

Model Optimization and Tuning Phase Template

Date	July 5, 2024
Team ID	739838
Project Title	Customer segmentation using Machine Learning
Maximum Marks	10 Marks

Model Optimization and Tuning Phase

The Model Optimization and Tuning Phase involves refining machine learning models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

Hyperparameter Tuning Documentation (6 Marks):

Model	Tuned Hyperparameters	Optimal Values
Decision tree	<pre># Define the Decision Tree classifier dt_classifier = DecisionTreeClassifier() # Define the hyperparameters and their possible values for tuning param_grid = { 'criterion': ['gini', 'entropy'], 'splitter': ['best', 'random'], 'max_depth': [None, 10, 20, 30, 40, 50], 'min_samples_split': [2, 5, 10], 'min_samples_leaf': [1, 2, 4] }</pre>	# Guilante the performance of the based mobel scorming a scorming proving test, y, greel print("Notical Approvamenters: (best yeares)") print("Accuracy on lest Set: (scorming)") Optical Approvamenters: ("criterion": "giris", "was jught": Nove, "win samples Jeef": 2, "win samples golis": 28, "splittee": "best") Accuracy on lest Set: 8.7639931886861
Random forest	<pre># Define the Random Forest classifier rf_classifier = RandomForestClassifier() # Define the hyperparameters and their possible values for tuning param_grid = { 'n_estimators': [50, 100, 200], 'criterion': ['gini', 'entropy'], 'max_depth': [None, 10, 20, 30], 'min_samples_split': [2, 5, 10], 'min_samples_leaf': [1, 2, 4], }</pre>	# Evaluate the performance of the tuned model accuracy = accuracy score(y test, y_pred) print("'Optional Representations: (best_parame(y)') print("'Accuracy on Test Sets: (accuracy')') Optional Representations: ("oritorion": "entropy", "man_depth": 20, "min_samples_leaf": 1, "min_samples_soplit": 2, "n_estimate Accuracy on Test Sets: #.TTSLATSERSEMBRED


```
# Define the Gradient Boosting classifier
gb_classifier = GradientBoostingClassifier()

# Define the hyperparameters and their possible values for tuning
param_grid = {
    'n_estimators': [50, 100, 200],
    'learning_rate': [0.01, 0.1, 0.2],
    'max_depth': [3, 4, 5],
    'min_samples_split': [2, 5, 10],
    'min_samples_split': [2, 5, 10],
    'min_samples_leaf': [1, 2, 4],
    'subsample': [0.8, 1.0]
}

# Define the Gradient Boosting classifier

# Define the hyperparameters and their possible values for tuning
param_grid = {
    'n_estimators': [50, 100, 200],
    'limin_setting_rate': [0.01, 0.1, 0.2],
    'max_depth': [3, 4, 5],
    'min_samples_split': [2, 5, 10],
    'min_samples_split': [2, 5, 10],
    'subsample': [0.8, 1.0]
```

Performance Metrics Comparison Report (2 Marks):

Model	Optimized Metric
Decision tree	
Random forest	print(classification_report(y_test,y_pred))
Gradient boosting	print(classification_report(y_test,y_pred))

Final Model Selection Justification (2 Marks):

Final Model	Reasoning
	The gradient Boosting model was selected for its superior performance,
	exhibiting high accuracy during hyperparameter tuning. Its ability to
	handle complex relationships, minimize overfitting, and optimize
	predictive accuracy aligns with project objectives, justifying its
Gradient boosting	selection as the final model
Gradient boosting	