question 2 views

Daily Challenge 19.4

(Due: Friday November 23 at 12:00 noon Eatern)

Happy Thanksgiving!

(1) Problem: introducing improper integrals.

The limit

$$\lim_{b\to\infty}\int_a^b f(x)\,dx,$$

if it exists, is written $\int_a^\infty f(x) \ dx$ and called an "improper integral."

Intuitively, it is the total area under f from a "to infinity." For instance, the total area under the curve $f(x) = \frac{1}{1+x^2}$ from 0 to infinity is written as follows:

Calculate the improper integral

$$\int_{1}^{\infty} \frac{1}{x^{r}} dx$$

where r>0. This means to compute $\int_1^b x^r\,dr$ for some fixed b and then take the limit as b goes to infinity. For which values of r does the integral converge and diverge? What is the value of the integral where it converges?

daily_challenge

Updated 4 months ago by Christian Ferko

the students' answer, where students collectively construct a single answer

We see that in a previous daily challenge we had a valid method of finding the antiderivative of such a monomial, allow me to find it;

$$\int x^n dx = \frac{1x^{n+1}}{n+1} + C$$

We see that if a previous daily challenge we had a valid method of finding the antiderivative of such a model of
$$\int x^n \, dx = \frac{1}{n+1} + C$$
 Of course, $n=-r$ and we saw in the prior DC that we impose $n \neq -1$ or bad things will happen. Thus, $\lim_{b \to \infty} \left(\int_1^b \frac{1}{x^r} \, dx \right) = \lim_{b \to \infty} \left(\frac{1b^{-r+1}}{-r+1} - \frac{1}{-r+1} \right)$

We then must break this into cases; if r > 1, then the former term shall tend to 0 and the integral shall tend to the latter term $-\frac{1}{-r+1} = \frac{1}{r-1}$, therefore it converges.

If 0 < r < 1, then the former term will tend to infinity, and it diverges.

$$\int_{1}^{b} \frac{1}{x^{r}} dx = \log(b) - \log(1) = \log(b)$$

which, when $b o \infty$, also goes to ∞ , and therefore diverges.

Updated 4 months ago by Logan Pachulski

the instructors' answer, where instructors collectively construct a single answer

First suppose $r \neq 1$. Then for fixed b, we have

4/14/2019 Calc Team

$$\int_1^b \frac{1}{x^r} \; dx = \left[\frac{x^{-r+1}}{-r+1}\right]_1^b = \frac{b^{-r+1}}{-r+1} - \frac{1}{-r+1}.$$

If r>1, then the quantity b^{-r+1} tends to zero as $b\to\infty$. In this case, the integral converges to $\frac{1}{r-1}$

If 0 < r < 1, then the quantity b^{-r+1} tends to infinity as $b \to \infty$; here the integral diverges.

Finally, we must handle the case r=1 separately. Here we have

$$\int_{1}^{b} \frac{1}{x} dx = [\log(x)]_{1}^{b} = \log(b),$$

which blows up as $b \to \infty$, so this case diverges as well.

Updated 4 months ago by Christian Ferko

followup discussions for lingering questions and comments