4

8

9

10

11

13

14

15

16

17

18

19

20

21

22

23

24

25

Estimating winter balance and its uncertainty from direct

² measurements of snow depth and density on alpine glaciers

3 Alexandra PULWICKI,¹ Gwenn E. FLOWERS,¹ Valentina RADIĆ,² Derek

 $BINGHAM^3$

Department of Earth Sciences, Simon Fraser University, Burnaby, BC, Canada
 Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC,
 Canada

³ Department of Statistics and Actuarial Science, Simon Fraser University, Burnaby, BC, Canada Correspondence: Alexandra Pulwicki <apulwick@sfu.ca>

ABSTRACT. Accurately estimating winter surface mass balance on glaciers is central to assessing glacier health and predicting glacier runoff. However, measuring and modelling snow distribution is inherently difficult in mountainous terrain. Here we explore rigorous statistical methods of estimating winter balance and its uncertainty from multiscale measurements of snow depth and density. In May 2016 we collected over 9000 manual measurements of snow depth across three glaciers in the St. Elias Mountains, Yukon, Canada. Linear regression, combined with cross correlation and Bayesian model averaging, as well as ordinary kriging are used to interpolate pointscale values to glacier-wide estimates of winter balance. Elevation and a windredistribution parameter exhibit the highest correlations with winter balance, but the relationship varies considerably between glaciers. A Monte Carlo analysis reveals that the interpolation itself introduces more uncertainty than the assignment of snow density or the representation of grid-scale variability. For our study glaciers, the winter balance uncertainty from all assessed sources ranges from $0.03\,\mathrm{m\,w.e.}$ (8%) to $0.15\,\mathrm{m\,w.e.}$ (54%). Despite the challenges

associated with estimating winter balance, our results are consistent with a regional-scale winter-balance gradient.

28 INTRODUCTION

26

27

54

Winter surface mass balance, or "winter balance", is the net accumulation and ablation of snow over the 29 winter season (Cogley and others, 2011), which constitutes glacier mass input. Winter balance $(B_{\rm w})$ is half 30 of the seasonally resolved mass balance, initializes summer ablation conditions and must be estimated to 31 simulate energy and mass exchange between the land and atmosphere (e.g. Hock, 2005; Réveillet and others, 32 2016). Effectively representing the spatial distribution of snow on glaciers is also central to monitoring surface 33 runoff and its downstream effects (e.g. Clark and others, 2011). 34 Winter balance is notoriously difficult to estimate (e.g. Dadić and others, 2010; Cogley and others, 2011). 35 Snow distribution in alpine regions is highly variable with short correlation length scales (e.g. Anderton and 36 others, 2004; Egli and others, 2011; Grünewald and others, 2010; Helbig and van Herwijnen, 2017; López-37 Moreno and others, 2011, 2013; Machguth and others, 2006; Marshall and others, 2006) and is influenced 38 by dynamic interactions between the atmosphere and complex topography, operating on multiple spatial 39 and temporal scales (e.g. Barry, 1992; Liston and Elder, 2006; Clark and others, 2011; Scipión and others, 40 2013). Simultaneously extensive, high resolution and accurate snow distribution measurements on glaciers 41 are therefore difficult to acquire (e.g. Cogley and others, 2011; McGrath and others, 2015) and obtaining 42 such measurements is further complicated by the inaccessibility of many glacierized regions during the winter. 43 Use of physically based models to estimate winter balance is computationally intensive and requires detailed 44 meteorological data to drive the models (Dadić and others, 2010). As a result, there is significant uncertainty 45 in estimates of winter balance, thus limiting the ability of models to represent current and projected glacier 46 conditions. 47 Studies that have focused on obtaining detailed estimates of $B_{\rm w}$ have used a wide range of observational 48 techniques, including direct measurement of snow depth and density (e.g. Cullen and others, 2017), lidar or 49 photogrammetry (e.g. Sold and others, 2013) and ground-penetrating radar (e.g. Machguth and others, 2006; 50 Gusmeroli and others, 2014; McGrath and others, 2015). Spatial coverage of direct measurements is generally 51 limited and often comprises an elevation transect along the glacier centreline (e.g. Kaser and others, 2003). 52 Measurements are typically interpolated using linear regression on only a few topographic parameters (e.g.

MacDougall and Flowers, 2011), with elevation being the most common. Other established techniques include

measured winter balance values to elevation bands (e.g. Thibert and others, 2008). Physical snow models 56 have been used to estimate spatial patterns of winter balance (e.g. Mott and others, 2008; Schuler and others, 57 2008; Dadić and others, 2010), but availability of the required meteorological data generally prohibits their 58 widespread application. Error analysis is rarely undertaken and few studies have thoroughly investigated 59 60 uncertainty in spatially distributed estimates of winter balance (c.f. Schuler and others, 2008). More sophisticated snow-survey designs and statistical models of snow distribution are widely used in 61 the field of snow science. Surveys described in the snow science literature are generally spatially extensive 62 and designed to measure snow depth and density throughout a basin, ensuring that all terrain types are 63 sampled. A wide array of measurement interpolation methods are used, including linear (e.g. López-Moreno 64 and others, 2010) and non-linear regressions (e.g. Molotch and others, 2005) that include numerous terrain 65 parameters, as well as geospatial interpolation (e.g. Erxleben and others, 2002; Cullen and others, 2017) 66 including various forms of kriging. Different interpolation methods are also combined; for example, regression kriging (see Supplementary Material) adds kriged residuals to a field obtained with linear regression (e.g. 68 Balk and Elder, 2000). Physical snow models such as SnowTran-3D (Liston and Sturm, 1998), Alpine3D 69 (Lehning and others, 2006) and SnowDrift3D (Schneiderbauer and Prokop, 2011) are widely used, and errors 70 in estimating snow distribution have been examined from theoretical (e.g. Trujillo and Lehning, 2015) and 71 applied perspectives (e.g. Turcan and Loijens, 1975; Woo and Marsh, 1978; Deems and Painter, 2006). 72 The goals of this study are to (1) critically examine methods of converting direct snow depth and density 73 measurements to distributed estimates of winter balance; and (2) identify sources of uncertainty, evaluate 74 their magnitude and assess their combined contribution to uncertainty in glacier-wide winter balance. We 75 focus on commonly applied, low-complexity methods of measuring and estimating winter balance in the 76 interest of making our results broadly applicable.

hand contouring (e.g. Tangborn and others, 1975), kriging (e.g. Hock and Jensen, 1999) and attributing

78 STUDY SITE

55

The St. Elias Mountains (Fig. 1a) rise sharply from the Pacific Ocean, creating a significant climatic gradient between coastal maritime conditions, generated by Aleutian–Gulf of Alaska low-pressure systems, and interior continental conditions, driven by the Yukon–Mackenzie high-pressure system (Taylor-Barge, 1969). The boundary between the two climatic zones is generally aligned with the divide between the Hubbard and Kaskawulsh Glaciers, approximately 130 km from the coast. Research on snow distribution and glacier mass balance in this area is limited. A series of research programs, including Project "Snow Cornice" and the

Fig. 1. Study area location and sampling design for Glaciers 4, 2 and 13. (a) Study region in the Donjek Range of the St. Elias Mountains of Yukon, Canada. (b) Study glaciers located along a southwest–northeast transect through the Donjek Range. The local topographic divide is shown as a dashed line. Imagery from Landsat8 (5 September 2013, data available from the U.S. Geological Survey). (c) Details of the snow-survey sampling design, with centreline and transverse transects (blue dots), hourglass and circle designs (green dots) and locations of snow density measurements (orange squares). Arrows indicate ice-flow directions. Approximate location of ELA on each glacier is shown as a black dashed line. (d) Close up of linear and curvilinear transects. (e) Configuration of navigator and observers. (f) Point-scale snow-depth sampling. (g) Linear-random snow-depth measurements in 'zigzag' design (red dots) with one density measurement (orange square) per zigzag.

- Icefield Ranges Research Project, were operational in the 1950s and 60s (Wood, 1948; Danby and others, 2003) and in the last 30 years, there have been a few long-term studies on selected alpine glaciers (e.g. Clarke, 2014) as well as several regional studies of glacier mass balance and dynamics (e.g. Arendt and others, 2008; Berthier and others, 2010; Burgess and others, 2013; Waechter and others, 2015).
- We carried out winter balance surveys on three unnamed glaciers in the Donjek Range of the St. Elias Mountains. The Donjek Range is located approximately 40 km to the east of the regional mountain divide and has an area of about 30 × 30 km². Glacier 4, Glacier 2 and Glacier 13 (labelling adopted from Crompton and Flowers (2016)) are located along a southwest–northeast transect through the range (Fig. 1b, Table 1).

Table 1. Physical characteristics of the study glaciers.

	Location		Ele	evation (m a	Slope ($^{\circ}$)	Area	
	UTM Zone 7		Mean	Range	ELA	Mean	(km^2)
Glacier 4	595470 E	6740730 N	2344	1958-2809	~ 2500	12.8	3.8
Glacier 2	601160 E	6753785 N	2495	1899-3103	~ 2500	13.0	7.0
Glacier 13	604602 E	6763400 N	2428	1923-3067	~2380	13.4	12.6

These small alpine glaciers are generally oriented southeast—northwest, with Glacier 4 having a predominantly southeast aspect and Glaciers 2 and 13 have generally northwest aspects. The glaciers are situated in valleys with steep walls and have simple geometries. Based on a detailed study of Glacier 2 (Wilson and others, 2013) and related theoretical modelling (Wilson and Flowers, 2013) we suspect all of the study glaciers to be polythermal.

98 METHODS

99

100

101

102

103

Estimating glacier-wide winter balance $(B_{\rm w})$ involves transforming measurements of snow depth and density into values of winter balance distributed across a defined grid $(b_{\rm w})$. We do this in four steps. (1) Obtain direct measurements of snow depth and density in the field. (2) Assign density values to all depth-measurement locations to calculate point-scale values of $b_{\rm w}$ at each location. Winter balance, measured in units of metres water equivalent (m w.e.), can be estimated as the product of snow depth and depth-averaged density. (3)

Table 2. Details of the May 2016 winter-balance survey, including number of snow-depth measurement locations along transects $(n_{\rm T})$, total length of transects $(d_{\rm T})$, number of combined snow pit and Federal Sampler density measurement locations (n_{ρ}) , number of zigzag surveys $(n_{\rm zz})$, number (as percent of total number of gridcells, and of the number of gridcells in the ablation area) of gridcells sampled $(n_{\rm S})$ and the elevation range (as percent of total elevations range and of ablation-area elevation range).

	Date	n_{T}	d_{T} (km)	$n_{ ho}$	n_{zz}	$n_{ m S}$	Elevation range (ma.s.l.)
Glacier 4	4–7 May 2016	649	13.1	7	3	295	2015 – 2539
						(12%, 21%)	(62%, 97%)
Glacier 2	8–11 May 2016	762	13.6	7	3	353	2151 – 2541
						(8%, 14%)	(32%,47%)
Glacier 13	12–15 May 2016	941	18.1	19	4	468	2054 – 2574
						(6%, 14%)	(45%, 62%)

Average all point-scale values of $b_{\rm w}$ within each gridcell of a digital elevation model (DEM) to obtain the gridcell-averaged $b_{\rm w}$. (4) Interpolate and extrapolate these gridcell-averaged $b_{\rm w}$ values to obtain estimates of $b_{\rm w}$ in each gridcell across the domain. $B_{\rm w}$ is then calculated by taking the average of all gridcell-averaged $b_{\rm w}$ values for each glacier. For brevity, we refer to these four steps as (1) field measurements, (2) density assignment, (3) gridcell-averaged $b_{\rm w}$ and (4) distributed $b_{\rm w}$. Detailed methodology for each step is outlined below. We use the SPIRIT SPOT-5 DEM ($40 \times 40 \,\mathrm{m}$) from 2005 (Korona and others, 2009) throughout this study.

Our sampling campaign involved four people and occurred between 5–15 May 2016, which falls within the

111 Field measurements

112

- period of historical peak snow accumulation in southwestern Yukon (Yukon Snow Survey Bulletin and Water 113 Supply Forecast, May 1, 2016). Snow depth is generally accepted to be more variable than density (Elder 114 and others, 1991; Clark and others, 2011; López-Moreno and others, 2013) so we chose a sampling design 115 that resulted in a high ratio (\sim 55:1) of snow depth to density measurements. In total, we collected more 116 than 9000 snow-depth measurements and more than 100 density measurements throughout the study area 117 (Table 1). 118 During the field campaign there were two small accumulation events. The first, on 6 May 2016, also involved 119 high winds so accumulation could not be determined. The second, on 10 May 2016, resulted in 0.01 m w.e 120 accumulation measured at one location on Glacier 2. Assuming both accumulation events contributed a 121 uniform $0.01\,\mathrm{m}\,\mathrm{w.e}$ accumulation to all study glaciers then our survey did not capture $\sim 3\%$ and $\sim 2\%$ of 122 estimated $B_{\rm w}$ on Glaciers 4 and 2, respectively. We therefore assume that these accumulation events were 123 negligible and apply no correction. Positive temperatures and clear skies occurred between 11–16 May 2016, 124 which we suspect resulted in melt occurring on Glacier 13. The snow in the lower part of the ablation area 125 of Glacier 13 was isothermal and showed clear signs of melt and metamorphosis. The total amount of melt 126 during the study period was estimated using a degree-day model and found to be small (<0.01 m w.e., see 127 128 Supplementary Material) so no corrections were made.
- 129 Sampling design
- The snow surveys were designed to capture variability in snow depth at regional, basin, gridcell and point scales (Clark and others, 2011). To capture variability at the regional scale we chose three glaciers along a transect aligned with the dominant precipitation gradient (Fig. 1b) (Taylor-Barge, 1969). To account for basin-scale variability, snow depth was measured along linear and curvilinear transects on each glacier (Fig.

1c) with a sample spacing of 10–60 m (Fig. 1d). Sample spacing was constrained by protocols for safe glacier 134 travel, while survey scope was constrained by the need to complete all surveys within the period of peak 135 accumulation. We selected centreline and transverse transects as the most commonly used survey designs 136 in winter balance studies (e.g. Kaser and others, 2003; Machguth and others, 2006) as well as an hourglass 137 pattern with an inscribed circle, which allows for sampling in multiple directions and easy travel (personal 138 139 communication from C. Parr, 2016). To capture variability at the grid scale, we densely sampled up to four gridcells on each glacier using a linear-random sampling design (Shea and Jamieson, 2010) we term a 'zigzag'. 140 To capture point-scale variability, each observer made 3–4 depth measurements within ∼1 m (Fig. 1f) at 141 each transect measurement location. 142

143 Snow depth: transects

While roped-up for glacier travel with fixed distances between observers, the lead observer used a single-144 frequency GPS unit (Garmin GPSMAP 64s) to navigate between predefined transect measurement locations 145 (Fig. 1e). The remaining three observers used 3.2 m graduated aluminum avalanche probes to make snow-146 depth measurements (Kinar and Pomeroy, 2015). The locations of each set of depth measurements, made by 147 the second, third and fourth observers, are estimated using the recorded location of the first observer, the 148 approximate distance between observers and the direction of travel. The 3-4 point-scale depth measurements 149 are averaged to obtain a single depth measurement at each transect measurement location. When considering 150 snow variability at the point scale as a source of uncertainty in snow depth measurements, we find that the 151 mean standard deviation of point-scale snow depth measurements is <7% of the mean snow depth for all 152 study glaciers. 153

Snow-depth sampling was concentrated in the ablation area to ensure that only snow from the current accumulation season was measured. The boundary between snow and firn in the accumulation area can be difficult to detect and often misinterpreted, especially when using an avalanche probe (Grünewald and others, 2010; Sold and others, 2013). We intended to use a firn corer to measure winter balance in the accumulation area, but cold snow combined with positive air temperatures led to cores being unrecoverable. Successful snow depth measurements within the accumulation area were made either in snow pits or using a Federal Sampler (described below) to unambiguously identify the snow-firn transition.

161 Snow depth: zigzags

We measured depth at random intervals of 0.3–3.0 m along two 'Z'-shaped patterns (Shea and Jamieson, 2010), resulting in 135–191 measurements per zigzag, within three to four 40×40 m gridcells (Fig. 1g) per

glacier. Random intervals were machine-generated from a uniform distribution in sufficient numbers that each survey was unique. Zigzag locations were randomly chosen within the upper, middle and lower regions of the ablation area of each glacier. Extra time in the field allowed us to measure a fourth zigzag on Glacier 13 in the central ablation area at ~ 2200 m a.s.l.

168 Snow density

Snow density was measured using a Snowmetrics wedge cutter in three snow pits on each glacier. Within 169 the snow pits (SP), we measured a vertical density profile (in 10 cm increments) with the $5 \times 5 \times 10$ cm 170 wedge-shaped cutter (250 cm³) and a Presola 1000 g spring scale (e.g. Gray and Male, 1981; Fierz and others, 171 2009; Kinar and Pomeroy, 2015). Wedge-cutter error is approximately $\pm 6\%$ (e.g. Proksch and others, 2016; 172 Carroll, 1977). Uncertainty in estimating density from SP measurements also stems from incorrect assignment 173 of density to layers that cannot be sampled (e.g. ice lenses and hard layers). We attempt to quantify this 174 uncertainty by varying estimated ice-layer thickness by ± 1 cm (<100%) of the recorded thickness, ice layer 175 density between 700 and $900 \,\mathrm{kg} \,\mathrm{m}^{-3}$ and the density of layers identified as being too hard to sample (but not 176 ice) between 600 and 700 kg m⁻³. When considering all three sources of uncertainty, the range of integrated 177 density values is always less than 15% of the reference density. Depth-averaged densities for shallow pits 178 179 $(<50\,\mathrm{cm})$ that contain ice lenses are particularly sensitive to changes in prescribed density and ice-lens thickness. 180 While SP provide the most accurate measure of snow density, digging and sampling a SP is time and 181 labour intensive. Therefore, a Geo Scientific Ltd. metric Federal Sampler (FS) (Clyde, 1932) with a 3.2– 182 3.8 cm diameter sampling tube, which directly measures depth-integrated snow-water equivalent, was used to 183 augment the SP measurements. A minimum of three FS measurements were taken at each of 7–19 locations 184 on each glacier and an additional eight FS measurements were co-located with two SP profiles for each 185 glacier. Measurements for which the snow core length inside the sampling tube was less than 90% of the 186 snow depth were discarded. Densities at each measurement location (eight at each SP, three elsewhere) were 187 188 then averaged, with the standard deviation taken to represent the uncertainty. The mean standard deviation of FS-derived density was $\leq 4\%$ of the mean density for all glaciers. 189

Density assignment

190

Measured snow density must be interpolated or extrapolated to estimate point-scale $b_{\rm w}$ at each snow-depth sampling location. We employ four commonly used methods to interpolate and extrapolate density (Table 3): (1) calculate mean density over an entire mountain range (e.g. Cullen and others, 2017), (2) calculate

Table 3. Eight methods used to estimate snow density at unmeasured locations. Total number of resulting density values given in parentheses, with n_T the total number of snow-depth measurement locations along transects (Table 1).

Method	Source of	measured	Density assignment			
code	snow o	lensity	method			
code	Snow pit	Federal				
	Snow pit	Sampler				
S1			Mean of measurements			
F1			across all glaciers (1)			
S2			Mean of measurements			
F2			for each glacier (3)			
S3			Regression of density on			
F3		•	elevation for each glacier (n_T)			
S4			Inverse distance weighted			
F4			mean for each glacier (n_T)			

mean density for each glacier (e.g. Elder and others, 1991; McGrath and others, 2015), (3) linear regression of density on elevation for each glacier (e.g. Elder and others, 1998; Molotch and others, 2005) and (4) calculate mean density using inverse-distance weighting (e.g. Molotch and others, 2005) for each glacier. Densities derived from SP and FS measurements are treated separately, for reasons explained below, resulting in eight possible methods of assigning density.

Gridcell-averaged winter balance

199

We average one to six (mean of 2.1 measurements) point-scale values of $b_{\rm w}$ within each DEM gridcell to 200 obtain the gricell-averaged $b_{\rm w}$. The locations of individual measurements have uncertainty due to the error in 201 the horizontal position given by the GPS unit and the estimation of observer location based on the recorded 202 GPS positions of the navigator. This location uncertainty could result in the incorrect assignment of a 203 point-scale $b_{\rm w}$ measurement to a particular gridcell. However, this source of error is not further investigated 204 because we assume that the uncertainty resulting from incorrect locations of point-scale $b_{\rm w}$ values is captured 205 in the uncertainty derived from zigzag measurements, as described below. Error due to having multiple 206 observers is also evaluated by conducting an analysis of variance (ANOVA) of snow-depth measurements 207 along a transect (amounting to 23 hypothesis tests, one for each transect) and testing for differences between 208 observers. We find no significant differences between snow-depth measurements made by observers along any 209

transect (p>0.05), with the exception of the first transect on Glacier 4 (51 measurements), where snow depth measurements collected by one observer were, on average, greater than the snow depth measurements taken by the other two observers (p<0.01). Since this was the first transect and the only one to show differences by observer, this difference can be considered an anomaly. We conclude that observer bias is not an important effect in this study and therefore apply no observer corrections to the data.

Distributed winter balance

Gridcell-averaged values of $b_{\rm w}$ are interpolated and extrapolated across each glacier using linear regression (LR) and ordinary kriging (OK). The LR relates gridcell-averaged $b_{\rm w}$ to various topographic parameters. We use this method because it is simple and has precedent for success (e.g. McGrath and others, 2015). Instead of a basic LR however, we implement cross-validation to prevent data overfitting as well as model averaging to allow for all combinations of the chosen topographic parameters. We compare the LR approach with OK, an interpolation method free of physical interpretation beyond the premise of spatial correlation in the data (e.g. Hock and Jensen, 1999).

223 Linear regression

215

In the LR, we use commonly applied topographic parameters as in McGrath and others (2015), including 224 elevation, slope, aspect, curvature, "northness" and a wind-redistribution parameter (Sx from Winstral 225 and others (2002)); we add distance-from-centreline as an additional parameter. Topographic parameters 226 are standardized for use in the LR. For details on data and methods used to estimate the topographic 227 parameters see the Supplementary Material and Pulwicki (2017). Our sampling design ensured that the 228 ranges of topographic parameters associated with our measurement locations represent more than 70% of 229 the total area of each glacier (except elevation on Glacier 2, where our measurements captured only 50%). 230 The goal of the LR is to obtain a set of fitted regression coefficients (β_i) that correspond to each topographic 231 parameter and to a model intercept. The LR implemented in this study is an extension of a multiple 232 linear regression; we implement model averaging to incorporate every possible combination of topographic 233 234 parameters and cross-validation to avoid overfitting the data.

We use model averaging to account for uncertainty when selecting predictors and to maximize the model's predictive ability (Madigan and Raftery, 1994). First, models are generated by calculating a set of cross-validated β_i (as described below) for all possible combinations of topographic parameters, resulting in 2^7 models (i.e. 2^7 sets of β_i). Using a Bayesian framework, model averaging involves weighting all models by their posterior model probabilities (Raftery and others, 1997). We weight the models according to their

relative predictive success, as assessed by the value of the Bayesian Information Criterion (BIC) (Burnham 240 and Anderson, 2004). BIC penalizes more complex models, which reduces the risk of overfitting. The final 241 set of β_i is then the weighted sum of β_i from all models. Distributed b_w is obtained by applying the final set 242 of β_i to the topographic parameters associated with each gridcell. 243 Our implementation of cross-validation is intended to obtain a set of parameters (β_i) that have the greatest 244 245 predictive ability (Kohavi and others, 1995) for each model and to prevent over-fitting. We randomly select 1000 subsets of the data ($\sim 2/3$ of the values) and fit a multiple linear regression, using least squares 246 (implemented in MATLAB), to the data subsets, thus obtaining 1000 sets of β_i . The multiple linear regression 247 is of the form $\mathbf{y} = \mathbf{X}\beta_i$, where the matrix \mathbf{X} contains the set of independent regressors \mathbf{x}_i used to explain the 248 dependent variable y and β_i , for i = 0...n, is a vector containing regression coefficients for n regressors (e.g. 249 Davis and Sampson, 1986). Distributed $b_{\rm w}$ is then calculated using each set of β_i by weighting topographic 250 parameters by their corresponding β_i values for all DEM gridcells. We then use the remaining data ($\sim 1/3$ 251 of the values) to calculate a root mean squared error (RMSE) between the estimated $b_{\rm w}$ and the observed 252 $b_{\rm w}$ for corresponding locations. From the 1000 sets of β_i values, we select the set that results in the lowest 253 254 RMSE. This set of β_i has the greatest predictive ability for a particular linear combination of topographic

256 Ordinary kriging

parameters.

255

267

268

269

Kriging is a method of estimating variables at unsampled locations by using the spatial correlation 257 (covariance) of measured values to find a set of optimal weights (Davis and Sampson, 1986; Li and Heap, 258 2008). Kriging assumes spatial correlation between sampling locations that are distributed across a surface 259 and then applies the correlation to interpolate between these locations. Many forms of kriging have been 260 developed to accommodate different data types (e.g. Li and Heap, 2008, and sources within). Ordinary 261 kriging (OK) is the most basic form of kriging where the mean of the estimated field is unknown. Unlike LR, 262 OK is not useful for generating hypotheses to explain the physical controls on snow distribution, nor can it 263 264 be used to estimate winter balance on unmeasured glaciers. However, we chose to use OK because it does not require external inputs and is therefore a means of obtaining $B_{\rm w}$ that is free of physical interpretation 265 beyond the information contained in the covariance matrix. 266

We use the OK model defined by $Y(\mathbf{s}) = \mu + Z(\mathbf{s}) + \text{nugget}$, where $\text{Cov}(Z(\mathbf{s}), Z(\mathbf{s}')) = \sigma^2 R(\mathbf{s}, \mathbf{s}'; \theta)$ (Kaufman

and others, 2011). The nugget is the residual that encompasses sampling-error variance as well as the spatial

variance at distances less than the minimum sample spacing (Li and Heap, 2008). Model parameters (μ , σ_z^2 ,

 $\sigma_{\epsilon}^2, \theta, \text{nugget}$) are estimated with maximum likelihood using the DiceKriging package in R (Roustant and others, 2012). This is a challenging likelihood to maximize, so random re-starts of the package are required. A Matèrn covariance function with $\nu=5/2$ is used and we define a stationary and isotropic covariance. Covariance kernels are parameterized as in Rasmussen and Williams (2006). This specification implies fairly smooth response surface (twice differentiable) and one that is generally applicable as an interpolator in many applications (e.g. Stein, 1999).

Uncertainty analysis using a Monte Carlo approach

Three sources of uncertainty are considered separately: the uncertainty due to (1) grid-scale variability of 277 278 $b_{\rm w}$ ($\sigma_{\rm GS}$), (2) the assignment of snow density (σ_{ρ}) and (3) interpolating and extrapolating gridcell-averaged values of $b_{\rm w}$ ($\sigma_{\rm INT}$). To quantify the uncertainty of grid-scale and interpolation uncertainty on estimates of 279 $B_{\rm w}$ we conduct a Monte Carlo analysis that uses repeated random sampling of input variables to calculate 280 a distribution of output variables (Metropolis and Ulam, 1949). We repeat the random sampling process 281 1000 times, resulting in a distribution of values of $B_{\rm w}$ based on uncertainties associated with the four steps 282 associated with deriving $B_{\rm w}$ from distributed snow-depth and density measurements. Individual sources of 283 uncertainty are propagated through the conversion of snow depth and density measurements to $B_{\rm w}$. Finally, 284 the combined effect of all three sources of uncertainty on $B_{\rm w}$ is quantified. We use the standard deviation 285 of the distribution of $B_{\rm w}$ as a useful metric of $B_{\rm w}$ uncertainty. Density assignment uncertainty is calculated 286 as the standard deviation of the eight resulting values of $B_{\rm w}$. To investigate the spatial patterns in $b_{\rm w}$ 287 uncertainty, we calculate a combined uncertainty, which is equal to the square root of the added variance of 288 distributed $b_{\rm w}$ that arises from $\sigma_{\rm GS}$, σ_{ρ} and $\sigma_{\rm INT}$. See Supplementary Material (Figs. S5 and S6) for plots of 289 standard deviation of distributed $b_{\rm w}$ arising from individual sources of uncertainty. 290

291 Grid-scale uncertainty ($\sigma_{\rm GS}$)

276

We make use of the zigzag surveys to quantify the true variability of $b_{\rm w}$ at the grid scale. Our limited data 292 do not permit a spatially-resolved assessment of grid-scale uncertainty, so we characterize this uncertainty 293 294 as uniform across each glacier and represent it by a normal distribution. The distribution is centred at zero 295 and has a standard deviation equal to the mean standard deviation of all zigzag measurements for each glacier. For each iteration of the Monte Carlo, $b_{\rm w}$ values are randomly chosen from the distribution and 296 added to the values of gridcell-averaged $b_{\rm w}$. These perturbed gridcell-averaged values of $b_{\rm w}$ are then used 297 in the interpolation. We represent uncertainty in $B_{\rm w}$ due to grid-scale uncertainty ($\sigma_{\rm GS}$) as the standard 298 deviation of the resulting distribution of $B_{\rm w}$ estimates. 299

- 300 Density assignment uncertainty (σ_{ρ})
- 301 We incorporate uncertainty due to the method of density assignment by carrying forward all eight density
- interpolation methods (Table 3) when estimating $B_{\rm w}$. By choosing to retain even the least plausible options,
- 303 as well as the questionable FS data, this approach results in a generous assessment of uncertainty. We
- represent the $B_{\rm w}$ uncertainty due to density assignment uncertainty (σ_{ρ}) as the standard deviation of $B_{\rm w}$
- 305 estimates calculated using each density assignment method.
- 306 Interpolation uncertainty (σ_{INT})
- We represent the uncertainty due to interpolation/extrapolation of gridcell-averaged $b_{\rm w}$ in different ways for
- 308 LR and OK. LR interpolation uncertainty is represented by a multivariate normal distribution of possible
- regression coefficients (β_i). The standard deviation of each distribution is calculated using the covariance of
- 310 β_i as outlined in Bagos and Adam (2015), which ensures that β_i are internally consistent. The β_i distributions
- 311 are randomly sampled and used to calculate gridcell-estimated $b_{\rm w}$.
- OK interpolation uncertainty is represented by the standard deviation for each gridcell-estimated value of
- 313 $b_{\rm w}$ generated by the DiceKriging package. The standard deviation of $B_{\rm w}$ is then found by taking the square
- root of the average variance of each gridcell-estimated $b_{\rm w}$. The final distribution of $B_{\rm w}$ values is centred at
- the $B_{\rm w}$ estimated with OK. For simplicity, the standard deviation of $B_{\rm w}$ values that results from either LR
- or OK interpolation/extrapolation uncertainty is referred to as σ_{INT} .

317 RESULTS

318 Field measurements

- 319 Snow depth
- 320 Mean snow depth varied systematically across the study region, with Glacier 4 having the highest mean
- 321 snow depth and Glacier 13 having the lowest (Fig. 2a). At each measurement location, the median range
- of measured depths (3–4 points) as a percent of the mean local depth is 2%, 11% and 12%, for Glaciers 4,
- 223 2 and 13, respectively. While Glacier 4 has the lowest point-scale variability, as assessed above, it also has
- 324 the highest proportion of outliers, indicating a more variable snow depth across the glacier. The average
- standard deviation of all zigzag depth measurements is 0.07 m, 0.17 m and 0.14 m, for Glaciers 4, 2 and 13,
- respectively. When converted to values of $b_{\rm w}$ using the local FS-derived density measurement, the average
- standard deviation is 0.027 m.w.e., 0.035 m.w.e. and 0.040 m.w.e. Winter-balance data for each zigzag are not
- 328 normally distributed (Fig. 3).

Fig. 2. Measured snow depth and density. (a) Boxplot of measured snow depth on Glaciers 4, 2 and 13 with the first quartiles (box), median (line within box), minimum and maximum values excluding outliers (bar) and outliers (circles), which are defined as being outside of the range of 1.5 times the quartiles (approximately $\pm 2.7\sigma$). (b) Comparison of depth-averaged densities estimated using Federal Sampler (FS) measurements and a wedge cutter in a snow pit (SP) for Glacier 4 (G4), Glacier 2 (G2) and Glacier 13 (G13). Labels indicate SP locations in the accumulation area (ASP), upper ablation area (USP) and lower ablation area (LSP). Error bars for SP-derived densities are calculated by varying the thickness and density of layers that are too hard to sample, and error bars for FS-derived densities are the standard deviation of measurements taken at one location. One-to-one line is dashed.

Snow density

329

Contrary to expectation, co-located FS and SP measurements are found to be uncorrelated (R² = 0.25, Fig. 2b). The FS appears to oversample in deep snow and undersample in shallow snow. Oversampling by small-diameter sampling tubes has been observed in previous studies, with a percent error between 6.8% and 11.8% (e.g. Work and others, 1965; Fames and others, 1982; Conger and McClung, 2009). Studies that use FS often apply a 10% correction to all measurements for this reason (e.g. Molotch and others, 2005). Oversampling has been attributed to slots "shaving" snow into the tube as it is rotated (e.g. Dixon and Boon,

Fig. 3. Distributions of estimated winter-balance values for each zigzag survey in lower (L), middle (M) and upper (U) ablation areas (insets). Local mean has been subtracted. (a) Glacier 4. (b) Glacier 2. (c) Glacier 13.

2012) and to snow falling into the slots, particularly for snow samples with densities >400 kg m⁻³ and snow depths >1 m (e.g. Beaumont and Work, 1963). Undersampling is likely to occur due to loss of snow from the bottom of the sampler (Turcan and Loijens, 1975). Loss by this mechanism may have occurred in our study, given the isothermal and melt-affected snow conditions observed over the lower reaches of Glaciers 2 and 13. Relatively poor FS spring-scale sensitivity also calls into question the reliability of measurements for snow depths <20 cm.

Our FS-derived density values are positively correlated with snow depth (R² = 0.59). This relationship

Our FS-derived density values are positively correlated with snow depth ($R^2 = 0.59$). This relationship could be a result of physical processes, such as compaction in deep snow and preferential formation of depth hoar in shallow snow, but is more likely a result of measurement artefacts for a number of reasons. First, the total range of densities measured by the FS seems improbably large ($227-431 \,\mathrm{kg}\,\mathrm{m}^{-3}$). At the time of sampling, the snowpack had little new snow, few ice lenses and was not saturated; the range of measured densities is therefore difficult to explain with physical conditions. Moreover, the range of FS-derived values is much larger than that of SP-derived values when co-located measurements are compared. Second, compaction effects of the magnitude required to explain the density differences between SP and FS measurements would not be expected at the measured snow depths (up to 340 cm). Third, no linear relationship exists between depth and SP-derived density ($R^2 = 0.05$). These findings suggest that the FS measurements have a bias for which we have not identified a suitable correction. Despite this bias, we use FS-derived densities to generate a range of possible $b_{\rm w}$ estimates and to provide a generous estimate of uncertainty arising from density assignment.

355 Density assignment

Given the lack of correlation between co-located SP- and FS-derived densities (Fig. 2), we use the densities 356 derived from these two methods separately (Table 3). SP-derived regional (S1) and glacier-mean (S2) densities 357 are within one standard deviation of the corresponding FS-derived densities (F1 and F2) although SP-derived 358 density values are larger (see Supplementary Material, Table S3). For both SP- and FS-derived densities, the 359 mean density for any given glacier (S2 or F2) is within one standard deviation of the mean across all glaciers 360 (S1 or F1). Correlations between elevation and SP- and FS-derived densities are generally high $(R^2 > 0.5)$ 361 but vary between glaciers (Supplementary Material, Table S3). For any given glacier, the standard deviation 362 of the 3-4 SP- or FS-derived densities is <13\% of the mean of those values (S2 or F2) (Supplementary 363 material, Table S3). We adopt S2 (glacier-wide mean of SP-derived densities) as the reference method of 364 density assignment. Though the method described by S2 does not account for known basin-scale spatial 365 variability in snow density (e.g. Wetlaufer and others, 2016), it is commonly used in winter balance studies 366 (e.g. Elder and others, 1991; McGrath and others, 2015; Cullen and others, 2017). 367

368 Gridcell-averaged winter balance

The distributions of gridcell-averaged $b_{\rm w}$ values for the individual glaciers are similar to those in Fig. 2a but with fewer outliers (see Supplementary Material, Fig. S4). The standard deviations of $b_{\rm w}$ values determined from the zigzag surveys are almost twice as large as the mean standard deviation of point-scale $b_{\rm w}$ values within a gridcell measured along transects (see Supplementary Material, Fig. S5). However, a small number of gridcells sampled in transect surveys have standard deviations in $b_{\rm w}$ that exceed 0.25 m w.e. (\sim 10 times greater than those for zigzag surveys).

375 Distributed winter balance

- 376 Linear regression
- The highest values of estimated $b_{\rm w}$ are found in the upper portions of the accumulation areas of Glaciers
- 2 and 13 (Fig. 4). These areas also correspond to large values of elevation, slope, and wind redistribution.
- Extrapolation of the positive relation between $b_{\rm w}$ and elevation, as well as slope and Sx for Glacier 2, results
- in high $b_{\rm w}$ estimates and large relative uncertainty in these estimates (Fig. 5). On Glacier 4, the distributed
- $b_{\rm w}$ and the combined uncertainty are almost uniform (Fig. 4) due to the small regression coefficients for
- 382 all topographic parameters. The variance explained by the LR-estimated $b_{\rm w}$ differs considerably between
- glaciers (Fig. 6), with the best correlation between modelled and observed $b_{\rm w}$ occurring for Glacier 2. LR is

Fig. 4. Spatial distribution of winter balance (b_w) estimated using linear regression (top row) and ordinary kriging (bottom row) with densities assigned as per S2 (Table 3). The linear regression (LR) method involves multiplying regression coefficients, found using cross validation and model averaging, by topographic parameters for each gridcell. Ordinary kriging (OK) uses the covariance of measured values to find a set of optimal weights for estimating values at unmeasured locations. Locations of snow-depth measurements made in May 2016 are shown as black dots. Ice-flow directions are indicated by arrows. Values of B_w are given below labels.

an especially poor predictor of $b_{\rm w}$ on Glacier 4, where $B_{\rm w}$ can be estimated equally well using the mean of the data. RMSE is also highest for Glacier 4 (Table 4).

Table 4. Glacier-wide winter balance ($B_{\rm w}$, m w.e.) estimated using linear regression and ordinary kriging for the three study glaciers. Root mean squared error (RMSE, m w.e.) is computed as the average of all RMSE values between gridcell-averaged values of $b_{\rm w}$ (the data) that were randomly selected and excluded from interpolation (1/3 of all data) and those estimated by interpolation. RMSE as a percent of the $B_{\rm w}$ is shown in brackets.

	Linea	r regression	Ordinary kriging			
	$B_{ m w}$ RMSE		$B_{ m w}$	RMSE		
G4	0.58	0.15 (26%)	0.62	0.11 (18%)		
G2	0.58	0.10~(17%)	0.35	0.06 (18%)		
G13	0.38	0.08~(21%)	0.27	0.06~(21%)		

Fig. 5. Combined uncertainty of distributed winter balance $(b_{\rm w})$ for density-assignment method S2 (Fig. 4) found using linear regression (top row) and ordinary kriging (bottom row). Note the different scales of the colour bars. Ice-flow directions are indicated by arrows.

Ordinary kriging

386

For all three glaciers, large areas that correspond to locations far from measurements have $b_{\rm w}$ estimates 387 equal to the kriging mean. Distributed $b_{\rm w}$ estimated with OK on Glacier 4 is mostly uniform except for 388 local deviations close to measurement locations (Fig. 4) and combined uncertainty is high throughout the 389 glacier. Distributed $b_{\rm w}$ varies more smoothly on Glaciers 2 and 13 (Fig. 4). Glacier 2 has a distinct region of 390 low estimated $b_{\rm w}$ ($\sim 0.1 \,\mathrm{m\,w.e.}$) in the lower part of the ablation area, which corresponds to a wind-scoured 391 392 region of the glacier. Glacier 13 has the lowest estimated mean $b_{\rm w}$ and only small deviations from this mean at measurement locations (Fig. 4). Combined uncertainty varies considerably across the three study glaciers 393 with the greatest uncertainty far from measurement locations (Fig. 5). As expected, the variance explained 394 by OK-estimated $b_{\rm w}$ is high for both Glaciers 2 and 13 (Fig. 6) because OK is a data-fitting algorithm. 395 However, the variance explained (Fig. 6) for Glacier 4 is comparatively low and RMSE is comparatively high 396 (Table 4). 397

Fig. 6. Winter balance $(b_{\rm w})$ estimated by linear regression (LR, top row) or ordinary kriging (OK, bottom row) versus the grid-cell averaged $b_{\rm w}$ data for Glacier 4 (left), Glacier 2 (middle) and Glacier 13 (right). Each circle represents a single gridcell. Explained variance (R²) is provided. Best-fit (solid) and one-to-one (dashed) lines are shown.

Fig. 7. Distributions of glacier-wide winter balance $(B_{\rm w})$ for Glaciers 4 (G4), 2 (G2) and 13 (G13) that arise from various sources of uncertainty. $B_{\rm w}$ distribution arising from grid-scale uncertainty ($\sigma_{\rm GS}$) (left column). $B_{\rm w}$ distribution arising from interpolation uncertainty (σ_{INT}) (middle column). $B_{\rm w}$ distribution arising from a combination of $\sigma_{\rm GS}$, $\sigma_{\rm INT}$ and density assignment uncertainty (σ_{ρ}) (right column). Results are shown for interpolation by linear regression (LR, top row) and ordinary kriging (OK, bottom row). Left two columns include eight distributions per glacier (colour) and each corresponds to a density assignment method (S1–S4 and F1–F4).

Table 5. Standard deviation ($\times 10^{-2}$ m w.e.) of glacier-wide winter balance ($B_{\rm w}$) distributions arising from uncertainties in grid-scale $b_{\rm w}$ ($\sigma_{\rm GS}$), density assignment (σ_{ρ}), interpolation ($\sigma_{\rm INT}$) and all three sources combined ($\sigma_{\rm ALL}$) for linear regression (left columns) and ordinary kriging (right columns)

	Linear regression				Ordinary kriging			
	$\sigma_{ m GS}$	$\sigma_{ ho}$	σ_{INT}	σ_{ALL}	$\sigma_{ m GS}$	$\sigma_{ ho}$	σ_{INT}	σ_{ALL}
Glacier 4	0.86	1.90	2.13	2.90	0.18	2.16	14.35	14.64
Glacier 2	1.80	3.37	3.09	4.90	0.80	2.06	12.65	13.14
Glacier 13	1.12	1.68	2.80	3.20	0.57	1.30	9.74	10.48

Uncertainty analysis using a Monte Carlo approach

Estimates of $B_{\rm w}$ are affected by uncertainty introduced by the representativeness of gridcell-averaged values of 399 $b_{\rm w}$ ($\sigma_{\rm GS}$), choosing a method of density assignment (σ_{ρ}), and interpolating/extrapolating $b_{\rm w}$ values across the 400 domain (σ_{INT}). Using a Monte Carlo analysis, we find that interpolation uncertainty contributes more to B_{w} 401 uncertainty than grid-scale uncertainty or the method of density assignment. In other words, the distribution 402 of $B_{\rm w}$ that arises from grid-scale uncertainty and the differences in distributions between methods of density 403 404 assignment are smaller than the distribution that arises from interpolation uncertainty (Fig. 7 and Table 5). The $B_{\rm w}$ distributions obtained using LR and OK overlap for a given glacier, but the distribution modes 405 differ (Fig. 7). OK-estimated values of $b_{\rm w}$ in the accumulation area are generally lower (Fig. 4), which lowers 406 the $B_{\rm w}$ estimate. The uncertainty in OK-estimated values of $B_{\rm w}$ is large, and unrealistic (e.g. $B_{\rm w}=0\,{\rm m\,w.e.}$) 407 values of $B_{\rm w}$ are possible (Fig. 7). 408 The values of $B_{\rm w}$ for our study glaciers (using LR and S2 density assignment method), with an uncertainty 409 equal to one standard deviation of the distribution found with Monte Carlo analysis, are: 0.59 ± 0.03 m w.e. 410 for Glacier 4, 0.61 ± 0.05 m w.e. for Glacier 2 and 0.40 ± 0.03 m w.e. for Glacier 13. The $B_{\rm w}$ uncertainty from 411 the three investigated sources of uncertainty ranges from $0.03 \,\mathrm{m}$ w.e (5%) to $0.05 \,\mathrm{m}$ w.e (8%) for LR estimates 412 and from 0.10 m w.e (37%) to 0.15 m w.e (24%) for ordinary-kriging estimates (Table 4). 413

414 DISCUSSION

398

415 Distributed winter balance

- 416 Linear regression
- 417 Of the topographic parameters in the LR, elevation (z) is the most significant predictor of gridcell-averaged
- 418 $b_{\rm w}$ for Glaciers 2 and 13, while wind redistribution (Sx) is the most significant predictor for Glacier 4 (Fig. 8).

Fig. 8. Distribution of coefficients (β_i) determined by linear regression of gridcell-averaged b_w on DEM-derived topographic parameters for the eight different density assignment methods (Table 3). Coefficients are calculated using standardized data, so values can be compared across parameters. Regression coefficients that are not significant are assigned a value of zero. Topographic parameters include elevation (z), distance from centreline (d_C), slope (m), curvature (κ) and wind redistribution (Sx). Aspect (α) and "northness" (N) are not shown because coefficient values are zero in every case. The box plot shows first quartiles (box), median (line within box), mean (circle within box), minimum and maximum values excluding outliers (bars) and outliers (gray dots), which are defined as being outside of the range of 1.5 times the quartiles (approximately $\pm 2.7\sigma$).

As expected, gridcell-averaged $b_{\rm w}$ is positively correlated with elevation where the correlation is significant. 419 It is possible that the elevation correlation was accentuated due to melt onset for Glacier 13 in particular. 420 Glacier 2 had little snow at the terminus likely due to steep slopes and wind-scouring but the snow did 421 not appear to have been affected by melt. Our results are consistent with many studies that have found 422 elevation to be the most significant predictor of seasonal snow accumulation data (e.g. Machguth and others, 423 2006; Grünewald and others, 2014; McGrath and others, 2015). The $b_{\rm w}$ -elevation gradient is 13 mm 100 m⁻¹ 424 on Glacier 2 and $7\,\mathrm{mm}\,100\,\mathrm{m}^{-1}$ on Glacier 13. These gradients are consistent with those reported for a 425 few glaciers in Svalbard (Winther and others, 1998) but are considerably smaller than many reported $b_{\rm w}$ 426 elevation gradients, which range from about 60 to 240 mm 100 m⁻¹ (e.g. Hagen and Liestøl, 1990; Tveit and 427 Killingtveit, 1994; Winther and others, 1998). Extrapolating linear relationships to unmeasured locations 428 typically results in considerable estimation error, as seen by the large $b_{\rm w}$ values (Fig. 4) and large relative 429 uncertainty (Fig. 5) in the high-elevation regions of Glaciers 2 and 13. The low correlation between $b_{\rm w}$ and 430

elevation on Glacier 4 is consistent with Grabiec and others (2011) and López-Moreno and others (2011), 431 who conclude that highly variable distributions of snow can be attributed to complex interactions between 432 topography and the atmosphere that cannot be easily quantified. The snow on Glacier 4 also did not appear 433 to have been affected by melt and it is hypothesized that significant wind-redistribution of snow, which was 434 not captured by the Sx parameter, covered ice-topography and produced a relatively uniform snow depth 435 436 across the glacier. Gridcell-averaged $b_{\rm w}$ is negatively correlated with Sx on Glacier 4, counter-intuitively indicating less snow 437 in what would be interpreted as sheltered areas. Gridcell-averaged $b_{\rm w}$ is positively correlated with Sx on 438 Glaciers 2 and 13. Our results corroborate those of McGrath and others (2015) in a study of six glaciers 439 in Alaska (DEM resolutions of 5 m) where elevation and Sx were the only significant parameters for all 440 glaciers; Sx regression coefficients were smaller than elevation regression coefficients, and in some cases, 441 negative. While our results point to wind having an impact on snow distribution, the wind redistribution 442 parameter (Sx) may not adequately capture these effects at our study sites. For example, Glacier 4 has a 443 curvilinear plan-view profile and is surrounded by steep valley walls, so specifying a single cardinal direction 444 445 for wind may not be adequate. Further, the scale of deposition may be smaller than the resolution of the Sx parameter estimated from the DEM. Creation of a parametrization for sublimation from blowing snow, 446 which has been shown to be an important mechanism of mass loss from ridges (e.g. Musselman and others, 447 2015), may also increase the explanatory power of LR for our study sites. 448 We find that transfer of LR coefficients between glaciers results in large estimation errors. Regression 449 coefficients from Glacier 4 produce the highest RMSE (0.38 m w.e. on Glacier 2 and 0.40 m w.e. on Glacier 450 13, see Table 4 for comparison) and $B_{\rm w}$ values are the same for all glaciers (0.64 m w.e.) due to the dominance 451 of the regression intercept. Even if the LR is performed with $b_{\rm w}$ values from all glaciers combined, the resulting 452 coefficients produce large RMSE when applied to individual glaciers (0.31 m w.e., 0.15 m w.e. and 0.14 m w.e. 453 for Glaciers 4, 2 and 13, respectively). Our results are consistent with those of Grünewald and others (2013), 454

457 Ordinary kriging

455

456

Due to a paucity of data, ordinary kriging produces almost uniform gridcell-estimated $b_{\rm w}$ in the accumulation area of each glacier, inconsistent with observations described in the literature (e.g. Machguth and others, 2006; Grabiec and others, 2011). Glacier 4 has the highest estimated mean with large deviations from the

who found that local statistical models cannot be transferred across basins and that regional-scale models

are not able to explain the majority of observed variance in winter balance.

mean at measurement locations. The longer correlation lengths of the data for Glaciers 2 and 13 result in a

more smoothly varying distributed $b_{\rm w}$. As expected, extrapolation using OK leads to large uncertainty (Fig.

463 5), further emphasizing the need for spatially distributed point-scale measurements.

464 LR and OK comparison

LR and OK produce similar estimates of distributed $b_{\rm w}$ (Fig. 5) and $B_{\rm w}$ (~ 0.60 m w.e., Table 4) for Glacier 465 4 but both are relatively poor predictors of $b_{\rm w}$ in measured gridcells (Fig. 6). For Glaciers 2 and 13, OK 466 estimates are more than $\sim 0.22 \,\mathrm{m}\,\mathrm{w.e.}$ (39%) and $\sim 0.11 \,\mathrm{m}\,\mathrm{w.e.}$ (30%) lower than LR estimates, respectively 467 (Table 4). RMSE as a percentage of the $B_{\rm w}$ is lower for OK than LR only for Glacier 4 but the absolute 468 RMSE of OK is $\sim 0.03 \,\mathrm{m}$ w.e. lower for all glaciers, likely because OK is a data-fitting interpolation method 469 (Table 4). RMSEs as a percentage of the glacier-wide $B_{\rm w}$ are comparable between LR and OK (Table 4) with 470 an average RMSE of 22%. This comparability is interesting, given that all of the data were used to generate 471 the OK model, while only 2/3 were used in the LR. Tests in which only 2/3 of the data were used in the OK 472 model yielded similar results to those in which all data were used. Gridcell-estimated values of $b_{\rm w}$ found using 473 LR and OK differ markedly in the upper accumulation areas of Glaciers 2 and 13, where observations are 474 sparse and topographic parameters, such as elevation, attain their highest values. The influence of elevation 475 results in substantially higher LR-estimated values of $b_{\rm w}$ at high elevation, whereas OK-estimated values are more uniform. Estimates of ablation-area-wide $B_{\rm w}$ differ by <6% between LR and OK on each glacier, further 477 emphasizing the combined influence of interpolation method and measurement scarcity in the accumulation 478 area on $B_{\rm w}$ estimates. 479

480 Uncertainty analysis using a Monte Carlo approach

Interpolation/extrapolation of $b_{\rm w}$ data is the largest contributor to $b_{\rm w}$ uncertainty in our study. These 481 results caution strongly against including values of $b_{\rm w}$ in comparisons with remote sensing- or model-derived 482 estimates of $B_{\rm w}$. If possible, such comparisons should be restricted to point-scale data. Grid-scale uncertainty 483 $(\sigma_{\rm GS})$ is the smallest assessed contributor to overall $B_{\rm w}$ uncertainty. This result is consistent with the generally 484 485 smoothly-varying snow depths encountered in zigzag surveys, and previously reported ice-roughness lengths 486 on the order of centimetres (e.g. Hock, 2005) compared to snow depths on the order of decimetres to metres. Given our assumption that zigzags are an adequate representation of grid-scale variability, the low $B_{\rm w}$ 487 uncertainty arising from σ_{GS} implies that subgrid-scale sampling need not be a high priority for reducing 488 overall uncertainty. Our assumption that the 3-4 zigzag surveys can be used to estimate glacier-wide $\sigma_{\rm GS}$ 489 may be flawed, particularly in areas with debris cover, crevasses and steep slopes. 490

Our analysis did not include uncertainty arising from density measurement errors associated with the FS, wedge cutters and spring scales, from vertical and horizontal errors in the DEM or from error associated with estimating measurement locations based on the GPS position of the lead observer. We assume that these sources of uncertainty are either encompassed by the sources investigated or are negligible.

495 Regional winter-balance gradient

Although we find considerable inter- and intra-basin variability in winter balance, our results are consistent 496 with a regional-scale winter-balance gradient for the continental side of the St. Elias Mountains (Fig. 9). 497 Winter-balance data are compiled from Taylor-Barge (1969), the three glaciers presented in this paper and 498 two SP we analyzed near the head of the Kaskawulsh Glacier between 20–21 May 2016. The data show a linear 499 decrease of $0.024\,\mathrm{m\,w.e.~km^{-1}}$ ($\mathrm{R}^2=0.85$) in winter balance with distance from the regional topographic 500 divide between the Kaskawulsh and Hubbard Glaciers, as identified by Taylor-Barge (1969). While the three 501 study glaciers fit the regional trend, the same relationship would not apply if just the Donjek Range were 502 considered. We hypothesize that interaction between meso-scale weather patterns and large-scale mountain 503 topography is a major driver of regional-scale winter balance. Further insight into regional-scale patterns of 504 winter balance in the St. Elias Mountains could be gained by investigating moisture source trajectories and 505 the contribution of orographic precipitation. 506

507 Limitations and future work

The potential limitations of our work include the restriction of our data to a single year, minimal sampling 508 in the accumulation area, the problem of uncorrelated SP- and FS-derived densities, a sampling design that 509 could not be optimized a priori, the assumption of spatially uniform subgrid variability and lack of more 510 finely resolved DEMs. 511 Inter-annual variability in winter balance is not considered in our study. A number of studies have found 512 temporal stability in spatial patterns of snow distribution and that statistical models based on topographic 513 parameters could be applied reliably between years (e.g. Grünewald and others, 2013). For example, Walmsley 514 (2015) analyzed more than 40 years of winter balance recorded on two Norwegian glaciers and found that 515 snow distribution is spatially heterogeneous yet exhibits robust temporal stability. Contrary to this, Crochet 516 and others (2007) found that snow distribution in Iceland differed considerably between years and depended 517 primarily on the dominant wind direction over the course of a winter. Therefore, multiple years of snow depth 518 and density measurements, that are not necessarily consecutive, are needed to better understand inter-annual 519 variability of winter balance within the Donjek Range. 520

Fig. 9. Relationship between winter balance and linear distance from the regional topographic divide between the Kaskawulsh and Hubbard Glaciers in the St. Elias Mountains. Point-scale values of winter balance from snow-pit data reported by Taylor-Barge (1969) (blue boxes, P-WB). LR-estimated glacier-wide winter balance ($B_{\rm w}$) calculated using density assignment S2 for Glaciers 4 (G4), 2 (G2) and 13 (G13) with errors bars calculated as the standard deviation of Monte Carlo-derived $B_{\rm w}$ distributions (this study) (open orange circles, G-WB). Point-scale winter balance estimated from snow-pit data at two locations in the accumulation area of the Kaskawulsh Glacier, collected in May 2016 (unpublished data, SFU Glaciology Group) (filled orange dots, P-WB). Black line indicates best fit ($R^2 = 0.85$).

There is a conspicuous lack of data in the accumulation areas of our study glaciers. With increased sampling in the accumulation area, interpolation uncertainties would be reduced where they are currently greatest and the LR would be better constrained. Although certain regions of the glaciers remain inaccessible for direct measurements, other methods of obtaining winter-balance measurements, including ground-penetrating radar and DEM differencing with photogrammetry or lidar, could be used in conjunction with manual probing to increase the spatial coverage of measurements.

The lack of correlation between SP- and FS-derived densities needs to be reconciled. Contrary to our results, most studies that compare SP- and FS-derived densities report minimal discrepancy (e.g. Dixon and Boon, 2012, and sources within). Additional co-located density measurements are needed to better compare the two methods of obtaining density values. Comparison with other FS would also be informative. Even with this limitation, density assignment was, fortunately, not the largest source of uncertainty in estimating glacier-wide winter balance.

Our sampling design was chosen to achieve broad spatial coverage of the ablation area, but is likely too finely resolved along transects for many mass-balance surveys to replicate. An optimal sampling design would

minimize uncertainty in winter balance while reducing the number of required measurements. Analysis of 535 the estimated winter balance obtained using subsets of the data is underway to make recommendations on 536 optimal transect configuration and along-track spacing of measurements. López-Moreno and others (2010) 537 found that 200-400 observations are needed within a non-glacierized alpine basin (6 km²) to obtain accurate 538 and robust snow distribution models. Similar guidelines would be useful for glacierized environments. 539 540 In this study, we assume that the subgrid variability of winter balance is uniform across a given glacier. Contrary to this assumption, McGrath and others (2015) found greater variability of winter-balance values 541 close to the terminus. Testing our assumption could be a simple matter of prioritizing the labour-intensive 542 zigzags surveys. To ensure consistent quantification of subgrid variability, zigzag survey measurements could 543 also be tested against other measurements methods, such as lidar. 544 DEM gridcell size is known to influence values of computed topographic parameters (Zhang and 545 Montgomery, 1994; Garbrecht and Martz, 1994; Guo-an and others, 2001; López-Moreno and others, 2010). 546 The relationship between topographic parameters and winter balance is, therefore, not independent of DEM 547 gridcell size. For example, Kienzle (2004) and López-Moreno and others (2010) found that a decrease in 548 549 spatial resolution of the DEM results in a decrease in the importance of curvature and an increase in the importance of elevation in LR of snow distribution on topographic parameters in non-glacierized basins. The 550 importance of curvature in our study is affected by the DEM smoothing that we applied to obtain a spatially 551 continuous curvature field (see Supplementary Material, Fig. S1). A comparison of regression coefficients 552 from high-resolution DEMs obtained from various sources and sampled with various gridcell sizes could be 553

556 CONCLUSION

554

555

562

563

564

We estimate winter balance for three glaciers (termed Glacier 2, Glacier 4 and Glacier 13) in the St. Elias Mountains, Yukon, Canada from multiscale snow depth and density measurements. Linear regression and ordinary kriging are used to obtain estimates of distributed winter balance ($b_{\rm w}$). We use Monte Carlo analysis to evaluate the contributions of interpolation, assignment of snow density and grid-scale variability of winter balance to uncertainty in estimates of glacier-wide winter balance ($B_{\rm w}$).

used to characterize the dependence of topographic parameters on DEMs, and therefore assess the robustness

of inferred relationships between winter balance and topographic parameters.

Values of $B_{\rm w}$ estimated using linear regression and ordinary kriging differ by up to 0.24 m w.e. ($\sim 50\%$). We find that interpolation uncertainty is the largest assessed source of uncertainty in $B_{\rm w}$ (7% for linear-regression estimates and 34% for ordinary-kriging estimates). Uncertainty resulting from the method of density

assignment is comparatively low, despite the wide range of methods explored. Given our representation of grid-scale variability, the resulting $B_{\rm w}$ uncertainty is small indicating that extensive subgrid-scale sampling is not required to reduce overall uncertainty.

Our results suggest that processes governing distributed $b_{\rm w}$ differ between glaciers, highlighting the 568 importance of regional-scale winter-balance studies. The estimated distribution of $b_{\rm w}$ on Glacier 4 is 569 570 characterized by high variability, as indicated by the poor correlation between estimated and observed values and large number of data outliers. Glaciers 2 and 13 appear to have lower spatial variability, with elevation 571 being the dominant predictor of gridcell-averaged $b_{\rm w}$. A wind-redistribution parameter is found to be a weak 572 but significant predictor of $b_{\rm w}$, though conflicting relationships between glaciers make it difficult to interpret. 573 The major limitations of our work include the restriction of our data to a single year and minimal sampling in 574 the accumulation area. Although challenges persist when estimating winter balance, our data are consistent 575 with a regional-scale winter-balance gradient for the continental side of the St. Elias Mountains. 576

AUTHOR CONTRIBUTION STATEMENT

AP planned and executed the data collection, performed all calculations and drafted the manuscript. GF conceived of the study, contributed to field planning and data collection, oversaw all stages of the work and edited the manuscript. VR provided guidance with the methods of data analysis and edited the manuscript.

DB contributed to the statistical analysis and edited the manuscript.

582 ACKNOWLEDGEMENTS

577

We thank the Kluane First Nation (KFN), Parks Canada and the Yukon Territorial Government for granting 583 us permission to work in KFN Traditional Territory and Kluane National Park and Reserve. We are 584 grateful for financial support provided by the Natural Sciences and Engineering Research Council of Canada, 585 Simon Fraser University and the Northern Scientific Training Program. We kindly acknowledge Kluane Lake 586 Research Station, Sian Williams, Lance Goodwin and Trans North pilot Dion Parker for facilitating field 587 logistics. We are grateful to Alison Criscitiello and Coline Ariagno for all aspects of field assistance and Sarah 588 Furney for assistance with data entry. Thank you to Etienne Berthier for providing us with the SPIRIT 589 SPOT-5 DEM and for assistance in DEM correction. We are grateful to Michael Grosskopf for assistance 590 with the statistics, including ordinary kriging. Luke Wonneck, Leif Anderson and Jeff Crompton all provided 591 thoughtful and constructive comments on drafts of the manuscript. We appreciate the thoughtful suggestions 592 and edits from two anonymous reviewers. 593

594 REFERENCES

- 595 Anderton S, White S and Alvera B (2004) Evaluation of spatial variability in snow water equivalent for a high
- mountain catchment. Hydrological Processes, 18(3), 435–453 (doi: 10.1002/hyp.1319)
- 597 Arendt AA, Luthcke SB, Larsen CF, Abdalati W, Krabill WB and Beedle MJ (2008) Validation of high-resolution
- 598 GRACE mascon estimates of glacier mass changes in the St Elias Mountains, Alaska, USA, using aircraft laser
- 599 altimetry. Journal of Glaciology, **54**(188), 778–787 (doi: 10.3189/002214308787780067)
- 600 Bagos PG and Adam M (2015) On the Covariance of Regression Coefficients. Open Journal of Statistics, 5, 680–701
- 601 (doi: 10.4236/ojs.2015.57069)
- 602 Balk B and Elder K (2000) Combining binary decision tree and geostatistical methods to estimate snow distribution
- 603 in a mountain watershed. Water Resources Research, **36**(1), 13–26 (doi: 10.1029/1999WR900251)
- 604 Barry RG (1992) Mountain weather and climate. Cambridge University Press, 3rd edition
- 605 Beaumont RT and Work RA (1963) Snow sampling results from three samplers. International Association of Scientific
- 606 Hydrology. Bulletin, 8(4), 74–78 (doi: 10.1080/02626666309493359)
- 607 Berthier E, Schiefer E, Clarke GK, Menounos B and Rémy F (2010) Contribution of Alaskan glaciers to sea-level
- rise derived from satellite imagery. Nature Geoscience, **3**(2), 92–95
- 609 Burgess EW, Forster RR and Larsen CF (2013) Flow velocities of Alaskan glaciers. Nature communications, 4,
- 610 2146–2154 (doi: 10.1038/ncomms3146)
- 611 Burnham KP and Anderson DR (2004) Multimodel Inference: Understanding AIC and BIC in Model Selection.
- 612 Sociological Methods & Research, 33(2), 261–304 (doi: 10.1177/0049124104268644)
- 613 Carroll T (1977) A comparison of the CRREL 500 cm³ tube and the ILTS 200 and 100 cm³ box cutters used for
- determining snow densities. Journal of Glaciology, 18(79), 334–337 (doi: 10.1017/S0022143000021420)
- 615 Clark MP, Hendrikx J, Slater AG, Kavetski D, Anderson B, Cullen NJ, Kerr T, Örn Hreinsson E and Woods RA
- 616 (2011) Representing spatial variability of snow water equivalent in hydrologic and land-surface models: A review.
- 617 Water Resources Research, 47(7) (doi: 10.1029/2011WR010745)
- 618 Clarke GK (2014) A short and somewhat personal history of Yukon glacier studies in the Twentieth Century. Arctic,
- **37**(1), 1–21
- 620 Clyde GD (1932) Circular No. 99-Utah Snow Sampler and Scales for Measuring Water Content of Snow. UAES
- 621 Circulars, Paper 90
- 622 Cogley J, Hock R, Rasmussen L, Arendt A, Bauder A, Braithwaite R, Jansson P, Kaser G, Möller M, Nicholson L
- and others (2011) Glossary of glacier mass balance and related terms. UNESCO-IHP, Paris
- 624 Conger SM and McClung DM (2009) Comparison of density cutters for snow profile observations. Journal of
- 625 Glaciology, **55**(189), 163–169 (doi: 10.3189/002214309788609038)

- 626 Crochet P, Jóhannesson T, Jónsson T, Sigur Ársson O, Björnsson H, Pálsson F and Barstad I (2007) Estimating
- the Spatial Distribution of Precipitation in Iceland Using a Linear Model of Orographic Precipitation. Journal of
- 628 Hydrometeorology, **8**(6), 1285–1306 (doi: 10.1175/2007JHM795.1)
- 629 Crompton JW and Flowers GE (2016) Correlations of suspended sediment size with bedrock lithology and glacier
- dynamics. Annals of Glaciology, **57**(72), 1–9 (doi: 10.1017/aog.2016.6)
- 631 Cullen NJ, Anderson B, Sirguey P, Stumm D, Mackintosh A, Conway JP, Horgan HJ, Dadic R, Fitzsimons SJ
- and Lorrey A (2017) An 11-year record of mass balance of Brewster Glacier, New Zealand, determined using a
- 633 geostatistical approach. Journal of Glaciology, **63**(238), 199–217 (doi: 10.1017/jog.2016.128)
- 634 Dadić R, Mott R, Lehning M and Burlando P (2010) Parameterization for wind-induced preferential deposition of
- snow. Journal of Geophysical Research: Earth Surface, 24(14), 1994–2006 (doi: 10.1029/2009JF001261)
- 636 Danby RK, Hik DS, Slocombe DS and Williams A (2003) Science and the St. Elias: an evolving framework
- for sustainability in North America's highest mountains. The Geographical Journal, 169(3), 191–204 (doi:
- 638 10.1111/1475-4959.00084)
- 639 Davis JC and Sampson RJ (1986) Statistics and data analysis in geology. Wiley New York et al., 2nd edition
- 640 Deems JS and Painter TH (2006) Lidar measurement of snow depth: accuracy and error sources. In Proceedings of
- the International Snow Science Workshop
- 642 Dixon D and Boon S (2012) Comparison of the SnowHydro snow sampler with existing snow tube designs. Hydrological
- 643 Processes, **26**(17), 2555–2562 (doi: 10.1002/hyp.9317)
- 644 Egli L, Griessinger N and Jonas T (2011) Seasonal development of spatial snow-depth variability across different
- scales in the Swiss Alps. Annals of Glaciology, **52**(58), 216–222 (doi: 10.3189/172756411797252211)
- 646 Elder K, Dozier J and Michaelsen J (1991) Snow accumulation and distribution in an alpine watershed. Water
- Resources Research, 27(7), 1541–1552 (doi: 10.1029/91WR00506)
- 648 Elder K, Rosenthal W and Davis RE (1998) Estimating the spatial distribution of snow water equiv-
- alence in a montane watershed. $Hydrological\ Processes,\ 12(1011),\ 1793-1808\ (doi:\ 10.1002/(SICI)1099-1000)$
- 650 1085(199808/09)12:10/111793::AID-HYP6953.0.CO;2-K)
- 651 Erxleben J, Elder K and Davis R (2002) Comparison of spatial interpolation methods for estimating snow distribution
- in the Colorado Rocky Mountains. Hydrological Processes, 16(18), 3627–3649 (doi: 10.1002/hyp.1239)
- 653 Fames PE, Peterson N, Goodison B and Richards RP (1982) Metrication of Manual Snow Sampling Equipment. In
- 654 Proceedings of the 50th Western Snow Conference, 120–132
- 655 Fierz C, Armstrong RL, Durand Y, Etchevers P, Greene E, McClung DM, Nishimura K, Satyawali PK and Sokratov
- 656 SA (2009) The international classification for seasonal snow on the ground. UNESCO/IHP, unesco/ihp paris
- 657 edition

- 658 Garbrecht J and Martz L (1994) Grid size dependency of parameters extracted from digital elevation models.
- 659 Computers & Geosciences, 20(1), 85–87 (doi: 10.1016/0098-3004(94)90098-1)
- 660 Grabiec M, Puczko D, Budzik T and Gajek G (2011) Snow distribution patterns on Svalbard glaciers derived from
- 661 radio-echo soundings. Polish Polar Research, 32(4), 393–421 (doi: 10.2478/v10183-011-0026-4)
- 662 Gray DM and Male DH (1981) Handbook of snow: principles, processes, management & use. Pergamon Press, 1st
- 663 edition
- 664 Grünewald T, Schirmer M, Mott R and Lehning M (2010) Spatial and temporal variability of snow depth and ablation
- rates in a small mountain catchment. Cryosphere, 4(2), 215–225 (doi: 10.5194/tc-4-215-2010)
- 666 Grünewald T, Stötter J, Pomeroy J, Dadic R, Moreno Baños I, Marturià J, Spross M, Hopkinson C, Burlando P
- and Lehning M (2013) Statistical modelling of the snow depth distribution in open alpine terrain. Hydrology and
- 668 Earth System Sciences, 17(8), 3005–3021 (doi: 10.5194/hess-17-3005-2013)
- 669 Grünewald T, Bühler Y and Lehning M (2014) Elevation dependency of mountain snow depth. The Cryosphere, 8(6),
- 670 2381–2394 (doi: 10.5194/tc-8-2381-2014)
- 671 Guo-an T, Yang-he H, Strobl J and Wang-qing L (2001) The impact of resolution on the accuracy of hydrologic data
- derived from DEMs. Journal of Geographical Sciences, 11(4), 393–401 (doi: 10.1007/BF02837966)
- 673 Gusmeroli A, Wolken GJ and Arendt AA (2014) Helicopter-borne radar imaging of snow cover on and around glaciers
- in Alaska. Annals of Glaciology, **55**(67), 78–88 (doi: 10.3189/2014AoG67A029)
- 675 Hagen JO and Liestøl O (1990) Long-term glacier mass-balance investigations in Svalbard, 1950-88. Annals of
- 676 Glaciology, **14**(1), 102–106
- 677 Helbig N and van Herwijnen A (2017) Subgrid parameterization for snow depth over mountainous terrain from flat
- field snow depth. Water Resources Research, 53(2), 1444–1456 (doi: 10.1002/2016WR019872)
- 679 Hock R (2005) Glacier melt: a review of processes and their modelling. Progress in Physical Geography, 29(3), 362–391
- (doi: 10.1191/0309133305pp453ra)
- 681 Hock R and Jensen H (1999) Application of kriging interpolation for glacier mass balance computations. Geografiska
- 682 Annaler: Series A, Physical Geography, 81(4), 611–619 (doi: 10.1111/1468-0459.00089)
- 683 Kaser G, Fountain A, Jansson P and others (2003) A manual for monitoring the mass balance of mountain glaciers.
- 684 ICSI/UNESCO
- 685 Kaufman CG, Bingham D, Habib S, Heitmann K and Frieman JA (2011) Efficient emulators of computer experiments
- using compactly supported correlation functions, with an application to cosmology. The Annals of Applied
- 687 Statistics, 2470–2492 (doi: 10.1214/11-AOAS489)
- 688 Kienzle S (2004) The Effect of DEM Raster Resolution on First Order, Second Order and Compound Terrain
- 689 Derivatives. Transactions in GIS, 8(1), 83–111 (doi: 10.1111/j.1467-9671.2004.00169.x)

- 690 Kinar N and Pomeroy J (2015) Measurement of the physical properties of the snowpack. Reviews of Geophysics,
- **53**(2), 481–544 (doi: 10.1002/2015RG000481)
- 692 Kohavi R and others (1995) A study of cross-validation and bootstrap for accuracy estimation and model selection.
- 693 In Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence, 1137–1145
- 694 Korona J, Berthier E, Bernard M, Rémy F and Thouvenot E (2009) SPIRIT SPOT 5 stereoscopic survey of Polar
- 695 Ice: Reference images and topographies during the fourth International Polar Year (2007–2009). ISPRS Journal
- of Photogrammetry and Remote Sensing, **64**(2), 204–212 (doi: 10.1016/j.isprsjprs.2008.10.005)
- 697 Lehning M, Völksch I, Gustafsson D, Nguyen TA, Stähli M and Zappa M (2006) ALPINE3D: a detailed model of
- 698 mountain surface processes and its application to snow hydrology. Hydrological Processes, 20(10), 2111–2128 (doi:
- 699 10.1002/hyp.6204)
- 700 Li J and Heap AD (2008) A review of spatial interpolation methods for environmental scientists. Geoscience Australia,
- 701 Record 2008/23
- 702 Liston GE and Elder K (2006) A distributed snow-evolution modeling system (SnowModel). Journal of
- 703 *Hydrometeorology*, **7**(6), 1259–1276 (doi: 10.1175/JHM548.1)
- 704 Liston GE and Sturm M (1998) A snow-transport model for complex terrain. Journal of Glaciology, 44(148), 498–516
- 705 López-Moreno J, Latron J and Lehmann A (2010) Effects of sample and grid size on the accuracy and stability of
- regression-based snow interpolation methods. Hydrological Processes, 24(14), 1914–1928 (doi: 10.1002/hyp.7564)
- 707 López-Moreno J, Fassnacht S, Heath J, Musselman K, Revuelto J, Latron J, Morán-Tejeda E and Jonas T (2013)
- Small scale spatial variability of snow density and depth over complex alpine terrain: Implications for estimating
- snow water equivalent. Advances in Water Resources, 55, 40–52 (doi: 10.1016/j.advwatres.2012.08.010)
- 710 López-Moreno JI, Fassnacht S, Beguería S and Latron J (2011) Variability of snow depth at the plot scale: implications
- for mean depth estimation and sampling strategies. The Cryosphere, 5(3), 617–629 (doi: 10.5194/tc-5-617-2011)
- 712 MacDougall AH and Flowers GE (2011) Spatial and temporal transferability of a distributed energy-balance glacier
- 713 melt model. Journal of Climate, **24**(5), 1480–1498 (doi: 10.1175/2010JCLI3821.1)
- 714 Machguth H, Eisen O, Paul F and Hoelzle M (2006) Strong spatial variability of snow accumulation observed
- vith helicopter-borne GPR on two adjacent alpine glaciers. Geophysical Research Letters, 33(13), 1–5 (doi:
- 716 10.1029/2006GL026576)
- 717 Madigan D and Raftery AE (1994) Model Selection and Accounting for Model Uncertainty in Graphical Models
- 718 Using Occam's Window. Journal of the American Statistical Association, 89(428), 1535–1546
- 719 Marshall HP, Koh G, Sturm M, Johnson J, Demuth M, Landry C, Deems J and Gleason J (2006) Spatial variability of
- the snowpack: Experiences with measurements at a wide range of length scales with several different high precision
- 721 instruments. In Proceedings International Snow Science Workshop, 359–364

- 722 McGrath D, Sass L, O'Neel S, Arendt A, Wolken G, Gusmeroli A, Kienholz C and McNeil C (2015) End-of-winter
- snow depth variability on glaciers in Alaska. Journal of Geophysical Research: Earth Surface, 120(8), 1530–1550
- 724 (doi: 10.1002/2015JF003539)
- 725 Metropolis N and Ulam S (1949) The Monte Carlo Method. Journal of the American Statistical Association, 44(247),
- 726 335-341
- 727 Molotch N, Colee M, Bales R and Dozier J (2005) Estimating the spatial distribution of snow water equivalent in
- an alpine basin using binary regression tree models: the impact of digital elevation data and independent variable
- selection. *Hydrological Processes*, **19**(7), 1459–1479 (doi: 10.1002/hyp.5586)
- 730 Mott R, Faure F, Lehning M, Löwe H, Hynek B, Michlmayer G, Prokop A and Schöner W (2008) Simulation of
- seasonal snow-cover distribution for glacierized sites on Sonnblick, Austria, with the Alpine3D model. Annals of
- 732 Glaciology, **49**(1), 155–160 (doi: 10.3189/172756408787814924)
- 733 Musselman KN, Pomeroy JW, Essery RL and Leroux N (2015) Impact of windflow calculations on simulations
- of alpine snow accumulation, redistribution and ablation. Hydrological Processes, 29(18), 3983–3999 (doi:
- 735 10.1002/hyp.10595)
- 736 Proksch M, Rutter N, Fierz C and Schneebeli M (2016) Intercomparison of snow density measurements: bias, precision,
- 737 and vertical resolution. The Cryosphere, **10**(1), 371–384 (doi: 10.5194/tc-10-371-2016)
- 738 Pulwicki A (2017) Multi-scale investigation of winter balance on alpine glaciers. Master's thesis, Simon Fraser
- 739 University
- 740 Raftery AE, Madigan D and Hoeting JA (1997) Bayesian Model Averaging for Linear Regression Models. Journal of
- 741 the American Statistical Association, 92(437), 179–191 (doi: 10.1080/01621459.1997.10473615)
- 742 Rasmussen CE and Williams CK (2006) Gaussian processes for machine learning. MIT press Cambridge
- 743 Réveillet M, Vincent C, Six D and Rabatel A (2016) Which empirical model is best suited to simulate glacier mass
- 544 balances? Journal of Glaciology, **63**(237), 1–16 (doi: 10.1017/jog.2016.110)
- 745 Roustant O, Ginsbourger D and Deville Y (2012) DiceKriging, DiceOptim: Two R packages for the analysis of
- computer experiments by kriging-based metamodeling and optimization. Journal of Statistical Software, 21, 1–55
- 747 Schneiderbauer S and Prokop A (2011) The atmospheric snow-transport model: SnowDrift3D. Journal of Glaciology,
- **57**(203), 526–542 (doi: 10.3189/002214311796905677)
- 749 Schuler TV, Crochet P, Hock R, Jackson M, Barstad I and Jóhannesson T (2008) Distribution of snow accumulation
- on the Svartisen ice cap, Norway, assessed by a model of orographic precipitation. Hydrological Processes, 22(19),
- 751 3998–4008 (doi: 10.1002/hyp.7073)
- 752 Scipión DE, Mott R, Lehning M, Schneebeli M and Berne A (2013) Seasonal small-scale spatial variability in
- 753 alpine snowfall and snow accumulation. Water Resources Research, 49(3), 1446–1457, ISSN 1944-7973 (doi:
- 754 10.1002/wrcr.20135)

- 755 Shea C and Jamieson B (2010) Star: an efficient snow point-sampling method. Annals of Glaciology, 51(54), 64–72
- 756 (doi: 10.3189/172756410791386463)
- 757 Sold L, Huss M, Hoelzle M, Andereggen H, Joerg PC and Zemp M (2013) Methodological approaches to
- 758 infer end-of-winter snow distribution on alpine glaciers. Journal of Glaciology, 59(218), 1047–1059 (doi:
- 759 10.3189/2013JoG13J015)
- 760 Stein ML (1999) Interpolation of spatial data: some theory for kriging. Springer Science & Business Media
- 761 Tangborn WV, Krimmel RM and Meier MF (1975) A comparison of glacier mass balance by glaciological, hydrological
- 762 and mapping methods, South Cascade Glacier, Washington. International Association of Hydrological Sciences
- 763 Publication, **104**, 185–196
- 764 Taylor-Barge B (1969) The summer climate of the St. Elias Mountain region. Montreal: Arctic Institute of North
- 765 America, Research Paper No. 53
- 766 Thibert E, Blanc R, Vincent C and Eckert N (2008) Glaciological and volumetric mass-balance measurements: error
- analysis over 51 years for Glacier de Sarennes, French Alps. Journal of Glaciology, 54(186), 522–532
- 768 Trujillo E and Lehning M (2015) Theoretical analysis of errors when estimating snow distribution through point
- 769 measurements. The Cryosphere, 9(3), 1249-1264 (doi: 10.5194/tc-9-1249-2015)
- 770 Turcan J and Loijens H (1975) Accuracy of snow survey data and errors in snow sampler measurements. In 32nd
- 771 Eastern Snow Conference
- 772 Tveit J and Killingtveit Å (1994) Snow surveys for studies of water budget on Svalbard 1991–1994. In Proceedings
- of the 10th International Northern Research Basins Symposium and Workshop, Spitsbergen, Norway. SINTEF
- 774 *Report*, volume 22, A96415
- 775 Waechter A, Copland L and Herdes E (2015) Modern glacier velocities across the Icefield Ranges, St Elias
- Mountains, and variability at selected glaciers from 1959 to 2012. Journal of Glaciology, 61(228), 624–634 (doi:
- 777 10.3189/2015JoG14J147)
- 778 Walmsley APU (2015) Long-term observations of snow spatial distributions at Hellstuqubreen and Gråsubreen,
- 779 Norway. Master's thesis, University of Oslo
- 780 Wetlaufer K, Hendrikx J and Marshall L (2016) Spatial Heterogeneity of Snow Density and Its Influence on Snow Wa-
- ter Equivalence Estimates in a Large Mountainous Basin. Hydrology, 3(3), 1–17 (doi: 10.3390/hydrology3010003)
- 782 Wilson N and Flowers G (2013) Environmental controls on the thermal structure of alpine glaciers. The Cryosphere,
- 783 **7**(1), 167–182 (doi: 10.5194/tc-7-167-2013)
- 784 Wilson NJ, Flowers GE and Mingo L (2013) Comparison of thermal structure and evolution between neighboring
- subarctic glaciers. Journal of Geophysical Research: Earth Surface, 118(3), 1443–1459 (doi: 10.1002/jgrf.20096)
- 786 Winstral A, Elder K and Davis RE (2002) Spatial snow modeling of wind-redistributed snow using terrain-based pa-
- rameters. Journal of Hydrometeorology, **3**(5), 524–538 (doi: 10.1175/1525-7541(2002)0030524:SSMOWR2.0.CO;2)

- 788 Winther J, Bruland O, Sand K, Killingtveit A and Marechal D (1998) Snow accumulation distribution on Spitsbergen,
- 789 Svalbard, in 1997. Polar Research, 17, 155–164 (doi: 10.3402/polar.v17i2.6616)
- 790 Woo MK and Marsh P (1978) Analysis of Error in the Determination of Snow Storage for Small High Arctic Basins.
- Journal of Applied Meteorology, 17(10), 1537–1541 (doi: 10.1175/1520-0450(1978)0171537:AOEITD2.0.CO;2)
- 792 Wood WA (1948) Project "Snow Cornice": the establishment of the Seward Glacial research station. Arctic, 1(2),
- 793 107-112
- 794 Work R, Stockwell H, Freeman T and Beaumont R (1965) Accuracy of field snow surveys. Cold Regions Research &
- 795 Engineering Laboratory
- 796 Zhang W and Montgomery DR (1994) Digital elevation model grid size, landscape representation, and hydrologic
- 797 simulations. Water Resources Research, **30**(4), 1019–1028 (doi: 10.1029/93WR03553)