Lab 1: Códigos de Bloco

1st Fernando Gusmão Zanchitta Divisão de Ciência da Computação Instituto Tecnológico de Aeronáutica São José dos Campos, Brasil fernando.zanchitta@ga.ta.br

Abstract—Nesse relatório, foi implementado na linguagem Python a simulação de um sistema de comunicação formado por um canal BSC e codificação de informação dada pelo código de Hamming com taxa 4/7. Além disso, foi proposto um modelo baseado em Hamming com palavras-código de tamanho maior e taxa de 11/15. Com essa modelagem, foi simulado uma transmissão de cerca de 1 milhão de bits de informação, e se comparou a probabilidade de erro de bit de informação entre os modelos. Constatou-se que ao aumentar o tamanho da palavra-código — ou diminuir a taxa do sistema — se aumenta

Index Terms—BSC, Hamming, Telecomunicações, Códigos de Bloco, Palavra Código

transmissão.

o desempenho para baixas probabilidades p de erro de bit de

I. Introdução

Códigos de bloco são um tipo de código de correção de erro usado para codificar mensagens binárias transmitidas entre em canais de comunicação. Formalmente, constitui-se de um subconjunto C de 2^K vetores (palavras-código) de $\{0,1\}^N$, com K < N. Cada palavra-código se associa a um vetor binário de tamanho K diferente, referido como decodificação da palavra-código, formando um mapa $M:C \to \{0,1\}^K$. Esse mapa M é construído cuidadosamente de modo que, mesmo quando há erros na transmissão dos bits da palavra-código, ainda é possível – sob condições – recuperar a palavra de informação associada.

Já um canal BSC modela um canal não-ideal de transmissão com entrada e saída binárias. Para cada bit transmitido, há um probabilidade 0 de erro na transmissão desse bit. Aqui, embora o modelo seja de canal não ideal, ainda assumimos que a probabilidade de erro <math>p é constante durante toda a operação do canal e que os eventos de transmissão são independentes entre si. Vale notar, no entanto, que sistemas reais podem violar (e efetivamente violam) esses pressupostos de alguma maneira.

Ao mesclar o modelo estatístico de um canal BSC com uma codificação infeligente de um código de bloco, podese modelar o comportamento de um sistema de comunicação simples, alvo desse laboratório. Nesse caso, o objetivo é minimizar a probabilidade de erro de bit de informação P_b , dada uma probabilidade de erro p na transmissão pelo canal BSC. Um dos códigos usados para resolver esse problema é o Código de Hamming.

O laboratório envolveu o aprendizado e a implementação de um projeto envolvendo a codificação e decodificação de

2nd Guilherme Goulart Kowalczuk Divisão de Ciência da Computação Instituto Tecnológico de Aeronáutica São José dos Campos, Brasil guilherme.kowalczuk@ga.ita.br

Fig. 1. Diagrama de Venn para o Código de Hamming.

mensagens que passam em um canal BSC como descrito. Além de levantar a curva de probabilidade de erro de bit de informação $P_b(p)$ para o código de Hamming e para mensagem não codificada, o objetivo do laboratório é propor um código de bloco diferente do código de Hamming, e comparar as curvas $P_b(p)$ entre si.

II. METODOLOGIA

A implementação do projeto escrita na linguagem *Python* usando conceitos de Programação Orientada a Objetos, e possui 3 arquivos, Channel.py, encoder.py, lab1.py.

No primeiro arquivo (Channel.py), criou-se uma classe Channel, que serve de Pai das classes BSC e IdealChannel. Na BSC foi implementado a soma da palavra de entrada com um sinal noise aleatório. IdealChannel cria e transmite uma palavra.

No segundo arquivo (Encoder.py), foi criada a classe pai Encoder, que é pai das classes HammingEncoder, NaiveEncoder, AlternativeEncoder. Cada uma dessas possuí os atributos de encode e decode. No terceiro arquivo (Labl.py) foi implementada a simulação com a geração de bits e geração de gráficos para comparação de Performance.

A. Código de Hamming

Para o código de Hamming, consideramos blocos de tamanho K=4, que são codificados em uma palavra-código de tamanho N=7, resultando em uma taxa de bits de $\frac{4}{7}$. Na sua implementação, foi utilizada a notação algébrica considerando a matriz de geração $G\in\{0,1\}^{4\times7}$, de modo que uma palavra $a\in\{0,1\}^K$ é codificada em $a\mapsto a\cdot G$.

Já para a decodificação, seguiu-se a orientação dada em aula. A matriz de checagem H calcula a síndrome $s=r\cdot H^T$ de uma palavra recebida $r\in\{0,1\}^N$. Assim, foi construído um dicionário errordict de modo a se obter a correção e proposta para cada síndrome possível s. A palavra decodificada é então reconstruída ao fazer $c=r\oplus e^1$.

$$G = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$
 (1)

$$H = \begin{bmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$
 (2)

$$\operatorname{errorDict} = \begin{cases} s = [000] & \Rightarrow e = [0000000] \\ s = [001] & \Rightarrow e = [0000001] \\ s = [010] & \Rightarrow e = [0000010] \\ s = [011] & \Rightarrow e = [0001000] \\ s = [100] & \Rightarrow e = [0000100] \\ s = [101] & \Rightarrow e = [1000000] \\ s = [110] & \Rightarrow e = [0100000] \\ s = [111] & \Rightarrow e = [0010000] \end{cases}$$

$$(3)$$

Portanto para o encode de uma palavra u na palavra-código v foi feita a operação

$$v = (u \cdot G) \pmod{2} \tag{4}$$

cuja complexidade computacional é uma multiplicação matricial. Já para o decode de uma palavra recebida r foram realizadas as operações

$$s = (r \cdot H^T) \pmod{2}$$

$$e = \text{errorDict}[s]$$

$$c = r \oplus e$$
(5)

cuja complexidade computacional é o de uma multiplicação matricial, uma soma bit a bit e um lookup em um dicionário previamente construído. Assim, retornamos os 4 primeiros bits do resultado c.

A maior dificuldade de implementar o decodificador de Hamming foi na confecção do dicionário de mapeamento de erros, a partir da lógica por trás deste método de decodificação.² Isso porque as operações de multiplicação e soma já são amplamente implementadas em *Python*. Já a construção do dicionário de erros depende da análise das síndromes geradas pelos vetores de erro com peso de Hamming mínimos.

B. Implementação Própria

A implementação própria envolveu estender a ideia inicial do código de Hamming. Para isso, observe que o código de Hamming pode ser interpretado em um diagrama de Venn como na Figura 1. Nesse caso, os bits de paridade p_1 , p_2 e p_3 são escolhidos de modo a tornar a soma dos bits em cada círculo par.

Estendendo essa ideia, ao invés de trabalhar com três bits de paridade, podemos tomar mais um bit de paridade, conforme a Figura 2. Nesse caso, montando o diagrama de Venn com quatro conjuntos, conseguimos transmitir 11 bits de informação em cada bloco de 14 bits de palavra-código. Assim, nossa implementação aumenta a taxa de bits para $11/15 \approx 73\%$.

Fig. 2. Diagrama de Venn para implementação alternativa.

A partir da Figura 2 disso, seguindo um padrão lógico de soma de cada círculo resultado em 0, obtém-se as equações abaixo.

$$p_1 + b_{11} + b_9 + b_3 + b_5 + b_1 + b_{10} + b_4 = 0$$

$$p_2 + b_8 + b_2 + b_7 + b_1 + b_4 + b_5 + b_{10} = 0$$

$$p_3 + b_8 + b_6 + b_2 + b_3 + b_1 + b_5 + b_9 = 0$$

$$p_4 + b_{11} + b_3 + b_6 + b_1 + b_2 + b_4 + b_7 = 0$$
(6)

A partir dessas equações, conseguimos construir as matrizes G de geração da palavra-código e H de checagem de erros. As matrizes para nosso código são bastante grandes, mas podem ser consultadas no.

Os algoritmos de encode e decode seguem as mesmas operações apresentadas no Hamming, uma vez a adição de mais uma equação ao sistema mantêm $N=2^r-1,\ r\geq 2,$ com tamanho de palavra código $K=2^r-1-r.$ Isso garante um formato das matrizes Geradora e de Checagem de erro, seguindo o formato abaixo:

$$G = (I_k | A^T) \tag{8}$$

$$H = (A|I_{n-k}) \tag{9}$$

Dessa forma, na etapa de codificação utilizamos a Equação 4 para obter a palavra-código v a partir do bloco de informação

 $^{^{1}\}text{Aqui,} \oplus \text{denota}$ a operação XOR bit a bit, ou soma vetorial módulo 2.

²Resposta para a pergunta 1 do roteiro.

a ser transmitida u. Nesse caso, a complexidade computacional é uma multiplicação por matriz. Já na etapa de decodificação, utilizamos a Equação 5 para obter de volta a informação a partir da palavra recebida. Nesse caso, a complexidade computacional é uma multiplicação matricial, um lookup em um dicionário já definido e uma operação de XOR bit a bit.³

Observe que essa extensão de $r \geq 2$ torna a codificação possível para comprimentos de bloco de tamanhos maiores ainda, como: 31, 63, 127. Isso torna as taxas de ≈ 0.839 , ≈ 0.905 , ≈ 0.969 . Assim, é perfeitamente possível estender o método utilizado aqui para tamanhos arbitrariamente grandes de palavra-código, como os citados acima. Entretanto, o tamanho de bloco deve ser da forma 2^r-1 com $r \in \mathbb{R}^4$

III. ANÁLISES E RESULTADOS

Foi implementado um codificador e decodificador de canal para o código de Hamming, como descrito nos tópicos acima. Além disso, foi feito um canal BSC com parâmetro p de probabilidade de erro para cada bit transmitido no canal.

Após isso, foi criado um modelo de codificação/ decodificação alternativo para efeito de comparação, como descrito no Tópico B.

Para cada código (Hamming e Alternativo), fizemos a simulação da transmissão de cerca de 1 milhão de bits. Definimos um escopo de probabilidades para teste,

$$p = \begin{bmatrix} 5 \cdot 10^{-1} & 2 \cdot 10^{-1} \\ 1 \cdot 10^{-1} & 5 \cdot 10^{-2} \\ \dots & \dots \\ 1 \cdot 10^{-4} & 5 \cdot 10^{-5} \\ 2 \cdot 10^{-5} & 1 \cdot 10^{-5} \end{bmatrix}$$
(10)

sendo p array com probabilidade de erro de bit de informação, utilizando pseudo-divisão por 2.

Com isso, mapeamos esse array p em na criação de canais BSC com probabilidade p. Os canais gerados eram passados pelo processo de codificação e decodificação, e as palavras geradas eram armazenadas em outro array Channel.

O Channel entra como parâmetro em uma função que mapeia as simulações e o codificador para então ser gerado as novas palavras decodificadas.

Por fim, mapeia-se o resultado das simulações com a palavra inicialmente gerada. Esse resultado é comparado entre os diferentes tipos de codificação e foi gerado o gráfico comparativo de desempenho da probabilidade de erro de um bit.

Observa-se pela Figura 3 que o desempenho gerado pela função código Naive é equivalente a um código de bloco unitário, ou seja P_b é atribuído com os mesmos valores de p, já que não há codificação além da trivial. A medida em que aumenta-se a palavra código, como nas funções Hamming e Alternative o desempenho aumenta, uma vez que os valores da probabilidade de erro no bit de informação P_b

Fig. 3. Gráficos de desempenho da probabilidade de erro de um bit para algoritmos de codificação diferentes.

diminuem em relação a probabilidade de erro na transmissão p.

Comparando o resultado entre as duas ultimas funções, a diferença de desempenho na probabilidade P_b se deve à diferença de tamanho entre os blocos de código e de taxa do sistema. Nesse caso, um acabou compensando o outro, de modo que nosso código *Alternative* teve um desempenho semelhante ao *Hamming*, evidenciado pelas curvas próximas na Figura 3.

Por fim, veja que não há alguns pontos plotados para o código de Hamming nem para o código alternativo para valores pequenos de p. Isso acontece porque o gráfico está com eixo em logaritmo, e para probabilidades de p muito baixas, não houve erro de transmissão nos 1 milhão de bits de informação simulados, o que é um ótimo resultado.

IV. CONCLUSÃO

No laboratório, pode-se realizar a implementação simulada de um sistema de comunicações simples, composta por um canal BSC e diferentes códigos de bloco para encoding. Pela análise da curva de probabilidade de erro de bit de informação P_b pela probabilidade de erro de transmissão p, pode-se identificar dois fatores que modificam a curva para esse tipo de sistema: o tamanho da palavra código e a taxa de transmissão de informação do sistema.

Quando se diminui a probabilidade de erro de bit na transmissão p, a probabilidade de erro de bit de informação P_b diminui, já que a decodificação do código precisa corrigir menos erros de transmissão. Uma outra maneira de pensar isso é que o código de Hamming e o nosso código Alternativo são bons em decodificar blocos com zero ou um erros. Conforme p diminui, blocos com dois ou mais erros são cada vez mais raros, o que contribui para um P_b menor.

Outra relação feita é que à medida que o tamanho K do bloco aumenta – ou que a taxa do sistema K/N diminui – aumenta-se o desempenho da probabilidade de erro de bit. Visualmente, a curva P_b por p fica mais acentuada para valores pequenos de p, conforme a Figura 3^5 . Em suma,

³Resposta para a pergunta 4 do relatório.

⁴Resposta para a pergunta 2 do roteiro.

⁵Resposta para a pergunta 3

observa-se uma relação de dependência – *trade-off* – entre taxa do sistema e desempenho, e entre tamanho do bloco de código e desempenho.