$$1/52$$
 $REACTION SCHEME 2$
 $MeHN$
 CO_2H
 HO_2C
 $NHMe$
 NH_2
 NH_2
 $NHMe$
 $NHME$

REACTION SCHEME 3 CO₂H MeHN $H_2N-(CH_2)_m$ -NHCO₂-CH₂FM (6) `NH2 0 MeHN $NH-(CH_2)_m-NHCO_2-CH_2FM$ (7) NH2 MeHN`NH-(CH₂)_m-NH₂ (8) `NH2 Where FM represents 9-fluorenyl.,

and m is an integer of 1-20

FIG. 2

Where X is a linker of formula: $-NH-(CH_2)_m \ NHC(0)(CH_2)_n C(0)NH(CH_2)_m -NH-$ in which m and n are independently integers of 1-20

FIG. 3

REACTION SCHEME 5

MeHN
$$CO_2H$$
 + $FMCH_2-O_2C-NH(CH_2)_m$ CHO (9)

MeHN CO_2H
 $N=CH-(CH_2)_{m-1}$ $NHCO_2CH_2FM$

(10)

 $NH-(CH_2)_m$ $NHCO_2CH_2FM$

(11)

FIG. 4

in which m is an integer of 1-20, and FM is 9-fluorenyl

MeHN
$$CO_2R$$
 $MeHN$ CO_2R $MeHN$ CO_2R $NH-(CH_2)_m$ $NHCO_2CH_2FM$ $NH-(CH_2)_m$ NH_2 $(11a)$ (14) RO_2C $NHMe$ $+$ $HO_2C-(CH_2)_n-CO_2H$ $+$ $NH-(CH_2)_m$ NH_2 $H_2N-(CH_2)_m$ NH (14) $MeHN$ CO_2H HO_2C $NHMe$ $MeHN$ $MeHN$

Formula 1

where R is a protecting group, such as an ester, m and n are as defined above, and FM is 9-fluorenyl

FIG. 5

MeHN

NH(
$$CH_2$$
)_m NH₂ + HO_2C -(CH_2)_n- CO_2FM

(8)

NH₂

NH(CH_2)_m NH- $C(O)$ -(CH_2)_n- CO_2FM

(22) NH₂

NH(CH_2)_m NH- $C(O)$ -(CH_2)_n- CO_2FM

NH(CH_2)_m NH- $C(O)$ -(CH_2)_n- CO_2H

(23) NH₂

FIG. 6

MeHN

NH(CH₂)_m NHC(O)-(CH₂)_n-CO₂H

NH₂

$$R^{4}R^{5}N(CH_{2})_{p}HN$$

NHMe

 $R^{4}R^{5}N(CH_{2})_{q}HN$

NHMe

NHME

NH(CH₂)_mNH-C(O)-(CH₂)_n-C(O)NH(CH₂)_qHN

NH₂

Formulo 1

FIG. 7

FIG. 8

(26)

FIG. 17

SUMATRIPTAN BUILDING BLOCKS

C3PharmacophoricBuilding Blocks

OMS N S N H

C5PharmacophoricBuilding Blocks

Pharmacophoric Building Blocks that contain a Spacer

FIG. 18 MULTIVALOMERS OF SUMATRIPTAN

1 The Indole Core

2 C3 Substituent

3. C5 Substituent

C3 NUCLEOPHILE TO PROVIDE MULTIVALOMERS

$$X = -CH_2Br$$
 (a)DCM, pyrdine
 $X = -CHO$ (a)DCM, NaBH(OAc)3,AcOH
 $X = -CO_2H$ (a)DIC, DIPEA, DMF

Br
CHO
OHC

HO2C CO2H

FIG. 19

16/52 C5 FUNCTIONALIZATION OF SUMATRIPTAN

Electrophilic Pharmacophoric Monovalomer

Nucleophilic Pharmacophoric Monovalomer

HN. S.
$$(a)$$
 (a) (b) (a) (b) (a) (b) (b) (b) (b) (b) (b) (c) (c)

FIG. 20

C3 Multivalamers
$$N - H$$

$$N -$$

FIG. 21

F/G. 22

Introduction of Spacer To Faciliate Multivalomer Formation

C3 Sumatriptan Series

$$R = Et$$
 $R = Et$
 $R = E$

$$(a)$$

$$(b)$$

$$R = Et$$

$$R = H$$

$$(a)$$

$$N \rightarrow R$$

$$R \rightarrow R$$

$$R \rightarrow R$$

(o) DIPEA, DCM, BrCH2CO2Et (b) LiOH, THF, H2O, (c) DIC, DIPEA, DMF

FIG. 23

FIG. 24

SITES FOR DIMERIZATION

Nitrogen Atom of Tropane Core

Aromatic Ring

Primary Hydroxyl

Suitable, Pharmacophoric Building Blocks

Nitrogen Atom of Tropane Core Acid Series

Amine Series

FIG. 25

Ipratropium Multivalomers 1- Different points of Attachment

- n defines the valency of the multivalomer
- defines the framework core
- -- distinguishes the differing points of attachment of ipratropium

FIG. 26

Ipratropium Multivalomers 2-Alternative Framework Cores

FIG. 27

Ipratropium Multivalomers 3-Alternative Framework Valency Br N+0 Dimeric Series N-N Tetrameric Series

FIG. 28

Ipratropium Multivalomers 4-Relative Pharmacophore Orientation

- defines the valency of the multivalomer
- defines the framework core
- distinguishes the differing points of attachment of ipratropium

FIG. 29

FIG. 30

IPRATROPIUM 2-N-Linked Multivalomers

1. Reductive Amination/Quaternization

OHC
$$(c)$$
 (d) (d) (d) (d) (d)

(a)DIC,DMF,DMF (b)Pd/C, H_2 .EtOAC (c)NaBH(OAc) $_3$,CHCl $_3$,AcOH (d)MeBr,CHCl $_3$ (e)TBAF,THF FIG. 31

IPRATROPIUM 3-0-Linked Multivalomers

(a)NoH, THF (b)MeBr, CHClz, REFLUX

FIG. 32

(a)NaH,DME,heat (b)Pd/C,H2,EtOAc (c)NaH,DME,heat (d)MeBr,CH $_{
m I}$,heat F/G. 33

FIG. 34

$$N = N$$
 $N = N$
 $N =$

$$CO_2H$$

TELMISARTAN (Boehringer Ingelhiem) Phose III

$$O = \bigvee_{N=N}^{H-N-N} \bigvee_{N=N}^{N=N} \bigvee_{N=N}^{N+N-N} \bigvee_{N=N}^{N+N-N} \bigvee_{N=N}^{N-N-N} \bigvee_{N=N}^{N-N} \bigvee_{N=N}^{N} \bigvee_{N=N}^{N$$

RIPISARTAN (Bristol Myers Squibb) Phase II

Phase II CS-866 Sankyo DA-727 Daiichi KRH-594 Wakunga LR-B/081 Lusofarmaco TAK-536 Takeda YM-358 Yamanouchi

FIG. 36

Losartan Multivalomers 1—Differing Points of Attachment

1. Aryl Linked Multivalomers

HO
$$N$$
 $N=N$
 $N=N$

2. Butyl Linked Multivalomers

$$\begin{array}{c} CI \\ HO \\ N=N \\ K^{+}-N \\ N \end{array}$$

$$\begin{array}{c} CI \\ N=N \\ N \\ N \end{array}$$

$$\begin{array}{c} CI \\ N=N \\ N \\ N \end{array}$$

$$\begin{array}{c} CI \\ N=N \\ N \\ N \end{array}$$

$$\begin{array}{c} CI \\ N=N \\ N \\ N \end{array}$$

$$\begin{array}{c} CI \\ N=N \\ N \\ N \end{array}$$

$$\begin{array}{c} CI \\ N=N \\ N \\ N \end{array}$$

FIG. 38

Losartan Multivalomers 1-Differing Points of Attachment

1. Tetrazole Linked Multivalomers

$$HO \int_{N}^{N} \int_{N=N}^{N=N} \int_{N=N}^{N=N} OH$$

$$HO \int_{N}^{N} \int_{N=N}^{N=N} \int_{N=N}^{N=N} OH$$

$$V = V \int_{N=N}^{N=N} \int_{N=N}^{N=N} OH$$

2. Aryl Linked Multivalomers

$$K + -N - N - N - + K$$

FIG. 39

Lorsartan Multivalomers 2—Differing Valency of Multivalomer

FIG. 40

Lorsartan Multivalomers 3-Differing Framework Building Blocks

FIG. 41

Losartan Multivalomers 4-Different Relative Connectivity

$$\begin{array}{c} CI \\ N = N \\ N$$

HO
$$N = N$$
 $N = N$ N

Losartan Multivalomers 5-Heterovalomers

FIG. 43

Losartan Multivalomers Synthesis 1-Hydroxyl Linked Multivalomer

Losartan Multivalomer Synthesis 2-Hydroxyl Linked Multivalomer

(a)NaOMe,MeOH,DMF (b)NoH,DMF (c)BuzSnNz,xylene,reflux

Losartan Multivalomer Synthesis 3-Tetrazole Linked Multivalomers

Strategy—Selective tetrazole alkylation in the presence of the primary hydroxyl

For precedent see Carini, D. J., J. Med. Chem., 1991, 34, 2525-2547

β_2 Adrenergic Drugs

1. Rapid Onset Inhaled Drugs

2. Prolonged Duration of Action Inhaled Drugs

Notes-1 These drugs are racemates. Multivalomers will produce diastereomers

Albuterol Multivalomers

1. N atom

2. Ethanolamine function

$$HO \longrightarrow M \longrightarrow M$$

$$HO \longrightarrow H$$

3 Phenyl Ring

New substitution

Phenolic Group

Benzyl Alcohol

$$HO \longrightarrow M$$
 $HO \longrightarrow M$
 $HO \longrightarrow M$
 $HO \longrightarrow M$
 $HO \longrightarrow M$

M represents a site for the attachment of the monovalomer to the framework core.

2. Relative Orientation of Monovalomer Building Blocks

3 Mixed Multivalomers Derived from Different β_2 -agonists

Series 3
$$\frac{1}{N}$$
 $\frac{OH}{N}$ $\frac{1}{N}$ $\frac{OH}{N}$ $\frac{OH}{N}$ $\frac{1}{N}$ $\frac{OH}{N}$ $\frac{OH}{N}$ $\frac{1}{N}$ $\frac{OH}{N}$ $\frac{OH}{N$

Albuterol Multivalomers 2-Alternative Framework Cores

CO₂H

FIG. 51

Albuterol Multivalomers 3-Alternative Framework Valency

FIG. 52

Albuterol Multivalomers 4-Relative Pharmacophore Orientation

Albuterol Multivalomers 5-Mixed β_2 Adrenergic Heterovalomers

FIG. 54

reagents and conditions:
i) 1,6-hexanedioic acid, DIPEA, HOBT, PyBOP, DMF, rt,

ii) TFA/CH2Cl2, O°C.

FIG. 57

reagents and conditions:

- i) terphathalic acid, DIPEA, HOBT, PyBOP, DMF, rt:
- ii) TFA/CH2Cl2, O°C:
- iii) LiAIH4, THF, 80°C;