CS6135 VLSI Physical Design Automation

Final Exam: 10:10 a.m. – 13:10 p.m., January 5, 2021

Answer Sheet

7. (a) Lee algorithm

200 41	0				2								
5	4	3	4					19					
4	3	V	3				T <	18	17	18	19	No.	
3	V	1	2						16	17	18	19	
2	1	-s	1			14	13	14	15	16	17	18	19
3	V					11	12	13	14	15	16	17	18
4	3					10	11	12	/		17	18	19
5	4	5	6	2	8	9	10	W			18	19	
6	5						H	12					
1	6						12	13	14	15			
8	7	8	9	10			13	14	15	16			

(b)	Hadlo	ck's c	letour	algor	ithm	5-	丁为	上	· detour : Fit			
	3	>	1	1			-					
								_	. 0	1	0	

	2	1	1									
Y	1	0	0				T. <	1	-6	1		
2	1	0	0						6	1		
V	1	- S	0			4	4	3	65	1		
>	×					4	4	5	6	2		
4	3					4	4	5		/		
3	4	4	4	4	4	4	4	5	/			
	5			1			5					
						/						

MD(5.T)= 5+3=7 Q(p)= 0+2×6=19

$$Q = D - C$$

$$= \begin{bmatrix} 8 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 6 \end{bmatrix} - \begin{bmatrix} 0 & y & 3 \\ y & 0 & 0 \\ -3 & 0 & 6 \end{bmatrix} = \begin{bmatrix} 8 - y - 3 \\ -4 & 6 & 0 \\ -3 & 0 & 6 \end{bmatrix}$$

$$dX = \begin{bmatrix} -1 \times 15 \\ -1 \times 9 \\ -1 \times 9 - 2 \times 1 \end{bmatrix} = \begin{bmatrix} -15 \\ -18 \\ -11 \end{bmatrix} + \begin{bmatrix} 1 \times 2 \\ -18 \\ -11 \end{bmatrix} = \begin{bmatrix} -1 \times 2 \\ -18 \\ -18 \end{bmatrix}$$

在一個包含所有pin的Bounding Box中, 欲建一個RSMT連接所有pin. 最理想的情況就是:任一Xox 升座標,最多只會被此RSMT中的一線段經過,在此情況下將RSMT上水平及垂直为向时所有深段加總,可分別得(Max of X - Min of X)和(Max of y - Min of y), 西考姆加即都HPWL:HPWL 猫 RSMT NI 的 lower bound 许

6. (a.) Clique $\begin{cases} \binom{k}{2} = \frac{k(k-1)}{2} | \text{ID} | \text{2-pin nets} \\ \text{the # of extra } \text{x and } \text{y variables} = 0 \end{cases}$ (b.) Star

(b.) Star

{ k 1 2-pin nets

the # of extra x variable = 1 (for star module)

the # of extra y variable = 1

(C) Hybrid k(k-1) k(

if K > 4 { 18 2-pin nets 1 extra x variable x 1 extra y

8.

(a.)
$$tm, p_1 = tm, p_1 \left(\frac{Cm_1 p_1}{2} + C_1 \right)$$

$$= 10 \times 0.2 \left(\frac{10 \times 0.1}{2} + 4 \right) = 2 \times 4.5 = 9$$

$$tm, p_2 = 10 \times 0.2 \left(\frac{8 \times 0.1}{2} + 2 \right) = 1.6 \left(> 4 \right) = 3.84$$

$$tm_3 p_1 = 10 \times 0.2 \left(\frac{10 \times 0.1}{2} + 18 \times 0.1 + 6 \right) = 2 \times \left(0.5 + 1.8 + 6 \right) = 16.6$$

$$tm_5 p_3 = 10 \times 0.2 \left(\frac{10 \times 0.1}{2} + 2 \right) = 2 \times \left(2.5 \right) = 5$$

$$tm_5 p_4 = 8 \times 0.2 \left(\frac{8 \times 0.1}{2} + 1 \right) = 1.6 \left(1.4 \right) = 2.44$$

$$tm_3 p_1 = 16.6 + 9 = 125.6$$

$$tm_3 p_2 = 16.6 + 3.84 = 20.44$$

$$tm_3 p_3 = 4 + 5 = 9$$

$$tm_3 p_2 = 16.6 + 3.84 = 20.44$$

$$tm_3 p_4 = 4 + 3.44 = 4.54$$
(b.)

$$tm_3 m_1 = tm_3 m_1 \left(\frac{Cm_3 m_1}{2} + C_{bm_1} \right) + t_{bm_1} \left(Cm_1 + C_1 + C_2 \right)$$

$$= 10 \times 0.2 \left(\frac{10 \times 0.1}{2} + 0.2 \right) + 0.1 \left(18 \times 0.1 + 6 \right)$$

$$= 10 \times 0.2 \left(\frac{10 \times 0.1}{2} + 0.2 \right) + 0.1 \left(18 \times 0.1 + 6 \right)$$

$$= 10 \times 0.2 \left(\frac{4 \times 0.1}{2} + 0.2 \right) + 0.1 \left(18 \times 0.1 + 6 \right)$$

$$= 0.8 \left(0.2 + 0.2 \right) + 0.1 \left(18 \times 0.1 + 3 \right)$$

$$= 0.8 \left(0.2 + 0.2 \right) + 0.1 \left(18 \times 0.1 + 3 \right)$$

$$= 0.8 \left(0.2 + 0.2 \right) + 0.1 \left(18 \times 0.1 + 3 \right)$$

$$= 0.8 \left(0.2 + 0.2 \right) + 0.1 \left(18 \times 0.1 + 3 \right)$$

$$= 0.8 \left(0.2 + 0.2 \right) + 0.1 \left(18 \times 0.1 + 3 \right)$$

$$= 0.8 \left(0.2 + 0.2 \right) + 0.1 \left(18 \times 0.1 + 3 \right)$$

$$= 0.8 \left(0.2 + 0.2 \right) + 0.1 \left(18 \times 0.1 + 3 \right)$$

$$= 0.8 \left(0.2 + 0.2 \right) + 0.1 \left(18 \times 0.1 + 3 \right)$$

$$= 0.8 \left(0.2 + 0.2 \right) + 0.1 \left(18 \times 0.1 + 3 \right)$$

$$= 0.8 \left(0.2 + 0.2 \right) + 0.1 \left(18 \times 0.1 + 3 \right)$$

$$= 0.8 \left(0.2 + 0.2 \right) + 0.1 \left(18 \times 0.1 + 3 \right)$$

$$= 0.8 \left(0.2 + 0.2 \right) + 0.1 \left(18 \times 0.1 + 3 \right)$$

$$= 0.8 \left(0.2 + 0.2 \right) + 0.1 \left(18 \times 0.1 + 3 \right)$$

$$= 0.8 \left(0.2 + 0.2 \right) + 0.1 \left(18 \times 0.1 + 3 \right)$$

$$= 0.8 \left(0.2 + 0.2 \right) + 0.1 \left(18 \times 0.1 + 3 \right)$$

$$= 0.8 \left(0.2 + 0.2 \right) + 0.1 \left(18 \times 0.1 + 3 \right)$$

$$= 0.8 \left(0.2 + 0.2 \right) + 0.1 \left(18 \times 0.1 + 3 \right)$$

$$= 0.8 \left(0.2 + 0.2 \right) + 0.1 \left(18 \times 0.1 + 3 \right)$$

$$= 0.8 \left(0.2 + 0.2 \right) + 0.1 \left(18 \times 0.1 + 3 \right)$$

$$= 0.8 \left(0.2 + 0.2 \right) + 0.1 \left(18 \times 0.1 + 3 \right)$$

$$= 0.8 \left(0.2 + 0.2 \right) + 0.1 \left(18 \times 0.1 + 3 \right)$$

$$= 0.8 \left(0.2 + 0.2 \right) + 0.1 \left(18 \times 0.1 + 3 \right)$$

$$= 0.8 \left(0.2 + 0.2 \right) + 0.1 \left(18 \times 0.1 + 3 \right)$$

$$= 0.8 \left(0.2 + 0.2 \right) + 0.1 \left(18 \times 0.1 + 3 \right)$$

$$= 0.8 \left(0.2 + 0.2 \right) + 0.1 \left($$

5 de lay = 11.18 5kens = 11.18 - 3.04 = 8.14

Addition to visite 1