Math 5215 Homework 1

Jacob Hauck

January 14, 2024

1. Rudin 6.1

Let α be increasing on [a,b] and continuous at $x_0 \in [a,b]$. Suppose that $f(x_0) = 1$ and f(x) = 0 when $x \neq x_0$. Then $f \in \mathcal{R}(\alpha)$ and $\int_a^b f \, d\alpha = 0$.

Proof. Let $\varepsilon > 0$ be given. Since α is continuous at x_0 , there exists $\delta > 0$ such that $|x - x_0| < \delta \implies |\alpha(x) - \alpha(x_0)| < \varepsilon$. Let $P = \{y_0, y_1, y_2, y_3\}$ be a partition of [a, b] such that $0 < |y_1 - x_0| < \delta$ and $0 < |y_2 - x_0| < \delta$.

Then we have $\Delta \alpha_2 < 2\varepsilon$, and $M_1 = M_3 = 0$, and $M_2 = 1$. This implies that

$$U(P, f, \alpha) = M_2 \Delta \alpha_2 < 2\varepsilon$$

On the other hand, we have $m_i = 0$ for i = 1, 2, 3. This implies that

$$L(P, f, \alpha) = 0$$

Hence,

$$0 = L(P, f, \alpha) \le \int_a^b f \, d\alpha \le U(P, f, \alpha) < 2\varepsilon$$

Since ε was arbitrary, we conclude that $f \in \mathcal{R}(\alpha)$ and $\int_a^b f \, d\alpha = 0$.

2. Rudin 6.2

Suppose $f(x) \ge 0$ for $x \in [a, b]$ and f is continuous on [a, b], and $\int_a^b f(x) dx = 0$. Then f = 0.

Proof. Suppose on the contrary that $f(x^*) = y > 0$ for some $x^* \in [a, b]$. Using the continuity of f, choose δ such that $|x - x^*| < \delta$ implies that $|f(x) - f(x^*)| = |f(x) - y| < \frac{y}{2}$. If $x^* = a$ or $x^* = b$, then by the continuity of f, there is another point $x^{**} \in (a, b)$ so that $f(x^{**}) > 0$, so we may assume that $x^* \in (a, b)$.

Let $P = \{x_0, x_1 = x^*, x_2, x_3\}$ be a partition of [a, b] such that $\Delta x_2 < \delta$. Then for all $x \in [x_1, x_2]$, we have $|x - x^*| < \delta$ and, consequently, $|f(x) - y| < \frac{y}{2}$, which implies that $f(x) > \frac{y}{2}$. Therefore, $m_2 \ge \frac{y}{2} > 0$.

On the other hand, since $f(x) \ge 0$ for all $x \in [a, b]$, we must have $m_i \ge 0$ for i = 1, 3 as well. Thus,

$$L(P, f) = \sum_{i=1}^{3} m_i \Delta x_i \ge m_2 \Delta x_2 > 0$$

This would imply that

$$0 < L(P, f) \le \int_a^b f(x) \, \mathrm{d}x = 0$$

This is a contradiction, so the assumption $f(x^*) > 0$ is false, that is, $f(x^*) \le 0$. This shows that $f(x^*) = 0$, but $x^* \in [a, b]$ was arbitrary, so f = 0 identically.

3. Rudin 6.3

Define three functions $\beta^1, \beta^2, \beta^3$ as follows: $\beta^j(x) = 0$ if x < 0 and $\beta^j(x) = 1$ if x > 0 for j = 1, 2, 3; and $\beta^1(0) = 0$, $\beta^2(0) = 1$, and $\beta^3(0) = \frac{1}{2}$. Let f be bounded on [-1, 1].

(a) $f \in \mathcal{R}(\beta^1)$ if and only if f(0+) = f(0), and then

$$\int f \, \mathrm{d}\beta^1 = f(0)$$

Proof. "If"

Suppose that f(0+) = f(0). Then given $\varepsilon > 0$, there exists $\delta > 0$ such that $0 < x < \delta$ implies that $|f(x) - f(0)| < \varepsilon$.

Let $P = \{x_0, x_1 = 0, x_2, x_3\}$ be a partition of [-1, 1] such that $0 < x_2 < \delta$. Then $\Delta \beta_2^1 = 1$, and $\Delta \beta_i^1 = 0$ if $i \neq 2$. Therefore,

$$U(P,f) - L(P,f) = M_2 - m_2 \le 2\varepsilon$$

since

$$M_{2} - m_{2} = \sup_{x,y \in [x_{1},x_{2}]} |f(x) - f(y)|$$

$$\leq \sup_{x,y \in [x_{1},x_{2}]} \left[|f(x) - f(0)| + |f(y) - f(0)| \right]$$

$$\leq 2\varepsilon$$

This implies that $f \in \mathcal{R}(\beta^1)$ since ε was arbitrary.

The integral

Note that

$$M_2 = \sup_{x \in [x_1, x_2]} f(x) \le f(0) + \sup_{x \in [x_1, x_2]} |f(x) - f(0)|$$

 $\le f(0) + \varepsilon$

and

$$-m_2 = \sup_{x \in [x_1, x_2]} \left[-f(x) \right] \le -f(0) + \sup_{x \in [x_1, x_2]} |f(x) - f(0)|$$

$$\le -f(0) + \varepsilon$$

so that $m_2 \geq f(0) - \varepsilon$.

In the above we have $L(P, f) = m_2$ and $U(P, f) = M_2$. Therefore

$$f(0) - \varepsilon \le m_2 \le \int f \, \mathrm{d}\beta^1 \le M_2 \le f(0) + \varepsilon$$

which implies that

$$\left| \int f \, \mathrm{d}\beta^1 - f(0) \right| \le \varepsilon$$

This proves that

$$\int f \, \mathrm{d}\beta^1 = f(0)$$

because $\varepsilon > 0$ was arbitrary.

"Only if"

Suppose that $f \in \mathcal{R}(\beta_1)$. Then for $\varepsilon > 0$ there exists a partition P of [-1,1] such that

$$U(P, f) - L(P, f) < \varepsilon$$

Assume that $0 \in P$ (if not, replace P by a refinement containing 0, which still satisfies the above inequality), say, $x_{i-1} = 0$. Then we have $\Delta \beta_j^1 = 0$ for all $j \neq i$, and $\Delta \beta_i^1 = 1$. Thus, the inequality reduces to

$$M_i - m_i < \varepsilon$$

Choose $\delta = \Delta x_i$; then $0 < x < \delta$ implies that $|f(x) - f(0)| < \varepsilon$, as f(x) and f(0) are between m_i and M_i (because $x \in [x_{i-1}, x_i]$). This means that f(0+) = f(0) by definition.

(b) Similar to part (a), we have $f \in \mathcal{R}(\beta^2)$ if and only if f(0-) = f(0), and then

$$\int f \, \mathrm{d}\beta^2 = f(0)$$

Proof. "If"

Suppose that f(0-) = f(0). Then given $\varepsilon > 0$, there exists $\delta > 0$ such that $-\delta < x < 0$ implies that $|f(x) - f(0)| < \varepsilon$.

Let $P = \{x_0, x_1, x_2 = 0, x_3\}$ be a partition of [-1, 1] such that $-\delta < x_1 < 0$. Then $\Delta \beta_2^2 = 1$, and $\Delta \beta_i^2 = 0$ if $i \neq 2$. Therefore,

$$U(P, f) - L(P, f) = M_2 - m_2 \le 2\varepsilon$$

by the same reasoning from (a). This implies that $f \in \mathcal{R}(\beta^2)$ since ε was arbitrary.

The integral

In the above we have $L(P, f) = m_2$ and $U(P, f) = M_2$. Therefore (by the same reasoning from (a))

$$f(0) - \varepsilon \le m_2 \le \int f \, d\beta^2 \le M_2 \le f(0) + \varepsilon$$

which implies that

$$\int f \, \mathrm{d}\beta^2 = f(0)$$

because $\varepsilon > 0$ was arbitrary.

"Only if"

Suppose that $f \in \mathcal{R}(\beta_2)$. Then for $\varepsilon > 0$ there exists a partition P of [-1, 1] such that

$$U(P, f) - L(P, f) < \varepsilon$$

Assume that $0 \in P$ (if not, replace P by a refinement containing 0, which still satisfies the above inequality), say, $x_i = 0$. Then we have $\Delta \beta_j^2 = 0$ for all $j \neq i$, and $\Delta \beta_i^2 = 1$. Thus, the inequality reduces to

$$M_i - m_i < \varepsilon$$

Choose $\delta = \Delta x_i$; then $-\delta < x < 0$ implies that $|f(x) - f(0)| < \varepsilon$, as f(x) and f(0) are between m_i and M_i (because $x \in [x_{i-1}, x_i]$). This means that f(0-) = f(0) by definition.

(c) $f \in \mathcal{R}(\beta^3)$ if and only if f is continuous at 0.

Proof. "If"

Suppose that f is continuous at 0. Then $f \in \mathcal{R}(\beta^1)$ and $f \in \mathcal{R}(\beta^2)$ by (a) and (b). Therefore $f \in \mathcal{R}(\beta^3)$ because $\beta^3 = \frac{\beta^1 + \beta^2}{2}$.

"Only if"

Suppose that $f \in \mathcal{R}(\beta^3)$. Let $\varepsilon > 0$. Then there exists a partition P of [-1,1] such that

$$U(P, f) - L(P, f) < \varepsilon$$

Let Q be a refinement of P containing 0, say $x_i = 0$. Then

$$U(Q, f) - L(Q, f) \le U(P, f) - L(P, f) < \varepsilon$$

Since $\Delta \beta_i^3 = \Delta \beta_{i+1}^3 = \frac{1}{2}$, and $\Delta \beta_i^3 = 0$ for all $j \notin \{i, i+1\}$, the inequality reduces to

$$M_i - m_i + M_{i+1} - m_{i+1} < 2\varepsilon$$

 $M_j \geq m_j$ for all j, so the above implies that

$$M_i - m_i < 2\varepsilon$$
 $M_{i+1} - m_{i+1} < 2\varepsilon$

If we choose $\delta < \min\{\Delta x_i, \Delta x_{i+1}\}$, then $|x| < \delta$ implies that $x \in [x_{i-1}, x_i]$ or $x \in [x_i, x_{i+1}]$, so that either

$$|f(x) - f(0)| \le M_i - m_i < 2\varepsilon$$

or

$$|f(x) - f(0)| \le M_{i+1} - m_{i+1} < 2\varepsilon$$

so that $|f(x) - f(0)| < 2\varepsilon$ in any case. Therefore, f is continuous at 0.

(d) If f is continuous at 0, then

$$\int f \, \mathrm{d}\beta^1 = \int f \, \mathrm{d}\beta^2 = \int f \, \mathrm{d}\beta^3 = f(0).$$

Proof. By the previous parts, if f is continuous at 0, then

$$\int f \, \mathrm{d}\beta^1 = f(0) = \int f \, \mathrm{d}\beta^2$$

and

$$\int f \, d\beta^3 = \int f \, d\left(\frac{\beta^1 + \beta^2}{2}\right) = \frac{1}{2} \int f \, d\beta^1 + \frac{1}{2} \int f \, d\beta^2 = f(0)$$

4. Rudin 6.4

Let f(x) = 0 for all irrational x and f(x) = 1 for all rational x. Then $f \notin \mathcal{R}$ on any interval [a, b].

Proof. Let P be a partition of an interval [a,b], a < b. Then $m_i = 0$ and $M_i = 1$ for all i because each subinterval $[x_{i-1}, x_i]$ contains both rational and irrational numbers. Thus,

$$L(P, f) = 0 \qquad U(P, f) = b - a$$

Choose $\varepsilon = \frac{b-a}{2}$. Since P above was arbitrary there is no partition P of [a,b] such that

$$U(P, f) - L(P, f) < \varepsilon$$

that is, $f \notin \mathcal{R}$.

5. Rudin 6.5

Suppose that f is a bounded real function on [a, b] and $f^2 \in \mathcal{R}$. It does not necessarily follow that $f \in \mathcal{R}$.

Consider, for example, a function f defined by f(x) = 1 if x is rational and f(x) = -1 if x is irrational. Then $f^2 = 1$, which is continuous and therefore integrable on [a, b]. On the other hand, if g is the function from 6.4, then f = 2g - 1, so $f \in \mathcal{R}$ implies $g \in \mathcal{R}$, but we know that $g \notin \mathcal{R}$, so it follows that $f \notin \mathcal{R}$.

On the other hand, if we know instead that $f^3 \in \mathcal{R}$, then it *does* follow that $f \in \mathcal{R}$. This is because the function $c^{-1}(x) = x^{\frac{1}{3}}$ is continuous everywhere, and it is the inverse of $c(x) = x^3$. This implies that $c^{-1} \circ f^3 = c^{-1} \circ c \circ f = f$, and the continuity of c^{-1} combined with the integrability of f^3 therefore implies that $f \in \mathcal{R}$.

6. Rudin 6.7

Suppose that f is a function on (0,1] and $f \in \mathcal{R}$ on [c,1] for all c > 0. Define

$$\int_0^1 f(x) \, \mathrm{d}x = \lim_{c \to 0} \int_c^1 f(x) \, \mathrm{d}x$$

if the limit exists and is finite.

(a) Let $f \in \mathcal{R}$ on [0,1]. Then the definition above agrees with the integral of f on [0,1].

Proof. Let $\varepsilon > 0$ be given. Let $I = \lim_{c \to 0} \int_{c}^{1} f(x) dx$. Then given $\varepsilon > 0$ there exists $\delta > 0$ such that $c < \delta$ implies

$$\left| I - \int_{\varepsilon}^{1} f(x) \, \mathrm{d}x \right| < \varepsilon$$

Or, equivalently,

$$\left| I - \int_0^1 f(x) \, \mathrm{d}x + \int_0^c f(x) \, \mathrm{d}x \right| < \varepsilon$$

which implies that

$$\left| I - \int_0^1 f(x) \, \mathrm{d}x \right| < \left| \int_0^c f(x) \, \mathrm{d}x \right| + \varepsilon$$

Since f is integrable on [0,1], it must be bounded. Let $|f(x)| \le M$ for all $x \in [0,1]$. Then the above inequality becomes

$$\left| I - \int_0^1 f(x) \, \mathrm{d}x \right| < Mc + \varepsilon$$

This inequality holds for any $\varepsilon > 0$ and any sufficiently small c > 0. This implies that

$$I = \int_0^1 f(x) \, \mathrm{d}x$$

(b) Let $f:(0,1]\to\mathbb{R}$ be defined by

$$f(x) = \frac{(-1)^{n(x)}}{x}$$

where n(x) is the unique positive integer n such that $x \in \left(\frac{1}{n+1}, \frac{1}{n}\right]$. Then the improper integral $\int_0^1 f(x) dx$ exists, but the improper integral $\int_0^1 |f| dx$ does not.

Proof. For a given 0 < c < 1, let N be the largest positive integer such that $c < \frac{1}{N}$. Then $f \in \mathcal{R}$ on [c, 1] because it is a piecewise continuous function, and

$$\int_{c}^{1} f = (-1)^{N} \int_{c}^{\frac{1}{N}} \frac{1}{x} dx + \sum_{n=1}^{N-1} (-1)^{n} \int_{\frac{1}{n+1}}^{\frac{1}{n}} \frac{1}{x} dx$$
$$= R + \sum_{n=1}^{N-1} (-1)^{n} a_{n}$$

where $R = (-1)^N \int_c^{\frac{1}{N}} \frac{1}{x} dx$ and $a_n = \ln\left(1 + \frac{1}{n}\right)$ (take the sum to be 0 when N = 1). Then $-\{a_n\}$ is decreasing and $a_n \to 0$ as $n \to \infty$; $-\sum_{n=1}^{\infty} (-1)^n a_n$ converges by the Alternating Series Test to some number S; $-|R| \le \int_{\frac{1}{N+1}}^{\frac{1}{N}} \frac{1}{x} dx = a_N$.

Given $\varepsilon > 0$, choose c so that N is large enough to make $a_N < \varepsilon$ and so that

$$\left| S - \sum_{n=1}^{N-1} (-1)^n a_n \right| < \varepsilon$$

Then it follows that

$$\left| S - \int_{c}^{1} f \right| = \left| S - R - \sum_{n=1}^{N-1} (-1)^{n} a_{n} \right| < 2\varepsilon$$

Therefore $\int_c^1 f \to S$ as $c \to 0$, that is, $\int_0^1 f = S$.

On the other hand, $|f(x)| = \frac{1}{x}$, which has antiderivative $\ln(x)$ on any interval [c, 1], where c > 0. Therefore,

$$\lim_{c \to 0} \int_{c}^{1} |f| = \lim_{c \to 0} \left[-\ln(c) \right] = \infty$$

so $\int_0^1 |f|$ does not exist.

7. Rudin 6.8

Suppose that $f \in \mathcal{R}$ on [a, b] for all b > a, where a is fixed. Define

$$\int_{a}^{\infty} f(x) \, \mathrm{d}x = \lim_{b \to \infty} \int_{a}^{b} f(x) \, \mathrm{d}x$$

if this limit exists (and is finite). If $f(x) \ge 0$ and f is decreasing on $[1, \infty)$ then

$$\int_{1}^{\infty} f(x) \, \mathrm{d}x$$

exists if and only if

$$\sum_{n=1}^{\infty} f(n)$$

converges.

Proof. Since $f(x) \ge 0$, it follows that $g(N) = \int_1^N f(x) dx$ is an increasing function of N.

Integral converges implies series converges

Suppose that the integral $I = \int_1^\infty f(x) \, \mathrm{d}x$ converges. This and the fact that g is increasing imply $g(N) \leq I$ for any N > 1.

Let N > 1 be an integer, and let $P = \{1, 2, ..., N\}$ be a partition of [1, N]. Then $m_n = f(n+1)$ because f is decreasing, and therefore

$$\sum_{n=2}^{N} f(n) = L(P, f) \le \int_{1}^{N} f(x) \, dx \le I$$

Thus, the Nth partial sum of the series is bounded above by I + f(1). On the other hand, the terms of the series are nonnegative, so the partial sums are increasing. Therefore, the series converges.

Series converges implies integral converges

Suppose that $\sum_{n=1}^{\infty} f(n)$ converges. Then the partial sums are bounded, say by M. Let N > 1 be an integer and let $P = \{1, 2, ..., N\}$ be a partition of [1, N]. Then $M_n = f(n)$ because f is decreasing, and therefore

$$g(N) \le U(P, f) = \sum_{n=1}^{N-1} f(n) \le M$$

Since g is increasing and bounded above, it must have a limit; that is, the improper integral converges. \Box

8. Rudin 6.10

Let p and q be positive real numbers such that

$$\frac{1}{p} + \frac{1}{q} = 1$$

(a) If $u \ge 0$ and $v \ge 0$, then

$$uv \le \frac{u^p}{p} + \frac{v^q}{q}$$

Equality holds if and only if $u^p = v^q$.

Proof. Lemma

Let $f \in C^1([a,b])$ be strictly increasing. Then f is invertible with strictly increasing inverse $f^{-1} \in C^1([f(a),f(b)])$, and

$$\int_{a}^{b} f(x) dx + \int_{f(a)}^{f(b)} f^{-1}(x) dx = bf(b) - af(a)$$

because we can change variables $y = f^{-1}(x)$ in the second integral to write it as

$$\int_{f(a)}^{f(b)} f^{-1}(x) \, dx = \int_{a}^{b} x f'(x) \, dx$$

and then use integration by parts to obtain

$$\int_{f(a)}^{f(b)} f^{-1}(x) \, \mathrm{d}x = x f(x) \Big|_a^b - \int_a^b f(x) \, \mathrm{d}x$$

from which the claim follows.

Inequality

Define $f(x) = x^{p-1}$. Then $f \in C^1([0,\infty))$ and f is strictly increasing. Thus, f has a strictly increasing C^1 inverse on $[0,\infty)$. In fact, simple algebra shows that $\frac{1}{p-1} = q-1$, so $f^{-1}(x) = x^{\frac{1}{p-1}} = x^{q-1}$.

Assume without loss of generality that $f(u) \leq v$; if not, then $f^{-1}(v) \leq u$ because f is increasing, so, without altering the content of the claim to be proven, we could relabel the variables $p \leftrightarrow q$ and $u \leftrightarrow v$, in which case f would become f^{-1} and we would have $f(u) \leq v$.

Define the function ϕ as follows:

$$\phi(x) = \begin{cases} f^{-1}(x) & 0 \le x \le f(u) \\ u & f(u) < x \end{cases}$$

Then

- (a) ϕ is continuous on $[0, \infty)$;
- (b) $\phi = f^{-1}$ on [0, f(u)];
- (c) $\phi(x) \leq f^{-1}(x)$ for all $x \geq 0$ because f^{-1} is increasing.

Applying the Lemma and the above facts gives

$$\int_0^v \phi = \int_0^{f(u)} f^{-1} + \int_{f(u)}^v u \, dx \tag{A}$$

$$= uf(u) - \int_0^u f + u(v - f(u))$$
 (1)

$$= uv - \int_0^u f \tag{2}$$

On the other hand,

$$\int_0^v \phi \le \int_0^v f^{-1} \tag{B}$$

Applying the FTC gives

$$\int_0^u f = \int_0^u x^{p-1} \, \mathrm{d}x = \frac{u^p}{p} \qquad \int_0^v f^{-1} = \int_0^v x^{q-1} \, \mathrm{d}x = \frac{v^q}{q}$$

Combining all of the preceding results together shows that

$$uv \le \int_0^u f + \int_0^v f^{-1} = \frac{u^p}{p} + \frac{u^q}{q}$$

Equality

Suppose that $uv = \frac{u^p}{p} + \frac{v^q}{q}$. Then by (A) we have $\int_0^v \phi = \frac{v^q}{q}$, that is, equality holds in (B). If $g = f^{-1} - \phi$, then we have $g(x) \ge 0$ for all $x \in [f(u), v]$ by 3., but equality in (B) and 2. together imply that

$$\int_{f(u)}^{v} g = 0$$

Then exercise 6.2 implies that g(x) = 0, that is, $\phi(x) = f^{-1}(x)$, for all $x \in [f(u), v]$. The only way this can be true given the definition of ϕ and the fact that f^{-1} is *strictly* increasing is if f(u) = v, or $u^{p-1} = v$. If this is the case, then substitution for v yields

$$u^p = \frac{u^p}{p} + \frac{v^q}{q}$$

or

$$u^p \left(1 - \frac{1}{p} \right) = \frac{1}{q} v^q$$

which implies that $u^p = v^q$.

Conversely, if $u^p = v^q$, then $u = v^{\frac{q}{p}}$, and

$$uv = v^{\frac{q}{p}+1} = v^{q(\frac{1}{p}+\frac{1}{q})} = v^q = v^q \left(\frac{1}{p} + \frac{1}{q}\right)$$

= $\frac{u^p}{p} + \frac{v^q}{q}$

(b) If $f, g \in \mathcal{R}(\alpha)$ and $f \geq 0, g \geq 0$, and

$$\int_a^b f^p \, \mathrm{d}\alpha = 1 = \int_a^b g^q \, \mathrm{d}\alpha,$$

then

$$\int_{a}^{b} fg \, d\alpha \le 1.$$

Proof. By part (a), we have $(fg)(x) \leq \frac{f(x)^p}{p} + \frac{g(x)^q}{q}$ for all $x \in [a, b]$, so

$$\int_a^b fg \; \mathrm{d}\alpha \leq \int_a^b \left[\frac{f^p}{p} + \frac{g^q}{q}\right] \; \mathrm{d}\alpha = \frac{1}{p} + \frac{1}{q} = 1.$$

(c) If $f, g \in \mathcal{R}(\alpha)$ are functions on [a, b], then $fg, |f|^p$, and $|g|^q$ are in $\mathcal{R}(\alpha)$, and

$$\left| \int_a^b fg \, \mathrm{d}\alpha \right| \leq \left| \int_a^b |f|^p \, \mathrm{d}\alpha \right|^{\frac{1}{p}} \cdot \left| \int_a^b |g|^q \, \mathrm{d}\alpha \right|^{\frac{1}{q}}$$

Proof. Define

$$F = \frac{|f|}{\left[\int_a^b |f|^p \, \mathrm{d}\alpha\right]^{\frac{1}{p}}} \qquad G = \frac{|g|}{\left[\int_a^b |g|^q \, \mathrm{d}\alpha\right]^{\frac{1}{q}}}$$

Then $\int_a^b F^p \, \mathrm{d}\alpha = 1$ and $\int_a^b G^q \, \mathrm{d}\alpha = 1$, so by part (b)

$$\left| \int_{a}^{b} fg \, d\alpha \right| \leq \int_{a}^{b} |f||g| \, d\alpha$$

$$= \left[\int_{a}^{b} |f|^{p} \, d\alpha \right]^{\frac{1}{p}} \cdot \left[\int_{a}^{b} |g|^{q} \, d\alpha \right]^{\frac{1}{q}} \cdot \int_{a}^{b} FG \, d\alpha$$

$$\leq \left[\int_{a}^{b} |f|^{p} \, d\alpha \right]^{\frac{1}{p}} \cdot \left[\int_{a}^{b} |g|^{q} \, d\alpha \right]^{\frac{1}{q}}$$

(d) The integral from 6.7

Let f, g be functions on (0, 1] such that $f, g \in \mathcal{R}$ on [c, 1] for all 0 < c < 1. Then $fg, |f|^p$, and $|g|^q$ are functions on (0, 1] that are integrable on [c, 1] for all 0 < c < 1, and

$$\left| \int_0^1 fg \right| \le \left[\int_0^1 |f|^p \right]^{\frac{1}{p}} \cdot \left[\int_0^1 |g|^q \right]^{\frac{1}{q}}$$

where the integrals are taken in the manner defined in exercise 6.7, assuming that all of the improper integrals exist and are finite.

Proof. Let $\varepsilon > 0$ be given. Then by the definition of the improper integral and the continuity of the functions $(\cdot)^{\frac{1}{p}}$ and $(\cdot)^{\frac{1}{q}}$ there exists 0 < c < 1 such that

$$\int_0^1 fg \le \int_c^1 fg + \varepsilon$$

$$\left[\int_c^1 |f|^p\right]^{\frac{1}{p}} \le \left[\int_0^1 |f|^p\right]^{\frac{1}{p}} + \varepsilon \qquad \left[\int_c^1 |g|^q\right]^{\frac{1}{q}} \le \left[\int_0^1 |g|^q\right]^{\frac{1}{q}} + \varepsilon$$

Then by (c)

$$\begin{split} \left| \int_0^1 fg \, \right| &\leq \left| \int_c^1 fg \, \right| + \varepsilon \leq \left[\int_c^1 |f|^p \, \right]^{\frac{1}{p}} \cdot \left[\int_c^1 |g|^q \, \right]^{\frac{1}{q}} + \varepsilon \\ &\leq \left(\left[\int_0^1 |f|^p \, \right]^{\frac{1}{p}} + \varepsilon \right) \cdot \left(\left[\int_0^1 |g|^q \, \right]^{\frac{1}{q}} + \varepsilon \right) + \varepsilon \\ &\leq \left[\int_0^1 |f|^p \, \right]^{\frac{1}{p}} \cdot \left[\int_0^1 |g|^q \, \right]^{\frac{1}{q}} + M\varepsilon + \varepsilon^2 \end{split}$$

where M>0 is number depending on f and g but not ε . The conclusion follows because ε was arbitrary.

The integral from 6.8

Let f, g be functions on [a, b] for all b > a, where a is fixed. Then

$$\left| \int_{a}^{\infty} fg \right| \leq \left[\int_{a}^{\infty} |f|^{p} \right]^{\frac{1}{p}} \cdot \left[\int_{a}^{\infty} |g|^{q} \right]^{\frac{1}{q}}$$

where the integrals are taken in the sense defined in 6.8, assuming that all of the improper integrals exist and are finite.

Proof. Let $\varepsilon > 0$ be given. Then by the definition of the improper integral and the continuity of the functions $(\cdot)^{\frac{1}{p}}$ and $(\cdot)^{\frac{1}{q}}$ there exists b > a such that

$$\begin{split} \int_a^\infty fg & \leq \int_a^b fg + \varepsilon \\ \left[\int_a^b |f|^p \right]^{\frac{1}{p}} & \leq \left[\int_a^\infty |f|^p \right]^{\frac{1}{p}} + \varepsilon \qquad \left[\int_a^b |g|^q \right]^{\frac{1}{q}} & \leq \left[\int_a^\infty |g|^q \right]^{\frac{1}{q}} + \varepsilon \end{split}$$

Then by (c)

$$\left| \int_{a}^{\infty} fg \right| \leq \left| \int_{a}^{b} fg \right| + \varepsilon \leq \left[\int_{a}^{b} |f|^{p} \right]^{\frac{1}{p}} \cdot \left[\int_{a}^{b} |g|^{q} \right]^{\frac{1}{q}} + \varepsilon$$

$$\leq \left(\left[\int_{a}^{\infty} |f|^{p} \right]^{\frac{1}{p}} + \varepsilon \right) \cdot \left(\left[\int_{a}^{\infty} |g|^{q} \right]^{\frac{1}{q}} + \varepsilon \right) + \varepsilon$$

$$\leq \left[\int_{a}^{\infty} |f|^{p} \right]^{\frac{1}{p}} \cdot \left[\int_{a}^{\infty} |g|^{q} \right]^{\frac{1}{q}} + M\varepsilon + \varepsilon^{2}$$

where M>0 is number depending on f and g but not ε . The conclusion follows because ε was arbitrary.

9. Rudin 6.11

Let α be an increasing function on [a, b]. For $u \in \mathcal{R}(\alpha)$, define

$$||u||_2 = \left[\int_a^b |u|^2 \, \mathrm{d}\alpha \right]^{\frac{1}{2}}$$

Then for $f, g, h \in \mathscr{R}(\alpha)$

$$||f - h||_2 \le ||f - g||_2 + ||g - h||_2$$

Proof. Let p=2=q from 6.10. Then 6.10 (c) imlies that for any $u,v\in\mathcal{R}(\alpha)$

$$\int_a^b uv \, \mathrm{d}\alpha \le \|u\|_2 \|v\|_2$$

This, and the fact that u and v are real-valued imply that

$$||u+v||_2^2 = \int_a^b |u+v|^2 d\alpha = \int_a^b (u^2 + 2uv + v^2) d\alpha$$

$$\leq ||u||_2^2 + 2||u||_2||v||_2 + ||v||_2^2 = (||u||_2 + ||v||_2)^2$$

which furthermore implies that $||u+v||_2 \le ||u||_2 + ||v||_2$. Since f-h=(f-g)+(g-h), the above implies that

$$||f - h||_2 \le ||f - g||_2 + ||g - h||_2$$

10. Rudin 6.15

Suppose that f is a real, continuously differentiable function on [a, b] such that f(a) = 0 = f(b), and

$$\int_a^b f^2(x) \, \mathrm{d}x = 1$$

Then

$$\int_a^b x f(x) f'(x) \, \mathrm{d}x = -\frac{1}{2}$$

and

$$\int_{a}^{b} [f'(x)]^2 dx \cdot \int_{a}^{b} x^2 f^2(x) dx > \frac{1}{4}$$

Proof. First, we can apply integration by parts to $\int_a^b x f(x) f'(x) dx$ to obtain

$$\int_{a}^{b} x f(x) f'(x) dx = x f^{2}(x) \Big|_{a}^{b} - \int_{a}^{b} f(x) (f(x) + x f'(x)) dx$$
$$= -1 - \int_{a}^{b} x f(x) f'(x) dx$$

which implies that $\int_a^b x f(x) f'(x) dx = -\frac{1}{2}$. Second, using 6.10 (c) with p = 2 = q gives

$$\frac{1}{4} = \left| \int_a^b [f'(x)] \cdot [xf(x)] \, \mathrm{d}x \right|^2 \le \int_a^b [f'(x)]^2 \, \mathrm{d}x \cdot \int_a^b x^2 f^2(x) \, \mathrm{d}x$$

This inequality implies in particular that $\int_a^b [f']^2 > 0$. Therefore, if the inequality were an equality, we would have

$$\int_{a}^{b} \left(xf(x) + \frac{f'(x)}{2 \int_{a}^{b} [f']^{2}} \right)^{2} dx = \int_{a}^{b} x^{2} f^{2}(x) dx - \frac{1}{4 \int_{a}^{b} [f']^{2}}$$

$$= \frac{1}{\int_{a}^{b} [f']^{2}} \left(\int_{a}^{b} [f'(x)]^{2} dx \cdot \int_{a}^{b} x^{2} f^{2}(x) dx - \frac{1}{4} \right) = 0$$

which implies that $\left(xf(x) + \frac{f'(x)}{2\int_a^b [f']^2}\right)^2 = 0$ for all $x \in [a,b]$ by exercise 6.2. From this we see that f would solve the following linear ODE with continuous coefficients:

$$y'(x) = -2\lambda x y(x)$$

where $\lambda = \int_a^b [f']^2$. By the existence and uniqueness theorem for linear ODEs with continuous coefficients, it follows that

$$f(x) = Ce^{-\lambda x^2}$$

for some constant C. Then f(a)=0 implies that f=0, so that $\int_a^b f^2=0$, contradicting one of our assumptions. Therefore, the inequality must be strict.

11. Rudin 6.17

Suppose that α is increasing on [a,b], g is continuous, and g(x)=G'(x) for $a\leq x\leq b$. Then

$$\int_{a}^{b} \alpha(x)g(x) dx = G(b)\alpha(b) - G(a)\alpha(a) - \int_{a}^{b} G d\alpha$$
 (1)

Proof. Consider the following hypothesis.

Equation (1) is true when both
$$\alpha$$
 and g are nonnegative on $[a,b]$. (H)

Then set $\beta = \alpha + \gamma$, and set f = g + h, and F(x) = G(x) + hx, where γ and h are large enough that β and f are nonnegative on [a, b]. Then F' = f, and (H) implies that

$$\int_{a}^{b} \beta(x)f(x) dx = F(b)\alpha(b) - F(a)\alpha(a) - \int_{a}^{b} F d\beta$$

It is a straightforward computation to verify that this implies (1) if

$$\int_{a}^{b} \alpha(x) \, \mathrm{d}x = b\alpha(b) - a\alpha(a) - \int_{a}^{b} x \, \mathrm{d}\alpha \tag{2}$$

But the function p(x) = 1 and the weight β satisfy the hypotheses of (H), so (H) also implies that

$$\int_{a}^{b} \beta(x) dx = b\beta(b) - a\beta(a) - \int_{a}^{b} x d\beta$$

from which (2) follows immediately.

Thus, (H) implies our desired result, so we may assume without loss of generality that both α and g are nonnegative on [a, b].

Note that $\alpha \in \mathcal{R}$ because it is increasing and bounded, so $\alpha g \in \mathcal{R}$. Thus, we can find a partition P such that

$$U(P, \alpha g) - \varepsilon \le \int_{a}^{b} \alpha(x)g(x) \, dx \le L(P, \alpha g) + \varepsilon$$
$$U(P, g, \alpha) - \varepsilon \le \int_{a}^{b} G \, d\alpha \le L(P, g, \alpha) + \varepsilon$$

and Δx_i is small enough that $|g(t) - g(s)| < \varepsilon$ for all $t, s \in [x_{i-1}, x_i]$ for all i = 1 to n (by the uniform continuity of g).

By the MVT there are $t_i \in [x_{i-1}, x_i]$ such that $g(t_i)\Delta x_i = G(x_i) - G(x_{i-1})$. This implies that

$$A = \sum_{i=1}^{n} \alpha(x_i)g(t_i)\Delta x_i = \sum_{i=1}^{n} \alpha(x_i)(G(x_i) - G(x_{i-1}))$$
$$= \alpha(b)G(b) - \alpha(a)G(a) - \sum_{i=1}^{n} G(x_{i-1})\Delta \alpha_i$$
$$= C - B$$

where $C = \alpha(b)G(b) - \alpha(a)G(a)$, and $B = \sum_{i=1}^{n} G(x_{i-1})\Delta\alpha_i$.

It is easy to see that $L(P, G, \alpha) \leq B \leq U(P, G, \alpha)$ becase $G(x_{i-1})$ is between the inf and sup of G on each interval $[x_{i-1}, x_i]$. On the other hand, since α and g are both nonnegative, and α is increasing, we have

$$\inf_{x \in [x_{i-1}, x_i]} \alpha(x) g(x) \le \alpha(t_i) g(t_i) \le \alpha(x_i) g(t_i)$$

while, using the fact that $t_i \in [x_{i-1}, x_i]$ implies that $g(x_i) \ge g(t_i) - \varepsilon$,

$$\sup_{x \in [x_{i-1}, x_i]} \alpha(x)g(x) \ge \alpha(x_i)g(x_i)$$

$$\ge \alpha(x_i)g(t_i) - \varepsilon\alpha(x_i)$$

$$\ge \alpha(x_i)g(t_i) - \varepsilon\alpha(b)$$

Thus,

$$L(P, \alpha g) \le A \le U(P, \alpha g) + \varepsilon \alpha(b)(b - a)$$

from which we conclude that

$$L(P, \alpha g) + L(P, g, \alpha) \leq C \leq U(P, \alpha g) + U(P, g, \alpha) + \varepsilon \alpha(b)(b - a)$$

because A + B = C. Then

$$\int_{a}^{b} \alpha(x)g(x) dx + \int_{a}^{b} G d\alpha - 2\varepsilon$$

$$\leq C \leq$$

$$\int_{a}^{b} \alpha(x)g(x) dx + \int_{a}^{b} G d\alpha + \varepsilon(2 + \alpha(b)(b - a))$$

from which the claim follows, as ε was arbitrary.

12. Rudin 6.18

Let $\gamma_1, \gamma_2, \gamma_3$ be curves in the complex plane, defined on $[0, 2\pi]$ by

$$\gamma_1(t) = e^{it}$$
 $\gamma_2(t) = e^{2it}$ $\gamma_3(t) = e^{2\pi i t \sin(\frac{1}{t})}$

Then each curve has the same range, γ_1 and γ_2 are rectifiable with lengths 2π and 4π , and γ_3 is not rectifiable.

Proof. Viewing these curves as curves in \mathbb{R}^2 , we have

$$\gamma_1(t) = \begin{bmatrix} \cos(t) \\ \sin(t) \end{bmatrix} \qquad \gamma_2(t) = \begin{bmatrix} \cos(2t) \\ \sin(2t) \end{bmatrix} \qquad \gamma_3(t) = \begin{bmatrix} \cos\left(2\pi t \sin\left(\frac{1}{t}\right)\right) \\ \sin\left(2\pi t \sin\left(\frac{1}{t}\right)\right) \end{bmatrix}$$

Clearly $|\gamma_1| = |\gamma_2| = |\gamma_3| = 1$, so the range of each curve is a subset of the unit circle. Each curve has the form $\gamma_j(t) = \begin{bmatrix} \cos(g_j(t)) \\ \sin(g_j(t)) \end{bmatrix}$ for j = 1, 2, 3. Given (x, y) in the unit circle and any $\ell \in \mathbb{R}$, there exists a $\theta \in [\ell, \ell + 2\pi)$ such that $\cos(\theta) = x$ and $\sin(\theta) = y$, so if the range of g_j contains $[\ell, \ell + 2\pi)$, then the range of γ_j must be equal to the unit circle.

The range of $g_1(t)=t$ is $[0,2\pi]\supset[0,2\pi)$, and the range of $g_2(t)=2t$ is $[0,4\pi]\supset[0,2\pi)$, so the unit circle is the range of γ_1 and γ_2 . Let $t_1=\frac{2}{3\pi}$ and $t_2=\frac{16}{\pi}$. Then $\pi>3$ implies that $t_2<6<2\pi$, and clearly $0< t_1< t_2$, so $[t_1,t_2]\subset[0,2\pi]$. Also, g_3 is continuous on $[t_1,t_2]$, so the range of g_3 contains $[g_3(t_1),g_3(t_2)]$ by the Intermediate Value Theorem. We have $g_3(t_1)=-\frac{4}{3}<-\frac{\pi}{3};\ g_3(t_2)$ is a little trickier. Clearly, $25\cdot 81<56\cdot 137$, so

$$25 \cdot 81 + 137 \cdot 81 \qquad < 56 \cdot 137 + 81 \cdot 137$$

$$\Rightarrow 2 \cdot 81^{2} \qquad < 137^{2}$$

$$\Rightarrow 2 + \sqrt{2} \qquad < \frac{289}{81}$$

$$\Rightarrow \sqrt{\frac{1}{2} + \frac{\sqrt{2}}{4}} \qquad < \frac{17}{18}$$

$$\Rightarrow \frac{1}{2} - \frac{1}{2}\sqrt{\frac{1}{2} + \frac{\sqrt{2}}{4}} \qquad > \frac{1}{36}$$

$$\Rightarrow \sqrt{\frac{1}{2} - \frac{1}{2}\sqrt{\frac{1}{2} + \frac{\sqrt{2}}{4}}} \qquad > \frac{1}{6}$$

where the last quantity on the left is $\sin\left(\frac{\pi}{16}\right)$ by two applications of the half-angle identity. Therefore, $g_3(t_2) > \frac{16}{3} > \frac{5\pi}{3}$ because $\pi < 3 + \frac{1}{5}$. Thus, the range of g_3 contains $\left[-\frac{\pi}{3}, \frac{5\pi}{3}\right]$, which implies that the range of γ_3 is the unit circle.

Since γ_1 and γ_2 are clearly C^1 curves, they are rectifiable, and we have

$$\Lambda(\gamma_1) = \int_0^{2\pi} \|\gamma_1'\| = \int_0^{2\pi} 1 = 2\pi$$

since $\|\gamma_1'\| = 1$, and

$$\Lambda(\gamma_2) = \int_0^{2\pi} \|\gamma_2'\| = \int_0^{2\pi} 2 = 4\pi$$

since $\|\gamma_2'\| = 2$.

Now let $N \geq 1$ be an integer, and consider the partition

$$P_N = \left\{0, \frac{2}{(2N+1)\pi}, \frac{2}{(2(N-1)+1)\pi}, \dots, \frac{2}{\pi}, 2\pi\right\}$$

of $[0, 2\pi]$. Then

$$\Lambda(P_N, \gamma_3) \ge \sum_{n=1}^N ||\gamma_3(t_n) - \gamma_3(t_{n-1})||$$

where $t_n = \frac{2}{(2n+1)\pi}$.

For any a, b, the following trigonometric identities hold

$$4\sin^{2}(b) = 4\cos^{2}(a)\sin^{2}(b) + 4\sin^{2}(a)\sin^{2}(b)$$
$$= [\cos(\alpha) - \cos(\beta)]^{2} + [\sin(\alpha) - \sin(\beta)]^{2}$$

where $2a = \alpha + \beta$ and $2b = \alpha - \beta$.

Taking $\alpha = 2\pi t_n \sin\left(\frac{1}{t_n}\right)$ and $\beta = 2\pi t_{n-1} \sin\left(\frac{1}{t_{n-1}}\right)$ and noting that $\sin\left(\frac{1}{t_n}\right) = (-1)^n$, we can compute

$$\|\gamma_3(t_n) - \gamma_3(t_{n-1})\| = 2 \left| \sin \left(\frac{2}{2n+1} + \frac{2}{2n-1} \right) \right|$$

= $2 \left| \sin \left(\frac{4n}{4n^2 - 1} \right) \right|$

By Taylor's Theorem, there exists K large enough so that n > K implies that

$$\sin\left(\frac{4n}{4n^2-1}\right) \ge \frac{4n}{4n^2-1} - M\left(\frac{4n}{4n^2-1}\right)^3$$

for some constant M > 0 not depending on n or K. Therefore, if we take $N \ge K$,

$$\Lambda(P_N, \gamma_3) \ge \sum_{n=K}^{N} \frac{4n}{4n^2 - 1} - M \left(\frac{4n}{4n^2 - 1}\right)^3$$

Since the series $\sum_{n=K}^{\infty} \left(\frac{4n}{4n^2-1}\right)^3$ converges and the series $\sum_{n=K}^{\infty} \frac{4n}{4n^2-1}$ diverges to infinity, it follows that $\Lambda(P_N, \gamma_3) \to \infty$ as $N \to \infty$. Thus, γ_3 is not rectifiable.

13. Supplementary 1

Let f(x) = 0 for $x \in [0,1]$ and f(x) = 1 for $x \in (1,2]$, and let $\alpha = f$. Then $f \in \mathcal{R}$, but $f \notin \mathcal{R}(\alpha)$.

Proof. $f \in \mathcal{R}$

Let $\varepsilon > 0$ be given. Let $P = \{x_0, x_1 = 1, x_2, x_3\}$ be a partition of [0, 2] such that $\Delta x_2 < \varepsilon$. Then we have

$$m_1 = 0$$
 $M_1 = 0$
 $m_2 = 0$ $M_2 = 1$
 $m_3 = 1$ $M_3 = 1$

Thus,

$$U(P, f) - L(P, f) = \Delta x_2 < \varepsilon$$

which implies that $f \in \mathcal{R}$.

 $f \notin \mathcal{R}(\alpha)$

Let P be a partition of [0,2], and let Q be a refinement of P containing 1, say, $x_{i-1} = 1$. Then $\Delta \alpha_i = 1$ and $\Delta \alpha_j = 0$ for all $j \neq i$. On the other hand, we have $M_i - m_i = 1$. Therefore,

$$U(P, f) - L(P, f) \ge U(Q, f) - L(Q, f) = 1$$

This implies that $f \notin \mathcal{R}(\alpha)$ since P was arbitrary.

14. Supplementary 2

(a) Let f(x) = 1 if x is rational and f(x) = 0 if x is irrational for $x \in [0, 1]$. Then $f \notin \mathcal{R}$.

Proof. Let g be the function from Rudin 6.4 above. Then g=1-f, so $f\in\mathscr{R}\implies g\in\mathscr{R}$. But we showed in Rudin 6.4 that $g\notin\mathscr{R}$. Therefore $f\notin\mathscr{R}$.

(b) Let α be an increasing function on [0,1]. Then $f \in \mathcal{R}(\alpha)$ if and only if α is a constant function.

Proof. Suppose that $f \in \mathcal{R}(\alpha)$. Then given $\varepsilon > 0$ there exists a partition P of [0, 1] such that

$$U(P, f, \alpha) - L(P, f, \alpha) < \varepsilon$$

The density of both rational and irrational numbers implies that both occur in each interval $[x_{i-1}, x_i]$, so $m_i = 0$ and $M_i = 1$. Then

$$U(P, f, \alpha) - L(P, f, \alpha) = \sum_{i=1}^{n} \Delta \alpha_i = \alpha(1) - \alpha(0) < \varepsilon$$

Therefore, $\alpha(1) = \alpha(0)$ because $\alpha(1) \ge \alpha(0)$ and ε was arbitrary. Since α is increasing on [0,1], it follows that $\alpha(x) = \alpha(0)$ for all $x \in [0,1]$, that is, α is a constant function.

On the other hand, every bounded function is integrable with respect to constant weight functions, so $f \in \mathcal{R}(\alpha)$ if α is a constant function.

15. Supplementary 3

Let f(x) = 1 if x is rational and f(x) = -1 if x is irrational for $x \in [0, 1]$. Then $f \notin \mathcal{R}$ because if it were, then $\frac{f+1}{2}$, the function from the previous problem, would be integrable.

On the other hand, it is obvious that |f| = 1, which is continuous and therefore integrable.

16. Supplementary 4

Let $I = I^+$ be defined by

$$I(x) = I^{+}(x) = \begin{cases} 0 & x < 0 \\ 1 & x \ge 0 \end{cases}$$

(a) If $a < s \le b$, f is bounded on [a, b], f is continuous at s, and $\alpha(x) = I^+(x - s)$, then

$$\int_{a}^{b} f \, \mathrm{d}\alpha = f(s)$$

Proof. Let $\varepsilon > 0$ be given. Since f is bounded and continuous at s, and α is continuous everywhere but s, we have $f \in \mathcal{R}(\alpha)$. Furthermore, there exists $\delta > 0$ such that $|x-s| < \delta$ implies that $|f(x)-f(s)| < \varepsilon$. Suppose s < b. Let $P = \{x_0, x_1, x_2 = s, x_3\}$ be a partition of [a, b] such that $\Delta x_2 < \delta$. Then $\Delta \alpha_2 = 1$, and $\Delta \alpha_i = 0$ for $i \neq 2$, and

$$L(P, f, \alpha) = m_2$$
 $U(P, f, \alpha) = M_2$

Since $x \in [x_1, x_2]$ implies that $|x - s| < \delta$, it follows that $f(x) < f(s) + \varepsilon$ and $f(x) > f(s) - \varepsilon$ for all $x \in [x_1, x_2]$, which implies that $M_2 \le f(s) + \varepsilon$ and $m_2 \ge f(s) - \varepsilon$. Then

$$f(s) - \varepsilon \le L(P, f, \alpha) \le \int_a^b f \, d\alpha \le U(P, f, \alpha) \le f(s) + \varepsilon$$

Therefore, $\int_a^b f \, d\alpha = f(s)$ because ε was arbitrary.

If s=b, then consider the partition $P=\{x_0,x_1,x_2\}$ such that $\Delta x_2<\delta$. Then a virtually identical argument to the one above shows that $\int_a^b f \, \mathrm{d}\alpha=f(s)$.

(b) Suppose $c_n \geq 0$ for n = 1, 2, ..., N and $s_1, ..., s_N$ are distinct points in (a, b], and

$$\alpha(x) = \sum_{n=1}^{N} c_n I^+(x - s_n)$$

Let f be continuous on [a, b]. Then

$$\int_{a}^{b} f \, d\alpha = \sum_{n=1}^{N} c_n f(s_n)$$

Proof. Since each of $I^+(x-s_n)$ is increasing and continuous everywhere but s_n , and f is continuous on [a,b], we have $f \in \mathcal{R}(\alpha_n)$, where $\alpha_n = I^+(x-s_n)$. Then, because $c_n \geq 0$, we also have $f \in \mathcal{R}(c_n\alpha_n)$ and $f \in \mathcal{R}(\alpha)$, and

$$\int_{a}^{b} f \, d\alpha = \sum_{n=1}^{N} c_n \int_{a}^{b} f(x) \, dI^{+}(x - s_n) = \sum_{n=1}^{N} f(s_n)$$

by part (a) of this problem.

(c) Suppose that $c_n \ge 0$ for $n = 1, 2, ..., \sum_{n=1}^{\infty} c_n$ converges, and $s_1, s_2, ...$ is a sequence of distinct points in (a, b], and

$$\alpha(x) = \sum_{n=1}^{\infty} c_n I^+(x - s_n)$$

Let f be continuous on [a, b]. Then

$$\int_{a}^{b} f \, d\alpha = \sum_{n=1}^{\infty} c_n f(s_n)$$

Proof. The convergence of $\sum_{n=1}^{\infty} c_n$ ensures that α is defined for each $x \in [a, b]$ by the comparison test. It is clear that α is increasing. Since f is continuous, we have $f \in \mathcal{R}(\alpha)$.

Let $\varepsilon > 0$ be given. There is some K such that N > K implies

$$\sum_{n=N+1}^{\infty} c_n < \varepsilon$$

Define α_1 and α_2 by

$$\alpha_1(x) = \sum_{n=1}^{N} c_n I^+(x - s_n)$$
 $\alpha_2(x) = \sum_{n=N+1}^{\infty} c_n I^+(x - s_n)$

Then $\alpha = \alpha_1 + \alpha_2$. Clearly, α_1 and α_2 are also defined for all x and are both increasing, so $f \in \mathcal{R}(\alpha_1)$ and $f \in \mathcal{R}(\alpha_2)$. Moreover, $\alpha_2(b) - \alpha_2(a) = \sum_{n=N+1}^{\infty} c_n < \varepsilon$. Therefore,

$$\left| \int_{a}^{b} f \, d\alpha - \int_{a}^{b} f \, d\alpha_{1} \right| = \left| \int_{a}^{b} f \, d\alpha_{2} \right|$$

$$\leq M(\alpha_{2}(b) - \alpha_{2}(a)) \leq M\varepsilon$$

where $M = \sup_{x \in [a,b]} |f(x)|$. By part (b), we have $\int_a^b f \, d\alpha_1 = \sum_{n=1}^N c_n f(s_n)$, so

$$\left| \int_{a}^{b} f \, d\alpha - \sum_{n=1}^{N} c_n f(s_n) \right| \le M\varepsilon$$

for all N > K. Therefore, since $\varepsilon > 0$ was arbitrary and the series $\sum_{n=1}^{\infty} c_n f(s_n)$ is absolutely convergent by comparison with the convergent series $\sum_{n=1}^{\infty} Mc_n$, we can conclude that

$$\int_{a}^{b} f \, d\alpha = \sum_{n=1}^{\infty} c_n f(s_n)$$

17. Supplementary 5

For $x \in \mathbb{R}$ let [x] denote the integer part of x, that is

$$[x] = \sup \{k \in \mathbb{Z} \mid k < x\}$$

Then for $n \in \mathbb{N}$, and $\alpha(x) = [x]$, use part (c) of the problem 4 to obtain

$$\int_0^n x \, \mathrm{d}\alpha = \sum_{i=1}^n i = \frac{n(n+1)}{2}$$

because $\alpha(x) = [x] = \sum_{i=1}^{n} I^{+}(x-i)$ on [0, n].

18. Supplementary 6

Let $f(x) = x^2$, and define α as follows:

$$\alpha(x) = \begin{cases} 0 & x < 2\\ \frac{2}{3}x - 1 & 2 \le x < 3\\ 1 & 3 \le x \end{cases}$$

Since f is continuous, we have $f \in \mathcal{R}(\alpha)$ on [0,3]. This means that $f \in \mathcal{R}(\alpha)$ on [0,2] and [2,3] as well, and

$$\int_0^3 f \, d\alpha = \int_0^2 f \, d\alpha + \int_2^3 f \, d\alpha$$

On [0,2], we have $\alpha(x) = \frac{1}{3}I^{+}(x-2)$, so by 4. (b)

$$\int_0^2 f \, d\alpha = \frac{f(2)}{3} = \frac{4}{3}$$

On [2,3], we have $\alpha(x) = \frac{2}{3}x - 1$ (since $\frac{2}{3}3 - 1 = 1$, which agrees with the definition of $\alpha(3)$ above). Then $\alpha' = \frac{2}{3}$, so $\alpha' \in \mathcal{R}$ and $f\alpha' \in \mathcal{R}$ on [2,3], which implies that

$$\int_{2}^{3} f \, d\alpha = \int_{2}^{3} f \alpha' = \int_{2}^{3} \frac{2}{3} x^{2} \, dx = \left. \frac{2}{9} x^{3} \right|_{2}^{3} = \frac{38}{9}$$

by the FTC. Thus,

$$\int_0^3 f \, d\alpha = \frac{38}{9} + \frac{4}{3} = \frac{46}{9}$$

19. Supplementary 7

(a) (a) If $\alpha(x) = x^2$, then α is increasing on [0,1], and $\alpha'(x) = 2x$, so $\alpha' \in \mathcal{R}$, and $f\alpha' \in \mathcal{R}$ if f(x) = x. Therefore,

$$\int_0^1 f \, d\alpha = \int_0^1 x \, d(x^2) = \int_0^1 2x^2 \, dx = \frac{2x^3}{3} \Big|_0^1 = \frac{2}{3}$$

by the FTC.

(b) (b)

If $\alpha(x) = \sin(x)$, then α is increasing on $\left[0, \frac{\pi}{2}\right]$, and $\alpha'(x) = \cos(x)$, so $\alpha' \in \mathcal{R}$, and $f\alpha' \in \mathcal{R}$ if $f = \sin$. Therefore,

$$\int_0^{\frac{\pi}{2}} f \, d\alpha = \int_0^{\frac{\pi}{2}} \sin(x) \, d(\sin(x)) = \int_0^{\frac{\pi}{2}} \sin(x) \cos(x) \, dx$$
$$= \int_0^{\frac{\pi}{2}} \frac{1}{2} \sin(2x) \, dx = -\frac{\cos(2x)}{4} \Big|_0^{\frac{\pi}{2}} = \frac{1}{2}$$

by the FTC.

20. Supplementary 8

I'm not sure if you meant to type o instead of 0 in the lower limit, but I am going to assume that you did, and that o < 5. Let $\alpha_1(x) = x$ and $\alpha_2(x) = [x]$. Then $\alpha_1(x) + \alpha_2(x) = x + [x]$, and α_1 and α_2 are both increasing on [o, 5]. $f(x) = x^2$ is continuous on [o, 5] and, hence, $f \in \mathcal{R}(\alpha_1)$, and $f \in \mathcal{R}(\alpha_2)$. Therefore,

$$\int_{o}^{5} x^{2} d(\alpha_{1}(x) + \alpha_{2}(x)) = \int_{o}^{5} x^{2} dx + \int_{o}^{5} x^{2} d\alpha_{2}$$

Note that $\alpha_2(x) = [o] + \sum_{i=[o]+1}^{5} I^+(x-i)$ on [o,5]. The constant [o] can be ignored, so by Supplementary 4

$$\int_{o}^{5} x^{2} d\alpha_{2} = \sum_{i=|o|+1}^{5} i^{2} = 55 - \frac{[o]([o]+1)(2[o]+1)}{6}$$

On the other hand,

$$\int_{0}^{5} x^{2} dx = \frac{x^{3}}{3} \bigg|_{0}^{5} = \frac{125}{3} - \frac{o^{3}}{3}$$

by the FTC. Therefore,

$$\int_{0}^{5} x^{2} d(x + [x]) = \frac{290}{3} - \frac{o^{3}}{3} - \frac{[o]([o] + 1)(2[o] + 1)}{6}$$

In particular, if o = 0, then the integral is $\frac{290}{3}$.

21. Supplementary 9

Let α be strictly increasing on [a,b], and let $f \in \mathcal{R}(\alpha)$ on [a,b]. Suppose that $f(x) \geq 0$ for all $x \in [a,b]$, and f is continuous at a point $c \in [a,b]$, and f(c) > 0. Then

$$\int_{a}^{b} f \, \mathrm{d}\alpha > 0$$

Proof. Let y = f(c) > 0. Since f is continuous at c, choose $\delta > 0$ such that $|f(x) - f(c)| < \frac{y}{2}$. Then $|x - c| < \delta$ implies that $f(x) > \frac{y}{2}$.

Let $P = \{x_0, x_1, x_2, x_3\}$ be a partition of [a, b] such that $c \in [x_1, x_2]$, and $\Delta x_2 < \delta$. Then:

- $f(x) \ge 0$ implies that $m_i \ge 0$ for all i, so $m_i \Delta \alpha_i \ge 0$ for all i. - $x \in [x_1, x_2]$ implies that $|x - c| < \delta$, so $m_2 \ge \frac{y}{2}$.

Thus,

$$L(P, f, \alpha) = \sum_{n=1}^{3} m_i \Delta \alpha_i \ge \frac{y}{2} \Delta \alpha_2 > 0$$

since $\Delta \alpha_2 > 0$ as a consequence of α being *strictly* increasing. Therefore,

$$\int_a^b f \, \mathrm{d}\alpha \ge L(P, f, \alpha) > 0$$