

COMPUTER ORGANIZATION AND DESIGN

The Hardware/Software Interface

Chapter 3

Arithmetic for Computers

heeyoul choi hchoi@handong.edu

School of CS and EE Handong Global University

Arithmetic for Computers

- Operations on integers
 - Addition and subtraction
 - Multiplication and division
 - Dealing with overflow
- Floating-point real numbers
 - Representation and operations

Integer Addition

Example: 7 + 6

- Overflow if result out of range
 - Adding +ve and –ve operands, no overflow
 - Adding two +ve operands
 - Overflow if result sign is 1
 - Adding two –ve operands
 - Overflow if result sign is 0

Integer Subtraction

- Add negation of second operand
- Example: 7 6 = 7 + (-6)

```
+7: 0000 0000 ... 0000 0111

<u>-6: 1111 1111 ... 1111 1010</u>

+1: 0000 0000 ... 0000 0001
```

- Overflow if result out of range
 - Subtracting two +ve or two –ve operands, no overflow
 - Subtracting +ve from –ve operand
 - Overflow if result sign is 0
 - Subtracting –ve from +ve operand
 - Overflow if result sign is 1

overflow conditions

Operation	Operand A	Operand B	Result indicating overflow
A + B	≥0	≥ 0	< 0
A + B	< 0	< 0	≥ 0
A – B	≥ 0	< 0	< 0
A – B	< 0	≥ 0	≥0

```
add $t0, $t1, $t2 # $t0 = sum, but don't trap

xor $t3, $t1, $t2 # Check if signs differ

slt $t3, $t3, $zero # $t3 = 1 if signs differ

bne $t3, $zero, No_overflow # $t1, $t2 signs ≠,

# so no overflow

xor $t3, $t0, $t1 # signs =; sign of sum match too?

# $t3 negative if sum sign different

slt $t3, $t3, $zero # $t3 = 1 if sum sign different

bne $t3, $zero, Overflow # All 3 signs ≠; goto overflow
```


overflow conditions

for unsigned addition

```
addu $t0, $t1, $t2  # $t0 = sum  
nor $t3, $t1, $zero  # $t3 = NOT $t1  
# (2's comp - 1: 2^{32} - $t1 - 1)  
sltu $t3, $t3, $t2  # (2^{32} - $t1 - 1) < $t2  
# \Rightarrow 2^{32} - 1 < $t1 + $t2  
bne $t3,$zero,Overflow # if(2^{32}-1<$t1+$t2) goto overflow
```


Dealing with Overflow

- Some languages (e.g., C, Java) ignore integer overflow
 - Use MIPS addu, addui, subu instructions
- Other languages (e.g., Ada, Fortran) require raising an exception
 - Use MIPS add, addi, sub instructions
 - On overflow, invoke exception handler
 - Save PC in exception program counter (EPC) register
 - Jump to a predefined handler address
 - mfc0 (move from coprocessor reg) instruction can retrieve EPC value, to return after corrective action

Arithmetic for Multimedia

- Saturating operations
 - On overflow, result is largest representable value
 - c.f. 2s-complement modulo arithmetic
 - E.g., clipping in audio, saturation in video

Multiplication

Start with long-multiplication approach

Length of product is the sum of operand lengths

Multiplication Hardware

Shift right 32 bits

Multiplication example

Iteration	Step	Multiplier	Multiplicand	Product
0	Initial values	0011	0000 0010	0000 0000
1	1a: 1 ⇒ Prod = Prod + Mcand	0011	0000 0010	0000 0010
	2: Shift left Multiplicand	0011	0000 0100	0000 0010
	3: Shift right Multiplier	000①	0000 0100	0000 0010
2	1a: 1 ⇒ Prod = Prod + Mcand	0001	0000 0100	0000 0110
	2: Shift left Multiplicand	0001	0000 1000	0000 0110
	3: Shift right Multiplier	0000	0000 1000	0000 0110
3	1: 0 ⇒ No operation	0000	0000 1000	0000 0110
	2: Shift left Multiplicand	0000	0001 0000	0000 0110
	3: Shift right Multiplier	0000	0001 0000	0000 0110
4	1: 0 ⇒ No operation	0000	0001 0000	0000 0110
	2: Shift left Multiplicand	0000	0010 0000	0000 0110
	3: Shift right Multiplier	0000	0010 0000	0000 0110

Optimized Multiplier

Perform steps in parallel: add/shift

- One cycle per partial-product addition
 - That's ok, if frequency of multiplications is low

MIPS Multiplication

- Two 32-bit registers for product
 - HI: most-significant 32 bits
 - LO: least-significant 32-bits
- Instructions
 - mult rs, rt / multu rs, rt
 - 64-bit product in HI/LO
 - mfhi rd / mflo rd
 - Move from HI/LO to rd
 - Can test HI value to see if product overflows 32 bits
 - mul rd, rs, rt
 - Least-significant 32 bits of product → rd

Division

n-bit operands yield *n*-bit quotient and remainder

- Check for 0 divisor
- Long division approach
 - If divisor ≤ dividend bits
 - 1 bit in quotient, subtract
 - Otherwise
 - 0 bit in quotient, bring down next dividend bit
- Restoring division
 - Do the subtract, and if remainder < 0, add divisor back
- Signed division
 - Divide using absolute values
 - Adjust sign of quotient and remainder as required

Division Hardware

Division example

dividend 0111, divisor 0010

		dividend on	i i, divisor oo ic)
Iteration	Step	Quotient	Divisor	Remainder
0	Initial values	0000	0010 0000	0000 0111
	1: Rem = Rem - Div	0000	0010 0000	①110 0111
1	2b: Rem < 0 ⇒ +Div, sll Q, Q0 = 0	0000	0010 0000	0000 0111
	3: Shift Div right	0000	0001 0000	0000 0111
	1: Rem = Rem - Div	0000	0001 0000	① 111 0111
2	2b: Rem < 0 ⇒ +Div, sll Q, Q0 = 0	0000	0001 0000	0000 0111
	3: Shift Div right	0000	0000 1000	0000 0111
	1: Rem = Rem - Div	0000	0000 1000	①111 1111
3	2b: Rem < 0 ⇒ +Div, sll Q, Q0 = 0	0000	0000 1000	0000 0111
	3: Shift Div right	0000	0000 0100	0000 0111
	1: Rem = Rem - Div	0000	0000 0100	@000 0011
4	2a: Rem $\geq 0 \implies$ sll Q, Q0 = 1	0001	0000 0100	0000 0011
	3: Shift Div right	0001	0000 0010	0000 0011
	1: Rem = Rem – Div	0001	0000 0010	@000 0001
5	2a: Rem ≥ 0 ⇒ sll Q, Q0 = 1	0011	0000 0010	0000 0001
	3: Shift Div right	0011	0000 0001	0000 0001

Optimized Divider

- One cycle per partial-remainder subtraction
- Looks a lot like a multiplier!
 - Same hardware can be used for both

Optimized Divider

- shift left the remainder
- subtract divisor from the left half of the remainder
- if positive, set the rightmost bit to 1
- if negative, restore

remainder register at t=0

zeros				dividend			
0	0	0	0	0	1	1	1

finally, the remainder register looks like

remainder			quotient					
0	0	0	1	0	0	1	1	

Optimized Divider

Iteration	Step	Divisor	Rem/Quotient
0	Initial values	0010	0000 0111
1	Rem << 1	0010	0000 1110
	HI(Rem) -= Div	0010	1110 1110
	Rem < 0, Rem+Div, Rem[0] = 0	0010	0000 111 <mark>0</mark>
2	Rem << 1	0010	0001 11 <mark>0</mark> 0
	HI(Rem) -= Div	0010	1111 11 <mark>0</mark> 0
	Rem < 0, Rem+Div, Rem[0] = 0	0010	0001 11 <mark>00</mark>
3	Rem << 1	0010	0011 1 <mark>00</mark> 0
	HI(Rem) -= Div	0010	0001 1 <mark>00</mark> 0
	Rem ≥ 0 , Rem[0] = 1	0010	0001 1 <mark>001</mark>
4	Rem << 1	0010	0011 <mark>001</mark> 0
	HI(Rem) -= Div	0010	0001 <mark>001</mark> 0
	Rem>=0, Rem[0] = 1	0010	0001 0011

From http://www.eg.bucknell.edu/~cs206/

MIPS Division

- Use HI/LO registers for result
 - HI: 32-bit remainder
 - LO: 32-bit quotient
- Instructions
 - div rs, rt / divu rs, rt
 - No overflow or divide-by-0 checking
 - Software must check if required
 - Use mfhi, mflo to access result
 - mfhi rd / mflo rd # Move from HI/LO to rd
- A rule for signed division
 - the dividend and remainder must have the same signs

$$7 = 3 * 2 +1$$
 $-7 = 3 * (-2) -1$
 $7 = -3 * (-2) +1$
 $cf. 3 * (-3) + 2$

Floating Point

- Representation for non-integral numbers
 - Including very small and very large numbers
- Like scientific notation

```
-2.34 \times 10^{56} normalized +0.002 \times 10^{-4} +987.02 \times 10^{9} not normalized
```

- In binary
 - $\pm 1.xxxxxxx_2 \times 2^{yyyy}$
- Types float and double in C

Floating Point Standard

- Defined by IEEE Std 754-1985
- Developed in response to divergence of representations
 - Portability issues for scientific code
- Now almost universally adopted
- Two representations
 - Single precision (32-bit)
 - Double precision (64-bit)

IEEE Floating-Point Format

single: 8 bits single: 23 bits double: 11 bits double: 52 bits

S Exponent Fraction

$$x = (-1)^S \times (1 + Fraction) \times 2^{(Exponent-Bias)}$$

significand

$$(-1)^{s} \times (1 + (s1 \times 2^{-1}) + (s2 \times 2^{-2}) + (s3 \times 2^{-3}) + (s4 \times 2^{-4}) + ...) \times 2^{E}$$

tradeoff between precision (Fraction) and range (Exponent)

IEEE Floating-Point Format

single: 8 bits single: 23 bits double: 11 bits double: 52 bits

S Exponent Fraction

- S: sign bit $(0 \Rightarrow \text{non-negative}, 1 \Rightarrow \text{negative})$
- Normalize significand: 1.0 ≤ |significand| < 2.0</p>
 - Always has a leading pre-binary-point 1 bit, so no need to represent it explicitly (hidden bit)
 - Significand is Fraction with the "1." restored
- Exponent: excess representation: actual exponent + Bias
 - Ensures exponent is unsigned
 - Single: Bias = 127; Double: Bias = 1023

to make sorting simple

Single-Precision Range

- Exponents 00000000 and 11111111 reserved
- Smallest value
 - Exponent: 00000001⇒ actual exponent = 1 - 127 = -126
 - Fraction: $000...00 \Rightarrow \text{significand} = 1.0$
 - $\pm 1.0 \times 2^{-126} \approx \pm 1.2 \times 10^{-38}$
- Largest value
 - exponent: 111111110⇒ actual exponent = 254 127 = +127
 - Fraction: 111...11 ⇒ significand ≈ 2.0
 - $\pm 2.0 \times 2^{+127} \approx \pm 3.4 \times 10^{+38}$

Double-Precision Range

- Exponents 0000...00 and 1111...11 reserved
- Smallest value
 - Exponent: 0000000001⇒ actual exponent = 1 - 1023 = -1022
 - Fraction: $000...00 \Rightarrow \text{significand} = 1.0$
 - $\pm 1.0 \times 2^{-1022} \approx \pm 2.2 \times 10^{-308}$
- Largest value
 - Exponent: 11111111110⇒ actual exponent = 2046 1023 = +1023
 - Fraction: 111...11 ⇒ significand ≈ 2.0
 - $\pm 2.0 \times 2^{+1023} \approx \pm 1.8 \times 10^{+308}$

Floating-Point Precision

- Relative precision
 - all fraction bits are significand
 - Single: approximately 2⁻²³
 - Equivalent to 23 × log₁₀2 ≈ 23 × 0.3 ≈ 6 decimal digits of precision
 - Double: approximately 2⁻⁵²
 - Equivalent to 52 × log₁₀2 ≈ 52 × 0.3 ≈ 16 decimal digits of precision

Floating-Point Example

Represent –0.75

$$-0.75 = (-1)^1 \times 1.1_2 \times 2^{-1}$$

$$0.75 = 3/4 = 11_2/2^2$$

- S = 1
- Fraction = $1000...00_2$

considering the hidden bit

- Exponent = −1 + Bias
 - Single: -1 + 127 = 126 = 011111110₂
 - Double: $-1 + 1023 = 1022 = 0111111111110_2$
- Single: 10111111101000...00
- Double: 10111111111101000...00

For IEEE-754 Floating Point Converter

see https://www.h-schmidt.net/FloatConverter/lEEE754.html

Floating-Point Example

- Represent 0.15
 - $0.15 = (-1)^0 \times 1.0011_2 \times 2^{-3}$

- S = 0
- Fraction = $00110011001100110011010_2$
- Exponent = -3 + Bias
 - Single: $-3 + 127 = 124 = 011111100_2$
- Actually it is 0.1500000059604644775390625
- The error is 5.9604644775390625E-9

Floating-Point Example

- What number is represented by the single-precision float 1100000101000...00
 - S = 1
 - Fraction = $01000...00_2$

 $01/2^2 = 0.25$

• Exponent = $10000001_2 = 129$

$$x = (-1)^{1} \times (1 + .01_{2}) \times 2^{(129 - 127)}$$
$$= (-1) \times 1.25 \times 2^{2}$$
$$= -5.0$$

Denormal Numbers

• Exponent = $000...0 \Rightarrow$ hidden bit is 0

$$x = (-1)^{S} \times (0 + Fraction) \times 2^{-Bias}$$

Denormal with fraction = 000...0

$$x = (-1)^{S} \times (0+0) \times 2^{-Bias} = \pm 0.0$$

Two representations of 0.0!

Infinities and NaNs

- Exponent = 111...1, Fraction = 000...0
 - ±Infinity
 - Can be used in subsequent calculations, avoiding need for overflow check
- Exponent = 111...1, Fraction ≠ 000...0
 - Not-a-Number (NaN)
 - Indicates illegal or undefined result
 - e.g., 0.0 / 0.0, infinity infinity
 - Can be used in subsequent calculations

Floating-Point

IEEE 754 encoding of floating-point numbers

Single	Single precision Doul		precision	Object represented
Exponent	Fraction	Exponent	Fraction	
0	0	0	0	0
0	Nonzero	0	Nonzero	± denormalized number
1-254	Anything	1-2046	Anything	± floating-point number
255	0	2047	0	± infinity
255	Nonzero	2047	Nonzero	NaN (Not a Number)

Floating-Point Addition

- Consider a 4-digit decimal example
 - \bullet 9.999 × 10¹ + 1.610 × 10⁻¹
- 1. Align decimal points
 - Shift number with smaller exponent
 - \bullet 9.999 × 10¹ + 0.016 × 10¹
- 2. Add significands
 - \bullet 9.999 × 10¹ + 0.016 × 10¹ = 10.015 × 10¹
- 3. Normalize result & check for over/underflow exponent

round

- 1.0015 × 10²
- 4. Round and renormalize if necessary
 - 1.002 × 10²

Floating-Point Addition

- Now consider a 4-digit binary example
 - $1.000_2 \times 2^{-1} + -1.110_2 \times 2^{-2} (= 0.5 + -0.4375) 0.5 = 1/2, 0.4375 = 7/16$
- 1. Align binary points
 - Shift number with smaller exponent
 - $1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1}$
- 2. Add significands
 - $1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1} = 0.001_2 \times 2^{-1}$
- 3. Normalize result & check for over/underflow
 - $1.000_2 \times 2^{-4}$, with no over/underflow
- 4. Round and renormalize if necessary
 - $\mathbf{1.000}_2 \times 2^{-4}$ (no change) = 0.0625

FP Adder Hardware

- Much more complex than integer adder
- Doing it in one clock cycle would take too long
 - Much longer than integer operations
 - Slower clock would penalize all instructions
- FP adder usually takes several cycles
 - Can be pipelined

FP Adder Hardware

Floating-Point Multiplication

- Consider a 4-digit decimal example
 - \bullet 1.110 × 10¹⁰ × 9.200 × 10⁻⁵
- 1. Add exponents
 - For biased exponents, subtract bias from sum
 - New exponent = 10 + -5 = 5
- 2. Multiply significands
 - $1.110 \times 9.200 = 10.212 \Rightarrow 10.212 \times 10^{5}$
- 3. Normalize result & check for over/underflow exponent
 - 1.0212 × 10⁶
- 4. Round and renormalize if necessary
 - 1.021 × 10⁶
- 5. Determine sign of result from signs of operands
 - +1.021 × 10⁶

Floating-Point Multiplication

- Now consider a 4-digit binary example
 - $1.000_2 \times 2^{-1} \times -1.110_2 \times 2^{-2} \ (= 0.5 \times -0.4375)$
- 1. Add exponents
 - Unbiased: -1 + -2 = -3
 - Biased: $(-1 + 127) + (-2 + 127) = -3 + 254 \rightarrow -3 + 127$
- 2. Multiply significands
 - $1.000_2 \times 1.110_2 = 1.110_2 \Rightarrow 1.110_2 \times 2^{-3}$
- 3. Normalize result & check for over/underflow
 - $1.110_2 \times 2^{-3}$ (no change) with no over/underflow
- 4. Round and renormalize if necessary
 - $1.110_2 \times 2^{-3}$ (no change)
- 5. Determine sign: +ve × −ve ⇒ −ve
 - $-1.110_2 \times 2^{-3} = -0.21875$

FP Arithmetic Hardware

- FP multiplier is of similar complexity to FP adder
 - But, uses a multiplier for significands instead of an adder
- FP arithmetic hardware usually does
 - Addition, subtraction, multiplication, division, reciprocal (multiplicative inverse), square-root
 - FP ↔ integer conversion
- Operations usually takes several cycles
 - Can be pipelined

FP Instructions in MIPS

- FP hardware is coprocessor 1
 - Adjunct processor that extends the ISA
- Separate FP registers
 - 32 single-precision: \$f0, \$f1, ... \$f31
 - Paired for double-precision: \$f0/\$f1, \$f2/\$f3, ...
 - only 16 (even numbers) are used
 - Release 2 of MIPS ISA supports 32 × 64-bit FP reg's
- FP instructions operate only on FP registers
 - Programs don't do integer ops on FP data, or vice versa
 - More registers with minimal code-size impact
- FP load and store instructions
 - lwc1, ldc1, swc1, sdc1

load word to coprocessor 1

e.g., ldc1 \$f8, 32(\$sp)

FP Instructions in MIPS

- Single-precision arithmetic
 - add.s, sub.s, mul.s, div.s
 - e.g., add.s \$f0, \$f1, \$f6
- Double-precision arithmetic
 - add.d, sub.d, mul.d, div.d
 - e.g., mul.d \$f4, \$f4, \$f6
- Single- and double-precision comparison
 - c.xx.s, c.xx.d (xx is eq, lt, le, ...)
 - Sets or clears FP condition-code bit
 - e.g. c.lt.s \$f3, \$f4
- Branch on FP condition code true or false
 - bc1t, bc1f branch, true (bc1t) and branch, false (bc1f)
 - e.g., bc1t TargetLabel

FP assembly language

Figure 3.17 MIPS floating-point assembly language

3						
Category	Instruction	Ex	ample	Meaning	Comments	
	FP add single	add.s \$1	f2, \$ f4, \$ f6	\$f2 = \$f4 + \$f6	FP add (single precision)	
	FP subtract single	sub.s \$1	f2,\$f4,\$f6	\$f2 = \$f4 - \$f6	FP sub (single precision)	
	FP multiply single	mul.s \$1	f2,\$f4,\$f6	$f2 = f4 \times f6$	FP multiply (single precision)	
Arithmetic	FP divide single	div.s \$1	f2,\$f4,\$f6	f2 = f4 / f6	FP divide (single precision)	
	FP add double	add.d \$1	f2,\$f4,\$f6	\$f2 = \$f4 + \$f6	FP add (double precision)	
	FP subtract double	sub.d \$1	f2,\$f4,\$f6	\$f2 = \$f4 - \$f6	FP sub (double precision)	
	FP multiply double	mul.d \$1	f2,\$f4,\$f6	$$f2 = $f4 \times $f6$	FP multiply (double precision)	
	FP divide double	div.d \$1	f2,\$f4,\$f6	f2 = f4 / f6	FP divide (double precision)	
Data transfer	load word copr. 1	1wc1 \$1	f1,100(\$s2)	f1 = Memory[\$s2 + 100]	32-bit data to FP register	
	store word copr. 1	swc1 \$1	f1,100(\$s2)	Memory[$$s2 + 100$] = $$f1$	32-bit data to memory	
Condi- tional branch	branch on FP true	bc1t 2	5	if (cond == 1) go to PC + 4 + 100	PC-relative branch if FP cond.	
	branch on FP false	bc1f 2	5	if (cond == 0) go to PC + 4 + 100	PC-relative branch if not cond.	
	FP compare single (eq,ne,lt,le,gt,ge)	c.lt.s \$f	2,\$f4	if (\$f2 < \$f4) cond = 1; else cond = 0	FP compare less than single precision	
	FP compare double (eq,ne,lt,le,gt,ge)	c.lt.d \$f	2, \$ f4	if (\$f2 < \$f4) cond = 1; else cond = 0	FP compare less than double precision	

FP machine language

Figure 3.17 MIPS floating-point machine language

Name	Format	Example				Comments		
add.s	R	17	16	6	4	2	0	add.s \$f2,\$f4,\$f6
sub.s	R	17	16	6	4	2	1	sub.s \$f2,\$f4,\$f6
mul.s	R	17	16	6	4	2	2	mul.s \$f2,\$f4,\$f6
div.s	R	17	16	6	4	2	3	div.s \$f2,\$f4,\$f6
add.d	R	17	17	6	4	2	0	add.d \$f2,\$f4,\$f6
sub.d	R	17	17	6	4	2	1	sub.d \$f2,\$f4,\$f6
mul.d	R	17	17	6	4	2	2	mul.d \$f2,\$f4,\$f6
div.d	R	17	17	6	4	2	3	div.d \$f2,\$f4,\$f6
lwc1		49	20	2		100		1wc1 \$f2,100(\$s4)
swc1	1	57	20	2		100		swc1 \$f2,100(\$s4)
bc1t	I	17	8	1		25		bclt 25
bc1f		17	8	0		25		bc1f 25
c.lt.s	R	17	16	4	2	0	60	c.lt.s \$f2,\$f4
c.lt.d	R	17	17	4	2	0	60	c.lt.d \$f2,\$f4
Field size		6 bits	5 bits	5 bits	5 bits	5 bits	6 bits	All MIPS instructions 32 bits
		010001	10000	00110	00100	00010	0000	001
		FlPt.	single	\$ f6	\$f4	\$f2	sub)

FP Instructions in MIPS

to load two single precision numbers from memory, add them, and then store the sum

```
lwc1 $f4,c(\$sp)$  # Load 32-bit F.P. number into F4 lwc1 <math>\$f6,a(\$sp)$  # Load 32-bit F.P. number into F6 add.s <math>\$f2,\$f4,\$f6$  # F2 = F4 + F6 single precision swc1 <math>\$f2,b(\$sp)$  # Store 32-bit F.P. number from F2
```


FP Example: °F to °C

C code:

```
float f2c (float fahr) {
  return ((5.0/9.0)*(fahr - 32.0));
}
```

- fahr in \$f12, result in \$f0, literals in global memory space
- Compiled MIPS code:

```
f2c: lwc1 $f16, const5($gp)
    lwc1 $f18, const9($gp)
    div.s $f16, $f16, $f18
    lwc1 $f18, const32($gp)
    sub.s $f18, $f12, $f18
    mul.s $f0, $f16, $f18
    jr $ra
```


FP Example: Array Multiplication

- $X = X + Y \times Z$
 - All 32 × 32 matrices, 64-bit double-precision elements
- C code:

```
void mm (double x[][], double y[][], double z[][])
{
  int i, j, k;
  for (i = 0; i != 32; i = i + 1)
    for (j = 0; j != 32; j = j + 1)
    for (k = 0; k != 32; k = k + 1)
       x[i][j] = x[i][j] + y[i][k] * z[k][j];
}
```

Addresses of x, y, z in \$a0, \$a1, \$a2, and i, j, k in \$s0, \$s1, \$s2

FP Example: Array Multiplication

MIPS code:

- 8 bytes for double precision
- row-major order

```
٦i
                    # $t1 = 32 (row size/loop end)
       $t1, 32
       $s0, 0
                    # i = 0; initialize 1st for loop
     $s1, 0
                    \# j = 0; restart 2nd for loop
L2: li $s2, 0
                    # k = 0; restart 3rd for loop
   addu t2, t2, t2, t2 = i * size(row) + j
   sll $t2, $t2, 3 # $t2 = byte offset of [i][j]
   addu t2, a0, t2 # t2 = byte address of <math>x[i][j]
                    # f4 = 8 bytes of x[i][j]
   1.d $f4, 0($t2)
L3: s11 $t0, $s2, 5
                    # $t0 = k * 32 (size of row of z)
   addu t0, t0, s1 # t0 = k * size(row) + j
   sll $t0, $t0, 3 # $t0 = byte offset of [k][j]
   addu t0, a2, t0 # t0 = byte address of <math>z[k][j]
   l.d f16, 0(t0) # f16 = 8 bytes of z[k][j]
```

...

FP Example: Array Multiplication

...

```
$11 $t0, $s0, 5 # $t0 = i*32 (size of row of y)
addu t0, t0, s2 # t0 = i*size(row) + k
sll $t0, $t0, 3 # $t0 = byte offset of [i][k]
addu $t0, $a1, $t0  # $t0 = byte address of y[i][k]
1.d f18, 0(t0) # f18 = 8 bytes of y[i][k]
mul.d f16, f18, f16 # f16 = y[i][k] * z[k][j]
add.d $f4, $f4, $f16 # $f4=x[i][j] + y[i][k]*z[k][j]
addiu \$s2, \$s2, 1 # k = k + 1
bne \$s2, \$t1, L3 # if (k != 32) go to L3
s.d f4, O(t2) # x[i][j] = f4
addiu \$s1, \$s1, 1 # j = j + 1
bne $s1, $t1, L2 # if (j != 32) go to L2
addiu $s0, $s0, 1
bne $s0, $t1, L1 # if (i != 32) go to L1
```


Accurate Arithmetic

- IEEE Std 754 specifies additional rounding control
 - Extra bits of precision (guard, round, sticky)
 - Choice of rounding modes
 - Allows programmer to fine-tune numerical behavior of a computation
- Not all FP units implement all options
 - Most programming languages and FP libraries just use defaults
- Trade-off between hardware complexity, performance, and market requirements

Add $2.56_{\text{ten}} \times 10^{\circ}$ to $2.34_{\text{ten}} \times 10^{\circ}$ assuming 3 significant digits.

Subword Parallellism

- Graphics and audio applications can take advantage of performing simultaneous operations on short vectors
 - Example: 128-bit adder:
 - Sixteen 8-bit adds
 - Eight 16-bit adds
 - Four 32-bit adds
- Also called data-level parallelism, vector parallelism, or Single Instruction, Multiple Data (SIMD)
 - performs the same operation on multiple data points.
 - parallel computations, but only a single process (instruction)
 - Most modern CPUs include SIMD for multimedia processing.

```
vec_res.x = v1.x + v2.x;

vec_res.y = v1.y + v2.y;

vec_res.z = v1.z + v2.z;

vec_res.w = v1.w + v2.w;

vaddps xmm0, xmm1, xmm2
```


x86 FP Architecture

- Originally based on 8087 FP coprocessor
 - 8 × 80-bit extended-precision registers
 - Used as a push-down stack
 - Registers indexed from TOS: ST(0), ST(1), ...
- FP values are 32-bit or 64 in memory
 - Converted on load/store of memory operand
 - Integer operands can also be converted on load/store
- Very difficult to generate and optimize code
 - Result: poor FP performance

x86 FP Instructions

Data transfer	Arithmetic	Compare	Transcendental
FILD mem/ST(i) FISTP mem/ST(i) FLDPI FLD1 FLDZ	FIADDP mem/ST(i) FISUBRP mem/ST(i) FIMULP mem/ST(i) FIDIVRP mem/ST(i) FSQRT FABS FRNDINT	FICOMP FIUCOMP FSTSW AX/mem	FPATAN F2XMI FCOS FPTAN FPREM FPSIN FYL2X

Optional variations

- I: integer operand
- P: pop operand from stack
- R: reverse operand order
- But not all combinations allowed

For details, check https://docs.oracle.com/cd/E18752_01/html/817-5477/eoizy.html

Streaming SIMD Extension 2 (SSE2)

- Adds 4 × 128-bit registers
 - Extended to 8 registers in AMD64/EM64T
- Can be used for multiple FP operands
 - 2 × 64-bit double precision
 - 4 × 32-bit single precision
 - Instructions operate on them simultaneously
 - Single-Instruction Multiple-Data

eight new 128-bit registers

128 bits
xmm0
xmm1
xmm2
xmm3
xmm4
xmm5
xmm6
xmm7

Right Shift and Division

- Left shift by i places multiplies an integer by 2i
- Right shift divides by 2ⁱ?
 - Only for unsigned integers
- For signed integers
 - Arithmetic right shift: replicate the sign bit
 - e.g., -5 / 4
 - 11111011₂ >> 2 = 11111110₂ = -2
 - Rounds toward -∞
 - c.f. $11111011_2 >> 2 = 001111110_2 = +62$

Associativity

- Parallel programs may interleave operations in unexpected orders
 - Assumptions of associativity may fail

		(x+y)+z	x+(y+z)
Х	-1.50E+38		-1.50E+38
У	1.50E+38	0.00E+00	
Z	1.0	1.0	1.50E+38
		1.00E+00	0.00E+00

 Need to validate parallel programs under varying degrees of parallelism

Who Cares About FP Accuracy?

- Important for scientific code
 - But for everyday consumer use?
 - "My bank balance is out by 0.0002¢!" ⊗
- The Intel Pentium FDIV bug
 - The market expects accuracy
 - See Colwell, The Pentium Chronicles

Concluding Remarks

- Bits have no inherent meaning
 - Interpretation depends on the instructions applied
- Computer representations of numbers
 - Finite range and precision
 - Need to account for this in programs

Concluding Remarks

- ISAs support arithmetic
 - Signed and unsigned integers
 - Floating-point approximation to reals
- Bounded range and precision
 - Operations can overflow and underflow
- MIPS ISA
 - Core instructions: most frequently used
 - 100% of SPECINT, 97% of SPECFP
 - Other instructions: less frequent

Instruction subset	Integer	Fl. pt.
MIPS core	98%	31%
MIPS arithmetic core	2%	66%
Remaining MIPS-32	0%	3%

Thanks!

