EXA

$$\begin{cases} x_0, n_0 = b - A x_0 \\ x_{k+1} = x_k + x_k \\ x_k = b - A x_k \end{cases}$$

a) $e_{\beta} = \alpha_{\beta} - \overline{\alpha}$; Mque $e_{\beta} = (\mathbf{I} - \alpha)^{\beta} e_{\delta}$ pour $k \ge 0$ $e_{\beta} = \alpha_{\beta} - \overline{\alpha}$; Mque $e_{\beta} = (\mathbf{I} - \alpha)^{\beta} e_{\delta}$ pour $k \ge 0$ $e_{\beta} = \alpha_{\beta} - \overline{\alpha}$; Mque $e_{\beta} = (\mathbf{I} - \alpha)^{\beta} e_{\delta}$ pour $k \ge 0$ $e_{\beta} = \alpha_{\beta} - \overline{\alpha}$; Mque $e_{\beta} = (\mathbf{I} - \alpha)^{\beta} e_{\delta}$ pour $k \ge 0$ $e_{\beta} = \alpha_{\beta} - \overline{\alpha}$; Mque $e_{\beta} = (\mathbf{I} - \alpha)^{\beta} e_{\delta}$ pour $k \ge 0$ $e_{\beta} = \alpha_{\beta} - \overline{\alpha}$; Mque $e_{\beta} = (\mathbf{I} - \alpha)^{\beta} e_{\delta}$ pour $k \ge 0$ $e_{\beta} = \alpha_{\beta} - \overline{\alpha}$; Mque $e_{\beta} = (\mathbf{I} - \alpha)^{\beta} e_{\delta}$ pour $k \ge 0$ $e_{\beta} = \alpha_{\beta} - \overline{\alpha}$; Mque $e_{\beta} = (\mathbf{I} - \alpha)^{\beta} e_{\delta}$ pour $k \ge 0$ $e_{\beta} = \alpha_{\beta} - \overline{\alpha}$; Mque $e_{\beta} = (\mathbf{I} - \alpha)^{\beta} e_{\delta}$ pour $k \ge 0$

or $e_{\beta} + \bar{x} = \alpha_{\beta}$ $\Rightarrow e_{\beta+1} = e_{\beta} + \alpha(b - A(e_{\beta} + \bar{x})) = (I - \lambda A)e_{\beta} + \lambda(b - A\bar{x})$

=> ep = (I-XA)ke

b/ l'algorithme converge ssi ep -> 0, cela est virai si le reyan sepectralpèle (I - & A) est < 1 (l= max | \lambda_i |) or lisv-p de (I- & A) sont (I- & \lambda_i)_{i=1,-n} ty \lambda_i \times nt lesv-p de A de l'ordre croisant. il faut que Max |1- & \lambda_i| <1

-1 <1-22,5... 1-22, <1-22, <1

 $cor \qquad \lambda_1 \geqslant \lambda_2 - \cdots + \lambda_{n-1} \geqslant \lambda_n$

on aura $\alpha \lambda_{n} > 0$ Vrai car A définie positive $-1 < 1 - \alpha \lambda_{1} = 0$ $\lambda_{1} < \frac{2}{\alpha} = 0$ $\left| \alpha < \frac{2}{\lambda_{1}} \right|$

c/ × opt = 2

Le meilleu choise de α correspont au cas où $e(I-\alpha A)$ ust min or $e(I-\alpha A) = \max\{|1-\alpha \lambda_1|, |1-\alpha \lambda_n|\}$ donc le min du max $= \frac{2}{N+\lambda_1}$ ie: mess $(1-\alpha \lambda_1, |\alpha \lambda_n-1) = \{\alpha \geq \frac{2}{N+\lambda_1}\}$

$$J(v) = \frac{1}{2}(Av, v) - b, v$$

$$u_{man} = u_{m} - \mu(Au_{m} - b) = (I - \mu A)u_{m} + \mu b$$

$$3'(u_{m})$$

a) got $v = A^{-1}b$ be of the profleme the minimisentian.

$$u_{m+1} = w = (I - \mu A)u_{m} + \mu b - w = (I - \mu A)u_{m} + \mu Aw - w$$

$$= (I - \mu A)(\mu_{m} - w)$$

aim

$$\mu_{m} = (I - \mu A)^{m}(\mu_{0} - w) + w$$

Pour que l'algorithme converge il faut que $e(I - \mu A) < 1$
br. $ext{p}$ de $ext{A}$ ant $ext{o} < \lambda_{1} < \lambda_{2} \cdots < \lambda_{N-1} < \lambda_{N}$

$$= \lambda_{1} + \lambda_{2} < 1 - \mu \lambda_{1} < 1 - \mu \lambda_{1} < 1 - \mu \lambda_{2} < 1 - \mu \lambda_{1}$$

$$= \lambda_{1} + \lambda_{1} + \lambda_{1} + \lambda_{1} + \lambda_{2} < 1 - \mu \lambda_{1}$$

by men max $ext{o} = \lambda_{1} + \mu \lambda_{1} + \mu \lambda_{1} = \lambda_{1} + \lambda_{2}$

$$= \lambda_{1} - \lambda_{1}$$

$$= \lambda_{1} - \lambda_{1} + \lambda_{2} + \lambda_{1} + \lambda_{2} + \lambda_{2} + \lambda_{1}$$

$$= \lambda_{1} - \lambda_{1} + \lambda_{2} + \lambda_{1} + \lambda_{2} + \lambda_{2}$$

(9)

 $R_{A}(\alpha) = \frac{(A\alpha, 2)}{(\alpha, \alpha)}$ al un vect propre associé à la v-pti \ \u_{\tilde{\chi}} = A u_{\tilde{\chi}} = \lambda u_{\tilde{\chi}} = \lamb => \f (nf, nf) = (ng, nf) => \f = R_{+}(nf) by $\chi \in W_k = \sum_{i=1}^k \chi(u_i)$ (i.e. w_k have orthonormé ergenché parles (u_1, \dots, u_k) $(Ax,x) = (\frac{1}{2}x_i Aug, \frac{1}{2}x_j u_j) = (\frac{1}{2}x_i \lambda_i u_i, \frac{1}{2}x_j u_j)$ or $(u_i, u_j) = \begin{cases} 0 & \text{sin } i \neq j \\ 1 & \text{sinon} \end{cases}$ est me base $dew \beta$ $= \frac{1}{(Ax_i x)} = \frac{1}{2} \lambda_i x_i^2 = \lambda_k ||x||^2$ $\Rightarrow \min_{x \in W_{k}} \frac{A_{x,x}}{||x||^{2}} > \lambda_{k} \quad \text{(le min estattent pour } x = u_{k})$ d on pase $n = Ax - \lambda x$ $\|n\|_{2}^{2} = \|A_{2i} - \lambda_{x}\|_{2}^{2} = \sum_{i=1}^{n} (\lambda_{i} - \lambda)^{2} x_{i}^{2} / (\min_{i=1 \dots n} |\lambda_{i} - \lambda|) \|x\|_{2}^{2}$ $\frac{||n||_2^2}{||\alpha||_2^2} = \left(\min |\lambda_i - \lambda|\right)^2$ $\implies \min |\lambda_i - \lambda| \leq \frac{\|h\|_2}{\|\alpha\|_2}$

(3)