ЗАДАНИЕ ПО КУРСУ «УРАВНЕНИЯ МАТЕМАТИЧЕСКОЙ ФИЗИКИ»

Автор: Хоружий Кирилл

От: 22 марта 2022 г.

Содержание

Te	орМин №1	2
1	Неделя I	3
2	Неделя II	5
3	Нелеля III	6

ТеорМин №1

Излучение. Волновое уравнение с источником:

$$(\partial_t^2 - c^2 \nabla^2) u = \chi, \tag{1}$$

с законом дисперсии $\varpi=cq$.

Функция Грина оператора $\partial_t^2 - c^2 \nabla^2$:

$$G(t,r) = \frac{\theta(t)}{4\pi cr} \delta(r - ct),$$

а значит выражение для поля:

$$u(t, \mathbf{r}) = \frac{1}{4\pi c^2} \int \frac{d^3 r_1}{R} \chi(t - R/c, \mathbf{r}_1), \qquad (2)$$

где $R = |\boldsymbol{r} - \boldsymbol{r}_1|$.

Уравнение диффузии. Уравнение диффузии:

$$\left(\partial_t - \nabla^2\right) u = 0,\tag{3}$$

решение которого может быть найдено в виде:

$$u(t, \boldsymbol{x}) = \int_{\mathbb{R}^d} \frac{dy_1 \dots dy_d}{(4\pi t)^{d/2}} \exp\left(-\frac{(\boldsymbol{x} - \boldsymbol{y})^2}{4t}\right) u_0(\boldsymbol{y}). \tag{4}$$

Асимтотики могут быть найдены в виде

$$u(t, \boldsymbol{x}) \approx \frac{A}{(4\pi t)^{d/2}} \exp\left(-\frac{\boldsymbol{x}^2}{4t}\right), \quad A = \int_{\mathbb{R}^d} dy_1 \dots dy_d \ u_0(\boldsymbol{y}).$$
 (5)

При A = 0 асимтотика будет соответствовать

$$u(t, \boldsymbol{x}) \approx \frac{\boldsymbol{B} \cdot \boldsymbol{x}}{(4\pi t)^{d/2+1}} \exp\left(-\frac{\boldsymbol{x}^2}{4t}\right), \quad \bar{B} = 2\pi \int_{\mathbb{R}^d} dy_1 \dots dy_d \; \boldsymbol{y} \, u_0(\boldsymbol{y}),$$
 (6)

где асимтотики имеют место при $t\gg l^2,\, l$ – масштаб на котором локализовано поле.

Уравнение диффузии (с накачкой). При наличии правой части:

$$(\partial_t - \nabla^2)u = \varphi$$

можем найти функцию Грина для оператора $\partial_t - \nabla^2$

$$u(t, \boldsymbol{x}) = \int G(t - \tau, \boldsymbol{x} - \boldsymbol{y}) \varphi(t, \boldsymbol{y}) d\tau d^d \boldsymbol{y}, \qquad G(t, \boldsymbol{r}) = \frac{\theta(t)}{(4\pi t)^{d/2}} \exp\left(-\frac{r^2}{4t}\right).$$

Меленные переменные. Рассмотрим прозвольное возмущение гармонического осциллятора:

$$\left(\partial_t^2 + \omega_0^2\right) x(t) = \varepsilon f(t, x, \dot{x}). \tag{7}$$

Приближенно (до $o(\varepsilon)$) можем методом Боголюбова-Крылова найти решение в виде

$$x(t) = A(t)\cos(\omega_0 t + \varphi(t)), \tag{8}$$

где зависимость от времени амплитуды и фазы определяестся уравнениями

амплитуды и фазы определяестся уравнениями
$$\partial_t A(t) = \frac{1}{2\pi\omega_0} \int_{\omega_0 t - \pi}^{\omega_0 t + \pi} f(\tau, x, \dot{x}) \cos\left(\omega_0 \tau + \varphi(t)\right) d(\omega_0 \tau), \tag{9}$$

$$\partial_t \varphi(t) = \frac{-1}{2\pi A\omega_0} \int_{\omega_0 t - \pi}^{\omega_0 t + \pi} f(\tau, x, \dot{x}) \sin(\omega_0 \tau + \varphi(t)) d(\omega_0 \tau). \tag{10}$$

Уравнение Хопфа. В акустике естественно возникает уравнение Хопфа:

$$\partial_t u + u \, \partial_x u = 0.$$

Решение может быть найдено в виде

$$x(t) = x_0 + u_0(x_0)t$$
, $u(x(t), t) = c(x_0) = u_0(x_0)$.

где сначала разрешаем уравнение $c=u_0(x_0)$ относительно $c=c(x_0)$, а потом разрешаем уравнение на x(t) относительно c=c(x(t),t). Зная, что u(x(t),t)=c(x(t),t), находим u(x,t)=c(x,t).

Уравнение Хопфа (с накачкой). Добавим к уравнению накачку:

$$\partial_t u + u \, \partial_x u = f(x, t).$$

Система может быть сведена к

$$\begin{cases} \dot{u} = f(t, x(t)) \\ \dot{x} = u(t, x(t)) \end{cases} \Leftrightarrow \ddot{x} = f(x, t), \quad \Rightarrow \quad x(t) = x(t, x_0, \dot{x}_0),$$

где $\dot{x}_0 = u_0(x_0)$. Сначала разрешаем уравнение x(t) относительно $x_0 = x_0(t,x)$, а потом подставляем этот x_0 в $u(t,x) = \dot{x}(t,x_0(t,x))$, что и является решением исходной задачи.

Уравнение Бюргерса. Добавим диссипацию в уравнение Хопфа:

$$\partial_t u + u \, \partial_x u = \partial_x^2 u,$$

так получим уравнение Бюргерса.

Заметим, что преобразование Коула-Хопфа

$$\psi = \exp\left(-\frac{1}{2}h\right), \quad u = \partial_x h, \quad \Rightarrow \quad (\partial_t - \partial_x^2)\psi = 0.$$

Имея начальные условия для $\psi_0(x)$, можем найти

$$\psi(t,x) = \int_{\mathbb{R}} \psi_0(y) \frac{\theta(t)}{\sqrt{4\pi t}} \exp\left(-\frac{(x-y)^2}{4t}\right) dy,$$

откуда находим решение

$$u(t,x) = -2\partial_x \ln \psi(t,x).$$

1 Неделя I

N_{2} 4.1.6

Найдём решение волнового уравнения (1) для точечного гармонческого источника

$$\chi = \cos(\omega t)\delta(\mathbf{r}).$$

Подставляя ξ в (2), находим

$$u(t, \mathbf{r}) = \frac{1}{4\pi c^2} \int \frac{d^3 r_1}{|\mathbf{r} - \mathbf{r}_1|} \cos(\omega t - \omega |\mathbf{r} - \mathbf{r}_1|/c) \delta(\mathbf{r}_1) = \frac{1}{4\pi c^2} \frac{\cos\left(\omega (t - \frac{r}{c})\right)}{r}.$$

N_{2} 4.1.7

Найдём значение функции Грина при r=0 для оператора $\partial_t^2 + \nabla^4$. Для начала перейдём к Фурье образу

$$\tilde{G}(t, \boldsymbol{q}) = \int d^3 \boldsymbol{x} \ e^{-i\boldsymbol{q}\cdot\boldsymbol{x}} G(t, \boldsymbol{x}), \quad \Rightarrow \quad \left(\partial_t^2 + q^4\right) \tilde{G} = \delta(t).$$

Решение этого уравнение известно¹:

$$\tilde{G}(t) = \theta(t) \frac{1}{q^2} \sin(q^2 t).$$

Осталось найти

$$G(t,0) = \theta(t) \int \frac{d^3 \mathbf{q}}{(2\pi)^3} \frac{\sin(q^2 t)}{q^2} = \frac{\theta(t)}{(2\pi)^3} \int_0^{\pi} \sin\theta \, d\theta \int_0^{2\pi} d\varphi \int_0^{\infty} \sin\left(q^2 t\right) = \frac{1}{8\sqrt{2}\pi^{5/2}} \cdot \frac{\theta(t)}{\sqrt{t}}.$$

N_{2} 4.2.2

Найдём решение одномерного дифузионного уравнения для

$$(\partial_t - \partial_x^2) u = 0,$$
 $u_0(x) = \exp\left(-\frac{x^2}{2l^2}\right).$

Точное решение. Воспользуемся (4), тогда

$$u(t,x) = \frac{1}{\sqrt{4\pi t}} \int_{\mathbb{R}} \exp\left(-\frac{(x-y)^2}{4t} - \frac{y^2}{2l^2}\right) dy.$$

Выделяя полный квадрат, находим, что

$$\frac{(x-y)^2}{4t} + \frac{y^2}{2l^2} = \left(\sqrt{\frac{1}{2l^2} + \frac{1}{4t}}y - \frac{x}{4t\sqrt{\frac{1}{2l^2} + \frac{1}{4t}}}\right)^2 + \frac{x^2}{2l^2 + 4t},$$

а значит

$$u(t,x) = \frac{l}{\sqrt{l^2 + 2t}} \exp\left(-\frac{x^2}{2l^2 + 4t}\right).$$

¹ Конпект, (1.11).

Асимптотика. Так как фунция u_0 симметрична, то через (5) находим

$$A = \int_{\mathbb{R}} u_0(x) dx = l\sqrt{2\pi}, \quad \Rightarrow \quad u(t,x) \approx \frac{l}{\sqrt{2t}} \exp\left(-\frac{x^2}{4t}\right),$$

что является асимптотикой точного решения при $t\gg l^2.$

№ 4.2.3

Найдём асимтотическое поведение решение одномерного диффузного уравнения (3) для различных начальных условий.

1. Рассмотрим

$$u_0(x) = x \exp\left(-\frac{x^2}{2l^2}\right).$$

В силу нечетности функции, через (6), находим

$$B = 2\pi \int_{\mathbb{R}} x^2 \exp\left(-\frac{x^2}{2l^2}\right) = -4\pi l^2 \ \partial_{\alpha} \int_{-\infty}^{+\infty} e^{-\alpha x^2/2l^2} \ dx = -4\pi l^2 \sqrt{2\pi} l \ \partial_{\alpha} \frac{1}{\sqrt{\alpha}} = l^3 (2\pi)^{3/2},$$

а значит искомая асимптотика

$$u(t,x) \approx \left(\frac{l}{\sqrt{2}}\right)^3 \frac{xe^{-x^2/4t}}{t^{3/2}}.$$

2. Рассмотрим

$$u_0(x) = \exp\left(-\frac{|x|}{l}\right).$$

В силу четности функции, через (5), находим

$$A = 2 \int_0^\infty e^{-x/l} dx = 2l.$$

Тогда искомая асимптотика

$$u(t,x) \approx \frac{l}{\sqrt{\pi}} \frac{e^{-x^2/4t}}{\sqrt{t}}.$$

3. Рассмотрим

$$u_0(x) = x \exp\left(-\frac{|x|}{l}\right).$$

В силу нечетности функции, через (6), находим

$$B = 4\pi \int_0^\infty x^2 \exp\left(-\frac{|x|}{l}\right) dx = 4\pi l^2 \ \partial_\alpha^2 \int_0^\infty e^{-\alpha x/l} dx = 2\pi l^2 \partial_\alpha^2 \left(\frac{l}{\alpha}\right) = 8\pi l^3,$$

а значит

$$u(t,x) \approx \frac{l^3}{\sqrt{\pi}} \frac{xe^{-x^2/4t}}{t^{3/2}}.$$

4. Рассмотрим

$$u_0(x) = \frac{1}{x^2 + l^2}.$$

В силу четности функции, через (5), находим

$$A=\int_{-\infty}^{\infty}\frac{1}{x^2+l^2}\,dx=2\pi i\frac{1}{2il}=\frac{\pi}{l},$$

тогда искомая асимптотика

$$u(t,x) \approx \frac{\sqrt{\pi}}{2l} \frac{e^{-x^2/4t}}{\sqrt{t}}.$$

5. Рассмотрим

$$u_0(x) = \frac{x}{(x^2 + l^2)^2}.$$

В силу четности функции, через (6), находим

$$B = 2\pi \int_{\mathbb{R}} \frac{x}{(x^2 + l^2)^2} dx = 4\pi i \lim_{x \to il} \left(\frac{x^2}{(x + il)^2} \right)' = \frac{\pi^2}{l}.$$

Тогда искомая асимптотика

$$u(t,x) = \frac{\sqrt{\pi}}{8l} \frac{xe^{-x^2/4t}}{t^{3/2}}.$$

2 Неделя II

$N_{2}1.6.2.2$

Решим уравнение (7) для $f(\dot{x}) = -\varepsilon \dot{x}^3$. Подставляя f(t) в (9) и (10), находим уравнения на амплитуду и фазу:

$$\dot{A} = -\frac{3}{8}\varepsilon A^3 \omega_0^2, \qquad \dot{\varphi} = 0,$$

откуда сразу находим $\varphi(t) = \varphi_0$ и

$$\frac{dA}{A^3} = \left(-\frac{3}{8}\varepsilon\omega_0^2\right)dt, \quad \Rightarrow \quad A = \frac{A_0}{\sqrt{1 + \frac{3}{4}A_0\varepsilon\omega_0^2t}},$$

а значит искомое решение

$$x(t) = \frac{A_0}{\sqrt{1 + \frac{3}{4}A_0\varepsilon t}}\sin(t + \varphi_0).$$

N_{2} . 6.2.6

Решим уравнение (7) для $f(t) = \cos t$. Знаем, что точное решение

$$x(t) = A\sin(t + \varphi_0) + \frac{\varepsilon t}{2}\sin(t).$$

Однако решим методом медленных амплитуд.

Подставляя f(t) в (9) и (10), находим уравнения на амплитуду и фазу:

$$\begin{cases} \dot{A}(t) = \frac{\varepsilon}{2}\cos(\varphi(t)), \\ \dot{\varphi}(t) = \frac{-\varepsilon}{2A(t)}\sin(\varphi(t)), \end{cases}$$

которые приводят к двум случаям.

Нулевая фаза. При $\varphi(0) \stackrel{\text{def}}{=} \varphi_0 = \frac{\pi}{2} \pm \frac{\pi}{2} + 2\pi k$ видим, что $\dot{\varphi} = 0$, а значит $\varphi(t) = \text{const.}$ Тогда уравнение на амплитуду легко интегрируется, и находим (считая $A(0) \stackrel{\text{def}}{=} A_0$)

$$A(t) = A_0 + \frac{\varepsilon}{2}\cos(\varphi_0)t,$$

что прекрасно описывает резонанс:

$$x(t) = \left(A_0 + \frac{\varepsilon}{2}\cos(\varphi_0)t\right)\sin(t), \quad \varphi_0 = 0.$$

Ненулевая фаза. Разделим два уравнения друг на друга:

$$\frac{dA}{d\varphi} = -\frac{A}{\operatorname{tg}\varphi}, \quad \Rightarrow \quad \log A = -\log \sin \varphi + \tilde{c}, \quad \Rightarrow \quad A = A_0 \frac{\sin \varphi_0}{\sin \varphi},$$

таким образом нашли удобный первый интеграл системы.

Подставляя в выражение для $\dot{\varphi}$ находим

$$\dot{\varphi} = -\frac{\varepsilon}{2}\sin^2(\varphi), \quad \Rightarrow \quad \frac{d\varphi}{\sin^2\varphi} = -\frac{\varepsilon}{2}\,dt, \quad \Rightarrow \quad \varphi = \arctan\left(\frac{1}{\frac{1}{\lg\varphi_0} + \frac{\varepsilon t}{2}}\right).$$

Теперь нужно подставить $\varphi(t)$ в выражение для \dot{A} и разложить по ε :

$$\cos \arctan x = \frac{1}{\sqrt{1+x^2}}, \quad \Rightarrow \quad \dot{A} = \frac{\varepsilon}{2} \frac{1}{\sqrt{1+\left(\frac{t\varepsilon}{2} + \frac{1}{\operatorname{tg}(\varphi_0)}\right)^2}} = \frac{\varepsilon}{2\sqrt{1+\operatorname{tg}^2\varphi_0}} + o(\varepsilon),$$

а значит искомая амплитуда

$$A(t) = A_0 + \frac{1}{\sqrt{1 + \lg^2 \varphi_0}} \frac{\varepsilon}{2} t.$$

Итого находим (при $\varphi_0 \neq \pi/2$)

$$x(t) = \left(A_0 + \frac{1}{\sqrt{1 + \lg^2 \varphi_0}} \frac{\varepsilon t}{2}\right) \sin\left(t + \arctan\left(\frac{1}{\lg \varphi_0} + \frac{\varepsilon t}{2}\right)\right).$$

$N_{2}3.6.2.8$

Решим уравнение (7) для $f(t) = \kappa \cos t + (1 - x^2)\dot{x}$. Подставляя f(t) в (9) и (10), находим уравнения на амплитуду и фазу:

$$\dot{A} = \frac{1}{2}\varepsilon \left(\kappa\cos\varphi + A\left(1 - \frac{A^2}{4}\right)\right), \qquad \dot{\varphi} = -\frac{1}{2A}\varepsilon\kappa\sin(\varphi).$$

Считая к тоже малым параметром, решаем, аналогично семинару, уравнение с разделяющимеся переменными:

$$\dot{A} = \frac{1}{2} \varepsilon A \left(1 - \frac{A^2}{4} \right), \quad \Rightarrow \quad A(t) = 2 \frac{A_0}{\sqrt{4e^{-\varepsilon t} + A_0^2 \left(1 - e^{-\varepsilon t} \right)}},$$

что похоже на правду, так как всё также

$$\lim_{t \to \infty} A(t) = 2$$

то есть сохраняется предельный цикл на плоскости $\{x, \dot{x}\}$.

Для фазы можем найти решение при $t \to \infty$:

$$\dot{\varphi} = -\frac{\varepsilon \kappa}{2} \sin(\varphi) \sqrt{\frac{4 + A_0^2(e^{\varepsilon t} - 1)}{4A_0^2 e^{\varepsilon t}}} \approx -\frac{\varepsilon \kappa}{4} \sin(\varphi), \quad \Rightarrow \quad \operatorname{tg}\left(\frac{1}{2}\varphi(t)\right) = \operatorname{tg}\left(\frac{1}{2}\varphi_0\right) \exp\left(-\frac{\varepsilon \kappa}{4}t\right).$$

Возможно даже корректным будет выражение

$$\varphi(t) = 2 \arctan\left(\operatorname{tg}\left(\frac{1}{2}\varphi_0\right) \exp\left(-\frac{\varepsilon\kappa}{4}t\right)\right),$$

получается малая накачка определяет асимптотику на фазы на бесконечности.

Сама асимптотика будет иметь вид

$$\varphi(t \to \infty) = 2 \operatorname{arcctg}\left(e^{\frac{\varepsilon \kappa}{4}t} \operatorname{ctg}\left(\frac{\varphi_0}{2}\right)\right).$$

3 Неделя III

$N_{2}1.7.1.2$

Найдём решение уравнения Хопфа с начальными условиями u=0 при x<0 и $u=-c_1x+c_2x^2$ при x>0. Для начала считаем

$$\begin{cases} c(x_0) = -c_1 x_0 + c_2 x_0^2 \\ x(t) = x_0(c) + ct \end{cases} \Rightarrow x_0(c) = \frac{c_1 \pm \sqrt{c_1^2 + 4cc_2}}{2c_2},$$

где выбор знака не принципиален. Подставляя x_0 в уравнение на x(t), выражаем c:

$$c = \frac{c_1}{2c_2^3t^2} \left(\pm \sqrt{c_1 \left(c_1(c_2t - 1)^2 + 4c_2^2tx \right)} - c_1c_2t + c_1 + 2c_2^2tx \right),$$

где + не удоволетворяет $c(t=0,x)=u_0(x),$ а значит

$$u(x,t) = \frac{c_1}{2c_2^3t^2} \left(-\sqrt{c_1\left(c_1(c_2t-1)^2 + 4c_2^2tx\right)} - c_1c_2t + c_1 + 2c_2^2tx \right).$$

Стоит заметить, что до точки $x^* = c_1/c_2$ верно $u'_0(x) < 0$, а значит решение существует только до некоторого t^* .

№2. 7.1.3

Теперь решим уравнение Хопфа с накачкой:

$$\partial_t u + u \partial_x u = f,$$
 $f = \alpha^2 x,$ $u_0(x) = 0,$

где сделали замену $\varphi = \alpha^2$. Сначала находим

$$\ddot{x} - \alpha^2 x = 0, \quad \Rightarrow \quad x = x_0 \operatorname{ch}(\alpha t) + \frac{\dot{x}_0}{\alpha} \operatorname{sh}(\alpha t).$$

Находим, что $\dot{x}_0 = u_0(x_0) = 0$, а значит

$$\dot{x} = \alpha x_0 \operatorname{sh}(\alpha t) = \alpha x \operatorname{th}(\alpha t).$$

При $\varphi = -\alpha^2$ уравнение изменится на $\dot{x} = -\alpha x \operatorname{tg}(\alpha t)$. Итого, окончательный ответ

$$u(t,x) = \sqrt{|\varphi|} \operatorname{sign}(\varphi) \ x \cdot \begin{cases} \operatorname{th}(\sqrt{|\varphi|} \ t), & \varphi > 0; \\ \tan(\sqrt{|\varphi|} \ t), & \varphi < 0. \end{cases}$$

№3.7.1.4

Аналогично решаем уравнение Хопфа с накачкой:

$$\partial_t u + u \partial_x u = f,$$
 $f = f_0,$ $u_0(x) = x.$

Сначала находим

$$\ddot{x} = f_0, \quad \Rightarrow \quad x(t) = \frac{1}{2}f_0t^2 + \dot{x}_0t + x_0,$$

где $\dot{x}_0 = u_0(x_0) = x_0$, а значит

$$x_0 = \frac{x - f_0 t^2 / 2}{t + 1}, \quad \Rightarrow \quad \dot{x} = f_0 t + \dot{x}_0 = \frac{\frac{1}{2} f_0 t^2 + f_0 t + x}{t + 1},$$

таким образом искомый ответ

$$u(t,x) = \frac{\frac{1}{2}f_0t^2 + f_0t + x}{t+1}.$$

№4.7.1.5

Найдём решение уравнения Бюргерса с начальным условием

$$\psi_0 = \operatorname{ch}(ax) + B\operatorname{ch}(bx),$$

где a < b и $B \ll 1$.

Для начала находим ψ , как решение диффузного уравнения:

$$\psi(t,x) = \int_{\mathbb{R}} \frac{1}{\sqrt{4\pi t}} \exp\left(-\frac{(x-y)^2}{4t}\right) \psi_0(y) \, dy = e^{a^2 t} \operatorname{ch}(ax) + Be^{b^2 t} \operatorname{ch}(bx).$$

Теперь находим u

$$u = -2\partial_x \ln \psi = -\frac{2\left(ae^{a^2t}\operatorname{sh}(ax) + bBe^{b^2t}\operatorname{sh}(bx)\right)}{e^{a^2t}\operatorname{ch}(ax) + Be^{b^2t}\operatorname{ch}(bx)}.$$

Заметим, что при $x \to -0$ и $t \to \infty$, система будет определяться большим шоком:

$$u(x,t) \approx -2b^2x, \quad t \to \infty, x \to 0;$$

 $u(x,t) \approx -2b, \quad x \to 0, t \to \infty.$