UNIVERSIDADE FEDERAL DE CAMPINA GRANDE (UFCG) **ALUNO**: ALYSSON MACHADO DE OLIVEIRA BARBOSA

MATRÍCULA: 119110236

DISCIPLINA: INSTRUMENTAÇÃO ELETRÔNICA

PROFESSOR: JAIDILSON JÓ DA SILVA

EXPERIMENTO 3:

Medição de Temperatura

Módulo de Peltier

1. Introdução

O presente experimento tem como objetivo analisar o comportamento térmico de um módulo de Peltier, um atuador termoelétrico que opera com base no efeito Peltier, fenômeno no qual a passagem de corrente elétrica entre dois materiais semicondutores distintos gera uma diferença de temperatura entre suas faces. Para isso, foram monitoradas as variações térmicas da superfície quente e da superfície fria do módulo, permitindo a obtenção de curvas características de aquecimento e resfriamento. A partir desses dados, foram determinadas as constantes de tempo de subida e descida, fundamentais para compreender a dinâmica de resposta térmica do sistema. Os experimentos foram conduzidos com sensores LM35, um para cada face do módulo, e a aquisição dos dados foi realizada com uma interface digital e analógica, permitindo a análise detalhada das respostas térmicas sob diferentes condições de operação.

2. Descrição Sobre o Sensor Utilizado

O sensor utilizado no experimento foi o LM35, um sensor de temperatura de precisão com saída linear em tensão, diretamente proporcional à temperatura em graus Celsius. Ele se destaca por sua fácil integração com circuitos eletrônicos, pois não requer calibração externa e apresenta baixa impedância de saída, permitindo conexão direta a conversores analógico-digitais. O LM35 opera em uma faixa de temperatura ampla, variando de -55°C a 150°C, com uma sensibilidade de 10 mV/°C, proporcionando medições estáveis e precisas. No experimento, dois sensores LM35 foram empregados para monitorar as temperaturas da face quente e da face fria do módulo de Peltier, possibilitando a obtenção das curvas de aquecimento e resfriamento e o cálculo das constantes de tempo do sistema.

3. Aplicações com o Sensor

O sensor LM35 é amplamente utilizado em sistemas de monitoramento ambiental, onde a medição precisa da temperatura é essencial para o controle de climatização e segurança. Em aplicações industriais e domésticas, ele é empregado em termostatos inteligentes, estufas e sistemas de ventilação, garantindo o ajuste automático da temperatura conforme as condições do ambiente. Além disso, seu uso é comum em equipamentos agrícolas, como estufas controladas eletronicamente, onde a temperatura precisa ser monitorada e ajustada para otimizar o crescimento das plantas e a produtividade das colheitas.

Outra aplicação importante do LM35 está na área médica, especialmente em dispositivos de monitoramento de temperatura corporal. Ele pode ser integrado a termômetros digitais e sistemas de controle térmico em incubadoras neonatais, onde a precisão é fundamental para garantir condições ideais para recém-nascidos.

4. Descrição do Experimento

O experimento teve como objetivo analisar o comportamento térmico de um módulo de Peltier, um dispositivo que gera um gradiente de temperatura quando submetido a uma diferença de potencial. Para isso, foram realizados testes de aquecimento e resfriamento, utilizando sensores LM35 para medir a temperatura nas duas faces do módulo. O sistema foi controlado por meio de uma interface digital e analógica, registrando as variações térmicas ao longo do tempo. Os dados obtidos permitiram traçar curvas características de temperatura e determinar as constantes de tempo de subida e descida do módulo, fundamentais para compreender sua dinâmica térmica. Além disso, foram avaliados os tempos necessários para atingir 63% da variação total de temperatura, possibilitando uma análise mais detalhada da resposta térmica do sistema.

5. Resultados Obtidos

Para calcular os resultados obtidos, foi utilizado um código Python para fazer as análises, a seguir, será ilustrado em código os passos seguidos.

```
import matplotlib.pyplot as plt
   import numpy as np
   # Carregar os dados dos arquivos de aquecimento e resfriamento
   arquivo aquecimento = "Dados/Aquecimento.txt"
   arquivo_resfriamento = "Dados/Resfriamento.txt"
   # Carregar os valores de temperatura registrados ao longo do tempo
   dados_aquecimento = np.loadtxt(arquivo_aquecimento)
   dados resfriamento = np.loadtxt(arquivo resfriamento)
   # Definição dos valores experimentais extraídos do relatório
   TS1 = 23.2031 # Temperatura inicial
   TS2 = 24.7411 # Temperatura final de estabilização
   TMFQ = 32.9563 # Temperatura máxima face quente
   TMFF = 18.168 # Temperatura mínima face fria
   TFQD = 32.6196 # Temperatura final de resfriamento face quente
   TFFD = 18.9024 # Temperatura final de resfriamento face fria
   # Tempos de ativação e desativação do Peltier
   tempo_liga = 15.1 # s
24 tempo_desliga = 90.8 # s
```

Figura 1 - Resolutividade do problema (1/3).

```
T63FQA = 0.63 * (TMFQ - TS1) + TS1
   T63FFA = 0.63 * (TMFF - TS1) + TS1
   T63FQD = TFQD - 0.63 * (TFQD - TS2)
    T63FFD = TFFD + 0.63 * (TS2 - TFFD)
   print(f"Temperatura correspondente a 63% da variação face quente (acionamento): {T63FQA:.5f} °C")
   print(f"Temperatura correspondente a 63% da variação face fria (acionamento): {T63FFA:.5f} °C")
   print(f"Temperatura correspondente a 63% da variação face quente (resfriamento): {T63FQD:.5f} °C")
10 print(f"Temperatura correspondente a 63% da variação face fria (resfriamento): {T63FFD:.5f} °C")
11 print('---\n')
14 tempo_aquecimento = np.arange(0, len(dados_aquecimento) * 0.1, 0.1)
   tempo_resfriamento = np.arange(0, len(dados_resfriamento) * 0.1, 0.1)
   tempo_T63FQA = tempo_aquecimento[np.where(np.abs(dados_aquecimento - T63FQA) < 0.1)[0][0]]
19 tempo_T63FFA = tempo_resfriamento[np.where(np.abs(dados_resfriamento - T63FFA) < 0.5)[0][0]]</pre>
20 tempo_T63FQD = tempo_aquecimento[np.where(np.abs(dados_aquecimento - T63FQD) < 0.1)[0][-1]]</pre>
   tempo\_T63FFD = tempo\_resfriamento[np.where(np.abs(dados\_resfriamento - T63FFD) < 0.1)[0][-1]]
23 print(f"Tempo correspondente a T63FQA: {tempo_T63FQA:.2f} s")
   print(f"Tempo correspondente a T63FFA: {tempo_T63FFA:.2f} s")
25 print(f"Tempo correspondente a T63FQD: {tempo_T63FQD:.2f} s")
26 print(f"Tempo correspondente a T63FFD: {tempo_T63FFD:.2f} s")
   print('---\n')
   tempo_T63FQA_resposta = tempo_T63FQA - tempo_liga
31 tempo_T63FFA_resposta = tempo_T63FFA - tempo_liga
32 tempo_T63FQD_resposta = tempo_T63FQD - tempo_desliga
   tempo_T63FFD_resposta = tempo_T63FFD - tempo_desliga
35 print(f"Tempo de resposta face quente (acionamento): {tempo_T63FQA_resposta:.2f} s")
print(f"Tempo de resposta face fria (acionamento): {tempo_T63FFA_resposta:.2f} s")
   print(f"Tempo de resposta face quente (resfriamento): {tempo_T63FQD_resposta:.2f} s")
38 print(f"Tempo de resposta face fria (resfriamento): {tempo_T63FFD_resposta:.2f} s")
39 print('---\n')
```

Figura 2 - Resolutividade do problema (2/3).

```
# Plotar os dados de aquecimento
plt.figure(figsize=(10, 5))
plt.plot(tempo_aquecimento, dados_aquecimento, label='Aquecimento')

plt.plot(tempo_resfriamento, dados_resfriamento, label='Resfriamento')

plt.scatter(tempo_T63FQA, T63FQA, color='r', label=f'T63FQA: {tempo_T63FQA:.2f} s', zorder=5)

plt.scatter(tempo_T63FFA, T63FFA, color='g', label=f'T63FFA: {tempo_T63FFA:.2f} s', zorder=5)

plt.scatter(tempo_T63FQD, T63FQD, color='b', label=f'T63FQD: {tempo_T63FQD:.2f} s', zorder=5)

plt.scatter(tempo_T63FFD, T63FFD, color='y', label=f'T63FFD: {tempo_T63FFD: 2f} s', zorder=5)

plt.xlabel('Tempo (s)')
plt.ylabel('Temperatura (°C)')

plt.title('Curvas de Aquecimento e Resfriamento')
plt.legend()

plt.grid(True)

plt.show()
```

Figura 3 - Resolutividade do problema (3/3).

Figura 4 - Curvas obtidas.

Temperatura correspondente a 63% da variação face quente (acionamento): 29.34762 °C Temperatura correspondente a 63% da variação face fria (acionamento): 20.03099 °C Temperatura correspondente a 63% da variação face quente (resfriamento): 27.65614 °C Temperatura correspondente a 63% da variação face fria (resfriamento): 22.58078 °C

Tempo correspondente a T63FQA: 42.90 s Tempo correspondente a T63FFA: 29.90 s Tempo correspondente a T63FQD: 142.20 s Tempo correspondente a T63FFD: 128.20 s

Tempo de resposta face quente (acionamento): 27.80 s Tempo de resposta face fria (acionamento): 14.80 s Tempo de resposta face quente (resfriamento): 51.40 s Tempo de resposta face fria (resfriamento): 37.40 s

6. Questões Propostas

Porque as constantes de tempo de subida são menores que as constantes de tempo de descida? (lembrando que para a curva de resfriamento a constante de tempo de subida é baseada no degrau de resfriamento, ou seja, a subida nada mais é que o decaimento da temperatura abaixo da temperatura inicial).

Durante o aquecimento, a face quente do módulo recebe energia térmica de forma ativa devido à passagem de corrente elétrica, gerando um aumento rápido na temperatura. Esse processo é impulsionado pelo efeito Peltier, que transfere calor de um lado para o outro do módulo, favorecendo um aquecimento mais acelerado. Como resultado, o tempo necessário para atingir 63% da variação total da temperatura (constante de tempo de subida) é relativamente curto.

Já no resfriamento, o sistema depende principalmente da dissipação passiva do calor para o ambiente, um processo geralmente menos eficiente do que o fornecimento ativo de calor. Além disso, a remoção de calor pode ser limitada pela resistência térmica do sistema e pela capacidade do dissipador de calor ou do meio circundante de absorver a energia térmica. Isso faz com que a temperatura decaia de forma mais lenta, resultando em constantes de tempo de descida maiores do que as de subida.

Qual o modo mais simples de obter constantes de tempo de subida e descida iguais para ambas as faces?

O modo mais simples de obter constantes de tempo de subida e descida iguais para ambas as faces do módulo de Peltier é melhorar o equilíbrio térmico do sistema, garantindo que os mecanismos de aquecimento e resfriamento operem com eficiências semelhantes.

7. Conclusão

Com base nos resultados obtidos, foi possível analisar o comportamento térmico do módulo de Peltier e determinar suas constantes de tempo de subida e descida para os processos de aquecimento e resfriamento. A partir das medições realizadas com sensores LM35, observou-se que o sistema apresenta uma resposta térmica previsível, permitindo estimar a dinâmica de variação da temperatura em cada face do módulo. Essas informações são fundamentais para aplicações em controle térmico, onde a precisão no gerenciamento da temperatura é essencial. Além disso, a comparação entre os tempos de subida e descida possibilitou avaliar a eficiência do módulo e compreender melhor os fatores que influenciam sua dissipação de calor.

Códigos de Referência [GitHub]