

Figure 1: Schematic representation of deep via etch structure (not to scale)

Al-Overetched

Figure 2: Schematic representation of Al overetched via structure (not to scale)

Figure 3: Moist gas-phase experimental set-up

Figure 4: SEM micrograph of via structure prior to any cleaning treatment.

Figure 5: SEM micrograph after 45' 02 dry strip

Figure 6: SEM micrograph of deep via (figure 1) after 10' exposure to moist ozone gasphase process with acetic acid spiking.

Figure 7: SEM micrograph of Al overetched via (figure 2) after 10' exposure to moist ozone gasphase process with acetic acid spiking.

Bubble set-up

Figure 8: Ozone bubble immersion experimental set-up

Figure 9: Resist removal process efficiency number (nm removal / process time * ozone concentration) for positive and negative resist removal as a function of acetic acid concentration.

Figure 10: Main parameter effects on resist removal rate (nm removal / process time) for positive resist removal (with 95% confidence levels).

Mulrey 02038_130001283; Model 02031_132_2070_FEED Main Effects on Transformed Response FOLER_FEE_03 (with 19. Confidence Intervals)

Figure 11: Main parameter effects on resist removal process efficiency number (nm removal / process time * ozone concentration) for positive resist removal (with 95% confidence levels).

Figure 12: Resist removal efficiency as a function of temperature and ozone concentration for a static system.

Figure 13 Resist removal efficiency as a function of temperature and ozone concentration for bubble and moist gasphase set-up.

figure 14: Scheme of reactions of aqueous ozone.

Figure 15: effect of OH radical scavenging on ozone concentration in a overflow tank.

Figure 16: effect of repeated addition of H_2O_2 (0.17mmol/l at t = 0, 13, 20, 24 min) to a DI water solution spiked with 0.23mmol/l of acetic acid.