# Recent work in NLP with tabular data

彭凯龙

# 目录

- 前言
- 近期论文
- 总结

# 前言

- 表格数据的意义 半结构化数据
- 处理表格的特殊之处 关键字 "上下文"

|                                  |       |       | De     | velopme | ent    |        |        |
|----------------------------------|-------|-------|--------|---------|--------|--------|--------|
| Model                            | R     | G     |        | CS      |        | CO     | BLEU   |
| Wiodei                           | P%    | #     | P%     | R%      | F1%    | DLD%   | DLLC   |
| Gold                             | 94.79 | 23.31 | 100.00 | 100.00  | 100.00 | 100.00 | 100.00 |
| Template                         | 99.92 | 54.23 | 26.60  | 59.13   | 36.69  | 14.39  | 8.62   |
| CC (Wiseman et al., 2017)        | 75.10 | 23.95 | 28.11  | 35.86   | 31.52  | 15.33  | 14.57  |
| NCP+CC (Puduppully et al., 2019) | 87.51 | 33.88 | 33.52  | 51.21   | 40.52  | 18.57  | 16.19  |
| Hierarchical LSTM Encoder        | 91.59 | 32.56 | 31.62  | 44.22   | 36.87  | 17.49  | 15.21  |
| Hierarchical CNN Encoder         | 90.86 | 30.59 | 30.32  | 40.28   | 34.60  | 15.75  | 14.08  |
| Hierarchical SA Encoder          | 90.46 | 29.82 | 34.39  | 45.43   | 39.15  | 19.81  | 15.62  |
| Hierarchical MHSA Encoder        | 92.87 | 28.42 | 34.87  | 42.41   | 38.27  | 18.28  | 15.12  |
| CC (Our implementation)          | 76.50 | 22.48 | 29.18  | 34.22   | 31.50  | 15.43  | 13.65  |
| Our Model                        | 91.84 | 32.11 | 35.39  | 48.98   | 41.09  | 20.70  | 16.24  |
| -row-level encoder               | 90.19 | 27.90 | 34.70  | 42.53   | 38.22  | 20.02  | 15.32  |
| -row                             | 91.08 | 30.95 | 35.03  | 47.09   | 40.17  | 20.03  | 15.50  |
| -column                          | 91.66 | 28.63 | 34.83  | 43.62   | 38.73  | 19.59  | 15.99  |
| -time                            | 90.94 | 31.43 | 34.62  | 47.74   | 40.13  | 19.81  | 16.10  |
| -position embedding              | 89.97 | 28.37 | 34.72  | 43.69   | 38.69  | 19.54  | 16.05  |
| -record fusion gate              | 89.34 | 32.22 | 32.28  | 46.68   | 38.17  | 18.49  | 14.97  |

# 前言

• 表格处理方向热度

- ACL2021
  - Towards Table-to-Text Generation wi...
  - De-Confounded Variational Encoder-...
  - Improving Encoder by Auxiliary Supe...
  - Joint Verification and Reranking for ...
  - TAT-QA: A Question Answering Benc...
  - Dual Reader-Parser on Hybrid Textua...
- MAACL2021
  - Open Domain Question Answering o...
  - Capturing Row and Column Semanti...
  - Incorporating External Knowledge to...
  - TABBIE: Pretrained Representations o...

- EMNLP2021
  - MATE: Multi-view Attention for Table...
  - Logic-level Evidence Retrieval and Gr...
  - Topic Transferable Table Question An...
  - Table-based Fact Verification with Sal...
  - Few-Shot Table-to-Text Generation ...
  - Exploring Decomposition for Table-b...

# 论文介绍

- Towards Table-to-Text Generation with Numerical Reasoning. ACL/IJCNLP (1) 2021: 1451-1465
- Incorporating External Knowledge to Enhance Tabular Reasoning. NAACL-HLT 2021: 2799-2809
- MATE: Multi-view Attention for Table Transformer Efficiency. CoRR abs/2109.04312 (2021)
- Improving Encoder by Auxiliary Supervision Tasks for Table-to-Text Generation. ACL/IJCNLP (1) 2021: 5979-5989
- TABBIE: Pretrained Representations of Tabular Data. NAACL-HLT 2021: 3446-3456
- Joint Verification and Reranking for Open Fact Checking Over Tables. ACL/IJCNLP (1) 2021: 6787-6799

### Towards Table-to-Text Generation with Numerical Reasoning (ACL-IJCNLP2021)

#### • 动机:

源于论文的table-to-text数值推理任务 强化数值推理能力的table-to-text生成框架

#### • 表格数据预处理

Table 2: The overall mention detection results on the test set of OntoNotes.

| Model             | Precision | Recall | F1   |  |
|-------------------|-----------|--------|------|--|
| Our full model    | 89.6      | 82.2   | 85.7 |  |
| Lee et al. (2018) | 86.2      | 83.7   | 84.9 |  |

| Target Header  |  |
|----------------|--|
| Our full model |  |
| Description    |  |

Table 2 shows the mention detection results on the test set. Similar to coreference linking results, **our model achieves higher precision and F1 score**, which indicates that our model can significantly reduce false positive mentions while it can still find a reasonable number of mentions.



| header nai        | val   | metric | tar       |     |
|-------------------|-------|--------|-----------|-----|
| h                 | th    |        | (m)       | get |
| our full model    | model | 89.6   | precision | 1   |
| our full model    | model | 82.2   | recall    | 1   |
| our full model    | model | 85.7   | f1        | 1   |
| lee et al. (2018) | model | 86.2   | precision | 0   |
| lee et al. (2018) | model | 83.7   | recall    | 0   |
| lee et al. (2018) | model | 84.9   | f1        | 0   |

| op   | op argume                            | nts   | metric    | result            | il.  |
|------|--------------------------------------|-------|-----------|-------------------|------|
| name | h                                    | th    |           | h                 | val  |
| max  | our full model,<br>lee et al. (2018) | model | precision | our full<br>model | 89.6 |
| max  | our full model,<br>lee et al. (2018) | model | fl        | our full<br>model | 85.7 |
| max  | our full model,<br>lee et al. (2018) | model | recall    | lee et al. (2018) | 83.7 |
| min  | our full model,<br>lee et al. (2018) | model | recall    | our full<br>model | 82.2 |
| min  | our full model,<br>lee et al. (2018) | model | precision | lee et al. (2018) | 86.2 |
| min  | our full model,<br>lee et al. (2018) | model | fl        | lee et al. (2018) | 84.9 |
| diff | our full model,<br>lee et al. (2018) | model | precision |                   | 3.4  |
| diff | our full model,<br>lee et al. (2018) | model | recall    |                   | -1.5 |
| diff | our full model,<br>lee et al. (2018) | model | fl        |                   | 0.8  |

Pre-executed Operation Table (TOP)

### Towards Table-to-Text Generation with Numerical Reasoning (ACL-IJCNLP2021)

```
使用模板转换表格
                                                      caption: <table_id> <caption>. row
                                                      name: \langle rh_1 \rangle ... \langle rh_{nr} \rangle. column
    简单模板
                                                      name: \langle ch_1 \rangle ... \langle ch_{nc} \rangle. met-
                                                      ric:\langle m_1 \rangle, ..., \langle m_{nr/nc} \rangle. value: \langle val_{1.1} \rangle
    数据模板
                                                      \dots \langle val_{nr,nc} \rangle.
    推理模板
    数据、推理结合模板
                                                                                 shows <caption>.
                                                      <table_id>
                                                      \langle m_{1,1} \rangle of \langle h_{1,1} \rangle is \langle val_{1,1} \rangle ...
                                                      \langle m_{nr,nc} \rangle of \langle h_{nr,nc} \rangle is \langle val_{nr,nc} \rangle.
                                                      <table_id> shows
                                                                                                <caption>.
                                                      \langle h_{max} \rangle has the largest \langle m_{max} \rangle
                                                      (\langle val_{max} \rangle) of \langle th_{max} \rangle. \langle h_{min} \rangle
                                                      has the smallest \langle m_{min} \rangle (\langle val_{max} \rangle)
                                                      of \langle th_{min} \rangle. \langle m_{diff} \rangle of \langle h_{diff1} \rangle is
                                                      larger/smaller than \langle h_{diff2} \rangle.
```

### Towards Table-to-Text Generation with Numerical Reasoning (ACL-IJCNLP2021)

| Model                                       | Generated Text                                                                                                                                                                                                    |
|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reference                                   | table 2 shows the mention detection results on the test set. similar to coreference linking                                                                                                                       |
|                                             | results, our model achieves higher precision and f1 score, which indicates that our model                                                                                                                         |
|                                             | can significantly reduce false positive mentions while it can still find a reasonable number                                                                                                                      |
|                                             | of mentions.                                                                                                                                                                                                      |
| Template-based                              | table 2 shows the overall mention detection results on the test set of ontonotes. we can                                                                                                                          |
| -                                           | see that our full outperforms other model with 85.7 f1.                                                                                                                                                           |
| Pointer-generator                           | the table 2 shows the results of the results of the results of the results of the                                                                                                                                 |
|                                             | art of                                                                                                                                                                                                            |
| Fine-tuned GPT2                             | the table shows the recall performance with our full model. the result of our full model                                                                                                                          |
| $(T_D + T_{OP} \text{ temp})$               | is 88.7, which is comparable with the 89.3 performance of our full model but still better                                                                                                                         |
|                                             | than the 89.9 and 89.2 performance in both the f1, prec and full models. we also find                                                                                                                             |
|                                             | that our full model does not perform very well when compared against a full one, with                                                                                                                             |
|                                             | 89.4% and 89.4% recall and 89.2% recall respectively. we can also find that our full                                                                                                                              |
|                                             | model is slightly inferior in terms of recall.                                                                                                                                                                    |
| Fine-tuned GPT2                             | table 2: (the - d model: a) the: aa. the: the, the: and, the: the, the and, theand:                                                                                                                               |
| $(T_D + T_{OP} \text{ temp}) + \text{Copy}$ | the and, theand: theand: theand:                                                                                                                                                                                  |
|                                             | <pre>(<table_id>: table 2; <cat_header>: model)</cat_header></table_id></pre>                                                                                                                                     |
| Fine-tuned T5                               | table 2 presents the overall mention detection results on ontonotes. our full model                                                                                                                               |
| $(T_D + T_{OP} \text{ temp})$               | outperforms all the state-of-the-art systems in terms of recall and f1 score.                                                                                                                                     |
| Fine-tuned T5                               | table 2 shows the overall mention detection results on the test set of ontonotes. our                                                                                                                             |
| $(T_D + T_{OP} \text{ temp}) + \text{Copy}$ | full model outperforms the previous state-of-the-art models by a large margin, which                                                                                                                              |
|                                             | Reference  Template-based  Pointer-generator  Fine-tuned GPT2 $(T_D + T_{OP} \text{ temp})$ Fine-tuned GPT2 $(T_D + T_{OP} \text{ temp}) + \text{Copy}$ Fine-tuned T5 $(T_D + T_{OP} \text{ temp})$ Fine-tuned T5 |

效果

confirms the effectiveness of our proposed approach.

(<table\_id>: table 2; <header\_max>: our full model)

### Incorporating External Knowledge to Enhance Tabular Reasoning (NAACL-HLT 2021)

• 动机:

使用额外知识帮助模型推理

方法:

Paragraph Representation:

Money/Date/Cardinal/Bool

Implicit/ Explicit Knowledge Addition:

MultiNLI 文本蕴含关系数据集

WordNet/Wikipedia 概念补充关键词

Distracting Row Removal

计算每一行与问题的相关度, 取top K

效果

**Orignal Premise Sentence** "The Died of Jesse Ramsden are November 1800 (1800-11-05) (aged 65) Brighton, Sussex."

**BPR Sentence** "Jesse Ramsden Died on 5 November 1800 (1800-11-05) (aged 65) Brighton, Sussex."

| Premise      | Dev   | $lpha_1$ | $lpha_2$ | $\alpha_3$ |
|--------------|-------|----------|----------|------------|
| Human        | 79.78 | 84.04    | 83.88    | 79.33      |
| Para         | 75.55 | 74.88    | 65.55    | 64.94      |
| BPR          | 76.42 | 75.29    | 66.50    | 64.26      |
| +KG implicit | 79.57 | 78.27    | 71.87    | 66.77      |
| +DRR         | 78.77 | 78.13    | 70.90    | 68.98      |
| +KG explicit | 79.44 | 78.42    | 71.97    | 70.03      |

### Table Fact Verification with Structure-Aware Transformer (EMNLP 2020)

• 动机:

单纯对表格做linearization会丢失结构信息

• 方法:

将表格结构信息注入self-attention layer的mask中

$$egin{aligned} M_{i,j} &= \left\{egin{aligned} 0 & w_i \sim w_j \ -\infty & w_i 
eq w_j \end{aligned}
ight. \ oldsymbol{Q}^l, oldsymbol{K}^l, oldsymbol{V}^l &= oldsymbol{H}^l oldsymbol{W}_q, oldsymbol{H}^l oldsymbol{W}_k, oldsymbol{H}^l oldsymbol{W}_v} \ oldsymbol{A}^l &= \operatorname{softmax}(rac{oldsymbol{Q}^l oldsymbol{K}^{lT} + oldsymbol{M}}{\sqrt{d_k}}) \ oldsymbol{H}^{l+1} &= oldsymbol{A}^l oldsymbol{V}^l \end{aligned}$$

将符号推理问题转化为匹配问题(summary row)





### TAPAS: Weakly Supervised Table Parsing via Pre-training (ACL 2020)

• 动机:

补充位置信息

• 方法:

Additional embeddings





### MATE: Multi-view Attention for Table Transformer Efficiency (EMNLP2021)

#### • 动机

处理大型表格的sparse-attention Transformer

#### • 模型-MATE

继续使用row, column, rank embedding

限制attention范围: row/ col headers

$$\begin{aligned} \operatorname{Head}_{k}^{i}\left(\mathbf{X}\right) &= \mathbf{W}_{V}^{i} \mathbf{X}_{\mathcal{A}_{k}^{i}} \sigma \left[ \left(\mathbf{W}_{K}^{i} \mathbf{X}_{\mathcal{A}_{k}^{i}}\right)^{\mathsf{T}} \mathbf{W}_{Q}^{i} \mathbf{X}_{k} \right] \\ \mathcal{A}_{k}^{i} &= \begin{cases} \{1, \cdots, n\} & \text{if } k \in Q, \text{ else} \\ Q \cup \{j : r_{j} = r_{k}\} & \text{if } 1 \leq i \leq h_{r} \\ Q \cup \{j : c_{j} = c_{k}\} & \text{otherwise.} \end{cases} \end{aligned}$$

提升计算效率:将输入划分为全局、局部部分



### MATE: Multi-view Attention for Table Transformer Efficiency (EMNLP2021)

#### • 模型-POINTER

Cell selection: 
$$S(t) = \text{MLP}(\text{MATE}(q, e)[t]) \qquad q(z) = p_{\Theta}(z|x, z \in \mathcal{C})$$
 
$$S(c) = \text{avg}_{t \in c}S(t) \qquad \mathcal{L}(\Theta, x, \mathcal{C}) = \sum_{z \in \mathcal{C}} -q(z)\log p_{\Theta}(z|x)$$
 
$$P(c) = \frac{\exp(S(c))}{\sum_{c' \in e} \exp(S(c'))}$$

Passage reading:

$$h_{start} = \mathtt{BERT}_r(q,c)[\mathtt{START}(s)]$$
 
$$h_{end} = \mathtt{BERT}_r(q,c)[\mathtt{END}(s)]$$
 
$$\mathtt{S}_{\mathrm{read}}(q,c) = \mathtt{MLP}([h_{start},h_{end}])$$

## MATE: Multi-view Attention for Table Transformer Efficiency (EMNLP2021)

### • 效果

| Model                   |                   |                   | D                   | ev                  |                        |                                   |      |      | Te    | est   |      |      |
|-------------------------|-------------------|-------------------|---------------------|---------------------|------------------------|-----------------------------------|------|------|-------|-------|------|------|
|                         | In-T              | Table             | In-Pa               | issage              | To                     | otal                              | In-T | able | In-Pa | ssage | To   | tal  |
|                         | EM                | F1                | EM                  | F1                  | EM                     | F1                                | EM   | F1   | EM    | F1    | EM   | F1   |
| Table-Only              | 14.7              | 19.1              | 2.4                 | 4.5                 | 8.4                    | 12.1                              | 14.2 | 18.8 | 2.6   | 4.7   | 8.3  | 11.7 |
| Passage-Only            | 9.2               | 13.5              | 26.1                | 32.4                | 19.5                   | 25.1                              | 8.9  | 13.8 | 25.5  | 32.0  | 19.1 | 25.0 |
| Hybrider ( $\tau$ =0.8) | 54.3              | 61.4              | 39.1                | 45.7                | 44.0                   | 50.7                              | 56.2 | 63.3 | 37.5  | 44.4  | 43.8 | 50.6 |
| POINTR + SAT            | 66.5 ±0.33        | $71.8_{\pm 0.28}$ | $60.3_{\pm 0.11}$   | $69.2_{\ \pm 0.04}$ | 61.2 ±0.29             | $68.7_{\ \pm 0.31}$               | 64.6 | 70.1 | 59.6  | 68.5  | 60.1 | 67.4 |
| POINTR + TAPAS          | $68.1_{\pm 0.33}$ | $73.9_{\pm 0.37}$ | $62.9_{\ \pm 0.25}$ | $72.0 \pm 0.21$     | <b>63.3</b> $\pm 0.25$ | <b>70.8</b> $\pm 0.12$            | 67.8 | 73.2 | 62.0  | 70.9  | 62.7 | 70.0 |
| POINTR +TABLEETC        | 36.0 ±1.26        | 42.4 ±1.13        | 37.8 ±1.19          | 45.3 ±1.53          | 36.1 ±1.30             | 42.9 ±1.36                        | 35.8 | 40.7 | 38.8  | 45.7  | 36.6 | 42.6 |
| POINTR + LINFORMER      | $65.5_{\pm 0.78}$ | $71.1_{\pm 0.55}$ | $59.4_{\pm 0.59}$   | $69.0_{\ \pm 0.68}$ | $60.8 \pm 0.68$        | $68.4_{\pm0.63}$                  | 66.1 | 71.7 | 58.9  | 67.8  | 60.2 | 67.6 |
| POINTR + MATE           | $68.6_{\pm 0.37}$ | $74.2_{\pm 0.26}$ | $62.8 \pm 0.25$     | $71.9_{\ \pm 0.20}$ | $63.4_{\ \pm 0.16}$    | $\textbf{71.0} \pm \textbf{0.17}$ | 66.9 | 72.3 | 62.8  | 71.9  | 62.8 | 70.2 |
| Human                   |                   |                   |                     |                     |                        |                                   |      |      |       |       | 88.2 | 93.5 |



• 动机

以单元格为单位进行编码,依靠GAT推理 辅助任务提升编码能力

• 模型

Record Embedding: 单元格初始化

$$r_{i,j}^{emb} = Relu(W^e[r_{i,j}.e; r_{i,j}.t; r_{i,j}.v; r_{i,j}.f] + b^e)$$

Column-Row Encoder:

$$\alpha_{i,j,i'}^{col} \propto \exp(W_2^{col} \tanh(W_1^{col}[r_{i,j}^{emb}; r_{i',j}^{emb}])$$

$$\tilde{r}_{i,j}^{col} = \sum_{i'=1,i'\neq i}^{R} \alpha_{i,j,i'}^{col} r_{i',j}^{emb}$$

$$r_{i,j}^{col} = W_3^{col}[\tilde{r}_{i,j}^{col}; r_{i,j}^{emb}]$$

Record Fusion:  $s_{i,j}^{col} \propto \exp(W_2^f \tanh(W_1^f[r_i^{gen}; r_{i,j}^{col}]))$ 

$$r_{i,j}^f = s_{i,j}^{col} r_{i,j}^{col} + s_{i,j}^{row} r_{i,j}^{row}$$



#### • 模型

Reasoning Module

Entity Initialization:

$$\alpha_{i,j}^r \propto \exp(W_2^r \tanh(W_1^r[e_i^{gen}; r_{i,j}^f]))$$

$$e_i^0 = \sum_{j=1}^{j=C} \alpha_{i,j}^r r_{i,j}^f$$

GatedGAT:

$$\begin{split} \alpha_{i,j}^l &= MultiHeadAttention(e_i^{l-1}, e_j^{l-1}) \\ \tilde{e}_i^l &= ELU(\sum_{j \in N_i} \alpha_{i,j}^l e_j^{l-1}) \\ gate_i^l &= sigmoid(W^l[e_i^{l-1}; \tilde{e}_i^l]) \\ e_i^l &= gate_i^l * e_i^{l-1} + (1 - gate_i^l) * \tilde{e}_i^l \end{split}$$



#### • 模型

Dual-attention Decoder

$$\alpha'_{t,i,j} = \alpha_{t,i}\beta_{t,i,j}$$

$$c_t^d = \sum_{i=1}^R \sum_{j=1}^C \alpha'_{t,i,j} r_{i,j}$$

$$L_{lm} = -\sum_{i=1}^T p_{\theta}(y_t | y_{1:t-1}; c_t^d)$$

**Auxiliary Supervision Task** 

Number ranking

$$h_t = LSTM(h_{t-1}, r_{z_{t-1}}^{col})$$

$$p_{t,i}^n \propto exp(W_{nr}[h_t; r_i^{col}])$$

$$L_{nr} = -\sum_{j=1}^{C} \sum_{i=1}^{R} \log p_{i,z_i}^n$$

Importance ranking

$$L_{ir} = -\sum_{i=1}^{R} \sum_{j=1}^{C} \log p_{j,z_j}^{s}$$

$$L = L_{lm} + \lambda_1 L_{nr} + \lambda_2 L_{ir}$$



### 效果

|                                |       |       | R     | OTOWI | RE    |       |       |
|--------------------------------|-------|-------|-------|-------|-------|-------|-------|
| Model                          | RG    |       |       | CS    |       | CO    | BLEU  |
| Wiodei                         | #     | P%    | P%    | R%    | F1%   | DLD%  | DLEC  |
| Gold                           | 23.31 | 94.79 | 100   | 100   | 100   | 100   | 100   |
| TEMP                           | 54.23 | 99.94 | 26.99 | 58.16 | -     | 14.92 | 8.46  |
| CC (Wiseman et al., 2017)      | 23.72 | 74.80 | 29.49 | 36.18 | 31.52 | 15.42 | 14.19 |
| NCP (Puduppully et al., 2019a) | 34.28 | 87.47 | 34.18 | 51.22 | 40.99 | 18.58 | 16.50 |
| NCP (Our implementation)       | 31.95 | 86.96 | 33.13 | 47.59 | 39.06 | 17.47 | 15.26 |
| ENT (Puduppully et al., 2019b) | 30.11 | 92.96 | 38.67 | 48.51 | 43.09 | 20.17 | 16.12 |
| HETD (Gong et al., 2019)       | 31.47 | 91.46 | 36.09 | 48.01 | 41.21 | 20.86 | 16.85 |
| DU (Gong et al., 2020)         | 29.42 | 88.05 | 38.19 | 49.66 | 43.18 | 22.14 | 16.12 |
| DUV (Gong et al., 2020)        | 26.94 | 87.45 | 40.73 | 48.78 | 44.39 | 23.32 | 15.92 |
| Ours                           | 32.73 | 93.14 | 40.80 | 55.88 | 47.16 | 25.30 | 17.96 |

| Model       | R     | G     | CS    | CO    | DIEL  |
|-------------|-------|-------|-------|-------|-------|
| Model       | #     | P%    | F1%   | DLD%  | BLEU  |
| Our Model   | 34.37 | 90.03 | 44.34 | 23.64 | 17.31 |
| - Series    | 32.74 | 91.56 | 41.42 | 21.52 | 17.19 |
| - <i>RM</i> | 33.91 | 89.58 | 43.71 | 23.04 | 16.98 |
| + NE        | 38.41 | 92.28 | 44.22 | 23.16 | 16.23 |
| + NE & IE   | 32.85 | 92.68 | 45.33 | 24.49 | 16.81 |
| + NR        | 32.47 | 93.76 | 45.93 | 24.29 | 18.56 |
| +IR         | 35.30 | 92.65 | 43.34 | 22.04 | 17.47 |
| + NR & IR   | 33.93 | 92.40 | 46.13 | 25.28 | 17.68 |

### TABBIE: Pretrained Representations of Tabular Data (NAACL-HLT 2021)

• 动机

单元格、行、列向量 辅助任务

• 模型

初始化: BERT + positional embedding

Contextualizing: Row/Col Transformers

$$oldsymbol{x}_{i,j}^{L+1} = rac{oldsymbol{r}_{i,j}^L + oldsymbol{c}_{i,j}^L}{2}$$

Row/Col Representation



### TABBIE: Pretrained Representations of Tabular Data (NAACL-HLT 2021)

• 辅助任务

Cell Corruption Detection

$$P_{\text{corrupt}}(\text{cell}_{i,j}) = \sigma(\boldsymbol{w}^\intercal \boldsymbol{x}_{i,j}^L)$$

(a) original table

| Country | Gold   |
|---------|--------|
| France  | 9      |
| Italy   | 5      |
| Spain   | 4      |
|         | France |

(b) sample cells from other tables

| Rank | Size   | Gold |
|------|--------|------|
| 1    | France | 3.6  |
| 2    | Italy  | 5    |
| 3    | Spain  | 4    |

(c) swap cells on the same row (d) swap cells on the same column

| Rank | Country | Gold  |
|------|---------|-------|
| 1    | France  | 9     |
| 2    | 5       | Italy |
| 3    | Spain   | 4     |

| Rank | Country | Gold |
|------|---------|------|
| 1    | France  | 9    |
| 3    | Italy   | 5    |
| 2    | Spain   | 4    |



### TABBIE: Pretrained Representations of Tabular Data (NAACL-HLT 2021)

### • 效果

| N | Method        | MAP  | MRR    | Ndcg-10 | Ndcg-20 |
|---|---------------|------|--------|---------|---------|
|   | GPM           | 25.1 | 37.5   | -       | -       |
| 1 | GPM+TH        | 25.5 | 0.38.0 | 27.1    | 31.5    |
| 1 | <b>TaBERT</b> | 33.1 | 41.3   | 35.1    | 38.1    |
|   | TABBIE (FREQ) | 37.9 | 49.1   | 41.2    | 43.8    |
|   | TABBIE (MIX)  | 37.1 | 48.7   | 40.4    | 43.1    |
|   | GPM           | 28.5 | 40.4   | -       | -       |
| 2 | GPM+TH        | 33.2 | 44.0   | 36.1    | 41.3    |
| 2 | TaBERT        | 51.1 | 60.1   | 54.7    | 56.6    |
|   | TABBIE (FREQ) | 52.0 | 62.8   | 55.8    | 57.6    |
|   | TABBIE (MIX)  | 51.7 | 62.3   | 55.6    | 57.2    |
|   | GPM           | 28.5 | 35.5   | -       | -       |
| 2 | GPM+TH        | 40.0 | 50.8   | 45.2    | 48.5    |
| 3 | <b>TaBERT</b> | 53.3 | 60.9   | 56.9    | 57.9    |
|   | TABBIE (FREQ) | 54.5 | 63.3   | 57.9    | 58.9    |
|   | TABBIE (MIX)  | 54.1 | 62.3   | 57.4    | 58.7    |

| Method        | n=1000 | n=10000 | n=all |
|---------------|--------|---------|-------|
| Sherlock      | -      | -       | 86.7  |
| SATO          | -      | -       | 90.8  |
| TaBERT        | 84.7   | 93.5    | 97.2  |
| TABBIE (FREQ) | 84.7   | 94.2    | 96.9  |
| TABBIE (MIX)  | 84.1   | 93.8    | 96.7  |

| N | Method        | MAP  | MRR  | Ndcg-10 | Ndcg-20 |
|---|---------------|------|------|---------|---------|
|   | Entitables    | 36.8 | 45.2 | -       | -       |
| 1 | <b>TaBERT</b> | 43.2 | 55.7 | 45.6    | 47.7    |
| 1 | TABBIE (FREQ) | 42.8 | 54.2 | 44.8    | 46.9    |
|   | TABBIE (MIX)  | 42.6 | 54.7 | 45.1    | 46.8    |
| 2 | Entitables    | 37.2 | 45.1 | -       | -       |
|   | <b>TaBERT</b> | 43.8 | 56.0 | 46.4    | 48.8    |
|   | TABBIE (FREQ) | 44.4 | 57.2 | 47.1    | 49.5    |
|   | TABBIE (MIX)  | 43.7 | 55.7 | 46.2    | 48.6    |
| 3 | Entitables    | 37.1 | 44.6 | -       | -       |
|   | <b>TaBERT</b> | 42.9 | 55.1 | 45.6    | 48.5    |
|   | TABBIE (FREQ) | 43.4 | 56.5 | 46.6    | 49.0    |
|   | TABBIE (MIX)  | 42.9 | 55.5 | 45.9    | 48.3    |

| Corruption         | Method        | Prec. | Rec. | F1   |
|--------------------|---------------|-------|------|------|
| I                  | TaBERT        | 85.5  | 83.0 | 84.2 |
| Intra-row swap     | TABBIE (FREQ) | 99.0  | 81.4 | 89.4 |
|                    | TABBIE (MIX)  | 99.6  | 95.8 | 97.7 |
| Intra column swan  | TaBERT        | 31.2  | 19.0 | 23.7 |
| Intra-column swap  | TABBIE (FREQ) | 90.9  | 22.3 | 35.8 |
|                    | TABBIE (MIX)  | 91.5  | 55.0 | 68.8 |
| Intua table awan   | TaBERT        | 81.2  | 69.5 | 74.9 |
| Intra-table swap   | TABBIE (FREQ) | 98.2  | 73.3 | 84.0 |
|                    | TABBIE (MIX)  | 98.4  | 86.2 | 91.9 |
| Dan Jam EDEO a all | TaBERT        | 86.7  | 87.0 | 86.8 |
| Random FREQ cell   | TABBIE (FREQ) | 99.3  | 98.2 | 98.8 |
|                    | TABBIE (MIX)  | 99.1  | 98.1 | 98.6 |
| All                | TaBERT        | 75.6  | 65.2 | 70.0 |
| All                | TABBIE (FREQ) | 98.2  | 69.5 | 81.4 |
|                    | TABBIE (MIX)  | 97.8  | 84.1 | 90.5 |

Joint Verification and Reranking for Open Fact Checking Over Tables (ACL-IJCNLP 2021)

The Daily Express and the Sunday Mirror are

• 动机

开放世界设定下的表格事实验证

• 模型

Entity-based retrieval

$$score(q, t) = \sum_{i=1}^{n} \max_{j=1}^{m} z(e_q^i)^{\mathsf{T}} \cdot z(c_t^j)$$

Verification

$$\alpha_{ij}^{h} = \sigma \left( \frac{W_{Q}^{h} f(d_{q}^{i}) (W_{K}^{h} f(d_{q}^{j}))^{T}}{\sqrt{dim(K)}} \right)$$

$$A_{i}^{h} = \sum_{j \in D_{q}} \alpha_{ij} W_{V}^{h} f(d_{q}^{j})$$

$$f^{*}(d_{q}^{k}) = [f(d_{q}^{k}), A_{i}^{1}, ..., A_{i}^{h}]$$



# Joint Verification and Reranking for Open Fact Checking Over Tables (ACL-IJCNLP 2021)

#### • 模型

Joint Reranking and Verification

$$p(s, v|q, D_q) = \sigma(W(F^*(D_q)_s)_v)$$

$$p_v(v|q, D_q) = \sum_{t \in D_q} p(v, s = t|q, D_q)$$

$$p_s(s|q, D_q) = \sum_{v_q \in \{true, false\}} p(s, v = v_q|q, D_q)$$

Ternary Verification

$$p(i|q, t, D_q) = \sigma(W'(F^*(D_q)_t)_i)$$

$$\sum_{t \in D_q} p(i = true|q, t) > \sum_{t \in D_q} p(i = false|q, t)$$

| Model                                   | Dev  | Test        | Simple Test | Complex Test | Small Test |
|-----------------------------------------|------|-------------|-------------|--------------|------------|
| Table-BERT (Chen et al., 2020b)         | 66.1 | 65.1        | 79.1        | 58.2         | 68.1       |
| LogicalFactChecker (Zhong et al., 2020) | 71.8 | 71.7        | 85.4        | 65.1         | 74.3       |
| ProgVGAT (Yang et al., 2020)            | 74.9 | 74.4        | 88.3        | 67.6         | 76.2       |
| TAPAS (Eisenschlos et al., 2020)*       | 81.0 | 81.0        | 92.3        | 75.6         | 83.9       |
| Ours (Oracle retrieval)                 | 78.2 | 77.6        | 88.9        | 72.1         | 79.4       |
| Ours (1 retrieved table)                | 74.1 | 73.2        | 86.7        | 67.8         | 76.6       |
| Ours (Ternary loss, 3 tables)           | 73.8 | 73.5        | 86.9        | 68.1         | 76.9       |
| Ours (Ternary loss, 5 tables)           | 74.1 | 73.7        | 87.1        | 67.9         | 76.5       |
| Ours (Ternary loss, 10 tables)          | 73.9 | 73.1        | 86.5        | 67.9         | 77.3       |
| Ours (Joint loss, 3 tables)             | 74.6 | 73.8        | 87.0        | 68.3         | 78.1       |
| Ours (Joint loss, 5 tables)             | 75.9 | <b>75.1</b> | 87.8        | 69.5         | 77.8       |
| Ours (Joint loss, 10 tables)            | 73.9 | 73.8        | 86.9        | 68.1         | 76.9       |

效果

# 总结

### • 编码

不使用预训练模型:融合关键词、位置信息 使用预训练模型:文本线性化、修改模型

#### 推理

视下游任务而定

### • 新问题

开放世界表格处理 数据筛选

### • 未来方向

异构数据编码 ≠ 跨表编码/多表任务 ? 单元格为单位过滤 ?