Aucun document autorisé Calculatrice type collège autorisée

Durée 2h00

REPONDRE SUR DES FEUILLES SEPAREES POUR CHAQUE EXERCICE EXERCICE I (5 pts) REPONDRE SUR LE SUJET et LE RENDRE

a- (2 pts) TFD d'un signal temporel échantillonné :

La Transformée de Fourier Discrète (TFD) d'un signal sinusoïdal de fréquence $f_0 = 750 \ Hz$ et comportant N échantillons est représentée ci-dessous.

Où k est un indice entier et l'échelle des ordonnées est arbitraire. La courbe reliant les points entre eux est ajoutée.

Compléter le tableau suivant **en justifiant** (à l'aide de formules littérales puis de valeurs numériques) dans la case et sur le schéma si besoin :

Nombre	Incrément	Fréquence	Fréquence et	Durée Δt du signal	Durée T de la	Nombre de zéro
d'échantillons N	fréquentiel	d'échantillonnage	indice k du	temporel qui a	fenêtre	ajoutés (zéro-
	Δf	F_e	deuxième pic	permis de calculer	rectangulaire qui a	padding) après
				cette TFD	été utilisée pour	l'acquisition
					apodiser le signal	
					au cours de	
					l'acquisition	

b- (1 pt) On échantillonne, sans précautions particulières, un signal analogique (s(t)) dont le spectre (S(f)) est représenté ci-contre ($F=500\,Hz$). L'effet de la fenêtre d'apodisation n'est pas pris en compte.

Représenter ci-dessous aussi précisément que possible sans calcul, la Transformée de Fourier à temps discret (TFd) du signal ainsi obtenu sur la plage de fréquences $f \in [0;2000\,Hz]$ pour une fréquence d'échantillonnage $F_e=750\,Hz$ en indiquant clairement la graduation de l'axe des fréquences. Commenter brièvement.

M. TORINESI 1

NOM, PRENOM du candidat :

EXAMEN JANVIER 2016 MA 361 – Partie Traitement du Signal Durée 2h00

Aucun document autorisé

Calculatrice type collège autorisée

c- (2 pts) Questions à Choix Multiple - toute réponse erronée enlève 0,5 pt :

i- Soient les fonctions x(t) et y(t):

Le produit de convolution analogique $(x(t)*y(t) = \int_{\mathbb{R}} x(\tau).y(t-\tau).d\tau)$ vaut, en t = -1, [x(t) * y(t)](t = -1) =

 \square 0

 2π

aucune réponse

iiéchantillons X(0) = -1; X(1) = 1 + j; X(2) = 8; X(3) =-j et X(4) = X(5) = 0. La TFD inverse de ce signal à support fini (x(n) = $\frac{1}{N} \cdot \sum_{k=0}^{N-1} X(k) \cdot W_N^{+n.k}$) vaut, en n=3, x(3)=

aucune réponse

2

REPONDRE SUR DES FEUILLES SEPAREES POUR CHAQUE EXERCICE

EXERCICE II : Etude d'un filtre numérique (5 pts) REPONDRE SUR UNE FEUILLE D'EXAMEN

 $\mathsf{Rappel}: \mathsf{les} \ \mathsf{n} \ \mathsf{racines} \ \mathsf{n}^{\mathsf{ième}} \ \mathsf{d}'\mathsf{un} \ \mathsf{nombre} \ \mathsf{complexe} \ \mathsf{de} \ \mathsf{module} \ \mathsf{1} \ (z=e^{j.\alpha}) \ \mathsf{sont} \ e^{j.(\frac{\alpha}{n}+k.\frac{2\pi}{n})} \ \mathsf{avec} \ k \in [0;n-1]$

Soit un filtre numérique défini par l'équation aux différences suivante :

y(n) = x(n) + x(n-L) où $L \in \mathbb{N}$ (la période d'échantillonnage est $T_e = 50$ ns)

- 0-A-t-ton affaire à un filtre à réponse impulsionnelle finie ou infinie ?
- 1-Calculer la transformée en z de x(n-L).
- En déduire que la fonction de transfert du système est $H(z) = \frac{Y(z)}{X(z)} = \frac{1+z^L}{z^L}$. 2-
- 3-Montrer qu'elle comporte L pôles et L zéros dont vous donnerez les expressions complexes détaillées. Ce filtre est-il causal, stable ?

Pour les 2 cas L = 2 puis L = 3:

- Représenter géométriquement H(z) dans le plan en z en prenant M(z) sur le 4cercle unité (|z|=1). Vous nommerez par des lettres les différents zéros et pôles et vous exprimerez le module de la fonction de transfert en fonction de ces lettres.
- 5-En déduire, dans chaque cas, les valeurs des fréquences pour lesquelles la fonction de transfert s'annule.
- Pour L quelconque, quelle est l'expression compacte de la réponse en fréquence 6-H(f) de ce filtre?
- 7-Pour les 2 cas L=2 puis L=3, tracer |H(f)| pour $f \in [0, F_e]$ (en graduant correctement les axes). A quel type de filtre a-t-on affaire.

M. TORINESI