

NPSC 2024

23rd National Power System Conference

Achieving Decarbonized, Digitalized Energy and Electric Transportation Systems

14 - 16 December 2024 | IIT Indore

Periodic Steady-state Computation for Coupled Field-Circuit Problems

Santosh V. Singh, A. M. Kulkarni, and Devashish Rairikar*
IIT Bombay and *Sardar Patel Institute of Technology, Mumbai

Presented By:

Santosh V. Singh EE-Dept., IIT Bombay

312
Track 2: Power Electronics Applications and Drives

Motivation

1. Examples of "coupled-field circuit problems"

- 2. FOSS (free or open source software)
 - Field computation packages: OpenFOAM, Elmer, FEMM, Radia, etc.
 - Circuit simulation: LTSpice, GNU Octave, Python, etc.

3. Design of machines \rightarrow optimizations in steady-state.

Outline

- 1. Modelling → "coupled-field circuit problems"
- 2. Transient simulation
- 3. Periodic steady-state computation
- 4. Summary

- 1. Co-simulation \rightarrow model in the loop (MIL)
- 2. Field computation \rightarrow look-up tables (LUT)
- 3. Interpolation.

- 1. Co-simulation \rightarrow model in the loop (MIL)
- 2. Field computation \rightarrow look-up tables (LUT)
- 3. Interpolation.

(Note: static relations are modelled for simplicity).

Zhou, Ping, et al. "A general co-simulation approach for coupled field-circuit problems," IEEE Transactions on Magnetics, 2006.

- 1. Co-simulation \rightarrow model in the loop (MIL)
- 2. Field computation \rightarrow look-up tables (LUT)
- 3. Interpolation.

(Note: static relations are modelled for simplicity).

ODE: ordinary differential equation

Zhou, Ping, et al. "A general co-simulation approach for coupled field-circuit problems," IEEE Transactions on Magnetics, 2006.

Ex1: Non-linear inductor

Ex2: Primitive AC generator

Ex1: Non-linear inductor

1-dimensional LUT

Ex2: Primitive AC generator

Ex1: Non-linear inductor

1-dimensional LUT

Ex2: Primitive AC generator

Multi-dimensional LUT

Non-linear inductor case

$$\frac{d\psi}{dt} = -i_L R + v_s; \quad \psi = f(i_L)$$

$$R = 0.1 \ \Omega, \ v_s = 25 \sin(2\pi \times 50 t) \ V$$

Non-linear inductor case

$$\frac{d\psi}{dt} = -i_L R + v_s; \quad \psi = f(i_L)$$

$$R = 0.1 \ \Omega, \ v_s = 25 \sin(2\pi \times 50 t) \ V$$

ODE: ordinary differential equation

Non-linear inductor case

$$\frac{d\psi}{dt} = -i_L R + v_s; \quad \psi = f(i_L)$$

$$R = 0.1 \ \Omega, \ v_s = 25 \sin(2\pi \times 50 t) \ V$$

$$R_1 = 1 \ \Omega, \quad R_2 = 5 \ \Omega, \quad v_s = 5 \ V$$

Primitive AC generator case

Primitive AC generator case

$$R_1 = 1 \ \Omega, \quad R_2 = 5 \ \Omega, \quad v_s = 5 \ V$$

A fundamental frequency of **3.0474 Hz** (i.e., a time period of **0.3282 s**)

Periodic steady-state computation

Method:

- 1. Time-domain method
- 2. Newton-Raphson based solution
- 3. State's initial values are updated

T. J. Aprille and T. N. Trick, "Steady-state analysis of nonlinear circuits with periodic inputs," Proceedings of the IEEE, 1972.

Periodic steady-state computation

Method:

- 1. Time-domain method
- 2. Newton-Raphson based solution
- 3. State's initial values are updated

T. J. Aprille and T. N. Trick, "Steady-state analysis of nonlinear circuits with periodic inputs," Proceedings of the IEEE, 1972.

Periodic steady-state computation

Non-linear inductor case

Iterations: 4

$$R = 0.1 \ \Omega, \quad v_s = 25 \sin(2\pi \times 50 t) \ \mathrm{V}$$

शिड-इंडिया GRID-INDIA

Periodic steady-state computation

Primitive AC generator case

Iterations: 10

$$R_1 = 1 \ \Omega, \quad R_2 = 5 \ \Omega, \quad v_s = 5 \ V$$

Summary

- 1. MIL approach \rightarrow coupled-field circuit problems
- 2. Transient simulations \rightarrow verified with Ansys simulation
- 3. Periodic steady-state computation is performed
- 4. Using FOSS.

Slides and paper materials are available in github.

THANKAYOU

Suggestions and feedback:
Santosh V. Singh
svsingh@ee.iitb.ac.in
santoshvsingh68@gmail.com

MIL simulation

Back-up slides

Dimensions and materials

Non-linear inductor

Primitive AC generator

Coils: Each with 50 turns of 18 AWG Copper

Core: 35 mm depth, M22_24G material Rotor core diameter: 68 mm Total air-gap spacing: 2 mm

MIL simulation

Back-up slides

$$\epsilon_i = |i(t) - i^*(t)|$$

Non-linear inductor

Loop-back test

Back-up slides

$$\frac{d\psi}{dt} = -i_L R + v_s; \quad \psi = f(i_L)$$

$$R = 0.1 \ \Omega, \ v_s = 25 \sin(2\pi \times 50 t) \ V$$

Time-step: 1 ms

Tolerance set: 1e-4

Back-up slides

$$R_1 = 1 \ \Omega$$
, $R_2 = 5 \ \Omega$, $v_s = 5 \ \mathrm{V}$
 $T_m = 0.0198 \ \mathrm{Nm}$, (mechanical torque)
 $B_m = 0.977 \times 10^{-3} \ \mathrm{Nm}$ -s/rad
 $J = 5 \times 10^{-3} \ \mathrm{kg}$ -m² (moment of inertia of the rotor)

$$\frac{d\psi_1}{dt} = -i_1 R_1 + v_S; \quad \frac{d\psi_2}{dt} = -i_2 R_2$$

$$\psi_1 = f_1(i_1, i_2, \theta); \quad \psi_2 = f_2(i_1, i_2, \theta)$$

$$i_1 = f_1^{-1}(\psi_1, \psi_2, \theta); \quad i_2 = f_2^{-1}(\psi_1, \psi_2, \theta)$$

$$\frac{d\omega}{dt} = \frac{1}{J} (T_m - T_{em} - B_m \omega)$$

$$\frac{d\theta}{dt} = \omega; \quad T_{em} = f_3(i_1, i_2, \theta)$$