CS 2022: DATA STRUCTURES & ALGORITHMS

Lecture 4: Analyzing Recursion

Malaka Walpola

OUTLINE

- Analyzing Merge Sort
- Solving Recurrences
 - * Slides taken from [3]

LEARNING OUTCOMES

- After successfully studying contents covered in this lecture, students should be able to,
 - * Analyze the time complexity of merge sort
 - * Analyze the complexity of algorithms with recursion
 - Use substitution method, recursion-tree method and the master method to solve recurrences

ANALYSIS OF MERGE SORT

Code	Cost	Times
MERGE-SORT(A, p, r)	T(n)	1
1. IF p < r	C_1	1
2. $q \leftarrow \lfloor (p + r)/2 \rfloor$	C_2	1
3. MERGE-SORT(A, p, q)	T(n/2)	1
4. MERGE-SORT(A, q + 1, r)	T(n/2)	1
5. MERGE(A, p, q, r)	F(n)	1

$$T(n) = c_1 + c_2 + 2T\left(\frac{n}{2}\right) + F(n) = 2T\left(\frac{n}{2}\right) + F'(n)$$

ANALYSIS OF MERGE SORT

$$T(n) = \begin{cases} 1 & \text{if } n = 1 \\ 2T\left(\frac{n}{2}\right) + F'(n) & \text{if } n > 1 \end{cases}$$

Solve Using Recursion Tree

SOLVING RECURRENCES

- Like Solving Integrals, Differential Equations, etc.
 - * Learn a few tricks
- Methods for Solving Recurrences
 - * Substitution method
 - * Iteration method (Recursion-tree method)
 - * Master method

- Steps
 - 1. Guess the form of the solution
 - 2. Verify by induction
 - 3. Solve for constants

Example

- * T(n) = 4T(n/2) + n
- * Boudry condition $T(1) = \Theta(1)$

Solution

- * Guess $\theta(n^3)$ (Prove O and Ω separately)
- * Assume that $T(k) \le ck^3$ for k < n
- * Prove $T(n) \le cn^3$ by induction

Solution cont.

$$T(n) = 4T (n/2) + n$$

$$\leq 4c(n/2)^3 + n$$

$$= (c/2)n^3 + n$$

$$= cn^3 - ((c/2)n^3 - n) \leftarrow \text{desired} - \text{residual}$$

$$\leq cn^3 \leftarrow \text{desired}$$
whenever $(c/2)n^3 - n \geq 0$, for example,
if $c \geq 2$ and $n \geq 1$.

- Solution cont.
 - Initial conditions (ground the induction with base cases)
 - * **Base:** $T(n) = \Theta(1)$ for all $n < n_0$, where n_0 is a suitable constant
 - * For $1 \le n < n_0$, we have " $\Theta(1)$ " $\le cn^3$, if we pick c big enough.
- * This bound is not tight!

- * A Tighter Upper Bound: $T(n) = O(n^2)$
 - * Assume that $T(k) \le ck^2$ for k < n

$$T(n) = 4T(n/2) + n$$

$$\leq 4c(n/2)^{2} + n$$

$$= O(n^{2}) - Wrong$$

$$= cn^{2} - (-n) \text{ [desired -residual]}$$

$$\leq cn^{2} \text{ for no choice of } c > 0 - Wrong$$

- * A Tighter Upper Bound Cont.
 - * Strengthen the inductive hypothesis
 - * Subtract a low-order term
 - * Strengthened inductive hypothesis
 - $*T(k) \le c_1 k^2 c_2 k \text{ for } k < n$

- * A Tighter Upper Bound Cont.
 - * Inductive hypothesis: $T(k) \le c_1 k^2 c_2 k$ for k < n

$$T(n) = 4T(n/2) + n$$

$$\leq 4(c_1(n/2)^2 - c_2(n/2) + n$$

$$= c_1 n^2 - 2 c_2 n - (c_2 n - n)$$

$$\leq c_1 n^2 - c_2 n \text{ if } c_2 < 1$$

* Pick c_1 big enough to handle the initial conditions

RECURSION-TREE METHOD

- Models the Costs (Time) of a Recursive Execution
- Good For
 - * Generating guesses for the substitution method
- Can Be Unreliable
- Examples

$$* T(n) = T(n/4) + T(n/2) + n^2$$

MASTER METHOD

- Applies to Recurrences of the Form
 - * T(n) = a T(n/b) + f(n)
 - * where $a \ge 1$, b > 1, and f is asymptotically positive
- * Three Common Cases
 - * Compare f(n) with $n^{\log_b a}$
 - * Once the case is identified, the solution is readily available

Master Method - Case I

- * $f(n) = O(n^{\log_b a \varepsilon})$ for some constant $\varepsilon > 0$
- # Idea
 - * f(n) grows polynomially slower than $n^{\log_b a}$ by an n^{ϵ} factor
- Solution
 - * $T(n) = \Theta(n^{\log_b a})$

Master Method - Case II

- * $f(n) = \Theta(n^{\log_b a} \lg^k n)$ for some constant $k \ge 0$
- # Idea
 - * f(n) and $n^{\log_b a}$ grow at similar rates
- Solution

*
$$T(n) = \Theta(n^{\log_b a} \lg^{k+1} n)$$

Master Method - Case III

- * $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$
- * Idea
 - * f(n) grows polynomially faster than $n^{\log_b a}$ by an n^{ε} factor **and** f(n) satisfies the **regularity condition** that $a f(n/b) \le c f(n)$ for some constant c < 1
- Solution
 - * $T(n) = \Theta(f(n))$

*
$$T(n) = 4T(n/2) + n$$

 $a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2$
 $f(n) = n$
CASE 1: $f(n) = O(n^{2-\varepsilon})$ for $\varepsilon = 1$
 $\therefore T(n) = \Theta(n^2)$

*
$$T(n) = 4T(n/2) + n^2$$

 $a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2$
 $f(n) = n^2$
CASE 2: $f(n) = \Theta(n^2 \lg^0 n)$, that is, $k = 0$
 $\therefore T(n) = \Theta(n^2 \lg n)$.

*
$$T(n) = 4T(n/2) + n^3$$

 $a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2$
 $f(n) = n^3$
CASE 3: $f(n) = \Omega(n^{2+\epsilon})$ for $\epsilon = 1$ and $4(n/2)^3 \le cn^3$ (reg. cond.) for $c = 1/2$
 $\therefore T(n) = \Theta(n^3)$

*
$$T(n) = 4T(n/2) + n^2/\lg n$$

 $a = 4, b = 2 \Rightarrow n^{\log} a = n^2$
 $f(n) = n^2/\lg n$
Master method does not apply. In particular, for every constant $\varepsilon > 0$, we have $n\varepsilon = \omega(\lg n)$

DIVIDE & CONQUER ALGORITHMS AND RECURRENCES

- * Time Complexity T(n)
- Strategy for Divide & Conquer Approach
 - * **Divide** Time complexity $f_1(n)$
 - * **Conquer:** Solve **a subset** of sub-problem recursively Time complexity a T(n/b)
 - * a Number of sub problems solved
 - * b Factor sub problems are smaller
 - * **Combine** Time complexity $f_2(n)$

*
$$T(n) = a T(n/b) + f_1(n) + f_2(n)$$

$$T(n) = a T(n/b) + f(n)$$

SELF STUDYING

- Reading Assignment IA
 - * Analysis of Merge Sort: Section 2.3.2
 - Divide & Conquer & Recurrences: Chapter 4
 pages 65 74
 - * Solving Recurrences: Sections 4.3, 4.4, 4.5
- Solve the Recursion of Merge Sort Using Different Methods

APPENDIX: GEOMETRIC SERIES

$$1 + x + x^2 + \dots + x^n = \frac{1 - x^{n+1}}{1 - x}$$
 for $x \ne 1$

$$1 + x + x^2 + \dots = \frac{1}{1 - x}$$
 for $|x| < 1$

REFERENCES

- [1] T.H. Cormen, C.E. Leiserson, R.L. Rivest and C. Stein, Introduction to Algorithms, 3rd Ed. Cambridge, MA, MIT Press, 2009.
- [2] S. Baase and Allen Van Gelder, *Computer Algorithms: Introduction to Design and Analysis*, 3rd Ed. Delhi, India, Pearson Education, 2000.
- [3] Lecture slides from Prof. Erik Demaine of MIT, available at http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-046j-introduction-to-algorithms-sma-5503-fall-2005/video-lectures/lecture-2-asymptotic-notation-recurrences-substitution-master-method/lec2.pdf