Table 10-5 Summary of Confidence Interval Procedures

Problem Type	Point Estimator	Two-Sided $100(1-lpha)\%$ Confidence Interval
Mean μ of a normal distribution, variance σ^2 known	X	$\overline{X} - Z_{\alpha/2} \sigma / \sqrt{n} \le \mu \le \overline{X} + Z_{\alpha/2} \sigma / \sqrt{n}$
Difference in means of two normal distributions μ_1 and μ_2 , variances σ_1^2 and σ_2^2 known	$\overline{X}_1 - \overline{X}_2$	$\overline{X}_1 - \overline{X}_2 - Z_{\alpha/2} \sqrt{\frac{\sigma_1^2 + \sigma_2^2}{n_1 + n_2}} \leq \mu_1 - \mu_2 \leq \overline{X}_1 - \overline{X}_2 + Z_{\alpha/2} \sqrt{\frac{\sigma_1^2 + \sigma_2^2}{n_1 + n_2}}$
Mean μ of a normal distribution, variance σ^2 unknown	×.	$\overline{X} - t_{\alpha/2, n-1} S / \sqrt{n} \le \mu \le \overline{X} + t_{\alpha/2, n-1} S / \sqrt{n} $
Difference in means of two normal distributions $\mu_1 - \mu_2$, variance $\sigma_1^2 = \sigma_2^2$ unknown	$\overline{X}_1 - \overline{X}_2$	$\overline{X}_1 - \overline{X}_2 - t_{a/2, n_1 + n_2 - 2} S_P \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} \le \mu_1 - \mu_2 \le \overline{X}_1 - \overline{X}_2 + t_{a/2, n_1 + n_2 - 2} S_P \sqrt{\frac{1}{n_1} + \frac{1}{n_2}},$ where $S_P = \sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}}$
Difference in means of two normal distributions for paired samples $\mu_D = \mu_1 - \mu_2$	D	$\overline{D} - t_{\alpha/2, n-1} S_D \Big/ \sqrt{n} \leq \mu_D \leq \overline{D} + t_{\alpha/2, n-1} S_D \Big/ \sqrt{n}$
Variance σ^2 of a normal distribution	² S	$\frac{(n-1)S^2}{\mathcal{X}_{a/2,n-1}^2} \le \sigma^2 \le \frac{(n-1)S^2}{\mathcal{X}_{1-a/2,n-1}^2}$
Ratio of the variances σ_1^2/σ_2^2 of two normal distributions		$\frac{S_2^1}{S_2^2} F_{1-\alpha/2,n_2-1,n_1-1} \leq \frac{\sigma_1^3}{\sigma_2^3} \leq \frac{S_1^2}{S_2^3} F_{\alpha/2,n_2-1,n_1-1}$
Proportion or parameter of a binomial distribution \boldsymbol{p}	ø	$\hat{p} - Z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \le p \le \hat{p} + Z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$
Difference in two proportions or two binomial parameters $p_1 - p_2$	$\hat{p}_1 - \hat{p}_2$	$\hat{p}_1 - \hat{p}_2 - Z_{\alpha/2} \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}} \le p_1 - p_2 \le \hat{p}_1 - \hat{p}_2 + Z_{\alpha/2} \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}$