Лекция 7

Ilya Yaroshevskiy

29 марта 2021 г.

Содержание

1	Принцип Кавальери	1
2	Поверхностные интегралы 2.1 Поверхностные интегралы I рода	2 2
1	Принцип Кавальери	
	1. C_x — имзмерима при почти всех x	
	2. $x \mapsto \nu C_x$ — измерима*	
	3. $mC = \int_X \mathcal{X}_x d\mu$	
C.	f лед cm в $ue\ 1.0.1.\ f:[a,b] o\mathbb{R}$ — непрерывная	
To	огда $\int\limits_a^o f(x)dx = \int\limits_{[a,b]} fd\lambda_1$	
Д	Гоказательство. $f>0$ П $\Gamma(f[a,b])$ — измеримое множество в \mathbb{R}^2 . $C_x=[0,f(x)]$ $\lambda_1(C_x)=f(x)$	
	$\int_{a}^{b} f(x) dx = \lambda_{2}(\Pi\Gamma) = \int_{[a,b]} f d\lambda_{1}$	

Примечание. λ_2 можно продолжить на множество $2^{\mathbb{R}^2}$ с сохранением свойства конечной аддитивности и это продолжение не единственно

 $\Pi pumeчание.\ \lambda_m, m>2$ — аналогичным образом продолжить невозможно. Парадокс Хаусдорфа-Банаха-Тарского

 $\mathit{\Pi}\mathit{pume}$ чание. Для замечания 1 и замечания 2 требуется инвариантность меры относительно движения \mathbb{R}^m

Определение.

- \bullet $C \subset X \times Y$
- $f: X \times T \rightarrow$
- $\forall x \in X \ f_x$ это функция(сечение) $f_x(y) = f(x,y)$, можно считать что она задана на C_x
- f^y аналогичное сечение

Теорема 1.1.

- (X,\mathfrak{A},μ)
- (Y, \mathfrak{B}, ν)
- $\mu, \nu \sigma$ -конечныемера, полные
- $m = \mu x \nu$

ullet $f:X imes Y o \overline{R},f\geq 0$ — измерима относительно $A\otimes B$

Тогда

1. при почти всех x f_x — измеримая на Y f^y — измерима на X почти везде

2.
$$x\mapsto \varphi(x)=\int\limits_Y f_xd\nu=\int\limits_Y f(x,y)=d\nu(y)$$
 — измеримая* на X $y\mapsto \psi(y)=\int\limits_X f^yd\mu$ — измеримая* на Y

3.
$$\int_{X \times Y} df m = \int_{X} \varphi d\mu = \int_{X} \left(\int_{Y} f(x, y) d\nu(y) \right) d\mu(x)$$
$$= \int_{Y} \psi d\nu = \int_{Y} \left(\int_{X} f(x, y) d\mu(x) \right) d\nu(y)$$

Доказательство. Доделать

 $C \subset X \times Y$ $P_1(C)$ — измеримо.

Тогда

$$\int_{C} f dm = \int_{f_{1}(C)} \left(\int_{C_{x}} f(x, y) d\nu(y) \right) d\mu(x)$$

Теорема 1.2 (Фубини).

- (X,\mathfrak{A},μ)
- Y, B, ν
- $\nu, mu \sigma$ -конечные
- $m = \nu \times \mu$
- f суммируема на $X \times Y$ относительно m

Тогда

1. f_x — суммируема на Y при почти всех x

2.
$$x \mapsto \varphi(x) = \int_Y fx \, d\nu = \int_Y f(x,y) \, d\nu(y)$$
 — суммируема на Y

3.
$$\int_{X \times Y} f \, dm = \int_{X} \varphi \, d\mu = \int_{X} \left(\int_{Y} f(x, y) d\nu(y) \right) d\mu(x)$$

Доказательство. Без доказательства

Доделать

2 Поверхностные интегралы

2.1 Поверхностные интегралы I рода

Определение. $M \subset \mathbb{R}^3$ — простое двумерное гладкое многообразие. $\varphi: G \subset \mathbb{R}^2 \to \mathbb{R}^3$ — параметризация. $E \subset M$ — измеримо по Лебегу, если $\varphi^{-1}(E)$ измеримо в \mathbb{R}^2 по Лебегу

Обозначение. $\mathfrak{A}_M=\{E\subset M|E-$ измеримо $\}=\{\varphi(A)|A\in\mathfrak{M}^2,\ A\subset G\}$

Определение. Мера на \mathfrak{A}_M

$$S(E) := \iint_{\varphi^{-1}(E)} |\varphi'_u \times \varphi'_v| \, du dv$$

T.e. это взвешенный образ меры Лебега при отображении φ

 Π римечание. $\mathfrak{A}_M - \sigma$ -алгебра, S — мера

 $\Pi pumeчaнue. \ E \subset M$ — компактное $\Rightarrow \varphi^{-1}(E)$ — компактное \Rightarrow измеримое \Rightarrow замкнутые множества измеримы \Rightarrow (относительно) открытые множества измеримы

Примечание. \mathfrak{A}_M не зависит от φ по теореме о двух параметризациях Примечание. S не зависит от φ

$$\begin{split} |\overline{\varphi_s'} \times \overline{\varphi_v'}| &= |(\overline{\varphi_s'} \cdot u_s' + \overline{\varphi_v'} \cdot v_s') \times (\overline{\varphi_u} \cdot u_t' + \overline{\varphi_v'} \cdot v_t')| = \\ &= |\overline{(\varphi_u' \times \varphi_v')} \cdot (u_s' \cdot v_t' - v_s' \cdot u_t')| = \boxed{\textbf{Доделать}} \end{split}$$

Примечание.

ullet $f:\mathfrak{M}
ightarrow\overline{R}$ — измеримая

M(f < a) — измеримая $\Leftrightarrow N(f \circ \varphi < a)$ — измерима относительно \mathfrak{M}^2 f — измерима относительно $\mathfrak{A}_M \Leftrightarrow f \circ \varphi$ — измерима относительно \mathfrak{M}^2

Определение (поверхностный интеграл І рода).

- ullet M простое гладкое двумерное иногообразие в \mathbb{R}^3
- $\bullet \ \varphi$ параметризация
- $f: M \to \overline{R}$ суммируема по мере S

To

$$\iint\limits_{M} f \, ds = \iint\limits_{M} f(x, y, z) \, ds$$

называется интегралом I рода от f по многообразию M

Примечание. По теореме об интегрировании по взвешенному образу меры

$$\iint_{M} f \, ds = \iint_{G} f(\varphi(u, v)) |\varphi'_{v} \times \varphi'_{v}| \, du dv$$

$$\varphi'_{u} \times \varphi'_{v} = \begin{pmatrix} i & x'_{u} & x'_{v} \\ j & y'_{u} & y'_{v} \\ k & z'_{u} & z'_{v} \end{pmatrix}$$

$$|\varphi'_{u} \times \varphi'_{v}| = |\varphi'_{u}| \cdot |\varphi'_{v}| \alpha = \sqrt{|\varphi'_{u}|^{2} \cdot |varphi'_{v}|^{2} \cdot (1 - \cos^{2} \alpha)} = \sqrt{EG - F^{2}}$$

$$E = |\varphi'_{u}| = x'_{u}^{2} + y'_{u}^{2} + z'_{u}^{2}$$

$$F = \langle \varphi'_{v}, \varphi'_{v} \rangle = x'_{u}x'_{v} + y'_{u}y'_{v} + z'_{u}z'_{v} \quad F = |\varphi'_{v}|^{2}$$