Normal forms 3NF (Third Normal Form)

3NF (Third Normal Form)

Conditions for 3NF

It is in 2NF and there is no transitive dependency.

(Transitive dependency???) $A \rightarrow B \& B \rightarrow C$ then $A \rightarrow C$

- A relation R is in third normal form (3NF) Iff:
 - 1. It is in 2NF and
 - 2. Any non-prime attribute is NOT transitively dependent upon any key

OR

- A relation R is in third normal form (3NF) iff:
 - 1. If and only if it is in 2NF and
 - 2. Every non-prime attribute is non-transitively dependent on the key

Note: Non-Prime Attribute → Non-Prime Attributes is not allowed.

A relation R is in third normal form (3NF) iff:

 $X \rightarrow Y$

Either X: is super key

Or Y: is prime attribute

3NF (Third Normal Form) [Example]

Customer									
<u>ANO</u>	Balance	BranchName	BranchAddress						
A01	50000	Rajkot	Kalawad road						
A02	40000	Rajkot	Kalawad Road						
A03	35000	Surat	C.G Road						
A04	25000	Surat	C.G Road						

- **FD1**: ANO → {Balance, BranchName, BranchAddress}
- **FD2**: BranchName → BranchAddress
- So ANO → BranchAddress (Using Transitivity rule)
- BranchAddress transitivily depends on primary key (ANO). So customer relation is not in 3NF.

3NF (Third Normal Form) [Example]

Customer								
<u>ANO</u>	Balance	BranchName	BranchAddress					
A01	50000	Rajkot	Kalawad road					
A02	40000	Rajkot	Kalawad Road					
A03	35000	Surat	C.G Road					
A04	25000	Surat	C.G Road					

• **Problem:** In this relation, **branch address will be stored repeatedly** for each account of the same branch which **occupies more space**.

3NF (Third Normal Form) [Example]

Customer			_	Table-1		Table-2			
ANO	Balance	BranchName	BranchAddress	vad road	BranchName	BranchAddress	ANO	Balance	BranchName
A01	50000	Rajkot	Kalawad road		Rajkot	Kalawad road	A01	50000	Rajkot
A02	40000	Rajkot	Kalawad Road		Surat	C.G Road	A02	40000	Rajkot
A03	35000	Surat	C.G Road	Road			A03	35000	Surat
A04	25000	Surat	C.G Road				A04	25000	Surat

- Solution: Decompose relation in such a way that resultant relations do not have any transitive FD.
 - Remove transitive dependent attributes from the relation that violets 3NF.
 - Place them in a new relation along with the non-prime attributes due to which transitive dependency occurred.
 - The key of the new relation will be non-prime attributes due to which transitive dependency occurred.
 - Keep other attributes same as in the table with same primary key and add prime attributes of other relation into it as a foreign key.

Q. Given that R(A, B, C, D, E) & FD {AB \rightarrow C, B \rightarrow D, D \rightarrow E}. Check whether it is in 3NF or not, if not, then convert it into 3NF.

 $Key = \{AB\}.$

 $B \rightarrow D$

 $D \rightarrow E$ are not in 3NF.

Transitive dependency from AB \rightarrow E; B to D and then D to E, AB can reach to E

Q. Given that R(A, B, C, D, E) & FD {A \rightarrow B, B \rightarrow E, C \rightarrow D}. Check whether it is in 3NF or not, if not, then convert it into 3NF.

 $Key = \{AC\}.$

Not in 3NF.

3NF (Third Normal Form) [Exercise]

Q. Given that R(A, B, C, D, E, F) & FDs {A \rightarrow FC, B \rightarrow E, C \rightarrow D}. Check whether it is in 3NF or not, if not, then convert it into 3NF.

 $Key = \{AB\}.$

Not in 3NF.

Q. Given that R(A, B, C, D, E, F, G, H, I, J) & FD {AB \rightarrow C, A \rightarrow DE, B \rightarrow F, F \rightarrow GH, D \rightarrow IJ}. Check whether it is in 3NF or not, if not, then convert it into 3NF.

Key = {AB}.

R (A, B, C, D, E)

A
$$\rightarrow$$
 DE
B \rightarrow F
F \rightarrow GH
D \rightarrow IJ

R1 (A, D, E)
R2 (B, F)
R3 (F, G, H)
R4 (D, I, J)
R (A, B, C)

A \rightarrow DE
B \rightarrow F
F \rightarrow GH
D \rightarrow IJ
A \rightarrow BC

Q. Given that R(A, B, C, D, E, F, G, H, I, J) & FD {AB \rightarrow C, AD \rightarrow GH, BD \rightarrow EF, A \rightarrow I, H \rightarrow J}. Check whether it is in 3NF or not, if not, then convert it into 3NF.

Key = {ABD}.

R1 (A, B, C)

R2 (A, D, G, H)

R3 (B, D, E, F)

R4 (A, I)

R5 (H, J)

R6 (A, B, D)

AB
$$\rightarrow$$
 C

AD \rightarrow GH

BD \rightarrow EF

A \rightarrow I

R5 (H, J)