1.6 Integrals of Exponential and Logarithmic Functions

Rule: Integrals of Exponential Functions

$$1. \int e^x \, dx = e^x + C$$

$$2. \int a^x \, dx = \frac{a^x}{\ln(a)} + C$$

Example: Evaluate $\int_0^1 \frac{e^z + 1}{e^z + z} dz$

Solution.

Let $u = e^z + z$. Then $du = (e^z + 1)dx$. When z = 0, u = 1 and when z = 1, u = e + 1. So $\int_0^1 \frac{e^z + 1}{e^z + z} dz = \int_1^{e+1} \frac{e^z + 1}{u} \frac{du}{e^z + 1} = \int_0^{e+1} \frac{1}{u} du = \ln(e+1)$.

Practice Questions Part 1

- 1. An oil storage tank ruptures at time t=0 and oil leaks from the tank at a rate of $r(t)=100e^{-0.01t}$ litres per minute. How much oil leaks out during the first hour?
- 2. A bacteria population starts with 400 bacteria and grows at a rate of $r(t) = 450e^{1.5t}$ bacteria per hours. How many bacteria will be there after three hours?
- 3. Evaluate:

(a)
$$\int_0^1 \frac{d}{dx} \left(e^{\arctan(x)} \right) dx$$

(b)
$$\frac{d}{dx} \int_0^1 e^{\arctan(x)} dt$$

(c)
$$\frac{d}{dx} \int_0^x e^{\arctan(t)} dt$$

4. Find
$$\int \frac{e^{\sqrt{x}}}{\sqrt{x}} dx$$

Solutions Part 1

- 1. To find how much oil leaks out during the first hour, we must evaluate $\int_0^{60} r(t) dt = \int_0^{60} 100 e^{-0.01t} dt.$ $\implies \int_0^{60} 100 e^{-0.01t} dt = \frac{-100 e^{-0.01t}}{0.01} \bigg|_0^{60} \approx 4511.88 \text{ litres.}$
- 2. Let f'(t) = r(t). Since the population of bacteria start at 400, f(0) = 400. We want to find how many bacteria there will be after three hours. To do so, we must evaluate $\int_0^3 f'(t) dt = \int_0^3 450 e^{1.5t} dt$ $\implies \int_0^3 450 e^{1.5t} dt = \frac{450 e^{1.5t}}{1.5} \Big|_0^3 \approx 26705$ bacteria.
- 3. (a) Let $f(x) = e^{\arctan(x)}$. Then, $\int_0^1 \frac{d}{dx} [f(x)] dx = \int_0^1 f'(x) dx$. By the fundamental theorem of calculus,

$$\int_0^1 f'(x) \, dx = f(1) - f(0) = e^{\arctan(1)} - e^{\arctan(0)} = e^{\pi/4} - 1$$

- (b) $\frac{d}{dx} \int_0^1 e^{\arctan(x)} dx = 0$ since the derivative of a constant is always zero.
- (c) By the fundamental theorem of calculus part 1, $\frac{d}{dx} \int_0^x e^{\arctan(x)} = e^{\arctan(x)}$.
- 4. Let $u = \sqrt{x}$. Then $du = \frac{1}{2\sqrt{x}} \cdot dx \implies \frac{du}{2} = \frac{dx}{\sqrt{x}}$. So $\int \frac{e^{\sqrt{x}}}{\sqrt{x}} dx = \frac{1}{2} \int e^u du = \frac{e^u}{2} + C = \frac{e^{\sqrt{u}}}{2} + C$.

Integrals Involving Logarithmic Functions

Rule: Integrals of Logarithmic Functions

1.
$$\int \frac{1}{x} dx = \ln|x| + C$$

2.
$$\int \ln(x) dx = x(\ln(x) - 1) + C$$

1.
$$\int \frac{1}{x} dx = \ln|x| + C$$

2. $\int \ln(x) dx = x(\ln(x) - 1) + C$
3. $\int \log_a(x) dx = \frac{x}{\ln(a)}(\ln(x) - 1) + C$

Example: Evaluate $\int \frac{ln(x)}{x} dx$

Solution.

Let u = ln(x). Then $du = \frac{dx}{x}$. So $int \frac{ln(x)}{x} dx = \int u du = \frac{u^2}{2} = \frac{\ln^2(x)}{2} + C$.

Practice Questions

- 1. Evaluate $\int \frac{\ln(\sin(x))}{\tan(x)} dx$
- 2. Evaluate $\int e^{\cos(x)} \sin(x) dx$
- 3. Evaluate $\int \frac{dx}{x \ln(x) \ln(\ln(x))}$
- 4. Use the identity $\ln(x) = \int_1^x \frac{dt}{t}$ to derive the identity $\ln(\frac{1}{x}) = -\ln(x)$
- 5. Use a change in variable in the integral $\int_1^{xy} \frac{1}{t} dt$ to show that ln(xy) = ln(x) + ln(y) for x, y > 0.

Solutions Part 2

1. We can rewrite the integral as follows,

$$\int \ln(\sin(x))\cot(x)\,dx.$$

Now we let $u=\ln(\sin(x))$. Then $du=\cot(x)dx$. Thus we have, $\int u\,du=\frac{u^2}{2}+C$. Changing everything back in terms of x, $\int \frac{\ln(\sin(x))}{\tan(x)}\,dx=\frac{\left[\ln(\sin(x))^2\right]}{2}+C$.

2. Let $u = \cos(x)$. Then $du = -\sin(x)dx$. So making the substitution we have the following integral,

$$\int e^{\cos(x)} \sin(x) dx = \int e^u \sin(x) \frac{-du}{\sin(x)}$$

$$\implies -\int e^u dx = -e^u + C = -e^{\cos(x)} + C.$$

- 3. Let $u = \ln(\ln(x))$. Then $du = \frac{dx}{x\ln(x)}$. So our integral becomes, $\int \frac{1}{u} \cdot \frac{dx}{x\ln(x)} = \int \frac{1}{u} du = \ln|u| + C = \ln|\ln(\ln(x))| + C$ as required.
- 4. By definition $\ln\left(\frac{1}{x}\right) = \int_{1}^{\frac{1}{x}} \frac{1}{t} dt$. Let $u = \frac{1}{t}$. Then $t = \frac{1}{u} \implies dt = \frac{-1}{u^{2}} du$. When t = 1, u = 1 and when $t = \frac{1}{x}, u = x$. Thus we have, $\ln\left(\frac{1}{x}\right) = \int_{1}^{x} u \cdot \frac{-1}{u^{2}} du = -\int_{1}^{x} \frac{1}{u} du = -\ln(x)$ as required.

5. By definition $\ln(xy) = \int_1^{xy} \frac{1}{t} dt$. Now let $u = \frac{t}{x}$. Then $t = xu \implies dt = x \cdot du$. So when $t = 1, u = \frac{1}{x}$ and when t = xy, u = y. Thus we have the following integral,

$$\ln(xy) = \int_{\frac{1}{x}}^{y} \frac{1}{xu} x \cdot du = \int_{\frac{1}{x}}^{y} \frac{1}{u} du$$
. And so we have $\ln(xy) = \ln(y) - \ln\left(\frac{1}{x}\right) = \ln(xy) = \ln(y) + \ln(x)$ since $\ln\left(\frac{1}{x}\right) = -\ln(x)$ from the previous question.

Therefore we have $\ln(xy) = \ln(y) + \ln(x)$ as required.

5