

SCIENCE

Department of Kinesiology

Classes of control KINESIOL 1E03 - Motor control and learning

Laura St. Germain Fall 2022 Week 4 Lecture 7

Review from last lecture

Foveal vision has high acuity; peripheral vision has low acuity

- Fine details can only be discriminated in the central part of the visual field
- Vision mediated by the fovea is foveal vision (the central 3 or 4 degs of visual field)
- The part outside the macula (~95% of total retinal area) is **peripheral retina**
- Vision mediated by the peripheral retina is called peripheral vision
- The **parafoveal retina** lies between the Fig: Tr**f**จุหลอ₀ลุกd peripheral retina

What are the functions of the two visual streams?

We can **distinguish** the two streams based on the **use to which the information is put**

Ventral stream

- underlies what we normally think of as seeing
- i.e., vision-for-perception

Dorsal stream

- underlies the visual control of voluntary action
- i.e., vision-for-action

Fig: Tresilian 2012; Goodle & Milner 1992 5/25

Any questions?

What are some similarities and differences between these two motor skills?

Source: https://media.giphy.com/media/J4ldNvA7mT4f6/giphy.gif

Source: https://baseballrebellion.com/wp-content/uploads/2019/06/EZ-Gif-Barnhill-LHH.gif

Learning objectives

- 1. Define and discuss **mechanistic concepts** from control engineering to help us understand goal-directed behaviour.
- 2. Compare and contrast an open-loop control system and a closed-loop control system
- 3. Identify and describe **actions governed** by these classes of control.
- 4. Describe **limitations** of these classes of control.

Take-home message:

Some actions allow us to use sensory feedback to make online corrections whereas other actions leave little time for corrections based on sensory feedback.

There are two basic control systems that guide action

We have discussed two sources of information that help us control our actions:

- 1. Interoceptive information (e.g., touch, proprioception)
- 2. Exteroceptive information (e.g., vision)

CLOSED-LOOP CONTROL: a class of control in which, **during** the course of an action, feedback is **compared** against a standard (or reference) to enable an action to be carried out as planned

OPEN-LOOP CONTROL: a class of control in which **all** the information needed to initiate and carry out an action as planned is contained in the **initial instructions** to the effectors

The principal objective of control is to make a system's behaviour meet a set of requirements

- A system is anything composed of linked and interacting parts
- A block diagram represents a system as something that produces outputs in response to inputs

Controlling a system output requires adjustment of relevant inputs

CONTROLLED VARIABLES: a system output quantity whose value can be influenced (i.e., controlled) by applying particular types of input to the system

CONTROL VARIABLE: an input to a controlled system (or actuating device) that can be altered to make an associated controlled variable take the value(s) required

Let's put it all together with a driving example:

Pressing the brake pedal (control variable)
 causes frictional forces to develop between
 the wheel and brake pads, which slows the
 vehicle down (controlled variable)

Fig: https://i.gifer.com/1fCK.gif

A control system is a set of components that work together to achieve control

CONTROLLED SYSTEM¹: a system that is being **controlled** (having inputs applied to it) to make it **behave** in a way that meets the requirement(s)

CONTROLLER: a system that **generates** the control inputs that **affect the behaviour** of the controlled system (usually through actuating systems)

CONTROL SYSTEM: a system comprised of a controller, a controlled system, and possibly other components that work together to achieve some required behaviour

Feedback provides a means for achieving control objectives

- Our driving example again:
 - Speed limit is 50 km/h
 - Your speed is 60 km/h
 - Error is -10 km/h (50 60)
- A common alternative term for closed-loop control is error-correcting feedback control
- Fundamental objective of this class of control is to reduce errors to 0 or as close to 0 as makes
 no practical difference

Feedback provides a means for achieving control objectives

Fig: Tresilian 2012 14/2

Errors arise for three main reasons

1. Disturbances

- o inputs external to the control system can affect the controlled variable(s) to produce errors
- e.g., a hill, road, wind, etc

2. Controller mistakes

- the controller could make a change in the control variable when it is not needed or could respond to an error with an incorrect change of the control variable
- e.g., push wrong pedal, oversteering a turn in the road, etc

3. Changes to the requirements

- if the required value of the controlled variable changes, an error is likely to be created
- e.g., enter a new zone where speed limit changes, etc

Two types of control problems are regulation and tracking

Regulation problem

 when the control objective is to bring a controlled variable to a specific, fixed value (i.e., set-point) and maintain that value in the face of disturbances

Tracking problem

 when the control objective is to make the controlled variable follow (i.e., track) changes in the required value

Closed-loop control can be ineffective when there are time delays

In the absence of disturbances, control may be possible without using feedback

Open-loop control: a style of control in which the output of the controlled system is not fed back to the controller. What the controlled system is actually doing has no effect on the control inputs supplied by the controller

Open-loop control requires detailed knowledge about the controlled system

Tresilian 2012 18 / 2

Errors in open-loop systems can arise for 2 basic reasons

- 1. Disturbances that cannot be taken into account in the formation of the control signal
- 2. **Incomplete or inaccurate knowledge** of the **controlled system** that is **being used** to determine the control signals
- This control is characterized by centrally determined, pre-structured commands with minimal role of sensory feedback
- Sometimes, once the commands are sent they cannot be stopped!

What happens to muscle activity if a target-directed reach is prevented unexpectedly?

21 / 25 Wadman et al. 1979

Is there a point of no return?

Lift finger to stop sweep hand at 10 o'clock position

Learning objectives

- 1. Define and discuss **mechanistic concepts** from control engineering to help us understand goal-directed behaviour.
- 2. Compare and contrast an open-loop control system and a closed-loop control system
- 3. Identify and describe **actions governed** by these classes of control.
- 4. Describe **limitations** of these classes of control.

Take-home message:

Some actions allow us to use sensory feedback to make online corrections whereas other actions leave little time for corrections based on sensory feedback.

What questions do you have?

- @_LauraStGermain
- @LauraStGermain
 - www.cartermaclab.org