Министерство науки и высшего образовния Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

"Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет) (МГТУ им. Н.Э. Баумана)"

Факультет: Информатика и системы управления

Кафедра: Программное обеспечение ЭВМ и информационные технологии

Дисциплина: Моделирование

Отчет по лабораторной работе №4 Вариант: 1

Студент: Барсуков Н.М.

Группа: ИУ7-76Б

Преподаватель: Рудаков И.В.

Содержание

1	Усл	овие ла	бораторной работы	
2	Teoj	ритиче	ская часть	4
	2.1	Распр	еделения	4
		2.1.1	Равномерное распределение	4
		2.1.2	Распределение Пауссона	4
	2.2	Протя	нжка модельного времени	١
		2.2.1	Метод $\triangle t$	١
		2.2.2	Событийный метод	٦
3	Экс	переме	нтальная часть	8
	3.1	- Приме	еры работы	8

1 Условие лабораторной работы

Необходимо смоделировать систему, состоящую из генератора, памяти, и обслуживающего аппарата. Генератор подаёт сообщения, распределенные по равномерному закону, они приходят в память и выбираются на обработку по закону из ЛР2. Количество заявок конечно и задано. Предусмотреть случай, когда обработанная заявка возвращается обратно в очередь. Необходимо определить оптимальную длину очереди, при которой не будет потерянных сообщений. Реализовать двумя способами: используя пошаговый и событийный подходы

Распределение Пауссона (вариант 1)

Рис. 1.

2 Теоритическая часть

2.1 Распределения

2.1.1 Равномерное распределение

Случайная величина имеет непрерывное равномерное распределение на отрезке [a,b], где $a,b \in R$, если ее плотность $f_x(X)$ имеет вид:

$$f_x(x) = \begin{cases} \frac{1}{b-a} & x \in [a,b] \\ 0 & x \notin [a,b]. \end{cases}$$
 (1)

Интегрируя определенную выше плотность получаем:

$$F_x(x) \equiv P(X \le x) = \begin{cases} 0, & x < a \\ \frac{x-a}{b-a}, & a \le x < b \\ 1, & x > b \end{cases}$$
 (2)

2.1.2 Распределение Пауссона

Распределение Паусона используется для моделирования количетсва событий проиходящих в заданном временном интервале.

$$f(x;\lambda) = \frac{e^{-\lambda * \lambda^x}}{!x} \quad x = 0, 1, 2, 3 \tag{3}$$

Функция плотности имеет вид:

$$F(x;\lambda) = \sum_{i=0}^{x} \frac{e^{-\lambda * \lambda^{i}}}{i!}$$
 (4)

 λ - параметр формы, который указывает среднее количество событий в данном временном интервале.

2.2 Протяжка модельного времени

Основная функция протягиваня модельного времени состоит в реализации алгоритма функционирования. Иматация взаимодействий отдельных устройств системы происходит с помощью управляющей программы.

Управляющая программа реализуется в основном по двум принципам:

- 1) принцип $\triangle t$;
- 2) событийный принцип.

Так же можно применять комбинирующий метод, сочетающий в себе два указанных принципа

2.2.1 Метод ∆t

Принцип \triangle t заключается в последовательном анализе состояний всех блоков в момент $t+\triangle t$ по заданному состоянию блоков в момент t. При этот новое состояние блоков определяется в соответсвии с их алогоритмическим описением с учетом действующих случайных факторов, задаваемых распределениями вероятности. В результате такого анализа принимается решение о том, какие общесистемные события должны имитироваться программной моделью на данный момент времени.

Достоинством данного метода является равномерность протягивания модельного времени.

Основной недостаток этого принципа заключается в значительных затратах машинного времени на реализацию моделирования системы. При недостаточно малом $\triangle t$ появляется опасность пропуска отдельных событий в системе, что исключает возможность получения адекватных резульатов при моделировании.

2.2.2 Событийный метод

Характерным свойством систем обработки информации является то, что состояние отдельных устройств изменяется в дискретные моменты времени,

совпадающие с моментами времени поступления сообщений в систему, временем поступления окончания задачи, времени поступления аварийных сигналов и т.д. Поэтому моделирование и продвижение времени можно проводить с использованием событийного принципа. При его использовании состояние всех блоков системы анализируется лишь в момент появления или наступления какого-либо события. Момент поступления следующего события определяется минимальным значением из списка будущих событий, представляющего собой совокупность моментов ближайшего изменения состояния каждого из блоков системы

Любое событе в этом подходе можно описать и использованием пяти осей:

- 1) 1 момент появления события от источника ниформации;
- 2) 2 момент освобождения обсуживающего аппарата (ОА);
- 3) 3 моменты сбора статистики;
- 4) 4 время окончания моделирования;
- 5) 5 текущее время.

С помощью этих осей задаются интервалы обслуживания сообщений и соответствующие моменты. На основе этих данных формируется список будущих событий (СБС).

В общем виде метод можно описать след. образом:

- 1) для блоков активных блоков заводят свой элемент в СБС;
- 2) в СБС заносят время ближайшего события от любого активного блока;
- 3) становится активным программный имитатор источника событий и производит псевдослучайную величину, которая определяет момент появления первого сообщения от источника сообщений и которую помещают в CБC;
- 4) становится активным имитатор для выроботки величины для ОА, которую тоже необходимо занести в СБС;
- 5) в момент первого сбора стат. определяется стандартный шаг сбора стат., который заносится в СБС;

6) выполняется протяжка времени.

Задача блока сбора статистики заключается в накоплении численных значений, которые необходимы для вычисления заданных параметров моделируемой системы. Как правило, при моделировании СМО к таким значениям относят:

- 1) среднее время;
- 2) среднее знач длины очеред;
- 3) коэффицент загрузки ОА
- 4) вероятность потери сообщений.

3 Эксперементальная часть

Входиные данные:

- 1) a = 1, b = 10;
- 2) x = 5, lam = 16;
- $3) \Delta t = 1$
- 4) Заявки 10, 100, 1000, 10000;
- 5) Минимальная длина очереди =10;

3.1 Примеры работы

Пабораторная работа №4	- □ ×					
Генерация заявки (равна 1	номерный поток) 10					
Обработка заявки (нормальный поток)						
x 5 lam	16					
Количество заявок	10					
Delta t	1					
Оптимальный размер очереди Посчитать						
Оптимальный размер очереди (результаты)						
Delta t	10					
Событийный принцип	10					

Рис. 2. Количество заявок: 10

Пабораторная работа №4	- 🗆 ×						
Генерация заявки (равномерный поток)							
a <u>1</u> b	10						
Обработка заявки (нормальный поток)							
x 5 lam	16						
Количество заявок	100						
Delta t	1						
Оптимальный размер очереди Посчитать							
Оптимальный размер очереди (результаты)							
Delta t	15						
Событийный принцип	17						

Рис. 3. Количество заявок: 100

Пабораторная работа №4	- 🗆 ×						
Генерация заявки (равномерный поток)							
a <u>1</u> b	10						
Обработка заявки (нормальный поток)							
x 5 lam	16						
Количество заявок	1000						
Delta t	1						
Оптимальный размер очереди Посчитать							
Оптимальный размер очереди (результаты)							
Delta t	169						
Событийный принцип	176						

Рис. 4. Количество заявок: 1000

Пабораторная работа №4	- 🗆 ×						
Генерация заявки (равномерный поток)							
a <u>1</u> b	10						
Обработка заявки (нормальный поток)							
x 5 lam	16						
Количество заявок	10000						
Delta t	1						
Оптимальный размер очереди Посчитать							
Оптимальный размер очереди (результаты)							
Delta t	1662						
Событийный принцип	1815						

Рис. 5. Количество заявок: 10000