EECS351 Discussion 4 Problems, 09/26/16

Nate Sawicki and Alex Ying Select problems by Mai Le and Kevin Moon

1 Discrete-domain Basis Sequences

Let $x[n] = \{\underline{1}, 1, 2, 3, 5\}$. Represent x[n] in each of the following bases.

Note: You won't be asked to do anything like this on the homework or exams, but hopefully it will help you solidify your understanding of bases from lecture.

Unit Step Sequences

Recall $u[n] = \begin{cases} 1, & n \geq 0 \\ 0, & n < 0 \end{cases}$. Let $S_u = \{u[n - n_0] | n_0 \in \mathbb{Z}\}$ (unit steps shifted by any integer n_0) be your basis sequences. Represent x[n] in S_u .

In other words, show you can write $x[n] = \sum_{k=-\infty}^{\infty} c_k u[n-k]$ by finding the values for c_k .

Three-Tap Rectangles

Let $r[n] = \{\underline{1}, 1, 1\}$ and $S_r = \{r[n - n_0] | n_0 \in \mathbb{Z}\}$. Represent x[n] in S_r .

Three-Tap Triangle

Let $t[n] = \{\underline{1}, 2, 1\}$ and $S_t = \{t[n - n_0] | n_0 \in \mathbb{Z}\}$. Represent x[n] in S_t .

2 Problems

Problem 1

Show that B is orthonormal.

$$B = \begin{bmatrix} 3/\sqrt{10} & 1/\sqrt{10} \\ 1/\sqrt{10} & -3/\sqrt{10} \end{bmatrix}$$

Solution: Lets show that v1 and v2 can express the standard/canonical basis vectors using a weighted sum:

That is, find a particular α and β such that

$$\alpha v_1 + \beta v_2 = [1 \ 0]^T$$

And find a particular c and d such that

$$cv_1 + dv_2 = [0 \ 1]^T$$

$$B = \begin{bmatrix} v_1 & v_2 \end{bmatrix}$$

Consider $(\sqrt{10}v_1 - 3\sqrt{10}v_2)/10 =$

$$B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Consider $(3\sqrt{10}v_1 + \sqrt{10}v_2)/10 =$

$$B = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

2.2 Useful Property

Suppose B is a valid orthogonal basis matrix

Then

 (B^{-1}) exists

 $\quad \text{and} \quad$

$$(\mathbf{B}^{-1}) = \mathbf{B}^T$$

2.3

Last week we spent a lot of time discussing what constitutes a basis. Suppose B is any valid basis, then any signal $\mathbf{x} \in \mathbb{R}^2$ (length 2) can be expressed:

$$B\mathbf{c} = \mathbf{x}$$

Where B is a valid basis for \mathbb{R}^2

 $\mathbf{c} = [c_1 \ c_2]^T$ is called the coordinates

$$B = \begin{bmatrix} b_1 & b_3 \\ b_2 & b_4 \end{bmatrix}$$

Let $v_1 = [b_1 \ b_2]^T$, $v_2 = [b_3 \ b_4]^T$

$$B = [v_1 \ v_2]$$

Graphically, v_1 and v_2 represent coordinate axes. The coordinates tell you how many v_1 's and v_2 's are needed to express \mathbf{x} . So if $c_1=2$ and $c_2=3$, then you need $2v_1$ and $3v_2$ to create \mathbf{x} . Symbolically:

$$2v_1 + 3v_2 = \mathbf{x}$$

2.4 Change of Basis

Represent the signal $\mathbf{x} = [2 \ 1]^T$ the following ways:

- (a) using the standard/canonical basis
- (b) using the basis B from Problem 1, find the coordinates with respect to the new basis which represents the signal $\mathbf{x} = \begin{bmatrix} 2 & 1 \end{bmatrix}^T$
- (c) Draw the graphical representation of (a) and (b) in the same \mathbb{R}^2 plane. Verify that even though the coordinates for (a) and (b) are different, they still represent the same vector.

Solution:

(a)

$$B\mathbf{c} = \mathbf{x}$$

$$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

Thus $c_1 = 2$, and $c_2 = 1$. We just found the coordinates with respect to the canonical basis. (b)

$$B\mathbf{c} = \mathbf{x}$$

$$= \begin{bmatrix} 3/\sqrt{10} & 1/\sqrt{10} \\ 1/\sqrt{10} & -3/\sqrt{10} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

Using the Property from 2:

$$\mathbf{Bc} = \mathbf{x}$$

 $\mathbf{c} = B^{-1} \mathbf{x}$
 $\mathbf{c} = B^{T} \mathbf{x}$
 $\mathbf{c} = [2.21 \text{ -.} 32]^{T}$

This $c_1 = 2.21$, and $c_2 = -.32$. We just found the coordinates with respect to the basis B.

(c)

3 Inner Product

$$||z||^{2}$$

$$= ||x + y||^{2}$$

$$= (x+y)(x+y)$$

$$= x^{2} + 2xy + y^{2}$$

$$xy = 0 \text{ since } x \perp y$$

$$= x^{2} + y^{2} = ||x||^{2} + ||y||^{2}$$