1.	TD(0) is a solution method for:	1 point
	○ Control	
	O Prediction	
2.	Which of the following methods use bootstrapping? (Select all that apply)	1 point
	Dynamic Programming	
	☐ Monte Carlo	
	□ TD(0)	
3.	Which of the following is the correct characterization of Dynamic Programming (DP) and Temporal Difference (TD) methods?	1 point
	O Both TD and DP methods use <i>expected</i> updates.	
	Both TD and DP methods use <i>sample</i> updates.	
	TD methods use <i>expected</i> updates, DP methods use <i>sample</i> updates.	
	TD methods uses <i>sample</i> updates, DP methods use <i>expected</i> updates.	
4.	Match the algorithm name to its correct update (select all that apply)	1 point
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
	\square Monte Carlo: $V(S_t) \leftarrow V(S_t) + lpha[R_{t+1} + \gamma V(S_{t+1}) - V(S_t)]$	
	\square TD(0): $V(S_t) \leftarrow V(S_t) + lpha[R_{t+1} + \gamma V(S_{t+1}) - V(S_t)]$	
	$oxed{\square}$ Monte Carlo: $V(S_t) \leftarrow V(S_t) + lpha[G_t - V(S_t)]$	

5.	Which of the following well-describe Temporal Difference (TD) and Monte-Carlo (MC) methods?	1 point
	TD methods can be used in <i>continuing</i> tasks.	
	MC methods can be used in <i>continuing</i> tasks.	
	☐ TD methods can be used in <i>episodic</i> tasks.	
	MC methods can be used in <i>episodic</i> tasks.	
6.	In an episodic setting, we might have different updates depending on whether the next state is terminal or non-terminal. Which of the following TD error calculations are correct?	1 point
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
7.	Suppose we have current estimates for the value of two states: V(A) = 1.0, V(B) = 1.0 in an episodic setting. We observe the following trajectory: A, 0, B, 1, B, 0, T where T is a terminal state. Apply TD(0) with step-size, $\alpha=1$, and discount factor, $\gamma=0.5$. What are the value estimates for state A and state B at the end of the episode?	1 point
	(1.0, 1.0)	
	(0.5, 0)	
	(0, 1.5)	
	(1,0)	
	(0,0)	
8.	Which of the following pairs is the correct characterization of the targets used in TD(0) and Monte Carlo?	1 point
	TD(0): High Variance Target, Monte Carlo: High Variance Target	
	TD(0): High Variance Target, Monte Carlo: Low Variance Target	

0	TD(0): Low Variance Target, Monte Carlo: High Variance Target
0	TD(0): Low Variance Target, Monte Carlo: Low Variance Target

Episodes	
A, 0, B, 0	
В, 1	
В, 1	
B, 1	
В, 0	
В, 0	
В, 1	
В, 0	

What would batch Monte Carlo methods give for the estimates V(A) and V(B)? What would batch TD(0) give for the estimates V(A) and V(B)? Use a discount factor, γ , of 1.

For Batch MC: compute the average returns observed from each state. For Batch TD: You can start with state B. What is its expected return? Then figure out V(A) using the temporal difference equation: $V(S_t) = E[R_{t+1} + \gamma V(S_{t+1})]$.

Answers are provided in the following format:

- ullet $V^{
 m batch ext{-}MC}(A)$ is the value for state A under Monte Carlo learning
- ullet $V^{
 m batch ext{-}MC}(B)$ is the value of state B under Monte Carlo learning
- ullet $V^{
 m batch ext{-}TD}(A)$ is the value of state A under TD learning
- $ullet V^{\mathrm{batch ext{-}TD}}(B)$ is the value of state B under TD learning

Hint: review example 6.3 in Sutton and Barto; this question is the same, just with different numbers.

$$igcup V^{ ext{batch-MC}}(A) = 0$$

$$V^{
m batch ext{-}MC}(B)=0.5$$

$$V^{
m batch ext{-}TD}(A) = 0.5$$

$$V^{
m batch ext{-}TD}(B)=0.5$$

$igcirc$ $V^{ ext{batch-MC}}(A)=0$	
$V^{ m batch ext{-}MC}(B)=0.5$	
$V^{ m batch ext{-}TD}(A)=0$	
$V^{ m batch ext{-}TD}(B)=0.5$	
$igcirc$ $V^{ ext{batch-MC}}(A)=0$	
$V^{ m batch ext{-}MC}(B)=0.5$	
$V^{ m batch ext{-}TD}(A)=0$	
$V^{ m batch ext{-}TD}(B)=0$	
$igcirc$ $V^{ ext{batch-MC}}(A)=0$	
$V^{ m batch ext{-}MC}(B)=0.5$	
$V^{ m batch ext{-}TD}(A)=1.5$	
$V^{ m batch ext{-}TD}(B)=0.5$	
$igcirc$ $V^{ ext{batch-MC}}(A)=0.5$	
$V^{ m batch ext{-}MC}(B)=0.5$	
$V^{ m batch ext{-}TD}(A) = 0.5$	
$V^{ m batch ext{-}TD}(B)=0.5$	
10. True or False: "Both TD(0) and Monte-Carlo (MC) methods converge to the true value function asymptotically, given that the environment is Markovian."	1 point
○ True	
○ False	
11. Which of the following pairs is the correct characterization of the TD(0) and Monte-Carlo (MC) methods?	1 point
O Both TD(0) and MC are offline methods.	
O Both TD(0) and MC are online methods.	

0	TD(0) is an online method while MC is an offline method.
0	MC is an online method while TD(0) is an offline method.