From Natural Variation To Optimal Policy? The Importance of Endogenous Peer Group Formation

Scott E. Carrell, Bruce I.Sacerdote and James E. West Presentation Valentin Stumpe

- Definition Peer Group: Social Group with similar interests and demographic background.
- In a classroom: The entirety of your classmates with whom you interact
- What effect do your peers abilities have on you, conditional on your own ability
- Analyze effects, design reassignment algorithm to maximize academic peformance of low-ability students (design new classes!)
- Results: Surprisingly, find negative treatment effects on the low-ability students. Why?

- Definition Peer Group: Social Group with similar interests and demographic background.
- In a classroom: The entirety of your classmates with whom you interact
- What effect do your peers abilities have on you, conditional on your own ability
- Analyze effects, design reassignment algorithm to maximize academic peformance of low-ability students (design new classes!)
- Results: Surprisingly, find negative treatment effects on the low-ability students. Why?

- Definition Peer Group: Social Group with similar interests and demographic background.
- In a classroom: The entirety of your classmates with whom you interact
- What effect do your peers abilities have on you, conditional on your own ability?
- Analyze effects, design reassignment algorithm to maximize academic peformance of low-ability students (design new classes!)
- Results: Surprisingly, find negative treatment effects on the low-ability students. Why?

- Definition Peer Group: Social Group with similar interests and demographic background.
- *In a classroom:* The entirety of your classmates with whom you interact
- What effect do your peers abilities have on you, conditional on your own ability?
- Analyze effects, design reassignment algorithm to maximize academic peformance of low-ability students (design new classes!)
- Results: Surprisingly, find negative treatment effects on the low-ability students. Why?

- Introduction to the Peer Literature
- Empirical Strategy
- Predicted Results
- Actual Results
- 6 Discussion and Link to Roy-Model
- 6 Lookout

- Introduction to the Peer Literature
- 2 Empirical Strategy
- Predicted Results
- Actual Results
- 6 Discussion and Link to Roy-Model
- 6 Lookout

- Introduction to the Peer Literature
- 2 Empirical Strategy
- Predicted Results
- Actual Results
- 6 Discussion and Link to Roy-Model
- 6 Lookout

- Introduction to the Peer Literature
- 2 Empirical Strategy
- Predicted Results
- Actual Results
- 6 Discussion and Link to Roy-Model
- 6 Lookout

- Introduction to the Peer Literature
- 2 Empirical Strategy
- Predicted Results
- 4 Actual Results
- 5 Discussion and Link to Roy-Model
- 6 Lookout

- Introduction to the Peer Literature
- 2 Empirical Strategy
- Predicted Results
- 4 Actual Results
- 5 Discussion and Link to Roy-Model
- 6 Lookout

- 1 Introduction to the Peer Literature
- Empirical Strategy
- Predicted Results
- Actual Results
- 6 Discussion and Link to Roy-Model
- **a** Lookout

Introduction to Peer Literature

- Peers play an important role on performance wherever they appear: Workplace, Education, Day-to-Day Behavior
- Large body of research dedicated to identification of peer effects, but only more recent papers tried to explore the potential of reassignment to maximize outcomes

- Sacerdote (2001) finds that peers (college roommates) have impact on GPA and decisions to join social groups (e.g. fraternities)
- Zimmerman (2003) uses data on grades, SAT scores, and SAT scores of roommates in quasi-experimental approach. Finds that verbal SAT scores seem to have the strongest peer effect
- \bullet Carrell, Fullerton and West (2009): Find persisting and nonlinear peer-effects in peer groups of ${\sim}30$ students
- Lyle (2007): While estimates of group effects are usually positive and significant, common characteristics may be driving this correlation → Bias?

- Sacerdote (2001) finds that peers (college roommates) have impact on GPA and decisions to join social groups (e.g. fraternities)
- Zimmerman (2003) uses data on grades, SAT scores, and SAT scores of roommates in quasi-experimental approach. Finds that verbal SAT scores seem to have the strongest peer effect
- \bullet Carrell, Fullerton and West (2009): Find persisting and nonlinear peer-effects in peer groups of ${\sim}30$ students
- Lyle (2007): While estimates of group effects are usually positive and significant, common characteristics may be driving this correlation → Bias?

- Sacerdote (2001) finds that peers (college roommates) have impact on GPA and decisions to join social groups (e.g. fraternities)
- Zimmerman (2003) uses data on grades, SAT scores, and SAT scores of roommates in quasi-experimental approach. Finds that verbal SAT scores seem to have the strongest peer effect
- \bullet Carrell, Fullerton and West (2009): Find persisting and nonlinear peer-effects in peer groups of ${\sim}30$ students
- Lyle (2007): While estimates of group effects are usually positive and significant, common characteristics may be driving this correlation → Bias?

- Sacerdote (2001) finds that peers (college roommates) have impact on GPA and decisions to join social groups (e.g. fraternities)
- Zimmerman (2003) uses data on grades, SAT scores, and SAT scores of roommates in quasi-experimental approach. Finds that verbal SAT scores seem to have the strongest peer effect
- \bullet Carrell, Fullerton and West (2009): Find persisting and nonlinear peer-effects in peer groups of ${\sim}30$ students
- Lyle (2007): While estimates of group effects are usually positive and significant, common characteristics may be driving this correlation → *Bias?*

So What?

- Peer effects may be a thing, but what should we make of the results?
- Nonlinearities in peer effects
- Bhattacharya (2009): We can derive optimal reassignment rules

So What?

- Peer effects may be a thing, but what should we make of the results?
- Nonlinearities in peer effects
- Bhattacharya (2009): We can derive optimal reassignment rules

- Make use of pre-treatment data: Identify nonlinear peer effects at the United States Air Force Academy (USAFA) (2005 - 2010) to design optimal reassignment rules and test for its effectiveness (2011/2012)
- Parameters of Interest: Coefficient on High/Medium/Low-Ability Peers on student's performance, conditional on student's ability ⇒ effect of being exposed to a designed peer group
- Measure for Ability: Consists of SAT Verbal, SAT Math and Academic Composite¹-score
- Outcome Measure: GPA

¹High school GPA, class rank and quality of high school attended

- Make use of pre-treatment data: Identify nonlinear peer effects at the United States Air Force Academy (USAFA) (2005 - 2010) to design optimal reassignment rules and test for its effectiveness (2011/2012)
- Parameters of Interest: Coefficient on High/Medium/Low-Ability Peers on student's performance, conditional on student's ability ⇒ effect of being exposed to a designed peer group
- Measure for Ability: Consists of SAT Verbal, SAT Math and Academic Composite¹-score
- Outcome Measure: GPA

¹High school GPA, class rank and quality of high school attended

- Make use of pre-treatment data: Identify nonlinear peer effects at the United States Air Force Academy (USAFA) (2005 - 2010) to design optimal reassignment rules and test for its effectiveness (2011/2012)
- Parameters of Interest: Coefficient on High/Medium/Low-Ability Peers on student's performance, conditional on student's ability ⇒ effect of being exposed to a designed peer group
- Measure for Ability: Consists of SAT Verbal, SAT Math and Academic Composite¹-score
- Outcome Measure: GPA

¹High school GPA, class rank and quality of high school attended

- Make use of pre-treatment data: Identify nonlinear peer effects at the United States Air Force Academy (USAFA) (2005 - 2010) to design optimal reassignment rules and test for its effectiveness (2011/2012)
- Parameters of Interest: Coefficient on High/Medium/Low-Ability Peers on student's performance, conditional on student's ability ⇒ effect of being exposed to a designed peer group
- Measure for Ability: Consists of SAT Verbal, SAT Math and Academic Composite¹-score
- Outcome Measure: GPA

¹High school GPA, class rank and quality of high school attended

- Introduction to the Peer Literature
- 2 Empirical Strategy
- Predicted Results
- Actual Results
- 6 Discussion and Link to Roy-Model
- **a** Lookout

- Pre-Treatment: Students were randomly assigned to squadrons of \sim 30 students \Rightarrow *Find nonlinear peer effects*
- Randomly assign students to control or treatment group (20 squadrons each
- Treatment: Use estimates from pre-treatment data to create squadrons designed to improve performance of students on the bottom tercile of the ability distribution.
- Subjects: Students in low tercile of ability distribution (called low ability students)

- Pre-Treatment: Students were randomly assigned to squadrons of \sim 30 students \Rightarrow *Find nonlinear peer effects*
- Randomly assign students to control or treatment group (20 squadrons each)
- Treatment: Use estimates from pre-treatment data to create squadrons designed to improve performance of students on the bottom tercile of the ability distribution.
- Subjects: Students in low tercile of ability distribution (called low ability students)

- Pre-Treatment: Students were randomly assigned to squadrons of \sim 30 students \Rightarrow *Find nonlinear peer effects*
- Randomly assign students to control or treatment group (20 squadrons each)
- Treatment: Use estimates from pre-treatment data to create squadrons designed to improve performance of students on the bottom tercile of the ability distribution.
- Subjects: Students in low tercile of ability distribution (called low ability students)

- Pre-Treatment: Students were randomly assigned to squadrons of \sim 30 students \Rightarrow *Find nonlinear peer effects*
- Randomly assign students to control or treatment group (20 squadrons each)
- Treatment: Use estimates from pre-treatment data to create squadrons designed to improve performance of students on the bottom tercile of the ability distribution.
- Subjects: Students in low tercile of ability distribution (called low ability students)

Baseline Sample

TABLE I SUMMARY STATISTICS^a

Variables	(1) Pre-Treatment Group Mean (sd)	(2) Control Group Mean (sd)	(3) Treatment Group Mean (sd)
Grade Point Average	2.785	2.789	2.781
	(0.661)	(0.642)	(0.659)
Fraction of High SAT-V Peers	0.276	0.263	0.272
	(0.0742)	(0.0603)	(0.161)
Fraction of Low SAT-V Peers	0.236	0.242	0.244
	(0.0717)	(0.0584)	(0.0774)
SAT Verbal Score	6.342	6.327	6.323
	(0.682)	(0.661)	(0.667)
SAT Math Score	6.643	6.568	6.580
	(0.654)	(0.646)	(0.653)
Student is Female	0.180	0.208	0.216
	(0.384)	(0.406)	(0.412)
Observations	7160	1228	1219

Use the pre-treatment data

- A student's GPA (in squadron s of ability t) is determined by a variety of pre-treatment and demographic characteristics, denoted as a matrix X
- Other determinants are the leave-one-out average GPA of squadron s, \overline{GPA}_{s-i} and, similarly, the leave-one-out mean of the pre-treatment characteristics-matrix X: \overline{X}_{s-i}
- Hence, one can estimate:

$$GPA_{st} = X\alpha_1 + \overline{GPA}_{s-i}\alpha_{2t} + \overline{X}_{s-i}\alpha_{3t} + \epsilon_{st}$$

ullet We can solve for the reduced form and take the limit (Number of peers $ightarrow \infty$

$$GPA_{st} = X\beta_1 + \overline{GPA}_{s-i}\beta_{2t} + \tilde{\epsilon}_{st}$$

Use the pre-treatment data

- A student's GPA (in squadron s of ability t) is determined by a variety of pre-treatment and demographic characteristics, denoted as a matrix X
- Other determinants are the leave-one-out average GPA of squadron s, \overline{GPA}_{s-i} and, similarly, the leave-one-out mean of the pre-treatment characteristics-matrix X: \overline{X}_{s-i}
- Hence, one can estimate:

$$GPA_{st} = X\alpha_1 + \overline{GPA}_{s-i}\alpha_{2t} + \overline{X}_{s-i}\alpha_{3t} + \epsilon_{st}$$

ullet We can solve for the reduced form and take the limit (Number of peers $ightarrow \infty$

$$GPA_{st} = X\beta_1 + \overline{GPA}_{s-i}\beta_{2t} + \tilde{\epsilon}_{st}$$

Use the pre-treatment data

- A student's GPA (in squadron s of ability t) is determined by a variety of pre-treatment and demographic characteristics, denoted as a matrix X
- Other determinants are the leave-one-out average *GPA* of squadron s, \overline{GPA}_{s-i} and, similarly, the leave-one-out mean of the pre-treatment characteristics-matrix X: \overline{X}_{s-i}
- Hence, one can estimate:

$$GPA_{st} = X\alpha_1 + \overline{GPA}_{s-i}\alpha_{2t} + \overline{X}_{s-i}\alpha_{3t} + \epsilon_{st}$$

• We can solve for the reduced form and take the limit (Number of peers $ightarrow \infty$)

$$GPA_{st} = X\beta_1 + \overline{GPA}_{s-i}\beta_{2t} + \tilde{\epsilon}_{st}$$

Pre-Treatment Results

PEER EFFECTS IN THE PRE-TREATMENT GROUP^a

Variables	(1) GPA	(2) GPA	(3) GPA	(4) GPA
Fraction of High SAT-V Peers	0.181 ^d	0.190°		
Fraction of Low SAT-V Peers	(0.094) -0.050 (0.095)	(0.096) -0.061 (0.094)		
Fraction of High SAT-V Peers \times High \widehat{GPA}			0.222	0.233
Fraction of High SAT-V Peers \times Middle $\widehat{\textit{GPA}}$			(0.156) -0.136 (0.136)	(0.151) -0.119 (0.137)
Fraction of High SAT-V Peers \times Low $\widehat{\mathit{GPA}}$			0.464 ^b (0.150)	0.474 ^b (0.152)
Fraction of Low SAT-V Peers \times High $\widehat{\mathit{GPA}}$			0.026 (0.144)	0.009 (0.147)
Fraction of Low SAT-V Peers \times Middle $\widehat{\textit{GPA}}$			-0.219 (0.145)	-0.230 (0.142)
Fraction of Low SAT-V Peers \times Low $\widehat{\mathit{GPA}}$			0.065 (0.141)	0.061 (0.140)
Observations R^2	14,024 0.345	14,024 0.345	14,024 0.346	14,024 0.345

What do we see?

- No significant estimated effect of the fraction of High-SAT peers on high (high predicted GPA) and middle ability students, but significant, positive effect on low ability students
- Conversely, no negative estimated effect of low ability students on high ability students
- So, randomly assign half of the incoming classes to control and treatment group, respectively
- Then use algorithm to efficiently maximize the fraction of high ability peers for each low ability student in treatment group s.t. bureaucratic constraints

What do we see?

- No significant estimated effect of the fraction of High-SAT peers on high (high predicted GPA) and middle ability students, but significant, positive effect on low ability students
- Conversely, no negative estimated effect of low ability students on high ability students
- So, randomly assign half of the incoming classes to control and treatment group, respectively
- Then use algorithm to efficiently maximize the fraction of high ability peers for each low ability student in treatment group s.t. bureaucratic constraints

What do we see?

- No significant estimated effect of the fraction of High-SAT peers on high (high predicted GPA) and middle ability students, but significant, positive effect on low ability students
- Conversely, no negative estimated effect of low ability students on high ability students
- So, randomly assign half of the incoming classes to control and treatment group, respectively
- Then use algorithm to efficiently maximize the fraction of high ability peers for each low ability student in treatment group s.t. bureaucratic constraints

What do we see?

- No significant estimated effect of the fraction of High-SAT peers on high (high predicted GPA) and middle ability students, but significant, positive effect on low ability students
- Conversely, no negative estimated effect of low ability students on high ability students
- So, randomly assign half of the incoming classes to control and treatment group, respectively
- Then use algorithm to efficiently maximize the fraction of high ability peers for each low ability student in treatment group s.t. bureaucratic constraints

- Note: Students were randomly assigned to control and treatment group, respectively, so no selection bias on this treatment level
- Students in control group were randomly assigned to one of the 20 control squadrons subject to diversity constraints in the squadrons
- Students in treatment group were sorted into one of the 20 treatment squadrons
 according to reassignment-algorithm

- Note: Students were randomly assigned to control and treatment group, respectively, so no selection bias on this treatment level
- Students in control group were **randomly assigned** to one of the 20 control squadrons subject to diversity constraints in the squadrons
- Students in treatment group were sorted into one of the 20 treatment squadrons
 according to reassignment-algorithm

- Note: Students were randomly assigned to control and treatment group, respectively, so no selection bias on this treatment level
- Students in control group were **randomly assigned** to one of the 20 control squadrons subject to diversity constraints in the squadrons
- Students in treatment group were sorted into one of the 20 treatment squadrons according to reassignment-algorithm

- Algorithm creates two types of squadrons: Groups low ability students with high ability students (bimodal) and medium ability students with other medium ability students (homogeneous)
- Leave-one-out mean SAT verbal score for low-ability-students raises from .28 to .38: Peers are "better"

- Algorithm creates two types of squadrons: Groups low ability students with high ability students (bimodal) and medium ability students with other medium ability students (homogeneous)
- Leave-one-out mean SAT verbal score for low-ability-students raises from .28 to .38: Peers are "better"

Outline

- Introduction to the Peer Literature
- 2 Empirical Strategy
- 3 Predicted Results
- Actual Results
- 6 Discussion and Link to Roy-Model
- **a** Lookout

Predicted treatment effect using the pre-treatment estimates:

TABLE IV
PREDICTED TREATMENT EFFECT^a

	(1) All	(2) Bottom	(3) Middle	(4) Top
Student in Treatment Group	2.787	2.390	2.783	3.198
	(0.026)	(0.027)	(0.027)	(0.027)
Student in Control Group	2.772	2.336	2.767	3.195
	(0.026)	(0.027)	(0.027)	(0.026)
Predicted Treatment Effect	0.015	0.053^{b}	0.016	0.003
	(0.037)	(0.037)	(0.037)	(0.037)
Observations	2653	881	884	888

Outline

- Introduction to the Peer Literature
- Empirical Strategy
- Predicted Results
- 4 Actual Results
- 6 Discussion and Link to Roy-Model
- **a** Lookout

Observed treatment effect:

$$\label{eq:table_vi} \begin{split} & TABLE \ VI \\ & Observed \ Treatment \ Effects^a \end{split}$$

Variables	(1) All Students	(2) Low <i>GPA</i>	$ \begin{array}{c} (3) \\ \text{Middle } \widehat{GPA} \end{array} $	(4) High \widehat{GPA}
Student in Treatment Group	0.001 (0.022)	-0.061° (0.031)	0.082 ^b (0.039)	-0.012 (0.036)
Observations R^2	4834 0.357	1571 0.136	1626 0.067	1637 0.151

Actual Results

- Estimated TE for low ability students is negative and statistically significant
- Results are in direct contradiction with the predicted results.
- What happened?

Actual Results

- Estimated TE for low ability students is negative and statistically significant
- Results are in direct contradiction with the predicted results.
- What happened?

Actual Results

- Estimated TE for low ability students is negative and statistically significant
- Results are in direct contradiction with the predicted results.
- What happened?

Outline

- Introduction to the Peer Literature
- Empirical Strategy
- Predicted Results
- Actual Results
- 5 Discussion and Link to Roy-Model
- **a** Lookout

Possible Explanation:

Peer dynamics and endogenous peer group formation

- Design implicitly assumed peer dynamics to remain comparable to pre-treatment dynamics
- Sorting algorithm created different squadrons than the pre-treatment squadrons

 → changed group dynamics

- Design implicitly assumed peer dynamics to remain comparable to pre-treatment dynamics
- Sorting algorithm created different squadrons than the pre-treatment squadrons

 → changed group dynamics

30 25

Density 15

Peers Below 25th Percentile of Predicted GPA

.1 .2 .3 .4 Percentage of Peers in Top Quartile of SAT Verbal Distribution treatment

control

- Low ability students in treatment group were assigned a large number of high ability peers, but also large number of low ability peers.
- True peer group of a student may not be the whole squadron, but a smaller and endogenously chosen subgroup of similar peers
- So being assigned to treatment changed availability of similar peers and increased the attractiveness of forming a subgroup with similar students (homophily)
- Could this drive the surprising results?

- Low ability students in treatment group were assigned a large number of high ability peers, but also large number of low ability peers.
- True peer group of a student may not be the whole squadron, but a smaller and endogenously chosen subgroup of similar peers
- So being assigned to treatment changed availability of similar peers and increased the attractiveness of forming a subgroup with similar students (homophily)
- Could this drive the surprising results?

- Low ability students in treatment group were assigned a large number of high ability peers, but also large number of low ability peers.
- True peer group of a student may not be the whole squadron, but a smaller and endogenously chosen subgroup of similar peers
- So being assigned to treatment changed availability of similar peers and increased the attractiveness of forming a subgroup with similar students (homophily)
- Could this drive the surprising results?

- Low ability students in treatment group were assigned a large number of high ability peers, but also large number of low ability peers.
- True peer group of a student may not be the whole squadron, but a smaller and endogenously chosen subgroup of similar peers
- So being assigned to treatment changed availability of similar peers and increased the attractiveness of forming a subgroup with similar students (homophily)
- Could this drive the surprising results?

- Examine this explanation using survey and housing data on the subjects
- Confirms this suspicion: low ability students in the treatment squadrons $\sim \! 17$ percentage points more likely to have low predicted GPA study partners than low ability students in the control squadron
- Low ability students in treatment group chose high ability roommates 9.5 percentage points less often

- Examine this explanation using survey and housing data on the subjects
- \circ Confirms this suspicion: low ability students in the treatment squadrons \sim 17 percentage points more likely to have low predicted GPA study partners than low ability students in the control squadron
- Low ability students in treatment group chose high ability roommates 9.5 percentage points less often

- Examine this explanation using survey and housing data on the subjects
- \circ Confirms this suspicion: low ability students in the treatment squadrons \sim 17 percentage points more likely to have low predicted GPA study partners than low ability students in the control squadron
- Low ability students in treatment group chose high ability roommates 9.5 percentage points less often

- This points at an additional dimension that was ignored in design of treatment groups: Endogenous peer group formation
- Low ability students don't interact as much with the high ability students as predicted, reversing the predicted effect

- This points at an additional dimension that was ignored in design of treatment groups: Endogenous peer group formation
- Low ability students don't interact as much with the high ability students as predicted, reversing the predicted effect

- Assignment to treatment may be random, intended treatment is not! ⇒
 Behavioral response to assignment to treatment

- Within treatment group, subjects chose not to receive the intended treatment

 → Noncompliers
- Assignment to treatment may be random, intended treatment is not! \Rightarrow Behavioral response to assignment to treatment

- Let D^* denote random assignment to the intended treatment (Gold Standard), R=1 if a student for whom $D^*=1$ is randomized into the treatment group (Not actual treatment) and A denote actual treatment.
- it actually translates into randomization on the intended treatment level: $E[Y_1^* Y_0^* | D^* = 1] = E[Y_1 Y_0 | A = 1]$. However (with abuse of notation):

$$E[Y_1 - Y_0]$$
= $E[Y_1^* - Y_0^* | D^* = 1]$
= $E[Y_1^* - Y_0^* | R = 1]$

 $\neq E[\Delta Y|A=1]$ due to noncompliance: different treatment than intended

- Let D^* denote random assignment to the intended treatment (Gold Standard), R=1 if a student for whom $D^*=1$ is randomized into the treatment group (Not actual treatment) and A denote actual treatment.
- The important assumption needed to use of the CSWs randomization is that it actually translates into randomization on the intended treatment level: $E[Y_1^* Y_0^*|D^* = 1] = E[Y_1 Y_0|A = 1]$. However (with abuse of notation):

$$E[Y_1 - Y_0]$$
= $E[Y_1^* - Y_0^* | D^* = 1]$
= $E[Y_1^* - Y_0^* | R = 1]$

 $\neq E[\Delta Y|A=1]$ due to noncompliance: different treatment than intended

- We are not measuring the parameter of interest, i.e. the mean effect of being exposed to a designed peer group
- This is due to the behavioral response to the treatment
- Being assigned to treatment does not translate into receiving the intented treatment (i.e. being exposed to designed peer group)
- Students make treatment choice based on unobserved heterogeneity

 Essential Heterogeneity?
- Policies that manipulate peer groups can be confounded by endogenous patterns of social interactions

- We are not measuring the parameter of interest, i.e. the mean effect of being exposed to a designed peer group
- This is due to the behavioral response to the treatment
- Being assigned to treatment does not translate into receiving the intented treatment (i.e. being exposed to designed peer group)
- Students make treatment choice based on unobserved heterogeneity

 Essential Heterogeneity?
- Policies that manipulate peer groups can be confounded by endogenous patterns of social interactions

- We are not measuring the parameter of interest, i.e. the mean effect of being exposed to a designed peer group
- This is due to the behavioral response to the treatment
- Being assigned to treatment does not translate into receiving the intented treatment (i.e. being exposed to designed peer group)
- Students make treatment choice based on unobserved heterogeneity

 Essential Heterogeneity?
- Policies that manipulate peer groups can be confounded by endogenous patterns of social interactions

- We are not measuring the parameter of interest, i.e. the mean effect of being exposed to a designed peer group
- This is due to the behavioral response to the treatment
- Being assigned to treatment does not translate into receiving the intented treatment (i.e. being exposed to designed peer group)
- Students make treatment choice based on unobserved heterogeneity ⇒ Essential Heterogeneity?
- Policies that manipulate peer groups can be confounded by endogenous patterns of social interactions

- We are not measuring the parameter of interest, i.e. the mean effect of being exposed to a designed peer group
- This is due to the behavioral response to the treatment
- Being assigned to treatment does not translate into receiving the intented treatment (i.e. being exposed to designed peer group)
- Students make treatment choice based on unobserved heterogeneity ⇒ Essential Heterogeneity?
- Policies that manipulate peer groups can be confounded by endogenous patterns of social interactions

Outline

- Introduction to the Peer Literature
- 2 Empirical Strategy
- Predicted Results
- Actual Results
- 5 Discussion and Link to Roy-Mode
- **6** Lookout

What can we make of the results?

- Was there a way to predict this would happen? Could it have been avoided/ accounted for?
- Yes! Survey data reveals interactions not accounted for when designing "optimal" peer groups designed by algorithm
- Can we proxy for these interactions? Are there determinants of peer interaction?

What can we make of the results?

- Was there a way to predict this would happen? Could it have been avoided/ accounted for?
- Yes! Survey data reveals interactions not accounted for when designing "optimal" peer groups designed by algorithm
- Can we proxy for these interactions? Are there determinants of peer interaction?

What can we make of the results?

- Was there a way to predict this would happen? Could it have been avoided/ accounted for?
- Yes! Survey data reveals interactions not accounted for when designing "optimal" peer groups designed by algorithm
- Can we proxy for these interactions? Are there determinants of peer interaction?

- What Lukas Kießling and I are currently working on
- Find drivers of homophily using self-reported scores on non-ability characteristics: prosociality, problem behavior, OCEAN etc
- Use estimates of correlation structure from real data (using NEPS) to parameterize simulation of different reassignment rules
- Do we find an OVB without non-ability measures?
- Apply simulation to a "short-sighted model" without non-ability measures vs.
 "long model" including these measures

- What Lukas Kießling and I are currently working on
- Find drivers of homophily using self-reported scores on non-ability characteristics: prosociality, problem behavior, OCEAN etc
- Use estimates of correlation structure from real data (using NEPS) to parameterize simulation of different reassignment rules
- Do we find an OVB without non-ability measures
- Apply simulation to a "short-sighted model" without non-ability measures vs "long model" including these measures

- What Lukas Kießling and I are currently working on
- Find drivers of homophily using self-reported scores on non-ability characteristics: prosociality, problem behavior, OCEAN etc
- Use estimates of correlation structure from real data (using NEPS) to parameterize simulation of different reassignment rules
- Do we find an OVB without non-ability measures?
- Apply simulation to a "short-sighted model" without non-ability measures vs "long model" including these measures

- What Lukas Kießling and I are currently working on
- Find drivers of homophily using self-reported scores on non-ability characteristics: prosociality, problem behavior, OCEAN etc
- Use estimates of correlation structure from real data (using NEPS) to parameterize simulation of different reassignment rules
- Do we find an OVB without non-ability measures?
- Apply simulation to a "short-sighted model" without non-ability measures vs. "long model" including these measures

- What Lukas Kießling and I are currently working on
- Find drivers of homophily using self-reported scores on non-ability characteristics: prosociality, problem behavior, OCEAN etc
- Use estimates of correlation structure from real data (using NEPS) to parameterize simulation of different reassignment rules
- Do we find an OVB without non-ability measures?
- Apply simulation to a "short-sighted model" without non-ability measures vs. "long model" including these measures

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
$High\ ability\ \times\ Leave-one-out\ mean\ math\ skill\ (std.)$	0.26***	-0.22**	-0.20**	-0.20**	-0.23**	-0.21**	-0.21**	-0.21**	-0.29***
Medium ability \times Leave-one-out mean math skill (std.)	(0.09) -0.54*** (0.09)	(0.09) -0.19** (0.09)	(0.09) -0.17* (0.09)	(0.09) -0.17* (0.09)	(0.09) -0.20** (0.09)	(0.09) -0.18** (0.09)	(0.09) -0.19** (0.09)	(0.09) -0.19** (0.10)	(0.09) -0.27*** (0.10)
Low ability \times Leave-one-out mean math skill (std.)	-0.79*** (0.13)	0.23*	0.23*	0.24*	0.22	0.25*	0.24*	0.23*	0.16
Gender	0.07	0.18***	0.19***	0.19***	0.20***	0.12***	0.12***	0.13***	0.12***
Age in Months	(0.04) -0.02***	(0.04) -0.01***	(0.04) -0.01***	(0.04) -0.01***	(0.04) -0.01***	(0.04) -0.01***	(0.04) -0.01***	(0.04) -0.01***	(0.04) -0.01***
Migration Background	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00) -0.02
Class Size in Wave 1	(0.06) 0.00	(0.06) 0.00	(0.06)	(0.06) 0.00	(0.06)	(0.06) 0.00	(0.06)	(0.06) 0.00	(0.06)
Mathematics skill (std.)	(0.01)	(0.01)	(0.01) 0.65***	(0.01) 0.65***	(0.01) 0.65***	(0.01) 0.62***	(0.01) 0.62***	(0.01) 0.62***	(0.01) 0.61***
Openness Std.		(0.04)	(0.04) -0.03 (0.02)	(0.04) -0.03* (0.02)	(0.04) -0.03* (0.02)	(0.03) -0.03* (0.02)	(0.03) -0.03 (0.02)	(0.04) -0.03 (0.02)	(0.04) -0.03 (0.02)
Mean Openness			(0.02)	-0.08	-0.06	-0.07	-0.07	-0.08	-0.05
Neuroticism Std.				(0.09)	(0.09) -0.03*	(0.09) -0.04**	(0.09) -0.05**	(0.09) -0.05**	(0.10) -0.05**
Mean Neuroticism					(0.02) -0.11 (0.08)	(0.02) -0.08 (0.08)	(0.02) -0.09 (0.08)	(0.02) -0.09 (0.08)	(0.02) -0.02 (0.09)
Conscientiousness Std.					(0.08)	0.18***	0.18***	0.18***	0.19***
Mean Conscientiousness						(0.02) -0.14* (0.08)	(0.02) -0.15* (0.08)	(0.02) -0.14* (0.08)	(0.02) -0.09 (0.08)
Extraversion Std.						(0.08)	-0.04**	-0.04**	-0.04*
Mean Extraversion							(0.02) -0.03	(0.02) -0.04	(0.02) 0.01
Agreeableness Std.							(0.08)	(0.08)	(0.08)
Mean Agreeableness								(0.02) -0.02	(0.02) -0.03
Average Gender								(0.10)	(0.10) -0.37**
School FEs	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	(0.19) Yes
$\frac{N}{R^2}$	2914	2914	2883	2883	2866	2857	2839	2826	2826
К	.21	.31	.31	.31	.31	.34	.34	.34	.34

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
High ability × Leave-one-out mean math skill (std.)	0.05	-0.03	-0.02	-0.02	-0.04	-0.04	-0.03	-0.04	-0.07
Medium ability \times Leave-one-out mean math skill (std.)	(0.09) -0.19** (0.08)	(0.07) -0.25*** (0.07)	(0.08) -0.23*** (0.07)	(0.08) -0.23*** (0.07)	(0.08) -0.26*** (0.07)	(0.07) -0.23*** (0.07)	(0.07) -0.22*** (0.07)	(0.08) -0.23*** (0.07)	(0.08) -0.26*** (0.07)
Low ability \times Leave-one-out mean math skill (std.)	-0.31***	-0.20***	-0.19**	-0.18**	-0.21***	-0.17***	-0.16**	-0.17**	-0.19***
Gender	(0.08) -0.05	(0.07) 0.17***	(0.07) 0.18***	(0.07) 0.18***	(0.07) 0.19***	(0.07) 0.10***	(0.07) 0.10***	(0.07) 0.10***	(0.07) 0.10***
Age in Months	(0.03) -0.02***	(0.03) -0.02***	(0.03) -0.01***						
Migration Background	(0.00) -0.10**	(0.00) 0.00	(0.00) 0.01	(0.00) 0.01	(0.00) 0.01	(0.00) 0.01	(0.00)	(0.00) 0.01	(0.00)
Class Size in Wave 1	(0.05)	(0.05) 0.00 (0.00)	(0.05) 0.00 (0.00)	(0.05) 0.00 (0.00)	(0.05)	(0.05) 0.00 (0.00)	(0.05) 0.00 (0.00)	(0.05)	(0.05) 0.01 (0.00)
Mathematics skill (std.)	(0.00)	0.55*** (0.02)	0.55***	0.55***	(0.00) 0.54*** (0.02)	0.54*** (0.02)	0.53***	(0.00) 0.53***	0.53***
Openness Std.		(0.02)	(0.02) -0.02* (0.01)	(0.02) -0.02 (0.01)	-0.02 (0.01)	-0.03** (0.01)	(0.02) -0.03* (0.01)	(0.02) -0.02* (0.01)	(0.02) -0.02* (0.01)
Mean Openness			(0.01)	0.06	0.07	0.06	0.05	0.05	0.06
Neuroticism Std.				(0.06)	(0.06) -0.03*	-0.03**	-0.04***	(0.07) -0.04*** (0.02)	-0.04***
Mean Neuroticism					(0.01) -0.12* (0.07)	(0.01) -0.11 (0.07)	(0.02) -0.12* (0.07)	-0.12* (0.07)	(0.02) -0.10 (0.08)
Conscientiousness Std.					(0.07)	0.19***	0.19***	0.20***	0.20***
Mean Conscientiousness						-0.06 (0.06)	-0.06 (0.06)	-0.05 (0.07)	-0.04 (0.07)
Extraversion Std.						(0.00)	-0.04**	-0.04**	-0.04**
Mean Extraversion							(0.01)	(0.01)	(0.01)
Agreeableness Std.							(0.07)	(0.07) -0.01	(0.07)
Mean Agreeableness								(0.01) -0.02	(0.01) -0.02
Average Gender								(0.07)	(0.07) -0.15
School FEs	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	(0.15) Yes
N R ²	4777	4777	4719	4719	4693	4672	4646	4612	4612
R"	.15	.28	.28	.29	.29	.32	.32	.32	.32

- Not a big effect, but interesting to explore correlation structure of "soft-skills" with ability interactions
- Maybe we can start from here or even approach the peer literature from a Roy-Model point-of-view ⇒ literature scarce!

- Not a big effect, but interesting to explore correlation structure of "soft-skills" with ability interactions
- Maybe we can start from here or even approach the peer literature from a Roy-Model point-of-view ⇒ literature scarce!

• Questions?

Literature

- Bhattacharya, Debopam. "Inferring optimal peer assignment from experimental data." Journal of the American Statistical Association 104.486 (2009): 486-500
- Carrell, Scott E., Bruce I. Sacerdote, and James E. West. "From natural variation to optimal policy? The importance of endogenous peer group formation." Econometrica 81.3 (2013): 855-882
- Carrell, Scott E., Richard L. Fullerton, and James E. West. "Does your cohort matter? Measuring peer effects in college achievement." Journal of Labor Economics 27.3 (2009): 439-464
- Heckman, James J., Robert J. LaLonde, and Jeffrey A. Smith. "The economics and econometrics of active labor market programs." Handbook of labor economics. Vol. 3. Elsevier, 1999. 1865-2097

- Lyle, David S. "Estimating and interpreting peer and role model effects from randomly assigned social groups at West Point." The Review of Economics and Statistics 89.2 (2007): 289-299
- Sacerdote, Bruce. "Peer effects with random assignment: Results for Dartmouth roommates." The Quarterly journal of economics 116.2 (2001): 681-704
- Zimmerman, David J. "Peer effects in academic outcomes: Evidence from a natural experiment." Review of Economics and statistics 85.1 (2003): 9-23