

Machine Learning and Data Mining

Massinissa Hamidi Univ. Évry Paris-Saclay

Based on the slides of Farida Zehraoui

Outline

- Introduction to machine learning for computational biology
- Unsupervised learning approaches
 - k-means algorithm
 - Hierarchical clustering
 - Spectral Clustering
- Supervised learning approaches
 - Decision trees
 - Ensemble methods

Data of all kinds!

Blogosphere: representing the links between blogs on the internet

Internet data: social networks, etc...

Epidemiologic data

More data:

text in natural language, biological data

Exponential growth of biological information

Cumulative increases of published articles in molecular biology and genetics and DNA sequence records in GENBANK

The exponential growth of biological information. These graphs show the unprecedented growth of sequences, structures, and literature over the last fifteen years. The development of efficient storage and management tools has been an important cornerstone in bioinformatics and computational biology.

Computational biology

- Data production at different levels: molecules, cells, organs, organisms and populations
- Integration of several data sources: structure and function data, gene expression data, pathway data, clinical data, ...
- Need of prediction of Molecular Function and Structure, phenotypes, ...
- Computational biology: synthesis (simulation tools) and analysis / prediction (machine learning approaches)

Microarray processing

Gene expression time series

Collaboration amisbio/M. Dutreix (Curie)

Protein-protein interaction network

Protein-protein interaction network

Chen, Shaw-Ji, et al. "Construction and analysis of protein-protein interaction network of heroin use disorder." Scientific reports 9.1 (2019): 4980.

Data everywhere!

```
Patients data
Poll data
Images
Documents
Astronomy
Environment data (remote sensing or satellites)
Biological data
Données de production, de fabrication
Marketing data
Données scolaires, universitaires
Voice
Econometric data
Logs d'utilisateurs
Internet...
D'autres?
Données musique, jeux ...
```

Data analysis

Data visualization: project data into a plan (dimension reduction)

Data classification: identify groups of observations

Analyze correlations

Explain variables

Visualisation of students in a plan (according to their grades)

Grouping genes according to their expression

Nature Feb, 2000
Paper by
Allzadeh. A et al
Distinct types of
diffuse large
B-cell lymphoma
identified by gene
expression
profiling

Discriminative Analysis

Data

- Data: set of objects described by their attributes
- An attribute (variable) characterizes the objects
 - Examples: color, temperature, etc.

Attribute types

- ☐ Real-value attributes
 - gene expression, ...
- ☐ Binary attributes
 - Has Alzheimer's disease (True/False), ...
- □ Nominal attributes
 - Biological process, ...
- ☐ Ordinal attributes
 - expression level (low, high), ...
- ☐ Mixed types attributes

Why "Machine Learning"?

- Machine Learning is used when:
 - Observations / data are available
 - Human expertise does not exist (or not sufficient)
 - Solution changes in time

• ...

"Machine Learning"

Learning models from data

- Data is cheap and abundant (data warehouses, data marts);
- knowledge is expensive and scarce.
- Build a model that is a good approximation to the information contained in data.

What is Machine Learning?

Machine Learning: Optimize a performance criterion using data or past experience.

Use two main domains: Statistics / Computer science

- ☐ Statistics: Inference from a sample
- ☐ Computer science: Efficient algorithms to
 - Solve the optimization problem
 - Represent and evaluate the model for inference

Machine learning

Learn = Optimize & Generalize

Optimization:

"Classical" methods (mathematical programming ...) and less classical (genetic algorithms ...)

Generalization Theory:

Minimization of estimated generalization error

From supervised learning to unsupervised learning

Types of Learning

Supervised learning

Training data includes desired outputs

Unsupervised learning

Training data does not include desired outputs

Semi-supervised learning

Training data includes a few desired outputs

Reinforcement learning

Rewards from sequence of actions

Supervised vs. unsupervised Learning

- Supervised learning: classification and regression (from examples).
 - Supervision: The data are associated to pre-defined labels (classes / continuous values).
- Unsupervised learning (clustering)
 - · Class labels are unknown
 - Given a set of data, the goal is to provide clusters from the data

Unsupervised Learning

Unsupervised learning

Representation problem

- ☐ How to represent the objects?
- How to define the similarity or the dissimilarity between objects?

Optimization problem

- ☐ What is a cluster?
- How to formulate the optimization problem for the partition?

Validation problem

- ☐ How to compare two clustering results?
- □ How to evaluate/ validate a clustering?

What is clustering?

• A grouping of data objects: the objects within a group are similar to one another and different from the objects in other groups

Why do we cluster?

- Clustering: given a collection of data objects, group them so that:
 - Similar to one another within the same cluster
 - Dissimilar to the objects in other clusters
- Clustering results are used:
 - As a tool to get insight into data distribution
 - Visualization of clusters may unveil important information
 - As a preprocessing step for other algorithms
 - Efficient indexing or dimension reduction tool

Distance functions

- The function d(,) is a distance if:
 - d(i, j)≥0 (non-negativity)
 - d(i, i)=0 (isolation)
 also, d(x,y) = 0 => x = y (identity-discerning)
 - d(i, j) = d(j, i) (symmetry)
 - $d(i, j) \le d(i, h) + d(h, j)$ (triangular inequality)
- The definitions of distance functions are different for real, boolean, categorical, and ordinal variables.
- Weights may be associated with some variables.

Distance/similarity

- Dissimilarity: distance without triangular inequality
- Similarity: function s from X*X to R+ such that:
 - 1. s symmetric: $(x,y) \in X^*X$; s(x,y) = s(y,x)
 - 2. $(x,y) \in X^*X \text{ with } x \neq y \text{ ; } s(x,x) = s(y,y) > s(x,y).$

Data Structures

· Data matrix

Distance matrix

Distance functions for real-valued vectors

• Minkowski (L_p norms) distance:

$$L_{p}(x,y) = \left(|x_{1} - y_{1}|^{p} + |x_{2} - y_{2}|^{p} + ... + |x_{d} - x_{d}|^{p}\right)^{1/p} = \left(\sum_{i=1}^{d} (x_{i} - y_{i})^{p}\right)^{1/p}$$

where p is a positive integer

• If p = 1, L_1 is the Manhattan distance:

$$L_1(x,y) = |x_1 - y_1| + |x_2 - y_2| + \dots + |x_d - y_d| = \sum_{i=1}^{d} |x_i - y_i|$$

Distance functions for real-valued vectors

• If p = 2, L_2 is the Euclidean distance:

$$d(x,y) = \sqrt{(|x_1 - y_1|^2 + |x_2 - y_2|^2 + ... + |x_d - y_d|^2)}$$

- Weighted distances:
 - Euclidean distance:

$$d(x,y) = \sqrt{(w_1|x_1 - y_1|^2 + w_2|x_2 - y_2|^2 + \dots + w_d|x_d - y_d|^2)}$$

Manhattan distance

$$d(x,y) = w_1 |x_1 - y_1| + w_2 |x_2 - y_2| + \dots + w_d |x_d - y_d|$$

Is circle closer to star or cross?

- · Euclidean distance
 - Cross 2.8
 - Star 3
- Manhattan Distance
 - Cross 4
 - Star 3

The k-means problem

- •Given a set X of n points in a d-dimensional space and an integer k
- •Choose a set of k points $\{k_1, k_2, ..., k_k\}$ in the d-dimensional space to form clusters $\{C_1, C_2, ..., C_k\}$ such that

$$Cost(C) = \sum_{i=1}^{k} \sum_{x \in C_i} L_2^2(x - k_i)$$

is minimized

The k-means algorithm

- Randomly initialize k cluster centers $\{c_1,...,c_k\}$
- For each i, the cluster C is the set of points in X that are closer to k_i than they are to k_j for all $i \neq j$
- For each i, \mathbf{k}_i is the center of cluster \mathbf{C}_i (mean of the vectors in \mathbf{C}_i)
- Repeat until convergence

Allocate each point to the cluster represented by the closest center

Reallocate the objects to clusters represented by the new centers

Exemple

Voici un tableau de données : il s'agit des cigarettes représentées par leur contenu en nicotine et en goudron.

CIGARETTES	Nicotine (cg)	Goudron (mg)
Royal anis	4.5	4.9
Rothmans	11	14
Chesterfield Lights	6	8
Benson & Hedges	11	13
Peter Stuyvesant	10	12.7
Gitanes	10	12
Malboro	10	14
Lucky Strike	9	14
Light Delight	5	7

Soit k = 2. Utiliser l'algorithme des k-moyennes pour faire un clustering sur ces données.

➤ Choisir l'initialisation suivante : M1 = Gitanes et M2 = Lucky Strike

Exemple

Voici un tableau de données : il s'agit des cigarettes représentées par leur contenu en nicotine et en goudron.

CIGARETTES	Nicotine (cg)	Goudron (mg)
Royal anis	4.5	4.9
Rothmans	11	14
Chesterfield Lights	6	8
Benson & Hedges	11	13
Peter Stuyvesant	10	12.7
Gitanes	10	12
Malboro	10	14
Lucky Strike	9	14
Light Delight	5	7

Soit k = 2. Utiliser l'algorithme des k-moyennes pour faire un clustering sur ces données.

➤ Choisir l'initialisation suivante : M1 = Gitanes et M2 = Lucky Strike

Properties of the k-means algorithm

Finds a local optimum

Converges often quickly

• The choice of initial points influences the clustering result

K-means Clustering results with different random initializations

Sub-optimal Clustering

Some alternatives to random initialization

- Multiple runs
- Select original set of points. E.g., choose the most distant points as cluster centers (kmeans++ algorithm)