

RELATIONEN

Relation. Gegeben sei die Menge $A=\{a,b,c\}$ und die Relation auf A

$$R = \{(a, a), (a, b), (b, a), (b, b), (c, c)\} \subseteq A \times A.$$

Ist R reflexiv, irreflexiv, symmetrisch, asymmetrisch, antisymmetrisch oder transitiv?

Lösung.

Teilbarkeits relation. Ist die Relation $R_{|}$ auf $\mathbb Z$ definiert durch

$$R_{|} = \{(a,b) \mid \exists n \in \mathbb{N} : a \cdot n = b\} \subseteq \mathbb{Z} \times \mathbb{Z}$$

eine Ordnung?

Lösung.

Kongruenz
relation. Ist die Relation R_\equiv auf $\mathbb Z$
definiert durch

$$R_{\equiv} = \{(a,b) \mid a \equiv b \pmod{m}\} \subseteq \mathbb{Z} \times \mathbb{Z}$$

eine Äquivalenz
relation?

Lösung.

 ${\bf Mutterrelation.}$ Ist die Relation Rauf der Menge Maller Menschen definiert durch

$$R \,=\, \{(a,b)\,|\,\, a \text{ ist Mutter von } b\} \subseteq M\times M$$

reflexiv, irreflexiv, symmetrisch, asymmetrisch, antisymmetrisch oder transitiv? \swarrow

Lösung.

Relation und Funktion. Gegeben seien die Relationen $R_1 = \{(x,y) | y = x^2\}$ und $R_2 = \{(x,y) | y^2 = x\}$ auf \mathbb{R} .

- 1. Zeichnen Sie die Relationen im kartesischen Koordinatensystem.
- 2. Falls möglich: geben Sie Funktionen $f_1, f_2: \mathbb{R} \to \mathbb{R}$ an, die R_1 bzw. R_2 als Graphen besitzen.
- 3. Geben Sie die zu sqrt: $\mathbb{R}_0^+ \to \mathbb{R}$, sqrt $(x) = \sqrt{x}$ gehörende Relation an.

Lösung.