Lecture 6 Stereo Systems Multi-view geometry

Professor Silvio Savarese

Computational Vision and Geometry Lab

Lecture 6 Stereo Systems Multi-view geometry

- Stereo systems
 - Rectification
 - Correspondence problem
- Multi-view geometry
 - The SFM problem
 - Affine SFM

Reading: [AZ] Chapter: 9 "Epip. Geom. and the Fundam. Matrix Transf."

[AZ] Chapter: 18 "N view computational methods"

[FP] Chapters: 7 "Stereopsis"

[FP] Chapters: 8 "Structure from Motion"

Epipolar geometry

- Epipolar Plane
- Baseline
- Epipolar Lines

- Epipoles e, e'
 - = intersections of baseline with image planes
 - = projections of the other camera center

Epipolar Constraint

$$p^T E p' = 0$$

E = Essential Matrix

(Longuet-Higgins, 1981)

$$E = [T_{\times}] \cdot R$$

Epipolar Constraint

$$p^T F p' = 0$$

$$F = K^{-T} \cdot [T_{\times}] \cdot R K'^{-1}$$

F = Fundamental Matrix

(Faugeras and Luong, 1992)

- · Epipolar lines are horizontal
- Epipoles go to infinity
- v-coordinates are equal

$$p = \begin{bmatrix} p_u \\ p_v \\ 1 \end{bmatrix} \quad p' = \begin{bmatrix} p'_u \\ p_v \\ 1 \end{bmatrix}$$

Essential matrix for parallel images

$$\mathbf{E} = \left[\mathbf{T}_{\times}\right] \cdot \mathbf{R}$$

$$\mathbf{E} = \begin{bmatrix} 0 & -T_z & T_y \\ T_z & 0 & -T_x \\ -T_y & T_x & 0 \end{bmatrix} \mathbf{R} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -T \\ 0 & T & 0 \end{bmatrix}$$

$$\mathbf{T} = [T \ 0 \ 0]$$

$$\mathbf{R} = \mathbf{I}$$

What are the directions of epipolar lines?

$$l = E p' = \begin{vmatrix} 0 & 0 & 0 & | & u' & | & 0 & | \\ 0 & 0 & -T & | & v' & | & = | & -T & | \\ 0 & T & 0 & | & 1 & | & T v' \end{vmatrix}$$
 horizontal!

$$\begin{bmatrix} u' \\ v' \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ -T \\ Tv \end{bmatrix}$$

How are p and p' related?

$$p^T \cdot E p' = 0$$

How are p and p' related?
$$\Rightarrow \begin{pmatrix} u & v & 1 \end{pmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -T \\ 0 & T & 0 \end{bmatrix} \begin{pmatrix} u' \\ v' \\ 1 \end{pmatrix} = 0 \Rightarrow \begin{pmatrix} u & v & 1 \end{pmatrix} \begin{pmatrix} 0 \\ -T \\ Tv' \end{pmatrix} = 0 \Rightarrow Tv = Tv'$$

$$\Rightarrow v = v'$$

Rectification: making two images "parallel"

Rectification: making two images "parallel"

Courtesy figure S. Lazebnik

Rectification: making two images "parallel"

Epipolar constraint → v = v'

Why are parallel images useful?

- Makes triangulation easy
- Makes the correspondence problem easier

Point triangulation

Disparity maps

http://vision.middlebury.edu/stereo/

$$p_u - p'_u \propto \frac{B \cdot f}{z}$$
[Eq. 1]

Stereo pair

Disparity map / depth map

Why are parallel images useful?

- Makes triangulation easy
- Makes the correspondence problem easier

Correspondence problem

Given a point in 3D, discover corresponding observations in left and right images [also called binocular fusion problem]

Correspondence problem

When images are rectified, this problem is much easier!

Correspondence problem

- A Cooperative Model (Marr and Poggio, 1976)
- Correlation Methods (1970-)
- Multi-Scale Edge Matching (Marr, Poggio and Grimson, 1979-81)

[FP] Chapters: 7

Correlation Methods (1970-)

$$\overline{p} = \begin{bmatrix} \overline{u} \\ \overline{v} \\ 1 \end{bmatrix} \qquad \overline{p}' = \begin{bmatrix} \overline{u}' \\ \overline{v} \\ 1 \end{bmatrix}$$

Correlation Methods (1970-)

$$\overline{p} = \begin{bmatrix} \overline{u} \\ \overline{v} \\ 1 \end{bmatrix} \qquad \overline{p}' = \begin{bmatrix} \overline{u}' \\ \overline{v} \\ 1 \end{bmatrix}$$

Correlation Methods (1970-)

What's the problem with this?

Window-based correlation

• Pick up a window **W** around $\overline{p} = (\overline{u}, \overline{v})$

Window-based correlation

Example: **W** is a 3x3 window in red

w is a 9x1 vector **w** = [100, 100, 100, 90, 100, 20, 150, 150, 145]^T

- Pick up a window **W** around $\overline{p} = (\overline{u}, \overline{v})$
- Build vector w
- Slide the window **W** along $v = \overline{V}$ in image 2 and compute **w**' (u) for each u
- Compute the dot product $\mathbf{w}^{\mathsf{T}} \mathbf{w}'(\mathbf{u})$ for each \mathbf{u} and retain the max value

Window-based correlation

Example: W is a 3x3 window in red

w is a 9x1 vector w = [100, 100, 100, 90, 100, 20, 150, 150, 145]^T

What's the problem with this?

Changes of brightness/exposure

Changes in the mean and the variance of intensity values in corresponding windows!

Normalized cross-correlation

$$\frac{(w - \overline{w})^{T}(w'(u) - \overline{w}')}{\|(w - \overline{w})\| \|(w'(u) - \overline{w}')\|} \quad [Eq. 2]$$

$$\overline{W}$$
 = mean value within **W** located at u^{bar} in image 1

$$\overline{w}'(u) = \text{ mean value within } \mathbf{W}$$
 located at u in image 2

Example

Effect of the window's size

Window size = 3

Window size = 20

- Smaller window

- More detail
- More noise

Larger window

- Smoother disparity maps
- Less prone to noise

Issues

Fore shortening effect

Base line trade-off

- To reduce the effect of foreshortening and occlusions, it is desirable to have small B / z ratio!
- However, when B/z is small, small errors in measurements imply large error in estimating depth

Base line trade-off

- To reduce the effect of foreshortening and occlusions, it is desirable to have small B / z ratio!
- However, when B/z is small, small errors in measurements imply large error in estimating depth

Base line trade-off

- To reduce the effect of foreshortening and occlusions, it is desirable to have small B / z ratio!
- However, when B/z is small, small errors in measurements imply large error in estimating depth

More issues!

• Homogeneous regions

More issues!

Repetitive patterns

Correspondence problem is difficult!

- Occlusions
- Fore shortening
- Baseline trade-off
- Homogeneous regions
- Repetitive patterns

Apply non-local constraints to help enforce the correspondences

Non-local constraints

Uniqueness

 For any point in one image, there should be at most one matching point in the other image

Ordering

 Corresponding points should be in the same order in both views

Smoothness

 Disparity is typically a smooth function of x (except in occluding boundaries)

Why are parallel images useful?

- Makes triangulation easy
- Makes the correspondence problem easier

Application: view morphing

S. M. Seitz and C. R. Dyer, Proc. SIGGRAPH 96, 1996, 21-30

Rectification

From its reflection!

Deep view morphing

D. Ji, J. Kwon, M. McFarland, S. Savarese, CVPR 2017

Deep view morphing

D. Ji, J. Kwon, M. McFarland, S. Savarese, CVPR 2017

Deep view morphing

D. Ji, J. Kwon, M. McFarland, S. Savarese, CVPR 2017

Lecture 6 Stereo Systems Multi-view geometry

- Stereo systems
 - Rectification
 - Correspondence problem
- Multi-view geometry
 - The SFM problem
 - Affine SFM

Silvio Savarese Lecture 5 - 29-Jan-23

Structure from motion problem

Courtesy of Oxford Visual Geometry Group

Structure from motion problem

Given m images of n fixed 3D points

$$\bullet \mathbf{x}_{ij} = \mathbf{M}_i \mathbf{X}_j$$
, $i = 1, \dots, m, j = 1, \dots, n$

Structure from motion problem

From the $m \times n$ observations x_{ij} , estimate:

- ullet m projection matrices \mathbf{M}_i
- n 3D points X_i

motion structure

Affine structure from motion (simpler problem)

From the $m \times n$ observations x_{ij} , estimate:

- m projection matrices M_i (affine cameras)
- n 3D points X_i

Perspective
$$\mathbf{X} = M \mathbf{X} = \begin{bmatrix} \mathbf{m}_1 \\ \mathbf{m}_2 \\ \mathbf{m}_3 \end{bmatrix} \mathbf{X} = \begin{bmatrix} \mathbf{m}_1 \mathbf{X} \\ \mathbf{m}_2 \mathbf{X} \\ \mathbf{m}_3 \mathbf{X} \end{bmatrix}$$

$$\mathbf{M} = \begin{bmatrix} \mathbf{A} & \mathbf{b} \\ \mathbf{v} & \mathbf{1} \end{bmatrix} = \begin{bmatrix} \mathbf{m}_1 \\ \mathbf{m}_2 \\ \mathbf{m}_3 \end{bmatrix}$$

$$\mathbf{x}^E = \left(\frac{\mathbf{m}_1 \mathbf{X}}{\mathbf{m}_3 \mathbf{X}}, \frac{\mathbf{m}_2 \mathbf{X}}{\mathbf{m}_3 \mathbf{X}}\right)^T$$

Affine

$$\mathbf{X} = M \mathbf{X} = \begin{bmatrix} \mathbf{m}_1 \\ \mathbf{m}_2 \\ \mathbf{m}_2 \end{bmatrix}$$

$$\mathbf{X} = \begin{bmatrix} \mathbf{m}_1 \mathbf{X} \\ \mathbf{m}_2 \mathbf{X} \\ 1 \end{bmatrix}$$

Fine
$$\mathbf{X} = M \ \mathbf{X} = \begin{bmatrix} \mathbf{m}_1 \\ \mathbf{m}_2 \\ \mathbf{m}_3 \end{bmatrix} \mathbf{X} = \begin{bmatrix} \mathbf{m}_1 \mathbf{X} \\ \mathbf{m}_2 \mathbf{X} \\ 1 \end{bmatrix} \qquad \mathbf{M} = \begin{bmatrix} \mathbf{m}_1 \\ \mathbf{m}_2 \\ \mathbf{m}_3 \end{bmatrix} = \begin{bmatrix} \mathbf{A}_{2x3} & \mathbf{b}_{2x1} \\ \mathbf{0}_{1x3} & 1 \end{bmatrix}$$

$$\mathbf{X}^{E} = (\mathbf{m}_{1} \mathbf{X}, \mathbf{m}_{2} \mathbf{X})^{T} = \begin{bmatrix} \mathbf{A} & \mathbf{b} \end{bmatrix} \mathbf{X} = \begin{bmatrix} \mathbf{A} & \mathbf{b} \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \mathbf{A} \mathbf{X}^{E} + \mathbf{b}$$
magnification
$$\begin{bmatrix} \mathbf{Eq. 3} \end{bmatrix}$$

$$\mathbf{X}^{E} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

Affine cameras

For the affine case (in Euclidean space)

$$X_{ij} = A_i X_j + b_i$$
 [Eq. 4]
 $2x1$ $2x3$ $3x1$ $2x1$

The Affine Structure-from-Motion Problem

Given m images of n fixed points X_i we can write

$$\mathbf{X}_{ij} = \mathbf{A}_i \mathbf{X}_j + \mathbf{b}_i$$
 for $i = 1, ..., m$ and $j = 1, ..., n$
N. of cameras N. of points

Problem: estimate m matrices A_i , m matrices b_i and the n positions \mathbf{X}_i from the m×n observations \mathbf{X}_{ij} .

Next lecture

Multiple view geometry:
Affine and Perspective structure
from Motion