Notes of Linear Algebra

Xie Zejian

Zhang Songxin

2021-03-02

Contents

1	Bac	ekground Knowledge	4
2	Vec	Vector Space	
	2.1	Linear independence and basis	,
	2.2	Free vector space	۷
	2.3	Linear mappings	4
	2.4	Subspace and factor space	(
		2.4.1 Subspace and Sum	(
		2.4.2 Factor Space	-
	2.5	Inner Product	,
	2.6	Dimension	,
	2.7	Matrix and linear space	10
3	Line	ear Mappings	12
	3.1	Basic properties	1:
		3.1.1 Induced Linear Mappings	1:

Chapter 1

Background Knowledge

Definition 1.1 (Group). A group is a set G with a binary low of composition

$$\mu: G \times G \to G$$

denoting as $\mu(x,y) = xy$.

- (xy)z = x(yz)
- There exists an element e called the identity s.t. xe = ex = x
- To each $x \in G$ there is an element x^{-1} s.t. $xx^{-1} = x^{-1}x = e$

Let G and H be two groups, then a mapping $\phi: G \to H$ is called a homomorphism if

$$\phi\left(xy\right) = \phi x \phi y \qquad x, y \in G$$

A group is called commutative or abelian if for each $x, y \in G$, xy = yx.

Definition 1.2 (field). A field is a set K on which two binary lows of composition s.t.

- *K* is a commutative group with respect to addition.
- The set $K \{0\}$ is a commutative group with respect to multiplication.
- Addition and multiplication are connected by the distributive low,

$$(\alpha + \beta)\gamma = \alpha\gamma + \beta\gamma$$

Chapter 2

Vector Space

2.1 Linear independence and basis

Definition 2.1 (linear independence). A family of vectors $\{x_i\}_{i\in I}$ is called **linear independent** if the vectors x_i are linearly independent i.e.

$$\sum_{i \in I} \alpha_i x_i = 0 \implies \alpha_i = 0 \text{ for each } i$$

Definition 2.2 (system of generators). A subset $S \subset E$ is called a system of generators of E if every vector $x \in E$ is a linear combination of vectors in S.

Proposition 2.1. 1. Every finitely generated non-trivial vector space has a finite basis.

2. Suppose that $S = \{x_1, \ldots, x_m\}$ is a finite system of generators of E and that the subset $R \subset S$ by $R = \{x_1, \ldots, x_r\}$ $(r \leq m)$ consists of linearly independent vectors. Then there exists a basis T of E s.t. $R \subset T \subset S$.

Proof. Just need to notice that every basis is the system of generators, and it is a minimal one.

Theorem 2.1. Let E be a non-trivial vector space. Suppose S is a system of generators and R is a family of linearly independent vectors in E s.t. $R \subset S$. Then there exists a basis T of E s.t. $R \subset T \subset S$.

Proof. Consider the partially order defined between R and S, find some $X \subset E$ s.t.

- $R \subset X \subset S$
- the vectors in X are linearly independent.

We note this partially order as $\mathcal{P}(R, S)$.

Notice that for every chain $\{X_{\alpha}\}\subset \mathcal{P}(R,S)$ has a maximal element $A=\bigcup_{\alpha}X_{\alpha}$. It is obvious that $A\in \mathcal{P}(R,S)$ (Notice that $R\subset A\subset S$ and the property of a chain of the set that contains linearly independent vectors.)

So we prove that every chain $\{X_{\alpha}\}\subset \mathcal{P}(R,S)$ has a upper bound in $\mathcal{P}(R,S)$, so Zorn's Lemma implies that there exists a maximal element $T\in \mathcal{P}(R,S)$ s.t. vectors in T are linearly independent.

Then we just need to show that T generates E. Give $x \in E$, suppose that x is linearly independent to vectors in T. Notice that S generates E, so

$$x = \sum_{i \in I'} \alpha_i x_i$$
 for some $x_i \in S$

If x is linearly independent to vectors in T then exists some $i \in I'$ s.t. x_i is linearly independent to vectors in T and note this set as $\{x_j\}_{j\in J} \subset S$, consider the set $\{x_j\}_{j\in J} \cup T \supseteq T$ which leads to a contradiction of the maximality of T. So T is a basis of E.

Corollary 2.1. 1. Every system of generators of E contains a basis. In particular, every non-trivial vector space has a basis.

2. Every family of linearly independent vectors of E can be extended to a basis.

2.2 Free vector space

Let X be an arbitrary set and consider all maps $f: X \to \mathbb{K}$ s.t. $f(x) \neq 0$ only for finitely many $x \in X$, denoting the set of these maps by F(X), it is easy to show that F(X) is a vector space.

Now give a basis of F(X). For any $a \in X$, let f_a be:

$$f_a(x) = \begin{cases} 1 & x = a \\ 0 & x \neq a \end{cases}$$

Then $\{f_a\}_{a\in X}$ forms a basis of F(X).

F(X) is called the **free vector space over** X.

2.3 Linear mappings

Definition 2.3 (linear mapping). Suppose that E and F are vector spaces, and let $\varphi : E \to F$ be a set mapping s.t.

$$\varphi(x+y) = \varphi(x) + \varphi(y)$$
 for all $x, y \in E$

and

$$\varphi\left(\alpha x\right) = \alpha\varphi\left(x\right) \text{ for all } \alpha \in \mathbb{K}, x \in E$$

Then we call the mapping φ satisfying above conditions linear mappings. Moreover, if $F = \mathbb{K}$, then we called φ a **linear function** on E.

Corollary 2.2. Linear mappings preserve linear relations.

Proof. Suppose φ be a linear mappings, and let $u = \alpha x + \beta y \in E$, then

$$\varphi(u) = \varphi(\alpha x + \beta y) = \alpha \varphi(x) + \beta \varphi(y)$$

Let $\varphi: E \to F, \psi: F \to G$ be linear mappings, then the composition of them $\psi \circ \varphi: E \to G$ is defined by:

$$(\psi \circ \varphi)(x) = \psi(\varphi(x))$$

It is easy to show that $\psi \circ \varphi$ is still a linear mapping.

Proposition 2.2. Suppose S is a system of generators of E and $\varphi_0: S \to F$ where F is also a vector space. Then φ_0 can be extended in at most one way to linear mapping $\varphi: E \to F$. And the extension exists iff such an extension is that

$$\sum_{i} \alpha_{i} \varphi_{0} \left(x_{i} \right) = 0$$

whenever $\sum_{i} \alpha_i x_i = 0$.

Proof. • \Longrightarrow : Suppose φ to be a linear mapping and it is the extension of φ_0 , then $\varphi\left(\sum_{i=1}^n \alpha_i x_i\right) = \sum_{i=1}^n \alpha_i \varphi\left(x_i\right)$ for each $x_i \in E$.

And for each $x_i \in S$,

$$\varphi\left(\sum_{i=1}^{n} \alpha_{i} x_{i}\right) = \sum_{i=1}^{n} \alpha_{i} \varphi\left(x_{i}\right) = \sum_{i=1}^{n} \alpha_{i} \varphi_{0}\left(x_{i}\right)$$

so $\varphi(0) = \varphi_0(0) = 0$.

• \Leftarrow : For any $x \in E$, define there exists some $\{x_i\}_{i \in I} \subset S$ s.t. $x = \sum_{i \in I} \alpha_i x_i$. Define

$$\varphi\left(x\right) = \sum_{i \in I} \alpha_i \varphi_0\left(x_i\right)$$

It is obvious that φ is that linear mapping.

Notice that if S is a basis of E, let φ_0 be a set map from S to E, then φ_0 can be extended in a unique way to a linear mapping $\varphi: E \to F$.

Proposition 2.3. Let $\varphi : E \to F$ be a linear mapping and $\{x_{\alpha}\}$ be a basis of E. Then φ is a linear isomorphism iff the vectors $y_{\alpha} = \varphi(x_{\alpha})$ form a basis for F.

Proof. \Longrightarrow : As φ is a linear isomorphism, so for any $y \in F$, there exists a unique $x \in E$ s.t. $x = \varphi^{-1}(y)$. Notice that $\{x_{\alpha}\}$ is a basis, so $x = \sum_{\alpha} a_{\alpha} x_{\alpha}$ for some a_{α} , so $y = \varphi(x) = \varphi(\sum_{\alpha} a_{\alpha} x_{\alpha}) = \sum_{\alpha} a_{\alpha} \varphi(x_{\alpha})$. That means $\{\varphi(x_{\alpha})\}$ generates F. Then we need to prove the linear independence.

Let $\sum_{\alpha} \lambda_{\alpha} x_{\alpha} = 0$, then $\lambda_{\alpha} = 0$ for each α . Then let $\sum_{\alpha} \gamma_{\alpha} \varphi(x_{\alpha}) = 0$, then

$$\sum_{\alpha} \gamma_{\alpha} \varphi(x_{\alpha}) = \varphi\left(\sum_{\alpha} \gamma_{\alpha} x_{\alpha}\right) = 0$$

so $\sum_{\alpha} \gamma_{\alpha} x_{\alpha} = 0$ which means $\gamma_{\alpha} = 0$ for each α . So $\{\varphi(x_{\alpha})\}$ is a basis of F.

• \Leftarrow : Let $\{y_{\alpha} = \varphi(x_{\alpha})\}$ be a basis of F, then for each $y \in F$, there exists a unique components (λ_{α}) s.t. $\sum_{\alpha} \lambda_{\alpha} y_{\alpha} = y$. Then we have

$$\sum_{\alpha} \lambda_{\alpha} \varphi (x_{\alpha}) = \varphi \left(\sum_{\alpha} \lambda_{\alpha} x_{\alpha} \right) = \varphi (x)$$

for some unique $x \in E$.

2.4 Subspace and factor space

2.4.1 Subspace and Sum

Definition 2.4 (Subspace). Let X be a vector space and let $A \subset X$ be a subset of X. Then A is called a subspace if A is also a vector space.

Let S be a non-empty subset of X and there exists a set, noting as X_S , is the linear combination of any vectors in S, X_S is truly a subspace which is called **the subspace generated by** S or **linear closure** of S.

Proposition 2.4. Let A_1, A_2 be two subspaces of the vector space X and suppose that $A_1 \cap A_2 \neq \emptyset$ then $A_1 \cap A_2$ is still a subspace of X.

Proof. Notice that if $x \in A_1 \cap A_2$, then $x \in A_1$ and $x \in A_2$, and A_1, A_2 are vector space thus provide the linearity of $A_1 \cap A_2$.

Definition 2.5 (sum of subspace). Let A_1, A_2 be two subspaces of a vector space X, then $\{x = x_1 + x_2 : x_1 \in A_1, x_2 \in A_2\}$ is called the **sum of** A_1 **and** A_2 , denote as $A_1 + A_2$. It is easy to determine that $A_1 + A_2$ is still a subspace of X.

Notice that the decomposition is not determined uniquely.

Let $x = x_1 + x_2 = x_1' + x_2'$, then $x_1 - x_1' = x_2 - x_2' = z \in A_1 \cap A_2$. Only if $A_1 \cap A_2 = \{0\}$, then $x = x_1 + x_2$ is uniquely determined. In this time, we called that sum as **direct sum** of A_1 and A_2 , denote as $A_1 \oplus A_2$.

Proposition 2.5. • Let A_1 , A_2 be subspaces of X and let S_1 , S_2 be systems of generators of A_1 and A_2 , then $S_1 \cup S_2$ generates $A_1 + A_2$.

• Suppose that $A_1 \cap A_2 = \{0\}$ and T_1, T_2 are basis of A_1, A_2 , then $T_1 \cup T_2$ is the basis of $A_1 \oplus A_2$.

Proof. Give any $x \in A_1 + A_2$, then $x = x_1 + x_2$ for some $x_1 \in A_1, x_2 \in A_2$. $x_1 = \sum_{\alpha} \lambda_{\alpha} x_{\alpha}$ for some $x_{\alpha} \in S_1$ and $x_2 = \sum_{\beta} \gamma_{\beta} x_{\beta}$ for some $x_{\beta} \in S_2$, so $x = \sum_{\alpha} \lambda_{\alpha} x_{\alpha} + \sum_{\beta} \gamma_{\beta} x_{\beta}$, notice that every $x_{\alpha}, x_{\beta} \in S_1 \cup S_2$, so $S_1 \cup S_2$ generates $A_1 + A_2$.

Now we need to prove that $T_1 \cup T_2$ is linearly independent.

Notice that $T_1 \subset A_1, T_2 \subset A_2$, $A_1 \cap A_2 = \{0\}$, so $T_1 \cap T_2 = \{0\}$. So consider $x \in A_1 \oplus A_2$, $x = \sum_{\alpha} \lambda_{\alpha} x_{\alpha} + \sum_{\beta} \gamma_{\beta} x_{\beta} = 0$, then $A_1 \ni x_1 = \sum_{\alpha} \lambda_{\alpha} x_{\alpha} = -\sum_{\beta} \gamma_{\beta} x_{\beta} = x_2 \in A_2$, so $x_1 = x_2 = 0$, then as the property of basis, $\lambda_{\alpha} = 0$ for all α and $\gamma_{\beta} = 0$ for all β .

Definition 2.6 (complementary subspace). If A_1 is a subspace of X, and there exists a subspace A_2 s.t. $A_1 \oplus A_2 = E$, then A_2 is called the **complementary subspace** for A_1 in X.

Proposition 2.6 (existence of complementary subspace). If $A_1 \subset X$ is a subspace, then there exists a $A_2 \subset X$ a subspace s.t. $A_1 \oplus A_2 = X$

Proof. According to the 2.1, suppose that $\{x_{\alpha}\}$ is a basis of A_1 , then it is linearly independent and so can be extended to a basis of X, denote as $\{x_{\gamma}\}$. Notice that $\{x_{\alpha}\} \subset \{x_{\gamma}\}$ and let $\{x_{\beta}\} = \{x_{\gamma}\} - \{x_{\alpha}\}$. Then let A_2 be the subspace generated by $\{x_{\beta}\}$.

Observe that $\{x_{\alpha}\} \cup \{x_{\beta}\}$ generates X, so $A_1 + A_2 = X$, then let $x \in A_1 \cap A_2$, so $x = \sum_{\alpha} \lambda_{\alpha} x_{\alpha} = \sum_{\beta} \omega_{\beta} x_{\beta}$ which means $\sum_{\alpha} \lambda_{\alpha} x_{\alpha} + \sum_{\beta} (-\omega_{\beta}) x_{\beta} = 0$. For vectors in $\{x_{\alpha}\}$ and $\{x_{\beta}\}$ are linearly independent, so $\lambda_{\alpha} = 0, \omega_{\beta} = 0$ for all α, β , then $A_1 \cap A_2 = \{0\}$ which means $X = A_1 \oplus A_2$.

Corollary 2.3. Let A_1 be a subspace of X and $\varphi_1 : A_1 \to F$ be a linear mapping. Then φ_1 may be extended to a linear mapping $\varphi : X \to F$.

Proof. According to the above proposition, there exists a subspace $A_2 \subset X$ s.t. $A_1 \oplus A_2 = X$. Now define $\varphi_2 : A_2 \to F$ be a linear mapping. Then for any $x \in X$, notice that $x = x_1 + x_2$ where $x_1 \in A_1, x_2 \in A_2$, define

$$\varphi(x) = \varphi_1(x_1) + \beta \varphi_2(x_2)$$
 $x = x_1 + x_2; \beta \in \mathbb{K}$

It is easy to show that φ is a linear mapping as φ_1, φ_2 are.

2.4.2 Factor Space

Definition 2.7 (factor space). Suppose that X is a vector space and A_1 is a subspace of X. Two vectors $x, x' \in X$ is called **equivalent** mod A_1 if $x - x' \in A_1$. Then $x \sim x'$ is a equivalence relation, that is reflexive, symmetric and transitive.

Then we let X/A_1 denote the **set of equivalence classes**, X/A_1 is a vector space too and define a mapping:

$$\pi: X \to X/A_1$$

by letting $\pi x = \overline{x}, x \in X$ where \overline{x} denotes the equivalence class containing x. Clearly, π is a surjective mapping.

Proof. Now prove the equivalent relation:

- let $x \sim x_1, x_1 \sim x_2$, which means $x x_1 \in A_1$ and $x_1 x_2 \in A_1$ then $x x_2 = (x x_1) + (x_1 x_2) \in A_1$.
- Notice that $x x = 0 \in A_1$ as A_1 is a subspace.
- Observe that $x x_1 = (-1)(x_1 x)$ which means the symmetry.

Proposition 2.7. There exists precisely one linear structure in X/A_1 s.t. π is a linear mapping.

Proof. Assume that X/A_1 is made into a vector space s.t. π is a linear mapping. Then

$$\pi(x+y) = \pi(x) + \pi(y)$$

and $\pi(\lambda x) = \lambda \pi(x)$. It shows that we can use a linear mapping π to define the linear structure of X/A_1 and the linear structure of X/A_1 is determined by the linear structure of X, thus unique.

Now define the linear structure of X/A_1 . Let $\overline{x}, \overline{y} \in X/A_1$ and $\overline{x} \neq \overline{y}$. Then there exists some $x, y \in X$ s.t. $\pi(x) = \overline{x}$ and $\pi(y) = \overline{y}$. Pick an arbitrary x and y, define:

$$\overline{x} + \overline{y} = \pi(x+y)$$

and

$$\lambda \overline{x} = \pi(\lambda x)$$

We only need to show that π is a linear mapping. Suppose that $x_1 - x_2 \in A_1$ and $y_1 - y_2 \in A_1$, notice that $(x_1 + y_1) - (x_2 + y_2) = (x_1 - x_2) + (y_1 - y_2) \in A_1$ as the property of subspace. Since the picking of x_1, x_2, y_1, y_2 is arbitrary, $\pi(x) = \overline{x}$, $\pi(x + y) = \overline{x} + \overline{y}$. Then π is a communicative group as above. Similarly, it is easy to show that $\pi(\lambda x) = \lambda \pi(x)$. Then π is linear, so it determines the linear structure of X/A_1 .

Remark. The space discussed above like X/A_1 is called the factor space or quotient space and the linear mapping $\pi: X \to X/A_1$ is called the canonical projection of X onto A_1 .

Definition 2.8. Let A_1 be a subspace of X, and suppose $\{x_{\alpha}\}$ is a family of vectors in X. Then x_{α} is called **linear dependent mod** A_1 if there are scalars λ_{α} not all zero s.t. $\sum_{\alpha} \lambda_{\alpha} x_{\alpha} \in A_1$.

A family of vectors is called linearly independent mod a subspace A_1 if they are not linearly dependent mod A_1 .

Now consider the canonical projection $\pi: X \to X/A_1$, then $\{x_{\alpha}\}$ is linearly dependent mod A_1 iff the vectors $\pi(x_{\alpha})$ are linearly dependent in X/A_1 .

Proof. • \Longrightarrow : Suppose $\{x_{\alpha}\}$ is linear dependent mod A_1 , then $\sum_{\alpha} \lambda_{\alpha} x_{\alpha} \in A_1$ for not all zero λ_{α} , notice that the linearity of π ,

$$\sum_{\alpha} \lambda_{\alpha} \pi(x_{\alpha}) = \pi \left(\sum_{\alpha} \lambda_{\alpha} x_{\alpha} \right)$$

Observe that $\sum_{\alpha} \lambda_{\alpha} x_{\alpha} = x \in A_1$, and only if $x \in A_1$, $\pi(x) = \overline{0}$ in X/A_1 .

• \Leftarrow : Omission.

Suppose that $\{x_{\alpha}\} \cup \{x_{\beta}\}$ is a basis of X and $\{x_{\alpha}\}$ generates A_1 , then according to 2.6 there exists a A_2 generated by $\{x_{\beta}\}$ s.t. $A_1 \oplus A_2 = X$.

Proposition 2.8 (basis of a factor space). $\pi(x_{\beta})$ for all β form a basis of X/A_1 .

Proof. First, we need to prove that $\pi(x_{\beta})$ generates X/A_1 .

Let $\overline{x} \in X/A_1$ be an arbitrary element. We only need to find a $x \in \pi^{-1}(\overline{x})$, notice that if \overline{x} is non-trivial i.e. $\overline{x} \neq \overline{0}$, $x \notin A_1$, so there must exist some γ_β s.t. $x = \sum_\beta \gamma_\beta x_\beta$. Then

$$\pi\left(\sum_{\beta}\gamma_{\beta}x_{\beta}\right) = \pi(x) = \overline{x} = \sum_{\beta}\gamma_{\beta}\pi(x_{\beta})$$

Second, we observe that $\{x_{\beta}\}$ is linearly independent mod A_1 , so $\pi(x_{\beta})$ are linearly independent in X/A_1 .

2.5 Inner Product

Definition 2.9. Let X be a vector space, a function, $\langle \mathbf{x}, \mathbf{y} \rangle$, defined for all $\mathbf{x} \in X$ and $\mathbf{y} \in X$, is an **inner product** if for any $\mathbf{x}, \mathbf{y}, \mathbf{z} \in X$ and any $c \in \mathbb{R}$:

- 1. $\langle \mathbf{x}, \mathbf{x} \rangle \geq 0$ and equality holds iff $\mathbf{x} = \mathbf{0}$
- 2. $\langle \mathbf{y}, \mathbf{x} \rangle = \langle \mathbf{x}, \mathbf{y} \rangle$
- 3. $\langle \mathbf{x} + \mathbf{y}, \mathbf{z} \rangle = \langle \mathbf{x}, \mathbf{z} \rangle + \langle \mathbf{y}, \mathbf{z} \rangle$
- 4. $\langle c\mathbf{x}, \mathbf{y} \rangle = c \langle \mathbf{x}, \mathbf{y} \rangle$

2.6 Dimension

Recall 2.1, every system of generators contains a basis, so if the generators of the system is finite, there exists a finite base of the space.

Definition 2.10 (dim). Consider a vector space X whose basis is the family of finite number of vectors i.e. $\{x_1, \ldots, x_n\}$ generates X and $\sum_{i=1}^n \alpha_i x_i = 0$ whenever $\alpha_i = 0$ for every i. Then denotes the **dim of** X as dim X = n.

Proposition 2.9. Suppose a vector space X has a basis of n vectors. Then every family of (n + 1) vectors is linearly dependent. That means n is the maximum number of linearly independent vectors in X and hence every basis of X consists of n vectors.

Proof. We use mathematical induction to prove this proposition.

- 1. Let n = 1, let x_1 be a basis of X, then $y_1, y_2 \neq 0$ and $y_1, y_2 \in X$. Then $y_1 = \alpha x, y_2 = \beta x$. Now let $\gamma_1 y_1 + \gamma_2 y_2 = 0$, we can let $\gamma_1 = \alpha \beta, \gamma_2 = -\alpha \beta$ which means y_1, y_2 are linearly dependent.
- 2. Assume that the proposition holds for every vector space having basis of $r \leq n-1$ vectors by the induction.
- 3. Let X be a vector space and let $\{x_1, \ldots, x_n\}$ be the basis of X and $\{y_1, \ldots, y_{n+1}\}$ be an arbitrary family of vectors in X.

Now consider the factor space $X/\operatorname{span} y_{n+1}$ and the canonical projection $\pi: X \to X/\operatorname{span} y_{n+1}$. As $\{x_i: i=1,\ldots,n\}$ generates X and π is surjective, $\{\pi(x_i): i=1,\ldots,n\}$ generates $X_1=X/\operatorname{span} y_{n+1}$, so according to 2.1, it contains a basis of X_1 and as $y_{n+1}=\sum_{i=1}^n \alpha_i x_i$ for some not all zero α_i , $\{\overline{x_i}=\pi(x_i): i=1,\ldots,n\}$ is linearly dependent, so dim $X_1\leq n-1$, then by the hypothesis of induction, $\{\overline{y_i}=\pi(y_i): i=1,\ldots,n\}$ are linearly independent. so there exists:

$$\sum_{i=1}^{n} \gamma_i \overline{y_i} = 0 \text{ for non-trivial } \{\gamma_i\}$$

which means $\{y_i: i=1,\ldots,n\}$ are linearly dependent mod span y_{n+1} which means

$$\sum_{i=1}^{n} \gamma_i y_i = \lambda y_{n+1}$$

leads to the consult that $\{y_1, \ldots, y_{n+1}\}$ are linearly dependent.

Give a vector space X and a subspace $A_1 \subset X$, then there exists a subspace $A_2 \subset X$ s.t. $A_1 \oplus A_2 = X$ by 2.6. Then let $\{x_{\alpha}\}$ be a basis of A_1 and $\{x_{\beta}\}$ be a basis of A_2 , notice that $\{x_{\alpha}\} \cap \{x_{\beta}\} = \emptyset$ and $\{x_{\alpha}\} \cup \{x_{\beta}\}$ generates X. So we easily observe that dim $X = \dim A_1 + \dim A_2$ if $A_1 \oplus A_2 = X$.

Then according to 2.8, let π be the canonical projection, $\{\overline{x_{\beta}} = \pi(x_{\beta})\}\$ forms a basis of X/A_1 , so $\dim(X/A_1) = \operatorname{card} \{\overline{x_\beta}\} = \operatorname{card} \{x_\beta\} = \dim A_2$. So $\dim X = \dim A + \dim(X/A_1)$.

Proposition 2.10. Let $A_1, A_2 \subset X$ be arbitrary subspace of X. Then

$$dim A_1 + dim A_2 = dim(A_1 + A_2) + dim(A_1 \cap A_2)$$

Proof. Just let $\{x_{\alpha}\}$ be the basis of $A_1 \cap A_2$ and let $\{y_{\beta}\}, \{y_{\gamma}\}$ be the extending tail i.e. they don't intersect $\{x_{\alpha}\}$ and $\{x_{\alpha}\} \cup \{y_{\beta}\}$ is a basis of A_1 and $\{x_{\alpha}\} \cup \{y_{\gamma}\}$ is a basis of A_2 .

Let card $\{x_{\alpha}\}=\alpha$, card $\{y_{\beta}\}=\beta$, card $\{y_{\gamma}\}=\gamma$. Then dim $A_1=\alpha+\beta$, dim $A_2=\alpha+\gamma$, dim $(A_1\cap A_2)=\beta$ α . Now we only need to show that $\{x_{\alpha}\} \cup \{y_{\beta}\} \cup \{y_{\gamma}\}$ generates $A_1 + A_2$. It is easy to show by the definition of generators of system. And notice that they are independent with each other. Thus $\{x_{\alpha}\} \cup \{y_{\beta}\} \cup \{y_{\gamma}\} \text{ is a basis of } A_1 + A_2 \text{ which means } \dim(A_1 + A_2) = \operatorname{card}(\{x_{\alpha}\} + \{y_{\beta}\} + \{y_{\gamma}\}) = \alpha + \beta + \gamma.$

2.7Matrix and linear space

Definition 2.11. Let X be matrix in $\mathbb{R}^{m \times n}$. The subspace of \mathbb{R}^n spanned by the m rows of X is called the row space of X and denoted as $\mathcal{R}(X)$ and that of \mathbb{R}^m is column space and denoted as $\mathcal{C}(X)$

The column(row) space often equipped:

- Inner product: $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}' \mathbf{y}$ Norm: $\|\mathbf{x}\| = \sqrt{\mathbf{x}' \mathbf{x}}$
- Metric: $d(\mathbf{x}, \mathbf{y}) = \sqrt{\langle \mathbf{x} \mathbf{y}, \mathbf{x} \mathbf{y} \rangle}$

The column space of X is sometimes also referred to as the range of X. Note

$$\mathcal{C}(\mathbf{X}) = \{\mathbf{y} : \mathbf{y} = \mathbf{X}\mathbf{a}, \mathbf{a} \in \mathbb{R}^n\}$$

Clearly, the rank of X is just the dimension of $\mathcal{C}(X)$ and that agree with $\dim \mathcal{C}(X')$, i.e., the number of independent columns of X.

Proposition 2.11. Let $A \in \mathbb{R}^{m \times m}$, then:

- 1. $rank(\mathbf{AB}) \leq rank(\mathbf{A}) \wedge rank(\mathbf{B})$
- 2. $|rank(\mathbf{A}) rank(\mathbf{B})| \le rank(\mathbf{A} + \mathbf{B}) \le rank(\mathbf{A}) + rank(\mathbf{B})$
- 3. $rank(\mathbf{A}) = rank(\mathbf{A'}) = rank(\mathbf{AA'}) = rank(\mathbf{A'A})$

Proof. 1. Note **AB** can be seen as linear transformation in $\mathcal{C}(X)$ or so in $\mathcal{C}(X')$ and claim follows. 2. Note

$$\mathbf{A} + \mathbf{B} = \begin{bmatrix} \mathbf{A} & \mathbf{B} \end{bmatrix} \begin{bmatrix} \mathbf{I} \\ \mathbf{I} \end{bmatrix}$$

So property 1 applies and conclude:

$$\operatorname{rank}(\mathbf{A} + \mathbf{B}) \le \operatorname{rank}([\mathbf{A} \ \mathbf{B}]) \le \operatorname{rank}(\mathbf{A}) + \operatorname{rank}(\mathbf{B})$$

Replace **A** and **B** by $\mathbf{A} + \mathbf{B}$ and $-\mathbf{B}$, we have

$$rank(\mathbf{A}) \le rank(\mathbf{A} + \mathbf{B}) + rank(\mathbf{B})$$

And similar result also hold for ${\bf B}$ and then claim follows.

3. It's sufficient to show rank $(\mathbf{A}) = \operatorname{rank}(\mathbf{A'A})$ and it's enough to show

$$\mathcal{N}(\mathbf{A}) = \mathcal{N}(\mathbf{A'A})$$

To see that, note $A\mathbf{x} = \mathbf{0} \implies A'A\mathbf{x} = \mathbf{0}$ clearly and if $A'A\mathbf{x} = \mathbf{0}$ we have $\mathbf{x}'A'A\mathbf{x} = \mathbf{0}$ and thus $\|A'\mathbf{x}\| = \mathbf{0}$ and there must be $A\mathbf{x} = \mathbf{0}$.

Proposition 2.12. Let A, B, C are any matrices s.t. all the block matrix involved are defined. We have

1. $rank([\mathbf{A} \ \mathbf{B}]) \ge rank(\mathbf{A}) \lor rank(\mathbf{B})$

Chapter 3

Linear Mappings

3.1 Basic properties

Definition 3.1 (kernel and image). Suppose X, Y are vector spaces and $\varphi : E \to F$ be a linear mapping. Then the **kernel of** φ denoted as $\ker \varphi$ is the subset $K \subset X$ s.t. if $x \in K \implies \varphi(x) = 0$.

The **image space of** φ denoted as Im φ is the subset $I \subset Y$ s.t. $y \in I \implies$ there exists some $x \in X$ s.t. $\varphi(x) = y$.

Proposition 3.1. 1. Let $\varphi: X \to Y$ be a linear mapping, then $\ker \varphi$ is a vector space.

2. The mapping $\varphi: X \to Y$ is injective iff $\ker \varphi = \{0\}$.

Proof. 1. Let $\varphi: X \to Y$ be a linear mapping, let $x_1, x_2 \in \ker \varphi$. Then

- $\varphi(x_1 + x_2) = \varphi(x_1) + \varphi(x_2) = 0$, so $x_1 + x_2 \in \ker \varphi$.
- $\varphi(\alpha x_1) = \alpha \varphi(x_1) = 0$, so $\alpha x_1 \in \ker \varphi$.
- 2. Let φ be injective that means for each $y \in \text{Im } \varphi$, $\varphi^{-1}(y) = x$ for some unique $x \in X$. So $\varphi^{-1}(0) = 0$ for only $0 \in X$.

For the converse, let $\ker \varphi = \{0\}$, give an arbitrary $y \in \operatorname{Im} \varphi$, suppose there exists $x_1, x_2 \in X$ s.t. $\varphi(x_1) = \varphi(x_2) = y$, then $\varphi(x_1 - x_2) = \varphi(x_1) - \varphi(x_2) = 0$, if $x_1 \neq x_2$, there leads to a contradiction about $\ker \varphi = \{0\}$. So φ is injective.

3.1.1 Induced Linear Mappings

Definition 3.2 (restriction of linear mapping). Suppose $\varphi : X \to Y$ is a linear mapping and $X_1 \subset X$, $Y_1 \subset Y$ are subspace s.t. $\varphi(x) \in Y_1$ when $x \in X_1$.

Then the linear mapping $\varphi_1: X_1 \to Y_1$ defined by $\varphi_1(x) = \varphi(x), x \in X_1$ is called **the restriction of** φ to X_1 .

Now we can find that $\varphi \circ i_{X_1} = i_{Y_1} \circ \varphi_1$ where $i_{X_1} : X_1 \to X$ is canonical injections, same as i_{Y_1} .

Equivalently, the diagram is commutative.

$$X \xrightarrow{\varphi} Y$$

$$i_{X} \downarrow \qquad \qquad i_{Y} \downarrow$$

$$X_{1} \xrightarrow{\varphi_{1}} Y_{1}$$

Let $\varphi: X \to Y$ be linear mapping and $\varphi_1: X_1 \to Y_1$ be its restriction to subspace $X_1 \subset X, Y_1 \subset Y$. Then there exists precisely one linear mapping

$$\overline{\varphi}: X/X_1 \to Y/Y_1$$

s.t.

$$\overline{\varphi} \circ \pi_X = \pi_Y \circ \varphi$$

where π_X, π_Y are canonical projections on X, Y.

Notice that $\pi_Y(\varphi(x_1)) = \pi_Y(\varphi(x_2))$ whenever $\pi_X(x_1) = \pi_X(x_2)$. Because $\pi_X(x_1) = \pi_X(x_2)$ implies $\pi_X(x_1 - x_2) = \overline{0}$ so $x_1 - x_2 \in \ker \pi_X = X_1$. Then

$$\pi_Y \circ \varphi(x_2 - x_1) = \pi_Y \circ \varphi(x) \quad \text{for } x \in X_1$$
$$= \pi_Y(y) \quad \text{for } y \in Y_1$$
$$= \overline{0}$$

as the existence of the restriction φ_1 .

Then we can assert that there exists a mapping s.t. $\overline{\varphi}(x)$ has only one value in Y/Y_1 , thus a function. Then we need to show its linearity. Now let $\overline{x_1}, \overline{x_2} \in X/X_1$ and $x_1 \in \pi_X^{-1}(\overline{x_1})$ same as x_2 .

$$\overline{\varphi}(\alpha \overline{x_1} + \beta \overline{x_2}) = \overline{\varphi} \circ \pi_X(\alpha x_1 + \beta x_2)$$

$$= \pi_Y \circ \varphi(\alpha x_1 + \beta x_2)$$

$$= \alpha \pi_Y \circ \varphi(x_1) + \beta \pi_Y \circ \varphi(x_2)$$

$$= \alpha \overline{\varphi}(\overline{x_1}) + \beta \overline{\varphi}(\overline{x_2})$$

which means the linearity.

Remark. The $\overline{\varphi}$ discussed above is called the **induced mapping in factor space** and the relation of $\overline{\varphi}$ is equivalent to the diagram:

$$X \xrightarrow{\varphi} Y$$

$$\downarrow^{\pi_X} \qquad \downarrow^{\pi_Y}$$

$$X/X_1 \xrightarrow{\overline{\varphi}} Y/Y_1$$

Notice that this diagram is commutative.

And the relation can be overwritten by $\overline{\varphi x} = \overline{\varphi x}$.

Let $\varphi: X \to Y$ be a linear mapping and $X_1 = \ker \varphi$, $Y_1 = \{0\}$. Since $\varphi(x) = 0$ when $x \in X_1$, a linear mapping is **induced** by φ :

$$\overline{\varphi}: X/\ker \varphi \to Y/\{0\} = Y$$

s.t.

$$\overline{\varphi}\circ\pi=\varphi$$

where $\pi: X \to X/\ker \varphi$ is the canonical projection.

- 1. This mapping $\overline{\varphi}$ is injective. In fact if $\overline{\varphi} \circ \pi(x) = 0$, then $\varphi(x) = 0$ which means $x \in \ker \varphi$. Then $\pi(x) = \overline{0}$, so $\ker \overline{\varphi} = {\overline{0}}$, according to 3.1, $\overline{\varphi}$ is injective.
- 2. $\overline{\varphi}$ is a linear isomorphism between $X/\ker\varphi$ and $\operatorname{Im}\varphi$, i.e.

$$\overline{\varphi}: X/\ker \varphi \xrightarrow{\simeq} \operatorname{Im} \varphi$$

Notice that $\overline{\varphi}$ is injective and since Im φ it is surjective, thus one-to-one and onto.

Then every linear mapping $\varphi: X \to Y$ can be written as a composition of a surjective and injective linear mapping:

Now consider the linear mapping:

$$\varphi': X_1/(X_1 \cap X_2) \xrightarrow{\simeq} (X_1 + X_2)/X_2$$

We need to show it is a isomorphism.

First we observe the canonical projection:

$$\pi: X_1 + X_2 \to (X_1 + X_2)/X_2$$

and $\pi \mid_{X_1}$ be the restriction on X_1 . Notice that for $x \in X_1 + X_2$:

$$x = x_1 + x_2 \qquad x_1 \in X_1, x_2 \in X_2$$

then

$$\pi(x) = \pi(x_1 + x_2) = \pi(x_1) = \pi \mid_{X_1} (x_1)$$

So we find that $\pi \mid_{X_1}$ is surjective.

Define $\varphi = \pi \mid_{X_1}: X_1 \to (X_1 + X_2)/X_2$, then

$$\ker \varphi = \ker \pi \cap X_1 = X_1 \cap X_2$$

With the above discussion, we notice that $\varphi: X_1 \to (X_1 + X_2)/X_2$ and so

$$X_1/\ker\varphi \xrightarrow{\simeq} (X_1+X_2)/X_2$$

Proposition 3.2. Suppose that $\varphi: X \to Y$ and $\psi: X \to Z$ are linear mappings s.t. $\ker \varphi \subset \ker \psi$, then there exists a linear mapping $\omega: X \to Z$ s.t. $\omega \circ \varphi = \psi$.

Proof. Notice that $\psi(x) = 0$ if $x \in \ker \varphi$, consider the induced linear mapping:

$$\overline{\psi}: X/\ker \varphi \to Z$$

s.t. $\overline{\psi} \circ \pi = \psi$ where $\pi : X \to X/\ker \varphi$ is the canonical projection. The existence of $\overline{\psi}$ is determined by the $\psi \mid_{\ker \varphi} : \ker \varphi \to \{0\}$.

Now let

$$\overline{\varphi}: X/\ker \varphi \xrightarrow{\simeq} \operatorname{Im} \varphi$$

be the linear isomorphism determined by φ and define $\overline{\psi}_1: \operatorname{Im} \varphi \to Z$ by

$$\overline{\psi}_1 = \overline{\psi} \circ \overline{\varphi}^{-1}$$

Then let $\omega:X\to Z$ be a linear mapping which extends $\overline{\psi}_1.$ Notice that

$$\overline{\varphi}^{-1} \circ \varphi = \overline{\varphi}^{-1} \circ \overline{\varphi} \circ \pi = \pi$$

which means:

$$\omega\circ\varphi=\overline{\psi}_1\circ\varphi=\overline{\psi}\circ\overline{\varphi}^{-1}\circ\varphi=\overline{\psi}\circ\pi=\psi$$

Remark. The result can be expressed in commutative diagram:

