THE PETABYTE PIRATES - SIGNING OFF

Automated Property Valuation: From Model to Market

ACS-5513 Applied Machine Learning - Checkpoint 3

Team: Sean Miller, Farhan Hassan, Dewayne Hafenstein

Executive Summary & Key Insights

What We Built

Full-stack ML service predicting
single-family home prices in Ames, lowa
with a production-ready API and web
interface for instant valuations
68.64% of predictions within ±10% of
actual sale price

Key Business Insights

- Quality × Size interaction explains
 80% of price variance alone
- Recent renovations add \$15-25K
 premium vs. original construction
- Garage presence increases home value by \$26K on average
- Premium neighborhoods command\$70-90K premiums

Business Impact

- Reduce appraisal time from days to seconds
- Eliminate human bias in property valuation
- Save thousands of dollars per transaction in mispricing risk

Industry Context & Benchmarking

The Automated Valuation Models (AVM) landscape is dominated by major players, but our solution offers competitive advantages in a specialized market.

Platform	Market Share	Accuracy	Coverage
Zillow Zestimate	40%+	1.9% median error	National
Redfin Estimate	25%+	2.2% median error	Major markets
CoreLogic AVM	20%+	Industry standard	Commercial
Our Model	Prototype	6.38% median error	Ames, IA

Competitive Positioning

Zillow Zestimate: 1.9% median error, but limited feature transparency

Redfin Estimate: 2.2% median error, better explainability

Our Advantage: Full feature transparency + domain expertise + local specialization

Regulatory Environment

Freddie Mac ACE+ PDR: Allows appraisal waivers for AVMs meeting accuracy thresholds

Our Target: <10% error rate enables regulatory compliance pathway

Success Metrics: Absolute vs. Relative Performance

Why Both Dollar and Percentage Metrics Matter

Absolute RMSE

\$20,708

Mortgage underwriting context: "Typical miss is ~\$21K"

Relative Error

6.38% median

Real estate standards context: "Usually within 6% of true value"

Precision Bands

68.64% within ±10%

Appraisal variance context: "More accurate than human appraisers"

Ames Market Context

Median home price: ~\$180K (2006-2010 data)

\$20K RMSE = 11.5% of median price

Industry standard: 10-15% acceptable for lending decisions

Performance Distribution

Homes within ±5% (excellent predictions)

Homes within ±10% (acceptable for lending)

R² explains nearly 9/10 of price variance

Data Foundation & Feature Engineering

Dataset Characteristics

Source: Ames Housing Dataset (Kaggle)

Size: 2,930 transactions \rightarrow 2,789 after cleaning

Features: $81 \text{ raw} \rightarrow 30 \text{ engineered final features}$

Time Period: 2006-2010 (pre-financial crisis)

Data Quality Pipeline

Outlier Removal: 1.5×IQR rule (137 extreme values removed)

Missing Data: <5% after feature selection

Multicollinearity: VIF < 5 for all final features

Feature Engineering Breakthroughs

Feature	Correlation	Business Logic
Qual × SF Plus Garage + Garage Finish × Garage Area	0.906	Quality amplifies size value, garage adds premium
Total SF Plus Garage	0.82	Living space + storage drives value
Overall Quality	0.79	Construction quality is primary driver
House Age	-0.59	Newer homes command premium

Feature Correlation Analysis

Candidates for Feature Engineering

Key Correlation Findings

Highest Positive: Qual×SF interactions

(0.90+)

Highest Negative: Age-related features

(-0.56 to -0.59)

Surprising Weak: Overall Condition

(0.06) - condition \neq quality

Feature Reduction: 107 → 30 features

with minimal R² loss

Multicollinearity Management

Pre-selection

|correlation| > 0.5 with target

Post-selection

Engineered first order interaction terms, particularly with quality ordinals.

The final feature set contains intentional multicollinearity (e.g., Qual × SF and its raw inputs) to preserve interpretability for stakeholders. **Tree-based algorithms are** insensitive to collinearity; for linear baselines we used Ridge/Lasso regularisation.

Model Development & Hyperparameter Tuning

Model Zoo Comparison (Updated)

Model	RMSE	R ²	Deployment
CatBoost (Tuned)	\$20,708	0.888	✓ Production
Stacking Ensemble	\$20,142	0.872	Complex
XGBoost	\$20,592	0.866	Alternative
Random Forest	\$20,632	0.865	Baseline

CatBoost Hyperparameter Optimization

Optimization Framework: Optuna with 100 trials

Search Space:

Iterations: 100-2000

Learning Rate: 0.01-0.3

• Depth: 3-10

L2 Regularization: 1-10

Final Parameters: 1037 iterations, 0.027 learning rate, depth 5

Why CatBoost for Production?

Native categorical handling

No preprocessing needed

Robust to overfitting

Built-in regularization

Fast inference

<300ms response time

Model interpretability

SHAP integration

Cross-Validation & Model Stability

5-Fold Cross-Validation Results

Fold	RMSE	\mathbb{R}^2	Performance
Fold 1	\$20,614	0.871	Consistent
Fold 2	\$19,428	0.875	Best performing
Fold 3	\$20,638	0.881	Consistent
Fold 4	\$22,380	0.849	Acceptable variance
Fold 5	\$19,945	0.891	Excellent

Statistical Stability

CV RMSE: \$20,601 ± \$997 (5% coefficient of variation)

CV R²: 0.873 ± 0.014 (tight confidence interval)

Interpretation: Model performance is consistent and reliable

Residual Analysis

Model Interpretability and Feature Performance

SHAP Analysis - Global Feature Importance

Top Value Drivers

Qual × SF Plus Garage + Garage Finish × Garage Area

- Composite quality-size

Overall Quality - Construction grade (1-10 scale)

Total SF Plus Garage - Combined living + storage space

Ground Living Area - Main floor footprint

Year Remod/Add - Renovation recency

Business Interpretability

Quality amplifies size

1000 sq ft excellent quality > 2000 sq ft poor quality

Garage premium

Finished garages add disproportionate value

Renovation timing

Recent remodels command premium

Diminishing returns

Beyond certain size thresholds, quality matters more

Production Architecture & Deployment

Component	Technology	Purpose	Deployment
Frontend	Flask + HTML/CSS/JS	User interface	Heroku (acs5513-frontend)
Backend API	Flask + CatBoost	ML predictions	Heroku (acs5513-backend)
ML Engine	CatBoost .pkl	Price prediction	In-memory model
CI/CD	GitHub Actions	Auto-deployment	Automated testing

Request Flow

1 User Input
Property details via web form

API Call
POST to /predict endpoint

Preprocessing
Feature engineering pipeline

Prediction
CatBoost model inference

Response

Price + confidence + feature impacts

Performance Metrics

Response Time: <300ms average
Uptime: 99.5% (Heroku hobby tier)
Throughput: 100+ requests/minute

UX Design Principles

Simplicity

Essential features only (avoid form fatigue)

X

Speed

Sub-second predictions

0

Transparency

Show feature contributions

Side-by-side scenario analysis

Business Value & ROI

Quantified Business Benefits

Stakeholder	Current State	With Our Solution	Value
Appraisers	5-10 days, \$500-800	Instant, \$50 API call	90% time reduction
Listing Agents	Subjective pricing	Data-driven estimates	15% better pricing
Homebuyers	Limited comp access	Transparent valuations	Informed decisions
Lenders	Manual underwriting	Automated pre-screening	50% faster approvals

Market Opportunity

Cost Savings Analysis

Traditional Appraisal: \$800 + 7 days delay

Our Solution: \$5 API call + <1 second

Net Savings: \$795 + time value per transaction

Risks, Limitations & Mitigation

Current Limitations

Risk	Impact	Mitigation Strategy
Geographic Scope	Ames, IA only	Expand to similar mid-size markets
Temporal Drift	2006-2010 data	Continuous retraining pipeline
Market Volatility	COVID, interest rates	Incorporate macro indicators
Feature Gaps	No school/crime data	External data integration

Technical Risks

Model Decay

Performance degradation over time

Mitigation: Monthly RMSE monitoring, automated retraining

Cold Start

New property types not in training data

Mitigation: Confidence scoring, human review triggers

Adversarial Usage

Gaming the model

Mitigation: Input validation, anomaly detection

Business Risks

Regulatory Changes: New appraisal requirements

Competition: Zillow/Redfin market expansion

Liability: Inaccurate valuations leading to losses

Key Takeaways & Lessons Learned

Technical Learnings

- Feature Engineering > Algorithm Choice: Qual×SF interaction
 more impactful than model selection
- CatBoost Resilience: Handles mixed data types with minimal preprocessing
- Cross-Validation Critical: Prevents overfitting, builds confidence
- SHAP for Trust: Model interpretability essential for business adoption

Domain Insights

- Quality Trumps Size: Overall quality explains >50% variance by itself
- Garages Undervalued: Finished garages add disproportionate value
- Age vs Renovation: Recent remodels overcome age depreciation
- Neighborhood Effects: Premium clusters worth \$70-90K
 premiums

Product Learnings

UI Simplicity: 11 fields optimal vs 81 original features

Response Time: <300ms threshold for user satisfaction

Form Fatigue: Too many inputs hurt adoption

What-If Analysis: Comparison tables drive engagement

Project Management

Agile Delivery: Regular sprints enabled on-time delivery

Clear Roles: Feature engineering, backend, evaluation responsibilities

CI/CD Discipline: No "works on my machine" surprises

Next Steps & Roadmap

- 1 Immediate Priorities (Next 30 Days)
 - Model Monitoring: Deploy drift detection pipeline
 - Data Refresh: Integrate 2020+ Ames transactions
 - Performance Optimization: Sub-100ms response targets
 - Security Hardening: Rate limiting, input validation
- 2 Short-term Goals (3-6 Months)
 - Geographic Expansion: Deploy to 3-5 similar lowa markets
 - Feature Enhancement: School ratings, crime data, walkability scores
 - Model Ensemble: Deploy Stacking as premium tier option
 - Mobile Interface: Responsive design for agent field use
- 3 Long-term Vision (6-12 Months)
 - National Scaling: 50+ metro areas coverage
 - Real-time Updates: Live MLS integration
 - · Advanced Analytics: Market trend prediction, investment scoring
 - B2B Integration: White-label API for realtor platforms

Success Metrics

<5%

Accuracy Target

Median error

1X+

Scale

Monthly predictions

Revenue

ARR from API subscriptions

X%

Market Share

Of regional AVM market

Final Demo & Thank You

Repository & Links

GitHub: https://github.com/dewayneh57/ACS5513

Live App:

https://acs5513-frontend-e91ce80def8f.herokuapp.

Documentation: Full technical reports in <u>GitHub</u>

Team Accomplishments

Full-Stack Delivery

Data science + software engineering

Production Deployment

Live, working application

Industry-Grade Results

Competitive with commercial solutions

Academic Excellence

Comprehensive documentation & analysis