MS&E 211, Autumn 2014-15, Lecture 12

Ashish Goel

(Based on slides by Benjamin Van Roy)

Rock Paper Scissors

Pay off matrix: Player 1, Payoff is given by matrix P

P =	ROW = PLAYER 2 COL= PLAYER 1	Rock	Paper	Scissors
•	Rock	0	1	-1
	Paper	-1	0	1
	Scissors	1	-1	0

- Player 2, pay off Q = -P
 - Zero-Sum Game, so just use P
 - Player 1 wants to choose a strategy to maximize the payoff P
 - Player 2 wants to choose a strategy to minimize the payoff P
- Nash Equilibrium: A strategy for player 1 and a strategy for player 2 such that no player has the incentive to unilaterally deviate

Two-Player Zero-Sum Games and Duality

Battle of Wits

Is there an equilibrium?

primal

$$\begin{array}{ll} \max & cx \\ \text{s.t.} & Ax \leq b \\ & x \geq 0 \end{array}$$

dual

$$\begin{array}{ll} \min & yb \\ \text{s.t.} & yA \ge c \\ & y \ge 0 \end{array}$$

(y is a row vector)

Duality Theorem

Primal has an optimal solution if and only if dual does. If x^* and y^* are optimal then $cx^* = y^*b$

CTF-150 versus the Somali Pirates

area	intercept probability	
north	1/3	
west	1/2	
south	3/4	

Strategies

area	intercept probability	
north	1/3	
west	1/2	
south	3/4	

_		phates				
CTF-150	success probability	north	west	south		
	north	2/3	1	1		
	west	1	1/2	1		
	south	1	1	1/4		

nirates

- Pirates assume CTF to be "clairvoyant"
- Pirate strategy A: north
 - CTF-150 strategy: north
 - Success probability: 2/3
- Pirate strategy B: equiprobable actions
 - CTF-150 strategy: south
 - Success probability: 3/4

Can the pirates do better?

Optimal Strategy against a Clairvoyant Opponent

Possible strategies for pirates and coast guard

$$\mathcal{X} = \left\{ x \in \Re^3 \middle| x \ge 0, \sum_{n=1}^3 x_n = 1 \right\}$$

$$\mathcal{X} = \left\{ x \in \Re^3 \middle| x \ge 0, \sum_{n=1}^3 x_n = 1 \right\} \qquad \mathcal{Y} = \left\{ y \in \Re^3 \middle| y \ge 0, \sum_{n=1}^3 y_n = 1 \right\}$$

- Pirate's probability of success = yPx
- Pirate selects a strategy (assuming optimal countermeasure)

$$\max_{x \in \mathcal{X}} \left(\min_{y \in \mathcal{Y}} y Px \right)$$

• What if coast guard strategizes similarly?

$$\min_{y \in \mathcal{Y}} \left(\max_{x \in \mathcal{X}} y Px \right)$$

This is an equilibrium!

General Two-Player Zero-Sum Game

- Actions
 - Player 1: {1, 2, 3, ..., N}
 - Player 2: {1, 2, 3, ..., M}
- Payoff matrix: $P \in \Re^{M \times N}$
- Strategies
 - Player 1: $\mathcal{X} = \left\{ x \in \Re^N \mid x \ge 0, \sum_{n=1}^N x_n = 1 \right\}$
 - Player 2: $\mathcal{Y} = \left\{ y \in \Re^M \mid y \ge 0, \sum_{m=1}^M y_m = 1 \right\}$
- Expected payoff: $yPx = \sum_{m=1}^{M} \sum_{n=1}^{N} x_n y_m P_{mn}$

Conservative Strategies via Linear Programming

Observation: for a clairvoyant opponent, a pure counterstrategy suffices

Player 1

$$\max_{x \in \mathcal{X}} \min_{y \in \mathcal{Y}} y P x \Longrightarrow$$

max s.t. $ue \le Px$ $\sum_{n=1}^{N} x_n = 1$ x > 0

Player 2

$$\min_{y \in \mathcal{Y}} \max_{x \in \mathcal{X}} y P x \qquad \Longrightarrow$$

min s.t. $ve \ge yP$ $\sum_{m=1}^{M} y_m = 1$

(e is a vector of all I's, and is a row or column vector as needed)

Equilibrium

- **Def.** An equilibrium is a pair of strategies (x^*, y^*) such that
 - y^* is optimal for player 2 if player 1 uses x^*
 - x^* is optimal for player 1 if player 2 uses y^*
- No incentives to deviate: $y^*Px \le y^*Px^* \le yPx^*$ $\forall x \in \mathcal{X}, y \in \mathcal{Y}$
- Conservative strategies attain an equilibrium

Minimax Theorem

$$\max_{x \in \mathcal{X}} \min_{y \in \mathcal{Y}} yPx = \min_{y \in \mathcal{Y}} \max_{x \in \mathcal{X}} yPx$$

$$y^* P x^* \ge \min_{y \in \mathcal{Y}} y P x^* = \max_{x \in \mathcal{X}} y^* P x \ge y^* P x^*$$
$$y^* P x \le y^* P x^* \le y P x^* \qquad \forall x \in \mathcal{X}, y \in \mathcal{Y}$$

Proof of Minimax Theorem

max
$$u$$

s.t. $ue \le Px$

$$\sum_{n=1}^{N} x_n = 1$$

$$x \ge 0$$

$$\underbrace{\text{duals}}_{u^* = v^*}$$

min
$$v$$

s.t. $ve \ge yP$

$$\sum_{m=1}^{M} y_m = 1$$

$$y \ge 0$$