- a. False
- b. True
- c. False
- d. True
- e. False
- f. False
- g. False
- h. True
- i. False

a. Unclustered index on <name, gpa> using Alternative (2) can be constructed and it will first sort the data entries by name and then by age.

<name,gpa></name,gpa>		sid	name	login	age	gpa
Guldu, 2.0	—	53831	Madayan	madayan@music	11	1.8
Jones, 3.4		53832	Guldu	guldu@music	12	2.0
Madayan, 1.8		53666	Jones	jones@cs	18	3.4
Smith, 3.8		53688	Smith	smith@ee	19	4.0
Smith, 4.0		53650	Smith	smith@math	19	3.8

45

b. Clustered index on <age> using Alternative (2) can be constructed and it will sort the data entries by age.

<age></age>		sid	name	login	age	gpa
11		53831	Madayan	madayan@music	11	1.8
12	-	53832	Guldu	guldu@music	12	2.0
18	-	53666	Jones	jones@cs	18	3.4
19	-	53688	Smith	smith@ee	19	4.0
19	•	53650	Smith	smith@math	19	3.8

c. Clustered index on <name, gpa> using Alternative (2) cannot be constructed as there can be one clustered index on file which in this case is created on <age>.

d. Unclustered index on <name> using Alternative (2) can be constructed and it will sort the data entries by name.

<name></name>		sid	name	login	age	gpa
Guldu	A	53831	Madayan	madayan@music	11	1.8
Jones		53832	Guldu	guldu@music	12	2.0
Madayan		53666	Jones	jones@cs	18	3.4
Smith	-	53688	Smith	smith@ee	19	4.0
Smith		53650	Smith	smith@math	19	3.8

+5

1. Table: Prof

Attributes: <dept_did, age>

2. Table: Prof

Attributes: <specialty, pname>

3. Table: Dept

Attributes: <budget, <dname>

4. Table: Dept

Attributes: <dname, did, chair_sin>

Given:

Pages takes 2024 bytes Key value takes 12 bytes Pointer to a tree node or record takes 8 bytes

a) There are totally m+1 pointers and m keys in the tree node

Therefore, the maximum number of keys in each node should be m=100

b) Given, height = 2,

$$m = 100 [from (a)]$$

Maximum number of data records N = (Maximum number of keys in each node) height of

$$...$$
 N = 100²

Therefore, maximum number of data records **N** = 10000

f keys in each node) height of tree
$$\frac{2}{10201}$$

 $\frac{1}{10201}$ $\frac{1}{10201}$ $\frac{1}{10201}$

c) N = 10000 [from (b)]

Number of I/O operations required for searching through N data records using sorted file should be $log_{100}N$

Therefore, Number of I/O operations required is 2

1092N

a. Number of nodes to be **read = 3**, Number of nodes to be **updated = 1**

