Global health burden of ammonia emissions from fossil-fuel derived synthetic nitrogen fertilizer

Karn Vohra (<u>k.vohra@ucl.ac.uk</u>) with contributions from Eloise Marais, Bex Horner, Colin Harkins, Brian McDonald, Aaron Cohen, Aaron van Donkelaar and Randall V. Martin **IGC11** 11 June 2024

End-use health burden assessments focus only on fossil fuel combustion

Synthesis of nitrogen fertilizers from fossil fuels

This end-use activity missing in global health burden assessments!

NH₃ emissions from synthetic nitrogen fertilizer

Challenges: Lumped with livestock, at coarse spatiotemporal resolution and outdated

US EPA National Emissions Inventory 2017 species: NH3_Fert [Data processed by Brian McDonald and Colin Harkins]

Agricultural NH₃ emissions from UK National Atmospheric Emissions Inventory 2019 and fertilizer contribution from Paulot et al. (2014)

PM_{2.5} linked to synthetic nitrogen fertilizer NH₃ emissions

We run GEOS-Chem with and without these NH₃ emissions at $0.25^{\circ} \times 0.3125^{\circ}$ resolution

A major factor influencing $PM_{2.5}$ formation is acidic aerosol abundance. Temperature and relative humidity also influence partitioning of semi-volatile NH_3 .

Acidic aerosols and synthetic nitrogen fertilizer PM_{2.5}

NH₃ uptake to aerosol phase is limited by acidic aerosol abundance

[Tang et al., 2018, Walker et al., 2004]

We use UK and US simulations to parameterise relationship between synthetic nitrogen fertiliser PM_{2.5} and acidic aerosols to extend to other countries

Acidic aerosols and synthetic nitrogen fertilizer PM_{2.5}

NH₃ uptake to aerosol phase is limited by acidic aerosol abundance

[Tang et al., 2018, Walker et al., 2004]

We use UK and US simulations to parameterise relationship between synthetic nitrogen fertiliser PM_{2.5} and acidic aerosols to extend to other countries

We consider scenarios
where the relationship is
restricted to maximum
acidic aerosol abundance
simulated by GEOS-Chem

Acidic aerosols and synthetic nitrogen fertilizer PM_{2.5}

NH₃ uptake to aerosol phase is limited by acidic aerosol abundance

[Tang et al., 2018, Walker et al., 2004]

We use UK and US simulations to parameterise relationship between synthetic nitrogen fertiliser PM_{2.5} and acidic aerosols to extend to other countries

We consider scenarios
where the relationship is
restricted to maximum
acidic aerosol abundance
simulated by GEOS-Chem
and when sustained beyond
this threshold

Estimation of global PM_{2.5} exposure and attributable mortality

Relationship between acidic aerosols and synthetic nitrogen fertilizer PM_{2.5}

Acidic aerosol abundance from a global 2°×2.5° simulation

Global PM_{2.5} with and without synthetic nitrogen fertilizer use

Global PM_{2.5} from all sources [van Donkelaar et al., 2021]

Global synthetic nitrogen fertilizer PM_{2.5}

Global health burden of synthetic nitrogen fertilizer PM_{2.5}

Global health burden of synthetic nitrogen fertilizer use

35-60% of total

Our estimates represent up to 3% of fossil fuel end-use premature mortality burden

Key takeaways

- 45,000-124,000 global premature deaths linked to fossil fuel derived synthetic nitrogen fertilizer PM_{2.5}
- Policy interventions will mitigate premature mortality but not harm to nitrogen sensitive habitats

Nitrogen deposition from synthetic nitrogen fertilizer use

- Most effective to develop strategies that enhance nitrogen usage efficiencies
- Need for national inventories to separately report NH₃ emissions from fertilizer use to further refine the values we obtain

Any questions? Contact Karn (k.vohra@ucl.ac.uk)