

University of Michigan – Shanghai Jiao Tong University Joint Institute (UM-SJTU JI)

Capacitors

We connect a capacitor $C_1 = 8.0 \,\mu\text{F}$ to a power supply, charge it to a potential difference $V_0 = 120 \,\text{V}$, and disconnect the power supply (Fig. 24.12). Switch S is open. (a) What is the charge Q_0 on C_1 ? (b) What is the energy stored in C_1 ? (c) Capacitor $C_2 = 4.0 \,\mu\text{F}$ is initially uncharged. We close switch S. After charge no longer flows, what is the potential difference across each capacitor, and what is the charge on each capacitor? (d) What is the final energy of the system?

*** Where did the lost energy go?

Current & Resistors

The 18-gauge copper wire has a cross-sectional area of 8.20×10^{-7} m² and resistivity 1.72×10^{-8} Ω m. It carries a current of 1.67 A.

Find (a) the electric-field magnitude in the wire; (b) the potential difference between two points in the wire 50.0 m apart; (c) the resistance of a 50.0m length of this wire.

Homework 4

- Problem 2
- Problem 4

