# HI data from Arecibo Millennium Survey

See python scripts:

- 1. plot\_specs.py
- 2. read\_specs\_data.py
- 3. nhi\_heiles\_uncertainty.py
- *4. plot\_nhi\_uncertainty.py*

# I. HI column densities $N^*_{HI}$ under the optically thin assumption from Millennium Survey (MS) data

## Aim:

- Compare the total  $N_{HI}$  from paper with the  $N^*_{HI}$  obtained from the optically thin assumption to do/understand how much HI could be <u>underestimated</u>.

*Note: Optically thin assumption means the optical depth*  $\tau \le 1$  *and no T(b) background.* 

Eg: For  $N_{HI}$ =2.10<sup>20</sup> (cm<sup>-2</sup>):

*CNM*:  $T_s \sim 100K$ ,  $\tau \sim 1$ : *Optically thick* 

WNM:  $T_s \sim 10.000K$ ,  $\tau << 1$ : Optically thick

### How?:

- Step 1: Use the "expected emission profiles" from Heiles & Troland (2003), which were derived for each of the MS sources, to compute HI column density  $N^*_{HI}$  under the optically thin assumption.
- Step 2: Compare optically thin HI column densities  $N_{HI}^*$  with the total HI column densities  $N_{HI}$  derived for each line-of-sight via the combination of emission and absorption spectra (table 2 in the paper).
- The difference gives us a measure of how much material would be missed under the optically thin assumption i.e. an opacity correction, typical value is 10%.

# Process:

- Use Arecibo HI data from Heiles paper 2003 for 79 sources, download from <a href="http://vizier.cfa.harvard.edu/viz-bin/VizieR-3?-source=J/ApJS/145/329/table2&-out.form=%2bA">http://vizier.cfa.harvard.edu/viz-bin/VizieR-3?-source=J/ApJS/145/329/table2&-out.form=%2bA</a>
- (Show Sources in Galaxy Cordinates)
- Plot 79 spectra,  $T_b(K)$  vs  $V_{LSR}(km/s)$ , where  $T_b = 0.5*StokesI$ . This is Stokes I, which is TWICE the conventionally defined brightness temperature.



Figure ??: Example of HI spectra from Millennium Survey.

- HI spectra in general are clean, some with spike at a specific bin, some with noise, most with noise at 2 ends.
- For each spectrum, I define the velocity interval [v<sub>1</sub>, v<sub>2</sub>] containing the emission lines as illustrated in the figure below.



- Integrate the spectrum from v1 to v2 to get the HI integrated intensities  $W_{HI}$ .
- The optically thin HI column densities  $N^*_{HI}$  are then estimated as:  $N^*_{HI} = 1.8224 \cdot 10^{18} \ W_{HI} \ (cm^{-2})$  The results for each source are listed in (Table 1).

| #  | $V_{\text{start}}$ | V <sub>end</sub> | Start index | End index | $N_{HI}$ [1e20 cm <sup>-2</sup> ] Source |          |
|----|--------------------|------------------|-------------|-----------|------------------------------------------|----------|
| 0  | -65.0              | 40.0             | 1434        | 782       | 5.08                                     | 3C18     |
| 1  | -40.0              | 20.0             | 1279        | 906       | 2.74                                     | 3C33-1   |
| 2  | -70.0              | 55.0             | 1465        | 689       | 2.77                                     | 3C33     |
| 3  | -27.0              | 23.0             | 1198        | 888       | 2.82                                     | 3C33-2   |
| 4  | -35.0              | 24.0             | 1248        | 882       | 5.96                                     | 3C64     |
| 5  | -33.0              | 25.0             | 1236        | 875       | 7.39                                     | 3C75-1   |
| 6  | -60.0              | 34.0             | 1403        | 819       | 7.31                                     | 3C75     |
| 7  | -40.0              | 25.0             | 1279        | 875       | 7.64                                     | 3C75-2   |
| 8  | -60.0              | 40.0             | 1403        | 782       | 8.89                                     | 3C78     |
| 9  | -30.0              | 25.0             | 1217        | 875       | 8.47                                     | 3C79     |
| 10 | -30.0              | 25.0             | 1217        | 875       | 8.65                                     | CTA21    |
| 11 | -38.0              | 27.0             | 1267        | 863       | 9.82                                     | P0320+05 |
| 12 | -63.0              | 30.0             | 1422        | 844       | 10.78                                    | NRAO140  |
| 13 | -65.0              | 30.0             | 1434        | 844       | 9.45                                     | 3C93.1   |
| 14 | -30.0              | 28.0             | 1217        | 857       | 11.18                                    | P0347+05 |
| 15 | -40.0              | 40.0             | 1279        | 782       | 9.61                                     | 3C98-1   |
| 16 | -30.0              | 35.0             | 1217        | 813       | 9.73                                     | 3C98     |
| 17 | -30.0              | 40.0             | 1217        | 782       | 9.33                                     | 3C98-2   |
| 18 | -30.0              | 33.0             | 1217        | 826       | 9.35                                     | 3C105    |
| 19 | -40.0              | 34.0             | 1279        | 819       | 13.72                                    | 3C109    |

| 20       | -50.0          | 35.0  | 1341 | 813        | 17.34 | P0428+20  |
|----------|----------------|-------|------|------------|-------|-----------|
| 21       | -55.0          | 35.0  | 1372 | 813        | 9.25  | 3C120     |
| 22       | -90.0          | 35.0  | 1589 | 813        | 15.49 | 3C123     |
| 23       | -80.0          | 40.0  | 1527 | 782        | 21.94 | 3C131     |
| 24       | -80.0          | 45.0  | 1527 | 751        | 19.66 | 3C132     |
| 25       | -80.0          | 40.0  | 1527 | 782        | 23.16 | 3C133     |
| 26       | -70.0          | 40.0  | 1465 | 782        | 17.17 | 3C138     |
| 27       | -63.0          | 38.0  | 1422 | 795        | 40.16 | 3C141.0   |
| 28       | -50.0          | 40.0  | 1341 | 782        | 30.5  | T0526+24  |
| 29       | -30.0          | 47.0  | 1217 | 739        | 16.91 | 3C142.1   |
| 30       | -48.0          | 42.0  | 1329 | 770        | 21.86 | P0531+19  |
| 31       | -38.0          | 45.0  | 1267 | 770<br>751 | 45.52 | T0556+19  |
| 32       | -50.0<br>-50.0 |       | 1341 | 731<br>745 |       | 4C22.12   |
|          |                | 46.0  |      |            | 40.07 |           |
| 33       | -60.0          | 47.0  | 1403 | 739        | 31.26 | 3C154     |
| 34       | -78.0          | 60.0  | 1515 | 658        | 44.36 | T0629+10  |
| 35       | -50.0          | 85.0  | 1341 | 503        | 42.21 | 3C167     |
| 36       | -80.0          | 50.0  | 1527 | 720        | 7.41  | 3C172.0   |
| 37       | -40.0          | 50.0  | 1279 | 720        | 2.39  | DW0742+10 |
| 38       | -40.0          | 60.0  | 1279 | 658        | 2.89  | 3C190.0   |
| 39       | -80.0          | 54.0  | 1527 | 695        | 3.89  | 3C192     |
| 40       | -65.0          | 65.0  | 1434 | 627        | 4.15  | P0820+22  |
| 41       | -40.0          | 50.0  | 1279 | 720        | 4.86  | 3C207     |
| 42       | -50.0          | 55.0  | 1341 | 689        | 2.99  | 3C208.0   |
| 43       | -50.0          | 55.0  | 1341 | 689        | 2.73  | 3C208.1   |
| 44       | -60.0          | 35.0  | 1403 | 813        | 1.02  | 3C223     |
| 45       | -85.0          | 50.0  | 1558 | 720        | 3.29  | 3C225a    |
| 46       | -70.0          | 50.0  | 1465 | 720        | 3.2   | 3C225b    |
| 47       | -50.0          | 45.0  | 1341 | 751        | 2.62  | 3C228.0   |
| 48       | -100.0         | 50.0  | 1652 | 720        | 1.61  | 3C234     |
| 49       | -80.0          | 52.0  | 1527 | 708        | 1.16  | 3C236     |
| 50       | -80.0          | 80.0  | 1527 | 534        | 1.96  | 3C237     |
| 51       | -65.0          | 40.0  | 1434 | 782        | 2.09  | 3C245     |
| 52       | -80.0          | 55.0  | 1527 | 689        | 1.54  | P1055+20  |
| 53       | -78.0          | 20.0  | 1515 | 906        | 1.51  | P1117+14  |
| 54       | -90.0          | 26.0  | 1515 | 869        | 1.64  | 3C263.1   |
| 55       | -80.0          | 20.0  | 1527 | 906        | 1.04  | 3C264.0   |
| 55<br>56 |                |       |      |            | 2.28  |           |
|          | -77.0          | 34.0  | 1509 | 819        |       | 3C267.0   |
| 57<br>59 | -75.0          | 27.0  | 1496 | 863        | 2.38  | 3C272.1   |
| 58       | -73.0          | 100.0 | 1484 | 410        | 1.99  | 3C273     |
| 59       | -67.0          | 50.0  | 1447 | 720        | 2.24  | 3C274.1   |
| 60       | -50.0          | 20.0  | 1341 | 906        | 2.04  | 4C07.32   |
| 61       | -60.0          | 40.0  | 1403 | 782        | 1.11  | 4C32.44   |
| 62       | -75.0          | 72.0  | 1496 | 583        | 2.07  | 3C286     |
| 63       | -72.0          | 50.0  | 1478 | 720        | 1.27  | 3C293     |
| 64       | -50.0          | 25.0  | 1341 | 875        | 2.58  | 4C19.44   |
| 65       | -80.0          | 30.0  | 1527 | 844        | 2.64  | 4C20.33   |
| 66       | -80.0          | 40.0  | 1527 | 782        | 3.42  | 3C310     |
| 67       | -45.0          | 42.0  | 1310 | 770        | 4.04  | 3C315     |
| 68       | -85.0          | 35.0  | 1558 | 813        | 4.14  | 3C318     |
| 69       | -80.0          | 40.0  | 1527 | 782        | 4.43  | 3C333     |
| 70       | -40.0          | 65.0  | 1279 | 627        | 5.2   | 3C348     |
| 71       | -75.0          | 65.0  | 1496 | 627        | 8.67  | 3C353     |
|          |                |       |      |            |       |           |

| 72 | -60.0  | 70.0 | 1403 | 596 | 8.51  | 4C13.65 |
|----|--------|------|------|-----|-------|---------|
| 73 | -107.0 | 85.0 | 1695 | 503 | 13.48 | 4C13.67 |
| 74 | -100.0 | 55.0 | 1652 | 689 | 20.81 | 3C409   |
| 75 | -105.0 | 50.0 | 1683 | 720 | 38.31 | 3C410   |
| 76 | -80.0  | 60.0 | 1527 | 658 | 7.65  | 3C433   |
| 77 | -80.0  | 55.0 | 1527 | 689 | 5.19  | 3C454.0 |
| 78 | -80.0  | 55.0 | 1527 | 689 | 6.26  | 3C454.3 |

*Table 1: HI column densities*  $N^*_{HI}$  *under the optically thin assumption for 79 MS lines-of-sigh.* 

- From the Heiles 2003 paper, calculate the total HI column density  $N_{HI}$  for each source by summing its cold  $N_{CNM}$  and warm  $N_{WNM}$  components. These values are to a certain extent accurate and reliable because they are derived from on-/off source observation method.
- The  $N^*_{HI}$  estimates are made using the assumption of opacity  $\tau << 1$  and should give an underestimate in cases where there is appreciable cold gas. From values in table 2, one should find some places where the true column density  $N_{HI}$  is underestimated by up to 50%, mostly where the HI columns are already high (see red lines in Table 2).

| - Take the difference/ratio between $N_{HI}$ and $N^*_{HI}$ (Table 2) |                    |                  |               |                  |                |                          |          |
|-----------------------------------------------------------------------|--------------------|------------------|---------------|------------------|----------------|--------------------------|----------|
|                                                                       | $V_{\text{start}}$ | $V_{\text{end}}$ | StartID EndID | $N^*_{HI}[1e20]$ | $N_{HI}[1e20]$ | N <sub>HL</sub> ratio(%) | source   |
| #                                                                     |                    | 40.0             | 1424 0 702 0  | 5.00             | <i>5</i> 00    | 15 10                    | 2010     |
| 0                                                                     | -65.0              | 40.0             | 1434.0 782.0  |                  | 5.99           | 15.19                    | 3C18     |
| 1                                                                     | -40.0              | 20.0             | 1279.0 906.0  | 2.74             | 2.81           | 2.49                     | 3C33-1   |
| 2                                                                     | -70.0              | 55.0             | 1465.0 689.0  | 2.77             | 2.78           | 0.36                     | 3C33     |
| 3                                                                     | -27.0              | 23.0             | 1198.0 888.0  | 2.82             | 2.92           | 3.42                     | 3C33-2   |
| 4                                                                     | -35.0              | 24.0             | 1248.0 882.0  | 5.96             | 6.33           | 5.85                     | 3C64     |
| 5                                                                     | -33.0              | 25.0             | 1236.0 875.0  | 7.39             | 7.97           | 7.28                     | 3C75-1   |
| 6                                                                     | -60.0              | 34.0             | 1403.0 819.0  | 7.31             | 7.89           | 7.35                     | 3C75     |
| 7                                                                     | -40.0              | 25.0             | 1279.0 875.0  | 7.64             | 8.23           | 7.17                     | 3C75-2   |
| 8                                                                     | -60.0              | 40.0             | 1403.0 782.0  | 8.89             | 10.06          | 11.63                    | 3C78     |
| 9                                                                     | -30.0              | 25.0             | 1217.0 875.0  | 8.47             | 9.37           | 9.61                     | 3C79     |
| 10                                                                    | -30.0              | 25.0             | 1217.0 875.0  | 8.65             | 9.56           | 9.52                     | CTA21    |
| 11                                                                    | -38.0              | 27.0             | 1267.0 863.0  | 9.82             | 11.2           | 12.32                    | P0320+05 |
| 12                                                                    | -63.0              | 30.0             | 1422.0 844.0  | 10.78            | 29.49          | 63.45                    | NRAO140  |
| 13                                                                    | -65.0              | 30.0             | 1434.0 844.0  | 9.45             | 12.32          | 23.3                     | 3C93.1   |
| 14                                                                    | -30.0              | 28.0             | 1217.0 857.0  | 11.18            | 13.45          | 16.88                    | P0347+05 |
| 15                                                                    | -40.0              | 40.0             | 1279.0 782.0  | 9.61             | 10.37          | 7.33                     | 3C98-1   |
| 16                                                                    | -30.0              | 35.0             | 1217.0 813.0  | 9.73             | 11.02          | 11.71                    | 3C98     |
| 17                                                                    | -30.0              | 40.0             | 1217.0 782.0  | 9.33             | 10.25          | 8.98                     | 3C98-2   |
| 18                                                                    | -30.0              | 33.0             | 1217.0 826.0  | 9.35             | 14.68          | 36.31                    | 3C105    |
| 19                                                                    | -40.0              | 34.0             | 1279.0 819.0  | 13.72            | 20.82          | 34.1                     | 3C109    |
| 20                                                                    | -50.0              | 35.0             | 1341.0 813.0  | 17.34            | 23.89          | 27.42                    | P0428+20 |
| 21                                                                    | -55.0              | 35.0             | 1372.0 813.0  | 9.25             | 15.94          | 41.97                    | 3C120    |
| 22                                                                    | -90.0              | 35.0             |               | 15.49            | 27.38          | 43.43                    | 3C123    |
| 23                                                                    | -80.0              | 40.0             | 1527.0 782.0  | 21.94            | 28.55          | 23.15                    | 3C131    |
| 24                                                                    | -80.0              | 45.0             | 1527.0 751.0  | 19.66            | 23.81          | 17.43                    | 3C132    |
| 25                                                                    | -80.0              | 40.0             | 1527.0 782.0  | 23.16            | 28.5           | 18.74                    | 3C133    |
| 26                                                                    | -70.0              | 40.0             | 1465.0 782.0  | 17.17            | 19.84          | 13.46                    | 3C138    |
| 27                                                                    | -63.0              | 38.0             | 1422.0 795.0  | 40.16            | 52.69          | 23.78                    | 3C141.0  |
| 28                                                                    | -50.0              | 40.0             | 1341.0 782.0  | 30.5             | 96.85          | 68.51                    | T0526+24 |
| 29                                                                    | -30.0              | 47.0             |               | 16.91            | 21.96          | 23.0                     | 3C142.1  |

| 30                   | -48.0 4  | 2.0  | 1329.0 770.0 | 21.86 | 23.84 | 8.31  | P0531+19       |
|----------------------|----------|------|--------------|-------|-------|-------|----------------|
| 31                   | -38.0 4  | 5.0  | 1267.0 751.0 | 45.52 | 53.63 | 15.12 | T0556+19       |
| 32                   | -50.0 4  | 6.0  | 1341.0 745.0 | 40.07 | 85.23 | 52.99 | 4C22.12        |
| 33                   | -60.0 4  | 7.0  | 1403.0 739.0 | 31.26 | 35.58 | 12.14 | 3C154          |
| 34                   | -78.0 6  | 0.0  | 1515.0 658.0 | 44.36 | 59.25 | 25.13 | T0629+10       |
| 35                   | -50.0 8  | 35.0 | 1341.0 503.0 | 42.21 | 50.24 | 15.98 | 3C167          |
| 36                   |          | 0.0  | 1527.0 720.0 | 7.41  | 7.71  | 3.89  | 3C172.0        |
| 37                   |          | 0.0  | 1279.0 720.0 | 2.39  | 2.43  | 1.65  | DW0742+10      |
| 38                   |          | 0.0  | 1279.0 658.0 | 2.89  | 2.82  | 2.48  | 3C190.0        |
| 39                   | -80.0 5  | 4.0  | 1527.0 695.0 | 3.89  | 3.97  | 2.02  | 3C192          |
| 40                   | -65.0 6  | 55.0 | 1434.0 627.0 | 4.15  | 4.23  | 1.89  | P0820+22       |
| 41                   | -40.0 5  | 0.0  | 1279.0 720.0 | 4.86  | 5.25  | 7.43  | 3C207          |
| 42                   | -50.0 5  | 5.0  | 1341.0 689.0 | 2.99  | 2.99  | 0.0   | 3C208.0        |
| 43                   | -50.0 5  | 5.0  | 1341.0 689.0 | 2.73  | 2.76  | 1.09  | 3C208.1        |
| 44                   |          | 5.0  | 1403.0 813.0 | 1.02  | 0.98  | 4.08  | 3C223          |
| 45                   |          | 0.0  | 1558.0 720.0 | 3.29  | 3.4   | 3.24  | 3C225a         |
| 46                   |          | 0.0  | 1465.0 720.0 | 3.2   | 3.28  | 2.44  | 3C225b         |
| 47                   |          | 5.0  | 1341.0 751.0 | 2.62  | 2.61  | 0.38  | 3C228.0        |
| 48                   | -100.0 5 |      | 1652.0 720.0 | 1.61  | 1.61  | 0.0   | 3C234          |
| 49                   |          | 2.0  | 1527.0 708.0 | 1.16  | 1.21  | 4.13  | 3C236          |
| 50                   |          | 0.0  | 1527.0 534.0 | 1.96  | 2.2   | 10.91 | 3C237          |
| 51                   |          | 0.0  | 1434.0 782.0 | 2.09  | 2.03  | 2.96  | 3C245          |
| 52                   |          | 5.0  | 1527.0 689.0 | 1.54  | 1.57  | 1.91  | P1055+20       |
| 53                   |          | 0.0  | 1515.0 906.0 | 1.51  | 1.57  | 3.82  | P1117+14       |
| 54                   |          | 6.0  | 1589.0 869.0 | 1.64  | 1.68  | 2.38  | 3C263.1        |
| 55                   |          | 0.0  | 1527.0 906.0 | 1.73  | 1.73  | 0.0   | 3C264.0        |
| 56                   |          | 4.0  | 1509.0 819.0 | 2.28  | 2.33  | 2.15  | 3C267.0        |
| 57                   |          | 27.0 | 1496.0 863.0 | 2.38  | 2.39  | 0.42  | 3C272.1        |
| 58                   |          | 0.00 | 1484.0 410.0 | 1.99  | 1.93  | 3.11  | 3C273          |
| 59                   |          | 0.0  | 1447.0 720.0 | 2.24  | 2.36  | 5.08  | 3C274.1        |
| 60                   |          | 20.0 | 1341.0 906.0 | 2.04  | 2.11  | 3.32  | 4C07.32        |
| 61                   |          | -0.0 | 1403.0 782.0 | 1.11  | 1.05  | 5.71  | 4C32.44        |
| 62                   |          | 2.0  | 1496.0 583.0 |       | 2.04  | 1.47  | 3C286          |
| 63                   |          | 50.0 |              | 1.27  | 1.28  | 0.78  | 3C293          |
| 64                   |          | 25.0 |              | 2.58  | 2.65  | 2.64  | 4C19.44        |
| 65                   |          | 0.0  | 1527.0 844.0 |       | 2.69  | 1.86  | 4C20.33        |
| 66                   |          | -0.0 |              | 3.42  | 3.71  | 7.82  | 3C310          |
| 67                   |          | 2.0  | 1310.0 770.0 |       | 4.77  | 15.3  | 3C315          |
| 68                   |          | 5.0  | 1558.0 813.0 | 4.14  | 4.75  | 12.84 | 3C318          |
| 69                   |          | 0.0  | 1527.0 782.0 |       | 5.09  | 12.97 | 3C333          |
| 70                   |          | 5.0  |              | 5.2   | 5.69  | 8.61  | 3C348          |
| 71                   |          | 5.0  | 1496.0 627.0 | 8.67  | 10.85 | 20.09 | 3C353          |
| 72                   |          | 0.0  | 1403.0 596.0 | 8.51  | 9.16  | 7.1   | 4C13.65        |
| 73                   | -107.0 8 |      |              | 13.48 | 16.72 | 19.38 | 4C13.67        |
| 74                   | -100.0 5 |      | 1652.0 689.0 | 20.81 | 25.81 | 19.37 | 3C409          |
| 7 <del>4</del><br>75 | -105.0 5 |      | 1683.0 720.0 | 38.31 | 48.22 | 20.55 | 3C410          |
| 76                   | -80.0 6  |      | 1527.0 658.0 | 7.65  | 7.89  | 3.04  | 3C410<br>3C433 |
| 70<br>77             |          | 5.0  | 1527.0 689.0 | 5.19  | 5.38  | 3.53  | 3C454.0        |
| 78                   |          | 5.0  | 1527.0 689.0 |       | 6.53  | 4.13  | 3C454.3        |
| 70                   | 00.0     | 5.0  | 1327.0007.0  | 0.20  | 0.55  | 1.13  | 50757.5        |

78 -80.0 55.0 1527.0 689.0 6.26 6.53 4.13 3C454.3 Table 2: HI column densities  $N^*_{HI}$  under the optically thin assumption and total HI column densities  $N_{HI}$  in comparison for 79 MS lines-of-sigh.

- Correlation between the total HI column densities derived for each sightline,  $N_{HI}$ , and the HI column densities under the optically thin assumption,  $N^*_{HI}$ , is shown in Figure ?? and Figure ??. While figure ?? is the histogram of the ratio  $f = N_{HI} / N^*_{HI}$  in percentage, figure ?? displays the ratio f as a function of  $log_{10}(N^*_{HI}/10^{20} \text{ cm}^{-2})$ . Clearly, the ratio f increases with  $N^*_{HI}$ .



Figure ??: Histogram of  $N_{HI}/N^*_{HI}$  in percentage

- The difference gives us a measure of how much material would be missed under the optically thin assumption i.e. an opacity correction.
- → Result:

ratio  $R = N^*_{HI}/N_{HI}$ 

- 32/79 sources have ratio values <= 5%.
- 47/79 sources have ratio values <= 10%.
- 32/79 sources could be considered as optically thin with ratio values <= 5% ??
- The HI mass increases by  $\sim$ 12% compared to the optically thin assumption (as illustrated in Figure ??). This is consistent with the typical value ( $\sim$ 10%) throughout the Galaxy.



Figure ??: Correlation between NHI and N\*HI along 79 MS sightlines.

# II. Uncertainty of the total HI column densities $N_{HI}$

- In the paper, the uncertainties on HI column density are not estimated. The value of  $N_{HI}$  for each Gaussian component is computed given opacity  $\tau$ , excitation temperature  $T_s$  and the line-width  $\Delta v$  using the standard equation. Since the MS paper gives uncertainties on each of those values, one just needs to propagate those errors through in the usual way.

#### 1. For WNM:

I estimate the uncertainties by using the optically thin assumption, that is:

$$\frac{N({\rm HI})}{{\rm cm}^{-2}} = 1.8224 \times 10^{18} \int_{-\infty}^{\infty} T_{\rm b}(v) \, d\left(\frac{v}{{\rm kms}^{-1}}\right)$$

HI column density in the optically thin limit with no background source

$$y = N_{HI} = const*\int T_b*exp[-(v-v_0)^2/\sigma^2]dv$$

where:

$$const = 1.8224*10^{18} [cm^{-2}K^{-1}km^{-1}s]$$

$$\sigma = \text{FWHM}/(2\sqrt{\ln 2})$$
, given FWHM =  $\Delta v$  in the paper.

Consequently, 
$$\Delta \sigma = \Delta (FWHM)/(2\sqrt{\ln 2})$$

Have: 
$$\Delta^2 y = (\Delta y/\Delta T_b)^2 \Delta T^2_b + (\Delta y/\Delta v_0)^2 \Delta^2 v_0 + (\Delta y/\Delta \sigma)^2 \Delta^2 \sigma$$

$$\Delta y/\Delta T_b = const*\int\!\! exp[-(v\!-\!v_0)^2/\sigma^2] dv = const*\sigma*\sqrt{\pi}$$

$$\Delta y/\Delta v_0 = (2*const*T_b/\sigma^2)\!\!\int\!\!x*exp[-x^2/\sigma^2]dv = 0$$

$$\Delta y/\Delta \sigma = const*T_b*\sqrt{\pi}$$

$$\rightarrow \Delta y = \Delta N_{HI} = \text{const} * \sqrt{[\pi^*(\sigma^2 \Delta T_b^2 + T_b^2 * \Delta^2 \sigma)]}$$

# 2. For CNM

I use the function of  $T_s$  and  $\tau_v$  to compute  $N_{HI}$  namely:

$$\frac{N(\mathrm{HI})}{\mathrm{cm}^{-2}} = 1.8224 \times 10^{18} \left(\frac{T_s}{\mathrm{K}}\right) \int_{-\infty}^{\infty} \tau_v \,\mathrm{d}\left(\frac{v}{\mathrm{kms}^{-1}}\right)$$

# Where (from the paper):

- $T_s$  is a variable with its uncertainty
- tau is a Gaussian,  $\tau = \tau_0 * e^{[-(v-v_0)^2/\sigma^2]}$ ,  $\tau_0$  is the central opacity of the component.
- $\tau$  has its uncertainty
- $v_0$  with its uncertainty
- $\sigma$  with its uncertainty, note that in the paper,  $\Delta v$  is FWHM, so  $\sigma$  = FWHM/(2\* $\sqrt{\ln 2}$ ) Use the Gaussian integral to calculate the derivatives:

$$y = N_{HI} = \text{const} * T_s * \int \tau_0 * \exp[-(v - v_0)^2 / \sigma^2] dv, \qquad \text{where const} = 1.8224 * 10^{18} [\text{cm}^{-2} \text{K}^{-1} \text{km}^{-1} \text{s}]$$

$$\text{Have: } \Delta^2 y = (\Delta y / \Delta T_s)^2 \Delta^2 T_s + (\Delta y / \Delta \tau)^2 \Delta^2 v_0 + (\Delta y / \Delta v_0)^2 \Delta^2 v_0 + (\Delta y / \Delta \sigma)^2 \Delta^2 \sigma$$

$$\Delta y / \Delta T_s = \text{const} * \tau_0 * \int \exp[-(v - v_0)^2 / \sigma^2] dv = \text{const} * \tau_0 * \sigma * \sqrt{\pi}$$

$$\Delta y / \Delta \tau = \text{const} * T_s \int \exp[-(v - v_0)^2 / \sigma^2] dv = \text{const} * T_s * \sigma * \sqrt{\pi}$$

$$\Delta y / \Delta v_0 = (2 * \text{const} * \tau * T_s / \sigma^2) \int x * \exp[-x^2 / \sigma^2] dv = 0$$

$$\Delta y / \Delta \sigma = \text{const} * \tau_0 * T_s * \sqrt{\pi}$$

$$\Rightarrow \Delta y = \Delta N_{HI} = \text{const} * \sqrt{\pi} * (\sigma^2 \Delta T_s^2 * \tau^2_0 + T^2_s * \Delta^2 \sigma * \tau^2_0 + \sigma^2 T^2_s \Delta^2_\tau) I$$

$$\text{Note: } \sigma = \text{FWHM} / (2 \sqrt{\ln 2}), \text{ given FWHM} = \Delta v \text{ in the paper.}$$

$$And \Delta \sigma = \Delta (FWHM) / (2 \sqrt{\ln 2})$$

 $\rightarrow$  Then combine the two.

$$N_{HI} = N_{CNM} + N_{WNM}$$

Therefore,  $\sigma_{N(HI)} = \sqrt{[\Sigma_i \sigma^2_{N(CNM)_i} + \Sigma_k \sigma^2_{N(WNM)_k}]}$ 

The figure shows the histogram of total  $N_{HI}$  uncertainties for 78 lines-of-sight. 3 sources with high uncertainties are in Galactic plane or with low latitude:

$$T0556+19$$
  $l = 190.0893, b = -2.1665$ 

$$T0526+24$$
  $l = 181.3551, b = -5.1933$ 

*NRAO140* 
$$l = 159.0002, b = -18.7646$$

The mean value is  $\sim 6.6\%$ 



Figure ??: Histogram of  $N_{HI}$  uncertainties for 78 MS lines-of-sight

I had been concerned about how the assumed ordering of emission/absorption components affected the uncertainties. Having read the paper more carefully, I realise that the errors quoted on tau, Ts and the linewidth already take that effect into account. i.e. they varied the order, recalculated the parameters in each case, and used a weighted average of all trials to derive their uncertainties.

# - The problem is:

For CNM components, it is (tau\_0;n) from equation, derived directly from the least-squares fit to the opacity profile. For WNM components it is the upper limit to peak opacity (tau\_0;k), estimated by eye (paper session 3.6), and has a very large error.

Here, for CNM components, the uncertainty on tau\_o is set to Zero.

Overall, the obtained uncertainties for N(HI) are NOT accurate.

# For 26 sources without CO,

- 19/26 sources with the uncertainties < 10%
- The largest uncertainty is from 3C18 (21.74%) because the contribution of tau (0.077  $\pm$ 0.019) of a cold component.



However, [Prof.] For WNM components, tau is always small, so it's fine to calculate N(HI) from the optically thin assumption. i.e. in the optically thin limit, N(HI, WNM) is actually not dependent on tau or Tex at all, just on Tb(peak) and delta-v. Integrating that Gaussian and multiplying by  $1.8 \times 10^{18}$  should give you your WNM column density, and the uncertainties on tau and Tex do not factor in.