P2- Continues Control: Reacher

For solving this environment, I used DDPG algorithm for training neural network agent and predicting action against each different state.

Learning from this project

Input of the DDPG is game state vector from Unity Agent and output of the DDPG is action space for different state

a. Key Point about DDPG

Actor

- 1. Fully-connected layer input: 33 (state size) output: 128
 - Linear Neural Network with followed by ReLU activation function

2. Batch Normalization

- To stabilize neural network, we used this. Please find more detail about it from here
- 3. Hidden Fully-connected layer input: 128 output: 128
 - Linear Neural Network with followed by ReLU activation function
- 4. Fully-connected layer input: 128 output: 4 (action size)
 - Linear Neural Network with followed by Tanh activation function
- 5. Maximum steps per episode: 1000
- 6. Update neural network after each step and batch size of 128
- 7. Discount factor: 0.99

Critic

- 1. Fully-connected layer input: 33 (state size) output: 128
 - Linear Neural Network with followed by ReLU activation function

2. Batch Normalization

- To stabilize neural network, we used this. Please find more detail about it from <u>here</u>
- 3. Hidden Fully-connected layer input: 128 output: 128
 - Linear Neural Network with followed by ReLU activation function
- 4. Fully-connected layer input: 128 output: 4 (action size)
 - Linear Neural Network with followed by Tanh activation function
- 5. Maximum steps per episode: 1000
- 6. Update neural network after each step and batch size of 128
- 7. Discount factor: 0.99

- Added Noise to modify action against state to add some twist.
- Replay Buffer Size: 1e5
- Why Batch Normalization is used?
 - To reduce impact of very large weight or outliner data on next level neural network and Stabilize neural network we used this. Find more details here

Why ReLU is used at hidden layer?

- The ReLU is the most used activation function in the world right now.
 Since, it is used in almost all the convolutional neural networks or deep learning.
- o Relu has range between 0 to infinity

Why Tanh is used at last layer?

- o tanh is also like logistic sigmoid but better. The range of the tanh function is from (-1 to 1). tanh is also sigmoidal (s shaped).
- tanh and logistic sigmoid activation functions are used in feed-forward nets.
- The tanh function is mainly used classification between two classes.

Plot of Rewards

Plotting Average Score against Episode of the game.

DDPG

1. Training Phase

```
Episode 50 Average Score: 2.18 Score: 2.18
Episode 100 Average Score: 4.56 Score: 4.56
Episode 150 Average Score: 9.67
Episode 200 Average Score: 19.33 Score: 19.33
Episode 247 Score: 39.00 Average Score: 30.02
Environment solved in 147 episodes! Average Score: 30.02
```


2. Production Phase

Episode 50 Average Score: 35.38 Score: 35.38 Episode 100 Average Score: 35.48 Score: 35.48

Future Implementations

- 1. DDPG training with multiple agents
- 2. Changing neural network size
- 3. Try different kind of activation function
- 4. Tune Hyper parameters for better learning