FIFA VS REALITY

Soyeon Lim

Table of Contents

- 1st Approach (Linear Regression & SVR)
 - EDA
 - Data Preparation
 - Machine Learning Models
 - Evaluation
 - Visualization & Analysis
 - Findings
 - Conclusion
- 2nd Approach (Decision Tree)
 - EDA
 - Data Cleaning
 - Machine Learning Models
 - Visualization
 - Evaluation & Challenges
 - Conclusion

Questions

• Q1: Does the EA FIFA player profile match to the performance in real life?

Q2: Can FIFA be used as a digital twin of real-life football?

1st Approach

- Linear Regression
- Support Vector Regression
- Divide the players into 3 groups based on their positions
 - Defensive players
 - Midfielders
 - Offensive players

EDA

Name	Name	Rating	ifa Ability Overall	Position	Apps	Minutes played
game"	Dribbles per game	Fouled per game	Offsides per game	Dispossessed per game	Bad control per game	Key passes per game
manipulation		string	tring	string	0	(
manipulation		string	tring	string	0	(
Lionel Messi	Lionel Messi Barcelona, 32, AM(CR),FW	8.48	94	AM(CR), FW	29	2710
Cristiano Ronaldo	Cristiano Ronaldo Juventus, 34, M(L), FW	7.68	94	M(L), FW	30	2689
Neymar	Neymar Paris Saint-Germain, 27, AM(CLR), FW	8.26	92	AM(CLR), FW	16	1444
Luis Suárez	Luis Suárez Barcelona, 32, AM(CLR),FW	7.57	91	AM(CLR), FW	31	2830
Luka Modric	Luka Modric Real Madrid, 33, M(C)	7.03	91	M(C)	31	2618
Sergio Ramos	Sergio Ramos Real Madrid, 33, D(CR)	6.91	91	D(CR)	28	2476
Leo Suárez	Leo Suárez Real Valladolid, 23, FW	6.25	91	FW	7	520
Eden Hazard	Eden Hazard Chelsea, 28, M(CLR),FW	7.81	91	M(CLR), FW	32	2926
Kevin De Bruyne	Kevin De Bruyne Manchester City, 28, M(CLR),FW	7.05	91	M(CLR), FW	11	978
Robert Lewandowski	Robert Lewandowski Bayern Munich, 31, FW	7.65	90	FW	33	2959
Toni Kroos	Toni Kroos Real Madrid, 29, M(C)	7.09	90	M(C)	26	2227
Diego Godín	Diego Godín Atletico Madrid, 33, D(C)	6.98	90	D(C)	28	2508
David Silva	David Silva Manchester City, 33, M(CLR)	7.26	90	M(CLR)	28	2412
Antoine Griezmann	Antoine Griezmann Atletico Madrid, 28, AM(CLR), FW	7.29	89	AM(CLR), FW	37	3204
Sergio Busquets	Sergio Busquets Barcelona, 31, DMC	7	89	DMC	30	2720
Edinson Cavani	Edinson Cavani Paris Saint-Germain, 32, AM(LR),FW	7.44	89	AM(LR), FW	20	1676
Sergio Agüero	Sergio Agüero Manchester City, 31, AM(CL),FW	7.53	89	AM(CL), FW	31	2480
Harry Kane	Harry Kane Tottenham, 26, AM(C),FW	7.38	89	AM(C), FW	27	2427
NGolo Kanté	N'Golo Kanté Chelsea, 28, DMC	6.93	89	DMC	36	3096
Paulo Dybala	Paulo Dybala Juventus, 25, AM(CR),FW	7.08	89	AM(CR), FW	24	2137
Giorgio Chiellini	Giorgio Chiellini Juventus, 35, D(C)	6.98	89	D(C)	22	1990
James Rodríguez	James Rodríguez Bayern Munich, 28, AM(CLR)	7.24	88	AM(CLR)	13	1143
Mats Hummels	Mats Hummels Bayern Munich, 30, D(C)	7.17	88	D(C)	20	1776
Casemiro	Casemiro Real Madrid, 27, DMC	7.15	88	DMC	27	2316
Philippe Coutinho	Philippe Coutinho Barcelona, 27, M(CLR)	6.93	88	M(CLR)	22	2023
Gareth Bale	Gareth Bale Real Madrid, 30, M(CLR), FW	6.88	88	M(CLR), FW	21	1794

1st Approach

EDA

Rating	Fifa Ability Overall	Position	Apps
Minutes played	Assists	Yel	Red
Aerials Won per game	Man of the match	Tackles	Interceptions per game
Fouls	Offside won per game	Clearances per game	Dribbled past per game
Outfielder Block Per Game	OwnG	Goals	Shots per game
Dribbles per game	Fouled per game	Offsides per game	Dispossessed per game
Bad control per game	Passes per game	Key passes per game	Pass success percentage
Crosses	Long balls per game	Through balls per game	

- Remove duplicates (2137 → 1956)
- Clean 'Position' column
- Specify relevant attributes for each position
- Separate df into 3 different data frames (DEF, MID, OFF)
 with relevant attributes for each position

```
pos = df['Position'].unique()

pos

v    0.1s

array(['AM(CR), FW', 'M(L), FW', 'AM(CLR), FW', 'M(C)', 'D(CR)', 'FW',
```

```
'M(CLR), FW', 'D(C)', 'M(CLR)', 'DMC', 'AM(LR), FW', 'AM(CL), FW',
'AM(C), FW', 'AM(CLR)', 'Forward, Forward', 'D(C), D(C)',
'M(LR), FW', 'D(L)', 'D(CL)', 'AM(R), FW', 'M(C), FW', 'DMC, DMC',
'D(R), DMC', 'D(CLR), M(R)', 'D(L), M(L)', 'M(R)', 'D(CR), DMC',
'D(CL), M(C)', 'D(CL), M(CLR)', 'AM(C), AM(C)', 'M(CL)', 'D(R)',
'D(CR), M(R)', 'M(CL), FW', 'M(LR)', 'D(R), M(CLR), FW',
'AM(L), FW', 'M(CR)', 'D(R), M(CR)', 'D(C), M(C)', 'AM(L)',
'D(R), M(C)', 'AM(CLR), AM(CLR)', 'D(CL), M(L)', 'D(C), DMC',
'D(L), M(CLR)', 'D(L), M(CL)', 'D(R), M(R)', 'D(LR), M(R)',
'D(R), M(CLR)', 'M(CR), FW', 'D(CR), M(C)', 'D(LR), M(CLR)',
'D(L), DMC, M(L)', 'AM(CL)', 'D(LR)', 'AM(C)', 'M(C), M(C)',
'M(R), FW', 'AM(R)', 'D(CLR), DMC', 'DMC, M(L)', 'D(CLR)',
'D(LR), M(CR)', 'D(LR), M(LR)', 'D(CL), DMC', 'D(CLR), M(L)',
'AM(LR)', 'Forward', 'D(CR), D(CR)', 'D(CLR), DMC, M(LR)',
'D(CR), M(CR)', 'D(R), M(L)', 'D(R), M(LR)', 'D(LR), M(CL)',
'M(CR), M(CR)', 'M(CLR), M(CLR)', 'AM(CR)', 'Midfielder',
'D(LR), DMC, M(R)', 'D(R), DMC, M(R)', 'D(CLR), M(LR)', 'M(L)',
'D(CL), D(CL)', 'Defender', 'AM(R), AM(R)', 'D(L), M(LR)',
'AM(CL), AM(CL)', 'D(LR), M(L)', 'FW, FW', 'D(R), D(R)',
'D(CLR), DMC, M(R)', 'DMC, M(R)', 'D(LR), D(LR)', 'AM(CR), AM(CR)',
'D(L), M(CR)', 'D(R), M(CR), FW', 'D(R), M(L), FW', 'M(L), M(L)',
'AM(LR), AM(LR)', 'D(L), D(L)', 'Midfielder, Midfielder',
'D(C), M(L)'], dtype=object)
```

```
def positions(pos: str):
   if 'M' in pos and 'F' in pos:
        return 'OFF'
   elif 'M' in pos and 'D' in pos:
        return 'DEF'
   elif 'M' in pos:
        return 'MID'
   elif 'F' in pos:
       return 'OFF'
   elif 'D' in pos:
        return 'DEF'
```

Γ	Rating	Fifa Ability Overall	Position	Apps
	Minutes played	Assists	Yel	Red
	Aerials Won per game	Man of the match	Tackles	Interceptions per game
	Fouls	Offside won per game	Clearances per game	Dribbled past per game
(Outfielder Block Per Game	OwnG	Goals	Shots per game
	Dribbles per game	Fouled per game	Offsides per game	Dispossessed per game
	Bad control per game	Passes per game	Key passes per game	Pass success percentage
	Crosses	Long balls per game	Through balls per game	

Defensive Players

Rating	Fifa Ability Overall	Position	Apps
Minutes played	Assists	Yel	Red
Aerials Won per game	Man of the match	Tackles	Interceptions per game
Fouls	Offside won per game	Clearances per game	Dribbled past per game
Outfielder Block Per Game	OwnG	Goals	Shots per game
Dribbles per game	Fouled per game	Offsides per game	Dispossessed per game
Bad control per game	Passes per game	Key passes per game	Pass success percentage
Crosses	Long balls per game	Through balls per game	

Midfielders

Rating	Fifa Ability Overall	Position	Apps		
Minutes played	Assists	Yel	Red		
Aerials Won per game	Man of the match	Tackles	Interceptions per game		
Fouls	Offside won per game	Clearances per game	Dribbled past per game		
Outfielder Block Per Game	OwnG	Goals	Shots per game		
Dribbles per game	Fouled per game	Offsides per game	Dispossessed per game		
Bad control per game	Passes per game	Key passes per game	Pass success percentage		
Crosses	Long balls per game	Through balls per game			

Offensive Players

Rating	Fifa Ability Overall	Position	Apps
Minutes played	Assists	Yel	Red
Aerials Won per game	Man of the match	Tackles	Interceptions per game
Fouls	Offside won per game	Clearances per game	Dribbled past per game
Outfielder Block Per Game	OwnG	Goals	Shots per game
Dribbles per game	Fouled per game	Offsides per game	Dispossessed per game
Bad control per game	Passes per game	Key passes per game	Pass success percentage
Crosses	Long balls per game	Through balls per game	

ÆΠ		

	Name	Rating	Apps	Minutes played	Assists	Aerials Won per game	Man of the match	Tackles	Interceptions per game	Fouls	Offside won per game	Clearances per game	D F
7	Sergio Ramos	6.91	28	2476	1	2.2	2	1.5	1.3	1.0	1.0	3.0	
13	Diego Godín	6.98	28	2508	1	3.0	1	1.7	1.5	1.1	0.2	4.5	
16	Sergio Busquets	7.00	30	2720	1	1.5	0	2.6	1.5	1.1	0.0	0.6	
20	NGolo Kanté	6.93	36	3096	4	8.0	1	2.1	1.2	1.0	0.0	0.7	
22	Giorgio Chiellini	6.98	22	1990	1	2.1	0	1.0	1.2	0.6	0.2	3.7	
2132	Yoel Armougom	6.36	20	1850	1	0.9	0	1.1	0.7	0.7	0.1	2.0	
2134	Ben Wilmot	6.07	2	198	0	0.2	0	0.0	0.4	0.4	0.2	2.2	
2135	Keven Schlotterbeck	6.58	8	772	0	1.4	0	2.4	1.4	0.6	0.4	2.8	
2136	Nico Schlotterbeck	6.47	2	226	0	1.3	0	1.5	1.3	1.0	0.0	2.5	
2137	Chima Okoroji	6.29	1	104	0	0.5	0	1.5	0.5	1.0	0.0	0.5	

✓ 0.1s

	Name	Rating	Apps	Minutes played	Assists	Aerials Won per game	Man of the match	Tackles	Interceptions per game	Fouls	Dribbled past per game	Dribbles per game	For
6	Luka Modric	7.03	31	2618	6	0.4	1	1.4	0.9	0.8	1.0	1.6	
12	Toni Kroos	7.09	26	2227	4	8.0	2	1.8	0.5	0.8	1.5	0.5	
14	David Silva	7.26	28	2412	8	0.6	1	0.9	0.7	0.8	0.6	0.9	
23	James Rodríguez	7.24	13	1143	3	0.2	3	0.6	0.2	0.4	0.7	0.8	
26	Philippe Coutinho	6.93	22	2023	2	0.2	0	0.5	0.4	0.6	0.4	1.5	
2125	Christoph Baumgartner	5.97	1	86	0	0.5	0	0.5	0.0	1.0	1.0	2.5	
2128	Callum Slattery	6.26	1	110	0	1.0	0	1.3	0.7	1.3	1.3	0.3	
2130	Stephane Omeonga	5.95	0	54	0	0.7	0	0.3	0.0	1.3	0.3	0.0	
2133	Matty Daly	5.96	0	73	0	0.0	0	0.0	0.0	0.0	0.0	0.0	
2138	Valery Fernández	6.37	10	885	1	0.5	0	1.2	0.5	0.5	0.4	1.1	

Python

	Name	Rating	Apps	Minutes played	Assists	Aerials Won per game	Man of the match	Goals	Shots per game	Dribbles per game	Offsides per game	Dispossessed per game	Bad control per game
2	Lionel Messi	8.48	29	2710	13	0.2	17	36	5.0	3.9	0.5	2.3	1.9
3	Cristiano Ronaldo	7.68	30	2689	8	1.1	10	21	5.7	1.5	0.9	1.3	1.7
4	Neymar	8.26	16	1444	7	0.5	7	15	3.2	4.4	0.4	4.2	4.1
5	Luis Suárez	7.57	31	2830	6	0.7	5	21	3.4	1.1	0.8	1.6	2.3
8	Leo Suárez	6.25	7	520	0	0.3	0	2	0.8	0.3	0.3	0.6	1.4
2106	Jonathan Burkardt	6.46	4	262	0	1.0	0	0	1.5	0.5	0.0	2.8	1.8
2110	Robert Beric	6.74	12	1172	1	1.3	1	9	1.6	0.2	0.2	0.7	1.4
2113	Boulaye Dia	6.56	8	746	0	1.1	0	3	1.1	0.9	0.1	8.0	1.6
2121	Dusan Vlahovic	5.96	1	152	0	0.2	0	0	1.0	0.1	0.0	0.5	1.1
2131	Victor Mollejo	6.02	0	63	0	0.5	0	0	0.5	0.0	0.0	1.0	0.3

Machine Learning Models

Classification?

Machine Learning Models

1. Linear Regression

2. Support Vector Regression

Linear Regression

Dependent variable: 'Rating'

```
lr_mid = LinearRegression()
lr_mid.fit(X_mid_train, Y_mid_train)

Y_mid_pred_lr = lr_mid.predict(X_mid_test)

$\square$ 0.0s
```

Linear Regression

Dependent variable: 'FIFA Ability Score'

```
lr_def1 = LinearRegression()
  lr def1.fit(X_def1_train, Y_def1_train)
  Y_def1_pred_lr = lr_def1.predict(X_def1_test)
  lr_mid1 = LinearRegression()
  lr mid1.fit(X mid1 train, Y mid1 train)
  Y mid1 pred lr = lr mid1.predict(X mid1 test)
  lr_off1 = LinearRegression()
  lr off1.fit(X_off1_train, Y_off1_train)
  Y off1 pred lr = lr off1.predict(X off1 test)
✓ 0.1s
```

```
from sklearn import svm
  X_def_train, X_def_test, Y_def_train, Y_def_test = train_test_split(X_def, Y_def, test_size=0.2,
  random_state=42)
  X_mid_train, X_mid_test, Y_mid_train, Y_mid_test = train_test_split(X_mid, Y_mid, test_size=0.2,
  random_state=42)
  X_off_train, X_off_test, Y_off_train, Y_off_test = train_test_split(X_off, Y_off, test_size=0.2,
  random_state=42)
  svm def = svm.SVR(kernel='rbf')
  svm_def.fit(X_def_train, Y_def_train)
  Y_def_pred_svm = svm_def.predict(X_def_test)
  svm mid = svm.SVR(kernel='rbf')
  svm_mid.fit(X_mid_train, Y_mid_train)
  Y_mid_pred_svm = svm_mid.predict(X_mid_test)
  svm off = svm.SVR(kernel='rbf')
  svm off.fit(X off train, Y off train)
  Y off pred svm = svm off.predict(X off test)
✓ 0.1s
                                                                                                             Python
```

Dependent variable: 'FIFA Ability Score'

```
X def1 train, X def1 test, Y def1 train, Y def1 test = train_test_split(X_def1, Y_def1, test_size=0.2,
  random_state=42)
  X mid1 train, X mid1 test, Y mid1 train, Y mid1 test = train test split(X mid1, Y mid1, test size=0.2,
  random_state=42)
  X off1 train, X off1 test, Y off1 train, Y off1 test = train test split(X off1, Y off1, test size=0.2,
  random state=42)
  svm_def1 = svm.SVR(kernel='rbf')
  svm def1.fit(X def1 train, Y def1 train)
  Y_def1_pred_svm = svm_def1.predict(X_def1_test)
  svm_mid1 = svm.SVR(kernel='rbf')
  svm mid1.fit(X mid1 train, Y mid1 train)
  Y_mid1_pred_svm = svm_mid1.predict(X_mid1_test)
  svm_off1 = svm.SVR(kernel='rbf')
  svm_off1.fit(X_off1_train, Y_off1_train)
  Y_off1_pred_svm = svm_off1.predict(X_off1_test)

√ 0.2s

                                                                                                             Python
```

Linear Regression

Evaluation

Support Vector Regression

Evaluation

'Rating' - DEF

'FIFA Score' - DEF

'Rating' - MID

'FIFA Score' - MID

- 0.9

- 0.8

- 0.7

- 0.6

- 0.5

- 0.4

- 0.3

- 0.2

'Rating' - OFF

'FIFA Score' - OFF

Findings

- There is not a strong correlation between the FIFA Scores and reallife stats of the player.
- The most important attributes for defensive players:

Appearances, Minutes played, Man of the match

for midfielders:

Appearances, Minutes played, Key passes per game for offensive players:

Man of the match, Goals, Shots per game

Findings

- There is not a strong correlation between the FIFA Scores and reallife stats of the player.
- The most important attributes for defensive players:

Appearances, Minutes played, Man of the match

for midfielders:

Appearances, Minutes played, Key passes per game

for offensive players:

Man of the match, Goals, Shots per game

Findings

- There is not a strong correlation between the FIFA Scores and reallife stats of the player.
- The most important attributes for defensive players:

Appearances, Minutes played, Man of the match for midfielders:

Appearances, Minutes played, Key passes per game for offensive players:

Man of the match, Goals, Shots per game

Conclusion

 Q1: Does the EA FIFA player profile match to the performance in real life?

Q2: Can FIFA be used as a digital twin of real-life football?

2nd Approach

Decision tree

Entropy (by Python)

Information gain (by Python)

Sort dependent and independent variables

Dividing sets into training and test sets

Feature scaling

Decision tree in regression, confusion matrix and general statistics

Visualization of the results

2nd Approach

EDA & Data Cleaning

DATA CLEANING CHECKLIST

Machine Learning Models

Decision Tree

Definition

Decision Tree is one of the most widely used machine learning algorithms due to its ease of interpretation.

However, we need to understand how it works and it can be used to make predictions

Sample

Decision Tree - Player Position

Decision Tree

Information Gain

 This is defined as a measure of how much information a feature provides about class, this also helps us to get the order of attributes in the nodes with the help of entropy

Entropy

- This is an information theory that measures the impurity or uncertainty of a group and observation
- This is necessary for our data set in order to be able to know which columns have the highest information gain

Entropy and Information Gain

Decision Tree

Information gain and entropy calculation

We can calculate our information gain by looping through the columns

IG = 1 - Entropy

Entropy= -(p(0) * log(P(0)) + p(1) * log(P(1)))

Python result about IG and entropy

THIS FOLLOWING VALUES IS FOR THE FIFA WERTE TABLE Variable FIFA has Entropy of 7.5663 Variable OPTA has Entropy of 7.6067 Variable Fifa Ovr has Entropy of 3.0829 Variable Crossing has Entropy of 3.9628 Variable Finishing has Entropy of 4.1847 Variable ShortPassing has Entropy of 3.4527 Variable Dribbling has Entropy of 3.7754 Variable LongPassing has Entropy of 3.7797 Variable StandingTackle has Entropy of 4.0539 Variable SlidingTackle has Entropy of 4.0989 Split on Fifa Ovr With Information Gain of -2.083

Sort dependent and independent variable

Dependant Variable

Dependent
variables are
variables which
can be
considered as
the output of any
event

In our case, the FIFA Overall is our dependent variable, which also happened to be our best information gain column

Independent Variable

- Independent variables are variables which contribute to the prediction of the dependent variable
- In our case we have at least 6 columns that are independent to get our outcome

Features scaling and data extraction

```
#Extracting Independent and dependent Variable
x= df.iloc[:, [2,3]].values
y= df.iloc[:, 4].values
# Splitting the dataset into training and test set.
from sklearn.model selection import train test split
x_train, x_test, y_train, y_test= train_test_split(x, y, test_size= 0.25, random_state=0)
#feature Scaling
from sklearn.preprocessing import StandardScaler
st x= StandardScaler()
X train= st x.fit transform(x train)
X_test= st_x.transform(x_test)
```

- Feature scaling is a method used to standardize the range of independent variables, which is also known as normalization
- This is done before training a model
- Feature scaling is necessary to get a better result from a model

Other areas where decisions can reach

- K-means
- Clustering
- Confusion Matrix
- KNN
- Correlation Matrix
- Linear Regression (presented by Soyeon)

Predicted values of our model

```
77. 74. 76. 81. 75. 67. 75. 69. 67. 73. 82. 72. 77. 73. 72. 78. 73. 74.
79. 76. 72. 77. 72. 79. 67. 89. 74. 76. 75. 80. 79. 78. 78. 76. 81. 60.
73. 78. 83. 75. 63. 77. 73. 72. 69. 76. 75. 70. 80. 73. 76. 75. 64. 71.
81. 77. 81. 78. 73. 76. 75. 72. 78. 73. 75. 68. 77. 77. 77. 81. 73. 71.
75. 71. 74. 77. 71. 80. 76. 81. 87. 83. 75. 64. 70. 88. 73. 76. 80. 76.
90. 76. 72. 71. 82. 64. 76. 71. 74. 64. 85. 81. 80. 75. 77. 74. 81. 70.
69. 70. 76. 71. 75. 79. 75. 68. 73. 76. 74. 75. 72. 70. 81. 80. 73. 61.
76. 79. 80. 70. 68. 86. 72. 77. 74. 79. 71. 61. 79. 71. 73. 73. 77. 81.
73. 73. 61. 77. 73. 75. 76. 79. 77. 74. 75. 75. 80. 76. 75. 76. 76. 70.
82. 80. 77. 72. 60. 63. 67. 80. 77. 89. 79. 76. 76. 72. 70. 70. 77. 77.
84. 73. 77. 64. 77. 82. 80. 60. 76. 70. 75. 77. 74. 76. 75. 73. 77. 82.
62. 74. 79. 76. 74. 77. 79. 77. 75. 70. 73. 79. 80. 74. 80. 73. 82. 70.
80. 77. 81. 63. 71. 74. 72. 75. 89. 81. 79. 75. 75. 83. 80. 88. 60. 76.
76. 76. 68. 73. 81. 75. 74. 68. 76. 65. 76. 69. 75. 64. 71. 73. 73. 81.
75. 73. 70. 76. 76. 66. 80. 77. 78. 72. 74. 72. 73. 71. 71. 82. 70. 80.
77. 74. 73. 70. 70. 81. 68. 80. 70. 76. 82. 89. 60. 77. 78. 74. 75. 74.
73. 79. 72. 79. 67. 75. 78. 64. 64. 76. 75. 78. 63. 75. 68. 77. 77. 60.
71. 75. 71. 75. 64. 76. 76. 60. 75. 76. 82. 80. 83. 79. 78. 76. 77. 79.
76. 70. 80. 73. 73. 85. 81. 79. 74. 73. 77. 73. 80. 84. 76. 72. 84. 75.
72. 72. 76. 74. 87. 75. 80. 71. 73. 75. 74. 77. 72. 77. 73. 64. 69.
78. 72. 78. 75. 77. 76. 76. 73. 77. 74. 79. 77. 73. 72. 75. 81. 76. 81.
80. 73. 78. 75. 79. 71. 74. 72. 80. 83. 70. 72. 61. 74. 75. 61. 76. 74.
75. 73. 81. 75. 70. 68. 81. 71. 80. 79. 66. 84. 76. 64. 77. 78. 74. 74.
79. 68. 73. 78. 75. 72. 76. 85. 78. 61. 74. 89. 75. 75. 75. 79. 76. 70.
74. 74. 74. 68. 77. 71. 89. 74. 76. 75. 86. 70. 75. 68. 76. 83. 80. 81.
70. 82. 74. 68. 70. 77. 73. 79. 72. 75. 80. 76. 75. 78. 77. 71. 71. 72.
75. 79. 76. 79. 75. 81. 74. 70. 78. 79. 75. 76. 70. 80. 70. 69. 75. 72.
76. 75. 71. 65. 71. 73. 73. 75. 81. 78. 73. 80. 75. 73. 76. 74. 76. 75.
67. 73. 67. 70. 75. 64. 73. 82. 73. 80. 79. 77. 65. 64. 73. 73. 74. 79.
75. 76. 78. 78. 77. 76. 75. 74. 74. 69. 80. 81. 75. 84. 75. 73. 70. 72.
68. 63. 80. 76. 76. 75. 75. 77. 79. 77. 75. 71. 71. 82. 79. 76. 76. 80.
79. 60. 71. 76. 68. 70. 70. 84. 76. 80. 85. 78. 71. 72. 73. 76. 78. 68.
60. 71. 71. 64. 77. 76. 79. 75. 80. 70. 77. 70. 79. 68. 71. 76. 65. 74.
75. 78. 74. 71. 72. 73. 71. 74. 72. 72. 68. 75. 77. 75. 75. 68. 74. 71.
   71. 76. 72. 82. 74. 71. 68. 75. 70. 76. 77. 81. 72. 78. 77. 76. 77.
   75. 80. 75. 72. 79. 71. 71. 81. 75. 73. 74.]
```

Cluster result from Decision Tree

Predict values and the accuracy

Accuracy

- Accuracy can tell us the proportion of correctly classified instances out of the total number of instances in a dataset
- In our case, the accuracy varies because we decided to test randomly
- So we have accuracy of 12%–22%

Python code for accuracy

```
# Perform one-hot encoding for categorical columns
onehot encoder = OneHotEncoder(sparse=False, handle unknown='ignore')
X encoded = pd.DataFrame(onehot encoder.fit transform(X encoded))
# Split the dataset into training and test sets
X train, X test, y train, y test = train test split(X encoded, y, test size=0.3, random state=2)
# Initialize and train the Decision Tree Classifier
clf = DecisionTreeClassifier()
clf=clf.fit(X train, y train)
# Predict the response for the test dataset
y pred = clf.predict(X test)
print(y pred)
# Evaluate the model accuracy
accuracy = metrics.accuracy score(y test, y pred)
print("Accuracy:", accuracy)
```

Visualization

THE OUTPUT IS
COMPLETELY
DIFFERENT FROM
THE REST OF THE
CLASSIFICATION
MODEL

AS WE CAN SEE THE TREE IS TRYING TO CAPTURE EACH DATASET,

WHICH IN THIS CASE CAUSES OVERFITTING

MANY OF THE GREEN AND PURPLE DATA ARE POINTING INTO EACH OTHER'S REGION

THESE ARE THE
INCORRECT
PREDICTIONS WHICH
WE CAN FOCUS MORE
WHEN IT COME TO
CONFUSION MATRIX

Visualization

Evaluation & Challenges

Understanding data

Python code

Research

Decision taken

Conclusion

- Finally based on our research, we realized that we can't use FIFA as a digital twin of reallife football, but this is due to the data set that we had
- Considering the later development this might not be the case due to better technology and deeper research in the area of analysis

QLESTIONS?

THANKYOU