Лабораторная работа 3.1.3

"Изучение плазмы газового разряда в неоне"

17 декабря 2020 г.

Цель:

изучение вольт-амперной характеристики тлеющего разряда, изучение свойств плазмы методом зондовых характеристик.

Оборудование:

стеклянная газоразрядная трубка, наполненная изотопом неона, высоковольтный источник питания (ВИП), источник питания постоянного тока, делитель напряжения, резистор, потенциометр, амперметры, вольтметры, переключатели.

Теория

Плазма

В ионизированном газе поле ионов «экранируется» электронами. Для поля ${\bf E}$ и плотности ρ электрического заряда

div
$$\mathbf{E} = 4\pi\rho$$
,

а с учётом сферической симметрии и $\mathbf{E} = -\mathrm{grad}\ \varphi$:

$$\frac{d^2\varphi}{dr^2} + \frac{2}{r}\frac{d\varphi}{dr} = -4\pi\rho. \tag{1}$$

Плотности заряда электронов и ионов (которые мы считаем бесконечно тяжёлыми и поэтому неподвижными)

$$\rho_e = -ne \cdot \exp\left(\frac{e\varphi}{kT_e}\right),$$

$$\rho_i = ne.$$
(2)

Тогда из (1) в предположении $\frac{e\varphi}{kT_e}\ll 1$ получим

$$\varphi = \frac{Ze}{r}e^{-r/r_D},\tag{3}$$

где $r_D = \sqrt{\frac{kT_e}{4\pi ne^2}}$ – paduyc Дебая. Среднее число ионов в сфере такого радиуса

$$N_D = n \frac{4}{3} \pi r_D^2. (4)$$

Теперь выделим параллелепипед с плотностью n электронов, сместим их на x. Возникнут поверхностные заряды $\sigma=nex$, поле от которых будет придавать электронам ускорение:

$$\frac{d^2x}{dt^2} = -\frac{eE}{m} = -\frac{4\pi ne^2}{m}x.$$

Отсюда получаем nлазменную (nенгmровсkую) vастоту колебаний электронов:

$$\omega_p = \sqrt{\frac{4\pi ne^2}{m}}. (5)$$

Одиночный зонд

При внесении в плазму уединённого проводника — $30n\partial a$ — с потенциалом, изначально равным потенциалу точки плазмы, в которую его помещают, на него поступают токи электроннов и ионов:

$$I_{e0} = \frac{n\langle v_e \rangle}{4} eS,$$

$$I_{i0} = \frac{n\langle v_i \rangle}{4} eS,$$
(6)

где $\langle v_e \rangle$ и $\langle v_i \rangle$ — средние скорости электронов и ионов, S — площадь зонда, n — плотность электронов и ионов. Скорости электронов много больше скорости ионов, поэтому $I_{i0} \ll I_{e0}$. Зонд будет заряжаться до некоторого равновестного напряжения $-U_f$ — плавающего потенциала.

В равновесии ионный ток мало меняется, а электронный имеет вид

$$I_e = I_0 \exp\left(-\frac{eU_f}{kT_e}\right).$$

Будем подавать потенциал U_3 на зонд и снимать значение зондового тока I_3 . Максимальное значение тока $I_{e\mathrm{H}}$ – электронный ток насыщения, а минимальное $I_{i\mathrm{H}}$ – ионный ток насыщения. Значение из эмпирической формулы Бомона:

$$I_{iH} = 0.4 neS \sqrt{\frac{2kT_e}{m_i}}. (7)$$

Двойной зонд

Двойной зонд — система из двух одинаковых зондов, расположенных на небольшом расстоянии друг от друга, между которыми создаётся разность потенциалов, меньшая U_f . Рассчитаем ток между ними вблизи I=0. При небольших разностях потенциалов ионные токи на оба зонда близки к току насыщения и компенсируют друг друга, а значит величина результирующего тока полностью связана с разностью электронных токов. Пусть потенциалы на зондах

$$U_1 = -U_f + \Delta U_1,$$

$$U_2 = -U_f + \Delta U_2.$$

Между зондами $U=U_2-U_1=\Delta U_2-\Delta U_1$. Через первый электрод

$$I_1 = I_{i\mathrm{H}} + I_{e1} = I_{i\mathrm{H}} - \frac{1}{4} neS \langle v_e \rangle \exp\left(-\frac{eU_f}{kT_e}\right) \exp\left(\frac{e\Delta U_1}{kT_e}\right) = I_{i\mathrm{H}} \left(1 - \exp\left(\frac{e\Delta U_1}{kT_e}\right)\right). \tag{8}$$

Аналогично через второй получим

$$I_2 = I_{iH} \left(1 - \exp\left(\frac{e\Delta U_2}{kT_e}\right) \right) \tag{9}$$

Из (7) и (8) с учётом последовательного соединение зондов ($I_1 = -I_2 = I$):

$$\Delta U_1 = \frac{kT_e}{e} \ln\left(1 - \frac{I}{I_{iH}}\right)$$

$$\Delta U_2 = \frac{kT_e}{e} \ln \left(1 + \frac{I}{I_{i\text{H}}} \right)$$

Тогда итоговые формулы для разности потенциалов и тока

$$U = \frac{kT_e}{e} \ln \frac{1 - I/I_{iH}}{1 + I/I_{iH}}, I = I_{iH} th \frac{eU}{2kT_e}.$$
 (10)

Реальная зависимость выглядит несколько иначе и описывается формулой

$$I = I_{iH} th \frac{eU}{2kT_e} + AU. \quad (11)$$

Из этой формулы можно найти формулу для T_e : для U=0 мы найдём $I_{i\mathrm{H}}$, продифференцируем в точке U=0 и с учётом th $\alpha \approx \alpha$ при малых α и $A \to 0$ получим:

$$kT_e = \frac{1}{2} \frac{eI_{iH}}{\frac{dI}{dU}|_{U=0}}.$$
 (12)

Описание установки

Стеклянная газоразрядная трубка имеет холодный (ненакаливаемый) полый катод, три анода и *геттерный* узел — стеклянный баллон, на внутреннюю повехность которого напылена газопоглощающая плёнка (*геттер*). Трубка наполнена изотопом неона 22 Ne при давлении 2 мм рт. ст. Катод и один из анодом (I и II) с помощью переключателя Π_1 подключается через балластный резистор R_6 (≈ 450 кОм) к регулируемому ВИП с выкодным напряжением до 5 кВ.

При подключении к ВИП анода-I между ним и катодом возникает газовый разряд. Ток разряда измеряется миллиамперметром A_1 , а падение напряжения на разрядной трубке – цифровым вольтметром V_1 , подключённым к трубке черезе высокоомный (25 МОм) делитель напряжения с коэффициентом $(R_1 + R_2)/R_2 = 10$.

При подключении к ВИП анода-П разряд возникает в пространстве между катодом и анодом-П, где находятся двойной зонд, используемый для диагностики плазмы положительного столба. Зонды изготовлены из молибденовой проволоки диаметром d=0.2 мм и имеют длину l=5.2 мм. Они подключены к источнику питания GPS через потенциометр R. Переключатель Π_2 позволяет изменять полярность напряжения на зондах. Величина напряжения на зондах изменяеься с помощью дискретного переключателя «V» выходного напряжения источника питания и потенциометра R, а измеряется цифровым вольтметром V_2 . Для измерения зондового тока используется мультиметр A_2 .

Результаты измерений и обработка результатов

Измерим напряжение зажигания $U_z=(20.1\pm0.2)B$ Далее снимим вольт амперную характеристику и построим график

Рис. 1: зависимость I(U)

по наклону определим максимальное дифференциальное сопротивление заряда $R_{max}=$ построим зондовые характеристики для различных токов

Рис. 2: I=1.5mB

Рис. 3: I=3mB

Рис. 4: I=5mB

найдём токи насыщения I_{in} и температуры электронов T_e . Считая концентрации ионов и электронов равными, найдём их, пользуясь формулой (7). Рассчитаем плазменную частоты ω_p по формуле (5) и радиус Дебая r_D , оценим среднее число ионов в дебаевской сфера N_D по формуле (4) и степень ионизации α , приняв $P\approx 1$ мбар, и занесём все результаты в таблицу. построим зависимость температуры и концетрации электронов от разрядного тока, в предположении что концетрация электронов равна концентрации ионов

I_p , мА	$T_e, 10^4 \text{ K}$	$n_e, 10^{15} \text{ m}^{-3}$	$\omega_p,10^4\mathrm{pag/c}$	$r_D, 10^{-5} \text{ cm}$	N_D	$\alpha, 10^{-7}$
1.5	3.7 ± 0.4	144 ± 12	144 ± 12	49 ± 3	30	24
3.0	2.8 ± 0.3	107 ± 10	107 ± 10	66 ± 5	40	13
5	1.5 ± 0.2	75 ± 6	75 ± 6	94 ± 10	57	7

Рис. 5: $T_e(I_p)$

Рис. 6: $n_e(I_p)$