

Building a model to classify tumour cells from immune cells in an H&E image

OVERVIEW

TUMOUR

• Size: 1,000

7

×

IMMUNE

Size: 976 (4 blank images deleted)

DATA PROCESSING

- Test set: random 20% of each
- Train set: the rest 80%
 - => negligibly imbalance

×

 Repetitively train on the train set to select the best fine-tune model

CONVOLUTIONAL NEURAL NETWORK

Source: The MathWorks, Inc. (n.d.)

K-NEAREST NEIGHBOURS

RANDOM FOREST

×

Source: Shiksha Online (2022)

SUPPORT VECTOR MACHINE

Source: Badillo et al. (2020)

HISTOGRAM OF GRADIENTS

Source: Mittal (2020)

HISTOGRAM OF COLOURS

X

×

Source: Sajid (2024)

ACCURACY

×

RECALL - PRECISION - FI SCORE

tumour cells that the model correctly identified actua/ of proportion

X

precision and recall if the other 2 are high. orecision the balance of high if and only

×

i.e. the proportion of cells the model predicted as 'tumour' that were actually tumour

SUMMARY TABLE

V	rodel	•	accuracy (prec 🌗	recall (f1 🖠
7	SVM on HOC		0.98	0.975	0.985	0.98
3	1NN on HOC		0.975	0.975	0.975	0.975
5	RF on HOC		0.959	0.947	0.975	0.961
1	CNN		0.907	0.955	0.855	0.902
2	1NN on HOG		0.887	0.97	0.8	0.877
4	RF on HOG		0.884	0.905	0.86	0.882
6	SVM on HOG		0.828	0.803	0.875	0.837

LIMITATIONS STEPS

WHAT'S WRONG WITH CNN?

×

Predict = actual

= tumour

Predict = actual = immune

Predict = immune ≠ tumour

OTHER LIMITATIONS

×

COMP COST

Computational cost
=> the hyperparameters are only best at its capable range

THE MORE THE MERRIER

With more data being used, we can be hopeful about the future of this project

TIME LIMIT

There might be some other base models and features that cap perform the task better

DOMAIN KNOWLEDGE

With more domain knowledge, we could potentially go on a better track to improve the model

