

Information and Communication Technology

Introduction

Study Guide

Prof. Riddhi Atulkumar Mehta CSE, PIT Parul University

1.	Introduction to Alphabet, Languages, and			
	Grammars	.1		
2.	Productions and Derivation	2		
3.	Chomsky Hierarchy of Languages	3		

1.1 Introduction to Alphabet, Languages, and

Grammars

Alphabet (Σ)

- An alphabet is a finite set of symbols.
- Symbols are atomic units used to construct strings.
- Denoted by **Σ** (capital Greek sigma).
- Examples:
 - $\Sigma = \{0, 1\} \rightarrow \text{Binary alphabet}$
 - $\Sigma = \{a, b, c, ..., z\} \rightarrow Lowercase English letters$
 - $\Sigma = \{a, b\} \rightarrow Simple two-symbol alphabet$

Strings

- A **string** is a finite sequence of symbols from an alphabet.
- Length of a string w is denoted by |w|.
- **Empty string:** ϵ (epsilon), with $|\epsilon| = 0$
- Example:
 - o If $\Sigma = \{a, b\}$, then:
 - "ab", "aa", "bba" are strings.
 - "c" is not a valid string over Σ.

Language (L)

- A language is a set of strings formed from an alphabet.
- Formally: $\mathbf{L} \subseteq \mathbf{\Sigma}^*$ (Kleene star denotes all possible strings over Σ including ε)
- Examples:
 - L = $\{w \in \{0,1\}^* \mid w \text{ contains an even number of 0s}\}$
 - L = $\{a^nb^n \mid n \ge 1\}$ → Strings like "ab", "aabb", "aaabbb"

Grammar

- A formal grammar is a system that describes how strings in a language can be generated.
- Defined as a 4-tuple:

$$G = (V, \Sigma, P, S)$$

where:

- o V: A finite set of variables (non-terminal symbols)
- o Σ: A finite set of terminal symbols (alphabet), disjoint from V
- P: A finite set of production rules
- \circ **S**: A special start symbol (S ∈ V)

1.2 Productions and Derivation

Productions

- Also called rewrite rules.
- Used to replace a variable with another variable or string.
- Format: $A \rightarrow \alpha$, where:
 - o A ∈ V (non-terminal)
 - $\alpha \in (V \cup \Sigma)^*$ (string of terminals/non-terminals)
- Example:
 - \circ A \rightarrow aB
 - \circ B \rightarrow b

Derivation

- A derivation is a sequence of rule applications starting from the start symbol.
- Shows how strings in the language are generated.
- Written as:
 - $S \Rightarrow \alpha_1 \Rightarrow \alpha_2 \Rightarrow ... \Rightarrow w$, where w is a string in Σ^*

★ Leftmost Derivation

• In each step, replace the leftmost non-terminal first.

Rightmost Derivation

• In each step, replace the **rightmost** non-terminal first.

Sentential Form

A string derived from the start symbol, possibly containing both terminals and non-terminals.

Example Derivation

Given grammar:

• $S \rightarrow aSb \mid \epsilon$

Derive "aabb":

• $S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aabb$

1.3 Chomsky Hierarchy of Languages

Noam Chomsky categorized formal languages into a hierarchy based on the complexity of their grammars and the computational machines that recognize them.

Type-0: Unrestricted Grammar

- Grammar rules: $\alpha \rightarrow \beta$ (where $\alpha \neq \epsilon$, α and β are strings with at least one non-terminal in α)
- Language class: Recursively enumerable languages
- Recognized by: Turing Machine
- Most general class no restriction on production rules

Type-1: Context-Sensitive Grammar (CSG)

- Grammar rules: $\alpha A\beta \rightarrow \alpha \gamma \beta$ (where $|\gamma| \ge 1$)
- A can be replaced by y only when it appears in context α and β .
- Language class: Context-sensitive languages
- Recognized by: Linear Bounded Automaton (LBA)
- Example language: $L = \{a^nb^nc^n \mid n \ge 1\}$

Type-1: Context-Sensitive Grammar (CSG)

- Grammar rules: $\alpha A\beta \rightarrow \alpha \gamma \beta$ (where $|\gamma| \ge 1$)
- A can be replaced by y only when it appears in context α and β .
- Language class: Context-sensitive languages
- Recognized by: Linear Bounded Automaton (LBA)
- Example language: $L = \{a^nb^nc^n \mid n \ge 1\}$

Type-3: Regular Grammar

- Grammar rules: A → aB or A → a (Right-linear or Left-linear)
- Language class: Regular languages
- Recognized by: Finite Automaton (DFA/NFA)
- Simplest class, used in lexical analysis
- **Example:** L = {a*b*}

Chomsky defined four classes of grammars, each with increasing expressive power:

Туре	Grammar Class	Language Type	Automaton	Production Form 🗇
0	Unrestricted	Recursively Enumerable	Turing Machine	$\alpha \rightarrow \beta \ (\alpha \neq \epsilon)$
1	Context-Sensitive	Context-Sensitive	Linear Bounded Automaton	$\alpha A \beta \rightarrow \alpha \gamma \beta$ (
2	Context-Free	Context-Free	Pushdown Automaton	$A \to \gamma \ (A \in V, \gamma \in (V \ \cup \\ \Sigma)^*)$
3	Regular	Regular	Finite Automaton	$A \rightarrow aB \text{ or } A \rightarrow a \text{ (Right-linear)}$

References:

- 1. Hopcroft, J. E., Motwani, R., & Ullman, J. D. (2006). Introduction to Automata Theory, Languages, and Computation (3rd ed.). Pearson Education.
- 2. Chomsky, N. (1959). On Certain Formal Properties of Grammars. Information and Control, 2(2), 137–167. https://doi.org/10.1016/S0019-9958(59)90362-6
- 3. GeeksforGeeks. (n.d.). *Chomsky Hierarchy in Theory of Computation*. Retrieved May 10, 2025, from https://www.geeksforgeeks.org/chomsky-hierarchy/
- 4. TutorialsPoint. (n.d.). *Formal Grammar and Language*. Retrieved May 10, 2025, from https://www.tutorialspoint.com/automata_theory/formal_grammar.htm
- 5. Wikipedia contributors. (n.d.). *Chomsky hierarchy*. Wikipedia. Retrieved May 10, 2025, from https://en.wikipedia.org/wiki/Chomsky_hierarchy

Parul® University NAAC CH+
Vadodara, Gujarat

in O () S https://paruluniversity.ac.in/