

PRODUCT-OF-SUMS FORM

LOGIC MINIMIZATION

@gyro-madrona

TOPIC OUTLINE

Product-of-Sums (POS) Form

PRODUCT-OF-SUMS FORM

PRODUCT-OF-SUMS FORM

When two or more <u>sum terms</u> are multiplied, the resulting expression is a <u>product-of-sums</u> (POS).

<u>example</u>

$$f = (\bar{A} + B)(A + \bar{B} + C)$$

$$f = (\bar{A} + \bar{B} + \bar{C})(C + \bar{D} + E)(\bar{B} + C + D)$$

$$f = (A + B)(A + \bar{B} + C)(\bar{A} + C)$$

note

POS expression can have the term $\bar{A} + \bar{B} + \bar{C}$ but not $\overline{A + B + C}$.

Minimal SOP realization

Minimal POS realization

Convert the given Boolean expressions to POS form.

Solution

$$f = \overline{(\overline{A+B}) + C}$$

STANDARD POS FORM

A <u>standard POS form</u> ensures that each product term is a <u>maxterm</u>.

<u>Maxterm</u> is a <u>sum term</u> that evaluates to <u>0</u> for exactly one unique combination of input values.

Maxterms for the three-variable table

Decimal	A	В	С	Maxterm
0	0	0	0	$M_0 = A + B + C$
1	0	0	1	$M_1 = A + B + \bar{C}$
2	0	1	0	$M_2 = A + \bar{B} + C$
3	0	1	1	$M_3 = A + \bar{B} + \bar{C}$
4	1	0	0	$M_4 = \bar{A} + B + C$
5	1	0	1	$M_5 = \bar{A} + B + \bar{C}$
6	1	1	0	$M_6 = \bar{A} + \bar{B} + C$
7	1	1	1	$M_7 = \bar{A} + \bar{B} + \bar{C}$

Convert the given Boolean expressions to standard POS form.

$$f = \overline{(\overline{A+B}) + C}$$

and then represent the result using a truth table format.

<u>note</u>

A nonstandard POS expression is converted into standard form using Boolean algebra rule:

$$A \cdot \bar{A} = 0$$

Solution

Convert the given Boolean expressions to standard POS form.

$$f = ABC + AB(C + D)$$

and then represent the result using a truth table format.

Solution

Convert the given Boolean expressions to standard POS form.

Solution

$$f = AB + B(C + D)$$

and then represent the result using a truth table format.

LABORATORY

