Análise orientado a objetos

Fundamentos da UML

Ma. Vanessa Matias Leite

- Unidade de Ensino: 01
- Competência da Unidade: Compreender os fundamentos da UML
- Resumo: Conhecer os diagramas que compõem a UML e as fases do processo unificado.
- Palavras-chave: UML; processo unificado; paradigma orientado a objetos:
- Título da Teleaula: Fundamentos da UML
- Teleaula nº: 01

1 2

Características da UML

Paradigma Orientado a Objetos

- Linguagens como JAVA, C++, C#, PHP;
- Relacionamento entre classes e objetos e o relacionamento entre eles:
 - Herança;
 - Polimorfismo,
 - Agregação
 - composição

3 4

Classe

Classe

Define o comportamento de seus objetos - através de métodos - e os estados possíveis destes objetos - de métodos - e os estados possíveis destes objetos - através de atributos.

Dijeto

Instância de um classe.

Herança

As classes compartilham seus atributos, métodos e outros membros da classe entre si.

Polimorfismo

Métodos que têm a mesma assinatura, mas comportamentos distintos.

Encapsulamento

Prolibição do acesso ao direto ao estado do objeto.

5 6

Características da UML

- Combina os conceitos comuns de linguagens OO;
- Compatível com o desenvolvimento de software desde os requisitos até as etapas finais do desenvolvimento;
- · Compatível com diversos escopos;

Objetivos da UML

- Modelar diferentes linguagens e situações;
- Padrão para o desenvolvimento de software;
- Simplicidade;

7

8

Modelos

- Capturar e definir com precisão os requisitos do software;
- · Auxiliar o início do projeto do sistema;
- Solução que contenha as decisões de projeto;
- Explorar diferentes soluções;
- Permitir o fácil entendimento de projetos complexos.

Fluxo de desenvolvimento

- Pode ser utilizada em qualquer fluxo de desenvolvimento;
- Apresentação visual da semântica do sistema;
- · Contexto;

9

10

Diagramas UML

Nível de abstração

Nível de Abstração	Objetivo do Diagrama
ALTO	Ser claro e simples, apresentar os conceitos ao cliente para tomada de decisão
MÉDIO	Guiar o desenvolvimento apresentado, sem detalhar demais, as classes, os objetos e as interações
BAIXO	Demonstrar como deve ser desenvolvido o sistema propriamente dito. Necessita de diagramas e modelos com a especificação completa de cada módulo, interação e outras informações que possam ser necessárias

Fonte: Livro to

11

Diagrama de classes

- · Classe:
 - · Atributos;
 - Métodos;
- Relacionamento:
 - Associação;
 - Herança;Polimorfismo;

13 14

15 16

17 18

19 20

Processo Unificado

21 22

Processo Unificado

- Processo \longrightarrow quem, o que, como e quando;
- Processo Unificado (PU);
- RUP (do inglês Rational Unified Process);

Processo Unificado

- · Interativo e incremental;
- Dirigido por uma lista de casos de uso;
- · Focado na arquitetura do sistema;
- Orientado a riscos;

23 24

25 26

Fase de Concepção

- Diagrama de Caso de Uso;
- · Diagramas de sequência;
- Diagrama de colaboração;
- · Diagrama de atividades;
- Diagrama de máquinas de estado;

Fase de elaboração · Diagrama de classes;

- Diagramas de sequência; · Diagrama de colaboração;
- · Diagrama de atividades;

• Diagrama de máquinas de estado;

- Evolução

27 28

Fase de construção

· Diagrama de instalação;

Fase de Implementação

- Diagrama de classes;
- Diagramas de sequência;
- · Diagrama de colaboração;
- Diagrama de atividades;

29 30

Mecanismos comuns da UML

Especificação

- · Descrição exata do elemento;
- No diagrama de classe existe uma especificação;
 - · Atributos;
 - Operações;
 - · Comportamentos;

31 32

Adorno Notação gráfica dos modelos; Check - name: String - banklb: String + authorized()

Divisões comuns

Na modelagem de sistemas orientados a objetos, costuma ser divido pelo menos de duas maneiras:

- Divisão de classes e objetos. Uma classe é uma abstração; um objeto é uma manifestação concreta dessa abstração.
- Separação de interface e implementação. Uma interface declara um contrato e a implementação representa uma realização completa e fiel desse contrato.

33 34

Mecanismos de extensão

- Estereótipos: é possível, na UML, utilizar o "desenho" de um determinado bloco e modificá-lo para um propósito específico, criando um novo objeto.
- Restrições: é possível, também na UML, alterar as restrições na construção de um diagrama. Em UML, as restrições são representadas pelas strings que acompanham as ligações entre elementos.

Mecanismos de extensão

 Valores predefinidos: é possível predefinir valores específicos em um diagrama, para guiar a implementação do sistema ou gerenciamento de configurações do sistema.

35 36

Regras de consistência de diagramas UML

- O número de objetos no diagrama de sequência deve ser o mesmo do número de classes;
- Deve se atentar para as atualizações do diagrama de classes e reproduzi-las corretamente no diagrama de sequência.
- O nome dos métodos deve ser respeitado entre os diagramas de classe e sequência

Regras de consistência de diagramas UML

- Os diagramas de classe e sequência devem ser sincronizados;
- Cada uma das situações representadas no diagrama de casos de uso deve ter uma operação correspondente no diagrama de classes.
- Cada caso de uso deve ter um substantivo e um verbo associados.

37 38

Regras de consistência de diagramas UML

- Para cada caso de uso deve existir ao menos um diagrama de sequência;
- Deve haver consistência entre os atores do diagrama de casos de uso e o de sequência.

Recapitulando

39 40

Recapitulando

- Características da UML;
- Diagramas UML;
 - Estruturais e comportamentais;
- · Processo Unificado;
- · Mecanismos comuns da UML;