Etude d'une fonction périodique

L'objectif de ce problème est d'étudier la fonction f présentée dans la question 2.

- 1. On considère la fonction φ définie sur \mathbb{R} par $\varphi(t) = \arcsin(\sin 2t)$.
- 1.a Etudier la parité et la périodicité de la fonction φ .
- 1.b Simplifier φ pour $t \in [0, \pi/4]$ et pour $t \in [\pi/4, \pi/2]$.
- 1.c Donner l'allure de la courbe représentative de φ .
- 2. Soit f la fonction définie par $f(x) = \arcsin \frac{2x}{1+x^2}$.
- 2.a Justifier que pour tout $x \in \mathbb{R}$ on a $|2x| \le 1 + x^2$.
- 2.b Préciser le domaine de définition de f, i.e. l'ensemble des $x \in \mathbb{R}$ pour lesquels f(x) existe.
- 2.c Justifier que la courbe représentative de f présente un centre de symétrie.
- 3. On se propose ici de dresser le tableau de variation :
- 3.a Pour $t \in]-\pi/2,\pi/2[$, simplifier $\frac{2\tan t}{1+\tan^2 t}$ puis $f(\tan t)$.
- 3.b Exprimer, pour $x \in \mathbb{R}$, f(x) à l'aide de la fonction φ et de la fonction arctan.
- 3.c En déduire les variations de f.
- 3.d Dresser le tableau de variation de f sur \mathbb{R} en précisant les valeurs extrémales de f ainsi que ses limites en $+\infty$ et $-\infty$.
- 4. Dans cette question, on se propose de représenter la fonction f.
- 4.a Calculer f'(x) pour $x \in]-\infty, -1[\cup]-1, 1[\cup]1, +\infty[$.
- 4.b Donner l'équation de la tangente à f en 0, en $\sqrt{3}$ et en $1/\sqrt{3}$
- 4.c Déterminer la limite de f'(x) quand x tend vers 1 par valeurs supérieures (resp. inférieures). On admettra que les valeurs obtenues sont les pentes des tangentes à droite et à gauche à f en 1.
- 4.d Représenter f relativement à un repère orthonormé dont l'unité serait de 2cm.
 On précisera, les tangentes de la question 4.b ainsi que les tangentes à droites et à gauche en 1 et en −1.
- 5. Une droite parallèle à l'axe (Ox) d'équation y = h avec $h \in]0, \pi/2[$ coupe la courbe représentative de f en deux points M_1 et M_2 d'abscisses x_1 et x_2 avec $x_1 < x_2$.
- 5.a Calculer x_1 et x_2 .
- 5.b Déterminer et construire la courbe décrite par le milieu I du segment $[M_1, M_2]$.

Correction

- 1.a $\forall t \in \mathbb{R}, -t \in \mathbb{R}$ et $\varphi(-t) = \cdots = -\varphi(t)$ donc φ est impaire. $\forall t \in \mathbb{R}, t + \pi \in \mathbb{R}$ et $\varphi(t + \pi) = \arcsin(\sin(2t + 2\pi)) = \varphi(t)$ donc φ est π périodique.
- 1.b Pour $t \in [0, \pi/4]$, on a $2t \in [0, \pi/2] \subset [-\pi/2, \pi/2]$ donc $\varphi(t) = \arcsin(\sin 2t) = 2t$. Pour $t \in [\pi/4, \pi/2]$, on a $2t \in [\pi/2, \pi]$. Puisque $\sin 2t = \sin(\pi - 2t)$ et que $\pi - 2t \in [0, \pi/2] \subset [-\pi/2, \pi/2]$ on a $\varphi(t) = \pi - 2t$.

1.c De part les simplifications qui précèdent, l'imparité et la périodicité, on obtient l'allure ci-dessous :

- $(1+x)^2 \ge 0$ donne $-2x \le 1+x^2$ et $(1-x)^2 \ge 0$ donne $2x \le 1+x^2$. Par suite $|2x| \le 1+x^2$. 2.a
- Pour tout $x \in \mathbb{R}$, $1+x^2 \neq 0$ donc $\frac{2x}{1+x^2}$ existe et par la question précédente $\frac{2x}{1+x^2} \in [-1,1]$, or la 2.b fonction arcsin est définie sur [-1,1] donc $\arcsin \frac{2x}{1+x^2}$ existe. Ainsi f est définie sur $\mathbb R$.
- $f\,$ est impaire donc sa courbe représentative est symétrique par rapport à l'origine du repère. 2.c

3.a
$$\frac{2\tan t}{1+\tan^2 t} = \frac{2\frac{\sin t}{\cos t}}{1+\frac{\sin^2 t}{\cos^2 t}} = \frac{2\sin t \cos t}{\cos^2 t + \sin^2 t} = \sin 2t \text{ et } f(\tan t) = \arcsin 2t = \varphi(t).$$

- $f(x) = f(\tan(\arctan x)) = \varphi(\arctan x)$. 3.b
- La fonction arctan est croissante sur $]-\infty,-1]$ à valeurs dans, $]-\pi/2,-\pi/4]$ où φ est décroissante donc 3.c par composition f est décroissante sur $]-\infty,1]$.

La fonction arctan est croissante sur [-1,1] à valeurs dans, $[-\pi/4,\pi/4]$ où φ est croissante donc par composition f est croissante sur [-1,1].

La fonction arctan est croissante sur $[1,+\infty[$ à valeurs dans, $[\pi/4,\pi/2[$ où φ est décroissante donc par composition f est décroissante sur $[1,+\infty[$.

3.d
$$\frac{x \mid -\infty \quad -1 \quad 1 \quad +\infty}{f(x) \mid 0 \quad \sqrt{-\pi/2} \quad / \quad \pi/2 \quad \sqrt{0}}$$

Limites et valeurs sont immédiates sachant $\arcsin 1 = \pi/2$ et $\arcsin 0 = 0$.

Sur $]-\infty, -1[\cup]-1,1[\cup]1,+\infty[$ on a $\frac{2x}{1+x^2}\in]-1,1[$ et la fonction arcsin est dérivable sur]-1,1[donc f

est dérivable sur le domaine considéré et, après calculs : $f'(x) = \begin{cases} \frac{2}{1+x^2} & \text{si } |x| < 1\\ \frac{-2}{1+x^2} & \text{si } |x| > 1 \end{cases}$.

- f(0) = 0 et f'(0) = 2 donc la tangente en 0 a pour équation y = 2x. 4.b $f(\sqrt{3}) = \frac{\pi}{3}$ et $f'(\sqrt{3}) = -1/2$ donc la tangente en $\sqrt{3}$ a pour équation $y = -\frac{1}{2}(x - \sqrt{3}) + \frac{\pi}{3}$. $f(1/\sqrt{3}) = \frac{\pi}{3}$ et $f'(1/\sqrt{3}) = 3/2$ donc la tangente en $1/\sqrt{3}$ a pour équation $y = \frac{3}{2}(x - \frac{1}{\sqrt{3}}) + \frac{\pi}{3}$.
- $\lim_{x \to 1^{-}} f'(x) = 1 \text{ et } \lim_{x \to 1^{+}} f'(x) = -1.$

4.d

5.a
$$f(x) = h \Leftrightarrow \frac{2x}{1+x^2} = \sin h$$
 (l'équivalence est vraie car $h \in]0, \pi/2[$)

 $\text{Les solutions de l'équation } \frac{2x}{1+x^2} = \sin h \ \ \text{sont} \ \ x_1 = \frac{1-\cos h}{\sin h} \ \ \text{et} \ \ x_2 = \frac{1+\cos h}{\sin h} \,.$

5.b Le point
$$I$$
 a pour coordonnée
$$\begin{cases} x = 1/\sin h \\ y = h \end{cases}$$
.

Les coordonnées du point I vérifie $y = \arcsin \frac{1}{x}$ et x > 1.

La représentation graphique de la fonction $x\mapsto \arcsin x \ \mathrm{sur}\]-1,+\infty[$ donne le lieu des points I .

Cette représentation est aisée car $\frac{x}{\arcsin \frac{1}{x}} \frac{1}{\frac{\pi}{2}} \setminus 0$

