

- Cross validation is a more advanced set of methods for splitting data into training and testing sets.
- Cross Validation Relevant Reading:
 - Section 5.1 of ISLR

- We understand the intuition behind performing a train test split, we want to fairly evaluate our model's performance on unseen data.
- Unfortunately this means we are not able to tune hyperparameters to the entire dataset.

- Is there a way we can achieve the following:
 - Train on all the data
 - Evaluate on all the data
 - While it sounds impossible, we can achieve this with cross validation!
 - Let's have an overview of the concept...

Imagine our data set:

X

У

Area m²	Bedrooms	Bathrooms	Price
200	3	2	\$500,000
190	2	1	\$450,000
230	3	3	\$650,000
180	1	1	\$400,000
210	2	2	\$550,000

 Let's convert this data into colored blocks for cross-validation

 Area m²
 Bedrooms
 Bathrooms
 Price

 200
 3
 2
 \$500,000

 190
 2
 1
 \$450,000

 230
 3
 \$650,000

 180
 1
 1
 \$400,000

 210
 2
 \$550,000

Convert to generalized form

X y

x ₁	X ₂	X ₃	у
x ¹ ₁	x ¹ ₁	x ¹ ₁	y ₁
x ² ₁	x ² ₁	x ² ₁	y ₂
x ³ ₁	x ³ ₁	x ³ ₁	y ₃
X ⁴ ₁	X ⁴ ₁	X ⁴ ₁	y ₄
x ⁵	x ⁵	x ⁵	y ₅

Color based off train vs. test set.

X y

x ₁	X ₂	X ₃	у
x ¹ ,	x ¹ ,	x ¹ ,	y ₁
x ² ₁	x ² ₁	x ² ₁	y ₂
x ³ ₁	x ³ ₁	x ³ ₁	y ₃
X ⁴ ₁	x ⁴ ₁	x ⁴ ₁	y ₄
x ⁵ ₁	x ⁵ ₁	X ⁵ ,	y ₅

Color based off train vs. test set.

X ,

TRAIN

X ₁	X ₂	X ₃	у
x ¹ ,	x ¹ ₁	x ¹ ,	y ₁
x ² ₁	x ² ₁	x ² ₁	y ₂
x ³ ₁	x ³ ₁	x ³ 1	y ₃
X ⁴ ₁	x ⁴ ₁	X ⁴ 1	y ₄
x ⁵ ,	x ⁵ ₁	x ⁵ ₁	y ₅

Color based off train vs. test set.

X

TRAIN

X ₁	X ₂	X ₃	у
x ¹ ,	x ¹ ₁	x ¹ ,	y ₁
x ² ₁	x ² ₁	x ² ₁	y ₂
x ³ ₁	x ³ ₁	x ³	У ₃
x ⁴ ₁	x ⁴ ₁	x ⁴ 1	У ₄
x ⁵ ₁	x ⁵ ₁	x ⁵ 1	y ₅

For now just consider training vs testing:

X y

TRAIN

X ₁	X ₂	X ₃	у
x ¹ ,	x ¹ ,	x ¹ ,	У ₁
x ² ₁	x ² 1	x ² ₁	y ₂
x ³ ,	x ³ 1	x ³ ,	y ₃
x ⁴ ,	X ⁴ ₁	x ⁴ ₁	У ₄
x ⁵ ₁	x ⁵ ₁	x ⁵ ₁	y ₅

For now just consider training vs testing:

TRAIN

x ¹ ₁	x ¹ ,	x ¹	У ₁
x ² ₁	x ² ₁	x ² ₁	y ₂
x ³ ₁	x ³ ,	x ³ 1	y ₃
X ⁴ ₁	x ⁴ ₁	X ⁴ ₁	У ₄
x ⁵ ,	x ⁵ ₁	x ⁵ ₁	y ₅

 Now we have all data, colored by training set versus test set.

Rotate and resize:

TRAIN
TEST

Rotate and resize:

Rotate and resize:

Rotate and resize:

Now we can represent full data and splits:

Let's start with the entire original data:

How does cross validation work?

Split data into K equal parts:

				3
	1 1			

• 1/K left as test set

Train model and get error metric for split:

Repeat for another 1/K split

					ERF
					ERF

ERROR 1

ERROR 2

Keep repeating for all possible splits

					ERRC
					ERRO
					ERRC

OR 1

OR 2

OR 3

Keep repeating for all possible splits

Get average error

ERROR 1

ERROR 2

ERROR 3

...

ERROR K

MEAN ERROR

MEAN

ERROR

Average error is the expected performance

- We were able to train on all data and evaluate on all data!
- We get a better sense of true performance across multiple potential splits.
- What is the cost of this?
 - We have to repeat computations K number of times!

- This is known as K-fold cross-validation.
- Common choice for K is 10 so each test set is 10% of your total data.
- Largest K possible would be K equal to the number of number of rows.
 - This is known as leave one out cross validation.
 - Computationally expensive!

- One consideration to note with K-fold cross validation and a standard train test split is fairly tuning hyperparameters.
- If we tune hyperparameters to test data performance, are we ever fairly getting performance metrics?

- How can we understand how the model behaves for data that is has not seen and not been influenced by for hyperparameter tuning?
- For this we can use a hold out test set.
- Let's explore what this looks like...

Start with entire data set:

Remove a hold out test set

Perform "classic" train test split:

Train and tune on this data:

Or K-Fold cross validation

Train and tune on this data:

 After training and tuning perform final evaluation hold out test set.

 Can not tune after this final test evaluation!

Train | Validation | Test Split

- Allows us to get a true final performance metric to report.
- No editing model after this!

- All these approaches are valid, each situation is unique!
- Keep in mind:
 - Previous modeling work
 - Reporting requirements
 - Fairness of evaluation
 - Context of data and model

- Many regularization methods have tunable parameters we can adjust based on cross-validation techniques.
- For simplicity, there are times in the course we will opt for a simple two part train test split.