Белорусский государственный университет Факультет прикладной математики и информатики

Лабораторная работа №1 Решение СЛАУ методом Якоби Вариант 8

Выполнил:

Студент 2 курса 7 группы ПМ ФПМИ

Шевцов Евгений

Преподаватель:

Будник Анатолий Михайлович

Алгоритм итерационного метода Якоби

Решаем СЛАУ Ax=f. Для этого приведём к системе, удобной для итерации, а именно: x = Bx + b, и которой процесс нахождения приближения решения имеет вид:

$$\mathbf{x}^{(\mathbf{k}+1)} = \mathbf{B} \ \mathbf{x}^{(\mathbf{k})} + \pmb{b}$$
, где $\mathbf{x}^{(0)}$ по условию = \mathbf{f} , $\mathbf{k} = \mathbf{0}, \ \mathbf{1}, \ \dots$

Решение системы сводится к нахождению матрицы В и вектора b. Метод Якоби является частным случаем метода простых итераций (МПИ), но с определённым алгоритмом нахождения матрицы В и вектора b. Использование данного метода возможно при диагональном преобладании исходной матрицы А. В противном случае метод не будет сходится.

Построим матрицу В. Для начала из матрицы А сделаем матрицу А', которая будет являться симметрической и положительно определённой, домножением А на A^T . Так же при этом преобразовании домножается вектор неоднородных членов на A^T . В итоге получаем:

$$A' = A^T A$$
, $f' = A^T f$

Далее поделим все строки A' на а_{іі}, дабы получить по диагоналям 1. Матрицу В построим из формул:

$$A'x = f' => \pi p H A' = E - B$$
: $(E - B)x = f' => x = Bx + b$

От сюда:

$$\mathbf{B} = \mathbf{E} - \mathbf{A'} = \begin{pmatrix} 0 & -\frac{a_{12}}{a_{11}} & \dots & -\frac{a_{1n}}{a_{11}} \\ -\frac{a_{21}}{a_{22}} & 0 & \dots & -\frac{a_{2n}}{a_{22}} \\ \dots & \dots & \dots & \dots \\ -\frac{a_{1n}}{a_{nn}} & \dots & -\frac{a_{(n-1)n}}{a_{nn}} & 0 \end{pmatrix}$$

Вектор в находится следующим образом:

$$b = (\frac{f'_1}{a_{11}}, ..., \frac{f'_n}{a_{nn}})^T$$

В программе матрица В и вектор b находится покоординатно с помощью соответствующих функций, в которых реализован вышеупомянутый алгоритм.

$$B_{ij} = \begin{cases} 0, i = j \\ -\frac{a_{ij}}{a_{ii}}, i \neq j \end{cases}; b_i = \frac{f_i}{a_{ii}}; i, j = [1, n]$$

Условие, которое мы будем использовать для выхода из цикла итераций $\|\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}\| \le 10^{-5}$

Обоснование итерационного метода Якоби

Как говорилось ранее, метод Якоби является частным случаем МПИ => для его сходимости требуются выполнения условия сходимости для МПИ. В программе было использовано достаточное условие сходимости МПИ, а именно: хотя бы одна из норм матрицы В меньше единицы.

$$\|\mathbf{B}\| = \underbrace{max}_{1 \leq i \leq n} \sum_{j=1}^n a_{ij}$$
 (кубическая норма)

Так же, что тоже было упомянуто, что метод Якоби требует диагонального преобладания в исходной матрице. Это так же было проверено в программе с помощью функции, сравнивающую модуль диагонального элемента с суммой модулей остальных элементов в строке.

$$|\mathbf{a}_{ii}| > \sum_{i \neq j}^{n} |a_{ij}|$$

Листинг

```
#include <iostream>
#include <iomanip>
#include <vector>
bool diagDomination(const std::vector<std::vector<double>> M) {
    for (int i = 0; i < 5; ++i) {
        double sum_i = 0;
        for (int j = 0; j < 5; ++j) {
            if (i != j) {
                sum_i += abs(M[i][j]);
        if (abs(M[i][i]) <= sum_i) {</pre>
            return false;
    }
    return true;
}
std::vector<std::vector<double>> transpositionMatrix(std::vector<std::vector<double>> M)
    for (int i = 0; i < 4; ++i) {
        for (int j = i + 1; j < 5; ++j) {
            std::swap(M[i][j], M[j][i]);
        }
    }
    return M;
}
std::vector<std::vector<double>> multMatrix(const std::vector<std::vector<double>> M1,
const std::vector<std::vector<double>> M2) {
    std::vector<std::vector<double>> M3 = {
      \{0.0, 0.0, 0.0, 0.0, 0.0\},\
      \{0.0, 0.0, 0.0, 0.0, 0.0\},\
      \{0.0, 0.0, 0.0, 0.0, 0.0\},\
      \{0.0, 0.0, 0.0, 0.0, 0.0\},\
      \{0.0, 0.0, 0.0, 0.0, 0.0\}\};
    for (int i = 0; i < 5; ++i) {
        for (int j = 0; j < 5; ++j) {
            for (int k = 0; k < 5; ++k) {
                M3[i][j] += M1[i][k] * M2[k][j];
            }
        }
    }
    return M3;
}
std::vector<double> multVec(const std::vector<std::vector<double>> M, const
std::vector<double> f) {
    std::vector<double> b = { 0., 0., 0., 0., 0. };
    for (int i = 0; i < 5; ++i) {
        for (int j = 0; j < 5; ++j) {
            b[i] += M[i][j] * f[j];
    }
    return b;
}
```

```
std::vector<std::vector<double>> M) {
    std::vector<std::vector<double>> B = {
      \{0.0, 0.0, 0.0, 0.0, 0.0\},\
      \{0.0, 0.0, 0.0, 0.0, 0.0\},\
      \{0.0, 0.0, 0.0, 0.0, 0.0\},\
      \{0.0, 0.0, 0.0, 0.0, 0.0\},\
      \{0.0, 0.0, 0.0, 0.0, 0.0\}\};
   for (int i = 0; i < 5; ++i) {
        for (int j = 0; j < 5; ++j) {
           if (i == j) {
                continue;
           }
           else {
                B[i][j] = -M[i][j] / M[i][i];
       }
   }
   return B;
}
std::vector<double> getb(const std::vector<std::vector<double>> M, const
std::vector<double> f) {
   std::vector<double> result = { 0.0, 0.0, 0.0, 0.0, 0.0 };
   for (int i = 0; i < 5; ++i) {
       result[i] = f[i] / M[i][i];
   }
   return result;
}
double cubeMatNorm(const std::vector<std::vector<double>> M) {
   double max = 0.;
   for (int i = 0; i < 5; ++i) {
        double strSum = 0.;
        for (int j = 0; j < 5; ++j) {
           strSum += abs(M[i][j]);
        if (strSum > max) {
           max = strSum;
   }
   return max;
}
double cubeNorm(std::vector<double> v1, std::vector<double> v2) {
   double max = 0.;
   for (int i = 0; i < 5; ++i) {</pre>
        if (abs(v1[i] - v2[i]) > max) {
           max = abs(v1[i] - v2[i]);
   }
   return max;
}
int main() {
   const double EPS = 10E-5;
   int count = 0;
    std::vector<std::vector<double>> A =
```

```
{ {0.7941, 0.0000, -0.2067, 0.1454, 0.2423},
      \{-0.0485, 0.5168, 0.0000, -0.0985, 0.0323\},\
      {0.0162, -0.1454, 0.9367, 0.0178, 0.0565},
      \{0.0485, 0.0000, -0.1179, 0.9367, 0.0000\},\
      \{0.0323, -0.0485, 0.2342, -0.0194, 0.6783\}\};
    std::vector<double> f = { 1.5569, 2.0656, -2.9054, -8.0282, 3.4819 };
    //Протранспонируем А, дабы потом умножить на неё же и получить симметрическую
матрицу, не забывая умножить вектор f
    std::vector<std::vector<double>> A_trans = transpositionMatrix(A);
    std::vector<std::vector<double>> result A = multMatrix(A trans, A);
    std::vector<double> result f = multVec(A trans, f);
    //Получим матрицу В
    std::vector<std::vector<double>> B = getB(result_A);
    std::vector<double> b = getb(result_A, result_f);
    //Проверим норму В для сходимости
    double normB = cubeMatNorm(B);
    //Присваиваем значения веткора b начальному приближению
    std::vector<double> xk0 = b;
    std::vector<double> xk1 = { 0, 0, 0, 0, 0 };
    //Пока наша кубическая норма больше 10Е-5, проводим итерационный процесс
    while (cubeNorm(xk1, xk0) >= EPS) {
        if (count != 0) {
            xk0 = xk1;
        }
        count++;
        xk1 = multVec(B, xk0);
        for (int i = 0; i < 5; ++i) {
            xk1[i] += b[i];
        }
    std::vector<double> neuralVector = multVec(A, xk1);
    for (int i = 0; i < 5; ++i) {
        neuralVector[i] -= f[i];
    }
```

Выходные данные

======Default matrix====================================					
0.7941	0	-0.2067	0.1454	0.2423	
-0.0485	0.5168	0	-0.0985	0.0323	
0.0162	-0.1454	0.9367	0.0178	0.0565	
0.0485	0	-0.1179	0.9367	0	
0.0323	-0.0485	0.2342	-0.0194	0.6783	
Default vector f					
1.5569	2.0656	-2.9054	-8.0282	3.4819	
Resulting matrix B					
0	0.0455335	0.2311	-0.259707	-0.335637	
0.0997566	0	0.507802	0.180855	0.0840401	
0.148774	0.149214	0	0.129805	-0.163516	
-0.181894	0.0578166	0.14122	0	-0.0218887	
-0.408516	0.046689	-0.309153	-0.0380386	0	
======================================					
0.872453					
Resulting vector b					
1.2758	4.54641	-1.29572	-8.37936	5.05046	
Check diagonal domination in A					
			true		
			ci de		
			=Decision vecto	r======	
0.994712	1.99952	-2.99984	-8.99982	6.00718	
0.33 1.12	1.33332	2.55501	0.33302	0.00710	
Iteretion count					
17					
Neural vector					
3.23209e-05	2.18541e-05	4.61023e-05	-4.8862e-06	-4.50243e-05	

Вывод

Полученный вектор решений имеет значение нормы вектора невязки равную $2.18541*10^{-5}$ (невязка считалась у неизменённой матрицы системы A), что на 11 порядков больше, чем в методе Гаусса. Это связано с заданной изначально точностью $\varepsilon = 10^{-5}$ для условия выхода из цикла итераций $||x^{(k+1)} - x^{(k)}|| \le \varepsilon$.

В отличие от точных методов, где погрешность вычислений и округлений возрастает при увеличении размерности системы, у метода Якоби точность вычислений зависит только от вычислений на k+1 итерации и не зависит от предыдущих итераций, что является его преимуществом над точными методами.

Недостатком же, кроме ограничения заданной точности ϵ , является требования к исходной матрице системы, а так же к матрице B, которые были указаны выше (любая норма матрицы B < 1, диагональное преобладание A).

Чем меньше мы зададим точность є, тем большее количество итераций нам потребуется для получения приближения решения с данной точностью, следовательно, меньше будет невязка решения. Для данной системы метод Якоби посчитал приближение за 17 итераций.