

Лекция 2

«Полиномы»

Содержание лекции:

Выражения, сходные по виду с квадратными трехчленами, встречаются еще в школе. Оказывается, что все эти выражения, полиномы, обладают интересными алгебраическими свойствами. В этой лекции мы рассмотрим, что такое полином и как его можно определить строго, рассмотрим знакомые операции и их свойства. Такой взгляд на полиномы позволит нам вывести важные утверждения о делимости полиномов, а также даст попытку описать множество корней полиномов.

Ключевые слова:

кольцо, ассоциативное кольцо, коммутативное кольцо, кольцо с единицей, область целостности, делитель нуля, лемма о сокращении в равенстве, одночлен, полином, кольцо полиномов, высший член полинома, степень полинома, делимость полиномов, схема Горнера, теорема Безу, корень полинома, кратность корня, наибольший общий делитель, нормализованный полином, основная теорема алгебры, разложение полинома

Авторы курса:

Свинцов М.В.

Ссылка на ресурсы: mathdep.ifmo.ru/geolin

2.1 Алгебраическая структура: кольцо

Прежде чем перейти к обсуждению основной темы лекции, необходимо рассмотреть некоторые алгебраические структуры, которые могут быть индуцированы на множествах. Наличие этой структуры позволит элегантно, но в то же время математически строго, вывести массу полезных свойств рассматриваемых объектов.

2.1.1 Кольцо. Основные понятия

Кольцом A называется такое множество, на котором заданы операции "сложения" и "умножения", обладающие следующими свойствами $\forall a, b, c \in A$:

1. Коммутативность сложения.

$$a + b = b + a$$

2. Ассоциативность сложения.

$$a + (b+c) = (a+b) + c$$

3. Существование нейтрального элемента относительно сложения.

$$\exists 0 \in A : 0 + a = a + 0 = a$$

4. Существование противоположного элемента.

$$\forall a \in A. \ \exists b \in A: \ a+b=b+a=0$$

5. Дистрибутивность.

$$(a+b) \cdot c = a \cdot c + b \cdot c$$

$$a \cdot (b+c) = a \cdot b + a \cdot c$$

Кольца как алгебраическая структура служат для изучения операций умножения и сложения безотносительно природы объектов. Перечисленные выше свойства определяют кольцо, однако введение дополнительных свойств операций приводит к следующим распространенным видам колец:

Ассоциативным кольцом называют кольцо, для которого выполняется ассоциативность умножения.

$$a \cdot (b \cdot c) = (a \cdot b) \cdot c, \quad \forall a, b, c \in A$$

Коммутативным кольцом называют кольцо, для которого выполняется коммутативность умножения.

$$a \cdot b = b \cdot a, \quad \forall a, b \in A$$

ПОЛИНОМЫ

Кольцом с единицей называют кольцо, в котором существует мультипликативная единица, т.е. такой элемент, что

$$\exists 1 \in A \colon 1 \cdot a = a \cdot 1 = a, \quad \forall a \in A$$

Пример 2.1.

- 1. Кольцо целых чисел с обычными операциями сложения и умножения.
- 2. Кольцо рациональных чисел, являющееся полем. Вообще говоря любое поле является кольцом, причем ассоциативным, коммутативным с единицей.
- 3. Кольцо подмножеств множества X. Операция сложения симметрическая разность, операция умножения пересечение. Нулевой элемент пустое множество, единичный элемент все множество.

$$A + B = A\Delta B = (A \setminus B) \cup (B \setminus A)$$
$$A \cdot B = A \cap B$$

В качестве противоположного элемента к элементу A выступает сам A, т.к.

$$A + A = 0$$

Для дальнейшего обсуждения нам необходимо рассмотрение еще одного вида колец - область целостности, но прежде введем такое понятие как делитель нуля.

Элемент a кольца A называется **делителем** нуля, если существует такое ненулевое $b \in A$, что

$$a \cdot b = 0$$

Имея это определение можно ввести еще один вид кольца

Областью целостности или целостным кольцом называется коммутативное кольцо, не имеющее делителей нуля.

Иными словами, целостное кольцо - это такое кольцо, в котором произведение двух элементов кольца может равняться нулю тогда, когда хотя бы один из элементов равен нулю.

Любое поле является областью целостности, однако обратное неверно.

Лемма 2.1. В области целостности возможно сокращение в равенстве, т.е. из ab = ac при $a \neq 0$ следует b = c.

Равенство ab=ac равносильно равенству a(b-c)=0. Так как $a\neq 0$ и кольцо целостно, должно быть b-c=0, но это и означает, что b=c.

2.1.2 Кольцо полиномов

Еще из школьной математики известно понятие полинома или многочлена, а также тесно связанное с ним понятие одночлена - алгебраическое выражение вида ax^m , где a - некоторое число, x - буква, m - целое неотрицательное число. Одночлен ax^0 отождествляется с числом a. Вместе с тем, полиномом $a_0x^n + \ldots + a_n$ называется алгебраическая сумма полиномов.

Под буквой x, с одной стороны, может подразумеваться произвольное число, а может подразумеваться переменная. В таком случае полином задает функцию от x.

Говоря про полиномы, необходимо рассматривать отдельно формальное равенство полиномов, когда они составлены из одинаковых одночленов, а также тождественное равенство. В этом случае говорится, что полиномы принимают одинаковые значение при каждом x.

Nota bene Очевидно, что формально равные полиномы будут равны тождественно. Верно и обратное утверждение, хоть оно и не очевидно.

Такое определение полиномов дает нам некоторые возможности для обращения с ними, но если есть стремление обрести всю полноту возможностей множества таких объектов, необходимо подойти к вопросу более строго.

Пусть A - коммутативное ассоциативное кольцо с единицей. Как обсуждалось ранее, это могут быть целые числа или любое известное поле. Одночленом от буквы x с коэффициентом $a \in A$ будем называть выражение ax^m , где m - целое неотрицательное число. Стоит понимать, что это выражение не является еще полноценно содержательным в силу того, что мы не договорились о том, что есть x. Сейчас это больше напоминает некоторое графическое изображение, картинку, с которой мы как-то умеем взаимодействовать. Как?

Для таких одночленов определяются знакомые операции приведения подобных членов и умножения:

$$ax^{m} + bx^{m} = (a+b)x^{m}$$
$$ax^{m} \cdot bx^{n} = abx^{n+m}$$

Полиномом будем называть сумму одночленов. Под суммой мы здесь пока что подразумеваем некую совокупность "картинок" между которыми стоит знак +.

Из определения естественным образом вытекают понятие равенства полиномов и действия с ними:

1. Два полинома считаются равными (формально), если они составлены из одинаковых одночленов.

$$a_0x^n + \ldots + a_n = b_0x^n + \ldots + b_n \iff a_i = b_i, i = 0, \ldots n$$

2. Суммой двух полиномов называется полином, получающийся объединением одночленов, составляющих слагаемые с приведенными подобными членами.

$$(a_0x^n + \ldots + a_n) + (b_0x^n + \ldots + b_n) = (a_0 + b_0)x^n + \ldots + (a_n + b_n)$$

3. Произведением двух полиномов называется полином, составленный из произведений всех членов первого сомножителя на все члены второго. В этом случае также необходимо сделать приведение подобных членов.

$$(a_0x^n + \ldots + a_n) + (b_0x^m + \ldots + b_m) = a_0b_0x^{n+m} + (a_0b_1 + a_1b_0)x^{n+m-1} + \ldots + a_nb_m$$

Nota bene Можно заметить, что множество полиномов от буквы x с коэффициентами из кольца A составляет кольцо по отношению к определенным сложению и умножению. Это кольцо будет коммутативно и ассоциативно. Роль нуля играет нулевой полином (нуль кольца A), а единицу - единица кольца A. Таким образом определенное множество называется **кольцом полиномов** от буквы x над кольцом A и обозначается A[x].

В данных определениях есть одно "слабое" место - буква x. В некотором смысле она является посторонней для кольца A как минимум по той причине, что про нее ничего не было сказано. Хотелось бы иметь определение, которое включало бы и само x.

Альтернативное определение

Вместо полиномов рассмотрим бесконечные последовательности $(a_0, a_1, \ldots, a_n, \ldots)$ элементов кольца A, в которых все элементы, начиная с некоторого n+1 равны нулю. Ведь действительно, все введенные операции с полиномами затрагивали только сами коэффициенты. Переопределим равенство полиномов и действия над ними с такой точки зрения.

1. Равенство.

$$(a_0, a_1, \ldots, a_n, \ldots) = (b_0, b_1, \ldots, b_n, \ldots) \iff a_i = b_i, i = 0, \ldots n$$

2. Сумма.

$$(a_0, a_1, \ldots, a_n, \ldots) + (b_0, b_1, \ldots, b_n, \ldots) = (a_0 + b_0, a_1 + b_1, \ldots, a_n + b_n, \ldots)$$

3. Умножение.

$$(a_0, a_1, \ldots, a_n, \ldots) \cdot (b_0, b_1, \ldots, b_m, \ldots) = (a_0b_0, a_0b_1 + a_1b_0, \ldots, a_nb_m, \ldots)$$

4. Отождествление с элеменом кольца. Как ранее имели для комплексных чисел, так и сейчас нам удобно иметь свойство, которое бы связывало новое множество с уже известной структурой, которая собственно и порождает это множество. Поэтому скажем, что последовательность $(a, 0, \ldots)$ отождествляется с элементом кольца $a \in A$.

Легко заметить, что сохраняются все свойства операций, а также очевидна непротиворечивость последней аксиомы остальным.

Казалось бы мы еще больше усложнили определение полинома, но зачем? Такой подход был мотивирован необходимость заполнить пустоту неопределенности буквы x. И сейчас это возможно сделать. Введем обозначения.

$$x = (0, 1, 0, ...)$$

 $x^2 = (0, 0, 1, 0, ...)$
... = ...

Рассмотрим бесконечную последовательность $(a_0, \ldots, a_n, 0)$. В силу введенных операций ее можно представить как конечную сумму бесконечных последовательностей, в которых только один элемент будет ненулевым.

$$(a_0, a_1, \ldots, a_n, \ldots) = (a_0, 0, \ldots) + (0, a_1, 0, \ldots) + \ldots + (0, \ldots, a_n, 0, \ldots) =$$

Однако если в каждой последовательности "вынести" множитель, то мы получим сумму, которая содержит введенные выше обозначения.

$$= a_0 + a_1(0, 1, 0, \ldots) + \ldots + a_n(0, \ldots, 1, 0, \ldots) = a_0 + a_1 x + \ldots + a_n x^n$$

Что мы получили? Начиная с наиболее общего определения кольца, с помощью множества бесконечных последовательностей мы смогли прийти к знакомому нам виду полиномов. Иными словами мы обосновали алгебраическую природу таких объектов.

Несколько важных определений

Пусть $f(x) = a_0 x^n + \ldots + a_n$ при $a_0 \neq 0$. Одночлен $a_0 x^n$ называется **высшим членом** полинома, а показатель n - **степенью полинома**, и обозначается $\deg f = n$.

Считается, что нулевой полином не имеет высшего члена, а его степень равна $-\infty$. Необходимость такого обозначения степени полинома вызвано тем, что определение степеней должно быть согласовано с умножением на нулевой полином. При умножении произвольного полинома степени k на нулевой полином, получается вновь нулевой полином. Однако степени полиномов при умножении складываются. Единственным объектом, обладающим таким свойством, и является $-\infty$.

$$k + (-\infty) = -\infty$$

Теорема 2.1. Если кольцо A есть область целостности, то кольцо полиномов A[x] тоже область целостности.

Теорема приводится без доказательства. Смысл, как и для любого целостного кольца, заключается в том, что произведение полиномов будет равно нулю тогда и только тогда, когда хотя бы один из них является нулевым.

$$p_1 \cdot p_2 = 0 \iff p_1 = 0 \text{ or } p_2 = 0$$

2.2 Деление полиномов

Множество полиномов не является полем - в нем не существует обратного элемента для каждого элемента множества, который также принадлежал бы этому множеству. Данное ограничение не позволяет нам полноценно ввести операцию деления. Однако, например, в кольце целых чисел мы умеем выполнять операцию целочисленного деления, родственную делению и даже называем ее также. Полиномы также образуют кольцо и следовательно для них можно попытаться ввести деление аналогичное целочисленному.

2.2.1 Общие свойства делимости

Если для полиномов f(x) и g(x) из A[x] существует такой полином $h(x) \in A[x]$, что

$$f(x) = g(x)h(x),$$

то говорят, что **полином** f(x) **делится на полином** g(x).

Наша следующая и, пожалуй, главная задача заключается в выяснении вопроса о делимости $f(x) \in A[x]$ на линейный двухчлен x-c при $c \in A$.

Можно утверждать, что всегда существует деление с остатком.

$$f(x) = (x - c)h(x) + r, \quad r \in A$$

где полином h(x) называется неполным частным, а r - остатком, который в случае деления на линейный двучлен всегда является элементом кольца. Сформулируем это в виде теоремы.

Теорема 2.2. (*O* делении с остатком). Пусть $f(x) = a_0 x^n + a_1 x^{n-1} + \ldots + a_n \in A[x]$ и $c \in A$. Найдутся полином $h(x) \in A[x]$ и элемент $r \in A$ такие, что f(x) = (x-c)h(x) + r.

Умножение полиномов приводит к сложению их степеней. Следовательно для получения полинома n-ой степени необходимо искать такой h(x), что $\deg h = n-1$. Иными словами будем искать h в форме

$$h(x) = b_0 x^{n-1} + \ldots + b_{n-1}$$

Подставим в равенство из теоремы определение полиномов f(x) и h(x):

$$a_0x^n + a_1x^{n-1} + \ldots + a_n = (x - c)(b_0x^{n-1} + \ldots + b_{n-1}) + r$$

Вспоминая определение равенства двух полиномов, можем записать цепочку равенств:

$$a_0 = b_0$$

$$a_1 = b_1 - cb_0$$

$$a_2 = b_2 - cb_1$$

$$\vdots$$

$$a_n = r - cb_{n-1}$$

При рассмотрении полученной системы равенств становится очевидно, что схожим итеративным способом можно определить и наоборот - коэффициенты b_i через a_i и b_{i-1} .

$$b_0 = a_0$$

$$b_1 = a_1 + cb_0$$

$$b_2 = a_2 + cb_1$$

$$\dots = \dots$$

$$b_{n-1} = a_{n-1} + cb_{n-2}$$

$$r = a_n + cb_{n-1}$$

Таким образом мы увидели, что в общем случае всегда найдутся полином h(x) и остаток r, удовлетворяющие условиям теоремы. И более того они определяются однозначно. \blacktriangleleft

Цепочка равенств имеет не только теоретическое значение, но и вполне практическое. Предложенный метод поиска коэффициентов носит название "схема Горнера".

Nota bene Можно обратить внимание, что f(c) = r для c из условия теоремы. Это очень легко показать

$$f(c) = (c - c)h(x) + r$$
$$f(c) = r$$

Данное замечание позволяет нам доказать следующую теорему.

Теорема 2.3. (Безу) Для того чтобы полином $f(x) \in A[x]$ делился на x - c необходимо и достаточно, чтобы f(c) = 0.

Необходимость.

Пусть f(x) делится на x-c, т.е. f(x)=(x-c)h(x). Тогда f(c)=0 по предыдущему замечанию.

Достаточность.

Пусть f(c) = 0. Тогда в равенстве f(x) = (x-c)h(x) + r при x = c имеем r = f(c) = 0. Следовательно f(x) = (x-c)h(x).

 $\|$ Элемент $c \in A$ называется **корнем полинома** f(x), если f(c) = 0.

В таком случае можно переформулировать теорему Безу в терминах корней полинома.

Теорема 2.4. (Безу) Для того чтобы полином $f(x) \in A[x]$ делился на x - c необходимо и достаточно, чтобы $c \in A$ являлся корнем полинома.

2.2.2 Наибольший общий делитель

Прежде более подробного рассмотрения корней полиномов обратим внимание на еще один аспект, имеющий аналог и в знакомых нам числовых множествах - наибольший общий делитель (НОД).

Наибольшим общим делителем двух полиномов f_1, f_2 из кольца K[x] называется полином наибольшей степени среди полиномов с коэффициентами из поля K или любого его расширения, делящий оба полинома f_1 и f_2 .

Стоит обратить внимание, что в данном определении недостаточно определения кольца полиномов над коммутативным ассоциативным кольцом с единицей. Необходимо, чтобы A обязательно являлось полем. В качестве примера рассмотрим следующие полиномы

$$x^2 - 1$$
, $x^3 - 1$

Их наибольшими общими делителями будут полиномы, в качестве примеров, (x-1), sqrt2(x-1) и также (1+i)(x-1). Убедимся, что это так. При делении на x-1 получим следующие разложения.

$$x^{2} - 1 = (x - 1)(x + 1)$$

$$x^{3} - 1 = (x - 1)(x^{2} + x + 1)$$
(2.1)

Аналогично можем получить и разложения при делении на $\sqrt{2}(x-1)$.

$$x^{2} - 1 = \sqrt{2}(x - 1) \cdot \frac{1}{\sqrt{2}}(x + 1)$$

$$x^{3} - 1 = \sqrt{2}(x - 1) \cdot \frac{1}{\sqrt{2}}(x^{2} + x + 1)$$
(2.2)

Иными словами, старший коэффициент НОД не играет никакой роли, но при этом в кольце должна присутствовать делимость, или иными словами наличие обратного элемента, т.к. старший коэффициент НОД входит в разложение вместе со своим обратным. Ассоциативное коммутативное кольцо с единицей, где каждый ненулевой элемент имеет обратимый - это и есть поле.

В данных примерах мы рассмотрели только полиномы, имеющие старший коэффициент равный 1. Такие полиномы называют **нормализованными**. Однако легко показать, что определение НОД справедливо и для ненормализованных полиномов.

Теорема 2.5. Наибольший общий делитель двух полиномов $f_1, f_2 \in \mathbb{K}[x]$ единственен с точностью до множителя из поля \mathbb{K} и делится на любой общий делитель этих полиномов. Коэффициенты нормализованного наибольшего общего делителя полиномов из $\mathbb{K}[x]$ принадлежат полю \mathbb{K} .

Теорему приводим без доказательства, но поясним вторую формулировку примером, потому что она может быть неочевидой. Пусть

$$f_1 = x^4 - 1$$
, $f_2 = x^3 + 2x^2 + x + 2$

Оба полинома имеют рациональные коэффициенты - это важно. Также они оба имеют в качестве одного из своих корней число і. Это означает, что у них есть общий

ПОЛИНОМЫ

делитель $x-\mathrm{i}$, но это еще не НОД, т.к. общим корнем будет также являться и $-\mathrm{i}$, а сам НОД будет равен

$$(x-i)(x+i) = x^2 + 1$$

Здесь мы и получаем, что не смотря на наличие комплекснозначных корней, входящих как коэффициенты в делители, наибольший общий делитель все равно будет содержать только рациональные коэффициенты. Здесь мы не говорим про принадлежность множеству целых чисел, т.к. оно является кольцом, а минимальное множество обладающее свойствами поля - множество рациональных чисел.

Находить НОД можно тем же способом, что и для целых чисел - алгоритмом Евклида. Выполним цепочку делений с остатком

$$f_1 = f_2 q_1 + r_1,$$

$$f_2 = r_1 q_2 + r_2,$$

$$r_1 = r_2 q_3 + r_3,$$

$$\dots = \dots$$

$$r_{k-2} = r_{k-1} q_k + r_k,$$

$$r_{k-1} = r_k q_{k+1},$$

В какой-то момент процесс остановится в силу того, что степень каждого последующего остатка меньше предыдущего. На последнем шаге степени остатков сравняются $\deg r_{k-1} = \deg r_k$.

2.3 Корни полиномов

Перейдем наконец к рассмотрению множества корней полиномов. Главные вопросы, на которые нам хотелось бы ответить - сколько корней имеет полином, а также к какому множеству относятся корни и связаны ли они между собой алгебраически.

2.3.1 Теоремы о количестве корней

Теорема 2.6. Пусть $f(x) = a_0 x^n + \dots a_n$ - полином из A[x], где A - область целостности. Тогда число корней f(x) в A не превосходит n.

Применим метод математической индукции. База индукции - полином нулевой степени не имеет корней. Допустим, что для $n \geq 1$ и что теорема выполняется для полиномов степени n-1. Покажем, что она справедлива и для полинома f(x) степени n.

Если f(x) не имеет корней в A, то утверждение теоремы верно. Иначе пусть c_1 - один из корней f(x). Тогда его можно представить в виде

$$f(x) = (x - c_1)h(x), \ h(x) = a_0x^{n-1} + b_1x^{n-2} + \dots + b_{n-1} \in A[x]$$

Если $c_2 \neq c_1$ - тоже корень f(x), то

$$0 = f(c_2) = (c_2 - c_1)h(c_2),$$

но $c_2 - c_1 \neq 0$. Следовательно, $h(c_2) = 0$. Этот вывод возможен только если кольцо полиномов определено над целостным кольцом, ведь именно в этом случае среди полиномов отсутствуют делители нуля. Равенство нулю полинома $h(c_2)$ означает, что любой отличный от c_1 корень f(x) будет являться корнем h(x). Так как корней h(x) по предположению индукции не более, чем n-1, то получается и для f(x) имеем не более n корней. \blacktriangleleft

Следующая теорема хоть и не является основной, но имеет такое название в силу того, что появилась во времена, когда это направление исследований было главным.

Teopema 2.7. (Основная теорема алгебры). Любой полином с комплексными коэффициентами имеет по крайней мере один комплексный корень.

Доказательство теоремы невозможно без привлечения неалгебраических инструментов, поэтому мы также его не приводим. Однако она имеет огромное значение, потому что у нее есть крайне важные следствия.

Теорема 2.8. (О разложении на линейные множители). В поле комплексных чисел любой полином $f(x) = a_0 x^n + \dots a_n$ имеет разложение на линейные множители вида $a_0(x-c_1)(x-c_2)\dots(x-c_n)$, и такое разложение единственно.

Покажем только существование такого разложения.

В силу основной теоремы алгебры полином f(x) имеет хотя бы один корень c_1 . Тогда мы можем сказать, что

$$f(x) = (x - c_1)g(x),$$

где g(x) - полином степень $\deg g = n-1$. Аналогично и он в силу основной теоремы алгебры имеет хотя бы один корень. Применяя эту теорему необходимое количество раз можно прийти к разложению в формулировке теоремы. \blacktriangleleft

Среди линейных множителей в разложении могут быть равные. Соединив их в виде степеней, получим разложение

$$f(x) = a_0(x - c_1)^{m_1} \dots (x - c_k)^{m_k},$$

где c_i уже являются попарно различными. Показатели m_i называются **кратностями корней**.

2.3.2 Полиномы с действительными коэффициентами

Предположим, что у нас имеется полином f(x), все коэффициенты которого являются действительными числами. Однако это не исключает того, что корни полинома могут являться комплексными числами. В силу того, что коэффициенты действительные, мы можем сделать некоторые выводы относительно этих корней. Для этого нам необходима следующая лемма.

Лемма 2.2. Комплексно сопряженное значение полинома f(z) будет равно значению этого полинома взятого при \bar{z} .

$$\overline{f(z)} = f(\bar{z})$$

D. .

Рассмотрим сопряжение от произвольного полинома.

$$\overline{f(z)} = \overline{a_n + a_{n-1}z + \ldots + a_0z^n} = \overline{a_n} + \overline{a_{n-1}z} + \ldots + \overline{a_0z^n}$$

Комплексно сопряжение перестановочно как с операцияей сложения, так и с операцией умножения. Это означает, что можно продолжить равенств, которое приведет к $f(\overline{z})$.

$$\overline{f(z)} = \overline{a_n} + a_{n-1}\overline{z} + \ldots + a_0\overline{z}^n = f(\overline{z})$$

4

Благодаря этой лемме мы можем доказать следующую теорему.

Теорема 2.9. Пусть f(x) - полином c действительными коэффициентами. Если $c_1 \in C$ - корень этого полинома, то $\overline{c_1}$ также является корнем полинома.

▶

Значение полинома с действительными коэффициентами от комплексного числа c_1 в общем случае также будет комплексным числом.

$$f(c_1) = a + ib$$

Однако если c_1 - корень полинома, то $f(c_1)=a+\mathrm{i}b=0$, откуда следует, что a=b=0. Вместе с тем согласно доказанной лемме

$$f(\overline{c_1}) = a - ib,$$

но a=b=0, следовательно $f(\overline{c_1})=0$ и $\overline{c_1}$ также является корнем уравнения. \blacktriangleleft

Доказанные в этом разделе теоремы позволяют сделать несколько выводов:

- 1. Кратность комплексного корня будет совпадать с кратностью комплексно сопряженного корня.
- 2. Если в разложение полинома с действительными коэффициентами входит (x-c), то также будет входить и $(x-\bar{c})$.
- 3. Для полинома с действительными коэффициентами имеет место разложение

$$f(x) = a_0(x - t_1)^{m_1} \dots (x - t_k)^{m_k} (x^2 + p_1 x + q_1)^{l_1} (x_2 + p_s x + q_s)^{l_s},$$

где $p_s^2 - 4q_s < 0$. Это означает, что данный квадратный трехчлен является неразложимым в вещественных числах.

Появление такого квадратного трехчлена обосновано как раз тем, что корни входят как комплексно сопряженные. Рассмотрим произведение линейных множителей с комплексно сопряженными корнями.

$$(x-c)(x-\bar{c}) = x^2 - (c+\bar{c})x + c\bar{c}$$

Сумма комплексно сопряженных корней, равно как и их произведение, всегда дает вещественные числа, а именно это мы и хотели показать.

Заключение

В данной лекции были рассмотрены полиномы как алгебраические объекты в первую очередь, что позволило прийти как к значительным теоретическим результатам, так и получить вполне практические. Определение, которые мы дали полиномам, основываясь на структуре кольца позволит нам в будущем использовать их с другими кольцами (матриц, операторов), но это было бы невозможно сделать опираясь только на школьные представления о полиномах. Изучение свойств делимости и множества корней позволит использовать разложение полиномов в разных приложениях и не только в линейной алгебре, начиная от несложных геометрических объектов, заканчивая более сложными по структуре полиномами, которые используются в математической и теоретической физике.

Список литературы

- 1. Д.К.Фаддеев. Лекции по алгебре. Главы 3,6. Основной источник для теории
- 2. Е.М.Карчевский. Лекции по геометрии и алгебре. Глава 1, п.2. *Чуть более простой подход к полиномам, может быть полезно, если ничего непонятно*
- 3. А.Л.Городенцев. Алгебра (первый семестр). Чуть более серьезный подход к полиномам. Здесь наоборот - если кому-то все легко и просто и хочется покопаться еще
- 4. Ю.Б.Мельников. Многочлены. Раздел электронного учебника для сопровождения практического занятия. Ссылка Разобрано буквально несколько практических примеров, но досконально подробно на сколько это вообще можно вообразить.