Case Study 2 SYSC 4106 Saleem Karkabi 100944655

Question 1

a)

Activity	Depends on	Duration	ES	EF	LS	LF	Float
Α	None	10	0	10	0	10	10 - 0 - 10 = 0
В	Α	5	10	15	18	23	23 – 10 – 5 = 8
С	В	15	15	30	23	38	38 – 15 – 15 = 8
D	Α	3	10	13	32	35	35 – 10 – 3 = 22
E	Α	8	10	18	10	18	18 - 10 - 8 = 0
F	E	20	18	38	18	38	38 - 18 - 20 = 0
G	D	6	13	19	32	38	38 – 13 – 6 = 19
Н	C, F, G	10	38	48	38	48	48 - 38 - 10 = 0

b)

Critical Path is A -> E -> F -> H

Project Duration is 48 Days

c)

- Critical Path = $A \rightarrow E \rightarrow F \rightarrow H$
- Project Duration = 10 + 8 + 20 + 10 = 48 days

Question 2:

a)

Activities	Optimum	Normal	Pessimistic	Expected Time	Variance 1	Variance 2
a	6	7	9	7.17	0.83	0.25
b	4	5	7	5.17	0.83	0.25
С	7	9	15	9.67	5.88	1.78
d	6	7	7	6.83	0.09	0.03
e	4	7	8	6.67	1.47	0.44
f	12	16	17	15.50	2.30	0.69
g	8	12	20	12.67	13.22	4.00
h	8	9	18	10.33	9.18	2.78
i	10	16	18	15.33	5.88	1.78
j	8	14	20	14.00	13.22	4.00
k	9	9	14	9.83	2.30	0.69

Expected Time Calculated as (Optimum + (4 * Normal) + Pessimistic) / 6

b)

- c) - Critical Path is Project Start \rightarrow c \rightarrow g \rightarrow j \rightarrow Project Completed
 - Expected Project Duration = 36.34 Weeks

d) i

- Variance 1 on table, Calculated as (Standard Deviation^2)
- Standard Deviation = (Pessimistic Optimum) / 3.3

ii $Z = (38 - 36.34)/32.30 = 0.05 \rightarrow 0.5199 = \%51.99$ that the project will be completed in 38 weeks or less

e) i

- Variance 2 on table, Calculated as (Standard Deviation^2)
- Standard Deviation = (Pessimistic Optimum) / 6
- ii $Z = (38 36.34)/9.77 = 0.17 \rightarrow 0.5675 = \%56.75$ that the project will be completed in 38 weeks or less
- d) The difference between the variances calculated in d(i) and e(i) is that in e(i) it is assumed that 95% of all cases were greater than the optimistic time and less than the pessimistic time. In this case around 5% of the cases lay outside these estimates. In d(i) it is assumed that 99% of all cases of all cases were greater than the optimistic time and less than the pessimistic time, meaning only 1% of the cases lay outside these estimates. Although the 99% assumption gives us a more ideal outcome, it is much more realistic to assume a 95% confidence instead of the 99% confidence.