Sequence Modeling

Ben Langmead

Department of Computer Science

Please sign guestbook (www.langmead-lab.org/teaching-materials) to tell me briefly how you are using the slides. For original Keynote files, email me (ben.langmead@gmail.com).

Picking up signals

So far, we've focused on how to stitch fragmentary evidence into bigger pictures, i.e. genomes

Now we have more questions!

Where are the genes?

Where/what is the functional DNA?

What's different about the DNA in different tissues?

In what abundance do we find various molecules?

What differences exist between individuals?

Picking up signals

We know much more about the genome than just its DNA sequence:

http://genome.ucsc.edu/cgi-bin/hgTracks

Epigenetics

http://en.wikipedia.org/wiki/File:Stem_cells_diagram.png

Methylation

Dinucleotide "CG" (AKA "CpG") is special because C can have a *methyl group* attached

Methylation

In animals, most methylation is at CG cytosines

Methylation status of every CpG is a bit

Differentiated cell types have different characteristic bit strings

But every cell type has same genome

CpG Islands

CpG island: part of the genome where CG occurs particularly frequently

CpG Islands

Wanted: a strategy for scoring a *k*-mer according to how confident we are it belongs to a CpG island

Scores should be *probabilities*

(This is a simple problem, but real-world tools do use these kinds of techniques to find CpG islands & genes)

Sample space (Ω) is set of all possible outcomes

E.g. $\Omega = \{ \text{ all possible rolls of 2 dice } \}$

An event (A, B, C, ...) is a subset of Ω

 $A = \{ \text{ rolls where first die is odd } \}, B = \{ \text{ rolls where second die is even } \}$

We're often concerned with assigning a probability to an event

P(A): fraction of all possible outcomes that are in A

$$P(A) = |A| / |\Omega| = 18 / 36 = 0.5$$

P(A, B): fraction of all possible outcomes in both A and B

$$P(A, B) = |A \cap B| / |\Omega| = 9 / 36 = 0.25$$

Also written: $P(A \cap B)$ or P(AB)

Joint probability of A and B

 $P(A \mid B)$: fraction of outcomes in B that are also in A conditional probability of A given B

$$P(A | B) = | A \cap B | / | B | = 9 / 18 = 0.5$$

$$P(A \mid B) = P(A, B) / P(B)$$
 <— Bayes rule

$$P(A, B) = P(A \mid B) \cdot P(B)$$
 <— multiplication rule

Multiplication rule for joint prob with many variables:

$$P(A, B, C, D) = P(A \mid B, C, D) \cdot P(B, C, D)$$

$$P(A, B, C, D) = P(B | A, C, D) \cdot P(A, C, D)$$

$$P(A, B, C, D) = P(A | B, C, D) \cdot P(B | C, D) \cdot P(C, D)$$

$$P(A, B, C, D) = P(A \mid B, C, D) \cdot P(B \mid C, D) \cdot P(C \mid D) \cdot P(D)$$

conditional marginal probabilities prob

Events A and B are independent if $P(A \mid B) = P(A)$ So $P(A, B) = P(B) P(A \mid B) = P(A) P(B)$

More probability review, courtesy of Prof. Joe Blitzstein and others:

http://projects.iq.harvard.edu/stat110/youtube

http://j.mp/CG_prob_cheatsheet

Sequence models

Sequence model is a probabilistic model that associates probabilities with sequences

What *k*-mers do I see inside versus outside of a CpG island?

What's the probability of next character being A if previous characters were GATTAC?

Given a genome, where are the genes?

Right: model for eukaryotic gene finding

Image by Bill Majoros: http://www.genezilla.org/design.html

Sequence models

We'll use sequence models that learn from examples

Say we sample 100K 5-mers from *inside* CpG islands and 100K 5-mers from *outside*

We're given a new 5-mer: CGCGC. Can we guess whether it came from a CpG island?

# CGCGC inside	315
# CGCGC outside	12

p(inside) = 315/(315 + 12) = 0.963

Sequence models

P(x) = probability of sequence x

$$P(x) = P(x_k, x_{k-1}, ... x_1)$$
Joint probability of all bases at all positions

Estimating P(x): # occurrences *inside* \div # occurrences total

For large k, might see few or no occurrences of x. Joint probabilities for rare events are hard to estimate well!