Nombre dérivé

Consignes:

Calculatrice autorisée - A rédiger sur feuille séparée - Justifier les réponses - Faire des phrases - Rendre l'énoncé avec la copie.

EXERCICE 1.1. 1. Rappeler les étapes nécessaires pour déterminer le nombre dérivé d'une fonction en un point.

2. Mettre en oeuvre cette démarche sur le graphique ci-dessous et pour le point A(-2,1).

EXERCICE 1.2. On laisse tomber un caillou du haut d'un pont de hauteur $h=100\,\mathrm{m}$. La distance parcourue par le caillou est donnée par la fonction $d(t)=4.9t^2$ où t représente le temps exprimé en s. d est la distance en m.

On a représenté cette fonction en posant $f(x) = 4.9x^2$ sur le graphique de la page suivante.

- 1. Expliquer à quoi correspond chaque axe ainsi que son unité.
- 2. Résoudre graphiquement l'équation f(x) = 100 pour connaître au bout de combien de temps il y a impact du caillou.
- 3. Expliquer en une phrase la signification de la réponse précédente.

On admet que la vitesse du caillou en m/s est égale au nombre dérivé au point considéré.

- 4. Tracer la tangente à la courbe au point d'ordonnée y = 100.
- 5. Déterminer le nombre dérivé à ce point.
- 6. Donner la vitesse du caillou à l'impact.

EXERCICE 1.3. En France un accord de mise sur le marché pour un scooter n'est validé que si la vitesse instantanée huit secondes après démarrage soit inférieure à 13 m/s.

On réalise des tests de performances sur un nouveau modèle et on représente la distance parcourue (en mètres) pendant la phase de démarrage et le temps (en secondes) par la fonction $d(t) = 0.7t^2$. La courbe suivante représente cette fonction sur l'intervalle [0; 10].

La vitesse instantanée du scooter au temps t est le nombre dérivé de la fonction d au point t.

Votre mission

Déterminer en détaillant votre démarche si ce scooter pourra être homologué.

Remarque : toute tentative sera valorisée, bien laisser les traces de recherche.

CORRIGE 1.1 1. Les étapes sont :

- Tracer la tangente à la courbe en ce point;
- Déterminer la pente en réalisant un décalage d'une unité horizontale vers la droite puis mesurer la hauteur (positive ou négative) pour rejoindre la tangente.

2. Voir courbe:

CORRIGE 1.2 Les axes : abscisses temps en seconde pour la chute, ordonnée distance parcourue à la verticale en mètre. L'équation correspond à l'instant où le cailloux s'écrase au sol. Construction graphique :

On lit graphiquement que le nombre dérivé est $f'(4.5) \approx 50$ ce qui donnerait une vitesse de 42m/s lors de l'impact. Pour information : 42m/s = 151km/h

CORRIGE 1.3 On trace la tangente pour 8 secondes, on détermine le nombre dérivé et on trouve que d'(8) = 11.2 ce qui permet d'homologuer le véhicule.