- 5 数列 $\{a_n\}$ において,各項 a_n が $a_n\geqq 0$ をみたし,かつ $\sum_{n=1}^\infty a_n=rac{1}{2}$ が成り立つとする. さらに各 n に対し $b_n=(1-a_1)(1-a_2)\cdots\cdots(1-a_n)$, $c_n=1-(a_1+a_2+\cdots\cdots+a_n)$ とおく.
- (1) すべての n に対し不等式 $b_n\geqq c_n$ が成り立つことを,数学的帰納法で示せ.
- (2) ある $\,n$ について $\,b_{n+1}=c_{n+1}\,$ が成り立てば $\,$, $\,b_n=c_n\,$ となることを示せ $\,$.
- (3) $b_3=rac{1}{2}$ となるとき, $c3=rac{1}{2}$ であることを示せ.また $b_3=rac{1}{2}$ となる数列 $\{a_n\}$ は全部で何種類あるかを求めよ.