Design Verification Model/Property Checking: Computation Tree Logic

Virendra Singh

Associate Professor

Computer Architecture and Dependable Systems Lab

Department of Electrical Engineering

Indian Institute of Technology Bombay

http://www.ee.iitb.ac.in/~viren/

E-mail: viren@ee.iitb.ac.in

EE-709: Testing & Verification of VLSI Circuits

Semantics of CTL

Let $M = (S, \rightarrow, L)$ be a model for CTL, and s in S, φ a CTL formula. The relation M, $s \models \varphi$ is defined by structural induction on φ .

$$1.M, s = T$$

$$2.M, s \neq \underline{I}$$

$$3.M, s \models p, iff, p \in L(s_1)$$

$$4.M, s \models \neg \phi, iff, M, s \not\models \phi$$

$$5.M, s \models \phi_1 \land \phi_2, iff, M, s \models \phi_1 and, M, s \models \phi_2$$

$$6.M, s \models \phi_1 \lor \phi_2, iff, M, s \models \phi_1 or, M, s \models \phi_2$$

$$7.M, s \models \phi_1 \rightarrow \phi_2, iff, M, s \models \phi_2 whenever, M, s \models \phi_1$$

Semantics of CTL

$$8.M, s \models AX\phi, iff, \forall s_1, s.t., s \rightarrow s_1; M, s_1 \models \phi$$

$$9.M, s = EX\phi, iff, \exists s_1, s.t., s \to s_1; M, s_1 = \phi$$

$$10.M, s \models AG\phi, iff, \forall paths, s_1 \rightarrow s_2 \rightarrow s_3..., \forall s_i, M, s_i \models \phi$$

11.M,
$$s \models EG\phi$$
, iff, $\exists path, s_1 \rightarrow s_2 \rightarrow s_3..., \forall s_i; M, s_i \models \phi$

$$12.M, s \models AF\phi, iff, \forall paths, s_1 \rightarrow s_2 \rightarrow s_3..., \exists s_i; M, s_i \models \phi$$

13.
$$M$$
, $s \models EF\phi$, iff, $\exists path, s_1 \rightarrow s_2 \rightarrow s_3..., \exists s_i; M$, $s_i \models \phi$

$$14.M, s \models A[\phi U \varphi], iff, \forall paths, s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow ..., \forall s_i,$$

$$M, s_i \models \phi_2, \forall j < i; M, s_i \models \phi_1$$

15.M,
$$s \models E[\phi U \varphi]$$
, iff, $\exists path, s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow ..., \forall s_i$,

$$M, s_i \models \phi_2, \forall j < i; M, s_j \models \phi_1$$

Computation Tree Logic - Equivalence

$$AX\phi \equiv \neg EX \neg \phi$$

$$AF\phi \equiv A[TU\phi]$$

$$EF\phi \equiv E[TU\phi]$$

$$AG\phi \equiv \neg EF \neg \phi \equiv \neg E[TU \neg \phi]$$

$$EG\phi \equiv \neg AF \neg \phi \equiv \neg A[TU \neg \phi]$$

Essential Set: AU, EU, and EX

Adequate Set of CTL Operators

Theorem: A set of temporal connectives in CTL is adequate if, and only if, it contains at least one of {AX, EX}, at least one of {EG, AF, AU} and EU.

09 Apr 2012

- 1. find all nodes at which the formula holds
- 2. determines whether all initial states are contained in the set of nodes

Kripke structure

- Labeled variables are true, and the missing variables are false
- extend this labeling rule to include formulas or subformulas that evaluate true at the node

- Consider AND (↑) and NOT (¬) operators
- if both operand formulas are true at the node, the resulting AND formula is true at the node and it is labeled at the node
- If the operand formula is not true (in other words, it is missing at a node), then the resulting NOT formula is true and it is labeled at the node
- only need to consider EXΦ, E(ΦUΨ), and AFΦ temporal operators

Algorithm for Checking AF(Φ)

input: a Kripke structure K and a CTL formula EX(Φ).

output: labeling of the states where $AF(\Phi)$ holds

Verify_AF(Φ): // check CTL formula AF(Φ)

for each state s of K, add label AF(Φ) if Φ is labeled at a all successor of s

Checking CTL Formula: АFФ

Algorithm for Checking EX(Φ)

input: a Kripke structure K and a CTL formula EX(Φ).

output: labeling of the states where EX(Φ) holds

Verify_EX(Φ): // check CTL formula EX(Φ)

for each state s of K, add label EX(Φ) if Φ is labeled at a successor of s

09 Apr 2012

10

Checking CTL Formula: ЕХФ

Algorithm for Checking E(Φ U Ψ)

- assume formulas Φ and Ψ have been verified
- E(Φ U Ψ) is true at a node if there is a path from the node to a Ψ -labeled node, and at every node along that partial path Φ is labeled but Ψ is not
- A node satisfies E(Φ U Ψ) if Ψ is labeled at the node or Φ but not Ψ is labeled at the node and its successor is either labeled Ψ or E(Φ U Ψ)

Checking CTL Formula: Ε[ΦUΨ]

Algorithm for Checking E(Φ U Ψ)

input: a Kripke structure K and a CTL formula E(fUΨ).

output: labeling of the states where E(ΦU Ψ) holds.

Verify_EU(Φ , Ψ): // check CTL formula E(Φ U Ψ)

- 1. M = empty.
- Add label E(Φ U Ψ) to all states that have label Ψ. Call this set of states L.
- 3. For every state in L, if there is a predecessor, p, that is not in L and has a label Φ, add label E(Φ U Ψ) to p. Add p to set M. Set M consists of newly added nodes.
- 4. Set L = M and M = empty.
- 5. Repeat steps 3 and 4 until L is empty.

Mutual Exclusion: Implementation 2

1. Safety

Only one process in the critical section

$$\rightarrow$$
 AG \neg (c₁ \wedge c₂)

2. Liveness

 Whenever any process request to enter its critical section, it will eventually be permitted

$$\rightarrow$$
 AG (t₁ \rightarrow AFc₁)

3. Non Blocking

For every state satisfying n₁, there is a successor satisfying t₁

$$\rightarrow$$
 AG (n₁ \rightarrow EX t₁)

4. No strict sequencing

$$\triangleright$$
 EF(c₁ \land E[c₁ U (\neg c₁ \land E [\neg c₂ U c₁])])

Mutual Exclusion: Implementation 2

09 Apr 2012

 $\Phi_2 = \neg c_1 \wedge E [\neg c_2 \cup c_1])$ $0:n_1n_2$ $_{3:}E[\neg c_2Uc_1$ **S**₁ **S**₅ 0:n₁t₂ $0:t_1n_2$ $_{2}E[\neg c_{2}\overline{Uc}_{1}$ S_3 S_9 S_6 $0:c_1n_2$ $E[\neg c_2Uc_1]$ 0:n₁c₂ S_2 $0:t_1t_2$ $0:t_1t_2$ $_{2:}E[\neg c_{2}Uc_{1}$ $0:c_1t_2$ 0:t₁c₂ S_4

20

21

 $\mathsf{EF}\Phi_4 = \mathsf{E}(\mathsf{TU}\Phi_4)$

SAT Formulation

```
\phi is T : return S
\phi is \neg T: return null
\phi is atomic: return \{s \in S \mid \phi \in L(s)\}
\phi is \neg \phi_1: return S - SAT(\phi_1)
\phi is \phi_1 \wedge \phi_2: return SAT(\phi_1) \cap SAT(\phi_2)
\phi is \phi_1 \vee \phi_2: return SAT(\phi_1) \cup SAT(\phi_2)
\phi is \phi_1 \rightarrow \phi_2: return SAT(\neg \phi_1 \lor \phi_2)
```


SAT Formulation

```
\phi is AX\phi_1: return SAT(\negEX\neg \phi_1)
```

 ϕ is EX ϕ_1 : return SAT $_{EX}(\phi_1)$

 ϕ is A[ϕ_1 U ϕ_2]: return SAT(\neg (E[$\neg\phi_2$ U($\phi_1 \land \phi_2$)] \lor EG($\neg\phi_2$))

 ϕ is E[ϕ_1 U ϕ_2] : return SAT_{EU}(ϕ_1 , ϕ_2)

 ϕ is EF ϕ_1 : return SAT(E(T U ϕ_1))

 ϕ is AG ϕ_1 : return SAT $(\neg AF \neg \phi_1)$

 ϕ is AF ϕ_1 : return SAT $_{AF}(\phi_1)$

 ϕ is AG ϕ_1 : return SAT(\neg EF $\neg \phi_1$)

Model Checking Algorithms: EX

- Function SAT_{EX}(Φ)
 - /* Determines the set of states satisfying ΕΧΦ */
- Local var X, Y
- Begin
 - $-X := SAT (\Phi)$
 - $-Y := pre_{=}(X)$
 - Return Y
- End

Model Checking Algorithms: EX

- Function SAT_{AF}(Φ) /* Determines the set of states satisfying AFΦ */
- local var X, Y
- Begin
 - -X:=S
 - $Y := SAT (\Phi)$
 - repeat until X = Y
 - begin
 - X := Y
 - Y := Y U pre_y (Y)
 - end
 - return Y

Model Checking Algorithms: EU

- Function SAT_{EU}(φ, Ψ) /* Determines the set of states satisfying EU*/
- local var W, X, Y
- Begin
 - W := SAT (φ)
 - X := S
 - $Y := SAT (\Psi)$
 - repeat until X = Y
 - begin
 - X := Y
 - Y := Y U(W ∩ pre_¬(Y))
 - end
 - return Y
- End

Symbolic Model Checking

- implicit representation
- graphs and their traversal are converted to Boolean functions and Boolean operations
- all model-checking operations are operations on Boolean functions

Thank You

