

BLOCK DIAGRAM OF REFRIGERATING SYSTEM

Air Handling Unit

Air Handling Unit (AHU)

ENRGY BALANCE in ASPEN Plus V.14

Material						
Stream Name	Units	1	2	3	4	
Description						
From		THROTTLE	EVAP	COMPRESS	COND	
То		EVAP	COMPRESS	COND	THROTTLE	
Stream Class		CONVEN	CONVEN	CONVEN	CONVEN	
Phase			Vapor Phase	Vapor Phase	Liquid Phase	
Temperature	С	-17.13222719	-2.418242941	64.10736601	38.18484697	
Pressure	bar	1.5	2.68	12	9.68	
Molar Vapor Fraction		0.361908164	1	1	0	
Molar Liquid Fraction		0.638091836	0	0	1	
Molar Enthalpy	cal/mol	-218163.1687	-214666.6162	-213566.5118	-218163.1687	

Coefficient of Performance – Carnot

•
$$COP = \frac{Heat \ absorbed \ at \ lower \ temperature}{Net \ Work} = \frac{Qc}{W} = \frac{Tc}{Th-Tc}$$

- Operating Temperature
 - Condenser = 38 °C = 311K = Th
 - Evaporator = -2°C = 270K = Tc

•
$$COP = \frac{270K}{(311 - 270)K} = 6.58$$

GAP ANALYSIS

- Controller 1st and 2nd floor AHU is non operational
- AHU blower belts needs replacement
- Cooling water pressure drop across the condensers 0.4kg/cm2 more than the rated pressure drop.

EFFECT AND COSTING

$$Power consumed by centrifugal pumps(Watts) = \frac{Flowrate(\frac{m3}{s}) * pressure drop(Pa)}{Efficiency of the pump}$$

Assumptions –

- Typical velocities of Process cooling water
 = 1.5 2.5m/s
- Typical Efficiencies of centrifugal pumps = 55 70%
- Days of operation per annum = 300
- Working hours per day = 15
- Cost of electricity = 12 Rs/Unit

Measurements –

- Pressure drop readings across Supply and Return lines of cooling water = 1.1Kg/cm2
- Rated pressure drop = 0.7kg/cm2
- Line diameter = 10 inches

Sensitivity analysis

Velocity	Power	Energy	Cost
m/s	KW	Units	Lakhs/annum
1.5	4.257072	19156.8	2.3
1.7	4.824681	21711.1	2.6
1.9	5.392291	24265.3	2.9
2.1	5.959901	26819.6	3.2
2.3	6.52751	29373.8	3.5
2.5	7.09512	31928.0	3.8

THANK YOU

Presented By:-

- 1. Narendra Gavali
- 2. Hardik Sharma
- 3. Dharmesh Meena