Propriedades de Fecho para Linguagens

Alexandre Ribeiro, José Ivo Araújo e Marina Leite 27 de Agosto de 2025

- 1. Seja $\mathcal{P}(A)$ o conjunto das partes de A.
- (a) Mostre que se $A \subseteq B$, então $\mathcal{P}(A) \subseteq \mathcal{P}(B)$ (1.2)

Demonstração. Sejam A e B tais que $A\subseteq B$. então $S\subseteq A$, então, $S\subseteq \mathcal{P}(A)$. Além disso, temos: (Argumentação confusa!) (justif.)

$$S \subseteq A \implies S \subseteq B$$
 (justif.)
 $\implies S \in \mathcal{P}(B)$ (justif.)

Logo, se $S \in \mathcal{P}(A)$, então $S \in \mathcal{P}(B)$. Portanto, se $A \subseteq B$, então $\mathcal{P}(A) \subseteq \mathcal{P}(B)$.

(b) Verdadeiro ou falso: $\mathcal{P}(A \cap B) = \mathcal{P}(A) \cap \mathcal{P}(B)$? Dê uma prova ou um contraexemplo. (0.0)

Demonstração. Seja $X \in \mathcal{P}(A \cap B)$

$$X \in \mathcal{P}(A \cap B) \Leftrightarrow X \subset (A \cap B) \qquad \qquad \text{(Def. P(A))}$$

$$\Leftrightarrow x \in (A \cap B) \qquad \qquad \text{(Def. } \subset, x \in X) \text{mal formulado!}$$

$$\Leftrightarrow x \in A \text{ e } x \in B \qquad \qquad \text{(Def. } \cap)$$

$$\Leftrightarrow x \in \mathcal{P}(A) \text{ e } x \in \mathcal{P}(B) \qquad \qquad \text{(Def. -P(A))} \qquad \text{falso!}$$

$$\Leftrightarrow x \in \mathcal{P}(A) \cap \mathcal{P}(B) \qquad \qquad \text{(Def. } \cap)$$

(c) Verdadeiro ou falso: $\mathcal{P}(A \cup B) = \mathcal{P}(A) \cup \mathcal{P}(B)$? Dê uma prova ou um contraexemplo.

Demonstração. A afirmação é falsa. Tome o seguinte contra exemplo: Seja $A = \{1,2\}$ e $B = \{3\}$

$$\mathcal{P}(A \cup B) = \mathcal{P}(\{1, 2\} \cup \{3\}) \tag{1}$$

$$= \mathcal{P}(\{1, 2, 3\}) \tag{2}$$

$$= \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}$$
 (3)

Contudo.

$$\mathcal{P}(A) \cup \mathcal{P}(B) = \mathcal{P}(\{1,2\}) \cup \mathcal{P}(\{3\}) \tag{4}$$

$$= \{\emptyset, \{1\}, \{2\}, \{1, 2\}\} \cup \{\emptyset, \{3\}\}$$
 (5)

$$= \{\emptyset, \{1\}, \{2\}, \{1, 2\}, \{3\}\}$$
 (6)

 $Dom(A \times B) = \begin{cases} A, & \text{se } A \neq \emptyset \text{ e } B \neq \emptyset, \\ \emptyset, & \text{se } A = \emptyset \text{ ou } B = \emptyset. \end{cases}$ $Im(A \times B) = \begin{cases} B, & \text{se } A \neq \emptyset \text{ e } B \neq \emptyset, \\ \emptyset, & \text{se } A = \emptyset \text{ ou } B = \emptyset. \end{cases}$

Assim, está provado.

2. Identifique $dom(A \times B)$ e $\underline{im(A \times B)}$ e demonstre o resultado. (0,5)

 $Demonstração.\ dom(A\times B)=A:$

$$dom(A\times B)\subseteq A: {\sf incompleto!}$$

Seja x tal que:

$$x \in dom(A \times B) \Rightarrow$$

falha! $(x,y) \in A \times B \Rightarrow (Def. Domínio)$ veremos os detalhes em sala!

 $x \in A \ \& \ y \in B \Rightarrow (Def. Produto cartesiano)$

 $x \in A$.

$$A \subseteq dom(A \times B)$$
:

$$x \in A \Rightarrow$$

falha! $x \in dom(A \times B)$. (Def. Produto Cartesiano)

3. Mostre que quando $A \neq \emptyset$ e $B \neq \emptyset$, então $A \times B = B \times A$ sse A = B.

2

$$\begin{array}{ll} Demonstraç\~ao. \ (\Rightarrow): & \text{(justif.)} \\ a \in A \ \& \ b \in B \Rightarrow & \text{(justif.)} \\ (a,b) \in A \times B \Rightarrow & \text{(justif.)} \\ (a,b) \in B \times A \Rightarrow & \text{(justif.)} \\ a \in B \Rightarrow & \text{(justif.)} \\ A \subseteq B \\ \text{De modo análogo, } B \subseteq A, \text{logo:} \\ A = B \\ (\Leftarrow): \\ A = B \Rightarrow \text{(justif.)} \\ (A \times B = A \times A = B \times B = B \times A \text{(justif.)} \\ \text{Logo, } A \times B = B \times A \end{array}$$

4. Verifique em detalhes a afirmação de que $\{x_1, x_2\} = \{y_1, y_2\}$ sse $(x_1 = y_1$ e $x_2 = y_2)$ ou $(x_1 = y_2$ e $x_2 = y_1)$

Demonstração. Primeiro, mostraremos que:
$$\{x_1, x_2\} = \{y_1, y_2\} \implies (x_1 = y_1 \text{ e } x_2 = y_2) \text{ ou } (x_1 = y_2 \text{ e } x_2 = y_1)$$

Pela definição de igualdade de conjuntos, temos que:

Assim, teremos 4 casos:

- 1. Caso $x_1 = y_1$:
 - (a) Caso $x_2 = y_1$: Aqui, teremos:

$$\{x_1, x_2\} = \{y_1, y_1\}$$
 (Por substituição)
= $\{y_1\}$
 $\neq \{y_1, y_2\}$

Aqui, chegamos em um absurdo.

(b) Caso $x_2 = y_2$: Aqui, teremos:

$$\{x_1, x_2\} = \{y_1, y_2\}$$
 (Por substituição)

- 2. Caso $x_1 = y_2$:
 - (a) Caso $x_2 = y_1$: Aqui, teremos:

$$\{x_1, x_2\} = \{y_2, y_1\}$$
 (Por substituição)
= $\{y_1, y_2\}$ (Def. conjuntos)

(b) Caso $x_2 = y_2$: Aqui, teremos:

$$\{x_1, x_2\} = \{y_2, y_2\}$$
 (Por substituição)
= $\{y_2\}$
 $\neq \{y_1, y_2\}$

Aqui, chegamos em um absurdo.

Logo,
$$\{x_1, x_2\} = \{y_1, y_2\} \implies (x_1 = y_1 \text{ e } x_2 = y_2) \text{ ou } (x_1 = y_2 \text{ e } x_2 = y_1)$$

Agora, mostraremos que: $(x_1 = y_1 \text{ e } x_2 = y_2)$ ou $(x_1 = y_2 \text{ e } x_2 = y_1) \implies \{x_1, x_2\} = \{y_1, y_2\}$

Aqui, teremos 2 casos:

1. Caso $(x_1 = y_1 e x_2 = y_2)$: Nesse caso:

$$\{x_1,x_2\}=\{y_1,y_2\} \hspace{1cm} (\text{Por substituição})$$

2. Caso $(x_1 = y_2 e x_2 = y_1)$: Nesse caso:

$$\{x_1, x_2\} = \{y_2, y_1\}$$
 (Por substituição)
= $\{y_1, y_2\}$ (Def. conjuntos)

Logo,
$$(x_1 = y_1 \text{ e } x_2 = y_2) \text{ ou } (x_1 = y_2 \text{ e } x_2 = y_1) \implies \{x_1, x_2\} = \{y_1, y_2\}.$$

Portanto,
$$\{x_1, x_2\} = \{y_1, y_2\}$$
 sse $(x_1 = y_1 e x_2 = y_2)$ ou $(x_1 = y_2 e x_2 = y_1)$