· Biostatistique -

Chapitre of : Les Tests d'hypothère:

lorsqu'en effectue une comparaison entre deux ou plusieurs séries de données on observe toujours une différence entre les paramètres mesurés.

Introduction

Les tests d'hypothèse esut des procédures estatatiques permettant de prendre une décision sur une hypothèse concernant une population à partir d'un échantillon

Le but du test est de déterminer si cette différence esservé est due au hoisard ou au contraire la différence est réelle.

Concepts de bose :

= Hypothère nulle (Ho): Hypothère à tester, elle représente souvent l'absence d'effet ou de différence. ex. $(u_1 = u_2)$.

Mypothère alternative: (14): Hypothère opposée à 40, elle represente une différence ou un effet significatif. (en: 11, 1>11, 11, 11).

Niveau de signification (senil): la probabilité de righter 40 alors qu'elle est vraie (erreur de type on): (appelé risque d.)

- détermine si la différence est significative ou non (14- _ 5%-10%)

Étapes d'un test d'hypothèse

- 1): Déterminer le seure de test (conformité ou homogénété)
- 2): Formulax les hypothèses. Ho: H1 } Ho: Hypothèse nulle: le différence n'est possioni facutive: \$\frac{1}{2}\$

 (4): Hypothèse alternative: la différence est siagnificative }
- 3). Fixer of (somet 590).
- 4). Sélectionner le test. Statistique approprié. (7 on t)
- 5): Calculer Statistique detest.
- 6): Comparer la statistique calculée avec la statistique Héorique.
- 7): prendre la décision: réjeter (7) ou Acceptor (7) Ho.

Echantillan Population

comparaison entre une valeur. experimentalle et une valeur théorique (référence - norme).

- => Text de comformité
- · Il S'intèress:
 - moyenne
 - Pourcentage.
- · Question:

Est-il-conforme? Est-il-représentatif? Echantilla / Echantillan

comparaison entre deux valeur expérimentalles de l'échantillons différents ou de la même population

- => Test d'homogénéité.
- · Il s'interesse
- moyenne
- powcentage
- Variance
- Question

Sout elles homogènes?

N.B

HO X== XHE : \$\ difference non significative : échantella € Population

Car de Echan / Popu

. Moyenne (bilitéral)

Test de conformité: pour composer une moyenne expérimentalle (ano) avec une moyenne théorique donnée (m).

1). Enoncer Ho, Ha

Ho: M = mo \$ différence non signéficative

Hs M<>mo 3 différence signéficative

2) Forez of (1%. 5% . 10%)

3) Statistique detects

taille de l'échantillon

Feal = Xech - Mor

 $t_{ca} = \frac{\overline{x} - \mu}{\sqrt{\frac{2^{2}}{n}}} = \frac{\overline{x} - \mu}{\sqrt{\frac{2^{2}}{n}}}$ $covec \frac{\delta^{2}}{n} = \frac{\Lambda}{n-\Lambda} \geq (x_{i} - \overline{x})^{2}$ $continue = \frac{\Lambda}{n-\Lambda} \geq (x_{i} - \overline{x})^{2}$

4) Déterminer 2 théa

Zthés pour 0 = 5 %

a' postor de table de Z

1 - 0 = produ

Zthe= 1-1

the pour d= 6% and the pour de Table de Studier the studier to

5) Décision P(-\alpha \T)\alpha = 1-a si \ Zeolis = Zthes Ho Accepte.

Si. 3 Zaal E [- Zoho i + Zoho] : Ha Accepte

· Pourcentage .

me Valeur esepé (Po) avec me valeur theorique donnée (P) (Reurportis

Mo: P= Po \$

Ho: P< >Po 3

2) Fixer of (Souvent 5%)

3): Statistique de text

 $\frac{2 \operatorname{cal} = \frac{K}{N} - P_0}{\sqrt{\frac{P_0}{N}}}$

M: sombre de succés. 3º le le 100 de l'ingre n: table de l'echantilla

90 = 1 - Po

P(-a (T) x)=1-4

Cas de Echan/Echan

Tot d'homogénéité pour comparer 2 mayennes expérimentalles min

1)= Enancer Ho, Hz

2). Fixer a (1%-5%)10%

Ho: m, = m2 Sourcet 9 = 5%

Hs My <7 m2

3/2 statistique de text.

Taille des échantillons

Varioce de la population

4)=Determine ZHES

ZHEO pour d=5%

1-d = [pado]

de Table de Z: on trouve tom

(la m méthode précidente)

6) Decision

Si Zcale [-Zthao it Zthan]

40 : est sejeté - Ha est accupte

4) 4 détermine Tous

Trupount d=540

ddl= n,+ n2-2

de Table de Studient (of; ddl)

Outrouve t then 5) : Décision.

Si trade [-Thei Tm]

Ho est rejeté. Hi est Accepté

Proportion P)

Test d'homogénété pour comparer 2 proportion expérimentale. P.P.

1): Emancer Ho et H.

 $H_0: P_2 = P_2$

H .: P. (>P2.

3): Statistique de test.

 $Z_{col} = \frac{\frac{K_1}{N_2} - \frac{K_2}{N_2}}{\sqrt{\frac{P_1 P_1}{N_1} + \frac{P_2 P_2}{N_2}}}$

2): Fixer d (190. 570, 107)

Souvent 5%.

(Bilateral)

Test d'homogérité pour comparor à voriances Fi; Fi

3): Saturtique de test:

$$F_{col} = \frac{O_A}{O_2} = \frac{N_1 - S_1}{N_2 - A} - S_1^2$$

2): Fixer d (1% - 5% - 10%)

4) déterminer Fhés

C'est a qui détermine la table de Fisher à utilier.

- Détormin l'intervalle:

5) Décision

Ho out accepté: Si Fcal E [Fine ; Fine] > Il y'a sucure variation entre les 2 Echantillon

La différence entre les types de Text (bilational - unilateral)

Test qui évalue si la valeur observée est supérieure on inférieure (scal) à une valeur théorique (seins) (Stres)

Test à droite Scal (Strée · Nedéposse pos. · Infarieura . All maximum . Moins de . Au plus

Scal (Stres = Hooccepte ~ Scal > Sther => Ho X

Test à gauche Scal > Strée

· Passe

· Supérieur à

· Plus de

· All minimum.

. Au moins

Scal (Stheo =) Ho X
HALL X SHE Scal > Sthes => Ho Accepte ~

unilateral

mayenne of the step of
Proportion 2 this & 1-0

Variance => Fthe dépond of

Belatoral

Proportion 2 the depend of 2 Proportion 2 the depend 1- 02

Variance => Fthee dépend. $\frac{\alpha}{2}$

Echantellons dépendants (apportés ou couples).

- Les mesures sont liées ou comparées entre elles.
- On retrouve cette situation dons des études où chaque sijet est mesuré avant et après une intervention

Ex. Le niveau de calceum dans le sang (= calcemie) avant et après un traitement chez un echantillon.

- Egalement utilisé pour des sujets apparités: comme: des juneaux ou des personnes textées dans des conditions différentes.

Comparer la moyenne

- · y: deff. absolue entre valeur avant et après.
- · N. taille de l'échan

theo = ddl = N-1

Echantillions indépendants:

- Les mesures des groupes sont Totalement distincts et ne pas une les unes des autres.
- comparaison entre 2 groupes sans lien:

Ex. niveau de calcium dans le sang (= calcumie) chez deux populations différentes (un groupe sportifs et un groupe sedentaire).

a chaque individu en mesur est autonome, cons correspondence dicrote directe avec l'autre les mêmes lois mentionnées au debut où

Résume