Aula 15b

Recorte de Retas (Clipping) <u>Liang-Barsky</u>

Recorte de Retas (Clipping)

Recorte de Linha de Liang-Barsky

Um algoritmo rápido de recorte foi desenvolvido por Liang e Barsky (independentemente) envolvendo mais testes antes dos cálculos das intersecções. Dada a área de recorte, definida por seus pontos:

Para uma reta com pontos finais (x_0, y_0) e (x_{end}, y_{end}) , pode-se escrever a reta na forma paramétrica

$$x = x_0 + u.\Delta x$$

 $y = y_0 + u.\Delta y$ $0 \le u \le 1$
 $\Delta x = x_{end} - x_0$ $\Delta y = y_{end} - y_0$

Para que um ponto x,y esteja dentro da área de recorte, é

preciso que

com:

$$x_{min} \le x \le x_{max}$$
 $y_{min} \le y \le y_{max}$

 $X_{\mathsf{max}}, \mathsf{y}_{\mathsf{max}}$

e, para a reta estar dentro da área de recorte, é preciso que

$$x_{min} \le x_0 + u.\Delta x \le x_{max}$$
 (1)

$$y_{\min} \le y_0 + u.\Delta y \le y_{\max}$$
 (2)

De (1) {\text{xmin} \leq \text{x0} + \text{u.} \text{\Delta} \text{ smax}} \}, tem-se que:
$$x_{min} \leq x_0 + u.\Delta x \qquad logo \qquad -u.\Delta x \leq x_0 - x_{min}$$

$$e \qquad x_0 + u.\Delta x \leq x_{max} \qquad logo \qquad u.\Delta x \leq x_{max} - x_0$$

$$p_2 \qquad q_1 \qquad q_2 \qquad q_2 \qquad q_3 \qquad q_3 \qquad q_3 \qquad q_4 \qquad q_2 \qquad q_2 \qquad q_3 \qquad q_4 \qquad q_2 \qquad q_4 \qquad q_2 \qquad q_4 \qquad q_5 \qquad q_6 \qquad q_6$$

Teste 1

Qualquer linha paralela às arestas da janela tem $p_k = 0$, sendo k corresponde a aresta esquerda = 1, direita = 2, inferior = 3 e superior = 4

 $P_k = (\pm \Delta x \text{ ou } \pm \Delta y) = 0 \text{ significa que é uma linha horizontal ou vertical}$

→ Se além disso, q_k < 0, então a reta está completamente fora da janela</p>

Por exemplo:

se $q_1 < 0$ então, $x_0 < X_{min}$, o que significa estar à esquerda da janela

Teste 2

Se $q_k \ge 0$, a linha está dentro da borda paralela de recorte

Teste 3

Se p_k < 0, a reta procede de fora para dentro desta fronteira particular da janela de recorte

Se $p_k > 0$, a reta procede de dentro para fora

Para valores $p_k \neq 0$, o valor de u que corresponde ao ponto em que a reta intersecta a fronteira k da janela pode ser calculado como

$$u = \frac{q_k}{p_k}$$

Para cada linha os valores u_1 e u_2 que definem a parte da reta que está dentro da janela podem ser calculados:

- u_1 é determinado levando em consideração as fronteiras das quais a reta procede de fora para dentro (p < 0)
 - Para essas calcula-se $r_k = q_k / p_k$ e, toma-se u_1 = maior $\{0, r_k\}$
- u_2 é determinado examinando as fronteiras para qual a reta procede de dentro para fora (p > 0)

Para essas calcula-se $r_k = q_k / p_k$ e, toma-se u_2 = menor {1, r_k }

Se $u_1 > u_2$, a linha está toda fora da janela de recorte

Caso contrário os valores das linhas recortadas são calculados para os dois valores do parâmetro *u*

Exemplo

$$x_0 = 30$$

$$x_{end} = 100$$

$$\rightarrow \Delta x = (100-30) = 70$$

$$y_0 = 5$$

$$y_{end} = 70$$

$$\rightarrow$$
 $\Delta y = (70-5) = 65$

$$x_{min} = 20$$

$$x_{max} = 80$$

$$y_{min} = 10$$

$$y_{max} = 60$$

$$x_0 = 30$$
 $x_{end} = 100$

$$y_0 = 5$$
 $y_{end} = 70$

$$x_{min} = 20$$
 $x_{max} = 80$

$$y_{min} = 10 \qquad y_{max} = 60$$

$$p_1 = -\Delta x;$$
 $q1 = x_0 - x_{min}$
 $p_2 = \Delta x;$ $q2 = x_{max} - x_0$
 $p_3 = -\Delta y;$ $q3 = y_0 - y_{min}$
 $p_4 = \Delta y;$ $q4 = y_{max} - y_0$

Equação da reta:

$$x = 30 + 70.u$$

$$y = 5 + 65.u$$

$$p_1 = -\Delta x;$$
 $q_1 = x_0 - x_{min}$

$$p_1 = -70;$$
 $q_1 = 30 - 20 = 10$

$$p_2 = \Delta x$$
; $q_2 = x_{max} - x_0$

$$p_2 = 70;$$
 $q_2 = 80 - 30 = 50$

$$p_3 = -\Delta y;$$
 $q_3 = y_0 - y_{min}$

$$p_3 = -65;$$
 $q_3 = 5 - 10 = -5$

$$p_4 = \Delta y;$$
 $q_4 = y_{max} - y_0$

$$p_4 = 65;$$
 $q_4 = 60 - 5 = 55$

$$p_1 = -70;$$
 $q_1 = 10$
 $p_2 = 70;$ $q_2 = 50$
 $p_3 = -65;$ $q_3 = -5$
 $p_4 = 65;$ $q_4 = 55$
 $r_1 = q_1 / p_1 = -10 / 70$
 $r_2 = q_2 / p_2 = 50 / 70$
 $r_3 = q_3 / p_3 = 5 / 65$
 $r_4 = q_4 / p_4 = 55 / 65$

para calcular u_1 , usa-se os $p_k < 0$ e faz $u_1 = \text{maior } \{0, r_k\}$ neste caso, $u_1 = \text{maior} \{0, -10/70, 5/65\} \rightarrow u_1 = 5/65$

para calcular u_2 , usa-se os $p_k > 0$ e faz $u_2 = \text{menor } \{1, r_k\}$ neste caso, $u_2 = \text{menor} \{1,50/70, 55/65\} \rightarrow u_2 = 50/70$

como a equação da reta é

$$x = 30 + 70.u$$

$$y = 5 + 65.u$$

aplicando
$$u_1$$
, tem-se:
$$\begin{cases} x = 30 + 70 (5/65) = 35.38 \\ y = 5 + 65 (5/65) = 10 \end{cases}$$

$$(u_1 = 5/65)$$
 $y = 5 + 65 (5/65) = 10$

aplicando
$$u_2$$
, tem-se:
$$\begin{cases} x = 30 + 70 (50/70) = 80 \\ y = 5 + 65 (50/70) = 51.42 \end{cases}$$

logo, a reta a ser desenhada é (35.38, 10) até (80, 51.42)

<u>Graficamente</u>, a reta a ser desenhada é (35.38, 10) até (80, 51.42)

Prática – entregar agora

 Calcule a parte visível da reta abaixo, dentro da janela

