

UNIVERSIDADE DE BRASILIA FACULDADE DO GAMA

Sistemas Embarcados

Prova Prática 1

1 - OBJETIVOS

Implementação de um sistema embarcado de automação residencial que permita o controle e monitoramento remoto com as seguintes características:

1 - Servidor embarcado no Raspberry Pi:

O servidor embarcado no Raspberry Pi deve ser capaz de: receber conexões de rede via protocolo TCP/IP; monitorar o estado de sensores e acionar dispositivos por meio de comunicação UART com uma placa Arduino; acionar um alarme e; registrar todas as ocorrências em um arquivo de log.

Funcionalidades:

a) Comunicação com Sensores e Dispositivos conectados ao Arduino

Implementar a comunicação serial via UART com o Arduino usando o seguinte protocolo:

a. Leitura de dados dos sensores

As mensagens de solicitação de dados dos sensores (Tabela 1) enviadas pela porta serial devem seguir o padrão:

Código do Sensor + Número do Sensor.

Exemplo: Sensor de Temperatura $2 \rightarrow 0xA1 + 2 \rightarrow char[] = \{163, 2\};$

b. Acionamento de Dispositivos

As mensagens de acionamento dos dispositivos (Tabela 2) deverão estar no seguinte formato:

<u>Código do Dispositivo</u> + <u>Número do Dispositivo</u> + Valor

Exemplo: Ligar a Lâmpada $5 \rightarrow 0xB2 + 5 + 1 \rightarrow char[] = \{178, 5, 1\}$

Tabela 1 - Códigos do Protocolo de Comunicação - Solicitação de Informações dos Sensores

Código	Sensor	Localização	Mensagem de Retorno
0xA1	Temperatura	1 = Externa 2 = Interna da Sala 3 = Interna do Quarto	float (4 bytes)
0xA2	Presença	1 = Entrada Principal 2 = Entrada de serviço 3 = Garagem	char (1 byte) - onde: 1 = presença detectada 0 = não há presença
0xA3	Portas / Janelas	1 = Porta principal 2 = Porta de serviço 3 = Porta da garagem 4 = Janela da sala 5 = Janela do Quarto 6 = Janela da cozinha	char (1 byte) - onde: 1 = fechado 0 = aberto

Tabela 2 - Códigos do Protocolo de Comunicação - Acionamento de Dispositivos

Código	Dispositivo	Localização	Mensagem de Retorno
0xB1	Ar-condicionado	1 = Sala 2 = Quarto	char (1 byte) onde: 1 = Liga 2 = Desliga
0xB2	Lâmpada	1 = Entrada principal (externa) 2 = Entrada de serviço (externa) 3 = Garagem 4 = Sala 5 = Quarto 6 = Cozinha	char (1 byte) onde: 1 = Liga 2 = Desliga
0xB3	Alarme	1 = Setor 1 (Sensores de Presença) 2 = Setor 2 (Sensores de Portas/ Janelas)	char (1 byte) onde: 1 = Liga 2 = Desliga

Obs: utilizar os mesmos parâmetros de configuração do exemplo uart.c disponibilizado no repositório.

b) Serviço de Rede

- Implementar um serviço de rede via sockets (TCP/IP) para escutar na porta 8080 para receber as solicitações de Leitura dos dados dos Sensores, Acionamento do Ar-Condicionar e das Lâmpadas.
- Implementar um serviço de rede via sockets (TCP/IP) para escutar na porta 4000 para controle do acionamento do alarme.

c) Disparar Alarme

Caso o alarme esteja ligado, monitorar o estado dos sensores de **presença** e **portas/janelas** (de acordo com o setor do alarme que esteja acionado) a cada 2 segundos e, acionar uma sirene de alerta um dos respectivos sensores seja acionado. A sirene deve ser implementada tocando um áudio pelo Raspberry Pi.

d) Log do Sistema

Criação de um arquivo de LOG em formato texto que deve conter:

- Data e hora de ligação do serviço;
- Data, hora, IP do cliente que solicitou acesso e o comando de acionamento dos dispositivos.
- Data e hora em que o serviço foi desligado.

2 - Cliente:

O Cliente deve funcionar a partir de um PC e se comunicar com o servidor (Raspberry Pi) através de rede TCP/IP. No cliente devem estar implementadas as seguintes funcionalidades:

a) Leitura das informações dos sensores (Tabela 1)

O cliente deve se capaz de solicitar ao servidor informações sobre cada um dos sensores por tipo (Temperatura, Presença, etc) ou individualmente (Temperatura 1, Presença 3, etc) e apresentá-las na tela do usuário.

b) Acionamento de Dispositivos (Tabela 2)

O cliente deve se capaz de enviar comandos para acionamento dos dispositivos individualmente, observando que o acionamento do alarme somente poderá ser realizado pela porta 4000.

c) Menu apresentando ao usuário todas as opções.

Todas as opções de acionamento deve ser apresentadas em um menu simples no terminal do usuário.

2 - OBSERVAÇÕES

O código do servidor pode ser testado no Linux num PC e se possível no Raspberry Pi, porém terá que ser compilado para rodar no Raspberry Pi em sala de aula. O código do cliente pode ser testado no Linux (PC).

3 - RELATÓRIO

Cada aluno deve elaborar um relatório, no formato IEEE: http://www.ieee.org/conferences_events/conferences/publishing/templates.html, com os seguintes itens:

- 1. Objetivos. (0,5 ponto)
- 2. Introdução: Descrever as técnicas utilizadas e justificar o uso delas. (2 pontos)
- 3. Especificação: Descrição das funcionalidades do sistema implementado. (1,5 pontos)
- 4. Implementação e prototipação: Descrição da forma de implementação de cada funcionalidade do sistema. Faça comentários sobre os códigos elaborados e os inclua no relatório. (5 pontos)
- 5. Conclusão. (1,0 pontos)