

Figure II.1: Architecture de base d'un microprocesseur

Figure II.2 : Cycle d'exécution d'une instruction

Figure II.3 Additional XMM (SSE) registers

Génér ation	Date de parut ion	Principaux modèles grand public	Espace d'adressage linéaire/phys ique	Nombre de transistors		Fréquence de l'horloge	Principales évolutions	
1	1978	Intel8086, Intel 8088		29 000	3 000	5 MHz	premiers processeurs x86	
2	1982	Intel80186, Intel 80188, NEC V20/V30	16-bit / 20-bit (segmenté)				calcul rapide des <u>adresses</u> en hardware, opérations rapides (division, multiplication,	
		Intel 80286	16-bit (30- bit <i>virtuel</i>) / 24-bit (segmenté)	134 000	1 500	6 à 16 MHz (20 MHz chez AMD)	MMU (Memory Management Unit), pour permettre le mode protégé et un plus grand espace d'adressage	
3 (<u>IA-</u> <u>32</u>)	1985	Intel 80386, AMD Am386	32-bit (46-bit <i>virtuel</i>) / 32-bit	275 000	1 500	16 à 40 MHz	jeu d'instructions 32-bit, MMU avec <u>pagination</u>	
4	1989	Intel 80486, AMD Am486		1 200 000 (800nm)	1 000 à 800	16 à 100 MHz	<u>pipeline</u> de type RISC, <u>FPU</u> et <u>Mémoire</u> <u>Cache</u> intégrés	
5	1993	Pentium, Pentium MMX		3 100 000	800 à 250	60 à 233 MHz	<u>processeur</u> <u>superscalaire, 64-bit bus</u> <u>de données,</u> FPU plus rapide, <u>MMX</u>	
<mark>5/6</mark>	<mark>1996</mark>	Cyrix 6x86, Cyrix MII, Cyrix III (2000) / VIA C3(2001)					renommage de registres, exécution spéculative	
6	<mark>1995</mark>	Pentium Pro, AMD K5, Nx586 (1994), Rise mP6	idem / 36 - bit physique(P AE)				traduction des micro- instructions, <u>PAE</u> (Pentium Pro), cache L2 intégré (Pentium Pro)	
	1997	AMD K6/- 2/3, Pentium		7 500 000	350 à 250	233 à 450 MHz	support du cache L3, <u>3DNow!</u> , <u>SSE</u>	

COMPLEMENT_Chapitre 2. Architecture d'un microprocesseur 16 bits

		II/Pentium III, IDT/Centaur-C6					
7	1999	Athlon, Athlon XP		9 500 000	250 à 130	450 à 1 400 MHz	FPU superscalaire, meilleure conception (jusqu'à 3 instructions x86 par top d'horloge)
	2000	Pentium 4		42 000 000	180 à 65	1,3 à 3,8 GHz	pipeline profond, haute fréquence, <u>SSE2</u> , <u>hyper-</u> <u>threading</u>
6-M/7- M	2003	Pentium M, VIA C7(2005), Core Solo et Core Duo (2006)					optimisé pour une faible consommation d' <u>énergie</u>
8 (<u>x86-</u>		Athlon 64, Opteron	64-bit / 40-bit				jeu d'instructions x86-64, contrôleur mémoire intégré, <u>HyperTransport</u>
<u>64</u>)	2004	Pentium 4 Prescott	idem / 48-bit physique pour le Phenom d'AMD	125 000 00 0	90 à 65	2.66 à 3,6 GHz	pipeline très profond, très haute fréquence, <u>SSE3</u>
9	2006	Intel Core 2		291 000 00	<u>65</u>	2,4 GHz (E66 00)	faible consommation d'énergie, <u>multi-cœur</u> , fréquence d'horloge plus faible, <u>SSE4</u> (Penryn)
10	2007	AMD Phenom					quad-core monolithique, FPU 128-bit, <u>SSE4a</u> , HyperTransport 3, conception modulaire
11	2008	Intel Atom					<u>in-order</u> , très faible consommation d'énergie
		Intel Core i7		731 000 00	45	3,33 GHz (Cor e i7 975X)	out-of-order, superscalaire, bus QPI, conception modulaire, contrôleur mémoire intégré, 3 niveau de cache
		VIA Nano					out-of-order, superscalaire, chiffrement matériel, très faible consommation d'énergie, gestion de l'énergie adaptative
12	2010	Intel <u>Sandy Bridge,</u> AMD <u>Bulldozer</u>		1 160 000 0 00	32	3,5 GHz (Core i7 2700K)	SSE5/AVX, conception hautement modulaire
13	2013	Intel Haswell	64 bits/64 bits bus	1 400 000 0 00	<mark>22</mark>	3,8 GHz (Core i7 4770K)	
14	2015	Intel Skylake	64 bits/64 bits bus	1 750 000 000	14	4 GHz (Core i7 6700K)	
15	2016- 2017	Intel Kabylake, AMD <u>Zen</u>		?	14	4.2 GHz (Core 17 7700K)	
	2017	Intel Core i3/i5/i7 (Cannonlake)	64 bits/64 bits bus	?	<u>10</u>		64 bits/64 bits bus
	2018	Intel Core i3/i5/i7 (Coffee Lake)	64 bits/64 bits bus	?	14		64 bits/64 bits bus
	2018	Intel Core i3/i5/i7 (Ice Lake)		?	10		

2019	Intel Core i3/i5/i7 (Tigerlake)		?	10			
------	------------------------------------	--	---	----	--	--	--

Figure II.4: Evolution de la famille x86

Figure II.5: le brochage (à gauche) et le schéma fonctionnel du 8086.

Figure II.6: ARCHITECTURE INTERNE DU MICROPROCESSEUR 8086

http://mai.kvk.uni-obuda.hu/documents/tantargy/i8088.pdf

https://fr.wikipedia.org/wiki/Jeu_d%27instructions_x86

Figure I.1 : Modèle de Von Neumann.

Figure I.2 : Décodage d'adresses