

NVIDIA Jetson TX2 NX

Product Design Guide

Document History

DG-10141-001_v1.0

Version	Date	Description of Change
1.0	February 24, 2021	Initial Release

Table of Contents

Chapter 1. Introduction	1
1.1 References	1
1.2 Abbreviations and Definitions	2
Chapter 2. Jetson TX2 NX	4
Chapter 3. Developer Kit Feature Considerations	7
3.1 Button Power MCU	7
3.2 USB SuperSpeed Hub	8
3.3 Power over Ethernet	8
3.4 TI TXB0108 Level Shifters	8
3.5 Features Not to be Implemented	8
Chapter 4. Module Connector	9
4.1 Module Connector Details	9
4.2 Module to Mounting Hardware	9
4.3 Module Installation and Removal	10
Chapter 5. Power	11
5.1 Power Supply and Sequencing	12
Chapter 6. USB and PCI Express	15
6.1 USB	
6.1.1 USB 2.0 Design Guidelines	18
6.1.2 USB 3.0 Design Guidelines	18
6.1.3 Common USB Routing Guidelines	21
6.2 PCIe	22
6.2.1 PCIe Design Guidelines	24
6.3 Gigabit Ethernet	26
Chapter 7. Display	29
7.1 MIPI DSI	29
7.1.1 MIPI DSI and CSI Design Guidelines	30
7.1.2 MIPI DSI and CSI Connection Guidelines	31
7.2 HDMI, eDP, and DP	
7.2.1 eDP and DP	
7.2.1.1 eDP and DP Routing Guidelines	
7.2.2 HDMI	
7.2.2.1 HDMI Routing Guidelines	38
Chapter 8. MIPI CSI Video Input	45

8.1 CSI Design Guidelines	49
Chapter 9. SD Card and SDIO	50
Chapter 10. Audio	53
Chapter 11. Miscellaneous Interfaces	56
11.1 I2C	56
11.1.1 I2C Design Guidelines	57
11.2 SPI	59
11.2.1 SPI Design Guidelines	60
11.3 CAN	61
11.4 Fan	61
11.5 UART	62
11.6 Debug	63
11.6.1 Debug UART	64
Chapter 12. PADS	65
12.1 Internal Pull-ups for Dual-Voltage Block Pins Powered at 1.8V	65
12.2 Schmitt Trigger Usage	65
12.3 Pins Pulled and Driven High During Power-ON	66
Chapter 13. Unused Interface Terminations	68
13.1 Unused Multi-purpose Standard CMPS Pad Interfaces	
Chapter 14. Jetson TX2 NX Pin Descriptions and Design Checklist	69
Chapter 15. General Routing Guidelines	70
15.1 Signal Name Conventions	70
15.2 Routing Guideline Format	71
15.3 Signal Routing Conventions	71
15.4 General Routing Guidelines	71
15.5 General PCB Routing Guidelines	72
15.6 Common High-Speed Interface Requirements	73

List of Figures

Figure 2-1.	Jetson TX2 NX Block Diagram	5
Figure 4-1.	Jetson TX2 NX Module Installed in SODIMM Connector	9
Figure 4-2.	Module to Connector Assembly Diagram	10
Figure 5-1.	Jetson TX2 NX Power and Control Block Diagram	12
Figure 5-2.	System Power and Control Block Diagram	13
Figure 5-3.	Power Up Sequence	13
Figure 5-4.	Power Down – Initiated by SHUTDOWN_REQ* Assertion	13
Figure 5-5.	Power Down – Sudden Power Loss	14
Figure 6-1.	USB Connection Example	17
Figure 6-2.	IL/NEXT Plot	20
Figure 6-3.	Trace Spacing for TX/RX Non-Interleaving	20
Figure 6-4.	Via Structures	21
Figure 6-5.	ESD Layout Recommendations	21
Figure 6-6.	Component Order	21
Figure 6-7.	Example PCIe Connections	23
Figure 6-8.	AC Cap Voiding	25
Figure 6-9.	Jetson TX2 NX Ethernet Connections	27
Figure 6-10.	Gigabit Ethernet Magnetics and RJ45 Connections	27
Figure 7-1.	DSI 1 x 2 Lane Connection Example	30
Figure 7-2.	DP and eDP Connection Example on DP0 Pins	33
Figure 7-3.	eDP Differential Main Link Topology	33
Figure 7-4.	S-parameter	36
Figure 7-5.	Via Topology #1	36
Figure 7-6.	Via Topology #2	36
Figure 7-7.	HDMI Connection Example	37
Figure 7-8.	HDMI CLK and Data Topology	38
Figure 7-9.	IL and FEXT Plot	41
Figure 7-10.	TDR Plot	41
Figure 7-11.	HDMI Via Topology	42
Figure 7-12.	Add-on Components - Top	42
Figure 7-13.	Add-on Components - Bottom	42
Figure 7-14.	AC Cap Void	42
Figure 7-15.	RPD, Chock, FET Placement	42
Figure 7-16.	ESD Footprint	43
Figure 7-17.	ESD Void	43
Figure 7-18.	SMT Pad Trace Entering	43
Figure 7-19.	SMT Pad Trace Between	43

Figure 7-20.	Connector Voiding	43
Figure 8-1.	4 Lane CSI Camera Connection Example	46
Figure 8-2.	Available Camera Control Pins	47
Figure 8-3.	CSI Connection Options	48
Figure 9-1.	SD Card Connection Example	51
Figure 10-1.	Audio Connections	54
Figure 10-2.	Audio Codec Connections	54
Figure 11-1.	I2C Connections	57
Figure 11-2.	SPI Connections	59
Figure 11-3.	Basic SPI Master and Slave Connections	60
Figure 11-4.	SPI Topologies	60
Figure 11-5.	Jetson TX2 NX CAN Connections	61
Figure 11-6.	Jetson TX2 NX Fan Connections	62
Figure 11-7.	Jetson TX2 NX UART Connections	63
Figure 11-8.	Debug UART Connections	64
Figure 15-1.	GSSG Stack-Up	72
Figure 15-2.	Common Mode Choke	74
Figure 15-3.	Serpentine	74

List of Tables

Table 1-1.	Abbreviations and Definitions	2
Table 2-1.	Jetson TX2 NX Interfaces	4
Table 2-2.	Jetson TX2 NX Connector Pinout Matrix	5
Table 5-1.	Jetson TX2 NX Power and System Pin Descriptions	11
Table 6-1.	Jetson TX2 NX USB 2.0 Pin Descriptions	15
Table 6-2.	Jetson TX2 NX USB 3.0 and PCIe Pin Descriptions	
Table 6-3.	Jetson TX2 NX USB 3.0 and PCIe Lane Mapping Configurations	
Table 6-4.	USB 2.0 Interface Signal Routing Requirements	18
Table 6-5.	USB 3.0 Interface Signal Routing Requirements	
Table 6-6.	USB 2.0 Signal Connections	
Table 6-7.	Miscellaneous USB 2.0 Signal Connections	22
Table 6-8.	USB 3.0 Signal Connections	
Table 6-9.	PCIe Interface Signal Routing Requirements	
Table 6-10.	PCIe Signal Connections	
Table 6-11.	Jetson TX2 NX Gigabit Ethernet Pin Description	26
Table 6-12.	Ethernet MDI Interface Signal Routing Requirements	28
Table 6-13.	Ethernet Signal Connections	
Table 7-1.	Jetson TX2 NX Display General Pin Description	
Table 7-2.	Jetson TX2 NX DSI Pin Description	29
Table 7-3.	MIPI DSI and CSI Interface Signal Routing Requirements	
Table 7-4.	MIPI DSI Signal Connections	
Table 7-5.	Jetson TX2 NX eDP and DP Pin Description	31
Table 7-6.	DisplayPort and HDMI Pin Mapping	32
Table 7-7.	eDP/DP Main Link Signal Routing Requirements including DP_AUX	34
Table 7-8.	eDP and DP Signal Connections	36
Table 7-9.	HDMI Interface Signal Routing Requirements	38
Table 7-10.	HDMI Signal Connections	44
Table 8-1.	Jetson TX2 NX CSI Pin Description	45
Table 8-2.	Jetson TX2 NX Camera Miscellaneous Pin Description	46
Table 8-3.	CSI Configuration	47
Table 8-4.	MIPI CSI Signal Connections	49
Table 8-5.	Miscellaneous Camera Connections	49
Table 9-1.	Jetson TX2 NX SDIO Pin Description	50
Table 9-2.	SD Card and SDIO Interface Signal Routing Requirements	51
Table 9-3.	SD Card and SDIO Signal Connections	
Table 10-1.	Jetson TX2 NX Audio Pin Description	53
Table 10-2.	Interface Signal Routing Requirements	55

Table 10-3.	Audio Signal Connections	55
Table 11-1.	Jetson TX2 NX I2C Pin Description	56
Table 11-2.	I2C Interface Signal Routing Requirements	58
Table 11-3.	I2C Signal Connections	58
Table 11-4.	Jetson TX2 NX SPI Pin Description	59
Table 11-5.	SPI Interface Signal Routing Requirements	60
Table 11-6.	Jetson TX2 NX CAN Pin Description	61
Table 11-7.	Jetson TX2 NX Fan Pin Description	62
Table 11-8.	Jetson TX2 NX UART Pin Description	62
Table 11-9.	UART Signal Connections	63
Table 11-10.	Jetson TX2 NX Debug UART Description	63
Table 11-11.	Debug UART Connections	64
Table 12-1.	Pins Pulled and Driven High by Tegra X2 Prior to SYS_RESET* Inactive	66
Table 12-2.	Pins Pulled High on Module with External Resistors Prior to SYS_RESET_	
	Inactive	67
Table 13-1.	Unused MPIO Pins and Pin Groups	68
Table 15-1.	Signal Type Codes	70
Table 15-2.	Common High-Speed Interface Requirements	73

Chapter 1. Introduction

This design guide contains recommendations and guidelines for engineers to follow in creating a product that is optimized to achieve the best performance from the interfaces supported by the NVIDIA® Jetson™ TX2 NX System-on-Module (SOM).

This design guide provides detailed information on the capabilities of the hardware module, which may differ from supported configurations by provided software. Refer to software release documentation for information on supported capabilities.

Note: Most of the interface usage noted in this design guide is based on the NVIDIA® Jetson™ Xavier™ NX developer kit carrier board design. References to the "DevKit carrier board" in the pin descriptions and elsewhere are referring to the Jetson Xavier NX developer kit carrier board.

1.1 References

Refer to the following list of documents or models for more information. Always use the latest revision of all documents.

- ▶ Jetson TX2 NX Module Data Sheet
- ► Tegra X2 (SoC) Technical Reference Manual
- Jetson Xavier NX Developer Kit Carrier Board Specification
- ► Jetson TX2 NX Module Pinmux
- ▶ Jetson TX2 NX Thermal Design Guide
- Jetson Xavier NX Developer Kit Carrier Board Design Files
- Jetson Xavier NX Developer Kit Carrier Board BOM
- ▶ Jetson TX2 NX SCL (Supported Component List)

1.2 Abbreviations and Definitions

Table 1-1 lists abbreviations that may be used throughout this design guide and their definitions.

Table 1-1. Abbreviations and Definitions

Abbreviation	Definition				
CAN	Controller Area Network				
CEC	Consumer Electronic Control				
CSI	Camera Serial Interface				
Diff	Differential				
DP	VESA® DisplayPort™ (output)				
DSI	Display Serial Interface				
eDP	Embedded DisplayPort				
ESD	Electrostatic Discharge				
еММС	Embedded MMC				
EMI	Electromagnetic Interference				
FET	Field Effect Transistor				
GPIO	General Purpose Input Output				
HDCP	High-bandwidth Digital Content Protection				
HDMI™	High-Definition Multimedia Interface				
12C	Inter IC Interface				
I2S	Inter IC Sound Interface				
LCD	Liquid Crystal Display				
LD0	Low Dropout (voltage regulator)				
LPDDR4	Low Power Double Data Rate DRAM, Fourth generation				
MDI	Medium-Dependent Interface				
MIL	1/1000 th of an inch				
MIPI	Mobile Industry Processor Interface				
mm	Millimeter				
PCIe	Peripheral Component Interconnect Express interface				
PCM	Pulse Code Modulation				
PHY	Physical Interface (i.e. USB PHY)				
ps	Pico-Seconds				
PMU	Power Management Unit				
RJ45	8P8C modular connector used in Ethernet and other data links				

Abbreviation	Definition			
RTC	Real Time Clock			
SD Card	Secure Digital Card			
SDIO	Secure Digital I/O Interface			
SE	Single-Ended			
SODIMM	Small Outline Dual In-line Memory Module			
SPI	Serial Peripheral Interface			
TMDS	Transition-minimized differential signaling			
UART	Universal Asynchronous Receiver-Transmitter			
USB	Universal Serial Bus			

Chapter 2. Jetson TX2 NX

The Jetson TX2 NX module resides at the center of the embedded system solution and includes the following:

- ► Power (PMIC/Regulators, etc.)
- ► DRAM (LPDDR4)
- ► eMMC
- ► Gigabit Ethernet Controller
- Power Monitor

In addition, a wide range of interfaces are available at the main connector for use on the carrier board as shown Table 2-1 and Figure 2-1.

Table 2-1. Jetson TX2 NX Interfaces

Category	Function	Category	Function
LICD	USB 2.0 Interface (3x)	LAN	Gigabit Ethernet
USB	USB 3.0 (1x)	I2C	4x
PCIe	PCIe (1 x1 + 1 x2)	UART	3x
Camera	CSI (3 x4 or 2 x4 + 2 x2, 1 x4 + 4 x2, or 5 x2), Control, Clock	SPI	2x
	eDP/DP (see Note 1)	External WLAN/BT/Modem	PCIe/UART/I2S, Control/handshake
Display	HDMI/DP Interface (w/CEC)	Fan	FAN PWM and Tach Input
	DSI (1, 2-lane), Display/Backlight Control	Debug	UART
Audio	I2S Interface (4x) and Clock	System	Power Control, Reset, alerts
SD Card/SDIO	SD Card or SDIO Interface (1x)	Power	Main Input and battery back-up for RTC
CAN	1x		

Figure 2-1. Jetson TX2 NX Block Diagram

Table 2-2 lists the 260-pin SODIMM description for the Jetson TX2 NX connector.

Table 2-2. Jetson TX2 NX Connector Pinout Matrix

Module Signal Name	Pin#	Pin#	Module Signal Name
GND	1	2	GND
CSI1 DO N	3	4	CSIO DO N
CSI1 DO P	5	6	CSIO DO P
GND	7	8	GND
CSI1 CLK N	9	10	CSIO CLK N
CSI1 CLK P	11	12	CSIO CLK P
GND	13	14	GND
CSI1 D1 N	15	16	CSIO D1 N
CSI1 D1 P	17	18	CSIO D1 P
GND	19	20	GND
CSI3 DO N	21	22	CSI2 D0 N
CSI3 DO P	23	24	CSI2 D0 P
GND	25	26	GND
CSI3 CLK N	27	28	CSI2 CLK N
CSI3 CLK P	29	30	CSI2 CLK P
GND	31	32	GND
CSI3 D1 N	33	34	CSI2 D1 N
CSI3 D1 P	35	36	CSI2 D1 P
GND	37	38	GND
DPO TXDO N	39	40	CSI4 D2 N
DPO TXDO P	41	42	CSI4 D2 P
GND	43	44	GND
DPO TXD1 N	45	46	CSI4 D0 N
DPO TXD1 P	47	48	CSI4 D0 P
GND	49	50	GND
DP0 TXD2 N	51	52	CSI4 CLK N
DPO TXD2 P	53	54	CSI4 CLK P
GND	55	56	GND
DPO TXD3 N	57	58	CSI4 D1 N
DPO TXD3 P	59	60	CSI4 D1 P
GND	61	62	GND
DP1 TXD0 N	63	64	CSI4 D3 N
DP1 TXD0 P	65	66	CSI4 D3 P
GND	67	68	GND
DP1 TXD1 N	69	70	DSI DO N
DP1 TXD1 P	71	72	DSI DO P
GND	73	74	GND
DP1 TXD2 N	75	76	DSI CLK N

Module Signal Name	Pin#	Pin#	Module Signal Name
PCIEO RXO P	133	134	PCIEO TXO N
GND	135	136	PCIEO TXO P
PCIEO RX1 N	137	138	GND
PCIEO RX1 P	139	140	PCIEO TX1 N
GND	141	142	PCIEO TX1 P
(CAN RX) RSVD	143	144	GND
KEY	KEY	KEY	KEY
(CAN TX) RSVD	145	146	GND
GND	147	148	PCIEO TX2 N
PCIEO RX2 N	149	150	PCIEO TX2 P
PCIEO RX2 P	151	152	GND
GND	153	154	PCIEO TX3 N
PCIEO RX3 N (RSVD)	155	156	PCIEO TX3 P
PCIEO RX3 P (RSVD)	157	158	GND
GND	159	160	PCIEO CLK N
USBSS RX N	161	162	PCIEO CLK P
USBSS RX P	163	164	GND
GND	165	166	USBSS TX N
(PCIE1 RX0 N) RSVD	167	168	USBSS TX P
(PCIE1 RXO P) RSVD	169	170	GND
GND	171	172	(PCIE1 TX0 N) RSVD
RSVD	173	174	(PCIE1 TX0 N) RSVD
RSVD	175	176	GND
GND	177	178	MOD SLEEP*
PCIE WAKE*	179	180	PCIEO CLKREQ*
PCIEO RST*	181	182	(PCIE1 CLKREQ*) RSVD
(PCIE1 TX0 N) RSVD	183	184	GBE MDIO N
I2C0 SCL	185	186	GBE MDIO P
I2CO SDA	187	188	GBE LED LINK
I2C1 SCL	189	190	GBE MDI1 N
I2C1 SDA	191	192	GBE MDI1 P
12SO DOUT	193	194	GBE LED ACT
I2SO DIN	195	196	GBE MDI2 N
12S0 FS	197	198	GBE MDI2 P
I2SO SCLK	199	200	GND
GND	201	202	GBE MDI3 N
UART1 TXD	203	204	GBE MDI3 P
UART1 RXD	205	206	GPIO07

Module Signal Name	Pin#	Pin#	Module Signal Name
DP1 TXD2 P	77	78	DSI CLK P
GND	79	80	GND
DP1 TXD3 N	81	82	DSI D1 N
DP1 TXD3 P	83	84	DSI D1 P
GND	85	86	GND
GPIO00	87	88	DPO HPD
SPIO MOSI	89	90	DPO AUX N
SPIO SCK	91	92	DPO AUX P
SPIO MISO	93	94	HDMI CEC
SPIO CSO*	95	96	DP1 HPD
SPIO CS1*	97	98	DP1 AUX N
UARTO TXD	99	100	DP1 AUX P
UARTO RXD	101	102	GND
UARTO RTS*	103	104	SPI1 MOSI
UARTO CTS*	105	106	SPI1 SCK
GND	107	108	SPI1 MISO
USBO D N	109	110	SPI1 CSO*
USBO D P	111	112	SPI1 CS1*
GND	113	114	CAMO PWDN
USB1 D N	115	116	CAMO MCLK
USB1 D P	117	118	GPIO01
GND	119	120	CAM1 PWDN
USB2 D N	121	122	CAM1 MCLK
USB2 D P	123	124	GPIO02
GND	125	126	GPIO03
GPIO04	127	128	GPIO05
GND	129	130	GPIO06
PCIEO RXO N	131	132	GND

Module Signal Name	Pin#	Pin#	Module Signal Name
UART1 RTS*	207	208	GPIO08
UART1 CTS*	209	210	CLK 32K OUT
GPIO09	211	212	GPIO10
CAM I2C SCL	213	214	FORCE RECOVERY*
CAM I2C SDA	215	216	GPIO11
GND	217	218	GPIO12
SDMMC DATO	219	220	I2S1 DOUT
SDMMC DAT1	221	222	I2S1 DIN
SDMMC DAT2	223	224	I2S1 FS
SDMMC DAT3	225	226	I2S1 SCLK
SDMMC CMD	227	228	GPIO13
SDMMC CLK	229	230	GPIO14
GND	231	232	I2C2 SCL
SHUTDOWN REQ*	233	234	I2C2 SDA
PMIC BBAT	235	236	UART2 TXD
POWER EN	237	238	UART2 RXD
SYS RESET*	239	240	SLEEP/WAKE*
GND	241	242	GND
GND	243	244	GND
GND	245	246	GND
GND	247	248	GND
GND	249	250	GND
VDD IN	251	252	VDD IN
VDD IN	253	254	VDD IN
VDD IN	255	256	VDD IN
VDD IN	257	258	VDD IN
VDD IN	259	260	VDD IN

 Legend
 Ground
 Power
 Reserved - must be left unconnected

Note: Refer to the Jetson TX2 NX pin description spreadsheet attached to this design guide for more details.

Chapter 3. Developer Kit Feature Considerations

The Jetson TX2 NX module is compatible with the NVIDIA Jetson Xavier NX Developer Kit. The Jetson Xavier NX Developer Kit carrier board design files are provided as a reference design. This chapter describes details necessary for designers to know to replicate certain features if desired. In addition, aspects of the design that are specific to the NVIDIA developer kit usage but not useful or supported on a custom carrier board are also identified.

Most of the features implemented on the Jetson Xavier NX Developer Kit carrier board design can be duplicated by copying the connections from the P3509 carrier board reference design. Some of the following features have aspects that would require additional information.

- Button Power MCU (EFM8SB10F2G)
- USB SuperSpeed Hub (Realtek RTS5420)
- Power over Ethernet (PoE)
- ► TI TXB0108 level shifters
- ▶ ID EEPROM (Not recommended to be copied from reference design)

3.1 Button Power MCU

The developer kit carrier board implements a button power MCU (EFM8SB10F2G). This device is programmed with firmware that is available on the Jetson Download Center. The posting is titled *Jetson AGX Xavier and Jetson Xavier NX Power Button Supervisor Firmware*. The connections used on the reference design must be followed exactly and the firmware provided must be used to ensure correct functionality.

3.2 USB SuperSpeed Hub

The USB SS hub design uses a Realtek RTS5420 device. The hub circuit includes an SPI FLASH device which holds configuration information. A design intending to duplicate the developer kit hub implementation should include the same SPI FLASH programmed to match, or the hub should be customized with fuses with the same settings. The configuration in the SPI FLASH includes the following:

- ▶ Power enables (DPS1/2/3/4_PWR) set to be active high
- Charging feature disabled
- ▶ SSC valid

3.3 Power over Ethernet

The P3509 carrier board includes a 4-pin Power over Ethernet (PoE) header (J19) which brings out the VC power pins of the Ethernet connector. To use this alternate PoE power mechanism to power a custom carrier board, the design would require a power converter to take the high voltage PoE supply (38V-60V) and convert it to the correct voltage for the custom carrier board.

3.4 TI TXB0108 Level Shifters

The P3509 carrier board uses these level shifters to shift many of the signals going to the 40-pin header from 1.8V to 3.3V. The design of these level shifters supports bidirectional signaling without the use of a direction signal but has some side effects that should be considered. See the Jetson Nano Developer Kit 40-Pin Expansion Header GPIO Usage Considerations Application Note for details.

3.5 Features Not to be Implemented

The Jetson Xavier NX Developer Kit carrier board has some features that should not be copied as they are not required or useful for a custom carrier board design. The ID EEPROM (P3509 - U17) is a feature that is used for NVIDIA internal purposes, but not useful on a custom design. A similar function may be desired for a custom design, but the NVIDIA software will not interact with these devices and the I2C address used by the developer kit carrier board ID EEPROM on the I2C2 interface (7'h57) should be avoided.

Chapter 4. Module Connector

4.1 Module Connector Details

Jetson TX2 NX modules connect to the carrier board using a 260-pin SODIMM connector. The mating connector used on the developer kit carrier board is listed in the Jetson TX2 NX Supported Components List (SCL). This connector is a DDR4 SODIMM, 260-pin, right-angle, standard key type. The full height of the connector is 9.2 mm. Refer to the connector specification for details. Other heights are available.

4.2 Module to Mounting Hardware

The Jetson TX2 NX module is installed in the SODIMM connector which has latching mechanisms to hold the board in place. In addition, it is required that the module is mounted to the main carrier board PCB using metal standoffs and screws (or equivalent), both for mechanical integrity and to provide additional grounding points. The developer kit uses threaded standoffs that are hex, 4.5 mm widths (narrow diameter) x 6.57 \pm 0.1 mm length. These have M2.5 threads. The screws used are M2.5 x 3.7 mm, pan head.

Other SODIMM connector heights are available. If a different height connector is used, the standoff height will have to be adjusted accordingly to account for the difference in height from main PCB to module PCB.

Figure 4-1. Jetson TX2 NX Module Installed in SODIMM Connector

4.3 Module Installation and Removal

To install the Jetson TX2 NX module correctly, follow the sequence and mounting hardware instructions:

Here are some suggested assembly guidelines.

- 1. Assemble any required thermal solution on the module.
- 2. Install the Jetson TX2 NX module
 - a). Baseboard with suitable standoff for as per SODIMM connector height defined.
 - b). Insert module fully at an angle of 25-35 degree into the SODIMM connector.
 - c). Arc down the module board until the SODIMM connector latch engages.
 - d). Secure the Jetson TX2 NX module to the baseboard with screws into the standoff/spacer. The developer kit (shown in Figure 4 2) uses a standoff and screws to secure the module to the system/base- board.

Figure 4-2. Module to Connector Assembly Diagram

To remove the Jetson TX2 NX module correctly, follow the reverse of the installation sequence.

Chapter 5. Power

Power for the module is supplied on the **VDD_IN** pins and is nominally 5.0V (see the *Jetson TX2 NX Data Sheet* for supply tolerance and maximum current).

CAUTION: Jetson TX2 NX is not hot-pluggable. When installing the module, the main power supply should not be connected. Before removing the module, the main power supply (to VDD_IN pins) must be disconnected and allowed to discharge below 0.6V.

Table 5-1. Jetson TX2 NX Power and System Pin Descriptions

Pin #	Module Pin Name	Tegra X2 Signal	Usage/Description	Usage on DevKit Carrier Board	Direction	Pin Type
251 ↓ 260	VDD_IN	-	Main power – Supplies PMIC and other regulators	Main DC input	Input	5.0V
235	PMIC_BBAT	-	PMIC Battery Back-up. Optionally used to provide back-up power for the Real-Time-Clock (RTC). Connects to Lithium Cell or super capacitor on Carrier Board. PMIC is source when charging cap or coin cell. Super cap or coin cell is source when system is disconnected from power.	Battery Back-up using Super- capacitor	Bidir	1.65V-5.5V
214	FORCE_ RECOVERY*	BUTTON_VOL_UP	Force Recovery strap pin	Automation header	Input	CMOS - 1.8V
240	SLEEP/WAKE*	BUTTON_PWR_ON	Sleep/Wake. Configured as GPIO for optional use to indicate the system should enter or exit sleep mode.	Automation header	Input	CMOS - 5.0V
233	SHUTDOWN_ REQ*	-	Used by the module to request the carrier board to shut down. 100kΩ pull-up to VDD_IN (5V) on the module.	System	Output	Open Drain, 5.0V
237	POWER_EN	(PMIC EN0 through converter logic)	Signal for module on/off: high level on, low level off. Connects to module PMIC EN0 through converter logic. 100kΩ pulldown on the module.	System	Input	Analog 5.0V
239	SYS_RESET*	SYS_RESET_IN_N	Module Reset. Reset to the module when driven low by the carrier board. Used as carrier board supply enable when driven high by the module when module power sequence is complete. Used to ensure proper power on/off sequencing for between module and carrier board supplies. $4.7k\Omega$ pull-up to $1.8V$ on the module.	Automation header	Bidir	Open Drain, 1.8V
178	MOD_SLEEP*	GPIO_PA6	Indicates the module sleep status. Low is in sleep mode, high is normal operation. This pin is controlled by system software and should not be modified.	HDMI termination pull-down FET control disable	Output	CMOS - 1.8V
210	CLK_32K_OUT	-	Sleep/Suspend clock	M.2 Key E	Output	CMOS - 1.8V

Notes:

- 1. In the Type/Dir column, Output is from Jetson TX2 NX. Input is to Jetson TX2 NX. Bidir is for Bidirectional signals.
- 2. The directions for FORCE_RECOVERY* and SLEEP/WAKE* signals are true when used for those functions. Otherwise as GPIOs, the direction is bidirectional.

Figure 5-1. Jetson TX2 NX Power and Control Block Diagram

5.1 Power Supply and Sequencing

The carrier board receives the main power source and uses this to generate the enable to Jetson TX2 NX (POWER_EN) after the carrier board has ensured the main supply is stable and the associated decoupling capacitors have charged. The carrier board supplies are not enabled at this time. Once POWER_EN is driven active (high), Jetson TX2 NX begins to Power-ON. When the module Power-ON sequence has completed, the SYS_RESET* signal is driven inactive (high) and this is used by the carrier board to enable its various supplies. SYS_RESET* is bidirectional and can be driven by the carrier board to reset Jetson TX2 NX, which results in a full system power cycle. The SHUTDOWN_REQ* signal from Jetson TX2 NX can be driven active (low) if the system must be shut down, due to a critical thermal issue, etc. The power control logic on the carrier board should drive POWER_EN inactive (low) if SHUTDOWN_REQ* is asserted. The SHUTDOWN_REQ* signal is latched to a logic low level when the VDD_IN supply is at or below 4.2V.

Figure 5-2. System Power and Control Block Diagram

Note: Designs which implement an eFUSE or current limiting device on the input power rail of the module should select a part that DOES NOT limit reverse current.

Figure 5-3. Power Up Sequence

Power-up Sequence (No Power Button – Auto-Power-On Enabled)

Figure 5-4. Power Down – Initiated by SHUTDOWN_REQ* Assertion

Figure 5-5. Power Down – Sudden Power Loss

Note: **SHUTDOWN_REQ*** must always be serviced by the carrier board to toggle **POWER_EN** from high to low, even in cases of sudden power loss.

Chapter 6. USB and PCI Express

Jetson TX2 NX allows multiple USB 2.0, USB 3.0 and PCIe interfaces to be brought out of the module.

Table 6-1. Jetson TX2 NX USB 2.0 Pin Descriptions

Pin #	Module Pin Name	Tegra X2 Signal	Usage/Description	Usage on DevKit Carrier Board	Direction	Pin Type
87	GPI000	USB_VBUS_EN0	GPIO #0 (USB 0 VBUS Detect)	USB 2.0 Micro B	Input	Open Drain, 1.8V
109	USB0_D_N	USB0_DN	LICE 20 Per 10 Per	USB 2.0 Micro B	Bidir	USB PHY
111	USB0_D_P	USB0_DP	USB 2.0 Port 0 Data			
115	USB1_D_N	USB1_DN	LICE 20 Peril 1 Peril	USB Hub	Bidir	USB PHY
117	USB1_D_P	USB1_DP	USB 2.0 Port 1 Data			
121	USB2_D_N	USB2_DN	HCD 0.0 D + 0.D +	M.2 Key E	Bidir	LICE DILIV
123	USB2_D_P	USB2_DP	USB 2.0, Port 2 Data			USB PHY

Notes:

- 1. In the Type/Dir column, Output is from Jetson TX2 NX. Input is to Jetson TX2 NX. Bidir is for Bidirectional signals.
- 2. The direction of GPI000 is true when used for this function. Otherwise as a GPI0, the direction is bidirectional.

Table 6-2. Jetson TX2 NX USB 3.0 and PCIe Pin Descriptions

Pin #	Module Pin Name	Jetson TX2 NX Function	Tegra X2 Signal	Usage/Description	Usage on DevKit Carrier Board	Direction	Pin Type
131	PCIE0_RX0_N	PCIE0_RX0_N	PEX_RX4N	PCIe #0 Receive 0 (PCIe Ctrl #0			
133	PCIE0_RX0_P	PCIE0_RX0_P	PEX_RX4P	Lane 0)	M.2 Key M	la a t	PCIe PHY
137	PCIE0_RX1_N	PCIE0_RX1_N	PEX_RX2N	PCIe #0 Receive 1 (PCIe Ctrl #0	M.Z Key M	Input	PCIE PHT
139	PCIE0_RX1_P	PCIE0_RX1_P	PEX_RX2P	Lane 1)			
149	PCIE0_RX2_N	RSVD	-	Reserved	-	-	-
151	PCIE0_RX2_P	RSVD	-	Reserved	-	-	-
155	PCIEO_RX3_N (RSVD)	RSVD	-	Reserved	_	-	-
157	PCIEO_RX3_P (RSVD)	RSVD	-	Reserved	_	-	-
179	PCIE_WAKE*	PCIE_WAKE*	PEX_WAKE_N	PCIe Wake. 47kΩ pull-up to 3.3V on the module.	M.2 Key E & M	Input	Open Drain 3.3V
181	PCIE0_RST*	PCIE0_RST*	PEX_L0_RST_N	PCIe #0 Reset (PCIe Ctrl #0). 4.7kΩ pull-up to 3.3V on the module.	M.2 Key M		Open Drain 3.3V
134	PCIE0_TX0_N	PCIE0_TX0_N	PEX_TX4N	PCIe #0 Transmit 0 (PCIe Ctrl	M O K M	Output	
136	PCIE0_TX0_P	PCIE0_TX0_P	PEX_TX4P	#0 Lane 0)	M.2 Key M	'	DOL DUIV
140	PCIE0_TX1_N	PCIE0_TX1_N	PEX_TX2N	PCIe #0 Transmit 1PCIe Ctrl #0	M 2 K M		PCIe PHY
142	PCIE0_TX1_P	PCIE0_TX1_P	PEX_TX2P	Lane 1)	M.2 Key M		

Pin #	Module Pin Name	Jetson TX2 NX Function	Tegra X2 Signal	Usage/Description	Usage on DevKit Carrier Board	Direction	Pin Type
148	PCIE0_TX2_N	RSVD	-	Reserved	-	-	-
150	PCIE0_TX2_P	RSVD	-	Reserved	-	-	-
154	PCIE0_TX3_N	RSVD	-	Reserved	-	-	-
156	PCIE0_TX3_P	RSVD	-	Reserved	-	_	-
160	PCIE0_CLK_N	PCIEO_CLK_N	PEX_CLK1N	PCIe #0 Reference Clock (PCIe			DOL DUIV
162	PCIE0_CLK_P	PCIE0_CLK_P	PEX_CLK1P	Ctrl #0)			PCIe PHY
180	PCIE0_CLKREQ*	PCIE0_CLKREQ*	PEX_L0_ CLKREQ_N	PCIE #0 Clock Request (PCIe Ctrl #0). $47k\Omega$ pull-up to $3.3V$ on the module.	M.2 Key M	Bidir	Open Drain 3.3V
167	(PCIE1_RX0_N) RSVD	PCIE1_RX0_N	PEX_RX0N	PCIe 1 Receive 0– (PCIe Ctrl #2 Lane 0)		Input	DOL BLIV
169	(PCIE1_RX0_P) RSVD	PCIE1_RX0_P	PEX_RX0P	PCIe 1 Receive 0+ (PCIe Ctrl #2 Lane 0)		Input	PCIe PHY
172	(PCIE1_TX0_N) RSVD	PCIE1_TX0_N	PEX_TX0N	PCIe 1 Transmit 0– (PCIe Ctrl #2 Lane 0)		Output	DOL. DUIV
174	(PCIE1_TX0_P) RSVD	PCIE1_TX0_P	PEX_TX0P	PCIe 1 Transmit 0+ (PCIe Ctrl #2 Lane 0)			PCIe PHY
173	(PCIE1_CLK_N) RSVD	PCIE1_CLK_N	PEX_CLK3N	PCIe 1 Reference Clock- (PCIe Ctrl #2)	M.2 Key E		DOL BUIL
175	(PCIE1_CLK_P) RSVD	PCIE1_CLK_P	PEX_CLK3P	PCIe 1 Reference Clock+ (PCIe Ctrl #2)			PCIe PHY
182	(PCIE1_CLKREQ*) RSVD	PCIE1_CLKREQ*	PEX_L2_ CLKREQ_N	PCIE 1 Clock Request (PCIe Ctrl #2). 47kΩ pull-up to 3.3V on the module.		Input	D : 00V
183	(PCIE1_RST*) RSVD	PCIE1_RST*	PEX_L2_RST_N	PCIe 1 Reset (PCIe Ctrl #2). 4.7kΩ pull-up to 3.3V on the module.		Output	Open Drain 3.3V
161	USBSS_RX_N	USBSS_RX_N	PEX_RX1N	USB SS Receive (USB 3.0 Ctrl		1	LICE CC DILIV
163	USBSS_RX_P	USBSS_RX_P	PEX_RX1P	#1)	USB Hub	Input	USB SS PHY
166	USBSS_TX_N	USBSS_TX_N	PEX_TX1N	USB SS Transmit (USB 3.0 Ctrl	USD HUD	Output	USB SS PHY
168	USBSS_TX_P	USBSS_TX_P	PEX_TX1P	#1)		Output	03B 33 PHI

Notes: In the Type/Dir column, Output is from Jetson TX2 NX. Input is to Jetson TX2 NX. Bidir is for Bidirectional signals.

Table 6-3 lists the mapping options for Jetson TX2 NX.

Table 6-3. Jetson TX2 NX USB 3.0 and PCIe Lane Mapping Configurations

Mo	Module Pin Names		PCIEO_1	PCIEO_0	USBSS
	Tegra X2 Lanes		Lane 2	Lane 4	Lane 1
USB 3.0	PCle				
1	1x1 + 1x2	PCIe#2_0	PCle#0_1	PCIe#0_0	USB_SS#1
Usage on DevKit Carrier		M.2 Key E	M.2 Key M		USB Hub
Во	Board				

6.1 USB

Figure 6-1 shows the USB connection example.

Figure 6-1. USB Connection Example

Notes:

- 1. AC capacitors should be located close to either the USB connector, or the Jetson TX2 NX pins.
- 2. For USB 3.0 IF shown above (USBSS_TX/RX), AC caps are required on the TX lines. If routed directly to a peripheral, AC caps are needed on the peripheral TX lines as well. The AC caps are recommended to be located near the Jetson TX2 NX connector pins, although locating the caps near the peripheral RX pins is acceptable.
- 3. USB0 must be available to use as USB Device for USB Recovery Mode.
- 4. Load switch can be enabled by SYS_RESET* or an available GPIO.
- 5. Connector used must be USB Implementers Forum certified if USB 3.0 implemented.

6.1.1 USB 2.0 Design Guidelines

These requirements apply to the USB 2.0 controller PHY interfaces: USB[2:0]_D_N/P.

Table 6-4. USB 2.0 Interface Signal Routing Requirements

Parameter	Requirement	Units	Notes
Max frequency (high speed – Bit Rate/UI period/Frequency	480/2.083/240	Mbps/ns/MHz	
Max loading (High Speed / Full Speed / Low Speed)	10 / 150 / 600	pF	
Reference plane	GND		
Trace impedance (Diff pair / SE)	90 / 50	Ω	±15%
Via proximity (signal to reference)	< 3.8 (24)	mm (ps)	See Note 1
Max trace length/delay (Microstrip / Stripline)	6 (960)	In (ps)	
Max intra-pair skew between USBx_D_P and USBx_D_N	7.5	ps	

Notes:

- 1. Up to four signal vias can share a single GND return via.
- 2. Adjustments to the USB drive strength, slew rate, termination value settings should not be necessary, but if any are made, they MUST be done as an offset to default values instead of overwriting those values.

6.1.2 USB 3.0 Design Guidelines

The requirements following apply to the USB 3.0 port #0 PHY interface: **USBSS_TX_N/P**, **USBSS_RX_N/P**.

Table 6-5. USB 3.0 Interface Signal Routing Requirements

Parameter	Requirement	Units	Notes			
Specification	'	'	<u>'</u>			
Data rate / UI period	5.0 / 200	Gbps/ps				
Max number of loads	1	load				
Termination	90 differential	Ω	On-die termination at TX and RX			
Electrical Specification						
Insertion loss @ 2.5GHz Type-C Type A Resonance dip frequency	<=2 <=7 >8	dB dB GHz	Only PCB with add-on components (connector excluded) is considered			
TDR dip	>= 75	Ω	Using TDR pulse with Tr (10%-90%) = 200ps			
Near-end crosstalk (NEXT) @ DC to 5GHz	<=-45	dB	For each TX-RX NEXT			
IL/NEXT plot	See Figure 6-2					
Impedance	·					
Reference plane	GND					
Trace impedance (Diff pair / SE)	85-90 / 45-55	Ω	±15%			
Trace Spacing – for TX/RX non-interleaving						
TX-RX Xtalk is very critical in PCB trace routing. The ideal solution is to route TX and RX on different layers.						

Parameter	Requirement	Units	Notes
If routing on the same layer, strongly recommend not interle	eaving TX and RX lanes		
If it is necessary to have interleaved routing in breakout, all		d follow the rule of inte	er-SNEXT
The breakout trace width is suggested to be the minimum to			
Do not perform serpentine routing for intra-pair skew comp		<u> </u>	
See Figure 6-3		,	
Min inter-S _{NEXT} (between TX/RX)			This is the recommended
Breakout	4.85x	Dielectric height	dimension for meeting NEXT
Main-route	3x		requirement.
Min inter-S _{FEXT} (between TX/TX or RX/RX)			Stripline structure in a GSSG structure is assumed; it holds in
Breakout	1x	Inter-pair	broadside-coupled stripline
Main-route	1x	spacing	structure.
Max length			All values are in terms of minimum
Breakout	11	mm	dielectric height.
Main-route	Max trace length -		
	LBRK		LBRK = Breakout length
Trace Spacing			,
Pair-Pair (inter-pair) (Microstrip / Stripline)	4x / 3x	dielectric	
To plane and capacitor pad (Microstrip / Stripline)	4x / 3x		
To unrelated high-speed signals (Microstrip / Stripline)	4x / 3x		
Trace Length/Skew	·		
Trace loss characteristic @ 2.5GHz	< 0.7	dB/in	The following max length is derived based on this characteristic. See Note 1.
Breakout region (Max trace delay)	11	mm	Minimum width and spacing
Max trace length/delay	152.3 (1014)	mm (ps)	
Max PCB via distance/delay from pin	6.29 (41.9)	mm (ps)	
Max within pair (intra-pair) skew	0.15 (1)	mm (ps)	
Differential pair uncoupled length/delay	6.29 (41.9)	mm (ps)	
AC Cap	122 (1111)	() - /	I
Value	0.1	uF	Smallest size preferred (i.e. 0201). See note under USB Connection Diagrams for details on when AC capacitors are required
Location (max distance to adjacent discontinuities)	8 (53.22)	mm (ps)	The AC cap location should be located as close as possible to nearby discontinuities
Via			
via structure	Y-pattern is strongly r symmetry)	ecommended (keep	Xtalk suppression is best when using Y-pattern. Can also reduce the limit of pair-pair distance. See Figure 6-4.
GND via	Place GND via as sym	,	GND via is used to maintain return path, while its Xtalk
	Up to 4 signal vias (2 c single GND return via		suppression is limited.
AC cap pad voiding	GND (or PWR) void un preferred	der / above the cap is	Voiding is required if cap size is 0603 or large.
Max via stub length	0.4	mm	long via stub requires review (IL and resonance dip check).
ESD			
Preferred device			Type: Texas Instruments TPD4I05U06. Optional. Place ESD component near connector

Parameter	Requirement	Units	Notes
Max junction capacitance (IO to GND)	0.8	pF	
Location (max distance to connector)	8 (53)	mm (ps)	
Layout recommendations			See USB 3.0 Guideline Figure 6-5
Common-mode choke (not recommended – only See Chapter 15 for details on CMC if implemente	• •	issuesj.	
Component Order			
Component order			Chip _ AC capacitor (TX only) _ common mode choke _ ESD _ Connector: See Figure 6-6.

General: See Chapter 15 for guidelines related to serpentine routing, routing over voids and noise coupling

Notes:

- 1. Longer trace lengths may be possible if the total trace loss is equal to or better than the target. If the loss is greater, the max trace lengths will need to be reduced.
- 2. Recommend trace length matching to <1ps before vias or any discontinuity to minimize common mode conversion.
- 3. Place GND vias as symmetrically as possible to data pair vias.

The following figures show the USB 3.0 interface signal routing requirements.

Figure 6-2. IL/NEXT Plot

Figure 6-3. Trace Spacing for TX/RX Non-Interleaving

Figure 6-4. Via Structures

Figure 6-5. ESD Layout Recommendations

Figure 6-6. Component Order

6.1.3 Common USB Routing Guidelines

If routing to USB device or USB connector includes a flex or 2nd PCB, the total routing including all PCBs/flexes must be used for the max trace and skew calculations.

Keep critical USB related traces away from other signal traces or unrelated power traces/areas or power supply components.

Table 6-6. USB 2.0 Signal Connections

Module Pin Name	Туре	Termination	Description
USB[2:0]_D_P USB[2:0]_D_N	DIFF I/O	90Ω common-mode chokes close to connector. ESD Protection between choke and connector on each line to GND	USB Differential Data Pair: Connect to USB connector, Mini-Card socket, hub or another device on the PCB.

Table 6-7. Miscellaneous USB 2.0 Signal Connections

Module Pin Name	Туре	Termination	Description
GPI000	А	5V to 1.8V level shifter	USB0 VBUS Enable: Connect to VBUS pin of USB connector receiving USB0_+/- interface through level shifter. Also connects to VBUS power supply if host mode supported.

Table 6-8. USB 3.0 Signal Connections

Module Pin Name	Туре	Termination	Description
USBSS_TX_N/P (USB 3.0 Port #0)	DIFF Out	Series 0.1uF caps. ESD Protection near connector if required.	USB 3.0 Differential Transmit Data Pairs: Connect to USB 3.0 connectors, hubs or other devices on the PCB.
USBSS_RX_N/P (USB 3.0 Port #0)	DIFF In	If routed directly to a peripheral on the board, AC caps are needed for the peripheral TX lines. ESD protection near connector if required.	USB 3.0 Differential Receive Data Pairs: Connect to USB 3.0 connectors, hubs or other devices on the PCB.

6.2 PCle

Jetson TX2 NX brings two PCIe interfaces to the module pins. One x1 and one x2 interface.

Figure 6-7. Example PCIe Connections

Notes:

- AC Capacitors required on RX lines on carrier board if connected directly to device. Not needed if connected to PCIe connector, M.2 Key M, etc. In those cases, the AC caps are on the board plugged into those connectors.
- 2. See design guidelines for correct AC capacitor values.
- 3. The PCIe clock outputs comply to the PCIe CEM specification "REFCLK DC Specifications and AC Timing Requirements." The clocks are HCSL compatible as are the RX/TX signals.

6.2.1 PCIe Design Guidelines

Table 6-9 and Figure 6-8 provide the signal routing requirements for the PCIe interface.

Table 6-9. PCIe Interface Signal Routing Requirements

Parameter	Requirement	Units	Notes	
Specification			<u> </u>	
Data rate / UI period	5.0 / 200	Gbps/ps	2.5GHz, half-rate architecture	
Configuration / device organization	1	Load		
Topology	Point-point		Unidirectional, differential	
Termination	50	Ω	To GND Single Ended for P and N	
Impedance				
Trace Impedance (diff / SE)	85 / 50	Ω	±15%. See Note 1	
Reference plane	GND			
Spacing				
Trace Spacing (Stripline/Microstrip)			See Note 2	
pair – pair	3x / 4x	Dielectric		
To plane and capacitor pad	3x / 4x			
To unrelated high-speed signals	3x / 4x			
Length/Skew				
Trace loss characteristic @ 2.5 GHz	< 0.7	dB/in	The following max length is derived based on this characteristic. See Note 3	
Breakout region (max length)	41.9	ps	Minimum width and spacing. 4x or wider dielectric height spacin is preferred	
Max trace length/delay	5.5 (880)	in (ps)		
Max PCB via distance from the BGA	41.9	ps	Max distance from BGA ball to first PCB via.	
PCB within pair (intra-pair) skew	0.15 (0.5)	mm (ps)	Do trace length matching before hitting discontinuities	
Within pair (intra-pair) matching between subsequent discontinuities	0.15 (0.5)	mm (ps)		
Differential pair uncoupled length	41.9	ps		
Via			·	
Via placement	Place GND vias as symmetrically as possible to data pair vias. GND via distance should be placed less than 1x the diff pair via pitch			
Max # of vias				
PTH vias	2 for TX traces and 2 for RX trace			
Micro-vias	No requirement			
Max via stub length	0.4	mm	Longer via stubs would require review	
Routing signals over antipads	Not allowed			
AC Cap				
Value (Min/Max)	0.075 / 0.2	uF	Only required for TX when routed to connector	
Location (max length to adjacent discontinuity)	8	mm	Discontinuity such as edge finge component pad	

Parameter	Requirement	Units	Notes	
Voiding	Voiding the plane direct 3-4 mils larger than the recommended.	,	See Figure 6-8	
General: See Chanter 15 for guidelines related to sementine routing, routing over voids and noise counting				

General: See Chapter 15 for guidelines related to serpentine routing, routing over voids and noise coupling

Notes:

- 1. The PCIe spec. has 40- 60Ω absolute min/max trace impedance, which can be used instead of the 50Ω , \pm 15%.
- 2. If routing in the same layer is necessary, route group TX and RX separately without mixing RX/TX routes and keep distance between nearest TX/RX trace and RX to other signals 3x RX-RX separation.
- 3. Longer trace lengths may be possible if the total trace loss is equal to or better than the target. If the loss is greater, the max trace lengths will need to be reduced.
- 4. Do length matching before via transitions to different layers or any discontinuity to minimize common mode conversion.

Figure 6-8. AC Cap Voiding

Table 6-10. PCIe Signal Connections

Module Pin Name (Jetson TX2 NX Function)	Туре	Termination	Description			
PCIe Interface 0 (x2 – Controller #0)						
PCIE0_TX1_N/P - Lane 1 PCIE0_TX0_N/P - Lane 0	DIFF OUT	Series 0.1uF Capacitor	Differential Transmit Data Pairs: Connect to TX_N/P pins of PCIe connector or RX_N/P pin of PCIe device through AC cap according to supported configuration.			
PCIE0_RX1_N/P - Lane 1 PCIE0_RX0_N/P - Lane 0	DIFF IN	Series 0.1uF capacitors near Jetson TX2 NX pins or device if device on main PCB.	Differential Receive Data Pairs: Connect to RX_N/P pins of PCIe connector or TX_N/P pin of PCIe device through AC cap according to supported configuration.			
PCIE0_CLK_N/P	DIFF OUT		Differential Reference Clock Output: Connect to REFCLK_N/P pins of PCIe device/connector			
PCIE0_CLKREQ*	I	47kΩ pull-up to VDD_3V3_SYS on module	PCIe Clock Request for PCIE0_CLK: Connect to CLKREQ pins on device/connector(s)			
PCIE0_RST*	0	4.7kΩ pull-up to VDD_3V3_SYS on module	PCIe Reset: Connect to PERST pins on device/connector(s)			
PCIe Interface 1 (x1 – Controlle	r #2)					
PCIE1_TX0_N/P	DIFF OUT	Series 0.1uF Capacitor	Differential Transmit Data Pair: Connect to TX_N/P pins of PCIe connector or RX_N/P pin of PCIe device through AC cap according to supported configuration.			
PCIE1_RX0_N/P	DIFF IN	Series 0.1uF capacitors near Jetson TX2 NX pins or device if device on main PCB.	Differential Receive Data Pair: Connect to RX_N/P pins of PCIe connector or TX_N/P pin of PCIe device through AC cap according to supported configuration.			
PCIE1_CLK_N/P	DIFF OUT		Differential Reference Clock Output: Connect to REFCLK_N/P pins of PCIe device/connector			

Module Pin Name (Jetson TX2 NX Function)	Type	Termination	Description	
PCIE1_CLKREQ*	I	47kΩ pull-up to VDD_3V3_SYS on module	PCIe Clock Request for PCIE1_CLK: Connect to CLKREQ pins on device/connector(s)	
PCIE1_RST*	0	4.7kΩ pull-up to VDD_3V3_SYS on module	PCIe Reset: Connect to PERST pins on device/connector(s)	
Common				
PCIE_WAKE*	I	100kΩ pull-up to VDD_3V3_SYS on module	PCIe Wake: Connect to WAKE pins on device or connector	

6.3 Gigabit Ethernet

Jetson TX2 NX integrates a Realtek RTL8211F(I) Gigabit Ethernet PHY. The magnetics and RJ45 connector would be implemented on the carrier board.

Table 6-11. Jetson TX2 NX Gigabit Ethernet Pin Description

Pin #	Module Pin Name	Tegra X2 Signal	Usage/Description	Usage on DevKit Carrier Board	Direction	Pin Type
194	GBE_LED_ACT	-	Ethernet Activity LED (Yellow)		Output	-
188	GBE_LED_LINK	-	Ethernet Link LED (Green)		Output	-
184	GBE_MDI0_N	-	Ch E Tana of annuar Data 0			
186	GBE_MDI0_P	-	GbE Transformer Data 0			
190	GBE_MDI1_N	-	0157 (
192	GBE_MDI1_P	-	GbE Transformer Data 1	LAN	Bidir	MDI
196	GBE_MDI2_N	-	ChE Transferred Data 2		Blair	MDI
198	GBE_MDI2_P	-	GbE Transformer Data 2			
202	GBE_MDI3_N	-	ChE Transferred Data 2			
204	GBE_MDI3_P	-	GbE Transformer Data 3			

Notes: In the Type/Dir column, Output is from Jetson TX2 NX. Input is to Jetson TX2 NX. Bidir is for Bidirectional signals.

Figure 6-9. Jetson TX2 NX Ethernet Connections

Figure 6-10. Gigabit Ethernet Magnetics and RJ45 Connections

Table 6-12. Ethernet MDI Interface Signal Routing Requirements

Parameter	Requirement	Units	Notes
Reference plane	GND		
Trace impedance (Diff pair / Single Ended)	100 / 50	Ω	$\pm 15\%$. Differential impedance target is 100Ω. 90Ω can be used if 100Ω is not achievable
Min trace spacing (pair-pair)	0.763	mm	
Max trace length/delay	109 (690)	mm (ps)	
Max within pair (intra-pair) skew	0.15 (1)	mm (ps)	
Number of vias	minimum		Ideally there should be no vias, but if required for breakout to Ethernet controller or magnetics, keep very close to either device.

Table 6-13. Ethernet Signal Connections

Module Pin Name	Туре	Termination	Description
GBE_MDI[3:0]_N/P	DIFF I/O		Gigabit Ethernet MDI IF Pairs: Connect to Magnetics -/+ pins
GBE_LED_LINK	0	110Ω series resistor	Gigabit Ethernet Link LED: Connect to green LED on RJ45 connector
GBE_LED_ACT	0	110Ω series resistor	Gigabit Ethernet Activity LED: Connect to yellow LED on RJ45 connector

Chapter 7. Display

Jetson TX2 NX designs can select from several display options including MIPI DSI and eDP for embedded displays, and HDMI or DP for external displays. The maximum number of simultaneous displays supported by Jetson TX2 NX is two.

Table 7-1. Jetson TX2 NX Display General Pin Description

Pin #	Module Pin Name	Tegra X2 Signal	Usage/Description	Usage on DevKit Carrier Board	Direction	Pin Type
206	GPI007	LCD_BL_PWM	GPIO or Pulse Width Modulation signal	Expansion header	Output	CMOS - 1.8V

Notes:

- 1. In the Type/Dir column, Output is from Jetson TX2 NX. Input is to Jetson TX2 NX. Bidir is for Bidirectional signals.
- 2. The direction of GP1007 is true when used for this function. Otherwise as a GP10, the direction is bidirectional.

7.1 MIPI DSI

Jetson TX2 NX supports two MIPI DSI data lanes and a single clock lane. Each data lane has a peak bandwidth up to 1.5Gbps.

Table 7-2. Jetson TX2 NX DSI Pin Description

Pin #	Module Pin Name	Tegra X2 Signal	Usage/Description	Usage on DevKit Carrier Board	Direction	Pin Type
76	DSI_CLK_N	DSI_A_CLK_N	Disales DCI alask		Output	MIPI D-PHY
78	DSI_CLK_P	DSI_A_CLK_P	Display, DSI clock			
70	DSI_D0_N	DSI_A_D0_N		Not assigned	Bidir	
72	DSI_D0_P	DSI_A_D0_P	Display, DSI data lane 0			
82	DSI_D1_N	DSI_A_D1_N	B			
84	DSI_D1_P	DSI_A_D1_P	Display, DSI data lane 1		Output	

Note: In the Type/Dir column, Output is from Jetson TX2 NX. Input is to Jetson TX2 NX. Bidir is for Bidirectional signals.

Jetson Display Tegra Connector (DSI) DSI_CLK_P DSI_A_CLK_P DSI/CSI DSI_CLK_N DSI_A_CLK_N DSI_A_D0_P CLKN DOP 76 DSI_D0_P 72 DSI_D0_N DSI_A_D0_N 70 DON DSI_D1_P DSI_A_D1_P 84 DSI_D1_N DSI_A_D1_N D1N 82 GPIO 07 SYS LCD_BL_PWM Optional Backlight PWM

Figure 7-1. DSI 1 x 2 Lane Connection Example

Note: If EMI/ESD devices are necessary, they must be tuned to minimize impact to signal quality, which must meet the DSI spec. requirements for the frequencies supported by the design.

7.1.1 MIPI DSI and CSI Design Guidelines

Table 7-3 details the MIPI DSI and CSI interface signal routing requirements.

Table 7-3. MIPI DSI and CSI Interface Signal Routing Requirements

Parameter	Requirement	Units	Notes
Max frequency/data rate (per data lane)			
DSI	750 / 1500	MHz/Mbps	
CSI	1250 / 2500		
Number of loads	1	load	
Reference plane	GND		
Trace impedance (Diff pair / SE)	90-100 / 45-50	Ω	±10%
Via proximity (signal to reference)	< 0.65 (3.8)	mm (ps)	
Intra-pair trace spacing	0.15mm	mm	Can be adjusted to meet Differential Impedance. Loosely Coupled Diff. Pair recommended by Spec.
Inter-pair trace spacing (Microstrip / Stripline)	4x / 3x	dielectric	
Max PCB breakout length	5	mm	
Insertion Loss			
1 Gbps	3.0	dB	
1.5 Gbps	2.9		
2.5 Gbps	1.92		
Max trace delay			
1 Gbps	421 (2526)	mm (ps)	
1.5 Gbps	319 (1913)		
2.5 Gbps	150 (900)		
Max intra-pair skew	1	ps	

Parameter	Requirement	Units	Notes		
Max trace delay skew between DQ and CLK	5	ps	DQ includes all the data lines associated with a single clock. This may be 2 differential data lanes for a x2 interface, or 4 differential data lanes for a x4 interface.		
Keep critical traces away from other signal traces or unrelated power traces/areas or power supply components					

7.1.2 MIPI DSI and CSI Connection Guidelines

Table 7-4 details the MIPI DSI signal connections.

Table 7-4. MIPI DSI Signal Connections

Module Pin Name	Туре	Termination	Description
DSI_CLK_N/P	DIFF OUT		DSI Differential Clock: Connect to CLKn and CLKp pins of the primary DSI display
DSI_D[1:0]_N/P	DIFF OUT		DSI Differential Data Lanes 1:0: Connect to corresponding data lanes of DSI display.
GPI007	0		Optional LCD Backlight Pulse Width Modulation: Connect to LCD backlight solution PWM input if supported

7.2 HDMI, eDP, and DP

Jetson modules include two interfaces (DP0 and DP1). Both support eDP / DP or HDMI. See *Jetson TX2 NX Data Sheet* for the maximum resolution supported.

Table 7-5. Jetson TX2 NX eDP and DP Pin Description

Pin #	Module Pin Name	Tegra X2 Signal	Usage/Description	Usage on DevKit Carrier Board	Direction	Pin Type
90	DP0_AUX_N	DP_AUX_CH0_N	Disalan Dast Cannillan, abasas		D:J:_	LIDMI/DD
92	DP0_AUX_P	DP_AUX_CH0_P	Display Port 0 auxiliary channel		Bidir	HDMI/DP
39	DP0_TXD0_N	HDMI_DP0_TXDN2	Disalou sort 0 data lasa 0			
41	DP0_TXD0_P	HDMI_DP0_TXDP2	Display port 0 data lane 0			
45	DP0_TXD1_N	HDMI_DP0_TXDN1	District of Orleans 1			HDMI/DP
47	DP0_TXD1_P	HDMI_DP0_TXDP1	Display port 0 data lane 1	DP connector	0.1.1	
51	DP0_TXD2_N	HDMI_DP0_TXDN0	Disability of Orling Issue 2		Output	
53	DP0_TXD2_P	HDMI_DP0_TXDP0	Display port 0 data lane 2			
57	DP0_TXD3_N	HDMI_DP0_TXDN3	Disalou sort 0 data lasa 2			
59	DP0_TXD3_P	HDMI_DP0_TXDP3	Display port 0 data lane 3			
88	DP0_HPD	DP_AUX_CH0_HPD	Display port 0 hot plug detect		Input	Open Drain, 1.8V
98	DP1_AUX_N	DP_AUX_CH1_N	DisplayPort 1 Aux- or HDMI DDC SDA		Bidir	HDMI/DP
100	DP1_AUX_P	DP_AUX_CH1_P	DisplayPort 1 Aux+ or HDMI DDC SCL	C SCL		HDMI/DP
63	DP1_TXD0_N	HDMI_DP1_TXDN2	Disala Dast 1 Lang 0 and IDML 1 and 2	HDMI connector		
65	DP1_TXD0_P	HDMI_DP1_TXDP2	DisplayPort 1 Lane 0 or HDMI Lane 2		Output	HDMI/DP
69	DP1_TXD1_N	HDMI_DP1_TXDN1	DisplayPort or HDMI Lane 1			

Pin #	Module Pin Name	Tegra X2 Signal	Usage/Description	Usage on DevKit Carrier Board	Direction	Pin Type
71	DP1_TXD1_P	HDMI_DP1_TXDP1				
75	DP1_TXD2_N	HDMI_DP1_TXDN0	DisalanDast 11 and 2 and IDMII and 0			
77	DP1_TXD2_P	HDMI_DP1_TXDP0	DisplayPort 1 Lane 2 or HDMI Lane 0			
81	DP1_TXD3_N	HDMI_DP1_TXDN3	D: 1 D 111 O UDM OU			
83	DP1_TXD3_P	HDMI_DP1_TXDP3	DisplayPort 1 Lane 3– or HDMI Clk Lane			
96	DP1_HPD	DP_AUX_CH1_HPD	HDMI or Display Port Hot Plug Detect		Input	Open Drain, 1.8V
94	HDMI_CEC	HDMI_CEC	HDMI CEC		Bidir	Open Drain, 3.3V

Note: In the Type/Dir column, Output is from Jetson TX2 NX. Input is to Jetson TX2 NX. Bidir is for Bidirectional signals.

A standard eDP 1.4/DP 1.2a or HDMI V2.0a/b interface is supported. These share the same set of interface pins, so either DisplayPort or HDMI can be supported natively.

Table 7-6. DisplayPort and HDMI Pin Mapping

Module Pin Name	Module Pin #s	НДМІ	DP
DP[1:0]_TXD3_P	59/83	TXC+	TX3+
DP[1:0]_TXD3_N DP[1:0] TXD2 P	57/81	TXC -	TX3- TX2+
DP[1:0]_TXD2_N	51/75	TX0-	TX2-
DP[1:0]_TXD1_P	47/71	TX1+	TX1+
DP[1:0]_TXD1_N	45/69	TX1-	TX1-
DP[1:0]_TXD0_P	41/65	TX2+	TX0+
DP[1:0]_TXD0_N	39/63	TX2-	TX0-

7.2.1 eDP and DP

Figure 7-2 shows the DP and eDP connection example.

Figure 7-2. DP and eDP Connection Example on DP0 Pins

Notes:

- Level shifter required on DPx_HPD to avoid the pin from being driven when Jetson TX2 NX is
 off. The level shifter must be non-inverting (preserve the polarity of the HPD signal from the
 display). The reference design uses a BJT level shifter and a resistor divider is needed. See the
 reference design if a similar approach will be used.
- Load Switch enable is from powergood pin of main 3.3V supply.

7.2.1.1 eDP and DP Routing Guidelines

Figure 7-3 shows the eDP/DP topology, and Table 7-7 provides the eDP and DP signal routing requirements.

Figure 7-3. eDP Differential Main Link Topology

Table 7-7. eDP/DP Main Link Signal Routing Requirements including DP_AUX

Parameter	Requirement	Units	Notes
Specification	-		'
Max data rate / Min UI			Per data lane
R BR	1.62 / 617	Gbps/ps	
HBR	2.7 / 370		
HBR2	5.4 / 185		
Number of loads / topology	1	load	Point-Point, differential, unidirectional
Termination	100	Ω	On die at TX/RX
Electrical Spec			
IL			
RBR	0.7	dB @ 0.81GHz	
HBR	1.2	dB @ 1.35GHz	
HBR2	2.4	dB @ 2.7GHz	
Resonance dip frequency	>8	GHz	
TDR dip	>85	Ω	@ Tr-200ps (10%-90%)
FEXT	<= -40dB @ DC	See Figure 7-4	
	<= -30dB @ 2.7GHz	j j	
Impedance			
Trace impedance (Diff pair)	90-100	Ω (±15%)	90Ω–100Ω is the spec. target. 85Ω
	85	11 (21070)	is an implementation option (Zdiff does not account for trace coupling
			85Ω is preferable as it can provide
			better trace loss characteristic performance. See Note 1.
Reference plane	GND		
Trace Length, Spacing and Skew	-		'
Trace loss characteristic:	< 0.81	dB/in	@ 2.7GHz. The following max length is derived based on this characteristic. See Note 2.
Max PCB via dist. from connector			
RBR/HBR	No requirement	mm (in)	
HBR2	7.63 (0.3)		
Max trace length/delay from Jetson TX2 NX TX to connector			175ps/inch assumption for stripline 150ps/inch for microstrip.
RBR/HBR (Stripline / Microstrip)	215 (1138)/215 (975)	mm (ps)	
HBR2 (Stripline)	102 (700)	(μο)	
HBR2 (Microstrip, 5x / 7x)	89 (525) / 102 (600)		
Trace spacing (pair-pair)		dielectric	
Stripline	3x		
Microstrip (HBR/RBR)	4x		
Microstrip (HBR2)	5x to 7x		
Trace spacing (Main link to AUX)		dielectric	
Stripline/Microstrip	3x / 5x		
Max intra-pair (within pair) skew	0.15 (1)	mm (ps)	See Note 2
Maxinter-pair (pair-pair) skew	150	ps	See Note 3
Via		1	
Max GND transition via distance	< 1x	diff pair pitch	For signals switching reference layers, add symmetrical GND stitching via near signal vias.

Parameter	Requirement	Units	Notes
Impedance dip	>97 >92	Ω @ 200ps Ω @ 35ps	The via dimension is required for HDMI-DP co-layout.
Recommended via dimension for impedance control			
Drill/Pad	200/400	um	
Antipad	>840	um	
Via pitch	>880	um	
Topology	Y-pattern is recommend keep symmetry	ded	Y-pattern helps with Xtalk suppression. It can also reduce the limit of pair-pair distance. Need review (NEXT/FEXT check) if via placement is not Y-pattern. See Figure 7-5
	For in-line via, the dista one lane to the adjacent lane >= 1.2 mm center-	t via from another	See Figure 7-6
GND via	Place GND via as symm possible to data pair via vias (2 diff pairs) can sh return via	s. Up to four signal	GND via is used to maintain a return path, while its Xtalk suppression is limited.
Max # of vias	2 if all vias are PTH via		
PTH vias Micro vias	Not limited if total chan spec	nel loss meets IL	
Max via stub length	0.4	mm	
AC Cap	<u>'</u>		
Value	0.1	uF	Discrete 0402
Max distance from AC cap to connector RBR/HBR HBR2	No requirement	in	
Voiding RBR/HBR HBR2	No requirement Voiding required		HBR2: Voiding the plane directly under the pad 3-4 mils larger than the pad size is recommended.
Connector			
Voiding RBR/HBR HBR2	No requirement Voiding required		HBR2: Standard DP connector: Voiding requirement is stack-up dependent. For typical stack-ups, voiding on the layer under the connector pad is required to be 5.7 mil larger than the connector pad.
General: See Chapter 15 for guidelines related to Ser	nentine routing routing o	ver voids and noise	oupling

Notes:

- 1. For eDP/DP, the spec puts a higher priority on the trace loss characteristic than on the impedance. However, before selecting 85Ω for impedance, it is important to make sure the selected stack-up, material and trace dimension can achieve the needed low loss characteristic.
- 2. Longer trace lengths may be possible if the total trace loss is equal to or better than the target. If the loss is greater, the max trace lengths will need to be reduced.
- 3. Do not perform length matching within breakout region. Recommend doing trace length matching to <1ps before vias or any discontinuity to minimize common mode conversion.
- 4. The average of the differential signals is used for length matching.

The following figures show the eDP and DP interface signal routing requirements.

Figure 7-4. S-parameter

Figure 7-5. Via Topology #1

Figure 7-6. Via Topology #2

Table 7-8. eDP and DP Signal Connections

Module Pin Name	Туре	Termination	Description
DPx_TXD[3:0]_N/P	0	Series 0.1uF capacitors and ESD to GND on all.	eDP/DP Differential CLK/Data Lanes: Connect to matching pins on display connector.
DPx_AUX_N/P	I/OD	Series 0.1uF capacitors. 100kΩ pulldown on DP0_AUX_P and 100kΩ pull-up to VDD_3V3_SYS on DP0_AUX_N. ESD to GND on both.	eDP/DP: Auxiliary Channels: Connect to AUX_CH-/+ on display connector.
DPx_HPD	I	From module pin: 10kΩ pull-up to 1.8V, level shifter and 100kΩ pulldown on connector side of shifter and ESD to GND .	eDP/DP: Hot Plug Detect: Connect to HPD pin on display connector through level shifter.

7.2.2 HDMI

A standard HDMI V2.0 interface is supported. These share the same set of interface pins, so either DisplayPort or HDMI can be supported natively.

Figure 7-7. HDMI Connection Example

Notes:

- 1. Level shifters required on DDC/HPD. NVIDIA® Tegra® X2 pads are not 5V tolerant and cannot directly meet HDMI VIL/VIH requirements. HPD level shifter can be non-inverting or inverting. HPD level shifter on the Jetson TX2 NX Developer Kit is inverting.
- 2. If EMI/ESD devices are necessary, they must be tuned to minimize the impact to signal quality, which must meet the timing and electrical requirements of the HDMI specification for the modes to be supported. See requirements and recommendations in the related sections of Table 7-9.
- 3. The DP1_TXx pads are native DP pads and require series AC capacitors (ACCAP) and pull-downs (RPD) to be HDMI compliant. The 499Ω, 1% pull-downs must be disabled when Jetson TX2 NX is off or in sleep mode to meet the HDMI VOFF requirement. The enable to the FET, enables the pull-downs when the HDMI interface is to be used. Chokes between pull-downs and FET are optional improvements for HDMI 2.0 operation.
- 4. Series resistors RS are required. See the RS section of Table 7-9 for details.
- 5. See reference design for CEC level shifting/blocking circuit.

7.2.2.1 HDMI Routing Guidelines

Figure 7-8 shows the HDMI CLK and data topology.

Figure 7-8. HDMI CLK and Data Topology

Notes:

- 1. RPD pad must be on the main trace. RPD and ACCAP must be on same layer.
- 2. Chokes $(600\Omega \ @ 100 \ MHz)$ or narrow traces $(1uH@DC-100 \ MHz)$ between pull-downs and FET are chokes between pull-downs and FET are optional improvements for HDMI 2.0 operation.
- 3. The trace after the main route via should be routed on the top or bottom layer of the PCB, and either with 100 ohm differential impedance, or as uncoupled 50 ohm SE traces.
- 4. RS series resistor is required. See the RS section of Table 7-9 for details.

Table 7-9. HDMI Interface Signal Routing Requirements

Parameter	Requirement	Units	Notes
Specification	'	·	<u>'</u>
Max frequency / UI	5.94 / 168	Gbps/ps	Per lane – not total link bandwidth
Topology	Point to point		Unidirectional, differential
Termination At receiver	100	Ω	Differential To 3.3V at receiver
On-board	500		To GND near connector
Electrical Specification			
IL			
	<= 1.7	dB @ 1GHz	
	<= 2	dB @ 1.5GHz	
	<= 3	dB @ 3GHz	
	< 6	dB @ 6GHz	
Resonance dip frequency	> 12	GHz	
TDR dip	>= 85	Ω @ Tr=200ps	10%-90%. If TDR dip is 75~85ohm that dip width should < 250ps
FEXT (PSFEXT)	<= -50 <= -40	dB at DC dB at 3GHz	PSNEXT is derived from an algebraic summation of the individual NEXT effects on each pair by the other pairs

Parameter	Requirement	Units	Notes	
	<= -40	dB at 6GHz		
	IL/FEXT plot: See Fig	ure 7-9	TDR plot: See Figure 7-10	
Impedance				
Trace impedance (Diff pair)	100	Ω	$\pm 10\%$. Target is 100Ω . 95Ω for the breakout and main route is an implementation option.	
Reference plane	GND			
Trace spacing/Length/Skew				
Trace loss characteristic:	< 0.8	dB/in, @ 3GHz	The max length is derived based on	
	< 0.4	dB/in. @ 1.5GHz	this characteristic. See Note 1.	
Trace spacing (pair-pair) Stripline Microstrip: pre 1.4b	3x 4x	dielectric	For Stripline, this is 3x of the thinner of above and below.	
Microstrip: 1.4b/2.0	5x to 7x			
Trace spacing (Main link to DDC) Stripline Microstrip	3x 5x	dielectric	For Stripline, this is 3x of the thinner of above and below.	
Max total length/delay (1.4b/2.0 - up to 5.94Gbps) Stripline Microstrip (5x spacing) Microstrip (7x spacing)	63.5/2.5 (437) 50.8/2.0 (300) 63.5/2.5 (375)	mm/in (ps)	Propagation delay: 175ps/in. for stripline, 150ps/in. for microstrip).	
Max Total Length/Delay (Pre-1.4b) (up to 165Mhz) Microstrip Stripline	254/10 (1500) 225/8.5 (1500)	mm/in (ps)	Propagation delay: 175ps/in. for stripline, 150ps/in. for microstrip).	
Max intra-pair (within pair) skew	0.15 (1)	mm (ps)	See notes 1, 2, and 3	
,	150	· ·	See notes 1, 2, and 3	
Max inter-pair (pair to pair) skew		ps		
Max GND transition via distance	1x	Diff pair via pitch	For signals switching reference layers, add one or two ground stitching vias. It is recommended they be symmetrical to signal vias.	
Via				
Topology	Y-pattern is recomme keep symmetry	ended	Xtalk suppression is the best by Y-pattern. Also, it can reduce the limit	
Minimum impedance dip	97 92	Ω@200ps Ω@35ps	of pair-pair distance. Need review (NEXT/FEXT check) if via placement is not Y-pattern. See Figure 7-11	
Recommended via dimension drill/pad Antipad via pitch	200/400 840 880	uM		
GND via		nmetrically as possible to four signal vias (2 diff igle GND return via	GND via is used to maintain return path, while its Xtalk suppression is limited	
Max # of vias PTH via u-via	4 if all vias are PTH v Not limited if total ch spec.			
Max via stub length	0.4	mm	long via stub requires review (IL and resonance dip check)	
Topology		-		
The main route via dimensions should comply with the vi	a structure rules (See via secti	on)	See Figure 7-8	
For the connector pin vias, follow the rules for the conne	ctor pin vias (See via section)			

Parameter	Requirement	Units	Notes
The traces after main route via should be routed as 100 $\!\Omega$ differe top or bottom.	ntial or as uncoupled 50oh	m SE traces on PCB	
Max distance from RpD to main trace (seg B)	1	mm	
Max distance from AC cap to RPD stubbing point (seg A)	~0	mm	
Max distance between ESD and signal via	3	mm	
Add-on Components			
Example of a case where space is limited for placing components.	Top: See Figure 7-12		Bottom: See Figure 7-13
AC Cap			
Value	0.1	uF	
Max via distance from BGA	7.62 (52.5)	mm (ps)	
Location	must be placed before p	ull-down resistor	The distance between the AC cap and the HDMI connector is not restricted.
Placement PTH design Micro-via design	Place cap on bottom layer above core Place cap on top layer if core Not Restricted		
Void	GND (or PWR) void unde needed. Void size = SMT height keepout distance		See Figure 7-14
Pull-down Resistor (Rpb), choke/FET			
Value	500	Ω	
Location.	Must be placed after AC	cap	Placement: See Figure 7-15
Layer of placement	Same layer as AC cap. T can be placed on the opp PTH via		
Choke between R _{PD} and FET choke Max trace Rdc	600 or 1 ≤20	Ω @ 100 MHz uH@DC-100 MHz mΩ	Can be choke or Trace. Recommended option for HDMI2.0 HF1-9 improvement.
Max trace length	4	mm	
Void	GND/PWR void under/ab	ove cap is preferred	
Common-mode Choke (Not recommended – only used if absolu See Appendix A for details on CMC if implemented.	tely required for EMI issue	s)	
ESD (On-chip protection diode can withstand 2kV HMM. Extern	al ESD is optional. Designs	s should include ESD	footprint as a stuffing option)
Max junction capacitance (IO to GND)	0.35	pF	e.g. Texas Instruments TPD4E02B04DQAR
Footprint	Pad right on the net ins	tead of trace stub	See Figure 7-16
Location	After pull-down resistor/	CMC and before Rs	
Void	GND/PWR void under/ab needed. Void size = 1mn	'	See Figure 7-17
Series Resistor (Rs) – Series resistor on N/P path for HDMI 2.0	(mandatory)		
Value	< 6	Ω	± 10%. 0ohm is acceptable if the design passes the HDMI2.0 HF1-9 test. Otherwise, adjust the Rs value to ensure the HDMI2.0 tests pass: Eye diagram, Vlow test and HF1-9 TDR test
Location	After all components and connector	d before HDMI	
Void	GND/PWR void under/ab dielectric height keepout		eeded. Void size = SMT area + 1x

Parameter	Requirement	Units	Notes
Trace at Component Region	·		<u> </u>
Value	100	Ω	± 10%
Location	At component region (Mi	crostrip)	
Trace entering the SMT pad	One 45°		See Figure 7-18
Trace between components	Uncoupled structure		See Figure 7-19
HDMI connector			
Connector voiding	Voiding the ground belo 0.1448(5.7mil) larger tha		See Figure 7-20
General: See Chapter 15 for guidelines related	d to Serpentine routing, routing over voids as	nd noise coupling	

Notes:

- 1. Longer trace lengths may be possible if the total trace loss is equal to or better than the target. If the loss is greater, the max trace lengths will need to be reduced.
- 2. The average of the differential signals is used for length matching.
- 3. Do not perform length matching within breakout region. Recommend doing trace length matching to <1ps before vias or any discontinuity to minimize common mode conversion.
- 4. If routing includes a flex or 2nd PCB, the max trace delay and skew calculations must include all the PCBs/flex routing. Solutions with flex/2nd PCB may not achieve maximum frequency operation.

The following figures show the HDMI interface signal routing requirements.

Figure 7-9. IL and FEXT Plot

Figure 7-10. TDR Plot

Figure 7-11. HDMI Via Topology

Figure 7-12. Add-on Components – Top

Figure 7-13. Add-on Components – Bottom

Figure 7-14. AC Cap Void

Figure 7-15. RPD, Chock, FET Placement

Main-route Via with short stub PTH via to connect FET (and optional choke) on opposite side

Figure 7-16. ESD Footprint

Figure 7-17. ESD Void

Figure 7-18. SMT Pad Trace Entering

Figure 7-19. SMT Pad Trace Between

Figure 7-20. Connector Voiding

Table 7-10. HDMI Signal Connections

Module Pin Name	Туре	Termination (see note on ESD)	Description
DPx_TXD3_N/P	DIFF OUT	0.1uF series AC _{CAP} \rightarrow 500 Ω R _{PD} (controlled by FET) \rightarrow ESD to GND \rightarrow .<6 Ω Rs (series resistor)	HDMI Differential Clock: Connect to C-/C+ and pins on HDMI connector
DPx_TXD[2:0]_N/P	DIFF OUT		HDMI Differential Data: Connect to HDMI Data pins (See Error! Reference source not found.)
DPx_HPD	I	From module pin: $10k\Omega$ PU to $1.8V \rightarrow$ level shifter \rightarrow $100k\Omega$ series resistor. $100k\Omega$ to GND on connector side \rightarrow $100pF/12pF$ caps to GND \rightarrow ESD to GND .	HDMI Hot Plug Detect: Connect to HPD pin on HDMI connector
HDMI_CEC	I/OD	Gating circuitry, See Figure 7-7 for details.	HDMI Consumer Electronics Control: Connect to CEC on HDMI connector through circuitry.
DPx_AUX_N/P	I/OD	From module pins: $10k\Omega$ PU to $3.3V \rightarrow$ level shifter \rightarrow $1.8k\Omega$ PU to $5V \rightarrow$ ESD to GND	HDMI: DDC Interface – Clock and Data: Connect DP1_AUX_N to SDA and DP1_AUX_P to SCL on HDMI connector
HDMI 5V Supply	Р	Adequate decoupling (0.1uF and 10uF recommended) on supply near connector and ESD to GND .	HDMI 5V supply to connector: Connect to +5V on HDMI connector.

Note: Any ESD and /or EMI solutions must support targeted modes (frequencies).

Chapter 8. MIPI CSI Video Input

Jetson TX2 NX brings twelve MIPI CSI lanes to the connector. Three quad-lane camera streams or two quad-lane plus two dual-lane camera streams or one quad-lane plus three dual-lane camera streams are supported. Each data lane has a peak bandwidth of up to 2.5 Gbps.

Table 8-1. Jetson TX2 NX CSI Pin Description

Pin #	Module Pin Name	Tegra X2 Signal	Usage/Description	Usage on DevKit Carrier Board	Direction	Pin Type
10	CSI0_CLK_N	CSI_A_CLK_N	0			
12	CSI0_CLK_P	CSI_A_CLK_P	Camera, CSI 0 Clock			
4	CSI0_D0_N	CSI_A_D0_N	Camera, CSI 0 Data 0	Camera Connector #1		
6	CSI0_D0_P	CSI_A_D0_P	Camera, CSI u Data u	Camera Connector #1		
16	CSI0_D1_N	CSI_A_D1_N	C CCI 0 D-t- 1			
18	CSI0_D1_P	CSI_A_D1_P	Camera, CSI 0 Data 1			
9	CSI1_CLK_N	CSI_B_CLK_N	Camera, CSI 1 Clock			
11	CSI1_CLK_P	CSI_B_CLK_P	- Camera, CSI I Clock			
3	CSI1_D0_N	CSI_B_D0_N	Camera, CSI 1 Data 0	Not Assigned		
5	CSI1_D0_P	CSI_B_D0_P	Camera, CSI I Data 0	Not Assigned		МІРІ D-РНҮ
15	CSI1_D1_N	CSI_B_D1_N	Camera, CSI 1 Data 1			
17	CSI1_D1_P	CSI_B_D1_P	Camera, CSI I Data I			
28	CSI2_CLK_N	CSI_C_CLK_N	Camera, CSI 2 Clock	Camera Connector #2	Input	
30	CSI2_CLK_P	CSI_C_CLK_P	Camera, CSI Z Clock			
22	CSI2_D0_N	CSI_C_D0_N	Camera, CSI 2 Data 0			
24	CSI2_D0_P	CSI_C_D0_P	Camera, CSI Z Data U			
34	CSI2_D1_N	CSI_C_D1_N	Camera, CSI 2 Data 1			
36	CSI2_D1_P	CSI_C_D1_P	Camera, CSI Z Data 1			
27	CSI3_CLK_N	CSI_D_CLK_N	Camera, CSI 3 Clock			
29	CSI3_CLK_P	CSI_D_CLK_P	Carriera, CSI S Clock			
21	CSI3_D0_N	CSI_D_D0_N	Camera, CSI 3 Data 0			
23	CSI3_D0_P	CSI_D_D0_P	Camera, CSI 3 Data 0			
33	CSI3_D1_N	CSI_D_D1_N	Camera, CSI 3 Data 1			
35	CSI3_D1_P	CSI_D_D1_P	Camera, CSI 3 Data 1	Not Assissed		
52	CSI4_CLK_N	CSI_E_CLK_N	Camera, CSI 4 Clock	Not Assigned		
54	CSI4_CLK_P	CSI_E_CLK_P	Carriera, CSI 4 Clock			
46	CSI4_D0_N	CSI_E_D0_N	C CCI / D-t- 0			
48	CSI4_D0_P	CSI_E_D0_P	Camera, CSI 4 Data 0			
58	CSI4_D1_N	CSI_E_D1_N	Camera, CSI 4 Data 1			
60	CSI4_D1_P	CSI_E_D1_P	Carriera, CSI 4 Data 1			

Pin #	Module Pin Name	Tegra X2 Signal	Usage/Description	Usage on DevKit Carrier Board	Direction	Pin Type
40	CSI4_D2_N	CSI_F_D0_N	0			
42	CSI4_D2_P	CSI_F_D0_P	Camera, CSI 4 Data 2			
64	CSI4_D3_N	CSI_F_D1_N	0			
66	CSI4_D3_P	CSI_F_D1_P	Camera, CSI 4 Data 3			

Note: In the Type/Dir column, Output is from Jetson TX2 NX. Input is to Jetson TX2 NX. Bidir is for Bidirectional signals.

Table 8-2. Jetson TX2 NX Camera Miscellaneous Pin Description

Pin #	Module Pin Name	Tegra X2 Signal	Usage/Description	Usage on DevKit Carrier Board	Direction	Pin Type
213	CAM_I2C_SCL	CAM_I2C_SCL	Camera I2C Clock. 2.2k Ω pull-up to 3.3V on the module.	OCIM	D. I.	Open Drain –
215	CAM_I2C_SDA	CAM_I2C_SDA	Camera I2C Data. 2.2kΩ pull-up to 3.3V on the module.	CSI Mux	Bidir	3.3V
114	CAM0_PWDN	GPIO_CAM1	Camera 0 Powerdown or GPIO	0	Output	CMOS - 1.8V
116	CAM0_MCLK	EXTPERIPH1_CLK	Camera 0 Reference Clock	Camera Connector #1		
120	CAM1_PWDN	GPIO_CAM4	Camera 1 Powerdown or GPIO	C C+ #2		
122	CAM1_MCLK	EXTPERIPH2_CLK	Camera 1 Reference Clock	Camera Connector #2		

Notes:

- 1. In the Type/Dir column, Output is from Jetson TX2 NX. Input is to Jetson TX2 NX. Bidir is for Bidirectional signals.
- 2. The directions for CAM[1:0]_PWDN and CAM[1:0]_MCLK are true when used for these functions. Otherwise as GPIOs, the directions are bidirectional.

Figure 8-1. 4 Lane CSI Camera Connection Example

Table 8-3. CSI Configuration

Cameras	CSI_0 CLK/Data[1:0]	CSI_1 CLK/Data[1:0]	CSI_2 CLK/Data[1:0]	CSI_3 CLK/Data[1:0]	CSI_4 CLK/Data[1:0]	CSI_4 Data[3:2]
2-Lanes Each						
1 of 5 cameras	V					
2 of 5 cameras		V				
3 of 5 cameras			V			
4 of 5 cameras				V		
5 of 5 cameras					V	
4-Lanes Each						
1 of 3 cameras	V	V				
2 of 3 cameras			V	V		
3 of 3 cameras					V	V

Notes:

- 1. For 4-lane configurations, CSI_[3,1]_CLK are not used.
- 2. CSI 4 can be used as as a x1, x2, or x4 CSI interface.
- 3. Combinations of 2-lane and 4-lane cameras are supported as long as the 4-lane camera uses one of the indicated combinations.
- 4. Each 2-lane options shown above can also be used for one single lane camera.

Figure 8-2. Available Camera Control Pins

Note: The CAM_I2C interface is connected to the power monitor device on the module which uses I2C address 7'h40.

Figure 8-3. CSI Connection Options

Note: Any EMI/ESD devices must be tuned to minimize impact to signal quality and meet the timing and Vil/Vih requirements at the receiver and maintain signal quality and meet requirements for the frequencies supported by the design.

8.1 CSI Design Guidelines

CSI and DSI use the MIPI D-PHY for the physical interface. The routing and connection requirements are found in the DSI section (Section 7.1),

Table 8-4. MIPI CSI Signal Connections

Module Pin Name	Туре	Termination	Description
CSI[4:0]_CLK_N/P	I	See Note	CSI Differential Clocks. Connect to clock pins of camera. See Table 8-3 for details
CSI[3:0]_D[1:0]_N/P CSI4_D[3:0]_N/P	1/0	See Note	CSI Differential Data Lanes: Connect to data pins of camera. See Table 8-3 for details

Note: Depending on the mechanical design of the platform and camera modules, ESD protection may be necessary. In addition, EMI control may be needed. Both are shown in Figure 8-1. Any EMI/ESD solution must be compatible with the frequency required by the design.

Table 8-5. Miscellaneous Camera Connections

Module Pin Name	Туре	Termination	Description
CAM_I2C_CLK CAM_I2C_DAT	0 I/0	2.2kΩ pull-ups VDD_3V3_SYS (on Jetson TX2 NX). See note related to EMI/ESD in Table 8-4.	Camera I2C Interface: Connect to I2C SCL and SDA pins of imager. The CAM_I2C interface is connected to the power monitor device on the module which uses I2C address 7'h40.
CAM[1:0]_MCLK	0	See note related to EMI/ESD under MIPI CSI Signal Connections table.	Camera Master Clocks: Connect to camera reference clock inputs.
CAM[1:0]_PWDN	0		Camera Power Control signals (or GPIOs [1:0]): Connect to power down pins on camera(s).

Chapter 9. SD Card and SDIO

Jetson TX2 NX uses one SDMMC interface for on-module eMMC (SDMMC4 on Tegra X2) and brings one to the connector pins for SD Card or SDIO use.

Table 9-1. Jetson TX2 NX SDIO Pin Description

Pin #	Module Pin Name	Tegra X2 Signal	Usage/Description	Usage on DevKit Carrier Board	Direction	Pin Type
229	SDMMC_CLK	SDMMC3_CLK	SD Card or SDIO Clock		Output	
227	SDMMC_CMD	SDMMC3_CMD	SD Card or SDIO Command			
219	SDMMC_DAT0	SDMMC3_DAT0	SD Card or SDIO Data 0	No. 1 Acris and		CMOS -
221	SDMMC_DAT1	SDMMC3_DAT1	SD Card or SDIO Data 1	Not Assigned	Bidir	1.8V/3.3V
223	SDMMC_DAT2	SDMMC3_DAT2	SD Card or SDIO Data 2			
225	SDMMC_DAT3	SDMMC3_DAT3	SD Card or SDIO Data 3			

Notes:

- 1. In the Type/Dir column, Output is from Jetson TX2 NX. Input is to Jetson TX2 NX. Bidir is for Bidirectional signals.
- 2. The directions for SDMMC_x are true when used for these functions. Otherwise as GPIOs, the directions are bidirectional.

Figure 9-1. SD Card Connection Example

Notes:

- 1. The SD Card supply must be enabled with a GPIO to prevent back-driving the Tegra X2 SDMMC interface during power-on sequencing. The GPIO should have power-on reset (POR) that will ensure the supply is not enabled by default.
- 2. Having 0Ω , 0402 resistor is recommended in case of issues with EMI where it can be replaced with an appropriate device.
- 3. It is recommended that the SD card supply is current limited in case the supply is shorted to GND.

Table 9-2. SD Card and SDIO Interface Signal Routing Requirements

Parameter	Requirement	Units	Notes
Max frequency			See Note 1
3.3V Signaling			
DS	25 (12.5)	MHz (MB/s)	
HS	50 (25)		
1.8V Signaling			
SDR12	25 (12.5)		
SDR25	50 (25)		
SDR50	100 (50)		
SDR104	208 (104)		
DDR50	50 (50)		
Topology	Point to point		
Reference plane	GND or PWR		See Note 2
Trace impedance	50	Ω	±15%. 45Ω optional depending on stack-up
Max via count			Independent of stack-up layers.
PTH	4		Depends on stack-up layers.
HDI	10		
Via proximity (Signal to reference)	< 3.8 (24)	mm (ps)	Up to four signal vias can share 1 GND return via

Parameter	Requirement	Units	Notes
Trace spacing (Microstrip / Stripline)	4x / 3x	dielectric	
Trace length (SDR50 / SDR25 / SDR12 / HS / DS)			
Min	16 (100)	mm (ps)	
Max	139 (876)		
SDR104 / DDR50			
Min	16 (100)		
Max	83 (521)		
Max trace length/delay skew in/between CLK &			See Note 3
CMD/DAT	14 (87.5)	mm (ps)	
SDR50/SDR25/SDR12/HS/DS	2 (12.5)		
SDR104 / DDR50			

Keep CLK, CMD and DATA traces away from other signal traces or unrelated power traces/areas or power supply components

Notes:

- 1. Actual frequencies may be lower due to clock source/divider limitations.
- 2. If the reference is Power (PWR), then a 0.01uF decoupling cap for return current is required.

Table 9-3. SD Card and SDIO Signal Connections

Function Signal Name	Туре	Termination	Description
SDMMC_CLK	0		SD Card / SDIO Clock: Connect to CLK pin of device.
SDMMC_CMD	1/0		SD Card / SDIO Command: Connect to CMD pin of device
SDMMC_D[3:0]	1/0		SD Card / SDIO Data: Connect to Data pins of device

Chapter 10. Audio

Jetson TX2 NX supports multiple PCM/I2S audio interfaces and includes a flexible audio-port switching architecture.

Table 10-1. Jetson TX2 NX Audio Pin Description

Pin #	Module Pin Name	Jetson TX2 NX Function	Tegra X2 Signal	Usage/Description	Usage on DevKit Carrier Board	Direction	Pin Type
193	I2S0_DOUT	I2S0_DOUT	DAP1_DOUT	I2S Audio Port 0 Data Out		Output	
195	12S0_DIN	I2S0_DIN	DAP1_DIN	I2S Audio Port 0 Data In		Input	
197	12S0_FS	12S0_FS	DAP1_FS	I2S Audio Port 0 Left/Right Clock	Expansion Header	Bidir	
199	I2S0_SCLK	I2S0_SCLK	DAP1_SCLK	I2S Audio Port 0 Clock		Bidir	01406 1 014
220	I2S1_DOUT	I2S1_DOUT	DMIC2_CLK	I2S Audio Port 1 Data Out		Output	CMOS - 1.8V
222	I2S1_DIN	I2S1_DIN	DMIC1_DAT	I2S Audio Port 1 Data In		Input	
224	12S1_FS	12S1_FS	DMIC1_CLK	I2S Audio Port 1 Left/Right Clock	M.2 Key E	Bidir	
226	I2S1_SCLK	I2S1_SCLK	DMIC2_DAT	I2S Audio Port 1 Clock	1	Bidir	
124	GPI002	I2S2_DOUT	GEN7_I2C_SDA	I2S Audio Port 2 Data Out		Output	CMOS - 1.8V
126	GPI003	I2S2_DIN	GEN9_I2C_SCL	I2S Audio Port 2 Data In		Input	
127	GPI004	12S2_FS	GEN9_I2C_SDA	I2S Audio Port 2 Left/Right Clock	Power LED control	Bidir	
128	GPI005	I2S2_SCLK	GEN7_I2C_SCL	I2S Audio Port 2 Clock	M.2 Key E	Bidir	
112	SPI1_CS1*	I2S3_DIN	DAP2_DIN	I2S Audio Port 3 Data In		Input	
218	GPI012	I2S3_DOUT	DAP2_DOUT	I2S Audio Port 3 Data Out	Expansion Header	Output	
130	GPI006	I2S3_FS	DAP2_FS	I2S Audio Port 3 Left/Right Clock	Camera mux select	Bidir	CMOS – 1.8V
212	GPI010	I2S3_SCLK	DAP2_SCLK	I2S Audio Port 3 Clock	M.2 Key E	Bidir	
211	GPI009		AUD_MCLK	GPIO #9 or Audio Codec Master Clock	Expansion Header	Output	CMOS - 1.8V

Notes:

^{1.} In the Type/Dir column, Output is from Jetson TX2 NX. Input is to Jetson TX2 NX. Bidir is for Bidirectional signals.

^{2.} The directions for pins with I2S functions and GPI009 are true when used for those functions. Otherwise as GPI0s, the directions are bidirectional.

Figure 10-1. Audio Connections

Figure 10-2. Audio Codec Connections

Notes:

- 1. The Interrupt pin from the audio codec can connect to any available Jetson TX2 NX GPIO. If the pin must be wake-capable, choose one of the GPIOs that supports this function.
- 2. I2C2 supports 1.8V operation since the interface is pulled to 1.8V through 2.2 k Ω resistors on the module. If another I2C interface on Jetson TX2 NX is used, a level shifter will be required as all the others are 3.3V.
- 3. Refer to the Intel High-Definition Audio/AC'97 website for the latest information: https://www.intel.com/content/www/us/en/support/articles/000005512/boards-and-kits/desktop-boards.html

Table 10-2. Interface Signal Routing Requirements

Requirement	Units	Notes
1	load	
8	pF	
GND		
Min width/spacing		
50	Ω	±20%
< 3.8 (24)	mm (ps)	See note
2x	dielectric	
~22 (3600)	In (ps)	
~1.6 (250)	In (ps)	
	1 8 GND Min width/spacing 50 < 3.8 [24] 2x -22 (3600)	1 load 8 pF GND Min width/spacing 50 Ω < 3.8 (24) mm (ps) 2x dielectric ~22 (3600) In (ps)

Table 10-3. Audio Signal Connections

Module Pin Name (Function)	Туре	Termination	Description
I2S[1:0]_SCLK	1/0		I2S Serial Clock: Connect to I2S/PCM CLK pin of audio device.
GPI005 (I2S2_SCLK)			
GPI006 (I2S3_SCLK)			
I2S[1:0]_FS	1/0		I2S Frame Select (Left/Right Clock): Connect to corresponding pin
GPI004 (I2S2_FS)			of audio device.
SPI1_CS1* (I2S3_FS)			
I2S[1:0]_DOUT			I2S Data Output: Connect to data input pin of audio device.
GPI002 (I2S2_DOUT)	1/0		
GPI012 (I2S3_DOUT)			
I2S[1:0]_DIN	1		I2S Data Input: Connect to data output pin of audio device.
GPI003 (I2S2_DIN)			
GPI010 (I2S3_DIN)			
GPI009 (AUD_MCLK)	0		Audio Codec Master Clock: Connect to clock pin of audio codec.

Chapter 11. Miscellaneous Interfaces

11.1 I2C

Jetson TX2 NX brings four I2C interfaces to the connector pins. CAM_I2C is included in Table 8-2. The assignments in the I2C interface mapping table should be used where applicable for the I2C interfaces.

Table 11-1. Jetson TX2 NX I2C Pin Description

Pin #	Module Pin Name	Tegra X2 Signal	Usage/Description	Usage on DevKit Carrier Board	Direction	Pin Type
185	I2C0_SCL	GEN1_I2C_SCL	General I2C 0 Clock. 2.2kΩ pull-up to 3.3V on module.			Open Drain – 3.3V
187	I2C0_SDA	GEN1_I2C_SDA	General I2C 0 Data. 2.2kΩ pull-up to 3.3V on the module.		5	Open Drain – 3.3V
189	I2C1_SCL	GPIO_SEN8	General I2C 1 Clock. 2.2kΩ pull-up to 3.3V on the module.			Open Drain – 3.3V
191	I2C1_SDA	GPIO_SEN9	General I2C 1 Data. 2.2kΩ pull-up to 3.3V on the module.	12C (general)	Bidir	Open Drain – 3.3V
232	I2C2_SCL	GEN8_I2C_SCL	General I2C 2 Clock. 2.2kΩ pull-up to 1.8V on the module.	_		Open Drain – 1.8V
234	I2C2_SDA	GEN8_I2C_SDA	General I2C 2 Data. 2.2kΩ pull-up to 1.8V on the module.			Open Drain – 1.8V

Notes: In the Type/Dir column, Output is from Jetson TX2 NX. Input is to Jetson TX2 NX. Bidir is for Bidirectional signals.

Figure 11-1. I2C Connections

Note: If an I2C interface is routed to an M.2 Key E or M.2 Key M socket, it is recommended that 0Ω series resistors be included on the lines. If the design will be used with WiFi modules that require I2C then the 0Ω series resistors would be installed. However, the WiFi modules must be fully spec compliant and not hold the I2C lines low during boot, which could interfere with communications with other devices on this I2C bus and possibly prevent the system from booting.

11.1.1 I2C Design Guidelines

Care must be taken to ensure I2C peripherals on same I2C bus connected to Jetson TX2 NX do not have duplicate addresses. Addresses can be in two forms: 7-bit, with the read/write bit removed or 8-bit including the read/write bit. Be sure to compare I2C device addresses using the same form (all 7-bit or all 8-bit format). The I2C2 interface is connected to an EEPROM on the module which uses I2C address 7'h50. The CAM_I2C interface is connected to the power monitor device on the module which uses I2C address 7'h40.

Notes:

- The Jetson TX2 NX I2C interfaces have $2.2k\Omega$ pull-ups on the module. Pads for additional pull-ups are recommended in case a stronger pull-up is required due to additional loading on the interfaces.
- The I2C pad LPMD bit is set by default for the I2C[2:0] pins, but not for the CAM_I2C pins. These settings can be changed if necessary, to improve signal integrity.

Table 11-2. I2C Interface Signal Routing Requirements

Parameter		Requirement	Units	Notes
Max frequency mode / Fm / Fm+	Standard-	100 / 400 / 1000	kHz	See Note 1
Topology		Single ended, bi-direction	onal, multiple master	s/slaves
Max loading mode / Fm / Fm+	Standard-	400	pF	Total of all loads
Reference plane		GND or PWR		
Trace impedance		50 – 60	Ω	±15%
Trace spacing		1x	dielectric	
Max trace length/delay				
Standard Mode		3400 (~20)	ps (in)	
Fm, Fm+ Modes		1700 (~10)		

Notes:

- 1. Fm = Fast-mode, Fm+ = Fast-mode Plus.
- 2. Avoid routing I2C signals near noisy traces, supplies or components such as a switching power regulator.
- 3. No requirement for decoupling caps for PWR reference.

Table 11-3. I2C Signal Connections

Module Pin Name	Туре	Termination	Description
I2C0_SCL/SDA	I/OD	2.2kΩ pull-ups to VDD_3V3_SYS on Jetson TX2 NX	I2C #0 Clock and Data. Connect to CLK and Data pins of any 3.3V devices
I2C1_SCL/SDA	I/OD	2.2kΩ pull-ups to VDD_3V3_SYS on Jetson TX2 NX	I2C #1 Clock and Data. Connect to CLK and Data pins of 3.3V devices.
I2C2_SCL/SDA	I/OD	2.2kΩ pull-ups to VDD_1V8 on Jetson TX2 NX	I2C #2 Clock and Data. Connect to CLK and Data pins of any 1.8V devices
CAM_I2C_SCL/SDA	I/OD	2.2kΩ pull-ups to VDD_3V3_SYS on Jetson TX2 NX	Camera I2C Clock and Data. Connect to CLK and Data pins of any 3.3V devices

Notes:

- 1. If some devices require a different voltage level than others connected to the same I2C bus, level shifters are required.
- 2. For I2C interfaces that are pulled up to 1.8V, disable the E_I0_HV option for these pads. For I2C interfaces that are pulled up to 3.3V, enable the E_I0_HV option. The E_I0_HV option is selected in the Pinmux registers.

11.2 SPI

The Jetson TX2 NX brings out two of the Tegra X2 SPI interfaces. See Figure 11-2.

Table 11-4. Jetson TX2 NX SPI Pin Description

Pin #	Module Pin Name	Tegra X2 Signal	Usage/Description	Usage on DevKit Carrier Board	Direction	Pin Type
89	SPI0_MOSI	GPIO_WAN7	SPI 0 Master Out / Slave In			
91	SPI0_SCK	GPIO_WAN5	SPI 0 Clock			
93	SPI0_MISO	GPIO_WAN6	SPI 0 Master In / Slave Out			
95	SPI0_CS0*	GPIO_WAN8	SPI 0 Chip Select 0			
97	SPI0_CS1*	GPIO_MDM4 (SPI1_CS1 SFIO)	SPI 0 Chip Select 1		Bidir	CMOS – 1.8V
104	SPI1_MOSI	GPIO_SEN3 (SPI2_DOUT SFIO)	SPI 1 Master Out / Slave In	Expansion header		
106	SPI1_SCK	GPIO_SEN1 (SPI2_CLK SFIO)	SPI 1 Clock			
108	SPI1_MIS0	GPI0_SEN2 (SPI2_DIN SFI0)	SPI 1 Master In / Slave Out			
110	SPI1_CS0*	GPI0_SEN4 (SPI2_CS0 SFI0)	SPI 1 Chip Select 0			

Notes:

- 1. In the Type/Dir column, Output is from Jetson TX2 NX. Input is to Jetson TX2 NX. Bidir is for Bidirectional signals.
- 2. The directions for SPI[1:0]x are true when used for those functions. Otherwise as GPIOs, the directions are bidirectional.

Figure 11-2. SPI Connections

Figure 11-3 shows the basic connections used.

Figure 11-3. Basic SPI Master and Slave Connections

11.2.1 SPI Design Guidelines

Figure 11-4 shows the SPI topologies and Table 11-5 gives the SPI interface signal routing requirements.

Figure 11-4. SPI Topologies

Table 11-5. SPI Interface Signal Routing Requirements

Parameter	Requirement	Units	Notes
Max frequency	65	MHz	
Configuration / device organization	4	load	
Max loading (total of all loads)	15	pF	
Reference plane	GND		
Breakout region impedance	Minimum width and spacing		
Max PCB breakout delay	75	ps	
Trace impedance	50 – 60	Ω	±15%
Via proximity (signal to reference)	< 3.8 (24)	mm (ps)	See note
Trace spacing (Microstrip / Stripline)	4x / 3x	dielectric	
Max trace length/delay (PCB main trunk) for MOSI, MISO, SCK and CS 2x-load star/daisy Point-point	195 (1228) 120 (756)	mm (ps)	
Max trace length/delay (Branch-A) for MOSI, MISO, SCK and CS 2x-load star/daisy	75 (472)	mm (ps)	
Max trace length/delay skew from MOSI, MISO and CS to SCK	16 (100)	mm (ps)	At any point

11.3 CAN

Jetson TX2 NX brings a single CAN (Controller Area Network) interface out to the main connector.

Table 11-6. Jetson TX2 NX CAN Pin Description

Pin #	Module Pin Name	Tegra X2 Signal	Usage/Description	Usage on DevKit Carrier Board	Direction	Pin Type
145	(CAN_TX) RSVD	CAN0_DOUT	CAN Transmit	Out and OAN hands	Output	CMOS - 3.3V
143	(CAN_RX) RSVD	CAN0_DIN	CAN Receive	Optional CAN header	Input	CMOS - 3.3V

Notes:

- 1. In the Type/Dir column, Output is from Jetson TX2 NX. Input is to Jetson TX2 NX. Bidir is for Bidirectional signals.
- 2. The directions for the CAN signals is true when used for that function. Otherwise as GPIOs, the directions are bidirectional.

Figure 11-5. Jetson TX2 NX CAN Connections

11.4 Fan

Jetson TX2 NX provides PWM and Tachometer functionality for controlling a fan as part of the thermal solution. Information on the PWM and tachometer pins/functions can be found in the following locations:

Jetson TX2 NX Module Pin Mux:

This is used to configure GPI014 for FAN_PWM and GPI008 for FAN_TACH. The pin used for FAN_PWM is configured as PM3_PWM3. The pin used for FAN_TACH is configured as a GPIO.

Tegra X2 (SoC) Technical Reference Manual (TRM):

 Functional descriptions and related registers can be found in the TRM for the FAN_PWM (PWM chapter).

Table 11-7. Jetson TX2 NX Fan Pin Description

Pin #	Module Pin Name	Tegra X2 Signal	Usage/Description	Usage on DevKit Carrier Board	Direction	Pin Type
230	GPI014	GPIO_SEN6	Fan PWM	F	Output	CMOS - 1.8V
208	GPI008	UART5_TX	Fan tachometer	Fan	Input	CMOS - 1.8V

Notes:

- 1. In the Type/Dir column, Output is from Jetson TX2 NX. Input is to Jetson TX2 NX. Bidir is for Bidirectional signals.
- The directions for GPI014 and GPI008 are true when used for those functions. Otherwise as GPI0s, the directions are bidirectional.

Figure 11-6. Jetson TX2 NX Fan Connections

11.5 UART

The Jetson TX2 NX brings three UARTs out to the main connector. See Figure 11-7 for typical assignments of the three available UARTs.

Table 11-8. Jetson TX2 NX UART Pin Description

Pin#	Module Pin Name	Tegra X2 Signal	Usage/Description	Usage on DevKit Carrier Board	Direction	Pin Type
99	UARTO_TXD	UART2_TX	UART #0 Transmit. See note 1.) Transmit. See note 1.		
101	UARTO_RXD	UART2_RX	UART #0 Receive	M 2 Kan F	Input	CMOS - 1.8V
103	UARTO_RTS*	UART2_RTS	UART #0 Request to Send. See note 1.	M.2 Key E	Output	
105	UARTO_CTS*	UART2_CTS	UART #0 Clear to Send		Input	
203	UART1_TXD	UART3_TX	UART #1 Transmit. See note 1.	Expansion Header	Output	
205	UART1_RXD	UART3_RX	UART #1 Receive		Input	
207	UART1_RTS*	UART3_RTS	UART #1 Request to Send		Output	
209	UART1_CTS*	UART3_CTS	UART #1 Clear to Send		Input	
236	UART2_TXD	UART1_TX	UART #2 Transmit.	D.I. C. C.I.	Output	
238	UART2_RXD	UART1_RX	UART #2 Receive	Debug Serial Port Input		

Notes:

- 1. Buffered on module to keep connected devices from affecting state of the pin during power-on as it is one of the SoC strap pins. These pins can only be used as outputs if configured as GPIOs.
- 2. In the Type/Dir column, Output is from Jetson TX2 NX. Input is to Jetson TX2 NX. Bidir is for Bidirectional signals.
- 3. The directions for UART[2:0]x are true when used for those functions. Otherwise as GPIOs, the direction is bidirectional.

Figure 11-7. Jetson TX2 NX UART Connections

Table 11-9. UART Signal Connections

Ball Name	Туре	Termination	Description
UART[2:0]_TXD	0		UART Transmit: Connect to peripheral RXD pin of device
UART[2:0]_RXD	I		UART Receive: Connect to peripheral TXD pin of device
UART[1:0]_CTS*	I		UART Clear to Send: Connect to peripheral RTS pin of device
UART[1:0]_RTS*	0		UART Request to Send: Connect to peripheral CTS pin of device

11.6 Debug

Jetson TX2 NX supports a UART for debugging purposes. The UART intended for debug is UART1 with is routed to a level shifter then to a 6-pin UART header on the developer kit carrier board.

Table 11-10. Jetson TX2 NX Debug UART Description

Pin #	Module Pin Name (See Note)	Tegra X2 Signal	Usage/Description	Usage on DevKit Carrier Board	Direction	Pin Type
238	UART2_RXD	UART1_RX	UART 2 receive	Carial and	Input	CMOS - 1.8V
236	UART2_TXD	UART1_TX	UART 2 transmit	Serial port	Output	

Notes:

- 1. In the Type/Dir column, Output is from Jetson TX2 NX. Input is to Jetson TX2 NX. Bidir is for Bidirectional signals.
- 2. The direction for UART2_RXD is true when used for this function. Otherwise as a GPIO, the direction is bidirectional.

Figure 11-8. Debug UART Connections

Note: If level shifter is implemented, pull-up is required on the RXD line on the non-Jetson TX2 NX side of the level shifter. This is required to keep the input from floating and toggling when no device is connected to the debug UART.

11.6.1 Debug UART

The UART2 interface is intended to be used for debug purposes.

Table 11-11. Debug UART Connections

Module Pin Name	Type	Termination	Description
UART2_TXD	0		UART #2 Transmit: Connect to RX pin of serial device
UART2_RXD	I	If level shifter implemented, 100kΩ to supply on the non-Jetson TX2 NX side of the device.	UART #2 Receive: Connect to TX pin of serial device

Chapter 12. PADS

Jetson TX2 NX signals that come from Tegra X2 may glitch when the associated power rail is enabled. This may affect pins that are used as GPIO outputs. Designers should take this into account. GPIO outputs that must maintain a low state even while the power rail is being ramped up may require special handling.

12.1 Internal Pull-ups for Dual-Voltage Block Pins Powered at 1.8V

Several of the MPIO pads are on blocks designed to be powered at either 1.8V or 3.3V. These blocks are powered at 1.8V on Jetson TX2 NX, and the internal pull-up at initial Power-ON is not effective. The signal may only be pulled up a fraction of the 1.8V rail. Once the system boots, software can configure the pins for 1.8V operation and the internal pull-ups will work correctly. If these signals need the pull-ups during Power-ON, external pull-up resistors should be added. The following list is the affected pins list. These are the Jetson TX2 NX pins on the dual-voltage blocks powered at 1.8V with Power-ON reset default of Internal pull-up enabled.

- ► SDMMC DATO
- ▶ SDMMC DAT1
- ► SDMMC_DAT2
- ► SDMMC DAT3
- ► SDMMC CMD

12.2 Schmitt Trigger Usage

The MPIO pins have an option to enable or disable Schmitt-trigger mode on a per-pin basis. This mode is recommended for pins used for edge-sensitive functions such as input clocks, or other functions where each edge detected will affect the operation of a device. Schmitt-trigger mode provides better noise immunity and can help avoid extra edges from being "seen" by the Tegra X2 inputs. Input clocks include the I2S and SPI clocks (I2Sx_SCLK and SPIx_SCK) when Tegra X2 is in slave mode. The FAN_TACH pin [GPIO8] is another input that could be affected by noise on the signal edges. The SDMMC_CLK pin, while used to output the clock, also

sample the clock at the input to help with read timing. Therefore, the SDMMC_CLK pin may benefit from enabling Schmitt-trigger mode. Care should be taken if the Schmitt-trigger mode setting is changed from the default initialization mode as this can influence interface timing.

12.3 Pins Pulled and Driven High During Power-ON

The Jetson TX2 NX is powered up before the carrier board (See Section 5.1). Table 12-1 lists the pins on Jetson TX2 NX that default to being pulled or driven high. Care must be taken on the carrier board design to ensure that any of these pins that connect to devices on the carrier board (or devices connected to the carrier board) do not cause damage or excessive leakage to those devices. Some of the ways to avoid issues with sensitive devices are:

- External pull-downs on the carrier board that are strong enough to keep the signals low are one solution, given that this does not affect the function of the pin.
- ▶ Buffers or level shifters can be used to separate the signals from devices that may be affected. The buffer and shifter should be disabled until the device power is enabled.

Table 12-1. Pins Pulled and Driven High by Tegra X2 Prior to SYS_RESET* Inactive

Jetson TX2 NX Pin	Power-ON reset Default	Pull-up Strength (kΩ)	Jetson TX2 NX Pin	Power-ON reset Default	Pull-up Strength (kΩ)
MOD_SLEEP*	Driven high	~100	UART1_RXD	Internal pull-up	~100
FORCE_RECOVERY*	Internal pull-up	~100	UART2_TXD	Internal pull-up	~100
SDMMC_CMD	Internal pull-up	~19.5	UART2_RXD	Internal pull-up	~100
SDMMC_DAT0	Internal pull-up	~19.5	SPI0_CS0*	Internal pull-up	~100
SDMMC_DAT1	Internal pull-up	~19.5	SPI0_CS1*	Internal pull-up	~100
SDMMC_DAT2	Internal pull-up	~19.5	SPI1_MOSI	Internal pull-up	~100
SDMMC_DAT3	Internal pull-up	~19.5	SPI1_MIS0	Internal pull-up	~100
			SPI1_CS0*	Internal pull-up	~100
			SPI1_CS1*	Internal pull-up	~100

Table 12-2. Pins Pulled High on Module with External Resistors Prior to SYS_RESET_IN* Inactive

Jetson TX2 NX Pin	Pull-up Supply Voltage (V)	External Pull-up (kΩ)	Jetson TX2 NX Pin	Pull-up Supply Voltage (V)	External Pull-up (kΩ)
SLEEP/WAKE*	1.8	100	PCIE0_CLKREQ*	3.3	47
SHUTDOWN_REQ*	5.0	1.4	PCIE1_CLKREQ*	3.3	47
I2C0_SCL/SDA	3.3	2.2	PCIE0_RST*	3.3	4.7
I2C1_SCL/SDA	3.3	2.2	PCIE1_RST*	3.3	4.7
I2C2_SCL/SDA	1.8	2.2	PCIE_WAKE*	3.3	47
CAM_I2C_SCL/SDA	3.3	2.2			

Chapter 13. Unused Interface Terminations

13.1 Unused Multi-purpose Standard CMPS Pad Interfaces

The following Jetson TX2 NX pins (and groups of pins) are Tegra X2 MPIO pins that support either special function IOs (SFIO) and/or GPIO capabilities. Any unused pins or portions of pin groups listed in Table 13-1 that are not used can be left unconnected.

Table 13-1. Unused MPIO Pins and Pin Groups

Jetson TX2 NX Pins and Pin Groups	Jetson TX2 NX Pins and Pin Groups
GPIOxx	I2S
PCIEx_CLK/RST/CLKREQ/WAKE (including CANx for PCIE2_CLKREQ/RST	UART
DPx_HPD, DPx_AUXx, HDMI_CEC	I2C
CAM Control, Clock	SPI
SDMMC	

Chapter 14. Jetson TX2 NX Pin Descriptions and Design Checklist

The Jetson TX2 NX pin description and design checklist are attached to this design guide.

To access the attached files, click the **Attachment** icon on the left-hand toolbar on this PDF (using Adobe Acrobat Reader or Adobe Acrobat). Select the file and use the Tool Bar options (**Open, Save**) to retrieve the documents. Excel files with the .nvxlsx extension will need to be renamed to .xlsx to open.

Chapter 15. General Routing Guidelines

15.1 Signal Name Conventions

The following conventions are used in describing the signals for Jetson TX2 NX:

- ➤ Signal names use a mnemonic to represent the function of the signal. For example, Secure Digital Interface #3 Command signal is represented as SDMMC_CMD, written in bold to distinguish it from other text. All active-low signals are identified by an asterisk (*) after the signal name. For example, SYS_RESET* indicates an active-low signal. Active-high signals do not have the underscore-N (_N) after the signal names. For example, SDMMC_CMD indicates an active-high signal. Differential signals are identified as a pair with the same names that end with _P and _N or for USB 2.0, DP and DN (for positive and negative, respectively). For example, CSI_0_D0_P and CSI_0_D0_N indicate a differential signal pair.
- ► The signal I/O type is represented as a code to indicate the operational characteristics of the signal. The following table lists the I/O codes used in the signal description tables.

Table 15-1. Signal Type Codes

Code	Definition	
Α	Analog	
DIFF I/O	Bidirectional Differential Input/Output	
DIFF IN	Differential Input	
DIFF OUT	Differential Output	
1/0	Bidirectional Input/Output	
1	Input	
0	Output	
OD	Open Drain Output	
I/OD	Bidirectional Input / Open Drain Output	
Р	Power	

15.2 Routing Guideline Format

The routing guidelines have the following format to specify how a signal should be routed.

- ▶ Breakout traces are traces routed from BGA ball either to a point beyond the ball array, or to another layer where full normal spacing guidelines can be met. Breakout trace delay limited to 500 mils (1/1000 of an inch) unless otherwise specified.
- After breakout, signal should be routed according to specified impedance for differential, single-ended, or both (for example: HDMI). Trace spacing to other signals also specified.
- Follow max and min trace delays where specified. Trace delays are typically shown in "mm" (millimeter) or "in" (inch) or in terms of signal delay in "ps" (pico-seconds) or both.
 - For differential signals, trace spacing to other signals must be larger of specified × dielectric height or inter-pair spacing.
 - Spacing to other signals/pairs cannot be smaller than spacing between complementary signals (intra-pair).
 - Total trace delay depends on signal velocity which is different between outer (microstrip) and inner (stripline) layers of a PCB.

15.3 Signal Routing Conventions

Throughout this design guide, the following signal routing conventions are used:

- ▶ SE Impedance (/ Diff Impedance) at x Dielectric Height Spacing
 - SE impedance of trace (along with diff impedance for diff pairs) is achieved by spacing requirement. Spacing is multiple of dielectric height. Dielectric height is typically different for microstrip and stripline. Note: 1 mil = 1/1000th of an inch.

Note: Trace spacing requirement applies to SE traces or differential pairs to other SE traces or differential pairs. It does not apply to traces making up a differential pair. For this case, spacing/trace widths are chosen to meet differential impedance requirement.

15.4 General Routing Guidelines

Pay close attention when routing high speed interfaces, such as HDMI/DP, USB 3.0, PCIe or DSI/CSI. Each of these interfaces has strict routing rules for the trace impedance, width, spacing, total delay, and delay/flight time matching. The following guidelines provide an overview of the routing guidelines and notations used in this design guide.

Controlled Impedance

Each interface has different trace impedance requirements and spacing to other traces. It is up to designer to calculate trace width and spacing required to achieve specified SE and Diff impedances. Unless otherwise noted, trace impedance values are ±15%.

Max Trace Lengths/Delays

Trace lengths/delays should include the carrier board PCB routing (where the Jetson TX2 NX mating connector resides) and any additional routing on a Flex/ secondary PCB segment connected to main PCB. The max length/delay should be from Jetson TX2 NX to the actual connector (i.e. USB, HDMI, etc.) or device (i.e. onboard USB device, Display driver IC, camera imager IC, etc.)

Trace Delay/Flight Time Matching

Signal flight time is the time it takes for a signal to propagate from one end (driver) to the other end (receiver). One way to get same flight time for signal within signal group is to match trace lengths within specified delay in the signal group.

- Total trace delay = Carrier PCB trace delay only. Do not exceed maximum trace delay specified.
- For six layers or more, it is recommended to match trace delays based on flight time of signals. For example, outer-layer signal velocity could be 150psi (ps/inch) and inner-layer 180psi. If one signal is routed 10 inches on outer layer and second signal is routed 10 inches in inner layer, difference in flight time between two signals will be 300psi. That is a big difference if required matching is 15ps (trace delay matching). To fix this, inner trace needs to be 1.7 inches shorter or outer trace needs to be 2 inches longer.
- In this design guide, terms such as intra-pair and inter-pair are used when describing differential pair delays. Intra-pair refers to matching traces within differential pair (for example, true to complement trace matching). Inter-pair matching refers to matching differential pairs average delays to other differential pair average delays.

15.5 General PCB Routing Guidelines

For GSSG stack-up to minimize crosstalk, signal should be routed in such a way that they are not on top of each other in two routing layers (see Figure 15-1).

Figure 15-1. GSSG Stack-Up

Do not route other signals or power traces/areas directly under or over critical high-speed interface signals.

Note: The requirements detailed in the interface signal routing requirements tables must be met for all interfaces implemented or proper operation cannot be guaranteed.

15.6 Common High-Speed Interface Requirements

Table 15-2 provides the common high-speed interface requirements.

Table 15-2. Common High-Speed Interface Requirements

Parameter		Requirement	Units	Notes
Common-mode Choke (Not recommen	nded – only used if	absolutely requir	ed for EMI i	ssues)
Preferred device				Type: TDK ACM2012D-900-2P. Only if needed. Place near connector. See Figure 15-2
Location - Max distance from to adjacent discontinuities – ex, connector, AC cap)		8 (53)	mm (ps)	TDK ACM2012D-900-2P See Figure 15-2
Common-mode impedance @ 100MHz	Min/Max	65/90	Ω	
Max Rdc		0.3	Ω	
Differential TDR impedance		90	Ω	@T _R -200ps (10%-90%)
Min Sdd21 @ 2.5GHz	2.22	dB		
Max Scc21 @ 2.5GHz		19.2	dB	
Serpentine				
Min bend angle		135	deg (a)	S1 must be taken care in order to consider Xtalk
Dimension	Min A Spacing Min B, C Length	4x 1.5x	Trace width	to adjacent pair. See Figure 15-3
General	Min Jog Width	3x		
Routing over Voids	Routing over voice routed to.	Is not allowe	ed except void around device ball/pin the signal is	
Noise Coupling	Keep critical high-speed traces away from other signal traces or unrelated power traces/areas or power supply components			

The following figures are the common high-speed interface signal routing requirements figures.

Figure 15-2. Common Mode Choke

Figure 15-3. Serpentine

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product. NVIDIA Corporation ("NVIDIA") makes no representations or warranties, expressed or implied, as to the accuracy or completeness of the information contained in this document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the consequences or use of such information or for any infringement of patents or other rights of third parties that may result from its use. This document is not a commitment to develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without notice.

Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise agreed in an individual sales agreement signed by authorized representatives of NVIDIA and customer ("Terms of Sale"). NVIDIA hereby expressly objects to applying any customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations are formed either directly or indirectly by this document.

Unless specifically agreed to in writing by NVIDIA, NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in applications where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property or environmental damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore such inclusion and/or use is at customer's own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use. Testing of all parameters of each product is not necessarily performed by NVIDIA. It is customer's sole responsibility to evaluate and determine the applicability of any information contained in this document, ensure the product is suitable and fit for the application planned by customer, and perform the necessary testing for the application in order to avoid a default of the application or the product. Weaknesses in customer's product designs may affect the quality and reliability of the NVIDIA product and may result in additional or different conditions and/or requirements beyond those contained in this document. NVIDIA accepts no liability related to any default, damage, costs, or problem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this document. Information published by NVIDIA regarding third-party products or services does not constitute a license from NVIDIA to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property rights of the third party, or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced without alteration and in full compliance with all applicable export laws and regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, "MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA'S aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms of Sale for the product.

VESA DisplayPort

DisplayPort and DisplayPort Compliance Logo, DisplayPort Compliance Logo for Dual-mode Sources, and DisplayPort Compliance Logo for Active Cables are trademarks owned by the Video Electronics Standards Association in the United States and other countries.

HDMI

HDMI, the HDMI logo, and High-Definition Multimedia Interface are trademarks or registered trademarks of HDMI Licensing LLC.

Arm

Arm, AMBA and Arm Powered are registered trademarks of Arm Limited. Cortex, MPCore and Mali are trademarks of Arm Limited. All other brands or product names are the property of their respective holders. "Arm" is used to represent Arm Holdings plc; its operating company Arm Limited; and the regional subsidiaries Arm Inc.; Arm KK; Arm Korea Limited.; Arm Taiwan Limited; Arm France SAS; Arm Consulting (Shanghai) Co. Ltd.; Arm Germany GmbH; Arm Embedded Technologies Pvt. Ltd.; Arm Norway, AS and Arm Sweden AB.

Trademarks

NVIDIA, the NVIDIA logo, Jetson, Tegra, and Xavier are trademarks and/or registered trademarks of NVIDIA Corporation in the U.S. and other countries. Other company and product names may be trademarks of the respective companies with which they are associated.

Copyright

© 2020, 2021 NVIDIA Corporation. All rights reserved.

