Enrique R. Aznar García eaznar@ugr.es

SUMA DE CUADRADOS

Si primo impar $p \operatorname{con} p \equiv 1 \pmod{4}$, se sabe desde la época de Euler que se puede poner como suma de dos cuadrados de forma única (salvo la conmutativa y el signo). O sea, existen enteros únicos 0 < a < b < p tales que

$$p = a^2 + b^2$$

Hay un método sencillo para su cálculo.

ALGORITMO DE SMITH. INICIACIÓN DEL MÉTODO

Primero se calcula un no residuo cuadrático módulo p. Como hay la mitad de residuos y no residuos. Se puede hacer por prueba y error, iterando un ciclo $i \in \{1,2,\ldots,p-1\}$ mientras el símbolo de Legendre $\left(\frac{i}{p}\right)=1$. Así, se encuentra rápidamente un i tal que

$$\left(\frac{i}{p}\right) = -1 \equiv i^{(p-1)/2} \pmod{p} \Rightarrow x = i^{(p-1)/4}, \quad x^2 \equiv -1 \pmod{p}$$

Así, encontramos una raíz cuadrada x de -1 módulo p. Por ejemplo, para p=73, el primer no residuo cuadrático módulo 73 que se encuentra es i=5 y la raíz cuadrada de -1 módulo p=73 entonces es

$$x = 5^{(73-1)/4} = 5^{18} \pmod{73} = 27$$

ALGORITMO DE EUCLIDES

A continuación se aplica el AEE a la pareja p, x, aunque en realidad sólo nos interesan los restos sucesivos, no hacen falta los coeficientes u, v ni tampoco hace falta llegar al mcd de ambos, que es 1. Basta terminar cuando encontremos un resto menor que \sqrt{p} .

Por ejemplo, para p = 73, x = 27, tenemos la siguiente sucesión de restos

$$\begin{array}{rcl}
73 & = & 2 * 27 + 19 \\
27 & = & 1 * 19 + 8 \\
19 & = & 2 * 8 + 3
\end{array}
\Rightarrow 73 - 3^2 = 64 = 8^2 \Leftrightarrow 73 = 3^2 + 8^2$$

donde hemos terminado al encontrar el primer resto $a = 3 \le 8 = |\sqrt{73}|$ que es menor que $\sqrt{73}$.

OTRO EJEMPLO

Para p=27213649, que es primo congruente con 1 módulo 4, el primer no residuo cuadrático módulo p que se encuentra es i=13 y la raíz cuadrada de -1 módulo p entonces es

$$x = i^{(p-1)/4} = 13^{6803412} \pmod{73} = 13400700$$

A continuación aplicamos el AE a la pareja p, x, hasta encontrar un resto menor o igual que que $\lfloor \sqrt{p} \rfloor = 5216$. Por ejemplo, para p = 27213649, x = 13400700, tenemos la siguiente sucesión de restos

$$27213649 = 2 * 13400700 + 412249
13400700 = 32 * 412249 + 208732
412249 = 1 * 208732 + 203517
208732 = 1 * 203517 + 5215$$

$$\Rightarrow 27213649 - 5215^2 = 17424 = 132^2 \Leftrightarrow 27213649 = 13$$

ALGORITMO DE EUCLIDES COMO FRACCIÓN CONTINUA FINITA

Si aplicamos el AE a una pareja de números $a, b \ge 2$ obtenemos sucesivamente cocientes q_i y restos r_i tales que

$$r_{i-1} = q_i r_i + r_{i+1}, \quad 0 \le r_{i+1} < r_i, \quad 0 \le i \le k$$

Como en cualquier FC, se pueden calcular los cociente sucesivos que llamamos sus convergentes.

Como en cualquier FC, se pueden calcular los cociente suc
$$\frac{A_i}{B_i} = [q_0, q_1, q_2, \dots, q_i] = q_0 + \frac{1}{q_1 + \frac{1}{q_2 + \frac{1}{\ddots + \frac{1}{q_i}}}}$$

Estos numeradores y denominadores satisfacen la misma ecuación en recurrencia con distintos parámetros iniciales.

$$A_i = q_i A_{i-1} + A_{i-2}, \quad A_{-1} = 1, A_0 = q_0$$

$$B_i = q_i B_{i-1} + B_{i-2}, \quad B_{-1} = 0, B_0 = 0$$

 $B_i=q_iB_{i-1}+B_{i-2}, \quad B_{-1}=0, B_0=1$ Como se demuestra por inducción. Así, estos cálculos repetitivos se pueden tabular

Para el primer ejemplo anterior, a = 73, b = 27. Sus cocientes y convergentes sucesivos son

Observamos que el AE demuestra que una FC finita equivale a un número racional.

Además, como veremos todas las fórmulas anteriores tienen un análogo matricial.

INTERPRETACIÓN MATRICIAL DEL AE

Las divisiones euclídeas equivalen a las igualdades matriciales siguientes

$$r_{i-1} = q_i r_i + r_{i+1} \Longleftrightarrow \begin{pmatrix} r_{i-1} \\ r_i \end{pmatrix} = \begin{pmatrix} q_i & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} r_i \\ r_{i+1} \end{pmatrix}$$

Análogamente, las igualdades recursivas de los numeradores y denominadores de los convergentes

$$\begin{aligned} B_i &= q_i B_{i-1} + B_{i-2} \\ A_i &= q_i A_{i-1} + A_{i-2} \end{aligned} \Longleftrightarrow \begin{pmatrix} B_i & B_{i-1} \\ A_i & A_{i-1} \end{pmatrix} = \begin{pmatrix} B_{i-1} & B_{i-2} \\ A_{i-1} & A_{i-2} \end{pmatrix} \begin{pmatrix} q_i & 1 \\ 1 & 0 \end{pmatrix} \\ \text{Tomamos} \begin{pmatrix} B_0 & B_{-1} \\ A_0 & A_{-1} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \text{ entonces} \begin{pmatrix} B_1 & B_0 \\ A_1 & A_0 \end{pmatrix} = \begin{pmatrix} q_0 & 1 \\ 1 & 0 \end{pmatrix} \text{ y por inducción} \end{aligned}$$

$$\begin{pmatrix} B_i & B_{i-1} \\ A_i & A_{i-1} \end{pmatrix} = \begin{pmatrix} q_0 & 1 \\ 1 & 0 \end{pmatrix} \cdots \begin{pmatrix} q_i & 1 \\ 1 & 0 \end{pmatrix}$$

$$\begin{pmatrix} r_{-1} \\ r_0 \end{pmatrix} = \begin{pmatrix} q_0 & 1 \\ 1 & 0 \end{pmatrix} \cdots \begin{pmatrix} q_i & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} r_i \\ r_{i+1} \end{pmatrix} = \begin{pmatrix} B_i & B_{i-1} \\ A_i & A_{i-1} \end{pmatrix} \begin{pmatrix} r_i \\ r_{i+1} \end{pmatrix}$$
 Como, $A_{-1} = 1, A_0 = 0$ y $B_{-1} = 0, B_0 = 1$, tenemos la igualdad

$$B_0 A_{-1} - B_{-1} A_0 = 1 - 0 = 1$$

y por inducción $B_i A_{i-1} - B_{i-1} A_i = (-1)^i$. Así, existe la matriz inversa

$$\begin{vmatrix} B_i & B_{i-1} \\ A_i & A_{i-1} \end{vmatrix} = (-1)^i \Longrightarrow \begin{pmatrix} B_i & B_{i-1} \\ A_i & A_{i-1} \end{pmatrix}^{-1} = (-1)^i \begin{pmatrix} A_{i-1} & -B_{i-1} \\ -A_i & B_i \end{pmatrix}$$
 y como $r_{-1} = a$, $r_0 = b$ podemos despejar en función de a , b

$$\begin{pmatrix} r_i \\ r_{i+1} \end{pmatrix} = (-1)^i \begin{pmatrix} A_{i-1} & -B_{i-1} \\ -A_i & B_i \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} \Longrightarrow r_{i+1} = (-1)^i (bB_i - aA_i)$$

RELACIÓN CON EL AEE

El **AEE** (algoritmo de Euclides extendido), aplicado a una pareja de enteros positivos a, b, no calcula A_i , B_i que son siempre positivos y crecen respectivamente hasta a y b. En su lugar, calcula $s_i = (-1)^{i+1}A_i$ y $t_i = (-1)^iB_i$ que por lo anterior, dan los restos sucesivos como combinación lineal de los dos enteros a y b.

$$r_{i+1} = s_i a + t_i b$$

y que satisfacen unas ecuaciones recursivas parecidas a las anteriores

$$\begin{aligned}
s_i &= -q_i s_{i-1} + s_{i-2} \\
t_i &= -q_i t_{i-1} + t_{i-2}
\end{aligned} \iff \begin{pmatrix} t_i & t_{i-1} \\ s_i & s_{i-1} \end{pmatrix} = \begin{pmatrix} t_{i-1} & t_{i-2} \\ s_{i-1} & s_{i-2} \end{pmatrix} \begin{pmatrix} -q_i & 1 \\ 1 & 0 \end{pmatrix}$$

Como unos son los valores absolutos de los otros, **calcular los** A_i , B_i **equivale a calcular los** s_i , t_i .

EJEMPLO

Calculamos el mcd(73,27) extendido, en una tabla vertical con los 4 parámetros.

Observamos que los dos últimas columnas calculadas por sus ec. recursivas son los valores absolutos de las dos anteriores y que en la última fila que corresponde al resto cero se obtienen b y a.

UNA ECUACIÓN DIOFÁNTICA

Si $p, d \ge 2$ son enteros primos entre si y la ecuación $x^2 + dy^2 = p$ tiene soluciones enteras, entonces $x^2 + dy^2 = p \Longrightarrow -d \equiv (x/y)^2 \pmod{p}$

O sea, -d es un residuo cuadrático módulo p. Si p es primo y d=1 sabemos que el recíproco es cierto.

Para un natural arbitrario $d \in \mathbb{N}$, con -d residuo cuadrático módulo p, veremos una condición constructiva, que llamamos algoritmo de Cornacchia-Smith, para la existencia de soluciones enteras $x,y \in \mathbb{Z}$ de la ecuación.

$$x^2 + dy^2 = p$$

Si $w \in \mathbb{N}$ satisface $w^2 \equiv -d \pmod{p}$, con p primo, entonces $\operatorname{mcd}(p, w) = 1$.

Los restos sucesivos entre p y w van disminuyendo hasta el máximo común divisor $r_k = 1$ y para todo i < k se tiene

$$r_{i+1} = (-1)^{i+1}(pA_i - wB_i) \Longrightarrow r_{i+1}^2 = p^2A_i^2 - 2wpA_iB_i + w^2B_i^2 \Longrightarrow r_{i+1}^2 \equiv w^2B_i^2 \pmod{p}$$

O sea, para todo i < k,

$$r_{i+1}^2 + dB_i^2 \equiv (w^2 + d)B_i^2 \equiv 0 \pmod{p} \Longrightarrow r_{i+1}^2 + dB_i^2 = \lambda p$$

Vemos que si $\lambda=1$ para algún índice i, se obtienen soluciones enteras a la ecuación diofántica $x^2+dy^2=p$.

Veremos que eso a veces es así para el primer resto $r_{\nu+1}$ que satisface

$$r_{\nu+1} < \sqrt{p} < r_{\nu}$$

Y demostraremos que, si existe solución se encuentra necesariamente de esta forma.

Comprobaremos el método de Cornacchia-Smith para el primo p=73 con d igual a 1, 2 y 3 ya que la ecuación $w^2 \equiv -d \pmod{73}$ tiene solución para esos tres valores y se encuentran soluciones a $x^2 + dy^2 = p$.

EJEMPLO CON D = 3

Como -3 es un residuo cuadrático módulo 73 ya que $\left(\frac{-3}{73}\right)=1$, existen dos soluciones a la ecuación $w^2\equiv -3\pmod{73}$, Cualquiera de las dos, w=17,56, nos sirve para el método de Cornacchia-Smith.

Calculamos el mcd(73,17) extendido, en una tabla vertical con los parámetros positivos.

iter
$$q_i$$
 r_{i+1} A_i B_i $r_{i+1}^2 + B_i^2$
-1 73 1 0 $73^2 + 3*0^2 = 73*73$
0 4 17 0 1 $17^2 + 3*1^2 = 4*73$
1 3 5 1 4 $5^2 + 3*4^2 = 1*73$
2 2 2 3 13 $2^2 + 3*13^2 = 7*73$
3 2 1 7 30 $1^2 + 3*30^2 = 37*73$

Observamos que las soluciones enteras a la ecuación diofántica $x^2+3y^2=73\,$ se obtienen en la iteración i=1, con el primer resto, $r_2=5\,$ que es menor que $\sqrt{73}\approx 8.544\,$ $5^2+3*4^2=73\,$

También observamos que el menor múltiplo de p=73 se obtiene en esa iteración Como hemos demostrado antes, en todas las iteraciones se obtiene $x^2+3y^2=\lambda p\,\cos\lambda\geq 1$.

EJEMPLO CON D = 2

Como -2 es un residuo cuadrático módulo 73 ya que $\left(\frac{-2}{73}\right)=1$, existen dos soluciones a la ecuación $w^2\equiv -3\pmod{73}$, Cualquiera de las dos, w=12,61, nos sirve para el método de Cornacchia-Smith.

Calculamos el mcd(73,61) extendido, en una tabla vertical con los parámetros positivos.

iter
$$q_i$$
 r_{i+1} A_i B_i $r_{i+1}^2 + B_i^2$
-1 73 1 0 $73^2 + 2*0^2 = 73*73$
0 1 61 0 1 $61^2 + 2*1^2 = 51*73$
1 5 12 1 1 $12^2 + 2*1^2 = 2*73$
2 12 1 5 6 $1^2 + 2*6^2 = 1*73$

Observamos que las soluciones enteras a la ecuación diofántica $x^2+2y^2=73$ se obtienen en la iteración i=2, con el primer resto, $r_3=1$, que es menor que $\sqrt{73}\approx 8.544$ $1^2+2*6^2=73$

También observamos que el menor múltiplo de p = 73 se obtiene en esa iteración.

Como hemos demostrado antes, en todas las iteraciones se obtiene $x^2 + 2y^2 = \lambda p \, \cos \lambda \ge 1$.

EJEMPLO CON D = 1

Como -1 es un residuo cuadrático módulo 73 ya que $\left(\frac{-1}{73}\right) = 1$, existen dos soluciones a la ecuación $w^2 \equiv -1 \pmod{73}$, w = 27, 46. Cualquiera de las dos nos sirve para el método de Cornacchia-Smith. Calculamos el mcd(73,27), con los parámetros positivos y añadiendo la última fila correspondiente al resto cero.

```
iter q_i r_{i+1} A_i B_i r_{i+1}^2 + B_i^2
-1 73 1 0 73<sup>2</sup> + 0<sup>2</sup> = 73 * 73
              0 \quad 1 \quad 27^2 + 1^2 = 10 * 73
0
     2
          27
          19 1 2 19^2 + 2^2 = 5 * 73
1
     1
         8 1 3 8^2 + 3^2 = 1 * 73
3 8 3^2 + 8^2 = 1 * 73
2
     2
3
                 7 19 2^2 + 19^2 = 5 * 73
     1
                 10 27 1^2 + 27^2 = 10 * 73
5
                  27 \quad 73 \quad 0^2 + 73^2 = 73 * 73
6
```

Observamos que las soluciones enteras a la ecuación diofántica $x^2+y^2=p=73\,$ se obtienen en la iteración i=2, $8^2+3^2=73$, con el primer resto, $r_3=8\,$ que es menor que $\sqrt{73}\approx 8.544$. Como hemos demostrado antes, en todas las iteraciones se obtiene una igualdad del tipo $x^2+y^2=\lambda p\,$ con $\lambda\geq 1\,$.

También observamos que los B_i como satisfacen, $B_i = q_i B_{i-1} + B_{i-2}$, son los restos sucesivos de dividir los dos últimos de ellos. Leyendo su columna de abajo arriba, coincide con la tercera columna porque el último es siempre a=p y el penúltimo coincide con b cuando éste es, b=w < p/2, una raíz cuadrada de -1 módulo p. Por tanto,

Si b = w < a/2 una raíz cuadrada de -1 módulo a, la columna de los cocientes es simétrica. O sea, es la misma leída de arriba abajo que de abajo arriba.

UNA DESIGUALDAD IMPORTANTE

Aunque los numeradores y denominadores de los convergentes crecen respectivamente hasta los enteros $a,b\geq 2$, los restos r_λ permiten acotar los denominadores. Así, si r_λ es uno de los restos de la pareja a,b y P y $Q\neq 0$

$$|aQ - bP| < r_{\lambda} \Longrightarrow B_{\lambda} \le |Q|$$

Para la demostración de la implicación, usaremos un cambio de variables debido a Legendre (1798).

$$P = MA_{\lambda} - NA_{\lambda - 1}$$

$$Q = MB_{\lambda} - NB_{\lambda - 1}$$

$$\iff \begin{pmatrix} P \\ Q \end{pmatrix} = \begin{pmatrix} A_{\lambda} & -A_{\lambda - 1} \\ B_{\lambda} & -B_{\lambda - 1} \end{pmatrix} \begin{pmatrix} M \\ N \end{pmatrix}$$

como la matriz del cambio tiene determinante $(-1)^{\lambda} \neq 0$, las variables se pueden despejar

$$\begin{pmatrix} M \\ N \end{pmatrix} = (-1)^{\lambda} \begin{pmatrix} -B_{\lambda-1} & A_{\lambda-1} \\ -B_{\lambda} & A_{\lambda} \end{pmatrix} \begin{pmatrix} P \\ Q \end{pmatrix} \iff \begin{cases} M = (-1)^{\lambda} (QA_{\lambda-1} - PB_{\lambda-1}) \\ N = (-1)^{\lambda} (QA_{\lambda} - PB_{\lambda}) \end{cases}$$

O sea, existe una correspondencia biunívoca entre ambas parejas de enteros.

Ahora, sustituyendo P y Q, tenemos

$$aQ - bP = M(aB_{\lambda} - bA_{\lambda}) - N(aB_{\lambda-1} - bA_{\lambda-1}) = (-1)^{\lambda} (Mr_{\lambda+1} + Nr_{\lambda})$$

Ahora, si MN > 0, entonces $|aQ - bP| = |M|r_{\lambda+1} + |N|r_{\lambda} \ge r_{\lambda}$ contrario a la hipótesis.

Si M=0, entonces $|aQ-bP|=|N|r_{\lambda}\geq r_{\lambda}$ también contrario a la hipótesis.

En consecuencia, $MN \le 0$, con $M \ne 0$ y entonces

$$|Q| = |M|B_{\lambda} + |N|B_{\lambda-1} \ge B_{\lambda}$$

como queríamos demostrar.

EL TEOREMA DE CORNACCHIA-SMITH

Si $p, d \ge 2$ son enteros primos entre si y la ecuación $x^2 + dy^2 = p$ tiene soluciones enteras, entonces $x^2 + dy^2 = p \Longrightarrow -d \equiv (x/y)^2 \pmod{p}$

-d es un residuo cuadrático módulo p. Si p primo, \mathbb{Z}_p es cuerpo y existen exactamente dos enteros distintos módulo p tal que $w^2 \equiv -d \pmod p$. Uno, 0 < w < p/2 y otro $p/2 < w_1 = p - w < p$ y ambos son primos con p.

Si 4 < p, entonces $\sqrt{p} < p/2 < w_1$ y como los restos sucesivos entre p y w_1 van disminuyendo hasta su máximo común divisor $r_k = 1$ existe el primer resto $r_{\nu+1}$ que satisface

$$r_{\nu+1} < \sqrt{p} < r_{\nu}$$

Como la primera división es $p=1*w_1+w$, su resto es $r_2=w$ y los sucesivos entre p y w coinciden con los siguientes entre p y w_1 . Y da igual aplicar el AEE entre p y w que entre p y w_1 ya que se encuentra el mismo $r_{\nu+1}$.

Por lo razonado antes, para todo i < k, se tiene una pareja de enteros tales que $r_{i+1}^2 + dB_i^2 = \lambda p$

Si para algún índice i, $\lambda=1$, encontramos soluciones a la ecuación diofántica $x^2+dy^2=p$.

Pero si existen soluciones enteras x, y, entonces se tiene

$$x^2 + dy^2 = p \Rightarrow x^2 \equiv -dy^2 \equiv w^2y^2 \pmod{p} \iff (x + wy)(x - wy) \equiv 0 \pmod{p}$$

Cuando p es primo, se tiene que $x \pm wy \equiv 0 \pmod{p} \Longrightarrow x = wQ - pP$, con $|Q| = |y| \neq 0$. Como además, $x^2 = p - dy^2 .$

Entonces, $B_{\nu}^2 < y^2 \Longrightarrow dB_{\nu}^2 < dy^2 = p - x^2 < p \Longrightarrow \lambda p = r_{\nu+1}^2 + dB_{\nu}^2 < p + p = 2p \Longrightarrow \lambda = 1$

Y hemos demostrado el **teorema de Cornacchia-Smith: Si existen soluciones se encuentran con el** resto $\nu + 1$

$$r_{\nu+1}^2 + dB_{\nu}^2 = p$$

EJEMPLO CON D = 19

Vamos a comprobar que el método de Cornacchia-Smith para el primo $p=73\,\mathrm{con}\,d=19\,\mathrm{no}$ encuentra soluciones a la ecuación $x^2+19y^2=p$. O sea, el método no asegura la existencia de soluciones. Salvo para d=1, ya que un teorema clásico demostrado por Euler lo asegura.

Como -19 es un residuo cuadrático módulo 73 ya que $\left(\frac{-19}{73}\right)=1$, existen dos soluciones a la ecuación $w^2\equiv -19\pmod{73}$, Cualquiera de las dos, w=28,45, nos sirve para el método de Cornacchia-Smith.

Calculamos el mcd(73,28) extendido, en una tabla vertical con sólo los parámetros positivos.

```
r_{i+1} A_i B_i r_{i+1}^2 + B_i^2
                   0 \quad 73^2 + 19 * 0^2 = 73 * 73
-1
        28 \quad 0 \quad 1 \quad 28^2 + 19 * 1^2 = 11 * 73
0
    2
        17 1 2 17^2 + 19 * 2^2 = 5 * 73
1
    1
       11 1 3 11^2 + 19 * 3^2 = 4 * 73
2
   1
              2 \quad 5 \quad 6^2 + 19 * 5^2 = 7 * 73
    1
3
               3 \quad 8 \quad 5^2 + 19 * 8^2 = 17 * 73
4
    1
               5 13 	 1^2 + 19 * 13^2 = 44 * 73
5
    5
```

Observamos que el método de Cornacchia-Smith **no** encuentra soluciones enteras a la ecuación diofántica $x^2+19y^2=p$. Ya que en todas las iteraciones se obtiene una igualdad del tipo $x^2+3y^2=\lambda p$ con $\lambda>1$.

Aunque basta comprobar en la iteración con el primer resto $r_{\nu+1}$ que satisface $r_{\nu+1} < \sqrt{p} < r_{\nu}$. En este ejemplo, basta comprobarlo con $r_4 = 6$ ya que este es el primer resto menor que $\sqrt{73} \approx 8.544$.

OTRA ECUACIÓN DIOFÁNTICA

Si $p, d \ge 2$ son enteros primos entre si y la ecuación $x^2 + dy^2 = 4p$ tiene soluciones enteras, entonces $x^2 + dy^2 = 4p \Longrightarrow -d \equiv (x/y)^2 \pmod{4p}$ O sea. -d es un residuo cuadrático módulo 4p.

Para un natural $d \in \mathbb{N}$, tal que -d sea congruente con 1 módulo 4 (implica que es el discriminate de un cuerpo cuadrático) con -d residuo cuadrático módulo 4p, veremos una condición constructiva, que llamamos **algoritmo de Cornacchia-Smith modificado**, para la existencia de soluciones enteras $x, y \in \mathbb{Z}$ de la ecuación $x^2 + dy^2 = 4p$.

$$x^2 + dy^2 = 4p \Leftrightarrow p = \left(\frac{x + y\sqrt{-d}}{2}\right) \left(\frac{x - y\sqrt{-d}}{2}\right)$$
 p escinde en el anillo de enteros cuadráticos

Si $w \in \mathbb{N}$ satisface $w^2 \equiv -d \pmod{4p}$, con p primo, entonces $\operatorname{mcd}(2p,w) = 1$. La condición $w^2 \equiv -d \pmod{4p}$ es equivalente a que $w^2 \equiv -d \pmod{p}$ y $w \equiv -d \pmod{2}$. Los restos sucesivos entre 2p y w van disminuyendo hasta el máximo común divisor $r_k = 1$ y para todo i < k

$$r_{i+1} = (-1)^{i+1}(2pA_i - wB_i) \Longrightarrow r_{i+1}^2 = 4p^2A_i^2 - 4wpA_iB_i + w^2B_i^2 \Longrightarrow r_{i+1}^2 \equiv w^2B_i^2 \pmod{4p}$$

O sea, para todo i < k,

$$r_{i+1}^2 + dB_i^2 \equiv (w^2 + d)B_i^2 \equiv 0 \pmod{4p} \Longrightarrow r_{i+1}^2 + dB_i^2 = \lambda 4p$$

Vemos que si $\lambda = 1$ para algún índice i, se obtienen soluciones enteras a la ecuación diofántica $x^2 + dy^2 = 4p$.

Veremos que eso a veces es así para el primer resto $r_{\nu+1}$ que satisface

$$r_{\nu+1} < 2\sqrt{p} < r_{\nu}$$

Y demostraremos que, si existe solución se encuentra necesariamente de esta forma.

CORNACCHIA-SMITH MODIFICADO

Si $-d \equiv 1 \pmod{4}$ y la ecuación $x^2 + dy^2 = p$ no tiene soluciones enteras, a veces la ecuación $x^2 + dy^2 = 4p$ si tiene soluciones. En ese caso,

$$x^2 + dy^2 = 4p \Longrightarrow -d \equiv (x/y)^2 \pmod{4p}$$

Así, -d es un residuo cuadrático módulo p y también es un residuo cuadrático módulo p. Si p primo, \mathbb{Z}_p es cuerpo y existen exactamente dos enteros distintos módulo p, $w^2 \equiv -d \pmod{p}$. Uno de ellos, w < p y el otro $w_1 = p - w < p$. Como p es un primo impar, uno de los dos w o w_1 es impar y tiene la misma paridad que -d. Si w impar, entonces $w^2 = (2k+1)^2 \equiv 1 \equiv -d \pmod{4}$, y como p y 4 son primos entre si

$$\begin{cases} w^2 \equiv -d \pmod{4} \\ w^2 \equiv -d \pmod{p} \end{cases} \Longrightarrow w^2 \equiv -d \pmod{4p}$$

O sea, basta que el símbolo de Legendre $\left(\frac{-d}{p}\right) = 1$ para que exista w impar tal que $w^2 \equiv -d \pmod{4p}$.

Como los restos sucesivos entre 2p y w van disminuyendo hasta su máximo común divisor $r_k=1$ existe el primer resto $r_{\nu+1}$ que satisface $r_{\nu+1} < 2\sqrt{p} < r_{\nu}$.

Por lo razonado antes, para todo i < k, se tiene una pareja de enteros tales que $r_{i+1}^2 + dB_i^2 = \lambda 4p$. Si para algún índice i, $\lambda = 1$, encontramos soluciones a la ecuación diofántica $x^2 + dy^2 = 4p$.

EL TEOREMA DE CORNACCHIA-SMITH MODIFICADO

Pero si existen soluciones enteras x, y, entonces se tiene

$$x^2 + dy^2 = 4p \Rightarrow x^2 \equiv -dy^2 \equiv w^2 y^2 \pmod{4p} \Longrightarrow (x + wy)(x - wy) \equiv 0 \pmod{p}$$

Pero x, y tienen que ser ambos impares ya que en caso contrario ambos serían necesariamente pares y la ecuación $x^2 + dy^2 = p$ tendría soluciones enteras contra la hipótesis inicial. Como w lo tomamos impar, tenemos que ambos factores x + wy y x - wy son pares y entonces uno de ellos será congruente con cero módulo 2p. Entonces,

$$x \pm wy \equiv 0 \pmod{2p} \Longrightarrow x = wQ - 2pP, \text{ con } |Q| = |y| \neq 0$$

Además,

$$x^2 = 4p - dy^2 < 4p \Longrightarrow |wQ - 2pP| = |x| < 2\sqrt{p} < r_{\nu} \Longrightarrow B_{\nu} < |Q| = |y|$$

Pero entonces,

$$B_{\nu}^{2} < y^{2} \Longrightarrow dB_{\nu}^{2} < dy^{2} = 4p - x^{2} < 4p \Longrightarrow \lambda 4p = r_{\nu+1}^{2} + dB_{\nu}^{2} < 4p + 4p = 8p \Longrightarrow \lambda = 1$$

Y hemos demostrado el **teorema de Cornacchia-Smith modificado**:

Si existen soluciones $x^2 + dy^2 = 4p$ pero no $x^2 + dy^2 = p$, con $-d \equiv 1 \pmod{p}$ se encuentran con el resto $\nu + 1$, entre 2p y w impar tal que $w^2 \equiv -d \pmod{p}$, que satisface $r_{\nu+1} < 2\sqrt{p} < r_{\nu}$.

$$r_{\nu+1}^2 + dB_{\nu}^2 = 4p$$

EJEMPLO DE CORNACCHIA-SMITH MODIFICADO

Para d = 19, p = 73 hemos visto que la ecuación diofántica $x^2 + dy^2 = p$ no tiene soluciones enteras con el método de Cornacchia-Smith (como veremos eso implica que no existen soluciones enteras).

Sin embargo, para los mismos d=19, p=73, la ecuación diofántica $x^2+dy^2=4p\,$ si tiene soluciones enteras.

Y se encuentran con el método de Cornacchia-Smith modificado.

Como -19 es un residuo cuadrático módulo 73 ya que $\left(\frac{-19}{73}\right)=1$, existen dos soluciones a la ecuación $w^2\equiv -19\pmod{73}$, Una de ellas, w=45, tiene la misma paridad que d=19 y nos sirve para el método de Cornacchia-Smith modificado:

Calculamos el mcd de (2p, w) = (2 * 73, 45) = (146, 45) extendido con sólo los parámetros positivos.

iter
$$q_i$$
 r_{i+1} A_i B_i $r_{i+1}^2 + B_i^2$
-1 146 1 0 $146^2 + 19 * 0^2 = 146 * 146$
0 3 45 0 1 $45^2 + 19 * 1^2 = 7 * 146$
1 4 11 1 3 $11^2 + 19 * 3^2 = 1 * 146$
2 11 1 4 13 $1^2 + 19 * 13^2 = 11 * 146$

Observamos que las soluciones enteras a la ecuación diofántica $x^2+dy^2=4p=146\,$ se obtienen en la iteración i=1, con el primer resto $r_2=11$, que es menor que $2\sqrt{73}\approx 17.088\,$ $11^2+19*3^2=146\,$

También observamos que el menor múltiplo de 4p=146 se obtiene en esa iteración y que en todas las iteraciones se obtiene una igualdad del tipo $x^2+dy^2=\lambda 4p\,\cos\lambda>1$.

LA FUNCIÓN CONTINUANTE

Dados enteros positivos a, b, sus restos sucesivos satisfacen

$$r_{i-1} = q_i r_i + r_{i+1}$$

Cuando son primos entre si, el último resto distinto de cero es $r_n = 1$, entonces algunos anteriores son

$$\begin{cases} r_{n-1} = q_n r_n + r_{n+1} = q_n \\ r_{n-2} = q_{n-1} r_{n-1} + r_n = q_{n-1} q_n + 1 \\ r_{n-3} = q_{n-2} r_{n-2} + r_{n-1} = q_{n-2} (q_{n-1} q_n + 1) + q_n = q_{n-2} q_{n-1} q_n + q_{n-2} + q_n \\ r_{n-4} = q_{n-3} r_{n-3} + r_{n-2} = q_{n-3} q_{n-2} q_{n-1} q_n + q_{n-3} q_{n-2} + q_{n-3} q_n + q_{n-1} q_n + 1 \end{cases}$$

Observamos que por inducción, cada resto r_i es función de los cocientes que le siguen.

Esta función la llamamos continuante y la denotamos por

$$r_i = Q(q_{i+1}, \dots, q_n)$$

Más precisamente, se puede definir esta función por recursión

$$Q(q_1, ..., q_k) = q_1 Q(q_2, ..., q_k) + Q(q_3, ..., q_k)$$

con los valores iniciales $Q(\emptyset) = 1$ y Q(q) = q.

PROPIEDADES DE LA FUNCIÓN CONTINUANTE

Demostraremos que la función continuante coincide con la función, $f(q_1, \dots, q_k)$, definida como

La suma de todos los productos comenzando con $q_1 \cdots q_k$ y eliminando recursiva y sucesivamente todos los productos de pares adjacentes.

Si q_1 no aparece en uno de los productos tampoco está q_2 ya que es su adyacente. Por tanto, la suma de los que no contienen q_1 es exactamente $f(q_3,\ldots,q_k)$. Y en los productos que contienen a q_1 , si le sacamos factor común queda $q_1f(q_2,\ldots,q_k)$. Como los productos se clasifican en estas dos clases, hemos demostrado que

$$f(q_1, \dots, q_k) = q_1 f(q_2, \dots, q_k) + f(q_3, \dots, q_k)$$

Como las dos funciones iniciales son las mismas, por inducción se tiene

 $Q(q_1,\ldots,q_k)=f(q_1,\ldots,q_k)$. Equivalentemente, si coinciden en los valores iniciales una función recursiva es única.

OTRAS PROPIEDADES

Ahora, como el producto de enteros es asociativo y conmutativo, se tiene que la función continuante es simétrica

$$Q(q_1,\ldots,q_k)=Q(q_k,\ldots,q_1)$$

Y también, para cada natural $i \leq n$, se verifica la desigualdad

$$Q(q_1 \ldots, q_i)Q(q_{i+1} \ldots, q_n) \leq Q(q_1 \ldots, q_n)$$

ya que cada producto que aparece sumando en la izquierda aparece también sumando en la derecha.

EL TEOREMA DE SMITH

Particularizando para d=1, el teorema de Cornacchia-Smith dice que si existen soluciones enteras para $x^2 + y^2 = p$ estas se encuentran aplicando el AE a p y w con $w^2 \equiv -1 \pmod{p}$. Como $x^2 \equiv -1 \pmod{p}$ tiene solución si y sólo si $(-1)^{(p-1)/4} = \left(\frac{-1}{p}\right) = 1$. Existe w si y sólo si p es congruente con 1 módulo 4.

Por tanto, una condición necesaria para que $x^2 + y^2 = p$ tenga solución es que p sea congruente con 1 módulo 4. Pero un teorema de Fermat, demostrado por Euler da la siguiente caracterización:

Un número primo p es expresable como suma de dos cuadrados si y sólo si p = 2 ó es congruente con 1 módulo 4.

Este teorema de Fermat implica que si $p \equiv 1 \pmod{4}$ el método de Cornacchia-Smith siempre encuentra soluciones. Pero se puede dar una nueva demostración del teorema de Fermat, razonando que

$$B_{\nu}^2 < p$$
 y por tanto $r_{\nu+1}^2 + B_{\nu}^2 = \lambda p < 2p \Longrightarrow r_{\nu+1}^2 + B_{\nu}^2 = p$

Para eso necesitamos la función continuante que revierte el AE. O sea, dados los cocientes sucesivos obtiene el primer resto. Si $q_1 \dots, q_n$ es la sucesión de cocientes obtenida al aplicar el AE a p, w, como la función continuante verifica la desiguladad $Q(q_1 \ldots, q_n) \geq Q(q_1 \ldots, q_\nu) Q(q_{\nu+1} \ldots, q_n)$, finalmente se tiene

$$\left. \begin{array}{l} p = Q(q_1 \ldots, q_n) \\ r_{\nu} = Q(q_{\nu+1} \ldots, q_n) > \sqrt{p} \\ |B_{\nu}| = Q(q_{\nu} \ldots, q_1) = Q(q_1 \ldots, q_{\nu}) \end{array} \right\} \Rightarrow p \geq r_{\nu} |B_{\nu}| > \sqrt{p} |B_{\nu}| \Rightarrow \sqrt{p} > |B_{\nu}| \Leftrightarrow B_{\nu}^2$$

O sea, hemos demostrado el **teorema de Smith**.

Si p es congruente con 1 módulo 4, el método de Cornacchia-Smith descompone p como suma de cuadrados.

Enrique R. Aznar García eaznar@ugr.es