Association Rule Mining

CS145 Fall 2015

Outline

- ▶ What is association rule mining?
- Methods for association rule mining
- Extensions of association rule

What Is Association Rule Mining?

- Frequent patterns: patterns (set of items, sequence, etc.) that occur frequently in a database [AIS93]
- Frequent pattern mining: finding regularities in data
 - ▶ What products were often purchased together?
 - ▶ Beer and diapers?!
 - ▶ What are the subsequent purchases after buying a car?
 - ▶ Can we automatically profile customers?

Why Essential?

- Foundation for many data mining tasks
 - Association rules, correlation, causality, sequential patterns, structural patterns, spatial and multimedia patterns, associative classification, cluster analysis, iceberg cube, ...
- Broad applications
 - ▶ Basket data analysis, cross-marketing, catalog design, sale campaign analysis, web log (click stream) analysis, ...

Basics

- Itemset: a set of items
 - \triangleright E.g., acm={a, c, m}
- Support of itemsets
 - ► Sup(acm)=3
- ► Given min_sup=3, acm is a frequent pattern
- Frequent pattern mining: find all frequent patterns in a database

Transaction database TDB

TID	Items bought
100	f, a, c, d, g, I, m, p
200	a, b, c, f, l,m, o
300	b, f, h, j, o
400	b, c, k, s, p
500	a, f, c, e, l, p, m, n

Frequent Pattern Mining: A Road Map

- Boolean vs. quantitative associations
 - ▶ age(x, "30..39") ^ income(x, "42..48K") → buys(x, "car") [1%, 75%]
- Single dimension vs. multiple dimensional associations
- Single level vs. multiple-level analysis
 - ► What brands of beers are associated with what brands of diapers?

Extensions & Applications

- Correlation, causality analysis & mining interesting rules
- Maxpatterns and frequent closed itemsets
- Constraint-based mining
- Sequential patterns
- Periodic patterns
- Structural Patterns
- Computing iceberg cubes

Frequent Pattern Mining Methods

- Apriori and its variations/improvements
- Mining frequent-patterns without candidate generation
- Mining max-patterns and closed itemsets
- Mining multi-dimensional, multi-level frequent patterns with flexible support constraints
- ▶ Interestingness: correlation and causality

Apriori: Candidate Generationand-test

- ► Any subset of a frequent itemset must be also frequent an anti-monotone property
 - ► A transaction containing {beer, diaper, nuts} also contains {beer, diaper}
 - ▶ {beer, diaper, nuts} is frequent → {beer, diaper} must also be frequent
- No superset of any infrequent itemset should be generated or tested
 - Many item combinations can be pruned

Apriori-based Mining

- ► Generate length (k+1) candidate itemsets from length k frequent itemsets, and
- ► Test the candidates against DB

Apriori Algorithm

► A level-wise, candidate-generation-and-test approach (Agrawal & Srikant 1994)

The Apriori Algorithm

- C_k : Candidate itemset of size k
- L_k : frequent itemset of size k
- $L_1 = \{ \text{frequent items} \};$
- for $(k = 1; L_k != \emptyset; k++)$ do
 - $ightharpoonup C_{k+1} = \text{candidates generated from } L_k;$
 - ▶ for each transaction *t* in database do
 - increment the count of all candidates in C_{k+1} that are contained in t
 - ▶ L_{k+1} = candidates in C_{k+1} with min_support
- return $\bigcup_k L_k$;

Important Details of Apriori

- ▶ How to generate candidates?
 - ▶ Step 1: self-joining L_k
 - ▶ Step 2: pruning
- ▶ How to count supports of candidates?

How to Generate Candidates?

- ▶ Suppose the items in L_{k-1} are listed in an order
- ► Step 1: self-join L_{k-1} INSERT INTO C_k SELECT $p.item_1$, $p.item_2$, ..., $p.item_{k-1}$, $q.item_{k-1}$ FROM L_{k-1} p, L_{k-1} qWHERE $p.item_1 = q.item_1$, ..., $p.item_{k-2} = q.item_{k-2}$, $p.item_{k-1}$ $< q.item_{k-1}$
- Step 2: pruning
 - For each itemset c in C_k do
 - ▶ For each (k-1)-subsets s of c do if (s is not in $L_{k-1})$ then delete c from C_k

Example of Candidategeneration

- $L_3=\{abc, abd, acd, ace, bcd\}$
- ▶ Self-joining: L_3*L_3
 - ▶ abcd from abc and abd
 - ▶ acde from acd and ace
- Pruning:
 - ▶ acde is removed because ade is not in L_3
- $C_4 = \{abcd\}$

How to Count Supports of Candidates?

- Why counting supports of candidates a problem?
 - ► The total number of candidates can be very huge
 - One transaction may contain many candidates
- Method:
 - ► Candidate itemsets are stored in a hash-tree
 - Leaf node of hash-tree contains a list of itemsets and counts
 - ▶ Interior node contains a hash table
 - ► Subset function: finds all the candidates contained in a transaction

Challenges of Frequent Pattern Mining

- Challenges
 - Multiple scans of transaction database
 - ► Huge number of candidates
 - ► Tedious workload of support counting for candidates
- ▶ Improving Apriori: general ideas
 - ▶ Reduce number of transaction database scans
 - Shrink number of candidates
 - ► Facilitate support counting of candidates

DIC: Reduce Number of Scans

DIC

S. Brin R. Motwani, J. Ullman, and S. Tsur, 1997.

- Once both A and D are determined frequent, the counting of AD can begin
- Once all length-2 subsets of BCD are determined frequent, the counting of BCD can begin

