Math Statistics Semiweekly HW 2

Ozaner Hansha

September 9, 2020

*note that we characterize gamma distributions in terms of their shape α and their rate β .

Question 1

Suppose X_1 and X_2 are i.i.d, with support $(0, \infty)$ and the following pdf:

$$f(x) = 3e^{-3x}$$

Part a: Are X_1 and X_2 gamma RVs?

Solution: Yes. To see this, note that all exponential RVs are gamma RVs:

$$\frac{\beta^{\alpha}}{\Gamma(\alpha)}x^{\alpha-1}e^{-\beta x} \qquad \qquad \text{(pdf of gamma RV)}$$

$$= \frac{\lambda^{1}}{\Gamma(1)}x^{1-1}e^{-\lambda x} \qquad \qquad \text{(let } \alpha = 1 \text{ and } \beta = \lambda)$$

$$= \lambda e^{-\lambda x} \qquad \qquad \text{(pdf of exponential RV)}$$

Since X_1 and X_2 are clearly exponential RVs with parameter $\lambda = 3$, they must also be gamma RVs with parameters $\alpha = 1$ and $\beta = 3$.

Part b: Find the pdf of $X_1 + X_2$.

Solution: Since they are gamma RVs, we must have $X_1 \sim \text{Gamma}(a_1, \beta)$ and $X_2 \sim \text{Gamma}(a_2, \beta)$, for some a_1, a_2 . Now consider the mgf of their sum $X_1 + X_2$:

$$\begin{split} \mathcal{M}_{X_1+X_2}(t) &= E[e^{t(X_1+X_2)}] & \text{(def. of mgf)} \\ &= E[e^{tX_1}e^{tX_2}] & \text{(power rule)} \\ &= E[e^{tX_1}]E[e^{tX_2}] & \text{(independence of } X_1 \text{ and } X_2) \\ &= \left(\frac{\beta}{\beta-t}\right)^{a_1}\left(\frac{\beta}{\beta-t}\right)^{a_2} & \text{(mgf of a gamma RV)} \\ &= \left(\frac{\beta}{\beta-t}\right)^{a_1+a_2} & \text{(power rule)} \end{split}$$

As we can see, the mgf of $X_1 + X_2$ is that of a gamma RV. In particular, we know that $\alpha_1 + \alpha_2 = 2$ and that $\beta = 3$. And so we have that $X_1 + X_2 \sim \text{Gamma}(2,3)$. The corresponding pdf for such a RV is given by:

$$f_{X_1+X_2}(x) = \frac{3^2}{\Gamma(2)} x^{2-1} e^{-3x}$$
 (pdf of gamma RV)
$$= 9xe^{-3x}$$