C01-02 Intervalles

1. Intervalles de nombres réels

E Définition

Soient a et b deux nombres réels tels que $a \leqslant b$.

• On appelle intervalle fermé [a;b] l'ensemble des nombres réels x tels que $a \leqslant x \leqslant b$.

- On appelle intervalle ouvert]a;b[l'ensemble des nombres réels x tels que a < x < b.

- On définit de même les intervalles [a;b[et]a;b].
- On note $[a; +\infty[$ l'ensemble des nombres réels x tels que $x\geqslant a.$

• On note $a; +\infty[$ l'ensemble des nombres réels x tels que x>a.

• On définit de même $]-\infty;a]$ et $]-\infty;a[$.

Remarques

- Le symbole $+\infty$ se lit " Plus l'infini ".
- Le symbole $-\infty$ se lit " Moins l'infini ".

Représenter des intervalles

Enoncé

Ecrire les inégalités suivantes sous la forme d'un intervalle, puis représenter cet intervalle sur la droite des réels :

- 1. $x \leqslant 5$
- 2. x > -3
- 3. 2 < x < 5
- $4. -4 \leqslant x \leqslant -3$
- 5. $-3 \leqslant x < 8$
- 6. $-2 < x \le 0$

Solution

- 1. $]-\infty;5]$
- 2.] $-3; +\infty[$
- 3.]2;5[
- 4. [-4; -3]
- 5. [-3; 8[
- 6.] -2;0]

Appartient ou pas ?

Enoncé

Compléter avec un symbole \in ou $\not\in$:

- $-2 \dots [-2;1[$
- $-3 \dots [-5; -1[$
- $-\frac{26}{5}\ldots]-5;-4[$
- $4 \dots [-3; 4[$
- $2\pi \dots [7; 8]$
- $0 \dots \mathbb{R}$
- 0 . . . ℝ*

Solution

- $-2 \in [-2;1[$
- $-3 \in [-5; -1[$
- $-\frac{26}{5} \notin]-5;-4[$
- $4 \notin [-3; 4[$
- $2\pi \notin [7; 8]$
- $0 \in \mathbb{R}$
- $0 \notin \mathbb{R}^*$

Enoncé

Recopier et compléter :

Inégalité	Intervalle	Représentation graphique
2 ≤ <i>x</i> ≤ 4	$x \in [2;4]$	2 4 5

Inégalité	Intervalle	Représentation graphique		
0 < <i>x</i> ≤ 5	<i>x</i> ∈]0;5]			
	$x \in]-3;7[$			
	$x \in]-\infty;4]$			
3 ≤ <i>x</i>				
		$\begin{bmatrix} -1 & 1 \\ -3 & -2 \end{bmatrix}$ 0 2 3 4 5 6 7 8		
		2 -1 0 1 3 4 5 6 7 8 9 10		

Solution

A venir....

2. Unions et intersections d'intervalles

E Définition

Soient I et J deux intervalles.

- L'intersection de I et J est l'ensemble des réels qui appartiennent à la fois à I \textbf{ET} à J. On note cet ensemble $I \cap J$.
- La réunion de I et J est l'ensemble des réels qui appartiennent à I \textbf{OU} à J. On note cet ensemble $I \cup J$.

Remarques

- La notation \cap se lit \og inter \fg. D'où $I\cap J$ se lit \og I inter J \fg.
- La notation \cup se lit \log union \backslash fg. D'où $I \cup J$ se lit $\log I$ union $J \backslash$ fg.
- Parfois, il n'y a aucun élément qui appartiennent à la fois à I et J. L'intersection est donc \textbf{vide}, et on note \emptyset l'ensemble vide. Dans ce cas $I \cap J = \emptyset$.

Exemple

On considère les intervalles I = [3;7] et J =]2;5[.

• L'ensemble $I \cap J$ est [3;5[.

• L'ensemble $I \cup J$ est]2;7].

$oldsymbol{O}$ Utiliser les notations \cap et \cup

Enoncé

R\'eduire sous la forme d'un seul intervalle si possible et représenter sur la droite des réels :

- $]-3;7]\cap]-2;8[$
-] $-4;3] \cap [-2;3,5[$
- $[-7;4[\cup]-3;5]$
- $]-3;5] \cup [-1;2]$
- $[-6;6] \cup [-2;2]$
- $]-\infty;2[\cap]1;+\infty[$
- $]-\infty;-1]\cup]2;6]$
- $[-5;3] \cap [6;8]$

Solution

-] $-3;7]\cap]-2;8[=]-2;7]$
-] $-4;3]\cap [-2;3,5[=[-2;3]$
- $[-7;4[\cup]-3;5]=[-7;5]$
- $]-3;5] \cup [-1;2] =]-3;5]$
- $[-6;6] \cup [-2;2] = [-6;6]$
- $]-\infty;2[\cap]1;+\infty[=]1;2[$
- $]-\infty;-1]\cup]2;6]=]-\infty;-1]\cup]2;6]$
- $[-5;3] \cap [6;8] = \emptyset$

Ensemble vide

L'ensemble vide est noté \emptyset .

8 T

Travailler les inéquations et les intervalles

Enoncé

Compléter en s'aidant de la méthode donnée dans l'exemple ci-dessous.

Exemple

On a les équivalences :

par définition	$1\leqslant x\leqslant 2$	\iff	$x \in [1;2]$
en multipliant chaque membre de l'inégalité par 3	$3\leqslant 3x\leqslant 6$	\iff	
par définition	$3x \in [3;6]$	\iff	

d'où $x \in [1;2]$ si et seulement si $3x \in [3;6]$

- 1. $x \in [7;20]$ si et seulement si $7x \in \dots$
- 2. $x \in]-1;3]$ si et seulement si $x+4 \in \dots$
- 3. $x \in [2;6]$ si et seuelemnt si $8-x \in \dots$
- 4. $x \in \ldots$ si et seulement si $x+6 \in]3;+\infty[$
- 5. $x \in \ldots$ si et seulement si $-2x \in [4; +\infty[$
- 6. $x \in \ldots$ si et seulement si $4x+3 \in [-6;5]$

Solution

- 1. $x \in [7;20]$ si et seulement si $7x \in [49;140]$
- 2. $x \in]-1;3]$ si et seulement si $x+4 \in]3;7]$
- 3. $x \in [2;6]$ si et seuelemnt si $8-x \in [2;6]$
- 4. $x \in]-3;+\infty[$ si et seulement si $x+6 \in]3;+\infty[$
- 5. $x \in]-\infty;-2]$ si et seulement si $-2x \in [4;+\infty[$
- 6. $x \in [-rac{9}{4};2]$ si et seulement si $4x+3 \in [-6;5]$

Représenter sous la forme d'intervalles

Enoncé

- $\bullet \quad y>-3 \text{ et } y<4$
- $\bullet \quad y>-3 \text{ ou } y<4$
- $y\leqslant \frac{1}{3}$ et $y\leqslant \frac{1}{2}$
- $y \leqslant \frac{1}{3}$ ou $y \leqslant \frac{1}{2}$

Solution

A venir

Résolutions d'équations du premier degré

Enoncé

1. Résoudre dans $\ensuremath{\mathbb{R}}$ chacune des équations suivantes :

2.
$$3x - 6 = 0$$

3.
$$3x - 4 = 0$$

4.
$$-3x + 64 = 19$$

$$5. -2(x+5) = -8$$

6.
$$3x-\pi=0$$

7.
$$\frac{x-8}{3} = -4$$

8. Lesquelles de ces 4 équations sont résolubles dans $\mathbb Z$? Dans $\mathbb Q$?

Solution

A venir

Résolutions d'inéquations du premier degré

Enoncé

Résoudre les inéquations suivantes et présenter le résultat sous la forme d'un intervalle :

•
$$3x - 6 > 0$$

•
$$3x - 4 \leq 0$$

•
$$-3x + 64 < 19$$