上海交通大学研究生试卷(A)

(<u>2015</u> 至<u>2016</u> 学年 第<u>1</u>学期)

学号______ 姓名_____ 上课时间_____ 任课老师_____

	保程名称	<u> </u>			_			放	· 筑			
	我承诺,我将严 格遵守考试纪律。	题号	-	<u></u> 1	<u> </u>	<u> </u>	<u>-</u> 4	=	四			
	签字人: 承诺人:	得分										
		批阅人 卷教师签名处)										
—.	. 填空题(7 题 15	个空格,每空村	各25	分,	ŧ 30	分):						
1. 用最速下降法并采用最优步长求解(UQP): $\min f(\mathbf{x}) = x_1^2 + 4x_2^2 - 4x_1 - 8x_2$				x ₂ , ‡	丰中初	J始点	为					
	x^1 ,则当且仅当 x^1 满足条件											
	当且仅当 x ¹ 满足条件	相相	寸,迭	代任	意有阳	見步均	不会	得到(UQP)	的最小	优解。	
2.	在求解无约束优化问题的最速下降法、牛顿法、共轭梯度法和拟牛顿法中,											
	只具有局部收敛性。											
3.	在求解线性约束优化	问题的 Zoutendijk	可行	方向沿	去、R	osen 7	梯度打	殳影 法	和 Fi	rank-V	Wolfe	线
	性逼近法中,						_具有	收敛的	生,			
	可推广到非线性约束	优化问题。										
4.	设 $f(\mathbf{x}) = x_1^2 + 2x_2^2 + x_3^2 - ax_1x_2 - bx_1x_3 - 2x_1 - 7x_2 + 5x_3 + 6$,其中 a,b 是常数。若 $f(\mathbf{x})$ 是严格											
	凸函数,则常数 a,b 流											
5.	设 $f(x)$ 是可微函数,	$\bar{x} \not\in (LNP)$: $\begin{cases} \min f \\ s.t.Ax \\ Ex \end{cases}$	$ \begin{array}{l} (x) \\ c \leq b \\ $	丁行解	,并且]. A =	$\begin{pmatrix} A_1 \\ A_2 \end{pmatrix}$,	$b = \begin{pmatrix} b & b \\ b & d \end{pmatrix}$	$\left(\begin{array}{c} \boldsymbol{b}^1 \\ \boldsymbol{b}^2 \end{array}\right)$	使 $\left\{egin{aligned} A_1 \ A_2 \end{aligned} ight.$	$\overline{x} = b^1$ $2\overline{x} < b^2$	1 2 °
	为得到(LNP)在 \bar{x} 处可											,
	则其最优值	_时,其最优解 $ar{d}$	是(LN	IP)在:	x 处可	「行下	降方	句。				
6.	设 $f(x)$ 是可微函数,	\bar{x} 是(LNP): $\begin{cases} \min f \\ s.t. & A \end{cases}$	f(x) $x \ge b$	的可行	了解, <u>;</u>	并且 ⁄	$\mathbf{A} = \begin{pmatrix} A \\ A \end{pmatrix}$	$(\boldsymbol{A}_1), \boldsymbol{b}$	$= \begin{pmatrix} \boldsymbol{b}^1 \\ \boldsymbol{b}^2 \end{pmatrix}$),使	$A_{_{\mathrm{I}}}\overline{x}=$	$oldsymbol{b}^1$,
<u>A</u>	卷 总 <u>7</u> 页 第_1页											

$A_2 \bar{x} > b^2$ 。则 $-\nabla f(\bar{x})$ 在 A_1 的	零空间上的投影 $ar{d}=$	。若
$ar{d}$,则 $ar{d}$ 是(LNI	P)在 $ar{x}$ 处的可行下降方向。	

二. 计算题 (4 题, 每题 13 分, 共 52 分):

1. 用惩罚函数法求解约束优化问题:

$$\min f(\mathbf{x}) = 2x_1 + 4x_2$$

s.t. $x_1 - 4(x_2 - 4)^2 \ge 4$

2. 对于无约束优化问题:

$$\min f(\mathbf{x}) = x_1^2 - 2x_1x_2 + 2x_2^2 + x_3^4$$

- (1) 用任一下降算法求解,取初始点为 $x^1 = (1,1,0)^T$,若未一步迭代停止,则迭代二次;
- (2) 用最优性条件证明(1)中得到的点是否为最优解。

3. 对于线性规划问题:

$$\min x_1 + \alpha x_2 + x_3$$
s.t. $x_1 + 2x_2 - 2x_3 \le 0$

$$-x_1 + x_3 \le -1$$

$$x_1, x_2, x_3 \ge 0$$

- (1) 当 $\alpha = -1$ 时用单纯形法求该问题的最优解和最优值;
- (2) α 取何值时,该问题无界;
- (3) α 取何值时,该问题的对偶问题无界。

- 4. 设 x^1, \dots, x^m 是 R^n 中的m 个点,p 是 R^n 中非零向量, α 是实数。在半空间 $\{x \in R^n \mid p^T x \le \alpha\}$ 上寻找 x^* ,使 x^* 与m 个点的欧氏距离平方和最小。
 - (1) 写出该问题的优化模型, 判别是否为凸规划问题;
 - (2) 利用最优性条件求出 x^* ;
 - (3) 当 α 充分大时,利用 (2) 中结论得到 x^* ,并解释其几何意义。

三. 推导题(1题, 每题8分, 共8分):

1. 设 B_k 是 $\nabla^2 f(\mathbf{x}^k)$ 的近似并且满足拟牛顿条件,试写出关于 B_k 的拟牛顿条件,并推导修正公式 $B_{k+1}=B_k+\Delta B_k$,其中修正矩阵 ΔB_k 秩为 2。

四、证明题(1题,每题10分,共10分):

1. 设 $S \subset R^n$ 是开凸集, $f: S \to R^1$ 是可微函数,则f是S上的一致凸函数的充要条件是,存在 $\eta > 0$,使

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x}) + \eta \|\mathbf{x} - \mathbf{y}\|^2 \quad \forall \mathbf{x}, \mathbf{y} \in S$$

其中f是S上的一致凸函数定义为: $S \subset R^n$ 是凸集,并且存在 $\eta > 0$,使

$$\lambda f(\mathbf{x}) + (1 - \lambda)f(\mathbf{y}) \ge f(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) + \eta \lambda (1 - \lambda) \|\mathbf{x} - \mathbf{y}\|^2 \qquad \forall \mathbf{x}, \mathbf{y} \in S, \lambda \in (0, 1)$$

其中|||为 2-范数即欧氏范数。

上海交通大学研究生课程 《最优化理论基础》试卷(<u>A</u>卷)

(2014至2015 学年第1 学期)

	学号	姓名	成绩
-,	填空题(共27分).		
1.	不一定是凸集;设 $f_1(x)$, $f_2(x)$	x ,则在以下三个集合 $S_1 \cup S_2$, S_1 x) 是 R^n 上的两个凸函数,则 x x), $f_2(x)$ } 中,	在以下三个函数 $f_1(x) + f_2(x)$,
2.			应的最优值为 <i>z*</i> , 则 LP 问题 解为,对应的最
3.	设 $f(x_1, x_2) = \frac{1}{2}(x_2 - x_1^2)^2 + \frac{1}{2}(x_1 - x_2^2)^2 + $	$(1-x_1)^2$, $\bar{x} = (1,2)^T$, 则 f 在 \bar{x} 的	的牛顿方向是
4.		. 记 $s^{(k)} = x^{(k+1)} - x^{(k)}, y_k = \nabla$ 满足的拟牛顿方程为	$\nabla f(x^{(k+1)}) - \nabla f(x^{(k)}). \stackrel{\sim}{\nabla} B_{k+1}$
5.	设 $A \in R^{n \times n}$ 为对称正定矩 $i = 1,, n, \alpha_i = $		万向组. 若 $x = \sum_{i=1}^{n} \alpha_i d^{(i)}$,则对
6.	设 $A \in \mathbb{R}^{m \times n}$ 为行满秩矩阵,	Q 为 R^n 到 A 的零空间的投影短	拒阵,则 <i>Q</i> =
7.	0 } 的可行解,其中 $\bar{x}_j > 0, j =$	$= 1, \dots, k, 0 < k < n, H \in \mathbb{R}^{n \times r}$	$f(x) = \frac{1}{2}x^T H x - c^T x : Ax = b, x \ge n$ 为对称正定矩阵, $c \in R^n$,则 $f(CNP)$ 在 \bar{x} 处的可行下降方向.
<u>-</u>	计算题 (共45分).		
			「有能力生产四种产品, 记为产」原材料 A 和 B . 假设共有 100

产品种类	原材料 A	原材料 B	利润
产品 1	4	12	4
产品 2	3	10	2
产品 3	2	18	4
产品 4	1	25	3

吨的原材料 A 和 600 吨的原材料 B 可供使用. 下表给出了生产每吨产品需要消耗原材料的数

量,以及生产每吨产品能够产生的利润(单位:万元).

- (1). 根据上面的表格建立线性模型, 使得化工厂的利润在给定的条件下最大化.
- (2). 将(1)中得到的线性模型化为线性规划问题的标准形式,并用单纯形法求解.

9(12分). 对于无约束优化问题:

min
$$f(x) = x_1^3 + x_1 x_2 + (1 + x_2)^2$$
,

- (1). 用下降算法求解,取初始点为 $x^{(1)}=(0,0)^T$, 若未一步迭代停止,则迭代二次;
- (2). (1)中得到的点是否为最优解,说明之。

10(9分). 用罚函数法求解

min
$$\frac{1}{12}(x_1+1)^3 + x_2$$

s.t. $x_1 - 1 \ge 0$
 $x_2 \ge 0$.

11(12分). 用可行下降法求解

$$\begin{aligned} & \text{min} & & x_1^2 + 4x_2^2 - 34x_1 - 32x_2 \\ & \text{s.t.} & & 2x_1 + x_2 \leq 6, \\ & & & x_2 \leq 2, \\ & & & x_1, x_2 \geq 0, \end{aligned}$$

取初始点 $x^{(1)} = (1,2)^T$.

三、分析题(共28分).

12 (12分). 设集合 $S \subset R^n$ 是非空凸集, 函数 $f:S \to R$. 则 f 是凸函数当且仅当 f 的上像图:

$$\mathrm{epi}(f) = \{(x,y) : x \in S, y \geq f(x)\} \subset R^{n+1}$$

是凸集。

13(16分). 考虑约束优化问题

$$\begin{aligned} \min_{x \in R^n} & & \frac{1}{2} x^\top A x - b^\top x \\ \text{s.t.} & & & x^\top x \leqslant 1, \end{aligned}$$

其中A 是 n 阶对称正定矩阵, $b \neq 0$.

- (1). 写出问题的一阶最优性条件, 即KKT条件.
- (2). 设 $\mu \geqslant 0$, 证明 $\|(A + \mu I)^{-1}b\|_2$ 是关于 μ 的严格单调减函数, 其中 I 是 n 阶单位阵.
- (3). 证明若 $\|A^{-1}b\| > 1$, 则存在唯一的 $\mu^* > 0$, 使得 $\|(A + \mu^*I)^{-1}b\|_2 = 1$, 且 $x^* = (A + \mu^*I)^{-1}b$ 是原问题的最优解.

上海交通大学研究生课程 《最优化理论基础》试卷(<u>A</u>卷)

(2013至2014 学年第1 学期)

学号	姓名	成绩	
一、填空题(共24分). 1. 线性规划问题 $\{\min c^T\}$	$x \mid Ax \ge b, x \ge 0$ } 的对偶问	题为:	
2. 设函数 $f(x_1, x_2, x_3) =$ 取值范围是	$x_1^2 + 2x_2^2 + x_3^2 + ax_1x_2 - 2x_1$	$-7x_2+5x_3+6$ 为严格凸函数,	則常数a 的
为	-顿法对于二次凸函数具有_ 续可微. 记 $s_k = x_{k+1} - x_k, y_k$ 切近似,则其满足的拟牛顿身	$y_k = \nabla f(x_{k+1}) - \nabla f(x_k).$ 条件为	
5. 设A 为n 阶对称正定	阵, $p_i(i=1,\cdots,n)$ 关于 A \bar{p}	两两共轭. 若 $x \in R^n$ 可表示为 $x =$	$=\sum_{i=1}^{n}\alpha_{i}p_{i},$
则 $\alpha_i =$ 6. 已知约束优化问题 $\left\{ \begin{array}{l} & & & \\ & & \\ & & \end{array} \right.$	$\min_{x \in R^3} f(x) = x_1^2 + x_2^2 - x_1 x_2$ s.t. $-x_1 - x_2 \ge -2$ $-x_1 - 5x_2 \ge -5$, $x_1, x_2 \ge 0$,下降方向集为	$-2x_1-3x_2$,则在点 $ ilde{x}=(rac{5}{6},rac{5}{6})^{7}$	<i>v</i> -1
三、计算题 (共50分). 7(10分). 利用罚函数法	医求解 $\begin{cases} \min f(x) = x_1^2 + 2x \\ s.t. \ 1 - x_1 \le 0 \\ 2 - x_2 \le 0. \end{cases}$	x_2	

8 (10分). 利用共轭梯度法求解 min $f(x)=x_1^2+2x_2^2+2x_1x_2-x_1+x_2$, 其中初始点为 $x_0=(0,0)^T$.

9 (10分). 求解线性规划问题
$$\begin{cases} & \min \ z = x_1 + x_2 + x_3 \\ & s.t. \quad x_1 + 2x_2 - 2x_3 \le 0 \\ & -x_1 + x_3 \le -1 \\ & x_1, x_2, x_3 \ge 0. \end{cases}$$

10 (10分). 求解
$$\begin{cases} \min f(x) = x_1^2 + x_2^2 + 2x_2 + 5 \\ s.t. \quad x_1 - 2x_2 \ge 0 \\ x_1, x_2 \ge 0. \end{cases}$$
 取初始点 $x = (2, 0)^T$.

11 (10分) . 利用约束优化问题的最优性条件求解
$$\left\{\begin{array}{ll} \min \ f(x) = \sum_{i=1}^n \alpha_i x_i^p \\ s.t. \ \sum_{i=1}^n x_i - \beta = 0, \end{array}\right.$$
其中 $p > 1, \alpha_i >$

 $0(i = 1, \dots, n), \beta > 0$ 为常数.

四、分析题(共26分).

12(12分). 设 $f(x)=\frac{1}{2}x^TAx+b^Tx$, 其中 A 为对称正定矩阵. 又设 $x_1(\neq x^*)$ 可表示为 $x_1=x^*+\alpha p$, 其中 x^* 是 f(x) 的极小点,p 是 A 的属于特征值 λ 的特征向量. 证明:

- (i) $\nabla f(x_1) = \alpha \lambda p$.
- (ii) 如果从 x_1 出发,沿最速下降方向作精确一维搜索,则一步达到极小点 x^* .

- 13 (14分) . 考虑最优化问题 $\min_{x \in S} f(x),$ 其中 f 连续可微, $S \subseteq R^n$ 为非空闭凸集。证明:
 - (i) $若x^*$ 是问题的局部极小点,则

$$\nabla f(x^*)^T (x - x^*) \ge 0, \quad \forall x \in S.$$
 (1)

(ii) 设 f 为 S 上的凸函数,则 x^* 为问题的全局极小点当且仅当 (1) 成立.