SYLLABUS BLOCKCHAIN DEVELOPMENT PATH

Overview

In this course, you will learn all you need to harness the power of one of the most disruptive technologies i.e. Blockchain.

Who is this course meant for:

- 1. Anyone who wants to start a career in Blockchain
- 2. Any Blockchain and cryptocurrency enthusiast
- Anyone interested in building decentralized applications
- Anyone interested in the applications of blockchain technology
- Anyone who wants to understand the basic to advanced concepts related to blockchain

LESSON ONE

INTRODUCTION TO BLOCKCHAIN AND ETHEREUM

- What is a Blockchain and why should I care?
- Blockchain Architectural Overview
- The Web of Trust
- Ethereum's main components
- Ethereum's sub-protocols
- The new generation of the Web (i.e., Web3.0)
- Smart Contracts and Decentralized Applications (dApps)
- Web apps vs. dApps

LESSON TWO

INTRODUCTION TO SMART CONTRACTS

- An overview to the history of smart contracts
- An intro to the life-cycle of a smart contract
- Ethereum's smart contract languages
- Interfacing with Ethereum Networks (overview of
- Ethereum Networks, Clients, Wallets, Transactions etc.)
- The Solidity Programming Language
- Development Environments

LESSON THREE

BLOCKCHAIN TECHNOLOGY SUPPORTING TURING-COMPLETE LANGUAGES

- A comparison of Ethereum and Bitcoin
- Overview of Ethereum's tech stack, architecture
- The Ethereum reward scheme, Mist, EVM, Swarm, Whisper, Eth, Gas

- A comparison of Ethereum and Bitcoin
- Overview of Ethereum's tech stack, architecture
- The Ethereum reward scheme, Mist, EVM,
 Swarm, Whisper, Eth, Gas

LESSON FOUR

VIRTUAL MACHINES AND BEYOND

- History of Virtual Machines
- State replication, consensus and the Ethereum Architecture
- Introduction to the Ethereum Virtual Machine and EVM Byte Code interpretation
- Incentivisation structures, rewards schemes, and gas pricing

LESSON FIVE

INTRODUCTION TO THE DAPP DEVELOPMENT PIPELINE

- Introduction to development with Solidity
- Development environments (Truffle)
- Intro to Solidity
- Smart contract layout
- The structure of .sol source file

LESSON SIX

DEEP-DIVE INTO SOLIDITY

- Understanding the different compiler versions and pragmas
- Authoring smart contracts
- Contract definitions

- Basic data types
- Local and State Variables

LESSON SEVEN

GLOBAL VARIABLES AND FUNCTIONS

- Predefined Global Variables
- Structs and Enums
- Mapping and Arrays
- Build-in Functions (e.g., addmod, keccak256)
- User Functions

LESSON EIGHT

EXPRESSIONS AND CONTROL STRUCTURES

- Valid expressions of the language
- Exception Handling (e.g., assert, require, revert, throw)
- Events and Logging
- Conditional logic
- Implementation of loops

LESSON NINE

OBJECT ORIENTED CONSTRUCTS

- Contract constructor and selfdestruct
- Function Modifiers and Fallback functions
- Calling other contracts
- Inheritance and Multiple Inheritance
- Declaring Abstract Classes and Interfaces
- Implementation of Abstract interfaces
- Function Overloading

LESSON TEN

UNIT TESTING AND DEBUGGING CONTRACTS

- Estimating Gas Costs
- Basics of using Truffle for testing
- Troubleshooting and Debugging
- Common design patterns
- Smart Contract Security overview of attacks on
- Ethereum smart contracts

LESSON ELEVEN

BUILDING THE FRONT-END APPLICATION

- Intro to front-end web technology (React.js)
- A deeper dive into web3.js
- Understanding call and send methods in web3.js
- Signing transaction with Metamask
- Listening to events on providers

LESSON TWELVE

PROJECTS

- A simple cryptocurrency vault
- A standard ERC20 token
- NFT marketplace
- Staking and farming protocol
- Understanding auto-liquidity generation protocol