Graph Rectifiability Summer Research with Lisa Naples

Daily Report

Ву

Charles Zhang

Summer 2021

Contents

1	May 26	3
	1.1 Exercises and Solutions	3
	May 25	5
	2.1 Basic Set Theory	5
	2.2 Functions and Limits	6

1 May 26

1.1 Exercises and Solutions

Exercise 1.12 Let $f, g : [0, 1] \to \mathbb{R}$ be Lipschitz functions. Show that the functions defined on [0, 1] by f(x) + g(x) and f(x)g(x) are also Lipschitz.

Solution:

- (i) As f, g are Lipschitz function, we have $|f(x) f(y)| \le c_1|x y|$ and $|g(x) g(y)| \le c_2|x y|$ where $\forall x, y \in [0, 1]$ and $c_1, c_2 \ge 0$. Then, $|(f(x) + g(x)) (f(y) + g(y))| = |f(x) f(y) + g(x) g(y)| \le |f(x) f(y)| + |g(x) g(y)| \le (c_1 + c_2) \cdot |x y|, \forall x, y \in [0, 1]$. Since $(c_1 + c_2) \ge 0$, the condition is satisfied and therefore the functions defined on [0, 1] by f(x) + g(x) is Lipschitz.
- (ii) Consider that $|f(x) f(0)| \le c_1|x| \le c_1, x \in [0,1]$, so we have non-negative $c_3 = |f(0)| + c_1 \ge |f(x)|$. Similarly, we have non-negative $c_4 \ge |g(x)|$

$$|f|, |g| < 1, \forall x, y \in [0, 1]$$

$$|f(x)g(x) - f(y)g(y)|$$

$$=|f(x)g(x) - f(x)g(y) + f(x)g(y) - f(y)g(y)|$$

$$=|f(x)(g(x) - g(y)) + g(y)(f(x) - f(y))|$$

$$\leq |g(y)||(f(x) - f(y))| + |f(x)||(g(x) - g(y))|$$

$$\leq c_1c_4||x - y| + c_2c_3|x - y|$$

$$\leq (c_1c_4 + c_2c_3)|x - y|$$

Since $c_1c_4 + c_2c_3 \ge 0$, the condition is satisfied and therefore the functions defined on [0,1] by f(x)g(x) is Lipschitz.

Exercise 1.13 Let $f : \mathbb{R} \to \mathbb{R}$ be differentiable with $|f'(x)| \leq c$ for all x. Show, using the mean value theorem, that f is a Lipschitz function.

Solution: $\forall x, y \in \mathbf{R}, x \neq y$, by mean-value theorem, $\exists w \in (x, y)$ such that

$$\frac{f(y) - f(x)}{y - x} = f'(w)$$

$$\Rightarrow \left| \frac{f(y) - f(x)}{y - x} \right| = |f'(w)| \le c$$

$$\Rightarrow |f(x) - f(y)| \le c|x - y| \quad (x, y \in \mathbb{R})$$

Therefore, f is a Lipschitz function.

Exercise 1.14 Show that every Lipschitz function $f : \mathbb{R} \to \mathbb{R}$ is continuous.

Solution: See proof wrote for Theorem 2.2.1.

Exercise 1.15 Let $f : \mathbb{R} \to \mathbb{R}$ be given by $f(x) = x^2 + x$. Find (i) $f^{-1}(2)$, (ii) $f^{-1}(-2)$ and (iii) $f^{-1}([2, 6])$.

Solution: As $f(x) = x^2 + x$, $x = -\frac{1}{2} \pm \frac{\sqrt{1+4y}}{2}$

- (i) $f^{-1}(2) = \{-2, 1\}$
- (ii) $f^{-1}(-2) = \emptyset$
- (iii) As $x=-\frac{1}{2}+\frac{\sqrt{1+4y}}{2}$ is increasing and $x=-\frac{1}{2}-\frac{\sqrt{1+4y}}{2}$ is decreasing while y increasing, $f^{-1}([2,6])=[-3,-2]\cup[1,2]$

Exercise 1.16 Show that $f(x) = x^2$ is Lipschitz on [0,2], bi-Lipschitz on [1,2] and not Lipschitz on \mathbb{R} .

Solution:

- (i) As $\forall x, y \in [0, 2], |x+y| \le 4$, we have $|f(x) f(y)| = |x^2 y^2| = |x+y||x-y| \le 4|x-y|$. Thus, f is Lipschitz on [0, 2].
- (ii) Apparently, $2|x-y| \le |f(x)-f(y)| \le 4|x-y|$ by above. As f([1,2]) = [1,4], $\forall x,y \in [1,4], \frac{1}{\sqrt{x}+\sqrt{y}} \le \frac{1}{2}$, we have:

$$|f^{-1}(x) - f^{-1}(y)| = |\sqrt{x} - \sqrt{y}| = \left| \frac{x - y}{\sqrt{x} + \sqrt{y}} \right| \le \frac{1}{2} |x - y|$$

- \Rightarrow so f^{-1} is Lipschitz on [1, 4].
- $\Rightarrow f$ is bi-Lipschitz on [1, 2].
- (iii) Let $x = ky, k \in \mathbb{R} \setminus \{0\}$, then $\frac{|f(x) f(y)|}{|x y|} = \frac{|k^2y^2 y^2|}{|ky y|} = \left|\frac{k^2 1}{k 1}\right||y|$, which is unbounded on \mathbb{R} . Therefore, the Lipschitz constant does not exist and f is not Lipschitz on \mathbb{R}

2 May 25

2.1 Basic Set Theory

Review and summary of some definitions and theorems:

Definition 2.1.1 (Countable) An infinite set A is countable if its elements can be listed in the form $x_1, x_2, ...$ with every element of appearing at a specific place in the list; otherwise, the set is uncountable

Definition 2.1.2 (Open) $A \subset \mathbb{R}^n$ is open if, $\forall x \in A, \exists B(x,r) \in A \text{ where } r > 0.$

Definition 2.1.3 (Closed) $A \subset \mathbb{R}^n$ is closed if, whenever $\{x_k\} \in A$, $x_k \to x \in \mathbb{R}^n$, then $x \in A$.

Definition 2.1.4 (Closure) \bar{A} is the intersection of all the closed sets containing a set A.

Definition 2.1.5 (Interior) int(A) is the union of all open sets contained in A.

Definition 2.1.4 and 2.1.5 shows that The *closure* of A is thought of as the **smallest** closed set containing A, and the *interior* as the **largest open set** contained in A.

Definition 2.1.6 (Boundary) $\partial A = \bar{A} \setminus int(A)$

Theorem 2.1.1 $x \in \partial A \Leftrightarrow \forall r > 0, B(x,r) \cap A \neq \emptyset, B(x,r) \cap A^C \neq \emptyset$

Definition 2.1.7 (Dense) Set B is a dense in A if $A \subset \overline{B}$, that is, if there are points of B arbitrarily close to each point of A.

Definition 2.1.8 (Compact) A is compact if any collection of open sets that covers A has a finite subcollection which also covers A.

Theorem 2.1.2 A compact subset of \mathbb{R}^n is both closed and bounded.

Theorem 2.1.3 The intersection of any collection of compact sets is compact.

Definition 2.1.9 (Connected) $A \subset \mathbb{R}^n$ is connected if there not exists open sets U and V s.t. $A \in U \cap V$ with disjoint and nonempty $A \cap U$ and $A \cap V$.

Definition 2.1.10 (Connected Component) Connected component of x is the largest connected subset of A containing a point x.

Definition 2.1.11 (Disconnect) The set A is totally disconnected if the connected component of each point consists of just that point.

The definition of disconnect also can be as: \exists open sets U and V s.t. $x \in U, y \in V$ and $A \subset U \cap V$.

Definition 2.1.12 (Borel Set) Borel Sets is the smallest collection fo subsets of \mathbb{R}^n with the following properties:

- 1. Every open set and every closed set is a Borel set.
- 2. The union of every finite or countable collection of Borel sets is a Borel set, and the intersection of every finite or countable collection of Borel sets is a Borel set.

In short, Any set that can be constructed using a sequence of countable unions or intersections starting with the open sets or closed sets will certainly be Borel.

2.2 Functions and Limits

Definition 2.2.1 (Congruence) The transformation $S : \mathbb{R}^n \to \mathbb{N}^n$ is congruence or isometry if it preserves distances i.e. if |S(x) - S(y)| = |x - y| for $x, y \in \mathbb{R}^n$

Special cases include translations, which are of the form S(x) = x + a and have the effect of shifting points parallel to the vector a, rotations which have a centre a such that |S(x) - a| = |x - a| for all x (for convenience, we also regard the identity transformation given by I(x) = x as a rotation) and reflections, which maps points to their mirror images in some (n-1)-dimensional plane. A congruence that may be achieved by a combination of a rotation and a translation, that is, does not involve reflection, is called a rigid motion or direct congruence. A transformation $S: \mathbb{R}^n \to \mathbb{R}^n$ is a similarity of ratio or scale c > 0 if |S(x) - S(y)| = c|x - y| for all x, y in \mathbb{R}^n . A similarity transforms sets into geometrically similar ones with all lengths multiplied by the factor c.

Definition 2.2.2 (Linear Transformation) A transformation $T: \mathbb{R}^n \to \mathbb{R}^n$ is linear if $\forall x, y \in \mathbb{R}^n, T(x+y) = T(x) + T(y)$ and $T(\lambda x) = \lambda T(x), \lambda \in \mathbb{R}$

Such a linear transformation is non-singular if T(x) = 0 if and only if x = 0. If $S : \mathbb{R}^n \to \mathbb{R}^n$ is of the form S(x) = T(x) + a, where T is a non-singular linear transformation and a is a vector in \mathbb{R}^n , then S is called an affine transformation or an affinity. An affinity may be thought of as a shearing transformation; its contracting or expanding effect need not be the same in every direction. However, if T is orthonormal, then s is a congruence, and if T is a scalar multiple of an orthonormal transformation, then T is a similarity.

Definition 2.2.3 (Hölder Function) A function $f: X \to Y$ is called a Hölder function of exponent α if

$$|f(x) - f(y)| \le c|x - y|^{\alpha} \quad (x, y \in X)$$

for some constant $c \geq 0$.

Definition 2.2.4 (Libschitz Function) The function f is called Lipschitz if

$$|f(x) - f(y)| \le c|x - y| \quad (x, y \in X)$$

and bi-Lipschitz if

$$c_1|x-y| \le |f(x)-f(y)| \le c_2|x-y| \quad (x,y \in X)$$

for $0 < c_1 \le c_2 < \infty$, in which case both f and $f^{-1}: f(X) \to X$ are Lipschitz functions.

Definition 2.2.5 (Lower Limit)

$$\varliminf_{x \to 0} f(x) \equiv \lim_{r \to 0} (\inf\{f(x): 0 < x < r\})$$

Note: $\inf\{f(x): 0 < x < r\}$ is either $-\infty$ for all positive r or else increases as r decreases, $\lim_{x\to 0} f(x)$ always exists.

Definition 2.2.6 (Upper Limit)

$$\overline{\lim}_{x \to 0} f(x) \equiv \lim_{r \to 0} (\sup\{f(x) : 0 < x < r\})$$

Note: The lower and upper limits exist as real numbers or $-\infty$ or ∞ for every function f and are indicative of the variation of f for x close to 0, shown in Figure 1.

Figure 1: The upper and lower limits of a function.

We write $f(x) \sim g(x)$ to mean that $f(x)/g(x) \to 1$ as $x \to 0$.

Theorem 2.2.1 (Lipschitz functions are continuous)

Proof: Assum that the function $f: X \to Y$ is a Lipschitz function s.t. $|f(x) - f(y)| \le c|x - y|(x, y \in X)$ for some constant $c \ge 0$. Then, $\forall \epsilon > 0$, let $\delta = \frac{\epsilon}{c}$, and we have $\forall x, y \in X, |x - y| < \delta \Rightarrow |x - y| < \frac{\epsilon}{c} \Rightarrow |f(x) - f(y)| \le c|x - y| \le c \cdot \frac{\epsilon}{c} = \epsilon \Rightarrow \text{Lipschitz}$ functions are continuous.

Definition 2.2.7 (Homeomorphism) If $f: X \to Y$ is a continuous bijection with continuous inverse $f^{-1}: Y \to X$, then f is called a homeomorphism, and X and Y are termed homeomorphic sets.

Corollary 2.2.1 Congruences, similarities and affine transformations on \mathbb{R}^n are examples of homeomorphisms.

Definition 2.2.8 (Differentiable) If $f : \mathbb{R}^n \to \mathbb{R}^n$, we say that f is differentiable at x and has derivative given by the linear mapping $f'(x) : \mathbb{R}^n \to \mathbb{R}^n$ if

$$\lim_{h \to 0} \frac{|f(x+h) - f(x) - f'(x)h|}{|h|} = 0.$$

Definition 2.2.9 (Pointwise Convergence) For a sequence of functions: $f_k: X \to Y$ where X and Y are subsets of Euclidean spaces. f_k converge pointwise to a function $f: X \to Y$ if $f_k(x) \to f(x)$ as $k \to \infty$.

Definition 2.2.10 (Unifrom Convergence) For a sequence of functions: $f_k: X \to Y$ where X and Y are subsets of Euclidean spaces. f_k converge uniformly to a function $f: X \to Y$ if $\sup_{x \in X} |f_k(x) - f(x)| \to 0$ as $k \to \infty$.

Note: Uniform convergence is a stronger property than pointwise convergence i.e. Uniform convergence implies pointwise convergence, but not the other way around

Theorem 2.2.2 If the functions f_k are continuous and converge uniformly to f, then f is continuous.

proof: TODO

Theorem 2.2.3 (Logarithms) Apparently, $a^c = b^{c \log a / \log b}$