Unbiased Simulation of Stochastic Differential Equations

Monte Carlo Project

Nathaniel Cogneaux - Paul-Emile Galine

PSL Research University, Paris-Dauphine

19/01/2024

Introduction

We aim to estimate $V_0 = \mathbb{E}[g(X_{t_1}, \dots, X_{t_n})]$, where X is the solution to the SDE $dX_t = \mu(t, X_t)dt + \sigma(t, X_t)dW_t$, with μ , σ as the drift and diffusion coefficients (with standard assumptions).

- Traditional Monte Carlo methods approximate V₀ by simulating multiple paths of X (e.g., using the Euler-Scheme) and approximating the expectation over many simulations.
- These methods suffer from bias and is computationally expensive.
- The approach we studied:
 - Provides an unbiased and thus more accurate estimation of V_0 .
 - Presents computational time advantage over standard methods in some cases.

Plan

Agenda :

- I. Markovian Case
 - a. Quick review of the algorithm and main theorem
 - b. Proof in simplest case
 - c. Comparison with Euler-Scheme
- II. Path-dependent case
 - a. Quick review of the algorithm
 - b. Illustration for case =2
 - c. Comparison with Euler-Scheme
- III. General case
 - a. Lamperti's transformation
 - b. General case and its limits
- IV. Conclusion

Review of the Algo in the Markovian Case (Part 1)

Goal: Approximate $V_0 = E[g(X_T)]$ (n=1 for $t_0 = 0, ..., t_n = T$) Assumption: Constant non-degenerate σ .

Time Grid Definition:

Discrete time grid on [0, T].

Random variables τ_i follow $\mathcal{E}(\beta)$ exponential distribution.

$$T_k := \left(\sum_{i=1}^k \tau_i\right) \wedge T.$$

$$N_T := \max\{k : T_k < T\}.$$

Euler Scheme:

Define \hat{X} as the Euler scheme solution on the grid $(T_k)_{k\geq 0}$.

$$\hat{X}_{T_{k+1}} = \hat{X}_{T_k} + \mu(T_k, \hat{X}_{T_k}) \Delta T_{k+1} + \sigma \Delta W_{T_{k+1}}.$$

Review of the Algo in the Markovian Case (Part 2)

Estimator ψ :

$$\hat{\psi} = e^{\beta T} \left[g(\hat{X}_T) - g(\hat{X}_{T_{N_T}}) \mathbf{1}_{\{N_T > 0\}} \right] \beta^{-N_T} \prod_{k=1}^{N_T} \mathcal{W}_k^1.$$

Weight Function \mathcal{W}_k^1 :

$$\mathcal{W}_{k}^{1} = \frac{(\mu(T_{k}, \hat{X}_{T_{k}}) - \mu(T_{k-1}, \hat{X}_{T_{k-1}})) \cdot (\sigma^{T})^{-1} \Delta W_{T_{k+1}}}{\Delta T_{k+1}}.$$

Theorem (Unbiasedness and Finite Variance)

Let V_0 be defined as above, with the function g assumed to be globally Lipschitz. Then it is unbiased: $V_0 = \mathbb{E}[\hat{\psi}]$, with finite variance, i.e., $\mathbb{E}[\hat{\psi}^2] < \infty$.

Approximation of V_0 with MC methods:

 $V_0 \approx \hat{V}_0^N := \frac{1}{N} \sum_{n=1}^N \hat{\psi}_n$, where $(\hat{\psi}_n)_{n=1}^N \overset{\text{i.i.d.}}{\sim} \hat{\psi}$, MC estimator with finite variance thanks to law of large numbers.

Sketch of proof on a toy example

Context:

- One-dimensional SDE: $X_t = x_0 + \int_0^t \mu(s, X_s) ds + W_t$ and $\hat{X}_t = x_0 + bt + W_t$.
- Estimator ψ : $\psi = e^{\beta T} g(\hat{X}_T) \prod_{k=1}^{N_T} \frac{(\mu(T_k, X_{T_k}) b) \Delta W_{T_{k+1}}}{\beta \Delta T_{k+1}}$.
- Goal: Show $E[\psi] = E[g(X_T)]$ (it also has finite variance, is integrable but not the point here)

Introduce a sequence ψ_n :

- Defined as: $\psi_n = \mathrm{e}^{\beta T_{n+1}} \left(\prod_{k=1}^{\min(N_T, n)} \frac{(\mu(T_k, \hat{X}_{T_k}) b) \Delta W_{T_{k+1}}}{\beta \Delta T_{k+1}} \right) \times \left(g(\hat{X}_T) \mathbf{1}_{\{N_T \leq n\}} + \left(\frac{\mu b}{\beta} \partial_x u \right) (T_{n+1}, \hat{X}_{T_{n+1}}) \mathbf{1}_{\{N_T > n\}} \right)$
- One has: $E[\psi_n] = E[g(X_T)]$ (We will see why!)
- Uniform integrability for $(\psi_n)_{n>0}$ using technical lemmas.
- Apply dominated convergence to get the result.

Sktech of proof on a toy example: Unbiased

Demonstrating $E[\psi_n] = E[g(X_T)]$ for all n:

- 1. Focus on the case n = 0 as a starting point for the general proof.
- 2. The value function $u(0, x_0)$ is defined as $E[g(X_T)]$.
- 3. Given μ and g smooth u solves Fokker-Planck PDE with terminal condition :

$$\begin{cases} \partial_t u(t,x) + \frac{1}{2} \partial_{xx}^2 u(t,x) + \mu(t,x) \partial_x u(t,x) = 0, \\ \text{for all } (t,x) \in [0,T) \times \mathbb{R}, \\ u(T,x) = g(x). \end{cases}$$

4. Rewrite the PDE and apply Feynman-Kac to get a representation result for $u(0,x_0)$

Sketch of Proof on a Toy Example: Unbiased

Precisely, rewriting the Fokker-Planck Equation:

$$-\partial_t u(t,x) - b\partial_x u(t,x) - \frac{1}{2}\partial_{xx}^2 u(t,x) = (\mu(t,x) - b)\partial_x u(t,x)$$

Feynman-Kac Representation:

$$u(0,x_0) = E\left[g(\hat{X}_T) + \int_0^T (\mu(t,\hat{X}_t) - b)\partial_x u(t,\hat{X}_t)dt\right]$$

Equality with ψ_0 :

Knowing $T_1 = \min(T, \tau_1)$ with $\tau_1 \sim \mathcal{E}(\beta)$ and $\tau_1 \perp \!\!\! \perp W$ (thus \hat{X}), and using the transfer lemma, we get:

$$u(0, x_0) =$$

$$E\left[e^{\beta T_1}g(\hat{X}_T)\mathbf{1}_{\{T_1 \geq T\}} + \frac{e^{\beta T_1}}{\beta}(\mu(T_1,\hat{X}_{T_1}) - b)\partial_x u(T_1,\hat{X}_{T_1})\mathbf{1}_{\{T_1 < T\}}\right]$$
 which is exactly ψ_0

End of Proof

Differentiation of u

ullet For bounded and continuous function ϕ and t>0, we derive:

$$\partial_{\mathsf{x}} E[\phi(\hat{X_T})] = E\left[\frac{\phi(\hat{X_T})W_T}{T}\right].$$

• Based on this same idea and replacing with notations one has:

$$\begin{array}{l} \partial_{x}u(0,x_{0}) = \\ E\left[\frac{e^{\beta\Delta T_{1}}\Delta W_{T_{1}}}{\Delta T_{1}}\left(g(\hat{X}_{T})\mathbf{1}_{\{T\leq T_{1}\}} + \frac{\mu(T_{1},\hat{X}_{T_{1}})-b}{\beta}\partial_{x}u(T_{1},\hat{X}_{T_{1}})\mathbf{1}_{\{T_{1}< T\}}\right)\right]. \end{array}$$

• Changing initial conditions from $(0, x_0)$ to (T_1, \hat{X}_{T_1}) , we find for $T_1 < T$:

$$\begin{split} &\partial_x u(\mathcal{T}_1, \dot{X}_{\mathcal{T}_1}) = \\ &E\left[\frac{e^{\beta\Delta\mathcal{T}_2}\Delta W_{\mathcal{T}_2}}{\Delta\mathcal{T}_2} \left(g(\hat{X}_{\mathcal{T}})\mathbf{1}_{\{\mathcal{T}\leq\mathcal{T}_2\}} + \frac{\mu(\mathcal{T}_2, \hat{X}_{\mathcal{T}_2}) - b}{\beta}\partial_x u(\mathcal{T}_2, \hat{X}_{\mathcal{T}_2})\mathbf{1}_{\{\mathcal{T}_2<\mathcal{T}\}}\right)\right]. \end{split}$$
 Plugged inside the representation formula we have $E[\psi_1] = u(0, x_0)$.

• This change of initial condition can be done for (T_2, \hat{X}_{T_2}) with $u(0, x_0) = E[\psi_2]$ until we reach $T_{N_{T+1}} = T$ with each time $E[g(X_T)] = u(0, x_0) = E[\psi_n]$ for all n using the representation formula.

Numerical Results and Comparaison with Euler-Scheme

Method	Mean value	Statistical error	95% Confidence Interval	Computation time
US (N = 10^4)	0.20860405	0.004339791	[0.20009806, 0.21711004]	0.135535s
Euler Scheme (nSteps = 10^4)	0.20268141	0.004164094	[0.19451979, 0.21084304]	0.475454s
US (N = 10^5)	0.20422262	0.001397635	[0.20148326, 0.20696199]	1.461565s
Euler Scheme (nSteps = 10^5)	0.20521232	0.001316617	[0.20263176, 0.20779289]	4.760887s
US (N = 10^6)	0.20561571	0.000449698	[0.2047343, 0.20649712]	14.002025s
Euler Scheme (nSteps = 10^6)	0.20517708	0.000416448	[0.20436084, 0.20599332]	48.404329s
US (N = 10^7)	0.20561192	0.000142441	[0.20533273, 0.2058911]	2min 20.386787s
Euler Scheme (nSteps = 10^7)	0.20492765	0.000131292	[0.20467031, 0.20518498]	8min 4.982595s
US (N = 10^8)	0.20565379	4.5036e-05	[0.20556552, 0.20574206]	23min 30.145957s
Euler Scheme (nSteps = 10^8)	0.20478412	4.1499e-05	[0.20470278, 0.20486545]	1h 21min 39.45896s

Figure: Here, m=10 for Euler-Scheme and $\beta=0.1$ for the US method

Remark: The value of β was carefully selected to be neither too large nor too small, in order to minimize computation time and statistical error, as mentioned in our study

Comparison: Euler Scheme vs US Method

The observed results align well with our theoretical predictions...

Aspect	Euler Scheme	Unbiased Method
Statistical Error	$O(1/\sqrt{N})$	$O(1/\sqrt{N})$
Bias Error	O(1/m)	0
Computation Time	O(Nm)	$O(\beta TN)$

Table: Theoretical Order of Errors and Computation Time

Note: m represents the number of time steps in the Euler Scheme, and N the number of Monte Carlo simulations.

- Further explanations will be provided on the blackboard.
- Adjusting m to reduce the bias ?

Path-Dependent Case - Part 1

- Goal: Compute path-dependent $V_0 = E[g(X_{t_1}, \dots, X_{t_n})]$, n¿1.
- **Assumption:** Constant non-degenerate σ and g Lipschitz.

Algorithm Overview:

- Recursive iteration of the Markovian Case over time subintervals $[t_k, t_{k+1}]$.
- Same notations as before for W, $(\tau_i)_{i>0}$, $N=(N_s)_{0\leq s\leq t}$, $(T_i)_{i>0}$

Subintervals k = 1, ..., n:

- ullet Number of jump arrivals on $[t_{k-1},t_k): ilde{N}_k:=N_{t_k}-N_{t_{k-1}}$
- $\tilde{T}_0^k := t_{k-1}$ and $\tilde{T}_j^k := t_k \wedge T_{N_{t_{k-1}}+j}$.
- $\bullet \ \Delta \tilde{T}_j^k := \tilde{T}_j^k \tilde{T}_{j-1}^k.$
- $\bullet \ \Delta \tilde{W}^k_j := W_{\tilde{\mathcal{T}}^k_j} W_{\tilde{\mathcal{T}}^k_{j-1}} \text{ for } j=1,\ldots,\tilde{N}_k+1.$

Path-Dependent Case - Part 1

Illustration (n=2):

Let's do a quick illustration on the blackboard of the notations in case n=2, where you have $\tilde{N}_1=2$ and $\tilde{N}_2=1$.

Figure: Case n=2 with $\tilde{N}_1=2$ jumps on $[0,t_1)$, and $\tilde{N}_2=1$ jumps on $[t_1,t_2)$.

Path-Dependent Case - Part 2 (Summary)

- Process $(\tilde{X}_{j}^{k,x})$:
 - Represents subintervals k = 1, ..., n.
 - X evolves with automatic differentiation weights $ilde{W}_{j}^{k, imes}$.
- Recursive Algorithm:

Initialize with terminal base case:
$$\psi_{x}^{n+1} := g(x_1, \dots, x_n)$$
.

For
$$k = 1, ..., n$$
:

Update
$$X^{k,x}$$
 and $X_0^{k,x}$.

Define $\tilde{\psi}_k^{\mathsf{x}}$ recursively:

$$\tilde{\psi}_{k}^{x} := e^{\beta(t_{k} - t_{k-1})} (\psi_{k+1}^{X^{k,x}} - \tilde{\psi}_{k+1}^{X^{k,x}} \mathbf{1}_{\{\tilde{N}_{k} > 0\}}) \beta^{-\tilde{N}_{k}} \prod_{i=1}^{\tilde{N}_{k}} \tilde{W}_{j}^{k,x}$$
(1)

Path-Dependent Case - Part 2 (Summary)

- ullet Obtain the final result: $ilde{\psi}:= ilde{\psi}_1^{\mathbf{x}_0}.$
- \bullet Under added assumptions on g, we get the same theorem as before : No bias and finite variance for $\tilde{\psi}$

In other words, back to our previous example:

Figure: Case n=2 with $\tilde{N}_1=2$ jumps on $[0,t_1)$, and $\tilde{N}_2=1$ jumps on $[t_1,t_2)$.

Path-Dependent Case - Part 2 (Summary)

• The two different processes on $[t_1, t_2]$ induce two different variables:

$$\widetilde{\psi}_{2}^{\widetilde{X}_{3}^{1}} := e^{\beta(t_{2}-t_{1})} \big(g\big(\widetilde{X}_{2}^{1}, \widetilde{X}_{2}^{2, \widetilde{X}_{3}^{1}} \big) - g\big(\widetilde{X}_{2}^{1}, \widetilde{X}_{1}^{2, \widetilde{X}_{3}^{1}} \big) \big) \beta^{-1} \widetilde{\mathcal{W}}_{1}^{2, \widetilde{X}_{3}^{1}}$$

and

$$\widetilde{\psi}_{2}^{\widetilde{X}_{2}^{1}} := e^{\beta(t_{2}-t_{1})} (g(\widetilde{X}_{2}^{1}, \widetilde{X}_{2}^{2, \widetilde{X}_{2}^{1}}) - g(\widetilde{X}_{2}^{1}, \widetilde{X}_{1}^{2, \widetilde{X}_{2}^{1}})) \beta^{-1} \widetilde{\mathcal{W}}_{1}^{2, \widetilde{X}_{2}^{1}}.$$

• With $\widetilde{\psi}_2^{\widetilde{X}_2^1}$, $\widetilde{\psi}_2^{\widetilde{X}_3^1}$ and the variables on $[0, t_1]$, we obtain the variable

$$\widetilde{\psi} := \widetilde{\psi}_1^{x_0} = e^{\beta t_1} (\widetilde{\psi}_2^{\widetilde{X}_3^1} - \widetilde{\psi}_2^{\widetilde{X}_2^1}) \beta^{-2} \widetilde{\mathcal{W}}_1^{1,x_0} \widetilde{\mathcal{W}}_2^{1,x_0}.$$

Numerical Results

We consider the same SDE as before for X and aim to compute the Asian call option payoff: $V_0 := \mathbb{E}[\left(e^{X_T} - K\right)^+]$, with parameters $K = 1, \ T = 1, \ n = 10$, and $t_k := \frac{k}{n}T$ for $k = 1, 2, \ldots, n$.

Comparison with Euler Scheme

- Of course, still more accurate
- Careful with computation time and not simple to improve compared to Euler-Scheme

Generalization to General SDEs

- Extension to SDEs with non-constant diffusion coefficients.
- Focus on computing $V_0 = \mathbb{E}[g(X_T)]$.
- Consider the SDE:

$$X_0 = x_0, \quad dX_t = \mu(t, X_t) dt + \sigma(t, X_t) dW_t.$$

Lamperti's Transformation for simplifying SDEs:

For d=1, define $h(t,x)=\int_0^x \frac{1}{\sigma(t,y)}\,dy$.

Transforms the SDE to a form with constant diffusion for $Y_t = h(t, X_t)$.

For d > 1, a similar transformation is possible if σ is a positive definite matrix.

• The transformed SDE for Y_t can be expressed using Itô's formula.

Unbiased Simulation Algorithm and Challenges

Unbiased Simulation Algorithm:

- Adaptation for general SDEs
- Theorem: Finite expectation of $|\hat{\psi}|$, ensuring $V_0 = \mathbb{E}[\hat{\psi}]$ but infinite variance
- Driftless case: finite variance using antithetic trick

Challenges and Future Research:

- Addressing infinite variance issues
- Expanding to higher dimensions and path-dependent SDEs.

What we could have done:

- Compare with PDEs approximation
- Study the multidimentional case

