Esercitazione Sistemi Digitali

18/10/2022

Circuito 1- Traccia

a Disegnare il circuito logico corrispondente alla seguente funzione Booleana, senza semplificarla

$$Y_1 = A \cdot \overline{(B + \overline{C})} + \overline{(B + \overline{C}) \cdot B}$$

- **b** Data la funzione $Y_2 = \bar{A}BCD + ABCD + A\bar{B}CD$:
 - Disegnare circuito corrispondente
 - Semplificare F usando proprietà e teoremi dell'Algebra di Boole.
 - Disegnare nuovo circuito ottenibile da funzione semplificata

	Table 2.2 Boolean theorems of one variable					
	Theorem		Dual	Name		
T1	$B \bullet 1 = B$	T1'	B+0=B	Identity		
T2	B • 0 = 0	T2'	B + 1 = 1	Null Element		
Т3	$B \bullet B = B$	T3′	B+B=B	Idempotency		
T4		$\overline{\overline{B}} = B$		Involution		
T5	$B \bullet \overline{B} = 0$	T5'	$B + \overline{B} = 1$	Complements		

	Theorem		Dual	Name
T6	$B \bullet C = C \bullet B$	T6'	B+C=C+B	Commutativity
T7	$(B \bullet C) \bullet D = B \bullet (C \bullet D)$	T7′	(B+C)+D=B+(C+D)	Associativity
T8	$(B \bullet C) + (B \bullet D) = B \bullet (C + D)$	T8'	$(B+C) \bullet (B+D) = B + (C \bullet D)$	Distributivity
T9	$B \bullet (B + C) = B$	T9′	$B + (B \cdot C) = B$	Covering
T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	T10'	$(B+C) \bullet (B+\overline{C}) = B$	Combining
T11	$(B \bullet C) + (\overline{B} \bullet D) + (C \bullet D)$ = $B \bullet C + \overline{B} \bullet D$	T11′	$(B + C) \bullet (\overline{B} + D) \bullet (C + D)$ = $(B + C) \bullet (\overline{B} + D)$	Consensus
T12	$\overline{B_0 \bullet B_1 \bullet B_2}$ = $(\overline{B_0 + \overline{B_1} + \overline{B_2}})$	T12′	$\overline{B_0 + B_1 + B_2}$ = $(\overline{B_0} \bullet \overline{B_1} \bullet \overline{B_2})$	De Morgan's Theorem

Soluzione punto a

$$Y = A \cdot \overline{(B + \overline{C})} + \overline{(B + \overline{C}) \cdot B}$$

Soluzione punto b (1)

Soluzione punto b (2-3)

Per idempotenza ABCD=ABCD+ABCD

$$Y_2 = \bar{A}BCD + ABCD + ABCD + A\bar{B}CD$$

• Per proprietà distributiva

$$Y_2 = (\bar{A} + A)BCD + ACD(B + \bar{B})$$

Per complemento

$$Y_2 = (\bar{A} + A)BCD + ACD(B + \bar{B}) = BCD + ACD$$

Circuito 2- Traccia

Minimizzare il seguente circuito

Table 2.2 Boolean theorems of one variable

T1 $B \cdot 1 = B$ T1' $B \cdot 0 = B$ Identity T2 $B \cdot 0 = 0$ T2' $B \cdot 1 = 1$ Null Element T3 $B \cdot B = B$ T3' $B \cdot B = B$ Idempotency T4 $\overline{B} = B$ Involution T5 $B \cdot \overline{B} = 0$ T5' $B + \overline{B} = 1$ Complements		Theorem		Dual	Name
T3 $B \cdot B = B$ T3' $B + B = B$ Idempotency T4 $\overline{B} = B$ Involution	T1	$B \bullet 1 = B$	T1'	B+0=B	Identity
T4 $\overline{B} = B$ Involution	T2	$B \bullet 0 = 0$	T2'	B + 1 = 1	Null Element
TT D=D Intolation	Т3	$B \bullet B = B$	T3′	B+B=B	Idempotency
T5 $B \bullet \overline{B} = 0$ T5' $B + \overline{B} = 1$ Complements	T4		$\overline{\overline{B}} = B$		Involution
	T5	$B \bullet \overline{B} = 0$	T5'	$B + \overline{B} = 1$	Complements

Table 2.3 Boolean theorems of several variables					
	Theorem		Dual	Name	
T6	$B \bullet C = C \bullet B$	T6'	B+C=C+B	Commutativity	
T7	$(B \bullet C) \bullet D = B \bullet (C \bullet D)$	T7′	(B+C)+D=B+(C+D)	Associativity	
T8	$(B \bullet C) + (B \bullet D) = B \bullet (C + D)$	T8'	$(B+C) \bullet (B+D) = B + (C \bullet D)$	Distributivity	
Т9	$B \bullet (B + C) = B$	T9'	$B + (B \cdot C) = B$	Covering	
T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	T10′	$(B+C) \bullet (B+\overline{C}) = B$	Combining	
T11	$(B \cdot C) + (\overline{B} \cdot D) + (C \cdot D)$ = $B \cdot C + \overline{B} \cdot D$	T11′	$(B+C) \bullet (\overline{B}+D) \bullet (C+D)$ = $(B+C) \bullet (\overline{B}+D)$	Consensus	
T12	$\overline{B_0 \bullet B_1 \bullet B_2}$ = $(\overline{B_0 + \overline{B_1} + \overline{B_2}})$	T12′	$\overline{B_0 + B_1 + B_2}$ = $(\overline{B_0} \bullet \overline{B_1} \bullet \overline{B_2})$	De Morgan's Theorem	

Circuito 2- Soluzione

- Espressione booleana: $A \cdot (B + \overline{B \cdot C})$
- Semplificazione:

$$A \cdot (B + \overline{B \cdot C}) = A \cdot (B + \overline{B} + \overline{C}) = A \cdot 1 = A$$

Algebra Boole- Traccia Teorema del consenso

Applicando i teoremi dell'algebra di Boole, verificare se la seguente espressione 'e vera o falsa:

$$(A \cdot B) + (B \cdot C) + (\bar{A} \cdot C) = (A \cdot B) + (\bar{A} \cdot C)$$

	Table 2.2 Boolean theorems of one variable						
	Theorem		Dual	Name			
T1	$B \bullet 1 = B$	T1'	B+0=B	Identity			
T2	<i>B</i> • 0 = 0	T2'	B + 1 = 1	Null Element			
Т3	$B \bullet B = B$	T3′	B+B=B	Idempotency			
T4		$\overline{\overline{B}} = B$		Involution			
T5	$B \bullet \overline{B} = 0$	T5'	$B + \overline{B} = 1$	Complements			

Table 2.3 Boolean theorems of several variables					
	Theorem		Dual	Name	
T6	$B \bullet C = C \bullet B$	T6'	B+C=C+B	Commutativit	
T7	$(B \bullet C) \bullet D = B \bullet (C \bullet D)$	T7′	(B+C)+D=B+(C+D)	Associativity	
T8	$(B \bullet C) + (B \bullet D) = B \bullet (C + D)$	T8'	$(B+C) \bullet (B+D) = B + (C \bullet D)$	Distributivity	
T9	$B \bullet (B+C) = B$	T9′	$B + (B \cdot C) = B$	Covering	
T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	T10'	$(B + C) \bullet (B + \overline{C}) = B$	Combining	
T11	$(B \bullet C) + (\overline{B} \bullet D) + (C \bullet D)$ = $B \bullet C + \overline{B} \bullet D$	T11′	$(B+C) \bullet (\overline{B}+D) \bullet (C+D)$ = $(B+C) \bullet (\overline{B}+D)$	Consensus	
T12	$\overline{B_0 \bullet B_1 \bullet B_2}$ = $(\overline{B_0 + \overline{B_1} + \overline{B_2}})$	T12′	$\overline{B_0 + B_1 + B_2}$ = $(\overline{B_0} \bullet \overline{B_1} \bullet \overline{B_2})$	De Morgan's Theorem	

Algebra Boole- Soluzione Teorema del consenso

• Applichiamo T1 (identità) e T5'(complemento) a $BC = 1(BC) = (A + \bar{A})BC$. Parte sinistra diventa:

$$A \cdot B + (A + \bar{A}) \cdot B \cdot C + \bar{A} \cdot C = A \cdot B + A \cdot B \cdot C + \bar{A} \cdot B \cdot C + \bar{A} \cdot C$$

• Dato che:

Otteniamo che:

$$(A \cdot B) + (B \cdot C) + (\bar{A} \cdot C) = (A \cdot B) + (\bar{A} \cdot C)$$

Algebra Boole- Verifica uguaglianza

Dimostrare se la seguente uguaglianza è vera o falsa:

$$\overline{A \cdot B + B \cdot C + A \cdot C} = \overline{A} \cdot \overline{B} + \overline{B} \cdot \overline{C} + \overline{A} \cdot \overline{C}$$

	Table 2.2 Boolean theorems of one variable						
	Theorem		Dual	Name			
T1	$B \bullet 1 = B$	T1'	B+0=B	Identity			
T2	<i>B</i> • 0 = 0	T2'	B + 1 = 1	Null Element			
Т3	$B \bullet B = B$	T3′	B+B=B	Idempotency			
T4		$\overline{\overline{B}} = B$		Involution			
T5	$B \bullet \overline{B} = 0$	T5′	$B + \overline{B} = 1$	Complements			

Table 2.3 Boolean theorems of several variables						
	Theorem		Dual	Name		
T6	$B \bullet C = C \bullet B$	T6'	B+C=C+B	Commutativity		
T7	$(B \bullet C) \bullet D = B \bullet (C \bullet D)$	T7′	(B+C)+D=B+(C+D)	Associativity		
T8	$(B \bullet C) + (B \bullet D) = B \bullet (C + D)$	T8'	$(B+C) \bullet (B+D) = B + (C \bullet D)$	Distributivity		
T9	$B \bullet (B+C) = B$	T9′	$B + (B \cdot C) = B$	Covering		
T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	T10'	$(B+C) \bullet (B+\overline{C}) = B$	Combining		
T11	$(B \cdot C) + (\overline{B} \cdot D) + (C \cdot D)$ = $B \cdot C + \overline{B} \cdot D$	T11′	$(B+C) \bullet (\overline{B}+D) \bullet (C+D)$ = $(B+C) \bullet (\overline{B}+D)$	Consensus		
T12	$\overline{B_0 \bullet B_1 \bullet B_2}$ = $(\overline{B_0 + \overline{B_1} + \overline{B_2}})$	T12′	$\overline{B_0 + B_1 + B_2}$ = $(\overline{B_0} \bullet \overline{B_1} \bullet \overline{B_2})$	De Morgan's Theorem		

Considerando la parte sinistra:

Applichiamo De Morgan:

$$\overline{A \cdot B + B \cdot C + A \cdot C} = \overline{A \cdot B} \cdot \overline{B \cdot C} \cdot \overline{A \cdot C} = (\overline{A} + \overline{B}) \cdot (\overline{B} + \overline{C}) \cdot (\overline{A} + \overline{C}) =$$

Sviluppando il primo prodotto:

$$(\bar{A}\cdot\bar{B}+\bar{B}\cdot\bar{B}+\bar{A}\cdot\bar{C}+\bar{B}\cdot\bar{C})\cdot(\bar{A}+\bar{C})=(\bar{A}\cdot\bar{B}+\bar{B}+\bar{A}\cdot\bar{C}+\bar{B}\cdot\bar{C})\cdot(\bar{A}+\bar{C})=$$

• Per T9' (covering) $\bar{A}\bar{B}+\bar{B}=\bar{B}$ e $\bar{B}\bar{C}+\bar{B}=\bar{B}$:

$$(\bar{B} + \bar{A} \cdot \bar{C} + \bar{B} \cdot \bar{C}) \cdot (\bar{A} + \bar{C}) = (\bar{B} + \bar{A} \cdot \bar{C}) \cdot (\bar{A} + \bar{C}) =$$

• Sviluppando il prodotto:

$$\bar{B} \cdot \bar{A} + \bar{B} \cdot \bar{C} + \bar{A} \cdot \bar{C} \cdot \bar{A} + \bar{A} \cdot \bar{C} \cdot \bar{C} =$$

$$\bar{B}\cdot\bar{A}+\bar{B}\cdot\bar{C}+\bar{A}\cdot\bar{C}+\bar{A}\cdot\bar{C}=\bar{A}\cdot\bar{B}+\bar{B}\cdot\bar{C}+\bar{A}\cdot\bar{C}$$

Esercizio 1- Da tavola a forme POS/SOP

 Calcolare forme canoniche SOP e POS partendo dalla seguente tabella

A	В	C	Y
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

• Determinare tabella di verità e forme canoniche SOP e POS di una funzione a tre inputs che dà 1 in output sse riceve un numero pari di 1 in input

Sommando i mintermini della funzione:

$$Y = \bar{A} \cdot \bar{B} \cdot C + \bar{A} \cdot B \cdot \bar{C} + A \cdot \bar{B} \cdot \bar{C} + A \cdot B \cdot C$$

• Il prodotto dei maxtermini è:

$$Y = (A+B+C) \cdot (A+\bar{B}+\bar{C}) \cdot (\bar{A}+B+\bar{C}) \cdot (\bar{A}+\bar{B}+C)$$

Α	В	С	Υ
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

- SOP: $\bar{A}\bar{B}\bar{C} + \bar{A}BC + A\bar{B}C + AB\bar{C}$
- POS: $(A + B + \bar{C})(A + \bar{B} + C)(\bar{A} + B + C)(\bar{A} + \bar{B} + \bar{C})$

Esercizio 2- Da specifica verbale a funzione

Si progetti il circuito di controllo di un ascensore che rilevi i seguenti eventi:

- chiusura delle porte difettosa
- arresto brusco al piano
- tempo di risposta alla chiamata lento
- fermata improvvisa durante la corsa

e che dia in output un segnale di warning ogni volta che si verificano almeno due di questi eventi simultaneamente (cioè nella stessa corsa dell'ascensore).

- 1 Determinare tabella di verità
- Determinare la forma canonica POS

Associamo ad ogni evento una variabile booleana:

- Porte difettose- Variabile C
- Arresto brusco- Variabile A
- Tempo risposta lento- Variabile T
- Fermata improvvisa-Variabile F
- Warning- Variabile W

C 0	Α	Т	F	W
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0		1	1	1
0 0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

• POS:
$$(C + A + T + F)(C + A + T + \overline{F})(C + A + \overline{T} + F)(C + \overline{A} + T + F)(\overline{C} + A + T + F)$$

Traccia vecchio esonero

Analizzare il seguente circuito seguendo i passaggi:

- Determinare le espressioni booleane di T1, T2, T3, e T4, ciascuna OPPORTUNAMENTE SEMPLIFICATA secondo i teoremi dell'algebra booleana
- Determinare le espressioni booleane semplificate in forma normale SOP di Y e Z

- T1=A+B
- T2= $A \oplus T1 = A \cdot (\overline{A+B}) + \overline{A}(A+B) = A \cdot (\overline{A} \cdot \overline{B}) + \overline{A}B = \overline{A}B$
- T3= *B* ⋅ *C*
- T4= $\overline{(A+B)\cdot B\cdot C}=\overline{ABC+BC}=\overline{B\cdot C\cdot (A+1)}=\overline{B\cdot C}$
- $Y = \overline{(\bar{A} \cdot B) \cdot B \cdot C} = \overline{\bar{A} \cdot B \cdot C} = A + \bar{B} + \bar{C}$
- $Z=\overline{B\cdot C}+\bar{A}B=\bar{B}+\bar{C}+\bar{A}\cdot B$

