Estructuras Discretas Examen 2

16 de noviembre de 2023

Resuelve de manera limpia y ordenada los siguientes ejercicios. Indica claramente el número de pregunta que se esta resolviendo.

 $2\ puntos$

1. Decide, utilizando interpretaciones o *tableaux*, si el siguiente conjunto es satisfacible. En caso de serlo, da un modelo para el conjunto.

$$\Gamma = \{ \neg (p \to q), \neg (q \land r), r \leftrightarrow \neg p, \neg q \to (p \land \neg r) \}$$

1.

- $p \rightarrow q$ es equivalente a $\neg p \lor q$

- $r \leftrightarrow \neg p$ es equivalente a $(r \land \neg p) \lor (\neg r \land p)$

 $\neg q \rightarrow (p \land \neg r)$ es equivalente a $q \lor (p \land \neg r)$

Así:

$$\Gamma = \{ \neg (\neg p \lor q), \neg (q \land r), (r \land \neg p) \lor (\neg r \land p), q \lor (p \land \neg r) \}$$

2

- $\neg \neg A$, la reescribimos A.

- $A \wedge B$, la reescribimos $A \vee B$

- $A \vee B$, la reescribimos $A \vee B$

- $\neg (A \land B)$, la reescribimos $\neg A$ y $\neg B$

- $\neg (A \lor B)$, la reescribimos $\neg A$ y $\neg B$

3.

- 3. La rama izq. contiene $p \neq \neg p$, (!)
- La derecha ry $\neg r,$ (!)
- ∴ no es satisfacible

 $2\ puntos$

 Usando interpretaciones o tableaux, determina si el siguiente argumento es correcto. En caso de no serlo exhibe una interpretación que haga verdaderas a las premisas y falsa a la conclusión.

$$(r \lor u) \rightarrow s, r, s \rightarrow t/:: t \lor u.$$

```
Premisas:
1. (r \lor u) \rightarrow s
                                                   Conclusion:
2. r
                                                   t \vee u
3. s \rightarrow t
-(r \lor u) \rightarrow s
                                                  - A \rightarrow B, agregamos \neg A y B
                                                  - \neg (A \lor B), agregamos \neg A yand
-s \rightarrow t
\neg (t \lor u)
                                                   \neg (A \land B), agregamos \neg A \circ \neg B
3. Tenemos
                                                  4. Así
- (r \lor u) \to s, agregamos
                                                  \neg (r \lor u)
\neg(r \lor u) \lor s
                                                  - s
- r, agregamos r
                                                  -r
- s \to t, agregamos \neg s y t
\neg (t \lor u), agregamos \neg t \lor \neg u
                                                  - t
                                                  - ¬u
```

- 5. Tiene s, $\neg s$, t y $\neg t$. Hay una contradicción (!)
- ∴ el argumento es válido

4 puntos

3. Traduce el siguiente argumento a lenguaje formal y demuestra que es correcto usando derivaciones. Justifica la obtención de la expresión mostrada en cada paso: indica si es una premisa, una suposición, resultado de aplicar una regla de inferencia en una o más líneas anteriores (por ejemplo, MP 1, 2 para indicar obtención por medio de Modus Ponens con las líneas 1 y 2), o razomamiento ecuacional (RE).

Si Chubaka no es perro, entonces no es cierto que sea alado o que sea borogove. Si Chubaka es quelite, entonces es alado. Sabemos que Chubaka no es perro. Luego entonces, Chubaka no es quelite. Let's denote the following: P: Chubaka es perro.

Q: Chubaka es alado.

1. $\neg P \rightarrow (\neg Q \land \neg R)$ (Premisa)

R: Chubaka es borogove.

2. S \rightarrow Q (Premisa)

S: Chubaka es quelite.

3. \neg P (Premisa)

 $4... \neg S$

Así

Usamos Modus Ponens (MP) en 1 y 3:

4.
$$\neg Q \land \neg R \text{ (MP 1, 3)}$$

Simplificación

5. $\neg Q$ (Simplification 4)

Modus Tollens en 2 y 5:

6. $\neg S (MT 2, 5)$

∴ Chubaka no es quelite

2 puntos

4. Construye la siguiente derivación. Justifica el proceso como en la pregunta anterior.

$$\vdash (\neg p \land q) \lor (p \land \neg q) \rightarrow (\neg p \land (\neg p \land q)) \lor (p \land (p \land \neg q))$$

- 1. $\neg p \wedge q$ (Suposición)
- 2. $p \land \neg q$ (Suposición)
- 3. $\neg p \land (\neg p \land q)$ (De 1, Conjuncion)
- 4. $p \land (p \land \neg q)$ (De 2, Conjuncion)
- 5. $(\neg p \land q) \lor (p \land \neg q)$ (De 1 y 2, Disyuncion)
- 6. $(\neg p \land (\neg p \land q)) \lor (p \land (p \land \neg q))$ (De 3 y 4, Disyuncion)
- 7. $(\neg p \land q) \lor (p \land \neg q) \rightarrow (\neg p \land (\neg p \land q)) \lor (p \land (p \land \neg q))$ (De 5 y 6, Condicional)
- \therefore el argumento es correcto