Classwork Section 01B

DEEWANG BHAMIDIPATI

MATH 111T — Spring 2021

Classwork 1 (Week 3)

Problem 1. We have the groups $(\mathbb{R},+)$ and $(\mathbb{R}^{\times},\cdot)$, the latter has as a subgroup $(\mathbb{R}_{>0}^{\times},\cdot)$. Give a homomorphism

$$\varphi: (\mathbb{R}, +) \to (\mathbb{R}_{>0}^{\times}, \cdot)$$

such that (a) φ is an isomorphism. (b) φ is not an isomorphism.

Problem 2. (a) For $(\mathbb{R}^{\times}, \cdot)$ as above, is $(\mathbb{R}^{\times}_{<0}, \cdot)$ a subgroup? (b) Consider the group $(\mathbb{C}^{\times}, \cdot)$, show $S := \{z \in \mathbb{C} : |z| = 1\}$ is a subgroup.

Extra Problem. Consider the group $G = \{f : \mathbb{R} \to \mathbb{R} : f \text{ is bijective}\}$. This is a group under composition. Prove that the following set

$$H = \{f_r : \mathbb{R} \to \mathbb{R}, f_r(x) = x^r : r = p/q, p, q \text{ are odd}\}\$$

is a subset of G, and also a subgroup of G.

Why did we require p, q to be odd?

Classwork 2 (Week 5)

Problem 1. Consider the group $G = \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z}$, find an n and subgroup $H \leqslant S_n$ such that $G \cong H$.

Problem 2. Consider a regular tetrahedron, T

Carefully write down the cycles that correspond to the rotations of T. Which subgroup of S_4 can you identify it with?

Extra Problem. Consider the following rectangle R

Carefully write down the cycles that correspond to the symmetries of R. Which subgroup of S₄ can you identify it with?

(Warning: Rotating the rectangle by 90 degrees is not a symmetry of R as the resultant rectangle has a distinctly different shape than R.)

Classwork 3 (Week 7)

Problem 1. Consider a group G.

- (a) For each $g \in G$ define a map $c_g : G \to G$, $h \mapsto ghg^{-1}$. Call $Inn(G) \coloneqq \{c_g : g \in G\}$. Prove that $Inn(G) \leqslant Aut(G)$, that is, show
 - (i) $Inn(G) \subseteq Aut(G)$.
 - (ii) $Inn(G) \neq \emptyset$.
 - (iii) $c_g \circ c_h^{-1} \in Inn(G)$, for any $g, h \in G$.
- (b) Consider the function $\phi: G \to Aut(G), \ g \mapsto c_g.$ Show that
 - (i) ϕ is a group homomorphism.
 - (ii) Compute ker ϕ ; note that im $\phi = Inn(G)$.
 - (iii) Use the first isomorphism theorem to write im $\phi = Inn(G)$ as a quotient of G.

Classwork 4 (Week 9)

Consider the ring of formal power series

$$\mathbb{C}[\![x]\!] = \left\{ \sum_{i=0}^{\infty} \alpha_i x^i \ : \ \alpha_i \in \mathbb{C} \right\}$$

where addition is defined as

$$\left(\sum_{i=0}^{\infty} a_i x^i\right) + \left(\sum_{i=0}^{\infty} b_i x^i\right) = \sum_{i=0}^{\infty} (a_i + b_i) x^i$$

and multiplication as

$$\left(\sum_{i=0}^{\infty}a_ix^i\right)\cdot\left(\sum_{i=0}^{\infty}b_ix^i\right)=\sum_{k=0}^{\infty}c_kx^k, \qquad c_k=\sum_{i=0}^{k}a_ib_{k-i}$$

Consider the ideal $\mathfrak{m} := (x) = \{xf(x) : f(x) \in \mathbb{C}[\![x]\!]\}$, we have that \mathfrak{m} is the unique maximal ideal since $\mathbb{C}[\![x]\!] \setminus \mathfrak{m} = \mathbb{C}[\![x]\!]^{\times}$.

We unpack this a bit; one notes that $p(x)=a_0+a_1x+a_2x^2+\cdots\notin \mathfrak{m}=(x)$ if and only if $a_0\neq 0$. The inverse of p(x), say q(x) is the power series $b_0+b_1x+b_2x^2+b_3x^3+\cdots$ such that

$$b_0 = 1/a_0$$
, $b_k = -b_0 \left(\sum_{i=1}^k a_i b_{k-i} \right)$, $k > 0$

Problem 1. Consider the element $p(x) = x^2 - 2x + 1 \in \mathbb{C}[x]$, clearly $p(x) \notin \mathfrak{m}$. Find the first five terms of the power series 1/p(x).

Extra Problem. Consider the element $p(x) = x + 1 \in \mathbb{C}[x]$, clearly $p(x) \notin \mathfrak{m}$. Find the first five terms of the power series 1/p(x).