

TODAY'S CONTENTS

 \Rightarrow

- **1** Data Frame
- 2 Data preprocessing
- **3** Correlation coefficient
- **4** Future activities

DATA FRAME

Train Data Frame

```
ID 제조사 모델 차량상태 ... 보증기간(년) 사고이력 연식(년) 가격(백만원)
```

- O TRAIN_0000 P사 TayGTS Nearly New ... 0 No 2 159.66
- 1 TRAIN_0001 K사 Niro Nearly New ... 6 No 0 28.01
- 2 TRAIN_0002 A사 eT Brand New ... 7 No 0 66.27
- 3 TRAIN_0003 A사 RSeTGT Nearly New ... 3 No 0 99.16
- 4 TRAIN_0004 B사 i5 Pre-Owned ... 1 No 0 62.02

```
... ... ... ... ... ... ... ... ...
```

7492 TRAIN_7492 H사 ION5 Brand New ... 10 No 0 35.95

7493 TRAIN_7493 B사 i3 Pre-Owned ... 2 No 0 23.40

7494 TRAIN_7494 P사 TayCT Brand New ... 2 No 0 120.00

7495 TRAIN_7495 B사 i3 Nearly New ... 6 No 2 24.00

7496 TRAIN_7496 T사 MY Pre-Owned ... 0 No 0 74.06

[7497 rows x 11 columns]

NULL: 배터리용량 304

DATA FRAME

Test Data Frame

```
ID 제조사 모델 차량상태 ... 주행거리(km) 보증기간(년) 사고이력 연식(년)
0 TEST_000 P사 TayCT Nearly New ... 14057 2 No 0
1 TEST_001 B사 iX Brand New ... 7547 8 No 0
2 TEST_002 B사 i5 Brand New ... 7197 7 Yes 0
3 TEST_003 H사 ION5 Nearly New ... 10357 7 No 1
4 TEST_004 K사 EV6 Brand New ... 7597 10 No 0
841 TEST_841 P사 TayGTS Pre-Owned ... 117298 2 No 0
842 TEST_842 V사 ID4 Pre-Owned ... 72308 0 No 0
843 TEST_843 V사 ID4 Pre-Owned ... 124537 0 No 0
844 TEST_844 A사 Q4eT Nearly New ... 15629 4 No 0
845 TEST_845 B사 i3 Pre-Owned ... 53945 0 No 0
[846 rows x 10 columns]
```

NULL: 배터리용량 2711

DATA PREPROCESSING

Model-based Imputation

결측치가 없는 데이터를 사용해, 회귀 모델을 학습한 후 주행거리, 보증기간, 연식 등의 피처를 활용해서 배터리 용량을 예측. 예측값으로 결측치를 채워 변수간 상관관계를 반영하는 방식이

Inconsistent Brand Messaging

전체 데이터의 배터리 용량 평균을 계산하고 결측치에 해당 평균값을 대입. 구현은 간단하지만 변수간 관계를 반영하지 못할수 있으

ANNImputation

결측치가 있는 행에 대해 k개의 유사한 이웃을 찾는다. 이웃들의 배터리 용량 값을 평균하여 결측치를 채운다. 데이터 내 유사성을 반영하기에 현실적인 값을 제공

Linear Interpolation

데이터 순서에 따라 인접한 값들을 직선으로 연결하고 선형함수를 활용해 결측치를 보간한다. 순서가 의미 있는 데이터에서 자연스러운 변화로 간주한다.

Polynomial Interpolation

선형 보간 대신 다항 함수를 사용하여 결측치를 보간한다. 데이터의 곡선 형태의 변화를 모델링한다. 다항식의 차수에 따라 결과가 달라질 수 있기에 주의가 필요하다.

FUTURE PLAN

시계열 데이터를 잘 처리할 수 있는 인공지능 모델을 활용해서 딥러닝을 진행할 예정.

각 모델은 논문을 참고하여 구현해볼 예정입니다.

