Automatické rozpoznávání hudebního zápisu pomocí neuronových sítí (Optical music recognition = OMR)

Vedoucí práce: Ing. Michal Hradiš Ph.D.

Vojtěch Vlach (xvlach22)


```
<durationType>quarter</durationType>
   <pitch>60</pitch>
</Note>
   <durationType>quarter</durationType>
    <pitch>64</pitch>
</Note>
<Note>
   <durationType>quarter</durationType>
   <pitch>67</pitch>
</Note>
   <durationType>quarter
```

Dva základní pojmy

Monofonní hudba

Polyfonní hudba

clef-G2 + keySignature-BbM + note-G3_eighth. note-Bb3_quarter note-Eb4_quarter note-F4_quarter + note-F3_sixteenth + note-G3_sixteenth note-Eb4_quarter note-F4_quarter + note-Bb3_eighth + note-G3_sixteenth + note-G3_sixteenth note-Bb3_eighth note-Eb4_eighth note-F4_eighth + note-G3_eighth. + note-F4_sixteenth + note-G4_sixteenth + note-C4_eighth + barline

Cíle práce a prostředky ke splnění

- Nový přístup k OMR pomocí img2seq transformer sítě na tištěnou monofonní hudbu
- Nová reprezentace polyfonní hudby jako sekvence
- Otestovat a vylepšit transformer síť pro polyfonní hudbu
- Veřejné datasety
 - PrlMuS^[1] monofonní hudba
 - MuseScore^[2] polyfonní hudba
- Hodnocení pomocí Symbol error rate^[3]
 - Levenshteinova vzdálenost (jako Word error rate v NLP)

^[1] J. Calvo-Zaragoza and D. Rizo, "End-to-end neural optical music recognition of monophonic scores," Applied Sciences, vol. 8, no. 4, 2018

^[2] https://github.com/Xmader/musescore-dataset

^{[3] &}lt;u>Baró, Arnau & Riba, Pau & Calvo-Zaragoza, Jorge & Fornés, Alicia. (2019). From Optical Music Recognition to Handwritten Music Recognition: a</u> Baseline. Pattern Recognition Letters. 123. 10.1016/j.patrec.2019.02.029.

Vytvořená baseline pro monofonní hudbu

- Framework PERO^[4], síť VGG LSTM
- Dataset PrlMuS^[1]
 - 80 000 obrázků a k nim přepisy s dvěma typy kódování
 - Semantic: méně symbolů, vystihují smysl symbolů (např nota C4 v houslovém klíči)
 - Agnostic: více symbolů, popis grafických primitiv (např. nota na 1. pomocné lince)


```
clef-G2 timeSignature-3/4 note-C4_quarter note-C4_half clef.G-L2 digit.3-L4 digit.4-L2 note.quarter-L0 note.half-L0
```

Minimální dosažená chybovost baseline:

Semantic: 7 % (SER)

Agnostic: 9.71 % (SER)

Plán další práce

- Vlastní architektura img2seq transformer sítě
- Vylepšení výsledků oproti baseline
- Pomocí datasetu MuseScore vytvořit nový polyfonní zápis
- Dataset MuseScore^[2] obsahuje:
 - o víc než 20 000 stránek notových zápisů, ~100 000 řádků

clef-G2 + keySignature-BbM + note-G3_eighth. note-Bb3_quarter note-Eb4_quarter note-F4_quarter + note-F3_sixteenth + note-G3_sixteenth note-Eb4_quarter note-F4_quarter + note-Bb3_eighth + note-G3_sixteenth + note-G3_sixteenth note-Bb3_eighth note-Eb4_eighth note-F4_eighth + note-G3_eighth. + note-F4_sixteenth + note-G4_sixteenth + note-C4_eighth note-G4_sixteenth + note-C4_eighth + barline

Edirisooriya, H.W. Dong, J. McAuley, and T. Berg-Kirkpatrick. An empirical evaluation of end-to-end polyphonic optical music recognition. In International Society for Music Information Retrieval, 2021