

650V, 20A Alpha IGBT™

With soft and fast recovery anti-parallel diode

General Description

- · Latest Alpha IGBT (α IGBT) technology
- 650V breakdown voltage
- Very fast and soft recovery freewheeling diode
- High efficient turn-on di/dt controllability
- Low V_{CE(sat)} enables high efficiencies
- Low turn-off switching loss and softness
- · Very good EMI behavior
- · High short-circuit ruggedness

Applications

- Motor Drives
- Sewing Machines
- Home Appliances
- Fan, Pumps, Vacuum Cleaner

Orderable Part Number

AOK20B65M1

Maximum IGBT Junction-to-Case

Maximum Diode Junction-to-Case

Other Hard Switching Applications

Product Summary

 V_{CE} 650V I_C (T_C =100°C) 20A $V_{CE(sat)}$ (T_J=25°C) 1.7V

°C/W

°C/W

Minimum Order Quantity

Form

Tube

Package Type

TO247

AOT20B65M1		TO220	Tube	1000	00	
		TO263	Tape & Reel	800		
Absolute Maximum	Ratings T _A =25	6°C unless otherwise	e noted			
Parameter			AOK20B65M1/	AOK20B65M1/AOT(B)20B65M1		
Collector-Emitter Voltage			6	650		
Gate-Emitter Voltage			±	±30		
Continuous Collector T _C =25°C		1 _C		40		
Current	urrent T _C =100°C			20		
Pulsed Collector Current, Limited by T _{Jmax}				60		
Turn off SOA, V _{CE} ≤650V, Limited by T _{Jmax}				60		
Continuous Diode	T _C =25°C	ı		40		
Forward Current	T _C =100°C	1 _F		20		
Diode Pulsed Current, Limited by T _{Jmax}		nax I FM		60		
Short circuit withstand	ding time 1)			5	μs	
V _{GE} =15V, V _{CC} ≤400V, T _J ≤175°C		t _{sc}		5		
	T _C =25°C	В	2	227		
Power Dissipation	T _C =100°C	P_D	1	114	W	
Junction and Storage Temperature Range		Range T_J, T_{ST}	-55	-55 to 175		
Maximum lead temperature for soldering				300		
purpose, 1/8" from case for 5 seconds		ls ⁷ L		300		
Thermal Characteris	stics					
Parameter			AOK20B65M1	AOT(B)20B65M1	Units	
Maximum Junction-to-Ambient		$R_{ heta JA}$	40	65	°C/W	

¹⁾ Allowed number of short circuits: <1000; time between short circuits: >1s.

0.66

1.5

 $R_{\theta JC}$

 $R_{\theta JC}$

Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
STATIC F	PARAMETERS						
BV _{CES}	Collector-Emitter Breakdown Voltage	I _C =1mA, V _{GE} =0V, T _J	I _C =1mA, V _{GE} =0V, T _J =25°C		-	-	V
V _{CE(sat)}			T _J =25°C	-	1.7	2.15	V
	Collector-Emitter Saturation Voltage	V_{GE} =15V, I_{C} =20A	T _J =125°C	-	2.02	-	
			T _J =175°C	-	2.2	-	
V _F			T _J =25°C	-	1.66	2.1	
	Diode Forward Voltage	V_{GE} =0V, I_F =20A	T _J =125°C	-	1.67	-	V
			T _J =175°C	-	1.62	-	
V _{GE(th)}	Gate-Emitter Threshold Voltage	V _{CE} =5V, I _C =1mA		-	5.1	-	V
	Zero Gate Voltage Collector Current		T _J =25°C	-	-	10	
		$V_{CE} = 650 V, V_{GE} = 0 V$	T _J =125°C	-	-	500	μΑ
			T _J =175°C	-	-	5000	
I _{GES}	Gate-Emitter leakage current	V _{CE} =0V, V _{GE} =±30V	l v		-	±100	nA
g FS	Forward Transconductance	V _{CE} =20V, I _C =20A			14	-	S
	PARAMETERS					1	
C ies	Input Capacitance					-	pF
C oes	Output Capacitance	V _{GE} =0V, V _{CC} =25V, f	V _{GE} =0V, V _{CC} =25V, f=1MHz		141	-	pF
C res	Reverse Transfer Capacitance				50	-	pF
Q_g	Total Gate Charge		_	46	-	nC	
Q _{ge}	Gate to Emitter Charge	V _{GE} =15V, V _{CC} =520V	V _{GE} =15V, V _{CC} =520V, I _C =20A		12	_	nC
Q _{gc}	Gate to Collector Charge			_	21	_	nC
	Cate to Competer Change	V _{GE} =15V, V _{CC} =400V, t _{sc} ≲5us, T _J ≤175°C					
	Short circuit collector current			-	115	-	Α
R_g	Gate resistance	V _{GE} =0V, V _{CC} =0V, f=	V _{GE} =0V, V _{CC} =0V, f=1MHz		13	-	Ω
	NG PARAMETERS, (Load Inductive,	T _J =25°C)			•		
t _{D(on)}	Turn-On DelayTime			-	26	-	ns
t_r	Turn-On Rise Time		_ _ 		25	-	ns
t _{D(off)}	Turn-Off Delay Time	T _J =25°C			122	-	ns
t_f	Turn-Off Fall Time	V_{GE} =15V, V_{CC} =400V, I_{C} =20A, R_{G} =15 Ω		-	13	-	ns
E _{on}	Turn-On Energy			-	0.47	-	mJ
E _{off}	Turn-Off Energy			-	0.27	-	mJ
E total	Total Switching Energy			-	0.74	_	mJ
t _{rr}	Diode Reverse Recovery Time	-T _J =25°C -I _F =20A, di/dt=200A/μs, V _{CC} =400V		_	322	_	ns
Q _{rr}	Diode Reverse Recovery Charge			_	0.8	_	μС
I _{rm}	Diode Peak Reverse Recovery Curre			_	5.2	_	A
	NG PARAMETERS, (Load Inductive,						
t _{D(on)}	Turn-On DelayTime	· · ·		-	27	-	ns
t _r	Turn-On Rise Time	T_J =175°C V_{GE} =15V, V_{CC} =400V, I_C =20A, R_G =15Ω		-	24	_	ns
$t_{D(off)}$	Turn-Off Delay Time			-	150	-	ns
t_f	Turn-Off Fall Time			-	28	-	ns
E _{on}	Turn-On Energy			_	0.52	-	mJ
E _{off}	Turn-Off Energy			-	0.49	_	mJ
E _{total}	Total Switching Energy			-	1.01	-	mJ
t _{rr}	Diode Reverse Recovery Time				494	_	ns
Q _{rr}	Diode Reverse Recovery Charge	_T _J =175°С		-	1.6	_	μC
I _{rm}		I_F =20A, di/dt=200A/ μ	I _F =20A, di/dt=200A/μs, V _{CC} =400V			-	
• rm	Diode Peak Reverse Recovery Curre	ΠL	-	7.1	-	Α	

APPLICATIONS OR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

Figure 23: Diode Reverse Recovery Charge and Peak Current vs. di/dt (V_{GE}=15V, V_{CE}=400V, I_F=20A)

di/dt (A/ μ s)
Figure 24: Diode Reverse Recovery Time and Softness Factor vs. di/dt (V_{GE} =15V, V_{CE} =400V, I_F =20A)

Figure A: Gate Charge Test Circuit & Waveforms

Figure B: Inductive Switching Test Circuit & Waveforms

Figure C: Diode Recovery Test Circuit & Waveforms

Rev.3.0: May 2016 **www.aosmd.com** Page 9 of 9