CS F364 Design & Analysis of Algorithms

ANALYSIS – PROBLEMS – REDUCTIONS

Analysis of Problems

- Reduction
- Karp Reduction, 1-1 Reduction
- Lower Bounds and Reduction: Example
- Turing Reduction

RECALL: REDUCTION

- We reduced the problem of <u>factoring a number N</u> into the problem of <u>computing $\varphi(N)$ </u>:
 - i.e. we argued that the former can be solved using an algorithm for the latter as a black box.

PROBLEMS - REDUCTION

- Reduction can be used as a mechanism for capturing the relation "at least as difficult as" between problems.
 - "at least as difficult as" refers to "at least as difficult to solve as"
 - Typically this would mean

"requires at least as much time to solve as" or "requires at least as much space to solve as" (depending on the context).

PROBLEMS - REDUCTION

- Openition:
 - Let π_1 and π_2 be decision problems with input sets $I(\pi_1)$ and $I(\pi_2)$ respectively.
 - We say, Π_1 reduces to Π_2 ,
 - oif there is a function $f: I(\pi_1) \longrightarrow I(\pi_2)$ such that
 - for every $x \in I(\pi_1)$,
- Questions:
- 1. What does it mean "algorithmically"?
- 2. What is the cost of reduction?
 - i.e. what is the cost of (computing) the function f?

KARP REDUCTION

- Openition:
 - Let π_1 and π_2 be decision problems with input sets $I(\pi_1)$ and $I(\pi_2)$ respectively.
 - We say, π_1 reduces to π_2 (denoted $\pi_1 \leq \pi_2$)
 - oif there is a function $f: I(\pi_1) \longrightarrow I(\pi_2)$ such that
 - for every $x \in I(\pi_1)$,

1-1 REDUCTION

- Karp reduction is a special case of 1-1 reduction:
 - Let π_1 and π_2 be problems with input sets $I(\pi_1)$ and $I(\pi_2)$ respectively.
 - We say, π_1 reduces to π_2 (denoted $\pi_1 \leq \pi_2$)
 - oif one can obtain an algorithm for π_1 given an algorithm for π_2
 - ousing mapping functions ${\bf f}$ and ${\bf g}$ on inputs to π_1 and outputs of π_2 respectively:

PROBLEMS - REDUCTION

- We are usually interested in efficient reductions:
 - i.e. the function mapping inputs to inputs should be "efficiently" computable
 - e.g. **f** should be computable in polynomial time.
- We use $\pi_1 \lesssim_{t(n)} \pi_2$
 - to denote that π_1 reduces to π_2 in time t(n)
 - t(n) is the total cost of functions f and g.

TURING REDUCTIONS

- We use $\pi_1 \preceq_{T,t(n)} \pi_2$
 - to denote that π_1 *Turing-reduces to* π_2 in time t(n)
 - t(n) is the total cost of functions f and g and the cost of calls to π_2

