

Nom :		
Prénom :		
Groupe :	Matricule :	

Haute École de Bruxelles Brabant École Supérieure d'Informatique Bachelor en Informatique

vendredi 1 septembre 2017 INT1

Cours d'introduction à l'informatique

Examen quadrimestre 3

Consignes

- \blacktriangleright Ne détachez pas les feuilles.
- $\blacktriangleright\,$ Répondez soigneusement et au bic.
- ▶ Pour les QCM, veillez à ce qu'il n'y ait pas d'ambiguïté sur votre choix.
- ▶ La calculatrice est interdite.
- ▶ L'examen se termine à 12h30.

	Espace réservé	aux correcteurs	
Ord	Ordinateur		ux
Logiciel	Syst	ème	Industriel

Total

/ 90

I Introduction à l'ordinateur

1	(8 points) Dessinez un arbre de Huffman pour la phrase : RACHEL LE RECHERCHERA
	Donnez le codage correspondant à cet arbre des sept caractères différents qui forment cette phrase : ' ', 'R', 'A', 'C', 'H', 'E', et 'L'. Combien de bits sont-ils nécessaires pour représenter la phrase compressée, sans compter la taille du dictionnaire?

2

 $(16\ points)$ Donnez la table de vérité d'un $circuit\ multiplicateur\ de\ 2\ nombres\ non\ signés.$ Ce circuit possède :

- \blacktriangleright 4 entrées :
 - ▶ 2 entrées, a_1 et a_0 , qui codent en représentation par position l'entrée A, dont les valeurs vont donc de 0 à 3;
 - \blacktriangleright 2 entrées, b_1 et b_0 , qui codent en représentation par position l'entrée B;
- \blacktriangleright 4 sorties :
 - ▶ s_3 , s_2 , s_1 et s_0 , qui codent en représentation par position la sortie S représentant le produit des entrées A et B, c'est-à-dire $S = A \times B$.

Par exemple, avec A=3 et B=3, c'est-à-dire $A=a_1a_0=11$ et $B=b_1b_0=11$, on a $S=s_3s_2s_1s_0=1001$, car $3\times 3=9$.

En plus de la table de vérité, donnez les tables de Karnaugh et les expressions algébriques réduites par Karnaugh, mais ne dessinez pas le circuit.

$\underline{\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	a_0	b_1	b_0	s_3	s_2	s_1	s_0
0	0	0	0				
0	0	0	1				
0	0	1	0				
0	0	1	1				
0	1	0	0				
0	1	0	1				
0	1	1	0				
0	1	1	1				
1	0	0	0				
1	0	0	1				
1	0	1	0				
1	0	1	1				
1	1	0	0				
1	1	0	1				
1	1	1	0				
1	1	1	1				

Table de K	Karnaugh de s_3 :					
	$a_1 a_0 \parallel$					
	$b_1 b_0$	00	01	11	10	
	00					
	01					
	11					
	10					
Expression	simplifiée $s_3 =$					
-		-				
Table de K	Karnaugh de s_2 :					
			l I	I	I	
	$b_1 b_0$ $a_1 a_0$	00	01	11	10	
	00					
	01					
	11					
	10					
Expression	simplifiée $s_2 =$					
		-				
		-				
		-				
		-				
		_				
		_				

Γable de l	Karnaugh de s_1 :				
	$a_1 a_0 \parallel$		01	11	10
	$b_1 b_0$	00	01	11	10
	00				
	01				
	11				
	10				
Expression	n simplifiée $s_1 =$				
		_			
Γable de l	Karnaugh de s_0 :	_			
Γable de l		-	ı		
Гable de l	$a_1 a_0 \parallel$	- 00	01	11	10
Гable de l	$b_1 b_0$ $a_1 a_0$	00	01	11	10
Γable de l	$a_1 a_0 \parallel$	00	01	11	10
Table de l	$\begin{array}{c c} a_1 a_0 \\ \hline b_1 b_0 \\ \hline \\ 00 \\ \hline \end{array}$	00	01	11	10
Table de l	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	00	01	11	10
Γable de l	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	00	01	11	10
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	00	01	11	10
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	00	01	11	10
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	00	01	11	10
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	00	01	11	10
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	00	01	11	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	00	01	11	10
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	00	01	11	10
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	00	01	11	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 00	01	11	10
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	00	01	11	10

(8 points) Le standard IEEE 754 définit la simple précision sur 32 bits de la manière suivante : ▶ 1 bit pour le signe de la mantisse : 0 pour +, 1 pour -; ▶ 8 bits pour l'exposant : il est codé en représentation par position avec un biais de +127; ▶ 23 bits pour la valeur absolue de la partie fractionnaire de la mantisse. Selon ce standard, quelle est la valeur décimale codée en simple précision par le motif hexadécimal suivant : C1740000. Aide: passez en binaire.

4 (8 points) Répondez brièvement aux questions suivants :

II Introduction aux réseaux

5	(1 point) Pour détecter de l'information erronée, il faut émettre de l'information en redondance. Expliquez très brièvement la technique mise en oeuvre dans le champs CRC d'une trame HDLC.
6	(1 point) Quelle couche du modèle OSI offre une interface et des services au protocole IP?
7	(1 point) Quelle(s) technique(s) de compression peut-on utiliser pour limiter la bande passante nécessaire à la diffusion en streaming de la vidéo numérique?
8	(1 point) Que dit le critère de Nyquist concernant le débit maximal de transmission d'un
	canal?
9	(1 point) Qualifiez les 3 contraintes de base de la QoS exigée pour la transmission satisfaisante d'un streaming vidéo compressé en MPEG4?
10	(1 point) Dans le modèle OSI quelle est la couche responsable de bout en bout du transfert fiable et performant de données entre 2 terminaux?
11	(1 point) Lorsqu'un signal se propage sur un support de transmission, celui-ci est déformé, ce qui a pour effet de limiter la densité binaire de modulation d'un signal. Quel phénomène explique cette limitation?
12	(1 point) Quelle est l'utilité de coder l'information transmise sur le canal selon un algorithme de codage de Huffman?

13	(1 point) Quelle couche du modèle OSI offre son interface (API) au programme de l'utilisateur final?
14	$(1\ point)$ Une caméra enregistre un flux vidéo non compressé de trames de 800×600 pixels codées en images N/B de 1024 niveaux de gris avec une fréquence de rafraichissement de $100\ Hz$. La caméra filme en continu durant $30\ minutes$. Quelle est la taille du fichier vidéo stockée sur le disque dur? Donnez le résultat avec la formule utilisée.
1 5	
<u> 15</u>	(1 point) Si le flux de la caméra ci-dessus était transmis directement en streaming sur un canal Wifi de 108 Mbps, quel est le rapport de compression minimum nécessaire pour éviter la saturation du canal?
16	(1 point) Quelle couche est responsable de la modulation du signal?
	(1 point) Dans le modèle OSI, quelle couche s'occupe de la mise en paquets de l'information ?
18	(1 point) Quelles sont les trois étapes de la numérisation d'un signal?
19	(1 point) Un signal porteur d'informations peut-être codé selon deux familles de techniques. Lesquelles?
20	(1 point) Dans le modèle OSI, quelle couche s'occupe de la commutation des trames?
21	(1 point) Quelle technique de modulation du signal (en passe-bande) permet d'encoder 6 bits par symbole transmis?
22	(1 point) Quel phénomène explique la différence de débit maximal d'un canal entre la formule de Shannon et celle de Nyquist?

23	(2 points) Mettez en correspondance les schémas des modèles OSI et TCP-IP en les comparant couche à couche. Pour chaque couche du modèle OSI donnez au moins un service essentiel qu'elle offre à ses utilisateurs (les processus dans la couche supérieure).

III Introduction au logiciel

Pour les questions suivantes, il vous est demandé de choisir la réponse la plus proche et la plus cohérente par rapport à ce qui a été dit au cours.

24	 (1 point) Un problème de sémantique dans un code exprime que : le programme peut être compilé mais ne fera pas ce qu'on attend lors de son exécution. le programme ne peut être compilé car le code écrit ne correspond pas à la grammaire du langage.
25	 (1 point) Un problème de syntaxe dans un code exprime que : le programme peut être compilé mais ne fera pas ce qu'on attend lors de son exécution. le programme ne peut être compilé car le code écrit ne correspond pas à la grammaire du langage.
26	 (2 points) Un logiciel est sous licence Freeware (Gratuiciel) lorsque o son code est ouvert mais qu'il est distribué gratuitement. o son code source n'est pas disponible par les utilisateurs mais qu'il est distribué gratuitement. o sa distribution est gratuite mais qu'une contribution est demandée plus tard (version d'essai). o son code est ouvert mais que sa distribution est payante.
27	 (2 points) L'étape des tests d'un logiciel est juste après celle : ○ du développement. ○ de l'analyse. ○ du déploiement.
28	 (2 points) Au plus un langage de programmation est de haut niveau : ○ au plus ses instructions sont proches du langage machine. ○ au plus le code à écrire est court. ○ au plus le code à écrire est long. ○ au plus le logiciel sera performant.
29	 (2 points) Un logiciel sous licence libre persistente (type LGPL) peut être combiné à des logiciels soumis à d'autres licences (même à sources fermées). ne permet pas à son utilisateur d'obtenir son code source. n'oblige pas à rediffuser le code source des versions modifiées.

IV Introduction au système d'exploitation

30	(2 points) Citez deux fonctions d'un OS.
31	$(1\ point)$ Quel terme est le plus approprié pour Ubuntu : OS, Distribution, Environnement, Entreprise?
32	(2 points) Expliquez en quelques mots ce qu'est le FHS (File Hierarchy Standard). Donnez deux exemples de dossiers qui y sont repris et expliquez leur usage.
33	(1 point) Qui est Linus Torvald?
34	(1 point) Soit le fichier fich qui contient 200 bytes et la commande ln -s fich lien. Quelle taille a le fichier lien?

35	(1 point)	Citez trois systèmes de fichiers différents.
<u>36</u>	(1 point)	Que fait la commande mount /dev/sda2 /mnt?
<u>37</u>	(1 point)	Qu'est ce qu'une table de partitions?

V Introduction à l'informatique industrielle

Fig. 1 Fig. 2

- (38) (1 point) Donner le nom du composant dont le symbole est représenté à la figure Fig. 1 :
- (1 point) La figure Fig. 2 représente le circuit électronique à transistors du :
 O Porte OU
 O Porte ET
 O Porte Non OU
- (1 point) Donner les trois principaux constituants d'un système minimum à microprocesseur ?
- (1 point) Les registres de direction dans un microcontrôleur servent à :

 Sauvegarder l'adresse de l'opérande dans l'instruction à exécuter

 Configurer les ports en entrée ou en sortie

 Contenir les bits d'état
- (42) (1 point)

Fig. 3

Donner le nom du système microinformatique industriel représenté à la figure Fig. 3:

O

43 (1 point) L'automate programmable industriel (API) a été inventé à la fin des années 60, pour remplacer: O les systèmes à microprocesseurs O les systèmes à microcontrôleurs O les systèmes de commande à base de logique cablée 44 (1 point) START STEP <u>T1</u> **ACTION D1** STEPA D **ACTION D2** T2 Ν **ACTION D3** STEP B D **ACTION D4** ТЗ Fig. 4 La figure Fig. 4 représente un bout de code d'un API en représentation (language) : ○ Ladder diagram (LD) O Function bloc diagram (FBD) ○ Grafcet 45 (1 point) les réseaux locaux industriels sont décrits par une piramide appelé CIM (computer integrated manufacturing), de combien de couches est-elle constituée? \bigcirc 7 \bigcirc 5 \bigcirc 4 46 (1 point) Quelles sont les caractéristiques (correctes) du bus de terrain appelé INTERBUS. O Longuer maximal de 12km O Longuer maximal de 1,2km O Structure en anneau O Structure en ligne 47 Si on compare les bus de terrain ASI et PROFIBUS, quelles affirmations sont (1 point) vraies? O Le coût d'installation du bus ASI et réduit par rapport au PROFIBUS O Le bus ASI et plus rapide que le PROFIBUS O Le bus PROFIBUS permet des réseaux plus long que le bus ASI

() Le bus PROFIBUS permet des réseaux en ligne, alors que le bus ASI doit être installé

en anneau