圖樣辨識

專題製作期末報告書

主題: 手寫數字辨識

組長: 劉家豪

組員1:郭先旻

組員 2: 彭子豪

目錄

壹、 前言	4
一、動機	4
二、目的	4
貳、 研究方法	5
一、 mnist 數據集	5
二、 softmax 回歸模型	7
三、 卷積神經網路(CNN)	10
1.建立模型	11
2.訓練模型	12
3.測試模型	13
參、 學習成果	14
1. 隨機性	14
2. Overfitting(過擬合)	14
3. 如何建立出更好的模型	15
肆、 參考資料	16

圖目錄

圖	1 mn	ist 數據解釋圖 6
邑	2 sof	tmax 模型架構圖7
圖	3 sof	tmax_mnist
圖	4 sof	tmax_mnist_Accuracy 8
圖	5 sof	tmax_mnist_moreTraining g
圖	6 sof	tmax_mnist_moreTraining_Accuracy 9
邑	7 CN	N 概念圖 10
邑	8 CN	N 概念圖 2 10
邑	9 CN	N_mnist_CreateModel
邑	10 CI	NN_mnist_trainingModel
圖	11 CI	NN_mnist_trainingData_Accuracy $\dots 13$
圖	12 CI	NN_mnist_testData_Accuracy 13
圖	13 O	verfitting

壹、前言

一、動機

手寫數字辨識適合做為學習圖樣辨識、深度學習的入門題目,各個教學時常都以這道題目由淺入深的帶領學生學習,此題目擁有著完善的資料、方法和數據,並且容易找到 step by step 的教學,我們這組所有人都是第一次接觸此領域,所以具有上述優勢的這項題目是很吸引我們的。

二、目的

學習是我們最大的目的,藉由理解手寫數字辨識的原理及運作,進而學習圖樣辨識的基礎,並在實作的過程中了解如何建立、訓練、測試模型,以及了解使用深度學習這項技術可能會遭遇的問題有哪些。

貳、研究方法

一、mnist 數據集

最開始我們遇到的問題是訓練模型所需要的數據,一般的情況我們可能需要先自己拿起筆寫出無數個數字,接著把它存成圖像檔放進電腦,還要再將所有的圖像檔處理好並標記上正確的答案,最後還必須將一些錯誤的檔案給清理掉,避免模型學習到錯誤的知識,這些事情需要耗費我們大量的時間,但這並不是我們這項專題的重點,事實上除了我們也有非常多人有這同樣的問題,所以 Yann LeCun、Corinna Cortes、Christopher J.C. Burges 三人提供了 mnist 數據集來解決這部分的問題。

mnist 數據集中擁有大量且乾淨的手寫數字圖片數據, 幫我們省去了蒐集數據、處理數據等等事項,讓我們可以 把時間花在學習建立、訓練、測試模型上。 mnist 數據來源: http://yann.lecun.com/exdb/mnist/

我們使用了 mnist 數據集中的 60000 筆 training data, 以及 10000 筆的 test data。

每張圖片是 28 pixels*28 pixels, 如下圖。

圖 1 mnist 數據解釋圖

來源:

https://fgc.stpi.narl.org.tw/activity/videoDetail/4b1141305d9cd231015d9d08fb62002d

二、softmax 回歸模型

SOFTMAX 回歸模型: softmax 回歸模型是一個較為常見且基本的模型, sotfmax 模型會將輸入(input)的資訊,透過乘上權重(weight)與加上偏差(bias),再經由 softmax 函式轉換成機率的方式,得到每一種類別所代表的可能性並作為輸出(output),進而決定輸入的資訊是屬於哪一種類別。

圖 2 softmax 模型架構圖

來源:

https://fgc.stpi.narl.org.tw/activity/videoDetail/4b1141305d9cd231015d9d08fb62002d

最初我們跟著網路上的教學先建立出最簡單的 softmax 回歸模型來進行手寫數字辨識。

```
from tensorflow.examples.tutorials.mnist import input data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
import tensorflow as tf
x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
y = tf.nn.softmax(tf.matmul(x, W) + b)
y_ = tf.placeholder(tf.float32, [None, 10])
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))
cross_entropy = tf.reduce_mean(
 tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y))
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
sess = tf.InteractiveSession()
tf.global_variables_initializer().run()
for _ in range(1000):
 batch_xs, batch_ys = mnist.train.next_batch(100)
 sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
accuracy = tf.reduce mean(tf.cast(correct prediction, tf.float32))
print(sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels}))
```

圖 3 softmax_mnist

訓練完的模型測試結果為辨識成功率 90.56%。

```
print(sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels}))
0.9056
```

圖 4 softmax_mnist_Accuracy

接著我們大幅增加模型的訓練次數。

訓練完的模型測試結果為辨識成功率為 92.64%

```
print(sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels}))
0.9264
```

圖 6 softmax_mnist_moreTraining_Accuracy

經過多次測試,我們發現這個簡單的模型所能達到的極限大約落在辨識成功率 92%,但離我們最初訂定的目標 95%還有一段距離,所以接下來我們採用更進階的模型來達成更高的成功率。

教學資料來源:

https://blog.gtwang.org/programming/tensorflow-softmaxregression-hand-written-digits-recognizer-tutorial/

三、卷積神經網路(CNN)

卷積神經網絡(Convolutional Neural Network)簡稱 CNN, CNN 是所有深度學習課程、書籍必教的模型(Model), CNN 在影像識別方面的威力非常強大,許多影樣辨識的模型也都是以 CNN 的架構為基礎去做延伸。

圖 7 CNN 概念圖

圖 8 CNN 概念圖 2

資料來源:參考資料[5]

1.建立模型

以上述的架構為原型,我們建立出了以下模型。

Layer (type)	Output Shape	Param #
Conv2D_layer_1 (Conv2D)	(None, 24, 24, 16)	416
MaxP_layer_1 (MaxPooling2D)	(None, 12, 12, 16)	0
Conv2D_layer_2 (Conv2D)	(None, 10, 10, 32)	4640
MaxP_layer_2 (MaxPooling2D)	(None, 5, 5, 32)	0
Drop_layer_1 (Dropout)	(None, 5, 5, 32)	0
flatten_1 (Flatten)	(None, 800)	0
Dense_layer_1 (Dense)	(None, 64)	51264
Dense_layer_2 (Dense)	(None, 128)	8320
Drop_layer_2 (Dropout)	(None, 128)	0
output_layer_1 (Dense)	(None, 10)	1290
Total params: 65,930 Trainable params: 65,930 Non-trainable params: 0		

None

2.訓練模型

接著使用 training data 來訓練此模型,訓練 20 次,大約 花費了6分50秒。

```
Train on 60000 samples, validate on 10000 samples
Epoch 1/20
60000/60000 [
              Epoch 2/20
                60000/60000 [
Epoch 3/20
                      ===========] - 17s 288us/step - loss: 0.0771 - acc: 0.9777 - val_loss: 0.0366 - val_acc: 0.9878
60000/60000 T
Epoch 4/20
60000/60000
                           ========= 1 - 17s 288us/step - loss: 0.0647 - acc: 0.9815 - val loss: 0.0305 - val acc: 0.9897
Epoch 5/20
60000/60000
                           ========] - 17s 288us/step - loss: 0.0544 - acc: 0.9843 - val_loss: 0.0294 - val_acc: 0.9901
Epoch 6/20
60000/60000
                                        - 17s 289us/step - loss: 0.0487 - acc: 0.9862 - val_loss: 0.0275 - val_acc: 0.9911
Epoch 7/20
60000/60000
                                ======] - 17s 291us/step - loss: 0.0452 - acc: 0.9866 - val_loss: 0.0266 - val_acc: 0.9912
Epoch 8/20
60000/60000
                                        - 17s 290us/step - loss: 0.0408 - acc: 0.9878 - val_loss: 0.0250 - val_acc: 0.9915
Epoch 9/20
60000/60000
                                     ==] - 17s 292us/step - loss: 0.0358 - acc: 0.9892 - val_loss: 0.0274 - val_acc: 0.9920
Epoch 10/20
60000/60000
                                        - 18s 292us/step - loss: 0.0351 - acc: 0.9899 - val_loss: 0.0244 - val_acc: 0.9921
Epoch 11/20
60000/60000
                             ========] - 18s 292us/step - loss: 0.0335 - acc: 0.9902 - val_loss: 0.0255 - val_acc: 0.9926
Epoch 12/20
60000/60000
                                        - 18s 293us/step - loss: 0.0312 - acc: 0.9911 - val_loss: 0.0239 - val_acc: 0.9922
Epoch 13/20
60000/60000
                                    ===] - 18s 294us/step - loss: 0.0299 - acc: 0.9911 - val loss: 0.0220 - val acc: 0.9932
Epoch 14/20
60000/60000
                                        - 17s 290us/step - loss: 0.0283 - acc: 0.9918 - val_loss: 0.0206 - val_acc: 0.9937
Epoch 15/20
60000/60000
                                        - 18s 303us/step - loss: 0.0256 - acc: 0.9927 - val_loss: 0.0215 - val_acc: 0.9936
Epoch 16/20
60000/60000
                                         - 18s 296us/step - loss: 0.0244 - acc: 0.9928 - val_loss: 0.0231 - val_acc: 0.9935
Epoch 17/20
60000/60000
                                         - 18s 294us/step - loss: 0.0228 - acc: 0.9930 - val_loss: 0.0217 - val_acc: 0.9938
Epoch 18/20
60000/60000
                                        - 18s 294us/step - loss: 0.0233 - acc: 0.9933 - val_loss: 0.0216 - val_acc: 0.9935
Epoch 19/20
                           ========] - 18s 296us/step - loss: 0.0230 - acc: 0.9933 - val_loss: 0.0219 - val_acc: 0.9941
60000/60000
Epoch 20/20
                            ========] - 18s 296us/step - loss: 0.0222 - acc: 0.9933 - val_loss: 0.0209 - val_acc: 0.9944
60000/60000 [
```

圖 10 CNN mnist trainingModel

3.測試模型

使用 training data 測試辨識成功率為 99.8%

```
# test the trained model using training data
score = model_1.evaluate(x_train, y_train, verbose=0)
print('Train loss:', score[0])
print('Train accuracy:', score[1])
```

Train loss: 0.006880404092968153

Train accuracy: 0.998

圖 11 CNN_mnist_trainingData_Accuracy

使用 test data 測試辨識成功率為 99.44%

```
# test the trained model using testing data
score = model_1.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
```

Test loss: 0.020870362593263417

Test accuracy: 0.9944

圖 12 CNN mnist testData Accuracy

參、學習成果

透過此專題我們已經了解如何建立、訓練、測試模型,並且了解到一些我們所遇到的問題。

1. 隨機性

在訓練模型的時候,kernel 是隨積的,被丟掉的神經 元也是隨積的,初始的權重也是隨積的,同一個模型所訓 練出來的結果也不相同,需要花費大量的時間來重新訓練 才能得出較好的結果。

2. Overfitting(過擬合)

以手寫數字辨識並且使用 mnist 數據集的情況來討論,發生 Overfitting 的機率比 Underfitting(欠擬合)的機率高很多。

Overfitting 會造成模型對於 training data 擁有非常高的辨識成功率,但對於 test data 的辨識成功率反而降低,我們建立的模型已經藉由使用 Dropout 來降低發生 Overfitting 的機率,但相對的也會增加 Underfitting 的機率。

圖 13 Overfitting

圖片來源:

https://zh.wikipedia.org/wiki/%E9%81%8E%E9%81%A9

3. 如何建立出更好的模型

建立出更好的模型是一件很困難的事,根據理論較多層的深度學習模型會擁有更佳的效果,但由於隨機性和Overfitting都可能導致辨識成功率不增反減,建出更好的模型成為了一項大難題。

肆、參考資料

[1]http://yann.lecun.com/exdb/mnist/

[2]https://fgc.stpi.narl.org.tw/activity/videoDetail/4b1141305d 9cd231015d9d08fb62002d

[3]https://fgc.stpi.narl.org.tw/activity/videoDetail/4b1141305d9cd2310 15d9d08fb62002d

[4] https://blog.gtwang.org/programming/tensorflow-softmax-regression-hand-written-digits-recognizer-tutorial/

[5]https://medium.com/@yehjames/%E8%B3%87%E6%96%99 %E5%88%86%E6%9E%90-

%E6%A9%9F%E5%99%A8%E5%AD%B8%E7%BF%92-

%E7%AC%AC5-1%E8%AC%9B-

%E5%8D%B7%E7%A9%8D%E7%A5%9E%E7%B6%93%E7%B6%B

2%E7%B5%A1%E4%BB%8B%E7%B4%B9-convolutional-neural-

network-4f8249d65d4f

[6]https://zh.wikipedia.org/wiki/%E9%81%8E%E9%81%A9