Spin-down in the absence of reflected waves

Kamran Pentland

September 2019

Supervisor:

Prof. E.R. Johnson

Overview

Project Aims

- To reproduce the results detailed by Li, Patterson, Zhang and Kerswell in their paper: "Spin-up and spin-down in a half cone: A pathological situation or not?" [1] using simpler techniques.
- To also look for anything markedly different between both sets of findings and discuss.

What did they do?

- Identify how initial vorticity generated by spin-up/down in a half cone propagates and over what time scale it decays.
- Argued that no discrete set of oscillatory modes exist in a half cone because the vertex "precludes their existence".
- Used a combination of 3D FEM simulations (Shanghai supercomputer) and experimental methods.

How will we reproduce the results?

- Briefly derive the Topographic wave equation (TWE) and solve using spectral numerical methods.
- Run eigenvalue analysis and plot streamline, vorticity and energy results.

Why is this set up important?

- Non-axisymmetric structure of the geometries means the classical linear theory developed by Howard and Greenspan [2] cannot be applied.
- This motivates the search for alternative methods to solve the spin-up/down problem.

Fig 1. Experimental setup in [1].

What is spin-down?

- A spin-down problem is concerned with understanding the transient dynamics of a fluid following a fixed decrease in its rotation rate from Ω_0 to $\Omega_1 = (1 \varepsilon)\Omega_0$ for some small $0 < \varepsilon \ll 1$.
- The Rossby number is a measure of the scale of the change: $Ro = \frac{\Omega_1 \Omega_0}{\Omega_1}$.

Fig 2. The Rossby number scale for spin-up and spin-down.

 $\boldsymbol{\Sigma}$

Fig 3. The 2D and 3D diagrams of the half cone.

• It is important as the process arises in astrophysical, geophysical and industrial systems.

Inviscid Half Cone - Problem Derivation

Navier-Stokes Equations

$$\frac{D\mathbf{u}}{Dt} + (\Omega_1 \hat{\mathbf{z}} \times \mathbf{u}) = -\frac{1}{\rho} \nabla p + \upsilon \nabla^2 \mathbf{u}$$
$$\nabla \cdot \mathbf{u} = 0$$

Shallow water assumption

$$\delta = \frac{D}{L} \ll 1$$

(Ignore nonlinear effects)
(Omit viscosity for now)

Linearised Shallow Water Equations

$$\frac{\partial u}{\partial t} - fv = -g \frac{\partial h}{\partial x}$$

$$\frac{\partial v}{\partial t} + fu = -g \frac{\partial h}{\partial y}$$

$$\frac{\partial H}{\partial t} + \nabla \cdot (uH_0) = 0$$
Rigid lid $\Rightarrow = 0$ $\Rightarrow u = \frac{1}{H_0} \begin{pmatrix} -\psi_y \\ \psi_x \end{pmatrix}$

Depth Profile $(H_0(x, y))$

Conservation of potential vorticity

$$\frac{D}{Dt} \left(\frac{\zeta + f}{H_0} \right) = 0$$

(Ignore nonlinear effects)

(Scale length/depth/Coriolis: L = D = f = 1)

(Inviscid) Topographic Wave Equation

$$\frac{\partial}{\partial t} \nabla \cdot \left(\frac{\nabla \psi}{H_0}\right) + \hat{\mathbf{z}} \cdot \left(\nabla \psi \times \nabla \frac{1}{H_0}\right) = 0 \text{ in } V$$

$$\psi = 0 \text{ on } \partial V$$

Harmonic Solution $\psi = \phi(r,\theta)e^{i\omega t}$

Cylindrical Transform (Eigenvalue Problem)

$$irH'_0\phi_\theta = \omega[r^2H_0\phi_{rr} + (rH_0 - r^2H'_0)\phi_r + H_0\phi_{\theta\theta}]$$

Inviscid Half Cone - Spectral Method

- Very similar to the finite element method except the solution is expressed as sum of non-zero basis functions over entire domain (instead of just the finite elements) [3].
- Allows us to discretise the domain and differentiate using Chebyshev differentiation matrices D_{θ} and D_{r} .

Discretise using M+1 and N+1 Chebyshev points in each direction:

$$heta_i = \cos\left(\frac{i\pi}{M}\right) \text{ for } i = 0, ..., M$$
 $r_j = \cos\left(\frac{j\pi}{N}\right) \text{ for } j = 0, ..., N$

Fig 4. The Chebyshev mesh.

Chebyshev differentiation matrix definition

$$\theta_{i} = \cos\left(\frac{i\pi}{M}\right) \text{ for } i = 0, ..., M$$

$$r_{j} = \cos\left(\frac{j\pi}{N}\right) \text{ for } j = 0, ..., N$$

$$D_{\theta} = \begin{cases} \frac{(2M^{2} + 1)}{6} & \text{for } i = j = 0 \\ \frac{-(2M^{2} + 1)}{6} & \text{for } i = j = M \end{cases}$$

$$\frac{-\theta_{i}}{2(1 - \theta_{i}^{2})} & \text{for } i = j = 1, ..., M - 1$$

$$\frac{c_{i}(-1)^{i+j}}{c_{j}(\theta_{i} - \theta_{j})} & \text{for } i \neq j = 0, ..., M$$

$$c_{i} = \begin{cases} 2 & i = 1, M \\ 1 & \text{otherwise} \end{cases}$$

Kronecker Product (Differentiate in 2D)

$$A \otimes B = \begin{bmatrix} a_{1,1}B & \cdots & a_{1,q}B \\ \vdots & \ddots & \vdots \\ a_{p,1}B & \cdots & a_{p,q}B \end{bmatrix}$$

$$\frac{\partial^n}{\partial \theta^n} \to I_{N+1} \otimes D_{\theta}^n$$

$$\frac{\partial^n}{\partial r^n} \to D_r^n \otimes I_{M+1}$$

Matrix Eigenvalue Problem

$$A\boldsymbol{\phi} = \omega B\boldsymbol{\phi}$$

Solve in MATLAB using 'eig.m'

Differential Eigenvalue Problem

$$irH'_0\phi_\theta = \omega[r^2H_0\phi_{rr} + (rH_0 - r^2H'_0)\phi_r + H_0\phi_{\theta\theta}]$$

Inviscid Half Cone – Modal Solution

- Spurious eigenvalues arise as result of the discretisation and unexplained physics so we use methods from [5] and [6] to filter them out.
- Eigenvalues are computed at two different resolutions (M_1, N_1) and (M_2, N_2) and if they are very close in both solutions then they are deemed 'good', if not they are spurious.
- In [1], Li et al. claim that modes cannot exist because the vertex "precludes" their existence, this demonstrates this is not the case.
- Also introduce the initial vorticity condition:

$$\zeta(r,\theta,0) = \nabla \cdot \left(\frac{\nabla \psi}{H_0}\right) = \begin{cases} +1 \text{ for spin-down} \\ -1 \text{ for spin-up} \end{cases}$$
 at $t = 0$.

Fig 5. $\widehat{N} \approx 88$ 'good' modes exist (left). Zero 'good' modes (right).

Fig 6. Streamlines generated by spin-down.

Inviscid Half Cone – Modal Solution

- Orthogonality analysis by Johnson [4] proves eigenvalues of inviscid TWE are subinertial ($|\omega| \le f$) and real.
- Hence we can superpose 30 'good' modes ($\approx 75\%$ of total variance) resulting in the streamline patterns below.

$$\psi = \sum_{n=1}^{\widehat{N}} a_n \phi_n(r, \theta) e^{i\omega_n t}$$

$$\zeta(r, \theta, 0) = \nabla \cdot \left(\frac{\nabla \psi}{H_0}\right) = \begin{cases} +1 \text{ for spin-down} \\ -1 \text{ for spin-up} \end{cases} \text{ at } t = 0$$

• The solution is not as accurate as we would like and does not fully capture the transient behavior of spin-down.

Fig 7. Horizontal velocity field, u(r, t), from the experiments in [1] for Ro = -0.05 at t = 10 (i.e. linear spin-down).

Fig 8. Superposed modal solution, $t \in [0,480]$.

Inviscid Half Cone – Time-dependent Solutions

- Instead of a harmonic solution we fully integrate over time, using $\psi = \psi(r, \theta, t)$ and the same spectral techniques as before plus an ODE solver in MATLAB.
- Much smoother streamlines, propagate westward where alternating cyclonic and anticyclonic cells build up with no way to dissipate (reflected in s = 1 case).
- Propagation occurs much faster in s = 1 than $s = \frac{1}{2}$.
- Exactly the type of motion found in [1] except viscosity needs to be included.

Time-dependent Problem $\frac{\partial}{\partial t} [r^2 H_0 \partial_{rr} + (r H_0 - r^2 H_0') \partial_r + H_0 \partial_{\theta \theta}] \psi$ $= -[r H_0' \partial_{\theta}] \psi \text{ in } V$ $\psi = 0 \text{ on } \partial V$ $\nabla \cdot \left(\frac{\nabla}{H_0} \right) \psi = 1 \text{ at } t = 0^+$

Matrix Problem

$$\frac{\partial}{\partial t}A\boldsymbol{\psi} = -B\boldsymbol{\psi} \text{ in } V$$
$$\boldsymbol{\psi} = 0 \text{ on } \partial V$$
$$C\boldsymbol{\psi} = \mathbf{1} \text{ at } t = 0^{+}$$

$$S = \frac{1}{2}$$
 (left)
 $S = 1$ (right)

Viscous Half Cone

- Introduce a linear vorticity damping term scaled by the topography of the container \implies decay stronger in shallow areas ($\nu=0.01$ for all following problems).
- As expected, no eigenvalues exist in the full slope case (s = 1), however they now have positive imaginary components in both cases ⇒ solutions decay because:

$$\psi = \phi(x, y)e^{i(a_n+ib_n)t} = \phi(x, y)e^{ia_nt}e^{-b_nt}$$
.

Mode (n)	$\omega_n (s=1/2)$	$\omega_n (s=1)$
1	-0.08 + 0.01i	0.10 + 19.84i
2	0.08 + 0.01i	-0.10 + 19.84i

- Even though spurious, eigenvalues in s = 1 case have much larger magnitude than the $s = \frac{1}{2} \implies$ faster decay.
- Most likely because Ekman pumping on sloping bottom has more of an impact than the lateral walls.

(Viscous) Topographic Wave Equation

$$\frac{\partial}{\partial t} \nabla \cdot \left(\frac{\nabla \psi}{H_0}\right) + \hat{\mathbf{z}} \cdot \left(\nabla \psi \times \nabla \frac{1}{H_0}\right) = -\frac{\nu}{H_0} \nabla \cdot \left(\frac{\nabla \psi}{H_0}\right) in \ V$$

$$\psi = 0 \ on \ \partial V$$

Fig 14. $\widehat{N} \approx 100$ 'good' modes exist (left). Zero 'good' modes (right).

Viscous Half Cone - Time-dependent Solutions

$$\begin{split} \frac{\partial}{\partial t} [r^2 H_0^2 \partial_{rr} + (r H_0^2 - r^2 H_0' H_0) \partial_r + H_0^2 \partial_{\theta \theta}] \psi &= -[r H_0' H_0 \partial_{\theta} + \nu (r^2 H_0 \partial_{rr} + (r H_0 - r^2 H_0') \partial_r + H_0 \partial_{\theta \theta})] \psi \ \ in \ V \\ \psi &= 0 \ \ on \ \ \partial V \\ \nabla \cdot \left(\frac{\nabla}{H_0} \right) \psi &= 1 \ \ at \ t = 0^+ \end{split}$$

- As usual the waves propagate toward the south-western wall (much faster in the half cone) and the cells build up.
- The waves quickly dissipate as the Ekman layers rapidly spin-down the fluid, hence the waves no longer reflect back east.

Fig 15.

Time-dependent integrated solution $V = [0, \pi] \times [0,1]$, $t \in [0,700]$. $S = \frac{1}{2}$ (left) S = 1 (right)

Viscous Half Cone – Vertical Vorticity

• From the streamfunction ψ , it is straightforward to calculate the *vertical vorticity* ζ at each time step t:

$$\zeta(r,\theta,t) = \nabla \cdot \left(\frac{\nabla \psi}{H_0}\right) = \frac{1}{r} \left(\frac{r}{H_0} \psi_r\right)_r + \frac{1}{r^2 H_0} \psi_{\theta\theta}$$

$$\rightarrow \zeta(r,\theta,t) = L \psi(r,\theta,t)$$

- As expected, spin-down generates zero (almost negative) vorticity close to boundary and positive vorticity within interior at t=0.
- For t > 0, initial vorticity propagates toward the south-western corner, surrounded by negative vorticity as it does.
- At the same time, excess vorticity is damped via Ekman pumping, returning the system to rigid body rotation.

Fig 16. Contours of positive, negative and zero vorticity plotted in red, blue and black respectively. (a) Isolines from [1] at z=-0.6, for Ro=-0.1, values from [-21,9]. (b) Contours from the TWE, values from [-25,25].

Viscous Half Cone – Energy Decay

- In [1], Li et al. calculate the "speed of adjustment", or the time at which spin-up/down is concluded as the time taken t_N , for the kinetic energy of the system to drop to 1/Nth of its initial value. More formally:
- They identify a linear relationship between t_N and the Ekman spin-up scale $E^{-1/2}$, $\frac{\int_V |\boldsymbol{u}(t_N)|^2 \ dV}{\int_V |\boldsymbol{u}(0)|^2 \ dV} = \frac{1}{N}$ more specifically, $t_{1000} \approx 0.1520 E^{-1/2}$ and $t_{100} \approx 0.2386 E^{-1/2}$.
- Replicating the analysis, linear relationships are found and, by averaging the ratios of the gradients, we find that spin-down occurs approximately 4.13 times faster in the half cone than the half cylinder with slope.

Fig 18. Energy decay times t_N against $E^{-1/2}$ from [1].

Fig 19. Energy decay times t_N against $E^{-1/2}$ in the half cylinder w/slope (s=1/2) and half cone (s=1).

Summary of Findings

Main Findings

- Accurately managed to reproduce the results of streamlines, vertical vorticity, vertical velocity and energy decay
 detailed in [1] using the two-dimensional topographic wave equation.
- Hence computational requirements were significantly reduced.
- It is determined that *no oscillatory modes exist* when the depth of the container goes to zero (as the energy integral becomes unbounded), countering the claim in [1] that the half cone vertex "precludes" their existence.
- Reflected waves only exist in the models where viscosity is absent (as short waves are too weak to be reflected).
- The linear spin-up analysis ($|Ro| \le 0.1$) can be replicated and is identical to linear spin-down except that the sign of the streamfunction and hence velocity vectors and vorticity have opposite sign as demonstrated in [1].

Further Work

- Study the effects of fluid stratification, compressibility and free surfaces.
- Can study other geometries (in the shallow water limit) for linear spin-up/down.
- Could look at 'spin-over' problems.

References

- [1] L. Li, M. D. Patterson, K. Zhang, and R. R. Kerswell. Spin-up and spin-down in a half cone: A pathological situation or not? Physics of Fluids, 24(11):116601, 2012.
- [2] H.P. Greenspan and L.N. Howard. On a time-dependent motion of a rotating fluid.
- Journal of Fluid Mechanics, 17(3):385-404, 1963.
- [3] L.N. Trefethen. Spectral Methods in MATLAB. SIAM, Philadelphia, 2000.
- [4] E. R. Johnson. Topographic waves in open domains. Part 1. Boundary conditions and frequency estimates. Journal of Fluid Mechanics, 200(-1):69, 1989.
- [5] J. P. Boyd. Chebyshev and Fourier Spectral Methods. Courier Corporation, second edition, 2001.
- [6] E. R. Johnson and J. T. Rodney. Spectral methods for coastal-trapped waves. Continental Shelf Research, 31(14):1481–1489, 2011.

Viscous Half Cone – Vertical Velocity

• Similarly we can calculate the *vertical velocity* $w(r, \theta, z, t)$ at each time step t:

$$u_{x} + v_{y} + w_{z} = 0 \implies w_{z} = -\nabla \cdot \mathbf{u}$$

$$\int_{z}^{0} w_{z}, dz' = -\int_{z}^{0} \nabla \cdot \mathbf{u} dz' \implies w(z) = -z \nabla \cdot \mathbf{u}$$

$$w(z) = -\frac{z}{H_{0}} H_{0} \nabla \cdot \mathbf{u} \implies w(z) = -z \frac{H'_{0}}{rH_{0}^{2}} \psi_{\theta}$$

$$\rightarrow \mathbf{w}(r, \theta, z, t) = L \psi(r, \theta, t)$$

- In [1], it is shown that dynamics for linear spin-up/down ($|Ro| \le 0.1$) are the same, hence we compare with spin-up computed in [1].
- Dynamics produced are identical, note however the colours must be reversed.

Fig 17. Contours of positive, negative and zero velocity plotted in red, blue and black respectively. (a) Isolines from [1] at z=0.6, for Ro=0.01, values from [-0.15,0.35]. (b) Contours from the TWE at z=-0.6, values from [-1,1].

