Министерство образования и науки Республики Казахстан Некоммерческое АО «Алматинский университет энергетики и связи имени Гумарбека Даукеева»

Институт систем управления и информационных технологий Кафедра «Автоматизация и управление»

> «**УТВЕРЖДАЮ»** Директор ИСУИТ _____ Т.С. Картбаев «18» 06.2020 г.

Программа курса (Силлабус дисциплины)

EUA 3220 – ЭЛЕМЕНТЫ И УСТРОЙСТВА АВТОМАТИКИ

специальности высшего образования 5В070200 – «Автоматизация и управление»

Курс	3
Семестр	5
Всего кредитов ECTS	5
Всего часов	150
в том числе:	
Аудиторных часов:	45
Лекции	15
Лабораторные занятия	30
Контактн. экзамен.	6
CPO:	99
в том числе СРСП	15
Курсовая работа	
Экзамен	

Программу курса (Силлабус) составила доцент кафедры «Автоматизация и управление», магистр Рудакова Лариса Николаевна.

Программа курса (Силлабус) рассмотрена и одобрена на заседании кафедры «Автоматизация и управление» от 16 июня 2020 года, протокол № 11.

200000000000000000000000000000000000000	readounati	Фанарация И	٨
Заведующий	кафедрои	Федоренко И.	Α.

Программа курса (Силлабус) рассмотрена и утверждена на заседании Совета ИСУИТ (протокол № 11 от «18» июня 2020 года).

Обучающийся обязан ознакомиться с Программой курса (Силлабусом) и информировать об этом преподавателя, отправив свое «Соглашение» на корпоративную почту преподавателя в течение первой недели обучения.

1 Преподаватель:

Рудакова Лариса Николаевна – доцент каф. АУ, каб. Д 406. Контакты: 8(727)2923072, *l.rudakova@aues.kz*

По вышеперечисленным контактам можно обращаться с понедельника по пятницу с 9.00 до 18.00. Ответ на обращение будет отправлен в течение двух рабочих дней.

2 Время и место проведения аудиторных занятий курса указано в расписании учебных занятий на сайте АУЭС с включенной онлайн-ссылкой, график консультаций СРСП размещен на сайте АУЭС с включенной онлайн-ссылкой и в электронном личном кабинете преподавателя.

Формат обучения смешанный: 50% - онлайн (лекции), 50% - традиционный (лабораторные занятия).

3 Характеристика учебной дисциплины

Дисциплина предназначена для студентов специальности 5В070200 - «Автоматизация и управление», является базовой, компонент по выбору (БД КВ) и относится к модулю МАУ-10 «Общепрофессиональные дисциплины».

- **3.1 Цель дисциплины** изучение основных элементов систем автоматики, микропроцессорных систем, освоение структурного построения микропроцессорных контроллеров.
- **3.2 Задачи дисциплины** формирование у студентов знаний и умений выбора и эксплуатации технических и программно-технических средств автоматизации технологических процессов.

3.3 Описание дисциплины

Дисциплина ставит целью ознакомить студентов с общими закономерностями выбора и эксплуатации технических и программно-технических средств автоматики технологических процессов.

По окончании курса «Элементы и устройства автоматики» студент должен приобрести следующие компетенции:

знать:

- принципы конструирования и функционирования серийных технических и программно-технических средств автоматики;
- структуру и функциональные возможности программного обеспечения систем автоматизации;
- принципы построения и функционирования интерфейсов для локальных промышленных сетей управления;

уметь:

- выбирать технические и программно-технические средства для создания АСР и АСУ;
- конструировать из типовых элементов средства автоматизации с заданными характеристиками;
- выполнять проектную компоновку технических и программнотехнических средств автоматизации;
 - эксплуатировать технические и программно-технические средства

автоматизации.

3.4 Результаты обучения по ОП в рамках курса:

- использовать технические возможности микропроцессорной техники;
- владеть средствами приема-передачи информации и программных продуктов для решения задач автоматизации;
 - владеть языками программирования микроконтроллеров.
- **3.5 Пререквизиты дисциплины:** Физика I, Физика II, Теоретические основы электротехники.
- **3.6 Постреквизиты** дисциплины: Автоматизация объектов управления, (Автоматизация типовых технологических процессов и производств), Программное обеспечение PLC, (Программирование цифровой техники и микроконтроллеров управления).

4 Структура и содержание дисциплины

4.1 Теоретическая подготовка (15 час.)

Неделя	Неделя Тема (модули, разделы)	
Педели	теми (модули, ризделы)	источника
I	Общие сведения об элементах и средствах автоматики. Основные принципы управления и регулирования (1 час).	Конспект, Л. 1-3, 6, 16
II	Типизация, унификация и агрегатирование средств автоматики. Типовые структуры и средства автоматизированной системы управления технологическими процессами (АСУТП) (1 час).	Конспект, Л. 1-3, 6, 16
III	Классификация элементов автоматики. Общие характеристики элементов автоматики. Государственная система приборов (1 час).	Конспект, Л. 1-3, 6, 16
IV	Общие сведения об устройствах получения информации с технологического объекта управления (1 час).	Конспект, Л. 1-4, 6, 16
V	Первичные преобразователи с электрическими выходными сигналами (1 час).	Конспект, Л. 1-4, 6, 16
VI	Усилительные элементы систем автоматики. Элементы контакторного управления и защиты (1 час).	Конспект, Л. 1-3, 6, 16
VII	Исполнительные механизмы и устройства систем автоматики (1 час).	Конспект, Л. 1-2, 16, 17, 19, 27
VIII	Электрические исполнительные механизмы (1 час).	Конспект, Л. 1-3, 16, 19, 27
IX	Классификация, структуры и состав электромашинных исполнительных механизмов (1 час).	Конспект, Л. 1-3, 11, 16, 27
X	Конструкция, принцип работы и характеристики исполнительных двигателей постоянного тока (1 час).	Конспект, Л. 1-3, 6, 16, 11, 27
XI	Конструкция, принцип работы и характеристики трехфазного асинхронного двигателя (1 час).	Конспект, Л. 1-3, 16, 11, 27
XII	Конструкция, принцип работы и характеристики	Конспект, Л. 1-3, 16,

	шагового двигателя (1 час).	28
XIII- XIV	Основные сведения о цифровых средствах автоматики. Архитектура микропроцессора: основные характеристики. Классификация современных микропроцессорных средств. Типовая структура микропроцессора (2 часа).	Конспект, Л. 5, 8, 22- 26
XV	Система ввода-вывода микропроцессора. Программное обеспечение микропроцессора (1 час).	Конспект, Л. 5, 8, 22- 26

4.2 Практическая подготовка

4.2.1 Примерный перечень лабораторных работ (30 час.)

Неделя	Тема	Номер источника
I	Проверка блока динамических преобразований БДП-П (2 часа).	Конспект, Л. 9, 16, 19
II	Исследование аналогового блока РП4-У и исполнительного механизма постоянной скорости (2 часа).	Конспект, Л. 9, 16, 19
III-IV	Логическое преобразование дискретных сигналов (4 часа).	Конспект, Л. 9, 19
V	Двигатель постоянного тока: параметры и характеристики (2 часа).	Конспект, Л. 9, 19, 27
VI	Изучение среды MPLAB. Управление оборудованием (2 часа).	Конспект, Л. 8, 9, 22- 26
VII	Сложение, вычитание. Логика (2 часа).	Конспект, Л. 8, 9, 22- 26
VIII	Анализ информации и автоматизация (2 часа).	Конспект, Л. 8, 9, 22- 26
IX-X	Подпрограммы (4 часа).	Конспект, Л. 8, 9, 22- 26
XI	Программирование клавиатуры (2 часа).	Конспект, Л. 8, 9, 22- 26
XII-XIII	Управление двигателем постоянного тока (4 часа).	Конспект, Л. 9, 11, 27
XIV-XV	Управление шаговым двигателем (4 часа).	Конспект, Л. 9, 28

При выполнении лабораторных работ студент должен установить на свой компьютер или ноутбук интегрированную среду редактирования и отладки программ MPLAB.

4.3 Курсовая работа

Тема: Проектирование исполнительной части ACP на основе микропроцессорной техники, выбор средств сопряжения, системы синхронизации, схемы технической реализации исполнительной части.

В ходе выполнения курсовой работы следует выполнить следующие пункты задания:

- 1. Выбрать задающее устройство, датчик исполнительного механизма.
- 2. Выбрать тип центрального процессора, структуру памяти, микросхемы ввода-вывода.
 - 3. Описать программное обеспечение выбранного микропроцессора.
 - 4. Разработать алгоритмы работы центрального процессора.
 - 5. Выбрать средства сопряжения и систему синхронизации.
 - 6. Составить схему технической реализации исполнительной части.

Выполняется курсовая работа в соответствии с методическими указаниями [10]. Задание выдается на первой неделе, защита проводится на предпоследней неделе семестра.

4.4 Тематика СРО (84 час.)

- 4.4.1 Исследование режимов работы асинхронных двигателей с тиристорным преобразователем частоты в цепи ротора.
- 4.4.2 Исследование двухдвигательного электропривода согласованного вращения.
- 4.4.3 Разработка способов регулирования двухдвигательным электроприводом.
- 4.4.4 Шаговые двигатели. Сельсины.
- 4.4.5 Знакомство с аппаратной платформой Arduino Uno, построенной на основе микроконтроллера ATmega328.
- 4.4.6 Моделирование систем автоматизированных электроприводов в среде MATLAB.
- 4.4.7 Основные комбинационные узлы цифровой техники. Интерфейсы микропроцессоров.

5 Перечень вопросов для промежуточного и итогового контроля

- 1. Общие сведения об элементах и средствах автоматики. Объекты управления и виды воздействия на них.
- 2. Классификация, характеристики и параметры элементов автоматики
- 3. Общая структура автоматизированной системы управления технологическими процессами (АСУТП).
- 4. Понятие входных и выходных воздействий, возмущающих воздействий. Цель управления.
- 5. Понятие автоматизации технологических процессов. Средства автоматизации. Технологический объект управления.
- 6. Структурная схема АСУТП и состав технических средств автоматики.
- 7. Основные термины измерительный прибор, нормирующий преобразователь, регулятор, исполнительный механизм, регулирующий орган, задатчик.

- 8. Устройства получения информации с технологического объекта управления. Место измерительных приборов в схеме АСУТП.
- 9. Функции и условия функционирования измерительной аппаратуры.
- 10. Пять групп управляемых и измеряемых величин. Основная классификация датчиков.
- 11. Понятие чувствительности элемента и преобразователя. Общие характеристики измерительных приборов.
- 12. Параметрические и генераторные датчики.
- 13. Нормирующие преобразователи. Функциональное назначение.
- 14. Классификация нормирующих преобразователей по виду входного сигнала и технологии изготовления. Принципы преобразования.
- 15. Исполнительные механизмы. Место исполнительной аппаратуры в структуре АСУ ТП.
- 16. Три вида классификации исполнительных механизмов.
- 17. Электрические исполнительные механизмы. Понятие электрической машины.
- 18. Генераторы. Двигатели. Двигатель постоянного тока.
- 19. Классификация, структуры и состав электромашинных исполнительных механизмов.
- 20. Виды силовых и измерительно-преобразовательных исполнительных механизмов.
- 21. Общая структура электромашинных средств автоматики. Статоры и роторы.
- Классификация двигателей постоянного тока. Коллекторные и бесконтактные двигатели.
- 23. Принцип работы двигателя постоянного тока. Цепь якоря. Обмотка возбуждения. Электромагнитный момент.
- 24. Характеристики двигателей исполнительных механизмов. Рабочая, механическая и регулировочная характеристики.
- 25. Классификация механических характеристик электрических двигателей. Устойчивость. Жесткость. Линейность.
- 26. Регулирование скорости и режимы работы электродвигателей.
- 27. Три класса двигателей переменного тока.
- 28. Конструкция двигателя переменного тока.
- 29. Асинхронные двигатели: однофазные, трехфазные, универсальные.
- 30. Принцип действия асинхронной электрической машины.
- 31. Конструкция, принцип работы и характеристики синхронной машины.
- 32. Шаговые двигатели. Сельсины.
- 33. Архитектура микропроцессора: основные характеристики.
- 34. Типовая структура микропроцессора. Принцип действия микропроцессоров (МП). Интерфейсы микропроцессоров (МП)
- 35. Организация микропроцессорных систем. Программное обеспечение микропроцессора.

6 Информация по оценке достижений студентов

6.1 Календарный график выполнения и защиты всех видов контроля

Недели	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Тайминг			28.			19.	26.	02.	09.				07.	14.	21.
(Deadline)		21.	09	05.		10	10	11	11		23.		12	12	12
,		09		10							11				
Лабораторные	Л1	защ	защ	защ	Л4	защ	защ	защ	защ	Л8	защ	Л10	защ	Л11	защ
работы		Л2	Л3			Л5	Л6	Л7			Л9				
Темы СРО		№ 1		№ 2		№ 3		№4		№5		№6		№7	
Курсовая												КР		защ	
работа															
Рубежные							PK1							РК2	
контроли															
Обозначение: Л – лабораторная работа; КР – курсовая работа; РК-рубежный контроль															

При несоблюдении графика выполнения (защиты) работ начисляются штрафные баллы (т.е. за опоздание на 1 неделю - минус 10%, на 2 недели — минус 20%. (Баллы отнимаются от итоговой оценки, полученной за выполнение данной работы) При опоздании сдачи работы на 3 недели студенту за данную выполненную работу проставляется неудовлетворительная оценка — 30% без дальнейшего приема защиты этой работы и возможности изменения оценки).

6.2 Критерии оценивания работ обучающихся

Критерии оценивания курсовой работы и отчетов по выполнению лабораторных работ обучающихся из расчета 100% максимально приведены в таблице.

№	Критерии оценивания					
1	Соответствие работы теме и варианту					
2	Правильность выделения цели и задач	5%				
3	Полнота и системность изложения	30%				
4	Аргументированность и правильность вывода	20%				
5	Использование современных источников и ссылки на них в работе	5%				
6	Оформление работы (соответствие стандарту АУЭС на работы	10%				
	учебные)					

Уровень	Требования к уровню оценивания компетенций					
оценивания						
компетенций						
A	Работа полностью выполнена, достигнуты и раскрыты все поставленные задачи. Выполненная работа полностью соответствует теме и варианту, правильно выделены задачи и цели работы. Выполненная работа лаконично и полностью изложена, сделан правильный и аргументированный вывод. При выполнении и оформлении работы использованы современные источники. Оформленная работа соответствует стандарту АУЭС на учебные работы.					
В	Работа полностью выполнена, достигнуты и раскрыты все поставленные задачи. Выполненная работа полностью соответствует					

	теме и варианту, правильно выделены задачи и цели работы. Выполненная работа изложена не полностью, сделан правильный и аргументированный вывод. При выполнении и оформлении работы использованы современные источники. Оформленная работа соответствует стандарту АУЭС на учебные работы.
С	Работа выполнена не полностью, все поставленные задачи достигнуты и раскрыты не полностью. Выполненная работа соответствует теме и варианту, правильно выделены задачи и цели работы. Выполненная работа изложена не полностью, сделан правильный и аргументированный вывод. При выполнении и оформлении работы использованы современные источники. Оформленная работа соответствует стандарту АУЭС на учебные работы.
D	Работа выполнена не полностью, не все поставленные задачи достигнуты и раскрыты. Выполненная работа соответствует теме и варианту, правильно выделены задачи и цели работы. Выполненная работа изложена не полностью, сделанный вывод не полностью правильный и аргументированный. При выполнении и оформлении работы использованы современные источники. Оформленная работа соответствует стандарту АУЭС на учебные работы.
F	Работа не выполнена.

Работа выполненная не по теме, либо не по своему варианту не оценивается, а возвращается обучающемуся. В последующем оценка выставляется с учетом сроков сдачи работы и штрафных санкций за несвоевременное выполнение работы. В зависимости от суммарной процентной оценки, полученной за выполнение работы выставляется оценка, соответствующая уровню оценивания компетенций (A, B, C, D, F).

6.3 Система оценивания

Уровень Ваших достижений по программе курса оценивается по шкале итоговых оценок, принятой в кредитной технологии обучения.

Балльно-рейтинговая буквенная система оценки учебных достижений обучающихся с переводом в традиционную шкалу оценок приведена в таблице.

Оценка по буквенной системе	Цифровой эквивалент	Баллы (%-ное содержание)	Оценка по традиционной системе
A	4,0	95-100	Отлично
A-	3,67	90-94	
B+	3,33	85-89	Хорошо
В	3,0	80-84	
B-	2,67	75-79	
C+	2,33	70-74	
С	2,0	65-69	
C-	1,67	60-64	

D+	1,33	55-59	Удовлетворительно
D	1,0	50-54	
FX	0,5	25-49	Неудовлетворительно
F	0	0-24	

Примечание: C+ (хорошо) и оценка FX (25-49%) неуд. - введено в действие согласно приказу МОН РК № 563 от 12.10.2018 г.

Средняя текущая оценка Ср накапливается в течение семестра. Каждый вид учебной работы оценивается по 100-балльной шкале, имеет одинаковый весовой коэффициент. Ср вычисляется информационной системой ИС «PLATONUS» как среднее арифметическое всех выставленных оценок (кроме оценок за Рубежные контроли).

Рубежный контроль проводится 2 раза в семестр (P1 и P2), оценивается преподавателем по 100 — балльной шкале каждый и заносится в ИС «PLATONUS».

Рейтинг допуска рассчитывается ИС PLATONUS по формуле:

$$P I = \frac{P1 + P2}{2} \times 0.2 + Cp \times 0.8$$

Итоговая оценка по дисциплине выводится, как

$$И = 0.6PД + 0.43$$
,

где Э – оценка на экзамене.

6.4 Политика выставления баллов

Максимальные оценочные баллы проставляются при условии ритмичного выполнения и высокого качества работы. Оценочные баллы тестирования и посещения лекционных занятий проставляются в зависимости от числа правильных ответов и числа пропущенных лекций.

7 Политика курса и нормы академической этики

Политика курса и нормы академической этики, являющиеся общими для всех курсов и обучающихся, приведены на сайте АУЭС в разделе «Обучающимся – Академические календари и академическая политика».

Основные требования преподавателя:

- не опаздывать и не пропускать занятия;
- внимательно отслеживать предлагаемый преподавателем сценарий занятия, активно участвуя в нем;
- отрабатывать лабораторные занятия, пропущенные по уважительным причинам (при наличии допуска из директората);
- задания выполнять самостоятельно, не допускать факты присутствия в работах плагиата;
 - самостоятельно заниматься дома.

При нарушении политики курса и норм академической этики студенту выставляется неудовлетворительная оценка за данный курс, согласно академической политики Университета.

8 Список литературы

Основная:

- 1 Шишмарёв В. Ю. Автоматика: учебник для СПО / В. Ю. Шишмарёв. 2-е изд., испр. и доп. М.: Издательство Юрайт, 2018. 284 с.
- 2 Серебряков А.С. Автоматика: учебник и практикум для академического бакалавриата. М.: Издательство Юрайт, 2016. 431 с.
- 3 Старостин А. А. Технические средства автоматизации и управления: учеб. пособие / А. А. Старостин, А. В. Лаптева. Екатеринбург: Изд-во Урал. ун-та, 2015.
- 4 Калиниченко А.В. Справочник инженера по контрольноизмерительным приборам и автоматике (КИПиА): Учебно-практическое пособие. 3-е изд., доп.и перераб. / Калиниченко А.В., Уваров Н.В., Дойников В.В. - Вологда: Инфра-Инженерия, 2018.- 564 с.
- 5 Водовозов А.М. Микроконтроллеры для систем автоматики. Учебное пособие. Изд. 3-е, доп. и перераб. М.: Инфра-Инженерия, 2016. 164 с.
- 6 Ауэзова А.М. Элементы и устройства автоматики. Учебное пособие Алматы: АИЭС, 2013.
- 7 Ауэзова А.М. Элементы и устройства автоматики. Конспект лекций Алматы: АИЭС, 2013.
- 8 Предко М. РІС-микроконтроллеры. Архитектура и программирование. Саратов: Профобразование, 2017. 506 с.
- 9 Рудакова Л.Н. Элементы и устройства автоматики. Методические указания по выполнению лабораторных работ для студентов специальности 5В070200 Автоматизация и управление. Алматы: АУЭС, 2017. 70 с.
- 10 Рудакова Л.Н. Элементы и устройства автоматики. Методические указания по выполнению курсовой работы для студентов специальности 5В070200 Автоматизация и управление. Алматы: АУЭС, 2017. 28 с.

Интернет ресурсы:

- 11 http://www.0zn.ru/referaty_po_nauke_i_texnike/uchebnoe_posobie_elektroprivod_s.html
- 12 https://geekbrains.ru/posts/js_diy_robots
- 13 https://ru.coursera.org/learn/roboty-arduino
- 14 https://www.sciencedirect.com/journal/engineering
- 15 https://www.sciencedirect.com/search?qs=data-science

Дополнительная:

- 16 Шишмарев В.Ю. Технические измерения и приборы. М.: «Академия», 2010.
- 17 Келим Ю.М. Электромеханические и магнитные элементы систем автоматики. М.: М.: «Высшая школа», 2004.
- 18 Келим Ю.М. Типовые элементы систем автоматического управления. М.: ФОРУМ-ИНФА-М, 2007.
- 19 Беляев Г.Б., Кузищин В.Ф. и др. Технические средства автоматизации в теплоэнергетике. М., Энергоатомиздат, 1982.
- 20 Башарин А.В., Постников Ю.В. Примеры расчета автоматизированного электропривода на ЭВМ. Учебное пособие для вузов. 3-е изд. Л.; Энергоатомиздат, 1990. 520 с.

- 21 Коновалова Л.И., Петелин Д.П. Элементы и системы автоматики, М., «Высшая школа», 2005.
- 22 Кэпс Ч., Стаффорд Р. Программирование на языке ассемблера и архитектура. Пер. с англ. М.: Радио и связь, 1991.
- 23 Уилмсхерст Т. Разработка встроенных систем на РІС контроллерах. Мк-Пресс, 2008. 544 с.
- 24 Катцен С. Все, что вам необходимо знать РІС микроконтроллеры. М., 2008.
- 25 Катцен С. РІС микроконтроллеры: полное руководство. М.: «Додека», 2010.
 - 26 Новожилов О.П. Основы микропроцессорной техники. В 2-х т. 2007.
- 27 Вольдек А. И., Попов В. В. В71 Электрические машины. Введение в электромеханику. Машины постоянного тока и трансформаторы: Учебник для вузов. СПб.: Питер, 2008.
- 28 Кенио Т. Шаговые двигатели и их микропроцессорные системы управления. М.: Энергоатомиздат, 1987.
- 29 Джон Бокселл. Изучаем Arduino. 65 проектов своими руками. СПб.: Питер, 2017.