AdaBoost

the original paper

Adrian Florea

14th Meetup of Papers We Love (Bucharest Chapter), 17 March 2017

1.2	2.8	8.0	3.3	5.0	4.5	7.4	5.6	3.8	6.6	6.1	1.7
-	-	+	-	-	-	+	+	-	+	+	-

What is your classifier?

What is your classifier?

$$h(x) = \begin{cases} +1 & \text{if } x \ge 5.3\\ -1 & \text{otherwise} \end{cases}$$

It was so simple!

Let's change only two labels:

What is your classifier?

Let's change only two labels:

What is your classifier?

$$h(x) = \begin{cases} -1 & \text{if } x < 3.5 \\ +1 & \text{if } 3.5 \le x < 4 \\ -1 & \text{if } 4 \le x < 5.5 \\ +1 & \text{if } 5.5 \le x < 6.5 \\ -1 & \text{if } 6.5 \le x < 7 \\ +1 & \text{otherwise} \end{cases}$$

It's hard to find a single decision stump

Training error of a single decision stump for the last training set

PAC learning definitions I

- Let X be a set called the *instance space*.
- A concept c over X is a subset $c \subseteq X$ of the instance space.
- A concept class C over X is a set of concepts over X, typically with an associated representation.
- A target concept may be any concept $c^* \in C$.
- A learning algorithm (called also learner) tries to infer an unknown concept (called hypothesis), chosen from a known concept class.
- A set of random variables is *independent and identically distributed* (i.i.d.) if each random variable has the same *identical* probability distribution as the others and all are mutually *independent*.
- The instances the learner receives from a distribution *D*, are independently and identically distributed (i.i.d.).

- After observing a sequence S of i.i.d. training examples of the target concept c*, the learner L outputs the hypothesis h (its estimate of c*) from the set H of possible hypotheses.
- The *true error* of h with respect to c^* and D is the probability that h will misclassify an instance drawn randomly according to D: $err(h) \equiv \Pr_{x \in D} [c^*(x) \neq h(x)] = \Pr_{(x,y) \sim D} [h(x) \neq y]$

• The *training error* is the fraction of training examples misclassified by the hypothesis *h*:

$$\widehat{err}(h) \equiv \Pr_{x \in S} [c^*(x) \neq h(x)] =
= \frac{1}{m} \sum_{i=1}^m \mathbf{1} [c^*(x_i) \neq h(x_i)] = \frac{1}{m} \sum_{i=1}^m \mathbf{1} [h(x_i) \neq y_i]$$

Weak learnability

A concept class C is PAC-learnable or strongly learnable by L if for any D over X, and for any $c \in C$, and for any positive value of ε , and for any positive value of δ , the learner L will output in a polynomial time in $\frac{1}{\varepsilon}$, $\frac{1}{\delta}$, $size(x \in X)$, size(c), a hypothesis h such that $Pr[err(h) > \varepsilon] \le \delta$

An arbitrarily small true error means nearly perfect generalization and that is usually unrealistic!

A concept class C is *weakly learnable* by L if for any D over X, and for any $c \in C$, and for any positive value of δ , and for some fixed positive value of $\varepsilon = \frac{1}{2} - \gamma$ with $\gamma > 0$, the learner L will output in a polynomial time in $\frac{1}{\varepsilon}$, $\frac{1}{\delta}$, $size(x \in X)$, size(c), a hypothesis h such that $\Pr[err(h) > \varepsilon] \leq \delta$

$Weak \equiv Strong$

Hypothesis Boosting Problem - Michael Kearns, December 1988

"is it the case that any target class that is weakly learnable is in fact strongly learnable? Note that we pose the question in a representation-independent setting in that the hypothesis class used by the strong learning algorithm need not be the same as that used by the weak learning algorithm."

Proof - Robert Schapire, June 1990

"Theorem: A concept class C is weakly learnable if and only if it is strongly learnable"

Boosting introduction

Let's consider a simple classifier, the decision stump:

$$h(\mathbf{x}; \theta) = \operatorname{sign}(w_1 x_k - w_0), \mathbf{x} \in \mathbb{R}^d, \theta = \{k, w_1, w_0\}$$

Note it acts on only one component of \mathbf{x}

Voted combination of *m* classifiers, built iteratively in *m* rounds:

$$h_m(\mathbf{x}) = \alpha_1 h(\mathbf{x}; \theta_1) + \ldots + \alpha_m h(\mathbf{x}; \theta_m)$$

where the votes α_i are non-negative (a higher vote means a better classifier)

Let's consider this loss function:

$$L(y, f(\mathbf{x})) = \exp(-yf(\mathbf{x}))$$

with the value 1/e (small) when classifies correctly, or the value e (large) when classifies incorrectly

$$\min \sum_{i=1}^{n} L(y_i, h_m(\mathbf{x}_i)) = \min \sum_{i=1}^{n} \exp(-y_i h_m(\mathbf{x}_i)) = \min \sum_{i=1}^{n} \exp(-y_i (h_{m-1}(\mathbf{x}_i) + \alpha_m h(\mathbf{x}_i; \theta_m))) = \min \sum_{i=1}^{n} \exp(-y_i h_{m-1}(\mathbf{x}_i)) \exp(-y_i \alpha_m h(\mathbf{x}_i; \theta_m))) =$$

At round m, the expression $\exp(-y_i h_{m-1}(\mathbf{x}_i))$ under min is fixed (it's already constructed), let's denote it by W_i^{m-1} so:

$$= \min \sum_{i=1}^{n} W_{i}^{m-1} \exp(-y_{i}\alpha_{m}h(\mathbf{x}_{i};\theta_{m}))) =$$

$$= \min \{ \sum_{y_{i}=h(\mathbf{x}_{i};\theta_{m})}^{n} W_{i}^{m-1} \exp(-\alpha_{m}) + \sum_{y_{i}\neq h(\mathbf{x}_{i};\theta_{m})}^{n} W_{i}^{m-1} \exp(\alpha_{m}) \} =$$

$$= \min \{ \exp(-\alpha_{m}) \sum_{y_{i}=h(\mathbf{x}_{i};\theta_{m})}^{n} W_{i}^{m-1} + \exp(\alpha_{m}) \sum_{y_{i}\neq h(\mathbf{x}_{i};\theta_{m})}^{n} W_{i}^{m-1} \} =$$

$$= \min \{ \exp(-\alpha_{m}) \sum_{i=1}^{n} W_{i}^{m-1} \mathbf{1}(y_{i} = h(\mathbf{x}_{i};\theta_{m})) +$$

$$+ \exp(\alpha_{m}) \sum_{i=1}^{n} W_{i}^{m-1} \mathbf{1}(y_{i} \neq h(\mathbf{x}_{i};\theta_{m})) \} =$$

$$= \min \{ \exp(-\alpha_{m}) (\sum_{i=1}^{n} W_{i}^{m-1} - \sum_{i=1}^{n} W_{i}^{m-1} \mathbf{1}(y_{i} \neq h(\mathbf{x}_{i};\theta_{m})) \} =$$

$$= \min \{ \exp(-\alpha_{m}) \sum_{i=1}^{n} W_{i}^{m-1} \mathbf{1}(y_{i} \neq h(\mathbf{x}_{i};\theta_{m})) \} =$$

$$= \min \{ \exp(-\alpha_{m}) \sum_{i=1}^{n} W_{i}^{m-1} \mathbf{1}(y_{i} \neq h(\mathbf{x}_{i};\theta_{m})) \} =$$

$$+ \exp(-\alpha_{m}) \sum_{i=1}^{n} W_{i}^{m-1} \mathbf{1}(y_{i} \neq h(\mathbf{x}_{i};\theta_{m})) \} =$$

$$+ \exp(\alpha_{m}) \sum_{i=1}^{n} W_{i}^{m-1} \mathbf{1}(y_{i} \neq h(\mathbf{x}_{i};\theta_{m})) \} =$$

Adrian Florea AdaBoost PWLB14 10 / 20

But this min is on α_m , so:

$$\begin{split} & \frac{\partial \sum_{i=1}^{n} L(y_i, h_m(\mathbf{x}_i))}{\partial \alpha_m} = 0, \text{i.e.} \\ & - \exp(-\alpha_m) \sum_{i=1}^{n} W_i^{m-1} + \\ & + \exp(-\alpha_m) \sum_{i=1}^{n} W_i^{m-1} \mathbf{1}(y_i \neq h(\mathbf{x}_i; \theta_m)) + \\ & + \exp(\alpha_m) \sum_{i=1}^{n} W_i^{m-1} \mathbf{1}(y_i \neq h(\mathbf{x}_i; \theta_m)) = 0 \end{split}$$

Results:

$$\exp(-\alpha_{m}) \frac{\sum_{i=1}^{n} W_{i}^{m-1} \mathbf{1}(y_{i} \neq h(\mathbf{x}_{i}; \theta_{m}))}{\sum_{i=1}^{n} W_{i}^{m-1}} + \exp(\alpha_{m}) \frac{\sum_{i=1}^{n} W_{i}^{m-1} \mathbf{1}(y_{i} \neq h(\mathbf{x}_{i}; \theta_{m}))}{\sum_{i=1}^{n} W_{i}^{m-1}} = \exp(-\alpha_{m}) \frac{\sum_{i=1}^{n} W_{i}^{m-1} \mathbf{1}(y_{i} \neq h(\mathbf{x}_{i}; \theta_{m}))}{\sum_{i=1}^{n} W_{i}^{m-1}} = \frac{\exp(-\alpha_{m})}{\exp(-\alpha_{m}) + \exp(\alpha_{m})}$$

The left term is the *weighted* training error at round m, so:

$$\varepsilon_m = \frac{\exp(-\alpha_m)}{\exp(-\alpha_m) + \exp(\alpha_m)} = \frac{1}{1 + \exp(2\alpha_m)}$$

We obtain the formula of the vote at round m:

$$\alpha_{\it m} = \frac{1}{2} \ln \left(\frac{1 - \varepsilon_{\it m}}{\varepsilon_{\it m}} \right)$$

We have denoted above the weights by:

$$W_i^m = \exp(-y_i h_m(\mathbf{x}_i)) = \exp(-y_i (h_{m-1}(\mathbf{x}_i) + \alpha_m h(\mathbf{x}_i; \theta_m))) =$$

= $W_i^{m-1} \exp(-y_i \alpha_m h(\mathbf{x}_i; \theta_m))$

Results a recursive update rule of the weights at round m based on the value at the previous round:

$$W_i^m = W_i^{m-1} \exp(-y_i \alpha_m h(\mathbf{x}_i; \theta_m))$$

At every round, these weights can be normalized such that: $\sum_{i=1}^{n} W_i^m = 1$

Adrian Florea AdaBoost PWLB14 12 / 20

AdaBoost Algorithm - Freund & Schapire, 1995

Input:

a sequence of n labeled examples $\{(\mathbf{x}_i, y_i), i = 1, ..., n\}$, a number T of iterations,

and a weak learner WeakLearn that at round m will produce a hypothesis $h(\mathbf{x}; \theta_m)$

Initialize:

 $W_i^1 = \frac{1}{n}, i = 1, \dots, n$, because we don't have any information about weights at the first round.

Iterate from m = 1 to T:

Call WeakLearn to produce the hypothesis $h(\mathbf{x}; \theta_m)$ (AdaBoost has no direct control on the hypothesis)

Calculate the weighted training error:
$$\varepsilon_m = \frac{\sum_{i=1}^n W_i^m \mathbf{1}(y_i \neq h(\mathbf{x}_i; \theta_m))}{\sum_{i=1}^n W_i^m}$$

Calculate the vote: $\alpha_m = \frac{1}{2} \ln(\frac{1-\varepsilon_m}{\varepsilon_m})$

Update the weights: $W_i^m \leftarrow W_i^m \exp(-y_i \alpha_m h(\mathbf{x}_i; \theta_m))/Z_m$ and normalize their values (division by Z_m).

Output the final hypothesis: $sign(h_T(x))$

From the normalized weights update formula, we have:

$$W_{i}^{T} = W_{i}^{1} \frac{\exp(-\sum_{m=1}^{T} y_{i} \alpha_{m} h(\mathbf{x}_{i}; \theta_{m})}{\prod_{m=1}^{T} Z_{m}} = W_{i}^{1} \frac{\exp(-y_{i} \sum_{m=1}^{T} \alpha_{m} h(\mathbf{x}_{i}; \theta_{m}))}{\prod_{m=1}^{T} Z_{m}}$$
But $W_{i}^{1} = \frac{1}{n}$ and $\sum_{m=1}^{T} \alpha_{m} h(\mathbf{x}_{i}; \theta_{m}) = h_{T}(\mathbf{x}_{i})$, so:
$$W_{i}^{T} = \frac{1}{n} \frac{\exp(-y_{i} h_{T}(\mathbf{x}_{i}))}{\prod_{m=1}^{T} Z_{m}}$$

The training error of the final classifier is:

$$\widehat{err}(h_T) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}[h_T(\mathbf{x_i}) \neq y_i] = \frac{1}{n} \sum_{i=1}^n \begin{cases} 1, & \text{if } y_i \neq h_T(\mathbf{x_i}) \\ 0, & \text{otherwise} \end{cases} = \\ = \frac{1}{n} \sum_{i=1}^n \begin{cases} 1, & \text{if } y_i h_T(\mathbf{x_i}) < 0. \\ 0, & \text{otherwise} \end{cases} \\ \text{But } \exp(-y_i h_T(\mathbf{x_i})) > 1 \text{ if } y_i h_T(\mathbf{x_i}) < 0, \text{ so:} \\ \widehat{err}(h_T) < \frac{1}{n} \sum_{i=1}^n \exp(-y_i h_T(\mathbf{x_i})) = \frac{1}{n} n \prod_{m=1}^T Z_m \sum_{i=1}^n W_i^T \\ \text{From } \sum_{i=1}^n W_i^T = 1 \text{ we obtain the following upper bound for the training error of the final classifier:}$$

Adrian Florea AdaBoost PWLB14 14 / 20

$$\widehat{err}(h_T) < \prod_{m=1}^T Z_m$$

$$\begin{split} &W_i^{m+1} = W_i^m \exp(-y_i \alpha_m h(\mathbf{x}_i; \theta_m))/Z_m = \\ &\frac{W_i^m}{Z_m} \begin{cases} \sqrt{\frac{1-\varepsilon_m}{\varepsilon_m}}, & \text{if } y_i h_T(\mathbf{x}_i) < 0. \\ \sqrt{\frac{\varepsilon_m}{1-\varepsilon_m}}, & \text{otherwise} \end{cases} & \text{because } \alpha_m = \frac{1}{2} \ln(\frac{1-\varepsilon_m}{\varepsilon_m}) \\ &1 = \sum_{i=i}^n W_i^{m+1} = \sqrt{\frac{\varepsilon_m}{1-\varepsilon_m}} \sum_{y_i = h_m(\mathbf{x}_i)} \frac{W_i^m}{Z_m} + \sqrt{\frac{1-\varepsilon_m}{\varepsilon_m}} \sum_{y_i \neq h_m(\mathbf{x}_i)} \frac{W_i^m}{Z_m} = \\ &= \frac{1}{Z_m} \left(\sqrt{\frac{\varepsilon_m}{1-\varepsilon_m}} (1-\varepsilon_m) + \sqrt{\frac{1-\varepsilon_m}{\varepsilon_m}} \varepsilon_m \right) = \frac{2}{Z_m} \sqrt{\varepsilon_m (1-\varepsilon_m)}, \text{ so:} \\ &Z_m = 2\sqrt{\varepsilon_m (1-\varepsilon_m)} \end{split}$$

We denote by edge $\gamma_m = \frac{1}{2} - \varepsilon_m$, i.e. $\varepsilon_m = \frac{1 - 2\gamma_m}{2}$, so:

$$Z_m = \sqrt{1 - 4\gamma_m^2}$$

From the inequality $\sqrt{1-x} \le \exp(-x/2)$, we obtain:

$$Z_m = \sqrt{1-4\gamma_m^2} \le exp(-2\gamma_m^2)$$

Adrian Florea AdaBoost PWLB14 15 / 20

That means:

$$\widehat{\textit{err}}(h_T) < \prod_{m=1}^T Z_m \leq \exp(-2\sum_{m=1}^T \gamma^2)$$

Now, turning back to our weak learning assumption, we have: $\gamma_m \geq \gamma$ for m = 1, ..., T, so have completely proved that:

Theorem

$$\widehat{err}(h_T) < \exp(-2T\gamma^2)$$

The training error of the final classifier constructed with AdaBoost is exponentially converging to 0 for any γ with the number of rounds.

In reality, the convergence is even better, as it results from the following figure:

Adrian Florea AdaBoost PWLB14 16 / 20

No overfitting

Test error and training error

Adrian Florea AdaBoost PWLB14 18 / 20

Bibliography I

R.E. Schapire, Y. Freund Boosting. Foundations and Algorithms MIT Press, 2012

Y. Freund, R.E. Schapire

A decision-theoretic generalization of on-line learning and an application to boosting Journal of Computer and System Sciences, 55(1):119-139, 1997

T. Jaakkola 6.867 Machine Learning MIT CSAIL. 2004

M. Kearns

Thoughts on Hypothesis Boosting

Project for Ron Rivest's machine learning course at MIT, Unpublished manuscript, December 1988

Bibliography II

Weak Learning, Boosting, and the AdaBoost algorithm Jeremy Kun's Blog, May 2015

R.E. Schapire

The Strength of Weak Learnability

Machine Learning, 5(2):197-227 (1990)

R.E. Schapire A Boosting Tutorial May 2005