## **Senior Division - Short Round Solutions**

## 1, Boolean Algebra

$$\overline{A(\overline{B}+C)} + \overline{BC} \oplus \left(\overline{B(\overline{A}+C)} \cdot (\overline{AC}+B)\right)$$

$$= \overline{AB} + AC + \overline{BC} \oplus \left(\overline{B(\overline{A}+C)} + (\overline{AC}+B)\right)$$

$$= \left(\overline{AB} \cdot AC + \overline{BC} \oplus (\overline{B(\overline{A}+C)} + (\overline{AC}+B)\right)$$

$$= \left(\overline{AB} \cdot \overline{AC} + \overline{BC} \oplus (\overline{BC})\right) \oplus (\overline{ABC} + \overline{ABC})$$

$$= \left(\overline{A} + B\right) (\overline{A} + \overline{C}) (B + \overline{C}) \oplus (\overline{AB(\overline{C}+C)})$$

$$= (\overline{AB} + \overline{AC} + B\overline{C}) \oplus A\overline{B}$$
To be FALSE, LHS = RHS.
If LHS = RHS = 0 and  $A = 1$ , then
$$0B + 0\overline{C} + B\overline{C} = 0 \quad \wedge 1\overline{B} = 0$$

$$B = 1$$

$$0*1 + 0 + 1*\overline{C} = 0$$

$$C = 1 \quad \Rightarrow (1, 1, 1)$$
If LHS = RHS = 0 and  $A = 0$ , then
$$1*B + 1*\overline{C} + B\overline{C} = 0 \quad \wedge 0*\overline{B} = 0$$

$$B = 0 \quad \wedge C = 1 \quad B = *$$

$$\Rightarrow (0, 0, 1)$$
If LHS = RHS = 1 and  $A = 1$ , then
$$0*B + 0*\overline{C} + B\overline{C} = 1 \quad \wedge 1*\overline{B} = 1$$

$$B = 1 \wedge C = 0 \quad B = 0$$
which is impossible.
IF LHS = RHS = 1 and  $A = 0$ , then
$$1*B + 1*C + B\overline{C} = 1 \quad \wedge 0*\overline{B} = 1$$

$$1 = 1 \quad 0 = 1$$
which is impossible.

C. (0,0,1)(1,1,1)

# 2. Bit-String Flicking

Let x = abcdef

x OR (LCIRC-4 x) AND (RSHIFT-1 x)

= abcdef OR (LCIRC-4 abcdef)

AND (RSHIFT-1 abcdef)

= abcdef OR efabcd AND 0abcde

= abcdef OR e0 af ab bc cd de

This sets up six equations:

$$a + e0 = 0 \rightarrow a = 0$$

$$b + af = 0 \rightarrow b = 0$$

$$c + ab = 1 \rightarrow c = 1$$

$$d + bc = 1 \rightarrow d = 1$$

$$e + cd = 1 \rightarrow e + 1 = 1$$

$$f + de = 0 \rightarrow f + e = 0 \rightarrow e = 0$$
 and  $f = 0$ 

Therefore x = 001100

### A. 1

#### 3. Recursive Functions

$$f(4, -1, 2) = f(4 - 2, -1 + 1, [-1/4]) + 2$$
  
=  $f(2, 0, -1) + 2 = 1 + 2 = 3$ 

$$f(2, 0, -1) = f(2 - 2, 0 + 1, [0/2]) + (-1)$$

$$= f(0, 1, 0) -1 = 2 - 1 = 1$$

$$f(0, 1, 0) = f(3, 1 + 1, 0 - 1) + 1 * 0$$
  
=  $f(3, 2, -1) + 0 = 2 + 0 = 2$ 

$$f(3, 2, -1) = f(3 - 2, 2 + 1, [2/3]) + (-1)$$
  
=  $f(1, 3, 0) - 1 = 3 - 1 = 2$ 

$$f(1, 3, 0) = f(1 + 1, 3 - 2, 3 - 1) - 1 * 3$$
  
=  $f(2, 1, 2) - 3 = 6 - 3 = 3$ 

$$f(2, 1, 2) = f(2 - 2, 1 + 1, [\frac{1}{2}]) + 2$$

$$= f(0, 2, 0) + 2 = 4 + 2 = 6$$

$$f(0, 2, 0) = f(3, 2 + 1, 0 - 2) - 0 * 2$$
  
=  $f(3, 3, -2) - 0 = 4 - 0 = 4$ 

$$f(3, 3, -2) = 3 + 3 + (-2) = 4$$

C. 3

### 4. Prefix-Infix-Postfix

A. -8

### 5. Digital Electronics

The digital circuits translates to:

$$\overline{\left(A(\left(AB\right)\oplus\left(B+C\right)\right)\right)}\,\oplus\,\overline{\left(\left(\left(B+C\right)\overline{\left(C+D\right)}\right)+\overline{D}\right)}$$

The LHS of  $\oplus$  simplifies to:  $\overline{A} + AB + \overline{B}\overline{C}$ 

The RHS of ⊕ simplifies to: *D* 

To be TRUE the sides of ⊕ must be opposites.

If 
$$D = 1$$
, then  $\overline{A} + AB + \overline{BC} = 0$ .  
 $\rightarrow \overline{A} = 0 \land AB = 0 \land \overline{BC} = 0$   
 $\rightarrow A = 1, B = 0, C = 1$  (1, 0, 1, 1)

If 
$$D = 0$$
, then  $\overline{A} + AB + \overline{B}\overline{C} = 1$ .

If 
$$A = 0$$
, then  $1 + 0B + \overline{BC} = 1 \rightarrow B = * \land C = *$ .  

$$(0, *, *, 0)$$

If 
$$A = 1$$
, then  $0 + B + \overline{BC} = 1$ .

If 
$$B = 1$$
, then  $C = *$ .  $(1, 1, *, 0)$ 

If 
$$B = 0$$
, then  $C = 0$ .  $(1, 0, 0, 0)$ 

Therefore there are 8 ordered quadruples that make it TRUE

A. 8

## 6. Computer Number Systems

 $2000_{10} = 3720_8$  and  $2199_{10} = 4227_8$ 

41 appears once from  $3720_8$  to  $3777_8$ :  $3741_8$ 

41 appears once from  $4000_8$  to  $4077_8$ :  $4041_8$ 

41 appears at the beginning of each from  $4100_8$  to  $4177_8$  which adds 64 and  $4141_8$  adds one more.

The total is 67.

C. 67

## 7. What Does This Program Do?

This program counts the number of deficient, perfect, and abundant numbers that are inputted. There were 3 deficient numbers (2, 21, 59), 2 perfect numbers (6, 28), and 5 abundant numbers (80, 36, 12, 100, 24)

D. 325

### 8. Data Structures

The min-heap for ICECREAMSUNDAE is:



C. I, N, C, E

# 9. Graph Theory

The round trips from A with just ACSL Air are: ADA, ABA, ABCDA, ABDA, ACDA, ACBA, and ACBDA. After merging with CompSci Air 5 new round trips were added: ABGFCDA, ACGFBA, ACFBA, ACFBDA, and ACGFBDA.

B. 5

| 10. LISP                                                                                                                            |               |
|-------------------------------------------------------------------------------------------------------------------------------------|---------------|
| (CDADR (REVERSE (CDADDR '(a (b e) (a (b (c d))                                                                                      | D. ((c d))    |
| <pre>11. FSAs and Regular Expressions</pre>                                                                                         | D. b, c, d, f |
| 12. Assembly Language  This program counts the number of even factors of the numbers from 1 to 10, inclusive. There are 10 of them. | A. 10         |