CIND211: Redes y Sistemas Estocásticos

Solemne 1. Septiembre 29, 2025 Profesor: Felipe Osorio

Nombre: _____

Tiempo: 100 minutos

1. Suponga una red G = (N, A), talque $N = \{1, 2, 3, 4, 5, 6\}$ con matriz de adyacencia:

$$\begin{pmatrix}
-8 & 10 & - & - & - \\
- & - & 4 & 50 & - & - \\
- & - & - & 10 & 20 & - \\
- & - & - & - & 2 \\
- & - & - & - & - & 30 \\
- & - & - & - & - & -
\end{pmatrix}$$

a. (5 pts) Dibuje la red.

b. (15 pts) Halle la ruta óptima desde el nodo 2 al nodo 6.

2. (20 pts) Considere la red G = (N, A), con $N = \{1, 2, 3, 4\}$ y costos asociados:

Obtenga las primeras dos iteraciones (además de la iteración 0) del algoritmo de Floyd-Warshall.

3. (20 pts) Consideremos una empresa petrolera que desea construir una red de oleoductos para conectar cuatro yacimientos petrolíferos con una terminal receptora. Cada yacimiento debe estar conectado a la terminal, ya sea directa o indirectamente. Los cuatro yacimientos son denotados por N_1, \ldots, N_4 mientras que la terminal por N_0 . ¿Cómo debe conectar la empresa petrolera los yacimientos y la terminal para minimizar la longitud total de los oleoductos?

	N_0	N_1	N_2	N_3	N_4
$\overline{N_0}$	_	21	13	45	47
N_1		_	7	53	69
N_2			_	43	57
N_3				_	9