Acadêmico(a) : _____ ____ Turma: ____

- 1. Verificar a validade dos argumentos (dedução natural) que se seguem (escolha duas das 3 para desenvolver):
 - (a) $\{p \to q, \ q \lor (r \land q), s \to \sim r, \sim (p \land q)\} \vdash \sim (s \land q)$
 - (b) $\{p \land q, p \rightarrow r, r \land s \rightarrow \sim t, q \rightarrow s\} \vdash \sim t$
 - (c) $\{p \land \sim q, r \rightarrow q, r \lor s, p \lor s \rightarrow t\} \vdash t$
- 2. Utilizando o método de demonstração condicional, demonstre a validade das consequências abaixo:
 - 1 $p \rightarrow q$
 - $2 \quad r \to t$
 - (a) $3 \quad s \to r$
- 3. Demonstrar que o conjunto das proposições abaixo geram uma contradição, ou demonstração por absurdo ou indireta, (isto é,derivam uma inconsistência do tipo: $(\Box \Leftrightarrow (\sim x \land x))$ Escolha duas provas para fazer das 3 que seguem abaixo:

(a)
$$\begin{array}{ccc}
2 & r \to \sim p \\
3 & q \lor r \\
\hline
\vdash & \sim p
\end{array}$$

- 1. $\sim p \lor \sim q$
- $2. \quad r \lor s \to p$
- (b) 3. $q \lor \sim s$
 - $\frac{4. \sim r}{\vdash \sim (r \vee s)}$
- (c) $\begin{array}{ccc} 1. & (p \to q) \to r \\ 2. & r \lor s \to \sim t \\ 3. & t \\ \hline \vdash & \sim q \end{array}$

Caso algumas das questões acima não alcancem a proposta, prove com uma outra técnica, ou pegue a questão seguinte.

Equivalências Notáveis:

Idempotência (ID): $P \Leftrightarrow P \land P$ ou $P \Leftrightarrow P \lor P$

Comutação (COM): $P \wedge Q \Leftrightarrow Q \wedge P$ ou $P \vee Q \Leftrightarrow Q \vee P$

Associação (ASSOC): $P \land (Q \land R) \Leftrightarrow (P \land Q) \land R \text{ ou } P \lor (Q \lor R) \Leftrightarrow (P \lor Q) \lor R$

Distribuição (DIST): $P \land (Q \lor R) \Leftrightarrow (P \land Q) \lor (P \land R)$ ou $P \lor (Q \land R) \Leftrightarrow (P \lor Q) \land (P \lor R)$

Dupla Negação (DN): $P \Leftrightarrow \sim \sim P$

De Morgan (DM): $\sim (P \land Q) \Leftrightarrow \sim P \lor \sim Q \text{ ou } \sim (P \lor Q) \Leftrightarrow \sim P \land \sim Q$

Equivalência da Condicional (COND): $P \to Q \Leftrightarrow \sim P \lor Q$

Bicondicional (BICOND): $P \leftrightarrow Q \Leftrightarrow (P \rightarrow Q) \land (Q \rightarrow P)$

Contraposição (CP): $P \rightarrow Q \Leftrightarrow \sim Q \rightarrow \sim P$

Exportação-Importação (EI): $P \wedge Q \rightarrow R \Leftrightarrow P \rightarrow (Q \rightarrow R)$

Contradição: $P \land \sim P \Leftrightarrow \square$ Tautologia: $P \lor \sim P \Leftrightarrow \blacksquare$

Regras Inferências Válidas (Teoremas):

Adição (AD): $P \vdash P \lor Q$ ou $P \vdash Q \lor P$

Simplificação (SIMP): $P \wedge Q \vdash P$ ou $P \wedge Q \vdash Q$

Conjunção (CONJ) $P, Q \vdash P \land Q \text{ ou } P, Q \vdash Q \land P$

Absorção (ABS): $P \rightarrow Q \vdash P \rightarrow (P \land Q)$

Modus Ponens (MP): $P \rightarrow Q, P \vdash Q$

Modus Tollens (MT): $P \to Q, \sim Q \vdash \sim P$

Silogismo Disjuntivo (SD): $P \vee Q, \sim P \vdash Q$ ou $P \vee Q, \sim Q \vdash P$

Silogismo Hipotético (SH): $P \rightarrow Q, Q \rightarrow R \vdash P \rightarrow R$

Dilema Construtivo (DC): $P \rightarrow Q, R \rightarrow S, P \lor R \vdash Q \lor S$

Dilema Destrutivo (DD): $P \to Q, R \to S, \sim Q \lor \sim S \vdash \sim P \lor \sim R$

Observações:

- 1. Qualquer dúvida, desenvolva a questão e deixe tudo explicado, detalhadamente, que avaliaremos o seu conhecimentos sobre o assunto;
- 2. Clareza e legibilidade;