EXHIBIT A

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Patent Application of

TAMAKI et al.

Serial No.

10/531,085

Filed:

April 11, 2005

Confirmation No.: 2113

Atty. Ref.:

925-319

Group:

1793

Examiner:

C. Koslow

For: OXYNITRIDE PHOSPHOR AND PRODUCTION PROCESS THEREOF, AND

LIGHT-EMITTING DEVICE USING OXYNITRIDE PHOSPHOR

Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

Rule 1.131 Declaration of Hiroto Tamaki, Suguru Takashima, Masatoshi Kameshima, and Takahiro Naitou

We are the named inventors of **U.S. Patent Application 10/531,085** (hereinafter "the '085 application") and are authorized to act on behalf of **Nichia Corporation**, assignee of the entire right, title and interest of the '085 application, and hereby declare as follows:

- 1. We were directly involved in and responsible for the prosecution of the '085 application as well as the PCT application from which the '085 application claims priority.
- 2. The inventions contained in the '085 application, as reflected in the present claims were conceived prior to (a) the effective date of U.S. Patent 6,717,353, entitled "Phosphor Converted Light Emitting Device" and issued to Mueller et al., and (b) the effective date of U.S. Patent Application 2005/0205845, entitled "Luminescent Material, Especially for LED Application" filed by A. Delsing et al. These two references

(1

- 3. The earlier conception date of the attached amended claims is established by the attached copy of a Laboratory Notebook (Notebook) wherein we describe the inventions reflected in the present claims of the '085 application. See Exhibit B and Exhibit B1 (an English translation of Exhibit B), attached hereto. The inventors' Notebook pages were signed by us prior to October 14, 2002.
- 4. In addition, the inventions disclosed in the Notebook pages were witnessed in other contemporaneous documents by notaries Mr. Takahide Yasuda and Mr. Kouichi Kusano prior to October 14, 2002, as evidenced by their seals on Monthly Reports that were drafted on the basis of the inventors' Notebook pages. See Exhibits: C, C1 (identifying Mr. Yasuda's seal), and C2 (an English translation of Exhibit C); D, D1 (identifying Mr. Yasuda's seal), and D2 (an English translation of Exhibit D); E, E1 (identifying Mr. Kusano's seal), and E2 (an English translation of Exhibit E).
- 5. In addition, Mr. Eiji Ogawa, the President of Nichia Corporation, witnessed the Monthly Reports as show by his signature on page 2 of Exhibits C, D and E dated prior to October 14, 2002; Mr. Kaoru Sinoyama, Division Director of Nichia Corporation, witnessed the Monthly Reports as shown by his signature on page 2 of Exhibits C and D dated prior to October 14, 2002; Mr. Teruji Yamakawa, General Manager of Nichia Corporation, witnessed the Monthly Reports as shown by his signature on page 2 of

Exhibits C, D, and E dated prior to October 14, 2002; Mr. Miyuki Sumitomo, Engineer Manager of Nichia Corporation, witnessed the Monthly Reports as evidenced by his signature on page 2 of Exhibits C, D, and E dated prior to October 14, 2002; and Mr. Keiji Ichinomiya, Development Department Manager of Nichia Corporation, witnessed the Monthly Reports as shown by his signature on page 2 of Exhibits C, D, and E dated prior to October 14, 2002. It should be noted that each of the above named individuals signed page 2 of the identified Monthly Reports prior to its attestation by the respective notary.

- 6. In keeping with United States Patent and Trademark Office policy the actual dates appearing in the attached Notebook pages, monthly reports, and this Declaration have been redacted, but we attest that all such dates are earlier in time than October 14, 2002, the earliest possible effective date of the cited references, i.e., the Mueller et al. patent and the Delsing application.
- 7. Mr. Tomohisa Kishimoto, of the Intellectual Property Department of Nichia Corporation, was in charge of drafting all six priority applications to the '085 application. Mr. Kishimoto is currently a Japanese Patent Attorney of the Legal & Intellectual Property Department of Nichia Corporation. Mr. Kishimoto was asked to draft and file the first priority application (JP 2002-301636) on September 4, 2002 which is prior to the critical date of October 14, 2002 of the cited references. He diligently prepared a draft on September 19, 2002 which was also prior to October 14, 2002, and subsequently diligently finalized and filed the application in the Japan Patent Office on October 16, 2002. Mr. Kishimoto was asked to draft and file the second priority application (JP

1

We hereby declare that all statements made herein of my own knowledge 8. are true and that all statements made on information and belief are believed to be true; and further that these statements are made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

Date: December 6	, 2008
------------------	--------

Hiroto Tamaki

Inventor of '085 Application

Name: a

Suguru Takashima Inventor of '085 Application

Date: December 8, 2008

Masatoshi Kameshima

Inventor of '085 Application

Date: December 9, 2008

Inventor of '085 Application

EXHIBIT B

Best Available Copy シリコン オキーナイトライル Noteb No. ナイトライド ued From Page 丸田エん調直にエるシリコンオキシナイトライト 15628 Ca St2 02 N2 = CTa Cas Si3 O2 N4 = Ca3 Si209 N2 = 2785 268.99 (3) 758-1 444.7 Ø Ca 4 Sig 091/2 = 混合量計算 · CEPN 心は 対Ca 混晶te 0.02~008 (En) 2~福度 高いのか、 Eu 温度=0.03 をする. (Ca 0,97 Eu. 03) Siz O2 N, = 195.6 風虚ふ一組成にの計算に 20 9 = 0.1374 mal の題なし = 0,1333 mel 0.97 0.1374 = 4/22 X/0-3 0.03 **本**主 × 0. 2748 = 0.2748 Eu_203 由来の0= =X 4.122×10-8 = 6.1 A3×10-3 mol $0 = 0.2748 - 6.183 \times 10^{-3} = 0.26 P6 mal$ 不足分の ScO2 流力0量 17 SiO2 = = = × 0.2686 = 0.1343 mel Continued on Page Read and Understood By 王.置置人 I take hime Signed Tooligate Tolige tos. 2

Signed Tooligent Idiai '03 2.

Jehashima Date

Read and Understood By 王·置 覧人

Signed Joshigush: Him '03.2 Date

Continued on Page

Sign (3) = 0.1748 - 0.1925 = -0.01790 model Till 和 time collidate = 1.2 kin colli

Read and Understood By

I Jakeshima

Date

王道 是人
Signed Carling & Nin. 103.2.7 Date

Best Available Copy シリコン オキシーメライド 焼成 d From Page (Ca o. 87 Eugos) Siz O2 N2 (Cao97 E 0.03) 2 Si 3 O. Ny 原料 **(3)** 6.589 7.400 Ca3 N2 0.8/99 Eu203 0.7255 Si 02 8.070 4.429 SU3 14 6.571 7.380 20.02 Total 21.96 TC/NON-1 焼成パターン 1600°CX5H モトヤマド戸 NH3 = 0-5 l/min 111 7/48:13. 7/2 22:20 Soc Nz = as fruin 78°C START 何枚のボングを下かる NH3=032 (t) 34260 Continued on Page Read and Understood By Signed Tooligaki His: '03.2 Date

Noteboo

(Sr0.475C	a0.475Ce0.	.05)SiN% +		Si/M=1	1MCPM-5												
添加剤	M.W.	元素数	温金山V	ning to	by 混合量 (g)	1 .=	٠										
Sr3N2	290.9	3	0	46.056	7.375	DOK	. · ·										
Ca3N2	148.3	3	0.475	23.4745	3.759	ontin	a Fr	om	Pag	ge -				_			
CeO2	, 172.1	1	0.05	8.605	1.378	1				······································	······				-		
Si3N4	140.3	3	1	46.77	7.489	1	<u></u> [. .	. į	:		. :			١.		
Total	_		2		20.000	1	}		•				•		:		
						4			:		•••••••		• • •				•
(Sr0.475C	a0.475Ce0.	05)2Si5N8		Si/M=2.5	TMCPN-6	···· - · · · · · · · · · · · · · · · ·			<u>.</u>		:		!		<u>.</u>		
添加剤	M.W.	元素数	混合比	重量比例	混合量 (g)	1	<u> </u>		i				:		1		
Sr3N2	290.9	3	0.95	92.112	4.722	1			į						:		
Ca3N2	148.3	3	0.95	46.949	2.407	1	<u>!</u>		<u>:</u> <u>-</u>		·· ····		<i>-</i>		÷	٠.	
CeO2	172.1	1	0.1		0.882	1	į					:			:		
Si3N4	140.3	3	5		11.989	1	1		:	:							
Total		_	7		20.000	10重	·i							• •			
, 10001				0002.	20.000		<u> </u>										
(Sr0.475C)	a0.475Ce0.	05)Si4N?6		Si/M=4	TMCSN-7	D3. 2. D :	/ }	;	:	:	•						
添加剤	M.W.	元素数	混合比	重量比較	混合量 (g)	商岛	. !					:	:				•
Sr3N2	290.9	3	0.475	46.056	3.473	1			<u>;</u>				· · · · · · · · · · · · · · · · · · ·	•	· - ·		
Ca3N2	148.3	3	0.475	23.4745	1.770		i					:			:		
CeO2	172.1	1	0.05	8.605	0.649	4			;	;		;					
Si3N4	140.3	3	4		14.108				<u>:</u>			······································				··· · · ·	•
Total	-		5		20.000	-l _i	ļ			: }·	E	更)	A		•		
Total				200.2100	20.000		:		:	l	บ3.	2.07)				
(Se0 475C)	a0.475Ce0.	05)Si5 5NV	8	Si/M=5.5	TMCFN-8	J _ M_ L	\neg	Т	Т	Г	T B	岛	m		\neg		
添加剤	M.W.	元素数	混合比	重量比%	混合量 (g)	7 ~ ~ [- 1		1		ΙΓ	-					
Sr3N2	290.9	3	0.475		2.747	1 1	B	ł	1	1		Ŋδ	(g				
Ca3N2	148.3	3	0.475	23.4745	1.400	_~		1.380	123	58	8	2)]	4	<u>∞</u>	28	8
CeO2	172.1	3	0.475		0.513		30 5	نايز	8	7.	8	10	4 7 7	4	99	3.5	<u>Ö</u>
Si3N4	140.3	3	5.5			र	道 。	T	۲	-	7	TM	混合量 (۳,	9	-	7
Total	140.3		6.5		15.340	4 -				1		1		- 1		ł	
Total				330.3705	20.000	၂ ၂					Ш	0			J		
(Sr0 4750)	a0.475Ce0.	05)Si7N10	. 3	Si/M=7	TMCPN-9	7	1 28 05 68	9	12	85	62	Sr/Ca=0/10	阿里里加	98	17.21	82	28
添加剤	M.W.	元素数	混合比	重量比	混合量 (g)	/Ca=7,			1	33	<u>=</u>)a=		3.8	\vdash	8	4:9
Sr3N2	290.9	3	0.475		2.271	Sr/(28	1	12	12	7	重	6		7	34
Ca3N2	148.3	3	0.475						_			Š			_		
CeO2	172.1	1	0.05			1 . 1	귀			۳,				<u>-</u>	0.1	သ	7
Si3N4	140.3	3	7		L	-{	41-	10					40		ı	. 1	
Total	-		8		20.000	-{	兴	ı					混合用			- 1	
Total			<u> </u>	400.0200	20.000	1 . @	-	<u></u>	⊨	8	Н		\vdash	3	-	ᆗ	
(Sr0 95Ce	0.05)2Si5N	R .		Sr/Ca=10.	10 TMCFN-4	Sr0.665Ca0.285Ce0.05)2Si5N8	元素数		1			4	数				
添加剤	M.W.	元素数	混合比	◎重量比◎	混合量 (g)	SS	胀		l		1		素数		- 1		1
Sr3N2	290.9	3	1.9	184.224			F					[IK			-	۱ ا
CeO2	172.1	1	0.1		0.791			100	-	_	Н	88		_	=	_	ᅱ
Si3N4	140.3	3	5		10.745	႕ ဦ	790 g	148.3	72	140.3		Sign	<u>,</u>	148.3	27	40.3	
313144	140.5		7	435.284	20.000	8	Σ Σ	í ~	-	17		3)2	M.W	7	-	7	1
				433.264	20.000	7				j,		Ca0.95Ce0.05)2Si5N8				- 1	ı
(Sr0 285C)	a0.665Ce0.	05)2Si5N8		Sr/Ca=3/	7 TMCSN-3	္ပ္တို		Т			П)e(寸	寸	┪	ᅥ
添加剤	M.W.	元素数	混合比	連量比较		7 ÿ	新祖帝 SNS-	<u>: 2</u>	~	4	١, ١	95	添加剤	의	$ \begin{bmatrix} 1 \end{bmatrix} $	٠l	.
Sr3N2	290.9	3	0.57	55.2672	2.971	5	所 SNS-7	33	Ce02	S		a0.	私办	Ca3N2	Ce02	ٳڲ	١ ١
Ca3N2	148.3	3	1.33	65.7286	3.533		U	jö	Ö	Si		၁		ဝိ	ဝီ	Š	ı
CeO2	172.1	1	0.1	17.21	0.925		. •		,			;					
Si3N4	140.3	3					1					i			: -	•	
-	- 140.3		5	233.85 372.0558	12.571 20.000				i		<u>:</u>	:				•••••	. .
<u> </u>				372.0008		j				C	ontin	ıved	on	Pag	эе		
				•	Wead and Un	doretood B	 1		••	•		•					
0		_			ywedd and On	,		,									
7	2/				工、		首	. [
- 10	ma		<u> </u>		<u> </u>	Signed	ے ⁄	//	_	_	_						
	Signed		•	Date		Signed	Tool	in	hi	74	in.	103	2. ٦	Dat	e		
								_								····	······································

Read and Understood By

Hafran Signed

Date

Signed Joshine Poline: 103.2. 7 Date

Continued on Page

日野 1	6 PROJEC	T	MX	<u> </u>	<i>/</i> :	C	Bes e	t Av	aila F	ble X	Cop 51	斯	Ē.			No	teb c	onti		Fr	om F	age		_			
・ Pr Ca Pic Np: Ce の Pr, Ca / Ni. It と変更して特性確認 ・ Gr, Ca)。 Pic Np: Ce の Pr/Ca 比を変更は特性確認 ・ Gr, Ca)。 Pic Np: Ce の Pr/Ca 比を変更は特性確認 ・ Gr, Ca)。 Pic Np: Ce の Pr/Ca 比を変更は特性を確認 ・ Gr, Ca)。 Pic Np: Ce の Pr/Ca 比を変更は特性を確認 ・ Gr, Ca)。 Pic Np: Ce の Pr/Ca 比を変更は特性を確認 ・ Gr, Ca)。 Pic Np: Ce の Pr/Ca 比を変更は 特性を確認 ・ Gr, Ca)。 Pic Np: Ce の Pr/Ca 比を変更は 特性を確認 ・ Gr, Ca)。 Pic Np: Ce の Pr/Ca 比を変更は 特性を確認 ・ Gr, Ca)。 Pic Np: Ce の Pr/Ca 比を変更は 特性を確認 ・ Gr, Ca)。 Pic Np: Ce の Pr/Ca 比を変更は 特性を確認 ・ Gr, Ca)。 Pic Np: Ce の Pr/Ca 比を変更は 特性を確認 ・ Gr, Ca)。 Pic Np: Ce の Pic Np: Ce の Pic Np: Ce Np	1	⊗	目	的	:	Ī					(:				
● 原料 → 9 4 9 10-2 意思 はまま更に特性を意思 ● 原料 → 9 4 9 10-2 意思											Ì				[<u> </u>				:	<u> </u>					
● 原料 → 9 4 9 10-2 意思 はまま更に特性を意思 ● 原料 → 9 4 9 10-2 意思			• (2	C	ر بر ب	ی زح	N	۶	C	: رو	0)		'nγ	, c	۹/	18	ز	It	E	变	更	1	く 生	小片	工程	2 = 3
● 様式 119 -> 9 4 10-2																	:				:		:				
● 様式 119 -> 9 4 10-2				W	r, C	(م) المايد	ک زر	-Ns	5	C	e	Ø		۲۰/	C.	: a	te	E	文	更し	之律	李小	生石	產		•
(A) (1) 9 - ン										,	:					••••••			:								
() () () () () () () () () (<u></u>		:		! !	<u></u>										! ···					:	:	:		
様成 1 9 - 2 2 2 2 2 2 2 2 2 2		(2)	盾、	料	.:	_	->	: :	45	2 1	r->	· ` `	秀	BE		*********	:			<u></u>	·	<u> </u>		:	: -		
1号						†	; ;			********	-					••••	·} · · · · · · · · · · · · · · · · ·	 !	:	1					-:		
1号		i			<u> </u>		! ! !		•				<u> </u>			••••••	······································	<u> </u>	:	1	:				:		
1号	:	₩	炼	成	11	9	_	~		••••••		************	ļ	······			<u></u>	<u> </u>		†	······································	Ť		:			
1号			1	·	Ţ <u>`</u>		{ }	İ					ļ	ļ		ند	-	発:	521	キン	310	,為	5				··
$PTN=4$ $NH_3=1U_{PL}$ $NH_3=1U_{PL$	-	18	炉	 	:	}	1	 	<u> </u>	14	0000	٠, ١	12	4	7		<u></u> :	13	00°C	土	浩	主2	<u>ب</u> ر	6 1		À.	61.
						·	 -	 -					1					;				:				- ' <u>D</u>	/
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	·····					 							 				 !			-	 !		-	.*	<u></u>	:	 !
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				···		3 <i>H</i>		3/-		 !				:				ļ	-	1	- - 		<u></u>		-	:	}
7/8 20:29 め 74月 7/20 /0: 92					!	Ť	/		-	(, ! !				:	ļ	 !	:> :		·,····································	†				··········	:		
7/8 20:29 め 74月 7/20 /0: 92			/	-	:	-	<u>.</u>		<u></u>	 			ļ	: :	ļ					-	. <u>i</u>	<u> </u>				······································	<u> </u>
7/18 20:29 か74月 7/20 /0: 92 まない 32, ままっこ 33, 79 35°C 取れい 33 39 35°C 取れい 33 39 35°C 取れい 33 39 35°C 取れい 37 37 37 37 37 37 37 37 37 37 37 37 37				<u> </u>	·		<u></u>	ļ		Ļ !	-	: :		<u>.</u>	ļ r	<u></u>	<u></u>	- 	· ;		 :	<u> </u>		·····			
7/8 20:29 め 74 PT		1114	-	<u>.</u>	<u></u>		 -	<u> </u>	<u>.</u>	:		i i	<u> </u>		<u> </u>	Į	7 1	4				20	 C X	2H	:		. j
32, 35 2 35 c				<u>-</u>			<u>:-</u> !	<u> </u>	: :	:	- 	 !	 		-		:	<u>, </u>	:	1	` `		<u>. T 11</u>	-			!
32, 35 2 35 c	7/	(O 30	. 24	-	PTA	1DT		!	:	:	i -	<u> </u>	<u>:</u>]	!	-	. ;	<u> </u>	i.	┿.	7/2	0 /	<u>'</u>	: Q	>	<u>:</u>	<u>-</u> !
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						<u>!</u> [].	<u> </u>	ļ <u>-</u>	 !			. 	ļ	<u> </u>	ļ	.	<u>i</u> .			+-	<u>//</u> こ フュ	2	o \	<u>ک نید</u> حرو	٠,	农	2 C
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	32	33	34			- 	·	<u> </u>	<u>.i</u>			 !	. 	<u>.l</u>	<u> </u>	·	- }			+	フ <u>.</u> シ.,			<u>.</u> دد	<u> </u>	******	.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.				<u></u>	<u> </u>		<u> </u>	.i	<u> </u>	<u></u>	<u>:</u> !	ļ	. <u>!</u>	ļ	<u> </u>								·····[································	: i		ļ
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		æ.	1+	-λ	بد	<u> </u>		1	<u>.</u>	ļ	. <u>!</u>	<u></u>	ļ	. <u>i</u> .	. .	<u>:</u>		. <u>I</u>				- <u>-</u>					<u></u> .
TMc $SN-1$ = 2 = 3 = φ = 6 = 5 = 7 = 8 = 9 Sylva = $\frac{9}{6}$ $\frac{3}{9}$ $\frac{7}{3}$ $\frac{9}{6}$ $\frac{9}{6}$ $\frac{9}{6}$ $\frac{9}{6}$ = $\frac{9}{6}$ $\frac{9}{6}$ Continued on Page Read and Understood By Fig. 1. The sylvan is a single state of the sylvan is a single sylvan in the sylvan is a single sylvan in the sylvan in t		W	1-	ک :	- 7	<u>-</u>	<u>.</u>	ļ	1	: :	ļ	<u>.</u>	 Ī	<u></u>	<u> </u>	 !		<u>‡</u>			······································	1 :	<u></u>	<u> </u>	<u></u>	• ••••••	
TMcSN-1 -2 -3 -4 -6 -5 -7 -8 -9 $S_{1}/G_{0} = 9/6 3/9 7/3 (96 S_{2}/M_{1} = 2.5) = 1 = 9 S_{1}/S_{1} 7$ $Continued on Page$ Read and Understood By $F_{1}/G_{1} = 3/G_{1}/G_{2}$	10 B			ļ	.;	<u>. </u>	 	ļ				<u>:</u>		÷	ļ			4.					;		<u>:</u>		
Sylog = 9/6 3/p ラ3 (9/6 Sylyn=25 = 1 = 年 5.5 子 Continued on Page Read and Understood By 上直元人	NT X	$\langle \cdot \cdot \rangle$	/		7	1		$\uparrow \uparrow$	-/		\mathcal{A}					ļ	1	/	<u></u>	-	1		1		·	1	- [
Sylog = 9/6 3/p ラ3 (9/6 Sylyn=25 = 1 = 年 5.5 子 Continued on Page Read and Understood By 上直元人		(4 - 74)	1 : 1	1 .	<u>_</u>	4	: .			<u>!</u>			<u> </u>	-	1	<u>:</u>			<u> </u>			<u>:</u> 	<u></u>		· : _	9	:
Read and Understood By 王道克人						1			· 		7	<u>.</u>	.		<u>.</u>	<u></u>	- <u>5</u>	<u>İ</u>		/ a			6			. <u>/</u>	<u></u>
Read and Understood By 王直贯人	לנג	/ce = 7	10		7		/	3	; (7	0	27	M =	2_5	; 	=	:			<i>T</i>		٠٠	- 3 -	!		- 	<u></u>
Read and Understood By 王直贯人			<u> </u>		<u>. }</u>	<u> </u>		<u>.</u>	<u> </u>	<u>.</u> 	. <u></u>	÷		<u>.</u>		÷			·					<u>-</u>	<u></u> !		ļ
Read and Understood By 王直贯人				<u>. </u>		<u> </u>	<u>.</u>	ļ		<u> </u>		<u>;</u>	<u>. </u>	: :	ļ		. <u>i</u>	 		<u></u>	;		<u>!</u>		<u></u>		ļ
Read and Understood By 王直贯人					· ! · · · · ·	ļ	<u>:</u> 	ļ		<u>.</u>		<u>:</u> :		<u> </u>	ļ			ļ			<u>;</u>	1		;		. j .	:
Read and Understood By 王直贯人				<u>.</u>	<u>i</u>	ļ	<u> </u>	ļ		ļ	ļ	<u>:</u>	<u>_</u>	:	ļ	<u>.</u>	<u> </u>						<u>i</u>		: 	:	i
是一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个		<u></u>			<u> </u>		<u>.</u>	<u>.i.</u>	ļ		. L	.i	<u>i</u>		<u></u>	.1	į .	i I		L	<u>;</u>		Con	tinu 	ed o	n Pag	ge
Figured Date Signed Co. Date		2.1				-	<u> </u>							Rec	ıd ar	nd l	Jnde	rsto	od B	y .							
Signed Date Signed 7 / 0 / Date	5	71	۸ ۱	_	_	/									4	E	眉	نر_	育,	L							
		I J C	med				-			Det			-		<u>`</u>			S:	1040	<u>/ </u>				_		D-1	·

Notebook .______.

Continued From Page .

在込量 TMCSN 19.6 2 25 27-1 - 2 19.4 2.7 27-1 22 0 2.4 200720 5 22.0 2.2 1 22_0 2.5 19.5 • 77.0 2.5 196 2 5 E 22_1 220 2.4 (वाद 取出し野外観 TMCSN-1 *青菜六柱34种祭文柱3分"未在了 EX = 365 hm Body Color EX = 253.7 mm TMC DW 僅かん青色発之 薄茶色 者色彩云 Greenzin 350内1番明3、 1 表面上赤色彩光红 くもった日 他2ヶ山同じ位 89 W 茶色 → 発衣無 L →発充無し **薄绿色** Green Etz 厘水2gren能名 Eu 0229 = ? それ目 一段なと弱くなる 1段2と33くなる → 発表無し 内部 表面 · TMCPN 12.9 18.3 + 7.5 11.7 19.2 19.6 11.6 80 9.9 Continued on Page Read and Understood By

Signed

Date

Signed Joshiyah Idia 10. 2. Date

OJEC					7	1 P	1/		- 12		. 1)					C	ontin	vec	Fro	m P	age					
	· ®	B	的		ļ	-									į					: 	ļ	<u>.</u>	į	<u> </u>	<u>.</u>	
*		才	キ	-	+	1	ト	ラノ	イド	<i> ></i>	E	u	د ع	笑 /2	- M	1 n :	للترية	<u>-</u> /-	トシダ	: : (t	持 。	h/4	きる	宿言	?_ᅻ
				<u> </u>											/					:		1				<u> </u>
	Æ		64	411	۲,						***************************************			<u> </u>	: †					:		: ! ;	: 	<u> </u>	: :	<u> </u>
1			的	和	ħΧ										:-			<u></u> .		: : :				<u> </u>	1	-
	Ĺ			(Ca	0.9	x E	- uc	ر م	· /×	In o)	ير.	₂ (د د	Ν.	2		T	ے	ا ر	00	<i>\(\</i>	-18)
				: :	ļ								<u> </u>				ī			: :			·			
<u> </u>		•		(1.6	0.99	z E	uo	03	M_{i}	(0,	3	2	٦,٢	<u> </u>	د٥	· //:	2		T	D 1	ہ	01	/ –	8	<u> </u>
1					<u> </u>							1		<u>-</u>			:						ļ	<u> </u>		ļ
	ຝ	晃	√ē -	量											········		:						<u></u>		·	
		-			<u>!</u>				_	1				-	-	:					_		· · · · · · · · · · · · · · · · · · ·		-	
			C	۱ ۽	Ν.	2-		!	<u>C</u>	<u>ام ا</u> ج _ ج			18/			<u> </u>	12	الم'	<u> </u>	/ -	: ح				:	
					Ng					./	·····				<u>:</u> :	!	:<	7.	80	F					<u>:</u>	,
-				***********	حا				. پ	_//	•••••••	····				·· ••• •••• ·· ·			3					<u> </u>		
	<u> </u>				0 3 0 2			<u>:</u>		.65	*******				 :				22		: : <u>:</u>			! !		
<u> </u>					<i>N</i> :			<u>:</u>	0	. 3	ع د <u>د</u> -		į						54 Vo 2				· · · · · · · · · · · · · · · · · · ·	<u> </u>		
			:					:				:				:	:							· 	- 1	
<u> </u>	Ø∂	Δı	''							i 											<u> </u>			! !	: [
<u> </u>	(B)	11	λ/	4			<u></u>			<u>i</u>		<u> </u>		<u></u>	: :: !	}			:				: 	<u>.</u> 	: :	
			<	-			$\overline{}$	\				\		• !	<u>i</u>		•						·			
:	-		炉	<u>P</u>	:	<u> </u>	a			۲)	'n	1			······	 ! 										
<u> </u>			<u>i</u>		T¢	-1,50	o N	- 12	5	なて	, 7 7,	> 1/-	ج -		<u>i</u>						•					••••••
<u> </u>				}				<u>i</u>								!						 			!	:
<u> </u>	®	仕	矛	≯	曼		ĺ	İ					<u>l</u>	<u>-</u>			······································		<u>.</u>			<u>i</u>				······································
					. 0		! 			:					:		······································					i		······································		
	<u> </u>	<u> </u>		C /	ו'לע'	ク 人	/ -	18	2	:	:		22	.2		_ ;		2.	8:	i ! !	= :		9.3	ZQ.	· · · · · · · · · · · · · · · · · · ·	
		•	T	ē	12	o N	/ _	8		<u> </u>	?		2/_	9	·			2,	7		=	/	9.2	0		
													/_	/	<u>:</u>		:		/	1	<u>i</u>				Page	······
81	<u> </u>	_										R	ead	and	Und	iersi	rood l	Ву	~·····	*********		······································				
	1	· · · · · ·				_								Ŧ	, : : <u>;</u>	舀	買	۔ ا	_							
	Signe	ed				_		D	ate			_				Sig	gned	2	_/.			-)ate	

Signed

Date

王道清

3//

Signed Date

Signed Joshiyuki Idini 103.2

Read and Understood By

Continued on Page

PROJECT	Best Ava	ailable Copy		Noteboo	k	Page	33
(Ca0.97, Eu0.03)	Si202N2 TCIPON-2	(Sr0.475. (Ca0.475. C	e0.05)2Si5		TSC	PN-2 W
	添加量	添加剤	M.W.	元素数		重量比例	混合量 (g)
Ca3N2	6.0074 g	Sr3N2	290.9	3	0.95	92.112	4.722
Eu2O3	0.6615 g	Ca3N2	148.3	3	0.95	46.949	2.407
SiO2	7.3589 g	CeO2	172.1	1	0.1	17.21	0.882
Si3N4	5.9909 g	Si3N4	140.3	3	5	233.85	11.989
ToTal	20.019 g				7	390.121	20.000
(Ca0.94, Eu0.06)	S1202N2TC/PON-3	 (Sr0.45, C	a0.45. Ce0	0.1)2Si5N8		Trace	SN-3
Ca3N2	5.7017 g	添加剤	M.W.	元素数	混合比	重量比例	- 混合量 (g)
Eu2O3	1.2957 g	Sr3N2	290.9	3	0.9	87.264	4.363
SiO2	7.0414 g	Ca3N2	148.3	3	0.9	44.478	2.224
Si3N4	5.9966 g	CeO2	172.1	1	0.2	34.42	1.721
ToTal	20.035 g	Si3N4	140.3	3	5	233.85	11.692
			_	_	7		20.000
(Ca0.91, Eu0.09)	Si2O2N2 TC/SON-4 5.4083 g					T Scess	N-85
Eu2O3	The second secon		0.4, Ce0.2		78 X II.		
SiO2	1.9044 g 6.7368 g	添加剤	M.W.	元素数	混合比	秦重量比 。	混合量 (g)
Si3N4		Sr3N2	290.9	3	0.8		3.696
	6.0021 g	Ca3N2	148.3	3			
ToTal	20.052 g	CeO2	172.1		0.4		3.280
(Ca0.88, Eu0.12)	Si202N2TC/PON-5	Si3N4	140.3	3	5		
Ca3N2	5.1265 g		<u> </u>	<u> </u>	<u>'</u>	410.704	j
Eu2O3	2.4889 g						703. 2. 1
SiO2	6.4441 @	= 7		:	:	:	高島
SiO2 Si3N4	6.0074 a	2.07	M^				
ToTal	20.067 g	(Ca0.97,	Eu0.03)Si				
				加量	-] c/2	0N-6 _
1 nod at		Ca3N2		6.0074			-A
INV	701 P. 11	Eu2O3		0.6615			
(Sr0.97Eu0.03)	Si202N2 TSI20N-	SiO2		7.3589			-10
	添加量	Si3N4		5.9909			
Sr3N4	9.140 g	2 ToTal		20.019	g		
Eu2O3	0.513 g	1 /2 0000	= 0.40\0.				
SiO2	5.709 g		Eu0.12)Si			-	
Si3N4	4.649 g	Ca3N2		5.1265		1 0/2	ON-7
ToTal	20.011 g	Eu203		2.4889		_	0
••		SiO2		6.4441			
The second second	- (0	Si3N4		6.0074			-11
(Sr0 485Ca0 48	1-No(1201-1	···· ToTal		20.067	g /	日垂	
(Sr0.485Ca0.48	5Eu0.03)Si2O2N2 添加量	7	······································			3 2 0 7	• 4
Ca3N2	2.625 g	1				商島	
- Sr3N4	5.150 g	1		:	· · · · · · · · · · · · · · · · · · ·		
Eu2O3	0.250 g 0.2492	i	· :	:	:	•	
SiO2	6.433 g			· · · · · · · · · · · · · · · · · · ·			
		 : : :		: :		•	

Si3N4 ToTal 5.233 g 19.691 g 力垂 ...0.3...2. 0 7.

Read and Understood By

Date

高岛

Signed Tooligud: Winin 10. 25.7

Continued on Page

34 PROJECT	黄	色	彩	Z B	est /	yaila	b)e	C 次					Vot		o							
. 8		原老	-	-	}	/	71	- :-	`\		33	\ \ '	- 3	<u>بر</u>	粉】	₹.				:		İ
		炼成	े देते.	料		····							:		······································					:	<u></u>	
		NYCHA			-	<u>-</u>		1. !		••••••••••••••••••••••••••••••••••••••			 :						1			·
•	(cai	- ズ	Eu	~)	ي کړ	- 2 ⁽	02/	√ ≥			: : : : :	α:	= ;	003	3 , e	.0	6,	0	.09	2 0	./2
•	(2~7	<u>-x</u> 2	Ca	1-2	. C	ex	: که (ح.	Ns	2		7	> :	0.0	5,	O	, 1	/ .	0, 2	- <u>j.</u>	
	. (Sro.	475	C	10.4	25-1	Cer	, as	(2	io.	96	A.	l o	036	۔و(ہ	. N8	1			:		
₩		德成	٠,٠	9		~									:							
			:						16	00°	'c ×	(5 / ₁	/				·					
4	号大	Ŧ F	°TW	= 3	仅	刑						i			: :		i	: : : :,	;	: :		
, , , , , , , , , , , , , , , , , , ,	H3	= 3,1	2		***************************************						••••		: 				· :	! :	: : : :		<u> </u>	. .
			800	`&X	3H		414												<u> </u>	· · · · · · · · · · · · · · · · · · ·		
							<u> </u>			!			_ ‡						: : :			:
	41	4														8 H		``				
-	:		>					<u> </u>	<u> </u>		·····	<u></u>	-	<u> </u>		1	:	:	<u>.</u>	-> <i>'</i> -		
		11:48				İ	:												<u></u>			
76	7	9_7	'8 'c	کر	TA!	27	<u>:</u>	1					· ·					! 	: . 	:	:	:
						<u>i</u>	<u>.</u>	1-1			··				:		·	-	: : [<u>.</u> .	· :	
₩)	Lot	#							:								<u> </u>	! 		.,	:
		C/,	0 4	.,		<u>:</u>	:	.			·····					3	.4	!	:			· :
		<u> </u>	2 0	Y	7			<u> </u>		 !	Α.	ا ت	ر ت	· /Ŋ :		<u></u>			ļ		<u>:</u>	
	-	<u> </u> :		<u></u>	_ ,	5	<u>l</u> .			: : :	********				٠ ــــــــــــــــــــــــــــــــــــ	5		·	<u> </u>	<u></u> :		 :
								-		:	******			<u> </u> -				<u>.</u>	<u>:</u>			···········
	<u> </u>	i					:			: : :		,			······································			<u>:</u>		· .	· · · :	
	<u> </u>	<u>.</u>	i	<u></u>				<u> </u>		: ::			<u>.</u>	<u></u>	:	<u> </u>			Conti	inued 	on Po	ge
Al to.	bar	hi	- A	<u> </u>						1	Rea	d an	d Un 干,	ders	tood	By 冒	L					
t	Signe	•		1	_		Dat	te ·		-				<u></u>	gned	9-1	<u> </u>		-		رع کی	ite
									·	• •••••••••••						100h	jus	المسيد	ana	<u>:</u> '03	12=7	

 (\mathcal{R}) 収量 内容区 表面 C1 SON -2 6.6 = 17.62 11.0 13.8 3.9 17.72 13.0 4.2 17.2 1 ______ 3.3 1802 14.7 SCCSN 9.1 -2 18.72 = 18.42 -3 2.5 4.2 14.3 = 18.58 6.4 _5 12,8 1928 Continued on Page Read and Understood By

Date

Signed Tooligate Toliga 103,2, Date

• 目的

Mgg Riz Oz Nz:En, Ba Piz OzNi Fu E 焼成し、新規 Phos. としこの特性を確認する。

• 原料

Mg0.97Eu0	.03Si2O2N2
Mg3N2	4.526
Eu203	0.7318
Si3N4	6.627
SiO2	8.142
Total	20.0268

TM9150N-1

	Si3N
_	SiO2
日亜	Total
32, 9, 94	
- 94	_

TBa / DON-/

Ba0.97Eu0.03Si2O2N2

Ba3N2

焼成ハ°ターン	600°C ×5H
· モトヤマゲ · PTN=2	
N2=500ml/min 800°CX3H_ 5.5H	
5 H	10H 100°CK20M:N
P.V. ~	20°C

8/31 18:37 78°C PTART

9/2 9:12 78 2 取出し

● 在込み

← Ma Ba Ba

● 红込み量

TMG | SON - 1 : 22.2 - 2.5 = 19.7gTBA | SON - 1 : 22.2 - 2.4 = 19.8g

Sugara Jakashina

Jakeshi Jadamoch 2008. 2. f

取出し時外観

TMG/SON-1 (M2)

薄山黄工色

TBAISON-1 (Ba)

くけんだ黄色

Body Color

EX = 253.7nm

EX= 365 nm

Body Color 自い一部分だけ 末色発表

非発光粒子と緑色発光粒子 が混在

Body Colonz·判別不能

同上

同上

EXHIBIT B1

		SILIC	TINYXO NO	RIDES		Motebook		<i></i>
OJECT	·		Best-Available	Сору		- Ce 10	ed From Page	
	T							ing the second of the second
ļ.s.ļ		033	xynitrides i	nvestigated	by MA	RUTA		
	Ø	Silicon of	xymurdes i	: : : : l	; ;	.)	·	
	<u> </u>			0 1/		45-6	156.28	
	0	<u>Era</u>	يدياكم الما	02 1/2				
				+		72	252.47	
	<u> </u>		الا د م	30214		237.		
					 i	-76	268.99	
	3		Ca3 y	6209 Nz	===	2/00		"" '! : !
						8 - 2 - 1	444.7	
:	Ø		Ca4	Six 091	2 =	700-1	7/7/	
			1 ! ! !					
	(Calculati	ion of mix a	ımount		,		1.,
								• •
		In CESN	since the	brightness	is high	when the	molar ratio o	f Eu with
		espect to	Ca is 0.02-	0.04, the E	cu conc	entration is	s set to 0.03.	*
			1 : 1 1		· 			
<u>-</u> -	C	((a 0,97 Euc	3) 8:	021	1 = 195-	6 There	e is no problem
		4-1-4-	7077 200			(mists	ke) in ca	lculation of the
		2	02 = 0.	137440	P	······································	comp	osition ratio.
								.
		Ca =	0.97	x 0.	1374		0 1333 mal	<i>.</i>
		Ca =		×	十	2	4/22X10-	9.
					一	=	0. 2748	· :
		η = 3Q		×	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	>	0.2748	:
· :		0	= 2		+			
		1 1			- 			
							۰۰۰۰۰۰ ۱۰۰۰۰ (۲۰۰۰۰۰ ۱۳۵۰ ۱۳۰۰ ۱۳۰۰ ۱۳۰۰ ۱۳۰۰	3
			d from Pri	0	3	x 4/22	X10 = 6	1 P3X10 mg
		O derive	ed from Eu2	O3: 0 =	T :		×10 = 6	
							1 :	
			ed from Eug	:O3:			$x/0^{-3} = 6$	
		Defi	cient O:	0 =	_ 0,	2748 —	6.183x 10 ⁻³ =	0.26 869
		Defi		0 =		2748 —	6.183x 10 ⁻³ =	0.26 862
		Defi	cient O:	0 =	_ 0,	2748 —	6.183x 10 ⁻³ =	0.26 86 2 0.13 73 AU
		Defi	cient O:	0 =	- 0.	2748 - 1 2×c	6.183×10 ⁻³ =	
		Defi	cient O:	0 =	- 0.	2748 —	6.183×10 ⁻³ =	0.26 86 2 0.13 73 AU
		Defi	amount of SiG	0 =	- 0.	2748 - 1 2×c	6.183×10 ⁻³ =	0.26 86 n

2 ROJECT				-,		Be	st.A	vail —	able	Co	ру.				i	Not	teb c	Ó	Jed Jed		n Po						···
			- A	\dd	itio	n a	mo	un	t	i i											<u>.</u>			į	:		
		Ì												<u>.</u>				<u>. </u>					! † <u> :</u>				
							Nz		=		0.	14	77	7	X	3	X	/	78	3:	2	_'/-	4	00	<u>ኛ</u> :		
							3		=		4	63	0	10		Χ,	艺	X	30	5-0	- =	: C	٠, ٥	14	72		
							2		=		0.	14	14	+	X	三	×	0	0.0	2	=	<u> </u>	72	2-9	<u>م</u> ح		
					L;	ع _	V 4		=		0.	15	18		X	3		/.	40.	<u> </u>	-	9	- /	ل حي ح	ړهم	2	
																: : !				Te	7	1	- 2-	ວ_ຮ	2-9		
																											-
	3		7	Ca	O.,	0.77	F.			7		P,		2	∕/.			=		27	P.	5					
	رپ		_>-		رع. ک	Z.Z		<u></u>	ک	<u>ت</u> _ر	2			7								• • • • • • • • • • • • • • • • • • • •				!	
				20	ይ	=	O	.0	7	18	1	ono	l													:	
																									<u> </u> 		
							- '								-1								ļ . .	<u>.</u>	: - -	ļ ! <u>11</u>	
		Ce		٥		0.	9	2	Х		3		X		0	0	7/	9/	} 		·	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	+	0			· ·
		Eu		=	<u> </u>	0	0.	3	×		3		X		-		<u> </u>	<u> </u>	<u> </u>		•	1		XIC		-	
		ياكر		=	<u> </u>	<u> </u>	2	<u> </u>	X		_	_	X			,	ţ	 	<u> </u>		!		Ţ- 	n		1	
	ļ	0		=	ļ		4	<u> </u>	X		<u> </u>	<u> </u>	X	·			<u> </u>		 	=	0	2	87.	<u>ک</u> <u>د</u>	mo	\mathscr{L}	<u> </u>
	ļ	· ·			-	ļ	<u> </u>	ļ	ļ	<u> </u>	ļ		-			ļ	ļ	ļ	ļ			 	ļ -	ļ	j	<u>.</u>	ļ.,
_ " "		١.		•	_	1		١	<u> </u>		<u>.</u>	3				-	<u>.</u> Þ		<u> </u>		_	9		ی	<u> </u>		1
O	deri	ivec	ifro	om	Eu	12 0 :	3 ;	1	0	=	 	2	X	6.	7	6.	<u> </u>	X /	p	 	-		0	ی			-
	.L	!	. 	<u> </u>	<u></u>		 	 		-	├		-	27		 -	<u>!</u> .	9		 _	×~	3	 _	0		クク	+
	į]	Jen 	1C16 	nt	O: -	 -	 -	10	-	 	10	12	7.	_		<u> </u>	<u> /. =</u>	2/	3	1	1-	-=		1	4. 7. 9	1
	, Ago	' litio	i mai	mor.	int o	i of Sa	iOs.	•	<i>S</i> ⋅	02	 -	=	-	4	×	·-··	0.	2	77	<u>} </u>	 	=	1 7	2.1	3 &	ج ا	1
	1	1	<u> </u>		T	Ţ .=	1		7			1	1	-					†	1	<u> </u>	<u> </u>					Ť
	Γ	efic	cier	nt	s	i:	Si	=	1	0.	15	43	6	† · · · ·			0.	13	8	8	Ī]=	1	\$ &	X	-	3
1	1	İ	1	ŀ	į	١.	·-·	1									<u>:</u>		<u> </u>	<u> </u>	Ī		1		<u>.</u>	<u>.</u>	
	Ad	ditio	n a	moı	unt	of S	i3N4	.: .:	50	3 14	54	=		3	×	4	48	× (1	-3		=	1.	16	X	d -	3 24	4
	1	1	<u> </u>	<u> </u>	į	1	<u> </u>						<u> </u>	<u> </u>	ļ	<u>.</u>	į		ļ	<u> </u>	ļ		<u> </u>	ļ	ļ	· .	
		<u> </u>			-	ļ	<u> · </u>		<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	į		ļ	.	<u> </u>	<u> </u>		<u> </u>	 	- -	<u> </u>	
<u> </u>		<u> </u>		<u> </u>	ļ	ļ	<u> </u>	-	-	<u> </u>	<u> </u>	 	ļ	 -	ļ	-		-	!		 	<u> </u>	.		-	-	
		 	<u> </u>	<u> </u>	ļ	ļ	ļ	·	ļ. -		ļ	<u></u>	ļ	ļ	ļ		i		. i	-	-	-	·	-i	. }	-	Ì
Water Street	-	 		-	-			 	 	 -	┿	-	┼	 	 		- -	-	-		+	<u> </u>		<u> </u>			
	7 .775	· · · · · ·	<u> </u>	<u> </u>	1		<u></u>	<u></u>		<u> </u>	.L	<u> </u>	_L	<u> </u>	<u> </u>	_j	. i	.L		.1	_j			tinue ··	ed o	n Pa	96
														Rec	id a	nd U	Inde ,	rsto Æ	od B	_		/					
	ep	a	H	Zn Zn	ه م	سببنيشة										I	· 1	旦_	. ′	質	7 /	_					
and the second second second second second second second second second second second second second second second	THE RESERVE		12222			• • • • • • • • • • • • • • • • • • • •	-			Dat													- 34:				te

23

hashina

Date

道觉人

igned John John 103 27

PROJECT	Aldton arm		tive	Noteboo	From	Page	Molar ratio33 Weight ratious
(Ca0 97 Fu0 03)\$	Si202N2 T CI & ON-2	(S-0 475	Ca0.475, C	200 05)85	5N8 /	TSOE	SN-3
(020.07, 280.00)	添加量	(Sro.475,	M.W.	元素数		※重量比例	混合量(g)
Ca3N2	6.0074 g	Sr3N2	290.9	3	0.95	92.112	4.722\
Eu2O3	0.6615 g	- Ca3N2	148.3	3	0.95	46.949	2.407 \
SiO2	7.3589 g	CeO2	172.1	1	0.1	17.21	0.882 \
Si3N4.	5.9909 g	Si3N4	140.3	3	5	233.85	11.989
ToTal	20.019 g		-		7	390.121	20.000
		Additive	J	- Numbe	r of element	15 -Mola	in natio
(Ca0.94, Eu0.06)S	S1202N2TC/FON-3	(Sr0.45. C	Ca0.45, Ce	0.1)2Si5N8		است الم	NA-3 Mix a
Ca3N2	5.7017 g	- 添加剤	M.W.	元素数	混合比	河重量此初	混合量 (g)
Eu2O3	1.2957 g	··· Sr3N2	290.9	3	-0.9	87.264	√ 4.363
SiO2	7.0414 g	Ca3N2	148.3	3	0.9	44.478	2.224
Si3N4	5.9966 g	CeO2	172.1	1	0.2	34.42	1.721
ToTal	20.035 g	Si3N4	140.3	3	5	233.85	11.692
			-	-	7	400.012	20.000
(Ca0.91, Eu0.09)	51202N2 TC/SON-4	Additive		Number	ot elements	T 00 - 0	oc-sc Weight ral
Ca3N2	5.4083 g	(Sr0.4, C	a0.4, Ce0.	2)2Si5N8	Molar ratio	Tacca	/ LINX 411/04 L
Eu2O3	1.9044 g	一、一添加剤	M.W.	一元素数	【混合比	版生量重態	~混合量 (g)
SiO2	6.7368 g	Sr3N2	290.9	3	0.8		<u> </u>
Si3N4	6.0021 g	Ca3N2	148.3	3			
ToTal	20.052 g	CeO2	172.	1			
		Si3N4	140.3	3	5		
	Si202N2TC/PON-5	4 -	-	1 -	7	419.794	
Ca3N2	5.1265 g					(Weight ratio 33. 2.07
Eu2O3	2.4889 g		<u> </u>			χ	ありた。
SiO2	6.4441 g	2.07	AMA			tion am	ourm
Si3N4	6.0074 g	万岛 (Ca0.97	, Eu0.03)S	i202N2/			
ToTal	20.067 g		Ä	&加量/		7 612	0N-6
	Addition an	nount Ca3N2		6.007	4 g	- ' ' -	
IMA				0.661	5 g		0
(Sr0.97Eu0.03)S	51202N2 TSINON-			7.358	9 g	1 .	10
	添加量	Si3N4		5.990	- В		
Sr3N4	9.140 g	2 ToTal	···	20.01	9 g		
Eu2O3	0.513 g						
SiO2	5.709 g		, Eu0.12)S			 .	
Si3N4	4.649 g	Ca3N2		5.126		- C(1)	ON-7
ToTal	20.011 g	- Eu2O3		2.488		_	_ 0
Δ	addition amount	SiO2		6.444		_	. — /
Z /	144/1/01/ 4/104/1	Si3N4		6.007		1	-11
	TACISON-	- ToTal		20.06		日垂	
(Sr0.485Ca0.48	5Èu0.03)Si2O2N2	- - i			(-1	3: 2.07	
0.0010	添加量		<u> </u>		\	商島	
Ca3N2	2.625 g 5.150 g		:				
Sr3N4		2	· · · · · · · · · · · · · · · · · · ·		· · [•
Eu2O3 SiO2		4				····	
Si3N4	6.433 g 5.233 g		· · · · · · · · · · · · · · · · · · ·	.i. J ;		•	
ToTal	19.691 g	 			.		
TOTAL	£	4重			i	Conti	nued on Page
		03. 2. 0 7.	i 2:	•		••	3
_		高島	Read a	nd Underst	ood By		
Freha	shima		, 	玉置.	置人		
Sign		Date					Date
3ign					Jode	medi 1da	a. 2.5

PROJECT	alcination of particles the	at emit yellow light	Cd ed From Page	. <u> </u>
			ed From Fuge	
⊗ Ra	w materials———Refe	r to pages 17, 33.		
		1 to page 1., cc.		
				. !
	Calcination samples			;
	(Cal-x Eux) Piz	0 11 7	= 003,0.06	- 9 0 10
		2/12		207, 212
	(S 1-7 C 1-7 C	7 0. 47		······································
	(Sr 1-x Ca 1-x Cex	7 7 7 2 1/2	= 0.05, 01,	0,2
		000	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
	Carolys Caolys Ce	par/ (10.96 AL	0036)5-148	
<u> </u>		 	<u> </u>	
		 		
®	Calcination pattern			
		1600°CX5/1		
Furna	ace 4, PTN=3 used			
MH	$s = 3\ell$			
	800° × 3H / 4H			
	KH.		84	
			617	
76-	11:48			
7/10	79 70 & START			
/6	//- / 6 P // K /	<u> </u>		
				· •••• • • • • • • • • • • • • • • • •
	-,			
	Lot #	+		
		<u> </u>		
-	C/8 0N - 2	1 1 1 C C		
 	1 2 1 1 2 1 1 1		2	
	-5		-5	
			Con	tinued on Page
		Read and U	nderstood By	·•·
\$110	1:	7		
1	spinor		遺電人	
Signe	Dat	e	Signed Tesliguel. 74	Date Date

.

	- 添加剤	M.W.	元素数	混合比	建重量比 關	混合量 (g)	pok No. Weight ratio
/.	Sr3N2	290.9	/ 3	0,475	46.056	7.375	From Page
Ŋ	Ca3N2	148.3	/ 3		23.4745	3.759	
1.	CeO2	172.1	1	0.05		1.378	
11.1	Si3N4	140.3	/ 3		46.77	7.489	
1991	Total		<u> </u>	2	124.9055	20.000	Molariatio
	(Sr0.475Ca	Numb	er of elem	nents _	5: 44-0 5	TALOUT	Molariatio > Weight ratio
				() A () A	Si/M=2.5	TMCAN-6	
	添加剤	M.W	- 元素数	混合比	200110	混合量 (g) — 4.722	Mix amount
	Sr3N2	290.9	. 3		92.112 46.949		
	Ca3N2	148.3	3			2.407	
	CeO2	172.1	3	0.1	17.21 233.85	0.882 11.989	
1	Si3N4	140.3	3	5	390.121	20.000	
	Total		3 4 1 b	f a lements		20.000	Motar ratio
1	(Sr0.475Ca	-0.475Coft	r Numper a	of elements	Si/M=4	TMCFN-7	Weight ratio
\		M.W.	一元素数	混合比	%重量 F/⊗	混合量 (g) -	
Ì	添加剤	290.9	3		46.056	3.473	Mix amount
	Sr3N2 Ca3N2	148.3	3		23.4745	1.770	Molarratia ,
	CeO2	172.1	1	0.475	8.605	0.649	Weight ratto
	Si3N4	140.3	3			14.108	
		140.5			265.2155	20.000	(日重)
_	Total		111.066	o at alame	07e	20.000	13.2.07
1	15-0 1750	0 475Can	OS) SIS SNIS	r of eleme	- Si/ M=5.5	IMCSN 8	
	一添加剤	M.W./	元素数	混合比	海重量比例	混合量(g)	T-Mix N T I
	Sr3N2	290.9	3			2.747	amount B N
	Ca3N2	148.3	\ 3			1.400	40C パイ (40C パイ (6.319 (6.319 (1.380 (20.000 (20.000 (20.000 (20.000
		172.1	\ 1	0.473		0.513	雅合庫 6.319 1.380 0.843 11.458 20.000 20.000 20.000
	GeO2 Si3N4	140.8	\ 3			15.340	
	Total	140.6	1 7 3	6.5			
	Total		/ /	. Molar	n weight ratio	วา	10 (3)
1	(Sr0.475C	a0.475Ce0	05051711		// Si/M=7	TMCFN-9/	2000円 2000
1	ト添加剤	M.W.	元素数/	混合比	%重量比 %	混合量 (g) /	Sr/Ca=7/ 28.1694 28.1694 408.1862 93.898 93.898 344.958
	Sr3N2	290.9	1 3				Sr. 222
	Ca3N2	148.3	3				05 1248
	CeO2	172.1	1 1	0.05		<u> </u>	1.9 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3
- 1	Si3N4	140.3	1 1 3	7			
- 1	Total		1 4	8			P P P P P P P P P P P P P P P P P P P
- 1	L	Y		Molar	/>Weight rati	0	(m - m - m - m - m - m - m - m - m - m
'	(Sr0.95Ce	0.05)2Si5N	8	tatio	(Sr/Ča=10,		
	添加剤	M.W.	元素数	上混合比	廖重量比論	混合量 (g) 一	July 1995 Sit No.
	Sr3N2	290.9	3	1.9	184.224	8.465	1 8 8 7 m
	CeO2	172.1	1	0.1	17.21	0.791	2815N 172.1 172.1 172.1 172.1 40.3
(Si3N4	140.3	3	5			MAN.W. 148.3 172.1 148.3 172.1 148.3 172.1 140.3 140.3
		-		7	435.284	20.000] <u></u>
			1	Molar	TWeight ra	10_	(Sr0.665089.2850e0.05)ZSi5N8 (Sr0.665089.2850e0.05)ZSi5N8 (Sr3N2 290.9 3 Ga3N2 148.3 3 Ge02 172.1 1 Si3N4 140.3 3 Ge02 172.1 1 Ca0.950e0.05)ZSi5N8 Ca3N2 148.3 3 Ge02 172.1 1 Si3N4 140.3 3
1	(Sr0.285C			(ratio	\Sr/Ca=3/	1 1/4C1/4-2	
	添加剤	M.W.	元素数	上混合比	灣重量比	混合量 (g) ノ	Sr3N2 Ce02 Ce02 Si3N4 - 添加剤 Ce02 Ce02 Ce02 Ce02
	Sr3N2	290.9	3		55.2672		(Sr0.6 (Sr0.6 (Sr3N2 (Ce02 Si3N4 (Ce02 (Ce02 (Ce02
	Ca3N2	148.3	3	1.33			
	CeO2	172.1	1	0.1		0.925	
	Si3N4	140.3	3				
				7	372.0558		Continued on Page
						Ullill	
			_			Wead and Ur	iderstood By
	4	-				1	署 署 /
	7/1	apa					置党人
		Signed			Date		Signed Tacking Tolin 1032 Date
	• • • • • • • • • • • • • • • • • • • •						Janyun som Os. L.)

PROJECT	MSN:Ce calcination tests				Notebook No From Page				 .	
&	Object			:		!	: :] ;		
	· ; ; ;									
	Changir	og the St	Ca/Sir	atio in	SrCaS	i=No•Ce	to con	fi rm n	copertie	:S.
		ig the or,						_		
	Changi	ng the Sr								•
		, 						1		11.
		<u> </u>		:			ļ <u>.</u>			
	Raw ma	terials	F	Refer to	page 4	14.			-· · · · · · · · · · · · · · · · · · ·	ļ;
		<u> </u>		<u> </u>	;		ļ ļ <u>-</u>			
						<u> </u>				.,
	Calcination	n pattern				· · · · · · · · · · · · · · · · · · ·	·	teriora	tion of th	ne
						2 h	eating e	lement,	the tem	perature
Furna			14000	x54		w	as incre	ased or	nly to les	ss than
PTM			/	1 . !	_{	1	300 <u>°C.</u>	;		
NH3 =	1 l/min		<u> </u>			\ <u> </u>				i
	800°CX3	H / 3H			<u> </u>					
	/						<u> </u>			
				<u> </u>		7 H		700	c X 2H	
44						77)		300	- (()	
7/18 20:	24 STA	PT .		: : : : : : : : : : : : : : : : : : :		- -	 - - - - - - - - - - - - - - -	/20 /	2 82	
32, 34								7 39	328	Taken
33	37	- 					ر. :	27 2		
	 						:	: 1		
8	Feed						: 1			,
	:				- I					
炉 象									\	
		(, !) :		- [$\frac{1}{2}$		<u> </u>		1 (;	_
TMOSN-1		-3:	<u>-</u> c¢		-6	-5	7	_	<u> </u>	-9
St/ca = 9/	3/7	73	(%)	5 /M=-	2.5		=4	.ک	5	7
Backward				-		/	<u></u>	<u> </u>	· · · · ·	
of the									<u> </u>	
furnaces				<u> </u>				. <u>;</u> ļ		
	<u> </u>								<u> </u>	
<u> </u>	<u></u>			<u> </u>	L <u>. l</u>		إ ـ أ ـ إ	• • • •	Continued	on Page
21					Read and	Understo	od By			
1/20	,				王	道	笕人			
Sign	ed	•	Date			Sigi	ned Josh	inche 70	Lici 103.	2.7 Date
									-	

٠.

Objective compositions Objective compositions CC40.78 E00.83 Mag 2) N2 O2 N2 T C NON-18 (Broke E00.8 Mag 2) N2 O2 N2 T C NON-18 TC NON-18 T B NON-18 CA2 M2 S. SON St. 02 7. 1/2 5. SON St. 02 7. 1/2 5. SON Backward of the furnace CA TC SON-18 T S SON S S S S S S S S S S S S S S S S S S	PROJECT_	Oxynitride coac	tivated with E	Cu and Mn	No	7ge
Objective compositions	8	Object -				
(Cao.9x Euros Mhoos)		Coactivating oxyn	itride with E	and Mn to	confirm prop	erties.
(Cao.9x Euros Mhoos)		Objective composit	tions			
) 12 02	<i>N</i> - T	C120V-18
Mix amount						
T C I NON-IB T N I N O N - B C 2 N 2						
Ca3 N2 S. 50		Mix amount				
Sig Ng 6.1gs 7.8ee 8 1.5c 0.2 7.1f 2 5.5f 8 1.5c 0.2 7.1f 2 5.5f 8 1.5c 0.2 2.7 2.7 2		Ca 2 N2		I8 T	P1204-	8
Fig. 03 0.65 % 0.22 - 7		Si3 Nex	6.145		·	
		Ew 03	0.65 95		0.2227	
Backward of the furnace (Ca) (Pr) TC/SON-19 TS/SON-3 TC/SON-19 ニ 22.2 ー 2.8 = 19.40 TD/SON-8 ニ 24.9 ー 2.7 = 19.20 Continued on Page Read and Understood By						
Backward of the furnace (Ca) (Pr) TC/SON-18 TS/SON-3 TC/SON-18 = 22.2 - 2.8 = 19.80 TD/SON-8 = 24.9 - 2.7 = 19.20 Continued on Page Read and Understood By TTTTE TTTTE	(B)	Feed				
TCISON-19 TSISON-A TCISON-19 TSISON-A TCISON-19						
Feed amount T C / S O N - 18 = 22.2 - 28 = 19.50 T D I S O N - 8 = 2.7 = 19.20 Continued on Page Read and Understood By 王涓 寛人	Backward o	· <u> </u>		V- &		
T C I S O N - IB : 22.2 - 2.8 = 19.8 g · T S I S O N - 8 : 21.9 - 2.7 = 19.2 g Continued on Page Read and Understood By 王 眉 寛人						
・TタISON-タ コロスター 27 = 19.20 Continued on Page Read and Understood By 王语 寛人		Feed amount				
Read and Understood By 王语 寛人			18 2	22.2 -	2.8	= 19.80
王眉寬人		· T D 120N-	8 2	21.9 -	27	17.22
Signed Date Signed Tookin (24) Date	2/1			Read and Unders	tood By	
	Sign	ned	Date	上 直 Si	gned Toshiyuk	: Idin 103 2 Date

Mixing Mg with the mother body to confirm respective properties. To Pan 22	2 ROJECT	Mg mixed cr	ystal		Notebo c.	No ed From	
Mixing Mg with the mother body to confirm respective properties. TC PON - 2 TC PON - 2		(Object				·]	
Raw materials Ca0.97Eu0.03Si2O2N2 TC1.50A-20 TC.65N.24 Medical Sizona Tc.65N.24 Medical Sizona Tc.65N.24 Medical Sizona Tc.65N.24 Medical Sizona Tc.65N.24 Medical Sizona Tc.65N.25 T	 		- T	1 1			
Raw materials Ca0.87Eu0.03Si2O2N2 TC NoN-20 Ca3N2 5.4400 g Eu2O3 0.6615 g Eu2O3 0.6615 g Eu2O3 0.6615 g SiO2 7.3598 g SiSiN4 5.9908 g SiN4 5.9908 g ToTal 20.0187 g Sr0.97Eu0.03Si2O2N2 T∫ NoN-10 Sr3N2 9.1428 g Eu2O3 0.5132 g Eu2O3 0.5132 g SiO2 7.4300 g Mg3N2 0.4259 g Sr0.87Mg.0.1Eu0.03Si2O2N2 Sr3N2 9.1428 g Eu2O3 0.5132 g SiO2 5.7096 g SiSiN4 4.6402 g Eu2O3 0.5132 g SiO2 5.7096 g SiSiN4 4.6402 g Eu2O3 0.53137 g SiO2 5.8920 g SiO2 5.8920 g SiO2 5.8920 g SiO3 5.8920 g SiO3 5.8920 g SiO4 5.8920 g SiO5 5.7096 g SiO4 5.8920 g SiO5 5.7096 g SiO2 5.8920 g SiO2 5.8920 g SiO2 5.8920 g SiO3 5.8920 g SiO4 5.8920 g SiO5 5.7096 g SiO4 5.8920 g SiO5 5.7096 g SiO4 5.8920 g SiO5 5.8920 g SiO4 5.8920 g SiO5 5.8920 g SiO4 5.8920 g SiO5 5.8920 g SiO4 5.8920 g SiO5 5.8920 g SiO4 5.8920 g SiO5 5.8920 g SiO5 5.8920 g SiO6 5.8920 g SiO7 5.8920 g SiO8 5.8920 g SiO8 5.8920 g SiO9 5.8920 g SiO4 5.8920 g SiO4 5.8920 g SiO5 5.8920 g SiO6 5.8920 g SiO6 5.8920 g SiO7 5.8920 g SiO8 5.8920 g SiO8 5.8920 g SiO8 5.8920 g SiO8 5.8920 g SiO9 5.8920 g SiO4 5.8920 g SiO4 5.8920 g SiO6 5.8920 g SiO6 5.8920 g SiO7 5.8920 g SiO8 5.8920 g		Mixing Mg with	n the mothe	r body to confi	rm respec	tive prope	
Raw materials Ca0.87Eu0.03Si2O2N2 TC NoN-20 Ca3N2 5.4400 g Eu2O3 0.6615 g Eu2O3 0.6615 g Eu2O3 0.6615 g SiO2 7.3598 g SiSiN4 5.9908 g SiN4 5.9908 g ToTal 20.0187 g Sr0.97Eu0.03Si2O2N2 T∫ NoN-10 Sr3N2 9.1428 g Eu2O3 0.5132 g Eu2O3 0.5132 g SiO2 7.4300 g Mg3N2 0.4259 g Sr0.87Mg.0.1Eu0.03Si2O2N2 Sr3N2 9.1428 g Eu2O3 0.5132 g SiO2 5.7096 g SiSiN4 4.6402 g Eu2O3 0.5132 g SiO2 5.7096 g SiSiN4 4.6402 g Eu2O3 0.53137 g SiO2 5.8920 g SiO2 5.8920 g SiO2 5.8920 g SiO3 5.8920 g SiO3 5.8920 g SiO4 5.8920 g SiO5 5.7096 g SiO4 5.8920 g SiO5 5.7096 g SiO2 5.8920 g SiO2 5.8920 g SiO2 5.8920 g SiO3 5.8920 g SiO4 5.8920 g SiO5 5.7096 g SiO4 5.8920 g SiO5 5.7096 g SiO4 5.8920 g SiO5 5.8920 g SiO4 5.8920 g SiO5 5.8920 g SiO4 5.8920 g SiO5 5.8920 g SiO4 5.8920 g SiO5 5.8920 g SiO4 5.8920 g SiO5 5.8920 g SiO5 5.8920 g SiO6 5.8920 g SiO7 5.8920 g SiO8 5.8920 g SiO8 5.8920 g SiO9 5.8920 g SiO4 5.8920 g SiO4 5.8920 g SiO5 5.8920 g SiO6 5.8920 g SiO6 5.8920 g SiO7 5.8920 g SiO8 5.8920 g SiO8 5.8920 g SiO8 5.8920 g SiO8 5.8920 g SiO9 5.8920 g SiO4 5.8920 g SiO4 5.8920 g SiO6 5.8920 g SiO6 5.8920 g SiO7 5.8920 g SiO8 5.8920 g						·	TC/PON-22
Raw materials Ca0.87Eu0.03Si2O2N2 TC NoN-20 Ca3N2 5.4400 g Eu2O3 0.6615 g Eu2O3 0.6615 g Eu2O3 0.6615 g SiO2 7.3598 g SiSiN4 5.9908 g SiN4 5.9908 g ToTal 20.0187 g Sr0.97Eu0.03Si2O2N2 T∫ NoN-10 Sr3N2 9.1428 g Eu2O3 0.5132 g Eu2O3 0.5132 g SiO2 7.4300 g Mg3N2 0.4259 g Sr0.87Mg.0.1Eu0.03Si2O2N2 Sr3N2 9.1428 g Eu2O3 0.5132 g SiO2 5.7096 g SiSiN4 4.6402 g Eu2O3 0.5132 g SiO2 5.7096 g SiSiN4 4.6402 g Eu2O3 0.53137 g SiO2 5.8920 g SiO2 5.8920 g SiO2 5.8920 g SiO3 5.8920 g SiO3 5.8920 g SiO4 5.8920 g SiO5 5.7096 g SiO4 5.8920 g SiO5 5.7096 g SiO2 5.8920 g SiO2 5.8920 g SiO2 5.8920 g SiO3 5.8920 g SiO4 5.8920 g SiO5 5.7096 g SiO4 5.8920 g SiO5 5.7096 g SiO4 5.8920 g SiO5 5.8920 g SiO4 5.8920 g SiO5 5.8920 g SiO4 5.8920 g SiO5 5.8920 g SiO4 5.8920 g SiO5 5.8920 g SiO4 5.8920 g SiO5 5.8920 g SiO5 5.8920 g SiO6 5.8920 g SiO7 5.8920 g SiO8 5.8920 g SiO8 5.8920 g SiO9 5.8920 g SiO4 5.8920 g SiO4 5.8920 g SiO5 5.8920 g SiO6 5.8920 g SiO6 5.8920 g SiO7 5.8920 g SiO8 5.8920 g SiO8 5.8920 g SiO8 5.8920 g SiO8 5.8920 g SiO9 5.8920 g SiO4 5.8920 g SiO4 5.8920 g SiO6 5.8920 g SiO6 5.8920 g SiO7 5.8920 g SiO8 5.8920 g			:				TC150N-2/1011
Ca3N2 6.0074 g Eu2O3 0.6615 g Eu2O3 0.6615 g Eu2O3 0.6615 g Eu2O3 0.6615 g Eu2O3 0.6615 g Eu2O3 0.6615 g Eu2O3 0.6615 g Eu2O3 0.6615 g Eu2O3 0.6615 g Eu2O3 0.6615 g Eu2O3 0.6615 g Eu2O3 0.615 g Eu2O3 0.5130 g Eu2O3 0.5130 g Eu2O3 0.5130 g Eu2O3 0.5130 g Eu2O3 0.5130 g Eu2O3 0.5130 g Eu2O3 0.5130 g Eu2O3 0.5130 g Eu2O3 0.5296 g Eu2O3 0.5130 g Eu2O3 0.5296 g Eu2O3 0.5310 g Eu2O3 0.5320 g Eu2O3 0.53		6					VVV
Signed Date Signed Sig		Raw material	S Ca0.97Eu		170N-50		
SiO2							
Si3N4 5.9909 g Total 20.0187 g Sr0.87Mg0.1120.0251202N20 Sr0.97Fu0.0351202N2 Tp/p/p/n-re Sr0.87Mg0.1120.0351202N20 Sr3N2 8.4610 g Eu2O3 0.5182 g Si3N4 4.5482 g Eu2O3 0.5296 g Si3N4 4.7990 g Si3N4 4.799		!					
ToTal 20.0187 g Mg3N2 0.4259 g TpTpTpCN-ze() TpTpTpN-ze() TpTpN-ze() TpN				1			
Sr0.97Eu0.03Si202N2 To 1,001-10 Sr0.97Eu0.03Si202N2 To 1,001-10 Sr3N2 9.1428 g Eu203 0.5132 g Si02 5.7986 g Si3N4 4.5482 g To Tal 20.0139 g Calcination pattern Purnace 1 N=10.141 Purnace 1	<u> </u>			5.9909 g			
Sr.9.19 Sr.9.1428 Sr.3.192			ToTal	20.0187 g		Mg3N2	0.4259 g
Sr.9.19 Sr.9.1428 Sr.3.192			1				TP(20N-=()
Eu2O3					1004-10		
SiO2 5.7096 g Si3N4 4.7980 g Si3N4 4.7980 g ToTal 20.0139 g BE Mg3N2 0.3377 g Date Date Signed Sign							
Si3NA			1				
ToTal 20.0139 g 日歌 Mg3N2 0.3377 g 13.2.07 15.07							
Calcination pattern	<u> </u>			4.6482 g	\Box \frown		4.7980 g
Calcination pattern Furnace 1 Nz= l/min Poo'c x 5H Nz= l/min Poo'c x 5H Nz= l/min Poo'c x 5H Nz= l/min Poo'c x 5H PN AH AH PN AH PN AH AH PN AH PN AH PN AH PN AH PN AH AH PN AH			ToTal	20.0139 g			0.3377 g
Calcination pattern Furnace 1 Nz= L/min 800°CX31 3H 7H 30°CX2H RV. 4H 875 20 03 NTART 36 36 37 °C 8 Feed Feed Feed Feed Read and Understood By Figure Signed Si	+		 :	1		<u>7)</u>	
Calcination pattern Purnace 1 N2= /		<u> </u>	- i - i - ; -		————	<i></i>	TAI PON-14
Furnace 1			<u>L.lli</u>				
Furnace 1		Calcination	nattern			į į	
N2 = L M M M M M M M M M	 		· pattorn				
N ₂ = 1 D N ₁ 3H 7H 30° c X2H P.V. 4H 7H 7H 30° c X2H P.V. 4H 7H 7H 30° c X2H P.V. 4H 7H 7H 7H 7H P.V. 4H 7H 7H 7H 7H 7H 7H P.V. 4H 7H 7H 7H 7H 7H 7H 7H			<u> </u>				
Nz =		Furnace 1		1400°C ×5H			
P.V. 44 P.		N-=10/11					
PV 4州 7州 30°c K2州 B/2 20 20 3 か7分RT 36 36 37 °C Br/Mg (CaMg) (Ca Backward of the filt		112-12/ W.C.					
PV 4州 7州 30°c K2州 B/2 20 20 3 か7分RT 36 36 37 °C Br/Mg (CaMig Ca Backward of the filt TS/ SoN-(** 下がりかい-1) Te / SoN-2 Continued on Page Read and Understood By 「							
Feed Sh (Sh (Sh (CaMg) (Ca Backward of the fi TS! So N-(* TSY, NoN-!) T= IのN・2 TC fi NoN-2 Continued on Page Read and Understood By Signed Date Signed アルシェンのよう		800°CX	H/ 3H				
Feed Sh (Sh (Sh (CaMg) (Ca Backward of the fi TS! So N-(* TSY, NoN-!) T= IのN・2 TC fi の N-2 Continued on Page Read and Understood By 「Signed Date Signed アルシェン 701. Date				1			
Feed Sh (ステルタ (CaMg) (Ca Backward of the fi TS! ショルー(*) TS! ショルー(** TS! ショルー(** TS! ショルー(**) TS! カラット・(** TS! カラット・(**) TS! カラット・(**) TS! カラット・(**) TS! カラット・(**) TS! カラット・(**) TS! カラット・(**) TS! カラット・(**) TS! カラット・(**) TS! カラット・(**) TS! カラット・(**) TS! カー・(**) Date Signed アルシェル・アル・(**) ル・フェル・フェル・フェル・フェル・フェル・フェル・フェル・フェル・フェル・フェ		···			· - · 		·
	<u> </u>						
	1				! !		
	+	114			74		20°C X2H
8/2 20 203 874RT 36_36_37°C Sh (NrMg) (CaMg) (Ca Backward of the fill to 150 N-26	PVK	7/7			< '''/. ∶		- 1000 CM
Feed Sh Sh Sh CaMa Ca Backward of the file of the fil			<u>s</u> :		<u> </u>		
Feed Sh Sh May CaMa Ca Backward of the file of the fi	8/2	20:03 START		. ; .		: :	
Feed Sh Sh CaMg Ca Backward of the file of					·· i · · · · · · · · · · · · · · · · ·		
Sh (Sh (Sh) (Ca Mig) (Ca Backward of the file of the f	36,	30, 31 0					
Sh (Sh (CaMg) Ca Backward of the file of t						<u> </u>	
Sh (Sh (Sh) (Ca Mg) (Ca Backward of the file of the fi		(A) Food			: !		
TSI SON-(** TSI SON-X) TCIS ON-26 Continued on Page Read and Understood By 「「」」 Signed Date Signed アルリルアが高いのより	· -	reed					
TSISON-10 TSISON-11 T=ISION-21 TCISON-26 Read and Understood By 「「「「「「「「「「「「「「「」」」」」」 Signed Date Signed Taking To in the cost of the		<u> </u>					
Read and Understood By Fig. Signed Date Signed Today 7 dia 103 Date			(ST)	(Nr Mz / (C	aMg\ (9	Backward of the it
Read and Understood By I			TOI SON-	(O TSISON-II T	= 150N-Z/	TC/15017-26	
Read and Understood By 王夏克人 Signed Date Signed Tolightu 7ding (0) Date		 		17/7			
Signed Date Signed Tookigudu 70 in 101 Date	<u> </u>				· . i		Continued on Page
多				Reac	and Undersi	rood By	•
Signed Date Signed Tookiyaha 70 03 Date	8						
Signed Date Signed Tookiyaha 70 03 Date		1			干、首	丁二人	
. 72		<u></u>					
. 72	k.·	Signed	D.	ate	Sig	gned Jeck	under 7 dias 103. 20th
						0	

Object

Calcining MgSi₂O₂N₂:Eu, BaSi₂O₂N₂:Eu to confirm properties as novel phosphors.

Raw materials

M	<u> </u>	<u> 1.0351202N</u> 2
M	3N2	4.526
Ευ	203	0.7318
Si	3N4	6.627
Si	02	8.142
To	otal	20.0268

TMGISON-1

Ba0.97Eu0.03Si2O2N2					
Ba3N2	11.20				
Eu2O3	0.4159				
Si3N4	3.765				
SiO2	4.627				
Total	20.0079				

TBa I DON-1

Calcination pattern	°c ×5H
MOTOYAMA furnace	
· PTN=2	
N2=500m/min 800°CX3H 5.5H	
	10H 100°C X 20 min
P.V. 5H	₩ 30°C

8/31 18:37 78% PTART.

9/2 9:12 78° Taken out

Feed

Backward of the furnace

Feed amount

$$TMG | SON - 1 : 22.2 - 2.5 = 19.72$$

 $TBA | SON - 1 : 22.2 - 2.4 = 19.82$

Sugaru Jakahina

Jakelly Anglamoch 2008. 2. f Takeshi Andamochi

Appearance when taken out

TMG1SON-1 (Mg)

Body color: light ocher

EX=253.7 nm

Body color: white, only a part of the body emitted

light blue light.

EX=365 nm

Ditto

In both cases, equal brightness

TBA1SON-1 (Ba)

Body color: dull yellow

EX=253.7 nm Non-light emitting particles and those emitting green

color light were mixed. Not possible to determine from their body color

EX=365 nm

Ditto

Ligura Japasham

Fakum falanischi 2003 28

EXHIBIT C

「開発月報(R3-1)」について

德島県阿南市上中町岡491番地100 日亜化学工業株式会社 知財部長代行 松 下 一 郎

NO. 1/2

知財 第一部門 社長 生產本部 部門長 開発部長開発課長 技師長 本部長 副本部長 110 月開発月報まとめ 部署 R3-1 氏名 玉置 寛人 スケジュ ル 10月 9月 8月 7月 製造引き継ぎ YAG 酸化物系 輝度 UP、分布改良 新規シリケート試作 高輝度化試験 焼成再現試験 ピーク波長変更品出荷 ナイトライト系 希土類ナイトライト試作 オキシナイトライト。改良 新規オキシナイトライト、試作 炒小合成炉稼働 1 次工事完了 焼成実験室・キャバ ①~⑤号炉まで (詳細予定添付) ライフ結果まとめ 新規バインダー合成 SiO2 バインダー硬化改良 無機パインダー 実装ライフ試験開始 コメント 現状要点 テーマ ①YAG 製造引き継ぎ・改良、ジリンナイトライト Red の製造・改良を中心に開発中。 ED 用蛍光体開発 ②YAG 関係は 1 部門と 2 部門間のサンプルと結果のやり取りが十分出来ておら ず 7/18YAG 改良方針について会議を行い、今後必ず月 1 回へースで会議を 実施し方針のすりあわせを行う。(YAG 出荷タイプまとめ添付 3ページ目) ・LED 用 YAG の開発方針としては、輝度が高く、粒径の揃った物を用意し、 色調、粒子サイスを選択してもらう方向で進めたい。他の蛍光体でも同じ。 ・これら蛍光体を2部門でランプ構造・目的に応じ使い分けられる形態にしたい。 ③9 月学会発表(米 照明学会 LA 成川さん)を受け、知財で窒化物蛍光体 関連の特許出願に力を入れることになった。(知財 東京分室 芥川さん他) ④技術保全関係 ・7月出願無し。 -8月3~5件予定。 ①ナイトライド焼成実験室状況・・・(スケジュール表添付 4 ページ目) 1. ナイトライト 蛍光体 亀島·高島·玉置 ・1 次工事が8月末完了。①~⑤号炉まで運転可能となる。 ・メタル炉(常用 1800°C)、管状炉(常用 1600°C)申請、メタル合成炉は 10 月運転。 実験結果 ①認定用サンプル ・新設炉(常用 1600°C)で 610~650nm ピーク波長変更サンプル 5 種出荷、LA1で →8/末 技術保全 認定用白色 LED、電球色 LED 試作。ライフ投入済み。 ②再現焼成 ・炉内に飛散物が堆積すると共に、焼成品の輝度が低下してきた。 ・原因は炉内堆積物による NH3 分解もしくは赤外線透過の阻害と考えている。 ・対策実施中。8月~9月は再現性の確保に注力する。

持ちテーマ	現 状 要 点	コメント	
	③輝度 UP		茶
7 -	・輝度 UP 試験は焼成再現性確認の後実施する。進展無し。	î	DT-2
	④シリコンオキシナイトライト (Eu 付活 Green~Yellow)		
	・400nm 直接励起で、YAG より効率の良いYellowと、SAEに近い効率の Green		
	発光の蛍光体。LA1 で 400nm+CCA+ナイトライド Red+オキシナイトライド Green で白	7	
	色 LED を試作。400nm+CCA+YAG の約 75%の効率。改善の余地有り。		***
·	(5)Sr メタル供給		
	・Timminco 社 Sr 均 4kg 入手、分析へ。価格は現行の 1/20。		
-			
2. 酸化物系蛍光体	①白色 LED 製造用レギュラー YAG(木下)		eren en en en en en en en en en en en en e
武市·木下·村崎		3/末 技術保全	September 1
	·光度 UP 品、色調変更品も中量製造。		A section
	・全て新タイプであり、SPEC、製法、在庫管理など、今後 1~2ヶ月で整備する。		
l.	②YAG 改良(村崎)		
	・LED 用 YAG として、輝度が高く、粒度分布の良い、6~7 µm の物を目指す。		
	·雰囲気、Flux 変更を検討中。NH4Cl+BaF2 系で分布良、残留 Cl の影響で	••••	
	色調がズレ、輝度低下が起こる。雰囲気、Flux 種、量で対策中。		Andrewson .
	③YAG アニール試験(玉置)		in the second
	・酸素濃度を変えてアニールを実施。弱還元領域で輝度が高い事を確認。		
	④BMSE(Ba、Mgシリケート Eu 付活、Eu・Mn 付活)(武市)		
	・400nmLED 励起で、現在、最も輝度の高い Green 蛍光体 SAE とエネルギー効率	-	- Company
	はほぼ同等、Green・Pink 用途として検討。		and and and
	・エチルシリケート反応品を高温焼成(1250℃)し最高輝度を確認、LA1 に出荷。		· Property of the second
3. 無機パインダー	・パインダー中の残留有機とライフの関係を明らかにする一連の試験を実施中。		
祖父江·丸田	①無機バインダー硬化試験(祖父江)		7
	・雰囲気、温度、昇温速度、蛍光体の有無、バインダー分子量、加水分解率を試		
	験し残留有機が少なくなる条件を決定した。		17.5
	②ライフ試験(祖父江・丸田)		
	・残留有機の少なくなる条件でシリウスタイプランプを作製、ア/末よりライフ投入。		
	・9 月中に 1000hr の結果出る予定。		
	(3)が7人美袋状態での有機力の直接が加入電気は	→ 8/末 技術保	選 選
	・EDX、FT-IR で直接分析可能なデータが得られた。但し、絶対値評価に問題が		ED用YAGタイプ状況(現在第1部門で把握している製品)
	ある為、WDX での測定も行う。サンプル間のデータ比較は十分可能。		7 12
	④シリカソ・ルハ・インタ・一合成(丸田・祖父江)		九
	・残留有機が少なく、接着力が強く、硬化割れしない材料の合成試験開始。		24.
			YAG
4. VFD 用新規 REI 高島・玉置	Luzozo. Lu mysty ivativity		 D用
	・本業務、引き継ぎ・残務完了。		

.3

Γ	社長	·		第一部門			知財	1
Ì		部門長		生産る	本部			1
Ì.			本部長	副本部長 技師	長開発部長	開発課長		_[
		(B)	州	SH		/ 9 - 1		
月朝	Z		9	部署:	R3-1	氏名	: 高島	優

カルシウムオキシナイトライド焼成試験

◆目的

CESNの副産物として、CaSi2O2N2:Euによる黄色発光粒子が得られている。この蛍光体を目的物質と して作製するとともに別組成のオキシナイトライドを試作し、新規蛍光体としての可能性を探る。

- ◆実験 PDF file に記載のある下記①~④を作製した。 (Top Temp.=1600℃, NH3 雰囲気)
- ① (Ca0.97, Eu0.03)Si2O2N2
- ② (Ca0.97, Eu0.03)2Si3O2N4
- ③ (Ca0.97, Eu0.03)3Si2O4N2

◆結果

0	BodyColor=Yellow。 黄色発光蛍光体。 EX=400nm で高輝度→ Y=911%(STD=206-01-01)			
	表面粒子:BodyColor=くすんだYellow。EX=253.7, 365nm で発光無し。			
② 内部粒子: BodyColor=Red。EX=253.7, 365nm で赤色発光。ガラス化傾向→乳鉢での				
	BodyColor=Yellow。258.7,365nm で若干黄緑発光。Air 中で破裂する。			
3	完全にガラス化 → 液体となって流れ出し、炉心管・PBN ボートにダメージを与える。			
4	BodyColor=クリーム色。253.7, 365nm で発光無し。完全にガラス化。			

※①は 400nm 励起白色 LED 用蛍光体として実用化の可能性が有るが、②~④はガラス化するため実用 化の可能性は低い。

CaSi2O2N2:Eu 焼成試験

◆目的

400nm 励起白色 LED への導入に向け、CaSi2O2N2:Eu の特性 up を目指す。

◆実験/結果

標準焼成条件から、下表の条件変更を行った。

標準焼成条件:

組成=(Ca0.97, Eu0.03)Si2O2N2, Top Temp.=1600℃, 焼成雰囲気=NH3

Y=911% (STD=206-01-01)

条件変更内容	結果		
Eu 組成比=0.06, 0.09, 0.12	組成比=0.08 (標準品) で輝度が最も高い。→詳細な最適化が必要。		
焼成雰囲気=N2	NH3-N2により輝度 1.28 倍に up。 Y=1174% (ST'D=206-01-01)		
Top Temp.= 1500℃, 1400℃	Top Temp.低下により輝度低下。Y=710% (1400℃, ST'D=206-01-01)		
Ca/Sr 比=5/5, 0/10	Sr 混晶により、緑発光に寄る。✓		
	Ca/Sr=0/10 で輝度が 1.49 倍に up。 Y=1357% (ST'D=206-01-01)		

①付活剤変更

②組成の変更

→ i . Mg, Ca, Sr, Ba ii . Si, B, Al, Ga, In Ga/Si/O the

③雰囲気の最適化 →N2/NH3 比、N2/H2 比

EXHIBIT C1

「開発月報 (R 3-1)」について

德島県阿南市上中町岡491番地100 日亜化学工業株式会社 知財部長代行 松 下 一 郎 Yasuda's seal

Ugawa's	signature	- Sinomiya's	signatuo4FB3-002	(様式作成日:2002. 4.) No. 1/2
社長		第一部門		知財
部門		生産本部 長 技師長	開発部長開発	理長
M/6	37 97	LAN Fruitan	116	RE
83-11	開多	発月報まとめ	部署	R3-1 氏名 玉置 寛人
7-7		スケジ		
	7月 製造引き経ぎ	8月	9月	10 月
YAG 酸化物系	類度 UP、分布改良 新規シリケート試作	- 1		
ナイトライト系	ピーク波長変更品出荷 新規オキシナイトライド試作	焼成再現試験 オキシナイトライト改良	高輝度化試験 希土類ナイトライト・試作	
焼成実験室・キャハ (詳細予定添付)		1 次工事完了 ①~⑤号炉まで		火机合成炉稼働
無機パインダー	SiO2 パインダ一硬化改良 実装ライフ試験開始	新規パインダー合成	ライフ結果まとめ	
テーマ		現状要点		コメント
ED 用蛍光体開発	①YAG 製造引き継ぎ・改	良、シリエナイトライト Red の製	造・改良を中心に開発中。	
·	②YAG 関係は1部門と	2 部門間のサンプルと結果の	やり取りが十分出来ておら	
	ず 7/18YAG 改良方針	について会議を行い、今後	必ず月1回ペースで会議を	
	実施し方針のすりあわ	せを行う。(YAG 出荷タイプマ	まとめ添付 3ページ目)	
	・LED 用 YAG の開発方	針としては、輝度が高く、和	径の揃った物を用意し、	
	色調、粒子サイスを選択	でしてもらう方向で進めたい	。他の蛍光体でも同じ。	
	・これら蛍光体を2部門	でランプ構造・目的に応じ使い	い分けられる形態にしたい。	
	③9·月学会発表(米 照	明学会 LA 成川さん)を	受け、知財で窒化物蛍光体	
	関連の特許出願に力を	を入れることになった。(知	財 東京分室 芥川さん他)	
•	④技術保全関係		·.	
	-7月出願無し。			<u></u>
•	-8月3~5件予定。			
1. ナイトライト 蛍光体	①ナイトライト 焼成実験室物	伏況・・・(スケジュール表添付	4 ペーシ゚目)	
亀島·高島·玉置	-1 次工事が 8 月末完了	7。①~⑤号炉まで運転可	能となる。	
7	- メタル炉(常用 1800℃)、	管状炉(常用 1600°C) 申請	、外ル合成炉は10月運転。	
resent	実験結果			
Invention	①認定用サンプル			
THUENUIN	·新設炉(常用 1600℃)	で 610~650nm ヒーク波長変	更サンプル 5 種出荷、LA1 で	→8/末 技術保全
	認定用白色LED、電理	味色 LED 試作。ライフ投入済	うみ。 	
	②再現焼成			
	- 炉内に飛散物が堆積	すると共に、焼成品の輝度	が低下してきた。	<u> </u>
	・原因は炉内堆積物に	よる NH3 分解もしくは赤外	線透過の阻害と考えている。	
	·対策実施中。8月~9	月は再現性の確保に注力		
			しょ しゅうしゅん	9(様式作成日

現 状 要 点	コメント	
③輝度 UP		京井
	E.	DT-2
④シリコンオキシナイトライド(Eu 付活 Green~Yellow)		٥
		in the state of
		Necessian Control
		Classic Control
		أومالي
· Millingo II Gray Hights and All Indiana		Action to House
O · T · T BUSE BUSE VAC(大下)		alesidas:
	→8/末 技術保全	September 1
・現行 206-01 31 / が、206-23 分版が17(-1911 1 8 により		T.Coppelia
		National Property
	+	
		-
・LED 用 YAG として、輝度が高く、和度分布の良い、0~/ # III V 形を 日18/2-8		سندسهم
L		- 4
		- Herrist
③YAG アニール試験(玉置)		
		abalpanior
④BMSE(Ba、Mg シリケート Eu 付活、Eu・Mn 付活) (武市)		- Pare
・400nmi_ED 励起で、現在、最も輝度の高い Green 蛍光体 SAE とエネルキー効率	图	
はほぼ同等、Green・Pink 用途として検討。		
・エチルシリケート反応品を高温焼成(1250℃)し最高輝度を確認、LA1 に出荷。		
		apre Lébelump
・ハインダー中の残留有機とライフの関係を明らかにする一連の試験を実施中。		
	斌	- Paris
		e e e e e e e e e e e e e e e e e e e
		in the same of the
		and the second
	→ 8/末 技術(保全
	30.	
		<i>-</i> -
・残留有機が少なく、接着力が強く、硬化割れしない材料の合成試験開始	•	
D : 2000 E 供业体性 7/31 出面		
· Lu2O2S:Eu 虽元体特部、// 31 山脈。 · 本業務、引き継ぎ・残務完了。		
		課度 UP 試験は境成再製性強認の修実施する。進展無し。 (例) 対すなけい付け(Eu 付活 Green~Yellow) 400m 直接励起で、YAG より効率の良い Yellow と、SAE に近い効率の Green 発光の蛍光体。LA1 で 400mm+CCA+プイドライド Redvオヤナイナライド Green で自 色 LED を試作。400mm+CCA+プイトライド Redvオヤナイナライド Green で自 色 LED を試作。400mm+CCA+プAG の約 75%の効率。改善の余地有り。 (例) 自色 LED 製造用レキュテーYAG (木下) ・現行 200-01 タイプが 200-23 分級シイブに移行中。在原不足から製造。 ・光度 UP 品、色調変更品・中量製造。 ・全て新タイプであり、SPEC、製法、在原管理など、今後 1~2 ヶ月で整備する。 ②YAG 改良 (村崎) ・LED 再 YAG よして、健康が高く、数字分布の良し、6~7 μm の物を目指す。 ・雰囲気、Flux 変更を検討中、NH4CI+Be72 系で分布良、残留 CI の影響で 色調がズレ、類度を框でが表にる。雰囲気、Flux 覆、置で対策中。 ③YAG アニールビ験(正置) ・砂米温度を変えてアニールを実施、弱速元領域で健康が高い事を確認。 (多BMSE(Ba、Mg ソリケー Eu 付活、Eu-Mn 付活)(域市) ・400mmLED 励起で、現在、最も健康の高い Green 蛍光体 SAE とて料キー効率 はほぼ同等、Green-Pink 用途として検討。 ・エアルリケー及応品を高温強威(1250°C)し最高理度を確認し、A1 に出荷。 ・パイゲー中の残留有機とライアの関係を明らかにする一連の試験を実施中。 (の無機・イケギー硬化試験(祖父江) ・雰囲気、温度、昇温速度、蛍光体の有無、パイゲー分子量、加水分解率を試

カルシウムオキシナイトライド焼成試験

◆目的

CESNの副産物として、CaSi2O2N2:Eu による黄色発光粒子が得られている。この蛍光体を目的物質として作製するとともに別組成のオキシナイトライドを試作し、新規蛍光体としての可能性を探る。

- ◆実験 PDF file に記載のある下記①~④を作製した。(Top Temp.=1600℃, NH8 雰囲気)
- (Ca0.97, Eu0.03)Si2O2N2
- ② (Ca0.97, Eu0.08)2Si8O2N4
- ③ (Ca0.97, Eu0.03)8Si2O4N2
- (Ca0.97, Eu0.03)4Si4O9N2

◆結果

0	Body Color=Yellow。 黄色発光蛍光体。 EX=400nm で高輝度→ Y=911% (STD=206-01-01)
	表面粒子:BodyColor=くすんだYellow。EX=258.7,865nmで発光無し。
2	内部粒子:BodyColor=Red。EX=253.7, 365nm で赤色発光。ガラス化傾向→乳鉢での粉砕不可能。
BodyColor=Yellow。258.7, 865nm で若干黄緑発光。Air 中で破裂する。	
3	完全にガラス化 → 液体となって流れ出し、炉心管・PBN ボートにダメージを与える。
4	BodyColor=クリーム色。253.7, 365nm で発光無し。完全にガラス化。

※①は 400nm 励起白色 LED 用蛍光体として実用化の可能性が有るが、②~④はガラス化するため実用化の可能性は低い。

CaSi2O2N2:En 焼成試験

◆目的

400nm 励起白色 LED への導入に向け、CaSi2O2N2:Eu の特性 up を目指す。

◆実験/結果

標準焼成条件から、下表の条件変更を行った。

標準焼成条件:

組成=(Ca0.97, Eu0.03)Si2O2N2, Top Temp.=1600℃,焼成雰囲気=NH3

Y=911% (STD=206-01-01)

条件変更内容	結果		
Eu 組成比=0.06, 0.09, 0.12	組成比=0.08(標準品)で輝度が最も高い。→詳細な最適化が必要。		
焼成雰囲気=N2	NHS-N2 により輝度 1.28 倍に up。 Y=1174% (ST*D=206-01-01)		
Top Temp.=1500℃, 1400℃	Top Temp.低下により輝度低下。Y=710% (1400℃, STD=206-01-01)		
Ca/Sr 比=5/5, 0/10	Sr 混晶により、緑発光に寄る。✓		
	Ca/Sr=0/10 で輝度が 1.49 倍に up。Y=1357% (STD=206-01-01)		

◆予定 特性改善・特許出願に向け、下記①~④の試験を行う。

①付活剤変更

②組成の変更

→ i . Mg, Ca, Sr, Ba

ii. Si, B, Al, Ga, In Andrew Sill Ga/Si/O. H.

计自由数据分解 医埃勒特氏病

③雰囲気の最適化 - N2/NH3 比、N2/H2 比

EXHIBIT C2

Regarding "Development Monthly Report (R3-1)"

491-100, Oka, Kaminaka-Cho, Anan-Shi, Tokushima-ken Nichia Corporation Deputy of Intellectual Property Department Manager Ichiro MATSUSHITA ~

04FR3-002 (Form Creation Date: 2002.4)

No. 1/2

Intellectral	Property					
		Development	Department	Section manager	,	
		De milerment	Department	Manager		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	FIRST DIVISION	FIGURELIAI CARCA	ingineer ranager			
	n serra	-	Deputy General	· · · · · · · · · · · · · · · · · · ·		
			General Manager			
		Division Manager				
•	resident					

R3-1 Summary of

Development Monthly Report

Section: R3-1 Name: Hiroto TAMPAKI

		Schedule	ule	
Theme			Santamber	October
	July	August		
YAG- , oxide-base				
phosphors	takeover			
•	· Improvement of			
	brightness			
	· Improvement of			
	particle size			
	distribution			
	· Experimental			-
	production of novel			
	silicates		 	
Nitride-base	· Shipment of	·Calcination	· Tests IOF	
phosphors	samples wherein the	reproducibility	increasing	
	neak wavelenoths	test	prignuess	
	are shifted	· To improve	· Experimental	
	· Experimental	oxynitride-base	production of rare	
	arodiction of novel	phosphors	earth nitrides	
	production of roter			

	oxynitrides			
Calcination		·To complete		Operation of metal
lavoratory capacity		primary		rurnaces
(Details of the		construction	-	-
schedule to be		Up to (D-(f) furnaces		
attached)		*		
Inorganic binders	· Improvement in	Synthesis of novel	To compile the	-
	curing of SiO ₂	binders	lifetime test	
	binders		results	
	 To start lifetime 			
	tests			
Theme	Point	Points of the current conditions	tions	Comments
Development of	① Takeover of produc	① Takeover of production of YAG-base phosphors and improvement	hors and improvement	
phosphors for LEDs	thereof, specifically	specifically, we are developing production and	roduction and	_
	improvement of silicon nitride Red.	n nitride Red.		
	© Concerning the Y	② Concerning the YAG-base phosphor, exchange of the samples	nange of the samples	
	and exchange of the	and exchange of the results haven't been sufficiently carried	sufficiently carried	
	out between the first	out between the first division and the second division.	second division. On	
	July 18, a meeting	a meeting was held, and we discussed the course of	cussed the course of	
	improvement of the	improvement of the YAG phosphor. We decided that we would	cided that we would	
	certainly hold a mee	certainly hold a meeting once a month, and would discuss and	nd would discuss and	
	adjust the course.	adjust the course. (The summary of the types of YAG phosphors	pes of YAG phosphors	
	to be shipped is atta	to be shipped is attached. The third page)		
	· For the development	For the development course of YAG phosphors for LEDS, we will	ors for LEDs, we will	
	prepare those phosp	those phosphors which have high brightness	h brightness and a	-
	_	particle size, and would like them to select the color	n to select the color	
		cle size. This is	the same in other	
	phosphors.		•	
	· We would like to a	We would like to arrange so that these phosphors can be used	chosphors can be used	
	in both of the two	two divisions in accordance with the		

•	1	ľ	•

structure and objective. (3) In response to the presentation at the academic conference (US Illumination Association, IA NARIKAWA), the Intellectual Property Department has decided to focus on filing patent application related to nitride-base phosphors. (The Intellectual Property Department Detached Office in Tokyo AKUTAGAWA and others) (4) Related to technical maintenance • In July, no application was filled.		the brightness of calcined products was reduced. We consider that the cause therefor was due to NH3
(B) E U U U U	1. Nitride-base (phosphors care transfilms, Takashima,	<u>.</u>

	structure and objective.	
	(3) In response to the presentation at the academic conference	
	(US Illumination Association, IA NARIKAWA), the Intellectual	
	Property Department has decided to focus on filing patent	
	ion related to nitride-base phosphors.	
-	Intellectual Property Department Detached Office in Tokyo	
	AKUIAGAWA and others)	
-	(4) Related to technical maintenance	
-	· In July, no application was filed.	
	. In August, 3-5 applications are going to be filed.	
1. Nitride-base	(1) Conditions of laboratory where calcination of nitrides is	
phosphors	carried out(a schedule table attached, the fourth page)	
KAMESHIMA,	. Primary construction will be completed by the end of August.	
TAKASHIMA, TAMAKI	Furnaces (1)-(5) will become operable.	
	· Applied for metal furnaces (regular use: 1800°C) and tube	
	furnaces (regular use: 1600°C), metal furnaces will be operated	-
	in October.	
	Experiment Results	
	(1) Samples for certification	
	· Samples wherein excitation peak wavelengths were shifted to a	
	range of 610-650nm were prepared in the newly equipped furnaces	
	_	- End of August,
		. Je
		maintenance
	② Calcination reproducibility	
	. Scattered substances were deposited inside the furnaces, and	
	the brightness of calcined products was reduced.	
	decomposition or blocking of transmittance of infrared rays due	

at. From ility. confirming gress. w) ing better mit yellow ar to that color LEDs ride Red +	was about 75% of There is room for Timminco Co., and twentieths of the	light LEDs ion to a technical we produced maintenance whose color e. e. c. in 1-2
to deposited substances inside the furnaces. • We are carrying out countermeasures against that. From August to September, we will try to secure reproducibility. ③ Improvement of brightness • A brightness improvement test was conducted after confirming the reproducibility of calcination. There was no progress. ④ Silicon oxynitrides (activated by Eu, green ~ yellow) • Upon direct excitation at 400mm, phosphors having better efficiency than that of the YAG phosphor, which emit yellow light, phosphors having luminescence efficiency similar to that of the SAE phosphor, which emit green light. White color LEDs were experimentally produced from 400mm + CCA + nitride Red +	oxynitride Green by IA1. Their efficiency was about 75% of that of the 400 nm + CCA + YAG phosphors. There is room for improvement. ⑤ Supply of Sr metal · We obtained 4kg of Sr metal produced by Timminco Co., and subjected it to analysis. The price was one twentieths of the	(KINOSHITA) (**RINOSHITA**) (**The existing type 206-01 is in the transition to a classification type 206-23. Due to stock shortage, we produced the type 206-23. (**Phosphors with improved brightness and phosphors whose color tone was changed were also produced in a medium volume. (**All of them are new types, and we will adjust their specs, production processes, and inventory management etc. in 1-2 months.
		Oxide-base KINOSITA,
		2. phosphors TAKEICHI, MURASAKI

	·							
• As the YAG phosphor for LEDs, those which have high brightness, good particle size distribution and a mean particle	ging part	but the color tone shifted due to the infiluence of the restraction of brightness. We are studying the atmosphere, type of flux and amount for taking the	 Countermeasures against that: (3) Annealing tests of the YAG phosphor (TAWAKI) Changing the oxygen concentration, annealing was performed. It was confirmed that the brightness was high in a weakly 	F-7	Eu.Mn) (TAKEICHI) • By excitation of 400 nm LED, phosphors are almost equal in energy efficiency to that of the green SAE phosphor that has the highest brightness. We are considering that they will be	applied to green · pink phosphors. • Ethyl silicate reaction products were calcined at high temperature (1250°C), and the highest brightness was confirmed.	Inorganic Currently conducting a series of experiment for clarifying the relationship between a residual organic substance in a binder and lifetime.	① Curing test of inorganic binders (SOFUE) . The atmosphere, temperature, temperature increase rate, presence or absence of a phosphor, binder molecular weight, and hydrolysis ratio were tested, and conditions that reduced the amount of the residual organic substances were determined.
						,	3. Inc	

_		
۲	٦	
۰		

		_
	② Lifetime tests (SOFUE, MARUTA) • Sirius type lamps were produced under the conditions that reduced the residual organic substances, and they were subjected to lifetime tests from the end of July.	
	In September, a lifetime of 1000 hr will be achieved.	Angust,
	(3) Direct analysis of organic components in a state in which technical	
	Sirius lamps were equipped (SOFUE)	
	However, since there were problems in evaluation of absolute	
	values, we will perform measurement also by WDX. It was IULLY	
	possible to compare data between samples.	
	4 Synthesis of silica sol binders (MARUTA, SOFUE)	
	Synthesis tests of materials containing a small amount or	
	residual organic substances, having a strong adhesion force and	
	not causing cracks due to curing were started.	1
4. Novel RED for	1	
VED	(,)	
TAKASHIMA, TAMAKI	· Primary work, takeover · remaining work completed.	

President	First Division				Intellectual		
	Division	l	Production Center				
	Director	General Manager	Deputy General Manager	Engineer Manager	Development Department Manager	Development Department Section Manager	

Monthly Report [July 2002]

Division R3-1, Name: Masaru

TAKASHIMA

Calcination test for calcium oxynitride

Object: As a by-product of CESN, luminescent particles of $CaSi_2O_2N_2$: Eu, which emit yellow light are obtained. To produce this phosphor as an objective substance, and experimentally produce oxynitride phosphor having another composition for searching the possibility of its application as a novel phosphor.

Experiment: The following substances ①-④ described in the PDF file were produced. (Top temp.=1600°C, NH₃ atmosphere)

- ① ($Ca_{0.97}$, $Eu_{0.03}$) $Si_2O_2N_2$
- ② (Ca_{0.97}, Eu_{0.03})₂Si₃O₂N₄
- $\widehat{\mathbf{3}}$ (Ca_{0.97}, Eu_{0.03})₃Si₂O₄N₂
- (Ca_{0.97}, Eu_{0.03})₄Si₄O₉N₂

Results:

(D)	Body color=yellow, phosphor emitting yellow light, high brightness excited at EX=400mm-Y=911% (SID=206-01-01)
2	Surface particle: body color=dull yellow, no light emission excited at EX=253.7, 365nm
	Internal particle: body color=red, red light emission excited at
	EX=253.7, 365rm, tendency of glassification → cannot be crushed in a
	mortor
3	Body color=yellow, a little yellow-green light emission excited at
	EX=253.7, 365nm, will rupture in air, completely glassified → liquified,
	flowing out, and damaging the furnace tube and PBN boat
4	Body color=cream color, no light emission excited at EX=253.7, 365nm,
	completely glassified

* ① has the possibility of practical application as the phosphor for 400mm excitation white color LEDs. However, since glassification occurs in ② to ④, the possibility of practical application is low.

Calcination test for CaSi₂O₂N₂:Eu

Object: In preparation for introduction to the 400nm excitation white

color LEDs, to improve properties of CaSi₂O₂N₂:Eu.

Experiment: Conditions shown in the following table were changed from the normal calcination conditions.

Normal calcination conditions: composition=(Ca_{0.51}, Eu_{0.63})Si₂O₂N₂, top temp.=1600°C, calcination atmosphere=NH₃, Y=911% (STD=206-01-01)

Condition changes	Results		
Composition ratio of Eu=0.06, 0.09, 0.12	ratio=0.03 (normal product). →requiring detailed optimization		
Calcination atmosphere=N ₂	By $NH_3 \rightarrow N_2$, the brightness was increased 1.28 times. Y=1174% (ST'D=206-01-01)		
Top temp.=1500°C, 1400°C	By decrease of top temperature, the brightness was reduced. Y=710% (1400°C, ST'D=206-01-01)		
Ca/Sr ratio=5/5, 0/10	Due to Sr mixed crystal, light emission shifted to green With Ca/Sr=0/10, the brightness was increased 1.49 times. Y=1357% (ST'D=206-01-01)		

Schedule: In preparation for improvement of the properties and patent applications, the following $\textcircled{1} \sim \textcircled{4}$ will be conducted.

- 1 Change of activator \rightarrow optimization of the Eu concentration, activated with Ce, Pr, Tb, Mn, Sm and the like
- ② Change of composition→ i. Mg, Ca, Sr, Ba
 - ii. Si, B, Al, Ga, In
 - iii. Ca/Si/O ratio
- ③ Optimization of atmosphere $\rightarrow N_2/NH_3$ ratio, N_2/H_2 ratio

EXHIBIT D

徳島県阿南市上中町岡491番地100 日亜化学工業株式会社

知財部長代行 松 下 -- 郎

確定日付1552号

· No. 1∕2 第一部門 知財 社長 生産本部 部門長 本部長 副本部長 技師長 |開発部長|開発課長 日重 三重 可 Thirteello 月開発月報まとめ 平成 元井 一部署 R3-1 氏名 玉置 寛人 スケジュール 7月 8月 9月 10月 製造引き継ぎ ←輝度 UP 品にめど ←改良品中量へ、 YAG·酸化物系 STLへの 輝度 UP、分布改良 サンプルワーク開始 新規シリケート試作 焼成再現にめど 高輝度化試験 ナイトライト系 ピーク波長変更品出荷 オキシナイトライト。改良 希土類ナイトライト、試作 新規オキシナイトライト。試作 メタル合成炉据付・稼働 1 次工事完了 焼成実験室・キャハ ①~⑤号炉まで (詳細予定添付) SiO2 バインダー硬化改良 無機パインダー 実装ライフ試験開始 テーマ 現状要点 コメント LED 用蛍光体開発 ←ほぼ理想に近く ①YAG J7改良品(球状、平均粒径 7~8 µm、輝度 206-01 比 125~135%)。 7/27、LA1 にサンプル出荷。 ← 村崎月報参照 LED の輝度 UP、歩留まり向上のため、JP改良品の ST へのサンプルワークを9月 ←定例 Mtg. 9/M 予定 に実施する。(206-23分級法改良品のサンプルワークも行う予定) ②先月、窒化物系 RED 蛍光体の焼成再現に問題があった。 炉心管状態、雰囲気制御で再現の見通しはついた。 ③紫外 LED 用、GREEN~YELLOW 蛍光体として、Ba-Mg シリケート系と、 Ca-Sr シリコンオキシナイトライト 系試験中。 400nm 励起下で最も輝度の高い蛍光体 SAE 比、80~90%達成できた。改良を継続する。 ・TG-WhiteLED 中に使用されている蛍光体が、これら Si 系蛍光体と類似組成 | ←YAG では無い である。周辺組成の調査・合成開始。 ④無機バインダーを用いたシリウスライフ試験で、蛍光体の種類によりライフ特性が、 大きく異なる結果となった。種々蛍光体ライフ試験を早急に行うためライフュニット をバインダー試験室内に増設中。(有機との相関性は継続検討) ⑤技術保全 ・知財部が窒化物、蛍光体-LED 権利化を強化する方針。約15件の出願準備。 1. ナイトライト 蛍光体 ①ナイトライト・焼成実験室状況・・・(スケジュール表添付 3 ページ目) 置王・畠高・畠第 ・1 次工事ほぼ完了。①~④号炉運転可能。⑤号炉は 9/10 から運転可能。 ・その他の設備も計画通り進行中。 ②再現試験 (亀島) ・焼成雰囲気、NH3、N2、H2/N2、NH3/N2 混合ガスで試験。NH3 流量増加で、 特性向上。炉内堆積物、炉心管劣化でNH3分解が進んでいると予測する。、 N2、H2/N2でも70~80%輝度は達成されたが、100%同等品は出来なかった。 今後は、雰囲気制御と炉心管状態の維持管理を工夫する。

持ちテーマ	現 状 要 点	コメント	
, , ,	③輝度 UP		E E
	・炉が安定 9 月より実施可。メタル炉購入メーカーでの 1800℃焼成試験計画中。		
	④シリコンオキシナイトライト (Eu 付活 GREEN~YELLOW)(高島)	←技術保全 9/B予	-
	・Sr/Si 組成、Eu 最適化、Mg、Ca、Sr、Ba 混晶、B 添加などの条件を試験。		-
	・1)400nm+CCA+YAG、2)400nm+CCA+シリコンオキシナイトライト・+ナイトライト・RED		
	3)400nm+CCA+SAE+ナイトライト RED の白色 LED 作成。		6006
	それぞれ、100%、90%、95%の輝度比でほぼ同等。検討の価値あり継続。		
	⑤Sr メタル供給(T 社製品試験、価格が堺化学の 1/20)		
	・Al、Mg 多いが、Fe、Ba は堺より少ない。精製なしで実用試験を実施中。		4
	⑥化審法少量新規化合物届け出書類完成	←9/6 届け出予定	
2. 酸化物系蛍光体	①白色 LED 製造用レキュラー YAG(木下)	(2) Q	
武市·木下·村崎	206-23・・・・・01 からのタイプ変更中。7~8 月で 70kg。10 月 40kg 出荷予定。	2部内使用低量	
	現行法での収率悪く、9月に分級法改良品を試作予定)。	←コア改良品との	4
·	206-22····光度 UP 品再現。30kg 試作中。	優先順は ST と相	16
	②YAG のコア改良(村崎)		
	・LED 用として、球状、輝度が高く、粒度分布の良い、6~7μmの物を目指す。	← 基本的構想	-
	・NH4Cl+BaF2 系 Flux、雰囲気の最適化でほぼ理想に近いものが得られた。		_
	Gd 入り品、Ga 入り品とも LA1 で評価中。		_
	・レキュラー品と色調同等品は、導入を目指して ST ヘサンプル出荷予定。		
	③BMSE(Ba、Mgシリケート Eu 付活、Eu・Mn 付活)(武市)	←9/B 技術保全予	
1 (4.1)	・400nmLED 励起で、現在、最も輝度の高い Green 蛍光体 SAE とエネルギー効率	3	M 中 工
	はほぼ同等、Green・Pink 用途として検討。LA1 でランプ試作中。		
	·Ca、Sr添加品を含め周辺組成の焼成検討中。		_
	④朝日ラハー向け蛍光体、現状日亜品は使用されておらず導入目指す。	←TKY で 8/30 N	<u>/Itg</u>
3. 無機パインダー	・パインダー中の残留有機とライフの関係を明らかにする一連の試験を実施中。		_
祖父江·丸田	①シリウスライフ試験(祖父江・丸田)		_
	・先月、硬化条件を決定し、400nm の 1mm チップと YAG を用いてシリウスのライ	7	_
	試験を開始した。しかし、有機量に関係なく100hrでチップ表面が黒化し、		
	輝度が 30~50%に低下。		————
	・急きょ比較のため、SAEを用い同条件で、ランプ試作、ライフ試験を実施。		-
	SAE との組み合わせでは、100hr 後輝度維持率が 99%以上であった。		[編]
	・ 蛍光体に劣化 促進要因が含まれていると判断し、SQ、NQ に解析依頼。		双一
	特に YAG に含まれる残留 Flux に注目している。		田
	·今後、1) 黒化原因解明		—— <u>A</u>
	2) 種々蛍光体ライフ投入		—— 年 7
	②残留有機低減試験、有機定量試験(丸田·祖父江)		Arライド宙光体無成設備士
	・加熱方法変更や、光と熱の組み合わせによる残留有機低減方法を検討・	P	一个
	・EPMA 評価を検討中。		—\ ^{\\\}
	③新規バインダー(新規ソル、透明セメントを調査中)		

٠,,,

オキシナイトライド系 Phos.焼成試験

◆目的 黄色発光蛍光体である MSi2O2N2:Eu (M=Ca, Sr)の白色 LED への導入および特許権利化を 目指し、焼成条件の最適化・特性確認を行う。

◆実験 これまでに最高輝度の得られた焼成条件にて、Eu 濃度・Sr/Ca 比の最適化を行った。 [焼成条件; 組成=M(1→)EuxSi₂O₂N₂ (M=Sr/Ca), Top 温度=1600℃, 焼成雰囲気=N2]

◆結果

①Eu 濃度変更 [Sr(1-x)EuxSi2O2N2]

- ・励起光の波長により、最適 Eu 濃度が異なる。(Fig.1, 2)
- ・Eu 濃度の増加に伴いピーク波長が red shift し、色度も赤側に寄る。(EX=400nm, 460nm 同じ傾向)
- ②Sr/Ca 比变更 [SrxCa(0.97x)Eu0.03Si2O2N2]
- ·Sr/Ca 比の増加により発光効率が向上し、Sr/Ca=7/10 で最大となった。(EX=400nm, 460nm 同じ傾向)
- ・Sr/Ca 比の増加に伴いピーク波長が blue shift し、色度が緑側に寄る。(EX=400nm, 460nm 同じ傾向)

	Y (%)	E(%)	Q (%)	×	У	λp_
400nm (ST'D=230-01-01)	101.1	86.4	90.4	0.372	0.593	544nm
460nm (ST'D=206-01-01)	92.5	75.9	72.4	0.400	0.578	550nm

Table.1 最高輝度Sampleの発光特性

◆コメント

Eu 濃度を増加する事で EX=460nm での発光効率が大幅に向上し、白色 LED (EX=400, 460nm)への導入を狙えるレベルに達した。また YAG+無機バインダーの組み合わせにより LED の Life 特性が低下するとの報告(R3-1 祖父江氏)があり、この点からもオキシナイトライド系 Phos.のメリットがある。さらに TG 白色 LED の分析結果(SQ3 榊氏)より、TG が黄色発光 Phos.としてオキシナイトライドを使用している可能性がある。以上の観点より、本 Phos.の特性向上、特許権利化を目指す。

◆予定

①Sr, Ca以外のアルカリ土類金属を導入する。

②Si サイトへ B, Al のドープを行う。

.

EXHIBIT D1

「開発月報(R3-1)」について

Yasuda's seal

德島県阿南市上中町岡491番地100 日亜化学工業株式会社 知財部長代行 松 下 一 郎

Dgawa's signat	in he	Lumana		No. 1/2
社長/		第一部門		—— 知財 ·
一部	明長 本部長 副	生産本部長 技師長		課長
(F) (8	x) (A)	Timber 1	上潭台	五里
₹3-1 平成	開	発月報まとめ	煮井	R3-1 氏名 玉置 寛人
		スケジ	ュール	
テーマ	7月	8月	9月	10月
YAG·酸化物系	製造引き継ぎ 輝度 UP、分布改良 新規ジリケート試作	←輝度 UP 品にめど	←改良品中量へ、STL へのサンプルワーク開始	
ナイトライト系	ピーク波長変更品出荷	焼成再現にめど	高輝度化試験 希土類ナイトライト*試作	-
焼成実験室・キャハ・(詳細予定添付)	新規オキシナイトライト。試作	オキシナイトライト改良 1次工事完了 ①~⑤号炉まで	布工規プイトプイトはバト	メタル合成炉据付・稼働
無機パインダー	SiO2 パインダー硬化改良 実装ライフ試験開始	-	← .	←
テーマ		現状要点	<u> </u>	コメント
LED 用蛍光体開発	①YAG IP改良品(球状	、平均粒径7~8μm、輝度	206-01 比 125~135%)。	←ほぼ理想に近り
		荷。 ← 村崎月報参照	·	
			D ST へのサンプルワークを 9 月	←定例 Mtg 9/M 予定
		3 分級法改良品のサンプルワ		
;		蛍光体の焼成再現に問題		
•	炉心管状態、雰囲気 部	削御で再現の兜通しはつい	1	
	③紫外 LED 用、GREE	√~YELLOW 蛍光体として	、Be-Mg シリケート系と、	
	Ca-Srシリコンオキシナイトラ	小系試験中。 400nm 励起	下で最も輝度の高い蛍光体	k .
		できた。改良を継続する。		
,	-TG-WhiteLED 中に使	用されている蛍光体が、こ	れら Si 系蛍光体と類似組用	及 ←YAG では無い
	である。周辺組成の	調査・合成開始。		,
	④無機パインダーを用い	たシリウスライフ試験で、蛍光は	本の種類によりライフ特性が、	
	大きく異なる結果とな	った。種々蛍光体ライフ試験	を早急に行うためライフエニ	14
	をバインダー試験室内に	こ増設中。(有機との相関	性は継続検討)	
	⑤技術保全			
	・知財部が窒化物、蛍	光体-LED 権利化を強化する	る方針。約15件の出願準備	ì
1. ナイトライト 蛍光体	ししい コアノコア めてみんプラステ	ま状況・・・ (スケジュール表流付	3ページ目)	
亀島·高島·玉霞	・1 次工事ほぼ完了。(D~④号炉運転可能。⑤·	号炉は9/10から運転可能	D
Present	・その他の設備も計画	通り進行中。	×	
1 10 3000	②再現試験(亀島)			
Invention	·焼成雰囲気、NH3、N	I2、H2/N2、NH3/N2 混合力	えで試験。NH3 流量増加で	3,
		物、炉心管劣化でNH3分	解が進んでいると予測する。	
	N2、H2/N2でも70~	-80%輝度は運成されたが、	100%同等品は出来なかった	20
	今後は、雰囲気制御	即と炉心管状態の維持管理		
			. 04FR3-	002(様式作成日:

	持ちテーマ	現 状 要 点	コメント	
		③輝度 UP		E T
ı		・炉が安定 9 月より実施可。メタル炉購入メーカーでの 1800℃焼成試験計画中。		H2 1 24
		④シリコンオキシナイトライト・(Eu 付活 GREEN~YELLOW)(高島)	一技術保全 9/B 予	1 1
		・Sr/Si組成、Eu 最適化、Mg、Ca、Sr、Ba 混晶、B 添加などの条件を試験。		┤┝
		・1)400nm+CCA+YAG、2)400nm+CCA+シリコンオキシナイトライト・+ナイトライト・RED		4
		3)400nm+CCA+SAE+ナイトライト・REDの白色 LED 作成。		- 6000
		それぞれ、100%、90%、95%の輝度比でほぼ同等。検討の価値あり継続。		_
	٠.	⑤Sr 均ル供給(T 社製品試験、価格が堺化学の 1/20)		4 }
	-	-Al、Mg 多いが、Fe、Ba は堺より少ない。精製なしで実用試験を実施中。		4
		⑥化審法少量新規化合物届け出書類完成	←9/6 届け出予定	4
•	2. 酸化物系蛍光体	の点色 LED 製造用は「ラーYAG(木下)		_
	武市·木下·村崎	206-23・・・・01 からの外プ変更中。7~8 月で 70kg。10 月 40kg 出荷予定。	湖的伊州超是	10
•		現行法での収率悪く、9月に分級法改良品を試作予定)。	←コア改良品との	4
		206-22····光度 UP 品再現。30kg 試作中。	優先順は ST と	11
		②YAG のコ7改良(村崎)		_
		・LED 用として、球状、輝度が高く、粒度分布の良い、6~7μmの物を目指す。	← 基本的構想	
		・NH4CI+BaF2系Flux、雰囲気の最適化でほぼ理想に近いものが得られた。		
	1	Gd 入り品、Ga 入り品とも LA1 で評価中。		_
		・レキュラー品と色調同等品は、導入を目指してSTヘサンプル出荷予定。	·	
		③BMSE(Ba、Mgシリケート Eu 付活、Eu・Mn 付活)(武市)	←9/B 技術保全	198
	_	-400mmLED 励起で、現在、最も輝度の高い Green 蛍光体 SAE とエネルギー効率		製作·I
•		はほぼ同等、Green・Pink 用途として検討。LA1 でランプ試作中。		
		-Ca、Sr 添加品を含め周辺組成の焼成検討中。		
		④朝日ラバー向け蛍光体、現状日亜品は使用されておらず導入目指す。	←TKY € 8/30	Mtg
	3. 無機パインダー	-バルダー中の残留有機とライフの関係を明らかにする一連の試験を実施中。		
	祖父江·丸田	①シリウスライフ試験(祖父江・丸田)		
		・先月、硬化条件を決定し、400nm の 1mm チップと YAG を用いてシリウスのライフ		
		試験を開始した。しかし、有機量に関係なく100hrでチップ表面が黒化し、		
		輝度が30~50%に低下。		
		・急きょ比較のため、SAEを用い同条件で、ランプ試作、ライフ試験を実施。		11
	· ·	SAE との組み合わせでは、100hr 後輝度維持率が 99%以上であった。		
	·	・蛍光体に劣化 促進要因が含まれていると判断し、SQ、NQに解析依頼。		
		特に YAG に含まれる残留 Flux に注目している。		
		・今後、1)黒化原因解明		
		2) 種々蛍光体ラクク投入		
		②残留有機低減試験、有機定量試験(丸田・祖父江)		
		・加熱方法変更や、光と熱の組み合わせによる残留有機低減方法を検討中	3.	
		・EPMA 評価を検討中。		
	,	③新規バインダー(新規ゾル、透明セメントを調査中)		

.

.

Present Invention

Yamakawa's signature

オキシナイトライド系 Phos.焼成試験

◆目的 黄色発光蛍光体である MSi2O2N2:Eu (M=Ca, Sr)の白色 LED への導入および特許権利化を 目指し、焼成条件の最適化・特性確認を行う。

◆実験 これまでに最高輝度の得られた焼成条件にて、Eu 濃度・Sr/Ca 比の最適化を行った。 〔焼成条件; 組成=Mu→Eu¬SizOzNz (M=Sr/Ca), Top 温度=1600℃, 焼成雰囲気=N2〕

◆結果

①Eu 濃度変更 [Sru-z)Eu-SisO2N2]

- ・励起光の波長により、最適 Eu 濃度が異なる。(Fig.1, 2)
- ・Eu 濃度の増加に伴いピーク波長が red shift し、色度も赤側に寄る。(EX=400nm, 460nm 同じ傾向)

②Sr/Ca 比变更 (SrrCato.97-vEuo.osSi2O2N2)

- · Sr/Ca 比の増加により発光効率が向上し、Sr/Ca=7/10 で最大となった。(EX=400nm, 460nm 同じ傾向)
- ・Sr/Ca 比の増加に伴いピーク液長が blue shift し、色度が緑側に寄る。(EX=400nm, 460nm 同じ傾向)

	Y (%)	E (%)	Q (%)	×	У	λp
400nm (STD=230-01-01)	101.1	86.4	90.4	0.372	0.593	544nm
	92.5	75.9	72.4	0.400	0.578	550nm
460nm (ST'D=206-01-01)		10.0	12-7			

Table 1 最高輝度Sampleの発光特性

◆コメント

Eu 濃度を増加する事で EX=460nm での発光効率が大幅に向上し、白色 LED (EX=400, 460nm)への導入を狙えるレベルに達した。また YAG+無機バインダーの組み合わせにより LED の Life 特性が低下するとの報告(R3-1 祖父江氏)があり、この点からもオキシナイトライド系 Phos.のメリットがある。さらに TG 白色 LED の分析結果(SQ3 榊氏)より、TG が黄色発光 Phos.としてオキシナイトライドを使用している可能性がある。以上の観点より、本 Phos.の特性向上、特許権利化を目指す。

◆予定

①Sr, Ca以外のアルカリ土類金属を導入する。

②Si サイトへ B, Al のドープを行う。

EXHIBIT D2

Regarding "Development Monthly Report (R3-1)"

491-100, Oka, Kaminaka-Cho, Anan-Shi, Tokushima-ken Nichia Corporation Deputy of Intellectual Property Department Manager Ichiro MATSUSHITA

04FR3-002 (Form Creation Date:

№ 1/2

Intellectual	Property			
		Development Department Section Manager	•	
		Development Department Manager		
First Division	Production Center	Engineer Manager		
First D		Deputy General Manager		
		General Manager		
	Division	Director		
Dresident	77777777			

R3-1 Summary of

Development Monthly Report

Section: R3-1 Name: Hiroto TAMAKI

YAG- and oxide-base · Production phosphors · Improvement of brightness	v[1.].			
oxide-base	\[\frac{1}{11}\cdot\]	F		Ortober
oxide-base	7	August	September	OCCOPCE
	ction	←To complete	←To a medium volume	1
	ų	samples with	production of	
brightne	vement of	improved brightness	samples with	
1	688		improved brightness	
	40		To start sampling	
No. Tube of the contract of th	· Improvement of			
particle	e size		work to STL	
distribution	ution			
· Experimental	imental		-	•
product	production of novel		•	
silicates	es	-		
Nitride-base · Shipment of	ent of	· To complete	· Tests for	ļ
	samples wherein the	calcination	increasing	
	peak wavelengths	reproducibility	brightness	
are shifted	fted	· To improve	• Experimental	
Fixecular	· Experimental	oxinitride-base	production of rare	
product	lovel	phosphors	earth nitride-type	

primary construction Up to (D-(5) furnaces to file current conditions of the current conditions improved cores (spherical, mean particle theness 125-135% compared with that of 206- in to IA1 on July 27. +Refer to Murasaki amples with improved cores to ST will be be improve brightness and yield of IEDs in g work of 206-23 sample obtained by the on method will also be conducted.) there was a problem in calcination nitride-base RED phosphor. action have become brighter by control of ace tube and the atmosphere control. shosphors for ultraviolet IEDs, currently f Ba-Mg silicate- and Ca-Sr silicon shors. Achieved 80-90% of the SAE phosphor rightness under excitation at 400mm. Will		oxinitrides		phoxsphors	
primary construction Up to ①-⑤ furnaces ·Improvement in curing of SiO ₂ binders · To start lifetime tests Points of the current conditions of TAG samples with improved cores (spherical, mean particle diameter 7-8 µm, brightness 125-135% compared with that of 206-01 sample) Samples were shipped to IAI on July 27. +Refer to Murasaki Monthly Report. · Sampling work of samples with improved cores to ST will be conducted in order to improve brightness and yield of LEDs in September. (Sampling work of 206-23 sample obtained by the improved classification method will also be conducted.) ② Last month, there was a problem in calcination reproducibility of a nitride-base RED phosphor. Prospects for reproduction have become brighter by control of the state of the furnace tube and the atmosphere control. Prospects for reproduction have become brighter by control of the state of the furnace tube and the atmosphere control. @ As GREN-YELLOW phosphors for ultraviolet IEDs, currently conducting tests of Ba-Mg silicate— and Ca-Sr silicon oxynitride-base phosphors. Achieved 80-90% of the SAE phosphor having the highest brightness under excitation at 400mm. Will having the highest brightness under excitation at 400mm. Will having the highest brightness under excitation at 400mm. Will having the highest brightness under excitation at 400mm. Will having the highest brightness under excitation at 400mm. Will having the highest brightness under excitation at 400mm.	Calcination		·To complete		Installation and
omstruction Up to ①-⑤ furnaces ·Improvement in curing of SiO ₂ binders ·To start lifetime tests Points of the current conditions of UAG samples with improved cores (spherical, mean particle diameter 7-8 µm, brightness 125-135% compared with that of 206-01 sample) Samples were shipped to IAI on July 27. +Refer to Murasaki Monthly Report. · Sampling work of samples with improved cores to ST will be conducted in order to improve brightness and yield of IEDs in September. (Sampling work of 206-23 sample obtained by the improved classification method will also be conducted.) ② Last month, there was a problem in calcination reproducibility of a nitride-base RED phosphor. Prospects for reproduction have become brighter by control of the state of the furnace tube and the atmosphere control. ③ As GRENA-VELLOW phosphors for ultraviolet IEDs, currently conducting tests of Ba-Mg silicate— and Ca-Sr silicon oxynitride-base phosphors. Achieved 80-90% of the SAE phosphor having the highest brightness under excitation at 400mm. Will how in the improvement.	lavoratory.capacity	-	primary		operation of metal
Up to ①-⑤ furnaces -Improvement in -curing of SiO ₂ binders - To start lifetime tests Points of the current conditions of ① vAG samples with improved cores (spherical, mean particle diameter 7-8 µm, brightness 125-135% compared with that of 206-01 samples were shipped to IA1 on July 27Refer to Murasaki Monthly Report. Sampling work of samples with improved cores to ST will be conducted in order to improve brightness and yield of IEDs in September. (Sampling work of 206-23 sample obtained by the improved classification method will also be conducted.) ② Last month, there was a problem in calcination reproducibility of a nitride-base RED phosphor. Prospects for reproduction have become brighter by control of the state of the furnace tube and the atmosphere control. ③ As GREEN-YELLOW phosphors for ultraviolet IEDs, currently conducting tests of Ba-Mg silicate— and Ca-Sr silicon oxynitride-base phosphors. Achieved 80-90% of the SAE phosphor having the highest brightness under excitation at 400mm. Will post inner	of		construction		furnaces
· Improvement in · Improvement in curing of SiO ₂ binders · To start lifetime tests Points of the current conditions of YAG samples with improved cores (spherical, mean particle diameter 7-8 µm, brightness 125-1358 compared with that of 206-01 sample) Samples were shipped to IA1 on July 27. →Refer to Murasaki Monthly Report. · Sampling work of samples with improved cores to ST will be conducted in order to improve brightness and yield of IEDs in September. (Sampling work of 206-23 sample obtained by the improved classification method will also be conducted.) ② Last month, there was a problem in calcination reproducibility of a nitride-base RED phosphor. Prospects for reproduction have become brighter by control of the state of the furnace tube and the atmosphere control. ③ As GREEN-YELLOW phosphors for ultraviolet IEDs, currently conducting tests of Ba-Mg silicate- and Ca-Sr silicon oxynitride-base phosphors. Achieved 80-90% of the SAE phosphor having the highest brightness under excitation at 400mm. Will continue improvement.	<u>۽</u>		Up to (1)-(5) furnaces		
curing of SiO ₂ binders To start lifetime tests Points of the current conditions Of YAG samples with improved cores (spherical, mean particle diameter 7-8 µm, brightness 125-135% compared with that of 206-01 sample) Samples were shipped to IA1 on July 27. +Refer to Murasaki Monthly Report. Sampling work of samples with improved cores to ST will be conducted in order to improve brightness and yield of IEDs in September. (Sampling work of 206-23 sample obtained by the improved classification method will also be conducted.) ② Last month, there was a problem in calcination reproducibility of a nitride-base RED phosphor. Prospects for reproduction have become brighter by control of the state of the furnace tube and the atmosphere control. ③ As GREEN-YELLOW phosphors for ultraviolet IEDs, currently conducting tests of Ba-Mg silicate— and Ca-Sr silicon oxynitride-base phosphors. Achieved 80-90% of the SAE phosphor having the highest brightness under excitation at 400mm. Will contains improvement.	attached)		-		*
binders • To start lifetime tests • Points of the current conditions of ① YAG samples with improved cores (spherical, mean particle diameter 7-8 µm, brightness 125-135% compared with that of 206-01 sample) Samples were shipped to IA1 on July 27. +Refer to Murasaki Monthly Report. • Sampling work of samples with improved cores to ST will be conducted in order to improve brightness and yield of IEDs in September. (Sampling work of 206-23 sample obtained by the improved classification method will also be conducted.) ② Last month, there was a problem in calcination reproducibility of a nitride-base RED phosphor. Prospects for reproduction have become brighter by control. Prospects for reproduction have become brighter by control. ③ As GREEN-YELLOW phosphors for ultraviolet IEDs, currently conducting tests of Ba-Mg silicate- and Ca-Sr silicon oxynitride-base phosphors. Achieved 80-90% of the SAE phosphor having the highest brightness under excitation at 400nm. Will continue improvement.	Inorganic binders	· Improvement in	1	-	1
binders To start lifetime tests Points of the current conditions 10 YAG samples with improved cores (spherical, mean particle diameter 7-8 µm, brightness 125-135\$ compared with that of 206-01 sample) Samples were shipped to IA1 on July 27. +Refer to Murasaki Monthly Report. Sampling work of samples with improved cores to ST will be conducted in order to improve brightness and yield of IEDs in September. (Sampling work of 206-23 sample obtained by the improved classification method will also be conducted.) 2 Last month, there was a problem in calcination reproducibility of a nitride-base RED phosphor. Prospects for reproduction have become brighter by control of the state of the furnace tube and the atmosphere control. 3 As GREEN-YELLOW phosphors for ultraviolet IEDs, currently conducting tests of Ba-Mg silicate- and Ca-Sr silicon oxynitride-base phosphors. Achieved 80-90% of the SAE phosphor having the highest brightness under excitation at 400nm. Will continue improvement.		curing of SiO ₂	•		
tests Points of the current conditions diameter 7-8 µm, brightness 125-1358 compared with that of 206- 01 sample) Samples were shipped to IA1 on July 27. +Refer to Murasaki Monthly Report. Sampling work of samples with improved cores to ST will be conducted in order to improve brightness and yield of IEDs in September. (Sampling work of 206-23 sample obtained by the improved classification method will also be conducted.) ② Last month, there was a problem in calcination reproducibility of a nitride-base RED phosphor. Prospects for reproduction have become brighter by control. Prospects for reproduction have become brighter by control. As GREEN-YELLOW phosphors for ultraviolet IEDs, currently conducting tests of Ba-Mg silicate— and Ca-Sr silicon oxynitride-base phosphors. Achieved 80-90% of the SME phosphor having the highest brightness under excitation at 400nm. Will continue improvement.		binders			
tests Points of the current conditions Of YAG samples with improved cores (spherical, mean particle diameter 7-8 µm, brightness 125-135% campared with that of 206-01 sample) Samples were shipped to IA1 on July 27. +Refer to Murasaki Monthly Report. • Sampling work of samples with improved cores to ST will be conducted in order to improve brightness and yield of LEDs in September. (Sampling work of 206-23 sample obtained by the improved classification method will also be conducted.) ② Last month, there was a problem in calcination reproducibility of a nitride-base RED phosphor. Prospects for reproduction have become brighter by control of the state of the furnace tube and the atmosphere control. ③ As GREEN-YELLOW phosphors for ultraviolet LEDs, currently conducting tests of Ba-Mg silicate— and Ca-Sr silicon oxynitride-base phosphors. Achieved 80-90% of the SAE phosphor having the highest brightness under excitation at 400nm. Will continue improvement.		· To start lifetime			
Points of the current conditions of ① YAG samples with improved cores (spherical, mean particle diameter 7-8 µm, brightness 125-135% compared with that of 206-01 sample) Samples were shipped to IA1 on July 27. +Refer to Murasaki Monthly Report. · Sampling work of samples with improved cores to ST will be conducted in order to improve brightness and yield of LEDs in September. (Sampling work of 206-23 sample obtained by the improved classification method will also be conducted.) ② Last month, there was a problem in calcination reproducibility of a nitride-base RED phosphor. Prospects for reproduction have become brighter by control of the state of the furnace tube and the atmosphere control. ③ As GREEN-YELLOW phosphors for ultraviolet LEDs, currently conducting tests of Ba-Mg silicate— and Ca-Sr silicon oxynitride-base phosphors. Achieved 80-90% of the SAE phosphor having the highest brightness under excitation at 400nm. Will continue improvement.		tests			
diameter 7-8 µm, brightness 125-135% compared with that of 206-01 sample) Samples were shipped to IAl on July 27. +Refer to Murasaki Monthly Report. • Sampling work of samples with improved cores to ST will be conducted in order to improve brightness and yield of IEDs in September. (Sampling work of 206-23 sample obtained by the improved classification method will also be conducted.) ② Last month, there was a problem in calcination reproducibility of a nitride-base RED phosphor. Prospects for reproduction have become brighter by control. The state of the furnace tube and the atmosphere control. ③ As GREEN-YELLOW phosphors for ultraviolet IEDs, currently conducting tests of Ba-Mg silicate- and Ca-Sr silicon oxynitride-base phosphors. Achieved 80-90% of the SAE phosphor having the highest brightness under excitation at 400mm. Will continue improvement.	Theme	Point	s of the current condi	tions	Comments
		① YAG samples with	improved cores (sphe		← nearly ideal
Samples were shipped to LA1 on July 27. *Refer to Murasaki Monthly Report. Sampling work of samples with improved cores to ST will be conducted in order to improve brightness and yield of LEDs in September. (Sampling work of 206-23 sample obtained by the improved classification method will also be conducted.) (2) Last month, there was a problem in calcination reproducibility of a nitride-base RED phosphor. Prospects for reproduction have become brighter by control. The state of the furnace tube and the atmosphere control. (3) As GREEN-YELLOW phosphors for ultraviolet LEDs, currently conducting tests of Ba-Mg silicate— and Ca-Sr silicon oxynitride-base phosphors. Achieved 80-90% of the SAE phosphor having the highest brightness under excitation at 400nm. Will continue improvement.	phosphors for LEDs		htness 125-135% compan	red with that of 206-	
Samples were shipped to IA1 on July 27Refer to Murasaki Monthly Report. • Sampling work of samples with improved cores to ST will be conducted in order to improve brightness and yield of IEDs in September. (Sampling work of 206-23 sample obtained by the improved classification method will also be conducted.) ② Last month, there was a problem in calcination reproducibility of a nitride-base RED phosphor. Prospects for reproduction have become brighter by control of the state of the furnace tube and the atmosphere control. ③ As GREEN-YELLOW phosphors for ultraviolet IEDs, currently conducting tests of Ba-Mg silicate— and Ca-Sr silicon oxynitride-base phosphors. Achieved 80~90% of the SAE phosphor having the highest brightness under excitation at 400mm. Will continue improvement.					
Monthly Report. • Sampling work of samples with improved cores to ST will be conducted in order to improve brightness and yield of LEDs in September. (Sampling work of 206-23 sample obtained by the improved classification method will also be conducted.) ② Last month, there was a problem in calcination reproducibility of a nitride-base RED phosphor. Prospects for reproduction have become brighter by control of the state of the furnace tube and the atmosphere control. ③ As GREEN-YELLOW phosphors for ultraviolet LEDs, currently conducting tests of Ba-Mg silicate- and Ca-Sr silicon oxynitride-base phosphors. Achieved 80-90% of the SAE phosphor having the highest brightness under excitation at 400mm. Will continue improvement.		Samples were shipped	to LA1 on July 27.	←Refer to Murasaki	
conducted in order to improve brightness and yield of LEDs in September. (Sampling work of 206-23 sample obtained by the improved classification method will also be conducted.) ② Last month, there was a problem in calcination reproducibility of a nitride-base RED phosphor. Prospects for reproduction have become brighter by control. the state of the furnace tube and the atmosphere control. ③ As GREEN-YELLOW phosphors for ultraviolet IEDs, currently conducting tests of Ba-Mg silicate— and Ca-Sr silicon oxynitride-base phosphors. Achieved 80-90% of the SAE phosphor having the highest brightness under excitation at 400mm. Will continue improvement.		Monthly Report.			
conducted in order to improve brightness and yield of IEDs in September. (Sampling work of 206-23 sample obtained by the improved classification method will also be conducted.) ② Last month, there was a problem in calcination reproducibility of a nitride-base RED phosphor. Prospects for reproduction have become brighter by control. the state of the furnace tube and the atmosphere control. ③ As GREEN-YELLOW phosphors for ultraviolet IEDs, currently conducting tests of Ba-Mg silicate— and Ca-Sr silicon oxynitride-base phosphors. Achieved 80~90% of the SAE phosphor having the highest brightness under excitation at 400mm. Will continue improvement.		· Sampling work of s	amples with improved	cores to ST will be	
September. (Sampling work of 206-23 sample obtained by the improved classification method will also be conducted.) ② Last month, there was a problem in calcination reproducibility of a nitride-base RED phosphor. Prospects for reproduction have become brighter by control of the state of the furnace tube and the atmosphere control. ③ As GREEN-YELLOW phosphors for ultraviolet IEDs, currently conducting tests of Ba-Mg silicate— and Ca-Sr silicon oxynitride-base phosphors. Achieved 80~90% of the SAE phosphor having the highest brightness under excitation at 400nm. Will continue improvement.		conducted in order to	improve brightness	and yield of LEDs in	
improved classification method will also be conducted.) ② Last month, there was a problem in calcination reproducibility of a nitride-base RED phosphor. Prospects for reproduction have become brighter by control of the state of the furnace tube and the atmosphere control. ③ As GREEN-YELLOW phosphors for ultraviolet LEDs, currently conducting tests of Ba-Mg silicate— and Ca-Sr silicon oxynitride-base phosphors. Achieved 80~90% of the SAE phosphor having the highest brightness under excitation at 400nm. Will continue improvement		September. (Samplin	g work of 206-23 sam	ple obtained by the	
2 Last month, there was a problem in calcination reproducibility of a nitride-base RED phosphor. Prospects for reproduction have become brighter by control of the state of the furnace tube and the atmosphere control. 3 As GREEN-YELLOW phosphors for ultraviolet LEDs, currently conducting tests of Ba-Mg silicate— and Ca-Sr silicon oxynitride-base phosphors. Achieved 80~90% of the SAE phosphor having the highest brightness under excitation at 400nm. Will continue improvement		las	on method will also be	conducted.)	
reproducibility of a nitride-base RED phosphor. Prospects for reproduction have become brighter by control of the state of the furnace tube and the atmosphere control. (3) As GREEN-YELLOW phosphors for ultraviolet LEDs, currently conducting tests of Ba-Mg silicate— and Ca-Sr silicon oxynitride-base phosphors. Achieved 80~90% of the SAE phosphor having the highest brightness under excitation at 400nm. Will continue improvement		2 Last month, t	there was a probl	iri	
Prospects for reproduction have become brighter by control of the state of the furnace tube and the atmosphere control. (3) As GREEN-YELLOW phosphors for ultraviolet IEDs, currently conducting tests of Ba-Mg silicate— and Ca-Sr silicon oxynitride—base phosphors. Achieved 80~90% of the SAE phosphor having the highest brightness under excitation at 400nm. Will continue improvement		Δ	nitride—base RED phosp	shor.	
the state of the furnace tube and the atmosphere control. (3) As GREEN-YELLOW phosphors for ultraviolet LEDs, currently conducting tests of Ba-Mg silicate— and Ca-Sr silicon oxynitride-base phosphors. Achieved 80~90% of the SAE phosphor having the highest brightness under excitation at 400nm. Will continue improvement		Prospects for reprod	action have become br	ighter by control of	
(3) As GREEN-YELLOW phosphors for ultraviolet LEDs, currently conducting tests of Ba-Mg silicate— and Ca-Sr silicon oxymitride-base phosphors. Achieved 80~90% of the SAE phosphor having the highest brightness under excitation at 400nm. Will continue improvement		the state of the furn	ace tube and the atmos	sphere control.	
conducting tests of Ba-Mg silicate— and Ca-Sr silicon oxymitride—base phosphors. Achieved 80~90% of the SAE phosphor having the highest brightness under excitation at 400nm. Will continue improvement		(3) AS GREEN-YELLOW I	shosphors for ultravio	olet IEDs, currently	
oxymitride-base phosphors. Achieved 80~90% of the SAE phosphor having the highest brightness under excitation at 400nm. Will continue improvement		conducting tests o	f Ba-Mg silicate-	and Ca-Sr silicon	
having the highest brightness under excitation at 400nm. Will		oxynitride-base phosp	hors. Achieved 80~909	8 of the SAE phosphor	
continue improvement		having the highest bu	rightness under excita	ition at 400mm. Will	
יייייייייייייייייייייייייייייייייייייי	ŧ	continue improvement.			

	The showber was in TC-Mbite color IRDs has the composition to TAG	
-		
	4 In the Sirius life tests using an inorganic binder, lifetime	
	-	
	phosphor. In order to conduct lifetime tests of various	
	immediately,	
	the binder test room. (Will continue to study correlation with	
	organic binders.)	
	(5) Technical maintenance	
	· The Intellectual Department will focus on granting of patent	
	rights related to nitride phosphor LEDs. Currently preparing	
	about 15 patent applications.	
	S. solitation of mitridge is	
I. NICTICE-Dase	3	
phosphors	carried out(a schedule table attached, the third page)	
KAMEJIMA,	• Primary construction almost completed. Furnaces (1)-(4) are	
TAKASHIMA, TAMAKI	operable. Furnace (5) will be operable from September 10.	
	• Other facilities are in progress as planned.	
	(2) Reproducibility test (KAMEJIMA)	•
	· A test was conducted in a calcination atmosphere that is a	
	mixed gas consisting of NH3, N2, H2/N2, NH3/N2. The properties	
	were improved by an increase of the NH3 flow rate. It is	
	predicted that decomposition of NH3 is advanced due to the	
	deposition inside the furnaces and deterioration of the furnace	
	tubes. Even in an atmosphere consisting of N ₂ and H ₂ /N ₂ , 70-80%	
	of the brightness was achieved. However, a 100% equivalent	
	sample was not produced.	
	From now on, we will contrive control of the atmosphere and	
	maintenance of the condition of the furnace tubes.	

	(3) Brightness UP	
	have become stable, and will be operable from him to carry out calcination tests at 1800°C	←Technical
	at the manufacturer of the furnaces, from which we purchased.	maintenance
	(4) Silicon oxynitrides (activated by Eu, GREEN-YELLOW) (TAKASHIMA)	B?
	· Conditions including the Sr/Si composition, Eu optimization,	
	molar ratio of Mg, Ca, Sr, Ba, and doping of B were tested.	-
	• White color LEDs as follows were produced: 1) 400 nm + UCA +	•
	YAG, 2) 400 nm + CCA + silicon oxynitride + nitride RED, 3) 400	•
	nm + CCA + SAE + nitride Red. In the brightness ratios of	- 0
	100%, 90%, 95%, they were almost equal to one another. It was	
	worth studying and so we will continue studying.	
	(5) Sr metal was supplied (a product manufactured by T	
	Corporation was used for tests, its price was one twentieths of	
	that of SAKAI KAGAKU).	
	· The contents of Al, Mg are larger than those of SAKAI KAGAKU,	
	but the contents of Fe, Ba are smaller than those of SAKAI	
	RAGAKU. Practical tests are being conducted without	-
	purification.	
	(6) A document for reporting a small amount of novel compounds	escheduled to be
	in accordance with the law concerning examination of chemicals	submitted on
	and regulation of production etc. of chemicals was completed.	September 6
opida-hasa	1 D Boundary VAC-base repossibor for white color LEDS (KINOSHITA)	the estimated +the
z. Carde Dasc		amount used by the
THY KTANATED		two divisions
		←concerning if this
	٠ ۲	product has
	Livil he produced experimentally.	priority over the
	s with improved brightness. 30	core improved
	200 42 12 12 12 12 12 12 12 12 12 12 12 12 12	

darkened 100 hours after, regardless of the amount of the organic substance. Brightness was reduced to 30-50 %.

experimentally produced under the same conditions on very short notice, and the lifetime test was conducted. With a combination with the SAE phosphor, the brightness maintenance ratio after 100hr was 99% or more.

· Judging that a deterioration acceleration factor is contained in the phosphor, we asked SQ, NQ for analysis. In particular, we are focusing on the residual flux contained in the YAG phosphor.

From now, we will 1) elucidate the cause of darkening, and 2) subject various phosphors to lifetime tests.

② Test for reducing the amount of residual organic chemical substances, quantitative test for an organic chemical substance (MARUTA-SOFUE)

• A method for reducing the amount of residual organic substances by means of changing the heating method or a combination of light and heat is under studying.

. EFMA evaluation is under studying.

3 Novel binders (novel sols, transparent cements are under

investigation.)

President			First	Division			Intel-
	Division			Production Co	enter		lectual
	Director	General Manager	Deputy General Manager	Engineer Manager	Development Department Manager	Development Department Section Manager	Property

Monthly Report

Position R3-1, Name: Masaru TAKASHIMA

Calcination test for oxynitride-base phosphors

Object: To optimize calcination conditions and to confirm the properties, aiming introduction of $MSi_2O_2N_2$: Eu (M=Ca, Sr) that is a phosphor emitting yellow light to a white color LED, and granting of patent rights.

Experiment: Under the calcination conditions wherein the highest brightness was obtained so far, optimization of the Eu concentration and the Sr/Ca ratio was performed.

[calcination conditions; composition = $M_{(1-x)}Eu_xSi_2O_2N_2$ (M=Sr/Ca), top temperature=1600°C, calcination atmosphere= N_2]

Results:

- (i) Change of Eu concentration [Sr_(1-x)Eu_xSi₂O₂N₂]
- · The optimal Eu concentration differed depending on the wavelength of the excitation light. (Figs. 1, 2)
- The peak wavelength was shifted to the red side, accompanied by an increase of the Eu concentration, and the chromaticity was also shifted to the red side. (The same tendency at $EX=400 \, \text{nm}$, $460 \, \text{nm}$.)
- ② Change of Sr/Ca ratio [Sr_xCa_(0.97-x)Eu_{0.02}Si₂O₂N₂]
- The luminescence efficiency was improved by an increase of the Sr/Ca ratio, and Sr/Ca = 7/10 exhibited the highest luminescence efficiency. (The same tendency at EX=400 nm, 460 nm.)
- The peak wavelength was shifted to the blue side, accompanied by an increase of the Sr/Ca ratio, and the chromaticity was shifted to the green side. (The same tendency at EX=400 nm, 460 nm.)

			_			
	Y(왕)	E (용)	Q(%)	x	У	λp
400nm (ST'D=230- 01-01)	101.1	86.4	90.4	0.372	0.593	544rm
460nm (ST'D=206- 01-01)	92.5	75.9	72.4	0.400	0.578	550rm
Table 1	lumineso	cent pro	perties	of samp	les with	highest

luminescence

Comments:

The increase of the Eu concentration greatly improved the luminescent efficiency when excited at EX=460 nm, reaching a level from which it is possible to target the introduction to the white color LED (EX=400, 460 nm). Further, there was a report (from R3-1 SOFUE) that the lifetime characteristics of the LED were deteriorated by the combination of the YAG-base phosphor + the inorganic binder. This also proves the advantage of the oxynitride-base phosphor. Further, the analysis results of the TG white color LED (SQ3 SAKAKI) suggests the possibility that TG use oxynitride as the phosphor emitting yellow light. From the above viewpoint, we aim to improve the properties of the present phosphor, and obtain patent rights.

Schedule:

- (1) Alkaline earth metals other than Sr, Ca are introduced.
- ② B, Al are doped into the Si site.

Fig. 1 Changes in luminescent properties depending on Eu concentration

Fig. 2 Changes in luminescent properties depending on Eu concentration

Fig. 1 Changes in luminescent properties depending on Eu concentration Ratio (%)

Eu Concentration (x)

Fig. 2 Changes in luminescent properties depending on Eu concentration Ratio (%)

Eu Concentration (x)

EXHIBIT E

「開発月報(R3-1)」について

徳島県阿南市上中町岡491番地100 日亜化学工業株式会社 知財部長代行 松 下 一

確定日付1851号

No. 1/3

•					-		a 110. 17 -
社長			第一	部門			知財
	部門長			生産本部			
		本部長	副本部長	技師長	開発部長	開発課長	
(M))	(H)	Tost	Hautan		電)
	<u> </u>	4	, ,		シジ	•	

73-1/	月開	発月報まとめ	部署	R3-1 氏名 玉置 寛人
テーマ		スケジ		
	8月	9月	10 月	11 月
YAG•酸化物系	輝度・粒度改良にめど	輝度、粒度分布改良品 LA1、ST にサンプル出荷	←結果を確認しながら 改良を継続	
ナイトライト系	炉の状態安定 製造にめど	ナイトライト・再現サンプル出荷 シリコンオキシナイトライト・改良	←結果を確認し改良 電球色 LED の製造試験	←
焼成実験室・キャパ	1次工事完了 ①~⑤号炉まで	設備立ち上げ	←総続追加炉の設置準備	メタル合成炉据付他
無機パインダー	シリウス評価の準備 ハインダー硬化条件検討	シリウス(高負荷)評価開始 蛍光体、バインダー劣化の 機構解明と対策		←
テーマ		現状要点		コメント
LED 用蛍光体開発 状況		たし、全流でにこうした。		
		をLA主導で行うこととなった SL 製造ラインでの試験を行い		
		ジュピターでの試験も行う)		-
		蛍光体サンプル窓口が、LA1		
		あするサンプルも 1 度は LA1		
		ー G の社内打合せに出席し らと考えられ、H39への採用「		T
		タ戦略色 LED の採用に向け	•	
1	(村崎君が試作中の草	月日ラバー向け高輝度 YAG も	この用途をにらんだもの)	· .
		選択に関して疑問点があり、		
		新規 LED 仕様検討には必	ず出席し、的確に貨製情報	← LA1 に依頼済み
		度を上げられると考える。 引上のため、蛍光体ーLED (の相互勉強会を企画する。	← LA1 に依頼済み
		もに改良、安定製造条件出		
į		験も含む)での効果を確認す		
、 量新規化学		1 バインダー室に完備され、高		
物質の製造	の食い試験が可能で	が行える様になった。この設 あり、今後の LED 高出力化		_
क्रेनाप मित्रा		*ータを蓄積し、改良につなけ	- 35	19th S202-SX
		AG 劣化に、付活剤Ce が関		
		り、ナイトライト、蛍光体中にアモバ	- Harrison	
	確認された。シリウスで	の劣化との関連が予測され		評価技術は高い

持ちラーマ	現 状 要 点	コメント	
1. YAG.	①改良 YAG(→ 村崎月報参照)		持ち
酸化物蛍光体	改良品(球状、平均粒径7~8 µm、輝度 206-01 比 125~135%)を各色で準備		
(村崎、木下、武市)	LA、ST での評価を開始した。ST には粒径を上げると歩留まりが落ちるとの		4
	経験則があるらしい。R3-1 は、粒径を上げ界面を減少させ光透過率を上げ		
	輝度を改良するとのストーリーで動いている。使いこなしてもらえるよう進める。		4
	今後、輝度と歩留まりを両立させるための条件出しを行う。		1
-	下記、用途の異なる3種のYAG改良品サンプルをLA、STへ出荷した。		
	1.短波長 YAG・・・電球色 LED 用(LA、ナイトライトと併用) 、シルキー G 用(STC)		
	2.RegYAG·····ルーチン白色輝度 UP 用(STL)		-
·	3.長波長 YAG·•·単体電球色用(LA)		
	尚、輝度、粒度改良は Flux、焼成雰囲気の最適化で行った。		
	②ルーチン品 YAG (STC・STL 関係)(→ 木下月報参照)		
3	ルーチン YAG (206-023、206-01-01 分級品)、光度 UPYAG(206-022 タイプ)		
	各タイプ使用量は増加しており、10~15kg/M。発注も前倒し気味。		3.無機
	供給を安定化させるため、注文に応じながら、在庫量 UP を進めている。		(祖:
	-023 工程合理化サンプルも試作中。	•	
	①、②とも、STL、SL 製造状況に応じてライン試験予定。		
	③朝日ラパー向け YAG (10/4 出荷予定)		
	樹脂との混合特性を考慮し、現在朝日ラパーで使用中の平均粒径 4~5μmで		
	輝度が UP した物を準備。色調が異なる3品種の内、1品種で粒径変を更し		_
·	粒径による効果を確認予定。		_
2.ナイトライト・蛍光体	①電球色 LED の性能試験		
(玉置、亀島、高島)	・電球色をどの様な LED、蛍光体の組み合わせで出すか LA で検討。		
	1! ED+長波長 YAG		
	2LED+短波長 YAG+ナイトライト RED(ピーク波長 610nm) 高輝度タイプ V		
	3.LED+短波長 YAG+ナイトライト・RED(ピーク波長 650nm) 高演色性タイプ レ		
	・結果、2.及び3.の組み合わせが、電流、温度、に対する輝度維持率、色調バラ		
	ッキが安定しており、2及び3の組み合わせでラン試験を行うことに決定した。		
	・今回が初めて2種以上の異種蛍光体混合使用となる。歩留まり、色ズレ、	<u> </u>	
	その他色限度見本、LED 性能、ライフなど確認して行く。		
	②ナイトライト RED の製造		
	炉心管の内側に、炉心管表面の分解を抑制するインナーアルミナ炉心管を配置し	-	
	これにより、焼成品の品質は安定した。しかし、劣化の進行を100%、抑制す		
	る事は出来ず。現在のところ、炉心管寿命は1~2ヶ月である。		
	③ 灼ル炉焼成試験 (玉置出張報告提出済み)		L

<u> </u>	-		No. 3/3
	持ちテーマ	現 状 要 点	コメント
		③ナイトライト RED の分析結果(SEM、TEM、XPS、EPMA、XRD) 於:SQ、NQ、R1	
	•	・現状ナイトライト・蛍光体は結晶層とアモルファス層が混在していることが、SQのTEM +	速報、後日回覧
	•	写真で解った。SEM、EPMAでも結晶形状の粒子と不定形に近い粒子が観	
	•	察される。XPSでは蛍光体内部に酸素元素が存在する可能性がを示すデータ	
	: ·	が得られた。	
		・シリウスライフ試験結果で Ca ヘースのシリコンナイトライト の輝度維持率が良好。	
	· :	Ca の反応性が良く、結晶成長状態が良いためと考える (→ 祖父江月報)	
		・今後、混合状態、焼成条件を検討し、結晶性を上げる方向で改良を進める。	
····		7 BC. TELL WILL BURNETT COURTS THE	
	•	④オキシナイトライト・蛍光体(400nm、460nm 励起 Yellow~Green)	
		・最適化を検討。400nm 励起でYAGを用いた系と同等の白色輝度が得られた	·
	: -		
		·460nm 励起の最適化中。	
		①シリウスパッケージによるライフ評価 (→ 祖父江月報)	
-	3.無機バインダー	・シリウスパッケージを用いた 400nm 紫外線の強制劣化試験開始。	
	(祖父江、丸田)		
·	· .	(貝印里は、地址正反(5年77)のポード、派及門里は、5年1	HEELEN (
		YAG	
····		・YAG は 400nm 紫外線で激し《黒化。原因を残留フッ素、もしくは Ce³*と予測	
		した。フッ素無しの YAG で劣化は改善されず、Ce 無しの YAG で黒化が大幅	
		に低減された。	
		-YAG 黒化は Ce ³⁺ → Ce ⁴⁺ へ酸化時に周辺化合物を還元(SiO, → SiO、	
		もしくは CO → C)していると予測している。更に原因を調査中。	
		その他蛍光体	
		・使用の可能性があるR・G・B 各蛍光体に関して劣化試験を実施。	
		・200hr後で劣化の無い蛍光体はSAEのみ。その他、R·G·B 蛍光体とも劣化	
	·	有り。200hr 後で劣化に蛍光体毎の傾向が見られ始めた。	
		今後、個々に原因を解明する。	
		対策	
		・表面処理による劣化対策を実施する。通常の乾式もしくは湿式ユーティングに加	
		え、CVD によるマイクロカプセル化も検討して行く。今後重要な技術と考える。	→CVD 装置検討開始
		・シリウス中の C 量は量を確保し、元素分析装置で定量し、数値確定を行う。	
		②シリカゾル無機バインダー硬化後の有機量の低減	
		・146nm の真空紫外線照射により、残留有機が減少することが解った。	→VUV 照射装置
			申請予定
		③パインダー合成・調査	
		・バインダー劣化よりも蛍光体間の差が大きい現状だが SAE を用いてバインダー種	
		硬化条件による劣化の差の確認も進めて行く。	
		・透明セジトの調査開始。	

₹

R3-1業務分担表

項目 業務内容 ルーチンYAG製 工程合理化 460nm YAGJ7改良 YAG 朝日ラバ-向	造 製造移管	人員	日標	日標期限	欧水
		木下・武市・(村崎) 8	SLL、SLC導入	12月	206-023947分級方法改良
	2000年代	村崎・(木下)	LA、SLL、SLC導入 新相什構へ違入	2003導入	白色LED輝度UPIこ最適な粒径・使用法を LA・STの協力の元再検討
春秋川夕でへの	球状、欽 / m·理典部130% 朝日元/一向ITYAG	村崎		2003導入	他社(根本)同等品では不可 5%以上、輝度UP
HLAN 5	Sr外n精製、原料改良試験	玉置・亀島	Sr、混合原料供給安定	12月にめど	Sr/タル蒸留条件最適化 共沈並みの混合方法検討
	ナ仆ラ사 高輝度化	鲁島·(玉匱)	輝度現行品比120%	2003.4月	形状改良、結晶均一化 高温焼成、Flux、混合方法、焼成パターンなど
ナルライド ナイトライド・質	十仆5小,製造法確立	亀島·高島·玉置)	製造ラインの整備	2003.12月	原料製造、機密粉砕、焼成装置の検討・導入
データベース作戦	7作製	成市·高島	B·G·Y·R各種蛍光体 データバース作成	12月	各種蛍光体の発光、反射、励起スベクトル、劣化特性
	新規ナイトライト、	高島・亀島・(玉匱)	開発	2003.4月	アルが土類ジリンナイトライ・蛍光体、 希土類ジリンナイトライ・蛍光体の合成、技術保全
	新規酸化物系蛍光体の合成	武市·木下·(村崎)	. "	2003.4月	アルカリ土類酸化物系蛍光体の合成、技術保全
金融。	劣化対策のコーティング技術	武市·丸田· 村崎·玉匱	各種蛍光体の劣化改善 2003.6月めど	2003.6月めど	乾式、湿式コーテング・品の特性確認 マイクロカプセル化技術の確立 先ずYAGで検討
シリウスパップ	シリウスパッケージによる 劣化評価	祖父江·丸田	使用可能蛍光体、 1-テイング法 バイケー選択	12月、以後見直し	380nm、380nm、400nm、460nmハイパリー下での各蛍光体、パインダーの劣化データ蓄積、原因解明使用可能蛍光体、コーティング技術選択
	シルがルバインダー分析と	丸田·祖父江	カーボン、SiOの定量 44.原因の特定	12月	シリウス実装品のカーボン・SiO定量
Œ	3.10版開併的 沙加パルバインダー使用方法	九田・祖父江	シリカゲルバイケダーの 最も良い使用方法確立	12月	硬化条件、残留有機低減、厚膜成形など VUV照射装置など
バインダー 新規グルの合成	,の合成	祖父江	厚膜塗布可能な新規ゾ 1.	2003.12 A	アルミナ、イットリア、シリカ複合ソル合成
新規バイ	新規バインダー・成型方法探索		厚膜塗布可能な	2003.12月	透明セグト、釉薬、ガラスなど バインダー用、レンズ、用材料

オキシナイトライド系 Phos.の検討

MSi2O2N2:Eu (M=アルカリ土類金属)の白色 LED への導入および特許権利化を目指し、特性確認を行う。

◆実験

①M=Mg, Ba の導入

これまでの実験から M の位置が Ca と Sr の場合で、輝度・ λp が変化する事がわかっている。今回は (Mgo.97, Euo.03)Si₂O₂N₂及び(Bao.97, Euo.03)Si₂O₂N₂を作製し、それぞれの発光特性を確認する。

②最高輝度サンプルの作成

Eu 濃度と Ca/Sr 比の最適化から、EX=400nm 最高輝度の得られる組成は(Sro.872, Cao.288, Euo.04)Si₂O₂N₂ となった。この Phos. を作製し、さらに酸処理・分級を行う事で現状での最高輝度サンプルを作製する。

Ca

Sr

720

◆結果

40 20

420

①M=Mg, Ba の導入

図1に示したように、発光強度は Sr の場合で最 高になった (Mg の場合は殆ど発光無し)。また表 1の通り、アルカリ土類元素のイオン半径が大きく なるにつれ lp が短くなることが分かった。

	Mg ²⁺	Ca ²⁺	Sr ²⁺	Ba ²⁺
イオン半径(Å)	0.78	1.06	1.27	1.30
λp (nm; EX=400nm)	569	561	539	509 .

表1. 各種アルカリ土類を使用した場合の Ap

②最高輝度サンプルの作成

EX=400nm での最高輝度を得 た。しかし EX=460nm では処理. により輝度低下が発生した。処 理に粉砕・フルイ工程を含む事 と図 2 から、輝度低下の原因は 表面積の増加する、460nm 付近

EX	Sample	Y (%)	E (%)	Q (%)	x	У	lρ
400nm	処理前	109.8	93.3	98.0	0.880	0.589	545
ST'D=230-01	処理品	123.4	105.6	110.4	0.373	0.591	545
460nm	処理前	107.5	86.2	81.1	0.377	0.596	547
STD=206-01	処理品	91.0	73.6	69.1	0.372	0.598	547

での反射率の増加であると考えている。 (MOT97, Eu0.03)Si2O2N2の発光スペクトル (EX=400nm) 100 ഞ

620

Wavelength (nm)

Taka影響は? 図2 処理による反射・励起スペクトル変化 120 100 処理前(励起) 80 ·酸処理十分級(励起) ·処理前(反射) 60 ·酸処理十分級(反射) 40 340 440 240 Wavelength (nm)

最高輝度サンプルの発光特性

EXHIBIT E1

「開発月報 (R3-1)」について

徳島県阿南市上中町岡491番地100 日亜化学工業株式会社 知財部長代行 松 下 一

確定日付1851 子

					• • •	•		
								0.1/3
社長			第一	部門			知	財
12. 32.	部門長			生産本部			4	
	WF	本部長	曼暗本幅	技師長	開発部長	開発課長		
187)			/W/1	一个个	<u></u>		
	y	1/4/	Tax/	A Control of	- M			
		16/1/	MAN	X A LAULINAND		,	.21	
23-1		日程	海日報	まとめ		部署 R3-1	氏名 王	置 寛人
\ U :		7 3 17	はノロノコーへ	<u></u>				

		Zos/ Stantas	4 / 1 1 1 1 1 1 1 1 1 1	直
₹3-1	月開	発月報まとめ		R3-1 氏名 玉置 寛人
		スケジ		12.5
テーマ	8月	9月	10月	11月
YAG-酸化物系	輝度・粒度改良にめど	輝度、粒度分布改良品 LA1、ST にサンプル出荷	←結果を確認しながら 改良を継続	-
ナイトライト系	炉の状態安定 製造にめど	ナイトライト、再現サンプル出荷 シリコンオキシナイトライトで改良	←結果を確認し改良 電球色 LED の製造試験	
焼成実験室・キャハ	1 次工事完了	設備立ち上げ	←継続	メタル合成炉据付他
(詳細予定添付)	①~⑤号炉まで)))))) 一) 一 一 一 一 一 一 一 一 一 一 一 一 一	追加炉の設置準備 ←継続	←
無機バインダー	シリウス評価の準備 パインダー硬化条件検討	ジリウス(高負荷)評価開始 蛍光体、パインダー劣化の 機構解明と対策	蛍光体・バインダー改良 品試作し評価	
テーマ		現状要点		コメント
LED 用蛍光体開発 状況		球色 LED 発表を受けて、製品		1
i	電球色LED製造試験	をLA主導で行うこととなった	と。まず、50ランプで10月	
		SL製造ラインでの試験を行い	製造バラッキなど確認予定。	
		、ジューターでの試験も行う)		
		D蛍光体サンプル窓口が、LA1		
		荷するサンプルも1度はLA1		
		キーG の社内打合せに出席		a
1		ると考えられ、139への採用		<u> </u>
l .		39戦略色 LED の採用に向		
		朝日ラバー向け高輝度YAG		<u> </u>
	会で、STCの蛍光体	選択に関して疑問点があり	_サンプル3種を提案した。	1011年間文章
		た新規 LED 仕様検討には必		版 ← LATICIX無所の
		速度を上げられると考える。		LA1 に依頼済み
:		向上のため、蛍光体ーLED		
		ともに改良、安定製造条件に		9.5
,		式験も含む)での効果を確認		F
是新規化	37 	3-1 パインダー室に完備され、る		3
物質の製造	各波長)の劣化試験	が行える様になった。この		
क्रेनाप माना	トの高い試験が可能	であり、今後の LED 高出力化	_ > 6	Cett S.O> S.
-G		まずータを蓄積し、改良につな		
	·400nm 紫外に対する	6 YAG 劣化に、付活剤Ce が		
		より、ナイトライト蛍光体中にアー		評価技術は高い
	確認された。シリウス	での劣化との関連が予測さ	れ、 ラ伎唯 総りる。 04FR3-(002(禄式作成日:

04FR3-002(禄式作成日:

F +++ = -7	現 状 要 点	コメント	
持ちテーマ 1、YAG、	①改良YAG(→ 村崎月報参照)		持
酸化物蛍光体	では、平均粒径7~8 µm、輝度 206-01 比125~135%)を各色で準備		
(村崎、木下、武市)	LA、ST での評価を開始した。ST には粒径を上げると歩留まりが落ちるとの		4
<u> </u>	経験則があるらしい。R3-1 は、粒径を上げ界面を減少させ光透過率を上げ		
	輝度を改良するとのストーリーで動いている。使いこなしてもらえるよう進める。		1
	今後、輝度と歩留まりを両立させるための条件出しを行う。		4
	下記、用途の異なる3種のYAG改良品サンブルをLA、STへ出荷した。		_
	1.短波長 YAG・・・電球色 LED 用(LA、ナイトライトと併用)、ミルキー G 用(STC)		4
	2.RegYAG・・・・・ルーチン白色輝度 UP 用(STL)		4
	3. <u>長波長 YAG·</u> 単体電球色用(LA)		
	尚、輝度、粒度改良はFlux、焼成雰囲気の最適化で行った。		_
	②ルーチン品 YAG (STC·STL 関係)(→ 木下月報参照)		
650-	ルーチン YAG (206-023、206-01-01 分級品)、光度 UPYAG (206-022 タイプ)		
	各分で使用量は増加しており、10~15kg/M。発注も前倒し気味。		3.無
	供給を安定化させるため、注文に応じながら、在庫量 UP を進めている。	<u> </u>	
	-023 工程合理化サンフルも試作中。		200
	①、②とも、STL、SL 製造状況に応じてライン試験予定。		
	③朝日ラパー向け YAG (10/4 出荷予定)		
	樹脂との混合特性を考慮し、現在朝日ラバーで使用中の平均粒径 4~5 μm	で -	\dashv
	輝度がUPした物を準備。色調が異なる3品種の内、1品種で粒径変を更	<u> </u>	-
	粒径による効果を確認予定。		
2.ナイトライト・蛍光体	①電球色 LED の性能試験		
(玉置、亀島、高島	・電球色をどの様な LED、蛍光体の組み合わせで出すか LA で検討。		
12	1.LED + 長波長 YAG	V	
Present	2LED + 短波長 YAG+ナイトライト・RED(ピーク波長 610nm) 高輝度タイプ 1		
Invention	M 3.LED + 短波長 YAG +ナイトライト RED (ピーク波長 850nm) 高演色性547	7	
	・結果、2.及び3.の組み合わせが、電流、温度、に対する輝度維持率、巴調	<u> </u>	
	ッキが安定しており、2及び3の組み合わせでうり試験を行うことに決定し		
	・今回が初めて2種以上の異種蛍光体混合使用となる。歩留まり、色ス・レ	`	
_	その他色限度見本、LED性能、ライフなど確認して行く。		
-	②ナイトライト RED の製造	reer .	
	炉心管の内側に、炉心管表面の分解を抑制するインナーアルミナ炉心管を配	通し	,
	これにより、焼成品の品質は安定した。しかし、劣化の進行を100%、抑	क्रियं व	
	る事は出来ず。現在のところ、炉心管寿命は1~2ヶ月である。		
·	③ 灼ル炉焼成試験(玉置出張報告提出済み)		

コメント 現状要点 持ちテーマ ③ナイトライド RED の分析結果(SEM、TEM、XPS、EPMA、XRD) 於:SQ、NQ、R1 ・現状ナイトライト・蛍光体は結晶層とアモルファス層が混在していることが、SQ の TEM ←速報、後日回覧 写真で解った。SEM、EPMAでも結晶形状の粒子と不定形に近い粒子が観 察される。XPS では蛍光体内部に酸素元素が存在する可能性がを示すデータ が得られた。 ・シリウスライフ試験結果で Ca ヘースのシリコンナイトライトの輝度維持率が良好。 Ca の反応性が良く、結晶成長状態が良いためと考える (→ 祖父江月報) ・今後、混合状態、焼成条件を検討し、結晶性を上げる方向で改良を進める。 ④オキシナイトライト 蛍光体(400nm、460nm 励起 Yellow~Green) ・最適化を検討。400nm 励起で YAG を用いた系と同等の白色輝度が得られた ・460nm 励起の最適化中。 ①シリウスパッケージによるライフ評価 (→ 祖父江月報) 3.無機パインダー ・シリウスパッケージを用いた 400nm 紫外線の強制劣化試験開始。 (祖父江、丸田) (負荷量は、電流密度で50ランプの約4倍、熱負荷量はもっと大きい) ←確認中 YAG ・YAG は 400nm 紫外線で激し《黒化》。原因を残留フッ素、もしくは Ce*と予測 した。ファ素無しの YAG で劣化は改善されず、Ce 無しの YAG で黒化が大幅 に低減された。 ·YAG 黒化は Ce³+ → Ce⁴へ酸化時に周辺化合物を還元(SiO, → SiO、 もしくは CO → C)していると予測している。更に原因を調査中。 その他蛍光体 ・使用の可能性があるR・G・B各蛍光体に関して劣化試験を実施。 ・200hr後で劣化の無い蛍光体は、SAEのみ。その他、R・G・B蛍光体とも劣化 有り。200hr 後で劣化に蛍光体毎の傾向が見られ始めた。 今後、個々に原因を解明する。 対策 ・表面処理による劣化対策を実施する。通常の乾式もしくは湿式コーティッグに加 え、CVD によるマイクロカプセル化も検討して行く。今後重要な技術と考える。 →CVD 装置検討開始 ・シリウス中の C 量は量を確保し、元素分析装置で定量し、数値確定を行う。 ②シリカゾル無機パインダー硬化後の有機量の低減 ・146nm の真空紫外線照射により、残留有機が減少することが解った。 →VUV 照射装置 申請予定 ③パインダー合成・調査 ・ハインダー劣化よりも蛍光体間の差が大きい現状だが SAE を用いてパインダー種 硬化条件による劣化の差の確認も進めて行く。 ・透明セメントの調査開始。

R3-1 報告会

項目 <th <="" rowspan="2" th=""><th>容 G製造·製造移管 IIC X良 II m·貚度約130%</th><th></th><th>日極</th><th>日標期限</th><th>在果里</th></th>	<th>容 G製造·製造移管 IIC X良 II m·貚度約130%</th> <th></th> <th>日極</th> <th>日標期限</th> <th>在果里</th>	容 G製造·製造移管 IIC X良 II m·貚度約130%		日極	日標期限	在果里
		38				
<u>.</u>	化 7良 4m·輝度約130%	武市・(村崎)	SIL、SLC導入	12月	208-023947分级方法改良	
	и m- 輝度約130%	(£	LA、SLL、SLC導入 在提出機入道 1	2003導入	白色LED輝度UPIC最適な粒径・使用法を LA・STの協力の元再検討	
				2003導入	他社(根本)同等品では不可 5%以上、輝度UP	
	-[g][] YAu	41	共給安定	12月こめど	SrJJJJ森留条件最適化 共沈並みの混合方法検討	
	Sryl/精戦、原本収及関数	QÎre.		2003.4月	形状改良、結晶均一化 高温焼成、Flux、混合方法、焼成パターンなど	
74771	西南京市	(田田)		2003.12月	原料製造、機密粉砕、焼成装置の検討・導入	
	双巨环唯二		光体	12月	各種蛍光体の発光、反射、励起スベクトル、劣化特性	
オープペームド 新規ナルラル	がでいます。	(選集)	器器	2003.4月	アルカリ土類シリコンナイトライド蛍光体、 希土類シリコンナイトライド蛍光体の合成、技術保全	
LED用 才华大仆 世界体	オギッナイトライドの合成が、おおいたの合成が、おおいたなの合成		"	2003.4月	アルカリ土類酸化物系蛍光体の合成、技術保全	
	新規政化物ポヨンドをジョル 本化対策のコーナング 技術	以 (本) (本) (本)	各種蛍光体の劣化改善2003.8月めど	2003.6月めど	乾式、湿式コーテング・品の特性確認 マイクロン・セル化技術の確立 先ずYAGで検討	
R		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			0977-0"1/VMM/19-F-60	
シリウスハー・労力ストー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	シリウスパッケージ・による 劣化評価	祖父江·丸田	使用可能蛍光体、 コーナング法 バンダー選択	12月、以後見直し	380nm、380nm、100mm、580nm、580nm、580nm、580nm、580nm、6名世光体、バインダーの劣化データ容積、原因解明使用可能蛍光体、コーティッ・技術選択	
360~	シッカン・ルバインダー分析と	丸田・祖父江	カーボン、SiOの定量 企化原因の特定	12月	シリウス奥装品のカーボン・SiO定国	
Œ	劣化機構解明いれず一体用方法	丸田・祖父江	ジルンデルインダーの おも、自、中間方法確立	12月	硬化条件、残留有機化減、岸段水が4c VUV開射装置など	
がたが かれば	# 4 6	相公江	厚膜盤布可能な新規が	2003.12月	アルミナ、イットリア、シット複合ゲル合成・	
新規プロ	新規)MOJOM		厚膜盤布可能な	2003.12月	透明セグト、釉薬、ガラスなど バインダー用、レンズ・用材料	

オキシナイトライド系 Phos.の検討

◆目的

_____ MSi2O2N2:Eu (M=アルカリ土類金属)の白色 LEDへの導入および特許権利化を目指し、特性確認を行う。

◆実験

①M=Mg, Ba の導入

これまでの実験から M の位置が Ca と Sr の場合で、輝度・ $\lambda_{\rm P}$ が変化する事がわかっている。今回は $({
m Mg0.97,Eu0.09}){
m SizO_2N_2}$ 及び $({
m Ban.97,Eu0.09}){
m SizO_2N_2}$ を作製し、それぞれの発光特性を確認する。

②最高輝度サンプルの作成

Eu 濃度と Ca/Sr 比の最適化から、EX=400nm 最高輝度の得られる組成は(Sro.e7z, Cao.288, Euo.o4)Si₂O₂N₂となった。この Phos.を作製し、さらに酸処理・分級を行う事で現状での最高輝度サンプルを作製する。

◆結果

①M=Mg, Ba の導入

図1に示したように、発光強度は Sr の場合で最高になった (Mg の場合は殆ど発光無し)。また表1の通り、アルカリ土類元素のイオン半径が大きくなるにつれ Ap が短くなることが分かった。

	Mg ²⁺	Ca ²⁺	Sr ²⁺	Ba ²⁺
イオン半径 (Å)	0.78	1.06	1.27	1.30
λp (nm; EX=400nm)	569	561	589	509
/cp (<u> </u>	<u> </u>	

表1. 各種アルカリ土類を使用した場合の Ap

②最高輝度サンプルの作成

EX=400nmでの最高輝度を得た。しかし EX=460nmでは処理により輝度低下が発生した。処理に粉砕・フルイ工程を含む事と図2から、輝度低下の原因は

EX	Sample	Y (%)	E (%)	Q (%)	x	y	λp
400nm	処理前	109.8	98.8	98.0	0.880	0.589	545
STD=230-01	処理品	128.4	105.6	110.4	0.373	0.591	545
460nm	処理前	107.5	86.2	81.1	0.877	0.596	547
	処理品	91.0	73.6	69.1	0.372	0.598	547
STD=206-01	火炬左即	1 21.0	1	1		<u> </u>	

表面積の増加する、460mm 付近での反射率の増加であると考えている。 - 100 (EX=400mm) (EX=400mm) - Mg (EX=40

表 2. 最高輝度サンプルの発光特性

EXHIBIT E2

Regarding "Development Monthly Report (R3-1)"

491-100, Oka, Kaminaka-Cho, Anan-Shi, Tokushima-ken Nichia Corporation Deputy of Intellectual Property Department Manager Ichiro MATSUSHITA

04FR3-002 (Form Creation Date:

No. 1/3

Intellectual	Property	1		
		1	Development Department Section Manager	
-			Development Department Manager	
	FIRST DIVISION	Production Center	Engineer Manager	
	FIRST I		Deputy Production	
			General Manager	
		Division	Director	
	President		0	

R3-1 Summary of

Development Monthly Report

Section: R3-1 Name: Hiroto TAMAKI

Трете	Schedule				
	Anonst	September	October	November	
				1	
VAG.oxide-base	To complete To	Ship		Ļ	
phosphors	improvement of	of with improved	ent wo		
Figure	and	brightness,	checking the		
8	size	particle	size results		
	ion	distribution to			
		LA1, ST			T
Mitrido-base	To stabilize	stabilize To ship reproduced	8	ļ	
Niciae Dase	nditions	of nitride-base	improvement while		
STORIGEORIG		phosphor samples	checking the		-
	To complete the	To improve silicon	results		
			· Production test		
	Toronoma	phosphors	of bulb color LEDs		1
	mo complete primary To	To set up a	← Continuation		ot.
Calcinación		ility	· To prepare	prepare metal furnaces a	and
lavoratory.capacity	CONSCIUCCION	[2411001	خ	others	
Details of the	Up to (1)-(5) furnaces		ייים		
schedule to be			מתחדריים ייתייים		
attached)					

	Comments	
← Continuation • To experimentally produce improved phosphor and binder samples and evaluate them		of bulb color LEDs Indexican academic Index were determined in order to pick out under the leadership be conducted on the and tests of those he by the end of this ked. (In addition to hipiter will also be the first division and one, i.e., IAL-R3-1. ped to ST are to be on milky G for DENSO NOTA has advanced the ption to TOYOTA is
To start Sirius (highly loaded) evaluation To elucidate the mechanism of deterioration of phosphors and take	against the deterioration	In response to the presentation of bulb color LEDs manufactured by NICHIRA at the North American academic conference, production tests of bulb color LEDs were determined to be carried out under LA1's initiative in order to pick out problems for commercialization of products under the leadership of LA. First, tests of 50 lamp series will be conducted on the experimental production line in October, and tests of those will be conducted on the SL production line by the end of this year. Production dispersions will be checked. (In addition to that, tests using a high output type Jupiter will also be conducted.) The contacts of phosphors samples of the first division and the second department were combined into one, i.e., IA1-R3-1. Accompanied by this, samples to be shipped to ST are to be checked by IA1. Accompanied by this, samples to be shipped to ST are to be checked by IA1. Attended a meeting within the company on milky G for DENSO CO. held by STC. It is considered that TOYOTA has advanced the most in in-car lighting and thus adoption to TOYOTA is
To prepare Sirius evaluation To study conditions for curing binders	against deteriorat	
Inorganic binders	J	Development condition of phosphors for LEDs

	important. IED manufacturing companies including ASAHI RUBBER INC. advance development for adoption of TOYOTA strategic color IEDs. (High brightness YAG MURASAKI is experimentally producing is targeted for this application.) At the meeting, since I had some questions about selection of phosphors by STC,	uding ASAHI RUBBER MIN strategic color is experimentally At the meeting, Thosphors by STC,	
	I will be sure to novel IEDs using photelly. I think that thi	attend a review of sphors, and exchange s will accelerate the	← already asked LAL
	development speed. • Further, for technical improvement of members section, mutual study sessions on phosphors-LEDs planed.	members of each tors-LEDs will be	← already asked IAl
Got permission	conditions for improvement and stable production are being proposed in both of the YAG and the nitride RED phosphors. From this month, we entered a stage of confirming effects in practical use (including tests on production lines). for The Sirius evaluation facility was fully equipped in R3-1	oduction are being ide RED phosphors. firming effects in lines).	
production of chemical substances.	deterioration tests when highly loaded (current, heat, optical density, respective wavelengths). This facility enables the high-power output, short wavelength LEDs in the future, we will store data on deterioration characteristics so that they will	le to carry out ent, heat, optical cility enables the A at present. For the future, we will so that they will	
-	be led to improvement. • The finding that the activator Ce was involved with deterioration of the YAG phosphor by exposure to 400 nm UV light was obtained. • By a TEM shooting by SQ, it was confirmed that an amorphous layer was present in the nitride phosphor. A relation with deterioration by the Sirius is predicted and so we will confirm	as involved with sure to 400 nm UV that an amorphous A relation with so we will confirm	← The TEM shooting and the evaluation technology of SQ are high.

		it in the future.	
oxide-base ① Improved TAG phosphors (-refer to MURASAKI Monthly Report) improved phosphor samples (spherical shape, mean partic diameter: 7-8 µm, brightness: 125-135 % compared with that 206-01) for each color were prepared. Then evaluation in and ST was started. It seems that there is an empirical not in LA that an increase of particle size reduces yield. R3-1 operating under the story of increasing the particle size reducing the interface area, improving the light transmissi and improving the brightness. We will recommend that the fully utilize the improved YAG. From now, conditions fastisfying both the brightness and the yield will be proposed We shipped the following 3 types of YAG improved samples, who applications are different from one another, to LA and ST. 1. Short wavelength YAG for bulb color LEDS (used combination with LA, nitrides), for milky G (STC) 2. Reg YAG for improving white color brightness of routing goods (STL) 3. Long wavelength YAG for single bulb color LEDS (used carried out by optimizing the flux and the calcinatiating the flux and the calcinatiating phase. ② YAG phosphor samples for routine goods (related to STC-ST (refer to KINOSHTR Monthly Report) Routine YAG (206-023, 206-01-01 classification samples), with improved luminance (206-022 type) The amount of each type used increases, 10-15 kg/M. Order also tend to be placed ahead of time.	Allotted theme	Points of the current conditions	Comments
diameter: 7-8 µm, brightness: 125-135 \$ compared with that 206-01) for each color were prepared. Then evaluation in and ST was started. It seems that there is an empirical rule in LA that an increase of particle size reduces yield. R3-1 operating under the story of increasing the particle size reducing the interface area, improving the light transmissi and improving the brightness. We will recommend that the fully utilize the improved YAG. From now, conditions is satisfying both the brightness and the yield will be proposed We shipped the following 3 types of YAG improved samples, who applications are different from one another, to LA and ST. 1. Short wavelength YAG ··· for bulb color LEDS (used combination with LA, nitrides), for milky G (STC) 2. Reg YAG ··· for improving white color brightness of routing goods (STL) 3. Long wavelength YAG ··· for single bulb color (LA) Incidentally, improvement of brightness and particle size V carried out by optimizing the flux and the calcinatiatucyhere. ② YAG phosphor samples for routine goods (related to STC·ST (refer to KINOSHITA Monthly Report) Routine YAG (206-023, 206-01-01 classification samples), N with improved luminance (206-022 type) The amount of each type used increases, 10-15 kg/M. Order also tend to be placed ahead of time.		(1) Improved YAG phos Improved phosphor	
and ST was started. It seems that there is an empirical rule in IA that an increase of particle size reduces yield. R3-1 is operating under the story of increasing the particle size, reducing the interface area, improving the light transmission and improving the brightness. We will recommend that they fully utilize the improved YMG. From now, conditions for satisfying both the brightness and the yield will be proposed. We shipped the following 3 types of YMG improved samples, whose applications are different from one another, to IA and ST. 1. Short wavelength YMG for bulb color IEDS (used in combination with IA, nitrides), for milky G (STC) 2. Reg YMG for improving white color brightness of routine goods (STL) 3. Long wavelength YMG for single bulb color (IA) Incidentally, improvement of brightness and particle size was carried out by optimizing the flux and the calcination atmosphere. ② YMG phosphor samples for routine goods (related to STC:STL) (refer to KNNCSHTFA Monthly Report) Routine YMG (200-023, 200-01-01 classification samples), YMG with improved luminance (200-022 type) The amount of each type used increases, 10-15 kg/M. Orders also tend to be placed ahead of time.	(MURASAKI, KINOSITA, TAKEICHI)	diameter: 7-8 µm, brightness: 125-135 % compared with that of 206-01) for each color were prepared. Then evaluation in LA	
operating under the story of increasing the particle size, reducing the interface area, improving the light transmission and improving the brightness. We will recommend that they fully utilize the improved YAG. From now, conditions for satisfying both the brightness and the yield will be proposed. We shipped the following 3 types of YAG improved samples, whose applications are different from one another, to IA and ST. 1. Short wavelength YAG ··· for bulb color IEDS (used in combination with IA, nitrides), for milky G (STC) 2. Reg YAG ··· for improving white color brightness of routine goods (STL) 3. Long wavelength YAG ··· for single bulb color (IA) Incidentally, improvement of brightness and particle size was carried out by optimizing the flux and the calcination atmosphere. ② YAG phosphor samples for routine goods (related to STC·STL) (refer to KINCSHITA Monthly Report) Routine YAG (206-023, 206-01-01 classification samples), YAG with improved luminance (206-022 type) The amount of each type used increases, 10-15 kg/M. Orders also tend to be placed ahead of time.		and ST was started. It seems that there is an empirical rule in LA that an increase of particle size reduces yield. R3-1 is	
reducing the interface area, improving the light transmission and improving the brightness. We will recommend that they fully utilize the improved YAG. From now, conditions for satisfying both the brightness and the yield will be proposed. We shipped the following 3 types of YAG improved samples, whose applications are different from one another, to IA and SY. 1. Short wavelength YAG for bulb color LEDs (used in combination with IA, nitrides), for milky G (STC) 2. Reg YAG for improving white color brightness of routine goods (STL) 3. Long wavelength YAG for single bulb color (IA) Incidentally, improvement of brightness and particle size was carried out by optimizing the flux and the calcination atmosphere. (2) YAG phosphor samples for routine goods (related to STC-STL) (refer to KINCSHITA Monthly Report) Routine YAG (206-023, 206-01-01 classification samples), YAG with improved luminance (206-022 type) The amount of each type used increases, 10-15 kg/M. Orders also tend to be placed ahead of time.		operating under the story of increasing the particle size,	
fully utilize the improved YAG. From now, conditions for satisfying both the brightness and the yield will be proposed. We shipped the following 3 types of YAG improved samples, whose applications are different from one another, to IA and ST. 1. Short wavelength YAG for bulb color LEDS (used in combination with IA, nitrides), for milky G (STC) 2. Reg YAG for improving white color brightness of routine goods (STL) 3. Long wavelength YAG for single bulb color (IA) Incidentally, improvement of brightness and particle size was carried out by optimizing the flux and the calcination atmosphere. ② YAG phosphor samples for routine goods (related to STC-STL) (refer to KINOSHITA Monthly Report) Routine YAG (206-023, 206-01-01 classification samples), YAG with improved luminance (206-022 type) The amount of each type used increases, 10-15 kg/M. Orders also tend to be placed ahead of time.		reducing the interface area, improving the light transmission and improving the brightness. We will recommend that they	
We shipped the following 3 types of TAG improved samples, whose applications are different from one another, to IA and ST. 1. Short wavelength TAG ··· for bulb color LEDs (used in combination with IA, nitrides), for milky G (STC) 2. Reg YAG ··· for improving white color brightness of routine goods (STL) 3. Long wavelength YAG ··· for single bulb color (IA) Incidentally, improvement of brightness and particle size was carried out by optimizing the flux and the calcination atmosphere. ② YAG phosphor samples for routine goods (related to STC·STL) (refer to KINOSHITA Monthly Report) Routine YAG (206-023, 206-01-01 classification samples), YAG with improved luminance (206-022 type) The amount of each type used increases, 10-15 kg/M. Orders also tend to be placed ahead of time.		fully utilize the improved YAG. From now, conditions for satisfying both the brightness and the yield will be proposed.	
applications are different from one another, to IA and ST. 1. Short wavelength YAG ··· for bulb color LEDs (used in combination with IA, nitrides), for milky G (STC) 2. Reg YAG ··· for improving white color brightness of routine goods (STL) 3. Long wavelength YAG ··· for single bulb color (IA) Incidentally, improvement of brightness and particle size was carried out by optimizing the flux and the calcination atmosphere. ② YAG phosphor samples for routine goods (related to STC·STL) (refer to KINOSHITA Monthly Report) Routine YAG (206-023, 206-01-01 classification samples), YAG with improved luminance (206-022 type) The amount of each type used increases, 10-15 kg/M. Orders also tend to be placed ahead of time.		We shipped the following 3 types of YAG improved samples, whose	
combination with IA, nitrides), for milky G (STC) 2. Reg YAG ··· for improving white color brightness of routine goods (STL) 3. Long wavelength YAG ··· for single bulb color (IA) Incidentally, improvement of brightness and particle size was carried out by optimizing the flux and the calcination atmosphere. ② YAG phosphor samples for routine goods (related to STC·STL) (refer to KINOSHITA Monthly Report) Routine YAG (206-023, 206-01-01 classification samples), YAG with improved luminance (206-022 type) The amount of each type used increases, 10-15 kg/M. Orders also tend to be placed ahead of time.		applications are different from one another, to IA and ST. 1 Short wavelength YAG ··· for bulb color LEDs (used in	
2. Reg YAG for improving white color brightness of routine goods (STL) 3. Long wavelength YAG for single bulb color (IA) Incidentally, improvement of brightness and particle size was carried out by optimizing the flux and the calcination atmosphere. ② YAG phosphor samples for routine goods (related to STC·STL) (refer to KINOSHITA Monthly Report) Routine YAG (206-023, 206-01-01 classification samples), YAG with improved luminance (206-022 type) The amount of each type used increases, 10-15 kg/M. Orders also tend to be placed ahead of time.		combination with IA, nitrides), for milky G (STC)	
goods (STL) 3. Long wavelength YAG ··· for single bulb color (IA) Incidentally, improvement of brightness and particle size was carried out by optimizing the flux and the calcination atmosphere. ② YAG phosphor samples for routine goods (related to STC·STL) (refer to KINOSHITA Monthly Report) Routine YAG (206-023, 206-01-01 classification samples), YAG with improved luminance (206-022 type) The amount of each type used increases, 10-15 kg/M. Orders also tend to be placed ahead of time.		2. Reg YAG ··· for improving white color brightness of routine	
atmosphere. ② YAG phosphor samples for routine goods (related to STC·STL) (refer to KINOSHITA Monthly Report) Routine YAG (206-023, 206-01-01 classification samples), YAG with improved luminance (206-022 type) The amount of each type used increases, 10-15 kg/M. Orders also tend to be placed ahead of time.		goods (STL) 3. Long wavelength YAG ··· for single bulb color (IA) Incidentally, improvement of brightness and particle size was	
② YAG phosphor samples for routine goods (related to STC·STL) (refer to KINOSHITA Monthly Report) Routine YAG (206-023, 206-01-01 classification samples), YAG with improved luminance (206-022 type) The amount of each type used increases, 10-15 kg/M. Orders also tend to be placed ahead of time.	. ••	carried out by optimizing the flux and the calcination atmosphere.	£
② YAG phosphor samples for routine goods (related to STC·STL) (refer to KINOSHITA Monthly Report) Routine YAG (206-023, 206-01-01 classification samples), YAG with improved luminance (206-022 type) The amount of each type used increases, 10-15 kg/M. Orders also tend to be placed ahead of time.			
(refer to Almonton March 1975), YAG Routine YAG (206-023, 206-01-01 classification samples), YAG with improved luminance (206-022 type) The amount of each type used increases, 10-15 kg/M. Orders also tend to be placed ahead of time.		② YAG phosphor samples for routine goods (related to STC·STL)	-
ses, 10-15 kg/M.	<i>.</i>	Routine YAG (206-023, 206-01-01 classification samples), YAG	
also tend to be placed ahead of time.	•	ses, 10-15 kg/M.	
		also tend to be placed ahead of time.	-

e do		
þ		
escheduled submitted September 6		
In order to stabilize the supply, we are increasing inventory levels while accepting orders. We are also experimentally producing -023 sample in which the process is rationalized. Depending on the production condition, line tests of both and and are scheduled.	(3) YAG phosphors for ASAHI RUBBER INC. (shipment is scheduled on October 4) Considering the mixing properties with respect to resin, those samples which are currently used for ASAHI RUBBER INC., have a mean particle diameter of 4-5 µm and in which brightness has been improved were prepared. Of the 3 types of samples with different color tones, the particle size of one type of phosphor will be changed to confirm effects by the particle size.	① Performance test of bulb color LEDs • Studied at LA what combination of an LED and a binder would achieve a bulb color. 1. LED + long wavelength YAG 2. LED + short wavelength YAG + nitride RED (peak wavelength: 610 nm) high brightness type 3. LED + short wavelength YAG + nitride RED (peak wavelength: 650 nm) high color rendition type • As a result, combinations in (2) and (3) are stable in terms of brightness retention ratio with respect to current, of brightness retention ratio with respect to current, determined to carry out a production line test with the combinations in (2) and (3).
		2. Nitride-base phosphors (TAMELI, KAMEJIMA, TAKASHIMA)

more than or more	_
I This is doing to be the lift combined use of the care of	
Color the trially color	
different types of phosphors. We will diece in front	
DOUGHANDS COLL TO THE TOTAL OF THE COLLEGE OF THE C	
shift sample of color change limitation, Ltd Periodicals	_
lifetime etc.	

② Production of nitride RED

An inner-alumina furnace tube that suppresses decomposition of a surface of a furnace tube is disposed inside the furnace tube, whereby the quality of calcined products was stabilized. However, it was not possible to completely suppress the progress of deterioration. At present, the lifetime of the furnace tube is 1-2 months.

(3) Calcination test using metal furnace (TAMAKI submitted a report about the business trip.)

(3) Analysis results of nitride RED (SEM, TEM, XPS, EPMA, XRD) at SQ, NQ, R1

<u>8</u>

← Bulletin, circulated later date

TEM photographs by SQ revealed that a crystalline layer and an amorphous layer were present in a mixed state in the current nitride phosphor. Also by SEM and EPMA, crystalline particles and particles with a shape close to an amorphous shape were observed. By XPS, data suggesting the possibility that an

oxygen atom was present were obtained.

Test results of the Sirius lifetime test revealed that the brightness retention ratio of the silicon nitride of Ca was

This was presumably because Ca had good reactivity, and crystal growth conditions were good (+ SOFUE Monthly Report).

From now, we will study the mixing state, calcination

	conditions, and advance improvement so as to improve crystallinity.	
	(4) Oxynitride-base phosphors (excited at 400 nm, 460 nm, yellow	
	~ green) • Studied optimization. A phosphor achieved white brightness	
	equivalent to that in a system using the YAG phosphor excited at 400mm.	
	· Under optimization at 460nm excitation.	
3. Inorganic	① Lifetime evaluation by Sirius package (→ SOFUE Monthly	
binders (SOFUE, MARUTA)	Report) • Started forcible deterioration test using Sirius package by	
		nidodo il
* .	he 5¢ lamp in terms of current density,	HIESEILLY CIECLAING
,	and the thermal load was much higher.)	
	YAG phosphors	
	let light	
-	the residual fluorine or Ce3. No improvement was observed in a	
	phosphor containing no fluorine. Darkening was greatly reduced	
	in a YAG phosphor containing no Ce.	
	. It is presumed that darkening of the Mb phosphor is caused to the following process when CP is oxidized from $Ce^{3+} \rightarrow Ce^{4+}$	
	by the rottoward process: $\frac{1}{100}$ are reduced $\frac{1}{100}$ $\frac{1}{100}$ or $\frac{1}{100}$ or $\frac{1}{100}$ or $\frac{1}{100}$	
	Further investigating the cause.	
	Other phosphors	
	. The deterioration test was performed on the respective κ , ω ,	
	B phosphors which might be used.	
	• After 200hr, the only phosphor with no deterioration was Jan. 1	
	III addition to trac, determine the	

→ started reviewing about CVD		→ scheduled to apply for a VUV irradiation apparatus.	
phosphors. After 200 hr, deterioration tendency for each phosphor started to be seen. From now, we will elucidate the cause individually. Countermeasures • We will carry out countermeasures to deterioration due to surface treatment. In addition to the conventional dry- or wet-type coating, we will also study microcapsulization by CVD. This will be an important technique in the future.	· We will secure the amount of C in Sirius, perform quantitative determination by an element analysis apparatus, and determine numerical values.	 ② Reduction of the amount of organic substances after curing silica sol inorganic binder • It was found that the amount of residual substances was reduced by 146nm-UV irradiation in vacuum. 	 3 Synthesis and investigation of binders Under the circumstances, a difference in deterioration of phosphors is more serious than deterioration of binders. However, using the SAE phosphor, we will also check a difference in deterioration due to the type of binder and the curing conditions. Started investigation of transparent cement.

R3-1 Debrief Session

CONFIDENTIAL

R3-1 Work Responsibility Schedule

From

R3-1 TAMAKI

Them	Work contents	Employees	Object	Deadline of	Problems
		1		the object	
460 rm Yellow	production of routine	KIINOSHITIA,	introducing to	December	type 206-023: improvement or
YAG phosphors		TAKEICHI,	SIL, SIC		classification method
	transfer, process	(MURASAKI)			
	rationalization		-		1
	improvement of YAG	MURASAKI,	introducing to	to be	brightnes
	core	(KITHOSHITA)	introducing to		white color LEDs with support of LA, ST
	spiretten, severat				
	um, brightness: about		specification		
	130%				
	WAS FOR MANHT BIBBER	MIRASAKT	introducing to	to be	equivalent product manufactured by
	יייים דונד עיייים דונד העדור		ASAHT RUBBER	introduced in	another company (NEWOTO) not approved
	TINC			2003	increase of brightness by 5% or more
ACO man Dod	muri fication	TAMAKT, KAMEJIMA	stabilizing	to Be	optimizing distillation conditions for
=	puttinguitar of material		supply of Sr,	achieved by	Sr metal.
nicroe	וובוסדי וומורדים			December	studying a mixing method equivalent to
phosphors	improvement test		ials		oprecipitation
	4.	KAME,TTMA	luminescence	April, 2003	improvement of shape, uniformity of
	TICLEGASE AS THE SAME AS	(TYNAMATT)	hrightness to		crystal, high-temperature calcination,
	prignaless of marine	(100,000)	H		flux, mixing method, calcination
			compared with		pattem etc.
			that of current		
			products		- 1
	set-philishing nropess	TAKASHTIMA.	maintenance of	December,	n of raw materials, airti
		KAME,TIMA.	production line	2003	crushing, investigation and
			•		씽
Lange	making database	TAKEICHI,	making database	December	luminescence, reflection, exchange
General.					

spectra of respective phosphors, deterioration characteristics	surthering and technical maintenance of	alkaline earth-base silicon nitride	earth-base	nitride phosphors	satheris and technical maintenance of	symmetry oxide-base silicon	hosphors	Checking of properties of products	obtained by dry, wet-		technique At first, will be studied with the YMG	Data accumulation of deterioration of	respective phosphors, binders under	high power irradiation such as 360 rm,	380 rm, 400 rm, 460 rm, elucidation of	cause of deterioration, serection orhe whenhors, coating technique	determination of	ched				Ì	āti		-	Symthesis of alumina-yttria-silica	sol	•	\$ 1	Transparent cement, graze, glass etc.	
	5000	April, 2003			5000	April, 2003		£ 5	nieved	ജ		Pocember +0	E T	afterward				December					December			200	December,			December,	
of respective (B, G, Y, R)	,	development of phosphors with	high	luminescence	brightness	ditto		40	improvement or	of respective	d d d		applicable	prosproza,	selection of	binder		quantitative	determination		spectryang of	oration	Lishing	best usage of	silica sol		novel sol	enabilng unch	amplication	enabling thick	
TAKASHIIMA		TAKASHIMA,	(TRAMBKT)			TAKEICHI,	KINOSHITIA,	\neg	TAKEICHI, MARUTA,	MURASAKI, IMMAKI			SOFUE, MARUTA					MARUTA, SOFUE					MARUTA, SOFUE				SOFUE			SOFUE, MARUTA,	120.202
		σq	nitride, Oxymetrum	phosphors		synthesis of novel	oxide-base phosphors		coating technique	serving as	deterioration		deterioration	evaluation by Sirius	package			analysis of silica	ler a	elucidation of	deterioration	mechanism	Serilia sol	70	DINOEL		synthesis of novel	sol		novel	searching
phosphors for	TEDS								1 -				Phosphor	or 360		LEDS		_1									1				

materi← als for binders, materials for	lenses	
2003		
coating	application	
TAWAKI		
molding		
and		
binder	method	ľ

President First Division													
	Division Production Center												
	Director	General Manager	Deputy General Manager	Engineer Manager	Development Department Manager	Development Department Section Manager							
	_												

Monthly Report

Division R3-1, Name: Masaru

TAKASHIMA

Investigation of oxynitride-base phosphors

Object: To introduce MSi₂O₂N₂:Eu (M=alkaline earth metal) to a white color LED, and confirm properties, while aiming granting of patent rights.

Experiment:

① Introduction of M=Mg, Ba

From the experiments conducted so far, it has been found out that the brightness λp is changed in the case where the position of M is Ca or Sr. This time, $(Mg_{0.91},Eu_{0.03})Si_2O_2N_2$ and $(Ba_{0.91},Eu_{0.03})Si_2O_2N_2$ phosphors are prepared, and their respective luminescent properties are confirmed.

2 Preparation of samples with the highest brightness

From optimization of the Eu concentration and the Ca/Sr ratio, the composition achieving the highest brightness when excited by light having a peak wavelength of EX=400nm was $(Sr_{0.672}, Ca_{0.288}, Eu_{0.04})Si_2O_2N_2$. Phosphors of this composition are prepared and by further performing acid treatment and classification, the current samples with the highest brightness are prepared.

Results:

① Introduction of M=Mg, Ba

As shown in Fig. 1, the luminescence intensity reached the maximum in the case of Sr (there was almost no luminescence in the case of Mg). Further, as shown in Table 1, it was found that as the ionic radius of the alkaline earth element became larger, λp became shorter.

	Mg ²⁺	Ca ²⁺	Sr ²⁺	Ba ²⁺
Ionic radius ((Å))	0.78	1.06	1.27	1.30
λp (rm; Ex-400rm)	569	561	539	509

Table 1. Ap When respective alkaline earth elements were used

2 Preparation of samples with the highest brightness

The highest brightness at EX=400nm was obtained. However, at EX=460nm, the reduction of brightness occurred by the treatment. We consider that the reduction of brightness is attributable to the fact that the treatment includes crushing and sieving processes and an increase of reflectance near 460nm due to an increase of surface area.

EX	Sample	X (%)	E (용)	Q(%)	x	У	χp
400rm	Before treatment	109.8	93.3	98.0	0.380	0.589	545
ST'D=230-01	Treated sample	123.4	105.6	110.4	0.373	0.591	545
460rm	Before treatment	107.5	86.2	81.1	0.377	0.596	547
ST'D=206-01	Treated sample	91.0	73.6	69.1	0.372	0.598	547

Table 2 Luminescent properties of samples with the highest brightness

[Tables and Figures]

Table 1. Ap When respective alkaline earth elements were used

ionic radius (Å)

Table 2 Luminescent properties of samples with the highest brightness

Fig. 1 Luminescence spectra of $(M_{0.97}, Eu_{0.03}) Si_2O_2N_2$ (EX=400 rm)

Fig. 2 Change of reflection · excitation spectra by treatment

before treatment (excitation)

acid treatment + classification (excitation)

before treatment (reflection)

acid treatment + classification (reflection)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.