1 Lezione del 02-04-25

1.0.1 Esempio: conversione dalla forma a stato alla funzione di trasferimento

Prendiamo l'esempio di una forma a variabili di stato arbitraria e riportiamola in funzione di trasferimento:

$$\begin{cases} x' = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -2 & -3 \end{pmatrix} x + \begin{pmatrix} 10 \\ 0 \\ 0 \end{pmatrix} u \\ y = \begin{pmatrix} 1 & 0 & 0 \end{pmatrix} x \end{cases}$$

Dalla matrice A ricaviamo sI - A:

$$sI - A = \begin{pmatrix} s & -1 & 0 \\ 0 & s & -1 \\ 1 & 2 & s+3 \end{pmatrix}$$

da cui l'inversa:

$$(sI - A)^{-1} = \frac{1}{s^3 + 3s^2 + 2s + 1} \begin{pmatrix} s^2 + 3s - 2 & s + 3 & 1 \\ -1 & s^2 + 3s & s \\ -s & -2s - 1 & s^2 \end{pmatrix}$$

dove notiamo come sempre il denominatore è il polinomio dato da $a_n...a_1$. Applichiamo quindi la formula completa:

$$G(s) = C(sI - A)^{-1}B(+D) = \begin{pmatrix} 1 & 0 & 0 \end{pmatrix} \frac{1}{s^3 + 3s^2 + 2s + 1} \begin{pmatrix} s^2 + 3s - 2 & s + 3 & 1 \\ -1 & s^2 + 3s & s \\ -s & -2s - 1 & s^2 \end{pmatrix} \begin{pmatrix} 10 \\ 0 \\ 0 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 0 & 0 \end{pmatrix} \frac{1}{s^3 + 3s^2 + 2s + 1} \begin{pmatrix} 10s^2 + 30s - 20 \\ -10 \\ -10s \end{pmatrix} = \frac{10s^2 + 30s - 20}{s^3 + 3s^2 + 2s + 1}$$

1.0.2 Matrici di trasferimento dei sistemi MIMO

Abbiamo visto finora la funzione di trasferimento come una funzione scalare della variabile *s*. Abbiamo in verità che questa può essere rappresentata in sistemi MIMO come:

$$\mathbf{G}(s) = C(sI - A)^{-1}B = \begin{pmatrix} g_{11}(s) & \dots & g_{1m}(s) \\ \vdots & \ddots & \vdots \\ g_{p1}(s) & \dots & g_{pm}(s) \end{pmatrix}$$

cioè una matrice che lega il trasferimento da ogni canale di ingresso a ogni canale di uscita, con $g_{ij}(s)$ funzione di trasferimento dal canale u_j all'uscita y_i .

1.0.3 Esempio: funzione di trasferimento della velocità di crociera

Riprendiamo un'ennesima volta l'esempio 3.0.1, ricavandone la forma in funzione di trasferimento. Avevamo che questo era rappresentato dal sistema:

$$\begin{cases} x' = \begin{pmatrix} 0 & 1 \\ 0 & -\frac{\beta}{m} \end{pmatrix} x + \begin{pmatrix} 0 & 0 \\ \frac{\gamma}{m} & -g \end{pmatrix} u \\ y = \begin{pmatrix} 0 & 1 \end{pmatrix} x \end{cases}$$

da cui:

$$sI - A = \begin{pmatrix} s & -1 \\ 0 & s + \frac{\beta}{m} \end{pmatrix}, \quad (sI - A)^{-1} = \frac{1}{s\left(s + \frac{\beta}{m}\right)} \begin{pmatrix} s + \frac{\beta}{m} & 1 \\ 0 & s \end{pmatrix}$$

Applicando la formula:

$$\mathbf{G}(s) = C(sI - A)^{-1}B = \frac{1}{s\left(s + \frac{\beta}{m}\right)} \left(s\frac{\gamma}{m} - sg\right) = \left(\frac{\gamma}{m\left(s + \frac{\beta}{m}\right)} \quad \frac{-g}{s + \frac{\beta}{m}}\right)$$

Avremo quindi una funzione di trasferimento 2×1 , dove le due entrate rappresentano rispettivamente l'effetto della propulsione del motore (che era γu) e dell'accelerazione gravitazionale. Visto che sulla seconda non si può agire, prenderemo in interesse la prima entrata:

$$G(s) = \frac{\gamma}{m\left(s + \frac{\beta}{m}\right)}$$

Di questa potremmo ad esempio prendere la risposta al gradino, che dalla linearità del sistema ci dà la risposta dell'automobile al controllo sull'acceleratore, trascurata l'accelerazione gravitazionale.

Avremo quindi:

$$Y(s) = G(s)U(s) = \frac{\gamma}{m\left(s + \frac{\beta}{m}\right)} \frac{1}{s} = \frac{\alpha_1}{s + \frac{\beta}{m}} + \frac{\alpha_2}{s}$$

che antitransforma in:

$$y(t) = \alpha_1 e^{-\frac{\beta}{m}t} + \alpha_2 \cdot H(t)$$

con:

$$\alpha_1 = -\frac{\gamma}{\beta}, \quad \alpha_2 = \frac{\gamma}{\beta}$$

che è la classica risposta al gradino di un sistema del prim'ordine: boh grafico

1.0.4 Poli del sistema ed equazione caratteristica

Si ha che i **poli** del sistema in forma a variabili di stato sono un *sottoinsieme* degli **auto- valori** della matrice *A*, in quanto li troviamo come radici dell'equazione:

$$p_1(s) = \det(sI - A)$$

al denominatore dell'inversa di sI - a, che corrisponde al polinomio caratteristico di A:

$$p_2(s) = \det(A - \lambda I)$$

Diciamo sottoinsieme in quanto potrebbe esserci semplificazione fra numeratore e denominatore della funzione di trasferimento. Quindi, non tutti gli autovalori della matrice A diventeranno poli della funzione di trasferimento. In particolare, dalla definizione di raggiungbilità ed osservabilità che avevamo dato, abbiamo che per ogni funzione di trasferimento $g_{ij}(s)$, i poli della funzione di trasferimento sono tutti e soli i poli (modi) raggiungibili dall'ingresso u_j ed osservabili dall'uscita y_i .

1.1 Stabilità nel modello a funzione di trasferimento

Abbiamo lavorato finora col modello a funzione di trasferimento, definita come:

$$G(s) = \frac{\sum_{i=0}^{m} b_i s^i}{\sum_{i=0}^{n} a_i s^i} = \frac{b_m(s-z_1)(s-z_2)...(s-z_m)}{a_n(s-p_1)(s-p_2)...(s-p_n)}$$

con z_i gli m zeri, p_i gli n poli, e n > m.

Di questa avevamo individuato le due forme:

• Forma di Evans: evidenzia poli e zeri:

$$G(s) = \frac{\sum_{i=0}^{m} b_i s^i}{\sum_{i=0}^{n} a_i s^i} = \frac{b_m(s-z_1)(s-z_2)...(s-z_m)}{a_n(s-p_1)(s-p_2)...(s-p_n)}$$

• Forma di Bode: evidenzia le costanti tempo:

$$G(s) = K \frac{(\tau_a s + 1)(\tau_b s + 1)...(\tau_i s + 1)}{(\tau_1 s + 1)(\tau_2 s + 1)...(\tau_n s + 1)}$$

Definiamo quindi formalmente **poli**:

Definizione 1.1: Polo

Un polo a_i di una funzione di trasferimento G(s) è un valore di s per cui G(s) tende ad infinito:

$$F(s) = \frac{g(s)}{\prod_{i=1}^{x} (s - a_i)_i^n}$$

con n_i ordine del polo.

e **zeri**:

Definizione 1.2: Zeri

Uno zero a_i di una funzione di trasferimento G(s) è un valore di s per cui G(s) tende a zero:

$$F(s) = \frac{\prod_{i=1}^{x} (s - a_i)_i^m}{g(s)}$$

con m_i ordine dello zero.

Quello che ci interesserà nella valutazione della **stabilità** dei sistemi sarà la posizione dei poli nel piano complesso. In particolare, come avevamo detto per i modi nel modello a variabili di stato, poli a componente *reale negativa* danno **stabilità asintotica**, poli a componente *reale nulla* danno **stabilità marginale**, e poli a componente *reale positiva* dano **instabilità**. Inoltre la componente *complessa* dà informazioni sull'oscillazione del sistema, con **oscillazioni smorzate** a componente *complessa e reale non nulle*, e **oscillazioni continue** a componente *reale nulla*.

Gli zeri, invece, non hanno effetto sulla stabilità. Gli zeri a parte reale positiva hanno invece l'effetto di *invertire* la risposta al gradino, almeno sul breve termine.

1.1.1 Stabilità e autovalori

Avevamo che si poteva passare da modello a variabili di stato a funzione di trasferimento come:

$$G(s) = \frac{Y(s)}{U(s)} = C(sI - A)^{-1}B + D = \frac{n(s)}{d(s)}$$

Chiaramente, n(s) e d(s) saranno i polinomi di cui ci interessavamo per il calcolo di poli e zeri, di cui abbiamo detto ad interessarci per la stabilità erano i soli poli. Ora, visto che abbiamo detto che c'è una qualche corrispondenza fra poli e autovalori, avremo che si può controllare la stabilità dai soli autovalori della matrice A. Questo è infatti esattamente quello che avevamo fatto nel modello a variabili di stato.

1.1.2 Stabilità BIBO

Per parlare propriamente di stabilità, in relazione all'ingresso, nei modelli a funzione di trasferimento, introduciamo la nozione di sistema **BIBO** *Bounded Input, Bounded Output*:

Definizione 1.3: Sistema BIBO

Un sistema si dice stabile BIBO se ad ogni ingresso limitato corrisponde un'uscita limitata.

Si ha che, per sistemi lineari, la stabilità BIBO si ha se e solo se i poli della funzione di trasferimento hanno tutti parte reale < 0. Notiamo che la stabilità BIBO, al confronto della stabilità semplice che avevamo valutato finora, non dipende soltanto dallo stato interno del sistema, ma dalla **risposta forzata**. Possono infatti esistere esempi di sistemi BIBO stabili ma non internamente stabili, e viceversa.

1.1.3 Poli dominanti

In un sistema BIBO stabile, quindi, i modi sono tutti segnali esponenzialmente smorzati. Al di là del transitorio iniziale, in questa situazione si avrà che il comportamento prevalente del sistema è quello dei modi più lenti, cioè quelli più vicini all'asse immaginario.

1.2 Criterio di Routh

Avevamo detto che i poli del sistema sono quelli che decidono la stabilità di un sistema. Preso ad esempio il sistema in ciclo chiuso:

Dove le funzioni C(s), G(s) e H(s) rappresentano rispettivamente il **controllore**, l'**impianto** e il **sensore**. La funzione di trasferimento, trascurati i disturbi, avevamo detto era:

$$\frac{Y(s)}{R(s)} = T(s) = \frac{C(s)G(s)}{1 + C(s)G(s)H(s)}$$

da cui la stabilità del sistema è data dalla catena di retroazione completa (denominatore d(s) = 1 + C(s)G(s)H(s)), mentre la catena diretta n(s) = C(s)G(s) dà solo gli zeri.

Del sistema in catena chiusa, quindi, valuteremo la stabilità controllando se i *poli* si trovano nella cosiddettà **regione di stabilita**, individuata come l'insieme di z sul piano complesso a Re(z) < 0.

Possiamo generalizzare il seguente discorso prendendo due funzioni di trasferimento, dette G_{OL} (*Open Loop*, in **anello aperto**), e G_{CL} (*Closed Loop*, in **anello chiuso**). A questo punto potremo definire la funzione di trasferimento come:

$$\frac{Y(s)}{R(s)} = T(s) = \frac{G_{OL}(s)}{1 + G_{CL}(s)}$$

Notiamo che G_{CL} è quanto si rileva dall'uscita attraverso il sensore, cioè:

$$G_{CL}(s) = G_{OL}(s)H(s)$$

e se H(s) = 1, la funzione di trasferimento sarà:

$$\frac{Y(s)}{R(s)} = T(s) = \frac{G_{OL}(s)}{1 + G_{OL}(s)}$$
 (H(s) = 1)

Notiamo nuovamente che sarà solo il denominatore, in entrambi i casi, ad importarci per quanto riguarda la stabilità.

Facciamo alcuni esempi.

- 1.2.1 Esempio: stabilità in catena chiusa
- 1.2.2 Esempio: stabilità in catena chiusa con parametro
- 1.2.3 Esempio: stabilità in catena chiusa con parametro al second'ordine

ha fatto 3 esempi

Il **criterio di Routh** (*criterio di Routh-Hurwitz*) è il primo metodo che vediamo per sistematizzare il procedimento di valutazione della stabilità. Rappresenta un metodo *puramente algebrico* che si applica a sistemi di controllo lineari tempo invarianti (*LTI*).

Di base abbiamo che considereremo equazioni caratteristiche in forma polinomiale:

$$p(s) = a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0 = 0$$

Vediamo innanzitutto le **condizioni di applicabilità**. Abiamo la condizione necessaria ma non sufficiente per la stabilità, che tutti gli n+1 coefficienti del polinomio devono avere lo stesso segno. Questa è fra l'altro necessaria e sufficiente per $n \le 2$.

Vorremo quindi calcolare la cosiddetta **tabella di Routh**. Per un polinomio di grado n, questa avrà n+1 righe. Le prime due righe sono sempre costituite dai coefficienti del polinomio p(s), distinto in una parte pari e una parte dispari. Cioè assunto n pari:

$$\begin{cases} p_1(s) = a_n s^N + a_{n-2} s^{n-2} + \ldots + a_0 & \text{(pari)} \\ p_2(s) = a_{n-1} s^{n-1} + a_{n-3} s^{n-3} + \ldots + a_1 s & \text{(dispari)} \end{cases}$$

Potremo quindi dire:

Per i termini successivi si prende, ad esempio alla terza riga:

$$\gamma_1 = -\frac{\det \begin{pmatrix} a_n & a_{n-2} \\ a_{n-1} & a_{n-3} \end{pmatrix}}{a_{n-1}}, \quad \gamma_2 = -\frac{\det \begin{pmatrix} a_n & a_{n-4} \\ a_{n-1} & a_{n-5} \end{pmatrix}}{a_{n-1}}, \quad \dots$$

cioè ogni volta il minore ottenuto prendendo le due righe alla prima colonna alla i+1-esima.

Sulla tabella di Routh si possono dimostrare dei teoremi:

Teorema 1.1:

Condizione necessaria e sufficiente perchè tutte le radici dell'equazione caratteristica abbiano eh boh