





## Running plan4res

Sandrine Charousset, EDF





## Plan4res study structure



Your datasets must be located in a subdir data/ in your main MYP4R user directory

Each study corresponds to a subdir in data/, see toyDataset as an example

#### Each study directory has the same structure:

- IAMC: data in the IAMC format, usually created by GENeSYS-MOD (can be used to create the data in csv\_X)
- csv\_XXX: input data in native plan4res format
- nc4\_XXX: SMS++ netCDF input data
- results\_XXX: plan4res outputs
- Timeseries: all timeseries files
- settings: configuration files









## Plan4res input data



## Input data



### Plan4res input data are composed of:

- Yearly data:
  - Electricity demand
  - Interconnections
  - Installed Capacities (for generation and storages)
  - Costs of technologies (operation and investment)
  - (optional) Constraints
- Hourly Timeseries: loadfactors for:
  - Hydraulic inflows
  - Electricity demand
  - RES potentials (PV, windPower, run of river)



### Plan4res csv datasets



### Yearly data:

- Regions: ZP\_ZonePartition.csv
- Demand: ZV\_ZoneValues.csv
- Interconnections: IN\_Interconnections .csv
- Thermal Power: TU\_ThermalUnits.csv
- Hydro Réservoirs: SS\_SeasonalStorage.csv
- Renewable Power: RES\_RenewableUnits.csv
- Storage: STS\_ShortTermStorage.csv

- TimeSeries:
  - One csv file per variable and region







# Running plan4res modules





## plan4res modules

CREATE



Database
(IAMC
format), eg
Scenario
Explorer
OR
IAMC csv file

Additionnal data (timeseries profiles, operational constraints...)

Plan4res
Input
Dataset
(csv files,
plan4res
format)

FORMAT

SMS++
input
Datasets
(netcdf4
files)

SSV SIM CEM plan4res/
SMS++
outputs
(csv files,
SMS++
format)

**POSTTREAT** 

plan4reso utputs (csv files, IAMC format)



## Plan4res modules





- CREATE: creates plan4res input data (csv files with plan4res native format) from IAMC files (usually outputs of GENeSYS-MOD in IAMC format)
- FORMAT: creates SMS++ input data (netcdf files with SMS++ format) from plan4res inputs (csv files with plan4res native format)
- SSV/CEM/SIM: Calculation modules corresponding to the 3 functions of plan4res, implemented with SMS++:
  - SSV: computes strategies for Hydro reservoirs
  - SIM: simulates the operation of the power system
  - CEM: adapts the power system (optimisation of investments)
- POSTTREAT: post-treatment of outputs of SIM/CEM



## Running the modules





All modules can be ran using the p4r function:

p4r MODULE dataset [options]

If you want to use SLURM to run with parallelisation:

sp4r MODULE dataset [options] -n NBNODES

**NBNODES**=number of nodes you are requesting



## A plan4res study step by step – step 1 - initialisation



**Assumption:** GENeSYS-MOD has been ran with success, and its outputs have been converted to the IAMC format => My\_Study\_IAMC.csv

### Step 1: initialisation

 Create a sub-dir in MYP4R/data: mkdir MYP4R/data/MyStudy

• Create the IAMC sub-sub dir and feed it with your IAMC input:

mkdir MYP4R/data/MyStudy/IAMC
cp My\_Study\_IAMC.csv MYP4R/data/MyStudy/IAMC/MyStudy.csv



## A plan4res study step by step - step 2 create data



**Assumption:** GENeSYS-MOD has been ran with success, and its outputs have been converted to the IAMC format => My\_Study\_IAMC.csv

### Step 2: creation of a plan4res dataset

 Create settings file settingsCreateInputPlan4res\_simul.yml (for SSV/SIM) settingsCreateInputPlan4res\_invest.yml (for CEM) See next slide

- Run the CREATE module => This will create the csv files in csv\_simul or csv\_invest p4r CREATE MyStudy => add -M invest to create a dataset for optimisation of investments
- Adapt manually the csv files if necessary (in particular the data for investments)
- Create a subdir TimeSeries in MyStudy where you should place the timeseries csv files



# A plan4res study step by step - step 2 create data settingsCreatePlan4res\_XX.yml



### Main parameters to update:

- Scenarios / years : choose one of the scenarios and years from the IAMC file
- listregionsGET: list of regions from the IAMC to be used for creating the dataset
- Aggregateregions: list of aggregated regions and how to build them
- partition/Countries = list of regions in the dataset; can include aggregated regions but the subregions of the aggregates must not be included
- technos: list of technos from the IAMC separated per plan4res categories
- StochasticScenarios: list of scenarios (from the TimeSeries) to be included
- CouplingConstraints: define the parameters for non served electricity and what are the different components
  of the power demand
- ParametersCreate: InitialFillingrate: remaining share of water in réservoirs at start of the study
- ParametersCreate: CapacityExpansion: define which technologies can be invested and investment bounds

use the template on https://github.com/pl an4res/toyDataset

It is recommended to

Other fields may remain unchanged, see user manual for more details



## A plan4res study step by step - step3 create netcdf



### Step 3: creation of SMS++ input files from a plan4res dataset

Create settings file settings\_format\_optim.yml (for SSV) settings\_format\_simul.yml (for SIM) settings\_format\_invest.yml (for CEM) settings\_format\_postinvest.yml (for CEM with SIM)

 Run the FORMAT module => This will create the netcdf files in nc4\_optim, nc4\_simul and nc4\_invest

```
p4r FORMAT MyStudy [options]
options: -M optim/simul/invest (for SSV/SIM/CEM)
```



# A plan4res study step by step - step 3 create netcdf settings\_format\_XXX.yml



#### Main parameters to update:

- Calendar: define the temporal scope and granularity
  - dayFirst: yes if dates are defined as DD/MM/YYYY
  - BeginTimeSeries/ EndTimeSeries: first/last timestep of the available timeseries
  - BeginDataset/EndDataset: first/last timestep of the case study
  - SSVTimeStep: duration of the timestep in the SSV (usually 1 week or 1 month)
  - **TimeStep**: duration of the timestep of the simulations

#### ParametersFormat :

• Scenarios: list of the scenarios you wish to include in the run. This list can be a subset of the scenarios used for creating the plan4res csv files

It is recommended to use the template on https://github.com/pl an4res/toyDataset

Other fields may remain unchanged, see user manual for more details



## A plan4res study step by step - step4 run SMS++



### Step 4: run SMS++

Create settings file plan4res\_settings.yml
 You may keep all parameters unchanged

It is recommended to use the template on https://github.com/plan4res/toyDataset

Run the sms++ modules

=> produces results in results\_simul

p4r CEM MyStudy => you need to have ran p4r SSV and p4r FORMAT -M invest before

=> produces results in results\_invest



## A plan4res study step by step - step4 run SMS++



- The modules SSVandSIM and SSVandCEM are running a full workflow
  - p4r SSVandSIM MyStudy => runs FORMAT/SSV/FORMAT/SIM in sequence p4r SSVandCEM MyStudy => runs FORMAT/SSV/FORMAT/CEM in sequence
- Some options allow to run workflows:
  - -C will force running p4r CREATE first
  - -F will force running p4r FORMAT
  - p4r SSV MyStudy –C –F is equivalent to:
    - p4r CREATE MyStudy
    - P4r FORMAT MyStudy
    - P4r SSV MyStudy
  - -H allows to hotstart a run of SSV or CEM from a previous result
- p4r –help will help you



## A plan4res study step by step - step5 post-treat results



### Step 5: post-treatment of results

Create settings file settingsPostTreatPlan4res\_simul.yml (for SIM) settingsPostTreatPlan4res\_invest.yml (for CEM)

See next slide

 Run the POSTTREAT module => This will create post-treated csv files and graphs in results\_simul or results\_invest

p4r POSTTREAT MyStudy => add -M invest to posttreat results after CEM



# A plan4res study step by step - step 5 post-treat results settingsPostTreatPlan4res\_XXX.yml



#### Main parameters to update:

- **Graphs**: define the size of the graphs per categories: Volume (1 per seasonal storage), Power (1 per technology), MarginalCost and Demand (1 per region), MarginalCostFlows and Flows (1 per interconnection); you must ensure that there are enough rows and columns so that all graphs fit in a page
  - **nbcols/nblines**: number of columns/rows
  - **SizeCol/SizeRow** : size of the columns/rows
  - TitleSize/LabelSize: size of the text in title/labels
- scenario: write here the name of the scenario you are choosing (will be used in IAMC outputs)
- marginalcostlimits: defines bounds for the marginal costs graphs
- Technos: All the technos defined in settingsCreate\* must be present, each one must be linked to a colorcode
- **TechnosAggr**: defines aggregates of technologies, for producing aggregated outputs and graphs
- pumping/nopumping: all technologies from the categories SS and STS must be listed here, in one of the 2 lists (with or without pumping)

Other fields may remain unchanged, see user manual for more details







Thanks for your attention!



