- (i) APPLICANT: Black Jr., Charles A.
- (ii) TITLE OF INVENTION: COMPOSITIONS AND METHODS FOR ACTIVATING GENE'S OF INTEREST
- (iii) NUMBER OF SEQUENCES: 16
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: W. Murray Spruill
 - (B) STREET: 3605 Glenwood Ave. Suite 310
 - (C) CITY: Raleigh
 - (D) STATE: NC
 - (E) COUNTRY: US
 - (F) ZIP: 27622
 - (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE Floppy disk
 - (B) COMPUTER: IRM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE:
 - (C) CLASSIFICATION:
- (viii) ATTORNEY/AGENT INFORMATION:
 (A) NAME: Spruill, W. Murray

 - (B) REGISTRATION NUMBER 32,943
 - (C) REFERENCE/DOCKET NUMBER: 5722-2
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: 919/420 2202
 - (B) TELEFAX: 919 881 3175
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 4279 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: other nucleic acid
 - (A) DESCRIPTION: /desc = "Recombinant molecule (Multiple Cloning Site/Kozack sequence/LacZ gene)"
 - (ix) FEATURE:
 - (A) NAME/KEY: misc feature
 - (B) LOCATION: 1..64
 - (D) OTHER INFORMATION: /product= "Multiple Cloning Site"
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature

|'| 11

- (B) LOCATION: 65..79
- (D) OTHER INFORMATION: /function= "Consensus sequence of translation initiation" /product= "Kozack sequence"

(ix) FEATURE:

- (A) NAME/KEY: prim_transcript
- (B) LOCATION: 80..4279
- (D) OTHER INFORMATION: /gene= "LacZ" /standard_name= | "Beta galactosidase"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

	1					
TTAATACGAC	TCACTATAGG	CTAGCCTCGA	GAATTCACGC	GTGGTACCTC	TAGAGTCGAC	60
CCGGGCCGCC	GCCACCATGG	CGCAGCACCA	TGGCCTGAAA	TAACCTCTGA	AAGAGGAACT	120
TGGTTAGGTA	CCTTCTGAGG	CGGAAAGAAC	CAGCTGTGGA	ATGTGTGTCA	GTTAGGGTGT	180
GGAAAGTCCC	CAGGCTCCCC	AGCAGGCAGA	AGTATGCAAA	GCATGCATCT	CAATTAGTCA	240
GCAACCAGGT	GTGGAAAGTC	COCAGGCTCC	CCAGCAGGCA	GAAGTATGCA	AAGCATGCAT	300
CTCAATTAGT	CAGCAACCAT	AGTCCCGCCC	CTAACTCCGC	CCATCCCGCC	CCTAACTCCG	360
CCCAGTTCCG	CCCATTCTCC	GCCCCATGGC	TGACTAATTT	TTTTTATTTA	TGCAGAGGCC	420
GAGGCCGCCT	CGGCCTCTGA	GCTATTCCAG	AAGTAGTGAG	GAGGCTTTTT	TGGAGGCCTA	480
GGCTTTTGCA	AAAAGCTTGG	GATCTCTATA	ATCTCGCGCA	ACCTATTTTC	CCCTCGAACA	540
CTTTTTAAGC	CGTAGATAAA	CAGGCTGGGA	CACTTCACAT	GAGCGAAAAA	TACATCGTCA	600
CCTGGGACAT	GTTGCAGATC	CATGCACGTA	AACTCGCAAG	CCGACTGATG	CCTTCTGAAC	660
AATGGAAAGG	CATTATTGCC	GTAAGCCGTG	GCGGTCTGGT	ACCGGTGGGT	GAAGACCAGA	720
AACAGCACCT	CGAACTGAGC	CGCGATATT	CCCAGCGTTT	CAACGCGCTG	TATGGCGAGA	780
TCGATCCCGT	CGTTTTACAA	CGTCGTGACT	GGAAAACCC	TGGCGTTACC	CAACTTAATC	840
GCCTTGCAGC	ACATCCCCCT	TTCGCCAGCT	GCGTAATAG	CGAAGAGGCC	CGCACCGATC	900
GCCCTTCCCA	ACAGTTGCGC	AGCCTGAATG	GCGAATGGCG	CTTTGCCTGG	TTTCCGGCAC	960
CAGAAGCGGT	GCCGGAAAGC	TGGCTGGAGT	GCGATCTTCC	TGAGGCCGAT	ACTGTCGTCG	1020
TCCCCTCAAA	CTGGCAGATG	CACGGTTACG	ATGGCCCAT	CTACACCAAC	GTAACCTATC	1080
CCATTACGGT	CAATCCGCCG	TTTGTTCCCA	CGGAGAATCC	GACGGGTTGT	TACTCGCTCA	1140
CATTTAATGT	TGATGAAAGC	TGGCTACAGG	AAGGCAGAC	GCGAATTATT	TTTGATGGCG	1200
TTAACTCGGC	GTTTCATCTG	TGGTGCAACG	GGCGCFGGGT	CGGTTACGGC	CAGGACAGTC	1260
GTTTGCCGTC	TGAATTTGAC	CTGAGCGCAT	TTTTAGGCGC	CGGAGAAAAC	CGCCTCGCGG	1320
TGATGGTGCT	GCGTTGGAGT	GACGGCAGTT	ATCTGGAAGA	TCAGGATATG	TGGCGGATGA	1380
GCGGCATTT	CCGTGACGTC	TCGTTGCTGC	ATAAACGAC	TACACAAATC	AGCGATTTCC	1440
			7			

	\					
ATGTTGCCAC	TCGCTTTAAT	GATGATTTCA	GCCGCGCTGT	ACTGGAGGCT	GAAGTTCAGA	1500
TGTGCGGCGA	GTTGCGTGAC	TACCTACGGG	TAACAGTTTC	TTTATGGCAG	GGTGAAACGC	1560
AGGTCGCCAG	CGGCACCGC	CCTTTCGGCG	GTGAAATTAT	CGATGAGCGT	GGTGGTTATG	1620
CCGATCGCGT	CACACTACGT	CTGAACGTCG	AAAACCCGAA	ACTGTGGAGC	GCCGAAATCC	1680
CGAATCTCTA	TCGTGCGGTG	GTTGAACTGC	ACACCGCCGA	CGGCACGCTG	ATTGAAGCAG	1740
AAGCCTGCGA	TGTCGGTTTC	CGCGAGGTGC	GGATTGAAAA	TGGTCTGCTG	CTGCTGAACG	1800
GCAAGCCGTT	GCTGATTCGA	GGCGTTAACC	GTCACGAGCA	TCATCCTCTG	CATGGTCAGG	1860
TCATGGATGA	GCAGACGATG	GTGCAGGATA	TCCTGCTGAT	GAAGCAGAAC	AACTTTAACG	1920
CCGTGCGCTG	TTCGCATTAT	CCGAACCATC	CGCTGTGGTA	CACGCTGTGC	GACCGCTACG	1980
GCCTGTATGT	GGTGGATGAA	GCCAATATTG	AAACCCACGG	CATGGTGCCA	ATGAATCGTC	2040
TGACCGATGA	TCCGCGCTGG	CTACCGGCGA	TGAGCGAACG	CGTAACGCGA	ATGGTGCAGC	2100
GCGATCGTAA	TCACCCGAGT	GTGATCATCT	GGTCGCTGGG	GAATGAATCA	GGCCACGGCG	2160
CTAATCACGA	CGCGCTGTAT	CGCTGGATCA	ATCTGTCGA	TCCTTCCCGC	CCGGTGCAGT	2220
ATGAAGGCGG	CGGAGCCGAC	ACCACGGCCA	CCGATATTAT	TTGCCCGATG	TACGCGCGCG	2280
TGGATGAAGA	CCAGCCCTTC	CCGGCTGTGC	CGAAATGGTC	CATCAAAAAA	TGGCTTTCGC	2340
TACCTGGAGA	GACGCGCCCG	CTGATCCTTT	GCGAATAGGC	CCACGCGATG	GGTAACAGTC	2400
TTGGCGGTTT	CGCTAAATAC	TGGCAGGCGT	TTCGTCAGTA	TCCCCGTTTA	CAGGGCGGCT	2460
TCGTCTGGGA	CTGGGTGGAT	CAGTCGCTGA	TTAAATATGA	TGAAAACGGC	AACCCGTGGT	2520
CGGCTTACGG	CGGTGATTTT	GGCGATACGC	CEAACGATCG	CCAGTTCTGT	ATGAACGGTC	2580
TGGTCTTTGC	CGACCGCACG	CCGCATCCAG	CGCTGACGGA	AGCAAAACAC	CAGCAGCAGT	2640
TTTTCCAGTT	CCGTTTATCC	GGGCAAACCA	TCGAAGTGAC	CAGCGAATAC	CTGTTCCGTC	2700
ATAGCGATAA	CGAGCTCCTG	CACTGGATGG	TGGCGCTGGA	TGGTAAGCCG	CTGGCAAGCG	2760
GTGAAGTGCC	TCTGGATGTC	GCTCCACAAG	GTAAACAGTT	GATTGAACTG	CCTGAACTAC	2820
CGCAGCCGGA	GAGCGCCGGG	CAACTCTGGC	TCACAGTACG	dGTAGTGCAA	CCGAACGCGA	2880
CCGCATGGTC	AGAAGCCGGG	CACATCAGCG	CCTGGCAGCA	GTGGCGTCTG	GCGGAAAACC	2940
TCAGTGTGAC	GCTCCCCGCC	GCGTCCCACG	CCATCCCGCA	TCTGACCACC	AGCGAAATGG	3000
ATTTTTGCAT	CGAGCTGGGT	AATAAGCGTT	GGCAATTTAA	CCCCAGTCA	GGCTTTCTTT	3060
CACAGATGTG	GATTGGCGAT	AAAAAACAAC	TGCTGACGCC	GCTCGCGAT	CAGTTCACCC	3120
GTGCACCGCT	GGATAACGAC	ATTGGCGTAA	GTGAAGCGAC	CCGCATTGAC	CCTAACGCCT	3180
GGGTCGAACG	CTGGAAGGCG	GCGGGCCATT	ACCAGGCCGA	AGCAGCGTTG	TTGCAGTGCA	3240

20

	,					
CGGCAGATAC	ACTTGCTGAT	GCGGTGCTGA	TTACGACCGC	TCACGCGTGG	CAGCATCAGG	3300
GGAAAACCTT	ATTTATCAG	CGGAAAACCT	ACCGGATTGA	TGGTAGTGGT	CAAATGGCGA	3360
TTACCGTTGA	TGTTGAAGTG	GCGAGCGATA	CACCGCATCC	GGCGCGGATT	GGCCTGAACT	3420
GCCAGCTGGC	GCAGGTAGCA	GAGCGGGTAA	ACTGGCTCGG	ATTAGGGCCG	CAAGAAAACT	3480
ATCCCGACCG	CCTTACTGCC	dCCTGTTTTG	ACCGCTGGGA	TCTGCCATTG	TCAGACATGT	3540
ATACCCCGTA	CGTCTTCCCG	AGCGAAAACG	GTCTGCGCTG	CGGGACGCGC	GAATTGAATT	3600
ATGGCCCACA	CCAGTGGCGC	GGCGACTTCC	AGTTCAACAT	CAGCCGCTAC	AGTCAACAGC	3660
AACTGATGGA	AACCAGCCAT	CGCATCTGC	TGCACGCGGA	AGAAGGCACA	TGGCTGAATA	3720
TCGACGGTTT	CCATATGGGG	ATTGGTGGCG	ACGACTCCTG	GAGCCCGTCA	GTATCGGCGG	3780
AATTCCAGCT	GAGCGCCGGT	CGCTACCATT	ACCAGTTGGT	CTGGTGTCAA	TAATAATAAA	3840
AACCGGGCAG	GCCATGTCTG	сссфтатттс	GCGTAAGGAA	ATCCATTATG	TACTATTTAA	3900
AAAACACAAA	CTTTTGGATG	TTCGGTTTAT	TCTTTTTCTT	TTACTTTTTT	ATCATGGGAG	3960
CCTACTTCCC	GTTTTTCCCG	ATTTCCTAC	ATGACATCAA	CCATATCAGC	AAAAGTGATA	4020
CGGGTATTAT	TTTTGCCGCT	ATTTGTCTGT	TCTCGCTATT	ATTCCAACCG	CTGTTTGGTC	4080
TGCTTTCTGA	CAAACTCGGA	ACTTGTTAT	TGCAGCTTAT	AATGGTTACA	AATAAAGCAA	4140
TAGCATCACA	AATTTCACAA	ATAAAGCATT	TTTTTCACTG	CATTCTAGTT	GTGGTTTGTC	4200
CAAACTCATC	AATGTATCTT	ATCATGTCT&	GATCCTCTAG	AGTCGACCTG	CAGGCATGCA	4260
AGCTGGCACT	GGCCGTCGT	' '	\			4279

- (2) INFORMATION FOR SEQ ID NO:2:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 20 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: other nucleic acid
 - (A) DESCRIPTION: /desc/= "Synthetic oligonucleotide"
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

GAATACAAAG CTTATGCATG

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 13 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "Synthetic oligonucleotide" (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3: 13 GAATACAAAG CTT (2) INFORMATION FOR SEQ ID NO:4: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE:\nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYRE: other nucleic acid (A) DESCRIPTION: /desc = "Synthetic oligonucleotide" (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4: 20 AAAGCTTATG CATGCGGCCG (2) INFORMATION FOR SEQ ID NO:5: (i) SEQUENCE CHARACTER STICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYRE: other nucleic acid (A) DESCRIPTION: \/desc = "Synthetic oligonucleotide" (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5: CGGCCGCATC TAGAGGGCCC 20 (2) INFORMATION FOR SEQ ID NO 6: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "Synthetic oligonucleotide"

1,17

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6: GCGGCCGCAT CTAGAGGGCC CGGAT 25 (2) INFORMATION FOR SEQ ID NO:7: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "Synthetic oligonucleotide" (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7: AATACAAAGC TTATGCATGC GGCC 24 (2) INFORMATION FOR \$EQ ID NO:8: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE \ other nucleic acid (A) DESCRIPTION: /desc = "Synthetic oligonucleotide" (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8: AATACAAAGC TTATGCATGC GGCCGCATCT 30 (2) INFORMATION FOR SEQ IN NO:9: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic \acid (C) STRANDEDNESS: \single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "Synthetic oligonucleotide" (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9: CATGCATAAG CTTTGTATTC 20 (2) INFORMATION FOR SEQ ID NO:10: (i) SEQUENCE CHARACTERISTICS:

ij

ii |.4

27 (A) LENGTH: 13 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "Synthetic oligonucleotide" (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10: AAGCTTTGTA TTC 13 (2) INFORMATION FOR SEQ ID NO:11: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH:\20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY linear (ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "Synthetic oligonucleotide" (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11: CGGCCGCATG CATAAGCTTT 20 (2) INFORMATION FOR SEQ ID NO:12: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH 20 base pairs (B) TYPE: nucleid acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "Synthetic oligonucleotide" (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12: GGGCCCTCTA GATGCGGCCG 20 (2) INFORMATION FOR SEQ ID NO:13: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear

(A) DESCRIPTION: /desc = \Synthetic oligonucleotide"

(ii) MOLECULE TYPE: other nucle/ic acid

1,5

};

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13: ATCCGGGCCC TCTAGATGCG GCCGC 25 (2) INFORMATION FOR SEQ ID NO:14: (i) SEQUENCE CHARACTERISTICS: (A) LENGTA: 24 base pairs (B) TYPE: qucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE:\ other nucleic acid (A) DESCRIPTION: /desc = "Synthetic oligonucleotide" (xi) SEQUENCE DESCRIPTION: SEQ ID NO:14: GGCCGCATGC ATAAGCTTTG TATT 24 (2) INFORMATION FOR SEQ ID No:15: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid' (C) STRANDEDNESS: \$ingle (D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nudledc acid (A) DESCRIPTION: /desc | "Synthetic oligonucleotide" (xi) SEQUENCE DESCRIPTION: SEQ ID NO:15: AGATGCGGCC GCATGCATAA GCTTTGTATT 30 (2) INFORMATION FOR SEQ ID NO:16: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1798 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: mRNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:16: GAAUACAAAG CUUAUGCAUG CGGCCGCAUC UAGAGGGCCC\GGAUCCAAAU GGAAGACGCC 60

	1					
AAAAACAUAA	AGAAAGGCCC	GGCGCCAUUC	UAUCCUCUAG	AGGAUGGAAC	CGCUGGAGAG	120
CAACUGCAUA	AGGCUAUGAA	GAGAUACGCC	CUGGUUCCUG	GAACAAUUGC	UUUUACAGAU	180
GCACAUAUCG	AGGUGAACAU	CACGUACGCG	GAAUACUUCG	AAAUGUCCGU	UCGGUUGGCA	240
GAAGCUAUGA	AACGAUAUGG	GCUGAAUACA	AAUCACAGAA	UCGUCGUAUG	CAGUGAAAAC	300
UCUCUUCAAU	ncnnnyngcc	GGUGUUGGGC	GCCGUUAUUU	AUCGGAGUUG	CAGUUGCGCC	360
CGCGAAGCAC	DUAAUAUUUA	AACGUGAAUU	GCUCAACAGU	AUGAACAUUU	CGCAGCCUAC	. 420
CGUAGUGUUU	GUUUCCAAAA	AGGGGUUGCA	AAAAAUUUUUG	AACGUGCAAA	AAAAAUUACC	480
AAUAAUCCAG	AUUAUUAAAA	UCAUGGAUUC	UAAAACGGAU	UACCAGGGAU	UUCAGUCGAU	540
GUACACGUUC	GUCACAUCUC	AUQUACCUCC	CGGUUUUAAU	GAAUACGAUU	UUGUACCAGA	600
GUCCUUUGAU	CGUGACAAAA	CAAUUGCACU	GAUAAUGAAU	UCCUCUGGAU	CUACUGGGUU	660
ACCUAAGGGU	GUGGCCCUUC	CGCAUAGAAC	UGCCUGCGUC	AGAUUCUCGC	AUGCCAGAGA	720
UCCUAUUUUU	GGCAAUCAAA	UCAUUCGGA	UACUGCGAUU	UUAAGUGUUG	UUCCAUUCCA	780
UCACGGUUUU	GGAAUGUUUA	CUACACUGG	AUAUUUGAUA	UGUGGAUUUC	GAGUCGUCUU	840
AAUGUAUAGA	UUUGAAGAAG	AGCUGUUUUH	ACGAUCCCUU	CAGGAUUACA	AAAUUCAAAG	900
UGCGUUGCUA	GUACCAACCC	UAUUUUCAUU	CUUCGCCAAA	AGCACUCUGA	UUGACAAAUA	960
CGAUUUAUCU	AAUUUACACG	AAAUUGCUUC	neeeegcecy	CCUCUUUCGA	AAGAAGUCGG	1020
GGAAGCGGUU	GCAAAACGCU	uccaucuucc	AGGGAUAGGA	CAAGGAUAUG	GGCUCACUGA	1080
GACUACAUCA	GCUAUUCUGA	UUACACCCGA	GGGGAUGAU	AAACCGGGCG	CGGUCGGUAA	1140
AGUUGUUCCA	UUUUUUGAAG	CGAAGGUUGU	GGAUQUGGAU	ACCGGGAAAA	CGCUGGGCGU	1200
UAAUCAGAGA	GGCGAAUUAU	GUGUCAGAGG	ACCUAUGAUU	Auguccgguu	AUGUAAACAA	1260
UCCGGAAGCG	ACCAACGCCU	UGAUUGACAA	GGAUGGAUGG	CUACAUUCUG	GAGACAUAGC	1320
UUACUGGGAC	GAAGACGAAC	ACUUCUUCAU	AGUUGACCGC	UUGAAGUCUU	AUAAAUUAAAUA	1380
CAAAGGAUAU	CAGGUGGCCC	CCGCUGAAUU	GGAAUCGAUA	UUGUUACAAC	ACCCCAACAU	1440
CUUCGACGCG	GGCGUGGCAG	GUCUUCCCGA	CGAUGACGCC	GGUGAACUUC	CCGCCGCCGU	1500
nennennnne	GAGCACGGAA	AGACGAUGAC	GGAAAAAGAG	AUCGUGGAUU	ACGUCGCCAG	1560
UCAAGUAACA	ACCGCGAAAA	AGUUGCGCGG	AGGAGUUGUG	UUUGUGGACG	AAGUACCGAA	1620
AGGUCUUACO	GGAAAACUCG	ACGCAAGAAA	AAUCAGAGAG	AUCTUCAUAA	AGGCCAAGAA	1680
GGGCGGAAAG	UCCAAAUUGU	AAAAUGUAAC	UGUAUUCAGO	GAUGACGAAA	UUCUUAGCUA	1740
UUGUAAUCCI	CCGAGGGGG	GAGCUCCCAA	AAAAAAAAA	MARAGARAS	ААААААА	1798

ALI MANAGEMENT OF THE PROPERTY OF THE PROPERTY