

1.	If the point $P\left(\frac{3a}{2},1\right)$ lies between the two different lines $x+y=a$ and a	x + y = 2a, then the least integral value of $ a $ is equal to
	(1) 1	(2) 2
	(3) 3 longo /// mathongo /// mathongo /// mathongo	
2.	The set of all possible values of θ in the interval $(0, \pi)$ for which the point	
	$(1) \ \left(0, \frac{\pi}{2}\right)$	$(2) \ \left(\frac{\pi}{4}, \frac{3\pi}{4}\right)$
	(3) $(0, \frac{3\pi}{4})$ /// mathongo /// mathongo /// mathongo	(4) $(0, \frac{\pi}{4})$ igo // mathongo // mathongo // mathongo // mathongo
3.	If the points $(-2,0)$, $\left(-1,\frac{1}{\sqrt{3}}\right)$ and $(\cos\theta,\sin\theta)$ are collinear, then the nu	umber of values of $ heta \in [0,2\pi]$ is
	(1) ohongo /// mathongo /// mathongo	(2) Mathongo /// mathongo /// mathongo /// mathongo /// r
	(3) 2	(4) infinite
4.	If a straight line passing through the point $P(-3, 4)$ is such that its interc	cepted portion between the coordinate axes is bisected at P, then its equation is:
	(1) 4x + 3y = 0	$(2) \ 4x - 3y + 24 = 0$
	$(3) \ 3x - 4y + 25 = 0$	$(4) \ x - y + 7 = 0$
5.	The equations of the lines passing through the point (1, 0) and at a distance (1) $\sqrt{3}x + y - \sqrt{3} = 0$, $\sqrt{3}x - y - \sqrt{3} = 0$	ce $\frac{\sqrt{3}}{2}$ from the origin are mothons mothons mothons (2) $\sqrt{3}x+y+\sqrt{3}=0,\ \sqrt{3}x-y+\sqrt{3}=0$
	(1) $\sqrt{3}x + y - \sqrt{3} = 0$, $\sqrt{3}x - y - \sqrt{3} = 0$ (3) $x + \sqrt{3}y - \sqrt{3} = 0$, $x - \sqrt{3}y - \sqrt{3} = 0$	(2) $\sqrt{3x + y} + \sqrt{3} = 0$, $\sqrt{3x - y} + \sqrt{3} = 0$ (4) None of the above
6.	mathongo ///. mathongo ///. mathongo ///. mathongo	mathongo /// mathongo /// mathongo /// r
	(1) $\frac{7}{\sqrt{5}}$	(2) $\frac{7}{\sqrt{13}}$
	(3) $\sqrt{5}$ ngo /// mathongo /// mathongo	
7.	A straight line L through the point (3, -2) is inclined at an angle 60° to the	e line $\sqrt{3}x+y=1$. If L also intersects the x-axis, then the equation of L is
	$(1) \ y + \sqrt{3}x + 2 - 3\sqrt{3} = 0$	(2) $y - \sqrt{3}x + 2 + 3\sqrt{3} = 0$
	(3) $\sqrt{3}y - x + 3 + 2\sqrt{3} = 0$ mathongo mathongo	(1) V 0
8.		=
	(1) $\sqrt{7-1}$ mathongo /// mathongo /// mathongo	
	(3) $\frac{\sqrt{5}-1}{\sqrt{5}+1}$	$(4) \ \frac{1-\sqrt{5}}{1+\sqrt{5}}$
9.	The perpendicular bisector of the line segment joining $P(1,4)$ and $Q(k,3)$	3) has y-intercept - 4. Then a possible value of k is (2) 1
	(3) 2	(2) 1 (4) -2
10.	Suppose that the points (h, k) , $(1, 2)$ and $(-3, 4)$ lie on the line L_1 . If a l	line L_2 passing through the points (h, k) and $(4, 3)$ is perpendicular to L_1 , then $\frac{k}{h}$
	equals:	
	(1) $-\frac{1}{7}$ (3) hongo /// mathongo /// mathongo /// mathongo	(2) 3 (4) ½ thongo /// mathongo /// mathongo /// mathongo /// r
	(3) phongo /// mathongo /// mathongo	(4) $\frac{2}{3}$ anongo $\frac{1}{2}$ mathorigo $\frac{1}{2}$ mathorigo $\frac{1}{2}$ mathorigo $\frac{1}{2}$