Complex numbers and image analysis

Henrik Skov Midtiby

Maersk McKinney Moller Institute hemi@mmmi.sdu.dk

2015-05-28

What is a complex number?

What is a complex number?

How to use complex numbers to detect repeating patterns?

Pattern in time

Direction of edges

Marker detection

Outro

What is a complex number?

Complex numbers let us solve certain equations like

$$x^2 = -4$$

by introducing the number i, with the property $i^2 = -1$.

Matlab code example

```
>> x = 2i
>> x^2
x =
   0.0000 + 2.0000i
ans =
    -4
>> x = 1 + 1i
>> x^2
x =
   1.0000 + 1.0000i
ans =
   0.0000 + 2.0000i
```

Dual representation

Cartesian form

$$z = a + ib$$

Polar form

$$z = r \cdot e^{i\theta}$$

Eulers identity

$$e^{i\theta} = \cos(\theta) + i\sin(\theta)$$

describes how to calculate complex exponentials.

Oscillating exponentials

$$e^{ikt}$$
 $k \in \mathbb{R}$

Complex exponentials "oscillate" and are simpler to do calculations with than sine and cosine.

Matlab code example

To plot the oscillating function

$$f(t) = e^{it}$$

The following code is used

```
x = linspace(0, 2*pi, 1000);
x = x(2:end);
ex = exp(1i * x);
plot(x, real(ex)); hold on;
plot(x, imag(ex)); hold off;
legend('Real', 'Imag')
```

Oscillating function

Two oscillating functions

What is a complex number?

How to use complex numbers to detect repeating patterns?

The Fourier transform

Pattern in time

Direction of edges

Marker detection

Outro

Representations of a periodic function

A periodic function, f(t), with period 2π can be represented af a sum of oscillating functions with different frequencies. Sine and cosine based

$$f(t) = a_1 \cdot \sin(1t) + a_2 \cdot \sin(2t) + a_3 \cdot \sin(3t) + \dots$$

$$b_0 + b_1 \cdot \cos(1t) + b_2 \cdot \cos(2t) + \dots$$

Based on complex exponentials

$$f(t) = c_1 \cdot e^{1ti} + c_2 \cdot e^{2ti} + c_3 \cdot e^{3ti} + \dots$$
$$c_0 + c_{-1} \cdot e^{-1ti} + c_{-2} \cdot e^{-2ti} + c_{-3} \cdot e^{-3ti} + \dots$$

Example of a periodic function

Question: How to locate the center of the peak?

Alternative representation

Fourier series with five terms

Alternative representation

Fourier series with one term

Orthogonal functions

The complex exponentials e^{nti} and e^{mti} are orthogonal with respect to the inner product

$$\langle f(t), g(t) \rangle = \int_0^{2\pi} f(t) \cdot (g(t))^* dt$$

if and only if $n \neq m$.

$$\langle e^{nti}, e^{mti} \rangle = \int_0^{2\pi} e^{nti} \cdot (e^{mti})^* dt$$

$$= \int_0^{2\pi} e^{(n-m)ti} dt$$

For example

$$\langle e^{2ti}, e^{2ti} \rangle = 2\pi$$
 $\langle e^{2ti}, e^{3ti} \rangle = 0$

How to determine c_n ?

The orthogonal property of the complex exponentials allows us to calculate c_n as follows:

$$f(t) = c_{n-1} \cdot e^{(n-1)ti} + c_n \cdot e^{nti} + c_{n+1} \cdot e^{(n+1)ti}$$

$$\langle e^{nti}, f(t) \rangle = c_{n-1} \cdot \langle e^{nti}, e^{(n-1)ti} \rangle +$$

$$c_n \cdot \langle e^{nti}, e^{nti} \rangle + c_{n+1} \cdot \langle e^{nti}, e^{(n+1)ti} \rangle$$

$$= c_n \cdot \langle e^{nti}, e^{nti} \rangle$$

$$c_n = \frac{\langle e^{nti}, f(t) \rangle}{\langle e^{nti}, e^{nti} \rangle}$$

Matlab code example

```
x = linspace(0, 2*pi, 1001);
x = x(1:(end - 1));
fx = sign(sin(x - 0.6));
ex1 = exp(1i * x);
a1 = fx * ex1' / 1000;
exm1 = exp(-1i * x);
am1 = fx * exm1' / 1000;
peaklocation = -angle(a1)
peaklocation = angle(am1)
plot(x, fx); hold on;
plot(x, real(a1 * ex1 + am1 * exm1))
```

Determined peak location

What is a complex number?

How to use complex numbers to detect repeating patterns?

Pattern in time

Pattern in time

Direction of edges

Marker detection

Outro

Image of experimental setup

Polarization angles

Matlab code example

```
Load image stack
imagestack = [];
for k=1:36
    filename = sprintf('img/%02d.png', k);
    img = imread(filename);
    imagestack(:, :, k) = img;
end
```

Matlab code example

Plot intensity variations of a region in the image sequence

```
vals = [];
for k = 1:36
    temp = imagestack(181:207, 162:193, k);
    vals(k) = sum(temp(:));
end
plot(vals);
```

Intensity variations

Matlab code example

```
x = (1:36) * 2 * pi / 36
ex2 = exp(2i * x);
a2 = vals * ex2' / 36
exm2 = exp(-2i * x);
am2 = vals * exm2' / 36
peaklocation = -angle(a2) / 2
plot(x, real(a2 * ex2 + am2 * exm2))
```

Second harmonics

Located peaks

Matlab code example

```
phaseimage = imagestack(:, :, 1) * 0;
for k = 1:36
    phaseimage = phaseimage + ...
        imagestack(:, :, k) * exp(1i * k * 2 * 2*pi / 36);
end
absPhaseImage = abs(phaseimage);
absPhaseImage = absPhaseImage / max(absPhaseImage(:));
argPhaseImage = angle(phaseimage);
rgbimage = hsv2rgb((argPhaseImage + pi)/(2*pi), ...
        1+0*argPhaseImage, 1 + 0*argPhaseImage);
image(rgbimage);
```

Located orientations

What is a complex number?

How to use complex numbers to detect repeating patterns?

Pattern in time

Direction of edges

Direction of edges

Marker detection

Outro

Building block of an algorithm from my phd

Fourier transform around points in an image

What is a complex number?

How to use complex numbers to detect repeating patterns?

Pattern in time

Direction of edges

Marker detection

Marker localisation Bending space Marker localization

Outro

Marker localisation

Bending space

Final marker

Matlab code example

```
kernel = genSymDetectorKernel(4, 150);
function kernel = genSymDetectorKernel(order, kernelsize)
stepsize = 2 / (kernelsize-1);
temp1 = meshgrid(-1:stepsize:1);
kernel = temp1 + 1i*temp1';
magni = abs(kernel);
kernel = kernel.^order;
kernel = kernel.*exp(-8*magni.^2);
abs(kernel);
end
```

Marker localization

Input image

Magnitude response of convolution

Input image

What is a complex number?

How to use complex numbers to detect repeating patterns?

Pattern in time

Direction of edges

Marker detection

Outro

Outro

Conclusion

Complex numbers can be used to detect repeating patterns in images.

The patterns might repeat over

- ▶ time
- orientation

Questions

