

NITTE MEENAKSHI INSTITUTE OF TECHNOLOGY

An Autonomous Institution Approved by UGC/AICTE/Govt. of Karnataka Accredited by NBA (Tier – I) and NAAC 'A+' Grade Affiliated to Visveswaraya Technological University, Belagavi Post Box No. 6429, Yelahanka, Bengaluru – 560 064, Karnataka, India

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

MID SEMESTER EXAMINATION-III – Scheme & Solution

WIID SEVIESTER EXAMINATION-III - Scheme & Solution							
Course Title with	Introduction to Machine Learning, 18CSE751	Maximum	30 Marks				
code		Marks					
Date and Time	12-02-22, 2 pm to 3 pm No. of Hours 1.0						
Course Instructor(s)	Dr. Vani V						
Instructions to Students							
1. Answer any two full questions.							
2. Any missing data may assume suitably.							

PO/P MAX **Question** CO BLO. No SO **MARKS** 1. a 4 4 2 1,2,3/2 Compare parametric approach with non-parametric approach with necessary examples **Solution:** Parametric approach: The sample comes from a known distribution. The advantage of any parametric approach is that given a model, the problem reduces to the estimation of a small number of parameters, which, in the case of density estimation, are the sufficient statistics of the density. For example: the mean and covariance in the case of Gaussian densities. used quite frequently Assume rigid parametric model may be a source of bias in many applications where this assumption does not hold. **Examples:** Logistic Regression, Linear Discriminant Analysis, Perceptron, Naive Bayes, Simple Neural Networks Non-Parametric Approach: Algorithms that do not make strong assumptions about the form of the mapping function are called nonparametric machine learning algorithms. By not making assumptions, they are free to learn any functional form from the training data. Non-parametric methods seek to best fit the training data in constructing the mapping function, whilst maintaining some ability to generalize to unseen data. As such, they are able to fit a large number of functional forms. An easy to understand nonparametric model is the k-nearest neighbours algorithm that makes predictions based on the k most similar training patterns for a new data instance. The method does not assume anything about the form of the mapping function other than patterns that are close are likely to have a similar output variable. **Examples:** k-Nearest Neighbors, Decision Trees like CART and C4.5, Support Vector Machines

1. b	Consider the following training data and answer the questions (a) to (c). class 1: (1,1), (1,2), (2,1)	6	4	3	1,2,3/2
	class 2: (0,0), (1,0), (0,1) Solution:				
	(a) Plot these six training points. Are the classes {class1, class2} linearly separable?				
	(b) Construct the weight vector of the maximum margin hyperplane by inspection and identify the support vectors.				
	The maximum margin hyperplane should have a slope of -1 and should satisfy $x1 = 3/2$, $x2 = 0$. Therefore it's equation is $x1 + x2 = 3/2$, and the weight vector is $(1, 1)^T$				
	(c) If you remove one of the support vectors does the size of the optimal margin decrease, stay the same, or increase? In this specific dataset the optimal margin increases when we remove the support vectors				
	Scheme: Each answer carries 2 marks $3 \times 2 = 6 \text{ Marks}$				
1.c	Discuss the need for linear, polynomial and RBF kernel functions in Support Vector Machine (SVM) and show how to use SVM for multi-class classification. Kernel Function generally transforms the training set of data so that a non-linear decision surface can be transformed to a linear equation in a higher number of dimension spaces. Linear Kernel: used when data is linearly separable. Polynomial Kernel: It represents the similarity of vectors in training set of data in a feature space over polynomials of the original variables used in kernel. RBF: It is used to perform transformation when there is no prior knowledge	5	4	2	1,2,3/2
	about data • polynomials up to some degree s in the elements x_k of the input vector (e.g., x_3^3 or $x_1 \times x_4$) with kernel: $\mathbf{K}(\mathbf{x}, \mathbf{y}) = (1 + \mathbf{x}^T \mathbf{y})^s \tag{8.19}$				
	For $s = 1$ this gives a linear kernel				
	- radial basis function expansions of the x_k s with parameter σ and kernel:				
	 K(x,y) = exp (-(x - y)²/2σ²) ■ The SVM only works for two classes. ■ For the problem of N-class classification, - train an SVM that learns to classify class one from all other classes, - then another that classifies class two from all the others. 				

	is the				s the inj		one that	makes	the stroi	ngest				
	-	pre Cle va	ediction assifien lue of y	n r retur '	n either	· the class	label (as	the si	gn of y)	or the				
	 The value of y is telling us how far away from the decision boundary it is, and clearly it will be negative if it is a misclassification 													
	misclassification. Therefore, use the maximum value of this soft boundary as the best classifier Different kernels produce different decision boundaries							sifier						
2	Scheme: 3 mar						VM				10		1	1.0.2/2
2. a	For the given intial set of three clusters (k=3) $C1 = \{(1,3),(3,6),(3,5)\}$ $C2 = \{(5,3),(6,7),(2,2)\}$						10	5	3	1,2,3/2				
			3),(0,7),(3,1),											
	Apply k-means					n the clus	ters conv	erge.						
	Note: Use Mar													
	Let points be c	onside	ered as	1 to 9)									
	$C1 = \{(1,3), (3,3)\}$													
			5,3),(6,											
		= {(6,	5),(3,1)				140		140					
	Initial		Data		M1	7 4 6667	M2 4.333		M3 3.667	3				
		1	1	3	3	4.0007	4.333	4	2.667	<u> </u>				
		2	3	6			3.333		3.667					
		3	3	5	1		2.333		2.667					
		4	5	3	4.33		1.667		1.333					
		5	6	7	6		4.667		6.333					
		6 7	6	2 5	3		4.333 2.667		2.667 4.333					
		8	3	1	4.33		4.333		2.667					
		9	2	3	2		3.333		1.667					
	C1(2,3)													
	C2(5,7) C3(1,4,6,8,9)													
	Iteration 1:				M1		M2		M3					
	itoration ii	Data	Points	3	3	5.5	6	6		2.4				
		1	1	3	4.5		8		2.2					
		2	3	6	0.5		3		4					
		3	3	5	0.5		4		3					
		4	5	3	4.5		4		3					
		5 6	6	7	4.5 4.5		1 8		8					
		7	6	5	3.5		1		6					
		8	3	1	4.5		8		1.8					
		9	2	3	3.5		7		1.2					
	Initial and Iter	ration	1 are	same	the alg	orithm co	nverges							
	C2(5,7)													
	C3(1,4,6,8,9)													
	Scheme: Each	itera												
2. b	Discuss the use of clustering in supervised learning with suitable examples Solution:							5	5	2	1,2,3/2			
	 Dimensionality reduction methods find correlations between features and group features Clustering methods find similarities between instances and group instances Allows knowledge extraction through 													

	 number of clusters, prior probabilities, cluster parameters, i.e., center, range of features. Example: CRM, customer segmentation ■ Estimated group labels h_j (soft) or b_j (hard) may be seen as the dimensions of a new k dimensional space, where we can then learn our discriminant or regressor. ■ Local representation (only one b_j is 1, all others are 0; only few h_j are nonzero) vs Distributed representation (After PCA; all z_j are nonzero) Scheme: 5 x 1 = 5 Marks 				
3. a	Identify a suitable algorithm to estimate the gender of the students studying in a college given their height information. Discuss the identified algorithm with its iterative steps. Solution: The Expectation-Maximization (EM) algorithm is used in maximum	5	5	2	1,2,3/2
	 likelihood estimation where the problem involves two sets of random variables of which one, X, is observable and the other, Z, is hidden. The goal of the algorithm is to find the parameter vector Φ that maximizes the likelihood of the observed values of X, L(Φ X). But in cases where this is not feasible, we associate the extra hidden variables Z and express the underlying model using both, to maximize the likelihood of the joint distribution of X and Z, the complete likelihood Lc(Φ X,Z). Since the Z values are not observed, we cannot work directly with the complete data likelihood Lc; 				
	 Instead, we work with its expectation, Q given X and the current parameter values Φ^l, where l indexes iteration. This is the expectation (E) step of the algorithm. Then in the maximization (M) step, we look for the new parameter values, Φ^{l+1}, that maximize this. 				
	Iterate the two steps 1. E-step: Estimate z given X and current Φ 2. M-step: Find new Φ ' given z, X, and old Φ . $E - step: Q(\Phi \Phi') = E[\mathcal{L}_{C}(\Phi \mathcal{X}, \mathcal{Z}) \mathcal{X}, \Phi']$				
	M-step: $\Phi'^{+1} = \underset{\Phi}{\operatorname{argmax}} \mathcal{Q}(\Phi \mid \Phi')$ An increase in Q increases incomplete likelihood $\mathcal{L}(\Phi'^{+1} \mid \mathcal{X}) \geq \mathcal{L}(\Phi' \mid \mathcal{X})$				
	Scheme: identifying and explaining EM algorithm: 2 Marks E-Step: 1.5 Mark M-Step: 1.5 Mark				
3. b	For the given intial set of three clusters $C1 = \{(1,3),(3,6),(3,5)\}$ $C2 = \{(5,3),(6,7),(2,2)\}$ $C3 = \{(6,5),(3,1),(2,3)\}$ Apply the agglomerative algorithm with complete cluster distance measures to produce a dendrogram tree Note: Use Manhattan distance to compute distance matrix	10	5	3	1,2,3/2
	Solution: C1 -> C2 : max distance : (5+4) = 9 C3->C1 : max distance (5+2) = 7 C3-> C2 : max distance (3 + 6) = 9				

Faculty Signature	Course Co- Ordinator/Mentor Signature	HoD Signature				