GWAS Protocol

Notebook: GWAS

Created: 2016-02-29 ^{오후} 6:13 **Updated:** 2016-03-10 ^{오후} 7:30

Author: Harry Yang

- 1. Download data
- 2. Pylmm (get it from https://github.com/michaelbilow/pylmm zarlab)
 - 1. python pylmmKinship.py --bfile (base of the binary plink files) outfile.kinship
 - 1. INPUT Binary PLINK *.bed *.bim *.fam all in same base i.e.
 - 2. OUTPUT Kinship matrix -- I prefer *.kinship with same base as the binary plink files
 - 2. Extract pheno file from fam file
 - 1. cat base.fam | awk '{print \$1, \$2, \$6}' >> base.pheno
 - 3. python pylmmGWAS.py -- bfile (base of the binary plink file) --kfile (the kinship including the extension) --phenofile (pheno file generated in step 2) outfile (*.gwas)
 - 1. INPUT Plink Binary files, Kinship, Pheno
 - 2. OUTPUT *.gwas file
 - 3. GWAS file
 - 1. SNP ID
 - 2. Beta value
 - 3. Stdev of Beta
 - 4. Z-score
 - 5. P-value
- 3. Manhattan Plot from GWAS
 - 1. Get map file from the Binary PLINK files
 - 1. plink --bfile (Base of the binary plink) --out (Base of the binary plink file)
 - 1. INPUT Binary Plink
 - 2. OUTPUT Regular Plink files (*.ped, *.map) -- the map file is required
 - 2. Extract the coordinates and p value for manhattan plot
 - extract_data_for_manhattan_plot.py
 - 1. INPUT
 - 1. GWAS file from pylmm
 - 2. MAP file from plink
 - 3. OUTPUT file name

2.

- 3. R script for Manhattan Plot
 - 1. library(qqman)

```
f <- read.table('THE MANHATTAN PLOT DATA FILE FROM STEP 2') colnames(f)[1]='CHR' colnames(f)[2]='BP' colnames(f)[3]='SNP' colnames(f)[4]='P'
```

manhattan(f, main = "THE NAME OF THE STUDY", col = c("blue4", "orange3"))

- 4. Metasoft Analysis
 - 1. GET SNP_list and GET metasoft_input
 - meta_analysis_prep.py
 - 1. INPUT == list of *.qwas files from pylmmGWAS
 - metasoft http://genetics.cs.ucla.edu/meta/
 - 1. java -jar (Metasoft.jar) -input (OUTPUT from meta_analysis_prep) -output

(DESIRED OUTPUT NAME) -mvalue

- 3. ForestPMPLOT
 - 1. #python pmplot.py u4c/new_metasoft_input.txt u4c/meta_result_with_m.txt u4c/study_names.txt u4c/study_order.txt rs3013451 eh test_three.pdf
 - python pmplot.py (INPUT FOR METASOFT) (OUTPUT FROM METASOFT) (list of study names) (list of order - 1 \n 2 \n 3\n 4\n ... is fine) (GENE NAME of the SNP) (OUTPUT.pdf)
- 5. CAVIAR
 - 1. ### SPECIFY THIS PART ###
- 6. Data Handling if there are discrepancies in data
 - 1. If the indexing is different
 - 1. It is in chr:coordinate, rather than rsid
 - change_coordinate_gwas_file.py
 - 1. GWAS FILE
 - 2. INDEX FILE
 - 3. OUTPUT FILE
 - 1. outputs the gwas file with rsid
 - 2. if map file does not have coordinates
 - 1. extract data for manhattan plot without map.py
 - 1. GWAS FILE
 - 2. INDEX FILE
 - 3. OUTPUT FILE
 - 1. outputs the manhattan plot data