Allowed Claims in U.S. Patent Application No. 11/777,692

19. A process for preparation of a compound, a stereoisomer of the compound, a tautomer of the compound, or a pharmaceutically acceptable salt of the compound, stereoisomer, or tautomer, wherein: the compound corresponds to formula (I):

A is thienyl;

 R^1 is cyclobutyl-N(R_a)-, wherein the cyclobutyl is optionally substituted with 1, 2, or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(NR_cR_e), -SR_c, -S(O)R_c, -S(O)₂R_c, -OR_c, -N(R_c)(R_e), -C(O)R_c, -C(O)OR_c, and -C(O)NR_cR_e;

as to R² and R³:

 R^2 and R^3 are independently selected from the group consisting of hydrogen, alkenyl, alkynyl, alkoxyalkyl, alkoxycarbonyl, alkyl, aryl, arylalkyl, heteroaryl, heterocycle, heteroarylalkyl, cyano, halo, $-N(R_a)(R_b)$, $R_aR_bNC(O)$ -, $-SR_a$, $-S(O)R_a$, $-S(O)_2R_a$, and $R_aC(O)$ -, wherein each such substituent is optionally substituted with 1, 2, or 3 substituents independently selected from the group consisting of R_a , alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, $-(alkyl)(OR_k)$, $-(alkyl)(NR_aR_b)$, $-SR_a$, $-S(O)R_a$, $-S(O)_2R_a$, $-OR_k$, $-N(R_a)(R_b)$, $-C(O)R_a$, $-C(O)OR_a$, and $-C(O)NR_aR_b$, or, alternatively,

R² and R³, together with the carbon atoms to which they are attached, form a five- or six-membered ring selected from the group consisting of aryl, cycloalkyl, heteroaryl, and heterocycle, wherein each such substituent is optionally substituted with m independently selected R⁶ substituents;

 R^4 is selected from the group consisting of alkoxy, arylalkoxy, aryloxy, halo, hydroxy, R_aR_bN -, N_3 -, and R_eS -, wherein each such substituent is optionally substituted with or 2 substituents independently selected from the group consisting of halo, nitro, cyano, -OH, -NH₂, and -COOH;

as to R5:

at least one R5 is RaSO2N(Rf)alkyl-, and

each additional R^5 is independently selected from the group consisting of alkenyl, alkoxy, alkyl, alkynyl, aryl, arylalkyl, arylcarbonyl, aryloxy, azidoalkyl, formyl, halo, haloalkyl, halocarbonyl, heteroarylalkyl, heterocycle, heterocyclealkyl, hydroxyalkyl, cycloalkyl, cyano, cyanoalkyl, nitro, R_aR_bN -, $R_aC(O)$ -, R_aS -, $R_a(O)S$ -, $R_a(O)_2S$ -, R_aR_bN alkyl-, $R_a(O)SN(R_f)$ -, $R_aSO_2N(R_f)$ -, $R_a(O)SN(R_f)$ -, $R_aSO_2N(R_f)$ -, $R_aSO_2N(R_f)$ -, $R_aR_bNSO_2N(R_f)$ -, $R_aR_bNSO_2N(R_$

each R^6 is independently selected from the group consisting of alkyl, alkenyl, alkynyl, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, heterocyclealkyl, -(alkyl)(OR_k), -(alkyl)(NR_aR_b), -SR_a, -S(O)R_a, -S(O)₂R_a, -OR_k, -N(R_a)(R_b), -C(O)R_a, -C(O)OR_a, and -C(O)NR_aR_b, wherein each such substituent is optionally substituted with 1, 2, or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, haloalkyl, cyano, nitro, -OR_a, -NR_aR_b, -SR_a, -SOR_a, -SO₂R_a, -C(O)OR_a, -C(O)NR_aR_b, and -NC(O)R_a; as to R_a and R_b:

each R_a and R_b is independently selected from the group consisting of hydrogen, alkenyl, alkyl, alkylsulfanylalkyl, aryl, arylalkenyl, arylalkyl, cyanoalkyl, cycloalkenyl, cycloalkenylalkyl, cycloalkyl, cycloalkylalkyl, cycloalkylalkyl, haloalkyl, heteroaryl, heteroarylalkyl, heteroarylalkyl, heteroarylalkyl, heterocycle, heterocyclealkenyl, heterocyclealkyl, hydroxyalkylcarbonyl, nitroalkyl, R_cR_dN -, R_pO -, R_pO -lkyl-, R_cR_dN alkyl-, $R_cR_dNC(O)$ alkyl-, $R_cR_dNC(O)$ alkyl-, $R_cC(O)$ -, $R_cR_dNC(O)$ -, wherein each such substituent is optionally substituted with 1 or 2 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(OR_c), -(alkyl)(OR_c), -SO(O)2 OR_c , - OR_c , -

R_a and R_b, together with the nitrogen atom to which they are attached, form a three- to six-membered ring selected from the group consisting of heteroaryl and heterocycle, wherein the heteroaryl and heterocycle are optionally substituted with 1, 2, or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl,

-(alkyl)(OR_c), -(alkyl)(NR_cR_d), -alkylSO₂NR_cR_d, -alkylC(O)NR_cR_d, -SR_c, -S(O)R_c, -S(O)₂R_c, -OR_c, -N(R_c)(R_d), -C(O)R_c, -C(O)OR_c, and -C(O)NR_cR_d; as to R_c and R_d:

each R_e and R_d is independently selected from the group consisting of hydrogen, -NR_fR_h, -OR_f, -CO(R_f), -SR_f, -SO₂R_f, -C(O)NR_fR_h, -SO₂NR_fR_h, -C(O)OR_f, alkenyl, alkyl, alkynyl, cycloalkyl, cycloalkyl, cycloalkenyl, cycloalkenylalkyl, aryl, arylalkyl, haloalkyl, heteroaryl, heteroarylalkyl, heterocycle, and heterocycloalkyl, wherein each such substituent is optionally substituted with 1, 2, or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_f), -(alkyl)(NR_fR_h), -SR_f, -S(O)R_f, -S(O)₂R_f, -OR_f, -N(R_f)(R_h), -C(O)R_f, -C(O)OR_f, -C(O)NR_fR_h, -C(O)N(H)NR_fR_h, -N(R_e)C(O)OR_f, -N(R_e)SO₂NR_fR_h, -N(R_e)C(O)NR_fR_h, -alkylN(R_e)C(O)OR_f, -alkylN(R_e)SO₂NR_fR_h, and -alkylN(R_e)C(O)NR_fR_h, or alternatively,

 R_c and R_d , together with the nitrogen atom to which they are attached, form a three- to six-membered ring selected from the group consisting of heteroaryl and heterocycle, wherein the heteroaryl and heterocycle are optionally substituted with 1, 2, or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_f), -(alkyl)(NR_fR_h), -SR_f, -S(O)R_f, -S(O)₂R_f, -OR_f, -N(R_f)(R_h), -C(O)R_f, -C(O)OR_f, and -C(O)NR_fR_h;

each R_e is independently selected from the group consisting of hydrogen, alkenyl, alkyl, and cycloalkyl;

as to R_f and R_h:

each R_f and R_h is independently selected from the group consisting of hydrogen, alkyl, alkenyl, aryl, arylalkyl, cycloalkyl, cycloalkylalkyl, cycloalkenyl, cycloalkenylalkyl, heterocycle, heterocyclealkyl, heteroaryl, and heteroarylalkyl, wherein each such substituent is optionally substituted with 1, 2, or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, cyano, halo, oxo, nitro, aryl, arylalkyl, cycloalkyl, cycloalkenyl, heterocycle, heteroaryl, heteroarylalkyl, -OH, -O(alkyl), -N(H)(alkyl), $-N(alkyl)_2$, -S(alkyl), -S(O)(alkyl), $-SO_2alkyl$, -alkyl-OH, -alkyl-O-alkyl, $-alkylNH_2$, -alkylN(H)(alkyl), $-alkylN(alkyl)_2$, -alkylS(alkyl), -alkylS(O)(alkyl), $-alkylSO_2alkyl$, $-N(H)C(O)NH_2$, -C(O)OH, -C(O)O(alkyl), $-C(O)OH_2$, $-C(O)NH_2$, -C(O)N(H)(alkyl), and $-C(O)N(alkyl)_2$, or alternatively,

R_f and R_h, together with the nitrogen atom to which they are attached, form a three- to seven-membered ring selected from the group consisting of heterocycle and heteroaryl, wherein

the heterocycle and heteroaryl are optionally substituted with 1, 2, or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, cyano, halo, oxo, nitro, aryl, arylalkyl, cycloalkyl, cycloalkenyl, heterocycle, heteroaryl, heteroarylalkyl, –OH, -O(alkyl), -NH₂, -N(H)(alkyl), -N(alkyl)₂, -S(alkyl), -S(alkyl), -S(O)(alkyl), -alkyl-OH, -alkyl-O-alkyl, -alkylNH₂, -alkylN(H)(alkyl), -alkylS(alkyl), -alkylS(O)(alkyl), -alkylSO₂alkyl, -alkylN(alkyl)₂, -N(H)C(O)NH₂, -C(O)OH, -C(O)O(alkyl), -C(O)Alkyl, -C(O)NH₂, -C(O)NH₂, -C(O)N(H)(alkyl), and -C(O)N(alkyl)₂;

each R_k is independently selected from the group consisting of hydrogen, alkenyl, alkyl, aryl, arylalkyl, cyanoalkyl, cycloalkenyl, cycloalkyl, cycloalkyl, cycloalkylalkyl, formylalkyl, haloalkyl, heteroaryl, heteroarylalkyl, heterocycle, heterocyclealkyl, nitroalkyl, $R_aR_bNalkyl$ -, $R_aOalkyl$ -, $R_aR_bNC(O)$ -, $R_aR_bNC(O)$ -, R_aSO_2 -, R_aSO

each R_p is independently selected from the group consisting of hydrogen, alkenyl, alkyl, aryl, arylalkyl, cyanoalkyl, cycloalkenyl, cycloalkenylalkyl, cycloalkylalkyl, formylalkyl, haloalkyl, heteroarylalkyl, heterocycle, heterocyclealkyl, and nitroalkyl, wherein each such substituent is optionally substituted with 1, 2, or, 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(NR_cR_d), -SR_c, -S(O)R_c, -S(O)₂R_c, -OR_c, -N(R_c)(R_d), -C(O)R_c, -C(O)OR_c, and -C(O)NR_cR_d;

m is 1, 2, 3, or 4;

n is 1, 2, 3, or 4; and

the process comprises:

(a) contacting a compound of formula (26)

$$R^3$$
 R^2
 N
 R^1
 (26)

with a reagent selected from the group consisting of (1) carbon disulfide and a methylating agent, (2) tris(methylthio)methyl methyl sulfate, and (3) tris(methylthio)methyl methyl tetrafluoroborate, in the presence of a base, to provide a compound of formula (27)

(b) contacting the compound of formula (27) with a compound of formula (13)

$$(R^5)_n$$
 SO_2NH_2
 NH_2 (13).

20. The process of claim 19, wherein the compound of formula (13) is 2-amino-4-(methane-sulfonylamino-methyl)-thiophene-3-sulfonic acid amide:

$$\begin{array}{c} O \\ H_2N \end{array} \begin{array}{c} O \\ S \end{array}$$