#### Ιόνιο Πανεπιστήμιο – Τμήμα Πληροφορικής Παράλληλος Προγραμματισμός 2023-24

#### Προγραμματισμός σε GPUs

(Το προγραμματιστικό μοντέλο CUDA)

https://mixstef.github.io/courses/parprog/

Το εργαστήριο του μαθήματος χρησιμοποιεί υπολογιστικούς πόρους AWS Cloud χρηματοδοτούμενους από το ΕΔΥΤΕ



Μ.Στεφανιδάκης

# Προγραμματισμός σε GPUs: ιδιαιτερότητες

- Πού εκτελείται το πρόγραμμα;
  - Ένα μέρος στη CPU (host)
  - και ένα μέρος σε κάποια GPU/accelerator (device)
- Που βρίσκονται τα δεδομένα;
  - Στην κύρια μνήμη του υπολογιστή
  - και σε κάποια μνήμη της GPU
    - Μια τυπική GPU έχει διάφορα είδη μνήμης
    - Ο προγραμματιστής πρέπει να φροντίζει για την επιλογή της πιο κατάλληλης
  - Συνεπώς προκύπτει η ανάγκη μεταφοράς δεδομένων μεταξύ διαφορετικών μνημών
    - Πρέπει να συνυπολογίζεται το κόστος μεταφοράς στη συνολική απόδοση

# Οργάνωση τυπικής GPU

GPU SM



- Μια GPU αποτελείται από Streaming Multiprocessors (SMs)
  - Πρόσβαση όλων των SM σε global memory
- Κάθε SM διαθέτει
  - Έναν αριθμό υπολογιστικών cores
    - Απλή λογική λειτουργίας, σχεδιασμένα να εκτελούν μαζικά πράξεις (ίδια πράξη σε μεγάλες ομάδες cores)
  - Ένα ξεχωριστό set καταχωρητών
  - Μια γρήγορη κοινή μνήμη (shared memory)

#### GPUs και threads



- Στις GPUs η έννοια του thread είναι διαφορετική απ' ό,τι σε μια CPU
  - Διαθέσιμος (μαζικά) μεγάλος αριθμός hardware threads (cores)
  - Παράλληλη εκτέλεση της ίδιας εντολής από πολλά threads την ίδια στιγμή (μοντέλο SIMT)
    - Οι πόροι (state) των εκτελούμενων threads βρίσκονται συνεχώς
       στους καταχωρητές του SM
  - Κάθε SM χρονοδρομολογεί διαδοχικά ομάδες threads με τον ίδιο program counter (PC) στα cores

# Ιδιαιτερότητες εκτέλεσης SIMT

• Τι συμβαίνει στις διακλαδώσεις;

```
if cond {
    A;
}
else {
    B;
}
```

- Η ομάδα των threads με ίδιο PC πρέπει να εκτελεστεί δύο φορές
  - Την πρώτη φορά με ενεργοποιημένα μόνο τα threads που εκτελούν τον κώδικα Α
  - και τη δεύτερη φορά με ενεργοποιημένα τα threads που εκτελούν το Β

# Ιδιαιτερότητες εκτέλεσης SIMT (2)

- Αν ένα thread της ομάδας δεν μπορεί να προχωρήσει (π.χ. αναμονή για πόρους);
  - Όλη η ομάδα threads πρέπει να περιμένει
  - Το SM επιλέγει άλλη ομάδα threads που είναι έτοιμη να εκτελεστεί
  - Προσοχή στα barriers: πρέπει να εκτελούνται εκτός διακλαδώσεων
    - Δηλαδή, από όλα τα threads της ομάδας
- Τα παραπάνω προσπαθούν να διορθώσουν νεώτερες αρχιτεκτονικές GPU
  - Επιτρέποντας ανεξάρτητο PC ανά thread
  - Η μέγιστη απόδοση όμως επιτυγχάνεται όταν όλα τα threads της ομάδας εκτελούν τον ίδιο κώδικα

# Το προγραμματιστικό μοντέλο CUDA

- Ένας τρόπος «αφαιρετικής» περιγραφής του hardware (threads, cores, SMs) σε ένα προγραμματιστικό interface
  - Πλαισιώνεται από τις βιβλιοθήκες και τα εργαλεία που το υλοποιούν
- Ο στόχος: να καλυφθούν με ενιαίο τρόπο GPUs με διαφορετικά χαρακτηριστικά και δυνατότητες
  - Η γνώση όμως των ιδιαιτεροτήτων του hardware εκτέλεσης είναι σε μεγάλο βαθμό αναγκαία
    - Ο προγραμματισμός σε CUDA δεν είναι εύκολος εάν θέλουμε να επιτύχουμε τη μέγιστη απόδοση...

### Ορολογία CUDA

#### Kernel

Μια συνάρτηση που περιγράφει τι θα εκτελεστεί στη GPU από κάθε ένα thread

#### Thread

- Η μικρότερη μονάδα εκτέλεσης του κώδικα του kernel
- Block (Cooperative Thread Array CTA)
  - Μια ομάδα threads που εκτελούν τον ίδιο kernel στο ίδιο SM
    - Αν υπάρχουν πόροι (hardware), το SM μπορεί να εκτελεί και άλλο block παράλληλα

#### Grid

- Το σύνολο των blocks που εκτελούν τον kernel, όχι κατ' ανάγκη ταυτόχρονα
  - Σε πρόσφατες GPU υπάρχει και το cluster, μεταξύ block και grid

#### CUDA block

- Μια ομάδα από threads που εκτελούνται ταυτόχρονα σε ένα SM
  - Τα threads αυτά μοιράζονται τους καταχωρητές (registers) και την κοινή μνήμη (shared memory) του SM
    - Κάθε thread έχει δεσμευμένο το δικό του μέρος από τους παραπάνω πόρους όσο διαρκεί η εκτέλεση του block
- Τα threads ενός block μπορούν να συγχρονιστούν μεταξύ τους
  - Αντιθέτως, δεν υπάρχει τρόπος να συγχρονιστούν διαφορετικά blocks μεταξύ τους
  - Ούτε μπορούμε να υποθέσουμε με ποια σειρά θα εκτελεστούν τα blocks

## Δήλωση kernel

Χρήση του keyword \_\_global\_\_

```
// a kernel function - must return void
__global__ void add(int a,int b,int *c) {
    *c = a+b;
}
```

- CUDA C/C++
  - Προσθήκη επεκτάσεων (extensions) της CUDA
  - Ο compiler της CUDA (nvcc), στέλνει την κλασσική C/C++ στον gcc (ή αντίστοιχο) ενώ χειρίζεται διαφορετικά τις επεκτάσεις της CUDA

### Εκτέλεση kernel

- Ο προγραμματιστής ζητά την εκτέλεση ενός kernel με συγκεκριμένο αριθμό blocks ανά grid και threads ανά block
  - Τα blocks που αποτελούν το grid του kernel κατανέμονται στα SM της GPU
- Τα SM εκτελούν τα blocks που τους αντιστοιχούν, το ένα μετά το άλλο ή παράλληλα (ανάλογα με τους διαθέσιμους πόρους)
  - Κάθε SM χρονοδρομολογεί ομάδες από threads του ίδιου block για εκτέλεση από τα cores του
    - Σε ομάδες με τον ίδιο PC ("warps" στην ορολογία CUDA, 32 threads με την τρέχουσα τεχνολογία)

# Εκκίνηση kernel από host (CPU)

• kernel\_name<<blocks-per-grid,threads-per-block>>(arg, ...)

```
// this call is asynchronous - host continues execution add<<<1,1>>>(2,7,dev_c);
```

- Η εκκίνηση («κλήση») του kernel γίνεται από το κυρίως πρόγραμμα που εκτελείται στη CPU (host)
- Η κλήση είναι ασύγχρονη η CPU συνεχίζει την εκτέλεση των επόμενων εντολών χωρίς να περιμένει την ολοκλήρωση της εκτέλεσης του kernel στην GPU

# Τυπική ροή εκτέλεσης

- Δέσμευση μνήμης στη συσκευή GPU (device)
  - Για την υποδοχή των δεδομένων εισόδου από host
- Μεταφορά δεδομένων στη GPU
  - Στην βασική μορφή CUDA, ευθύνη του προγραμματιστή
- Εκτέλεση ενός kernel
  - Ανεξάρτητα και ασύγχρονα από CPU (host)
- Μεταφορά των αποτελεσμάτων πίσω στη μνήμη του υπολογιστή (host)
  - Συγχρονισμός με την ολοκλήρωση του kernel
- Αποδέσμευση μνήμης στη συσκευή GPU

### Παράδειγμα

```
int c; // host's (CPU) 'c' variable
int *dev_c;  // ptr to device's (GPU) 'c' variable
// allocate space for 'c' on device's memory
cudaMalloc((void **)&dev_c,sizeof(int)))
// call the kernel on device, 1 block/1 thread
// this call is asynchronous - host continues execution
add <<<1,1>>>(2,7,dev c);
// transfer device's 'c' into host's 'c' - synchronous call,
waits until kernel is done
cudaMemcpy(&c,dev c,sizeof(int),cudaMemcpyDeviceToHost);
// free memory of device's c
cudaFree(dev_c);
```

• Προσοχή: Οι συναρτήσεις της CUDA επιστρέφουν ένδειξη επιτυχίας η όχι – σε κανονικό πρόγραμμα θα πρέπει να ελέγχουμε εάν κάθε κλήση ήταν επιτυχής!

## Σφάλματα του kernel

- Δεν υπάρχει τρόπος να ειδοποιηθεί η CPU (host) για σφάλματα κατά την εκκίνηση και εκτέλεση ενός kernel
  - Εκτελείται ασύγχρονα, σε διαφορετικό device (GPU)
- Πώς θα ελέγξουμε αν υπήρξαν σφάλματα στον kernel;
  - Σε αντίθεση με τις συναρτήσεις των CUDA APIs, οι οποίες επιστρέφουν ένα error code
- Μπορούμε να ελεγξουμε αν υπήρξαν σφάλματα μετά την ολοκλήρωση του kernel

## Παραμετρική εκτέλεση

- Πώς γνωρίζει κάθε thread ποιο μέρος της συνολικής εργασίας θα εκτελέσει
  - Κάθε thread έχει διαθέσιμες κατά την εκτέλεση του kernel μια σειρά από μεταβλητές index (read-only)
  - Οι μεταβλητές αυτές μπορούν να οργανωθούν σε 1, 2 ή 3 διαστάσεις
    - Προγραμματιστική ευκολία, για να ταιριάζουν με το είδος (και την τοπικότητα των δεδομένων) της εφαρμογής
    - Δεν αλλάζει η υποκείμενη οργάνωση του hardware σε threads/blocks/grid

# Οργάνωση σε μία διάσταση

- threadIdx.x
  - «Ποιο thread του block είμαι»
- blockIdx.x
  - «Σε ποιο block ανήκω»
- blockDim.x
  - «Πόσα threads υπάρχουν σε κάθε block»
- gridDim.x
  - «Πόσα blocks υπάρχουν στο grid»
- Σε οργανώσεις με 2 ή 3 διαστάσεις υπάρχουν επιπλέον τα .y και .z των παραπάνω

### Περιορισμοί διαστάσεων

• /usr/local/cuda-12.2/extras/demo\_suite/deviceQuery

```
Maximum number of threads per multiprocessor: 2048

Maximum number of threads per block: 1024

Max dimension size of a thread block (x,y,z): (1024, 1024, 64)

Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535)
```

• Κάθε μοντέλο GPU έχει περιορισμούς στον μέγιστο αριθμό threads και blocks ανά διάσταση, όπως και στο πόσα threads/block ή blocks/grid μπορούν να εκτελεστούν

# Παραδείγματα κατανομής εργασίας

- Έστω ότι εκτελούμε απλό μετασχηματισμό (map) σε
   Ν στοιχεία εισόδου
  - Πώς κατανέμω την εργασία;
- Λύση #1: Ένα και μοναδικό thread εκτελεί τα πάντα
  - Το γνωστό loop for(i=0;i<N;i++)</li>
  - Δεν είναι λύση στην πραγματικότητα (αδικαιολόγητη σπατάλη των διαθέσιμων πόρων της GPU...)

# Παραδείγματα κατανομής εργασίας (2)

- Λύση #2: Ένα block με K threads
  - Πόσο θα είναι το K;
    - Συνήθως ένα (μικρό) πολλαπλάσιο του 32 (warp size)
    - Π.χ. με K = 256 θα έχουμε 8 warps προς εκτέλεση, ικανά να κρύψουν καθυστερήσεις σε κάποιο/α από αυτά
  - Πώς καλύπτουμε τα N στοιχεία εισόδου;
    - Striding
    - Το thread0 χειρίζεται τα στοιχεία 0, 256, 512, ...
    - To thread1 χειρίζεται τα στοιχεία 1, 257, 513, ...
    - To thread2 χειρίζεται τα στοιχεία 2, 258, 514, ...
  - Η ομοιομορφία στην προσπέλαση είναι απαραίτητη για την υψηλή απόδοση
  - Όμως με ένα ενεργό block, χρησιμοποιούμε μόνο ένα SM...

# Παραδείγματα κατανομής εργασίας (3)

- Λύση #3: M blocks με K threads το καθένα.
  - Το Μ πρέπει να είναι τέτοιο ώστε M x K ≥ N
    - Κάθε thread υπολογίζει ένα (ή κανένα) στοιχείο μόνο!
  - Υπολογισμός του Μ
    - Το γνωστό (N + K 1) / K
    - Κρατώντας το Κ = 256
  - Ποιο στοιχείο χειρίζεται κάθε thread;
    - $i = \alpha \rho \iota \theta \mu \delta \varsigma$ -block \*  $\mu \epsilon \gamma \epsilon \theta \delta \varsigma$ -block +  $\alpha \rho \iota \theta \mu \delta \varsigma$  thread

# Παραδείγματα κατανομής εργασίας (4)

- Λύση #4: M blocks με K threads το καθένα
  - Το Μ είναι σταθερό, π.χ. 32 φορές τον αρθμό των SM
    - Κάθε thread υπολογίζει πολλαπλά στοιχεία

```
int threads = 256;
int devId;
cudaGetDevice(&devId);
int numSM;
cudaDeviceGetAttribute(&numSM, cudaDevAttrMultiProcessorCount,
devId);
int blocks = numSM*32; // as a multiple of SMs in GPU
```

- Ποια στοιχεία χειρίζεται κάθε thread;
  - start = αριθμός-block \* μέγεθος-block + αριθμός thread
- Επανάληψη με stride = συνολικό αριθμό threads στο grid
  - μέγεθος block (σε threads) \* μέγεθος grid (σε blocks)