```
In [550... # Import relevant libraries and modules.
         import pandas as pd
         from sklearn import naive_bayes
         from sklearn import model_selection
         from sklearn import metrics
In [552... data = pd.read_csv(r'C:\Users\HP\Desktop\Advance Data Analyst\6. The nuts and bolts of ML\2. Module 2\1. PACE in ML\Files\extracted_nba_players_data.csv')
         data.head(10)
              fg 3p ft reb ast stl blk tov target_5yrs total_points efficiency
         0 34.7 25.0 69.9 4.1 1.9 0.4 0.4 1.3
                                                             266.4 0.270073
         1 29.6 23.5 76.5 2.4 3.7 1.1 0.5 1.6
                                                             252.0 0.267658
         2 42.2 24.4 67.0 2.2 1.0 0.5 0.3 1.0
                                                             384.8 0.339869
         3 42.6 22.6 68.9 1.9 0.8 0.6 0.1 1.0
                                                             330.6 0.491379
         4 52.4 0.0 67.4 2.5 0.3 0.3 0.4 0.8
                                                             216.0 0.391304
         5 42.3 32.5 73.2 0.8 1.8 0.4 0.0 0.7
                                                             277.5 0.324561
         6 43.5 50.0 81.1 2.0 0.6 0.2 0.1 0.7
                                                             409.2 0.605505
         7 41.5 30.0 87.5 1.7 0.2 0.2 0.1 0.7
                                                             273.6 0.553398
         8 39.2 23.3 71.4 0.8 2.3 0.3 0.0 1.1
                                                      0
                                                             156.0 0.242424
         9 38.3 21.4 67.8 1.1 0.3 0.2 0.0 0.7
                                                             155.4 0.435294
In [554... # Define the y (target) variable.
         y = extracted_data['target_5yrs']
         # Define the X (predictor) variables.
         X = extracted_data.drop('target_5yrs', axis = 1)
In [556... # Display the first 10 rows of your target data.
         y.head(10)
Out [556... 0 0
         Name: target_5yrs, dtype: int64
In [558... # Display the first 10 rows of your predictor variables.
         X.head(10)
                       ft reb ast stl blk tov total_points efficiency
         0 34.7 25.0 69.9 4.1 1.9 0.4 0.4 1.3
                                                   266.4 0.270073
         1 29.6 23.5 76.5 2.4 3.7 1.1 0.5 1.6
                                                   252.0 0.267658
         2 42.2 24.4 67.0 2.2 1.0 0.5 0.3 1.0
                                                    384.8 0.339869
         3 42.6 22.6 68.9 1.9 0.8 0.6 0.1 1.0
                                                   330.6 0.491379
         4 52.4 0.0 67.4 2.5 0.3 0.3 0.4 0.8
                                                   216.0 0.391304
                                                   277.5 0.324561
         5 42.3 32.5 73.2 0.8 1.8 0.4 0.0 0.7
         6 43.5 50.0 81.1 2.0 0.6 0.2 0.1 0.7
                                                   409.2 0.605505
         7 41.5 30.0 87.5 1.7 0.2 0.2 0.1 0.7
                                                   273.6 0.553398
         8 39.2 23.3 71.4 0.8 2.3 0.3 0.0 1.1
                                                    156.0 0.242424
         9 38.3 21.4 67.8 1.1 0.3 0.2 0.0 0.7
                                                    155.4 0.435294
In [560... # Perform the split operation on your data.
         # Assign the outputs as follows: X_train, X_test, y_train, y_test.
         X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y, test_size=0.25, random_state=0)
In [562... # Print the shape (rows, columns) of the output from the train-test split.
         # Print the shape of X_train.
         print(X_train.shape)
         # Print the shape of X_test.
         print(X_test.shape)
         # Print the shape of y_train.
         print(y_train.shape)
         # Print the shape of y_test.
         print(y_test.shape)
        (1005, 10)
        (335, 10)
        (1005,)
        (335,)
In [564... # Assign `nb` to be the appropriate implementation of Naive Bayes.
         nb = naive_bayes.GaussianNB()
         # Fit the model on your training data.
         nb.fit(X_train, y_train)
         # Apply your model to predict on your test data. Call this "y_pred".
         y_pred = nb.predict(X_test)
In [566... # Print your accuracy score.
         print('accuracy score:'), print(metrics.accuracy_score(y_test, y_pred))
         # Print your precision score.
         print('precision score:'), print(metrics.precision_score(y_test, y_pred))
         # Print your recall score.
         print('recall score:'), print(metrics.recall_score(y_test, y_pred))
         # Print your f1 score.
         print('f1 score:'), print(metrics.f1_score(y_test, y_pred))
        accuracy score:
        0.6895522388059702
        precision score:
        0.8405797101449275
        recall score:
        0.5858585858585859
        f1 score:
        0.6904761904761905
Out[566... (None, None)
In [568... # Construct and display your confusion matrix.
         # Construct the confusion matrix for your predicted and test values.
         cm = metrics.confusion_matrix(y_test, y_pred)
         # Create the display for your confusion matrix.
         disp = metrics.ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=nb.classes_)
         # Plot the visual in-line.
         disp.plot()
Out [568... <sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay at 0x27bf18d2a50>
                                                                     100
           0
        True label
```

In [1: # key takeaways

The evaluation of the model is important to inform if the model has delivered accurate predictions.

Splitting the data was important for ensuring that there was new data for the model to test its predictive performance.

Each metric provided an evaluation from a different standpoint, and accuracy alone was not a strong way to evaluate the model.

Effective assessments balance the true/false positives versus true/false negatives through the confusion matrix and F1 score.

How would you present your results to your team?

Showcase the data used to create the prediction and the performance of the model overall.

Review the sample output of the features and the confusion matrix to indicate the model's performance.

Highlight the metric values, emphasizing the F1 score.

How would you summarize your findings to stakeholders?

The model created provides some value in predicting an NBA player's chances of playing for five years or more.
Notably, the model performed better at predicting true positives than it did at predicting true negatives.
In other words, it more accurately identified those players who will likely play for more than five years than it did those who likely will not.