B.E. (Computer Science Engineering) Fourth Semester (C.B.S.)

Theoretical Foundations of Computer Science

P. Pages: 3
Time: Three Hours

NJR/KS/18/4436

Max. Marks: 80

6

6

- Notes: 1. All questions carry marks as indicated.
 - 2. Calar Occasion 1 OB Occasion No. 2
 - 2. Solve Question 1 OR Questions No. 2.
 - 3. Solve Question 3 OR Questions No. 4.
 - 4. Solve Question 5 OR Questions No. 6.
 - 5. Solve Question 7 OR Questions No. 8.
 - 6. Solve Question 9 OR Questions No. 10.
 - 7. Solve Question 11 OR Questions No. 12.
 - 8. Assume suitable data whenever necessary.
- **1.** a) Explain the following in detail with example.
 - i) Type -0 Grammar
- ii) Type 1 Grammar
- iii) Type 2 Grammar
- iv) Type -3 Grammar
- b) What is string, prefix, proper prefix & proper suffix with examples.
- c) Write short note on pigeonhole principle. State its application.

OR

- 2. a) Consider a Relation $R = \{(a, b), (a, a), (b, b), (c, c), (d, d), (b, a)\}$ on set $A = \{a, b, c, d\}$. Is relation R an equivalence relation. If so find equivalence classes.
 - b) Prove the following using method of induction.

 $\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$

- **3.** a) Construct DFA which can accept the string those can have odd number of 0's and any number of 1's.
 - b) Design a Moore machine for binary input sequence, if it ends in 101, output is 'A'. if it ends in 110 output is 'B'. Otherwise C.

OR

4. a) Convert the following NFA to equivalent DFA.

 $\begin{array}{c|c}
 & b \\
\hline
 & q_0 \\
\hline
 & a \\
\hline
 & a
\end{array}$

NJR/KS/18/4436 1 P.T.O

Minimize the following Automata.

5. Construct the regular expression for the automata given. a)

- Construct context free Grammar for following. Where $(n \ge 0, m \ge 0, k \ge 0)$
 - $L = \left\{ a^n b^m c^k \mid n = m \text{ or } m \le k \right\}.$ i)
 - $L = \left\{ a^n b^m \mid 2n \le m \le 3n \right\}.$ ii)
 - iii) $L = \left\{ a^n b^m c^m d^n \setminus m, n \ge 1 \right\}.$
 - $iv) \quad L = \left\{ a^n b^{2n} \mid n \ge 1 \right\}$

OR

Remove all unit productions, all useless production and all E-productions from the **6.** a) grammar given below.

$$S \rightarrow aA \mid aBB$$

$$A \rightarrow aaA \mid \varepsilon$$

$$B \rightarrow bB \mid bbC$$

$$C \rightarrow B$$

b) Convert the following grammar into Greibach normal form.

$$S \rightarrow aSa \mid bBb$$

$$B \rightarrow abB \mid aaAa$$

$$A \rightarrow Aa \mid a$$

- Construct PDA for $L = \{a^{2n}b^n \mid n > 0\}$ 7. a)
 - 6
 - Show that $L = \{a^n b^j \mid n \le j^2\}$ is not a context free language. b)
 - Explain the Non-deterministic push down automata in detail.

6

- **8.** a) Convert the following CFG into PDA
 - $E \rightarrow aAB \mid d$
 - $A \rightarrow BA \mid a$
 - $B \rightarrow Ead \mid C$
 - b) Explain the modal of PDA and its acceptance by stack and acceptance by final state.
- 9. a) Explain the types of Turing machine. 5

6

6

3

b) Construct a Turing machine for. f(a, b) = a - b if $a \ge b$ = 0 if a < b

OR

- **10.** a) Explain the modal of linear bounded automata.
 - b) Construct the Turing machine for $L = \left\{ a^n b^n a^n b^n \mid n \ge 0 \right\}.$
- **11.** a) Write a short note on:
 - i) Post correspondence problem.
 - ii) Primitive Recursive function.
 - b) Define Ackermann's function. Compute A (1, 1), A (2, 1), A (2, 2).

OR

- **12.** a) Define Decidability & undecidability.
 - b) Explain the properties of Recursively enumerable language. Give relation between recursive & recursive enumerable language.
 - c) Explain Halting problem of Turing machine in detail.
