

Objectives

 Detect and track bowling ball trajectory and estimate spin rate and rotation axis orientation

Challenges

 High ball speed, lighting and reflections of bowling alleys

Usage

Bowling performance analysis.

The problem

The proposed solution

Detection

YOLO Neural Network for real-time ball detection

Three-dimensional reconstruction

Camera calibration and geometric calculations

Motion analysis

Optical flow with corner detection

Bowling ball detection

- From background subtraction with Hough circles to Deep Learning
- YOLO for high speed and accuracy

Motion estimation

- Optical flow with corner detection
- Fast Flow Transformer (not used)

State of the art

The processing pipeline

Calibration

Intrinsic calibration

- Goal: Correct lens distortion and find camera calibration
- Outputs: Calibration matrix (K) and distortion vector D
- Method: Corner detection on a 9×6 checkerboard and subsequent reprojection error minimization

Extrinsic calibration

- Goal: Estimate camera position and orientation
- Outputs: Rotation matrix R, translation vector t, and projection matrix P = K [R|t]
- Method: Manual lane corners detection and Perspective-n-Points algorithm with IPPE solver to project these points in world coordinates

Video preprocessing

Synchronization

- Goal: Align two independent video streams for stereo analysis
- Outputs: two frame-aligned videos with same sample rate
- Method: Cross-correlation of audio tracks to compute time offset and resampling

Undistorsion

- Goal: Correct lens distortions for geometric accuracy
- Outputs: Geometrically correct video frames
- Method: Apply intrinsic calibration with pixel-wise correction and re-computation of K

Tracking

- Pretrained YOLO (sports ball class)
 which returns bounding box per frame
 with ball center and radius
- Dynamic ROI cropping for faster and more accurate detection
- Interpolation for missing radii or centers to have a smooth and complete trajectory

Output: Continuous 2D ball path with radius estimates per frame

Localization

 Triangulation of corresponding points from synchronized videos using the projection matrices P using Direct Linear Transform to find the 3D point

Output: Coherent 3D ball trajectory in world coordinates

Rotation axis and speed

- Feature detection using Shi-Tomasi corners inside ball ROI ad tracking with Lucas-Kanade optical flow
- Project tracked points onto ball surface using predicted radius and compute the 3D displacement vectors
- Compute the rotation axis with the cross product of 3D vectors (and average them)
- Compute the angular displacement with the dot product between consecutive positions vectors and weight features by radial distance from center and compute the spin rate.

Output: Smoothed, per-frame spin rate and 3D rotation axis

Conclusions

Ball detection

- Classical methods are limited by reflections and distance
- YOLO object detection is more accurate, reliable frame-by-frame tracking

Motion estimation

- Spin rate consistent across trajectory with a slight discrepancies between camera views due to perspective and lighting
- 3D rotation axis robust and physically accurate

Limitations and improvements

- Tracking challenges as ball moves away from start of lane and goes in darker zones
- Higher-resolution cameras, additional camera placements along the lane, Multi-view tracking for improved spin and trajectory accuracy