Things to Remember

• a_{ij} is the *i*th row and *j*th column of A.

Floating-Point & Errors

- Representation (IEEE 754): Real numbers are discretized; rounding to nearest representable value.
- Rounding vs. Chopping: Rounding picks the nearest representable number; chopping just truncates bits.
- Catastrophic Cancellation: Occurs when subtracting nearly equal numbers, causing large relative error.
- Condition Number (κ): Measures sensitivity of output to small changes in input.
- Stability: An algorithm is stable if small input perturbations only cause proportionally small output changes.

Direct Methods for Linear Systems

- Gaussian Elimination: $O(n^3)$ operations. Pivoting (partial or complete) avoids large roundoff from tiny pivots.
- LU Factorization: A = LU. Do forward/back substitution for multiple RHS vectors. For SPD matrices, use Cholesky $(A = LL^{\top})$.
- **Pivoting:** Partial pivoting swaps rows to pick a large pivot; complete pivoting can swap rows/columns for further stability.
- Band/Tridiagonal Matrices: Exploit structure to reduce computational cost.

Iterative Methods for Ax = b

- **Jacobi:** $x_i^{(k+1)} = \frac{b_i \sum_{j \neq i} a_{ij} x_j^{(k)}}{a_{ii}}$, for each i. Uses old values in each iteration.
- Gauss-Seidel: Similar formula but uses updated values immediately in iteration. Often converges faster.
- SOR (Successive Over-Relaxation): $x^{(k+1)} = x^{(k)} + \omega$ (Gauss-Seidel update) with $1 < \omega < 2$ for faster convergence if well-chosen.
- Convergence Criterion: Typically $\rho(T) < 1$, where T is the iteration matrix
- Diagonally Dominant / SPD: Guarantee convergence for Jacobi/Gauss-Seidel.

Nonlinear Equations (Root Finding)

- **Bisection Method:** Requires a sign change over [a, b]. Repeatedly halve interval. Guaranteed convergence (linear).
- Fixed-Point Iteration: $x_{k+1} = g(x_k)$. Converges if |g'(p)| < 1. Check iteration function carefully.
- Newton's Method: $x_{k+1} = x_k \frac{f(x_k)}{f'(x_k)}$, Quadratic convergence near root if $f'(p) \neq 0$. Needs derivative f'.
- Secant Method: Derivative is approximated by $\frac{f(x_k)-f(x_{k-1})}{x_k-x_{k-1}}$. Superlinear convergence.
- Regula Falsi (False Position): Combines bracketing with secant-like updates, maintaining bracket.

Polynomial Interpolation

- Lagrange Form: $P_n(x) = \sum_{j=0}^n f(x_j) L_j(x), L_j(x) = \prod_{0 \le m \le nm \ne j} \frac{x-x_m}{x_j-x_m}.$
- Divided Differences (Newton Form): Build polynomial incrementally. Good for reusing previous calculations if new points are added.
- Error Term: $f(x) P_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \prod_{j=0}^{n} (x-x_j).$
- **Hermite Interpolation:** Matches both f and f' at nodes (more conditions).
- Cubic Splines: Piecewise cubics ensuring $S(x_i) = f_i$, continuous first/second derivatives at interior nodes. Boundary conditions: natural $(S''(x_0) = S''(x_n) = 0)$ or clamped $(S'(x_0), S'(x_n)$ given).

Numerical Differentiation

- Forward Diff: $f'(x) \approx \frac{f(x+h)-f(x)}{h}$, $\mathcal{O}(h)$.
- Centered Diff: $f'(x) \approx \frac{f(x+\frac{h}{2})-f(x-\frac{h}{2})}{h}, \ \mathcal{O}(h^2).$
- Second Derivative: $f''(x) \approx \frac{f(x+h)-2f(x)+f(x-h)}{h^2}$, $\mathcal{O}(h^2)$.
- Richardson Extrapolation: Combine approximations with different h to cancel leading error terms and boost accuracy.
- Roundoff vs. Truncation: Extremely small $h \Rightarrow$ roundoff error. Large $h \Rightarrow$ truncation error.

Numerical Integration

• Trapezoid Rule (Basic): $\int_a^b f(x) dx \approx \frac{b-a}{2} (f(a) + f(b))$. Composite version: partition [a,b] into n subintervals, sum trapezoids. Error $\mathcal{O}(h^2)$ for composite.

- Simpson's Rule: Fits parabolas through triples of points. Composite Simpson has error $\mathcal{O}(h^4)$.
- Newton-Cotes Family: General equally spaced formulas (e.g. Simpson, 3/8 rule). Degree of precision is higher if n is even.
- Romberg Integration: Trapezoid + Richardson extrapolation ⇒ improved order systematically.
- Adaptive Quadrature: Subdivide intervals where function changes rapidly, ensuring error remains below tolerance.
- Gaussian Quadrature: Chooses nodes/weights (Legendre polynomials) to get exact results up to degree 2n-1 with n points.

Initial Value Problems (ODEs)

- Existence & Uniqueness: If f(t, y) is continuous in t and Lipschitz in y, then the IVP y'(t) = f(t, y), $y(t_0) = y_0$ has a unique solution.
- Euler's Method: $w_{k+1} = w_k + h f(t_k, w_k)$, local error $\mathcal{O}(h^2)$, global $\mathcal{O}(h^2)$
- Taylor Methods: Use derivatives of f up to nth order; local error $\mathcal{O}(h^{n+1})$, but can be cumbersome to compute derivatives.
- Runge-Kutta Methods (RK2, RK4, etc.): Achieve higher order without symbolic derivatives. E.g. RK4 has local error $\mathcal{O}(h^5)$, global $\mathcal{O}(h^4)$.
- Stability in ODE Solvers: Step size must be sufficiently small for stable integration, especially for stiff problems.

Quick Error/Order Reference

- Linear Systems:
 - Gauss Elim: $O(n^3)$ ops
 - Jacobi/G-S: converge if $\rho(T) < 1$
- Root Finding:
 - Bisection: linear
 - Newton: quadratic
 - Secant: superlinear (≈ 1.618)
- Interpolation Error: $f(x) P_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \prod (x-x_j)$
- Num. Differentiation:
 - Forward diff: $\mathcal{O}(h)$
 - Center diff: $\mathcal{O}(h^2)$
- Num. Integration:
 - Trapezoid (composite): $\mathcal{O}(h^2)$

- Simpson (composite): $\mathcal{O}(h^4)$
- Romberg: $\mathcal{O}(h^{2k})$ with extrapolation

• ODE Solvers:

- Euler: local $\mathcal{O}(h^2)$, global $\mathcal{O}(h)$
- RK4: local $\mathcal{O}(h^5)$, global $\mathcal{O}(h^4)$

Special Types of Matrices & Convergence Behavior

• Diagonal Matrix: Only non-zero entries are on the main diagonal. Easily invertible; iterative methods converge trivially.

• Triangular Matrix:

- Upper/Lower Triangular: All entries below/above diagonal are zero.
- Solvable via forward/backward substitution in $O(n^2)$ time.
- Symmetric Matrix: $A = A^{\top}$. Diagonalizable with real eigenvalues.

• Positive Definite Matrix (SPD):

- $-x^{\top}Ax > 0$ for all $x \neq 0$.
- All eigenvalues are positive.
- Allows Cholesky factorization: $A = LL^{\top}$.
- Gauss-Seidel and Conjugate Gradient methods converge when A is SPD.

• Diagonally Dominant Matrix:

$$|a_{ii}| \ge \sum_{j \ne i} |a_{ij}|$$
 for all i .

- Strictly diagonally dominant: > instead of \geq .
- Guarantees convergence of Jacobi, Gauss-Seidel, and SOR methods.

• Band Matrix:

- Nonzero entries confined to a diagonal band (e.g., tridiagonal).
- Efficient to store and solve: $O(nb^2)$ where b is bandwidth.

• Sparse Matrix:

- Majority of entries are zero.
- Exploit sparsity for efficient storage and faster matrix-vector products.

• Ill-Conditioned Matrix:

- Has large condition number $\kappa(A)$.
- Small perturbations in input lead to large errors in output.
- May cause instability in numerical methods (especially direct solvers).
- Normal Matrix: $A^{T}A = AA^{T}$. Includes symmetric and orthogonal matrices.

• Convergence Summary for Iterative Methods:

- Jacobi/Gauss-Seidel: Converge if A
 is SPD or strictly diagonally dominant.
- **SOR:** Converges if A is SPD and $0 < \omega < 2$.
- Spectral Radius Criterion: Iteration matrix T satisfies $\rho(T) < 1$ for convergence.

Determinants and Eigenvalues

• Determinant (Definition):

- Scalar value associated with a square matrix.
- Denoted det(A) or |A|.
- Indicates volume scaling factor of linear transformation and invertibility of matrix.
- $-\det(\mathbb{R}^{2\times 2}) = \det\begin{bmatrix} a & b \\ c & d \end{bmatrix} = ad bc$

• Properties of Determinants:

- $-\det(I) = 1$
- $\det(AB) = \det(A)\det(B)$
- $\det(A^{\top}) = \det(A)$
- $\det(A^{-1}) = \frac{1}{\det(A)}$ if A is invertible
- Row swaps change sign of determinant.
- Adding a multiple of one row to another does not change determinant.
- If A has a row or column of zeros $\Rightarrow \det(A) = 0$

• Cofactor Expansion (Laplace Expansion):

Expand determinant along any row or column:

$$\det(A) = \sum_{j=1}^{n} a_{ij} (-1)^{i+j} \det(M_{ij})$$

where M_{ij} is the minor of A (matrix formed by deleting row i and column j).

- Computationally expensive for large matrices (use LU for efficiency).

• Triangular Matrix Determinant:

 $det(A) = \prod_{i=1}^{n} a_{ii}$ if A is upper or lower triangular.

• Eigenvalues and Eigenvectors:

- For square matrix A, if $Ax = \lambda x$, then:
 - * λ is an eigenvalue
 - * x is a corresponding **eigenvector**
- To find eigenvalues:

$$\det(A - \lambda I) = 0$$

This is the characteristic polynomial.

 Each eigenvalue has one or more associated eigenvectors, found by solving:

$$(A - \lambda I)x = 0$$

• Properties of Eigenvalues:

- Sum of eigenvalues = tr(A)
- Product of eigenvalues $= \det(A)$
- Eigenvalues of $A^{\top} = A$
- If A is symmetric: all eigenvalues are real; eigenvectors are orthogonal.
- If A is invertible: no eigenvalue equals 0.

• Diagonalization:

- $-A = PDP^{-1}$ if A has n linearly independent eigenvectors.
- D is diagonal matrix of eigenvalues; P contains eigenvectors as columns.

• Spectral Radius:

$$\rho(A) = \max_{i} |\lambda_i|$$

Determines convergence behavior of many iterative methods.