International Rectifier

IRL540NPbF

HEXFET® Power MOSFET

- Lead-Free
- · Logic-Level Gate Drive
- Advanced Process Technology
- Dynamic dv/dt Rating
- 175°C Operating Temperature
- Fast Switching
- Fully Avalanche Rated

Description

Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.

The TO-220 package is universally preferred for all commercial-industrial applications at power dissipation levels to approximately 50 watts. The low thermal resistance and low package cost of the TO-220 contribute to its wide acceptance throughout the industry.

Absolute Maximum Ratings

	Parameter	Max.	Units	
$I_D @ T_C = 25^{\circ}C$	Continuous Drain Current, V _{GS} @ 10V	36		
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	26	A	
DM	Pulsed Drain Current ①	120		
P _D @T _C = 25°C	Power Dissipation	140	W	
	Linear Derating Factor	0.91	W/°C	
V _{GS}	Gate-to-Source Voltage	± 16	V	
E _{AS}	Single Pulse Avalanche Energy®	310	mJ	
I _{AR}	Avalanche Current①	18	A	
E _{AR}	Repetitive Avalanche Energy®	14	mJ	
dv/dt	Peak Diode Recovery dv/dt 3	5.0	V/ns	
TJ	Operating Junction and	-55 to + 175		
T _{STG}	Storage Temperature Range	322 300 37 33237	°C	
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)		
	Mounting torque, 6-32 or M3 srew	10 lbf•in (1.1N•m)		

Thermal Resistance

	Parameter	Тур.	Max.	Units
R ₀ JC	Junction-to-Case	_	1.1	
R _{θCS}	Case-to-Sink, Flat, Greased Surface	0.50	-	°C/W
$R_{\theta JA}$	Junction-to-Ambient		62	

IRL540NPbF

Electrical Characteristics @ $T_J = 25$ °C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	100		_	V	$V_{GS} = 0V, I_D = 250\mu A$
ΔV _{(BR)DSS} /ΔT _J	Breakdown Voltage Temp. Coefficient		0.11		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance	.—.	_	0.044	Ω	V _{GS} = 10V, I _D = 18A ④
		_		0.053		V _{GS} = 5.0V, I _D = 18A @
				0.063		V _{GS} = 4.0V, I _D = 15A ④
V _{GS(th)}	Gate Threshold Voltage	1.0		2.0	V	V _{DS} = V _{GS} , I _D = 250μA
9ts	Forward Transconductance	14	s	_	S	V _{DS} = 25V, I _D = 18A
I _{DSS}	Droin to Source Leakage Comment			25		V _{DS} = 100V, V _{GS} = 0V
DSS	Drain-to-Source Leakage Current		_	250	μА	V _{DS} = 80V, V _{GS} = 0V, T _J = 150°C
I _{GSS}	Gate-to-Source Forward Leakage			100		V _{GS} = 16V
GSS	Gate-to-Source Reverse Leakage			-100	nA	V _{GS} = -16V
Qg	Total Gate Charge		-	74		I _D = 18A
Q _{gs}	Gate-to-Source Charge	_		9.4	nC	$V_{DS} = 5.0V$
Qgd	Gate-to-Drain ("Miller") Charge			38		V _{GS} = 5.0V, See Fig. 6 and 13 @
d(on)	Turn-On Delay Time	_	11			V _{DD} = 50V
tr	Rise Time		81	_		I _D = 18A
t _{d(off)}	Turn-Off Delay Time		39	_	ns	$R_G = 5.0\Omega, V_{GS} = 5.0V$
tf	Fall Time		62			$R_D = 2.7\Omega$, See Fig. 10 $\textcircled{4}$
L _D	Internal Drain Inductance	s 	4.5	-	nН	Between lead, 6mm (0.25in.)
Ls	Internal Source Inductance		7.5			from package and center of die contact
Ciss	Input Capacitance	_	1800			$V_{GS} = 0V$
Coss	Output Capacitance	_	350		pF	$V_{DS} = 25V$
Crss	Reverse Transfer Capacitance		170			f = 1.0MHz, See Fig. 5

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current (Body Diode)	_	_	36		MOSFET symbol showing the
I _{SM}	Pulsed Source Current (Body Diode) ① ⑤		_	120	A	integral reverse p-n junction diode.
V _{SD}	Diode Forward Voltage		_	1.3	V	T _J = 25°C, I _S = 18A, V _{GS} = 0V ④
t _{rr}	Reverse Recovery Time	_	190	290	ns	T _J = 25°C, I _F = 18A
Qrr	Reverse RecoveryCharge	_	1.1	1.7	μС	di/dt = 100A/µs ④
ton	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by Ls+Ln)				

Notes:

- Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- ② Starting $T_J = 25^{\circ}C$, L = 1.9 mH $R_G = 25\Omega$, $I_{AS} = 18 \text{A}$. (See Figure 12)
- 4 Pulse width $\leq 300 \mu s$; duty cycle $\leq 2\%$

IRL540NPbF

Fig 1. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 2. Typical Output Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 8. Maximum Safe Operating Area

IRL540NPbF

Fig 9. Maximum Drain Current Vs.
Case Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig 12a. Unclamped Inductive Test Circuit

Fig 12b. Unclamped Inductive Waveforms

Fig 13a. Basic Gate Charge Waveform

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

Fig 13b. Gate Charge Test Circuit

Peak Diode Recovery dv/dt Test Circuit

* $V_{GS} = 5V$ for Logic Level Devices

Fig 14. For N-Channel HEXFETS

TO-220AB Package Outline

Dimensions are shown in millimeters (inches)

- 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 2 CONTROLLING DIMENSION: INCH
- 3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB. 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.
- TO-220AB Part Marking Information

EXAMPLE: THIS IS AN IRF1010

LOT CODE 1789

ASSEMBLED ON WW 19, 1997 IN THE ASSEMBLY LINE "C"

Note: "P" in assembly line position indicates "Lead-Free"

Data and specifications subject to change without notice.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.02/04 www.irf.com Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.