Faculté des Sciences d'Agadir (STU 3)

Exercices Corrigés Statistique et Probabilités

2015 M. NEMICHE

Tables des matières

I. Statistique descriptive univariée	3
Exercice 1	
Correction de l'exercice 1	3
Exercice 2	
Correction de l'exercice 2	5
Exercice 3	6
Correction de l'exercice 3	6
Exercice 4	
Correction de l'exercice 4	9
II. Statistique descriptive bivariée	
Exercice 1	
Correction de l'exercice 1	
Exercice 2	
Correction de l'exercice 2	. 12
Exercice 3	
Correction de l'exercice 3	
III. Probabilités	
Exercice 1	
Correction de l'exercice 1	
Exercice 2	
Correction de l'exercice 2	. 18
Exercice 3	
Correction de l'exercice 3	
Exercice 4	
Correction de l'exercice 4	
Exercice 5	
Correction de l'exercice 5	
Exercice 6	
Correction de l'exercice 6	
Exercice 7	
Correction de l'exercice 7	
Exercice 8	
Correction de l'exercice 8	
Exercice 9	
Correction de l'exercice 9	
Exercice 10	
Correction de l'exercice 10	
Examen Statistique et Probabilités (1)	. 25
Correction de l'examen N°1	
Examen Statistique et Probabilités (2)	
Correction de l'examen N°2	

I. Statistique descriptive univariée

Exercice 1

On dispose des résultats d'une enquête concernant l'âge et les loisirs d'une population de 20 personnes:

Age	12	14	40	35	26	30	30	50	75	50	30	45	25	55	28	25	50	40	25	35
Loisir	S	S	C	C	S	T	T	L	L	L	T	C	C	C	S	L	L	C	T	T

Codification : S : Sport, C : Cinéma, T : Théâtre, L : Lecture

- a. Faire l'étude du caractère « âge » : dresser le tableau statistique (effectifs, effectifs cumulés), calculer les valeurs de tendance centrale et ceux de la dispersion et tracez le diagramme en bâtons et la boite à moustaches de cette distribution
- b. Faire l'étude du caractère « Loisir » dresser le tableau statistique, déterminer le mode et tracez le diagramme en bâtons et le diagramme à secteurs.

Correction de l'exercice 1

a. Age est une variable quantitative discrète

Age	Ni	fi	Fi	fi xi
12	1	0.05	0.05	0.6
14	1	0.05	0.1	0.7
25	3	0.15	0.25	3.75
26	1	0.05	0.3	1.3
28	1	0.05	0.35	1.4
30	3	0.15	0.5	4.5
35	2	0.10	0.6	3.5
40	2	0.10	0.7	4
45	1	0.05	0.75	2.25
50	3	0.15	0.9	7.5
55	1	0.05	0.95	2.75
75	1	0.05	1	3.75
Σ	20	1		36

Les valeurs de tendance centrale (paramètre de position)

Mode

 Mediane (Q2)

 Le mode =25; 30; 50
 Moyenne: X̄ = 36

• Moyenne Q1=25; Q2=30; Q3=45

• $Q_1 = 25$; $Q_2 = 30$; $Q_3 = 0$

b. La variable loisir est une variable qualitative nominale

X	Xi	f_i
S	4	4/20
C	6	6/20
T	5	5/20
L	5	5/20
Σ	20	1

Déterminer le mode ?

C'est la modalité qui a le plus grand effectif : C

Diagramme à secteurs

Diagramme en bâtons

Exercice 2

On observe 100 fois le nombre d'arrivées (variable X) de clients à un bureau de poste pendant un intervalle de temps (10 minutes) et on obtient les valeurs suivantes :

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	2	2	2	2	2
2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
3	3	3	3	3	3	4	4	4	4	4	4	4	4	4	4	4	4	4	4
4	4	4	4	4	4	5	5	5	5	5	5	5	6	6	6	6	6	6	6

- a. Dresser le tableau statistique de la distribution de la variable X (effectifs cumulés, ...).
- b. Calculer les valeurs de tendance centrale de la distribution : la moyenne, le mode et les trois quartiles Q_1 , Q_2 et Q_3 .
- c. Calculer les valeurs de la dispersion de la distribution : variance, l'écart type et l'intervalle interquartile.
- d. Tracer le diagramme en bâtons et la boite à moustaches de cette distribution.

Correction de l'exercice 2

a. Tableau statistique

X	ni	fi	Fi	xi*fi	xi ² *fi
1	15	0.15	0.15	0.15	0.15
2	25	0.25	0.4	0.5	1
3	26	0.26	0.66	0.78	2.34
4	20	0.2	0.86	0.8	3.2
5	7	0.07	0.93	0.35	1.75
6	7	0.07	1	0.42	2.52
Σ	100	1		3	10.96

b. Les valeurs de tendance centrale

La moyenne : $\bar{X} = 3$

Le mode= 3

Indice de Q1 est $n/4=25 \rightarrow Q1=2$

Indice de Q2 est $n/2=50 \rightarrow Q2=3$

Indice de Q3 est $3n/4=75 \Rightarrow Q3=4$

c. Les valeurs de la dispersion de la distribution : variance, l'écart type et l'intervalle interquartile :

5

$$Var(X) = 10.96 - 3^2 = 1.96$$

$$\partial_{\mathsf{x}} = \sqrt{var\left(X\right)} = 1.4$$

$$IQ = Q3-Q1=4-2=2$$

Exercice 3

On dispose des résultats d'une enquête concernant les loyers annuels des appartements dans un quartier de la ville.

Montant du loyer (x 1000)	Effectifs
[4; 6[20
[6; 8[40
[8; 10[80
[10; 15[30
[15; 20[20
[20; 30[10

- a. Compléter le tableau statistique (valeurs centrales, effectifs cumulés, fréquence, fréquences cumulés)
- b. Déterminez les valeurs de tendance centrale de la distribution : moyenne, mode et les quartiles.
- c. Mesurez la dispersion de la distribution au moyen de : l'étendue, l'écart type et de l'intervalle interquartile.
- d. Tracez l'histogramme et la boite à moustaches de cette distribution.

Correction de l'exercice 3

Montant x 1000	ni	Xi	Ni	f_i	Fi	f _i x _i	di
[4; 6[20	5	20	0.1	0.1	0.5	10
[6; 8[40	7	60	0.2	0.3	1.4	20
[8; 10[80	9	140	0.4	0.7	3.6	40
[10; 15[30	12.5	170	0.15	0.85	1.875	6
[15; 20[20	17.5	190	0.1	0.95	1.75	4
[20; 30[10	25	200	0.05	1	1.25	1
Σ				1		10.375 x 1000	

$$\mathbf{x}_{\mathbf{i}} = \frac{a_{i} + a_{i+1}}{2}$$

$$di = \frac{ni}{a_{i+1} - a_i}$$
 densité parce que on a pas la même amplitude.

Mode:

La classe modale = [8; 10[x 1000 (la classe qui a la plus grande densité)

Mode M=
$$a_i + \frac{\Delta i}{\Delta_i + \Delta_{i+1}} (a_{i+1} - a_i)$$

$$\Delta_i = 40-20$$

$$\Delta_{i+1} = 40-6$$

$$M = 8000 + \frac{20}{34} \times (10000 - 8000)$$

$$M == 8000 + \frac{20}{34} \times 2000$$

$$M == 8000 + \frac{40000}{34}$$

$$M = 9176.470$$

$$Q_1 = a_i + (a_{i+1} - a_i) \times \frac{0.25 - F_i}{F_{i+1} - F_i}$$
 $(a_i = 8000; a_{i+1} = 10000)$

$$Q_2 = a_i + (a_{i+1} - a_i) \times \frac{0.5 - F_i}{F_{i+1} - F_i}$$
 $(a_i = 8000; a_{i+1} = 10000)$

$$Q_3 = a_i + (a_{i+1} - a_i) \times \frac{0.75 - F_i}{F_{i+1} - F_i} \quad (a_i = 10000; a_{i+1} = 15000)$$

$$Q_1 = 7500$$

$$Q_2 = 9000$$

$$Q_3 = 11666$$

L'étendu
$$W = (30-4) \times 1000 = 26000$$

$$IQ = Q_3 - Q_1 = 11666 - 7500 = 4166$$

7

Ecart type $\partial_x = \sqrt{var(X)}$

$$var(x) = (\frac{1}{n} \sum n_i x_i^2) - \overline{x^2} = \sum f_i x_i^2 - \overline{x^2}$$
$$= \frac{1}{200} \times 26002, 5.10^6 - (10375)$$

$$\partial_{\mathsf{x}} = \sqrt{var\left(x\right)} = 8062,25$$

 $Q_3 = 11666$

$$\begin{aligned} Q_1 - 1, 5 & IQ = 7500 - 1, 5 \ x \ 4166 = 1251 \\ Q_3 - 1, 5 & IQ = 11666 + 1, 5 \ x \ 4166 = 17915 \\ Q_1 = 7500 \\ Q_2 = 9000 \end{aligned}$$

Exercice 4

Une société immobilière dispose de 600 appartements dont les surfaces sont données par le tableau suivant :

Surface (en mm ²)	[25; 50[[50; 60[[60; 80[[80; 100[[100; 120[[120; 145[
fréquence	0,02	0,15	0,13	0,22	0,28	0,20

a. Compléter le tableau statistique suivant :

Classes	Centres x _i	Effectifs n _i	Densités	Effectifs cumulés N _i	Fréquences f _i	Fréquences cumulés F _i	fi * x _i	$f_i * x_i * x_i$
[25; 50[
[50; 60[
[60; 80[
[80; 100[
[100; 120[
[120; 145[
Total								

b. Calculer les indicateurs de position et ceux de dispersion et compléter le tableau suivant :

Moyenne =	$Q_1 =$
Classe modale =	$Q_2 =$
Mode =	$Q_3 =$
Variance =	$Q_3 - Q_1 =$
Ecart – type =	$Q_1 - 1,5 (Q_3 - Q_1) =$
Coefficient de variation =	$Q_3 - 1,5 (Q_3 - Q_1) =$

- c. Tracer la boite à moustaches (boîte de Tukey) de cette série statistique,
- d. Donner l'histogramme correspond à cette série statistique
- e. Tracer la courbe cumulative des fréquences.

a. Compléter le tableau statistique suivant :

Classes	Centres	Effectifs	Densités	Effectifs	Fréquences	Fréquences	fi * x _i	$f_i * x_i * x_i$
	$\mathbf{x}_{\mathbf{i}}$	n_{i}		cumulés	f_i	cumulés		
				N_i		F_{i}		
[25; 50[37.5	12	0.48	12	0.02	0.02	0.75	28.125
[50; 60[55	90	9	102	0.15	0.17	8.25	453.75
[60; 80[70	78	3.9	180	0.13	0.3	9.1	637
[80; 100[90	132	6.6	312	0.22	0.52	19.8	1782
[100; 120[110	168	8.4	480	0.28	0.8	30.8	3388
[120; 145[82.5	120	4.8	600	0.2	1	16.5	1361.25
Total		600			1		85.2	7650.125

b. Calculer les indicateurs de position et ceux de dispersion et compléter le tableau suivant :

Moyenne = 85.2	$Q_1 = 72.12598$
Classe modale = [50; 60[$Q_2 = 98.18182$
Mode = 56.30178	Q ₃ =116.4286
Variance = 391.085	$Q_3 - Q_1 = 44.30262$
Ecart - type = 19.77587	$Q_1 - 1,5 (Q_3 - Q_1) = 5.67205$
	$Q_3 - 1,5 (Q_3 - Q_1) = 182.8825$

$$\begin{aligned} &Q_1 = a_i + (a_{i+1} - a_i \) \ x \frac{0.25 - F_i}{F_{i+1} - F_i} & (a_i = 60 \ ; \ a_{i+1} = 80) \end{aligned}$$

$$Q_1 = 60 + (80 - 60) x \frac{0.25 - 0.173}{0.3 - 0.173} = 72.12598$$

$$Q_2 = a_i + (a_{i+1} - a_i \) \ x \frac{0.5 - F_i}{F_{i+1} - F_i} & (a_i = 80 \ ; \ a_{i+1} = 100) \end{aligned}$$

$$Q_2 = 80 + (100 - 80) x \frac{0.5 - 0.3}{0.52 - 0.3} = 98.18182$$

$$Q_3 = a_i + (a_{i+1} - a_i \) \ x \frac{0.75 - F_i}{F_{i+1} - F_i} & (a_i = 100 \ ; \ a_{i+1} = 120) \end{aligned}$$

$$Q_3 = 100 + (120 - 100) x \frac{0.75 - 0.52}{0.8 - 0.52} = 116.4286$$

$$Mode : M = a_i + \frac{\Delta i}{\Delta_i + \Delta_{i+1}} \ (a_{i+1} - a_i)$$

$$\Delta_i = 9 - 0.48 = 8.52$$

$$\Delta_{i+1} = 9 - 3.9 = 5.1$$

$$M = 50 + \frac{8.52}{13.52} \ x \ (60 - 50) = 56.30178$$

$$Var(X) = 7650.125 - 85.2^2 = 391.085$$

Ecart type $\partial_x = \sqrt{var(X)} = 19.77587$

a.

d.

d.

Statistique descriptive bivariée II.

Exercice 1

On considère la série double suivante

Xi	2	5	6	10	12
y _i	83	70	70	54	49

- 1) Calculer la covariance,
- 2) Déterminer l'équation de la droite de régression Y = aX + b
- 3) Le coefficient de corrélation linéaire,
- 4) Le coefficient de détermination

Correction de l'exercice 1

1. Cov (x , y) =
$$\frac{1}{4} \sum xi yi - \overline{X} \overline{Y}$$

Cov (x , y) = 412.8 - 7 x 65,2 = -43,6
 $\overline{Y} = \frac{1}{n} \sum yi = 65,2$

$$\overline{Y} = \frac{1}{2} \sum yi = 65,2$$

$$\overline{X} = \frac{1}{n} \sum xi = 7$$

$$Cov(X, Y) = -43,6$$

2.
$$Y = aX + b$$

$$\begin{cases} a = \frac{cov(X,Y)}{var(X)} = -3.4 \quad (var(X) = (\frac{1}{n}\sum xi^2) - \overline{X^2} = 61.8 - 49 = 12.8) \\ b = \overline{Y} - a\overline{X} = 65.2 + 3.4 \times 7 = 89 \end{cases}$$

$$\begin{cases} a = \frac{-43.6}{12.8} = -3.4 \\ b = 89 \end{cases}$$

$$Y = -3.4 \times 10^{-10} \times 1$$

$$b = 89$$

$$Y = -3.4 X + 89$$

3. Le coefficient de corrélation:

$$r = \frac{cov (X,Y)}{\sigma X \sigma Y}$$

$$Var(Y) = \frac{1}{n} \sum y_i^2 - \overline{Y^2} = \frac{1}{5} 20006 - 65,2$$

$$Var(Y) = 17754,96$$

$$\sigma Y = 133,24$$

$$r = \frac{-43.6}{\sqrt{12.8} \ x \ 133.24} = -0.009$$

R= 0,008 proche de 0

Il n' y a pas de corrélation linéaire entre X et Y

Exercice 2

Une expérience a été réalisée sur 250 personnes pour étudier la relation qui existe entre l'âge X et le temps de sommeil Y. le tableau suivant a été obtenu :

Y	[5,7[[7,9[[9,11[[11,15[
[1,3[0	0	2	36
[3,11[0	3	12	26
[11,19[2	8	35	16
[19,31[0	26	22	3
, [31,59[22	15	6	0

- 1) Calculer les moyennes marginales et les écarts types marginaux de X et Y,
- 2) Déterminer la covariance et le coefficient de corrélation linéaire,
- 3) Déterminer la droite de régression de Y en fonction de X
- 4) Estimer le temps de sommeil d'une personne de 66 ans

Correction de l'exercice 2

1)

	y _i	6	8	10	13	
Xi	XY	[5,7[[7,9[[9,11[[11,15[Σ
2	[1,3[0	0	2	36	38
7	[3,11[0	3	12	26	41
15	[11,19[2	8	35	16	60
25	[19,31[0	26	22	3	61
75	[31,59[22	15	6	0	43
	Σ	52	77	81	81	243

Déterminer la covariance Cov (X,Y) et le coefficient linéaire

Cov (X,Y) =
$$\frac{1}{n} \sum_{i=1}^{5} \sum_{y=1}^{4} (x_i - \bar{X}) (y - \bar{Y}) x_y$$

Cov (X,Y) =
$$(\frac{1}{n}\sum_{i=1}^{5}\sum_{y=1}^{4}x_{ij} x_{i}y_{j}) - \overline{X}\overline{Y}$$

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{5} x_i \ n_i$$

$$= \frac{1}{243} ((38 \times 2) + (7 \times 41) + (15 \times 60) + (25 \times 61) + (45 \times 43))$$

$$\bar{X} = 19,43$$

n_i	x_i
38	2
41	7
60	15
61	25
43	45
243	
	38 41 60 61 43

$\overline{Y} = \frac{1}{n} \sum_{i=1}^{4} (y_i n_i)$
$=\frac{1}{243}((33.6)+(52.8)+(77.10)+(81.13))$

$$\bar{Y} = 10.02$$

Cov (X,Y) = =
$$(\frac{1}{n} \sum_{i=1}^{5} \sum_{j=1}^{4} x_i x_i y_1) - \overline{X} \overline{Y}$$

$$= \frac{1}{243} ((2 \times 10 \times 2) + (36 \times 13 \times 2) + (3 \times 8 \times 7)$$

$$+(12 \times 10 \times 7) + (26 \times 13 \times 7)$$

$$+(26 \times 13 \times 7) + (2 \times 6 \times 15)$$

$$+(8 \times 8 \times 15) + (35 \times 10 \times 15)$$

$$+(16 \times 8 \times 25) + (22 \times 10 \times 25)$$

$$+ (3 \times 13 \times 25) + (22 \times 6 \times 45)$$

$$+(15 \times 8 \times 45) + (6 \times 10 \times 45)$$

Cov
$$(X, Y) = -24,3$$

Calculer le coefficient de corrélation linéaire

$$r = \frac{cov (x,y)}{\sigma x \sigma y}$$

$$\sigma x = \sqrt{var(x)}$$
 $\sigma y = \sqrt{var(y)}$

Var (x) =
$$\frac{1}{n} (\sum_{i=1}^{5} x_i \ x_i^2) - \overline{X^2} = 200,5$$

Var (y) =
$$\frac{1}{n} (\sum_{j=1}^{4} x_i \ y_i^2) - \overline{Y}^2 = 4,05$$

$$r = \frac{cov(x,y)}{\sigma x \sigma y} = -0.85$$

$$R = r^2 = 0.72$$

Existe une corrélation linéaire forte entre X et Y

• Déterminer la droite de la corrélation linéaire

$$Y = aX + b$$

у	n_i	y_i
[5,7[33	6
[7,9[52	8
[9,11[77	10
[11,19[81	13
Σ	243	

$$a = \frac{Cov (X,Y)}{Var (X)} \qquad b = \overline{Y} - a \overline{X}$$
$$= 10,2 + 0,12 \cdot 19,43$$
$$a = \frac{24,3}{200,5} = -0,12$$

$$b = 12,35$$

$$Y = -0.12X + 12.35$$

• Estimer le temps de sommeil d'une personne de 66 ans

$$Y = 0.12 \times 66 + 15.35$$

Y = 4,43 heures

Exercice 3

Le tableau ci-dessous donne la répartition de 200 naissances en fonction de la parité de la mère et du poids du nouveau-né.

	Primipares	multipares
poids inférieur à 3 kg	26	20
entre 3 et 4 kg	61	63
Supérieur à 4 kg	8	22

Existe les deux caractères, parité de la mère et poids du nouveau-né, sont-ils statistiquement reliés ?

Correction de l'exercice 3

X	Primipare	Multipare	Σ
Poids $< 3 kg$	26	20	46
[3,4[Kg	61	63	124
> 4 kg	8	22	30
Σ	95	105	200

Hypothèse H₀

Supposent que x et y sont indépendants

Effectifs théorique

XY	Primipare	Multipare
< 3 Kg	21,85	24,15
3Kg < P < 4Kg	58,9	65,1
> 4 Kg	14,25	15,75

Colonne 1
$$\begin{cases} n_{11}^* = \frac{95 \times 46}{200} \\ n_{21}^* = \frac{95 \times 124}{200} \\ n_{31}^* = \frac{95 \times 30}{200} \end{cases}$$

Colonne 2
$$\begin{cases} n_{12}^* = \frac{46 \times 105}{200} \\ n_{22}^* = \frac{105 \times 124}{200} \\ n_{32}^* = \frac{30 \times 105}{200} \end{cases}$$

Khi-2 =
$$X^2 = \sum_{i,j} \frac{(n_{ij}^* - n_{ij})^2}{n_{ij}^*}$$

= $\frac{1}{21,85} (26 - 21,85)^2 + \frac{1}{58,9} (61 - 58,9)^2 + \frac{1}{14,25}$
 $(8-14,25)^2 + \frac{1}{24,15} (20-24,15)^2 + \frac{1}{65,1} (65+1-63)^2 + \frac{1}{15,75} (15,75-22)^2 = 6,88$

Si $X^2 = 0$ alors X, Y sont indépendant

- On va choisir le seuil de signification 5% (0,05)
- Le degré de liberté = (nombre ligne 1) (nombre colonne -1)=(3-1) (2-1) = $2 \times X^2$ Critique = 5,99 (voir table de Khi-2)

Si $X^2 > X_{Critique}^2$ alors donc il existe un lien entre X et Y

Dans cet exercice existe une corrélation entre X et Y.

Table de χ^2 (*).

La table donne la probabilité α pour que χ^2 égale ou dépasse une valeur donnée, en fonction du nombre de degrés de liberté (d.d.l.).

d.d.l.	0,90	0,50	0,30	0,20	0,10	0,05	0,02	0,01	0,001
0	0,0158	0,455	1,074	1,642	2,706	3,841	5,412	6,635	10,827
7	0,211	1,386	2,408	3,219	4,605	5,991	7,824	9,210	13,815
3	0,584	2,366	3,665	4,642	6,251	7,815	9,837	11,345	16,266
4	1,064	3,357	4,878	5,989	7,779	9,488	11,668	13,277	18,467
5	1,610	4,351	6,064	7,289	9,236	11,070	13,388	15,086	20,515
6	2,204	5,348	7,231	8,558	10,645	12,592	15,033	16,812	22,457
7	2,833	6,346	8,383	9,803	12,017	14,067	16,622	18,475	24,322
8	3,490	7,344	9,524	11,030	13,362	15,507	18,168	20,090	26,125
9	4,168	8,343	10,656	12,242	14,684	16,919	19,679	21,666	27,877
10	4,865	9,342	11,781	13,442	15,987	18,307	21,161	23,209	29,588
11	5,578	10,341	12,899	14,631	17,275	19,675	22,618	24,725	31,264
12	6,304	11,340	14,011	15,812	18,549	21,026	24,054	26,217	32,909
13	7,042	12,340	15,119	16,985	19,812	22,362	25,472	27,688	34,528
14	7,790	13,339	16,222	18,151	21,064	23,685	26,873	29,141	36,123
15	8,547	14,339	17,322	19,311	22,307	24,996	28,259	30,578	37,697
16	9,312	15,338	18,418	20,465	23,542	26,296	29,633	32,000	39,252
17	10,085	16,338	19,511	21,615	24,769	27,587	30,995	33,409	40,790
18	10,865	17,338	20,601	22,760	25,989	28,869	32,346	34,805	42,312
19	11,651	18,338	21,689	23,900	27,204	30,144	33,687	36,191	43,820
20	12,443	19,337	22,775	25,038	28,412	31,410	35,020	37,566	45,315
21	13,240	20,337	23,858	26,171	29,615	32,671	36,343	38,932	46,797
22	14,041	21,337	24,939	27,301	30,813	33,924	37,659	40,289	48,268
23	14,848	22,337	26,018	28,429	32,007	35,172	38,968	41,638	49,728
24	15,659	23,337	27,096	29,553	33,196	36,415	40,270	42,980	51,179
25	16,473	24,337	28,172	30,675	34,382	37,652	41,566	44,314	52,620
26	17,292	25,336	29,246	31,795	35,563	38,885		45,642	54,052
27		26,336	30,319		36,741	40,113	44,140	46,963	55,476

III. Probabilités

Exercice 1

Soit (Ω, F) un espace de probabilisable et trois événements A, B et C de F. traduire à l'aide des opérations sur les ensembles les expressions pour les événements suivants :

- a. A seul se réalise;
- b. A et C se réalisent mais pas B;
- c. au moins l'un des trois événements se réalise;
- d. les trois événements se réalisent ;
- e. aucun ne réalise;
- f. au plus l'un des trois se réalise;
- g. au plus deux des trois se réalisent.

Correction de l'exercice 1

- a. A seul se réalise
 - $A \cap \bar{B} \cap \bar{C}$
- b. A et C se réalisent mais pas B
 - $A \cap C \cap \bar{B}$
- c. au moins l'un des trois événements se réalise
 - $A \cup B \cup B$
- d. les trois événements se réalisent
 - $A \cap B \cap C$
- e. aucun ne réalise
 - $\bar{A} \cap \bar{B} \cap \bar{C}$
- f. au plus l'un des trois se réalise

$$\overline{(A \cap B) \cup (A \cap C) \cup (B \cap C)}$$

g. au plus deux des trois se réalisent.

$$\overline{A \cap B \cap C} = \overline{A} \cup \overline{B} \cup \overline{C}$$

Exercice 2

Soit (Ω, F, P) un espace de probabilité.

- a. Montrer que si A et B sont indépendants alors il en va de même pour A et \overline{B} et pour \overline{A} et \overline{B} .
- b. Montrer que si A, B et C sont mutuellement indépendants, alors A est indépendant de $B \cap C$ et de $B \cup C$.

a. A et B sont indépendants alors A et \overline{B} sont indépendants ? A et B indépendants \Rightarrow $P(A \cap B) = P(A) P(B)$

 $P(A \cap \bar{B})$

 $A = (A \cap B) \cup (A \cap \overline{B})$

 $P(A) = P[(A \cap B) \cup (A \cap \overline{B})]$

 $P(A) = P(A \cap B) + P(A \cap \overline{B})$

 $P(A \cap \bar{B}) = P(A) - P(A \cap B)$

 $P(A \cap \overline{B}) = P(A) - P(A) \cdot P(B)$

 $P(A \cap \overline{B}) = P(A) (1 - P(B))$

 $P(A \cap \overline{B}) = P(A) P(\overline{B})$ A et \overline{B} sont indépendants

Si A et B sont indépendants Alors \overline{A} et \overline{B} est indépendants ?

A et B sont indépendants \rightarrow A et \overline{B} sont indépendants

 $\rightarrow \overline{A}$ et \overline{B} sont indépendants

b. A, B et C sont mutuellement indépendants

A et $(B \cap C)$ sont indépendants

 $P(A \cap (B \cap C)) = P(A) \cdot P(B \cap C)$?

 $P(A \cap (B \cap C)) = P(A \cap B \cap C)$

 $P(A \cap (B \cap C)) = P(A) P(B) P(C) (A,B \text{ et } C \text{ sont mutuellement indépendants})$

 $P(A) = P(A) \cdot P(B \cap C)$ \Rightarrow B et C sont indépendants

A, B et C sont mutuellement indépendants Alors A et (B ∪ C) indépendants ?

$$P (A \cap (B \cup C)) = P ((A \cap B) \cup (A \cap C))$$

$$= P (A \cap B) + P (A \cap C) - P (A \cap B) \cap P (A \cap C)$$

$$= P(A) \cdot P(B) + P(A) \cdot P(C) - P (A \cap B \cap C)$$

$$= P(A) \cdot P(B) + P(A) \cdot P(C) - P(A) \cdot P(B) \cdot P(C)$$

$$= P(A) (P(B) + P(C) - P(B) \cdot P(C))$$

$$= P(A) [P(B) + P(C) - P(B \cap C)]$$

$$= P(A) \cdot P(B \cup C)$$

Donc A et (B ∪ C) sont indépendants

Exercice 3

On considère deux événements indépendants A et B de probabilités respectives 1/4 et 1/3 calculer :

- a. La probabilité que les deux événements aient lieu;
- b. La probabilité que l'un au moins des deux événements ait lieu;
- c. La probabilité qu'exactement l'un des deux événements ait lieu.

a. A et B indépendant
$$P(A) = \frac{1}{4}$$
; $P(B) = \frac{1}{3}$

A et B se réalise

$$P(A \cap B) = P(A) P(B)$$
$$= \frac{1}{4} \cdot \frac{1}{3}$$

$$P(A \cap B) = \frac{1}{12}$$

b.
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
$$= \frac{1}{3} + \frac{1}{4} - \frac{1}{12}$$
$$= \frac{4+3}{12} - \frac{1}{12}$$
$$= \frac{7}{12} - \frac{1}{12}$$
$$= \frac{6}{12} = 0.5$$

c.
$$P((A \cap \overline{B}) \cup (B \cap \overline{A}))$$

 $= P(A \cap \overline{B}) + P(B \cap \overline{A})$
 $= P(A) \cdot P(\overline{B}) + P(B) \cdot P(\overline{A})$
 $= P(A) (1 - P(B)) + P(B) \cdot (1 - P(A))$
 $= \frac{5}{12}$

Exercice 4

Soit A et B deux événements, d'un même espace de probabilité (Ω , F, P), tels que :

$$P(A) = \frac{2}{3}$$
; $P(B) = \frac{1}{3}$ et $P(\bar{A}/B) = \frac{1}{4}$.

- a. Calculer la valeur de la probabilité conditionnelle de A sachant B et celle de B sachant A.
- b. Quelle est la probabilité qu'exactement un des deux événements se réalise ?

a.
$$P(A/B) = 1 - P(\overline{A}/B) = 1 - \frac{1}{4} = \frac{3}{4} = 0.75$$

$$P(B/A) = \frac{P(A/B).P(B)}{P(A)} = \frac{3/4.1/3}{2/3} = \frac{3/12}{2/3} = \frac{9}{24}$$

$$P(B/A) = \frac{3}{8} = 0.375$$
b. $P(A \cap \overline{B}) \cup (\overline{A} \cap B) = P(A \cap \overline{B}) + P(B \cap \overline{A})$

$$= P(A) \cdot P(\overline{B}/A) + P(B) \cdot P(\overline{A}/B)$$

$$= P(A) \cdot ((1 - P(B/A)) + P(B) \cdot (1 - P(A/B))$$

$$= 0.2395833$$

Exercice 5

Soit A, B et C trois évènements, d'un même espace de probabilité (Ω , F, P) tels que : P(A) = 2/5, P(C) = 1/2, $P(A \cup B) = 3/4$, P(B/A) = 3/10 et P(C/A) = 1/4.

- a. Calculer la valeur de $P(\overline{A}/C)$.
- b. Calculer la valeur de $P(\overline{A}/\overline{C})$.
- c. Calculer la valeur de P(B).

Correction de l'exercice 5

a.
$$P(\overline{A}/C) = 1 - P(A/C)$$

 $= 1 - \frac{P(\frac{C}{A})xP(A)}{P(C)}$
 $= 1 - \frac{\frac{1}{4} \cdot \frac{2}{5}}{\frac{1}{2}} = 1 - \frac{1}{5}$
 $= \frac{4}{5}$

b.
$$P(\overline{A}/\overline{C}) = 1 - P(A/\overline{C})$$
$$= 1 - \frac{P(\overline{C}/A) \cdot P(A)}{P(\overline{C})}$$
$$= 1 - \frac{P(\overline{C}/A) \cdot P(A)}{1 - P(C)}$$
$$= 1 - \frac{(1 - \frac{1}{4}) \cdot 2/5}{1/2}$$
$$P(\overline{A}/\overline{C}) = \frac{2}{5}$$

c.
$$P(B) = ?$$

 $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ \Rightarrow
 $P(B) = P(A \cup B) - P(A) + P(A \cap B)$
 $= P(A \cup B) - P(A) + P(B/A) \cdot P(A)$
 $= 3/4 - 2/5 + 3/10 \times 3/4 = 0.575$

Exercice 6

Un sac contient 5 jetons verts (numérotés de 1 à 5) et 4 jetons rouges (numérotés de 1 à 4). On y effectue 3 tirages successifs au hasard et sans remise. Calculer les probabilités :

- a. de ne tirer que 3 jetons verts;
- b. de ne tirer aucun jetons verts;
- c. de tirer au plus 2 jetons verts ;
- d. de tirer exactement 1 jeton vert.

Correction de l'exercice 6

Soit Vi l'événement tirer un jeton vert dans le $i^{\grave{e}me}$ tirage. Soit Ri l'événement tirer un jeton rouge dans le $i^{\grave{e}me}$ tirage.

a. La probabilité de ne tirer que 3 jetons verts :

$$P(V1 \cap V2 \cap V3) = P(V1).P(V2/V1).P(V3/(V1 \cap V2))$$
$$= \frac{5}{9} \times \frac{4}{8} \times \frac{3}{7} = 0.1190476$$

b. La probabilité de ne tirer aucun jetons verts

$$P(R1 \cap R2 \cap R3) = P(R \ 1).P(R \ 2/R \ 1).P(R \ 3/(R1 \cap R2))$$
$$= \frac{4}{9} x \frac{3}{8} x \frac{2}{7} = 0.04761905$$

c. La probabilité p de tirer au plus 2 jetons verts

$$p=1-P(V1 \cap V2 \cap V3) = 1-0.1190476 = 0.8809524$$

d. La probabilité de tirer exactement 1 jeton vert

$$\begin{split} &P(V1\cap R2\cap R3) + P(R1\cap V2\cap R3) + P(R1\cap R2\cap V3) = \\ &= P(V1).P(R2/V1).P(R3/(V1\cap R2)) + P(R1).P(V2/R1).P(R3/(R1\cap V2)) + \\ &P(R1).P(R2/R1).P(V3/(R1\cap R2)) \\ &= \frac{5}{9} \times \frac{4}{8} \times \frac{3}{7} + \frac{4}{9} \times \frac{5}{8} \times \frac{3}{7} + \frac{4}{9} \times \frac{3}{8} \times \frac{5}{7} \\ &= 0.3571429 \end{split}$$

Exercice 7

L'oral d'un concours comporte au total 100 sujets ; les candidats tirent au sort trois sujets et choisissent alors le sujet a traité parmi ces trois. Un candidat se présente en ayant préparé 60 sujets sur les 100.

Quelle est la probabilité pour que le candidat ait révisé :

- a. aucun des trois sujets tirés.
- b. un sujet sur les trois tirés;
- c. au moins deux sujets sur les trois tirés.

Correction de l'exercice 7

Soit D1 l'événement sujet préparé au ième tirage

- a. La probabilité pour que le candidat ait révisé aucun des trois sujets tirés $P(\overline{D1} \cap \overline{D2} \cap \overline{D3}) = P(\overline{D1}).P(\overline{D2}/\overline{D1}).P(\overline{D3}/(\overline{D1} \cap \overline{D2}))$ $= \frac{40}{100} \times \frac{39}{99} \times \frac{38}{98} = 0.0611008$
- b. La probabilité pour que le candidat ait révisé un sujet sur les trois tirés $\begin{array}{ll} P(D1 \cap \overline{D2} \cap \overline{D3} \,) + P(\,\overline{D1} \cap D2 \cap \overline{D3} \,) + P(\overline{D1} \cap \overline{D2} \cap D3 \,) = \\ = P(D1).P(\overline{D2}/D1).P(\overline{D3} \, / (D1 \cap \overline{D2}) + P(\overline{D1}).P(D2/\overline{D1}).P(\overline{D3} \, / (\overline{D1} \cap D2) + \\ P(\overline{D1}).P(\overline{D2}/\overline{D1}).P(D3 \, / (\overline{D1} \cap \overline{D2}) \\ = & \frac{60}{100} \, x \, \frac{40}{99} \, x \frac{39}{98} + \frac{40}{100} \, x \, \frac{60}{99} \, x \frac{39}{98} + \frac{40}{100} \, x \, \frac{39}{99} \, x \, \frac{60}{98} = 0.2894249 \end{array}$
- c. La probabilité pour que le candidat ait révisé au moins deux sujets sur les trois tirés

$$1 - (P(\overline{D1} \cap \overline{D2} \cap \overline{D3}) + P(D1 \cap \overline{D2} \cap \overline{D3}) + P(\overline{D1} \cap D2 \cap \overline{D3}) + P(\overline{D1} \cap \overline{D2} \cap D3)) =$$

$$= 1 - [0.0611008 + 0.2894249] = 0.6494743$$

Exercice 8

Une maladie affecte statistiquement une personne sur 1000. Un test de dépistage permet de détecter la maladie avec une fiabilité de 99% (i.e. test positif parmi les malades), mais il y a 0,2% de chances que le test donne un faux positif (i.e. une personne est déclarée malade sans l'être).

- a. Une personne est testée positivement. Quelle est la probabilité qu'elle soit réellement malade ?
- b. Une personne est testée négativement. Quelle est la probabilité qu'elle soit quand même malade ?

Correction de l'exercice 8

M : Evénement personne malade T : Evénement personne testée positivement P(M)=0.0001 P(T/M)=0.99 $P(T/\overline{M})=0.002$

a. Une personne est testée positivement. Quelle est la probabilité qu'elle soit réellement malade ?

$$P(M/T) = \frac{P(T/M)P(M)}{P(T)}$$

$$= \frac{0.99x0.0001}{P(T)}$$

$$P(T) = P(T/M).P(M) + P(T/\overline{M}).P(\overline{M})$$

$$= 0.99x0.0001 + 0.002x(1-0.0001)$$

$$= 0.0020988$$

Donc

P(M/T) = 0.04716981

b. Une personne est testée négativement. Quelle est la probabilité qu'elle soit quand même malade ?

$$P(M/\overline{T}) = \frac{P(\overline{T}/M)P(M)}{P(\overline{T})}$$

$$= \frac{(1 - 0.99)x0.0001}{(1 - 0.0020988)} = 1.002103e-06=0.0000001002103$$

Exercice 9

Un laboratoire d'analyse chimique reçoit un lot de tube à essai. Ces tubes sont fournis par trois sociétés différentes A, B et C dans les proportions suivantes : 50%, 30% et 20%. 2% des tubes fabriqués par A, 3% de ceux fabriqués par B et 4% de ceux fabriqués par C présentent des défauts. On choisit au hasard un tube à essai dans le lot reçu.

- a. Quelle est la probabilité qu'il soit défectueux ?
- b. Sachant que le tube choisi est défectueux, quelle est la probabilité qu'il provienne de la société A ?

Correction de l'exercice 9

A : événement tube provient de l'usine A

B: événement tube provient de l'usine B

C : événement tube provient de l'usine C

P(A)=0.5; P(C)=0.3; P(C)=0.2

D: événement tube défectueux

P(D/A)=0.002; P(D/B)=0.003; P(D/C)=0.004

a. Quelle est la probabilité qu'il soit défectueux ? P(D)=P(D/A).P(A)+P(D/B).P(B)+P(D/C).P(C) = 0.002x0.5+0.003x0.3+0.004x0.2 = 0.0027

b. Sachant que le tube choisi est défectueux, quelle est la probabilité qu'il provienne de la société A ?

23

$$P(A/D) = \frac{P(D/A)P(A)}{P(D)} = \frac{0.002 \times 0.5}{0.0027} = 0.3703704$$

Exercice 10

Une boite contient n boules noires et b boules blanches (n>1, b> 1). On tire au hasard une boule puis on la remet dans la boite avec k (k > 0) nouvelles boules de la même couleur que la boule tirée. On choisit de nouveau une boule au hasard dans la boite. Soit N_I l'événement « la première boule tirée est noire » et N_2 l'événement « la deuxième boule tirée est noire ».

- a. Calculer la probabilité de N_1 .
- b. Calculer la probabilité de tirer deux boules noires.
- c. Calculer la probabilité de N_2 . déduire de ce qui précède que $P(N_1/N_2) = P(N_2/N_1)$.

Correction de l'exercice 10

a.
$$P(N1) = \frac{n}{n+b}$$

b.
$$P(N1 \cap N2) = P(N1).P(N2/N1)$$

$$= \frac{n}{n+h} \cdot \frac{n+k}{n+k+h}$$

c. $P(N2)=P(N2/N1).P(N1)+P(N2/\overline{N1}).P(\overline{N1})$ $=\frac{n+k}{n+k+b}.\frac{n}{n+b}+\frac{n}{n+k+b}.\frac{b}{n+b}$ $=\frac{n.(n+k)+nb}{(n+k+b)(n+b)}=\frac{n.(n+k+b)}{(n+k+b)(n+b)}=\frac{n}{(n+b)}$

Nous observons que P(N1)=P(N2)

Déduire que P(N1/N2)=P(N2/N1) ?

$$P(N1/N2) = \frac{P(N2/N1).P(N1)}{P(N2)} = P(N2/N1)$$
 (car P(N1)=P(N2)).

Examen Statistique et Probabilités (1)

Session de rattrapage (2 heures STU3, Janvier 2018)

Documents ne sont pas autorisés

Exercice 1:

Dans un magasin de pièces détachées, sur un lot de 100 pièces vendues en une année ; les prix s'échelonnent entre 200 DH et 800 DH selon la répartition suivante :

Prix en DH	Nombre de Pièces vendues
[200 ;300[15
[300 ;450[35
[450 ;550 [25
[550 ;600[10
[600 ;800[15

1) Donner le tableau statistique. Le tableau doit comporter les colonnes suivantes :

	Centres	Densité	Fréquence	Fréquences		
Classes	Centres	S	S	cumulées	$f_i * x_i$	$f_i * x_i * x_i$
	$\mathbf{A_i}$	d_i	$\mathbf{f_i}$	F_{i}		

- 2) Calculer le mode, la moyenne et l'écart type.
- 3) Calculer les quartiles Q1, Q2 et Q3.
- 4) Tracer la boite à moustaches et conclure.

Exercice 2:

Cinq personnes soufrant d'obésité suivent un régime d'amincissement. Le tableau suivant donne le nombre de Kgs perdus par chacune d'elle pensant la période de cure suivie.

N° de l'individu	1	2	3	4	5
Durée X (en mois)	3	1	2	4	5
Nombre Y de Kgs perdus	6	4	5	9	11

- 1. Donner la droite de la régression linéaire (Y en fonction de X).
- 2. Calculer le coefficient de corrélation linéaire et conclure.

Exercice 3:

On admet que la probabilité qu'un voyageur oublie ses bagages dans le train est 0,005. Un train transporte 850 voyageurs. On admettra que ces voyageurs se sont regroupés au hasard et que leurs comportement, par rapport à leurs bagages, sont indépendants les uns des autres.

On désigne par X la variable aléatoire qui prend pour valeur le nombre de voyageurs ayant oublié leurs bagages dans le train.

- 1. Quelle est la loi de probabilité de la variable aléatoire X ? Calculer son espérance mathématique et sa variance.
- 2. En utilisant cette loi, calculer la probabilité des événements suivants :
 - a. aucun voyageur n'a oublié ses bagages,
 - b. cinq voyageurs au moins ont oublié leurs bagages.

Correction de l'examen N°1

Corrigé de l'exercice1:

1

Classes	Centres xi	Densités di	Effectifs ni	Fréquences fi	Fréquences cumulées Fi	f_i * x_i	f_i * x_i * x_i
[200;300[250	0.15	15	0.15	0.15	37.5	9375
[300 ;450[375	0.23	35	0.35	0.5	131.25	49218.75
[450;550[500	0.25	25	0.25	0.75	125	62500
[550;600[575	0.20	10	0.1	0.85	57.5	33062.5
[600;800[700	0.08	15	0.15	1	105	73500
Σ			100	1		456.25	227656.25

2) Calculer le mode, la moyenne et l'écart type.La classe modale est [450, 500[(la classe qui a la plus grande densité)Le mode :

Mode:
$$M = a_i + \frac{\Delta i}{\Delta_i + \Delta_{i+1}} (a_{i+1} - a_i)$$
 (ai=450; ai+1=500)
 $\Delta_i = 0.25 - 0.23 = 0.02$
 $\Delta_{i+1} = 0.25 - 0.2 = 0.05$
 $M = 450 + \frac{0.02}{0.02 + 0.05} \times (500 - 450) = 464.2857$

La moyenne $\bar{X} = 456.25$

$$Var(X) = 227656.25 - 456.25^2 = 19492.19$$

Ecart type
$$\partial_x = \sqrt{var(X)} = 139.6144$$

3. Calculer les quartiles Q1, Q2 et Q3.

$$Q_1 = a_i + (a_{i+1} - a_i) \times \frac{0.25 - F_i}{F_{i+1} - F_i}$$
 $(a_i = 300; a_{i+1} = 450)$

$$Q1=300 + (450-300)x \frac{0.25-0.15}{0.5-0.15} = 342.8571$$

$$Q_2 = a_i + (a_{i+1} - a_i) \times \frac{0.5 - F_i}{F_{i+1} - F_i}$$
 $(a_i = 300; a_{i+1} = 450)$

$$Q2=300 + (450-300)x \frac{0.5-0.15}{0.5-0.15} = 450$$

$$Q_3 = a_i + (a_{i+1} - a_i) \times \frac{0.75 - F_i}{F_{i+1} - F_i} \qquad (a_i = 450 ; a_{i+1} = 550)$$

$$Q_3 = 450 + (550 - 450) \times \frac{0.75 - 0.5}{0.75 - 0.5} = 550$$

4. Tracer la boite à moustaches et conclure ?

Corrigé de l'exercice2:

1. Donner la droite de la régression linéaire (Y en fonction de X).

$$Y = aX + b$$

$$\begin{cases} a = \frac{cov(X,Y)}{var(X)} \\ b = \overline{Y} - a \overline{X} \end{cases}$$

var (X) =
$$(\frac{1}{n} \sum xi^2) - \overline{X^2} = 11 - 9 = 2)$$

Cov (x, y) =
$$\frac{1}{5} \sum xi yi - \overline{X} \overline{Y}$$

Cov (x, y) = 24.8 - 3 x 7 = 3.8
 $\overline{Y} = \frac{1}{n} \sum yi = 7$

$$\bar{X} = \frac{1}{n} \sum xi = 3$$

$$\begin{cases} a = \frac{3.8}{2} = 1.9 \\ b = 7 - 1.9 \times 3 = 1.3 \end{cases}$$

$$Y = 1.9 \times 1.3$$

2. Le coefficient de corrélation:

$$r = \frac{cov(X,Y)}{\sigma X \sigma Y}$$

$$Var(Y) = \frac{1}{n} \sum y_i^2 - \overline{Y}^2 = 55.8 - 47 = 6.8$$

$$\sigma Y = 2.607681$$

$$r = \frac{1.9}{\sqrt{2} \times 2.607681} = 0.5152098$$

3. Calculer le coefficient de corrélation linéaire et conclure.

$$r = \frac{1.9}{\sqrt{2} \ x \ 2.607681} = \ 0.5152098$$

$$R=r^2 = 0.2654411$$

Corrélation linéaire faible entre X et Y

Corrigé de l'exercice3:

- 1. En utilisant cette loi, calculer la probabilité des événements suivants :
 - a. aucun voyageur n'a oublié ses bagages,
 - b. cinq voyageurs au moins ont oublié leurs bagages.
- 1. Pour chaque voyageur il y a deux possibilités :
- il oublie ses bagages dans le train, avec la probabilité 0,005, ou bien
- il n'oublie pas ses bagages dans le train, avec la probabilité 0,995.

Les comportements de chacun des 850 voyageurs du train sont indépendants les uns des autres.

La loi de la variable aléatoire X est donc une loi binomiale, c'est la loi binomiale de paramètres n = 850 et p = 0.005.

On a, pour tout entier k de 0 à 850 :
$$P(X=k) = \binom{n}{k} p^k (1-p)^{n-k} = \binom{850}{k} 0.005^k \ 0.995 p^{850-k}$$

On trouve : $E(X) = np = 850 \times 0,005$ donc E(X) = 4,25 voyageurs ayant oublié leurs bagages.

$$V(X) = np(1-p) = 850 \times 0,005 \times 0,995 \text{ soit } V(X) \approx 4,2298.$$

- 2. Dans cette situation nous avons $n \ge 50$ et $np \le 5$ Donc on peut approximer la loi binomiale avec la loi de poisson de paramètre $\lambda = 4,25$
 - a) On cherche P(X=0), $P(X=0) \approx \frac{\lambda^0}{0!} e^{-\lambda}$ $P(X=0) \approx 0.014$ la probabilité pour qu'aucun voyageur n'ait été oublié ses bagages dans le train est approximativement 0.014.

b)
$$P(X \ge 5) = 1 - P(X < 5) = 1 - P(X \le 4)$$

 $\approx 1 - (P(X=0) + P(X=1) + P(X=2) + P(X=3) + P(X=4))$

$$P(X \ge 5) \approx 1 - 0.580 = 0.420$$

Examen Statistique et Probabilités (2)

Session normale (STU3, Semestre 3)

Documents ne sont pas autorisés

Exercice 1:

Ce tableau nous indique la répartition de 110 ménages par classe de revenu

Classes de revenu	Effectifs
[0-1500[20
[1500-3000[40
[3000-5000[45
[5000-10000[5
	110

3) Donner le tableau statistique. Le tableau doit comporter les colonnes suivantes :

Classes	Centres	Densités	Fréquence	Fréquences	$f_i * x_i$	$f_i * x_i * x_i$	
	Xi	d_{i}	S	cumulées			
			f_i	F_{i}			İ

- 4) Calculer le mode, la moyenne et l'écart type.
- 5) Calculer les quartiles Q1, Q2 et Q3.
- 6) Tracer la boite à moustaches.

Exercice 2:

Un échantillon aléatoire de 1367 diplômes d'université, délivrés en 1984, a donné la répartition suivante :

Niveau de diplôme Sexe	Licence	Maîtrise	Doctorat
Masculin	534	144	22
Féminin	515	141	11

Le sexe et le niveau de diplôme obtenu sont-ils liés ?

Exercice 3:

Une urne contient 3 pièces équilibrées. Deux d'entre elles sont normales : elles possèdent un côté « Pile » et un côté « Face ». La troisième est truquée et possède deux côtés « Face ».

On prend une pièce au hasard dans l'urne et on effectue de manière indépendante des lancers successifs de cette pièce. On considère les évènements suivants:

B: la pièce prise est normale. \bar{B} : la pièce prise est truquée.

P : on obtient « Pile » au premier lancer.

 F_n : on obtient « Face » pour les n premiers lancers. :

- 1) a) Quelle est la probabilité de l'évènement *B* ?
 - b) Quelle est la probabilité de l'évènement P sachant que B est réalisé ?
- 2) Calculer la probabilité de l'événement $P \cap B$, puis de l'évènement $P \cap \overline{B}$. En déduire la probabilité de l'évènement P.
- 3) Calculer la probabilité de l'évènement $F_n \cap B$ puis de l'évènement $F_n \cap \overline{B}$. En déduire la probabilité de l'évènement F_n .

Correction de l'examen N°2

Corrigé de l'exercice1:

Voir exercice 1 de l'examen précédent (même méthode de calcul)

Corrigé de l'exercice2:

Un échantillon aléatoire de 1367 diplômes d'université, délivrés en 1984, a donné la répartition suivante :

Niveau de diplôme Sexe	Licence	Maîtrise	Doctorat	
Masculin	534	144	22	700
Féminin	515	141	11	667
Σ	1049	285	33	1367

Le sexe et le niveau de diplôme obtenu sont-ils liés ?

Hypothèse H_0 Supposent que le sexe et niveau de diplôme sont indépendants Effectifs théorique

Niveau de diplôme	Licence	Maîtrise	Doctorat
Sexe			
Masculin	537.161668	145.940015	16.8983175
Féminin	511.838332	139.059985	16.1016825

 $(n_{ij}^*$ Effectif Théorique $et \ n_{ij}$ Effectif r'eelles)

Khi-2 =
$$X^2 = \sum_{i,j} \frac{(n_{ij}^* - n_{ij})^2}{n_{ij}^*}$$

Khi-2 = 14.72100052

Si $X^2 = 0$ alors X, Y sont indépendant

- On va choisir le seuil de signification 5% (0,05)
- Le degré de liberté = (nombre ligne 1) (nombre colonne -1)=(3-1) (2-1) = $2 \times X^2$ Critique = 5,99 (voir table de Khi-2)

Si $X^2 > X_{\text{Critique}}^2$ alors donc existe un lien entre X et Y.

Corrigé de l'exercice3:

1.

- a) Le choix de pièces dans l'urne étant équiprobable, P(B)= 2/3
- b) Si l'événement B est réalisé, c'est-à-dire si une pièce « normale » a été choisie, la probabilité d'obtenir « pile » vaut ½, c'est-à-dire P(P/B)=1/2

2.

On calcule
$$P(P \cap B) = P(B).P(P/B) = 2/3 \cdot \frac{1}{2} = 1/3$$

Puisque P(B)=2/3,

Alors P(\overline{B})=1- 2/3 =1/3

Si l'événement B est réalisé, c'est-à-dire si une pièce « truquée » a été chisie, la probabilité d'obtenir « Pile » est nulle, puisque la pièce truquée possède « deux face ». Ainsi $P(P/\overline{B})=0$.

On en déduit $P(P \cap \overline{B}) = p(\overline{B}) \cdot P(P/\overline{B}) = 1/3 \cdot 0 = 0$

En utilisant la formule des probabilités totales, puisque le système (B, \overline{B}) est un système complet d'événement, on obtient $P(P) = P(P \cap B) + P(P \cap \overline{B}) = 1/3$

3.

Si l'événement B est réalisé, c'est-à-dire si une pièce « normale » a été choisie, a probabilité d'obtenir « Face » au cours des n premiers lancers suit une loi binomiale de paramètres n est 1/2, donc

$$P(F_n/B) = {n \choose n} (\frac{1}{2})^n (\frac{1}{2})^0 = (\frac{1}{2})^n, \text{ et ainsi}$$

$$P(F_n \cap B) = \frac{2}{n} \cdot (\frac{1}{2})^n$$

$$P(F_n \cap B) = \frac{2}{n} \cdot (\frac{1}{2})^n$$

Si l'événement B est réalisé, c'est-à-dire si une pièce « truquée » a été choisie, la probabilité d'obtenir « face » vaut 1 à chaque lancer, donc la probabilité d'obtenir « Face » au cours des n premier lancers vaut 1, c'est-à-dire $P(F_n/\overline{B}) = (1/3)$. 1=1/3

En utilisant la formule des probabilités totales, puisque le système (B, \overline{B}) est un système complet d'événement, on obtient

$$P(F_n) = P(F_n \cap B) + P(F_n \cap \overline{B}) = \frac{2}{3} \cdot (\frac{1}{2})^n + \frac{1}{2} \cdot 1 = \frac{2}{3} \cdot (\frac{1}{2})^n + \frac{1}{2}$$