Student 1 – nume și prenume Sărăcilă Teodora Student 2 – nume și prenume Găujăneanu Nicoleta Monica Grupa 414D

Data/ora 23.05.2021

Fișă laborator 6

rev 1

ID=94

1. Măsurarea rezistențelor

a),b)

R_X	conex. 2T				conex. 4T			
	Vx.V [V]	Ix.I [A]	R_{Xmas} [Ω]	ε[%]	Vx2.V [V]	Ix.I [A]	R_{X} ' măs $[\Omega]$	ε [%]
$R_X=1 \Omega$	1	0.833	1.2	20	0.833	0.833	1	0
$R_{X2} = 10.4 \Omega$	1	0.0943	10.6	1.92	0.981	0.0943	10.4	0
R _{X3} =10.4	1	9.62*10 ⁻⁵	$10.395*10^3$	-0.5	1	9.62*10 ⁻⁵	$10.395*10^3$	-0.5
$\mathbf{k}\mathbf{\Omega}$								

Observații și explicații:

Conexiunea 4T este mai eficienta atunci cand dorim sa masuram impedante mici, anulandu-se impedantele nedorite se evita erorile sisematice (erori intalnite utilizand conexiunea 2T). In cazul impedantelor mari, conexiunile 2T SI 4T nu prezinta diferente semnificative ale rezultatelor.

2. Măsurarea unui grup RC

a) RC serie

	Rs	Cs	Qcomp	D _{comp}	Vc.V	Vr.V	Qtensiuni	ε [%]
<i>a) 1KHz</i>	$1.94 \text{ k}\Omega$	5.6 nF	14.649	0.068	0.998	0.0681	14.654	0.03
c)100KHz	1.94 kΩ	5.6 nF	0.1464	6.83	0.145	0.989	0.1466	0.13

b) RC paralel

	R_P	C_P	Qcomp	D _{comp}	Ic.A	Ir.A	Qcurenți	ε [%]
<i>b) 1KHz</i>	418,25 kΩ	5.34 nF	14.033	0.071	3.36e-05	2.39e-06	14.05	0.12
c)100KHz	$1.98 \text{ k}\Omega$	0.117 nF	0.1455	6.873	7.35e-05	0.000505	0.1456	0.06

Explicații:

Pentru cazul cand $f_I=1$ kHz se observa ca valoarea condensatorului paralel este apropiata de cea a condensatorului serie, acest fapt se poate deduce si din formula : $C_S=C_P(1+\frac{1}{Q^2})$, Q este mare ceea ce inseamna ca $\frac{1}{Q^2}$ are o valoarea apropiata de 0. Pentru cazul cand $f_2=100$ kHz se observa ca valoarea rezistentei serie este apropiata de cea a rezistentei paralel; se deduce si din formula $R_P=R_S(1+Q^2)$, Q avand o valoarea foarte mica.

3. Circuit RLC serie

a)
$$R = 16.4 \Omega$$

$$L = 994 \, \mu$$

L= 994
$$\mu$$
H C=144 nF f_0 = 13.3 kHz

$$Q_{calc} = 5.064$$

c)
$$f_1 = 11.8 \text{ kHz}$$

$$f_2 = 14.4 \text{ kHz}$$

$$Q_{dezacord} = 5.11$$

$$\varepsilon$$
 [%]=0.9

4. Măsurarea rezistențelor cu ajutorul punții de curent continuu Desenați puntea, notați rezistențele, valorile lor și pozițiile diagonalelor 1-2 și 3-4:

a)
$$R_1 = 3.18 \text{ k}\Omega$$

$$R_2 = 3.18 \text{ k}\Omega$$

$$R_3 = 6.8 \text{ k}\Omega$$

Explicație offset:

Offset are rol de tensiune de referinta. S-a ales acesta valoare, deoarece la un reglaj mai fin al osciloscopului, graficul iese din graticula. Pentru R1 si R2 tensiunea este 2,5V.

$$U_d = 0 \text{ mV}$$

$$R_{40 \text{ măsurat}} = 6.81 \text{ k}\Omega$$

$$R_{40 \text{ calculat}} = 6.8 \text{ k}\Omega$$

$$\varepsilon$$
 [%] = 0.14

Explicație:

Eroarea relativa a valorii masurate este foarte mica, reusindu-se o masuratoare suficient de precisa.

b) determinarea experimentală

$$U_{d1}=50mV$$

$$U_{d1 \text{ mas}} = 52 \text{ mV}$$

$$R_4'=6.51 \text{ k}\Omega$$

$$U_{d2 \text{ mas}} = 47 \text{ mV}$$

(Voltmetrul în diag. 3-4)

Diagonala de sensibilitate maximă experimentală (voltmetrul între [1][2] sau [3][4] ?): Justificare:

Diagonala de sensibilitate maxima teoretica este atunci cand avem voltmetrul conectat intre [1][2]. Prima configurare fiind mai sensibila, deoarece Ud_{1mas} este mai mare decat U_{d2mas} , tensiunea de intrare U_{d1} fiind aceeasi in ambele moduri de conectare ale volmetrului.

c) determinarea teoretică

$$A_{1-2} = R_1/R_2 = 3.3/3.3 = 1$$

$$S_{1-2} = A/(1+A)^2 = 1/4 = 0.25$$

$$A_{3-4} = R_2/R_3 = 3.3/6.8 \approx 0.49$$

$$S_{1-2}=A/(1+A)^2=1/4=0.25$$

 $S_{3-4}=A/(1+A)^2=0.49/2.22=0.221$

$$A_{ideal} = 1$$
 pt. $S_{MAX} = 0.25$

Diagonala de sensibilitate maximă teoretică (voltmetrul între [1][2] sau [3][4] ?):

Diagonala de sensibilitate maxima teoretica este atunci cand avem voltmetrul conectat intre [1][2], deoarece S_{1-2} este foarte apropiat de S_{MAX} .