Boundaries and Boundary Conditions

CONVERGE Studio Workflow

- Case Setup module
 - Begin a project
 - Import the surface geometry
 - o Prepare the surface
 - Configure case setup
 - Boundary conditions and region definitions
 - Initialization
 - Grid control
 - Physical models (turbulence, spray, combustion, sources, CHT, VOF, etc.)
 - Advanced options
 - Export input and data files to the Case Directory

------Run CONVERGE simulation-----

- *Line Plotting* module
- Post-Processing 3D module

Boundary Conditions

- To solve the governing transport equations, a boundary condition for each equation must be specified
- A boundary condition applies constraints to a differential equation when solving for a unique solution
- To set a boundary condition, specify the location and constraints of the boundary
- Improperly defined boundary conditions can negatively impact your simulation results

Boundary Type

- All flagged boundaries must have a *Boundary Type*
- CONVERGE offers the following boundary types
 - o INFLOW
- SYMMETRY
- o OUTFLOW
- o TWO_D

o WALL

- o GT-SUITE
- o PERIODIC
- o INTERFACE
- After you select the boundary type, CONVERGE may require the following parameters to be defined
 - o Pressure, temperature, velocity, species mass fraction, passive fraction, and/or turbulence

CONVERGE Boundary Conditions

- ullet CONVERGE offers two ways to express the parameters (ϕ) as boundary conditions
 - Dirichlet (specified value)

$$\phi = f$$

Neumann (specified first derivative)

$$\frac{\partial \phi}{\partial x} = f$$

• Additional boundary conditions are available but they are special cases of Dirichlet or Neumann (e.g., slip, law-of-the-wall, etc.)

Setting Up Boundary Conditions

To set up the boundary conditions for a simulation,
 go to Case Setup > Boundary Conditions > Boundary

INFLOW and OUTFLOW Boundary Types

- An INFLOW or OUTFLOW boundary specifies the flow going into or out of the computational domain, respectively
- An INFLOW/OUTFLOW boundary requires you to specify the following parameters
 - Pressure, velocity, and temperature
 - If solving for species or passives, you must specify the species or passive fractions
 - If using a turbulence model, you must specify turbulent kinetic energy and either turbulent dissipation rate or specific dissipation rate, depending on the model

INFLOW/OUTFLOW: Pressure (1/3)

- There are three types of INFLOW/OUTFLOW pressure boundary conditions
 - Dirichlet (specified pressure value)
 - Zero normal Neumann (zero pressure gradient)
 - o Transonic

- You may specify a static pressure or total pressure for the boundary
- For an INFLOW boundary, you can specify if the flow is subsonic or supersonic
 - For a subsonic flow, use the total Dirichlet pressure and Neumann velocity conditions
 OR the Neumann pressure and Dirichlet velocity conditions
 - o For a supersonic flow, use the static Dirichlet pressure and Dirichlet velocity conditions

INFLOW/OUTFLOW: Pressure (2/3)

- For a Dirichlet OUTFLOW pressure boundary condition, enter a distance (*presdist*) downstream from the boundary pressure (P_{static}) to a known user-specified pressure ($P_{specified}$)
 - \circ Using the pressure at the cell nearest to the boundary ($P_{fluid, cell}$), CONVERGE calculates P_{static}
 - \circ Using *presdist* will help dampen reflecting pressure waves in the domain by reducing the difference between $P_{fluid, cell}$ and P_{static}

$$P_{static} = \left(\frac{1}{1 + presdist}\right) P_{specified} + \left(\frac{presdist}{1 + presdist}\right) P_{fluid,cell}$$

INFLOW/OUTFLOW: Pressure (3/3)

- For the transonic OUTFLOW boundary condition
 - \circ Specify minimum and maximum Mach numbers (M_{min} and M_{max}), which dictate the transition from subsonic to supersonic flow
 - \circ CONVERGE will automatically adapt the static pressure (P_{static}) calculation at the outlet based on the local Mach number

$$P_{static} = \begin{cases} P_{static} & M \leq M_{min} \\ \left(\frac{M_{max} - M}{M_{max}}\right) P_{static} + \left(\frac{M}{M_{max}}\right) P_{fluid,node} & M_{min} < M < M_{max} \\ P_{fluid,node} & M \geq M_{max} \end{cases}$$

INFLOW/OUTFLOW: Velocity (1/5)

- Choose one of seven types of INFLOW/OUTFLOW boundary conditions available for the velocity equation
 - Dirichlet (specified velocity value)
 - Zero normal Neumann (zero velocity gradient)
 - Specified mass flow rate (special Dirichlet condition)
 - Pump flow rate (special Dirichlet condition)
 - Normal Neumann (special Neumann condition)
 - This condition forces the velocity direction to be normal to the boundary surface
 - Only for INFLOW boundaries
 - Average velocity
 - o UDF

INFLOW/OUTFLOW: Velocity (2/5)

- Dirichlet
 - Enforces the three velocity components at the boundary location
- Zero normal Neumann
 - Enforces a zero velocity gradient at the boundary

INFLOW/OUTFLOW: Velocity (3/5)

- Mass flow rate
 - \circ Sets the velocity (u_i) for all cells at the INFLOW/OUTFLOW boundary based on the user-specified mass flow rate

$$u_i = -\frac{Mass\ flow}{\rho_{ave}A}n_i$$

 ho_{ave} is the average density at the boundary surface

A is the total surface area

 n_i is the outward-pointing surface normal

INFLOW/OUTFLOW: Velocity (4/5)

- Pump boundary condition
 - Sets the mass flow based on the pressure, as specified in a userprovided file (e.g., pump_massflow.in)
 - The pressure values in this file correspond to the average pressure of the region in which the boundary lies
 - List the region ID of the pump boundary

INFLOW/OUTFLOW: Velocity (5/5)

- Normal Neumann
 - o Ensures the velocity direction is normal to the INFLOW boundary
 - Only for INFLOW boundaries
- Average velocity
 - Ensures the velocity profile starts uniformly and then transiently develops throughout the simulation
 - Conserves average velocity
- UDF
 - Sets velocity profile based on user-specified file
 - Allows complex velocity boundary conditions

INFLOW/OUTFLOW: Temperature

- There are two types of INFLOW/OUTFLOW temperature boundary conditions
 - Dirichlet (specified temperature value)
 - Zero normal Neumann (zero temperature gradient)
- For complex temperature boundary conditions, you may specify a UDF file
- We recommend a Dirichlet INFLOW condition and a Neumann OUTFLOW condition
- If you specify total pressure for the pressure boundary condition, CONVERGE assumes the temperature boundary condition is total temperature

INFLOW/OUTFLOW: Species

- There are two types of species boundary conditions
 - Dirichlet (specified species value)
 - Zero normal Neumann (zero species gradient)
- Specify species mass fractions
 - You must import a reaction mechanism or define species in order for the species to be available for boundary conditions
 - Any species not set in the boundary condition will have a mass fraction of 0.0
 - Mass fractions must add up to 1.0
 - Use the <u>Normalize</u> button

INFLOW/OUTFLOW: Passive

- You can specify a tracer ("passive") at a boundary and monitor its movement through the domain
 - The passive is defined in Case Setup > Materials > Species > Passives
 - Most simulations do not require passives; however, for some combustion models, passives are essential

• There are two types of INFLOW/OUTFLOW boundary conditions available for the

passive equation

- Dirichlet (specified passive value)
- Zero normal Neumann (zero passive gradient)

INFLOW/OUTFLOW: Turbulent Kinetic Energy (1/2)

- If using a turbulence model, you must specify a boundary condition for turbulent kinetic energy (tke)
- There are three types of INFLOW/OUTFLOW boundary conditions for tke
 - Dirichlet (specified tke value)
 - Zero normal Neumann (zero tke gradient)
 - Only for OUTFLOW boundaries
 - Turbulent intensity
 - This option is a special case of the Dirichlet boundary condition

INFLOW/OUTFLOW: Turbulent Kinetic Energy (2/2)

• When using turbulence intensity, CONVERGE calculates tke (k) from the turbulence intensity (I) and local velocity (u) via

$$k = \frac{3}{2}u_i^2 I^2$$

- Typical turbulence intensity values depend on Reynolds Number
 - High turbulence flow: 0.05 to 0.20 (e.g., engines and turbines)
 - Medium turbulence flow: 0.01 to 0.05 (e.g., low speed internal flow)
 - Low turbulence flow: < 0.01 (e.g., low speed external flow)

INFLOW/OUTFLOW: Turbulent Dissipation Rate (1/2)

- If using a k-ε turbulence model, there are three types of INFLOW/OUTFLOW boundary conditions for the turbulent dissipation rate (eps)
 - Dirichlet (specified eps value)
 - Zero normal Neumann (zero eps gradient)
 - Only for OUTFLOW boundaries
 - Turbulent length scale
 - This option is a special case of the Dirichlet boundary condition

Turbulent Dissipation (eps) Boundary Condition		
Length scale 💠		
0.003	m	Use file

INFLOW/OUTFLOW: Turbulent Dissipation Rate (2/2)

• When using the turbulent length scale boundary condition, CONVERGE calculates eps (ε) from a modeling constant c_{μ} , the (k), and the user-specified *length scale*

$$\varepsilon = \frac{c_{\mu}^{3/4} k^{3/2}}{length \ scale}$$

- c_{μ} is typically 0.09
- Typically the turbulent length scale depends on the hydraulic diameter
 - We recommend starting with a length scale that is less than 10% of the hydraulic diameter

INFLOW/OUTFLOW: Specific Turbulent Dissipation (1/2)

- If using a k-ω turbulence model, there are three types of INFLOW/OUTFLOW boundary conditions for the specific turbulent dissipation (omega)
 - Dirichlet (specified omega value)
 - Zero normal Neumann (zero omega gradient)
 - Only for OUTFLOW boundaries
 - Turbulent length scale
 - This option is a special case of the Dirichlet boundary condition

INFLOW/OUTFLOW: Specific Turbulent Dissipation (2/2)

• When using the turbulent length scale boundary condition, CONVERGE calculates omega (ω) from the turbulent modeling constant β_{star} , tke, and the userspecified length scale

$$\omega = \frac{k^{1/2}}{(\beta_{star})(length\ scale)}$$

• The tke, eps, and omega parameters are related with the turbulent modeling constant (β_{star}) via the following relationship

$$\omega = \frac{\varepsilon}{(\beta_{star})k}$$

OUTFLOW: Backflow

- INFLOW and OUTFLOW boundaries are similar with the main exception being that OUTFLOW boundaries require input for reverse flow (i.e., flow back into the domain)
- Specify realistic reverse flow inputs to ensure convergence
- The boundary conditions can be either Dirichlet or zero normal Neumann
- You must define backflow boundary conditions for the following
 - Temperature
 - Species
 - o Passive
 - Turbulence (only if a turbulence model is active)

INFLOW/OUTFLOW: Varying Boundary Conditions (1/2)

- For an INFLOW/OUTFLOW boundary, you can temporally and/or spatially vary any of the previously described boundary conditions by clicking on the Use file box and then the gear button
 - Manually enter values using CONVERGE Studio or
 - o Import a *.in file
- For transient simulations, boundary conditions can vary temporally and/or spatially
- For steady-state simulations, boundary conditions can only vary spatially

Use file

INFLOW/OUTFLOW: Varying Boundary Conditions (2/2)

- If you choose temporal variation, specify the type as SEQUENTIAL or CYCLIC
- If you choose spatial variation, specify the type of movement as a scale, translation, or rotation
- The <u>Template Type</u> menu offers the suggested format for the tabulated variation
- If your tabulated variation is in a two-column format, you can plot the variation by clicking the button

How to Set Up Both Temporal and Spatial Variation

- 1) Click the <u>Spatial</u> profile type
- 2) Specify the spatial variation
- 3) Select the [time | vector XYZ] template type
- 4) Right click on the column header and insert a column for the parameter name (e.g., temperature)
- 5) Fill in the table manually or by importing a file
- 6) Click Accept

WALL Boundary Type

- A WALL boundary prohibits flow through it
- A WALL boundary requires you to specify the following parameters
 - Velocity, temperature, and roughness
 - o If using a turbulence model, you must also specify turbulent kinetic energy and either turbulent dissipation rate or specific dissipation rate

WALL: Velocity (1/5)

- There are two components to the WALL velocity boundary condition
 - Wall motion type: this is the boundary condition
 - Surface movement: this is the physical movement of the surface triangles
- WALL motion type can be Stationary, Translating, Rotating, Rotating and Translating, Arbitrary, Dependent, FSI, or User-specified
 - For each, specify Law-of-the-wall, slip (a special Neumann condition), No-slip (a special Dirichlet condition), or Dirichlet (specified velocity value)
- Surface movement can be FIXED or MOVING

WALL: Velocity (2/5)

- Stationary
 - Specifies a fixed, non-moving wall boundary
- Translating
 - Imposes a translational motion
 - This can be user-specified or calculated as piston motion
 - If MOVING, the boundary moves according to a user-specified velocity vector and influences the adjacent fluid
 - If FIXED, the boundary remains motionless while CONVERGE applies a non-zero velocity boundary condition to mimic the surface translation

WALL: Velocity (3/5)

- Rotating
 - Imposes a rotational motion
 - o If MOVING, the boundary rotates according to a user-specified rotation rate, center of rotation, and axis of rotation
 - If FIXED, the boundary remains motionless while CONVERGE applies a non-zero angular velocity condition to mimic the surface rotation
- Translating and Rotating
 - Imposes a translational and rotational motion
 - This assumes a MOVING surface where the boundary will translate and rotate according to user-specified quantities

WALL: Velocity (4/5)

Arbitrary

 Specifies the position and orientation of the boundary according to a user-supplied input file

Dependent

- Forces each vertex on a boundary to move with the adjacent boundary that shares that vertex
- Appropriate for simulations in which adjacent fluid cells can be in different regions at different times

WALL: Velocity (5/5)

- FSI
 - Specifies a boundary whose movement depends on FSI forces (FSI model must be active)
- User
 - Specifies a boundary that follows a user-specified deformation of individual vertices

WALL: Velocity: Piston Motion (1/4)

- To move a boundary with the same velocity and direction as the piston motion, click the <u>Piston motion</u> button
 - CONVERGE will use the engine parameters to internally generate position tables for the motion using a slidercrank mechanism
 - This option is only available for a Translating WALL boundary
- You can output the piston motion file
- You can set a phase-lag to offset the piston motion (z_{piston})

$$z_{piston} = f(\theta + \phi)$$

 \circ Here f is the function describing piston position, θ is the crank angle, and ϕ is the phase-lag

WALL: Velocity: Piston Motion (2/4)

- If the engine has a wrist pin offset, specify it in Case Setup > Engine application > IC Engine
- Apply a non-zero wrist pin offset when the axes of the piston and crankshaft are not aligned
 - Otherwise, top dead center
 (TDC) occurs at 0 crank
 angle degrees

WALL: Velocity: Piston Motion (3/4)

WALL: Velocity: Piston Motion (4/4)

ullet CONVERGE calculates the piston position in the z direction (z_{piston}) using the following formula

$$z_{piston} = 2a - l \left[1 - \cos \left\{ \sin^{-1} \left(\frac{a \sin \theta + \Gamma}{l} \right) \right\} \right] - a(1 - \cos \theta)$$

a is the crank radius Γ is the wrist pin offset l is the connecting rod length θ is the crank angle in *radians*

WALL: Temperature (1/2)

- There are five types of WALL temperature boundary conditions
 - o Law-of-the-wall
 - Dirichlet (specified temperature value)
 - Zero normal Neumann (zero temperature gradient)
 - Heat flux
 - o Convection
- CONVERGE calculates the heat transfer across interface boundaries if you check the coupled box
 - Check this option for both WALL boundaries associated with the interface
 - Enter in the contact resistance value
 - A value of 0.0 implies no contact resistance between two solids

WALL: Temperature (2/2)

- The CHT1D boundary condition models heat transfer in thin solid layers between a fluid and a solid
 - This condition is only compatible with law-of-thewall and Dirichlet temperature boundary conditions

WALL: Roughness (1/2)

- Model the wall roughness effects with two roughness parameters
 - Absolute roughness
 - Roughness constant

- The default absolute roughness of 0.0 corresponds to a smooth wall
- The default roughness constant is 0.5
- This information assumes the roughness is constant across the entire surface

Wall: Turbulence (1/2)

- If using a turbulence model, you must specify a boundary condition for turbulence parameters (tke and either eps or omega)
- There is only one type of tke boundary condition
 - Zero normal Neumann (zero tke gradient)
- There are two types of eps/omega boundary conditions
 - Zero normal Neumann (zero eps/omega gradient)
 - o Wall model
 - This option is a special case of the Dirichlet boundary condition

Wall: Turbulence (2/2)

• When using the turbulent models, CONVERGE calculates eps (ε) from a modeling constant c_{μ} , tke (k), the distance from the wall to the middle of the cell (y), and the Von Karmen's constant (κ)

$$\varepsilon = \frac{c_{\mu}^{3/4} k^{3/2}}{\kappa y}$$

• The tke, eps, and omega parameters are related with the turbulent modeling constant (β_{star}) via the following relationship

$$\omega = \frac{\varepsilon}{(\beta_{star})k}$$

WALL: Varying Boundary Condition

- For a WALL boundary, you can vary the temperature and/or velocity conditions by clicking on the <u>Use file</u> box and then the gear button
- You can vary the temperature boundary conditions both temporally and spatially
- For spatially varying temperature
 - Measure temperature at any CAD
 - The z location in the spatially varying temperature file must correspond to the piston at BDC
 - Start the simulation at any CAD
- You can only vary the velocity boundary conditions temporally

PERIODIC Boundary Type (1/2)

- A PERIODIC boundary must occur with its pair
 - The two boundaries must be geometrically identical and planar
 - CONVERGE copies the values from the first PERIODIC boundary to the matching PERIODIC boundary
 - Choose the matching boundary from the drop-down menu
- Specify if the boundary is Stationary or Translating
 - If a boundary is Translating, vertices contained entirely within the boundary will move according to the specified velocity
- Specify the shape as either Sector (Pie shape) or Planar (Box shape)
 - If Sector, the PERIODIC boundaries must rotate about the z axis and be symmetric about the x axis

PERIODIC Boundary Type (2/2)

- To specify a Sector shape, specify an angle of rotation and vector about which the first PERIODIC boundary would need to rotate to match its partner
 - The vector originates from the origin and the sign of the angle of rotation is determined from the right-hand rule

 To specify a Planar shape, specify the vector for which the first PERIODIC boundary would need to translate to match its partner

SYMMETRY Boundary Type

- A SYMMETRY boundary specifies the computational domain be symmetric
 - The velocity boundary condition defaults to SLIP
 - All other boundary conditions default to zero normal Neumann
 - This is useful to model a portion of the geometry
- You can use a SYMMETRY boundary to perfectly reflect spray parcels

TWO_D Boundary Type

- A TWO_D boundary type specifies a two-dimensional simulation
- You must still configure a three-dimensional surface in CONVERGE Studio
 - Create a pair of identical parallel boundaries and designate them both as TWO_D boundaries
 - Ensure that the corresponding TWO_D boundaries are on either side of the z axis
- You cannot use the TWO_D boundary for moving geometries or spray modeling

GT-SUITE Boundary Type

- A GT-SUITE boundary type couples CONVERGE with GT-SUITE to send and receive boundary condition values
- Choose the boundary ID
 (from the GT-SUITE file) at
 which CONVERGE GT-SUITE
 coupling occurs

GT-SUITE: Passive

- There are two types of GT-SUITE boundary conditions available for the passive equation
 - Dirichlet (specified passive value)
 - Zero normal Neumann (zero passive gradient)
- If you do not specify the value of any passives, the values of all passive scalars will be coupled with GT-SUITE

GT-SUITE: Turbulence

- If using a turbulence model, you must specify a boundary condition for turbulence parameters (tke and either eps or omega)
- There are two types of GT-SUITE boundary conditions for tke
 - Dirichlet (specified tke value)
 - Intensity
- There are two types of WALL boundary conditions for eps and omega
 - Dirichlet (specified eps/omega value)
 - Turbulent length scale
 - This option is a special case of the Dirichlet boundary condition

INTERFACE Boundary Type

- An INTERFACE boundary demarcates the boundary between two different materials or phases
 Use this type of boundary to simulate conjugate heat transfer
- You must define a forward and reverse boundary for each INTERFACE
 - The boundary facing the direction of the normal vectors is the forward boundary
 - The boundary facing the opposite direction of the normal vectors is the reverse boundary
- CONVERGE controls the interface triangles between the two phases
 - If you check the <u>Disconnect</u> box, CONVERGE disables the interface triangles and allows flow between regions during OPEN events; otherwise, interface triangles will remain for the entire simulation

THANK YOU! CONVERGECFD.COM

