

μPD7527A/28A/75CG28E 4-Bit, Single-Chip CMOS Microcomputers With FIP® Driver

Description

The μ PD7527A, μ PD7528A, and μ PD75CG28E are 4-bit, single-chip CMOS microcomputers with the μ PD7500 architecture and FIP direct-drive capability.

The μ PD7527A contains a 2048 x 8-bit ROM and a 128 x 4-bit RAM. The μ PD7528A contains a 4096 x 8-bit ROM and 160 x 4-bit RAM.

The μ PD7527A/28A contains two 4-bit general purpose registers located outside RAM. The subroutine stack is implemented in RAM for greater depth and flexibility. The μ PD7527A/28A typically executes 67 instructions with a 5 μ s instruction cycle time.

The µPD7527A/28A has one external and two internal edge-triggered hardware-vectored interrupts. It also contains an 8-bit timer/event counter and an 8-bit serial interface to help reduce software requirements.

Thirty-one high-voltage lines are organized into the 3-bit output port 2, the 4-bit output ports 3, 8, and 9, and the 4-bit I/O ports 4, 5, 10, and 11.

The low power consumption CMOS process allows the use of a power supply between 2.7 and 6.0 V. Current consumption is less than 3.0 mA maximum, and can be further reduced in the halt and stop power-down modes.

The μ PD75CG28E is a piggyback EPROM version of the μ PD7527A/28A. Pin-compatible and function-compatible with the final, masked versions of the μ PD7527A/28A, the μ PD75CG28E is used for prototyping and for aiding in program development.

Features

- ☐ 67 instructions☐ Instruction cycle:
 - Internal clock: 3.3 µs/600 kHz, 5 V
 - External clock: 3.3 μs/600 kHz, 5 V
- Upwardly compatible with the μPD7500 series product family
- 4,096 × 8-bit ROM (μPD7528A/75CG28E)
 2,048 × 8-bit ROM (μPD7527A)
- 160 × 4-bit RAM (μPD7528A/75CG28E)
 128 × 4-bit RAM (μPD7527A)
- 128 × 4-bit RAN

 ☐ 35 I/O lines
- 31 high-voltage output lines that can directly drive a vacuum fluorescent display (FIP)
- Can select either a pull-down resistor or open-drain output per 31 high-voltage outputs (mask optional)

FIP is the registered trademark for NEC's fluorescent indicator panel (vacuum fluorescent display).

- □ Vectored interrupts: one external, two internal
- □ 8-bit timer/event counter□ 8-bit serial interface
- ☐ Standby function (HALT, STOP)
- ☐ Data retention mode
- Zero-cross detector on P0₀/INT0 input (mask optional)
- ☐ System clock (μPD7527A/7528A/75CG28E): on-chip RC oscillator
- ☐ CMOS technology
- □ Low power consumption
- ☐ Single power supply
 - -- μPD7527A/7528A: 2.7 to 6.0 V
 - µPD75CG28E: 5.0 V

Ordering Information

Part Number	Package Type	Max Frequency of Operation		
μPD7527AC / 28AC	42-pin plastic DIP	610 kHz		
μPD7527ACU / 28ACU /	42-pin plastic shrink DIP	610 kHz		
μPD75CG28E	42-pin ceramic piggyback DIP	500 kHz		

Pin Configurations

uPD7527A/28A, 42-Pin Plastic DIP or Shrink DIP

Pin Configurations (cont)

uPD75CG28E, 42-Pin Ceramic Piggyback DIP

Pin Identification

μPD7527A/28A and μPD75CG28E

No.	Symbol	Function
1	RESET	Reset input
2, 3	CL1, CL2	Clock pins
4	V _{PRE}	High-voltage predriver supply
5	V _{LOAD}	High-voltage option resistor supply 7527A / 28A only
6-9	P5 ₀ -P5 ₃	High-voltage I / O port 5
10, 12	P2 ₃ , P2 ₂ P2 ₁ /PTOUT	High-voltage output port 2, and output port from timer / event counter (PTOUT)
13-16	P10 ₀ -P10 ₃	High-current, high-voltage I / 0 port 10
17-20	P11 ₀ -P11 ₃	High-voltage, high-current I / 0 port 11
21	V _{DD}	Positive power supply
22-25	P9 ₀ -P9 ₃	High-voltage, high-current output port 9
26-29	P8 ₀ -P8 ₃	High-voltage, high-current output port 8
30-33	P40-P43	High-voltage I / 0 port 4
34-37	P3 ₀ -P3 ₃	High-voltage output port 3
38 39 40 41	P0 ₃ / SI P0 ₂ / <u>SO</u> P0 ₁ / SCK P0 ₀ / INTO	4-bit input of port 0; or serial data input (SI), serial data output (SO), serial clock 1/0 (SCK), and external interrupt input (INTO) or zero-cross detect input (PO ₀).
42	V _{SS}	Ground

μPD75CG28E EPROM

No.	Symbol	Function					
1	V _{DD}	Connection to pin 21 of µPD75CG28E					
2	NC	No connection					
3-10, 21, 24, 25	A ₀ -A ₁₀	EPROM address output					
11-13, 15-19	10-17	Data read input from the EPROM					
14	V _{SS}	Connection to EPROM GND pin					
20	CE	Chip enable output					
22	V _{SS}	Supplies EPROM OE signal					
23	A ₁₁	Program counter MSB output					
26	V _{DD}	Supplies V _{CC} to the EPROM					
27	MSEL	Mode select input					
28	V _{DD}	Supplies high-level signal to MSEL					

Note

- (1) Output drivers on ports 2-5 and 8-11 are mask-optional. Accordingly, either an open-drain output or a pull-down resistor can be selected. V_{LOAD} is suitable for an output driver with a pull-down resistor.
- (2) Ports 2-5 are suitable as FIP segment signal outputs, and ports 8-11 are suitable for FIP digit signal outputs.
- (3) Ports 8-11 have high-current drive capability and can drive an LED directly.

Pin Functions, μPD7527A / 28A and μPD75CG28E

RESET

System reset (input).

CL1, CL2

Connection to the RC oscillator. CL1 is the external clock input.

VPRE

Negative power supply for high-voltage output predrivers (for ports 2-5, 8-11).

VLOAD

Negative power supply for optional load resistors (pull-down resistors) of high-voltage output drivers (for ports 2–5, 8–11). This pin is only on the µPD7527A/28A.

P53-P50

4-bit, high-voltage I/O port 5.

P21-P23

3-bit, high-voltage output port 2.

PTOUT

Output port from the timer/event counter.

P103-P100

4-bit, high-voltage, high-current I/O port 10. Capable of bit set/reset by SPBL/RPBL instructions.

P113-P110

4-bit, high-voltage, high-current I/O port 11. Capable of bit set/reset by SPBL/RPBL instructions.

V_{DD}

Positive power supply.

P93-P90

4-bit, high-voltage, high-current output port 9. Capable of bit set/reset by SPBL/RPBL instructions.

P83-P80

4-bit, high-voltage, high-current output port 8. Capable of bit set/reset by SPBL/RPBL instructions.

P43-P40

4-bit, high-voltage I/O port 4.

P33-P30

4-bit, high-voltage output port 3.

P00-P03

4-bit input port 0. P0₀ is also used as the zero-cross detection input.

SI

Serial data input.

SO

Serial data output.

SCK

I/O serial clock.

INT₀

External interrupt input.

Vss

Ground.

Pin Functions, µPD75CG28E EPROM

MSEL

Changes the addressing area of the external EPROM and the on-chip RAM (with a pull-down resistor). Connecting a jumper between socket pins 27 (MSEL) and 28 (VDD) selects μ PD7527A mode (2-Kbyte EPROM, 128 × 4-bit RAM). Leaving MSEL open selects μ PD7528A mode (4-Kbyte EPROM, 160 × 4-bit RAM).

An-A10

Output the low-order 11 bits of the program counter (PC_0 - PC_{10}). Used as EPROM address signals.

A11

When MSEL is high level, A_{11} outputs high-level signals. When MSEL is open, A_{11} outputs the MSB of the PC, which is used as the most significant address signal of the 4-Kbyte EPROM 2732.

10-17

Input data read from the EPROM.

CE

Outputs the chip enable signal to the EPROM.

V_{DD}

Pin 26 is electrically equivalent to the bottom V_{DD} pin and is used to supply V_{CC} to the EPROM. Pin 28 is electrically equivalent to the bottom V_{DD} pin and is used to supply the high level signal to MSEL. Pin 1 connects to pin 21 of $\mu PD75CG28E$.

Vss

Pin 14 is electrically equivalent to the bottom V_{SS} pin in voltage, and is connected to the EPROM GND pin. Pin 22 is electrically equivalent to the bottom V_{SS} pin and is used to supply the \overline{OE} signal to the EPROM.

Instruction Set

Refer to the User's Manual. The instruction set appears also as subset A4 in the data sheet for the $\mu PD7500$ series of single-chip microcomputers.

Block Diagram, µPD7527A/28A

Block Diagram, µPD75CG28E

Absolute Maximum Ratings

 $T_{\Delta} = 25$ °C

1A - 20 0	
Power supply voltage, V _{DD}	-0.3 to +7 V
Power supply voltage, V _{LOAD} (μPD7527A / 28A)	V_{DD} – 40 V to V_{DD} +0.3 V
Power supply voltage, V _{PRE}	V _{DD} - 12 V to V _{DD} +0.3 V
Input voltage, except ports 4, 5, 10, 11, V _{IN}	-0.3 V to V _{DD} +0.3 V
Input voltage, ports 4, 5, 10, 11, V _{IN}	V _{DD} - 40 V to V _{DD} +0.3 V
Output voltage, except ports 2-5, 8-11, V ₀	-0.3 V to V _{DD} +0.3 V
Output voltage, ports 2-5, 8-11, V ₀	V _{DD} - 40 V to V _{DD} +0.3 V
Output current high, per pin: PO ₁ , PO ₂ ; I _{OH}	– 15 mA
Output current high, per pin: ports 2-5, 8-11; I _{OH}	- 30 mA

Output current high, ports 3, 4, 8, 9 total, I _{OH}	– 55 mA
Output current high, ports 2, 5, 10, 11 total, I _{OH}	– 55 mA
Output current low, per pin, I _{OL}	15 mA
Output current low, all ports total, I _{OL}	15 mA
Operating temperature, T _{OPT}	-10°C to +70°C
Storage temperature, T _{STG}	-65°C to +150°C

Comment: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of the specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC Characteristics

μ**PD7527A/28A**

 $T_A = -10^{\circ}\text{C to } +70^{\circ}\text{C}, V_{DD} = +2.7 \text{V to } 6.0 \text{ V}$

			Limit	3		Test
Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Input voltage,	V _{IL1}	0		0.3 V _{DD}	٧	Port 0, RESET
low	V _{IL2}	0		0.5	٧	CL1
	V _{IL3}	V _{DD} - 3	5	0.3 V _{DD}	٧	Ports 4, 5, 10, 11
Input voltage,	V _{IH1}	0.7 V _{DD}		V _{DD}	٧	Port 0, RESET
high	V _{IH2}	V _{DD} -0	.5	v_{DD}	٧	CL1
	V _{IH3}	0.7 V _{DD}		V _{DD}	٧	Ports 4, 5, 10, 11; 4.5 V ≤ V _{DD} ≤ 6.0 V
		V _{DD} -0	.5	V _{DD}	٧	Ports 4, 5, 10, 11; 2.7 V ≤ V _{DD} ≤ 4.5 V
Output voltage, low	V _{OL}			0.4	٧	$P0_1, P0_2; 4.5 V \le V_{DD} \le 6.0 V;$ $1_{OL} = 1.6 \text{ mA}$
				0.5	٧	P0 ₁ , P0 ₂ ; l _{OL} =400 μA
Output voltage, high	V _{OH}	V _{DD} -2	.0		٧	Ports 2-5, I _{OH} = -4 mA (Note 1)
		V _{DD} -2	.0		٧	Ports 8-11, I _{OH} = - 10 mA (Note 1)
		V _{DD} -2	.0		٧	Ports 2-5, I _{OH} = -2 mA (Note 2)
		V _{DD} – 2	.0		٧	Ports 8-11, I _{OH} =5 mA (Note 2)
		V _{DD} – 1.	.0		٧	P0 ₁ , P0 ₂ ; I _{OH} = -1 mA (Note 3)
		V _{DD} – 0	.5		٧	$P0_1$, $P0_2$; $I_{OH} = -100 \mu\text{A}$
Input leakage current, low	luu			-3	μΑ	V _{IN} = 0 V; P0 ₀ -P0; (Note 4)
	¹ LIL2			-40	μΑ	V _{IN} = 0 V; P0 ₀ (Note 5)
	LIL3			-10	μΑ	V _{IN} = 0 V; CL1
	I _{L1L4}			-10	μΑ	V _{IN} =V _{DD} -35 V; ports 4, 5, 10, 11
Input leakage current, high	I _{LIH1}			3	μΑ	V _{IN} =V _{DD} ; P0 ₀ -P0 ₃ (Note 4)
	LIH2			40	μΑ	V _{IN} =V _{DD} ; P0 ₀ (Note 5)
	I _{LIH3}	***		10	μΑ	V _{IN} =V _{DD} ; CL1
	I _{LIH4}			80	μΑ	V _{IN} = V _{DD} ; ports 4 5, 10, 11

		Limits				Test
Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Output leakage	I _{LOL1}			-3	μΑ	$V_0 = 0 \text{ V}; P0_1, P0_2$
current, low	I _{LOL2}		_	- 10	μА	$V_0 = V_{DD} - 35 V$; ports 2-5, 8-11
Output leakage current, high	loh1			3	μА	V ₀ = V _{DD} ; except ports 4, 5, 10, 11
	I _{LOH2}			80	μА	V _D =V _{DD} ; ports 4, 5, 10, 11
Supply current, normal operation	I _{DD1}		1.0	3.0	mA	$V_{DD} = 5 V \pm 10\%$, R=39 kQ
			0.4	1.0	mA	V _{DD} =3 V, R=82 kQ
Supply current, HALT mode	1 _{DD2}		200	600	μА	$V_{DD} = 5 V \pm 10\%$, R=39 kQ (Note 4)
(Note 6)			60	200	μΑ	V _{DD} =3 V, R=82 kQ (Note 4)
			210	640	μΑ	$V_{DD} = 5 V \pm 10\%$, R=39 kQ (Note 5)
			67	230	μА	V _{DD} =3 V, R=82 kΩ (Note 5)
Supply current, STOP mode (Note 6)	I _{DD3}		0.1	10	μΑ	V _{DD} = 3 V (Note 4)
			10	40	μΑ	$V_{DD} = 5 V \pm 10\%$ (Note 5)
			7	30	μΑ	V _{DD} = 3 V (Note 5)
On-chip pull- down resistance	RL	80	140	220	kΩ	$V_{DD} - V_{LOAD} = 35 V$

Note

- (1) $V_{PRE} = V_{DD} 9 V \pm 1 V$. The circuit in figure 5 is recommended.
- (2) $V_{PRE} = 0 \text{ V. } V_{DD} = 4.5 \text{ V to 6.0 V.}$
- (3) $V_{DD} = 4.5 \text{ V to } 6.0 \text{ V}.$
- (4) Without zero-cross detector.
- (5) With zero-cross detector.
- (6) Ports 4, 5, 10, 11 are low level output or low level input.

DC Characteristics (cont)

μPD75CG28E

 $T_A = -10$ °C to +70 °C, $V_{DD} = +5 V \pm 10$ %

		Lin	nits		Test
Parameter	Symbol	Min Ty	p Max	Unit	Conditions
Input voltage,	V _{IL1}	0	0.3 V _{DD}	٧	Port 0, RESET
low	V _{IL2}	0	0.5	٧	CL1
	V _{IL3}	V _{DD} - 35	0.3 V _{DD}	٧	Ports 4, 5, 10, 11
Input voltage,	V _{IH1}	0.7 V _{DD}	V _{DD}	٧	Port 0, RESET
high	V _{lH2}	V _{DD} -0.5	V _{DD}	٧	CL1
	V _{IH3}	0.7 V _{DD}	V _{DD}	٧	Ports 4, 5, 10, 11
Output voltage, low	V _{OL}		0.4	٧	PO ₁ , PO ₂ ; I _{OL} = 1.6 mA
			0.5	٧	P0 ₁ , P0 ₂ ; I _{0L} =400 μA
Output voltage, high	V _{OH}	V _{DD} -2.0		٧	Ports 2-5, I _{OH} = -4 mA (1)
		V _{DD} -2.0		٧	Ports 8-11, 1 _{OH} = -10 mA(1)
		V _{DD} -2.0		٧	Ports 2-5, I _{OH} = -2 mA(2)
		V _{DD} -2.0		٧	Ports 8-11, 1 _{OH} = -5 mA(2)
		V _{DD} -1.0		٧	P0 ₁ , P0 ₂ ; I _{OH} = -1mA
Input current, low (I ₀ -I ₇)	I _{IL}		-200	μА	V _{IN} = 0 V
Input current, high (MSEL)	I _{IH}		300	μΑ	$V_{IN} = V_{DD}$

Limits Test Symbol Min Max Unit Conditions **Parameter** Тур V_{IN} = 0 V; P0₀-P0₃ Input leakage -3 μА Juu current, low -40 μА $V_{IN} = 0 V; P0_0$ I_{LIL2} - 10 V_{IN} = 0 V; CL1 μΑ I_{LIL3} - 10 $V_{IN} = V_{DD} - 35 V$; I_{LIL4} ports 4, 5, 10, 11 3 $V_{IN} = V_{DD}$; Input leakage μА LIHI current, high P00-P03 40 μΑ $V_{IN} = V_{DD}$; $P0_0$ ILIH2 10 VIN = VDD; CL1 LIH3 80 μA V_{IN} = V_{DD}; ports 4, LIH4 5, 10, 11 V₀=0 V; PO₁, PO₂ Output leakage -3 LOL1 current, low $V_0 = V_{DD} - 35 V$; -10 ILOL2 ports 2-5, 8-11 Output leakage 3 V_O=V_{DD}; except LOH1 ports 4, 5, 10, 11 current, high 80 μА $V_D = V_{DD}$; ports 4, I_{LOH2} 5, 10, 11 R=39 kΩ 3.0 Supply current, 1.0 mΑ normal operation Supply current, 210 630 μA $R = 39 k\Omega$ I_{DD2} HALT mode(3) 10 50 Supply current, μΑ STOP mode(3)

Note:

- (1) $V_{PRE} = V_{DD} 9V + 1V$. The circuit in figure 6 is recommended.
- (2) $V_{PRE} = 0 V$
- (3) Ports 4, 5, 10, 11 are output off or low input.

Figure 1. Recommended Circuit, µPD7527A/7528A

Figure 2. Recommended Circuit, µPD75CG28E

Zero-Cross Detection Characteristics

 μ PD7527A/28A: T_A = -10° C to $+70^{\circ}$ C, V_{DD} = 4.5 V to 6.0 V μ PD75CG28E: T_A = -10° C to $+70^{\circ}$ C, V_{DD} = +5 V $\pm 10^{\circ}$

Parameter			Limits		Test	
	Symbol	Min	Тур	Max	Unit	Conditions
Žero-cross detection input voltage	V _{ZX} (P-P)	1		3	V _{P-P}	AC coupled, C=0.1μF
Zero-cross accuracy	V _{AZX}			±100	mV	50 Hz to 60 Hz sine wave
Zero-cross detection input frequency	fzx	45		1000	Hz	

Zero-Cross Detection Waveform

Capacitance

 $T_A = 25$ °C, $V_{DD} = 0$ V, f = 1.0 MHz, Unmeasured pins returned to GND

Parameter	·	Limits				Test
	Symbol	Min	Тур	Max	Unit	Conditions
Input capacitance	CI			15	. pF	P0 ₀ , P0 ₃
Output	Co	-		15	pF	Part 2
capacitance				35	pF	Ports 3, 8, 9
I / 0 capacitance	C _{IO}	_		15	pF	P0 ₁ , P0 ₂
				35	pF	Ports 4, 5, 10, 11

AC Characteristics

μPD7527A/28A

 $T_A = -10^{\circ}\text{C to } +70^{\circ}\text{C}, V_{DD} = +2.7 \text{ V to } 6.0 \text{ V}$

		•	Limits		Test	
Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Cycle time (Note 1)	t _{CY}	3.3		200	μS	V _{DD} = 4.5 V to 6.0 V
		6.9		200	μS	
PO _O event input frequency	f _{P0}	0		610	kHz	V _{DD} = 4.5 V to 6.0 V
		0		290	kHz	
P0 ₀ input rise time	t _{POR}			0.1	μS	
PO _O input fall time	t _{POF}			0.1	μS	
PO _O input pulse width, low	t _{POL}	1.63			μs	
P0 ₀ input pulse width, high	tрон	0.72			μS	$V_{DD} = 4.5 \text{ V to}$ 6.0 V
SCK cycle time	t _{KCY}	3.0			μS	Input; V _{DD} =4.5 V to 6.0 V
		3.3			μ\$	Output; V _{DD} = 4.5 V to 6.0 V
		6.9			μS	Input
		8.0			μS	Output
SCK pulse	t _{KL}	3.35			μS	Input
width, low		3.9	-		μS	Output
SCK pulse width, high	tкн	1.4			μS	Input; V _{DD} = 4.5 V to 6.0 V
		1.55			μS	Output; V _{DD} = 4.5 V to 6.0 V
SI set-up time (to rising-edge of SCK)	[†] SIK	300			ns	
SI hold time (after rising- edge of SCK)	t _{KSI}	450			ns	
SO output delay	t _{KSO}			850	ns	V _{DD} = 4.5 V to 6.0 V
falling-edge of SCK)				1200	ns	
INTO pulse width, high, low	t _{IOH} .	10		_	μS	
RESET pulse width, high, low	t _{RSH} ,	10			μS	

AC Characteristics (cont)

μPD75CG28E

 $T_A = -10$ °C to +70 °C, $V_{DD} = +5 V \pm 10$ %

		Limits				Test
Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Cycle time (Note 1)	t _{CY}	4.0	•	200	μS	_
PO ₀ event input frequency	f _{PO}	0		500	kHz	
PO ₀ input rise time	t _{POR}			0.2	μS	
PO _O input fall time	t _{POF}	•		0.2	μS	
P0 ₀ input pulse width, high, low	t _{POL}	0.8			μS	
SCK cycle time	t _{KCY}	3.0			μS	Input
		4.0			μS	Output
SCK pulse width, low	t _{KL}	1.8			μs	Output
SCK pulse width, high	t _{KH}	1.3	٠		μS	Input
SI set-up time (to rising-edge of SCK)	t _{SIK}	300			ns	
SI hold time (after rising- edge of SCK)	^t ksi	450			ns	
SO output delay time (after falling-edge of SCK)	t _{KS0}			850	ns	
INTO pulse width, high, low	t _{IOH} , t _{IOL}	10	·		μS	
RESET pulse width, high, low	t _{RSH} , t _{RSL}	10			μS	
Data input delay time from address	t _{ACC}			700	ns	
Data input delay time from CE	t _{CE}			700	ns	
Input hold time after address	t _{IH}	0			ns	

Note:

(1) $t_{CY} = 2/f_{CC} \text{ or } 2/f_{C}$

AC Waveform Measurement Points (Except CL1)

Oscillation Characteristics

 μ PD7527A/28A T_A = -10°C to +70°C, V_{DD} = 2.7 V to 6.0 V

Parameter	Symbol	Min	Тур	Max	Unit	Conditions
System clock oscillation frequency (Note 1)	fcc	300	400	500	kHz	R = 39 k0 ±2% V _{DD} = 4.5 V to 6.0 V
		150	200	250	kHz	R = 82 kQ ±2%
System clock CL1 input	fc	10		610	kHz	V _{DD} = 4.5 V to 6.0 V
frequency (Note 2)		10		290	kHz	
CL1 input rise time (Note 2)	t _{CR}			0.1	μs	
CL1 input fall time (Note 2)	†CF			0.1	μs	
CL1 input pulse width, low (Note 2)	[‡] CL	0.7		50	μ3	
CL1 input pulse width, high (Note 2)	†CH	1.63		50	μS	V _{DD} = 4.5 V to 6.0 V

μPD75CG28E

 $T_A = -10$ °C to +70 °C, $V_{DD} = 5 V \pm 10$ %

		Limits				Test
Parameter	Symbol	Min	Тур	Max	Unit	Conditions
System clock oscillation frequency (Note 1)	fcc	300	400	500	kHz	R=39 kQ ± 2%
		110	150	190	kHz	R=110 kQ ± 2%
System clock CL1 input frequency (Note 2)	fc	10		500	kHz	
CL1 input rise time (Note 2)	t _{CR}			0.2	μS	
CL1 input fall time (Note 2)	t _{CF}		-	0.2	μS	
CL1 input pulse width, high, low	t _{CH} ,	8.0		50	μ\$	

(1) R, C (see figure 3).

(2) External clock (see figure 4).

Figure 3. Recommended RC Oscillator Circuit

Figure 4. Recommended External Clock Circuit

Stop Mode Low Voltage Data Retention Characteristics

иPD7527A/28A

 $T_A = -10^{\circ}C \text{ to } +70^{\circ}C$

		Limits				Test
Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Data retention supply voltage	V _{DDDR}	2.0		6.0	٧	
Data retention supply current	IDDOR		0.3	10	μA	V _{DDDR} =2 V (Note 1)
			7	30	μΑ	V _{DDDR} =2V (Note 2)
Data retention RESET input voltage high	V _{IHDR}	0.9 V _{DE}	DDR	V _{DDDR} +0.2	٧	
RESET set-up time	tsrs	0			μS	
RESET hold time	tHRS	0			μS	

μPD75CG28E

 $T_A = -10$ °C to +70 °C

Parameter		Limits				Test
	Symbol	Min	Тур	Max	Unit	Conditions
Data retention supply voltage	V _{DDDR}	2.0		5.5	٧	
Data retention supply current	IDDDR		7	30	μΑ	V _{DDDR} =2V
Data retention RESET input voltage high	VIHDR	0.9 V _{DDD}	R	V _{DDDR} +0.2	٧	
RESET set-up time	tsrs	0			μS	
RESET hold time	thrs	0			μS	

Note:

- (1) Without zero-cross detector
- (2) With zero-cross detector

Data Retention Mode Timing

μ PD75CG28E EPROM Interface

A 4-Kbyte EPROM (2732) plugs into socket pins on top of the μ PD75CG28E. A high input to MSEL selects μ PD7527A mode and fixes the A₁₁ output high level in order to access the upper 2-Kbytes of the 4-Kbyte EPROM. When MSEL is open, μ PD7528A mode is selected. All EPROM addresses can be accessed because A₁₁ functions as the MSB of the address. Figure 5 shows the address control unit. Figures 6 and 7 show the μ PD75CG28E connected with the 2732.

Figure 8 shows the EPROM read timing. Data is read into the instruction buffer at the end of the T4 state. The chip enable ($\overline{\text{CE}}$) signal is made active during 2 states (T3, T4) in order to decrease the power consumption of the EPROM.

Figure 5. Address Control Unit

Figure 6. Connection with the 2732 (μPD7527A Mode)

Figure 7. Connection with the 2732 (μPD7528A Mode)

Figure 8. EPROM Read Timing

Timing Waveforms

EPROM (µPD75CG28E only)

Clock

Differences Among the μ PD7527A/28A/CQ28E

	μPD75CG28E	μ P D7527 A	μPD7528A	
Program memory	4 Kbyte EPROM (2732) connectable on top	On-chip 2 Kbyte ROM	On-chip 4 Kbyte ROM	
Data memory (RAM)	160×4	128×4	160×4	
High-voltage output lines	All open-drain outputs	On-chip load capacitor or open drain output (bit by bit, mask optional)		
V _{LOAD} pin	No			
Zero-cross detection	Yes	Mask optional		
Package	42-pin ceramic piggyback DIP bottom pin compatible with μPD7527A / 28A	42-pin plastic DIP 42-pin plastic shrink DIP		
Power supply	5 V	2.7 V to 6.0 V		

Serial Interface

Interrupt Input

Reset Input

