Anlage und Verfahren zum Trocknen von Gegenständen

05 .

Die Erfindung betrifft eine Anlage zum Trocknen von Gegenständen mit

- a) einer Trocknerkabine, die mindestens einen Abschnitt
 10 aufweist, in welchem die Gegenstände heißer Luft aus gesetzt sind;
 - b) einer Heizeinrichtung, welche die in die Trocknerkabine eingeführte Luft erhitzt;

15

sowie

ein Verfahren zum Trocknen von Gegenständen, bei dem Luft erhitzt und die Gegenstände mit erhitzter Luft 20 beaufschlagt werden.

Sowohl aus Umwelt- als auch aus Kostengründen wird dem Umgang mit Energie beim Trocknen von Gegenständen zunehmend Beachtung geschenkt. Insbesondere beim Trocknen von großen, lackierten Gegenständen, wie beispielsweise Fahrzeugkarosserien, müssen erhebliche Energiemengen eingesetzt werden, so daß Energieeinsparungen zu erheblichen Kostenreduzierungen führen.

30 Bei bekannten Trocknern der eingangs genannten Art,
wie sie insbesondere zum Trocknen von frisch lackierten
Fahrzeugkarosserien verwendet werden, finden als Heizeinrichtung für die Trocknerluft thermische Nachverbrennungsvorrichtungen Verwendung. Diese thermischen Nachverbren35 nungsvorrichtungen tragen zur Energieeinsparung schon

WO 2005/047794 · · · PCT/EP2004/011036

- 2 - '

insoweit bei, als sie der der Trocknerkabine entnommenen, kohlenwasserstoffhaltigen Luft durch Verbrennung ihren Energiegehalt entzieht und dabei diese Luft gleichzeitig reinigt.

05

Im allgemeinen reicht jedoch der Energiegehalt der Abluft der Trocknerkabine nicht aus, um die zur vollständigen Reinigung erforderliche Verbrennungstemperatur zu erreichen. Der zu entsorgende Trockner-Abluftstrom muß daher auf eine 10 zur vollständigen Oxidation der in der Trockner-Abluft enthaltenen organischen Bestandteile notwendige Temperatur aufgeheizt werden. Hierzu sind entsprechende Brennstoffe zuzuführen. Die heiße, die thermische Nachverbrennungsvorrichtung verlassende Luft wird nunmehr einem oder mehreren 15 Wärmetauschern zugeführt, indem sie einen Teil ihrer Wärmeenergie der in der Trocknerkabine umgewälzten Luft übergeben. Ein direktes Einleiten der Verbrennungsluft der thermischen Nachverbrennungsvorrichtung in die Trocknerkabine ist wegen der unter Umständen die Qualität der 20 Lackoberfläche störenden in der Abluft noch verhandenen bzw. entstehenden Fremdstoffe und der schechteren Temperaturregelung zu vermeiden. Die aus der thermischen Nachverbrennungsvorrichtung stammenden und in dem oder den Wärmetauschern abgekühlte Luft wird sodann mit einer Temperatur dem Kamin zugeleitet, die sich nicht allzusehr von der im Inneren der Trocknerkabine herrschenden Temperatur unterscheidet. Typisch ist ein Wert von 160° C.

Obwohl mit diesen bekannten Trocknern bereits erhebliche Energieeinsparungen erzielt werden, wird nach weiteren Möglichkeiten gesucht, Energie zu sparen. Außerdem bedeuten die Wärmetauscher, die aus den oben erwähnten Gründen eingesetzt werden müssen, einen verhältnismäßig hohen apparativen Aufwand.

25

Aufgabe der vorliegenden Erfindung ist es, eine Vorrichtung und ein Verfahren der eingangs genannten Art anzugeben, mit denen bei geringerem apparativem Aufwand mit geringerem Einsatz an Primärenergie getrocknet werden 05 kann.

Diese Aufgabe wird, was die Vorrichtung angeht, dadurch gelöst, daß

- 10 c) die Heizeinrichtung mindestens eine Hochtemperatur-Brennstoffzelle umfaßt, deren Prozess-Abluft der Trocknerkabine als heiße Luft zuführbar ist;
 - d) eine Steuerung vorgesehen ist, welche
- da) die Hochtemperatur-Brennstoffzelle ungeachtet
 der von ihr erzeugten elektrischen Energie
 so betreibt, daß die von ihr erzeugte thermische Energie dem Bedarf in der Trocknerkabine
 entspricht;
 - db) die von der Hochtemperatur-Brennstoffzelle erzeugte elektrische Energie in der jeweils anfallenden Menge anderen Verbrauchern zuführt.

Es ist bekannt, daß in Hochtemperatur-Brennstoffzellen zwei Arten von Energie, nämlich elektrische und thermische Energie anfallen. Ebenso bekannt ist, daß dann, wenn beide Arten von Energie verwendet werden können, ein Nutzungsgrad der Primärenergie von bis zu 90 % erreicht werden kann. Bisher wurden die Hochtemperatur-Brennstoffzellen allerdings primär in der Absicht eingesetzt, so viel wie möglich elektrische Energie zu erzeugen; für die thermische Energie, die sich dabei zwangsläufig ergab, wurden dann geeignete Verbraucher gesucht. Wo es solche Verbraucher nicht gab,

WO 2005/047794 · · · PCT/EP2004/011036

- Aı -

ging die thermische Energie verloren.

Erfindungsgemäß wird dieses bekannte Konzept, Hochtemperatur-Brennstoffzellen zu betreiben, auf den Kopf gestellt:

5 Für den Einsatz bei Trocknern wird die Brennstoffzelle primär als Heizeinrichtung betrachtet, welche zur Erhitzung der Trocknerluft thermische Energie liefert. Dementsprechend wird die Hochtemperatur-Brennstoffzelle auch entsprechend dem Bedarf an thermischer Energie in der Trocknerkabine betrieben. Dabei ist es zunächst unerheblich, wieviel elektrische Energie in diesem Zusammenhang zwangsläufig mit anfällt. Für diese elektrische Energie gilt nunmehr das Prinzip, daß sich immer Verbraucher finden, denen diese elektrische Energie zuführbar ist. Dies fällt umso leichter, als elektrische Energie eine höherwertige Energieform ist, die vielseitiger einsetzbar ist als thermische Energie.

Für die Verwertung der anfallenden elektrischen Energie
wird vorteilhaft die folgende Philosophie befolgt: Die
Steuerung setzt die elektrische Energie der HochtemperaturBrennstoffzelle primär für zur Anlage selbst gehörende
elektrische Verbraucher und sekundär für außerhalb der
Anlage befindliche elektrische Verbraucher ein. Auf diese
Weise wird die Anlage hinsichtlich der elektrischen Energie
weitgehend autark. Da der Bedarf an thermischer Energie
in Trocknern sehr hoch sein kann, wird in vielen Fällen
mehr elektrische Energie erzeugt, als die Verbraucher in
der Anlage selbst abnehmen können. Erst diese überschüssige
Energie wird dann an Verbraucher außerhalb der Anlage
selbst abgeführt.

Sollte die von der Hochtemperatur-Brennstoffzelle erzeugte thermische Energie insbesondere beim Anfahren der Anlage, 35 nicht ausreichen, muß aus dem elektrischen Netz nachge- '5 -

speist werden.

Innerhalb der Anlage selbst wird die elektrische Energie der Hochtemperatur-Brennstoffzelle primär für die der

Wärmeerzeugung dienenden elektrischen Verbraucher, z. B. für Infrarot-Strahler, und erst sekundär für andere elektrische Verbraucher, z. B. elektrische Antriebe, eingesetzt.

- 10 Auch dieses Prinzip spiegelt wieder, daß erfindungsgemäß die Hochtemperatur-Brennstoffzelle als Quelle thermischer Energie betrachtet wird. Soweit also elektrische Energie überschüssig ist, kann diese zur Erwärmung der zu trocknenden Gegenstände verwendet werden, was wiederum den Bedarf an erhitzter Luft reduziert. Die Brennstoffzelle kann dann insgesamt mit geringerer Leistung betrieben werden, wenn ein möglichst autarker Betrieb der gesamten Anlage angestrebt wird.
- Wenn nach dem Speisen der der Wärmeerzeugung dienenden elektrischen Verbraucher der Anlage noch elektrische Energie übrigbleibt, wird diese für elektrische Antriebe möglichst innerhalb der Anlage selbst, also beispielsweise für die Motoren von verwendeten Gebläsen oder auch von Fördereinrichtungen verwendet.

Erst wenn die elektrische Energie innerhalb der Anlage selbst nicht verbraucht werden kann, wird bei einer vorteilhaften Ausführungsform der erfindungsgemäßen

30 Anlage die überschüssige Energie primär einem Energiespeicher und sekundär dem allgemeinen elektrischen Netz zugeführt. Als Energiespeicher kommen sowohl eine Batterie als auch eine Elektrolyseeinrichtung zur Erzeugung von Wasserstoff in Betracht. Auch die Energiespeicher erhöhen die Autarkie der Anlage, da ihnen in Phasen, in denen

die elektrische und/oder thermische Leistung der Hochtemperatur-Brennstoffzelle nicht ausreicht, Energie entnommen werden kann.

- Dei bekannten Anlagen der eingangs genannten Art wurden, wie oben schon erwähnt, thermische Nachverbrennungsvorrichtungen eingesetzt, um die erheblichen Energiemengen, die benötigt werden, zu gewinnen und gleichzeitig die Trockner-Abluft zu reinigen. Da bei erfindungsgemäßen

 10 Anlagen die erhitzte Trocknerluft jedenfalls zum überwiegenden Anteil aus der Hochtemperatur-Brennstoffzelle stammt, kann zum Reinigen der die Trockenkammer verlassenden kohlenwasserstoffhaltigen Luft eine regenerative Nachverbrennungsvorrichtung vorgesehen werden. Diese führt den Reinigungsvorgang mit geringerem Energieaufwand als eine thermische Nachverbrennungsvorrichtung durch. Die hierbei freiwerdende überschüssige thermische Energie reicht zum Betrieb des Trockners nicht aus.
- Gleichwohl kann es nach einer weiteren bevorzugten Ausführungsform der Erfindung sinnvoll sein, einen Wärmetauscher vorzusehen, in welchem ein Wärmetausch zwischen der regenerativen Nachverbrennungsvorrichtung entnommener heißer Luft und der Außenatmosphäre entnommener und der Trocknerkabine zugeführter Luft stattfindet. In diesem Wärmetauscher wird also dem die regenerative Nachverbrennungseinrichtung verlassenden, nur noch eine geringe Temperatur aufweisendem Gas, noch weitere Wärme entnommen, um sie der Nutzung innerhalb der Trocknerkabine zuzuführen.
 - Die o.g. Aufgabe wird, was das Verfahren zum Trocknen von Gegenständen angeht, dadurch gelöst, daß
- 35 a) als heiße Luft die Prozess-Abluft einer Hochtemperatur-

Brennstoffzelle verwendet wird;

- b) die Hochtemperatur-Brennstoffzelle ungeachtet der dabei erzeugten elektrischen Energie entsprechend
 05 dem Bedarf an thermischer Energie bei dem Trocknervorgang betrieben wird;
- c) die von der Hochtemperatur-Brennstoffzelle erzeugte elektrische Energie in der jeweils anfallenden Menge elektrischen Verbrauchern zugeführt wird.

Die Vorteile des erfindungsgemäßen Verfahrens entsprechen sinngemäß den o.g. Vorteilen der erfindungsgemäßen Vorrichtung.

15

25

Vorteilhafte Ausführungsformen des erfindungsgemäßen Verfahrens, die ebenfalls ihr Analogon in oben schon erläuterten Ausführungsformen der erfindungsgemäßen Vorrichtung finden, sind in den Ansprüchen 8 bis 12 angegeben.

Da beim erfindungsgemäßen Verfahren im allgemeinen elektrische Energie zur freien Verfügung steht, macht es Sinn, nach Erreichen der Betriebstenperatur der Brennstoffzelle zumindest teilweise das Brenngas durch elektrische Energie zu erhitzen. Dadurch erhöht sich der thermische Wirkungsgrad. Die Austrittstemperatur der Prozess-Abluft erhöht sich so auf etwa 600° C.

30 Wo in der Trocknerkabine eine Inertatmosphäre benötigt wird, insbesondere bei der Verarbeitung von UV-härtenden Lacken, kann die Prozess-Abluft der Hochtemperatur-Brennstoffzelle direkt die Inertatmosphäre bilden. Sie ist von Hause aus hinreichend sauber und besteht insbesondere bei Verwendung von Erdgas als Brenngas nahezu ausschließlich

aus Kohlendioxid, das bei der Aushärtung von UV-Lacken eine wichtige Rolle spielt.

Ausführungsbeispiele der Erfindung werden nachfolgend anhand der Zeichnung näher erläutert; es zeigen 05

- Figur 1 schematisch eine Anlage zum Trocknen von Fahrzeugkarosserien;
- 10 Figur 2 etwas detaillierter eine in der Anlage der Figur 1 enthaltene Hochtemperatur-Brennstoffzelle sowie deren nächste Umgebung;
- Figur 3 eine zweite Ausführungsform einer erfindungsgemäßen Anlage. 15

Die in der Zeichnung dargestellte Anlage zum Trocknen von Fahrzeugkarosserien umfaßt als zentrale Komponente die eigentliche Trocknerkabine 1, die durch eine Trennwand 2 in eine Vorerwärmungszone 3 und eine Haupt-Trocknungszone 4 unterteilt ist. Die frisch lackierten Fahrzeugkarosserien werden mit Hilfe eines nicht dargestellten Fördersystems zunächst in die Vorerwärmungszone 3 eingebracht und dort durch die kombinierte Wirkung einer über eine Leitung 5 eingebrachten Heißluft und elektrisch 25 betriebener Infrarotstrahler 6 auf eine Temperatur von etwas unter 100° C gebracht. Dabei wird der größte Teil des Lösemittels ausgetrieben. Die stark lösemittelhaltige Luft wird über eine Leitung 7 der Trocknerkabine entnommen 30 und einer weiter unten beschriebenen Nachbehandlung zugeführt.

Die so vorerwärmten Fahrzeugkarosserien gelangen sodann in die Haupttrocknungszone 4, die ihrerseits nocheinmal in eine Aufwärm- und eine Haltezone unterteilt sein kann. WO 2005/047794 PCT/EP2004/011036

- '9 -

Durch die im Vergleich zur Vorerwärmungszone 3 größere Länge der Haupttrocknungszone 4 wird angedeutet, daß sich die Fahrzeugkarosserien in der Haupttrocknungszone 4 länger als in der Vorerwärmungszone 3 befinden. Bei einem kontinuierlichen Durchlaufverfahren spiegeln sich diese unterschiedlichen Behandlungszeiten in unterschiedlichen Anlagenlängen wieder.

Innerhalb der Haupttrocknungszonen 4 werden die Fahrzeugkarosserien zum einen mit heißer Luft, die ebenfalls
über die Leitung 5 zugeführt wird, zum anderen aber
mit Prozess-Abluft, die über Leitungen 8 eingespeist wird,
auf eine Temperatur von 180° C gebracht. Die heiße Luft
innerhalb des Haupttrocknerabschnitts 4 wird zur gleichmäßigen Erwärmung mit Hilfe von Gebläsen 9 umgewälzt. Bei
der geschilderten Temperatur entweichen die restlichen
Lösemittel aus dem Lack auf den Fahrzeugkarosserien; der
Lack wird ausgehärtet.

20 Zur Erzeugung der über die Leitungen 8 in den Haupttrocknerabschnitt 4 eingespeisten heißen Prozess-Abluft werden eine oder mehrere Hochtemperatur-Brennstoffzellen 10 eingesetzt. Derartige Hochtemperatur-Brennstoffzellen 10 können mit praktisch allen kohlenwasserstoffhaltigen Brenngasen betrieben werden, insbesondere mit Erdgas aber auch Biogas, Klärgas, Deponiegas oder sonstigen industriellen Restgasen, wie sie auch in der Lackiertechnik anfallen. Das Brenngas wird der Hochtemperatur-Brennstoffzelle 10 über die Leitung 21 zugeführt. Es wird dort mit Hilfe einer elektrischen Heizvorrichtung 22 (vgl. Figur 2) auf Betriebstemperatur gebracht. Die Heizvorrichtung 22 wird während des Anfahrens der Anlage aus Fremdstrom gespeist und nach Erreichen der Betriebstemperatur mit dem von der Hochtemperatur-Brennstoffzelle 10 selbst 35 erzeugten Strom betrieben. Dies deshalb, weil elektrische

WO 2005/047794 · · · · PCT/EP2004/011036

- '10 - '

Energie im allgemeinen im Überschuß vorhanden ist, während die thermische Energie der Hochtemperatur-Brennstoffzelle 10 möglichst vollständig der Trocknerkabine 1 zugeführt werden sollte.

05

Die zur Verbrennung erforderliche Luft wird über eine mit der Außenatmosphäre verbundene Leitung 23, in der eine steuerbare Klappe 24 liegt, zugeführt.

10 Im Inneren der Hochtemperatur-Brennstoffzelle 10 herrscht eine Temperatur von etwa 650°. Es entsteht eine Prozess-Abluft, die mit einer Temperatur von etwa 600° C die Hochtemperatur-Brennstoffzelle 10 verläßt. Diese Prozess-Abluft ist praktisch frei von Verunreinigungen, so daß sie über die Leitungen 8 ohne Zwischenschalten eines Wärmetauschers direkt in die Trocknerkabine 1 eingegeben werden kann, wo eine Temperatur von etwa 180° C eingestellt wird. Werden in der Trocknerkabine 1 UV-härtende Lacke verarbeitet, so kann die hierfür erforderliche Inertatmosphäre direkt von der Prozess-Abluft gebildet werden, die insbesondere bei der Verwendung von Erdgas als Brenngas weit überwiegend aus Kohlendioxid besteht.

Knapp 60 % der gesamten Energie fällt als elektrische 25 Energie, reichlich 40 % als thermische Energie an.

Bevor auf die Verwendung der verschiedenen Energiearten und die hierfür eingesetzte Steuerung der Hochtemperatur-Brennstoffzelle 10 eingegangen wird, sei zunächst die 30 Beschreibung der gesamten Anlage zu Ende geführt:

Die die Trocknerkabine 1 über die Leitung 7 verlassende, stark lösemittelhaltige Abluft wird zunächst einer regenerativen Nachverbrennungsvorrichtung 11 zugeführt, in welcher die organischen Verunreinigungen verbrannt, die WO 2005/047794 ·

- '11 - '

Abluft somit gereinigt wird. Diese gereinigte, etwa 230° C heiße Abluft wird mit Hilfe eines Gebläses 12 einem Kamin 13 entweder direkt oder auf dem Umweg über einen Wärmetauscher 14 zugeleitet. Die heiße gereinigte Luft 05 gibt dort einen Teil ihrer Wärme an Atmosphärenluft von etwa 20°C ab, die mit Hilfe eines weiteren Gebläses 15 angesaugt, durch den Wärmetauscher 14 hindurchgedrückt und sodann über die oben schon erwähnte Leitung 5 in die Trocknerkabine 1 mit einer Temperatur von etwa 180° C 10 eingebracht wird. Die Leitung 5 führt weiter zu einer steuerbaren Klappe 25 und mündet zwischen der Klappe 24 und der Hochtemperatur-Brennstoffzelle 10 in die Leitung 24. Durch Einstellen der Klappen 24 und 25 können ersichtlich die Menge und die Temperatur der 15 der Hochtemperatur-Brennstoffzelle 10 zugeleiteten Luft bestimmt werden.

Das Energiemanagement der gesamten Anlage erfolgt mit Hilfe einer elektronischen Steuerung in folgender Weise:

20

Die primäre Steuergröße ist der Bedarf an thermischer Energie, der in der Haupttrocknerzone 4 benötigt wird. Die Brennstoffzelle 10 wird so betrieben, daß die erforderliche thermische Energie erzeugt und die entsprechenden 25 Mengen erhitzter Abluft über die Leitungen 8 in die Haupttrocknerzone 4 eingegeben werden können. Dabei wird auf die gleichzeitig anfallende elektrische Energie keine Rücksicht genommen. Mit dieser wird wie folgt verfahren: Zunächst werden über die Leitung 18 diejenigen 30 elektrischen Verbraucher der Anlage selbst versorgt, die der Wärmegewinnung dienen, insbesondere also den Infrarotstrahlern 6 und die elektrische Heizeinrichtung 22. Überschüssige elektrische Energie wird über die Leitungen 17 den innerhalb der Anlage vorhandenen Gebläsen 12, 15 zugeleitet. Bei üblichen Trockneranlagen verbleibt

auch jetzt noch überschüssige elektrische Energie, mit welcher über die Leitung 19 elektrische Antriebe, z.B. des die Fahrzeugkarosserien transportierenden Förderers, versorgt werden. Verbleibt dann noch elektrische Energie, wird diese über die Leitung 20 entweder in das elektrische Netz abgegeben oder zwischengespeichert, beispielsweise in Form einer elektrolytischen Wasserstofferzeugung.

Das in Figur 3 dargestellte Ausführungsveispiel einer

Trockneranlage unterscheidet sich von dem oben anhand
der Figuren 1 und 2 beschriebenen nur dadurch, daß keine
Nachverbrennungsvorrichtung und kein diesem nachgeschalteter Wärmetauscher, der Wärme von der die regenerative
Nachverbrennungsvorrichtung verlassenden Luft auf die aus

der Außenatmosphäre angesaugte Luft überträgt, vorgesehen
sind. Statt dessen mündet die Leitung 5 über eine steuerbare
Klappe 28 in die zum Kamin 13 führende Leitung 26; die
Leitung 27, über welche Frischluft angesaugt wird, enthält
ebenfalls eine steuerbare Klappe 29 und mündet zwischen

dem Gebläse 15 und der Leitung 26 in die Leitung 5.
Über die Klappen 28 und 29 lassen sich ersichtlich Menge
und Temperatur der der Trocknerkabine 1 zugeführten Luft
bestimmen.

Patentansprüche

05

- 1. Anlage zum Trocknen von Gegenständen mit
- a) einer Trocknerkabine, die mindestens einen Abschnitt aufweist, in welchem die Gegenstände heißer Luft
 10 ausgesetzt sind;
 - b) einer Heizeinrichtung, welche die in die Trocknerkabine eingeführte heiße Luft erhitzt;
- 15 dadurch gekennzeichnet, daß
 - c) die Heizeinrichtung mindestens eine Hochtemperatur-Brennstoffzelle (10) umfasst, deren Prozess-Abluft der Trocknerkabine (1) als heiße Luft zuführbar ist;

20

- d) eine Steuerung vorgesehen ist, welche
- da) die Hochtemperatur-Brennstoffzelle (10) ungeachtet der von ihr erzeugten elektrischen Energie so betreibt, daß die von ihr erzeugte thermische Energie dem Bedarf in der Trocknerkabine
 (1) entspricht;
- db) die von der Hochtemperatur-Brennstoffzelle (10)

 30 erzeugte elektrische Energie in der jeweils anfallenden Menge anderen elektrischen Verbrauchern
 zuführt.
- Anlage nach Anspruch 1, dadurch gekennzeichnet, daß
 die Steuerung die elektrische Energie der Hochtempe-

WO 2005/047794 PCT/EP2004/011036

- '14 - '

ratur-Brennstoffzelle (10) primär für zur Anlage selbst gehörende elektrische Verbraucher (6, 12, 15) und sekundär für außerhalb der Anlage befindliche elektrische Verbraucher einsetzt.

05

- Anlage nach Anspruch 2, dadurch gekennzeichnet, da die Steuerung die elektrische Energie der Hochtemperatur-Brennstoffzelle (10) innerhalb der Anlage selbst primär für die der Wärmeerzeugung dienenden elektrischen
 Verbraucher (6), z. B. für Infrarotstrahler, und sekundär für andere elektrische Verbraucher, z. B. elektrische Antriebe, einsetzt.
- 4. Anlage nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Steuerung die überschüssige, nicht in der Anlage selbst verbrauchte elektrische Energie der Hochtemperatur-Brennstoffzelle (10)
 primär einem Energiespeicher und sekundär dem allgemeinen elektrischen Netz zuführt.

20

- 5. Anlage nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß eine regenerative Nachverbrennungsvorrichtung (11) vorgesehen ist, welcher der Trockenkammer (1) entnommene kohlenwasserstoff25 haltige Luft zur Reinigung zugeführt wird.
- Anlage nach Anspruch 5, dadurch gekennzeichnet, daß ein Wärmetauscher (14) vorgesehen ist, in welchem ein Wärmetausch zwischen der regenerativen Nachverbrennungsvorrichtung (11) entnommener heißer Luft und der Außenatmosphäre entnommener und der Trocknerkabine
 (1) zugeführter Luft stattfindet.
- Verfahren zum Trocknen von Gegenständen, bei dem
 Luft erhitzt und die Gegenstände mit der erhitzten

10

- 15 - 1

Luft beaufschlagt werden,

dadurch gekennzeichnet, daß

- 05 a) als heiße Luft die Prozess-Abluft einer Hochtemperatur-Brennstoffzelle (10) verwendet wird;
 - b) die Hochtemperatur-Brennstoffzelle (10) ungeachtet der dabei erzeugten elektrischen Energie entsprechend dem Bedarf an thermischer Energie für den Trocknungsvorgang betrieben wird;
- c) die von der Hochtemperatur-Brennstoffzelle (10) erzeugte elektrische Energie in der jeweils anfallenden
 Menge elektrischen Verbrauchern zugeführt wird.
- Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß die elektrische Energie der Hochtemperatur-Brennstoffzelle (10) primär für zur Anlage selbst gehörende elektrische Verbraucher (6, 12, 15) und sekundär für außerhalb der Anlage befindliche elektrische Verbraucher verwendet wird.
- 9. Verfahren nach Anspruch 7 oder 8, dadurch gekenn25 zeichnet, daß die elektrische Energie der Hochtemperatur-Brennstoffzelle innerhalb der Anlage selbst
 primär für die der Wärmeerzeugung dienende elektrischen
 Verbraucher, z. B. für Infrarot-Strahler und sekundär
 für andere elektrische Verbraucher, z. B. elektrische
 30 Antriebe, verwendet wird.
 - 10. Verfahren nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, daß die überschüssige, nicht in der Anlage selbst verbrauchte elektrische Energie der Hochtemperatur-Brennstoffzelle (10) primär einem Ener-

PCT/EP2004/011036

giespeicher und sekundär dem allgemeinen elektrischen Netz zugeführt wird.

- 11. Verfahren nach einem der Ansprüche 7 bis 10, dadurch gekennzeichnet, daß die beim Trocknen entstehende kohlenwasserstoffhaltige Luft regenerativ nachverbrannt wird.
- 12. Verfahren nach Anspruch 11, dadurch gekennzeichnet,
 10 daß die durch Nachverbrennen erhitzte Luft zur Erwärmung von Luft verwendet wird, die der Außenatmosphäre entnommen und dem Trocknungsvorgang zugeführt
 wird.
- 13. Verfahren nach einem der Ansprüche 7 bis 12, dadurch gekennzeichnet, daß nach Erreichen der Betriebstemperatur der Brennstoffzelle (10) das Brenngas zumindest teilweise durch von der Brennstoffzelle
 (10) sewlbst gelieferte elektrische Energie erwämt wird.
 - 14. Verfahren nach einem der Ansprüche 7 bis 13, dadurch gekennzeichnet, daß die Prozess-Abluft der
 Hochtemperatur-Brennstoffzelle (10) in der Trocknerkabine
 (1) eine Inertatmosphäre bildet.

25

20

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)