jméno a příjmení	login	cvičící
		Fuchs / Hliněná / Tůma

IDM, zadání P

T	1	2	3	4	5	6	\sum
'	1	4	0	_ T	0	0	4

Zkouška se skládá ze dvou částí, testu za **20 bodů** a písemky za **60 bodů**. Z testu musíte získat **aspoň 15 bodů**, v opačném případě písemka nebude hodnocena a celá zkouška bude hodnocena 0 body.

TEST

Každá otázka je za 2 body. Odpovědi napište na tento list do vymezeného prostoru pod otázkou.

- 1. Znegujte: $\forall x \in \mathbb{R} \ \exists y \in \mathbb{R} \colon x < y \Rightarrow |x| < |y|$. negace implikace (levo AND neg pravo Odpověď:
- **2.** Platí formule $a < b \Rightarrow a + b = 7$ pro a = 3, b = 2? NE Odpověď:
- 3. Platí $\emptyset \in \emptyset$? ANO Odpověď:
- **4.** Symboly \square nahraďte některými ze symbolů \in , \notin , \wedge , \vee tak, aby vzniklá formule platila pro libovolné množiny A, B: $(1 \notin A \setminus B) \Leftrightarrow (1 \square A \square 1 \square B)$. Odpověď:
- 5. $A=\{1\},\,B=\{2\},\,C=\{[1,2]\}.$ Určete $(A\times B)\setminus C.$ Odpověď:
- **6.** $A = \{1\}, B = \{\{1\}\}.$ Platí $A \subseteq B$? Odpověď:
- 7. $R = \{[a,b], [b,c], [c,d]\}$. Určete $R \circ R$. Odpověď:
- 8. $R = \{[a, a], [a, b], [b, a], [b, b]\}$. Je R relace ekvivalence na množině $A = \{a, b, c\}$? Odpověď:
- 9. Na množině $\mathbb R$ je dána operace \star následovně: $a\star b=a+|b|.$ Je operace \star komutativní? Odpověď:
- 10. Nakreslete graf s posloupností stupňů 3, 3, 3, 3, 3, 5. Graf:

PÍSEMKA

Každý příklad je za 10 bodů. Písemku vypracujte na vlastní papíry. U každého příkladu přehledně napište postup řešení a jasně označte výsledek.

1. a) Najděte množiny A, B tak, aby platilo:

$$\{2\} \subseteq A \setminus B \land \{2\} \in A \cap B.$$

b) Najděte všechny dvojice množin X, Y, pro které platí:

$$|X \cap Y| = |X \setminus Y| \ \land \ X \cup Y = \{a, b, c\}.$$

2. Dokažte, že pro všechna přirozená čísla n platí:

$$2+3+4+\cdots+(3n+2)=\frac{1}{2}(3n+1)(3n+4).$$

3. Na množině $M = \{a, b, c, d\}$ je dána relace R:

$$R = \{[a, a], [a, b], [a, c], [a, d], [b, a], [b, b], [b, c], [c, a], [c, b], [c, c], [d, a]\}.$$

Zjistěte, zda relace R je a) reflexivní, b) symetrická, c) antisymetrická, d) tranzitivní.

4. a) Najděte nejkratší cestu z vrcholu A do vrcholu B v grafu na obrázku. Postup vyznačte do obrázku.

- b) Může být graf s posloupností stupňů 6, 6, 6, 6, 6, 6, 6 rovinný?
- 5. Na množině $A = \{a, b, c, d, e, f\}$ je dán rozklad \mathcal{S} :

$$S = \{\{a, b\}, \{c, d\}, \{e\}, \{f\}\}.$$

- a) Určete relaci ekvivalence R, která je dána rozkladem S. vzít každý prvek zvlášť a pak ty skupiny
- b) Na množině A určete operaci \circ tak, aby platilo $a \circ f \neq b \circ f$ a R byla relací kongruence na A vzhledem k operaci \circ . divné šefovské tabulky
- **6.** Na množině $A = \{1, 2, 3, 5, 6, 15, 30\}$ je dána relace \sim následovně: $a \sim b \Leftrightarrow a|b$.
 - a) Je relace \sim na množině A relací uspořádání? důkaz!
 - b) V případě kladné odpovědi na předchozí otázku nakreslete hasseovský diagram a zjistěte, zda se jedná o svazové uspořádání.

 dole jednička, pak prvočísla a pak, co se čím dělí