Sampling People, Records, & Networks

Jim Lepkowski, PhD
Professor & Research Professor Emeritus
Institute for Social Research, University of Michigan
Research Professor,
Joint Program in Survey Methodology, University of Maryland

Unit I

- I Research designs ...
- 2 Surveys
- 3 Why sample?
- 4 Why randomize?
- 5 Types of sampling
- 6 Evaluating samples
- 7 Units sampled

- Unit I: Sampling as a research tool
 - Lecture I Research design & sampling
 - Lecture 2 Surveys & sampling
 - Lecture 3 -- Why sample at all?
 - Lecture 4 Why might we randomize, and how do we do it?
 - Lecture 5 What happens when we randomize?
 - Lecture 6 How do we evaluate how good the sample is?
 - Lecture 7 What kinds of things can we sample?
- Unit 2: Mere randomization
- Unit 3: Saving money
- Unit 4: Being more efficient
- Unit 5: Simplifying sampling
- Unit 6: Some extensions & applications

Unit I

- I Research designs ...
- 2 Surveys
- 3 Why sample?
- 4 Why randomize?
- 5 Types of sampling
- 6 Evaluating samples
- 7 Units sampled

• Unit I: Sampling as a research tool

- Lecture I Research design & sampling
- Lecture 2 Surveys & sampling
- Lecture 3 -- Why sample at all?
- Lecture 4 Why might we randomize, and how do we do it?
- Lecture 5 What happens when we randomize?
- Lecture 6 How do we evaluate how good the sample is?
- Lecture 7 What kinds of things can we sample?
- Unit 2: Mere randomization
- Unit 3: Saving money
- Unit 4: Being more efficient
- Unit 5: Simplifying sampling
- Unit 6: Some extensions & applications

- Census or sample
- Accuracy
- Probabilities
- Frames
- Techniques
- Deficiencies
- Complex design

- Unit I: Sampling as a research tool
 - Lecture I Research design & sampling
 - Lecture 2 Surveys & sampling
 - Lecture 3 -- Why sample at all?
 - Lecture 4 Why might we randomize, and how do we do it?
 - Lecture 5 What happens when we randomize?
 - Lecture 6 How do we evaluate how good the sample is?
 - Lecture 7 What kinds of things can we sample?
- Unit 2: Mere randomization
- Unit 3: Saving money
- Unit 4: Being more efficient
- Unit 5: Simplifying sampling
- Unit 6: Some extensions & applications

- Census or sample
- Accuracy
- Probabilities
- Frames
- Techniques
- Deficiencies
- Complex design

- During conceptualization, a researcher considers the RELEVANT POPULATION for evaluating the theory/hypothesis
- In designing the data collection, the researcher has two concerns in mind:
 - · External validity
 - Cost/benefit calculations for the overall cost of the study

- Census or sample
- Accuracy
- Probabilities
- Frames
- Techniques
- Deficiencies
- Complex design

A census involves an enumeration of a population. When the population is large:

- I. It is costly
- 2. It is time consuming
- 3. It may not be feasible with complete precision (US Census as an example)

- Census or sample
- Accuracy
- Probabilities
- Frames
- Techniques
- Deficiencies
- Complex design

A sample involves a selection of a representative subset of a population in order to draw inferences to the population

Collecting data from a sample of a large population is FAR LESS costly and FAR LESS time consuming

Survey Data Collection & Analytic Specialization

Sampling People, Records, & Networks

•	Census	or
	sample	

Recruitment directly - volunteer samples

Accuracy

Probabilities

Frames

Techniques

Deficiencies

Complex design

Lists, selection, & then recruitment

Lists, selection, recruitment, & nonresponse

- Census or sample
- Accuracy
- Probabilities
- Frames
- Techniques
- Deficiencies
- Complex design

- Because of the cost savings, sampling allows a researcher to devote
 - More resources to the collection of more data (variables)
 - The reduction of error in measurement (reliability and validity)
 - Better coverage of the units of analysis
- This fits in with what is called a Total Survey Error perspective

- Census or sample
- Accuracy
- Probabilities
- Frames
- Techniques
- Deficiencies
- Complex design

Non-probability sampling

- · Haphazard, convenience, or accidental sampling
- Purposive sampling or expert choice
- Quota sampling
- Substitution (for nonresponse)
- Online panels
- · River sampling

- Census or sample
- Accuracy
- Probabilities
- Frames
- Techniques
- Deficiencies
- Complex design

- Probability sampling
 - Simple random selection
 - Stratified selection
 - Cluster samples
 - Systematic samples
 - More complex samples: probabilities proportionate to size

- Census or sample
- Accuracy
- Probabilities
- Frames
- Techniques
- Deficiencies
- Complex design

- List frame
- Area frame
- Problems
 - Missing elements
 - Duplicate listings
 - Clusters
 - Blanks or ineligibles

- Census or sample
- Accuracy
- Probabilities
- Frames
- Techniques
- Deficiencies
- Complex design

- Simple random sampling
- Systematic sampling
- Stratified sampling
 - Proportionate allocation
 - Disproportionate allocation

- Census or sample
- Accuracy
- Probabilities
- Frames
- Techniques
- Deficiencies
- Complex design

- Cluster sampling
- Two-stage sampling
- Probability proportionate to size sampling
- Stratified probability proportionate to size sampling
- Multistage sampling
- Multiple phase sampling

- Census or sample
- Accuracy
- Probabilities
- Frames
- Techniques
- Deficiencies
- Complex design

- Nonresponse
 - Total/unit
 - Item
- Noncoverage
- Compensation: weighting
 - · Unequal probabilities
 - Nonresponse
 - Noncoverage (poststratification)
 - Make the sample distribution conform to known population distribution

- Census or sample
- Accuracy
- Probabilities
- Frames
- Techniques
- Deficiencies
- Complex design

- Complex designs typically involve one or more of ...
 - Stratification
 - Clusters
 - Weights
- Estimation becomes complex
 - Even a simple mean or proportion requires non-standard techniques

- Census or sample
- Accuracy
- Probabilities
- Frames
- Techniques
- Deficiencies
- Complex design

- Standard software cannot handle complex sample designs correctly
- Estimating precision becomes more complex as well
- Methods of variance estimation must be considered
 - Taylor series approximation
 - Balanced or Jackknife repeated replication
- Computer software available for these methods
 - · Requires stratum, cluster, and weight on each sample record

Unit I

- I Research designs ...
- 2 Surveys
- 3 Why sample?
- 4 Why randomize?
- 5 Types of sampling
- 6 Evaluating samples
- 7 Units sampled

• Unit I: Sampling as a research tool

- Lecture I Research design & sampling
- Lecture 2 Surveys & sampling
- Lecture 3 -- Why sample at all?
- Lecture 4 Why might we randomize, and how do we do it?
- Lecture 5 What happens when we randomize?
- Lecture 6 How do we evaluate how good the sample is?
- Lecture 7 What kinds of things can we sample?
- Unit 2: Mere randomization
- Unit 3: Saving money
- Unit 4: Being more efficient
- Unit 5: Simplifying sampling
- Unit 6: Some extensions & applications

