Tutorial Problems set-II

Note: All these problems can be solved using the results of Chapter-2.

[0.0.1] *Exercise* Find a necessary and sufficient condition for $\langle x, y \rangle = \sum_{i=1}^{n} \alpha_i x_i y_i$ to be an inner product on \mathbb{R}^n .

[0.0.2] Exercise Let $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$ be a 2×2 matrix with real entries. Let $f_A : \mathbb{R}^2 \to \mathbb{R}$ be a map defined by $f_A(x,y) = y^t A x$, where $x,y \in \mathbb{R}^2$. Show that f_A is an inner product on \mathbb{R}^2 if and only if $A = A^t$, $a_{11} > 0$, $a_{22} > 0$ and det(A) > 0.

[0.0.3] *Exercise* Let \mathbb{V} be a finite-dimensional vector space and let $B = \{u_1, \ldots, u_n\}$ be a basis for \mathbb{V} . Let $\langle x, y \rangle$ be an inner product on \mathbb{V} . If c_1, \ldots, c_n are any n scalars, show that there is exactly one vector x in \mathbb{V} such that $\langle x, u_1 \rangle = c_i$ for $i = 1, \ldots, n$.

[0.0.4] Exercise Let $(\mathbb{V}, \langle, \rangle)$ be an inner product space. Show that $\langle x, y \rangle = 0$ for all $y \in \mathbb{V}$, then x = 0.

[0.0.5] *Exercise* Show that $\langle x, y \rangle = \sum_{i=1}^{n} \overline{x_i} y_i$ is not an inner product on \mathbb{C}^n .

[0.0.6] *Exercise* Let $(\mathbb{V}, \langle, \rangle)$ be a finite inner product space. Prove that for $v \in \mathbb{V} - \{0\}$, the set $W = \{w \in \mathbb{V} : \langle w, v \rangle = 0\}$ is a subspace of \mathbb{V} of dimension $\mathbb{D} \mathbb{I} \mathbb{M} \mathbb{V} - 1$.

[0.0.7] Exercise Decide which of the following functions define an inner product \mathbb{C}^2 . For $x = (x_1, y_1)$, $y = (y_1, y_2)$.

- 1. $\langle x, y \rangle = x_1 \overline{y_2}$
- $2. \langle x, y \rangle = x_1 \overline{y_1} + x_2 \overline{y_2}$
- 3. $\langle x, y \rangle = x_1 y_1 + x_2 y_2$
- 4. $\langle x, y \rangle = 2x_1\overline{y_1} + i(x_2\overline{y_1} x_1\overline{y_2}) + 2x_2\overline{y_2}$

[0.0.8] *Exercise* Let $\mathbb{VP}_3(x)$ be a subspace of real polynomials of degree at most 3. Equip \mathbb{V} with the inner product

$$\langle f, g \rangle = \int_{0}^{1} f(x)g(x)dx$$

- 1. Find the orthogonal complement of the subspace of scalar polynomials.
- 2. Apply the Gram Schmidt process to the basis $\{1, x, x^2, x^3\}$.
- [0.0.9] *Exercise* Find an inner product on \mathbb{R}^2 such that $\langle e_1, e_2 \rangle = 2$.

[0.0.10] Exercise Let \mathbb{V} be the space of all $n \times n$ over \mathbb{R} with the inner product $\langle A, B \rangle = trace(AB^t)$. Find the orthogonal complement of the subspaces of diagonal matrices.

[0.0.11] *Exercise* Let $(\mathbb{V}, \langle, \rangle)$ be an IPS. Let $\alpha, \beta \in \mathbb{V}$. Then show that $\alpha = \beta$ if and only if $\langle \alpha, \gamma \rangle = \langle \beta, \gamma \rangle$ for all $\gamma \in \mathbb{V}$.

[0.0.12] Exercise Apply Gram Schmidt process to the vectors $u_1 = (1,0,1)$, $u_2 = (1,0,-1)$ and $u_3 = (0,3,4)$ to obtain an orthonormal basis for \mathbb{R}^2 with the standard inner product.

[0.0.13] Exercise Consider the inner product $\langle x,y\rangle=y^tAX$ on \mathbb{R}^2 where $A=\begin{bmatrix}2&1&-1\\1&1&0\\-1&0&3\end{bmatrix}$. Find an orthonormal basis B of $S:=\{(x_1,x_2,x_3):\ x_1+x_2+x_3=0\}$ and then extend it to an orthonormal basis of \mathbb{R}^3 .

[0.0.14] Exercise Let $(\mathbb{V}, \langle, \rangle)$ be an IPS. Let $||u|| = \sqrt{\langle u, u \rangle}$ for all $u \in \mathbb{V}$ be the norm induced by \langle, \rangle . Then prove that $||u + v||^2 + ||u - v||^2 = 2||u||^2 + 2||v||^2$.

[0.0.15] *Exercise* Let $(\mathbb{V}, \langle, \rangle)$ be a finite dimensional IPS. Let $B = \{u_1, u_2, \dots, u_n\}$ be a basis of \mathbb{V} . Then prove that $\langle u, v \rangle = \bar{y}^t A x$ for all $u, v \in \mathbb{V}$ where $x = (x_1, \dots, x_n)^t$, $y = (y_1, \dots, y_n)^t$ are coordinates of u and v with respect to basis B and $a_{ij} = \langle u_i, u_j \rangle$.