1 Naive Mengenlehre

Eine Menge ist eine Zusammenfassung von wohlbestimmten Objekten zu einem Ganzen. Diese Objekte heissen Elemente.

1.1 Angabe von Mengen

Aufzaehlung:

Eine endliche Menge kann durch aufzaehlung all ihrer Elemente angegeben werde z.B. stellt $M = \{1, 2, 3, 4, 5\}$, die Menge aller natuerliche Zahlen < 6 dar.

Bildungsgesetz:

Eine unedliche Menge kann mit Hilfe eines Bildungsgesetzes angegeben werden z.B.

$$M = \{1, 2, 3, ...\} = \mathbb{N}$$

Eigenschaft:

Eine Teilmenge M einer Menger N kann mit Hilfe einer Eingenschaft E die alle Elemente der Menge entweder besitzen oder nicht angegeben werden $M = \{x \in N | E(x)\}$

1.2 Mengenbeziehungen

1.2.1 Elementbeziehung

Definition: Sei M eine beliebiege Menge dann bedeutet, $x \in M$, das wir ein beliebiges x der Menge M auswaehlen.

1.2.2 Teilmenge:

Definition: Sei M eine Menge. Dann heisst eine weitere Menge N Teilmenge von M wenn gilt:

$$x \in \mathbb{N} \Rightarrow x \in \mathbb{M}$$

Notation:

$$N \subseteq M$$

1.2.3 Potenzmenge

Defintion: Sei M eine Menge, dann nennt die Menge all ihrer Teilmengen U Potenzmenge der Menge M

$$\mathcal{P}(M):=\{U|U\subseteq M\}$$

Beispiel:

$$\begin{split} \mathscr{P}(\emptyset) &= \{\emptyset\} \\ \mathscr{P}(\{a\}) &= \left\{\emptyset, \{a\}\right\} \\ \mathscr{P}(\{a,b\}) &= \left\{\emptyset, \{a\}, \{b\}, \{a,b\}\right\} \end{split}$$

1.2.4 Leere Menge

Definition: Eine Menge M die keine Elemente enhaelt nennt man leere Menge.

$$\emptyset := \{ \forall x : x \notin M \}$$

Eigenschaften:

• ist Teilmenge jeder Menge.

1.2.5 Gleichheit

Definition: Seien A, B Mengen, dann nennt man diese Mengen gleich wenn alle Elemente aus A in B und alle Elemente aus B in A liegen.

$$A = B := A \subseteq B \land B \subseteq A = \{x | x \in A \Leftrightarrow x \in B\}$$

1.2.6 Disjunktion(Vereinigung)

Definition: Seien $N_1, N_2 \subseteq M$, dann nennt man die Menge X disjunktion(vereinigung) von N_1 und N_2 wenn fuer alle $x \in X$ gilt, das $x \in N_1$ oder $x \in N_2$.

$$N_1 \cup N_2 := \{x \in M | x \in N_1 \lor x \in N_2\}$$

1.2.6.1 Disjunktion undendlich vieler Menge

Sei $\mathfrak S$ ein endliches oder unendliches System von Mengen, dann besteht $\underset{M \in \mathfrak S}{\cup} M$ aus den Elementen die in mindesten einem $M \in \mathfrak S$ liegen.

Notation:

$$\bigcup_{k=1}^{n} \mathbf{M}_{k} \ bzw \ \bigcup_{k=1}^{\infty} \mathbf{M}_{k}$$

Venn-Diagramm

1.2.7 Konjunktion(Durchschnitt)

Definition: Seien $N_1, N_2 \subseteq M$, dann nennt man die Menge X konjunktion(schnittmengen) von N_1 und N_2 wenn fuer alle $x \in X$ gilt, das $x \in N_1$ und $x \in N_2$.

$$\mathbf{N}_1\cap\mathbf{N}_2:=\{x\in\mathbf{M}|x\in\mathbf{N}_1\wedge x\in\mathbf{N}_2\}$$

1.2.7.1 Konjunktion undendlich vieler Menge

Sei $\mathfrak S$ ein endliches oder unendliches System von Mengen, dann besteht $\underset{M \in \mathfrak S}{\cap} M$ aus den Elementen die in jedem $M \in \mathfrak S$ liegen.

Notation:

$$\bigcap_{k=1}^{n} \mathbf{M}_k \ bzw \ \bigcap_{k=1}^{\infty} \mathbf{M}_k$$

Eigenschaft:

• zwei Mengen heissen disjunkt falls $N_1 \cap N_2 = \emptyset$.

Venn-Diagramm

1.2.8 Komplement

Definition: Sei B \subseteq M, dann nennt man die Menge aller x die in M aber nicht in B sind komplement von B im Bezug auf M. Es wird mit B^c notiert.

$$B^c := \{x | x \notin B\}$$

Venn-Diagramm

1.2.9 Differenz

Definition: Seien A, B Mengen, dann nennt man alle x die in A aber nicht in B sind Differenz von A und B.

$$A \setminus B := \{x | x \in A \land x \notin B\}$$

Venn-Diagramm

A=B Hat man eine solche Gleichung zu beweisen, so muß man also zeigen, daß aus $x \in M$ stets $x \in N$ und umgekehrt aus $x \in N$ auch immer $x \in M$ folgt. bzw $M \subseteq N$ und umgekehrt \mathfrak{S}

2 Beweise

2.1 Morganschen Komplementierungsregeln

1. Defintion: Das Komplement der Vereinigung ist gleich dem Durchschnitt der Komplemente.

$$(\underset{M \in \mathfrak{S}}{\cup} M)^c = \underset{M \in \mathfrak{S}}{\cap} (M^c)$$

Da klar is das $M\in\mathfrak{S}$ wird dies beim folgenden Beweis nicht weiter angegeben. Beweis:

2. Defintion: Das Komplement des Durchschnitts ist gleich der Vereinigung der Komplemente.

$$(\underset{M \in \mathfrak{S}}{\cap} M)^c = \underset{M \in \mathfrak{S}}{\cup} (M^c)$$