Question 1 [25]

- (a) For the differntial amplifier shown above, find values for R_3 and R_4 that amplify the difference between the V_a and V_b by 4.
- (b) If $V_a = 4V$, find the range for V_b that keeps the amplifier in the linear operating region.
- (c) If the R_1 resistor is reduced to $4k\Omega$ and all other values remain the same, that is the new range for V_b that keeps the amplifier in the linear operating region.
- (d) What is the A_{dm} , A_{cm} , and CMRR for the amplifier with the resistor values from (c)?

Question 2 [25]

In the circuit below, for t < 0 SW1 is in the A Position and SW2 is open. At t = 0, SW1 moves to Position B. Then, at t = 10ms, SW2 closes.

- (a) Find v_0 (the voltage across L_1 at t = 20ms.
- (b) How much energy is stored in L_2 at t = 20ms?

Question 3 [25]

For the below circuit has been in position a for a long time.

- (a) At t = 0, the switch instantly moves to position b and stays there. Find:
 - (i) The initial and final values for the capacitor voltage
 - (ii) The time constant
 - (iii) The expression for the capacitor voltage for $t \ge 0$.
- (b) At t=5ms the switch moves back to position a. Find
 - (i) The initial and final values for the capacitor voltage
 - (ii) The time constant
 - (iii) The expression for the capacitor voltage for $t \geq 5ms$.

Question 4 [25]

Consider the voltage divider below (both with and without a load):

- (a) Find a numerical expression for V_g for $0s \le t \le 2s$ and $2s \le t \le 4s$
- (b) Derive the numerical expression for $v_0(t)$ for $0s \le t \le 2s$ and $2s \le t \le 4s$
- (c) Sketch the output waveform between 0s and 4s.
- (d) Now consider a waveform with a peak at 4V rather than 2V, sketch the resulting waveform.