ate on each element. For example, imagine we have an array of values and we'd like to compute the reciprocal of each. A straightforward approach might look like this:

```
In[1]: import numpy as np
      np.random.seed(0)
      def compute reciprocals(values):
           output = np.empty(len(values))
           for i in range(len(values)):
               output[i] = 1.0 / values[i]
           return output
       values = np.random.randint(1, 10, size=5)
       compute reciprocals(values)
Out[1]: array([ 0.16666667, 1.
                                                    . 0.25
                                       . 0.25
                                                                  . 0.125
                                                                               1)
```

This implementation probably feels fairly natural to someone from, say, a C or Java background. But if we measure the execution time of this code for a large input, we see that this operation is very slow, perhaps surprisingly so! We'll benchmark this with IPython's %timeit magic (discussed in "Profiling and Timing Code" on page 25):

```
In[2]: big_array = np.random.randint(1, 100, size=1000000)
      %timeit compute reciprocals(big array)
1 loop, best of 3: 2.91 s per loop
```

It takes several seconds to compute these million operations and to store the result! When even cell phones have processing speeds measured in Giga-FLOPS (i.e., billions of numerical operations per second), this seems almost absurdly slow. It turns out that the bottleneck here is not the operations themselves, but the type-checking and function dispatches that CPython must do at each cycle of the loop. Each time the reciprocal is computed, Python first examines the object's type and does a dynamic lookup of the correct function to use for that type. If we were working in compiled code instead, this type specification would be known before the code executes and the result could be computed much more efficiently.

Introducing UFuncs

For many types of operations, NumPy provides a convenient interface into just this kind of statically typed, compiled routine. This is known as a vectorized operation. You can accomplish this by simply performing an operation on the array, which will then be applied to each element. This vectorized approach is designed to push the loop into the compiled layer that underlies NumPy, leading to much faster execution.

Compare the results of the following two:

```
In[3]: print(compute reciprocals(values))
      print(1.0 / values)
```

```
[ 0.16666667 1.
                     0.25
                               0.25
                                         0.125
                                                 1
[ 0.16666667 1.
                     0.25
                               0.25
                                         0.125
```

Looking at the execution time for our big array, we see that it completes orders of magnitude faster than the Python loop:

```
In[4]: %timeit (1.0 / big array)
100 loops, best of 3: 4.6 ms per loop
```

Vectorized operations in NumPy are implemented via *ufuncs*, whose main purpose is to quickly execute repeated operations on values in NumPy arrays. Ufuncs are extremely flexible—before we saw an operation between a scalar and an array, but we can also operate between two arrays:

```
In[5]: np.arange(5) / np.arange(1, 6)
Out[5]: array([ 0.
                       . 0.5
                                . 0.66666667, 0.75
                                                           . 0.8
                                                                       1)
```

And ufunc operations are not limited to one-dimensional arrays—they can act on multidimensional arrays as well:

```
In[6]: x = np.arange(9).reshape((3, 3))
Out[6]: array([[ 1, 2, 4],
              [ 8, 16, 32],
              [ 64, 128, 256]])
```

Computations using vectorization through ufuncs are nearly always more efficient than their counterpart implemented through Python loops, especially as the arrays grow in size. Any time you see such a loop in a Python script, you should consider whether it can be replaced with a vectorized expression.

Exploring NumPy's UFuncs

Ufuncs exist in two flavors: unary ufuncs, which operate on a single input, and binary ufuncs, which operate on two inputs. We'll see examples of both these types of functions here.

Array arithmetic

NumPy's ufuncs feel very natural to use because they make use of Python's native arithmetic operators. The standard addition, subtraction, multiplication, and division can all be used:

```
In[7]: x = np.arange(4)
       print("x =", x)
       print("x + 5 = ", x + 5)
      print("x - 5 =", x - 5)
      print("x * 2 =", x * 2)
```