1. File .CSV is loaded and first five row are get displayed using ".head()" function .

```
In [2]: import numpy as np
         import pandas as pd
         import matplotlib.pyplot as plt
         dataset = pd.read_csv("general_data.csv")
In [3]: dataset.head()
Out[3]:
            Age Attrition BusinessTravel Department DistanceFromHome Education EducationField EmployeeCount EmployeeID Gender ... NumCompaniesWorke
         0 51
                     No
                           Travel_Rarely
                                                                            2 Life Sciences
                                                                                                                   1 Female
                                          Research &
                     Yes Travel_Frequently Development
                                                                  10
                                                                                                                                                 0.
          1 31
                                                                                                                   2 Female
                                                                                 Life Sciences
                     No Travel_Frequently Research & Development
          2 32
                                                                  17
                                                                                       Other
                                                                                                                   3
                                                                                                                        Male
                              Non-Travel Research & Development
          3 38
                                                                  2
                                                                            5
                                                                                Life Sciences
                                                                                                        1
                                                                                                                   4
                                                                                                                        Male
                                                                                                                                                 3.
                     No
                                         Research &
                            Travel_Rarely Development
                                                                            1
                                                                                     Medical
                                                                                                                        Male
          4 32
         5 rows × 24 columns
         <
```

2. All table Columns are get show.

3. We have check is any null value is present in data.

Age	Attrition	BusinessTravel	Department	DistanceFromHome	Education	EducationField	EmployeeCount	EmployeeID	Gender	 NumCompaniesWorked	(
False	False	False	False	False	False	False	False	False	False	 False	
False	False	False	False	False	False	False	False	False	False	 False	!
False	False	False	False	False	False	False	False	False	False	 False	
False	False	False	False	False	False	False	False	False	False	 False	
False	False	False	False	False	False	False	False	False	False	 False	!
False	False	False	False	False	False	False	False	False	False	 False	
False	False	False	False	False	False	False	False	False	False	 False	!
False	False	False	False	False	False	False	False	False	False	 False	!
False	False	False	False	False	False	False	False	False	False	 False	
False	False	False	False	False	False	False	False	False	False	 False	!

4. we have check is any duplicated data.

```
In [7]: dataset.duplicated()
Out[7]: 0
                 False
                 False
                 False
                False
        4
                False
         4405
                 False
        4406
4407
4408
                False
                False
False
         4409
                 False
        Length: 4410, dtype: bool
```

5. If any duplicated data is present then using function 'drop_duplicates()' is get removed.

[8]:	datas	et.d	lrop_dup	licates()								
[8]:		Age	Attrition	BusinessTravel	Department	DistanceFromHome	Education	EducationField	EmployeeCount	EmployeeID	Gender	NumCompaniesWe
	0	51	No	Travel_Rarely	Sales	6	2	Life Sciences	1	1	Female	
	1	31	Yes	Travel_Frequently	Research & Development	10	1	Life Sciences	1	2	Female	
	2	32	No	Travel_Frequently	Research & Development	17	4	Other	1	3	Male	
	3	38	No	Non-Travel	Research & Development	2	5	Life Sciences	1	4	Male	
	4	32	No	Travel_Rarely	Research & Development	10	1	Medical	1	5	Male	
	4405	42	No	Travel_Rarely	Research & Development	5	4	Medical	1	4406	Female	
	4406	29	No	Travel_Rarely	Research & Development	2	4	Medical	1	4407	Male	
	4407	25	No	Travel_Rarely	Research & Development	25	2	Life Sciences	1	4408	Male	
	4408	42	No	Travel_Rarely	Sales	18	2	Medical	1	4409	Male	
	4409	40	No	Travel_Rarely	Research & Development	28	3	Medical	1	4410	Male	

6. By using '.describe()' we are getting the info about mean,std,25%...ect.

datas		Company', Train	ıngTımesLa	stYear','Yea	arsSinceLastPromot	ion', 'YearsWi	thCurrManager']].describe()
<	seci							
	Age	DistanceFromHome	Education	MonthlyIncome	NumCompaniesWorked	PercentSalaryHike	TotalWorkingYears	TrainingTimesLastYear
count	4410.000000	4410.000000	4410.000000	4410.000000	4391.000000	4410.000000	4401.000000	4410.000000
mean	36.923810	9.192517	2.912925	65029.312925	2.694830	15.209524	11.279936	2.799320
std	9.133301	8.105026	1.023933	47068.888559	2.498887	3.659108	7.782222	1.288978
min	18.000000	1.000000	1.000000	10090.000000	0.000000	11.000000	0.000000	0.000000
25%	30.000000	2.000000	2.000000	29110.000000	1.000000	12.000000	6.000000	2.000000
50%	36.000000	7.000000	3.000000	49190.000000	2.000000	14.000000	10.000000	3.000000
75%	43.000000	14.000000	4.000000	83800.000000	4.000000	18.000000	15.000000	3.000000
max	60.000000	29.000000	5.000000	199990.000000	9.000000	25.000000	40.000000	6.000000

7. '.mean()' function we get all columns mean.

```
In [12]: dataset1=dataset[['Age', 'Attrition','DistanceFromHome','Education','MonthlyIncome','NumCompaniesWorked','PercentSalary
                'YearsAtCompany', 'TrainingTimesLastYear', 'YearsSinceLastPromotion', 'YearsWithCurrManager']].mean()
         dataset1
         <
Out[12]: Age
                                       36.923810
         DistanceFromHome
                                        9.192517
         Education
                                        2.912925
         MonthlyIncome
                                    65029.312925
         NumCompaniesWorked
         PercentSalaryHike
                                       15.209524
         TotalWorkingYears
                                       11.279936
         TrainingTimesLastYear
                                        2.799320
         YearsAtCompany
                                        7.008163
         TrainingTimesLastYear
                                        2.799320
         YearsSinceLastPromotion
                                       2.187755
         YearsWithCurrManager
                                        4.123129
         dtype: float64
```

8. '.mode()' function is used for getting mode values of all columns.

```
In [13]: dataset1=dataset[['Age', 'Attrition', 'DistanceFromHome', 'Education', 'MonthlyIncome', 'NumCompaniesWorked', 'PercentSalaryi 'YearsAtCompany', 'TrainingTimesLastYear', 'YearsSinceLastPromotion', 'YearsWithCurrManager']].mode()
dataset1

Cout[13]:

Age Attrition DistanceFromHome Education MonthlyIncome NumCompaniesWorked PercentSalaryHike TotalWorkingYears TrainingTimesLastYear YearsAtt

0 35 No 2 3 23420 1.0 11 10.0 2
```

9. By using '.median()' function we get all median values of each columns.

```
In [14]: dataset1=dataset[['Age', 'Attrition', 'DistanceFromHome', 'Education', 'MonthlyIncome', 'NumCompaniesWorked', 'PercentSalaryi 'YearsAtCompany', 'TrainingTimesLastYear', 'YearsSinceLastPromotion', 'YearsWithCurrManager']] .median()
            dataset1
            <
Out[14]: Age
                                                  36.0
            DistanceFromHome
                                                   7.0
                                                   3.0
            Education
            MonthlyIncome
                                              49190.0
            NumCompaniesWorked
                                                   2.0
            PercentSalaryHike
                                                  14.0
                                                  10.0
            TotalWorkingYears
            TrainingTimesLastYear
            YearsAtCompany
                                                   5.0
            TrainingTimesLastYear
                                                   3.0
            YearsSinceLastPromotion
                                                   1.0
            YearsWithCurrManager
            dtype: float64
```

10. By using '.var() ' we are getting variance value .

```
In [15]: dataset1=dataset[['Age', 'Attrition', 'DistanceFromHome', 'Education', 'MonthlyIncome', 'NumCompaniesWorked', 'PercentSalary' 'YearsAtCompany', 'TrainingTimesLastYear', 'YearsSinceLastPromotion', 'YearsWithCurrManager']].var()
            <
Out[15]: Age
                                             8.341719e+01
                                             6.569144e+01
           DistanceFromHome
                                             1.048438e+00
           MonthlyIncome
                                             2.215480e+09
           NumCompaniesWorked
                                             6.244436e+00
            PercentSalaryHike
                                             1.338907e+01
           TotalWorkingYears
                                             6.056298e+01
                                             1.661465e+00
           TrainingTimesLastYear
                                             3.751728e+01
            YearsAtCompany
                                             1.661465e+00
1.037935e+01
           TrainingTimesLastYear
           YearsSinceLastPromotion
            YearsWithCurrManager
                                             1.272582e+01
           dtype: float64
```

11. In '.skew()' function is used for asymmetry of the probability distribution of a real -valued random variable about its mean.

```
In [16]: dataset1=dataset[['Age', 'Attrition','DistanceFromHome','Education','MonthlyIncome','NumCompaniesWorked','PercentSalaryi', 'YearsAtCompany','TrainingTimesLastYear','YearsSinceLastFromotion', 'YearsWithCurrManager']].skew()
           dataset1
           <
Out[16]: Age
                                             0.413005
                                             0.957466
           Education
                                           -0.289484
                                            1.368884
           MonthlyIncome
           NumCompaniesWorked
           PercentSalaryHike
                                             0.820569
           TotalWorkingYears
                                            1.116832
           TrainingTimesLastYear
                                             0.552748
           YearsAtCompany
                                             1.763328
           TrainingTimesLastYear
                                             0.552748
           YearsSinceLastPromotion
                                            1.982939
           YearsWithCurrManager
           dtype: float64
```

12. In '.kurt()' function give the info about measure of the "tailedness" of the probability distribution of a real -valued random variable.

```
In [17]: dataset1=dataset[['Age', 'Attrition','DistanceFromHome','Education','MonthlyIncome','NumCompaniesWorked','PercentSalaryi
'YearsAtCompany','TrainingTimesLastYear','YearsSinceLastPromotion', 'YearsWithCurrManager']].kurt()
           dataset1
            <
Out[17]: Age
                                            -0.405951
           DistanceFromHome
                                            -0.227045
           Education
           MonthlyIncome
                                              1.000232
           NumCompaniesWorked
PercentSalaryHike
                                              0.007287
                                            -0.302638
                                              0.912936
           TotalWorkingYears
           TrainingTimesLastYear
                                              0.491149
           YearsAtCompany
                                              3.923864
            TrainingTimesLastYear
                                              0.491149
            YearsSinceLastPromotion
                                              3.601761
           YearsWithCurrManager
                                              0.167949
           dtype: float64
```

13. Using '.std()' function we can get the amount of variation or dispersion of a set value.

```
In [18]: dataset1=dataset[['Age', 'Attrition','DistanceFromHome','Education','MonthlyIncome','NumCompaniesWorked','PercentSalaryi
                 'YearsAtCompany','TrainingTimesLastYear','YearsSinceLastPromotion', 'YearsWithCurrManager']].std()
         dataset1
         <
Out[18]: Age
                                        9.133301
         DistanceFromHome
                                        8.105026
                                        1.023933
         Education
         MonthlyIncome
                                    47068.888559
                                      2.498887
         NumCompaniesWorked
         PercentSalaryHike
                                        3.659108
         TotalWorkingYears
                                        7.782222
         TrainingTimesLastYear
                                        1.288978
         YearsAtCompany
                                        6.125135
         TrainingTimesLastYear
                                       1.288978
                                        3.221699
         YearsSinceLastPromotion
         YearsWithCurrManager
                                        3.567327
         dtype: float64
```

14. Inference of the analyst:

- All the above variable are showing positive skew except Education is showing negatively skew.
- In Kurtosis Age, Education, DistanceFromHome and percentSalaryHike are **Platykurtic.** And TotalWorkingYears, TrainingTimeLastYear, NumCompaniesWorked, YearWithCurrent Manager are **Mesokurtic.** YearsAtCompany, YearsSinceLastPromotion and MonthlyIncome are **Leptokurtic.**
- standard deviation of MonthlyIncome is more as compared to other Columns

15. Outliers:-

1. Age is normally skewed without any outliers.

2. MonthlyIncome is negatively skewed with many outliers.

3. PercentSalaryHike is positively skewed with no any outliers.

```
In [9]: plt.boxplot(dataset.PercentSalaryHike)
Out[9]: {'whiskers': [<matplotlib.lines.Line2D at 0x1913953fcc8>,
          <matplotlib.lines.Line2D at 0x1913953fdc8>],
         'caps': [<matplotlib.lines.Line2D at 0x1913953fe48>,
          <matplotlib.lines.Line2D at 0x19139544d48>],
         'boxes': [<matplotlib.lines.Line2D at 0x1913953f548>],
         'medians': [<matplotlib.lines.Line2D at 0x19139544e48>],
         'fliers': [<matplotlib.lines.Line2D at 0x19139544ec8>],
         'means': []}
         24
         22
         20
         18
         16
         14
         12
```