Spectral Learning in Latent Variable Models

Ayan Acharya, Rajiv Khanna

UT Austin

March 4, 2013

Parameter Estimation in Latent Variable Models

- Expectation maximization: problems computational intractability, often no closed form solution of updates, local minima, uncertainty of solutions.
- General method of moments: problems computational difficulty in solving multivariate polynomials.
- However, commonly used latent variable models have rich structure in their second order (matrix) and third order (tensor) moments.

Spectral Learning Techniques

- Methods of (Symmetric) Tensor Decomposition the most general technique.
 - Power method.
 - Simultaneous diagonalization of matrices obtained from tensor.
- Subspace methods based on observable representation.

A Simple Example

- Toss a biased coin and based on the outcome, toss one of the two other biased coins and report the result – a mixture model with two components.
- Let's try method of moments on the independent observations.
- $\mathbb{E}[X] = \pi_1 \mu_1 + \pi_2 \mu_2$, where, $\pi_1 + \pi_2 = 1$.
- $\mathbb{E}[X_1X_2] = \mathbb{E}[X]^2$, $\mathbb{E}[X_1X_2X_3] = \mathbb{E}[X]^3$, · · · .
- Higher order moments do not have any additional information.
- Can we leverage the structure of the problem in a more intelligent way?

A Simple Example Continued

- $\mathbb{E}[X] = \pi_1 \mu_1 + \pi_2 \mu_2$.
- $\mathbb{E}[X_1X_2|Z_1=Z_2]=\pi_1\mu_1^2+\pi_2\mu_2^2$.
- $\mathbb{E}[X_1X_2X_3|Z_1=Z_2=Z_3]=\pi_1\mu_1^3+\pi_2\mu_2^3$.
- Lesson learnt: observations with related latent structure are useful for identifying parameters.
- Additionally, it is sufficient to know that the latent variables are drawn from the same distribution - they need not be the same.

Structure of Moments in pLSI

- k: number of mixture components, d: size of vocabulary, $\ell \geq 3$: minimum number of words per document.
- Let $\mathbf{w} = (w_i)_{i=1}^k$ denote the probability vector for topic selection. $\{\boldsymbol{\mu}_i\}_{i=1}^k$ be the topic-word distributions for different topics.
- One-hot encoding of the words in documents.
- Statistics based on words co-occurring in a given document:

$$\bullet \ \mathbb{E}[\mathbf{x}_1 \otimes \mathbf{x}_2] = M_2 = \sum_{i=1}^k w_i (\mu_i \otimes \mu_i).$$

•
$$\mathbb{E}[\mathbf{x}_1 \otimes \mathbf{x}_2 \otimes \mathbf{x}_3] = M_3 = \sum_{i=1}^k w_i (\mu_i \otimes \mu_i \otimes \mu_i).$$

• Since μ_i 's are not orthogonal, eigen decomposition of M_2 is not sufficient to recover w_i and μ_i .

Rank of a Tensor

- The rank of a $p^{ ext{th}}$ order tensor $A \in \otimes^p \mathbb{R}^n$ is the minimum number k such that $A = \sum_{i=1}^k u_{1j} \otimes u_{2j} \otimes \cdots \otimes u_{pj}$ for $u_{ij} \in \mathbb{R}^n \ \forall i,j$.
- For p = 2, the above decomposition is the rank-k approximation of the matrix A, a.k.a. SVD.
- For symmetric tensors the decomposition can be written as:

$$A = \sum_{j=1}^{\kappa} \otimes^{p} u_{j} \text{ for } u_{j} \in \mathbb{R}^{n} \ \forall j.$$

- Facts:
 - Rank of a tensor might not be finite!
 - There might not exist orthogonal eigen vectors!
 - Removal of the best rank-1 approximation might increase the rank of the residual tensor!

Eigen Decomposition of Symmetric Tensors

- Let $M(\mathbf{u}, \mathbf{u}) = \sum_{1 \leq i, j \leq d} M_{ij}(\mathbf{e}_i^{\dagger} \mathbf{u})(\mathbf{e}_j^{\dagger} \mathbf{u}) = \mathbf{u}^{\dagger} M \mathbf{u}.$
- $\bullet \ \, \mathsf{Also, let} \ \, \mathcal{T}(\mathbf{u},\mathbf{u},\mathbf{u}) = \sum_{1 \leq i,j,\ell \leq d} \mathcal{T}_{ij\ell}(\mathbf{e}_i^\dagger \mathbf{u})(\mathbf{e}_j^\dagger \mathbf{u})(\mathbf{e}_\ell^\dagger \mathbf{u}).$
- Fixed Point Characterization of Eigen Vector:
 - Matrix: $M(\mathbf{I}, \mathbf{u}) = M\mathbf{u} = \lambda \mathbf{u}$.
 - Tensor: $T(\mathbf{I}, \mathbf{u}, \mathbf{u}) = \lambda \mathbf{u}$.
- Variational Characterization of Eigen Vector:
 - Matrix: $\sup_{\mathbf{u}} M(\mathbf{u}, \mathbf{u}) \text{ s.t.} ||\mathbf{u}||_2 = 1 \equiv \sup_{\mathbf{u}} \mathbf{u}^T M \mathbf{u} \text{ s.t.} ||\mathbf{u}||_2 = 1.$
 - Tensor: $\sup_{\mathbf{u}} T(\mathbf{u}, \mathbf{u}, \mathbf{u}) \text{ s.t.} ||\mathbf{u}||_2 = 1.$

Further Problems with Symmetric Tensor

- Let $T = \sum_{i=1}^{K} \lambda_i (\mathbf{v}_i \otimes \mathbf{v}_i \otimes \mathbf{v}_i)$ with \mathbf{v}_i 's being orthogonal and $\lambda_i > 0 \forall i$.
- $\bullet \ \, \text{For any} \,\, S\subseteq \{1,2,\cdots,k\} \,\, \text{and for any} \,\, \mathbf{u}=\sum_{i\in S}\frac{\mathbf{v}_i}{\lambda_i}, \,\, T(\mathbf{l},\mathbf{u},\mathbf{u})=\mathbf{u}.$
- There exists lot more eigen vectors than what the low rank structure suggests.
- Fortunately, there are only k "robust" eigen vectors.

Characterization of Robust Eigen Vectors

- Power method update for eigen decomposition: $ar{m{ heta}}\mapsto rac{M(\mathbf{I},ar{m{ heta}})}{||M(\mathbf{I},ar{m{ heta}})||}.$
- A unit vector \mathbf{u} is a "robust eigenvector" of \mathcal{T} if there exists an $\epsilon>0$ such that $\forall \theta \in \{\mathbf{u}': ||\mathbf{u}'-\mathbf{u}|| \leq \epsilon\}$, repeated iteration of the map $\bar{\theta} \mapsto \frac{\mathcal{T}(\mathbf{l},\bar{\theta},\bar{\theta})}{||\mathcal{T}(\mathbf{l},\bar{\theta},\bar{\theta})||}$, converges to \mathbf{u} starting from θ .
- Let T have an orthogonal decomposition. Then,
 - **1** The set of θ which do not converge to some \mathbf{v}_i under repeated tensor power method iteration has measure zero.
 - **2** The set of robust eigenvectors of T is equal to $\{\mathbf{v}_i\}_{i=1}^k$.
- Implication: start from somewhere and the power iteration takes to *one* of the robust eigen vectors!

Properties of Robust Eigen Vectors

- Let T have an orthogonal decomposition, and consider the optimization problem sup, $T(\mathbf{u}, \mathbf{u}, \mathbf{u})$ s.t. $||\mathbf{u}|| = 1$.
 - The stationary points are eigenvectors of T.
 - A stationary point **u** is an isolated local maximizer if and only if $\mathbf{u} = \mathbf{v}_i$ for some $i \in \{1, 2, ..., k\}$.
- Stationary points other than robust eigen vectors can be discarded from the test of $T(\mathbf{I}, \mathbf{I}, \mathbf{u})$.

Reduction to Orthogonally Decomposable Tensor

- Non-degeneracy condition: the vectors $\{\mu_i\}_{i=1}^k$ are linearly independent, and the scalars $w_i > 0 \forall i$ are strictly positive.
- Basic idea: use SVD of M_2 to construct an orthonormal basis for the span of $\{\mu_i\}_{i=1}^k$, and in that basis some transformation of M_3 has a unique orthogonal decomposition whose eigenvectors determine $\{\mu_i\}_{i=1}^k$.
- Let $W \in \mathbb{R}^{d imes k}$ be such that $\mathit{M}_2(W,W) = W^\dagger \mathit{M}_2 W = \mathbf{I}$.
- In particular, we can take $W = UD^{-1/2}$.
- $M_2(W,W) = \sum_{i=1}^k W^{\dagger}(\sqrt{w_i}\mu_i)(\sqrt{w_i}\mu_i)^{\dagger}W = \sum_{i=1}^k \tilde{\mu}_i \tilde{\mu}_i^{\dagger} = \mathbf{I}.$
- $m{\phi}$ $ilde{m{\mu}}_i$'s are orthogonal where $m{ ilde{\mu}}_i = \sqrt{w_i} W^\dagger m{\mu}_i$.

Eigen Decomposition of M_3

- Define $\tilde{M}_3=M_3(W,W,W)=\sum_{i=1}^k w_i(W^\dagger \mu_i)^{\otimes 3}=\sum_{i=1}^k \frac{\tilde{\mu}_i^{\otimes 3}}{\sqrt{w_i}}.$
- The set of robust eigenvectors of \tilde{M}_3 is equal to $\{\tilde{\mu}_i\}_{i=1}^k$.
- The eigenvalue corresponding to the robust eigenvector $\tilde{\mu}_i$ of \tilde{M}_3 is equal to $1/\sqrt{w_i} \forall i$.
- If $B \in \mathbb{R}^{d \times k}$ is the Moore-Penrose pseudo-inverse of W^{\dagger} , and (\mathbf{v}, λ) is a robust eigenvector/eigenvalue pair of \tilde{M}_3 , then $\lambda B \mathbf{v} = \mu_i$ for some $i \in \{1, 2, \cdots, k\}.$

Multi-view Models

- $\ell \geq 3$ different views $\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_\ell$ conditionally independent given \mathbf{z} .
- Similar to pLSI only the conditional distributions are different.
- $\mathbb{E}[\mathbf{x}_t \otimes \mathbf{x}_{t'}] = \sum_{i=1}^k w_i(\mu_{ti} \otimes \mu_{t'i}) \ \forall t, t'.$
- $\bullet \ \mathbb{E}[\mathbf{x}_1 \otimes \mathbf{x}_2 \otimes \mathbf{x}_3] = \sum_{i=1}^k w_i (\mu_{1i} \otimes \mu_{2i} \otimes \mu_{3i}).$
- $\bullet \ \ \tilde{\textbf{x}}_1 = \mathbb{E}[\textbf{x}_3 \otimes \textbf{x}_2] \mathbb{E}[\textbf{x}_3 \otimes \textbf{x}_2]^{-1} \textbf{x}_1, \ \tilde{\textbf{x}}_2 = \mathbb{E}[\textbf{x}_3 \otimes \textbf{x}_1] \mathbb{E}[\textbf{x}_2 \otimes \textbf{x}_1]^{-1} \textbf{x}_2.$
- $\mathbb{E}[\tilde{\mathbf{x}}_1 \otimes \tilde{\mathbf{x}}_2] = M_2 = \sum_{i=1}^{\kappa} w_i (\mu_{3i} \otimes \mu_{3i}).$
- $\mathbb{E}[\tilde{\mathbf{x}}_1 \otimes \tilde{\mathbf{x}}_2 \otimes \tilde{\mathbf{x}}_3] = M_3 = \sum_{i=1}^k w_i (\mu_{3i} \otimes \mu_{3i} \otimes \mu_{3i}).$

Comparison with Other Methods

- Dasgupta and Schulman, 2007; Vempala and Wang, 2002; Chaudhuri and Rao, 2008; Brubaker and Vempala, 2008.
- Recovers the parameters provided that the distance between means is sufficiently large (roughly either d^c or k^c times the standard deviation of the Gaussians, for some c > 0).
- Techniques have been developed for learning GMM without any separation condition (Kalai et al., 2010; Belkin and Sinha, 2010; Moitra and Valiant, 2010).
- The computational and sample complexities of these methods grow exponentially with k – modern implementations of traditional method of moments.

Hidden Markov Model

- Discrete state, discrete observation HMM.
- Hidden state-observation pair $\{h_t, \mathbf{x}_t\}_t$.
- Number of hidden states: m and number of different outcomes of the the observations n with m < n.
- Parameters to be learnt:
 - Transition matrix T of dimension $m \times m$.
 - Observation probability matrix O of dimension $n \times m$.
 - Initial state distribution π a vector of length m.

Hidden Markov Model

Courtesy: Dr. Ray Mooney.

Observable Operator View of HMM

- For $\mathbf{x} = \{1, 2, \dots, n\}$ define $A_{\mathsf{x}} = Tdiag(O_{\mathsf{x}_1}, \dots, O_{\mathsf{x}_m})$. For any $t : \Pr[\mathbf{x}_1, \dots, \mathbf{x}_t] = \mathbf{1}_m^\dagger A_{\mathbf{x}_t} \dots A_{\mathbf{x}_1} \pi$.
- Assumption 1: $\pi > 0$, and O and T are rank m.
- $[P_1]_i = \Pr[x_1 = i], [P_{2,1}]_{ij} = \Pr[x_2 = i, x_1 = j],$ $[P_{3,x,1}]_{ij} = \Pr[x_3 = i, x_2 = x, x_1 = j] \ \forall \mathbf{x} \in \{1, 2, \dots, n\},$
- Assumption 2: $U^{\dagger}O$ is invertible for some $U \in \mathbb{R}^{n \times m}$.
- Assume $\pi > \mathbf{0}$ and that O and T have column rank m. Then rank $(P_{2,1}) = m$. Moreover, if U is the matrix of left singular vectors of $P_{2,1}$ corresponding to non-zero singular values, then range(U) =range(O), so U obeys assumption 2.
- With the above two assumptions,
 - $\mathbf{b}_1 = U^{\dagger} P_1 = (U^{\dagger} O) \pi$.
 - $\mathbf{b}_{\infty}^{\dagger} = (P_{2.1}^{\dagger} U)^{\dagger \dagger} P_1 = \mathbf{1}_{m}^{\dagger} (U^{\dagger} O)^{-1}.$
 - $B_x = (U^{\dagger} P_{3,x,1})(U^{\dagger} P_{2,1})^{\dagger \dagger} = (U^{\dagger} O) A_{\mathbf{x}} (U^{\dagger} O)^{-1} \ \forall \mathbf{x}.$
 - $Pr[\mathbf{x}_{1:t}] = \mathbf{b}_{\infty}^{\dagger} B_{\mathbf{x}_{t:1}} \mathbf{b}_{1} \quad \forall t, \mathbf{x}.$

Spectral Learning of HMM

Algorithm LearnHMM(m, N):

Inputs: m - number of states, \overline{N} - sample size Returns: HMM model parameterized by $\{\hat{b}_1, \hat{b}_{\infty}, \hat{B}_x \forall x \in [n]\}$

- 1. Independently sample N observation triples (x_1, x_2, x_3) from the HMM to form empirical estimates \widehat{P}_1 , $\widehat{P}_{2,1}$, $\widehat{P}_{3,x,1} \forall x \in [n]$ of P_1 , $P_{2,1}$, $P_{3,x,1} \forall x \in [n]$.
- 2. Compute the SVD of $\widehat{P}_{2,1}$, and let \widehat{U} be the matrix of left singular vectors corresponding to the m largest singular values.
- 3. Compute model parameters:
 - (a) $\widehat{b}_1 = \widehat{U}^{\top} \widehat{P}_1$,
 - (b) $\hat{b}_{\infty} = (\hat{P}_{21}^{\top} \hat{U})^{+} P_{1}$,
 - (c) $\widehat{B}_x = \widehat{U}^{\top} \widehat{P}_{3,x,1} (\widehat{U}^{\top} \widehat{P}_{2,1})^+ \ \forall x \in [n].$

Spectral Learning of HMM

To predict the probability of a sequence:

$$\widehat{\Pr}[x_1, \dots, x_t] = \widehat{b}_{\infty}^{\top} \widehat{B}_{x_t} \dots \widehat{B}_{x_1} \widehat{b}_1.$$

Given an observation x_t, the 'internal state' update is:

$$\widehat{b}_{t+1} = \frac{\widehat{B}_{x_t} \widehat{b}_t}{\widehat{b}_{\infty}^{\top} \widehat{B}_{x_t} \widehat{b}_t}.$$

To predict the conditional probability of x_t given x_{1:t-1}:

$$\widehat{\Pr}[x_t|x_{1:t-1}] \ = \ \frac{\widehat{b}_{\infty}^{\top}\widehat{B}_{x_t}\widehat{b}_t}{\sum_x \widehat{b}_{\infty}^{\top}\widehat{B}_x\widehat{b}_t}.$$

Remark 5. If U is the matrix of left singular vectors of $P_{2,1}$ corresponding to non-zero singular values, then U acts much like the observation probability matrix O in the following sense:

Given a conditional state
$$\vec{b}_t$$
,
 $Pr[x_t = i|x_{1:t-1}] = [U\vec{b}_t]_i$.

Given a conditional state
$$\vec{h}_t$$
, Given a conditional hidden state \vec{h}_t ,
 $\Pr[x_t = i | x_{1:t-1}] = [U\vec{h}_t]_i$. $\Pr[x_t = i | x_{1:t-1}] = [O\vec{h}_t]_i$.

To see this, note that UU^{\top} is the projection operator to range(U). Since range(U) = range(O) (Lemma 2), we have $UU^{\top}O = O$, so $U\vec{b}_t = U(U^{\top}O)\vec{h}_t = O\vec{h}_t$.

Simultaneous Diagonalization for Tensor Decomposition

- Let $V = [\mu_1, \mu_2, \cdots, \mu_k]$, $W = \operatorname{diag}(w_1, w_2, \cdots, w_k)$, and $D(\boldsymbol{\eta}) = \operatorname{diag}(\boldsymbol{\mu}_1^{\dagger} \boldsymbol{\eta}, \boldsymbol{\mu}_2^{\dagger} \boldsymbol{\eta}, \cdots, \boldsymbol{\mu}_k^{\dagger} \boldsymbol{\eta})$.
- $M_2 = VWV^{\dagger}$, $M_3(\mathbf{I}, \mathbf{I}, \boldsymbol{\eta}) = VWD(\boldsymbol{\eta})V^{\dagger}$.
- Find a matrix X such that $X^{\dagger}M_2X$ and $X^{\dagger}M_3(\mathbf{I},\mathbf{I},\eta)X$ (for all η) are diagonal.

Algorithm I for Simultaneous Diagonalization

- ullet Get $ilde{M}_2$ and $ilde{M}_3$ from data.
- Let \tilde{A} and \tilde{B} be the top-k left and right singular vectors of \tilde{M}_2 .
- Define $C(\eta) = (A^{\dagger}M_3(\mathbf{I}, \mathbf{I}, \eta)B)(A^{\dagger}M_3(\mathbf{I}, \mathbf{I}, \eta)B)^{-1}$.
- Also $C(\eta) = (A^{\dagger}V) \operatorname{diag}(V^{\dagger}\eta)(A^{\dagger}V)^{-1}$.
- Get empirical estimate of $C(\eta)$.
- It can be shown that $A^{\dagger}V$ is invertible eigen decomposition of $C(\eta)$ can be performed to recover $A^{\dagger}V$ and hence V.
- Since $M_2 = VWV^{\dagger}$, W can be recovered from a knowledge of V.
- Little bit more work needed for multi-view models.
- Algorithm II two SVDs for LDA.

On the choice of η

- Components of η have to be distinct.
- Can be taken to be a unit basis vector if there is some prior information about the distinct probabilities of a word in topics.
- Else, η can be chosen as $\eta = \tilde{A}\theta$ where $\theta \in \mathbb{R}^k$ is a unit vector sampled randomly from a sphere in dimension k.

Mixed Membership Stochastic Block Model

- For each node p ∈ N:
 - Draw a K dimensional mixed membership vector $\vec{\pi}_p \sim \text{Dirichlet} (\vec{\alpha})$.
- For each pair of nodes (p,q) ∈ N × N:
 - Draw membership indicator for the initiator, \$\vec{z}_{p \to q}\$ ~ Multinomial (\$\vec{\pi}_p\$).
 - Draw membership indicator for the receiver, $\vec{z}_{q \to p} \sim$ Multinomial ($\vec{\pi}_q$).
 - Sample the value of their interaction, $Y(p,q) \sim \text{Bernoulli} \left(\ \vec{z}_{p \to q}^{\ \top} B \ \vec{z}_{p \leftarrow q} \ \right).$

Fixed Membership Stochastic Block Model

Graph Moments

- Adjacency matrix: G, submatrix going from X to A: $G_{X,A}$, community connectivity matrix P.
- $F = \pi^{\dagger} P^{\dagger} \in \mathbb{R}^{n \times k}$, $F_A = \pi_A^{\dagger} P^{\dagger}$ denoting the submatrix of Fcorresponding to nodes in A.
- $T_{X \to \{A,B,C\}} = \frac{1}{|X|} \sum [G_{i,A}^{\dagger} \otimes G_{i,B}^{\dagger} \otimes G_{i,C}^{\dagger}].$
- $\mathbb{E}[G_{X,A}^{\dagger}|\pi_X,\pi_A]=F_A\pi_X$.
- $\bullet \ \mathbb{E}[T_{X \to \{A,B,C\}} | \pi_A, \pi_B, \pi_C] = \sum \hat{\alpha}_i(F_A)_i \otimes (F_B)_i \otimes (F_C)_i.$ $i \in [k]$

Simultaneous Diagonalization

- We have looked at several tensor decomposition methods
- Is there a subclass in which simpler special case formulations exist?

Setup

- Sequence of exchangeable RVs: $x_1, x_2, \ldots, x_n \in \mathbb{R}^d$
- Latent variable vector: $h \in \mathbb{R}^k$
- Topic matrix: $O \in \mathbb{R}^{d \times k}$
- Structure :

$$\mathbb{E}(x_{\nu}|h)=Oh$$

- **Goal:** Recover O after observing x_{ν}
- Assumption 0: Some info about distribution of h
- Assumption 1: d > k
- Assumption 2 : O is full column-rank

Method for Independent (skewed) factor model

- Product distribution: Each h_i independent from the rest
- Variance of h_i : $\sigma_i^2 = \mathbb{E}[(h_i \mathbb{E}(h_i))^2]$
- Higher moment: $\mu_{i,l} = \mathbb{E}[(h_i \mathbb{E}(h_i))^l]$
- As before, define moments of x_v :
 - \bullet $\mu := \mathbb{E}(\mathbf{x_1})$
 - Pairs := $\mathbb{E}(\mathbf{x_1} \mu)(\mathbf{x_2} \mu)^{\dagger}$
 - Triples := $\mathbb{E}[(\mathbf{x_1} \mu) \otimes (\mathbf{x_2} \mu) \otimes (\mathbf{x_3} \mu)]$
 - Triples $(\eta) := \mathbb{E}[(\mathbf{x_1} \mu)(\mathbf{x_2} \mu)^{\dagger} \langle (\mathbf{x_3} \mu), \eta \rangle]$

Identifying structure

- Easy to show relationship between O and and the moments of x based on $\mathbb{E}(x_{\nu}|h) = Oh$
- Pairs = $O \operatorname{diag}(\sigma_1^2, \sigma_2^2, \dots, \sigma_k^2) O^{\dagger}$
- Triples $(\eta) = O \operatorname{diag}(O^{\dagger} \eta) \operatorname{diag}(\mu_{1,3}, \mu_{2,3}, \dots, \mu_{k,3}) O^{\dagger}$
- Triples structure hints at a possible SVD. Need an "appropriate" η , and O not orthogonal
- 2-svd helps in obtaining it.
- Operate in matrices tensor decompositions bypassed.

SVD 1 – Whiten Pairs

- Triples(η) = Odiag($O^{\dagger}\eta$) diag($\mu_{1,3}, \mu_{2,3}, \dots, \mu_{k,3}$) O^{\dagger} .
- Need η that is not in left null space of O.
- Identifiability issues for any η .
- Assumptions 1 and 2 come into play.
 - Pairs is $d \times d$, but has rank k.
 - $\exists W$ s.t. W^{\dagger} Pairs $W = I_{\nu \times \nu}$
- Set $\eta = W\theta$, definitely not in left null space of O.
- Claim: For a randomly drawn $\theta \in \mathcal{S}^{k-1}$, an SVD for W^{\dagger} Triples $(W\theta)W$ recovers $W^{\dagger}O$ as singular vectors.

SVD 2

- Can show W^{\dagger} Triples $(W\theta)W = M \text{diag}(M^{\dagger}\theta) \text{diag}(\gamma_1, \gamma_2, \dots, \gamma_k)M^{\dagger}$
- γ_i is skewness
- $M = W^{\dagger}O$
- M is orthogonal \implies SVD struct.
- ullet heta is randomly chosen, $M^\dagger heta$ is a rotation
- With probability 1, singular values are unique i.e. singular vectors are identifiable (upto sign and permutation)
- ullet For a random heta, only the singular values change!

Algorithm - Independent Skewed Factors

Algorithm 1 ECA, with skewed factors

Input: vector $\theta \in \mathbb{R}^k$; the moments Pairs and Triples (η)

1. Dimensionality Reduction: Find a matrix $U \in \mathbb{R}^{d \times k}$ such that

$$Range(U) = Range(Pairs).$$

(See Remark 1 for a fast procedure.)

2. Whiten: Find $V \in \mathbb{R}^{k \times k}$ so $V^{\top}(U^{\top} \text{ Pairs } U)V$ is the $k \times k$ identity matrix. Set:

$$W=UV$$

3. SVD: Let Λ be the set of (left) singular vectors, with unique singular values, of

$$W^{\top}$$
 Triples $(W\theta)W$

4. **Reconstruct:** Return the set \widehat{O} :

$$\widehat{O} = \{ (W^+)^\top \lambda : \lambda \in \Lambda \}$$

where W^+ is the pseudo-inverse (see Eq 1).

Identifiability of O

- Can rescale h and columns of O to get the same model
- Canonicalize : Set $\sigma_i = 1$
- ullet Re-running with different heta recovers upto permutation and sign.
- h being product crucial above, in general we only recover range of O.
- O recovered above identifiable upto sign and permutation of columns

Comments

- $M^{\dagger}\theta$ can have a 0 entry, corresponding O_{*i} not recovered.
 - Rerun.
- What if h is not skewed (third moment is 0).
 - Use fourth moments(kurtosis). Slightly more work, algorithm and proofs similar.
- Possible Extension Are there other such classes of models amenable to simpler special case algorithms?
- Can be "embedded" into more complicated models. e.g. LDA, multiview, altered mixture models.
- Moments of x built empirically.
 - For LDA : (properly permuted) With prob 1δ , for $N \ge O(\ln(\delta))$

$$||O_{*j} - \hat{O}_{*j}|| \leq O(\frac{\ln(1/\delta)}{N})^{\frac{1}{2}}$$

Example: Coding LDA

- Each x_v is the v^{th} word in a document
- d is vocabulary size
- $x_v = e_i$ if x_v is the j^{th} word from the vocabulary.
- $h \in \Delta^{k-1}$. Distributed Dirichlet(α).
- O_{*i} = word distribution of i^{th} topic.
- $Pr([x_v]_i = 1|h) = [Oh]_i \implies E(x_v|h) = Oh$
- Parameter $\alpha_0 = \sum_k \alpha_k$ supplied externally

LDA

Define moments

• Pairs
$$_{\alpha_0} := \mathbb{E}(x_1 x_2^{\dagger}) - \frac{\alpha_0}{\alpha_0 + 1} \mu \mu^{\dagger}$$

• Triples_{\$\alpha_0\$}(\$\eta\$) :=
$$\mathbb{E}(x_1 x_2^{\dagger} \langle \eta, x_3 \rangle) - \frac{\alpha_0}{\alpha_0 + 2} \left(\mathbb{E}[x_1 x_2^{\dagger}] \eta \mu^{\dagger} + \mu \eta^{\dagger} \mathbb{E}[x_1 x_2^{\dagger}] + \langle \eta, \mu \rangle \mathbb{E}[x_1 x_2^{\dagger}] \right) + \frac{2\alpha_0^2}{(\alpha_0 + 1)(\alpha_0 + 2)} \langle \eta, \mu \rangle \mu \mu^{\dagger}$$

Structure

• Pairs
$$_{lpha_0} = rac{1}{(lpha_0 + 1)lpha_0} O {\sf diag}(lpha) O^\dagger$$

• Triples
$$_{\alpha_0}(\eta) = \frac{1}{(\alpha_0+1)(\alpha_0+2)\alpha_0} O \operatorname{diag}(O^\dagger \eta) \operatorname{diag}(\alpha) O^\dagger$$

Algorithm for LDA

Algorithm 3 ECA for latent Dirichlet allocation

Input: a vector $\theta \in \mathbb{R}^k$; the moments $Pairs_{\alpha_0}$ and $Triples_{\alpha_0}$

1. Dimensionality Reduction: Find a matrix $U \in \mathbb{R}^{d \times k}$ such that

$$Range(U) = Range(Pairs_{\alpha_0}).$$

(See Remark 1 for a fast procedure.)

2. Whiten: Find $V \in \mathbb{R}^{k \times k}$ so $V^{\top}(U^{\top} \operatorname{Pairs}_{\alpha_0} U)V$ is the $k \times k$ identity matrix. Set:

$$W = UV$$

3. SVD: Let Λ be the set of (left) singular vectors, with unique singular values, of

$$W^{\top}$$
 Triples _{α_0} $(W\theta)W$

4. Reconstruct and Normalize: Return the set \hat{O} :

$$\widehat{O} = \left\{ \begin{array}{l} \frac{(W^+)^{\top} \lambda}{\vec{1}^{\top} (W^+)^{\top} \lambda} : \lambda \in \Lambda \end{array} \right\}$$

where $\vec{1} \in \mathbb{R}^d$ is a vector of all ones and W^+ is the pseudo-inverse (see Eq 1).

Multiview extension

- O is not the same for every v
- $\mathbb{E}[x_v|h] = O_v h$
- Define moments. For $v \in 1, 2, 3$,
 - Pairs_{v,v'} := $\mathbb{E}[(x_v \mu)(x_{v'} \mu)^{\dagger}]$
 - Triples₁₃₂ $(\eta) := \mathbb{E}[(x_1 \mu)(x_2 \mu)^{\dagger} \langle \eta, x_3 \mu \rangle]$
- Structure For $v \in \{1, 2, 3, 1\}$
 - Pairs_{v,v'} = $O_v \operatorname{diag}(\sigma_1^2, \sigma_2^2, \dots, \sigma_{\nu}^2) O_{v'}^{\dagger}$
 - Triples₁₂₂ $(\eta) = O_1 \operatorname{diag}(O_2^{\dagger}) \operatorname{diag}(\mu_1, \dots, \mu_{k,3}) O_2^{\dagger}$
- Generate a single view from the three views and use the first algorithm.

Multiview Algorithm

Algorithm 4 ECA; the multi-view case

Input: vector $\theta \in \mathbb{R}^k$; the moments Pairs_{v,v'} and Triples₁₃₂(η)

1. Project views 1 and 2: Find matrices $A \in \mathbb{R}^{k \times d_1}$ and $B \in \mathbb{R}^{k \times d_2}$ such that $A \text{Pairs}_{12} B^{\top}$ is invertible. Set:

(See Remark 10 for a fast procedure.)

2. Symmetrize: Reduce to a single view:

$$\begin{array}{rcl} {\rm Pairs}_3 & := & \widetilde{{\rm Pairs}}_{31}(\widetilde{{\rm Pairs}}_{12}^{\top})^{-1}\widetilde{{\rm Pairs}}_{23} \\ {\rm Triples}_3(\eta) & := & \widetilde{{\rm Pairs}}_{32}(\widetilde{{\rm Pairs}}_{12})^{-1}\widetilde{{\rm Triples}}_{132}(\eta)(\widetilde{{\rm Pairs}}_{12})^{-1}\widetilde{{\rm Pairs}}_{13} \end{array}$$

3. Estimate O_3 with ECA: Call Algorithm 1, with θ , Pairs₃, and Triples₃(η).

New Research Direction

- Online implementation of tensor decomposition application large scale learning of topic models.
- Constrained tensor decomposition based on auxiliary/side information - application - supervised topic models.
- More efficient implementation (optimization) of tensor decomposition.

References

- Tensor decompositions for learning latent variable models.
- A Spectral Algorithm for Learning Hidden Markov Models.
- A Method of Moments for Mixture Models and Hidden Markov Models.
- A Tensor Spectral Approach to Learning Mixed Membership Community Models.
- A Spectral Algorithm for Latent Dirichlet Allocation.
- NIPS12 Spectral Learning Workshop.