

QUAID-E-AWAM UNIVERSITY OF ENGINEERING, SCIENCE & TECHNOLOGY, NAWABSHAH

FINAL SEMESTER REGULAR EXAMINATION OF FIRST SEMESTER - SECOND YEAR 2022 OF 20 BATCH, B.E. (ES)

SUBJECT: DIGITAL LOGIC DESIGN

Dated: 30.05.2022

Maximum Marks: 60

Time Allemed, 3 Hour

NOTE: ATTEMPT ALL QUESTIONS. ALL QUESTIONS CARRY EQUAL MARKS.

Q. No		QUESTIONS	CLO	Taxonomy Level	PLO	Marks
01	(a)	Implement the logic circuit for the following expression 1. $x = [D + (\overline{A} + B)C] \cdot E$ 2. $y = AC + BC + \overline{ABC}$		ري	P1.O_2	06
	(b)	Simplify the following logic expressions using Boolean algebra/theorems. Also, Implement the simplified expressions using fundamental gates. 1. $z = (\overline{A} + C) + (\overline{B} + \overline{D})$ 2. $\omega = (\overline{A} + BC) \cdot (\overline{D} + EF)$		c_s	P1.O_2	06
92		Describe the NAND and NOR gates in detail. Also, explain why these gates are called universal gates. Draw all fundamental gates using NAND/NOR gates and also prove them using the expressions.	C1.O_1	C_2	P1.O_1	12
0.3		Refer to the above Figure, where an analogue-to-digital converter is monitoring the de voltage of a 12-V storage battery on an orbiting spaceship. The converter's output is a four-bit binary number, ABCD, corresponding to the battery voltage in steps of 1 V, with A as the MSB. The converter's binary outputs are fed to a logic circuit that is to produce a HIGH output as long as the binary value is greater than and equal to 01102 =610; that is, the battery voltage is greater than and equal to 6 V. Design this logic circuit. Use K-map for simplifying the	C1.O_2	c_s	PLO_2	12
04	(a)	the operation of 4-to-1 Multiplexer and 1-to-4 De- multiplexer with its logic diagrams, logic circuits, and truth table.	CLO_3	C_4	PI.O_4	06
05	(b)		CLO_3	C_4	PLO_4 PLO_4	06
"	7	truth table. Describe the concept of setup and hold times using a proper timing diagram.				
	(40)	What are a counter and its types? Design and analyze the operation of 3-bit asynchronous counter in detail.	ClO_3	C_4	PLO_4	06

QUAID-E-AWAM UNIVERSITY OF ENGINEERING, SCIENCE & TECHNOLOGY, NAWABSHAH

FINAL SEMESTER REGULAR EXAMINATION OF FIRST SEMESTER - SECOND YEAR 2022 OF 20-BATCH, B.E (ES) SUBJECT: DIFFERENTIAL EQUATIONS & FOURIER SERIES

Dated: 26.05,2022 Maximum Marks: 60 Time Allowed: 3 Hours.

NOTE: ATTEMPT ALL QUESTIONS. ALL QUESTIONS CARRY EQUAL MARKS.

Q. No.		QUESTION	CLOs	Ma
Q. 01	(a)	 Define PDE and give at least two examples of your choice. Mention the names of methods used for forming PDEs. 	C2	0
	Ð	Use Method of Separation of Variables to solve the PDE $\frac{\partial^2 V}{\partial x^2} = \frac{\partial V}{\partial t}$	C2	4
₫. 02	(a)	Find the Fourier series for the Periodic function $f(x) = \begin{cases} 0, & -\pi < x < 0 \\ x, & 0 < x < \pi \end{cases}$ $f(x + 2\pi) = f(x)$	C2	ľ
	(ь)	Define Even and Odd functions with Examples. Explain definite integral property of Even and Odd functions in your own words.	C2	0
Q. 0:	3 (2)	Find the Fourier Transform of 1. $f(x) = \begin{cases} 1 & for x < a \\ 0 & for x > a \end{cases}$	CJ	0.
	7	State the Convolution theorem on Fourier transform	СЗ	04
Q. 0	4	If $F_1(s)$ and $F_2(s)$ are Fourier transforms of $f_1(x)$ and $f_2(x)$ respectively, then prove the following (i) $F[af_1(x) + bf_2(x)] = aF_1(s) + bF_2(s)$ (ii) $F\{f_1(x-a)\} = e^{tsa}F_1(s)$	CJ	12
Q. 05	3	Discuss and write some applications of differential equations in i. RLC Circuits ii. Electrical\ Mechanical Vibrations	CJ	1.

QUAID-E-AWAM UNIVERSITY OF ENGINEERING, SCIENCE & TECHNOLOGY, NAWABSHAH FINAL SEMESTER REQULAR EXAMPLATION OF PRST SEMESTER - SECOND YEAR 2022 OF 20 BATCH, BE (ES)

SUBJECT: INSTRUMENTATION & MEASUREMENTS

NOTE: ATTEMPT ALL QUESTIONS. ALL QUESTIONS CARRY EQUAL MARKS.

Q. No	QUESTIONS	cro	Taxon. Level	PLO	Mark
Q.01 (a)	Explain the construction and working principle of a strain gauge as a force sensor.	2	C_2	02	[06]
(b)	Define the following phenomenon i. See back effect ii. Photoelectric effect iii. Stress and strain	1	C_1	01	[06]
Q.02 (a)	Demonstrate how RTD sensors work and how temperature is measured using RTD sensors in any application and sketch the output characteristics of the RTD transducer.	3	C_ 3	04	(08)
(b)	A platinum RTD with α =0.00392 Ω / Ω /C° has a normal resistance of 100 Ω at 0C°. (a) Compute the resistance at 450 C°. (b) Calculate, at what temp the resistance of the RTD is 170 Ω .	3	C.3	04	[04]
Q.03	Explain the working principle of the thermocouple transducer. Also compare the performance with other temperature transducers on the basis of temperature range, cost, and characteristics.	2	C_2	02	[12]
Q.04 (a)	A capacitive transducer used two quartz diaphragm of an area of 750mm separated by a distance of 7mm. A pressure of 900 KN/m² was applied to the top of the diaphragm producing a deflection of 1.2mm. The capacitor is 446 pF when pressure is applied. Calculate the value of capacitance when no pressure was applied.	3	C 3	04	[06]
(b)	A resistance strain gauge with a Gauge Factor of 5 is cemented to a steal chamber which is subjected to $1x10^4$ strain. If the original resistance value of the gauge is $120~\Omega$ then, calculate the impact of strain on resistance.	3	C.3	04	[06]
Q.05 (a)	Discuss how capacitive sensors work and which parameters of the capacitor can be used for the	2	C_ 2	02	[06]
(b)	purpose of sensing. Explain the working principle of Hall effect sensors.	2	C_ 2	02	[06]

QUAID-E-AWAM UNIVERSITY OF ENGINEERING, SCIENCE & TECHNOLOGY, NAWABSHAH FINAL SEMESTER REGULAR EXAMINATION OF FIRST SEMESTER - SECOND YEAR 2022 OF 20-BATCH, B.E (ES)

SUBJECT: PAKISTAN STUDIES

Dated: 02,06,2022

Maximum Marks; 30 Time Allowed; 02 Hours

NOTE: ATTEMPT ALL QUESTIONS. ALL QUESTIONS CARRY EQUAL MARKS.

Q. No.	QUESTION	CLOs	Taxonomy Level	PLOs	Marks
Q. 01	Discuss the problems faced by Pakistan at the time of its creation.	1	C1	6	10
Q. 02	Constitution is the supreme law of land. Discuss the salient features of Constitution of 1973.	2	C2	12	10
Q. 03	Discuss the causes hampered the Indo-Pak relations.	2	C2	12	10

The End

QUAID-E-AWAM UNIVERSITY OF ENGINEERING, SCIENCE & TECHNOLOGY, NAWABSHAH MID-SEMESTER EXAMINATION OF FIRST SEMESTER - SECOND YEAR () SEMESTER) 2022, 20 BATCH, B.E (ESCH) SUBJECT: DIFFERENTIAL EQUATIONS & FOURIER SERIES

Dated: 15.02,2022 Maximum Marks: 20 Time Allowed: 01 Hour.

NOTE: ATTEMPT ANY TWO (02) QUESTIONS. ALL QUESTIONS CARRY EQUAL MARKS.

Q. No		CLO	Taxonomy Level	Marks
01(a)	Differentiate between Initial and Boundary conditions; is it $\frac{d^2y}{dx^2} + y = 0$, $y(0) = 1$, $y(\frac{\pi}{2}) = -1$ initial condition value problem?	1	Ci	06
01(Ь)	Form the differential equation from the given relation $y = (x^3 + k)e^{-1x}$	5	C5	04
02(a)	Find the general solution of the following: $1 \frac{dy}{dx} = 1 + x + y^2 + xy^3 \text{if } \frac{dy}{dx} = \frac{x^3 + y^3}{x^3 y + xy^3}$	4	C4	06
02(b)	Define Exact and Non-exact differential equations; hence check whether it is Exact or Non-exact. $(3x^2y+2)dx+(x+y)dy=0$	1	Cı	04
03	A cup of a coffee was initially boiling at 80°C, it was placed in air at 40°C. after 20 minutes the temperature was 60°C, what will be the temperature of coffee after 40 minutes?	3	СЗ	10

---Good Luck---

QUAID-E-AWAM UNIVERSITY OF ENGINEERING, SCIENCE & TECHNOLOGY, NAWABSHAM

ID-SEMESTER EXAMINATION OF FIRST SELESTER - SECOND YEAR OF SEMESTER) 2022, 20 PATOL BLE (ES)

SUBJECT: INSTRUMENTATION & MEASUREMENTS

Maximum Marks: 20 Time Allowed: 91 Hour. ated: 14.02.2022

OTE: ATTEMPT ANY TWO (02) QUESTIONS. ALL QUESTIONS CARRY EQUAL MARKS.

Q.No	QUESTIONS	cro	Taxonomy Level	PLO	Marks
01 (a)	Define the following types of instruments:	01	C. 1	01	[05]
	(i) Absolute and Secondary Instrument				
	(ii) Indicating and recording instrument				
(d) fo.	Define the following terms.	01	C, 1	01	[05]
	i) Accuracy & Precision				
	ii) Reproducibility				
	III) Drift				
	(v) Dead zone				
	v) Signal to Noise Ratio				
Q.02(a)	Discuss the elements of generalized Measurement	02	C,2	02	[06]
	system with the help of block diagram.				
Q.02(b)	An amplifier whose Bandwidth is 150 KHz has some	02	C.2	02	[04]
	noise power spectrum density 6x10-21 J.				
	If the Input resistance is 50 K Ω and Amplifier gain is 100.				
	Calculate noise input voltage.				
Q.03(a)	Explain the working principle of PMMC Instruments.	02	C_2	02	[06]
2.03(b)	An amplifier has a signal voltage level of SµV at the input	02	C,2	02	[04]
	and noise voltage level of 1µV.				
	(I) Calculate the SNR at the input.				
	(ii) If the voltage gain of an amplifier is 10, calculate				
	the SNR at the output.				

Bon Courage