Reinforce Learning 2025 March 28

Deep Q-Networks for Atari Game Playing

Sheng Zhang, Hepple Xi, Wenqing Yu, Hanyu Liu

Motivation

- Classic game: Atari Breakout is a well-known game where players use a paddle to bounce a ball and break bricks.
- Simple actions, complex strategy
- Benchmark for RL research

Environment: Atari BreakoutNoFrameskip-v4
 https://ale.farama.org/environments/breakout/

Gym(ALE Atari Environment): more than 100 Atari Game Environment
 https://ale.farama.org/environments/

- Input: 84×84 grayscale images (4-frame stack)
- Actions: NOOP(0), FIRE(1), LEFT(2), RIGHT(3)
- Reward: You score points by destroying bricks in the wall.

Challenges:

- Long-Term Decision Making: Balancing exploration versus exploitation
- Data Efficiency:
 - Online RL: Requires extensive interactions and long training times.
 - Offline RL: Relies on the quality and distribution of the pre-collected dataset.

Project Objectives:

- Train an agent to achieve high scores in Breakout using RL techniques.
- Compare Online (DQN) versus Offline (CQL) training approaches.

Methodology

Online RL: DQN

DQN Setup:

- Configured via d3rlpy.algos.DQNConfig
- Learning Rate: 1e-4
- Target network updated every 10,000 steps

Exploration & Replay:

- Epsilon-Greedy
- Replay buffer

Online RL: DQN

Training:

- Total of 10M steps with updates every 4 steps
- Separate environment for periodic performance evaluation

Metrics:

Tracks average reward, training loss across episodes.

Online RL: DQN

Metrics:

Offline RL: CQL

Offline RL trouble: Out-of-Distribution

 State-action pairs that have never appeared in the dataset, resulting in suboptimal strategies or even loss of control

CQL Solution:

Penalize excessive Q values to limit the range of Q

$$\mathsf{L}_{\mathsf{CQL}}(\mathsf{Q}) = \mathsf{L}_{\mathsf{DQN}}\left(\mathsf{Q}\right) + \alpha \cdot \mathsf{E}_{(\mathsf{s},\mathsf{a}) \sim \mathsf{D}}[\; \mathsf{log}(\sum \mathsf{exp} \mathsf{Q}(\mathsf{s},\mathsf{a}')) - \mathsf{Q}(\mathsf{s},\mathsf{a})]$$

Offline RL: CQL

Dataset & Preprocessing:

- <u>Uses Google pre-collected Atari transitions</u> (50% of available data)
- Maintains 4-frame stack structure

Training Configuration:

- Learn rate 6.25e-5, penalty discount 1.0
- Rewards clipping (-1.0 to 1.0)
- Target Q network update every 10K steps
- 5M steps in total and every 100K steps as a epoch

Offline RL: CQL

Metrics:

Online v.s. Offline

Comparison of DQN & CQL

Online RL

Offline RL

Next Steps

- Try to speed up DQN convergence (e.g. PER)
- Try adjusting the CQL penalty factor to mitigate reward fluctuation
- Combine online fine-tune to improve offline RL (e.g. AWAS)

Reinforce Learning 2025 March 28

THANK YOU FOR YOUR TIME

Sheng Zhang, Hepple Xi, Wenqing Yu, Hanyu Liu