Relaciones, Preórdenes

Silvio Reggiani

Complementos de Matemática II (LCC) Facultad de Ciencias Exactas, Ingeniería y Agrimensura Universidad Nacional de Rosario

11 de septiembre de 2018

Repaso de relaciones

Una **relación** $\mathcal R$ entre un conjunto A y un conjunto B es un subconjunto del producto cartesiano $A\times B$

$$\mathcal{R} \subset A \times B$$
 (el orden importa)

- La relación \mathcal{R} nos dice con qué elementos de B (posiblemente ninguno) se "relaciona" cada elemento de A
- ▶ Si $a \in A$, $b \in B$, significan lo mismo:
 - a está relacionado con b
 - $(a,b) \in \mathcal{R}$
 - ► aRb

Ejemplos triviales

- $ightharpoonup \mathcal{R} = \varnothing \subset A \times B$ (ningún elemento de A se relaciona con ningún elemento de B)
- $ightharpoonup \mathcal{R} = A \times B$ (todos los elementos de A se relacionan con todos los elementos de B)

Relación funcional

$$(a,b),\,(a,c)\in\mathcal{R}\implies b=c$$
 (función parcial)

Dominio e imagen de una relación $\mathcal{R} \subset A \times B$

- ▶ dom $\mathcal{R} := \{a \in A : \exists b \in B, a\mathcal{R}b\}$
- $\blacktriangleright \ \mathsf{im}\, \mathcal{R} := \{b \in B : \exists a \in A, a\mathcal{R}b\}$

Ejemplo

Una función (total) $f: A \to B$ es una relación funcional "total a izquierda", es decir dom f = A:

$$(a,b) \in f \subset A \times B$$

- $ightharpoonup \forall a \in A, \exists! b \in B, afb$
- \blacktriangleright b := f(a) (notación)

Operaciones con relaciones

Inversión

Si $\mathcal R$ es una relación entre A y B se define la relación inversa entre B y A por

$$\mathcal{R}^{-1} := \{(b,a) \in B \times A : a\mathcal{R}b\}$$

Proposición

Sea f una relación funcional. Entonces f^{-1} es una relación funcional sii f es inyectiva.

Demostración.

$$\Rightarrow bf^{-1}a \wedge bf^{-1}a' \implies a = a'$$

$$\Leftarrow$$
 afb \land a'fb \Longrightarrow a = a'

Unión

$$\mathcal{R} \cup \mathcal{S} \subset A \times B$$

(solo funciona cuando $\mathcal R$ y $\mathcal S$ son ambas relaciones entre A y B) Ejemplo

- $ightharpoonup \mathcal{R} = "<" = \{(a,b): a < b\} \subset \mathbb{R} \times \mathbb{R}$
- \triangleright $S = " = " = \{(a, a) : a \in \mathbb{R}\} \subset \mathbb{R} \times \mathbb{R}$
- **▶** "<" ∪ "=" = " ≤"

Intersección

$$\mathcal{R} \cap \mathcal{S} = \{(a, b) : a\mathcal{R}b \wedge a\mathcal{S}b\}$$

Diferencia, etc...

Composición

- \triangleright \mathcal{R} relación entre A y B
- \triangleright S relación entre B y C

Ejemplo

Si $f: A \to B$ y $g: B \to C$ son funciones, entonces $g \circ f$ (como lo acabamos de definir) es una función:

- ▶ Dado $a \in A$, $\exists! b \in B$, afb [b = f(a)]
- $ightharpoonup \exists ! c \in C, bgc \ [c = g(b) = g(f(a))]$
- ▶ Luego, dado $a \in A$, $\exists! c \in C$, $a(g \circ f)c$. Es decir, $g \circ f$ es una relación funcional.

La composición de relaciones coincide con la composición de funciones en el sentido usual.

Restricción

- $\triangleright \mathcal{R}$ relación entre A y B
- $ightharpoonup A' \subset A, B' \subset B$
- ▶ La restricción de \mathcal{R} a $A' \times B'$ es

$$\mathcal{R}|_{\mathcal{A}'\times\mathcal{B}'}:=\{(a,b):a\in\mathcal{A}',b\in\mathcal{B}',a\mathcal{R}b\}$$

Restricción de funciones Si $f: A \rightarrow B$, $A' \subset A$.

$$f|_{A'}=f|_{A'\times B}$$

Relación en un conjunto

- ▶ Un caso muy interesante es cuando $\mathcal{R} \subset A \times A$ relaciona los elementos del conjunto A entre sí. Esto también se llama una relación en A.
- Las relaciones en A se pueden representar con grafos dirigidos:
 - Vértices: elementos de A
 - ▶ aRa' se representa con una flecha $a \rightarrow a'$

Igualdad

Menor (o igual)

Tipos de relaciones

Reflexiva: $\forall a \in A : aRa$

La igualdad es la menor relación reflexiva

Simétrica:
$$\forall a, b \in A : a\mathcal{R}b \implies b\mathcal{R}a$$

Antisimétrica:
$$\forall a, b \in A : aRb \land bRa \implies a = b$$

$$a \longrightarrow b$$

$$a \leftarrow b$$

Transitiva:
$$\forall a, b, c \in A : aRb \land bRc \implies aRc$$

$$b \longrightarrow b \longrightarrow$$

 $a \longrightarrow b \longrightarrow c$ (importante en categorías)

Tipos de relaciones

Ejercicio

Las propiedades anteriores se heredan cuando restringimos la relación a un subconjunto de A.

Relaciones de equivalencia

- Notación: $\mathcal{R} = \sim$
- ➤ ~ reflexiva
- ➤ ~ simétrica
- ▶ ~ transitiva

Las relaciones de equivalencia son importantes porque nos permiten "etiquetar" los elementos de un conjunto sin ambigüedades o repeticiones.

Ejemplos de relaciones de equivalencia

- "=" Ejemplo trivial (muchas etiquetas)
- ► Congruencia módulo 2 en Z:

$$m \sim n \iff m - n \equiv 0 \mod 0$$

Etiquetas: "par", "impar"

¿Qué significa etiquetar?

- $ightharpoonup \sim$ relación de equivalencia en A
- ▶ $\bar{a} = \{b \in A : a \sim b\}$ es la clase de equivalencia u órbita de $a \in A$
- ightharpoonup $\bar{a} \neq \varnothing \ (a \in \bar{a})$
- ▶ Dados $a, b \in A$, o bien $\bar{a} = \bar{b}$ o bien $\bar{a} \cap \bar{b} = \emptyset$
- lacktriangle A es unión disjunta de la clases de equivalencia de \sim
- Conjunto cociente:

$$A/\sim := \{\bar{a}: a \in A\} \subset \mathcal{P}(A)$$

es una partición de A. Es decir,

- $A = \bigcup_{X \in A/\sim} X$
- $\forall X \in A/\sim, X \neq \emptyset$

Teorema

Hay una correspondencia biyectiva entre relaciones de equivalencia en A y particiones de A.

Demostración.

- Ya vimos que una relación de equivalencia induce una partición
- ▶ Recíprocamente, dada una partición $P \subset \mathcal{P}(A)$ definimos

$$a \sim b \iff \exists X \in P : a, b \in X$$

(verificar como ejercicio que \sim es una relación de equivalencia)

Estas dos construcciones son recíprocas

Ejemplo 1 (importante)

Dada una función $f: A \rightarrow B$,

$$\ker f := \{(a, a') : f(a) = f(a')\}$$

es una relación de equivalencia en A (volveremos sobre esto más adelante)

Ejemplo 2

Dada una relación de equivalencia \sim en A, podemos construir la **proyección al cociente**

$$\pi: A \to A/\sim, \qquad \pi(a) = \bar{a}$$

Se tiene que $\ker \pi = \sim$. Luego Toda relación de equivalencia es el kernel de una función (también volveremos sobre esto)

Teorema (de factorización)

 $Si \sim es$ una relación de equivalencia en A y $f: A \rightarrow B$ es una función tal que $a \sim b \implies f(a) = f(b)$, entonces existe una única función $\tilde{f}: A/\sim \to B$ tal que $f=\tilde{f}\circ \pi$.

Demostración.

Ejercicio. Definir $f(\bar{a}) = f(a)$ y probar que esta definición no depende del representante elegido.

Conjuntos preordenados

Un preorden en un conjunto A es una relación que establece jerarquías entre sus elementos (con mínimos requisitos)

Definición formal

Una relación \leq en A es un preorden si es

- reflexiva $(a \le a)$ y
- ▶ transitiva $(a \le b, b \le c \implies a \le c)$

$$a \xrightarrow{\leq} b \xrightarrow{\leq} c$$

Observación

Un preorden puede tener ciclos

 $b \longrightarrow c$ es un preorden válido

Ejemplo

¿Cuántos preórdenes hay en $A = \{a, b\}$? Rta: 4

 $b \qquad a \longrightarrow b \qquad a \longleftarrow b$

Ejercicio

¿Cuántos preórdenes hay en $A = \{a, b, c\}$? Rta: 29

Ejercicio*

¿Cuántos preórdenes hay en un conjunto con *n* elementos? Rta: muchos

Ejemplo

- Una relación de equivalencia en A es un preorden.
- ightharpoonup ¿Cuántas relaciones de equivalencia hay en $A = \{a, b, c\}$?
- ightharpoonup Relaciones de equivalencia en A \iff Particiones de A
 - $P_1 = \{\{a, b, c\}\}$
 - ▶ $P_2 = \{\{a, b\}, \{c\}\}$
 - $P_3 = \{\{a, c\}, \{b\}\}\}$
 - $ightharpoonup P_4 = \{\{b,c\},\{a\}\}$
 - $P_5 = \{\{a\}, \{b\}, \{c\}\}\}$
- ▶ $|Relaciones de equivalencia| = 5 \ll 29 = |Preórdenes|$
- ▶ |Relaciones en A| = $|\mathcal{P}(A \times A)| = 2^9 = 512$

Ejercicio

Graficar los preórdenes asociados a las relaciones de equivalencia anteriores.

Ejemplo

- $ightharpoonup A = \{ Piedra, Papel, Tijera \}$
- ▶ Piedra ≤ Papel, Papel ≤ Tijera, Tijera ≤ Piedra
- ► No es un preorden (¿por qué?)

Ejemplo/Ejercicio

Construcción de un preorden a partir de una relación cualquiera \mathcal{R} en un conjunto A.

- $ightharpoonup \mathcal{R}^{=} = \mathcal{R} \cup \{(a, a) : a \in A\}$ (clausura reflexiva)
- ▶ $\mathcal{R}^{<} = \mathcal{R} \cup \{(a, c) : \exists \text{ un camino de } a \text{ a } c \text{ con flechas de } \mathcal{R}\}$ $= \bigcap \mathcal{S} \text{ (clausura transitiva)}$

$$\mathcal{S} \supset \mathcal{R}$$

 \mathcal{S} transitiva

• $(\mathcal{R}^{=})^{<} = (\mathcal{R}^{<})^{=}$ es el menor preorden que contiene a \mathcal{R} .

Más ejemplos

- ightharpoonup A imes A es un preorden en A
- $ightharpoonup \varnothing$ no es un preorden en A (si $A \neq \varnothing$)
- ► El orden (menor o igual) en la recta R es un preorden y se hereda a cualquier subconjunto: N, Z, Q, ...
- ▶ Importante: $a \mid b$ (a divide a b) es un preorden en \mathbb{Z} . Recordar: $a \mid b \iff \exists c \in \mathbb{Z} : b = ac$

- ▶ No es antisimétrico: $n \le -n \le n$
- ► Hay máximo: $\forall n, n \leq 0$
- ► Hay "mínimos": $\forall n, 1 \leq n, \forall n, -1 \leq n$

Jerarquías

► a es elemento maximal si

$$\forall x, a \leq x \implies x \leq a$$

Nadie le gana a *a*

▶ a es un **máximo** si

$$\forall x, x \leq a$$

a le gana a todos

Ejercicio

- ▶ Máximo ⇒ Maximal
- ▶ Mínimo ⇒ Minimal

a es **elemento minimal** si

$$\forall x, x \leq a \implies a \leq x$$

a no le gana a nadie

a es un mínimo si

$$\forall x, a \leq x$$

Todos le ganan a a

Ejemplos

- \blacktriangleright (\mathbb{Z}, \leq) no tienen elementos maximales ni minimales
- (\mathbb{Z}, \mid) 0 es máximo
 - ► ±1 son los mínimos
- " \leq " = $A \times A$: todo elemento es máximo y mínimo
- "=" = \varnothing (clausura reflexiva de la relación vacía): todo elemento es minimal y maximal a la vez; no hay máximos ni mínimos si $|A| \ge 2$

Cotas superiores/inferiores, supremos/ínfimos

Sean (A, \leq) un conjunto preordenado, $B \subset A$ y $a \in A$. Decimos que

- a es cota superior de B si ∀b ∈ B, b ≤ a. Si existe una cota superior de B decimos también que B está acotado superiormente
- a es cota inferior de B si ∀b ∈ B, a ≤ b. Si existe una cota inferior de B decimos también que B está acotado inferiormente
- ▶ a es un **supremo** de B si A es un mínimo de

$$\{c \in A : c \text{ es cota superior de } B\}$$

▶ a es un **ínfimo** de B si a es un máximo de

{cinA : c es cota inferior de A}

Axioma del supremo

Axioma del supremo

Todo subconjunto no vacío y acotado superiormente (de un conjunto preordenado) tiene supremo.

Ejemplo

- ▶ (\mathbb{R}, \leq) satisface el axioma del supremo.
- $lackbox(\mathbb{Q},\leq)$ no satisface el axioma del supremo. Por ejemplo

$${q \in \mathbb{Q} : q^2 \le 2}$$

es acotado superiormente pero no tiene supremo.

Luego el axioma del supremo no es una propiedad hereditaria.

Ejemplo/Ejercicio importante

- ► X conjunto (dato)
- ▶ $(\mathcal{P}(X), \subset)$ es un conjunto preordenado
- ► X es máximo
- ▶ Ø es mínimo
- Luego, todo subconjunto no vacío B ⊂ P(X) es acotado superior/inferiormente (B es un conjunto de subconjuntos de X)
- ▶ $\sup B = \bigcup B$

Observación

Sea (A, \leq) un conjunto preordenado y $B \subset A$

- ▶ a cota superior de B y $a \in B \implies a$ elemento maximal de B
- ▶ $a \in B$ elemento maximal \implies a cota superior de B

Orden inverso

Si (A, ≤) es un conjunto preordenado, el orden inverso ≥ se define como

$$a \ge b \iff b \le a$$
 (relación inversa)

- $ightharpoonup (A, \geq)$ es un conjunto preordenado y todas las definiciones se dualizan:
 - ightharpoonup a elto. maximal en $(A, \leq) \iff a$ elto. minimal en (A, \geq)
 - ightharpoonup a cota superior en $(A, \leq) \iff a$ cota inferior en (A, \geq)
 - ightharpoonup a supremo en $(A, \leq) \iff a$ ínfimo en (A, \geq)
 - Axioma del supremo en $(A, \leq) \iff$ Axioma del ínfimo en (A, >)
- ▶ El grafo del preorden (A, \ge) es el mismo grafo de (A, \le) pero invirtiendo el sentido de las flechas

Ejercicio

 (A, \leq) satisface el Axioma del supremo \iff (A, \leq) satisface el Axioma del ínfimo (jel mismo preorden!).