

When you think of machine learning

Not necessarily these organizations

Who actually understands machine learning?

Tip 1:

Explain how your model works in language your boss's boss can understand

Use their language to explain what you do

How did these people get to the top?

You (new cool tools)

You boss (old new tools)

It's difficult to get a man to understand when his salary depends on his not understanding it – Upton Sinclair

Tip 2:

Motivate machine learning projects by showing how current methods are insufficient

Previous Research (Engstrom, Hersh, Newhouse, 2017) Using Intermediate Features to Estimate Poverty in Sri Lanka

Satellite Image

Buildings

57 Countries Have Zero or One Poverty Estimate 2002-2011

Number of Poverty Data Points, 2002 - 2011

Tip 3:

Be honest about the limitations of your methods

Urban Municipalities: Predicted vs True

Tip 4:

But always show the upside if it works out

"Micro-Satellites" ~ Daily Revisit Rate

Shifting gears: do mobile phones cause car accidents?

 Research Question: do internet enabled mobile phones increase traffic accidents?

 Joint work with Matt and Bree Lang at UC Riverside – "Car Accidents and 3G Coverage: New Evidence Using Cell Phone Towers"

Event study: growth of 3G

Road distance to nearest tower 2001 - 2011

Problem: Only only know if a road has 3G access in 2016

- But: we know closest tower characteristics 2001 – 2016
- Solution: build random forest model to predict 3G coverage 2001 – 2016 based on closest tower characteristics

Cross-validate and select optimal 'mtry'

Parameter selection RF model for postmile 3G coverage prediction Training data, 80% sample. Assuming 3G introduced as shown

Predicted growth in 3G coverage matches observed coverage

Model Calibration Plot

Observed versus actual road 3G coverage

Test Set: ROC Accuracy Plot

ROC Curve, predicting highway segment 3G coverage Test data, 20% sample (N = 63728). Assumed 3G introduced '05

Event Study Fixed Effect Poisson Model

$$E[Accident_{it} | X_{it}]$$

$$= \exp\left(\sum_{k=-4}^{-1} \theta_k S_{it+k} + \sum_{j=1}^{4+} \theta_j S_{jt+j} + \ln(Road\ Traffic_{it}) + \gamma_i + \tau_t + v_{it}\right)$$

- θ_i impact of mobile internet coverage on accident probability
- S_{it} when predicted 3G coverage = 1
- γ_i road segment fixed effect
- τ_t time fixed effect
- v_{it} error

Event study: impact of predict 3G road coverage on traffic accident probability

(c) ≥ 0.80 Threshold, N=40,877

Younger Drivers More Affected by 3G road Access

(a) 29 Years and Younger, N=36,880

(c) Between 50 and 64 Years, N=33,857

(b) Between 30 and 49 Years, N=37,377

(d) 65 Years and Older, N=27,494

Conclusion

- Accident rates increase 1.1
 percent a road gets access to 3G
 coverage
- Internet connected mobile phones cause 3,305 accidents per year in California
- Further evidence you can embed machine learning in causal inference models

Comments/suggestions appreciated!

<u>Jonathan Hersh</u>
Argyros School of Business, Chapman University
hersh@chapman.edu

(Please talk to me if you're interested in teaching machine learning @ Chapman)