Hometask 16

Solve all parts. Show every important step (formulas, substitution and reasoning) final numeric answers alone will not earn full credit

- Q1. Suppose the processing time for a small machine-learning model is uniformly distributed between 5 and 15 seconds.
 - (a) Define the probability density function (pdf) for the processing time X.
 - (b) Find $P(7 \le X \le 12)$.
 - (c) Compute the expected value E[X] and variance Var(X).
 - (d) If the model is called twice independently, what is the probability that both processing times exceed 10 seconds?
- **Q2.** The time (in minutes) between requests to an AI server follows an exponential distribution with a mean of 6 minutes.
 - (a) Write the pdf of the exponential random variable T.
 - (b) Find P(T > 10).
 - (c) Calculate the median of T.
 - (d) Find $P(3 \le T \le 8)$.
- **Q3.** Suppose the total waiting time to observe the third request at a server follows a Gamma distribution with shape parameter k=3 and rate $\lambda=0.5$ (requests per minute).
 - (a) Write the pdf of the Gamma distributed random variable W.
 - (b) Find the expected value E[W] and variance Var(W).
 - (c) Find $P(W \le 5)$ using a Gamma cumulative distribution function (use a table or calculator).
 - (d) Comment briefly on the difference between the Gamma and Exponential distributions.