

Chương 01

Bài 3.

ĐƯỜNG TIỆM CẬN CỦA ĐỒ THỊ HÀM SỐ

A. Câu hỏi – Trả lời trắc nghiệm

» Câu 1. Cho hàm số f(x) có bảng biến thiên như sau:

Số đường tiệm cận ngang của đồ thị hàm số đã cho là

A. 0.

B. 3.

C. 2.

<u>D</u>. 1.

🖎 Lời giải

Chọn D

Ta có $\lim_{x\to -\infty} f(x) = 2$; $\lim_{x\to +\infty} f(x) = +\infty$ vậy y = 2 là tiệm cận ngang của đồ thị hàm số.

» **Câu 2.** Hình vẽ bên là đồ thị của hàm số $y = \frac{ax+b}{cx+d}$

Đường tiệm cận đứng của đồ thị hàm số có phương trình là

 $\underline{\mathbf{A}}$. x = 1.

B. x = 2.

C. y = 1.

D. y = 2

🔈 Lời giải

Chọn A

Quan sát hình vẽ dễ thấy đồ thị hàm số nhận đường thẳng x=1 làm tiệm cận đứng.

» Câu 3. Cho hàm số $y = \frac{x^2 + 2x - 1}{2x - 1}$ có đồ thị như sau:

Tiệm cận xiên của đồ thị hàm số là:

A.
$$x = \frac{1}{2}$$
.

B.
$$y = 2x - 1$$
.

C.
$$y = \frac{1}{2}x + \frac{5}{4}$$
. D. $x = 1$.

D.
$$x = 1$$
.

🖎 Lời giải

Chon C

Dựa vào đồ thị của hàm số bậc 2/ bậc 1. Ta thấy đồ thị hàm số có tiệm cận xiên là y = $\frac{1}{2}x + \frac{5}{4}$

- » Câu 4. Cho hàm số y = f(x) có $\lim_{x \to +\infty} f(x) = 1$ và $\lim_{x \to -\infty} f(x) = -1$. Khẳng định nào sau đây là khẳng định đúng?
 - **A.** Đồ thị hàm số đã cho có hai tiệm cận ngang là các đường thẳng x = 1 và x = -1.
 - B. Đồ thị hàm số đã cho không có tiệm cận ngang.
 - C. Đồ thị hàm số đã cho có đúng một tiệm cận ngang.
 - **D.** Đồ thị hàm số đã cho có hai tiệm cận ngang là các đường thẳng y = 1 và y = -1.

🖎 Lời giải

Chon D

Dựa vào định nghĩa đường tiệm cận ngang của đồ thị hàm số ta chọn đáp án D.

» Câu 5. Tiệm cận ngang của đồ thị hàm số $y = \frac{x-2}{x+1}$ là

A.
$$y = -2$$
.

B.
$$y = 1$$
.

C.
$$x = -1$$
.

D.
$$x = 2$$
.

🖎 Lời giải

Chon B

Ta có
$$\lim_{x \to +\infty} \frac{x-2}{x+1} = 1$$
 và $\lim_{x \to -\infty} \frac{x-2}{x+1} = 1$

Suy ra y = 1 là tiệm cận ngang của đồ thị hàm số.

» Câu 6. Tiệm cận ngang của đồ thị hàm số $y = \frac{4x+1}{x-1}$ là **A.** $y = \frac{1}{4}$. **B.** y = 4.

A.
$$y = \frac{1}{4}$$
.

$$\underline{\mathbf{B}}.\ y=4$$

C.
$$y = 1$$
.

🖎 Lời giải

D.
$$y = -1$$
.

Chon B

Tiệm cận ngang $\lim_{x \to +\infty} y = \lim_{x \to -\infty} y = \frac{4}{1} = 4$

» Câu 7. Cho hàm số y=f(x) xác định trên $\mathbb{R}\setminus[-1;1]$ liên tục trên mỗi khoảng xác định và có bảng biến thiên như sau:

Tính tổng số đường tiệm cận đứng và số đường tiệm cận ngang của đồ thị hàm số y =

A. 1.

B. 4.

D. 2.

🖎 Lời giải

Chon C

Vì $\lim_{x\to -\infty}y=2$; $\lim_{x\to +\infty}y=-2$ nên $y=\pm 2$ là các đường tiệm cận ngang của đồ thị hàm số ⇒ Số đường tiệm cận ngang là 2.

Vì $\lim_{x\to -1^-} y = +\infty$ nên x = -1 là đường tiệm cận đứng của đồ thị hàm số.

 $\lim_{x \to 1^+} y = 0$ nên x = 1 không là đường tiệm cận đứng của đồ thị hàm số.

⇒Số đường tiệm cận đứng là 1.

Vậy tổng số đường tiệm cận của đồ thị hàm số y = f(x)là 3.

» Câu 8. Cho hàm số y = f(x) có đồ thị như hình vẽ dưới đây

Tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số y = f(x) là:

A. 4.

B. 3.

C. 2.

🖎 Lời giải

Chon B

Dựa vào đồ thị của hàm số y = f(x) ta có:

 $\lim_{x\to +\infty} f(x) = \frac{1}{2} \text{ nên đường thẳng } y = \frac{1}{2} \text{ là tiệm cận ngang của đồ thị hàm số } y = f(x).$

 \Rightarrow Đồ thị hàm số y = f(x) có đường tiệm cận ngang là $y = \frac{1}{2}$.

 $\lim_{x\to (-1)^-} f(x) = -\infty \text{ và } \lim_{x\to (-1)^+} f(x) = +\infty \text{ nên } x = -1 \text{ là đường tiệm cận đứng của đồ thị .}$ $\lim_{x\to (1)^-} f(x) = -\infty \text{ và } \lim_{x\to (1)^+} f(x) = +\infty \text{ nên } x = 1 \text{ là đường tiệm cận đứng của đồ thị.}$

 \Rightarrow Đồ thị hàm số y = f(x) có hai đường tiệm cận đứng là $x = \pm 1$

Vậy đồ thị hàm số y = f(x) có tất cả 3 đường tiệm cận.

» Câu 9. Tiệm cận ngang của đồ thị hàm số $y = \frac{x-2}{x+1}$ là:

A. y = 1.

B. y = -2.

C. x = -1.

D. x = 2.

🖎 Lời giải

Chon A

Ta có: $\lim_{x \to +\infty} \frac{x-2}{x+1} = 1$; $\lim_{x \to -\infty} \frac{x-2}{x+1} = 1$. Suy ra y = 1 là tiệm cận ngang của đồ thị hàm số.

» **Câu 10.** Tiệm cận đứng của đồ thị hàm số $y = \frac{2x+2024}{x-1}$ là: **A.** x = 2. **B.** x = -2. **C.** x

C. x = 1.

D. x = -1.

🖎 Lời giải

Chon C

Chương 01 ỨNG DỤNG ĐẠO HÀM

Tập xác định $D = \mathbb{R} \setminus \{1\}$.

Ta có:
$$\lim_{x\to 1^-} y = -\infty$$
; $\lim_{x\to 1^+} y = +\infty$.

Suy ra đồ thị có tiệm cận đứng là x = 1.

» Câu 11. Tiệm cận xiên của đồ thị hàm số $y = f(x) = x + 2 + \frac{3}{2x+1}$ là:

A.
$$y = \frac{1}{2}$$
.

B.
$$y = 2x + 1$$

B.
$$y = 2x + 1$$
. **C.** $y = x - 2$. **D.** $y = x + 2$.

$$\mathbf{D}.\ y = x + 2.$$

🖎 Lời giải

Chon D

Tập xác định $D = \mathbb{R} \setminus \left\{ -\frac{1}{2} \right\}$.

Ta có:
$$\lim_{x \to -\infty} [f(x) - (x+2)] = \lim_{x \to -\infty} \frac{3}{2x+1} = 0$$
; $\lim_{x \to +\infty} [f(x) - (x+2)] = \lim_{x \to +\infty} \frac{3}{2x+1} = 0$. Suy ra đồ thị có tiệm cận xiên là đường thẳng: $y = x + 2$.

» Câu 12. Tiệm cận xiên của đồ thị hàm số $y = \frac{x^2 - 16}{x + 5}$ là:

A.
$$y = 2x + 5$$
.

B.
$$v = x + 5$$

D.
$$v = 2x - 5$$

Chon C

Tập xác định $D = \mathbb{R} \setminus \{-5\}$.

Ta có:
$$y = f(x) = \frac{x^2 - 16}{x + 5} = \frac{x^2 - 25 + 9}{x + 5} = \frac{x^2 - 25}{x + 5} + \frac{9}{x + 5} = \frac{(x - 5)(x + 5)}{x + 5} + \frac{9}{x + 5} = x - 5 + \frac{9}{x + 5}$$

$$\lim_{x \to -\infty} [f(x) - (x + 5)] = \lim_{x \to -\infty} \frac{9}{x - 5} = 0; \lim_{x \to +\infty} [f(x) - (x + 5)] = \lim_{x \to +\infty} \frac{9}{x - 5} = 0$$
Suy ra đồ thị có tiệm cận xiên là đường thẳng: $y = x + 5$.

» Câu 13. Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số $y = \frac{2x-5}{x+1}$ là:

A. 0.

B. 2.

C. 3.

D. 1.

🔈 Lời giải

Chon B

Ta có: $\lim_{x \to -1^{-}} y = +\infty$; $\lim_{x \to -1^{+}} y = -\infty$. Suy ra đường thẳng x = -1 là tiệm cận đứng của đồ thị hàm số.

$$\lim_{x \to +\infty} \frac{2x-5}{x+1} = 2; \lim_{x \to -\infty} \frac{2x-5}{x+1} = 2$$

 $\lim_{x\to +\infty}\frac{2x-5}{x+1}=2; \lim_{x\to -\infty}\frac{2x-5}{x+1}=2.$ Suy ra y=2 là tiệm cận ngang của đồ thị hàm số.

Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số là: 2.

» Câu 14. Cho hàm số $y = \frac{2x+1}{x-1}$. Khoảng cách từ gốc tọa độ đến đường tiệm cận đứng bằng

A. 2.

D. 3.

🖎 Lời giải

Chon B

Ta có:
$$\begin{cases} \lim_{x \to 1^{+}} y = \lim_{x \to 1^{+}} \frac{2x+1}{x-1} = +\infty \\ \lim_{x \to 1^{-}} y = \lim_{x \to 1^{-}} \frac{2x+1}{x-1} = -\infty \end{cases}$$
 nên đường tiệm cận đứng $\Delta : x = 1$

Khoảng cách từ gốc tọa độ đến đường tiệm cận đứng là: $d(0,\Delta) = 1$.

» Câu 15. (Sở Hà Nội 2019) Cho hàm số y = f(x) có bảng biến thiên như sau

Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho bằng

A. 2.

B. 1.

C. 0.

D. 3.

🔈 Lời giải

Chọn D

Ta có

 $\lim_{x\to -2^+} y = -\infty \Rightarrow x = -2$ là tiệm cận đứng của đồ thị hàm số đã cho.

 $\lim_{x\to 0^-} y = +\infty \Rightarrow x = 0$ là tiệm cận đứng của đồ thị hàm số đã cho.

 $\lim y = 0 \Rightarrow y = 0$ là tiệm cận ngang của đồ thị hàm số đã cho.

Vậy đồ thị hàm số đã cho có tổng đường tiệm cận đứng và tiệm cận ngang là 3.

» Câu 16. Hàm số nào sau đây có một tiệm cận:

A.
$$y = \frac{x+3}{2x-1}$$

B.
$$y = \frac{x^2 + 3x - 2}{x + 3}$$
 C. $y = \frac{4}{x - 1}$ **D.** $y = \frac{2x}{x^2 + 1}$.

C.
$$y = \frac{4}{x-1}$$

D.
$$y = \frac{2x}{x^2 + 1}$$

Chon D

Hàm số $y = \frac{x+3}{2x-1}$ có một tiệm cận đứng $x = \frac{1}{2}$ và một tiệm cận ngang $y = \frac{1}{2}$ Hàm số $y = \frac{x^2+3x-2}{x+3} = x - \frac{2}{x+3}$ có một tiệm cận đứng x = -3 và một tiệm cận xiên y = xHàm số $y = \frac{4}{x-1}$ có một tiệm cận đứng x = 1 và một tiệm cận ngang y = 0.

Hàm số $y = \frac{2x}{x^2+1}$ có một tiệm cận ngang y = 0.

» Câu 17. Đường thẳng 2y + 1 = 0 là tiệm cận ngang của hàm số nào sau đây?

A. $y = \frac{x+1}{2x+1}$ B. $y = \frac{x^2+x+1}{1-2x}$ C. $y = \frac{2x+1}{1-x}$ D. $y = \frac{3-x^2}{2x^2-3x+1}$ Lời giải

A.
$$y = \frac{x+1}{2x+1}$$

B.
$$y = \frac{x^2 + x + 1}{1 - 2x}$$

C.
$$y = \frac{2x+1}{1-x}$$

$$\mathbf{D} \cdot y = \frac{3-x^2}{2x^2-3x+1}$$

Hàm số $y = \frac{x+1}{2x+1}$ có tiệm cận ngang $y = \frac{1}{2}$. Hàm số $y = \frac{x^2+x+1}{1-2x}$ không có tiệm cận ngang. Hàm số $y = \frac{2x+1}{1-x}$ có tiệm cận ngang y = -2.

Hàm số $y = \frac{1}{3-x^2}$ có tiệm cận ngang $y = -\frac{1}{2} \Leftrightarrow 2y + 1 = 0$.

B.
$$y = \frac{x^2 - 3x + 2}{x^2 - 1}$$

C.
$$y = \frac{x+1}{x^2+4x+3}$$

D.
$$y = \frac{x+1}{x^2+1}$$

Chọn B

Ta có $x^2 + 1 > 0$, $\forall x$, vậy hàm số $y = \frac{x+1}{x^2+1}$ không có tiệm cận đứng. $y = \frac{x^2+3x+2}{x^2-1} = \frac{x+2}{x-1}$ không có tiệm cận đứng là x = −1.

 $y = \frac{x+1}{x^2+4x+3} = \frac{1}{x+3}$ không có tiệm cận đứng là x = -1. $y = \frac{x^2-3x+2}{x^2-1} = \frac{x-2}{x+1}$ có tiệm cận đứng là x = -1.

» Câu 19. Cho hàm số (C): $y = \frac{x^2 - 2x + 2}{x - 2}$. Góc tạo bởi đường tiệm cận xiên của đồ thị hàm số (C) với trục hoành bằng

A. 45°.

B. 60°.

C. 120°.

D. 135°.

🔈 Lời giải

Chọn A

Ta có:
$$y = \frac{x^2 - 2x + 2}{x - 2} = \frac{x(x - 2)}{x - 2} + \frac{2}{x - 2} = x + \frac{2}{x - 2}$$
.

Tập xác định $D = \mathbb{R} \setminus \{2\}$.

Vì $\lim_{x \to \pm \infty} (y - x) = \lim_{x \to \pm \infty} \frac{2}{x - 2} = 0$ nên y = x là tiệm cận xiên.

Nên góc tạo bởi đường thẳng y = x với trục hoành bằng 45° .

Vậy góc tạo bởi đường tiệm cận xiên của đồ thị hàm số (C) với trục hoành bằng 45° .

» **Câu 20.** Các đường tiệm cận của đồ thị hàm số $y = \frac{2x+3}{x-1}$ tạo với hai trục tọa độ một hình chữ nhật có diện tích bằng

A. 3.

B. 6.

C. 1.

<u>D</u>. 2.

🔈 Lời giải

Chọn D

Hàm số $y = \frac{2x+3}{x-1}$ có các đường tiệm cận là x = 1, y = 2.

Do vậy đồ thị hàm số tạo với hai tọa độ hình chữ nhật diện tích bằng|1.2| = 2.

» Câu 21. Cho hàm số y = f(x) liên tục trên $\mathbb{R} \setminus \{1\}$ có bảng biến thiên như hình vẽ.

Mệnh đề nào sau đây là đúng?

A. Hàm số y = f(x) có 2 điểm cực trị.

B. Hàm số y = f(x) đồng biến trên $(-1; +\infty)$.

C. Hàm số y = f(x) nghịch biến trên $(-\infty; 1)$.

D. Hàm số y = f(x) có tổng cộng 3 đường tiệm cận .

🔈 Lời giải

Chọn D

Do
$$\lim_{x \to 1^+} y = -\infty$$
; $\lim_{x \to 1^-} = +\infty \Rightarrow \text{TCD}$: $x = 1$.

 $\lim_{x\to +\infty} y = -1$; $\lim_{x\to -\infty} y = 1 \Rightarrow$ đồ thị có 2
tiệm cận ngang là $y=\pm 1$

Vậy hàm số đã cho có tổng số TCĐ và TCN là 3.

» Câu 22.Đồ thị hàm số (\mathcal{C}) (màu xanh) và đường tiệm cận xiên của đồ thị hàm số (\mathcal{C}) (nét đứt). Hình vẽ minh họa dưới đây

Mệnh đề nào sau đây là sai?

- **A.** Hàm số (C) đồng biến trên khoảng ($-\infty$; 0).
- **B.** Hàm số (C) đồng biến trên khoảng (0; $+\infty$).
- C. Đường tiệm cận xiên của đồ thị hàm số (C) có hệ số góc là một số âm.
- D. Hàm số (C) không có cực trị.

🖎 Lời giải

Chon C

Đường tiệm cận xiên của đồ thị hàm số (C) là đường thẳng đi lên từ trái sang phải nên hàm số tương ứng đồng biến trên \mathbb{R} . Suy ra hệ số góc của nó dương.

B. Câu hỏi – Trả lời Đúng/sai

» Câu 23. Cho hàm số y = f(x) xác định trên $\mathbb{R} \setminus \{-2\}$, liên tục trên mỗi khoảng xác định và có bảng biến thiên như hình dưới đây.

x	$\begin{vmatrix} -\infty & -2 \end{vmatrix}$	2	4	$+\infty$
y'	+	+	0	_
y	$\frac{+\infty}{4}$	$-\infty$	* 5	3

	Mệnh đề	Đúng	Sai
(a)	Đồ thị hàm số không có tiệm cận ngang.		
(b)	Tiệm cận đứng của đồ thị hàm số có phương trình: $x = -2$.		
(c)	Đồ thị hàm số có hai đường tiệm cận ngang có phương trình: $x=3$		
(C)	va x = 4.		
(d)	Đồ thi hàm số có ba đường tiêm cân.		

(a) Đồ thị hàm số không có tiệm cận ngang.

Ta có $\lim_{y \to \infty} y = 3$ và $\lim_{y \to \infty} y = 4$ nên đồ thị hàm số có hai tiệm cận ngang y = 3, y = 4.

» Chọn SAI.

(b) Tiệm cận đứng của đồ thị hàm số có phương trình: x = -2.

Ta có
$$\begin{cases} \lim y = -\infty \\ \lim_{x \to (-2)^-} \\ \lim y = +\infty \end{cases}$$
 nên đồ thị hàm số có tiệm cận đứng $x = -2$.

» Chon ĐÚNG.

(c) Đồ thị hàm số có hai đường tiệm cận ngang có phương trình: x = 3 và x = 4.

Ta có
$$\lim_{x \to +\infty} y = 3$$
 và $\lim_{x \to -\infty} y = 4$ nên đồ thị hàm số có hai tiệm cận ngang $y = 3, y = 4$.

» Chon SAI.

(d) Đồ thị hàm số có ba đường tiệm cận.

Ta có
$$\begin{cases} \lim y = -\infty \\ \lim y = +\infty \end{cases}$$
 nên đồ thị hàm số có tiệm cận đứng $x = -2$.
$$\lim_{x \to (-2)^-} y = +\infty$$

Mặt khác $\lim_{x\to +\infty} y = 3$ và $\lim_{x\to +\infty} y = 4$ nên đồ thị hàm số có hai tiệm cận ngang y = 3, y = 4.

Vậy đồ thị hàm số có 3 đường tiệm cận.

» Chọn ĐÚNG.

» **Câu 24.** Cho hàm số $y = \frac{\sqrt{4x^2 - 9}}{x - 1}$.

	Mệnh đề	Đúng	Sai
(a)	Đường thẳng $y = 2$ là tiệm cận ngang của đồ thị hàm số		
(b)	Đồ thị hàm số có tiệm cận đứng là $x=1$		
(c)	Đường thẳng $y = -2$ là tiệm cận ngang của đồ thị hàm số		
(d)	Đồ thị hàm số có đúng hai đường tiệm cận		

(a) Đường thẳng y = 2 là tiệm cận ngang của đô thị hàm số

Ta có
$$\lim_{x\to +\infty} y = \lim_{x\to +\infty} \frac{\sqrt{4-\frac{9}{x^2}}}{1-\frac{1}{x}} = 2$$
 nên đường thẳng $y=2$ là tiệm cận ngang của đồ thị hàm

số.

» Chọn ĐÚNG.

(b) Đồ thị hàm số có tiệm cận đứng là x = 1

Tập xác định
$$D = -\infty; -\frac{3}{2} \cup \frac{3}{2}; +\infty$$
).

Do không tồn tại các giới hạn khi $x \to 1^+$, $x \to 1^-$ nên đồ thị hàm số không có đường tiệm cận đứng.

» Chọn SAI.

(c) Đường thẳng y = -2 là tiệm cận ngang của đô thị hàm số

Ta có
$$\lim_{x\to\infty} y = \lim_{x\to\infty} \frac{-\sqrt{4-\frac{9}{x^2}}}{1-\frac{1}{x}} = -2$$
 nên đường thẳng $y=-2$ là tiệm cận ngang của đồ thị

hàm số.

» Chọn ĐÚNG.

(d) Đồ thị hàm số có đúng hai đường tiệm cận

Tập xác định
$$D = -\infty; -\frac{3}{2} \cup \frac{3}{2}; +\infty$$
).

Do không tồn tại các giới hạn khi $x \to 1^+, x \to 1^-$ nên đồ thị hàm số không có đường tiệm cân đứng.

Mặt khác,
$$\lim_{x \to +\infty} y = \lim_{x \to +\infty} \frac{\sqrt{4 - \frac{9}{x^2}}}{1 - \frac{1}{x}} = 2$$
 và $\lim_{x \to -\infty} y = \lim_{x \to -\infty} \frac{-\sqrt{4 - \frac{9}{x^2}}}{1 - \frac{1}{x}} = -2$ nên đồ thị hàm số có hai

tiệm cận ngang y = 2, y = -2.

» Chọn ĐÚNG.

» Câu 25. Cho hàm số
$$y = \frac{5x+1-\sqrt{x+1}}{x^2-2x}$$
.

	Mệnh đề	Đúng	Sai
(a)	Đường thẳng $x = 0$ là đường tiệm cận đứng của đồ thị hàm số.		
(b)	Đường thẳng $y = 0$ là đường tiệm cận ngang của đồ thị hàm số.		
(c)	Đường thẳng $x = 2$ là đường tiệm cận đứng của đồ thị hàm số.		
(d)	Đồ thị hàm số có hai đường tiệm cận ngang.		

(a) Đường thẳng x = 0 là đường tiệm cận đứng của đô thị hàm số.

Tập xác định: $D = -1; +∞) \setminus \{0; 2\}$.

Ta có
$$\lim_{x \to 0} y = \lim_{x \to 0} \frac{5x + 1 - \sqrt{x + 1}}{x^2 - 2x} = \lim_{x \to 0} \frac{(5x + 1)^2 - x - 1}{(x^2 - 2x)(5x + 1 + \sqrt{x + 1})}$$

$$= \lim_{x \to 0} \frac{25x^2 + 9x}{(x^2 - 2x)(5x + 1 + \sqrt{x + 1})} = \lim_{x \to 0} \frac{25x + 9}{(x - 2)(5x + 1 + \sqrt{x + 1})} = \frac{-9}{4}$$

 $\Rightarrow x = 0$ không là đường tiêm cân đứng của đồ thi hàm s

» Chon SAI.

(b) Đường thẳng y = 0 là đường tiệm cận ngang của đô thị hàm số.

Ta có
$$\lim_{x \to +\infty} y = \lim_{x \to +\infty} \frac{5x+1-\sqrt{x+1}}{x^2-2x} = \lim_{x \to +\infty} \frac{\frac{5}{x}+\frac{1}{x^2}-\sqrt{\frac{1}{x^3}+\frac{1}{x^4}}}{x^2-2x} = 0$$

$$\Rightarrow y = 0 \text{ là đường tiệm cận ngang của đồ thị hàm số.}$$

» Chon ĐÚNG.

(c) Đường thẳng x = 2 là đường tiệm cận đứng của đô thị hàm số.

Ta có
$$\lim_{x \to 2^+} y = \lim_{x \to 2^+} \frac{5x + 1 - \sqrt{x + 1}}{x^2 - 2x} = +\infty$$
 và $\lim_{x \to 2^-} y = \lim_{x \to 2^-} \frac{5x + 1 - \sqrt{x + 1}}{x^2 - 2x} = -\infty$ $\Rightarrow x = 2$ là đường tiệm cận đứng của đồ thị hàm số.

» Chọn ĐÚNG.

(d) Đồ thị hàm số có hai đường tiệm cận ngang.

Ta có
$$\lim_{x \to +\infty} y = \lim_{x \to +\infty} \frac{5x+1-\sqrt{x+1}}{x^2-2x} = \lim_{x \to +\infty} \frac{\frac{5}{x}+\frac{1}{x^2}-\sqrt{\frac{1}{x^3}+\frac{1}{x^4}}}{x^2-2x} = 0$$

$$\Rightarrow y = 0 \text{ là đường tiệm cận ngang của đồ thị hàm số.}$$

Mặt khác, không tồn tại giới hạn khi $x \to -\infty$ nên đồ thị hàm số có đúng một tiệm cận ngang.

» Chon SAI.

» Câu 26. Cho hàm số $y = \frac{ax+b}{cx+d}$ với $a,b,c \in \mathbb{R}$ có đồ thị là hình bên dưới

	Mệnh đề	Đúng	Sai
(a)	Hàm số nghịch biến trên khoảng (1; +∞) và đồng biến trên khoảng		
	(-∞; 1).		
(b)	Đồ thị hàm số có đường tiệm cận đứng là $x=1$.		
(c)	Đồ thị hàm số có đường tiệm cận ngang là $y = -1$.		
(d)	$T\mathring{\text{ong }}a + b + c = 5.$		

🔈 Lời giải

(a) Hàm số nghịch biến trên khoảng $(1; +\infty)$ và đồng biến trên khoảng $(-\infty; 1)$.

Dựa vào đồ thị hàm số, ta thấy hàm số nghịch biến trên các khoảng $(-\infty; 1)$ và $(1; +\infty)$.

- » Chọn SAI.
- (b) Đồ thị hàm số có đường tiệm cận đứng là x = 1.

Dựa vào đồ thị hàm số, ta thấy hàm số có đường tiệm cận đứng là x = 1.

- » Chọn ĐÚNG.
- (c) Đồ thị hàm số có đường tiệm cận ngang là y = -1.

Dựa vào đồ thị hàm số, ta thấy hàm số có đường tiệm cận ngang là y = -1.

- » Chọn ĐÚNG.
- (d) $T \hat{o} n g \, a + b + c = 5$.

Vì hàm số có tiệm cận đứng là x=1 và tiệm cận ngang là y=-1 nên ta suy ra hàm số có dạng: $y=\frac{-x+b}{x-1}$

Hàm số đi qua điểm (2; 0) nên thay x = 2, y = 0 vào $y = \frac{-x+b}{x-1}$, ta được:

$$\frac{-2+b}{2-1} = 0 \Leftrightarrow b = 2$$

$$V\hat{a}y \ y = \frac{-x+2}{x-1}$$

Suy ra
$$a + b + c = (-1) + 2 + 1 = 2$$

- » Chọn SAI.
- » **Câu 27.** Nồng độ oxygen trong hồ theo thời gian t cho bởi công thức $y(t) = 5 \frac{15t}{9t^2+1}$, với y được tính theo $\frac{mg}{l}$ và t được tính theo giờ, $t \ge 0$.

	Mệnh đề	Đúng	Sai
(2)	Đồ thị hàm số $y(t)$ có một đường tiệm cận ngang và một đường tiệm		
(a)	cận xiên.		
(b)	Đồ thị hàm số có đường tiệm cận ngang là $y = 5$.		
(c)	Đồ thị hàm số có đường tiệm cận đứng là $x = \frac{1}{3}$.		
(1)	Sau một thời gian đủ dài, nồng độ oxygen trong hồ sẽ bão hòa và đạt		
(d)	ngưỡng 5 $\frac{mg}{l}$		

🔈 Lời giải

$$y(t) = 5 - \frac{15t}{9t^2 + 1} = \frac{45t^2 + 5 - 15t}{9t^2 + 1} = \frac{45t^2 - 15t + 5}{9t^2 + 1}$$
$$\lim_{t \to +\infty} y(t) = \lim_{t \to +\infty} \frac{45t^2 - 15t + 5}{9t^2 + 1} = \lim_{t \to +\infty} \frac{45 - \frac{15}{t} + \frac{5}{t^2}}{9 + \frac{1}{t^2}} = \frac{45 - 0 + 0}{9 + 0} = 5$$

(a) Đồ thị hàm số y(t) có một đường tiệm cận ngang và một đường tiệm cận xiên.

Đồ thi hàm số y(t) có một đường tiệm cận ngang là y=5 và không có tiệm cận xiên.

- » Chọn SAI.
- **(b)** Đồ thị hàm số có đường tiệm cận ngang là y = 5.

 $\lim_{t\to +\infty} y(t) = 5 \Rightarrow y = 5$ là một đường tiệm cận ngang của đồ thị hàm số.

» Chon ĐÚNG.

(c) Đồ thị hàm số có đường tiệm cận đứng là $x = \frac{1}{2}$.

$$\lim_{t \to \frac{1}{3}} y(t) = \lim_{t \to \frac{1}{3}} \frac{45t^2 - 15t + 5}{9t^2 + 1} = \frac{45 \cdot \left(\frac{1}{3}\right)^2 - 15 \cdot \frac{1}{3} + 5}{9 \cdot \left(\frac{1}{3}\right)^2 + 1} = \frac{5}{2} \Rightarrow x = \frac{1}{3} \text{ không phải là đường tiệm cận đứng của đồ thi hàm số.}$$

- » Chon SAI.
- (d) Sau một thời gian đủ dài, nồng độ oxygen trong hồ sẽ bão hòa và đạt ngưỡng $5\frac{mg}{l}$.

Ta nhận thấy $\lim_{t\to +\infty} y(t)=5$ điều này chứng tỏ rằng khi thời gian đủ dài, nồng độ oxygen trong hồ sẽ bão hòa và đạt ngưỡng 5 $\frac{mg}{r}$.

- » Chọn ĐÚNG.
- » Câu 28. Cho hàm số $y = \frac{x^2 2x + 2}{x + 2}$.

Các mênh đề sau đúng hay sai?

	Mệnh đề	Đúng	Sai
(a)	Hàm số có hai tiệm cận.		
(b)	Giao điểm của hai tiệm cận là $I(-2; -6)$.		
(c)	Khoảng cách từ 0 đến tiệm cận xiên bằng $4\sqrt{2}$.		_
(d)	Tiệm cận xiên của hàm số đi qua điểm $M(0; -4)$.		

🖎 Lời giải

(a) Hàm số có hai tiệm cận.

Ta có
$$y = x - 4 + \frac{10}{x+2}$$

Ta có $y = x - 4 + \frac{10}{x+2}$. $\lim_{x \to -2} y = \infty$ nên x = -2 là tiệm cận đứng của đồ thị hàm số. $\lim_{x \to \infty} \frac{10}{x+2} = 0$ nên y = x - 4 là tiệm cận xiên của đồ thị hàm số.

- » Chon ĐÚNG.
- **(b)** Giao điểm của hai tiệm cận là I(-2; -6).

Giao điểm của hai tiệm cận thỏa mãn $\begin{cases} x = -2 \\ y = x - 4 \end{cases} \Leftrightarrow \begin{cases} x = -2 \\ y = -6 \end{cases} \Rightarrow I(-2; -6).$

- » Chọn ĐÚNG.
- (c) Khoảng cách từ 0 đến tiệm cận xiên bằng $4\sqrt{2}$.

Khoảng cách từ 0 đến tiệm cận xiên bằng $\frac{4}{\sqrt{2}}$.

- » Chon SAI.
- (d) Tiệm cận xiên của hàm số đi qua điểm M(0; -4).

Ta có tiệm cận xiên: Δ : y = x - 4, thay M(0; -4) vào $\Delta 0 - 4 = -4$ Nên *M* nằm trên tiệm cận xiên.

» Chọn ĐÚNG.

» Câu 29. Gọi (C) là đồ thị của hàm số $y = \frac{mx^2 + (3-m)x + m^2 - 2}{x-1}$,m là tham số. Khi (C) có tiệm cận xiên, gọi đường tiệm cận xiên này là (d). Các mệnh đề sau đúng hay sai?

	Mệnh đề	Đúng	Sai
(a)	Khi $m = 2$ thì (d) có phương trình là $y = 2x + 3$.		
(b)	Khi $m = 1$ thì (d) đi qua điểm $A(1;4)$.		
(c)	Có 1 đường thẳng (<i>d</i>) tạo với hai trục tọa độ một tam giác có diện tích bằng 6.		
(d)	Khi $m = \pm \sqrt{3}$ thì khoảng cách từ gốc tọa độ 0 đến (d) bằng $\sqrt{3}$.		

🖎 Lời giải

Ta có $y = mx + 3 + \frac{m^2 + 1}{x - 1}$, suy ra (C) có tiệm cận xiên $d \Leftrightarrow m \neq 0$.

Khi đó phương trình của d: y = mx + 3.

(a) Khi m = 2 thì (d) có phương trình là y = 2x + 3

Với $m = 2 \Rightarrow d$: y = 2x + 3.

- » Chọn ĐÚNG.
- (b) Khi m = 1 thì (d) đi qua điểm A(1; 4).

 $A(1;4) \in d \Leftrightarrow 4 = m + 3 \Leftrightarrow m = 1$ (thoa mãn điều kiện m $\neq 0$).

- » Chon ĐÚNG.
- (c) Có 1 đường thẳng (d) tạo với hai trục tọa độ một tam giác có diện tích bằng 6.

Giao điểm của (d) với hai trục tọa độ là M(0;3) và $M\left(-\frac{3}{m};0\right)$.

Diện tích tam giác vuông *OMN*: $S = \frac{1}{2}OM$. $ON = \frac{1}{2}3$. $\left|\frac{3}{m}\right| = \frac{9}{2|m|}$.

Theo giả thiết: $S = 6 \Leftrightarrow \frac{9}{2|m|} = 9 \Leftrightarrow |m| = \frac{1}{2} \Leftrightarrow m = \pm \frac{1}{2}$ (thỏa mãn điều kiện m≠ 0).

- » Chon SAI.
- (d) Khi $m = \pm \sqrt{3}$ thì khoảng cách từ gốc tọa độ 0 đến (d) bằng $\sqrt{3}$.

 $d(0;d) = \sqrt{3} \Leftrightarrow \frac{3}{\sqrt{m^2 + 1}} = \sqrt{3} \Leftrightarrow \sqrt{m^2 + 1} = \sqrt{3} \Leftrightarrow m^2 + 1 = 3 \Leftrightarrow m = \pm \sqrt{2}$

- » Chon SAI.
- » Câu 30. Cho hàm số $y = \frac{x^2 + mx 1}{x 1}(C_m)$ (m là tham số). Các mệnh đề sau đúng hay sai?

	Mệnh đề	Đúng	Sai
(a)	Để đồ thị (C_m) của hàm số có tiệm cận xiên thì $m \neq 0$.		
(b)	Để tiệm cận xiên của (C_m) đi qua $M(2; -5)$ thì $m = -8$.		
(c)	Để tiệm cận xiên của (C_m) tạo với hai trục toạ độ một tam giác có diện tích bằng 8 (đvdt) thì tổng tất cả các giá trị m tìm được bằng 2.		
(d)	Với $m = 3$ thì giao điểm của hai đường tiệm cận của (C_m) nằm trên Parapol $y = x^2 + 3$.		

🔈 Lời giải

Hàm số xác định trên $\mathbb{R}\setminus\{1\}$.

(a) Để đô thị (C_m) của hàm số có tiệm cận xiên thì $m \neq 0$.

Ta có
$$y = x + m + 1 + \frac{\dot{m}}{x - 1}$$

Để đồ thị (C_m) của hàm số có tiệm cận xiên thì $m \neq 0$.

Với $m \neq 0$, (C_m) có tiệm cận xiên

$$y = x + m + 1(\Delta_m) \text{ vì } \lim_{x \to \infty} [y - (x + m + 1)] = \lim_{x \to \infty} \frac{m}{x - 1} = 0.$$

» Chọn ĐÚNG.

(b) Để tiệm cận xiên của (C_m) đi qua M(2; -5) thì m = -8

Để (Δ_m) qua M(2; -5) thì $-5 = 2 + m + 1 \Leftrightarrow m = -8$. (thỏa mãn $m \neq 0$).

- » Chọn ĐÚNG.
- (c) Để tiệm cận xiên của (C_m) tạo với hai trục toạ độ một tam giác có diện tích bằng 8 (đvdt) thì tổng tất cả các giá trị m tìm được bằng 2

Gọi A là giao điểm của Δ_m với 0x. Khi đó A(-m-1;0)

Gọi B là giao điểm của Δ_m với Oy. Khi đó B(0; m+1).

Suy ra
$$S_{\Delta OAB} = \frac{1}{2}OA \cdot OB = \frac{1}{2}|-m-1||m+1| = \frac{1}{2}(m+1)$$

Suy ra
$$S_{\Delta OAB} = \frac{1}{2}OA \cdot OB = \frac{1}{2}|-m-1||m+1| = \frac{1}{2}(m+1)^2$$

Để $S_{\Delta OAB} = 8 \Leftrightarrow \frac{1}{2}(m+1)^2 = 8 \Leftrightarrow \begin{bmatrix} m = -5 \\ m = 3 \end{bmatrix}$ (thỏa mãn $m \neq 0$).

- » Chon SAI.
- (d) Với m=3 thì giao điểm của hai đường tiệm cận của (C_m) nằm trên Parapol $y=x^2+3$ Ta có với $m \neq 0$, x = 1 là tiệm cận đứng vì $\lim_{x \to 1} y = \infty$ nêny = x + m + 1 là tiệm cận xiên.

Khi đó giao điểm của 2 tiệm cận là I(1; m + 2).

Để I nằm trên Parabol $y = x^2 + 3$ thì $m + 2 = 1 + 3 \Leftrightarrow m = 2$ (t/m $m \neq 0$).

» Chon SAI.

- C. Câu hỏi Trả lời ngắn
- » Câu 31. Cho hàm số $y = \frac{3x-2}{x+1}$. Giả sử đồ thị hàm số có đường tiệm cận đứng là x = a và đường tiệm cận ngang là y = b. Tính giá trị a + b

🔈 Lời giải

✓ Trả lời: 2

$$\lim_{x \to +\infty} y = \lim_{x \to +\infty} \frac{3x-2}{x+1} = \lim_{x \to +\infty} \frac{3-\frac{2}{x}}{1+\frac{1}{x}} = \frac{3-0}{1+0} = 3 \Rightarrow y = 3 \text{ là đường tiệm cận ngang của đồ thị}$$

$$\lim_{x\to(-1)^+} y = \lim_{x\to(-1)^+} \frac{3x-2}{x+1} = -\infty \Rightarrow x = -1 \text{ là đường tiệm cận đứng của đồ thị hàm số.}$$
 Vậy $a+b=3+(-1)=2$

» Câu 32. Cho hàm số có bảng biến thiên bên dưới. Khi đó, đồ thị hàm số có số đường tiệm cận là bao nhiêu?

✓ Trả lời: 2

Dựa vào bảng biến thiên, ta thấy đồ thị hàm số có đường tiệm cận đứng là x = -2 và đường tiệm cận ngang là y = 1

Vậy đồ thị hàm số có 2 đường tiệm cận bao gồm một đường tiệm cận đứng và một đường tiệm cận ngang.

» Câu 33. Cho hàm số $y = f(x) = \frac{x^2 - 5x + 7}{x - 3}$ có đồ thị (C). Đường tiệm cận xiên của đồ thị (C) là đường thắng Δ : y = ax + b. Tính a + b.

🖎 Lời giải

✓ Trả lời: -1

Ta có
$$f(x) = \frac{x^2 - 5x + 7}{x - 3} = x - 2 + \frac{1}{x - 3}$$
.

Do đó
$$\lim_{x \to +\frac{x}{2}} \left[f(x) - (x-2) \right] = \lim_{x \to +\frac{x}{2}} \left[\frac{x^2 - 5x + 7}{x - 3} - (x - 2) \right] = \lim_{x \to +\frac{x}{2}} \left(\frac{1}{x - 3} \right) = 0.$$

Suy ra đường thẳng Δ : y = x - 2 là tiệm cận xiên của đồ thị hàm số y = f(x).

$$\Rightarrow \begin{cases} a=1 \\ b=-2 \end{cases} \Rightarrow a+b=-1.$$

» **Câu 34.**Cho hàm số $y = \frac{x^2 + 3}{x - 2}$ có đồ thị (*C*). Hai đường tiệm cận của đồ thị (*C*) cùng với hai trục tọa độ tạo thành một hình thang vuông có diện tích *S* . Tính *S* .

✓ Trả lời: 6

Ta thấy $x-2=0 \Leftrightarrow x=2$ và $-2^2+4.2+3\neq 0$ nên đồ thị hàm số có đường tiệm cận đứng d_1 : x=2.

Ta có $y = x + 2 + \frac{7}{x - 2}$ nên $d_2 : y = x + 2$ là tiệm cận xiên của đồ thị hàm số (*C*).

Đường thẳng $d_2: y = x + 2$ cắt trục Oy tại A(0;2).

Đường thẳng d_1 : x = 2 cắt d_2 : y = x + 2 tại B(2;4).

Đường thẳng d_1 : x = 2 cắt trục Ox tại C(2;0).

Do đó hai đường tiệm cận của đồ thị (C) cùng với hai trục tọa độ tạo thành một hình thang vuông OABC.

$$\Rightarrow S_{OABC} = \frac{(OA + BC).OC}{2} = 6.$$

» Câu 35. Cho hàm số y = f(x)có bảng biến thiên như hình dưới đây.

			1		_
x	$-\infty$		$-\frac{1}{2}$		$+\infty$
y'		_	0	+	
\overline{y}	1		_3 <	/	1

Tìm tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số $y = \frac{1}{2f(x)-1}$.

✓ Trả lời: 3

» Số tiệm cận đứng của đồ thị hàm số $y = \frac{1}{2f(x)-1}$ đúng bằng số nghiệm thực của phương trình $2f(x) - 1 = 0 \Leftrightarrow f(x) = \frac{1}{2}$.

Mà số nghiệm thực của phương trình $f(x) = \frac{1}{2}$ bằng số giao điểm của đồ thị hàm số y = f(x) với đường thẳng $y = \frac{1}{2}$.

Dựa vào bảng biến thiên ta thấy đường thẳng $y = \frac{1}{2}$ cắt đồ thị hàm số y = f(x) tại 2 điểm phân biệt. Vậy đồ thị hàm số $y = \frac{1}{2f(x)-1}$ có 2 tiệm cận đứng.

» Lại có $\lim_{x \to +\infty} \frac{1}{2f(x)-1} = 1 \Rightarrow$ đồ thị hàm số có một tiệm cận ngang là y = 1.

Vậy tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số $y = \frac{1}{2f(x)-1}$ là 3.

» Câu 36. Cho hàm số $y = \frac{12 + \sqrt{4x - x^2}}{\sqrt{x^2 - 6x + 2m}}$ có đồ thị (C_m) . Tập S tất cả các giá trị của tham số thực m để (C_m) có đúng hai tiệm cận đứng có dạng (a;b). Tính a + 2b.

🖎 Lời giải

✓ Trả lời: 13

Điều kiện $4x - x^2 \ge 0 \Leftrightarrow x \in [0; 4]$.

Dễ thấy $12 + \sqrt{4x - x^2} > 0$, $\forall x \in [0; 4]$.

Do đó để đồ thị hàm số có đúng hai tiệm cận đứng thì phương trình $x^2 - 6x + 2m = 0$ có hai nghiệm phân biệt thuộc đoạn (0; 4).

Xét
$$g(x) = x^2 - 6x = -2m$$
 có $g'(x) = 2x - 6 = 0 \Leftrightarrow x = 3 \in (0; 4)$.

Ta có bảng biến thiên của hàm số g(x) trên đoạn (0; 4):

Từ đó ta thấy phương trình $x^2 - 6x + 2m = 0$ có hai nghiệm phân biệt thuộc đoạn (0; 4) khi $-9 < -2m < -8 \Leftrightarrow 4 < m < \frac{9}{2}$.

$$\Rightarrow S = \left(4; \frac{9}{2}\right) \Rightarrow \begin{cases} a = 1 \\ b = \frac{9}{2} \Rightarrow a + 2b = 13. \end{cases}$$

» Câu 37. Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số $y = \frac{\sqrt{4x^2-1}+3x^2+2}{x^2-x}$ là ?

✓ Trả lời: 2

Tập xác định $D=-\infty;-\frac{1}{2}\cup\frac{1}{2};1$) \cup $(1;+\infty)$

Ta có

$$\lim_{x \to +\infty} y = \lim_{x \to +\infty} \frac{\sqrt{4x^2 - 1} + 3x^2 + 2}{x^2 - x} = \lim_{x \to +\infty} \frac{\frac{1}{x}\sqrt{4 - \frac{1}{x^2}} + 3 + \frac{2}{x^2}}{1 - \frac{1}{x}} = 3$$

$$\lim_{x \to -\infty} y = \lim_{x \to -\infty} \frac{\sqrt{4x^2 - 1} + 3x^2 + 2}{x^2 - x} = \lim_{x \to -\infty} \frac{-\frac{1}{x}\sqrt{4 - \frac{1}{x^2}} + 3 + \frac{2}{x^2}}{1 - \frac{1}{x}} = 3$$

Do đó đồ thị hàm số nhận đường thẳng y = 3 là tiệm cận ngang.

$$\lim_{x\to 1^+}y=\lim_{x\to 1^+}\frac{\sqrt{4x^2-1}+3x^2+2}{x^2-x}=+\infty$$
 Do đó đồ thị hàm số nhận đường thẳng $x=1$ là tiệm cận đứng.

Vậy đồ thị hàm số đã cho có 1 tiệm cận đứng và 1 tiệm cận ngang.

» Câu 38. Có bao nhiều giá trị nguyên của tham số m để đồ thị hàm số $y = \frac{mx^2 + (3m+1)x - m + 2}{x+1}$ có tiệm cận xiên là (d) và (d) tiếp xúc với đường tròn tâm I(1; 2), bán kính bằng $\sqrt{2}$.

✓ Trả lời: 1

Điều kiện: $m \neq 0$, (d): mx - y + 2m + 1 = 0

Theo bài toán, ta có $d(I;d) = \sqrt{2}$ tức có phương trình $7m^2 - 6m - 1 = 0 \Leftrightarrow \begin{bmatrix} m = 1 \\ m = -\frac{1}{2} \end{bmatrix}$

Nên có 1 giá trị nguyên của tham số m thỏa mãn.

» Câu 39. Tổng các giá trị của tham số m để đồ thị của hàm số $y = \frac{x-1}{x^2+2(m-1)x+m^2-2}$ có đúng một tiệm cận đứng.

✓ Trả lời: -0,5

$$\text{Dặt } f(x) = x^2 + 2(m-1)x + m^2 - 2$$

Đồ thị hàm số có đúng một tiệm cận đứng khi và chỉ khi f(x) = 0 có 2 nghiệm phân biệt trong đó có 1 nghiệm x = 1 hoặc f(x) = 0 có nghiệm kép

$$\Leftrightarrow \begin{cases} \{\Delta' > 0 \\ f(1) = 0 \\ \Delta' = 0 \end{cases} \Leftrightarrow \begin{cases} \{(m-1)^2 - (m^2 - 2) > 0 \\ 1 + 2(m-1) + m^2 - 2 = 0 \\ m = \frac{3}{2} \end{cases} \Leftrightarrow \begin{cases} \{m < \frac{3}{2} \\ m = 1; m = -3 \\ m = \frac{3}{2} \end{cases} \Leftrightarrow \begin{cases} m = 1 \\ m = \frac{3}{2} \end{cases}$$

Vậy tổng các giá trị m thỏa mãn là: $-\frac{1}{2} \approx -0.5$.

» Câu 40. Cho hàm số y = f(x) xác định, liên tục trên \mathbb{R} và có bảng biến thiên như hình bên dưới:

Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số $y = \frac{1}{2f(x)-1}$ là?

🔈 Lời giải

✓ Trả lời: 4

$$\text{Đặt } h(x) = \frac{1}{2f(x) - 1}.$$

*) Tiệm cận ngang:

Ta có:
$$\lim_{x \to +\infty} h(x) = \lim_{x \to +\infty} \frac{1}{2f(x)-1} = 0.$$

 $\lim_{x \to -\infty} h(x) = \lim_{x \to -\infty} \frac{1}{2f(x)-1} = 0.$

Suy ra đồ thị hàm số có một đường tiệm cận ngang y = 0.

*) Tiệm cận đứng:

Xét phương trình: $2f(x) - 1 = 0 \Leftrightarrow f(x) = \frac{1}{2}$.

Dựa vào bảng biến thiên ta thấy phương trình $f(x) = \frac{1}{2}$ có ba nghiệm phân biệt a, b, c thỏa $m\tilde{a}$ a < 1 < b < 2 < c.

Đồng thời $\lim_{x\to a^+} h(x) = \lim_{x\to b^-} h(x) = \lim_{x\to c^+} h(x) = +\infty$ nên đồ thị hàm số y = h(x) có ba đường tiệm cận đứng là x = a, x = b và x = c.

Vậy tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số y = h(x) là 4.

Chương 01 ỨNG DỤNG ĐẠO HÀM

_			
	ш	21	L
		е	

» TOÁN TỪ TÂM Trang 17