第四讲: 元胞自动机 数学模型和算法的应用与 MATLAB 实现

周吕文

中国科学院力学研究所

2017年6月26日

微信公众号: 超级数学建模

历史

最初的元胞自动机是由冯·诺依曼在 1950 年代为模拟生物 细胞的自我复制而提出的. 但是并未受到学术界重视.

1970年, 剑桥大学的约翰·何顿·康威设计了一个电脑游戏 "生命游戏"后, 元胞自动机才吸引了科学家们的注意.

1983 年 S.Wolfram 发表了一系列论文. 对初等元胞机 256 种 规则所产生的模型进行了深入研究, 并用熵来描述其演化行 为,将细胞自动机分为平稳型,周期型,混沌型和复杂型.

周吕文 中国科学院力学研究所 🛞 第四讲:元胞自动机

应用

社会学: 元胞自动机经常用于研究个人行为的社会性, 流行 现象. 例如人口迁移, 公共场所内人员的疏散, 流行病传播. 图形学: 元胞自动机以其特有的结构的简单性, 内在的并行 性以及复杂计算的能力成为密码学中研究的热点方向之一 物理学: 在物理学中, 元胞自动机已成功的应用于流体, 磁

周吕文 中国科学院力学研究所 🛞 第四讲: 元胞自动机

场, 电场, 热传导等的模拟. 例如格子气自动机.

数学建模竞赛中的应用

表: 近十来年 MCM 中用到元胞自动机的特等奖论文统计

2001MCM-B 逃避飓风 ≥1 2003MCM-B Gamma 刀最佳治疗方案 1 2005MCM-B 收费亭的最优数量 3	份题号	手份题号 题目	特等奖论文数
2005MCM-B 收费亭的最优数量 3	ІМСМ-В)1MCM-B 逃避飓风	≥1
	3MCM-B	D3MCM-B Gamma 刀最佳治疗	方案 1
	5МСМ-В	D5MCM-B 收费亭的最优数的	₹ 3
2007MCM-B 飞机座位方案 4	7МСМ-В	07MCM-B 飞机座位方案	4
2009MCM-A 交通环岛的设计 ≥ 2	MCM-A	09MCM-A 交通环岛的设计	≥ 2
2012MCM-B 沿着"大长河"露营 1	2MCM-B	12MCM-B 沿着"大长河"露	营 1
2014MCM-A 交通右行规则 6	IMCM-A	L4MCM-A 交通右行规则	6
2017MCM-C 协调和行驶 2	7MCM-C	L7MCM-C 协调和行驶	2

Notes	
Notes	
Notes	
Notes	
Notes	

程序实现

上邻居

U = C([5, 1:4], :)

D = C([2:5, 1], :)

L = C(:, [5, 1:4])

右邻层

R = C(:, [2:5, 1])

周吕文 中国科学院力学研究所 🍪 第四讲:元胞自动机

程序实现

```
04 veg=zeros(n,n);
05 imh = image(cat(3,veg,veg,veg)); % 可示化表示森林的矩阵
06 % veg = {empty=0 burning=1 green=2}
07 for i=1:3000 %
                           % 主循环开始
                (veg(UL,:)==1) +
veg = 2*(veg==2) -
         ( (veg==2) & (sum>0|(rand(n,n)<Plight)) ) + ...
13
     2*((veg==0) & rand(n,n)<Pgrowth);
set(imh, 'cdata', cat(3,(veg==1),(veg==2),zeros(n))))
14
15
16
                           %可示化表示森林的矩阵
17 end
                           %主循环结束
```

周吕文 中国科学院力学研究所 🛞 第四讲:元胞自动

交通概念: 车距和密度

车距: 相临两车, 后车头到前车尾的距离

$$d = \frac{L - Nl}{N} = \frac{1}{2} - l$$

密度: 单位长度上分布的车辆数

$$\rho = \frac{N}{L} = \frac{1}{d+l}, \ \rho_{\text{max}} = \frac{1}{l}$$

周吕文 中国科学院力学研究所 🛞 第四讲:元胞自动机

交通概念: 流量方程

如果汪老师坐在一条公路的边上, 公路上的车速为 70km/hr, 车 流密度为 10 veh/km. 每小时能从汪老师身边驶过多少辆车?

流量方程: 单位时间内通过某路段的车辆数

量纲: [veh/hr] = [veh/km][km/h] $\rho=0\Longrightarrow J=0,\; \rho=\rho_{\max}\Longrightarrow v=0\Longrightarrow J=0$

周吕文 中国科学院力学研究所 🛞 第四讲:元胞|

Notes	

Notes

Notes

Notes

周吕文 中国科学院力学研究所 🛞 第四讲:元胞

交通概念: 宏观连续模型

Lighthill-Whitham-Richards 模型

$$\frac{\partial \rho(x,t)}{\partial t} + \frac{\partial q(x,t)}{\partial x} = 0$$

$$= q(\rho, v) = q(\rho, v(\rho)) = q$$

$$J = q(\rho, v) = q(\rho, v(\rho)) = q(\rho)$$

Greenshields 速度函数

$$v(\rho) = v_{\text{max}} \left(1 - \frac{\rho}{\rho_{\text{max}}}\right)$$

$$J(\rho) = v_{\text{max}} \left(\rho - \frac{\rho^2}{\rho_{\text{max}}} \right)$$

周吕文 中国科学院力学研究所 🛞 第四讲:元胞自动机

森林火灾 交通模拟 应用展示

规则

0. 初始状态: v	$v_1 = 2, v_2 = 1,$	$v_3 = 1, v_4 = 0$	
1. 加速规则: v	$n = \min\{v_{\text{max}}\}$	$, v_n + 1\}, v_{\text{max}} = 2$	
2. 防止碰撞: v	$n = \min\{v_n, d\}$	$\{n-1\}$	
3. 随机减速: v.	$_{n} \stackrel{p}{=} \max\{v_{n} -$	$\{1,0\}, \qquad rand_1 \leq p$	
4. 位置更新: x	$u_n = x_n + v_n$		

周吕文 中国科学院力学研究所 🛞 第四讲:

Notes			
-			
Notes			
-			
Notes			
-			
-			

理论分析

临界密度

$$\rho_c = \frac{1}{v_{\text{max}} + 1} = \frac{1}{5 + 1}$$

平均速度

$$v = \min\{v_{\max}, d\} = 2$$

$$J = \min\{\rho v_{\text{max}}, \rho d\} = 2/3$$
$$= \min\{\rho v_{\text{max}}, 1 - \rho\}$$

周吕文 中国科学院力学研究所 🍪 第四讲:元胞自动机

结果分析: 密度与流量

理论值及 CA 预测值

周吕文 中国科学院力学研究所 🍪 第四讲:元胞

结果分析: 时空轨迹

周吕文 中国科学院力学研究所 🛞 第四讲:元胞

程序实现

Notes

Notes

Notes

与粒子方法的差别	Notes
交通问题	
周月文 中国科学院力学研究所 ② 第四讲: 元鹏自动机 新介	Notes
局部的作用,同步的计算. 注意 元胞自动机比较适合解决具有空间离散特点的动力学问题. 根据问题适当改造元胞自动机,可使应用范围更广. 不要在不适当的问题上迁强地使用元胞自动机.	
第介 実別 急額 蘇习	Notes
简单 建立 SIR 传染病元胞自动机模型并模拟, 分析参数和结果. 制定更换车道规则, 实现双车道圆环内的 NS 交通流模拟.	
较难 美赛 2015A 根除埃博拉问题。 国赛 2013A 车道被占用问题。	
挑战 自学 LBM, 并解决国赛 2011A 城市表层土壤重金属污染. 第三届全国计算机仿真大赛: 口取消左转能否缓解拥堵.	
Thank You!!!	Notes