PROBLEM 3

To solve the problem it is necessary to do an hypothesis on signature of the set U: sig(U). Since $n \gg k$ we can estimate with an high probability that the elements $x \in U$ will be mapped on all the values of hash function.

Since for definition:

$$sig(U) = (v_1(U), v_2(U), ..., v_l(U))$$

where $v_i(U) = min_{x \in U} h_i(x)$
we can imagine $sig(U) \approx (0, 0, ..., 0)$

Determined sig(U) we can determine the Signature Matrix:

	Α	В	U
v_1	$v_1(A)$	$v_1(B)$	0
v_2	$v_2(A)$	$v_2(B)$	0
v_l	$v_l(A)$	$v_l(B)$	0

Table 1: Signature Matrix

where $v_i(A)$ and $v_i(B)$ are assigned.

1)
$$|A| = n^* SIM(A, U)$$

 $|B| = n * SIM(B, U)$

where the Jacard similarity SIM(A, U) and SIM(B, U) are determined through *lsh* algorithm, acceding to <u>Signature Matrix</u>.

2)
$$|A \cup B| = |A| + |B| - |A \cap B|$$

The size of |A| and |B| is before established. The problem is to determine the size of the intersection between the two sets $|A \cap B|$.

It is risolved calculating the Jacard similarity SIM(A, B) through lsh algorithm and imposing the system equation:

$$\begin{cases} |A \cup B| = |A| + |B| - |A \cap B| \\ SIM(A, B) = \frac{|A \cup B|}{|A \cap B|} \end{cases}$$
$$\begin{cases} |A \cup B| = |A| + |B| - |A \cap B| \\ |A \cap B| = \frac{|A \cup B|}{SIM(A, B)} \end{cases}$$

$$\begin{cases} |A \cap B| = \frac{|A \cup B|}{SIM(A, B)} \\ |A \cup B| = |A| + |B| - \frac{|A \cup B|}{SIM(A, B)} \end{cases}$$

$$\begin{cases} |A \cap B| = \frac{|A \cup B|}{SIM(A,B)} \\ |A \cup B| + \frac{|A \cup B|}{SIM(A,B)} = |A| + |B| \end{cases} \\ \begin{cases} |A \cap B| = \frac{|A \cup B|}{SIM(A,B)} \\ |A \cup B| (1 + \frac{1}{SIM(A,B)}) = |A| + |B| \end{cases} \\ \begin{cases} |A \cap B| = \frac{|A \cup B|}{SIM(A,B)} \\ |A \cup B| = \frac{|A \cup B|}{SIM(A,B)} \end{cases} \\ \begin{cases} |A \cap B| = \frac{|A \cup B|}{SIM(A,B)} \\ (1 + \frac{1}{SIM(A,B)}) \end{cases} \\ \begin{cases} |A \cup B| = \frac{|A| + |B|}{(1 + \frac{1}{SIM(A,B)})} \\ |A \cap B| = \frac{|A| + |B|}{SIM(A,B)(1 + \frac{1}{SIM(A,B)})} \end{cases} \end{cases}$$

$$\begin{cases} |A \cup B| = \frac{|A| + |B|}{(1 + \frac{1}{SIM(A, B)})} \\ |A \cap B| = \frac{|A| + |B|}{1 + SIM(A, B)} \end{cases}$$

$$|A \cup B| = \frac{|A| + |B|}{(1 + \frac{1}{SIM(A,B)})}$$

3) HAMMING SIMILARITY

$$S_H = 1 - \frac{|(A \backslash B) \cup (B \backslash A)|}{n}$$

 $|(A \setminus B) \cup (B \setminus A)|$ can be written as:

$$|(A\backslash B)\ \cup\ (B\backslash A)|=|A\ \cup B|-|A\ \cap B|$$

where:

$$\begin{cases} |A \cup B| = \frac{|A| + |B|}{(1 + \frac{1}{SIM(A, B)})} \\ |A \cap B| = \frac{|A| + |B|}{1 + SIM(A, B)} \end{cases}$$

At this point, the hamming similarity can be written S_H :

$$S_{H} = 1 - \frac{\left| (A \backslash B) \cup (B \backslash A) \right|}{n}$$

$$S_{H} = 1 - \frac{\left| A \cup B \right| - \left| A \cap B \right|}{n}$$

$$\frac{\left| A \right| + \left| B \right|}{(1 + \frac{1}{SIM(A, B)})} - \frac{\left| A \right| + \left| B \right|}{1 + SIM(A, B)}$$

$$n$$

$$S_{H}=1-\frac{\left(\left|A\right|+\left|B\right|\right)*\left(\frac{SIM\left(A,B\right)}{1+SIM\left(A,B\right)}-\frac{1}{1+SIM\left(A,B\right)}\right)}{n}$$

$$S_H = 1 + \frac{(|A| + |B|) \frac{1 - SIM(A, B)}{1 + SIM(A, B)}}{n}$$