Near-Optimal Model Discrimination

https://arxiv.org/abs/2012.02901

Dmitrii M. Ostrovskii Mohamed Ndaoud Adel Javanmard Meisam Razaviyayn

University of Southern California

WIAS, Berlin January 22, 2021

Model discrimination task

- Let $z \in \mathcal{Z}$ be a random observation distributed according to \mathbb{P}_0 or \mathbb{P}_1 .
- Let $\theta_0, \theta_1 \in \mathbb{R}^d$ be the **best-fit models** of z according to $\mathbb{P}_0, \mathbb{P}_1$, i.e.,

$$\theta_k = \underset{\theta \in \mathbb{R}^d}{\operatorname{argmin}} \left\{ L_k(\theta) := \mathbb{E}_{z \sim \mathbb{P}_k} \, \ell_z(\theta) \right\},$$

where $\ell_z(\theta)$ is the loss function, $L_k(\theta)$ the population risks $(k \in \{0,1\})$. The loss function $\ell_z : \mathbb{R}^d \to \mathbb{R}$ is known (and assumed strictly convex).

• Statistician has access to $\theta^* \in \{\theta_0, \theta_1\}$ (but not to $\bar{\theta} \in \{\theta_0, \theta_1\} \setminus \theta^*$) and observes two i.i.d. samples:

$$Z^0 = (z_1^0, ..., z_n^0) \sim \mathbb{P}_0^{\otimes n}, \quad Z^1 = (z_1^1, ..., z_n^1) \sim \mathbb{P}_1^{\otimes n}.$$

• Task: distinguish between the two hypotheses

$$\mathcal{H}_0: \{\theta^* = \theta_0\}, \quad \mathcal{H}_1: \{\theta^* = \theta_1\}.$$

Model discrimination task

Classical testing focuses on the sample. We focus on the model.

- Classical testing: both θ_0 and θ_1 are known; one observes $Z \sim \mathbb{P}^{\otimes n}$.

 Which $\theta \in \{\theta_0, \theta_1\}$ corresponds to the sample?

 Two simple hypotheses about the unknown θ .
- Our setup: we observe both samples but only one model $\theta^* \in \{\theta_0, \theta_1\}$.

 Which of the two samples Z^0, Z^1 corresponds to θ^* ?

 Two composite hypotheses about the unknown (θ_0, θ_1) .
- Statistician has access to $\theta^* \in \{\theta_0, \theta_1\}$ (but not to $\bar{\theta} \in \{\theta_0, \theta_1\} \setminus \theta^*$) and observes two i.i.d. samples:

$$Z^0 = (z_1^0, ..., z_n^0) \sim \mathbb{P}_0^{\otimes n}, \quad Z^1 = (z_1^1, ..., z_n^1) \sim \mathbb{P}_1^{\otimes n}.$$

• Task: distinguish between the two hypotheses about $(\theta_0, \theta_1) \in \mathbb{R}^{2d}$: $\mathcal{H}_0: (\theta_0, \theta_1) \in (\theta^*, \bar{\Theta}_0) \text{ vs. } \mathcal{H}_1: (\theta_0, \theta_1) \in (\bar{\Theta}_1, \theta^*) \text{ for some } \bar{\Theta}_0, \bar{\Theta}_1.$

Separation and sample complexity

$$\mathcal{H}_0: (\theta_0,\theta_1) \in ({\color{red}\theta^*},\bar{\Theta}_0) \text{ vs. } \mathcal{H}_1: (\theta_0,\theta_1) \in (\bar{\Theta}_1,{\color{red}\theta^*}) \text{ for some $\bar{\Theta}_0$,$$$$$\bar{\Theta}_1$.}$$

What are $\bar{\Theta}_0, \bar{\Theta}_1$?

- \mathbb{R}^d not an option: then \mathcal{H}_0 and \mathcal{H}_1 have the common point (θ^*, θ^*) .
- Thus we have to separate $\bar{\Theta}_0, \bar{\Theta}_1$ from θ^* .
- Assume that θ_0 and θ_1 are **separated** "prediction-wise":

$$\Delta_0 := L_0(\theta_1) - L_0(\theta_0) > 0, \quad \Delta_1 := L_1(\theta_0) - L_1(\theta_1) > 0.$$

(We can explicitly write $\bar{\Theta}_0, \bar{\Theta}_1$ that correspond to this prior information – but we won't.)

Main question

Characterize the **sample complexity** of distinguishing between \mathcal{H}_0 and \mathcal{H}_1 with fixed error probabilities of both types (say 2/3) in terms of $\Delta_0, \Delta_1, ...$

Linear regression setup

Consider the linear regression setup: z=(x,y), and $\mathbb{P}_0,\mathbb{P}_1$ are given by

$$\mathbb{P}_k$$
: $\mathbf{x} \sim \mathcal{N}(0, \mathbf{\Sigma}_k)$, $\mathbf{y} | \mathbf{x} \sim \mathcal{N}(\mathbf{x}^{\top} \theta_k, \sigma_k^2)$ for $k \in \{0, 1\}$.

Moreover, let $\sigma_0^2 = \sigma_1^2 = 1$ and denote $r_k = \text{rank}(\mathbf{\Sigma}_k)$.

- Write $Z^k = (X^k; Y^k)$, where $X^k \in \mathbb{R}^{n \times d}$ and $Y^k \in \mathbb{R}^n$ for $k \in \{0, 1\}$.
- Note that $\widehat{\Sigma}_k := \frac{1}{n} X^{k \top} X^k$ is an estimate of Σ_k .
- Separations given by $\Delta_k = \|\theta_1 \theta_0\|_{\mathbf{\Sigma}_k}^2$ and have empirical counterparts

$$\widehat{\Delta}_k = \|\theta_1 - \theta_0\|_{\widehat{\Sigma}_k}^2 = \frac{1}{n} \|X^k(\theta_1 - \theta_0)\|^2.$$

Basic test

Consider basic test based on the prediction error of θ^* under \mathcal{H}_0 and \mathcal{H}_1 :

$$\mathbb{1}\left\{\|\boldsymbol{Y}^{0}-\boldsymbol{X}^{0}\boldsymbol{\theta}^{*}\|^{2} - \boldsymbol{n} \geqslant \|\boldsymbol{Y}^{1}-\boldsymbol{X}^{1}\boldsymbol{\theta}^{*}\|^{2} - \boldsymbol{n}\right\}.$$

Let $\xi^k = Y^k - X^k \theta_k \sim \mathcal{N}(0, \mathbf{I}_n)$ be the noises. Under $\mathcal{H}_0: \theta^* = \theta_0$, we have

LHS =
$$\|\xi^0\|^2 - n$$
,
RHS = $\|\xi^1\|^2 - n - 2\langle \xi^1, X_1(\theta_0 - \theta_1) \rangle + \|X_1(\theta_1 - \theta_0)\|^2$.

• Thus, $\mathbb{E}[\mathsf{LHS}] = 0$ and $\mathbb{E}[\mathsf{RHS}|X_1] = \|X_1(\theta_1 - \theta_0)\|^2 = n\widehat{\Delta}_1$, where $\widehat{\Delta}_1 = \frac{1}{n}\|X_1(\theta_0 - \theta_1)\|^2 = \|\theta_0 - \theta_1\|_{\widehat{\Sigma}_1}^2$

is the empirical counterpart of $\Delta_1 = \|\theta_1 - \theta_0\|_{oldsymbol{\Sigma}_1}^2$.

• This motivates the basic test: type-I error \iff "fluctuations $\geqslant n\Delta_1$."

Basic test

Consider basic test based on the prediction error of θ^* under \mathcal{H}_0 and \mathcal{H}_1 :

$$\mathbb{1}\left\{\|Y^0 - X^0\theta^*\|^2 - n \geqslant \|Y^1 - X^1\theta^*\|^2 - n\right\}.$$

More precisely, LHS $\sim \chi_n^2 - n$ and RHS $|X_1 \sim \chi_n^2 - n + 2\mathcal{N}(0, n\widehat{\Delta}_1) + n\widehat{\Delta}_1$.

Recalling the concentration inequalities

$$\mathbb{P}[|\chi_s^2 - s| \geqslant t] \lesssim \exp(-c \min\{t, t^2/s\}), \quad \mathbb{P}[\mathcal{N}(0, 1) \geqslant t] \leqslant \exp(-t^2),$$
 (see [LM00]), we bound the (conditional over X_0, X_1) type-I error prob.:

$$\begin{split} & \mathbb{P}\left[\chi_n^2 - n \geqslant \frac{n\widehat{\Delta}_1}{3}\right] + \mathbb{P}\left[n - \chi_n^2 \geqslant \frac{n\widehat{\Delta}_1}{3}\right] + \mathbb{P}\left[\mathcal{N}(0, n\widehat{\Delta}_1) \geqslant \frac{n\widehat{\Delta}_1}{6}\right] \\ & \lesssim \exp\left(-\frac{cn^2\widehat{\Delta}_1^2}{n}\right) + \exp(-cn\widehat{\Delta}_1). \end{split}$$

• Thus, error prob. of both types at most $\exp(-cn\min\{\Delta,\Delta^2\})$, where $\Delta:=\min\{\Delta_0,\Delta_1\}.$

If $\Delta \lesssim 1$: term $\exp(-cn\Delta^2)$ dominates $\Rightarrow O(1/\Delta^2)$ sample complexity.

Improved test

Idea: decrease χ^2 -term fluctuations by projecting residuals on signal spaces.

Test for linear model

$$\widehat{T} = \mathbb{1} \left\{ \| \mathbf{\Pi}_{X^0} [Y^0 - X^0 \theta^*] \|^2 - \widehat{r}_0 \geqslant \| \mathbf{\Pi}_{X^1} [Y^1 - X^1 \theta^*] \|^2 - \widehat{r}_1 \right\},\,$$

where $\Pi_X := X(X^{\top}X)^{\dagger}X^{\top}$ is the projector on signal space $\operatorname{col}(X) \subseteq \mathbb{R}^n$.

• Recall that $\widehat{r}_k := \operatorname{rank}(\widehat{\Sigma}_k)$ and $\widehat{\Sigma} = \frac{1}{n}X^\top X$, hence indeed $\dim(\operatorname{col}(X)) = \operatorname{Tr}(\Pi_X) = \operatorname{Tr}[(X^\top X)^\dagger X^\top X] = \operatorname{rank}(X^\top X) = \operatorname{rank}(\widehat{\Sigma}).$

Improved test: analysis

Test for linear model

$$\widehat{T} = \mathbb{1} \left\{ \| \Pi_{X^0} [Y^0 - X^0 \theta^*] \|^2 - \widehat{r_0} \geqslant \| \Pi_{X^1} [Y^1 - X^1 \theta^*] \|^2 - \widehat{r_1} \right\},\,$$

where $\Pi_X := X(X^\top X)^\dagger X^\top$ is the projector on signal space $\operatorname{col}(X) \subseteq \mathbb{R}^n$.

• For this test, under \mathcal{H}_0 , we have $\mathsf{LHS}|X_0 \sim \chi_{\widehat{r_0}}{}^2 - \widehat{r_0}, \quad \mathsf{RHS}|X_1 \sim \chi_{\widehat{r_1}}{}^2 - \widehat{r_1} + 2\mathcal{N}(0, n\widehat{\Delta}_1) + n\widehat{\Delta}_1.$

• Smaller χ^2 fluctuations since $\widehat{r}_k \stackrel{\textit{a.s.}}{=} \min\{r_k, n\} \leqslant n$. Type-I error prob.:

$$\begin{split} & \mathbb{P} \bigg[\chi_{\widehat{r_0}}^{\,\, 2} - \widehat{r_0} \geqslant \frac{n \widehat{\Delta}_1}{3} \bigg] + \mathbb{P} \bigg[\widehat{r_1} - \chi_{\widehat{r_1}}^{\,\, 2} \geqslant \frac{n \widehat{\Delta}_1}{3} \bigg] + \mathbb{P} \bigg[\mathcal{N}(0, n \widehat{\Delta}_1) \geqslant \frac{n \widehat{\Delta}_1}{6} \bigg] \\ & \lesssim \exp \bigg(- \frac{c n^2 \widehat{\Delta}_1^2}{\widehat{r_0}} \bigg) + \exp \bigg(- \frac{c n^2 \widehat{\Delta}_1^2}{\widehat{r_1}} \bigg) + \exp(-c n \widehat{\Delta}_1). \end{split}$$

Theorem. Denoting $r_{\max} := \max\{r_0, r_1\}$, we have $\max\{P_I, P_{II}\} \leqslant \bar{P}$ with

$$\bar{P} = \exp\left(-c\min\left\{n\Delta, \frac{n^2\Delta^2}{\min\{n, r_{\max}\}}\right\}\right).$$

Improved test: sample complexity

Theorem. Denoting $r_{\text{max}} := \max\{r_0, r_1\}$, we have $\max\{P_I, P_{II}\} \leqslant \bar{P}$ with

$$\bar{P} = \exp\left(-c\min\left\{n\Delta, \frac{n^2\Delta^2}{\min\{n, r_{\max}\}}\right\}\right).$$

Lemma Assume $\Delta \lesssim 1$. Then $-\log(\bar{P}) \gtrsim 1$ is equivalent to

$$n \gtrsim \min\left\{rac{1}{\Delta^2}, rac{\sqrt{r_{\mathsf{max}}}}{\Delta}
ight\}.$$

Proof. The above bound on n is equivalent to

$$n\Delta \gtrsim \min \left\{ rac{1}{\Delta}, \sqrt{r_{\sf max}}
ight\}.$$

On the other hand, $ar{P}\lesssim 1$ reads $n\Delta\min\left\{1,rac{n\Delta}{\min\{n,r_{\max}\}}
ight\}\gtrsim 1.$ Equivalently,

$$n\Delta \gtrsim \max\left\{1, \min\left\{\frac{1}{\Delta}, \frac{r_{\max}}{n\Delta}\right\}\right\} \iff n\Delta \gtrsim \min\left\{\frac{1}{\Delta}, \max\left\{1, \frac{r_{\max}}{n\Delta}\right\}\right\},$$

where the last step uses $\Delta \lesssim 1$. Now, the first cases under minimum are identical, and the second cases are equivalent: $n\Delta \gtrsim \sqrt{r_{\text{max}}} \iff n\Delta \geqslant \max\left\{1, \frac{r_{\text{max}}}{n\Delta}\right\}$. \square

Comparison

Basic test:
$$\mathbb{1}\left\{\|Y^0-X^0\theta^*\|^2-\mathbf{n}\geqslant\|Y^1-X^1\theta^*\|^2-\mathbf{n}\right\}.$$
 Sample complexity: $O\left(\frac{1}{\Delta^2}\right)$.

Improved test:
$$\mathbb{1}\left\{\|\Pi_{X^0}[Y^0 - X^0\theta^*]\|^2 - \widehat{r_0} \geqslant \|\Pi_{X^1}[Y^1 - X^1\theta^*]\|^2 - \widehat{r_1}\right\}$$
.

Sample complexity:
$$O\left(\min\left\{\frac{1}{\Delta^2}, \frac{\sqrt{r_{\text{max}}}}{\Delta}\right\}\right)$$
.

Note: $\widehat{r}_k \stackrel{a.s.}{=} \min\{r_k, n\}$ and Π_{X^k} projects on $\operatorname{col}(X^k) \subset \mathbb{R}^n$ with dim. \widehat{r}_k . Thus, when $n \leq \min\{r_0, r_1\}$, the two tests coincide.

· Well-sep. regime:

$$\Delta \gtrsim rac{1}{\sqrt{r_{\sf max}}}.$$

Samp. comp. $\lesssim r_{\text{max}}$ and rank-indep. No need for projections if $r_0 \asymp r_1$.

• III-sep. regime: $\Delta \ll \frac{1}{\sqrt{r_{\text{max}}}}$, samp. comp. $\gg r_{\text{max}}$, need projections.

Interpretation via least-squares

Recall the normal equations for the least-squares estimates $\widehat{\theta}_0, \widehat{\theta}_1$ of θ_0, θ_1 :

$$\widehat{\boldsymbol{\Sigma}}_0\widehat{\theta}_0 = \frac{1}{n}X^{0\top}Y^0, \quad \widehat{\boldsymbol{\Sigma}}_1\widehat{\theta}_1 = \frac{1}{n}X^{1\top}Y^1.$$

This allows to rewrite the squared norms of the projected residuals:

$$\begin{split} \|\mathbf{\Pi}_{X}[Y - X\theta^{*}]\|^{2} &= (Y - X\theta^{*})^{\top} \mathbf{\Pi}_{X}(Y - X\theta^{*}) \\ &= (X^{\top}Y - X^{\top}X\theta^{*})^{\top} (X^{\top}X)^{\dagger} (X^{\top}Y - X^{\top}X\theta^{*}) \\ &= n^{2} (\widehat{\mathbf{\Sigma}}(\widehat{\theta} - \theta^{*}))^{\top} (X^{\top}X)^{\dagger} \widehat{\mathbf{\Sigma}}(\widehat{\theta} - \theta^{*}) \\ &= n(\widehat{\theta} - \theta^{*})^{\top} \widehat{\mathbf{\Sigma}} \widehat{\mathbf{\Sigma}}^{\dagger} \widehat{\mathbf{\Sigma}}(\widehat{\theta} - \theta^{*}) = n(\widehat{\theta} - \theta^{*})^{\top} \widehat{\mathbf{\Sigma}}(\widehat{\theta} - \theta^{*}) \\ &= n\|\widehat{\theta} - \theta^{*}\|_{\widehat{\mathbf{\Sigma}}}^{2}. \end{split}$$

Thus, our test amounts to $\mathbb{1}\{\|\theta^*-\widehat{\theta}_0\|_{\widehat{\widehat{\Sigma}}_0}^2-\frac{\widehat{r}_0}{n}\geqslant \|\theta^*-\widehat{\theta}_1\|_{\widehat{\widehat{\Sigma}}_1}^2-\frac{\widehat{r}_1}{n}\}.$

- We compare the empirical prediction distances from $\widehat{\theta}^*$ to $\widehat{\theta}_0$ and $\widehat{\theta}_1$ after debiasing them under the matching hypothesis.
- **NB**: we don't require $\widehat{\theta}_0$, $\widehat{\theta}_1$ to be unique (i.e. $n \ge r_{\text{max}}$).

Testing vs. estimation

Improved test:
$$\mathbb{1}\left\{n\|\theta^* - \widehat{\theta}_0\|_{\widehat{\Sigma}_0}^2 - \widehat{r}_0 \geqslant n\|\theta^* - \widehat{\theta}_1\|_{\widehat{\Sigma}_1}^2 - \widehat{r}_1\right\}$$
.

Sample complexity:
$$O\left(\min\left\{\frac{1}{\Delta^2}, \frac{\sqrt{r_{\max}}}{\Delta}\right\}\right)$$

Testing vs. estimation

$$\begin{split} \text{Improved test: } & \mathbb{1} \big\{ n \| \theta^* - \widehat{\theta}_0 \|_{\widehat{\Sigma}_0}^2 - \widehat{r_0} \geqslant n \| \theta^* - \widehat{\theta}_1 \|_{\widehat{\Sigma}_1}^2 - \widehat{r}_1 \big\}. \\ & \text{Sample complexity: } O \left(\min \left\{ \frac{1}{\Delta^2}, \frac{\sqrt{r_{\text{max}}}}{\Delta} \right\} \right) \ll \frac{r_{\text{max}}}{\Delta}. \end{split}$$

• Sample complexity of estimating $\bar{\theta} = \theta_0 + \theta_1 - \theta^*$ up to Δ prediction error (i.e., better than by θ^*) is at least $\frac{r_{\min}}{\Delta} \left[\approx \frac{r_{\max}}{\Delta} \text{ when } r_0 \asymp r_1 \right]$.

Non-disclosure

We can discriminate between \mathcal{H}_0 and \mathcal{H}_1 with sample size that does not allow to estimate the complimentary model $\bar{\theta}$ (with better quality than θ^*).

• Rich potential for applications in "privacy-aware ML" (see our paper).

Lower bound

Improved test has sample complexity (whenever $\min\{\Delta_0, \Delta_1\} \geqslant \Delta$):

$$O\left(\min\left\{\frac{1}{\Delta^2}, \frac{\sqrt{r_{\mathsf{max}}}}{\Delta}\right\}\right).$$

Near-optimal – up to replacing r_{max} with r_{min} and min. sep. with max. sep.

Theorem. Let $r_0, r_1 \in \mathbb{N}$ and $d \geqslant r_{\text{max}}$ be arbitrary. Let \mathbb{P}_0 and \mathbb{P}_1 be two distributions (depending on θ_0, θ_1) in the form

$$\mathbb{P}_k : x \sim \mathbb{D}_k, \ y|x \sim \mathcal{N}(x^{\top}\theta_k, 1),$$

with \mathbb{D}_0 , \mathbb{D}_1 supported on \mathbb{R}^d and having zero mean and covariances I_{r_0} , I_{r_1} . Then \mathbb{D}_0 and \mathbb{D}_1 can be chosen (depending only on r_0 and r_1) such that:

$$\boxed{\inf_{\widehat{T}}\sup_{\|\theta_1-\theta_0\|_{I_{r_{\max}}}^2\geqslant \Delta} P_I(\widehat{T}) + P_{II}(\widehat{T}) \gtrsim \exp\bigg(-c\min\bigg\{n\Delta, \frac{n^2\Delta^2}{\min\{n, r_{\min}\}}\bigg\}\bigg),}$$

where inf is over all measurable maps $\widehat{T}: (\theta^*, X^0, Y^0, X^1, Y^1) \to \{0, 1\}.$

Lower bound: key ideas

We need to prove two bounds:

$$\inf_{\widehat{T}} \sup_{\theta_0, \theta_1 \in \Theta(\Delta)} P_I(\widehat{T}) + P_{II}(\widehat{T}) \gtrsim \max \left\{ \exp(-cn\Delta), \exp\left(-c\frac{n^2\Delta^2}{\min\{n, r_{\min}\}}\right) \right\}.$$

First bound: easier problem with known $\bar{\theta}$ and simple hypotheses:

$$\mathcal{H}_0^o: (\theta_0, \theta_1) = (\theta^*, \bar{\theta}), \quad \text{vs.} \quad \mathcal{H}_1^o: (\theta_0, \theta_1) = (\bar{\theta}, \theta^*).$$

Likelihood-ratio test

$$\mathcal{T}_{\mathsf{LR}} = \mathbb{1}\{\|Y^0 - X^0\theta^*\|^2 + \|Y^1 - X^1\bar{\theta}\|^2 \geqslant \|Y^0 - X^0\bar{\theta}\|^2 + \|Y^1 - X^1\theta^*\|^2\}$$

is optimal (w.r.t. sum of errors) by the Neyman-Pearson lemma, and for it

$$\begin{split} & \mathbb{P}_{\mathcal{H}_{0}^{0}}[T_{\mathsf{LR}} = 1 | X^{0}, X^{1}] \\ & = \mathbb{P}\big[\| Y^{0} - X^{0}\theta_{0} \|^{2} + \| Y^{1} - X^{1}\theta_{1} \|^{2} \geqslant \| Y^{0} - X^{0}\theta_{1} \|^{2} + \| Y^{1} - X^{1}\theta_{0} \|^{2} \big| X^{0}, X^{1} \big] \\ & = \mathbb{P}\big[2 \langle \xi^{0}, X^{0}(\theta_{0} - \theta_{1}) \rangle + 2 \langle \xi^{1}, X^{1}(\theta_{0} - \theta_{1}) \rangle \geqslant \| X^{0}(\theta_{0} - \theta_{1}) \|^{2} + \| X^{1}(\theta_{0} - \theta_{1}) \|^{2} \big| X^{0}, X^{1} \big] \\ & \geqslant \mathbb{P}\big[2 \mathcal{N}(0, n\widehat{\Delta}_{0}) + 2 \mathcal{N}(0, n\widehat{\Delta}_{1}) \geqslant n\widehat{\Delta}_{0} + n\widehat{\Delta}_{1} \big] \\ & \geqslant \mathbb{P}\big[\mathcal{N}(0, n\widehat{\Delta}_{0}) \geqslant n\widehat{\Delta}_{0}/2 \big] \cdot \mathbb{P}\big[\mathcal{N}(0, n\widehat{\Delta}_{1}) \geqslant n\widehat{\Delta}_{1}/2 \big] \\ & \geqslant \exp\big(- cn \max\{\widehat{\Delta}_{0}, \widehat{\Delta}_{1} \} \big). \end{split}$$

Then $\widehat{\Delta}_k \lesssim \Delta_k$ with probability O(1) by Markov's inequality.

Lower bound: key ideas

We need to prove two bounds:

$$\inf_{\widehat{T}} \sup_{\theta_0,\theta_1 \in \Theta(\Delta)} P_I(\widehat{T}) + P_{II}(\widehat{T}) \gtrsim \max \left\{ \exp(-cn\Delta), \ \exp\left(-c\frac{n^2\Delta^2}{\min\{n, r_{\min}\}}\right) \right\}.$$

Second bound captures dependence on the ranks. Proof is technical.

• Fixing θ^* , put a (conditional) Gaussian prior on $\bar{\theta}$ with covariance

General setup: test

Linear model:
$$\mathbb{1}\left\{\|\mathbf{\Pi}_{X^0}[Y^0 - X^0\theta^*]\|^2 - \widehat{r}_0 \geqslant \|\mathbf{\Pi}_{X^1}[Y^1 - X^1\theta^*]\|^2 - \widehat{r}_1\right\}$$
.

General setup:

• Empirical risk $\widehat{L}_k(\theta) = \frac{1}{n} \sum_{i=1}^n \ell_{z_i^k}(\theta)$ has gradient $\nabla \widehat{L}_k(\theta)$ and Hessian $\widehat{\boldsymbol{H}}_k(\theta)$:

$$\widehat{\boldsymbol{H}}_k(\theta) := \nabla^2 \widehat{L}_k(\theta), \quad \boldsymbol{H}_k(\theta) := \nabla^2 L_k(\theta).$$

• Let $G_k(\theta) := Cov_{\mathbb{P}_k}[\nabla \ell_z(\theta)]$. For well-specified models:

$$G_k(\theta_k) = H_k(\theta_k).$$

- Standardized Fisher matrix: $\boldsymbol{J}_k(\theta) := \boldsymbol{H}_k(\theta)^{-\dagger/2} \boldsymbol{G}_k(\theta) \boldsymbol{H}_k(\theta)^{-\dagger/2}$.
- Effective rank $\rho_k := \text{Tr}[J_k(\theta_k)]$. For well-specified models: $\rho_k = r_k$.

In linear regression $\nabla \widehat{L}(\theta) = \frac{1}{n} X^{\top} (Y - X\theta)$ and $\nabla^2 \widehat{L}(\theta) \equiv \frac{1}{n} X^{\top} X$, hence

$$\|\mathbf{\Pi}_{X}[Y - X\theta^{*}]\|^{2} = \|(X^{\top}X)^{\dagger/2}X^{\top}(Y - X\theta^{*})\|^{2} = n\|\widehat{\mathbf{H}}(\theta^{*})^{\dagger/2}\nabla\widehat{\mathcal{L}}(\theta^{*})\|^{2}.$$

• Replace $\|\Pi_{X^k}[Y^k - X^k\theta^*]\|^2$ with the Newton decrement for $\widehat{L}_k(\theta^*)$.

General setup: test (cont'd)

$$\mathbb{1}\left\{\|\Pi_{X^0}[Y^0 - X^0\theta^*]\|^2 - \widehat{r}_0 \geqslant \|\Pi_{X^1}[Y^1 - X^1\theta^*]\|^2 - \widehat{r}_1\right\}.$$

- Replace $\|\Pi_{X^k}[Y^k X^k\theta^*]\|^2$ with the Newton decrement for $\widehat{L}_k(\theta^*)$.
- When $n \geqslant r_k$, $\hat{r_k} \stackrel{a.s.}{=} r_k$. We could replace $r_k = \rho_k = \text{Tr}[J_k(\theta_k)]$, but we only have access to θ^* . So we use

$$\operatorname{Tr}[\boldsymbol{J}_k(\boldsymbol{\theta}^*)] = n_k \mathbb{E}_k \big[\big\| \boldsymbol{H}_k(\boldsymbol{\theta}^*)^{\dagger/2} \big[\nabla \widehat{L}_k(\boldsymbol{\theta}^*) - \nabla L_k(\boldsymbol{\theta}^*) \big] \big\|^2 \big]$$

instead. more precisely, its asymptotically ($n o \infty$) unbiased estimate:

$$\widehat{\mathsf{T}}_k = \frac{n_k}{2} \| \boldsymbol{H}_k(\boldsymbol{\theta}^*)^{\dagger/2} \big[\nabla \widehat{\mathcal{L}}_k(\boldsymbol{\theta}^*) - \widehat{\nabla} \mathcal{L}'_k(\boldsymbol{\theta}^*) \big] \|^2.$$

This leads to the test

$$\mathbb{1}\{n_0\|\widehat{\boldsymbol{H}}_0(\theta^*)^{\dagger/2}\nabla\widehat{L}_0(\theta^*)\|^2 - \widehat{T}_0 \geqslant n_1\|\widehat{\boldsymbol{H}}_1(\theta^*)^{\dagger/2}\nabla\widehat{L}_1(\theta^*)\|^2 - \widehat{T}_1\}.$$

Theorem. Denoting $\rho_{max} := \max\{\rho_0, \rho_1\}, \lim_{n\to\infty} [\max\{P_I, P_{II}\}] \leqslant \bar{P}$ with

$$\bar{P} = \exp\left(-c\min\left\{n\Delta, \frac{n^2\Delta^2}{\rho_{\max}}\right\}\right).$$

References

B. Laurent and P. Massart. Adaptive estimation of a quadratic functional by model selection. *Annals of Statistics*, pages 1302–1338, 2000.