Vedere artificială cu antrenare de dicționar Concepte și aplicații în vederea artificială

Paul Irofti

Universitatea din București
Facultatea de Matematică și Informatică
Department de Informatică
Email: paul.irofti@fmi.unibuc.ro

Reprezentarea rară

Reprezentăm un semnal y a.î.

$$\mathbf{y} = \mathbf{D}\mathbf{x} = \sum_{j=1}^{n} x_j \mathbf{d}_j = \sum_{j \in \mathcal{S}} x_j \mathbf{d}_j,$$
(1)

unde mulți x_j sunt zero, iar $S = \{j \mid x_j \neq 0\}$ e suportul semnalului.

Definiție: x se numește reprezentarea rară a lui y.

Problema de optimizare

Aproximare cu criteriu erorii

$$\min_{\mathbf{x}} \quad \|\mathbf{x}\|_{0}
\text{s.t.} \quad \|\mathbf{y} - \mathbf{D}\mathbf{x}\| \le \varepsilon$$
(2)

unde ε este o toleranță acceptată.

Aproximare cu criteriu rar

$$\min_{\mathbf{x}} \quad \|\mathbf{y} - \mathbf{D}\mathbf{x}\|^{2}$$
s.t.
$$\|\mathbf{x}\|_{0} \le s$$
(3)

Aceste soluții se pretează foarte bine cazului în care semnalul măsurat este perturbat de un zgomot ${m v}$

$$y = Dx + v. (4)$$

care se pierde în urma aproximării

Algoritmul OMP

3

4

Algorithm 1: Orthogonal Matching Pursuit

```
Data: dictionary D \in \mathbb{R}^{m \times n}
              signal \mathbf{v} \in \mathbb{R}^m
              sparsity level s
              stopping error \varepsilon
    Result: representation support S, solution x
1 Initialize S = \emptyset, \boldsymbol{e} = \boldsymbol{v}
2 while |S| < s and ||e|| > \varepsilon do
          Find new index: k = \arg \max_{i \notin S} |\boldsymbol{e}^T \boldsymbol{d}_i|
          Build new support: S \leftarrow S \cup \{k\}
          Compute new solution: \mathbf{x}_{\mathcal{S}} = (\mathbf{D}_{\mathcal{S}}^{T} \mathbf{D}_{\mathcal{S}})^{-1} \mathbf{D}_{\mathcal{S}}^{T} \mathbf{y}
          Compute new residual: e = y - D_S x_S
```

Apel: $\mathbf{x} = \mathsf{OMP}(\mathbf{D}, \mathbf{y}, s, \varepsilon)$

Problema de antrenare

Date semnalele de antrenare $\boldsymbol{Y} \in \mathbb{R}^{m \times N}$ și s, antrenarea dicționarului \boldsymbol{D} presupune rezolvarea problemei de optimizare

$$\min_{\mathbf{D}, \mathbf{X}} \quad \|\mathbf{Y} - \mathbf{D}\mathbf{X}\|_{F}^{2}
\text{s.t.} \quad \|\mathbf{x}_{\ell}\|_{0} \leq s, \ \ell = 1 : N
\|\mathbf{d}_{j}\| = 1, \ j = 1 : n$$
(5)

unde variabilele sunt $\mathbf{D} \in \mathbb{R}^{m \times n}$ și $\mathbf{X} \in \mathbb{R}^{n \times N}$.

Exemplu: Problema de antrenare

Aproximarea $\mathbf{Y} \approx \mathbf{D} \mathbf{X}$ trebuie să fie cât mai bună.

Exemplu: Problema de antrenare

Contribuția unui singur semnal

Exemplu: actualizarea atomului $oldsymbol{d}_j$

Problema aproximării

Algoritmul K-SVD

Algorithm 2: Actualizare K-SVD

```
Data: signals set \mathbf{Y} \in \mathbb{R}^{m \times N} current dictionary \mathbf{D} \in \mathbb{R}^{m \times n} representation matrix \mathbf{X} \in \mathbb{R}^{n \times N} Result: updated dictionary \mathbf{D}
```

- 1 Compute error $\boldsymbol{E} = \boldsymbol{Y} \boldsymbol{D}\boldsymbol{X}$
- 2 for j = 1 to n do

6

- 3 Modify error: $\mathbf{F} = \mathbf{E}_{\mathcal{I}_j} + \mathbf{d}_j \mathbf{X}_{j,\mathcal{I}_j}$
- 4 Compute first singular value σ_1 of \boldsymbol{F} and associated singular vectors \boldsymbol{u}_1 and \boldsymbol{v}_1
- Update atom and representation: $extbf{ extit{d}}_j = extbf{ extit{u}}_1, \;\; extbf{ extit{X}}_{j,\mathcal{I}_j} = \sigma_1 extbf{ extit{v}}_1^T$
 - Recompute error: $extbf{\emph{E}}_{\mathcal{I}_j} = extbf{\emph{F}} extbf{\emph{d}}_j extbf{\emph{X}}_{j,\mathcal{I}_j}$

$$\textbf{Apel:} \ [\textbf{\textit{D}}, \textbf{\textit{X}}] = \text{K-SVD}(\textbf{\textit{Y}}, \textbf{\textit{D}}, \textbf{\textit{X}})$$

Schemă de calcul cu OMP și K-SVD

Algorithm 3: Optimizare alternativă

```
Data: signals set Y \in \mathbb{R}^{m \times N}

sparsity s

initial dictionary D \in \mathbb{R}^{m \times n}

number of iterations K

Result: trained dictionary D
```

Sparse coding: $x_i = \text{OMP}(D, y_i, s, \varepsilon), i = 1 : N$ Dictionary update: [D, X] = K-SVD(Y, D, X)

Aplicații

- eliminarea zgomotului (denoising)
- completarea unei imagini (inpainting)
- compresie
- clasificare
- rezumarea colecților de imagini (image collection summarization)
- rezumarea video (video summarization)
- albume foto (photo albuming)

Exemplu: eliminarea zgomotului

Eliminare de zgomot: Obiectiv

- ▶ Problema: imaginea perturbată (monocromă) I cu P pixeli
- ▶ Preprocesare: împart imaginea în petice de $\sqrt{m} \times \sqrt{m}$ pe care le vectorizez (și eventual centrez, normez etc.)
- ▶ Date: semnalele perturbate (cu zgomot) $\mathbf{Y} \in \mathbb{R}^{m \times N}$,
- ▶ Caut: dictinoarul $D \in \mathbb{R}^{m \times n}$ și reprezentările $X \in \mathbb{R}^{n \times N}$
- Rezultat: $Y_c = DX \approx Y_0$
- Notații: Y_c semnalele curățate, Y_0 semnalele originale

Eliminare de zgomot: Model

Presupunem că avem de a face cu zgomot alb gaussian

$$Y = Y_0 + V, (6)$$

și ne așteptăm să aproximăm pe $oldsymbol{Y}$ cu antrenarea unui dicționar

$$\mathbf{Y} \approx \mathbf{D}\mathbf{X} = \mathbf{Y}_c,$$
 (7)

astfel încât reziduu $m{E}$ să coincidă cu zgomotul aditiv $m{V}$

$$\boldsymbol{E} = \boldsymbol{Y} - \boldsymbol{Y}_c \approx \boldsymbol{V} \tag{8}$$

Eliminare de zgomot: Antrenarea

Procesul DL

- ▶ identifică tipare comune printre semnalele **Y**
- lacktriangle aceste tipare stau la baza construcției semnalelor originale $oldsymbol{Y}_0$
- se poate întâmpla ca unii atomi să urmeze tiparul zgomotului
- soluții: preprocesare, modificarea problemei de optimizare, structurarea dicționarului
- antrenare pe semnalele cu zgomot date
- dacă clasa din care provin semnalele cu zgomot e cunoscută: antrenare pe semnalele curate cunoscute

Eliminare de zgomot: Clasa cunoscută

Separ antrenarea de eliminarea de zgomot:

- ▶ antrenare: pe semnale curate din clasă
- denoising: reprezint semnalele cu zgomot cu dicționarul obtinut
- dezavantaj: pot lipsi anumite tipare din dicționar care sunt folosite în semnalele cu zgomot
- dacă clasa este prea mare, prea generală, pot avea mai multe tipare posibile decât atomi disponibili

Eliminare de zgomot: Clasa cunoscută

Alternativă, compunerea a două dicționare

- antrenez două dicționare: extern și intern
- extern: dicționar antrenat pe semnalele curate din clasă
- intern: dicționar antrenat pe semnalele cu zgomot
- rezultat: $\mathbf{D}_c = [\mathbf{D}_e \ \mathbf{D}_i]$
- denoising: $\mathbf{x} = \mathsf{OMP}(\mathbf{D}_c, \mathbf{y}, s, \varepsilon)$

Eliminare de zgomot: Varianța zgomotului

Adesea cunoaștem canalul de comunicație și defectele aferente.

- ightharpoonup dacă cunoaștem varianța zgomotului σ^2
- o putem folosi în criteriu de oprire OMP
- rezultă aproximări mai bune x
- previne modelarea tiparului zgomotului la actualizare
- cel mai comun criteriu

$$\epsilon = C\sqrt{m}\sigma,\tag{9}$$

▶ m este dimensiunea semnalului şi C este o constantă (denumită şi gain)

Eliminare de zgomot: Denoising OMP

- ightharpoonup experimentele au arătat că o alegere bună este C=1.15
- criteriul devine $\epsilon = C\sqrt{m}\sigma$
- se poate ca eroarea de reprezentare să nu treacă acest prag
- ▶ ar rezulta o reprezentare cu s = m
- previn adăugând un criteriu suplimentar pentru x rar
- **>** soluție comună: \boldsymbol{x} să folosească cel mult $s=\frac{m}{2}$ atomi
- algoritmul OMP pentru denoising devine

$$\mathbf{x} = \mathsf{OMP}\left(\mathbf{D}, \mathbf{y}, \frac{m}{2}, 1.15\sqrt{m}\sigma\right).$$
 (10)

Eliminare de zgomot: Artefact bloc

Precum am văzut, rezultatul denoising pare alcătuit din blocuri.

De ce apare acest artefact?

Eliminare de zgomot: Artefact bloc

Precum am văzut, rezultatul denoising pare alcătuit din blocuri.

De ce apare acest artefact?

Răspuns: pentru că lucrăm cu petice vectorizate din imagine

Eliminare de zgomot: Petice distincte

Presupunem că avem o imagine pătrată monocromă

- dimensiunea imaginii este de $\sqrt{P} \times \sqrt{P}$ pixeli
- ▶ presupunem că avem de a face cu petice pătrate de $\sqrt{m} \times \sqrt{m}$
- presupunem că $\sqrt{P} \mod \sqrt{m} = 0$
- ▶ deci putem împărți imaginea în $\sqrt{P/m} \times \sqrt{P/m}$ petice
- vecini: 4 în general, 3 pe margini, 2 în colțuri
- fiecare petic este vectorizat în $\mathbf{Y} \in \mathbb{R}^{m \times N}$, N = P/m
- ▶ în baza lui **Y** învățăm dicționarul **D**
- lacktriangle după care aplicăm *Denoising OMP* pentru a obține $oldsymbol{Y}_c$

Eliminare de zgomot: Petice distincte

Aplicarea *Denoising OMP* cu petice distincte

- fiecare coloană y; este reprezentată cu OMP
- ▶ rezultă $\mathbf{Y}_c = \mathbf{D}\mathbf{X}$, $\mathbf{Y}_c \in \mathbb{R}^{m \times N}$, N = P/m
- reconstruim imaginea inversând operația de vectorizare
- după care plasăm peticele corespunzător în imagine

Problemă

- peticele vecine au fost obținute prin apeluri distincte la OMP
- două peticele vecine pot avea inițial la graniță pixeli similari
- dar fiecare petic a folosit atomi diferiți din dicționar
- deci vor avea un suport diferit cu coeficienți diferiți
- apare fenomenul anterior, numit și blocking effect

Eliminare de zgomot: Petice suprapuse

Acest fenomen dispare când folosim petice suprapuse

- ightharpoonup pornim din colțul de stânga sus al imaginii cu petice $\sqrt{m} imes \sqrt{m}$
- ▶ când am obținut petice distincte ne-am deplasat în jos pe coloană cu un pas de $p = \sqrt{m}$ până la sfârșitul coloanei
- ightharpoonup apoi, am aplicat aceiași tehnică pe următoarea coloană aflată la $p=\sqrt{m}$ pixeli distanță la dreapta
- ▶ pentru petice suprapuse folosim un pas $p < \sqrt{m}$
- numărul total de petice va fi

$$N = \left(\left\lfloor \frac{\sqrt{P} - \sqrt{m}}{p} \right\rfloor + 1 \right)^2 \tag{11}$$

• un pixel se va repeta de cel mult $\lfloor \sqrt{m}/p \rfloor^2$ ori în **Y**

Eliminare de zgomot: Petice suprapuse

Aplicarea *Denoising OMP* cu petice suprapuse

- fiecare coloană y_i este reprezentată cu OMP
- ▶ rezultă $\mathbf{Y}_c = \mathbf{DX}$, $\mathbf{Y}_c \in \mathbb{R}^{m \times N}$, N conform (11)
- la reconstrucția imaginii pixelul final va fi o medie a valorilor diferite obținute în peticele în care apare

Eliminare de zgomot: cuantificarea rezultatelor

- cei mai populari indicatori sunt PSNR și SSIM
- ▶ ambii compară semnalul curățat cu originalul
- PSNR indică diminuarea raportului dintre semnal și zgomot
- ► SSIM este mai apropiat de ce percepe ochiul uman

Eliminare de zgomot: PSNR

Raportul dintre puterea maximă a semnalului și a zgomotului.

$$PSNR = 20 \log_{10} \frac{DR}{RMSE}, \tag{12}$$

- ▶ DR (*dynamic range*) raportul dintre cea mai mare și cea mai mică valoare posibilă ce poate apărea într-un semnal
- ▶ DR = 255 pentru imagini monocrome de 8-biţi
- ▶ RMSE (root mean square error) $-\frac{1}{\sqrt{mN}} \| \mathbf{Y} \mathbf{D} \mathbf{X} \|_F$

Eliminare de zgomot: SSIM

$$SSIM(\mathbf{y}_0, \mathbf{y}_c) = \frac{(2\mu_{\mathbf{y}_0}\mu_{\mathbf{y}_c} + C_1)(2\sigma_{\mathbf{y}_0\mathbf{y}_c} + C_2)}{(2\mu_{\mathbf{y}_0}^2 + \mu_{\mathbf{y}_c}^2 + C_1)(\sigma_{\mathbf{y}_0}^2 + \sigma_{\mathbf{y}_c}^2 + C_2)},$$
 (13)

- $\blacktriangleright \mu$ media
- $ightharpoonup \sigma^2$ varianța
- σ_{vovc} covarianţa
- ► C₁ și C₂ constante, aduc stabilitate numerică în urma împărțirii, se stabilesc în funcție de DR

Completarea unei imagini (inpainting)

Completarea unei imagini este un caz special al eliminării de zgomot.

- nu mai avem zgomot aditiv, pur și simplu lipsesc pixeli
- tipic imaginilor
 - zgârieturi
 - text suprapus
 - erori de comunicare
 - eliminare voită a unor elemente din imagine
- umplem golurile folosind informația contextuală, învecinată

Inpainting: Antrenare

- antrenăm un dicționar folosind părțile disponibile din semnale
- folosim doar peticele complete
- sau folosim și petice incomplete dar avem grijă să sărim peste părțile lipsă în momente cheie
- golurile din peticele incomplete nu pot fi considerate zerouri, de ce?

Inpainting: Antrenare

- antrenăm un dicționar folosind părțile disponibile din semnale
- folosim doar peticele complete
- sau folosim și petice incomplete dar avem grijă să sărim peste părțile lipsă în momente cheie
- golurile din peticele incomplete nu pot fi considerate zerouri, de ce?
- Răspuns: pentru că nu le vom putea distinge de pozițiile cu pixeli negri

Inpainting: Antrenare

- antrenăm un dicționar folosind părțile disponibile din semnale
- folosim doar peticele complete
- sau folosim și petice incomplete dar avem grijă să sărim peste părțile lipsă în momente cheie
- golurile din peticele incomplete nu pot fi considerate zerouri, de ce?
- Răspuns: pentru că nu le vom putea distinge de pozițiile cu pixeli negri
- ▶ putem folosi o matrice auxiliară $M \in \{0,1\}^{m \times N}$
- ▶ **M** este o mască ce identifică pozițiile în care nu avem date

Inpainting: Masca

Algoritmii de reprezentare și actualizare pentru DL trebuie modificați

- lacktriangle dat $m{M}$, semnalul $m{y}_i$ are indicii pixelilor cunoscuți $\mathcal{I} = m{M}_i$
- ▶ dat s, putem reprezenta partea disponibilă $y_{\mathcal{I}}$ cu OMP folosind doar rândurile \mathcal{I} din D
- această modificare se mai numește și Masked OMP
- ▶ la actualizare problema pentru *Masked K-SVD* devine

$$\left\| \mathbf{M} \odot (\mathbf{F} - \mathbf{d} \mathbf{x}^T) \right\|_F. \tag{14}$$

- lacktriangle actualizare în funcție de indicii datelor disponibile $\mathcal{M} \in \mathbb{N}^2$
- lacktriangle adică privim problema pe elemente: $d_i x_j = f_{ij}$, $(i,j) \in \mathcal{M}$

Inpainting: Recuperare

Dat D, recuperăm semnalul y (cu pixeli cunoscuți \mathcal{I}) astfel:

- ▶ dacă, dat s, putem reprezenta partea disponibilă $y_{\mathcal{I}}$ cu OMP folosind doar rândurile \mathcal{I} din D
- ▶ atunci, aproximăm pe y cu Dx, folosind întreg dicționarul D

Un semnal din ${m Y}$ este un petec vectorizat

ordinea în care recuperăm peticele contează. De ce?

Un semnal din \boldsymbol{Y} este un petec vectorizat

- ordinea în care recuperăm peticele contează. De ce?
- Răspuns: pixelii recuperați vor fi folosiți în calcularea și recuperarea următorilor pixeli lipsă

Un semnal din Y este un petec vectorizat

- ordinea în care recuperăm peticele contează. De ce?
- ▶ Răspuns: pixelii recuperați vor fi folosiți în calcularea și recuperarea următorilor pixeli lipsă
- Cum abordăm o gaură, un bloc mare de pixeli lipsă?

Un semnal din \boldsymbol{Y} este un petec vectorizat

- ordinea în care recuperăm peticele contează. De ce?
- Răspuns: pixelii recuperați vor fi folosiți în calcularea și recuperarea următorilor pixeli lipsă
- Cum abordăm o gaură, un bloc mare de pixeli lipsă?
- ▶ Răspuns: brodăm de la exteriorul găurii către interior

Un semnal din \boldsymbol{Y} este un petec vectorizat

- ordinea în care recuperăm peticele contează. De ce?
- Răspuns: pixelii recuperați vor fi folosiți în calcularea și recuperarea următorilor pixeli lipsă
- Cum abordăm o gaură, un bloc mare de pixeli lipsă?
- ▶ Răspuns: brodăm de la exteriorul găurii către interior
- putem folosi petice suprapuse?

Un semnal din Y este un petec vectorizat

- ordinea în care recuperăm peticele contează. De ce?
- Răspuns: pixelii recuperați vor fi folosiți în calcularea și recuperarea următorilor pixeli lipsă
- Cum abordăm o gaură, un bloc mare de pixeli lipsă?
- ▶ Răspuns: brodăm de la exteriorul găurii către interior
- putem folosi petice suprapuse?
- Răspuns: da, dar numărul de petice în care apare același pixel este limitat; suntem constrânși să folosim petice în care lipsesc doar câțiva pixeli

Un semnal din Y este un petec vectorizat

- ordinea în care recuperăm peticele contează. De ce?
- Răspuns: pixelii recuperați vor fi folosiți în calcularea și recuperarea următorilor pixeli lipsă
- Cum abordăm o gaură, un bloc mare de pixeli lipsă?
- ► Răspuns: brodăm de la exteriorul găurii către interior
- putem folosi petice suprapuse?
- ▶ Răspuns: da, dar numărul de petice în care apare același pixel este limitat; suntem constrânși să folosim petice în care lipsesc doar câțiva pixeli
- ► Soluție: putem face mai multe iterații asupra aceluiași petec

Inpainting: Exemplu 30% pixeli disponibili

Bibliografie

- 1. G.H. Golub and C. Van Loan, *Matrix Computations*, Johns Hopkins University Press, 4th edition, 2013
- M. Elad, Sparse and Redundant Representations: from Theory to Applications in Signal Processing, Springer, 2010
- B. Dumitrescu and P. Irofti, *Dictionary Learning Algorithms* and Applications, Springer, 2018