PROPRIEDADES MECÂNICAS DOS METAIS

Introdução:

Em diversas situações na engenharia torna-se pertinente o conhecimento das características de certos materiais metálicos, visando um controle no índice de deformação dos mesmos – haja vista que esses materiais, quando em serviço, sofrem ações de cargas ou forças constantemente, para que não ocorra a fratura.

CONCEITOS DE TENSÃO E DEFORMAÇÃO

▶ Denomina-se ensaio tensão-deformação, a técnica utilizada para analisar o comportamento mecânico de metais (a temperatura ambiente) quando as superfícies dos mesmos são submetidas a cargas com variação lenta. Existem três formas principais pelas quais as carga são aplicadas, sendo elas: Tração, Compressão e cisalhamento.

Ensaios de tração:

Uma amostra é deformada, geralmente até a fratura, por uma força de tração (aplicada uniaxialmente ao longo do eixo maior do corpo de prova) que e aumentada gradativamente. A força de tração gera, até certo ponto, uma deformação linear positiva.

Ensaios de compressão:

Uma força compressiva e aplicada no corpo de prova, gerando uma deformação linear negativa, até certo ponto, ao longo da direção da tensão.

Ensaios de Cisalhamento:

O ensaio de cisalhamento e feito através de uma força paralela e de sentidos opostos aplicada em dois corpos sobrepostos.

Definição de Tensão de engenharia e Deformação de engenharia.

- As solicitações descritas variam em relação ao tamanho do corpo de prova, logo utiliza-se a tensão de engenharia e a deformação de engenharia para normalizar os resultados obtidos nos ensaios.
- ► Tensão de engenharia(e):F/A0
- ▶ F=Carga aplicada
- ► A0=Área inicial
- Deformação de engenharia:L1-L0/L0
- ► L1=Comprimento instantâneo
- ► L0=comprimento inicial

Deformação Elástica:

- Processo onde a tensão e a deformação são proporcionais, e podem ser descritas pela lei de Hooke. A deformação elástica e independente do tempo (permanece constante enquanto a carga e exercida e retorna ao normal quando e removida).
- ▶ Lei de Hooke: **E.e**
- E=Modulo de elasticidade (rigidez ou a resistência do material a deformação elástica)
- Em escala atômica a deformação elástica e manifestada como pequenas alterações no espaçamento interatômico e no alongamento das ligações interatômicas

Anelasticidade:

► E uma deformação elástica dependente do tempo, ou seja, após aplicada e removida a força, a deformação toma um tempo finito para retornar ao ponto 0. A anelasticidade e geralmente desprezada nos metais

Deformação Plástica:

▶ E o ponto onde a deformação e a tensão perdem a linearidade e a Lei de Hooke deixa de ser valida ocasionando uma deformação permanente no material.

DEFORMAÇÃO ELÁSTICA

- Prescede à deformação plástica;
- É reversível;
- Desaparece quando a tensão é removida;
- É praticamente proporcional à tensão aplicada (obedece a lei de Hooke).

DEFORMAÇÃO PLÁSTICA

- É provocada por tensões que ultrapassam o limite de elasticidade.
- É irreversível porque é resultado do deslocamento permanente dos átomos e portanto não desaparece quando a tensão é removida.

Limite de resistência a tração:

► E a tensão no ponto máximo da curva tensão-deformação de engenharia.(a partir desse ponto ocorre o "espescoçamento").

Resistência à tração

Ductilidade:

E a medida do grau de deformação plástica que foi suportado ate a fratura. Um material com baixa ductilidade e chamado de material frágil.

Resiliência:

▶ E a capacidade do material de absorver energia dentro do limite elástico sem criar uma deformação plástica.

Tenacidade:

Capacidade do material de absorver energia ate a sua ruptura. Um material tenaz e o material capaz de absorve um nível alto de energia antes de se romper

Dureza:

A dureza consiste na resistência de um material a uma deformação plástica localizada.

Antigamente os ensaios de dureza eram arbitrários e qualitativos de acordo com a habilidade de um material riscar o outro.

Essa escala de medida ficou conhecida como escala de Mohs.

Medidas Atuais:

As medidas e fórmulas atuais de Dureza dependem de quais ensaios serão adotados, sendo eles:

Ensaios de Dureza de Rockwell Ensaios de Dureza de Brinell Ensaios de Microdureza Knoop e Vickers

		Shape of Indentation			Formula for
Test	Indenter	Side View	Top View	Load	Hardness Number ^a
Brinell	10-mm sphere of steel or tungsten carbide	→ D ←	→ d ←	P	$HB = \frac{2P}{\pi D[D - \sqrt{D^2 - d^2}]}$
Vickers microhardness	Diamond pyramid	136°	d_1 d_1	P	$HV = 1.854P/d_1^2$
Knoop microhardness	Diamond pyramid	<i>Ub</i> = 7.11 b/t = 4.00	b	P	$HK = 14.2P/l^2$
Rockwell and Superficial Rockwell	$\begin{cases} \text{Diamond} \\ \text{cone:} \\ \frac{1}{16 \cdot 8}, \frac{1}{3}, \frac{1}{2} \text{ in.} \\ \text{diameter} \\ \text{steel spheres} \end{cases}$	120°	•	60 kg 100 kg 150 kg Rockwell 15 kg 30 kg 45 kg Superficial Rockwell	ckwell

Ensaios de Dureza Brinell:

Utiliza um penetrador esférico feito de aço endurecido ou carbeto de tungstênio.

O numero de dureza Brinell(HB) é em função da magnitude da carga e do diâmetro da impressão resultante.

Cuja equação é:

Where

P = applied force (kgf)

D = diameter of indenter (mm)

d = diameter of indentation (mm)

Ensaios de Dureza Rockwell:

Pode utilizar esferas de aço com diferentes diamêtros ou um penetrador cônico de diamante.

Sua medida é determinada pela diferença na profundidade de penetração resultante de uma carga inicial menor e outra maior, ou seja, é utilizado 2 perfuradores para o teste.

Com base na carga menor existe dois tipo de ensaios o ensaio de Rockwell (carga menor = 10kg) e o ensaio de Rockwell Superficial (carga menor = 3kg).

Ensaios de Dureza Rockwell:

Sua escala é definida pelo simbolo HR seguido da escala utilizada, no qual se refere ao penetrador utilizado, variando o diâmetro dos penetradores esféricos ou utilizando o cone de diamante, e variando também seus pesos.

Logo sua definição se baseia na medida seguido por sua escala, como exemplo, 80 HRB, em que mostra a dureza superficial de 80 na escala HRB.

	Scale	Hardness symbol		Scale	Hardness symbol
Rockwell hardness	Α	HRA	Rockwell Superficial hardness	15N	HR15N
	D	HRD		30N	HR30N
	С	HRC		45N	HR45N
	F	HRF		15T	HR15T
	В	HRB		30T	HR30T*2
	G	HRG		45T	HR45T
	Н	HRH		15W	HR15W
	Е	HRE		30W	HR30W
	K	HRK		45W	HR45W
	L	HRL		15X	HR15X
	М	HRM		30X	HR30X
	Р	HRP		45X	HR45X
	R	HRR		15Y	HR15Y
	S	HRS		30Y	HR30Y
	٧	HRV		45Y	HR45Y

Ensaios de Microdureza Knoop e Vickers:

Os ensaios de Microdureza Knoop e Vickers são parecidos por utilizar uma ponta piramidal de diamante e variam de 1 a 1000g.

Porém na escala de Vickers a piramide tem base quadrada, sendo seu calculo definido por HV = 1,854P/d²

Já na escala de Knoop a base é um losango, sendo seu calculo definido por HK= 14,2P/l²

P= carga, d = diagonal do quadrado, l =maior diagonal do losango.

Conversão de Dureza:

Seria interessante converter a medida de dureza de uma escala para outra. Porém como a dureza não é uma propriedade bem definida e suas escalas usam diferentes técnicas, além do material ter uma pequena variação de dureza por causa de leves impurezas e deformações, um sistema de conversão abrangente não conseguiu ser desenvolvido.

Ainda sim existe conversões simples (sem cálculos exatos) que são utilizadas apenas como comparação de ensaios diferente.

Dureza e o Limite de Resistência à Tração:

Tanto a dureza como o limite de resistência a tração demonstram a resistência do metal à uma deformação plástica. Consequentemente eles são aproximadamente proporcionais e com isso pode-se criar um cálculo utilizado para aços em geral. Esse cálculo é dado por:

LRT(Mpa) =
$$3,25 \times HB$$

ou
LRT(psi) = $500 \times HB$

LRT = limite de resistência à tração, HB = dureza na escala de Brinell.

Videos e curiosidades:

https://youtu.be/RJXJpeH78iU?t=79 - Brinell

https://youtu.be/G2JGNIIvNC4?t=82 - Rockwell

https://youtu.be/7Z90OZ7C2jI?t=35 - Vickers

<u>https://youtu.be/D8U4G5kcpcM</u> – Teste de tenacidade