Cilindro Definições

Cilindro:

- ullet \dot{C}_b Centro da base do cilindro
- ullet $ec{d}_c$ Direção do eixo do cilindro
- h Altura do cilindro
- r Raio da base do cilindro
- \dot{C}_t Centro do topo do cilindro: $\dot{C}_t = \dot{C}_b + h ec{d}_c$

Matrizes:

- ${f Q}$ Matriz de projeção sobre ao eixo $ec{d}_c:{f Q}=ec{d}_c^{\ t}ec{d}_c$
- ${f M}$ Matriz de projeção ortogonal ao eixo $ec{d}_c:{f M}={f I}-{f Q}$

Raio:

- $R(t)=\dot{P_0}+ec{d_r}t$ The trustworthy equação do raio
- $\dot{P}=R(t)$ Um ponto de colisão hipotético do raio com as superfícies calculadas

Superfície cilíndrica

Para um ponto \dot{P} na superfície de um cilindro, devemos checar duas coisas:

- 1. A distância desse ponto para o eixo do cilindro é igual ao raio do cilindro
- 2. A distância desse ponto pra base do cilindro está entre 0 e h

Assim, basta checar se:

$$|\mathbf{M} \vec{C_bP}| = r$$
 $\Longrightarrow \ (\mathbf{M} \vec{C_bP}) \cdot (\mathbf{M} \vec{C_bP}) - r^2 = 0$

E com $ec{C_bP}=P_0+ec{d_rt}-C_b=(C_b-P_0)+ec{d_rt}$ Substituindo $ec{w}=(C_b-P_0)$, temos

$$(\mathbf{M}\vec{w} + \mathbf{M}\vec{d_r}t) \cdot (\mathbf{M}\vec{w} + \mathbf{M}\vec{d_r}t) - r^2 = 0$$

$$\implies t^2 \mathbf{M}\vec{d_r} \cdot \mathbf{M}\vec{d_r} + 2t\mathbf{M}\vec{d_r} \cdot \mathbf{M}\vec{w} + \mathbf{M}\vec{w} \cdot \mathbf{M}\vec{w} - r^2 = 0$$

Coeficientes finais:

$$a = \mathbf{M} ec{d}_r \cdot \mathbf{M} ec{d}_r, \quad b = \mathbf{M} ec{d}_r \cdot \mathbf{M} ec{w}, \quad c = \mathbf{M} ec{w} \cdot \mathbf{M} ec{w} - r^2$$

Daí é ver se $\Delta \geq 0$, pegar a raíz (t) não-negativa mais próxima (t < 0) significa que o ponto de colisão está atrás do observador), e checar se o ponto de colisão $\dot{P} = r(t)$ está entre a base e o topo do cilindro.

$$0 \leq \vec{C_bP} \cdot \vec{d_c} \leq h$$

Vetor normal:

O vetor normal é simplesmente a projeção de $ec{C_bP}$ no plano ortogonal a $ec{d_c}:ec{n}=\mathbf{M}ec{C_bP}$

(não esqueça de normalizar o vetor!)

$$ec{n} = rac{ec{\mathbf{M}} ec{C_bP}}{|ec{\mathbf{M}} ec{C_bP}|}$$

Base do cilindro

Podemos usar a técnica de teste de colisão com um plano. Pra base do cilindro:

• Ponto conhecido do plano: \dot{C}_b

• Normal do plano: $ec{n_{base}} = -ec{d_c}$

 $oldsymbol{ec{w}}=\dot{P_0}-\dot{C_b}$

$$t = -rac{ec{w}\cdot -ec{d}_c}{-ec{d}_c\cdot ec{d}_x}$$

(Não esquecer de checar se $\vec{n}\cdot\vec{d_r} \neq 0$ e se t>0) (t<0 significa que o ponto de colisão está atrás do observador)

Ademais, devemos checar se a distância do ponto \dot{P} dado por R(t) até o centro da base é menor ou igual ao raio r da base do cilindro. O ponto pertecer ao plano da base do cilindro não significa que ele pertence à **base** do cilindro em si.

$$|\dot{P}-\dot{C}_b| \leq r$$

(não confundir \dot{P} com \dot{P}_0).

Devemos fazer o mesmo pro topo do cilindro:

• Ponto conhecido do plano: $\dot{C}_t = \dot{C}_b + h \vec{d}_c$

• Normal do plano: $ec{n_{topo}} = ec{d}_c$

 $ullet w_{topo}^{ec{}}=\dot{P_0}-\dot{C_t}$

$$t = -rac{ec{w_{topo}\cdotec{d}_c}}{ec{d}_c\cdotec{d}_r}$$

$$|\dot{P}-\dot{C}_t| \leq r$$

Por fim, checar qual a colisão mais próxima (a da superfície do cilindro, a da base do cilindro, ou a do topo), etc.