Fonction Gamma

TABLE DES MATIÈRES

1.	Présentation	2
	1.1. Définition et premières propriétés	2
2.	FORMULE DE GAUSS ET SES APPLICATIONS	4
	2.1. Formule de Gauss $\Gamma(x) = \frac{1}{x} \cdot \lim_{n \to +\infty} \frac{n^x}{(x+n)}$	2
	2.2. Formule des compléments : $\Gamma(x)\Gamma(1-x) = \frac{\pi}{\sin(\pi x)}$ (pour $0 < x < 1$)	
	Applications	4
	2.3. Formule de duplication : $\Gamma(x) \Gamma\left(x + \frac{1}{2}\right) = \frac{2\sqrt{\pi}}{4^x} \Gamma(2x) \dots \dots$	4
	2.4. Formule de Weierstrass : $\frac{1}{\Gamma(x)} = x e^{\gamma x} \prod_{n \ge 1} e^{-x/n} \left(1 + \frac{x}{n} \right) \dots \dots \dots \dots$	4
	$egin{array}{cccccccccccccccccccccccccccccccccccc$	4
	2.5. Formule $\frac{\Gamma'(x)}{\Gamma(x)} = -\frac{1}{x} - \gamma + \sum_{n \geqslant 1} \left(\frac{1}{n} - \frac{1}{x+n} \right) \qquad \dots $ Applications	4
	2.6. Formule $\left(\frac{\Gamma'(x)}{\Gamma(x)}\right)' = \sum_{n \geqslant 0} \frac{1}{(x+n)^2}$	4
	Applications	
3.	Prolongement sur $\mathbb C$	
4.	Calcul de certaines valeurs de $\Gamma(x)$	
	Bibliographie:	
	CROUN COULTE Les fanctions anégiales avec men les moblèmes 5175	

• Groux, Soulat, Les fonctions spéciales vues par les problèmes, 517.5

FONCTION GAMMA

Présentation

1.1. Définition et premières propriétés

On pose pour tout x > 0:

$$\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt.$$

- 1. Γ est bien définie :
 - pour $t \rightarrow 0$, c'est Riemann;
 - pour la borne $+\infty$ de l'intégrale, $t^{x-1}e^{-t} = \underbrace{t^{x-1}e^{-t/2}}_{\text{de limite 0}} \times e^{-t/2} = O(e^{-t/2})$.
- 2. Γ est **continue** dans $]0; +\infty[$.

Soit $n \ge 1$, montrons que Γ est continue sur $x \in \left[\frac{1}{n}, n\right]$. Il suffit de majorer $|t^{x-1}e^{-t}|$: on prend $h(t) = \begin{cases} \frac{1}{t^{n-1}}e^{-t} & \text{pour } t \in [1; +\infty[\\ \frac{1}{t^{n-1}}e^{-t} & \text{pour } t \in [0, 1] \end{cases}$.

3. Γ est **dérivable** dans $]0; +\infty[$ et :

$$\Gamma'(x) = \int_0^{+\infty} \ln t \times t^{x-1} e^{-t} dt.$$

Soit $n \geqslant 1$, dominons l'intégrande sur $x \in \left[\frac{1}{n}, n\right]$. Il suffit de majorer $|\ln t \cdot t^{x-1} e^{-t}|$: on prend $h(t) = \begin{cases} \ln t \cdot t^{n-1} e^{-t} & \text{pour } t \in [1; +\infty[\\ \ln t \cdot t^{n-1} e^{-t} & \text{pour } t \in [0, 1] \end{cases}$.

En $+\infty$, h est intégrable car $\ln t \cdot t^{n-1} e^{-t/2}$ est bornée puisque de limite nulle. En 0, h est intégrable car équivalente à du $\ln t \cdot t^{\alpha}$ avec $\alpha > -1$ (Bertrand).

4. Γ est C^{∞} dans $]0; +\infty[$ et :

$$\Gamma^{(k)}(x) = \int_0^{+\infty} (\ln t)^k \times t^{x-1} e^{-t} dt.$$
 (1)

Soit $n \geqslant 1$, dominons l'intégrande sur $x \in \left[\frac{1}{n}, n\right]$.

Il suffit de majorer $|(\ln t)^k \cdot t^{x-1} e^{-t}|$: on prend $h(t) = \begin{cases} (\ln t)^k \cdot t^{n-1} e^{-t} & \text{pour } t \in [1; +\infty[\\ (\ln t)^k \cdot t^{n-1} e^{-t} & \text{pour } t \in [0, 1] \end{cases}$.

En $+\infty$, h est intégrable car $(\ln t)^k \cdot t^{n-1} e^{-t/2}$ est bornée puisque de limite nul En 0, h est intégrable car équivalente à du $\ln^k t \cdot t^{\alpha}$ avec $\alpha > -1$ (Bertrand).

- 5. Convexité:
 - a. D'après (1), on a $\Gamma''(x) > 0$ sur $[0, +\infty[$ d'où la convexité de Γ .
 - b. Pour la convexité de $\ln \Gamma$, on peut remarquer que $\left(\frac{\Gamma'(x)}{\Gamma(x)}\right)' = \frac{\Gamma'' \Gamma (\Gamma')^2}{\Gamma^2}$, ce qui est >0 par Cauchy-Schwartz (bon exo). Voir une autre preuve en 2.6.
- 6. Limites :

On a $\Gamma(x) \geqslant \int_0^2 t^{x-1} e^{-t} dt \geqslant e^{-a} \times \frac{2^x}{x}$. Ceci donne immédiatement $\lim_{t \to \infty} \Gamma = \lim_{t \to \infty} \Gamma = +\infty$. Par stricte convexité de Γ , on a alors l'existence d'un unique minimum :

x	0		α		$+\infty$
Γ		×	$f(\alpha) > 0$	7	

7.

1.2. Relation de récurrence $\Gamma(x+1) = x \Gamma(x)$ (pour tout x > 0)

Démonstration. En intégrant par parties.

Application.

- 1) On en déduit que pour tout $n \ge 1$, on a $\Gamma(n) = (n 1)$
- 2) On en déduit que pour $x \to 0$, on a $\Gamma(x) \sim \frac{\Gamma(1+x)}{x} \sim \frac{1}{x}$

1.3. Stirling généralisée

On a pour $x \to +\infty$:

$$\Gamma(x+1) \sim \sqrt{2\pi x} \left(\frac{x}{e}\right)^x$$
.

Démonstration.

Démonstration. Soit $x \in \mathbb{R}_+^*$. Par définition, $\Gamma(x+1) = \int_0^{+\infty} t^x e^{-t} dt$. Effectuons le changement de variable $s:=\frac{t-x}{\sqrt{x}}$. On a alors : $t=s\sqrt{x}+x$ et $dt=\sqrt{x}ds$.

 $\Gamma(x+1) = \int_{-\sqrt{x}}^{+\infty} (s\sqrt{x} + x)^x e^{-s\sqrt{x} - x} \sqrt{x} ds$

D'où l'on déduit :

D'où l'on déduit:
$$\Gamma(x+1) = \left(\frac{x}{e}\right)^x \sqrt{x} \int_{-\sqrt{x}}^{+\infty} \left(\frac{s}{\sqrt{x}} + 1\right)^x e^{-s\sqrt{x}} ds = \left(\frac{x}{e}\right)^x \sqrt{x} \int_{-\sqrt{x}}^{+\infty} e^{x \ln\left(1 + \frac{s}{\sqrt{x}}\right) - s\sqrt{x}} ds$$

Posons $\varphi(x,s) := x \ln\left(1 + \frac{s}{\sqrt{x}}\right) - s\sqrt{x}$ pour tout $(x;s) \in]0; +\infty[\times] - \sqrt{x}; +\infty[$. Démontrons que $\lim_{x \to +\infty} \int_{-\sqrt{x}}^{+\infty} e^{\varphi(x;s)} ds = \sqrt{2\pi}$.

1. Soit $s \in]-\sqrt{x};0]$. D'après la formule de Taylor avec reste intégral, pour tout $u \in]-1;0]$, on a:

$$\ln(1+u) = u - \frac{u^2}{2} + \int_0^u \frac{(u-t)^2}{2} \frac{2}{(1+t)^3} dt$$

Or, $\int_0^u \frac{(u-t)^2}{2} \frac{2}{(1+t)^3} dt \le 0$. D'où : $\ln(1+u) - u + \frac{u^2}{2} \le 0$. Appliquons cette inégalité pour $u = \frac{s}{\sqrt{x}}$: $\ln\left(1 + \frac{s}{\sqrt{x}}\right) - \frac{s}{\sqrt{x}} + \frac{s^2}{2x} \leqslant 0$.

En multipliant les deux membres par x, on obtient : $x \ln \left(1 + \frac{s}{\sqrt{x}}\right) - s\sqrt{x} \leqslant -\frac{s^2}{2}$ soit

$$\varphi(x;s) \leqslant -\frac{s^2}{2}.$$
 De plus, $\ln(1+u) \stackrel{=}{=} u - \frac{u^2}{2} + o(u^2)$, donc $\lim_{x \to +\infty} \varphi(x;s) = -\frac{s^2}{2}$.

FORMULE DE GAUSS ET SES APPLICATIONS

2.1. Formule de Gauss $\Gamma(x) = \frac{1}{x} \cdot \lim_{n \to +\infty} \frac{n^x}{\binom{x+n}{n}}$

$$\Gamma(x) = \frac{1}{x} \cdot \lim_{n \to +\infty} \frac{n^x}{\binom{x+n}{n}},$$

qu'on peut aussi écrire :

4 Fonction Gamma

$$\Gamma(x) = \lim_{n \to +\infty} \frac{n! n^x}{x^{n+1} \left(1 + \frac{1}{x}\right) \left(1 + \frac{2}{x}\right) \dots \left(1 + \frac{n}{x}\right)} \text{ version } \langle k/x \rangle$$

$$= \lim_{n \to +\infty} \frac{n! n^x}{x(x+1)(x+2) \dots (x+n)} \text{ version } \langle x+k \rangle$$

$$= \lim_{n \to +\infty} \frac{n^x}{x(1+x) \left(1 + \frac{x}{2}\right) \dots \left(1 + \frac{x}{n}\right)} \text{ version } \langle x/k \rangle.$$

LEMME 1. Posons
$$g_n(x) = \int_0^n t^{x-1} \left(1 - \frac{t}{n}\right)^n dt$$
, alors $g_n \stackrel{\text{CVS}}{\longrightarrow} \Gamma$.

Démonstration. Cela revient à majorer $|g_n(x) - \Gamma(x)|$. Séparons l'intégrale en deux.

* Remarquons déjà que, vu l'inégalité $\left(1-\frac{t}{n}\right)^n \leqslant e^{-t}$, on a :

$$\int_{n/2}^{n} t^{x-1} \left[\left(1 - \frac{t}{n} \right)^{n} - e^{-t} \right] dt \leqslant \int_{n/2}^{n} t^{x-1} e^{-t} dt \to 0.$$

* Ensuite, on va utiliser successivement :

- $0 \le x < 1 \Rightarrow \ln(1-x) = -x \frac{x^2}{2} \times \frac{1}{(1-c_x)^2}$ où $c_x \in [0,1[$;
- $x \geqslant 0 \Rightarrow 0 \geqslant e^{-x} 1 \geqslant -x$.

On a alors:

$$g_{n}(x) - \Gamma(x) = \int_{0}^{n/2} t^{x-1} \left[\left(1 - \frac{t}{n} \right)^{n} - e^{-t} \right] dt$$

$$= \int_{0}^{n/2} t^{x-1} \left[e^{n \ln(1 - \frac{t}{n})} - e^{-t} \right] dt$$

$$= \int_{0}^{n/2} t^{x-1} \left[e^{-t - \frac{t^{2}}{2n} \times \frac{1}{\left(1 - c_{t/n} \right)^{2}}} - e^{-t} \right] dt$$

$$= \int_{0}^{n/2} t^{x-1} e^{-t} \left[e^{-t - \frac{t^{2}}{2n} \times \frac{1}{\left(1 - c_{t/n} \right)^{2}}} - 1 \right] dt$$

$$|g_{n}(x) - \Gamma(x)| \leq \int_{0}^{n/2} t^{x-1} e^{-t} \left| \frac{t^{2}}{2n} \times \frac{1}{\left(1 - c_{t/n} \right)^{2}} \right| dt$$

$$\leq \frac{1}{2n} \int_{0}^{n/2} \frac{t^{x+1} e^{-t}}{\left(1 - c_{t/n} \right)^{2}} dt.$$

On remarquant que sur $\left[0, \frac{n}{2}\right]$, on a $\frac{t}{n} \leqslant \frac{1}{2} \Rightarrow c_{t/n} \leqslant \frac{1}{2}$ donc $\int_0^{n/2} \leqslant \frac{\int_0^{+\infty} t^{x+1} e^{-t} dt}{n/2} \to 0$.

Démonstration. de la formule de Gauss

En intégrant n fois par parties la définition de g_n , on a pour tout x > 0:

$$g_n(x) = \frac{1}{n^n \times \binom{x}{n}} \int_0^n t^{x+n-1} dt,$$

D'où le résultat. \Box

2.2. Formule des compléments : $\Gamma(x)\Gamma(1-x) = \frac{\pi}{\sin(\pi x)}$ (pour 0 < x < 1)

Démonstration. On part du produit eulérien (voir feuille sur les produits infinis, dossier Suites series produits)

$$\frac{\sin(\pi z)}{\pi z} = \prod_{k=1}^{+\infty} \left(1 - \frac{z^2}{k^2} \right) = \lim_{n} \frac{\prod_{k=1}^{n} (k-z)(k+z)}{(n!)^2} = \lim_{n} \frac{(1-z)...(n-z) \times (1+z)...(n+z)}{(n!)^2},$$
 que l'on compare à la formule de Gauss version « $x + k$ » (paragraphe 2.1).

Applications.

1) Ceci permet de calculer $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$ et donc, par un changement de variable, d'avoir l'intégrale de Gauss:

$$\int_0^{+\infty} e^{-t^2} dt = \frac{\sqrt{\pi}}{2}.$$

2) De plus, par récurrence :

$$\Gamma\bigg(n+\frac{1}{2}\bigg) = \bigg(n-\frac{1}{2}\bigg)\bigg(n-1-\frac{1}{2}\bigg)\times\ldots\times\frac{1}{2} = \frac{(2n)!}{4^n\times n!}\sqrt{\pi}.$$

2.3. Formule de duplication : $\Gamma(x) \Gamma\left(x + \frac{1}{2}\right) = \frac{2\sqrt{\pi}}{4^x} \Gamma(2x)$

Démonstration. Principe du calcul (sans difficulté particulière) :

- 1. On écrit la formule de Gauss version « x + k » pour $\Gamma(x) \Gamma\left(x + \frac{1}{2}\right)$;
- 2. on l'écrit aussi pour $\Gamma(2x)$ mais en utilisant en remplaçant n par 2n+1;
- 3. on utilise l'équivalent de Stirling pour n!.

2.4. Formule de Weierstrass : $\frac{1}{\Gamma(x)} = x e^{\gamma x} \prod_{n \ge 1} e^{-x/n} \left(1 + \frac{x}{n}\right)$

 γ est la constante d'Euler.

Démonstration. On part de la formule de Gauss version « x/k », on utilise $\ln n = 1 + \frac{1}{2} + \cdots + \frac{1}{n} - \gamma - o(1)$ et on a tout de suite le résultat.

Application. Cette formule permet de prolonger Γ sur \mathbb{C} .

2.5. Dérivée logarithmique
$$\frac{\Gamma'(x)}{\Gamma(x)} = -\frac{1}{x} - \gamma + \sum_{n \geqslant 1} \left(\frac{1}{n} - \frac{1}{x+n} \right)$$

$$-\ln\Gamma(x) = \ln x + \gamma x + \sum_{n>1} \left(-\frac{x}{n} + \ln\left(1 + \frac{x}{n}\right)\right)$$
, puis on dérive

Démonstration. On prend le ln dans Weierstrass : $-\ln\Gamma(x) = \ln x + \gamma x + \sum_{n\geqslant 1} \left(-\frac{x}{n} + \ln\left(1+\frac{x}{n}\right)\right), \text{ puis on dérive.}$ Pour avoir le droit de dériver sous la \sum , on s'assure que la série des dérivées $\sum_{n\geqslant 1} \left(\frac{1}{n} - \frac{1}{x+n}\right)$ converge normalement, or c'est le cas puisque $\frac{1}{n} - \frac{1}{x+n} = \frac{x}{n(x+n)} \leqslant \frac{x}{n^2}$ donc la CV est normale sur tout compact tout compact.

Remarque 2. On peut aussi l'écrire :

$$\frac{\Gamma'(x)}{\Gamma(x)} = \lim_n \left[\left(1 + \frac{1}{2} + \dots + \frac{1}{n} - \gamma \right) - \left(\frac{1}{x} + \frac{1}{x+1} + \dots + \frac{1}{x+n} \right) \right].$$

Applications.

Expression intégrale de γ : en prenant x=1, on a $\Gamma'(1)=-\gamma=\int_0^{+\infty} \ln t \, \mathrm{e}^{-t} \, \mathrm{d}t$ Fonction digamma : on a $\Psi(x)=\frac{\Gamma'(x)}{\Gamma(x)}$, voir le fichier digamma qui lui est consacré.

2.6. Formule
$$\left(\frac{\Gamma'(x)}{\Gamma(x)}\right)' = \sum_{n\geqslant 0} \frac{1}{(x+n)^2}$$

Démonstration. On dérive la précédente en soulignant que la série des dérivées converge normalement sur $[0, +\infty[$, car $\frac{1}{(x+n)^2} \leqslant \frac{1}{n^2}$. 6 Fonction Gamma

Applications.

1. $\ln \Gamma$ est donc convexe dans $]0; +\infty[$.

2.
$$\lim_{0^+} \frac{\Gamma'}{\Gamma} = -\infty$$
 car $\sum_{n\geqslant 1} \left(\frac{1}{n} - \frac{1}{x+n}\right)$ converge normalement sur tout $[0, K]$ puisque $0\leqslant \frac{1}{n} - \frac{1}{x+n} \leqslant \frac{x}{n^2}$ et donc cette série est une grandeur continue en $x=0$.

3. Γ' s'annule forcément quelque part dans $]0;+\infty[$ (sinon contradiction avec $\Gamma(n)=(n-1)!$) et donc prend le signe -0+ (par convexité de $\ln\Gamma$) .

Ainsi, les variations de Γ sont :

3. Prolongement sur $\mathbb C$

Voir un récapitulatif dans le livre de Groux cité plus haut.

4. CALCUL DE CERTAINES VALEURS DE $\Gamma(x)$

 $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$ a été calculé sous-section 2.2 par la formule des compléments : $\Gamma(x) \Gamma(1-x) = \cdots$

Or, on peut retrouver cette valeur directement.

En effet, on a:

$$\Gamma\left(\frac{1}{2}\right) = \int_{-\infty}^{+\infty} e^{-t^2} dt \text{ (simple changement de variable)}$$

$$\left(\Gamma\left(\frac{1}{2}\right)\right)^2 = \iint_{\mathbb{R}^2} e^{-x^2 + y^2} dx dy \text{ (Fubini)}$$

$$= \pi \text{ (passage en polaires)}.$$