ThoughtWorks[®]

PERC: Posit Enhanced Rocket Chip

CARRV at ISCA 2020

22 May 2020

Arunkumar M. V., Sai Ganesh Bhairathi, Harshal G. Hayatnagarkar Engineering for Research, ThoughtWorks Technologies India

Motivation

A floating point architecture
geared towards lossless number crunching
for scientific computing

The Posit number format

- Introduces an additional field called regime.
- Run length encoded regime to scale the exponent.
- Only 2 exceptional representations, one for zero and another for ±infinity.

Why Posits?

- Crisp definition of NaR saves precious bits
- Symmetric and verifiable design
- Customizable precision and dynamic range
- Hardware-friendly number system

Why did we choose RISC V and Rocket Chip?

- For being an open ISA with support for modular extensions and custom opcode spaces
- Accompanied by a mature ecosystem of hardware IPs, software toolchains, and operating systems

- A collection of parameterized libraries of SoC components which can be "glued together" during circuit generation.
- Ability to add custom accelerators/coprocessors using the RoCC interface.

The Posit Hardware Units

- Designed using Chisel.
- Conceived as a drop-in replacement for Berkeley Hardfloat.
- Parameterized units for different posit sizes and exponent sizes.
- Tested using Universal Numbers C++ template library enabled by Verilator.

RISC V support for Posits

- 2 possible approaches to provide posit ISA support:
 - Overload the F and D extensions.
 - Utilize the custom instruction opcode space.
- Our approach: Overload the existing ISA extensions.
 - Involves minimal variation to the existing RISC V software toolchain.
 - Evaluate an alternate FPU in the Rocket core pipeline.

The Posit Processing Unit

Combines the various posit hardware units and serves as an alternate FPU

Posit configuration of ps = 32 and es = 2 for single precision (F instr) ps = 64 and es = 3 for double precision (D instr)

Verifying the PPU

 Modified the RISC V ISA test suite and added tests using F and D instructions for posits

• Tests were run using the Rocket chip verilator emulator on a circuit instance with the in-house FPU replaced with the PPU.

Early synthesis results

The PPU occupies ~15949 slice LUTs on a *Spartan 7* FPGA compared to ~12659 slice LUTS of Rocket Chip's optimized FPU.

Observations

- The Rocket Chip journey
- Using Chisel and the ecosystem

- Missing compiler support for posit arithmetic
- RISC V extension for posit arithmetic

Conclusion and future work

Open source posit arithmetic chisel library integrated with Rocket chip

Drop-in replacement of Berkeley hardfloat (F and D instructions)

Verified using Verilator and custom test-generator

Work-in-progress

Support for quire operations for posit compliance, (not mandated for floats)

Verify on hardware and optimize resource utilization

Future work

Posit arithmetic RoCC accelerator

Compiler support for posit arithmetic

Hope

Once mature, this work will find its place in Rocket chip

Important links

- Posit Chisel Library Source code on GitHub <u>https://github.com/thoughtworks/hardposit-chisel3</u>
- PERC Source code on GitHub https://github.com/arunkmv/rocket-chip

- Talk on posit arithmetic by Dr. John L. Gustafson
 https://www.youtube.com/watch?v=aP0Y1uAA-2Y&t=4689s
- Next Generation Arithmetic: Posit Hub https://posithub.org

Thank you!

Arun

arunkumar.mv@thoughtworks.com

Sai

saiganeb@thoughtworks.com

Harshal

harshalh@thoughtworks.com

ThoughtWorks[®]