

Решающие деревья и композиции алгоритмов

План лекции

- Решающие деревья
 - устройство дерева
 - анализ
- Композиции алгоритмов
 - о бэггинг
 - о стекинг
 - о бустинг
- Градиентный бустинг
 - алгоритм обучения
 - преимущества и недостатки

Решающие деревья

Алгоритмы машинного обучения

- Алгоритм ближайших соседей
- Линейные алгоритмы

В жизни мы принимаем решения не так!

Примеры решающих правил

- Если в анкете указан домашний телефон и зарплата клиента > \$1000 и размер кредита < \$3000, то кредит выдать
- Если возраст пациента > 60 и пациент ранее перенёс инфаркт, то операцию не делать

Логические алгоритмы

Логический алгоритм — алгоритм, использующий логические закономерности в данных.

Решающие деревья

- В каждой вершине дерева находится вопрос
- В зависимости от ответа на вопрос, алгоритм направляется в нужную ветвь дерева
- Листы дерева соответствуют решению алгоритма

Решающие деревья

• Находимся в красной вершине

- Находимся в красной вершине
- До красной вершины дошла часть объектов обучающей выборки

- Находимся в красной вершине
- До красной вершины дошла часть объектов обучающей выборки
- Находим решающее правило так, чтобы объекты, дошедшие до красной вершины, хорошо разделялись по искомым классам

- Находимся в красной вершине
- До красной вершины дошла часть объектов обучающей выборки
- Находим решающее правило так, чтобы объекты, дошедшие до красной вершины, хорошо разделялись по искомым классам
- Одна из нижних вершин стала терминальной

- Находимся в красной вершине
- До красной вершины дошла часть объектов обучающей выборки
- Находим решающее правило так, чтобы объекты, дошедшие до красной вершины, хорошо разделялись по искомым классам
- Одна из нижних вершин стала терминальной
- Повторяем с другой вершиной

Как выбрать критерий ветвления?

Как выбрать критерий ветвления?

$$rac{L}{Q}H(p_L)+rac{R}{Q}H(p_R)
ightarrow \min$$

Возможные функции H(q):

• Энтропия:

$$H(q) = -q\log q - (1-q)\log(1-q)$$

• Индекс Джини:

$$H(q) = 4q(1-q)$$

Затем решаем оптимизационную задачу для поиска правила

Решающее дерево для Ирисов Фишера

Задача Фишера о классификации ирисов на три класса.

В выборке по 50 объектов каждого класса, у каждого объекта 4 признака

В осях двух самых информативных признаков два класса разделились без ошибок, на третьем — три ошибки.

Недообучение и переобучение

Недообучение и переобучение

Параметры решающего дерева

- Критерий ветвления ('gini', 'entropy')
- Максимальная глубина
- Минимальный размер листа
- Стратегия сплита

Решающее дерево для регрессии

- В листах дерева вместо классов объектов находятся действительные числа
- Количество ответов решающего дерева ограничено количеством листовых вершин

Резюме: решающее дерево

Преимущества:

- простая идея и алгоритм обучения
- интерпретируемое
- возможна регуляризация
- обработка пропущенных значений

Недостатки:

- переобучается
- проблемы с регрессией
- сильно меняется в зависимости от параметров

Композиции алгоритмов

Алгоритмы машинного обучения

- Метод ближайших соседей
- Линейные алгоритмы
- Решающее дерево

Алгоритмы машинного обучения

- Метод ближайших соседей
- Линейные алгоритмы
- Решающее дерево

Идея: построение композиции алгоритмов

Принцип Кондорсе

- Если вероятность правильного решения члена жюри больше 0.5, то вероятность правильного решения присяжных в целом возрастает с увеличением количества членов жюри и стремится к единице.
- Если же вероятность быть правым меньше 0.5, то вероятность принятия правильного решения присяжными монотонно уменьшается и стремится к нулю с увеличением количества присяжных.

принцип Кондорсе, 1784

Фрэнсис Гальтон

Эксперимент Гальтона

- Собралось около 800 человек, которые попытались угадать вес быка на ярмарке. Бык весил 1198 фунтов.
- Ни один крестьянин не угадал точный вес быка
- Среднее предсказание оказалось равным 1197 фунтов.

Метод простого голосования

- ullet a_1, a_2, \ldots, a_n несколько обученных алгортмов
- Классификация: относим x к классу, за который проголосовало большинство из $a_1(x), a_2(x), \ldots, a_n(x)$
- ullet Регрессия: ответом является среднее значение $a_1(x), a_2(x), \ldots, a_n(x)$

Бутстреп

Бэггинг

- Бэггинг (bagging: bootstrap aggregation) принцип построения композиции, основанный на простом голосовании
- 100 деревьев
- Бутстрепная выборка для каждого дерева
- Финальное решение принимается простым голосованием

Случайный лес

Случайный лес — бэггинг над решающими деревьями

Случайный лес и решающее дерево

Недостатки случайного леса

- Слишком долгое и громоздкое вычисление
- В индустрии стараются обойтись без композиций
- Тем не менее, вычисления можно проводить параллельно

Стекинг

Бустинг

- Строим алгоритмы последовательно
- Каждый следующий алгоритм компенсирует ошибку всех предыдущих
- Принимаем решение взвешенным голосованием: а- асторитись

$$a(x) = c_1 a_1(x) + c_2 a_2(x) + \ldots + c_n a_n(x)$$

- Сильный метод бустинга градиентный бустинг над решающими деревьями
- On eur aencie on Frukia neur mo kangorit vocuegeprocesseur au ropeener peunorbaen occuerted pregoggeso

Резюме

- Бэггинг, стекинг и бустинг используют принцип композиции
- Бэггинг принимает решение простым голосованием
- Стекинг обучает метаалгоритм над разноплановыми алгоритмами
- Бустинг строит базовые модели, компенсирующие ошибки предыдущих

Градиентный бустинг

Градиентный бустинг

Градиентный бустинг — эффективный способ построения композиции решающих деревьев

- Деревья строятся последовательно
- Каждое следующее дерево стремится компенсировать ошибку уже построенных
- Решение затем принимается взвешенным голосованием:

$$a(x) = c_1 a_1(x) + c_2 a_2(x) + \ldots + c_n a_n(x)$$

Напоминание: градиентный спуск

- Минимизируем функцию f(x)
- Выбираем x_o начальное приближение
- Пусть x_n текущая найденная точка
- Вычисляем градиент (производную) $f'(x_n)$
- Вычисляем следующее приближение:

$$x_{n+1} = x_n - \alpha f'(x_n)$$

Постановка задачи

Имеем:

- ullet a_1,a_2,\ldots,a_n обучающая выборка
- ullet $y = \{y^1, y^2, \dots, y^\ell\}$ целевая переменная (действительное число)

Цель: построить алгоритм a(x), оптимизирующий функцию потерь

$$Q(y,a) = rac{1}{\ell} \sum_{i=1}^\ell \mathcal{L}(y^i,a(x^i))$$

Пример: квадратичная функция потерь

$$\mathcal{L}(y,a) = (a-y)^2$$

Построение композиции

- ullet Пусть уже построены a_1, a_2, \ldots, a_k , а также константы c_1, c_2, \ldots, c_k
- Хотим построить a_{k+1}
- Запишем функцию потерь для одного объекта

$$\mathcal{L}(y^i,a(x^i)) = \mathcal{L}(y^i,c_1a_1(x^i)+\ldots+c_ka_k(x^i) + c_{k+1}a_{k+1}(x^i))$$
 построено нужно построить $f(\qquad \qquad t \qquad \qquad + \qquad \Delta t \qquad)
ightarrow \min_t$

$$\Delta t = -lpha f'(t)$$

$$a_{k+1}(x^i)\!:=-\mathcal{L}_a'(y^i,a)|_{a=c_1a_1(x^i)+\ldots+c_ka_k(x^i)}$$

Построение очередного дерева

Для одного объекта:

$$a_{k+1}(x^i) := -\mathcal{L}_a'(y^i,a)|_{a=c_1a_1(x^i)+\ldots+c_ka_k(x^i)}$$

новая целевая переменная

Для нескольких объектов: решаем новую задачу машинного обучения, где k+1-ое дерево "настраивается" по направлению антиградиента функции потерь

Константа в бустинге выбирается так же, как и в градиентном спуске

Градиентный бустинг для MSE

Антиградиент функции потерь для MSE:

$$-\mathcal{L}'_{a}(y^{i}, a)|_{a=c_{1}a_{1}(x^{i})+...+c_{k}a_{k}(x^{i})} =$$

$$= -2(a - y^{i})|_{a=c_{1}a_{1}(x^{i})+...+c_{k}a_{k}(x^{i})} =$$

$$= -2(c_{1}a_{1}(x^{i})+...+c_{k}a_{k}(x^{i})-y^{i})$$

Вывод. В случае MSE алгоритм градиентного бустинга настраивается на разность ответа и текущего приближения:

$$a_{k+1}(x^i) = -2(c_1a_1(x^i) + \ldots + c_ka_k(x^i) - y^i)$$

Градиентный бустинг

- Базовые алгоритмы должны быть простыми и быстро обучаемыми
- Часто в качестве базовых алгоритмов используются решающие деревья
- Реализации градиентного бустинга над решающими деревьями:

Бустинг: качество от итерации

Бустинг: преимущества и недостатки

• Преимущества:

- Позволяет очень точно восстанавливать искомую функцию
- Почти не переобучается
- о По сравнению со случайным лесом, способен компенсировать систематическую ошибку каждого из базовых алгоритмов, а не накапливает их
- Работает с произвольной функцией потерь в задаче классификации, регрессии, ранжирования, ...

• Недостатки:

- Медленный
- Плохо интерпретируемый
- Переобучение на выбросах при избыточном количестве алгоритмов
- Нужна довольно большая обучающая выборка

The End