Also30 / EE5817: PROBABILITY AND STOCHASTIC PROCESSES HOMEWORK 02

ALGEBRAS, σ -ALGEBRAS

- 1. (a) Let $\Omega = \{1, \dots, 6\}$. For each $i \in \{1, 2, 3, 4\}$, construct a σ -algebra \mathscr{F}_i of subsets of Ω such that $|\mathscr{F}_i| = 2^i$.
 - (b) Let Ω be a finite sample space with $|\Omega|=n$ for some $n\in\mathbb{N}$. Let \mathscr{F} be a σ -algebra of subsets of Ω . Show that $|\mathscr{F}|=2^k$ for some $1\leq k\leq n$.
- 2. Let Ω be an arbitrary set (finite, countably infinite, or uncountable).
 - (a) Suppose that \mathscr{A} is a collection of subsets of Ω satisfying the following properties:
 - $\Omega \in \mathcal{A}$.
 - If $A, B \in \mathcal{A}$, then $A \cap B^{\complement} \in \mathcal{A}$.

Show that \mathcal{A} must be an algebra.

- (b) Suppose \mathscr{F} is a collection of subsets of Ω satisfying the following properties:
 - $\Omega \in \mathscr{F}$.
 - If $A \in \mathscr{F}$, then $A^{\complement} \in \mathscr{F}$ (closure under complements).
 - If A, B are two **disjoint** subsets of Ω , then $A \cup B \in \mathscr{F}$ (closure under finite **disjoint** unions).

Construct an explicit example to demonstrate that ${\mathscr F}$ need not be an algebra.

- 3. Let Ω be an arbitrary set (finite, countably infinite, or uncountable).
 - (a) Let \mathscr{F}_1 denote the collection of all finite subsets of Ω , i.e.,

$$\mathscr{F}_1 := \left\{ A \subseteq \Omega : |A| \in \mathbb{N} \right\}.$$

Is \mathcal{F}_1 an algebra?

(b) Let \mathscr{F}_2 denote the collection of all finite subsets of Ω , plus all subsets of Ω whose complement is finite, i.e.,

$$\mathscr{F}_2 := \bigg\{ A \subseteq \Omega: \ A \text{ is finite or } (\Omega \setminus A) \text{ is finite or both} \bigg\}.$$

Show that \mathcal{F}_2 is an algebra.

Construct an example to demonstrate that \mathscr{F}_2 need not necessarily be a σ -algebra.

(c) Let \mathscr{F}_3 denote the collection of all countable subsets of Ω , plus all subsets of Ω whose complement is countable, i.e.,

$$\mathscr{F}_3 := \bigg\{ A \subseteq \Omega: \ A \text{ is countable or } (\Omega \setminus A) \text{ is countable or both} \bigg\}.$$

Show that \mathcal{F}_3 is a σ -algebra.

Note: Countable means finite or countably infinite.

4. Let $\Omega = \mathbb{R}$. Let \mathscr{P} denote the collection

$$\mathscr{P} \coloneqq \Big\{ [a,b): \ a,b \in \mathbb{R}, \ a < b \Big\}.$$

Clearly, \mathscr{P} consists of uncountably infinitely many subsets of Ω .

In Lecture 6, we saw that $\sigma(\mathscr{P}) = \mathscr{B}(\mathbb{R})$, i.e., \mathscr{P} is a generating class for $\mathscr{B}(\mathbb{R})$.

In this exercise, we will see an alternative construction of $\mathscr{B}(\mathbb{R})$ starting from a **countably infinite** collection of subsets of Ω .

Consider the collection \mathscr{C} given by

$$\mathscr{C} := \bigg\{ [a,b) : a \leq b, \ \ a,b \text{ are dyadic rational numbers} \bigg\}.$$

Note: A dyadic rational number is of the form $m/2^n$ for some $m \in \mathbb{Z}$ and $n \in \mathbb{N} \cup \{0\}$.

- (a) Given $x \in \mathbb{R}$, express $\{x\}$ in terms of sets in \mathscr{C} using countable set operations.
 - **Hint:** Note that $|2^n x| \le 2^n x \le \lceil 2^n x \rceil$ for all $n \in \mathbb{N}$. Therefore,

$$\frac{\lfloor 2^n x \rfloor}{2^n} \le x \le \frac{\lceil 2^n x \rceil}{2^n} \qquad \forall n \in \mathbb{N}.$$

- (b) Given $a,b \in \mathbb{R}$ with a < b, express [a,b) in terms of sets in \mathscr{C} using countable set operations.
- (c) Using the result in part (b), what can you say about the relationship between \mathscr{P} and $\sigma(\mathscr{C})$?
- (d) What can you say about the relationship between \mathscr{C} and $\sigma(\mathscr{P})$?
- (e) Using the results of parts (c), (d), what can you say about the relationship between $\sigma(\mathscr{C})$ and $\sigma(\mathscr{P})$?
- 5. Let Ω be an arbitrary set (finite, countably infinite, or uncountable).
 - (a) Let $\mathscr C$ denote the collection of all singleton subsets of Ω . What is $\sigma(\mathscr C)$? **Hint:** See Question 3c.
 - (b) Fix two elementary outcomes $a,b\in\Omega$. Let $\mathscr{E}_{a,b}$ denote the collection of all those subsets of Ω which either contain both a and b or do not contain both. Let $\mathscr{F}=\sigma(\mathscr{E}_{a,b})$. Show that every set in \mathscr{F} has the same property as the sets in $\mathscr{E}_{a,b}$.
- 6. Consider the collection

$$\mathscr{D} \coloneqq \bigg\{ (a,b] \cup [-b,-a): \ a,b \in \mathbb{R}, \ a \leq b \bigg\}.$$

Show that $\sigma(\mathcal{D}) \subsetneq \mathscr{B}(\mathbb{R})$ by constructing a non-empty set $B \in \mathscr{B}(\mathbb{R}) \setminus \sigma(\mathcal{D})$.