

IRISの最新機能

インターシステムズジャパン株式会社 セールスエンジニア 秦 信之

2023年11月17日

IRIS 2023.Xリリースカレンダー

アジェンダ

1	Foreign Table	
2	Federated Table	
3	カラムナー事例	
4	Integrated ML 時系列モデル	
5	Farewell!?	

Foreign Table

Foreign Table 概要

- 外部テーブル
 - 外部のサーバ(Foreign Server)に格納されているデータを参照するテーブル
- 利用場面
 - 高い更新頻度かつ最新を参照したい場合
 - 利用頻度が低い巨大なデータがファイルに格納されている

- 実験的な機能(Experimental Feature)
- SQLのSELECT文アクセスのみ
 - CREATE, UPDATE, DELETE, オブジェクトアクセス不可
- Javaが必要
- JDBCおよびCSVファイルをサポート
- CSVファイルはIRISインスタンスからOSレベルでアクセス可能
- CSV以外のファイル(JSON等)
 - IRIS内に格納して下さい
- クエリ文のWHERE句
 - 等価、比較等の簡単な演算子は外部サーバ宛てのクエリに転送
- インスタンス内部のテーブルとJOIN可能

Foreign Table Step-By-Step

1. 管理ポータルで「SQLゲートウェイ接続」を作成

システム > 構成 > SQLゲートウェイ接続

SQLゲートウェイ接続

新規接続作成

システム > 構成 > SQLゲートウェイ接続 > ゲートウェイ接続

SQLゲートウェイ接続

オブジェクト/SQLゲートウェイ接続は、外部APIやデータソースとの接します。現在、以下のゲートウェイ接続が定義されています:

以下のフォームでゲートウェイ接続を編集します:

接続の種類:	
接続名:	LOCALMSSQL
ユーザ:	irisql
パスワード:	
ドライバ名:	com.microsoft.sqlserver.jdbc.SQLServerDriver
URL:	jdbc:sqlserver://localhost\ELECTRIC:1433;encrypt=false
クラスパス:	C:\Local\sqljdbc_12.4\jpn\jars\mssql-jdbc-12.4.1.jre11.jar
	(複数のjarファイルが必要な場合はカンマで区切ったリストにできます。)
プロパティ:	encrypt=false
デフォルトで区切り識別子を使用しない:	
COALESCE使用:	
IFNULL() の代わりに NVL() を使用する:	
複合Row ID内で変換:	●非文字値を変換しない
	○ CAST を VARCHAR として使用
	○ CAST を CHAR として使用
	○{fn convert} を使用
	テスト接続 保存 キャンセル

2. SQLで外部サーバ (Foreign Server)を作成

```
CREATE FOREIGN SERVER Test.MSSQL FOREIGN DATA WRAPPER JDBC CONNECTION '接続名' CREATE FOREIGN SERVER Test.CsvDir FOREIGN DATA WRAPPER CSV HOST '/data/files'
```

3. SQLで外部テーブル (Foreign Table)を定義

```
CREATE FOREIGN TABLE ff_root (rootId INT, message VARCHAR(32), value INT) SERVER Test.MSSQL TABLE 'iris.root'
CREATE FOREIGN TABLE ff_root (rootId INT, message VARCHAR(32), value INT)
    SERVER Test.MSSQL QUERY 'select * from iris.root'
CREATE FOREIGN TABLE (
    firstName VARCHAR(15),
    lastName VARCHAR(15),
    DOB DATE
) Sample.Person SERVER Test.CsvDir FILE 'person.csv' USING { "from": { "file": { "header": true } } }
```

4. Run Query!

Federated Table

Federated Table 概要

- Federated Table
 - 同一もしくは似たスキーマのテーブルを管理している複数のIRISインスタンスにまたがってクエリを発行する仕組み

- 実験的な機能(Experimental Feature)
- 利用場面
 - 複数サイトのデータを横断的に分析
 - マルチテナント環境で統合して分析
- 事前準備
 - 対象のテーブルがある全インスタンスにまたがるシャードクラスター
 - 対象のテーブルがあるネームスペース毎にシャードネームスペース
- シャードテーブルとの違い
 - 元テーブルには影響しない
 - 複数テーブルの共通部分を投影した読み取り専用テーブル
 - データを自動分散しない
 - 各インスタンスが自身のデータを管理

1. Federated Tableを定義

\$SYSTEM.Sharding.CreateFederatedTable(shardNS, fedTable, sourceNS, srcTable, colList)

• 実行直後より全シャードネームスペースからsrcTableのデータを参照可能

shardNS: Federated Table用に作成したネームスペース

fedTable: Federated Table名

sourceNS: 元テーブルが存在するネームスペース

srcTable: 元テーブル名

colList: Federated Tableと元テーブル間のカラムマッピングをlist形式で指定、省略された場合は元テーブルと同一

2. 他のテーブルをFederated Tableに接続

\$SYSTEM.Sharding.ConnectFederatedTable(shardNS, fedTable, sourceNS, srcTable, colList)

3. Run Query!

カラムナー事例

カラムナー事例

- システム概要
 - 医療用DWH
 - 対象テーブル: 120フィールド(患者情報、診察・検査情報、請求情報等)
 - データ件数: 約1億
 - ハードウェア: 192core / 521GB RAM / NVMe SSD
 - IRIS 2023.3プレビュー, Linux
- レビュー: カラムナーが有効なユースケース
 - レコード数が100万以上
 - トランザクションシステムのOLAP、かつ性能に満足していない場合
 - カラムナーインデックスの適用を検討
 - データウェアハウス、BI等の分析が主なユースケースの場合
 - カラムナーストレージの適用を検討

カラムナー事例

ここのテーブルは現地での投影のみとさせていただきます

Integrated ML 時系列モデル

時系列データとは

Australian quarterly beer production: 1992Q1–2010Q2, with two years of forecasts.

出展

1.4 Forecasting data and methods | Forecasting: Principles and Practice (2nd ed) (otexts.com)

- 時間の経過順に並んだ過去の数値データ
- 例
 - 株価

 - 売上
- 主な3つの要因
 - 長期的なトレンド
 - 季節的な変動
 - その他
- 主なモデル
 - 回帰モデル
 - 今日までのデータを元に予測
 - 移動平均モデル
 - 過去の平均および予測と実績の誤差を元に予測

- <u>実験的な機能(Experimental Feature)</u> 2023.3から通常の機能となりました。
- 時系列データに基づき将来値を予測するモデルをサポート

元データ: tsdata

Date1	Value
2023/11/14	150.0
2023/11/15	149.5
2023/11/16	150.4

予測結果

Date1	Value
2023/11/14	150.0
2023/11/15	149.5
2023/11/16	150.4
2023/11/17	????

- 予測結果は新しい行としてクエリーに返されます
- Integrated ML 時系列データ Step-By-Step
 - 1. モデル作成

CREATE **TIME SERIES** MODEL forecastUsdJpy PREDICTING(*) BY (Date1) FROM tsdata USING {"forward":5}

2. 学習

TRAIN MODEL forecastUsdJpy

3. 結果取得

SELECT WITH PREDICTIONS(forecastUsdJpy) * from tsdata

ハンガリーにて水疱瘡の地域別症例数を予測

CREATE TIME SERIES MODEL hungary60
PREDICTING (*) BY (DATE1)
FROM chickenpox_training
USING { "Forward" : 60 }

^{*} 現在はAutoMLプロバイダーのみ、DataRobotとH2Oサポートを追加予定

SELECT WITH PREDICTIONS (hungary60) * FROM chickenpox test

Farewell!?

- 非推奨 プライベートWebサーバ
 - PWSを新規にインストールされません
 - Apache/IISがインストールされていれば自動的にIRIS接続を設定
- 非推奨 スタジオ
 - VS Codeへ移行を
- 非推奨 System Alerting and Monitoring (SAM)
- 非推奨 InterSystems Cloud Manager (ICM)
 - KubernetesおよびInterSystems Kubernetes Operator (IKO) へ移行を
- サポートプラットフォーム変更
 - Windows 2012サーバは2023.2よりサポート対象外

ありがとう ございました

