第三次作业 答案

1. For a zero mean Gaussian stationary process X(t), whose power spectrum is:

$$S_X(\omega) = \begin{cases} A, & ||\omega| - \omega_0| < \frac{\Delta \omega}{2} \\ 0, & \text{others} \end{cases}$$

Where $\omega_0 > \Delta \omega$. Calculate the 1-D pdf of it. (10 points)

Solution:

The power of X(t) is:

$$P_X = \frac{1}{2\pi} \int_{-\infty}^{\infty} S_X(\omega) d\omega = \frac{1}{\pi} \int_{0}^{\infty} S_X(\omega) d\omega = \frac{1}{\pi} A\Delta\omega$$

Therefore:

$$f_X(x) = \frac{1}{\sqrt{2A\Delta\omega}} e^{-\frac{\pi x^2}{2A\Delta\omega}}$$

2. Assuming that a stationary Gaussian white noise with power spectrum A is fed into a filter $H(\omega) = \frac{2}{i\omega + 1}$, calculate the one-dimensional pdf of the output. (20 points)

Sol: The Gaussian process inputted to the system, and output is also Gaussian.

The
$$|H(\omega)|^2 = \frac{4}{\omega^2 + 1}$$

Then the output $S_Y(\omega) = S_X(\omega)|H(\omega)|^2 = \frac{4A}{\omega^2 + 1}$

And for the output Y(t), mean is $m_Y^2 = 0$ thus $m_Y = 0$.

And
$$\sigma_Y^2 = R_Y(0) = 2A$$

Then the 1-D pdf is

$$f(y) = \frac{1}{\sqrt{2\pi\sigma_Y^2}} e^{-\frac{(y-m_Y)^2}{2\sigma_Y^2}} = \frac{1}{2\sqrt{\pi A}} e^{-\frac{y^2}{2A}}$$

3. A stationary stochastic process X(t) is fed into a low-pass filter $h(t) = \alpha e^{-\alpha t} U(t)$. The autocorrelation of X(t) is $\delta(\tau)$. Calculate the output autocorrelation $R_Y(\tau)$. (20 points) Sol:

The h(t) =
$$\alpha e^{-\alpha t} U(t)$$
, thus $H(\omega) = \int_0^{+\infty} e^{-\alpha t} e^{-j\omega t} dt = \frac{\alpha}{\alpha + j\omega}$

Then

$$|H(\omega)|^2 = \frac{\alpha^2}{\alpha^2 + \omega^2}$$

The autocorrelation of X(t) is $\delta(\tau)$, thus the power spectrum is $S_X(\omega) = 1$. And

$$S_{Y}(\mathbf{w}) = S_{X}(\omega)|H(\omega)|^{2} = \frac{\alpha^{2}}{\alpha^{2}+\omega^{2}}$$

Therefore

$$R_Y(\tau) = \frac{1}{\pi} \int_0^\infty \frac{\alpha^2}{\alpha^2 + \omega^2} \cos(\omega \tau) \, d\omega = \frac{\alpha}{2} \frac{1}{\pi} \int_0^\infty \frac{2\alpha}{\alpha^2 + \omega^2} \cos(\omega \tau) \, d\omega = \frac{\alpha}{2} e^{-\alpha|\tau|}$$

4. Given an input z(t) = x(t) + n(t), where x(t) is a deterministic signal as follows (triangular wave), and n(t) is stationary Gaussian white noise with power spectrum of q. (30 points)

- a) Calculate the maximum signal-to-noise ratio of the output if this z(t) is fed into its matched filter. (10 points)
- b) There is another input $z_1(t) = \frac{1}{3}x(t) + n(t)$, calculate the maximum signal-to-noise ratio of the output of this input if it is fed into its matched filter. (10 points)
- c) Calculate the spectrum of the matched filter $H(\omega)$ of the signal. (10 points)
- a) The signal is

Sol:

$$s(t) = \begin{cases} t, & 0 \le t \le 10 \\ 0, & \text{others} \end{cases}$$

The maximum signal-to-noise ratio is $d_m = \frac{E}{q}$, where E is the signal power, which is the integral of the signal in time domain

$$E = \int_0^{10} t^2 dt = \frac{1000}{3}$$

Thus
$$d_{\rm m} = \frac{1000}{3q}$$

b) For time delay and attenuation, the match filter still works. The amplitude of the new signal is $\frac{1}{2}$ of the original one, then the new power is $E_{new} = \int_0^{10} \left(\frac{1}{3}t\right)^2 dt = \frac{1000}{9}$, the noise power is the same, therefore

$$d_{\text{mnew}} = \frac{1000}{27q}$$

c) The spectrum of the signal $s(t) = \begin{cases} t, & 0 \le t \le 10 \\ 0, & \text{others} \end{cases}$ is

$$S(\omega) = \int_{-\infty}^{\infty} s(t)e^{-j\omega t}dt = \int_{0}^{10} te^{-j\omega t}dt = -\frac{1}{j\omega} \int_{0}^{10} tde^{-j\omega t}$$

$$\begin{split} &= -\frac{1}{j\omega} \bigg[t e^{-j\omega t} \big]_0^{10} - \int_0^{10} e^{-j\omega t} dt \bigg] \\ &= -\frac{1}{j\omega} \bigg[t e^{-j\omega t} - \bigg(-\frac{1}{j\omega} \bigg) e^{-j\omega t} \bigg]_0^{10} \\ &= \bigg[-\frac{1}{j\omega} t e^{-j\omega t} - \bigg(\frac{1}{j\omega} \bigg)^2 e^{-j\omega t} \bigg]_0^{10} \\ &= -\frac{1}{j\omega} 10 e^{-j\omega 10} + \frac{1}{\omega^2} e^{-j\omega 10} - \frac{1}{\omega^2} \end{split}$$

Therefore the spectrum of the filter is

$$cS^*(\omega)e^{-j\omega t_0} = c[\frac{1}{j\omega}10e^{j\omega 10} + \frac{1}{\omega^2}e^{j\omega 10} - \frac{1}{\omega^2}]e^{-j\omega t_0}$$

- 5. The stochastic process $Y(t) = Xcos(\omega_0 t + \theta)$, where ω_0 is a constant, X and θ are independent random variables, X is zero mean white Gaussian variable with variance c^2 where c is a constant, and θ follows uniformly distributed in $(-\pi, \pi)$. (20 points)
- a) Calculate the power spectrum of Y(t).
- b) Is Y(t) an ergodicity process? Prove it. solution:
- a) The mean of Y(t) is $E[Y(t)] = E[X]E[cos(\omega_0 t + \theta)] = 0$ The autocorrelation of Y(t) is

$$\begin{split} R_Y(t_1, t_2) &= E[X^2 \cos(\omega_0 t_1 + \theta) \cos(\omega_0 t_2 + \theta)] \\ &= \frac{1}{2} E(X^2) E\{\cos(\omega_0 t_1 + \omega_0 t_2 + 2\theta) + \cos[\omega_0 (t_1 - t_2)]\} \\ &= \frac{1}{2} E(X^2) \cos(\omega_0 (t_1 - t_2)) = \frac{c^2}{2} \cos(\omega_0 \tau), \quad \tau = t_1 - t_2 \end{split}$$

The power spectrum is

$$S_Y(\omega) = FT\left(\frac{c^2}{2}\cos(\omega_0\tau)\right) = \frac{c^2}{2}\delta(\omega - \omega_0) + \frac{c^2}{2}\delta(\omega + \omega_0)$$

b) Note that according to a), it is a WSS process, and $R_Y(\tau) = \frac{2\pi^2}{3} cos(\omega_0 \tau)$, $\tau = t_1 - t_2$.

The **time autocorrelation** of Y(t) is

$$\overline{R_Y(\tau)} = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} [X\cos(\omega_0 t + \tau + \theta) X\cos(\omega_0 t + \theta)] dt$$

$$=\frac{X^2}{2}\lim_{T\to\infty}\frac{1}{2T}\int_{-T}^T[\cos(2\omega_0t+\omega_0\tau+2\theta)+\cos(\omega_0\tau)]\,dt=\frac{X^2}{2}\cos(\omega_0\tau)$$

Which is related to the X, $\overline{R_Y(\tau)}$ might not equals to $R_Y(\tau)$ for some X, therefore it is not an ergodicity process