Algorithmique avancée $_{\text{Version 3.1}}$

Michaël Guedj

Algorithmique avancée de Michaël Guedj est mis à disposition selon les termes de la licence Creative Commons Attribution 4.0 International.

Table des Matières

1	Rap	opels de logique	5
	1.1	Logique propositionnelle	5
	1.2	Logique des prédicats	5
2	\mathbf{Alg}	orithmes sur tableaux	7
	2.1	Un tableau est-il vide ?	7
	2.2	Afficher les éléments d'un tableau	7
	2.3	Afficher les éléments positifs d'un tableau	7
	2.4	Retourner l'éléments maximum d'un tableau	8
	2.5	Retourner l'indice de l'éléments maximum d'un tableau	8
	2.6	Retourner la somme des éléments d'un tableau	8
	2.7	Rechercher un élément dans un tableau	9
3	Alg	orithmes sur matrices	10
	3.1		10
	3.2	Additionner deux matrices	10
	3.3		10
4	Cor	nplexité en temps	12
	4.1	Approximation asymptotique	12
	4.2	Complexités en temps classiques	12
5	Tris	quadratiques	13
	5.1	Algorithme d'échange	13
	5.2	Tri par sélection	13
	5.3	Tri à bulles	15
6	Réc	eursivité 1	16
	6.1	Considérations sur la récursivité	16
	6.2	Exemple: la fonction factorielle	16
7	Cal	cul des termes de la suite Fibonacci	18
	7.1	Définition	18
	7.2	Approche récursive	18
	7.3	Approche itérative	18
Q	Thá	ionòmo moîtro	วก

9	9.1 A	er pour régner – exponentiation rapide pproche Diviser pour régner	24 24 24
10	Reche	erche dichotomique	26
11	Tri fu	sion	28
12	_	esentation des graphes	32
		Considérations préliminaires	32
		deprésentation par matrice d'adjacence	32
		Représentation par liste d'adjacence	$\frac{32}{32}$
		xemple	32 33
		Somplexité de quelques opérations	33
		Choix d'utilisation	34
		delation entre sommets adjacents et arêtes	34
13	Arbre	\cdot s	36
	13.1 A	rbres – arbres binaires	36
	1	3.1.1 Arbres binaires et profondeur	36
	13	3.1.2 Arbres binaires parfaits	36
		3.1.3 Parcours préfixe et infixe d'un arbre binaire	38
	13.2 A	rbre binaire de recherche	38
	13	3.2.1 Définition	38
		3.2.2 Recherche dans un ABR	39
	13.3 P	arcours infixe dans un ABR	39
14	Parco	urs en largeur (Breadth First Search)	40
		pplications : graphe d'accessibilité et composantes connexes	40
		4.1.1 Graphe d'accessibilité	40
	1	4.1.2 Composantes connexes d'un graphe non orienté	40
		pplication: plus court chemin	41
15	Proble	ème de l'arrêt	43

1 Rappels de logique

1.1 Logique propositionnelle

A	B	A and B
1	1	1
1	0	0
0	1	0
0	0	0

A	B	A or B
1	1	1
1	0	1
0	1	1
0	0	0

$$\begin{array}{c|cc}
A & \neg A \\
\hline
1 & 0 \\
0 & 1
\end{array}$$

$$A \Rightarrow B \equiv \left(\neg A \text{ or } B \right)$$

$$A \mid B \mid A \Rightarrow B$$

	A	B	$A \Rightarrow B$
Ì	1	1	1
Ì	1	0	0
ĺ	0	1	1
	0	0	1

$$A \iff B \equiv \left(A \Rightarrow B \text{ and } B \Rightarrow A\right)$$

A	B	$A \iff B$
1	1	1
1	0	0
0	1	0
0	0	1

1.2 Logique des prédicats

$$\neg \Big(\forall x \in E, \ P(x) \Big) \quad \equiv \quad \exists x \in E, \ \neg P(x)$$

$$\neg \Big(\exists x \in E, \ P(x)\Big) \quad \equiv \quad \forall x \in E, \ \neg P(x)$$

2 Algorithmes sur tableaux

2.1 Un tableau est-il vide?

```
Algorithm 1 est_vide (t : tableau, n : taille du tableau)

1: if n = 0 then
2: return True
3: else
4: return False
5: end if
```

Complexité : O(1).

2.2 Afficher les éléments d'un tableau

```
Algorithm 2 afficher_tableau (t: tableau, n: taille du tableau)
1: for i \leftarrow 0, ..., n-1 do
2: print(t[i])
3: end for
```

Complexité : O(n).

2.3 Afficher les éléments positifs d'un tableau

```
Algorithm 3 afficher_positifs (t: tableau, n: taille du tableau)

1: for i \leftarrow 0, ..., n-1 do

2: if t[i] \geq 0 then

3: print(t[i])

4: end if

5: end for
```

2.4 Retourner l'éléments maximum d'un tableau

```
Algorithm 4 maximum (t: tableau, n: taille du tableau)

1: max \leftarrow t[0] \Rightarrow on suppose n > 0

2: for i \leftarrow 1, ..., n-1 do

3: if t[i] \geq max then

4: max \leftarrow t[i]

5: end if

6: end for

7: return max
```

Complexité : O(n).

2.5 Retourner l'indice de l'éléments maximum d'un tableau

```
Algorithm 5 inidice_maximum (t: tableau, n: taille du tableau)

1: max \leftarrow t[0] \Rightarrow on suppose n > 0

2: iMax \leftarrow 0

3: for i \leftarrow 1, ..., n-1 do

4: if t[i] \geq max then

5: max \leftarrow t[i]

6: iMax \leftarrow i

7: end if

8: end for

9: return iMax
```

Complexité : O(n).

2.6 Retourner la somme des éléments d'un tableau

```
Algorithm 6 somme (t: tableau, n: taille du tableau)

1: res \leftarrow 0

2: for i \leftarrow 0, ..., n-1 do

3: res \leftarrow res + t[i]

4: end for

5: return res
```

2.7 Rechercher un élément dans un tableau

```
Algorithm 7 recherche (t : tableau, n : taille du tableau, x : élément)
```

- 1: **for** $i \leftarrow 0, ..., n-1$ **do**
- 2: if t[i] = x then
- 3: **return** True
- 4: end if
- 5: end for
- 6: **return** False

3 Algorithmes sur matrices

3.1 Afficher les éléments d'une matrice

Algorithm 8 afficher_matrice $(A : matrice \ n \times m)$

```
1: for i \leftarrow 0, ..., n-1 do \triangleright parcours des lignes

2: for j \leftarrow 0, ..., m-1 do \triangleright parcours des colonnes

3: print(A_{i,j})

4: end for

5: print("\n") \triangleright échappement pour une nouvelle ligne

6: end for
```

Complexité : $O(n \times m)$.

Cas d'une matrice carré $n \times n : O(n^2)$.

3.2 Additionner deux matrices

Algorithm 9 additionner $(A, B : matrice \ n \times m)$

```
1: C \leftarrow \text{matrice } n \times m

2: for i \leftarrow 0, ..., n - 1 do

3: for j \leftarrow 0, ..., m - 1 do

4: C_{i,j} \leftarrow A_{i,j} + B_{i,j}

5: end for

6: end for

7: return C
```

Complexité : $O(n \times m)$.

3.3 La matrice est-telle diagonale?

Définition. La matrice carré $n \times n$, soit M, est diagonale si :

$$\forall i, j \in \{0, ..., n-1\}, i \neq j \Rightarrow M_{i,j} = 0$$

Lemme. La matrice carré $n \times n$, soit M, n'est pas diagonale si :

$$\exists i, j \in \{0, ..., n-1\}, i \neq j \text{ and } M_{i,j} \neq 0$$

Preuve.

$$A \equiv \text{ not } \left(\forall i, j \in \{0, ..., n-1\}, i \neq j \Rightarrow M_{i,j} = 0 \right)$$

```
A \equiv \exists i, j \in \{0, ..., n-1\}, \quad \mathbf{not} \quad \left(i \neq j \Rightarrow M_{i,j} = 0\right) A \equiv \exists i, j \in \{0, ..., n-1\}, \quad \mathbf{not} \quad \left( \quad \mathbf{not} \quad (i \neq j) \quad \mathbf{or} \quad (M_{i,j} = 0)\right) A \equiv \exists i, j \in \{0, ..., n-1\}, \quad (i \neq j) \quad \mathbf{and} \quad \mathbf{not} \quad (M_{i,j} = 0) A \equiv \exists i, j \in \{0, ..., n-1\}, \quad i \neq j \quad \mathbf{and} \quad M_{i,j} \neq 0
```

Algorithm 10 est_diagonale $(M : matrice \ n \times n)$

```
1: for i \leftarrow 0, ..., n-1 do

2: for j \leftarrow 0, ..., n-1 do

3: if i \neq j and M_{i,j} \neq 0 then

4: return False

5: end if

6: end for

7: end for

8: return True
```

4 Complexité en temps

4.1 Approximation asymptotique

Définition (Notation grand O). Soient f et g, deux suites de $\mathbb{N} \to \mathbb{R}^+$. $f \in O(g)$ si :

$$\exists K \in \mathbb{R}^{*+}, \ \exists n_0 \in \mathbb{N}, \ \text{tels que} :$$

$$\forall n \ge n_0, \ f(n) \le K.g(n)$$

Autrement dit, $f(n) \leq K.g(n)$ à partir d'un certain rang.

Exemples.

- $7n 3 \in O(n)$
- $7n-3 \in O(n^2)$

Remarque 1. Le but est de trouver l'approximation la plus petite possible.

4.2 Complexités en temps classiques

Complexité	Notation asymptotique	Exemple
Logarithmique	$O(\log n)$	Recherche dichotomique dans un tableau trié.
Linéaire	O(n)	Recherche séquentielle dans un tableau.
Quasi-linéaire	$O(n \log n)$	Tri fusion.
Quadratique	$O(n^2)$	Tri sélection; tri à bulles.
Polynomiale	$O(n^k), k \ge 0$	
Exponentielle	$O(\alpha^n), \alpha > 1$	Algorithme récursif pour Fibonacci.
Factorielle	O(n!)	Résolution des <i>n</i> -reines par backtracking.

5 Tris quadratiques

5.1 Algorithme d'échange

Algorithm 11 echanger(t: tableau, i, j: entiers)

```
1: tmp \leftarrow t[i]
```

2:
$$t[i] \leftarrow t[j]$$

3:
$$t[j] \leftarrow tmp$$

5.2 Tri par sélection

Algorithm 12 tri_selection(t: tableau, n: taille du tableau)

```
1: for i \leftarrow 0, ..., n-2 do
```

- 2: $i_{min} \leftarrow \texttt{indice_min_sous_tab}(t, i, n-1)$
- 3: echanger (t, i, i_{min})
- 4: end for

Algorithm 13 indice_min_sous_tab(t : tableau, a, b : entiers)

```
1: i_{min} \leftarrow a
```

- 2: for $i \leftarrow a+1,...,b$ do
- 3: if $t[i] < t[i_{min}]$ then
- 4: $i_{min} \leftarrow i$
- 5: end if
- 6: end for
- 7: return i_{min}

Théorème. La complexité de tri_selection est en $O(n^2)$.

Preuve. Calcul du nombre de comparaisons, soit C(n), de tri_selection (ligne 3 de l'algorithme 13).

$$C(n) = \sum_{i=0}^{n-2} \sum_{j=i+1}^{n-1} 1$$

$$C(n) = \sum_{i=0}^{n-2} \left((n-1) - (i+1) + 1 \right)$$

$$C(n) = \sum_{i=0}^{n-2} (n-1-i-1+1)$$

$$C(n) = \sum_{i=0}^{n-2} (n-1-i)$$

$$C(n) = \sum_{i=0}^{n-2} (n-1) - \sum_{i=0}^{n-2} i$$

$$C(n) = (n-1) \sum_{i=0}^{n-2} 1 - \sum_{i=0}^{n-2} i$$

$$C(n) = (n-1)(n-1) - \sum_{i=0}^{n-2} i$$

$$C(n) = (n-1)^2 - \sum_{i=0}^{n-2} i$$

$$C(n) = (n-1)^2 - \frac{(n-2)(n-1)}{2}$$

$$C(n) = (n-1) \left((n-1) - \frac{(n-2)}{2} \right)$$

$$C(n) = (n-1) \left(\frac{2 \cdot (n-1) - (n-2)}{2} \right)$$

$$C(n) = (n-1) \left(\frac{2n-2-n+2}{2} \right)$$

$$C(n) = (n-1) \frac{n}{2}$$

$$C(n) = \frac{n^2}{2} - \frac{n}{2} = O(n^2)$$

5.3 Tri à bulles

Algorithm 14 tri_ $a_bulles(t : tableau, n : taille du tableau)$

```
1: for i \leftarrow n-1,...,1 do
2: for j \leftarrow 0,...,i-1 do
3: if t[j+1] < t[j] then
4: echanger(t,j+1,j)
5: end if
6: end for
7: end for
```

Théorème. La complexité de tri_à_bulles est en $O(n^2)$.

Preuve. Calcul du nombre de comparaisons, soit C(n), de tri_a_bulles (ligne 4 de Algorithme 14).

$$C(n) = \sum_{i=n-1}^{1} \sum_{j=0}^{i-1} 1 = \sum_{i=n-1}^{1} (i-1-0+1) = \sum_{i=n-1}^{1} i$$

$$C(n) = \frac{(n-1+1)(n-1)}{2} = \frac{n(n-1)}{2} = \frac{n^2}{2} - \frac{n}{2} = O(n^2)$$

6 Récursivité

6.1 Considérations sur la récursivité

La version itérative d'un traitement est souvent à préférer.

En effet:

- un dépassement de pile (stack overflow) peut se produire ;
- l'exécution d'une version récursive d'un algorithme est généralement un peu moins rapide que celle de la version itérative correspondante ; et ce même si le nombre d'instructions est le même (à cause de la gestion des appels de fonction);
- un algorithme récursif (naïf) peut conduire à exécuter bien plus d'instructions que la version itérative correspondante (cas du calcul de la suite de Fibonacci).

En revanche, la récursivité peut être adaptée dans certains cas.

En effet:

- sur des structures de données naturellement récursives, il est plus facile d'écrire des algorithmes récursifs qu'itératifs;
- certains algorithmes sont, en outre, difficiles à écrire en itératif.

6.2 Exemple: la fonction factorielle

Définition (fonction factorielle). La fonction factorielle est définie, sur \mathbb{N} , par :

$$\left\{ \begin{array}{l} 0! = 1 \\ n! = \prod_{i=1}^{n} i = n \times (n-1) \times \dots \times 2 \times 1 \quad \text{ si } n \geq 1 \end{array} \right.$$

Définition (définition récursive de la fonction factorielle).

$$n! = \begin{cases} 1 & \text{si } n = 0 \\ n \times (n-1)! & \text{si } n \ge 1 \end{cases}$$

Algorithm 15 fact $(n \in \mathbb{N})$

- 1: if n = 0 then
- 2: return 1
- 3: **else**
- 4: $\mathbf{return} \ n \times \mathbf{fact}(n-1)$
- 5: end if

Complexité : O(n).

$\overline{\textbf{Algorithm 16} \, \texttt{fact_it}(n \in \mathbb{N})}$

1: $res \leftarrow 1$

2: for $i \leftarrow 1,...,n$ do

3: $res \leftarrow res \times i$

4: end for

5: return res

7 Calcul des termes de la suite Fibonacci

7.1 Définition

Définition (suite de Fibonacci).

$$F_n = \begin{cases} 0 & \text{si } n = 0\\ 1 & \text{si } n = 1\\ F_{n-1} + F_{n-2} & \text{si } n \ge 2 \end{cases}$$

7.2 Approche récursive

Algorithm 17 fibo_rec $(n \in \mathbb{N})$

1: if n = 0 then

2: return 0

3: else if n=1 then

4: return 1

5: **else**

6: return fibo_rec(n-1) + fibo_rec(n-2)

7: end if

Théorème. La complexité de fibo_rec est en $O(\phi^n)$; où $\phi = \frac{1+\sqrt{5}}{2}$ est le nombre d'or.

Preuve. Admis.

7.3 Approche itérative

Algorithm 18 fibo_it $(n \in \mathbb{N})$

1: $F \leftarrow \text{tableau de } n+1 \text{ éléments}$

2: $F[0] \leftarrow 0$

 $3: F[1] \leftarrow 1$

4: for $i \leftarrow 2, ..., n$ do

5: $F[i] \leftarrow F[i-1] + F[i-2]$

6: end for

7: return F[n]

Théorème. La complexité de fibo_it est en O(n).

Preuve. – Nombre d'affectations : O(n).

– Nombre d'additions : O(n).

8 Théorème maître

Théorème. Soient $a,b,d\in\mathbb{N},\ a\geq 1,\ b\geq 2$; soit la fonction $f:\mathbb{N}\to\mathbb{N}$ définie par :

$$f(n) = \begin{cases} O(1) & \text{si } n \le 1\\ a.f(n/b) + O(n^d) & \text{si } n \ge b \end{cases}$$

alors:

$$f(n) = \begin{cases} O(n^d) & \text{si } a < b^d \\ O(n^d \cdot \log n) & \text{si } a = b^d \\ O(n^{\log_b a}) & \text{si } a > b^d \end{cases}$$

Preuve.

$$f(n) = a.f(\frac{n}{b}) + O(n^d)$$

$$f(n) = a.\left(a.f(\frac{n}{b^2}) + O(\frac{n^d}{b^d})\right) + O(n^d)$$

$$f(n) = a^2.f(\frac{n}{b^2}) + a.O(\frac{n^d}{b^d}) + O(n^d)$$

$$f(n) = a^2.\left(a.f(\frac{n}{b^3}) + O(\frac{n^d}{b^{2.d}})\right) + a.O(\frac{n^d}{b^d}) + O(n^d)$$

$$f(n) = a^3.f(\frac{n}{b^3}) + a^2.O(\frac{n^d}{b^{2.d}}) + a.O(\frac{n^d}{b^d}) + O(n^d)$$

$$f(n) = a^3.\left(a.f(\frac{n}{b^4}) + O(\frac{n^d}{b^{3.d}})\right) + a^2.O(\frac{n^d}{b^{2.d}}) + a.O(\frac{n^d}{b^d}) + O(n^d)$$

$$f(n) = a^4.f(\frac{n}{b^4}) + a^3.O(\frac{n^d}{b^{3.d}}) + a^2.O(\frac{n^d}{b^{2.d}}) + a.O(\frac{n^d}{b^d}) + O(n^d)$$

C'est-à-dire

$$f(n) = a^4 \cdot f(\frac{n}{b^4}) + \sum_{i=0}^{3} a^i \cdot O(\frac{n^d}{b^{i \cdot d}})$$

Au rang k, on trouve

$$f(n) = a^k \cdot f(\frac{n}{b^k}) + \sum_{i=0}^{k-1} a^i \cdot O(\frac{n^d}{b^{i \cdot d}})$$

On a

$$\frac{n}{b^k} = 1 \iff n = b^k \iff \log_b n = k$$

D'où

$$f(n) = a^{\log_b n} \cdot f(1) + \sum_{i=0}^{\log_b n-1} a^i \cdot O(\frac{n^d}{b^{i \cdot d}})$$

$$f(n) = a^{\log_b n} \cdot O(1) + \sum_{i=0}^{\log_b n-1} a^i \cdot O(\frac{n^d}{b^{i \cdot d}})$$

On a

$$a^{\log_b n} = e^{\ln a \cdot \ln n \cdot \frac{1}{\ln b}} = n^{\log_b a}$$

D'où

$$f(n) = n^{\log_b a} \cdot O(1) + \sum_{i=0}^{\log_b n-1} a^i \cdot O(\frac{n^d}{b^{i \cdot d}})$$

On a

$$\sum_{i=0}^{\log_b n-1} a^i.O(\frac{n^d}{b^{i.d}}) = \sum_{i=0}^{\log_b n-1} n^d.O(\frac{a^i}{b^{i.d}}) = n^d.\sum_{i=0}^{\log_b n-1} O\Big((\frac{a}{b^d})^i\Big)$$

Soit

$$f(n) = n^{\log_b a} \cdot O(1) + n^d \cdot \sum_{i=0}^{\log_b n-1} O\left(\left(\frac{a}{b^d}\right)^i\right)$$

(i) Cas: $a = b^d$

$$f(n) = n^{\log_b b^d} \cdot O(1) + n^d \cdot \sum_{i=0}^{\log_b n - 1} O(1)$$

$$f(n) = n^d \cdot O(1) + n^d \cdot O(\log_b n)$$
$$f(n) = O(n^d \cdot \log n)$$

(ii) $\underline{\text{Cas} : a < b^d}$ Alors $\frac{a}{b^d} < 1$, donc

$$\sum_{i=0}^{\log_b n-1} O\left(\left(\frac{a}{b^d}\right)^i\right) = O\left(\frac{1 - \left(\frac{a}{b^d}\right)^{\log_b n}}{1 - \frac{a}{b^d}}\right)$$

$$\sum_{i=0}^{\log_b n-1} O\Big((\frac{a}{b^d})^i\Big) = O\Big(\frac{1}{1-\frac{a}{b^d}}\Big)$$

$$\sum_{i=0}^{\log_b n-1} O\Big((\frac{a}{b^d})^i\Big) = O(1)$$

D'où

$$f(n) = n^{\log_b a}.O(1) + n^d.O(1)$$

En outre,

$$a < b^d \iff \log_b a < \log_b b^d = d$$

D'où

$$f(n) = O(n^d).O(1) + n^d.O(1)$$
$$f(n) = O(n^d)$$

(iii) Cas : $a > b^d$

On a

$$\sum_{i=0}^{\log_b n-1} O\Big((\frac{a}{b^d})^i\Big) = O\Big(\frac{1-\left(\frac{a}{b^d}\right)^{\log_b n}}{1-\frac{a}{b^d}}\Big)$$

$$\sum_{i=0}^{\log_b n-1} O\Big((\frac{a}{b^d})^i\Big) = O\Big(\frac{(\frac{a}{b^d})^{\log_b n} - 1}{\frac{a}{b^d} - 1}\Big)$$

$$\sum_{i=0}^{\log_b n-1} O\left(\left(\frac{a}{b^d}\right)^i\right) = O\left(\frac{1}{\frac{a}{b^d}-1} \cdot \left(\left(\frac{a}{b^d}\right)^{\log_b n}-1\right)\right)$$

$$\sum_{i=0}^{\log_b n-1} O\Big((\frac{a}{b^d})^i\Big) = O\Big((\frac{a}{b^d})^{\log_b n}\Big)$$

$$\sum_{i=0}^{\log_b n - 1} O\left(\left(\frac{a}{b^d}\right)^i\right) = O\left(\frac{a^{\log_b n}}{(b^{d \cdot \log_b n})}\right) = O\left(\frac{a^{\log_b n}}{(b^{\log_b n})^d}\right)$$

$$\sum_{i=0}^{\log_b n-1} O\Big((\frac{a}{b^d})^i\Big) = O\Big(\frac{a^{\log_b n}}{n^d}\Big)$$

On a donc

$$f(n) = n^{\log_b a}.O(1) + n^d.O\left(\frac{a^{\log_b n}}{n^d}\right)$$

$$f(n) = n^{\log_b a} \cdot O(1) + O\left(\frac{n^d \cdot a^{\log_b n}}{n^d}\right)$$

$$f(n) = n^{\log_b a}.O(1) + O(a^{\log_b n})$$

Comme $a^{\log_b n} = n^{\log_b a}$, on obtient

$$f(n) = n^{\log_b a}.O(1) + O(n^{\log_b a})$$

Soit

$$f(n) = O(n^{\log_b a})$$

9 Diviser pour régner – exponentiation rapide

9.1 Approche Diviser pour régner

Principe.

- 1. **Diviser** : découper le problème à résoudre en a sous-problèmes (de taille n/b chacun);
- 2. **Régner** : résoudre *récursivement* les a sous-problèmes ;
- 3. Combiner : à partir des solutions des a sous-problèmes, calculer en $O(n^d)$ une solution au problème à résoudre.

La complexité peut alors se traduire par l'équation :

$$t(n) = a.t(n/b) + O(n^d)$$

(plus généralement par l'équation $t(n) = a.t(n/b) + O(\tau(n))$ avec $\tau : \mathbb{N} \to \mathbb{N}$).

9.2 Exponentiation rapide

Théorème. $\forall x \in \mathbb{R}$,

$$x^{n} = \begin{cases} 1 & \text{si } n = 0\\ (x^{2})^{\frac{n}{2}} & \text{si } n > 0 \text{ et } n \equiv 0 \mod 2\\ x.(x^{2})^{\frac{n-1}{2}} & \text{si } n > 0 \text{ et } n \equiv 1 \mod 2 \end{cases}$$

Preuve. – Si n>0 et $n\equiv 0 \mod 2$, alors $\exists k\in \mathbb{N}^*$ tel que n=2.k. On a $k=\frac{n}{2}$ et

$$x^n = x^{2.k} = (x^2)^k = (x^2)^{\frac{n}{2}}$$

– Si n>0 et $n\equiv 1\mod 2$, alors $\exists k\in\mathbb{N}$ tel que n=2.k+1. On a $k=\frac{n-1}{2}$ et

$$x^{n} = x^{2.k+1} = x^{2.k}.x^{1} = x.(x^{2})^{k} = x.(x^{2})^{\frac{n-1}{2}}$$

Algorithm 19 $\exp_{\mathbf{r}}$ $\operatorname{apide}(x, n)$

1: if n = 0 return 1 end if

2:

3: if $n \equiv 0 \mod 2$ then

4: return exp_rapide $(x.x, \frac{n}{2})$

5: else

6: return $x \times \exp_{\text{rapide}}(x.x, \frac{n-1}{2})$

7: end if

Théorème. La complexité de \exp _rapide est en $O(\log n)$.

Preuve. Soit $\mathcal{C}(n)$ le nombre de comparaisons pour une instance de taille n. On a,

$$C(n) = C(n/2) + O(1)$$

On invoque le théorème maître avec $a=1,\,b=2$ et d=0. On a

$$a = 1 = 2^d$$

D'où

$$C(n) = O(n^d \cdot \log n)$$

Comme $n^0 = 1$, on trouve

$$C(n) = O(\log n)$$

10 Recherche dichotomique

Algorithm 20 dicho_init(t: tableau, n: taille du tableau, x: élément)

- 1: $d \leftarrow 0$
- 2: $f \leftarrow n-1$
- 3: return dicho(t, d, f, x)

Algorithm 21 dicho(t: tableau, d, f: indices, x: élément)

1: if d > f then return -1 end if

⊳ non trouvé

- 2: if f = d then
- 3: if t[d] = x then return d else return -1 end if
- 4: end if
- 5: $m \leftarrow \lfloor \frac{d+f}{2} \rfloor$

⊳ partie entière

- 6: **if** t[m] = x **then**
- 7: $\mathbf{return} \ m$
- 8: end if
- 9: if t[m] < x then
- 10: return dicho(t, m+1, f, x)
- 11: **else**
- 12: return dicho(t, d, m-1, x)
- 13: **end if**

Théorème. La complexité de dicho est en $O(\log n)$.

Preuve. Soit C(n) le nombre de comparaisons pour une instance de taille n. On a,

$$C(n) = C(n/2) + O(1)$$

On invoque le théorème maître avec $a=1,\,b=2$ et d=0. On a

$$a = 1 = 2^d$$

D'où

$$\mathcal{C}(n) = O(n^d \cdot \log n)$$

Comme $n^0 = 1$, on trouve

$$C(n) = O(\log n)$$

Deuxième preuve. Soit C(n) le nombre de comparaisons pour une instance de taille n. On a,

$$C(n) = \gamma + C(\frac{n}{2})$$
 (γ constante)

La deuxième instance appelée vérifie :

$$\mathcal{C}(\frac{n}{2}) = \gamma + \mathcal{C}(\frac{n}{4})$$

D'où,

$$\mathcal{C}(n) = \gamma + \mathcal{C}(\frac{n}{2}) = \gamma + \left(\gamma + \mathcal{C}(\frac{n}{4})\right) = 2\gamma + \mathcal{C}(\frac{n}{4})$$

Soit,

$$C(n) = 2\gamma + C(\frac{n}{2^2})$$

La troisième instance appelée vérifie :

$$\mathcal{C}(\frac{n}{2^2}) = \gamma + \mathcal{C}(\frac{n}{2^3})$$

D'où,

$$\mathcal{C}(n) = 3\gamma + \mathcal{C}(\frac{n}{2^3})$$

Par suite, C(n) s'écrit :

$$\mathcal{C}(n) = k\gamma + \mathcal{C}(\frac{n}{2^k})$$

On a:

$$\frac{n}{2^k} = 1 \Rightarrow \mathcal{C}(\frac{n}{2^k}) = O(1)$$

Et:

$$\frac{n}{2^k} = 1 \iff n = 2^k \iff \underline{\log_2 n = k}$$

 $\mathcal{C}(n)$ s'écrit alors :

$$C(n) = k\gamma + C(\frac{n}{2^k}) = \log_2(n)\gamma + O(1) \in O(\log n)$$

11 Tri fusion

Algorithm 22 tri_fusion(lst: liste de taille n)

```
1: if n=1 return lst end if

2: m=\lfloor n/2\rfloor \triangleright Partie entière.

3: lst_1 \leftarrow \mathtt{tri\_fusion}(lst[0 \rightarrow m-1])

4: lst_2 \leftarrow \mathtt{tri\_fusion}(lst[m \rightarrow n-1])

5: return fusion(lst_1, lst_2)
```

Algorithm 23 fusion(lst_1 : liste de taille n_1 , lst_2 : liste de taille n_2)

```
1: res \leftarrow [\ ]
 2: while not \left( \mathsf{est\_vide}(lst_1) \text{ and } \mathsf{est\_vide}(lst_2) \right) \mathbf{do}
 3:
          if est\_vide(lst_1) then
              res \leftarrow res + lst_2
 4:
 5:
              lst_2 \leftarrow [\ ]
          else if est\_vide(lst_2) then
 6:
              res \leftarrow res + lst_1
 7:
              lst_1 \leftarrow [\ ]
 8:
          else if head(lst_1) \leq head(lst_2) then
 9:
10:
              res \leftarrow res + [ head(lst_1) ]
              lst_1 \leftarrow \mathtt{tail}(lst_1)
11:
          else
12:
13:
              res \leftarrow res + [ head(lst_2) ]
              lst_2 \leftarrow tail(lst_2)
14:
          end if
15:
16: end while
17: return res
```

Théorème. L'algorithme fusion termine.

Preuve. L'algorithme termine lorsque les listes lst_1 et lst_2 sont vides.

Soit la prédicat P quantifiant, pour chaque tour de boucle i, la somme des tailles des liste lst_1 et lst_2 ; formellement

$$P(i) := |lst_1^i| + |lst_2^i|$$

où lst_1^i (resp. lst_2^i) correspond à la liste lst_1 (resp. lst_2) au i-ème tour de boucle.

Par l'absurde (descente infinie), on suppose que l'algorithme ne termine pas, i.e., $\forall i \in \mathbb{N}, P(i) > 0$.

On vérifie que le prédicat P assure : $\forall i \in \mathbb{N}, P(i) > P(i+1)$. On considère la suite $(P_i)_{i \in \mathbb{N}}$ définie par : $\forall i \in \mathbb{N}, P_i = P(i)$. Ainsi, la suite $(P_i)_{i \in \mathbb{N}}$ est

- (i) à valeur entière $(P:\mathbb{N}\to\mathbb{N})$;
- (ii) infinie;
- (iii) strictement décroissante.

D'où la fausseté de l'hypothèse de non terminaison de l'algorithme ($\forall i \in \mathbb{N}, P(i) > 0$).

Conclusion: l'algorithme termine
$$(\exists i \in \mathbb{N}, P(i) = 0)$$
.

Théorème. La complexité de fusion est en O(n).

Proof. On a

$$t(n) = O(1) + boucle(0, lst_1^0, lst_2^0)$$

et

$$boucle(i, lst_1^i, lst_2^i) = \begin{cases} O(1) & \text{si } |lst_1^i| = |lst_2^i| = 0 \\ O(1) & \text{si } |lst_1^i| = 0 \text{ ou } |lst_2^i| = 0 \\ O(1) + boucle(i, lst_1^{i+1}, lst_2^{i+1}) & \text{sinon ; avec :} \\ & |lst_1^{i+1}| + |lst_2^{i+1}| = |lst_1^i| + |lst_2^i| - 1 \end{cases}$$

On associe la suite $(u_j)_{j\in\mathbb{N}}$; u_j quantifiant le temps en fonction de $|lst_1^j|+|lst_2^j|$:

$$u_j = \begin{cases} O(1) & \text{si } j = 0\\ O(1) + u_{j-1} & \text{sinon} \end{cases}$$

On a $n = |lst_1^0| + |lst_2^0|$ et

$$t(n) = O(1) + u_n$$

On calcule u_n .

$$u_n = O(1) + u_{n-1}$$

$$u_n = O(1) + (O(1) + u_{n-2})$$

$$u_n = 2.O(1) + u_{n-2}$$

...

$$u_n = k.O(1) + u_{n-k}$$

Soit

$$u_n = n.O(1) + u_0$$
$$u_n = n.O(1) + O(1)$$
$$u_n = O(n)$$

D'où

$$t(n) = O(n)$$

Théorème. La complexité de tri_fusion est en $O(n \log n)$.

Preuve. Soit $\mathcal{C}(n)$ le nombre de comparaisons pour une instance de taille n. On a

$$C(n) = 2.C(n/2) + O(n)$$

On invoque le théorème maître avec $a=2,\,b=2$ et d=1. On a

$$a = 2 = 2^d$$

D'où

$$C(n) = O(n^d \cdot \log n)$$

C'est-à-dire

$$C(n) = O(n \cdot \log n)$$

Deuxième preuve. Soit C(n) le nombre de comparaisons pour une instance de taille n.

$$C(n) = 1 + 2.C(\frac{n}{2}) + \gamma.n$$

Où γ est une constante. On a de même :

$$\mathcal{C}(\frac{n}{2}) = 1 + 2.\,\mathcal{C}(\frac{n}{4}) + \gamma.\frac{n}{2}$$

Soit:

$$\mathcal{C}(n) = 1 + 2 \cdot \left(1 + 2 \cdot \mathcal{C}(\frac{n}{4}) + \gamma \cdot \frac{n}{2}\right) + \gamma \cdot n$$

$$\mathcal{C}(n) = 1 + 2 + 4 \cdot \mathcal{C}(\frac{n}{4}) + \gamma \cdot n + \gamma \cdot n$$

$$\mathcal{C}(n) = 4 \cdot \mathcal{C}(\frac{n}{4}) + 2\gamma \cdot n + 3$$

$$\frac{\mathcal{C}(n) = 2^2 \cdot \mathcal{C}(\frac{n}{2^2}) + 2\gamma \cdot n + (2+1)}{\mathcal{C}(\frac{n}{2^2}) = 1 + 2 \cdot \mathcal{C}(\frac{n}{2^3}) + \gamma \cdot \frac{n}{2^2}}$$

$$\mathcal{C}(n) = 2^2 \cdot \left(1 + 2 \cdot \mathcal{C}(\frac{n}{2^3}) + \gamma \cdot \frac{n}{2^2}\right) + 2\gamma \cdot n + (2+1)$$

$$\mathcal{C}(n) = 2^2 + 2^2 \cdot 2 \cdot \mathcal{C}(\frac{n}{2^3}) + \gamma \cdot n + 2\gamma \cdot n + (2+1)$$

$$\frac{\mathcal{C}(n) = 2^3 \cdot \mathcal{C}(\frac{n}{2^3}) + 3\gamma \cdot n + (2^2 + 2 + 1)}{\mathcal{C}(\frac{n}{2^3}) = 1 + 2 \cdot \mathcal{C}(\frac{n}{2^4}) + \gamma \cdot \frac{n}{2^3}}$$

$$\mathcal{C}(n) = 2^3 \cdot \left(1 + 2 \cdot \mathcal{C}(\frac{n}{2^4}) + \gamma \cdot \frac{n}{2^3}\right) + 3\gamma \cdot n + (2^2 + 2 + 1)$$

$$\mathcal{C}(n) = 2^3 + 2^3 \cdot 2 \cdot \mathcal{C}(\frac{n}{2^4}) + 2^3 \cdot \gamma \cdot \frac{n}{2^3} + 3\gamma \cdot n + (2^2 + 2 + 1)$$

$$\mathcal{C}(n) = 2^3 + 2^4 \cdot \mathcal{C}(\frac{n}{2^4}) + \gamma \cdot n + 3\gamma \cdot n + (2^2 + 2 + 1)$$

$$\frac{\mathcal{C}(n) = 2^4 \cdot \mathcal{C}(\frac{n}{2^4}) + 4\gamma \cdot n + (2^3 + 2^2 + 2 + 1)}{\mathcal{C}(n) = 2^4 \cdot \mathcal{C}(\frac{n}{2^4}) + 4\gamma \cdot n + (2^3 + 2^2 + 2 + 1)}$$

Par suite,

$$\mathcal{C}(n) = 2^t \cdot \mathcal{C}(\frac{n}{2^t}) + t \cdot \gamma \cdot n + (2^t + \dots + 2^2 + 2 + 1)$$

On a:

$$2^{t} + \dots + 2^{2} + 2 + 1 = \frac{2^{t+1} - 1}{2 - 1} = 2^{t+1} - 1$$

D'où,

$$C(n) = 2^t \cdot C(\frac{n}{2^t}) + t \cdot \gamma \cdot n + 2^{t+1} - 1$$

On a:

$$\frac{n}{2^t} = 1 \iff n = 2^t \iff t = \log_2 n$$

Et $\mathcal{C}(1) = 1$; d'où:

$$C(n) = 2^{\log_2 n} \cdot 1 + \log_2(n) \gamma \cdot n + 2^{\log_2(n) + 1} - 1$$

$$C(n) = n + n \cdot \log_2(n) \cdot \gamma + 2^{\log_2(n)} \cdot 2 + -1$$

$$C(n) = n + n \cdot \log_2(n) \cdot \gamma + 2 \cdot n - 1$$

$$C(n) = n \cdot \log_2(n) \cdot \gamma + 3 \cdot n - 1 \in O(n \log n)$$

12 Représentation des graphes

12.1 Considérations préliminaires

Soit un graphe G=(S,A) tel que : |S|=n et |A|=m (avec $n,m\in\mathbb{N}$). Les sommets de G sont numérotés de 0 à n-1.

12.2 Représentation par matrice d'adjacence

Définition. La matrice d'adjacence du graphe G, soit M, est une matrice booléenne de type $n \times n$ vérifiant :

$$M_{i,j} = \begin{cases} 1 & \text{si } i \text{ et } j \text{ sont adjacents} \\ 0 & \text{sinon} \end{cases}$$

Pour $i,j \in \{0,...,n-1\}$, si s_i est le i-ième sommet, et si s_j est le j-ième sommet, alors :

$$M_{i,j} = 1 \iff (s_i, s_j) \in A$$

12.3 Représentation par liste d'adjacence

Définition. La liste d'adjacence du graphe G, soit succ , est une liste indexée par les sommets de G, et telle que :

$$\forall s \in S, \; \mathtt{succ}(s) = \{s' : (s,s') \in A\}$$

Autrement dit, $\forall s \in S$, succ(s) est l'ensemble des sommets adjacents à s.

12.4 Exemple

Soit le graphe G = (S, A), défini par :

$$\left\{ \begin{array}{l} S = \{0,1,2,3\} \\ A = \{(0,2),(0,3),(1,0),(2,1),(2,3),(3,1)\} \end{array} \right.$$

Un tel graphe peut être représenté comme suit :

Les représentations par matrice et liste d'adjacence sont données ci-après.

Matrice d'adj	acence Lis	Liste d'adjacence		
$\int_{0}^{0} 0 \ 1$	1)	0	$\{2,3\}$	
1 0 0	0	1	{0}	
0 1 0	1	2	$\{1,3\}$	
$0 \ 1 \ 0$	0/	3	{1}	

12.5 Espace mémoire

Matrice d'adjacence	Liste d'adjacence
$O(n^2)$	O(n+m)

12.6 Complexité de quelques opérations

Opérations	Matrice d'adjacence	Liste d'adjacence
Tester l'existence d'un arc $s \to s'$	O(1)	$O(\operatorname{succ}(s))$
Retourner les sommets adjacents à un sommet	O(n)	O(1)
Parcourir l'ensemble des arcs	$O(n^2)$	O(m)

12.7 Choix d'utilisation

- D'une manière générale, on considère que si le graphe a "peu" d'arêtes, il est plus intéressant d'utiliser une représentation par liste d'adjacence, plutôt que par matrice d'adjacence (qui contiendrait alors beaucoup de 0).
- Mais si le graphe a "beaucoup" d'arêtes, il est plus intéressant d'utiliser une matrice d'adjacence.

12.8 Relation entre sommets adjacents et arêtes

Définition. Soit la fonction succ, définie par

$$\widetilde{\mathtt{succ}}:S\to A$$

$$s\mapsto \widetilde{\mathtt{succ}}(s):=\{(s,s'):s'\in\mathtt{succ}(s)\}$$

qui associe, à chaque sommet, l'ensemble des arêtes qui lui sont adjacentes.

Théorème. Si le graphe G est orienté,

$$\sum_{s \in S} |\widetilde{\mathtt{succ}}(s)| = |A|$$

Preuve. $\{\widetilde{\mathtt{succ}}(s): s \in S\}$ est une partition de A; i.e.,

$$\bigcup_{s \in S} \widetilde{\mathtt{succ}}(s) = A$$

et

$$\bigcap_{s \in S} \widetilde{\mathtt{succ}}(s) = \emptyset$$

Théorème. Si le graphe G est orienté,

$$\sum_{s \in S} |\widetilde{\mathtt{succ}}(s)| = 2.|A|$$

Preuve. D'une part,

$$\bigcup_{s \in S} \widetilde{\mathtt{succ}}(s) = A$$

D'autre part, quel que soient s et s' de S, et $a \in A$, tels que a = (s, s') = (s', s); alors

$$a \in \widetilde{\mathtt{succ}}(s) \cap \widetilde{\mathtt{succ}}(s')$$

(chaque arête est comptée exactement 2 fois).

On note que, $\forall s \in S$, $|\widetilde{\mathtt{succ}}(s)| = |\mathtt{succ}(s)|$. On en déduit les théorèmes suivants.

Théorème. Si le graphe G est orienté,

$$\sum_{s \in S} |\operatorname{succ}(s)| = |A|$$

Preuve. On a:

$$\sum_{s \in S} |\widetilde{\mathtt{succ}}(s)| = \sum_{s \in S} |\, \mathtt{succ}(s)|$$

Et on a précédemment démontré que :

$$\sum_{s \in S} |\widetilde{\mathtt{succ}}(s)| = |A|$$

Théorème. Si le graphe G est orienté,

$$\sum_{s \in S} |\operatorname{succ}(s)| = 2.|A|$$

Preuve. On a:

$$\sum_{s \in S} |\widetilde{\mathtt{succ}}(s)| = \sum_{s \in S} |\, \mathtt{succ}(s)|$$

Et on a précédemment démontré que :

$$\sum_{s \in S} |\widetilde{\mathtt{succ}}(s)| = 2.|A|$$

13 Arbres

13.1 Arbres – arbres binaires

13.1.1 Arbres binaires et profondeur

Définition (graphe connexe). Un graphe est connexe si : pour tous sommets s et s', il existe une chaîne reliant s à s'.

Définition (arbre). Un arbre est un graphe connexe sans cycle, dont on distingue un sommet appelé racine.

Définition (arbre binaire). Un arbre binaire est un arbre, dont tout nœud possède, au plus, deux successeurs.

Définition (profondeur d'un nœud). Soit \mathcal{A} un arbre binaire, la profondeur d'un nœud $s \in \mathcal{A}$, notée $\mathfrak{p}(s)$, est définie par :

- (i) $\mathfrak{p}(s) = 1$, si s est racine de \mathcal{A} ;
- (ii) $\mathfrak{p}(s) = \mathfrak{p}(\text{parent de } s) + 1$, sinon.

Définition (profondeur d'un arbre).

$$\mathfrak{p}(\mathcal{A}) := \max\{\mathfrak{p}(s) \mid s \text{ est une feuille de } \mathcal{A}\}$$

13.1.2 Arbres binaires parfaits

Définition (arbre binaire parfait). Un arbre binaire parfait est un arbre binaire, tel que

- (i) tout nœud interne (i.e. non feuille), possède exactement deux successeurs ;
- (ii) toutes les feuilles sont à la même profondeur de la racine.

Lemme. $\forall n \in \mathbb{N}$,

$$\sum_{i=0}^{n} 2^{i} = 2^{n+1} - 1$$

Preuve. Par récurrence sur n.

(i)
$$n = 0$$
; $2^0 = 1 = 2^1 - 1$.

(ii) Hypothèse de récurrence : soit $k \in \mathbb{N}$ tel que

$$\sum_{i=0}^{k} 2^{i} = 2^{k+1} - 1$$

(iii) n = k + 1.

$$\sum_{i=0}^{k+1} 2^i = \sum_{i=0}^{k} 2^i + 2^{k+1}$$

Par l'hypothèse de récurrence,

$$\sum_{i=0}^{k+1} 2^i = 2^{k+1} - 1 + 2^{k+1}$$

$$\sum_{i=0}^{k+1} 2^i = 2 \cdot 2^{k+1} - 1$$

$$\sum_{i=0}^{k+1} 2^i = 2^{k+2} - 1$$

Théorème. Un arbre binaire parfait, de n nœuds, a une profondeur de $O(\log n)$.

Preuve. Soit A un arbre binaire parfait de n nœuds.

$$\mathfrak{p}(A) = 1$$
 pour $n = 1 = 2^2 - 1$ $\mathfrak{p}(A) = 2$ pour $n = 1 + 2 = 3 = 2^2 - 1$ $\mathfrak{p}(A) = 3$ pour $n = 1 + 2 + 2^2 = 7 = 2^3 - 1$

Soit $q \in \mathbb{N}^*$ tel que

$$\mathfrak{p}(A) = q$$
 pour $n = \sum_{i=0,\dots,q-1} 2^i = 2^q - 1$

On a

$$\mathfrak{p}(A) = q+1$$
 pour $n = \sum_{i=0,\dots,q-1} 2^i + 2 \cdot 2^{q-1} = \sum_{i=0,\dots,q} 2^i = 2^{q+1} - 1$

La récurrence établie, on a ainsi, $\forall k \in \mathbb{N}^*$,

$$\mathfrak{p}(A) = k$$
 pour $n = 2^k - 1$

Soit

$$2^k = n+1 \iff k = \log_2(n+1) \in O(\log n)$$

13.1.3 Parcours préfixe et infixe d'un arbre binaire

- On suppose qu'un noeud peut-être "nul" (sa profondeur est alors 0 par convention).
- Initialement, la racine de l'arbre est passée en argument de l'algorithme.

Algorithm 24 prefixe $(s \in A)$

- 1: **if** $est_nul(s)$ then
- 2: return
- 3: end if
- 4: print(s)
- 5: $prefixe(s_q)$
- 6: $prefixe(s_d)$

Algorithm 25 infixe $(s \in A)$

- 1: **if** $est_nul(s)$ **then**
- 2: return
- 3: end if
- 4: $infixe(s_a)$
- 5: print(s)
- 6: $infixe(s_d)$

Théorème. La complexité du parcours préfixe (ou infixe), dans un arbre binaire, est en O(n).

13.2 Arbre binaire de recherche

13.2.1 Définition

Définition (ABR). Un arbre binaire de recherche (ABR) est un arbre binaire valué, qui est soit un arbre vide ; soit un arbre vérifiant, pour tout noeud s:

```
- \forall s' \in G(s), s'.val \leq s.val;
```

$$- \forall s' \in D(s), s.val < s'.val;$$

où G(s) (resp. D(s)) est le sous-arbre gauche (resp. droit) du noeud s.

13.2.2 Recherche dans un ABR

$\overline{\mathbf{Algorithm}}$ **26** recherche_ABR $(s \in \mathcal{A}, x \in V : \text{valeur recherchée})$

```
1: if est_nul(s) then
2: return False
3: else if s.val = x then
4: return True
5: else if s.val > x then
6: return recherche_ABR(s.f_g, x)
7: else
8: return recherche_ABR(s.f_d, x)
9: end if
```

Théorème. La complexité de la recherche dans un ABR est, en moyenne, en $O(\log n)$.

Preuve. Admis.

13.3 Parcours infixe dans un ABR

Théorème. Le parcours infixe d'un ABR donne une séquence des noeuds triés, selon l'ordre croissant des valeurs.

Preuve. (Par récurrence sur la taille de l'ABR). Si $|\mathcal{A}| = 1$, alors la proposition est trivialement vraie.

Supposons que, pour tout ABR de taille $m \leq k$, la proposition soit vraie. Considérons un ABR de taille k+1; alors la séquence affichée est de la forme :

séquence affichée par $infixe(s.f_g)$. s. séquence affichée par $infixe(s.f_d)$.

Par définition d'un ABR,

```
- \forall s' \in G(s), s'.val \leq s.val;
```

$$- \forall s' \in D(s), s.val < s'.val.$$

D'autre part, l'hypothèse de récurrence nous assure que la séquence affichée par $\mathtt{infixe}(s.f_q)$ (resp. $\mathtt{infixe}(s.f_d)$) est conforme à la proposition.

14 Parcours en largeur (Breadth First Search)

```
Algorithm 27 BFS(G = (S, succ), s_0)
 1: done \leftarrow [s_0]
 2: todo \leftarrow \texttt{File\_Vide}
 3: todo.enfiler(s_0)
 4: while todo n'est pas vide do
        s \leftarrow todo. \mathtt{defiler}()
        for s' \in \verb+succ+(s) do
 6:
            if s' \notin done then
 7:
                 todo.\ \mathtt{enfiler}(s')
 8:
                 done \leftarrow done + [s']
 9:
            end if
10:
        end for
11:
12: end while
13: return done
```

14.1 Applications : graphe d'accessibilité et composantes connexes

14.1.1 Graphe d'accessibilité

Le parcours en largeur **permet générer le graphe d'accessibilité** des sommets accessibles depuis le sommet "racine" donné en argument (s_0) ; i.e. les sommets pour lesquels il existe un chemin depuis s_0 .

14.1.2 Composantes connexes d'un graphe non orienté

D'une façon générale, le parcours en largeur **permet de déterminer les composantes connexes d'un graphe non orienté**. Pour cela, il suffit d'appliquer le sur-algorithme suivant :

Algorithm 28 Composantes_Connexes(G = (S, succ)) 1: $done \leftarrow [\]$ ▷ Liste vide 2: $todo \leftarrow S$ 3: while todo n'est pas vide do 4: $s \leftarrow todo$. pop() 5: $new \leftarrow BFS(G, s_0)$ 6: $todo \leftarrow todo - new$ 7: done. append(new) 8: end while 9: return done

Le nombre de tours de boucle est égal à la taille de la liste *done*, et correspond au nombre de composantes connexes.

14.2 Application: plus court chemin

Parcours en largeur peut aussi être utilisé pour chercher chacun des plus courts chemins (en nombre d'arcs ou arêtes) entre la "racine" s_0 et chacun des autres sommets du graphe d'accessibilité depuis s_0 . Pour ce faire, il convient de stocker le prédécesseur de chaque sommet "généré".

L'algorithme suivant est une amélioration de BFS, donnant en outre : le tableau π des prédécesseurs, associant à chaque sommet son prédécesseur, i.e. le sommet qui l'a fait entrer dans la file done.

Algorithm 29 BFS2 $(G = (S, succ), s_0)$

```
1: \pi \leftarrow \text{tableau de taille } |S|
 2: \ \forall s \in S, \pi[s] \leftarrow \mathtt{None}
 3: done \leftarrow [s_0]
 4:\ todo \leftarrow \texttt{File\_Vide}
 5: todo.enfiler(s_0)
 6: while todo n'est pas vide do
          s \leftarrow todo. \mathtt{defiler}()
          for s' \in succ(s) do
 8:
              if s' \notin done then
 9:
                   todo.\ \mathtt{enfiler}(s')
10:
                   done \leftarrow done + [s']
11:
12:
                   \pi[s'] \leftarrow s
              end if
13:
          end for
14:
15: end while
16: return (done, \pi)
```

L'algorithme suivant trouve un plus court chemin, s'il existe, pour aller de s_0 à s_j (préalablement BFS2 a été exécuté).

Algorithm 30 Plus_Cout_Chemin($G = (S, succ), s_0, s_i$)

```
1: res \leftarrow []
                                                                               ▷ Liste vide
 2: s \leftarrow s_i
 3: while \top do
        if s = s_0 then
 4:
 5:
             res. append(s)
             return res
 6:
        else if \pi[s] = \text{None then}
 7:
             return []
                                                            ⊳ Pas de plus court chemin
 8:
        end if
 9:
        res. \mathtt{append}(s)
10:
11:
         s \leftarrow \pi[s]
12: end while
```

15 Problème de l'arrêt

Définition (ARRÊT).
Entrées :
 1. <Prog> : le code source d'un programme Prog ;
 2. x : une entrée pour Prog.
Sortie : Prog(x) s'arrête-t-il ?

Théorème (Turing). Arrêt est indécidable.

Preuve. (Par l'absurde). On suppose qu'Arrêt est décidable ; i.e. il existe un programme, soit Halt, qui décide le problème de l'arrêt ; i.e., pour tout programme Prog de code source <Prog>, pour toute entrée x de Prog:

- Prog(x) s'arrête \iff Halt(<Prog>, x) répond Vrai ;
- Prog(x) ne s'arrête pas \iff Halt(<Prog>, x) répond Faux.

On considère le programme Diagonale ci-après :

```
Diagonale(y):
    Si Halt(y, y) = Vrai :
        effectuer une boucle infinie
```

Sinon

retourner "toto" Fin Si

Nous considérons l'exécution : Diagonale (< Diagonale >).

(a) Cas 1: Halt(<Diagonale>, <Diagonale>) = Vrai

D'après le code de Diagonale, il suit que Diagonale(<Diagonale>) ne s'arrête pas, donc que Halt(<Diagonale>, <Diagonale>) répond Faux.

(b) Cas 2: Halt(<Diagonale>, <Diagonale>) = Faux

D'après le code de Diagonale, il suit que Diagonale(<Diagonale>) s'arrête, donc que Halt(<Diagonale>, <Diagonale>) répond Vrai.