Упражнение 1. Доказать, что остаток квадрата нечётного числа на 8 равен 1.

Решение.

$$(2n+1)^2 = 4n^2 + 4n + 1 = 4n(n+1) + 1$$

Либо
$$n \equiv 0 \pmod{2}$$
, либо $n+1 \equiv 0 \pmod{2} \Rightarrow 4n(n+1) \equiv 0 \pmod{2}$. Тогда $4n(n+1)+1 \equiv 1 \pmod{2}$.

Упражнение 2. Доказать, что $n(n^2 + 1)(n^2 + 4)$ делится на 5.

Решение.

Случай **1**: $n \equiv 0 \pmod{5}$

Очевидно.

Случай 2:
$$n \equiv 1 \pmod{5}$$

 $n^2 + 4 \equiv 1 + 4 \equiv 0 \pmod{5}$

Случай 3:
$$n \equiv 2 \pmod{5}$$
 $n^2 + 1 \equiv 4 + 1 \equiv 0 \pmod{5}$

Случай 4:
$$n \equiv 3 \pmod{5}$$

 $n^2 + 1 \equiv 9 + 1 \equiv 0 \pmod{5}$

Случай 5:
$$n \equiv 4 \pmod{5}$$

 $n^2 + 4 \equiv 16 + 4 \equiv 0 \pmod{5}$

Упражнение 3. Найти все натуральные n для которых n^2+1 : n+1

Решение. Очевидно для n=0 и n=1 искомое верно. $\triangleleft n>1$.

$$n^2 - 1 = (n-1)(n+1) : n+1 \Rightarrow n^2 - 1 \equiv 0 \pmod{n+1} \Rightarrow n^2 + 1 \equiv 2 \pmod{n+1}$$

Для
$$n>1$$
 выполнено $2\not\equiv 0\pmod{n+1}$, таким образом ответ $n=0$ и $n=1$.

Упражнение 4. Доказать, что $n^9 + 17n^3 - 18$ делится на 3.

Решение. Случай 1:
$$n \equiv 0 \pmod{3}$$
 $n^9 + 17n^3 - 18 \equiv -18 \equiv 0 \pmod{3}$

M3*37y2019 2.10.2021

Случай 2:
$$n \equiv 1 \pmod{3}$$
 $n^9 + 17n^3 - 18 \equiv 1 + 17 - 18 \equiv 0 \pmod{3}$

Случай 3:
$$n \equiv 2 \pmod 3$$
 $n^9 + 17n^3 - 18 \equiv 512 + 136 - 18 \equiv 630 \equiv 0 \pmod 3$

Упражнение 5. Доказать, что 5ab делится на 45, если $a^6 + b^6$ делится на 3.

Peшение. $5ab : 45 \Leftrightarrow ab : 9$

a	$a^6 \pmod{3}$
0	0
1	1
2	1

Случай **1**: $a \equiv 0 \pmod{3}$

Тогда $b^6 \equiv 0 \pmod{3} \Rightarrow b \equiv 0 \pmod{3} \Rightarrow a = 3k, b = 3l \Rightarrow ab = 9l \ni 9$

Случай 2: $a \equiv 1 \pmod{3}$

Тогда $b^6 \equiv 2 \pmod{3}$, но $\nexists b$. Таким образом, $a \not\equiv \pmod{3}$.

Случай 3: $a \equiv 2 \pmod{3}$

Тогда $b^6 \equiv -a^6 \equiv 2 \pmod{3}$, см. случай 2.