Entrega 5 - GRAFOS

Enzo Giannotta

1 de julio de 2023

Entrega 6 - Viernes 30/05/2023

Ejercicio 0.1. En clase demostramos que para todo grafo bipartito se tiene $\chi'(G) = \Delta(G)$. Sin usar este resultado, demuestre que $\chi'(G) = k$ para todo grafo bipartito k-regular G.

Solución. Como G es k-regular, tenemos que $k=\Delta(G)\leqslant \chi'(G)$. Probemos por inducción en $k\geqslant 1$. Si k=1 es trivial.

Sea M un matching perfecto de G, existe por el Teorema $\ref{eq:constraint}$. Pintemos todos esas aristas de un color 1. Consideremos ahora G', es un grafo bipartito (k-1)-regular, por hipótesis inductiva G' tiene un (k-1)-arista-coloreo, digamos con colores $2,\ldots,k$. Juntando el coloreo de G' con el coloreo de M, obtenemos un k-arista-coloreo ode G.

Ejercicio 0.2. Sea G un grafo línea. Encuentre una cota superior para $\mathrm{ch}(()G)$ en términos de $\chi(G)$.

Solución. Sabemos que G=L(H) para un grafo G y que $\chi(G)=\chi'(H)\geqslant \Delta(H)$. Notemos que el algorítmo glotón permite probar de manera análoga que el caso del número cromático:

$$\operatorname{ch}(()G) \leq \Delta(G) + 1.$$

Por otro lado, $\Delta(G) \leq 2\Delta(H) - 2$. Más aún, el Teorema de Vizing ?? implica que $\Delta(H) \leq \chi'(H) = \chi(G)$. Con lo cual, juntando todo:

$$\operatorname{ch}(()G) \leq 2\chi(G) - 1.$$