3.3.4. Эффект Холла в полупроводниках.

Дорогинин Д.В.

19 сентября 2019 г.

Цель работы: измерение подвижности и концентрации носителей заряда в полупроводниках.

В работе используются: электромагнит с источником питания, амперметр, милливеберметр, реостат, источник питания, цифровой вольтметр, образцы легированного германия.

Описание работы

Схема для измерения ЭДС Холла представлена на рисунке. В зазоре электромагнита создаётся постоянное магнитное поле, величину которого можно менять регуляторами источника питания электромагнита. Градуировка магнита проводится при помощи милливеберметра.

Образец из легированного германия, смонтированный в специальном держателе, подключается к источнику питания. При замыкании K_2 вдоль длинной стороны образца течёт ток, величина которого регулируется реостатом R и измеряется миллиамперметром. В образце, помещённом в зазор, возникает разность потенциалов U_{34} , которая измеряется с помощью цифрового вольтметра.

Влияние омического падения напряжения исключается измерением напряжения U_0 между 3 и 4 в отсутствие магнитного поля. По знаку $\mathcal{E} = U_{34} \pm U_0$ можно определить характер проводимости — электронный или дырочный, зная напрявление тока в образце и напрвление магнитного поля.

Померив ток I_{35} в образце и напряжение U_{35} между контактами 3 и 5 в отсутствие магнитного поля можно рассчитать проводимость материала по формуле

$$\sigma = \frac{IL_{35}}{U_{35}al},$$

где L_{35} – расстояние между контактами 3 и 5, а a и l – толщина и ширина образца.

Ход работы

1. Подготовим установку к работе.

2. Проградуируем электромагнит. Определим связь между индукцией B магнитного поля в зазоре электромагнита и током I_M через обмотку сняв зависимость потока $\Phi = BSN$, пронизывающего пробную катушку, находящуюся в зазоре, от тока I_M . Значение $SN = 72 \, \mathrm{cm}^2 \cdot \mathrm{вит}$.

I, A	0.2	0.4	0.6	0.8	1	1.2	1.4	1.6
В, Вб	0.012	0.027	0.04	0.053	0.063	0.072	0.077	0.08

3. Проведём измерение ЭДС Холла. Для этого вставим образец в зазор выключенного электромагнита и определим U_0 между контактами 3 и 4 при минимальном токе через образец.

Включим электромагнит и снимем зависимость $U_{34} = f(I_M)$ от тока I_M при постоянном токе через образец в интервале 0.3 - 1.0 мА. При максимальном токе также проведём измерения при другом направлении магнитного поля.

I_M , A	U_0 , мкВ	$-U_{34}$, мк ${ m B}$							
30	8	9	29	52	74	93	106	116	123
40	13	16	47	75	105	128	146	158	167
50	15	22	62	98	134	162	187	201	209
60	16	28	73	119	158	197	222	239	251
70	18	34	85	137	187	229	263	283	298
80	21	41	104	166	225	273	306	327	341
90	23	41	111	177	243	298	327	366	382
100	26	50	131	211	279	338	378	406	423
100	45	131	205	282	353	412	453	483	500

- 4. Определим знак носителей в образце. Узнаем направление тока в образце и в электромагните, с помощью последнего определим направление магнитного поля.
- 5. При токе $I=1,00\pm0,02$ мА измеряем падение напряжения между концами 3 и 5: $U_{35}=1666\pm1$ мкВ. Характеристики образца: $L_{35}=3$ мм, a=1.5 мм, l=1.7 мм.

Обработка результатов

1. Расчитаем индукцию магнитного поля B для каждого значения тока и построим график $B = f(I_M)$.

2. Рассчитаем ЭДС Холла и построим на одном графике семейство характеристик $\mathcal{E}_x = f(B)$ при разных токах, определим угловые коэффициенты $k(I) = \Delta \mathcal{E}/\Delta B$.

Построим график k=f(I), рассчитаем угловой коэффициент и по формуле $\mathcal{E}_x=-R_x\cdot \frac{IB}{a}$ рассчитаем постоянную Холла R_X .

k , м $\mathrm{B/B}$ б	-1.7	-2.2	-2.8	-3.3	-3.9	-4.4	-5.0	-5.5
I_M, A	0.03	0.04	0.05	0.06	0.07	0.08	0.09	0.1

$$R_x = (83 \pm 1) \cdot 10^{-6} \frac{\text{M}^3}{\text{K}_{\text{J}}}.$$

- 3. По формуле $R_x=\frac{1}{ne}$ рассчитаем концентрацию носителей тока в образце: $n=(750\pm 9)\cdot 10^{20}\frac{1}{{
 m M}^3}.$
- 4. По формуле $\sigma=\frac{IL_{35}}{U_{35}al}$ рассчитаем удельную проводимость материала образца: $\sigma=706\pm1\frac{1}{{
 m OM}\cdot{
 m M}}.$
- 5. По формуле $b=\frac{\sigma}{en}=\sigma R_x$ вычислим подвижность носителей носителей тока в образце: $b=0.060\pm0.001\frac{\text{M}^2}{B\cdot c}.$