

Training, test and validation splits

Dmitriy (Dima) Gorenshteyn
Lead Data Scientist,
Memorial Sloan Kettering Cancer Center

Train-Test Split

DATA

Train-Test Split

Train-Test Split

TRAIN
TEST

initial_split()

```
library(rsample)
gap_split <- initial_split(gapminder, prop = 0.75)

training_data <- training(gap_split)
testing_data <- testing(gap_split)

nrow(training_data)
[1] 3003

nrow(testing_data)
[1] 1001</pre>
```


Train-Validate Split

Train-Validate Split

Cross Validation

vfold_cv()

Mapping train & validate

```
cv_data <- cv_split %>%
  mutate(train = map(splits, ~training(.x)),
  validate = map(splits, ~testing(.x)))
```


Cross Validated Models

```
cv_models_lm <- cv_data %>%
  mutate(model = map(train, ~lm(formula = life_expectancy~., data = .x)))
```


Let's practice!

Measuring cross-validation performance

Dmitriy (Dima) Gorenshteyn Lead Data Scientist, Memorial Sloan Kettering Cancer Center

Measuring Performance

life_expectancy	country	year	infant_mortality	fertility	population	gdpPercap
66.4	Peru	1986	67.6	4.25	19996250	2185
48.4	Senegal	1979	94.3	7.42	5424299	511
74	Paraguay	2006	23.1	3.19	5882797	1423
77.7	France	1993	6.3	1.72	57749881	19251
75.2	Netherlands	1977	9.7	1.58	13827329	15174
66.2	Panama	1969	53.2	5.28	1476478	2628

Measuring Performance - Truth

life_expectancy	country	year	infant_mortality	fertility	population	gdpPercap
66.4	Peru	1986	67.6	4.25	19996250	2185
48.4	Senegal	1979	94.3	7.42	5424299	511
74	Paraguay	2006	23.1	3.19	5882797	1423
77.7	France	1993	6.3	1.72	57749881	19251
75.2	Netherlands	1977	9.7	1.58	13827329	15174
66.2	Panama	1969	53.2	5.28	1476478	2628

Measuring Performance - Truth

life_expectancy	country	year	infant_mortality	fertility	population	gdpPercap
66.4	Peru	1986	67.6	4.25	19996250	2185
48.4	Senegal	1979	94.3	7.42	5424299	511
74	Paraguay	2006	23.1	3.19	5882797	1423
77.7	France	1993	6.3	1.72	57749881	19251
75.2	Netherlands	1977	9.7	1.58	13827329	15174
66.2	Panama	1969	53.2	5.28	1476478	2628
\top						

Measuring Performance - Truth

Measuring Performance - Prediction

life_expectancy	country	year	infant_mortality	fertility	population	gdpPercap
66.4	Peru	1986	67.6	4.25	19996250	2185
48.4	Senegal	1979	94.3	7.42	5424299	511
74	Paraguay	2006	23.1	3.19	5882797	1423
77.7	France	1993	6.3	1.72	57749881	19251
75.2	Netherlands	1977	9.7	1.58	13827329	15174
66.2	Panama	1969	53.2	5.28	1476478	2628

Actual
66.4
48.4
74
77.7
75.2
66.2

Measuring Performance - Prediction

life_expectancy	country	year	infant_mortality	fertility	population	gdpPercap	
66.4	Peru	1986	67.6	4.25	19996250	2185	
48.4	Senegal	1979	94.3	7.42	5424299	511	
74	Paraguay	2006	23.1	3.19	5882797	1423	
77.7	France	1993	6.3	1.72	57749881	19251	
75.2	Netherlands	1977	9.7	1.58	13827329	15174	
66.2	Panama	1969	53.2	5.28	1476478	2628	
	Model						

Actual
66.4
48.4
74
77.7
75.2
66.2

Measuring Performance - Prediction

Measuring Performance

Mean Absolute Error

$$MAE = \frac{\sum_{i=1}^{n} \left| Actual_i - Predicted_i \right|}{n}$$

Ingredients for Performance Measurement

- 1) Actual life_expectancy values
- 2) Predicted life_expectancy values
- 3) A metric to compare 1) & 2)

1) Extract the actual values

```
cv_prep_lm <- cv_models_lm %>%
  mutate(validate_actual = map(validate, ~.x$life_expectancy))
```

The predict() & map2() functions

```
predict(model, data)

map2(.x = model, .y = data, .f = ~predict(.x, .y))
```


2) Prepare the predicted values

```
cv_prep_lm <- cv_eval_lm %>%
  mutate(validate_actual = map(validate, ~.x$life_expectancy),
     validate_predicted = map2(model, validate, ~predict(.x, .y)))
```


3) Calculate MAE

```
cv eval lm
# 5-fold cross-validation
# A tibble: 5 x 8
splits
       id train validate model validate a... validate p... validate mae
<S3: rsplit> Fold1 <tib... <tib... <S3...
                                        <db1...
                                                    <dbl... 1.47
                                                          1.51
<S3: rsplit> Fold2 <tib... <tib... <S3... <dbl...
                                                  <db1...
<S3: rsplit> Fold3 <tib... <tib... <S3... <dbl...</pre>
                                              <db1...
                                                          1.44
<S3: rsplit> Fold4 <tib... <tib... <S3... <dbl... <dbl... <dbl... 1.48</pre>
<S3: rsplit> Fold5 <tib... <tib... <S3... <dbl... <dbl...
                                                               1.68
```


Let's practice!

Building and tuning a random forest model

Dmitriy (Dima) Gorenshteyn
Lead Data Scientist,
Memorial Sloan Kettering Cancer Center

Linear Regression Model

VALIDATE MEAN ABSOLUTE ERROR:

1.5 YEARS

Another Model

Random Forest Benefits

- Can handle non-linear relationships
- Can handle interactions

Basic Random Forest Tools

MODEL

```
rf_model <- ranger(formula = ___, data = ___, seed = ___)
```

PREDICTION

```
prediction <- predict(rf_model, new_data)$predictions</pre>
```


Build Basic Random Forest Models

ranger Hyper-Parameters

MODEL

```
rf_model <- ranger(formula, data, seed, mtry, num.trees)</pre>
```

HYPER-PARAMETERS

name	range	default
mtry	$1: number\ of\ features$	$\sqrt{number\ of\ features}$
num.trees	$1:\infty$	500

Tune The Hyper-Parameters

```
cv_tune <- cv_data %>%
  crossing(mtry = 1:5)
```


Tune The Hyper-Parameters

```
cv model tunerf
# A tibble: 25 x 6
                             validate
  splits id train
                                                mtry model
* <list> <chr> <list>
                                      <list>
                                                <int> <list>
1 <S3: rsplit> Fold1 <tibble [2,402 × 7]> <tibble [60... 1
                                                       <S3: ranger>
2 <S3: rsplit> Fold1 <tibble [2,402 × 7]> <tibble [60...
                                                        <S3: ranger>
3 <S3: rsplit> Fold1 <tibble [2,402 × 7]> <tibble [60...
                                                        <S3: ranger>
4 <S3: rsplit> Fold1 <tibble [2,402 × 7]> <tibble [60...
                                                        <S3: ranger>
5 <S3: rsplit> Fold1 <tibble [2,402 × 7]> <tibble [60...
                                                     5 <S3: ranger>
 6 <S3: rsplit> Fold2 <tibble [2,402 × 7]> <tibble [60... 1 <S3: ranger>
7 <S3: rsplit> Fold2 <tibble [2,402 × 7]> <tibble [60... 2 <S3: ranger>
8 <S3: rsplit> Fold2 <tibble [2,402 × 7]> <tibble [60... 3 <S3: ranger>
```


Let's practice!

MACHINE LEARNING IN THE TIDYVERSE

Measuring the Test Performance

Dmitriy (Dima) Gorenshteyn
Lead Data Scientist,
Memorial Sloan Kettering Cancer Center

TRAIN

TEST

TRAIN

TEST

Measuring the Test Performance

```
test_actual <- testing_data$life_expectancy
test_predict <- predict(best_model, testing_data)$predictions</pre>
```

```
mae(test actual, test predict)
```


Let's practice!