EfficientNet

EfficientNet

$$\mathcal{N} = \bigodot_{i=1}^{L_i} \mathcal{F}_i^{L_i} (X_{\langle H_i, W_i, C_i \rangle})$$

$$\mathcal{N}(d, w, r) = \left(\cdot \right) \hat{\mathcal{F}}_{i}^{d \cdot \hat{L}_{i}} \left(X_{\langle r \cdot \hat{H}_{i}, r \cdot \hat{W}_{i}, w \cdot \hat{C}_{i} \rangle} \right)$$

i=1...s

depth: $d = \alpha^{\phi}$

width: $w = \beta^{\phi}$

resolution:
$$r = \gamma^{\phi}$$

s.t. $\alpha \cdot \beta^2 \cdot \gamma^2 \approx 2$

Siamese Network

Siamese Network

$$S=\{(x_i,x_j,z_{ij}),i=1,\ldots,n;j=1,\ldots,n\},$$
 $z_{ij}=0$, при $y_i=y_j$ $z_{ij}=1$ при $y_i\neq y_j$

contrastive loss function

$$l(x_i,x_j,z_{ij})=(1-z_{ij})||h_i-h_j||_2^2+z_{ij}\max(0, au-||h_i-h_j||_2^2)$$
, де $au-$ заздалегіть задане

$$l(x_i,x_j,x_k) = \max(0,||h_i-h_j||_2^2 - ||h_i-h_k||_2^2 + lpha)$$
, де $lpha$ — заздалегіть заданє

Системи розпізнавання образів Згорткові нейронні мережі для задачі сегментації

Classification + Localization

Object Detection

Semantic Segmentation

Instance Segmentation

Fully convolutional network

H/16 × W/16

Всі шари - це згорткові шари

H/32 × W/32

 $H \times W$

 $H/4 \times W/4$

H/8 × W/8

tabby cat heatmap

Fully convolutional network

Upsampling

Метод найближчого сусіда

Input: 2 x 2

Output: 4 x 4

Bed of nails

Input: 2 x 2

Output: 4 x 4

8

Unpooling

Max Pooling

Remember which element was max!

1	2	6	3
3	5	2	1
1	2	2	1
7	3	4	8

Max Unpooling

Use positions from pooling layer

1	2
3	4

0	0	2	0
0	1	0	0
0	0	0	0
3	0	0	4

Input: 4 x 4

Output: 2 x 2

Input: 2 x 2

Output: 4 x 4

Транспонована згортка

Fully convolutional network

Skip connections

Які ідеї застосовувалися для того щоб виконати сегментацію зображення, а не просто його класифікувати?

VGG 16

16

U-Net

17

Оцінка сегментації

R-CNN (Region-Based Convolutional Neural Network)

R-CNN: Regions with CNN features

Модуль пропозиції регіонів

Вибірковий пошук:

- 1. Генеруємо початкову субсегментацію, генеруємо багато регіонів-кандидатів
- 2. Використовуйте жадібний алгоритм для рекурсивного об' єднання подібних регіонів у більші
- 3. Використовуйте згенеровані регіони для створення 20 пропозицій щодо остаточного регіону-кандидата

R-CNN

- 2000 пропозицій регіонів-кандидатів
- AlexNet створює 4096-мірний вихід
- вилучені ознаки подаються у <u>SVM</u> класифікатори
- Передбачення обмежувальної рамки

Fast R-CNN

Вузьке місце – генерація регіонів кандидатів

Faster R-CNN

Виберіть твердження яке відповідає дійсності щодо розглянутих варіацій **R CNN**

Мережа сегментує зображення класифікуючи кожен піксель

режа будує обмежувальні рамки, в тих з високою ймовірністю є об'єкт

Мережа відносить зображення до того чи іншого класу

В якості базової мережі в ній може бути використана лише AlexNet

1. atrous convolutions

$$y[i] = \sum_{m{k}} x[i + r \cdot k] w[k]$$

(a) Going deeper without atrous convolution.

2. Conditional Random Field (CRF)

29

• 3. Atrous Spatial Pyramid Pooling (ASPP)

- DeepLabV1: використовує розширювальну згортку та Fully Connected Conditional Random Field (CRF) для управління роздільною здатністю, при якій обчислюються характеристики зображення.
- DeepLabV2: використовує Atrous Spatial Pyramid Pooling (ASPP) щоб розглянути об'єктів у різних масштабах та сегментації з набагато кращеною точністю.
- DeepLabV3: Окрім використання Atrous Convolution, DeepLabV3 використовує вдосконалений модуль ASPP, включаючи пакетну нормалізацію та функції рівня зображення. Не використовується CRF, як використовується у V1 та V2.

В чому первага використання atrous (dilated) згортки?

Mask R-CNN

Feature Pyramid Network (FPN)

Holistically-Nested Edge Detection

