



# **COSC 522 – Machine Learning**

### Introduction

Hairong Qi, Gonzalez Family Professor Electrical Engineering and Computer Science University of Tennessee, Knoxville <a href="https://www.eecs.utk.edu/people/hairong-qi/">https://www.eecs.utk.edu/people/hairong-qi/</a>

Email: hqi@utk.edu

UT COSC522 F24 | General | Microsoft Teams

### **Outline**



- 1. Related courses offered at UT and their differences
- 2. What are we going to learn in this class?
- 3. Do I have enough background?
- 4. Syllabus
- 5. Terminologies



# 1. Courses at UT and Differences RESEARCH

- Intro to Machine Learning (COSC 325)
- Machine Learning (COSC 522)
- Artificial Intelligence (COSC 423/523)
- Natural Language Processing (COSC 524)
- Deep Learning (COSC 424/525)
- Data Mining and Analytics (COSC 426/526)
- Biologically-Inspired Computation (COSC 420/527)
- Reinforcement Learning (ECE 414/517)
- Special Topic Class: Adversarial Learning (ECE 599)
- Machine Learning Minor (15 hours)
- Artificial Intelligence and Machine Learning Graduate Certificate (15 hours)





# Al vs. ML vs. DL Supervised vs. Unsupervised vs. Reinforcement Learning



M. Mafu, "Advances in artificial intelligence and machine learning for quantum communication applications," IET Quantum Communication, 2024, DOI: 10.1049/qtc2.12094



# A Comparison between Al and ML Contents

# Artificial Intelligence: A Modern Approach



#### (Fourth edition, 2020)

#### by **Stuart Russell** and **Peter Norvig**

The <u>leading textbook</u> in Artificial Intelligence, used in over <u>1400</u> schools in over <u>120</u> countries.

#### **Table of Contents**

| <u>Preface (pdf);</u> <u>Contents with</u> | V Machine Learning                      |  |  |
|--------------------------------------------|-----------------------------------------|--|--|
| subsections                                | 19 Learning from Examples 651           |  |  |
| I Artificial Intelligence                  | 20 Learning Probabilistic Models 721    |  |  |
| 1 Introduction 1                           | 21 Deep Learning 750                    |  |  |
| 2 Intelligent Agents 36                    | 22 Reinforcement Learning 789           |  |  |
| II Problem-solving                         | VI Communicating, perceiving, and       |  |  |
| 3 Solving Problems by Searching 63         | acting                                  |  |  |
| 4 Search in Complex Environments           | 23 Natural Language Processing 823      |  |  |
| 110                                        | 24 Deep Learning for Natural Language   |  |  |
| 5 Adversarial Search and Games 146         | Processing 856                          |  |  |
| 6 Constraint Satisfaction Problems         | 25 Computer Vision 881                  |  |  |
| 180                                        | 26 Robotics 925                         |  |  |
| III Knowledge, reasoning, and planning     | VII Conclusions                         |  |  |
| 7 Logical Agents 208                       | 27 Philosophy, Ethics, and Safety of AI |  |  |
| 8 First-Order Logic 251                    | 981                                     |  |  |
| 9 Inference in First-Order Logic 280       | 28 The Future of AI 1012                |  |  |
| 10 Knowledge Representation 314            | Appendix A: Mathematical Background     |  |  |
| 11 Automated Planning 344                  | 1023                                    |  |  |
| IV Uncertain knowledge and reasoning       | Appendix B: Notes on Languages and      |  |  |
| 12 Quantifying Uncertainty 385             | Algorithms 1030                         |  |  |
| 13 Probabilistic Reasoning 412             | Bibliography 1033 (pdf and bib data)    |  |  |
| 14 Probabilistic Reasoning over Time       |                                         |  |  |
| 461                                        |                                         |  |  |
| 15 Probabilistic Programming 500           | Exercises (website)                     |  |  |
| 16 Making Simple Decisions 528             | <u>Figures (pdf)</u>                    |  |  |
| 17 Making Complex Decisions 562            | Code (website); Pseudocode (pdf)        |  |  |
| 18 Multiagent Decision Making 599          |                                         |  |  |

http://aima.cs.berkeley.edu/





# A Bit of History of Al Development

- 1956-1976
  - 1956, The Dartmouth Summer Research Project on Artificial Intelligence, organized by John McCarthy, Marvin Minsky, Nathaniel Rochester, and Claude Shannon

We propose that a 2 month, 10 man study of artificial intelligence be carried out during the summer of 1956 at Dartmouth College ... The study is to proceed on the basis of the conjecture that every aspect of learning or any other feature of intelligence can in principle be so precisely described that a machine can be made to simulate it. An attempt will be made to find how to make machines use language, form abstractions and concepts, solve kinds of problems now reserved for humans, and improve themselves. We think that a significant advance can be made in one or more of these problems if a carefully selected group of scientists work on it together for a summer.

The rise of symbolic methods, systems focused on limited domains, deductive vs. inductive systems

https://en.wikipedia.org/wiki/Dartmouth workshop

https://en.wikipedia.org/wiki/Lighthill report

- 1973, the Lighthill report by James Lighthill, "Artificial Intelligence: A General Survey" automata, robotics, neural network
- 1976, the Al Winter
- 1976-2006
  - 1986, BP algorithm
  - ~1995, The Fifth Generation Computer
- 2006-???

  - 2012, ImageNet by Fei-Fei Li (2010-2017) and AlexNet

2006, Hinton (U. of Toronto), Bengio (U. of Montreal), LeCun (NYU)





# 2. Topics Covered



Solve Real-World Problems!!!







- Probability
- Linear Algebra
- Multivariate Calculus
- Python Programming
  - Jupyter notebook
  - colab





# 4. Syllabus – Course Policy

- Assignment is due 11:59pm on the due date with electronic submission through Canvas.
- Late policy: Each student is given a 48-hour grace period cumulatively for all assignment. The unused grace period will be counted toward bonus (0 ~ 1pt) added to the final average. The bonus is modeled as a Gaussian with an std TBD.
- Grading
  - Homework (5): 25%
  - Project (4): 32%
  - Tests (2): 28%
  - Final Project Report and Presentation: 10+5%
  - Graduate Seminar (The <u>TRUST</u> Seminar): 1%





# 4. Syllabus – Course Description

 Theoretical and practical aspects of machine learning techniques related to pattern recognition. Statistical methods studied include Bayesian and linear classifiers, support vector machines, neural networks, and unsupervised learning. Syntactic methods include grammatical inference, string matching and Markov chains. Ensemble methods include random forests, adaptive boosting, and classifier fusion.





# 4. Syllabus - Schedule

10/22

10/24

Supervised methods

Unsupervised methods

| Date            | Topics                                         | Reading | Assignme         | nt                                                    |  |
|-----------------|------------------------------------------------|---------|------------------|-------------------------------------------------------|--|
|                 | Part 1: Statistical Methods                    |         |                  |                                                       |  |
|                 | Baysian Learning                               |         |                  |                                                       |  |
| 08/20           | Introduction and Baysian Decision Theory       |         |                  |                                                       |  |
| 8/22            | Parametric Learning                            |         |                  |                                                       |  |
| 08/27           | Non-Parametric Learning                        |         |                  | Part 2: Ensemble Methods                              |  |
| 08/29           | ML with Python (taught by TA)                  |         | 10/29            | Decision Tree and Random Forests                      |  |
| 09/03           | Recap                                          |         | 10/31            | Boosting and AdaBoost                                 |  |
| 09/05           | Homework and Project Discussion (taught by TA) |         |                  | Baysian-based Fusion                                  |  |
|                 | Neural Networks                                |         | <del>11/05</del> | Election Day (No Class)                               |  |
| 9/10            | Biological Neuron and Perceptron               |         | 11/07            | Test 2                                                |  |
| 09/12           | Back Propagation and Gradient Descent          |         |                  | Part 3: Reinforcement Learning (TBD)                  |  |
| 09/17           | Kernel Methods                                 |         | 11/12            | RL                                                    |  |
| 09/19           | Support Vector Machine                         |         | 11/14            | RL                                                    |  |
| 9/24            | SVM                                            |         |                  | Part 4: Syntactic Methods (TBD)                       |  |
| 09/26           | Test 1                                         |         | 11/19            | Markov Chain                                          |  |
|                 | Regression                                     |         | 11/19            | NLP                                                   |  |
| 0/01            | Linear Regression                              |         | 1                |                                                       |  |
| 0/03            | Logistic Regression                            |         | 11/26            | NLP                                                   |  |
| <del>0/08</del> | Fall Break (No Class)                          |         | <del>11/28</del> | Thanksgiving (No Class)                               |  |
|                 | Unsupervised Learning                          |         | 12/03            | Semi-supervised Learning and Self-supervised Learning |  |
| 0/10            | k-means                                        |         | 12/11            | Final Presentation (3:30-6:00PM)                      |  |
| 10/15           | Hierarchical methods and auto-encoder          |         |                  |                                                       |  |
| 10/17           | recap                                          |         |                  |                                                       |  |
|                 | Dimensionality Reduction                       |         |                  |                                                       |  |

# AICIP RESEARCH







# 5. Terminologies through a Toy Example

| Movie name           | Mary's rating | John's rating | I like? |
|----------------------|---------------|---------------|---------|
| Lord of the Rings II | 1             | 5             | No      |
| •••                  | •••           | •••           | •••     |
| Star Wars I          | 4.5           | 4             | Yes     |
| Gravity              | 3             | 3             | ?       |





### Supervised learning:

- Training data vs. testing data
- Training: given input-output pairs
- Features
- Samples
- Dimensions

