Exercise sheet 8: Suffix-Trees

Exercise 1

You are given the text T = CAGTAGTAGC

1a)

Draw the corresponding suffix tree

Hide

Solution

CAGTAGTAGC

1b) Describe the steps of a counting query for P = TAG

Hide

Solution

- start at root node
- locate outgoing edge that starts with T
- match subsequent characters of the pattern
- in the subtree rooted at \overline{TAG} count the number of leaves $\Rightarrow 2$

1c)

Describe the steps of a reporting query for P = AG

Hide

Solution

- start at root node
- locate outgoing edge that start with A
- match subsequent characters of the pattern
- in the subtree rooted at \overline{AG} report the labels of all leaves $\Rightarrow \{2, 5, 8\}$

Exercise 2

2a)

Draw a generalized suffix tree for the sequences A = CCATG and B = CATG.

Hide

Hint 1 Concatenate the two sequences using a unique character for splitting. e.g. CCATG#CATG\$. Dont forget to include suffix links

Formulae sl(v) = w

$$v = \overline{cb}$$

$$w = \overline{b}$$

c: character, b: string

remember: over lined strings are a representation for the node at that string

Solution

CCATG#CATG\$

2b)

Find the Maximal Unique Matches of the sequences A = CCATG and B = CATG using the tree from A)

Hide

Solution CATG is the only MUM as $v = \overline{CATG}$ has no suffix links pointing to it

Exercise 3

3a)

Draw a generalized suffix tree for the sequence A = ACGCACGCG.

Hide

Solution

3b) Find all maximal pairs of length at least 2

Hide

Solution ACGC: (1, 5, 4)CG: (2, 8, 2), (6, 8, 2)

3c)

Why is C:(2,8,1) not a maximal pair?

Hide

Solution It is not right maximal. This can be seen since CG:(2,8,2) already includes the indices 2 and 8 with a longer match.