# Estimation régularisée du risque pour l'analyse age-period-cohort

V. Goepp<sup>†</sup>, G. Nuel<sup>‡</sup>, O. Bouaziz<sup>†</sup>

† : MAP5, Université Paris-Descartes ‡ : LPMA, Université Pierre et Marie Curie

Séminaire de Statistiques, MAP5, 15 décembre 2017

## Plan de la présentation

- I Introduction
- Il Modèles existants
- III Notre approche
- IV Résultats numériques : simulations
- V Résultats numériques : données réelles

Présentation des données

Population: 91992 femmes adhérentes à la MGEN

Données récoltées par formulaire (2-3 ans)

Date calendaire  $\in$  [1990, 2010]

L'évènement observé est l'apparition du cancer du sein

Objectif : estimer le risque d'avoir un cancer du sein à chaque instant Difficultés :

- Pourcentage de cancers observés: 7%
- Date de naissance ∈ [1925, 1950] : population hétérogène

[1] F. Clavel-Chapelon et al, Cohort profile: the French E3N cohort study, *International journal of epidemiology*, 2014.

#### Analyse de survie

- On veut estimer T, le temps passé avant l'apparition d'un évènement.
- On n'a pas accès à (T<sub>i</sub>)<sub>i</sub> mais à

$$Y_i = \min(T_i, C_i)$$

où C est une variable de censure avec  $C \perp T$ .

- On connaît aussi  $\Delta_i = \mathbb{1}_{Y_i = T_i}$ .
- On estime le risque instantané:

$$\lambda(t) = \lim_{\delta t \to 0} \frac{\mathbb{P}(t \le T \le t + \delta t | T > t)}{\delta t}$$

#### Diagramme de Lexis



Diagramme de Lexis: Age-Period

#### Diagramme de Lexis



Diagramme de Lexis: Age-Period



Diagramme Age-Cohort

## Estimation paramétrique

Le risque instantané  $\lambda$  est discrétisé en J intervalles d'âge et K intervalles de cohorte :

$$\lambda(\mathsf{age},\mathsf{cohorte}) = \sum_{j=1}^J \sum_{k=1}^K \lambda_{j,k} \mathbb{1}_{[c_{j-1},c_j) \times [d_{k-1},d_k)}(\mathsf{age},\mathsf{cohorte})$$

Objectif: estimer  $\lambda_{j,k}$ 

## Analyse age-period-cohort

On veut modéliser l'effet de l'âge, la cohorte et la période.

- effet de l'âge : ménopause
- effet de la cohorte : biberon cancérigène
- effet de la période : accident nucléaire

On définit un vecteur de paramètres par effet:  $\alpha$ ,  $\beta$  et  $\gamma$ 

#### Modèles existants

(i) Dans le modèle AGE-COHORT, on suppose

$$\log \lambda_{j,k} = \alpha_j + \beta_k.$$

- J + K 1 paramètres pour JK variables: régularisation
- Fort a priori sur  $\lambda$
- (ii) Dans le modèle AGE-PERIOD-COHORT, on suppose

$$\log \lambda_{j,k} = \alpha_j + \beta_k + \gamma_{j+k-1}.$$

- Non identifiable : on peut soit
  - estimer  $\Delta^2 \alpha$ ,  $\Delta^2 \beta$  et  $\Delta^2 \gamma$ .
  - · rajouter une contrainte.
- [2] B. Carstensen, Age—period—cohort models for the Lexis diagram, *Statistics in medicine*, 2007.

#### Estimateur du maximum de vraisemblance

#### On appelle:

- $O_{j,k}$ : nombre d'évènements dans le (j,k)-ième rectangle
- $R_{j,k}$ : temps à risque dans le (j,k)-ième rectangle

La log vraisemblance négative s'écrit

$$\ell_n(\boldsymbol{\lambda}) = \sum_{j=1}^{J} \sum_{k=1}^{K} \lambda_{j,k} R_{j,k} - O_{j,k} \log (\lambda_{j,k}).$$

L'estimateur du maximum de vraisemblance est :

$$\lambda_{j,k}^{\mathsf{mle}} = rac{\mathit{O}_{j,k}}{\mathit{R}_{j,k}}$$

#### Estimateur du maximum de vraisemblance

#### On appelle:

- $O_{j,k}$ : nombre d'évènements dans le (j,k)-ième rectangle
- $R_{i,k}$ : temps à risque dans le (j,k)-ième rectangle

La log vraisemblance négative s'écrit

$$\ell_n(\lambda) = \sum_{j=1}^{J} \sum_{k=1}^{K} \lambda_{j,k} R_{j,k} - O_{j,k} \log (\lambda_{j,k}).$$

L'estimateur du maximum de vraisemblance est :

$$\lambda_{j,k}^{\mathsf{mle}} = rac{O_{j,k}}{R_{j,k}} \quad o \quad \mathsf{overfitting}$$

Aucun a priori:

$$\log \lambda_{j,k} = \eta_{j,k},$$

Aucun a priori:

$$\log \lambda_{j,k} = \eta_{j,k},$$

Mais l'estimation de  $\eta$  est faite par vraisemblance **pénalisée**:

$$\ell_n^{\mathsf{pen}}({m{\eta}}) = \underbrace{\ell_n({m{\eta}})}_{ \substack{ ext{attache aux} \ \mathsf{données}}}$$

Aucun a priori:

$$\log \lambda_{j,k} = \eta_{j,k},$$

Mais l'estimation de  $\eta$  est faite par vraisemblance **pénalisée**:

$$\ell_{n}^{\text{pen}}(\boldsymbol{\eta}) = \underbrace{\ell_{n}(\boldsymbol{\eta})}_{\substack{\text{attache aux} \\ \text{données}}} + \underbrace{\frac{\text{pen}}{2} \sum_{j,k} v_{j,k} \left(\eta_{j+1,k} - \eta_{j,k}\right)^{2} + w_{j,k} \left(\eta_{j,k+1} - \eta_{j,k}\right)^{2}}_{\substack{\text{régularisation}}},$$

Aucun a priori:

$$\log \lambda_{j,k} = \eta_{j,k},$$

Mais l'estimation de  $\eta$  est faite par vraisemblance **pénalisée**:

$$\ell_{n}^{\text{pen}}(\boldsymbol{\eta}) = \underbrace{\ell_{n}(\boldsymbol{\eta})}_{\substack{\text{attache aux} \\ \text{données}}} + \underbrace{\frac{\text{pen}}{2} \sum_{j,k} v_{j,k} \left(\eta_{j+1,k} - \eta_{j,k}\right)^{2} + w_{j,k} \left(\eta_{j,k+1} - \eta_{j,k}\right)^{2}}_{\substack{\text{régularisation}}},$$

v et w sont des poids,

pen est une constante de régularisation.

## Deux types de régularisation

(i) Régularisation  $L_2$  (Ridge) avec  $\mathbf{v} = \mathbf{w} = \mathbf{1}$ 

## Deux types de régularisation

- (i) Régularisation  $L_2$  (Ridge) avec  $\mathbf{v} = \mathbf{w} = \mathbf{1}$
- (ii) Régularisation L<sub>0</sub> avec la procédure itérative **adaptive ridge**. Les poids sont adaptés itérativement :

$$\begin{cases} \mathbf{v}_{j,k} = \left( \left( \eta_{j+1,k} - \eta_{j,k} \right)^2 + \varepsilon^2 \right)^{-1} \\ \mathbf{w}_{j,k} = \left( \left( \eta_{j,k} - \eta_{j,k-1} \right)^2 + \varepsilon^2 \right)^{-1} \end{cases},$$

avec  $\varepsilon \ll 1$ .

[3] F. Frommlet and G. Nuel, An Adaptive Ridge Procedure for L0 Regularization, *Public Library of Science*, 2016.

## Approximation de la norme L<sub>0</sub>

#### Lorsque $\varepsilon \ll 1$ :

$$V_{j,k} (\eta_{j+1,k} - \eta_{j,k})^{2} \simeq \|\eta_{j+1,k} - \eta_{j,k}\|_{0}^{2} = \begin{cases} 0 & \text{si } \eta_{j+1,k} = \eta_{j,k} \\ 1 & \text{si } \eta_{j+1,k} \neq \eta_{j,k} \end{cases}$$



procedure ADAPTIVE-RIDGE(O, R, pen)

end procedure

#### procedure ADAPTIVE-RIDGE(O, R, pen)

 $\eta \leftarrow 0$ 

 $v \leftarrow 1$ 

 $\textit{w} \leftarrow \textit{1}$ 

#### end procedure

```
procedure Adaptive-Ridge(O, R, pen)
         \eta \leftarrow 0
          v ← 1
          w ← 1
         while not converge do
                   \eta^{\text{new}} \leftarrow \text{Newton-Raphson}(\boldsymbol{O}, \boldsymbol{R}, \text{pen}, \boldsymbol{v}, \boldsymbol{w})
                   \mathbf{v}_{j,k}^{\text{new}} \leftarrow \left( \left( \eta_{j+1,k}^{\text{new}} - \eta_{j,k}^{\text{new}} \right)^2 + \varepsilon^2 \right)^{-1}
                   \mathbf{w}_{j,k}^{\mathsf{new}} \leftarrow \left( \left( \eta_{j,k}^{\mathsf{new}} - \eta_{j,k-1}^{\mathsf{new}} \right)^2 + \varepsilon^2 \right)^{-1}
                   \mathbf{w} \leftarrow \mathbf{w}^{\text{new}}
         end while
```

#### end procedure

```
procedure Adaptive-Ridge(O, R, pen)
         \eta \leftarrow 0
          v ← 1
          w ← 1
         while not converge do
                   \eta^{\text{new}} \leftarrow \text{Newton-Raphson}(\boldsymbol{O}, \boldsymbol{R}, \text{pen}, \boldsymbol{v}, \boldsymbol{w})
                   v_{j,k}^{\text{new}} \leftarrow \left( \left( \eta_{j+1,k}^{\text{new}} - \eta_{j,k}^{\text{new}} \right)^2 + \varepsilon^2 \right)^{-1}
                   \mathbf{\textit{w}}_{j,k}^{\mathsf{new}} \leftarrow \left( \left( \eta_{j,k}^{\mathsf{new}} - \eta_{j,k-1}^{\mathsf{new}} \right)^2 + \varepsilon^2 \right)^{-1}
                   oldsymbol{\eta} \leftarrow oldsymbol{\eta}^{\mathsf{new}}
                    \mathbf{w} \leftarrow \mathbf{w}^{\mathsf{new}}
         end while
         Compute (O^{\text{sel}}, R^{\text{sel}}) from (\eta^{\text{new}}, v^{\text{new}}, w^{\text{new}})
         n^{\mathsf{mle}} \leftarrow \mathcal{O}^{\mathsf{sel}}/\mathcal{R}^{\mathsf{sel}}
         return \eta^{\text{mle}}
end procedure
```

## Adaptive Ridge permet de sélectioner un modèle



## (a) Représentation de $v_{j,k} \left( \eta_{j+1,k} - \eta_{j,k} \right)^2$ et $w_{j,k} \left( \eta_{j,k+1} - \eta_{j,k} \right)^2$

## Adaptive Ridge permet de sélectioner un modèle



(a) Représentation de  $v_{j,k} \left( \eta_{j+1,k} - \eta_{j,k} \right)^2$  et  $w_{j,k} \left( \eta_{j,k+1} - \eta_{j,k} \right)^2$ 



(b) Graphe correspondant

## Adaptive Ridge permet de sélectioner un modèle







(b) Graphe correspondant



(c) Segmentation selon les composantes connexes

## Comparaison des deux régularisations

 $\begin{array}{lll} \text{pen} \rightarrow \mathbf{0} & : & \widehat{\lambda} \rightarrow \widehat{\lambda}^{\text{mle}} \\ \text{pen} \rightarrow \infty & : & \widehat{\lambda} \text{ constant} \end{array}$ 



Régularisation L<sub>2</sub> : à chaque pen correspond un estimateur

## Comparaison des deux régularisations

 $\begin{array}{lll} \text{pen} \to 0 & : & \widehat{\lambda} \to \widehat{\lambda}^{\text{mle}} \\ \text{pen} \to \infty & : & \widehat{\lambda} \text{ constant} \end{array}$ 



Régularisation L<sub>2</sub> : à chaque pen correspond un estimateur

Régularisation L<sub>0</sub> : à chaque pen correspond un *modèle* 

Critères bayesiens

- Problème: choisir entre M modèles  $\mathcal{M}_1, \dots, \mathcal{M}_M$  de dimensions  $q_1, \dots, q_M$ .
- Solution: maximiser  $\mathbb{P}(\mathcal{M}_m|\mathbf{R},\mathbf{O}) \propto \mathbb{P}(\mathbf{R},\mathbf{O}|\mathcal{M}_m)\pi(\mathcal{M}_m)$ .
- Par approximation :

$$-2\log\left(\mathbb{P}(\mathcal{M}_m|\boldsymbol{R},\boldsymbol{O})\right) = 2\ell_n(\widehat{\eta}_m) + q_m\log n - 2\log\pi(\mathcal{M}_m) + \mathcal{O}_{\mathbb{P}}(1)$$

• Comment choisir la distribution a priori  $\pi$  ( $\mathcal{M}_m$ ) ?

BIC:  $\pi(\mathcal{M}_m) = 1$ Tous les  $\mathcal{M}_m$  sont équiprobables

BIC: 
$$\pi(\mathcal{M}_m) = 1$$
  
Tous les  $\mathcal{M}_m$  sont équiprobables



 $\mathcal{M}_{[q_m]}$  est l'ensemble des modèles de dimension  $q_m$ 

BIC: 
$$\pi(\mathcal{M}_m) = 1$$
  
Tous les  $\mathcal{M}_m$  sont équiprobables

$$\mathsf{EBIC_0} \colon \mathbb{P}\left(\mathcal{M}_m \in \mathcal{M}_{[q_m]}\right) = 1$$
 Tous les  $\mathcal{M}_{[q_m]}$  sont équiprobables

Ensembles de 
$$\mathcal{M}_{[1]}$$
  $\mathcal{M}_{[2]}$   $\mathcal{M}_{[q_m]}$   $\mathcal{M}_{[q_m]}$   $\mathcal{M}_{[JK-1]}$   $\mathcal{M}_{[JK]}$ 

 $\mathcal{M}_{[q_m]}$  est l'ensemble des modèles de dimension  $q_m$ 

[4] J. Chen and Z. Chen, Extended Bayesian information criteria for model selection with large model spaces, *Biometrika*, 2008.

Critères utilisés

On compare différents critères de sélection :

(i) BIC(
$$m$$
) =  $2\ell_n(\widehat{\eta}_m) + q_m \log n$ 

(ii) 
$$\mathsf{EBIC}_0(m) = 2\ell_n(\widehat{\eta}_m) + q_m \log n - 2\log\binom{\mathsf{JK}}{q_m}$$

(iii) AIC(
$$m$$
) =  $2\ell_n(\widehat{\eta}_m) + 2q_m$ 

(iv) K-fold Cross validation (CV)

## Illustration sur données simulées

#### On simule des données selon :

- $\lambda$  constant par morceaux
- λ lisse

#### On compare:

- Modèle age-cohort :  $\log \lambda_{i,k} = \alpha_i + \beta_k$
- Régularisation L<sub>2</sub> avec CV
- Régularisation L<sub>0</sub> avec AIC, BIC, EBIC<sub>0</sub> et CV.

## Simulations: cas n°1





## Simulations: cas n°1



Vrai  $\lambda$ 



Vrai  $\lambda$ 

## Simulations: cas n°1



Vrai  $\lambda$ 







Régularisation L2 avec CV



Régularisation  $L_0$  avec AIC



Régularisation L<sub>0</sub> avec AIC



Régularisation  $L_0$  avec  $\mathsf{EBIC}_0$ 



Régularisation L<sub>0</sub> avec BIC



Régularisation  $L_0$  avec CV







Vrai  $\lambda$ 



Modèle AGE-COHORT









Régularisation L<sub>0</sub> avec AIC



Régularisation L<sub>0</sub> avec AIC



Régularisation L<sub>0</sub> avec EBIC<sub>0</sub>



Régularisation L<sub>0</sub> avec BIC



Régularisation L<sub>0</sub> avec CV

# Simulations: comparaison quantitative

Erreur quadratique moyenne, pour  $\lambda$  constant par morceaux.



#### Application : données réelles

Présentation des données

Cohorte  $\in$  [1925, 1950] Période  $\in$  [1990, 2010]



Plan période-cohorte

#### Application : données réelles

Présentation des données

# $\begin{aligned} & \text{Cohorte} \in [1925, 1950] \\ & \text{P\'eriode} \in [1990, 2010] \end{aligned}$



Plan période-cohorte



Plan âge-cohorte

# Application : données de l'étude E3N

Résultats



Régularisation  $L_2$  avec CV

#### Application : données de l'étude E3N

Résultats



Régularisation L2 avec CV



Régularisation L<sub>0</sub> avec EBIC<sub>0</sub>



Régularisation L<sub>0</sub> avec AIC

#### Application : données de l'étude E3N

Résultats



Régularisation  $L_2$  avec CV



Régularisation  $L_0$  avec  $\mathsf{EBIC}_0$ 



Régularisation L<sub>0</sub> avec AIC



Régularisation L<sub>0</sub> avec EBIC<sub>0</sub>: bootstrapé

# Conclusion et perspectives

- · Segmentation du risque instantané
- EBIC<sub>0</sub> plus performant que les autres critères
- Amélioration possible : différences d'ordre supérieur
- Le modèle peut s'étendre :

$$\log \lambda_{j,k} = \mu + \alpha_j + \beta_k + \delta_{j,k},$$

avec régularisation de  $\delta_{j,k}$ 

# Merci