In [10]:

```
import pandas as pd
import numpy as np
from sklearn import linear_model
import matplotlib.pyplot as plt
```

In [12]:

```
df=pd.read_csv("area and price.csv")
df
```

Out[12]:

	area	price
0	1300	35000
1	1200	36000
2	1100	3750
3	900	3000
4	800	3600
5	700	4000

In [13]:

```
%matplotlib inline
plt.xlabel('area')
plt.ylabel('price')
plt.scatter(df.area,df.price,color='red',marker='+')
```

Out[13]:

<matplotlib.collections.PathCollection at 0x1b8466a06a0>

In [16]:

```
new_df= df.drop('price',axis='columns')
new_df
```

Out[16]:

	area
0	1300
1	1200
2	1100
3	900
4	800
5	700

In [26]:

```
model=linear_model.LinearRegression()
model.fit(new_df,df.price)
# Training the model
Out[26]:
LinearRegression()
In [18]:
model.predict([[4300]])
# Here I am predicting the price of a particular area, the area and prices are not mentioned in the table.
# By using the linear regression, and especially by using the equation of it, it is possible to predict the prices of any area.
Out[18]:
array([201087.5])
In [13]:
model.predict([[6000]])
# Here I am predicting the price of a particular area, the area and prices are not mentioned in the table.
# By using the linear regression, and especially by using the equation of it, it is possible to predict the prices of any area.
Out[13]:
array([297350.])
In [18]:
model.coef_
Out[18]:
array([56.625])
In [19]:
model.intercept_
Out[19]:
-42400.00000000001
In [21]:
\# y = m^*x + b
# y is price
# x is area
56.625*6000 + (-42400.00000000001)
Out[21]:
297350.0
In [27]:
area_df = pd.read_csv("area.csv")
area_df
Out[27]:
    area
   1300
   1200
   1100
     900
```

700

```
area 7 500
```

In [28]:

model.predict(area_df)

Out[28]:

 $\begin{array}{lll} \text{array}([\ 31212.5,\ 25550.\ ,\ 19887.5,\ 8562.5,\ 2900.\ ,\ -2762.5,\\ -8425.\ ,\ -14087.5]) \end{array}$

In [29]:

p=model.predict(area_df)

In [31]:

area_df['prices']=p
area_df

Out[31]:

	area	prices
0	1300	31212.5
1	1200	25550.0
2	1100	19887.5
3	900	8562.5
4	800	2900.0
5	700	-2762.5
6	600	-8425.0
7	500	-14087.5

In [32]:

area_df.to_csv("pridictions.csv")