Санкт-Петербургский национальный исследовательский университет информационных технологий, механикии оптики

УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа m3115	_К работе допущен						
Студент Кочубеев Николай Сергеевич	_Работа выполнена						
Преподаватель: Рахманова Гульназ Раифовна Отчет принят							

Рабочий протокол и отчет по лабораторной работе № 3.06

«Изучение электрических свойств сегнетоэлектриков»

- 1. **Цель работы**: определение значений начальной и максимальной диэлектрической проницаемости сегнетоэлектрика;
- 2. Задачи:
 - 1. Определение значений электрического смещения насыщения D_s , остаточной поляризации P_r , коэрцитивной силы E_c для предельной петли гистерезиса сегнетоэлектрика;
 - 2. Расчет диэлектрических потерь за цикл переполяризации сегнетоэлектрика;
 - 3. Получение зависимостей смещения D и диэлектрической проницаемости ε от напряженности электрического поля E;
 - 4. Определение значений начальной и максимальной диэлектрической проницаемости;
- 3. **Объект исследования**: сегнетоэлектрический конденсатор (вариконд) ВК2-4;
- 4. Метод экспериментального исследования: фиксирование изменения размеров петли гистерезиса по убыванию от размеров предельной петли;

5. Рабочие формулы и постоянные величины:

$D = \sigma = \frac{q}{S} = \frac{C_2 U_{C_2}}{S} = \frac{C_1}{S} \cdot U_{C_1}$	модуль электрической индукции в состоянии насыщения
$E = \frac{U_{C_2}}{d} = \frac{U}{d} = \frac{R_1 + R_2}{R_1} \cdot \frac{U_{R_1}}{d}$	значение коэрцитивного поля
$U_{R_1} = U \frac{R_1}{R_1 + R_2}$	напряжение на резисторе
$\operatorname{tg} \delta = \frac{1}{\pi} \frac{\oint DdE}{D_s E_s}$	тангенс угла диэлектрических потерь
$\vec{D} = \vec{P} + \varepsilon_0 \vec{E}$	вектор электрического смещения
$\varepsilon_0 = 8.85 * 10^{-12} \Phi/M$	электрическая постоянная

6. Измерительные приборы:

Наименование	Предел	Цена деления	Погрешность
	измерений		измерения
Измеритель статистических	I: 0,002 A	I: 0,0000001 A	— /
характеристик «ИСХ1»	<i>U</i> : 2 B	<i>U</i> : 0,001 B	$U: \pm 0.2 \text{ B}$

7. Схема установки:

Рис 3. Органы управления прибором «ИСХІ»

- 1. графический дисплей;
- 2. кнопка выбора режима работы «F»;
- 3. кнопка выбора шкалы «Шкл.»;
- 4. кнопка запоминания оцифрованного сигнала «Стоп»;
- 5. кнопка выбора температурного режима «Темп»;
- 6. кнопка управления генератором «Генер.»;
- 7. кнопка выбора коэффициента отклонения «Кус»;
- 8. кнопка уменьшения выбранной величины «-»;
- 9. кнопка увеличения выбранной величины «+»;
- 10.кнопка выключателя «Сеть»;
- 11.выход генератора;
- 12.вход тока I;
- 13.вход напряжения U_1 ;
- 14. вход напряжения U_2 ;

Рис. 4. Принципиальная схема электрической установки

8. Результаты прямых измерений:

V.	u,B	Kx B/	العد ا	Ky	ge.	Y. 461	B/4	P, Ripe	٤	Ps = 3,2 yerence
	17	5	1	1	2,7	/3,2				Ez= 1,7 yeurul
2	12,6	5		5	2	2,4		4-1		Dr: 1 geronue Ec= 0,3 que.
3	3,8	5		ç	1,5	1,5				Kx=S
1	7,8	5	9	:	1,1	1				
S	5,8	2	2	1	2,3	1,1				
;	5,2	2	12		2,!	0,8	,		1 100	Conysees, Warming
	4,6	2	1		1,8	0,6				
3	4	1	1		3,2	1				C
	3,4	1.	1		1,6	0,5				9
,	2,8	1	1		2,2	0,4	1			6
	1,2	0,5	0,5		3,5	10,5	-			V
2	1,6	0,5	0,5	+	2,5	0,3				
3		0,2	0,1		4	0,5				
1	0,4	0,2	0,2		1,5	0,1				

9. Расчёт результатов косвенных измерений:

Значение коэрцитивного поля: $E_c = 33000 \frac{B}{M}$;

Значение электрической индукции в состоянии насыщения: $D_s = 0.032 \frac{\text{Кл}}{\text{м}^2}$;

Значение остаточной поляризации: $P_r = 0.01 \frac{K_{\text{Л}}}{M^2}$;

Площадь петли гистерезиса есть мера потерь энергии в единице объема за один цикл перемагничивания => площадь петли $S_r\cong 6.25\frac{\mathrm{Дж}}{\mathrm{дел}^2};$

Тангенс угла диэлектрических потерь $\tan \delta \cong 0.043024$;

$$\begin{split} \varepsilon_{\rm hay} &= 5649,\!72 \, \frac{\Phi}{\rm m}; \\ \varepsilon_{\rm makc} &= 107613,\!67 \, \frac{\Phi}{\rm m}. \end{split}$$

№	<i>U</i> , B	K_x , $\frac{\mathrm{B}}{\mathrm{дел}}$	K_{y} , $\frac{\mathrm{B}}{\mathrm{дел}}$	Х, дел	<i>Y</i> , дел	$E, \frac{B}{M}$	$D, \frac{\mathrm{K}\pi}{\mathrm{M}^2}$	$\varepsilon, \frac{\Phi}{M}$
1	17	5	5	2,7	3,2	34000	0,032	106347,62
2	12,6	5	5	2	2,4	25200	0,024	107613,67
3	9,8	5	5	1,5	1,5	19600	0,015	86475,27
4	7,8	5	5	1,2	1	15600	0,01	72432,28
5	5,8	2	2	2,3	1,1	11600	0,0044	42859,93
6	5,2	2	2	2,1	0,8	10400	0,0032	34767,49
7	4,6	2	2	1,8	0,6	9200	0,0024	29476,79
8	4	1	1	3,2	1	8000	0,002	28248,59
9	3,4	1	1	2,7	0,6	6800	0,0012	19940,18
10	2,8	1	1	2,2	0,4	5600	0,0008	16142,05
11	2,2	0,5	0,5	3,5	0,5	4400	0,0005	12840,27
12	1,6	0,5	0,5	2,5	0,3	3200	0,0003	10593,22
13	1	0,2	0,2	4	0,5	2000	0,0002	11299,44
14	0,4	0,2	0,2	1,5	0,1	800	0,00004	5649,72

10. Расчет погрешностей:

$$D_s = 0{,}032 \pm 0{,}046\,\tfrac{\text{K}\pi}{\text{m}^2}$$

11. Графики:

График 1. Отражение хода основной кривой поляризации

График 2. Зависимость ε (E)

-φ-ε(E)

12. Результат:

Мы получили значения коэрцитивного поля, электрического смещения насыщения, остаточной поляризации для предельной петли гистерезиса, получили криволинейные зависимости смещения и диэлектрической проницаемости напряженности электрического поля и определили начальное и максимальное значения диэлектрической проницаемости.