APMA 1650: Homework 5 Solutions

Sally Chen

- 1. Let Z be a standard normal random variable, i.e., $Z \sim \mathcal{N}(0,1)$. Find the value z_0 such that
 - (a) $P(Z > z_0) = 0.5$.

 $P(Z \le z_0) = 1 - P(Z > z_0) = 0.5$. Equivalently, we want $P(Z > z_0) = 0.5$ Then, using the standard normal distribution table to find the corresponding z_0 value, we find that $z_0 = 0$.

(b) $P(Z < z_0) = 0.8643$.

Equivalently, we want $P(Z > z_0) = .1357$. Using the standard normal distribution table to find the corresponding z_0 value, we find that $z_0 = 1.1$.

(c) $P(-z_0 < Z < z_0) = 0.90$.

We rewrite this probability in the form $P(Z > z_0)$ so we can use the z-table:

$$P(-z_0 < Z < z_0) = 0.90$$

 $\iff P(Z \le -z_0) + P(Z \ge z_0) = 0.1$ since this is the complement
 $\iff P(Z \ge z_0) = 0.05$ by symmetry

Using standard normal distribution table, we find that $z_0 = 1.645$.

(d) $P(-z_0 < Z < z_0) = 0.99$.

We rewrite this probability in the form $P(Z > z_0)$ so we can use the z-table:

$$P(-z_0 < Z < z_0) = 0.99$$

$$\iff P(Z \le -z_0) + P(Z \ge z_0) = 0.01$$

$$\iff P(Z \ge z_0) = 0.005 \text{ by symmetry}$$

Using standard normal distribution table, we find that $z_0 = 2.576$.

2. An electrical firm manufactures light bulbs that have a life, before burn-out, that is normally distributed with mean equal to 800 hours and a standard deviation of 40 hours. Find the probability that a bulb burns between 778 and 834 hours.

Let X=life(in years) of a bulb before burn-out. We know $X \sim N(800, 40^2)$ and we want to find P(778 < X < 834). For easier computation, we first transform this into a standard normal distribution. Recall that the z-score is given by $Z = \frac{X - \mu}{\sigma}$. Then,

$$\begin{split} P(778 < X < 834) &= P\left(\frac{778 - 800}{40} < \frac{X - 800}{40} < \frac{834 - 800}{40}\right) \\ &= P(-0.55 < Z < 0.85) \\ &= P(Z > -0.55) - P(Z > 0.85) \\ &= (1 - P(Z > 0.55)) - P(Z > 0.85) \text{ by symmetry} \\ &= (1 - 0.2912) - 0.1977 \text{ from the z-table} \\ &= 0.511 \end{split}$$

3. (Chernoff bounds) Let X be a random variable and $m_X(t)$ be the mgf of X. Show that

$$P(X \ge a) \le e^{-ta} m_X(t)$$
 for all $t > 0$,
 $P(X \le a) \le e^{-ta} m_X(t)$ for all $t < 0$.

Hint: Use Markov's inequality.

We know that:

• Moment-generating function of X: $m_X(t) = E[e^{tX}]$

• Markov's inequality: if $E[g(X)] < \infty$, then for a > 0, $P(|g(X)| \ge a) \le \frac{E[|g(X)|]}{a}$

We also know that e^{tX} is a nonnegative random variable and $e^{ta} > 0$; therefore by Markov's inequality:

$$\forall t > 0, \quad X \ge a \Leftrightarrow e^{tX} \ge e^{ta}$$

$$\Rightarrow \quad P(X \ge a) = P(e^{tX} \ge e^{ta}) \le \frac{E[e^{tX}]}{e^{ta}} = e^{-ta} m_X(t)$$

$$\forall t < 0, \quad X \le a \Leftrightarrow e^{tX} \ge e^{ta}$$

$$\Rightarrow \quad P(X \le a) = P(e^{tX} \ge e^{ta}) \le \frac{E[e^{tX}]}{e^{ta}} = e^{-ta} m_X(t)$$

4. A machine used to fill cereal boxes dispenses, on the average, μ ounces per box. The manufacturer wants the actual ounces dispensed X to be within 1 ounce of μ at least 75% of the time. What is the largest value of σ , the standard deviation of X, that can be tolerated if the manufacturer's objectives are to be met?

Let X = cereal in ounces. Since we don't know the distribution of X, we need to use Chebyshev's inequality. We want to find σ such that we can guarantee $P(\mu-1 < X < \mu+1) \ge 0.75$. Equivalently, we want $P(|X-\mu| \ge 1) \le 0.25$. Plugging this into Chebyshev's inequality, which states that for k > 0, $P(|X-\mu| \ge k) \le \frac{\sigma^2}{k^2}$, we get

$$P(\mid X - \mu \mid \ge 1) \le \frac{\sigma^2}{1^2} \le 0.25$$

$$\Rightarrow \quad \sigma^2 \le 0.25$$

$$\Rightarrow \quad \sigma \le 0.5$$

 \therefore The largest value of σ that can be tolerated is 0.5.

5. The gamma function is defined to be

$$\Gamma(z) = \int_0^\infty x^{z-1} e^{-x} dx.$$

(a) Using the integration by parts, show that

$$\Gamma(z+1) = z\Gamma(z).$$

$$\begin{split} \Gamma(z+1) &= \int_0^\infty x^z e^{-x} dx \\ &= [-x^z e^{-x}]_0^\infty - \int_0^\infty -z x^{z-1} e^{-x} dx \text{ by integration by parts} \\ &= \lim_{n \to \infty} \frac{-n^z}{e^n} + z \int_0^\infty x^{z-1} e^{-x} dx \\ &= 0 + z \Gamma(z) \\ &= z \Gamma(z) \end{split}$$

(b) By using the above relation, show that for any positive integer n,

$$\Gamma(n+1) = n!.$$

We proceed via induction.

Base case (n=0):

$$\Gamma(1) = \int_0^\infty x^0 e^{-x} dx$$
$$= \int_0^\infty e^{-x} dx$$
$$= [-e^{-x}]_0^\infty$$
$$= 1$$
$$= 0!$$

Assume this holds for n = k, i.e. $\Gamma(k) = (k-1)!$ Then we want to show this is true for n = k+1.

$$\Gamma(k+1) = k\Gamma(k)$$
 by part (a)
= $k \cdot (k-1)!$ by the inductive hypthesis
= $k!$

3

 \therefore By mathematical induction, $\Gamma(n+1) = n!$ for any positive integer n.

6. Let consider two pdfs

$$f_1(x) = \mathbb{1}_{[0,1]}(x), \qquad f_2(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}.$$

For some $0 < \alpha < 1$, let define

$$f(x) = \alpha f_1(x) + (1 - \alpha) f_2(x).$$

(a) Show that f(x) is a probability density function.

Since $f_1(x)$ and $f_2(x)$ are probability density functions, we know $f_1(x) \ge 0$, $f_2(x) \ge 0$, $\int_{-\infty}^{\infty} f_1(x) dx = 1$, and $\int_{-\infty}^{\infty} f_2(x) dx = 1$. Since $0 < \alpha < 1$ (and so $0 < 1 - \alpha < 1$), we know $f(x) \ge 0$. Also,

$$\int_{-\infty}^{\infty} f(x)dx = \int_{-\infty}^{\infty} \alpha f_1(x) + (1 - \alpha)f_2(x)dx$$

$$= \alpha \int_{-\infty}^{\infty} f_1(x)dx + (1 - \alpha) \int_{-\infty}^{\infty} f_2(x)dx \text{ by linearity of integrals}$$

$$= \alpha + (1 - \alpha)$$

$$= 1$$

 $\therefore f(x)$ is a probability density function.

(b) Let X_1 be a random variable whose pdf is $f_1(x)$ and X_2 be a random variable whose pdf is $f_2(x)$ where

$$E[X_1] = \mu_1, \quad \text{Var}[X_1] = \sigma_1^2, \qquad E[X_2] = \mu_2, \quad \text{Var}[X_2] = \sigma_2^2.$$

Let X be a random variable whose pdf is f(x). Find E[X] and Var[X].

Since $X_1 \sim \text{Uniform}([0,1])$, $\mu_1 = \frac{1}{2}$ and $\sigma_1^2 = \frac{1}{12}$. Similarly, X_2 follows a standard normal distribution, so we know $\mu_2 = 0$, $\sigma_2^2 = 1$.

Thus,

$$E[X] = \int_{-\infty}^{\infty} x f(x) dx$$

$$= \alpha \int_{-\infty}^{\infty} x f_1(x) dx + (1 - \alpha) \int_{-\infty}^{\infty} x f_2(x) dx$$

$$= \alpha E[X_1] + (1 - \alpha) E[X_2]$$

$$= \alpha \left(\frac{1}{2}\right) + (1 - \alpha)(0)$$

$$= \frac{1}{2}\alpha$$

To find the variance, we will use $Var(X) = E[X^2] - E[X]^2$. First, we compute $E[X^2]$.

$$\begin{split} E[X^2] &= \int_{-\infty}^{\infty} x^2 f(x) dx \\ &= \int_{-\infty}^{\infty} \alpha x^2 f_1(x) + (1 - \alpha) x^2 f_2(x) dx \\ &= \alpha E[X_1^2] + (1 - \alpha) E[X_2^2] \\ &= \alpha (\operatorname{Var}(X_1) + E[X_1]^2) + (1 - \alpha) (\operatorname{Var}(X_2) + E[X_2]^2) \\ &= \alpha (\frac{1}{12} + \frac{1}{4}) + (1 - \alpha)(1) \\ &= 1 - \frac{2}{3} \alpha \end{split}$$

Therefore,

$$Var(X) = E[X^2] - E[X]^2$$
$$= 1 - \frac{2}{3}\alpha - \left(\frac{1}{2}\alpha\right)^2$$
$$= 1 - \frac{2}{3}\alpha - \frac{1}{4}\alpha^2$$