AE 05: Model Conditions

Songs on Spotify

Driver:	, Reporter:	, Gopher:	
	· -	· -	
	2024-09-1	1	

! Important

- Open RStudio and create a subfolder in your AE folder called "AE-05"
- Go to the Canvas and locate your AE 05 assignment to get started.
- Upload the ae-05.qmd and spotify-popular.csv files into the folder you just created. The .qmd and PDF responses are due in Canvas no later than Monday, September 16 at 11:59pm.

```
library(tidyverse)
library(ggformula)
library(broom)
library(knitr)
library(patchwork) #arrange plots in a grid
```

Data

The data set for this assignment is a subset from the Spotify Songs Tidy Tuesday data set. The data were originally obtained from Spotify using the **spotifyr** R package.

It contains numerous characteristics for each song. You can see the full list of variables and definitions here. This analysis will focus specifically on the following variables:

variable	class	description
track_id	character	Song unique ID
$track_name$	character	Song Name
$track_artist$	character	Song Artist
track_popularity	double	Song Popularity (0-100) where higher is better

variable	class	description
energy	double	Energy is a measure from 0.0 to 1.0 and represents a perceptual measure of intensity and activity. Typically, energetic tracks feel fast, loud, and noisy. For example, death metal has high energy, while a Bach prelude scores low on the scale. Perceptual features contributing to this attribute include dynamic range, perceived loudness, timbre, onset rate, and general entropy.
valence	double	A measure from 0.0 to 1.0 describing the musical positiveness conveyed by a track. Tracks with high valence sound more positive (e.g. happy, cheerful, euphoric), while tracks with low valence sound more negative (e.g. sad, depressed, angry).

```
spotify <- read_csv("data/spotify-popular.csv")</pre>
```

Are high energy songs more positive? To answer this question, we'll analyze data on some of the most popular songs on Spotify, i.e. those with track_popularity >= 80. We'll use linear regression to fit a model to predict a song's positiveness (valence) based on its energy level (energy).

Below are plots as part of the exploratory data analysis.

```
p1 <- gf_histogram(~valence, data = spotify) |>
    gf_labs(title = "Distribution of Valence",
        subtitle = " for Popular songs on Spotify",
        x = "Valence")

p2 <- gf_histogram(~energy, data = spotify) |>
    gf_labs(title = "Distribution of Energy",
        subtitle = "for Popular songs on Spotify",
        x = "Energy")
p1 + p2 # The patchwork package will arrange your plots for you
```

Distribution of Valence for Popular songs on Spotify

Distribution of Energy for Popular songs on Spotify


```
gf_point(valence ~ energy, data = spotify) |>
   gf_labs(title = "Valence vs. Energy",
        subtitle = "Popular songs on Spotify",
        x = "Energy",
        y = "Valence")
```

Valence vs. Energy

Exercise 1

Fit a model using the energy of a song to predict its valence, i.e. positiveness. Include the 90% confidence interval for the coefficients, and display the output using 3 digits.

```
## add code
```

Exercise 2

Let's check the model conditions before doing any inference. Fill in the code below to use the augment() function to create a new data frame containing the residuals and fitted values (among other information)

```
! Important
```

Note: Remove #|eval: false from the code chunk after you have filled in the code.

```
spotify_aug <- augment(____)</pre>
```

Exercise 3

Make a plot of the residual vs. fitted values.

```
# add code here
```

Exercise 4

Fill in the code to make a histogram of the residuals and a normal QQ-plot.

resid_hist + resid_qq

Exercise 5

Assess the four model conditions. Use the plots from the previous exercises to help make the assessment.

- Linearity
- Constant variance
- Normality
- Independence

Exercise 6

Calculate \mathbb{R}^2 and interpret this value in the context of the data.

Exercise 7

Calculate RMSE and interpret this value in the context of the data.

! Important

To submit the AE:

- Render the document to produce the PDF with all of your work from today's class.
- Push all your work to your ae-06 repo on GitHub. (You do not submit AEs on Gradescope).