import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns

from sklearn.cluster import KMeans

df=pd.read_csv('/content/Mall_Customers.csv')
df.head()

₹		CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
	0	1	Male	19	15	39
	1	2	Male	21	15	81
	2	3	Female	20	16	6
	3	4	Female	23	16	77
	4	5	Female	31	17	40
	_					+ Code + To

fig,ax=plt.subplots(2,figsize=(5,10))
sns.scatterplot(ax=ax[0],data=df,x='Age',y='Spending Score (1-100)',hue='Gender')
sns.scatterplot(ax=ax[1],data=df,x='Annual Income (k\$)',y='Spending Score (1-100)',hue='Gender')
plt.show()

/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:1416: FutureWarning: The default value of `n_init` will change from 1 super()._check_params_vs_input(X, default_n_init=10)

df.head()

→	CustomerI	D	Gender	Age	Annual Income (k\$)	Spending Score (1-100)	cluster	
0		1	Male	19	15	39	3	 }
1		2	Male	21	15	81	0)
2		3	Female	20	16	6	3	}
3		4	Female	23	16	77	0)
4		5	Female	31	17	40	3	\$
•								

km.cluster_centers_

```
array([[25.72727273, 79.36363636],
[88.2 , 17.11428571],
[55.2962963 , 49.51851852],
[26.30434783, 20.91304348],
[86.53846154, 82.12820513]])
```

km.cluster_centers_

```
array([[25.72727273, 79.36363636],
[88.2 , 17.11428571],
[55.2962963 , 49.51851852],
[26.30434783, 20.91304348],
[86.53846154, 82.12820513]])
```

km.inertia_

plt.show()

```
→ 44448.45544793369
```

df['cluster'].unique()

```
⇒ array([3, 0, 2, 4, 1], dtype=int32)
```

```
df0=df[df['cluster']==0][['Annual Income (k$)','Spending Score (1-100)','cluster']]
df1=df[df['cluster']==1][['Annual Income (k$)','Spending Score (1-100)','cluster']]
df2=df[df['cluster']==2][['Annual Income (k$)','Spending Score (1-100)','cluster']]
df3=df[df['cluster']==3][['Annual Income (k$)','Spending Score (1-100)','cluster']]
df4=df[df['cluster']==4][['Annual Income (k$)','Spending Score (1-100)','cluster']]
sns.scatterplot(data=df0,x='Annual Income (k$)',y='Spending Score (1-100)')
sns.scatterplot(data=df2,x='Annual Income (k$)',y='Spending Score (1-100)')
sns.scatterplot(data=df3,x='Annual Income (k$)',y='Spending Score (1-100)')
sns.scatterplot(data=df4,x='Annual Income (k$)',y='Spending Score (1-100)')
sns.scatterplot(data=df4,x='Annual Income (k$)',y='Spending Score (1-100)')
```

```
sse=[]
for k in range(1,20):
    kmk=KMeans(n_clusters=k)
    kmk.fit(df[['Annual Income (k$)','Spending Score (1-100)']])
    sse.append(kmk.inertia_)
```

```
🚁 /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:1416: FutureWarning: The default value of `n_init` will change from 1
      super()._check_params_vs_input(X, default_n_init=10)
    /usr/local/lib/python3.10/dist-packages/sklearn/cluster/ kmeans.py:1416: FutureWarning: The default value of `n init` will change from 1
      super()._check_params_vs_input(X, default_n_init=10)
    /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:1416: FutureWarning: The default value of `n_init` will change from 1
      super()._check_params_vs_input(X, default_n_init=10)
    /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:1416: FutureWarning: The default value of `n_init` will change from 1
      super(). check params vs input(X, default n init=10)
    /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:1416: FutureWarning: The default value of `n_init` will change from 1
      super()._check_params_vs_input(X, default_n_init=10)
    /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:1416: FutureWarning: The default value of `n_init` will change from 1
      super(). check params vs input(X, default n init=10)
    /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:1416: FutureWarning: The default value of `n_init` will change from 1
      super()._check_params_vs_input(X, default_n_init=10)
    /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:1416: FutureWarning: The default value of `n_init` will change from 1
      super()._check_params_vs_input(X, default_n_init=10)
    /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:1416: FutureWarning: The default value of `n_init` will change from 1
      super()._check_params_vs_input(X, default_n_init=10)
    /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:1416: FutureWarning: The default value of `n_init` will change from 1
      super()._check_params_vs_input(X, default_n_init=10)
    /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:1416: FutureWarning: The default value of `n_init` will change from 1
      super()._check_params_vs_input(X, default_n_init=10)
    /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:1416: FutureWarning: The default value of `n_init` will change from 1
      super()._check_params_vs_input(X, default_n_init=10)
    /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:1416: FutureWarning: The default value of `n_init` will change from 1
      super(). check params vs input(X, default n init=10)
    /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:1416: FutureWarning: The default value of `n_init` will change from 1
      super()._check_params_vs_input(X, default_n_init=10)
    /usr/local/lib/python3.10/dist-packages/sklearn/cluster/ kmeans.py:1416: FutureWarning: The default value of `n init` will change from 1
      super()._check_params_vs_input(X, default_n_init=10)
    /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:1416: FutureWarning: The default value of `n_init` will change from 1
      super(). check params vs input(X, default n init=10)
    /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:1416: FutureWarning: The default value of `n_init` will change from 1
      super()._check_params_vs_input(X, default_n_init=10)
    /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:1416: FutureWarning: The default value of `n_init` will change from 1
      super(). check params vs input(X, default n init=10)
    /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:1416: FutureWarning: The default value of `n_init` will change from 1
      super()._check_params_vs_input(X, default_n_init=10)
```

sse

```
[269981.28000000014,
183653.3289473683,
106348.37306211119,
73679.78903948837,
44448.45544793369,
37265.86520484345,
30259.657207285458,
25022.485004530332,
```

```
21841.978256748636,
      19676.612585602812,
      17546.928000046544,
      16099.92568836392,
      14946.724459143003,
      12814.183489601206,
      11723.801925267711,
      11165.151003881174,
      10157.744683335979,
      9537.97646175663,
      8424.892959671906]
sns.lineplot(data=sse)
sns.scatterplot(data=sse)
plt.grid(True)
plt.xlabel('Number of Clusters')
plt.ylabel('Sum of Squared Error')
plt.title('Elbow Chart')
plt.show()
```

0.0

2.5

 $sns.scatterplot(data=df0,x='Annual Income (k$)',y='Spending Score (1-100)') \\ sns.scatterplot(data=df1,x='Annual Income (k$)',y='Spending Score (1-100)') \\ sns.scatterplot(data=df2,x='Annual Income (k$)',y='Spending Score (1-100)') \\ sns.scatterplot(data=df3,x='Annual Income (k$)',y='Spending Score (1-100)') \\ sns.scatterplot(data=df4,x='Annual Income (k$)',y='Spending Score (1-100)') \\ plt.show()$

5.0

7.5

10.0

Number of Clusters

12.5

15.0

17.5

