2021/2022

PROBABILITÉS ET STATISTIQUES

TD NUMÉRO. 4

Exercice 1.

Soient X et Y deux v.a. sur un même espace probabilisé.

- 1. Montrer que $\mathbb{E}(aX) = a \times \mathbb{E}(X)$.
- 2. Montrer que $Var(X) = \mathbb{E}(X^2) \mathbb{E}(X)^2$.
- 3. Montrer que pour X et Y indépendantes : V(X+Y) = V(X) + V(Y).

Exercice 2.

On reprend l'exercice des 4 séries de 4 bits.

Soient X_1 , X_2 , X_3 , X_4 les variables aléatoires associées à la somme des valeurs de la première, deuxième, troisième et quatrième suite, respectivement. On considère les v.a. $S_{12} = X_1 + X_2$, $S_{34} = X_3 + X_4$, et $Z = S_{12} + S_{34}$.

- 1. Rappeler les lois de probabilités de S_{12} et S_{34} . On redonnera les tableaux correspondants.
- 2. Calcul d'espérance :
 - (a) En utilisant la définition de l'espérance, calculer $\mathbb{E}(S_{12})$ et $\mathbb{E}(S_{34})$.
 - (b) Déduire $\mathbb{E}(Z)$.
 - (c) Comment aurait-on pu calculer autrement $\mathbb{E}(S_{12})$?
- 3. Calcul de variances:
 - (a) En utilisant la définition de la variance, calculer $V(S_{12})$, $V(S_{34})$.
 - (b) En utilisant la formule $V(X) = \mathbb{E}(X^2) \mathbb{E}(X)^2$ calculer $V(S_{12})$.
 - (c) Que peut-on dire de $V(S_{12}) + V(S_{34})$ et V(Z)?

Exercice 3.

Une entreprise dispose d'une flotte de serveurs.

Par des études statistiques on détermine les probabilités qu'un serveur tombe en panne l'année N, N+1 et N+2.

On modélise cette expérience aléatoire par un processus aléatoire étudiant la surveue des pannes au cours des 3 années.

On définit plusieurs variables aléatoires :

- 1. X la v.a. qui associe 1 si le serveur tombe en panne l'année N.
- 2. Y la v.a. qui associe 1 si le serveur tombe en panne l'année N+1.
- 3. Z la v.a. qui associe 1 si le serveur tombe en panne l'année N+2.

Vous trouverez ci-dessous l'arbre de probabilités associé :

- 1. Rappeler la définition de l'indépendance de 2 v.a.
- 2. Rappeler la définition de l'indépendance mutuelle de 3 v.a.
- 3. On souhaite montrer que X, Y et Z sont deux à deux indépendantes mais pas mutuellement indépendantes.
 - (a) Déterminer $\mathbb{P}(Z=1\Big|Y=1)$; $\mathbb{P}(Z=1\Big|X=1)$; $\mathbb{P}(Y=1\Big|X=1)$.
 - (b) Déterminer $\mathbb{P}(X=1)$; $\mathbb{P}(Y=1)$; $\mathbb{P}(Z=1)$. Déduire que les variables aléatoires X,Y,Z sont deux à deux indépendantes.
 - (c) Déterminer $\mathbb{P}(Z=1 | X=1, Y=1)$. Conclure ?