

Mật mã ứng dụng Các thành phần mật mã cơ bản

Một phần bức tranh mật mã

Mật mã khóa đối xứng

Thuật toán:

$$K \leftarrow \underline{Gen(1^{\lambda})}$$
 sinh khóa độ dài λ $C \leftarrow Enc(K, M)$ mã hóa thông điệp M với khóa K , kết quả là bản mã C $M = Dec(K, C)$ giải mã C dùng khóa K để lấy được M .

Sử dụng trong thực tế.

- Nếu chỉ cần tính bí mật: <u>AES-128</u> với CBC mode hoặc CTR mode.
- Nều cần cả tính bí mật và xác thực: EAX, CCM, hoặc GCM mode

Mật mã khóa công khai

Thuật toán:

$$(SK, PK) \leftarrow Gen(1^{\lambda})$$

$$C \leftarrow Enc(PK, M)$$

$$M = Dec(SK, C)$$

sinh cặp khóa (bí mật, công khai) độ dài λ mã hóa thông điệp M với khóa công khai PK, kết quả là bản mã C giải mã C dùng khóa bí mật SK để được M.

Ví du.

Giao thức trao đổi khóa Diffie-Hellman (DH)

Mật mã khóa công khai

Thuật toán:

$$(SK, PK) \leftarrow Gen(1^{\lambda})$$
 sinh cặp khóa (bí mật, công khai) độ dài λ $C \leftarrow Enc(PK, M)$ mã hóa thông điệp M với khóa công khai PK , kết quả là bản mã C giải mã C dùng khóa bí mật SK để được M .

Ví du.

- Giao thức trao đổi khóa Diffie-Hellman (DH)
- Hệ mật mã RSA

Mật mã khóa công khai

Thuật toán:

$$(SK, PK) \leftarrow Gen(1^{\lambda})$$
 sinh cặp khóa (bí mật, công khai) độ dài λ $C \leftarrow Enc(PK, M)$ mã hóa thông điệp M với khóa công khai PK , kết quả là bản mã C giải mã C dùng khóa bí mật SK để được M .

Ví du.

- Giao thức trao đổi khóa Diffie-Hellman (DH)
- Hệ mật mã RSA
- Hệ mật mã dựa trên đường cong Elliptic (ECC)

Kích thước khóa (theo bit)

Khuyến nghị của NIST

AES	DH & RSA	ECC
80	1024	160 —
112	2048	224 /
128	3072	256 /
192	7680	384 🖊
256	15360	512 /

Mã xác thực thông điệp

Thuật toán:

$$k \leftarrow Gen(1^{\lambda})$$

$$\underline{t} \leftarrow S(\underline{k}, \underline{m})$$

$$V(\underline{k}, m, t)$$

sinh khóa độ dài ()
tạo chữ ký thông điệp m dùng khóa k"yes" hoặc "no" cho biết chữ ký t có phải là chữ ký hợp lê của m hay không.

Ví dụ. HMAC.

Chữ ký điện tử

Thuật toán:

$$(sk,pk) \leftarrow Gen(1^{\lambda})$$
 sinh khóa bí mật và công khai độ dài λ tạo chữ ký thông điệp m dùng khóa bí mật sk

$$V(pk,m,t)$$
 "yes" hoặc "no" cho biết chữ ký t có phải là chữ ký hợp lệ của m hay không.

Ví dụ. RSA, DSA, ECDSA

