Algorithm Analysis

Which takes longer?

```
void pushAdd(int k) {
    for (int i=0; i<= k; i++)
    {
        for (int j=0; j<= k; j++){
            stack.push(i+j);
        }
    }
}</pre>
```

100k push operations

k² push operations

Which grows faster?

f(k)	= 100k
------	--------

$$f(k) = k^2$$

$$f(0)=0$$

$$f(0)=0$$

$$f(1) = 100$$

$$f(1) = 1$$

$$f(100) = 10,000$$

$$f(100) = 10,000$$

$$f(1000) = 100,000$$

$$f(1000) = 1,000,000$$

How does an algorithm scale?

- For large inputs, what is the running time?
- T(n) = running time on inputs of size <math>n

Why Big-O notation?

Example:

- Downloading a file:
 - 3 seconds to setup a connection
 - 1.5Kbytes/second

Document Distance: quadratic vs linear.

Exponential time algorithms cannot run for n>100.

Definition: T(n) = O(f(n)) if T grows no faster than f

$$T(n) = O(f(n))$$
 if:

- there exists a constant c > 0
- there exists a constant $n_0 > 0$

such that for all $n > n_0$:

$$T(n) \leq cf(n)$$

$$T(n) = 4n^2 + 24n - 16$$

$$< 28n^2 mtext{(for } n_0 > 0)$$

$$= O(n^2)$$
 (for c = 28)

T(n)	f(n)	big-O
T(n) = 1000n	f(n) = n	T(n) = O(f(n))
T(n) = 1000n	$f(n) = n^2$	T(n) = O(f(n))
$T(n) = n^2$	f(n) = n	$T(n) \neq O(f(n))$
$T(n) = 13n^2 + n$	$f(n) = n^2$	T(n) = O(f(n))

T(n)	f(n)	big-O
T(n) = 1000n	f(n) = n	T(n) = O(n)
T(n) = 1000n	$f(n) = n^2$	$T(n) = O(n^2)$
$T(n) = n^2$	f(n) = n	T(n) ≠ O(n)
$T(n) = 13n^2 + n$	$f(n) = n^2$	$T(n) = O(n^2)$

Definition: T(n) = O(f(n)) if T grows no faster than f

$$T(n) = O(f(n))$$
 if:

- there exists a constant c > 0
- there exists a constant $n_0 > 0$

such that for all $n > n_0$:

$$T(n) \leq cf(n)$$

Definition: $T(n) = \Omega(f(n))$ if T grows no slower than f

$$T(n) = \Omega(f(n))$$
 if:

- there exists a constant c > 0
- there exists a constant $n_0 > 0$

such that for all $n > n_0$:

$$T(n) \ge cf(n)$$

Exercise:

True or false:

"f=O(g) if and only if $g = \Omega(f)$ "

Prove that your claim is correct using the definitions of O and Ω or by giving an example.

T(n)	f(n)	big-O
T(n) = 1000n	f(n) = 1	$T(n) = \Omega(1)$
T(n) = n	f(n) = n	$T(n) = \Omega(n)$
$T(n) = n^2$	f(n) = n	$T(n) = \Omega(n)$
$T(n) = 13n^2 + n$	$f(n) = n^2$	$T(n) = \Omega(n^2)$

Definition: $T(n) = \Theta(f(n))$ if T grows at the same rate as f

$T(n) = \Theta(f(n))$ if and only if:

- T(n) = O(n)
- $T(n) = \Omega(f(n))$

T(n)	f(n)	big-O
T(n) = 1000n	f(n) = n	$T(n) = \Theta(n)$
T(n) = n	f(n) = 1	T(n) ≠ Θ(1)
$T(n) = 13n^2 + n$	$f(n) = n^2$	$T(n) = \Theta(n^2)$
$T(n) = n^3$	$f(n) = n^2$	$T(n) \neq \Theta(n^2)$

Rules:

```
If T(n) = O(f(n)) and S(n) = O(g(n)) then:

T(n) + S(n) = O(f(n) + g(n))
```

```
10n^2 = O(n^2)

5n = O(n)

10n^2 + 5n = O(n^2 + n) = O(n^2)
```

Rules:

```
If T(n) = O(f(n)) and S(n) = O(g(n)) then:

T(n)*S(n) = O(f(n)*g(n))
```

```
10n^2 = O(n^2)

5n = O(n)

50n^3 = (10n^2)(5n) = O(n*n^2) = O(n^3)
```

Rules:

If T(n) is a polynomial of degree k then:

$$T(n) = O(n^k)$$

$$10n^5 + 50n^3 + 10n + 17 = O(n^5)$$

Rules:

```
If T(n) = log^k n for any k then:

T(n) = O(n)
```

$$log^5 n = O(n)$$

$$4n^2\log(n) + 8n + 16 =$$

- 1. O(log n)
- 2. O(n)
- 3. O(nlog n)
 4. O(n²log n)
- 5. $O(2^n)$
- 6. Still confused...

$$2^{2n} + 2^n + 2 =$$

- 1. O(n)
- 2. $O(n^6)$
- 3. $O(2^n)$
- 4. $O(2^{2n})$
- 5. O(nⁿ)
- 6. Still confused...

$$\log(8n^2 + 4n) =$$

- 1. O(1)
- 2. O(log n)
- 3. $O(log^2n)$
- 4. O(n)
- 5. $O(n^2)$
- 6. Still confused...

log(n!) =

- 1. O(log n)
- 2. O(n)
- √3. O(n log n)
 - 4. $O(n^2)$
 - 5. $O(2^n)$
 - 6. Still confused...

Model of Computation

Sequential Computer

One thing at a time

All operations take constant time
 Addition, subtraction, multiplication, comparison

Algorithm Analysis

```
1 assignment
void sum(int k, int[] intArray)
   int total=0;
                                              1 assignment
                                              k+1 comparisons
   for (int i=0; i \le k; i++) {
                                              k increments
        total = total + intArray[i];
                                                  k array access
                                                  k addition
   return total;
                                                  k assignment
}
                                               1 return
```

Total:
$$1 + 1 + (k+1) + 3k + 1 = 4k+4 = O(k)$$

Loops

cost = (# iterations)(max cost of one iteration)

```
int sum(int k, int[] intArray) {
   int total=0;
   for (int i=0; i<= k; i++){
      total = total + intArray[i];
   }
  return total;
}</pre>
```

Nested Loops

cost = (# iterations)(max cost of one iteration)

```
int sum(int k, int[] intArray) {
   int total=0;
   for (int i=0; i <= k; i++) {
     for (int j=0; j \le k; j++) {
          total = total + intArray[i];
  return total;
```

Sequential statements

cost = (cost of first) + (cost of second)

```
int sum(int k, int[] intArray) {
  for (int i=0; i<= k; i++)
      intArray[i] = k;
  for (int j =0; j<= k; j++)
     total = total + intArray[i];
  return total;
```

if / else statements

cost = max(cost of first, cost of second)<= (cost of first) + (cost of second)

```
void sum(int k, int[] intArray) {
  if (k > 100)
      doExpensiveOperation();
  else
      doCheapOperation();
  return;
```

Recurrences

$$T(n) = 1 + T(n-1) + T(n-2)$$

```
int fib(int n) {
  if (n \le 1)
     return n;
  else
     return fib(n-1) + fib(n-2);
```

Recurrences

```
T(n) = 1 + T(n-1) + T(n-2)
= O(2^n)
```

```
int fib(int n) {
  if (n <= 1)
     return n;
  else
     return fib(n-1) + fib(n-2);
```

What is the running time?

- 1. O(1)
- 2. O(n)
- 3. O(n log n)
- 4. <mark>O(n²)</mark>
- 5. $O(2^n)$

```
for (int i = 0; i<n; i++)
for (int j = 0; j<i; j++)
    store[i] = i + j;</pre>
```

