

Introduction to Audio Content Analysis

Module 13: Mood Recognition

alexander lerch

 overview
 intro
 mood
 models
 regression
 results
 summar

 ●
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○

introduction overview

corresponding textbook section

chapter 13

■ lecture content

- · introduction to emotion and mood
- models for mood
- linear regression

learning objectives

- describe Russel's arousal-valence plane
- discuss commonalities and differences between mood recognition and genre classification
- implement linear regression in Matlab

 overview
 intro
 mood
 models
 regression
 results
 summary

 ●
 ○
 ○
 ○
 ○
 ○

introduction overview

corresponding textbook section

chapter 13

■ lecture content

- introduction to emotion and mood
- models for mood
- linear regression

learning objectives

- describe Russel's arousal-valence plane
- discuss commonalities and differences between mood recognition and genre classification
- implement linear regression in Matlab

mood recognition introduction

- **objective**:identify mood/emotion of a song
- terminology:
 - Music Mood Recognition and Music Emotion Recognition usually used synonymously
- processing steps (similar to genre and similarity tasks)
 - extract features
 - classify (possibly regression)

mood recognition introduction

- objective:identify mood/emotion of a song
- terminology:
 - Music Mood Recognition and Music Emotion Recognition usually used synonymously
- processing steps (similar to genre and similarity tasks)
 - extract features
 - classify (possibly regression)

mood recognition introduction

- **objective**:identify mood/emotion of a song
- terminology:
 - Music Mood Recognition and Music Emotion Recognition usually used synonymously
- processing steps (similar to genre and similarity tasks)
 - extract features
 - classify (possibly regression)

Georgia Center for Music Tech || Technology

What is the difference between mood and emotion

many definitions out there but general consensus on

- emotion:
 - temporary, evanescent
 - (directly) related to external stimuli
- mood:
 - longer term, stable
 - diffuse affect state

ground truth data

- verbalization of emotions/moods usually misleading
- not easily *quantifiable*/categorizable
- changing over time?

research questions

- are basic emotions (happiness, anger, fear, ...) representative for music perception?
- should aesthetic emotions be distinguished from other emotions (guilt, shame, disgust, ...)?
- aroused vs. transported/evoked vs. conveyed moods?

ground truth data

- verbalization of emotions/moods usually misleading
- not easily *quantifiable*/categorizable
- changing over time?

research questions

- are basic emotions (happiness, anger, fear, ...) representative for music perception?
- should aesthetic emotions be distinguished from other emotions (guilt, shame, disgust, ...)?
- aroused vs. transported/evoked vs. conveyed moods?

■ ground truth data

- verbalization of emotions/moods usually misleading
- not easily *quantifiable*/categorizable
- changing over time?

research questions

- are basic emotions (happiness, anger, fear, ...) representative for music perception?
- should aesthetic emotions be distinguished from other emotions (guilt, shame, disgust, ...)?
- aroused vs. transported/evoked vs. conveyed moods?

mood recognition

classification into label clusters¹

Cluster 1	Cluster 2	Cluster 3	Cluster 4	Cluster 5
Rowdy	Amiable/Good Natured	Literate	Witty	Volatile
Rousing	Sweet	Wistful	Humorous	Fiery
Confident	Fun	Bittersweet	Whimsical	Visceral
Boisterous	Rollicking	Autumnal	Wry	Aggressive
Passionate	Cheerful	Brooding	Campy	Tense/Anxious
		Poignant	Quirky	Intense
			Silly	

■ mood model, circumplex model

¹X. Hu and J. S. Downie, "Exploring Mood Metadata: Relationships with Genre, Artist and Usage Metadata," in *Proceedings of the International Society for Music Information Retrieval Conference (ISMIR)*, Vienna, 2007.

mood recognition

Georgia Center for Music Tech ∰ Technology

- classification into label clusters
- mood model, circumplex model¹

¹ J. A. Russel, "A Circumplex Model of Affect," *Journal of Personality and Social Psychology*, vol. 39, no. 6, pp. 1161–1178, 1980, ISSN:

verview intro mood models **regression** results summary

mood recognition

mood model: regression modeling

mapping

• (N-dimensional) observation (feature) to 2-dimensional coordinate (valence/arousal)

training

• find model to minimize error between data points and "prediction"

regression regression

Georgia Center for Music Tech Technology

■ linear regression: fit a linear function to a series of points (x_i, y_i)

$$y_n = m \cdot x_n + b$$

• other regression approaches: SVR, DNNs, etc.

mood recognition range of results

- highly dependent on data
- **5 mood clusters**: 40–60% classification rate
- mood model: 0.1-0.4 absolute prediction error (unit circle)

mood recognition range of results

- highly dependent on data
- 5 mood clusters:

40-60% classification rate

- mood model:
 - 0.1–0.4 absolute prediction error (unit circle)

summary lecture content

emotion and mood

- emotion: temporary, related to external stimuli
- mood: long term, diffuse affective state

features

baseline features are identical to genre and similarity tasks

inference

often done as regression (as opposed to classification)

