Двоични (булеви) функции

Дефиниция 1 *Нека* A *е крайно множество* u $n \in \mathbb{N}$. *Всяка функция* $f: A^n \to A$ *наричаме* n-местна дискретна функция.

Нека |A|=m. Колко е броят на n-местните дискретни функции в A? Да припомним, че от принципа за умножение следва, че броят на функциите $f:X\to Y$ е $|Y|^{|X|}$. Трябва да изберем |X| стойности, като за всяка стойност f(x) имаме |Y| възможности. Също така, отново от принципа за умножение, $|A^n|=m^n$. От това следва, че броят на всички n-местни дискретни функции в A е m^{m^n} .

Дефиниция 2 При $A = \{0,1\}$, функциите $f: \{0,1\}^n \to \{0,1\}$ наричаме n-местни двоични (булеви) функции.

Означаваме:
$$\mathcal{F}_2^n = \{f \mid f : \{0,1\}^n \to \{0,1\}\}, \ \mathcal{F}_2 = \bigcup_{n=1}^{\infty} \mathcal{F}_2^n.$$

Да напомним, че елементите на $\{0,1\}^n$ наричаме n-мерни (двоични) булеви вектори.

Често си мислим за една булева функция $f \in \mathcal{F}_2^n$ като функция на n променливи x_1, x_2, \ldots, x_n , всяка от които може да приема стойност 0 или 1.

Дефиниция 3 $Hexa\ f: \{0,1\}^n \to \{0,1\}$. Казваме, че x_i е фиктивна променлива за f или, че f не зависи съществено от x_i , ако за всички стойности $x_i \in \{0,1\}$ при $j \neq i$ имаме, че

$$f(x_1,\ldots,x_{i-1},0,x_{i+1},\ldots,x_n)=f(x_1,\ldots,x_{i-1},1,x_{i+1},\ldots,x_n).$$

Ако x_i не е фиктивна за f, казваме, че f зависи съществено от x_i .

Например, ако f се задава с формула, в която не участва x_i , то е ясно, че x_i е фиктивна променлива за f. Обратното в общия случай не е вярно, например $f(x_1) = 0 \cdot x_1$ се задава с формула, в която участва x_1 , но f не зависи съществено от x_1 .

Ясно е, че ако всички променливи на f са фиктивни, то всяка стойност на f е равна на всяка друга стойност на f, т.е. f е константа. В случая имаме двете константи $\widetilde{0}$ и $\widetilde{1}$ (вълничката поставяме, ако искаме да подчертаем, че разглеждаме самата функция, а не стойността).

Дефиниция 4 Дефинираме стандартната линейна (лексикографска) наредба в множеството $\{0,1\}^n$ с индукция по $n\geq 1$.

 $\Pi pu \ n = 1$ наредбата е: 0, 1.

 $\Pi pu \ n = 2$ наредбата е: 00, 01, 10, 11.

Нека сме дефинирали наредбата $\alpha_0, \alpha_1, \ldots, \alpha_{2^n-1}$ на $\{0,1\}^n$.

Тогава наредбата на $\{0,1\}^{n+1}$ е:

$$0\alpha_0, 0\alpha_1, \ldots, 0\alpha_{2^n-1}, 1\alpha_0, 1\alpha_1, \ldots, 1\alpha_{2^n-1}.$$

Подразбира се, че един n-мерен вектор е в релация с друг n-мерен вектор, ако стои преди него (отляво) в редицата. Наредбата се нарича лексикографска, тъй като е на речников принцип: сравняваме първите компоненти на двата n-мерни вектора, ако те съвпадат преминаваме към вторите компоненти и така нататък.

Друг полезен начин да си мислим за тази наредба е следният: поредният номер на един n-мерен булев вектор α съвпада с естественото число, което има двоично представяне α . Разбира се, номерацията започва от 0 и стига до 2^n-1 .

При фиксираната стандартна наредба α_0 , α_1 , ..., α_{2^n-1} на $\{0,1\}^n$, всяка функция $f:\{0,1\}^n \to \{0,1\}$ представяме с 2^n -мерния булев вектор $f(\alpha_0)$ $f(\alpha_1)$... $f(\alpha_{2^n-1})$. От това представяне отново е видно, че броят на булевите функции на n променливи е 2^{2^n} .

Да разгледаме двоичните функции при n=1 (на една променлива x). Те са общо 4 на брой:

X	g_0	g_1	g_2	g_3		
0	0	0	1	1		
1	0	1	0	1		

За функцията g_0 имаме $g_0(0)=g_0(1)=0$, т.е. g_0 е константата $\widetilde{0}$.

За функцията g_3 имаме $g_3(0) = g_3(1) = 1$, т.е. g_3 е константата $\tilde{1}$.

Функцията g_1 има свойството $g_1(x) = x$ и можем да я наречем $u \partial e n m u - m e m$.

За функцията g_2 имаме $g_2(0)=1$ и $g_2(1)=0$, нарича се ompuцание, означаваме $g_2(x)=\overline{x}$. Ако x=1 считаме за стойност истина и x=0 за стойност лъжа, то отрицанието има обичайния логически смисъл. Ако стойността на x се счита като бит информация, отрицанието често се нарича uнвертиране или npeoбръщане на x.

По-нататък, да разгледаме двоичните функции при n=2 (на две променливи x,y). Те са общо 16 на брой:

X	У	f_0	f_1	f_2	f_3	f_4	f_5	f_6	f_7	f_8	f_9	f_{10}	f_{11}	f_{12}	f_{13}	f_{14}	f_{15}
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

Ясно e, че f_0 e константата $\widetilde{0}$ и f_{15} e константата $\widetilde{1}$.

Функцията f_1 се нарича конюнкция (логическо "и") и още може да се разглежда като умножение по модул 2. Означаваме: $f_1(x,y) = xy = x \wedge y$. Основното свойство на конюнкцията е:

$$xy = 1 \iff x = y = 1.$$

Функцията f_7 се нарича $\partial u s i o h \kappa u u s$ (логическо "или"). Означението за нея е: $f_7(x,y) = x \vee y$. Основното свойство е:

$$x \lor y = 0 \iff x = y = 0.$$

Функцията f_6 ще наричаме cyma по модул 2 (изключващо "или", хог) и за нея ще използваме означението $f_6(x,y) = x \oplus y$. В сила е свойството:

$$x \oplus y = 1 \iff (x = 0 \text{ и } y = 1)$$
 или $(x = 1 \text{ и } y = 0)$.

Функцията f_9 ще наричаме *еквиваленция* (логическа еквивалентност) и ще я означаваме с $f_9(x,y) = x \leftrightarrow y$. Основното ѝ свойство е:

$$x \leftrightarrow y = 1 \iff$$
 стойностите на x и y съвпадат.

Лесно се вижда, че $x \leftrightarrow y = \overline{x \oplus y}$.

Функцията f_{13} ще наричаме *импликация* (логическо "ако, то") и ще я означаваме с $f_{13}(x,y) = x \to y$. Нейното основно свойство е:

$$x \rightarrow y = 0 \iff x = 1$$
 и $y = 0$.

За функцията f_{11} имаме $f_{11}(x,y)=y\to x$ и можем да я наречем *обратна* импликация.

Функцията f_{14} се нарича *черта на Шефер* и се означава с $f_{14}(x,y) = x|y$. Тя представлява отрицание на конюнкцията: $x|y = \overline{xy}$.

Функцията f_8 се нарича *стрелка на Пирс* и се означава с $f_8(x,y) = x \downarrow y$. Тя съвпада с отрицанието на дизюнкцията: $x \downarrow y = \overline{x \lor y}$.

За функциите f_2 и f_4 няма специално наименование. Те могат да се изразят по следния начин: $f_2(x,y) = \overline{x \to y} = x\overline{y}$ и $f_4(x,y) = \overline{y \to x} = \overline{x}y$.

Дотук изброихме всичките 10 функции без фиктивни променливи, т.е. които зависят съществено от x и y.

Освен двете константи, остават още 4 функции, които зависят само от една променлива:

$$f_3(x,y) = x$$
, $f_5(x,y) = y$, $f_{12}(x,y) = \overline{x}$, $f_{10}(x,y) = \overline{y}$.

Функциите f_3 и f_5 ще означаваме с $f_3 = I_1^2$, $f_5 = I_2^2$.

Твърдение 5 Основни закони за булевите функции:

- 1. комутативност xy = yx, $x \lor y = y \lor x$, $x \oplus y = y \oplus x$, $x \leftrightarrow y = y \leftrightarrow x$.
- 2. асоциативност $(xy)z=x(yz), (x\vee y)\vee z=x\vee (y\vee z),$ $(x\oplus y)\oplus z=x\oplus (y\oplus z).$
- 3. дистрибутивност $x(y \lor z) = xy \lor xz$, $x \lor yz = (x \lor y)(x \lor z)$, $x(y \oplus z) = xy \oplus xz$.
- 4. идемпотентност xx = x, $x \lor x = x$, но $x \oplus x = \widetilde{0}$.

- 5. константи $x.\widetilde{0}=\widetilde{0},\ x.\widetilde{1}=x,\ x\vee\widetilde{0}=x,\ x\vee\widetilde{1}=\widetilde{1},$ $x\oplus\widetilde{0}=x,\ x\oplus\widetilde{1}=\overline{x}.$
- 6. отрицание $x\overline{x}=\widetilde{0},\ x\vee\overline{x}=\widetilde{1},\ x\oplus\overline{x}=\widetilde{1},$ $\overline{\overline{x}}=x\ (\partial so\~u ho\ ompuцание),$ $\overline{xy}=\overline{x}\vee\overline{y},\ \overline{x\vee\overline{y}}=\overline{x}.\overline{y}\ (закони\ на\ Де\ Морган).$

Всеки един от тези закони може да се провери чрез изчерпване на всички възможности за стойностите 0,1 на променливите x,y,z.

Забележете, че ако в някой от законите заместим всички срещания на $x,\ y$ или z с произволен булев израз отново получаваме закон. Например, за произволни булеви изрази ϕ,ψ имаме $\overline{\phi\psi}=\overline{\phi}\vee\overline{\psi}.$

Като следствие от асоциативността можем да образуваме многократна конюнкция, дизюнкция и сума по модул 2. За произволни булеви изрази $\phi_1, \phi_2, \ldots, \phi_n$ ще използваме записа

$$\bigvee_{i=1}^{n} \phi_i = \phi_1 \lor \phi_2 \lor \ldots \lor \phi_n$$

и подобно за
$$\bigwedge_{i=1}^n \phi_i$$
, $\bigoplus_{i=1}^n \phi_i$.

Съществува дуалност в част от законите, която по-нататък ще наречем принцип за двойнственост: ако в един закон размените конюнкцията и дизюнкцията, както и $\widetilde{0}$ и $\widetilde{1}$, то отново ще получите валиден закон.

Дефиниция 6 *Нека* $1 \le k \le n$. *Функцията* $I_k^n : \{0,1\}^n \to \{0,1\}$, *дефинирана с* $I_k^n(x_1,x_2,\ldots,x_n) = x_k$ *ще наричаме* проектираща функция *или* проекция.

Дефиниция 7 Нека за $n, k \geq 1$ са дадени функциите $f: \{0,1\}^k \to \{0,1\}$ и $g_1,g_2,\ldots,g_k: \{0,1\}^n \to \{0,1\}$. Функцията $h: \{0,1\}^n \to \{0,1\}$, дефинирана c

$$h(x_1, x_2, \dots, x_n) = f(g_1(x_1, x_2, \dots, x_n), g_2(x_1, x_2, \dots, x_n), \dots, g_k(x_1, x_2, \dots, x_n))$$

наричаме суперпозиция на f и g_1, g_2, \ldots, g_k и означаваме $h = f(g_1, g_2, \ldots, g_k)$.

Всъщност, суперпозицията може да се разглежда като композиция на две функции: първо действа функция от тип $\{0,1\}^n \to \{0,1\}^k$, която изпраща (x_1,x_2,\ldots,x_n) в $(g_1(x_1,x_2,\ldots,x_n),g_2(x_1,x_2,\ldots,x_n),\ldots,g_k(x_1,x_2,\ldots,x_n))$, след това действа $f:\{0,1\}^k \to \{0,1\}$.

При дадено множество от булеви функции, ние ще се интересуваме от изразите, които могат да се построят чрез дадените функции, като се започне от проекциите и се прилага неколкократно операцията суперпозиция.

Пример 1. За функцията f_4 по-горе имахме $f_4(x,y) = \overline{y} \to \overline{x}$. По-подробно, този израз може да се запише по следния начин:

$$f_4(x,y) = g_2(f_{13}(I_2^2(x,y), I_1^2(x,y))),$$

където g_2 е отрицанието и f_{13} е импликацията. Както се вижда, проекциите играят ролята на променливите в израза. Операцията суперпозиция е приложена два пъти, първо с f_{13} и след това с g_2 . Друг начин да представим дадения израз е със следното синтактично дърво:

Пример 2. Да разгледаме закона $x(y\vee z)=xy\vee xz$. В него участват конюнкцията f_1 , дизюнкцията f_7 и трите проекции I_1^3,I_2^3,I_3^3 . Лявата страна се представя с израза

$$f_1(I_1^3(x,y,z), f_7(I_2^3(x,y,z)), I_3^3(x,y,z))),$$

а дясната страна с израза

$$f_7(f_1(I_1^3(x,y,z),I_2^3(x,y,z)),f_1(I_1^3(x,y,z),I_3^3(x,y,z))).$$

Съответните синтактични дървета са:

Обърнете внимание, че двете дървета са различни, но представят една и съща булева функция на трите променливи x, y, z.

Дефиниция 8 (затваряне на множество от булеви функции) $He \kappa a$ $F \subseteq \mathcal{F}_2$ е множество от булеви функции. Дефинираме редицата $\{F_n\}_{n=0}^{\infty}$ от множества от булеви функции с индукция по n:

$$F_0 = F \cup \{I_k^n \mid 1 \le k \le n\},$$

$$F_{n+1} = F_n \cup \{h \mid \exists f, g_1, \dots, g_k \in F_n : h = f(g_1, \dots, g_k)\}.$$

Затварянето на F е множеството $[F] = \bigcup_{n=0}^{\infty} F_n$.

С други думи, във F_0 поставяме функциите от F и проекциите. За да образуваме F_{n+1} взимаме полученото до момента F_n и добавяме към него всевъзможните булеви функции, които могат да се получат със суперпозиция на функции във F_n . Накрая, затварянето [F] е обединението на всички образувани множества F_n .

Друга възможна дефиниция на затварянето е следната: [F] е най-малкото (относно \subseteq) множество, което съдържа F и проекциите и е затворено относно суперпозиция, т.е.

$$f, g_1, \dots, g_k \in [F] \implies f(g_1, \dots, g_k) \in [F].$$
 (*)

Наистина, ако $f \in F_{s_0}$ и $g_i \in F_{s_i}$ за $i=1,\ldots,k$, то е ясно, че суперпозицията $f(g_1,\ldots,g_k) \in F_s$, където $s=\max(s_0,s_1,\ldots,s_k)+1$.

Друг начин да опишем по-неформално затварянето: една функция f принадлежи на [F] точно когато тя може да се представи с израз/синтактично дърво, в което всички върхове са надписани с функции от F или с проекции.

Твърдение 9 В сила са следните основни свойства на затварянето:

- 1. $F \subseteq [F]$;
- 2. $F \subseteq G \implies [F] \subseteq [G];$
- 3. [[F]] = [F].

Доказателство. 1) е ясно, тъй като $F \subseteq F_0 \subseteq [F]$.

За 2) да предположим, че $F\subseteq G$. С индукция по n ще покажем, че $F_n\subseteq G_n$. Базата е при n=0: тъй като $F\subseteq G$,

$$F_0 = F \cup \{I_k^n \mid 1 \le k \le n\} \subseteq G \cup \{I_k^n \mid 1 \le k \le n\} = G_0.$$

Стъпка: нека предположим, че е изпълнено $F_n\subseteq G_n$. Да вземем произволна функция $h\in F_{n+1}$. Единият вариант е $h\in F_n$. От индукционното предположение, $h\in G_n$, така че $h\in G_{n+1}$, тъй като $G_n\subseteq G_{n+1}$. Другият вариант е $h=f(g_1,\ldots,g_k)$, където $f,g_1,\ldots,g_k\in F_n$. От индукционното предположение, $f,g_1,\ldots,g_k\in G_n$, така че от дефиницията за затваряне имаме $h\in G_{n+1}$. Така получихме, че $F_{n+1}\subseteq G_{n+1}$. Накрая, $[F]=\bigcup_{n=0}^\infty F_n\subseteq \bigcup_{n=0}^\infty G_n=[G]$.

За 3) включването $[F]\subseteq [[F]]$ следва от 1). За другото включване ще покажем, че $[F]_n\subseteq [F]$ с индукция по n, подобна на 2).

База: при n=0 имаме $[F]_0=[F]\cup\{I_k^n\mid 1\le k\le n\}\subseteq [F]$, тъй като [F] по дефиниция съдържа проекциите.

Стъпка: нека е изпълнено $[F]_n\subseteq [F]$. Да вземем произволна функция $h\in [F]_{n+1}$. Първият вариант е $h\in [F]_n$. От индукционното предположение, $h\in [F]$. Вторият вариант е $h=f(g_1,\ldots,g_k)$, където $f,g_1,\ldots,g_k\in [F]_n$. От индукционното предположение, $f,g_1,\ldots,g_k\in [F]$. Прилагаме (*) и получаваме $h\in [F]$. Така $[F]_{n+1}\subseteq [F]$. Накрая, $[[F]]=\bigcup_{n=0}^\infty [F]_n\subseteq [F]$ и доказателството е завършено.