Minimum Maximum Lateness

$$C_i(\sigma) = \sum_{k=0}^{i} l_k$$
$$\lambda_i(\sigma) = \max\{0, C_i(\sigma) - d_i\}$$

Objetivo de la optimización:

$$min\{\max_{\sigma}\{\lambda_i(\sigma)\}\}$$

Solución Greedy

En la solución Greedy:

$$\sigma = T_1, T_2, T_3, \dots, T_n$$

$$\sigma = (l_1, d_1), (l_2, d_2), (l_3, d_3), \dots, (l_n, d_n)$$

Podemos asegurar lo siguiente:

$$d_1 < d_2 < d_3 < \dots < d_n$$

AFIRMACIÓN: ¡σ es la agenda/programación óptima!

Demostración:

Esta afirmación se demostrará por contradicción, es decir, afirmaremos primero lo opuesto:

 σ no es la agenda/programación óptima!

Si σ no es la agenda óptima, entonces la agenda óptima debe ser alguna otra agenda, alguna otra de las n!-1 agendas posibles restantes. Vamos a llamar σ^* a la agenda que sí es la óptima.

Por el Teorema 1, como σ^* no es igual a σ , entonces σ^* tiene al menos una inversión consecutiva. Es decir, podemos visualizar σ^* de la siguiente manera:

$$\sigma^*$$
= , T_j , T_i ,

Donde i < j. Construyamos una agenda diferente corrigiendo esta inversión:

$$\sigma^* =$$
 , $T_j, T_i,$ $\sigma' =$, $T_i, T_j,$

La clave está en preguntarnos, ¿cómo cambian los costos totales y las tardanzas máximas de T_i y T_j al pasar de σ^* a σ' ?

Datos para σ^* :

$$C_j(\sigma^*) = T_0 + l_j$$

$$C_i(\sigma^*) = T_0 + l_j + l_i$$

$$\lambda_j(\sigma^*) = T_0 + l_j - d_j$$

$$\lambda_i(\sigma^*) = T_0 + l_j + l_i - d_i$$

Datos para σ' :

$$C_i(\sigma') = T_0 + l_i$$

$$C_j(\sigma') = T_0 + l_i + l_j$$

$$\lambda_i(\sigma') = T_0 + l_i - d_i$$

$$\lambda_j(\sigma') = T_0 + l_i + l_j - d_j$$

En σ^* y en σ' es importante considerar en dónde se encuentra la tardanza máxima, y se tienen 3 escenarios:

- La tardanza máxima se encuentra antes de la inversión consecutiva. En este escenario entonces no cambia nada al pasar de σ^* a σ' .
- La tardanza máxima se encuentra después de la inversión consecutiva. En este escenario entonces tampoco cambia nada al pasar de σ^* a σ' .
- La tardanza máxima se encuentra en la inversión consecutiva, es decir, o le corresponde a T_i o le corresponde a T_j , y entonces acá sí puede haber cambios significativos al pasar de σ^* a σ' .

Vamos a analizar solamente el tercer escenario, precisamente porque en los demás no ocurriría nada relevante.

Si la tardanza máxima está en la inversión consecutiva, es necesario comparar a $\lambda_i(\sigma^*)$ con $\lambda_i(\sigma^*)$:

$$\lambda_i(\sigma^*) \quad \xi < / = / > ? \quad \lambda_j(\sigma^*)$$

$$T_0 + l_j + l_i - d_i \quad \xi < / = / > ? \quad T_0 + l_j - d_j$$

Ambas expresiones son una resta, por lo que comparemos los minuendos y los sustraendos:

- El minuendo de $\lambda_i(\sigma^*)$ es igual al de $\lambda_j(\sigma^*)$ pero con un sumando extra, el valor l_i , por lo que es más grande.
- Ambos sustraendos son valores de deadlines, y gracias a la Solución Greedy sabemos que $d_i < d_j$. Por lo tanto, el sustraendo de $\lambda_i(\sigma^*)$ es más pequeño que el de $\lambda_j(\sigma^*)$.

Si en $\lambda_i(\sigma^*)$ se tiene un minuendo más grande y un sustraendo más pequeño en comparación a $\lambda_j(\sigma^*)$, entonces $\lambda_i(\sigma^*)$ es el valor más grande:

$$T_0 + l_i + l_i - d_i > T_0 + l_i - d_i$$

Y por ende, sería la tardanza máxima en σ^* .

Ahora, en σ' se tienen dos posibilidades:

- $\lambda_i(\sigma')$ es la tardanza máxima.
- $\lambda_j(\sigma')$ es la tardanza máxima.

Comparemos ambos casos con $\lambda_i(\sigma^*)$, que es la tardanza máxima en σ^* :

• $\lambda_i(\sigma')$ es más pequeño que $\lambda_i(\sigma^*)$ debido a que:

$$T_0 + l_i - d_i < T_0 + l_j + l_i - d_i$$

• $\lambda_j(\sigma')$ es más pequeño que $\lambda_i(\sigma^*)$ debido a que:

$$T_0 + l_i + l_j - d_i < T_0 + l_i + l_i - d_i$$

Ya que $d_i < d_j$, en el lado izquierdo se está restando un valor más grande.

Entonces, sin importar quién sea la tardanza máxima en σ' , siempre sería un valor más pequeño que la tardanza máxima en σ^* , y entonces σ' sería una agenda más óptima que σ^* .

¡CONTRADICCIÓN!

Por lo tanto, σ SÍ es la agenda óptima.

lqqd