Minería de patrones frecuentes y reglas de asociación

Máster Online en Ciencia de Datos

Dr. José Raúl Romero

Profesor Titular de la Universidad de Córdoba y Doctor en Ingeniería Informática por la Universidad de Málaga. Sus líneas actuales de trabajo se centran en la democratización de la ciencia de datos (*Automated ML* y *Explainable Artificial Intelligence*), aprendizaje automático evolutivo y análitica de software (aplicación de aprendizaje y optimización a la mejora del proceso de desarrollo de software).

Miembro del Consejo de Administración de la *European Association for Data Science*, e investigador senior del Instituto de Investigación Andaluz de *Data Science and Computational Intelligence*.

Director del **Máster Online en Ciencia de Datos** de la Universidad de Córdoba.

UNIVERSIDAD Ð CÓRDOBA

Algoritmo FP-Growth

Algoritmo

- Surge como respuesta a propuestas de generación-y-prueba de itemsets candidatos (p.ej. Apriori)
 - La generación de candidatos es costosa cuando hay patrones largos o un gran número de ellos
- El modelo FP-Growth consigue la eficiencia de la extracción con:
 - 1. La base de datos se comprime en un árbol FP (frequent pattern tree) evitando escaneos repetitivos y costosos
 - 2. Método basado en el crecimiento parcial de fragmentos de los patrones evitando generar un gran número de itemsets candidatos
 - 3. Método de partición, basado en "divide y vencerás" que reduce drásticamente la **base de patrones** condicionales generados para el siguiente nivel de búsqueda

Algunos de los conceptos que hemos escuchado:

- El conjunto o base de datos iniciales (BD): donde se van a recopilar todos los datos de frecuencia, patrones, ...
- Árbol de patrones frecuentes (FP-Tree): es la base de todo el algoritmo, ya que mediante su recorrido se determinan los patrones
- Lista ordenada de patrones (BDO): donde se almacenan los patrones obtenidos y se ordenan descendentemente en función de su frecuencia con apuntadores al FP-Tree

FP-Tree

- Estructura básica de FP-Growth, para facilitar el recorrido del árbol, contiene dos tipos de enlaces:
 - Enlaces padre-hijos, como cualquier estructura de árbol
 - Aquellos que enlazan nodos de igual tipo, cuya cabecera va a venir dada por la lista BDO
- Cada nodo contiene información referente a su frecuencia en la BD de partida, teniendo en cuenta la rama a la que pertenece

Algoritmo – Pasos

- 1. Construir **igual que en Apriori** el 1-itemset teniendo en cuenta la frecuencia de cada *item*
- 2. Reordenar la **BD** de forma descendente (**BDO**)
- 3. Construir el *FP-Tree*:
 - a. Crear un *nodo root* (raíz)
 - b. Añadir caminos desde el raíz que describan cada entrada del conjunto de datos contenida en la **BD** de partida se recorren una a una las transacciones
- 4. Recorrer las listas **BDO** de los *items*
 - a. Analizar posibles **patrones base** que llevan a ese nodo
 - b. Anotar dichos patrones base
- 5. Construir patrones frecuentes a partir de los patrones base

Algoritmo – Propiedad FP-Growth

Sea α un itemset frecuente en la base de datos, sea B patrón base condicional de α , y β un itemset en B. Entonces $\alpha \cup \beta$ es un itemset frecuente en la base de datos sii β es también frecuente en B.

"abcdef" es un patrón frecuente si y sólo si

"abcde" es un patrón frecuente y

"f" es frecuente en el conjunto de transacciones que contienen "abcde"

Algoritmo FP-Growth

Ejemplo

TID	Items de compras
1	{F, A, C, D, G, I, M, P}
2	{A, B, C, F, L, M, O}
3	{B, F, H, J, O}
4	{B, C, K, S, P}
5	{A, F, C, E, L, P, M, N}

Frecuencia mínima = 3

UNIVERSIDAD Ð CÓRDOBA

Construcción de 1-itemset y lista BDO

TID	Items frecuentes
1	{F, C, A, M, P}
2	{F, C, A, B, M}
3	{F, B}
4	{C, B, P}
5	{F, C, A, M, P}

[PASO 1] Se construye el 1-itemset ordenado

[PASO 2] Se construye la lista BDO

Item	Frecuencia
F	4
С	4
А	3
В	3
М	3
Р	3

UNIVERSIDAD D CÓRDOBA

Construcción del FP-Tree

Generación de patrones base

[Paso 4] Recorrer BDO para obtenerlos patrones base

Generación de patrones frecuentes

[Paso 5] Construir patrones frecuentes a partir de patrones base

Para ello, se obtiene el FP-Tree condicional

Va a depender de min_supp (=3 en ejemplo)

ltem	Patrón base
С	F:3
Α	FC:3
В	FCA:1, F:1, C:1
M	FCA:2, FCAB:1
Р	FCAM:2, CB:1

Empezamos con el último item de la lista (P) ¿Por qué?

P sucede en dos ramas del árbol

Las ramas formadas son:

FCAMP :2

CBP:

Considerando P como sufijo, teníamos los patrones base:

F C A M : 2 C B : 1

El FP-Tree condicional para P {(C:3)}|P

Patrones frecuentes que implican P: {CP:3}

UNIVERSIDAD Ð CÓRDOBA

Algoritmo FP-Growth: Ejemplo

[Paso 5] Para cada patrón base, consultamos el FP-Tree para extraer sus items frecuentes

ltem	Patrón base
С	F:3
Α	FC:3
В	FCA:1, F:1, C:1
M	FCA:2, FCAB:1
Р	FCAM:2, CB:1

Seguimos con M Tenemos 2 patrones base: FCA:2 y FCAB:1

Según la propiedad FP-Growth, los **patrones frec**. serían: M, FM, CM, AM, FCM, FAM, CAM,

Algoritmo FP-Growth: Ejemplo

[Paso 5] Para cada patrón base, consultamos el FP-Tree para extraer sus items frecuentes

ltem	Patrón base
С	F:3
А	FC:3
В	FCA:1, F:1, C:1
M	FCA:2, FCAB:1
Р	FCAM:2, CB:1

Item	FP-Tree condicional
Р	{(c:3)} p
M	{(f:3, c:3, a:3)} m
В	-vacío-
Α	{(f:3, c:3)} a
С	{(f:3)} c
F	-vacío-

Beneficios de la estructura FP-Tree

Los estudios de rendimiento demuestran que FP-Growth es un orden de magnitud más rápido que Apriori

Causas:

- No hay generación de candidatos
- Uso de una estructura de datos compacta
- Elimina escaneos repetitivos en la base de datos
- Las operaciones básicas son el conteo y la construcción del FP-Tree

Algoritmo FP-Growth

Uso de SPMF para la ejecución de FP-Growth

