Written Exam for the M.Sc. in Economics 2010-I

"Behavioral and Experimental Economics"

\mathbf{r}		1	_	
v	a to	$\nabla \Delta$	Exam	١
1	V-14	\mathbf{r}	I ZXAII	ı

(2 hours, closed book exam)

This exam has 5 questions in total. Answers must be in English. Good luck.

Question 1: Experimental methods

- a) Explain the following expressions
 - "replication"
 - "ceteris paribus variation"
 - "session"
 - "treatment"
- b) Explain the sufficient conditions to "induce" experimental subjects' preferences (Smith, AER, 1982).
- c) Can experiments which fail to induce preferences nevertheless be interesting? Illustrate by referring to one experimental study discussed during the course.

Question 2: Voting and Provision of Public Goods

a) Describe the design by Tyran and Feld (SJE, 2006)

Hint:

	No law	Mild law	Severe law
Exogenous	NoEx	MildEx	SevereEx
Endogenous	NoEnd	MildEnd	SevereEnd

- b) What is the prediction for SevereEnd if all players are fully rational and egoistic?
- c) What is the prediction for MildEnd if all players are fully rational and egoistic?
- d) What do the authors observe in treatment MildEnd? How do contributions compare to MildEx?

Question 3: Anchoring

Table 1 below shows the results from "experiment 1" reported in Ariely et al. (QJE 2003).

TABLE I
AVERAGE STATED WILLINGNESS-TO-PAY SORTED BY QUINTILE OF THE SAMPLE'S
SOCIAL SECURITY NUMBER DISTRIBUTION

Quintile of SS# distribution	Cordless trackball	Cordless keyboard	Average wine	Rare wine	Design book	Belgian chocolates
1	\$ 8.64	\$16.09	\$ 8.64	\$11.73	\$12.82	\$ 9.55
2	\$11.82	\$26.82	\$14.45	\$22.45	\$16.18	\$10.64
3	\$13.45	\$29.27	\$12.55	\$18.09	\$15.82	\$12.45
4	\$21.18	\$34.55	\$15.45	\$24.55	\$19.27	\$13.27
5	\$26.18	\$55.64	\$27.91	\$37.55	\$30.00	\$20.64
Correlations	.415	.516	0.328	.328	0.319	.419
	p = .0015	<i>p</i> < .0001	p = .014	p = .0153	p=.0172	p = .0013

 $The \ last \ row \ indicates \ the \ correlations \ between \ Social \ Security \ numbers \ and \ WTP \ (and \ their \ significance \ levels).$

- a) Describe "experiment 1" and explain the hypothesis that motivated this experiment.
- b) What is the main conclusion from the table above?
- c) The figure below shows the results of "experiment 2" reported in Ariely et al. (QJE 2003). Describe this experiment

Question 4: Money Illusion

- a) Explain the basic design of Fehr and Tyran (Games and Economic Behavior, 2006). (Hint: see table below for treatments)
- b) The table below shows percentages of subjects choosing equilibrium A or C respectively in the last period of Fehr and Tyran (Games and Economic Behavior, 2006).

	NH	RH	NC	RC
Equilibrium A	0.00	0.98	0.82	0.83
Equilibrium C	0.84	0.00	0.18	0.09

Comment on and interpret the results in the table along the following dimensions:

- 1) NH vs. RH
- 2) NC vs. RC
- 3) NH vs. NC

Question 5: Voting and redistribution

Consider agents with the following utility functions (Fehr and Schmidt, QJE 1999):

$$u_i(\mathbf{x}) = x_i - \frac{1}{n-1} \left[\alpha_i \sum_{j \neq i} \max(x_j - x_i, 0) + \beta_i \sum_{j \neq i} \max(x_i - x_j, 0) \right]$$

where
$$x = (x_1, ..., x_n), 1 \ge \beta_i \ge 0, i = 1, 2, ..., n.$$

Tyran and Sausgruber (EER, 2004) adapt the model by Fehr and Schmidt (1999) to analyze voting on redistribution. They derive the following:

$$y(R_{rp}) = \lambda n_r + \frac{1+\mu}{2}n_m + n_p.$$

- a) Name three simplifying assumptions Tyran and Sausgruber (EER, 2004) use to deduce the formula above.
- b) Explain the meaning of α_i and β_i in Fehr and Schmidt (QJE, 1999). How does λ relate to α_i and β_i ? How does μ relate to α_i and β_i ? (Hint: You may write down the formula or provide intuitions for these relations)
- c) How do Tyran and Sausgruber (EER, 2004) test the theory experimentally?
- d) What are the predictions (Null and alternative hypothesis) in the design by Tyran and Sausgruber (EER, 2004)?
 (Hint: explain how the alternative hypothesis is "calibrated")
- e) What are the main results?
- f) Suggest one experimental treatment variation in which you expect to observe less fairminded behavior.

Question 6: Guessing game

Consider the standard guessing game with factor p < 1. Suppose a share s of the n > 2 players is irrational. These players choose a no matter what and a share 1-s is rational (i.e. have rational expectations) and choose a best reply r to what everybody else does.

- a) Derive the Nash equilibrium in this game as a function of p, s and a
- b) Derive the equilibrium average number M^* and decompose the total effect into a direct and the indirect effect of a change in s.
- c) Derive the value of μ (the multiplier) in the expression $\partial M^*/\partial s = \mu (a-r)$
- d) How does μ depend on the degree of strategic complementarity and the share of irrationals?
- e) Calculate (i) the total effect, (ii) the direct effect and (iii) the indirect effect for the values p = 0.8, a = 50 is s changes from $s_1 = 0.1$, to $s_1 = 0.2$.