G. Santin 20.02.2025

Esercizi del corso

Algebra Lineare

Secondo semestre 2024/2025

Foglio 2: Vettori linearmente (in)dipendenti e sottospazi vettoriali

Esercizio 1 (Operazioni).....

Dati i vettori nello spazio $\mathbf{v} = (1, -1, -1)$ e $\mathbf{w} = (-2, 2, 0)$, calcolare

(a)
$$\mathbf{v} + \mathbf{w}$$

(b)
$$\mathbf{v} - 2\mathbf{w}$$

(c)
$$-3\mathbf{v} + \frac{1}{2}\mathbf{w}$$

Esercizio 2 (Dipendenza lineare).....

Verificare se i seguenti vettori di \mathbb{R}^3 sono linearmente dipendenti o indipendenti

(a)
$$\mathbf{v} = (1, 1, 0), \mathbf{w} = (2, 0, -1), \mathbf{z} = (0, 2, 1)$$

(b)
$$\mathbf{v} = (1, 0, 1), \mathbf{w} = (-1, 2, 0), \mathbf{z} = (0, 3, -1)$$

(c)
$$\mathbf{v_1} = (1, -1, -1), \mathbf{v_2} = (0, 1, 1), \mathbf{v_3} = (-2, 2, 0).$$

Esercizio 3 (Dipendenza lineare).....

Verificare se i seguenti vettori di \mathbb{R}^3 sono linearmente dipendenti o indipendenti

$$\mathbf{v_1} = (1, 1, 2) , \ \mathbf{v_2} = (0, 2, 2) , \ \mathbf{v_3} = (-1, 3, 2)$$

In caso di dipendenza, trovare la relazione che permette di scrivere uno dei vettori come combinazione lineare degli altri due.

Esercizio 4 (Dipendenza lineare).....

Dato il vettore $\mathbf{v_1} = (1, -1, 2)$, trovare altri due vettori $\mathbf{v_2}, \mathbf{v_3} \in \mathbb{R}^3$ in modo che i vettori $\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}$ siano linearmente indipendenti.

Esercizio 5 (Dipendenza lineare).....

Sono dati i vettori di \mathbb{R}^3

$$\mathbf{v_1} = (3, 1, k), \quad \mathbf{v_2} = (-k, 1, 0) \quad \text{e} \quad \mathbf{v_3} = (2k, -2, k).$$

- (a) Stabilire per quali valori di $k \in \mathbb{R}$ i vettori sono linearmente indipendenti.
- (b) Per i valori di k per cui risultano linearmente dipendenti, stabilire quanti tra di loro sono linearmente indipendenti.

Esercizio 6 (Dipendenza lineare).....

Determinare per quali valori del parametro reale k i seguenti vettori di \mathbb{R}^4 sono linearmente dipendenti:

$$\mathbf{v_1} = (1, -1, 0, 1), \quad \mathbf{v_2} = (2, -3, 0, 0) \quad e \quad \mathbf{v_3} = (0, 1, 0, k).$$

Per i valori di k trovati, esprimere $\mathbf{v_3}$ come combinazione lineare degli altri due.

Esercizio 7 (Spazio vettoriale).....

Stabilire se il seguente sottoinsieme di \mathbb{R}^2 è uno sottospazio vettoriale

$$V = \{(x, y) \in \mathbb{R}^2 : x + y = 5\}.$$

Esercizio 8 (Spazio vettoriale).....

Verificare che i seguenti sottoinsiemi di \mathbb{R}^4 sono sottospazi vettoriali.

(a)
$$S = \{(x, y, z, w) \in \mathbb{R}^4 : x + z = 0, 3y - w = 0\}.$$

(b)
$$T = \{(x, y, z, w) \in \mathbb{R}^4 : x + z = 0, y + 2w = 0\}.$$

Esplicitare le componenti (x,y,w,z) del generico elemento di S e T in funzione di due parametri liberi.

Esercizio 9 (Spazio vettoriale).....

Verificare se i seguenti sottoinsiemi dello spazio vettoriale $\mathbb{R}_3[x]$ (polinomi in x a coefficienti reali di grado minore o uguale a tre) sono sottospazi vettoriali

(a)
$$W = \{p(x) \in \mathbb{R}_3[x] : p(0) = 0\}$$

(b)
$$W = \{p(x) \in \mathbb{R}_3[x] : p(x) \text{ ha grado al più } 1\}$$

(c)
$$W = \{p(x) \in \mathbb{R}_3[x] : p(x) = ax + bx^3, \text{ dove } a, b \in \mathbb{R}\}\$$

Esercizio 10 (Spazio vettoriale).....

È dato il seguente sottoinsieme di \mathbb{R}^3 :

$$S = \{(x, y, z) \in \mathbb{R}^3 : x + y = z, 2x = y\}$$

- (a) Scrivere le componenti (x, y, z) del generico elemento di S in funzione di un parametro libero.
- (b) Verificare che S è un sottospazio vettoriale.

Esercizio 11 (Dipendenza lineare).....

Stabilire se ognuno dei seguenti sottoinsiemi di \mathbb{R}^4 é formato da vettori linearmente indipendenti:

(a)
$$S = \{(1,0,0,0), (1,1,0,0), (1,1,1,0), (1,1,1,1)\};$$

(b)
$$T = \{(1,0,0,0), (1,1,1,0), (1,1,1,1)\};$$

(c)
$$U = \{(1,0,0,0), (0,1,1,1), (1,1,1,0), (1,1,1,1)\};$$

(d)
$$V = \{(1,0,0,0), (0,1,1,1), (1,1,1,0), (1,1,1,1), (0,3,0,0)\};$$

Esercizio 12 (Dipendenza lineare).....

Stabilire se ognuno dei seguenti sottoinsiemi di $\mathbb{R}_2[x]$ é formato da vettori linearmente indipendenti.

(a)
$$S = \{1, x, x^2\};$$

(b)
$$S = \{1, x\};$$

(c)
$$S = \{x, x^2\};$$

(d)
$$S = \{1 + x, x, x^2\};$$

(e)
$$S = \{1, x, x^2, 1 + x\};$$

(f)
$$S = \{1, x, 2 + x\};$$

(g)
$$S = \{1, x, x^2, 2 - x\};$$

(h)
$$S = \{2 - x, x, x^2\};$$

(i)
$$S = \{1, x + x^2, 1 + x + x^2\};$$

(i)
$$S = \{1, x + x^2, 1 + x - x^2\};$$

(k)
$$S = \{x + x^2, 1 + x + x^2\}$$