

Instituto Tecnológico de Aeronáutica Divisão de Engenharia Aeronáutica e Aeroespacial

LABORÁTORIO DE PRJ-22 PROJETO CONCEITUAL DE AERONAVE Laboratório 07

Aluna:

Tatiana Pasold

Data do laboratório: 08/06/2025

1 Contexto

O presente relatório tem como objetivo analisar os requisitos de estabilidade de uma aeronave de referência. Os parâmetros geométricos dessa aeronave estão detalhados na Seção 3.

Vale ressaltar que o enflechamento e a posição do CG de "todo o resto" poderão sofrer ajustes ao longo das análises, de acordo com os requisitos avaliados.

As condições operacionais, de missão e de voo consideradas estão sintetizadas na Tabela 1.

Tabela 1: Parâmetros de projeto

Parâmetro	Valor
Gravidade	9.81
Peso inicial estimado	43090 * Gravidade
Empuxo inicial estimado	125600
Mach de cruzeiro	0.77
Altitude de cruzeiro	11000
Alcance de cruzeiro	2390000.00000000000000000
Mach de cruzeiro alternativo	$0,\!4$
Alcance de cruzeiro alternativo	370000
Altitude de cruzeiro alternativo	4572
Tempo de espera	2700
Altitude de decolagem	0
Distância de decolagem	1520
Deflexão de <i>flaps</i> na decolagem	0.34906585039887
Deflexão de <i>slats</i> na decolagem	0
Altitude de pouso	0
Distância de pouso	1520
Deflexão de <i>flaps</i> no pouso	0.69813170079773
Deflexão de <i>slats</i> no pouso	0
Fração do peso máximo de pouso	0.84

2 Margens Estáticas

2.1 Posição do CG inalterada

Figura 1: Relação entre margem estática (SM) e ângulo de enflechamento para posições de CG dianteira (SM Fwd) e traseira (SM Aft).

A Figura 1 mostra que, para a condição com CG mais traseiro, a margem estática, conforme definido pela Equação 1, da aeronave do caso de testes é negativa. Isso indica que o centro de gravidade ultrapassa o ponto neutro, caracterizando instabilidade estática. Essa situação está ilustrada na Figura 2. Nessa condição, qualquer pequeno distúrbio em ângulo de ataque tende a se amplificar.

$$SM = \frac{x_{CA} - x_{CG}}{c_{\mu}} \tag{1}$$

Onde:

- SM Margem estática (adimensional), que indica a distância relativa entre o centro aerodinâmico e o centro de gravidade;
- x_{CA} Posição longitudinal do centro aerodinâmico da aeronave;
- x_{CG} Posição longitudinal do centro de gravidade da aeronave;

• c_{μ} — Corda média aerodinâmica (MAC), usada como referência para adimensionalização da distância.

Figura 2: Efeito de um pequeno distúrbio no ângulo de ataque de uma aeronave instável.

2.2 Alteração na posição do CG

Para estabilizar a aeronave, é possível reposicionar o CG dos componentes agrupados como "todo o resto". De acordo com Raymer, essa posição deve respeitar o intervalo de 40% a 50% do comprimento da fuselagem, como ilustrado na Figura 3.

	Fighters		Transport & Bomber		General aviation			
	lb/ft ²	kg/m ²	lb/ft ²	kg/m ²	lb/ft ²	kg/m ²	Multiplier	Approximate location
Wing	9	44	10	49	2.5	12	Sexposed planform	40% MAC
Horizontal tail	4	20	5.5	27	2	10	Sexposed planform	40% MAC
Vertical tail	5.3	26	5.5	27	2	10	Sexposed planform	40% MAC
Fuselage	4.8	23	5	24	1.4	7	Swetted area	40-50% length
	Weig	ht ratio	Weig	ht ratio	Weig	ht ratio		
Landing gear*	0.	033	0.	043	0.	057	TOGW	centroid
Landing gear—Navy	0.	045					TOGW	centroid
Installed engine	1.	3	1.	3	1.	4	Engine weight	centroid
"All-else empty"	0.	17	0.	17	0.	1	TOGW	40-50% length

Figura 3: Densidades de carga por área e localização aproximada do centro de gravidade

para diferentes categorias de aeronaves.

Adotou-se, dentro do intervalo estabelecido por Raymer, a fração de 40.5% do comprimento para o CG de "todo o resto". Essa configuração é avaliada na Figura 4.

Figura 4: Relação entre margem estática (SM) e ângulo de enflechamento para posições de CG dianteira (SM Fwd) e traseira (SM Aft) com CG de "todo o resto"
posicionado a 40.5% do comprimento.

Com essa nova posição, a margem estática traseira da aeronave do caso de testes passa a ser positiva e superior a 0.05, atendendo à restrição de estabilidade mínima. Simultaneamente, a margem dianteira permanece abaixo de 0.30, garantindo que a aeronave não apresente estabilidade excessiva.

3 Apêndice

Tabela 2: Parâmetros Geométricos da Asa

Parâmetro	Valor
Área (S_w)	93.5 m^2
Alongamento (AR_w)	8.43
Afilamento (λ_w)	0.235
Enflechamento (Λ_w)	17.45°
Diedro (Γ_w)	5°
Corda na raiz $(c_{r,w})$	$13.5 \mathrm{m}$
Posição vertical $(z_{r,w})$	$0.0 \mathrm{m}$
Espessura relativa na raiz $((t/c)_{r,w})$	12.3%
Espessura relativa na ponta $((t/c)_{t,w})$	9.6%

Tabela 3: Parâmetros Geométricos da Empenagem Horizontal

Parâmetro	Valor
Coeficiente de volume (C_{ht})	0.94
Alongamento (AR_h)	4.64
Afilamento (λ_h)	0.39
Enflechamento (Λ_h)	26°
Diedro (Γ_h)	2°
Braço aerodinâmico (L_c)	$4.83~\mathrm{m}$
Posição vertical $(z_{r,h})$	$0.0 \mathrm{m}$
Espessura relativa na raiz $((t/c)_{r,h})$	10%
Espessura relativa na ponta $((t/c)_{t,h})$	10%

Tabela 4: Parâmetros Geométricos da Empenagem Vertical

Parâmetro	Valor
Coeficiente de volume (C_{vt})	0.088
Alongamento (AR_v)	1.27
Afilamento (λ_v)	0.74
Enflechamento (Λ_v)	41°
Braço aerodinâmico (L_b)	$0.55 \mathrm{\ m}$
Posição vertical $(z_{r,v})$	$0.0 \mathrm{m}$
Espessura relativa na raiz $((t/c)_{r,v})$	10%
Espessura relativa na ponta $((t/c)_{t,v})$	10%

Tabela 5: Parâmetros da Fuselagem e Naceles

Parâmetro	Valor
Comprimento da fuselagem (L_f)	32.8 m
Diâmetro da fuselagem (D_f)	$3.3 \mathrm{m}$
Comprimento da nacele (L_n)	$4.3 \mathrm{m}$
Diâmetro da nacele (D_n)	$1.5~\mathrm{m}$
Posição longitudinal da nacele (x_n)	$23.2 \mathrm{m}$
Número de motores (n_{eng})	2

Tabela 6: Parâmetros do Trem de Pouso e Outros

Parâmetro	Valor
Posição do trem dianteiro (x_{nlg})	3.6 m
Posição do trem principal (x_{mlg})	$17.8~\mathrm{m}$
Posição lateral do trem principal (y_{mlg})	$2.47~\mathrm{m}$
Altura do trem (z_{lg})	$-2.0 \mathrm{m}$
Fator de excrescência (k_{exc})	0.03
C_{Lmax} do aerofólio	2.3

Referências Bibliográficas

DANTAS, João A. D. de J.; SILVA, Roberto G. A. da. **PRJ-22 – Projeto Conceitual de Aeronave: Lab 07**. São José dos Campos: Instituto Tecnológico de Aeronáutica, 2025.

FERREIRA, João A. D. de J. Aula 08 – Estabilidade e Controle. [Apresentação]. Instituto Tecnológico de Aeronáutica, 2025.

RAYMER, Daniel P. Aircraft Design: A Conceptual Approach. 5th ed. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2012.