from google.colab import drive
drive.mount('/content/drive')

Mounted at /content/drive

import numpy as np
import pandas as pd

import matplotlib.pyplot as plt

 $\label{training_set} training_set=pd.read_csv('/content/drive/MyDrive/deep_learning_dataset/google_stock/google_train.csv') \\ training_set$

	Date	0pen	High	Low	Close	Adj Close	٧	
0	1/4/2016	743.000000	744.059998	731.257996	741.840027	741.840027	32	
1	1/5/2016	746.450012	752.000000	738.640015	742.580017	742.580017	19	
2	1/6/2016	730.000000	747.179993	728.919983	743.619995	743.619995	19	
3	1/7/2016	730.309998	738.500000	719.059998	726.390015	726.390015	29	
4	1/8/2016	731.450012	733.229980	713.000000	714.469971	714.469971	24	
1254	12/24/2020	1735.000000	1746.000000	1729.109985	1738.849976	1738.849976	3	
1255	12/28/2020	1751.635010	1790.728027	1746.334961	1776.089966	1776.089966	13	
1256	12/29/2020	1787.790039	1792.439941	1756.089966	1758.719971	1758.719971	12	
1257	12/30/2020	1762.010010	1765.094971	1725.599976	1739.520020	1739.520020	13	
1258	12/31/2020	1735.420044	1758.930054	1735.420044	1751.880005	1751.880005	10	
1259 rows × 7 columns								
4							-	

training_set.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1259 entries, 0 to 1258
Data columns (total 7 columns):

	200	CO	,						
	#	Column	Non-Null Count	Dtype					
	0	Date	1259 non-null	object					
	1	0pen	1259 non-null	float64					
	2	High	1259 non-null	float64					
	3	Low	1259 non-null	float64					
	4	Close	1259 non-null	float64					
	5	Adj Close	1259 non-null	float64					
	6	Volume	1259 non-null	int64					
<pre>dtypes: float64(5), int64(1), object(1)</pre>									
	memory usage: 69.0+ KB								

import matplotlib.pyplot as plt
plt.figure(figsize=(5, 5))
plt.subplots_adjust(top=1.25, bottom=1.2)
training_set['Adj Close'].plot()
plt.ylabel('Adj Close')
plt.xlabel(None)
plt.title(f"Closing Price of Google")
plt.tight_layout()

```
Closing Price of Google
                                        \Pi
# Now let's plot the total volume of stock being traded each day
plt.figure(figsize=(15, 20))
plt.subplots_adjust(top=1.25, bottom=1.2)
training_set['Volume'].plot()
plt.ylabel('Volume')
plt.xlabel(None)
plt.title(f"Sales Volume")
    Text(0.5, 1.0, 'Sales Volume')
training_set=training_set.iloc[:,1:2].values
from sklearn.preprocessing import MinMaxScaler
sc= MinMaxScaler()
training_set=sc.fit_transform(training_set)
X_train= training_set[0:1257]
y_train= training_set[1:1258]
X_train=np.reshape(X_train, (1257, 1, 1))
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
regressor = Sequential()
regressor.add(LSTM(units=4, activation= 'sigmoid', input_shape= (None,1)))
regressor.add(Dense( units=1 ))
regressor.compile(optimizer='adam', loss='mean_squared_error')
regressor.fit(X_train, y_train, batch_size=32, epochs=200)
    Epoch 1/200
    Epoch 2/200
    40/40 [====
                      ======== | - 0s 1ms/step - loss: 0.0547
    Epoch 3/200
    40/40 [====
                        =========] - 0s 1ms/step - loss: 0.0499
    Epoch 4/200
    40/40 [====
                        Epoch 5/200
    40/40 [====
                        ======== ] - 0s 2ms/step - loss: 0.0467
    Epoch 6/200
    40/40 [=====
                        ======== ] - 0s 2ms/step - loss: 0.0455
    Epoch 7/200
    40/40 [=====
                       Epoch 8/200
```

40/40 [==== ========] - 0s 2ms/step - loss: 0.0430 Epoch 9/200 40/40 [==== =========] - 0s 1ms/step - loss: 0.0419 Epoch 10/200 40/40 [===== =========] - 0s 2ms/step - loss: 0.0407 Epoch 11/200 40/40 [===== =========] - 0s 1ms/step - loss: 0.0396 Epoch 12/200 40/40 [============] - 0s 2ms/step - loss: 0.0385 Epoch 13/200 40/40 [===== =========] - 0s 2ms/step - loss: 0.0374 Epoch 14/200 40/40 [====== =========] - 0s 2ms/step - loss: 0.0362 Epoch 15/200 40/40 [===== Epoch 16/200 40/40 [===== ========] - Os 1ms/step - loss: 0.0339 Epoch 17/200 40/40 [====== Epoch 18/200 40/40 [===== ========] - 0s 2ms/step - loss: 0.0317 Epoch 19/200

```
40/40 [====
          Epoch 20/200
   40/40 [=====
            Epoch 21/200
   40/40 [=======] - 0s 1ms/step - loss: 0.0281
   Epoch 22/200
   Epoch 23/200
   40/40 [============ ] - 0s 2ms/step - loss: 0.0258
   Epoch 24/200
   40/40 [======
               -----] - Os 2ms/step - loss: 0.0247
   Epoch 25/200
   Epoch 26/200
   40/40 [=======] - 0s 2ms/step - loss: 0.0223
   Epoch 27/200
   Epoch 28/200
   Epoch 29/200
   test_set = pd.read_csv('/content/drive/MyDrive/deep_learning_dataset/google_stock/google_test.csv')
real_stock_price = test_set.iloc[:,1:2].values
inputs = real_stock_price
inputs = sc.transform(inputs)
inputs = np.reshape(inputs, (20 , 1, 1))
predicted_stock_price = regressor.predict(inputs)
predicted_stock_price = sc.inverse_transform(predicted_stock_price)
   1/1 [=======] - 0s 141ms/step
plt.plot( real_stock_price , color = 'red' , label = 'Real Google Stock Price')
plt.plot( predicted_stock_price , color = 'blue' , label = 'Predicted Google Stock Price')
plt.title('Google Stock Price Prediction')
plt.xlabel( 'time' )
plt.ylabel( 'Google Stock Price' )
plt.legend()
plt.show()
```

