拓扑与近世代数补充: PSet2

2019.3.24

1 有趣的群作用

设 $\{u,v\}\in\mathbb{C}$ 为 \mathbb{C} 的一组 \mathbb{R} -基,考虑 $G:=\mathbb{Z}u\oplus\mathbb{Z}v$ 在 \mathbb{C} 上的群作用:

$$G \times \mathbb{C} \longrightarrow \mathbb{C}$$
 $(g, z) \longmapsto g + z$

另外,考虑

$$SL(2,\mathbb{Z}) := \left\{ \begin{array}{ll} \gamma = \begin{pmatrix} a & b \\ c & d \end{array} \middle| ad - bc = 1 \right\}$$

在上半平面

$$\mathcal{H} := \{ z \in \mathbb{C} \mid Imz > 0 \}$$

上的作用:

$$SL(2,\mathbb{Z}) \times \mathcal{H} \longrightarrow \mathcal{H} \qquad (\gamma, z) \longmapsto \frac{az+b}{cz+d}$$

试问这些作用对某个元素的稳定子群、作用的基本区域、商掉这些作用 后得到的商空间(取商拓扑)拓扑同胚于什么?是否是紧的?

Remark 1.1. 这两个群作用有一些关系,如果有机会的话可以讲一下。另外可以讲一下格点的性质(近世代数)。

2 矩阵群的性质

填表:

G	连通分支个数	紧性	中心	G/Z(G) 是否为单群	极大环面
$GL_n(\mathbb{R})$					
$SL_n(\mathbb{R})$					
O(n)					
SO(n)					
U(n)					
SU(n)					
$GL_n(\mathbb{C})$					
$SL_n(\mathbb{C})$					

2 矩阵群的性质 2

注:红色的是可补充内容。横向还可以加:标准型、切空间维数等。纵向可以加: $Sp(n,\mathbb{C}),Sp(n,\mathbb{R}),O(p,q),SL_n(Z),PSL_n(\mathbb{R})$ 等等。