RBE 502 — Robot Control Spring 2023

RBE 502 Final Project: Robust Trajectory Tracking for Quadrotor UAVs using Sliding Mode Control

Chinmayee Prabhakar 101177306

Uthiralakshmi Sivaraman 133545470

Introduction:

This project's main goal is to create a reliable and efficient control system that enables a quadrotor to accurately follow desired flight paths while mitigating external disturbances. Our research will focus on developing a control design tailored for the Crazyflie 2.0 platform, a micro air vehicle (MAV) quadrotor known for its compact size and lightweight construction.

Weighing just 27 grams and small enough to fit in the palm of your hand, the Crazyflie is an ideal platform for conducting indoor lab experiments without causing considerable damage to its surroundings. Despite its high RPM propellers, the quadrotor's soft blades and low-torque coreless DC-motors render it crash-tolerant when compared to brushless motor alternatives.

The Crazyflie 2.0 features four 7mm coreless DC-motors that provide enough thrust to achieve a maximum takeoff weight of 42 grams. This lightweight and maneuverable design allows for precision control and navigation in confined spaces, making it an excellent candidate for our proposed robust control scheme development. Through this project, we aim to enhance the capabilities of MAVs like the Crazyflie 2.0, improving their adaptability and utility in various applications.

>	RBE 502 - ROBOT CONTROL
5	Final Project: Robust Togjectory Tracking For
	RBE 502 - ROBOT CONTROL Final Peroject: Robust Tougiectory Tracking For Buadrotor UAVs ming Sliding Mode Conchrol
1	
	(juralized co-ordinates: q=[x,y,z, \]^T
	V
	q E R ⁶
1	Control Inputs: q= u=[u1guz uz u4]
	•
	The durined notor speeds w::
7	
	ω,2 /4kg -12/4kgl -1/4knRe 4, ω,2 = 1/4kg -12/4kgl -1/4knRe 4, ω,2 = 1/4kg -12/4kgl -1/4knRe 4,
	ω ² = 1/4 kg -42/4 kgl 1/4 kg kg Lg ω ² 1/4 kg 1 -1/4 kg kg Lg
1	
	Equations of Motion:
-	ic = /m (cos prino corip + sinpsing) u
1	
	y = /m (cos of sino siny - sino cosp) u
	9
_	= /m (cosp cosp) u1 - g
	b = Air Iy - Iz - In OA + L (1)
	$ \frac{\dot{\phi}}{\dot{\phi}} = \dot{\theta}\dot{\psi} \underline{I} \dot{y} - \underline{I} \underline{z} - \underline{I} \underline{p} \Omega \dot{\theta} + \underline{I} \Omega \underline{e} $ $ \underline{I} \underline{c} \underline{I} \underline{c} \underline{I} \underline{c} \underline{I} \underline{c} $
1	
	$\dot{\theta} = \dot{\phi} \dot{I}_{2}^{2} - I_{1} + I_{1} \Omega \dot{\phi} + I_{2}$ I_{3} I_{4} I_{4} I_{4}
-	in a ho TooTu
	Iz Izz
A	
cs S	canned with CamScanner

1 Trajectory Generation

A quintic polynomial of the fifth order is established for each coordinate (x, y, and z) in the given scenario. The trajectory is divided into five distinct segments by the provided five waypoints. For each segment, initial and final conditions are specified, leading to the creation of a series of linear equations upon substitution of these conditions.

Subsequently, the coefficients of the polynomials are determined by solving the

subsequently, the coefficients of the polynomials are determined by solving the resulting linear equations.

By utilizing this method, we can generate smooth and continuous trajectories, ensuring that the motion is adequately controlled throughout the entire path. The quintic polynomial approach enables the calculation of higher-order derivatives such as velocity, acceleration, and jerk, which are essential for optimizing the performance and stability of the control system. This approach also allows for easy modification of trajectories in real-time, adapting to changing requirements or environmental conditions.

Overall, the implementation of quintic polynomials for trajectory planning provides a robust and versatile foundation for developing advanced control schemes in various applications, including robotics, automation, and autonomous vehicle navigation.

Part -1: The position, velocity and acceleration trajectoring					
Part -1: The pointion, velocity and acceleration trajectories for the translational co-ordinates (x, y, z)					
Buinte Polynomial Tagjectories: q(t) = a0+ a1+ 42+ a1+ 44+ a1+ 45+					
9(t) = ao + at + ast + ast + ast + ast					
g(f) = a, + 2a2 f + 3a, t2 + 4a4+3 + 5a5t4					
g(t) = 2az + 6azt + 12aut + 20act3					
Doriving the equ & com traints:					
- a b					
to to to to to to to					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
1 to to to to to to az 96					
0 1 2te 3te 4te 5te an 9e 0 0 2 6te 12te 20te as 9e					
0 0 2 bte 12te 20te [as]					
Part 2: Control Affine Form					
$\begin{array}{c c} (3) & f(q,9) & g(q,9) \\ \hline (2) & (m(corpsin D cosp + sinpsin p) \circ oolu, \end{array}$					
ym Cospsinosinosinosinosinosinosinosinosinosino					
i = -g + /m(cospcoso) 0 0 0 us					
111111111111111111111111111111111111111					
Tx Tx 0 0 My					
θ φ Jz - Iz + Ip Ω φ + 5 0, 0 1/I 0					
II JO O O J					
$\begin{array}{c c} \psi & \psi $					

Plot of Desired Trajectories:

The above plots effectively illustrate the desired trajectories in 3D space, highlighting the smooth, continuous paths generated by the quintic polynomial method for each coordinate (x, y, and z), and their corresponding first and second derivatives.

2.1 Control Law Derivation and Altitude Estimation Z

Sliding mode control (SMC) is a powerful nonlinear control technique that has gained significant attention in recent years due to its robustness against system uncertainties, disturbances, and parameter variations. A key aspect of sliding mode control is the design of a sliding surface, which represents the desired system behavior. By driving the system to the sliding surface and maintaining it there, the control objective is achieved, and the system's performance is improved. One of the main advantages of SMC is its ability to handle errors effectively. When the system is operating on the sliding surface, errors between the actual and desired states are driven to zero, ensuring that the system's performance converges to the desired target. This strong convergence property makes SMC highly effective in dealing with errors, resulting in improved stability and precision of the controlled system. Additionally, the robustness of SMC ensures that even in the presence of disturbances or uncertainties, the error remains bounded, providing a reliable and efficient control strategy for a wide range of applications.

This below image shows the design of the sliding surface equation:

s rarces :	e = q - qa ,	e = q - qa			
Surface	Eq: 5= e + le	=> \$= e+ le = q-qd + le	1.0		
LK.	ho, as s →0 =>	= 9-9d + NE e,e → 0.	Contains		
Sua valid surface equation as, is contains u' and store as $s \to 0$, $e, e \to 0$.					
- axions &	$as s \rightarrow 0$, e	e, e — , U.			

$No\omega$, $3\dot{s} = S(\dot{q}_i - \dot{q}_{i,j} + \lambda \dot{e})$				
1000 33 - SCY 1 + NE				
= 5/-g /mcusqcosa) 000 u, z				
θψ Iy-Iz - Ip Q θ 0 1/Ir 0 0 U2 φ,				
φψ Iz-Ix + Ip nφ Uz G				
Iy Iy oo o '/Iz iy				
To Te Ty				
Control law for z -> Zd				
$S\dot{S} = S\left(-g + (\gamma_m)c\Theta S\phi c\Theta S\Theta U_1 - \dot{Z}_2 + \lambda \dot{e}_2\right)$				
$= S \cdot (corp (corp) \left(\frac{-g - 2u + \lambda e_z}{m} + u_1 \right)$				
We take $9 \ge \left(-\frac{1}{9} - \frac{1}{2} + \frac{1}{2} +$				
$u_1 = -9 + K_0 \log_{10}(s), K_0 \geq 0$ $K_0 \in \mathbb{R}$				
$\frac{1.5.5}{m} = \frac{1}{(\cos\phi)(\cos\phi)} \left(\frac{1}{\cos\phi} \frac{1}{(\cos\phi)(\cos\phi)} - \frac{1}{(\cos\phi)(\cos\phi)} - \frac{1}{(\cos\phi)(\cos\phi)} - \frac{1}{(\cos\phi)(\cos\phi)} - \frac{1}{(\cos\phi)(\cos\phi)} - \frac{1}{(\cos\phi)(\cos\phi)(\cos\phi)} - \frac{1}{(\cos\phi)(\cos\phi)(\cos\phi)(\cos\phi)} - \frac{1}{(\cos\phi)(\cos\phi)(\cos\phi)(\cos\phi)(\cos\phi)} - \frac{1}{(\cos\phi)(\cos\phi)(\cos\phi)(\cos\phi)(\cos\phi)(\cos\phi)(\cos\phi)(\cos\phi)(\cos\phi)(\cos\phi)$				
= coso coso (-g-2, + lez) m·S - PIESI - KolsI				
1 SS (COSP (OND (-Kols1) ,=> SS (-K,181)				

2.1 Control Law Derivation and Attitude Estimation (Roll, Pitch and Yaw)

Constrol Law for
$$\phi \rightarrow \phi_{d}$$
:

$$SS = S \cdot \left[\frac{\partial \dot{\phi}}{\partial \dot{\phi}} \frac{T_{y} - T_{z}}{T_{z}} - \frac{T_{p} \Omega \dot{\phi}}{T_{p}} \right] + \left[\frac{1}{\sqrt{T_{p}}} \frac{1}{\sqrt{T_{p}}} \frac{1}{\sqrt{T_{p}}} + \frac{1}{\sqrt{T_{p}}} \frac{1}{\sqrt{T_{p}}} \right] + \frac{1}{\sqrt{T_{p}}}$$

$$= \frac{1}{\sqrt{T_{p}}} \left[\frac{1}{\sqrt{T_{p}}} \frac{1}{\sqrt{T_{p}}} - \frac{1}{\sqrt{T_{p}}} \frac{1}$$

cs Scanned with CamScanner

Control Law for \$ -> \$.
$S\dot{S} = S\dot{\phi}\dot{\theta}\dot{I}_{\alpha}-\dot{I}_{\gamma}\dot{\theta}+\dot{J}_{\alpha}\dot{u}_{\gamma}-\dot{\psi}_{\alpha}+\dot{J}_{\alpha}\dot{e}_{\gamma}$
Iz DO In-Iy of a - YaIz + lep Iz + uh
- we take, S>, poIr-Iy Ou - ig Iz + leg Iz
$-\frac{1}{2}\left[u_{1}=-\left(\frac{1}{2}+k_{0}\right)sgn(s)\right]^{2}+k_{0}^{2}$
- i.ci = S [ø j Ta - Iy 860 - ig Iz + ley Iz & Kolsguls]
= 31 (00 (In-Iy) the - \$\tilde{\pi}_2 \text{Iz} + \left \text{Ep}_1 \text{Is} \text{S} - \frac{9151}{5151} - \text{Ko151}
=> ss < -K. s => ss < -K. s
Old bandary Toga Iz
Since we are implementing a sliding mode control. law with a boundary layer:
function function with the sates)

where sgn (s) in defined as:
o "if 5 20:
sqn Cs) = +1
$\frac{sgn(s)}{9fs(s)} = +1$
sqn(cs) = -1
squ Cs) = -1 sat (sp) in defined as: if (s) > 0 where b -> howadown lover.
if (s) > 0, where p -> boundary layer.
sat(s/6) = san cs
if Ist < 0, inide the boundary layer,
sat cip
Therefore, the control laws are obtained as follows:
\$
$u_1 = \left[g - \lambda_1 (\dot{z} - \dot{z}_d) + \dot{z}_d - k_1 s_d \left(\frac{c}{\sqrt{\phi}} \right) \right] \frac{m}{\cos \phi \cos \phi}$
cox o cox o
U2 = -θψ Iy-Iz + Ip Ωθ - λ2φ-K2 Sad (S2/4) Ix Ix Ix
Ix Ix
U ₂ = [- φ φ I ₂ - I _c
In In
U _μ = -φο I _c - I _y - λ _μ φ - K _μ sat (Sη/φ) I _z I _z
I_{Z}

3. Designing Parameters and Tuning Parameters

Given Parameters:

Parameter	Value
g	9.81 m/s ²
m	0.027 kg
I	46mm
l _x	16.571710e-6 kg·m²
ly	16.571710e-6 kg⋅m²
I _z	29.261652e-6 kg·m²,
Ι _p	12.65625e-8 kg⋅m².
K _f	1.28192e-8 N·m
K _m	5.964552e-3 N·m
W _{max}	2618 rad/s
W _{min}	0 rad/s

The given parameters represent the physical and control properties of a quadrotor system. The gravitational acceleration, g, is set to 9.81 m/s². The mass of the quadrotor, m, is 0.027 kg, and the distance between the center of mass and the propeller, I, is 46 mm.

The moments of inertia for the quadrotor along the x, y, and z axes are $Ix = 16.571710e-6 \text{ kg}\cdot\text{m}^2$, $Iy = 16.571710e-6 \text{ kg}\cdot\text{m}^2$, and $Iz = 29.261652e-6 \text{ kg}\cdot\text{m}^2$, respectively. The rotor moment of inertia, Ip, is $12.65625e-8 \text{ kg}\cdot\text{m}^2$. The thrust and torque constants for the propellers are $Ix = 1.28192e-8 \text{ N}\cdot\text{m}$ and $Ix = 1.28192e-8 \text{ N}\cdot\text{m}$ and Ix = 1.2819

= 5.964552e-3 N·m, respectively.

The maximum and minimum angular velocities for the propellers are $w_max = 2618 \text{ rad/s}$ and $w_min = 0 \text{ rad/s}$.

Tuned Parameters:

Parameters	Values
λ_{z}	5
λ_{phi}	12
λ_{theta}	12
λ_{psi}	5
K _{0z}	10
K _{0phi}	140
K _{0theta}	135
K _{0psi}	25
Ф	1
Kp	120
K _d	8

The control gains for the roll, pitch, yaw, and altitude are defined as lamda_phi = 12, lamda_theta = 12,

lamda_psi = 5, and lamda_z = 5. The initial control gains for the roll, pitch, yaw, and altitude are set to $KO_phi = 140$, $KO_theta = 135$, $KO_psi = 25$, and $KO_z = 10$. Additionally, the phi parameter is set to 1.

Lastly, the proportional and derivative gains for the control system are defined as kp = 120 and kd = 8. These values are essential in tuning the quadrotor's response to achieve the desired performance characteristics and ensure stable flight.

4. Plot of Desired vs Estimated Trajectories

5. Part 3 Code Explanation

We obtain the desired trajectories of x,y,z defined in part 1, as well as calculate the desired trajectory of theta and psi using the equations described in the problem statement. We define the angular velocities of the motors equations as well as the control laws established in part 2. We evaluate the control laws and use it to compute the angular velocities for the drone.

6. Discussion and Conclusion

The 3D plot of the actual trajectory compared to the desired trajectory is depicted in Figure above. Upon analyzing the performance of the quadrotor, several observations can be made:

- 1. In the x-direction, the quadrotor exhibits a wobbling motion as it approaches the waypoint. Although there is a minor deviation from the planned trajectory, this discrepancy is minimal and does not significantly affect the overall performance.
- 2. In the y-direction, the quadrotor's movement is smooth, with only a slight overshot from the intended trajectory. Despite this, the tracking error remains negligible, indicating good adherence to the path.

3. As for the z-direction, the controller demonstrates excellent performance, ensuring accurate trajectory tracking and stable operation.

In conclusion, the quadrotor's overall performance in following the desired trajectory is commendable. While there are minor deviations in the x and y directions, these discrepancies are negligible and do not compromise the quadrotor's ability to reach its destination. The controller's performance in the z-direction is particularly noteworthy, as it maintains precise control of the quadrotor's altitude. These results suggest that the implemented control system is effective and reliable, enabling the quadrotor to execute complex flight paths with minimal error. Future work could involve refining the control algorithms or incorporating additional sensors to further improve trajectory tracking accuracy and stability.