USA Power Outages Analysis

May 18, 2023

1 PowerGrid Insights: Illuminating America's Outage Landscape

Name(s): Eric Sun & Sunan Xu

Website Link: https://ericsun153.github.io/Illuminating_US_Outage_Landscape/

1.1 Question Identification

How do demographic factors of West Coast states influence the duration and affecting range of power outages, and what mitigation strategies can be employed to reduce the risk of outages in these regions?

1.2 Setup

```
[1]: import pandas as pd
import numpy as np
import os

import plotly.express as px
import plotly.io as pio
pio.renderers.default = 'png'
pd.options.plotting.backend = 'plotly'

import matplotlib as plt
import seaborn as sns
```

Since the file type of our dataset is xlsx, we first convert it into csv file using the **openpyxl** library and store it into a csv file called 'outage.csv'.

```
[2]: | !pip install openpyxl
```

Defaulting to user installation because normal site-packages is not writeable Requirement already satisfied: openpyxl in ./.local/lib/python3.9/site-packages (3.1.2)

Requirement already satisfied: et-xmlfile in ./.local/lib/python3.9/site-packages (from openpyxl) (1.1.0)

```
[3]: xlsx_file = 'outage.xlsx'
     csv_file = 'outage.csv'
     df = pd.read_excel(xlsx_file)
     # Write the DataFrame to a CSV file
     df.to_csv(csv_file, index=False)
     df = pd.read_csv('outage.csv')
     df
[3]:
           Major power outage events in the continental U.S. Unnamed: 1 Unnamed: 2 \
                        Time period: January 2000 - July 2016
                                                                          NaN
     0
                                                                                      NaN
     1
           Regions affected: Outages reported in this dat...
                                                                       NaN
                                                                                   NaN
     2
                                                                          NaN
                                                                                      NaN
     3
                                                              NaN
                                                                          NaN
                                                                                      NaN
     4
                                                       variables
                                                                          OBS
                                                                                     YEAR
     1535
                                                                         1530
                                                                                     2011
                                                              NaN
     1536
                                                                                     2006
                                                              NaN
                                                                         1531
     1537
                                                                         1532
                                                                                     2009
                                                              NaN
     1538
                                                              NaN
                                                                         1533
                                                                                     2009
     1539
                                                              NaN
                                                                         1534
                                                                                     2000
          Unnamed: 3
                          Unnamed: 4
                                        Unnamed: 5
                                                      Unnamed: 6
                                                                            Unnamed: 7
     0
                  NaN
                                 NaN
                                               NaN
                                                              NaN
                                                                                   NaN
     1
                  NaN
                                 NaN
                                               NaN
                                                              NaN
                                                                                   NaN
     2
                  NaN
                                 NaN
                                               NaN
                                                              NaN
                                                                                   NaN
     3
                  NaN
                                 NaN
                                               NaN
                                                              NaN
                                                                                   NaN
                MONTH
     4
                          U.S._STATE
                                       POSTAL.CODE
                                                     NERC.REGION
                                                                        CLIMATE.REGION
     1535
                       North Dakota
                                                              MRO
                                                                   West North Central
                   12
                                                ND
     1536
                  NaN
                       North Dakota
                                                ND
                                                              MRO
                                                                   West North Central
     1537
                       South Dakota
                                                SD
                                                              RFC
                                                                   West North Central
                       South Dakota
                                                 SD
                                                              MRO
                                                                   West North Central
     1538
     1539
                              Alaska
                                                 AK
                                                             ASCC
                                                                                   NaN
                  NaN
               Unnamed: 8
                                  Unnamed: 9
                                                    Unnamed: 47 Unnamed: 48
     0
                      NaN
                                          NaN
                                                             NaN
                                                                          NaN
     1
                      NaN
                                          NaN
                                                             NaN
                                                                          NaN
     2
                      NaN
                                          NaN
                                                             NaN
                                                                          NaN
     3
                      NaN
                                          NaN
                                                             NaN
                                                                          NaN
           ANOMALY.LEVEL
                            CLIMATE. CATEGORY
                                                   POPPCT_URBAN
                                                                   POPPCT UC
     1535
                     -0.9
                                         cold
                                                           59.9
                                                                         19.9
     1536
                      NaN
                                          NaN
                                                           59.9
                                                                         19.9
     1537
                      0.5
                                         warm
                                                          56.65
                                                                        26.73
     1538
                      0.5
                                                          56.65
                                                                        26.73
                                         warm
```

1539	NaN		NaN		66.02		21.56	
	Unnamed: 49 Unna	med: 50	Unnamed:	51	Unnamed:	52	Unnamed: 53	\
0	NaN	NaN		NaN		NaN	NaN	•
1	NaN	NaN		NaN		NaN	NaN	
2	NaN	NaN		NaN		NaN	NaN	
3	NaN	NaN		NaN		NaN	NaN	
4	POPDEN_URBAN PO	PDEN_UC	POPDEN_RUI	RAL A	AREAPCT_URI	BAN	AREAPCT_UC	
•••	•••		•••			•••		
1535	2192.2	1868.2	;	3.9	0	. 27	0.1	
1536	2192.2	1868.2	;	3.9	0	. 27	0.1	
1537	2038.3	1905.4	4	4.7	(0.3	0.15	
1538	2038.3	1905.4	4	4.7	(0.3	0.15	
1539	1802.6	1276	(0.4	0	.05	0.02	
	Unnamed: 54	Un	named: 55		Unnamed: 5	56		
0	NaN		NaN		Na	aN		
1	NaN		NaN		Na	aN		
2	NaN		NaN		Na	aN		
3	NaN		NaN		Na	aN		
4	PCT_LAND	PCT_	WATER_TOT	PCT_V	VATER_INLAI	ND		
•••	•••		•••		•••			
1535	97.5996492121418	2.40176	525502843	2.401	17652550284	43		
1536	97.5996492121418	2.40176	525502843	2.401	17652550284	43		
1537	98.3077441776026	1.69225	582239743	1.692	22558223974	43		
1538	98.3077441776026	1.69225	582239743	1.692	22558223974	43		
1539	85.7611544611833	14.2388	455388167	2.901	11818739254	43		

[1540 rows x 57 columns]

1.3 Data Cleaning

First 5 rows are the header of the dataset, we drop them and filter it into correct format in each column

```
[4]: rows_to_skip = list(range(5))
    df = pd.read_csv('outage.csv', skiprows=rows_to_skip, index_col='OBS')

# Combine the units line and column names, drop unecessary rows and columns
    column = np.array(df.columns).astype('str')
    unites = np.array(df.iloc[0].fillna('')).astype('str')
    unites = ["(" + i + ")" for i in unites]
    for i in range(len(unites)):
        if unites[i] == '()':
            unites[i] = ''
    combined_column = np.core.defchararray.add(column, unites)
    df.columns = combined_column
```

```
→reset_index(drop=True)
     df
[4]:
              OBS
                           MONTH
                                     U.S._STATE POSTAL.CODE NERC.REGION
                     YEAR
     0
              1.0
                   2011.0
                              7.0
                                      Minnesota
                                                          MN
                                                                      MRO
              2.0
                   2014.0
                              5.0
                                                                      MRO
     1
                                      Minnesota
                                                           MN
              3.0 2010.0
                             10.0
                                                          MN
                                      Minnesota
                                                                      MRO
              4.0 2012.0
                              6.0
                                      Minnesota
                                                           MN
                                                                      MRO
              5.0 2015.0
                              7.0
                                      Minnesota
                                                           MN
                                                                      MRO
     1529
          1530.0 2011.0
                             12.0
                                   North Dakota
                                                           ND
                                                                      MRO
          1531.0 2006.0
                              {\tt NaN}
                                   North Dakota
                                                          ND
                                                                      MRO
     1530
           1532.0 2009.0
                              8.0
                                   South Dakota
                                                           SD
                                                                      RFC
     1531
     1532 1533.0
                  2009.0
                              8.0
                                   South Dakota
                                                           SD
                                                                      MRO
     1533
           1534.0
                   2000.0
                              NaN
                                          Alaska
                                                           AK
                                                                     ASCC
               CLIMATE.REGION ANOMALY.LEVEL(numeric) CLIMATE.CATEGORY
     0
                                                  -0.3
           East North Central
                                                                  normal
     1
           East North Central
                                                  -0.1
                                                                  normal
     2
           East North Central
                                                  -1.5
                                                                    cold
           East North Central
     3
                                                  -0.1
                                                                  normal
     4
           East North Central
                                                   1.2
                                                                    warm
     1529 West North Central
                                                  -0.9
                                                                    cold
     1530 West North Central
                                                   NaN
                                                                     NaN
     1531 West North Central
                                                   0.5
                                                                    warm
     1532 West North Central
                                                   0.5
                                                                    warm
     1533
                           NaN
                                                   NaN
                                                                     NaN
                                                                  ... POPPCT_URBAN(%)
          OUTAGE.START.DATE(Day of the week, Month Day, Year)
     0
                                           2011-07-01 00:00:00
                                                                               73.27
     1
                                           2014-05-11 00:00:00
                                                                               73.27
                                           2010-10-26 00:00:00
     2
                                                                               73.27
     3
                                           2012-06-19 00:00:00
                                                                               73.27
     4
                                           2015-07-18 00:00:00
                                                                               73.27
     1529
                                                                                59.9
                                           2011-12-06 00:00:00
     1530
                                                            NaN
                                                                                59.9
     1531
                                           2009-08-29 00:00:00
                                                                               56.65
     1532
                                           2009-08-29 00:00:00
                                                                               56.65
     1533
                                                            NaN
                                                                               66.02
          POPPCT_UC(%) POPDEN_URBAN(persons per square mile)
     0
                 15.28
                                                           2279
     1
                 15.28
                                                           2279
                  15.28
                                                           2279
```

df = df.reset_index().drop(0).drop('variables(Units)', axis=1).

```
2279
3
            15.28
4
            15.28
                                                    2279
                                                  2192.2
1529
             19.9
1530
             19.9
                                                  2192.2
1531
            26.73
                                                  2038.3
            26.73
1532
                                                  2038.3
1533
            21.56
                                                  1802.6
     POPDEN_UC(persons per square mile) POPDEN_RURAL(persons per square mile) \
0
                                                                           18.2
                                  1700.5
1
                                 1700.5
                                                                           18.2
                                 1700.5
2
                                                                          18.2
3
                                 1700.5
                                                                           18.2
4
                                 1700.5
                                                                           18.2
1529
                                                                            3.9
                                 1868.2
1530
                                 1868.2
                                                                            3.9
                                                                            4.7
1531
                                 1905.4
1532
                                                                            4.7
                                 1905.4
1533
                                    1276
                                                                            0.4
     AREAPCT_URBAN(%) AREAPCT_UC(%)
                                          PCT_LAND(%) PCT_WATER_TOT(%)
                 2.14
                                     91.5926658691451 8.40733413085488
0
                                0.6
                 2.14
1
                                0.6 91.5926658691451 8.40733413085488
2
                 2.14
                                0.6 91.5926658691451 8.40733413085488
                 2.14
                                0.6 91.5926658691451 8.40733413085488
                 2.14
                                 0.6 91.5926658691451 8.40733413085488
1529
                 0.27
                                0.1 97.5996492121418 2.40176525502843
1530
                 0.27
                                0.1 97.5996492121418 2.40176525502843
1531
                  0.3
                               0.15 98.3077441776026
                                                        1.69225582239743
1532
                  0.3
                               0.15 98.3077441776026
                                                       1.69225582239743
1533
                               0.02 85.7611544611833 14.2388455388167
                 0.05
     PCT_WATER_INLAND(%)
0
        5.47874298334407
1
        5.47874298334407
2
        5.47874298334407
3
        5.47874298334407
        5.47874298334407
1529
        2.40176525502843
1530
        2.40176525502843
1531
        1.69225582239743
1532
        1.69225582239743
1533
        2.90118187392543
```

[1534 rows x 56 columns]

```
[5]: df['YEAR'] = df['YEAR'].astype('int')
     # Combine 'OUTAGE.START.DATE' and 'OUTAGE.START.TIME' into a new pd.Timestampu
      ⇔column called 'OUTAGE.START'
     start time = df['OUTAGE.START.TIME(Hour:Minute:Second (AM / PM))']
     start_date = df['OUTAGE.START.DATE(Day of the week, Month Day, Year)']
     df["OUTAGE.START"] = pd.to_datetime(start_date + " " + start_time)
     # combine 'OUTAGE.RESTORATION.DATE' and 'OUTAGE.RESTORATION.TIME' into a new pd.
     → Timestamp column called 'OUTAGE.RESTORATION'.
     end_time = df['OUTAGE.RESTORATION.TIME(Hour:Minute:Second (AM / PM))']
     end_date = df['OUTAGE.RESTORATION.DATE(Day of the week, Month Day, Year)']
     df["OUTAGE.RESTORATION"] = pd.to_datetime(end_date + " " + end_time)
     df[['OUTAGE.RESTORATION', 'OUTAGE.START']]
[5]:
           OUTAGE.RESTORATION
                                     OUTAGE.START
     0
          2011-07-03 20:00:00 2011-07-01 17:00:00
     1
          2014-05-11 18:39:00 2014-05-11 18:38:00
     2
          2010-10-28 22:00:00 2010-10-26 20:00:00
          2012-06-20 23:00:00 2012-06-19 04:30:00
          2015-07-19 07:00:00 2015-07-18 02:00:00
     1529 2011-12-06 20:00:00 2011-12-06 08:00:00
     1530
                          NaT
                                              NaT
     1531 2009-08-29 23:53:00 2009-08-29 22:54:00
     1532 2009-08-29 14:01:00 2009-08-29 11:00:00
     1533
                          NaT
                                              NaT
     [1534 rows x 2 columns]
[6]: df.info()
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 1534 entries, 0 to 1533
    Data columns (total 58 columns):
     #
         Column
                                                                     Non-Null Count
    Dtype
    ____
     0
         OBS
                                                                     1534 non-null
    float64
                                                                     1534 non-null
     1
         YEAR.
    int64
     2
         MONTH
                                                                     1525 non-null
    float64
       U.S._STATE
                                                                     1534 non-null
```

object	
4 POSTAL.CODE	1534 non-null
object	
5 NERC.REGION	1534 non-null
object	
6 CLIMATE.REGION	1528 non-null
object	
7 ANOMALY.LEVEL(numeric)	1525 non-null
object	
8 CLIMATE.CATEGORY	1525 non-null
object	1505
9 OUTAGE.START.DATE(Day of the week, Month Day, Year)	1525 non-null
object 10 OUTAGE.START.TIME(Hour:Minute:Second (AM / PM))	1525 non-null
object	1525 Holl-Hull
11 OUTAGE.RESTORATION.DATE(Day of the week, Month Day, Year)	1476 non-null
object	1110 11011 11411
12 OUTAGE.RESTORATION.TIME(Hour:Minute:Second (AM / PM))	1476 non-null
object	
13 CAUSE.CATEGORY	1534 non-null
object	
14 CAUSE.CATEGORY.DETAIL	1063 non-null
object	
15 HURRICANE.NAMES	72 non-null
object	
16 OUTAGE.DURATION(mins)	1476 non-null
object	
17 DEMAND.LOSS.MW(Megawatt)	829 non-null
object	1001
18 CUSTOMERS.AFFECTED float64	1091 non-null
19 RES.PRICE(cents / kilowatt-hour)	1512 non-null
object	1012 Hon hull
20 COM.PRICE(cents / kilowatt-hour)	1512 non-null
object	
21 IND.PRICE(cents / kilowatt-hour)	1512 non-null
object	
22 TOTAL.PRICE(cents / kilowatt-hour)	1512 non-null
object	
23 RES.SALES(Megawatt-hour)	1512 non-null
object	
24 COM.SALES(Megawatt-hour)	1512 non-null
object	
25 IND.SALES(Megawatt-hour)	1512 non-null
object	1510 non
26 TOTAL.SALES(Megawatt-hour)	1512 non-null
object 27 RES.PERCEN(%)	1512 non-null
	1012 HOH-HULL

object	
28 COM.PERCEN(%)	1512 non-null
object	
29 IND.PERCEN(%)	1512 non-null
object	
30 RES.CUSTOMERS	1534 non-null
float64	
31 COM.CUSTOMERS	1534 non-null
float64	
32 IND.CUSTOMERS	1534 non-null
float64	
33 TOTAL.CUSTOMERS	1534 non-null
float64	
34 RES.CUST.PCT(%)	1534 non-null
object	
35 COM.CUST.PCT(%)	1534 non-null
object	
36 IND.CUST.PCT(%)	1534 non-null
object	
37 PC.REALGSP.STATE(USD)	1534 non-null
object	
38 PC.REALGSP.USA(USD)	1534 non-null
object	
39 PC.REALGSP.REL(fraction)	1534 non-null
object	
40 PC.REALGSP.CHANGE(%)	1534 non-null
object	
41 UTIL.REALGSP(USD)	1534 non-null
object	4504
42 TOTAL.REALGSP(USD)	1534 non-null
object	4504
43 UTIL.CONTRI(%)	1534 non-null
object	1524]]
44 PI.UTIL.OFUSA(%)	1534 non-null
object 45 POPULATION	1524
float64	1534 non-null
46 POPPCT_URBAN(%)	1534 non-null
object	1554 Holl-Hull
47 POPPCT_UC(%)	1534 non-null
object	1004 HOH HULL
48 POPDEN_URBAN(persons per square mile)	1534 non-null
object	1001 Hon Hull
49 POPDEN_UC(persons per square mile)	1524 non-null
object	1021 11011 11411
50 POPDEN_RURAL(persons per square mile)	1524 non-null
ODIECT	
object 51 AREAPCT_URBAN(%)	1534 non-null

```
object
                                                                     1534 non-null
     52 AREAPCT_UC(%)
    object
     53 PCT_LAND(%)
                                                                     1534 non-null
    object
     54 PCT_WATER_TOT(%)
                                                                     1534 non-null
    object
     55 PCT_WATER_INLAND(%)
                                                                     1534 non-null
    object
     56 OUTAGE.START
                                                                     1525 non-null
    datetime64[ns]
     57 OUTAGE.RESTORATION
                                                                     1476 non-null
    datetime64[ns]
    dtypes: datetime64[ns](2), float64(8), int64(1), object(47)
    memory usage: 695.2+ KB
    We should then convert all the columns into proper data types
[7]: df['ANOMALY.LEVEL'] = df['ANOMALY.LEVEL(numeric)'].astype(float)
     df = df.drop(columns=['ANOMALY.LEVEL(numeric)', 'OUTAGE.START.DATE(Day of the
      ⇒week, Month Day, Year)',
                           'OUTAGE.START.TIME(Hour:Minute:Second (AM / PM))',
                           'OUTAGE.RESTORATION.DATE(Day of the week, Month Day, ...

year)',
                           'OUTAGE.RESTORATION.TIME(Hour:Minute:Second (AM / PM))'],
      ⇒axis=1)
[8]: columns to convert = {'OUTAGE.DURATION(mins)': float, 'DEMAND.LOSS.
      →MW(Megawatt)': float,
                           'RES.PRICE(cents / kilowatt-hour)': float, 'COM.
      →PRICE(cents / kilowatt-hour)': float,
                          'COM.PRICE(cents / kilowatt-hour)':float, 'IND.PRICE(cents,
      ⇔/ kilowatt-hour)': float,
                          'TOTAL.PRICE(cents / kilowatt-hour)':float, 'RES.
      →SALES(Megawatt-hour)': float,
                          'COM.SALES(Megawatt-hour)':float, 'IND.
      SALES(Megawatt-hour)':float, 'TOTAL.PRICE(cents / kilowatt-hour)':float,
                          'RES.PERCEN(%)':float, 'COM.PERCEN(%)':float, 'IND.
      →PERCEN(%)':float, 'RES.CUST.PCT(%)':float,
                          'COM.CUST.PCT(%)':float, 'IND.CUST.PCT(%)':float, 'PC.
      ⇔REALGSP.STATE(USD)':float, 'PC.REALGSP.USA(USD)':float,
                          'PC.REALGSP.REL(fraction)':float, 'PC.REALGSP.CHANGE(%)':
      ⇔float, 'UTIL.REALGSP(USD)':float, 'TOTAL.REALGSP(USD)':float,
                          'UTIL.CONTRI(%)':float, 'PI.UTIL.OFUSA(%)':float, |
      → 'POPPCT_URBAN(%)':float, 'POPPCT_UC(%)':float,
                          'POPDEN_URBAN(persons per square mile)':float,
```

¬'POPDEN_UC(persons per square mile)':float,

```
'POPDEN_RURAL(persons per square mile)':float,

¬'AREAPCT_URBAN(%)':float, 'AREAPCT_UC(%)':float,
                           'PCT_LAND(%)':float, 'PCT_WATER_TOT(%)':float,
      → 'PCT_WATER_INLAND(%)':float, 'TOTAL.SALES(Megawatt-hour)':float}
[9]: df = df.astype(columns_to_convert)
     df
[9]:
              OBS
                    YEAR
                          MONTH
                                    U.S._STATE POSTAL.CODE NERC.REGION
              1.0
                    2011
                            7.0
     0
                                     Minnesota
                                                         MN
                                                                     MRO
     1
              2.0
                    2014
                            5.0
                                     Minnesota
                                                         MN
                                                                     MRO
     2
              3.0
                   2010
                           10.0
                                                         MN
                                                                     MRO
                                     Minnesota
              4.0
                    2012
     3
                            6.0
                                     Minnesota
                                                         MN
                                                                     MRO
     4
              5.0
                    2015
                            7.0
                                                         MN
                                                                     MRO
                                     Minnesota
     1529
           1530.0
                    2011
                           12.0
                                 North Dakota
                                                         ND
                                                                     MRO
           1531.0
                    2006
                                 North Dakota
                                                         ND
                                                                     MRO
     1530
                            NaN
     1531
           1532.0
                    2009
                            8.0
                                 South Dakota
                                                         SD
                                                                     RFC
     1532
           1533.0
                    2009
                            8.0
                                 South Dakota
                                                         SD
                                                                     MRO
     1533
           1534.0
                                                                    ASCC
                    2000
                            NaN
                                        Alaska
                                                         AK
                                                          CAUSE.CATEGORY
               CLIMATE.REGION CLIMATE.CATEGORY
     0
           East North Central
                                          normal
                                                          severe weather
     1
           East North Central
                                          normal
                                                      intentional attack
     2
           East North Central
                                            cold
                                                          severe weather
     3
           East North Central
                                          normal
                                                          severe weather
     4
           East North Central
                                            warm
                                                          severe weather
     1529
          West North Central
                                            cold
                                                           public appeal
     1530 West North Central
                                             NaN
                                                   fuel supply emergency
     1531 West North Central
                                            warm
                                                               islanding
     1532
           West North Central
                                            warm
                                                               islanding
     1533
                           NaN
                                             NaN
                                                       equipment failure
                                   ... POPDEN_UC(persons per square mile)
          CAUSE.CATEGORY.DETAIL
     0
                             NaN
                                                                   1700.5
     1
                       vandalism
                                                                   1700.5
     2
                      heavy wind
                                                                   1700.5
     3
                    thunderstorm
                                                                   1700.5
     4
                                                                   1700.5
                             NaN
     1529
                             NaN
                                                                   1868.2
     1530
                                                                   1868.2
                            Coal
     1531
                             NaN
                                                                   1905.4
     1532
                             NaN
                                                                   1905.4
     1533
                         failure
                                                                   1276.0
```

```
POPDEN_RURAL(persons per square mile) AREAPCT_URBAN(%)
                                                                  AREAPCT_UC(%)
0
                                                            2.14
                                         18.2
                                                                            0.60
1
                                         18.2
                                                            2.14
                                                                            0.60
2
                                                            2.14
                                         18.2
                                                                            0.60
3
                                                            2.14
                                                                            0.60
                                         18.2
4
                                         18.2
                                                            2.14
                                                                            0.60
1529
                                          3.9
                                                            0.27
                                                                            0.10
                                                            0.27
1530
                                          3.9
                                                                            0.10
1531
                                          4.7
                                                            0.30
                                                                            0.15
1532
                                          4.7
                                                            0.30
                                                                            0.15
1533
                                          0.4
                                                            0.05
                                                                            0.02
                                                                   OUTAGE.START
      PCT_LAND(%) PCT_WATER_TOT(%)
                                       PCT_WATER_INLAND(%)
0
                                                  5.478743 2011-07-01 17:00:00
        91.592666
                            8.407334
1
        91.592666
                            8.407334
                                                  5.478743 2014-05-11 18:38:00
2
        91.592666
                            8.407334
                                                  5.478743 2010-10-26 20:00:00
3
                                                  5.478743 2012-06-19 04:30:00
        91.592666
                            8.407334
4
        91.592666
                            8.407334
                                                  5.478743 2015-07-18 02:00:00
1529
        97.599649
                                                  2.401765 2011-12-06 08:00:00
                            2.401765
1530
        97.599649
                                                  2.401765
                            2.401765
                                                                             NaT
1531
        98.307744
                            1.692256
                                                  1.692256 2009-08-29 22:54:00
1532
                                                  1.692256 2009-08-29 11:00:00
        98.307744
                            1.692256
1533
        85.761154
                           14.238846
                                                  2.901182
                                                                             NaT
                           ANOMALY.LEVEL
      OUTAGE.RESTORATION
0
     2011-07-03 20:00:00
                                     -0.3
1
     2014-05-11 18:39:00
                                     -0.1
2
                                     -1.5
     2010-10-28 22:00:00
3
     2012-06-20 23:00:00
                                     -0.1
4
                                      1.2
     2015-07-19 07:00:00
1529 2011-12-06 20:00:00
                                     -0.9
                                     NaN
1531 2009-08-29 23:53:00
                                      0.5
1532 2009-08-29 14:01:00
                                      0.5
1533
                                      NaN
[1534 rows x 54 columns]
```

[10]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1534 entries, 0 to 1533
Data columns (total 54 columns):

Column Non-Null Count Dtype

0	OBS	1534 non-null	float64
1	YEAR	1534 non-null	int64
2	MONTH	1525 non-null	float64
3	U.SSTATE	1534 non-null	object
4	POSTAL.CODE	1534 non-null	object
5	NERC.REGION	1534 non-null	object
6	CLIMATE.REGION	1528 non-null	object
7	CLIMATE.CATEGORY	1525 non-null	object
8	CAUSE.CATEGORY	1534 non-null	object
9	CAUSE.CATEGORY.DETAIL	1063 non-null	object
10	HURRICANE.NAMES	72 non-null	object
11	OUTAGE.DURATION(mins)	1476 non-null	float64
12	DEMAND.LOSS.MW(Megawatt)	829 non-null	float64
13	CUSTOMERS.AFFECTED	1091 non-null	float64
14	<pre>RES.PRICE(cents / kilowatt-hour)</pre>	1512 non-null	float64
15	<pre>COM.PRICE(cents / kilowatt-hour)</pre>	1512 non-null	float64
16	<pre>IND.PRICE(cents / kilowatt-hour)</pre>	1512 non-null	float64
17	TOTAL.PRICE(cents / kilowatt-hour)	1512 non-null	float64
18	RES.SALES(Megawatt-hour)	1512 non-null	float64
19	COM.SALES(Megawatt-hour)	1512 non-null	float64
20	<pre>IND.SALES(Megawatt-hour)</pre>	1512 non-null	float64
21	TOTAL.SALES(Megawatt-hour)	1512 non-null	float64
22	RES.PERCEN(%)	1512 non-null	float64
23	COM.PERCEN(%)	1512 non-null	float64
24	IND.PERCEN(%)	1512 non-null	float64
25	RES.CUSTOMERS	1534 non-null	float64
26	COM.CUSTOMERS	1534 non-null	float64
27	IND.CUSTOMERS	1534 non-null	float64
28	TOTAL.CUSTOMERS	1534 non-null	float64
29	RES.CUST.PCT(%)	1534 non-null	float64
30	COM.CUST.PCT(%)	1534 non-null	float64
31	<pre>IND.CUST.PCT(%)</pre>	1534 non-null	float64
32	PC.REALGSP.STATE(USD)	1534 non-null	float64
33	PC.REALGSP.USA(USD)	1534 non-null	float64
34	PC.REALGSP.REL(fraction)	1534 non-null	float64
35	PC.REALGSP.CHANGE(%)	1534 non-null	float64
36	UTIL.REALGSP(USD)	1534 non-null	float64
37	TOTAL.REALGSP(USD)	1534 non-null	float64
38	UTIL.CONTRI(%)	1534 non-null	float64
39	PI.UTIL.OFUSA(%)	1534 non-null	float64
40	POPULATION	1534 non-null	float64
41	POPPCT_URBAN(%)	1534 non-null	float64
42	POPPCT_UC(%)	1534 non-null	float64
43	POPDEN_URBAN(persons per square mile)	1534 non-null	float64
44	POPDEN_UC(persons per square mile)	1524 non-null	float64
45	POPDEN_RURAL(persons per square mile)	1524 non-null	float64
46	AREAPCT_URBAN(%)	1534 non-null	float64

```
1534 non-null
                                                            float64
 47 AREAPCT_UC(%)
 48 PCT_LAND(%)
                                            1534 non-null
                                                            float64
 49 PCT_WATER_TOT(%)
                                            1534 non-null
                                                            float64
 50 PCT_WATER_INLAND(%)
                                            1534 non-null
                                                            float64
 51 OUTAGE.START
                                            1525 non-null
                                                            datetime64[ns]
 52 OUTAGE.RESTORATION
                                            1476 non-null
                                                            datetime64[ns]
                                            1525 non-null
                                                            float64
 53 ANOMALY.LEVEL
dtypes: datetime64[ns](2), float64(43), int64(1), object(8)
memory usage: 647.3+ KB
```

```
[11]: all_values = df.value_counts()
```

1.4 EDA

1.4.1 Univariate Analysis

We can first find some relationship or patterns within columns

```
[12]: all_states = df['U.S._STATE'].value_counts()
      all_states
```

[12]:	California	210	
	Texas	127	
	Washington	97	
	Michigan	95	
	New York	71	
	Maryland	58	
	Pennsylvania	57	
	Illinois	46	
	Florida	45	
	Ohio	43	
	Indiana	43	
	Utah	41	
	Delaware	41	
	North Carolina	40	
	Louisiana	40	
	Virginia	37	
	New Jersey	35	
	Tennessee	34	
	Arizona	28	
	Oregon	26	
	Arkansas	25	
	Oklahoma	24	
	Wisconsin	20	
	Maine	19	
	Massachusetts	18	
	Connecticut	18	
	Georgia	17	

```
Missouri
                         17
Colorado
                         15
Minnesota
                         15
New Hampshire
                         14
Kentucky
                         13
District of Columbia
                         10
Idaho
                          9
Vermont
                           9
Kansas
                           9
Iowa
                           8
New Mexico
                           8
South Carolina
                           8
                           7
Nevada
Wyoming
                           6
Alabama
                           6
Hawaii
                           5
Nebraska
                           4
                           4
Mississippi
West Virginia
                           4
Montana
                           3
                           2
North Dakota
South Dakota
                           2
Alaska
Name: U.S._STATE, dtype: int64
```

State Power Outage Count

State Frequency Map

Count of Outages by Cause Category

1.4.2 Bivariate Analysis

```
[16]: fig = px.box(df, x='CLIMATE.CATEGORY', y='OUTAGE.DURATION(mins)', title='Outage

⇔Duration by Climate Category')

fig.update_layout(xaxis_title='Climate Category', yaxis_title='Outage Duration

⇔(minutes)')

fig.show()
```

Outage Duration by Climate Category

The relationship between residential sales and commercial sales, find some pattern when set the color to population

```
[17]: fig = px.scatter(df, x='RES.SALES(Megawatt-hour)', y='COM.

SALES(Megawatt-hour)', title='Residential vs Commercial Sales',

trendline='ols',color = 'POPULATION')

fig.update_layout(xaxis_title='Residential Sales (Megawatt-hour)',

yaxis_title='Commercial Sales (Megawatt-hour)')

fig.show()
```

/opt/conda/lib/python3.9/site-packages/statsmodels/tsa/base/tsa_model.py:7:
FutureWarning:

pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.

/opt/conda/lib/python3.9/site-packages/statsmodels/tsa/base/tsa_model.py:7:
FutureWarning:

pandas.Float64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.

Residential vs Commercial Sales

Correlation between each column (Correlation Heatmap)

/tmp/ipykernel_1540/2406824264.py:1: FutureWarning:

The default value of numeric_only in DataFrame.corr is deprecated. In a future version, it will default to False. Select only valid columns or specify the value of numeric_only to silence this warning.

Correlation Heatmap


```
[19]: fig = px.pie(df, names='NERC.REGION', title='NERC Region Distribution')
fig.show()
```

NERC Region Distribution

1.5 Pivoting and Aggregation – Interesting Aggregates

[20]:		CUSTOMERS.AFFECTED
	YEAR	
	2000	4270581.0
	2001	1431411.0
	2002	6382586.0
	2003	12463108.0
	2004	13592556.0
	2005	13552084.0
	2006	10152092.0
	2007	5973433.0
	2008	19964926.0
	2009	6813477.0
	2010	10108129.0
	2011	16438669.0

```
    2012
    12703973.0

    2013
    7018398.0

    2014
    8022197.0

    2015
    5629211.0

    2016
    1993908.0
```

[21]: # Determine the average outage duration per U.S. state and cause category:
pivot_table_outage_duration = df.pivot_table(index='U.S._STATE', columns='CAUSE.

CATEGORY', values='OUTAGE.DURATION(mins)', aggfunc='mean', fill_value=0)
pivot_table_outage_duration

[21]:	CAUSE.CATEGORY U.SSTATE	equipment failure	fuel supply emergency	\
	Alabama	0.000000	0.00	
	Arizona	138.500000	0.00	
	Arkansas	105.000000	0.00	
	California	524.809524	6154.60	
	Colorado	0.000000	0.00	
	Connecticut	0.000000	0.00	
	Delaware	50.000000	0.00	
	District of Columbia	159.000000	0.00	
	Florida	554.500000	0.00	
	Georgia	0.000000	0.00	
	Hawaii	0.000000	0.00	
	Idaho	0.000000	0.00	
	Illinois	149.000000	2761.00	
	Indiana	1.000000	12240.00	
	Iowa	0.000000	0.00	
	Kansas	0.000000	0.00	
	Kentucky	652.000000	12570.00	
	Louisiana	176.333333	28170.00	
	Maine	0.000000	1676.00	
	Maryland	0.000000	0.00	
	Massachusetts	0.000000	2891.00	
	Michigan	26435.333333	0.00	
	Minnesota	0.000000	0.00	
	Mississippi	0.000000	0.00	
	Missouri	0.000000	0.00	
	Montana	0.000000	0.00	
	Nebraska	0.000000	0.00	
	Nevada	0.000000	0.00	
	New Hampshire	0.000000	0.00	
	New Jersey	0.000000	0.00	
	New Mexico	0.000000	76.00	
	New York	247.000000	16687.25	
	North Carolina	0.000000	0.00	
	North Dakota	0.000000	0.00	

Ohio	0.000000		0.00	
Oklahoma	0.000000		0.00	
Oregon	200.000000		0.00	
Pennsylvania	376.000000		0.00	
South Carolina	0.000000		0.00	
South Dakota	0.000000		0.00	
Tennessee	404.000000		0.00	
Texas	405.600000		13920.00	
Utah	15.000000		0.00	
Vermont	0.000000		0.00	
Virginia	0.000000		0.00	
Washington	1204.000000		1.00	
West Virginia	0.000000		0.00	
Wisconsin	0.000000		33971.25	
Wyoming	61.000000		0.00	
CAUSE.CATEGORY	intentional attack	islanding	public appeal	\
U.SSTATE				
Alabama	77.000000	0.000000	0.000000	
Arizona	639.600000	0.000000	0.000000	
Arkansas	547.833333	3.000000	1063.714286	
California	946.458333	214.857143	2028.111111	
Colorado	117.000000	2.000000	0.000000	
Connecticut	49.125000	0.000000	0.000000	
Delaware	38.918919	0.000000	0.000000	
District of Columbia	0.000000	0.000000	0.000000	
Florida	50.000000	0.000000	4320.000000	
Georgia	108.000000	0.000000	0.000000	
Hawaii	0.000000	0.000000	0.000000	
Idaho	307.500000	0.000000	1548.000000	
Illinois	1450.000000	0.000000	120.000000	
Indiana	421.875000	125.333333	0.000000	
Iowa	5657.800000	0.000000	0.000000	
Kansas	561.000000	0.000000	913.000000	
Kentucky	108.000000	0.000000	0.000000	
Louisiana	0.000000	0.000000	1359.214286	
Maine	82.666667	881.000000	0.000000	
Maryland	225.320000	0.000000	0.000000	
Massachusetts	384.250000	0.000000	0.000000	
Michigan	3635.250000	1.000000	1078.000000	
Minnesota	369.500000	0.000000	0.000000	
Mississippi	12.000000	0.000000	0.000000	
Missouri	408.000000	0.000000	0.000000	
Montana	93.000000	34.500000	0.000000	
Nebraska	0.000000	0.000000	159.000000	
Nevada	553.285714	0.000000	0.000000	
New Hampshire	60.000000	0.000000	0.000000	

Nov. Jorgov	91.125000	0.000000	0.000000
New Jersey New Mexico			
	174.500000	0.000000	0.000000
New York	309.083333	0.000000	2655.000000
North Carolina	1063.750000	0.000000	0.000000
North Dakota	0.000000	0.000000	720.000000
Ohio	327.285714	0.000000	0.000000
Oklahoma	75.666667	984.000000	704.000000
Oregon	394.105263	0.000000	0.000000
Pennsylvania	1526.833333	0.000000	0.000000
South Carolina	0.000000	0.000000	0.000000
South Dakota	0.000000	120.000000	0.000000
Tennessee	171.000000	0.000000	2700.000000
Texas	298.769231	0.000000	1140.411765
Utah	142.285714	0.000000	2275.000000
Vermont	35.444444	0.000000	0.000000
Virginia	2.000000	0.000000	683.500000
	371.870968	73.333333	248.000000
Washington			
West Virginia	1.000000	0.000000	0.000000
Wisconsin	459.000000	0.000000	388.000000
Wyoming	0.333333	32.000000	0.000000
CAUSE.CATEGORY	severe weather sys	stem operabil	ity disruption
U.SSTATE			
Alabama	1421.750000		0.000000
Arizona	25726.500000		384.500000
Arkansas	2701.800000		0.000000
California	2928.373134		363.666667
Colorado	2727.250000		279.750000
Connecticut	2262.600000		0.000000
Delaware	2153.500000		0.000000
District of Columbia	4764.111111		0.000000
Florida	6420.192308		205.700000
Georgia	1422.750000		0.000000
Hawaii	997.500000		237.000000
Idaho	0.000000		179.666667
Illinois	1650.700000		0.000000
Indiana	4523.291667		4671.600000
Iowa 	3353.666667		0.000000
Kansas	9346.000000		0.000000
Kentucky	4480.111111		0.000000
Louisiana	7186.928571		1144.666667
Maine	1669.400000		0.000000
Maryland	4006.937500		304.000000
Massachusetts	1556.571429		67.000000
Michigan	4831.650602		2610.000000
Minnesota	3585.545455		0.000000
Mississippi	0.000000		300.000000
* *			

Montana	0.000000	0.000000			
Nebraska	3221.333333	0.000000			
Nevada	0.000000	0.000000			
New Hampshire	1597.500000	0.000000			
New Jersey	6372.863636	748.500000			
New Mexico	0.000000	0.000000			
New York	6034.575758	1176.571429			
North Carolina	1738.933333	82.200000			
North Dakota	0.000000	0.000000			
Ohio	4322.269231	1744.500000			
Oklahoma	4206.466667	0.000000			
Oregon	2295.800000	0.000000			
Pennsylvania	4314.000000	329.000000			
South Carolina	3135.000000	0.000000			
South Dakota	0.000000	0.000000			
Tennessee	1386.350000	20.000000			
Texas	3854.890625	810.800000			
Utah	957.000000	537.500000			
Vermont	0.00000	0.000000			
Virginia	1132.281250	241.000000			
Washington	5473.550000	25.000000			
West Virginia	9305.000000	0.000000			
Wisconsin	1527.428571	0.000000			
Wyoming	106.000000	0.000000			
# Determine the outage frequency per U.S. state and cause category:					
pivot_table_outage_fr	requency = df.pivot_t	able(index='U.SSTATE',_			
⇔columns='CAUSE.CATEGORY', values='OUTAGE.DURATION(mins)', aggfunc='count',⊔					
⇔fill_value=0)					
pivot_table_outage_fr	requency				

[22]:	CAUSE.CATEGORY	equipment failure	fuel supply emergency	\
	U.SSTATE			
	Alabama	0	0	
	Alaska	0	0	
	Arizona	4	0	
	Arkansas	1	0	
	California	21	10	
	Colorado	0	0	
	Connecticut	0	0	
	Delaware	1	0	
	District of Columbia	1	0	
	Florida	4	0	
	Georgia	0	0	
	Hawaii	0	0	
	Idaho	0	0	

[22]:

Illinois	1		1
Indiana	1		1
Iowa	0		0
Kansas	0		0
Kentucky	1		2
Louisiana	3		1
Maine	0		1
Maryland	0		0
Massachusetts	0		1
Michigan	3		0
Minnesota	0		0
Mississippi	0		0
Missouri	0		0
Montana	0		0
Nebraska	0		0
Nevada	0		0
New Hampshire	0		0
New Jersey	0		0
New Mexico	0		1
New York	2		12
North Carolina	0		0
North Dakota	0		0
Ohio	0		0
Oklahoma	0		0
Oregon	1		0
Pennsylvania	1		0
South Carolina	0		0
South Dakota	0		0
Tennessee	2		0
Texas	5		3
Utah	1		0
Vermont	0		0
Virginia	0		0
Washington	1		1
West Virginia	0		0
Wisconsin	0		4
Wyoming	1		0
CAUSE. CATEGORY	intentional attack	islanding	<pre>public appeal \</pre>
U.SSTATE		0	1 11
- Alabama	1	0	0
Alaska	0	0	0
Arizona	15	0	0
Arkansas	6	1	7
California	24	28	9
Colorado	5	1	0
Connecticut	8	0	0
00111100010110	0	U	O .

Delaware		37	0	0
District of Columbia		0	0	0
Florida		2	0	3
Georgia		1	0	0
Hawaii		0	0	0
Idaho		4	0	1
Illinois		1	0	1
Indiana		8	3	0
Iowa		5	0	0
Kansas		3	0	1
Kentucky		1	0	0
Louisiana		0	0	14
Maine		6	1	0
Maryland		25	0	0
Massachusetts		8	0	0
Michigan		4	1	1
Minnesota		4	0	0
Mississippi		3	0	0
Missouri		3	0	0
Montana		1	2	0
Nebraska		0	0	1
Nevada		7	0	0
New Hampshire		12	0	0
New Jersey		8	0	0
New Mexico		6	0	0
New York		12	0	4
North Carolina		4	0	0
North Dakota		0	0	1
Ohio		14	0	0
Oklahoma		3	1	3
Oregon		19	0	0
Pennsylvania		6	0	0
South Carolina		0	0	0
South Dakota		0	2	0
Tennessee		6	0	1
Texas		13	0	17
Utah	,	35	0	1
Vermont		9	0	0
Virginia		1	0	2
Washington		62	3	1
West Virginia		1	0	0
Wisconsin		7	0	1
Wyoming		3	1	0
	vere weather	system op	erability	disruption
U.SSTATE	_			_
Alabama	4			0

Alaska	0	0
Arizona	4	2
Arkansas	10	0
California	67	39
Colorado	4	4
Connecticut	10	0
Delaware	2	0
District of Columbia	9	0
Florida	26	10
Georgia	16	0
Hawaii	4	1
Idaho	0	3
Illinois	40	0
Indiana	24	5
Iowa	3	0
Kansas	3	0
Kentucky	9	0
Louisiana	14	6
Maine	10	0
Maryland	32	1
Massachusetts	7	2
Michigan	83	3
Minnesota	11	0
Mississippi	0	1
Missouri	11	1
Montana	0	0
Nebraska	3	0
Nevada	0	0
New Hampshire	2	0
New Jersey	22	2
New Mexico	0	1
New York	33	7
North Carolina	30	5
North Dakota	0	0
Ohio	26	2
Oklahoma	15	0
Oregon	5	0
Pennsylvania	48	2
South Carolina	8	0
South Dakota	0	0
Tennessee	20	2
Texas	64	20
Utah	2	2
Vermont	0	0
Virginia	32	1
Washington	20	1
West Virginia	3	0

Wisconsin 7 0 Wyoming 1 0

[23]: # Find the maximum customers affected per climate region and year:

pivot_table_customers_affected = df.pivot_table(index='CLIMATE.REGION',_

columns='YEAR', values='CUSTOMERS.AFFECTED', aggfunc='max', fill_value=0)

pivot_table_customers_affected

[23]:	YEAR	2000	2001	2002	2003	3 2004	2005	\
	CLIMATE.REGION							
	Central	239567	0	95000	1203000	281000	246990	
	East North Central	0	0	190000	2100000	250000	300000	
	Northeast	0	130000	224912	3125350	380000	143000	
	Northwest	0	0	0	200000	187000	0	
	South	2000000	114000	1881134	192000	500000	1100000	
	Southeast	160000	600000	130000	340000	2775093	3241437	
	Southwest	500000	0	0	90000	30000	0	
	West	32000	430984	1500000	241000	505000	1667316	
	West North Central	0	0	0	(120212	0	
	MAD	0000	0007	0000	0000	0040	0011	,
	YEAR CLIMATE.REGION	2006	2007	2008	2009	2010	2011	\
	CLIMATE. REGION Central	471932	629590	653000	383000	400000	500000	
	East North Central	315000		358000		285000	197166	
	Northeast	492955	300000	249408	132000	360000	760113	
	Northwest	700000	160000 300000	8000		123535 500000	9000 1069730	
	South	489478						
	Southeast	126000		584384			285465	
	Southwest	65000	0				204000	
	West	1271893					165000	
	West North Central	15000	0	126000	35500	0	34500	
	YEAR	2012	2013	2014	2015	2016		
	CLIMATE.REGION							
	Central	346000	283451	420000	115000	0		
	East North Central	140000	400000	164000	250000	160895		
	Northeast	850000	75000	715000	263000	56645		
	Northwest	426000	105000	0	500000	56000		
	South	262000	881000	57200	454000	415103		
	Southeast	880000	283000	677858	186035	203345		
	Southwest	30379	35230	0	5763	85179		
	West	125000	148000	1400000	80000	110000		
	West North Central	0	0	0	0	0		

[24]: # Determine the average anomaly level per climate category and cause category

→detail:

```
⇔columns='CAUSE.CATEGORY.DETAIL',
                                                 values='ANOMALY.LEVEL',_

→aggfunc='mean', fill_value=0)
      pivot_table_anomaly_level
[24]: CAUSE.CATEGORY.DETAIL
                              Coal
                                     Hydro
                                             Natural Gas 100 MW loadshed \
     CLIMATE.CATEGORY
      cold
                              -0.5
                                       0.0
                                                    -0.6
                                                                      0.0
                              -0.2
                                      -0.4
                                                    -0.3
                                                                     -0.2
     normal
                               0.0
                                       0.0
                                                     0.0
                                                                      0.0
      warm
      CAUSE.CATEGORY.DETAIL
                                     Coal HVSubstation interruption Hydro \
      CLIMATE.CATEGORY
      cold
                            -8.250000e-01
                                                                 0.0 - 1.200
                             9.251859e-18
                                                                -0.1 0.025
     normal
      warm
                             0.000000e+00
                                                                 0.0 0.000
     CAUSE.CATEGORY.DETAIL Petroleum breaker trip cables ...
      CLIMATE.CATEGORY
      cold
                                   0.0
                                                         0.0
                                           -0.500000
     normal
                                  -0.4
                                            0.066667
                                                         0.3 ...
                                   0.0
                                            0.000000
                                                         0.0 ...
      warm
      CAUSE.CATEGORY.DETAIL transmission trip uncontrolled loss vandalism \
      CLIMATE.CATEGORY
      cold
                                         -0.85
                                                        -0.500000
                                                                   -0.747059
                                         -0.25
                                                        -0.275000 -0.215730
     normal
      warm
                                          0.00
                                                         1.144444
                                                                    1.189474
      CAUSE.CATEGORY.DETAIL voltage reduction wildfire wind wind storm \
      CLIMATE.CATEGORY
      cold
                                           0.0 -0.836364 0.00
                                                                       0.0
                                          -0.3 -0.100000 -0.20
                                                                      -0.3
     normal
                                           0.0 0.620000 0.55
      warm
                                                                       0.0
      CAUSE.CATEGORY.DETAIL wind/rain
                                          winter winter storm
      CLIMATE.CATEGORY
      cold
                             -1.500000 -0.527778
                                                     -0.963636
     normal
                              0.066667 -0.400000
                                                      0.020000
                              0.825000 0.525000
                                                      0.958065
      warm
      [3 rows x 51 columns]
```

pivot_table_anomaly_level = df.pivot_table(index='CLIMATE.CATEGORY',__

1.6 Assessment of Missingness

1.6.1 NMAR Analysis & Missingness Dependency

```
[25]: # Does missingness of customers affected depend on the cause category?
      df['CAUSE.CATEGORY']
      df.groupby('CAUSE.CATEGORY').count()
      df_ca_missing = df[df['CUSTOMERS.AFFECTED'].isna()]
      df_ca_not_missing = df[~df['CUSTOMERS.AFFECTED'].isna()]
      missing_count = df_ca_missing.groupby('CAUSE.CATEGORY').count()['YEAR']
      missing proportion = pd.Series(np.array(missing count)/((np.
       array(missing_count)).sum()), index=missing_count.index)
      not_missing_count = df_ca_not_missing.groupby('CAUSE.CATEGORY').count()['YEAR']
      not missing proportion = pd.Series(np.array(not missing count)/((np.
       →array(not_missing_count)).sum()), index=not_missing_count.index)
      observed_tvd_statistic = abs(not_missing_proportion - missing_proportion).sum()
      observed dataframe = pd.concat([not missing proportion, missing proportion],
       →axis=1, keys=['not_missing_proportion', 'missing_proportion'])
      observed_dataframe.plot(kind='barh', title='Causes by missingess of user_
       ⇔affected', barmode='group')
```

Causes by missingess of user affected


```
[26]: def cause one permutation(df):
          df = df.copy()
          df['CUSTOMERS.AFFECTED'] = np.random.permutation(df['CUSTOMERS.AFFECTED'])
          df['CAUSE.CATEGORY']
          df.groupby('CAUSE.CATEGORY').count()
          df_ca_missing = df[df['CUSTOMERS.AFFECTED'].isna()]
          df ca not missing = df[~df['CUSTOMERS.AFFECTED'].isna()]
          missing_count = df_ca_missing.groupby('CAUSE.CATEGORY').count()['YEAR']
          missing_proportion = pd.Series(np.array(missing_count)/((np.
       array(missing_count)).sum()), index=missing_count.index)
          not_missing_count = df_ca_not_missing.groupby('CAUSE.CATEGORY').
       ⇔count()['YEAR']
          not missing proportion = pd.Series(np.array(not missing count)/((np.
       Garray(not_missing_count)).sum()), index=not_missing_count.index)
          observed_tvd_statistic = abs(not_missing_proportion - missing_proportion).
       ⇒sum()
          return observed_tvd_statistic
      # do permutation 1000 times
      result = []
      for i in range(1000):
          result.append(cause_one_permutation(df))
      fig = px.histogram(pd.DataFrame(result), x=0, nbins=50, histnorm='probability',
                         title='Empirical Distribution of the TVD')
      fig.add_vline(x=observed_tvd_statistic, line_color='red')
      fig.update_layout(xaxis_range=[0, 1.5])
```

Empirical Distribution of the TVD


```
[27]: # Does missingness of customers affected depend on the cause category?
      from scipy import stats
      df['TOTAL.PRICE(cents / kilowatt-hour)']
      df.groupby('TOTAL.PRICE(cents / kilowatt-hour)').count()
      df_ca_missing = df[df['CUSTOMERS.AFFECTED'].isna()]
      df_ca_not_missing = df[~df['CUSTOMERS.AFFECTED'].isna()]
      missing_distribution = df_ca_missing['TOTAL.PRICE(cents / kilowatt-hour)']
      not missing distribution = df_ca_not_missing['TOTAL.PRICE(cents / ___
       ⇔kilowatt-hour)'l
      observed dataframe = pd.concat([not missing distribution,
       ⇔missing_distribution], axis=1, keys=['not_missing_proportion', __
       ⇔'missing_proportion'])
      specific_df = df[['TOTAL.PRICE(cents / kilowatt-hour)','CUSTOMERS.AFFECTED']].
       ⇔copy()
      specific_df['affected_missing'] = specific_df['CUSTOMERS.AFFECTED'].isna()
      per_na = df_ca_missing['TOTAL.PRICE(cents / kilowatt-hour)']
      per_va = df_ca_not_missing['TOTAL.PRICE(cents / kilowatt-hour)']
      obsersed_stat2 = stats.ks_2samp(per_na, per_va).statistic
      px.histogram(specific_df, x='TOTAL.PRICE(cents / kilowatt-hour)', u
       ocolor='affected_missing', histnorm='probability', marginal='box',
```

```
title="total price by Missingness of Population affected", _{\sqcup} _{\ominus} barmode='overlay', opacity=0.7)
```

total price by Missingness of Population affected


```
[28]: def cause_one_permutation2(df):
          df = df.copy()
          df['CUSTOMERS.AFFECTED'] = np.random.permutation(df['CUSTOMERS.AFFECTED'])
          df['TOTAL.PRICE(cents / kilowatt-hour)']
          df.groupby('TOTAL.PRICE(cents / kilowatt-hour)').count()
          df_ca_missing = df[df['CUSTOMERS.AFFECTED'].isna()]
          df ca not missing = df[~df['CUSTOMERS.AFFECTED'].isna()]
          specific_df = df[['TOTAL.PRICE(cents / kilowatt-hour)','CUSTOMERS.AFFECTED'_
       →]].copy()
          specific_df['affected_missing'] = specific_df['CUSTOMERS.AFFECTED'].isna()
          per_na = df_ca_missing['TOTAL.PRICE(cents / kilowatt-hour)']
          per_va = df_ca_not_missing['TOTAL.PRICE(cents / kilowatt-hour)']
          obsersed stat = stats.ks 2samp(per na, per va).statistic
          return obsersed stat
      result2 = []
      for i in range(1000):
          result2.append(cause_one_permutation2(df))
      fig2 = px.histogram(pd.DataFrame(result2), x=0, nbins=50,
       ⇔histnorm='probability',
```

```
title='Empirical Distribution of the TVD')
fig2.add_vline(x=obsersed_stat2, line_color='red')
fig2.update_layout(xaxis_range=[0, 0.2])
```

Empirical Distribution of the TVD


```
[29]: p_value1 = (np.array(result) > observed_tvd_statistic).mean()
    p_value2 = (np.array(result2) > obsersed_stat2).mean()
    observed_tvd_statistic
```

[29]: 1.1148675909814136

1.7 Hypothesis Testing

observed: overall_duration 2625.39837398374 west_duration 1628.331707317073 p value for the duration hypothesis test = 0.0003

1.8 Hypothesis test: people affected

```
west_affected = df[df['CLIMATE.REGION'] == 'West']['CUSTOMERS.AFFECTED']
overall_affected = df['CUSTOMERS.AFFECTED']
print('observed:', 'overall_affected: ',overall_affected.mean(), 'west_affected:
    ',west_affected.mean())

affected_simulation_result = []
for i in range(10000):
    each_affected_simulation = pd.Series(np.random.choice(overall_affected,u))
size=len(west_affected), replace=False)).mean()
```

```
affected_simulation_result.append(each_affected_simulation)

p_val_hypo_2 = (np.array(affected_simulation_result) > west_affected.mean()).

→mean()

print('p value for the duration hypothesis test = ', p_val_hypo_2)

fig_hyp2 = px.histogram(affected_simulation_result)

fig_hyp2.add_vline(west_affected.mean(), line_color='red')
```

observed: overall_affected: 143456.22273143905 west_affected:
194579.8939393935
p value for the duration hypothesis test = 0.0144

[]: