Theoretical Guide meia noite eu te conto

Victor Manuel, Maxwell Oliveira & Pablo Arruda

Thanks to UFMG - Humuhumunukunukuapua'a

Bitwise

Turn on bit i x & (1 << i)Turn off bit i x & $(^{\sim}(1 << i))$

1.1 XOR from 1 to N

$$f(n) = \begin{cases} n & n \equiv 0 \pmod{4} \\ 1 & n \equiv 1 \pmod{4} \\ n+1 & n \equiv 2 \pmod{4} \\ 0 & n \equiv 3 \pmod{4} \end{cases}$$

C++

template < class T > using min priority queue = priority queue < 1, string (1, 'a')

2.1 Pragma optimize

#pragma GCC optimize("Ofast") #pragma GCC target("avx, avx2, fma")

2.2 Ordered set and multiset

To change to multiset switch equal to less equal.

2.3 Optimized unordered map

```
mp. reserve (8192);
mp.max_load_factor(0.25);
```

2.4 Interactive Problems

freopen("input.txt", "r", stdin); freopen ("output.txt", "w", stdout);

Constants

 $LLINF = 0 \times 3f3f3f3f3f3f3f1LL$

MOD = 998'244'353

 $PI = a\cos(-1)$

4 Counting Problems

vector < T >, greater < T >>;

Burnside's Lemma

Let G be a group that acts on a set X. The Burnside Lemma states that the number of distinct orbits is equal to the average number of points fixed by an element of G.

$$T = \frac{1}{|G|} \sum_{g \in G} |\mathtt{fix}(g)|$$

Where a orbit orb(x) is defined as

 $\mathbf{typedef} \ \ \mathsf{tree} < \mathsf{pair} < \mathsf{ll} \ , \ \ \mathsf{ll} >, \ \ \mathsf{null_type} \ , \ \ \mathsf{less} < \mathsf{pair} < \mathsf{ll} \ , \ \ \mathsf{ll} >>, \ \ \mathsf{rb} \ \ \ \mathsf{tree_tag} \ , \ \ \mathsf{tree_ordef_b} \ \ \mathsf{tree_fir} < \mathsf{tree_fir} <$ and fix(g) is the set of elements in X fixed by g

$$\mathtt{fix}(g) = \{x \in X : gx = x\}$$

Example: With k distinct types of beads how many distinct necklaces of size n can be made? Considering that two necklaces are equal if the rotation of one gives the other.

$$T = \frac{1}{n+1} \sum_{i=0}^{n} k^{gcd(i,n)}$$

$$T = \frac{1}{n} \sum_{i=0}^{n-1} k^{gcd(i,n)}$$

5 Geometry

6 Identities

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \qquad \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6} \qquad \sum_{i=1}^{n} i^3 = \left(\frac{n(n+1)}{2}\right)^2$$
$$\sum_{i=1}^{n} \frac{1}{i} \approx \log n \qquad \sum_{i=0}^{\infty} \frac{1}{2^i} = 2$$

7 Math

7.1 Trigonometry

7.2 Logarithm

$$\log_b mn = \log_b m + \log_b n \qquad \log_b \frac{m}{n} = \log_b m - \log_n n \qquad \log_b n^p = p \log_b n$$
$$\log_b \sqrt[q]{n} = \frac{1}{q} \log_b n \qquad \log_b n = \log_a n \log_b a \qquad b^{\log_b k} = k$$

$$\log_b a = \frac{\log_c a}{\log_c b} \qquad \log_b a = \frac{1}{\log_a b} \qquad \log_b a \log_a c = \log_b c$$
$$\log_b 1 = 0 \qquad \log_b b = 1$$

8 Notes

• number of digits in n!

$$\log_b n! = \log_b (1 \times 2 \times 3 \times \ldots \times n) = \log_b 1 + \log_b 2 + \log_b 3 + \ldots + \log_b n$$

9 Number Theory

$$(a+b) \bmod m = (a \bmod m + b \bmod m) \bmod m$$

$$(a-b) \bmod m = (a \bmod m - b \bmod m) \bmod m$$

$$(a \times b) \bmod m = ((a \bmod m) \times (b \bmod m)) \bmod m$$

$$a^b \bmod m = (a \bmod m)^b \bmod m$$

$$a \equiv b \pmod m \iff (b-a)|m$$

$$\gcd(a_1, a_2, a_3, a_4) = \gcd(a_1, \gcd(a_2, \gcd(a_3, a_4)))$$

$$\gcd(a, b) \times \gcd(a, b) = a \times b$$

$$\gcd(a, b) = \frac{a \times b}{\gcd(a, b)} = \frac{a}{\gcd(a, b)} \times b$$

9.1 Sum of digits of N written in base b

$$f(n,b) = \begin{cases} n & n < b \\ f\left(n, \left\lfloor \frac{n}{b} \right\rfloor + (n \mod b) \right) & n \ge b \end{cases}$$

9.2 Some Primes

999999937 1000000007 1000000009 1000000021 1000000033 $10^{18} - 11 10^{18} + 3 2305843009213693951 = 2^{61} - 1 998244353 = 119 \times 2^{23} + 1 10^6 + 3$

9.3 Prime counting function - $\pi(x)$

Expected to have $\frac{x}{\log x}$ primes within [1, x]. The prime counting function is asymptotic to $\frac{x}{\log x}$, by the prime number theorem.

X	10	10^{2}	10^{3}	10^{4}	10^{5}	10^{6}	10^{7}	10^{8}
$\pi(x)$	4	25	168	1229	9592	78 498	664579	5 761 455

9.4 Number of Divisors

The number of divisors of n is about $\sqrt[3]{n}$.

n	6	60	360	5040	55440	720720	4324320	21621600
d(n)	4	12	24	60	120	240	384	576

9.5 Large Prime Gaps

For numbers until 10⁹ the largest gap is 400.

For numbers until 10^{18} the largest gap is 1500.

9.6 Fermat's Theorems

Let P be a prime number and a an integer, then:

$$a^p \equiv a \pmod{p}$$

$$a^{p-1} \equiv 1 \pmod{p}$$

Lemma: Let p be a prime number and a and b integers, then:

$$(a+b)^p \equiv a^p + b^p \pmod{p}$$

Lemma: Let p be a prime number and a an integer. The inverse of a modulo p is a^{p-2} :

$$a^{-1} \equiv a^{p-2} \pmod{p}$$

- 9.7 Diophantine Equations
- 10 Python