Hints

Addressing Modes:

Immediate	#value	operand = value
Register	R <i>i</i>	EA = Ri
Absolute (Direct)	LOC	EA = LOC
Indirect	(R <i>i</i>) (LOC)	EA = [R/] EA = [LOC]
Index	X(R/)	EA = [R/] + X
Base with index	(Ri, Rj)	E A = [R/] + [R/]
Base with index and offset	X(R <i>i</i> , R <i>j</i>)	EA = [R/] + [R/] + X
Autoincrement	(R/)+	EA = [R/]; Increment R/
Autodecrement	-(R <i>i</i>)	Decrement R <i>i</i> ; EA = [R/] + X

Binary Number Representation Schemes

- <u>Sign and magnitude</u> where the most significant bit being 0 for a positive number and 1 for a negative number.
- <u>One's complement</u> where a negative number is represented by the complement of its positive representation.
- <u>Two's complement</u> where a negative number is derived by adding 1 to its one's complement.

Basic Performance Equation

$$T = N \times S / R$$

- T = Time required to execute a program
- N = Number of machine language instructions
- S = Number of clock cycles per machine instruction
- R = Clock rate in cycles per second (Hz)