GEOMETRÍA Capítulo 20

3th
SECONDARY

ÁREA DE REGIONES
CUADRANGULARES

@ SACO OLIVEROS

HELICO | MOTIVATION

ÁREAS DE REGIONES CUADRANGULARES

Región Cuadrada

$$S_{ABCD} = L^2$$

$$S_{ABCD} = \frac{d^2}{2}$$

Región Rectangular

$$S_{ABCD} = b.h$$

Región Paralelográmica

$$S_{ABCD} = b.h$$

$$S_{ABCD} = a.b.sen\alpha$$

Región Rombal

$$S_{ABCD} = \frac{b.a}{2}$$

$$S_{ABCD} = c. h$$

Región Trapecial

$$S_{ABCD} = \frac{(b+a)h}{2}$$

1. En la figura, AD = 9 y HC = $\sqrt{97}$. Calcule el área de la región romboidal ABCD. Resolución:

- Piden: S_{ABCD}
- ABCD: Romboide

$$AD = BC = 9$$

CBH: T. Pitágoras

$$\sqrt{97^2} = 9^2 + (BH)^2$$

4 = BH

Aplicando el teorema:

$$S_{ABCD} = (AD)(BH)$$

$$S_{ABCD} = (9)(4)$$

$$S_{ABCD} = 36 u^2$$

2. Al querer construir un arquitecto 2 casas adyacentes, los dueños le piden que dichas regiones sean equivalentes. Halle el valor de x

Resolución:

- Piden: x
- Por dato:

$$S_{ABCD} = S_{MNPQ}$$

$$12^2 = (6)(x)$$

$$144 = (6)(x)$$

$$x = 24 u$$

HELICO | PRACTICE

3. Determine el área de una región rombal, si un lado y una diagonal tienen de longitud de 17 m y 30 m respectivamente.

Resolución:

- Piden: S_{ABCD}
- Se traza \overline{BD} .
- BOC: T. Pitágoras

$$17^2 = (BO)^2 + 15^2$$

$$8 = BO$$

Aplicando el teorema:

$$S_{ABCD} = \frac{(30)(16)}{2}^{8}$$

$$S_{ABCD} = 240 u^2$$

HELICO | PRACTICE

4. Se desea enchapar un piso que está determinado por la figura mostrada. ¿Cuántos metros cuadrados de mayólica se necesitarán?

• Piden:
$$S_{ABCD} = \frac{(AD + BC)}{2}$$
 (AB)

- Se traza la altura CH.
- ABCH: Rectángulo
- CHD: Teorema de Pitágoras

$$15^2 = (HD)^2 + 9^2$$

$$12 = HD$$

Calculando S_{ABCD}

$$S_{ABCD} = \frac{(16+4)}{2} (9)$$

$$S_{ABCD} = 90 u^2$$

5. En la figura, calcule el área de una región rombal ABCD.

Resolución:

- Piden: S_{ABCD}
- ABCD: Rombo

$$AD = CD = BC = AB = 13$$

• CEB: Teo. de Pitágoras

$$13^2 = 5^2 + (BE)^2$$

Luego:

$$S_{ABCD} = (DC)(BE)$$

$$S_{ABCD} = (13)(12)$$

$$S_{ABCD} = 156 u^2$$

HELICO | PRACTICE

6. En las circunferencias de centro C y D; A, B y E son puntos de tangencia. Determine el área de la región sombreada.

Resolución:

• Piden: S_{ABCD}

ABCD: Trapecio rectángulo

Luego:

$$S_{ABCD} = \frac{(18 + 8)}{2} (24)$$

 $S_{ABCD} = 312 \text{ cm}^2$

7. En la figura, PA = $\sqrt{3}$ u y DQ = $2\sqrt{3}$ u. Determine el área de la región cuadrada ABCD.

Resolución:

Piden: S_{ABCD}

$$S_{ABCD} = X^2 \dots (1)$$

△BAP ~ △QDC

$$\frac{x}{2\sqrt{3}} = \frac{\sqrt{3}}{x}$$
$$x^2 = 6 \dots (2)$$

Reemplazando 2 en 1

$$S_{ABCD} = 6 u^2$$