

PMB2023

PATHOGEN MULTIOMICS AND BIOINFORMATICS

Rio Grande RS 2023

Module 1: Mapping Sequence Data

Sequencing through time...

Genome Sequencing: Ideal situation...

Genome Sequencing: the hard reality...

NGS Platforms: An overview ...

	illumına	ion torrent ⋄★▲○×□+≈	PACIFIC BIOSCIENCES®	Oxford NANOPORE Technologies
Read Length (bp)	50-300	200-400	10000-40000	1Mbp
Output (Gb)	6000	0,05-1	0,5-1	5-40
Cost / Million bp (USD)	0,05-0,15	1	0,13-0,60	variable
Accuracy	99.9%	99.6%	87%	92-97%
Time per run	1-11d	2h	30min-20h	1min-48h

Sanger Cost per MB: 2400USD

SMRT sequencing

Next Generation Sequencing

Nanopore sequencing

Long read sequencing

- Accuracy

- Library preparation

- Costs

de Bruijn et al 2021

Illumina: Sequencing-by-synthesis

Figure 1-2-1 Pipeline of paired-end sequencing (www.illumina.com)

Oxford Nanopore: nanopore sequencing with real-time analysis

Oxford Nanopore: nanopore sequencing with real-time analysis

Wang et al 2021

Two main approaches for handling reads...

De novo Assembly

Short / Long reads
Contig assembly
Scaffold assembly
Finished genome

Workflow

Four main analytical stages:

- Quality-control filter out reads/bases associated with poor basecall quality;
- Mapping map reads to a reference genome, obtain sample coverage at each position and read coordinates;
- Variant Calling identify variants existing between sequenced and reference genome, either SNPs or INDELs;
- Functional Annotation determine the functional impact of each variant, e.g., which gene is affected? Is the mutation synonymous or non-synonymous? impact at the peptide primary structure?

What storage format for Sequencing Reads: FASTA vs FASTQ

FASTA

Label Title Line Comment

>fig|282458.1.peg.1 Chromosomal replication initiator protein dnaA

MSEKEIWEKVLEIAQEKLSAVSYSTFLKDTELYTIKDGEAIVLSSIPFNANWLNQQYAEI
IQAILFDVVGYEVKPHFITTEELANYSNNETATPKEATKPSTETTEDNHVLGREQFNAHN
TFDTFVIGPGNRFPHAASLAVAEAPAKAYNPLFIYGGVGLGKTHLMHAIGHHVLDNNPDA
KVIYTSSEKFTNEFIKSIRDNEGEAFRERYRNIDVLLIDDIQFIQNKVQTQEEFFYTFNE
LHQNNKQIVISSDRPPKEIAQLEDRLRSRFEWGLIVDITPPDYETRMAILQKKIEEEKLD
IPPEALNYIANQIQSNIRELEGALTRLLAYSQLLGKPITTELTAEALKDIIQAPKSKKIT
IQDIQKIVGQYYNVRIEDFSAKKRTKSIAYPRQIAMYLSRELTDFSLPKIGEEFGGRDHT
TVIHAHEKISKDLKEDPIFKQEVENLEKEIRNV

Data Lines

FASTQ

ASCII encoded Phred-33 quality score for each nucleotide of the sequence read above. Example: the 3rd nucleotide in the bottom read has a quality (Phred33 Q) of 28. Check the table below. What about the 5th nucleotide of the same read?

Q	P_error	ASCII									
0	1.00000	33 !	11	0.07943	44 ,	22	0.00631	55 7	33	0.00050	66 B
1	0.79433	34 "	12	0.06310	45 -	23	0.00501	56 8	34	0.00040	67 C
2	0.63096	35 #	13	0.05012	46 .	24	0.00398	57 9	35	0.00032	68 D
3	0.50119	36 \$	14	0.03981	47 /	25	0.00316	58 :	36	0.00025	69 E
4	0.39811	37 %	15	0.03162	48 0	26	0.00251	59;	37	0.00020	70 F
5	0.31623	38 €	16	0.02512	49 1	27	0.00200	60 <	38	0.00016	71 G
6	0.25119	39 '	17	0.01995	50 2	28	0.00158	61 =	39	0.00013	72 H
7	0.19953	40 (18	0.01585	51 3	29	0.00126	62 >	40	0.00010	73 I
8	0.15849	41)	19	0.01259	52 4	30	0.00100	63 ?	41	0.00008	74 J
9	0.12589	42 *	20	0.01000	53 5	31	0.00079	64 @	42	0.00006	75 K
10	0.10000	43 +	21	0.00794	54 6	32	0.00063	65 A			

What storage format for Sequencing Reads: FASTA vs FASTQ

Why do I get two FastQ files?

https://thesequencingcenter.com/knowledge-base/what-are-paired-end-reads/

Quality Control: Assessment

Objective:

- Assess overall sequencing quality and assess if sequencing metrics are within expected ranges;
- Remove base calls associated with low quality by removing or trimming sequencing reads;
- Taxonomical read QC did you sequence what you though you did?

Main/Most frequent problem: base quality deterioration along the read length

Quality Control: Assessment

How to assess sequencing metrics?

Software: FastQC, AfterQC, fastqp, HTSeq, etc.

FastQC – Java tool with both GUI and command-line as options.

Input: FastQ files
(or SAM/BAM files)

Output: sequencing metrics and plots

Basic Statistics

Per base sequence quality

Per sequence quality score

Quality Control: Assessment

How to assess sequencing metrics?

Software: FastQC, AfterQC, fastqp, HTSeq, etc.

FastQC – Java tool with both GUI and command-line as options.

(or SAM/BAM files)

Input: FastQ files

Output: sequencing metrics and plots

Quality Control: Correction

How to correct, cut and filter out sequencing reads?

Software: Trimmomatic, FASTX, etc.

<u>Trimmomatic</u> – command-line Java tool capable of handling SE and PE reads.

Input: FastQ files.

Output: FastQ files with

trimmed/cut and surviving reads.

Trimmomatic can:

- Remove adapters;
- Remove leading and trailing low quality bases;
- Cut reads upon scanning at user defined sliding Windows when below a specified threshold;
- Remove reads when these don't meet a specified minimum length.

Quality Control: Taxonomical Read QC

Did I sequence what I thought I did? or Why doesn't it map? or Why does the assembly look strange?

Software: Kraken

Kraken – command-line tool that assigns reads to different taxonomical clades.

Input: FastQ files.

Output: Text Report.

0.89 28702 28702 U 0	unclassified	3.65 137472 137472 U	0 unclassified	
99.11 3210397 42095 - 1	root	96.35 3631172 7288 -	1 root	
97.81 3168297 1864 - 131	1567 cellular organisms	96.16 3623815 2151 -	131567 cellular o	organisms
97.76 3166433 16142 D 2	Bacteria	96.10 3621664 10917 D	2 Bacteria	
97.25 3150142 4158 P 122	24 Proteobacteria	95.81 3610594 13835 P	1224 Protec	bacteria
97.12 3145930 19183 C 12	236 Gammaproteobacteria	95.43 3596429 40211 C	1236 Gamı	maproteobacteria
94.74 3068819 83719 O 91	1347 Enterobacterales	92.48 3485213 108814 O	91347 En	terobacterales
92.16 2985015 1245831 F 5	Enterobacteriaceae	89.53 3374249 342184 F	543 Ent	erobacteriaceae
53.46 1731479 124411 G 5	Escherichia	79.20 2984764 1375209 G	570 k	(lebsiella
49.60 1606565 1603919 S 5	Escherichia coli	38.86 1464425 1415727 S	573	Klebsiella pneumoniae

Mapping or Reference Assembly

Objective: Find the origin of a sequencing read providing a reference genome is known

Reference genome: Should be a high quality genome, ideally finished, the close as possible to the sequenced genome.

Software: Burrows-Wheeler Aligner (BWA), Bowtie2, HISAT2

Input: FastQ files.

Output: Mapped/Alignment File SAM/BAM file

Most mapping software implement the Burrows-Wheeler transformation algorithm which enables fast access to sequence data with an acceptable memory footprint.

	Execution time Memory usage				Accuracy				% Prop. paired reads							
Ins. (bp)	35	50	55	50	35	50	55	50	35	50	55	50	3:	50	55	50
RL (bp)	100	150	100	150	100	150	100	150	100	150	100	150	100	150	100	150
BWA	+	+	+	+	+	+	+	+	+++	+++	+++	+++	+++	+++	+++	+++
Bowtie2	++	++	++	++	+++	+++	++	++	+++	+++	+++	+++	++	++	+++	+++
HISAT2	+++	+++	+++	+++	+++	+++	+++	+++	++	++	++	++	+	+	+	+

"We conclude that there is not a single mapper that is ideal in all scenarios but rather the choice of alignment tool should be driven by the application and sequencing technology."

Keel et al 2018

The Burrows-Wheeler Transform

The *i*th x in the first column corresponds to the *i*th x in the last column.

The SAM Format...

The BAM files are a binary version of the SAM files (text format)

Both BAM and SAM files can be manipulated and viewed with SAMtools or Picard Tools

Variant Calling

Objective: Identify, list and store genomic variants, either SNPs or INDELs.

Software: SAMtools/BCFtools; Genome Analysis Toolkit (GATK), FreeBayes, LoFreq

Input: BAM/SAM files.

Output: VCF files

VCF Format

http://vcftools.sourceforge.net/VCF-poster.pdf

See full specs:

https://samtools.github.io/hts-specs/VCFv4.2.pdf

VCF Format

Format differences between variant callers - Examples

Finding allelic depth and filtering

<u>SAMTools</u>

NC000962_3 69871 . C T 225 . DP=23;VDB=0.641395;SGB=-0.69168;MQSB=0.537242;MQ0F=0;AC=2;AN=2;DP4=0,0,11,8;MQ=43 GT:PL 1/1:255,57,0

bcftools view --include 'QUAL>=20 && INFO/DP>=10 && (INFO/DP4[2]+INFO/DP4[3])/(sum(INFO/DP4))>=0.9'

GATK

NC000962_3 69871 . C T 810

AC=1;AF=1.00;AN=1;BaseQRankSum=1.988;DP=24;Dels=0.00;FS=0.000;HaplotypeScore=0.9469;MLEAC=1;MLEAF=1.00;MQ=60.00;MQ0=0;MQRankSum=0.000;QD=33.75;ReadPosRankSum=1.592;SOR=0.353 GT:AD:DP:GQ:PL 1 1,23:24:99:840,0

bcftools view --include 'QUAL>=20 && FORMAT/DP>=10 && (FORMAT/AD[*:1])/(FORMAT/DP)>=0.9'

Freebayes

NC000962 3 69871 . C T 656.091.

AB=0;ABP=0;AC=1;AF=1;AN=1<mark>AO=23;</mark>CIGAR=1X;DP=24 DPB=24;DPRA=0;EPP=3.10471;EPPR=5.18177;GTI=0;LEN=1;MEANALT=1;MQM=60;MQMR=60;NS=1;NU MAL

T=1;ODDS=151.07;PAIRED=0.956522;PAIREDR=0;PAO=0;PQA=0;PQR=0;PRO=0;QA=760;QR=14;RO=1;RPL=14;RPP=5.3706;RPPR=5.18177;RPR=9;RUN=1;SAF=12;SAP=3.10471;SAR=11;SRF=0;SRP=5.18177;SRR=1:TYPE=snp;technology.

illumina=1 GT:DP:AD:RO:QR:AO:QA:GL 1:24 1,23:1:14:23:760:-67.3027,0

bcftools view --include 'QUAL>=20 && FORMAT/DP>=10 && (FORMAT/AO)/(FORMAT/DP)>=0.9

LoFreq

NC000962_3 69871 . C T 732 PASS DP=24;AF=0.958333;SB=0 DP4=0,1,12,11

bcftools view --include 'QUAL>=20 && INFO/DP>=10 && (INFO/DP4[2]+INFO/DP4[3])/(sum(INFO/DP4))>=0.9'c

BAM and VCF Visualizatiom

Artemis intry - Militara - Anthenna Military - 💽 Anthenna Military - Militara - Anthenna Military - Militara - Milita m← $\Pi\Pi$ KAIRAT . RDIITEV FREDI 132900 133200

Tablet

Functional Annotation

Objective: Annotate each variant with tis functional impact/consequence.

Software: SnpEff, GATK etc

Input: VCF files.

Output: Annotated VCF files

Genome	NC000962_3
Date	2021-06-17 01:39
SnpEff version	SnpEff 5.0e (build 2021-03-09 06:01), by Pablo Cingolani
Command line arguments	SnpEff -no-downstream -no-upstream NC000962_3 PT000033.filt.vcf
Warnings	124
Errors	0
Number of lines (input file)	1,597
Number of variants (before filter)	1,598
Number of not variants (i.e. reference equals alternative)	0
Number of variants processed (i.e. after filter and non-variants)	1,598
Number of known variants (i.e. non-empty ID)	0 (0%)
Number of multi-allelic VCF entries (i.e. more than two alleles)	1
Number of effects	16,074
Genome total length	4,411,532
Genome effective length	4,411,532
Variant rate	1 variant every 2,760 bases

Number of effects by functional class

Type (alphabetical order)	Count	Percent
MISSENSE	786	61.025%
NONSENSE	13	1.009%
SILENT	489	37.966%

Missense / Silent ratio: 1.6074

'Allele | Annotation | Annotation_Impact | Gene_Name | Gene_ID | Feature_Type | Feature_ID | Transcript_BioType | Rank | HGV S.c | HGVS.p | cDNA.pos / cDNA.length | CDS.pos / CDS.length | AA.pos / AA.length | Distance | ERRORS / WARNINGS / INFO' ">

ANN=G|missense_variant|MODERATE|katG|Rv1908c|transcript|Rv1908c|protein_coding|1/1|c.944G>C|p.Ser315Thr|944/2223|944/2223|315/740||