

Multi-Fidelity surrogate modeling

Claire Cannamela, Baptiste Kerleguer

"Numerical analysis Summer school 2021 - CEA EDF INRIA" | 16 june 2021

Deep Multi-Fidelty

- The AR(1) model is one big model.
- The linearity between codes reduce the application cases for the AR(1) model.
- A Deep multi-fidelity is a combination of models one for each level.
- The regression models for multi-fidelity is a combination of simple fidelity models.

Baptiste Kerleguer 16 june 2021 1/25

Non-linear Gaussian Process model

The linear autoregressive model is :

$$f_s(\mathbf{x}) = \rho_s f_{s-1}(\mathbf{x}) + \delta_s(\mathbf{x}) \tag{1}$$

We generalize the autoregressive multi-fidelity scheme :

$$f_s(\mathbf{x}) = \rho_s \left(f_{s-1}(\mathbf{x}), \mathbf{x} \right) + \delta_s(\mathbf{x})$$
 (2)

where ρ_s is an unknown function and δ_s a Gaussian process.

We replace the GP prior f_{s_1} with the GP posterior from the previous level $f_{s-1}(\mathbf{x})$. The independence between z and δ .

Baptiste Kerleguer 16 june 2021 2 / 25

Motivation

Figure 6: *Top:* Synthetic multi-fidelity functions used for model comparison. *Bottom:* Mapping between low and high-fidelity observations for same functions.

Baptiste Kerleguer 16 june 2021 3 / 25

- \blacksquare X is the input.
- Z is the latent variable.
- lacksquare Y is the output

Baptiste Kerleguer 16 june 2021 4 / 25

Deep Gaussian Process

You have loved deep learning with neural network, you will love deep learning with GP. Deep Gaussian process is model where the output of a GP becomes the input of the next GP level. For simplicity, consider a structure with only two hidden units. The generative process takes the form :

$$y_{d,n} = f_d^Y(\mathbf{z}_n) + \epsilon_{d,n} \qquad d = 1, \dots, D$$
(3)

$$z_{d,n} = f_d^Z(\mathbf{x}_n) + \epsilon_{d,n} \qquad d = 1, \dots, Q$$

with $f^Y \sim \mathcal{GP}\left(\mathbf{0}, k^Y(\mathbf{Z}, \mathbf{Z})\right)$ and $f^Z \sim \mathcal{GP}\left(\mathbf{0}, k^Z(\mathbf{X}, \mathbf{X})\right)$. \mathbf{z}_n is the variable in the latent space. D dimension of output. Q number of "neurons" or GP in the hidden layer.

The co-variance functions for the GP:

$$k(\mathbf{x}, \mathbf{x}) = \sigma^2 \exp\left(-\frac{1}{2} \sum_{q=1}^{Q} w_q (x_{i,q} - x_{j,q})^2\right).$$
 (5)

Different weight w_a must be evaluated in order to compute the co-variance.

Baptiste Kerleguer 16 june 2021 5 / 25

Bayesian Training for Deep Gaussian Process

The law of total probabilities gives :

$$p(\mathbf{Y}) = \iint_{\mathbf{Z}, \mathbf{X}} p(\mathbf{Y}|\mathbf{Z}) p(\mathbf{Z}|\mathbf{X}) p(\mathbf{X}).$$
 (6)

The Bayesian training procedure requires optimizing :

$$\log p(\mathbf{Y}) = \log \iint_{\mathbf{Z}, \mathbf{X}} p(\mathbf{Y}|\mathbf{Z}) p(\mathbf{Z}|\mathbf{X}) p(\mathbf{X}).$$
 (7)

Even for the simple $\mathbf{X} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$, equation 7 is intractable. This is due to the non-linearity in the GPs f^Y and f^Z regarding \mathbf{Z} and \mathbf{X} .

To solve this issue for simple fidelity see Damianou and Lawrence in Deep Gaussian Processes (AISTATS) 2013.

Let imagine now that we have access to the latent variable Z!

We have a lot of data $\mathbf{X}^{1,\cdots,N_X}$ and leas realization of $\mathbf{Z}:\mathbf{Z}^{1,\cdots,N_Z}$. This will help us in the optimization. If we call \mathbf{X} the low-fidelity variable and \mathbf{Z} the high-fidelity one, we see the multi-fidelity framework appears.

Baptiste Kerleguer 16 june 2021 6 / 25

Multi-Fidelity Deep Gaussian Process

The equations of the interaction between codes became :

$$f_1(\mathbf{x}) = h_0(\mathbf{x}),\tag{8}$$

$$f_2(\mathbf{x}) = h_1(\mathbf{x}, f_1(\mathbf{x})) + \delta(\mathbf{x}), \tag{9}$$

with $h_{0.1}$ two GPs and δ a GP.

we replace the GP prior f_1 with the GP posterior from the previous inference level $f_1^*(\mathbf{x})$. Then, using the additive structure of equation (10), along with the independence assumption between the GPs z t1 and t, we can summarize the autoregressive scheme of equation (2.10) as

$$f_2(\mathbf{x}) = g_2(\mathbf{x}, f_1^{\star}(\mathbf{x})), \tag{10}$$

where $g_2 \sim \mathcal{GP}\left(f_2|\mathbf{0}, k_2((\mathbf{x}, f_1^{\star}(\mathbf{x})), (\mathbf{x}, f_1^{\star}(\mathbf{x})), \theta)\right)$. θ is the hyperparameters of the Model proposed by Perdikaris and al. in Nonlinear information fusion algorithms for data-efficient multi-fidelity modelling.

Baptiste Kerleguer 16 june 2021 7 / 25

The Markov property

- We have noiseless data
- The GP have a stationary kernel

Then we have the Markov property (as in Kennedy and O'Hagan):

We can learn nothing more about $f_2(\mathbf{x})$ from any model output $h_1(f_1(\mathbf{x}'))$ with $\mathbf{x} \neq \mathbf{x}'$.

Baptiste Kerleguer 16 june 2021 8 / 25

Deep Gaussian Process in a schematic form

Figure 2: Left: MF-DGP architecture with three fidelity levels. Observed data and latent variables are color-coded in order to indicate the associated fidelity level. The latent variables at each layer denote samples drawn from a GP. For example, the evaluation of MF-DGP at layer '1' for the inputs observed with fidelity '3' is denoted as \mathbf{f}_1^3 . Right: Predictions using the same MF-DGP model, whereby the original input \mathbf{x}_* is input at every fidelity level along with the evaluation up to the previous level. The output y_*^* denotes the model's prediction for fidelity t.

from Cutajar et al. Deep Gaussian Processes for Multi-fidelity Modeling.

Baptiste Kerleguer 16 june 2021 9 / 25

Covariance the key element

We consider a covariance kernel that decomposes as :

$$k_2 = k_{\rho}(\mathbf{x}, \mathbf{x}', \theta_{\rho}) k_{f_1^{\star}}(f_1^{\star}(\mathbf{x}), f_1^{\star}(\mathbf{x}'), \theta_{f_1^{\star}}) + k_{\delta}(\mathbf{x}, \mathbf{x}', \theta_{\delta}), \tag{11}$$

with k_{ρ} , $k_{f_{1}^{\star}}$ and k_{δ} 3 covariance function and θ the hyperparameters.

- \blacksquare k_{ρ} the covariance for ρ parameter.
- \blacksquare $k_{f_1^*}$ the covariance for the low fidelity code.
- \blacksquare k_{δ} the covariance for δ Gaussian Process.

Baptiste Kerleguer 16 june 2021 10 / 25

Covariance the key element

In this framework the AR(1) model can be written with a covariance :

$$k_2 = k_\rho(\mathbf{x}, \mathbf{x}', \theta_\rho) A_\rho^2 f_1^*(\mathbf{x})^T f_1^*(\mathbf{x}') + k_\delta(\mathbf{x}, \mathbf{x}', \theta_\delta),$$
(12)

with A_a^2 the hyper parameters.

We want to add a linear part to the covariance in order to be close to the $\mathsf{AR}(1)$ model. The covariance function became :

$$k_2 = k_\rho(\mathbf{x}, \mathbf{x}', \theta_\rho) \left[A_\rho^2 f_1^*(\mathbf{x})^T f_1^*(\mathbf{x}') + k_{f_1^*}(f_1^*(\mathbf{x}), f_1^*(\mathbf{x}'), \theta_{f_1^*}) \right] + k_\delta(\mathbf{x}, \mathbf{x}', \theta_\delta).$$
(13)

This model is easier to learn (see the practical session).

Baptiste Kerleguer 16 june 2021 11 / 25

Prediction the posterior law

For the low-fidelity model it is the same as GP regression. The hyper parameters are evaluated separation of the high fidelity model.

The hyper-parameters of the high fidelity model must be evaluated. For the high-fidelity code we need to integrate the following equation in order to get the posterior law:

$$p(f_2^{\star}(\mathbf{x})) = \int p(f_2(\mathbf{x}, f_1^{\star}(\mathbf{x})) | (\mathbf{x}_2, \mathbf{y}_2), \mathbf{x}) p(f_1^{\star}(\mathbf{x})) d\mathbf{x}, \tag{14}$$

with f^{\star} denote the posterior distribution of the model, $(\mathbf{x}_2,\mathbf{y}_2)$ are the high-fidelity data.

Baptiste Kerleguer 16 june 2021 12 / 25

Computation of (θ, σ_{ρ})

We want to fit the model with the parameters (θ, σ_{ρ}) . And then we want to predict the posterior law of the surrogate model.

- Step 1 : We train the low-fidelity model with low fidelity data.
- Step 2 : optimization of the hyper-parameters for the high-fidelity model.
- Step 3: Monte Carlo integration of the equation 14. Then we have the posterior low of the high-fidelity model.

Baptiste Kerleguer 16 june 2021 13 / 25

Low fidelity Regression

Baptiste Kerleguer 16 june 2021 14 / 25

High fidelity Regression

Baptiste Kerleguer 16 june 2021 15 / 25

High fidelity Regression

Baptiste Kerleguer 16 june 2021 15 / 25

High fidelity Regression

Baptiste Kerleguer 16 june 2021 15 / 25

Posterior distribution

Baptiste Kerleguer 16 june 2021 16 / 25

Quizz Multi-Fidelity Deep Gaussian Process

The MF-DGP model is similar to : $\ \ \Box \ AR(1) \ model \ with \ DeepGP \ in \ each \ level \ \Box \ Linear \ regression \ in \ multi-fidelity \\ AR(1) \ model \ with \ non-linear \ interaction \ between \ levels \ \Box \ neural \ network \\$
The model came at what cost? $\ \square$ No more cost $\ \square$ the equation are intractable $\ \square$ Computational cost increase Uncertainty increase
The covariance function is $\ \square$ the key element $\ \square$ never negative $\ \square$ the same as in Universal Kriging $\ \square$ is a combination of at leas 3 covariance kernel
I will use this model $\ \square$ never $\ \square$ always $\ \square$ when I don't now the interaction between code $\ \square$ When AR(1) is not working

Baptiste Kerleguer 16 june 2021 17 / 25

Neural network for multi-fidelity

The simplest model

Figure 1: Graphical representation of the deep multi-fidelity model. The low dimensional latent output in each fidelity $\mathbf{f}_m(\mathbf{x})$ $(1 \le m \le M)$ is generated by a (deep) neural network.

Baptiste Kerleguer 16 june 2021 18 / 25

Neural network for multi-fidelity

The Neural network model model:

- is Simple and works for most of the big data set.
- has no quantification of uncertainty for now.
- is expensive to train.

Baptiste Kerleguer 16 june 2021 19 / 25

Neural network for multi-fidelity

A model for small data and multi-fidelity

Fig. 1. Schematic of the multi-fidelity DNN and MPINN. The left box (blue nodes) represents the low-fidelity DNN $\mathcal{NN}_{i}(x, \theta)$ connected to the box with green dots representing two high fidelity DNNs, $\mathcal{NN}_{ii}(x, y_i, y_i)$ (i=1, 2). In the case of MPINN, the combined output of the two high-fidelity DNNs is input to an additional PDE-induced DNN. Here $\partial \Phi = [a_i, a_i, b_i, a_j^*, a_j^*, a_j^*]$. $\mathcal{N}_{ii} = 0$ for the colors in the figure(s), the reader is referred to the web version of this article.)

X. Meng, G. Karniadakis, A composite neural network that learns from multi-fidelity data : Application to function approximation and inverse PDE problems

Baptiste Kerleguer 16 june 2021 20 / 25

Neural networks

When to use this technique:

- The interaction between codes is more complex
- we have access to a lot of data.
- We have no-ideas of the code output shape.

Baptiste Kerleguer 16 june 2021 21 / 25

Neural Network Demo

The estimation of the Forrester function :

Baptiste Kerleguer 16 june 2021 22 / 25

The MF-NN model is similar to : $\ \ \Box \ AR(1) \ model \ with \ DeepGP \ in \ each \ level \ \Box \ Linear \ regression \ in \ multi-fidelity \ In \ AR(1) \ model \ with \ non-linear \ interaction \ between \ levels \ \Box \ neural \ network$
The model came at what cost ☐ No more cost ☐ Computation cost increase ☐ the uncertainty is not computed ☐ Uncertainty increase
The covariance function is □ null □ never negative □ do not exist □ not explicit
I will use this model □ never □ always □ after all the others

Baptiste Kerleguer 16 june 2021 23 / 25

Conclusion

Models:

- Gaussian process regression
- CoKriging
- Autoregressive model for multi-fidelity
- Deep Gaussian Process surrogate model
- Neural network for multi-fidelity

Baptiste Kerleguer 16 june 2021 24 / 25

Merci pour votre attention.