2005 AP® CHEMISTRY FREE-RESPONSE QUESTIONS

$$AgNO_3(s) \rightarrow Ag^+(aq) + NO_3^-(aq)$$

- 8. The dissolving of $AgNO_3(s)$ in pure water is represented by the equation above.
 - (a) Is ΔG for the dissolving of AgNO₃(s) positive, negative, or zero? Justify your answer.
 - (b) Is ΔS for the dissolving of AgNO₃(s) positive, negative, or zero? Justify your answer.
 - (c) The solubility of $AgNO_3(s)$ increases with increasing temperature.
 - (i) What is the sign of ΔH for the dissolving process? Justify your answer.
 - (ii) Is the answer you gave in part (a) consistent with your answers to parts (b) and (c) (i) ? Explain.

The compound NaI dissolves in pure water according to the equation NaI(s) \rightarrow Na⁺(aq) + I⁻(aq). Some of the information in the table of standard reduction potentials given below may be useful in answering the questions that follow.

Half-reaction	$E^{\circ}(V)$
$O_2(g) + 4 H^+ + 4 e^- \rightarrow 2 H_2O(l)$	1.23
$I_2(s) + 2e^- \rightarrow 2I^-$	0.53
$2 \text{ H}_2\text{O}(l) + 2 e^- \rightarrow \text{H}_2(g) + 2 \text{ OH}^-$	-0.83
$Na^+ + e^- \rightarrow Na(s)$	-2.71

- (d) An electric current is applied to a 1.0 M NaI solution.
 - (i) Write the balanced oxidation half-reaction for the reaction that takes place.
 - (ii) Write the balanced reduction half-reaction for the reaction that takes place.
 - (iii) Which reaction takes place at the anode, the oxidation reaction or the reduction reaction?
 - (iv) All electrolysis reactions have the same sign for ΔG° . Is the sign positive or negative? Justify your answer.

END OF EXAM