

Understanding the Transferability of Representations via Task-Relatedness

Akshay Mehra, Yunbei Zhang, and Jihun Hamm Tulane University

Motivation

- Transfer learning enables using representations from large pretrained models to learn high-performing ML models with limited data/compute.
- ➤ However, existing analysis are insufficient in explaining the conditions for achieving high transferability in cross-domain cross-task setting.

Key Question

➤ Given a pre-trained encoder (e.g., CLIP), how does the performance after fine-tuning it on a reference task (e.g., ImageNet) relate to the performance after fine-tuning it on other downstream tasks?

Contributions

- > We propose an analysis that explains transferability in terms of relatedness between the reference and target tasks.
- > We show that task-relatedness is efficiently computable with limited target data (even without target labels) and is predictive of the accuracy after end-to-end fine-tuning of pre-trained encoder on target tasks.

Task Transfer Analysis

- \triangleright A series of transformations (parametrized by A, B, C) are applied to the reference task distribution $P_R(z, y)$ and its classifier h_R to produce the transformed distribution $P_{R'''}(z, y)$ and classifier $h_{R'''}$ to explain transferability to the downstream target task with distribution $P_T(z, y)$ and classifier h_T .
- Let $A: Z \to Z$ be an invertible linear map, B be a $|Y_T| \times |Y_R|$ matrix such that $B_{ij} = P(y_{R''} = i | y_{R'} = j)$, $C \coloneqq \left[\frac{P_{R'}(y)}{P_R(y)}\right]_{y=1}^{|Y_R|}$ be a vector of probability ratios, and assumption 1 (omitted here) holds then transferability (LHS) is provably explained by task-relatedness (RHS). Here B is the conditional entropy, B is the Wasserstein distance, B is the Lipschitz constant, and B is the cross-entropy loss.

$$\mathbb{E}_{P_T}[\ell(h_T(z),y)] \leq \mathbb{E}_{P_R}[C(y)\ell(h_R(z),y)] + H(Y_{R''}|Y_{R'}) + \tau \cdot W_d(P_{R'''},P_T).$$
Transferability Re-weighted reference loss Label Mismatch Distribution Mismatch

Empirical Analysis

> Task-relatedness produces a small gap to transferability.

- > (a) Task-relatedness and transferability are highly correlated across various reference-target pairs.
- (b) Improving the transferability of an encoder on a reference task leads to improved transferability of all related target tasks.

Task-relatedness achieves high (negative) Pearson correlation to the accuracy after end-to-end fine-tuning for various tasks.

	Target task	LogMe	Leep	NCE	PACTran	SFDA	H-Score	OT-NCE	OTCE	Ours
	Pets	0.82	0.80	0.73	-0.82	0.57	0.77	0.88	0.86	-0.77
	DTD	0.88	0.96	-0.19	-0.85	0.90	0.89	0.84	0.82	-0.97
	Aircraft	-0.60	0.92	0.97	0.11	0.72	-0.80	0.56	0.60	-0.72
	Average	0.37	0.90	0.50	-0.52	0.73	0.29	0.76	0.76	-0.82
_										

- ➤ (a) Task-relatedness remains highly correlated with accuracy after end-to-end fine-tuning on a target task even with using (a) a small percentage of target data,
- (b) no target labels $(y_T^{pseudo} = \arg \max_{v \in \mathcal{U}_T} Bh_R(A^{-1}(z_T))).$

_				
	Toward	True	Pseudo	
	Target	labels	labels	
	Pets	-0.77	-0.76	
	DTD	-0.97	-0.91	
	Aircraft	-0.72	-0.16	