闵行区 2016 年第一次模拟考试 物理试卷

(满分 100 分, 考试时间 90 分钟)

考生注意:

- 1. 本试卷共五个大题, 30 道题。
- 2. 答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸上、本试 卷上答题一律无效。

-、选择题 (共 20 分)

- 1. 一块橡皮擦用了一段时间之后,保持不变的物理量是
- B 密度
- C体积
- D 质量
- 2. 首先用实验测出大气压强值的科学家是
 - A 托里拆利
- B安培
- C伏特
- D阿基米德
- 3. 世锦赛游泳冠军宁泽涛比赛时所受的浮力约为
 - A 8 牛
- B 80 牛
- C 800 牛
- D 8000 牛
- 4. 关于图 1 所示的电路,下列说法中正确的是
 - A 断开电键 S, 通过 L_2 的电流比通过 L_1 的电流大
 - B 断开电键 S, 通过 L_1 的电流与通过 L_2 的电流一样大
 - C 闭合电键 S, 灯 L_1 、 L_2 都会发光
 - D 闭合电键 S,灯 L_1 不会发光
- 5. 以下各物理量中,决定通过某导体电流大小的是
 - A 电荷量
- B通电时间
- C电压
- D电功
- 6. 教室里有多盏日光灯。使用时开的灯越多,则电路中
 - A 总电流越小 B 总电阻越小 C 总电阻越大
- D 总电压越大
- 7. 密度为 2×10³ 千克/米 ³、边长为 0.1 米的实心均匀正方体放在光滑的水平地面 上,受到水平方向拉力F的作用,则它对水平地面的压强
 - A 一定小于 1960 帕
- B 可能小于 1960 帕
- C 一定等于 1960 帕
- D 可能等于 1960 帕
- 8. 如图 2 所示, A、B 为完全相同的两个容器, 分别盛 有7cm、5cm深的水,A、B之间用导管连接。若将阀门K 打开,最后A、B 两容器底部受到水的压强之比为

- B 2: 3
- C 3: 7
- D1: 1

图 1

- 9. 如图 3 所示的电路中,电源电压保持不变。闭合电键 S 后,当滑动变阻器的滑 片 P 向右移动时,以下说法中正确的是
 - A 电流表 A 示数变小, 电压表 V_2 示数变小
 - B 电压表 V₁ 与电压表 V₂ 示数的差值不变
 - C 两电压表的示数之差与电流表 A 示数的比值变大
 - D 电压表 V_2 示数变化量与电流表示数变化量之比不变

10. 两个完全相同的圆台形容器重为 G,以不同方式放置在水平桌面上,容器内 盛有深度相同的水,如图 4 所示。某物理兴趣小组在学习了压力和压强知识后提出了 如下三个观点: ①水对容器底部的压力 F_a 一定小于 F_b ; ②容 器对桌面的压力 $F_{a'}$ 一定小于 $F_{b'}$; ③容器对桌面的压强 P_{a} 一定大于 Pb。其中正确的是 (*a*) (*b*) 图 4

 $A \oplus 2$

B 23

 $C \oplus 3$

D (1)(2)(3)

二、填空题 (共29分)

- 11. 我国家用电视机正常工作的电压为 (1) 伏,它与电冰箱是 (2) 连 接的(选填"串联"或"并联")。家庭电路所消耗的电能是用 (3) 测量的。
- 12. 图 5 (a) 中静脉输液的药液主要是利用 (4) 使液体流出;图 5 (b) 中 锥子头很尖锐是为了增大 (5)___; 图 5 (c) 中的电热水壶,通过壶外透明玻璃管的 液面就可知道水壶内的水位,这是利用了 (6) 原理;图5(d)中所示的拦河大坝 建成上窄下宽的主要原因是_ (7) 。

(a) 静脉输液

(b) 锥子

(c) 电热水壶

(d) 拦河大坝

- 13. 某导体电阻为 20 欧, 10 秒内通过导体横截面的电荷量为 4 库,通过它的电流 为___(8)___安,它两端的电压为___(9)___伏。若通过此导体的电流为0安,则它的 电阻为 (10) 欧。
- 14. 我国最大集装箱船"郑和"号于今年9月在上海交付使用。它的甲板面积相 当于 4 个标准足球场,排水量约为 18 万吨。"郑和"号从长江口驶入东海,所受到的 浮力将____(11)_,排开水的体积将_(12)_,排开水的质量将_(13)_(均选 填"变大"、"不变"或"变小")。
- 15. 甲、乙、丙三根镍铬合金丝,其横截面积关系为 $S_{\mathbb{P}} > S_{\mathbb{Z}} = S_{\mathbb{P}}$,长度关系为 $L_{\parallel}=L_{Z}< L_{\Box}$,则电阻最大的是<u>(14)</u>镍铬合金丝;将三根镍铬合金丝分别接在 同一电源两端,则通过的电流最大的是 (15) 镍铬合金丝 (均选填"甲"、 "乙"或"丙")。
- 16. 某国产品牌手机电池板的铭牌上标有"2000mAh"字样, 其充电电压为 3.8 伏。可判断 2000mAh 中的"mAh"是 (16) (填物理量名称)的单位。若该手机电 池板需 4 小时完成充电,则充电的电流为 (17) 安,所消耗的电能为 (18) 千 瓦时。
- 17. 如图 6 所示,完全相同的 a、b 两个长方体,长度为 h,悬浮 在密度为 ρ 的液体中,长方体b上下表面的液体压强差为 (19)。 若两长方体 $a \times b$ 下表面所受液体的压力分别为 $F_a \times F_b$,则 F_a (20)

F_b(选填"大于"、"等于"、或"小于")。

19. 某番茄自动筛选装置如图 8(a)所示,其工作原理如图 8(b)所示。已知电源电压恒为 15 伏,定值电阻 R_0 为 20 欧,R 为压敏电阻,其阻值随压力变化关系如图 8(c)所示。当定值电阻两端电压 $U_{AB} \leqslant 3V$ 时,不达标的小番茄将被推出传送带,实现自动筛选功能。

- (1) 当检测点上没有番茄时, AB 两点间的电压为___(23)___伏。
- (2) 当番茄对压敏电阻的压力 $F \leq$ (24) 牛时,番茄将被推出传送带。
- (3) 有同学提议,选择合适的 R_0 阻值,可用此装置筛选西瓜。你认为此提议是否可行,并简要说明理由: ___(25)__。

三、作图题 (共9分)

- 20. 重为 8 牛的物体静止在水平地面上,用力的图示法在图 9 中画出地面受到的压力 F。
- 21. 在图 10 所示的电路中,根据标出的电流方向,从电源、电流表、电压表三个元件符号中选出两个,并分别填进电路的空缺处。要求:灯泡 L_1 和 L_2 串联。
- 22. 在图 11 所示的电路中,有两根导线尚未连接,请用笔线代替导线补上。要求: 小灯 L与滑动变阻器 R 并联,且当滑动变阻器的滑片向左移动时,电流表的示数变小。

四、计算题 (共 23 分)

23. 某物体质量为 4 千克,体积为 2×10-3 米 3。求此物体的密度。

- 24. 在图 12 所示电路中,电阻 R_1 的阻值为 10 欧,滑动变阻器 R_2 标有"50 Ω 2A"字样,电流表的量程选择"0~3A"。只闭合电键 S_1 ,
- 电流表的示数为 0.8 安; 再闭合 S_2 , 电流表的示数变化了 0.4 安。求:
 - (1) 电源电压。
 - (2) 电阻 R₂ 接入电路的阻值。
 - (3) 该电路的最大电功率。

- 25. 在图 13(a)所示的电路中,电源电压为 15 伏保持不变,电阻 R_1 阻值为 10 欧,滑动变阻器 R_2 上标有"50 Ω 1A"字样,电压表、电流表的量程如图 13(b)所示。闭合电键,将滑片 P 移到某一位置时,电流表的示数为 0.5 安。求:
 - (1) 10 秒内电阻 R₁ 消耗的电能。
- (2) 若不改变各电表的量程,确保电路所有元件均安全使用的情况下,求在移动变阻器滑片的过程中,电压表 V_2 示数与电压表 V_1 示数比值的变化范围。

- 26. 如图 14 所示,质量为 2.5 千克,底面积为 2×10⁻² 米 ² 的薄壁柱形容器(容器足够高)放置在水平地面上。另有一正方体物块 A,其体积为 1×10⁻³ 米 ³。
 - (1) 求薄壁柱形容器对水平地面的压强。
- (2) 现将物块A放入容器中,再向容器中注入水,当水的体积为 2×10⁻³ 米 ³时,容器对地面的压强刚好等于水对容器底部压强的两倍,求物块A的质量。

五、实验题 (共19分)

27. 测量物体的质量,应选用图 15 中的___(1)___仪器(选填"a"、"b"或"c"),它的工作原理是___(2)___;测量液体的密度,应选用图 14 中的___(3)___仪器(选填"a"、"b"或"c"),它是根据___(4)___原理制成的。

- 28. 某小组测量小灯的额定功率,待测小灯标有"2.5V"字样。实验器材有: 电源、滑动变阻器、电键、电压表、电流表、导线若干。
 - (1) 请在图16(a) 方框内画出电路图。 (5)
- (2) 按电路图正确连接电路,闭合电键前应将滑动变阻器的滑片移至阻值最<u>(6)</u>位置(选填"大"或"小")。闭合电键后,移动滑动变阻器的滑片位置,直到电压表示数为2.5伏时,观察到电流表示数如图16(b)所示。则通过实验测得小灯的额定功率为<u>(7)</u>瓦。

图 16

- 29. 小陆做"用电流表、电压表测电阻"实验,器材有电压恒定的电源、待测电阻 R_x 、电流表、电压表、电键及导线若干。为了实现多次测量,他从实验室找来了 20 欧和 10 欧的电阻各一个,并设计了如图 17(a)所示的电路图进行实验。实验步骤如下:
- (1) 按图 17(a)正确连接器材,并在 MN 两点之间不接入任何器材的情况下,闭合电键 S,此时电压表的示数为 4.5 伏。
- (2) 断开电键,把 10 欧的电阻接入 MN 两点之间。重新闭合电键 S 后,电压表示数如图 17(b)所示。
- (3) 把 10 欧的电阻换成 20 欧的电阻,重新实验,电压表示数相比步骤②变化了 0.8 伏。
 - (4) 用一根导线接在 MN 之间,此时电流表示数为 0.36 安。

请根据上述实验过程,填写下表编号处的数据。

物理量实验序号	电压 <i>U</i> _x (伏)	电流 <i>I</i> _x (安)	电阻 R _x (欧)	电阻 R _x 的平均值 (欧)
1	0	0		
2	_(8)_	(9)		
3	(10)	(11)		
4	(12)	0.36		

30. 某兴趣小组研究物体静止在两种不同液体中的体积关系。他们用多种互不相溶的液体(液体均足量)和两个材料不同、边长均为10厘米的正方体进行实验,如图18所示。实验数据记录如下表:

表一

实验序号	物体的 密度 ρ ₃ (克/厘米 ³)	上层液体 密度 ρ ₁ (克/厘米 ³)	下层液体 密度 ρ ₂ (克/厘米 ³)	浸在上层液体 中的体积 V ₁ (厘米 ³)	浸在下层液体 中的体积 V ₂ (厘米 ³)
1		0.9	1.1	500	500
2	1.0	0.8	1.3	600	400
3		0.8	1.2	500	500
4		0.8	1.1	333	667
5		0.7	0.9	0	(14)

表二

实验序号	物体的 密度 ρ ₃ (克/厘米 ³)	上层液体 密度 ρ ₁ (克/厘米 ³)	下层液体 密度 ρ ₂ (克/厘米 ³)	浸在上层液体 中的体积 V ₁ (厘米 ³)	浸在下层液体 中的体积 V ₂ (厘米 ³)
6		1.0	1.1	(15)	0
7		0.8	1.0	500	500
8	0.9	0.7	1.2	600	400
9		0.7	1.1	500	500
10		0.7	1.0	333	667

- (2) 完成表格中序号 5、6 实验数据的填写。__(14)__、__(15)_。
- (3)分析两表的实验数据可以得出: 当物体密度与两液体密度之间满足____(16) 大小关系时,物体才能静止在两液体之间; 当______时,物体浸在上层液体中的体积 V_1 等于浸在下层液体中的体积 V_2 。

闵行区 2015 学年第一学期九年级质量调研考试 答案要点及评分说明

题号	答案要点及评分说明						
一、20分	1.B。 2.A。 3.C。 4.B。 5.C。 6.B。 7.C。 8.A。 9.D。 10.D。						
	11. (1) 220; (2) 并联; (3) 电能表。						
	12. (4) 大气压强; (5) 压强; (6) 连通器;						
 二、 29 分	(7) 水的压强随深度的增加而增大。						
	13. (8) 0.4; (9) 8; (10) 20.						
(说明:	14. (11) 不变; (12) 变小; (13) 不变。						
除注明	15. (14)丙 (15)甲。						
外,其余	16. (16)电荷量; (17)0.5; (18)0.0076。						
每空 1	17. (19) ρgh; (20) 大于。						
分,共 29	18. (21) R ₁ 短路或 R ₂ 断路; (2分)						
分)	(22) R1 短路且 R2 断路; R2 断路且 R 短路。 (2分)						
	19. (23) 2.5; (24) 0.5; (2分)						
	(25)不可行。因为当 R 所受的压力大于 4 牛后,其阻值几乎不变,而西 瓜的重力通常大于 4 牛。(2 分)						
^	20. 大小 1 分; 方向 1 分; 作用点 1 分。						
三、9 分	21. 两个元件符号都正确 2 分, 电源的正负极正确 1 分。						
	22. 电路连接正确 3 分。						
	23. 本题 3 分						
	$\rho = \frac{m}{V} = \frac{4 + \frac{1}{2}}{2 \times 10^{-3} + \frac{1}{2}} = 2 \times 10^{3} + \frac{1}{2} \times 10^{3}$						
	说明:公式1分,代入1分,结果1分。						
	24. 本题 6 分						
四、23 分	(1) 只闭合 S_1 , 只有 R_1 接入电路。 $U = U_1 = I_1 R_1 = 0.8 \div 10 $ 2 分						
	(2) 再闭合 S_2 , R_1 和 R_2 并联,电流表的示数变化了 0.4 安,即 I_2 = 0.4 安						
	U ₂ =U=8 伏 I ₂ =0.4 安						
	R ₂ =U ₂ /I ₂ =8 伏/0.4 安=20 欧 2 分						
	(3) 当通过 R ₂ 的电流为最大允许电流(2 安)时,电路中总电流最大。						

I 大=I₁+I₂ 大=2 安+0.8 安=2.8 安 2分 $P_{\pm} = UI_{\pm} = 8 \square \times 2.8 \square = 22.4 \square$ 25. 本题共7分。 1分 $W_1 = U_1 I_1 t = 5 \text{ (\times 0.5$ \times 10 ψ = 25$ $\text{ ($\pm$)}}$ 2分 (2) 当 R_2 =0 欧时, $R=R_1+R_2=10$ 欧 $I = \frac{U}{R} = \frac{15\text{(f)}}{10\text{(f)}} = 1.5\text{(g)} > 0.6\text{(g)}$ 所以电路中的最大电流为0.6安,此时变阻器 R_2 的阻值最小。 $R_{\text{min}} = \frac{U}{I_{\text{max}}} = \frac{15\text{ ft}}{0.6\text{ gc}} = 25\text{ gc}$ R_{2min}=R_{min}-R₁=25 欧-10 欧=15 欧 1分 $R_{2 \max} = 50$ EX 1分 根据串联电路的分压规律可知: $\frac{U_2}{U_1} = \frac{R_2}{R_1}$ fig., $\left[\frac{U_2}{U_1}\right]_{\max} = \frac{R_{2\max}}{R_1} = \frac{50\text{ M}}{10\text{ M}} = 5$ $\left[\frac{U_2}{U_1}\right]_{\text{min}} = \frac{R_{2\min}}{R_1} = \frac{15 \text{ M/s}}{10 \text{ M/s}} = 1.5$ 1分 $1.5 \leqslant \frac{U2}{U1} \leqslant 5$ 1分 26. 本题共 7 分 (1) F=G=mg=2.5 千克×9.8 牛/千克=24.5 牛 1分 $P = F/S = 24.5 \pm /2 \times 10^{-2} \pm = 1225$ 帕 2分 (2) $p_{\approx} = 2p_{\star k}$ 若物块在水中漂浮 $\frac{(\rho_{\dot{\mathcal{M}}}V_{\dot{\mathcal{M}}}+m_{\mathcal{A}}+m_{\dot{\mathcal{C}}})g}{S_{\dot{\mathcal{C}}}}=2\rho_{\dot{\mathcal{M}}}\frac{V_{\dot{\mathcal{M}}}+m_{\dot{\mathcal{W}}}/\rho_{\dot{\mathcal{M}}}}{S_{\dot{\mathcal{C}}}}g$ $1000kg/m^3 \times 2 \times 10^{-3}m^3 + m_4 + 2.5kg = 2 \times 1000kg/m^3 \times (2 \times 10^{-3}m^3 + m_4/1000kg/m^3)$ $m_A = 0.5kg$ 若物块在水中浸没 $\frac{(\rho_{\dot{m}}V_{\dot{m}}+m_A+m_{\dot{\mathcal{D}}})g}{S_{\dot{\mathcal{D}}}}=2\rho_{\dot{m}}\frac{V_{\dot{m}}+V_A}{S_{\dot{\mathcal{D}}}}g$ $1000kg/m^3 \times 2 \times 10^{-3}m^3 + m_A + 2.5kg = 2 \times 1000kg/m^3 \times (2 \times 10^{-3}m^3 + 1 \times 10^{-3}m^3)$ $m_A = 1.5kg$ 4分

五、19分

27. (1) b:

(2) 杠杆平衡条件;

(3) a;

(4) 阿基米德。

(说明:除

28. (5) 略(2分);

(6) 大;

(7) 0.8。

像平时有价值的升学文章,像自招、校园开放日消息、历年中考分数线,那些文章我都放在公众号菜单栏那个按钮上的专题那里了,还有什么细化的升学问题,你们可以关注公众号给我留言,我看到会第一时间回复你们的——小编编

