Some title

Master Thesis

Theo Koppenhöfer

Lund

October 10, 2023

Some amazing introduction

Some general remarks

On assuming non-degeneracy

The case n=2

Claim. Let Ω be homoemorph to $B_1 \subseteq \mathbb{R}^2$. Let further $f : \overline{\Omega} \to \mathbb{R}$ be harmonic and admissable as in Morse with critical point $x_0 \in \Omega$. Then $\Sigma^- \subseteq \partial \Omega$ consists fo at least 2 components.

A proof involving level-sets

Proof. Let $y_c = f(x_0)$ and x_0, \dots, x_N be all the critical points s.t. $f(x_i) = y_c$. We claim that the set

$$C = \{ f = y_c \} \subseteq \overline{\Omega}$$

divides $\partial\Omega$ into 4 components. To show this let $\gamma_i:(a_i,b_i)\to C$ parametrise the curves in C intersecting at x_0 . These can be constructed with the initial value problem

$$\gamma' = (Df)^{\perp} \big|_{\gamma}$$
$$\gamma(0) = \gamma_0$$

where $\gamma_0 \in C$ is chosen sufficiently near x_0 . Without loss of generality the intervals on which the γ_i are defined are maximal. We thus have for

$$\gamma_i^- = \lim_{t \to a_i} \gamma(t)$$

$$\gamma_i^- = \lim_{t \to a_i} \gamma(t)$$

$$\gamma_i^+ = \lim_{t \to b_i} \gamma(t)$$

that $\gamma_i^{\pm} \in ([c]x_0, \dots, x_N, \partial \Omega)$ since the x_i are the sole points on $\Omega \cap \overline{C}$ at which $Df^{\perp} = 0$. We therefore have a situation similar to the one depicted in [TODO: make figure]. One sees that C can thus be represented by a graph G with vertices v_0, \dots, v_M and edges $e_0, \ldots, e_L \subseteq C$. Assume G contains a cycle with vertex sequence v_{i_1}, \ldots, v_{i_K} and edges e_{i_1}, \ldots, v_{i_K} . Then

$$\partial E = \bigcup_k e_{i_k} \subseteq C$$

is the boundary of a domain E for which $f = y_c$ on ∂E . By the maximum principle f=0 on E and thus f=0 on $\overline{\Omega}$, a contradiction to the non-degeneracy. Hence G is acyclic and the number of intersections of C with $\partial\Omega$ is at least 4 and thus $\partial\Omega$ is divided into 4 components. Now choose 4 neighbouring components as depicted in figure [TODO: insert figure]. Let $A \subseteq \Omega$ be the domain bounded by ω_1 and C as in the figure. The maximum principle yields that ω_1 contains a local maximum or minimum of f. Analogously $\omega_2, \ldots, \omega_4$ also contain local extrema. Since the $\partial \omega_i$ cannot be extremal points on $\partial\Omega$ we can assume without loss of generality (by switching f for -f) that ω_1 and ω_3 contain local maxima and ω_2 and ω_4 local minima. By Hopf's lemma we thus have

$$\Sigma^- \cap \omega_2 \neq \emptyset \neq \Sigma^- \cap \omega_4$$

and

$$\Sigma^+ \cap \omega_1 \neq \emptyset \neq \Sigma^+ \cap \omega_3$$

From this the claim follows.

A proof involving invariant manifolds

Proof. Let $x_0, ..., x_N$ denote the critical points of f. Let $\lambda_i : (a_i, b_i) \to \overline{\Omega}$ for $i \in \{1, 2\}$ parametrise the unstable manifolds of the critical point x_0 and λ_i : $(a_i,b_i) \to \overline{\Omega}$ for $i \in \{1,2\}$ be chosen to parametrise the stable manifolds of x_0 . As in the previous proof we can assume the interval on which the λ_i are defined to be maximal. We thus have for

$$\lambda_i^- = \lim_{t \to a} \lambda(t)$$

$$\lambda_i^- = \lim_{t \to a_i} \lambda(t)$$
 $\lambda_i^+ = \lim_{t \to b_i} \lambda(t)$

that $\lambda_i^\pm \in ([)c]x_0,\ldots,x_N,\partial\Omega$ since the x_j are the sole points on $\Omega\cap\overline{C}$ at which $Df\perp=0$. Thus all invariant manifolds of all critical points form an directed graph G with vertices v_1, \ldots, v_M and edges $e_1, \ldots, e_L \subseteq \overline{\Omega}$. Here the direction of the edge is determined by whether f increases or decreases along the edge. Our graph is in fact acyclic directed. TODO: continue proof The case n = 3

The case of a single critical point

The case of dimensions n = 4

Define the harmonic function

$$f \colon B_1 \subseteq \mathbb{R}^4 \to \mathbb{R}$$

$$x \mapsto x_1^2 + x_2^2 - x_3^2 - x_4^2 \,.$$

This has the origin as a stagnation point. We now claim that the sets Σ^+ and Σ^- are both simply connected, i.e. we have a tube in \mathbb{R}^4 with throughflow and a stagnation point.

Proof. To prove this claim we observe that the boundary ∂B_1 can be parametrised by the coordinates $\bar{x} = (x_2, x_3, x_4)$ for which we have $|\bar{x}| \le 1$. By the condition

$$\sum_{i} x_i^2 = 1 \tag{1}$$

on the boundary ∂B_1 we have that x_1 is then uniquely determined up to sign. Thus we have have defined parametrisations

$$\Sigma^{\pm} : B_1 \subseteq \mathbb{R}^3 \to \mathbb{R}$$
$$\bar{x} \mapsto x, \pm x_1 \ge 0 \tag{2}$$

We now calculate the derivative of f

$$Df = 2\begin{bmatrix} x_1 & x_2 & -x_3 & -x_4 \end{bmatrix}^{\top}$$

and the normal to ∂B_1

$$n = \begin{bmatrix} x_1 & \cdots & x_4 \end{bmatrix}^\top$$
.

Thus we have $x \in \Sigma^{\pm}$ iff

$$0 < \pm Df \cdot n = \pm 2(x_1^2 + x_2^2 - x_3^2 - x_4^2)$$

Using the condition (1) we obtain the equivalent condition

$$0 < \pm 1 - 2(x_3^2 + x_4^2)$$

Define the cylinder

$$C = \{\bar{x} \in \mathbb{R}^3 : x_3^2 + x_4^2 < 1/2\} = \mathbb{R} \times B_{1/\sqrt{2}}$$

If we return to our parametrisation (2) we see that we have $\bar{x} \in B_1 \cap C$ iff $\Sigma^{\pm}(x) \in \Sigma^+$. Analogously we have that $\bar{x} \in B_1 \setminus C$ iff $\Sigma^{\pm}(x) \in \Sigma^-$. Taking into account that $x_1 = 0$ is equivalent to $\bar{x} \in \partial B_1 \subseteq \mathbb{R}^2$ the claim follows from a picture.

(TODO: Elaborate here with some argument with homeormophisms)

Bibliography

- [1] computational-science-HT23, *Github repository to the thesis*. Online, 2023. [Online]. Available: https://github.com/TheoKoppenhoefer/master-thesis.
- [2] J. E. Snow and C. M. Hoover, "Mathematician as artist: Marston morse," *The Mathematical Intelligencer*, vol. 32, no. 2, pp. 11–18, Jun. 2010, ISSN: 1866-7414. DOI: 10.1007/s00283-009-9085-3. [Online]. Available: https://doi.org/10.1007/s00283-009-9085-3.
- [3] M. Morse, "Relations between the critical points of a real function of *n* independent variables," *Trans. Amer. Math. Soc.*, vol. 27, no. 3, pp. 345–396, 1925, ISSN: 0002-9947,1088-6850. DOI: 10.2307/1989110. [Online]. Available: https://doi.org/10.2307/1989110.
- [4] M. Morse and S. S. Cairns, *Critical point theory in global analysis and differential topology: An introduction*, ser. Pure and Applied Mathematics. Academic Press, New York-London, 1969, vol. Vol. 33, pp. xii+389.
- [5] M. Morse, "Equilibrium points of harmonic potentials," J. Analyse Math., vol. 23, pp. 281–296, 1970, ISSN: 0021-7670,1565-8538. DOI: 10.1007/BF02795505.
 [Online]. Available: https://doi.org/10.1007/BF02795505.
- [6] R. Shelton, "Critical points of harmonic functions on domains in R³," Trans. Amer. Math. Soc., vol. 261, no. 1, pp. 137–158, 1980, ISSN: 0002-9947,1088-6850. DOI: 10.2307/1998322. [Online]. Available: https://doi.org/10.2307/1998322.
- [7] A. Hatcher, *Algebraic topology*. Cambridge University Press, Cambridge, 2002, pp. xii+544, ISBN: 0-521-79160-X; 0-521-79540-0.