複素対数関数・冪関数・逆三角関数 杉浦 解析入門

横瀬 仁

目次

1. 複素対数関数12. 冪関数と二項定理5

3. 逆三角関数 7

1. 複素対数関数

▶ 定理. 1.1.

 $K=\mathbb{R}$ または $K=\mathbb{C}$ とし、A と B を K の開集合とする。A から B への全単射 f が A の点 x で微分可能であり、f と f^{-1} が共に連続であるとする。f の x における微分係数が 0 でないとき、f の逆関数 f^{-1} は y=f(x) で微分可能であり、その微分係数は $\frac{1}{f'(x)}$ となる。

【証明】

 $h=f^{-1}(y+k)-f^{-1}(y)$ とする。 $f^{-1}(y)=x$ なので、 $x+h=f^{-1}(y+k)$ が得られ、この式に f を適用することで f(x+h)=y+k 即ち k=f(x+h)-f(x) を得る。よって、f と f^{-1} の単射性から $k\neq 0$ と $h\neq 0$ は同値であり、また f の x における連続性と f^{-1} の y における連続性と f^{-1} の y における連続性から、 $x \to 0$ と $x \to 0$

$$\lim_{k \to 0, k \neq 0} \frac{f^{-1}(y+k) - f^{-1}(y)}{k} = \lim_{h \to 0, h \neq 0} \frac{h}{f(x+h) - f(x)} = \frac{1}{f'(x)}$$

が成り立つ。

▶ 定理. 1.2.

f が $\mathbb R$ の有界閉区間 I=[a,b] から $\mathbb R$ への狭義単調な連続関数ならば、以下が成り立つ:

- (i) f は I から J = f(I) への全単射である。
- (ii) J = f(I) は、f が増加関数なら [f(a), f(b)] であり、減少関数なら [f(b), f(a)] である。
- (iii) f の逆関数は連続かつ狭義単調である。

【証明】

(i)

f が狭義単調増加であるとする。このとき、I の互いに異なる点 $x_0 < x_1$ に対し、 $f(x_0) < f(x_1)$ となるため、f は 単射である。よって、f は I から J = f(I) への全単射となる。f が減少関数の場合も同様。

(ii)

f が増加関数なら、 $J \subset [f(a),f(b)]$ であることは明らかである。また、f(a) と f(b) の間にある c に対しては中間値の定理を用いると、 $f(\gamma)=c$ なる I の点 γ がとれ、従って $[f(a),f(b)]\subset J$ である。f が減少関数の場合も同様。 (iii)

任意の [f(a),f(b)] の点 y と任意の 0 でない実数 k に対し、 $f^{-1}(y+k)-f^{-1}(y)=h$ とおいて、y=f(c) となる

I の点 c を取れば、f(c+h)-f(c)=k を得る。よってこのとき、f の連続性から $h\to 0$ と $k\to 0$ は同値である。そこで、 $f^{-1}(y+k)-f^{-1}(y)=h$ において $k\to 0$ とすると、 $f^{-1}(y+k)-f^{-1}(y)\to 0$ であることがわかる。従って、 f^{-1} は連続である。また、 $f(c_0)< f(c_1)$ かつ $c_0\geq c_1$ を満たす I の点 c_0,c_1 があったとすると、f の狭義単調性に矛盾するので、 f^{-1} は狭義単調である。

 \mathbb{R} から $(0,\infty)$ への連続関数 exp は全単射であった。従って、任意の正の実数 x に対し、 $e^y=x$ となるような実数 y が一意に定まる。この対応により、対数関数を定義する。

▷ 定義. 1.3.

 \mathbb{R} から $(0,\infty)$ への関数 \exp の逆関数を対数関数あるいは実対数関数と呼び、 \log と表す。

実対数関数の性質を列挙する。

▶ 命題. 1.4.

対数関数は、次のような性質を持つ。

- (i) $\log 1 = 0, \log e = 1$.
- (ii) x > 0 に対し、 $(\log x)' = \frac{1}{x}$.
- (iii) $x_0, x_1 > 0$ に対し、 $\log x_0 x_1 = \log x_0 + \log x_1$.
- (iv) x > 0 に対し、 $\log \frac{1}{x} = -\log x$.
- (v) log は狭義単調増加関数である。
- (vi) $\lim_{x \to +\infty} \log x = \infty$, $\lim_{x \to +0} \log x = -\infty$.
- (vii) a > 0 に対し、 $\lim_{x \to \infty} \frac{\log x}{x^a} = 0$, $\lim_{x \to 0} x^a \log x = 0$.

【証明】

(i) $e^0 = 1, e^1 = e$ から従う。

(ii) x > 0 に対し、 $e^y = x$ となるような実数 y を取れば、 $(\log x)' = \frac{1}{(e^y)'} = \frac{1}{e^y} = \frac{1}{x}$.

(iii) $\log x_i = y_i \ (i=0,1)$ とすれば、 $e^{y_i} = x_i$ であり、 $x_0x_1 = e^{y_0+y_1}$ が成り立つ。よって、 $\log x_0x_1 = \log x_0 + \log x_1$ である。

(iv) x > 0 に対し、 $0 = \log 1 = \log x \cdot \frac{1}{x} = \log x + \log \frac{1}{x}$ である。

(v) exp が狭義単調増加なので log もそうである。

(vi) $\log x = y$ とすると、 $x = e^y$ なので、 $x \to \infty$ と $y \to \infty$ は同値。また、 $x \to 0$ と $y \to -\infty$ も同値。

(vii) $\log x = y$ とすると、 $x = e^y$ なので、 $\frac{\log x}{x^a} = \frac{y}{e^{ay}}$ と $x^a \log x = e^{ay}y$ が成り立ち、主張が従う。

次に、複素関数の意味での対数関数を定義したい。実関数の場合は指数関数が \mathbb{R} から $\mathbb{R}_{>0}$ への全単射であったため、そのまま指数関数の逆関数として、対数関数を定義できた。しかし、複素指数関数の場合はそううまくいかない。 実際、複素関数 \exp は \mathbb{C} から \mathbb{C}^* への単射にならず、逆写像の存在を言うことができないのである。

まずは \mathbb{C}^* の点 z に対し、 $z=e^w$ となるような w の形を求めてみる。w=x+iy $(x,y\in\mathbb{R})$ とすると $z=e^xe^{iy}$ となるので、 $|z|=e^x$ と $\arg z=y$ が成り立つ。従って、 $w=\log|z|+i\arg z$ となる。ここで、 $\arg z$ は値が一つに定まらないことに注意する。

まとめると、 \mathbb{C}^* の点 z に対し、 $w=\log|z|+i\arg z$ の形の複素数は $z=e^w$ を満たすことがわかった。この多価性を除くために、次の命題を示す。

▶ 命題. 1.5.

 $\mathbb C$ から 0 を含む負の実軸を取り除いた開集合を D する。つまり、 $D=\{z\in\mathbb C\,;\, \mathrm{Im}\,z\neq 0$ かつ $\mathrm{Re}\,z>0\}$ である。このとき、任意の D の点 z に対し、 $z=|z|e^{i\theta}$ を満たす $\theta\in(-\pi,\pi)$ が一意に存在する。

【証明】

まず D の点 z に対し、 $z=|z|e^{i\theta}$ となるような $\theta\in[-\pi,\pi)$ が一意に存在するが、仮に $\theta=-\pi$ であるとすると、

z=-|z| となり、z が D の点であることに矛盾する。よってこのような θ は $(-\pi,\pi)$ の元である。

この性質を使って、複素関数としての対数関数を次のように定義する:

▷ 定義. 1.6.

D を $\mathbb C$ の開集合 $\{z\in\mathbb C\; ;\; {\rm Im}\,z\neq 0\;$ かつ ${\rm Re}\,z>0\}$ とする。任意の D の点 z に対し、 $z=|z|e^{i\theta}$ となるような $\theta\in(-\pi,\pi)$ をとって、

$$\text{Log } z := \log |z| + i\theta$$

П

П

と定める。このようにして定義されたD上の関数 \log を対数関数と呼ぶ。

▶ 補題. 1.7.

 $\text{Log } D = \{u + iv \; ; \; u \in \mathbb{R} \text{ かつ } v \in (-\pi, \pi)\}$ である。この右辺を E と書く。

【証明】

まず、 $\operatorname{Log} D$ の元 $\operatorname{log} |z| + i\theta$ $(z \in D, \theta \in (-\pi, \pi))$ は E に属する。逆に、E の元 u + iv $(u \in \mathbb{R}, v \in (-\pi, \pi))$ に対し、 $\operatorname{log} x = u$ となるような正の実数 x をとって $z = xe^{iv}$ とおくと、z は D に属する。実際、仮に $\operatorname{Re} z = x \cos v$ が正でないとすると、 $v \in (-\pi, -\pi/2)$ または $v \in (\pi/2, \pi)$ である。このとき、 $\operatorname{Im} z = x \sin v$ は 0 にならない。また、 $\operatorname{Log} z = \operatorname{log} x + iv = u + iv$ なので、u + iv は $\operatorname{Log} D$ に属する。

▶ 命題. 1.8.

D上の対数関数 $\operatorname{Log} \mathcal{D}$ 、指数関数 $\operatorname{exp} \mathcal{O}$ $\operatorname{Log} \mathcal{D}$ への制限 $\operatorname{exp}|_{\operatorname{Log} \mathcal{D}}$ は互いに逆である。

【証明】

任意の D の点 z に対し、 $z=|z|e^{i\theta}$ となるような唯一の $\theta\in(-\pi,\pi)$ を取れば、 \log の定義から、

$$\exp \operatorname{Log} z = \exp(\operatorname{log} |z| + i\theta) = |z|e^{i\theta} = z$$

が成り立つことがわかる。

逆に、任意の $\log D$ の元 u+iv に対し、 $\log \exp(u+iv) = \log e^u e^{iv} = \log e^u + iv = u+iv$ となる。 以上より、主張が示された。

▶ 命題. 1.9.

Log は D 上連続である。

(証明)

 $\operatorname{Log} z = \log |z| + i\theta$ より、D の点 z に対してその偏角 $\theta_z \in (-\pi,\pi)$ を対応させる関数が連続であることを示せば良い。

 $\{z_n\}_{n\in\mathbb{N}}$ を z に収束する D の点列とする。このとき、 $z=re^{i\theta}, z_n=r_ne^{i\theta_n}$ とおくと、 $\{r_n\}_{n\in\mathbb{N}}$ は r に収束する。いま、

$$|z - z_n| = |re^{i\theta} - r_n e^{i\theta_n}|$$

$$= |re^{i\theta} - r_n e^{i\theta_n} + re^{i\theta_n} - re^{i\theta_n}|$$

$$= |r(e^{i\theta} - e^{i\theta_n}) + (r - r_n)e^{i\theta_n}|$$

$$\geq r|e^{i\theta} - e^{i\theta_n}| - |r - r_n|$$

即ち $|e^{i\theta}-e^{i\theta_n}|\leq rac{1}{r}(|z-z_n|+|r-r_n|)$ であるから、 $\{e^{i\theta_n}\}_{n\in\mathbb{N}}$ は $e^{i\theta}$ に収束する。

さて、加法定理により、任意の実数 α,β に対して $\cos\alpha-\cos\beta=2\sin\frac{\alpha-\beta}{2}$ が成り立つことがわかるので、

$$|e^{i\theta} - e^{i\theta_n}| = ((\cos \theta - \cos \theta_n)^2 + (\sin \theta - \sin \theta_n)^2)^{\frac{1}{2}}$$

$$\geq |\cos \theta - \cos \theta_n|$$

$$= 2 \left| \sin \frac{|\theta - \theta_n|}{2} \right|$$

となることがわかる。また、正弦関数の凸性から $0 \le x \le \pi/2$ ならば $\frac{2}{\pi}x \le \sin x$ となるが、偏角のとり方から、 $|\theta-\theta_n| \le \pi$ なので、上の不等式と合わせることで

$$|e^{i\theta} - e^{i\theta_n}| \ge 2 \left| \sin \frac{|\theta - \theta_n|}{2} \right| \ge 2 \cdot \frac{2}{\pi} \cdot \frac{|\theta - \theta_n|}{2} = \frac{|\theta - \theta_n|}{2\pi}$$

を得る。従って $\{\theta_n\}_{n\in\mathbb{N}}$ は θ に収束するので、主張が従う。

▶ 命題. 1.10.

Dを今までと同じ開集合とすると、以下が成り立つ。

- (i) Log 1 = 0, Log e = 1.
- (ii) $z \in D$ に対し、 $(\text{Log } z)' = \frac{1}{z}$.
- (iii) $z_0, z_1 \in D$ に対し、 $\log z_0 z_1 = \log z_0 + \log z_1$.
- (iv) $z \in D$ は対し、 $\log \frac{1}{z} = -\log z$.

【証明】

(i)

 $1 = 1 \cdot e^{i \cdot 0}$ より $\log 1 = \log |1| + i \cdot 0 = 0$. また、 $e = e \cdot e^{i \cdot 0}$ なので $\log e = \log e + i \cdot 0 = 1$.

(ii)

Log が D 上連続であり、逆関数 exp は正則なので、Log も正則である。この時、実関数と同様に議論で主張が従う。 (iii)

 $\exp \operatorname{Log} z_0 z_1 = z_0 z_1 = (\exp \operatorname{Log} z_0)(\exp \operatorname{Log} z_1) = \exp(\operatorname{Log} z_0 + \operatorname{Log} z_1)$ と \exp の単射性から従う。

(iv)

$$\exp \operatorname{Log} \frac{1}{z} = \frac{1}{z} = (\exp \operatorname{Log} z)^{-1} = \exp(-\operatorname{Log} z)$$
 と \exp の単射性から従う。

▶ 命題. 1.11

 $z \in U_1(0)$ に対し、 $\log(1+z) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} z^n$ である。ここで、 $U_1(0)$ は $\mathbb C$ 内の (0,0) を中心とする半径 1 の開球である。

【証明】

まず、
$$\left| \frac{(-1)^{n-1}}{n} \right| \left| \frac{n+1}{(-1)^n} \right| = \frac{n+1}{n} \to 1$$
 より、 $\sum_{n=1}^\infty \frac{(-1)^{n-1}}{n} z^n$ の収束半径は 1 である。そこで、 $z \in U_1(0)$ に対して $f(z) = \sum_{n=1}^\infty \frac{(-1)^{n-1}}{n} z^n$ とおくと、 $f'(z) = \sum_{n=1}^\infty (-1)^{n-1} z^{n-1} = \frac{1}{1+z}$ である。今、 $z \in U_1(0)$ ならば $1+z \in D$ なので $(\text{Log}(1+z))' = \frac{1}{1+z} = f'(z)$ が成り立つ。従って、 $(\text{Log}(1+z) - f(z))' = 0$ となるので、 $\text{Log}(1+z) - f(z)$ は定数である。特に $z = 0$ とすると、これは 0 になるので、 $\text{Log} z = f(z)$ が得られた。

▶ 命題. 1.12.

$$z \in U_1(0)$$
 に対し、 $-\operatorname{Log}(1-z) = \sum_{n=1}^{\infty} \frac{z^n}{n}$ である。また、

$$\frac{1}{2}\log\frac{1+z}{1-z} = \sum_{n=0}^{\infty} \frac{z^{2n+1}}{2n+1}$$

が成り立つ。

(証明)

上の命題で、z を -z に置き換えると、 $-\text{Log}(1-z) = \sum_{n=1}^{\infty} \frac{z^n}{n}$ を得る。

また、

$$\begin{split} \frac{1}{2} \operatorname{Log} \frac{1+z}{1-z} &= \frac{1}{2} (\operatorname{Log} (1+z) - \operatorname{Log} (1-z)) \\ &= \frac{1}{2} (\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} z^n + \sum_{n=1}^{\infty} \frac{z^n}{n}) \\ &= \frac{1}{2} (\sum_{n=1}^{\infty} \frac{1+(-1)^{n-1}}{n} z^n) \\ &= \sum_{n=0}^{\infty} \frac{z^{2n+1}}{2n+1} \end{split}$$

である。

2. 冪関数と二項定理

⊳ 定義. 2.1.

正の数 a と複素数 z に対し、 $a^z := \exp(z \log a)$ と定める。これを a の z 乗と呼ぶ。

▶ 命題. 2.2.

正の数aに対し、以下が成り立つ:

- (i) z, w を複素数とすると、 $a^z a^w = a^{z+w}$.
- (ii) x が実数ならば、 $a^{x>0}$ で $\log a^x = x \log a$.
- (iii) x, y が実数ならば、 $(a^x)^y = a^{xy}$.
- (iv) $a^0 = 1$.
- (v) m を正の整数とすると、 $a^{\frac{1}{m}}=\sqrt[m]{a}$ であり、また、 $a^{-\frac{1}{m}}=\frac{1}{\sqrt[m]{a}}$ である。
- (vi) 正の数 x と実数 c に対し、 $(x^c)' = cx^{c-1}$.

【証明】

(i)

 $a^{z+w} = \exp((z+w)\log a) = \exp(z\log a)\exp(w\log a) = a^z a^w.$

(ii)

実関数 exp は正の実数に値をとるので、 $a^x > 0$ である。また、 $\log a^x = \log(\exp(x \log a)) = x \log a$ である。

(iii)

 $(a^x)^y = \exp(y \log a^x) = \exp(xy \log a) = a^{xy}.$

(iv)

 $a^0 = \exp(0 \cdot \log a) = 1.$

 (\mathbf{v})

 $(a^{\frac{1}{m}})^m = a$ なので、 $a^{\frac{1}{m}}$ は a の m 乗根。また、 $a^{\frac{1}{m}}a^{-\frac{1}{m}} = a^{-1}$ なので、 $a^{-\frac{1}{m}} = \frac{1}{\sqrt[m]{a}}$ である。

(vi)

 $(x^c)' = (\exp(c\log x))' = x^c \cdot \frac{c}{x} = cx^{c-1}.$

▷ 定義. 2.3.

a を D の点とし、z を複素数とする。a の z 乗を $a^z := \exp(z \operatorname{Log} a)$ によって定める。

▶ 命題. 2.4.

$$(a^z)' = a^z \operatorname{Log} a \ \mathfrak{C} \ \mathfrak{d} \ \mathfrak{d}$$

▷ 定義. 2.5.

複素数mと自然数nに対して、 $n \ge 1$ のとき

$$\binom{m}{n} = \frac{m(m-1)(m-2)\cdots(m-(n-1))}{n!}$$

また
$$n=0$$
 のとき $\binom{m}{n}=1$ と定める。

▶ 命題. 2.6.

複素数mと自然数nに対して、

$$n\binom{m}{n} + (n+1)\binom{m}{n+1} = m\binom{m}{n}$$

が成り立つ。

▶ 命題. 2.7.

任意の複素数mと|z|<1に対し、

$$(1+z)^m = \sum_{n=0}^{\infty} \binom{m}{n} z^n$$

が成り立つ。

【証明】

|z| < 1 に対して $f(z) := (1+z)^m = \exp(m \log(1+z))$ とおく。このとき、

$$f'(z) = \frac{m}{1+z}f(z)$$

である。また、

$$\lim_{n\to 0} \left| \binom{m}{n} \middle/ \binom{m}{n+1} \right| = \lim_{n\to 0} \frac{n+1}{m-n} = 1$$

なので、 $\sum_{n=0}^{\infty} \binom{m}{n} z^n$ の収束半径は 1 である。 |z| < 1 に対して $g(z) = \sum_{n=0}^{\infty} \binom{m}{n} z^n$ とおくと、

$$(1+z)g'(z) = \sum_{n=0}^{\infty} (n+1) \binom{m}{n+1} (1+z)z^n$$

$$= \sum_{n=0}^{\infty} (n+1) \binom{m}{n+1} z^n + \sum_{n=0}^{\infty} (n+1) \binom{m}{n+1} z^{n+1}$$

$$= \sum_{n=0}^{\infty} (n+1) \binom{m}{n+1} z^n + \sum_{n=0}^{\infty} n \binom{m}{n} z^n$$

$$= \sum_{n=0}^{\infty} ((n+1) \binom{m}{n+1} + n \binom{m}{n}) z^n$$

$$= \sum_{n=0}^{\infty} m \binom{m}{n} z^n$$

$$= mg(z)$$

を得る。f の定義から、任意の点 |z|<1 に対して $f(z)\neq 0$ なので、g/f は |z|<1 なる z において正則である。

従って、任意の|z|<1に対して

$$\begin{split} \left(\frac{g}{f}\right)'(z) &= \frac{g'(z)f(z) - g(z)f'(z)}{f(z)^2} \\ &= \frac{(1+z)g'(z)f(z) - (1+z)g(z)f'(z)}{(1+z)f(z)^2} \\ &= \frac{mg(z)f(z) - g(z)mf(z)}{(1+z)f(z)^2} \\ &= 0 \end{split}$$

であり、 $U_1(0)$ の連結性から g/f は定数関数となる。いま、f(0)=g(0)=1 であるから、g/f=1 即ち f=g が従う。

3. 逆三角関数

二項定理を用いて、次の級数表示が得られる:

▶ 命題. 3.1.

実数 |x| < 1 に対し、

$$\frac{1}{\sqrt{1-x}} = \sum_{n=0}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2 \cdot 4 \cdot 6 \cdots 2n} x^n$$

が成り立つ。

【証明】

前命題により、|x| < 1 に対して

$$(1-x)^{-1/2} = \sum_{n=0}^{\infty} \left(-\frac{1}{2}\right) (-1)^n x^n$$

$$= \sum_{n=0}^{\infty} \frac{-\frac{1}{2}(-\frac{1}{2}-1)\cdots(-\frac{1}{2}-n+1)}{n!} (-1)^n x^n$$

$$= \sum_{n=0}^{\infty} \frac{1\cdot 3\cdot 5\cdots (2n-1)}{2^n n!} x^n$$

$$= \sum_{n=0}^{\infty} \frac{1\cdot 3\cdot 5\cdots (2n-1)}{2\cdot 4\cdot 6\cdots 2n} x^n$$

が得られる。

正弦関数 \sin は $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ の上で狭義単調増加な連続関数で、 $\sin\frac{\pi}{2}=1$ と $\sin-\frac{\pi}{2}=-1$ が成り立つから、[-1,1] 上で定義された逆関数を持つ。

▷ 定義. 3.2.

 $\sin: [-\pi/2, \pi/2] \longrightarrow [-1, 1]$ の逆関数を Arcsin とかき、逆正弦関数と呼ぶ。

▶ 命題. 3.3.

任意の $y \in (-1,1)$ に対し、

$$(\operatorname{Arcsin} y)' = \frac{1}{\sqrt{1 - y^2}}$$

が成り立つ。

【証明】

実際、 $\sin x = y$ となるような $x \in (-\pi/2, \pi/2)$ をとれば、逆関数の微分法により

$$(\operatorname{Arcsin} y)' = \frac{1}{(\sin x)'} = \frac{1}{\cos x} = \frac{1}{\sqrt{1 - (\sin x)^2}} = \frac{1}{\sqrt{1 - y^2}}$$

が従う。

▶ 命題. 3.4.

任意の $-1 \le x \le 1$ に対して、

$$\operatorname{Arcsin} x = \sum_{n=0}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2 \cdot 4 \cdot 6 \cdots 2n} \frac{1}{2n+1} x^{2n+1}$$

が成り立つ。

【証明】

右辺の収束半径は 1 なので、-1 < x < 1 に対して右辺は収束する。そこで -1 < x < 1 に対して右辺を f(x) とおくと、

$$f'(x) = \sum_{n=0}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2 \cdot 4 \cdot 6 \cdots 2n} x^{2n} = \frac{1}{\sqrt{1-x^2}} = Arcsin'x$$

である。よって、 ${
m Arcsin}-f$ は定数関数であり、この関数の 0 で値を計算すると 0 となるので ${
m Arcsin}=f$ である。さて、 $0\le x\le 1$ において右辺の級数の部分和 $s_n(x)$ は単調増加数列で、 ${
m Arcsin}$ の単調性から

$$s_n(x) \le \operatorname{Arcsin} x \le \operatorname{Arcsin} 1 = \pi/2$$

が得られる。よって、 $s_n(1)$ は上に有界な単調増加数列になり、収束する。いま、任意の $0 \le x \le 1$ に対して

$$\left| \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2 \cdot 4 \cdot 6 \cdots 2n} \frac{1}{2n+1} x^{2n+1} \right| = \left| \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2 \cdot 4 \cdot 6 \cdots 2n} \frac{1}{2n+1} \right|$$

が成り立つので、Weierstraß の判定法により、 $s_n(x)$ は $0 \le x \le 1$ に於いて収束し、連続である。従って、 $\lim_{x\to 1-0}\lim_{n\to\infty}s_n(x)=\lim_{x\to 1-0}Arcsin\,x=\pi/2$ となる。これは x=-1 に於いても同様に収束が示せる。 \clubsuit

▷ 定義. 3.5.

余弦関数 \cos は $[0,\pi]$ から [-1,1] への狭義単調減少な全単射であるから、[-1,1] で定義された逆関数を持つ。これを逆余弦関数と呼び、Arccos と書く。

▶ 命題. 3.6.

 $-1 \le y \le 1$ に対し、

$$Arccos' y = -\frac{1}{\sqrt{1-x^2}}$$

が成り立つ。

▷ 定義. 3.7.

正接関数 \tan は $[-\pi/2,\pi/2]$ から $\mathbb R$ への全単射であるから、 $\mathbb R$ 上で定義された \tan の逆関数が存在する。これを逆正接関数と呼び、 $\mathbf A$ rctan と書く。

▶ 命題. 3.8.

任意の実数 y に対して

$$Arctan'x = \frac{1}{1+x^2}$$

が成り立つ。

▶ 命題. 3.9.

任意の |x| < 1 に対して

Arctan
$$x = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} x^{2n+1}$$

が成り立つ。

【証明】

右辺の収束半径は1である。|x|<1に対して右辺をf(x)とおくと、

$$f'(x) = \sum_{n=0}^{\infty} (-1)^n x^{2n} = \frac{1}{1+x^2} = \operatorname{Arctan}' x$$

となり、従って $\operatorname{Arctan} - f$ は (-1,1) 上で定数関数になる。0 での値を考えると、これが定数関数 0 であることがわかり、 $\operatorname{Arctan} = f$ が従う。