Extending propositional separation logic for robustness properties

Alessio Mansutti

LSV, CNRS, ENS Paris-Saclay, Université Paris-Saclay, Cachan, France

FSTTCS - December 2018

Separation logic and program verification

Hoare calculus is based on proof rules manipulating Hoare triples.

$$\{\varphi\} \subset \{\varphi'\}$$

where

- C is a program
- φ (precondition) and φ' (postcondition) are assertions in some logical language.

Any (memory) model that satisfies φ will satisfy φ' after being modified by C.

Programming languages with pointers

The so-called **rule of constancy**

$$\frac{\{\varphi\}\ C\ \{\varphi'\}}{\{\varphi\wedge\psi\}\ C\ \{\varphi'\wedge\psi\}} \qquad \qquad \text{``C does not mess with ψ''}$$

is generally not valid: it is unsound if ${\it C}$ manipulates pointers.

Programming languages with pointers

The so-called rule of constancy

$$\frac{\{\varphi\}\ C\ \{\varphi'\}}{\{\varphi\wedge\psi\}\ C\ \{\varphi'\wedge\psi\}} \qquad \qquad \text{``C does not mess with ψ''}$$

is generally not valid: it is unsound if C manipulates pointers.

Example:

$$\frac{\{\exists u.[x] = u\} [x] \leftarrow 4 \{[x] = 4\}}{\{[y] = 3 \land \exists u.[x] = u\} [x] \leftarrow 4 \{[y] = 3 \land [x] = 4\}}$$

not true if \boldsymbol{x} and \boldsymbol{y} are in aliasing.

Separation logic (Reynolds'02)

Separation logic add the notion of **separation** (*) of a state, so that the **frame rule**

$$\frac{\{\varphi\}\ C\ \{\varphi'\}\ \operatorname{\mathsf{modv}}(C)\cap\operatorname{\mathsf{fv}}(\psi)=\emptyset}{\{\varphi*\psi\}\ C\ \{\varphi'*\psi\}}$$

is valid.

Intuitively, separation means $([x] = n * [y] = m) \implies x \neq y$

Separation logic (Reynolds'02)

Separation logic add the notion of **separation** (*) of a state, so that the **frame rule**

$$\frac{\{\varphi\} \ C \ \{\varphi'\} \ \operatorname{modv}(C) \cap \operatorname{fv}(\psi) = \emptyset}{\{\varphi * \psi\} \ C \ \{\varphi' * \psi\}}$$

is valid.

Intuitively, separation means $([x] = n * [y] = m) \implies x \neq y$

- Automatic Verifiers: Infer, SLAyer, Predator
- Semi-automatic Verifiers: Smallfoot, Verifast

Also, see "Why Separation Logic Works" (Pym et al. '18)

Memory states

Separation Logic is interpreted over **memory states** (s, h) where:

store, $s: VAR \rightarrow LOC$

heap, $h : LOC \rightarrow_{fin} LOC$

where $VAR = \{x, y, z, ...\}$ set of (program) variables, LOC set of locations (typically LOC $\cong \mathbb{N} \cong VAR$).

- Disjointed heaps: $dom(h_1) \cap dom(h_2) = \emptyset$
- Sum of disjoint heaps $(h_1 + h_2) = \text{sum of partial functions}$

Propositional Separation Logic SL(*, -*)

$$\varphi \coloneqq \neg \varphi \mid \varphi_1 \land \varphi_2 \mid \text{emp} \mid \mathbf{x} = \mathbf{y} \mid \mathbf{x} \hookrightarrow \mathbf{y} \mid \varphi_1 \ast \varphi_2 \mid \varphi_1 \ast \varphi_2$$

Semantics

- **standard** for \wedge and \neg ;
- $(s,h) \models \text{emp} \iff \text{dom}(h) = \emptyset$
- $\bullet (s,h) \models x = y \iff s(x) = s(y)$
- $[s,h] \models x \hookrightarrow y \iff h(s(x)) = s(y), \text{ (previously } [x] = y)$

Separating conjunction (*)

$$(s,h) \models \varphi_1 * \varphi_2$$
 if and only if

There is a way to split the heap into two so that, together with the store, one part satisfies φ_1 and the other satisfies φ_2 .

Separating implication (*)

 $(s,h) \models \varphi_1 \twoheadrightarrow \varphi_2$ if and only if

Whenever a (disjoint) heap that, together with the store, satisfies φ_1 is added, the resulting memory state satisfies φ_2 .

Decision Problems

- Hoare proof-system requires to solve classical problems:
 - satisfiability/validity/entailment
 - weakest precondition/strongest postcondition

$$\frac{P \implies P'}{\{P\} \ C \ \{Q'\}} \quad \frac{Q' \implies Q}{\{Q\}}$$
 consequence rule

■ satisfiability is PSPACE-complete for SL(*, →*)

Note: entailment and validity reduce to satisfiability for SL(*, -*).

Robustness properties

- **Acyclicity** holds for φ iff every model of φ is acyclic
- **Garbage freedom** holds for φ iff in every model of φ , each memory cell is reachable from a program variable of φ

C. Jansen et al., ESOP'17

Checking for robustness properties is EXPTIME-complete for Symbolic Heaps with Inductive Predicates.

- Symbolic Heaps \implies no negation, no -*, no \land inside *
- Inductive Predicates: akin of Horn clauses where * replaces ∧

$$P(\vec{\mathbf{x}}) \Leftarrow \exists \vec{\mathbf{z}} \ Q_1 \overset{*}{\not\sim} \dots \overset{*}{\not\sim} Q_n \qquad \qquad \mathsf{fv}(Q_i) \subseteq \vec{\mathbf{x}}, \vec{\mathbf{z}}$$

Our Goal Provide similar results, but for **propositional** separation logic.

Desiderata

We aim to an extension of propositional separation logic where

- satisfiability, validity and entailment are decidable
- in PSPACE (as propositional separation logic)
- robustness properties reduce to one of these problems

Known extensions

SL(*, -*) + reachability and one quantified variable

- $(s,h) \models \operatorname{reach}^+(x,y) \iff h^L(s(x)) = s(y) \text{ for some } L \geq 1$
- $(s,h) \models \exists u \varphi \iff \text{there is } \ell \in \texttt{LOC s.t. } (s[u \leftarrow \ell],h) \models \varphi$

It is only possible to quantify over the variable name $\boldsymbol{u}.$

Robustness properties reduce to entailment

- **Acyclicity**: $\varphi \models \neg \exists u \; \mathtt{reach}^+(u,u)$
- Garbage freedom: $\varphi \models \forall u \ (alloc(u) \Rightarrow \bigvee_{x \in fv(\varphi)} reach(x, u))$

where $u \notin fv(\varphi)$ and

- \blacksquare alloc(x) $\stackrel{\text{def}}{=}$ x \hookrightarrow x \rightarrow * \bot
- reach(x,y) $\stackrel{\text{def}}{=}$ x = y \vee reach⁺(x,y)

Restrictions

The logic $1SL(*, -*, reach^+)$ is undecidable. We syntactically restrict the logic so that for each occurrence of $reach^+(x, y)$:

- R1 it is not on the right side of its first -* ancestor (seeing the formula as a tree)
- R2 if x = u then y = u (syntactically)

For example, given φ, ψ satisfying these conditions,

- reach $^+$ (u,x)*($\varphi woheadrightarrow \psi$) only satisfies R1
- $\varphi \twoheadrightarrow (\operatorname{reach}^+(x,u) \twoheadrightarrow \psi)$ satisfies both R1 and R2
- $\varphi \twoheadrightarrow (\psi * reach^+(u, u))$ only satisfies R2

Note: robustness properties are expressible in this fragment.

Results

- Weakening even slightly R1 leads to undecidability
- 1 $1SL_{R1}(*, -*, reach^+)$: satisfiability is NON-ELEMENTARY (more precisely, TOWER-hard)
- $2 1SL_{R1}^{R2}(*, -*, reach^+)$: satisfiability is PSPACE-complete

Proof Techniques

- (1) reduce Propositional interval temporal logic under locality principle (PITL) to a logic captured by $1SL_{R1}(*, -*, reach^+)$
- (2) extend the test formulae technique used for SL(*, reach)

PITL (Moszkowski'83)

$$\varphi \coloneqq \mathsf{pt} \mid \mathsf{a} \mid \varphi_1 | \varphi_2 \mid \neg \varphi \mid \varphi_1 \wedge \varphi_2$$

- \blacksquare interpreted on finite non-empty words over a finite alphabet Σ
- $lackbox{ } \mathfrak{w}\models \mathtt{pt} \quad \iff |\mathfrak{w}|=1$
- $\blacksquare \ \mathfrak{w} \models \mathsf{a} \qquad \iff \ \mathfrak{w} \ \mathsf{headed} \ \mathsf{by} \ \mathsf{a} \qquad \qquad (\mathsf{locality} \ \mathsf{principle})$
- $$\begin{split} \bullet & \ \mathfrak{w} \models \varphi_1 | \varphi_2 \iff & \ \mathfrak{w}[1:j] \models \varphi_1 \ \text{and} \ \mathfrak{w}[j:|\mathfrak{w}|] \models \varphi_2 \\ & \ \text{for some} \ j \in [1,|\mathfrak{w}|] \end{split}$$

$$w_1 \dots w_{\mathtt{j}-1} \hspace{0.2cm} w_{\mathtt{j}} \hspace{0.2cm} w_{\mathtt{j}+1} \dots w_{|\mathfrak{w}|} \hspace{0.2cm}$$

Satisfiability is decidable, but NON-ELEMENTARY

Auxiliary Logic on Trees (ALT)

$$\varphi \coloneqq \varphi_1 \wedge \varphi_2 \mid \neg \varphi \mid \varphi_1 * \varphi_2 \mid \exists \mathbf{u} \ \varphi \mid \mathsf{T}(\mathbf{u}) \mid \mathsf{G}(\mathbf{u})$$

- interpreted on acyclic memory states
- one *special* location: the root ρ of a tree
- $(s,h) \models \mathsf{T}(\mathsf{u}) \text{ iff } s(\mathsf{u}) \in \mathrm{dom}(h) \text{ and it does reach } \rho$
- $(s,h) \models \mathsf{G}(\mathtt{u}) \text{ iff } s(\mathtt{u}) \in \mathrm{dom}(h) \text{ and it does not reach } \rho$
- \blacksquare \exists u φ and $\varphi_1 * \varphi_2$ as before

Note: ALT is captured by $1SL_{R1}(*, -*, reach^+)$.

Reducing PITL to ALT

Easy to encode words as acyclic memory states

- Set of models encoding words can be characterised in ALT
- However, difficult to translate $\varphi_1 | \varphi_2$: ALT cannot express properties about the set of locations in dom(h) that do not reach ρ , apart from its size

After the cut, left side does not reach ρ anymore.

Reducing PITL to ALT: alternative semantics for PITL

■ a marked representation of a

$$\boxed{ \hspace{0.1cm} \mathfrak{w}_{1} \ldots \mathfrak{w}_{\mathfrak{j}-1} \hspace{0.1cm} \mathfrak{w}_{\mathfrak{j}} \hspace{0.1cm} \mathfrak{w}_{\mathfrak{j}+1} \ldots \boxed{ \mathfrak{w}_{|\mathfrak{w}|} }$$

 $\varphi \psi$ on standard semantics:

 $\mathbf{\varphi} \psi$ on marked semantics (can be simulated in ALT)

- 1 ALT and $1SL_{R1}(*, -*, reach^+)$ are NON-ELEMENTARY
- 2 ALT is decidable in TOWER, as it is captured by $SL(\forall,*)$

$1\mathrm{SL}^{R2}_{R1}(*, -\!\!\!*, \mathtt{reach}^+)$ is in PSPACE

$1SL_{R1}^{R2}(*, -*, reach^+)$ is in PSPACE

Test Formulae "technique"

Test formulae example on a Toy Logic

$$\varphi \coloneqq \neg \varphi \mid \varphi_1 \wedge \varphi_2 \mid \varphi_1 * \varphi_2 \mid \exists u \varphi \mid \text{alloc(u)} \mid u \overset{2}{\hookrightarrow} u$$
 where $(s,h) \models u \overset{2}{\hookrightarrow} u$ iff $h(s(u)) = \ell \neq s(u)$ and $h(\ell) = s(u)$.

 β -1 times *

Some formulae:

$$\#loops(2) \ge \beta \stackrel{\text{def}}{=} \overline{\exists u \ u \stackrel{2}{\hookrightarrow} u * \dots * \exists u \ u \stackrel{2}{\hookrightarrow} u}$$

- $H_1 \stackrel{\text{def}}{=} \exists u \text{ alloc}(u) \land \neg(\exists u \text{ alloc}(u) * \exists u \text{ alloc}(u))$
- $rem > 0 \stackrel{\text{def}}{=} \top$
- $Arr rem > \beta + 1 \stackrel{\text{def}}{=}$ $\exists \mathtt{u} : \mathtt{alloc}(\mathtt{u}) \land \neg \mathtt{u} \overset{2}{\hookrightarrow} \mathtt{u} \land ((\mathtt{alloc}(\mathtt{u}) \land H_1) * \mathtt{rem} \geq \beta))$

Test Formulae

Design an equivalence relation on models, based on the satisfaction of atomic predicates (test formulae), e.g.

$$\# loops(2) \ge \beta$$
 rem $\ge \beta$

2 Show that any formula of our logic is equivalent to a Boolean combination of test formulae, e.g.

$$\#loops(2) \ge 3 * \#loops(2) \ge 5 \iff \#loops(2) \ge 8$$

3 Prove small-model property for the logic of test formulae.

(1) Designing Test Formulae

- Fix $\alpha \in \mathbb{N}^+$
- Let $Test(\alpha)$ be the **finite** set of predicates:

$$\{\# \texttt{loops}(2) \geq \beta, \ \texttt{rem} \geq \gamma \ | \ \beta \in [1, \mathcal{L}(\alpha)], \ \gamma \in [1, \mathcal{G}(\alpha)] \}$$
 for some functions \mathcal{L} and \mathcal{G} in $[\mathbb{N} \to \mathbb{N}]$

Indistinguishability relation $(s, h) \approx_{\alpha} (s', h')$

for every
$$T \in \text{Test}(\alpha)$$
, $(s, h) \models T$ iff $(s', h') \models T$

Note: α is related to the number of occurrences of * and * in a formula of separation logic.

(2) * elimination Lemma

We want to design $Test(\alpha)$ so that the following result holds

Hypothesis:

- $(s,h) \approx_{\alpha} (s',h')$
- $\alpha_1, \alpha_2 \in \mathbb{N}^+ \text{ s.t. } \alpha_1 + \alpha_2 = \alpha$
- $h_1 + h_2 = h$

Thesis: there are h'_1, h'_2 s.t.

- $h_1' + h_2' = h'$
- $\bullet (s,h_1) \approx_{\alpha_1} (s',h_1')$
- $(s,h_2) \approx_{\alpha_2} (s',h_2')$

Note: it can be restated as an EF-style game. Spoiler splits α and h, Duplicator has to mimic the split on h' so that \approx still holds.

(2) * elimination Lemma

We want to design $Test(\alpha)$ so that the following result holds

Hypothesis:

```
(s,h)\approx_{\alpha}(s',h')
\alpha
h
\begin{cases} \# \text{loops}(2) \geq \beta, & \beta \in [1,\mathcal{L}(\alpha)] \\ \text{rem} \geq \gamma & \gamma \in [1,\mathcal{G}(\alpha)] \end{cases}
h
(s \text{ find } \mathcal{L} \text{ and } \mathcal{G} \text{ so that lemma holds.}
(s,h_2)\approx_{\alpha_2}(s',h_2')
```

Note: it can be restated as an EF-style game. Spoiler splits α and h, Duplicator has to mimic the split on h' so that \approx still holds.

Finding $\mathcal G$ for $\operatorname{rem} \geq \gamma$ formulae

Given $h = h_1 + h_2$, every location not in a loop of size 2 of h cannot be in a loop of size 2 of h_1 or h_2 . Then \mathcal{G} must satisfy

$$\mathcal{G}(\alpha) \geq \max_{\substack{\alpha_1,\alpha_2 \in \mathbb{N}^+ \\ \alpha_1 + \alpha_2 = \alpha}} (\mathcal{G}(\alpha_1) + \mathcal{G}(\alpha_2))$$

Finding \mathcal{L} for $\#loops(2) \geq \beta$ formulae

Take $h = h_1 + h_2$. Given a loop of size 2 of h, two cases:

- **both locations of the loop are in the same heap** $(h_1 \text{ or } h_2)$;
- one location of the loop is in h_1 and the other is in h_2 .

$$\mathcal{L}(\alpha) \geq \max_{\substack{\alpha_1, \alpha_2 \in \mathbb{N}^+ \\ \alpha_1 + \alpha_2 = \alpha}} (\mathcal{L}(\alpha_1) + \mathcal{L}(\alpha_2) + \mathcal{G}(\alpha_1) + \mathcal{G}(\alpha_2))$$

Finding ${\mathcal L}$ and ${\mathcal G}$

We have the inequalities

$$egin{aligned} \mathcal{G}(1) &\geq 1 &\qquad \mathcal{G}(lpha) \geq \max_{egin{array}{c} lpha_1, lpha_2 \in \mathbb{N}^+ \ lpha_1 + lpha_2 = lpha \ \end{aligned}} &(\mathcal{G}(lpha_1) + \mathcal{G}(lpha_2)) \ \mathcal{L}(1) \geq 1 &\qquad \mathcal{L}(lpha) \geq \max_{egin{array}{c} lpha_1, lpha_2 \in \mathbb{N}^+ \ lpha_1 + lpha_2 = lpha \ \end{aligned}} &(\mathcal{L}(lpha_1) + \mathcal{L}(lpha_2) + \mathcal{G}(lpha_1) + \mathcal{G}(lpha_2)) \end{aligned}$$

Which admit $\mathcal{G}(\alpha) = \alpha$ and $\mathcal{L}(\alpha) = \frac{1}{2}\alpha(\alpha + 3) - 1$ as a solution.

An indistinguishability relation built on the set

$$\begin{cases} \# \texttt{loops}(2) \geq \beta, & \beta \in \left[1, \frac{1}{2}\alpha(n+3) - 1\right] \\ \texttt{rem} \geq \gamma & \gamma \in [1, \alpha] \end{cases}$$

satisfy the * elimination Lemma.

(3) Test formulae, after * elimination

Hypothesis: Two family of test formulae, such that

- captures the atomic predicates of the Toy Logic
- satisfies the * elimination Lemma (and ∃ elimination Lemma)

Thesis: for every formulae φ of Toy Logic, by taking $\alpha \geq |\varphi|$ we have

- If $(s,h) \approx_{\alpha} (s,h')$ then we have $(s,h) \models \varphi$ iff $(s,h') \models \varphi$.
- $m{\varphi}$ is equivalent to a Boolean combination of test formulae.

Small-model property

- Small-model property for Boolean combination of test formulae carries over to Toy Logic.
- 2 All bounds are polynomial \implies test formulae in PSPACE
- 3 Toy Logic is in PSPACE

$1SL_{R1}^{R2}(*, -*, reach^+)$ is in PSPACE

$$\begin{split} \pi &:= \mathtt{x} = \mathtt{y} \ | \ \mathtt{x} \hookrightarrow \mathtt{y} \ | \ \mathtt{emp} \ | \ \underline{\mathcal{A}} \twoheadrightarrow \mathcal{C} \ (\mathtt{R1}) \\ \mathcal{C} &:= \pi \ | \ \mathcal{C} \land \mathcal{C} \ | \ \neg \mathcal{C} \ | \ \exists \mathtt{u} \ \mathcal{C} \ | \ \mathcal{C} \ast \mathcal{C} \\ \mathcal{A} &:= \pi \ | \ \underline{\mathtt{reach}}^+(v_1, v_2) \ | \ \mathcal{A} \land \mathcal{A} \ | \ \neg \mathcal{A} \ | \ \exists \mathtt{u} \ \mathcal{A} \ | \ \mathcal{A} \ast \mathcal{A} \end{split}$$
 where (R2) if $v_1 = \mathtt{u}$ then $v_2 = \mathtt{u}$

Not so easy...

- Find the right set of test formulae that capture the logic
- Asymmetric $\mathcal{A} \twoheadrightarrow \mathcal{C}$.
 - two indistinguishability relation, two sets of test formulae
 - two * and two ∃ elimination Lemmata
 - → elimination Lemma that glues the two relations

If you like bounds: Test(X, α) for the \mathcal{A} fragment

$$\begin{cases} v_1 = v_2, \ \operatorname{sees}_X(v_1, v_2) \geq \beta^{\color{}} \\ \# \operatorname{loop}_X(\beta) \geq \beta^{\color{}}, \ \# \operatorname{loop}_X^{\color{}} \geq \beta^{\color{}} \\ \# \operatorname{pred}_X^{\color{}}(x) \geq \beta, \ \operatorname{size}_X^{\color{}} \geq \beta \\ u \in \operatorname{sees}_X(v_1, v_2) \geq (\overleftarrow{\beta}, \overrightarrow{\beta}) \\ u = v_1, \ u \in \operatorname{loop}_X(\beta), \ u \in \operatorname{loop}_X^{\color{}} \\ u \in \operatorname{pred}_X^{\color{}}(x), \ u \in \operatorname{size}_X^{\color{}} \end{cases}$$

$$\begin{cases} \beta^{\color{}} \in [1, \frac{1}{6}(\alpha+1)(\alpha+2)(\alpha+3)] \\ \beta^{\color{}} \in [1, \frac{1}{2}\alpha(\alpha+3)-1], \ \beta \in [1, \alpha] \\ \overleftarrow{\beta} \in [1, \frac{1}{6}\alpha(\alpha+1)(\alpha+2)+1] \end{cases}$$

$$\overrightarrow{\beta} \in [1, \frac{1}{6}\alpha(\alpha+1)(\alpha+2) + 1]$$

$$\overrightarrow{\beta} \in [1, \frac{1}{6}\alpha(\alpha+1) + 1]$$

$$\overrightarrow{\beta} \in [1, \frac{1}{6}\alpha(\alpha+1) + 1]$$

$$\overrightarrow{\beta} \in [1, \frac{1}$$

Recap

- 1SL^{R2}_{R1}(*, -*, reach⁺) strictly generalise other PSPACE-complete extensions of propositional separation logic
- Can be used to check for robustness properties

Recap

■ ALT seems to be an interesting tool for reductions, as it is a fragment or it is easily captured by many logics in TOWER e.g. QCTL(U), $MSL(\diamondsuit, \langle U \rangle, *)$, 2SL(*)