Enhancing Operational Data Synthesis and Predictive Analysis in HPC Clusters Using Large Language Models

Yizhen Zang

Daily Supervisor: Xiaoyu Chu

July, 2024

HPC Clusters are Vital to Digital Society

Source: flaticon.com

HPC Clusters are Vital to Digital Society

Source: flaticon.com

HPC Clusters are Vital to Digital Society

Impact of HPC Outages

• **Prevalence**: 80% of users

• Cost: 60% resulted in at least \$100,000 losses

Source: Uptime Institute, Annual outages analysis 2023

Large Language Models are Powerful

Traditional Models

- → Limited Adaptability
- → Simplistic Approaches
- → Inflexibility

Source: freepik.com

Large Language Models are Powerful

Traditional Models

- → Limited Adaptability
- → Simplistic Approaches
- → Inflexibility

LLMs

- ★ High Adaptability
- ★ Complex Data Handling
- ★ Flexibility and Integration

Source: freepik.com

The overarching RQ: How to leverage LLMs to improve operational decision-making for HPC datacenters?

RQ1: What are the existing applications of LLMs for HPC?

RQ1.1: How are LLMs applied in HPC for workload synthesis?

RQ1.2: How are LLMs applied in HPC for workload prediction?

RQ1.3: How are LLMs applied in **other tasks** in HPC?

RQ1: What are the existing applications of LLMs for HPC?

RQ2: How to design and evaluate LLM-based models for synthesizing job data in HPC clusters?

RQ2.1: How to generate synthetic job data in HPC clusters using LLMs?

RQ2.2: How are the techniques developed in RQ2.1 performing, relative to the non-LLM state-of-the-art?

RQ1: What are the existing applications of LLMs for HPC?

RQ2: How to design and evaluate LLM-based models for synthesizing job data in HPC clusters?

RQ3: How to design and evaluate LLM-based models for predicting job end-state in HPC clusters?

RQ3.1: How to predict job failures in HPC clusters using LLMs?

RQ3.2: How are the techniques developed in RQ3.1 performing, relative to the non-LLM state-of-the-art?

Literature Review of LLMs Applications in HPC

RQ1

Reference	Applications	Models	Datasets
Shi et al.	memory workload synthesis	REaLTabFormer	SPEC2017
LM4HPC	code similarity analysis parallelism detection OpenMP Q&A	CodeBERT GraphCodeBERT gpt-3.5-turbo	POJ-104 DRB-ML OMP4Par OMPQA
MPIrigen	MPI-based parallel program	MonoCoder PolyCoder GPT-3.5	HPCorpusMPI
HPC-Coder	code completion OpenMP labeling performance prediction	GPT-2 GPT-Neo PolyCoder	self-collected
HPC-GPT	AI model management dataset management data race detection	LLaMa LLaMa 2	self-collected
LLMDB	query rewrite database diagnosis data analytics	LLMDB	self-collected

Literature Review of LLMs Applications in HPC

Applications	Models	Datasets
memory workload synthesis	-REaLTabFormer -	-SPEC2017
code similarity analysis parallelism detection OpenMP Q&A	CodeBERT GraphCodeBERT gpt-3.5-turbo	POJ-104 DRB-ML OMP4Par OMPQA
MPI-based parallel program	MonoCoder PolyCoder GPT-3.5	HPCorpusMPI
code completion OpenMP labeling performance prediction	GPT-2 GPT-Neo PolyCoder	self-collected
AI model management dataset management data race detection	LLaMa LLaMa 2	self-collected
query rewrite database diagnosis data analytics	LLMDB	self-collected
	memory workload synthesis code similarity analysis parallelism detection OpenMP Q&A MPI-based parallel program code completion OpenMP labeling performance prediction AI model management dataset management data race detection query rewrite database diagnosis	memory workload synthesis code similarity analysis parallelism detection OpenMP Q&A MPI-based parallel program MonoCoder PolyCoder GPT-3.5 code completion OpenMP labeling performance prediction AI model management dataset management data race detection query rewrite database diagnosis CodeBERT GraphCodeBERT gpt-3.5-turbo MonoCoder PolyCoder PolyCoder LLaMa

Workload synthesis

Literature Review of LLMs Applications in HPC

RQ1

Reference	Applications	Models	Datasets	
Shi et al.	memory workload synthesis	-REaLTabFormer -		 Workload synthesis
LM4HPC	code similarity analysis parallelism detection OpenMP Q&A	CodeBERT GraphCodeBERT gpt-3.5-turbo	POJ-104 DRB-ML OMP4Par OMPQA	
MPIrigen	MPI-based parallel program	MonoCoder PolyCoder GPT-3.5	HPCorpusMPI	 Code-based tasks
HPC-Coder	code completion OpenMP labeling performance prediction	GPT-2 GPT-Neo PolyCoder	self-collected	
HPC-GPT	AI model management dataset management data race detection	LLaMa LLaMa 2	self-collected	
LLMDB	query rewrite database diagnosis data analytics	LLMDB	self-collected	
(Section 1) (444-15-15-644) - 6311	50 St. St. St.	policine projective app	Santan San at Santana	

Reference	Applications	Models	Datasets	
Shi et al.	memory workload synthesis	-REaLTabFormer –	-SPEC2017	 Workload synthesis
LM4HPC	code similarity analysis parallelism detection OpenMP Q&A	CodeBERT GraphCodeBERT gpt-3.5-turbo	POJ-104 DRB-ML OMP4Par OMPQA	
MPIrigen	MPI-based parallel program	MonoCoder PolyCoder GPT-3.5	HPCorpusMPI	 Code-based tasks
HPC-Coder	code completion OpenMP labeling performance prediction	GPT-2 GPT-Neo PolyCoder	self-collected	
HPC-GPT	AI model management dataset management data race detection	LLaMa LLaMa 2	self-collected	Data managanant
LLMDB	query rewrite database diagnosis data analytics	LLMDB	self-collected	 Data management

Reference	Applications	Models	Datasets		
Shi et al.	memory workload synthesis	-REaLTabFormer –	_SPEC2017		Workload synthesis
LM4HPC	code similarity analysis parallelism detection OpenMP Q&A	CodeBERT GraphCodeBERT gpt-3.5-turbo	POJ-104 DRB-ML OMP4Par OMPQA		
MP					
	Gaps remain in		synthesis	s and p	rediction.
НР	performance prediction	PolyCoder		s and p	rediction.
	•		synthesis	s and p	rediction.
НР	performance prediction AI model management	PolyCoder LLaMa		s and p	Data management

	Input Table		
NNode	ReqCPUS	runing_time	
1	1	600	

RQ2.1

Evaluation (1/3) - How to Evaluate Synthetic Data?

RQ2.2

Baseline Models: TabGAN & CTGAN

Evaluation (1/3) - How to Evaluate Synthetic Data?

- Baseline Models: TabGAN & CTGAN
- Distance to the Closest Record (DCR)
 - Measures the similarity

- Baseline Models: TabGAN & CTGAN
- Distance to the Closest Record (DCR)
 - Measures the similarity
- Machine Learning Efficiency (MLE)
 - Determine the utility on downstream predictive tasks
 - Decision Tree (DT)
 - Random Forest (RF)

Evaluation (1/3) - How to Evaluate Synthetic Data?

- Baseline Models: TabGAN & CTGAN
- Distance to the Closest Record (DCR)
 - Measures the similarity
- Machine Learning Efficiency (MLE)
 - Determine the utility on downstream predictive tasks
 - Decision Tree (DT)
 - Random Forest (RF)
 - Accuracy, precision, recall, F1-score, AUC-ROC

- **F1** (DCR) **RoBERTa-Large** and **GPT-2-based models** demonstrate the most promise with low DCR values.
- **F2** (MLE) Predictive models trained on synthetic datasets show varied performance, falling short compared to real data.
- **F3** There is a need for **improvements** in synthetic data generation techniques.

	e	
ReqCPUS	submit_hour_of_day	submit_day_of_week
1	14	3

	Input Tabl	e	
ReqCPUS	submit_hour_of_day	submit_day_of_week	Pre-Processor ======= "-0.577 1.061 0.929"
1	14	3	

- **F1 GPT-2** shows competitive performance against the best-performing traditional models.
- F2 Roberta-Large and Distilbert-Base also show promising results.
- F3 LLMs demonstrate significant potential in predicting job termination states within HPC clusters.

- Existing LLM applications primarily focus on **programming-related tasks**.
- Significant **potential** in workload synthesis and predictive analysis.

- Existing LLM applications primarily focus on **programming-related tasks**.
- Significant potential in workload synthesis and predictive analysis.
- Models such as RoBERTa-Large and GPT-2 excel in data synthesis.
- LLM-generated data shows promise but doesn't match real data for training predictive models.

- Existing LLM applications primarily focus on **programming-related tasks**.
- Significant potential in workload synthesis and predictive analysis.
- Models such as RoBERTa-Large and GPT-2 excel in data synthesis.
- LLM-generated data shows promise but doesn't match real data for training predictive models.
- GPT-2 shows competitive performance with traditional models in predictive tasks.
- Other LLMs show varying levels of effectiveness.

- Existing LLM applications primarily focus on **programming-related tasks**.
- Significant potential in workload synthesis and predictive analysis.
- Models sud Future Work
- → A wider range of LLM architectures. LLM-gener predictive r
 - → Additional metrics for synthetic data evaluation.
 - → Advanced techniques for textual encoding.
- **GPT-2** show edictive tasks
- Other LLMs show varying levels of effectiveness.

Backup Slides

MLE Metrics (1/4) - Accuracy

MLE Metrics (2/4) - Precision

MLE Metrics (4/4) - F1 - Score

LLMs in Classification

-																	_					
	Number of Shots										#Shots	Method	Bank	Blood	C. Hous.	Car	Creditg	Diabetes	Heart	Income	Jungle	
Dataset	Method	0	4	8	16	32	64	128	256	512	all	- IIONOG	Logistic Reg.	0.84	0.74.02	0.00	0.93 02	0.66 07	0.80	0.01	0.92	0.70
	XGBoost		0.50,00		0.68 04	0.76 03	0.83 02	0.85 03	0.88 01	0.90 01 0.94	0.94 00		LightGBM	$\frac{0.84_{.02}}{0.77_{.03}}$	0.69 04	$\frac{0.88_{.01}}{0.81_{.02}}$	0.95 _{.02}	0.60 _{.07}	$0.80_{.02} \\ 0.79_{.02}$	$\frac{0.91_{.01}}{0.91_{.01}}$	$\frac{0.83_{.03}}{0.78_{.03}}$	$\frac{0.79_{.01}}{0.79_{.02}}$
Bank	TabPFN		0.59.14		0.76.03	0.82.03	3 0.86 _{.02}	0.89.00	0.90.00	0.91.00		XGBoost	0.83,02	0.68.05	0.82.04	0.91.02	0.67.06	0.73.05	0.91.01	0.82.02	0.81.02	
	TabLLM	0.63.01	$0.59_{.10}$	$0.64_{.05}$	$0.65_{.05}$	$0.64_{.06}$	$0.69_{.03}$	$0.82_{.05}$	$0.87_{.01}$	$0.88_{.01}$	0.92 †		SAINT	0.81.03	0.67.05	0.81.02	0.92.02	0.66.06	0.79.03	0.90.04	0.84.02	0.81.01
	XGBoost	_	0.50.00	0.58.07	0.66.04	0.67.06	0.68.05	0.71.06	0.70.07	0.67.06	0.71.04	04	TabNet NODE	$0.71_{.06}$ $0.78_{.02}$	$0.63_{.06} \\ 0.71_{.05}$	$0.72_{.03}$ $0.80_{.01}$	$0.73_{.07} \\ 0.80_{.02}$	0.56 _{.05} 0.63 _{.04}	0.71 _{.04} 0.77 _{.04}	$0.83_{.05}$ $0.88_{.02}$	$0.71_{.04}$ $0.75_{.02}$	0.73 _{.04} 0.75 _{.04}
Blood	TabPFN		$0.52_{.08}$	0.64 04	$0.67_{.01}$	$0.70_{.04}$	$0.73_{.04}$	$0.75_{.04}$	$0.76_{.04}$	$0.76_{.03}$	$0.74_{.03}$		TabPFN	0.78.02	0.73.04	0.80 _{.01}	0.80 _{.02}	0.70.07	0.82.03	0.92.02	0.73.02	0.73 _{.04}
	TabLLM	0.61.04	0.58.09	0.66.03	0.66 _{.07}	0.68 _{.04}	0.68 _{.04}	0.68 _{.06}	$0.70_{.08}$	0.68 _{.04}	0.70 _{.04}		TabLLM	0.69 03	0.68 04	0.77.04	0.96.02	0.70,07	0.73.03	0.91 01	0.84,02	0.78.02
80 80 900	XGBoost	1-	$0.50_{.00}$	$0.62_{.10}$	$0.74_{.03}$	$0.79_{.04}$	$0.82_{.04}$	$0.87_{.01}$	$0.90_{.01}$	$0.92_{.01}$	$0.97_{.00}$		LLaMA	0.62.02	0.66.03	0.57.04	$0.90_{.02}$	0.67.09	0.78.05	0.88.02	0.84.02	0.63.04
Calhousing	TabPFN	0.61	0.63 _{.13}	0.63.11	0.80 _{.03}	0.85 _{.03}	0.89 _{.01}	0.91 _{.01}	0.92.00	0.93.00	0.94.00		LLaMA-GTL	0.86.01	0.72.05	0.78.04	0.96.01	0.70.09	0.83.04	0.88.05	0.84.01	0.69.04
	TabLLM	0.61 _{.01}	0.63 _{.05}	0.60 _{.07}	0.70 _{.08}	0.77 _{.08}	0.77 _{.04}	0.81.02	0.83 _{.01}	0.86.02	0.95.00	512	Logistic Reg.	0.89 00	0.76.03	0.91 00	0.98.00	0.76,02	0.83 02	0.93.01	0.88.00	0.80 00
	XGBoost	_	0.50.00	0.59 _{.04}	0.70 _{.08}	0.82 _{.03}	0.91.02	0.95.01	0.98.01	0.99 _{.01}	1.00.00		LightGBM	0.89.00	0.67.05	0.92.00	0.99.01	$0.75_{.02}$	0.79.03	$0.92_{.01}$	0.88.00	$0.91_{.00}$
Car	TabPFN TabLLM	0.82.02	0.64 _{.06} 0.83 _{.03}	0.75 _{.05} 0.85 _{.03}	0.87 _{.04} 0.86 _{.03}	0.92 _{.02} 0.91 _{.02}	0.97 _{.00} 0.96 _{.02}	0.99 _{.01} 0.98 _{.01}	1.00 _{.00} 0.99 _{.00}	$1.00_{.00}$ $1.00_{.00}$	1.00 _{.00} 1.00 _{.00}		XGBoost	0.90,01	0.67.06	0.92.01	0.99.01	0.75.03	0.80,01	0.92.01	0.88.00	0.91,01
	200000000000000000000000000000000000000												SAINT TabNet	$0.88_{.01}$ $0.83_{.03}$	$0.73_{.02}$ $0.72_{.02}$	0.91 _{.02} 0.87 _{.01}	$\frac{0.99_{.00}}{0.98_{.01}}$	$0.73_{.03}$ $0.66_{.04}$	$0.77_{.03}$ $0.74_{.07}$	$\frac{0.92_{.01}}{0.88_{.03}}$	$\frac{0.88_{.00}}{0.83_{.02}}$	$\frac{0.90_{.00}}{0.84_{.01}}$
Credit-g	XGBoost TabPFN	_	0.50 _{.00}	$0.51_{.07}$ $0.59_{.03}$	0.59 _{.05} 0.64 _{.06}	$0.66_{.03}$ $0.69_{.07}$	$0.67_{.06}$ $0.70_{.07}$	0.68 _{.02} 0.72 _{.06}	0.73 _{.02} 0.75 _{.04}	$0.75_{.03}$ $0.75_{.02}$	0.78 _{.04} 0.75 _{.03}		NODE	0.86.01	0.72 _{.02} 0.76 _{.03}	0.87.01	0.96.01	$0.70_{.02}$	0.74.07	0.88.03	0.83.02	$0.84_{.01}$ $0.80_{.00}$
Credit-g	TabLLM	0.53.05	0.69 04	0.66 04	0.66 05	0.72 06	$0.70_{.07}$ $0.70_{.07}$	0.72.06	$0.73_{.04}$ $0.72_{.03}$	0.73.02	$0.75_{.03}$ $0.70_{.02}$		TabPFN	$0.90_{.00}$	$0.76_{.03}$	$0.93_{.00}$	1.00.00	0.75,02	0.81.02	0.92.02	0.87.01	$0.91_{.00}$
-	XGBoost		0.50,00	0.59 16	0.72 07	0.69 08	0.73.05	0.78.05	0.80 03	0.80 01	0.84 03	4 _{.03} 1 _{.03}	TabLLM	0.88,01	0.68.04	0.86.02	1.00,00	0.72,02	0.78.04	0.92.01	0.89.01	0.89 _{.01}
Diabetes	TabPFN		$0.50_{.00}$ $0.61_{.13}$	0.59.16 0.67 11	$0.72_{.07}$ $0.71_{.07}$	0.09 _{.08} 0.77 _{.03}	0.73.05 0.82 ₀₃	0.78 _{.05} 0.83 _{.03}	0.80 _{.03}	0.80 _{.01}	$0.81_{.03}$		LLaMA	0.77 _{.02}	0.72.05	0.86.02	0.99.00	0.72.04	0.83.04	$0.92_{.02}$	0.89.01	0.85 _{.03}
	TabLLM	0.68,06	0.61,09	0.63,08	0.69,07	0.68,04	0.73,03	0.79,04	0.78,02	0.78,04	0.80,04		LLaMA-GTL	$0.90_{.00}$	$0.75_{.04}$	$0.89_{.02}$	$0.99_{.01}$	$0.74_{.05}$	0.85.03	$0.93_{.02}$	0.89.01	$0.89_{.01}$
_	XGBoost	1-1	0.50 00	0.55 14	0.84 07	0.88 04	0.91 01	0.91,01	0.90 01	0.92 01	0.94,01		Logistic Reg.	0.91.00	0.76.03	0.92.00	0.98.00	0.79.03	0.83.02	0.93.01	0.90,00	0.81,00
Heart	TabPFN		0.84.06	0.88.05	0.87.06	0.91.02	0.92.02	0.92.02	0.92.01	0.92.02	0.92.02		LightGBM XGBoost	$0.94_{.00} \\ 0.94_{.00}$	$0.74_{.04}$ $0.71_{.04}$	0.97 _{.00} 0.97 _{.00}	$1.00_{.00}$ $1.00_{.00}$	$\frac{0.78_{.02}}{0.78_{.04}}$	0.83 _{.03} 0.84 _{.03}	0.94 _{.01}	0.93 _{.00} 0.93 _{.00}	$0.98_{.00}$ $0.98_{.00}$
	TabLLM	0.54.04	$0.76_{.14}$	0.83.05	0.87.04	0.87.06	$0.91_{.01}$	$0.90_{.01}$	$0.92_{.01}$	0.92.01	0.94.01											
	XGBoost	-	0.50,00	0.59,06	0.77,02	0.79.03	0.82,02	0.84_01	0.87,01	0.88.00	0.93.00		SAINT TabNet	$\frac{0.93_{.00}}{0.93_{.00}}$	$0.74_{.03}$ $0.71_{.03}$	0.95 _{.00} 0.96 _{.00}	1.00 _{.00} 1.00 _{.00}	0.77 _{.04} 0.64 _{.03}	0.83 _{.03} 0.81 _{.03}	$\frac{0.93_{.01}}{0.89_{.03}}$	$0.91_{.00}$ $0.92_{.00}$	1.00 _{.00} 0.99 _{.00}
Income	TabPFN		0.73,00	0.71.89	0.76,89	0.80	0.82.01	0.84.0	$0.86_{.01}$	$0.87_{.01}$	$0.89_{.00}$		NODE	$\overline{0.76_{.02}}$	0.74.03	0.87.01	0.93.01	0.65,03	0.83,03	0.92,03	0.82.00	0.81.00
	TabLLM	0.84_00	0.84_01	0.84_02	0.84_04	0.84_01	0.84_02	0.86.01	$0.87_{.00}$	0.89 _{.01}	0.92.00	TabPFN	0.91.00	0.74.03	0.94.00	1.00.00	0.75.03	0.81.03	0.92.02	0.89.00	0.93.00	
	XGBoost		0.50.00	0.58.07	0.72 _{.05}	0.78.03	0.81.02	$0.84_{.02}$	0.87.01	$0.91_{.01}$	0.98.00		TabLLM	0.92 00	0.70.04	0.95.00	1.00.00	0.70.02	0.80 _{.04}	0.94 _{.01}	0.92.00	1.00.00
Jungle	TabPFN	_	0.65.08	0.72.04	0.71.07	0.78.02	0.81.01	0.84.01	0.88.01	0.91.00	0.93.00	0.93 _{.00} 1.00 †	LLaMA	0.94,00	0.72.04	0.97.00	1.00,00	0.76,07	0.84,03	0.93.01	0.93.00	1.00,00
	TabLLM	0.60.00	0.64 _{.01}	0.64 _{.02}	0.65 _{.03}	0.71.02	0.78.02	0.81.02	0.84 _{.01}	0.89 _{.01}	1.00 †		LLaMA-GTL	0.94 nn	0.75.05	0.96,00	1.00.00	0.76,06	0.85,04	0.93.01	0.93.00	1.00,00

AUC performance.