74HC165; 74HCT165

8-bit parallel-in/serial out shift register Rev. 03 — 14 March 2008

Product data sheet

1. **General description**

The 74HC165; 74HCT165 are high-speed Si-gate CMOS devices that comply with JEDEC standard no. 7A. They are pin compatible with Low-power Schottky TTL (LSTTL).

The 74HC165; 74HCT165 are 8-bit parallel-load or serial-in shift registers with complementary serial outputs (Q7 and $\overline{Q7}$) available from the last stage. When the parallel load (PL) input is LOW, parallel data from the D0 to D7 inputs are loaded into the register asynchronously.

When \overline{PL} is HIGH, data enters the register serially at the DS input and shifts one place to the right (Q0 \rightarrow Q1 \rightarrow Q2, etc.) with each positive-going clock transition. This feature allows parallel-to-serial converter expansion by tying the Q7 output to the DS input of the succeeding stage.

The clock input is a gated-OR structure which allows one input to be used as an active LOW clock enable (\overline{CE}) input. The pin assignment for the CP and \overline{CE} inputs is arbitrary and can be reversed for layout convenience. The LOW-to-HIGH transition of input CE should only take place while CP HIGH for predictable operation. Either the CP or the CE should be HIGH before the LOW-to-HIGH transition of PL to prevent shifting the data when PL is activated.

2. **Features**

- Asynchronous 8-bit parallel load
- Synchronous serial input
- Complies with JEDEC standard no. 7A
- ESD protection:
 - ◆ HBM JESD22-A114E exceeds 2000 V
 - MM JESD22-A115-A exceeds 200 V
- Specified from -40 °C to +85 °C and from -40 °C to +125 °C

3. Applications

Parallel-to-serial data conversion

4. Ordering information

Table 1. Ordering information

Type number	Package			
	Temperature range	Name	Description	Version
74HC165N	–40 °C to +125 °C	DIP16	plastic dual in-line package; 16 leads (300 mil)	SOT38-4
74HCT165N				
74HC165D	–40 °C to +125 °C	SO16	plastic small outline package; 16 leads; body width 3.9 mm	SOT109-1
74HCT165D				
74HC165DB	–40 °C to +125 °C	SSOP16	plastic shrink small outline package; 16 leads; body width	SOT338-1
74HCT165DB			5.3 mm	
74HC165PW	–40 °C to +125 °C	TSSOP16	plastic thin shrink small outline package; 16 leads; body	SOT403-1
74HCT165PW			width 4.4 mm	
74HC165BQ	–40 °C to +125 °C	DHVQFN16	plastic dual in-line compatible thermal enhanced very thin	SOT763-1
74HCT165BQ			quad flat package; no leads; 16 terminals; body $2.5 \times 3.5 \times 0.85$ mm	

5. Functional diagram

6. Pinning information

6.1 Pinning

4 of 22

6.2 Pin description

Table 2. Pin description

Symbol	Pin	Description
PL	1	asynchronous parallel load input (active LOW)
СР	2	clock input (LOW-to-HIGH edge-triggered)
Q7	7	complementary output from the last stage
GND	8	ground (0 V)
Q7	9	serial output from the last stage
DS	10	serial data input
D0 to D7	11, 12, 13, 14, 3, 4, 5, 6	parallel data inputs (also referred to as Dn)
CE	15	clock enable input (active LOW)
V_{CC}	16	positive supply voltage

7. Functional description

Table 3. Function table[1]

Operating modes	Inputs				Qn regis	Qn registers		Outputs	
	PL	CE	СР	DS	D0 to D7	Q0	Q1 to Q6	Q7	Q7
parallel load	L	Χ	X	X	L	L	L to L	L	Н
	L	Χ	Χ	Χ	Н	Н	H to H	Н	L
serial shift	Н	L	1	I	Χ	L	q0 to q5	q6	q 6
	Н	L	↑	h	Χ	Н	q0 to q5	q6	q 6
	Н	1	L	I	Χ	L	q0 to q5	q6	q 6
	Н	1	L	h	Χ	Н	q0 to q5	q6	q 6
hold "do nothing"	Н	Н	Χ	Х	Х	q0	q1 to q6	q7	q 7
	Н	Χ	Н	Х	Χ	q0	q1 to q6	q7	\overline{q} 7

^[1] H = HIGH voltage level;

h = HIGH voltage level one set-up time prior to the LOW-to-HIGH clock transition;

L = LOW voltage level;

I = LOW voltage level one set-up time prior to the LOW-to-HIGH clock transition;

q = state of the referenced output one set-up time prior to the LOW-to-HIGH clock transition;

X = don't care;

 $[\]uparrow$ = LOW-to-HIGH clock transition.

8. Limiting values

Table 4. Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V)

Symbol	Parameter	Conditions	Min	Max	Unit
V_{CC}	supply voltage		-0.5	+7	V
I_{IK}	input clamping current	$V_I < -0.5 \text{ V or } V_I > V_{CC} + 0.5 \text{ V}$	<u>[1]</u> _	±20	mA
I _{OK}	output clamping current	V_O < -0.5 V or V_O > V_{CC} + 0.5 V	<u>[1]</u> _	±20	mA
Io	output current	$-0.5 \text{ V} < \text{V}_{\text{O}} < \text{V}_{\text{CC}} + 0.5 \text{ V}$	-	±25	mA
I _{CC}	supply current		-	50	mA
I_{GND}	ground current		-50	-	mA
T _{stg}	storage temperature		-65	+150	°C

 Table 4.
 Limiting values ...continued

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V)

Symbol	Parameter	Conditions	Min	Max	Unit
P _{tot}	total power dissipation	T _{amb} = -40 °C to +125 °C			
		DIP16 package	[2] _	750	mW
		SO16 package	[3] -	500	mW
		(T)SSOP16 package	<u>[4]</u> _	500	mW
		DHVQFN16 package	<u>[5]</u> _	500	mW

- [1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
- [2] P_{tot} derates linearly with 12 mW/K above 70 °C.
- [3] Ptot derates linearly with 8 mW/K above 70 °C.
- [4] Ptot derates linearly with 5.5 mW/K above 60 °C.
- [5] P_{tot} derates linearly with 4.5 mW/K above 60 °C.

9. Recommended operating conditions

Table 5. Recommended operating conditions

Voltages are referenced to GND (ground = 0 V)

Symbol	Parameter	Conditions		74HC165	5	7	Unit		
			Min	Тур	Max	Min	Тур	Max	
V_{CC}	supply voltage		2.0	5.0	6.0	4.5	5.0	5.5	V
V_{I}	input voltage		0	-	V_{CC}	0	-	V_{CC}	V
Vo	output voltage		0	-	V_{CC}	0	-	V_{CC}	V
T _{amb}	ambient temperature		-40	-	+125	-40	-	+125	°C
$\Delta t/\Delta V$	input transition rise and fall rate	$V_{CC} = 2.0 \text{ V}$	-	-	625	-	-	-	ns/V
		$V_{CC} = 4.5 \text{ V}$	-	1.67	139	-	1.67	139	ns/V
		$V_{CC} = 6.0 \text{ V}$	-	-	83	-	-	-	ns/V

10. Static characteristics

Table 6. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol Parameter		Conditions		25 °C			+85 °C	–40 °C to	Unit	
			Min	Тур	Max	Min	Max	Min	Max	
74HC16	65									
V _{IH}	HIGH-level input voltage	$V_{CC} = 2.0 \text{ V}$	1.5	1.2	-	1.5	-	1.5	-	V
		V _{CC} = 4.5 V	3.15	2.4	-	3.15	-	3.15	-	V
		$V_{CC} = 6.0 \text{ V}$	4.2	3.2	-	4.2	-	4.2	-	V
V_{IL}	LOW-level	$V_{CC} = 2.0 \text{ V}$	-	8.0	0.5	-	0.5	-	0.5	V
	input voltage	V _{CC} = 4.5 V	-	2.1	1.35	-	1.35	-	1.35	V
		$V_{CC} = 6.0 \text{ V}$	-	2.8	1.8	-	1.8	-	1.8	V

Table 6. Static characteristics ...continued
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		25 °C		-40 °C t	to +85 °C	-40 °C to +125 °C		Unit	
			Min	Тур	Max	Min	Max	Min	Max		
V _{OH}	HIGH-level	$V_I = V_{IH}$ or V_{IL}									
	output voltage	$I_{O} = -20 \mu A; V_{CC} = 2.0 V$	1.9	2.0	-	1.9	-	1.9	-	V	
		$I_O = -20 \mu A$; $V_{CC} = 4.5 \text{ V}$	4.4	4.5	-	4.4	-	4.4	-	V	
		$I_O = -20 \mu A; V_{CC} = 6.0 V$	5.9	6.0	-	5.9	-	5.9	-	V	
		$I_{O} = -4.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.98	4.32	-	3.84	-	3.7	-	V	
		$I_{O} = -5.2 \text{ mA}; V_{CC} = 6.0 \text{ V}$	5.48	5.81	-	5.34	-	5.2	-	V	
V_{OL}	LOW-level	$V_I = V_{IH}$ or V_{IL}									
	output voltage	$I_O = 20 \mu A; V_{CC} = 2.0 V$	-	0	0.1	-	0.1	-	0.1	V	
		$I_O = 20 \mu A; V_{CC} = 4.5 V$	-	0	0.1	-	0.1	-	0.1	V	
		I_O = 20 μ A; V_{CC} = 6.0 V	-	0	0.1	-	0.1	-	0.1	V	
		$I_{O} = 4.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	0.15	0.26	-	0.33	-	0.4	V	
		$I_{O} = 5.2 \text{ mA}; V_{CC} = 6.0 \text{ V}$	-	0.16	0.26	-	0.33	-	0.4	V	
l _l	input leakage current	$V_I = V_{CC}$ or GND; $V_{CC} = 6.0 \text{ V}$	-	-	±0.1	-	±1	-	±1	μΑ	
I _{CC}	supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A; $V_{CC} = 6.0 \text{ V}$	-	-	8.0	-	80	-	160	μΔ	
Cı	input capacitance		-	3.5	-	-	-	-	-	рF	
74HCT1	65										
V_{IH}	HIGH-level input voltage	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	2.0	1.6	-	2.0	-	2.0	-	V	
V_{IL}	LOW-level input voltage	$V_{CC} = 4.5 \text{ V} \text{ to } 5.5 \text{ V}$	-	1.2	8.0	-	0.8	-	0.8	V	
V _{OH}	HIGH-level	$V_I = V_{IH}$ or V_{IL} ; $V_{CC} = 4.5 \text{ V}$									
	output voltage	$I_{O} = -20 \mu A$	4.4	4.5	-	4.4	-	4.4	-	V	
		$I_{O} = -4.0 \text{ mA}$	3.98	4.32	-	3.84	-	3.7	-	V	
V_{OL}	LOW-level	$V_I = V_{IH}$ or V_{IL} ; $V_{CC} = 4.5 \text{ V}$									
	output voltage	$I_O = 20 \mu A; V_{CC} = 4.5 V$	-	0	0.1	-	0.1	-	0.1	V	
		$I_O = 5.2 \text{ mA}; V_{CC} = 6.0 \text{ V}$	-	0.16	0.26	-	0.33	-	0.4	V	
l _l	input leakage current	$V_I = V_{CC}$ or GND; $V_{CC} = 6.0 \text{ V}$	-	-	±0.1	-	±1	-	±1	μΑ	
I _{CC}	supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A; $V_{CC} = 6.0 \text{ V}$	-	-	8.0	-	80	-	160	μΔ	
Δl _{CC}	additional supply current	per input pin; $\begin{aligned} &V_I = V_{CC} - 2.1 \text{ V;} \\ &\text{other inputs at } V_{CC} \text{ or GND;} \\ &V_{CC} = 4.5 \text{ V to } 5.5 \text{ V} \end{aligned}$									
		Dn and DS inputs	-	35	126	-	157.5	-	171.5	μΑ	
		CP $\overline{\text{CE}}$, and $\overline{\text{PL}}$ inputs	-	65	234	-	292.5	-	318.5	μΑ	
Cı	input capacitance		-	3.5	-	-	-	-	-	pF	

11. Dynamic characteristics

Dynamic characteristics Table 7.

GND (ground = 0 V); C_L = 50 pF unless otherwise specified; for test circuit, see Figure 12

Symbol	Parameter	Conditions			25 °C		–40 °C t	o +85 °C	-40 °C to +125 °C		Unit
			N	/lin	Тур	Max	Min	Max	Min	Max	
74HC16	5										
t _{pd}	propagation delay	CP or \overline{CE} to Q7, \overline{Q} 7; see Figure 7	[1]								
		$V_{CC} = 2.0 \text{ V}$		-	52	165	-	205	-	250	ns
		V _{CC} = 4.5 V		-	19	33	-	41	-	50	ns
		V _{CC} = 6.0 V		-	15	28	-	35	-	43	ns
		$V_{CC} = 5.0 \text{ V}; C_L = 15 \text{ pF}$		-	16	-	-	-	-	-	ns
		PL to Q7, Q7; see Figure 8									
		$V_{CC} = 2.0 \text{ V}$		-	50	165	-	205	-	250	ns
		$V_{CC} = 4.5 \text{ V}$		-	18	33	-	41	-	50	ns
		$V_{CC} = 6.0 \text{ V}$		-	14	28	-	35	-	43	ns
		$V_{CC} = 5.0 \text{ V}; C_L = 15 \text{ pF}$		-	15	-	-	-	-	-	ns
		D7 to Q7, Q7; see Figure 9									
		$V_{CC} = 2.0 \text{ V}$		-	36	120	-	150	-	180	ns
		$V_{CC} = 4.5 \text{ V}$		-	13	24	-	30	-	36	ns
		$V_{CC} = 6.0 \text{ V}$		-	10	20	-	26	-	31	ns
		$V_{CC} = 5.0 \text{ V}; C_L = 15 \text{ pF}$		-	11	-	-	-	-	-	ns
t _t	transition	Q7, Q7 output; see Figure 7	[2]								
	time	V_{CC} = 2.0 V		-	19	75	-	95	-	110	ns
		$V_{CC} = 4.5 \text{ V}$		-	7	15	-	19	-	22	ns
		$V_{CC} = 6.0 \text{ V}$		-	6	13	-	16	-	19	ns
t_{W}	pulse width	CP input HIGH or LOW; see Figure 7									
		$V_{CC} = 2.0 \text{ V}$	3	80	17	-	100	-	120	-	ns
		$V_{CC} = 4.5 \text{ V}$	•	16	6	-	20	-	24	-	ns
		$V_{CC} = 6.0 \text{ V}$	•	14	5	-	17	-	20	-	ns
		PL input LOW; see Figure 8									
		$V_{CC} = 2.0 \text{ V}$	8	80	14	-	100	-	120	-	ns
		$V_{CC} = 4.5 \text{ V}$	•	16	5	-	20	-	24	-	ns
		$V_{CC} = 6.0 \text{ V}$	•	14	4	-	17	-	20	-	ns
t _{rec}	recovery time	PL to CP, CE; see Figure 8									
		V _{CC} = 2.0 V	1	00	22	-	125	-	150	-	ns
		$V_{CC} = 4.5 \text{ V}$	2	20	8	-	25	-	30	-	ns
		V _{CC} = 6.0 V	•	17	6	-	21	-	26	-	ns

 Table 7.
 Dynamic characteristics ...continued

GND (ground = 0 V); C_L = 50 pF unless otherwise specified; for test circuit, see Figure 12

Symbol	Parameter	Conditions		25 °C		-40 °C t	o +85 °C	–40 °C to	+125 °C	Unit
			Min	Тур	Max	Min	Max	Min	Max	
t_{su}	set-up time	DS to CP, CE; see Figure 10		•		'				
		V _{CC} = 2.0 V	80	11	-	100	-	120	-	ns
		V _{CC} = 4.5 V	16	4	-	20	-	24	-	ns
		V _{CC} = 6.0 V	14	3	-	17	-	20	-	ns
		CE to CP and CP to CE; see Figure 10								
		V _{CC} = 2.0 V	80	17	-	100	-	120	-	ns
		V _{CC} = 4.5 V	16	6	-	20	-	24	-	ns
		V _{CC} = 6.0 V	14	5	-	17	-	20	-	ns
		Dn to PL; see Figure 11								
		V _{CC} = 2.0 V	80	22	-	100	-	120	-	ns
		V _{CC} = 4.5 V	16	8	-	20	-	24	-	ns
		V _{CC} = 6.0 V	14	6	-	17	-	20	-	ns
t _h	hold time	DS to CP, \overline{CE} and Dn to \overline{PL} ; see Figure 10								
		V _{CC} = 2.0 V	5	6	-	5	-	5	-	ns
		V _{CC} = 4.5 V	5	2	-	5	-	5	-	ns
		V _{CC} = 6.0 V	5	2	-	5	-	5	-	ns
		CE to CP and CP to CE; see Figure 10								
		V _{CC} = 2.0 V	5	-17	-	5	-	5	-	ns
		V _{CC} = 4.5 V	5	-6	-	5	-	5	-	ns
		V _{CC} = 6.0 V	5	-5	-	5	-	5	-	ns
f _{max}	maximum	CP input; see Figure 7								
	frequency	V _{CC} = 2.0 V	6	17	-	5	-	4	-	MHz
		V _{CC} = 4.5 V	30	51	-	24	-	20	-	MHz
		V _{CC} = 6.0 V	35	61	-	28	-	24	-	MHz
		$V_{CC} = 5.0 \text{ V}; C_L = 15 \text{ pF}$	-	56	-	-	-	-	-	MHz
C_{PD}	power dissipation capacitance	per package; [3] $V_I = GND \text{ to } V_{CC}$	-	35	-	-	-	-	-	pF

 Table 7.
 Dynamic characteristics ...continued

GND (ground = 0 V); C_L = 50 pF unless otherwise specified; for test circuit, see Figure 12

Symbol	Parameter	Conditions			25 °C		-40 °C to +85 °C		-40 °C to +125 °C		Unit
				Min	Тур	Max	Min	Max	Min	Max	
74HCT1	65							'	'		
t _{pd}	propagation delay	CE, CP to Q7, Q7; see Figure 7	[1]								
		V _{CC} = 4.5 V		-	17	34	-	43	-	51	ns
		$V_{CC} = 5.0 \text{ V}; C_L = 15 \text{ pF}$		-	14	-	-	-	-	-	ns
		PL to Q7, Q7; see Figure 8									
		$V_{CC} = 4.5 \text{ V}$		-	20	40	-	50	-	60	ns
		$V_{CC} = 5.0 \text{ V}; C_L = 15 \text{ pF}$		-	17	-	-	-	-	-	ns
		D7 to Q7, Q7; see Figure 9									
		$V_{CC} = 4.5 \text{ V}$		-	14	28	-	35	-	42	ns
		$V_{CC} = 5.0 \text{ V}; C_L = 15 \text{ pF}$		-	11	-	-	-	-	-	ns
t _t	transition	Q7, Q7 output; see Figure 7	[2]								
	time	$V_{CC} = 4.5 \text{ V}$		-	7	15	-	19	-	22	ns
t_{W}	pulse width	CP input; see Figure 7									
		$V_{CC} = 4.5 \text{ V}$		16	6	-	20	-	24	-	ns
		PL input; see Figure 8									
		$V_{CC} = 4.5 \text{ V}$		20	9	-	25	-	30	-	ns
t_{rec}	recovery time	PL to CP, CE; see Figure 8									
		$V_{CC} = 4.5 \text{ V}$		20	8	-	25	-	30	-	ns
t_{su}	set-up time	DS to CP, CE; see Figure 10									
		$V_{CC} = 4.5 \text{ V}$		20	2	-	25	-	30	-	ns
		CE to CP and CP to CE; see Figure 10									
		$V_{CC} = 4.5 \text{ V}$		20	7	-	25	-	30	-	ns
		Dn to PL; see Figure 11									
		$V_{CC} = 4.5 \text{ V}$		20	10	-	25	-	30	-	ns
t _h	hold time	DS to CP, \overline{CE} and Dn to \overline{PL} ; see Figure 10									
		$V_{CC} = 4.5 \text{ V}$		7	-1	-	9	-	11	-	ns
		CE to CP and CP to CE; see Figure 10									
		$V_{CC} = 4.5 \text{ V}$		0	-7	-	0	-	0	-	ns
f _{max}	maximum	CP input; see Figure 7									
	frequency	$V_{CC} = 4.5 \text{ V}$		26	44	-	21	-	17	-	MHz
		$V_{CC} = 5.0 \text{ V}; C_L = 15 \text{ pF}$		-	48	-	-	-	-	-	MHz

 Table 7.
 Dynamic characteristics ...continued

GND (ground = 0 V); C_L = 50 pF unless otherwise specified; for test circuit, see Figure 12

Symbol	Parameter	Conditions	ons		25 °C			o +85 °C	-40 °C to +125 °C		Unit
				Min	Тур	Max	Min	Max	Min	Max	
C_{PD}	power dissipation capacitance	per package; $V_I = GND$ to $V_{CC} - 1.5 V$	[3]	-	35	-	-	-	-	-	pF

- [1] t_{pd} is the same as t_{PHL} and t_{PLH} .
- [2] t_t is the same as t_{THL} and t_{TLH} .
- [3] C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

 $P_D = C_{PD} \times V_{CC}^2 \times f_i + \Sigma (C_L \times V_{CC}^2 \times f_o)$ where:

f_i = input frequency in MHz;

f_o = output frequency in MHz;

 $\Sigma (C_L \times V_{CC}^2 \times f_o) = \text{sum of outputs};$

C_L = output load capacitance in pF;

 V_{CC} = supply voltage in V.

12. Waveforms

Measurement points are given in Table 8.

V_{OL} and V_{OH} are typical voltage output levels that occur with the output load.

Fig 7. The clock (CP) or clock enable ($\overline{\text{CE}}$) to output (Q7 or $\overline{\text{Q}}$ 7) propagation delays, the clock pulse width, the maximum clock frequency and the output transition times

Fig 8. The parallel load (\overline{PL}) pulse width, the parallel load to output (Q7 or $\overline{Q7}$) propagation delays, the parallel load to clock (CP) and clock enable (\overline{CE}) recovery time

The shaded areas indicate when the input is permitted to change for predictable output performance Measurement points are given in Table 8.

V_{OL} and V_{OH} are typical voltage output levels that occur with the output load.

(1) $\overline{\text{CE}}$ may change only from HIGH-to-LOW while CP is LOW, see Section 1.

Fig 10. The set-up and hold times from the serial data input (DS) to the clock (CP) and clock enable (\overline{CE}) inputs, from the clock enable input (\overline{CE}) to the clock input (CP) and from the clock input (CP) to the clock enable input (\overline{CE})

Measurement points are given in Table 8.

 V_{OL} and V_{OH} are typical voltage output levels that occur with the output load.

Fig 11. The set-up and hold times from the data inputs (Dn) to the parallel load input (PL)

Table 8. Measurement points

Туре	Input	Output	
	VI	V _M	V _M
74HC165	V _{CC}	0.5V _{CC}	0.5V _{CC}
74HCT165	3 V	1.3 V	1.3 V

Test data is given in Table 9.

Definitions for test circuit:

 R_T = Termination resistance should be equal to output impedance Z_0 of the pulse generator.

 C_L = Load capacitance including jig and probe capacitance.

 R_1 = Load resistance.

S1 = Test selection switch

Fig 12. Test circuit for measuring switching times

Table 9. Test data

Туре	Input		Load	S1 position	
	VI	t _r , t _f	CL	R_L	t _{PHL} , t _{PLH}
74HC165	V _{CC}	6 ns	15 pF, 50 pF	1 kΩ	open
74HCT165	3 V	6 ns	15 pF, 50 pF	1 kΩ	open

13. Package outline

DIP16: plastic dual in-line package; 16 leads (300 mil)

SOT38-4

UNIT	A max.	A ₁ min.	A ₂ max.	b	b ₁	b ₂	С	D ⁽¹⁾	E ⁽¹⁾	е	e ₁	L	ME	МН	w	Z ⁽¹⁾ max.
mm	4.2	0.51	3.2	1.73 1.30	0.53 0.38	1.25 0.85	0.36 0.23	19.50 18.55	6.48 6.20	2.54	7.62	3.60 3.05	8.25 7.80	10.0 8.3	0.254	0.76
inches	0.17	0.02	0.13	0.068 0.051	0.021 0.015	0.049 0.033	0.014 0.009	0.77 0.73	0.26 0.24	0.1	0.3	0.14 0.12	0.32 0.31	0.39 0.33	0.01	0.03

Note

1. Plastic or metal protrusions of 0.25 mm (0.01 inch) maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE			
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE	
SOT38-4						95-01-14 03-02-13	

Fig 13. Package outline SOT38-4 (DIP16)

SO16: plastic small outline package; 16 leads; body width 3.9 mm

SOT109-1

Note

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE			
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE	
SOT109-1	076E07	MS-012				99-12-27 03-02-19	

Fig 14. Package outline SOT109-1 (SO16)

SSOP16: plastic shrink small outline package; 16 leads; body width 5.3 mm

SOT338-1

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE		
VERSION	IEC	JEDEC	JEITA	PROJECTION	ISSUE DATE	
SOT338-1		MO-150			99-12-27 03-02-19	

Fig 15. Package outline SOT338-1 (SSOP16)

TSSOP16: plastic thin shrink small outline package; 16 leads; body width 4.4 mm

SOT403-1

UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽²⁾	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
mm	1.1	0.15 0.05	0.95 0.80	0.25	0.30 0.19	0.2 0.1	5.1 4.9	4.5 4.3	0.65	6.6 6.2	1	0.75 0.50	0.4 0.3	0.2	0.13	0.1	0.40 0.06	8° 0°

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE			
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE	
SOT403-1		MO-153				-99-12-27- 03-02-18	

Fig 16. Package outline SOT403-1 (TSSOP16)

DHVQFN16: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 16 terminals; body 2.5 x 3.5 x 0.85 mm SOT763-1

Fig 17. Package outline SOT763-1 (DHVQFN16)

14. Abbreviations

Table 10. Abbreviations

Acronym	Description
CMOS	Complementary Metal-Oxide Semiconductor
DUT	Device Under Test
ESD	ElectroStatic Discharge
HBM	Human Body Model
MM	Machine Model
TTL	Transistor-Transistor Logic

15. Revision history

Table 11. Revision history

	•									
Document ID	Release date	Data sheet status	Change notice	Supersedes						
74HC_HCT165_3	20080314	Product data sheet	-	74HC_HCT165_CNV_2						
Modifications:	 The format of this data sheet has been redesigned to comply with the new identity guidelines of NXP Semiconductors. 									
	 Legal texts have been adapted to the new company name where appropriate. 									
	 Package SOT763-1 (DHVQFN16) added to <u>Section 4 "Ordering information"</u> and <u>Section</u> 13 "Package outline". 									
	 Family data 	added, see Section 10 "Sta	atic characteristics"							
74HC_HCT165_CNV_2	December 1990	Product specification	-	-						

16. Legal information

16.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

16.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

16.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or

malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

16.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

17. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

18. Contents

1	General description 1
2	Features
3	Applications
4	Ordering information 2
5	Functional diagram 2
6	Pinning information
6.1	Pinning
6.2	Pin description 4
7	Functional description 4
8	Limiting values 5
9	Recommended operating conditions 6
10	Static characteristics 6
11	Dynamic characteristics 8
12	Waveforms
13	Package outline
14	Abbreviations
15	Revision history
16	Legal information
16.1	Data sheet status 21
16.2	Definitions
16.3	Disclaimers
16.4	Trademarks
17	Contact information
18	Contents

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

