STAGE DE FIN D'ÉTUDES (3A)

Détection en temps réels des points de retournement : Apport de l'utilisation des filtres asymétriques dans l'analyse conjoncturelle

ALAIN QUARTIER-LA-TENTE Maître de stage : OLIVIER DARNÉ (LEMNA) 26/10/2021 Ensae — 2020-2021

 Stage effectué au Laboratoire d'Économie et de Management de Nantes-Atlantique (LEMNA) avec Olivier Darné dans le cadre du début de ma thèse

 Stage effectué au Laboratoire d'Économie et de Management de Nantes-Atlantique (LEMNA) avec Olivier Darné dans le cadre du début de ma thèse

Objectifs :

 Étudier et comparer les approches récentes pour l'extraction de la tendance-cycle en temps réel

 Stage effectué au Laboratoire d'Économie et de Management de Nantes-Atlantique (LEMNA) avec Olivier Darné dans le cadre du début de ma thèse

Objectifs :

- Étudier et comparer les approches récentes pour l'extraction de la tendance-cycle en temps réel
- Étudier les liens entre les méthodes avec une théorie générale (cf rapport)

 Stage effectué au Laboratoire d'Économie et de Management de Nantes-Atlantique (LEMNA) avec Olivier Darné dans le cadre du début de ma thèse

Objectifs :

- Étudier et comparer les approches récentes pour l'extraction de la tendance-cycle en temps réel
- Étudier les liens entre les méthodes avec une théorie générale (cf rapport)
- Développer d'un package
 (rjdfilters, https://github.com/palatej/rjdfilters, version en développement https://github.com/AQLT/rjdfilters)

Une série X_t se décompose en plusieurs composantes inobservées :

$$X_t = \underbrace{\mathit{TC}_t}_{\text{tendance-cycle}} + \underbrace{\mathcal{S}_t}_{\text{saisonnalit\'e}} + \underbrace{\mathcal{I}_t}_{\text{irr\'egulier}} \text{ (d\'ecomposition additive)}$$

TC_t généralement estimée sur une série sans saisonnalité

Une série X_t se décompose en plusieurs composantes inobservées :

$$X_t = \underbrace{TC_t}_{\text{tendance-cycle}} + \underbrace{S_t}_{\text{saisonnalit\'e}} + \underbrace{I_t}_{\text{irr\'egulier}}$$
 (décomposition additive)

TC_t généralement estimée sur une série sans saisonnalité

Moyennes mobiles (ou *filtres linéaires*) omniprésents dans l'extraction de la tendance-cycle et la désaisonnalisation (e.g. : X-13ARIMA) :

$$M_{\theta}(X_t) = \sum_{k=-p}^{+f} \theta_k X_{t+k}$$

Une série X_t se décompose en plusieurs composantes inobservées :

$$X_t = \underbrace{TC_t}_{\text{tendance-cycle}} + \underbrace{S_t}_{\text{saisonnalit\'e}} + \underbrace{I_t}_{\text{irr\'egulier}}$$
 (décomposition additive)

TC_t généralement estimée sur une série sans saisonnalité

Moyennes mobiles (ou *filtres linéaires*) omniprésents dans l'extraction de la tendance-cycle et la désaisonnalisation (e.g. : X-13ARIMA) :

$$M_{\theta}(X_t) = \sum_{k=-p}^{+f} \theta_k X_{t+k}$$

3 Généralement, utilisation de filtres *symétriques* (p = f et $\theta_{-i} = \theta_i$)

Une série X_t se décompose en plusieurs composantes inobservées :

$$X_t = \underbrace{TC_t}_{\text{tendance-cycle}} + \underbrace{S_t}_{\text{saisonnalit\'e}} + \underbrace{I_t}_{\text{irr\'egulier}}$$
 (décomposition additive)

TC_t généralement estimée sur une série sans saisonnalité

Moyennes mobiles (ou *filtres linéaires*) omniprésents dans l'extraction de la tendance-cycle et la désaisonnalisation (e.g. : X-13ARIMA) :

$$M_{\theta}(X_t) = \sum_{k=-p}^{+f} \theta_k X_{t+k}$$

- Généralement, utilisation de filtres symétriques (p = f et $\theta_{-i} = \theta_i$)
- **•** Pour l'estimation en **temps réel**, utilisation de filtres *asymétriques* $(f < p) \implies$ révision et détection avec retard des points de retournement (déphasage): cas du COVID-19

Une série X_t se décompose en plusieurs composantes inobservées :

$$X_t = \underbrace{TC_t}_{\text{tendance-cycle}} + \underbrace{S_t}_{\text{saisonnalit\'e}} + \underbrace{I_t}_{\text{irr\'egulier}}$$
 (décomposition additive)

TC_t généralement estimée sur une série sans saisonnalité

Moyennes mobiles (ou *filtres linéaires*) omniprésents dans l'extraction de la tendance-cycle et la désaisonnalisation (e.g. : X-13ARIMA) :

$$M_{\theta}(X_t) = \sum_{k=-p}^{+f} \theta_k X_{t+k}$$

- Généralement, utilisation de filtres symétriques (p = f et $\theta_{-i} = \theta_i$)
- **igoplus** Pour l'estimation en **temps réel**, utilisation de filtres *asymétriques* $(f < p) \implies$ révision et détection avec retard des points de retournement (déphasage): cas du COVID-19
- Omparaison de 3 méthodes qui pourraient être incluses dans X-13ARIMA

Sommaire

- 1. Introduction
- 2. Description des méthodes
- 2.1 Méthode actuelle
- 2.2 Polynômes Locaux
- 2.3 Filtres et Reproducing Kernel Hilbert Space (RKHS)
- 2.4 Minimisation sous contrainte : approche FST
- 3. Comparaison des méthodes
- 4. Conclusion

- 1. Série étendue sur 1 an par un modèle ARIMA
- Estimation de la tendance-cycle par moyenne mobile symétrique d'Henderson

- 1. Série étendue sur 1 an par un modèle ARIMA
- Estimation de la tendance-cycle par moyenne mobile symétrique d'Henderson
- Prévisions combinaisons linéaires du passé : équivalent à utiliser des moyennes mobiles asymétriques avec coefficients optimisés pour minimiser les erreurs

- 1. Série étendue sur 1 an par un modèle ARIMA
- Estimation de la tendance-cycle par moyenne mobile symétrique d'Henderson
- Prévisions combinaisons linéaires du passé : équivalent à utiliser des moyennes mobiles asymétriques avec coefficients optimisés pour minimiser les erreurs
- ullet X-13ARIMA : décomposition itérative de X_T en TC_t , S_t et I_t avec une correction automatique des points atypiques

- 1. Série étendue sur 1 an par un modèle ARIMA
- Estimation de la tendance-cycle par moyenne mobile symétrique d'Henderson
- Prévisions combinaisons linéaires du passé : équivalent à utiliser des moyennes mobiles asymétriques avec coefficients optimisés pour minimiser les erreurs
- \bullet X-13ARIMA : décomposition itérative de X_T en TC_t , S_t et I_t avec une correction automatique des points atypiques
- Omparaison de 3 approches modernes qui reproduise le filtre d'Henderson

Polynômes Locaux : rjdfilters::lp_filter()

Hypothèse : $y_t = \mu_t + \varepsilon_t$ avec $\varepsilon_t \overset{i.i.d}{\sim} \mathcal{N}(0, \sigma^2)$

 μ_t localement approchée par un polynôme de degré d :

$$\forall j \in \llbracket -h, h \rrbracket : y_{t+j} = m_{t+j} + \varepsilon_{t+j}, \quad m_{t+j} = \sum_{i=0}^d \beta_i j^i$$

Polynômes Locaux : rjdfilters::lp_filter()

Hypothèse : $y_t = \mu_t + \varepsilon_t$ avec $\varepsilon_t \overset{i.i.d}{\sim} \mathcal{N}(0, \sigma^2)$

 μ_t localement approchée par un polynôme de degré d :

$$\forall j \in \llbracket -h, h \rrbracket : y_{t+j} = m_{t+j} + \varepsilon_{t+j}, \quad m_{t+j} = \sum_{i=0}^{d} \beta_i j^i$$

Estimation en utilisant les WLS avec noyaux : $\hat{\beta} = (X'KX)^1X'Ky$ et

$$\hat{m}_t = \hat{\beta}_0 = w'y = \sum_{j=-h}^n w_j y_{t-j}$$
 equivalent à une moyenne mobile symétrique

 \bullet Filtre de Henderson avec d=3 et noyau spécifique.

- 1. Même méthode mais moins de données (DAF) ← minimiser les révisions sous mêmes contraintes polynomiales
- sans biais mais beaucoup de variance

- 1. Même méthode mais moins de données (DAF) ← minimiser les révisions sous mêmes contraintes polynomiales
- sans biais mais beaucoup de variance
- 2. Minimisation des révisions sous contraintes polynomiales :
 - 2.1 Linear-Constant (LC) : y_t linéaire and v reproduit les constantes (Musgrave)
 - 2.2 Quadratic-Linear (QL): y_t quadratique et v reproduit droites
 - 2.3 Cubic-Quadratic (CQ): y_t cubique et v reproduit tendances quadratiques
 - Filtres asymétriques v dépendent de "IC-Ratio"

- 1. Même méthode mais moins de données (DAF) ← minimiser les révisions sous mêmes contraintes polynomiales
- sans biais mais beaucoup de variance
- 2. Minimisation des révisions sous contraintes polynomiales :
 - 2.1 Linear-Constant (LC) : y_t linéaire and v reproduit les constantes (Musgrave)
 - 2.2 Quadratic-Linear (QL): y_t quadratique et v reproduit droites
 - 2.3 Cubic-Quadratic (CQ) : y_t cubique et v reproduit tendances quadratiques
 - Filtres asymétriques v dépendent de "IC-Ratio"
- modèles simples facilement interprétables
- Déphasage non contrôlé méthode étendue dans rjdfilters::lp_filter()

- 1. Même méthode mais moins de données (DAF) \iff minimiser les révisions sous mêmes contraintes polynomiales
- sans biais mais beaucoup de variance
- 2. Minimisation des révisions sous contraintes polynomiales :
 - 2.1 Linear-Constant (LC) : y_t linéaire and v reproduit les constantes (Musgrave)
 - 2.2 Quadratic-Linear (QL): y_t quadratique et v reproduit droites
 - 2.3 Cubic-Quadratic (CQ): y_t cubique et v reproduit tendances quadratiques
 - Filtres asymétriques v dépendent de "IC-Ratio"
- modèles simples facilement interprétables
- Déphasage non contrôlé méthode étendue dans rjdfilters::lp_filter()
- ☐ Visualisation https://aqlt.shinyapps.io/FiltersProperties/

Filtres RKHS:rjdfilters::rkhs_filter()

- Utilisation de la théorie des RKHS pour approcher le filtre d'Henderson
- Avec K_p une **fonction de noyau**, le filtre symétrique :

$$\forall j \in \llbracket -h, h \rrbracket : w_j = \frac{K_p(j/b)}{\sum_{i=-h}^h K_p(i/b)}$$

Filtres RKHS:rjdfilters::rkhs_filter()

- Utilisation de la théorie des RKHS pour approcher le filtre d'Henderson
- Avec K_p une **fonction de noyau**, le filtre symétrique :

$$\forall j \in \llbracket -h, h \rrbracket : w_j = \frac{K_p(j/b)}{\sum_{i=-h}^h K_p(i/b)}$$

Pour les filtres asymétriques :

$$\forall j \in \llbracket -h, q \rrbracket : w_{a,j} = \frac{K_p(j/b)}{\sum_{i=-h}^q K_p(i/b)}$$

Filtres RKHS: rjdfilters::rkhs_filter()

- Utilisation de la théorie des RKHS pour approcher le filtre d'Henderson
- Avec K_p une **fonction de noyau**, le filtre symétrique :

$$\forall j \in \llbracket -h, h \rrbracket : w_j = \frac{K_p(j/b)}{\sum_{i=-h}^h K_p(i/b)}$$

- $oldsymbol{\Theta}$ avec b=h+1 et K_p spécifique on retrouve le filtre d'Henderson
 - Pour les filtres asymétriques :

$$\forall j \in \llbracket -h, q \rrbracket : w_{a,j} = \frac{K_p(j/b)}{\sum_{i=-h}^q K_p(i/b)}$$

Filtres RKHS:rjdfilters::rkhs_filter()

- Utilisation de la théorie des RKHS pour approcher le filtre d'Henderson
- Avec K_p une **fonction de noyau**, le filtre symétrique :

$$\forall j \in \llbracket -h, h \rrbracket : w_j = \frac{K_p(j/b)}{\sum_{i=-h}^h K_p(i/b)}$$

- - Pour les filtres asymétriques :

$$\forall j \in \llbracket -h, q \rrbracket : w_{\mathsf{a},j} = \frac{K_{\mathsf{p}}(j/b)}{\sum_{i=-h}^{q} K_{\mathsf{p}}(i/b)}$$

3 b choisit par optimisation, e.g. minimisation du déphasage :

$$b_{q,arphi} = \min_{b_q} \int_0^{2\pi/12}
ho_s(\lambda)
ho_ heta(\lambda) \sin^2\left(rac{arphi_ heta(\omega)}{2}
ight) \,\mathrm{d}\omega$$

Filtres asymétriques

Plusieurs extremum


```
rkhs_optimal_bw()

## q=0 q=1 q=2 q=3 q=4 q=5

## 6.0000 6.0000 6.3875 8.1500 9.3500 6.0000
```

Approche FST: rjdfilters::fst filter()

Minimisation sous contrainte d'une somme pondérée de 3 critères :

$$\begin{cases} \min_{\theta} & J(\theta) = \alpha F_g(\theta) + \beta S_g(\theta) + \gamma T_g(\theta) \\ s.c. & C\theta = a \end{cases}$$

 F_g fidélité (fidelity, réduction de variance), S_g lissage (smoothness, critère d'Henderson), T_g temporalité (timeliness, déphasage)

Approche FST : rjdfilters::fst filter()

Minimisation sous contrainte d'une somme pondérée de 3 critères :

$$\begin{cases} \min_{\theta} & J(\theta) = \alpha F_g(\theta) + \beta S_g(\theta) + \gamma T_g(\theta) \\ s.c. & C\theta = a \end{cases}$$

 F_g fidélité (fidelity, réduction de variance), S_g lissage (smoothness, critère d'Henderson), T_{σ} temporalité (timeliness, déphasage)

- Solution unique
- Filtres asymétriques indépendants des données et du filtre symétrique

Choix des poids

Idée : sélectionner les poids qui conduisent à des filtres qui minimise les 3 critères par rapport à une autre méthode (e.g., LC) sous les mêmes contraintes polynomiales

Sommaire

- 1. Introduction
- 2. Description des méthodes
- 3. Comparaison des méthodes
- 3.1 Méthodologie
- 3.2 Un exemple
- 3.3 Déphasage
- 4. Conclusion

- 2 404 séries CJO (sts_inpr_m, IPI de l'UE) :
- 1. Désaisonnalisation avec X-13ARIMA (RJDemetra::x13) à chaque date pour extraire : série linéarisée, longueur des filtres saisonnier et tendance, schéma de décomposition et I-C ratio

- 2 404 séries CJO (sts_inpr_m, IPI de l'UE) :
- 1. Désaisonnalisation avec X-13ARIMA (RJDemetra::x13) à chaque date pour extraire : série linéarisée, longueur des filtres saisonnier et tendance, schéma de décomposition et I-C ratio
- Désaisonnalisation en fixant la série linéarisée et tous les autres paramètres et en utilisant un filtre spécifique pour la tendance-cycle (rjdfilters::x11())

- 2 404 séries CJO (sts_inpr_m, IPI de l'UE) :
- 1. Désaisonnalisation avec X-13ARIMA (RJDemetra::x13) à chaque date pour extraire : série linéarisée, longueur des filtres saisonnier et tendance, schéma de décomposition et I-C ratio
- Désaisonnalisation en fixant la série linéarisée et tous les autres paramètres et en utilisant un filtre spécifique pour la tendance-cycle (rjdfilters::x11())
- 3. À chaque date, estimation des points de retournement :
 - redressements : $y_{t-3} \ge y_{t-2} \ge y_{t-1} < y_t \le y_{t+1}$
 - ralentissements : $y_{t-3} \le y_{t-2} \le y_{t-1} > y_t \ge y_{t+1}$

- 2 404 séries CJO (sts_inpr_m, IPI de l'UE) :
- 1. Désaisonnalisation avec X-13ARIMA (RJDemetra::x13) à chaque date pour extraire : série linéarisée, longueur des filtres saisonnier et tendance, schéma de décomposition et I-C ratio
- Désaisonnalisation en fixant la série linéarisée et tous les autres paramètres et en utilisant un filtre spécifique pour la tendance-cycle (rjdfilters::x11())
- 3. À chaque date, estimation des points de retournement :
 - redressements : $y_{t-3} \ge y_{t-2} \ge y_{t-1} < y_t \le y_{t+1}$
 - ralentissements : $y_{t-3} \le y_{t-2} \le y_{t-1} > y_t \ge y_{t+1}$

Déphasage = temps nécessaire pour détecter le bon point de retournement sans révision

IPI fabrication de ciment, chaux et plâtre (C235) en Allemagne (point de retournement en février 2020)

Tendance-cycle de la série C235_DE avec le filtre Linear-Constant (LC)

Déphasage = 3 mois

Tendance-cycle de la série C235_DE avec le filtre Quadratic-Linear (QL)

Iul '20

Sep '20

Nov '20

lan '21

Mar '2

May '20

Mar '20

Ian '20

Nov '19

Sep '19

Tendance-cycle de la série C235_DE avec le filtre Cubic-Quadratic (CQ)

Tendance-cycle de la série C235_DE avec le filtre asymétrique direct (DAF)

Tendance-cycle de la série C235 DE avec le filtre RKHS

Déphasage = 6 mois

Tendance-cycle de la série C235_DE avec le filtre FST optimal par rapport au filtre LC et minimisant la timeliness

Déphasage = 7 mois

May '20

Iul '20

Sep '20

Nov '20

lan '21

Mar '20

Ian '20

Nov '19

Sep '19

Mar '2

Tendance-cycle de la série C235_DE avec le filtre FST optimal par rapport au filtre LC et ayant la timeliness la plus élevée

Déphasage = 6 mois

Tendance-cycle de la série C235_DE avec le filtre FST optimal par rapport au filtre LC et ayant une timeliness médiane

Déphasage = 6 mois

Iul '20

Sep '20

Nov '20

lan '21

May '20

Nov '19

Ian '20

Mar '20

Sep '19

							FST - LC			
	X-13ARIMA	LC	QL	CQ	DAF	$b_{q,arphi}$	Min.	Max.	Méd.	
Min	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0	
Q1	3,0	4,0	3,0	2,0	2,0	6,0	6,0	6,0	6,0	
Median	4,0	4,0	4,0	6,0	6,0	6,0	7,0	6,0	6,0	
Q3	5,0	5,0	7,0	7,0	7,0	7,0	7,0	6,0	7,0	
Max	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	
Mean	4,5	4,7	5,1	5,4	5,5	6,6	7,0	6,5	6,6	

							FST - LC			
	X-13ARIMA	LC	QL	CQ	DAF	$b_{q,arphi}$	Min.	Max.	Méd.	
Min	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0	
Q1	3,0	4,0	3,0	2,0	2,0	6,0	6,0	6,0	6,0	
Median	4,0	4,0	4,0	6,0	6,0	6,0	7,0	6,0	6,0	
Q3	5,0	5,0	7,0	7,0	7,0	7,0	7,0	6,0	7,0	
Max	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	
Mean	4,5	4,7	5,1	5,4	5,5	6,6	7,0	6,5	6,6	

							FST - LC			
	X-13ARIMA	LC	QL	CQ	DAF	$b_{q,arphi}$	Min.	Max.	Méd.	
Min	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0	
Q1	3,0	4,0	3,0	2,0	2,0	6,0	6,0	6,0	6,0	
Median	4,0	4,0	4,0	6,0	6,0	6,0	7,0	6,0	6,0	
Q3	5,0	5,0	7,0	7,0	7,0	7,0	7,0	6,0	7,0	
Max	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	
Mean	4,5	4,7	5,1	5,4	5,5	6,6	7,0	6,5	6,6	

							FST - LC		
	X-13ARIMA	LC	QL	CQ	DAF	$b_{q,arphi}$	Min.	Max.	Méd.
Min	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0
Q1	3,0	4,0	3,0	2,0	2,0	6,0	6,0	6,0	6,0
Median	4,0	4,0	4,0	6,0	6,0	6,0	7,0	6,0	6,0
Q3	5,0	5,0	7,0	7,0	7,0	7,0	7,0	6,0	7,0
Max	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0
Mean	4,5	4,7	5,1	5,4	5,5	6,6	7,0	6,5	6,6

 Dans la construction des filtres asymétriques, on peut se restreindre à ceux qui conserve les polynômes de degré au plus 1 (et exclure les filtres QL, CQ et DAF)

- Dans la construction des filtres asymétriques, on peut se restreindre à ceux qui conserve les polynômes de degré au plus 1 (et exclure les filtres QL, CQ et DAF)
- Durant la crise du COVID-19, la méthode actuelle X-13ARIMA semble satisfaisante en moyenne. . .

- Dans la construction des filtres asymétriques, on peut se restreindre à ceux qui conserve les polynômes de degré au plus 1 (et exclure les filtres QL, CQ et DAF)
- Durant la crise du COVID-19, la méthode actuelle X-13ARIMA semble satisfaisante en moyenne... mais peut provenir des définitions, indicateurs et méthodologie utilisés

- Dans la construction des filtres asymétriques, on peut se restreindre à ceux qui conserve les polynômes de degré au plus 1 (et exclure les filtres QL, CQ et DAF)
- Durant la crise du COVID-19, la méthode actuelle X-13ARIMA semble satisfaisante en moyenne... mais peut provenir des définitions, indicateurs et méthodologie utilisés
- Dans certains cas des filtres alternatifs peuvent aider peut aider à comparer les résultats

• Comprendre quand et pourquoi une méthode est plus performante qu'une autre

- Comprendre quand et pourquoi une méthode est plus performante qu'une autre
- Etudes sur d'autres données avec d'autres méthodes

- Comprendre quand et pourquoi une méthode est plus performante qu'une autre
- Etudes sur d'autres données avec d'autres méthodes
- Utiliser des paramètres différents en fin de période?

- Comprendre quand et pourquoi une méthode est plus performante qu'une autre
- Etudes sur d'autres données avec d'autres méthodes
- Utiliser des paramètres différents en fin de période?
- Impact des points atypiques? quid des méthodes robustes?

Merci pour votre attention

Package **Q**:

• palatej/rjdfilters

Rapport en ligne : https://aqlt-stage3a.netlify.app/