

เครื่องให้อาหารแมวจากระยะไกล

นายชนภัทร ดวงจรัส นายผดุงเดช มิ่งขวัญ นางสาววิยะดา นุ่นกระจาย นายชัยวัฒน์ ก่อนเก่า

โครงงานนี้เป็นส่วนหนึ่งของรายวิชาอินเทอร์เน็ตทุกสรรพสิ่ง (IOT)
สาขาวิเคราะห์และการจัดการข้อมูลขนาดใหญ่
คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยเทคโนโลยีราชมงคลธัญบุรี

คำนำ

รายงานเล่มนี้เรื่อง เครื่องให้อาหารแมวระยะ ไกล เป็นส่วนหนึ่งของรายวิชาอินเทอร์เน็ตทุกสรรพ สิ่ง (IOT) โดยมีจุดประสงค์เพื่อศึกษาความรู้เกี่ยวกับการทำงานของ code แผงวงจรและการประยุกต์ใช้ ซึ่งรายงานเล่มนี้มีเนื้อหาเกี่ยวกับการทำงานของการเขียน code การใช้แผงวงจรและการประยุกต์ใช้ในงาน ต่างๆได้

ซึ่งรายงานเรื่อง เครื่องให้อาหารแมวระยะไกล เล่มนี้พวกเราได้วางแผนการดำเนินงานการศึกษา ค้นคว้าเป็นเนื้อหาเพื่อให้ง่ายต่อการศึกษาต่อหรือนำไปประยุกต์ใช้ในงานต่างๆต่อไปได้ ทางกลุ่มของเรา ต้องขอขอบคุณ อาจารย์ผู้ให้ความรู้และแนวทางในการศึกษา วิจัยที่เกี่ยวข้องกับชิ้นงาน และสมาชิกในกลุ่ม ที่ช่วยในการปฏิบัติงานตลอดมา

จึงหวังว่า รายงานเล่มนี้จะเป็นประโยชน์แก่ผู้ที่ได้อ่านหรือศึกษาต่อหากผิดพลาดประการใด ขออภัยมา ณ ที่นี้ด้วย

สารบัญ

เรื่อง	หน้า
บทที่ 1 บทนำ	5-7
1.1 ที่มาและความสำคัญของปัญหา	5
1.2 ขอบเขตของการคำเนินงาน	5
1.3 ผลที่คาดว่าจะได้รับ	5
1.4 รายการวัสดุอุปกรณ์ที่ต้องใช้	6
1.5 ตารางการการดำเนินงาน	7
บทที่ 2 ทฤษฎีและงานวิจัยที่เกี่ยวข้อง	8-13
2.1. TCP/IP	8
2.1.1 การทำงานของ TCP/IP	9
2.2 ESP 8266	9
2.2.1 การเขียนโปรแกรมควบคุมการทำงาน ESP 8266	9
2.2.2 GPIO ของ ESP 8266	10
2.2.3 ขา GPIO ที่ใช้ในการสร้างชิ้นงานชิ้นนี้ประกอบด้วย	10
2.3 Blynk	11
2.4 Arduino IDE	11
2.4.1 Libraries คืออะไร	11
2.4.1.1 Libraries ที่ใช้ในการเขียนโค๊คลง ESP 8266	12
งานวิจัยที่เกี่ยวข้อง	13
บทที่ 3 วิธีการดำเนินงาน	14-15
3.1 ภาพวงจรวิธีการคำเนินงาน	14
3.1.1 Push Switch module	15
3.2.1 LED module	15
3.3.1 Servo Motor	15
3.4.1 Ultrasonic sensor	15
บทที่ 4 ผลการคำเนินงาน	16-23
4.1 การเรียกใช้ Libraries	16
4.2 การ Define	17

4.3 การกำหนดค่าใน function setup	18
4.4 กำหนดการทำงานใน Function loop	18
4.5 กำหนดการทำงานของ Servo ผ่าน ขา V1 ของ Blynk	19
4.6 Function reset_wifi() สำหรับ reset wifi	20
4.7 Function read_ultraSonic() อ่านค่าจาก ultrasonic()	20
4.8 Function ultrasonic() ทำการรับค่าจากอุปกรณ์ ultrasonic	21
4.9 Set-Up ของแอปพลิเคชัน Blynk	22
4.10 การ Config WIFI	23
บทที่ 5 สรุปผลและข้อเสนอแนะ	24
5.1 สรุปผลการคำเนินการ	24
5.2 ข้อเสนอแนะ	24
บรรณานุกรม	25

บทที่ 1

บทนำ

1.1 ที่มาและความสำคัญของปัญหา

ในปัจจุบันเทคโนโลยีมีความสำคัญอย่างมากในการใช้ชีวิต รวมไปถึงการควบคุมอุปกรณ์จากระยะไกล ซึ่งมีความรวดเร็วอย่างมาก โดยพวกเรานั้นจึงได้ศึกษาข้อมูลที่เกี่ยวกับอุปกรณ์ที่เกี่ยวข้องกับระบบ IOT หรือเรียกอีกอย่างนึงว่า "อินเทอร์เน็ตทุกสรรพสิ่ง" ซึ่งเราได้เล็งเห็นความสำคัญตรงนี้ เราจึงได้สร้าง อุปกรณ์ที่จะเชื่อมต่อกับอินเทอร์เน็ตขึ้นมา โดยอุปกรณ์นั้นมีตัวกลางการเชื่อมต่อเป็น แอปพลิเคชัน Blynk และ โปรแกรมในการใช้เขียนนั้นเป็น Arduino

ซึ่งที่กล่าวมานั้นทำให้เราได้สร้างอุปกรณ์ที่เกี่ยวกับระบบ IOT ขึ้นมาโดยมีการทำงานเกี่ยวกับการให้ อาหารแมวจากระยะไกล โดยพวกเราพบปัญหาจากตัวพวกเราเองโดยที่พวกเรานั้นลืมให้อาหารสัตว์เลี้ยง เหตุผลเหล่านี้ เราจึงนำปัญหาและไปสร้างเครื่องมือที่เกี่ยวกับการให้อาหารแมวจากระยะไกล และต่อยอด ให้ดีขึ้นในภายภาคหน้า

1.2 ขอบเขตของการดำเนินงาน

- 1.2.1 ระบบตัวเครื่องนั้นทำงานผ่านการใช้งานโดย แอปพลิเคชัน Blynk
- 1.2.2 ตัวเครื่องนั้นสามารถควบคุมการให้อาหารจากระยะใกลได้
- 1.2.3 ตัวเครื่องมีการแจ้งเตือนผ่านแอปพลิเคชัน LINE ว่ามีการเคลื่อนใหวของสัตว์เลี้ยง

1.3 ผลที่คาดว่าจะได้รับ

- 1.3.1 เครื่องให้อาหารสัตว์จะสามารถใช้งานได้จริง
- 1.3.2 เครื่องให้อาหารสัตว์จะสามารถรใช้งานระยะไกลผ่านอินเทอร์เน็ตได้

1.4 รายการวัสดุอุปกรณ์ที่ต้องใช้

- 1.4.1 บอร์ค ESP8266
- 1.4.2 เซนเซอร์ตรวจจับการเคลื่อนใหว
- 1.4.3 มอเตอร์ Servo
- 1.4.4 สวิตช์
- 1.4.5 \[\frac{1}{M} LED
- 1.4.6 สาย Jumper
- 1.4.7 สาย Micro USB
- 1.4.8 ปืนกาว
- 1.4.9 กาวร้อน
- 1.4.10 กาวแท่ง
- 1.4.11 กาวร้อน
- 1.4.12 ตะกั่ว
- 1.4.13 บัดกรีแผงวงจร
- 1.4.14 ใม้กระดานหนา 3 มม. ขนาด A4
- 1.4.15 ไม้กระดานหนา 3 มม. ขนาด A3
- 1.4.16 เลื่อยไม้
- 1.4.17 เคเบิลไทล์
- 1.4.18 แผงใช่ปลา

1.5 ตารางการการดำเนินงาน

-7		ระยะเวลาในการดำเนินงาน																			
ที่	กิจกรรม		กรกภู	าคม		สิงหาคม			กันยายน			ตุลาคม			พฤษจิกายน						
1	การวางแผน																				
	โครงงาน																				
2	การวิเคราะห์																				
	ปัญหาเพื่อ																				
	สร้างขึ้นงาน																				
3	นำเสนอ																				
	โครงงานก่อน																				
	ลงมือทำชิ้นงาน																				
	ବହିଏ																				
4	ออกแบบ																				
	ชิ้นงาน																				
5	จัดทำรูปเล่ม																				
	และนำเสนอ																				
	โครงงาน																				

บทที่ 2

ทฤษฎีและงานวิจัยที่เกี่ยวข้อง

ในบทความนี้จะกล่าวถึงหลักการและทฤษฎีที่เกี่ยวข้องกับอุปกรณ์และการสร้างเครื่องให้อาหารแมว จากระยะใกลซึ่งประกอบด้วย TCP/IP ,แผงวงจร ESP 8266 ,Blynk จะทำงานโดยมี Blynk เป็นตัวควบคุม จากระยะใกล ผ่าน Http โดยเป็นตัวนำส่งข้อมูลผ่านเครือข่ายใร้สาย

2.1.TCP/IP

TCP/IP หรือ Transmission Control Protocol / Internet Protocol คือชุดของโปร โตคอลการสื่อสารที่ ใช้ใน การเชื่อมต่ออุปกรณ์เครือข่ายบนอินเทอร์เน็ต TCP/IP ยังสามารถใช้เป็นโปรโตคอลการสื่อสารในเครือข่าย คอมพิวเตอร์ส่วนตัว ชุด IP Adress ทั้งหมด – ชุดของกฎและขั้นตอน – มักเรียกกันว่า TCP / IP TCP และIP เป็นโปรโตกอลหลักสองโปรโตกอลแม้ว่าจะมีโปรโตกอล อื่น ๆ รวมอยู่ในชุดก็ตาม ชุดโปรโตกอล TCP / IP ทำหน้าที่เป็นชั้นนามธรรมระหว่างแอปพลิเคชันอินเทอร์เน็ตและผ้าการกำหนดเส้นทาง / การสลับ TCP / IP ระบุวิธีการแลกเปลี่ยนข้อมูลทางอินเทอร์เน็ต โดยการให้การสื่อสารแบบ end-to-end ซึ่งระบุว่าควร แบ่งออกเป็นแพ็กเก็ตกำหนดแอดเครสส่งกำหนดเส้นทางและรับที่ปลายทางอย่างไร TCP / IP ต้องการการ จัดการจากส่วนกลางเพียงเล็กน้อยและ ได้รับการออกแบบมาเพื่อให้เครือข่ายมีความน่าเชื่อถือด้วย ความสามารถในการกู้คืนโดยอัตโนมัติจากความล้มเหลวของอุปกรณ์ใด ๆ บนเครื่อข่าย โปรโตคอลหลักสองโปรโตคอลในชุด IP Address ทำหน้าที่เฉพาะ TCP กำหนดวิธีที่แอปพลิเคชันสามารถ สร้างช่องทางการสื่อสารผ่านเครือข่าย นอกจากนี้ยังจัดการวิธีการรวมข้อความเป็นแพ็กเก็ตขนาดเล็กก่อนที่ จะส่งผ่านอินเทอร์เน็ตและประกอบใหม่ตามลำดับที่ถกต้องตามที่อย่ปลายทาง IP กำหนดวิธีกำหนดแอดเครสและกำหนดเส้นทางแต่ละแพ็กเก็ตเพื่อให้แน่ใจว่าไปถึงปลายทางที่ถกต้อง คอมพิวเตอร์เกตเวย์แต่ละเกรื่องบนเครือข่ายจะตรวจสอบที่อยู่ ${
m IP}$ นี้เพื่อกำหนดตำแหน่งที่จะส่งต่อข้อกวาม ซับเน็ตมาสก์คือสิ่งที่บอกคอมพิวเตอร์หรืออุปกรณ์เครือข่ายอื่น ๆ ส่วนใคของที่อยู่ IP ที่ใช้เพื่อแสดง เครือข่ายและส่วนใคที่ใช้แทนโฮสต์หรือคอมพิวเตอร์เครื่องอื่นบนเครือข่าย การแปลที่อยู่เครือข่าย (NAT) คือการจำลองเสมือนของที่อยู่ IP NAT ช่วยปรับปรุงความปลอดภัยและลด จำนวนที่อยู่ IP ที่องค์กรต้องการ

2.1.1 การทำงานของ TCP/IP

TCP / IP ใช้ รูปแบบการสื่อสาร ใคลเอนต์เซิร์ฟเวอร์ที่ผู้ใช้หรือเครื่อง (ใคลเอนต์) ให้บริการเช่นการส่งเว็บ เพจโดยคอมพิวเตอร์เครื่องอื่น (เซิร์ฟเวอร์) ในเครือข่าย

โดยรวมแล้วชุด โปร โตคอล TCP / IP ถูกจัดประเภทเป็นแบบไม่ระบุ สถานะซึ่งหมายความว่าคำขอของ ใคลเอ็นต์แต่ละรายการถือว่าใหม่เนื่องจากไม่เกี่ยวข้องกับคำขอก่อนหน้า การไร้สัญชาติทำให้เส้นทาง เครือข่ายเป็นอิสระเพื่อให้สามารถใช้งานได้อย่างต่อเนื่อง

2.2 ESP 8266

ESP8266 เป็นชื่อเรียกของชิฟของโมคูล ESP8266 สำหรับติดต่อสื่อสารบนมาตรฐาน WiFi ทำงานที่
แรงคันไฟฟ้า 3.0-3.6V ทำงานใช้กระแสโดยเฉลี่ย 80mA รองรับคำสั่ง deep sleep ในการประหยัดพลังงาน
ใช้กระแสน้อยกว่า 10 ไมโครแอมป์ สามารถ wake up กลับมาส่งข้อมูลใช้เวลาน้อยกกว่า 2 มิลลิวินาที
ภายในมี Low power MCU 32bit ทำให้เราเขียนโปรแกรมสั่งงานได้ มีวงจร analog digital converter ทำให้
สามารถอ่านค่าจาก analog ได้ความละเอียด 10bit ทำงานได้ที่อุณหภูมิ -40 ถึง 125 องศาเซลเซียส
รายละเอียดเพิ่มเติมจากผู้ผลิตอ้างอิงตามลิงก์นี้ ESP8266 Datasheet

เมื่อนำชิฟ ESP8266 มาผลิตเป็นโมดูลหลายรุ่น ก็จะขึ้นต้นด้วย ESP866 แล้วตามด้วยรุ่น เช่น ESP-01 , ESP-03 , ESP-07 , ESP-12E

ESP8266 ติดต่อกับ WI-FI แบบ Serial สามารถเขียนโปรแกรมลงไปในชิฟ โดยใช้ Arduino IDE ได้ ทำให้ การเขียนโปรแกรมและใช้งานเป็นเรื่องง่าย คล้ายกับการใช้ Arduino แน่นอนว่าสามารถติดต่ออุปกรณ์อื่น ๆ เซนเซอร์ ต่าง ๆ แบบสไตล์ Arduino ถ้ามีพื้นฐาน Arduino อยู่แล้ว ก็เข้าใจและใช้งานได้รวดเร็ว

2.2.1 การเขียนโปรแกรมควบคุมการทำงาน ESP 8266

การเขียนโปรแกรมควบคุมจะต้องใช้การเขียนชื่อที่ขาของอุปกรณ์ ที่เป็น GPIO – General Purpose Input/Output เป็นการเขียนควบคุมการทำงานได้หลากหลาย ไม่ว่าจะเป็น Input รับค่าจาก Sensor มาแปลง เป็นค่า Digital หรือการทำเป็น Output ส่งสัญญาณไปยังอุปกรณ์ หรือทริกเกอร์สัญญาณ ให้กับอุปกรณ์ที่ รองรับการทำงานนี้ และทำได้หลากหลายมากกว่า เ คำสั่งใน Pin เดียว

2.2.2 GPIO VOV ESP 8266

มีทั้งหมด 9 ขา D0 – D8 จะรองรับการทำงานที่เป็น Digital Input/Output และ 1 ขา A0 สำหรับ Analog ตาม ตารางด้านล้าง (ฝั่งที่เป็น SD2, SD3 เป็นการรับค่าจาก SD Card จะ ไม่แนะนำให้ไปใช้งานในการควบคุม ต่างๆ)

*Pin is high on boot
*Boot failure if pulled low
*Boot failure if pulled high

Best Pins for Input (best to worst)					
Board Label	Raw Pin Number				
D1	5				
D2	4				
D5	14				
D6	12				
D7	13				
D0	16				
SD2	9				
SD3	10				
RX	3				

Best Pins for Ou	tput (best to worst)						
Board Label	Raw Pin Number						
D1	5						
D2	4						
D5	14						
D6	12						
D7	13						
D8	15						

2.2.3 ขา GPIO ที่ใช้ในการสร้างชิ้นงานชิ้นนี้ประกอบด้วย

D1 ต่อกับขา Echo ของ Ultrasonic

D2 ต่อกับขา Trig ของ Ultrasonic ทำหน้าที่ตรวจจับวัตถุ

D3 ต่อกับขา Data ของ Servo ทำหน้าที่หมุน

D7 ต่อกับ Switch ทำหน้าที่ Reset WIFI

D8 ต่อกับ LED ทำหน้าที่เป็นไฟสัญญาณแจ้งสถานะของ WIFI

2.3 Blynk

Blynk App คือ แอปพลิเคชันสำเร็จรูปที่ใช้สำหรับงานที่เกี่ยวกับอินเทอร์เน็ตของสรรพสิ่ง (Internet of Things, IoT) ที่ทำให้เราสามารถเชื่อมต่ออุปกรณ์ต่าง ๆ เข้ากับอินเทอร์เน็ตของสรรพสิ่ง (Internet of ข่าย (Server) ใปยังอุปกรณ์ลูกข่าย (Client) เช่น Arduino, ESP-8266, ESP-32, NodeMCU และ Raspberry Pi ซึ่งแอปพลิเคชัน Blynk สามารถใช้งานได้ฟรีและใช้งานได้ทั้งบนระบบปฏิบัติการ IOS และ Android รูปที่ 12.2 แสดงภาพรายการอุปกรณ์ต่าง ๆ ที่สามารถเชื่อมต่อ แสดงผล และ/หรือ ควบคุมด้วย Blynk App ได้ โดยเริ่มต้นหลังจากสมัครเข้าใช้งาน

2.4 Arduino IDE

บอร์ด Arduino เป็นไมโครคอนโทรถเลอร์ ที่สามารถอ่านอินพุตจากตัวตรวจจับแสง, ใช้นิ้วกดบนปุ่ม
หรือส่งข้อความไปยัง Twitter และเปลี่ยนเป็นเอาต์พุตเปิดใช้งานมอเตอร์, เปิดไฟ LED หรือเผยแพร่ข้อมูล
ไปยังระบบอินเทอร์เน็ตได้อีกด้วย ซึ่งผู้ใช้งานสามารถควบคุมบอร์ดว่าต้องทำอะไร โดยส่งชุดคำสั่งไปยัง
ไมโครคอนโทรถเลอร์บนบอร์ด ในการทำเช่นนั้นคุณต้องใช้ภาษา Arduino ซึ่งมีคำสั่งเพิ่มขึ้นมาเพื่อเขียนใน
รูปแบบภาษา C++ และใช้ซอฟต์แวร์ Arduino IDE เป็นหลักในการประมวลผล

ในช่วงหลายปีที่ผ่านมา Arduino เป็นส่วนหลักของโครงการมากมาย ตั้งแต่วัตถุประสงค์ประจำวันไป ขนถึงเครื่องมือวิทยาศาสตร์ที่ซับซ้อน ชุมชนออนไลน์ ของ Maker ทั่วโลก ซึ่งมี นักเรียน/นักศึกษา, ผู้ชอบ ทำงานอดิเรก, ศิลปิน, นักเขียนโปรแกรมและผู้เชี่ยวชาญ ได้รวมตัวกันใช้งานสำหรับ แพลตฟอร์มแบบเปิด นี้ การมีส่วนร่วมของพวกเขาได้เพิ่มความรู้ที่เข้าถึงได้อย่างเหลือเชื่อซึ่งสามารถเป็นประโยชน์อย่างมาก สำหรับมือใหม่และผู้เชี่ยวชาญ

Arduino มีจุดกำเนิดเริ่มต้นขึ้นที่สถาบันการออกแบบปฏิสัมพันธ์ Ivrea ประเทศอิตาลี ซึ่งเป็น เครื่องมือที่ง่ายสำหรับการสร้างต้นแบบที่รวดเร็วมุ่งเป้าไปที่นักเรียนที่ไม่มีพื้นฐานด้านอิเล็กทรอนิกส์และ การเขียนโปรแกรม แต่ก็มีผู้ใช้หลายคนพยายามนำ Arduino ไปใช้ในระบบงานจริง ๆ ทั้งนี้ขึ้นอยู่กับปัญหา และความยากง่ายของงานนั้น ๆ Arduino เริ่มมีการเปลี่ยนแปลงเพื่อปรับให้เข้ากับความต้องการและความท้า ทายใหม่ ๆ จากบอร์ด 8 บิตแบบง่าย ๆ กับผลิตภัณฑ์สำหรับแอปพลิเคชันสำหรับ IoT, อุปกรณ์สวมใส่, เครื่องพิมพ์ 3 มิติ และสภาพแวดล้อมแบบฝั่งตัว

2.4.1 Libraries คืออไร

Libraries คือ โค้ดที่ทำให้ sensor และโมคูลต่างๆ ใช้งานได้ง่ายขึ้นสะควกต่อการใช้งานและไม่มี ความซับซ้อนมากนัก ซึ่งการใช้งาน Libraries บางตัวผู้ใช้งานจะต้องเพิ่มเข้าไปด้วยตนเอง

2.4.1.1 Libraries ที่ใช้ในการเขียนโค๊ดลง ESP 8266

TridentTD_LineNotify ใลบรารี่นี้ทำหน้าที่แจ้งเตือนผ่านแอปพลิเคชันLINE
WiFiManager ใลบรารี่นี้ทำหน้าที่เชื่อมต่อไวฟายตัวใหม่ถ้าหากย้ายไปที่อื่น และสามารถเชื่อมไวฟายตัวเก่า
SimpleTimer ใลบรารี่นี้ทำหน้าที่หน่วงเวลาในการให้อาหารสัตว์ใหลลงมาตามระยะเวลาที่กำหนด
Servo ใลบรารี่นี้ทำหน้าที่หมุนเพื่อเปิดอาหารสัตว์
Blynk ใลบรารี่นี้ทำหน้าที่สั่งการเปิด-ปิดอาหารจากทางไกลโดยผ่านแอปพลิเคชัน Blynk

งานวิจัยที่เกี่ยวข้อง

ชื่อโครงการ เครื่องให้อาหารสัตว์จากระยะไกล

ผู้จัดทำ นักศึกษามหาวิทยาลัยราชมงคลธัญบุรี คณะวิทยาศาสตร์และเทคโนโลยี สาขาวิเคราะห์และการ จัดการข้อมูลขนาดใหญ่ กลุ่มที่ 5

ศึกษาจาก เนื่องจากกลุ่มบุคคลที่เราได้ทำการสำรวจส่วนใหญ่มักจะเลี้ยงแมวและได้พบประสบปัญหาเวลา ออกไปข้างนอกหรือไม่ว่าง อาจจะไม่มีใครให้อาหารสัตว์เลี้ยงของเรา

เครื่องให้อาหารสัตว์นี้ จึงทำให้หมดปัญหาเกี่ยวกับการให้อาหารเมื่อเวลาเราไม่อยู่บ้านหรือไม่ว่างที่ จะให้อาหารแก่สัตว์ โดยเครื่องให้อาหารสัตว์จากระยะไกลเครื่องนี้จะคอยให้อาหารสัตว์เลี้ยงโดยจะแจ้ง เตือนเมื่อสัตว์เลี้ยงของเราเข้ามาใกล้เครื่องให้อาหาร ซึ่งตัวเครื่องจะตรวจจับและส่งข้อความแจ้งเตือนผ่าน แอพพลิเคชันไลน์และเรากดสั่งอาหารผ่านแอปพลิเคชัน Blynk เพื่อปล่อยอาหารลงมา อีกทั้งยังช่วยในเรื่อง ของระเบียบในการกินของสัตว์เลี้ยง และสามารถควบคุมปริมาณอาหารของสัตว์ได้ เพื่อที่จะไม่ให้สัตว์เลี้ยง ของเราได้กินเยอะไปจนเหลือทิ้งหรือไม่พอต่อการกินของสัตว์

เนื่องจากโครงงานที่เรานำมาอ้างอิงยัง ไม่มีการแจ้งเตือนและยัง ไม่มีเซนเซอร์ตรวจจับว่าสัตว์เลี้ยง เดินมากินอาหาร กลุ่มของเราจึง ได้ใส่เซนเซอร์เข้า ไปให้รู้ ว่าสัตว์เลี้ยงมากินอาหารตอน ไหนและต้องให้ อาหารเมื่อใด แต่จากอ้างอิงที่นำมานั้น จากวิจัยดังกล่าว ได้มีการบันทึกจำนวนปริมาณในการกิน และ โหมด คำสั่งที่สามารถกดปุ่มคำสั่ง ได้จากตัวแป้นที่ติดกับตัวเครื่อง ซึ่งในส่วนนี้นั้นเราเป็นจุดอ่อนของชิ้นงานเรา เพราะเรา ไม่มีการบันทึกอาหารว่าสัตว์เลี้ยงบริโภค ไปเท่าใด เราจึงนำการควบคุมจากระยะ ไกลผ่านแอป พลิเคชัน Blynk เข้ามาแทนในส่วนนี้

เอกสารอ้างอิง

ชื่อเรื่อง : เครื่องให้อาหารสัตว์อัตโนมัติ

นักวิจัย : กลุ่มนักศึกษาคณะวิศวกรรม ภาควิชาวิศวกรรมไฟฟ้า มหาวิทยาลัยนเรศวร

คำค้น : เครื่องให้อาหารสัตว์อัตโนมัติ

หน่วยงาน :-

ผู้ร่วมงาน :-

ปีที่พิมพ์ :2557

ช้างอิง: http://nuir.lib.nu.ac.th/dspace/bitstream/123456789/3134/1/PongpetInvakul.pdf

บทที่ 3

วิธีการดำเนินการ

3.1 Push Switch module

ขา V ต่อไฟเลี้ยง 5V(+) ที่ Breadboad (สีแดง) ขา G ต่อลง Ground(-) ที่ Breadboad(สีดำ) ขา S ต่อเข้า D7 ที่ ESP8266(สีเหลือง)

3.2 LED module

ขา VCC ต่อ ไฟเลี้ยง 5V(+) ที่ Breadboad (สีแคง) ขา GND ต่อลง Ground(-) ที่ Breadboad(สีดำ) ขา IN ต่อเข้า D8 ที่ ESP8266(สีเหลือง)

3.3 Servo Motor

ขา VCC ต่อไฟเลี้ยง 5V(+) ที่ Breadboad (สีแคง) ขา GND ต่อลง Ground(-) ที่ Breadboad(สีดำ) ขา PWM ต่อเข้า D5 ที่ ESP8266(สีส้ม)

3.4 Ultrasonic sensor

ขา VCC ต่อไฟเลี้ยง 5V(+) ที่ Breadboad (สีแคง) ขา GND ต่อลง Ground(-) ที่ Breadboad(สีดำ) ขา Trig ต่อเข้า D1 ที่ ESP8266(สีเขียว) ขา Echo ต่อเข้า D1 ที่ ESP8266(สีฟ้า)

บทที่ 4

ผลการดำเนินงาน

ในบทความนี้จะแสดงรายละเอียดของการทำงานๆภายในโปรแกรมเครื่องให้อาหารแมวจาก ระยะไกล โดยจะอธิบายการทำงานในแต่ล่ะส่วนที่ได้ใช้อย่างละเอียดภายในรูปและข้อความด้านล่าง

4.1 การเรียกใช้ Libraries

```
    #include <TridentTD_LineNotify.h> //เรียกใช้ Library แจ้งเดือนโดย Line
    #include <BlynkSimpleEsp8266.h> //เรียกใช้ Library Blynk แบบง่ายสำหรับ ESP8266 https://github.com/b
    #include <WiFiManager.h> //เรียกใช้ Library WifiManager โดยเป็นการจัดการเชื่อมต่อ Wifi ฝ่าน WebManager
    #include <ESP8266WiFi.h> //เรียกใช้ Wifi ของ ESP82666
    #include <SimpleTimer.h> //กำหนดเวลาการทำงานของแต่ละ Function แบบแยกกันโดยไม่ใช้ Delay
    #include <Servo.h> //เรียกใช้ Library Servo เพื่อให้ใช้งาน คำสั่งควบคุม Servo ได้
```

#include <TridentTD_LineNotify.h> //เรียกใช้ Library แจ้งเตือนโดย Line
#include <BlynkSimpleEsp8266.h> //เรียกใช้ Library Blynk แบบง่ายสำหรับ ESP8266
https://github.com/blynkkk/blynk-library/releases/download/v1.1.0/Blynk_Release_v1.1.0.zip
#include <WiFiManager.h> //เรียกใช้ Library WifiManager โดยเป็นการจัดการเชื่อมต่อ Wifi ผ่าน
WebManager

#include <ESP8266WiFi.h> //เรียกใช้ Wifi ของ ESP82666
#include <SimpleTimer.h> //กำหนดเวลาการทำงานของแต่ละ Function แบบแยกกันโดยไม่ใช้ Delay
#include <Servo.h> //เรียกใช้ Library Servo เพื่อให้ใช้งาน คำสั่งควบคุม Servo ได้

4.2 การ Define

```
#define BLYNK_PRINT Serial
#define sw D7 //ประกาศตัวแปร sw รับค่าจากขา D7
#define led D8 //ประกาศตัวแปร led รับค่าจากขา D8
#define LINE_TOKEN "yBK8Z5TBpvbRFqJU8IsZmNqUX1ctHiQKVDAmWPMePKU" //รับ Token จาก line notify
#define BLYNK_TOKEN "H14XPmbsr26dYvZDm66vlRpiH4ICrp5J" //รับ Blynk_Token(auth)
```

#define sw D7 //ประกาศตัวแปร sw รับค่าจากขา D7

#define led D8 //ประกาศตัวแปร led รับค่าจากขา D8

#define LINE_TOKEN "yBK8Z5TBpvbRFqJU8IsZmNqUX1ctHiQKVDAmWPMePKU" //รับ Token จาก line notify

#define BLYNK_TOKEN "H14XPmbsr26dYvZDm66vlRpiH4ICrp5J" //รับ Blynk_Token(auth)

```
WiFiManager wm; //ประกาศตัวแปร wm รับค่าจาก Function WiFiManager
SimpleTimer timer; //ประกาศตัวแปร timer รับค่าจาก Function SimpleTimer
Servo servo; //ประกาศตัวแปร servo รับค่าจาก Function Servo
WidgetLED detected(V4); ///ประกาศตัวแปร detected รับค่าจากบา V4 จาก application Blynk
```

WiFiManager wm; //ประกาศตัวแปร wm รับค่าจาก Function WiFiManager

SimpleTimer timer; //ประกาศตัวแปร timer รับค่าจาก Function SimpleTimer

Servo servo; //ประกาศตัวแปร servo รับค่าจาก Function Servo

WidgetLED detected(V4); ///ประกาศตัวแปร detected รับค่าจากขา V4 จาก application Blynk

```
const int pingPin = D1; //ประกาศตัวแปร PingPin รับค่าจากขา D1 ที่ต่อกับตัว Ultrasonic const int inPin = D2; //ประกาศตัวแปร PingPin รับค่าจากขา D2 ที่ต่อกับตัว Ultrasonic long distance; //ประกาศตัวแปร distance รับค่าระยะทาง int timeout = 180; //ตัวแปร Timeout กำหนดเวลาสำหรับ Wifimanager
```

const int pingPin = D1; //ประกาศตัวแปร PingPin รับค่าจากขา D1 ที่ต่อกับตัว Ultrasonic const int inPin = D2; //ประกาศตัวแปร PingPin รับค่าจากขา D2 ที่ต่อกับตัว Ultrasonic long distance; //ประกาศตัวแปร distance รับค่าระยะทาง int timeout = 180; //ตัวแปร Timeout กำหนดเวลาสำหรับ Wifimanager

4.3 การกำหนดค่าใน function setup

```
void setup() {
    WiFi.mode(WIFI_STA); //กำหนด Wifi เป็นโหมด Station
    Serial.begin(9600); //กำหนดความเร็วในการสื่อสาร 9600
    servo.attach(D5); //กำหนดให้ Servo รับค่าจากขาสัญญาณ D5
    pinMode(sw, INPUT_PULLUP); //ทำการกำหนด PinMode INPUT_PULLUP เป็นสัญญาณเข้ามา
    pinMode(led, OUTPUT);//ทำการกำหนด PinMode OUTPUT เป็นสัญญาณออก
    Blynk.config(BLYNK_TOKEN,"blynk.iot-cm.com", 8080); //กำหนด Token,Domain , port ของ Blynk
    LINE.setToken(LINE_TOKEN);// กำหนด LineToken รับค่ามาจาก LINE_TOKEN
    servo.write(80);//กำหนดให้ Servo เริ่มที่ 80 องศา
    timer.setInterval(100L,reset_wifi); //กำหนดเวลาในการทำงานของ Function โดยใช้ SimpleTimer
    timer.setInterval(5000L,read_ultraSonic); //กำหนดเวลาในการทำงานของ Function โดยใช้ SimpleTimer
}
```

WiFi.mode(WIFI_STA); //กำหนด Wifi เป็นโหมด Station
Serial.begin(9600); //กำหนดความเร็วในการสื่อสาร 9600
servo.attach(D5); //กำหนดให้ Servo รับค่าจากขาสัญญาณ D5
pinMode(sw, INPUT_PULLUP); //ทำการกำหนด PinMode INPUT_PULLUP เป็นสัญญาณเข้ามา
pinMode(led, OUTPUT);//ทำการกำหนด PinMode OUTPUT เป็นสัญญาณออก
Blynk.config(BLYNK_TOKEN,"blynk.iot-cm.com", 8080); //กำหนด Token,Domain , port ของ Blynk
LINE.setToken(LINE_TOKEN);// กำหนด LineToken รับค่ามาจาก LINE_TOKEN
timer.setInterval(100L,reset_wifi); //กำหนดเวลาในการทำงานของ Function โดยใช้ SimpleTimer
timer.setInterval(5000L,read_ultraSonic); //กำหนดเวลาในการทำงานของ Function โดยใช้ SimpleTimer

4.4 กำหนดการทำงานใน Function loop

Blynk.run(); //สั่งให้ Blynk ทำงาน timer.run(): //สั่งให้ Timer ทำงาน

4.5 กำหนดการทำงานของ Servo ฝ่าน ขา V1 ของ Blynk

```
BLYNK_WRITE(V1){
   int pinValue = param.asInt(); // รับค่า pinvalue 0 1 จาก V1
   if (pinValue == 1){
        servo.write(20); //ทำการสั่งให้ Servo หมุน 20 องศาเพื่อเปิดช่องให้อาหารแมว
        LINE.notify("ให้อาหารแมว"); //ทำการส่งการแจ้งเดือนว่าได้ให้อาหารแมวแล้วไปยัง Line Notify
   }
   else if(pinValue == 0){
        servo.write(80); //ทำการสั่งให้ Servo หมุน 80 องศาเพื่อปิดช่องให้อาหารแมว
   }
}
```

```
สั่งให้ทำงานถ้า pinValue == 1 และ pinValue == 0
pinValue == 1
servo.write(20); //ทำการสั่งให้ Servo หมุน 20 องศาเพื่อเปิดช่องให้อาหารแมว
LINE.notify("ให้อาหารแมว"); //ทำการส่งการแจ้งเตือนว่าได้ให้อาหารแมวแล้วไปยัง Line Notify
pinValue == 0
servo.write(80); //ทำการสั่งให้ Servo หมุน 80 องศาเพื่อปิดช่องให้อาหารแมว
```

```
void led_blink() {
    //ทำการสั่งให้ LED กระพริบติด/ดับ 7 ครั้ง
    for (int i = 0; i <= 6; i++){
        delay(500);
        digitalWrite(led,!digitalRead(led));
    }
}</pre>
```

ทำการสั่งให้ LED กระพริบติด/ดับ 7 ครั้ง

4.6 Function reset wifi() สำหรับ reset wifi

```
void reset wifi(){
 //Function reset Wifi ทำงานเมื่อ Sw มีค่าเป็น LOW โดยการกดปุ่มที่ Switch
 if (digitalRead(sw) == LOW) {
   led_blink();//เรียกใช้ Function กระพริบเพื่อบอกว่ามีการ Reset Wifi
   wm.setConfigPortalTimeout(timeout);//ทำการเรียกใช้ WebPortal ในการกำหนด Config(SSID,Password) WifiManager
   //เปลี่ยน Wifi ESP8266 ให้เป็น AP Mode และ กำหนดชื่อให้ Wifi ของ ESP8266
   if (!wm.startConfigPortal("Automatic_Cat_Feeder")) {
     Serial.print("Fail to connect and timeout");
     delay(3000);
     ESP.restart(); //ทำการ Reset ESP8266
     delay(5000);
   digitalWrite(led, LOW); //สั่งให้ไฟดับเมื่อทำการต่อ Wifi สำเร็จ
   LINE.notify("WIFI CONNECTED"); //ส่งข้อความว่า "WIFI CONNECTED" ไปยัง Line
   Serial.print("Wifi Connected");
   Serial.print("IP = ");
   Serial.println(WiFi.localIP());
```

4.7 Function read_ultraSonic() อ่านค่าจาก ultrasonic()

```
void read_ultraSonic(){
   //ทำการอ่านต่าจาก function ultrasonic
   ultraSonic();
   if (distance <= 35){
        digitalWrite(led,HIGH);
        detected.on();
        LINE.notify("ตรวจพบแมวระยะ " +String(distance)+ " CM"); // เมื่อเจอวัตถุในระยะ 35 CM จะส่งแจ้งเดือนทางเป็น LED Blynk และข้อความทาง LINE
   }
   else if (distance >= 36){
        digitalWrite(led,LOW);
        detected.off();
   }
   Blynk.virtualWrite(V2,distance);//ส่งค่าระยะทางไปยัง Blynk
}
```

4.8 Function ultrasonic() ทำการรับค่าจากอุปกรณ์ ultrasonic

```
void ultraSonic() {
  //Function กำหนดค่าต่างๆของตัว ultrasonic โดยแปลงระยะเวลาเป็นระยะทางหน่วย CM
  long duration;
  pinMode(pingPin, OUTPUT);
  digitalWrite(pingPin, LOW);
  delayMicroseconds(2);
  digitalWrite(pingPin, HIGH);
  delayMicroseconds(5);
  digitalWrite(pingPin, LOW);
  pinMode(inPin, INPUT);
  duration = pulseIn(inPin, HIGH);
  distance = (duration/29)/2;
  Serial.print(distance);
  Serial.print("cm");
  Serial.println();
}
```

4.9 Set-Up ของแอปพลิเคชัน Blynk

รูปที่ 1

V1 เซ็ตค่าสำหรับให้อาหารจากระยะไกล โดยมีชื่อว่า Feed_SW

รูปที่ 2

V2 เซ็ตค่าเพื่อแสดงระยะห่างเครื่องกับวัตถุ ตรงหน้าเครื่องให้อาหารสัตว์ โดยตั้งชื่อว่า distance

รูปที่ 3

V4 เซ็ตค่าสำหรับแจ้งเตือนการกระพริบ ไฟในแอปพลิเคชันเมื่อมีวัตถุใกล้ 35 cm โดยตั้งชื่อว่า Detected

รูปที่ 4

แสดงหน้าหลักของ แอปพลิเคชัน Blynk โดยมีปุ่ม ควบคุมการให้อาหาร ระยะห่าง จากวัตถุ และการแจ้งเตือนเมื่อมีวัตถุเข้า ใกล้

4.10 การ Config WIFI

หากต้องการเปลี่ยนการเชื่อมต่อจาก WIFI ใหม่ สามารถเข้าไปตั้งค่าเปลี่ยน ได้โดยการกด ปุ่ม รีเซ็ตค้างเครื่องแล้วเชื่อม WIFI ที่มีชื่อว่า Automatic_Cat_Feeder แล้วหละงจากเชื่อมแล้ว เว็บบราวเซอร์จะนำไปสู่ การ Config WIFI ซึ่งจะขึ้นรูปภาพดังรูป ให้กดปุ่ม Configure WiFi

หลังจากที่เราได้กดเข้ามาแล้ว ให้เลือก WIFI ที่ต้องการเชื่อมต่อ และใส่ รหัสผ่านที่ถูกต้อง

บทที่ 5

สรุปผลและข้อเสนอแนะ

5.1 สรุปผลการคำเนินการ

จากผลการคำเนินการ ศึกษาค้นคว้าข้อมูลในการทำงาน และระบบของเจ้าของการคูแลและการ บริการทำให้เกิดความเข้าใจระบบการทำงานของตนเองมากขึ้นซึ่งได้มีการวิเคราะห์ความต้องการในระบบ การคูแลและการบริการ ระบบที่ถูกพัฒนาขึ้นมาสามารถใช้งานได้ ดังนี้

- 5.1.1 สามารถสมัครสมาชิกได้
- 5.1.2 สามารถเข้าสู่ระบบได้
- 5.1.3 สารามารถสั่งให้เครื่องทำงานได้

5.2 ข้อเสนอแนะ

- 5.2.1 เริ่มจากการรวบรวมข้อมูลทั้งหมคก่อนที่จะออกแบบ
- 5.2.2 ศึกษาข้อมูลและการวางแผนพร้อมการออกแบบ
- 5.2.3 เรียนรู้เกี่ยวกับการเขียนโปรแกรม
- 5.2.4 ควรมีคอมพิวเตอร์ในการคิดแบบและออกแบบในการทดลองใช้

บรรณานุกรม

(มปป.) //2566.//TCP/IP คืออะไร.// สืบค้นเมื่อ 5 พฤษจิกายน 2566 ,/ https://thaiconfig.com/network/tcp-คืออะไร/ (มปป.) 2566. ESP 8266. สืบค้นเมื่อ 5 พฤษจิกายน 2566, https://www.artronshop.co.th/article/11/esp8266-ตอนที่-1-รู้จักกับ-esp-และรุ่นที่นิยมใช้งาน (มปป.) 2566. ขา GPIO ESP 8266. สืบค้นเมื่อ 5 พฤษจิกายน 2566. https://medium.com/educate/esp8266-nodemcu-gpio-การควบคุม-input-output-แบบ-digital-5772faa584cd (มปป.) 2566. Blynk สืบค้นเมื่อ 5 พฤษจิกายน 2566, http://suwitkiravittaya.eng.chula.ac.th/B2i2019BookWeb/blynkapp1.html (มปป.) 2566.//Arduino IDE สืบค้นเมื่อ 5 พฤษจิกายน 2566,/ https://www.scimath.org/articletechnology/item/9815-arduino (มปป.) 2566.Library คืออะไร สืบค้นเมื่อ 5 พฤษจิกายน 2566, https://www.analogread.com/article/16/arduino-เอาไปทำอะไรได้บ้าง-ตอนที่-11-การเพิ่ม-library-ให้กับ โปรแกรม-arduino-ide-ให้ใช้งานได้ใน-4-sten (มปป.) 2566. ศึกษาโค๊ดเพื่อใช้งาน. สืบค้นเมื่อ 5 พฤษจิกายน 2566, https://www.cybertice.com/article __สยามทูเคฟ สยามทูเคฟ. IoT Project การพัฒนาเครื่องให้อาหารแมว Cat Feeder [Video]. สืบค้นเมื่อ 5 พฤษจิกายน 2566, https://www.youtube.com/watch?v=1k9ctS1Krt8&t=326s (มปป.) 2566. เครื่องให้อาหารสัตว์อัตโนมัติ. สืบค้นเมื่อ 5 พฤษจิกายน 2566,

http://nuir.lib.nu.ac.th/dspace/bitstream/123456789/3134/1/PongpetInvakul.pdf