MAS115

Prellberg

I ---- 1

Lecture 1:

MAS115 Calculus I Week 4

Thomas Prellberg

School of Mathematical Sciences Queen Mary, University of London

2007/08

Revision

Lecture 10

Lecture 1

- \bullet $\epsilon \delta$ definition of limit
- \bullet How to find δ for a given ϵ
- One-sided limits

Limits involving $\sin \theta/\theta$

Lecture 10 Lecture 11

NOT TO SCALE

Theorem

$$\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1$$

Lecture 11 Lecture 12

Show that both right-hand and left-hand limits are equal to 1.

$$\sin\theta < \theta < \tan\theta$$

this implies

$$\cos heta < rac{\sin heta}{ heta} < 1$$

by Sandwich theorem (taking the limit as $\theta \to 0$)

$$1 \leq \lim_{\theta \to 0^+} \frac{\sin \theta}{\theta} \leq 1$$

Similarly,
$$\lim_{ heta o 0^-} \frac{\sin heta}{ heta} = 1$$

Lecture 10 Lecture 11

Compute

$$\lim_{h \to 0} \frac{\cos h - 1}{h} = \lim_{h \to 0} \frac{1 - 2\sin^2(h/2) - 1}{h}$$

$$= \lim_{h \to 0} \frac{\sin(h/2)}{h/2} (-\sin h)$$

$$= \lim_{\theta \to 0} \frac{\sin \theta}{\theta} (-1) \lim_{h \to 0} \sin h$$

$$= 1(-1)0 = 0$$

Lecture 10

Lecture 1

Compute

$$\lim_{x \to 0} \frac{\sin 2x}{5x} = \lim_{x \to 0} \frac{2}{5} \frac{\sin 2x}{2x}$$
$$= \frac{2}{5} \lim_{\theta \to 0} \frac{\sin \theta}{\theta}$$
$$= \frac{2}{5} 1 = \frac{2}{5}$$

Limits as x approaches infinity

Observation:

 $\ensuremath{\boldsymbol{x}}$ approaching positive/negative infinity is like

1/x approaching zero from the right/left

• Change terminology in $\epsilon - \delta$ formulation:

There is a $\delta>0$ such that for all $0<1/x<\delta$ \dots translates to

There is an M > 0 such that for all $x > M \dots$

Lecture 10 Lecture 11

DEFINITIONS Limit as x approaches ∞ or $-\infty$

1. We say that f(x) has the **limit** L as x approaches infinity and write

$$\lim_{x \to \infty} f(x) = L$$

if, for every number $\epsilon > 0$, there exists a corresponding number M such that for all x

$$x > M \implies |f(x) - L| < \epsilon$$
.

2. We say that f(x) has the limit L as x approaches minus infinity and write

$$\lim_{x \to -\infty} f(x) = L$$

if, for every number $\epsilon>0$, there exists a corresponding number N such that for all x

$$x < N \implies |f(x) - L| < \epsilon$$
.

Limit laws as x approaches infinity

Lecture 10

Lecture 1

Lecture :

THEOREM 8 Limit Laws as $x \to \pm \infty$

If L, M, and k, are real numbers and

$$\lim_{x \to \pm \infty} f(x) = L$$
 and $\lim_{x \to \pm \infty} g(x) = M$, then

1. Sum Rule: $\lim_{x \to \pm \infty} (f(x) + g(x)) = L + M$

2. Difference Rule: $\lim_{x \to +\infty} (f(x) - g(x)) = L - M$

3. Product Rule: $\lim_{x \to +\infty} (f(x) \cdot g(x)) = L \cdot M$

4. Constant Multiple Rule: $\lim_{x \to \pm \infty} (k \cdot f(x)) = k \cdot L$

5. Quotient Rule: $\lim_{x \to \pm \infty} \frac{f(x)}{g(x)} = \frac{L}{M}, \quad M \neq 0$

6. Power Rule: If r and s are integers with no common factors, $s \neq 0$, then

$$\lim_{x \to \pm \infty} (f(x))^{r/s} = L^{r/s}$$

provided that $L^{r/s}$ is a real number. (If s is even, we assume that L > 0.)

Lecture 10 Lecture 11

(a)
$$\lim_{x \to \infty} \left(5 + \frac{1}{x} \right) = \lim_{x \to \infty} 5 + \lim_{x \to \infty} \frac{1}{x} = 5 + 0 = 5$$

(b)
$$\lim_{x \to \infty} \frac{5x^2 + 8x - 3}{3x^2 + 2} = \lim_{x \to \infty} \frac{x^2(5 + 8/x - 3/x^2)}{x^2(3 + 2/x^2)}$$
$$= \frac{5 + \lim_{x \to \infty} 8/x - \lim_{x \to \infty} 3/x^2}{3 + \lim_{x \to \infty} 2/x^2} = \frac{5}{3}$$

Examples

Lecture 10 Lecture 11

(c)
$$\lim_{x \to \infty} \frac{11x + 2}{2x^3 - 1} = \lim_{x \to \infty} \frac{x^3 (11/x^2 - 2/x^3)}{x^3 (2 - 1/x^3)}$$
$$= \frac{\lim_{x \to \infty} 11/x^2 - \lim_{x \to \infty} 2/x^3}{2 - \lim_{x \to \infty} 1/x^3} = 0$$

Examples

Lecture 10 Lecture 11

Horizontal asymptotes

$$\lim_{x \to \infty} \frac{1}{x} = 0$$

The graph approaches the line

 $x \rightarrow -\infty$ x

$$y = 0$$

asymptotically; the line is an asymptote of the graph.

DEFINITION Horizontal Asymptote

A line y = b is a **horizontal asymptote** of the graph of a function y = f(x) if either

$$\lim_{x \to \infty} f(x) = b \quad \text{or} \quad \lim_{x \to -\infty} f(x) = b.$$

Lecture 11
Lecture 12

(a)
$$f(x) = 5 + \frac{1}{x}, \qquad \lim_{x \to +\infty} f(x) = 5$$

The curve has the line y = 5 as a horizontal asymptote.

(b)
$$f(x) = \frac{5x^2 + 8x - 3}{3x^2 + 2}, \qquad \lim_{x \to \pm \infty} f(x) = \frac{5}{3}$$

The curve has the line y = 5/3 as a horizontal asymptote.

(c)
$$f(x) = \frac{11x + 2}{2x^3 - 1}, \qquad \lim_{x \to +\infty} f(x) = 0$$

The curve has the line y = 0 as a horizontal asymptote.

An application of the Sandwich Theorem

Find the horizontal asymptote to $y = 2 + \frac{\sin x}{x}$:

- $\left| \frac{\sin x}{x} \right| \le \left| \frac{1}{x} \right|$
- $\bullet \ \lim_{x\to\pm\infty}\left|\frac{1}{x}\right|=0$
- Therefore, by the Sandwich Theorem,

$$\lim_{x \to \pm \infty} \frac{\sin x}{x} = 0$$

• Hence,

$$\lim_{x \to \pm \infty} \left(2 + \frac{\sin x}{x} \right) = 2$$

Lecture 10

Lecture 11

Lecture 1

- $\lim_{\theta \to 0} \frac{\sin \theta}{\theta}$
- Limits as x approaches infinity
- Horizontal asymptotes

Oblique Asymptotes

Lecture 10
Lecture 11

If for a rational function f(x) = p(x)/q(x) the degree of p(x) is one greater than the degree of q(x), polynomial division gives

$$f(x) = ax + b + r(x)$$
 with $\lim_{x \to \pm \infty} r(x) = 0$

y = ax + b is called an oblique (slanted) asymptote. Example:

$$f(x) = \frac{2x^2 - 3}{7x + 4} = \frac{2}{7}x - \frac{8}{49} + \frac{-115}{49(7x + 4)}$$

$$\lim_{x\to\pm\infty}\frac{-115}{49(7x+4)}=0$$
, so that

$$y = \frac{2}{7}x - \frac{8}{49}$$

is an oblique asymptote of f(x).

Infinite limits

Lecture 10

 $f(x) = \frac{1}{x}$ has no limit as $x \to 0^+$. However, it is convenient to still say that f(x) approaches ∞ as as $x \to 0^+$. We write

$$\lim_{x \to 0^+} \frac{1}{x} = \infty$$

Similarly,

$$\lim_{x \to 0^-} \frac{1}{x} = -\infty$$

Careful: $\lim_{x\to 0^+} \frac{1}{x} = \infty$ really means that the limit does not exist because 1/x becomes arbitrarily large and positive as $x\to 0^+$.

Lecture 10

$$\lim_{x \to 1^+} \frac{1}{x - 1} = \infty$$

and

$$\lim_{x \to 1^{-}} \frac{1}{x - 1} = -\infty$$

as y = 1/(x - 1) is just y = 1/x shifted by one to the right.

Example: two-sided infinite limits

Lecture 10

$$\lim_{x \to 0} \frac{1}{x^2} = \infty$$

as the values of $1/x^2$ are positive and become arbitrarily large as $x \to 0$.

$$g(x) = \frac{1}{(x+3)^2} \quad y$$
5
4
3
2
1
1
-5 -4 -3 -2 -1 0

$$\lim_{x \to -3} \frac{1}{(x+3)^2} = \lim_{x \to 0} \frac{1}{x^2} = \infty$$

as $y = 1/(x+3)^2$ is just $y = 1/x^2$ shifted by three to the left.

Towards a precise definition

Lecture 10

Lactura 1

Precise definition of infinite limits

Lecture 10

Lecture 11

DEFINITIONS Infinity, Negative Infinity as Limits

1. We say that f(x) approaches infinity as x approaches x_0 , and write

$$\lim_{x \to x_0} f(x) = \infty,$$

if for every positive real number B there exists a corresponding $\delta > 0$ such that for all x

$$0 < |x - x_0| < \delta \implies f(x) > B$$
.

2. We say that f(x) approaches negative infinity as x approaches x_0 , and write

$$\lim_{x \to x_0} f(x) = -\infty,$$

if for every negative real number -B there exists a corresponding $\delta > 0$ such that for all x

$$0 < |x - x_0| < \delta \implies f(x) < -B$$
.

Lecture 1

Lecture 11

Prove that

$$\lim_{x \to 0} \frac{1}{x^2} = \infty$$

• given B > 0, find $\delta > 0$ such that

$$0 < |x - 0| < \delta \quad \Rightarrow \quad \frac{1}{x^2} > B$$

• choose $\delta = \frac{1}{\sqrt{R}}$ so that

$$0 < |x| < \delta \Rightarrow \frac{1}{x^2} > \frac{1}{\delta^2} = B$$

• Therefore, by definition,

$$\lim_{x \to 0} \frac{1}{x^2} = \infty$$

Vertical asymptotes

$$\lim_{x \to 0^+} \frac{1}{x} = \infty$$

$$\lim_{x \to 0^+} \frac{1}{x} = -\infty$$

The graph approaches the line

$$x = 0$$

asymptotically; the line is an asymptote of the graph.

DEFINITION Vertical Asymptote

A line x = a is a vertical asymptote of the graph of a function y = f(x) if either

$$\lim_{x \to a^{+}} f(x) = \pm \infty \qquad \text{or} \qquad \lim_{x \to a^{-}} f(x) = \pm \infty.$$

MAS115

Prellberg

Lecture 10

Lecture 11

Examples

Find the horizontal and vertical asymptotes of the graph of

$$f(x) = -\frac{8}{x^2 - 4}$$

- $\lim_{x\to\pm\infty} f(x) = 0$
- division by zero for $x = \pm 2$ if needed, rewrite:

$$-\frac{8}{x^2-4} = \frac{2}{x+2} - \frac{2}{x-2}$$

• $\lim_{x \to -2^{-}} f(x) = -\infty$, $\lim_{x \to -2^{+}} f(x) = \infty$ $\lim_{x \to 2^{-}} f(x) = \infty$, $\lim_{x \to 2^{+}} f(x) = -\infty$

Asymptotes are

$$y = 0$$
, $x = -2$, $x = 2$

Example

Lecture 10

Lecture 11

Lecture 10

Final example on asymptotes

Lecture 10

Find the asymptotes of the graph of

$$f(x) = \frac{x^2 - 3}{2x - 4}$$

• rewrite [polynomial division]:

$$f(x) = \frac{x}{2} + 1 + \frac{1}{2x - 4}$$

Asymptotes are

$$y=\frac{x}{2}+1\;,\quad x=2$$

We say that x/2 + 1 dominates when x is large and that 1/(2x - 4) dominates when x is near 2.

- Lecture 10
- Lecture 12

- Oblique asymptotes
- Infinite limits
- Vertical asymptotes

```
MAS115
```

Prellberg

Loctaire :

. . .

Lecture 12

Continuity

Lecture 12

Continuity

 Informally, any function whose graph can be sketched over its domain in one continuous motion, i.e. without lifting the pen, is an example of a continuous function.

Continuity

Lecture 1

ecture 1

Lecture 12

DEFINITION Continuous at a Point

Interior point: A function y = f(x) is **continuous at an interior point** c of its domain if

$$\lim_{x \to c} f(x) = f(c).$$

Endpoint: A function y = f(x) is continuous at a left endpoint a or is continuous at a right endpoint b of its domain if

$$\lim_{x \to a^+} f(x) = f(a) \qquad \text{or} \qquad \lim_{x \to b^-} f(x) = f(b), \quad \text{respectively}.$$

Lecture 12

Continuity

• If a function is not continuous at a point c, we say that f is discontinuous at c

Lecture 11

Continuity Test

A function f(x) is continuous at x = c if and only if it meets the following three conditions.

- 1. f(c) exists (c lies in the domain of f)
- 2. $\lim_{x\to c} f(x)$ exists (f has a limit as $x\to c$)
- 3. $\lim_{x\to c} f(x) = f(c)$ (the limit equals the function value)

- A function f is right-continuous at a point x = c in its domain if $\lim_{x\to c^+} f(x) = f(c)$
- A function f is left-continuous at a point x = c in its domain if $\lim_{x \to c^-} f(x) = f(c)$
- Therefore: a function f is continuous at a point x = c in its domain if and only if it is both right-continuous and left-continuous at c.

Continuous function

- A function is continuous on an interal if and only if it is continuous at every point of the interval.
- A continuous function is a function that is continuous at every point of its domain.

- y = 1/x is a continuous function.
 (It is continuous at every point of its domain.)
- y = 1/x is not continuous on [-1, 1].

MAS115

Prellberg

Lecture 10

Lecture 12

Properties of continuous functions

Limit laws imply:

THEOREM 9 Properties of Continuous Functions

If the functions f and g are continuous at x = c, then the following combinations are continuous at x = c.

1. Sums: f+g

2. Differences: f - g

3. Products: $f \cdot g$

4. Constant multiples: $k \cdot f$, for any number k

5. Quotients: f/g provided $g(c) \neq 0$

6. Powers: $f^{r/s}$, provided it is defined on an open interval

containing c, where r and s are integers

Example: Polynomials and rational functions are continuous.

MAS115

Lecture 12

Compositions of continuous functions

THEOREM 10 **Composite of Continuous Functions**

If f is continuous at c and g is continuous at f(c), then the composite $g \circ f$ is continuous at c.

Example

Lecture 10

$$y = \left| \frac{x \sin x}{x^2 + 2} \right|$$
 is everywhere continuous

- $f(x) = \frac{x \sin x}{x^2 + 2}$ is continuous (why?)
- g(x) = |x| is continuous (why?)
- therefore $y = g \circ f(x)$ is continuous

Continuous extension to a point

Lecture 12

$$f(x) = \frac{\sin x}{x} \qquad \text{for } x \neq 0$$

is defined and continuous for all $x \neq 0$. As $\lim_{x \to 0} \frac{\sin x}{x} = 1$, it makes sense to define a new function

$$F(x) = \begin{cases} \frac{\sin x}{x} & \text{for } x \neq 0 \\ 1 & \text{for } x = 0 \end{cases}$$

Definition

If $\lim_{x\to c} f(x) = L$ exists, but f(c) is not defined, we define a new function

$$F(x) = \begin{cases} f(x) & \text{for } x \neq c \\ L & \text{for } x = c \end{cases}$$

F(x) is continuous at c, and is called the continuous extension of f(x) to c.

Lecture 10

(b)

For $x \neq 2$, f(x) is equal to

$$F(x) = \frac{x+3}{x+2}$$

F(x) is the continuous extension of f(x) to x = 2, as

$$\lim_{x \to 2} f(x) = \frac{5}{4} = F(2)$$

The Intermediate Value Theorem

A function has the intermediate value property if whenever it takes on two values, it also takes on all the values in between.

THEOREM 11 The Intermediate Value Theorem for Continuous Functions

A function y = f(x) that is continuous on a closed interval [a, b] takes on every value between f(a) and f(b). In other words, if y_0 is any value between f(a) and f(b), then $y_0 = f(c)$ for some c in [a, b].

The Intermediate Value Theorem

Lecture 11

- Geometrical interpretation: any horizontal line $y = y_0$ crossing the y-axis between the numbers f(a) and f(b) will cross the curve y = f(x) at least once over the interval [a, b].
- Continuity is essential: if f is discontinuous at any point of the interval, then the function may "jump" and miss some values.

Lecture 11
Lecture 12

 Connectivity: the graph of a continuous function over an interval is connected, i.e. a single, unbroken curve without any breaks or jumps.

• Root-finding: A solution of the equation f(x) = 0 is called a root of the equation or zero of f.

If f(x) is continuous on [a, b] and f(a) and f(b) have opposite sign, then f(x) = 0 has roots on [a, b].

Application

Lecture 1

Lecture 11

Show that the equation

$$x^3 - 15x + 1 = 0$$

has three roots in the interval [-4, 4]:

- Use $f(x) = x^3 15 + 1$ and compute a few values: f(-4) = -3, f(-3) = 19, f(-2) = 23, f(-2) = 23, f(-1) = 15, f(0) = 1, f(1) = -13, f(2) = -21, f(3) = -17, and f(4) = 5.
- Notice that

$$f(-4) < 0 < f(-3)$$

 $f(0) > 0 > f(1)$
 $f(3) < 0 < f(4)$

• Therefore there are three roots in the interval [-4, 4]. More precisely, the roots are in the intervals [-4, -3], [0, 1], and [3, 4].

MAS115

Prellberg

Lecture 12

The End