МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ

Федеральное государственное автономное образовательное учреждение высшего образования «МОСКОВСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

СПЕЦИФИКАЦИЯ ТРЕБОВАНИЙ

на клиент-серверное приложение для решения СЛАУ первого порядка методом Гаусса

по дисциплине

«Технологии и методы программирования.»

Выполнила:

ст. гр. 241-3211

Минеева Анастасия

Оглавление

1. Общие сведения	3
1.1 Клиент.	3
1.2 Сервер	5
2. Назначение	6
3. Функциональные требования	6
4. Нефункциональные требования	7
5. Требования к интерфейсу пользователя	7
6. Валидация и сообщения об ошибках	7
7. Технические требования	9
8. Безопасность и защита данных	9
9. Возможности расширения	9
10. Описание предметной области	10
11. Архитектура системы	10
11.1 Клиентская часть (Qt GUI + C++ на Qt))	10
11.2 Серверная часть (С++ на Qt)	11
12. Диаграммы	13
12.1. Диаграмма классов	13
12.2 Диаграмма Use Case	14
13. Тестирование	15
14. Скриншоты интерфейса	15
15. Заключение	21
16 CHHOOK HOHOH DOROHHU IN HOTOHHUMOR	າາ

1. Общие сведения

Данный документ описывает функциональные и нефункциональные требования к информационной системе — клиент-серверному приложению, предназначенному для решения систем линейных алгебраических уравнений первого порядка (СЛАУ) методом Гаусса.

Приложение реализовано на языке C++ с использованием фреймворка Qt. Оно построено по архитектуре клиент-сервер, где клиентская часть предоставляет удобный графический интерфейс для взаимодействия пользователя с системой, а серверная часть отвечает за обработку данных, парсинг уравнений и вычисление решения методом Гаусса.

1.1 Клиент.

Клиент реализует следующие функции:

- Взаимодействие с сервером построено с использованием паттерна Singleton, что позволяет централизованно управлять сетевыми запросами и гарантирует единый экземпляр сетевого клиента на всё приложение.
- Проверка корректности заполнения полей ввода осуществляется до отправки запроса на сервер. Пользователь получает понятные уведомления на русском языке о некорректно введённых данных.
- Вся информация, введённая пользователем (система линейных уравнений, логин, пароль, email и прочее), собирается, формируется в структуру запроса и передаётся на сервер через JSON-объекты.

- В случае успешного ответа от сервера, клиент отображает результат решения в специально отведённой области.
- При возникновении ошибок как на стороне клиента, так и на стороне сервера пользователь немедленно получает наглядное уведомление с объяснением проблемы (например, "Неверный логин или пароль", "Ошибка в уравнении", "Не удалось соединиться с сервером").
- Создание окна регистрации и авторизации. Функция отвечает за инициализацию и отображение интерфейса, включающего поля ввода логина, пароля, кнопки для входа, регистрации и восстановления пароля. В этом окне реализована логика переключения между режимами авторизации и регистрации, а также базовая валидация вводимых данных.
- Создание окна восстановления пароля. В этом окне пользователь вводит адрес электронной почты для получения кода подтверждения и восстановления доступа к аккаунту. Функция инициализирует поля ввода, кнопки и сообщения об ошибках, а также обрабатывает взаимодействие с сервером для отправки запроса на сброс пароля.
- Создание главного окна приложения. После успешной авторизации создаётся главное рабочее окно, содержащее приветственное сообщение, инструкции и элементы навигации по приложению, включая переход к решению системы уравнений.
- Создание окна решения системы уравнений. Окно предоставляет интерфейс для ввода коэффициентов системы, запуска решения и отображения результата. Функция отвечает за сбор данных, валидацию, отправку запроса на сервер и вывод решения в текстовом поле.
- Создание окна подтверждения почты при регистрации. В данном окне пользователь вводит код, отправленный на электронную почту, для подтверждения регистрации. Функция обеспечивает ввод кода, проверку его корректности и отправку подтверждающего запроса на сервер.

1.2 Сервер.

Серверная часть реализована на языке С++ и выполняет функции обработки, валидации и решения систем линейных уравнений. Сервер принимает запросы от клиента в формате JSON, обрабатывает их и возвращает результат или сообщение об ошибке в структурированном виде. В архитектуре сервера чётко разделены зоны ответственности: парсинг уравнений, вычисления и формирование ответов. Также сервер взаимодействует с базой данных, которая хранит в себе данные о всех пользователях.

Основные функции сервера включают:

- Приём и десериализация входящих JSON-запросов от клиента, содержащих данные, введённые пользователем (уравнения, логин, пароль и др.).
- Анализ и парсинг математических выражений с использованием регулярных выражений. Сервер извлекает коэффициенты переменных и свободные члены, формируя матрицу коэффициентов и вектор правой части.
- При обнаружении синтаксических ошибок в уравнениях (например, отсутствие знака «=», неизвестная переменная, некорректный числовой коэффициент) сервер формирует детализированное сообщение об ошибке, которое отправляется клиенту.
- Решение системы уравнений методом Гаусса реализовано на сервере. Алгоритм учитывает случаи несовместности, бесконечного числа решений и выдает точный результат или соответствующее уведомление.

- Сервер обрабатывает также запросы на регистрацию, авторизацию и восстановление пароля, работая с локальной базой данных или хранилищем, проверяя корректность логина, пароля и email.
- Все сообщения, отправляемые клиенту, оформлены в виде информативных JSON-ответов, что позволяет клиенту адекватно интерпретировать результат.

2. Назначение

Система предназначена для студентов и преподавателей технических вузов, а также других пользователей, нуждающихся в автоматизированном решении СЛАУ. Программа упрощает процесс ввода, проверки и обработки уравнений, сокращая время и снижая вероятность ошибок.

3. Функциональные требования

- Регистрация и авторизация пользователей.
- Восстановление пароля с отправкой кода подтверждения на e-mail.
- Основное окно с инструкцией по вводу системы уравнений.
- Ввод от 2 до 5 уравнений в формате: **2x**+**3y**=**5**
- Автоматическая отправка системы уравнений на сервер.
- Проверка корректности данных на сервере и клиенте.
- Решение системы уравнений методом Гаусса.
- Вывод пошагового решения или результата.
- Сообщения об ошибках с понятными пояснениями на русском языке.

4. Нефункциональные требования

- Приложение работает на Windows и macOS.
- Язык интерфейса русский.
- Время отклика сервера не более 2 секунд.
- Уровень ошибок не более 1% некорректных обработок корректного ввода.
- Обработка всех ошибок с подробным объяснением.

5. Требования к интерфейсу пользователя

- Простота и понятность.
- Подсказки по заполнению полей и функционалу.
- Инструкция в основном окне.
- Сообщения об ошибках в виде диалоговых окон.
- Окно с результатом форматировано как текстовая область (TextBrouser), доступная только для чтения.

6. Валидация и сообщения об ошибках

При нажатии на кнопку "Решить уравнение" выполняются следующие проверки:

• Пустое поле уравнения

Сообщение: «Ошибка: все строки должны быть заполнены.» Проверка в «EquationParser: parseSystem ()».

• Отсутствует знак "="

Сообщение: «Ошибка: уравнение должно содержать ровно один знак равенства.»

Проверка в «parseEquation ()».

• Недопустимые символы (русские буквы, спецсимволы)

Сообщение: «Ошибка: используйте только латинские буквы (a-z, A-Z), цифры и символы =, +, -, .»

Проверка в «containsInvalidCharacters ()».

• Несовпадение переменных в уравнениях

Сообщение: «Ошибка: во всех уравнениях должны использоваться одинаковые переменные (например, x, y, z).»

Проверка в «parseSystem ()».

• Некорректный коэффициент (не число)

Сообщение: «Ошибка: неверный формат коэффициента.

Пример: 2x + 3y = 5»

Проверка в «parseEquation ()».

• Пустая правая часть (=)

Сообщение: «Ошибка: правая часть уравнения не может быть пустой.» Проверка в «parseEquation ()».

• Минимальное количество уравнений (2)

Сообщение: «Нельзя удалить поле. Минимум должно быть 2 уравнения.»

Проверка в «MainWindow: on_pushButtonDelUrav_2_clicked ()».

• «Ненадёжный пароль (менее 5 символов)»

Сообщение: «Пароль должен содержать минимум 5 символов.» Проверка в «AuthRegForm: on_pushButtonReg_clicked ()».

Все ошибки отображаются пользователю в модальных окнах «QMessageBox: critical».

- 7. Технические требования
- Qt 6.8.9 (MSVC 2022, x86_64) или выше.
- Компилятор С++17.
- Серверная часть консольное приложение Qt или C++ с JSON API.
- Протокол взаимодействия: JSON через TCP.
 - 8. Безопасность и защита данных
- Пароли хранятся в виде хешей.
- Проверка кода подтверждения при восстановлении пароля.
- Подтверждение почты при регистрации (аналогично с отправкой кода подтверждения)
- Защита от SQL-инъекций (при использовании базы данных).
 - 9. Возможности расширения
- Поддержка других методов решения СЛАУ.
- История решений пользователя.
- Поддержка систем более 5 уравнений.
- Интеграция с образовательными платформами.
- Решение системы линейных уравнений второго порядка

10. Описание предметной области

Решение систем линейных уравнений первого порядка — базовая задача курса линейной алгебры и аналитической геометрии. Проект автоматизирует решение, обучая пользователей правильному вводу и логике метода Гаусса.

11. Архитектура системы

11.1 Клиентская часть (Qt GUI + C++ на Qt))

Назначение: взаимодействие с пользователем (ввод уравнений, регистрация, подтверждение, восстановление пароля и т.д.)

Основные компоненты:

- MainWindow, AuthRegForm, EmailConfirmationForm,
 PasswordRecoveryForm и др. формы интерфейса.
- NetworkClient отвечает за отправку/получение данных от сервера по TCP.

• Функции:

- Отображение GUI.
- о Сбор данных (уравнений, регистрационных форм).
- Формирование JSON-запросов и отправка на сервер.
- о Приём ответа и его отображение пользователю (например, результат решения СЛАУ методом Гаусса).
- о Проверка на корректное заполнение полей.
- о Уведомление пользователя об ошибках.
- о Создание удобного функционала и реализация функционала кнопок.

11.2 Серверная часть (C++ на Qt)

Назначение: приём JSON-запросов от клиента, парсинг уравнений, решение СЛАУ, регистрация пользователей, отправка писем и возвращение результатов.

1. Сетевой уровень:

• **Класс:** MyTcpServer

• Функции:

- о Инициализация ТСР-сервера.
- о Принятие входящих соединений.
- о Получение JSON-запросов от клиента.
- о Передача данных в RequestHandler для обработки.

2. Обработка запросов:

• **Класс:** RequestHandler

• Функции:

- Распознавание типа запроса (например, "solve_equation", "register_user" и т.п.).
- о Десериализация JSON.
- о Вызов соответствующих модулей: парсер, решатель, БД и др.
- о Формирование ответа и отправка его клиенту.

3. Парсинг уравнений:

• **Класс:** EquationParser

• Функции:

- Преобразование текстовых уравнений в матричное представление (Ax = b).
- Работа с JSON-входом.

о Подготовка данных для решателя (матрицы коэффициентов и свободных членов).

4. Решение СЛАУ:

- Класс: Gaussian Elimination
- Функции:
- о Реализация метода Гаусса для решения СЛАУ.
- Обработка некорректных данных (нулевые строки, несовместные системы).
- о Возврат решения в виде массива чисел (или JSON).
 - 5. Вспомогательные модули:
- DatabaseManager управление пользователями, сохранение данных в SQLite/MySQL.
- SMTPClient отправка email (например, при подтверждении регистрации или восстановлении пароля).
- ConfigLoader загрузка параметров сервера (порты, IP, конфигурации)

12. Диаграммы

12.1. Диаграмма классов.

Рисунок 1 — диаграмма классов.

Рисунок 2 — Use Case диаграмма.

13. Тестирование

Проводилось ручное тестирование всех модулей:

- Валидация ввода.
- Обработка ошибок.
- Корректность метода Гаусса (сравнение с Wolfram Alpha).
- Отказоустойчивость при пустом вводе, неправильном формате.
- Unit test B qt

14. Скриншоты интерфейса

• Окно авторизации

Рисунок 3 — окно авторизации.

- 1.Поля для ввода логина и пароля. (не допускаются пустые поля, ограничение на размер пароля максимум 10 символов, минимум 5 символов, курсор автоматически помешается в верхнее незаполненное поле при открытии окна, при нажатии «Enter» переход к следующему полю.)
- 2. Кнопки «Войти», «Зарегистрироваться», «Забыли пароль».

- При нажатии кнопки «Войти» проверяется база данных на существования такого пользователя и сравнение паролей, если все верно, то открывается главное окно программы, в обратном случае пользователя уведомляют об ошибке авторизации)
- При нажатии кнопки «Зарегистрироваться» пользователь видит окно регистрации.
- При нажатии кнопки «Забыли пароль» открывается окно восстановления пароля.
- 3. Подсказка возле кнопки восстановления пароля, для того чтобы сориентировать пользователя.

• Окно регистрации

Рисунок 4 — окно регистрации.

1. Поля для ввода логина, пароля, повтора пароля и почты. (не допускаются пустые поля, ограничение на размер пароля — максимум 10 символов, минимум 5 символов, курсор автоматически помешается в верхнее незаполненное поле при открытии окна, при нажатии «Enter» - переход к следующему полю.)

- 2. Кнопки «Регистрация», «Авторизоваться», «Забыли пароль».
 - При нажатии кнопки «Регистрация» проверяется база данных на существования такого пользователя, если пользователь с таким логином уже существует, пользователя уведомляет об этом программа, поля пароля и повтора пароля сверяются на соответствие, если все прошлые условия выполнены, то открывается окно для подтверждения почты с помощью отправленного кода.
 - При нажатии кнопки «Авторизоваться» пользователь видит окно авторизации.
 - При нажатии кнопки «Забыли пароль» открывается окно восстановления пароля.
- 3. Подсказка возле кнопки восстановления пароля, для того чтобы сориентировать пользователя
- Форма подтверждения почты при регистрации (открывается при нажатии – Регистрация)

Рисунок 5 — окно подтверждения почты.

1.Поле для ввода кода (не должно быть пустым).

- 2. Кнопка «Отправить» после нажатия сверяется введённый код с отправленным, при верном вводе регистрация завершается, в обратном случае сообщается пользователю, что код не верный.
- Форма восстановления пароля (открывается при нажатии Забыли пароль)

Рисунок 6 — окно восстановления пароля.

- 1.Поля для ввода логина, кода, пароля. (не допускаются пустые поля, ограничение на размер пароля максимум 10 символов, минимум 5 символов, курсор автоматически помешается в верхнее незаполненное поле при открытии окна, при нажатии «Enter» переход к следующему полю.)
- 2. Кнопки «Отправить код», «Подтвердить код».
 - При нажатии кнопки «Отправить код» проверяется база данных на существования такого пользователя и отправляется код подтверждения на привязанную к логину почту.

• При нажатии кнопки «Подтвердить код» - если введённый код верный, то для пользователя становятся видимыми поля для ввода нового пароля и повтора нового пароля. (а также кнопка для установления нового пароля)

• Основное окно

Рисунок 7— основное окно программы.

- 1.Поля для ввода уравнений (изначально пользователю видны только два поля из пяти возможных, не допускаются пустые поля, курсор автоматически помешается в верхнее незаполненное поле при открытии окна, при нажатии «Enter» переход к следующему полю, допускается ввод символов указанных в памятке над полями ввода уравнений)
- 2.Кнопки «+Добавить уравнение», «-Убрать уравнение», «Решить систему уравнений».

- При нажатии кнопки «+Добавить уравнение» добавляется дополнительное поле для ввода уравнения (но при условии, что все имеющиеся на данный момент поля заполненные)
- При нажатии кнопки «-Убрать уравнение» удаляется дополнительное поле для ввода уравнения (но при условии, что открытых полей больше, чем два и дополнительное поле пустое.)
- При нажатии кнопки «Решить систему уравнений» открывается окно с решением и ответом.
- 3. Подсказка возле полей ввода уравнений, для того чтобы сориентировать пользователя. (так же в главном окне приложения есть памятка с подробными правилами заполнения полей ввода уравнений)

• Окно результата

Рисунок 8 — окно результата.

- 1. Вывод подробного решения
- 2. Конечный ответ.

15. Заключение

В ходе выполнения проекта было разработано полнофункциональное клиент-серверное приложение для решения систем линейных уравнений методом Гаусса. Программа реализует следующие ключевые возможности:

- 1. Гибкий пользовательский интерфейс:
- Поддержка от 2 до 5 уравнений с динамическим добавлением полей
- Интуитивное управление с помощью клавиатуры (переход между полями по Enter)
- Пошаговое отображение решения с подробными пояснениями
 - 2. Надежная система аутентификации:
- Полный цикл регистрации с подтверждением email
- Восстановление пароля через одноразовые коды
- Валидация данных на стороне клиента и сервера
 - 3. Стабильное сетевое взаимодействие:
- Четкая JSON-спецификация запросов и ответов
- Обработка ошибок соединения и таймаутов
- Логирование сетевых операций для отладки
 - 4. Математический модуль:
- Точный парсинг уравнений с обработкой различных форматов
- Реализация метода Гаусса с определителем матрицы
- Поддержка особых случаев (нет решений/бесконечное множество решений)

Приложение прошло комплексное тестирование, включающее:

- Проверку корректности решения систем уравнений
- Тестирование граничных случаев (вырожденные матрицы)
- Валидацию входных данных
- Проверку устойчивости к некорректному вводу

Перспективы развития:

- Добавление графического представления решений
- Поддержка нелинейных уравнений
- Экспорт результатов в LaTeX-формате
- Мобильная версия приложения
- Программа демонстрирует высокую стабильность работы и может быть использована как учебное пособие по линейной алгебре, а также как практический инструмент для инженерных расчетов.

16. Список использованных источников

- 1. Киселёв А.Ф. Линейная алгебра.
- 2. Документация Qt (https://doc.qt.io)
- 3. Википедия: Метод Гаусса
- 4. Лекции по архитектуре вычислительных систем
- 5. https://ru.stackoverflow.com/ примеры решений