Höhere Technische Bundeslehranstalt Salzburg

Abteilung für Elektronik

Übungen im Laboratorium für Elektronik

Protokoll für die Übung Nr. 01

Gegenstand der Übung

LWL – Lichtwellenleiter

Name: Leon Ablinger

Jahrgang: 4AHEL

Gruppe Nr.: A1

Übung am: 23.09.2020

Anwesend: Leon Ablinger

Inhalt

1	Inventar	liste	. 3
2	Einleitun	ng	. 3
3	Übungso	durchführung	. 4
3.	1 Leis	stungskennlinien von Sendedioden für Kunststofffasern	. 4
	3.1.1	Beschreibung des Messvorgangs	. 4
	3.1.2	Schaltung	. 4
	3.1.3	Tabelle	. 5
	3.1.4	Berechnung	. 5
	3.1.5	Kennlinie	. 5
	3.1.6	Erkenntnis/Schlussfolgerung	. 6
3.	2 Leis	stungskennlinie der Sendediode für Glasfaser	. 6
	3.2.1	Beschreibung des Messvorgangs	. 6
	3.2.2	Schaltung	. 6
	3.2.3	Tabelle	. 7
	3.2.4	Kennlinie	. 7
	3.2.5	Erkenntnis/Schlussfolgerung	. 7
3.	3 Dän	npfungsmessung an Kunststofffasern	. 8
	3.3.1	Beschreibung des Messvorgangs	. 8
	3.3.2	Schaltung	. 8
	3.3.3	Tabelle	. 8
	3.3.4	Berechnung	. 8
	3.3.5	Kennlinie	. 9
	3.3.6	Erkenntnis/Schlussfolgerung	. 9
3.	4 Dän	npfungsmessung an Glasfaser	. 9
	3.4.1	Beschreibung des Messvorgangs	. 9
	3.4.2	Schaltung	10
	3.4.3	Tabelle	10
	3.4.4	Kennlinie	11
	3.4.5	Erkenntnis/Schlussfolgerung	11
3.	5 Feh	lersimulation ohne Optische Bank	11
	3.5.1	Beschreibung des Messvorgangs	11
	3.5.2	Schaltung	12
	3.5.3	Tabelle	13
	3.5.4	Kennlinie	13
	3.5.5	Erkenntnis/ Schlussfolgerung	13

3.6	Leis	stungskennlinie einer Diode für Kunststofffasern mit Dämpfungsglied	. 14
3.6	5.1	Beschreibung des Messvorgangs	. 14
3.6	5.2	Schaltung	. 14
3.6	6.3	Tabelle	. 15
3.6	6.4	Kennlinie	. 15
3.6	6.5	Erkenntnis/ Schlussfolgerung	. 15

1 Inventarliste

Gerätebezeichnung	Inventarnummer	Verwendung
Fibre optic Receive	540/2009/2/2	Empfänger
Fibre optic Transmit	540/2006/6/5	Sender
Multimeter	Platz 4	Spannungsmessung

2 Einleitung

Nach dieser Übung kann der Übungsteilnehmer mit optischen Übertragungsmedien arbeiten und Messungen an diesen vornehmen.

3 Übungsdurchführung

3.1 Leistungskennlinien von Sendedioden für Kunststofffasern

3.1.1 Beschreibung des Messvorgangs

In dieser Übung werden die Leistungskennlinien P_E der Sendedioden von 660nm und 850nm für Kunststofffasern gemessen. Dafür wird nur die Ausgangsspannung U_A und die dazugehörige Kalibrierungskennlinie der Datei *Grundlagen(HPS).pdf* auf Seite 12 benötigt.

3.1.2 Schaltung

Abbildung 1: Schaltung, Übung 1: Leistungskennlinien von Sendedioden für Kunstofffasern

3.1.3 Tabelle

U ₁₀	IF	UA	PE
mV	mA	٧	dBm
10	1	0,045	-36
30	3	0,122	-33
40	4	0,164	-31
50	5	0,213	-30
60	6	0,26	-29
80	8	0,373	-26
100	10	0,45	-24
200	20	1,02	-23
250	25	1,282	-22
300	30	1,544	-21
400	40	2,084	-20

U ₁₀	lF	UA	PE
mV	mA	٧	dBm
10	1	0,004	
30	3	0,005	
40	4	0,007	
50	5	0,008	
60	6	0,011	-46
80	8	0,012	-45
100	10	0,023	-44
200	20	0,039	-40
250	25	0,051	-38
300	30	0,065	-37
400	40	0,092	-35

Tabelle 1: Leistungskennlinien-Werte bei 660nm, Kunststoff

Tabelle 2: Leistungskennlinien-Werte bei 850nm, Kunststoff

3.1.4 Berechnung

$$I_F = \frac{U_{10}}{R}$$

$$P_E = 10 * \log \left(\frac{U_{10} * I_F}{1 \, mW} \right)$$

3.1.5 Kennlinie

Leistungskennlinien für Kunststofffasern

3.1.6 Erkenntnis/Schlussfolgerung

Zu erkennen ist, dass die Kennlinie der roten Sendediode (660nm) im Vergleich zur Infrarotdiode (850nm) eine höhere Strahlungsleistung erzielt. Die Infrarotkennlinie ist im gepunkteten Bereich ($I_F = 0$ bis 6mA) interpoliert, da für diesen Bereich keine Werte auf der Kalibrierungskennlinie vorhanden sind.

3.2 Leistungskennlinie der Sendediode für Glasfaser

3.2.1 Beschreibung des Messvorgangs

In dieser Übung werden die Leistungskennlinien P_E der Sendediode von 850nm für Glasfasern gemessen. Dafür wird nur die Ausgangsspannung U_A und die dazugehörige Kalibrierungskennlinie der Datei Grundlagen(HPS).pdf auf Seite 12 benötigt.

3.2.2 Schaltung

Abbildung 2: Schaltung, Übung 2: Leistungskennlinie der Sendediode für Glasfasern

6

3.2.3 Tabelle

U ₁₀	l _F	UA	PE
mV	mA	٧	dBm
10	1	0,079	-37
30	3	0,145	-35
40	4	0,208	-33
50	5	0,296	-31
80	8	0,607	-26
100	10	0,963	-23
200	20	2,75	-21
300	30	4,516	-18
400	40	6,4	-16
500	50	8,3	-15

Tabelle 3: Leistungskennlinien-Werte bei 850nm, Glas

3.2.4 Kennlinie

Leistungskennlinie für Glasfaser

3.2.5 Erkenntnis/Schlussfolgerung

Zu sehen ist, dass die volle Kennlinie des Glasfasermediums eine höhere Leistung wie die gepunktete der Kunststofffaser im Infrarot-Betrieb besitzt. Die Glasfaserkennlinie ist im Bereich von etwa 3mA bis zum Linienbruch bei 10mA annähernd linear.

3.3 Dämpfungsmessung an Kunststofffasern

3.3.1 Beschreibung des Messvorgangs

In dieser Übung werden die Dämpfungswerte der Kunststofffasern berechnet. Dazu wird die Ausgangsspannung U_A bei dem 0,5m Faser als Referenz verwendet und die Dämpfung des 5m und 20m Fasern durch die Formel unter 3.3.4 berechnet.

3.3.2 Schaltung

Fibre Optic Receiver Board

Abbildung 3: Schaltung, Übung 3: Dämpfungsmessung an Kunststofffasern

3.3.3 Tabelle

I	UA	PE	а	I	UA	PE	а
m	V	dBm	dB	m	V	dBm	dB
0,5	6,48	-14	0	0,5	8,20	-16	0
5	10,02	-12	-1,89	5	2,78	-20	4,70
20	2,55	-17	4,05	20	0,13	-42	18,00

Tabelle 4: Dämpfungsmessungs-Werte bei 660nm, Kunststoff Tabelle 5: Dämpfungsmessungs-Werte bei 850nm, Kunststoff

3.3.4 Berechnung

$$a = 10 * \log \left(\frac{U_{a,ref}}{U_{a,xm}}\right) dB$$

Leon Ablinger 23.09.2020

3.3.5 Kennlinie

Dämpfungskennlinien für Kunststoff

3.3.6 Erkenntnis/Schlussfolgerung

Da laut dieser Messung die Dämpfung bei der Faser mit 660nm geringer ist, eignet sich diese besser für Übertragungen als die bei 850nm.

3.4 Dämpfungsmessung an Glasfaser

3.4.1 Beschreibung des Messvorgangs

In dieser Übung werden die Dämpfungswerte der Glasfasern berechnet. Dazu wird die Ausgangsspannung U_A bei dem 1m Kabel als Referenz verwendet und die Dämpfung der 20m Faser durch die Formel unter 3.3.4 berechnet. Die 100m-Faser stand bei dieser Übung nicht zur Verfügung.

3.4.2 Schaltung

Abbildung 4: Schaltung, Übung 4: Dämpfungsmessung an Glasfaser

3.4.3 Tabelle

I	UA	PE	а
m	V	dBm	dB
1	4,67	-18	0
20	3,36	-19	1,43
100	Nicht vorhanden		

Tabelle 6: Dämpfungsmessungs-Werte bei 850nm, Glas

3.4.4 Kennlinie

Dämfpungskennlinie für Glasfaser

3.4.5 Erkenntnis/Schlussfolgerung

Anhand der Kennlinien ist zu erkennen, dass Glasfaser (volle Kennlinie) eine wesentlich geringere Dämpfung über Strecke aufweist als die Kunststofffasern.

3.5 Fehlersimulation ohne Optische Bank

3.5.1 Beschreibung des Messvorgangs

In dieser Übung werden die Dämpfungswerte von Kunststofffasern an einem Verbindungsglied mit unterschiedlichen Abständen gemessen, das durch eine manuelle Vergrößerung des Abstandes zweier Fasern realisiert wird.

3.5.2 Schaltung

Fibre Optic Receiver Board

Abbildung 5: Schaltung, Übung 5: Fehlersimulation ohne Optische Bank

3.5.3 Tabelle

Abstand	Uas	а	Uas	а
mm	V	dB	V	dB
	660	nm	850	nm
0	0,45	0,00	1,708	0,00
1	0,414	0,36	1,773	-0,16
2	0,229	2,93	1,764	-0,14
3	0,14	5,07	1,757	-0,12
4	0,094	6,80	1,754	-0,12
5	0,066	8,34	1,751	-0,11
6	0,053	9,29	1,75	-0,11
7	0,046	9,90	1,748	-0,10
9	0,042	10,30	1,746	-0,10
10	0,038	10,73	1,744	-0,09
11	0,033	11,35	1,74	-0,08
12	0,03	11,76	1,738	-0,08
13	0,029	11,91	1,735	-0,07
14	0,027	12,22	1,735	-0,07
15	0,027	12,22	1,74	-0,08
16	0,026	12,38	1,737	-0,07
17	0,025	12,55	1,737	-0,07
18	0,025	12,55	1,737	-0,07
19	0,024	12,73	1,737	-0,07
20	0,023	12,91	1,736	-0,07

Tabelle 7: Dämpfungswerte bei Fehlersimulation, Kunststoff

3.5.4 Kennlinie

3.5.5 Erkenntnis/Schlussfolgerung

Die Kennlinie zeigt, dass die Dämpfung mit Abstand zweier Fasern bei 660nm erheblich steigt, wobei der Abstand bei der IR-Messung kaum messbar ist.

Leon Ablinger 23.09.2020

3.6 Leistungskennlinie einer Diode für Kunststofffasern mit Dämpfungsglied

3.6.1 Beschreibung des Messvorgangs

In dieser Übung wird die Leistungskennlinie wie in der Übung 3.1 gemessen, der einzige Unterschied ist ein eingefügtes Dämpfungsglied zwischen zwei Fasern, die mit der 850nm-Diode bestrahlt werden.

3.6.2 Schaltung

Abbildung 6: Schaltung, Übung 6: Leistungskennlinie einer Diode für Kunststofffasern mit Dämpfungsglied

3.6.3 Tabelle

U10	l F	UA	Pe+a	PE
mV	mA	V		dBm
10	1	1.791	-23.00	-23
30	3	1.802	-22.97	-23
40	4	1.811	-21.95	-22
50	5	1.822	-21.93	-22
60	6	1.833	-21.90	-22
80	8	1.874	-21.80	-22
100	10	1.901	-21.74	-22
200	20	2.077	-20.36	-21
300	30	2.252	-19.01	-20
400	40	2.410	-18.71	-20
491	49.1	2.552	-17.46	-19

Tabelle 8: Leistungskennlinie mit Dämpfungsglied, Kunststoff

3.6.4 Kennlinie

Leistungskennlinie mit Dämpfungsglied für Kunststofffaser

3.6.5 Erkenntnis/Schlussfolgerung

Man erkennt, dass die Kennlinie ohne Dämpfung eine durchschnittlich höhere Steigung besitzt, des weiteren ist die mit Dämpfung um einige dBm nach oben verschoben.

l Interschrift		
i inidischilli:		

<u>Datum:</u>	Note:	Punkte:	<u>Unterschrift:</u>