Diplomová práce

- Název: Konverze modelů bezkontextových jazyků
- Autor: Bc. David Navrkal

Obsah

- Zadání
- Demonstrace aplikace
 - Úvodní obrazovka.
 - Výběr ze zabudovaných příkladů.
 - Okno konverze bezkontextové gramatiky (BZK) na zásobníkový automat (ZA).
 - Módy aplikace
 - Krokovací mód.
 - Mód samostatné práce.
 - Mód průběžné kontroly.
 - Ukládání a načítání ze souboru.
 - Editace BZK.
 - Editace ZA.
- Otázky oponenta.
- Porovnání s existujícími řešeními.

Zadání práce

- 1. Vypracujte literární rešerši na dané téma.
- 2. Implementujte ve zvoleném programovém prostředí převodní algoritmy mezi bezkontextovou gramatikou a zásobníkovým automatem.
- 3. Vytvořte uživatelské rozhraní pro převodní algoritmy.
- 4. Implementujte převodní algoritmy do dříve vytvořené programové aplikace v rámci Bc. práce.
- 5. Vytvořte databázi příkladů a otestujte v rámci vytvořeného prostředí.

Úvodní obrazovka

- Na úvodní obrazovce se nachází instrukce, jak začít pracovat s programem:
 - Výběr módu a konverze.
 - Výběr z příkladů.
 - Načtení konverze ze souboru.

Výběr z příkladů

- Pro konverzi BZK na ZA jsou vestavěné 2 příklady:
 - 1)První má vstup gramatiku, která popisuje jazyk závorek.
 - 2) Druhá popisuje jazyk jednoduché aritmetiky.

Okno konverze

Skládá se 4 částí (widgetů) pro:

- 1) Bezkontextovou gramatiku.
- 2) Algoritmus převodu.
- 3) Zásobníkový automat.
- 4) Zobrazení proměnných z algoritmického widgetu.
- Aktuálně je vybrán mód pro krokování algoritmu.
- Typ konverze, mód a název příkladu je uveden v záhlaví okna.

Módy aplikace

- Aplikace umožňuje nastavit 3 módy:
 - 1) Krokování algoritmu. V tomto módu tvoří výstup algoritmu za uživatele aplikace.
 - 2) <u>Samostatná</u> <u>práce</u>.
 - 3) <u>Mód průběžné</u> kontroly.

Algoritmický widget v krokovacím módu

- Nahoře je jeho ovládání, které se skládá z tlačítek:
 - Přetoč algoritmus na začátek.
 - Posuň se o jeden krok vzad.
 - Zastav krokování.
 - Pusť krokování.
 - Posuň se o jeden krok vpřed.
 - Možnost nastavit zpoždění mezi kroky pro tlačítko spusť krokování.
- Aktuální krok je zvýrazněn žlutě.
- U každého kroku se dá zapnout/vypnout breakpoint na kterém, se zastavuje automatické přehrávání.

Algoritmický widget v módu samostatné práce

- Tento mód má 2 tlačítka:
 - Zkontroluj řešení.
 - Zobraz správné řešení respektive vrať se zpět k uživatelskému řešení.
- Při kontrole řešení nezáleží na pojmenování uzlu, nebo na pořadí přechodových pravidel.

Algoritmický widget v módu průběžné kontroly

 V krátkém intervalu se automaticky kontroluje správnost řešení bez interakce s uživatelem.

Ukládání/načítání konverzí

- Program umožňuje ukládat a načítat konverze, ze souborů.
- Ukládá se typ konverze, mód a vstupní a výstupní model.
- Dá se využít ve výuce, tak že profesor může studentům předat zajímavou množinu příkladů, probíranou na přednáškách, nebo jako procvičení na doma.

Editace bezkontextové gramatiky

- Bezkontextová gramatika se zadává v Backus-Naur formě pomocí editačního boxu, který je předvyplněný příkladem gramatiky, pro snadnější orientaci uživatele.
- Pravidla, které mají stejnou levou stranu, se dají napsat na jeden řádek, kde jejich pravé strany se oddělují svislou čarou (znak "|").
- Nevalidní vstup uživateli ukazuje změna pozadí na žlutou.


```
Input: Contex-free Grammar

G = (N, T, P, S), where:

N = { TOTO, VSTUP, VALIDNÍ} is finite alphabet of non-terminals

T = { JE} is finite alphabet of terminals

S = TOTO is first nonterminal

P = {

<TOTO > ::= "JE" <VALIDNÍ > | <VSTUP >

} is finite set of rules in form of Backus-Naur Form.

Add ε
```

Editace zásobníkového automatu

Form

 Na obrázcích můžete vidět jakým způsobem se edituje zásobníkový automat.

Pravým

tlačítkem

se vyvolá

kontextová

nabýdka

×

Děkuji za pozornost!

Následuje přečtení posudků a otázky oponenta.

Otázky oponenta

- Proč jste se nezaměřil také na EBNF, která je spíše používaná při definici BKJ?
- Jelikož podobných pomůcek existuje již mnoho, prováděl jste také srovnání s již existujícími řešeními? Pokud ne, pokuste se o to alespoň krátce u obhajoby.

Srovnání s JFLAP

• JFLAP

- Podporuje velké množství konverzí a ostatních funkcionalit.
- Stejně jako RegularConvertor je Multiplatformí.
- Nutné instalovat Javu.
- Je free.
- Hůře pochopitelný, je nutné při prvním použití nahlížet do manuálu.
- Nemá zabudované příklady.
- Aplikace působí strohým dojmem.
- Obsahuje jenom jeden mód, který se vzdáleně podobá módu samostatné práce z RegularConvertoru.
- Neobsahuje vizualizaci algoritmu převodu.

