

Московский государственный университет имени М.В.Ломоносова Факультет вычислительной математики и кибернетики

Отчёт по заданию в рамках курса

"Суперкомпьютерное моделирование и технологии"

Численное решение задачи Дирихле для уравнения Пуассона в криволинейной области

Выполнил: Морозов М.Г.

608 группа

Вариант 6

Введение

Требуется приближенно решить задачу Дирихле для уравнения Пуассона в криволинейной области. Задание необходимо выполнить на ПВС Московского университета IBM Polus.

Исследуемая область D = |x| + |y| < 2, y < 1

Математическая постановка задачи

В области $D \subset R^2$, ограниченной контурому, рассматривается дифференциальное уравнение Пуассона

$$-\Delta u = f(x, y)$$

в котором оператор Лапласа

$$\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$$

Функция f(x, y) = 1. Для выделения единственного решения уравнение дополняется граничным условием Дирихле:

$$u(x, y) = 0, (x, y) \in \gamma$$

Требуется найти функцию u(x, y), удовлетворяющую уравнению в области D и краевомуусловию на ее границе.

Численный метод решения уравнения

Для решения был выбран предложенный метод наименьших невязок. Этот метод позволяет получить последовательность сеточных функций $w^{(k)} \in H, \ k=1, 2, ...,$ сходящуюся по норме пространства H к решению разностной схемы,т.е.

$$\left|\left|w-w^{(k)}\right|\right|_{E}\to 0, k\to\infty$$

Начальное приближение $w^{(0)}$ можно выбрать любым способом, например, равным нулю во всех точках расчетной сетки. Метод является одношаговым. Итерация $w^{(k+1)}$ вычисляется по итерации w^k согласно равенствам:

$$w_{ij}^{(k+1)} = w_{ij}^{(k)} - \tau_{k+1} r_{ij}^{(k)}$$

где невязка $r^k = Aw^{(k)} - B$, итерационный параметр

$$\tau_{k+1} = \frac{\left(Ar^{(k)}, r^{(k)}\right)}{\left|\left|Ar^{(k)}\right|\right|_{E}^{2}}$$

В качестве условия остановки итерационного процесса следует использовать неравенство

$$\left|\left|w^{(k+1)} - w^{(k)}\right|\right|_{E} < \sigma$$

Где σ — положительное число, определяющее точность итерационного метода.

Краткое описание проделанной работы по созданию OpenMP-программы

Для реализации поставленной задачи была использована технология OpenMP.

При подсчете площадей пересечения данной в 6 варианте фигуры с областью Π_{ij} на каждом узле сетки $w_1 = \{x_i = A1 + ih_1, i = \overline{0, M}\}, w_2 =$ $\{y_i = A_2 + jh_2, j = \overline{0, N}\}$

$$h_1 = (B_1 - A_1)/M$$
, $h_2 = (B_2 - A_2)/N$

 $h_1=(B_1-A_1)/M,\,h_2=(B_2-A_2)/N$ был использован Метод Монте-Карло для полуцелых узлов $x_{i\pm\frac{1}{2}}=x_i\pm$ $0.5h_1, y_{j\pm\frac{1}{2}} = y_j \pm 0.5h_2.$

Количество случайно-сгенерированных точек npoints = 1000. Размер сетки: $\{A_1 = A_2 = -4.0, B_1 = B_2 = 4.0\}$ был увеличен, для корректного подсчета на сетке 160Х160.

Для реализации распараллеливания использовались директивы: #pragma omp parallel for для арифметических операций #pragma omp parallel for reduction(+:res) для скалярного произведения

Результаты расчетов для разных размеров задачь и на разном числе процессов.

Число	Число точек	Время	Ускорение
OpenMP-нитей	Сетки	Решения (с)	
	MN		
1	40*40	17.079	
4	40*40	7.528	2.26
16	40*40	5.69	3.001

Число	Число точек	Время	Ускорение
OpenMP-нитей	Сетки	Решения (с)	
	M×N		
2	80*80	158.07	
4	80*80	130.064	1.21
8	80*80	91.922	1.71
16	80*80	68.688	2.3
4	160*160	621.171	
8	160*160	275.166	2.25
16	160*160	154.969	4.008
32	160*160	121.422	5.11

Ускорение считалось как отношение времени выполнения последовательной программы (программы на 2 нитях для 80*80, программы на 4 нитях для 160*160) к времени выполнения программы на определённой конфигурации программы для заданного числа точек сетки М*N и числа нитей OpenMP.

Графики результатов для сетки размером 160*160.

Рис 1. Полученное решение

Рис 2. Макс. Отклонение от решения

Рис 3. График модуля невязки

Рис 4. Зависимость ускорения по оси ординат и числа OpenMP-нитей по оси абсцисс для параметров M, N = 40.

Рис 5. Зависимость ускорения по оси ординат и числа OpenMP-нитей по оси абсцисс для параметров M, N = 80.

Рис 6. Зависимость ускорения по оси ординат и числа OpenMP-нитей по оси абсцисс для параметров M, N = 160.