Лекция 2

Качество программного обеспечения – это степень, в которой программное обеспечение обладает требуемой комбинацией свойств.

– это совокупность характеристик программного обеспечения, относящихся к его способности удовлетворять установленные и предполагаемые потребности.

Обеспечение качества (Quality **Assurance** - **QA)** - это совокупность мероприятий, охватывающих все технологические этапы разработки, выпуска и эксплуатации программного обеспечения (ПО) информационных систем, предпринимаемых на разных стадиях жизненного цикла ПО для обеспечения требуемого уровня качества выпускаемого продукта.

Контроль качества (Quality Control

-QC) - это совокупность действий, проводимых над продуктом в процессе разработки для получения информации о его актуальном состоянии в разрезах: "готовность продукта к выпуску", "соответствие зафиксированным требованиям", "соответствие заявленному уровню качества продукта".

QA, **QC** и тестирование

Quality Assurance	Quality Control	Тестирование
Комплекс мероприятий, который охватывает все технологические аспекты на всех этапах разработки, выпуска и введения в эксплуатацию программных систем для обеспечения необходимого уровня качества программного продукта	Процесс контроля соответствия разрабатываемой системы предъявляемым к ней требованиям	Процесс, отвечающий непосредственно за составление и прохождение тест-кейсов, нахождение и локализацию дефектов и т.д.
Фокус в большей степени на процессы и средства, чем на непосредственно исполнение тестирования системы	Фокус на исполнение тестирования путем выполнения программы с целью определения дефектов с использованием утвержденных процессов и средств	Фокус на исполнение тестирования как такового
Процессно-ориентированный подход	Продуктно-ориентированный подход	Продуктно- ориентированный подход
Превентивные меры	Корректирующий процесс	Превентивный процесс
Подмножество процессов Software Test Life Cycle — цикла тестирования ПО	Подмножество процессов QA	Подмножество процессов QC

Тестирование – часть QC. QC – часть QA.

Quality Assurance обеспечивает правильность и предсказуемость процесса, в то время как Quality Control предполагает контроль соблюдения требований. Тестирование же, в свою очередь, обеспечивает сбор статистических данных и внесение их в документы, созданные в рамках QC-процесса.

Жизненный цикл ПО (цикл разработки)

– это условная схема, включающая отдельные этапы, которые представляют стадии процесса создания ПО. При этом, на каждом этапе выполняются разные действия.

Стадии и этапы разработки программного обеспечения определены в Единой системе программной документации (ЕСПД) ГОСТом 19.102-77.

Основная разработка программного обеспечения осуществляется на этапе формирования рабочего проекта. Последовательность и/или одновременность выполнения процессов зависит от применяемой технологии разработки программного обеспечения.

Анализ требований

Цель этой стадии – определение детальных требований к системе. Кроме этого, необходимо убедиться в том, что все участники правильно поняли поставленные задачи и то, как именно каждое требование будет реализовано на практике.

Этот этап предполагает сбор требований к разрабатываемому программному обеспечению, их систематизацию, документирование, анализ, а также выявление и разрешение противоречий.

проектирование (стадия дизаина и архитектуры)

Программисты и системные архитекторы, руководствуясь требованиями, разрабатывают высокоуровневый дизайн системы.

Дизайн, как правило, закрепляется отдельным документом – дизайн-спецификацией (DSD – Design Specification Document).

Для упрощения визуализации процесса проектирования, используются так называемые нотации— схематическое выражение характеристик системы.

Основные используемые нотации:

- Блок-схемы.
- ER-диаграммы.
- UML-диаграммы.
- Макеты например, нарисованный прототип сайта.

Разраоотка и программирование

Начинается написание программистами кода программы в соответствии с ранее определенными требованиями.

Программирование предполагает четыре основных стадии:

- Разработка алгоритмов создание логики работы программы.
 - Написание исходного кода.
- Компиляция преобразование в машинный код.
- Тестирование и отладка юнит-тестирование.

Документация

Существует четыре уровня документации:

- Архитектурная (проектная) например, дизайнспецификация. Это документы, описывающие модели, методологии, инструменты и средства разработки, выбранные для данного проекта.
- Техническая вся сопровождающая разработку документация (различные документы, поясняющие работу системы на уровне отдельных модулей).
- Пользовательская включает справочные и поясняющие материалы, необходимые конечному пользователю для работы с системой (Readme, раздел справки по программе и т.п.).
- Маркетинговая включает рекламные материалы, сопровождающие выпуск продукта.

- **Тестирование**Планирование и управление действия, направленные на определение основных целей тестирования и задач, выполнение которых необходимо для достижения этих целей; составление тест-стратегии, тест-плана.
- Анализ и проектирование написание тестовых сценариев и условий на основе общих целей тестирования.
- Внедрение и реализация написание тест-кейсов, на основе написанных ранее тестовых сценариев, собирается необходимая для проведения тестов информация, подготавливается тестовое окружение и запускаются тесты.
- Оценка критериев выхода и написание отчетов проверяется было ли проведено достаточное количество тестов, достигнута ли нужная степень обеспечения качества системы.

Основные цели этапа тестирования

- убедиться, что вся запланированная функциональность действительно была реализована;
- проверить, что все отчеты об ошибках, поданные ранее, были, так или иначе, закрыты;
- завершение работы тестового обеспечения, тестового окружения и инфраструктуры;
- оценить общие результаты тестирования и проанализировать опыт, полученный в его процессе.

Внедрение и сопровождение

Когда программа протестирована и в ней больше не осталось серьезных дефектов, приходит время релиза и передачи ее конечным пользователям.

В случае обнаружения пользователями тех или иных пост-релизных багов, информация о них передается в виде отчетов об ошибках команде разработки, которая, в зависимости от серьезности проблемы, либо немедленно выпускает исправление (hot-fix), либо откладывает его до следующей версии программы.

Модели разработки ПО

- Каскадная (водопадная)
- V-образная
- Итерационная
- Инкрементальная
- Спиральная
- Гибкая

Каскадная модель

- высокий уровень формализации процессов;
- большое количество документации;
- жесткая последовательность этапов жизненного цикла без возможности возврата на предыдущий этап.

Минусы:

- Waterfall-проект должен постоянно иметь актуальную документацию. Обязательная актуализация проектной документации. Избыточная документация.
- Очень не гибкая методология.
- У заказчика нет возможности ознакомиться с системой заранее и даже с «Пилотом» системы.
- У пользователя нет возможности привыкать к продукту постепенно.
- Все требования должны быть известны в начале жизненного цикла проекта.
- Возникает необходимость в жёстком управлении и регулярном контроле, иначе проект быстро выбьется из графиков.
- Отсутствует возможность учесть переделку, весь проект делается за один раз.

Плюсы:

- Высокая прозрачность разработки и фаз проекта.
- Чёткая последовательность.
- Стабильность требований.
- Строгий контроль менеджмента проекта.
- Облегчает работу по составлению плана проекта и сбора команды проекта.
- Хорошо определяет процедуру по контролю качества.

V модель — разработка через тестирование

Данная модель имеет более приближенный к современным методам алгоритм, однако все еще имеет ряд недостатков. Является одной из основных практик экстремального программирования и предполагает регулярное тестирование продукта во время разработки.

Обеспечивает поддержку в планировании и реализации проекта. В ходе проекта ставятся следующие задачи:

- Минимизация рисков: делает проект более прозрачным и повышает качество контроля проекта путём стандартизации промежуточных целей и описания соответствующих им результатов и ответственных лиц.
- Повышение и гарантии качества: Промежуточные результаты могут быть проверены на ранних стадиях. Универсальное документирование облегчает читаемость, понятность и проверяемость.
- Уменьшение общей стоимости проекта: ресурсы на разработку, производство, управление и поддержку могут быть заранее просчитаны и проконтролированы.
- Повышение качества коммуникации между участниками проекта: универсальное описание всех элементов и условий облегчает взаимопонимание всех участников проекта.

Итеративная модель

Итеративные или инкрементальные модели предполагают разбиение создаваемой системы на набор кусков, которые разрабатываются с помощью нескольких последовательных проходов всех работ или их части.

Спиральная модель

Преимущества модели:

- Результат достигается в кратчайшие сроки.
- Конкурентоспособность достаточно высокая.
- При изменении требований не придется начинать все с «нуля».

Но у этой модели есть один существенный **недостаток:**

невозможность регламентирования стадий выполнения.

Модель	Преимущества	Недостатки	Тестирование
Водопадная	 У каждой стадии есть чёткий проверяемый результат. В каждый момент времени команда выполняет один вид работы. Хорошо работает для небольших задач. 	 Полная неспособность адаптировать проект к изменениям в требованиях. Крайне позднее создание работающего продукта. 	• С середины про-екта.
V-образная	 У каждой стадии есть чёткий проверяемый результат. Внимание тестированию уделяется с первой же стадии. Хорошо работает для проектов со стабильными требованиями. 	 Недостаточная гиб- кость и адаптируе- мость. Отсутствует раннее прототипирование. Сложность устра- нения проблем, пропущенных на ранних стадиях развития проекта. 	• На переходах между стадиями.

Итерационная инкре- ментальная	 Достаточно раннее прототипирование. Простота управления итерациями. Декомпозиция проекта на управляемые итерации. 	 Недостаточная гиб- кость внутри итера- ций. Сложность устра- нения проблем, пропущенных на ранних стадиях развития проекта. 	 В определённые моменты итераций. Повторное тестирование (после доработки) уже проверенного ранее.
Спиральная	 Глубокий анализ рисков. Подходит для крупных проектов. Достаточно раннее прототипирование. 	 Высокие накладные расходы. Сложность применения для небольших проектов. Высокая зависимость успеха от качества анализа рисков. 	

Жизненный цикл тестирования

• Стадия 1 (общее планирование и анализ требований) объективно необходима, как минимум, для того, чтобы иметь ответ на такие вопросы, как: что нам предстоит тестировать; как много будет работы; какие есть сложности; всё ли необходимое у нас есть и т.п. Как правило, получить ответы на эти вопросы невозможно без анализа требований, т.к. именно требования являются первичным источником ответов.

- Стадия 2 (уточнение критериев приёмки) позволяет сформулировать или уточнить метрики и признаки возможности или необходимости начала тестирования, приостановки и возобновления тестирования, завершения или прекращения тестирования.
- Стадия 3 (уточнение стратегии тестирования) представляет собой ещё одно обращение к планированию, но уже на локальном уровне: рассматриваются и уточняются те части стратегии тестирования, которые актуальны для текущей итерации.

• Стадия 4 (разработка тест-кейсов) посвящена разработке, пересмотру, уточнению, доработке, переработке и прочим действиям с тест-кейсами, наборами тест-кейсов, тестовыми сценариями и иными артефактами, которые будут использоваться при непосредственном выполнении тестирования.

 Стадия 5 (выполнение тест-кейсов) и стадия 6 (фиксация найденных дефектов) тесно связаны между собой и фактически выполняются параллельно: дефекты фиксируются сразу по факту их обнаружения в процессе выполнения тест-кейсов. Однако зачастую после выполнения всех тест-кейсов и написания всех отчетов о найденных дефектах проводится явно выделенная стадия уточнения, на которой все отчеты о дефектах рассматриваются повторно с целью формирования единого понимания проблемы и уточнения таких характеристик дефекта, как важность и срочность.

Стадия 7 (анализ результатов тестирования) и стадия 8 (отчетность) также тесно связаны между собой и выполняются практически параллельно. Формулируемые на стадии анализа результатов выводы напрямую зависят от плана тестирования, критериев приёмки и уточненной стратегии, полученных на стадиях 1, 2 и 3. Полученные выводы оформляются на стадии 8 и служат основой для стадий 1, 2 и 3 следующей итерации тестирования. Таким образом, цикл замыкается.