Recap: Stationary Distribution of markov chain

lacktriangledown is said to be a stationary distribution for the Markov chain with transition probabilities P if

$$\pi(y) = \sum_{x \in S} \pi(x) P(x, y), \ \forall y \in S$$

- When π is stationary distribution, $\pi_0 = \pi \implies \pi_n = \pi, \ \forall n$
- ▶ If $\pi_n = \pi$, $\forall n$ then π is a stationary distribution
- For a finite chain: $P^T\pi = \pi$
- A stationary distribution always exists for a finite chain

Recap

- $ightharpoonup N_n(y)$ number of visits to y till n
- $G_n(x,y) = E_x[N_n(y)] = \sum_{m=1}^n P^m(x,y)$ - expected number of visits to y till n
- ► The expected (limiting) fraction of time spent in state y for a chain starting in x is

$$\lim_{n \to \infty} \frac{G_n(x, y)}{n} = \lim_{n \to \infty} \frac{1}{n} \sum_{m=1}^n P^m(x, y)$$

 $lackbox{ } m_y = E_y[T_y]$ – mean return time to y. It is the expected time to return to y for a chain starting in y.

Recap

Theorem: For a recurrent state y

$$\lim_{n \to \infty} \frac{N_n(y)}{n} = \frac{I_{[T_y < \infty]}}{m_y}, \quad w.p.1$$

$$\lim_{n \to \infty} \frac{G_n(x, y)}{n} = \lim_{n \to \infty} \frac{1}{n} \sum_{m=1}^n P^m(x, y) = \frac{\rho_{xy}}{m_y}$$

$$\lim_{n \to \infty} \frac{1}{n} \sum_{m=1}^n P^m(y, y) = \frac{1}{m_y}$$

Recap: positive and null recurrent states

- ▶ A recurrent state y is called **null recurrent** if $m_y = \infty$.
- ▶ y is called **positive recurrent** if $m_y < \infty$
- ► The limiting fraction of time spent by the chain in transient and null recurrent states is zero.
- ▶ **Theorem:** Let *x* be positive recurrent and let *x* lead to *y*. Then *y* is positive recurrent.

- ► Thus, in a closed irreducible set of recurrent states, if one state is positive recurrent then all are positive recurrent.
- ▶ Hence, in the partition: $S_R = C_1 + C_2 + \cdots$, each C_i is either wholly positive recurrent or wholly null recurrent.
- We next show that a finite chain cannot have any null recurrent states.

- ▶ Let *C* be a finite closed set of recurrent states.
- ► Suppose all states in C are null recurrent. Then

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} P^{m}(x, y) = 0, \quad \forall x, y \in C$$

- ▶ Since C is closed, $\sum_{y \in C} P^m(x, y) = 1$, $\forall m, \forall x \in C$.
- ► Thus we get

$$1 = \frac{1}{n} \sum_{m=1}^{n} \sum_{y \in C} P^{m}(x, y) = \sum_{y \in C} \frac{1}{n} \sum_{m=1}^{n} P^{m}(x, y), \ \forall n$$

$$\Rightarrow 1 = \lim_{n \to \infty} \sum_{x \in C} \frac{1}{n} \sum_{m=1}^{n} P^{m}(x, y) = \sum_{x \in C} \lim_{n \to \infty} \frac{1}{n} \sum_{m=1}^{n} P^{m}(x, y) = 0$$

where we could take the limit inside the sum because ${\cal C}$ is finite.

- ▶ If C is a finite closed set of recurrent states then all states in it cannot be null recurrent.
- ► Actually what we showed is that any closed finite set must have at least one positive recurrent state.
- ► Hence, in a finite chain, every closed irreducible set of recurrent states contains only positive recurrent states.
- ▶ Hence, a finite chain cannot have a null recurrent state.

Example of null recurrent chain

lacktriangle Consider the chain with state space $\{0,1,\cdots\}$ given by

- ▶ Here, $q(k) \ge 0, \forall k \text{ and } \sum_{k=1}^{\infty} q(k) = 1.$
- ► The chain is irreducible.
- ▶ So, we want to know whether it is transient or recurrent.
- ▶ We can calculate ρ_{00} to test this.

Example of null recurrent chain

Consider the chain with state space $\{0, 1, \dots\}$ given by

We have

racurrant

$$P_0[T_0 = j+1] = q(j), \ j = 1, 2, \cdots$$

(Note that $P_0[T_0 = 1] = 0$)

$$P_0[T_0 < \infty] = \sum_{j=2}^{\infty} P_0[T_0 = j] = \sum_{j=1}^{\infty} q(j) = 1$$

- So, the chain is recurrent.
- ▶ We want to know whether it is positive recurrent or null P S Sastry, IISc, E1 222, Lecture 22, Aug 2021 9/37

Example of null recurrent chain

$$m_0 = \sum_{j=2}^{\infty} j \ P_o[T_0 = j] = \sum_{j=2}^{\infty} j \ q(j-1) = \sum_{j=1}^{\infty} (j+1)q(j)$$

- ▶ So, $m_0 = \infty$ if the $q(\cdot)$ distribution has infinite expectation. For example, if $q(k) = \frac{c}{k^2}$
- ► Then state 0 is null recurrent. Implies chain is null recurrent

- \triangleright Suppose π is a stationary distribution.
- ▶ Then $\pi(y) = 0$ if y is transient or null recurrent
- ► We prove this as follows

$$\pi(y) = \sum \pi(x) P^m(x, y) \ \forall m$$

$$\Rightarrow \ \pi(y) \ = \ \frac{1}{n} \sum_{m=1}^{n} \sum_{x} \pi(x) P^{m}(x,y) = \sum_{x} \pi(x) \ \frac{1}{n} \sum_{m=1}^{n} P^{m}(x,y)$$

$$\Rightarrow \pi(y) = \lim_{n \to \infty} \sum_{x} \pi(x) \frac{1}{n} \sum_{m=1}^{n} P^{m}(x, y)$$

► The proof is complete if we can take the limit inside the sum

Bounded Convergence Theorem

Bounded Convergence Theorem:

- 1. Suppose $a(x) \ge 0$, $\forall x \in S$ and $\sum_{x} a(x) < \infty$.
- 2. Let $b_n(x), x \in S$ be such that $|b_n(x)| \leq K, \forall x, n$ and

$$\lim_{n \to \infty} b_n(x) = b(x), \forall x \in S.$$

Then

$$\lim_{n \to \infty} \sum_{x \in S} a(x) \ b_n(x) = \sum_{x \in S} a(x) \ \lim_{n \to \infty} b_n(x) = \sum_{x \in S} a(x) \ b(x)$$

Bounded Convergence Theorem: Suppose $a(x) \geq 0, \ \forall x \in S \ \text{and} \ \sum_{x} a(x) < \infty. \ \text{Let} \ b_n(x), \ x \in S$

be such that $|b_n(x)| \leq K$, $\forall x, n$ and suppose

be such that
$$|b_n(x)| \leq K$$
, $\forall x, n$ and suppose $\lim_{n \to \infty} b_n(x) = b(x), \forall x \in S$. Then $\lim_{n \to \infty} \sum_{x \in S} a(x) \ b_n(x) = \sum_{x \in S} a(x) \ \lim_{n \to \infty} b_n(x) = \sum_{x \in S} a(x) \ b(x)$

We had

We have

Hence, if y is transient or null recurrent, then

 $\pi(x) \ge 0; \quad \sum \pi(x) = 1; \quad 0 \le \frac{1}{n} \sum^{n} P^{m}(x, y) \le 1, \forall x$

 $\pi(y) = \sum_{n \to \infty} \pi(x) \lim_{n \to \infty} \frac{1}{n} \sum_{n \to \infty} P^{n}(x, y) = 0$

 $\pi(y) = \lim_{n \to \infty} \sum \pi(x) \frac{1}{n} \sum_{n} P^{m}(x, y)$

P S Sastry, IISc, E1 222, Lecture 22, Aug 2021 13/37

- In any stationary distribution π , we would have $\pi(y) = 0$ is y is transient or null recurrent.
- ► Hence an irreducible transient or null recurrent chain would not have a stationary distribution.
- ► The null recurrent chain we considered earlier is an example of a Markov chain that does not have a stationary distribution.

► **Theorem** An irreducible positive recurrent chain has a unique stationary distribution given by

$$\pi(y) = \frac{1}{m_y}, \ \forall y \in S$$

Suppose
$$\pi$$
 is such that $\pi(y) = \sum_{x} \pi(x) P(x, y)$. Then

$$\pi(y) = \sum_{x} \pi(x) P^{m}(x, y), \forall m$$

$$\sum_{x} \left(\begin{array}{c} 1 \\ \end{array} \right)^{n} P^{m}(x)$$

$$\Rightarrow \pi(y) = \sum_{x} \pi(x) \frac{1}{n} \sum_{m=1}^{n} P^{m}(x, y), \forall n$$

$$\Rightarrow \pi(y) = \sum_{x} \pi(x) \frac{1}{n} \sum_{m=1}^{n} \Gamma(x, y), \forall n$$

$$\Rightarrow \pi(y) = \lim_{n \to \infty} \sum_{x} \pi(x) \frac{1}{n} \sum_{m=1}^{n} P^{m}(x, y)$$

$$\Rightarrow \pi(y) = \sum_{x} \pi(x) \lim_{n \to \infty} \frac{1}{n} \sum_{x=1}^{n} P^{m}(x, y)$$

$$\Rightarrow \pi(y) = \lim_{n \to \infty} \sum_{x} \pi(x) \frac{1}{n} \sum_{m=1}^{n} P^{m}(x, y)$$

P S Sastry, IISc, E1 222, Lecture 22, Aug 2021 15/37

- ▶ To complete the proof, we need to show $\sum_{u} \frac{1}{m_{u}} = 1$.
- ▶ We skip this step in the proof.
- ► The theorem shows that an irreducible positive recurrent chain has a unique stationary distribution
- ► Corollary: An irreducible finite chain has a unique stationary distribution
- ► Corollary: An irreducible chain has a stationary distribution if and only if it is positive recurrent

- If π^1 and π^2 are stationary distributions, then so is $\alpha \pi^1 + (1 \alpha)\pi^2$ (easily verified)
- ▶ Let *C* be a closed irreducible set of positive recurrent states.

Then there is a unique stationary distribution π that satisfies $\pi(y) = 0$, $\forall y \notin C$.

- Any other stationary distribution of the chain is a convex combination of the stationary distributions concentrated on each of the closed irreducible sets of positive recurrent states.
- ► This answers all questions about existence and uniqueness of stationary distributions

- ► Consider an irreducible positive recurrent chain.
- ▶ It has a unique stationary distribution and $\frac{1}{n} \sum_{m=1}^{n} P^{m}(x, y)$ converges to $\pi(y)$.
- ▶ The next question is convergence of π_n

$$\lim_{n \to \infty} \pi_n(y) = \lim_{n \to \infty} \sum_{n \to \infty} \pi_0(x) \ P^n(x, y) = ?$$

- ▶ If $P^n(x,y)$ converges to g(y) then that would be the stationary distribution and π_n converges to it
- ▶ But, $\frac{1}{n}\sum_{m=1}^n a_m$ may have a limit though $\lim_{n\to\infty} a_n$ may not exist.
 - For example, $a_n = (-1)^n$

► Consider a chain with transition probabilities

$$P = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1/3 & 0 & 2/3 & 0 \\ 0 & 2/3 & 0 & 1/3 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

- ▶ One can show $\pi^T = \begin{bmatrix} \frac{1}{8} & \frac{3}{8} & \frac{3}{8} & \frac{1}{8} \end{bmatrix}$
- ightharpoonup However, P^n goes to different limits based on whether n is even or odd

▶ The chain is the following

$$P = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1/3 & 0 & 2/3 & 0 \\ 0 & 2/3 & 0 & 1/3 \\ 0 & 0 & 1 & 0 \end{bmatrix}, \quad P^2 = \begin{bmatrix} 1/3 & 0 & 2/3 & 0 \\ 0 & 7/9 & 0 & 2/9 \\ 2/9 & 0 & 7/9 & 0 \\ 0 & 2/3 & 0 & 1/3 \end{bmatrix}$$

- ► We can return to a state only after even number of time steps
- ightharpoonup That is why P^n does not go to a limit
- ► Such a chain is called a periodic chain

ightharpoonup We define period of a state x as

$$d_x = \gcd\{n \ge 1 : P^n(x, x) > 0\}$$

- If P(x,x) > 0 then $d_x = 1$
- ▶ If x leads to y and y leads to x, then $d_x = d_y$
- Let $P^{n_1}(x,y) > 0$, $P^{n_2}(y,x) > 0$. Then $P^{n_1+n_2}(x,x) > 0 \implies d_x$ divides $n_1 + n_2$.
- ► For any n s.t. $P^n(y,y) > 0$, we get $p^{n_1+n+n_2}(x,x) > 0$
- $\blacktriangleright \ \ \text{Hence, } d_x \ \text{divides } n \ \text{for all } n \ \text{s.t.} \ P^n(y,y) > 0 \Rightarrow d_x \leq d_y$
- ▶ Similarly, $d_y \le d_x$ and hence $d_y = d_x$
- ▶ All states in an irreducible chain have the same period.
- ▶ If the period is 1 then chain is called aperiodic

- ► The extra condition we need for convergence of π_n is aperiodicity
- ▶ For an aperiodic, irreducible, positive recurrent chain, there is a unique stationary distribution and π_n converges to it irrespective of what π_0 is.
- ► An aperiodic, irreducible, positive recurrent chain is called an ergodic chain

Example

► Consider the umbrella problem

▶ This is an irreducible, aperiodic positive recurrent chain

- ► We want to calculate the probability of getting caught in a rain without an umbrella.
- ► This would be the steady state probability of state 0 multiplied by *p*
- ► We are using the fact that this chain converges to the stationary distribution starting with any initial probabilities.

$$P = \begin{bmatrix} \begin{array}{c|cccc} & 0 & 1 & 2 & 3 & 4 \\ \hline 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1-p & p \\ 2 & 0 & 0 & 1-p & p & 0 \\ 3 & 0 & 1-p & p & 0 & 0 \\ 4 & 1-p & p & 0 & 0 & 0 \\ \end{array} \end{bmatrix}$$
 The stationary distribution satisfies $\pi^T P = \pi^T$

$$\pi(0) = (1-n)\pi(0)$$

$$\pi(0) = (1-p)\pi(4)$$

$$(1-p)\pi(3) + (1-p)\pi(2) + (1-p)\pi(3) + (1-p$$

This gives
$$4\pi(1) + (1-n)\pi(1) = 1$$
 and hence

This gives $4\pi(1) + (1-p)\pi(1) = 1$ and hence

$$\pi(1) = (1 - p)\pi(3) + p\pi(4) \Rightarrow \pi(3) = \pi(1)$$

$$\pi(2) = (1 - p)\pi(2) + p\pi(3)$$

$$\pi(3) = (1 - p)\pi(1) + p\pi(2) \Rightarrow \pi(2) = \pi(1)$$

$$\pi(4) = \pi(0) + p\pi(1) \Rightarrow \pi(4) = \pi(1)$$

 $\pi(i) = \frac{1}{5-p} \ i = 1, 2, 3, 4 \text{ and } \pi(0) = \frac{1-p}{5-p}$

Birth-Death chains

► The following is a finite birth-death chain

- ▶ We assume $0 < p_i, q_i < 1, \forall i$.
- ▶ Then the chain is irreducible, positive recurrent
- ▶ It is also aperiodic
- We can derive a general form for its stationary probabilities

birth-death chains - stationary distribution

$$\pi(y) = \sum_{i=1}^{q} \pi(x) P(x,y)$$

$$\pi(y) = \sum_{x} \pi(x) P(x, y)$$

$$\pi(0) = \pi(0)(1 - p_0) + \pi(1)q_1$$

$$\Rightarrow \pi(1)q_1 - \pi(0)p_0 = 0$$

$$\pi(1) = \pi(0)p_0 + \pi(1)(1 - p_1 - q_1) + \pi(2)q_2$$

$$\Rightarrow \pi(1)q_1 - \pi(0)p_0 = \pi(2)q_2 - \pi(1)p_1$$

$$\Rightarrow \pi(2)q_2 - \pi(1)p_1 = 0$$

$$\pi(2) = \pi(1)p_1 + \pi(2)(1 - p_2 - q_2) + \pi(3)q_3$$

$$\Rightarrow \pi(2)q_2 - \pi(1)p_1 = \pi(3)q_3 - \pi(2)p_2 = 0$$

For any x, the relevant part of the chain is

► We get

$$\pi(x) = \pi(x-1)p_{x-1} + \pi(x)(1-p_x-q_x) + \pi(x+1)q_{x+1}$$

► This gives us the general recurrence

$$\pi(x+1)q_{r+1} - \pi(x)p_r = \pi(x)q_r - \pi(x-1)p_{r-1} = 0$$

► Thus we get

solution)

Iterating like this, we get

 $\pi(1)q_1 - \pi(0)p_0 = 0 \Rightarrow \pi(1) = \frac{p_0}{q_1} \pi(0)$

 $\pi(2)q_2 - \pi(1)p_1 = 0 \Rightarrow \pi(2) = \frac{p_1}{q_2} \pi(1) = \frac{p_0 p_1}{q_1 q_2} \pi(0)$

 $\pi(n) = \eta_n \; \pi(0), \; \text{ where } \; \eta_n = \frac{p_0 p_1 \cdots p_{n-1}}{q_1 q_2 \cdots q_n}, \; n = 1, 2, \cdots, N$

 $\pi(0) = \frac{1}{\sum_{i=0}^{N} \eta_i}$ and $\pi(n) = \eta_n \pi(0), \ n = 1, \dots, N$

Note that this process is applicable even for infinite chains with state space $\{0,1,2,\cdots\}$ (but there may not be a

P S Sastry, IISc, E1 222, Lecture 22, Aug 2021 30/37

▶ With $\eta_0 = 1$, we get $\pi(0) \sum_{j=0}^N \eta_j = 1$ and hence

Consider a birth-death chain

- ► The chain may be infinite or finite
- Let $a, b \in S$ with a < b. Assume $p_x, q_x > 0$, a < x < b.
- Define

$$U(x) = P_x[T_a < T_b], \ a < x < b, \ U(a) = 1, \ U(b) = 0$$

- \blacktriangleright We want to derive a formula for U(x)
- ▶ This can be useful, e.g., in the gambler's ruin chain

 $U(x) = P_r[T_a < T_b] = Pr[T_a < T_b|X_0 = x]$

$$= \sum_{y=x-1}^{x+1} Pr[T_a < T_b | X_1 = y] Pr[X_1 = y | X_0 = x]$$

$$= U(x-1)q_x + U(x)r_x + U(x+1)p_x$$

$$= U(x-1)q_x + U(x)(1-p_x-q_x) + U(x+1)p_x$$

$$\Rightarrow q_x[U(x) - U(x-1)] = p_x[U(x+1) - U(x)]$$

$$\Rightarrow U(x+1) - U(x) = \frac{q_x}{n} [U(x) - U(x-1)]$$

$$U(x+1) - U(x) = \frac{q_x}{p_x} [U(x) - U(x-1)]$$
$$= \frac{q_x}{p_x} \frac{q_{x-1}}{p_{x-1}} [U(x-1) - U(x-2)]$$

$$= \frac{q_x q_{x-1} \cdots q_{a+1}}{p_x p_{x-1} \cdots p_{a+1}} [U(a+1) - U(a)]$$

Let
$$\gamma_y = \frac{q_y q_{y-1} \cdots q_{a+1}}{p_y p_{y-1} \cdots p_{a+1}}, \ a < y < b, \ \gamma_a = 1$$

Now we get

$$U(x+1) - U(x) = \frac{\gamma_x}{\gamma_z} [U(a+1) - U(a)]$$

$$U(x+1) - U(x) = \frac{\gamma_x}{\gamma_a} [U(a+1) - U(a)]$$

$$ightharpoonup$$
 By taking $x=b-1,\ b-2,\cdots,a+1,\ a$,

$$U(b) - U(b-1) = \frac{\gamma_{b-1}}{\gamma_a} [U(a+1) - U(a)]$$

$$U(b-1) - U(b-2) = \frac{\gamma_{b-2}}{\gamma_a} [U(a+1) - U(a)]$$

$$U(a+1) - U(a)$$

Adding all these we get
$$0-1=U(b)-U(a)=\frac{1}{\gamma_a}\left[U(a+1)-U(a)\right]\sum_{a=0}^{b-1}\gamma_a$$

 $\Rightarrow U(a) - U(a+1) = \frac{\gamma_a}{\sum_{x=a}^{b-1} \gamma_x}$ P S Sastry, IISc, E1 222, Lecture 22, Aug 2021 34/37 Using these, we get

Adding these we get

 $U(x) - U(x+1) = \frac{\gamma_x}{\gamma_a} [U(a) - U(a+1)]$

▶ Putting $x = b - 1, b - 2, \dots, y$ in the above

 $= \frac{\gamma_x}{\gamma_a} \frac{\gamma_a}{\sum_{r=a}^{b-1} \gamma_r} = \frac{\gamma_x}{\sum_{r=a}^{b-1} \gamma_x}$

 $U(b-1) - U(b) = \frac{\gamma_{b-1}}{\sum_{r=1}^{b-1} \gamma_r}$

 $U(y) - U(y+1) = \frac{\gamma_y}{\sum^{b-1} \gamma}$

 $U(y) - U(b) = U(y) = \frac{\sum_{x=y}^{o-1} \gamma_x}{\sum_{x=a}^{b-1} \gamma_x}, \ a < y < b$

 $U(b-2) - U(b-1) = \frac{\gamma_{b-2}}{\sum_{x}^{b-1} \gamma_x}$

▶ We are considering birth-death chains

 \blacktriangleright We have derived, for a < y < b,

$$U(y) = P_y[T_a < T_b] = \frac{\sum_{x=y}^{b-1} \gamma_x}{\sum_{x=1}^{b-1} \gamma_x}, \quad \gamma_x = \frac{q_x q_{x-1} \cdots q_{a+1}}{p_x p_{x-1} \cdots p_{a+1}}$$

► Hence we also get

$$P_y[T_b < T_a] = \frac{\sum_{x=a}^{y-1} \gamma_x}{\sum_{b=1}^{b-1} \gamma_x}$$

Suppose this is a Gambler's ruin chain:

- ▶ Then, $\gamma_x = \left(\frac{q}{p}\right)^x$
- ► Hence, for a Gambler's ruin chain we get, e.g.,

$$P_{i}[T_{N} < T_{0}] = \frac{\sum_{x=0}^{i-1} \gamma_{x}}{\sum_{x=0}^{N-1} \gamma_{x}} = \frac{\left(\frac{q}{p}\right)^{i} - 1}{\left(\frac{q}{p}\right)^{N} - 1}$$

▶ This is the probability of gambler being successful