Department of Computer Engineering

Class: S.Y. B.Tech.

Semester: IV

Course Code: DJ19CEL405

Course Name: Computer Networks Lab

Name: Vinit Shah	SAP ID:60004220097
Date of Performance:21-08-24	Date of Submission:28-08-24

Experiment No: 3

Aim: Study and	Implement Erro	or Detection	and Correct	ion using (CRC and
Hamming Code					

Theory: 1)CRC Program: divisor=input("Enter the key:") d=[]divisor len=len(divisor) for i in divisor: d.append(i) dividend=input("Enter the data word to be sent:") dividend1=dividend di1=[] for i in dividend: dil.append(i) dividend+='000' di=[] dividend len=len(dividend) for i in dividend: di.append(i) count=0 string=[]

quotient=[]

Course Code: DJ19CEL405

```
for i in range(divisor len):
  string.append(di[count])
  count+=1
def xor(a,b):
  if a=b:
     return '0'
  else:
     return '1'
final=[]
def first(a):
  if a[0]='1':
     for i in range(len(a)):
        result=xor(a[i],d[i])
        final.append(result)
     quotient.append('1')
  else:
     for i in range(len(a)):
        final.append(string[i])
     quotient.append('0')
first(string)
for i in range(count, dividend len):
  string=[]
  for j in range(1,len(final)):
     string.append(final[j])
```

Course Code: DJ19CEL405

string.append(di[i])
final=[]
first(string)
remainder=[]
for i in range(len(di1)):
remainder.append(di1[i])
for i in range(1,len(final)):
remainder.append(final[i])
result=".join(remainder)
print("Code sent:"+result)
Screenshots:
>>> Enter the key:1101 Enter the data word to be sent:100100 Code sent:100100001
2)Hamming Code:
Program:
code=input("Enter the code to be transmitted:")
c=[]
for i in code:
c.append(i)
no_of_bits=len(code)
#print(no_of_bits)
def paritybits():
i=0

Course Code: DJ19CEL405

```
while i<no of bits:
     a=pow(2,i)
     #print(a)
     b=no of bits+i+1
     #print(b)
     if a>=b:
       break
     else:
       i+=1
  return i
no_of_paritybits=paritybits()
#print(no of paritybits)
h=[]
count=0
index=no_of_bits-1
for i in range(no of bits+no of paritybits):
  a=pow(2,count)
  if (i+1)==a:
     h.append(")
     count+=1
  else:
     h.append(c[index])
     if index>=0:
       index-=1
#print(h)
for i in range(no_of_bits+no_of_paritybits):
  #print(i)
```

Course Code: DJ19CEL405

```
i1=list(format(i+1,'b'))
#print(i1)
length=len(i1)-1
#print(length)
if h[i]==":
  j=length
  m=[]
  for k in range(no of bits+no of paritybits):
     l=list(format(k+1,'b'))
     k rev=list(reversed(1))
     if j<len(k rev):
       if k rev[j]=='1':
          11=".join(1)
          num=int(11,2)
          m.append(num)
  #print(m)
  num1=0
  for re in range(len(m)):
     #print(i)
     if h[m[re]-1]='1':
       num1+=1
     else:
       num1 = num1
  #print(num1)
  if num1%2==0:
     h[i]='0'
  else:
     h[i]='1'
  #print(h[i])
```

Course Code: DJ19CEL405

```
result=".join(h)
result1=".join(reversed(result))
print("Code transmitted:"+result1)
received=input("Enter the code received:")
received1=".join(reversed(received))
re=[]
c=[]
for i in received1:
  re.append(i)
for i in range(no_of_bits+no_of_paritybits):
  #print(i)
  i1=list(format(i+1,'b'))
  #print(i1)
  length=len(i1)-1
  #print(length)
  if (i + 1) & i = 0:
     j=length
     m=[]
     for k in range(no of bits+no of paritybits):
        l=list(format(k+1,'b'))
        k_rev=list(reversed(l))
        if j<len(k rev):
          if k rev[j]='1':
             11=".join(1)
             num=int(11,2)
             m.append(num)
     #print(m)
     num1=0
```

Course Code: DJ19CEL405 **Course Name: Computer Networks Lab** for i2 in range(len(m)): #print(i) if re[m[i2]-1]='1': num1+=1else: num1 = num1#print(num1) if num1%2==0: c.append('0') else: c.append('1') #print(h[i]) c1=".join(c)c2=int(c1,2)print(f"Error at position:{c2}")

Screenshots:

Conclusion:

Thus, we have studied and implemented the CRC and Hamming Code for Error detection and correction.