# Math 111B HW5

## Zih-Yu Hsieh

February 19, 2025

1

**Question 1** Let R be a commutative ring. Prove or disprove that every non-constant monic polynomial  $f(X) \in R[X]$  of degree n has at most n zeros in R.

Pf:

Here is a counterexample: Consider  $R = \mathbb{Z}_6$ , and  $f(X) \in R[X]$  defined as  $f(X) = X + X^2$ . f(X) is a degree 2 monic polynomial, yet the following is true:

$$f(0) = 0 + 0^2 = 0$$

$$f(2) = 2 + 2^2 = 2 + 4 = 6 \equiv 0 \pmod{6}$$

$$f(3) = 3 + 3^2 = 3 + 9 = 12 \equiv 0 \pmod{6}$$

$$f(5) = 5 + 5^2 = 5 + 25 = 30 \equiv 0 \pmod{6}$$

Hence,  $0, 2, 3, 5 \in \mathbb{Z}_6$  are 4 distinct roots of f(X), while it is only a degree 2 polynomial. Hence, for R being a commutative ring, it is still possible to find monic polynomial in R[X] with more zeroes in R than its degree.

 $\mathbf{2}$ 

**Question 2** Determine if the polynomial  $f(X) = 21X^2 + 2X - 8 \in \mathbb{Z}[X]$  is irreducible. If it is not irreducible, what are its factors?

Pf:

Given f(X) stated above. Notice the following:

$$(7X - 4)(3X + 2) = 7X(3X + 2) - 4(3X + 2) = (21X^{2} + 14X) + (-12X - 8) = 21X^{2} + 2X - 8 = f(X)$$

Also, since  $\mathbb{Z}$  is an integral domain, then  $(\mathbb{Z}[X])^{\times} = (\mathbb{Z})^{\times}$ :

First, since  $\mathbb{Z} \subseteq \mathbb{Z}[X]$ , then it's clear that  $(\mathbb{Z})^{\times} \subseteq (\mathbb{Z}[X])^{\times}$  (since if  $a \in (\mathbb{Z})^{\times}$ ,  $a^{-1} \in (\mathbb{Z})^{\times}$ , hence since  $a, a^{-1} \in \mathbb{Z}[X]$  and  $aa^{-1} = a^{-1}a = 1$ , then  $a, a^{-1} \in (\mathbb{Z}[X])^{\times}$ ).

Then, suppose  $f(X) \in (\mathbb{Z}[X])^{\times}$ , there exists  $g(X) \in (\mathbb{Z}[X])^{\times}$ , with f(X)g(X) = 1. Yet, since  $1 \neq 0$ , then  $f(X), g(X) \neq 0$ ; also, since  $\mathbb{Z}$  is an integral domain, then:

$$0 = \deg(1) = \deg(f(X)q(X)) = \deg(f(X)) + \deg(q(X))$$

Since  $\deg(f(X)), \deg(g(X)) \geq 0$ , then the only possibility is  $\deg(f(X)) = \deg(g(X)) = 0$ . Hence, both f(X), g(X) are constant, hence  $f(X), g(X) \in \mathbb{Z}$ , while f(X)g(X) = 1, showing that  $f(X), g(X) \in (\mathbb{Z})^{\times}$ . Therefore,  $(\mathbb{Z}[X])^{\times} \subseteq (\mathbb{Z})^{\times}$ .

The above two statements show that  $(\mathbb{Z}[X])^{\times} = (\mathbb{Z})^{\times}$ , then since  $(7X - 4), (3X + 2) \notin \mathbb{Z}$ , then  $(7X - 4), (3X + 2) \notin (\mathbb{Z})^{\times} = (\mathbb{Z}[X])^{\times}$ .

Because  $f(X) = 21X^2 + 2X - 8 = (7X - 4)(3X + 2)$ , while the two factors are not invertible, then f(X) is reducible.

3

**Question 3** Find the quotient and remainder for the division of  $f(X) = 3X^4 + X^3 + 2X^2 + 1$  by  $g(X) = X^2 + 4X + 2$  in  $\mathbb{Z}_5[X]$ .

### Pf:

Notice that since the base field is  $\mathbb{Z}_5$ , we'll directly convert the coefficients without the modulo symbol. We'll do the division recursively:

First, consider 
$$3X^2 \cdot g(X) = 3X^2(X^2 + 4X + 2) = 3X^4 + 12X^3 + 6X^2 = 3X^4 + 2X^3 + X^2$$
. Which: 
$$f(X) - 3X^2 \cdot g(X) = (3X^4 + X^3 + 2X^2 + 1) - (3X^4 + 2X^3 + X^2) = -X^3 + X^2 + 1 = 4X^3 + X^2 + 1$$
So,  $f(X) = 3X^2 \cdot g(X) + (4X^3 + X^2 + 1)$ .

Then, consider 
$$4X \cdot g(X) = 4X(X^2 + 4X + 2) = 4X^3 + 16X^2 + 8X = 4X^3 + X^2 + 3X$$
. Which: 
$$(4X^3 + X^2 + 1) - 4X \cdot g(X) = (4X^3 + X^2 + 1) - (4X^3 + X^2 + 3X) = -3X + 1 = 2X + 1$$
 So,  $(4X^3 + X^2 + 1) = 4X \cdot g(X) + (2X + 1)$ . Plug into the previous equation: 
$$f(X) = 3X^2 \cdot g(X) + (4X^3 + X^2 + 1) = 3X^2 \cdot g(X) + 4X \cdot g(X) + (2X + 1) = (3X^2 + 4X)g(X) + (2X + 1)$$

Since (2X + 1) has degree 1, which is less than 2 the degree of g(X), hence the division process ends here.

Which, let  $q(X) = (3X^2 + 4X)$  and r(X) = (2X + 1), then f(X) = q(X)g(X) + r(X), with  $1 = \deg(r(X)) < \deg(g(X)) = 2$ .

The division of f(X) by g(X) has the quotient  $g(X) = 3X^2 + 4X$ , and remainder r(X) = 2X + 1.

**Question 4** Find all zeros of the polynomial  $f(X) = X^{25} - 1 \in \mathbb{Z}_{37}[X]$ .

### Pf:

First, notice that since 37 is a prime, then the base ring  $\mathbb{Z}_{37}$  is in fact a field. Hence, every element except for 0 is invertible, showing that  $(\mathbb{Z}_{37})^{\times} = \mathbb{Z}_{37} \setminus \{0\}$ . Then, since  $|\mathbb{Z}_{37}| = 37$ , we have  $|(\mathbb{Z}_{37})^{\times}| = |\mathbb{Z}_{37} \setminus \{0\}| = 37 - 1 = 36$ .

First, notice that  $1 \in \mathbb{Z}_{37}$  satisfies  $f(1) = 1^{25} - 1 = 1 - 1 = 0$ , hence 1 is a zero of f(X).

Then, suppose  $a \in \mathbb{Z}_{37}$  is a zero of  $f(X) = X^{25} - 1$ , which  $f(a) = a^{25} - 1 = 0$ , showing that  $a^{25} = 1$ . Since  $a \cdot a^{24} = a^{24} \cdot a = 1$ , then a is invertible, hence  $a \in (\mathbb{Z}_{37})^{\times}$ .

Because  $(\mathbb{Z}_{37})^{\times}$  is a group under multiplication, while  $|(\mathbb{Z}_{37})^{\times}| = 36$ , then  $order(a) \mid 36$ , dividing the order of the group.

Similarly, since  $a^{25} = 1$ , then  $order(a) \mid 25$  (since the power of 25 returns to the identity of the group). Hence, order(a) must be a common factor of  $25 = 5^2$  and  $36 = 2^2 \cdot 3^2$ , which  $order(a) \mid \gcd(25, 36) = 1$ .

So, the only possibility is order(a) = 1, showing that  $a^1 = a = 1$ . Therefore, the only zero for  $f(X) = X^{25} - 1$  in  $\mathbb{Z}_{37}$  is X = 1.

# 5

**Question 5** Find the quotient and remainder for the division of  $f(X) = 3X^5 + 5X^3 + X + 1$  by  $g(X) = X^2 + 2X + 1$  in  $\mathbb{Z}_7[X]$ .

## Pf:

Notice that the base field is  $\mathbb{Z}_7$ , we'll again convert the coefficients without the modulo symbol. We'll again do the division recursively:

First, consider  $3X^3 \cdot g(X) = 3X^3(X^2 + 2X + 1) = 3X^5 + 6X^4 + 3X^3$ . Which:  $f(X) - 3X^3 \cdot g(X) = (3X^5 + 5X^3 + X + 1) - (3X^5 + 6X^4 + 3X^3) = -6X^4 + 2X^3 + X + 1 = X^4 + 2X^3 + X + 1$ Hence,  $f(X) = 3X^3 \cdot g(X) + (X^4 + 2X^3 + X + 1)$ .

Then, consider  $X^2 \cdot g(X) = X^2(X^2 + 2X + 1) = X^4 + 2X^3 + X^2$ . Which:  $(X^4 + 2X^3 + X + 1) - X^2 \cdot g(X) = (X^4 + 2X^3 + X + 1) - (X^4 + 2X^3 + X^2) = -X^2 + X + 1 = 6X^2 + X + 1$  Hence,  $(X^4 + 2X^3 + X + 1) = X^2 \cdot g(X) + (6X^2 + X + 1)$ . Plug into the previous equation:  $f(X) = 3X^3 \cdot g(X) + (X^4 + 2X^3 + X + 1) = 3X^3 \cdot g(X) + X^2 \cdot g(X) + (6X^2 + X + 1) = (3X^3 + X^2)g(X) + (6X^2 + X + 1)$ 

Now, consider  $6g(X) = 6X^2 + 12X + 6 = 6X^2 + 5X + 6$ . Which:

$$(6X^2 + X + 1) - 6q(X) = (6X^2 + X + 1) - (6X^2 + 5X + 6) = -4X - 5 = 3X + 2$$

Hence,  $(6X^2 + X + 1) = 6g(X) + (3X + 2)$ . Plug into the previous equation:

$$f(X) = (3X^2 + X^2)g(X) + (6X^2 + X + 1) = (3X^3 + X^2)g(X) + 6g(X) + (3X + 2) = (3X^3 + X^2 + 6)g(X) + (3X + 2) = (3X^3 + X^2 + 6)g(X) + (3X + 2) = (3X^3 + X^2 + 6)g(X) + (3X + 2) = (3X^3 + X^2 + 6)g(X) + (3X + 2) = (3X^3 + X^2 + 6)g(X) + (3X + 2) = (3X^3 + X^2 + 6)g(X) + (3X + 2) = (3X^3 + X^2 + 6)g(X) + (3X + 2) = (3X^3 + X^2 + 6)g(X) + (3X + 2) = (3X^3 + X^2 + 6)g(X) + (3X + 2) = (3X^3 + X^2 + 6)g(X) + (3X + 2) = (3X^3 + X^2 + 6)g(X) + (3X + 2) = (3X^3 + X^2 + 6)g(X) + (3X + 2) = (3X^3 + X^2 + 6)g(X) + (3X + 2) = (3X^3 + X^2 + 6)g(X) + (3X + 2) = (3X^3 + X^2 + 6)g(X) + (3X + 2) = (3X^3 + X^2 + 6)g(X) + (3X + 2) = (3X^3 + X^2 + 6)g(X) + (3X + 2) = (3X^3 + X^2 + 6)g(X) + (3X + 2) = (3X^3 + X^2 + 6)g(X) + (3X + 2) = (3X^3 + X^2 + 6)g(X) + (3X + 2) = (3X^3 + X^2 + 6)g(X) + (3X + 2) = (3X^3 + X^2 + 6)g(X) + (3X^3 + 2)g(X) + (3$$

Since (3X+2) has degree 1, which is less than 2 the degree of g(X), hence the division process ends here.

Which, let  $q(X) = (3X^3 + X^2 + 6)$  and r(X) = (3X + 2), then f(X) = q(X)g(X) + r(X), while  $1 = \deg(r(X)) < \deg(g(X)) = 2$ . The division of f(X) by g(X) has the quotient  $q(X) = 3X^3 + X^2 + 6$ , and r(X) = 3X + 2.

6

**Question 6** Let p be a prime. prove or disprove that there exists a non-constant polynomial in  $\mathbb{Z}_p[X]$  which has a multiplicative inverse.

### Pf:

Given p as a prime, we'll prove that there doesn't exist a non-constant polynomial in  $\mathbb{Z}_p[X]$  that has a multiplicative inverse.

Since p is a prime, then the base ring  $\mathbb{Z}_p$  is an integral domain.

Hence, suppose  $f(X) \in \mathbb{Z}_p[X]$  has a multiplicative inverse  $g(X) \in \mathbb{Z}_p[X]$ , then f(X)g(X) = 1, showing that  $f(X), g(X) \neq 0$  (or else 1 = 0 is a contradiction).

Due to the property of integral domain, the following is true:

$$0 = \deg(1) = \deg(f(X)g(X)) = \deg(f(X)) + \deg(g(X))$$

And, since  $\deg(f(X)), \deg(g(X)) \ge 0$ , then the only possibility is  $\deg(f(X)) = \deg(g(X)) = 0$ , showing that f(X), g(X) are constants.

Hence, there doesn't exist a non-constant polynomial in  $\mathbb{Z}_p[X]$  that has a multiplicative inverse, if p is prime.

**Question 7** Let k be a field and R = k[X]. Let  $I = \{a_0 + a_1X + ... + a_nX^n \in R \mid \sum_{i=0}^n a_i = 0\}$ . Show that I is an ideal of R. Is I principal? If yes, find a generator of I.

#### Pf:

#### *I* is an ideal:

We'll first show that it is a subgroup under addition. Suppose  $f(X), g(X) \in I$ , which let  $f(X) = a_0 + a_1 X + ... + a_n X^n$ , and  $g(X) = b_0 + b_1 X + ... + b_m X^m$ . They satisfy  $\sum_{i=0}^n a_i = 0 = \sum_{i=0}^m b_m$ . WLOG, assume that  $n \ge m$ . Then, (f+g)(X) can be expressed as following:

$$(f+g)(X) = (a_0 + a_1X + \dots + a_nX^n) + (b_0 + b_1X + \dots + b_mX^m) = \sum_{i=0}^{m} (a_i + b_i)X^i + \sum_{j=m+1}^{n} a_jX^j$$

(Note: If n = m, then the second summation can be ignored).

Which, computing the sum of coefficients of (f+g)(X), we get:

$$\sum_{i=0}^{m} (a_i + b_i) + \sum_{j=m+1}^{n} a_j = \left(\sum_{i=0}^{m} a_i + \sum_{j=m+1}^{n} a_j\right) + \sum_{i=0}^{m} b_i = \sum_{i=0}^{n} a_i + 0 = 0$$

Hence,  $(f+g)(X) \in I$ , showing that I is closed under addition.

Then, suppose  $f(X) \in I$  (using the same expression as above). Which,  $-f(X) = -(a_0 + a_1X + ... + a_nX^n) = -a_0 - a_1X - ... - a_nX^n$ . Which, sum up the coefficients of -f(X), it is as follow:

$$\sum_{i=0}^{n} -a_i = (-1)\sum_{i=0}^{n} a_i = 0$$

(Note: recall that  $f(X) \in I$  implies that  $\sum_{i=0}^{n} a_i = 0$ ).

Hence,  $-f(X) \in I$ , showing that every element in I has an additive inverse in I also.

Lastly, since  $0 \in k[X]$  has all the coefficient being 0, the sum of coefficient is 0. Hence,  $0 \in I$ , showing that the zero element is in there.

Therefore, we can conclude that I is a subgroup under addition.

Then, to show that I is an ideal, it suffices to show that for all  $f(X) \in I$ , all  $a \in k$ , and all  $l \in \mathbb{N}$ ,  $aX^l \cdot f(X) \in I$ .

Again, let  $f(X) = a_0 + a_1 X + ... + a_n X^n$ , which  $\sum_{i=0}^n a_i = 0$ . Then, consider the following:

$$aX^{l} \cdot f(X) = a \cdot a_{0}X^{l} + a \cdot a_{1}X^{1+l} + \dots + a \cdot a_{n}X^{n+l} = \sum_{i=0}^{l-1} 0 \cdot aX^{i} + \sum_{i=0}^{n} a \cdot a_{i}X^{j+l}$$

(Note: if k = 0, then the first summation term above can be ignored).

The sum of coefficient of  $X^k \cdot f(X)$  is as follow:

$$\sum_{i=0}^{l-1} 0 + \sum_{j=0}^{n} a \cdot a_j = 0 + a \sum_{j=0}^{n} a_j = 0 + 0 = 0$$

Hence, given that  $f(X) \in I$ , every  $a \in k$  and  $l \in \mathbb{N}$  satisfies  $aX^l \cdot f(X) \in I$ .

Which, for all  $g(X) \in k[X]$ ,  $g(X) = b_0 + b_1 X + ... + b_m X^m$  for some  $b_0, b_1, ..., b_m \in k$ . Hence, given  $f(X) \in I$ ,  $g(X) \cdot f(X)$  is as follow:

$$g(X) \cdot f(X) = b_0 f(X) + b_1 X \cdot f(X) + \dots + b_m X^m \cdot f(X)$$

For all  $l \in \{0, 1, ..., m\}$ , since  $b_l \in k$ , then  $b_l X^l \cdot f(X) \in I$ ; and since I is a subgroup under addition, then  $g(X) \cdot f(X)$  is a sum of elements in I, which  $g(X) \cdot f(X) \in I$ .

Hence, we can conclude that I is in fact an ideal.

## *I* is a Principal Ideal:

Recall that given a commutative ring R, R[X] is a Principal Ideal Domain if and only if R is a field, hence since k is a field, k[X] must be a Principal Ideal Domain. So, the ideal  $I \subset k[X]$  is a principal ideal.

#### Generator of I:

Now, consider the polynomial  $X-1 \in k[X]$ : Its sum of coefficients is given as 1+(-1)=0, hence  $X-1 \in I$ , implying that  $(X-1) \subseteq I$ .

Also, for all  $f(X) \in I$ , let  $f(X) = a_0 + a_1X + ... + a_nX^n$ , which  $\sum_{i=0}^n a_i = 0$ . Then, consider the polynomial  $g(X) \in k[X]$  defined as follow:

$$g(X) = -\sum_{i=0}^{n-1} \left(\sum_{j=0}^{i} a_j\right) X^i$$

Which, (X-1)g(X) is given as follow:

$$(X-1)g(X) = X \cdot g(X) - g(X) = -\sum_{i=0}^{n-1} \left(\sum_{j=0}^{i} a_j\right) X^{i+1} + \sum_{i=0}^{n-1} \left(\sum_{j=0}^{i} a_j\right) X^{i}$$

$$= -\left(\sum_{j=0}^{n-1} a_j\right) X^{(n-1)+1} - \sum_{i=0}^{n-2} \left(\sum_{j=0}^{i} a_j\right) X^{i+1} + \sum_{i=1}^{n-1} \left(\sum_{j=0}^{i} a_j\right) X^{i} + \left(\sum_{j=0}^{0} a_j\right) X^{0}$$

$$= \left(a_n - a_n - \sum_{j=0}^{n-1} a_j\right) X^n - \sum_{i=1}^{n-1} \left(\sum_{j=0}^{i-1} a_j\right) X^i + \sum_{i=1}^{n-1} \left(\sum_{j=0}^{i} a_j\right) X^i + a_0$$

$$= \left(a_n - \sum_{j=0}^{n} a_j\right) X^n + \sum_{i=1}^{n-1} \left(-\sum_{j=0}^{i-1} a_j + \sum_{j=0}^{i} a_j\right) X^i + a_0$$

$$= (a_n - 0)X^n + \sum_{i=1}^{n-1} a_i X^i + a_0$$

$$= \sum_{i=0}^{n} a_n X^n = f(X)$$

Hence, f(X) = (X - 1)g(X), showing that  $f(X) \in (X - 1)$ , or  $I \subseteq (X - 1)$ .

With both containments being true, we can conclude that I = (X - 1), hence X - 1 is a generator of I.