

Docking Search Strategies Pseudo Random Simulated Annealing / Monte Carlo Genetic Algorithms Directed Search Geometric Hashing Spherical Harmonic Surface Triangles Brute-Force Search Explicit Grid Correlations Fast Fourier Transform (FFT) Correlations

• Spherical Polar Fourier Correlations

• Desolvation, Solvent Dipoles...

• Classical or Soft Potentials (+/- Electrostatics)

• Refinement Phase

• Visual Inspection!!

- Small van der Waals Overlaps
- No Large Cavities in Interface
- ullet Good H-Bonding: $\sim 1~{
 m HB}/100~{
 m \AA}^2$
- Good Charge Complementarity
- Polar/Polar Contacts Favoured
- Polar/Non-Polar Contacts Disfavoured

- Low Free Energy (Difficult!)
- Low Pseudo-Energy (Easy) Based On...
- ullet Large Surface Burial: $\sim 1600 \pm 400 \mbox{\AA}^2$
- Small van der Waals Overlaps
- No Large Cavities in Interface
- \bullet Good H-Bonding: \sim 1 HB/100 ${\rm \AA}^2$
- Good Charge Complementarity
- Polar/Polar Contacts Favoured
- Polar/Non-Polar Contacts Disfavoured

• FFT-based grid search

- Geometric Hashing
- Adding distance-, symmetry- constraints

Rigid-Body Docking: Geometry Approach

Fourier Transform

It re-express a function in terms of sinusoidal basis functions

Fourier transform equations:

$$F(k) \ = \int_{-\infty}^{\infty} f(x) e^{-2\pi i k x} dx.$$

$$f(x) = \int_{-\infty}^{\infty} F(k)e^{2\pi i k x} dk$$

$$F(k) = FT(f(x))$$

$$f(x) = IFT(F(k))$$

Fourier Transform

It re-express a function in terms of sinusoidal basis functions

Fourier transform equations:

$$F(k) = \int_{-\infty}^{\infty} f(x)e^{-2\pi i kx} dx.$$

$$f(x) = \int_{-\infty}^{\infty} F(k)e^{2\pi i k x} dk$$

$$F(k) = FT(f(x))$$

$$f(x) = IFT(F(k))$$

Correlation function:

$$c(t) = \operatorname{Corr}(g, h) \equiv \int_{-\infty}^{\infty} g(\tau + t)h(\tau) d\tau$$

"Correlation Theorem":

$$FT(c) = FT(g) \cdot [FT(h)]^*$$

$$c = IFT(FT(g) \cdot [FT(h)]^*)$$

FFT (Fast Fourier Transform)

Algorithms for efficient calculation of FT and IFT

- Most common: Cooley-Tukey FFT (divide and conquer)
- Other: Prime-factor, Bruun's, Rader's, Bluestein's

Fourier transform timing: N^2 (if $N=10^6$ 1MHz CPU time ~2 weeks) Fast Fourier transform: $N\log_2 N$ (if $N=10^6$ 1MHz CPU time ~30 sec)

http://www.fftw.org/

FFT-based grid search
Geometric Hashing
Adding distance-, symmetry- constraints

Feature Extraction The state of the state

- > We focus on sparse surface features, preserving the quality of shape representation.
- > The sparse features reduce the complexity of the matching step.

Geometric Scoring

- The surface of the **receptor** is divided into five shells according to the distance function: \$1-\$5
- The number of **ligand** surface points in every shell is counted.
- The geometric score is a weighted sum of the number of ligand surface points inside every shell.

> Multi-resolution surface data structure was developed to speed up this stage.

C)ptional pa	rameters: binding site
A [S	dvanced Options: Show:][<u>Hide</u>]	
Li D	eceptor Binding Site: igand Binding Site: vistance Constraints: Submit Form Clear	Browse upload receptor binding site file Browse upload ligand binding site file Browse upload distance constraints file

Geometry-based docking: conclusions

- Many available methods
- Very fast!
- In most of the cases, reasonable success rates
- Unbound much worse than bound
- Some times, missing native (even with bound subunits)
- Good as first docking step before refinement