Chapitre 3 : Arbre de Couverture Optimal

Série d'Exercices N° 3

Exercice 1.

Montrer que la moyenne des degrés des sommets d'un arbre est strictement inférieure à 2.

Exercice 2.

Soit le graphe suivant :

- 1. Trouver l'arbre de poids minimum puis l'arbre de poids maximum.
- 2. Donner le codage de Prufer correspondant à l'arbre trouvé.

Exercice 3.

	В	\boldsymbol{C}	D	\boldsymbol{E}	\boldsymbol{F}	G	H
A	5	18	9	13	7	38	22
	В	17	11	7	10	38	15
		C	27	23	15	20	25
			D	20	15	40	25
				E	15	40	30
					F	35	10
						G	45

- 1. Identifier le problème associé.
- 2. Déterminer la solution optimale.

Exercice 4.

Un arbre est un graphe non orienté connexe et sans cycle, il est dit binaire s'il est constitué d'un unique sommet de degré 2 (appelé racine de l'arbre) et si tout autre sommet est soit de degré 3, soit de degré 1. Les sommets de degré 1 sont appelés les feuilles de l'arbre.

Exemple: L'arbre binaire ci-contre comporte 9 sommets et 5 feuilles.

- 1. Énumérez (à isomorphisme près) tous les arbres binaires ayant exactement 7 feuilles.
- 2. Combien de sommets peut avoir un arbre binaire ayant exactement 7 feuilles.
- 3. Combien de sommets peut avoir un arbre binaire ayant exactement k feuilles (avec $k \ge 2$).

