

Department of Electronics and Telecommunication Engineering

Experiment	Simulate a Rectangular waveguide in COMSOL Multiphysics®
No 10:	software
Aim:	To design and simulate a rectangular waveguide operating in an X band of
	frequency.
<u>Problem</u>	Observe the traveling field pattern of the dominant mode inside an X-band
Statement:	waveguide. X band waveguides operate between frequency range 8 to 12
	GHz. Their inner width is 2.286 cm and their inner height is 1.016 cm.
	Assume the waveguide walls are 8 mm thick.
Procedure:	1. Open COMSOL Multiphysics software. From the File menu, choose
1100000	New. In the New window, click Model Wizard.
	2. MODEL WIZARD
	1. In the Model Wizard window, click 3D.
	2. In the Select physics tree, select Radio Frequency >
	Electromagnetic Waves, Frequency Domain (emw).
	3. Click Add. Click Study.
	4. In the Select study tree, select Preset Studies>Frequency Domain
	5. Click Done.
	2 CLODAL DEFINITION
	3. GLOBAL DEFINITION1. On the Home toolbar, click Parameters.
	2. In the Settings window for Parameters, locate the Parameters
	section.
	3. In the table, enter the following settings:
	Name Expression Value Description
	i_w 2.286[cm] 0.02286 m Inner_width
	i_h 1.016[cm] 0.01016 m Inner_height
	T 8[mm] 0.008 m Thickness
	F 8.3[GHZ] 8.3E9 Hz Frequency
	4. GEOMETRY
	4. GEOMETRI

Department of Electronics and Telecommunication Engineering

- In the Model Builder window, under Component 1 (comp1) click Geometry
- 2. In the **Settings** window for Geometry, locate the **Units** section.
- 3. From the Length unit list, choose cm.

Block 1(blk1)

- 1. On the Geometry toolbar, click Block.
- 2. Locate the Size and Shape section. In the Width text field, type i_w.
- **3.** In the **Depth** text field, type 8[cm].
- **4.** In the **Height** text field, type i_h
- 5. Locate the **Position** section. From the **Base** list, choose **Center**.

Block 2(blk2)

- 1. On the **Geometry** toolbar, click **Block**.
- 2. Locate the Size and Shape section. In the Width text field, type i w+t
- 3. In the **Depth** text field, type **8[cm]**.
- 4. In the **Height** text field, type **i_h+t**
- 5. Locate the **Position** section. From the **Base** list, choose **Center**.
- **6.** Click the **Build All Objects** button.

4. ELECTROMAGNETIC WAVES, FREQUENCY DOMAIN (EMW) In the Model Builder window, under Component 1 (comp1) click Electromagnetic Waves, Frequency Domain (emw).

Port 1

- 1. On the **Physics** toolbar, click **Boundaries** and choose **Port**.
- **2.** Select Boundary 7 only.
- **3.** In the **Settings** window for Port, locate the **Port Properties** section.
- 4. In Type of port select Rectangular.
- 5. From the Wave excitation at this port list, choose On.

Port 2

- 1. On the Physics toolbar, click Boundaries and choose Port.
- 2. Select Boundary 10 only.
- **3.** In the **Settings** window for Port, locate the **Port Properties** section.
- 4. In Type of port select Rectangular.

Department of Electronics and Telecommunication Engineering

5. MATERIALS: Assign material properties to the model. First, apply air to all domains.

Add Material

- 1. On the Home toolbar, click Add Material to open the Add Material window.
- 2. Go to the Add Material window.
- 3. In the tree, select **Built-In>Air**.
- **4.** Click **Add to Component** in the window toolbar.
- 5. Select domain in geometric Entity Level.
- 6. Select domain 2. (as shown in fig.)

Material: On the Home toolbar, click Add Material to close the Add Material window.

Material 2 (mat2)

- 1. On the **Home** toolbar, click **Add Material** to open the **Add Material** window.
- 2. Go to the Add Material window.
- 3. In the tree, select **Built-In>copper**
- **4.** Click **Add to Component** in the window toolbar.
- 5. Select domain in geometric Entity Level.
- 6. Select domain 1 (as shown in fig.)

Department of Electronics and Telecommunication Engineering

6. MESH

In the **Model Builder** window, under **Component 1 (comp1)** right-click **Mesh 1** and choose **Build All**.

7. STUDY

Frequency Domain

- 1. In the **Model Builder** window, under **Study 1** click **Step 1: Frequency Domain**.
- 2. In the **Settings** window for Frequency Domain, locate the **Study Settings** section.

Department of Electronics and Telecommunication Engineering

- 3. In the **Frequencies** text field, type **f**.
- 4. On the **Home** toolbar, click **Compute**.

8. RESULTS

Electric Field (emw)

- 2. In the **Model Builder** window, expand the **Electric Field** node, then click **Multislice 1**.
- 1. In the **Settings** window **Disable** Multislice.
- 2. Right click Electric Field (emw), click on Slice.
- **3.** In Slice **setting** window under Plane **Data**, select xy plane and number of planes 1.
- 4. Right click on Slice, select Deformation.
- 5. In Deformation Setting window, click on Replace Expression.
- 6. Under Electromagnetic Waves, Frequency Domain > Electric > emw.Ex,emw.Ey, emw.Ez-Electric Field.
- 7. Click on plot.

Observation:	Plot the electric and magnetic field patterns for TM ₁₁ mode and also check
	for TM_{10} mode and check if the mode exists.
Conclusion:	
<u>Post</u>	1. Explain dominant, propagating, and evanescent modes in
Experiment	rectangular waveguides.
Quiz:	