Appendix B5 Trees

Similar to graphs, there are a variety of trees with their own properties and definitions.

B.5.1 Free Trees

Def: (Free) Tree: A connected, acyclic, undirected graph.

Note: Free is often dropped as an adjective when referring to a graph as a tree.

Def: Forest: If a tree is a disconnected, it is considered a forest.

Note: A forest can also be thought as a collection of trees.

Theorem: Properties of Free Trees

Let G = (V, E) be an undirected graph. The following statements are equivalent,

- 1. G is a free tree.
- 2. Any two vertices in G are connected by a unique simple path.
- 3. G is connected, but if any edge is removed from E_i , the resulting graph is now disconnected.
- 4. G is connected so |E| = |V| 1
- 5. G is acyclic so |E| = |V| 1
- 6. G is acyclic, but if any edge is added to E, the resulting graph now contains a cycle.

Proof

$$(1) \implies (2)$$

Since a tree is connected, any two vertices in G are connected by at least one simple path.

Suppose, by contradiction, that $u, v \in V$ by two distinct paths p_1, p_2 .

Let w be the vertex at which the paths diverge.

Let z be the vertex at which the paths reconverge.

Let p' be the subpath of p_1 from w through x to z.

Let p'' be the subpath of p_2 from w through y to z.

As p_1 and p_2 are distinct, p' and p'' share no vertices except their endpoints.

Since p_1 and p_2 share two vertices, they form a cycle which contradicts our assumption that G is a tree.

 \therefore If G is a tree, there are at most one simple path between two vertices.

$$(2) \implies (3)$$

If any two vertices in G are connected by a distinct simple path, then G is connected.

Let
$$(u,v)\in E$$

Note (u, v) must be the unique path as proven by $(1) \implies (2)$.

If we remove (u,v) from E, there will no longer be a path from $u \to v$.

 \therefore The removal of (e, v) from E would disconnect G.

$$(3) \implies (4)$$

As G is connected, we know that $|E| \ge |V| - 1$ by a skipped exercise (B.4-3).

We shall prove that $|E| \leq |V| - 1$ by induction.

Note: A connected graph with n = 1 vertices has 0 edges and n = 2 vertices has 1 edge.

Base Case: We can express this relation as a graph of n vertices has n-1 edges.

Suppose that G has $n \geq 3$ vertices and that all graphs satisfying (3) with fewer than n also satisfy $|E| \geq |V| - 1$.

Removing an arbitrary edge from G separates the graph into $k \geq 2$.

Let each subcomponent $G_i = (V_i, E_i)$ be a tree satisfying (3). If a G_i does not satisfy (3), then G was never a tree.

As we know that $|V_i| < |V|$, by the inductive hypothesis we have that $|E_i| \le |V_i| - 1$.

Thus, $|V| - k \le |V| - 2$ where k is also the number of removed edges.

If we add back in the removed edge, we result in $|E| \leq |V| - 1$.

$$\therefore$$
 As $|E| \leq |V| - 1$ and $|E| \geq |V| - 1$, then $|E| = |V| - 1$.

$$(4) \implies (5)$$

Suppose that G is connected and that |E| = |V| - 1.

To show G is acyclic, suppose for contradiction that G has a simple cycle containing k vertices $v_1, \ldots v_k$.

Let $G_k = (V_k, E_k)$ be the subgraph of G consisting of the cycle.

Note that
$$|V_k| = |E_k| = k$$
.

If k < |V|, then $\exists v_{k+1} \in V - V_k$ that is adjacent to some $v_i \in V_k$ as G is connected.

Define $G_{k+1} = (V_{k+1}, E_{k+1})$ to be the subgraph of G with $V_{k+1} = V_k \cup \{v_{k+1}\}$ and $E_{k+1} = E_k \cup \{e_{k+1}\}$.

Note, this process can continue until we reach $G_n = (V_n, E_n)$ where n = |V|, $V_n = V$, and $|E_n| = |V_n| = |V|$.

As G_n is a subgraph of G, we have that $E_n \subseteq E$.

With the value of $|E_n|$ and its subset relationship, it follows that $|E| \le |V|$ which contradicts the assumption that |E| = |V| - 1.

 $\therefore G$ is acyclic.

$$(5) \implies (6)$$

Suppose that G is acyclic and that |E| = |V| - 1.

Let k be the number of connected components of G.

Each connected component is a free tree by definition.

As (1) \implies (5), the sum of all edges in all connected components of G is |V| - k.

Note: k must be k = 1 as G is a tree and there is 1 connected component in a tree.

As $(1) \implies (2)$, any two vertices in G are connected by a unique path.

 \therefore Adding any edge to G would create a cycle.

$$(6) \implies (1)$$

Suppose that G = (V, E) is acyclic and that adding any edge to E creates a cycle.

We must show that G is connected.

Let $u, v \in V$.

If u, v are not adjacent, adding the edge (u, v) creates a cycle in which all edges but (u, v) belong to G.

Thus, the cycle minus edge (u, v) must contain a path from $u \to v$.

 \therefore *G* is connected.

B.5.2 Rooted and Ordered Trees

Def: Rooted Tree is a free tree with a vertex distinguished from the others as the root.

In the context of a rooted tree, the vertices are referred to as *nodes*.

Visually, the root node is depicted as being the top most node.

Def: Parent: Given a non-root node, the parent node is the node directly above it.

Def: Ancestor: Let x be a node, any node in the simple path from the root to x is an ancestor of x.

Def: Descendant: Let x be a node, if a node has x as its ancestor, then that node is an ancestor of x.

Note: A node x is both its ancestor & descendent by definition. Ancestors & descendents not of x are **proper**.

Def: Child: Given a non-leaf node, a child node is the node directly below it. A node may have multiple children

Def: Siblings: Nodes that share the same parent.

Def: Leaf (external node): A node is a leaf or external node if it does not have any children.

Def: Internal Node: A nonleaf node.

Given a tree, a subtree can be induced from a given node x with x as the root.

Def: Degree: The number of children of a node.

Def: Depth: The length of the simple path from the root r to a node x is the depth of x in T.

Def: Level: The collection of nodes at the same depth.

Def: Height of a Node: The number of edges on the longest simple downward path from the node to a leaf.

Def: Height of a Tree: The largest depth of any node in the tree.

Def: Ordered Tree: A rooted tree where the children of each node are ordered.

B.5.3 Binary and Positional Trees

Def: Binary Tree: A recursive ordered tree structure defined on a finite set of nodes that either:

- Contains no nodes, denoted as the empty tree.
- A three disjoint sets of nodes: a root node (parent), a left subtree (left child), and a right subtree (right child).

Def: Missing Child: A child connection is considered missing if it is the empty tree.

Def: Full Binary Tree: Each node is either a leaf or has degree exactly 2.

Def: *K*-ary *Tree*: An extension of the binary tree where each node has *k* children.

Def: Complete K-ary Tree: A k-ary tree in which all leaves have the same depth and all internal nodes have degree k.

The number of leaves at depth h of a complete K-ary tree can be computed as k^h .

The number of internal nodes of a tree of height h can be computed as:

$$1+k^1+k^2+\cdots+k^{h-1}=\sum_{i=0}^{h-1}k^i=rac{k^h-1}{k-1}\,.$$

Following this, a complete binary tree has $2^h - 1$ internal nodes.