## Bài 2. Dãy số

## A. Lý thuyết

#### I. Định nghĩa.

## 1. Định nghĩa dãy số.

Mỗi hàm số u xác định trên tập các số nguyên dương  $\mathbb{N}^*$  được gọi là một  $d\tilde{a}y$  số  $v\hat{o}$  han (gọi tắt là dãy số). Kí hiệu:

$$u: \mathbb{N}^* \to \mathbb{R}$$
$$n \mapsto u(n)$$

Người ta thường viết dãy số dưới dạng khai triển: u<sub>1</sub>, u<sub>2</sub>, u<sub>3</sub>,...,u<sub>n</sub>,...,

Trong đó,  $u_n = u(n)$  hoặc viết tắt là  $(u_n)$ , và gọi  $u_1$  là số hạng đầu,  $u_n$  là số hạng thứ n và là số hạng tổng quát của dãy số.

#### - Ví dụ 1:

- a) Dãy các số tự nhiên chẵn: 2; 4; 6; 8; ...có số hạng đầu  $u_1 = 2$ , số hạng tổng quát là  $u_n = 2n$ .
- b) Dãy các số tự nhiên chia hết cho 5 là 5; 10; 15; 20; ... có số hạng đầu  $u_1=5$ , số hạng tổng quát là  $u_n=5n$ .

# 2. Định nghĩa dãy số hữu hạn.

- Mỗi hàm số u xác định trên tập  $M = \{1, 2, 3, ..., m\}$  với  $m \in \mathbb{N}^*$  được gọi là một dãy số hữu hạn.
- Dạng khai triển của nó là  $u_1$ ,  $u_2$ ,  $u_3$ ,...,  $u_m$ , trong đó  $u_1$  là **số hạng đầu**,  $u_m$  là **số hạng cuối**.

### - Ví dụ 2.

a) 4, 7, 10, 13, 16, 19 là dãy số hữu hạn có  $u_1 = 4$ ;  $u_6 = 19$ .

b) 
$$1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{6}$$
 là dãy số hữu hạn có  $u_1 = 4$ ;  $u_6 = \frac{1}{6}$ .

### II. Cách cho một dãy số.

## 1. Dãy số cho bằng công thức của số hạng tổng quát

#### - Ví dụ 3.

a) Cho dãy số  $(u_n)$  với  $u_n = n^2$ . (1)

Từ công thức (1), ta có thể xác định được bất kì một số hạng nào của dãy số. Chẳng hạn,  $u_{10} = 10^2 = 100$ .

Nếu viết dãy số này dưới dạng khai triển ta được:

$$1, 4, 9, 16, 25, 36, \dots, n^2, \dots$$

b) Dãy số  $(u_n)$  với  $u_n = \frac{(-1)^n}{n}$  có dạng khai triển là:

$$-1, \frac{1}{2}, \frac{-1}{3}, \frac{1}{4}, \frac{-1}{5}, \frac{1}{6}, \dots, \frac{(-1)^n}{n}, \dots$$

### 2. Dãy số cho bằng phương pháp mô tả

**Ví dụ 4**. Số  $\sqrt{2}$  là số thập phân vô hạn không tuần hoàn

$$\sqrt{2}$$
 = 1,414213562...

Nếu lập dãy số  $(u_n)$  với  $u_n$  là giá trị gần đúng thiếu của số  $\sqrt{2}$  với sai số tuyệt đối  $10^{-n}$  thì:

$$u_1 = 1,4$$
;  $u_2 = 1,41$ ;  $u_3 = 1,414$ ;  $u_4 = 1,4142,...$ 

Đó là dãy số được cho bằng *phương pháp mô tả*, trong đó chỉ ra cách viết các số hạng liên tiếp của dãy.

## 3. Dãy số cho bằng phương pháp truy hồi

Cho một dãy số bằng phương pháp truy hồi, tức là:

- a) Cho số hạng đầu (hay vài số hạng đầu).
- b) Cho *hệ thức truy hồi*, tức là hệ thức biểu thị số hạng thứ n qua số hạng (hay vài số hạng) đứng trước nó.
- Ví dụ 5. Dãy số  $(u_n)$  được xác định như sau:

$$\begin{cases} u_1 = 1; u_2 = 2 \\ u_n = 2u_{n-1} + 3u_{n-2} \quad (n \ge 3) \end{cases}.$$

Dãy số như trên là dãy số cho bằng phương pháp truy hồi.

## III. Biểu diễn hình học của dãy số.

Vì dãy số là một hàm số trên  $\mathbb{N}^*$  nên ta có thể biểu diễn dãy số bằng đồ thị. Khi đó trong mặt phẳng tọa độ, dãy số được biểu diễn bằng các điểm có tọa độ (n;  $u_n$ ).

**Ví dụ 6:** Dãy số  $(u_n)$  với  $u_n = \frac{n+1}{n}$  có biểu diễn hình học như sau:



### IV. Dãy số tăng, dãy số giảm và dãy số bị chặn

## 1. Dãy số tăng, dãy số giảm.

### - Định nghĩa 1:

Dãy số  $(u_n)$  được gọi là *dãy số tăng* nếu ta có  $u_{n+1} > u_n$  với mọi  $n \in \mathbb{N}^*$ .

Dãy số  $(u_n)$  được gọi là  $\emph{dãy}$  số  $\emph{giảm}$  nếu ta có  $u_{n+1} < u_n$  với mọi  $n \in \mathbb{N}^*$ .

- Ví dụ 7. Dãy số  $(u_n)$  với  $u_n = 2 - 2n$  là dãy số giảm.

Thật vậy, với mọi  $n \in \mathbb{N}^*$  xét hiệu  $u_{n+1} - u_n$ . Ta có:

$$u_{n+1} - u_n = 2 - 2(n+1) - (2-2n) = -2 < 0$$

Do  $u_{n+1}-u_n<0$  nên  $u_{n+1}< u_n$  với mọi  $\,n\in \hbox{\ensuremath{\mathbb{N}}}^*$ 

Vậy dãy số đã cho là dãy số giảm.

### - Chú ý:

Không phải mọi dãy số đều tăng hoặc giảm. Chẳng hạn dãy số  $(u_n)$  với  $u_n = (-1)^n$  tức là dãy: -1, 1, -1, 1, -1, 1, -1...không tăng cũng không giảm.

## 2. Dãy số bị chặn.

- Dãy số (u<sub>n</sub>) được gọi là **bị chặn trên** nếu tồn tại một số M sao cho:

$$u_n \leq M, \forall n \in \mathbb{N}^*.$$

- Dãy số  $(u_n)$  được gọi là  $\emph{bị}$  chặn  $\emph{dwới}$  nếu tồn tại một số m sao cho:

$$u_n \ge m, \forall n \in \mathbb{N}^*.$$

- Dãy số  $(u_n)$  được gọi là  $\emph{bị}$  chặn nếu nó vừa bị chặn trên vừa bị chặn dưới, tức là tồn tại các số m; M sao cho:

$$m \le u_n \le M, \forall n \in \mathbb{N}^*.$$

- Ví dụ 8. Dãy số  $(u_n)$  với  $\,u_{_n} = \frac{1}{n}\,$  bị chặn vì  $0 < u_n \le 1.$ 

### B. Bài tập tự luyện

**Bài 1.** Viết năm số hạng đầu của các dãy số có số hạng tổng quát u<sub>n</sub> cho bởi công thức:

a) 
$$u_n = \frac{n+1}{2^n}$$
;

b) 
$$u_n = 4 - 2n$$
;

$$c) u_n = \frac{1}{n+1}.$$

#### Lời giải:

a) Ta có:

$$u_1 = \frac{1+1}{2^1} = 1; u_2 = \frac{2+1}{2^2} = \frac{3}{4}; u_3 = \frac{3+1}{2^3} = \frac{1}{2}$$

$$u_4 = \frac{4+1}{2^4} = \frac{5}{16}; u_5 = \frac{5+1}{2^5} = \frac{3}{16}$$

b) Ta có:

$$u_1 = 4 - 2.1 = 2$$
;  $u_2 = 4 - 2.2 = 0$ ;  $u_3 = 4 - 2.3 = -2$ ;

$$u_4 = 4 - 2.4 = -4$$
;  $u_5 = 4 - 2.5 = -6$ .

c) Ta có: 
$$u_1 = \frac{1}{2}$$
;  $u_2 = \frac{1}{3}$ ;  $u_3 = \frac{1}{4}$ ;  $u_4 = \frac{1}{5}$ ;  $u_5 = \frac{1}{6}$ .

**Bài 2.** Cho dãy số 
$$(u_n)$$
 với 
$$\begin{cases} u_1 = 1 \\ u_{n+1} = u_n + (-1)^{2n} \end{cases} .$$

- a) Viết năm số hạng đầu của dãy số.
- b) Dự đoán công thức số hạng tổng quát  $u_n$  và chứng minh công thức đó bằng phương pháp quy nạp.

#### Lời giải:

a) Ta có: 
$$(-1)^{2n} = [(-1)^2]^n = 1^n = 1$$

Do đó; 
$$u_{n+1} = u_n + (-1)^{2n} = u_n + 1$$

Suy ra: 
$$u_2 = u_1 + 1 = 2$$
;  $u_3 = u_2 + 1 = 3$ 

$$u_4 = u_3 + 1 = 4$$
;  $u_5 = u_4 + 1 = 5$ .

b) Từ đó, ta dự đoán được  $u_n = n$ .

Thật vậy, ta chứng minh  $u_n = n$  (1) bằng phương pháp quy nạp như sau:

+ 
$$V\acute{o}i n = 1$$
 thì  $u_1 = 1$ .

Vậy (1) đúng với n = 1.

+ Giả sử (1) đúng với mọi  $n = k \ge 1$ , ta có:  $u_k = k$ .

Ta đi chứng minh (1) cũng đúng với n = k + 1, tức là:  $u_{k+1} = k + 1$ .

+ Thật vậy, từ hệ thức xác định dãy số (u<sub>n</sub>) ta có:

$$u_{k+1} = u_k + (-1)^{2k} = k+1$$

Vậy (1) đúng với mọi số tự nhiên  $n \ge 1$ .

Bài 3. Xét tính tăng, giảm và bị chặn của các dãy số (un) sau :

a) 
$$u_n = \frac{2n-13}{3n-2}$$
;

b) 
$$u_n = \frac{n^2 + 3n + 1}{n + 1}$$
.

#### Lời giải:

a) Xét hiệu

$$\begin{split} u_{n+1} - u_n &= \frac{2n-11}{3n+1} - \frac{2n-13}{3n-2} \\ &= \frac{(2n-11).(3n-2) - (2n-13).(3n+1)}{(3n+1).(3n-2)} \\ &= \frac{6n^2 - 4n - 33n + 22 - \left(6n^2 + 2n - 39n - 13\right)}{(3n+1).(3n-2)} = \frac{35}{(3n+1)(3n-2)} > 0; \ \forall n \ge 1. \end{split}$$

Suy ra,  $u_{n+1} > u_n \ \forall n > 1$ . Do đó, dãy  $(u_n)$  là dãy tăng.

Mặt khác: 
$$u_n = \frac{2}{3} - \frac{35}{3(3n-2)} \Rightarrow -11 \le u_n < \frac{2}{3} \quad \forall n \ge 1$$

(vì  $3n - 2 \ge 1$  với  $n \ge 1$  nên :

$$\frac{35}{3(3n-2)} \le \frac{35}{3} \Rightarrow \frac{2}{3} - \frac{35}{3(3n-2)} \ge \frac{2}{3} - \frac{35}{3} = -11$$

Vậy dãy (u<sub>n</sub>) là dãy bị chặn.

b) Xét hiệu: 
$$u_{n+1} - u_n = \frac{(n+1)^2 + 3(n+1) + 1}{n+2} - \frac{n^2 + 3n + 1}{n+1}$$

$$= \frac{n^2 + 5n + 5}{n+2} - \frac{n^2 + 3n + 1}{n+1}$$

$$= \frac{(n^2 + 5n + 5)(n+1) - (n^2 + 3n + 1)(n+2)}{(n+1)(n+2)}$$

$$= \frac{n^2 + 3n + 3}{(n+1)(n+2)} > 0 \ \forall n \ge 1$$

 $\Rightarrow\! u_{_{n+1}}\!>\!u_{_{n}}\ \forall n\!\geq\! 1 \!\Rightarrow\! \,d\tilde{a}y\;(u_{n})\;l\grave{a}\;d\tilde{a}y\;s\acute{o}\;t\check{a}ng.$ 

Lại có:  $u_n > \frac{n^2 + 2n + 1}{n + 1} = n + 1 \ge 2$  nên dãy  $(u_n)$  bị chặn dưới.

**Bài 4.** Xét tính tăng, giảm và bị chặn của dãy số (u<sub>n</sub>), biết:

a) 
$$u_n = \frac{1}{\sqrt{1 + n + n^2}}$$
;

b) 
$$u_n = \frac{2^n}{n!}$$
.

#### Lời giải:

a) Ta có:  $u_n > 0$  với mọi  $n \ge 1$ .

Xét thương:

$$\frac{\mathbf{u}_{n+1}}{\mathbf{u}_{n}} = \frac{1}{\sqrt{(n+1)^{2} + (n+1) + 1}} : \frac{1}{\sqrt{n^{2} + n + 1}}$$

$$= \frac{\sqrt{n^{2} + n + 1}}{\sqrt{(n+1)^{2} + (n+1) + 1}} = \sqrt{\frac{n^{2} + n + 1}{n^{2} + 3n + 3}} < 1 \ \forall n \in \mathbb{N} *$$

Suy ra:  $u_{n+1} < u_n$  với mọi  $n \ge 1$  nên dãy  $(u_n)$  là dãy số giảm.

- Lại có: 
$$\sqrt{1+n+n^2} > 1 \ \forall n \in \mathbb{N}^* \Rightarrow \frac{1}{\sqrt{1+n+n^2}} < 1$$
.

Vậy  $0 < u_n < 1$  nên dãy  $(u_n)$  là dãy số bị chặn.

b) Ta có:  $u_n > 0$  với mọi  $n \ge 1$ .

Xét thương:

$$\frac{u_{n+1}}{u_n} = \frac{2^{n+1}}{(n+1)!} : \frac{2^n}{n!} = \frac{2^{n+1}}{(n+1)!} \cdot \frac{n!}{2^n} = \frac{2}{n+1} < 1 \ \forall n > 1$$

Suy ra:  $u_{n+1} < u_n$  với mọi  $n \ge 1$  nên dãy  $(u_n)$  là dãy số giảm.

Vì  $0 < u_n \le u_1 = 2 \ \forall n \ge 1$  nên dãy  $(u_n)$  là dãy số bị chặn.