Prova scritta di Fisica II - Appello Straordinario - 18 Aprile 2023

Nome Cognome
Matricola Orale in questo appello \square Ritirato/a \square
Nota Bene: Il formulario vuole essere un supporto qualora non ricordiate alcune formule e
non abbiate tempo per ricavarle. Tenete presente che il solo scrivere la formula giusta trovata
nel formulario per rispondere ad una domanda non porta ad avere alcun punteggio in quella
domanda. Si ricorda anche che tutte le risposte vanno correttamente motivate, la sola risposta
numerica non è sufficiente per avere punti relativi alla domanda in questione.

Primo Esercizio

Considerare il circuito illustrato in figura, formato da tre nodi (O, P, Q) collegati da condensatori con valori $C_1 = 1 \text{ nF}$, $C_2 = 1 \text{ nF}$, $C_3 = 2 \text{ nF}$, $C_4 = 3 \text{ nF}$ e da un generatore con forza elettromotrice $\mathcal{E} = 10 \text{ V}$.

- 1. Determinare il circuito equivalente (5 punti).
- 2. Determinare la differenza di potenziale tra i nodi O e P del circuito (5 punti).
- 3. Determinare le cariche q_1, q_2, q_3, q_4 immagazzinate in ciascuno dei condensatori (6 punti).

Secondo Esercizio

Un fascio di ioni è composto da due tipi di particelle aventi stessa massa $m = 10^{-20}$ Kg ma cariche q_1 e q_2 differenti. Il fascio entra con velocità $v = 10^4$ m/s in una camera in cui è presente un campo magnetico entrante (ortogonale alla velocità) di intensità B = 1 T. Le cariche q_1 vengono deviate verso sinistra, compiono un quarto di circonferenza di raggio $r_1 = 50$ cm e poi colpiscono una parete. Le cariche q_2 vengono deviate verso destra, compiono una semicirconferenza di diametro $d_2 = 2r_1$ e poi colpiscono la parete.

- 1. Determinare il valore (compreso di segno) di q_1 e q_2 (6 punti).
- 2. Calcolare i tempi t_1 e t_2 che trascorrono dal momento in cui le cariche di tipo 1 e 2 entrano nella camera al momento in cui colpiscono le pareti (5 **punti**).
- 3. Determinare verso, direzione e intensità del campo elettrico che bisognerebbe aggiungere all'interno della camera per far sì che la traiettoria delle particelle non venga più curvata dal campo magnetico (5 punti).

Soluzione del primo esercizio

1. Per trovare il circuito equivalente, applichiamo le regole per i condensatori in serie e parallelo fino ad ottenere una singola capacità C_{eq} connessa al generatore. Prima troviamo la capacità associata ai due condensatori in parellelo C_1 e C_2 :

$$C_p = C_1 + C_2 = 2 \,\mathrm{nF}$$
.

Questa capacità si trova in serie con C_3 :

$$C_s = \left(\frac{1}{C_p} + \frac{1}{C_3}\right)^{-1} = \frac{C_p C_3}{C_p + C_3} = 1 \text{ nF}.$$

Infine, questa capacità si trova in parallelo con C_4 . Otteniamo dunque:

$$C_{\rm eq} = C_s + C_4 = 4 \,\mathrm{nF}\,.$$

2. Siano V_O, V_P, V_Q i potenziali nei nodi del circuito indicati con A, B, C nel disegno. Abbiamo le eguaglianze $V_O - V_Q = \mathcal{E}$ e inoltre, dato che la stessa carica è immagazzinata in C_3 e in C_p , $C_p(V_O - V_P) = C_3(V_P - V_Q)$. Rimpiazzando $V_Q = V_O - \mathcal{E}$ in quest'ultima equazione, si trova:

$$V_O - V_P = \frac{C_3}{C_n + C_3} \mathcal{E} = \frac{\mathcal{E}}{2} = 5 \,\text{V}.$$

3. La carica immagazzinata in q_4 è data da

$$q_4 = C_4 \mathcal{E} = 3 \cdot 10^{-8} \,\mathrm{C}$$
.

La carica immagazzinata in C_3 è data data

$$q_3 = C_3(V_P - V_Q) = C_3(V_P - V_O + \mathcal{E}) = 1 \cdot 10^{-8} \,\mathrm{C}$$
.

La carica totale immagazzinata in C_1 e C_2 deve essere uguale a q_3 , assumendo che il conduttore del nodo B sia neutro. Dunque $q_1 + q_2 = q_3$. Poichè i due condensatori sono uguali, ne consegue che

$$q_1 = q_2 = \frac{q_3}{2} = 5 \cdot 10^{-9} \,\mathrm{C}$$
.

Soluzione del secondo esercizio

1. Analizzando la direzione della forza di Lorentz nei due casi si trova che $q_1 < 0$ e $q_2 > 0$. Poiché le velocità delle particelle e i raggi delle due circonferenze sono uguali, anche q_1 e q_2 devono essere uguali in modulo. Si trova quindi

$$|q_1| = |q_2| = \frac{mv}{r_1 B} = 2 \times 10^{-16} \,\mathrm{C}.$$

2. Entrambi i tipi di particelle hanno la stessa velocità angolare $\omega = |q_1|B/m = |q_2|B/m = 2 \times 10^4 \ s^{-1}$ ma percorrono frazioni di circonferenza differenti. Le particelle di tipo 1 spazzano un angolo $\pi/2$, mentre quelle di tipo 2 spazzano un angolo π . Si trova quindi

$$t_1 = \frac{\pi}{2\omega} = 0.79 \times 10^{-4} \,\mathrm{s}$$

$$t_2 = 2t_1 = \frac{\pi}{\omega} = 1.57 \times 10^{-4} \,\mathrm{s}$$

3. Affinché la forza dovuta al campo elettrico aggiunto si opponga a quella di Lorentz, \vec{E} deve essere diretto verso sinistra e si deve avere

$$\vec{F}_{\text{tot}} = q_1(\vec{E} + \vec{v} \times \vec{B}) = q_2(\vec{E} + \vec{v} \times \vec{B}) = 0$$

e quindi

$$E = vB = 10^4 \,\mathrm{V/m}$$