DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation

Date: 28.04.2023

Presenter: Prakash Naikade

Desired representation – compact, expressive and efficient

Reconstruction

Graphics

Robotics

Simulation

Content Creation

3D Representations prior to DeepSDF

Voxel (Choy et al. 2016)

Cubically growing compute and memory requirements

Point Cloud (Fan et al. 2017)

Do not describe surface

Mesh (Groueix et al. 2017)

Limited to the typology of the template

Key insight

- Directly regress SDF
- The surface is implicitly represented by the zero-level set

$$f_{\theta}(x, y, z) \approx SDF(x, y, z)$$

Marching Tetrahedron with grid size = 100

Contribution

Prior work of 3D representations lacks the ability of representing fine surface details.

In this paper, the authors proposed

- a new 3D representation that is efficient, expressive and continuous.
- a learning method for 3D shapes based on a probabilistic auto-decoder

Further, they demonstrate the application of their formulation by obtaining SOTA results on shape reconstruction and completion

Problem Setting

Learning Shape Conditioned Reconstruction with a Continuous Implicit Surface

Problem Setting

Learning

Coding Multiple Shapes with Auto Decoder

It is not straightforward to design and encoder on SDF

Inference

Surface Extraction

1. Ray casting

2. Marching Cubes – faster, however imposes quantization error due to fixed grid size

Representing unknown shapes

CD, mean	chair	plane	table	lamp	sofa			
AtlasNet-Sph.	0.752	0.188	0.725	2.381	0.445			
AtlasNet-25	0.368	0.216	0.328	1.182	0.411			
DeepSDF	0.204	0.143	0.553	0.832	0.132			
CD, median								
AtlasNet-Sph.	0.511	0.079	0.389	2.180	0.330			
AtlasNet-25	0.276	0.065	0.195	0.993	0.311			
DeepSDF	0.072	0.036	0.068	0.219	0.088			
EMD, mean								
AtlasNet-Sph.	0.071	0.038	0.060	0.085	0.050			
AtlasNet-25	0.064	0.041	0.073	0.062	0.063			
DeepSDF	0.049	0.033	0.050	0.059	0.047			
Mesh acc., mean								
AtlasNet-Sph.	0.033	0.013	0.032	0.054	0.017			
AtlasNet-25	0.018	0.013	0.014	0.042	0.017			
DeepSDF	0.009	0.004	0.012	0.013	0.004			

- Shape completion from partial range scans
 - Notice that, the same trained model can be applied to different reconstruction tasks, unlike Octnet.

	lower is better				higher is better			
Method	CD,	CD,		Mesh	Mesh	Cos		
\Metric	med.	mean	EMD	acc.	comp.	sim.		
chair								
3D-EPN	2.25	2.83	0.084	0.059	0.209	0.752		
DeepSDF	1.28	2.11	0.071	0.049	0.500	0.766		
plane								
3D-EPN	1.63	2.19	0.063	0.040	0.165	0.710		
DeepSDF	0.37	1.16	0.049	0.032	0.722	0.823		
sofa						10		
3D-EPN	2.03	2.18	0.071	0.049	0.254	0.742		
DeepSDF	0.82	1.59	0.059	0.041	0.541	0.810		

Overview of the benchmarked methods

			Complex	Closed	Surface	Model	Inf.	Eval.
Method	Type	Discretization	topologies	surfaces	normals	size (GB)	time (s)	tasks
3D-EPN [15]	Voxel SDF	32 ³ voxels	√	√	√	0.42	-	С
OGN [49]	Octree	256 ³ voxels	✓	√		0.54	0.32	K
AtlasNet	Parametric	1 patch		√		0.015	0.01	K, U
-Sphere [19]	mesh							777
AtlasNet	Parametric	25 patches	√			0.172	0.32	K, U
-25 [19]	mesh							
DeepSDF	Continuous	none	√	√	√	0.0074	9.72	K, U, C
(ours)	SDF							

• Feature Space Interpolation

Limitation

S

 Inference need optimizing latent code with SDF -> not applicable to 2D observation.

• DISN (Wang et al. 2019) addressed this problem with a novel image

encoder.

• The inference time is slow even assuming models are in their canonical pose.

Contribution

Prior work of 3D representations lacks the ability of representing fine surface details.

In this paper, the authors proposed

- A formulation of generative shape modeling with SDF in continuous space that is efficient,
 expressive and continuous
- a learning method for 3D shapes based on a probabilistic auto-decoder

Further, they demonstrate the application of their formulation by obtaining SOTA results on shape reconstruction and completion