

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE GOIÁS

ESCOLA DE ENG ENGENHARIA ELÉTRICA, MECÂNICA E DE COMPUTAÇÃO

Letícia Delfino Teixeira

PROBLEMA DE CLASSIFICAÇÃO DE VINHOS

Introdução

Este trabalho tem como objetivo resolver o problema de classificação de vinhos.utilizando redes neurais.

Para realização deste trabalho foi utilizado o framework "<u>Kaggle</u>" e a base de dados "<u>Classifying wine varieties</u>".

Introdução	1
Informações do Problema	3
Objetivo	3
Classes	3
Caracterísitcas	3
Amostras	4

Informações do Problema

A base de dados "<u>Classifying wine varieties</u>" foi obtida através de resultados de análise química de vinhos cujas uvas cresceram em uma mesma região da Itália, mas que são derivadas de três cultivos diferentes. A análise feita determinou uma quantidade de 13 constituintes encontrados nos três tipos de vinhos.

Objetivo

O objetivo é construir uma rede neural que possa classificar o tipo de vinho com base em suas características utilizando uma rede neural.

<u>Classes</u>

Classe	Valor correspondente
Classe 1	59
Classe 2	71
Classe 3	48

Caracterísitcas

Características									
1. Álcool	2. Fenol não flavonóide								
3. Ácido málico	4. Proantocianimas								
5. Cinza	6. Intensidade da cor								
7. Alcalinidade das cinzas	8. Tom								
9. Magnésio	10. OD280/OD315 de vinhos diluídos								
11. Fenóis totais	12. Prolina								
13. Flavonóides									

Amostras

O arquivo utilizado para retirar as amostras é o arquivo "Wine.csv" que se encontra na pasta deste documento.

```
import os
from subprocess import check_output
print(check_output(["ls", "../input"]).decode("utf8"))

# Any results you write to the current directory are saved as output.
Wine.csv
```

O conjunto de amostras contém 100 amostras com suas respectivas características e pode ser visto abaixo:

```
data = pd.read_csv('../input/Wine.csv')
data.sample(n=100)
```

1 14.23 1.71 2.43 15.6 127 2.8 3.06 .28 2.29 5.64 1.04 3.92 1065 2.27 17.4 2.88 3.54 0.32 2.08 1260 48 1 13.94 1.73 108 8.90 1.12 3.10 157 3 14.34 1.68 2.70 25.0 98 2.80 1.31 0.53 2.70 13.00 0.57 1.96 660 121 12.42 4.43 2.73 26.5 102 2.20 2.13 0.43 1.71 2.08 0.92 3.12 365 1190 51 1 13.82 1.75 2.42 14.0 111 3.88 3.74 0.32 1.87 7.05 1.01 3.26 3 13.48 1.67 2.64 22.5 2.60 1.10 0.52 0.57 1.78 158 89 2.29 11.75 620 14.30 1.92 2.72 20.0 2.80 3.14 0.33 1.07 2.65 1280 15 120 1.97 6.20 1 13.83 1.57 2.62 20.0 2.95 3.40 1.72 1.13 2.57 16 115 0.40 6.60 1130 3 13.32 3.24 2.38 21.5 92 1.93 0.76 0.45 1.25 8.42 0.55 1.62 650 147 13.20 1.78 2.14 11.2 100 2.65 2.76 0.26 1.28 4.38 1.05 3.40 1050 81 12.08 1.13 2.51 24.0 78 2.00 1.58 0.40 1.40 1.31 2.72 630 2.20 110 12.52 2.43 2.17 21.0 88 2.55 2.27 0.26 1.22 2.00 0.90 2.78 325 10 14.12 1.48 2.32 16.8 95 2.20 2.43 0.26 1.57 5.00 1.17 2.82 1280 3 12.82 3.37 2.30 19.5 88 1.48 0.66 0.40 0.97 166 10.26 0.72 1.75 685

35	1	13.28	1.64	2.84	15.5	110	2.60	2.68	0.34	1.36	4.60	1.09	2.78	880
22	1	12.85	1.60	2.52	17.8	95	2.48	2.37	0.26	1.46	3.93	1.09	3.63	1015
27	1	13.87	1.90	2.80	19.4	107	2.95	2.97	0.37	1.76	4.50	1.25	3.40	915
8	1	13.86	1.35	2.27	16.0	98	2.98	3.15	0.22	1.85	7.22	1.01	3.55	1045
102	2	11.82	1.72	1.88	19.5	86	2.50	1.64	0.37	1.42	2.06	0.94	2.44	415
40	1	13.41	3.84	2.12	18.8	90	2.45	2.68	0.27	1.48	4.28	0.91	3.00	1035
133	3	12.51	1.24	2.25	17.5	85	2.00	0.58	0.60	1.25	5.45	0.75	1.51	650
3	1	13.24	2.59	2.87	21.0	118	2.80	2.69	0.39	1.82	4.32	1.04	2.93	735
135	3	12.25	4.72	2.54	21.0	89	1.38	0.47	0.53	0.80	3.85	0.75	1.27	720
14	1	13.63	1.81	2.70	17.2	112	2.85	2.91	0.30	1.46	7.30	1.28	2.88	1310
56	1	13.29	1.97	2.68	16.8	102	3.00	3.23	0.31	1.66	6.00	1.07	2.84	1270
38	1	14.22	3.99	2.51	13.2	128	3.00	3.04	0.20	2.08	5.10	0.89	3.53	760
21	1	13.71	1.86	2.36	16.6	101	2.61	2.88	0.27	1.69	3.80	1.11	4.00	1035
107	2	12.22	1.29	1.94	19.0	92	2.36	2.04	0.39	2.08	2.70	0.86	3.02	312
123	2	11.87	4.31	2.39	21.0	82	2.86	3.03	0.21	2.91	2.80	0.75	3.64	380
57	1	13.72	1.43	2.50	16.7	108	3.40	3.67	0.19	2.04	6.80	0.89	2.87	1285
12	1	14.75	1.73	2.39	11.4	91	3.10	3.69	0.43	2.81	5.40	1.25	2.73	1150

	***		***		***	***		***		***				
58	2	12.37	0.94	1.36	10.6	88	1.98	0.57	0.28	0.42	1.95	1.05	1.82	520
132	3	12.70	3.55	2.36	21.5	106	1.70	1.20	0.17	0.84	5.00	0.78	1.29	600
149	3	13.50	3.12	2.62	24.0	123	1.40	1.57	0.22	1.25	8.60	0.59	1.30	500
32	1	13.76	1.53	2.70	19.5	132	2.95	2.74	0.50	1.35	5.40	1.25	3.00	1235
60	2	12.64	1.36	2.02	16.8	100	2.02	1.41	0.53	0.62	5.75	0.98	1.59	450
36	1	13.05	1.65	2.55	18.0	98	2.45	2.43	0.29	1.44	4.25	1.12	2.51	1105
65	2	13.11	1.01	1.70	15.0	78	2.98	3.18	0.26	2.28	5.30	1.12	3.18	502
1	1	13.16	2.36	2.67	18.6	101	2.80	3.24	0.30	2.81	5.68	1.03	3.17	1185
88	2	12.08	1.33	2.30	23.6	70	2.20	1.59	0.42	1.38	1.74	1.07	3.21	625
23	1	13.50	1.81	2.61	20.0	96	2.53	2.61	0.28	1.66	3.52	1.12	3.82	845
113	2	12.08	1.39	2.50	22.5	84	2.56	2.29	0.43	1.04	2.90	0.93	3.19	385
131	3	12.81	2.31	2.40	24.0	98	1.15	1.09	0.27	0.83	5.70	0.66	1.36	560
148	3	13.08	3.90	2.36	21.5	113	1.41	1.39	0.34	1.14	9.40	0.57	1.33	550
130	3	12.88	2.99	2.40	20.0	104	1.30	1.22	0.24	0.83	5.40	0.74	1.42	530
168	3	13.40	4.60	2.86	25.0	112	1.98	0.96	0.27	1.11	8.50	0.67	1.92	630
54	1	13.56	1.73	2.46	20.5	116	2.96	2.78	0.20	2.45	6.25	0.98	3.03	1120
4	1	14.20	1.76	2.45	15.2	112	3.27	3.39	0.34	1.97	6.75	1.05	2.85	1450
78	2	12.70	3.87	2.40	23.0	101	2.83	2.55	0.43	1.95	2.57	1.19	3.13	463
84	2	12.67	0.98	2.24	18.0	99	2.20	1.94	0.30	1.46	2.62	1.23	3.16	450
80	2	12.72	1.81	2.20	18.8	86	2.20	2.53	0.26	1.77	3.90	1.16	3.14	714
28	1	14.02	1.68	2.21	16.0	96	2.65	2.33	0.26	1.98	4.70	1.04	3.59	1035
64	2	12.37	1.21	2.56	18.1	98	2.42	2.65	0.37	2.08	4.60	1.19	2.30	678
145	3	13.88	5.04	2.23	20.0	80	0.98	0.34	0.40	0.68	4.90	0.58	1.33	415
100	2	12.60	1.34	1.90	18.5	88	1.45	1.36	0.29	1.35	2.45	1.04	2.77	562
154	3	13.17	5.19	2.32	22.0	93	1.74	0.63	0.61	1.55	7.90	0.60	1.48	725
25	1	13.39	1.77	2.62	16.1	93	2.85	2.94	0.34	1.45	4.80	0.92	3.22	1195
120	2	11.56	2.05	3.23	28.5	119	3.18	5.08	0.47	1.87	6.00	0.93	3.69	465
91	2	12.69	1.53	2.26	20.7	80	1.38	1.46	0.58	1.62	3.05	0.96	2.06	495
162	3	12.96	3.45	2.35	18.5	106	1.39	0.70	0.40	0.94	5.28	0.68	1.75	675
79	2	12.00	0.92	2.00	19.0	86	2.42	2.26	0.30	1.43	2.50	1.38	3.12	278

A tabela possui 100 amostras e 13 características, gerando um total de 100 linhas e 14 colunas.

	1	14.23	1.71	2.43	15.6	127	2.8	3.06	.28	2.29	5.64
count	177.000000	177.000000	177.000000	177.000000	177.000000	177.000000	177.000000	177.000000	177.000000	177.000000	177.000000
mean	1.943503	12.993672	2.339887	2.366158	19.516949	99.587571	2.292260	2.023446	0.362316	1.586949	5.054802
std	0.773991	0.808808	1.119314	0.275080	3.336071	14.174018	0.626465	0.998658	0.124653	0.571545	2.324446
min	1.000000	11.030000	0.740000	1.360000	10.600000	70.000000	0.980000	0.340000	0.130000	0.410000	1.280000
25%	1.000000	12.360000	1.600000	2.210000	17.200000	88.000000	1.740000	1.200000	0.270000	1.250000	3.210000
50%	2.000000	13.050000	1.870000	2.360000	19.500000	98.000000	2.350000	2.130000	0.340000	1.550000	4.680000
75%	3.000000	13.670000	3.100000	2.560000	21.500000	107.000000	2.800000	2.860000	0.440000	1.950000	6.200000
max	3.000000	14.830000	5.800000	3.230000	30.000000	162.000000	3.880000	5.080000	0.660000	3.580000	13.000000