definitionhidealllines=true,leftline=true,linewidth=3pt,linecolor=primaryColor,frametitlerule=true,frametitlebackgroundcolor=primaryColor,backgroundcolor=gray!10, frametitleaboveskip=2mm, frametitlebelowskip=2mm, innertopmargin=3mm,

definitionsection

theoremhidealllines=true,leftline=true,linewidth=3pt,linecolor=secondaryColor,frametitlerule=true,frametitlebackgroundcolor=secondaryColor,backgroundcolor=gray!10, frametitleaboveskip=2mm, frametitlebelowskip=2mm, innertopmargin=3mm,

theoremsection

blueBoxhidealllines=true,leftline=true,backgroundcolor=cyan!10,linecolor=secondaryColor,linewidth=nertopmargin=.66em,innerbottommargin=.66em,

notehidealllines=true,leftline=true,backgroundcolor=yellow!10,linecolor=ternaryColor,linewidth=3pt, nertopmargin=.66em,innerbottommargin=.66em,

statementhidealllines=true,leftline=true,backgroundcolor=primaryColor!10,linecolor=primaryColor,linewidth=3pt,innertopmargin=.66em,innerbottommargin=.66em,singleextra=let 1=(P), 2=(O) in ((2,0)+0.5*(0,1)) node[rectangle, fill=primaryColor!10, draw=primaryColor, line width=2pt, overlay,] primaryColor!;

learnMoreTitle==Kitekintő calc,arrows,backgrounds excursus arrow/.style=line width=2pt, draw=secondaryColor, rounded corners=1ex, , excursus head/.style=font=, anchor=base west, text=secondaryColor, inner sep=1.5ex, inner ysep=1ex, ,

learnMoresingleextra=let 1=(P), 2=(O) in (2,1) coordinate (Q); let 1=(Q), 2=(O) in (1,2) coordinate (BL); let 1=(Q), 2=(P) in (2,1) coordinate (TR); [excursus head] (A) at ((Q) + (2.5em, 0)); [excursus arrow, line width=2pt] ((BL) + (1pt, 0)) |- ((Q) + (2em, 0)); [excursus arrow, line width=2pt, fill=gray!10, -to] ((Q) + (1em, 0)) -| (A.north west) -| (A.base east) - (TR); [excursus head] (A) at ((Q) + (2.5em, 0)); , backgroundcolor=gray!10, middlelinewidth=0, hidealllines=true,topline=true, innertopmargin=2.5ex, innerbottommargin=1.5ex, innerrightmargin=2ex, innerleftmargin=2ex, skipabove=0.5no-break=true,

examplehidealllines=true, leftline=true, backgroundcolor=magenta!10, linecolor=magenta!60!black, linewidth=3pt, innertopmargin=.66em, innerbottommargin=.66em,

Lineáris Algebra BMETE94BG02 4

Matematika G2

Lineáris leképzések I

Utoljára frissítve: 2025. május 04.

0.1 Elméleti Áttekintő

[style=definition, nobreak=true, frametitle= white **Definíció 1: Lineáris leképezés**] Legyenek V_1 és V_2 ugyanazon T test feletti vektorterek. Legyen $\varphi: V_1 \to V_2$ leképezés, melyet lineáris leképezésnek nevezünk, ha tetszőleges két V_1 -beli vektor ($\forall a; b \in V_1$) és T-beli skalár ($\lambda \in T$) esetén teljesülnek az alábbiak:

 $\varphi(a+b) = \varphi(a) + \varphi(b)$ additív (összegre tagonként hat), $\varphi(\lambda a) = \lambda \varphi(a)$ homogén (skalár kiemelhető).

[style=definition, nobreak=true, frametitle= white Definíció 2: Leképezés magtere] Legyen $\varphi: V_1 \to V_2$ lineáris leképezés, ekkor a

$$\ker \varphi := \{ v \mid v \in V_1 \land \varphi(v) = \}$$

halmazt a leképezés magterének nevezzük.

[style=definition, nobreak=true, frametitle= white **Definíció 3: Leképezés defektusa** A magtér dimenzióját defektusnak nevezzük, és $def\varphi$ -vel jelöljük.

[style=note, nobreak=true,] Nem létezik olyan vektortér, melynek magtere az üreshalmaz (a nullvektor mindig benne van, mert a nullvektor képe mindig nullvektor).

[style=note, nobreak=true,] Invertálható lineáris leképezés magtere a nullvektor.

[style=definition, nobreak=true, frametitle= white **Definíció 4: Lineáris leképezés** rangja] Egy lineáris leképezés rangjának nevezzük a képtér dimenzióját. $\varphi = \dim \varphi(V_1)$.

[style=theorem, nobreak=true, frametitle= white **Tétel 1: Rang-nullitás tétele**] Legyen V_1 véges dimenziós vektortér, $\varphi: V_1 \to V_2$ lineáris leképezés, ekkor

$$\varphi + def\varphi = \dim V_1.$$

[style=blueBox, nobreak=true,] Lineáris leképezések mátrixreprezentációja:

Legyenek V_1 és V_2 ugyanazon test feletti vektorterek, és dim $V_1 = n$, valamint dim $V_2 = k$. Legyen $\{a_1; a_2; \ldots; a_n\}$ bázis V_1 -ben, és $\{b_1; b_2; \ldots; b_n\}$ bázis V_2 -ben. Legyen $\varphi: V_1 \to V_2$ lineáris leképezés, ekkor

$$\varphi(a_i) = \alpha_{1i}b_1 + \alpha_{2i}b_2 + \ldots + \alpha_{ki}b_k = \sum_{j=1}^k \alpha_{ji}b_j \quad \Rightarrow \quad A := \alpha_{11}\alpha_{2i}\cdots\alpha_{1n}\alpha_{21}\alpha_{2i}\cdots\alpha_{2n} \vdots \vdots \vdots \alpha_{k1}\alpha_{ki}\cdots\alpha_{knk}$$

Az A mátrixot φ leképezést reprezentáló mátrixnak hívjuk, segítségével tetszőleges $x \in V_1$ képét meghatározhatjuk. Legyenek $(\xi_1, \xi_2, \dots, \xi_n)$ az x koordinátái, ekkor a képét az alábbi módon számíthatjuk:

$$\varphi(x) = \varphi\left(\sum_{i=1}^n \xi_i a_i\right) = \sum_{i=1}^n \xi_i \varphi(a_i) = \alpha_{11} \alpha_{2i} \cdots \alpha_{1n} \alpha_{21} \alpha_{2i} \cdots \alpha_{2n} \vdots \cdots \vdots \alpha_{k1} \alpha_{ki} \cdots \alpha_{kn} \xi_1 \xi_2 \vdots \xi_n.$$

[style=definition, nobreak=true, frametitle= white **Definíció 5: Bázistranszformáció**] Legyenek $\{b_1; b_2; \ldots; b_n\}$ és $\{\hat{b}_1; \hat{b}_2; \ldots; \hat{b}_n\}$ bázisok V-ben. Ekkor a $\{b_1; b_2; \ldots; b_n\} \rightarrow \{\hat{b}_1; \hat{b}_2; \ldots; \hat{b}_n\}$ bázistranszformáció T mátrixa a következőképpen írható fel:

[style=note, nobreak=true,] A T bázistranszformációs mátrix segítségével a régi és új bázisban felírt vektorok kordinátái közötti kapcsolat mátrixosan:

$$x = Tx' \quad s \quad x' = T^{-1}x.$$

[style=theorem, nobreak=true, frametitle= white **Tétel 2: Lineáris leképezés mátrixa új bázisban**] Legyen $\varphi: V \to V$ lineáris leképezés, $\{b_1; b_2; \ldots; b_n\}$ és $\{\hat{b}_1; \hat{b}_2; \ldots; \hat{b}_n\}$ bázisok V-ben. A φ $\{b_1; b_2; \ldots b_n\}$ bázisra vonatkozó mátrixa A, a φ $\{\hat{b}_1; \hat{b}_2; \ldots; \hat{b}_n\}$ bázisra vonatkozó mátrixa \hat{A} . Jelölje T a $\{b_1; b_2; \ldots; b_n\}$ bázisról a $\{\hat{b}_1; \hat{b}_2; \ldots; \hat{b}_n\}$ bázisra való áttérés mátrixát, ekkor

$$\hat{A} = T^{-1}AT.$$

[style=note, nobreak=true,] A A és \hat{A} mátrix hasonló.

[style=blueBox, nobreak=true,] Alap geometriai leképezések:

• Tükrözés vata $\overline{\overline{m}}$ ely0tengelyre: 3

0 -1 0

 $0 \ 0 \ -1$

 ${\bf x-}tengely retkrzs$

 $T_y = -10001000 - 1$

y-tengelyre tükrözés

 $T_z = -1000 - 10001$

z-tengelyretükrözés

Vetítés valamely tengelyre: 3

0 0 0

0 0 0

x-tengely revetts

 $T_y = 000010000$

y-tengelyre vetítés

 $T_z = 000000001$

z-tengelyre vetítés

Tükrözés va Tamery síkra: 3

0 1 0

 $0 \ 0 \ -1$

xyskratkrzs

 $T_{yz} = -100010001$

yz síkra tükrözés

 $T_{xz} = 1000 - 10001$

xz síkra tükrözés

Vetítés $T_{\text{vallamely síkra: }3}^{T_{\text{vallamely síkra: }3}}$

 $0 \ 0 \ 0$

xyskravetts

 $T_{yz} = 000010001$

yz síkra vetítés

 $T_{xz} = 100000001$

xz síkra vetítés

 $T_{\mathbf{s}} = \lambda 00$ λ -szoros **nyújtás** valamely irányban: 3 0 1 0

0

 $0 \ 0 \ 1$

xirnyba

 $T_y = 1000\lambda 0001$

y irányba

 $T_z = 10001000\lambda$

z irányba

Forgatás $+\alpha$ szöggel: 9 $R_x(\alpha) = 100$

 $0\cos\alpha - \sin\alpha$

 $0 \sin \alpha \cos \alpha \sim xtengelykrliforgats$

 $R_{\nu}(\alpha) = \cos \alpha 0 \sin \alpha$

010

 $-\sin\alpha 0\cos\alpha \sim ytengelykrliforgats$

 $R_z(\alpha) = \cos \alpha - \sin \alpha 0$

 $\sin \alpha \cos \alpha 0$

 $001 \sim ztengelykrliforgats$

[style=note, nobreak=true,] Ha egymás után több transzformációt kell végrehajtani $A,\,B,\,C$ sorrendben, akkor:

$$x' = CBAx$$
.

[style=definition, nobreak=true, frametitle= white**Definíció 6: Ortogonális transz-formáció**] Az n dimenziós euklideszi tér $\mathcal{A}:V\to V$ lineáris transzformációját ortogonálisnak mondjuk, ha $\langle \mathcal{A}x;\mathcal{A}y\rangle=\langle x;y\rangle$, minden $x;y\in V$ esetén.

[style=note, nobreak=true,] Egy ortogonális transzformáció Q mátrixának inverze megegyezik a transzponáltjával.

Amennyiben det Q=1, akkor a transzformáció orientáció
tartó.

Amennyiben $\det Q=-1,$ akkor a transzformáció orientációváltó.

[style=example, nobreak=true] A két dimenziós térben való forgatás orientációtartó, hiszen

$$\det Q = \cos \alpha - \sin \alpha \sin \alpha \cos \alpha = \cos^2 \alpha + \sin^2 \alpha = 1.$$

0.2 Feladatok

1. Állapítsa meg, hogy az alábbi leképezések lineárisak-e?

$$\varphi:^2\to^2; \quad xy\mapsto x+y5xy \qquad \qquad \psi:^2\to^3; \quad xy\mapsto xyx+y$$

- 2. Határozza meg a P(5; -4; -1) pont koordinátáit az $a_1(2; 1; 0)$, $a_2(0; 2; 1)$ és $a_3(1; 0; 2)$ vektorok által meghatározott bázisban!
- 3. Írja fel az $\{i,j,k\}$ és a $\{z_1,z_2,z_3\}$ ortonormált bázisok közti báziscsere mátrixát!
- 4. A harmadik feladatban meghatározott báziscsere mátrixát felhasználva oldja meg a második feladatot!
- 5. Írja fel a 2D Descartes koordinátarendszer α fokos elforgatásával nyert új koordinátarendszerbe mutató báziscsere mátrixát!
- 6. Adjuk meg annak a lineáris leképezésnek a mátrixát, amely az alábbi vektorba viszi át a bázisodat:

$$i\mapsto 213,\quad j\mapsto 555,\quad k\mapsto 00-1.$$

Mi lesz a P(1;1;1) pont képe?

- 7. Adja meg az első feladatban szereplő leképezések mátrixait!
- 8. Határozza meg az origón áthaladó u(a;b;c) normálisú $(a^2+b^2+c^2=1)$ síkra vonatkozó tükrözés mátrixát!
- 9. Adott egy lineáris leképezés a szokásos $\{i, j\}$ bázisban. Írja fel a leképezés mátrixát az $\{f_1; f_2\}$ bázisban, ha $f_1(2; 1)$ és $f_2(1; 1)$.
- 10. Adott két lineáris leképezés mátrixa A és B. Mit ad eredményül…4
 - a) (A+B)r,
 - b) ABr,
 - c) A^2r ,
 - d) $A^{-1}r$?
- 11. Egy φ leképezés mátrixa A. Döntsük el, hogy:
 - a) $P(2;0;1) \in \ker \varphi$,
- c) $\varphi = ?$

$$A = 123 - 10 - 23 - 14$$

- b) mi Q'(1;4;0) ősképe,
- d) $def\varphi = ?$

- 12. Mennyi a leképezés defektusa...2
 - a) x tengelyre való vetítés esetén,
 - b) yz síkra való vetítés esetén?

- 13. Írja fel annak a leképezésnek a mátrixát amely z körül α szöggel forgat, majd tükröz az xy síkra, végül x irányba 2-szeres, z irányba 3-szoros nagyítást végez!
- 14. Írja fel azt a leképezést, amely az y=x és z=0 egyenletrendszerű egyenesre tükröz!
- 15. Írja fel az e egyenes körül pozizív y irányból 90°-os forgatás mátrixát a szokásos, illetve a $v_1(1;0;0)$, $v_2(1;1;0)$ és $v_3=(1;1;1)$ bázisokban, ha az egyenes egyenletrendszere:

$$e: \frac{-1}{2}x + \frac{\sqrt{3}}{2}y = 0$$
 s $z = 0$.

16. Adja meg a α és β paramétereket, hogy a φ leképezés A mátrixa orientciótartó és skalárisszorzattartó legyen (ortogonális)!

$$A = \alpha \beta 0100001$$