Numerical simulation of 1D convection - diffusion equation

P. Billuart
P. Parmentier
G. Winckelmans

LMECA2660 Homework

Goals

- Validation of the periodic approximation
- Development of new high order decentered scheme
 - ★ investigate the dispersion and dissipation error and assessment against other schemes
- Write a C code to
 - ★ investigate convection and convection-diffusion phenomena,
 - ★ investigate the numerical properties of different discretizations of the convective and diffusive terms.

Problem statement

Convection-diffusion equation (1D-problem):

$$\frac{\partial u}{\partial t} + c \frac{\partial u}{\partial x} = \nu \frac{\partial^2 u}{\partial x^2}$$

with a Gaussian function as initial condition

$$u(x,0) = \frac{Q}{\sqrt{\pi \,\sigma_0^2}} \,\exp\left(-\frac{x^2}{\sigma_0^2}\right)$$

 Analytical solution (diffusing function moving at a constant velocity c)

$$u(x,t) = \frac{Q}{\sqrt{\pi \left(\sigma_0^2 + 4\nu t\right)}} \exp\left(-\frac{(x-ct)^2}{(\sigma_0^2 + 4\nu t)}\right)$$

Periodic approximation

- The Gaussian function has an unbounded support
 - -> impossible to solve that problem numerically
- We use a periodic domain of period L instead of an unbounded domain
 - ***** Valid approximation as long as $L >> \sigma_0$

The first part of the homework will allow to assess the validity and the quality of this approximation.

Reminder on Fourier Transforms and Fourier Series

Fourier Transform (not periodic and continuous function)

The Fourier transform $\widehat{f}(k)$ of a function f(x) is defined as:

$$\widehat{f}(k) = \mathcal{F}\left(f(x)\right) = \int_{-\infty}^{\infty} f(x) \, \exp\left(-\imath kx\right) dx \; ,$$

while the inverse transform is defined as:

$$f(x) = \mathcal{F}^{-1}\left(\widehat{f}(k)\right) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \widehat{f}(k) \, \exp\left(\imath kx\right) dk$$
.

For a periodic signal: Fourier series (discrete)

$$f(x) = \sum_{j=-\infty}^{\infty} \widehat{F}(k_j) \exp(ik_j x) ,$$
 where $\widehat{F}(k_j) = \frac{1}{L} \int_{-L/2}^{L/2} f(x) \exp(-ik_j x) dx$

Reminder on Fourier Transforms and Fourier Series

Discretization of the function

Spatial domain

Discrete and periodic Fourier Series

Frequency domain

$$f_i=f(x_i) = \sum_{j=-N/2}^{N/2} \widehat{F}(k_j) \exp(\imath k_j x_i) \;,$$
 where $\widehat{F}_j=\widehat{F}(k_j) = rac{1}{N} \sum_{i=0}^{N-1} f(x_i) \exp(-\imath k_j x_i) \;.$

Reminder on Fourier Transforms and Fourier Series

- The Gaussian function considered is a real-valued function.
 Therefore,
 - * Coefficients $\widehat{F}(k_j)$ are complex conjugates (real-valued function):

$$\widehat{F}(-k_j) = \widehat{F}_r(-k_j) + i \ \widehat{F}_i(-k_j) = \left(\widehat{F}(k_j)\right)^* = \widehat{F}_r(k_j) - i \ \widehat{F}_i(k_j)$$

★ N being even, a flip-flop mode exists.

$$f(x_i) = \widehat{F}_r(k_0) + \sum_{j=1}^{N/2-1} 2\left[\widehat{F}_r(k_j)\cos(k_jx_i) - \widehat{F}_i(k_j)\sin(k_jx_i)\right] + 2\widehat{F}_r(k_{N/2})\cos(k_{N/2}x_i)$$
Zero mode

Flip-flop mode

Discrete Fourier Series in Matlab

- The Fourier coefficients $\widehat{F}(k)$ may be obtained using the fft function in Matlab.
- Caution: the result has to be divided by the N (see the documentation, this is not performed by Matlab).
- Except that detail, Matlab provides the N coefficients in the following form:

Indices of the vector returned by the fft function

Development of a partially decentered scheme

A new discretization for the convective term

- ★ Order of convergence
- ★ Truncation error
- ★ Comparison of the dispersion and/or diffusion errors with respect to the exact case (modal analysis: obtain the modified wavenumbers of the decentered scheme)

Produce a C-code

Convective term:

- Second order explicit (E2)
- E4
- Decentered scheme (DS)
- Fourth order implicit (I4)
- 16
- Lost in C? -> Google your issue!
 - http://stackoverflow.com
 - https://openclassrooms.com/courses/apprenez-a-programmer-en-c (french only!)

FDs and periodic domain

Spatial discretization: N points numbered from 0 to N-1

Computation of the first order derivative using a E2 scheme

$$\left. \frac{\partial u}{\partial x} \right|_{i} = \frac{U_{i+1} - U_{i-1}}{2h} + \mathcal{O}(h^2)$$

★ Point in the middle of the domain

FDs and periodic domain

Spatial discretization: N points numbered from 0 to N-1

Computation of the first order derivative using a E2 scheme

$$\left. \frac{\partial u}{\partial x} \right|_{i} = \frac{U_{i+1} - U_{i-1}}{2h} + \mathcal{O}(h^2)$$

★ Point on the edge of the domain (periodic condition)

C language: dos and don'ts

Periodic domain: modulo is your best friend!

```
0 \% 10 = 0
1 \% 10 = 1
10 \% 10 = 10
```

never do a if condition inside a for loop

```
for (i=0; i<n; ++i){
   if (i==0) ....
   else ....
}</pre>
```

use calloc instead of malloc

```
double* x = (double*) calloc(n, sizeof(double))
```


Pure convection case: example

Practical information

- Hand over: 16th March at 6 pm
- Paper version (report) + Moodle (report + code)
- No fancy covers
- French or English
- Questions?

Wednesday and Friday 4pm to 6pm (starting next week)

Stevin a.078

philippe.billuart@uclouvain.be

p.parmentier@uclouvain.be (!!)