

ADA 037179

	UNCLASSIFIED		
	SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)	READ INSTRUCTIONS	
(14	REPORT DOCUMENTATION PAGE 12. GOVT ACCESSION NO	BEFORE COMPLETING FORM 3. FECTPLENT'S CATALOG NUMBER	
	HDL-TR-1779	(9)	
		THE OF REPORT & PERIOD COVERED	
66	Rare Earth Ion-Host Lattice Interactions		
•	14. Lanthanide Pentaphosphates.	Technical Keperton	
		PERFORMING ORG. REPORT HOMBER	
	A AUTHOR(s)	8. CONTRACT OR GRANT NUMBER(s)	
(/0	Clyde A. Morrison	(16)	
(Donald E. Wortman	DA: 111161102AH46	
1	Nick Karayianis		
L	9 SERFORMING ORGANIZATION NAME AND ADDRESS Harry Diamond Laboratories	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS	
	2800 Powder Mill Road	Program Ele: 6.11.02.A	
	Adelphi, MD 20783	Flogram Ele. 0.11.02.A	
	11. CONTROLLING OFFICE NAME AND ADDRESS	12 REPORT DATE	
	Commander	February 577	
	US Army Electronics Command Fort Monmouth, NJ 07703	41	
	14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)	15. SECURITY CLASS. (of this report)	
-	5.110	Unclassified	
(12)	1)4001		
(10)	1 11	15a, DECLASSIFICATION/DOWNGRADING SCHEDULE	
	16. DISTRIBUTION STATEMENT (of this Report)		
	Approved for public release; distribution	n unlimited.	
		DHC	
	17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different free	om Report)	
		Inliched A 7F	3/0
		[U] was no	711
		MAR 22 1977	111
	18. SUPPLEMENTARY NOTES		111
	HDL Project: 308637	UULUS 17T	70
	DRCMS Code: 611102.11.H46H1	Λ	
	19. KEY WORDS (Continue on reverse side if necessary and identify by block number)	
		aphosphates	
		hanide pentaphosphate	
		ymium pentaphosphate	
	Lanthanide spectra Rare-earth spectra	C sub s (C sub 1h)	
	20 ADSTRACT (C. Mary Control of the Mary Control of Identify by black number)	-tanhambatan A Na 3+ E Na (3	+)
- 1- 1-	Previously reported spectra of the pe	ntaphosphates of Nd	. ,
Eu (3+)	and (Eus) are analyzed by diagonalizing a p	arametrized (cs (clh)	
	Hamiltonian in free-ion bases involving th J-multiplets, respectively, of each ion.	By reassigning symmetries	
	to the reported Eu levels according to pre	dictions from scaled	
	crystal field parameters, Bkm, that fit 28	(Nd3+) levels to	ne
	7		0
	B sub'km	Pa	4
	DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE	NCLASSIFIED	V
		ASSIFICATION OF THIS PAGE (When Data Entered)	

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered) 7.61 cm⁻¹, a fit of 10.43 cm⁻¹ to 46 Eu³ Tevels is obtained. Predicted B_{km} and energy levels for all the lanthanide pentaphosphates are then obtained. Eu (3+) cont > B sub km KTI 000 Buff & Land מפובייני ביינו a comparantally state of the

2 SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

CONTENTS

	<u>P</u>	age
1.	INTRODUCTION	5
2.	CALCULATIONS	5
	LITERATURE CITED	38
	DISTRIBUTION	39
	TABLES	
	I Crystal Field Parameters, B_{km} , in cm ⁻¹ for NdP ₅ O ₁₄ and EuP ₅ O ₁₄	8
I	Rotational Invariants $B_{OO}(k, N) = (\Sigma_m B_{km}(N) ^2)^{1/2}$ for NdP_5O_{14} and EuP_5O_{14}	10
III	I Fstimated Crystal Field Parameters, $B_{\rm km}$, in cm $^{-1}$ for ${\rm LnP_5O_{14}}$ (Space Group ${\rm P_2}_{1/c}$) where Ln is One of the Lanthanides	11
17	V Estimated Crystal Field Parameters and Energy Levels for PrP ₅ O ₁₄	12
7	Energy Levels and Phenomenological Crystal Field Parameters, B_{km} , for Nd $^{3+}$ in NdP $_5{\rm O}_{14}$	14
V		15
VII		17
VIII		19
I		21
2	X Estimated Crystal Field Parameters and Energy Levels for	23
X	I Estimated Crystal Field Parameters and Energy Levels for	25
XI		27
XIII		29
XIX		31

TABLES (Cont'd)

		Page
xv	Estimated Crystal Field Parameters and Energy Levels for $\text{ErP}_5\text{O}_{14}$	33
	Estimated Crystal Field Parameters and Energy Levels for ${\rm TmP}_5{\rm O}_{14}$	35
XVII	Amplitudes, A_{km} , in cm ⁻¹ $\overset{\circ}{A}^{-k}$, of Spherical Decomposition of Lattice Sums for NdP ₅ O ₁₄	37

1. INTRODUCTION

Interest in new materials that have potentially good laser properties has recently been focused on the rare-earth pentaphosphates. The apparent lack of quenching between the active ions in these materials, as evidenced by the sharp lines observed even when there is 100-percent doping as in NdP5014, leads to the obvious expectation of producing smaller laser crystals with these materials.

In this work, previously reported spectra of the pentaphosphates of Nd and Eu were analyzed by diagonalizing a parametrized C_s $^{(C)}_{1h}$ Hamiltonian in free-ion bases involving the five and seven lowest J-multiplets, respectively, of each ion. By reassigning symmetries to the reported 2 Eu levels according to predictions from scaled crystal field parameters, B_{km} , that fit 28 Nd levels 3 to 7.61 cm $^{-1}$, a fit of 10.43 cm $^{-1}$ to 46 levels of Eu was obtained. Predicted B_{km} and energy levels for all the lanthanide pentaphosphates also were obtained.

2. CALCULATIONS

The point group symmetry at the rare-earth ion site 4 , 5 is $^{\rm C}$ which gives rise to the crystal field Hamiltonian

¹H. G. Danielmeyer and H. P. Weber, IEEE J. Quantum Electron., QE-8 (1972), 805.

²C. Brecher, J. Chem. Phys., 61 (1974), 2297.

³M. Blatte, H. G. Danielmeyer, and R. Ulrich, Appl. Phys., 1 (1973),

⁴H. Y-P Hong, Acta Crystallogr., <u>B30</u> (1974), 468.

⁵K.-R. Albrand, R. Attig, J. Fenner, J. P. Jeser, and D. Mootz, Mater. Res. Bull., 9 (1974), 129.

$$H = \sum_{km} B_{km} C_{km}, k = 2, 4, 6$$
, (1)

where $|\mathbf{m}| \leq k$ and \mathbf{B}_{km} for $\mathbf{m} \neq 0$ may be complex. This Hamiltonian represents the lowest possible symmetry in the electrostatic potential at the rare-earth site, and it contains 26 independent \mathbf{B}_{km} , counting real and imaginary parts of the \mathbf{B}_{km} . In order to obtain a manageable representation for the crystal field that may be extended to predict spectra of all the lanthanide pentaphosphates, we assume the \mathbf{B}_{km} with $\mathbf{m} = \pm$ odd integer to be negligible (subject to justification at a later date). The resulting Hamiltonian given by equation (1) with the added restriction

$$m = 0, \pm 2, \dots, \pm k$$
 (2)

results in 14 independent parameters and has the appearance of C $_{\rm S}$ $_{\rm lh}^{\rm (C)}$ symmetry.

This Hamiltonian was diagonalized in free-ion bases by using the lowest five and seven J-multiplets, respectively, of Nd and Eu, and the B_{km} and multiplet centroids were varied to fit reported spectra for NdP₅O₁₄ 3 and EuP₅O₁₄. 2 To begin the analysis, the B_{km} of Brecher 2 were converted from the form 6 A^m_k 4 to the B_{km} of equation (1). These B_{km} given in table I, line 1, were then used to calculate theoretical energy levels for the 7 F term of Eu. Crystal quantum numbers μ = 0, 1 were assigned to experimental energy levels according to which theoretical level each approximated. By maintaining these assignments, the B_{km} and

⁶A. J. Kassman, J. Chem. Phys., 53 (1970), 4118.

²C. Brecher, J. Chem. Phys., <u>61</u> (1974), 2297.
³M. Blatte, H. G. Danielmeyer, and R. Ulrich, Appl. Phys., <u>1</u> (1973), 275.

centroids were varied to give a best fit of 14.6 cm $^{-1}$ for 49 levels with the B $_{
m km}$ of table I, line 2. These B $_{
m km}$ were then scaled according to the ratios 7

$$B_{km}^{(Nd)/B}(Eu) = 1.024, 1.194, 1.271; k = 2, 4, 6,$$
 (3)

and used as starting parameters to fit the 28 levels of the ^4I term and $^4\text{F}_{3/2}$ multiplet of Nd. A fit of 7.6 cm $^{-1}$ was obtained with the B $_{km}$ of table I, line 4.

Since the final B for Nd differed significantly from the initial set, they were then scaled back to Eu to determine if new crystal quantum number assignments to the Eu levels would result in a better fit. By maintaining the new assignments, a second set of B given in table I, line 3, was obtained that gave a fit of 13.2 cm⁻¹, better than the 14.6 cm⁻¹ resulting from Brecher's assignments, but not as good a fit as the Nd spectrum. Three experimental levels at 1928, 4952, and 4993 cm⁻¹ differed by more than 30 cm⁻¹ from theoretical values in the best-fit calculation for Eu. If they are ignored, the 13.2-cm⁻¹ fit for 49 levels is reduced to a 10.4-cm⁻¹ fit without any further refitting of the B to the remaining 46 levels.

Comparing the final parameters for Eu in table I, line 3, with those of Nd in line 4, it is not clear what the best way is of extending the results to all the lanthanides. There is some consistency between the parameters, however, if one compares the rotational invariants $B_{oo}^{(k, N)}$ for each ion where we define $B_{oo}^{(k, N)}$

$$B_{OO}(k, N) = \left[\sum_{m} |B_{km}(N)|^2 \right]^{\frac{1}{2}}, \qquad (4)$$

 $^{^7}$ N. Karayianis, D. E. Wortman, and C. A. Morrison, Crystal Field Parameters for Triply Ionized Lanthanides in Yttrium Orthoaluminate, Solid State Communications $\underline{18}$ (1976), 1299.

⁸N. Karayianis, C. A. Morrison, and D. E. Wortman, J. Chem. Phys., 64 (1976), 3890.

TABLE 1. CRYSTAL FIELD PARAMETERS, B $_{\text{km}}$, IN CM $^{-1}$ FOR NdP $_50_{14}$ and EuP $_50_{14}$

Energy	tion (cm ⁻¹)	18.94	14.56	13.18	7.61
Experi-	levels (No.)	64	64	94	28
	No.	64	64	04	28
Multi-	plets (No.)	7	7	7	2
B 66	Real Imaginary Real Imaginary Real Imaginary (No.)	0	-16	-3	-176
	Real	104-	-424	-457	<u>®</u>
B ₆₄	Imaginary	0	-257	89-	-391
80	Real	75	-22	18	546
862	Imaginary	0	74-	388	-275
	Real	74	26	132 -118	291 -242
	9	195	245	132	162
B1,14	Imaginary	0	64	111 -184	52
	Real	-847	-799	Ξ	-621
84.2	Real Imaginary Real Imaginary	0	100	80	Nd ^d -785 16 -219 -661 149
	Real	146	Eu ^b -453 270 720 114	151	199-
	040	849	720	-83	-219
	B 22	167	270	213	91
	Ion 8 ₂₀ 8 ₂₂	-508	-453	Eu ^C -586 213 -83 751	-785
	lon	Eua	Eub	Eug	PPN

^aBrecher's parameters with J-mixing included and centroids adjusted for best rms fit (C. Brecher, J. Chem. Phys., <u>61</u> (1974), 2297).

^bBest B_{km} fitting levels with crystal quantum number assignments from calculation of line 1.

^cBest B_{km} fitting levels with crystal quantum number assignments starting with B_{km} scaled from line 4.

^dBest B_{km} starting with B_{km} scaled from line 2.

and N represents the configuration f^N of the particular lanthanide. Table II gives the quantities $B_{OO}(k,3)$ and $B_{OO}(k,6)$ calculated for Nd and Eu, respectively, by using their final B_{km} values from table I. These quantities tend toward lower values as N gets larger. To derive B_{km} for all the lanthanides, we defined average constants m_{km} independent of N by

$$\eta_{km} = \frac{1}{2} \left[\frac{|B_{km}^{(Nd)}|}{|B_{OO}(k, 3)|} + \frac{|B_{km}^{(Eu)}|}{|B_{OO}(k, 6)|} \right], \tag{5}$$

chose expressions for the B $_{00}$ $^{(k, N)}$ and phases $_{km}$ $^{(N)}$ linear in N* to fit the values in tables II and I, respectively, and calculated B $_{km}$ for all the lanthanides by

$$B_{km}(N) = \eta B_{km}(k, N) \exp \left[i\phi_{km}(N)\right]. \tag{6}$$

The parameters given by equation (6) were reported elsewhere.⁸ A simpler method was used here, however, to obtain the B_{km} for the lanthanides. This method consists of deriving a set of B_{km} such that

$$B_{km}(N) = B_{km}(x) + \rho_k(N)/\rho_k(x)$$
 (7)

for x=Nd and then for x=Eu; the ρ_k are from table II by Karayianis et al.⁷ The resulting B_{km} were then averaged, and these parameters are given in table III.

^{*}N is the number of equivalent 4f electrons specifying the electronic configuration for that ion. N=2 for Pr, 3 for Nd, etc.

⁷N. Karayianis, D. E. Wortman, and C. A. Morrison, Crystal Field Parameters for Triply Ionized Lanthanides in Yttrium Orthoaluminate, Solid State Communications 18 (1976), 1299.

⁸N. Karayianis, C. A. Morrison, and D. E. Wortman, J. Chem. Phys., <u>64</u> (1976), 3890.

TABLE II. ROTATIONAL INVARIANTS $B_{OO}(k, N) = (\Sigma_m |B_{km}(N)|^2)^{1/2}$ FOR NdP_5O_{14} AND EuP_5O_{14}

	Nd	Eu
k	$B_{00}(k,3)^a$	B ₀₀ (k,6) ^b
2	785	659
4	1320	1114
6	920	887

^aCalculated from table I, line 4. ^bCalculated from table I,

Energy levels calculated by using the B $_{\rm km}$ of tables I and III for the lowest-lying six to eight multiplets of the lanthanide pentaphosphates are given in tables IV to XVI.

In order to make intensity calculations, some estimates of the odd-fold (odd-k) crystal field components (A $_{\rm km}$) are necessary. These can be obtained by appropriate lattice sums. In this work, we have performed the lattice sums for NdP $_5$ O $_{14}$ using the x-ray data of Hong 4 for oxygen charges q $_0$ = -1 and -2; the results are given in table XVII. The one fold field, A $_{\rm lm}$, is not expected to be accurate because of its slow convergence. By appropriate rotations of the coordinate system chosen for the calculation of the A $_{\rm km}$ of table XVII, different sets of A $_{\rm km}$ can be generated. Since the A $_{\rm km}$ are linear functions of q $_0$, a value of q $_0$

can be chosen by using the relation $B_{km} = \rho_k A_{km}$ and the ρ_k (reported in table II by Karayianis⁷) to obtain a best fit of calculated B_{km} to phenomenological B_{km} .

⁴H. Y-P Hong, Acta Crystallogr., B30 (1974), 468.

⁷N. Karayianis, D. E. Wortman, and C. A. Morrison, Crystal Field Parameters for Triply Ionized Lanthanides in Yttrium Orthoaluminate, Solid State Communications <u>18</u>(1976), 1299.

⁹N. Karayianis and C. A. Morrison, Rare Earth Ion-Host Lattice Interactions 1. Point Charge Lattice Sum in Scheelites, Harry Diamond Laboratories TR-1648 (October 1973).

ESTIMATED CRYSTAL FIELD PARAMETERS, B_{km} , in cm $^{-1}$ for $L^{n}P_{5014}$ (SPACE GROUP $P_{21/c}$) where Ln is one of the Lanthanibes TABLE !!!.

Table	No.	2	17	117	1117	×	-	-x		×I×	×	XVI
rms	cm_1		9.739ª			q	,					
B ₆₆	Imaginary	-301	-357	-322	-209	64-	115	242	301	283	195	99
	Real	210	36	-139	-272	-330	-304	-204	-59	92	211	569
B ₆₄	Imaginary	-312	-288	-261	-232	-202	-171	-139	-107	-76	-45	-16
8	Real	156	183	208	228	245	258	267	271	272	569	263
6.2	Imaginary	205	-290	-295	176	341	-52	-340	99-	297	162	-222
862	Real	-338	-256	236	324	-1114	-346	6-	324	118	-263	-198
	B _{6.0}	240	235	230	224	218	213	207	201	194	188	181
Вцц	lmaginary	-474	04	654	160	-353	-296	193	346	-25	-308	-105
B	Real	-152	-479	99-	415	238	-277	-332	107	337	47	-264
B42	Imaginary	-536	174	869	636	82	-487	-623	-262	257	508	334
8	Real	-621	-773	-307	364	969	457	-114	-535	464-	-81	328
	B4.0	-164	-159	-153	-147	-140	-134	-127	-119	Ę	-103	+6-
	B 22	158	153	148	142	137	131	125	118	112	104	97
	B 20	-780	-755	-729	-703	-675	949-	919-	-584	-551	-515	-477
	lon	Pr	PN	E.	Sm	n a	P	10	Dyc	υ _o	Er	T _C

 $^{4}{\rm Fit}$ to data of C. Brecher, J. Chem. Phys., 61 (1974), 2297. bFit to data of table I, lines 1 and 2.

TABLE IV. ESTIMATED CRYSTAL FIELD PARAMETERS AND ENERGY LEVELS FOR $\text{P}_{\text{F}}\text{P}_{\text{5}}\text{O}_{14}$

00		0000			200						ONO AT LO			en un			12/17			
			AND CE								OMPATIBL	C .	IU ANU	50 mm		7	124/1	••		
			0 = 820						E22		-164.300	=	940	-620	700	=	H42	-536.	400 =	H42
			0 = 860						362		205.400							-312.		
3H			251.0																	
3 H			2354.)		-1	51.	500	=	344		-474.500		544							
3H			4527.0		2	10.	500	=	166		-300.300									
3F			5101.0																	
3F 3F			64 78.0																	
16			6950.0 9923.0																	
10			16802.0																	
		ION			2MU	T	HEO	. En	FRGY	E	XP. ENERG	٧								
	3H			1).		2			-65.			0.	0							
2	3H	4		99.	3	0			-14.	6		0.	0							
3	3H	4			5				70.			0.								
	3H				4				203.			0.								
-	3H				5				249.			0.								
	3H				5				305.			0.								
	34				6				333.			0.								
	3H				2				489.			0.								
9	3Н	*		, 4.	5	0			523.	4		0.	·							
10	3H	5		9.	1	2			2077.	1		0.	0							
	3H			17.		o			2085.			0.								
	3H			8.		0			2187.			0.	C							
	3H				9	2			2238.			0.	C							
14	3H	5	- 4	99.	1	2			2295.	7		0.	C							
	3H				0				2387.			0.								
	3H			99.		2			2397.			0.								
17	3H			.84		0			2407.			0.								
	3H				2 8				2598.			0.								
	3H			99.		2			2617.			0.								
2.0		1		• •	,	•				•										
21	3H	6		98.	7	2			4177.			0.								
22	3H	6		18.		0			4178.			0.								
	3H			77.		C			4310.			0.								
	3H			98.		2			4351.			0.								
	3H			99.		2			4416.			0.								
	3H			, n. ∫8.	4	0			4515.			ο.								
-	3H			77.		2			4590.			0.								
	3H			98.		0			4617.			0.	. 0							
	3H			98.		2			4631.			0.	C							
31	3H	6		7.	6	2			4667.			0.								
32	3H	6		92.		0			4812.			0.								
33	3H	6		95.	8	0			4829.	. /		0.	· C							
	25	-		74.		0			506C.	7		0.	. 0							
	3F 3F			91.		0			5070.			0.								
	3F			96.		2			5146.			0.								
	3F			97.		2			5172.	-		0.	.0							
	3F			12.) .	U			5220.	. 3		0.	.0							
					1							^	•							
	3F			76.		2			6402.			2.								
	3F			99.		2			6445.			0.								
	3F			96. 91.		0			6474.			0.								
	3F			96.		0			6514.			0								
+,	,,	,																		
	3F			18.	4	2			6555.			Э.								
45	3F	3		14.	A	0			657C.	0		0.	.0							
												^	•							
	36			77.		0			6819.			0.								
41	3F	*		95.	1	0			6866.	C		0	0							

TABLE IV. ESTIMATED CRYSTAL FIELD PARAMETERS AND ENERGY LEVELS FOR $\mathsf{PrP}_5\mathsf{0}_{14}$ (Cont'd)

FREE	E 10	ON	PCT	PURE	ZMU	THE	EO. ENFRGY	EXP. ENERGY	
49	3F	4		9	9.2	2	6929.	0	0.0
	3F			90	4.3	2	7002.	0	0.0
	3F				6.7	0	7029.	3	0.0
	3F				8.7	0	7043.	4	0.0
	3F				8.4	2	7072.		0.0
54	-	-			8.0	0	7091.	4	0.0
55	16	4		90	9.5	0	9647.	3	0.C
	16			90	9.8	2	9787.	5	0.0
57				90	9.9	0	9790.	4	0.0
	16			9	9.9		9863.	4	0.0
	16			90	9.9	2	9950.	7	0.0
	16			90	9.9	0	9965.	6	0.C
	16			90	9.9	0	10080.	2	0.0
62				90	9.8	2	10129.	5	0.0
63				90	7.7	0	10157.	1	0.C
64	10	2		100	0.0	0	16523.	0	0.0
65	10	2		9	9.9	2	16742.	3	0.0
66	10	2		100	0.0	0	16748.	9	0.C
67	10	2		90	9.9	0	16961.	4	0.0
68	10	2		100	0.0	2	17069.	0	0.C

TABLE V. ENERGY LEVELS AND PHENOMENOLOGICAL CRYSTAL FIELD PARAMETERS, $_{\rm B_{km}}$, for Nd $^{\rm 3+}$ in NdP $_{\rm 50_{14}^{a}}$

					E CVER NITE OF	SEPT. 18, 1975.	
		M AND CENTREI					
		11 = 820		3 = 822	-216.583 = 840	-661.206 = 842	148.620 = 842
			242.26	7 = 862	-274.634 = 862	249.941 = 864	-391.441 = 864
41		182.7	0/		51.669 = 844		
411			620.88	33 = 844	-175.697 = B66		
411		4036.3	18.17	27 = H66	-175.697 = 866		
	5/2	6083.5					
	3/2	11523.6					
	E ION		U THE	O. ENERGY			
1	41 9/2	94.6	1	-8.4	0.C*		
2	41 9/2	99.4	1	86.3			
	41 9/2	19.4	1	195.4	207.C*		
	41 9/2	19.6	1	254.3			
5	41 9/2	91.7	1	329.3	317.0*		
6	4111/2	19.4	1	1956.6	1958.C		
7 .	4111/2	99.1	1	1981.3	1982.C		
8	4111/2	99.1	1	2035.1	2044.C*		
9	4111/2	99.2	1	2075.9	2062.C*		
10	4111/2	97.3	1	2104.5	2C97.C		
11	4111/2	99.4	1	2166.3	2178.0*		
12	4113/2	49.5	1	3917.6	3914.0		
	4113/2	79.2	1	3745.7	3943.C		
14	4113/2	19.1	1 .	3997.8	3995.0		
15	4113/2	97.6	I	4032.5	4037.C		
16	4113/2	99.1	1	4078.0	4090.C*		
17	4113/2	99.5	1	4116.9	41C6.C*		
18	4113/2	99.5	1	4166.7	4171.C		
19	4115/2	99.4	1	5871.4	5872.C		
20	4115/2	79.6	1	5910.9	5912.C		
21	4115/2	94.6	1	6019.1	6011.C*		
. 22	4115/2	99.8	1	6065.0	6072.C		
23	4115/2	94.6	1	6094.4	6081.C*		
24	4115/2	99.H	1	6207.1	6210.C		
25	4115/2	77.9	1	6264.0	6274.C*		
26	4115/2	79.9	1	6287.8	6289.C		
-	4F 3/2	100.0	1	11468.1	11473.C		
28	4F 3/2	100.0	1	11587.4	11583.0		

CENTRCIDS, CRYSTAL = 4043.2 FREE ICN = 4C43.4

aThe least-rms deviation between the calculated and experimental energy levels is 7.61 cm $^{-1}$ (M. Blatte, H. G. Danielmeyer, and R. Ulrich, Appl. Phys., $\underline{1}$ (1973), 275).

TABLE VI. ESTIMATED CRYSTAL FIELD PARAMETERS AND ENERGY LEVELS FOR $\mathsf{NdP}_5\mathsf{O}_{14}$

					CUMPATIBLE ND	AND EU HOMES.	9/24/75.	
	M AND CENT			= -0.000				
	00 = 820	15	3.000	= 822	-158.600 = 34	-772.800	= 342	174.200 = 842
234.9	00 = 860	- 25	5.500	= 862	-290.300 = 96	183.400	= 864	-288.000 = 964
41 9/2	182.7							
4111/2	2055.4	-47	9.300	= 344	40.100 = 84	. 4		
4113/2	40 36. 3	3	6.500	= 866	-357.300 = 86			
4115/2	6083.5		0.,00,	- 1100	337.300 = 86	0		
4F 3/2	11523.6							
4F 5/2	12403.0							
2H 9/2 2								
4F 7/2	13476.0							
45 3/2	13583.0							
4F 9/2	14760.0							
FREE ION					EXP. ENERGY			
1 41 9/2	99	9.5	1	-4.6				
2 41 9/2	90	9.6	1	73.8	0.0			
3 41 9/2	90	9.5	1	201.0	0.0			
4 41 9/2	99		1	256.5	0.0			
5 41 9/2			1	326.6	0.0			
6 4111/2	90	9.5	1	1960.3	0.0			
7 4111/2			i	1973.2				
8 4111/2			i	2031.5				
9 4111/2			1	2083.7				
10 4111/2			1	2100.7				
11 4111/2	99	9.5	1	2161.8	0.0			
12 4113/2			1	3920.8				
13 4113/2			1	3942.8				
14 4113/2	99	9.2	1	3990.3				
15 4113/2	90	9.3	1	4022.3				
16 4113/2	90	9.1	1	4086.1	0.0			
17 4113/2	90	9.4	1	4112.0	0.0			
18 4113/2	90	9.6	1	4163.5	0.0			
19 4115/2	9	9.4	1	5865.5	0.0			
20 4115/2			1	5921.0				
21 4115/2			1	6016.7				
22 4115/2		9.7	1	6048.4				
23 4115/2		9.5	1	6083.3				
24 4115/2		9.8	i	6212.9				
25 4115/2		9.9	i	6255.0				
26 4115/2		9.9	i	6293.3				
20 411772		7. 7		0/ 73.	•••			
27 4F 3/2	0.0	0 4	1	11451.7	0.0			
		8.6						
28 4F 3/2	91	8.9	1	11576.6	0.0			
20				12336.0	0.0			
29 4F 5/2			1					
30 4F 5/2		4.9	1	12399.8				
31 4F 5/2	90	6.4	1	12462.0	0.0			
32 2H 9/2		8.3	1	12577.6				
33 2H 9/2	2 96	6 . 8	1	12603.0				
34 2H 9/2	2 98	8.5	1	12678.1				
35 2H 9/2	2 98	8.5	1	12754.5	0.0			
36 2H 9/2	2 98	8.9	1	12755.3	0.0			
37 4F 7/2	70	9.0	1	13370.7	0.0			
38 4F 7/2		8.6	1	13475.9				
39 4F 7/2	96	3.7	1	13493.9	0.0			
				13530				
40 45 3/2	85	5.5	1	13579.3	0.0			
41 4F 7/2	64	4.9	1	13589.5	0.0			
	•			13602 1	0.0			
42 45 3/2	19	9.5	1	13593.1	0.0			

TABLE VI. ESTIMATED CRYSTAL FIELD PARAMETERS AND ENERGY LEVELS FOR $\mathrm{NdP_5O_{14}}$ (Cont'd)

FREE	ION	PCT	PURE	2MU		THEO. ENERGY	EXP. ENERGY
43 4	F 9/2		99.	6	1	14655.2	0.0
44 4	F 9/2		99.	6	1	14711.5	0.0
45 4	F 9/2		99.	. 3	1	14793.8	0.0
46 4	F 9/2		99.	. 8	1	14837.6	0.0
47 4	F 9/2		99.	. 8	1	14850.0	0.0

TABLE VII. ESTIMATED CRYSTAL FIELD PARAMETERS AND ENERGY LEVELS FOR $\mathsf{PmP}_5\mathsf{0}_{14}$

PN IN PMP50	14. FXTERP	OLATED F	KM FROM	COMPATIBLE NO AND	EU HOMES. 9/24/7	5.
INIT. BKM	AND CENTRE!	DS. Q =	-0.CCO			1
-729.300 229.500) = 820) = 860	235.800	* 822 * 842	-152.800 = 840 -295.300 = 862	-307.400 = 842 207.700 = 864	698.100 = 842 ~261.200 = 864
51 4	233)	233.800			201.70064	-201.200 - 664
51 5	1731.0	-65.700	= 844 = 566	458.600 = 844		
51 6	3306.0 -	138.800	= 566	-322.460 = 366		
	4953.0					
	6716.0					
SF 1 1	12298.0 PCT PURE 2M	II THEO	ENERGY	EYP ENERGY		
1 51 4	99.7	0	115.9	0.0		
2 51 4	19.7	2	142.6	0.0		
3 51 4	99.7	0	142.9			
4 51 4	19.4	2	153.7 169.5 215.2	0.0		
5 51 4 6 51 4	99.2	0	169.5	0.0		
7 51 4	39.5	0	286.9	0.0		
8 51 4	₹8.5	0	155- 1	0.0		
9 51 4	98.9	2	399.1	0.0		
10 51 5		2	1620.5 1633.3 1697.4	0.0		
11 51 5	99.6		1697-4	0.0		
13 51 5	99.3	0	1700 0	0 0		
14 51 5	19.1	2	1/10.2	0 · C		
15 51 5	99.3	U				
16 51 5	18.5	2	1738.2	0.0		
17 51 5 18 51 5	99.0	2	1797.6	0.0		
19 51 5	19.6	2	1809.6	0.0		
20 51 5	99.6	0	1721-2 1738-2 1770-2 1792-6 1809-6 1827-0	0.0		
21 51 6	39.7		3200.2	0.0		
22 51 6 23 51 6	99.8	2	3201.9 3258.2			
24 51 6	79.5	2	3270.5			
25 51 6	98.9	2	3281.8			
26 51 6	99.1	2	3287.1	0.0		
27 51 6	98.7	U	3305.2			
28 51 6	99.8	2	3326.2			
30 51 6	97.1	0	3364.8			
31 51 6	98.6	2	3366.5			
32 51 6	99.4	2 0 2	3389.6			
33 51 6	99.4	2	3391.1	0.0		
34 51 7	79.7	2	4455.9	0.0		
35 51 7	39-8	2	456.4	0.0		
36 51 7	99.3	5	4882.5	0.0		
37 51 7	99.8	U	4845.6	0.0		
38 51 7	99.0	2	4488.5			
39 51 7 40 51 7	99.2	2	4936.7			
41 51 7	99.4	2	4139.7			
42 51 7	79.7	0	4983.9			
43 51 7)	4992.2			
44 51 7	99.1		5017.8			
45 51 7 46 51 7	99.0		5031.3			
47 51 7			5051.1			
48 51 7	99.1	0 2	5052.3			
49 51 8	100.0	0	6547.6			
50 51 8	100.0	2	6548.1			
51 51 8 52 51 H	19.1		6586.4			
53 51 8	99.8	0	6371.1			
54 51 8	99.8	2	6595.4	0.0		
55 51 A	99.8	U	667C.7	0.0		
56 51 8	99.8	0	6582.3			
57 51 8 58 51 8	99.7		6694.4			
59 51 8	11.5	0	6751.5			
60 51 8		2	6814.8			

TABLE VII. ESTIMATED CRYSTAL FIELD PARAMETERS AND ENERGY LEVELS FOR $\ensuremath{\mathsf{PmP}_50_{14}}$

FR	EE	ION	PCT	PURE	2MU	THEO. ENERGY	EXP. ENERGY
61	51	8		99.6	0	6+22.5	0.C
62	51	8		99.6	0	6891.5	0.0
63	51	8		99.6	2	6494.5	0.0
64	51	8		99.0	2	6744.2	0.0
65	51	8		99.0	0	6944.8	0.0
66	5F	1		100.0	0	12241.3	0.0
67	5F	1		100.0	2	12317.9	0.C
68	5F	1		100.0	2	12346.4	0.0

TABLE VIII. ESTIMATED CRYSTAL FIELD PARAMETERS AND ENERGY LEVELS FOR $\mathsf{SmP}_5\mathsf{O}_{14}$

INIT. BRM AND CENTRELIDS. 0 = -0.000					COMPATIBLE NO AND	EU HOMES. 9/24/7	5.
224-100 = 860 323-900 = 862 176,400 = 862 22*.200 = 864 -232.100 = 864 864 872 2388.0 -231.500 = 866 866 872 3737.0 866 872 3737.0 866 872 795.0 872 116.0 872 873 873 872 873 875					-144 700 - 940	343 800 - 843	435 300 - 343
6H 5/2 1183.0						339 300 = 844	-333 300 = 842
6H 7/2 2398.0		AND REAL PROPERTY AND ADDRESS OF THE PARTY AND	123.900	= 002	176.400 = 362	224.200 = 364	-232.300 = 864
EM 9/2 2398.0 -271.500 = 666 -208.300 = 866 M11/2 5098.0 6 M12 6395.0 6 M5 7/2 7116.0 6 M5 7/2 7116.0 6 M5 7/2 7995.0 6 M6 7/2 9147.0 7 M6 9/2 9147.0 7 M6 9/2 98.6 1 -32.7 0.0 M6 9/2 98.6 1 129.4 0.0 M6 M7/2 98.6 1 1129.0 0.0 M6 M7/2 98.6 1 1129.0 0.0 M6 M7/2 98.6 1 129.4 0.0 M6 M7/2 98.6 1 1316.3 0.0 M6 M7/2 98.6 1 129.7 0.0 M7 M7/2 98.6 1 021.4 0.0 M8 M6 M9/2 98.6 1 1316.3 0.0 M8 M6 M9/2 98.6 1 1316.3 0.0 M8 M6 M9/2 98.6 1 1316.3 0.0 M8 M6 M9/2 98.6 1 2252.6 0.0 M8 M6 M9/2 98.6 1 2252.6 0.0 M8 M6 M9/2 98.6 1 2252.6 0.0 M8 M6 M9/2 98.9 1 3366.7 0.0 M8 M6 M9/2 98.9 1 3046.7 0.0 M8 M6 M1/2 98.1 1 3634.3 0.0 M8 M6 M1/2 98.1 1 3636.1 0.0 M8 M6 M1/2 98.2 1 2258.7 0.0 M8 M6 M1/2 98.3 1 3713.8 0.0 M8 M6 M1/2 98.3 1 4977.6 0.0 M8 M6 M6 M1/2 98.2 0.0 M8 M6				- 011	160 000 = 844		
6H11/2 3737.0 6H13/2 6550.0 6F 1/2 6550.0 6F 3/2 7116.0 6F 7/2 7995.0 6F 9/2 9147.0 716 712 98.6 1 7295.0 716 712 98.6 1 7295.0 717 6H 7/2 98.6 1 7295.0 718 6H 7/2 98.6 1 7295.0 719 719 719 719 719 719 719 719 719 719		1183.0	415.100	= 844	- 100 acc = 866		
6H 13/2			-271.500	= 100	-200.900 - 800		
6F 1/2 6355.0 6150.0 65 50.0 65 572 7116.0 65 772 7995.0 65 772 7995.0 65 772 7995.0 65 772 7995.0 65 772 7995.0 65 772 7995.0 65 772 798.6 1 736.7 0.0 73 64 572 98.6 1 136.7 0.0 73 64 572 98.6 1 136.7 0.0 73 64 572 98.6 1 132.7 0.0 73 64 572 98.6 1 1127.7 0.0 73 64 64 772 97.4 1 1132.7 0.0 73 64 772 97.4 1 1132.7 0.0 73 64 772 97.4 1 1132.7 0.0 73 64 772 98.5 1 1316.3 0.0 74 74 74 74 74 74 74 74 74 74 74 74 74							
6+15/2 6550.0 6F 3/2 7116.0 6F 5/2 7116.0 6F 7/2 9147.0 FREE ION PCT PUBE 2MU THEO.ENERGY EXP.ENERGY 1 6H 5/2 98.6 1 -52.5 0.0 3 6H 5/2 98.6 1 136.7 0.0 4 6H 7/2 98.6 1 1021.4 0.0 5 6H 7/2 98.1 1 1132.7 0.0 6 6H 7/2 98.1 1 1132.7 0.0 6 6H 7/2 98.6 1 255.6 0.0 7 6H 7/2 98.6 1 121.4 0.0 8 6H 7/2 98.6 1 2255.6 0.0 8 6H 7/2 98.6 1 2255.6 0.0 8 6H 9/2 98.6 1 2255.6 0.0 10 6H 9/2 98.9 1 2554.6 0.0 11 6H 9/2 98.9 1 0.0 12 6H 6H 7/2 98.9 1 0.0 13 6H 1/2 98.9 1 3566.7 0.0 13 6H 1/2 98.9 1 3566.7 0.0 14 6H 1/2 98.9 1 3566.7 0.0 15 6H 1/2 98.9 1 3766.1 0.0 17 6H 1/2 98.1 1 3763.1 0.0 18 6H 1/2 98.4 1 3713.8 0.0 19 6H 1/2 98.5 1 3861.0 0.0 19 6H 1/2 98.6 1 3862.0 0.0 20 6H 1/2 98.7 1 3861.0 0.0 21 6H 1/2 98.8 1 3766.1 0.0 21 6H 1/2 98.9 1 366.7 0.0 22 6H 1/2 98.9 1 366.7 0.0 23 6H 1/2 98.9 1 3766.1 0.0 24 6H 1/2 98.6 1 3862.0 0.0 25 6H 1/2 98.7 1 3861.0 0.0 26 6H 1/2 98.3 1 4977.6 0.0 27 6F 1/2 98.3 1 4977.6 0.0 28 6H 1/2 98.3 1 4977.6 0.0 29 6H 1/2 98.3 1 4977.6 0.0 20 6H 1/2 98.3 1 4977.6 0.0 21 6H 1/2 98.4 1 511.6 0.0 22 6H 1/2 98.5 1 6364.0 0.0 23 6H 1/2 97.8 1 5075.7 0.0 24 6H 1/2 98.6 1 5191.0 0.0 25 6H 1/2 98.7 1 3861.0 0.0 26 6H 1/2 98.3 1 4977.6 0.0 27 6F 1/2 95.5 1 6364.0 0.0 28 6H 1/2 97.8 1 5075.7 0.0 29 6H 1/2 97.8 1 6074.9 0.0 30 6H 1/2 97.8 1 6074.9 0.0 31 6F 1/2 97.8 1 6074.9 0.0 32 6H 1/2 97.8 1 6074.9 0.0 33 6H 1/2 97.8 1 6074.9 0.0 34 6F 3/2 75.5 1 6761.8 0.0 35 6H 1/2 97.4 1 6094.9 0.0 36 6H 1/2 97.4 1 6094.9 0.0 37 6H 1/2 97.4 1 6094.9 0.0 38 6F 5/2 94.4 1 7114.2 0.0 38 6F 5/2 94.4 1 7114.2 0.0							
6F 5/2							
6F 7/2 7116.0 6F 7/2 9147.0 FREE ION PCT PURE 2MU IHEO.ENFRGY EXP.ENERGY 1 6H 5/2 98.6 1 136.7 0.0 3 6H 5/2 98.6 1 136.7 0.0 4 6H 7/2 98.1 1 113/.7 0.0 6 6H 7/2 98.1 1 113/.7 0.0 6 6H 7/2 98.1 1 113/.7 0.0 6 6H 7/2 98.2 1 1316.3 0.0 8 6H 9/2 98.6 1 2252.6 0.0 9 6H 9/2 98.6 1 2252.6 0.0 10 6H 9/2 98.9 1 2458.7 0.0 11 6H 9/2 98.9 1 2458.7 0.0 11 6H 9/2 98.9 1 2524.6 0.0 11 6H 9/2 98.9 1 2524.6 0.0 11 6H 9/2 98.9 1 3566.7 0.0 13 6H11/2 98.9 1 3566.7 0.0 14 6H11/2 98.1 1 3634.3 0.0 15 6H11/2 98.1 1 3634.3 0.0 16 6H11/2 98.2 1 3766.1 0.0 17 6H11/2 98.3 1 3861.0 0.0 18 6H11/2 98.7 1 3861.0 0.0 18 6H11/2 98.7 1 3861.0 0.0 19 6H13/2 97.7 1 5075.7 0.0 20 6H13/2 97.7 1 5075.7 0.0 21 6H13/2 97.7 1 5075.7 0.0 22 6H13/2 97.7 1 5075.7 0.0 23 6H13/2 97.7 1 5075.7 0.0 24 6H13/2 98.2 1 5224.5 0.0 25 6H13/2 97.7 1 5075.7 0.0 26 6H15/2 98.4 1 6267.1 0.0 27 6F 1/2 98.9 1 6384.0 0.0 28 6H15/2 97.8 1 6544.0 0.0 29 6H15/2 97.8 1 6544.0 0.0 21 6H15/2 97.8 1 6647.3 0.0 25 6H15/2 98.9 1 6741.6 0.0 27 6F 1/2 95.9 1 6364.0 0.0 28 6H15/2 97.4 1 6516.8 0.0 29 6H15/2 97.4 1 6516.8 0.0 31 6F 5/2 97.4 1 6699.8 0.0 31 6F 5/2 97.2 1 7114.2 0.0							
6F 7/2 795.0 6F 9/2 7947.0 FREE ION PCT PURE 2MU THEO.ENFRGY EXP.ENERGY 1 6H 5/2 98.6 1 136.7 0.0 3 6H 5/2 98.6 1 136.7 0.0 4 6H 7/2 98.6 1 1021.4 0.0 5 6H 7/2 98.6 1 112.7 0.0 6 6H 7/2 98.1 1 113.7 0.0 6 6H 7/2 98.5 1 1316.3 0.0 7 6H 7/2 98.6 1 235.3 0.0 8 6H 9/2 98.6 1 235.6 0.0 8 6H 9/2 98.6 1 2252.6 0.0 10 6H 9/2 98.9 1 2305.3 0.0 11 6H 9/2 98.9 1 2458.7 0.0 12 6H 9/2 98.9 1 2458.7 0.0 13 6H 11/2 98.9 1 3566.7 0.0 13 6H 11/2 98.9 1 366.7 0.0 14 6H 11/2 98.1 1 3634.3 0.0 15 6H 11/2 98.1 1 3634.3 0.0 16 6H 11/2 98.1 1 3636.1 0.0 17 6H 11/2 98.2 1 3766.1 0.0 18 6H 11/2 98.3 1 3860.0 0.0 18 6H 11/2 98.6 1 3860.0 0.0 18 6H 11/2 98.7 1 3861.0 0.0 18 6H 11/2 98.7 1 3661.0 0.0 18 6H 11/2 98.7 1 3661.0 0.0 18 6H 11/2 98.7 1 3661.0 0.0 19 6H 13/2 98.9 1 0.0 20 6H 13/2 98.9 1 0.0 21 6H 13/2 98.9 1 0.0 22 6H 13/2 98.9 1 0.0 23 6H 13/2 98.9 1 0.0 24 6H 15/2 98.9 1 0.0 25 6H 15/2 98.4 1 6267.1 0.0 27 6F 1/2 98.5 1 6364.0 0.0 28 6H 15/2 98.2 1 6447.3 0.0 29 6H 15/2 98.2 1 6564.5 0.0 31 6F 5/2 97.4 1 6516.8 0.0 31 6F 5/2 97.4 1 6570.2 0.0 31 6F 5/2 97.2 1 7114.2 0.0							
6F 9/2 94.7.0 FREE ION PCT PURE 2MU INEO_ENERGY EXP.ENERGY 1 6H 5/2 98.6 1 -52.5 0.0 3 6H 5/2 98.6 1 -73.4 0.0 4 6H 7/2 98.6 1 1021.4 0.0 5 6H 7/2 98.1 1 113.7 0.0 6 6H 7/2 98.1 1 113.7 0.0 6 6H 7/2 98.5 1 1219.0 0.0 7 6H 7/2 98.5 1 2252.6 0.0 8 6H 9/2 98.6 1 2252.6 0.0 9 6H 9/2 98.6 1 2252.6 0.0 10 6H 9/2 98.9 1 2458.7 0.0 11 6H 9/2 98.9 1 2458.7 0.0 12 6H 9/2 98.9 1 2524.6 0.0 13 6H 11/2 98.9 1 3566.7 0.0 14 6H 11/2 98.9 1 3566.7 0.0 15 6H 11/2 98.1 1 3634.3 0.0 16 6H 11/2 98.2 1 3766.1 0.0 17 6H 11/2 98.3 1 3861.0 0.0 18 6H 11/2 98.7 1 3861.0 0.0 18 6H 11/2 98.7 1 3861.0 0.0 19 6H 13/2 97.7 1 5075.7 0.0 20 6H 13/2 97.7 1 5075.7 0.0 21 6H 13/2 97.7 1 5075.7 0.0 22 6H 13/2 97.7 1 5075.7 0.0 23 6H 13/2 98.2 1 5224.5 0.0 24 6H 13/2 98.2 1 5224.5 0.0 25 6H 13/2 98.2 1 5224.5 0.0 26 6H 15/2 98.4 1 6267.1 0.0 27 6F 1/2 95.9 1 6364.0 0.0 28 6H 15/2 98.4 1 6267.1 0.0 29 6H 15/2 98.2 1 6447.3 0.0 20 6H 15/2 98.2 1 6447.3 0.0 21 6H 15/2 97.4 1 6516.8 0.0 21 6H 15/2 97.4 1 6516.8 0.0 22 6H 15/2 97.4 1 6699.8 0.0 23 6H 15/2 97.4 1 6699.8 0.0 24 6H 15/2 97.4 1 6699.8 0.0 25 6H 15/2 97.4 1 6699.8 0.0 26 6H 15/2 97.4 1 6699.8 0.0 27 6F 1/2 95.9 1 672.1 0.0 28 6H 15/2 97.4 1 6699.8 0.0 28 6H 15/2 97.4 1 6699.8 0.0 29 6H 15/2 97.4 1 6699.8 0.0 31 6F 5/2 97.2 1 7114.2 0.0 31 6F 5/2 97.2 1 7114.2 0.0 31 6F 5/2 97.2 1 7114.2 0.0							
FREE ION PCT PURE 2MU THEOLENERGY EXP.ENERGY 1 6H 5/2 98.6 1 136.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0							
1 64 5/2 98.6 1 -52.5 0.0 2 64 5/2 98.6 1 136.7 0.0 3 64 5/2 98.4 1 239.4 0.0 4.0 4.0 5 64 5/2 98.4 1 239.4 0.0 6 6 5/2 98.4 1 1313.7 0.0 6 6 6 5/2 98.5 1 1316.3 0.0 6 6 6 5/2 98.5 1 1316.3 0.0 6 6 6 5/2 98.5 1 1316.3 0.0 6 6 6 5/2 98.5 1 1316.3 0.0 6 6 6 5/2 98.5 1 1316.3 0.0 6 6 6 5/2 98.5 1 1316.3 0.0 6 6 6 5/2 98.5 1 1316.3 0.0 6 6 6 5/2 98.5 1 1316.3 0.0 6 6 6 5/2 98.5 1 1316.3 0.0 6 6 6 5/2 98.5 1 1316.3 0.0 6 6 6 5/2 98.5 1 1316.3 0.0 6 6 6 5/2 98.5 1 1316.3 0.0 6 6 6 5/2 98.5 1 1316.3 0.0 6 6 6 5/2 98.5 1 1316.3 0.0 6 6 6 5/2 98.5 1 1313.8 0.0 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6							
2 6H 5/2 98.4 1 136.7 0.C 3 6H 5/2 98.4 1 239.4 0.C 4 6H 7/2 98.6 1 1021.4 0.C 5 6H 7/2 98.1 1 1132.7 0.C 6 6H 7/2 97.4 1 1219.0 0.C 8 6H 7/2 98.6 1 2252.6 0.C 9 6H 9/2 98.6 1 2252.6 0.C 10 6H 9/2 98.4 1 2403.2 0.C 11 6H 9/2 98.2 1 2458.7 0.C 12 6H 9/2 98.9 1 3566.7 0.C 13 6H11/2 98.9 1 3566.7 0.C 14 6H11/2 98.1 1 3634.3 0.C 15 6H11/2 98.2 1 3766.1 0.C 16 6H11/2 98.4 1 3713.8 0.C 17 6H11/2 98.7 1 3861.0 0.C 18 6H11/2 98.7 1 3861.0 0.C 19 6H3/2 97.7 1 3861.0 0.C 20 6H3/2 97.7 1 5075.7 0.C 21 6H3/2 97.7 1 5075.7 0.C 22 6H13/2 97.8 1 5111.6 0.C 23 6H13/2 97.8 1 5155.9 0.C 24 6H13/2 97.8 1 5155.9 0.C 25 6H13/2 98.4 1 5155.9 0.C 26 6H5/2 98.4 1 6267.1 0.C 27 6F 1/2 95.5 1 6364.0 0.C 28 6H5/2 98.4 1 6267.1 0.C 27 6F 1/2 95.5 1 6364.0 0.C 31 6H5/2 97.8 1 6574.9 0.C 31 6H5/2 89.5 1 6741.6 0.C 31 6H5/2 89.5 1 7153.8 0.C 31 6H5/2 89.5 1 6741.6 0.C 31 6H5/2 97.2 1 7114.2 0.C							
3 6H 5/2 98.4 1 279.4 0.C 4 6H 7/2 98.6 1 1021.4 0.C 5 6H 7/2 98.1 1 1132.7 0.C 6 6H 7/2 97.4 1 1219.0 0.C 7 6H 7/2 98.5 1 1316.3 0.C 8 6H 9/2 98.6 1 2252.6 0.C 9 6H 9/2 98.2 1 2305.3 0.C 10 6H 9/2 98.2 1 2458.7 0.C 11 6H 9/2 98.2 1 2458.7 0.C 12 6H 9/2 98.9 1 3566.7 0.C 13 6H11/2 98.9 1 3566.7 0.C 14 6H11/2 98.1 1 3634.3 0.C 15 6H11/2 98.4 1 3713.8 0.C 16 6H11/2 98.6 1 3872.0 0.C 17 6H11/2 98.6 1 3872.0 0.C 19 6H3/2 99.0 1 4882.3 0.C 19 6H3/2 99.0 1 4882.3 0.C 20 6H3/2 98.3 1 4977.6 0.C 21 6H3/2 98.4 1 5111.6 0.C 22 6H3/2 98.4 1 5111.6 0.C 23 6H3/2 98.4 1 5155.5 0.C 24 6H13/2 98.6 1 3191.0 0.C 25 6H13/2 98.6 1 5191.0 0.C 26 6H15/2 98.4 1 5155.5 0.C 27 6F 1/2 98.4 1 6267.1 0.C 28 6H15/2 98.4 1 515.5 0.C 29 6H15/2 98.4 1 6267.1 0.C 27 6F 1/2 97.8 1 6364.0 0.C 28 6H15/2 98.4 1 6267.1 0.C 28 6H15/2 98.4 1 6267.1 0.C 28 6H15/2 98.4 1 6267.1 0.C 39 6H15/2 97.8 1 6574.9 0.C 31 6H15/2 37.4 1 6516.8 0.C 31 6H15/2 37.4 1 6516.8 0.C 31 6H15/2 37.4 1 6516.8 0.C 31 6H15/2 37.4 1 6517.9 0.C 31 6H15/2 37.4 1 6517.9 0.C 31 6H15/2 89.5 1 6741.6 0.C 31 6F 5/2 97.2 1 7114.2 0.C							
4 6H 7/2 98.6 1 1021.4 0.0 C 5 6H 7/2 98.1 1 1132.7 0.0 C 6 6H 7/2 97.4 1 1219.0 0.0 C 7 6H 7/2 98.5 1 1316.3 0.0 C 8 6H 7/2 98.5 1 1316.3 0.0 C 8 6H 9/2 98.6 1 2252.6 0.0 C 9 6H 9/2 98.4 1 2403.2 0.0 C 11 6H 9/2 98.4 1 2403.2 0.0 C 11 6H 9/2 98.9 1 2524.6 0.0 C 11 6H 1/2 98.9 1 3566.7 0.0 C 11 6H 1/2 98.9 1 3566.7 0.0 C 11 6H 1/2 98.1 1 3634.3 0.0 C 11 6H 1/2 98.1 1 3634.3 0.0 C 11 6H 1/2 98.4 1 3713.8 0.0 C 11 6H 1/2 98.6 1 3766.1 0.0 C 11 6H 1/2 98.7 1 3861.0 0.0 C 11 6H 1/2 98.7 1 3861.0 0.0 C 11 6H 1/2 98.3 1 4977.6 0.0 C 12 6H 1/2 98.3 1 4977.6 0.0 C 12 6H 1/2 98.3 1 4977.6 0.0 C 12 6H 1/2 98.4 1 5111.6 0.0 C 12 6H 1/2 98.4 1 5111.6 0.0 C 12 6H 1/2 98.6 1 5171.0 0.0 C 12 6H 1/2 98.6 1 5171.0 0.0 C 12 6H 1/2 98.6 1 5171.0 0.0 C 12 6H 1/2 98.7 1 6564.0 0.0 C 12 6H 1/2 98.2 1 6447.3 0.0 C 12 6H 1/2 97.4 1 6516.8 0.0 C 12 6H 1/2 97.							
5 ht 7/2	3 6H 5/2	98.4	1	239.4	0.C		
5 ht 7/2				1031	0.0		
6 6H 7/2 97.4 1 1219.0 0.C 7 6H 7/2 98.5 1 1316.3 0.C 8 6H 9/2 98.6 1 2252.6 0.C 9 6H 9/2 98.6 1 2252.6 0.C 10 6H 9/2 98.4 1 2403.2 0.C 11 6H 9/2 98.2 1 2458.7 0.C 12 6H 9/2 98.9 1 2524.6 0.C 13 6H11/2 98.9 1 3566.7 0.C 14 6H11/2 98.1 1 3634.3 0.C 15 6H11/2 98.4 1 3713.8 0.C 16 6H11/2 98.4 1 3713.8 0.C 17 6H11/2 98.6 1 3820.0 0.C 18 6H11/2 98.6 1 3820.0 0.C 18 6H11/2 98.7 1 3861.0 0.C 19 6H3/2 99.0 1 4882.3 0.C 20 6H13/2 99.3 1 4977.6 0.C 21 6H13/2 99.3 1 4977.6 0.C 22 6H13/2 97.7 1 5075.7 0.O 23 6H13/2 97.7 1 5075.7 0.O 24 6H13/2 98.4 1 5111.6 0.C 25 6H13/2 98.2 1 5224.5 0.C 26 6H15/2 98.4 1 6267.1 0.C 27 6F 1/2 95.5 1 6364.0 0.C 28 6H15/2 98.2 1 5224.5 0.C 28 6H15/2 98.2 1 6447.3 0.C 29 6H15/2 98.2 1 6646.3 0.C 31 6H15/2 97.4 1 6516.8 0.C 31 6H15/2 97.4 1 6516.8 0.C 31 6H15/2 97.4 1 6516.8 0.C 31 6H15/2 97.4 1 6574.9 0.C 31 6H15/2 97.8 1 6674.9 0.C 31 6H15/2 97.8 1 6676.1 0.C 31 6H15/2 97.8 1 6676.1 0.C 31 6H15/2 97.8 1 6676.1 0.C 31 6F 5/2 97.2 1 7114.2 0.C 31 6F 5/2 97.2 1 7114.2 0.C 31 6F 5/2 94.4 1 7153.8 0.C 31 6F 5							
8 6H 9/2 98.6 1 2252.6 0.C 9 6H 9/2 98.2 1 2305.3 0.C 11 6H 9/2 98.2 1 2305.3 0.C 11 6H 9/2 98.2 1 2458.7 0.C 11 6H 9/2 98.9 1 2524.6 0.C 11 6H 9/2 98.9 1 2524.6 0.C 11 6H 1/2 98.9 1 3566.7 0.C 11 6H 1/2 98.1 1 3634.3 0.C 11 6H 1/2 98.1 1 3634.3 0.C 11 6H 1/2 98.2 1 3766.1 0.C 11 6H 1/2 98.2 1 3766.1 0.C 11 6H 1/2 98.6 1 382C.0 0.C 11 6H 1/2 98.6 1 382C.0 0.C 11 6H 1/2 98.7 1 3861.0 0.C 11 6H 1/2 98.6 1 382C.0 0.C 11 6H 1/2 98.7 1 3864.0 0.C 11 6H 1/2 98.8 1 0.C 11 6H 1/2 98.6 1 382C.0 0.C 11 6H 1/2 98.8 1 0.C 11 6H 1/2 98.2 1 0.C 11 6H 1/2 97.8 1 0.C 11 6							
8 6H 9/2 98.6 1 2252.6 0.C 9 6H 9/2 98.2 1 2305.3 0.C 10 6H 9/2 98.4 1 2403.2 0.C 11 6H 9/2 98.4 1 2403.2 0.C 12 6H 9/2 98.9 1 2524.6 0.C 12 6H 9/2 98.9 1 2524.6 0.C 13 6H1/2 98.9 1 3566.7 0.C 14 6H1/2 98.1 1 3634.3 0.C 15 6H1/2 98.4 1 3713.8 0.C 15 6H1/2 98.2 1 3766.1 0.C 16 6H1/2 98.2 1 3766.1 0.C 16 6H1/2 98.7 1 3861.0 0.C 18 6H1/2 98.7 1 3861.0 0.C 18 6H1/2 98.3 1 4977.6 0.C 18 6H1/2 98.4 1 5111.6 0.C 18 6H1/2 98.4 1 5111.6 0.C 18 6H1/2 98.2 1 5224.5 0.C 18 6H1/2 98.2 1 6447.3 0.C 18 6H1/2 98.2 1 6447.3 0.C 18 6H1/2 97.8 1 6516.8 0.C 18 6H1/2 97.8 1 6674.9 0.C 18 6H1/2 97.8 1 6							
9 6H 9/2 98.4 1 2403.2 0.C 11 6H 9/2 98.4 1 2458.7 0.C 12 6H 9/2 98.9 1 2524.6 0.0 13 6H11/2 98.9 1 3566.7 0.C 14 6H11/2 98.1 1 3634.3 0.C 15 6H11/2 98.4 1 3713.8 0.C 16 6H11/2 98.6 1 382C.0 0.C 18 6H11/2 98.6 1 382C.0 0.C 18 6H11/2 98.7 1 3861.0 0.C 19 6H13/2 99.0 1 4882.3 0.C 20 6H13/2 99.1 1 5075.7 0.0 21 6H13/2 97.7 1 5075.7 0.0 22 6H13/2 97.8 1 511.6 0.C 23 6H13/2 98.4 1 5111.6 0.C 24 6H13/2 98.6 1 5191.0 0.C 25 6H13/2 98.2 1 5224.5 0.C 26 6H15/2 98.4 1 6267.1 0.C 27 6F 1/2 95.5 1 6364.0 0.C 28 6H15/2 97.8 1 6516.8 0.C 29 6H15/2 97.8 1 6516.8 0.C 31 6F 3/2 97.8 1 6741.6 0.C 32 6H15/2 97.8 1 6516.8 0.C 33 6F 3/2 97.8 1 6574.9 0.C 34 6F 3/2 97.8 1 6574.9 0.C 35 6H15/2 89.5 1 6726.1 0.C 37 6F 5/2 87.5 1 6741.6 0.C 37 6F 5/2 97.2 1 7114.2 0.C	7 6H 7/2	98.5	1	1316.3	0.0		
9 6H 9/2 98.4 1 2403.2 0.C 11 6H 9/2 98.4 1 2458.7 0.C 12 6H 9/2 98.9 1 2524.6 0.0 13 6H11/2 98.9 1 3566.7 0.C 14 6H11/2 98.1 1 3634.3 0.C 15 6H11/2 98.4 1 3713.8 0.C 16 6H11/2 98.6 1 382C.0 0.C 18 6H11/2 98.6 1 382C.0 0.C 18 6H11/2 98.7 1 3861.0 0.C 19 6H13/2 99.0 1 4882.3 0.C 20 6H13/2 99.1 1 5075.7 0.0 21 6H13/2 97.7 1 5075.7 0.0 22 6H13/2 97.8 1 511.6 0.C 23 6H13/2 98.4 1 5111.6 0.C 24 6H13/2 98.6 1 5191.0 0.C 25 6H13/2 98.2 1 5224.5 0.C 26 6H15/2 98.4 1 6267.1 0.C 27 6F 1/2 95.5 1 6364.0 0.C 28 6H15/2 97.8 1 6516.8 0.C 29 6H15/2 97.8 1 6516.8 0.C 31 6F 3/2 97.8 1 6741.6 0.C 32 6H15/2 97.8 1 6516.8 0.C 33 6F 3/2 97.8 1 6574.9 0.C 34 6F 3/2 97.8 1 6574.9 0.C 35 6H15/2 89.5 1 6726.1 0.C 37 6F 5/2 87.5 1 6741.6 0.C 37 6F 5/2 97.2 1 7114.2 0.C	8 64 9/2	4 80	1	2252.6	0.0		
10 6H 9/2 98.4 1 2403.2 0.0 1 6H 9/2 98.2 1 2458.7 0.0 1 2 6H 9/2 98.9 1 2524.6 0.0 1 2 6H 9/2 98.9 1 2524.6 0.0 1 2 6H 1/2 98.9 1 3566.7 0.0 1 2 6H 1/2 98.4 1 3634.3 0.0 1 2 6H 1/2 98.4 1 3713.8 0.0 0.0 1 6 6H 1/2 98.4 1 3713.8 0.0 0.0 1 6 6H 1/2 98.6 1 3820.0 0.0 1 8 6H 1/2 98.7 1 3861.0 0.0 0.0 1 8 6H 1/2 98.7 1 3861.0 0.0 0.0 1 8 6H 1/2 98.3 1 4977.6 0.0 0.0 1 1 8 6H 1/2 98.3 1 4977.6 0.0 0.0 1 1 8 6H 1/2 98.3 1 4977.6 0.0 0.0 1 1 8 6H 1/2 98.3 1 4977.6 0.0 0.0 1 1 8 6H 1/2 98.4 1 5111.6 0.0 0.0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							
11 6H 9/2 98.9 1 2524.6 0.0 12 6H 9/2 98.9 1 2524.6 0.0 13 6H11/2 98.9 1 3666.7 0.0 14 6H11/2 98.1 1 3634.3 0.0 15 6H11/2 98.4 1 3713.8 0.0 16 6H11/2 98.2 1 3766.1 0.0 17 6H11/2 98.6 1 3820.0 0.0 18 6H11/2 98.7 1 3861.0 0.0 19 6H13/2 99.0 1 4882.3 0.0 20 6H13/2 98.3 1 4977.6 0.0 21 6H13/2 97.7 1 5075.7 0.0 22 6H13/2 97.7 1 5075.7 0.0 23 6H13/2 97.8 1 5111.6 0.0 24 6H13/2 98.6 1 5191.0 0.0 25 6H13/2 98.6 1 5191.0 0.0 26 6H13/2 98.2 1 5224.5 0.0 27 6F 1/2 95.5 1 6364.0 0.0 28 6H15/2 98.4 1 6267.1 0.0 29 6H15/2 97.8 1 6516.8 0.0 30 6H15/2 97.8 1 6516.8 0.0 31 6H15/2 97.8 1 6574.9 0.0 32 6H15/2 93.4 1 6664.5 0.0 33 6F 3/2 71.8 1 6699.8 0.0 34 6F 3/2 75.5 1 6726.1 0.0 35 6H15/2 83.5 1 6741.6 0.0 36 6H15/2 83.5 1 6741.6 0.0 37 6F 5/2 97.2 1 7114.2 0.0 38 6F 5/2 97.2 1 7114.2 0.0 38 6F 5/2 97.2 1 7114.2 0.0							
12 6H 9/2 98.9 1 2524.6 0.C 13 6H11/2 98.9 1 3566.7 0.C 14 6H11/2 98.1 1 3634.3 0.C 15 6H11/2 98.2 1 3766.1 0.0 16 6H11/2 98.6 1 382C.0 0.C 17 6H11/2 98.6 1 382C.0 0.C 18 6H11/2 98.3 1 4977.6 0.C 20 6H13/2 97.7 1 5075.7 0.C 21 6H13/2 97.8 1 5111.6 0.C 23 6H13/2 97.8 1 5151.5 0.C 24 6H13/2 98.2 1 5224.5 0.C 25 6H13/2 98.4 1 6267.1 0.C 27 6F 1/2 95.5 1 6364.0 0.C 28 6H15/2 98.2 1 5224.5 0.C 29 6H15/2 97.8 1 6516.8 0.C 29 6H15/2 97.8 1 6516.8 0.C 31 6H15/2 97.8 1 6516.8 0.C 32 6H15/2 97.8 1 6516.8 0.C 33 6F 3/2 37.4 1 6664.5 0.C 33 6F 3/2 37.4 1 6664.5 0.C 34 6H15/2 97.8 1 6574.9 0.C 35 6H15/2 97.8 1 6774.0 0.C 37 6F 5/2 97.2 1 7114.2 0.C 38 6H15/2 85.1 1 679C.2 0.C 37 6F 5/2 97.2 1 7114.2 0.C 37 6F 5/2 97.2 1 7114.2 0.C 37 6F 5/2 97.2 1 7114.2 0.C							
13 6H11/2 98.9 1 3566.7 0.C 14 6H11/2 98.4 1 3634.3 0.C 15 6H11/2 98.4 1 3713.8 0.C 16 6H11/2 98.6 1 382C.0 0.C 17 6H11/2 98.6 1 382C.0 0.C 18 6H11/2 98.7 1 3861.0 0.C 19 6H13/2 99.0 1 4882.3 0.C 20 6H13/2 98.3 1 4977.6 0.C 21 6H13/2 98.3 1 4977.6 0.C 22 6H13/2 98.4 1 5111.6 0.C 23 6H13/2 97.7 1 5075.7 0.C 24 6H13/2 97.3 1 5155.5 0.C 24 6H13/2 98.6 1 5191.0 0.C 25 6H13/2 98.6 1 5191.0 0.C 25 6H13/2 98.4 1 6267.1 0.C 26 6H15/2 98.4 1 6267.1 0.C 27 6F 1/2 95.5 1 6364.0 0.C 28 6H15/2 98.2 1 6447.3 0.C 31 6H15/2 97.8 1 6516.8 0.C 31 6H15/2 97.8 1 6516.8 0.C 31 6H15/2 97.8 1 6516.8 0.C 31 6H15/2 97.8 1 6664.5 0.C 32 6H15/2 97.8 1 6664.5 0.C 33 6F 3/2 91.4 1 6699.8 0.C 34 6F 3/2 75.5 1 6726.1 0.C 35 6H15/2 89.5 1 6741.6 0.C 36 6H15/2 89.5 1 6741.6 0.C 37 6F 5/2 97.2 1 7114.2 0.C 37 6F 5/2 97.2 1 7114.2 0.C 38 6F 5/2 97.2 1 7114.2 0.C							
14 6H11/2 98.1 1 3634.3 0.C 15 6H11/2 98.4 1 3713.8 0.C 17 6H11/2 98.6 1 382C.0 0.C 18 6H11/2 98.6 1 382C.0 0.C 18 6H11/2 98.7 1 3861.0 0.C 19 6H3/2 99.0 1 4882.3 0.C 20 6H3/2 98.3 1 4977.6 0.C 21 6H13/2 97.7 1 5075.7 0.C 22 6H13/2 97.7 1 515.5 0.C 23 6H13/2 97.8 1 5155.5 0.C 24 6H13/2 98.6 1 5191.0 0.C 25 6H13/2 98.6 1 5191.0 0.C 25 6H13/2 98.2 1 5224.5 0.C 26 6H15/2 98.4 1 6267.1 0.C 27 6F 1/2 95.5 1 6364.0 0.C 28 6H15/2 98.2 1 6383.3 0.C 29 6H15/2 97.4 1 6516.8 0.C 30 6H15/2 97.8 1 6574.9 0.C 31 6H15/2 97.8 1 6574.9 0.C 32 6H15/2 97.8 1 6664.5 0.C 33 6F 3/2 77.5 1 676.1 0.C 35 6H15/2 97.8 1 6699.8 0.C 36 6H15/2 89.5 1 676.1 0.C 37 6F 3/2 75.5 1 6741.6 0.C 38 6H15/2 89.5 1 6741.6 0.C 39 6H15/2 89.5 1 6741.6 0.C 31 6H15/2 89.5 1 6771.6 0.C 31 6F 5/2 97.2 1 7114.2 0.C 31 6F 5/2 97.2 1 7114.2 0.C	12 6H 4/2	98.9		2524.0	0.0		
14 6H11/2 98.1 1 3634.3 0.C 15 6H11/2 98.4 1 3713.8 0.C 17 6H11/2 98.6 1 382C.0 0.C 18 6H11/2 98.6 1 382C.0 0.C 18 6H11/2 98.7 1 3861.0 0.C 19 6H3/2 99.0 1 4882.3 0.C 20 6H3/2 98.3 1 4977.6 0.C 21 6H13/2 97.7 1 5075.7 0.C 22 6H13/2 97.7 1 515.5 0.C 23 6H13/2 97.8 1 5155.5 0.C 24 6H13/2 98.6 1 5191.0 0.C 25 6H13/2 98.6 1 5191.0 0.C 25 6H13/2 98.2 1 5224.5 0.C 26 6H15/2 98.4 1 6267.1 0.C 27 6F 1/2 95.5 1 6364.0 0.C 28 6H15/2 98.2 1 6383.3 0.C 29 6H15/2 97.4 1 6516.8 0.C 30 6H15/2 97.8 1 6574.9 0.C 31 6H15/2 97.8 1 6574.9 0.C 32 6H15/2 97.8 1 6664.5 0.C 33 6F 3/2 77.5 1 676.1 0.C 35 6H15/2 97.8 1 6699.8 0.C 36 6H15/2 89.5 1 676.1 0.C 37 6F 3/2 75.5 1 6741.6 0.C 38 6H15/2 89.5 1 6741.6 0.C 39 6H15/2 89.5 1 6741.6 0.C 31 6H15/2 89.5 1 6771.6 0.C 31 6F 5/2 97.2 1 7114.2 0.C 31 6F 5/2 97.2 1 7114.2 0.C	13 6411/2	98.9	1	3566.7	0.0		
15 6H11/2 98.4 1 3713.8 0.0 1 16 6H11/2 98.2 1 3766.1 0.0 0.0 17 6H11/2 98.6 1 3820.0 0.0 18 6H11/2 98.7 1 3861.0 0.0 19 6H13/2 99.0 1 4882.3 0.0 19 6H13/2 98.3 1 4977.6 0.0 19 6H13/2 97.7 1 5075.7 0.0 19 6H13/2 97.7 1 5075.7 0.0 19 6H13/2 97.8 1 5155.5 0.0 19 6H13/2 97.8 1 5155.5 0.0 19 6H13/2 98.6 1 5191.0 0.0 19 6H13/2 98.2 1 5224.5 0.0 19 6H13/2 98.2 1 5224.5 0.0 19 6H15/2 98.2 1 5224.5 0.0 19 6H15/2 98.4 1 6364.0 0.0 19 6H15/2 97.8 1 6364.0 0.0 19 6H15/2 97.8 1 6364.0 0.0 19 6H15/2 97.8 1 6516.8 0.0 19 6H15/2 97.8 1 6516.8 0.0 19 6H15/2 97.8 1 6574.9 0.0 19 6H15/2 97.8 1 6574.9 0.0 19 6H15/2 97.8 1 6574.9 0.0 19 6H15/2 97.8 1 6664.5 0.0 19 6H15/2 97.8 1 6674.9 0.0 19 6H15/2 97.8 1 6672.1 0.0 19 6H15/2 97.8 1 6672.1 0.0 19 6H15/2 97.8 1 6726.1 0.0 19 6H15/2 97.2 1 7114.2							
16 6H11/2 98.2 1 3766.1 0.0 1 1 6H11/2 98.7 1 3861.0 0.0 1 1 98.7 1 3861.0 0.0 1 1 98.7 1 3861.0 0.0 1 1 98.7 1 3861.0 0.0 1 1 98.3 1 4977.6 0.0 1 1 98.3 1 4977.6 0.0 1 1 98.3 1 4977.6 0.0 1 1 98.3 1 1 97.7 1 1 90.7 1 90.7 1							
17 6H11/2 98.6 1 382C.0 0.C 18 6H11/2 98.7 1 3861.0 0.C 19 6H13/2 99.0 1 4882.3 0.C 20 6H13/2 98.3 1 4977.6 0.C 21 6H13/2 97.7 1 5075.7 0.0 22 6H13/2 98.4 1 5111.6 0.C 23 6H13/2 97.8 1 5155.5 0.C 24 6H13/2 98.6 1 5191.0 0.C 25 6H13/2 98.6 1 5191.0 0.C 26 6H15/2 98.4 1 6267.1 0.C 27 6F 1/2 95.5 1 6364.0 0.C 28 6H15/2 96.2 1 6383.3 0.C 29 6H15/2 98.2 1 6447.3 0.C 30 6H15/2 97.8 1 6516.8 0.C 31 6H15/2 97.8 1 6574.9 0.C 32 6H15/2 93.4 1 6664.5 0.C 33 6F 3/2 93.4 1 6699.8 0.C 34 6F 3/2 75.5 1 6726.1 0.C 35 6H15/2 89.5 1 6741.6 0.C 36 6H15/2 89.5 1 6741.6 0.C 37 6F 5/2 97.2 1 7114.2 0.C 38 6F 5/2 94.4 1 7153.8 0.C 38 6F 5/2 94.4 1 7153.8 0.C							
18 6H11/2 98.7 1 3861.0 0.0 19 6H13/2 99.0 1 4882.3 0.0 20 6H13/2 98.3 1 4977.6 0.0 21 6H13/2 97.7 1 5075.7 0.0 22 6H13/2 97.8 1 5155.5 0.0 23 6H13/2 98.6 1 5191.0 0.0 25 6H13/2 98.2 1 5224.5 0.0 26 6H15/2 98.4 1 6267.1 0.0 27 6F 1/2 95.5 1 6364.0 0.0 28 6H15/2 96.2 1 6383.3 0.0 29 6H15/2 97.4 1 6516.8 0.0 30 6H15/2 97.4 1 6516.8 0.0 31 6H15/2 97.8 1 6574.9 0.0 33 6F 3/2 91.4 1 6699.8 0.0 35 6H15/2 89.5 1 6726.1 0.0 36 6H15/2 89.5 1 6741.6 0.0 37 6F 5/2 89.5 1 6790.2 0.0 37 6F 5/2 97.2 1 7114.2 0.0 37 6F 5/2 97.2 1 7114.2 0.0 38 6F 5/2 94.4 1 7153.8 0.0							
19 6H13/2 99.0 1 4882.3 0.C 20 6H13/2 98.3 1 4977.6 0.C 21 6H13/2 97.7 1 5075.7 0.0 22 6H13/2 98.4 1 5111.6 0.C 23 6H13/2 98.6 1 5159.5 0.C 24 6H13/2 98.6 1 5191.0 0.C 25 6H13/2 98.2 1 5224.5 0.C 26 6H15/2 98.4 1 6267.1 0.C 27 6F 1/2 95.5 1 6364.0 0.C 28 6H15/2 98.2 1 6447.3 0.C 29 6H15/2 98.2 1 6447.3 0.C 30 6H15/2 97.4 1 6516.8 0.C 31 6H15/2 97.8 1 6574.9 0.0 32 6H15/2 97.8 1 6664.5 0.C 33 6F 3/2 75.5 1 6726.1 0.C 35 6H15/2 89.5 1 6726.1 0.C 36 6H15/2 97.8 1 6699.8 0.C 37 6F 3/2 75.5 1 6726.1 0.C 37 6F 5/2 89.5 1 6741.6 0.C 38 6H15/2 89.5 1 6741.6 0.C 39 6H15/2 89.5 1 6726.1 0.C 31 6F 5/2 97.2 1 7114.2 0.C 31 6F 5/2 97.2 1 7114.2 0.C							
20 6H13/2 98.3 1 4977.6 0.C 21 6H13/2 97.7 1 5075.7 0.0 22 6H13/2 98.4 1 5111.6 0.C 23 6H13/2 98.6 1 5191.0 0.C 24 6H13/2 98.6 1 5191.0 0.C 25 6H13/2 98.4 1 6267.1 0.C 26 6H15/2 98.4 1 6267.1 0.C 27 6F 1/2 95.5 1 6364.0 0.C 28 6H15/2 96.2 1 6383.3 0.C 29 6H15/2 98.2 1 6447.3 0.C 30 6H15/2 98.2 1 6447.3 0.C 31 6H15/2 97.4 1 6516.8 0.C 31 6H15/2 97.8 1 6574.9 0.0 32 6H15/2 97.8 1 6664.5 0.C 33 6F 3/2 75.5 1 6726.1 0.C 35 6H15/2 89.5 1 6726.1 0.C 36 6H15/2 89.5 1 6726.1 0.C 37 6F 3/2 75.5 1 6726.1 0.C 38 6F 5/2 97.2 1 7114.2 0.C 38 6F 5/2 97.2 1 7114.2 0.C 39 6F 5/2 97.2 1 7114.2 0.C	TH OHITTE	90.7		3001.0	0.0		
20 6H13/2 98.3 1 4977.6 0.C 21 6H13/2 97.7 1 5075.7 0.0 22 6H13/2 98.4 1 5111.6 0.C 23 6H13/2 97.8 1 5155.5 0.C 24 6H13/2 98.6 1 5191.0 0.C 25 6H13/2 98.4 1 6267.1 0.C 26 6H15/2 98.4 1 6267.1 0.C 27 6F 1/2 95.5 1 6364.0 0.C 28 6H15/2 96.2 1 6383.3 0.C 29 6H15/2 98.2 1 6447.3 0.C 30 6H15/2 97.4 1 6516.8 0.C 31 6H15/2 97.8 1 6574.9 0.C 32 6H15/2 97.8 1 6574.9 0.C 33 6F 3/2 97.8 1 6699.8 0.C 34 6F 3/2 75.5 1 6726.1 0.C 35 6H15/2 89.5 1 6741.6 0.C 36 6H15/2 89.5 1 6741.6 0.C 37 6F 5/2 97.2 1 7114.2 0.C 38 6F 5/2 97.2 1 7114.2 0.C	19 6413/2	99.0	1	4882.3	0.0		
21 6H13/2 97.7 1 5075.7 0.0 22 6H13/2 98.4 1 5111.6 0.0 23 6H13/2 97.8 1 5155.5 0.0 24 6H13/2 98.6 1 5191.0 0.0 25 6H13/2 98.2 1 5224.5 0.0 26 6H15/2 98.4 1 6267.1 0.0 27 6F 1/2 95.5 1 6364.0 0.0 28 6H15/2 96.2 1 6383.3 0.0 29 6H15/2 98.2 1 6447.3 0.0 30 6H15/2 97.4 1 6516.8 0.0 31 6H15/2 97.8 1 6574.9 0.0 32 6H15/2 93.4 1 6664.5 0.0 33 6F 3/2 91.4 1 6699.8 0.0 34 6F 3/2 75.5 1 6726.1 0.0 35 6H15/2 89.5 1 6741.6 0.0 36 6H15/2 89.5 1 6741.6 0.0 37 6F 5/2 89.5 1 6790.2 0.0 38 6F 5/2 97.2 1 7114.2 0.0 38 6F 5/2 97.4 1 7153.8 0.0							
22 6H13/2 98.4 1 5111.6 0.0 23 6H13/2 97.9 1 5155.5 0.0 25 6H13/2 98.6 1 5191.0 0.0 25 6H13/2 98.2 1 5224.5 0.0 26 6H15/2 98.4 1 6267.1 0.0 27 6F 1/2 95.5 1 6364.0 0.0 28 6H15/2 96.2 1 6383.3 0.0 29 6H15/2 98.2 1 6447.3 0.0 29 6H15/2 97.4 1 6516.8 0.0 31 6H15/2 97.8 1 6574.9 0.0 32 6H15/2 97.8 1 6574.9 0.0 32 6H15/2 93.4 1 6664.5 0.0 33 6F 3/2 91.4 1 6699.8 0.0 33 6F 3/2 91.4 1 6699.8 0.0 33 6F 3/2 91.4 1 6699.8 0.0 35 6H15/2 85.1 1 6726.1 0.0 36 6H15/2 85.1 1 6790.2 0.0 37 6F 5/2 97.2 1 7114.2 0.0 38 6F 5/2 97.2 1 7114.2 0.0 38 6F 5/2 94.4 1 7153.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0							
23 6H13/2 97.8 1 5155.5 0.0 c 24 6H13/2 98.6 1 5191.0 0.0 c 25 6H13/2 98.2 1 5224.5 0.0 c 26 6H15/2 98.4 1 6267.1 0.0 c 27 6F 1/2 95.5 1 6364.0 0.0 c 28 6H15/2 96.2 1 6383.3 0.0 c 29 6H15/2 98.2 1 6447.3 0.0 c 30 6H15/2 97.4 1 6516.8 0.0 c 31 6H15/2 97.8 1 6574.9 0.0 c 32 6H15/2 93.4 1 6664.5 0.0 c 32 6H15/2 93.4 1 6664.5 0.0 c 33 6F 3/2 91.4 1 6699.8 0.0 c 34 6F 3/2 75.5 1 6726.1 0.0 c 35 6H15/2 85.1 1 6790.2 0.0 c 37 6F 5/2 97.2 1 7114.2 0.0 c 38 6F 5/2 97.2 1 7114.2 0.0 c 38 6F 5/2 97.4 1 7153.8 0.0 c 38 6F 5/2 94.4 1 7153.8 0.0 c 38 6F							
24 6H13/2 98.6 1 5191.0 0.C 25 6H13/2 98.2 1 5224.5 0.C 26 6H15/2 98.4 1 6267.1 0.C 27 6F 1/2 95.5 1 6364.0 0.C 28 6H15/2 96.2 1 6383.3 0.C 29 6H15/2 98.2 1 6447.3 0.C 30 6H15/2 97.4 1 6516.8 0.C 31 6H15/2 97.8 1 6574.9 0.C 32 6H15/2 93.4 1 6664.5 0.C 33 6F 3/2 91.4 1 6699.8 0.C 34 6F 3/2 75.5 1 6726.1 0.C 35 6H15/2 89.5 1 6741.6 0.C 36 6H15/2 89.5 1 6741.6 0.C 37 6F 5/2 97.2 1 7114.2 0.C 38 6F 5/2 94.4 1 7153.8 0.C							
25 6H13/2 98.2 1 5224.5 0.0 26 6H15/2 98.4 1 6267.1 0.0 27 6F 1/2 95.5 1 6364.0 0.0 28 6H15/2 96.2 1 6383.3 0.0 29 6H15/2 98.2 1 6447.3 0.0 30 6H15/2 97.4 1 6516.8 0.0 31 6H15/2 97.8 1 6574.9 0.0 32 6H15/2 93.4 1 6664.5 0.0 33 6F 3/2 91.4 1 6699.8 0.0 34 6F 3/2 75.5 1 6726.1 0.0 35 6H15/2 89.5 1 6741.6 0.0 36 6H15/2 89.5 1 6741.6 0.0 37 6F 5/2 97.2 1 7114.2 0.0 38 6F 5/2 94.4 1 7153.8 0.0 0.0							
26 6H15/2 98.4 1 6267.1 0.0 27 6F 1/2 95.5 1 6364.0 0.0 28 6H15/2 96.2 1 6383.3 0.0 29 6H15/2 98.2 1 6447.3 0.0 30 6H15/2 97.4 1 6516.8 0.0 31 6H15/2 97.8 1 6574.9 0.0 32 6H15/2 93.4 1 6664.5 0.0 33 6F 3/2 91.4 1 6699.8 0.0 34 6F 3/2 75.5 1 6726.1 0.0 35 6H15/2 89.5 1 6741.6 0.0 36 6H15/2 89.5 1 6790.2 0.0 37 6F 5/2 97.2 1 7114.2 0.0 38 6F 5/2 94.4 1 7153.8 0.0							
27 6F 1/2 95.5 1 6364.0 0.0 28 6H15/2 96.2 1 6383.3 0.0 29 6H15/2 98.2 1 6447.3 0.0 30 6H15/2 97.4 1 6516.8 0.0 31 6H15/2 97.8 1 6574.9 0.0 32 6H15/2 93.4 1 6664.5 0.0 33 6F 3/2 91.4 1 6699.8 0.0 34 6F 3/2 75.5 1 6726.1 0.0 35 6H15/2 89.5 1 6741.6 0.0 36 6H15/2 89.5 1 6790.2 0.0 37 6F 5/2 97.2 1 7114.2 0.0 38 6F 5/2 94.4 1 7153.8 0.0	27 0111772	,0.2		222.00			
27 6F 1/2 95.5 1 6364.0 0.0 28 6H15/2 96.2 1 6383.3 0.0 29 6H15/2 98.2 1 6447.3 0.0 30 6H15/2 97.4 1 6516.8 0.0 31 6H15/2 97.8 1 6574.9 0.0 32 6H15/2 93.4 1 6664.5 0.0 33 6F 3/2 91.4 1 6699.8 0.0 34 6F 3/2 75.5 1 6726.1 0.0 35 6H15/2 89.5 1 6741.6 0.0 36 6H15/2 85.1 1 6790.2 0.0 37 6F 5/2 97.2 1 7114.2 0.0 38 6F 5/2 94.4 1 7153.8 0.0	26 6H15/2	98.4	1	6267.1	0.C		
28 6H15/2 96.2 1 6383.3 0.C 29 6H15/2 98.2 1 6447.3 0.C 30 6H15/2 97.4 1 6516.8 0.C 31 6H15/2 97.8 1 6574.9 0.C 32 6H15/2 93.4 1 6664.5 0.C 33 6F 3/2 91.4 1 6699.8 0.C 34 6F 3/2 75.5 1 6726.1 0.C 35 6H15/2 89.5 1 6741.6 0.C 36 6H15/2 85.1 1 6790.2 0.C 37 6F 5/2 97.2 1 7114.2 0.C 38 6F 5/2 94.4 1 7153.8 0.C							
29 6H15/2 98.2 1 6447.3 0.C 30 6H15/2 97.4 1 6516.8 0.C 31 6H15/2 97.8 1 6574.9 0.C 32 6H15/2 93.4 1 6664.5 0.C 33 6F 3/2 91.4 1 6699.8 0.C 34 6F 3/2 75.5 1 6726.1 0.C 35 6H15/2 89.5 1 6741.6 0.C 36 6H15/2 89.5 1 6790.2 0.C 37 6F 5/2 97.2 1 7114.2 0.C 38 6F 5/2 94.4 1 7153.8 0.C	27 6F 1/2	95.5	1	6364.0	0.C		
29 6H15/2 98.2 1 6447.3 0.C 30 6H15/2 97.4 1 6516.8 0.C 31 6H15/2 97.8 1 6574.9 0.C 32 6H15/2 93.4 1 6664.5 0.C 33 6F 3/2 91.4 1 6699.8 0.C 34 6F 3/2 75.5 1 6726.1 0.C 35 6H15/2 89.5 1 6741.6 0.C 36 6H15/2 89.5 1 6790.2 0.C 37 6F 5/2 97.2 1 7114.2 0.C 38 6F 5/2 94.4 1 7153.8 0.C							
30 6H15/2 97.4 1 6516.8 9.0 31 6H15/2 97.8 1 6574.9 0.0 32 6H15/2 93.4 1 6664.5 0.0 33 6F 3/2 91.4 1 6699.8 0.0 34 6F 3/2 75.5 1 6726.1 0.0 35 6H15/2 89.5 1 6741.6 0.0 36 6H15/2 85.1 1 6790.2 0.0 37 6F 5/2 97.2 1 7114.2 0.0 38 6F 5/2 94.4 1 7153.8 0.0							
31 6H15/2 97.8 1 6574.9 0.0 32 6H15/2 93.4 1 6664.5 0.0 33 6F 3/2 91.4 1 6699.8 0.0 34 6F 3/2 75.5 1 6726.1 0.0 35 6H15/2 89.5 1 6741.6 0.0 36 6H15/2 85.1 1 6790.2 0.0 37 6F 5/2 97.2 1 7114.2 0.0 38 6F 5/2 94.4 1 7153.8 0.0							
32 6H15/2 93.4 1 6664.5 0.0 33 6F 3/2 91.4 1 6699.8 0.0 34 6F 3/2 75.5 1 6726.1 0.0 35 6H15/2 89.5 1 6741.6 0.0 36 6H15/2 85.1 1 6790.2 0.0 37 6F 5/2 97.2 1 7114.2 0.0 38 6F 5/2 94.4 1 7153.8 0.0	30 6H15/2	97.4	1				
33 6F 3/2 91.4 1 6699.8 0.0 34 6F 3/2 75.5 1 6726.1 0.0 35 6H15/2 89.5 1 6741.6 0.0 36 6H15/2 85.1 1 6790.2 0.0 37 6F 5/2 97.2 1 7114.2 0.0 38 6F 5/2 94.4 1 7153.8 0.0	31 6415/2			6574.9			
34 6F 3/2 75.5 1 6726.1 0.0 35 6H15/2 89.5 1 6741.6 0.0 36 6H15/2 85.1 1 6790.2 0.0 37 6F 5/2 97.2 1 7114.2 0.0 38 6F 5/2 94.4 1 7153.8 0.0	32 6H15/2	+3.4	. 1	6664.5	0.C		
34 6F 3/2 75.5 1 6726.1 0.0 35 6H15/2 89.5 1 6741.6 0.0 36 6H15/2 85.1 1 6790.2 0.0 37 6F 5/2 97.2 1 7114.2 0.0 38 6F 5/2 94.4 1 7153.8 0.0				4400 0	0.0		
35 6H15/2 89.5 1 6741.6 0.0 36 6H15/2 85.1 1 6790.2 0.0 37 6F 5/2 97.2 1 7114.2 0.0 38 6F 5/2 94.4 1 7153.8 0.0							
36 6H15/2 85.1 1 679C.2 0.0 37 6F 5/2 97.2 1 7114.2 0.0 38 6F 5/2 94.4 1 7153.8 0.0	34 6F 3/2	75.5	1	6726.1	9.0		
36 6H15/2 85.1 1 679C.2 0.0 37 6F 5/2 97.2 1 7114.2 0.0 38 6F 5/2 94.4 1 7153.8 0.0	16 4015/1	90 6	,	6741 4	0.0		
37 6F 5/2 97.2 1 7114.2 0.0 38 6F 5/2 94.4 1 7153.8 0.0							
38 6F 5/2 94.4 1 7153.8 0.C	36 6H15/2	85.1	1	0140.2	0.0		
38 6F 5/2 94.4 1 7153.8 0.C	17 45 5/2	97.2	,	7114.2	0.0		
18 of 2/2							
39 65 3/2 70+1 1 1100+7				and the same			
	39 6F 5/2	90.1		1100.9	0.0		

TABLE VIII. ESTIMATED CRYSTAL FIELD PARAMETERS AND ENERGY LEVELS FOR $\mathsf{SmP}_5\mathsf{O}_{14}$

FRE	E	ION	PCT	PURE	2 MU	THE	O.ENERGY	EXP. ENERGY	•
40	6F	7/2		98	3.5	1	1967.	4	0.C
	-	7/2		98	3.7	1	8009.	0	0.C
		7/2		99	0.0	1	8026.	5	0.0
43	6F	7/2		9.6	1.5	1	8063.	8	0.C
44	6F	9/2		99	.5	1	9107.	9	0.C
45	6F	9/2		99	.5	1	9134.	2	0.0
46	6F	9/2		99	. 4	1	9179.	4	0.C
47	6F	9/2		99	1.1	1	9194.	1	0.0
48	6F	9/2		99	. 3	1	9219.	2	0.0

TABLE IX. ENERGY LEVELS AND PHENOMENOLOGICAL B_{km} for Eu^{3+} IN $EuP_5O_{14}^{a}$

	M AND CENTRO	IDS. Q	= 13.182		ND HOME. 9/22975.	
		-212.65		-83.130 = 840	-751.307 = 642	-79.150 = 842
	26 = 860	117.952	2 = 862	-387.768 = B62	80.858 = B64	-67.600·= B64
7F 0	31.5			101 17 - 044		
7F 1	405.1		A = 644	-183.577 = 844		
7F 2	1071.3	457.16	4 = 466	2.400 = 866		
7F 3	1935.4					
7F 4	2900.5					
7F 5 7F 6	3919.3 5003.1					
FREE ION	PCT PURE 2		ENERCY I	END ENERCY		
1 7F 0	97.9		0.0	0.0		
		•	0.0	3.0		
2 7F 1	99.2	0	272.1	271.C		
3 7F 1	98.1	2	388.8	392.0		
4 7F 1	97.4	2	476.3	474.0		
5 7F 2	98.9	0	951.8	937.C*		
6 7F 2	97.0	2	971.3	960.0		
7 7F 2	97.5	2	1061.3	1070.0		
8 7F 2	95.0	0	1091.7	1097.0		
9 7F 2	95.8	0	1168.2	1180.0		
10 7F 3	98.5	2	1854.8	1869.0*		
11 7F 3	97.9	0	1886.2	1876.C		
12 7F 3	94.6	2	1902.1	1890.C		
3 7F 3	93.4	0	1911.9	1919.0		
14 7F 3	97.0	2	1960.6	1928.0*		
15 7F 3	94.7		1970.6	1982.0		
16 7F 3	97.6	2	1991.2	2012.0*		
	27 1	0	27/2 2	27/1 0		
17 7F 4	97.3	0 2	2742.2	2741.C		
18 7F 4	95.5	0	2783.9	2794.0 2811.0*		
19 7F 4	97.9 95.9	2	2833.6 2837.4	2844.0		
21 7F 4	96.5	0	2877.9	2869.0		
22 7F 4	95.4	0	2969.2	2973.C		
23 7F 4	97.4	2	2974.7	2979.0		
24 7F 4	97.8	2	3002.5	3007.0		
25 7F 4	97.8	ō	3037.8	3040.0		
.,	,,,,	•	3031.0	304360		
26 7F 5	98.7	2	3754.2	3748.0		
7 7F 5	98.1	2	3776.9	3774.C		
28 7F 5	96.6		3839.7	3864.C*		
29 7F 5	96.4	0	3900.7	3893.C		
30 7F 5	94.8	0	3911.8	3907.0		
31 7F 5	94.3	2	3919.3	3918.0		
32 7F 5	97.3	2	3946.5	3929.0*		
33 7F 5	98.5	2	3983.1	3984.C		
34 7F 5	96.3	0	4006.2	4018.0		
35 7F 5	91.4	0	4045.8	4049.C		
36 7F 5	97.9	2	4059.4	4061.C		
37 7F 6	99.2	0	4811.7	4798 · C*		
38 7F 6	99.1	0	4812.7	4811.C		
39 7F 6	98.6	2	4907.4	4928.C*		
40 7F 6	98.4	2	4913.4	4952.0*		
41 7F 6	99.1	0	4966.4	4962.C		
42 7F 6	99.2	2	4972.2	4980.6		

aThe least-rms deviation between the calculated and experimental energy levels is 10.43 cm $^{-1}$ (C. Brecher, J. Chem. Phys., <u>61</u> (1974), 2297).

TABLE IX. ENERGY LEVELS AND PHENOMENOLOGICAL $\rm B_{km}$ FOR Eu $^{3+}$ IN EuP $_{5}\rm O_{14}^{a}$ (Cont'd)

FREE 1	ON PCT	PURE 2MU	THEO. ENERGY	EXP. ENERGY
43 7F	6	97.8	0 5024.2	4993.C*
44 7F	TO	96.1	0 5047.6	5042.0
45 7F		97.0	2 5064.1	5057.0
46 7F		97.3	0 5145.6	5138.C
47 7F		97.5	2 5148.4	5160.C
48 7F		99.4	2 5266.6	5250.0*
49 7F		99.4	0 5266.9	5277.0

 $[^]a$ The least-rms deviation between the calculated and experimental energy levels is 10.43 cm $^{-1}$ (C. Brecher, J. Chem. Phys., 61 (1974), 2297).

TABLE X. ESTIMATED CRYSTAL FIELD PARAMETERS AND ENERGY LEVELS FOR $\mathsf{EuP}_5\mathsf{0}_{14}$

			5014. EXTE				COMPATIBL	E ND AND	EU HOMES.	9/24/75		
IN			M AND CENTR CO = B20		6.800 =		-140.400	= 840	696.100	= 842	81.700 =	842
			00 = 860		4.300 =		340.900		245.000		-202.000 =	
7F	0		96.0				238.100		-352.800	- 0//		
7F			473.0				-330.400		-49.000			
7F			1175 . C						4 7.000	- 000		
7 F			1998.C									
7F			3000.0									
75			4073.C 5094.0									
50		3	17220.0									
50		3	18960.0									
50	2	3	21422.0									
50		3	24653.0									
		ION	PCT PURE									
1	7F	0	77.	6	0	61.1		0.C				
,	75	1	99.	,	0	321.6		0.0				
	75		97.		2	478.7		0.0				
	7F		96.		2	531.7		0.0				
	7F		96.		2	1062.3		0.C				
	7F		98.		0	1065.2		0.0				
	7F		96.		2	1159.2		0.C				
	7F		93.		0	1179.9		0.0				
,	,,	-	,,,	,	•	1203.1		5.0				
10	7F	3	,98.	2	2	1918.5		0.0				
11	7F	3	97.	3	0	1955.4		0.C				
	7 F		95.		2	1967.1		0.C				
	7F		92.		0	1787.1		0.0				
	7F		96.		2	2019.3		0.0				
	75		94.		0	2034.3		0.0				
10		,	,		•	20.11.0		0.0				
17	76	4	97.	4	0	2835.2		0.0				
	7F		95.		2	2885.7		0.C				
	7F		97.		0	2916.0		0.0				
	7F	4	95.	, ,	0	2955.9		0.0				
	7F		16.		0	3066.5		0.0				
23		4	97.		2	3073.1		0.0				
24	76	4	97.		2	3082.5		0.C				
25	7F	4	97.	5	0	3143.2		0.C				
21	7.		98.			2000 -		2.6				
	7F 7F		97.		2	3906.5		0.0				
28		5	14.		0	4016.5		0.0				
29		5	96.		0	4027.4		0.0				
30	7F	5	13.	2	2	4030.4		0.0				
31		5	94.		0	4045.4		0.C				
32		5	97.		2	4104.5		0.C				
33	7F	5	97.		2	4129.9		0.0				
	7F		97.		0	4212.7		0.0				
	7F	5	98.		2	4236.4		0.0				
	7F		99.		0	4477.4		0.C				
	7F		99.		0	4879.5		0.C				
	7F	_	98.		2	4981.0		0.0				
	7F 7F		98.		0	4986.2		0.0				
	7F		98.		2	5092.3		0.0				
	7F		96.		0	5126.4		0.0				

TABLE X. ESTIMATED CRYSTAL FIELD PARAMETERS AND ENERGY LEVELS FOR $\mathrm{EuP}_5\mathrm{O}_{14}$ (Cont'd)

FRE	E	ION	PCT	PURE 2MU	1	HEO . ENERGY	EXP. ENERGY
44	7F	6		96.5	0	5156.7	0.0
45	7F	6		96.6	2	5190.9	0.0
46	7F	6		98.0	2	5244.8	0.0
47	7F	6		98.0	U	5249.4	0.0
48	7F	6		99.4	2	5349.1	0.0
49	7F	6		99.4	0	5349.2	0.0
50	50	0	3	100.0	0	17219.4	0.0
51	50	1	3	100.0	0	18920.9	0.0
52	50	1	3	100.0	2	18968.9	0.0
53	50	1	3	100.0	2	18988.6	0.C
54	50	2	3	100.0	2	21401.2	0.0
55	50	2	3	100.0	0	21404.2	0.0
56	5D	2	3	100.0	0	21418.5	0.0
57	50	2	3	100.0	2	21439.8	0.0
58	50	2	3	100.0	0	21445.2	0.C
59	50	3	3	100.0	2	24618.2	0.0
60	50	3	3	100.0	2	24629.1	0.0
61	50	3	3	100.0	0	24651.3	0.0
62	50	3	3	100.0	0	24651.9	0.0
63	50	3	3	100.0	2	24655.4	0.0
64	50	3	3	100.0	0	24683.7	0.0
65	50	3	3	100.0	2	24684.9	0.C

TABLE XI. ESTIMATED CRYSTAL FIELD PARAMETERS AND ENERGY LEVELS FOR $\mathsf{GdP}_5\mathsf{0}_{14}$

					NO AND EU HOMES	. 9/24/75	
	M AND CENTROL						
		131.000		-133.700 =		0 = 1,42	-487.100 = 842
		346.300	= 862	-51.700 =	862 257.70	0 = 864	-170.700 = 864
85 7/2	0.0	27/ 800	- 3//	-296.500 =	0//		
6P 7/2		276.800		114.700 =			
6P 5/2 6P 3/2		104.200	- 500	114.700 -	506		
61 7/2	33289.0 35865.0						
61 9/2	36217.0						
6117/2	36448.0						
6111/2	36516.0						
6113/2	36700.0						
6115/2	36711.0						
FREE ION		THEO.	ENERGY	EXP. ENERGY			
1 85 7/2	100.0	1	-0.	4 0	. C		
2 85 7/2	100.0	1	- C		• C		
3 AS 7/2	100.0	1	C.	0	• C		
4 85 7/2	100.0	1	C.	3 0	. C		
5 6P 7/2	99.8	1	32137.		• C		
6 6P 7/2	99.7	1	32177.		• C		
7 6P 7/2	99.6	1	32213.		. C		
8 6P 7/2	99.8	1	32272.	0	• C		
9 6P 5/2	99.6	1	32713.0	2 0	. C		
10 6P 5/2	98.6	i	32733.		. C		
11 6P 5/2	99.4	i	32777.		. C		
11 0, 1/2			721110		• •		
12 6P 3/2	98.9	1	33261.	1 0	. C		
13 6P 3/2	19.4	1	33299.	3 0	.0		
14 61 7/2	100.0	1	35842.		• C		
15 61 7/2	99.9	1	35863.		• C		
16 61 7/2	39.8	1	35877.		• C		
17 61 7/2	99.9	1	35886.	9 0	• C		
			2.100		•		
18 61 9/2	99.9	1	36188.		• C		
19 61 9/2 20 61 9/2	99.9	1	36205.0		. C . C		
21 61 9/2	39.7	i	36231.		. C		
22 61 9/2	99.8	i	36245.		. C		
22 01 772	,,,,		30	,			
23 6117/2	38.6	1	36445.	5 0	• C		
24 6117/2	98.7	1	36445.	7 0	. C		
25 6117/2		1	36446.		• C		
26 6117/2	39.2	1	36446.				
27 6117/2	99.0	1	36447.		. C		
28 6117/2	39.1	1	36448.		• C		
29 6117/2	98.2	1	3645C.		• C		
30 6117/2	19.0	1	36453.				
31 6117/2	99.1	1	36455.	, 0	• C		
32 6111/2	97.5	. 1	36485.	5 0	. C		
33 6111/2		i	36502.	7	.0		
34 6111/2	18.9	i	36511.				
35 6111/2		i	36527.				
36 6111/2		i	36535.		• C		
37 6111/2		1	36546.		• 0		
38 6113/2	88.3	1	36666.	0	. C		
39 6113/2	98.6	1	36681.	9 0	• C		
40 6113/2		1	36686.4		• C		
41 6113/2	52.0	1	3669C.	0	• C		
42 6115/2	57.0	1	36693.6		• C		
43 6115/2	92.6	1	36701.		• C		
44 6115/2	65.9	1	36706.	, 0	• C		

TABLE XI. ESTIMATED CRYSTAL FIELD PARAMETERS AND ENERGY LEVELS FOR $\mathsf{GdP}_5\mathsf{O}_{14}$ (Cont'd)

FRE	E	ION	PCT	PURE	2MU	T	HEO. ENERGY	EXP. ENERGY
45	61	15/2		74.	3 .	1	36710.6	0.0
46	61	15/2		54.	3	1	36713.1	0.0
47	61	13/2		65.	н	1	36717.5	0.0
48	61	13/2		55.	9	1	36723.0	0.0
49	61	15/2		50.	.6	1	36726.3	0.0
50	61	15/2		79.	3	1	36731.2	0.0
51	61	15/2		80.	9	1	36741.8	0.0
52	61	15/2		57.	0	1	36743.5	0.0

TABLE XII. ESTIMATED CRYSTAL FIELD PARAMETERS AND ENERGY LEVELS FOR ${\rm TbP}_5{\rm O}_{14}$

-622.500 = 242 206.700 = 860 -9.200 = B62 -34C.200 = 862 266.500 = 864 -138.400 = 864 7F 6 310.0 7F 5 2347.0 -332.400 = 344 192.400 = 444 3580.0 -203.900 = H66 241.300 = 866 7F 3 7F 2 5155.0 7F 1 54 32.0 7F 0 5766.0 50 4 20569.0 50 3 26357.0 FREE ION PCT PURE 2MU THEO. ENERGY EXP. ENERGY 1 7F 6 2 7F 6 88.8 89.4 170.7 99.6 2 0.0 99.6 0 0.0 6 99.3 0 0.0 4 7F 6 192.7 0.0 5 7F 6 99.3 215.9 6 7F 6 7 7F 6 8 7F 6 9 7F 6 99.6 0 265.6 0.0 99.8 2 289.1 0.0 99.0 0 311.1 0.0 99.3 0 313.4 0.0 10 7F 99.8 441.6 0.0 11 7F 79.8 447.8 0.0 12 7F 6 13 7F 6 0 99.8 515.8 99.8 518.4 14 7F 5 98.7 2196.0 0.0 15 7F 5 98.6 2213.3 0.0 16 7F 5 17 7F 5 97.9 0 2249.5 0.0 98.9 2294.8 0.0 18 7F 5 19 7F 5 2298.9 96.7 0 2322.9 98.6 0.0 20 7F 99.2 0 2381.1 3.C 21 7F 5 22 7F 5 23 7F 5 98.7 2387.9 0.0 98.7 2444.4 99.1 2465.0 0.0 24 7F 5 99.4 2489.1 25 7F 4 97.8 0 3404.3 0.0 26 7F 4 97.5 3495.5 27 7F 4 95.2 3543.6 28 7F 4 97.1 3547.1 0.0 29 7F 4 30 7F 4 97.3 3595.3 0.0 99.3 0 3603.7 0.0 7F 4 99.6 0 3658.3 0.0 0 98.0 3720.2 0.0 34 7F 3 97.0 4522.0 0.0 35 7F 3 36 7F 3 37 7F 3 91.5 0 4528.0 0.0 2 0.0 0 96.4 0.0 4578.2 38 7F 4592.2 92.5 0 39 7F 4593.5 0.0 40 7F 97.7 2 4647.0 0.0 41 7F 2 42 7F 2 0 5067.6 93.4 0.0 91.5 5137.1 0.0 43 75 11.2 5177.6 76 94.9 5217.1 45 7F 80.8 525C.1 5393.4 AC.A 0.0 46 7F 1 2 47 7F 89.9 1 5451.8 98.0 5579.1

TABLE XII. ESTIMATED CRYSTAL FIELD PARAMETERS AND ENERGY LEVELS FOR ${\rm TbP}_5{\rm O}_{14}$ (Cont'd)

FRE	E	ION	PCT	PURE 2ML	TH	EO.ENERGY	EXP. ENERGY
49	76	0		94.0	0	5812.3	0.0
50	50	4	3	100.0	0	20517.2	0.0
51	50	4	3	100.0	2	20524.2	0.C
52	50	4	3	100.0	0	20546.1	0.0
53	50	9	3	100.0	2	20549.3	C.C
54	50	4	3	100.0	0	20563.2	0.0
55	50	4	3	100.0	2	20581.8	0.C
56	50	4	3	100.0	2	20587.1	0.0
57	50	4	3	100.0	0	20623.3	0.0
58	50	4	3	100.0	0	20626.8	0.0
59	51	3	3	100.0	2	26347.7	0.0
60	50	3	3	100.0	0	26348.7	0.0
61	50	3	3	100.0	0	26351.2	0.0
62	51	3	3	100.0	2	26354.4	0.0
63	50	3	3	100.0	2	26362.5	0.0
64	50	3	3	100.0	2	26368.4	0.0
65	50	3	3	100.0	0	26368.6	0.0

TABLE XIII. ESTIMATED CRYSTAL FIELD PARAMETERS AND ENERGY LEVELS FOR $^{\circ}$ DyP5014

	M AND CENTRO			COMPATIBLE NO AND	EU HOMES. 9/24/	5.
	00 = 820		0 = B22	-119.300 = B40	-535.200 = H42	-262.000 = E42
	00 = 860		0 = 862	-66.4CC = 862	271.300 = #64	
6H15/2	262.0					
6H13/2	3710.0		0 = 344	345./00 = 344		
6H11/2 6F11/2	6028.0 7830.0	-58.80	0 = 366	301.100 = 866		
6H 9/2	7879.0					
6F 9/2	9188.0					
6H 7/2	9243.0					
6H 5/2	10340.0					
6F 7/2	110/1.0					
6F 5/2 FREE ION	12462.0 PCT PURE 2N	MII THE	D ENERGY F	XP ENERCY		
1 6H15/2	100.0		32.7			
2 6415/2	19.9	1	137.8	0.0		
3 6H15/2	19.9	1	176.0	0.0		
4 6H15/2	99.1	1	230.2	0.0		
5 6H15/2	99.9	1	262.2	0.0		
6 6H15/2 7 6H15/2	19.9	1	311.5 378.4	0.0		
8 6H15/2	19.9	1	508.0	0.0		
0001372			,,,,,			
9 6H13/2	99.9	1	3554.6	0.0		
10 6413/2	19.7	1	3622.6	0.C		
11 6H13/2	99.6	1	3672.3	0.C		
12 6H13/2	99.8	1	3686.2	0.0		
13 6H13/2 14 6H13/2	99.6	1	3725.9	0.0		
15 6113/2	99.7	i	3861.9	0.0		
16 6H11/2	19.4	1	5923.2	0.0		
17 6H11/2	99.2	1	5957.9	0.0		
18 6H11/2	19.2	1	5971.9 6015.8	0.0		
20 6H11/2	99.2	1	6093.6	0.C		
21 6H11/2	99.5	i	6156.8	0.0		
22 6F11/2	59.4	-1	7704.5	0.0		
23 6F11/2 24 6F11/2	49.7 56.7	1	7734.5	0.0		
25 6F11/2	52.8	1	7783.4	0.0		
26 6F 11/2	78.2	i	781C.5	0.0		
27 6F11/2	73.1	1	7833.0	0.0		
28 6F11/2	67.6	1	7872.3	0.C		
22 44 642			7900.9	0.0		
29 6H 9/2	64.4	1	7900.9	0.0		
30 6F11/2	65.1	1	7944.7	0.0		
31 6H 9/2	70.7	1	1971.5	0.0		
32 6H 9/2	66.7	1	8047.3	0 • C		
33 6F 9/2	53.6	1	9058.6	0.0		
34 6H 7/2	58.7	1	9107.7	0.0		
35 6F 9/2	62.3	1	9144.5	0.0		
36 6F 9/2	87.3	i	9182.5	0.0		
37 6F 9/2	87.9	i	9211-1	0.0		
38 6F 9/2	78.8	i	9235.3	0.0		
39 6H 7/2 40 6H 7/2	61.9	1	9281.6	0.C 0.C		
41 6H 7/2	83.9	i	9392.1	0.0		
	73.7		,,,,,,,			

TABLE XIII. ESTIMATED CRYSTAL FIELD PARAMETERS AND ENERGY LEVELS FOR $_{\mbox{\scriptsize DyP}_5\mbox{\scriptsize 0}_{14}}$ (Cont'd)

FR	EE	ION	PCT	PURE	ZMU		THEO. ENERGY	EXP. ENERGY	
42	6H	5/2		96.	9	1	10228.6	. 0	. C
200,000	-	5/2		97.	.7	1	10332.4	0	. C
		5/2		95.	. 3	1	10464.7	0	. C
45	6F	7/2		97.	. 6	1	11057.1	0	.0
	-	7/2		99.	. 1	1	11085.1	0	. C
47	6F	7/2		97.	. 5	1	11102.0	0	.0
48	6F	7/2		98.	. 7	1	11122.1	0	. C
49	66	5/2		99.	. 6	1	12447.9	0	. C
		5/2		99.	. 8	1	12482.5	0	. C
		5/2		99.	. 6	1	12495.9	0	. C

TABLE XIV. ESTIMATED CRYSTAL FIELD PARAMETERS AND ENERGY LEVELS FOR ${\rm HoP}_50_{14}$

HC IN HOR	5014 EVIEN	OLATED	3 KM	MOATIBLE NO AND	EU HOMES - 9/24/75	
	M AND CENTRO			MEATIBLE NO AND	EU M.MES. 3724713	
-550.8	00 = 820	111.700		111.40C = B40	-493.800 = 842	256.500 = 842
		117.900	= 862	297.400 = B62	272.200 = 864	-75.500 = 864
51 8	169.6					
51 7 51 6	5219.5 8717.6) = 544	-25.000 = 844		
51 5	11274.7	92.30) = 866	282.500 = 866		
51 4	13333.4					
FREE ION	PCT PURE 2N		. ENERGY EX	P. ENERGY		
1 51 8	100.0	C	17.0	0.0		
2 51 8	100.0	2	10.7	0.0		
3 51 8 4 51 8	100.0		31.4 4C.7	0.0		
5 51 8	100.0		69.1	0.0		
6 51 8	100.0		102.6	0.0		
7 51 8	100.0		138.4	0.0		
8 51 8	100.0		167.3 17C.2	0 • C		
9 51 8		0				
10 51 8	100.0		201.6	0.0		
11 51 8	100.0	0	226.8	0.0		
13 51 8	100.0		247.3	0.0		
14 51 8	100.0	2	275.8			
15 51 8	100.0		286.3	0.0		
16 51 8	100.0		303.3	C.C		
17 51 8	100.0	0	306.6	0.0		
18 51 7	100.0	^	5136.6	0.0		
19 51 7	100.0		5138.7	0.0		
20 51 7	100.0		5183.1	0.0		
21 51 7	99.9		5183.3	0.0		
22 51 7	99.9	2	5197.2	0 • C		
23 51 7	19.9		5197.7	0.0		
24 51 7	99.9		5205.0	0.0		
25 51 7 26 51 7	100.0		5205.0 522H.3	0.C 0.C		
27 51 7	99.9		5232.5	0.0		
28 51 7	99.9		5240.4			
29 51 7	99.9	0	526H.2 5269.7	0.C		
30 51 7	99.9		5269.7	0.0		
31 51 7		2	5296.3 5296.4	. 0.C		
32 51 7	100.0	2	3290.4	0.0		
33 51 6	99.9	2	8639.8	0.0		
34 51 6	94.9		864C.7	0.0		
35 51 6	99.9		8689.3	0.0		
36 51 6 37 51 6	99.9		864C.7 8689.3 8692.5 8705.5	0.0		
38 51 6	99.8		8705.5 8704.3 8715.4 8726.4 8735.0	0.0		
39 51 6	99.8		8715.4	0.0		
40 51 6	99.8	2	872C-4	0.C		
41 51 6	99.9					
42 51 6	99.8	2	8745 Q	0.0		
43 51 6	99.8	0	8751.4	0.0		
45 51 6	99.9	0	8751.4 8788.5 8790.0	0.0		
,, ,, ,	,,.,		0.70.0	"• •		
46 51 5	99.7	0	11209.3	0.0		
47 51 5	99.9		11711.4	ò.c		
48 51 5	99.8		11254.2	0.0		
49 51 5	79.6	2	11256.7	0.0		
50 51 5	99.8, 99.7	2	11265.3	0.C 0.0		
52 51 5	99.9	2	11285.4	0.0		
53 51 5	99.5	o	11288.4	0.0		
54 51 5	99.8	0	11305.7	0.C		

TABLE XIV. ESTIMATED CRYSTAL FIELD PARAMETERS AND ENERGY LEVELS FOR ${\rm HoP}_5{\rm O}_{14}({\rm Cont'd})$

FRI	EE	ION	PCT	PURE	ZMU		THEO. ENERGY	EXP. ENERGY
55	51	5		99.	.5	2	11332.2	0.0
56	51	5		99.	.)	2	11341-1	0.0
57	51	4		99.	. 8	0	13244.2	0.0
58	51	4		99.	. 7	2	13744.6	0.0
59	51	4		99.	8	0	13285.0	0.0
60	51	4		99.		0	13298.7	0.C
61	51	4		99.	.5	2	13328.1	0.C
62	51	4		99.	8	2	13336.7	0.0
63	51	4		99.	9	2	13426.9	0.0
64	51	4		99.	. 8	0	13427.6	0.0
65	51	4		100.	.0	0	13462.8	0.0

TABLE XV. ESTIMATED CRYSTAL FIELD PARAMETERS AND ENERGY LEVELS FOR ErP₅0₁₄

507.700 = 842 162.3CC = B62 -45.200 = P64 4115/2 263.0 47.200 = 344 210.800 = 366 -308.5CC = 644 195.1CO = 866 4113/2 6736.0 4111/2 10346.0 41 9/2 4F 9/2 12560.0 15365.0 45 3/2 18444.0 2H11/2 2 19190.0 4F 7/2 20582.0 4F 5/2 4F 3/2 22230.0 22561.0 FREE ION PCT PURE 2MU THEO. ENERGY EXP. ENERGY 100.0 1 87.5 1 4115/2 87.5 0.0 0.C 3 4115/2 100.0 199.3 0.C 4 4115/2 100.0 0.C 5 4115/2 100.0 306.1 0.C 6 4115/2 100.0 1 337.9 0.0 7 4115/2 100.0 1 369.€ 0.0 8 4115/2 413.5 1 0.0 100.0 100.0 0.0 9 4113/2 1 6632.6 10 4113/2 19.9 0.0 6668.6 11 4113/2 79.9 6717.9 0.C 12 4113/2 99.9 6733.3 0.0 13 4113/2 0.0 100.0 6782.0 14 4113/2 6795.0 0.0 100.0 100.0 6404.2 0.0 16 4111/2 99.9 10289.2 0.0 17 4111/2 18 4111/2 99.9 10316.4 0.0 99.3 1034C.7 0.0 19 4111/2 10363.9 0.C 1 20 4111/2 99.9 10372.1 0.0 100.0 10389.6 22 41 9/2 99.9 12458.6 0.0 23 41 9/2 24 41 9/2 25 41 9/2 99.1 12477.0 0.0 12585.7 0.0 100.0 12612.5 0.0 100.0 100.0 12661.7 0.C 27 4F 9/2 28 4F 9/2 29 4F 9/2 30 4F 9/2 99.9 15289.2 0.0 100.0 1 15344.6 0.C 15362.0 0.0 100.0 99.9 15407.1 0.0 99.4 0.0 32 45 3/2 33 45 3/2 18409.0 98.9 1 18468.4 0.0 34 2H11/2 2 35 2H11/2 2 0.0 19.1 19144.8 74.3 19164.0 0.0 36 2H11/2 2 99.7 19168.3 0.0 37 2H11/2 99.6 19198.9 0.0 38 2111/2 2 99.2 19223.8 0.0 19250.2 39 2H11/2 2 79.5 0. C 40 4F 7/2 41 4F 7/2 42 4F 7/2 43 4F 7/2 99.8 0.0 20515.6 20563.8 99.5 20598.1 0.C 99.5 99.7 0.0

TABLE XV. ESTIMATED CRYSTAL FIELD PARAMETERS AND ENERGY LEVELS FOR ${\rm ErP}_50_{14}$ (Cont'd)

FR	EE	ION	PCT	PURE	2MU	T	HEO.ENERGY	EXP. ENERGY	
44	4F	5/2		99.	. 5	1	2221C.	3 0	. C
45	4F	5/2		97.	. 6	1	22222.8	9 0	. C
46	4F	5/2		99.	. 4	1	22258.	9 0	. C
47	4F	3/2		98.	. 1	1	22521.0	0	. c
48	4F	3/2		97.	. 7	1	22615.0	0	. C

TABLE XVI. ESTIMATED CRYSTAL FIELD PARAMETERS AND ENERGY LEVELS FOR $^{\circ}$ $\mathrm{TmP}_{5}\mathrm{O}_{14}$

				COMPATIBLE NO A	AND EU HOMES.	3/24/75.	
	M AND CENTROL						
-476.6	00 = 820	96.600 =	022	-93.700 = 940			333.600 = 842
101.1	- 600	198.300 =	H62	-222.500 = 862	262.700	= 864	-16.200 = 864
3H 6	255.0	244 000					
3F 4	5820.0 -	264.000 =	344	-104.700 = 34			
3H 5 3H 4	8435.0 12731.0	264.100 =	000	65.300 = H6	5		
3F 3	14529.0						
3F 2	15133.0						
16 4	21325.0						
1D 2	27892.0						
	PCT PURE 2M	U THEO.E	NERGY I	EXP. ENERGY			
1 3H 6	100.0		-1.3				
2 3H 6	100.0	0	9.3				
3 3H 6	100.0		143.9				
4 3H 6	100.0		170.7				
5 3H 6 6 3H 6	100.0	2	242.2 252.7				
7 3h 6		o	285.7				
8 3H 6	100.0	0	319.0	0.0			
9 3H 6	100.0	2	330.7				
10 3H 6		2	346.9				
11 3H 6	100.0	0	351.8				
12 3H 6	99.9	2	408.4	0.0			
13 3H 6	99.9	0	410.3	0.C			
14 3F 4	99.8	2	5691.8				
15 3F 4		0	5712.5				
16 3F 4 17 3F 4	99.8 99.7	0	5779.7 5787.3				
18 3F 4	99.9	Ô	5827.5	0.0			
19 3F 4	99.9	2	5842.5				
20 3F 4		ō	5874.3				
21 3F 4	99.9	0	5917.5				
22 3F 4	19.9	2	5927.4	0.0			
23 3H 5	100.0	2	8243.8	C • C			
24 3H 5	99.8 99.7	2	8251.2	0.0			
25 3H 5 26 3H 5	99.3	0	8375.5 8379.6	0.0			
27 3H 5	99.9	2	8451.2				
28 3H 5	99.9	o	8471.6	0.0			
29 3H 5	99.9	2	8474.8	0.0			
30 3H 5	99.8	0	8513.7	0.C			
31 3H 5	99.9	2	8514.C	0.C			
32 3H 5	99.8		8554.2				
33 3H 5	99.9	0	8556.3	0.c			
34 3H 4	99.6	С	12547.4	0.0			
35 3H 4	100.0		12610.5				
36 3H 4			12671.9				
37 3H 4	99.6		12751.2	0.0			
38 3H 4	99.8	2	12757.8	0.0			
39 3H 4	99.8		12/65.2	0.0			
40 3H 4	99.8		12792.7				
41 3H 4	99.6		12815-1	0.0			
42 3H 4	99.6	O	12830.0	0.C			
43 3F 3	99.3	0	14490.8	0.0			
44 3F 3			14494.9	0.c			
45 3F 3	99.3	0	14515.1	0.0			
46 3F 3	79.7	2	14534.1	0.C			
47 3F 3	99.3		14553.7				
48 3F 3	99.7		14559.2	0.0			
49 3F 3	99.5	2	14592.6	0.0			

TABLE XVI. ESTIMATED CRYSTAL FIELD PARAMETERS AND ENERGY LEVELS FOR ${\rm TmP}_5{\rm O}_{14}({\rm Cont'd})$

FREE	100	PCT	PURE	2MU	11	HEO. ENERGY	EXP. ENERGY	
50 3	F 2		99.	. 2	0	15083.4	0.	С
51 3	F 2		99.	6	2	15085.9	0.	C
52 3	F 2		99.	. 2	2	15133.7	0.	C
53 3	F 2		99.	. 6	0	15176.6	0.	C
54 3			99.	. 8	0	15225.3	c.	С
55 1	G 4		100.	С	2	21160.6	0.	С
56 1	G 4		100.	0	0	21167.9	0.	C
57 1	G 4		100.	.0	0	21252.7	0.	C
58 1	G 4		100.	.0	2	21312.3	0.	C
59 1	G 4 .		100.	.0	0	21313.9	0.	C
60 1	G 4		100.	.0	2	21344.2	0.	C
61 1	G 4		100.	.0	0	21385.8	0.	C
62 1	G 4		100.	.0	O	21484.9	0.	C
63 1	G 4		100.	0	2	21511.7	0.	С
64 1	0 2		100.	.0	0	27822.6	0.	С
65 1	D 2		100.	0	2	27837.9	0.	C
66 1	0 2		100.	.0	2	27885.6	0.	C
67 1	D 2		LOC.	.0	0	27957.9	0.	C
68 1	D 2		LOC.	C	C	27970.5	0.	C

TABLE XVII. AMPLITUDES, A_{km} , IN CM^{-1} \mathring{A}^{-k} , OF SPHERICAL DECOMPOSITION OF LATTICE SUMS FOR NdP_50_{14}

k	m	A _{km} (q	0 = -1) +	$A_{km} (q_0 = -2)^{\ddagger}$		
	in.	Real	Imaginary	Real	Imaginary	
1	0	16797.4	0	23799.2	0	
1	1	-37138.	5876.2	-69989.6	12348.9	
2	0	-3006.66	0	-5414.44	0	
2	1	24.0762	-210.429	32.735	-440.936	
2 2 3 3 3 3 4	2	-46.2236	-699.385	-476.544	-742.301	
3	0	146.631	0	272.599	0	
3	1	113.903	-113.566	245.472	174.387	
3	2	23.9621	118.058	23.3478	221.346	
3	3	-107.	206.525	-512.996	235.769	
4	0	1459.8	0	2659.56	0	
4	1	-104.684	-153.643	-210.048	-308.525	
4	2	-1196.65	985.944	-2418.41	1926.86	
4	3	194.779	9.65227	400.361	21.1591	
4	4	-658.119	-1337.65	-1156.92	-2600.78	
	0	-4.45292	0	-8.32774	0	
5	1	759.959	-413.245	1502.53	-818.815	
5	2	-33.9232	-12.0518	-69.3783	-25.2627	
5 1	3	55.5247	-1357.2	124.874	-2646.4	
5	4	74.1133	-34.314	148.632	-68.9808	
5 5 5 5 6 6	5	-267.703	-218.441	-554.059	-448.519	
5	Ó	202.617	0	403.34	0	
5	1	2.44617	23.9365	5.33098	48.019	
5	2	-95.8561	130.302	-189.637	258.726	
	3	-11.6831	-17.1279	-22.8872	-34.8373	
5	4	-52.1825	-134.274	-116.977	-267.059	
6	5	-12.6303	10.3804	-25.5546	20.0073	
5	6	206.515	22.0685	411.215	43.7949	
	0	4.1059	0	8.26562	0	
7	i	-47.8198	51.1209	-94.1572	101.206	
7	2	-5.24923	-7.26414	-10.3708	-14.4391	
7 7 7 7	3	-3.467	-15.118	-6.88997	-30.8619	
7	4	4.838	1.1332	9.7122	2.29936	
7	5	-25.74	-28.179	-51.1031	-56.7309	
7	5	1.327	10.5704	2.61491	21.295	
7	7	-32.06	20.2109	-64.6403	39.2683	

[†]Lattice constants are a = 8.771 Å, b = 9.012 Å, c = 13.057 Å, and B = 89.58 deg (H. Y-P. Hong, Acta Crystallogr., B30 (1974), 468). [†]Oxygen charge, q_0 . Neodymium and phosphorus charges taken as q_{Nd} = +3, q_P = -(3 + 14 q_0)/5.

LITERATURE CITED

- (1) H. G. Danielmeyer and H. P. Weber, IEEE J. Quantum Electron., QE-8 (1972), 805.
- (2) C. Brecher, J. Chem. Phys., 61 (1974), 2297.
- (3) M. Blatte, H. G. Danielmeyer, and R. Ulrich, Appl. Phys., <u>1</u> (1973), 275.
- (4) H. Y-P Hong, Acta Crystallogr., B30 (1974), 468.
- (5) K.-R. Albrand, R. Attig, J. Fenner, J. P. Jeser, and D. Mootz, Mater. Res. Bull., 9 (1974), 129.
- (6) A. J. Kassman, J. Chem. Phys., 53 (1970), 4118.
- (7) N. Karayianis, D. E. Wortman, and C. A. Morrison, Crystal Field Parameters for Triply Ionized Lanthanides in Yttrium Orthoaluminate, Solid State Communications 18 (1976), 1299.
- (8) N. Karayianis, C. A. Morrison, and D. E. Wortman, J. Chem. Phys., 64 (1976), 3890.
- (9) N. Karayianis and C. A. Morrison, Rare Earth Ion-Host Lattice Interactions 1. Point Charge Lattice Sum in Scheelites, Harry Diamond Laboratories TR-1648 (October 1973).

DISTRIBUTION

DEFENSE DOCUMENTATION CENTER CAMERON STATION, BUILDING 5 ALEXANDRIA, VA 22314 ATTN DDC-TCA (12 COPIES)

COMMANDER
USA RSCH & STD GP (EUR)
BOX 65
FPO NEW YORK 09510
ATTN LTC JAMES M. KENNEDY, JR.
CHIEF, PHYSICS & MATH BRANCH

COMMANDER
US ARMY MATERIEL DEVELOPMENT
& READINESS COMMAND
5001 EISENHOWER AVENUE
ALEXANDRIA, VA 22333
ATTN DRXAM-TL, HQ TECH LIBRARY
ATTN DRCDE, DIR FOR DEV & ENGR

COMMANDER
USA ARMAMENT COMMAND
ROCK ISLAND, IL 61201
ATTN DRSAR-ASF, FUZE DIV
ATTN DRSAR-RDF, SYS DEV DIV - FUZES

COMMANDER
USA MISSILE & MUNITIONS CENTER & SCHOOL
REDSTONE ARSENAL, AL 35809
ATTN ATSK-CTD-F

DIRECTOR
DEFENSE NUCLEAR AGENCY
WASHINGTON, DC 20305
ATTN APTL, TECH LIBRARY

DIRECTOR OF DEFENSE RES AND
ENGINEERING
WASHINGTON, DC 20301
ATTN TECHNICAL LIBRARY (3C128)

OFFICE, CHIEF OF RESEARCH,
DEVELOPMENT, & ACQUISITION
DEPARTMENT OF THE ARMY
WASHINGTON, DC 20310
ATTN DAMA-ARZ-A, CHIEF SCIENTIST
DR. M. E. LASSER
ATTN DAMA-ARZ-B, DR. I. R. HERSHNER

COMMANDER
US ARMY RESEARCH OFFICE (DURHAM)
PO BOX 12211
RESEARCH TRIANGLE PARK, NC 27709
ATTN DR. ROBERT J. LONTZ
ATTN DR. CHARLES BOGOSIAN

COMMANDER
ARMY MATERIALS & MECHANICS RESEARCH
CENTER
WATERTOWN, MA 02172
ATTN DRXMR-TL, TECH LIBRARY BR

COMMANDER
NATICK LABORATORIES
NATICK, MA 01762
ATTN DRXRES-RTL, TECH LIBRARY

COMMANDER
USA FOREIGN SCIENCE & TECHNOLOGY CENTER
FEDERAL OFFICE BUILDING
220 7TH STREET NE
CHARLOTTESVILLE, VA 22901
ATTN DRXST-BS, BASIC SCIENCE DIV

DIRECTOR
USA BALLISTICS RESEARCH LABORATORIES
ABERDEEN PROVING GROUND, MD 21005
ATTN DRXBR, DIRECTOR, R. EICHELBERGER
ATTN DRXBR-TB, FRANK J. ALLEN
ATTN PRXBR, TECH LIBRARY

COMMANDER
USA ELECTRONICS COMMAND
FORT MONMOUTH, NJ 07703
ATTN DRSEL-GG, TECHNICAL LIBRARY
ATTN DRSEL-CT-L, B. LOUIS
ATTN DRSEL-CT-L, DR. E. SCHIEL
ATTN DRSEL-CT-L, DR. HIESLMAIR
ATTN DRSEL-CT-L, J. STROZYK
ATTN DRSEL-CT-L, DR. E. J. TEBO
ATTN DRSEL-CT-L, DR. R. G. BUSER
ATTN DRSEL-WL-S, J. CHARLTON

COMMANDER
USA ELECTRONICS COMMAND
FORT BELVOIR, VA 22060
ATTN DRSEL-NV, NIGHT VISION LABORATORY
ATTN DRSEL-NV, LIBRARY

COMMANDER
USA ELECTRONICS COMMAND
WHITE SANDS MISSILE RANGE, NM 88002
ATTN DRSEL-BL, LIBRARY

DIRECTOR
DEFENSE COMMUNICATIONS ENGINEER CENTER
1860 WIEHLE AVE
RESTON, VA 22090
ATTN PETER A. VENA

DISTRIBUTION (Cont'd)

COMMANDER
USA MISSILE COMMAND
REDSTONE ARSENAL, AL 35809
ATTN DRSMI-RB, REDSTONE SCIENTIFIC
INFO CENTER
ATTN DRSMI-RR, DR. J. P. HALLOWES
ATTN DRCPM-HEL, W. B. JENNINGS
ATTN DRSMI-RR, T. HONEYCUTT

COMMANDER
EDGEWOOD ARSENAL
EDGEWOOD ARSENAL, MD 21010
ATTN SAREA-TS-L, TECH LIBRARY

COMMANDER
FRANKFORD ARSENAL
BRIDGE & TACONY STREETS
PHILADELPHIA, PA 19137
ATT: K1000, TECH LIBRARY

COMMANDER
PICATINNY ARSENAL
DOVER, NJ 07801
ATTN SARPA-TS-T-S, TECH LIBRARY

COMMANDER
USA TEST & EVALUATION COMMAND
ABERDEEN PROVING GROUND, MD 21005
ATTN TECH LIBRARY

COMMANDER
USA ABERDEEN PROVING GROUND
ABERDEEN PROVING GROUND, MD 21005
ATTN STEAP-TL, TECH LIBRARY, BLDG 305

COMMANDER
WHITE SANDS MISSILE RANGE, NM 88002
ATTN DRSEL-WL-MS, ROBERT NELSON

COMMANDER
GENERAL THOMAS J. RODMAN LABORATORY
ROCK ISLAND ARSENAL
ROCK ISLAND, IL 61201
ATTN SWERR-PL, TECH LIBRARY

COMMANDER
USA CHEMICAL CENTER & SCHOOL
FORT MC CLELLAN, AL 36201

COMMANDER
NAVAL ELECTRONICS LABORATORY CENTER
SAN DIEGO, CA 92152
ATTN TECH LIBRARY

COMMANDER
NAVAL SURFACE WEAPONS CENTER
WHITE OAK, MD 20910
ATTN CODE 730, LIBRARY DIV

DIRECTOR
NAVAL RESEARCH LABORATORY
WASHINGTON, DC 20390
ATTN CODE 2620, TECH LIBRARY BR

COMMANDER
NAVAL WEAPONS CENTER
CHINA LAKE, CA 93555
ATTN CODE 753, LIBRARY DIV

COMMANDER
AF CAMBRIDGE RESEARCH LABORATORIES, AFSC
L. G. HANSCOM FIELD
BEDFORD, MA 01730
ATTN TECH LIBRARY

DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS WASHINGTON, DC 20234 ATTN LIBRARY

DEPARTMENT OF COMMERCE
NATIONAL BUREAU OF STANDARDS
BOULDER, CO 80302
ATTN LIBRARY

DIRECTOR
LAWRENCE RADIATION LABORATORY
LIVERMORE, CA 94550
ATTN DR. MARVIN J. WEBER
ATTN DR. HELMUT A. KOEHLER

NASA GODDARD SPACE FLIGHT CENTER GREENBELT, MD 20771 ATTN CODE 252, DOC SECT, LIBRARY

NATIONAL OCEANIC & ATMOSPHERIC ADM ENVIRONMENTAL RESEARCH LABORATORIES BOULDER, CO 80302 ATTN LIBRARY, R-51, TECH REPORTS

CARNEGIE MELLON UNIVERSITY
SCHENLEY PARK
PITTSBURGH, PA 15213
ATTN PHYSICS & EE
DR. J. O. ARTMAN

UNIVERSITY OF MICHIGAN
COLLEGE OF ENGINEERING NORTH CAMPUS
DEPARTMENT OF NUCLEAR ENGINEERING
ANN ARBOR, MI 48104
ATTN DR. CHIHIRO KIKUCHI

DIRECTOR
ADVISORY GROUP ON ELECTRON DEVICES
201 VARICK STREET
NEW YORK, NY 10013
ATTN SECTRY, WORKING GROUP D

DISTRIBUTION (Cont'd)

CRYSTAL PHYSICS LABORATORY
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
CAMBRIDGE, MA 02139
ATTN DR. A. LINZ
ATTN DR. H. P. JENSSEN

CENTER FOR LASER STUDIES
UNIVERSITY OF SOUTHERN CALIFORNIA
LOS ANGELES, CA 90007
ATTN DR. L. G. DE SHAZER

GEORGE WASHINGTON UNIVERSITY
WASHINGTON, DC 20052
ATTN DR. J. V. RICHARD KAUFMAN, RESEARCH
PROFESSOR OF ENGINEERING ADMINISTRATION

HARRY DIAMOND LABORATORIES ATTN MCGREGOR, THOMAS, COL, COMMANDER /FLYER, I.N./LANDIS, P.E./ SOMMER, H./OSWALD, R.B. ATTN CARTER, W.W., DR., TECHNICAL DIRECTOR/MARCUS, S.M. ATTN KIMMEL, S., IO ATTN CHIEF, 0021 ATTN CHIEF, 0022 ATTN CHIEF, LAB 100 ATTN CHIEF, LAB 200 ATTN CHIEF, LAB 300 ATTN CHIEF, LAB 400 ATTN CHIEF, LAB 500 ATTN CHIEF, LAB 600 ATTN CHIEF, DIV 700 ATTN CHIEF, DIV 800 ATTN CHIEF, LAB 900 ATTN CHIEF, LAB 1000 ATTN RECORD COPY, BR 041 ATTN HDL LIBRARY (3 COPIES) ATTN CHAIRMAN, EDITORIAL COMMITTEE ATTN CHIEF, 047 ATTN TECH REPORTS, 013 ATTN PATENT LAW BRANCH, 071 ATTN MCLAUGHLIN, P.W., 741 ATTN CONRAD, E. E., 002 ATTN FARRAR, R., 350 ATTN KIRSHNER, J., 320 ATTN GLEASON, T., 540 ATTN GIBSON, H., 540 ATTN KARAYIANIS, N., 320 (10 COPIES) ATTN KULPA, S., 320 ATTN LEAVITT, R., 320 ATTN MORRISON, C., 320 (10 COPIES) ATTN NEMARICH, J., 320 ATTN RIESSLER, W., 320 ATTN SCALES, J., III, 540 ATTN WILLETT, C. S., 320 ATTN WORTMAN, D., 320 (10 COPIES)