Data basics

Richard Layton

2017-09-05

R packages used in data basics

Package	For
tidyverse ggplot2	ggplot2, dplyr, readr, tidyr Graphing data
dplyr	Data manipulation
readr	Read rectangular data files (like csv or tsv)
tidyr	Set of functions that help you get to tidy data
knitr	Dynamic documents
readxl	Read .xls and .xslx files
VIM	Examine missing values in a data frame

At the conclusion of the tutorial, you will be able to

- ▶ Define a "tidy" dataset
- Read data from an Excel file
- Obtain datasets included with R and R packages
- Read and write CSV data files

For data graphics success, data should be tidy

In a tidy data set:

80

Each **variable** is saved in its own **column**

Each **observation** is saved in its own **row**

Source: data-wrangling-cheatsheet, https://www.rstudio.com/wp-content/uploads/2015/02/data-wrangling-cheatsheet.pdf

Tidy data

country	year	cases	population		
Afghanistan	1999	745	19987071		
Afghanistan	2000	2666	20595360		
Brazil	1999	37737	172006362		
Brazil	2000	80488	174504898		
China	1999	212258	1272915272		
China	2000	213766	1280428583		
table1					

Source: Data Science with R by Garrett Grolemund,

http://garrettgman.github.io/tidying/

Sadly, untidy data is common

country	year	key	value	Afgh istan
Afghanistan	1999	cases	745	Afghanistan Afghanistan
Afghanistan	1999	population	19987071	Afghanistan Brazil
Afghanistan	2000	cases	2666	Brazil Brazil
Afghanistan	2000	population	20595360	Brazil
Brazil	1999	cases	37737	China
Brazil	1999	population	172006362	Chini
Brazil	2000	cases	80488	country
Brazil	2000	population	174504898	Afghanistan
China	1999	cases	212258	Afghanistan Brazil
China	1999	population	1272915272	Brazil.
China	2000	cases	213766	Brazil China
China	2000	population	1280428583	China

observations

table2

Sadly, untidy data is common

			country Local
country	1999	2000	Afghaistan 2666 Brazi 37737 804 8
Afghanistan	745	2666	Chin 21225 213766
Brazil	37737	80488	country
China	212258	213766	Afg/Avistan 1920-1 2595360 Braz 172006362 1745042-8
	table4		Chir 1272915272 280428583
			variables
oountry.	1999	2000	Afgla 12 56
country	1999	2000	Brazi 37 87 80-88
Afghanistan	19987071	20595360	Chin 212958 213166
Brazil	172006362	174504898	country AAA AAA
China	1272915272	1280428583	Afgha stan 19487/71 20595/60
China	12/20102/2		Drazis 172000-02 174: 04:00

Source: Data Science with R by Garrett Grolemund,

http://garrettgman.github.io/tidying/

Some industry spreadsheets are really untidy

Source: Extract tables from messy spreadsheets with jailbreakr,

http://blog.revolutionanalytics.com/2016/08/jailbreakr.html

For now, assume your data in Excel are tidy

		DSR-tal	ole1.xlsx		
	Α	В	С	D	Row 1 has the names
1	country	year	cases	population	of the variables
2	Afghanistan	1999	745	19987071	
3	Afghanistan	2000	2666	20595360	Row 2 starts the observations,
4	Brazil	1999	37737	172006362	one observation per row
5	Brazil	2000	80488	174504898	one observation per row
6	China	1999	212258	1272915272	
7	China	2000	213766	1280428583	

- readxl is the package
- read_excel() is the function

The data frame that results from read_excel()

library(readxl)

```
tidy_data <- read_excel(</pre>
       path = "data/DSR-table1.xlsx"
    . sheet = "DSR-table1"
glimpse(tidy data)
## Observations: 6
## Variables: 4
## $ country <chr> "Afghanistan", "Afghanistan"...
## $ year
                <dbl> 1999, 2000, 1999, 2000, 1999...
## $ cases <dbl> 745, 2666, 37737, 80488, 212...
```

\$ population <dbl> 19987071, 20595360, 17200636...

Or, if we print the data frame as a table using knitr::kable()

library(knitr)
kable(tidy_data)

country	year	cases	population
Afghanistan	1999	745	19987071
Afghanistan	2000	2666	20595360
Brazil	1999	37737	172006362
Brazil	2000	80488	174504898
China	1999	212258	1272915272
China	2000	213766	1280428583

Note the relative path argument in read_excel()

- ▶ Paths are relative to the current working directory
- ▶ In an R-project, the project folder is the working directory

But, when your Excel data are not tidy

The read_excel() results can be weird

```
untidy_data <- read_excel("data/VADeaths.xlsx")</pre>
glimpse(untidy data)
## Observations: 6
## Variables: 5
## $ X 1 <chr> "Group", "50-54", "55-59", "60-64...
## $ Rural <chr> "Men", "11.7", "18.1000000000000...
## $ X 2 <chr> "Women", "8.69999999999993", "1...
## $ Urban <chr> "Men", "15.4", "24.3", "37", "54....
## $ X_3 <chr> "Women", "8.4", "13.6", "19.3", "...
```

All the data have been coerced into character data

Or, if we print the result as a table

kable(untidy_data)

Rural	X2	Urban
Men	Women	Men
11.7	8.699999999999993	15.4
18.100000000000001	11.7	24.3
26.9	20.3	37
41	30.9	54.6
66	54.3	71.099999999999
	Men 11.7 18.1000000000000001 26.9 41	Men Women 11.7 8.69999999999993 18.10000000000001 11.7 26.9 20.3 41 30.9

► The first data row is not actually an observation

However, read_excel() can skip lines


```
untidy_data <- read_excel("data/VADeaths.xlsx"
    , skip = 1)</pre>
```

But we might lose information

kable(untidy_data)

Group	Men	Women	Men1	Women1
50-54	11.7	8.7	15.4	8.4
55-59	18.1	11.7	24.3	13.6
60-64	26.9	20.3	37.0	19.3
65-69	41.0	30.9	54.6	35.1
70-74	66.0	54.3	71.1	50.0

- Try to work with tidy data only for the time being
- ▶ Later we will work on how to make untidy data tidy

Read and write CSV files

Write CSV. Given a data frame in your workspace

```
library(readr)
write_csv(tidy_data, "data/example_tidy_data.csv")
```

Read CSV. Given a CSV file in your data folder

```
new_copy <- read_csv("data/example_tidy_data.csv")</pre>
```

Graphing data and studying the data structure are complementary activities

Examine data frame characteristics

- class()
- ▶ glimpse()
- kable()
- ► head()
- ▶ tail()

Identifying missing values (details in the tutorial)

- summary()
- VIM package aggr() function

Accessing data in R

data()

Data sets in package 'datasets':

AirPassengers Monthly Airline Passenger Numbers 1949-1960

BJsales Sales Data with Leading Indicator

BOD Biochemical Oxygen Demand

CO2 Carbon Dioxide Uptake in Grass Plants

coz carbon broxide optake in Grass Flants

ChickWeight Weight vs age of chicks on different diets

etc.

Many of these R data sets widely used in R examples

Commonly encountered

- mtcars
- ▶ iris
- ▶ Titanic
- barley in the lattice package

From the tidyverse

- starwars in the dplyr package
- economics in the ggplot2 package
- who in the tidyr package

And other packages

- fivethirtyeight package
- so many more

Review

package::function()

- readxl::read_excel()
- readr::write_csv()
- readr::read_csv()
- tibble::glimpse()
- knitr::kable()
- VIM::aggr()

ggplot2

geom_smooth(method = Im, se = FALSE)

base R functions

- data()
- class()
- head()
- tail()
- summary()
- unloadNamespace()
- search()