Санкт-Петербургский политехнический университет Петра Великого Институт электроники и телекоммуникаций Высшая школа электроники и микросистемной техники

РАЗРАБОТКА И ИССЛЕДОВАНИЕ СИГМА-ДЕЛЬТА МОДУЛЯТОРА С ДВУХФАЗНОЙ ВЫБОРКОЙ И ПРЯМОЙ СВЯЗЬЮ

Выполнил:

Студент гр. 4941102/90501 Дегирменджи М. Д. М.

Руководитель:

Доцент, к.т.н. Пилипко М. М.

Актуальность

Обработка аудио-сигналов

Медицинское оборудование

Структура сигма-дельта АЦП

Рисунок 1 — Блок-схема $\Sigma\Delta$ модулятора первого порядка

$$Y = \frac{1}{f}(X - Y) + Q = \frac{X}{f + 1} + \frac{Qf}{f + 1}$$
 (1)

где X – сигнал, поступающий на вход модулятора;

Y — сигнал, поступающий с выхода модулятора;

Q – ошибка квантования;

f – частота.

Рисунок 2 – Линеаризованная модель ΣΔ-АЦП в частотной области

Сигма-дельта АЦП второго порядка

Рисунок 3 — Спектр шумов квантования ΣΔ модулятора первого и второго порядка

Рисунок 4 — Блок-схема $\Sigma\Delta$ АЦП второго порядка

Сигма-дельта АЦП с прямой связью

Рисунок 5 — Блок-схема $\Sigma\Delta$ модулятора второго порядка с использованием прямой связи

$$Y(z) = X(z) + (1 - z^{-1})^{2}E(z)$$
(4)

$$STF = 1 (5)$$

$$NTF = (1 - z^{-1})^2 \tag{6}$$

Сигма-дельта АЦП с прямой связью

Рисунок 6 — модифицированная структура ΣΔ модулятора с использованием прямой

$$y_1 = -z^{-1} \left(1 - z^{-1} \right) E(z) \tag{7}$$

$$y_2 = X(z) - z^{-1} \left(1 - z^{-1} \right) E(z) \tag{8}$$

Метод двухфазной выборки

Рисунок 7 – SC-интегратор

Рисунок 8 — Интегратор с двухфазной выборкой

Рисунок 9 — Интегратор со схемой сброса конденсатора обратной связи

Рисунок 10 — Временная диаграмма для интегратора со схемой сброса конденсатора обратной связи

Цель и задачи работы

Целью данной дипломной работы является изучение работы $\Sigma\Delta$ модулятора первого и второго порядка, а также рассмотрение различных реализаций метода двухфазной выборки и улучшения их характеристик.

Для достижения поставленной цели решаются следующие задачи:

- Построить и рассмотреть параметры базовых блоков, необходимых для построения $\Sigma\Delta$ модулятора;
- Построить и изучить $\Sigma\Delta$ модулятор первого и второго порядка, а также сравнить их характеристики;
- Построить схемы с применением метода двухфазной выборки, а также изучить их характеристики;
- Построить топологию для $\Sigma\Delta$ модулятора с применением метода двухфазной выборки с прямой связью и схемой сброса выборочных конденсаторов;
- Изучить влияние паразитных параметров, возникших после построения топологии на работу схемы;
- Сопоставить полученные результаты.

Параметры симуляции

- Частота тактирующих импульсов 1 МГц
- Коэффициент передискретизации 128 для одиночной выборки и 256 для двухфазной выборки
- Полоса пропускания сигнала от 0 до 7812,5 Гц
- Частота входного сигнала 1343 Гц
- Нагрузочная ёмкость 1 pF
- Использовано ПО Cadence Virtuoso и параметры 180 нм КМОП технологии

Операционный транскондуктивный

усилитель Ι1 key ph1i ph1 vc+ vdd! **¥**M1 P_18_MM ← P_18_MM ← P_18_MM I=2ØØn■ w=Ø.464257*W*1/1 w=Ø.267857*W*1/ w=Ø.267857*W*1/1 Nf: Nf:1 ⊥ c:1p diif_stage c=200.0f ΙØ vc-_ph2i Ww=1.339*W w = 1.339*WNf⊨4 Nf=4 m:1 base N_18_MM ⊿ n. 18 мм ⊔ N 18 MM _l=200n w=W*1/1*1/1 w=W Ι2 Nf= key C3Ph2 vc+ c=200.0f vc- ph2i ⊥°:1p base w=Ø.125*W*1/ w=Ø.Ø714286*W*1/ Nf: 13 key ph1 vc+ vc- ph1i Рисунок 11 – Схема операционного транскондуктивного усилителя

Операционный транскондуктивный усилитель

Рисунок 12 – АЧХ и ФЧХ операционного транскондуктивного усилителя

Операционный транскондуктивный усилитель

- Коэффициент усиления по постоянному току 57 дБ;
- Запас по фазе 56,5 градусов;
- Полоса частот по уровню -3 дБ составляет 970 кГц;
- Частота единичного усиления 593 МГц;
- Скорость нарастания выходного напряжения 107 В/мкс.

Компаратор

Рисунок 13 – Схема компаратора

Компаратор

Рисунок 14 — Сигналы в компараторе во временной области при максимальной амплитуде входного сигнала

Сигма-дельта модулятор второго порядка

Рисунок 15 — Схема $\Sigma\Delta$ модулятора второго порядка

гма-дельта модулятор второго порядка

имальный SNDR 68 дБ

Рисунок 16 – Зависимость SNDR ΣΔ модулятора второго порядка от амплитуды входного сигнала

Сигма-дельта модулятор с применением метода двухфазной выборки

Рисунок 17 — Схема $\Sigma\Delta$ модулятора с использованием метода двухфазной выборки

ма-дельта модулятор с применением метода хфазной выборки

имальный SNDR 72 дБ

Рисунок 18 — Зависимость SNDR от амплитуды входного сигнала для $\Sigma\Delta$ модулятора с использованием метода двухфазной выборки

19

Сигма-дельта модулятор с прямой связью

Рисунок 19 – Схема ΣΔ модулятора с применением метода двухфазной выборки с прямой связью

Модификация интегратора

Рисунок 22 – Интегратор $\Sigma\Delta$ модулятора, использующий метод двухфазной выборки с прямой связью

Рисунок 23 – Оптимизированный интегратор $\Sigma\Delta$ модулятора, использующий метод двухфазной выборки с прямой связью

Модификация интегратора

Рисунок 24 — АЧХ интеграторов для $\Sigma\Delta$ модулятора, использующего метод двухфазной выборки с прямой связью

тма-дельта модулятор с прямой связью

имальный SNDR 84 дБ

Рисунок 20 – Зависимость SNDR от амплитуды входного сигнала для схемы с прямой связью

тма-дельта модулятор с прямой связью

Рисунок 21 — Зависимость SNDR от амплитуды входного сигнала для схемы с прямой связью при различных значениях разброса емкостей выборочных конденсаторов

Рисунок 25 — Схема ΣΔ модулятора с применением схемы сброса конденсаторов обратной связи

Рисунок 26 — Временная диаграмма тактирующих импульсов, используемых в симуляции

Рисунок 27 — Схема счетчика, используемого для схемы формирования тактирующих импульсов

Рисунок 28 — Схема формирования тактирующих импульсов для схемы $\Sigma\Delta$ модулятора со сбросом конденсаторов обратной связи

Рисунок 29 — Зависимость SNDR от амплитуды входного сигнала для ΣΔ модулятора, использующего метод двухфазной выборки с прямой связью и схемой сброса конденсаторов обратной связи

Зависимость SNDR от температуры и коэффициента заполнения

Коэффициент заполнения	0.5	0.45	0.4
SNDR	83.4	83.31	83.15

corner	Температура, °С	SNDR, дБ
ff	-40	85.59
ff	27	84.54
ff	85	83.08
fnsp	-40	82.73
fnsp	27	84.31
fnsp	85	82.94
snfp	-40	81.69
snfp	27	84.05
snfp	85	82.62
SS	-40	80.45
SS	27	83.39
SS	85	83.30
tt	-40	85.91
tt	27	85.03
tt	85	85.11

Разброс напряжения питания

Рисунок 30 — Зависимость максимального SNDR от напряжения питания

Рисунок 31 – Топология КМОП ключа

33

Рисунок 33 – Топология компаратора

Рисунок 34 — Топология $\Sigma\Delta$ модулятора с применением метода двухфазной выборки с комбинированной связью и схемой сброса конденсаторов обратной связи

Рисунок 35 — Спектр выходного сигнала $\Sigma\Delta$ модулятора с применяем метода двухфазной выборки с прямой связью с схемой сброса кондукторов обратной связи с учетом топологии

Заключение

- Построены и промоделированы базовые блоки, необходимые для построения сигма-дельта модулятора;
- Собраны и промоделированы схемы ΣΔ модулятора первого, второго порядка. Частота входного сигнала 1343 Гц, частота тактирующих импульсов 1 МГц, коэффициент передискретизации 128. Модуляторы имеют максимальное значение SNDR 55,7 дБ и 67,3 дБ соответственно;
- Собраны и промоделированы схемы ΣΔ модуляторов с использованием метода двухфазной выборки, рассмотрены разные модификации данных схем;
- Наилучший результат показала схема ΣΔ модулятора с применением метода двухфазной выборки с прямой связью и схемой сброса конденсаторов обратной связи. Максимальное значение SNDR составляет 84 дБ при амплитуде входного сигнала 0,15 В. Данная комбинация методов не использовалась ранее и позволяет уменьшить количество ключей и конденсаторов в интеграторе;
- Изучено изменение характеристик при изменении температуры от -40 до 85°C. SNDR не изменился более чем на 3 дБ ни в одном из случаев.