ΜΥΥ601 Λειτουργικά Συστήματα Εαρινό 2024

Μάθημα 6 Ταυτοχρονισμός: Αδιέξοδο

Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων

1

Περίγραμμα

- Εισαγωγή
- Πρόληψη
- Αποφυγή
- Ανίχνευση
- Πρόβλημα Συνδαιτυμόνων Φιλοσόφων

Εαρινό 2024

©Σ. Β. Αναστασιάδης

Ορισμός

• Αδιέξοδο

- Μόνιμος αποκλεισμός συνόλου διεργασιών που είτε ανταγωνίζονται για πόρους ή επικοινωνούν μεταξύ τους
- Κάθε διεργασία στο σύνολο περιμένει για ένα γεγονός που μόνο μια άλλη διεργασία του ίδιου συνόλου μπορεί να προκαλέσει

Εαρινό 2024

©Σ. Β. Αναστασιάδης

3

3

Παράδειγμα 1

• Τέσσερα οχήματα

- Κινούνται προς την ίδια διαστάυρωση
- Φτάνουν την ίδια στιγμή
- Καθένας δίνει προτεραιότητα σε αυτόν που βρίσκεται δεξιά του (Κ.Ο.Κ.)
- Τα οχήματα περιμένουν για πάντα

• Πόροι

- 4 τεταρτημόρια διασταύρωσης
- Κάθε όχημα έχει το ένα
- Καθένα χρειάζεται ακόμη ένα

Εαρινό 2024

©Σ. Β. Αναστασιάδης

Παράδειγμα 2

- Διεργασία Ρ
 - Κάνει αίτηση για πόρους Α και Β
- Διεργασία Q
 - Κάνει αίτηση για πόρους Β και Α
- Αδιέξοδο
 - H P παίρνει το A και αιτείται το B
 - H Q паіруєї то В каї аітєітаї то А
- Λύση:

Αν θεωρήσουμε ότι η Ρ γίνεται

get A release A get B release B get A
...
get B
...
release A
...
release B

get B
...
get A
...
release B
...
release A

Τότε δε μπορεί να συμβεί αδιέξοδο!

Εαρινό 2024

©Σ. Β. Αναστασιάδης

5

5

Επαναχρησιμοποιήσιμος Πόρος

- 1. Έχει σταθερό αριθμό από μονάδες (π.χ. επεξεργαστής)
- 2. Μια μονάδα δε μπορεί να χρησιμοποιηθεί από κοινού
 - Είτε είναι διαθέσιμη Ή
 - Έχει εκχωρηθεί σε μία και μόνο μία διεργασία
- 3. Μια διεργασία μπορεί να αποδεσμεύσει μόνο μονάδες που της έχουν εκχωρηθεί πιο πριν

Παράδειγμα 1

- Δύο πόροι
 - Δίσκος D₁ και Δίσκος D₂
- Δύο διεργασίες
 - P αιτείται D₂ και D₁
 Q αιτείται D₁ και D₂
- Αδιέξοδο αν
 - P πάρει μόνο το D₂
 - Q πάρει μόνο το D₁

Παράδειγμα 2

- Πόρος
 - Χώρος μνήμης 200 KB
 - Δύο διεργασίες
 - Р аітεітаі 80+60 KB
 - Q аітєітаі 70+80 KB
- Αδιέξοδο αν
 - Ρ πάρει μόνο 80 KB
 - Q πάρει μόνο 70 KB

Εαρινό 2024

©Σ. Β. Αναστασιάδης

6

Καταναλώσιμος Πόρος

- 1. Το πλήθος των διαθέσιμων μονάδων
 - Ενδεχομένως απεριόριστο
 - Μεταβάλλεται από παραγωγούς/καταναλωτές
- 2. Ο παραγωγός αυξάνει το πλήθος μονάδων
 - Όταν δημιουργεί και αποδεσμεύει
- 3. Ο καταναλωτής μειώνει το πλήθος μονάδων
 - Όταν αιτείται και λαμβάνει
 - Δεν επιστρέφει πόρους που έχει λάβει
- Παραδείγματα
 - Διακοπές, σήματα, μηνύματα
- Παράδειγμα

Διεργασίες Ρ και Q σε κώδικα με σφάλματα

- Λαμβάνουν μήνυμα πριν στείλουν
- Μένουν σε αποκλεισμό για πάντα

Παράδειγμα
Process P
...
receive (Q)
...
send(Q, M1)

Process Q
...
receive (P)
...
send(P, M2)

Εαρινό 2024

©Σ. Β. Αναστασιάδης

7

7

Αναγκαίες Συνθήκες για Αδιέξοδο

- 1. Αμοιβαίος αποκλεισμός (mutual exclusion)
 - Μόνο μία διεργασία χρησιμοποιεί τον πόρο κάθε φορά
 - Π.χ. χρειάζεται για συνέπεια δεδομένων
- 2. Κατοχή και αναμονή (hold and wait)
 - Η διεργασία κατέχει πόρους ενώ περιμένει και άλλους
- 3. Μη εκτόπιση (no preemption)
 - Ο πόρος δεν αφαιρείται από διεργασία που τον κατέχει
 - Π.χ. χρειάζεται για διασφάλιση ακεραιότητας δεδομένων
- Οι τρεις συνθήκες
 - Αναγκαίες αλλά όχι ικανές για ὑπαρξη αδιεξόδου

Εαρινό 2024

©Σ. Β. Αναστασιάδης

Συνθήκη Αδιεξόδου για Επάρκεια

4. Κυκλική αναμονή (circular wait)

- Κλειστή αλυσίδα από διεργασίες
- Κάθε διεργασία έχει τουλάχιστο έναν πόρο τον οποίο αιτείται η επόμενη διεργασία
- Είναι ενδεχόμενο αποτέλεσμα των συνθηκών 1-3
- Μπορεί να συμβεί ως αποτέλεσμα συγκεκριμένης ακολουθίας αίτησης/αποδέσμευσης πόρων

• Οι τέσσερις συνθήκες

- Αναγκαίες και ικανές για ὑπαρξη αδιεξόδου

Εαρινό 2024

©Σ. Β. Αναστασιάδης

9

9

Μοντελοποίηση

- Δύο είδη κόμβων
 - *Κύκλος* συμβολίζει διεργασία
 - *Τετράγωνο* συμβολίζει πόρο
 - *Τελεία* συμβολίζει μονάδα πόρου
- Τόξο από διεργασία σε πόρο
 - Η διεργασία αιτείται μονάδα πόρου
- Τόξο από πόρο σε διεργασία
 - Μονάδα πόρου που ζητήθηκε, δόθηκε και κατέχεται
- Υπάρχει αδιέξοδο
 - Αν σχηματίζεται κύκλος και
 - Δεν υπάρχουν διαθέσιμοι πόροι για να διακόψουν το κύκλο

Εαρινό 2024

©Σ. Β. Αναστασιάδης

10

Πρόληψη

- Έμμεση μέθοδος
 - Πρόληψη μίας από τις συνθήκες 1-3
- Άμεση μέθοδος
 - Πρόληψη συνθήκης 4

Πρόληψη 1: αμοιβαίου αποκλεισμού

- Συνήθως δε μπορεί να αρθεί λόγω φυσικών περιορισμών
- Π.χ. χρήση επεξεργαστή, κατανάλωση μηνύματος

Εαρινό 2024

©Σ. Β. Αναστασιάδης

Πρόληψη 2: Κατοχής και Αναμονής

• Εφαρμογή

- Η διεργασία αιτείται όλους τους πόρους μαζί
- Μένει σε αποκλεισμό μέχρι να της δοθούν ταυτόχρονα όλοι οι πόροι που ζήτησε

Αδυναμίες

- Ένας πόρος μπορεί να μείνει αχρησιμοποίητος
- Μια διεργασία περιμένει χωρίς να είναι απαραίτητο, αν και θα μπορούσε να συνεχίσει με λιγότερους πόρους
- Μια διεργασία μπορεί να μη γνωρίζει όλους του πόρους που χρειάζεται από την αρχή
- Δύσκολο να εφαρμοστεί σε αρθρωτά ή ιεραρχικά προγράμματα

Εαρινό 2024 ©Σ. Β. Αναστασιάδης **13**

13

Πρόληψη 3: Μη Εκτόπισης

• Θεωρούμε

- Η διεργασία P κατέχει συγκεκριμένους πόρους
- Η P δεν έχει πρόσβαση σε έναν επιπλέον πόρο A

Λύση 1

- Η διεργασία P αποδεσμεύει τους πόρους που κατέχει
- Τους αιτείται ξανά αργότερα μαζί με τον πόρο A

Λύση 2

- Το ΛΣ εκτοπίζει τη διεργασία Q από τον πόρο A
- Δίνει τον πόρο A στη διεργασία P που τον ζήτησε

Εαρινό 2024⊚Σ. Β. Αναστασιάδης14

Πρόληψη 4: Κυκλικής Αναμονής

- Ορίζουμε γραμμική διάταξη στους τύπους πόρων
 - Η διεργασία που κατέχει πόρους τύπου R αιτείται μόνο πόρους που βρίσκονται <u>META</u> τον R στη διάταξη
- Γιατί δουλεύει
 - Έστω ο Ri προηγείται του Rj στη διάταξη αν i < j
 - Θεωρούμε ότι οι A και B σε αδιέξοδο
 - Η Α κατέχει τον Ri και ζήτησε τον Rj
 - Η Β κατέχει τον Rj και ζήτησε τον Ri
 - Λόγω της διάταξης έχουμε i < j και j < i
 - Αδύνατο!

Εαρινό 2024

©Σ. Β. Αναστασιάδης

15

15

Αποφυγή Αδιεξόδου

- Ορισμός
 - Σωστές επιλογές που εξασφαλίζουν αποφυγή αδιεξόδου
- Πλεονέκτημα
 - Επιτρέπει τις τρεις αναγκαίες συνθήκες
 - Περισσότερος ταυτοχρονισμός σε σχέση με την πρόληψη
- Περιορισμοί
 - Εκ των προτέρων γνώση των μέγιστων αιτήσεων σε πόρους από κάθε διεργασία
 - Ανεξαρτησία μεταξύ των εμπλεκόμενων διεργασιών
 - Σταθερό πλήθος πόρων που μπορούν να εκχωρηθούν
 - Καμία διεργασία δεν μπορεί να τερματιστεί ενώ κατέχει πόρο

Eαρινό 2024 ©Σ. Β. Αναστασιάδης **16**

Αποφυγή 1: Άρνηση Έναρξης Διεργασίας

- Θεωρούμε σύστημα με
 - *n* διεργασίες και *m* διαφορετικούς τύπους πόρων
- Ορισμοί
 - Συνολική ποσότητα πόρων στο σύστημα Διάνυσμα 1xm: *Σύνολο Πόρων R= (R₁, ..., R_m)*
 - Ποσότητα πόρου που δεν έχει εκχωρηθεί σε διεργασία

Διάνυσμα 1xm: Δ ιαθεσιμότητα $\mathbf{V} = (V_1, ..., V_m)$

- Μέγιστη αίτηση κάθε διεργασίας για κάθε πόρο

Πίνακας nxm: Μέγιστη Αίτηση \mathbf{C} = [C_{ij}], i = 1,...,n, j = 1,...,m

- Τρέχουσα εκχώρηση πόρων στις διεργασίες

Πίνακας nxm: Εκχώρηση $\mathbf{A} = [A_{ij}], i = 1,...,n, j = 1,...,m$

Εαρινό 2024 © Σ. Β. Αναστασιάδης **17**

17

Πολιτική

• Οι πόροι είτε είναι διαθέσιμοι ή έχουν εκχωρηθεί

$$R_i = V_i + \sum_{k=1}^n A_{ki}, \quad i = 1,...,m$$

Καμιά διεργασία δε μπορεί να ζητήσει περισσότερο από τη συνολική ποσότητα πόρου

$$C_{ki} \leq R_i, \quad k = 1, ..., n, i = 1, ..., m$$

• Καμιά διεργασία δεν παίρνει περισσότερα από όσο ζήτησε αρχικά

$$A_{ki} \leq C_{ki}, \quad k = 1, ..., n, i = 1, ..., m$$

• Ξεκινά μια νέα διεργασία P_{n+1} μόνο αν δεν οδηγεί σε αδιέξοδο

$$R_i \ge C_{(n+1)i} + \sum_{k=1}^n C_{ki}, \quad i = 1,..., m$$

Εαρινό 2024

©Σ. Β. Αναστασιάδης

Αποφυγή 2: Άρνηση Εκχώρησης Πόρου

- Θεωρούμε σύστημα με
 - *n* διεργασίες και *m* διαφορετικούς τύπους πόρων
 - Κάθε στιγμή μια διεργασία μπορεί να κατέχει ≥ 0 πόρους
- Κατάσταση
 - Τρέχουσα εκχώρηση πόρων στις διεργασίες

Διανύσματα 1xm

Σύνολο Πόρων \mathbf{R} = (Rj), Διαθεσιμότητα \mathbf{V} = (Vj), j = 1,...,m Πίνακες nxm

Μέγιστη Αίτηση C= [Cij], Εκχώρηση A= [Aij], i =1,...,n, j=1,...,m

- Ασφαλής κατάσταση
 - Υπάρχει τουλάχιστο μια ακολουθία εκχώρησης μέγιστων αιτήσεων χωρίς αδιέξοδο
- Επισφαλής κατάσταση
 - Δεν υπάρχει ακολουθία εκχώρησης πόρων χωρίς αδιέξοδο

Εαρινό 2024 ©Σ. Β. Αναστασιάδης **19**

19

Αλγόριθμος του Τραπεζίτη

- Όταν μια διεργασία κάνει αίτηση για σύνολο πόρων
 - Θεωρούμε ότι η αίτηση ικανοποιείται
 - Ενημερώνουμε την κατάσταση του συστήματος
 - Αποφασίζουμε αν η κατάσταση που προκύπτει είναι ασφαλής
- Αν η νέα κατάσταση είναι ασφαλής
 - Ικανοποιούμε την αίτηση
 - Κάνουμε μόνιμη την αλλαγή κατάστασης στο σύστημα
- Αν η νέα κατάσταση είναι επισφαλής
 - Βάζουμε τη διεργασία σε αποκλεισμό μέχρι να γίνει ασφαλής η ικανοποίηση της αίτησης
 - Επιστροφή στην προηγούμενη κατάσταση πριν την τελευταία ενημέρωση

Εαρινό 2024 ©Σ. Β. Αναστασιάδης **20**

Ανίχνευση Αδιεξόδου

- Χαρακτηριστικά
 - Δεν περιορίζει την πρόσβαση στους πόρους
 - Δεν περιορίζει τις ενέργειες των διεργασιών
 - Ικανοποιεί τις αιτήσεις των διεργασιών όταν είναι εφικτό
- Το λειτουργικό σύστημα περιοδικά
 - Τρέχει έναν αλγόριθμο για ανίχνευση αδιεξόδου
 - Ανιχνεύει κυκλική αναμονή
 - Κάνει κατάλληλες ενέργειες για αποκατάσταση

Εαρινό 2024 ©Σ. Β. Αναστασιάδης **24**

Ορισμοί

- Θεωρούμε σύστημα με
 - *n* διεργασίες και *m* διαφορετικούς τύπους διεργασιών
- Ορισμοί
 - Συνολική ποσότητα κάθε πόρου στο σύστημα

Διάνυσμα 1xm: Σύνολο Πόρων $\mathbf{R} = (R_i)$, j = 1,...,m

Ποσότητα κάθε πόρου j που είναι διαθέσιμη

Διάνυσμα 1xm: Δ ιαθεσιμότητα $V = (V_j)$, j = 1,...,m

- Τρέχουσα εκχώρηση πόρου τύπου j στη διεργασία i

Πίνακας nxm: Εκχώρηση $\mathbf{A} = [A_{ij}], i = 1,...,n, j = 1,...,m$

Τρέχουσα ποσότητα πόρου j που ζητείται από τη διεργασία i

Πίνακας nxm: Τρέχουσα Αίτηση $\mathbf{Q} = [Q_{ij}]$, i = 1,...,n, j = 1,...,m

Εαρινό 2024 ©Σ. Β. Αναστασιάδης **25**

25

Στρατηγική

- Βρίσκουμε διεργασία της οποίας
 - Οι αιτήσεις ικανοποιούνται με τους διαθέσιμους πόρους
- Υποθέτουμε ότι
 - Οι αιτούμενοι πόροι παραχωρούνται στην πιο πάνω διεργασία
 - Η διεργασία τρέχει μέχρι να τερματίσει
 - Η διεργασία αποδεσμεύει όλους τους πόρους
- Επαναλαμβάνουμε την αναζήτηση για άλλη διεργασία
 - Αν η αναζήτηση χωρίς αποτέλεσμα, όσες διεργασίες δε βρέθηκαν βρίσκονται σε αδιέξοδο
- Σημείωση
 - Ο αλγόριθμος αποφασίζει αν υπάρχει αδιέξοδο
 - Ο αλγόριθμος δεν εξασφαλίζει πρόληψη αδιεξόδου

Εαρινό 2024 ©Σ. Β. Αναστασιάδης **26**

Αλγόριθμος

- ο. Αρχικά καμιά διεργασία δεν είναι σημαδεμένη
- 1. Σημαδεύουμε κάθε διεργασία που έχει γραμμή μηδενικών στον Α
- 2. Αρχικοποιούμε το διάνυσμα $\mathbf{W} = \mathbf{V}$ (δηλαδή $W_j = A_j$, j = 1,...,m)
- 3. Βρίσκουμε δείκτη i έτσι ώστε
 - Η διεργασία i να μην είναι σημαδεμένη και
 - $Q_{ik} ≤ W_k$, για 1 ≤ k ≤ m (δηλαδή η i-στή γραμμή του $\mathbf{Q} ≤ \mathbf{W}$)
- 4. Αν βρεθεί τέτοια γραμμή
 - Σημαδεύουμε τη διεργασία i
 - Θέτουμε $W_k = W_k + A_{ik}$, $1 \le k \le m$ (δηλαδή $\mathbf{W} = \mathbf{W} + i \sigma \tau \dot{\eta}$ γραμμή \mathbf{A})
 - Επιστρέφουμε στο βήμα 3
- 5. Αν δεν υπάρχει τέτοια γραμμή, τερματίζει ο αλγόριθμος
 - 'Οσες διεργασίες δε σημαδεύτηκαν βρίσκονται σε αδιέξοδο

Εαρινό 2024 ©Σ. Β. Αναστασιάδης

Β. Αναστασιάδης

27

Παράδειγμα

- 0. Αρχικά όλες οι διεργασίες μη σημαδεμένες
- 1. Σημαδεύουμε την Ρ4, επειδή δεν κατέχει καθόλου πόρους
- 2. Θέτουμε $W = V = (0\ 0\ 0\ 0\ 1)$
- 3. Σημαδεύουμε την P3 επειδή $Q_{3j} \le W_j$, j = 1,...,m. Θέτουμε $\mathbf{W} = \mathbf{W} + (0\ 0\ 0\ 1\ 0) = (0\ 0\ 0\ 1\ 1)$
- Καμιά μη σημαδεμένη διεργασία δεν έχει γραμμή Q ≤ W Τερματίζουμε τον αλγόριθμο
- 5. Συμπέρασμα
 - Οι διεργασίες P1 και P2 παραμένουν μη σημαδεμένες
 - Αυτές οι διεργασίες είναι σε αδιέξοδο

Εαρινό 2024

©Σ. Β. Αναστασιάδης

Αποκατάσταση από Αδιέξοδο

- 1. Διακοπή όλων των διεργασιών του αδιεξόδου
- Επανεκκίνηση των διεργασιών από προηγούμενο ασφαλές σημείο
 - Μη νομοτελειακή εκτέλεση μπορεί να αποφύγει το αδιέξοδο
- 3. Διαδοχική διακοπή των διεργασιών του αδιεξόδου
 - Η διακοπή διεργασιών σταματά όταν πάψει το αδιέξοδο
 - Επιλογή της επόμενης διεργασίας με βάση κριτήριο κόστους
- 4. Διαδοχική απομάκρυνση πόρων από διεργασίες
 - Η απομάκρυνση σταματά όταν πάψει το αδιέξοδο
 - Επιλογή του επόμενου πόρου με βάση κριτήριο κόστους
 - Επιστροφή διεργασιών σε σημείο πριν τη λήψη του πόρου

Εαρινό 2024 ©Σ. Β. Αναστασιάδης **30**

Ολοκληρωμένη Στρατηγική

- Συνδυασμός μεθόδων χειρισμού αδιεξόδου
 - 1. Ομαδοποίηση πόρων σε διαφορετικές κατηγορίες
 - 2. Γραμμική διάταξη κατηγοριών για πρόληψη κυκλικής αναμονής
 - 3. Χρήση του κατάλληλου αλγορίθμου σε κάθε κατηγορία
- Πιθανές κατηγορίες
 - 1. Όλος ο χώρος εναλλαγής (swap space) δίνεται εξαρχής (πρόληψη)
 - 2. Οι αιτήσεις των διεργασιών δηλώνονται εξαρχής (αποφυγή)
 - 3. Η εκχώρηση κύριας μνήμης επιδέχεται εκτόπιση (πρόληψη)
 - 4. Οι εσωτερικοί πόροι μπορούν να διαταχθούν (πρόληψη)

Εαρινό 2024 ©Σ. Β. Αναστασιάδης **31**

31

Πρόβλημα Συνδαιτυμόνων Φιλοσόφων

- Θεωρούμε
 - Στρογγυλό τραπέζι με πιατέλα στο κέντρο
 - Πέντε πιάτα ένα για κάθε φιλόσοφο
 - Πέντε ξυλάκια, ένα δίπλα σε κάθε πιάτο
- Θέλουμε να επινοήσουμε αλγόριθμο που εξασφαλίζει
 - Αμοιβαίο αποκλεισμό (δηλαδή κανένα ξυλάκι δε χρησιμοποιείται ταυτόχρονα από δύο φιλοσόφους)
 - Αποφυγή αδιεξόδου
 - Αποφυγή στέρησης

Εαρινό 2024 ©Σ. Β. Αναστασιάδης **32**

Πρώτη Λύση (Με Πιθανό Αδιέξοδο!)

```
/* program dining philosophers */
semaphore chopstick[5] = {1,1,1,1,1};
int i;
void philosopher (int i) {
    while (true) {
        think();
        wait(chopstick[i]);
        wait(chopstick[(i+1) mod 5]);
        eat();
        signal(chopstick[(i+1) mod 5]);
        signal(chopstick[i]);
    }
}
void main() {
    parbegin (philosopher(0), philosopher(1),
        philosopher(2), philosopher(3), philosopher(4)); }
```

33

Εαρινό 2024

Δεύτερη Λύση

©Σ. Β. Αναστασιάδης

33

```
/* program dining philosophers */
semaphore chopstick[5] = \{1,1,1,1,1,1\};
semaphore room = 4;
int i;
void philosopher (int i) { /* αποφεύγει αδιέξοδο και στέρηση */
     while (true) {
          think();
          wait(room); /* περιορίζει τέσσερις φιλοσόφους στο τραπέζι κάθε φορά */
          wait(chopstick[i]);
          wait(chopstick[(i+1) mod 5]);
          eat();
          signal(chopstick[(i+1) mod 5]);
          signal(chopstick[i]);
          signal(room);
void main() {
                    parbegin (philosopher(0), philosopher(1),
                    philosopher(2), philosopher(3), philosopher(4)); }
Εαρινό 2024
                                     ©Σ. Β. Αναστασιάδης
                                                                                    34
```