Syllabus

Subject: Data Mining Course Code: COMP 482

Credit: 3 F.M: 100 (50 Internal + 50 Final)

Objectives

To introduce students to the basic concepts and techniques of Data Mining.

- To explain data mining methodology.
- To develop skills of using recent data mining software for solving practical problems.
- To use visual techniques to describe data.
- To gain experience of doing independent study and research.

1. Introduction to Data Mining

- 1.1. What is / Why data mining?
- 1.2. What kinds of data can be mined?
 - 1.2.1. Database data, data warehouses, transactional data
- 1.3. Which technologies are used?
 - 1.3.1. Machine Learning, DBMS, OLAP, Statistics, Information Retrieval
- 1.4. Applications of data mining
 - 1.4.1. Business intelligence and web search engines
- 1.5. Data Mining Goals
- 1.6. Stages of the Data Mining Process
- 1.7. Data Mining Techniques
- 1.8. Knowledge Representation Methods
- 1.9. Example: weather data

2. Data Warehouse and OLAP

- 2.1 Data Warehouse and DBMS
- 2.2 Multidimensional data model
- 2.3 OLAP operations
- 2.4 Example: loan data set

3. Data Preprocessing

- 3.1. Data cleaning
 - 3.1.1. Missing values, noisy data, inconsistent data
- 3.2. Data integration and transformation

- 3.3. Data reduction
- 3.4. Discretization and generating concept hierarchies
- 3.5. Installing Weka 3 Data Mining System
- 3.6. Experiments with Weka filters, discretization

4. Data Mining Knowledge Representation

- 4.1. Task relevant data
- 4.2. Background knowledge
- 4.3. Interestingness measures
- 4.4. Representing input data and output knowledge
- 4.5. Visualization techniques
- 4.6. Experiments with Weka visualization

5. Attribute-Oriented Analysis

- 5.1. Attribute generalization
- 5.2. Attribute relevance
- 5.3. Class comparison
- 5.4. Statistical measures
- 5.5. Experiments with Weka using filters and statistics

6. Data Mining Algorithms: Association Rules

- 6.1. Motivation and terminology
- 6.2. Example: mining weather data
- 6.3. Basic idea: item sets
- 6.4. Generating item sets and rules efficiently
- 6.5. Correlation analysis
- 6.6. Experiments with Weka mining association rules

7. Data Mining Algorithms: Classification

- 7.1. Basic learning/mining tasks
- 7.2. Inferring rudimentary rules: 1R algorithm
- 7.3. Decision trees
- 7.4. Covering rules
- 7.5. Experiments with Weka decision trees, rules

8. Data Mining Algorithms: Prediction

- 8.1. The prediction task
- 8.2. Statistical (Bayesian) classification
- 8.3. Bayesian networks

- 8.4. Instance-based methods (nearest neighbor)
- 8.5. Linear models
- 8.6. Experiments with Weka Prediction

9. Data Mining Algorithms: Clustering

- 9.1. Basic issues in clustering
- 9.2. Partitioning methods: k-means, expectation maximization (EM)
- 9.3. Hierarchical methods: distance-based agglomerative and divisible clustering
- 9.4. Conceptual clustering: Cobweb
- 9.5. Experiments with Weka k-means, EM, Cobweb

10. Data Mining Algorithms: Outlier Detection

- 10.1 What are outliers?
- 10.2 Types of outliers
- 10.3 Challenges of outliers' detections
- 10.4 Outlier detection method
 - 10.4.1 Supervised, Semi-Supervised, and Unsupervised Methods
 - 14.4.2 Statistical Methods, Proximity-Based Methods
 - 10.4.3 Clustering-Based Methods
 - 10.4.4 Classification Based Methods
- 10.5 Experiment with Weka Interguartile Range

References

- 1. Jiawei Han, Micheline Kamber, and Jian Pei. *Data Mining: Concepts and Techniques* (3rd edition). Morgan Kaufmann, 2012. ISBN 978-0-12-381479-1.
- 2. Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. *Introduction to Data Mining* (1st edition). Pearson, 2016. ISBN 978-93-3257-140-2.
- 3. Ian H. Witten, Eibe Frank, and Mark A. Hall. *Data Mining: Practical Machine Learning Tools and Techniques* (3rd edition). Morgan Kaufmann, 2011. ISBN 978-0-12-374856-0. (Available as an e-book through the Athabasca University Library)
- 4. Udit Agarwal. *Data Mining and Data Warehousing* (2nd edition). S.K. Kataria & Sons, 2016. ISBN 978-93-5014-490-9.

Department of Computer Science and Engineering, Kathmandu University, Nepal

Lecture type

Lectures will be delivered through slides presentation. All the lectures will be highly interactive with active participation of students and demonstration of real life examples.

Note: Reading materials will be provided throughout the semester for further readings. It includes research papers, case studies, reports and articles.

Grading Policy:

S.N	Item	Grade
1.	Internal (Subjective and MCQ)	20
2.	Mini Project + Term Paper	20
3.	Assignments	10