

物联网通信技术

主讲人: 宁 磊

Email: ninglei@sztu.edu.cn

目录 CONTENT S

第1章.物联网通信概述 第2章.基带传输技术 第3章.频带传输技术 第4章.链路传输技术 第5章.网络传输技术 第6章.应用传输技术 第7-8章. 无线通信系统

2025/5/20 大数据与互联网学院 2

- 本章主要内容: 5G NB-IoT 和5G NR通信系统的基本原理、协议 架构和系统特点。
- 本章学习目标
 - □了解5G NB-IoT 和5G NR通信系统的主要特点;
 - □熟悉上述系统的协议架构;
 - □掌握上述系统的基本原理与使用方法。

物联网无线传输系统

- 5G NB-IoT
- 5G NR

2025/5/20 大数据与互联网学院

低功耗广域物联网

LPWA是随着物联网发展诞生的新型网络领域。

低功耗广域物联网对比

名称 指标	NB-IoT	HaLow	SigFox	LoRaWAN	RPMA
频带	蜂窝	1 GHz以下	868 MHz/902 MHz	433/868/780/915 MHz	2.4 GHz
信道宽度	180 kHz	1/2/4/8/16 MHz	超窄带	8 x 125 KHz(欧洲)、64 x 125 kHz/8 x 125 kHz(美 国)、Chirp扩频(调制)	1 MHz(40 个频道可用)
覆盖范围	2.5~5 km	1 km(室外)	30~50km(农村)、 3~10km(城市)、 1000km(视距条件下)	2~5km(城市)、15km(农 村)	>500km (视距条件 下)
终端节点传 输功耗	20 dBm	0-30 dBm	-10 dBm-20 dBm	<+14 dBm(欧洲) <+27 dBm(美国)	20 dBm
分组长度	100~1 000Byte	7 991~65 535Byte	12Byte	用户定义	6~10 000Byte
上行数据速 率	约55 kbps	150 kbps~346.666 Mbps	100 bps 每天140条消息	300 bps~50 kbps(欧洲)、 900 bps~100 kbps(美国)	624 kbps
下行数据速 率	约40 kbps	150 kbps~346.666 Mbps	有效负载固定8Byte 每天4条消息	300 bps~50 kbps(欧洲)、 900 bps~100 kbps(美国)	156 kbps
每个接入点 的设备	超过20 000个	8191个	1000 000个	上行大于1000 000个,下行 小于100 000个	384 000
拓扑结构	星型	星型、树型	星型	星型	星型、树型
主要推动者	3GPP	IEEE802.11工作组	Sigfox公司	LoRa联盟	Ingenu

2025/5/20 大数据与互联网学院 6

● NB-IoT是基于蜂窝网络的窄带物联网技术,聚焦于低功耗广域网,支持物联设备在广域网的数据连接,可直接部署于LTE网络

● NB-IoT网络部署模式

NB-IoT的网络部署模式

- NB-IoT网络架构
 - 系统架构包括三部分,分别是演进的核心系统(Evolved Packet Core, EPC)、基站 (eNodeB, eNB)、用户终端(User Equipment, UE)
 - □ 端到端系统架构分为五部分:用户终端、无线接入网、核心网、支撑平台和应用服务器

● 无线接入资源

- □ 频率资源
 - NB-IoT下行物理层信道基于OFDMA方式。一个NB-IoT载波对应一个资源块,包含 12个连续的子载波,全部基于15kH的子载波间隔设计,NB-IoT用户终端只工作在 半双工模式
 - NB-IoT上行物理层信道基于15kHz和3.75kHz两种子载波间隔设计,分为单音和多音两种工作模式
 - NB-IoT上行物理层信道的多址接入技术采用SC-FDMA
 - NB-IoT沿用LTE系统定义的频段号, NB-IoT Rel-13指定了14个工作频段

- 无线接入资源
 - □ 时帧结构
 - NB-IoT Rel.-13仅支持FDD帧结构类型

下行物理资源栅格

- 无线接入资源
 - □ 时帧结构
 - 当子载波间隔为15kHz时,下行和上行都支持E-UTRAN无线时帧结构1(FS1)

15kHz子载波间隔的时帧结构

其中,每个时隙(Slot)为0.5ms,2个时隙组成1个1ms的子时帧(Sub-Frame),10个子时帧组成1个10ms的无线时帧(Radio Frame)。因此,1个无线时帧包含20个时隙

● 无线接入资源

- □ 上下行链路物理信道
 - 系统采用时域和频域联合构成上下行的传输信道
 - 下行链路定义了三种物理信道: 窄带物理广播信道(Narrowband Physical Broadcast Channel, NPBCH)、窄带物理下行控制信道(Narrowband Physical Downlink Control Channel, NPDCCH)、窄带物理下行共享信道(Narrowband Physical Downlink Share Channel, NPDSCH)
 - 下行链路定义了三种信号: 窄带参考信号(Narrowband Reference Signal, NRS)、窄带主同步信号(Narrowband Primary Synchronization Signal, NPSS)和窄带辅同步信号(Narrowband Secondary Synchronization Signal, NSSS)

● 无线接入资源

- □ 上下行链路物理信道
 - 上行链路定义了两种物理信道: 窄带物理上行共享信道(Narrowband Physical Uplink Share Channel, NPUSCH)和窄带物理随机接入信道(Narrowband Physical Random Access Channel, NPRACH)
 - 上行链路定义了上行解调参考信号(Demodulation Reference Signal, DMRS)

● 无线接入资源

□ 下行链路物理传输机制

NPDCCH

- 发送下行链路信息,其传输的信息包括公共控制信息(系统信息,寻呼信息等) 和用户专属信息
- 用来承载下行控制消息(Downlink Control Information, DCI)
- 承载的DCI包含一个或多个UE上的资源分配和他的控制信息
- 各个搜索空间由RRC子层配置相对应的最大重复次数 R_{max} ,其搜索空间的出现周期大小即为相应的 R_{max} 与RRC子层配置的1个参数的乘积
- PRB中定义了两个控制信道单元,每个控制信道单元在子时帧内形成资源池

- 无线接入资源
 - □ 下行链路物理传输机制
 - NPDSCH
 - 子时帧结构和NPDCCH一样
 - 用来传输下行业务数据和系统消息,如单播业务数据、寻呼消息、RAR信息等
 - NPDSCH所占用的带宽是一个PRB大小
 - 物理层使用TBCC,所对应的ACK/NACK通过单音传输中的NPUSCH发送,由 下行链路指示频域资源和时域资源
 - 信道处理过程包括加扰、调制、层映射和预编码,以及资源映射几个步骤
 - 引入子时帧级重复,子时帧级重复次数为 $min(M_{rep}^{NPDSCH}, 4)$
 - NDSCH峰值物理层速率226.7kbit/s

● 无线接入资源

□ 上行链路物理传输机制

- 基于15kHz和3.75kHz两种子载波间隔设计,分为单音和多音两种工作模式
 - 如果上行链路子载波间隔15kHz,则有12个连续的子载波;如果上行链路子载波间隔3.75kHz,则有48个连续的子载波
- 多址接入技术采用SC-FDMA
 - 在单音模式下,一次上行传输只分配一个15kHz或3.75kHz的子载波;在多音模式下,一次上行传输支持1、3、6或12个子载波传输方式
- 在上行链路中,采用资源单位(Resource Unit, RU)进行基本调度,其中RU是时域、频域两个域的资源组合

- 无线接入资源
 - □ 上行链路物理传输机制
 - 各种场景下的RU持续时长、子载波有所不同

NPUSCH格式	子载波间隔 Δf/KHz	每个RU子载波 数N ^{RU}	每个RU时隙数 N ^{UL} _{slots}	每个RU的TTI 长度/ms	每个时隙的 符号数N ^{UL} symn	NPUSCH的 调制方式
格式1	3.75	1	16	32		п/2-BPSK
	15	1	16	8	7	п/4-QPSK
		3	8	4		
		6	4	2		QPSK
		12	2	1		
格式2	3.75	1	4	8		п/2-BPSK
	15	1	4	2		п/4-QPSK

NB-IoT上行资源单位的子载波数目与时隙数目结合

● 无线接入资源

□ 上行链路物理传输机制

NPUSCH

- 用来传输上行数据和上行控制信息。单音传输使用π/2-BPSK和π/4-QPSK,多音传输使用QPSK
- 支持两种格式: NPUSCH格式1和NPUSCH格式2
- NPUSCH格式1用于传输上行信道的数据,可采用单音传输或多音传输方式
- NPUSCH格式2用于传输上行控制信息(Uplink Control Information, UCI), 只采用单音传输方式
- 信道的处理过程通过加扰、调制、层映射、变换编码、预编码、资源映射等几个步骤

- 无线接入资源
 - □ 上行链路物理传输机制
 - NPRACH
 - 支持符号组跳频的3.75kHz的单子载波信号,有以下两个格式
 - ① 格式0: CP长度为66.67ps, 支持10km小区半径
 - ② 格式1: CP长度为266.67us, 支持40km小区半径
 - 为了估计上行信号到达时间偏差,NPRACH通过两级跳频的方式来增加信号经历的带宽从而提高估计精度

● 无线接入资源

□ 空口协议

• NB-IoT协议栈基于LTE设计,但是根据物联网的需求,去掉了一些不必要的功能,

NB-IoT空口协议栈

● 无线接入资源

□ 空口协议

- 空口协议主要完成UE的小区接入与数据传输
- UE接入小区时,通过小区搜索取得频率和符号同步、获取SIB信息、启动随机接入 流程建立RRC连接
- 需要改变服务小区,NB-IoT终端会进行RRC释放,进入RRC_IDLE状态,再重选至 其他小区
- 数据传输时,采用控制面和用户面两种方案均可传输数据,同时还增加了连接挂起 与恢复这一专用功能来适应物联网应用

- 无线接入资源
 - □ 空口协议
 - 基于竞争的NB-IoT随机接入过程
 - 接入流程:
 - ① UE发送随机接入请求
 - ② eNB发送随机接入响应
 - ③ eNB进行竞争解决

基于竞争的接入流程

- 无线接入资源
 - □ 空口协议
 - RRC连接建立流程
 - 具体步骤
 - ① UE发送携带RRC连接请求(RRC Connection Request)给eNB。

基于竞争的接入流程

- ② eNB为UE建立上下文
- ③ eNB进行SRB1资源的准入和资源分配
- ④ eNB向UE回复RRC连接设置(RRC Connection Setup)消息,消息中携带 SRB1bis资源配置的详细信息

UE

eNB

准入与

资源分配

RRC连接请求

RRC连接设置

RRC连接设置完成。

⑤ UE根据RRC连接设置消息指示的SRB1bis资源信息进行无线资源配置,然后 发送RRC连接设置完成(RRC Connection Setup Complete)消息eNB

- 无线接入资源
 - □ 空口协议
 - 数据传输方案:控制面(CP)方案和用户面(UP)方案
 - CP方案

无需建立空口数据无线承载和S1-U连接,直接通过NAS消息传输数据,支持IP数

据和非IP数据传输

CP方案数据传输流程

- 无线接入资源
 - □ 空口协议
 - 数据传输方案:控制面(CP)方案和用户面(UP)方案
 - UP方案

2025/5/20 大数据与互联网学院 25

- 无线接入资源
 - □ 空口协议
 - 数据传输方案:控制面(CP)方案和用户面(UP)方案
 - UP方案:新方案增加了挂起和恢复两功能

物联网无线传输系统

- 5G NB-IoT
- 5G NR

2025/5/20 大数据与互联网学院 27

5G顶层设计: 应用场景和关键技术指标

5G的三大类应用场景

5G之花": 5G关键指标

5G顶层设计: 无线关键技术

5G新空口通过灵活可配置的帧结构、带宽和系统参数,以及多天线等关键技术,满足5G多场景和多样化的业务需求,提升网络整体性能

 1
 灵活部署
 • SA/NSA、CU/DU、灵活 参数集

 2
 速率提升
 • 大带宽、多天线、系统开 销优化

 3
 时延降低
 • 帧结构、调度、MEC

 4
 覆盖增强
 • 信道赋形能力设计、终端 侧能力提升、SUL/CA

2025/5/20 大数据与互联网学院 30

灵活部署-独立组网和非独立组网

NSA/SA > CU/DU > 見活参

技术背景:为满足<mark>部分运营商快速部署5G需求</mark>,标准新引入一种新的组网架构- NSA非独立组网,而传统2/3/4G网络均采用SA独立组网的架构

• NSA(非独立组网): 5G依附于4G基站工作的网络架构,5G无线网与核心网之间的NAS信令(如注册,鉴权等)通过4G基站 传递,5G无法独立工作

注: SA和NSA都是以5GNR作为对象来定义的,

灵活部署-5G接入网CU/DU新架构

NSA/SA

CU/DU

灵活参数

为了应对5G灵活的组网需求,5G RAN架构进行重新设计,将基站拆分为CU(集中单元)和DU(分布单元)两个逻辑网元,CU与DU可分设可合设

- □3GPP标准中,采用了选项2作为CU/DU间的标准切分方案,即
 - CU负责完成实时性要求较低的RRC/SDAP/PDCP功能
 - DU负责完成实时性要求较高的RLC/MAC/PHY功能
- □CU和DU为逻辑单元,在具体实现中,存在合设(与4G BBU形态一致)和分离 (BBU*+CU设备)两种方式

注: CU-DU分设与C-RAN概念不同, C-RAN是指基带处理 (如DU) 集中

灵活部署-灵活参数

NSA/SA > CU/DU > 灵活参数 >

• 不同载波带宽的实现参数对比

	LTE-20MHz	NR-100MHz	NR-100MHz
子载波间隔 (KHz)	15	30	60
系统带宽 (MHz)	20	100	100
FFT size	2048	4096	2048
有效子载波数	1200	3000	1500
OFDM符号时长 (us)	66.67	33.4	16.67
NCP 长度 (us)	5.1, 4.7	2.86, 2.34	1.69, 1.17
CP开销 (%)	6.67	6.67	6.67
ECP长度 (us)	16.68	8.34	4.17
CP 开销 (%)	20	20	20

- 系统参数选择需要考虑不同的适用场景
 - SCS
 - 较大的SCS可以适用于大带宽场景
 - 较大的SCS可以对抗更大的多普勒频移,适用于高速移动场景
 - 较大的SCS符号长度较短,适用于低时延场景
 - CP
 - NCP的开销较小
 - ECP长度较大,可以对抗更大的多径时延

 1
 灵活部署
 • SA/NSA、CU/DU、

 2
 速率提升
 • 大带宽、多天线、系统开销优 化

 3
 时延降低
 • 帧结构、调度、MEC

 4
 覆盖增强
 • 信道赋形能力设计、终端侧能 力提升、SUL/CA

2025/5/20 大数据与互联网学院 34

速率提升-5G小区带宽

大带宽 多天线 开销优化

5G支持灵活的小区带宽, 且小区最大带宽与频段相关, 在3.5/4.9GHz频段, 支持最大100MHz小区带宽, 在>6GHz的毫米波频段最大支持400MHz

系统和频率	小区带宽(MHz)	数据信道子载波间隔(KHz)	
LTE	1.4/3/5/10/15/20	15	
<3GHz (NR: 900\ 1800MHz)	5*/10/15/20/25*/30*	15/30/60	
<3GHz (NR: 2600MHz)	5*/10/15/20/40/50/60/80/100	15/30/60	
3.3GHz ~ 3.8GHz (NR)	15/30/60		
4.4GHz ~ 5GHz (NR)	40/50/60/80/100		
>6GHz (NR)	50/100/200/400	60/120	

注:仅NR子载波间隔为15KHz时,支持5MHz小区带宽

■以100MHz小区带宽为例,是TD-LTE单小区20MHz的5倍带宽,是TD-LTE三载波聚合的1.67倍

速率提升- 5G多天线产品能力提升

大带宽 多天线 开销优化

4G多天线产品 4G Massive MIMO产品

5G多天线产品 5G Massive MIMO产品

	8通道天线 ※※※※ ※※※※ ※※※※ ※※※※ ※※※※	2.6G 64通道 128阵子 3D-MIMO ———————————————————————————————————	3.5G 16通道 192阵子天线 ※※※※※※ ※※※※ ※※ ※※ ※※ ※※ ※※ ※※	3.5G 64通道 192阵子 3D-MIMO
广播水平波宽	65°	65°	与扫描波束数有关: 如水平4波束,半功率波宽30° 水平8波束,半功率波宽15°	与扫描波束数有关: 如水平4波束,半功率波宽30°水平8 波束,半功率波宽15°
广播垂直波宽	6°	8° /高楼覆盖30°	6°	6°
下倾角	0,3,6,9	初始3度,可调	初始6,可电调	初始6,可调
广播波束增益	D频段: 16.5dBi	16dBi /高楼覆盖15dBi	15dBi+X (X与扫描波束数有 关) 如水平4波束,X约为2.5dB 水平 8波束,X约为5dB	17dBi+X (X与扫描波束数有关) 如水平4波束,X约为2.5dB 水平8波 束,X约为5dB

速率提升-5G提供更强的多天线能力

大带宽 多天线 开销优化

下行64T

- •更高波束赋形增益: 单用户下行4流峰值约 1.5Gbps
- •更窄波束:下行MU能力提高,小区下行不低于 16流,峰值约6Gbps

上行64R

- •更强上行接收性能: 单用户上行2流峰值约285Mbps
- •更强抗干扰能力,上行MU能力提高,小区上行不低于8流, 峰值不低于1Gbps

注:基于2.5ms双周期,单用户上行2流下行4流,上行64QAM、下行256QAM

5G业务速率能力示例

速率提升-5G导频开销降低

大带宽 多天线 开销优化

技术背景: 为进一步提升速率,需降低5G NR系统开销,5G一方面降低保护带开销,另一方面取消公共参考信号 CRS,采用CSI-RS进行信道估计,并完全采用DMRS解调,更好支持波束赋形升

大带宽 多天线 开销优化

■5G定义了更严格的滤波指标要求,减少了原有频谱边缘的保护带间隔,频谱利用率由4G的90%提升至98%

■ 仅考虑系统开销因素,NR的频谱效率较LTE有8~28%的提升

	NR新技术	频谱效率 増益	总增益	
上行	保护带开销降低	8%	8%	
下行	CRS开销降低	10%		
	全信道波束赋型,干扰下降	10%	28%	
	保护带开销降低	8%		

 1
 灵活部署
 • SA/NSA、CU/DU

 2
 速率提升
 • 大带宽、多天线、系统开销优化

 6
 帧结构、调度、MEC

 4
 覆盖增强
 • 信道赋形能力设计、终端侧能力提升、SUL/CA

帧结构》调度优化 MEC

技术背景: <mark>为降低空口时延, 提升用户业务感知</mark>, 5G设计三方面优化降低时延来, 一是空口帧结构设计, 二是缩短空口调度时延, 三是边缘计算

5G NR 2.5ms帧结构示 意图

上下行切换周期 (2.5ms)

■优势1:最小调度单元变短(3.5GHz为0.5ms),数据调度更快。3.5GHz的子载波间隔有15/30/60KHz多种配置,对应30kHz,

则slot为0.5ms,比4G slot的1ms减小了0.5ms

■优势2:数据上行和下行传输转换快,等待时间减少。帧长有0.5/1/2/2.5/5/10等多种帧长配置,对于0.5ms帧周期,可保证最多一个周期(1ms内)可等到传输机会,比4G帧周期的5ms减小了4.5ms

帧结构 调度优化 MEC

技术背景: 为降低空口时延, 加快网络与终端的响应速度, 可进一步缩短空口调度时延

	4G	5G NR
油库叶序	下行PDCCH与PDSCH同子帧	间隔可配,默认要求同时隙
调度时序 (由固定改为动态可调)	上行PDCCH与PUSCH间隔4子帧	间隔可配,默认要求间隔为1时隙最小可同时隙
.uapo⊓t ċ	下行PDSCH到ACK间隔4子帧	间隔可配,默认要求间隔为1时隙
HARQ时序 (有固定改为动态可调)	上行PUSCH到PHICH间隔4子帧	取消PHICH,改为异步自适应重传,默认要求PUSCH到对应的重传调度PDCCH间隔为2时隙
免调度	上下行均支持SPS	上下行均支持SPS (Type2免调度) 新引入Type1免调度,资源全部由RRC配置,主要用于 URLLC

子载波间隔	FDD 制式	空口物理层双向时延(ms)	TDD 制式	空口物理层双向时延(ms)
15 KHz	LTE FDD	18	LTE TDD	20.2
30 KHz	NR FDD	5.4	NR TDD	6.2
30 KHz	NR FDD (2 OS)	1.7	NR TDD (2OS)	3.9

空口时延缩短 **70%**+

2025/5/20 大数据与互联网学院 42

帧结构 调度优化 MEC

技术背景:基于本地缓存、本地应用、业务优化、数据服务等业务需求,业界提出MEC (边缘计算)概念,通过本地化具备计算能力来满足低时延、传输节省、创新业务 (如CDN、云游戏)等目的

■5G标准制定了业务下沉方案,为边缘计算提供了统一灵活的网络架构;可基于标准MEC架构,可实现端到端网络时延10ms以内,同时解决了4G时代的计费、移动性管理及合法监听等能力缺失问题

2025/5/20 大数据与互联网学院 43

帧结构 调度优化 MEC

MEC将IT能力引入接入网,是5G网络拓展垂直行业,破解增量不增收难题的有力抓手

边缘云平台

- •内容与应用下沉,降时延、省传输
- •mCDN、AR/VR、云游 戏...

能力开放平台

- •运营商网络信息/能力对外开放, 行业赋能, 创造新价值
- •位置能力、跨层优化能力

边缘网关

- •支持本地路由和转发
- •本地园区网,智慧医院/工厂...

智慧网络引擎

- •大数据+人工智能,提升网络运维效率,改善网络性能
- •智能RRM、网络"智"优化...

 1
 灵活部署
 • SA/NSA、CU/DU

 2
 速率提升
 • 大带宽、多天线、系统开销优化

 3
 时延降低
 • 帧结构、调度、MEC

 4
 覆盖增强
 • 波東赋型、终端侧能力提升、SUL/CA

覆盖增强-赋型能力

LTE下行公共/控制信道

下行公共/控制信道	MIMO模式	解调参考信号	
PBCH	SFBC		
PDCCH	SFBC		
PCFICH	SFBC	CRS	
PHICH	SFBC		

NR下行公共/控制信道

下行公共/控制信道	MIMO模式	解调参考信号	
PSS/SSS/PBCH	波束赋型/扫描	DMDC	
PDCCH	波東赋型/扫描	DMRS	

• 5G公共/控制信道采用DMRS解调,可波束赋型

覆盖增强-终端能力

■ 技术背景: 3.5GHz频段上行是覆盖瓶颈,采用高功率终端 (26dBm) 可有效缓解上下行覆盖不对称

覆盖增强-SUL/CA

面向中频段上行覆盖受限,SUL和CA均可实现同时利用低频上行边缘覆盖好和中高频下行大带宽的优势

◆ 低频可以为900M或1800M,取决于牌照和可用频谱带宽

SUL: 低频上行, 低频 NR上行+3.5GHz下行

- •在高频覆盖能力不足时,上行传输切换到低频
- •上行下行均只有一个载波
- •上行通过激活不同载波进行高低频的切换

CA: 低频独立载波,低频 NR上行+低频 NR下行+3.5GHz下行 (考虑产业 初期仅支持下行CA)

- •在高频覆盖能力不足时,主载波切换到低频
- •下行有高低频两个载波,上行仅有一个载波
- •上行通过主载波切换进行高低频的切换

SUL和CA: CA通过切换主载波增强上行覆盖能力, SUL通过激活低频载波增强上行覆盖能力

5G关键技术总结: NR更灵活、速率更高、时延更短

分类		4G	5G NR	
组网架构		仅独立组网 (Standalone)	独立组网 (Standalone) 和非独立组网 (Non-Standalone)	
	子载波间隔	15KHz (1ms TTI)	15KHz/30KHz/60KHz/120KHz, 30KHz时0.5ms TTI	
歹 公全粉	小区带宽	20MHz	根据频段不同,中频段最大100MHz、高频段最大400MHz	
系统参数	帧结构	静态配置, 单周期	静态、半静态和动态; 支持双周期	
	BWP	_	划分窄带,可对UE灵活调度	
物理层	调制	UL: 64QAM DL: 256QAM可选	UL: 256QAM,新增π/2-BPSK DL: 256QAM必选	
	波形	上行: 仅SC-OFDM, 下行: OFDM	上行: SC-OFDM+OFDM, 下行: OFDM	
	编码	数据信道&控制信道: Turbo	控制信道: Polar, 数据信道: LDPC	
	参考信号	基于CRS	取消CRS,采用CSI-RS进行信道估计,并完全采用DMRS解调,更好支持波束 赋形	
	PDCCH	控制信道单元的聚合度最大到8时域和频域位置固定: 前三个符号+全带宽	控制信道单元的聚合度最大到16时域位置不固定,不一定全带宽额外支持:波束赋形+多用户复用	
	PBCH	宽带	窄带,可支持波束扫描	
MAC层	HARQ	ACK/NACK最短N+4	ACK/NACK最短N+1	
多天线	单用户	上行单流,下行2~4流	上行双流, 下行四流	
终端	功率	23dBm	26dBm	
	能力	1T2R baseline 最大20Mhz/载波	2T4R baseline 最大 100Mhz/载波	

注: 4G主要考虑TD-LTE商用网

- 本章主要内容: 5G NB-IoT 和5G NR通信系统的基本原理、协议 架构和系统特点。
- 本章学习目标
 - □了解5G NB-IoT 和5G NR通信系统的主要特点:
 - □熟悉上述系统的协议架构:
 - □掌握上述系统的基本原理与使用方法。

2025/5/20 大数据与互联网学院 50