线代 A 期末练习三参考答案

一、单项选择题

1、	已知 A,B 是同阶方阵,	下列等式中正确的是 (A)
	(A) $ AB = A B $;	(B) $(AB)^T = A^T B^T$;	

(B)
$$(AB)^T = A^T B^T$$

(C) $(AB)^{-1} = A^{-1}B^{-1}$; (D) $(AB)^k = A^kB^k$.

(D)
$$(AB)^k = A^k B^k$$

2、设 $A \neq m \times n$ 矩阵,齐次线性方程组 Ax = 0 有非零解的充要条件是 (B)

(A)
$$r(A) = n$$
; (B) $r(A) < n$; (C) $|A| = 0$; (D) $m > n$.

3、设A是 5×4 矩阵,则下列命题正确的是(B)

(A) A的行向量组线性无关; (B) A的行向量组线性相关;

(C) A的列向量组线性无关; (D) A的列向量组线性相关.

4、设 A 是 n 阶可逆矩阵, λ 是 A 的一个特征值,则 A^* 的一个特征值是(B)

(A)
$$\lambda^{-1} |A|^n$$
; (B) $\lambda^{-1} |A|$; (C) $\lambda |A|$; (D) $\lambda |A|^n$.

5、设n阶方阵A与B相似,则下列命题不正确的是 (D)

(A) A与B有相同的特征值; (B) r(A) = r(B);

(C) |A| = |B|;

(D) $A \rightarrow B$ 有相同的特征向量.

二、填空题

1、已知 $\alpha_1 = (1,2,t), \alpha_2 = (1,1,-1), \alpha_3 = (2,3,1)$,当 $t \neq 2$ 时, $\alpha_1,\alpha_2,\alpha_3$ 线性无关.

2、
$$f(y) = \begin{vmatrix} 2y & 1 & -1 \\ -y & -2y & y \\ 1 & 2 & y \end{vmatrix}$$
中 y^3 的系数是 _____.

3、设 A 为 3 阶方阵, A 的特征值为-1,1,2,则 $|3A^{-1}| = -\frac{27}{2}$.

4、设 $\alpha_1, \alpha_2, \alpha_3$ 是三元线性方程组Ax = b的三个解,且r(A) = 2, $\alpha_1 + \alpha_2 = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$,

$$\alpha_2 - \alpha_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $M = b$ 的通解为 $(1,0,2)^T + k(1,1,1)^T$ $(k \in R)$

5、设二次型 $f = x_1^2 + 4x_2^2 + 2x_3^2 + 2tx_1x_2 + 2x_1x_3$ 是正定的,则 t 的范围是 $-\sqrt{2} < t < \sqrt{2}$

三、已知
$$A = \begin{pmatrix} 4 & 2 & 3 \\ 1 & 1 & 0 \\ -1 & 2 & 2 \end{pmatrix}$$
,矩阵 X 满足 $AX = A + 2X$,求矩阵 X

解: 由 AX = A + 2X 得 (A - 2I) X = A

$$|A - 2I| = \begin{vmatrix} 2 & 2 & 3 \\ 1 & -1 & 0 \\ -1 & 2 & 0 \end{vmatrix} = 3$$

所以 $X = (A-2I)^{-1}A$

$$(A-2I)^{-1} = \begin{pmatrix} 0 & 2 & 1 \\ 0 & 1 & 1 \\ 1/3 & -2 & -4/3 \end{pmatrix}$$

故

$$X = \begin{pmatrix} 1 & 4 & 2 \\ 0 & 3 & 2 \\ 2/3 & -4 & -5/3 \end{pmatrix}$$

四、求下列向量组的秩和一个最大无关组.

$$\alpha_1 = (1,1,1,1)$$
, $\alpha_2 = (2,-3,1,-1)$, $\alpha_3 = (1,-1,2,3)$, $\alpha_4 = (4,-3,4,3)$.

解:对 A进行初等行变换

$$A = \begin{pmatrix} 1 & 2 & 1 & 4 \\ 1 & -3 & -1 & -3 \\ 1 & 1 & 2 & 4 \\ 1 & -1 & 3 & 3 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & 1 & 4 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

此向量组的秩为: R(A)=3

它的一个最大无关组为 $\alpha_1,\alpha_2,\alpha_3$.

五、已知线性方程组
$$\begin{cases} kx_1 - x_2 = k, \\ kx_2 - x_3 = k, \\ kx_3 - x_4 = k, \\ -x_1 + kx_4 = k. \end{cases}$$

- (1) k为何值时,方程组有惟一解? 无解? 无穷多解?
- (2)在有无穷多解的情况下求出其通解.

解: (1)系数矩阵 A 的行列式为

$$/A = \begin{vmatrix} k & -1 & 0 & 0 \\ 0 & k & -1 & 0 \\ 0 & 0 & k & -1 \\ -1 & 0 & 0 & k \end{vmatrix} = k^4 - 1$$

当 $k \neq \pm 1$ 时,方程组有惟一解:

当 k = 1时, r(A) = 3, r(Ab) = 4,方程组无解;

当 k = -1时, r(A) = r(Ab) = 3,方程组有无穷多解;

(2) 对增广矩阵进行行初等变换:

$$(A,b) = \begin{pmatrix} -1 & -1 & 0 & 0 & -1 \\ 0 & -1 & -1 & 0 & -1 \\ 0 & 0 & -1 & -1 & -1 \\ -1 & 0 & 0 & -1 & -1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & -1 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

所以原方程组的通解为: $x = (1,0,1,0)^T + k(-1,1,-1,1)^T$ $(k \in R)$

六、已知三阶方阵 A 的特征值为-1, 1, 2. 设 $B = E - 3A^2 + 2A^3$.

- (1) 求矩阵 A 的行列式及 A 的秩;
- (2) 求矩阵 B 的特征值及其相似对角矩阵.

解: (1)
$$|A| = -2$$
 , $R(A) = 3$

(2)设 λ 为A的特征值,x为A的对应于 λ 的特征向量,则:

 $Bx = (E - 3A^2 + 2A^3)x = (1 - 3\lambda^2 + 2\lambda^3)x : B$ 的特征值为-4, 0, 5

B的相似对角矩阵为: $\begin{pmatrix} -4 & & \\ & 0 & \\ & & 5 \end{pmatrix}$

七、设 $A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$,求正交矩阵 P 使得 $P^{-1}AP = \Lambda$ 为对角矩阵.

解:
$$|A - \lambda E| = \begin{vmatrix} -\lambda & 1 & 1 \\ 1 & -\lambda & 1 \\ 1 & 1 & -\lambda \end{vmatrix} = (\lambda + 1)^2 (-\lambda + 2) = 0$$

得到 A 的特征值分别是 $\lambda_1 = \lambda_2 = -1, \lambda_3 = 2$

$$\lambda_1 = \lambda_2 = -1$$
 时, $A + E = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$,得到两个正交的特征向量为

$$\lambda_3 = 2$$
 时, $A - 2E = \begin{pmatrix} -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}$,对应于 $\lambda_2 = 2$ 的一个特征向量

为
$$\xi_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, 位化得 $\eta_3 = \frac{\xi_3}{\|\xi_3\|} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$

所以得正交阵为

$$P = (\eta_1, \eta_2, \eta_3) = \begin{pmatrix} 1/\sqrt{6} & -1/\sqrt{2} & 1/\sqrt{3} \\ -2/\sqrt{6} & 0 & 1/\sqrt{3} \\ 1/\sqrt{6} & 1/\sqrt{2} & 1/\sqrt{3} \end{pmatrix}.$$

八、证明题

- (1) 向量组 $\alpha_1,\alpha_2,\alpha_3$ 线性无关,试证 $\alpha_1,\alpha_1+2\alpha_2,\alpha_1+2\alpha_2+3\alpha_3$ 线性无关.
- (2) 设A为 $m \times n$ 矩阵, B为 $n \times m$ 矩阵, 且m > n. 证明: |AB| = 0.

证: (1)
$$\diamondsuit x_1\alpha_1 + x_2(\alpha_1 + 2\alpha_2) + x_3(\alpha_1 + 2\alpha_2 + 3\alpha_3) = 0$$

整理得:
$$(x_1 + x_2 + x_3)\alpha_1 + (2x_2 + 2x_3)\alpha_2 + 3x_3\alpha_3 = 0$$

由于 $\alpha_1, \alpha_2, \alpha_3$ 线性无关,所以有: $x_1 = 0, x_2 = 0, x_3 = 0$.

则向量组 $\alpha_1, \alpha_1 + 2\alpha_2, \alpha_1 + 2\alpha_2 + 3\alpha_3$ 线性无关.

(2) A为 $m \times n$ 矩阵,B为 $n \times m$ 矩阵,且m > n,

$$\therefore R(A) \leq n, R(B) \leq n,$$

$$\Rightarrow R(AB) \le \min(R(A), R(B)) \le n < m$$

又 AB 为 m 阶方阵,则 |AB|=0.