Lecture 5: 运输问题概述

Lecturer: 陈士祥 Scribes: 陈士祥、ChatGPT

1 运输问题简介

网络中的运输问题是运筹学和优化理论中的一个基本问题,它涉及在一个网络上高效地分配和运输资源。在这个问题中,资源(如货物、信息或能源)需要从一个或多个供应地(源点)传输到一个或多个需求地(汇点),目标是最小化运输成本或最大化效率。

就数学模型而言,它们是线性规划的几个重要特例。针对线性规划模型已有多项式时间算法,因为网络模型的特殊数学结构,利用其结构特性还可以设计出效率更高的求解算法。

网络中的运输问题是运筹学和优化理论中的一个基本问题,它涉及在一个网络上高效地分配和运输资源。在这个问题中,资源(如货物、信息或能源)需要从一个或多个供应地(源点)传输到一个或多个需求地(汇点),目标是最小化运输成本或最大化效率。

运输问题的关键要素:

- 网络结构:通常表示为一个有向图,其中节点代表供应地、需求地或中转点,边代表运输路线,每条边可能有不同的运输成本和容量限制。
- 供应和需求:每个供应地都有一定量的可用资源,而每个需求地都有一定量的资源需求。
- 成本最小化:目标是找到一种运输计划,使得满足所有需求地的需求同时使得总运输成本最小。
- 容量限制:运输路线可能有容量限制,即每条路线上可以运输的最大资源量。

运输问题可以通过多种优化算法解决,其中包括:

- 线性规划:运输问题可以被公式化为线性规划问题,通过单纯形法或其他优化算法求解。
- 运输问题算法: 特定的运输问题可以使用如西北角法、最小成本法或沃格尔近似法等专门算法进行初步解决, 然后通过调整法优化。
- 网络流算法:一些运输问题可以转化为网络流问题,如最小费用流问题,并可以使用专门的网络流算法求解。

运输模型可扩展应用于其他领域、包括投资控制、工作调度、人员指派等。

2 一般运输模型

经典的运输问题:

工厂 i 生产的货物量 s_i , $i = 1, 2, \dots, m$.

需求点 j 的需求量 d_j , $j = 1, 2, \dots, n$.

从工厂 i 到需求点 j 的单位货运费用 c_{ij} 及其发货量 x_{ij} .

问题要求:选取一个能使运输总费用达到最小的路径规划。

如上图中的网络模型所示,每条边上,用 x_{ij} 表示从 i 到 j 的货物运输量, c_{ij} 表示单位货物运输成本。若要寻找满足要求的最低成本运输方式,有如下线性规划模型:

min
$$\sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$$

s.t. $\sum_{j=1}^{n} x_{ij} \leq s_i, i = 1, \dots, m$
 $\sum_{i=1}^{m} x_{ij} \geq d_j, j = 1, \dots, n$
 $x_{ij} \geq 0, \quad i = 1, \dots, m \quad j = 1, \dots, n.$ (5.1)

上式中,约束 $\sum\limits_{j=1}^n x_{ij} \leq s_i$ 表示任意供货点 i 供货量不超过生产的总量 s_i ; 约束 $\sum\limits_{i=1}^m x_{ij} \geq d_j$ 表示需求点 j 接受到的总量不少于 d_j . 由于供货量实际物理意义上是非负的,故有非负约束 $x_{ij} \geq 0, \forall i, j$.

Example 5.1 假设有如下供货地:Los Angeles、Detroit、New Orleans 和需求地 Denver 和 Miami。下表是城市之间的运输单价,并且用 i=1,2,3 分别表示 Los Angeles、Detroit、New Orleans;用 j=1,2,3 表示 Denver 和 Miami。

	Denver $(j=1)$	Miami(j=2)
Los Angeles $(i=1)$	\$80	\$215
Detroit(i=2)	\$100	\$108
New Orleans $(i=3)$	\$102	\$68

表 5.1: Transportation Cost per Car

下表中,我们用在最右列和最下面一行,列出供货量和需求量,并用 x_{ij} 表示 i 到 j 的供应量。该表格的构成形式,将用来设计特殊的单纯形方法。

	Denver		Miami		Supply
Los Angeles		80		215	
	x_{11}		x_{12}		1000
Detroit		100		108	
	x_{21}		x_{22}		1500
New Orleans		102		68	
	x_{31}		x_{32}		1200
Demand	2300		1400		

表 5.2: MG Auto Transportation Model

所以, 我们列出如下线性规划问题:

min
$$z = 80x_{11} + 215x_{12} + 100x_{21} + 108x_{22} + 102x_{31} + 68x_{32}$$

s.t. $x_{11} + x_{12} \le 1000$ (LosAngeles)
 $x_{21} + x_{22} \le 1500$ (Detroit)
 $x_{31} + x_{32} \le 1200$ (NewOreleans)
 $x_{11} + x_{21} + x_{31} \ge 2300$ (Denver)
 $x_{12} + x_{22} + x_{32} \ge 1400$ (Miami)
 $x_{ij} \ge 0, i = 1, 2, 3, j = 1, 2$ (5.2)

我们下面将讨论如何改进单纯形法求解运输模型的线性规划问题。

2.1 运输模型产销平衡情形

考虑产销平衡的情形,即 $\sum_{i=1}^m s_i = \sum_{j=1}^n d_j$. 进一步,我们只考虑恰好满足供需条件的情况,即约束均为等式的情况:

min
$$\sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$$
s.t.
$$\sum_{j=1}^{n} x_{ij} = s_{i}, i = 1, \dots, m$$

$$\sum_{i=1}^{m} x_{ij} = d_{j}, j = 1, \dots, n$$

$$x_{ij} \geq 0, \quad i = 1, \dots, m \quad j = 1, \dots, n.$$
(5.3)

对于供大于求(或供低于求),我们可以通过添加冗余变量,变换为供需平衡。例如,若 $\sum_{i=1}^{m} s_i > \sum_{j=1}^{n} d_j$,可以假设存在额外的需求方 n+1, 令 $c_{i,n+1}=0$, $i=1,2,\ldots,m$, 以及 $d_{n+1}=\sum_{i=1}^{m} s_i - \sum_{j=1}^{n} d_j$,从而可以构造供需平衡运输模型。

对于运输问题, 若将其改写成标准形式的线性规划问题, 其矩阵 A 形如:

$x_{11} x_{12}$.	x_{1n}	x_{21}	x_{22}		x_{2n}	x	m_1	x_{m2}	6	x_{mn}
1 1 .	1									
		1	1 .		1					
						:				
							1	1		1
1		1					1			
1			1					1		
	:			:					:	
	1			•	1				•	1

注意,这个矩阵并非行满秩,秩为n+m-1,故可行基解最多有n+m-1的大于0的分量。

Theorem 5.1 运输问题有可行解的充分必要条件是供需平衡,即 $\sum_{i=1}^{m} s_i = \sum_{j=1}^{n} d_j$ 。

Proof: 必要性显然。充分性: 令 $x_{ij} = \frac{s_i d_j}{T}, T = \sum_{i=1}^m s_i$, 可以验证此为可行解。

直接应用第二章的单纯形法,当然可以求解运输规划问题。然而,变量维度是 mn,单纯性表太大,不易操作。我们这里针对运输模型的特点,保留运输模型的表格形式,设计新的单纯形法。

2.2 表格作业法

首先, 我们有如下运输问题的对偶形式

max
$$\sum_{i=1}^{m} s_i u_i + \sum_{j=1}^{n} d_j v_j$$

s.t. $u_i + v_j \le c_{ij}$, $i = 1, \dots, m$, $j = 1, \dots, n$
 u_i, v_j 无限制

假设有一可行基解 (x_B, x_N) 以及对应的矩阵 A 的划分 (B, N).

根据对偶理论,若 x 为最优解,那么 $(u^T,v^T)=c_B^TB^{-1}$ 为对偶问题最优解。在非最优点处,我们仍记 $(u^T,v^T)=c_B^TB^{-1}$,

那么由
$$(u^T, v^T) = c_B^T B^{-1}$$
: 我们有减少量 $\bar{c}_{ij} = c_{ij} - c_B^T B^{-1} A_{ij} = c_{ij} - (u_i + v_j)$

对基变量 x_{ij} 而言,減少量 $\bar{c}_{ij} = c_{ij} - c_B^{\mathsf{T}} B^{-1} A_{ij} = 0$,故 $u_i + v_j = c_{ij}$,即 $\sigma_{ij} := u_i + v_j - c_{ij} = 0$.

对非基变量 x_{ij} 而言,若 $\sigma_{ij} = u_i + v_j - c_{ij} \le 0$,已对偶可行(因此说明原问题最优);若 $\sigma_{ij} = u_i + v_j - c_{ij} > 0$,非对偶可行(因此原问题非最优),则引进基。

运输模型的单纯形法求解步骤:由于上面说到的,运输模型的矩阵 A 非行满秩,初始化可行基解一般 采用下述的西北角算法(Northwest-Corner Starting Solution)。

- 1. 选取一组 m+n-1 个路径,用西北角算法选取初始可行基解,见表 5.4。
- 2. 检验当前解是否可改进 (表 5.5), 如果可改进,则找回路 (表 5.6) 引进一个非基变量进行步 3, 否则停止。
- 3. 当把步 2 中挑选的变量引进时,确定哪个路径应当由基解中退出
- 4. 调整其他基本路径的流量(满足可行性), 返回到步 2.

我们将以例子来说明运输模型的单纯形算法。

D(1)D(2)D(3)D(4)Supply S(1)10 20 **15** x_{11} x_{12} x_{13} x_{14} S(2)**25** x_{22} x_{23} x_{24} x_{21} S(3)16 **10** x_{31} x_{32} x_{33} x_{34} Demand **15 15 15** 5

表 5.3: 某公司的运输表

表 5.4: 算法迭代 1: (步骤 1:) 初始可行基解 (Northwest-Corner Starting Solution) 从左上角出发,令 $x_{11} = \min\{d_1, s_1\}$,然后向下或者右,使得原问题达到所有等式成立。这样便得到一个初始可行基解(蓝色值为可行变量)。

	D(1)		D(2)		D(3)		D(4)		Supply
S(1)		$c_{11} = 10$		2		20		11	
	$x_{11} = 5$		10						15
S(2)		12		7		9		20	
			5		15		5		25
S(3)		4		14		16		18	
							10		10
Demand	5		15		15		15		

表 5.5: 算法迭代 1: (步骤 2:). 令 $u_1 = 0$. 然后根据可行基解的对偶关系,解出所有 n + m - 1 组等式 $u_i + v_j = c_{ij}$, 这里 ij 属于可行基解下标。这样得到所有的对偶变量值。对非基变量,计算 $(u_i + v_j) - c_{ij}$ (红色方框中的值),大于 0 的变量可以作为转轴,最大值作为人基变量。本例子中选取 x_{31} 作为人基变量。

	$v_1 = 10$		$v_2 = 2$		$v_3 = 4$		$v_4 = 15$		Supply
		$c_{11} = 10$		2		20		11	
$u_1 \equiv 0$	$x_{11} = 5$		10						15
						[-16]		[4]	
		12		7		9		20	
$u_2 = 5$			5		15		5		25
	$u_2 + v$	$c_1 - c_{21} = [3]$							
		4		14		16		18	
$u_3 = 3$							10		10
		[9]		[-9]		[-9]			
Demand	5		15		15		15		

表 5.6: 算法迭代 1: (步骤 2:) (找回路) 从入基变量出发,寻找包含可行基解的回路。本例中,回路为: $x_{31}, x_{34}, x_{24}, x_{22}, x_{11}, x_{31}$. 在该回路中,令人基变量由 0 增加到值 θ ,并相应的更改回路中的其他值,使得原问题等式成立。

	$v_1 = 10$		$v_2 = 2$		$v_3 = 4$		$v_4 = 15$		Supply
		10		2		20		11	
$u_1 \equiv 0$	$5-\theta$		$10 + \theta$						15
						[-16]		[4]	
		12		7		9		20	
$u_2 = 5$			$5-\theta$		15		$5+\theta$		25
		[3]							
		4		14		16		18	
$u_3 = 3$	θ						$10 - \theta$		10
		[9]		[-9]		[-9]			
Demand	5		15		15		15		

表 5.7: 算法迭代 1: (步骤 3:) 确定出基变量,令 θ 为使得不等式 $x_{ij} \geq 0$ 的最大值。本例中, $x_{1}1$ 和 x_{22} 处, $\theta=5$ 相等,对应退化解。我们任选其中一个,让 x_{11} 出基。接着,更新对偶变量。

	$v_1 = 1$	$v_2 = 2$		$v_3 = 4$		$v_4 = 15$		Supply
	10		2		20		11	
$u_1 \equiv 0$		15						15
	[-9]				[-16]		[4]	
	12		7		9		20	
$u_2 = 5$		0		15		10		25
	[-6]							
	4		14		16		18	
$u_3 = 3$	5					5		10
			[-9]		[-9]			
Demand	5	15		15		15		

表 5.8: 算法迭代 2: (步骤 2-3:) 重复单纯形法第 2, 3 步 (确定入基变量,以及找回路)

	$v_1 = 1$		$v_2 = 2$		$v_3 = 4$		$v_4 = 15$		Supply
		10		2		20		11	
$u_1 \equiv 0$			$15 - \theta$				θ		15
		[-9]				[-16]		[4]	
		12		7		9		20	
$u_2 = 5$			$0 + \theta$		15		$10 - \theta$		25
		[-6]							
		4		14		16		18	
$u_3 = 3$	5						5		10
				[-9]		[-9]			
Demand	5		15		15		15		

表 5.9: 算法迭代 3: (步骤 2-3) 所有 $u_i + v_j - c_{ij}$ 为负数,得到最优解

	$v_1 = -3$		$v_2 = 2$		$v_3 = 4$		$v_4 = 11$		Supply
		10		2		20		11	
$u_1 \equiv 0$			5				10		15
	[-1	13]				[-16]			
		12		7		9		20	
$u_2 = 5$			10		15			[-4]	25
	[-1	10]							
		4		14		16		18	
$u_3 = 7$	5						5		10
				[-5]		[-5]			
Demand	5		15		15		15		