Contrôle continu 2

HLMA410

Durée 1h10. Les documents, la calculatrice, les téléphones portables, tablettes, ordinateurs ne sont pas autorisés. La qualité de la rédaction sera prise en compte.

Soit u=(2,1) et D la droite vectorielle dirigee par u (i.e. $D=\mathbb{R}u$). Soit Exercice 1. $x = (x_1, x_2) \in \mathbb{R}^2$:

1. Calculer $d_1(x)$ la distance de x a D en fonction de x_1 et x_2 .

2. Calculer $d_2(x) = \langle x, u \rangle$ en fonction de x_1 et x_2 .

3. Montrer que $N(x) = \sqrt{5}|d_1(x)| + |d_2(x)|$ définit une norme sur \mathbb{R}^2 .

4. Dessiner la boule unité pour la norme N.

5. Montrer que N et $\|\cdot\|_2$ sont équivalentes.

Exercice 2. Soit la courbe paramétrée $\Gamma = (\mathbb{R}, \phi)$ définie par $\phi(t) = \begin{cases} x(t) = t - \tanh t \\ y(t) = \frac{1}{\cosh t} \end{cases}$

1. Étudier la parité des fonctions $x(\cdot)$ et $y(\cdot)$. Quelle(s) symétrie(s) cela implique-t-il sur le support de la courbe Γ ? Peut on réduire le domaine d'étude ?

2. Calculer ϕ', ϕ'' (on donne $\phi'''(t) = \left(\frac{2(1-2\sinh^2 t)/\cosh^4 t}{(5\tanh t - 6\tanh^3 t)/\cosh t}\right)$) et déterminer si Γ à un/des point(s) stationnaire(s).

3. On se place en t = 0: donner la nature du point $\Gamma(0)$ ainsi que le comportement local de la courbe (faire un petit dessin).

4. On se place au voisinage de $t=+\infty$. Étudier la branche infinie (asymptote et position

 ${\rm relative}).$

5. Compléter le tableau de variations suivant :

t	$-\infty$	0	∞
signe de $x'(t)$			
variation de $x(t)$			
signe de $y'(t)$			
variation de $y(t)$			

6. Sur le graphique suivant, tracer la courbe Γ ainsi que les tangentes et asymptotes étudiées aux questions précédentes.

