ENSC 450: Assignment 3

Barry Yim

Cheng Jie (Jadan) Ou

Bonnie Ha

byim@sfu.ca

jou@sfu.ca

bha20@sfu.ca

<u>Outline</u>

- Scope of Presentation:
 - Designed schematics and layouts of an Inverter cell
 - DRC/LVS Checks operated over layout design
 - Simulated extracted schematic from layout design
 - Modified schematic and layout design to have equal rise and fall output transition times
- Methodology Used
- Results
- Conclusion

<u>Methodology</u>

- By following the provided Layout Tutorial:
 - Designed and simulated schematic of Inverter cell with Width(PMOS) = Width(NMOS)
 - Designed and simulated a DRC-&-LVS-free layout of Inverter cell with Width(PMOS) = Width(NMOS)
 - Simulated net-lists of schematic and extracted circuits by HSPICE
- Since schematic and extract circuits match, modify the PMOS width of one net-list such that rise and fall output transition times are equal
 - Implemented corresponding changes to schematic and DRC-&-LVS-free layout designs
 - Simulated new designs

Results

Final layout showing modifications made

Spice Simulations Waveform (post layout) Task 1

Screen capture of final layout

Spice Simulations Waveform (post layout) Task 2

Results (2)

	Task 1		Task 2	
	<u>Simulated</u>	Extracted	<u>Simulated</u>	Extracted
Area	9.0087um		11.8854um	
Propagation Delay of Rise Time	0.97091ns	0.99032ns	0.43791ns	0.4212ns
Propagation Delay of Fall Time	0.40215ns	0.40826ns	0.41639ns	0.42190ns
Total Rise Time	1.3936ns	1.4404ns	0.48308ns	0.48919ns
Total Fall Time	0.45432ns	0.46275ns	0.45759ns	0.46181ns

Conclusion

- Modified the PMOS width to 880nm, from task(1) design of 220nm
 - On schematic, adjusted PMOS properties to W=880nm
 - On layout, stretched active layer of PMOS to W=880nm
 - To not violate any design rules, stretch Pplus layer such that Pplus-Extension-Over-Channel W≥ 350ns
- Since PMOS is used as a Pull-Up network, it determines the rise transition time of our inverter.
 - We increased the width of the PMOS in order to decrease it's rise transition time because PMOS transistors rely on hole mobility which is slower than electron mobility.
 - Thus PMOS must be wider in order to provide the same current. With a width
 of 4 times the width of the NMOS, the difference between our fall and rise
 transition times from both the extracted and simulated netlists is ~6%.