Titolo: Analisi del Flusso di Pacchetti tra Reti Diverse

Un Approccio Pratico con Cisco Packet Tracer

Introduzione

Questo laboratorio ha avuto come obiettivo l'analisi del flusso di pacchetti di dati tra dispositivi situati in reti IP distinte, utilizzando il simulatore Cisco Packet Tracer. L'intento è di chiarire i meccanismi di comunicazione ai livelli 2 e 3 del modello OSI, focalizzandosi sul ruolo degli switch e dei router nell'instradamento del traffico.

Configurazione della Rete

La topologia di rete implementata in Cisco Packet Tracer comprende i seguenti elementi:

- Laptop-PT0 (192.168.100.100/24)
- PC-PT-PC0 (192.168.100.103/24)
- Laptop-PT2 (192.168.200.100/24)
- Switch (2960)
- Router (4331)

I dispositivi Laptop-PT0 e PC-PT-PC0 sono configurati nella stessa sottorete (192.168.100.0/24), mentre Laptop-PT2 si trova in una sottorete differente (192.168.200.0/24). Il router è configurato per gestire l'instradamento del traffico tra le due sottoreti.

Analisi del Flusso di Pacchetti

1. Comunicazione all'interno della stessa sottorete (Laptop-PT0 a PC-PT-PC0):

- Quando Laptop-PT0 invia un pacchetto ICMP (ping) a PC-PT-PC0, verifica se l'indirizzo IP di destinazione appartiene alla sua stessa sottorete.
- Laptop-PT0 utilizza il protocollo ARP (Address Resolution Protocol) per risolvere l'indirizzo IP di PC-PT-PC0 nell'indirizzo MAC corrispondente.
- Il pacchetto ICMP viene incapsulato in un frame Ethernet, con l'indirizzo MAC di destinazione di PC-PT-PC0 e l'indirizzo MAC di origine di Laptop-PT-PC0.
- Lo switch, operando a livello 2, utilizza la sua tabella CAM (Content Addressable Memory) per determinare la porta di uscita in base all'indirizzo MAC di destinazione.
- Il frame viene inoltrato a PC-PT-PC0, che risponde con un pacchetto ICMP di risposta.

2. Comunicazione tra sottoreti diverse (Laptop-PT0 a Laptop-PT2):

- Quando Laptop-PT0 invia un pacchetto ICMP a Laptop-PT2, riconosce che l'indirizzo IP di destinazione è in una sottorete diversa.
- Laptop-PT0 invia il pacchetto al gateway predefinito (il router), utilizzando ARP per risolverne l'indirizzo MAC.
- Il pacchetto ICMP viene incapsulato in un frame Ethernet diretto all'interfaccia del router.
- Il router, operando a livello 3, riceve il frame, decapsula il pacchetto IP e consulta la sua tabella di routing.
- Il router determina il percorso verso la sottorete di destinazione (192.168.200.0/24) e incapsula il pacchetto in un nuovo frame Ethernet, diretto a Laptop-PT2.

• Lo switch inoltra il frame a Laptop-PT2, che risponde con un pacchetto ICMP di risposta.

Punti chiave:

• Livello 2 (Data Link):

- Lo switch gestisce il traffico a livello 2, utilizzando indirizzi MAC per inoltrare i frame Ethernet.
- ARP è fondamentale per la risoluzione degli indirizzi IP in indirizzi MAC.

• Livello 3 (Network):

- Il router gestisce il traffico a livello 3, utilizzando indirizzi IP per instradare i pacchetti tra le reti.
- La tabella di routing del router determina il percorso ottimale per i pacchetti.
- Il gateway predefinito è l'indirizzo IP dell'interfaccia del router che permette la comunicazione tra reti differenti.

Conclusioni

Questo laboratorio ha fornito una panoramica pratica del funzionamento delle comunicazioni di rete a livelli 2 e 3. La comprensione del ruolo di switch, router e protocolli come ARP è essenziale per la progettazione e la gestione di reti efficienti.

In calce un'acquisizione schermo del progetto in produzione.


```
Cisco Packet Tracer PC Command Line 1.0
C:\>ping 192.168.200.100
Pinging 192.168.200.100 with 32 bytes of data:

Reply from 192.168.200.100: bytes=32 time<lms TTL=127
Ping statistics for 192.168.200.100:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:

Minimum = 0ms, Maximum = 0ms, Average = 0ms
C:\>
```