R Notebook, Week of 8/18

First we simulate data according to MAMBA and calculate the PPR values (from the MAMBA package) and the PRP values (from the PRP package). The job R files used for this are located in the code/data directories. The packages are calculated for all 50000 SNPS. Here, we'll look at the case where the nonoutlier study rate is 0.975.

```
load(file = "data/mamba_data/sim_mamba_mod_p975.rda")
load(file = "data/mamba_data/mamba_data_p975.rda")

pprs <- sim_mod$ppr</pre>
```

We take the indices for the SNPs that have at least one outlier study.

```
# indices for snps w/ and w/o outliers
out_studies <- mamba_data$0jk
out_rows_ind <- which(rowSums(out_studies == 0) > 0) # indices of snps with outlier studies
no_out_rows_ind <-which(rowSums(out_studies) == 10) # indices of rows w/o outliers</pre>
```

Then we load in the data containing the PRPs (from PRP package) for each SNP.

```
# loading PRP data
load(file = "data/prp_data/post_prp_data_pval_p975.rda") # post_prp_data_pval
```

Below are the PPRs and PRPs from the the SNPs with and without outlier studies.

```
# MAMBA pprs for snps w/ and w/o outliers
out_ppr <- pprs[out_rows_ind]
nonout_ppr <- pprs[no_out_rows_ind]

# prps for snps w/ and w/o outliers
out_prp <- post_prp_data_pval[out_rows_ind]
nonout_prp <- post_prp_data_pval[no_out_rows_ind]</pre>
```

For our SNPs with outliers, the distribution of our PPRs looks as follows:

```
ggplot(data = as.data.frame(out_ppr), aes(out_ppr)) +
geom_histogram(binwidth = 0.001) +
ggtitle("Distribution of PPR, SNPs With Outliers") +
xlab("PPR")
```

Distribution of PPR, SNPs With Outliers

Rescaling the graph by ignoring some outliers, we get the histogram below.

```
ggplot(data = as.data.frame(out_ppr), aes(out_ppr)) +
geom_histogram(binwidth = 0.001) +
ggtitle("Distribution of PPR, SNPs With Outliers") +
xlab("PPR") +
xlim(0, 0.1)
```

Distribution of PPR, SNPs With Outliers

In contrast, this is what the distribution of our PRPs for outlier SNPs looks like. Keep in mind the differently scaled x-axis.

```
ggplot(data = as.data.frame(out_prp), aes(out_prp)) +
geom_histogram(binwidth = 0.001) +
ggtitle("Distribution of PRP, SNPs With Outliers") +
xlab("PRP")
```

Distribution of PRP, SNPs With Outliers

For our SNPs without outliers, the PRP distribution is given in the following histogram.

```
ggplot(data = as.data.frame(nonout_ppr), aes(nonout_ppr)) +
geom_histogram(binwidth = 0.0001) +
ggtitle("Distribution of PPR, SNPs Without Outliers") +
xlab("PPR")
```

Distribution of PPR, SNPs Without Outliers

Like before, if we ignore extreme PPR values, our histogram looks different.

```
ggplot(data = as.data.frame(nonout_ppr), aes(nonout_ppr)) +
  geom_histogram(binwidth = 0.0001) +
  ggtitle("Distribution of PPR, SNPs Without Outliers") +
  xlab("PPR") +
  xlim(0, 0.1)
```


In contrast, this is what the distribution of our PRP values looks like.

```
ggplot(data = as.data.frame(nonout_prp), aes(nonout_prp)) +
geom_histogram(binwidth = 0.001) +
ggtitle("Distribution of PRP, SNPs Without Outliers") +
xlab("PRP")
```

Distribution of PRP, SNPs Without Outliers

Giant Consortium Studies

BMI

First we look at the BMI. We'll only look at the SNPs that are significant (where the p-values for "All" data file is less than 0.05/the number of SNPs).

BMI Graphs

Now we get a better look at the BMI through graphical representations.

We take a look at our PPR and PRP values. The histogram of our PPR values for BMI is given below.

In contrast, here is our histogram of PRP values.

Height

Next we look at height.

We take a look at our PPR and PRP values. The histogram of our PPR values is given below.

In contrast, we have our histogram for PRP values.

