Abitur 2018 Mathematik Infinitesimalrechnung II

Teilaufgabe Teil A 1 (6 BE)

Gegeben ist die Funktion $f: x \mapsto \sqrt{3x-5}$ mit maximalem Definitionsbereich D. Geben Sie D an und bestimmen Sie die Gleichung der Tangente an den Graphen von f im Punkt (3|f(3)).

Teilaufgabe Teil A 2 (5 BE)

Gegeben ist die in \mathbb{R} definierte Funktion f mit $f(x) = -x^3 + 9x^2 - 15x - 25$. Weisen Sie nach, dass f folgende Eigenschaften besitzt:

- (1) Der Graph von f besitzt an der Stelle x = 0 die Steigung -15.
- (2) Der Graph von f besitzt im Punkt A (5|f(5)) die x-Achse als Tangente.
- (3) Die Tangente t an den Graphen der Funktion f im Punkt B(-1|f(-1)) kann durch die Gleichung y = -36x 36 beschrieben werden.

Teilaufgabe Teil A 3 (4 BE)

Die Abbildung zeigt eine nach unten geöffnete Parabel, die zu einer Funktion f mit Definitionsbereich \mathbb{R} gehört. Der Scheitel der Parabel hat die x-Koordinate 3.

Betrachtet wird die in \mathbb{R} definierte Integralfunktion $F: x \mapsto \int_3^x f(t) dt$.

Wie viele Nullstellen hat F? Machen Sie Ihre Antwort ohne Rechnung plausibel.

Für jeden Wert von a mit $a \in \mathbb{R}^+$ ist eine Funktion f_a durch $f_a(x) = \frac{1}{a} \cdot x^3 - x$ mit $x \in \mathbb{R}$ gegeben.

Teilaufgabe Teil A 4a (2 BE)

Eine der beiden Abbildungen stellt einen Graphen von f_a dar. Geben Sie an, für welche Abbildung dies zutrifft. Begründen Sie Ihre Antwort.

Teilaufgabe Teil A 4b (3 BE)

Für jeden Wert von a besitzt der Graph von f_a genau zwei Extrempunkte. Ermitteln Sie denjenigen Wert von a, für den der Graph der Funktion f_a an der Stelle x=3 einen Extrempunkt hat.

Abbildung 1 zeigt den Graphen G_f einer ganzrationalen Funktion f dritten Grades mit Definitionsmenge \mathbb{R} . G_f schneidet die x-Achse bei x=0, x=5 und x=10 und verläuft durch den Punkt (1|2).

Abb. 1

Teilaufgabe Teil B 1a (4 BE)

Ermitteln Sie einen Funktionsterm von f.

(zur Kontrolle:
$$f(x) = \frac{1}{18} \cdot (x^3 - 15x^2 + 50x)$$
)

Teilaufgabe Teil B 1b (6 BE)

Zeigen Sie, dass G_f im Punkt W(5|0) einen Wendepunkt besitzt, und ermitteln Sie eine Gleichung der Tangente an G_f im Punkt W.

Teilaufgabe Teil B 1c (4 BE)

 G_f geht aus dem Graphen der in \mathbb{R} definierten Funktion $g: x \mapsto \frac{1}{18} \cdot \left(x^3 - 25x\right)$ durch eine Verschiebung in positive x-Richtung hervor. Ermitteln Sie, um wie viel der Graph von g dazu verschoben werden muss. Begründen Sie mithilfe der Funktion g, dass der Graph von f symmetrisch bezüglich seines Wendepunkts ist.

Im Folgenden wird die in \mathbb{R} definierte Funktion F_1 mit $F_1(x) = \int_1^x f(t) dt$ betrachtet.

Teilaufgabe Teil B 1d (3 BE)

 F_1 hat für $0 \le x \le 10$ zwei ganzzahlige Nullstellen. Geben Sie diese an und begründen Sie Ihre Angabe.

Teilaufgabe Teil B 1e (2 BE)

Begründen Sie mithilfe von Abbildung 1, dass F_1 mindestens eine weitere positive Nullstelle hat.

Teilaufgabe Teil B 1f (2 BE)

Begründen Sie, dass F_1 höchstens vier Nullstellen hat.

Teilaufgabe Teil B 1g (6 BE)

Für $0 \le x \le 5$ gilt, dass der Graph von f und der Graph einer trigonometrischen Funktion h

- die gleichen Schnittpunkte mit der x-Achse besitzen,
- beide nicht unterhalb der x-Achse verlaufen,
- jeweils mit der x-Achse eine Fläche des Inhalts $\frac{625}{72}$ einschließen.

Bestimmen Sie einen Term einer solchen Funktion h.

Die Kosten, die einem Unternehmen bei der Herstellung einer Flüssigkeit entstehen, können durch die Funktion $K: x \mapsto x^3 - 12x^2 + 50x + 20$ mit $x \in [0;9]$ beschrieben werden. Dabei gibt K(x) die Kosten in 1000 Euro an, die bei der Produktion von x Kubikmetern der Flüssigkeit insgesamt entstehen. Abbildung 2 zeigt den Graphen von K.

Teilaufgabe Teil B 2a (3 BE)

Geben Sie mithilfe von Abbildung 2

- α) die Produktionsmenge an, bei der die Kosten 125 000 Euro betragen.
- β) das Monotonieverhalten von K an und deuten Sie Ihre Angabe im Sachzusammenhang.

Die Funktion E mit E(x)=23x gibt für $0 \le x \le 9$ den Erlös (in 1000 Euro) an, den das Unternehmen beim Verkauf von x Kubikmetern der Flüssigkeit erzielt. Für die sogenannte Gewinnfunktion G gilt G(x)=E(x)-K(x). Positive Werte von G werden als Gewinn bezeichnet, negative als Verlust.

Teilaufgabe Teil B 2b (2 BE)

Zeigen Sie, dass das Unternehmen keinen Gewinn erzielt, wenn vier Kubikmeter der Flüssigkeit verkauft werden.

Teilaufgabe Teil B 2c (3 BE)

Zeichnen Sie den Graphen von E in Abbildung 2 ein. Bestimmen Sie mithilfe der so entstehenden Darstellung den Bereich, in dem die verkaufte Menge der Flüssigkeit liegen muss, damit das Unternehmen einen Gewinn erzielt.

Teilaufgabe Teil B 2d (5 BE)

Berechnen Sie, welche Menge der Flüssigkeit verkauft werden muss, damit das Unternehmen den größten Gewinn erzielt.