7.2. Momentum Contrastive(MoCo), Improved Baselines with Momentum Contrastive Learning

Momentum Contrastive learning (MoCo)

- 이미지는 high-dimensional space에 존재하는 연속적인 데이터로 언어처럼 구조화되있지 않아 tokenized dictionaries를 만들기 힘듦
- 다른 논문 (CPCv2)을 통해 Dictionary는 커야하고, key들은 Consistent할 수록 좋다는 것이 가정됨.

 -> 이미지가 연속적이고 high-dimensional space에 존재하므로 dictionary가 클수록 negative sample하기 좋고, encoder에 의해 만들어진 key 들은 query와 비교해서 consistent 할수록 좋기 때문
- Key들이 Consistent할려면? loss가 급격히 변하지 않고 Smooth하게 변화해야함

3.1 Contrastive Learning as Dictionary Look-up

Contrastive Learning을 위해 InfoNCE라 불리는 loss function을 사용한다.

$$\mathcal{L}_q = -\log \frac{\exp(q \cdot k_+ / \tau)}{\sum_{i=0}^K \exp(q \cdot k_i \tau)}$$
(1)

- q : encoded query
- $\{k_0,k_1,k_2,\ldots\}$: dictionary의 key들로 encoded sample의 집합, k_+ 는 q와 일치하는 key,
- au: temperature hyper-parameter

직관적으로 $q \equiv k_+$ 로 분류하는 K+1개의 softmax-based classifier의 log loss로 볼 수 있다.

이 loss function은 query와 key를 만들어내는 encoder network를 학습시키기 위한 함수다. 일반적으로 query는 $q=f_q(x^q)$ 로, key는 $k=f_k(x^k)$ 로 만들어지는데, 각각의 encoder f_q , f_k 는 방법에 따라 동일하거나 일부 요소만 공유하거나 완전히 다를 수 있다. 입력인 x^q , x^k 또한 마찬가지로 pretext task에 따라 이미지/패치/패치들일 수 있다.

Momentum update

- Queue를 이용해 dictionary를 크게 만들면 queue안의 모든 샘플에 대해 gradient를 backpropagation 해야 하므로 f_k 를 학습시키기 어렵다.
 - o 단순한 방법은 gradient를 무시하고 fq를 이용해 f_k 를 구성하는 것인데, 성능이 처참했다. 이는 f_k 가 급격히 변해 key representation의 consistency를 감소시켰기 때문으로 보인다.
- 이 문제를 Momentum update를 이용해 해결한다.

- ullet $m \in [0,1)$: momentum coefficient로 m=0.999가 m=0.9보다 성능이 좋다.
- ullet $heta_q:f_q$ 의 파라미터, $heta_k:f_k$ 의 파라미터
- k가 변화하는 encoder f_k 에 의해 만들어 지더라도 변화의 정도가 느리므로 consistency가 유지된다.

- (a) : 각 학습당 입력되는 mini-batch 하나를 dictionary로 사용하여 key들의 consistency를 유지한다.
 - Dictionary 크기가 mini-batch 크기로 제한되고 dictionary를 크게 하기위해 mini-batch 크기를 키 우면 large mini-batch optimization 문제에 직면한다.
 - o pretext task에 따라 특별한 네트워크가 필요해 downstream task로 transfer하기 힘들다.
- (b): 데이터셋의 모든 샘플들의 representation을 memory bank에 저장해 dictionary로 사용해 dictionary의 크기가 커진다.
 - \circ memory bank의 representation은 각 샘플이 f_q 에 들어갔을때만 업데이트된다. 즉, key들은 여러 epoch에 걸친 다른 f_k 에 의해 만들어 졌으므로 consistency가 떨어진다.
 - \circ MoCo처럼 Momentum update를 사용하지만 f_k 가 아닌 memory bank안의 represnetation에 사용한다.

논문: https://arxiv.org/abs/2003.04297

• SimCLR은 large training batch를 사용해야함

논문 주장

- MoCo v2를 제안한다~
- Momentum Contrastive learning에다가 여러 기법을 추가

 MLP head (fine-tuning에서 Linear 레이어 2개 추가)

 SimCLR에서 사용한 Data augmentation

 image blur augmentation 추가

Figure 1. A batching perspective of two optimization mechanisms for contrastive learning. Images are encoded into a representation space, in which pairwise affinities are computed.

$$\mathcal{L}_{q,k^+,\{k^-\}} = -\log \frac{\exp(q \cdot k^+ / \tau)}{\exp(q \cdot k^+ / \tau) + \sum_{k^-} \exp(q \cdot k^- / \tau)}.$$
 (1)

	unsup. pre-train				ImageNet	VOC detection		
case	MLP	aug+	cos	epochs	acc.	AP_{50}	AP	AP ₇₅
supervised					76.5	81.3	53.5	58.8
MoCo v1				200	60.6	81.5	55.9	62.6
(a)	✓			200	66.2	82.0	56.4	62.6
(b)		\checkmark		200	63.4	82.2	56.8	63.2
(c)	✓	✓		200	67.3	82.5	57.2	63.9
(d)	✓	\checkmark	\checkmark	200	67.5	82.4	57.0	63.6
(e)	✓	✓	\checkmark	800	71.1	82.5	57.4	64.0

Table 1. **Ablation of MoCo baselines**, evaluated by ResNet-50 for (i) ImageNet linear classification, and (ii) fine-tuning VOC object detection (mean of 5 trials). "**MLP**": with an MLP head; "**aug+**": with extra blur augmentation; "**cos**": cosine learning rate schedule.

	unsup. pre-train					ImageNet	
case	MLP	aug+	cos	epochs	batch	acc.	
MoCo v1 [6]				200	256	60.6	
SimCLR [2]	✓	✓	\checkmark	200	256	61.9	
SimCLR [2]	✓	✓	✓	200	8192	66.6	
MoCo v2	✓	✓	✓	200	256	67.5	
results of longer unsupervised training follow:							
SimCLR [2]	✓	✓	✓	1000	4096	69.3	
MoCo v2	✓	✓	✓	800	256	71.1	

Table 2. **MoCo vs. SimCLR**: ImageNet linear classifier accuracy (**ResNet-50, 1-crop 224**×**224**), trained on features from unsupervised pre-training. "aug+" in SimCLR includes blur and stronger color distortion. SimCLR ablations are from Fig. 9 in [2] (we thank the authors for providing the numerical results).

mechanism	batch	memory / GPU	time / 200-ep.
MoCo	256	5.0G	53 hrs
end-to-end	256	7.4G	65 hrs
end-to-end	4096	$93.0G^{\dagger}$	n/a

Table 3. **Memory and time cost** in 8 V100 16G GPUs, implemented in PyTorch. †: based on our estimation.