Data science languages

- SQL
 - SQL = Structured Query Language
 - SQL databases: MySQL, IBM Db2, PostgreSQL, Apache OpenOffice Base, SQLite, Oracle, MariaDB, Microsoft SQL Server
 - o RDBMS Tools
 - IBM DB2, MySQL, Oracle Database, and PostgreSQL
 - NoSQL Tools
 - Redis, MongoDB, Cassandra, and Neo4J
 - Data warehouses Tools
 - Oracle Exadata, IBM Db2 Warehouse on Cloud, IBM Netezza Performance Server, and Amazon RedShift

Java

- o Java applications are compiled to bytecode
- o run on the Java Virtual Machine, or "JVM."
- o data science tools built with Java include
 - Java-ML machine learning library
 - Apache MLlib makes machine learning scalable
 - Weka, for data mining
 - Deeplearning4j for deep learning
 - Apache Hadoop, Java-built application, manages data processing and storage for big data applications running in clustered systems

Scala

- o a general-purpose programming language
- o support for functional programming and a strong static type system
- o runs on the JVM
- Scala = "scalable language
- o data science = Apache Spark designed with scala
- Spark is a fast and general-purpose cluster computing system
- Provides APIs that make parallel jobs easy to write, and an optimized engine that supports general computation graphs
- Spark includes
 - Shark, which is a query engine
 - MLlib, for machine learning
 - GraphX, for graph processing
 - Spark Streaming
- R
 - R tools for data visualization
 - Libraries: Ggplot, plotly, Lattice, Leaflet
 - Functions: Plot,

Data Science Processes

Data Science Methodology, How to think?

From problem to approach:

- 1. What is the problem that you are trying to solve?
- 2. How can you use data to answer the question?

Evaluation

Working with the data:

- 3. What data do you need to answer the question?
- 4. Where is the data coming from (identify all sources) and how will you get it?
- 5. Is the data that you collected representative of the problem to be solved?
- 6. What additional work is required to manipulate and work with the data?

Deriving the answer:

- 7. In what way can the data be visualized to get to the answer that is required?
- 8. Does the model used really answer the initial question or does it need to be adjusted?
- 9. Can you put the model into practice?
- 10. Can you get constructive feedback into answering the question?

Action and Model relation

- o Probability of Action: Predictive Model
- Show Relation: Descriptive Approach
- o Binary Answer (Yes/No): Classification Model
- o Multiple Classification : Decision tree Classification Model

• From Problem to Approach

- Business Understanding
 - clarify the goal

- Why we are doing this analysis?
- Analytical Approach
 - How we will do this analysis?
 - Which statistical and machine-learning technique method will be used?

Working with Data

- Data Requirements
 - What type of data can be used to address this findings?
- Data Collection
 - From where we will collect the data?
- Data Understanding
 - What are there in data?
 - Missing Values, Data Distribution on histogram, invalid values, False values, Related and not related parameters
- Data Preparation
 - Consume 70-90% of time
 - Data must be cleaned and should be in the format that can be used directly
 - Replace Yes/No to 1/0 to apply mathematical computation
 - Replace missing values by average or other methods
 - Identify Wrong values and outliers
 - Remove duplicate data

Deriving the Answer

- Modelling
 - Built predictive or destructive models
 - Predictive model outcome is Binary Yes/No, Greater/Less
 - Descriptive model classify the outcome in multiple range and relation can be also defined like proportional / inversely proportional / exponential
- Evaluation
 - Does the model used really answer the initial question or does it need to be adjusted?
 - ROC curve: Plot of true-positive rate against the false-positive rate for different values of the relative misclassification cost
 - Maximum distance points are best choice
- Development
 - Involve stakeholders, users, IT persons to deploy model in reality and train all users to use it
 - Initially it can be used in small cluster to identify issues and areas of improvements before its deployment for all users
- Feedback
 - Collect new data and check their outcomes with the existing model to improve the efficiency

 From the feedback of stack holders and new data improve the performance of the model

Data process cycles in ML

- o pre-processing of data
- feature selection
- o feature extraction
- train test splitting
- o defining the algorithms
- fitting models
- tuning parameters
- o prediction
- evaluation
- o exporting the model

Data management tools

- relational databases : MySQL and PostgreSQL
- NoSQL databases: MongoDB Apache, CouchDB, Apache Cassandra
- File-based tools : Hadoop File System
- Cloud File systems : CephText data: Elasticsearch
- Commercial tools:
 - Oracle Database
 - Microsoft SQL Server
 - IBM Db2
- Cloud based tools
 - Amazon DynamoDB (Data structure is Json)
 - Cloudant based on Apache couch db
 - IBM DB2

Data integration and transformation

- o ETL: extract, transform, and load
- o ELT: Extract, Load, Transform
- data refinery and cleansing
- tools: Apache AirFlow, KubeFlow, Apache Kafka, Apache Nifi, Apache SparkSQL, NodeRED
- Commercial Tools:
 - Informatica Powercenter
 - IBM InfoSphere DataStage
- Cloud based tools
 - Informatics
 - IBM data Refinery

data visualization tools

- o Hue: create visualizations from SQL queries
- o Kibana: data exploration and visualization web application
- Apache Superset : data exploration and visualization web application

- Commercial Tools:
 - Tableau
 - Microsoft Power BI
 - IBM Cognos Analytics
- Cloud based tools
 - Datameer
 - IBM data Refinery
 - IBM Cognos Analytics

Model deployment

- o Apache Prediction IO: supports Apache Spark ML models for deployment
- Seldon: supports nearly every framework TensorFlow, Apache SparkML, R, and scikit-learn
- MLeap: support SparkML
- o TensorFlow can serve : TensorFlow service
- o TensorFlow Lite: Low computing resources
- TensorFlow dot JS: browser based
- Commercial Tools:
 - SPSS Modeler
 - SAS
- Cloud based tools
 - IBM Watson Machine Learning
 - Google cloud AI platform training

Code asset management or version management or version control

- o Git
- GitHub
- GitLab: fully open source platform
- Bitbucket

Development environments

- Jupyter: interactive Python programming, now supports 100+ different programming languages
- JupyterLab: next generation of Jupyter Notebooks, more modern and modular
- Apache Zeppelin: doesn't require coding
- o Rstudio: statistics and data science
- Spyder : Basics

• Extension environments

- cluster-computing framework Apache Spark: used by Fortune 500 companies, linear scalability, batch (file) data processing engine
- o Apache Flink: Updates of spark, stream (live) data processing engine
- o Ray: large-scale deep learning model training

Fully integrated and visual tools

- Support data integration, transformation, data visualization, and model building
- KNIME : drag-and-drop capabilities

- o Orange: less flexible than KNIME, but easier to use
- o commercial tool support majority of data tasks
 - IBM Watson studio
 - Whatson open scale
 - H2o.ai
- Cloud based tools
 - Microsoft Azure
 - IBM Watson studio
 - Whatson open scale
 - H2o.ai

Python libraries

- Scientific computing libraries
 - Pandas: cleaning, manipulation, and analysis, works with twodimensional table consisting of columns and rows "DataFrame"
 - NumPy: based on arrays, enabling you to apply mathematical functions to these arrays. Pandas is actually built on top of NumPy
- Data visualization Libraries
 - Matplotlib: graphs and plots
 - Seaborn: based on matplotlib, heat maps, time series, and violin plots
- Machine learning Libraries
 - Scikit-learn: statistical modeling, regression, classification, clustering
- Deep learning Libraries
 - Keras: standard deep learning model
 - TensorFlow: low-level framework used in large scale production of deep learning models
 - Pytorch: used for experimentation, making it simple for researchers to test their ideas
- General-purpose cluster-computing framework
 - Apache Spark
 - Enables you to process data using compute clusters
 - Process data in parallel, using multiple computers simultaneously
 - Similar functionality as Pandas Numpy Scikit-learn Apache Spark
 - Python, R, Scala, SQL can be used

API: Application Programming Interfaces

- o API is used to communicate with the other software
- Software to software
- Code to Software
- o REST API
 - RE: Representational
 - S: State
 - T: Transfer

- REST API enable you to communicate using the internet
- Advantages of storage, greater data access, artificial intelligence algorithms, and integration of many other resources
- REST APIs user program = client
- Client communicate with web services / resources
- To send request from client, we use HTTP method containing JSON file
- And services operate on JSON file and revert back the JSON file to client

Data sets

- Structured collection of data
- o as text, numbers, or media such as images, audio, or video files
- Collection of rows and columns
- CSV: comma separated values
 - text file where each line represents a row and data values are separated by a comma

Hierarchical or network data structures

- Used to represent relationships between data
- Hierarchical data is organized in a tree-like structure
- Network data might be stored as a graph
 - Graph: Connections between people on a social networking

o raw data

- Images or audio.
- MNIST dataset: images of handwritten digits and is commonly used to train image processing

Data resources

- o Data Portals (datacatalogs.org)
- o Data.gov
- o <u>data.europa.eu</u>
- o UNdata
- o Find Open Datasets and Machine Learning Projects | Kaggle
- o <u>Dataset Search (google.com)</u>

Machine learning models

- Supervised learning
 - Data is labelled with correct output
 - Model tries to identify relationships and dependencies between the input data and the correct output
 - Used to solve regression and classification problems
 - Regression/Estimation
 - Used to predict a numeric or real value
 - Geographic location, size, number of bedrooms, price
 - Classification
 - Prediction for something belongs to a category/class
 - emails as spam or not

- Unsupervised learning
 - Data is not labelled with correct output
 - Analyze the data and try to identify patterns and structure within the data based only on the characteristics of the data itself
 - Clustering
 - Used to divide each record of a data set into one of a small number of similar groups
 - Purchase recommendations based on past shopping behaviour and the content of a shopping basket
 - Anomaly
 - Anomaly detection identifies outliers in a data set
 - fraudulent credit card transactions
 - Suspicious online log-in attempts
 - o Dimension reduction
 - Used to reduce the size of data
 - Density Estimation
 - Market basket analysis / Association technique
 - Used for finding items or events that often co-occur
 - Grocery items that are usually bought together
- Reinforcement learning
 - o Similarly, the way human beings and other organisms learn
 - Reinforcement learning model learns the best set of actions to take, given its current environment, in order to get the most reward over time
 - Used in games such as go, chess, and popular strategy video games
- Sequence mining
 - Used for predicting the next event
 - o Live Stream in websites
- Recommendation systems
 - Associates' people's preferences with others who have similar tastes
 - o Recommends new items to them, such as books or movies.

Deep learning

- Emulate the way the human brain solves a wide range of problems
- Natural language, spoken and text, images, audio, and video, forecast time series data
- Requires very large data sets of labelled data to train a model, and computeintensive
- Model zoo: contained pre trained deep learning models
- IBM's MXA: Model assets exchange to get deep learning pre trained models
- Models use: PyTorch, Keras, TensorFlow

Data Science Libraries

- NumPy
 - o Math library to work with N-dimensional arrays in Python

- Working with arrays, dictionaries, functions, datatypes and working with images
- SciPy
 - o Collection of numerical algorithms and domain specific toolboxes
 - Signal processing, optimization, statistics
 - Good library for scientific and high performance computation
- Matplotlib
 - Plotting package that provides 2D and 3D plotting
- Pandas
 - High-level Python library that provides high performance easy to use data structures
 - Used for data importing, manipulation and analysis
- SciKit Learn
 - Collection of algorithms and tools for machine learning
 - o Free Machine Learning Library for the Python programming language
 - o Includes Classification, regression and clustering algorithms

ΑI

- Artificial Intelligence, Augmented Intelligence
- Examples
 - Siri, google assistance,
 - o Cortana, Alexa
 - Humanoid Robots, Driverless car
 - Chatbot, Voice based CC,
 - Voice to Speech conversation
 - o Image or video based detection or identification
- Al is a system which mimic the human behaviour, intelligence and abilities
- Al is used to compute human tasks with more efficiency and accuracy
- Al is also used for time complex tasks to perform to save time of humans
- Types of Al

Weak or Narrow AI or Applied AI

- Applied to a specific domain
- Language translators, virtual assistants, self-driving cars, AI-powered web searches, recommendation engines, intelligent spam filters
- Can perform specific tasks, but not learn new ones
- making decisions based on programmed algorithms, and training data

Strong AI or Generalized AI

- Can interact and operate a wide variety of independent and unrelated tasks
- Can learn new tasks to solve new problems, and it does this by teaching itself new strategies
- Combine many AI strategies that learn from experience and can perform at a human level of intelligence

Super AI or Conscious AI

- Similar to human-level consciousness
- Self-aware capabilities

Data Science Job posts

- Data Engineer
 - Convert row data into usable data
 - o Place all toys from truck to inside the shop to be ready to sale
- Data Analyst
 - Use data to generate insights
 - o Identify the top toys for each customer and explain it meaning fully
- Data Scientist
 - o Design ML and AL models to use the data and to forecast future predictions
 - Oder toys need to be purchased for the next festivals
- BI Analyst
 - o Focused for business application and development
 - o Decides the price of the each toys based on demand supply ratio

Data Analysis

- Gather, clean, analyse and mine data
- Interpret results and report finding
- Find patterns and their correlation and based on those insights are derived and conclusion are made
- Types of Data Analytics techniques
 - Descriptive Analysis
 - What happened
 - Diagnostic Analysis
 - Why did it happen
 - Predictive Analysis
 - What will happen next
 - Prescriptive Analysis
 - What should be done after
- Process involved in any Data Analysis tasks
 - Understanding the problem and desired output
 - o Define method of measurement of output
 - Gathering data
 - Decide tools
 - Cleaning data for accurate analysis
 - Analyse and mine data
 - Interpreting results
 - Presenting findings
- Data Analysis
 - Can be nonnumeric data
 - o detailed examination of the elements or structure of something
 - Past event analysis

- Data Analytics
 - Must be numeric data
 - o the systematic computational analysis of data or statistics
 - Future event analysis
- Skill set for Data analytics
 - Technical skills
 - Spreadsheets / Microsoft Excel / Google Sheets
 - Statistical analysis
 - Visualization tools
 - Programming languages such as R / Python / C++ / Java / MATLAB
 - SQL and NoSQL databases
 - Big Data processing tools Hadoop, Hive, and Spark
 - Analyse your data, Validate your analysis, Identification of errors
 - Problem understanding and solving skills
 - Manage the process, people, dependencies, and timelines
 - Soft skills
 - Collaboration in work
 - Communicate effectively to report and present your findings
 - Convincing story
 - Curious
 - New questions to surface and challenge your assumptions and hypotheses
 - Intuition for possible cause and result

Big Data

- Definition
 - Large and dynamic data
 - Created by machines, humans and tools
 - o To derive insights for business, risk, performance, profit, management
 - Data is collected, stored and analytically processed
- V's of Big data
 - Value: Profit, social benefit, Improvement in current ongoing process
 - Variety: Data generated from various sources and types of data
 - Velocity: speed of data generation
 - o Veracity: Quality of data, accurate, consistent
 - Volume : the size of the data
- Tools
 - o Apache Spark
 - Hadoop

Version Control

- Tools: Git, Github, GitLab, BitBucket, and Beanstalk
- SSH protocol is a method for secure remote login from one computer to another
- Repository contains your project folders that are set up for version control
- Fork is a copy of a repository

- Pull request is the way you request that someone reviews and approves your changes before they become final
- Working directory contains the files and subdirectories on your computer that are associated with a Git repository
- Commands of git
 - o Init: When starting out with a new repository
 - Add: moves changes from the working directory to the staging area
 - Status: allows you to see the state of your working directory and the staged snapshot of your changes
 - Commit: takes your staged snapshot of changes and commits them to the project
 - Reset: undoes changes that you've made to the files in your working directory
 - o Log: enables you to browse previous changes to a project
 - Branch: lets you create an isolated environment within your repository to make changes
 - o Checkout: lets you see and change existing branches
 - o Merge: lets you put everything back together again

•