Condicionamento de sinais

Prof. Valner Brusamarello

Importância

- Os sinais dos sensores/trandutores geralmente possuem baixa intensidade
- Os sinais dos sensores/transdutores geralmente estão imersos em ruídos espúrios.
- Presença de não linearidades muito acentuadas.
- Necessidade de compor o sinal de um sensor com outras variáveis.
- Necessidade de uma saída padronizada, por exemplo em tensão de 0 a 5V ou em corrente de 4 a 20 mA.
- Necessidade de alimentar ou excitar o sensor. Por exemplo o LVDT necessita de uma excitação AC.
- Outros

Condicionador analógico básico

Exemplo de condicionador

Condicionadores digitais

- Utilização de microcontroladores
 - Utilizam conversores A/D para aquisição de sinais
- Possibilitam a inclusão de recursos:
 - Dados salvos em memória
 - Filtragem e processamento digital do sinal
 - Comunicação externa padronizadas ex.: UART RS232, ou algum tipo de barramento padronizado.
 - Possibilidades de inclusão de transmissores de dados.

Amplificador

- O bloco amplificador pode ser visto como um multiplicador por uma constante G, usualmente denominada ganho.
- Amplificadores reais apresentam problemas de offset: desbalanço de tensão em relação a uma referência.
- Além disso precisam ser alimentados com uma fonte de tensão estável e frequentemente deve ser simétrica.
- Os amplificares possuem limitações de entrada (por exemplo, tensão de entrada máxima).
- Os amplificares possuem limitações de saída (por exemplo, potência máxima que o mesmo pode fornecer sem sofrer danos).
- Os amplificadores reais possuem limitações em frequência.
- De maneira geral, os amplificadores são projetados para certas especificações de entrada e saída.

Amplificadores Operacionais

- O amplificador operacional é um componente eletrônico composto por resistências, transistores, FETs, capacitores, entre outros componentes embutidos num mesmo encapsulamento.
- O OPAMP (como também é conhecido) foi um marco na eletrônica e uma continuidade da era da miniaturização que se iniciou com o transistor.
- Atualmente o amplificador operacional é um dos principais componentes no projeto de condicionadores de sinais e podem ser encontrados com diversas características.
- Existem amplificadores operacionais construídos e otimizados para consumir baixíssima energia, outros são otimizados para responder a sinais em uma ampla gama de freqüência, outros para ter altos ganhos. Dependendo da aplicação o projetista deverá escolher a opção que melhor se adapta ao problema.
- De uma maneira geral, o OPAMP é indicado para situações onde são necessários: ganhos altos, imunidade ao ruído, impedância de entrada alta e impedância de saída baixa, sem distorção e com estabilidade.

Amplificadores Operacionais

- Idealmente, o amplificador operacional pode ser representado conforme a Figura.
- Os terminais (+) e (-) correspondem às entradas do amplificador e possuem propriedades de entradas não inversora e inversora.
- O amplificador é alimentado simetricamente através dos pinos e (algumas variedades de amplificadores operacionais não têm a necessidade de serem alimentados com tensão simétrica).
- O ganho diferencial dado por: $v_s = A_d (v_{e1} v_{e2})$ $A_d \rightarrow \infty$
- Para efeito de análise pode-se considerar o seguinte modelo da Figura para um amplificador operacional real.

Amplificadores operacionais: amplificador inversor

e não inversor

- Para que um amplificador operacional seja útil para o tratamento de sinais, é necessário limitar o seu ganho, sem abrir mão de suas características fundamentais.
- Neste sentido, inicialmente é proposta uma configuração inversora, na qual o sinal de entrada é aplicado à entrada inversora do amplificador operacional com realimentação negativa, conforme ilustrado na Figura.
- Da mesma forma a configuração não inversora.
- Em seguida o seguidor de tensão de entrada.
- **.**
- **.**
- É possível construir uma série de configurações com OPAMPs

$$v_s = -\frac{R_2}{R_1} v_e$$

$$v_s = \left(1 + \frac{R_1}{R_2}\right) \cdot v_e$$

Filtros

- Principal função (mas não única!)
 - Eliminar faixas de frequência, nas quais predominam sinais espúrios.
 - Rodar simulação labview

Filtros Analógicos

- Filtro passa baixa é um passa banda até uma dada freqüência específica denominada de freqüência de corte.
- Filtro passa banda (passa faixa): permite a passagem de uma banda específica de freqüência, atenuando baixas e altas freqüências. A diferença entre a freqüência de corte superior e inferior determina a largura de banda do filtro.
- O Filtro Notch é uma variante do filtro passa faixa em que as freqüências inferiores e superiores a uma determinada freqüência não são atenuadas, enquanto que uma particular freqüência é atenuada ao máximo (pode ser visualizado como uma combinação dos filtros passa baixa e passa alta).
- O Filtro Passa Alta rejeita frequências inferiores a uma específica frequência, ou seja, atenua baixas frequências.

Filtros Analógicos

 (a e b) filtros passa alta de primeira ordem e (c e d) filtros passa baixa de primeira ordem.

Filtros Ideais

Filtros Analógicos

A Figura (a) apresenta um **filtro ativo passa baixa** utilizando um amplificador operacional que apresenta a facilidade de alterar o ganho e uma impedância de entrada muito baixa. Em seqüência, a Figura (b) mostra a configuração de um **filtro ativo passa alta** e a Figura (c) uma **filtro ativo passa faixa**.

Filtros Analógicos: Passa baixas

 Poderíamos continuar explorar o assunto filtros analógicos, e depois filtros digitais ... Existem muitas bibliografias específicas sobre esse assunto.

Condicionadores de sinais - Conversores

- Conversão tensão-corrente
- Conversão corrente-tensão
- Conversão tensão-frequência
- Conversão freqüência-tensão

Condicionadores de sinais

Diagrama de blocos

Por que utilizar conversores?

Funções básicas dos transmissores

- A principal de um transmissor é transformar o sinal individual do sensor em um sinal padronizado, adequado para transmissão.
- Isto implica na passagem do sinal através de diversas etapas de processamento e conversão:
 - Captar o sinal do termoelemento (PT100, termopar ou sensor-mV)
 - Amplificar o sinal de medição.
 - Linearização/Equalização do sinal de medição
- Como regra, a relação matemática entre variáveis de processo como a temperatura e o sinal do sensor não é linear. Normalmente, é necessária uma relação linear entre a variável de processo e sua representação por um sinal padronizado. Essa linearização ou equalização é realizada nesta etapa da conversão.
 - Conversão do sinal de medição linearizado em um valor de saída padronizado
- Existem diversos requisitos adicionais que devem ser cumpridos para que essa cadeia de conversões funcione, na prática, com confiabilidade e exatidão suficientes. Esses requisitos podem não ser uniformemente definidos para todos os transmissores.

Funções básicas dos transmissores

- Existem diversas normas sobre equipamentos elétricos que abordam esse tema.
- Os requisitos são impostos em relação ao efeito das interferências externas, tais como:
 - Temperatura ambiente, geralmente 0 a 70°C no centro de controle e -40 a 85°C no campo;
 - Mudança de pressão atmosférica, pressão de gás ou de água em aplicações submarinas;
 - Umidade ambiente. A condensação ocasional ou contínua pode ocorrer em alguns casos;
 - Ambientes agressivos, tais como sulfuroso ou amoniacal, vapores ácidos e outros agentes corrosivos;
 - Interferência eletromagnética de todos os tipos.

Condicionadores de sinais

Transmissão em corrente

- Vantagens da transmissão em corrente
 - Imunidade a ruído
 - Imunidade a queda de tensão na linha
 - Imunidade a termopares parasitas
 - Imunidade a tensão e resistência de contato
 - Diferenciar sinal "zero" de circuito aberto
- Desvantagens da transmissão em corrente
 - Circuito mais complexo (conversão tensãocorrente e corrente-tensão)

Ex.: Transmissor Analógico de Temperatura

- Um transmissor analógico de temperatura converte o sinal de entrada proveniente de RTDs e termopares em um sinal analógico (ex. 4...20 mA) linear e proporcional a temperatura sem utilizar para isso, processadores e conversores digitais.
- As variáveis de saída de um termoelemento como resistência ou tensão são captadas, linearizadas e compensadas e sempre existem diretamente na forma analógica não sendo representadas internamente por estados lógicos ou digitalizados para o processamento posterior.
- Suas principais vantagens são:
 - Baixo custo de produção quando não se necessita de grande exatidão;
 - poucos componentes são usados no circuito;
- "Leve resposta" à interferência, ou seja, o surgimento de erro é geralmente proporcional à interferência;
- Uso de tecnologia consolidada: as características dos componentes são bem conhecidas, como desvios e falhas;
- O baixo consumo de energia diminui custos e reduz o envelhecimento dos componentes;

Ex.:Transmissor Digital de Temperatura

- Um transmissor digital de temperatura é aquele que converte o sinal de entrada proveniente de RTDs, termopares ou sensores-mV com circuitos eletrônicos internos como processadores e conversores digitais A/D e D/A.
- Os dados da medição são representados por estados lógicos e números. A etapa posterior de processamento é realizada principalmente no microprocessador tendo como base informações matemáticas não mais na forma analógica. Na etapa final, o valor é convertido em um sinal de saída analógico, por exemplo 4 a 20 mA de corrente.
- Os transmissores digitais possuem uma interface digital de comunicação, que é usada para o ajuste interno e a parametrização do transmissor.

Ex.:Transmissor Digital de Temperatura

- Um transmissor digital pode ser montado em cabeçote ou trilho; a saída é 4 a 20 mA, a dois fios e a entrada configurada por software, bem como a faixa de medição.
- As vantagens dos transmissores digitais são listadas a seguir:
- Flexibilidade na adaptação a condições específicas da medição tais como faixa, tipo de sensor etc;
- Boas possibilidades de se fazerem correções internas quando existirem interferências externas: devido à temperatura ambiente, EMC ou outros efeitos físicos podem ser compensados por correções matemáticas e funções de filtragem;
- É possível um alto nível de autocontrole via processador através de funções de verificação integradas;
- Dados adicionais (como manutenção e diagnóstico) podem ser verificados internamente via software;
- É possível a fácil linearização e processamento de curvas características complexas;
- É possível a interligação diferentes sensores (ex: medições internas e externas)
- Depois da conversão o sinal é à prova de erro e inteferência.

Transmissão de sinais

Transmissão de sinais

4-20 mA Analógico

Princípio de funcionamento

- 2) Conversor $I \rightarrow V$
- 3) Alimentação

4-20 mA Analógico

Dimensionamento da fonte de alimentação

$$V_e = \Sigma(R_x I)$$

$$V_e = 250 \times 20.10^{-3} + 50 \times 20.10^{-3} + 8 + 50 \times 20.10^{-3}$$

$$V_e \ge 5 + 1 + 8 + 1 \ge 15 \ V$$

Vantagens 4-20 mA Analógico Vin Vin Vin Vin R V

- Alimentação (V) e sinal (I) podem utilizar os mesmos 2 fios
- Não necessária alimentação precisa e estável
 sinal de tensão (I_{sinal} x R_{caroa}) é independente das variações de tensão e da resistência da linha
- Insensibilidade às quedas de tensão (RxI) ⇒ grandes distâncias
- Imunidade ao ruído (
- Potência (para o sinal) pode ser fornecida remotamente (localização da fonte de alimentação)
- Ligação possível de várias cargas em série

Digital

HART (Highway Addressable Remote Transducer)

Sobreposição de <u>comunicação digital</u> na comunicação analógica 4-20mA

^(*) number of distinct symbol changes (signalling events) made to the transmission medium per second. É diferente de bps (bits por segundo)

- O Protocolo HART® possibilita a comunicação digital bidirecional em instrumentos de campo inteligentes sem interferir no sinal analógico de 4-20mA.
- Tanto o sinal analógico 4-20mA como o sinal digital de comunicação HART®, podem ser transmitidos simultaneamente na mesma fiação.
- A variável primária e a informação do sinal de controle podem ser transmitidos pelo 4- 20mA, se desejado, enquanto que as medições adicionais, parâmetros de processo, configuração do instrumento, calibração e as informações de diagnóstico são disponibilizadas na mesma fiação e ao mesmo tempo.
- Ao contrário das demais tecnologias de comunicação digitais "abertas" para instrumentação de processos, o HART® é compatível com os sistemas existentes.

- O Protocolo HART® usa o padrão Bell 202, de chaveamento por deslocamentos de frequência (FSK) para sobrepor os sinais de comunicação digital ao de 4-20mA.
- Por ser o sinal digital FSK simétrico em relação ao zero, não existe nível DC associado ao sinal e portanto ele não interfere no sinal de 4-20mA.
- A lógica "1" é representada por uma frequência de 1200Hz e a lógica "0" é representada por uma frequência de 2200Hz.
- O sinal HART® FSK possibilita a comunicação digital em duas vias, o que torna possível a transmissão e recepção de informações adicionais, além da normal que é a variável de processo em instrumentos de campo inteligentes.
- O protocolo HART® se propaga há uma taxa de 1200 bits por segundo, sem interromper o sinal 4-20mA e permite uma aplicação tipo "mestre" possibilitando duas ou mais atualizações por segundo vindas de um único instrumento de campo.

- O HART® é um protocolo do tipo mestre/escravo, o que significa que um instrumento de campo (escravo) somente "responde" quando "perguntado" por um mestre.
- Dois mestres (primário e secundário) podem se comunicar com um instrumento escravo em uma rede HART®. Os mestres secundários, como os terminais portáteis de configuração, podem ser conectados normalmente em qualquer ponto da rede e se comunicar com os instrumentos de campo sem provocar distúrbios na comunicação com o mestre primário.
- O mestre primário é tipicamente um SDCD (Sistema Digital de Controle Distribuído), um CLP (Controlador Lógico Programável), um controle central baseado em computador ou um sistema de monitoração.

Instalação típica com dois mestres

 Dois equipamentos Mestres acessando informação de um mesmo equipamento de campo (escravo).

Alguns equipamentos HART incluem controlador PID em seus algoritmos

- Nessas aplicações é usada a capacidade inerente ao Protocolo HART® de transmitir tanto sinais 4-20mA analógicos como sinais digitais de comunicação simultaneamente pela mesma fiação.
- O transmissor tem um algorítimo interno de controle PID.
- O instrumento é configurado de modo que o loop de corrente 4-20mA seja proporcional à saída de controle PID, executado no instrumento (e não à variável medida, como por exemplo, a pressão, como na maioria das aplicações de instrumentos de campo).
- Uma vez que o loop de corrente é controlado pela saída de controle do PID, este é utilizado para alimentar diretamente o posicionador da válvula de controle.
- A malha de controle é executada inteiramente no campo, entre o transmissor (com PID) e a válvula. A ação de controle é contínua como no sistema tradicional; o sinal analógico de 4-20mA comanda a válvula.
- Através da comunicação digital o operador pode mudar o set-point da malha de controle e ler a variável primária ou a saída para o posicionador da válvula.

Controlador PID – válvula proporcional

Transmissão de sinais por corrente

Response

O "escravo" só responde, quando interrogado pelo "mestre"

Hart frame format (character-oriented):

Confirmation

preamble	start	address	command	bytecount	[status]	data	data	checksum
520 (xFF)	1	15	1	1 _{(s}	[2] lave respon	0 nse) (recomr	.25 mended)	1

Transmissão de sinais por corrente

(+ info): http://www.thehartbook.com/default.htm

Analógico

Digital

Interfaces

- Série:

RS-232 – sinais são referidos a uma terra Ruído!

RS-422 – sinais são diferenciais (2 linhas p/ transmissão + 2 p/ recepção)

Ligação ponto-a-ponto

RS-485 – melhoramento do RS-422

Ligação multiponto

RS-232 (hoje: EIA232F)

Single-ended [terra (referência) comum] Representação da informação por tensão

Pin	Signal	Pin	Signal
1	Data Carrier Detect	6	Data Set Ready
2	Received Data	7	Request to Send
3	Transmitted Data	8	Clear to Send
4	Data Terminal Ready	9	Ring Indicator
5	Signal Ground		

RS-422/485

	R\$232	R\$423	R\$422	RS485
Differential	no	no	yes	yes
Max number of drivers Max number of receivers	1 1	1 10	1 10	32 32
Modes of operation	half duplex full duplex	half duplex	half duplex	half duplex
Network topology	point-to-point	multidrop	multidrop	multipoint
Max distance (acc. standard)	15 m	1200 m	1200 m	1200 m
Max speed at 12 m Max speed at 1200 m	20 kbs (1 kbs)	100 kbs 1 kbs	10 Mbs 100 kbs	35 Mbs 100 kbs
Max slew rate	30 V/µs	adjustable	n/a	n/a
Receiver input resistance	37 kΩ	≧ 4 kΩ	≧ 4 kΩ	≧ 12 kΩ
Driver load impedance	37 kΩ	≧ 450 Ω	100 Ω	54 Ω
Receiver input sensitivity	±3 V	±200 mV	±200 mV	±200 mV
Receiver input range	±15 V	±12 V	±10 V	-712 V
Max driver output voltage	±25 V	±6 V	±6 V	-712 V
Min driver output voltage (with load)	±5 V	±3.6 V	±2.0 V	±1.5 V

USB (Universal Serial Bus)

- maior velocidade de transmissão (1)
- facilidade de instalação ("plug&play")
- possibilidade de mútiplos dispositivos em cada porto
- capacidade de fornecer potência para alimentação de dispositivos


```
USB 1 - 1,5 / 12 Mbits/s
USB 2 - 1,5 / 12 / 480 Mbits/s
USB 3 - 10 x mais rápida
```


Tipo	Imagem da porta	Imagem do conector
Tipo A	4.5mm x 12.0mm	
Тіро В	7.3mm x 8.5mm	
Mini-A	3.0mm x 6.8mm	
Mini-B	3.0mm x 6.8mm	

Interfaces

- Paralelo:

IEEE-488 – (GPIB¹)

Simplifica a ligação de instrumentos programáveis
Permite ligar instrumentos de fabricantes diferentes a um cabo standard

(≠ porta paralelo/impressora)

¹ General Purpose Intrumentation Bus

	INTERNAL	RS232	RS485	GPIB	ETHERNET	USB
Max Distance	0 m	50 m	1000 m	2 m	185 m per cable segment	5 m per cable segment
Max Speed samples/sec	250 000	700	700	1 MHz	36 000	80
Number of Devices	depends on no. of slots	1 per cable	31 per cable	14 per cable	29 per cable segment	8
Computer Adaptor	No	No	Yes	Yes	Yes	No
Microlink Hardware	500 Series	1500 & 3000 Series	1500 & 3000 Series	3000 & 4000 Series	600 & 3000 Series	700 Series

At the Digital Out of a \$100 CD-player we have the same 1's and 0's as we do in the \$30,000 player. The only difference is in the Jitter content.

The presence of Jitter means that the data (the 1's and the 0's) is not perfectly time-aligned, but is transmitted either slightly earlier or later than it should be in the ideal case

Transmissão de sinais

Tipo	Velocidade	Distância
RS-232	< 20 kbps	< 15 m
RS-485	< 10 Mbps	< 600 m
IEEE-488	< 1Mbps	< 4 m
4-20 mA	< 19,2 kbps	< 610 m

Regra heurística:

Data rate [bits/s] x Comprimento [m] $\leq 10^8$ 50 m $\Rightarrow f \leq 20$ MHz

(c/ par trançado de qualidade standard)

Transmissão de sinais

Outras formas de comunicação de dados: "Redes Industriais" (3ºA/2ºS)

- •RS-232
- •RS-485
- Current Loop
- •RS-485
- Fiber Optics
- Modbus
- Data Highway + /DH485
- •HART
- •ASI Bus
- DeviceNet
- Profibus PA/DP/FMS
- Foundation Fieldbus
- Industrial Ethernet
- •TCP/IP
- Radio and Wireless

PXI (PCI eXtensions for Instrumentation)

- Projetado para aplicações de medição e automação que necessitam de alto desempenho e robustez para suportar ambiente de chão de fábricas.
- PXI combina as características elétricas do barramento PCI com um modulo robusto (padrão Eurocard), adicionando barramentos de sincronização especializados, e softwares de controle.
- Permite a adição e configuração de placas modulares diversas.

Simplified integration, configuration and maintenance through modular instrumentation

Flexibility delivered through a user-defined, modular platform

PXI (PCI eXtensions for Instrumentation)

 Os sistemas PXI são compostos de três componentes básicos: chassis, controlador e módulos periféricos.