Escola de Química

Termodinâmica EQE-359 (Frederico W. Tavares)

Lista 5 - propriedades termodinâmicas das soluções (Smith & Van Ness 3º edicão)

8.2) Construa o diagrama Pxy para o sistema cicloexano(1) e benzeno(2) a 40 °C. Use a equação yiP=xi γi Pi^{sat} juntamente com as expressões para os coeficientes de atividade na fase líquida:

 $\ln \gamma 1 = 0.458 x_2^2$

 $\ln \gamma 2 = 0.458x_1^2$

A 40 °C, P₁^{sat}=0,243 atm e P₂^{sat}=0,241 atm

8.4) Mostre que, se a entalpia livre em excesso de um sistema binário for dada por

 $GE/RT = \beta x_1 x_2$

Onde β é uma constante (independe de T, P e x), então ln $\gamma 1=\beta x_2^2$ e ln $\gamma 2=\beta x_1^2$. Um sistema que se aproxima, razoavelmente, deste modelo é o constituído por éter(1) e acetona(2), em que $\beta=0,712$. Os dados de pressão de vapor para o éter e para acetona são os seguintes:

T°C	P ₁ ^{sat} mmHg	P2sat mmHg
34,6	760	350
40	920	425
45	1090	510
50	1275	610
56,1	1535	760

Calcule o diagrama de equilíbrio TXY a 1000 mmHg.

8.8) Uma grande massa de água está em equilíbrio com uma grande massa de ar. Partindo do critério de equilíbrio de fase, $f_{H2O}^{l} = f_{H2O}^{v}$ e fazendo aproximações razoáveis(enunciando-as explicitamente e justificando-as), deduza a seguinte fórmula para a umidade do ar saturado;

 $y_{H2O} = P^{sat}_{H2O}/P$

onde y_{H2O} é a fração molar do vapor d'água no ar em equilíbrio, P é a pressão ambiente e P^{sat}_{H2O} é a pressão de vapor da água pura na temperatura ambiente.

8.9) A medição experimental do equilíbrio líquido-vapor no sistema binário etanol(1) e tolueno (2) levou aos seguintes resultados: T=45°C P= 183 mmHg x1=0,300 y1=0,634

Além disto, conhecem-se as pressões de saturação a 45 °C para os componentes puros:

 P_1 ^{sat}=173mmHg P_2 ^{sat}=75,4mmHg

Mediante as hipóteses usuais pertinentes ao ELV em pressão baixa, determine no estado mencionado:

- a. Os coeficientes de atividade na fase líquida, $\gamma 1$ e $\gamma 2$
- b. O valor de G^E/RT
- c. O valor de $\Delta G/RT$ na fase líquida. Observe o sinal que aparece na resposta. Por que é obrigatória a existência deste sinal?
- d. O desvio que a fase líquida apresenta em relação à lei de Raoult é positivo ou negativo?
- e. Além dos dados mencionados acima, sabe-se, também, que nas mesmas condições do sistema, o calor de solução da fase líquida: $\Delta H/RT = H^E/RT = 0.437$

Qual será, aproximadamente, o valor de G^E/RT no líquido a 60°C? Pode-se determinar $\gamma 1$ e $\gamma 2$, a 60°C, a partir deste único valor?

8.20) A Partir do dados de ELV abaixo, calcule os valores de $\ln\gamma 1$ e $\ln\gamma 2$ e de G^E/x_1x_2RT e plote estes valores contra x1. Determine, a partir dos valores plotados, $\ln\gamma 1^{\infty} \ln\gamma 2^{\infty}$ e use estes resultados para determinar os valores de A'12 e A'21 na equação de van Laar. Trace a curva G^E/x_1x_2RT contra x1 que seria dada pela equação de van Laar com estas constantes. Determine os valores de A'12 e A'21 na equação de van Laar a partir de dados do azeótropo e trace a curva com os valores assim determinados.

PmmHg	x1	v1
114,7	0	0,0000
125,1	0,004	0,0859
134,9	0,008	0,1555
144,2	0,012	0,2127
153,0	0,016	0,2604
161,3	0,02	0,3006
194,6	0,04	0,4288
216,1	0,06	0,4916
231,3	0,08	0,5299
243,0	0,1	0,5567
271,3	0,2	0,6163
284,7	0,3	0,6455
294,5	0,4	0,6699
300,7	0,5	0,6895
304,5	0,6	0,7090
308,0	0,7	0,732
308,2	0,749	0,749
307,6	0,8	0,7714
305,7	0,84	0,7994
300,4	0,9	0,8556
295,2	0,94	0,8976
286,2	0,98	0,9586
279,6	1,0	1,0000

8.36) Como parte de um projeto para uma unidade de fabricação de gelo seco, foi proposto o problema de determinar a fração molar de $CO_2(y_{CO2})$ no ar em equilíbrio com o CO_2 sólido. O cálculo deve referir-se à pressão de 20 atm.

a. Partindo do critério de equilíbrio de fases $f_{\text{CO2}}^{\nu} = f_{\text{CO2}}^{s}$ e fazendo hipóteses razoáveis (enunciá-las explicitamente e justificá-las), deduza a seguinte fórmula para o y_{CO2} :

$$y_{CO2} = (1/\phi^{v}_{CO2}) (P_{CO2}/P) \exp [V^{s}_{CO2} P/RT]$$
 (A)

Nesta equação, P_{CO2} é a pressão de sublimação do CO_2 puro na temperatura T, V_{CO2} é o volume molar do sólido e ϕ^v_{CO2} é o coeficiente de fugacidade do CO_2 na fase vapor. Observe que , nas temperaturas de interesse, $P_{CO2} << 1$ atm.

b. Admitindo a validade da equação de virial truncada no segundo termo mostre que uma expressão aproximada para o ϕ^v_{CO2} , válida para pequenos valores de y_{CO2} é:

$$\phi^{v}_{CO2} = exp(P/RT)(2B_{CO2-ar} - B_{ar-ar})$$
 (B)

Nesta expressão, B_{ar-ar} é o segundo coeficiente de virial para o ar - ar (o ar tratado como um componente puro), e B_{CO2-ar} é o segundo coeficiente cruzado CO_2 - ar.

c.Comentou-se que a correção da equação B para levar em conta o comportamento não ideal da fase gasosa é insignificante nas pressões que interessam. Verifique a validade da afirmativa, determinando o valor numérico do erro relativo em y_{CO2} que resulta da hipótese de gás ideal a T=143 K e P=20 atm. Pode-se admitir que a equação (**B**) leva ao valor correto para o ϕ^v_{CO2} nestas condições. São conhecidos os seguintes dados a T=143k:

 $P_{CO2}=0,00304 \text{ atm} \quad V_{CO2}^{s}=27 \text{cm}^{3}/\text{mol} \quad B_{ar-ar}=-80 \text{ cm}^{3}/\text{mol} \quad B_{CO2-ar}=-230 \text{ cm}^{3}/\text{mol}$