# Normalization by Evaluation Dependent Types and Impredicativity

#### Andreas Abel

Department of Computer Science Ludwig-Maximilians-University Munich

Habilitation Talk Ludwig-Maximilians-University Munich 31 May 2013

#### Context of This Work

- Dependently-typed (programming) languages allow
  - to express functional specifications in types,
  - to prove (correctness) properties in the language,
  - formalize and prove mathematical propositions.
- Prominent proof assistent: Coq (INRIA 1984–)
  - CompCert: Certifed compiler for C- (Leroy)
  - Formalized proof of Four Color Theorem (Gonthier, 2005)
  - Odd-Order Theorem (Gonthier, 2012)

```
{\tt Theorem} \ {\tt Feit\_Thompson}
```

```
(gT : finGroupType) (G : {group gT}) :
  odd #|G| -> solvable G.
```

• Experimental languages: Agda, Epigram, Idris, ...

#### Behind the Veil

- What made Coq ready for huge developments?
   Benjamin Grégoire, Xavier Leroy:
   A compiled implementation of strong reduction. ICFP 2002
- Efficient normalization!
- Grégoire, Leroy: Efficient checking of  $\beta$ -equality.
- This thesis: Framework for  $\beta\eta$ -equality.

# A Taste of Programming with Dependent Types

- Descending lists:  $[x, y, ..., z] \in \mathsf{List}^{\downarrow} n$  iff  $n \ge x \ge y \ge ... \ge z$
- Constructor carries proof p for descent.

$$\frac{x : \mathbb{N} \quad p : x \ge y \quad xs : \mathsf{List}^{\downarrow} y}{\mathsf{cons} \ x \ p \ xs : \mathsf{List}^{\downarrow} x}$$

Singleton list carries a trivial proof.

singleton : 
$$(x : \mathbb{N}) \to \mathsf{List}^{\downarrow} x$$
  
singleton  $x = \mathsf{cons} \ x$  \_ nil where \_ :  $x \ge 0$ 



#### Correct Insert

Case: Insert into empty list.

```
insert : (x : \mathbb{N}) \to \mathsf{List}^{\downarrow} \ n \to \mathsf{List}^{\downarrow} \ (\mathsf{max} \ x \ n)
insert x \ \mathsf{nil} = \mathsf{singleton} \ x
```

- Inferred type singleton  $x : List^{\downarrow} x$ .
- Expected type singleton x: List  $\pmod{\max x}$  (max x 0).
- Type-checker needs to ensure List  $x = \text{List} \pmod{\max x}$ .
- Sufficient:  $x = \max x \ 0$ .
- Compare expressions with free variables!
- Solution: *normalize*  $\max x = 0$  to x.



#### Normalization

#### Bring an expression with unknowns into a canonical form.

- Unknowns = free variables.
- Checking equality by comparing canonical forms.
- Examples:

| Expression                      | Normalizer                         |
|---------------------------------|------------------------------------|
| arithmetical expression         | symbolic evaluator (MathLAB)       |
| functional programming language | term rewriting, partial evaluation |
| stack maching code              | JIT compiler                       |
| SQL query                       | query compiler                     |



### **Evaluation**

#### Compute the value of an expression relative to an environment.

- Environment assigns values to free variables of expressions.
- Examples:

| Expression                      | Environment  | Evaluator     |
|---------------------------------|--------------|---------------|
| arithmetical expression         | valuation    | calculator    |
| functional programming language | stack & heap | interpreter   |
| stack machine code              | stack        | stack machine |
| SQL-query                       | database     | SQL processor |

# Normalization by Evaluation (NbE)

Adapt an interpreter to simplify expressions with unknowns.

- MLTT Martin-Löf 1975: NbE for Type Theory (weak conversion)
  - STL Berger Schwichtenberg 1991: NbE for simply-typed  $\lambda$ -calculus
    - T Danvy 1996: Type-directed partial evaluation
    - F Altenkirch Hofmann Streicher 1996: NbE for  $\lambda$ -free System F
    - $\lambda$  Aehlig Joachimski 2004: Untyped NbE, operationally
    - λ Filinski Rohde 2004: Untyped NbE, denotationally
    - LF Danielsson 2006: strongly typed NbE for LF
      - T Altenkirch Chapman 2007: Tait in one big step

#### This Thesis

A correct normalization-by-evaluation procedure for functional languages with dependent types and impredicative polymorphism.

- Start from untyped NbE.
- Semantics/model based on NbE.
- Model proves decidability of equality and typing.
- Model uses generic partial applicative structures.
- Covers many different implementations (e.g., Coq's compiled reduction).

# Publications Underlying This Thesis

#### Dependent types:

```
MLTT Abel Aehlig Dybjer (MFPS 2007): untyped equality.
```

```
MLTT Abel Coquand Dybjer (LICS 2007): Decidability of typed equality with \eta on types.
```

MLTT Abel Coquand Pagano (LMCS 2011): Singleton types.

#### Impredicativity:

```
F Abel (LPAR 2008)
```

```
F\omega Abel (CSL 2009)
```

# Barendregt's $\lambda$ -Cube



NbE: known (STL, LF, F) this thesis (F $\omega$ ) reducible (CoC)

### Dependency Erasure

Restrictive dependencies can be erased safely.

$$|\mathsf{List}^{\downarrow} n| = \mathsf{List}$$

- We can forget that we deal with descending lists.
- Recursive (computational) dependencies cannot be erased.

NAry : 
$$\mathbb{N} \to \textit{Type}$$
  
NAry 0 =  $\mathbb{N}$   
NAry  $(n+1)$  =  $\mathbb{N} \to N$ Ary  $n$   
|NAry  $n$ | = ?

• No simple type corresponds to NAry *n*.



Andreas Abel (LMU) NbE Habil 12 / 39

### The Cube with $\mathbb N$ and Recursion



NbE: known (T) th. (MLTT( $^+$ ), CoC +  $\mathbb N$ ) subsumed (F( $\omega$ ) +  $\mathbb N$ )

# Untyped Lambda Calculus

Grammar:

• Equational theory  $(\beta)$ :

$$\vdash (\lambda x.\ t)s = t[s/x]$$

•  $\beta$ -normal forms.

Nf 
$$\ni v ::= \lambda x. v \mid u$$
 normal form  
Ne  $\ni u ::= x \mid u v$  neutral term

### Evaluation of Lambda-Expressions

- Values  $a, b, f \in D$  with (partial) application  $-\cdot -: D \times D \to D$ .
- Evaluation (specification):

$$\begin{aligned} (x)_{\rho} &= \rho(x) \\ (rs)_{\rho} &\doteq (r)_{\rho} \cdot (s)_{\rho} \\ (\lambda x. t)_{\rho} \cdot a &\doteq (t)_{(\rho, a/x)} \end{aligned}$$

Instance: compiled execution.

 $f\cdot a$  Call f with argument a  $(|\lambda x. t|)_{\rho}$  Code for function  $\lambda x. t$  with predefined variables  $\rho$ 



### Implementation via Closures

Instance: do nothing.

$$(\lambda x. t)_{\rho} = (\underline{\lambda} xt) \rho$$

• Initial applicative structure: closures.

D 
$$\ni$$
  $a, b, f ::= (\underline{\lambda}xt)\rho$  waiting for value of  $x$ 

Application and evaluation are mutually defined.

$$(\underline{\lambda}xt)\rho \cdot a = (t)_{(\rho,a/x)}$$
  
 $(rs)_{\rho} = (r)_{\rho} \cdot (s)_{\rho}$ 



# Residual Model: Adding Unknowns

- For normalization, we need free variables in D.
- Application  $x \cdot a$  of a free variable stores argument a.
- Need neutrals/accumulators  $x \vec{a}$  in D.

D 
$$\ni$$
  $a, b, f ::= (\underline{\lambda}xt)\rho \mid e$   
D<sup>ne</sup>  $\ni$   $e$   $::= x \mid e a$ 

Application extended:

$$(\underline{\lambda}xt)\rho \cdot a = (t)_{(\rho,a/x)}$$
  
 $x \vec{a} \cdot a = x (\vec{a}, a)$ 

# Reading Back Expressions from Values

Reading back values:

$$\mathsf{R}^{\mathsf{nf}}$$
 :  $\mathsf{D} \to \mathsf{Nf}$   $\mathsf{R}^{\mathsf{nf}}((\underline{\lambda}\mathsf{x}t)\rho) = \lambda y.\,\mathsf{R}^{\mathsf{nf}}((|t|)_{(\rho,y/\mathsf{x})})$  where  $y$  "fresh"  $\mathsf{R}^{\mathsf{nf}}(e) = \mathsf{R}^{\mathsf{ne}}(e)$ 

Reading back neutrals:

$$R^{ne}$$
 :  $D^{ne} \rightarrow Ne$   
 $R^{ne}(x) = x$   
 $R^{ne}(e a) = R^{ne}(e) R^{nf}(a)$ 

#### Fresh Name Generation

- Freshness problem:  $\geq 9$  approaches.
- Simple solution:  $\mathsf{R}^{\mathsf{nf}}_{\mathcal{E}}$  reads fresh names from supply  $\xi.$
- E.g.,  $\xi$  is an infinite stream of distinct identifiers.

$$\begin{array}{lcl} \mathsf{R}_{(y,\xi)}^{\mathsf{nf}}((\underline{\lambda}\mathsf{x}t)\rho) & = & \lambda y.\,\mathsf{R}_{\xi}^{\mathsf{nf}}((t)_{(\rho,y/\mathsf{x})}) \\ \mathsf{R}_{\xi}^{\mathsf{nf}}(e) & = & \mathsf{R}_{\xi}^{\mathsf{ne}}(e) \\ \mathsf{R}_{\xi}^{\mathsf{ne}}(x\,\vec{a}) & = & x\,\mathsf{R}_{\xi}^{\mathsf{nf}}(\vec{a}) \end{array}$$

Normalization:

$$\mathsf{nf}_{\xi}(t) = \mathsf{R}^{\mathsf{nf}}_{\xi}((t)_{\rho_{\mathsf{id}}})$$



# Summ-it ary



### Simply-Typed Lambda Calculus

- Types  $S, T ::= N \mid S \rightarrow T$ .
- Typing contexts  $\Gamma ::= x_1 : S_1, \dots, x_n : S_n$ .
- Typing  $\Gamma \vdash t : T$ .

$$\frac{(x:T) \in \Gamma}{\Gamma \vdash x:T} \quad \frac{\Gamma, x:S \vdash t:T}{\Gamma \vdash \lambda x.\, t:S \to T} \quad \frac{\Gamma \vdash r:S \to T \qquad \Gamma \vdash s:S}{\Gamma \vdash rs:T}$$

• Equational theory  $(\beta \eta)$ .

$$(\beta) \frac{\Gamma, x : S \vdash t : T \qquad \Gamma \vdash s : S}{\Gamma \vdash (\lambda x t) s = t[s/x] : T}$$

$$(\eta) \frac{\Gamma \vdash t : S \to T}{\Gamma \vdash t = \lambda x. \, t \, x : S \to T}$$



# Bidirectional $\eta$ -Expansion

- $\uparrow^T$  "reflection":  $\eta$ -expansion inside-out
- $\downarrow^T$  "reification":  $\eta$ -expansion outside-in
- Example (terms):

$$\downarrow^{(\mathsf{N}\to\mathsf{N})\to(\mathsf{N}\to\mathsf{N})} f = \lambda y. \downarrow^{\mathsf{N}\to\mathsf{N}} (f (\uparrow^{\mathsf{N}\to\mathsf{N}} y))$$

$$= \lambda y. \lambda x. \downarrow^{\mathsf{N}} (f (\uparrow^{\mathsf{N}\to\mathsf{N}} y) (\uparrow^{\mathsf{N}} x))$$

$$= \lambda y. \lambda x. \downarrow^{\mathsf{N}} (f (\lambda z. \downarrow^{\mathsf{N}} (y (\uparrow^{\mathsf{N}} z))) (\uparrow^{\mathsf{N}} x))$$

$$= \lambda y. \lambda x. f (\lambda z. y z) x$$

# Adding $\eta$ -Expansion

Semantics  $(\beta)$ 

Semantics  $(\beta \eta)$ 

Syntax



# Eta-expansion: reflection and reification

• Values now include delayed  $\eta$ -expansions.

D 
$$\ni$$
  $a, b, f$   $::= (\underline{\lambda}xt)\rho \mid \uparrow^{\mathsf{T}}e$ 

D<sup>ne</sup>  $\ni$   $e$   $::= x \mid ed$ 

D<sup>nf</sup>  $\ni$   $d$   $::= \downarrow^{\mathsf{T}}a$ 

Application and readback trigger these expansions.

$$(\underline{\lambda}xt)\rho \cdot a = (|t|)_{(\rho,a/x)}$$

$$\uparrow^{S \to T} e \cdot a = \uparrow^{T} (e \downarrow^{S} a)$$

$$R^{nf}_{(y,\xi)} (\downarrow^{S \to T} f) = \lambda y. R^{nf}_{\xi} (\downarrow^{T} (f \cdot \uparrow^{S} y))$$

$$R^{nf}_{\xi} (\downarrow^{N} \uparrow^{N} e) = R^{ne}_{\xi} (e)$$

### Normalization for STL

Canonical environment:

$$\rho_{\Gamma}(x) = \uparrow^{T} x$$
 where  $(x : T) \in \Gamma$ 

Variable supply:

$$\xi_{\Gamma} = \mathsf{Var} \setminus \Gamma$$

• Normalization of  $\Gamma \vdash t : T$ :

$$\mathsf{nf}_{\Gamma}^{T}(t) = \mathsf{R}^{\mathsf{nf}}_{\xi_{\Gamma}}(\downarrow^{T} (\!\!(t)\!\!)_{
ho_{\Gamma}})$$

### Dependent Types

- Recall singleton :  $(x : \mathbb{N}) \to \mathsf{List}^{\downarrow} x$ .
- Dependent function space  $(x : S) \rightarrow T$ .

$$\frac{\Gamma \vdash S : \mathsf{Type} \qquad \Gamma, x : S \vdash T : \mathsf{Type}}{\Gamma \vdash (x : S) \to T : \mathsf{Type}}$$

$$\frac{\Gamma, x : S \vdash t : T}{\Gamma \vdash \lambda x . t : (x : S) \to T} \qquad \frac{\Gamma \vdash r : (x : S) \to T \qquad \Gamma \vdash s : S}{\Gamma \vdash r s : T[s/x]}$$

•  $\eta$ -expansion directed by type values.

$$\downarrow^{\text{NAry(2)}}(f) = \downarrow^{\text{N} \to \text{NAry(1)}}(f)$$

$$= \lambda x. \downarrow^{\text{NAry(1)}}(f (\uparrow^{\text{N}} x))$$

$$= \lambda x. \downarrow^{\text{N} \to \text{NAry(0)}}(f (\uparrow^{\text{N}} x))$$

$$= \lambda x. \lambda y. \downarrow^{\text{NAry(0)}}(f (\uparrow^{\text{N}} x) (\uparrow^{\text{N}} y)) = \dots$$

### Type Values

Values include types.

D 
$$\ni$$
  $a, b, f, A, F$   $::= (\underline{\lambda}xt)\rho \mid \operatorname{Fun} AF \mid \operatorname{Type} \mid \uparrow^A e$ 

D<sup>ne</sup>  $\ni$   $e$   $::= x \mid e d$ 

D<sup>nf</sup>  $\ni$   $d$   $::= \downarrow^A a$ 

Read-back evaluates types further.

$$\begin{array}{lcl} \mathsf{R}^{\mathsf{nf}}_{(y,\xi)}(\downarrow^{\mathsf{Fun}\,A\,F}f) & = & \lambda y.\; \mathsf{R}^{\mathsf{nf}}_{\xi}(\downarrow^{F\cdot a}(f\cdot a)) \\ \mathsf{R}^{\mathsf{nf}}_{(y,\xi)}(\downarrow^{\mathsf{Type}}(\mathsf{Fun}\,A\,F)) & = & (y\colon\!\!\!\downarrow^{\mathsf{Type}}A) \to \downarrow^{\mathsf{Type}}(F\cdot a) \end{array}$$

where  $a = \uparrow^A y$ .

### Normalization for Dependent Types

Canonical environment:

$$\rho_{\Gamma}(x) = \uparrow^{(T)} \rho_{\Gamma}(x)$$
 where  $(x : T) \in \Gamma$ 

• Normalization of  $\Gamma \vdash t : T$ :

$$\mathsf{nf}_{\Gamma}^{T}(t) = \mathsf{R}_{\xi_{\Gamma}}^{\mathsf{nf}}(\downarrow^{(T)_{\rho_{\Gamma}}}(t)_{\rho_{\Gamma}})$$

Andreas Abel (LMU)

#### Correctness of Normalization

• Normalization is sound if for all expressions  $\Gamma \vdash t : T$ ,

$$\Gamma \vdash t = \mathsf{nf}_{\Gamma}^{T}(t) : T.$$

• Normalization is complete if for all  $\Gamma \vdash t, t' : T$ ,

$$\Gamma \vdash t = t' : T \implies \mathsf{nf}_{\Gamma}^{T}(t) =_{\alpha} \mathsf{nf}_{\Gamma}^{T}(t')$$

• Implies idempotence  $\operatorname{nf}_{\Gamma}^{T}(t) =_{\alpha} \operatorname{nf}_{\Gamma}^{T}(\operatorname{nf}_{\Gamma}^{T}(t)).$ 

Andreas Abel (LMU)

### Partial Equivalence Relations

- Relation  $A = A' \in \mathsf{Type}$  shall mean that A, A' are extensionally equal type values.
- Relation  $a = a' \in A$  shall mean that a, a' are extensionally equal values of type A.
- Defined simultaneously by induction-recursion:

$$\frac{A = A' \in \mathsf{Type} \qquad F \cdot a = F' \cdot a' \in \mathsf{Type} \text{ for all } a = a' \in A}{\mathsf{Fun} \, A \, F = \mathsf{Fun} \, A' \, F' \in \mathsf{Type}}$$

$$\frac{f \cdot a = f' \cdot a' \in F \cdot a \text{ for all } a = a' \in A}{f = f' \in \mathsf{Fun} \, A \, F}$$

• Models  $\beta \eta$ -equality.

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○

### Typed Candidate Spaces

• Greatest and least PERs:

$$\begin{array}{ll} d=d'\in \mathsf{T} & \Longleftrightarrow & \mathsf{R}^{\mathsf{nf}}_{\xi}(d) =_{\alpha} \mathsf{R}^{\mathsf{nf}}_{\xi}(d') \text{ for all } \xi \\ e=e'\in \bot & \Longleftrightarrow & \mathsf{R}^{\mathsf{ne}}_{\xi}(e) =_{\alpha} \mathsf{R}^{\mathsf{ne}}_{\xi}(e') \text{ for all } \xi \end{array}$$

Greatest and least type candidate:

$$a = a' \in \overline{A} \iff \downarrow^{A} a = \downarrow^{A} a' \in T$$
  
 $a = a' \in \underline{A} \iff a = \uparrow^{A} e \text{ and } a' = \uparrow^{A} e' \text{ and } e = e' \in \bot$ 

Sandwich property:

$$a = a' \in A \implies a = a' \in A \implies a = a' \in \overline{A}$$

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○

### Completeness of Normalization

Well-typed  $\beta\eta$ -equal terms have the same normal form.

$$\Gamma \vdash t = t' : T \implies \overbrace{\|t\|_{\rho_{\Gamma}}}^{a} = \overbrace{\|t'\|_{\rho_{\Gamma}}}^{a'} \in \overbrace{\|T\|_{\rho_{\Gamma}}}^{A}$$

$$\implies a = a' \in \overline{A}$$

$$\implies \downarrow^{A} a = \downarrow^{A} a' \in T$$

$$\implies R_{\mathcal{E}_{\Gamma}}^{nf} \downarrow^{A} a =_{\alpha} R_{\mathcal{E}_{\Gamma}}^{nf} \downarrow^{A} a'$$



Andreas Abel (LMU)

### Soundness of Normalization

A well-typed term is  $\beta\eta$ -equal to its normal form.

$$\Gamma \vdash t : T \implies \Gamma \vdash t : T \otimes \overbrace{\|t\|_{\rho_{\Gamma}}}^{A} \in \overbrace{\|T\|_{\rho_{\Gamma}}}^{A}$$

$$\implies \Gamma \vdash t = R_{\xi_{\Gamma}}^{\text{nf}} \downarrow^{A} a : T$$

$$\iff \Gamma \vdash t = \text{nf}_{\Gamma}^{T}(t) : T$$

### Impredicative Polymorphism

Impredicativity: Quantification over all types gives a type.

$$\frac{\Gamma, X : \mathsf{Type} \, \vdash T : \mathsf{Type}}{\Gamma \, \vdash (\forall X : \mathsf{Type}. \, T) : \mathsf{Type}}$$

- Applications:
  - (Functional) programming: System F, Haskell, ...
  - Second-order logic.
- Semantic difficulty: Valid types cannot be defined from below.

$$\frac{F \cdot A = F' \cdot A' \in \mathsf{Type} \; \mathsf{for} \; \mathsf{all} \; A = A' \in \mathsf{Type}}{\forall F = \forall F' \in \mathsf{Type}}$$

Circularity!



Andreas Abel (LMU)

# NbE for System F

• Semantic type candidate A for S

$$\underline{\mathcal{S}}\subseteq\mathcal{A}\subseteq\overline{\mathcal{S}}$$

Interpret ∀ by quantifying over all candidates (Girard):

$$\llbracket \forall XT \rrbracket \rho = \bigcap_{S \subset \mathcal{A} \subset \overline{S}} \llbracket T \rrbracket (\rho, \mathcal{A}/X)$$

Andreas Abel (LMU)

#### Results

- NbE for dependent types and impredicativity: CoC + N. (Close to Coq's logical basis).
- Decidability of type checking with  $\eta$  on type level.
- Singleton types and universes.
- Theoretical basis for "compiled reduction" with  $\eta$ .



#### **Future Work**

- Agda: compiled equality checking based on NbE.
- Full Calculus of Inductive Constructions (Coq).
- Use NbE-semantics as tool to develop sound extensions of dependent type systems.

# Acknowledgements

- To the mentorate: Martin Hofmann, Helmut Schwichtenberg, Peter Dybjer.
- To my coauthors: Klaus Aehlig, Peter Dybjer, Thierry Coquand, Michael Pagano.
- To my boss: Martin Hofmann.
- To my colleagues, family and friends.

# A Munich Topic

- Helmut Schwichtenberg, Ulrich Berger
- Thorsten Altenkirch, Martin Hofmann, Thomas Streicher
- Mattias Eberl (PhD)
- Klaus Aehlig, Felix Joachimski
- Freiric Barral (PhD)
- Florian Haftmann, Tobias Nipkow