CONTRÔLE DE CONNAISSANCE Nº 1

Outils mathématiques fondamentaux Semestre 1

Groupe D - Jeudi 29 septembre 2022

Durée: 0h40

Aucun document autorisé - Calculatrices et objets connectés interdits

Nom: Prénom:

CORRECTION

Q-1. Soient A une matrice de taille (3,4) et B une matrice de taille (2,3).

Cochez et complétez la ou les affirmations correctes :

- aucun des produits AB et BA n'est possible
- le produit AB est possible et sa taille est : \cdots
- le produit BA est possible et sa taille est : (2,4)
- Q-2. Soient A et B deux matrices dont le produit AB est de taille (5,7). Sachant que B est de taille (4,7), de quelle taille est la matrice A?

A doit être de taille (5,4)

Q-3. Que vaut l'élément $a_{2,4}$ de la matrice A obtenue par le produit :

$$A = \begin{pmatrix} 1 & -2 & 3 \\ 0 & -6 & 2 \\ -4 & 3 & -1 \end{pmatrix} \times \begin{pmatrix} 3 & 2 & -6 & 4 \\ 3 & -4 & -2 & 2 \\ -2 & 1 & -1 & -2 \end{pmatrix}$$

On effectue le produit de la 2ie ligne par la 4ie colonne : $a_{2,4}=0\times 4+(-6)\times 2+2\times (-2)=-16$

Q-4. Calculez, s'ils sont possible, les produits suivants. Sinon écrivez "impossible".

$$\begin{pmatrix} 4 & -1 & 2 \end{pmatrix} \times \begin{pmatrix} 2 & 1 \\ 4 & 2 \\ 3 & 3 \end{pmatrix} = \begin{pmatrix} 10 & 8 \end{pmatrix}$$

$$\begin{pmatrix} 4 & -1 & 2 \\ 3 & -5 & 0 \end{pmatrix} \times \begin{pmatrix} 7 \\ 5 \end{pmatrix} = \text{ impossible}$$

$$\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} \times \begin{pmatrix} 2 & -1 \\ 4 & -2 \\ 2 & -1 \end{pmatrix}$$

Q-5. Complétez le contenu de la matrice A suivante pour qu'elle ne soit pas inversible :

$$A = \begin{pmatrix} 1 & 4 & 2 \\ 1 & 4 & 2 \\ 7 & 6 & 8 \end{pmatrix}$$

A n'est pas inversible car elle a deux lignes identiques

Q-6. Complétez la propriété suivante :

Une matrice $A=(a_{ij})$ carrée d'ordre n et diagonale est inversible si, et seulement si ses éléments diagonaux sont tous non nuls.

Écrivez, si elle existe, la matrice inverse A^{-1} de la matrice $A=\begin{pmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3 \end{pmatrix}$. Sinon, écrivez "n'existe pas".

$$A^{-1} = \begin{pmatrix} \frac{1}{2} & 0 & 0\\ 0 & -1 & 0\\ 0 & 0 & \frac{1}{3} \end{pmatrix}$$

Q-7. La matrice $A=\begin{pmatrix} 1 & 4 \\ 2 & 5 \end{pmatrix}$ est-elle inversible? Justifiez. Si elle est inversible, écrivez A^{-1} .

 $1 \times 5 - 2 \times 4 = -3 \neq 0$ donc la matrice A est inversible.

$$A^{-1} = \frac{1}{-3} \begin{pmatrix} 5 & -4 \\ -2 & 1 \end{pmatrix} = \begin{pmatrix} -\frac{5}{3} & \frac{4}{3} \\ \frac{2}{3} & -\frac{1}{3} \end{pmatrix}$$

Q-8. Complétez la définition d'une matrice inversible :

Une matrice A carrée d'ordre n est dite **inversible** si il existe une matrice B carrée d'ordre n telle que : $AB=BA=I_n$

Q-9. On considère une matrice M carrée d'ordre 4 vérifiant $M^3+3M=3I_4$. Justifiez pourquoi M est inversible et précisez ce que vaut M^{-1} :

$$M^3 + 3M = 3I_4 \; {\sf donc} \; M(M^2 + 3I_4) = 3I_4 \; {\sf donc} \; M imes rac{1}{3}(M^2 + 3I_4) = I_4$$

Donc il existe une matrice, $\frac{1}{3}(M^2 + 3I_4)$, qui multipliée par A donne I_4 : cela signifie que A est inversible et cette matrice est son inverse :

$$A^{-1} = \frac{1}{3}(M^2 + 3I_4)$$

Q-10. On considère deux matrices A et B carrées d'ordre n.

On suppose que A et B sont inversibles. Que vaut l'inverse de la matrice $A \times B$?

D'après un théorème du cours, l'inverse de $A \times B$ qui est noté $(A \times B)^{-1}$ vaut $B^{-1} \times A^{-1}$

Q-11. Écrivez la matrice $A=(a_{ij})\in\mathcal{M}_{3,2}(\mathbb{R})$ définie par : $a_{ij}=(-1)^i(i+j)$ pour tout i,j

$$A = \begin{pmatrix} -2 & -3 \\ 3 & 4 \\ -4 & -5 \end{pmatrix}$$

Q-12. Complétez la propriété suivante :

Si $A = (a_{ij})$ est une matrice carrée d'ordre n, alors la matrice $A + {}^tA$ est symétrique.

Q-13. Comment s'appelle une matrice $A=(a_{ij})\in \mathcal{M}_n(\mathbb{R})$ vérifiant :

$$a_{ij} = 0$$
 pour tout $i < j$

A est une matrice triangulaire inférieure

Q-14. Complétez le contenu de la matrice A suivante pour qu'elle soit antisymétrique :

$$A = \begin{pmatrix} 0 & -1 & 7 & 2 \\ 1 & 0 & -9 & 0 \\ -7 & 9 & 0 & -1 \\ -2 & 0 & 1 & 0 \end{pmatrix}$$