-Ulam implies that an antipodal map of S^3 can't be. \slash

Topology facts needed in the proof

Theorem 2. If $A \in O(n)$ is an orthogonal matrix, then the induced continuous map $A: S^{n-1} \to S^{n-1}$ has degree $\deg(A) = \det(A)$.

Proof. Assume det(A) = 1 (i.e. $A \in SO(n)$).

Let P an invertible matrix that puts A in Jordan normal form (R_{θ} denotes the 2×2 matrix of the rotation by θ):

$$A = P^{-1} \begin{pmatrix} R_{\theta_1} & & & & \\ & R_{\theta_2} & & & \\ & & \dots & & \\ & & & R_{\theta_k} & \\ & & & Id_{n-2k} \end{pmatrix} P$$

Then, there is a path $\gamma: Id \rightsquigarrow A$ defined as:

$$\gamma(t) = P^{-1} \begin{pmatrix} R_{t\theta_1} & & & & \\ & R_{t\theta_2} & & & \\ & & \dots & & \\ & & & R_{t\theta_k} & \\ & & & & Id_{n-2k} \end{pmatrix} P$$

As a result, the map $A: S^{n-1} \to S^{n-1}$ is homotopic to the identity through the homotopy $H: S^{n-1} \times [0,1] \to S^{n-1}; H(x,t) = \gamma(1-t)x$.

Hence deg(A) = deg(Id) = 1.

Let now det(A) = -1, then $QA \in SO(n)$ where

$$Q := \begin{pmatrix} Id & \\ & -1 \end{pmatrix}$$

this means that 1 = deg(QA) = deg(Q)deg(A) = -deg(A).

Theorem 3. Let $f: S^{n-1} \to S^{n-1}$ be an antipodal map. Then $\deg(f) \neq 0$.

Proof. Suppose by contradiction $\exists f: S^{n-1} \to S^{n-1}$ antipodal and $\deg(f) = 0$. Then f can be extended to a map $F: D^n \to S^{n-1}$; using this map it is possible to construct $\tilde{F}: S^n \to S^{n-1}$:

$$\tilde{F}(x_1, \dots, x_{n+1}) = \begin{cases} F(x_1, \dots, x_n) & \text{if } x_{n+1} \ge 0 \\ -F(-x_1, \dots, -x_n) & \text{if } x_{n+1} \le 0 \end{cases}$$

It is well defined because on the intersection of the two pathes (i.e. the horizontal equator) both sides coincide with f; what is more, \tilde{F} is antipodal:

$$\tilde{F}(-(x,x_{n+1})) = -F(-(-x)) = -F(x) = -\tilde{F}((x,x_{n+1}))$$

$$\tilde{F}(-(x,x_{n+1})) = F(-x) = -(-F(-x)) = -\tilde{F}((x,x_{n+1}))$$

Thus \tilde{F} violates Borsuk-Ulam.