

séries aumériques

1. Généralités

Définition 1.1

- (1) Soit (u_n) une suite numérique. La série $\sum_n u_n$ est la donnée de la suite (u_n) , appelée terme général et de la suite des sommes partielles (S_n) où pour tout n, $S_n = \sum_{k=0}^n u_k$.
- (2) On dit que la série $\sum u_n$ converge si la suite des sommes partielles converge. Sa limite est alors appelée somme de la série et est notée $\sum_{k=0}^{+\infty} u_k$.

Exemple 1.2

La série géométrique $\sum_n q^n \ (q \in \mathbb{C})$ converge si et seulement si |q| < 1. En effet, soit $n \in \mathbb{N}$. On a si $q \neq 1$

$$\sum_{k=0}^{n} q^k = \frac{1 - q^{n+1}}{1 - q}$$

et si q=1 alors $\sum_{k=0}^{n} q^k = n$, donc la suite diverge si $|q| \ge 1$, et si |q| < 1, alors

$$\lim_{n \to +\infty} \sum_{k=0}^{n} q^k = \frac{1}{1-q}.$$

Proposition 1.3

Si la série $\sum_{n\geq 0}u_n$ converge, alors $\lim_{n\to +\infty}u_n=0.$

Remarque 1.4

La réciproque est fausse. En effet, la série harmonique $\sum_{n>0} \frac{1}{n}$ diverge, alors que $\lim_{n\to+\infty} \frac{1}{n} = 0$.

Remarque 1.5

On ne modifie pas la nature d'une série en modifiant un nombre fini de ses termes.

Proposition 1.6: Linéarité

Soit (u_n) et (v_n) deux suites numériques, et $\lambda, \mu \in \mathbb{C}$. Si les séries $\sum u_n$ et $\sum v_n$ convergent, alors la série $\sum_n (\lambda u_n + \mu v_n)$ converge aussi et $\sum_{n=0}^{+\infty} (\lambda u_n + \mu v_n) = \lambda \sum_{n=0}^{+\infty} u_n + \mu \sum_{n=0}^{+\infty} v_n$.

Proposition 1.7: Séries télescopiques

Soit (u_n) une suite. La série $\sum_n (u_{n+1} - u_n)$ converge si et seulement si la suite (u_n) converge.

2. Série à terme général positif

Proposition 2.1

Soit $\sum_n u_n$ une série à terme général positif. Alors la suite des sommes partielles est croissante. En particulier, la série $\sum u_n$ converge si et seulement si la suite de ses sommes partielles est majorée.

Proposition 2.2

Soient u et v deux suites réelles positives telles que

$$\forall n \in \mathbb{N}, \ 0 \le u_n \le v_n.$$

- (1) Si $\sum v_n$ converge, alors $\sum u_n$ converge aussi.
- (2) Si $\sum u_n$ diverge, alors $\sum v_n$ diverge aussi.

Théorème 2.3

Soient u et v deux suites vérifiant

$$\forall n \in \mathbb{N}, \quad 0 \le u_n, \ 0 \le v_n \text{ et } u_n = O(v_n).$$

- (1) Si la série $\sum v_n$ converge, alors la série $\sum u_n$ converge.
- (2) Si la série $\sum u_n$ diverge, alors la série $\sum v_n$ diverge.

Corollaire 2.4

Soient u et v deux suites vérifiant

$$\forall n \in \mathbb{N}, \quad 0 \le u_n, \ 0 \le v_n \text{ et } u_n = o(v_n).$$

- (1) Si la série $\sum v_n$ converge, alors la série $\sum u_n$ converge.
- (2) Si la série $\sum u_n$ diverge, alors la série $\sum v_n$ diverge.

Théorème 2.5: Règle des équivalents

Soient u et v deux suites vérifiant

$$\forall n \in \mathbb{N}, \quad 0 \le u_n, \ 0 \le v_n \text{ et } u_n \sim v_n.$$

La série $\sum u_n$ converge si et seulement si la série $\sum v_n$ converge.

3. Comparaison avec une intégrale et série de Riemann

Proposition 3.1

Soit f une fonction continue et décroissante sur \mathbb{R}^+ . Alors

$$\forall n \in \mathbb{N}, \ \int_{1}^{n+1} f(t) \, dt \le \sum_{k=1}^{n} f(k) \le \int_{0}^{n} f(t) \, dt.$$

Remarque 3.2

Il existe un énoncé analogue si f est croissante.

Proposition 3.3

La série de Riemann $\sum_{n\geq 1}\frac{1}{n^{\alpha}}$ converge si et seulement si $\alpha>1.$

4. Convergence absolue

Théorème 4.1

Soit $u \in \mathbb{C}^{\mathbb{N}}$. Si la série de terme général $|u_n|$ converge, alors la série $\sum u_n$ converge aussi.

Remarque 4.2

Une série peut converger sans être absolument convergente. On dit alors qu'elle est semi-convergente. Par exemple, la série harmonique alternée $\sum_{n>0} \frac{(-1)^n}{n}$ converge, alors que la série de terme général $\frac{1}{n}$ diverge.

Proposition 4.3

Si la série $\sum u_n$ est absolument convergente, alors $\left|\sum_{n=0}^{+\infty}u_n\right| \leq \sum_{n=0}^{+\infty}|u_n|$.

5. Séries alternées

Définition 5.1

Soit u une suite réelle. On dit que la série $\sum u_n$ est alternée s'il existe une suite (v_n) de signe constant telle que pour tout n, $u_n = (-1)^n v_n$.

Théorème 5.2: Séries alternée

Soit v une suite positive décroissante de limite nulle. Alors la série alternée $\sum (-1)^n v_n$ converge.

Remarque 5.3

Le théorème des suites alternées est également vrai pour une suite (v_n) négative.

Théorème 5.4

Soit v une suite réelle de signe constant telle que la suite $(|v_n|)$ est décroissante de limite nulle. Alors la série $\sum_{n} (-1)^n v_n \text{ converge et, pour tout } n, \text{ le reste partiel } R_n = \sum_{k=n+1}^{+\infty} (-1)^k v_k \text{ est du même signe que } (-1)^{n+1} v_{n+1} \text{ et } |R_n| \leq |v_{n+1}|.$

6. Développement décimal d'un réel

Définition 6.1

Soit $(b_n)_{n\geq 0}$ une suite d'entiers tels que $b_n\in \llbracket 0,9\rrbracket \rrbracket$ pour $n\geq 1$. La série $\sum \frac{b_n}{10^n}$ converge. Soit x la somme de cette série. On écrit alors $x=b_0,b_1b_2\cdots_n\ldots$ et on dit qu'il s'agit d'un développement décimal de x.

Exemple 6.2

0,999... est un développement décimal de 1.1,0 en est un autre.

Théorème 6.3

Soit x un réel positif. Alors

- (1) x admet au moins un développement décimal : $x = \sum_{n=0}^{+\infty} \frac{d_n}{10^n}$ où $d_0 = \lfloor x \rfloor$ et $d_n = \lfloor 10^n x \rfloor 10 \lfloor 10^{n-1} x \rfloor$ pour tout $n \geq 1$.
- (2) (a) Si x = 0 ou si x n'est pas décimal, alors le développement est unique.
 - (b) Si x est un nombre décimal non nul, alors x admet deux développements décimaux distincts. L'un contient un nombre fini de chiffres non nuls, il est appelé développement propre et l'autre contient une infinité de 9 et est appelé développement impropre.

Proposition 6.4

Soit x un réel non décimal. Alors $x \in \mathbb{Q}$ si et seulement si son développement décimal est périodique.