- 1. Evaluate the following integrals using the method of substitution.
 - (a) $\int \frac{1}{\ln(x^x)} dx$.
 - (b) $\int \frac{e^{2x}}{\sqrt{3-4e^{2x}}} dx$.
 - (c) $\int \frac{1}{\sqrt{4-(x+3)^2}} dx$.
- 2. Suppose that y = f(x) and y = g(x) are both continuous functions on the interval [a, b]. Determine if each statement below is always true or sometimes false.
 - (a) Suppose that f(c) > g(c) for some number $c \in (a, b)$. Then the area bounded by f, g, x = a, and x = b can be found by evaluating the integral $\int_a^b (f(x) g(x)) dx$.
 - (b) If $\int_a^b (f(x) g(x)) dx$, evaluates to -5, then the area bounded by f, g, x = a, and x = b is 5.
 - (c) If f(x) > g(x) for every $x \in [a, b]$, then $\int_a^b |f(x) g(x)| dx = \int_a^b (f(x) g(x)) dx$
- 3. Find the area bounded by the region between the curves $f(x) = x^3 + 2x^2$ and $g(x) = x^2 + 2x$.
- 4. Find the area bounded by the region enclosed by the three curves $y = x^3$, y = -x, and y = -1.
- 5. Find the area bounded by the curves $y = \cos(x)$ and $y = \sin(2x)$ on the interval $[0, \frac{\pi}{2}]$.
- 6. Find the area of the triangle with vertices at the points (0,1), (3,4), and (4,2). USE CALCULUS.
- 7. For each function below: (i) determine which method to use to evaluate the function (formula, u-substitution, or integration by parts, and (ii) evaluate the integral.
 - (a) $\int \frac{\sqrt{\ln(x)}}{x}$.
 - (b) $\int (\ln(x))^2$.