MAT0206/MAP0216 - Análise Real - IME - 2007

Prof. Gláucio Terra

4^a Lista de Exercícios

Para entregar: exercícios 20, 23, 31, 33 e 37.

OBS.: Regras para ganhar a nota extra referente aos exercícios marcados com "BÔNUS": (1) a resolução deve redigida de forma clara e sem erros, e não há notas intermediárias; (2) a nota máxima a ser dada como bônus é 1,0 ponto na média do semestre; (3) os exercícios devem ser entregues no prazo para entrega da lista.

- 1-) Exercícios dos capítulos 6 e 7 do Elonzinho.
- **2-)** Sejam $X,Y,Z \subset \mathbb{R}, \ X = Y \cup Z, \ a \in Y' \cap Z'.$ Dada $f:X \to \mathbb{R}$, tome $g \doteq f|_Y$ e $h \doteq f|_Z$. Se $\lim_{x\to a} g(x) = L$ e $\lim_{x\to a} h(x) = L$, então $\lim_{x\to a} f(x) = L$.
- **3-)** Seja $f: X \to \mathbb{R}$ monótona, com $f(X) \subset [a,b]$. Se f(X) é denso no intervalo [a,b], então $(\forall c \in X'_+ \cap X'_-) \lim_{x \to c^+} f(x) = \lim_{x \to c^-} f(x)$. Se $c \in X$, então este limite é igual a f(c).
- **4-**) Se $f: X \to \mathbb{R}$ é monótona, então o conjunto dos pontos $a \in X'_+ \cap X'_-$ para os quais $\lim_{x \to a^+} f(x) \neq \lim_{x \to a^-} f(x)$ é enumerável.
- 5-) Seja $f:[0,+\infty)\to\mathbb{R}$ uma função limitada em cada intervalo limitado. Se $\lim_{x\to+\infty}[f(x+1)-f(x)]=L$, então $\lim_{x\to+\infty}\frac{f(x)}{x}=L$. Bônus: Vale 0,5 ponto na média do semestre.

A seguinte definição será usada nas questões subsequentes:

DEFINIÇÃO: Seja $X \subset \mathbb{R}$. Um subconjunto Y de X diz-se aberto em X se existir um aberto $A \subset \mathbb{R}$ tal que $Y = A \cap X$; Y diz-se fechado em X se existir um fechado $F \subset \mathbb{R}$ tal que $Y = F \cap X$.

OBSERVAÇÃO: Na definição acima, note que, se $X \subset \mathbb{R}$ é aberto, então $Y \subset X$ é aberto em X se, e somente se, Y é aberto em \mathbb{R} (mas, se X não for aberto, $Y \subset X$ pode ser aberto em X e não ser aberto em \mathbb{R} ; por exemplo, [1,2) é aberto em [1,3], mas não é aberto em \mathbb{R}). Analogamente, se $X \subset \mathbb{R}$ é fechado, então $Y \subset X$ é fechado em X se, e somente se, Y é fechado em \mathbb{R} (mas, se X não for fechado, $Y \subset X$ pode ser fechado em X e não ser fechado em X; por exemplo, X0 é fechado em X1.

- 6-) Sejam $X \subset \mathbb{R}$ e Y um subconjunto de X. São equivalentes as seguintes afirmações:
 - (a) Y é aberto em X;
 - (b) para todo $y \in Y$, existe $\delta > 0$ tal que $(y \delta, y + \delta) \cap X \subset Y$.
- 7-) Sejam $X \subset \mathbb{R}$ e Y um subconjunto de X. São equivalentes as seguintes afirmações:
 - (a) Y é fechado em X;
 - (b) $X \setminus Y$ é aberto em X;
 - (c) para toda seqüencia $(x_n)_{n\in\mathbb{N}}$ de elementos de Y tal que $x_n\to a\in X$, tem-se $a\in Y$.

- 8-) Sejam $X \subset \mathbb{R}$ e $f: X \to \mathbb{R}$. São equivalentes:
 - (a) f é contínua;
 - (b) para cada $A \subset \mathbb{R}$ aberto, a imagem inversa $f^{-1}(A)$ é aberta em X;
 - (c) para cada $F \subset \mathbb{R}$ fechado, a imagem inversa $f^{-1}(F)$ é fechada em X.

OBSERVAÇÃO: Em particular, se $X \subset \mathbb{R}$ é aberto, então $f: X \to \mathbb{R}$ é contínua se, e somente se, a imagem inversa por f de qualquer aberto de \mathbb{R} é um conjunto aberto (i.e. um subconjunto aberto de \mathbb{R}); se $X \subset \mathbb{R}$ é fechado, então $f: X \to \mathbb{R}$ é contínua se, e somente se, a imagem inversa por f de qualquer fechado de \mathbb{R} é um conjunto fechado (i.e. fechado em \mathbb{R}).

- 9-) Sejam $X \subset \mathbb{R}$ e $f: X \to \mathbb{R}$ uma função contínua. Para todo $a \in \mathbb{R}$, tem-se:
 - (a) os conjuntos $\{x \in X \mid f(x) = a\}, \{x \in X \mid f(x) \ge a\}, \{x \in X \mid f(x) \le a\}$ são todos fechados em X; em particular, se X for fechado, os referidos conjuntos são todos fechados.
 - (b) os conjuntos $\{x \in X \mid f(x) \neq a\}$, $\{x \in X \mid f(x) > a\}$, $\{x \in X \mid f(x) < a\}$ são todos abertos em X; em particular, se X for aberto, os referidos conjuntos são todos abertos.
 - SUGESTÃO: Não há o que fazer; apenas observe que os conjuntos $\{a\}$, $[a, +\infty)$ e $(-\infty, a]$ são fechados, e que os conjuntos $\mathbb{R} \setminus \{a\}$, $(a, +\infty)$ e $(-\infty, a)$ são abertos, e use a questão anterior.
- 10-) Sejam $X \subset \mathbb{R}$ e $f,g: X \to \mathbb{R}$ funções contínuas. Então os conjuntos $\{x \in X \mid f(x) = g(x)\}$, $\{x \in X \mid f(x) \geqslant g(x)\}$ e $\{x \in X \mid f(x) \leqslant g(x)\}$ são fechados em X (em particular, fechados em \mathbb{R} se X o for), e os conjuntos $\{x \in X \mid f(x) \neq g(x)\}$, $\{x \in X \mid f(x) > g(x)\}$ e $\{x \in X \mid f(x) < g(x)\}$ são abertos em X (em particular, abertos em \mathbb{R} se X o for).

Sugestão: Também não há o que fazer; aplique a questão anterior para $F \doteq f - g$ e a = 0.

- **11-**) Seja $S \subset \mathbb{R}$ não vazio, e defina $d(\cdot, S) : \mathbb{R} \to \mathbb{R}$ por $(\forall x \in \mathbb{R}) d(x, S) \doteq \inf\{|x s| : s \in S\}$. Mostre que, $(\forall x, y \in \mathbb{R}) |d(x, S) d(y, S)| \leq |x y|$. Conclua que $d(\cdot, S)$ é uniformemente contínua.
- 12-) Sejam $X \subset \mathbb{R}$ e $f,g: X \to \mathbb{R}$ uma funções contínuas. Se f e g coincidem num subconjunto denso de X, então elas coincidem em X. Em particular, $f,g: \mathbb{R} \to \mathbb{R}$ são contínuas e coincidem em \mathbb{Q} , então elas são iguais (equivalentemente: se uma função $\mathbb{Q} \to \mathbb{R}$ admite uma extensão contínua $\mathbb{R} \to \mathbb{R}$, então esta extensão é única).
- 13-) Sejam $X \subset \mathbb{R}$ e $f: X \to \mathbb{R}$. Tem-se:
 - (a) Se $Y, Z \subset X$ são fechados em X tais que $X = Y \cup Z$, então f é contínua se, e somente se, $f_Y \doteq f|_Y : Y \to \mathbb{R}$ e $f_Z \doteq f|_Z : Z \to \mathbb{R}$ são contínuas.
 - (b) Se $(U_{\alpha})_{\alpha \in A}$ é uma família de abertos em X tal que $X = \bigcup_{\alpha \in A} U_{\alpha}$, então f é contínua se, e somente se, $(\forall \alpha \in A) f_{\alpha} \doteq f|_{U_{\alpha}} : U_{\alpha} \to \mathbb{R}$ é contínua.

SUGESTÃO: Nos dois casos, uma das implicações é trivial: se f é contínua, então sua restrição a qualquer subconjunto do seu domínio é contínua. Para demonstrar a outra implicação, use a questão **8-)** e: (i) dado $W \subset \mathbb{R}$, em (a) tem-se $f^{-1}(W) = f_Y^{-1}(W) \cup f_Z^{-1}(W)$, e em (b) tem-se $f^{-1}(W) = \cup_{\alpha \in A} f_\alpha^{-1}(W)$; (ii) verifique que a união de dois conjuntos fechados em X é um conjunto fechado em X (e, por indução, o mesmo vale para qualquer família finita de fechados em X, mas não precisamos disto), e que a união de uma família arbitrária de abertos em X é um conjunto aberto em X.

14-) Sejam $f, g: [0,1] \to \mathbb{R}$ contínuas. Se f(1) = g(0), então a função $h: [0,1] \to \mathbb{R}$ dada por h(x) = f(2x) se $0 \le x \le 1/2$ e h(x) = g(2x-1) se $1/2 \le x \le 1$ é contínua. Sugestão: Use a questão anterior.

- 15-) (TEOREMA DE EXTENSÃO DE TIETZE NA RETA) Seja $F \subset \mathbb{R}$ fechado. Então toda função contínua $f: F \to \mathbb{R}$ admite uma extensão contínua $\phi: \mathbb{R} \to \mathbb{R}$ (i.e. existe $\phi: \mathbb{R} \to \mathbb{R}$ contínua tal que $\phi|_F = f$). SUGESTÃO: Por exemplo, defina ϕ linearmente nos intervalos componentes de $\mathbb{R} \setminus F$, de modo a coincidir com f nos extremos de cada intervalo; mostre que a função $\phi: \mathbb{R} \to \mathbb{R}$ assim definida é contínua.
- Seja $X \subset \mathbb{R}$. Uma função contínua $f: X \to \mathbb{R}$ diz-se própria se, para todo $K \subset \mathbb{R}$ **16-**) Definição: compacto, $f^{-1}(K)$ é um subconjunto compacto de \mathbb{R} .

Mostre que são equivalentes as seguintes afirmações, dada $f: X \to \mathbb{R}$ contínua:

- (b) para toda sequência $(x_n)_{n\in\mathbb{N}}$ em X que não possui subsequências convergentes para pontos de X, a seqüência $\{f(x_n)\}_{n\in\mathbb{N}}$ não possui subseqüências convergentes.
- (c) para toda sequência $(x_n)_{n\in\mathbb{N}}$ em X tal que a sequência $\{f(x_n)\}_{n\in\mathbb{N}}$ é convergente, $(x_n)_{n\in\mathbb{N}}$ possui uma subsequência convergente para um ponto de X.
- 17-) Seja $f: \mathbb{R} \to \mathbb{R}$ contínua. São equivalentes:
 - (a) f é própria;

 - (b) $\lim_{x \to +\infty} |f(x)| = \lim_{x \to -\infty} |f(x)| = +\infty;$ (c) para toda seqüência $(x_n)_{n \in \mathbb{N}}$ em \mathbb{R} tal que $|x_n| \to +\infty$, $|f(x_n)| \to +\infty$.
- 18-) Seja $p:\mathbb{R}\to\mathbb{R}$ uma função polinomial não-constante. Dado $b\subset\mathbb{R}$, suponha que existe uma següência $(x_n)_{n\in\mathbb{N}}$ em \mathbb{R} tal que $p(x_n)\to b$. Prove que $(x_n)_{n\in\mathbb{N}}$ é limitada e que o conjunto dos seus valores de aderência é não-vazio e contido em $p^{-1}(\{b\})$. Em particular, se existe uma seqüência $(x_n)_{n\in\mathbb{N}}$ em \mathbb{R} tal que $p(x_n) \to 0$, então p tem alguma raiz real. Bônus: Vale 0,25 pontos na média do semestre.
- 19-) Sejam $X \subset \mathbb{R}$ e $f: X \to \mathbb{R}$ contínua. Para que f se estenda continuamente a uma função $\phi: \overline{X} \to \mathbb{R}$, é necessário e suficiente que exista $\lim_{x\to a} f(x)$ para todo $a \in X'$.
- **20-**) Sejam $X \subset \mathbb{R}$ e $f: X \to \mathbb{R}$ monótona, tal que f(X) seja denso num intervalo limitado. Mostre que existe uma única função contínua, monótona, $\phi: \overline{X} \to \mathbb{R}$ tal que $\phi|_X = f$.
- **21-**) Seja $f: \mathbb{R} \to \mathbb{R}$ uma função arbitrária. Para cada $n \in \mathbb{N}$, seja $C_n \doteq \{a \in \mathbb{R} \mid \exists I \text{ intervalo aberto }, a \in \mathbb{R} \mid \exists I \text{ intervalo aberto } \}$ $I \in (\forall x, y \in I) |f(x) - f(y)| < 1/n$. Mostre que $(\forall n \in \mathbb{N}) C_n$ é aberto, e que f é contínua em a se, e somente se, $(\forall n \in \mathbb{N}) a \in C_n$. Conclua que o conjunto dos pontos de continuidade de qualquer função é uma intersecção enumerável de abertos. Em particular, não existe nenhuma função $\mathbb{R} \to \mathbb{R}$ que seja contínua nos racionais e descontínua nos irracionais (vide questão 28 da lista 3).
- **22-**) Mostre que não existe $f: \mathbb{R} \to \mathbb{R}$ contínua que transforme todo racional num irracional e vice versa. Bônus: vale 0,25 pontos na média do semestre.
- **23-**) (TEOREMA DO PONTO FIXO DE BROUWER EM DIMENSÃO 1) Seja $f:[a,b] \to [a,b]$ contínua. Prove que f tem um ponto fixo (i.e. existe $x \in [a,b]$ tal que f(x)=x). Dê um exemplo de uma função contínua $f:[0,1)\to[0,1)$ sem ponto fixo.
- **24-**) Seja n ímpar. Prove que, para todo $y \in \mathbb{R}$, existe um único $x \in \mathbb{R}$ tal que $x^n = y$ e que, escrevendo $x = \sqrt[n]{y}$, a função $y \mapsto \sqrt[n]{y}$ assim definida é um homeomorfismo (i.e. uma aplicação contínua, inversível, cuja inversa também é contínua) de \mathbb{R} sobre \mathbb{R} .

- **25-)** Sejam $K, F \subset \mathbb{R}$ não-vazios, K compacto e F fechado. Mostre que existem $x_0 \in K$ e $y_0 \in F$ tais que $(\forall x \in K, \forall y \in F) |x_0 y_0| \leq |x y|$. Dê um exemplo de dois conjuntos fechados e disjuntos F, G tais que $\inf\{|x y| \mid x \in F, y \in G\} = 0$.
- **26-**) Se toda função contínua, definida num certo conjunto X, é limitada, então X é compacto.
- 27-) Seja $f: \mathbb{R} \to \mathbb{R}$ contínua. Se $\lim_{x \to +\infty} f(x) = \lim_{x \to -\infty} f(x) = +\infty$, então f tem um ponto de mínimo x_0 (i.e. existe $x_0 \in \mathbb{R}$ tal que $f(x_0) = \min f(\mathbb{R})$). Enuncie um resultado análogo para o caso de ser $\lim_{x \to +\infty} f(x) = \lim_{x \to -\infty} f(x) = -\infty$.
- 28-) Seja $p: \mathbb{R} \to \mathbb{R}$ uma função polinomial de grau par, cujo coeficiente líder é positivo. Prove que p tem um ponto de mínimo x_0 . Se $p(x_0) < 0$, mostre que p tem pelo menos duas raízes reais. Enuncie resultados análogos para o caso em que o coeficiente líder de p é negativo. Sugestão: Para a primeira parte, use a questão anterior.
- **29-)** Definição: Sejam $X \subset \mathbb{R}$ e $f, g: X \to \mathbb{R}$. Definimos $f \vee g, f \wedge g: X \to \mathbb{R}$ por $(\forall x \in X) f \vee g(x) \doteq \max\{f(x), g(x)\}, f \wedge g(x) \doteq \min\{f(x), g(x)\}.$

Sejam $X \subset \mathbb{R}$ e $f, g: X \to \mathbb{R}$. Mostre que:

- (a) Se f e g são contínuas, então $f \vee g$ e $f \wedge g$ são contínuas. Sugestão: verifique que, $(\forall x \in X) f \vee g(x) = \frac{f(x) + g(x) + |f(x) g(x)|}{2}$ e $f \wedge g(x) = \frac{f(x) + g(x) |f(x) g(x)|}{2}$.
- (b) Se f e g são uniformemente contínuas, então f+g, $f\vee g$ e $f\wedge g$ também o são. Se f e g são uniformemente contínuas e uma delas é limitada, o produto $f\cdot g$ é uma função uniformemente contínua. Dê um exemplo de duas funções uniformemente contínuas cujo produto não é uma função uniformemente contínua.
 - (c) A composta de funções uniformemente contínuas é uniformemente contínua.
- **30-)** Uma função polinomial $p: \mathbb{R} \to \mathbb{R}$ é uniformemente contínua se, e somente se, tiver grau menor ou igual a 1. Bônus: Vale 0,25 pontos na média do semestre.
- 31-) Toda função contínua monótona limitada $f:I\to\mathbb{R}$, definida num intervalo I, é uniformemente contínua.
- **32-)** Seja $f:[a,b] \to \mathbb{R}$ contínua. Dado $\epsilon > 0$, existem $a = a_0 < a_1 < \cdots < a_n = b$ tais que, para cada $i \in \{1,\ldots,n\}, \ (\forall x,y \in [a_{i-1},a_i]) \ |f(x)-f(y)| < \epsilon.$
- **33-)** Uma função contínua $\phi:[a,b]\to\mathbb{R}$ diz-se poligonal se existirem $a=a_0< a_1<\cdots< a_n=b$ tais que $\phi|_{[a_{i-1},a_i]}$ é um polinômio de grau menor ou igual a 1, para $1\leqslant i\leqslant n$. Prove que, se $f:[a,b]\to\mathbb{R}$ é uma função contínua, para todo $\epsilon>0$ existe $\phi:[a,b]\to\mathbb{R}$ poligonal tal que $(\forall x\in[a,b])|f(x)-\phi(x)|<\epsilon$.
- **34-)** Uma função $\phi:[a,b]\to\mathbb{R}$ diz-se uma função escada se existirem $a=a_0< a_1<\cdots< a_n=b$ tais que $\phi|_{]a_{i-1},a_i[}$ é constante $(=c_i)$, para $1\leqslant i\leqslant n$. Prove que, se $f:[a,b]\to\mathbb{R}$ é uma função contínua, para todo $\epsilon>0$ existe $\phi:[a,b]\to\mathbb{R}$ escada tal que $(\forall x\in[a,b])|f(x)-\phi(x)|<\epsilon$.
- **35-**) Sejam $X \subset \mathbb{R}$ e $f: X \to \mathbb{R}$ tal que, para todo $\epsilon > 0$, existe $g: X \to \mathbb{R}$ contínua tal que $(\forall x \in X) |f(x) g(x)| < \epsilon$. Então f é contínua.

36-) Definição: Sejam $X \subset \mathbb{R}$ e $a \in X$. Uma função $f: X \to \mathbb{R}$ diz-se semi-contínua superiormente em a se, para todo $\epsilon > 0$, existe $\delta > 0$ tal que $x \in X$ e $|x - a| < \delta \Rightarrow f(x) < f(a) + \epsilon$; f diz-se semi-contínua inferiormente em a se, para todo $\epsilon > 0$, existe $\delta > 0$ tal que $x \in X$ e $|x - a| < \delta \Rightarrow f(x) > f(a) - \epsilon$. Uma função $f: X \to \mathbb{R}$ diz-se semi-contínua superiormente (abreviadamente, s.c.s.) ou semi-contínua inferiormente (abreviadamente, s.c.s.), se o for em todos os pontos de X.

Mostre que, dados $X \subset \mathbb{R}$ e $f: X \to \mathbb{R}$, tem-se:

- (a) f é s.c.s. em $a \in X$ se, e somente se, para toda seqüencia $(x_n)_{n \in \mathbb{N}}$ em X tal que $x_n \to a$, $\limsup f(x_n) \leqslant f(a)$;
- (b) f é s.c.s. em X se, e somente se, a imagem inversa por f de todo aberto da forma $(-\infty, b)$ é aberta em X:
- (c) f é s.c.i. em $a \in X$ se, e somente se, para toda seqüencia $(x_n)_{n \in \mathbb{N}}$ em X tal que $x_n \to a$, $\lim\inf f(x_n) \geqslant f(a)$;
- (d) f é s.c.s. em X se, e somente se, a imagem inversa por f de todo aberto da forma $(b, +\infty)$ é aberta em X;
 - (e) f é contínua em a se, e somente se, for semi-contínua superior e inferiormente em a.
- 37-) Sejam $X \subset \mathbb{R}$ compacto e $f: X \to \mathbb{R}$. Se f é s.c.s., então f tem um ponto de máximo em X (i.e. existe $x_0 \in X$ tal que $f(x_0) = \max f(X)$); analogamente, se f é s.c.i., então f tem um ponto de mínimo em X.