Package 'polySegratioMM'

October 14, 2022

Type Package
Title Bayesian Mixture Models for Marker Dosage in Autopolyploids
Version 0.6-4
Date 2018-03-22
Author Peter Baker [aut, cre]
Maintainer Peter Baker <p.baker1@uq.edu.au></p.baker1@uq.edu.au>
Depends R (>= 2.12.0), polySegratio
Imports gtools, coda, lattice
Description Fits Bayesian mixture models to estimate marker dosage for dominant markers in autopolyploids using JAGS (1.0 or greater) as outlined in Baker et al "Bayesian estimation of marker dosage in sugarcane and other autopolyploids" (2010, <doi:10.1007 s00122-010-1283-z="">). May be used in conjunction with polySegratio for simulation studies and comparison with standard methods.</doi:10.1007>
<pre>URL https://github.com/petebaker/polysegratiomm</pre>
<pre>BugReports https://github.com/petebaker/polysegratiomm/issues</pre>
License GPL-3
NeedsCompilation no
Repository CRAN
Date/Publication 2018-03-23 08:49:42 UTC
R topics documented:
polySegratioMM-package
calculateDIC
DistributionPlotBinomial
dosagesJagsMix
dumpData
hexmarkers
hexmarkers.overdisp

34

mcmcHexRun	12
plot.segratioMCMC	13
plotFitted	14
print.dosagesMCMC	16
print.runJags	17
readJags	19
runJags	20
runSegratioMM	22
setControl	
setInits	
setModel	26
setPriors	28
summary.segratioMCMC	
writeControlFile	
writeJagsFile	32

polySegratioMM-package

Bayesian Mixture Models for Marker Dosage in Autopolyploids

Description

Index

These functions provide tools for estimating marker dosage for dominant markers in regular autopolyploids via Bayesian mixture model. Wrappers are provided for generating MCMC samples using the JAGS software. Convergence diagnostics and posterior distribution densities are provided by the coda package.

Details

Package: polySegratioMM

Type: Package
Version: 0.6-4
Date: 2018-03-22
License: GPL-3

The simplest way to fit a model is to use runSegratioMM. Given segregation ratios and a ploidy level, a mixture model is constructed with default priors and initial values and JAGS run to produce an MCMC sample for statistical inference.

A standard model may be set up with setModel where two parameters are set, namely ploidy.level or the number of homologous chromosomes set either as a numeric or as a character string and also n.components or the number of components for mixture model (less than or equal to maximum number of possible dosages).

Vague or strong priors may be constructed automatically using setPriors. Plots of standard conjugate distributions may be obtained using DistributionPlotBinomial DistributionPlotGamma

and DistributionPlotNorm.

If necessary, other operations like setting up initial values or the control files for JAGS may be set using setInits setControl dumpData dumpInits writeControlFile writeJagsFile. Once the BUGS files and JAGS control files are set up then JAGS may be run using runJags and results read using readJags.

Convergence diagnostics may be carried out using coda or the convenience wrapper diagnosticsJagsMix.

Dose allocation can be carried out using dosagesJagsMix.

Plots may be produced and objects printed and summarised using standard print and plot methods. Plots of theoretical binomial distributions with different ploidy levels and sample sizes may be obtained with plotFitted. In addition, plotFitted produces a lattice plot of the observed segregation ratios and fitted mixture model on the logit scale.

Author(s)

Peter Baker <p. baker 1@uq.edu.au>

References

- Baker P, Jackson P, and Aitken K. (2010) Bayesian estimation of marker dosage in sugarcane and other autopolyploids. *TAG Theoretical and Applied Genetics* **120** (8): 1653-1672.
- J B S Haldane (1930) Theoretical genetics of autopolyploids. *Journal of genetics* 22 359–372
- Ripol, M I et al (1999) Statistical aspects of genetic mapping in autopolyploids. Gene 235 31–41
- JAGS http://mcmc-jags.sourceforge.net/

```
## simulate small autooctaploid data set of 100 markers for 50 individuals
## with %70 Single, %20 Double and %10 Triple Dose markers
a1 <- sim.autoMarkers(8,c(0.7,0.2,0.1),n.markers=400,n.individuals=275)
##print(a1)
sr <- segregationRatios(a1$markers)
x <- setModel(3,8)  # autooctapolid mode with 3 components

## Not run:
## fit simple model in one hit with default priors, inits etc
## warning: this is too small an MCMC sample so should give inaccurate
## answers but it could still take quite a while
x.run <- runSegratioMM(sr, x, burn.in=2000, sample=5000)
print(x.run)

## plot observed segregation ratios, fitted model and expected distribution
plot(x.run, theoretical=TRUE)

## End(Not run)</pre>
```

4 calculateDIC

calculateDIC	Compute DIC for fitted mixture model	

Description

Computes and returns the Deviance Information Critereon (DIC) as suggested by Celeaux et al (2006) as their DIC\$_4\$ for Bayesian mixture models

Usage

```
calculateDIC(mcmc.mixture, model, priors, seg.ratios, chain=1, print.DIC=FALSE)
```

Arguments

mcmc.mixture	Object of type segratioMCMC produced by coda usually by using readJags
model	object of class modelSegratioMM specifying model parameters, ploidy etc
priors	Object of class priorsSegratioMM
seg.ratios	Object of class segRatio contains the segregation ratios for dominant markers and other information such as the number of dominant markers per individual
chain	Which chain to use when compute dosages (Default: 1)
print.DIC	Whether to print DIC

Value

A scalar DIC is returned

Author(s)

Peter Baker <p.baker1@uq.edu.au>

References

- G Celeaux et. al. (2006) Deviance Information Criteria for Missing Data Models *Bayesian Analysis* **4** 23pp
- D Spiegelhalter et. el. (2002) Bayesian measures of model complexity and fit *JRSS B* **64** 583–640

See Also

dosagesMCMC readJags

diagnosticsJagsMix 5

Examples

```
## simulate small autooctaploid data set
a1 <- sim.autoMarkers(8,c(0.7,0.2,0.1),n.markers=100,n.individuals=50)
## compute segregation ratios
sr <- segregationRatios(a1$markers)</pre>
\ensuremath{\mbox{\#\#}} set up model, priors, inits etc and write files for JAGS
x \leftarrow setModel(3,8)
x2 <- setPriors(x)</pre>
dumpData(sr, x)
inits <- setInits(x,x2)</pre>
dumpInits(inits)
writeJagsFile(x, x2, stem="test")
## Not run:
## run JAGS
small <- setControl(x, burn.in=200, sample=500)</pre>
writeControlFile(small)
rj <- runJags(small) ## just run it</pre>
print(rj)
## read mcmc chains and print DIC
xj <- readJags(rj)</pre>
print(calculateDIC(xj, x, x2, sr))
## End(Not run)
```

diagnosticsJagsMix

MCMC diagnostics for polyploid segregation ratio mixture models

Description

Produce and/or plot various diagnostic measures from coda package for Bayesian mixture models for assessing marker dosage in autopolyploids

Usage

Arguments

mcmc.mixture Object of class segratioMCMC or runJagsWrapper after JAGS run produced by coda

diagnosticsJagsMix

diagnostics if TRUE then print several coda dignostic tests
plots if TRUE then produce several coda dignostic plots

index index of parameters for disgnostic tests/plots (Default: mixture model (and ran-

dom effects) parameters)

trace.plots if TRUE plot mcmc traces (default: FALSE)

auto.corrs if TRUE produce autocorrelations of mcmc's (default: FALSE)

density.plots if TRUE plot parameter densities (default: FALSE)

xy.plots if TRUE plot traces using 'lattice' (default: FALSE)

hpd. intervals if TRUE print and return highest posterior density intervals for parameters spec-

ified by index

hdp.prob probability for hpd.intervals return.results if TRUE return results as list

Value

If return.results is TRUE then a list is returned with components depending on various settings of arguments

Author(s)

Peter Baker <p.baker1@uq.edu.au>

See Also

mcmc autocorr.diag raftery.diag geweke.diag gelman.diag trellisplots

```
## simulate small autooctaploid data set
a1 <- sim.autoMarkers(8,c(0.7,0.2,0.1),n.markers=100,n.individuals=50)
##print(a1)
sr <- segregationRatios(a1$markers)
x <- setModel(3,8)

## Not run:
## fit simple model in one hit

x.run <- runSegratioMM(sr, x, burn.in=200, sample=500)
print(x.run)
diagnosticsJagsMix(x.run)
diagnosticsJagsMix(x.run, plot=TRUE)

## End(Not run)</pre>
```

DistributionPlotBinomial 7

DistributionPlotBinomial

Distribution Plot

Description

Plots probability density function given the parameters. May be useful when investigating parameter choice for prior distributions.

Usage

```
DistributionPlotBinomial(size = 200, prob = 0.5, xlab = "Number of Successes", ylab = "Probability Mass", signif.digits = 3, main = paste("Binomial Distribution: n =", size, "p =", signif(prob, digits = signif.digits)))

DistributionPlotGamma(shape = 1, rate = 1, length = 100, xlab = "x", ylab = "Density", main = bquote(paste("Gamma Distribution: ", alpha, "=", .(signif(shape, digits = signif.digits)), ",", beta, "=", .(signif(rate, digits = signif.digits)))), signif.digits = 3)

DistributionPlotNorm(mean = 0, sd = 1, length = 100, xlab = "x", ylab = "Density", main = bquote(paste("Normal Distribution: ", mu, "=", .(signif(mean, digits = signif.digits)), ",", sigma, "=", .(signif(sd, digits = signif.digits)))), signif.digits = 3)
```

Arguments

size	number of trials (Binomial)
prob	probability of success (Binomial)
shape	shape parameter. Must be strictly positive. (Gamma)
rate	an alternative way to specify the scale (Gamma)
mean	mean (Normal)
sd	standard deviation (Normal)
xlab	x-axis label
ylab	y-axis label
signif.digits	number of significant digits for default main title
main	title for plot
length	Number of points to use for obtaining a smooth curve

Details

Based on functions in package Rcmdr

8 dosagesJagsMix

Value

None.

Author(s)

Peter Baker <p.baker1@uq.edu.au>

See Also

Rcmdr Binomial Normal GammaDist

Examples

```
## Binomial distribution
DistributionPlotBinomial()
DistributionPlotBinomial(size=20, prob=0.2)
## Gamma distribution
DistributionPlotGamma()
## Normal distribution
DistributionPlotNorm()
```

dosagesJagsMix

Compute dosages under specified Bayesian mixture model

Description

Computes and returns estimated dosages under specified model using posterior probabilities derived from mcmc chains by the proportion of samples in each dosage class.

Usage

```
dosagesJagsMix(mcmc.mixture, jags.control, seg.ratio, chain = 1, max.post.prob = TRUE, thresholds = c(0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99), print = FALSE, print.warning = TRUE, index.sample = 20)
```

Arguments

mcmc.mixture	Object of type segratioMCMC produced by coda usually by using readJags
jags.control	Object of class jagsControl for setting up JAGS command file
seg.ratio	Object of class segRatio contains the segregation ratios for dominant markers and other information such as the number of dominant markers per individual
chain	Which chain to use when compute dosages (Default: 1)
max.post.prob	Logical for producing dose allocations based on the maximum posterior probability (Default: TRUE)

dosagesJagsMix 9

thresholds Numeric vector of thresholds for allocating dosages when the posterior proba-

bilty to a particular dosage class is above the threshold

print Logical indicating whether or not to print intermediate results (Default: FALSE)

print.warning Logical to print warnings if there is more than one marker with the maximum

posterior probability

index.sample Numeric vector indicating which markers to print if print is TRUE. If index.sample

is of length 1 then a random sample of size index. sample is selected

Value

An object of class dosagesMCMC is returned with components:

p. dosage Matrix of posterior probabilities of dosages for each marker dosage

dosage Matrix of allocated dosages based on posterior probabilities. The columns cor-

respond to different 'thresholds' and if requested, the last column is allocated on

basis of max.post

thresholds vector of cutoff probabilities for dosage class

chain Chain used to compute dosages

max.post maximum dosage posterior probabilties for each marker

index.sample Numeric vector indicating which markers to print if print is TRUE. If index.sample

is of length 1 then a random sample of size index. sample is selected

Author(s)

Peter Baker <p.baker1@uq.edu.au>

See Also

dosagesMCMC readJags

```
## simulate small autooctaploid data set
a1 <- sim.autoMarkers(8,c(0.7,0.2,0.1),n.markers=100,n.individuals=50)
## compute segregation ratios
sr <- segregationRatios(a1$markers)

## set up model, priors, inits etc and write files for JAGS
x <- setModel(3,8)
x2 <- setPriors(x)
dumpData(sr, x)
inits <- setInits(x,x2)
dumpInits(inits)
writeJagsFile(x, x2, stem="test")

## Not run:
## run JAGS
small <- setControl(x, burn.in=200, sample=500)</pre>
```

10 dumpData

```
writeControlFile(small)
rj <- runJags(small) ## just run it
print(rj)
## read mcmc chains and produce dosage allocations
xj <- readJags(rj)
dd <- dosagesJagsMix(xj, small, sr)
print(dd)
## End(Not run)</pre>
```

dumpData

Dumps segregation ratio data to file for subsequent JAGS run

Description

Given segregation ratio data provided as an object of class segRatio, data are dumped in R format for use by JAGS

Usage

```
dumpData(seg.ratio, model, stem = "test", fix.one = TRUE,
  data.file = paste(stem, "-data.R", sep = ""))
```

Arguments

seg.ratio	Object of class segRatio contains the segregation ratios for dominant markers and other information such as the number of dominant markers per individual
model	Object of class modelSegratioMM containing mixture model information
stem	File name stem for data file (default "test")
fix.one	Logical to fix the dosage of the observation closest to the centre of each component on the logit scale. This can greatly assist with convergence (Default: TRUE)
data.file	Data file name which is automatically generated from stem if not specified

Value

None.

Author(s)

Peter Baker <p.baker1@uq.edu.au>

See Also

```
segRatio dump
```

hexmarkers 11

Examples

```
## simulate small autooctaploid data set
a1 <- sim.autoMarkers(8,c(0.7,0.2,0.1),n.markers=100,n.individuals=50)
## compute segregation ratios
sr <- segregationRatios(a1$markers)
## set up model for 3 components of autooctoploid
x <- setModel(3,8)
dumpData(sr, x)</pre>
```

hexmarkers

Simulated autopolyploid dominant markers from 200 hexaploid individuals

Description

These data were simulated as 500 markers for 200 "auto-hexaploid individuals" exhibiting no overdispersion. The underlying percentages of single double and triple dose markers are 70%, 20% and 10%, respectively.

Usage

hexmarkers

Format

An object of S3 class sim. autoMarkers containing 500 simulated dominant markers for 200 auto-hexaploid individuals.

References

Haldane, J B S. 1930. Theoretical genetics of autopolyploids. *Journal of Genetics* 22: 359-372.

Baker P, Jackson P, and Aitken K. 2010. Bayesian estimation of marker dosage in sugarcane and other autopolyploids. *TAG Theoretical and Applied Genetics* 120 (8): 1653-1672.

12 mcmcHexRun

hexmarkers.overdisp Simulated overdispersed autopolyploid dominant markers from 200 hexaploid individuals

Description

These data are simulated as 500 markers for 200 "auto-hexaploid individuals" exhibiting overdispersion with the parameter shape 1 = 25. The underlying percentages of single double and triple dose markers are 70%, 20% and 10%, respectively.

Usage

hexmarkers.overdisp

Format

An object of S3 class sim. autoMarkers containing 500 simulated dominant markers for 200 auto-hexaploid individuals.

References

Haldane, J B S. 1930. Theoretical genetics of autopolyploids. *Journal of Genetics* 22: 359-372.

Baker P, Jackson P, and Aitken K. 2010. Bayesian estimation of marker dosage in sugarcane and other autopolyploids. *TAG Theoretical and Applied Genetics* 120 (8): 1653-1672.

mcmcHexRun

Results of MCMC estimation for simulated overdispersed markers

Description

MCMC was performed using the wrapper function runSegratioMM to run JAGS for a Bayesian mixture model on the segregation ratios obtained using the simulated data hexmarkers.overdisp. These data were simulated as 500 markers for 200 "auto-hexaploid individuals" exhibiting overdispersion with shape 1=25. The underlying percentages of single double and triple dose markers are 70%, 20% and 10%, respectively.

Usage

mcmcHexRun

Format

An object of S3 class runJagsWrapper with various components including summaries and diagnostics.

plot.segratioMCMC 13

References

Baker P, Jackson P, and Aitken K. 2010. Bayesian estimation of marker dosage in sugarcane and other autopolyploids. *TAG Theoretical and Applied Genetics* 120 (8): 1653-1672.

plot.segratioMCMC

MCMC plots for segregation ratio mixture models

Description

Standard MCMC trace and density plots for specified mixure model parameters and posterior probability distributions for specified markers

Usage

```
## S3 method for class 'segratioMCMC' plot(x, ..., row.index = c(1:10), var.index = c(1:6), marker.index = c(1:8))
```

Arguments

x object of class segratioMCMC
... extra options for printing

row.index which rows to print (Default: first 10)

var.index which mixture model variable to summarise (Default: all)

marker.index which markers to summarise (Default: 1:8)

Value

None.

Author(s)

Peter Baker <p.baker1@uq.edu.au>

See Also

dosagesMCMC readJags

```
## simulate small autooctaploid data set
a1 <- sim.autoMarkers(8,c(0.7,0.2,0.1),n.markers=100,n.individuals=50)
##print(a1)
sr <- segregationRatios(a1$markers)
x <- setModel(3,8)
## Not run:</pre>
```

14 plotFitted

```
## fit simple model in one hit and summarise

x.run <- runSegratioMM(sr, x, burn.in=200, sample=500)
plot(x.run$mcmc.mixture)

## End(Not run)</pre>
```

plotFitted

Plot observed segregation ratios and fitted and theoretical models

Description

Plots histogram of observed segregation ratios on logit scale along with scaled density of fitted components corresponding to dosage classes. Plots of expected theoretical distributions can be plotted with or without segregation ratio data.

Usage

```
## S3 method for class 'runJagsWrapper'
plot(x, theoretical=FALSE, ...)

plotFitted(seg.ratios, summary.mixture, add.random.effect=TRUE,
    theoretical=FALSE, model=NULL, theory.col="red",
    xaxis=c("logit","raw"), ylim=NULL, NCLASS=NULL, n.seq=100,
    xlab="logit(Segregation Ratio)", ylab="Density", density.plot=FALSE,
    fitted.lwd=2, fitted.col="blue", bar.col="lightgreen", cex=1,
    warnings = FALSE, main=NULL, ...)

plotTheoretical(ploidy.level=8, seg.ratios=NULL, n.components=NULL,
    expected.segratio=NULL, proportions=c(0.65,0.2,0.1,0.03,0.01,0.01, 0, 0),
    n.individuals=200, xaxis=c("raw","logit"),
    type.parents=c("heterogeneous","homozygous"), xlim=c(0,1),
    NCLASS=NULL, xlab="Segregation Ratio", ylab="Density",
    density.plot=FALSE, fitted.lwd=2, fitted.col="blue", cex=1,
    warnings = TRUE, main=NULL, ...)
```

Arguments

```
x object of class runJagsWrapper produced by using runSegratioMM to set up and fit mixture model
seg.ratios segregation ratios as class segRatio
summary.mixture
mcmc summary data produce by summary.segratioMCMC
add.random.effect
add random variance component to fitted distribution plot if model includes a random effect (default: TRUE)
```

plotFitted 15

theoretical whether to plot the expected theoretical distribution under the fitted model (de-

fault: FALSE)

model object of class modelSegratioMM specifying model if plotting expected theoret-

ical distribution

theory.col colour for expected theoretical distribution (default: "red")

ploidy.level the number of homologous chromosomes n.components number of components for mixture model

expected.segratio

may be specified or automatically calculated from ploidy level etc

xaxis whether to plot on "logit" or "raw" scale. Defaults to "logit" if plotting segrega-

tion ratios or "raw" for theoretical distributions

proportions for no. of markers in each component of theoretical distribution plot

n.individuals for theoretical distribution plot - taken from segregation ratios if supplied

type.parents "heterogeneous" if parental markers are 0,1 or "homogeneous" if parental mark-

ers are both 1

ylim c(lower,upper) yaxis limits for histogram of segregation ratios

xlim c(lower,upper) xaxis limits for segregation ratios

NCLASS number of classes for histogram (Default: 100)

n. seq number of points to use for plotting fitted mixture

xlab x-axis label ylab y-axis label

density.plot whether to plot a smoothed density as well as segregation data and fitted and/or

theoretical distributions (default: FALSE)

main title for plot

fitted.lwd width for fitted line fitted.col colour for fitted line bar.col colour for histogram

cex character expansion for text (see par)

warnings print warnings like number of components etc (Default: FALSE)

... extra options for plot

Details

plotFitted plot histogram of observed segregation ratios on logit scale along with scaled density of fitted components corresponding to dosage classes using trellis

plotTheoretical plot expected distribution of autopolyploid dominant markers on probability (0,1) scale. Segregation ratios may also be plotted

plot.runJagsWrapper plots the fitted values of object of class runJagsWrapper which has been produced by using runSegratioMM to set up and fit mixture model

Note that since trellis graphics are employed, plots may need to be printed in order to see them

Value

None.

Author(s)

Peter Baker <p.baker1@uq.edu.au>

See Also

 $\verb|summary.mcmc| mcmc| segratioMCMC| readJags| diagnosticsJagsMix| runSegratioMM| \\$

Examples

```
## simulate small autooctaploid data set
plotTheoretical(8, proportion=c(0.7,0.2,0.1),n.individuals=50)
a1 <- sim.autoMarkers(8,c(0.7,0.2,0.1),n.markers=100,n.individuals=50)
##print(a1)
sr <- segregationRatios(a1$markers)</pre>
x \leftarrow setModel(3,8)
## fit simple model in one hit and summarise
## Not run:
x.run <- runSegratioMM(sr, x, burn.in=200, sample=500)</pre>
print(x.run)
## plot fitted model using 'plotFitted'
plotFitted(sr, x.run$summary)
a.plot <- plotFitted(sr, x.run$summary, density.plot=TRUE)</pre>
print(a.plot)
## or the easier way
plot(x.run, theoretical=TRUE)
## End(Not run)
```

print.dosagesMCMC

Doses from Bayesian mixture model

Description

Prints objects of S3 class dosagesMCMC or segratioMCMC

Usage

```
## S3 method for class 'dosagesMCMC'
print(x, ..., index.sample = 20)

## S3 method for class 'segratioMCMC'
print(x, ..., row.index = c(1:10), var.index = c(1:6), marker.index
= c(1:8), chain = 1)
```

print.runJags 17

Arguments

x object of class dosagesMCMC or segratioMCMC
... extra options for printing
index.sample which markers to print (Default: 20 markers at random)
row.index which rows to print (Default: first 10)
var.index which mixture model variable to summarise (Default: all)
marker.index which markers to summarise (Default: 1:8)
chain which chain to print (Default: 1)

Value

None.

Author(s)

Peter Baker <p.baker1@uq.edu.au>

See Also

dosagesMCMC readJags

Examples

```
## simulate small autooctaploid data set
a1 <- sim.autoMarkers(8,c(0.7,0.2,0.1),n.markers=100,n.individuals=50)
##print(a1)
sr <- segregationRatios(a1$markers)
x <- setModel(3,8)
## fit simple model in one hit
## Not run:
x.run <- runSegratioMM(sr, x, burn.in=200, sample=500)
print(x.run$doses)
## End(Not run)</pre>
```

print.runJags

Running JAGS

Description

Print details and timing of JAGS run and summaries of results

print.runJags

Usage

```
## $3 method for class 'runJags'
print(x, ...)
## $3 method for class 'runJagsWrapper'
print(x, ...)
```

Arguments

x Objects of class runJags or runJagsWrapper

... extra printing options

Details

print.runJags can be employed when runJags is called directly and reports timings and dates while print.runJagsWrapper provides summary statistics when runSegratioMM is used.

Value

None.

Author(s)

Peter Baker <p.baker1@uq.edu.au>

See Also

runJags runSegratioMM

```
## simulate small autooctaploid data set
a1 <- sim.autoMarkers(8,c(0.7,0.2,0.1),n.markers=100,n.individuals=50)
##print(a1)
sr <- segregationRatios(a1$markers)
x <- setModel(3,8)

## Not run:
## fit simple model in one hit

x.run <- runSegratioMM(sr, x, burn.in=200, sample=500)
print(x.run)

## End(Not run)</pre>
```

readJags 19

readJags

Read MCMC sample(s) from a JAGS run

Description

wrapper to read.openbugs which returns object of class mcmc.list and so can be used to specify the start and end iterations for the MCMC sample(s) and also specify thinning

Usage

```
readJags(run.jags, quiet = TRUE, ...)
```

Arguments

```
run.jags object of class runJAGS produced by running JAGS quiet logical to return program output (Default: TRUE) other options for read.openbugs
```

Value

Returns object of class segratioMCMC with components

```
run.jags object of class runJAGS produced by running JAGS
mcmc.list object of class mcmc.list containing the MCMC sample(s)
```

Author(s)

```
Peter Baker <p.baker1@uq.edu.au>
```

See Also

mcmc.list setPriors setInits expected.segRatio segRatio setControl dumpData dumpInits or for an easier way to run a segregation ratio mixture model see runSegratioMM

```
library(polySegratio)

## simulate small autooctaploid data set
a1 <- sim.autoMarkers(8,c(0.7,0.2,0.1),n.markers=100,n.individuals=50)
##print(a1)
sr <- segregationRatios(a1$markers)
x <- setModel(3,8)
x2 <- setPriors(x)
cat(x$bugs.code,x2$bugs.code,sep="\n")</pre>
```

zunJags

```
x3 <- setModel(3,8, random.effect = TRUE)
x4 <- setPriors(x3, type="strong")

dumpData(sr, x3)
inits <- setInits(x,x2)
dumpInits(inits)
##x.priors <- setPriors(x, "vague")
writeJagsFile(x, x2, stem="test")

small <- setControl(x, burn.in=20, sample=50)
writeControlFile(small)
## Not run:
rj <- runJags(small) ## just run it

xj <- readJags(rj)
print(xj)
## End(Not run)</pre>
```

runJags

Run JAGS to create MCMC sample for segregation ratio mixture model

Description

Runs external program JAGS and returns MCMC list for processing by coda.

Usage

```
runJags(jags.control, jags = "jags", quiet = FALSE,
  cmd.file = paste(jags.control$stem, ".cmd", sep = ""), timing = TRUE)
```

Arguments

jags.control	Object of class jagsControl containing MCMC burn in, sample and thinning as well as relavant files for BUGS commands, inits and data
jags	Name of JAGS program assumed to be in PATH. However, jags may explicitly set here to include the full path name
quiet	Locial to return program output (Default: FALSE)
cmd.file	JAGS .cmd commad file (Default: deduced from jags.control)
timing	Logical to return timing information such as date started and ended and elapsed user and system time

runJags 21

Value

Returns object of class runJAGS with components

jags.control Object of class jagsControl
exit integer indicating return error (0 if no errors)
cmd.file JAGS command file
start.time time JAGS run started
end.time time JAGS run finished
elapsed.time elapsed user and system time
call function call

Author(s)

Peter Baker < p. baker 1@uq.edu.au>

See Also

setPriors setInits expected.segRatio segRatio setControl dumpData dumpInits or for an easier way to run a segregation ratio mixture model see runSegratioMM

```
## simulate small autooctaploid data set
a1 <- sim.autoMarkers(8,c(0.7,0.2,0.1),n.markers=100,n.individuals=50)
sr <- segregationRatios(a1$markers)</pre>
## set up model with 3 components
x \leftarrow setModel(3,8)
x2 <- setPriors(x)</pre>
dumpData(sr, x)
inits <- setInits(x,x2)</pre>
dumpInits(inits)
##x.priors <- setPriors(x, "vague")</pre>
writeJagsFile(x, x2, stem="test")
## Not run:
small <- setControl(x, burn.in=20, sample=50)</pre>
writeControlFile(small)
rj <- runJags(small) ## just run it</pre>
print(rj)
## End(Not run)
```

22 runSegratioMM

runSegratioMM	Run a Bayesian mixture model for marker dosage with minimal effort

Description

Given segregation ratios and a ploidy level, a mixture model is constructed with default priors and initial values and JAGS run to produce an MCMC sample for statistical inference. Returns an object of S3 class runJagsWrapper

Usage

```
runSegratioMM(seg.ratios, model, priors = setPriors(model),
  inits = setInits(model, priors), jags.control =
  setControl(model, stem, burn.in = burn.in, sample = sample, thin = thin),
  burn.in = 2000, sample = 5000, thin = 1, stem = "test", fix.one = TRUE,
  print = TRUE, plots = TRUE, print.diagnostics = TRUE,
  plot.diagnostics = TRUE, run.diagnostics.later=FALSE)
```

Object of class segRatio contains the segregation ratios for dominant markers

Arguments

seg.ratios

	and other information such as the number of dominant markers per individual	
model	object of class modelSegratioMM specifying model parameters, ploidy etc	
priors	object of class priorsSegratioMM indicating priors that are "vague", "strong" or "specified"	
inits	A list of initial values usually produced by setInits	
jags.control	Object of class jagsControl containing MCMC burn in, sample and thinning as well as relavant files for BUGS commands, inits and data	
burn.in	size of MCMC burn in (Default: 2000)	
sample	size of MCMC sample (default: 5000)	
thin	thinning interval between consecutive observations (default: 1 or no thinning)	
stem	text to be used as part of JAGS .cmd file name	
fix.one	Logical to fix the dosage of the observation closest to the centre of each component on the logit scale. This can greatly assist with convergence (Default: TRUE)	
print	logical for printing monitoring and summary information (default: TRUE)	
plots	logical to plotting MCMC posterior distributions (default: TRUE)	
print.diagnostics		
	logical for printing disagnostic statistics (default: TRUE)	
plot.diagnostics		
	logical for diagnostic plots (default: TRUE)	
run.diagnostics.later		
	should diagnostics be run later which may help if there are convergence prob- lems (Default: FALSE)	

runSegratioMM 23

Value

Returns object of class runJagsWrapper with components

Object of class segRatio contains the segregation ratios for dominant markers seg.ratios model object of class modelSegratioMM specifying model parameters, ploidy etc Object of class priorsSegratioMM specifying prior distributions priors inits A list of initial values usually produced by setInits Object of class jagsControl containing MCMC burn in, sample and thinning jags.control as well as relavant files for BUGS commands, inits and data stem text to be used as part of JAGS .cmd file name and other files fix.one Logical to fix the dosage of the observation closest to the centre of each component on the logit scale. This can greatly assist with convergence (Default: TRUE) run.jags object of class runJAGS produced by running JAGS Object of type segratioMCMC produced by coda usually by using readJags mcmc.mixture diagnostics list containing various diagnostic summaries and statistics produced by coda summaries of posterior distributions of model parameters summary object of class dosagesMCMC containing posterior probabilities of dosages for doses

DIC Deviance Information Critereon

Author(s)

Peter Baker <p.baker1@uq.edu.au>

See Also

setPriors setInits expected.segRatio segRatio setControl dumpData dumpInits and diagnosticsJagsMix

Examples

```
## simulate small autooctaploid data set
a1 <- sim.autoMarkers(8,c(0.7,0.2,0.1),n.markers=100,n.individuals=50)
##print(a1)
sr <- segregationRatios(a1$markers)
x <- setModel(3,8)

## Not run:
## fit simple model in one hit

x.run <- runSegratioMM(sr, x, burn.in=200, sample=500)
print(x.run)

## End(Not run)</pre>
```

each marker dosage and allocated dosages

24 setControl

	_		-
set	ľan	tr	\sim 1
25.5	COL	ııı	$\mathbf{v}_{\mathbf{I}}$

Set up controls for a JAGS segregation ratio model run

Description

Sets up directives for running JAGS which are subsequently put into a .cmd file. MCMC attributes such as the size of burn in, length of MCMC and thinning may be specified

Usage

```
setControl(model, stem = "test", burn.in = 2000, sample = 5000, thin = 1,
bugs.file = paste(stem, ".bug", sep = ""),
data.file = paste(stem, "-data.R", sep = ""),
inits.file = paste(stem, "-inits.R", sep = ""),
monitor.var = model$monitor.var, seed=1)
```

Arguments

model	object of class modelSegratioMM specifying model parameters, ploidy etc
stem	text to be used as part of JAGS .cmd file name
burn.in	size of MCMC burn in (Default: 2000)
sample	size of MCMC sample (default: 5000)
thin	thinning interval between consecutive observations. Thinning may be a scalar or specified for each variable set by specifying a vector (default: 1 or no thinning)
bugs.file	name of .bug file
data.file	name of R data file
inits.file	name of R inits file
monitor.var	which variables to be monitored (Default: as per model)
seed	seed for JAGS run for Windows only (for unix set seed in setInits)

Value

Returns an object of class jagsControl which is a list with components

jags.code	Text containing control statements for JAGS .cmd file
model	object of class modelSegratioMM specifying model parameters, ploidy etc
stem	text to be used as part of JAGS .cmd file name
burn.in	size of MCMC burn in (Default: 2000)
sample	size of MCMC sample (default: 5000)
thin	thinning interval between consecutive observations
bugs.file	name of .bug file
data.file	name of R data file
inits.file	name of R inits file
monitor.var	which variables to be monitored
call	function call

setInits 25

Author(s)

Peter Baker <p.baker1@uq.edu.au>

See Also

setModel setInits expected.segRatio segRatio setControl dumpData dumpInits or for an easier way to run a segregation ratio mixture model see runSegratioMM

Examples

```
## simulate small autooctaploid data set
a1 <- sim.autoMarkers(8,c(0.7,0.2,0.1),n.markers=100,n.individuals=50)
## set up model with 3 components
x <- setModel(3,8)
x2 <- setPriors(x)
jc <- setControl(x)
print(jc)</pre>
```

setInits

Set up and dump initial values given the model and prior

Description

Given a model of class modelSegratioMM and priors of class priorsSegratioMM, initial values are computed using approximate expected values by setInits and then written to file by dumpInits

Usage

```
setInits(model, priors, seed = 1)
dumpInits(inits, stem = "test", inits.file = paste(stem, "-inits.R",
    sep = ""))
```

Arguments

model	Object of class modelSegratioMM providing model attributes like the number of components and ploidy level
priors	Object of class priorsSegratioMM
seed	Seed to be used for JAGS runs. If a number of chains are to be run a vector of starting values may be specified. However, see note below.
inits	A list of initial values usually produced by setInits
stem	File name stem for inits file (default "test")
inits.file	Inits file name which is automatically generated from stem if not specified

26 setModel

Value

Returns a list with the following initial values:

mu	Mean of dosage classes on logit scale: usually $c(0)$	$,NA,NA,\dots,NA)$

P Initial value for proportion in each dosage class

tau Precision of means which depends on whether priors are strong or weak
theta Differences in means (for parameterisation employed for better convergence)

seed Sets seed for each MCMC chain (Default:1)

taub If the model contains a random effect then sets initial value of precision of ran-

dom effect b which is normally distributed with mean 0 and precision taub

Note

Warning: If a number of chains are to be produced then several seeds may be specified. Currently, this is largely untested and so it is highly unlikely that this will actually work for all functions in this package.

Author(s)

Peter Baker <p.baker1@uq.edu.au>

See Also

```
setModel setPriors setControl dumpInits
```

Examples

```
## simulate small autooctaploid data set
a1 <- sim.autoMarkers(8,c(0.7,0.2,0.1),n.markers=100,n.individuals=50)
## set up model, priors, inits etc and write files for JAGS
x <- setModel(3,8)
x2 <- setPriors(x)
inits <- setInits(x,x2)
dumpInits(inits)</pre>
```

setModel

Set characteristics of the Bayesian mixture model for dosages

Description

Used to automatically set up Bayesian finite mixture models for dosage allocation of dominant markers in autopolyploids given the number of components and ploidy level

setModel 27

Usage

```
setModel(n.components, ploidy.level, random.effect = FALSE, seg.ratios =NULL,
ploidy.name = NULL, equal.variances=TRUE,
type.parents = c("heterogeneous", "homozygous"))
```

Arguments

n.components number of components for mixture model (less than or equal to maximum number of possible dosages) ploidy.level the number of homologous chromosomes, either as numeric or as a character string random.effect Logical indicating whether model contains random effect (Default: FALSE) segregation proportions for each marker provided as S3 class segRatio seg.ratios ploidy.name Can overide ploidy name here or allow it to be determined from ploidy.level equal.variances Logical indicating whether model contains separate or common variances for each component (Default: TRUE) type.parents "heterogeneous" if parental markers are 0,1 or "homogeneous" if parental markers are both 1

Value

Returns object of class modelSegratioMM with components

bugs.code text to be used by JAGS in the .bug file but without statements pertaining to priors number of components for mixture model n.components monitor.var names of variables to be monitored in JAGS run ploidy.level ploidy level random.effect Logical indicating whether model contains random effect (Default: FALSE) equal.variances Logical indicating equal or separate variances for each component Expected segregation ratios E.segRatio type.parents "heterogeneous" if parental markers are 0,1 or "homogeneous" if parental markers are both 1 call function call

Author(s)

Peter Baker <p.baker1@uq.edu.au>

See Also

setPriors setInits expected.segRatio segRatio setControl dumpData dumpInits or for an easier way to run a segregation ratio mixture model see runSegratioMM

28 setPriors

Examples

```
## simulate small autooctaploid data set a1 <- sim.autoMarkers(8,c(0.7,0.2,0.1),n.markers=100,n.individuals=50)  
## set up model with 3 components  
x <- setModel(3,8)  
print(x)
```

setPriors

Set prior distributions for parameters of Bayesian mixture model for dosages

Description

May be used to automatically set up vague or strong priors or explicitly set them for Bayesian finite mixture model specified as an object of class modelSegratioMM using setModel

Usage

Arguments

model	object of class modelSegratioMM specifying model parameters, ploidy etc
type.prior	The type of prior required being one of "strong", "vague", "strong.tau" "strong.s" or "specified". The first four prior types will automatically set prior distributions whereas for the last, namely "specified", the prior distribution parameters must be set explicitly. Note that strong priors get progressively stronger from "strong" to "strong.s"
mean.vague	The mean of Normal priors for a "vague" prior
prec.vague	The precision of Normal priors for a "vague" prior
A.vague	The shape parameter of the Gamma prior for the precision parameters for a "vague" prior
B.vague	The rate (scale) parameter of the Gamma prior for the precision parameters for a "vague" prior
prec.strong	Precision for Normal mean parameters when type.prior is "strong". Note that on logit scale default is equivalent to having a 95%CI as +/- 0.1
n.individuals	Used for Binomial calculations to set prior precision parameters when type.prior is "strong".

setPriors 29

reffect.A The shape parameter of the Gamma prior for the precision parameter of the random.effect for a "vague" prior reffect.B The rate (scale) parameter of the Gamma prior for the precision parameter of the random.effect for a "vague" prior M.sd Approximate standard deviation for the mean segregation ratios on raw probability scale - this is set to 0.025 which would give an approximate 95% interval of 0.1 for the segregation ratio **UPPER** Cutoff for guessing parameters on logit scale noting that logit(1) is undefined STRONG.PREC Interval on raw probabilty scale used to set strong priors on the the precision distribution parameters of the segregation ratios by using a 95% interval on the theoretical distribution and equating this on the logit scale (Default: c(0.025,0.975))PREC. INT Multiplier or setting prior for precision on logit scale corresponding to approx confidence region being precision*(1 - PREC.INT, 1 + PREC.INT) Default:0.2 if type.prior is "specified" then a list of priors parameters must be set conparams taining components M for means, A and B for gamma prior parameters and if the model contains a random.effect then reffect.A, and reffect.B for the gamma prior for the precision of random effect taub. Note that the lengths of M, prec, A and B should be equal to the number of components segRatio If specified, this value overides the automatically generated value which is set as the expected segregation ratio given the ploidy level

Value

Returns an object of class priorsSegratioMM which is a list with components

type Type of prior: one of "vague", "strong" or "specified"

bugs.code Text containing prior statements for BUGS file

random.effect Logical indicating whether model contains random effect (Default: FALSE)

equal.variances

Logical indicating equal or separate variances for each component

params List containing Normal means on logit scale logit.means, precision on logit

scale logit.prec, and Gamma parameters A and B and finally reffect.A and

reffect. B if the model contains a random effect

call function call

Author(s)

Peter Baker <p.baker1@uq.edu.au>

See Also

setModel setInits expected.segRatio segRatio setControl dumpData dumpInits or for an easier way to run a segregation ratio mixture model see runSegratioMM

Examples

```
## simulate small autooctaploid data set
a1 <- sim.autoMarkers(8,c(0.7,0.2,0.1),n.markers=100,n.individuals=50)
## set up model with 3 components
x <- setModel(3,8)
x2 <- setPriors(x)
print(x2)

x2b <- setPriors(x, "strong")
print(x2b)</pre>
```

summary.segratioMCMC

Summary statistics for an segratioMCMC object

Description

Wrapper for summary.mcmc processing only mixture model parameters although markers may also easily be summarised. The mean, standard deviation, naive standard error of the mean (ignoring autocorrelation of the chain) and time-series standard error based on an estimate of the spectral density at 0. For details see summary.mcmc

Usage

```
## $3 method for class 'segratioMCMC'
summary(object, ..., row.index = c(1:10),
var.index = NULL,
marker.index = c(1:8))
```

Arguments

object of class segratioMCMC
... extra options for summary.mcmc
row.index which rows to print (Default: first 10)

var. index which mixture model variable to summarise (Default: all)

marker.index which markers to summarise (Default: 1:8)

Value

An object of class summary SegratioMCMC is returned which contains summary statistics for parameters and some markers. For details see summary.mcmc

Author(s)

Peter Baker <p.baker1@uq.edu.au>

writeControlFile 31

See Also

summary.mcmc mcmc segratioMCMC readJags diagnosticsJagsMix

Examples

```
## simulate small autooctaploid data set
a1 <- sim.autoMarkers(8,c(0.7,0.2,0.1),n.markers=100,n.individuals=50)
##print(a1)
sr <- segregationRatios(a1$markers)
x <- setModel(3,8)

## Not run:
## fit simple model in one hit and summarise

x.run <- runSegratioMM(sr, x, burn.in=200, sample=500)
print(summary(x.run$mcmc.mixture))
print(summary(x.run$mcmc.mixture, var.index=c(1:3), marker.index=c(1:4)))
## End(Not run)</pre>
```

writeControlFile

Write JAGS .cmd file for running JAGS

Description

Write JAGS .cmd file to disk

Usage

```
writeControlFile(jags.control,
    file = paste(jags.control$stem, ".cmd", sep = ""))
```

Arguments

jags.control Object of class jagsControl containing MCMC burn in, sample and thinning

as well as relavant files for BUGS commands, inits and data

file JAGS .cmd file name

Value

None.

Author(s)

Peter Baker <p.baker1@uq.edu.au>

See Also

```
setControl runJags
```

32 writeJagsFile

Examples

```
## simulate small autooctaploid data set
a1 <- sim.autoMarkers(8,c(0.7,0.2,0.1),n.markers=100,n.individuals=50)
sr <- segregationRatios(a1$markers)

## set up model with 3 components
x <- setModel(3,8)
x2 <- setPriors(x)
dumpData(sr, x)
inits <- setInits(x,x2)
dumpInits(inits)
##x.priors <- setPriors(x, "vague")
writeJagsFile(x, x2, stem="test")

small <- setControl(x, burn.in=20, sample=50)
writeControlFile(small)</pre>
```

writeJagsFile

Writes BUGS file for processing by JAGS

Description

Given the model and priors a file is written to disk for subsequent JAGS run. BUGS code contained in the model and priors objects is combined and alterered if necessary

Usage

```
writeJagsFile(model, priors, stem = "test")
```

Arguments

model object of class modelSegratioMM specifying model parameters, ploidy etc

priors Object of class priorsSegratioMM specifying priors

stem File name stem for BUGS file (default "test")

Value

None.

Author(s)

Peter Baker <p.baker1@uq.edu.au>

See Also

```
segRatio dump
```

writeJagsFile 33

```
## simulate small autooctaploid data set
a1 <- sim.autoMarkers(8,c(0.7,0.2,0.1),n.markers=100,n.individuals=50)

## compute segregation ratios
sr <- segregationRatios(a1$markers)

## set up model for 3 components of autooctoploid
x <- setModel(3,8)
x2 <- setPriors(x)

dumpData(sr, x)
inits <- setInits(x,x2)
dumpInits(inits)

##x.priors <- setPriors(x, "vague")
writeJagsFile(x, x2, stem="test")</pre>
```

Index

* autopolyploid	setControl, 24
calculateDIC, 4	setInits, 25
diagnosticsJagsMix, 5	setModel, 26
dosagesJagsMix, 8	setPriors, 28
plot.segratioMCMC, 13	summary.segratioMCMC, 30
plotFitted, 14	writeControlFile, 31
polySegratioMM-package, 2	* hplot
print.dosagesMCMC, 16	DistributionPlotBinomial, 7
print.runJags, 17	* manip
readJags, 19	calculateDIC, 4
runJags, 20	diagnosticsJagsMix, 5
runSegratioMM, 22	dosagesJagsMix, 8
setControl, 24	dumpData, 10
setInits, 25	plot.segratioMCMC, 13
setModel, 26	plotFitted, 14
setPriors, 28	polySegratioMM-package, 2
summary.segratioMCMC, 30	print.dosagesMCMC, 16
writeControlFile, 31	print.runJags, 17
* datasets	readJags, 19
hexmarkers, 11	runJags, 20
hexmarkers.overdisp, 12	runSegratioMM, 22
mcmcHexRun, 12	setControl, 24
* data	setInits, 25
dumpData, 10	setModel, 26
writeJagsFile, 32	setPriors, 28
* distribution	summary.segratioMCMC, 30
DistributionPlotBinomial, 7	writeControlFile, 31
* dominant marker	writeJagsFile, 32
calculateDIC, 4	* package
diagnosticsJagsMix,5	polySegratioMM-package, 2
dosagesJagsMix, 8	* polyploid
plot.segratioMCMC, 13	polySegratioMM-package, 2
plotFitted, 14	* segregation ratio
polySegratioMM-package, 2	calculateDIC, 4
print.dosagesMCMC, 16	diagnosticsJagsMix,5
print.runJags, 17	dosagesJagsMix, 8
readJags, 19	plot.segratioMCMC, 13
runJags, 20	plotFitted, 14
runSegratioMM, 22	polySegratioMM-package, 2

INDEX 35

print.dosagesMCMC, 16	par, <i>15</i>
print.runJags, 17	plot, <i>3</i>
readJags, 19	plot.runJagsWrapper(plotFitted), 14
runJags, 20	plot.segratioMCMC, 13
runSegratioMM, 22	plotFitted, 3, 14
setControl, 24	plotTheoretical (plotFitted), 14
setInits, 25	polySegratioMM
setModel, 26	(polySegratioMM-package), 2
setPriors, 28	polySegratioMM-package, 2
summary.segratioMCMC, 30	print, 3
writeControlFile, 31	print.dosagesMCMC, 16
Willesoner off file, 51	print.runJags, 17
autocorr.diag, 6	print.runJagsWrapper(print.runJags), 1
ad 000011 1 d 1 d g, 0	print.segratioMCMC (print.dosagesMCMC)
Binomial, 8	16
calculateDIC, 4	raftery.diag, 6
	Rcmdr, 8
diagnosticsJagsMix, 3, 5, 16, 23, 31	readJags, 3, 4, 8, 9, 13, 16, 17, 19, 23, 31
DistributionPlotBinomial, 2, 7	runJags, 3, 18, 20, 31
DistributionPlotGamma, 2	runJagsWrapper, 5
DistributionPlotGamma	runJagsWrapper (runSegratioMM), 22
(DistributionPlotBinomial), 7	runSegratioMM, 2, 16, 18, 19, 21, 22, 25, 27,
DistributionPlotNorm, 3	29
DistributionPlotNorm	<u>-</u> 2
(DistributionPlotBinomial), 7	segRatio, 4, 8, 10, 19, 21–23, 25, 27, 29, 32
dosagesJagsMix, 3, 8	segratioMCMC, 4, 5, 8, 16, 23, 31
dosagesMCMC, 4, 9, 13, 17, 23	segratioMCMC (readJags), 19
dosagesMCMC (dosagesJagsMix), 8	setControl, 3, 19, 21, 23, 24, 25–27, 29, 31
dump, 10, 32	setInits, 3, 19, 21, 23, 25, 25, 27, 29
dumpData, 3, 10, 19, 21, 23, 25, 27, 29	setModel, 2, 25, 26, 26, 29
dumpInits, 3, 19, 21, 23, 25-27, 29	setPriors, 2, 19, 21, 23, 26, 27, 28
dumpInits (setInits), 25	summary.mcmc, 16, 30, 31
,	summary.segratioMCMC, 30
expected.segRatio, 19, 21, 23, 25, 27, 29	summarySegratioMCMC
•	• •
GammaDist, 8	(summary.segratioMCMC), 30
gelman.diag, 6	trellisplots, 6
geweke.diag, 6	ti e1113p10t3, 0
	writeControlFile, 3 , 31
hexmarkers, 11	writeJagsFile, 3, 32
hexmarkers.overdisp, 12	2000 480. 220, 0, 02
mcmc, 6, 16, 31	
mcmc.list, 19	
mcmcHexRun, 12	
modelSegratioMM, <i>10</i>	
modelSegratioMM(setModel),26	
Normal. 8	