Regression Analysis Calculation

Introduction

This document calculates and explains the following: - Variance (Var(X)): Measures how much X values deviate from their mean. - Covariance (Cov(X,Y)): Measures how X and Y vary together. - Regression slope (β_1) : The rate at which Y changes with X. The dataset consists of High School GPA (X) and First Year GPA (Y) for 10 students.

Dataset

```
students <- data.frame(
   Student = paste("Student", 1:10),
   High_School_GPA = c(3.0, 3.2, 3.5, 3.8, 3.6, 3.1, 3.9, 3.4, 3.7, 3.2),
   First_Year_GPA = c(2.8, 3.0, 3.2, 3.8, 3.6, 3.3, 3.9, 3.7, 4.0, 2.5)
)
knitr::kable(students, caption = "High School GPA and First Year GPA Dataset")</pre>
```

Table 1: High School GPA and First Year GPA Dataset

Student	High_School_GPA	First_Year_GPA
Student 1	3.0	2.8
Student 2	3.2	3.0
Student 3	3.5	3.2
Student 4	3.8	3.8
Student 5	3.6	3.6
Student 6	3.1	3.3
Student 7	3.9	3.9
Student 8	3.4	3.7
Student 9	3.7	4.0
Student 10	3.2	2.5

Step 1: Variance of X

Variance measures how much the values of X (High School GPA) deviate from their mean.

Formula

$$Var(X) = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2$$

Steps

- 1. Compute the mean of X (\bar{X}) .
- 2. Compute deviations from the mean and square them.
- 3. Compute the average of the squared deviations.

```
# Variance calculation
X <- students$High_School_GPA
mean_X <- mean(X)
students$Deviation_X <- paste(X, "-", round(mean_X, 2), "=", round(X - mean_X, 2))
students$Squared_Deviation_X <- (X - mean_X)^2
variance_X <- mean((X - mean_X)^2)
knitr::kable(students[, c("Student", "High_School_GPA", "Deviation_X", "Squared_Deviation_Caption = "Step-by-step Variance Calculation for High School_GPA")</pre>
```

Table 2: Step-by-step Variance Calculation for High School GPA

Student	$High_School_GPA$	${\bf Deviation_X}$	$Squared_Deviation_X$
Student 1	3.0	3 - 3.44 = -0.44	0.1936
Student 2	3.2	3.2 - 3.44 = -0.24	0.0576
Student 3	3.5	3.5 - 3.44 = 0.06	0.0036
Student 4	3.8	3.8 - 3.44 = 0.36	0.1296
Student 5	3.6	3.6 - 3.44 = 0.16	0.0256
Student 6	3.1	3.1 - 3.44 = -0.34	0.1156
Student 7	3.9	3.9 - 3.44 = 0.46	0.2116
Student 8	3.4	3.4 - 3.44 = -0.04	0.0016
Student 9	3.7	3.7 - 3.44 = 0.26	0.0676
Student 10	3.2	3.2 - 3.44 = -0.24	0.0576

The variance of X (Var(X)) is:

```
variance_X
```

[1] 0.0864

Step 2: Covariance of X and Y

Covariance measures how X and Y vary together. A positive covariance indicates that when X increases, Y tends to increase as well.

Formula

$$Cov(X,Y) = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})$$

Steps

- 1. Compute the means of X and Y (\bar{X} and \bar{Y}).
- 2. Compute deviations from the mean for both variables.
- 3. Compute the product of deviations for each pair.
- 4. Compute the average of these products.

Table 3: Step-by-step Covariance Calculation between High School GPA and First Year GPA

Student	High_School_ GPA	_Year_ GPA viation_X	${\bf Deviation_Y}$	Product_Deviation
Student	3.0	2.8 3 - 3.44 =	2.8 - 3.38 =	0.2552
1		-0.44	-0.58	

Student	High_School_ GiPA _	Year_	GPA viation_X	Deviation_Y	Product_Deviation
Student	3.2	3.0	3.2 - 3.44 =	3 - 3.38 =	0.0912
2			-0.24	-0.38	
Student	3.5	3.2	3.5 - 3.44 =	3.2 - 3.38 =	-0.0108
3			0.06	-0.18	
Student	3.8	3.8	3.8 - 3.44 =	3.8 - 3.38 =	0.1512
4			0.36	0.42	
Student	3.6	3.6	3.6 - 3.44 =	3.6 - 3.38 =	0.0352
5			0.16	0.22	
Student	3.1	3.3	3.1 - 3.44 =	3.3 - 3.38 =	0.0272
6			-0.34	-0.08	
Student	3.9	3.9	3.9 - 3.44 =	3.9 - 3.38 =	0.2392
7			0.46	0.52	
Student	3.4	3.7	3.4 - 3.44 =	3.7 - 3.38 =	-0.0128
8			-0.04	0.32	
Student	3.7	4.0	3.7 - 3.44 =	4 - 3.38 = 0.62	0.1612
9			0.26		
Student	3.2	2.5	3.2 - 3.44 =	2.5 - 3.38 =	0.2112
10			-0.24	-0.88	

The covariance of X and Y (Cov(X, Y)) is:

covariance_XY

[1] 0.1148

Step 3: Regression Slope

The regression slope β_1 is calculated as:

$$\beta_1 = \frac{\operatorname{Cov}(X, Y)}{\operatorname{Var}(X)}$$

It represents the rate at which Y changes for a one-unit increase in X.

[1] 1.328704