Chapter 3

Sho Shirasaka, December 1, 2022

Exercise 3.26.

Every [0,1) in this answer is homeomorphic to a circle, namely, $[0,1) = \mathbb{R}/\mathbb{Z}$. Note that \mathbb{R}/\mathbb{Z} is compact.

Let $T_L(y) = y/4, T_R(y) = (2+y)/3$ and $C_0 = [0,1), C_n = T_L(C_{n-1}) \cup T_R(C_{n-1})$. $(C_n)_n$ is a monotone decreasing series of sets, so its limit exists. We denote the limit as $\mathcal{C} := \lim_{n \to \infty} C_n$.

 $C_n \setminus C_{n-1}$ is an open set, so \mathcal{C} is a complement of a union of open sets. Hence \mathcal{C} is closed since a union of open sets is open. Thus \mathcal{C} is compact. Let $\mathcal{A} := [0,1) \times \mathcal{C}$. This is also a compact set and is the product of a Cantor set \mathcal{C} by a segment.

 $f^n(\mathcal{A})_y = \mathcal{C}$ follows from the definition of C_n and \mathcal{C} . Thus $f^n(\mathcal{A}) \subset \mathcal{A}$, i.e., \mathcal{A} is invariant.

For all $x \in \mathcal{A}$, by $\mathcal{B}(x)$ we denote a fundamental system of neighborhoods at x composed of open balls. Any neighborhood U of \mathcal{A} contains an open neighborhood \bar{U} of \mathcal{A} . Any open neighborhood of \mathcal{A} can be expressed as $\bar{U} = \bigcup_{x \in \mathcal{A}} B(x)$, where $B(x) \in \mathcal{B}(x)$. There is a subcover $\tilde{U} := \bigcup_{x \in \tilde{\mathcal{A}}} B(x)$ of \mathcal{A} of \bar{U} , where $|\tilde{\mathcal{A}}|$ is finite, since \mathcal{A} is compact. Let r be a minimum radius of $\{B(x)\}_{x \in \tilde{\mathcal{A}}}$. This is nonzero due to the finiteness of $\tilde{\mathcal{A}}$. We can see that $f^n([0,1)^2 \subset \tilde{U} \subset \bar{U} \subset U$ for all $n > n_U$, where n_U is a number such that $(1/3)^{n_U} < r$. Hence \mathcal{A} is an attracting set.

Apparently f is invertible on \mathcal{A} . Let $I_0 = [0, 1/3) \times [0, 1)$, $I_1 = [1/3, 1) \times [0, 1)$ and let $\Phi_{\mathcal{R}} = (\mathcal{A}, \Omega_s, R)$ be the coding relation, where

$$\Omega_s := \left\{ \mathbf{x} \in \mathcal{D}^{\mathbb{Z}} \mid M_{x_j, x_{j+1}} = 1, \quad \forall j \in \mathbb{Z} \right\}, \quad \mathcal{D} := \{0, 1\},$$

$$(0.1)$$

$$M_{ij} = 1 \quad \forall (i,j) \in \mathcal{D}^2, \tag{0.2}$$

$$R = \{(x, \boldsymbol{\sigma}) \mid \boldsymbol{\sigma} \in \Omega_s \text{ and } f^n(x) \in I_{\sigma_n} \text{ for all } n \in \mathbb{Z}\}.$$
 (0.3)

 $\Phi_{\mathcal{R}}$ is obviously left-total. We can also show that $\Phi_{\mathcal{R}}$ is one-to-many (resp. right-total) by almost the same discussion of the paragraph 3 (resp. 4) of the solution of Exercise 2.26. Thus $\Psi := \Phi_{\mathcal{R}}^{-1}$ is surjective mapping on Ω_s , which provides a semiconjugacy

$$f \circ \Psi = \Psi \circ \mathcal{S},\tag{0.4}$$

where S is a full shift on Ω_s .

We claim that, to prove an orbit of $x \in \mathcal{A}$ is dense, it is enough to show that there is a code $\sigma \in \Omega_s$ such that it includes all strings of the form $(b_n, b_{n-1}, \dots, b_2, b_1, a_1, a_2, \dots, a_{n-1}, a_n)$. Let $z \in \mathcal{A}$ and $\sigma_z \in \Psi^{-1}(z)$. For all codes $\tilde{\sigma}$ which satisfies $(\sigma_i)_{i=-n}^n = (\sigma_{z,i})_{i=-n}^n$, z and $\Psi(\tilde{\sigma})$ are in the same rectangle, whose side lengths are at most $(2/3)^n$, $(1/3)^n$. Thus such code σ is associated with $x \in \mathcal{A}$ whose orbit has element arbitrary close to any element in \mathcal{A} . Let \parallel be a concatenation operator of strings. We define

$$(\sigma_i)_{i \le 0} \equiv 0 \tag{0.5}$$

$$(\sigma_i)_{i\geq 0} = \prod_{n=1}^{\infty} \prod_{\mathbf{x}\in\mathcal{D}^{2n}} \mathbf{x}.$$
 (0.6)

Then the orbit of $\Psi(\sigma)$ is dense in \mathcal{A} . Therefore, \mathcal{A} is an attractor.