Graphs

Representation: Finding neighbors

By the end of this video you will be able to...

- Implement a method to find the neighbors of a vertex in two ways.
- Evaluate the performance of this method based on the representation.

Neighbors: vertices that are adjacent.

Neighbors: vertices that are adjacent.

Neighbors: vertices that are adjacent.

In degree: number of incoming edges.

Out degree: number of outgoing edges.

Out degree: number of outgoing edges.

0	1	0	0	0	0
0	0	0	0	0	0
0	0	0	1	0	0
0	0	0	0	0	0
0	0	0	1	0	0
0	0	0	1	1	0

4

2345

Out degree: number of outgoing edges.

$$0 \rightarrow \{1\}$$

1 → null

$$2 \rightarrow \{3\}$$

 $3 \rightarrow \text{null}$

$$4 \rightarrow \{3\}$$

$$5 \rightarrow \{3,4\}$$

Out degree: number of outgoing edges.

IVQ: Which implementation makes finding the out degree more efficient?

In degree: number of incoming edges.

0	1	0	0	0	0
0	0	0	0	0	0
0	0	0	1	0	0
0	0	0	0	0	0
0	0	0	1	0	0
0	0	0	1	1	0

2345

In degree: number of incoming edges.

$$0 \rightarrow \{1\}$$

1 → null

$$2 \rightarrow \{3\}$$

 $3 \rightarrow \text{null}$

$$4 \rightarrow \{3\}$$

$$5 \rightarrow \{3,4\}$$

In degree: number of incoming edges.

IVQ: Which implementation makes finding the in degree more efficient?

What's next?