# Basics of Cryptography for Blockchain (part 2)

## Cryptographic hashing

A cryptographic hash function H is a mathematical function that converts any input message (M) into a hash value (h) of fixed length

h=H(M)



## Encrypted passwords

It is not desirable that providers store our passwords in plain text (can be stolen)

Providers store hash of passwords

-Attackers will steal, but stolen info is unusable (H function cannot be inverted!)

Hashing functions used each time user logs in to verify login information







## Encryption (symmetric, asymmetric)

#### Secure communication





#### Protected files on disk

Same as secure communication (Alice sending a message to her future self)



## What is encryption?

**Encryption** is the science of establishing and performing secure communications among computer systems

#### Symmetric encryption

Sender and receiver use the same "key" to encrypt/decrypt messages

#### **Asymmetric encryption**

Different keys to encrypt/decrypt

## Symmetric encryption

- The same key k used for encryption and decryption of m
- •The algorithms used for E/D are usually called "cypher"



E, D: cipher k: secret key (e.g. 128 bits)

m, c: plaintext, ciphertext

## What is a cypher?

A cypher defined over (K,M,C) is a pair of "efficient" algorithms (E,D), where:

 $E: K \times M \rightarrow C$ 

D:  $K \times C \rightarrow M$ 

such that, D(k, E(k,m))=M, for all m in M and k in K

E is often "randomised", D is (obviously) always deterministic

M, C, K are symbol sets (for messages, cyphered-messages, and keys, respectively)

 $\{a,b,c,\ldots,x,w,z\}$ 

{0,1}<sup>n</sup> [the set of all bit sequences of length n]

#### Stream v. Block cyphers

#### Stream cypher

Convert one symbol of plaintext directly into one symbol of cyphertext

#### **Block Cypher**

Convert groups (blocks) of plaintext symbols into groups (blocks) of cyphertext symbols

(Modern encryption mechanisms mostly use block cyphers, stream cyphers are easier to exemplify in this lecture)

## Caesar cypher

- •An example of "substitution cypher" (stream cypher)
- Used by Julius Caesar to secure war strategy communications
- •Shift symbols of n (= the key) positions in the alphabet
- •Example: n = 3 on English alphabet

$$-A \rightarrow D$$

$$-B \rightarrow E$$

-...

$$-Y \to B$$

$$-\!Z\!\!\to\, C$$



#### Caesar cypher - exercise

C = "wklv phvvdjh lv vhfuhw", K=3

M = ?

## Caesar cypher?

Is it secure?

#### Caesar Cypher - Is it secure?

- .Not really
- •Can be cracked using cyphertext-only attacks
- Simple case we know C is encrypted using Caesar Cypher
- -Try all possible keys (how many?)
- -One of them will turn C into M that makes sense:)
- •What if we do not know that C is encrypted using Caesar Cypher?
- -We can figure it out by looking at distribution of letters

#### OTP – One Time Pad

M, K, C = 
$$\{0,1\}^n$$

Given a message M of size **n** and a key K of size **n**, C is the bit-by-bit XOR of M and K

XOR

| X | y | $x \oplus y$ |
|---|---|--------------|
| 0 | 0 | 0            |
| 0 | 1 | 1            |
| 1 | 0 | 1            |
| 1 | 1 | 0            |

$$M = 0 1 1 0 1 0 1 0 0$$

$$K = 1110111010$$

$$C = ??$$

## OTP – is it a cypher?

•Yes, D(k,E(k,m))=m

```
ENGRYPT

0 0 1 1 0 1 0 1 Plaintext
1 1 1 0 0 0 1 1 Secret Key
= 1 1 0 1 0 1 1 0 Ciphertext

DECRYPT

1 1 0 1 0 1 1 0 Ciphertext
1 1 1 0 0 0 1 1 Secret Key
= 0 0 1 1 0 1 0 1 Plaintext
```

#### OTP – is it secure?

- Yes, it is actually impossible to recover M from C only
- -In other words, no cyphertext-only attacks to OTP are possible
- -Applying Shannon's "Perfect secrecy" theorem

•OTP seems good, but has one major practical problem, which one?

#### **OTP**

- .K must have same length as M
- •Alice and Bob should securely exchange K before communicating...
- ....but if they can do that, why don't they exchange M directly?

(Shannon's perfect secrecy can be guaranteed only if |K|>|M|)

## Block cyphers

- .General architecture
- •Examples
- -3DES
- -AES

#### Block cyphers – built by iteration



for 3DES (n=48), for AES-128 (n=10)

#### Stream cyphers

- Advantages
- -Speed
- Low error propagation (error in encrypting one symbol does not affect next symbols)
- Disadvantages
- -Low diffusion (all information about one plaintext symbol contained in its cypher)
- -Easy to tamper with (an interceptor who breaks the algorithm can easily include new symbols)

#### Block cyphers

#### Advantages

- -High diffusion (information about one plaintext symbol diffused into several cyphertext symbols)
- -Immunity to tampering (difficult to insert new symbols without knowing the past)

#### Disadvantages

- Slow (an entire block must be accumulated before encryption can start)
- -Error propagation (an error in one symbol may corrupt an entire block)

#### What did we learn?

In symmetric encryption the same key K is used to encrypt and decrypt M

- •Combination of E/D algorithms is called "cypher"
- Stream cyphers and block cyphers
- •|K|>|M| guarantees perfect secrecy, but does not work in practice :)

#### Asymmetric encryption

## Asymmetric encryption

•Until now, in a cypher the same key K used for encrypting and decrypting M

- •What if we could define a cypher that used two different keys K1 and K2 somehow mathematically related such that
- One key used for encrypting
- One key used for decrypting

(let's call the 2 keys "public" and "private")

## RSA Cryptosystem

- Invented by Ron Rivest, Adi Shamir, and Len Adleman
- .Still widely adopted
- Specified by two separate procedures
- -Generation of key pairs
- Encryption and Decryption

#### RSA – Generation of Key Pair

- •Each agent who desires to communicate using asymmetric encryption needs a pair of keys (public and private)
- In RSA, the public key is generated as follows:
- -Select 2 large prime numbers, p and q
- -Calculate n=p\*q (for strong encryption, let n be large, typically at least 512 bits)
- -Find e, such that e > 1, e < (p-1)\*(q-1), with e and (p-1)\*(q-1) "coprime"
- No common factors (except 1) between e and (p-1)\*(q-1)
- -(n,e) is the RSA public key, which is made public

#### RSA – Generation of key pair

Private key is (n,d), where d is calculated from p,q, and e as follows:

- -e\*d = 1 [mod (p-1)(q-1)]
- --- the remainder of (e\*d)/((p-1)\*(q-1)) must be 1 ---
- -d is unique for given (n,e)
- Extended Euclidean Algorithm can be used to find d
- -(n,d) is the private key

## RSA key pair generation – example

```
Public Key
-p = 7, q=13, then n = p*q = 7 * 13 = 91
-e = 5 is a valid choice, because there is no common factor between 5 and (p-1)*(q-1) =
6*12 = 72
-(n,e) = (91,5) is the public key
Private key
-d = 29
-e*d = 1 [mod (p-1)(q-1)]
5 * 29 = 145; 145 / 72 = 2; 145 mod 72 = 1
-(n,d) = (91,29) is the private key
```

## RSA Encryption/decryption

- •Public key is (n,e) = (91, 5)
- •Let's say message m = 9, what is the cyphertext c?

•Private key is (n,d)=(91,29) used for decryption

#### RSA Analysis

- Encryption
- -It is considered one-way (not invertible), because is is virtually impossible to invert modulo functions
- -Modulo functions, in fact, map many input values to the same output value
- Key generation
- -It is very hard to guess the private key from the public key, since it is equivalent to factoring n, which is very complicated if n is obtained from p and q large prime numbers

## Elliptic curve cryptosytem

- •Elliptic Curve Cryptography (ECC) is based on the complexity of solving the "discrete logarithm problem"
- -It does not use the modulo function

Bitcoin uses ECC

•More details provided while presenting Bitcoin

## Applications of asymmetric encryption

Public key encryption

Digital signatures

## Public key encryption

- .Public Key for encrypting messages
- .Private Key for decrypting messages
- -Alice distributes her public key to the world
- -To send a message to Alice, anyone (such as Bob) encrypts messages with Alice's public key
- -Only Alice can decrypt messages with her own private key



## Digital signatures

- Alice (signer) needs to send a message to Bob (verifier)
- Bob wants to be sure that the message M he receives was sent by Alice
- •Alice wants to be sure that Bob cannot repudiate her as the source of M



#### More notes

- Signature is the hash of the message encrypted using the signer (sender) private key
- •Generally, message M (data) is not encrypted (but it could be)
- -Sign-then-encrypt
- -Encrypt-then-sign
- Signer Private key used to "sign" (=encrypt the hash)
- •Signer Public key used by any receiver to verify the signature



## (digital) signatures

Message is "signed" using the wax seal, so that the recipient can verify the identity of the sender

Message inside the envelope is not encrypted



#### What did we learn?

Asymmetric encryption uses different keys for encrypting/decrypting messages

RSA as an example of asymmetric encryption

Public key encryption and digital signatures as applications of asymmetric encryption

-Digital signature very important in blockchain-based systems

#### What's next

Thursday 9.8: Exercises (begin in class and submit on bb once completed)

Next week: NO LECTURE (and no homework), yay!!