Curso Superior de Tecnologia em Análise e Desenvolvimento de Sistemas

Introdução à Tecnologia da Computação

Docente: Me. Vladimir Piccolo Barcelos

Introdução à Lógica Booleana

Sumário

- Introdução à Organização de Computadores
- Evolução dos computadores e suas arquiteturas
- Conhecer o processo de fabricação de um processador

Introdução à Lógica

- Aristóteles se preocupava com as formas de raciocínio que, a partir de conhecimentos considerados verdadeiros, permitiam obter novos conhecimentos.
- A partir dos conhecimentos tidos como verdadeiros, caberia à Lógica a formulação de leis gerais de encadeamentos de conceitos e juízos que levariam à descoberta de novas verdades. Essa forma de encadeamento é chamada, em Lógica, de argumento.
- Um argumento é uma sequência de proposições (afirmações) na qual uma delas é a conclusão e as demais são premissas.
- O objeto de estudo da lógica é determinar se a conclusão de um argumento é ou não uma consequência lógica das premissas.

- Conjunto de palavras ou símbolos que exprimem um pensamento de sentido completo, de modo que se possa atribuir, dentro de certo contexto, somente um de dois valores lógicos possíveis: verdadeiro ou falso.
- Proposição "vem de propor", submeter a apreciação e requer um juízo.
 Exemplos:
 - Três Lagoas fica em Mato Grosso do Sul.
 - O Brasil é um País da América do Sul.
 - Cangurus são animais comuns do Uruguai.
 - A Bahia é um estado do sul do Brasil.

- Conjunto de palavras ou símbolos que exprimem um pensamento de sentido completo, de modo que se possa atribuir, dentro de certo contexto, somente um de dois valores lógicos possíveis: verdadeiro ou falso.
- Proposição "vem de propor", submeter a apreciação e requer um juízo.
 Exemplos:
 - Três Lagoas fica em Mato Grosso do Sul. → proposição VERDADEIRA
 - O Brasil é um País da América do Sul. → proposição VERDADEIRA
 - Cangurus são animais comuns do Uruguai. → proposição FALSA
 - A Bahia é um estado do sul do Brasil. → proposição FALSA

O que é uma Proposição?

- **Sentenças declarativas:** Algo é declarado por meio de termos, palavras ou símbolos. Seu conteúdo poderá ser verdadeiro ou falso. Exemplos:
 - A Terra é Maior que a Lua.
 - -10 > 4

O que não é uma Proposição?

Sentenças exclamativas: "Caramba!", "Feliz aniversário!",

"Feliz Ano Novo!".

Sentenças interrogativas: "Como é seu nome?", "O jogo saiu de quanto?"

Sentenças imperativas: "Estude mais", "Leia aquele livro".

O que não é uma Propa

Sentenças exclama "Caramba! "xliz aniversário!",

"Feliz Ano Novo!".

Sentenças interro tivas: "c yé seu me?", "O jogo saiu de quanto?"

Sentenças imperatil *"Estude mo Leia aquele livro".*

USAREMOS SOMENTE SENTENÇAS DECLARATIVAS

Princípio das Proposições

1 - Princípio da identidade:

Uma proposição verdadeira é verdadeira; uma proposição falsa é falsa.

2- Princípio da não-contradição:

Uma proposição não pode ser verdadeira e falsa simultaneamente.

3 - Princípio do Terceiro Excluído:

Uma proposição ou será verdadeira, ou será falsa : não há outra possibilidade.

- Proposições SIMPLES: aquelas que vêm sozinhas, desacompanhadas de outras proposições:
 - São representadas por letras minúsculas (como p, q, r ...)
 - Ex: p = Todo homem é mortal / q = O novo papa é argentino.
- Proposições COMPOSTAS: duas ou mais proposições conectadas entre si, formando uma só sentença.
 - São representadas por letras maiúsculas (como P, Q, R ...)
 - Ex: João é médico **e** Pedro é dentista.
 - Para determinar se uma proposição composta é verdadeira ou falsa, dependemos de duas coisas:
 - 1º) do valor lógico das proposições componentes
 - 2°) do tipo de conectivo que as une

Conceito de Operadores

- Operadores são empregados com muita frequência em programação.
- É com o seu uso (muitas vezes da combinação de vários deles) é que são feitas as tarefas mais comuns de processamento de dados.
- Podem ser:
 - Operadores Aritméticos
 - Operadores Relacionais
 - Operadores Lógicos

Operadores Aritméticos

• São conjunto de símbolos que representa as operações básicas da matemática, a saber:

Operador	Função	Exemplos
+	Adição	2 + 3, X + Y
+	Subtração	4 – 2, N - M
*	Multiplicação	3 * 4, A * B
1	Divisão	10 / 2, X / Y

Operadores Relacionais

 São utilizados para realizar comparações entre dois valores de mesmo tipo. Exemplos:

Operador	Função	Exemplos
=	Igual a	3 = 3, X = Y
>	Maior que	5 > 4, X > Y
<	Menor que	3 < 6, X < Y
>=	Maior ou igual a	5 >=3, X >=Y
<=	Menor ou igual a	3 <=5, X <=Y
<>	Diferente de	8 <> 9, X <> Y

 ATENÇÃO: O resultado obtido de uma relação é sempre um valor lógico.

Operadores Relacionais

Operadores Relacionais

VERDADEIRO

FALSO

VERDADEIRO

VERDADEIRO

FALSO

Operadores Lógicos

- São expressões existentes nas preposições compostas, ou seja, os operadores lógicos servem para unir duas ou mais proposições simples.
- Os operadores lógicos são representados da seguinte forma:
- ~ corresponde a "não" (negações)
- A corresponde a "e" (conjunções)
- V corresponde a "ou" (disjunções)
- → corresponde a "então" (condicionais)
- corresponde a "se e somente se" (bicondicionais)

- A partir de uma proposição qualquer podemos construir uma outra com a sua negação;
 - Ex: Maria é médica. / Maria não é médica.

- Com duas proposições ou mais, podemos formar:
 - Conjunções: a Λ b (lê-se: a e b)
 - Disjunções: a V b (lê-se: a ou b)
 - Disjunções exclusiva: a <u>V</u> b (lê-se: ou a ou b)
 - Condicionais: a → b (lê-se: se a então b)
 - Bicondicionais: a → b (lê-se: a se e somente se b)

Exercício

Seja **p** a proposição "está chovendo" e seja **q** a proposição "está ventando". Escreva uma sentença verbal simples, em português, que descreva cada uma das seguintes proposições lógicas:

- p
- c
- p∧q
- − ~p
- pvq
- q V ~p
- ~p → ~q
- p ₩ c

Tabela-Verdade

- Instrumento usado para determinar os valores lógicos das proposições compostas, a partir de atribuições de todos os possíveis valores lógicos das proposições simples componentes.
- A primeira das tabelas apresenta duas proposições simples: p e q e a segunda, três proposições simples: p, q e r.
- As células de ambas as tabelas são preenchidas com valores lógicos V e F, de modo a esgotar todas as possíveis combinações.
- O número de linhas da tabela pode ser previsto efetuando o cálculo: 2 elevado ao número de proposições simples. Nos exemplos abaixo tem-se 2² = 4 linhas e 2³ = 8 linhas.

p	q
V	V
	F
V	
F	V
F	F

p	\mathbf{q}	r
V	V	V
V	V	F
V	F	V
V	F	F
F	V	V
F	V	F
F	F	V
F	F	F

Conectivo "e": Conjunção

- Proposições compostas em que está presente o conectivo "e";
- Simbolicamente representado por "Λ".
- A sentença:

"Marcos é médico e Maria é estudante"

... pode ser representada apenas por: **p** Λ **q**.

Onde: $p = Marcos \ \acute{e} \ m\acute{e}dico \ e \ q = Maria \ \acute{e} \ estudante$.

 Como se revela o valor lógico de uma proposição conjuntiva? Da seguinte forma: uma conjunção só será verdadeira, se ambas as proposições componentes forem também verdadeiras.

Conjunção

- Pensando pelo caminho inverso, teremos que basta que uma das proposições componentes seja falsa, e a conjunção será – toda ela – falsa.
- Obviamente que o resultado falso também ocorrerá quando ambas as proposições componentes forem falsas.

р	q	p∧q
V	V	V
V	F	F
F	V	F
F	F	F

Para assimilar...

 Uma maneira de assimilar bem essa informação seria pensarmos nas sentenças simples como promessas de um pai a um filho:

"eu te darei uma bola E te darei uma bicicleta".

 Ora, pergunte a qualquer criança! Ela vai entender que a promessa é para os dois presentes. Caso o pai não dê nenhum presente, ou dê apenas um deles, a promessa não terá sido cumprida. Terá sido falsa! No entanto, a promessa será verdadeira se as duas partes forem também verdadeiras!

Representação Matemática

• Se as proposições **p** e **q** forem representadas como conjuntos, por meio de um diagrama, a conjunção "**p** e **q**" corresponderá à **interseção** do conjunto **p** com o conjunto **q**. Teremos:

Conectivo "ou": Disjunção

- Proposições compostas em que está presente o conectivo "ou";
- Simbolicamente representado por "V".
- A sentença:

"Marcos é médico **ou** Maria é estudante"

... pode ser representada apenas por: **p V q**. Onde:

p = Marcos é médico e q = Maria é estudante.

• Como se revela o **valor lógico** de uma *proposição disjuntiva*?

Para assimilar...

 Uma maneira de assimilar bem essa informação seria pensarmos nas sentenças simples como promessas de um pai a um filho:

"eu te darei uma bola OU te darei uma bicicleta".

Neste caso, a criança já sabe, de antemão, que a promessa é por apenas um dos presentes! Bola ou bicicleta! Ganhando de presente apenas um deles, a promessa do pai já valeu! Já foi verdadeira! E se o pai for rico e resolver dar os dois presentes? Pense na cara do menino! Feliz ou triste? Felicíssimo! A promessa foi mais do que cumprida. Só haverá um caso, todavia, em que a bendita promessa não se cumprirá: se o pai esquecer o presente, e não der nem a bola e nem a bicicleta. Terá sido falsa toda a disjunção.

Disjunção

 Uma disjunção será falsa quando as duas partes que a compõem forem ambas falsas! E nos demais casos, a disjunção será verdadeira!

р	q	p V q
V	V	V
V	F	V
F	V	V
F	F	F

Representação Matemática

 Se as proposições p e q forem representadas como conjuntos (diagrama de Venn), por meio de um diagrama, a disjunção "p ou q" corresponderá à união do conjunto p com o conjunto q. Teremos:

Exercícios - Disjunções

Indique o valor lógico de **p V q** considerando as seguintes proposições:

- p: Brasília é uma cidade
 - q: Brasília é a capital da Argentina

p V q:

- p: A neve é branca
 - q: 2 > 5

p V q:

- p: Saturno é uma estrela
 - q: 4 <= 5

p V q:

Exercícios - Disjunções

Indique o valor lógico de **p V q** considerando as seguintes proposições:

- p: Brasília é uma cidade VERDADEIRO
 - q: Brasília é a capital da Argentina FALSO
- p V q: **VERDADEIRO**
- p: A neve é branca VERDADEIRO
- q: 2 > 5 FALSO
- p V q: **VERDADEIRO**
- p: Saturno é uma estrela FALSO
- q: 4 <= 5 VERDADEIRO
- p V q: **VERDADEIRO**

Disjunção Exclusiva

Vejamos:

Te darei uma bola **OU** uma bicicleta.

OU te darei uma bola **OU** te darei uma bicicleta.

Qual a diferença?

Disjunção Exclusiva

Vejamos:

Te darei uma bola **OU** uma bicicleta.

OU te darei uma bola **OU** te darei uma bicicleta.

Qual a diferença?

 A segunda estrutura apresenta duas situações mutuamente excludentes, de sorte que apenas uma delas pode ser verdadeira, e a restante será necessariamente falsa. Ambas nunca poderão ser, ao mesmo tempo, verdadeiras; ambas nunca poderão ser, ao mesmo tempo, falsas.

Conectivo "Ou ... ou ...": Disjunção Exclusiva

- Proposições compostas em que está presente o conectivo
 "Ou ... ou ...";
- Simbolicamente representado por "<u>V</u>".
- Como se revela o valor lógico de uma disjunção exclusiva?
 - Uma disjunção exclusiva só será verdadeira se obedecer à mútua exclusão das sentenças. Falando mais fácil: só será verdadeira se houver uma das sentenças verdadeira e a outra falsa. Nos demais casos, a disjunção exclusiva será falsa.

Disjunção Exclusiva Para assimilar...

• Lembremos da promessa de um pai a um filho:

"OU te darei uma bola OU te darei uma bicicleta".

• Neste caso, a criança já sabe, que se for verdade que "te darei uma bola", então teremos que não será dada a bicicleta. E vice-versa, ou seja, se for verdade que "te darei uma bicicleta", então teremos que não será dada a bola.

Disjunção Exclusiva

Vejamos a tabela verdade de uma disjunção exclusiva.

р	q	р <u>V</u> q
V	V	F
V	F	V
F	V	V
F	F	F

Conectivo "se ... então ...": Condicional

Proposições compostas em que está presente o conectivo

"Se ... então";

Simbolicamente representado por " \rightarrow ".

A sentença:

"Se nasci em Três Lagoas então sou Sul-Mato-Grossense"

... pode ser representada apenas por: $\mathbf{p} \rightarrow \mathbf{q}$. Onde: $p = Nasci \ em \ Três \ Lagoas \ e \ q = Sou \ Sul-Mato-Grossense.$

- 'p' é **condição suficiente** para 'q' (Nascer em Três Lagoas é suficiente para ser Sul-Mato-Grossense).
- 'q' é condição necessária para 'p'. (É necessário ser Sul-Mato-Grossense para nascer em Três Lagoas).
- Como se revela o valor lógico de uma proposição condicional?

Conectivo "se ... então ...": Condicional

Proposições compostas em que está presente o conectivo

"Se ... então";

Simbolicamente representado por " \rightarrow ".

A sentença:

"Se nasci em Três Lagoas então sou Sul-Mato-Grossense"

... pode ser representada apenas por: $\mathbf{p} \rightarrow \mathbf{q}$. Onde: $p = Nasci \ em \ Três \ Lagoas \ e \ q = Sou \ Sul-Mato-Grossense.$

- 'p' é **condição suficiente** para 'q' (Nascer em Três Lagoas é suficiente para ser Sul-Mato-Grossense).
- 'q' é condição necessária para 'p'. (É necessário ser Sul-Mato-Grossense para nascer em Três Lagoas).
- Como se revela o valor lógico de uma proposição condicional?

Condicional

- Exemplo:
 - p: Nasci em Três Lagoas.
 - q: Sou Sul-Mato-Grossense.
 - p → q: Se nasci em Três Lagoas, então sou Sul-Mato-Grossense.

Se nasci em Três Lagoas então sou Sul-Mato-Grossense

Se nasci em Três Lagoas então não sou Sul-Mato-Grossense

Se não nasci em Três Lagoas então sou Sul-Mato-Grossense

Se não nasci em Três Lagoas então não sou Sul-Mato-Grossense

р	q	$p \rightarrow q$
V	V	V
V	F	F
F	V	V
F	F	V

Dicas

"Nascer em Três Lagoas é condição suficiente para que ser Sul-Mato-Grossense.",

Podemos reescrever essa sentença, usando o formato da condicional. Teremos:

"Nascer em Três Lagoas é condição suficiente para ser Sul-Mato-Grossense" é igual a:

"Se nasci em Três Lagoas então sou Sul-Mato-Grossense."

• Se alguém disser que: "Ser Sul-Mato-Grossense é condição necessária para que você tenha nascido em Três Lagoas.", também poderemos traduzir isso de outra forma:

"Ser Sul-Mato-Grossense é condição necessária para que você tenha nascido em Três Lagoas", é

igual a:

"Se nasci em Três Lagoas então sou Sul-Mato-Grossense."

Não esqueçam:

Condição suficiente → Condição necessária

Condicional

- Exemplo:
 - p: Meu celular é da Apple
 - q: Tenho um iPhone
 - p → q: Se meu celular é da Apple então tenho um iPhone.

Se meu celular é da Apple então tenho iPhone Se meu cel. é da Apple então não tenho iPhone Se meu cel. não é da Apple então tenho iPhone Se meu cel. não é da Apple então não tenho iPhone

q	p → q
V	V
F	F
V	V
F	V
	V F V

Condicional

Exemplo:

- p: Meu celular é da Apple

q: Tenho um iPhone

p → q: Se meu celular é da Apple então tenho um iPhone.

Se meu celular é da Apple então tenho iPhone Se meu cel. é da Apple então não tenho iPhone Se meu cel. não é da Apple então tenho iPhone Se meu cel. não é da Apple então não tenho iPhone

р	q	$p \rightarrow q$
V	V	V
V	F	F
F	V	V
F	F	V

Representação Matemática

Se as proposições p e q forem representadas como conjuntos, por meio de um diagrama de Venn, a condicional "se p então q" corresponderá à inclusão do conjunto p no conjunto q (p está contido em q).

Conectivo "... se e somente se ...": Bicondicional

- Proposições compostas em que está presente o conectivo "... se e somente se";
- Simbolicamente representado por "\subseteq".
- Consiste em uma CONJUNÇÃO entre duas CONDICIONAIS:

"Eduardo fica alegre **se e somente se** Mariana sorri"

=

"Eduardo fica alegre **somente se** Mariana sorri E Mariana sorri **somente se** Eduardo fica alegre"

=

"Se Eduardo fica alegre **então** Mariana sorri **e se** Mariana sorri **então** Eduardo fica alegre"

Bicondicional

 Haverá duas situações em que a bicondicional será verdadeira: quando antecedente e consequente forem ambos verdadeiros, ou quando forem ambos falsos. Nos demais casos, a bicondicional será falsa.

p	q	p ↔ q
V	V	V
V	F	F
F	V	F
F	F	V

Representação Matemática

 Se as proposições p e q forem representadas como conjuntos, por meio de um diagrama de Venn, a bicondicional "p se e somente se q" corresponderá à igualdade dos conjuntos p e q.

Resumo

Estrutura Lógica	É verdade quando	É <mark>falso</mark> quando
p ^ q (conjunção)	Somente quando p e q são, ambos, verdade	Qualquer um dos dois for falso
p V q (disjunção)	Qualquer um dos dois for verdade	Somente quando p e q , ambos, são falsos
p <u>V</u> q (disjunção exclusiva)	Somente quando p e q tiverem valores lógicos diferentes	Somente quando p e q tiverem valores lógicos iguais
p → q (condicional)	Nos demais casos	Somente quando p é verdade e q é falso
p ↔ q (bicondicional)	Somente quando p e q tiveram valores lógicos iguais	Somente quando p e q tiverem valores lógicos diferentes
∼p (negação)	p é falso	p é verdade

Bibliografia

• TANEMBAUM, A. S. - Organização Estruturada de Computadores – 5ª ed. Editora Pearson. 2007. ISBN 85-7605-067-6. 449 p.

Dúvidas?

