CMSC 441: Homework #9 Solutions

Monday, April 21, 2008

Parag Namjoshi

Exercise 1

Use Garner's algorithm to find the unique integer $0 \le x < 5 \cdot 7 \cdot 11$ that satisfies the following three modular equations:

 $x = 2 \mod 5$ $x = 4 \mod 7$ $x = 3 \mod 11$

Solution

The mixed radix representation of the unique integer x is of the form

$$x = \nu_0 + \nu_1 \cdot \dots + \nu_2 \cdot \dots \cdot \dots = 0$$

Hence, the solution is found by determining the integers ν_0, ν_1 , and ν_2 as follows:

 $x=2 \mod 5 \Longrightarrow x=\nu_0+\nu_1\cdot 5+\nu_2\cdot 5\cdot 7 \Longrightarrow \nu_0=2 \mod 5.$ $\therefore x=2+\nu_1\cdot 5+\nu_2\cdot 5\cdot 7$ $x=4 \mod 7 \Longrightarrow 2+\nu_1\cdot 5+\nu_2\cdot 5\cdot 7 \Longrightarrow = 4 \mod 7 \Longrightarrow 2+\nu_1\cdot 5=4 \mod 7 \Longrightarrow \nu_1\cdot 5=2 \mod 7.$ But But $5^{-1} \mod 7=3$. Hence $\nu_1=6 \mod 7$. Consequently,

$$x = 2 + 30 + \nu_2 \cdot \dots \cdot 7$$

 $x=3 \mod 11 \implies 32+35\nu_2 \implies 3 \mod 11 \implies 10+2\nu_2=3 \mod 11 \implies 2\nu_2=4 \mod 11$. But $2^{-1} \mod 11=6$. Hence $\nu_2=24 \mod 11$. Consequently, $\nu_2=2 \mod 11$ and

$$x = 2 + 30 + 70 = 102$$

Exercise 2

(Step 1)

Compute $5723 \cdot 7956$ modulo each of the pairwise relatively prime integers 101, 103, 107, and 109. **Solution**

 $5723 \cdot 7956 \mod 101 = 75$ $5723 \cdot 7956 \mod 103 = 8$ $5723 \cdot 7956 \mod 107 = 50$ $5723 \cdot 7956 \mod 109 = 54$

(Step 2)

Then use Garner's algorithm to piece together the above four modular solutions into a unique integer $0 \le x < 101 \cdot 103 \cdot 107 \cdot 109$.

 $x = 75 \mod 101$ $x = 8 \mod 103$ $x = 50 \mod 107$ $x = 54 \mod 109$

Following Garner's algorithm as in the previous exercise, we find that x=45532188.

Under what circumstances does this result mod $101 \cdot 103 \cdot 107 \cdot 109$ produce the same integer which would have been produced if you had instead computed the integer product $5723 \cdot 7956$ in the integers Z, and not in $Z_{101 \cdot 103 \cdot 107 \cdot 109}$?

We get the desired results if the four numbers are prime and $x < 101 \cdot 103 \cdot 107 \cdot 109$.

Suggest some potential applications of this method.

This method has applications in cryptography.