

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ И ПРОЦЕССЫ УПРАВЛЕНИЯ N 2, 2012

Электронный журнал, рег. Эл. N ФС77-39410 om 15.04.2010 ISSN 1817-2172

 $http://www.math.spbu.ru/diffjournal \\ e-mail: jodiff@mail.ru$

Теория обыкновенных дифференциальных уравнений

ОБОБЩЕННЫЕ НОРМАЛЬНЫЕ ФОРМЫ СИСТЕМ ОДУ С ЛИНЕЙНО-КУБИЧЕСКОЙ НЕВОЗМУЩЕННОЙ ЧАСТЬЮ

В. В. БАСОВ, Л. С. МИХЛИН

Россия, 198504, Санкт-Петербург, Петродворец, Университетский пр., д. 28, Санкт-Петербургский Государственный университет, математико-механический факультет, кафедра дифференциальных уравнений, e-mail: vlvlbasov@rambler.ru, mikhlin@bk.ru

Аннотация

Конструктивным методом получены все структуры обобщенных нормальных форм, к которым может быть сведена формальным обратимым преобразованием двумерная автономная система ОДУ с линейно-кубическим многочленом в невозмущенной части, линейно эквивалентным какому-либо квазиоднородному многочлену. Также осуществлена классификация систем, невозмущенную часть которых образует квазиоднородный многочлен второй обобщенной степени с весом (1,3).

1 Введение

В работе будет рассматриваться вещественная система

$$\dot{x}_i = P_i(x) + X_i(x) \qquad (i = 1, 2, \quad P_i \not\equiv 0),$$
 (1)

в которой полиномы $P_1(x)=a_1x_1+d_1x_2$ и $P_2(x)=a_2x_1^3+b_2x_1^2x_2+c_2x_1x_2^2+d_2x_2^3$ образуют линейно-кубическую невозмущенную часть, возмущение $X_i(x)=\sum_{p_1+p_2=2i}^{\infty}X_i^{(p_1,p_2)}x_1^{p_1}x_2^{p_2}$.

Задача заключается в том, чтобы при помощи формальных обратимых замен переменных максимальным образом упростить систему (1), сохраняя линейно-кубическую структуру ее невозмущенной части.

Эта задача естественным образом распадается на две: сначала при помощи линейных обратимых замен упростить невозмущенную часть системы (1), а затем при помощи формальных почти тождественных замен упростить полученное возмущение, сводя исходную систему к так называемой обобщенной нормальной форме $(OH\Phi)$.

Нормализация возмущений системы будет осуществляться конструктивно методом резонансных уравнений, впервые описанным и примененном первым из авторов в [1], а затем в [2], [3] и еще целом ряде работ. Метод позволяет, во всяком случае, если степень невозмущенной части системы не превосходит трех, в явном виде выписать все возможные структуры ОНФ, к которым исходная система с фиксированной невозмущенной частью может быть сведена формальной почти тождественной заменой. Это подразумевает, что для каждого порядка возмущения ОНФ будет указано не только максимальное число ненулевых слагаемых данного порядка, но и конкретно все показатели степеней, которые эти слагаемые могут иметь, а если надо, то и их коэффициенты.

Метод резонансных уравнений удобно применять, если невозмущенная часть системы является векторным однородным многочленом, например, второго порядка (см. [3]–[8]) или третьего порядка (см. [9]). В противном случае, например, как в системе (1), необходимо сначала выровнять порядки невозмущенной части, вводя для переменных вес, обобщенную степень и рассматривая только квазиоднородные многочлены (КОМ). А это удается сделать далеко не для любого векторного многочлена.

Поэтому при решении задачи нормализации невозмущенной части системы (1) надо сначала выделить все возможные КОМ линейно-кубической структуры и указать условия на коэффициенты многочленов P_1 и P_2 , при которых линейной неособой заменой они сводятся к соответствующим КОМ. И только затем приступить к последовательной нормализации возмущений систем с различными линейно-кубическими КОМ в невозмущенной части.

В работе показано, что невозмущенная часть системы (1) может быть сведена к двум различным каноническим КОМ: КОМ1 обобщенной степени один с весом (1,2) и КОМ2 обобщенной степени два с весом (1,3). И далее в явном виде получены все возможные ОНФ систем с КОМ1 и КОМ2 в невозмущенной части.

Существует другой подход к классификации невозмущенных частей системы, при котором невозмущенную часть образует произвольный КОМ с заданными обобщенной степенью и весом. При таком подходе первичной задачей является разбиение невозмущенной системы части на классы эквивалентности относительно обратимых квазиоднородных замен с выделением в каждом классе простейшего представителя — канонической формы для того, чтобы в дальнейшем последовательно получать ОНФ систем с каждой из канонических форм в невозмущенной части.

Для произвольных КОМ обобщенной степени один с весом (1,2) это сделано в [2],[10], а для КОМ обобщенной степени два с весом (1,3) – в настоящей работе.

В заключение отметим, что классификация двумерных систем с векторным однородным многочленом второго порядка в невозмущенной части осуществлена в [3] и уточнена в [4], а с векторным однородным многочленом третьего порядка, компоненты которого имеют общий множитель, – в [11].

2 Выделение квазиоднородного многочлена

 1^0 . Следуя, например, [1] или [2], дадим следующие определения.

Пусть
$$z = (z_1, z_2), \ \gamma = (\gamma_1, \gamma_2), \ q = (q_1, q_2), \ Q(z) = (Q_1(z), Q_2(z)), \ Z = (Z_1(z), Z_2(z)).$$

Определение 1. Весом переменной z назовем вектор γ , если его компоненты γ_1, γ_2 — натуральные и взаимно простые. Обобщенной степенью (o.c.) монома $z_1^{q_1} z_2^{q_2}$ ($q_1, q_2 \in \mathbb{Z}_+$, $|q| = q_1 + q_2 \ge 1$) назовем скалярное произведение $\langle q, \gamma \rangle$.

Определение 2. Векторный многочлен Q(z) назовем квазиоднородным многочленом (KOM) о.с. $k \in \mathbb{N}$ с весом γ и обозначим $Q_{\gamma}^{[k]}(z)$, если для $\forall i = 1, 2$ в Q_i входят только мономы о.с. $k + \gamma_i$, т.е. в КОМ компонента $Q_{\gamma,i}^{[k]}(z) = \sum_{q: \langle q, \gamma \rangle - \gamma_i = k} Q_i^{[q_1 \gamma_1, q_2 \gamma_2]} z_1^{q_1} z_2^{q_2}$. КОМ $Q_{\gamma}^{[k]}(z)$ назовем невырожденным (HKOM), если обе его компоненты $Q_{\gamma,1}^{[k]}(z), Q_{\gamma,2}^{[k]}(z) \not\equiv 0$.

В приведенных терминах векторный однородный многочлен степени k+1, обозначаемый $Q^{(k+1)}(z)=\sum_{q:\,|q|=k+1}Q_i^{(q_1,q_2)}z_1^{q_1}z_2^{q_2}$, имеет стандартный вес $\gamma=(1,1)$ и о.с. k.

В результате компоненты векторного степенного ряда $Z(z) = \sum_{q: |q| \geq 1} Z^{(q_1,q_2)} z_1^{q_1} z_2^{q_2}$ можно записать как в виде суммы однородных многочленов: $Z_i = \sum_{k=0}^{\infty} Z_i^{(k+1)}(z)$, так и для произвольного веса γ в виде суммы КОМ: $Z_i = \sum_{k=1}^{\infty} Z_{\gamma,i}^{[k]}(z)$, разумеется, при условии, что все коэффициенты $Z_i^{(q_1,q_2)} = 0$, если $\langle q, \gamma \rangle - \gamma_i \leq 0$ (i=1,2).

В дальнейшем при наличии такой возможности нижний индекс $\,\gamma\,$ будем опускать.

 ${f 2^0}$. Установим, в каких случаях линейно-кубический многочлен $Q(z)=(reve{a}_1z_1+reve{d}_1z_2,\ reve{a}_2z_1^3+reve{b}_2z_1^2z_2+reve{c}_2z_1z_2^2+reve{d}_2z_2^3)$ оказывается НКОМ некоторой о.с. с каким-либо весом.

Утверждение 1. Векторный многочлен Q(z) является НКОМ $Q_{\gamma}^{\chi}(z)$ в двух случаях:

1)
$$Q_{(1,2)}^{[1]} = (\breve{d}_1 z_2, \breve{a}_2 z_1^3), \quad 2) Q_{(1,3)}^{[2]} = (\breve{d}_1 z_2, \breve{b}_2 z_1^2 z_2) \qquad (\breve{d}_1, \breve{a}_2, \breve{b}_2 \neq 0).$$
 (2)

Доказательство. По определению 2 показатели q_1^i, q_2^i любого слагаемого $Q_{\gamma,i}^{[q_1^i\gamma_1,q_2^i\gamma_2]}z_1^{q_1^i}z_2^{q_2^i}$, входящего в $Q_i^{[\chi]}(z)$ ($\chi \geq 1, \ i=1,2$), удовлетворяют системе

$$q_1^i \gamma_1 + q_2^i \gamma_2 - \gamma_i = \chi \qquad (q_1^i + q_2^i = 2i - 1).$$
 (3)

Если Q_i имеет хотя бы два монома $(\alpha_i z_1^{q_1^i} z_2^{q_2^i}$ и $\beta_i z_1^{s_1^i} z_2^{s_2^i})$, то $(q_1^i - s_1^i) \gamma_1 = (s_2^i - q_2^i) \gamma_2$, откуда $\gamma_1 = \gamma_2$, так как $q_1^i - s_1^i = s_2^i - q_2^i \neq 0$. Тогда в (3) $\chi = 0$ при i = 1, что невозможно.

Таким образом, HKOM Q(z) должен иметь вид:

$$Q_1(z) = \alpha_1 z_1^p z_2^{1-p}, \ Q_2(z) = \alpha_2 z_1^q z_2^{3-q} \quad (p = \overline{0, 1}, \ q = \overline{0, 3}, \ \alpha_1 \alpha_2 \neq 0).$$

При этом система (3) примет вид: $p\gamma_1+(1-p)\gamma_2=\chi+\gamma_1,\ q\gamma_1+(3-q)\gamma_2=\chi+\gamma_2$ или $(p-q-1)\gamma_1=(p-q+1)\gamma_2,\ \chi=(1-p)(\gamma_2-\gamma_1)\neq 0,$ откуда p=0, а значит, $(q+1)\gamma_1=(q-1)\gamma_2,\ \chi=\gamma_2-\gamma_1,$ и q=2,3, так как $\gamma_i>0,$ что дает $Q_{(1,2)}^{[1]}$ или $Q_{(1,3)}^{[2]}.$

- ${f 3^0}$. Линейная замена $z_i= au_iy_i \ (au_i
 eq 0,\ i=1,2)$ преобразует линейно-кубическую невозмущенную систему $\dot z_i=Q_i(z)$ в систему $\dot y_i=reve Q_i(y)$, у которой $reve Q_1=reve a_1y_1+reve d_1 au_1^{-1} au_2y_2$, $reve Q_2=reve a_2 au_1^3 au_2^{-1}y_1^3+reve b_2 au_1^2y_1^2y_2+reve c_2 au_1 au_2y_1y_2^2+reve d_2 au_2^2y_2^3$. Поэтому
- 1) $Q_{(1,2)}^{[1]}$ из (2) при $\tau_1=|\check{d}_1\check{a}_2|^{-1/2}, \tau_2=\check{d}_1^{-1}|\check{d}_1\check{a}_2|^{-1/2}$ сводится к $\check{Q}_{(1,2)}^{[1]}=(y_2,\operatorname{sign}(\check{d}_1\check{a}_2)y_1^3);$ 2) $Q_{(1,3)}^{[2]}$ из (2) при $\tau_1=|\check{b}_2|^{-1/2},\ \tau_2=|\check{b}_2|^{-1/2}\check{d}_1^{-1}$ сводится к $\check{Q}_{(1,3)}^{[2]}=\operatorname{sign}\check{b}_2(y_2,y_1^2y_2).$

Определение 3. Каноническими невырожденными квазиоднородными многочленами линейно-кубической структуры (КНКО $M_{N\kappa}$) будем называть два НКОМ $R_{\gamma}^{[\chi]}(y)$:

1)
$$R_{(1,2)}^{[1]} = (y_2, \sigma y_1^3), \quad 2) R_{(1,3)}^{[2]} = \sigma(y_2, y_1^2 y_2) \qquad (\sigma = \pm 1).$$

4⁰. Установим условия на коэффициенты системы (1) $\dot{x}_i = P_i(x) + X_i(x)$, при которых она линейной неособой заменой

$$x_1 = py_1 + qy_2, \quad x_2 = ry_1 + sy_2 \quad (ps - qr \neq 0),$$
 (4)

может быть сведена к системе

$$\dot{y}_i = \widetilde{P}_i(y) + Y_i(y) \quad (\widetilde{P}_i \neq 0, \ i = 1, 2)$$

$$\tag{5}$$

с $\widetilde{P}_1 = \widetilde{a}_1 y_1 + \widetilde{d}_1 y_2$, $\widetilde{P}_2 = \widetilde{a}_2 y_1^3 + \widetilde{b}_2 y_1^2 y_2 + \widetilde{c}_2 y_1 y_2^2 + \widetilde{d}_2 y_2^3$, $Y_i = \sum_{p_1 + p_2 = 2i}^{\infty} Y_i^{(p_1, p_2)} y_1^{p_1} y_2^{p_2}$, невозмущенная часть которой является КНКОМ_{ЛК} $R_{\gamma}^{[\chi]}(y)$, т. е. \widetilde{P} – это $R_{(1,2)}^{[1]}$ или $R_{(1,3)}^{[2]}$, а члены возмущения имеют о.с. более высокую чем χ .

Иными словами, система (5) после перегруппировки по о.с. должна иметь вид

$$\dot{y}_i = R_{\gamma,i}^{[\chi]}(y) + \sum_{k=\chi+1}^{\infty} Y_{\gamma,i}^{[k]}(y). \tag{6}$$

Поскольку в возмущении системы (5) должны отсутствовать те члены, о.с. которых не превосходит χ , необходимо предположить, что

$$R_{(1,2)}^{[1]}: Y_1^{(2,0)} = 0 \ (k=1); \quad R_{(1,3)}^{[2]}: Y_1^{(2,0)}, Y_2^{(4,0)} = 0 \ (k=1), \ Y_1^{(3,0)}, Y_2^{(5,0)} = 0 \ (k=2).$$
 (7)

Дифференцируя замену (4) в силу систем (1) и (5), получаем тождества:

$$P_1(py_1 + qy_2, ry_1 + sy_2) + X_1(py_1 + qy_2, ry_1 + sy_2) = p(\widetilde{P}_1 + Y_1(y_1, y_2)) + q(\widetilde{P}_2(y) + Y_2(y)),$$

$$P_2(py_1 + qy_2, ry_1 + sy_2) + X_2(py_1 + qy_2, ry_1 + sy_2) = r(\widetilde{P}_1 + Y_1(y_1, y_2)) + s(\widetilde{P}_2(y) + Y_2(y)).$$

Во втором из них линейные члены имеются только в $r\widetilde{P}_1$, а значит, r=0. Поэтому

$$a_{1}(py_{1} + qy_{2}) + d_{1}sy_{2} + X_{1}(py_{1} + qy_{2}, sy_{2}) =$$

$$= p(\tilde{a}_{1}y_{1} + \tilde{d}_{1}y_{2} + Y_{1}(y)) + q(\tilde{a}_{2}y_{1}^{3} + \tilde{b}_{2}y_{1}^{2}y_{2} + \tilde{c}_{2}y_{1}y_{2}^{2} + \tilde{d}_{2}y_{2}^{3} + Y_{2}(y)),$$

$$a_{2}(py_{1} + qy_{2})^{3} + b_{2}s(py_{1} + qy_{2})^{2}y_{2} + c_{2}s^{2}(py_{1} + qy_{2})y_{2}^{2} + d_{2}s^{3}y_{2}^{3} + X_{2}(py_{1} + qy_{2}, sy_{2}) =$$

$$= s(\tilde{a}_{2}y_{1}^{3} + \tilde{b}_{2}y_{1}^{2}y_{2} + \tilde{c}_{2}y_{1}y_{2}^{2} + \tilde{d}_{2}y_{2}^{3} + Y_{2}(y)) \qquad (p, s \neq 0).$$

$$(8)$$

Приравнивая коэффициенты при линейных членах в первом уравнении (8) и при кубических во втором, находим формулы для коэффициентов P(y) системы (5):

$$\tilde{a}_1 = a_1, \ \tilde{d}_1 = (a_1q + d_1s)p^{-1}; \quad \tilde{a}_2 = a_2p^3s^{-1}, \ \tilde{b}_2 = (3a_2qs^{-1} + b_2)p^2,
\tilde{c}_2 = (3a_2q^2s^{-1} + 2b_2q + c_2s)p, \quad \tilde{d}_2 = a_2q^3s^{-1} + b_2q^2 + c_2qs + d_2s^2 \quad (p, s \neq 0).$$
(9)

Лемма 1. Если в системе (1)

- 1) $a_1,\,X_1^{(2,0)}=0,\,\,c_2=(3a_2)^{-1}b_2^2,\,\,d_2=3^{-3}a_2^{-2}b_2^3\,\,\,(a_2d_1\neq 0,\,\,b_2-\forall),\,\,$ то заменой (4) $c\,\,p=|a_2d_1|^{-1/2},\,\,q=-3^{-1}b_2|a_2d_1|^{-3/2}\mathrm{sign}\,(a_2d_1),\,\,r=0,\,\,s=d_1^{-1}|a_2d_1|^{-1/2}\,\,$ она сводится κ системе (5) $c\,\,\widetilde{P}=R_{(1,2)}^{[1]},\,\,$ в котором $\sigma=\mathrm{sign}\,(a_2d_1),\,\,$
- 2) $a_1,a_2,X_1^{(2,0)},X_1^{(3,0)},X_2^{(4,0)},X_2^{(5,0)}=0,\ d_2=2^{-2}b_2^{-1}c_2^2\ (b_2d_1\neq 0,\ c_2-\forall),\ mo$ заменой (4) $c\ p=|b_2|^{-1/2},\ q=-2^{-1}|b_2|^{-3/2}c_2d_1^{-1},\ r=0,\ s=|b_2|^{-1/2}d_1^{-1}{\rm sign}\ b_2$ она сводится κ системе (5) $c\ \widetilde{P}=R_{(1,3)}^{[2]},\ s$ котором $\sigma={\rm sign}\ b_2;$
- 3) В остальных случаях невозмущенная часть системы (1) линейно неэквивалентна никакой $KHKOM_{\mathcal{NK}}$.

Доказательство. 1) Пусть в системе (5) $\widetilde{P}=R_{(1,2)}^{[1]}$, т. е. $\widetilde{d}_1=1,\ \widetilde{a}_2=\sigma,\ \widetilde{d}_1,\widetilde{b}_2,\widetilde{c}_2,\widetilde{d}_2$ и с учетом (7₁) $Y_1^{(2,0)}=0$. Тогда из (9) получаем равенства: $a_1=0,\ (a_1q+d_1s)p^{-1}=1;$ $a_2p^3s^{-1}=\sigma,\ 3a_2qs^{-1}+b_2=0,\ 3a_2q^2s^{-1}+2b_2q+c_2s=0,\ a_2q^3s^{-1}+b_2q^2+c_2qs+d_2s^2=0.$

Поскольку $a_1=0$, то $d_1,a_2\neq 0$. Из пятого и шестого равенств найдем, что $c_2=-(3a_2)^{-1}(qs^{-1})^2-2b_2qs^{-1},\ d_2=-a_2(qs^{-1})^3-b_2(qs^{-1})^2-c_2qs^{-1}$ и подставим $s=d_1^{-1}|a_2d_1|^{-1/2},$ $q=-3^{-1}b_2|a_2d_1|^{-3/2}{\rm sign}\,(a_2d_1),$ найденные из второго-четвертого равенств, получая п.1 леммы.

Условие $Y_1^{(2,0)}=0$ из (7_1) для системы (5) влечет за собой $X_1^{(2,0)}=0$. Действительно, приравнивая коэффициенты при y_1^2 в (8_1) , получаем $p^2X_1^{(2,0)}=pY_1^{(2,0)}=0$ $(p\neq 0)$.

2) Пусть в системе (5) $\widetilde{P}=R_{(1,3)}^{[2]}$, т. е. $\widetilde{d}_1,\widetilde{b}_2=\sigma,\ \widetilde{a}_1,\widetilde{a}_2,\widetilde{c}_2,\widetilde{d}_2=0$ и с учетом (7₂) $Y_1^{(2,0)},Y_1^{(3,0)},Y_2^{(4,0)},Y_2^{(5,0)}=0$. Тогда из (9) получаем равенства: $a_1=0,\ (a_1q+d_1s)p^{-1}=\sigma;$ $a_2p^3s^{-1}=0,\ (3a_2qs^{-1}+b_2)p^2=\sigma,\ 3a_2q^2s^{-1}+2b_2q+c_2s=0,\ a_2q^3s^{-1}+b_2q^2+c_2qs+d_2s^2=0.$

Поскольку $a_1=0$, а $p,s\neq 0$, то $a_2=0$, $d_1,b_2\neq 0$. Из шестого равенства найдем: $d_2=-b_2(qs^{-1})^2-c_2qs^{-1}$ и подставим сюда $q=-2^{-1}|b_2|^{-3/2}c_2d_1^{-1}$, $s=|b_2|^{-1/2}d_1^{-1}{\rm sign}\ b_2$, найденные из второго, четвертого и пятого равенств, получая п.2 леммы.

Условия $Y_1^{(2,0)},Y_1^{(3,0)},\ Y_2^{(4,0)},Y_2^{(5,0)}=0$ из (7_2) для системы (5) накладывают четыре связи на коэффициенты возмущения X системы (1). Действительно, приравнивая коэффициенты при $y_1^2,\ y_1^3,\ y_1^4,\ y_1^5$ в (8_1) и (8_2) , получаем соответственно равенства: $p^2X_1^{(2,0)}=pY_1^{(2,0)}=0,\ p^3X_1^{(3,0)}=pY_1^{(3,0)}=0;\ p^4X_2^{(4,0)}=sY_2^{(4,0)}=0,\ p^5X_2^{(5,0)}=sY_2^{(5,0)}=0.$ Из этого следует, что $X_1^{(2,0)},X_1^{(3,0)},X_2^{(4,0)},X_2^{(5,0)}=0.$

 ${f 5^0}$. Если отказаться от линейно-кубической структуры невозмущенной части системы, то оба КНКОМ_{ЛК} окажутся частными случаями двух квазиоднородных многочленов $Q_{(1,2)}^{[1]}=(Q_1^{[2,0]}y_1^2+Q_1^{[0,2]}y_2,\ Q_2^{[1,2]}y_1y_2+Q_2^{[3,0]}y_1^3),\ Q_{(1,3)}^{[2]}=(Q_1^{[3,0]}y_1^3+Q_1^{[0,3]}y_2,\ Q_2^{[5,0]}y_1^5+Q_2^{[2,3]}y_1^2y_2).$

Прежде, чем начинать работать с системами с указанными невозмущенными частями, надо нормализовать сами $Q_{(1,2)}^{[1]}$ и $Q_{(1,3)}^{[2]}$, сводя их к различным каноническим формам.

Для КОМ $Q_{(1,2)}^{[1]}$ канонические формы получены в [2], и нормализация систем с различными каноническими формами в невозмущенной части осуществлена в [2] и [10].

3 Канонические формы КОМ $\mathbf{Q}_{(1,3)}^{[2]}$

 1^{0} . Рассмотрим невозмущенную систему

$$\dot{y} = Q_{(1,3)}^{[2]}(y), \quad Q_{(1,3)}^{[2]} = (ay_2 + by_1^3, cy_1^2y_2 - dy_1^5),$$
 (10)

которую будем отождествлять с матрицей $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$.

Система (10) — вырожденная, если в ней $a^2+b^2=0$ или $c^2+d^2=0$, т. е. матрица M имеет нулевую строку. В противном случае система (10) или НКОМ $Q_{(1,3)}^{[2]}$ невырождены.

В дальнейшем будем использовать две замены, сохраняющие структуру системы (10). Легко проверить, что квазиоднородная замена

$$y_1 = x_1, \quad y_2 = x_2 - \gamma x_1^3 \tag{11}$$

преобразует систему (10) в систему

$$\widetilde{M} = \begin{pmatrix} \widetilde{a} & \widetilde{b} \\ \widetilde{c} & \widetilde{d} \end{pmatrix} = \begin{pmatrix} a & b - a\gamma \\ c + 3a\gamma & 3a\gamma^2 - (3b - c)\gamma + d \end{pmatrix}, \tag{12}$$

т. е. в систему $\dot{x}_1 = ax_2 + (b-a\gamma)x_1^3$, $\dot{x}_2 = (c+3a\gamma)x_1^2x_2 - (3a\gamma^2 - (3b-c)\gamma + d)x_1^5$.

В свою очередь, нормирующая замена

$$x_1 = \tau_1 z_1, \quad x_2 = \tau_2 z_2 \qquad (\tau_1, \tau_2 \neq 0)$$
 (13)

преобразует систему (12) в систему

$$\check{M} = \begin{pmatrix} \breve{a} & \breve{b} \\ \breve{c} & \breve{d} \end{pmatrix} = \begin{pmatrix} \tau_1^{-1} \tau_2 \widetilde{a} & \tau_1^2 \widetilde{b} \\ \tau_1^2 \widetilde{c} & \tau_1^5 \tau_2^{-1} \widetilde{d} \end{pmatrix}.$$
(14)

Для систем вида (10) введем константу κ и дискриминант D:

$$\kappa = 3b + c, \ D = (3b - c)^2 - 12ad = \kappa^2 - 12(bc + ad).$$
(15)

Утверждение 2. Для дискриминантов систем (12), (14), полученных из системы (10), справедливы следующие равенства: $\widetilde{D}=D,\ \ \check{D}=\tau_1^4\widetilde{D}.$

- **2**⁰. Разобьем множество систем (10) на классы эквивалентности относительно квазиоднородных замен (11) и нормировок (13). Основным представителем каждого класса будем считать невырожденную систему (10), называемую канонической формой (CF canonical form) и выбираемую в соответствии с тремя иерархическими принципами:
 - 1) число нулевых коэффициентов (элементов M) максимально;
 - 2) при одном нулевом элементе предпочтительнее иметь d=0, затем c=0, b=0;
 - 3) число единичных элементов максимально.

Замечание 1. Предложенные в определении СF принципы призваны максимально сократить технические трудности, связанные в последующей нормализацией возмущений систем, имеющих в своей невозмущенной части какой-либо HKOM $Q_{(1,3)}^{[2]}$. В то же время требование невырожденности КОМ или, что то же самое, отсутствия нулевой строки у матрицы M вызвано желанием осуществить полноценную нормализацию возмущения системы, т. е. иметь максимальное число нулевых коэффициентов в возмущении системы получаемой из исходной при помощи почти тождественных преобразований.

Список невырожденных канонических форм системы (10) ($\sigma = \pm 1$):

$$CF_{1} = \begin{pmatrix} 0 & \sigma \\ 0 & 1 \end{pmatrix} : \begin{pmatrix} \sigma y_{1}^{3} \\ -y_{1}^{5} \end{pmatrix}, \quad CF_{2} = \begin{pmatrix} 0 & u \\ \sigma & 0 \end{pmatrix} : \begin{pmatrix} uy_{1}^{3} \\ \sigma y_{1}^{2}y_{2} \end{pmatrix} \quad (u \neq 0),$$

$$CF_{3} = \begin{pmatrix} 0 & \sigma \\ 3\sigma & 1 \end{pmatrix} : \begin{pmatrix} \sigma y_{1}^{3} \\ 3\sigma y_{1}^{2}y_{2} - y_{1}^{5} \end{pmatrix}, \quad CF_{4} = \begin{pmatrix} 1 & 0 \\ \sigma & 0 \end{pmatrix} : \begin{pmatrix} y_{2} \\ \sigma y_{1}^{2}y_{2} \end{pmatrix},$$

$$CF_{5} = \begin{pmatrix} 3 & \sigma \\ -3\sigma & 1 \end{pmatrix} : \begin{pmatrix} 3y_{2} + \sigma y_{1}^{3} \\ -3\sigma y_{1}^{2}y_{2} - y_{1}^{5} \end{pmatrix}, \quad CF_{6} = \begin{pmatrix} 1 & u \\ \sigma & 0 \end{pmatrix} : \begin{pmatrix} y_{2} + uy_{1}^{3} \\ \sigma y_{1}^{2}y_{2} \end{pmatrix} \quad (0 < |u| \leq 1),$$

$$CF_{7} = \begin{pmatrix} 1 & 0 \\ 0 & \sigma \end{pmatrix} : \begin{pmatrix} y_{2} \\ -\sigma y_{1}^{5} \end{pmatrix}, \quad CF_{8} = \begin{pmatrix} -1 & u \\ 0 & 1 \end{pmatrix} : \begin{pmatrix} -y_{2} + uy_{1}^{3} \\ -y_{1}^{5} \end{pmatrix} \quad (0 < |u| < 2/3^{1/2}).$$

 3^{0} . Установим условия на коэффициенты исходной системы и выпишем замены, которые сводят ее к различным каноническим формам.

1)
$$a = 0 \ (b \neq 0)$$
, т. е. в (10) $M = \begin{pmatrix} 0 & b \\ c & d \end{pmatrix}$.

В результате замены (11) получаем систему (12) вида $\widetilde{M} = \begin{pmatrix} 0 & b \\ c & d - (3b - c)\gamma \end{pmatrix}$.

 ${f 1_1}$) c=0 $(d\neq 0)$. Выбирая $\gamma=0$, чтобы сохранить невырожденность, имеем: $M=\widetilde{M}=\begin{pmatrix} 0 & b \\ 0 & d \end{pmatrix}$. После нормировки (13) с $\tau_1=|b|^{-1/2}$, $\tau_2=|b|^{-5/2}d$, получаем CF_1 с $\sigma={
m sign}\ b.$

- 1_2) $c \neq 0$.
- $\mathbf{1_2^a}$) $c \neq 3b$. Тогда при $\gamma = (3b-c)^{-1}d$ матрица $\widetilde{M} = \begin{pmatrix} 0 & b \\ c & 0 \end{pmatrix}$ и ее нормировка (13) с $\tau_1 = |c|^{-1/2}$ и любым τ_2 дает CF_2 с $u = b|c|^{-1} \neq 0$, $\sigma = \mathrm{sign}\ c$.
- ${f 1_2^b})$ c=3b. Тогда при любом γ матрица $\widetilde{M}=\begin{pmatrix} 0 & b \\ 3b & d \end{pmatrix}$ и ее нормировка (13) с $au_1=|b|^{-1/2},\ au_2=|b|^{-5/2}d$ дает CF_3 с $\sigma={
 m sign}\ b.$
 - **2)** $a \neq 0$. Из системы (10) заменой (11) получена система (12). Рассмотрим дискриминант D из (15).
- $\mathbf{2_1}$) В (15) $D=(3b-c)^2-12ad\geq 0$. Введем константы $\gamma_1=(3b-c-D^{1/2})/(6a),\ \gamma_2=(3b-c+D^{1/2})/(6a),\ \eta_1=(\kappa-D^{1/2})/2,\ \eta_2=(\kappa+D^{1/2})/2,\ (16)$ тогда $\eta_1=c+3a\gamma_1=3(b-a\gamma_2),\ \eta_2=c+3a\gamma_2=3(b-a\gamma_1).$

 ${f 2_1^a})$ В матрице \widetilde{M} из (3) можно, и это предпочтительнее всего по определению СF, аннулировать элемент $\widetilde{d}=3a\gamma^2-(3b-c)\gamma+d$. Это можно сделать, выбрав в замене (11) $\gamma=\gamma_1$ или $\gamma=\gamma_2$. Тогда система (12) примет один из двух видов:

$$\widetilde{M}_i = \begin{pmatrix} a & b - a\gamma_i \\ c + 3a\gamma_i & 0 \end{pmatrix} \quad (i = 1, 2), \tag{17}$$

причем элемент \widetilde{c}_i не должен обращаться в нуль, иначе система (12) – вырожденная.

$${f 2_1^{a1}}) \quad d = -a^{-1}bc \; \Leftrightarrow \; D = \kappa^2 \;$$
 согласно (15).

1)
$$\kappa < 0$$
, тогда $3(b - a\gamma_1) = \eta_2 = 0$, $c + 3a\gamma_1 = \eta_1 = \kappa$, т.е. $\widetilde{M}_1 = \begin{pmatrix} a & 0 \\ \kappa & 0 \end{pmatrix}$.

2)
$$\kappa > 0$$
, тогда $3(b - a\gamma_2) = \eta_1 = 0$, $c + 3a\gamma_2 = \eta_2 = \kappa$, т. е. $\widetilde{M}_2 = \begin{pmatrix} a & 0 \\ \kappa & 0 \end{pmatrix}$.

Полученные в 1),2) системы после нормировки (13) с $\tau_1 = |\kappa|^{-1/2}$, $\tau_2 = a^{-1}|\kappa|^{-1/2}$ превращаются в CF_4 с $\sigma = \mathrm{sign}\ \kappa$.

3)
$$\kappa=0 \Leftrightarrow D=0$$
, тогда $\gamma_1,\gamma_2=a^{-1}b,-(3a)^{-1}c,\ \eta_1,\eta_2=0$ и $\widetilde{M}_1,\widetilde{M}_2=\begin{pmatrix} a&0\\0&0 \end{pmatrix},$ т. е. система (17) оказывается вырожденной. Поэтому в \widetilde{M} из (12) аннулировать \widetilde{d} нельзя. Зато исходная матрица $M=\begin{pmatrix} a&b\\-3b&3a^{-1}b^2 \end{pmatrix}$, причем $b\neq 0$. И сама система (10) после нормировки (13) с $\tau_1=|b|^{-1/2},\ \tau_2=3a^{-1}|b|^{-1/2}$ превращается в CF_5 с $\sigma=\mathrm{sign}\ b.$

$$\mathbf{2_1^{a2}}$$
) $d \neq -a^{-1}bc \Leftrightarrow \eta_1, \eta_2 \neq 0.$

1) $\kappa<0$. Выберем $\gamma=\gamma_1$, тогда согласно (16) $3(b-a\gamma_1)=\eta_2=(\kappa+D^{1/2})/2$, $c+3a\gamma_1=\eta_1=(\kappa-D^{1/2})/2<0$ $(-\eta_1>|\eta_2|)$.

Сделаем нормировку (13) с $\tau_1=(-\eta_1)^{-1/2},\ \tau_2=a^{-1}(-\eta_1)^{-1/2},$ которая преобразует \widetilde{M}_1 из (17) в CF_6 с $u=-3(b-a\gamma_1)(c+3a\gamma_1)^{-1}=(-\eta_1)^{-1}\eta_2,\ \sigma=-1.$

2) $\kappa>0$. Выберем $\gamma=\gamma_2$, тогда согласно (16) $c+3a\gamma_2=\eta_2=(\kappa+D^{1/2})/2>0$, $3(b-a\gamma_1)=\eta_1=(\kappa-D^{1/2})/2$ $(\eta_2>|\eta_1|).$

Сделаем нормировку (13) с $\tau_1=\eta_2^{-1/2},\ \tau_2=a^{-1}\eta_1^{-1/2},$ которая преобразует \widetilde{M}_1 из (17) в CF_6 с $u=3(b-a\gamma_2)(c+3a\gamma_2)^{-1}=\eta_1\eta_2^{-1},\ \sigma=1.$

В случаях 1), 2) 0<|u|<1 при D>0, а при D=0 $\eta_1,\eta_2=\kappa/2$ и $u=1,\ \sigma=\mathrm{sign}\ \kappa.$

- 3) $\kappa=0$, тогда D>0 и согласно (16) $-\eta_1=\eta_2=D^{1/2}/2>0$. Взяв $\gamma=\gamma_1$ и сделав нормировку из случая 1, получим CF_6 с $u=-1,\ \sigma=1$.
- ${f 2_1^b})$ Отказаться от аннулирования элемента $\widetilde d$ в матрице $\widetilde M$ из (12) имеет смысл только в том случае, если удастся сделать $\widetilde b=0$ и $\widetilde c=0$. Это возможно, если $\gamma=a^{-1}b$, c=-3b и ad<0, так как тогда D=-12ad>0. А система (12) с $\widetilde M=\begin{pmatrix} a&0\\0&d-3a^{-1}b^2\end{pmatrix}$ после нормировки (13) с $\tau_1=(3b^2-ad)^{-1/4}$, $\tau_2=a^{-1}(3b^2-ad)^{-1/4}$ это CF_7 с $\sigma=-1$.

 ${f 2_2}$) D<0 (ad>0), причем a,d>0, иначе – нормировка (13) с $au_1=1,\ au_2=-1.$

Положив в замене (11) $\gamma = -(3a)^{-1}c$, сделаем в \widetilde{M} из (12) элемент $\widetilde{c} = 0$, что предпочтительнее с точки зрения определения СF обращения в нуль элемента \widetilde{b} .

При
$$\gamma=-(3a)^{-1}c$$
 (12) примет вид $\widetilde{M}=\begin{pmatrix} a & \kappa/3 \\ 0 & a^{-1}bc+d \end{pmatrix}$, причем $\widetilde{d}=a^{-1}(bc+ad)>(12a)^{-1}\kappa^2\geq 0$, так как согласно (15) $D=(3b-c)^2-12ad=\kappa^2-12(bc+ad)<0$.

 ${f 2_2^a}$) $\kappa=0$. Тогда $\widetilde d=a^{-1}(-3b^2+ad)$ и нормировка (13) с $au_1=(ad-3b^2)^{-1/4},$ $au_2=a^{-1}(ad-3b^2)^{-1/4}$ сводит $\widetilde M$ к CF_7 с $\sigma=1.$

 $\mathbf{2_2^b}$) $\kappa \neq 0$. Нормировка (13) с $\tau_1 = (bc + ad)^{-1/4}$, $\tau_2 = a^{-1}(bc + ad)^{-1/4}$ сводит \widetilde{M} к CF_8 с $u = (b+3^{-1}c)(bc+ad)^{-1/2}$. При этом $0 < |u| < 2/3^{1/2}$, так как по утверждению 2 $\widetilde{D} = 9u^2 - 12 < 0$.

В результате доказано следующее утверждение.

Теорема 1. Невырожденная система (10) с $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, $D = (3b-c)^2 - 12ad$, $\kappa = 3b+c$ сводится κ соответствующей CF_i при следующих условиях на коэффициенты:

- 1) $a=0,\ c=0\ (bd\neq 0),$ тогда (10) заменой $y_1=|b|^{-1/2}z_1,\ y_2=|b|^{-5/2}dz_2$ сводится к CF_1 с $\sigma={\rm sign}\ b.$
- 2) $a=0,\ c\neq 0,\ c\neq 3b\ (bd\neq 0),\$ тогда (10) заменой $y_1=|c|^{-1/2}z_1,\ y_2=z_2-(3b-c)^{-1}|c|^{-3/2}dz_1^3$ сводится к CF_2 с $u=b|c|^{-1}\neq 0,\ \sigma={\rm sign}\ c.$
- 3) $a=0,\ c=3b\ (bd\neq 0),\$ тогда (10) заменой $y_1=|b|^{-1/2}z_1,\ y_2=|b|^{-5/2}dz_2$ сводится к CF_3 с $\sigma={\rm sign}\ b.$
- 4) $a \neq 0$, $D \geq 0$, $d = -a^{-1}bc$, $\kappa \neq 0$ $(c \neq 0)$, тогда (10) заменой $y_1 = |\kappa|^{-1/2}z_1$, $y_2 = a^{-1}|\kappa|^{-1/2}z_2 a^{-1}b|\kappa|^{-3/2}z_1^3$ сводится к CF_4 с $\sigma = \mathrm{sign}\ \kappa$.
- 5) $a\neq 0,\ D\geq 0,\ d=-a^{-1}bc,\ \kappa=0\ (c\neq 0),\$ тогда (10) заменой $y_1=|b|^{-1/2}z_1,$ $y_2=3a^{-1}|b|^{-1/2}z_2$ сводится к CF_5 с $\sigma=$ sign b.
- $6_1)$ $a \neq 0$, $D \geq 0$, $d \neq -a^{-1}bc$, $\kappa \neq 0$, тогда (10) заменой $y_1 = 2^{1/2}(|\kappa| + D^{1/2})^{-1/2}z_1$, $y_2 = 2^{1/2}a^{-1}(|\kappa| + D^{1/2})^{-1/2}z_2 2^{1/2}(3a)^{-1}(3b c + D^{1/2}\mathrm{sign}\;\kappa)(|\kappa| + D^{1/2})^{-3/2}z_1^3$ сводится к CF_6 с $u = ((\kappa D^{1/2})(\kappa + D^{1/2})^{-1})^{\mathrm{sign}\;\kappa}\mathrm{sign}\;\kappa$ ($0 < |u| \leq 1$), $\sigma = \mathrm{sign}\;\kappa$.
- $6_2)$ $a\neq 0,~D\geq 0,~d\neq -a^{-1}bc,~\kappa=0,$ тогда (10) заменой $y_1=2^{1/2}D^{-1/4}z_1,$ $y_2=2^{1/2}a^{-1}D^{-1/4}z_2-2^{3/2}a^{-1}D^{-3/4}(b-6^{-1}D^{1/2})z_1^3$ сводится к CF_6 с $u=-1,~\sigma=1.$
- $7_1)~a\neq 0,~c=-3b,~ad<0,$ тогда (10) заменой $y_1=(3b^2-ad)^{-1/2}z_1,$ $y_2=a^{-1}(3b^2-ad)^{-1/2}z_2-a^{-1}b(3b^2-ad)^{-3/2}z_1^3$ сводится к CF_7 с $\sigma=-1.$
- 7_2) $a \neq 0$, D < 0, $\kappa = 0$, тогда (10) заменой $y_1 = (|ad-3b^2|^{-1/4} \mathrm{sign}\ a) z_1$, $y_2 = |a|^{-1} |ad-3b^2|^{-1/4} z_2 + (3|a|)^{-1} c|ad-3b^2|^{-3/4} z_1^3$ сводится к CF_7 с $\sigma = 1$.
- 8) $a \neq 0$, D < 0, $\kappa \neq 0$, тогда (10) заменой $y_1 = (|ad + bc|^{-1/4} \text{sign } a) z_1$, $y_2 = |a|^{-1} |ad + bc|^{-1/4} z_2 + (3|a|)^{-1} c |ad + bc|^{-3/4} z_1^3$ сводится к CF_8 с $u = (b+3^{-1}c)|ad + bc|^{-1/2} \text{sign } a$ (0 $< |u| < 2/3^{1/2}$).

Замечание 2. Наряду с невырожденными CF_i можно использовать вырожденные CF_{di} :

$$CF_{d1} = \begin{pmatrix} 0 & \sigma \\ 0 & 0 \end{pmatrix} : \begin{pmatrix} \sigma y_2 \\ 0 \end{pmatrix}, \quad CF_{d2} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} : \begin{pmatrix} y_1^3 \\ 0 \end{pmatrix}.$$

Легко проверить, что при наличии у матрицы M двух нулей в одной строке, в другой либо также присутствует нуль, либо его можно получить за счет выбора γ .

В частности, к CF_{d1} сводится CF_1 заменой (11) с $\gamma = 3^{-1}\sigma$, а к CF_{d2} сводится CF_4 заменой (11) с $\gamma = -3^{-1}\sigma$ и CF_5 заменами (11) с $\gamma = 3^{-1}\sigma$ и (13) с $\tau_1 = 3$, $\tau_2 = 1$.

4 Метод резонансных уравнений и ОНФ

Рассмотрим систему

$$\dot{x}_i = P_{\gamma,i}^{[\chi]}(x) + X_i(x) \quad (i = 1, 2), \tag{18}$$

в которой $P_{\gamma}^{[\chi]}$ – произвольный КОМ о.с. χ с весом γ , а возмущение $X_i = \sum_{k=\chi+1}^{\infty} X_{\gamma,i}^{[k]}(x)$. Ее частным случаем является система (6).

Пусть почти тождественная формальная замена

$$x_i = y_i + h_i(y), (19)$$

где $h_i = \sum_{k=1}^{\infty} h_{\gamma,i}^{[k]}(y)$, переводит систему (18) в систему с аналогичной структурой

$$\dot{y}_i = P_{\gamma,i}^{[\chi]}(y) + Y_i(y).$$
 (20)

Дифференцируя замену (19) в силу систем (18) и (20), получаем тождества $P_{\gamma,i}^{[\chi]}(y+h) + X_i(y+h) = P_{\gamma,i}^{[\chi]}(y) + Y_i(y) + \sum_{j=1}^2 \partial h_i/\partial y_j \big(P_{\gamma,j}^{[\chi]}(y) + Y_j(y)\big) \qquad (i=1,2).$

Поскольку $P_{\gamma,i}^{[\chi]}(y+h)-P_{\gamma,i}^{[\chi]}(y)=\sum_{j=1}^2h_j(y)\,\partial P_{\gamma,i}^{[\chi]}/\partial y_j+P_i^*(y,h)$, где P^* содержит члены ряда h как минимум во второй степени, эти тождества принимают вид

$$\sum_{j=1}^{2} \left(\frac{\partial h_i}{\partial y_j} P_{\gamma,j}^{[\chi]}(y) - \frac{\partial P_{\gamma,i}^{[\chi]}}{\partial y_j} h_j(y) \right) \equiv -Y_i(y) + X_i(y+h) - \sum_{j=1}^{2} \frac{\partial h_i}{\partial y_j} Y_j(y) + P_i^*(y,h).$$

Выделим в них члены, имеющие о.с. $k \ge \chi + 1$:

$$\sum_{j=1}^{2} \left(\frac{\partial h_{\gamma,i}^{[k-\chi]}}{\partial y_j} P_{\gamma,j}^{[\chi]}(y) - \frac{\partial P_{\gamma,i}^{[\chi]}}{\partial y_j} h_{\gamma,j}^{[k-\chi]}(y) \right) = \widetilde{Y}_{\gamma,i}^{[k]}(y) - Y_{\gamma,i}^{[k]}(y), \tag{21}$$

где $\widetilde{Y}_{\gamma,i}^{[k]} = \{X_i(y+h) + P_i^*(y,h) - \sum_{j=1}^2 \partial h_i / \partial y_j Y_j(y)\}_{\gamma}^{[k]}.$

КОМ $\widetilde{Y}_{\gamma}^{[k]}$ может содержать только квазиоднородные многочлены $h_{\gamma}^{[s]}$ и $Y_{\gamma}^{[s+\chi]}$, у которых $1 \leq s \leq k-\chi-1$. Следовательно, при последовательном вычислении $h_{\gamma}^{[k-\chi]}$ и $Y_{\gamma}^{[k]}$ в КОМ $\widetilde{Y}_{\gamma}^{[k]}$ оказываются уже известные величины.

Левая часть (21) является линейным оператором $A_{k-\chi}^P$ (скобкой Ли), переводящим линейное пространство $H_{k-\chi}$ КОМ степени $k-\chi$ в линейное пространство H_k .

В дальнейшем γ остается неизменным, поэтому нижний индекс γ у KOM опускаем.

Рассмотрим КОМ $Z^{[k]}$. Вектор показателей степеней q^i (i=1,2) любого слагаемого его i-й компоненты удовлетворяет уравнению $\langle q^i, \gamma \rangle = k + \gamma_i$.

Пусть k_{γ}^{i} – это число различных векторов q^{i} , удовлетворяющих этому уравнению.

Расположив q^i в лексико-графическом порядке, сопоставим квазиоднородному многочлену $Z^{[k]}$ вектор его коэффициентов $Z^{\{k\}}=(Z_1^{\{k\}},\ Z_2^{\{k\}})$ размерности $|k_\gamma|=k_\gamma^1+k_\gamma^2$.

С учетом сказанного выше, система (21) может быть переписана в матричном виде

$$A^{\{k\}}h^{\{k-\chi\}} = \widetilde{Y}^{\{k\}} - Y^{\{k\}} \qquad (k \ge \chi + 1), \tag{22}$$

где $A^{\{k\}}=A^{\{k\}}(P_{\gamma}^{[\chi]})$ — постоянная матрица размерности $|k_{\gamma}|\times |(k-\chi)_{\gamma}|,$ являющаяся представлением линейного оператора $A_{k-\chi}^P.$

Предположим, что матрица $A^{\{k\}}$ имеет ранг $r_k = r_k(\chi) = |(k-\chi)_\gamma| - k_\gamma^0$, где $k_\gamma^0 \ge 0$. Выделяя из системы (22) линейную подсистему порядка r_k с ненулевым определителем, однозначно найдем r_k компонент вектора коэффициентов $h^{\{k-\chi\}}$ замены (19), а оставшиеся k_γ^0 свободных компонент произвольным образом зафиксируем. После этого подставим $h^{\{k-\chi\}}$ в оставшиеся уравнения системы (21), получая $n_k = n_k(\chi) = |k_\gamma| - r_k$ линейно независимых линейных уравнений, связывающих компоненты вектора коэффициентов $Y^{\{k\}}$:

$$\langle \alpha_{\mu}^{\{k\}}, Y_1^{\{k\}} \rangle + \langle \beta_{\mu}^{\{k\}}, Y_2^{\{k\}} \rangle = \tilde{c} \qquad (\mu = \overline{1, n_k}),$$
 (23)

где $\tilde{c} = \langle \alpha_{\mu}^{\{k\}}, \widetilde{Y}_{1}^{\{k\}} \rangle + \langle \beta_{\mu}^{\{k\}}, \widetilde{Y}_{2}^{\{k\}} \rangle$ — известная константа, а n_{k} пар постоянных векторов $\alpha_{\mu}^{\{k\}}, \beta_{\mu}^{\{k\}}$ размерностей $k_{\gamma}^{1}, k_{\gamma}^{2}$ определяются только КОМ $P_{\gamma}^{[\chi]}$ системы (18).

Определение 4. Уравнения (23) называем *резонансными*. Коэффициенты КОМ $Y^{[k]}$ системы (20), входящие хотя бы в одно из резонансных уравнений (23), называем *резонансными*, а остальные – *нерезонансными*. *Резонансными* называем k_{γ}^{0} коэффициентов КОМ $h^{[k-\chi]}$, остающихся свободными при решении системы (22).

Покажем, что резонансные уравнения позволяют установить наличие формальной эквивалентности между любыми двумя системами, имеющими невозмущенную часть $P_{\gamma}^{[\chi]}$, и конструктивно выделить из них наиболее простые системы, называемые обобщенными нормальными формами, указав все их возможные структуры.

Любым n_k различным резонансным коэффициентам $Y^{k,\eta} = Y_{i_\eta}^{[q_1^\eta \gamma_1, q_2^\eta \gamma_2]}$ квазиоднородных многочленов $Y_1^{[k]}, Y_2^{[k]}$, где $\eta = \overline{1, n_k}, \ i_\eta \in \{0,1\}, \ q_1^\eta \gamma_1 + q_2^\eta \gamma_2 - \gamma_{i_\eta} = k$, сопоставим матрицу множителей $\Upsilon^k = \{v_{\mu\eta}^k\}_{\mu,\eta=1}^{n_k}$, элемент $v_{\mu\eta}^k$ которой, если $i_\eta = 1$, равен компоненте вектора $\alpha_\mu^{\{k\}}$, являющейся множителем при $Y^{k,\eta}$ в μ -ом уравнении (23), а если $i_\eta = 2$, равен соответствующей компоненте вектора $\beta_\mu^{\{k\}}$.

Определение 5. Для $\forall k \geq 2$ семейство резонансных коэффициентов $\mathcal{Y}^k = \{Y^{k,\eta}\}_{\eta=1}^{n_k}$ называем резонансным k-набором, если $\det \Upsilon^k \neq 0$. Для любых $\mathcal{Y}^2, \mathcal{Y}^3, \ldots$ семейство $\mathcal{Y} = \bigcup_{k=2}^{\infty} \mathcal{Y}^k$ называем резонансным набором.

Использование для $\forall k \geq 2$ резонансных k-наборов \mathcal{Y}^k позволяет однозначно разрешать резонансные уравнения (23) относительно коэффициентов любого из них.

Определение 6. Систему (20) называем обобщенной нормальной формой $(OH\Phi)$, если при $\forall \, k \geq 2$ все коэффициенты КОМ $Y_1^{[k]}, Y_2^{[k]}$ как резонансные, так и не резонансные, равны нулю, за исключением коэффициентов из какого-либо резонансного k-набора \mathcal{Y}^k , имеющих произвольные значения.

Тем самым, структуру любой ОНФ порождает какой-либо резонансный набор \mathcal{Y} . Знание резонансных уравнений (23) делает очевидными следующие утверждения.

Теорема 2. Для того чтобы система (20) была формально эквивалентна исходной системе (18), необходимо и достаточно, чтобы для $\forall k \geq 2$ коэффициенты ее КОМ $Y_1^{[k]}$, $Y_2^{[k]}$ удовлетворяли резонансным уравнениям (23).

Теорема 3. Для любой системы (18), и для любого выбранного по ее невозмущенной части резонансного набора $\mathcal Y$ существует и единственна почти тождественная замена (19) с заранее произвольным образом зафиксированными резонансными коэффициентами, преобразующая систему (18) в $OH\Phi$ (20), структура которой порождена $\mathcal Y$.

Замечание 3. В определении КОМ предполагается, что его о.с. $\chi \ge 1$. Если допустить, что о.с. КОМ $\chi = 0$, то матрица линейной части будет иметь ненулевое собственное число и возмущенную систему в этом случае эффективнее сводить к резонансной нормальной форме, используя для ее нормализации вырожденную линейную невозмущенную часть.

Пример 1. В системе $\dot{x}_1 = ax_1 + \sum_{k=1}^{\infty} Y_1^{[k]}(x), \ \dot{x}_2 = x_1^3 + \sum_{k=1}^{\infty} Y_2^{[k]}(x),$ невозмущенная часть является КФлк₀ = $R_{(1,3)}^0$. Она не включена в список КФлк определения 3, поскольку имеет нулевую о.с., что противоречит определению 2. ОНФ такой системы имеет вид $\dot{y}_1 = y_1(a + \sum_{r=1}^{\infty} Y_1^{[1,3r]} y_2^r), \ \dot{y}_2 = y_1^3 + \sum_{r=1}^{\infty} Y_2^{[0,3r+3]} y_2^{r+1}.$

В то же время, относя x_1^3 во втором уравнении к возмущению, методом резонансных нормальных форм получим ту же НФ, только слагаемое с y_1^3 в ней будет аннулировано.

5 ОНФ систем с $\mathbf{R}_{(1,2)}^{[1]}$ в невозмущенной части

5.1 Получение связующей системы

Рассмотрим систему (1) с канонической невозмущенной частью $R_{(1,2)}^{[1]}=(x_2,\sigma x_1^3)$:

$$\dot{x}_1 = x_2 + \sum_{k=2}^{\infty} X_1^{[k]}(x), \qquad \dot{x}_2 = \sigma x_1^3 + \sum_{k=2}^{\infty} X_2^{[k]}(x),$$
 (24)

где в возмущении КОМ $X_i^{[k]} = \sum_{q_1+2q_2=k+i} X_i^{[q_1,2q_2]} x_1^{q_1} x_2^{q_2} \quad (i=1,2).$

Замечание 4. Случай, когда $\sigma = -1$, был рассмотрен в [1].

Пусть формальная почти тождественная замена

$$x_i = y_i + h_i(y) \quad (i = 1, 2),$$
 (25)

где $h_i(y) = \sum_{k=2}^{\infty} h_i^{[k-1]}(y), \ h_i^{[k-1]} = \sum_{q_1+2q_2=k-1+i} h_i^{[q_1,2q_2]} y_1^{q_1} y_2^{q_2},$ переводит (24) в систему:

$$\dot{y}_1 = y_2 + \sum_{k=2}^{\infty} Y_1^{[k]}(y), \qquad \dot{y}_2 = \sigma y_1^3 + \sum_{k=2}^{\infty} Y_2^{[k]}(y),$$
 (26)

где возмущение $Y_i^{[k]} = \sum_{q_1+2q_2=k+i} Y_i^{[q_1,\,2q_2]} y_1^{q_1} y_2^{q_2}.$

Тождества (21) с $\chi = 1$, $\gamma = (1,2)$ для систем (24), (26) и замены (25) имеют вид:

$$\frac{\partial h_1^{[k-1]}}{\partial y_1}y_2 + \frac{\partial h_1^{[k-1]}}{\partial y_2}\sigma y_1^3 - h_2^{[k-1]} = \widetilde{Y}_1^{[k]} - Y_1^{[k]}, \quad \frac{\partial h_2^{[k-1]}}{\partial y_1}y_2 + \frac{\partial h_2^{[k-1]}}{\partial y_2}\sigma y_1^3 - 3\sigma y_1^2 h_1^{[k-1]} = \widetilde{Y}_2^{[k]} - Y_2^{[k]},$$

где $\widetilde{Y}_i^{[k]}$ (i=1,2) находится по формуле, указанной в (21).

Приравнивая коэффициенты при $y_1^{q_1}y_2^{q_2},$ получим линейную связующую систему:

$$(q_{1}+1)h_{1}^{[q_{1}+1,2(q_{2}-1)]} + \sigma(q_{2}+1)h_{1}^{[q_{1}-3,2(q_{2}+1)]} - h_{2}^{[q_{1},2q_{2}]} = \widehat{Y}_{1}^{[q_{1},2q_{2}]} \quad (q_{1}+2q_{2}=k+1),$$

$$-3\sigma h_{1}^{[q_{1}-2,2q_{2}]} + (q_{1}+1)h_{2}^{[q_{1}+1,2(q_{2}-1)]} + \sigma(q_{2}+1)h_{2}^{[q_{1}-3,2(q_{2}+1)]} = \widehat{Y}_{2}^{[q_{1},2q_{2}]} \quad (q_{1}+2q_{2}=k+2),$$

$$(27)$$

в которой $\widehat{Y}_i^{[q_1,2q_2]} = \widetilde{Y}_i^{[q_1,2q_2]} - Y_i^{[q_1,2q_2]}$

Поскольку $k \ge 2$, положим $k = 4r + \nu - 2$ $(r \in \mathbb{N}, \nu = 0, 1, 2, 3)$.

Система (27) распадается на две независимые подсистемы.

Пусть $q_2=2(r-s)+i-1$ $(s\leq r)$, тогда при i=1,2 в уравнении (27_i) $q_1=4s+\nu-i\geq 0$ и для $\forall\,\nu=\overline{0,3}$ получаем подсистему

$$-h_{2}^{[4s+\nu-1,4(r-s)]} + (4s+\nu)h_{1}^{[4(s+1)+\nu-4,4(r-(s+1))+2]} + \\ +\sigma(2(r-s)+1)h_{1}^{[4s+\nu-4,4(r-s)+2]} = \widehat{Y}_{1}^{[4s+\nu-1,4(r-s)]} \qquad (s = \overline{[(3-\nu)/3],r}), \\ -3\sigma h_{1}^{[4s+\nu-4,4(r-s)+2]} + (4s+\nu-1)h_{2}^{[4s+\nu-1,4(r-s)]} + \\ +\sigma(2(r-s)+2)h_{2}^{[4(s-1)+\nu-1,4(r-(s-1))]} = \widehat{Y}_{2}^{[4s+\nu-2,4(r-s)+2]} \qquad (s = \overline{[(3-\nu)/2],r}).$$

Пусть теперь $q_2=2(r-s)+2-i$ $(s\leq r)$, тогда при i=1,2 в уравнении (27_i) $q_1=4s+\nu+3i-6\geq 0$ и для $\forall\,\nu=\overline{0,3}$ получаем подсистему

$$-h_{2}^{[4s+\nu-3,4(r-s)+2]} + (4s+\nu-2)h_{1}^{[4s+\nu-2,4(r-s)]} + \\ +\sigma(2(r-s)+2)h_{1}^{[4(s-1)+\nu-2,4(r-(s-1))]} = \widehat{Y}_{1}^{[4s+\nu-3,4(r-s)+2]} \qquad (s = \overline{[(7-\nu)/5],r}), \\ -3\sigma h_{1}^{[4s+\nu-2,4(r-s)]} + (4s+\nu+1)h_{2}^{[4(s+1)+\nu-3,4(r-(s+1))+2]} + \\ +\sigma(2(r-s)+1)h_{2}^{[4s+\nu-3,4(r-s)+2]} = \widehat{Y}_{2}^{[4s+\nu,4(r-s)]} \qquad (s = \overline{0,r}).$$

5.2 Структура связующей системы при нечетных $({f q_2}-{f i})$

Вводя новые обозначения, запишем систему (28) в следующем виде:

$$\sigma(2(r-s)+1)h_{1,s}^{\nu 1} + (4s+\nu)h_{1,s+1}^{\nu 1} - h_{2,s}^{\nu 1} = Y_{1,s}^{\nu 1} \quad (s = \overline{[(3-\nu)/3], r}), \\ -3\sigma h_{1,s}^{\nu 1} + (4s+\nu-1)h_{2,s}^{\nu 1} + \sigma(2(r-s)+2)h_{2,s-1}^{\nu 1} = Y_{2,s}^{\nu 1} \quad (s = \overline{[(3-\nu)/2], r}),$$

$$(30)$$

где $h_{1,s}^{\nu 1}=h_1^{[4s+\nu-4,4(r-s)+2]}$ ($s=\overline{1,r}$), $h_{2,s}^{\nu 1}=h_2^{[4s+\nu-1,4(r-s)]}$, $Y_{1,s}^{\nu 1}=\widehat{Y}_1^{[4s+\nu-1,4(r-s)]}$ ($s=\overline{[(3-\nu)/3],r}$), $Y_{2,s}^{\nu 1}=\widehat{Y}_2^{[4s+\nu-2,4(r-s)+2]}$ ($s=\overline{[(3-\nu)/2],r}$). При этом любой элемент равен нулю, если его индекс s не лежит в заданных границах.

Подставляя $h_{2,s}^{\nu 1}$ и $h_{2,s-1}^{\nu 1}$ из (30_1) в (30_2) , получаем трехдиагональную систему:

$$a_s^{\nu 1} h_{1,s-1}^{\nu 1} + b_s^{\nu 1} h_{1,s}^{\nu 1} + c_s^{\nu 1} h_{1,s+1}^{\nu 1} = Y_{0,s}^{\nu 1} \qquad (s = \overline{[(3-\nu)/2], r}), \tag{31}$$

в которой $a_s^{\nu 1}=(2(r-s)+2)(2(r-s)+3)$ $(s=\overline{2,r}),$ $b_s^{\nu 1}=\sigma((4s+\nu)(4(r-s)+3)-10(r-s)-12)$ $(s=\overline{1,r}),$ $c_s^{\nu 1}=(4s+\nu-1)(4s+\nu)$ $(s=\overline{0,r-1});$ $Y_{0,s}^{\nu 1}=\sigma(2(r-s)+2)Y_{1,s-1}^{\nu 1}+(4s+\nu-1)Y_{1,s}^{\nu 1}+Y_{2,s}^{\nu 1}$ $(s=\overline{[(3-\nu)/2],r}).$

Для $\nu=0,1$ введем $Y_{0,0}^{01},Y_{0,0}^{11}=0,$ тогда систему (31) можно рассматривать для $s=\overline{0,r}$ при всех $\nu,$ так как $c_0^{01},c_0^{11}=0,$ и записать ее в матричном виде:

$$A^{\nu 1}h_1^{\nu 1} = Y_0^{\nu 1} \quad (\nu = \overline{0,3}), \tag{32}$$

где
$$A^{\nu 1} = \begin{pmatrix} c_0^{\nu 1} & 0 & 0 & 0 & \dots & 0 \\ b_1^{\nu 1} & c_1^{\nu 1} & 0 & 0 & \dots & 0 \\ a_2^{\nu 1} & b_2^{\nu 1} & c_2^{\nu 1} & 0 & \dots & 0 \\ 0 & a_3^{\nu 1} & b_3^{\nu 1} & c_3^{\nu 1} & \dots & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & \dots & a_{r-1}^{\nu 1} & b_{r-1}^{\nu 1} & c_{r-1}^{\nu 1} \\ 0 & 0 & \dots & 0 & a_r^{\nu 1} & b_r^{\nu 1} \end{pmatrix}_{(r+1)\times r}, \quad h_1^{\nu 1} = (h_{1,1}^{\nu 1}, \dots, h_{1,r}^{\nu 1}), \\ h_1^{\nu 1} = (h_{1,1}^{\nu 1}, \dots, h_{1,r}^{\nu 1}), \\ Y_0^{\nu 1} = (Y_{0,0}^{\nu 1}, Y_{0,1}^{\nu 1}, \dots, Y_{0,r}^{\nu 1}).$$

Для решения системы (32) будем методом Гаусса аннулировать элементы $c_{r-1}^{\nu 1},\ c_{r-2}^{\nu 1},\dots$ матрицы $A^{\nu 1}$ получая элементы d_s^{ν} вместо $b_s^{\nu 1}$ и $\overline{Y}_{0,s}^{\nu 1}$ вместо $Y_{0,s}^{\nu 1}$, пока $d_{s+1}^{\nu}\neq 0$ $(s\geq 0)$, по рекуррентным формулам:

$$d_r^{\nu} = b_r^{\nu 1}, \ \overline{Y}_{0,r}^{\nu 1} = Y_{0,r}^{\nu 1}; \ d_s^{\nu} = b_s^{\nu 1} - \frac{a_{s+1}^{\nu 1} c_s^{\nu 1}}{d_{s+1}^{\nu}}, \ \overline{Y}_{0,s}^{\nu 1} = Y_{0,s}^{\nu 1} - \frac{\overline{Y}_{0,s+1}^{\nu 1} c_s^{\nu 1}}{d_{s+1}^{\nu}} \ (s = r - 1, r - 2 \dots). \ (33)$$

Лемма 2. Для элементов d_s^{ν} из (33) верна следующая прямая формула:

$$d_s^{\nu} = \sigma(2(r-s) + 3)(4s + \nu - 4) \qquad (s = \overline{r, 1}). \tag{34}$$

Доказательство. В (34) $d_r^{\nu}=3\sigma(4r+\nu-4)$, что совпадает с d_r^{ν} из (33) и дает базу индукции. Пусть для некоторого $s=\overline{r,2}$ верна формула (34). Тогда согласно (33) имеем $d_{s-1}^{\nu}=b_{s-1}^{\nu 1}-a_s^{\nu 1}c_{s-1}^{\nu 1}(d_s^{\nu})^{-1}=\sigma((4s+\nu-4)(4(r-s)+7)-10(r-s)-22-(2(r-s)+2)(4s+\nu-5))=\sigma(2(r-s)+5)(4s+\nu-8)$.

Следствие 1. В формуле (34) все элементы $d_s^{\nu} \neq 0$, за исключением $d_1^0 = 0$.

В результате система (32) равносильна системе

$$\overline{A}^{\nu 1} h_1^{\nu 1} = \overline{Y}_0^{\nu 1}, \tag{35}$$

в которой $\overline{A}^{\nu 1}$ — двухдиагональная $(r+1)\times r$ -матрица с элементами d_s^{ν} и $a_s^{\nu 1}$ на диагоналях и нулевой первой строкой, а $\overline{Y}_0^{\nu 1}=(\overline{Y}_{0,0}^{\nu 1},\overline{Y}_{0,1}^{\nu 1},\ldots,\overline{Y}_{0,r}^{\nu 1})$ и $\overline{Y}_{0,s}^{\nu 1}$ определены в (33), кроме $\overline{Y}_{0,0}^{01}$, который положим равным нулю.

5.3 Совместность связующей системы при нечетных $(q_2 - i)$

Согласно следствию 1 из формулы (33) получаем: $\overline{Y}_{0,1}^{\nu 1} = \sum_{m=1}^{r} \theta_m^{\nu} Y_{0,m}^{\nu 1}$, где $\theta_m^{\nu} = (-1)^{m-1} \prod_{j=2}^{m} (c_{j-1}^{\nu 1}/d_j^{\nu 1})$. Тогда с учетом (31) и (34), имеем:

$$\theta_m^{\nu} = (-\sigma)^{m-1} \prod_{j=2}^m \frac{4j + \nu - 5}{2(r-j) + 3} \neq 0 \quad (m = \overline{1, r}, \ \nu = \overline{0, 3}). \tag{36}$$

В обозначениях для (31): $\overline{Y}_{0,1}^{\nu 1} = \sum_{m=1}^{r} \theta_m^{\nu} Y_{0,m}^{\nu 1} = \sum_{m=1}^{r} \theta_m^{\nu} (\sigma(2(r-m)+2)) Y_{1,m-1}^{\nu 1} + (4m+\nu-1) Y_{1,m}^{\nu 1} + Y_{2,m}^{\nu 1}) = -\sigma \sum_{m=1}^{r-1} (4(r-m)+1) \theta_{m+1}^{\nu} Y_{1,m}^{\nu 1} + \theta_r Y_{1,r}^{\nu} + \sum_{m=1}^{r} \theta_m^{\nu} Y_{2,m}^{\nu 1},$ причем $2\sigma(r-m)\theta_{m+1}^{\nu 1} + (4m+\nu-1)\theta_m^{\nu 1} = -\sigma(4(r-m)+1)\theta_{m+1}^{\nu 1} \ (m=\overline{1,r-1}).$

Пусть $\nu = 0$. Тогда в системе (35) при s = 0, 1 имеем уравнения 0 = 0 и $0 \cdot h_{1,1}^{01} = \overline{Y}_{0,1}^{01}$, что позволяет, возвращаясь к системе (28), выписать для нее резонансную связь:

$$\sum_{m=1}^{r} \left(\alpha_{1,m}^{0} \widehat{Y}_{1}^{[4m-1,4(r-m)]} + \beta_{1,m}^{0} \widehat{Y}_{2}^{[4m-2,4(r-m)+2]} \right) = 0 \qquad (\nu = 0), \tag{37}$$

где $\alpha_{1,m}^0 = -\sigma(4(r-m)+1)\theta_{m+1}^0$ $(m=\overline{1,r-1}),\ \alpha_{1,r}^0 = \theta_r^0,\ \beta_{1,m}^0 = \theta_m^0$ $(m=\overline{1,r}),\ a\ \theta_m^0$ определены в (36), причем $h_{1,1}^{01}$ не имеет ограничений.

При $\nu=1$ система (35), очевидно, однозначно разрешима.

Пусть теперь $\nu=2,3$. Тогда первое уравнение системы (35) (s=0) имеет вид: $0=\overline{Y}_{0,0}^{\nu 1}$. Согласно (33): $\overline{Y}_{0,0}^{\nu 1}=Y_{0,0}^{\nu 1}-\overline{Y}_{0,1}^{\nu 1}c_0^{\nu 1}(d_1^{\nu})^{-1}=(\nu-1)Y_{1,0}^{\nu 1}+Y_{2,0}^{\nu 1}-\sigma(\nu-1)(2r+1)^{-1}\left(-\sigma\sum_{m=1}^{r-1}(4(r-m)+1)\theta_{m+1}^{\nu}Y_{1,m}^{\nu 1}+\theta_rY_{1,r}^{\nu 1}+\sum_{m=1}^{r}\theta_m^{\nu}Y_{2,m}^{\nu 1}\right)$, что позволяет, возвращаясь к системе (28), выписать для нее резонансную связь:

$$\sum_{m=0}^{r} \left(\alpha_{1,m}^{\nu} \widehat{Y}_{1}^{[4m+\nu-1,4(r-m)]} + \beta_{1,m}^{\nu} \widehat{Y}_{2}^{[4m+\nu-2,4(r-m)+2]} \right) = 0 \qquad (\nu = 2,3), \tag{38}$$

в которой $\alpha_{1,0}^{\nu}=\nu-1,\ \alpha_{1,m}^{\nu}=(\nu-1)(2r+1)^{-1}(4(r-m)+1)\theta_{m+1}^{\nu}\ (m=\overline{1,r-1}),\ \alpha_{1,r}^{\nu}=-\sigma(\nu-1)(2r+1)^{-1}\theta_{r}^{\nu},\ \beta_{1,0}^{\nu}=1,\ \beta_{1,m}^{\nu}=-\sigma(\nu-1)(2r+1)^{-1}\theta_{m}^{\nu}\ (m=\overline{1,r}),\ \text{a}\ \theta_{m}^{\nu}\ \text{из}\ (36).$

5.4 Структура связующей системы при четных $({f q_2}-{f i})$

Вводя новые обозначения, запишем систему (29) в следующем виде:

$$\sigma(2(r-s)+2)h_{1,s-1}^{\nu 2} + (4s+\nu-2)h_{1,s}^{\nu 2} - h_{2,s}^{\nu 2} = Y_{1,s}^{\nu 2} \quad (s = \overline{[(7-\nu)/5],r}), \\ -3\sigma h_{1,s}^{\nu 2} + (4s+\nu+1)h_{2,s+1}^{\nu 2} + \sigma(2(r-s)+1)h_{2,s}^{\nu 2} = Y_{2,s}^{\nu 2} \quad (s = \overline{0,r}),$$

$$(39)$$

где $h_{1,s}^{\nu 2}=h_1^{[4s+\nu-2,4(r-s)]}$ $(s=\overline{[(3-\nu)/2],r}),\ h_{2,s}^{\nu 2}=h_2^{[4s+\nu-3,4(r-s)+2]},Y_{1,s}^{\nu 2}=\widehat{Y}_1^{[4s+\nu-3,4(r-s)+2]}$ $(s=\overline{[(7-\nu)/5],r}),\ Y_{2,s}^{\nu 2}=\widehat{Y}_2^{[4s+\nu,4(r-s)]}$ $(s=\overline{0,r}).$ При этом любой элемент равен нулю, если его индекс s не лежит в заданных границах.

Положим $\tau_{\nu} = [(3-\nu)/2]$, т.е. $\tau_{\nu} = \{1 \text{ при } \nu = 0, 1; 0 \text{ при } \nu = 2, 3\}$.

Подставляя $h_{2,s}^{\nu 2}$ и $h_{2,s+1}^{\nu 2}$ из (39_1) в (39_2) , получаем трехдиагональную систему:

$$a_s^{\nu 2} h_{1,s-1}^{\nu 1} + b_s^{\nu 2} h_{1,s}^{\nu 1} + c_s^{\nu 2} h_{1,s+1}^{\nu 1} = Y_{0,s}^{\nu 2} \qquad (s = \overline{0,r}), \tag{40}$$

в которой
$$a_s^{\nu 2}=(2(r-s)+1)(2(r-s)+2)$$
 $(s=\overline{\tau_{\nu}+1,r}),$ $b_s^{\nu 2}=\sigma((4s+\nu)(4(r-s)+1)-2(r-s)-5)$ $(s=\overline{\tau_{\nu},r}),$ $c_s^{\nu 2}=(4s+\nu+1)(4s+\nu+2)$ $(s=\overline{0,r-1});$ $Y_{0,s}^{\nu 2}=\sigma(2(r-s)+1)Y_{1,s}^{\nu 2}+(4s+\nu+1)Y_{1,s+1}^{\nu 2}+Y_{2,s}^{\nu 2}$ $(s=\overline{0,r}).$

Запишем (40) в матричном виде, выделив в ней для $\nu = 0, 1$ первое уравнение (s = 0)

$$(\nu+1)(\nu+2)h_{1,1}^{\nu 2} = Y_{0,0}^{\nu 2} \quad (\nu=0,1), \qquad A^{\nu 2}h_1^{\nu 2} = Y_0^{\nu 2} \quad (\nu=\overline{0,3}), \tag{41}$$

где
$$A^{\nu 2} = \begin{pmatrix} b_{\tau_{\nu}}^{\nu 2} & c_{\tau_{\nu}}^{\nu 2} & 0 & 0 & 0 & \dots & 0 \\ a_{\tau_{\nu+1}}^{\nu 2} & b_{\tau_{\nu+1}}^{\nu 2} & c_{\tau_{\nu+1}}^{\nu 2} & 0 & 0 & \dots & 0 \\ 0 & a_{\tau_{\nu+2}}^{\nu 2} & b_{\tau_{\nu+2}}^{\nu 2} & c_{\tau_{\nu+2}}^{\nu 2} & 0 & \dots & 0 \\ 0 & 0 & a_{\tau_{\nu+3}}^{\nu 2} & b_{\tau_{\nu+3}}^{\nu 2} & c_{\tau_{\nu+3}}^{\nu 2} & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & a_{r-1}^{\nu 2} & b_{r-1}^{\nu 2} & c_{r-1}^{\nu 2} \\ 0 & 0 & 0 & \dots & 0 & a_r^{\nu 2} & b_r^{\nu 2} \end{pmatrix}_{(r-\tau_{\nu}+1)}^{\nu 2}, \quad h_1^{\nu 2} = (h_{1,\tau_{\nu}}^{\nu 2}, \dots, h_{1,r}^{\nu 2}),$$

Для решения системы (41) будем методом Гаусса в матрице $A^{\nu 2}$ аннулировать элементы $a^{\nu 2}_{\tau_{\nu}+1}, \ a^{\nu 2}_{\tau_{\nu}+2}, \ldots,$ получая элементы e^{ν}_{s} вместо $b^{\nu 2}_{s}$ и $\overline{Y}^{\nu 2}_{0,s}$ вместо $Y^{\nu 2}_{0,s}$, пока $e^{\nu}_{s-1} \neq 0$ $(s \geq \tau_{\nu})$, по рекуррентным формулам:

$$e_{\tau_{\nu}}^{\nu} = b_{\tau_{\nu}}^{\nu2}, \ \overline{Y}_{0,\tau_{\nu}}^{\nu2} = Y_{0,\tau_{\nu}}^{\nu2}; \ e_{s}^{\nu} = b_{s}^{\nu2} - \frac{a_{s}^{\nu2}c_{s-1}^{\nu2}}{e_{s-1}^{\nu}}, \ \overline{Y}_{0,s}^{\nu2} = Y_{0,s}^{\nu2} - \frac{\overline{Y}_{0,s-1}^{\nu2}a_{s}^{\nu2}}{e_{s-1}^{\nu}} \ (s = \tau_{\nu} + 1, \tau_{\nu} + 2, \ldots). \ (42)$$

Лемма 3. В формуле (42) элементы $e_s^{\nu} \neq 0$ при $s = \overline{\tau_{\nu}, r}$ $(\nu = \overline{0, 3}),$ причем при $r \geq 2$

$$\sigma e_s^{\nu} \ge (2(r-s)-1)(4s+\nu+1) \quad (s=\overline{\tau_{\nu},r-1}), \quad \sigma e_s^{\nu} < 2(r-s)(4s+\nu+4) \quad (s=\overline{\tau_{\nu},r}).$$

Доказательство. При $\sigma = 1$, сменив a на c, b на a, b на c, получаем элементы, для которых лемма доказана в [1, часть II]. При $\sigma = -1$ формулы (42) не меняются, так как $b_s^{\nu 2}$ содержит множитель σ , отсюда получаем утверждение леммы для $\sigma = -1$.

В результате система (41) равносильна системе

$$(\nu+1)(\nu+2)h_{1,1}^{\nu 2} = Y_{0,0}^{\nu 2} \quad (\nu=0,1), \qquad \overline{A}^{\nu 2}h_1^{\nu 2} = \overline{Y}_0^{\nu 2} \quad (\nu=\overline{0,3}), \tag{43}$$

в которой $\overline{A}^{\nu 2}$ — двухдиагональная $(r-\tau_{\nu}+1)$ матрица с элементами e^{ν}_s и $c^{\nu 2}_s$ на диагоналях, а $\overline{Y}^{\nu 2}_0=(\overline{Y}^{\nu 2}_{0,\tau_{\nu}},\overline{Y}^{\nu 2}_{0,\tau_{\nu}+1},\ldots,\overline{Y}^{\nu 2}_{0,r})$ и $\overline{Y}^{\nu 2}_{0,s}$ определены в (42).

5.5 Совместность связующей системы при четных $({\bf q_2}-{\bf i})$

Пусть $\nu=0,1,$ тогда $au_{\nu}=1.$ Выразим $h_{1,1}^{\nu2}$ из выделенного уравнения (41_1) :

$$h_{1,1}^{\nu 2} = ((\nu+1)(\nu+2))^{-1}Y_{0,0}^{\nu 2} = Y_{1,1}^{\nu 2}(\nu+2)^{-1} + Y_{2,0}^{\nu 2}(\nu+1)^{-1}(\nu+2)^{-1}.$$

Теперь найдем $h_{1,1}^{\nu 2}$ по формулам Крамера из системы (41_2) .

Пусть $\overline{A}_{s,1}^{\nu}$ $(s=\overline{1,r})$ – алгебраическое дополнение элемента s-ой строки и первого столбца матрицы $\overline{A}^{\nu 2}$, т. е. $\overline{A}_{s,1}^{\nu}=(-1)^{s+1}\prod_{j=1}^{s-1}c_j^{\nu 2}\prod_{j=s+1}^re_j^{\nu}$. Тогда компонента

$$h_{1,1}^{\nu 2} = (\Delta^{\nu})^{-1} \sum_{s=1}^{r} \overline{A}_{s,1}^{\nu} \overline{Y}_{0,s}^{\nu 2}, \quad \Delta^{\nu} = \prod_{s=1}^{r} e_{s}^{\nu}.$$

Из формулы (42) с учетом леммы 3 получаем: $\overline{Y}_{0,s}^{\nu 2} = \sum_{m=1}^{s} \theta_{s,m}^{\nu} Y_{0,m}^{\nu 2}$, где

$$\theta_{s,m}^{\nu} = (-1)^{s-m} \prod_{j=m+1}^{s} (a_j^{\nu 2}/e_{j-1}^{\nu}) \qquad (s = \overline{1,r}, \ m = \overline{1,s}).$$
(44)

Согласно (40) $\sum_{m=1}^s \theta_{s,m}^\nu Y_{0,m}^{\nu 2} = \sum_{m=1}^s \theta_{s,m}^\nu (\sigma(2(r-m)+1)Y_{1,m}^{\nu 2} + (4m+\nu+1)Y_{1,m+1}^{\nu 2} + Y_{2,m}^{\nu 2}),$ поэтому

$$\overline{Y}_{0,s}^{\nu 2} = \sum_{m=1}^{s} (\overline{\alpha}_{s,m}^{\nu} Y_{1,m}^{\nu 2} + \overline{\beta}_{s,m}^{\nu} Y_{2,m}^{\nu 2}) + (4s + \nu + 1) Y_{1,s+1}^{\nu 2}, \tag{45}$$

где $\overline{\alpha}_{s,m}^{\nu} = \sigma(2(r-m)+1)\theta_{s,m}^{\nu} + (4m+\nu-3)\theta_{s,m-1}^{\nu} \quad (m=\overline{2,s}), \ \overline{\alpha}_{s,1}^{\nu} = \sigma(2r-1)\theta_{s,1}^{\nu}, \ \overline{\beta}_{s,m}^{\nu} = \theta_{s,m}^{\nu} \quad (m=\overline{1,s}), \ a \ \theta_{s,m}^{\nu} \quad \text{определены в (44)}.$

Итак, $\sum_{s=1}^{r} \overline{A}_{s,1}^{\nu} \overline{Y}_{0,s}^{\nu2} = \sum_{s=1}^{r} \overline{A}_{s,1}^{\nu} \left(\sum_{m=1}^{s} (\overline{\alpha}_{s,m}^{\nu} Y_{1,m}^{\nu2} + \overline{\beta}_{s,m}^{\nu} Y_{2,m}^{\nu2}) + (4s + \nu + 1) Y_{1,s+1}^{\nu2} \right) = \sum_{m=2}^{r} \left(Y_{1,m}^{\nu2} \left(\sum_{s=m}^{r} \overline{A}_{s,1}^{\nu} \overline{\alpha}_{s,m}^{\nu} + \overline{A}_{m-1,1}^{\nu} (4m + \nu - 3) \right) + Y_{2,m}^{\nu2} \sum_{s=m}^{r} \overline{A}_{s,1}^{\nu} \overline{\beta}_{s,m}^{\nu} \right) + Y_{1,1}^{\nu2} \sum_{s=1}^{r} \overline{A}_{s,1}^{\nu} \overline{\alpha}_{s,1}^{\nu} + Y_{2,1}^{\nu2} \sum_{s=1}^{r} \overline{A}_{s,1}^{\nu} \overline{\beta}_{s,1}^{\nu}.$

Избавившись в двух полученных уравнениях от $h_{1,1}^{\nu 2}$, выпишем резонансную связь:

$$\beta_{2,0}^{\nu} Y_2^{[\nu,4r]} + \sum_{m=1}^{r} (\alpha_{2,m}^{\nu} Y_1^{[4m+\nu-3,4(r-m)+2]} + \beta_{2,m}^{\nu} Y_2^{[4m+\nu,4(r-m)]}) = 0 \qquad (\nu = 0,1), \tag{46}$$

где $\alpha_{2,1}^{\nu} = \sum_{s=1}^{r} \overline{A}_{s,1}^{\nu} \overline{\alpha}_{s,1}^{\nu} - (\nu+2)^{-1} \Delta^{\nu}, \quad \alpha_{2,m}^{\nu} = \overline{A}_{m-1,1}^{\nu} (4m+\nu-3) + \sum_{s=m}^{r} \overline{A}_{s,1}^{\nu} \overline{\alpha}_{s,m}^{\nu} \quad (m=\overline{2,r}),$ $\beta_{2,0}^{\nu} = -(\nu+1)^{-1} (\nu+2)^{-1} \Delta^{\nu} \neq 0, \quad \beta_{2,m}^{\nu} = \sum_{s=m}^{r} \overline{A}_{s,1}^{\nu} \overline{\beta}_{s,m}^{\nu} \quad (m=\overline{1,r}), \quad \text{а} \quad \overline{\alpha}_{s,m}^{\nu}, \overline{\beta}_{s,m}^{\nu} \quad \text{из} \quad (45).$ При этом $\alpha_{2,r}^{\nu} = (-1)^{r} (-3\sigma) (4r+\nu-3) \prod_{s=1}^{r-2} c_{s}^{\nu 2} \neq 0, \quad \beta_{2,r}^{\nu} = (-1)^{r+1} \prod_{s=1}^{r-1} c_{s}^{\nu 2} \neq 0, \quad \beta_{2,r-1}^{\nu} = (-1)^{r} b_{r}^{\nu 2} \prod_{s=1}^{r-2} c_{s}^{\nu 2} \neq 0, \quad \beta_{2,r-2}^{\nu} = (-1)^{r+1} (b_{r}^{\nu 2} b_{r-1}^{\nu 2} - a_{r}^{\nu 2} c_{r-1}^{\nu 2}) \prod_{s=1}^{r-3} c_{s}^{\nu 2} = (-1)^{r+1} (48r^{2} + 24r\nu - 168r + 3\nu^{2} - 42\nu + 123) \prod_{s=1}^{r-3} c_{s}^{\nu 2} \neq 0, \quad \text{а про остальные множители этого утверждать нельзя.}$

При $\nu = 2,3$ система (43), очевидно, однозначно разрешима.

5.6 Полученные результаты

Возвращаясь к обозначениям, введенным для системы (27), согласно (37), (38) и (46), заключаем, что коэффициенты КОМ $Y^{[k]}$ (здесь и далее $k \geq 2$, т.е. $r \geq 1$) связующих систем (30) и (39) удовлетворяют следующим резонансным уравнениям:

$$\sum_{m=1}^{r} \left(\alpha_{1,m}^{0} Y_{1}^{[4m-1,4(r-m)]} + \beta_{1,m}^{0} Y_{2}^{[4m-2,4(r-m)+2]} \right) = \tilde{c},$$

$$\beta_{2,0}^{0} Y_{2}^{[0,4r]} + \sum_{m=1}^{r} \left(\alpha_{2,m}^{0} Y_{1}^{[4m-3,4(r-m)+2]} + \beta_{2,m}^{0} Y_{2}^{[4m,4(r-m)]} \right) = \tilde{c} \qquad (k = 4r - 2),$$
(47)

где $\alpha_{1,m}^0 = -\sigma(4(r-m)+1)\theta_{m+1}^0$ $(m=\overline{1,r-1}),$ $\alpha_{1,r}^0 = \theta_r^0,$ $\beta_{1,m}^0 = \theta_m^0$ $(m=\overline{1,r}),$ $\theta_m^0 = (-\sigma)^{m-1}\prod_{j=2}^m (4j-5)(2(r-j)+3)^{-1} \neq 0;$ $\alpha_{2,1}^0 = \sum_{s=1}^r \sigma(2r-1)\overline{A}_{s,1}^0\theta_{s,1}^0 - \Delta^0/2,$ $\alpha_{2,m}^0 = (4m-3)\overline{A}_{m-1,1}^0 + \sum_{s=m}^r \overline{A}_{s,1}^0(\sigma(2(r-m)+1)\theta_{s,m}^0 + (4m-3)\theta_{s,m-1}^0)$ $(m=\overline{2,r-1}),$ $\alpha_{2,r}^0 = (-1)^r(-3\sigma)(4r-3)\prod_{s=1}^{r-2}(4s+1)(4s+2) \neq 0,$ $\beta_{2,0}^0 = -\Delta^0/2 \neq 0,$ $\beta_{2,m}^0 = \sum_{s=m}^r \overline{A}_{s,1}^0\theta_{s,m}^0$ $(m=\overline{1,r-3}),$ $\beta_{2,r-2}^0 = (-1)^{r+1}(48r^2-168r+123)\prod_{s=1}^{r-3}(4s+1)(4s+2) \neq 0,$ $\beta_{2,r-1}^0 = (-1)^r\sigma(4r-5)\prod_{s=1}^{r-2}(4s+1)(4s+2) \neq 0,$ $\beta_{2,r}^0 = (-1)^{r+1}\prod_{s=1}^{r-1}(4s+1)(4s+2) \neq 0,$ $\theta_{s,m}^0 = (-1)^{s-m}\prod_{j=m+1}^s (2(r-j)+1)(2(r-j)+2)/e_{j-1}^0,$ $\overline{A}_{s,1}^0 = (-1)^{s+1}\prod_{j=1}^{s-1}(4j+1)(4j+2)$ $\prod_{j=s+1}^r e_j^0,$ $\Delta^0 = \prod_{s=1}^r e_s^0,$ а e_s^0 определены в (42);

$$\beta_{2,0}^{1} Y_{2}^{[1,4r]} + \sum_{m=1}^{r} \left(\alpha_{2,m}^{1} Y_{1}^{[4m-2,4(r-m)+2]} + \beta_{2,m}^{1} Y_{2}^{[4m+1,4(r-m)]} \right) = \tilde{c} \qquad (k = 4r - 1), \tag{48}$$

где $\alpha_{2,1}^1 = \sum_{s=1}^r \sigma(2r-1) \overline{A}_{s,1}^1 \theta_{s,1}^1 - \Delta^1/3$, $\alpha_{2,m}^1 = (4m-2) \overline{A}_{m-1,1}^1 + \sum_{s=m}^r \overline{A}_{s,1}^1 (\sigma(2(r-m)+1)\theta_{s,m}^1 + (4m-2)\theta_{s,m-1}^1)$ $(m=\overline{2},r-1)$, $\alpha_{2,r}^1 = (-1)^r(-3\sigma)(4r-2) \prod_{s=1}^{r-2} (4s+2)(4s+3) \neq 0$, $\beta_{2,0}^1 = -\Delta^1/6 \neq 0$, $\beta_{2,m}^1 = \sum_{s=m}^r \overline{A}_{s,1}^1 \theta_{s,m}^1$ $(m=\overline{1,r-3})$, $\beta_{2,r-2}^1 = (-1)^{r+1} (48r^2-144r+84) \prod_{s=1}^{r-3} (4s+2)(4s+3) \neq 0$, $\beta_{2,r-1}^1 = (-1)^r \sigma(4r-4) \prod_{s=1}^{r-2} (4s+1)(4s+2) \neq 0$, $\beta_{2,r}^1 = (-1)^{r+1} \prod_{s=1}^{r-1} (4s+2)(4s+3) \neq 0$, $\theta_{s,m}^1 = (-1)^{s-m} \prod_{j=m+1}^s (2(r-j)+1)(2(r-j)+2)/e_{j-1}^1$, $\overline{A}_{s,1}^1 = (-1)^{s+1} \prod_{j=1}^{s-1} (4j+2)(4j+3) \prod_{j=s+1}^r e_j^0$, $\Delta^1 = \prod_{s=1}^r e_s^1$, a e_s^1 определены в (42);

$$\sum_{m=0}^{r} \left(\alpha_{1,m}^2 Y_1^{[4m+1,4(r-m)]} + \beta_{1,m}^2 Y_2^{[4m,4(r-m)+2]} \right) = \tilde{c} \qquad (k=4r), \tag{49}$$

где $\alpha_{1,0}^2=1, \ \alpha_{1,m}^2=(2r+1)^{-1}(4(r-m)+1)\theta_{m+1}^2 \ (m=\overline{1,r-1}), \ \alpha_{1,r}^2=-\sigma(2r+1)^{-1}\theta_r^2,$ $\beta_{1,0}^2=1, \ \beta_{1,m}^2=-\sigma(2r+1)^{-1}\theta_m^2 \ (m=\overline{1,r}), \ \text{a}\ \theta_m^2=(-\sigma)^{m-1}\prod_{j=2}^m(4j-3)(2(r-j)+3)^{-1}\neq 0;$

$$\sum_{m=0}^{r} \left(\alpha_{1,m}^{3} Y_{1}^{[4m+2,4(r-m)]} + \beta_{1,m}^{3} Y_{2}^{[4m+1,4(r-m)+2]} \right) = \tilde{c} \qquad (k = 4r+1), \tag{50}$$

где $\alpha_{1,0}^3=2, \ \alpha_{1,m}^3=2(2r+1)^{-1}(4(r-m)+1)\theta_{m+1}^3 \ (m=\overline{1,r-1}), \ \alpha_{1,r}^3=-2\sigma(2r+1)^{-1}\theta_r^3,$ $\beta_{1,0}^3=1, \ \beta_{1,m}^3=-2\sigma(2r+1)^{-1}\theta_m^3 \ (m=\overline{1,r}), \ \ a\ \theta_m^3=(-\sigma)^{m-1}\prod_{j=2}^m(4j-2)(2(r-j)+3)^{-1}\neq 0.$

В частности, при r=1 резонансные уравнения имеют вид:

$$\begin{split} 3Y_1^{[1,2]} + Y_2^{[0,4]} + 2\sigma Y_2^{[4,0]} &= \tilde{c}, \quad 3Y_1^{[3,0]} + Y_2^{[2,2]} &= \tilde{c} \quad (k=2); \\ Y_1^{[2,2]} + \sigma Y_2^{[5,0]} &= \tilde{c} \quad (k=3); \quad -\sigma Y_1^{[1,4]} + 5Y_1^{[5,0]} - 3\sigma Y_2^{[0,6]} + Y_2^{[4,2]} &= \tilde{c} \quad (k=4); \\ -2\sigma Y_1^{[2,4]} + 12Y_1^{[6,0]} + (2-\sigma)Y_2^{[1,6]} + 2Y_2^{[5,2]} &= \tilde{c} \quad (k=5). \end{split}$$

Теорема 4. Для того чтобы система (26) была формально эквивалентна исходной системе (24), необходимо и достаточно, чтобы коэффициенты ее KOM $(Y_1^{[k]}, Y_2^{[k]})$ при k=4r-1, 4r, 4r+1 удовлетворяли уравнениям (48), (49), (50) соответственно, а при k=4r-2 – двум уравнениям (47).

Следствие 2. В КОМ $Y^{[k]}$ системы (26) для $\forall r \in \mathbb{N}$:

1) при k=4r-2 резонансными являются коэффициенты $Y_1^{[4m-1,4(r-m)]}, Y_2^{[4m-2,4(r-m)+2]}$ $(m=\overline{1,r}), Y_1^{[4r-3,2]}, Y_2^{[0,4r]}, Y_2^{[4r-8,8]}, Y_2^{[4r-4,4]}, Y_2^{[4r,0]}, a$ также $Y_1^{[4m-3,4(r-m)+2]}$ $(m=\overline{1,r-1})$ и $Y_2^{[4m,4(r-m)]}$ $(m=\overline{1,r-3})$ при условии, что соответствующие $\alpha_{2,m}^0, \beta_{2,m}^0 \neq 0,$ при этом коэффициент $h_1^{[0,4r-2]}$ КОМ $h_1^{[k-1]}$ также является резонансным;

2) при k=4r-1 резонансными являются $Y_1^{[4r-2,2]}, Y_2^{[1,4r]}, Y_2^{[4r-7,8]}, Y_2^{[4r-3,4]}, Y_2^{[4r+1,0]},$ а также $Y_1^{[4m-2,4(r-m)+2]}$ ($m=\overline{1,r-1}$) и $Y_2^{[4m+1,4(r-m)]}$ ($m=\overline{1,r-3}$), при условии, что соответствующие $\alpha_{2,m}^1, \beta_{2,m}^1 \neq 0$, а нерезонансными – $Y_1^{[4m,4(r-m)]}$ ($m=\overline{0,r}$), $Y_2^{[4m-1,4(r-m)+2]}$ $(m=\overline{1,r});$ 3) при k=4r и k=4r+1 резонансными являются $Y_1^{[4m+1,4(r-m)]}$, $Y_2^{[4m,4(r-m)+2]}$ и $Y_1^{[4m+2,4(r-m)]}$, $Y_2^{[4m+1,4(r-m)+2]}$ ($m=\overline{0,r}$) соответственно, а нерезонансными — $Y_1^{[4m-1,4(r-m)+2]}$ ($m=\overline{1,r}$), $Y_2^{[4m+2,4(r-m)]}$ ($m=\overline{0,r}$) и $Y_1^{[4m,4(r-m)+2]}$, $Y_2^{[4m+3,4(r-m)]}$ $(m=\overline{0,r})$ соответственно.

Для $\forall k \geq 2$ положим $n_k = \{2 \text{ при } k = 4r - 2, 1 \text{ при всех остальных } k\}.$

Следствие 3. В системе (26) n_k различных резонансных коэффициентов КОМ $Y^{[k]}$ образуют резонансный k -набор \mathcal{Y}^k , если это:

1) для \mathcal{Y}^{4r-2} : $Y_1^{[4l_1-1,4(r-l_1)]}$ или $Y_2^{[4l_2-2,4(r-l_2)+2]}$ ($l_1,l_2\in\{1,\ldots,r\}$) и $Y_1^{[4r-3,2]}$ или $Y_1^{[4m-3,4(r-m)+2]}$ ($m\in\{1,\ldots,r-1\}$), если $\alpha_{2,m}^0\neq 0$, или $Y_2^{[0,4r]}$, или $Y_2^{[4r-8,8]}$, или $Y_2^{[4r-4,4]}$, или $Y_2^{[4r,0]}$, или $Y_2^{[4m,4(r-m)]}$ ($m\in\{1,\ldots,r-3\}$), если $\beta_{2,m}^0\neq 0$;

2) для \mathcal{Y}^{4r-1} : $Y_1^{[4r-2,2]}$ или $Y_1^{[4m-2,4(r-m)+2]}$ ($m\in\{1,\ldots,r\}$), если $\alpha_{2,m}^1\neq 0$, или $\alpha_{2,m}^1\neq 0$

3) dis $\mathcal{Y}^{4r}: Y_1^{[4l_5+1, 4(r-l_5)]}$ usu $Y_2^{[4l_6, 4(r-l_6)+2]}$ $(l_5, l_6 \in \{0, \dots r\});$ 4) dis $\mathcal{Y}^{4r+1}: Y_1^{[4l_7+2, 4(r-l_7)]}$ usu $Y_2^{[4l_8+1, 4(r-l_8)+2]}$ $(l_7, l_8 \in \{0, \dots r\}).$

Таким образом, система (26) по определению 6 является ОН Φ , если для каждого kвсе коэффициенты ее КОМ $Y^{[k]}$ равны нулю, кроме n_k штук, принадлежащих любому резонансному k-набору, описанному в следствии 3, и имеющих произвольные значения.

Следствие 4. Для системы (26) неполное семейство резонансных наборов \mathcal{Y}_* имеет вид: $\left\{ \rho_1^r Y_1^{[4l_1-1,4(r-l_1)]}, \quad \rho_2^r Y_1^{[4r-3,2]}, \quad \rho_3^r Y_1^{[4r-2,2]}, \quad \rho_4^r Y_1^{[4l_5+1,4(r-l_5)]}, \quad \rho_5^r Y_1^{[4l_7+2,4(r-l_7)]}, \quad (1-\rho_1^r) Y_2^{[4l_2-2,4(r-l_2)+2]}, \quad (1-\rho_2^r) Y_2^{[4l_3,4(r-l_3)]}, \quad (1-\rho_3^r) Y_2^{[4l_4+1,4(r-l_4)]} \quad (1-\rho_4^r) Y_2^{[4l_6,4(r-l_6)+2]}, \quad (1-\rho_5^r) Y_2^{[4l_8+1,4(r-l_8)+2]} \right\}, \quad \text{2de } l_1, l_2 \in \{1,\dots,r\}, \quad l_3, l_4 \in \{0,r-1,r-2,r\}, \quad l_5, l_6, l_7, l_8 \in \{1,\dots,r\}, \quad l_8, l_8 \in \{1,\dots,r\}, \quad l_8 \in \{1,\dots,r\}, \quad l_8, l_8 \in \{$ $\{0,\ldots,r\},\
ho_{j}\in\{0,1\}\ (j=\overline{1,5}),\ r\geq 1,\$ причем элемент $Y_{i}^{[s,k-s]}$ в семействе отсутствует, если множитель при нем равен нулю.

Теорема 5. Для любой системы (24) и для любого выбранного по ее невозмущенной части резонансного набора \mathcal{Y}_* из следствия 4 существует и единственна почти тождественная замена (25) с заранее произвольным образом фиксированными резонансными коэффициентами, преобразующая систему (24) в $OH\Phi$ (26):

$$\begin{split} \dot{y}_1 &= y_2 + \sum_{r=1}^{\infty} \left(\rho_1^r Y_1^{[4l_1-1,4(r-l_1)]} y_1^{4l_1-1} y_2^{2(r-l_1)} + \rho_2^r Y_1^{[4r-3,2]} y_1^{4r-3} y_2 + \rho_3^r Y_1^{[4r-2,2]} y_1^{4r-2} y_2 + \right. \\ & \left. \rho_4^r Y_1^{[4l_5+1,4(r-l_5)]} y_1^{4l_5+1} y_2^{2(r-l_5)} + \rho_5^r Y_1^{[4l_7+2,4(r-l_7)]} y_1^{4l_7+2} y_2^{2(r-l_7)} \right), \\ \dot{y}_2 &= \sigma y_1^3 + \sum_{r=1}^{\infty} \left((1-\rho_1^r) Y_2^{[4l_2-2,4(r-l_2)+2]} y_1^{4l_2-2} y_2^{2(r-l_2)+1} + (1-\rho_2^r) Y_2^{[4l_3,4(r-l_3)]} y_1^{4l_3} y_2^{2(r-l_3)} + \right. \\ & \left. (1-\rho_3^r) Y_2^{[4l_4+1,4(r-l_4)]} y_1^{4l_4+1} y_2^{2(r-l_4)} + (1-\rho_4^r) Y_2^{[4l_6,4(r-l_6)+2]} y_1^{4l_6} y_2^{2(r-l_6)+1} + \right. \\ & \left. (1-\rho_5^r) Y_1^{[4l_8+1,4(r-l_8)+2]} y_1^{4l_8+1} y_2^{2(r-l_8)+1} \right). \end{split}$$

Пример 2. ОНФ, полученная из (24), может иметь, например, такие две структуры:

$$\dot{y}_{1} = y_{2}, \qquad \dot{y}_{2} = \sigma y_{1}^{3} + \sum_{r=1}^{\infty} \left(Y_{2}^{[4l_{2}-2,4(r-l_{2})+2]} y_{1}^{4l_{2}-2} y_{2}^{2(r-l_{2})+1} + Y_{2}^{[4l_{3},4(r-l_{3})]} y_{1}^{4l_{3}} y_{2}^{2(r-l_{3})} + Y_{2}^{[4l_{4}+1,4(r-l_{4})]} y_{1}^{4l_{4}+1} y_{2}^{2(r-l_{4})} + Y_{2}^{[4l_{6},4(r-l_{6})+2]} y_{1}^{4l_{6}} y_{2}^{2(r-l_{6})+1} + Y_{2}^{[4l_{8}+1,4(r-l_{8})+2]} y_{1}^{4l_{8}+1} y_{2}^{2(r-l_{8})+1} \right)$$

$$(l_{2} \in \{1,\ldots,r\}, \ l_{3}, l_{4} \in \{0,r-1,r-2,r\}, \ l_{6}, l_{8} \in \{0,\ldots,r\});$$

$$\dot{y}_{1} = y_{2} + \sum_{r=1}^{\infty} \left(Y_{1}^{[4r-1,0]} y_{1}^{4r-1} + Y_{1}^{[4r+1,0]} y_{1}^{4r+1} + Y_{1}^{[4r+2,0]} y_{1}^{4r+2} \right),$$

$$\dot{y}_{2} = \sigma y_{1}^{3} + \sum_{r=1}^{\infty} \left(Y_{2}^{[4r,0]} y_{1}^{4r} + Y_{2}^{[4r+1,0]} y_{1}^{4r+1} \right).$$

$$(51)$$

В ОНФ (51₁) в первом уравнении отсутствует возмущение (все $\rho_j^r=0$), в ОНФ (51₂) возмущение не зависит от y_2 ($\rho_1^r, \rho_4^r, \rho_5^r=1, \; \rho_2^r, \rho_3^r=0, \; l_j=r.$)

6 ОНФ систем с ${f R}^{[2]}_{(1,3)}$ в невозмущенной части

6.1 Получение связующей системы

Рассмотрим систему (1) с канонической невозмущенной частью $R_{(1,3)}^{[2]}=(x_2,x_1^2x_2)$:

$$\dot{x}_1 = x_2 + \sum_{k=3}^{\infty} X_1^{[k]}(x), \qquad \dot{x}_2 = x_1^2 x_2 + \sum_{k=3}^{\infty} X_2^{[k]}(x),$$
 (52)

где в возмущении КОМ $X_i^{[k]} = \sum_{q_1+3q_2=k+2i-1} X_i^{[q_1,3q_2]} x_1^{q_1} x_2^{q_2} \quad (i=1,2).$

Замечание 5. Вообще говоря, $R_{(1,3)}^{[2]} = \sigma(x_2, x_1^2 x_2)$, но при $\sigma = -1$ можно сделать замену времени $t = -\tau$ и получить систему (52), возмущение в которой сменит знак.

Пусть формальная почти тождественная замена

$$x_i = y_i + h_i(y) \quad (i = 1, 2),$$
 (53)

где $h_i(y)=\sum_{k=3}^\infty h_i^{[k-2]}(y), \ h_i^{[k-2]}=\sum_{q_1+3q_2=k+2i-3} h_i^{[q_1,3q_2]}y_1^{q_1}y_2^{q_2},$ переводит (52) в систему:

$$\dot{y}_1 = y_2 + \sum_{k=3}^{\infty} Y_1^{[k]}(y), \qquad \dot{y}_2 = y_1^2 y_2 + \sum_{k=3}^{\infty} Y_2^{[k]}(y),$$
 (54)

где возмущение $Y_i^{[k]} = \sum_{q_1+3q_2=k+2i-1} Y_i^{[q_1,\,3q_2]} y_1^{q_1} y_2^{q_2}.$

Тождества (21) с $\chi=2,\ \gamma=(1,3)$ для систем (52), (54) и замены (53) имеют вид:

$$\frac{\partial h_1^{[k-2]}}{\partial y_1} y_2 + \frac{\partial h_1^{[k-2]}}{\partial y_2} y_1^2 y_2 - h_2^{[k-2]} = \widetilde{Y}_1^{[k]} - Y_1^{[k]},
\frac{\partial h_2^{[k-2]}}{\partial y_1} y_2 + \frac{\partial h_2^{[k-2]}}{\partial y_2} y_1^2 y_2 - 2y_1 y_2 h_1^{[k-2]} - y_1^2 h_2^{[k-2]} = \widetilde{Y}_2^{[k]} - Y_2^{[k]}$$
($k \ge 3$), (55)

где $\widetilde{Y}_i^{[k]} \ (i=1,2)$ находится по формуле, указанной в (21).

Приравнивая коэффициенты при $y_1^{q_1}y_2^{q_2}$, получаем линейную связующую систему:

$$(q_{1}+1)h_{1}^{[q_{1}+1,3(q_{2}-1)]} + q_{2}h_{1}^{[q_{1}-2,3q_{2}]} - h_{2}^{[q_{1},3q_{2}]} = \widehat{Y}_{1}^{[q_{1},3q_{2}]} \quad (q_{1}+3q_{2}=k+1),$$

$$(q_{1}+1)h_{2}^{[q_{1}+1,3(q_{2}-1)]} + (q_{2}-1)h_{2}^{[q_{1}-2,3q_{2}]} - 2h_{1}^{[q_{1}-1,3(q_{2}-1)]} = \widehat{Y}_{2}^{[q_{1},3q_{2}]} \quad (q_{1}+3q_{2}=k+3),$$

$$(56)$$

в которой $\widehat{Y}_i^{[q_1,3q_2]} = \widetilde{Y}_i^{[q_1,3q_2]} - Y_i^{[q_1,3q_2]}$

Поскольку $k \ge 3$, положим:

$$k = 3r + \nu$$
 $(r \in \mathbb{N}, \ \nu = 0, 1, 2), \quad q_2 = r - s \quad (s \le r), \quad q_1 = 3s + \nu + (2i - 1),$

тогда связующая система (56) перепишется в виде:

$$(3s + \nu + 2)h_1^{[3(s+1)+\nu-1,3(r-(s+1))]} + (r-s)h_1^{[3s+\nu-1,3(r-s)]} - h_2^{[3s+\nu+1,3(r-s)]} = \widehat{Y}_1^{[3s+\nu+1,3(r-s)]} \quad (s = \overline{[(1-\nu)/2],r}),$$

$$(3s + \nu + 4)h_2^{[3(s+1)+\nu+1,3(r-(s+1))]} + (r-1-s)h_2^{[3s+\nu+1,3(r-s)]} - 2h_1^{[3(s+1)+\nu-1,3(r-(s+1))]} = \widehat{Y}_2^{[3s+\nu+3,3(r-s)]} \quad (s = \overline{-1,r})$$

$$(57)$$

или

$$(r-s)h_{1,s}^{\nu} + (3s+\nu+2)h_{1,s+1}^{\nu} - h_{2,s}^{\nu} = Y_{1,s}^{\nu} \quad (s = \overline{[(1-\nu)/2],r}),$$

$$-2h_{1,s+1}^{\nu} + (3s+\nu+4)h_{2,s+1}^{\nu} + (r-1-s)h_{2,s}^{\nu} = Y_{2,s}^{\nu} \qquad (s = \overline{-1,r}),$$
(58)

или
$$(r-s)h_{1,s}^{\nu} + (3s+\nu+2)h_{1,s+1}^{\nu} - h_{2,s}^{\nu} = Y_{1,s}^{\nu} \quad (s = \overline{[(1-\nu)/2],r}),$$

$$-2h_{1,s+1}^{\nu} + (3s+\nu+4)h_{2,s+1}^{\nu} + (r-1-s)h_{2,s}^{\nu} = Y_{2,s}^{\nu} \quad (s = \overline{-1,r}),$$
где
$$h_{1,s}^{\nu} = h_{1}^{[3s+\nu-1,3(r-s)]} \quad (s = \overline{[1-\nu/2],r}), \quad h_{2,s}^{\nu} = h_{2}^{[3s+\nu+1,3(r-s)]}, \quad Y_{1,s}^{\nu} = \widehat{Y}_{1}^{[3s+\nu+1,3(r-s)]}$$

$$(s = \overline{[(1-\nu)/2],r}), \quad Y_{2,s}^{\nu} = \widehat{Y}_{2}^{[3s+\nu+3,3(r-s)]} \quad (s = \overline{-1,r}).$$

Подставляя $h_{2,s}^{\nu}$ и $h_{2,s+1}^{\nu}$ из (58_1) в (58_2) , получаем трехдиагональную систему:

$$a_s^{\nu} h_{1,s}^{\nu} + b_s^{\nu} h_{1,s+1}^{\nu} + c_s^{\nu} h_{1,s+2}^{\nu} = Y_{0,s}^{\nu} \qquad (s = \overline{-1,r}), \tag{59}$$

в которой
$$a_s^{\nu}=(r-1-s)(r-s)$$
 $(s=\overline{[1-\nu/2],r}$), $b_s^{\nu}=2((3s+\nu+3)(r-1-s)-1)$ $\underline{(s=[1-\nu/2]-1,r-1}$), $c_s^{\nu}=(3s+\nu+4)(3s+\nu+5)$ $(s=\overline{-1,r-2}$); $Y_{0,s}^{\nu}=(r-1-s)Y_{1,s}^{\nu}+(3s+\nu+4)Y_{1,s+1}^{\nu}+Y_{2,s}^{\nu}$ $(s=\overline{-1,r}$).

При s=r в (59) имеем: $0\cdot h_{1,r}^{\nu}=Y_{0,r}^{\nu}=-Y_{1,r}^{\nu}+Y_{2,r}^{\nu},$ что для системы (57) дает возможность выписать первую резонансную связь:

$$\widehat{Y}_{1}^{[3r+\nu+1,0]} - \widehat{Y}_{2}^{[3r+\nu+3,0]} = 0. \tag{60}$$

Теперь систему (59) при $s = \overline{-1, r-1}$ запишем в матричном виде:

$$A^{\nu}h_1^{\nu} = Y_0^{\nu},\tag{61}$$

где
$$A^{\nu} = \begin{pmatrix} b_{-1}^{\nu} & c_{-1}^{\nu} & 0 & 0 & \dots & 0 \\ a_{0}^{\nu} & b_{0}^{\nu} & c_{0}^{\nu} & 0 & \dots & 0 \\ 0 & a_{1}^{\nu} & b_{1}^{\nu} & c_{1}^{\nu} & \dots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \dots & a_{r-2}^{\nu} & b_{r-2}^{\nu} & c_{r-2}^{\nu} \\ 0 & 0 & \dots & 0 & a_{r-1}^{\nu} & b_{r-1}^{\nu} \end{pmatrix}_{(r+1)}, \quad h_{1}^{\nu} = (h_{1,0}^{\nu}, \dots, h_{1,r}^{\nu}), \quad h_{1}^{$$

причем при $\nu = 0$ считаем отсутствующие в (59) элементы b_{-1}^0, a_0^0 и $h_{1,0}^0$ равными нулю.

6.2 Структура связующей системы

Для решения системы (61) будем методом Гаусса аннулировать элементы $c_{r-2}^{\nu}, c_{r-3}^{\nu}, \dots$ матрицы A^{ν} , получая элементы d_s^{ν} вместо b_s^{ν} и $\overline{Y}_{0,s}^{\nu}$ вместо $Y_{0,s}^{\nu}$, пока $d_{s+1}^{\nu} \neq 0$ $(s \geq -1)$, по рекуррентным формулам:

$$d_{r-1}^{\nu} = b_{r-1}^{\nu}, \ \overline{Y}_{0,r-1}^{\nu} = Y_{0,r-1}^{\nu}; \ d_{s}^{\nu} = b_{s}^{\nu} - \frac{a_{s+1}^{\nu} c_{s}^{\nu}}{d_{s+1}^{\nu}}, \ \overline{Y}_{0,s}^{\nu} = Y_{0,s}^{\nu} - \frac{\overline{Y}_{0,s+1}^{\nu} c_{s}^{\nu}}{d_{s+1}^{\nu}} \ (s = r-2, r-3, \ldots) \ (62)$$

Лемма 4. Для элементов d_s^{ν} из (62) верна следующая прямая формула:

$$d_s^{\nu} = (r - s)(3s + \nu + 2) \qquad (s = \overline{r - 2, -1}). \tag{63}$$

Доказательство. В (62) $d_{r-2}^{\nu}=2(3r+\nu-4)$, что совпадает с d_{r-2}^{ν} из (63) и дает базу индукции. Пусть для некоторого $s=\overline{r-2,0}$ верна формула (63). Тогда согласно (62) имеем $d_{s-1}^{\nu}=b_{s-1}^{\nu}-a_{s}^{\nu}c_{s-1}^{\nu}(d_{s}^{\nu})^{-1}=2((3s+\nu)(r-s)-1)-(r-1-s)(3s+\nu+1)=(r-s+1)(3s+\nu-1)$.

В результате система (61) равносильна системе

$$\overline{A}^{\nu}h_{1}^{\nu} = \overline{Y}_{0}^{\nu},\tag{64}$$

в которой \overline{A}^{ν} — двухдиагональная (r+1) матрица с элементами d_s^{ν} и a_s^{ν} на диагоналях, а $\overline{Y}_0^{\nu}=(\overline{Y}_{0,-1}^{\nu},\overline{Y}_{0,0}^{\nu},\ldots,\overline{Y}_{0,r-1}^{\nu})$ и $\overline{Y}_{0,s}^{\nu}$ определены в (62).

Следствие 5. В системе (64) все элементы $d_s^{\nu} \neq 0$, за исключением d_{-1}^1 и d_{-1}^0 .

6.3 Условия совместности связующей системы

Согласно следствию 5 из формул (62) получаем: $\overline{Y}_{0,-1}^{\nu} = \sum_{m=-1}^{r-1} \theta_m^{\nu} Y_{0,m}^{\nu}$, где $\theta_m^{\nu} = (-1)^{m+1} \prod_{j=0}^m (c_{j-1}^{\nu}/d_j^{\nu})$. Тогда, с учетом (59) и (63) $(b_{r-1}^{\nu}, d_{r-1}^{\nu} = -2)$, имеем:

$$\theta_m^{\nu} = (-1)^{m+1} \prod_{j=0}^m \frac{3j+\nu+1}{r-j} \neq 0 \ (m = \overline{-1, r-2}), \ \theta_{r-1}^{\nu} = \frac{(3r+\nu-2)(3r+\nu-1)}{2} \theta_{r-2}^{\nu}. \ (65)$$

В обозначениях (59): $\sum_{m=-1}^{r-1}\theta_m^\nu Y_{0,m}^\nu = \sum_{m=-1}^{r-1}\theta_m^\nu ((r-1-m)Y_{1,m}^\nu + (3m+\nu+4)Y_{1,m+1}^\nu + Y_{2,m}^\nu) = \sum_{m=0}^{r-2}(-\theta_m^\nu)Y_{1,m}^\nu + (3r+\nu-2)\theta_{r-2}^\nu Y_{1,r-1}^\nu + (3r+\nu+1)\theta_{r-1}^\nu Y_{1,r}^\nu + \sum_{m=-1}^{r-1}\theta_m^\nu Y_{2,m}^\nu,$ причем $\theta_m^\nu (r-1-m) + \theta_{m-1}^\nu (3m+\nu+1) = -\theta_m^\nu \ (m=\overline{-1,r-2}\).$

При $\nu = 0, 1$ первое уравнение (64) (s = -1) примет вид: $0 = \overline{Y}_{0,-1}^0$, $0 \cdot h_{1,0}^1 = \overline{Y}_{0,-1}^1$, что дает возможность выписать, возвращаясь к системе (57), вторую резонансную связь:

$$\sum_{m=0}^{r} \alpha_{2,m}^{\nu} \widehat{Y}_{1}^{[3m+\nu+1,3(r-m)]} - \sum_{m=-1}^{r-1} \beta_{2,m}^{\nu} \widehat{Y}_{2}^{[3m+\nu+3,3(r-m)]} = 0 \qquad (\nu = 0,1), \tag{66}$$

где $\alpha_{2,m}^{\nu}, \beta_{2,m}^{\nu} = -\theta_{m}^{\nu}$ $(m = \overline{-1,r-2}), \ \alpha_{2,r-1}^{\nu} = (3r+\nu-2)\theta_{r-2}^{\nu}, \ \alpha_{2,r}^{\nu} = (3r+\nu+1)\theta_{r-1}^{\nu}, \ \beta_{2,r-1}^{\nu} = -\theta_{r-1}^{\nu}, \ \text{а} \ \theta_{m}^{\nu}$ определены в (65), при этом $h_{1,0}^{1}$ не имеет ограничений.

При $\nu=2$ система (64), очевидно, однозначно разрешима.

Полученные результаты 6.4

Возвращаясь к обозначениям, введенным для системы (56), согласно (60) и (66) заключаем, что коэффициенты КОМ $Y^{[k]}$ связующей системы (57) (здесь и далее $k \geq 3$, т.е. $r \geq 1$) удовлетворяют следующим резонансным уравнениям:

$$\sum_{m=0}^{r} \alpha_{2,m}^{\nu} Y_{1}^{[3m+\nu+1,3(r-m)]} - \sum_{m=-1}^{r-1} \beta_{2,m}^{\nu} Y_{2}^{[3m+\nu+3,3(r-m)]} = \tilde{c},$$

$$Y_{1}^{[3r+\nu+1,0]} - Y_{2}^{[3r+\nu+3,0]} = \tilde{c} \qquad (k = 3r + \nu, \quad \nu = 0,1), \quad h_{1,0}^{1} - \forall;$$
(67)

где $\alpha_{2,m}^{\nu}, \beta_{2,m}^{\nu} = -\theta_m^{\nu}$ $(m = \overline{-1,r-2}), \ \alpha_{2,r-1}^{\nu} = (3r+\nu-2)\theta_{r-2}^{\nu}, \ \underline{\alpha_{2,r}^{\nu} = (3r+\nu+1)\theta_{r-1}^{\nu}}, \ \beta_{2,r-1}^{\nu} = -\theta_{r-1}^{\nu}, \ \theta_m^{\nu} = (-1)^{m+1} \prod_{j=0}^m (3j+\nu+1)(r-j)^{-1} \neq 0 \ (m = \overline{-1,r-2}),$ $\theta_{r-1}^{\nu} = (1/2)(3r + \nu - 2)(3r + \nu - 1)\theta_{r-2}^{0} \neq 0;$

$$Y_1^{[3r+3,0]} - Y_2^{[3r+5,0]} = \tilde{c} \qquad (k = 3r+2). \tag{68}$$

В частности, при r=1 резонансные уравнения имеют вид:

$$\begin{split} Y_1^{[4,0]} - Y_2^{[6,0]} &= \tilde{c}, \quad Y_1^{[1,3]} + 4Y_1^{[4,0]} + Y_2^{[0,6]} + Y_2^{[3,3]} = \tilde{c} \quad (k=3); \\ Y_1^{[5,0]} - Y_2^{[7,0]} &= \tilde{c}, \quad 2Y_1^{[2,3]} + 10Y_1^{[5,0]} + Y_2^{[1,6]} + 3Y_2^{[4,3]} = \tilde{c} \quad (k=4); \\ Y_1^{[6,0]} - Y_2^{[8,0]} &= \tilde{c} \quad (k=5). \end{split}$$

Теорема 6. Для того чтобы система (54) была формально эквивалентна исходной $cucmeme~(52),~ heoбxoдимо~u~ достаточно,~ чтобы~ коэффициенты~ KOM~Y^{[k]}~npu~k=3r+
u$ $(\nu = 0, 1)$ удовлетворяли двум уравнениям (67), а при k = 3r + 2 – уравнению (68).

Следствие 6. $B\ KOM\ Y^{[k]}\ cucme$ мы (54) для $\forall\,r\in\mathbb{N}$:

- 1) при $k=3r,\ 3r+1$ все коэффициенты резонансные, при этом коэффициент $h_1^{[0,3r]}$
- $KOM\ h_1^{[k-2]}\ (k=3r+1)\$ также является резонансным; 2) при k=3r+2 коэффициенты $Y_1^{[3r+3,0]},\ Y_2^{[3r+5,0]}$ являются резонансными, а $Y_1^{[3m+3,3(r-m)]},\ Y_2^{[3m+5,3(r-m)]}\ (m=\overline{-1,r-1})$ нерезонансными.

Для $\forall k \geq 3$ положим $n_k = \{1$ при k = 3r + 2, 2 при $k = 3r, 3r + 1\}.$

Следствие 7. В системе (54) n_k различных резонансных коэффициентов КОМ $Y^{[k]}$

- образуют резонансный k-набор \mathcal{Y}^k , если это:
 1) для $\mathcal{Y}^{3r}: Y_1^{[3r+1,0]}$ или $Y_2^{[3r+3,0]}$ и $Y_1^{[3l_1+1,3(r-l_1)]}$ ($l_1 \in \{0,\ldots,r\}$) или $Y_2^{[3l_2+3,3(r-l_2)]}$ $(l_2 \in \{-1, \ldots, r\});$
- $Y_2^{[3l_4+4,3(r-l_4)]} \quad (l_4 \in \{-1,\ldots,r\});$ 3) dag $\mathcal{Y}^{3r+2}: Y_1^{[3r+3,0]} \quad u \land u \quad Y_2^{[3r+5,0]}.$

Таким образом, система (54) по определению 6 является ОН Φ , если для каждого kвсе коэффициенты ее КОМ $Y^{[k]}$ равны нулю, кроме n_k штук, принадлежащих любому резонансному k-набору, описанному в следствии 7, и имеющих произвольные значения.

Следствие 8. Для системы (54) семейство резонансных наборов У имеет вид: $\left\{ \rho_{11}^r Y_1^{[3r+1,0]}, \quad \rho_{12}^r Y_1^{[3l_1+1,3(r-l_1)]}, \quad \rho_{13}^r Y_1^{[3r+2,0]}, \quad \rho_{14}^r Y_1^{[3l_3+2,3(r-l_3)]}, \quad \rho_{5}^r Y_1^{[3r+3,0]}, \quad \rho_{21}^r Y_2^{[3r+3,0]}, \\ \rho_{22}^r Y_2^{[3l_2+3,3(r-l_2)]}, \quad \rho_{23}^r Y_2^{[3r+4,0]}, \quad \rho_{24}^r Y_2^{[3l_4+4,3(r-l_4)]} \quad (1-\rho_{5}^r) Y_2^{[3r+5,0]} \right\}, \quad \text{2de } l_1, l_3 \in \{0,\ldots,r\}, \\ l_2, l_4 \in \{-1,r\}, \quad \rho_{j}^r, \rho_{ij}^r \in \{0,1\} \quad (i=1,2,\ j=\overline{1,5}); \quad \rho_{11}^r + \rho_{21}^r, \quad \rho_{13}^r + \rho_{23}^r \in \{1,2\}, \\ \sum_{i=1}^2 (\rho_{i1}^r + \rho_{i2}^r) = 2, \quad \sum_{i=1}^2 (\rho_{i3}^r + \rho_{i4}^r) = 2, \quad r \geq 1, \quad npuчем \quad Y_i^{[s,k-s]} \quad \text{в семействе отсутствует,} \\ eсли множитель при нем равен нулю, и все входящие в семейство <math>Y_i^{[s,k-s]}$ различны.

Теорема 7. Для любой системы (52) и для любого выбранного по ее невозмущенной части резонансного набора \mathcal{Y} из следствия 8 существует и единственна почти тоже-дественная замена (53) с заранее произвольным образом фиксированными резонансными коэффициентами, преобразующая систему (52) в $OH\Phi$ (54):

$$\begin{split} \dot{y}_1 &= y_2 + \sum_{r=1}^{\infty} \left(\rho_{11}^r Y_1^{[3r+1,0]} y_1^{3r+1} + \rho_{12}^r Y_1^{[3l_1+1,3(r-l_1)]} y_1^{3l_1+1} y_2^{r-l_1} + \right. \\ &+ \rho_{13}^r Y_1^{[3r+2,0]} y_1^{3r+2} + \rho_{14}^r Y_1^{[3l_3+2,3(r-l_3)]} y_1^{3l_3+2} y_2^{r-l_3} + \rho_5^r Y_1^{[3r+3,0]} y_1^{3r+3} \right), \\ &\dot{y}_2 &= y_1^2 y_2 + \sum_{r=1}^{\infty} \left(\rho_{21}^r Y_2^{[3r+3,0]} y_1^{3r+3} + \rho_{22}^r Y_2^{[3l_2+3,3(r-l_2)]} y_1^{3l_2+3} y_2^{r-l_2} + \right. \\ &+ \rho_{23}^r Y_2^{[3r+4,0]} y_1^{3r+4} + \rho_{24}^r Y_2^{[3l_4+4,3(r-l_4)]} y_1^{3l_4+4} y_2^{r-l_4} + (1-\rho_5^r) Y_2^{[3r+5,0]} y_1^{3r+5} \right). \end{split}$$

Пример 3. ОНФ, полученная из (52), может иметь, например, такие две структуры:

$$\dot{y}_{1} = y_{2}, \qquad \dot{y}_{2} = y_{1}^{2}y_{2} + \sum_{r=1}^{\infty} \left(Y_{2}^{[3r+3,0]} y_{1}^{3r+3} + Y_{2}^{[3l_{2}+3,3(r-l_{2})]} y_{1}^{3l_{2}+3} y_{2}^{r-l_{2}} + Y_{2}^{[3r+4,0]} y_{1}^{3r+4} + Y_{2}^{[3l_{4}+4,3(r-l_{4})]} y_{1}^{3l_{4}+4} y_{2}^{r-l_{4}} + Y_{2}^{[3r+5,0]} y_{1}^{3r+5} \right) \qquad (l_{2}, l_{4} \in \{-1, \dots, r\});$$

$$\dot{y}_{1} = y_{2} + \sum_{r=1}^{\infty} \left(Y_{1}^{[3r+1,0]} y_{1}^{3r+1} + Y_{1}^{[3r+2,0]} y_{1}^{3r+2} \right),$$

$$\dot{y}_{2} = y_{1}^{2}y_{2} + \sum_{r=1}^{\infty} \left(Y_{2}^{[3r+3,0]} y_{1}^{3r+3} + Y_{2}^{[3r+4,0]} y_{1}^{3r+4} + Y_{2}^{[3r+5,0]} y_{1}^{3r+5} \right).$$

$$(69)$$

В ОНФ (69₁) в первом уравнении отсутствует возмущение (все $\rho_{1j}^r, \rho_5^r=0$), в ОНФ (69₂) возмущение не зависит от y_2 (все $\rho_{i2}^r, \rho_{i4}^r, \rho_5^r=0$).

Список литературы

- [1] *Басов В.В.* Обобщенная нормальная форма и формальная эквивалентность систем дифференциальных уравнений с нулевыми характеристическими числами // Дифференц. уравнения. 2003.— Т. $39, \, \mathbb{N}^{\,}_{2}$ С. 154—170.
- [2] $\it Bacob B.B.$, $\it \Phiedomob A.A.$ ОНФ двумерных систем ОДУ с линейно-квадратичной невозмущенной частью $\it //$ Вестник СПбГУ. Сер. 1.— 2007.— вып. 1.— С. 25–30.
- [3] *Басов В.В., Скитович А.В.* Обобщенная нормальная форма и формальная эквивалентность двумерных систем с нулевым квадратичным приближением, І // Дифференц. уравнения.— 2003.— Т. 39, № 8.— С. 1016-1029.

- [4] *Басов В.В., Федорова Е.В.* Двумерные вещественные системы ОДУ с квадратичной невозмущенной частью: классификация и вырожденные обобщенные нормальные формы // Дифференциальные уравнения и процессы управления (Эл. журнал http://www.math.spbu.ru/diffjournal).—2010.— № 4.— С. 49–85.
- [5] *Басов В. В., Скитович А. В.* Обобщенная нормальная форма и формальная эквивалентность двумерных систем с нулевым квадратичным приближением, II // Дифференц. уравнения.— 2005.— Т. 41. № 8.— С. 1011–1023.
- [6] *Басов В. В.* Обобщенная нормальная форма и формальная эквивалентность двумерных систем с нулевым квадратичным приближением, III // Дифференц. уравнения.— 2006.— Т. 42. № 3.— С. 308–319.
- [7] Bacob B. B., $\Phi edopoba E. B.$ Нормализация двумерных систем с невозмущенной частью $(\alpha x_1^2 + x_1 x_2, x_1 x_2)$ // Труды XII Межд. науч. конф. по дифференц. уравнениям (Еругинские чтения).— 2007.— С. 24–32.
- [8] *Басов В.В., Федорова Е.В.* Обобщенная нормальная форма и формальная эквивалентность двумерных систем с нулевым квадратичным приближением, IV // Дифференц. уравнения.— 2009.— Т. 45. № 3.— С. 297–313.
- [9] Басов В. В. Обобщенная нормальная форма и формальная эквивалентность систем дифференциальных уравнений с нулевым приближением $(x_2^3, -x_1^3)$ // Дифференц. уравнения.— 2004.— Т. 40. № 8.— С. 1011–1022.
- [10] *Басов В. В., Слуцкая А. Г.* Обобщенные нормальные формы двумерных вещественных систем ОДУ с квазиоднородным многочленом в невозмущенной части // Дифференциальные уравнения и процессы управления (Эл. журнал http://www.math.spbu.ru/diffjournal).— 2010.— № 4.— С. 108–133.
- [11] *Басов В. В., Федорова Е. В.* Классификация двумерных однородных кубических систем ОДУ при наличии общего множителя // Дифференциальные уравнения и процессы управления (Эл. журнал http://www.math.spbu.ru/diffjournal).— 2012.— № 2.— С. 218–276.