Prof: Mouad Zillou

Niveau: 1BSEF

Résumé 01

Notions de logique

Lycée: Charif El Idrissi - Assoul-

Matière : Mathématiques

Proposition – fonction propositionnelle

- On appelle **proposition**, tout énoncé mathématique qui a un sens et qui pouvant être vrai ou faux, et non pas les deux au même temps.
- On appelle **fonction propositionnelle**, tout énoncé mathématique contient une ou plusieurs variables appartenant à un ensemble bien définie, et qui est susceptible d'être une proposition si on attribue à ses variables certaines valeurs particulier dans cet ensemble.

Opérations sur les propositions

		Conjonct	Disjonct	Implicat	Equival
P	Q	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
V	V	V	V	V	V
V	F	F	V	F	F
F	V	F	V	V	F
F	F	F	F	V	V

Négation

La négation d'une proposition P se note \overline{P}

1) Table de vérité

p	\overline{P}
V	F
F	V

La négation de certains symboles

Symbole	\forall	3	=	€	<	>	2	≤
Négation	3	\forall	≠	∉	≥	≤	<	>

Négation d'une proposition quantifiée

- La négation de la proposition " $(\exists x \in E); P(x)$ " est la proposition " $(\forall x \in E)$; P(x)".
- La négation de la proposition " $(\forall x \in E); P(x)$ " est la proposition " $(\exists x \in E)$; P(x)".

4) Négation de la conjonction, la disjonction, l'implication et l'équivalence de deux propositions

- **A)** La négation de $(P \ et \ Q)$ est $(\overline{P} \ ou \ \overline{Q})$
- **B)** La négation de $(P \ ou \ Q)$ est $(\overline{P} \ et \ \overline{Q})$
- C) La négation de $(P \Rightarrow Q)$ est $(P \ et \ \overline{Q})$
- **D)** La négation de $\left(P \Leftrightarrow Q\right)$ est $\left(\overline{P} \Leftrightarrow Q\right)$ ou bien $(P \Leftrightarrow Q)$

Raisonnements mathématiques

1/Raisonnement par contre-exemple

Pour montrer qu'une proposition de type $((\forall x \in E), P(x))$ est fausse, il suffit de trouver $x \in E$ tel que P(x) est fausse

2/Raisonnement par contraposée

Pour montrer que la proposition $P \Rightarrow Q$ est vraie, il suffit de montrer que $\overline{Q} \Rightarrow \overline{P}$ est vraie car $(P \Rightarrow Q) \Leftrightarrow (\overline{Q} \Rightarrow \overline{P})$

3/ Raisonnement par équivalences successives

- Pour montrer que $P \Leftrightarrow Q$
- \oplus On cherche des propositions R_i telles que $P \Leftrightarrow R_1$, $R_1 \Leftrightarrow R_2$, $R_2 \Leftrightarrow R_3$, $R_3 \Leftrightarrow R_4$,....et $R_n \Leftrightarrow Q$.
- \oplus On démontre que les implications $P \Rightarrow Q$ et $Q \Rightarrow P$ sont vraies.

4/ Raisonnement par disjonction des cas

Pour montrer que la proposition Q est vraie Il faut que les deux propositions $P \Rightarrow Q$ et $\overline{P} \Rightarrow Q$ soient vraies.

5/ Raisonnement par l'absurde

Pour montrer que la proposition P est vraie, on suppose que P est fausse c.-à-d \overline{P} est vraie et on cherche la contradiction avec les données d'exercices et le prérequis.

6/Raisonnement par récurrence

Soit P(n) une fonction propositionnelle et $n_0 \in \mathbb{N}$ tel que $n \ge n_0$

Pour montrer que " $(\forall n \ge n_0)$; P(n)" est vraie, on suit les étapes suivantes :

Initialisation

Vérifier que $P(n_0)$ est vraie

Héridité :

Pour $n \ge n_0$. On Suppose que "P(n)" est vraie et montrer que P(n+1) est vraie ; c-à-d montrer que $P(n) \Rightarrow P(n+1)$

Conclusion

D'après le principe de récurrence on a " $(\forall n \ge n_0); P(n)$ ".