一 工程项目:

- 1 项目名称: cm3 ahbmtx mcu
- 2 项目使用的资源与软件:
 - (1) VCS-2022
 - (2) Verdi-2022
 - (3) gcc-arm-none-eabi v10.3-2021.10
 - (4) Quartus Prime 2018
 - (5) Vivado 2021.1
 - (6) Spyglass-2021

3 项目使用的资源与硬件:

- (1) ep4ce55 的 ad9361 开发板及 usb-blaster 下载器
- (2) 正点原子 zynq 领航者开发板及 xilinx 下载器
- (3) Jlink 盒子

二 工程目标:

1 实验现象:

- (1) 搭建一个使用 ARM Cortex-M3 为 CPU、AHB 总线矩阵为基础的 MCU。
- (2) 使用 Jlink 的 SWD 模式可以正确地读写指定地址。
- (3) 使用 Jlink 的 SWD 模式可以正确地读写 SRAM。
- (4) 当 CPU 开始运行时可运行在 ITCM 中存放的 bootloader。

2 实验内容:

- (1) 在 MCU 内集成 CPU、总线、存储器、外设等。
- (2) 使用 Jlink 的 SWD 模式读写指定地址。
- (3) 使用 Jlink 的 SWD 模式读写 SRAM。
- (4) ITCM 中存放一个 bootloader。

3 具体要求:

- (1) CPU 使用 ARM Cortex-M3。
- (2) 片内总线使用 AHB 总线矩阵。
- (3) 使用异步 AHB2APB 桥。
- (4) 使用 SWD 模型读写寄存器并进行仿真。
- (5) 分别使用 RTL 和 FPGA IP 实现 SRAM 并进行读写操作仿真。
- (6) 在 ITCM 中存放一个 bootloader, 当 CPU 开始运行时即运行该程序。

三 学习目标(下述内容非先后顺序):

- 1 学习 MCU 的基本架构。
 - (1) 了解 MCU 内部的基本架构。
 - (2) 掌握 MCU 的集成方式。
 - (3) 掌握 MCU 的仿真环境与 Testbench、激励的编写。

2 学习 ARM Cortex-M3 为 CPU:

- (1) 了解 ARM Cortex-M3 为 CPU 的基本功能和接口。
- (2) 掌握 ARM Cortex-M3 为 CPU 如何和总线进行链接。
- (3) 掌握 ARM Cortex-M3 为 CPU 与 SWD 的链接方式。
- (4) 掌握 ARM Cortex-M3 为 CPU 如何连接时钟信号和复位信号。

3 学习 AHB 总线矩阵:

- (1) 了解 AHB 总线矩阵的基本读写时序。
- (2) 了解 AHB 总线矩阵的生成。
- (3) 掌握 AHB 总线矩阵与 CPU、AHB2APB 桥、外设的连接方式。
- (4) 掌握 AHB 总线矩阵如何连接时钟信号和复位信号。

4 学习 AHB2APB 桥和 APB 总线:

- (1) 了解同步和异步 AHB2APB 桥的基本读写时序。
- (2) 了解 APB 总线的基本读写时序。
- (3) 掌握同步和异步 AHB2APB 桥和 AHB 总线矩阵、APB 总线的连接方式。
- (4) 掌握 APB 总线如何连接时钟信号和复位信号。
- (5) 掌握 APB 总线如何连接外设(寄存器)。

5 学习 SWD 时序与 JTAG 使用方法:

- (1) 了解 SWD 的基本工作原理与模型。
- (2) 掌握 SWD 读写指定地址的操作方法。
- (3) 掌握使用 Jlink 的 SWD 模式读写指定地址。

6 学习 SRAM:

- (1) 掌握 SRAM 读写接口与时序。
- (2) 掌握 SRAM 的 RTL 实现和 FPGA IP 核实现。

7 学习 bootloader:

- (1) 了解什么是 bootloader。
- (2) 掌握 bootloader 的 firmware 的用法。

8 学习 VCS 与 Verdi 联合仿真环境:

(1) 掌握如何使用 VCS 进行仿真并使用 Verdi 记录波形。

9 学习 gcc-arm-none-eabi 编译 firmware 环境:

(1) 掌握如何使用 gcc-arm-none-eabi 编一个 cpu 可执行的程序。

10 学习 Quartus 和 Vivado 的 fpga 综合编译环境:

- (1) 掌握如何使用 Quartus 和 Vivado 生成或修改 IP 核,包括 RAM 核和 PLL 核。
- (2) 掌握如何使用 Quartus 和 Vivado 进行 fpga 综合并下载 bit 文件。
- (3) 掌握如何使用 Quartus 和 Vivado 进行在线 debug。
- (4) 掌握如何使用 Quartus 和 Vivado 编写时序约束文件并进行时序分析。
- (5) 掌握如何使用 Quartus 和 Vivado 进行 ECO 操作。

11 学习 spyglass 环境:

- (1) 掌握如何编写 sgdc 约束文件。
- (2) 掌握如何使用 spyglass 进行语法和 cdc 分析。
- (3) 了解根据 spyglass 的分析结果对于 rtl 的意义。

四 可以重复利用的资源:

- 工程项目目录下 Library 下面的内容,包括 Altera 及 Xilinx 的部分仿真库、基本功能逻辑 RTL 的实现、Cortex-M3 的建议版本模型、CMSDK 模型(包括 AHB 总 线矩阵、APB 总线)、SWD 模型、仿真结果监视器模型等。
- 2 工程项目目录下 User\Verilog, 这里是 MCU 的基本集成结构。
- 3 便于使用者进行工作的"爱上实验室"开发工程环境,包含 setenv.sh 文件和 Script 目录下的 makefile 文件。

五 注意事项:

- 1 该项目会持续更新。
- 2 小编时间仓促,因此项目中有不完善的地方敬请大家提出建议。
- 3 硬件学习交流群 1126635164。

六 "爱上实验室"开发工程环境的目录介绍:

项目目录下,各文件夹的含义是(含空文件夹,加粗的是本项目包含的文件):

Doc 目录为项目文档,包括参考资料、设计文档、原理图等。

Library 目录为项目所使用到的库文件,包括仿真库、Monitor、Model 等。

Project 目录为项目所涉及到的工程,包括 arm-none-eabi 工程、fpga 工程等。

Script 目录包含"爱上实验室"开发工程环境专用的脚本、功能等。

Sim 目录为项目包含的仿真的目录,包含仿真工程、spyglass 工程、testbench、激励文件、脚本等、以及仿真专用代码、脚本等。

User 目录包含用户主要的项目文件,包含 rtl 代码、bootloader 等。

目前最适合的使用方法是在 Linux 环境下运行,很多脚本方便使用,可以体会到"爱上实验室"开发工程环境的便利。使用者只需根据自己的环境配置 setenv.sh 文件即可,默认使用的是 modulefiles 模块管理 eda 工具。

Source setenv.sh 后:

快捷键可以进行目录跳转,常见的例如:

cdc 跳转至开发环境专用脚本目录;

cdv 跳转至 verilog 目录;

cdfw 跳转至 firmware 目录;

cdq 跳转至 fpga 目录;

cds 跳转至仿真目录等。

工程根目录下面的 script 文件夹里,即为"爱上实验室"开发工程环境专用的脚本、功能,目前包括以下种类:

RTL 功能仿真;

AHB 总线矩阵生成;

连接 APB 总线的寄存器生成;

firmware 编译;

fpga 综合;

带 firmware 的综合仿真等。

用户可以根据自己的需要,建立对应的 makefile.xxxx 文件,同时在总的 makefile 文件中加入对应的命令即可。在"爱上实验室"开发工程环境的任意目录下,使用 run xxx 命令,即可开始进行 xxx 功能的操作,例如仿真等操作。