The Book of Math (Notes)

Kevin Kuo

November 14, 2020

Forward and Disclaimer

These are math notes made by a student (with a physics major and math minor) based off text books. It may contain misconceptions and misinterpretations, thus should not be viewed in the same light of a text book. Use at your own risk and mental sanity.

Symbols

Logic

Name	Symbol	Comment
Exists	3	There exists at least one
For all	A	
Not exists	∄	There does not exist
Exists one	∃!	There only exists one and only one
And	\wedge	
Or	V	Inclusive or
Not	¬	
Logically implies	\Longrightarrow	If
Logically implied by	←	Only if
Logically equivalent	\iff	If and only if
Implies	\longrightarrow	
Implied by	←	
Double Implication	\longleftrightarrow	

Set Notation

Name	Symbol	Comment
Empty Set	Ø	The set that is empty
Natural Numbers	\mathbb{N}	Set of natural numbers not containing 0, equivalent to
		the set of positive integers
Integers	$\mathbb Z$	Set of integers
Rational Numbers	\mathbb{Q}	
Algebraic Numbers	\mathbb{A}	
Real Numbers	\mathbb{R}	
Complex Numbers	$\mathbb C$	
In	€	
Not in	∉	
Owns	Э	Has an element
Proper Subset	C	Subset that is not itself
Subset	\subseteq	
Superset)	Superset that is not itself
Proper Superset	⊇	

Power set	
Union	U
Intersection	\cap
Difference	\

Relationships

Name	Symbol	Comment
Defined	Ė	
Approximate	≈	
Equivalent	≡	Isomorphic (Group Theory)
Congruent	≅	Homomorphic (Group Theory)
Proportional	\propto	

Operators

Name	Symbol	Comment
	\oplus	
	\otimes	
	\odot	
	0	Convolution
Dagger	†	Complex conjugate transpose of a matrix

Arrows

Name	Symbol	Comment
Maps to	\mapsto	

Hebrew

Name	\mathbf{Symbol}	Comment
Aleph	×	Carnality of infinite sets that can be well ordered

Other

Name	\mathbf{Symbol}	Comment
Real part	R	Real part of a number
Imaginary part	I	Imaginary part of a number

Book Constitution

Intents and Purpose

The goal of this book is to organize mathematical knowledge of topics related to the study of physics or the author's interest. It is meant to be used as a source of for future reference, not as a textbook for students new to the topics. It is a notebook of a student, thus should be treated as one and not as a textbook. At most, it could be used as a study guide along side a textbook. Definitely not as the main source for acquiring knowledge.

Layout and Organization

The book is split into parts each containing a field of study mathematics, or a topic large enough to justify giving it its own part. Each part contains chapters that focuses on a particular topic required to understand the field, with sections dedicated to describing a particular knowledge required for the topic.

As axioms, definitions, theorems, corollary, and proofs are integral and abundant to the study of mathematics, each will have a unique style. Each environment and its styles are displayed as follows:

Axiom 0.1: Axiom name

Example Axiom Axioms are the "ground rules" of the set.

Theorem 0.1.1: Theorem name or citation

Example Theorem An important logical result from the axioms, with proof.

Conjecture 0.1.1: Name of conjecture or citation

Example Conjecture A hypothesis, without proof.

Corollary 0.1.1.1:

Example Corollary An implication as a result of a theorem.

Lemma 0.1.1.1:

Example Lemma Small theorems that build up to a larger theorem.

Proposition 0.1.1.1:

Example Proposition Example proposition.

Proof: Logical deductions that results in a theorem. Proofs I've written will be in grey, which may or may not be correct.

Definition 0.1: Word

Example Definition The definition of a word.

Example 0.1.1. An example.

Remark. Remark A comment by the author in the textbooks used.

Observation. Example Observation A remark by me.

Question. Example Question A question from me for a mystery to be answered later.

Contents

I Logic	1
1 Proofs	3
II Numbers	5
2 Natural \mathbb{N}	7
3 Integers \mathbb{Z}	9
4 Rationals \mathbb{Q}	11
5 Constructible	13
6 Algebraic \mathbb{A}	15
7 Reals $\mathbb R$	17
8 Complex $\mathbb C$	19
III Real Analysis	21
IV Complex Analysis	25
9 Metric Spaces	29
10 Conformal Mapping	31

V Ordinary Differential Equations	33
VI Nonlinear Dynamics	35
VII Partial Differential Equations	37
VIII Integral Equations	41
IX Linear Algebra	43
11 Markov Chains	45
X Tensors	47
XI Riemann Geometry	49
XII Abstract Algebra	51
12 Groups	53
13 Rings 13.1 Ideals	55 55
14 Integral Domains	57
15 GCD Domains	59
16 Unique Factorization Domains	61
17 Principal Ideal Domains	63
18 Fields	65

XIII	Galois Theory	67
XIV	C-Star Algebra	71
XV	Set Theory	73
XVI	Model Theory	7 5
XVII	Statistics	77
XVIII	I Tips and Tricks	7 9
19 Inte	gration Techniques	81
19.1	DI Method (Integration Table)	81
19.2	Feynman Integration	81
XIX	Index	83
XX	Bibliography	85

Part I

Logic

Proofs

Part II

Numbers

Natural \mathbb{N}

Integers \mathbb{Z}

Rationals \mathbb{Q}

Constructible

Algebraic \mathbb{A}

Reals \mathbb{R}

Complex $\mathbb C$

Part III Real Analysis

Books Used:

1. Kenneth A. Ross - Elementary Analysis (2nd Ed.) $\left[1\right]$

Part IV Complex Analysis

Books Used:

1. Brown and Churchill - Complex Variables and Applications $\left[2\right]$

Metric Spaces

Conformal Mapping

${\bf Part~V}$ ${\bf Ordinary~Differential~Equations}$

Part VI Nonlinear Dynamics

Part VII Partial Differential Equations

Calculus of Variations

Part VIII Integral Equations

Part IX Linear Algebra

Markov Chains

Part X

Tensors

Part XI Riemann Geometry

Part XII Abstract Algebra

Groups

Rings

13.1 Ideals

Integral Domains

GCD Domains

Unique Factorization Domains

Chapter 17

Principal Ideal Domains

Chapter 18

Fields

Part XIII Galois Theory

Lie Algebra

Part XIV

C-Star Algebra

Part XV
Set Theory

Part XVI Model Theory

Part XVII

Statistics

Part XVIII Tips and Tricks

Chapter 19

Integration Techniques

- 19.1 DI Method (Integration Table)
- 19.2 Feynman Integration

Part XIX Index

Part XX Bibliography

Bibliography

- [1] Kenneth A. Ross. *Elementary Analysis*. Springer, 2 edition, 2013.
- [2] James Ward Brown and Ruel V. Churchill. *Complex Variables and Applications*. McGraw-Hill Education, 9 edition, 2014.