AR Indoor Navigation for SKKU Suwon campus

team E: 김현호 마준서 안정민 조민구

Unity's AR Foundation Supported Features

Functionality	ARCore	ARKit	Magic Leap	HoloLens
Device tracking	~	~	~	~
Plane tracking	~	~	~	
Point clouds	~	~		
Anchors	~	~	~	~
Light estimation	~	~		
Environment probes	~	~		
Face tracking	~	~		
Meshing			~	~
2D Image tracking	~	~		
Raycast	~	~	~	
Pass-through video	~	~		
Session management	~	~	~	~

AR Marker Recognition

AR Marker Recognition

Trends of VR/AR Game Technology(2016)

Machine Learning for High-Speed Corner Detection(2006)

BRISK: Binary Robust invariant scalable keypoints(2011)

BRISK: Binary Robust invariant scalable keypoints(2011)

$$Z = \sqrt{h^2 + Y^2 + X^2} (1)$$

$$X = Y \times \tan \varphi$$
 (2)

$$Y = h \times \tan \theta$$
 (3)

$$\varphi = \left(i - \frac{W}{2}\right) \times \left(\frac{FOV_H}{W}\right) \tag{4}$$

$$\theta = \omega + \left(\frac{H}{2} - j\right) \times \left(\frac{FOV_V}{H}\right)$$
 (5)

DEPTH AND GEOMETRY FROM A SINGLE 2D IMAGE USING TRIANGULATION. (2012)

Z: distance between camera and point

h: height of camera

 φ : vertical angles

 θ : rotation angles