PyTorch: Completely Uninformed Image Modelling

Richie Morrisroe

September 12, 2017

Intro

- ▶ PyTorch is a framework for GPU computation in Python
- ▶ Re-implementation of Torch, which was a project in Lua

How do I install it?

conda env create pytorch
source activate pytorch
conda install pytorch torchvision -c soumith

- ► This is for CUDA 7.5 (which must be installed), Python 3 and does require Conda
- ▶ If you use Python, you should already be using conda
- Note that the above is taking a while
- Like long enough that's annoying me as I write this
- Reproducibility is a harsh mistress :/

Getting Started

import torch as torch
import torchvision as tv

- torch is the main package
- Loads of subpackages (autograd, nn and more)
- torchvision is a collection of uilities for image learning
 - ▶ it has transforms, and a dataset and model library

Basic Torch

```
x = torch.Tensor(5, 3)
y = torch.rand(5, 3)
x + y
```

Overall API

- torch: Tensor (i.e. ndarray) library
- torch.autograd: automatic differentiation
- torch.nn: a neural network library
- torch.optim: standard optimisation methods (SGD, RMSProp, etc)
- torch.multiprocessing: magical memory sharing
- torch.utils: loading and training utility functions
- Check out their about page

Sizes and Shapes

print(y.size())

Addition Ops

```
x + y
z = torch.zeros([5, 3])
th.add(x, y)
print(th.add(x, y))
th.add(z, y, out=z)
x.add_(y)
```

- Addition can be done in multiple ways
- ▶ We can assign the value to an out tensor as in the last example
- functions prepended with an _ mutate their first argument
- This is pervasive throughout the library

Indexing

```
print(x[:,1])
#x[R,C]
```

- Standard row, column indexing
- Note that 3d Tensors (i.e. for images) can have a minibatch dimension giving the number of observations in each minibatch
- Numpy uses H * W * C, Torch uses C * H * W
- ► This requires conversions to transpose the matrices (examples below)

Numpy Interaction

```
a = torch.ones(5)
print(a)
b = a.numpy()
print(b)
```

CUDA (yay!)

```
if torch.cuda.is_available():
    x = x.cuda()
    y = y.cuda()
    z = x + y

z_cpu = z.cpu()
```

- CUDA interop is easy
- Converting back is a simple cpu call

Autograd

```
from torch.autograd import Variable
x = Variable(th.ones(2, 2), requires_grad=True)
y = x + 2
print(y)
z = y * y * 3
out = z.mean()
print(z, out)
out.backward(retain_variables=True)
```

- ► This is probably the coolest thing about PyTorch
- Implements full reverse mode auto-differentiation
- ► This is done efficiently with a combination of memoizing and recursive applications of the chain rule
- ► These variables are inherently stateful, and thus idempotency is not preserved
- So eventually, repeated calls to backward leave you with a constant

Gradients

```
x = torch.randn(3)
x = Variable(x, requires_grad=True)
y = x * 2
while y.data.norm() < 1000:
    y = y * 2

print(y)
gradients = torch.FloatTensor([0.1, 1.0, 0.0001])
y.backward(gradients)
print(x.grad)</pre>
```

Transrforms

- Transforms are applied at load time
- RandomCrop can be used, which is data augmentation

DataLoaders

```
trainset = torchvision.datasets.CIFAR10(root='./data',
                                        train=True.
                                        download=True,
                                        transform=transform
trainloader = torch.utils.data.DataLoader(trainset,
                                          batch_size=4,
                                          shuffle=True,
                                          num_workers=2)
testset = torchvision.datasets.CIFAR10(root='./data',
                                       train=False,
                                       download=True,
                                       transform=transform)
testloader = torch.utils.data.DataLoader(trainset.
                                         batch size=4.
                                    shuffle=True
```

More datasets

- Some datasets are built in
- cifar10, 100, MNIST and a few others can be downloaded in this way
- ▶ Not ImageNet, which is only freely available to academics
- we can shuffle, alter the batch size and launch multiple processes easily
- transforms and image augmentation methods are additionally available
- ► This is actually in a package called torchvision, which has (as the same suggests) lots of utility functions related to vision

Adding your own data (easy way)

- ▶ I mostly copied from the transfer learning tutorial
- ▶ The approach relies on putting your data into specific folders

ls -R new_photos

- so the pattern is /data_dir/train/class/images
- you can then use the datasets.ImageFolder dataloader
- so we need a train and val folder
- We then need folders for each class (in this case, low, medium and high)

Loading Data

Dataloaders

- ▶ When I first looked at the code above, I was horrified. It seemed far too complicated for what it did.
- ▶ I replaced it with this:

```
from scipy import misc
test = misc.imread("new_photos/train/high/6813074_....jpg")
```

- ► However, the first solves way more problems
 - It implements lazy-loading which is good because each image is reasonably large
 - it shuffles the data
 - ▶ It varies the batch size (which can make a big difference)

Better dataloading

- ► Torch provides a DataSet class
 - Implement __len__ and __getitem__

DataLoading

```
from skimage import io, transform
from torch.utils.data import Dataset, DataLoader
class RentalsDataSetOriginal(Dataset):
    def __init__(self, csv_file, image_path, transform):
        self.data_file = pd.read_csv(csv_file)
        self.image_dir = image_path
        if transform.
            self.transform = transform
    def __len__(self):
        return len(self.data file)
```

Getitem

```
def __getitem__(self, idx):
   row = self.data_file.iloc[idx,:]
    dclass, listing, im, split = row
    image = io.imread(os.path.join(self.image_dir,
                                    split,
                                    dclass,
                                    im)).astype('float')
    img_torch = torch.from_numpy(image)
    h, w, c = img_torch.size()
    img_rs = img_torch.view([c, h, w])
    return (img_rs, dclass)
```

Features of Nets

- You must implement an init method
- ► This has the structure of the Net
- You must implement a forward method
- This should consist of all of non-linearites applied to each of the input layers
- PyTorch handles all the backward differentiations for you

Minimal Neural Network

```
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(3, 48, 5)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(48, 64, 5)
        self.conv3 = nn.Dropout2d()
        #honestly, I just made up these numbers
        self.fc1 = nn.Linear(64*29*29, 300)
        self.fc2 = nn.Linear(300, 120)
        self.fc3 = nn.Linear(120,3)
```

- ▶ the __init__ method creates the structure of the net
- You need to provide input and output sizes
- ▶ If you mess this up, comment out all of the layers after the error, and use x.size() to decide what to do
- must inherit from nn.Module (or a more specific version)

Forward Differentiation

```
def forward(self, x):
    x = self.pool(F.relu(self.conv1(x)))
    x = self.pool(F.relu(self.conv2(x)))
    x = x.view(-1, 64 * 29 * 29) #-1 ignores the minibat
    x = F.dropout(x, training=self.training)
    x = F.relu(self.fc1(x))
    x = F.relu(self.fc2(x))
    x = self.fc3(x)
    return x
```

- ► The forward operator contains the non-linearities
- Note the training argument to dropout

Training the Model

```
import torch.optim as optim
criterion = nn.CrossEntropyLoss()
optimiser = optim.SGD(net.parameters(), lr=0.01,
                      momentum=0.9)
tr = dset_loaders['train']
for epoch in range(10):
    for i, data in enumerate(tr, 0):
        inputs, labels = data
        inputs, labels = Variable(inputs.cuda()),
        Variable(labels.cuda())
        optimiser.zero_grad()
        outputs = net(inputs)
        loss = criterion(outputs, labels)
        _, preds = torch.max(outputs.data, 1)
        loss.backward()
        optimiser.step()
```

Saving Model State

```
dtime = str(datetime.datetime.now())
  outfilename = 'train' + "_"
  + str(epoch) + "_"
  + dtime + ".tar"
  torch.save(net.state_dict(), outfilename)
```

- Useful to resume training
- Current model state can be restored into a net of exactly the same shape
- Not as important for my smaller models
- These files are huuuuuggggeeee
- So you may wish to only save whichever performs best

Testing the Model

```
for epoch in range(5):
                  val loss = 0.0
                  val corrects = 0
                  for i, data in enumerate(val, 0):
                                      inputs, labels = data
                                      inputs, labels = Variable(inputs.cuda()),
                                     Variable(labels.cuda())
                                     outputs = net(inputs)
                                      loss = criterion(outputs, labels)
                                     _, preds = torch.max(outputs.data, 1)
                                     val_loss += loss.data[0]
                                     val_corrects += torch.sum(preds == labels.data)
                                      phase = 'val'
                  val_epoch_loss = val_loss / dset_sizes['val']
                  val_epoch_acc = val_corrects / dset_sizes['val']
                  print('{} Loss: {:.4f} Acc: {:.4f}'.format(
                                                        phase, val_epoch_loss, val_epoch_acc))
                                                                                                                                                                          <ロ > ←□ > ←□ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ >
```

Playing with the Net

```
params = list(net.parameters())
print(len(params))
print(params[0].size())

input = Variable(torch.randn(3, 3, 48, 48))
out = net(input)
print(out)
```

How did it do?

```
train Loss: 0.1360 Acc: 0.6742
train Loss: 0.1355 Acc: 0.6750
...
train Loss: 0.1202 Acc: 0.6966
val Loss: 0.1432 Acc: 0.6816
...
val Loss: 0.1440 Acc: 0.6810
```

- ► Training Accuracy 69% (10 epochs)
- ► Test Accuracy 68%
- ► This is OK, but given the data and the lack of any meaningful domain knowledge, I'm reasonably impressed.
- ▶ I guess what we actually need to know is what the incremental value of the image data is, relative to the rest of the data.

Text Data

Fortunately, the rentals dataset also has some text data

```
import pandas as pd
text = pd.read_csv("rentals_sample_text_only.csv")
first = text.iloc[0,:]
print(list(first))
```

= >> >> ['This location is one of the most sought after areas in Manhattan ** Building is located on an amazing quiet tree lined block located just steps from transportation, restaurants, boutique shops, grocery stores*** For more info on this unit and/or others like it please contact Bryan 449-593-7152 / kagglemanager@renthop.com

Bond New York is a real estate broker that supports equal housing opportunity. <a website redacted '] =in Manhattan Building is located on an amazing quiet tree lined block located just steps from transportation, restaurants, boutique shops, grocery stores*** For more info on this unit and/or others like it please contact Bryan 449-593-7152 / kagglemanager@renthop.com < br /> Bond one

Characters vs Words?

- Most NLP that I traditionally saw used words (and bigrams, trigrams etc) as the unit of observation
- Many deep learning approaches instead rely on characters
- Characters are much less sparse than words
- We have way more characters
- ► We don't understand a word as a function of its characters, so should a machine?

Characters

- ► They are much less sparse
- ▶ The representation is pretty cool also
- ▶ We represent each character as a 1*N tensor for each item in the character universe
- ► Each word is represented as a matrix of these characters

Preprocessing

```
import unicodedata
import string
all_letters = string.ascii_letters + " .,;'"
n_letters = len(all_letters)
def unicode_to_ascii(s):
    return ''.join(
        c for c in unicodedata.normalize('NFD', s)
        if unicodedata.category(c) != 'Mn'
        and c in all_letters
```

- Cultural Imperialism rocks!
- ▶ More seriously, we reduce the dimension from 90+ to 32
- ▶ This means we can handle more words and longer descriptions

Apply to the text data

```
first = text['description']
first2 = []
char_ascii = {}
for word in first:
    for char in word:
        char = unicode_to_ascii(char.lower())
        if char not in char_ascii:
            char_ascii[char] = 1
        else:
            pass
```

- ▶ We need the character counts to create a mapping from characters to a 1-hot matrix
- ► This is necessitated by the disappointing lack of R's model.matrix
- ► This code was also used to assess the impact of removing non-ascii chars

Character to Index

```
import torch
all_letters = char_ascii.keys()
letter_idx ={}
for letter in all_letters:
    if letter not in letter_idx:
        letter_idx[letter] = len(letter_idx)
def letter_to_index(letter):
    return letter_idx[letter]
```

- Create a dict with the key being the number of previous letters
- Use this to represent the letter as a number

Letter/Words to Tensor

```
def letter_to_tensor(letter):
    tensor = torch.zeros(1, len(char_ascii))
    tensor[0][letter_to_index(letter)] = 1
    return tensor
def line_to_tensor(line):
    tensor = torch.zeros(len(line), 1, len(char_ascii))
    for li, letter in enumerate(line):
        letter = unicode_to_ascii(letter.lower())
        tensor[li][0][letter_to_index(letter)] = 1
    return tensor
```

- Code implementation for the character and word to tensor functions
- ▶ Note that these are going to be really sparse vectors (1 non-sparse entry per row)
- ► torch has sparse matrix support (but it's marked as experimental)

Bespoke Rentals Code

```
all_categories = ['low', 'medium', 'high']
def category_from_output(output):
    top_n, top_i = output.data.topk(1)
    category_i = top_i[0][0]
    return all_categories[category_i], category_i
```

► We need to be able to map back from a matrix of probabilities to a class prediction

Different Get Data Implementation

```
import pandas as pd
textdf = pd.read_csv('rentals_text_data.csv').dropna(axis=0)
cat_to_ix = {}
for cat in all_categories:
    if cat not in cat_to_ix:
        cat_to_ix[cat] = len(cat_to_ix)
    else:
        pass
def random_row(df):
    rowrange = df.shape[0] - 1
    return df.iloc[random.randint(0, rowrange)]
```

Shuffling Training Examples

```
import random as random
from torch.autograd import Variable
def random_training_example(df):
    row = random_row(df)
    target = row['interest_level']
    text = row['description']
    catlen = len(all_categories)
    target_tensor = Variable(torch.zeros(catlen))
    idx_cat = cat_to_ix[target]
    target_tensor[idx_cat] = 1
    words_tensor = Variable(line_to_tensor(text))
    return target, text, target_tensor, words_tensor
target, text, t_tensor, w_tensor = random_training_example(
```

- ▶ We return the class, the actual text
- ► And also the matrix representation of these two parts

our RNN

```
import torch.nn as nn
from torch.autograd import Variable
class RNN(nn.Module):
    def __init__(self, input_size, hidden_size, output_size)
        super(RNN, self).__init__()
        self.hidden_size = hidden_size
        self.i2h = nn.Linear(input_size + hidden_size,
                             hidden_size)
        self.i2o = nn.Linear(input_size + hidden_size,
                             output_size)
    def forward(self, input, hidden):
        combined = torch.cat((input, hidden), 1)
        hidden = self.i2h(combined)
        output = self.i2o(combined)
        return output, hidden
                                    4□▶ 4₫▶ 4½▶ ½ 900
```

Train on one example

```
optimiser = optim.SGD(rnn.parameters(), lr=0.01,
                      momentum=0.9)
criterion = nn.CrossEntropyLoss()
learning_rate = 0.005
def train(target_tensor, words_tensor):
    hidden = rnn.init_hidden()
    rnn.zero_grad()
    for i in range(words_tensor.size()[0]):
        output, hidden = rnn(words_tensor[i], hidden)
    loss = criterion(output.squeeze(),
                     target_tensor.type(torch.LongTensor))
    loss.backward() #magic
    optimiser.step()
    for p in rnn.parameters():
        #need to figure out why this is necessary
        p.data.add_(-learning_rate, p.grad.data)
```

return output loss data[0]

Training in a Loop

```
n_iters = 10000

for iter in range(1, n_iters + 1):
    category, line, category_tensor,
    line_tensor, numrow = random_training_example(textdf)
        output, loss = train(category_tensor, line_tensor)
        current_loss += loss
```

Inspecting the Running Model

current_loss = 0

```
# Print iter number, loss, name and guess
if iter % print_every == 0:
    guess, guess_i = category_from_output(output)
    correct = 'Y' if guess == category else 'N (%s)' %
    print('%d %d%% (%s) %.4f %s / %s %s' % (iter, iter)
# Add current loss avg to list of losses
if iter % plot_every == 0:
    all_losses.append(current_loss / plot_every)
```

Problems

- This loops through the data in a non-deterministic order
- We should probably ensure that we go through the data N*epoch times
- Additionally, we need some test data
- Fortunately, we have all of the text data available
- Unfortunately it's late Monday night now, and I won't sleep if I don't stop working :(

Future Work

- ► Impelement Deconvolutional Nets/other visualisation tools to understand how the models work
- Solve the actual Kaggle problem by using an RNN over my CNN
- Add the text data, image data and structured data to an ensemble and examine overall performance
- Learn more Python

Conclusions

- PyTorch is a powerful framework for matrix computation on the GPU
- It is deeply integrated with Python
- ▶ It's not just a set of bindings to C/C++ code
- ▶ It is really easy to install (by the standards of DL frameworks)
- You can inspect each stage of the Net really easily (as it's just Python objects)
- No weirdass errors caused by compilation!

Further Reading

- My repo with code (currently non-functional because I need to upload)
- PyTorch tutorials and examples
- the Docs (these are unbelievably large)
- ► The Book (seriously, even if you never use deep learning there's a lot of really good material there)
- ► Completely unrelated, but this is an amazing book on Python
- You should definitely read it

Papers (horribly incomplete)

- AlexNet it's amazing how many new things this paper did
- Deconvolutional Nets
- Gneralised Adversarial Networks
- Rethinking Generalisation and Deep Learning
- Deep Reinforcement Learning