Stability of opinion formation PDE model based on expanded non-local perceptual kernel

Christian Koertje and Hiroki Sayama

Department of Systems Science and Industrial Engineering at Binghamton University. Binghamton, NY

Funding thanks to the Watson Institute for Systems Excellence

Models of polarization (discrete)

Schelling segregation

Deffaunt et al. 2000

More in *Social Physics* Jusup et al. (arXiv)

Overview

- Derivation of continuous model
- Nonlocal interaction kernel
- Numerical simulation
- Exploration of parameter space

- Continuous population density: $\rho = \rho(x, t)$ (Sayama 2020)
 - x = opinion space
 - t = time

$$\frac{\partial \rho}{\partial t} = -\nabla \cdot \vec{J}$$

• J = (Random movement) + (Movement toward popular opinions)

- Continuous population density: $\rho = \rho(x, t)$ (Sayama 2020)
 - x = opinion space
 - t = time

$$\frac{\partial \rho}{\partial t} = -\nabla \cdot \vec{J}$$

• J = (Random movement) + (Movement toward popular opinions)

- Continuous population density: $\rho = \rho(x, t)$ (Sayama 2020)
 - x = opinion space
 - *t* = time

$$\frac{\partial \rho}{\partial t} = -\nabla \cdot \vec{J}$$

• J = (Random movement) + (Movement toward popular opinions)

Chemotaxis: motion of organelles in response to chemical gradients (Keller and Segel 1970)

© Kohidai, L. 2008

- Continuous population density: $\rho = \rho(x, t)$ (Sayama 2020)
 - x = opinion space
 - *t* = time

$$\frac{\partial \rho}{\partial t} = -\nabla \cdot \vec{J}$$

• J = (Random movement) + (Movement toward popular opinions)

Chemotaxis: motion of organelles in response to chemical gradients (Keller and Segel 1970)

© Kohidai, L. 2008

Interpreting the PDE (diffusion)

$$\frac{\partial \rho}{\partial t} = -\nabla \cdot \left[-d\nabla \rho + c\rho \int \rho(x-r)W(r)dr \right]$$
Diffusion

Credit: kondensat

Random motion

Interpreting the PDE

$$\frac{\partial \rho}{\partial t} = -\nabla \cdot \left(-d\nabla \rho + c\rho \int \rho(x - r)W(r)dr \right)$$

Nonlocal aggregation

Credit: Brian Amberg

Long range sampling of the opinion space

Shapes of nonlocal interactions

$$\frac{\partial \rho}{\partial t} = -\nabla \cdot \left(-d\nabla \rho + c\rho \int \rho(x-r) W(r) dr \right)$$

Interaction kernel

- W(r) ~ particle-based interaction potential
- For r > 0,
 - W(r) > 0, attraction
 - W(r) < 0, repulsion

(Sayama 2020)

Shapes of nonlocal interactions

$$\frac{\partial \rho}{\partial t} = -\nabla \cdot \left(-d\nabla \rho + c\rho \int \rho(x - r) W(r) dr \right)$$

Interaction kernel

- W(r) ~ particle-based interaction potential
- For r > 0,
 - W(r) > 0, attraction
 - W(r) < 0, repulsion

Onset of pattern formation

• Linear stability analysis: determines whether stationary states become unstable

Onset of pattern formation

 Linear stability analysis: determines whether stationary states become unstable

Simulation w/ periodic boundaries

Simulation w/ hard boundaries

$$W(r) = e^{-\lambda^2 r^2} \sin(kr)$$

• Let's zoom in,

Discussion

Discussion

- 1. Are the opinion groups stable? (Multi-scale analysis of patterns)
- 2. Allow for varying total population (leading to spatiotemporal chaos)

ckoertj1@binghamton.edu