Задание 7

Суффиксные автоматы. Построение РВ по НКА.

Задача 1. Постройте суффиксный автомат \mathcal{A} для слова *abcbc* и выполните следующие упражнения.

- 1. Известно, что в тексте (слове) t слово bcbc встретилось 20 раз (как подслово), а слово bc встретилось 60 раз. Сколько могло встретиться слово cbc?
- 2. Постройте минимальный ДКА, распознающий язык $\Sigma^* \text{Suff}(abcbc)$, где $\Sigma = \{a, b, c\}$, а Suff(w) множество суффиксов слова w.
- 3. Постройте суффиксный автомат \mathcal{B} для слова abcbcbc. Выразите классы эквивалентности Майхилла-Нероуда языка $L(\mathcal{B})$ через классы эквивалентности Майхилла-Нероуда языка $L(\mathcal{A})$ (и операции с языками).

Задача 2. Решите уравнения с регулярными коэффициентами. В каждом пункте нужно выполнить три задания: a) найти частное решение; б) найти решение, минимальное по включению; в) найти все решения.

1.
$$X = ((110)^* + 111^*)X$$
.

2.
$$X = (00 + 01 + 10 + 11)X + (0 + 1 + \varepsilon)$$
.

3.
$$\begin{cases} Q_0 = 0Q_0 + 1Q_1 + \varepsilon, \\ Q_1 = 1Q_0 + 0Q_2, \\ Q_2 = 0Q_1 + 1Q_2. \end{cases}$$

Задача 3. Автомат A_1 задан диаграммой. Выполните следующие задания. Достаточно выполнить хотя бы один из пунктов 2 или 3.

- 1*. Запишите определяющую систему уравнений для G. Найдите её наименьшую неподвижную точку (минимальное по включению решение) и вычислите регулярное выражение α_1 для $L(\mathcal{A}_1)$.
- 2. Определите регулярное выражение α_2 для $L(\mathcal{A}_1)$ с помощью индуктивного вычисления множеств R_{ij}^k .
- 3. Выберите регулярное выражение α_1 или α_2 и постройте по нему НКА \mathcal{A}_2 .

- 4. Выберите НКА \mathcal{A}_1 или \mathcal{A}_2 и постройте по нему ДКА $D_1.$
- 5. Выберите какое-нибудь регулярное выражение α_1 или α_2 и постройте ДКА D_2 .
- 6. Выберите какой-нибудь ДКА D_1 или D_2 , дополните его, если нужно, до полного и постройте минимальный полный ДКА $\min \mathcal{A}$ для L. Для каждой пары состояний укажите соответствующие различающие их цепочки.
- 7. Постройте КМП-автомат, ищущий вхождение образца aaa в текст и сравните его с $\min \mathcal{A}$.