

Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Cornélio Procópio

AULA 2

TRANSMISSÃO, POTÊNCIA E RENDIMENTO

Professor: Dr. Paulo Sergio Olivio Filho

CONTEÚDO DA AULA

- Sistemas de Transmissão Mecânica;
- Tipos das transmissões;
 - Correias;
 - Correntes;
 - Engrenagens;
 - Rodas de Atrito;
- Rendimentos das transmissões;

TRANSMISSÃO AUTOMOTIVA

A transmissão automotiva é representada no esquemático abaixo, a transmissão de movimento ocorre dos pares de polia de 1 para 2, 2 para 3 e 1 para 3.

$$i_1 = \frac{d_1}{d_2} = \frac{\omega_2}{\omega_1} = \frac{f_2}{f_1} = \frac{n_2}{n_1} = \frac{M_{T1}}{M_{T2}}$$

$$i_2 = \frac{d_1}{d_3} = \frac{\omega_3}{\omega_1} = \frac{f_3}{f_1} = \frac{n_3}{n_1} = \frac{M_{T1}}{M_{T3}}$$

$$i_3 = \frac{d_2}{d_3} = \frac{\omega_3}{\omega_2} = \frac{f_3}{f_2} = \frac{n_3}{n_2} = \frac{M_{T2}}{M_{T3}}$$

EXEMPLO APLICADO

A esquematização da figura representa um motor a combustão para automóvel, que aciona simultaneamente as polias da bomba-d'água e do alternador. As curvas de desempenho do motor apresentam para o torque máximo a potência de P=35,3kW atuando com rotação de n = 2000rpm. Os diâmetros são: d1 = 120mm (motor); d2 = 90mm (bomba-d'água); d3 = 80mm (alternador)

- A) velocidade angular ω_1 , ω_2 e ω_3 ;
- B) frequência f_1 , f_2 e f_3 ;
- C) torque M_{T1} , M_{T2} e M_{T3} ;
- D) rotação n_2 e n_3 ;
- E) relação de transmissão i_1 e i_2 ;
- F) Força tangencial Ft;
- G) Velocidade Tangencial Vt.

SISTEMAS DE TRANSMISSÃO MECÂNICA

- Transmissão Mecânica
 - > Mecanismos manuais ou automáticos que tem a função de transmitir movimentos e potências através de elementos puramente mecânicos.
 - > A transmissão realizada por óleo hidráulico é chamada de hidráulica ou hidromecânica.
- Tipos de Transmissão Mecânica
 - Correias;
 - Correntes;
 - Engrenagens;
 - Rodas de Atrito;

SISTEMAS DE TRANSMISSÃO MECÂNICA

Seja qual for o tipo de transmissão, sempre ocorrerá a perda de potência nas engrenagens, mancais, polias, correntes, rodas de atrito (devido ao atrito entre as superfícies), agitação do óleo lubrificante, escorregamento entre correia e polia, etc.

RELAÇÃO DE POTÊNCIAS

Desta forma, temos que a potência de entrada da transmissão é dissipada em parte na forma de energia, e o restante é transformada em potência útil geradora de trabalho.

Em que:

```
P_{\rm e} = potência de entrada [W, kW, CV, ...]; 
 P_{\rm u} = potência útil [W, kW, CV, ...]; 
 P_{\rm d} = potência dissipada [W, kW, CV, ...]; 
 P_{\rm e} = P_{\rm u} + P_{\rm d}
```

RENDIMENTO DAS TRANSMISSÕES

Tipos de Transmissão	Rendimento	
Transmissão por correias		
Correias Planas	0,96 ≤ η ≤ 0,97	
Correias em V	0,97 ≤ η ≤ 0,98	
Transmissão por Rodas		
De atrito	0,95 ≤ η ≤ 0,98	
Transmissão por corrente		
Correntes Silenciosas	0,97 ≤ η ≤ 0,99	
Correntes Renold	0,95 ≤ η ≤ 0,97	
Transmissão por engrenagens		
Fundidas	0,92 ≤ η ≤ 0,93	
Usinadas	0,96 ≤ η ≤ 0,98	

RENDIMENTO DAS TRANSMISSÕES

1 entrada	<i>n (aço-bronze)</i> 0,45 ≤ η _{pst} ≤ 0,60
2 entradas	$0.70 \le \eta_{pst} \le 0.80$
3 entradas	$0.85 \le \eta_{psi} \le 0.97$
i i i i i i i i i i i i i i i i i i i	n cais
Rolamento (par)	$0,98 \le \eta_{m(R)} \le 0,99$
Deslizamento (par) (bucha)	$0.96 \le \eta_{m(b)} \le 0.98$

RENDIMENTO DAS TRANSMISSÕES

O rendimento de uma transmissão ou de um sistema de transmissão pode ser obtido através da seguinte fórmula:

$$\eta = \frac{P_s}{P_e} \Longrightarrow P_s = P_e \cdot \eta$$

Em que:

P_e = potência de entrada[W,kW,CV, ...];

P_s = potência de saída[W,kW,CV, ...];

 $\eta \equiv \text{rendimento da transmissão (incluindo todos os componentes existentes) [%];}$

COMPORTAMENTO DAS TRANSMISSÕES

TRANSMISSÕES POR CORREIA

TRANSMISSÕES POR CORREIA

<u>VANTAGENS</u> :	 Grande distância entre eixos (paralelos ou reversos) Construção simples e barata (63% do custo da engrenagem) Funcionamento silencioso Absorve choques
DESVANTAGENS:	Vida pequena Dimensões grandes Escorregamento de 1 a 3%
<u>CARACTERISTICAS</u> :	 Altas potências → até 2.000 CV Rotações médias e altas → até 18.000 rpm Altas velocidades tangenciais → até 90 m/s Relação de transmissão até 5 (normalmente)

TRANSMISSÕES POR ENGRENAGEM

CÔNICAS DE DENTES RETOS E CONICAS DE DENTES HELICOIDAIS: BEVEL GEARS

ENGRENAGEM CILINDRICAS DE DENTES RETOS (ECDR) : SPUR GEAR

ENGRENAGEM CILINDRICAS DE DENTES HELICOIDAIS (ECDH) : HELICAL GEAR

COROA E ROSCA SEM FIM: WORM GEARS AND WORM

PINHÃO E CREMALHEIRA : RACH AND PINION

TRANSMISSÕES POR ENGRENAGEM

<u>VANTAGENS</u> :	 Transmissão de torque sem deslizamento Razão de engrenamento constante Segurança de funcionamento
	NA=Constant
<u>DESVANTAGENS</u> :	Maior custo Ruído de funcionamento Transmissão rígida (sem amortecimento)
	*!:
<u>CARACTERISTICAS</u> :	 Altas potências → até 25.000 CV Rotações médias e altas → até 100.000 mm Altas velocidades tangenciais → até 200 m/s Relação de transmissão até § (normalmente)

RELAÇÃO DE TRANSMISSÃO

O local de contato entre duas engrenagens se da no diâmetro primitivo, que pode ser calculado pelo produto do módulo e do número dos dentes.

RELAÇÃO DE TRANSMISSÃO

$$i = \frac{D_{P_2}}{D_{P_1}} = \frac{m \cdot N_2}{m \cdot N_1} = \frac{\omega_1}{\omega_2} = \frac{f_1}{f_2} = \frac{n_1}{n_2} = \frac{M_{T_2}}{M_{T_1}}$$

Em que:

i = relação de transmissão [admensional]; $D_P = diâmetro primitivo [m];$ N = número de dentes [admensional]; $\omega = velocidade angular [rad/s];$ f = freqüência [Hz]; n = rotação[rpm]; $M_T = momento torçor ou torque[N · m];$

$$D_P = m \cdot N$$

RELAÇÃO DE TRANSMISSÃO

Observação:

 Para que haja engrenamento entre duas engrenagens, é condição indispensável que os módulos ou passo diametral sejam iguais.

m = módulo da engrenagem;

Pd = passo diametral

N = Número de dentes

$$P_d = \frac{N}{D_p}$$

$$m = \frac{D_p}{N}$$

$$m = \frac{1}{P_d}$$

Módulos métricos padronizados

Módulo métrico (mm)	Equivalente p_{ℓ} (in ⁻¹)
0,3	84,67
0,4	63,50
0,4	50,80
0,8	31,75
1	25,40
1,25	20,32
1,5	16,93
2	12,70
3	8,47
4	6,35
5	5,08
6	4,23
8	3,18
10	2,54
12	2,12
16	1,59
20	1,27
25	1,02

EXEMPLO

A transmissão da figura é acionada por um motor elétrico com potência P = 5.5 [kW] ($P \cong 7.5$ CV) e rotação n = 1740 [rpm]. As polias possuem os seguintes diâmetros: $d_1 = 120$ mm; $d_2 = 280$ mm. As engrenagens possuem os seguintes números de dentes: $Z_1 = 23$; $Z_2 = 49$; $Z_3 = 27$; $Z_4 = 59$

Os rendimentos são:

- n_c=0,97 (Transmissão por correia em V);
- n_e=0,98 (Transmissão/par de engrenagens);
- n_m=0,99 (Par de mancais rolamentos).

Determinar:

- a) Potência útil nas árvores (I), (II) e (III);
- b) Potência dissipada/estágio;
- c) Rotação das árvores (I), (II) e (III);
- d) Torque nas árvores (I), (II) e (III);
- e) Potência útil do sistema;
- f) Potência dissipada do sistema;
- g) Rendimento da transmissão;

EXERCÍCIO PARA ENTREGAR

A transmissão por engrenagens, representada na figura, é acionada por um motor elétrico com potência P = 18,5 [kW] e rotação n = 1170 [rpm]. As engrenagens possuem os seguintes números de dentes: $Z_1=25$; $Z_2=65$; $Z_3=35$; $Z_4=64$

Os rendimentos são:

- n_e=0,98 (Transmissão/par de engrenagens);
- n_m=0,99 (Par de mancais rolamentos).

Determinar:

- a) Potência útil nas árvores (I), (II) e (III);
- b) Potência dissipada/estágio;
- c) Rotação das árvores (I), (II) e (III);
- d) Torque nas árvores (I), (II) e (III);
- e) Potência útil do sistema;
- f) Potência dissipada do sistema;
- g) Rendimento da transmissão;

Resolva o exercicio e crie um programa em python com funções de potencia util e dissipada