109-2 空間分析 期末考

考試時間:2021年6月7日(一)下午2:30~5:30

授課教師:溫在弘;課程助教:杜承軒、江偉銘、李蕙均、游孟純、簡微

* 作答提醒注意事項:

- 1. 試卷共100點,全班5000分。依照全班獲得點數來分配分數。(考卷上標示為點數)
- 2. 可自由上網查詢參考資料,但考生之間不得交流、共用交換資料以及代考,違規者將視同作弊, 作弊者則考試成績將不計分。
- 3. 答案卷以 RMarkdown 格式輸出成 html 上傳至 ceiba 作業區,應於 5:30 pm 之前繳交(以 ceiba 上傳時間為準);若上傳時間在 5:40pm 以後,則不予計分。
- 4. 請檢查各題目的作答要求,**請確保程式碼及答案有成功輸出呈現至 html 中**。若只有部分程式碼 的結果或有錯誤程式碼,則會大幅扣分。所有試題皆以電腦作答,請隨時進行存檔。若因電腦當 機或其他個人因素,因檔案未能及時存檔,導致無法準時交卷,請自行負責。
- 5. 地圖可省略地圖要素,但請依照題目指示繪圖。
- 6. 考試中有任何問題請到 LINE 群組中發問。

*圖資(座標系統:TWD97/TM2 zone 121):

• GTMA.shp:臺北都會區 COVID-19 五月確診病例數與藥局數量(以行政區統計)

COUNTY	COUNTY_ID	TOWN	TOWN_ID	POP	Cases	Pharmacy
縣市名稱	縣市編號	行政區名稱	行政區編號	總人口數	確診病例數	藥局數量

hospital.shp:臺北都會區各級醫院點位

ID NAME		ТҮРЕ		
醫院編號	醫院名稱	類別:分成「醫學中心」、「區域醫院」及「地區醫院」		

BND.shp:臺北都會區邊界

※圖資可能非真實狀況,僅供考試作答用

(第1題: Table 2 參考)

Table 2.—R Values for One, Two, and Three Nearest Neighbors by Study Time Periods

Year	First	Second	Third
1900	1.07	1.05	1.12
1910	0.67	0.98	1.08
1920	0.66	0.81	1.15
1930	0.77	0.89	1.02
1940	0.79	0.89	1.08
1950	0.84	0.94	1.02
1960	1.00	0.94	1.01

Source of data: Computation from field data gathered by author.

基礎:問答題 25%

- 1. 研讀教材 Temporal land use pattern analysis with the use of nearest neighbor and quadrat methods 文中,請解釋 Table 2 的數據意涵。(5%)
- 2. 研讀教材 Defining spatial neighborhoods and weights 一文中,說明何謂 adjacency-based 以及 distance-based neighborhoods,並說明文中建議這兩種設定的合適情境。(10%)
- 3. 研讀教材 Local Statistics 一文中, 說明作者解釋 local statistics 近年在空間分析領域成為重要議題的原因(至少說明兩個原因)。(10%)

基礎:實作題 25%

- 4. 定義**行政區確診比例 = 行政區確診人數**÷**行政區總人數**;定義**相鄰相接**(只要兩行政區有至少 一點接觸)為鄰近關係。
 - (1) 計算行政區確診比例的 Moran's I 指數 (請列出數值結果,而不是整個報表)。(5%)
 - (2) 設定顯著水準 $\alpha = 0.05$,找出確診比例的局部空間自相關在 FDR 校正後,呈現顯著正相關的 行政區,依照以下指示繪製地圖:顯著 H-H—紅色、顯著 L-L—藍色、不顯著—白色。(10%)
- 5. 欲知<u>地區醫院</u>是否為隨機分布,設定顯著水準 $\alpha=0.1$,定義 $L(d)=\sqrt{K(d)/\pi}-d$ 。透過 spatstat 套件中 envelope 函數實作蒙地卡羅模擬,以 BND. shp 作為邊界,繪製 L(d) 函數 曲線及模擬 99 次隨機信賴包絡(需依照上述假設來設定包絡),並給出點分布的結論。(10%)

進階:實作題 50%

- 6. 以行政區藥局密度(藥局數量÷行政區面積)作為防疫資源指標,針對行政區**確診比例與藥局密度**,以行政區中心點之間距離為準則,定義前五近行政區為鄰近,計算 Gi*數值並以 Bonferroni 校正,設定顯著水準α = 0.05,觀察顯著群聚的分布。
 - (1) 繪製出確診群聚熱區地圖。(顯著熱區—紅色、不顯著—白色)(5%)
 - (2) 哪些行政區是確診熱區但非防疫資源熱區? (回答行政區名稱) (5%)
 - (3) 依照右表顏色繪製出熱區地圖。(5%)

- 確診病例熱區

 防疫
 是
 否

 資源
 是
 紅
 線

 熱區
 否
 橘
 白
- 7. 利用 F function 的概念,分析地區醫院到醫學中心之間的空間關係。理解<u>地區醫院</u>到前三近醫學中心的距離關係,繪製如研讀教材 Geodemographic analysis and the identification of potential business partnerships enabled by transit smart cards 一文中的 Figure 4。(15%)
- 8. 藉由 KDE 方法,計算醫院服務的密集度。透過 create_grid_rectangular 函數,以 BND.shp設定網格邊界,邊長為 1 公里,核密度函數為 quartic,搜尋半徑依不同醫院類型:醫學中心、區域醫院、地區醫院分別設定為 20 公里、10 公里、5 公里,並以各自密度最高 10% 的網格為高度醫療服務密度的定義。利用行政區中心所在網格來判斷該行政區獲得的服務。
 - (1) 哪些行政區在三種類型醫院都具有高度服務密度? (回答縣市、行政區完整名稱) (10%)
 - (2) 哪些行政區在**僅在地區醫院**具有高度服務密度?(回答縣市、行政區完整名稱)(10%)
 - P.S. 縣市、行政區完整名稱,如「臺北市大安區」、「基隆市信義區」。