从 Cauchy-Riemann 方程 到代数学基本定理

Alan C. Lazer

从 C. F. Gauss (高斯) 的博士论文开始,至今代数学基本定理的证明至少有 11 种方法. 代数学基本定理的叙述为: 对于每个非常数复多项式 p(z), 存在一个复数 z_0 , 使得 $p(z_0) = 0$ [3, 7, 8]. 然而,为什么还有这么多人热衷于寻找新的证明方式呢?

我们的首要理由是,它给出了 Cauchy-Riemann (柯西 - 黎曼) 方程的一个应用,柯西 - 黎曼方程通常在本科生复变函数课程的前两周就学到了.

我们的证明主要分3步.第一步是本科第一学期的微积分.

引理 1. 如果 $\omega(x,y)$ 是 \mathbb{R}^2 上实值函数,具有二阶偏导数,在点 (x_0,y_0) 处取得最大值. 那么

$$\Delta\omega(x_0,y_0)\equiv rac{\partial^2\omega}{\partial x^2}(x_0,y_0)+rac{\partial^2\omega}{\partial y^2}(x_0,y_0)\leq 0.$$

证明 一元函数 $x \mapsto \omega(x, y_0), \mathbb{R} \mapsto \mathbb{R}$ 和 $y \mapsto \omega(x_0, y), \mathbb{R} \mapsto \mathbb{R}$ 分别在 x_0 和 y_0 处取得极大值. 由单变量微分学二阶导数检验法即得 $\frac{\partial^2 \omega}{\partial x^2}(x_0, y_0) \leq 0$ 和 $\frac{\partial^2 \omega}{\partial y^2}(x_0, y_0) \leq 0$. 引理1得证.

我们的第2步是复多项式的一个性质.

引理 2. 令 Q(z) 是一非零复多项式. 则存在数 d>0, 使得如果 Q(a)=0, 则 $Q(a+d)\neq 0$.

证明 由多项式因子分解定理即得 Q(z) = 0 有有限个解. 令 d 是小于任意两个不同根的距离的正数,即得引理的论断. 这就证明了引理 2.

我们的第3步是一个恒等式,在一些简要的回顾之后我们将给出其证明.

令 D 是复平面 $\mathbb C$ 的开子集. 回忆一下,定义在 D 上的复值函数在 D 中是全纯的,如果它在 D 中每一点处可微. 用通常的方式,我们把复平面 $\mathbb C$ 等同于 $\mathbb R^2$,并注意到: 如果 f(z)=u(x,y)+iv(x,y) (其中 u 和 v 是实的) 在 D 中是全纯的,则熟知的柯西 – 黎曼方程蕴涵着

$$f'(z) = u_x(x, y) + iv_x(x, y) = v_y(x, y) - iu_y(x, y).$$

如果 f' 也是 D 中的全纯函数,则

$$f''(z) = u_{xx}(x,y) + iv_{xx}(x,y) = -u_{yy}(x,y) - iv_{yy}(x,y).$$

在上述方程中令实部与虚部分别相等, 即得 $\Delta u(x,y) = 0$, $\Delta v(x,y) = 0$.

译自: Math. Magazine, Vol.79 (2006), No.3, p.210-213, From the Cauchy-Riemann Equations to the Fundamental Theorem of Algebra, Alan C. Lazer. Copyright ©2006 the Mathematical Association of America. Reprinted with permission. All rights reserved. 美国数学协会授予译文出版许可.

下面诸事实在复变课程中通常只是列出而不予证明,因为其证明与单变量微积分中的是一样的[1,2].

- (i) D 中两个全纯函数的和,积仍为 D 中的全纯函数;对于和,积的导数,通常的公式成立.
- (ii) 若 g 是 D 中的全纯函数,并且对每个 $z \in D$ 有 $g(z) \neq 0$,那么 1/g 在 D 中是全纯的,且

$$\left(\frac{1}{g}\right)' = -g'/g^2.$$

(iii) 如果

$$p(z) = a_0 + a_1 z + \dots + a_n z^n,$$

其中 a_0, a_1, \ldots, a_n 是复常数, 那么 p 在 \mathbb{C} 中全纯, 并且

$$p'(z) = a_1 + \dots + (n-1)a_{n-1}z^{n-2} + na_nz^{n-1}.$$

下面我们来证明上面提到的恒等式.

引理 3. 若 f(z), f'(z) 均在 D 中全纯,则有

$$\Delta(|f(z)|^2) = 4|f'(z)|^2.$$

证明 令 f(z) = u(x,y) + iv(x,y),则 $|f(z)|^2 = (u(x,y))^2 + (v(x,y))^2$. 由此即得,如果 $\omega(x,y) = |f(z)|^2$,那么 $\omega_x = 2uu_x + 2vv_x$, $\omega_{xx} = 2uu_{xx} + 2(u_x)^2 + 2vv_{xx} + 2(v_x)^2$,同样地, $\omega_{yy} = 2uu_{yy} + 2(u_y)^2 + 2vv_{yy} + 2(v_y)^2$.又由于在 D 中 $\Delta u = \Delta v = 0$,因此

$$\Delta\omega = 2(u_x)^2 + 2(v_x)^2 + 2(u_y)^2 + 2(v_y)^2 = 4|f'(z)|^2,\tag{1}$$

最后一个等号由柯西 - 黎曼方程即得. 这就证明了引理 3.

代数学基本定理的证明: 令 p(z) 是非常数复多项式,则 p'(z) 是非零复多项式. 因此存在数 d, d > 0, 使得当 p'(z) = 0 时 $p'(z + d) \neq 0$.

我们断言存在 z_0 , 使得 $p(z_0)=0$. 如若不然, 函数 f(z)=1/p(z) 和 f(z+d) 在 \mathbb{C} 上 全纯. 因而

$$\omega(x,y) = |f(z)|^2 + |f(z+d)|^2$$

连续且有连续二阶偏导数. 易见当 $x^2 + y^2 \to \infty$ 时 $\omega(x,y) \to 0$.

令 ω 在 (x_0, y_0) 处取得最大值. 由引理 1, $\Delta\omega(x_0, y_0) \leq 0$. 由引理 3, $\Delta\omega(x, y) = 4(|f'(z)|^2 + |f'(z+d)|^2)$. 故令 $z_0 = x_0 + iy_0$, 我们即有 $f'(z_0) = 0$, $f'(z_0 + d) = 0$. 但 $f'(z_0) = -p'(z_0)/p(z_0)^2$, $f'(z_0 + d) = -p'(z_0 + d)/p(z_0 + d)^2$. 因此 $p'(z_0) = 0 = p'(z_0 + d)$, 这就产生了矛盾,从而证明了代数学基本定理.

我们愿意指出,对一个开集中的全纯函数 f,恒等式

$$\Delta |f|^2 = 4|f'|^2 \tag{*}$$

是众所周知的. 它是 Nehari [4, p.64] 中的一个练习, 也见 Titchmarsh 的经典参考书 [6, p.7]. 然而, 要从柯西 – 黎曼方程得出上述恒等式, 需要先证明 f 的实部和虚部具有二阶偏导数. 对于一般的全纯函数, 没有柯西积分理论或其它高等理论无法得到这一点. 当 f = 1/p 时, 利用基本性质 (i), (ii), (iii) 就回避了这些理论而证明了 (*). (下转 142 页)

lastitution of Affiliation	HCRs	% of HCRs	non- native HCRs	% of non- native BCRs	native HCRs	% of antivo HCRa	BSs acquired in some country	accounted		% of BSs acquired pisswhere	PhDs sequired in some country		PhDs acquired ciscs here	% of Palls acquired pisewhere	Cauntry
Stanford University	16	4,66%	8	50.0%	8	50.0%	8	50.0%	8	50.0%	16	100.0%	b	0.0%	USA
University of California. Berkeley (*)	14	4,08%	6	42.9%	7	50.0%	7	50.0%	5	35.7%	11	78,6%	3	21.4%	USA
University of Minnesota	10	2.92%	5	50.81%	5	50.0%	ñ	60.0%	3	30.0%	8	80.0%	2	20.0%	USA
Princeton University	10	2.92%	8	80 (P.)	2	20.0%	1	30.0%	7	70.0%	5	50.0%	3	50.0%	USA
Harvard University	8	2.33%	4	50.0%	4	50.0%	4	50.0%	4	50.0%	8	100.0%	0	0.0%	USA
New York University	7	2.04%	4	57.1%	3	42.9%	d	57.1%	3	42.9%	6	85.7%	1	14.3%	USA
Pierre & Marie Curie University (*)	6	1.75%	0	10.00%	5	83.3%	4	66.7%	15	0.0%	3	50.0%	2	33.3%	France
Massachusens Institute of Technology	4	1.75%	4	66.7%	2	13.3%	1	16.7%	5	83.3%	5	83:3%		16.7%	USA
University of Oxford	6	1,75%	1	16.7%	5	83.3%	4	66.7%	2	33.3%	4	66.7%	2	33,3%	UK
Yale University (*)	6	1.75%	4	66.7%	1	16:7%	2	33.3%	3	50.0%	4	66.7%	2	33.5%	USA
Tel Aviv University	5	1.4694	2	40.0%	2	40.0%	2	40,45%	2	40.0%	2	40.0%	3	60.0%	Israel
University of Washington	5	1.4654	3	60.0%	2	40.0%	2	40.0%	3.	60.0%	3	60,0%	2	40.0%	USA
Comell University (*)	9	1.460%	2	40.0%	2	40,0%	1	20.0%	3	60.0%	3	60.0%	2	4000%	USA
Georgia Institute of Technology	5	1.46%	4	80.0%	1	20.0%	1	20.0%	3	60.0%	3	60.0%	2	40.0%	USA
Rutgers University	5	1,46%	5	100.0%	0	0,0%	43	0.0%	5	100.0%	2	40.8%	3	60.0%	USA
Texas A&M University (*)	5	1.46%	1	20.0%	3	60.0%	4	80.0%	1	20.0%	5	100.0%	0	0.0%	USA
University of California Davis	,	1.465%	4	80.0%		20.0%	1	20.0%	4	80.0%	3	60,6%	2	40.0%	USA
University of Maryland	19	1,46%	2	40.0%	3	60,0%	-3	60.0%	2	40.0%	4	80.0%	1	20.0%	USA
Northwestern University	4	137%	ī	25.0%	3	75.0%	3	75.0%	ī	25.0%	4	100,0%	0	0.0%	USA
University of California, Los Angeles	4	137%	2	50.0%	2	50,0%	2	50.694	2	50.05%	3	75.0%	1	25.68%	tisa
University of Chicago. University of Texas at	4	1,17%	4	100.0%	- 0	0.0%	2	50.0%	2	50.0%	3	75 81%		25.0%	USA
Austin	4	1.17%	3	75.0%	1	25.0%	1	25.0%)	75.0%	2	50.0%	2	50,0%	USA
University of Wisconnin - Madison	4	1.17%	2	50.0%	2	50,0%	2	50.6%	2	50.0%	,	75.0%	1	25.0%	USA
University of Cambridge	4	1,17%	1	25.0%	13	75,0%	4	190.0%	0.	9.0%	1	50.05%	2	50.0%	UK

表 A9 数学领域中的顶尖机构 (关于 HCRs) (*) 缺少关于出生地的数据

(赵振江 译 陆柱家 校)

(上接 192 页) 最后,我们给出基于引理 3 的另一个证明. 在一个连通有界开集 D 中两次连续可微,在 \overline{D} 上连续,并且满足 $\Delta w \geq 0$ 的函数 w 称为在 D 中 下调和的. 下调和函数的最大值原理 [5] 指出 $\max_{\overline{D}} w = \max_{\partial D} w$, 其中 ∂D 是 D 的边界. 引理 3 说明了如果 p(z) 是没有零点的非常数复多项式,那么如下定义的 w(x,y)

$$w(x,y) = rac{1}{|p(z)|}, \quad z = x + iy$$

在 \mathbb{R}^2 上满足 $\Delta w \geq 0$. 令 D 是以 O 为心, r 为半径的圆盘, 由 $r \to \infty$ 时, $w \to 0$ 以及最大值原理知 $w \equiv 0$, 这与 w(x,y) > 0 矛盾.

致谢、参考文献 (略)

校后注 本文引理 2 的证明用到了复多项式的因子分解定理,这是与代数学基本定理等价的定理.

(高燕芳 译 马守全 陆柱家 校)