

Processamento e Recuperação de Informação

Processamento e Recuperação de Informação Evaluation of IR and IE Systems

Departamento de Engenharia Informática Instituto Superior Técnico

1^o Semestre 2018/2019

Bibliography

Processamento e Recuperação de Informação

Bing Liu, Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data, 2nd edition. Chapter 6.

Ricardo Baeza-Yates, Berthier Ribeiro-Neto, Modern Information Retrieval, 2nd edtion. Chapter 4.

Christopher D. Manning, Prabhakar Raghavan and Hinrich Schütze, Introduction to Information Retrieval. Chapter 8.

Outline

IR System Evaluation

Processamento e Recuperação de Informação

Why evaluate?

- Measure the benefit of using an IR system
- Measure how well an IR system fulfills its goal
- Compare IR systems

What to evaluate?

- Collection coverage
- Processing time
- Output presentation
- User effort
- Recall and Precision

Elements of an information retrieval performance evaluation experiment

Processamento e Recuperação de Informação

The Cranfield Paradigm

An IR experiment, as devised by Cyril Cleverdon (1950s), must include:

- A reference collection
- 2 Relevance judgments
- An evaluation metric

Relevant Documents

Processamento e Recuperação de Informação

Recall and Precision

Measure the ability of a system to return relevant documents.

Relevance

- Subjective notion
- Usually evaluated by a set of experts

Outline

Evaluating Prediction

Measuring Precision and Recall

Processamento e Recuperação de Informação

Definition

Let A be the set of documents retrieved for query Q. Let R be the set of documents that are relevant to query Q. Precision is the proportion of retrieved documents that are relevant, i.e.:

$$Pr = \frac{|R \cap A|}{|A|}$$

Recall is the proportion of relevant documents retrieved, i.e.:

$$Re = \frac{|R \cap A|}{|R|}$$

Precision-Recall Curves

Processamento e Recuperação de Informação

 Retrieved documents are ordered ⇒ we are interested in measuring how precision changes as recall increases

Example

Let $A = \{d_1, d_2, d_3, d_4, d_5, d_6, d_7, d_8, d_9, d_{10}\}$ be an ordered set of retrieved documents, for a query Q.

Let $R = \{d_2, d_5, d_8, d_{15}\}$ be the set of relevant documents for query Q.

Re	Pr
0.25	0.50
0.50	0.40
0.75	0.38

Interpolated Precision-Recall

Processamento e Recuperação de Informação

- Precision is usually measured at 10 standard recall points: 0%, 10%, 20%, ..., 90%, 100%
- Precision at r% recall is defined as

$$P(r) = \max_{i \ge r} P(i)$$

Precision is zero after no more relevant documents are found

Interpolated Precision-Recall (cont.)

Processamento e Recuperação de Informação Let $A = \{d_1, d_2, d_3, d_4, d_5, d_6, d_7, d_8, d_9, d_{10}\}$ be an ordered set of retrieved documents, for a query Q. Let $R = \{d_2, d_5, d_8, d_{15}\}$ be the set of relevant documents for

query Q

Re

0.25

0.50

0.75

у .	Re	Pr
Pr 0.50 0.40 0.38	0.00	0.50
	0.10	0.50
	0.20	0.50
	0.30	0.40
	0.40	0.40
	0.50	0.40
	0.60	0.38
0.00	0.70	0.38
	0.80	0.00
	0.90	0.00
	1.00	0.00

Interpolated Precision-Recall (cont.)

Outline

P@N, R-precision

Processamento e Recuperação de Informação

P@N – Precision at the N-th retrieved document

Most commonly used

- P@5,
- P@10
- P@20

Usefull for Web retrieval

R-precision - Precision at the R-th document, where R is the number of relevant documents

F-measure

Processamento e Recuperação de Informação

Harmonic mean of precision and recall:

$$F_1 = \frac{2 \times Re \times Pr}{Re + Pr}$$

Processamento e Recuperação de Informação

 AP - Average of the values for the precision at each recall point

$$AP = \frac{\sum_{i=1}^{N} Pr@i \times R_i}{|R|}$$

where $R_i = 1$ if document at rank i is relevant and $R_i = 0$ otherwise.

• MAP - Mean Average Precision

$$MAP = \frac{\sum_{q=1}^{Q} AP_q}{Q}$$

AP can also be interpolated

Discounted Cumulative Gain

Processamento e Recuperação de Informação

Cumulative gain: sum the relevance weights

DCG - Discounted cumulative gain

$$DCG_p = R_1 + \sum_{i=2}^p \frac{R_i}{\log_2 i}$$

where $R_i = 1$ if document at rank i is relevant and $R_i = 0$ otherwise.

• nDCG - Normalized discounted cumulative gain

$$\mathsf{nDCG}_p = \frac{\mathsf{DCG}_p}{\mathsf{Ideal}\,\mathsf{DCG}_p}$$

MRR

Processamento e Recuperação de Informação

MRR - Mean Reciprocal Rank

$$MRR = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{rank_i}$$

where $rank_1$ is the rank of the first relevant document.

Ranking Comparison

Processamento e Recuperação de Informação

Spearman Coefficient

Computes the difference between the positions of a same document in two rankings

$$\rho(X,Y) = 1 - \frac{6\sum_{i=1}^{N} d_i^2}{N(N^2 - 1)}$$

where $d_i = \text{rank}(X)_i - \text{rank}(Y)_i$ is the difference in rankings of document i.

Ranking Comparison (cont.)

Processamento e Recuperação de Informação

Kendall's Tau

Let $(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)$, where each x_i is the rank of document i in ranking X, and y_i is the rank of document i in ranking Y.

$$\tau = \frac{|\mathsf{concordant\ pairs}| - |\mathsf{discordant\ pairs}|}{\textit{N}(\textit{N}-1)/2}$$

where a pair (x_i, y_i) is concordant with (x_j, y_j) if either:

$$\begin{cases} x_i > x_j \land y_i > y_j \\ x_i < x_j \land y_i < y_j \end{cases}$$

and discordant if either:

$$\begin{cases} x_i > x_j \land y_i < y_j \\ x_i < x_j \land y_i > y_j \end{cases}$$

Outline

Reference Collections

Processamento e Recuperação de Informação

TREC Various collections of documents (Ad hoc, Web, Blog, Clinical Decision Support, ...)

CACM Articles from Communications of the ACM

ISI Information science papers

CFC Cystic Fibrosis Collection

..

- Standards for research in IR
- Provide sets queries + evaluated documents

Human Experimentation in the Lab

- User preferences are affected by the characteristics of the user interface (UI)
 - For instance, the users of search engines look first at the upper left corner of the results page.
 - Changing the layout is likely to affect the assessment made by the users and their behavior.
- Proper evaluation of the user interface requires going beyond the framework of the Cranfield experiments

A/B Testing

Processamento e Recuperação de Informação

- A/B testing consists of displaying to selected users a modification in the layout of a page
 - \bullet The group of selected users constitute a fraction of all users such as, for instance, 1%
 - The method works well for sites with large audiences
- By analysing how the users react to the change, it is possible to analyse if the modification proposed is positive or not

A/B testing provides a form of human experimentation, even if the setting is not that of a lab

Crowdsoursing

Processamento e Recuperação de Informação

Make Money **Get Results** by working on HITs from Mechanical Turk Workers Ask workers to complete HITs - Human Intelligence Tasks - and HITs - Human Intelligence Tasks - are individual tasks that get results using Mechanical Turk. Get started. you work on. Find HITs now. As a Mechanical Turk Requester you: As a Mechanical Turk Worker you: · Can work from home . Have access to a global, on-demand, 24 x 7 workforce · Get thousands of HITs completed in minutes · Choose your own work hours Get paid for doing good work · Pay only when you're satisfied with the results Load your Find an Farn tasks account results interesting task money Find HITs Now Get Started

Amazon Mechanical Turk

https://www.mturk.com

- The participants execute human intelligence tasks, called HITs, in exchange for small sums of money
- The tasks are filed by requesters who have an evaluation need
- While the identity of participants is not known to requesters, the service produces evaluation results of high quality (except for free-loaders, etc)

Evaluation using Clickthrough Data

Processamento e Recuperação de Informação

A promising alternative...

The data can be obtained by observing how frequently the users click on a given document, when it is shown in the answer set for a given query

Attractive, because...

The data can be collected at a low cost without overhead for the use

Outline

Classifier Evaluation

- Previous lectures have shown that tasks such as document classification or information extraction from text can be modeled as classification problems
 - I.e., techniques in this section also apply to IE systems
- Goal in supervised classification is the minimization of classification error on test data
- We can evaluate through measures like recall, precision, and accuracy (i.e., one minus error)
 - But classification tasks can involve more than two classes (i.e., more than distinguishing relevant from non-relevant)

Confusion Matrix

Processamento e Recuperação de Informação

- M[i,j] is the number of test documents belonging to class i which were assigned to class j
 - Perfect classifier: diagonal elements M[i, i] would be nonzero
 - Example:

$$M = \left\{ \begin{array}{c|c} 5 & 0 & 0 \\ \hline 1 & 3 & 0 \\ \hline 1 & 2 & 4 \end{array} \right\}$$

• If *M* is large, we use

$$accuracy = \sum_{i} M[i, i] / \sum_{i,j} M[i, j]$$

Notice that accuracy is not a good measure for small classes

Micro-Averaged Precision

Processamento e Recuperação de Informação

In a problem with n classes, let C_i be the number of documents in class i and let C'_i be the number of documents estimated to be of class i by the classifier

Micro-averaged precision is defined as

$$\frac{\sum_{i=1}^n C_i' \cap C_i}{\sum_{i=1}^n C_i'}$$

Micro-averaged recall is defined as

$$\frac{\sum_{i=1}^{n} C_i' \cap C_i}{\sum_{i=1}^{n} C_i}$$

 Micro-averaged precision/recall measures correctly classified documents, thus favoring large classes

Macro-Averaged Precision

Processamento e Recuperação de Informação

In a problem with n classes, let P_i and R_i be the precision and recall, respectively, achieved by a classifier for class i

Macro-averaged precision is defined as

$$\frac{1}{n}\sum_{i=1}^{n}P_{n}$$

Macro-averaged recall is defined as

$$\frac{1}{n}\sum_{i=1}^{n}R_{n}$$

 Macro-averaged precision/recall measures performance per class, giving all classes equal importance

F_1 measure

Processamento e Recuperação de Informação

The F_1 measure is also commonly used

$$F_1 = \frac{2 \times P_i \times R_i}{P_i + R_i}$$

- Harmonic mean between precision and recall
- Discourages classifiers that trade one for the other

Processamento e Recuperação de Informação

Questions?