Instituto Superior de Engenharia de Coimbra DEPARTAMENTO DE FÍSICA E MATEMÁTICA

Análise Matemática I - Engenharia Informática 2020/2021

1. Funções reais de variável real

Aulas TP+P: Folha 1

Curvas de referência, transformações gráficas, domínios, função inversa e resolução de equações

1. Faça um esboço das seguintes curvas e confirme a sua resposta recorrendo ao Geogebra:

a)
$$y = x$$
;

b)
$$y = x - 1$$
;

c)
$$y = 2x - 2$$
;

d)
$$y = x^2$$
;

e)
$$y = x^2 - 1$$
:

f)
$$y = x^2 - 2x + 1$$
:

g)
$$x = y^2 + 1$$
;

h)
$$x^2 + y^2 = 1$$
:

i)
$$(x+1)^2 + (y-1)^2 = 4$$
;

j)
$$y = \cos(x)$$
;

$$\mathbf{k}) \ \ u = \cos(x) - 1$$

k)
$$y = \cos(x) - 1;$$
 l) $y = \cos(x - \frac{\pi}{2});$

m)
$$y = 2\cos(x)$$
;

$$n) y = -\cos(x);$$

o)
$$y = \sin(x)$$
;

p)
$$y = e^x$$
;

q)
$$y = e^x - 1$$
;

r)
$$y = e^{x-1}$$
:

s)
$$y = \begin{cases} x & , x < 0 \\ x^2 & , x \ge 0 \end{cases}$$
; t) $y = |x|$;

$$t) \ y = |x|$$

u)
$$y = |x - 1|$$
.

Transformações gráficas (a > 0), a partir de uma função de referência y = f(x):

y =	$f(x \pm a)$	
y =	$f(x) \pm a$	
y =	$f(\mathbf{a} x)$	

 $y = \mathbf{a} f(x)$

translação horizontal translação vertical

contração/dilatação horizontal

contração/dilatação vertical

y = f(-x)reflexão relativamente ao eixo Oxy = -f(x)reflexão relativamente ao eixo Oy

 \rightarrow se -a, \leftarrow se +a \uparrow se +a, \downarrow se -adilatação se 0 < a < 1, contração se a > 1contração se 0 < a < 1, dilatação se a > 1

Comandos Geogebra:

- Definir uma função y = f(x): f(x):= <expressão em x>
- Definir uma curva f(x,y) = 0: <condição (igualdade) em x e y>
- Módulo: abs(<expressão>)
- Função por ramos $y = \begin{cases} f(x), & \text{condição} \\ g(x), & \text{c.c.} \end{cases}$: Se(<condição para f(x)>, <f(x)>, <g(x)>)

2. Determine, analiticamente, o domínio das seguintes funções e confirme a sua resposta recorrendo ao Geogebra:

a)
$$f(x) = x - 1$$
;

b)
$$f(x) = e^x$$
;

c)
$$f(x) = \sin(x)$$
;

d)
$$f(x) = \frac{1}{x-1}$$
;

e)
$$f(x) = \frac{1}{x^2 - 5x + 6}$$

d)
$$f(x) = \frac{1}{x-1}$$
; e) $f(x) = \frac{1}{x^2 - 5x + 6}$; f) $f(x) = \frac{1}{x-2} + \frac{1}{x-3}$;

g)
$$f(x) = \sqrt{x-1}$$
;

h)
$$f(x) = \sqrt[3]{x-1}$$
;

i)
$$f(x) = \sqrt{x^2 - 1}$$
.

Domínios de referência:

$$f(x) = \frac{\bullet}{\Box}$$

$$D_f = \{x \in \mathbb{R} : \blacksquare \neq 0\}$$

$$f(x) = \sqrt[n]{\blacksquare}, \quad \text{com } n \text{ par} \qquad D_f = \{x \in \mathbb{R} : \blacksquare \ge 0\}$$

$$D_f = \{ x \in \mathbb{R} : \blacksquare \ge 0 \}$$

$$f(x) = \log_a(\blacksquare)$$

$$D_f = \{ x \in \mathbb{R} : \blacksquare > 0 \}$$

funções trigonométricas inversas ver tabelas de Matemática

Comandos Geogebra:

- Resolver equações ou inequações: Resolver(< Equação ou inequação >, < Variável >)
- Raiz quadrada: sqrt(<expressão>)
- Raiz de índice n: (<expressão>) $\wedge (1/n)$
- Separador entre equações, inequações ou condições: &&
- Representar a região plana $a \le x \le b$: a<= x <= b
- Representar uma região plana $f(x) \le y \le g(x)$: f(x)<= y <= g(x)
- 3. Determine a função inversa de cada uma das seguintes funções, numa restrição conveniente.
 - a) f(x) = x 1;

- d) $f(x) = \sin(x)$;
- b) $f(x) = \sqrt{x}$; c) $f(x) = x^2$; e) $f(x) = \cos(2x) + 1$; f) $f(x) = \arcsin(x 1) + \pi$;
- g) $f(x) = e^x$;
- h) $f(x) = e^{2x} 1$; i) $f(x) = \ln(-x) + 1$.

Sugestões para realizar a análise no Geogebra:

- i) represente o gráfico da função f(x);
- ii) determine, analiticamente, a restrição principal do domínio da função f(x) (contradomínio de $f^{-1}(x)$);
- iii) defina a restrição da função: Função (<expressão>, <x inicial>, <x final>)
- iv) determine a expressão analítica da função inversa: Resolver(<y=f(x)>, <x>)
- v) determine, analiticamente, a restrição principal do domínio da função inversa $f^{-1}(x)$;
- vi) represente o gráfico da função inversa $f^{-1}(x)$;
- vii) confirme que os gráficos de f(x) e $f^{-1}(x)$ são simétricos relativamente à reta y=x.
- 4. Determine os domínios das seguintes funções:
- a) $f(x) = \ln(x+1)$; b) $f(x) = \frac{1}{\ln(x)}$; c) $f(x) = \frac{1}{e^x 1}$.
- d) $f(x) = \sin(2x)$;
- e) $f(x) = \arcsin(2x)$;
- f) $f(x) = \operatorname{tg}(x)$.
- 5. Calcule o valor das seguintes expressões numéricas:
 - a) $\sqrt{3^2+4^2}$;
- b) $\sqrt{e^6}$:

c) $\sqrt[3]{8^2}$:

- d) $\log(100)$;
- e) $\ln(e^4)$;

f) $e^{2\ln(4)}$;

- g) $\sin\left(\frac{\pi}{3}\right)$;
- h) $\sin\left(\frac{5\pi}{3}\right)$;
- i) $\sin\left(\frac{13\pi}{3}\right)$;

- j) $\cos\left(-\frac{\pi}{6}\right)$;
- k) $\operatorname{tg}\left(\frac{\pi}{3}\right)$;
- 1) $\cot\left(\frac{10\pi}{3}\right)$;

- $m) \arcsin(-1)$;
- n) arccos(-1);
- o) $\cos(\arcsin(0))$;

- p) $\operatorname{arccos}\left(\sin(\pi)\right)$; q) $\operatorname{arccos}\left(\cos(\frac{\pi}{5})\right)$;
- r) $arccos(e^0)$;

Comandos Geogebra:

- Usar a folha CAS
- Para calcular ou simplificar basta inserir a expressão em causa
- Simplificação de expressões: Simplificar(<expressão>)
- símbolo π :
- exponencial e^x : exp(<expressão>)

6. Simplifique a seguinte expressão:

$$\cos\left(x - \frac{\pi}{2}\right) + \sin(x - \pi) + \operatorname{tg}\left(x + \frac{3\pi}{2}\right).$$

- 7. Considere a função $f(x) = 3\sin(2x)$.
 - (a) Determine o domínio e o contradomínio de f(x).
 - (b) Faça um esboço do gráfico da função f(x) e confirme a resposta da alínea (a).
 - (c) Determine o valor de $f\left(\frac{\pi}{6}\right)$.
 - (d) Resolva a equação f(x) = -3.
 - (e) Interprete graficamente a alínea (d) e confirme a solução recorrendo o Geogebra.
 - (f) Defina uma restrição de injectividade de f e caracterize a função inversa, nessa restrição.

Comandos Geogebra:

- Calcular o valor de f(a), estando a função f(x) já definida: f(<valor>)
- Representar o ponto (a, f(a)): (<valor>, <f(valor)>)
- 8. Considere a função $f(x) = -\frac{\pi}{3} + \arccos(3x 1)$.
 - (a) Determine o domínio e o contradomínio de f(x).
 - (b) Determine os zeros da função f(x).
 - (c) Calcule $f\left(\frac{1}{\epsilon}\right)$.
 - (d) Caracterize a função inversa de f(x), indicando domínio, contradomínio e expressão analítica.
- 9. Considere a função $f(x) = 3 + 2\ln(x 1)$.
 - (a) Determine o domínio e o contradomínio de f(x).
 - (b) Calcule f(2).
 - (c) Caracterize a função inversa de f(x), indicando domínio, contradomínio e expressão analítica.
- 10. Resolva, caso seja possível, as seguintes equações:

a)
$$x^2 - 2x + 1 = 0$$
:

b)
$$x^3 - 2x^2 + x = 0$$
:

a)
$$x^2 - 2x + 1 = 0$$
;
b) $x^3 - 2x^2 + x = 0$;
c) $x^3 - 3x^2 + 3x - 1 = 0$.
d) $e^x - 1 = 0$;
e) $e^{2x} - e^x = 0$;
f) $e^{2x} - 3e^x + 2 = 0$;

d)
$$e^x - 1 = 0$$
:

e)
$$e^{2x} - e^x = 0$$
;

e)
$$e^{2x} - e^x = 0$$
;
f) $e^{2x} - 3e^x + 2 = 0$;

g)
$$-3 + \log(x) = 0$$
; h) $\ln(x+1) = 0$; i) $\ln(x^2) - 4 = 0$;

h)
$$ln(x+1) = 0$$
;

i)
$$\ln(x^2) - 4 = 0$$

j)
$$\sin(3x - \pi) = \frac{1}{2}$$
;
m) $\arcsin(3x) = \frac{\pi}{4}$;

k)
$$\sin(3x - \pi) = \sin(x)$$
; l) $1 - 2\cos(2x) = 2$;
n) $\arcsin(3x) = \pi$; o) $\arccos(3x) = \pi$.

l)
$$1 - 2\cos(2x) = 2$$

m)
$$\arcsin(3x) = \frac{\pi}{4}$$

n)
$$\arcsin(3x) = \pi$$

o)
$$\arccos(3x) = \pi$$

11. Verifique que as seguintes equações têm uma única solução e aproxime-a, com uma casa decimal

a)
$$x + e^x = 0$$
;

b)
$$\sin(x) - x + 2 = 0$$
; c) $x + \ln(x) = 0$.

c)
$$x + \ln(x) = 0$$

Sugestões para realizar a análise e cálculo no Geogebra:

- i) localize e separe todas as soluções da equação, recorrendo ao gráfico da função f(x);
- ii) defina um intervalo que contenha a solução pretendida e onde sejam válidas as condições de convergência do método numérico a utilizar (bisseção ou Newton);
- iii) recorrendo à folha CAS, itere até obter a aproximação pretendida.
 - ullet bisseção: calcular o ponto médio x_n e escolher o sub-intervalo com extremos de sinal diferente
 - Newton: calcular o valor de $x_n \frac{f(x_n)}{f'(x_n)}$

Objectivo: determinar a solução x da equação f(x) = 0 que pertence ao intervalo [a, b]

Método da bisseção:
$$x_n = \frac{a_n + b_n}{2}$$
, $n = 1, 2, \dots$ com $\Delta x_n \leq |x_n - x_{n-1}|$ Método de Newton: $x_n = x_{n-1} - \frac{f(x_{n-1})}{f'(x_{n-1})}$, $n = 1, 2, \dots$ com $\Delta x_n \approx |x_n - x_{n-1}|$

$\underline{}$	\sqrt{x}	x^2	e^x	ln(x)	$\frac{1}{x}$	$\sin(x)$	$\cos(x)$
-1.00	_	1.00	0.37	_	-1.00	-0.84	0.54
-0.90	_	0.81	0.41	_	-1.11	-0.78	0.62
-0.80	_	0.64	0.45	_	-1.25	-0.72	0.70
-0.75	_	0.56	0.47	_	-1.33	-0.68	0.73
-0.70	_	0.49	0.50	_	-1.43	-0.64	0.76
-0.60	_	0.36	0.55	_	-1.67	-0.56	0.83
-0.50	_	0.25	0.61	_	-2.00	-0.48	0.88
-0.40	_	0.16	0.67	_	-2.50	-0.39	0.92
-0.30	_	0.09	0.74	_	-3.33	-0.30	0.96
-0.25	_	0.06	0.78	_	-4.00	-0.25	0.97
-0.20	_	0.04	0.82	_	-5.00	-0.20	0.98
-0.10	_	0.01	0.90	_	-10.00	-0.10	1.00
0.00	0.00	0.00	1.00	_	_	0.00	1.00
0.10	0.32	0.01	1.11	-2.30	10.00	0.10	1.00
0.20	0.45	0.04	1.22	-1.61	5.00	0.20	0.98
0.25	0.50	0.06	1.28	-1.39	4.00	0.25	0.97
0.30	0.55	0.09	1.35	-1.20	3.33	0.30	0.96
0.40	0.63	0.16	1.49	-0.92	2.50	0.39	0.92
0.50	0.71	0.25	1.65	-0.69	2.00	0.48	0.88
0.60	0.77	0.36	1.82	-0.51	1.67	0.56	0.83
0.70	0.84	0.49	2.01	-0.36	1.43	0.64	0.76
0.75	0.87	0.56	2.12	-0.29	1.33	0.68	0.73
0.80	0.89	0.64	2.23	-0.22	1.25	0.72	0.70
0.90	0.95	0.81	2.46	-0.11	1.11	0.78	0.62
1.00	1.00	1.00	2.72	0.00	1.00	0.84	0.54

Comecemos por localizar e separar as soluções da equação, recorrendo ao método gráfico. Atendendo a que

$$\underbrace{x + \ln(x)}_{f(x)} = 0 \quad \Leftrightarrow \quad \underbrace{\ln(x)}_{f_1(x)} = \underbrace{-x}_{f_2(x)},$$

então as soluções da equação correspondem aos zeros da função f(x) (figura da esquerda - método gráfico na forma simplificada) ou, equivalentemente, às abcissas dos pontos de intersecção dos gráficos das funções $f_1(x) = \ln(x)$ e $f_2(x) = -x$ (figura da direita - método gráfico na forma clássica).

De qualquer dos gráficos anteriores, verifica-se que a equação tem uma única solução e que essa solução pertence ao intervalo [0.1, 1] (note-se que o domínio $]0, +\infty[$ da equação não inclui o valor x = 0!).

Vamos determinar aproximações, para essa solução, recorrendo aos métodos da bisseção e de Newton. De acordo com o enunciado, pretende-se que as aproximações sejam tais que $\Delta x \leq 0.05$ (1 casa decimal correta).

MÉTODO DA BISSEÇÃO:

Resolução com utilização de calculadora: $f(x) = x + \ln(x)$

n	[a,b]	x_n	f(a)	f(x)	f(b)	Δx_n
1	$[0.1, \ 1]$	$x_1 = 0.55$	$f(0.1) \simeq -2.2$	$f(0.55) \simeq -0.05$	f(1) = 1	0.55 - 0.1 = 0.45
2	[0.55, 1]	$x_2 = 0.775$	$f(0.55) \simeq -0.05$	$f(0.775) \simeq 0.52$	f(1) = 1	0.775 - 0.55 = 0.225
3	[0.55, 0.775]	$x_3 = 0.6625$	$f(0.55) \simeq -0.05$	$f(0.6625) \simeq 0.25$	$f(0.775) \simeq 0.52$	0.6625 - 0.55 = 0.1125
4	[0.55, 0.6625]	$x_4 = 0.60625$	$f(0.55) \simeq -0.05$	$f(0.60625) \simeq 0.11$	$f(0.6625) \simeq 0.25$	0.60625 - 0.55 = 0.05625
5	[0.55, 0.60625]	$x_5 = 0.578125$				0.578125 - 0.55 = 0.028125

Neste caso, tem-se $\overline{x} = 0.57$, com $\Delta x \leq 0.05$.

Resolução sem utilização de calculadora: neste caso, todos os cálculos terão que ser efectuados com recurso à tabela dada no formulário, pelo que é necessário efectuar algumas adaptações ao método. Uma vez que a tabela só tem uma quantidade finita de valores (na sua maioria apenas com 1 casa decimal), sempre que o valor de x_n tiver mais casas decimais que os valores apresentados na tabela, teremos que arredondar o valor obtido. Nessas condições, o ponto calculado não será exactamente o ponto médio do intervalo, pelo que o majorante para o erro também não será metade da amplitude do intervalo, mas sim a amplitude do último semi-intervalo que contém a solução.

n	[a, b]	x_n	f(a)	$f(x_n)$	f(b)	Δx_n
1	[0.1, 1]	$x_1 = 0.55 \simeq 0.6$	$f(0.1) = 0.1 + \ln(0.1) \simeq -2.20$	$f(0.6) = 0.6 + \ln(0.6) \simeq 0.09$	f(1) = 1	0.6 - 0.1 = 0.5
2	[0.1, 0.6]	$x_2 = 0.35 \simeq 0.4$	$f(0.1) \simeq -2.20$	$f(0.4) = 0.4 + \ln(0.4) \simeq -0.52$	$f(0.6) \simeq 0.09$	0.6 - 0.4 = 0.2
3	[0.4, 0.6]	$x_3 = 0.5$	$f(0.4) \simeq -0.52$	$f(0.5) = 0.5 + \ln(0.5) \simeq -0.19$	$f(0.6) \simeq 0.09$	0.5 - 0.4 = 0.1
4	[0.5, 0.6]	$x_4 = 0.55$				0.55 - 0.5 = 0.05

Neste caso, tem-se $\overline{x} = 0.55$, com $\Delta x \leq 0.05$.

MÉTODO DE NEWTON:

Resolução com utilização de calculadora: $f(x) = x + \ln(x)$ e $f'(x) = 1 + \frac{1}{x}$

n	$ x_n $	Δx_n
0	$x_0 = 0.1$	_
1		0.3 - 0.1 = 0.2
2	$x_2 = 0.3 - \frac{f(0.3)}{f'(0.3)} \simeq 0.51$ $x_3 = 0.51 - \frac{f(0.51)}{f'(0.51)} \simeq 0.57$	0.51 - 0.3 = 0.21
3	$x_3 = 0.51 - \frac{\dot{f}(0.51)}{f'(0.51)} \simeq 0.57$	0.57 - 0.51 = 0.06
3	$x_4 = 0.57 - \frac{f(0.51)}{f'(0.57)} \simeq 0.57$	0.57 - 0.57 = 0.00*

Neste caso, tem-se $\overline{x} = 0.57$, tal que $\Delta x \simeq 0.05$.

Resolução sem utilização de calculadora: tal como no método da bissecção, poderá ser necessário efectuar arredondamentos nas aproximações calculadas, sempre que os valores obtidos não constarem da tabela.

n	x_n	Δx_n
0	0.1	_
1	$x_1 = 0.1 - \frac{f(0.1)}{f'(0.1)} = 0.1 - \frac{0.1 + \ln(0.1)}{1 + \frac{1}{0.1}} \simeq 0.1 - \frac{-2.2}{11} = 0.3$	0.3 - 0.1 = 0.2
2	$x_2 = 0.3 - \frac{f(0.3)}{f'(0.3)} = 0.3 - \frac{0.3 + \ln(0.3)}{1 + \frac{1}{0.2}} \simeq 0.3 - \frac{-0.9}{4.33} \simeq 0.51$	0.51 - 0.3 = 0.21
2	$ x_1 = 0.1 - \frac{f(0.1)}{f'(0.1)} = 0.1 - \frac{0.1 + \ln(0.1)}{1 + \frac{1}{0.1}} \simeq 0.1 - \frac{-2.2}{11} = 0.3 $ $ x_2 = 0.3 - \frac{f(0.3)}{f'(0.3)} = 0.3 - \frac{0.3 + \ln(0.3)}{1 + \frac{1}{0.3}} \simeq 0.3 - \frac{-0.9}{4.33} \simeq 0.51 $ $ x_3 \simeq 0.5 - \frac{0.5 + \ln(0.5)}{1 + \frac{1}{0.5}} \simeq 0.5 - \frac{-0.19}{3} \simeq 0.56 $	0.56 - 0.51 = 0.05

Neste caso, tem-se $\overline{x} = 0.56$, tal que $\Delta x \simeq 0.05$.