RF Exposures Evaluation

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in 1.1307(b).

LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Average Time				
(A) Limits for Occupational / Control Exposures								
300-1,500			F/300	6				
1,500-100,000			5	6				
(B) Limits for General Population / Uncontrol Exposures								
300-1,500			F/1500	6				
1,500-100,000			1	30				

CALCULATIONS

$$E = \frac{\sqrt{30 \times P \times G}}{d} \quad \& \quad S = \frac{E^2}{3770}$$

Given

Where E = Field strength in Volts / meter

P = Power in Watts

G = Numeric antenna gain

d = Distance in meters

S = Power density in milliwatts / square centimeter

Combining equations and re-arranging the terms to express the distance as a function of the remaining variables yields:

$$S = \frac{30 \times P \times G}{3770d^2}$$

Changing to units of mW and cm, using:

$$P (mW) = P (W) / 1000$$
and

$$d(cm) = d(m) / 100$$

Yields

$$S = \frac{30 \times (P/1000) \times G}{3770 \times (d/100)^2} = 0.0796 \times \frac{P \times G}{d^2}$$

Where d = Distance in cm

P = Power in mW

G = Numeric antenna gain

S = Power density in mW / cm²

<u>LIMIT</u>

Power Density Limit, S=1.0mW/cm²

TEST RESULTS

Pass

Mode	Minimum separation distance (cm)	Output Power (dBm)	Antenna Gain (dBi)	Power Density Limit (mW/cm²)	Power Density at 20cm (mW/cm²)
IEEE 802.11b	20	20.88	0	1.0	0.02437
IEEE 802.11g	20	20.41	0	1.0	0.02187
IEEE 802.11n	20	18.79	0	1.0	0.01506

This equipment complies with FCC RF radiation exposure limits set forth for an uncontrolled environment. This equipment must be installed and operated with a minimum distance of 20 centimeters between the radiator and your body.