

2015 IMO Shortlist

IMO Shortlist 2015

- Algebra

A1 Suppose that a sequence a_1, a_2, \ldots of positive real numbers satisfies

$$a_{k+1} \ge \frac{ka_k}{a_k^2 + (k-1)}$$

for every positive integer k. Prove that $a_1 + a_2 + \ldots + a_n \ge n$ for every $n \ge 2$.

A2 Determine all functions $f: \mathbb{Z} \to \mathbb{Z}$ with the property that

$$f(x - f(y)) = f(f(x)) - f(y) - 1$$

holds for all $x, y \in \mathbb{Z}$.

A3 Let n be a fixed positive integer. Find the maximum possible value of

$$\sum_{1 \le r < s \le 2n} (s - r - n) x_r x_s,$$

where $-1 \le x_i \le 1$ for all $i = 1, \dots, 2n$.

A4 Let \mathbb{R} be the set of real numbers. Determine all functions $f: \mathbb{R} \to \mathbb{R}$ that satisfy the equation

$$f(x + f(x + y)) + f(xy) = x + f(x + y) + yf(x)$$

for all real numbers x and y.

Proposed by Dorlir Ahmeti, Albania

A5 Let $2\mathbb{Z} + 1$ denote the set of odd integers. Find all functions $f : \mathbb{Z} \mapsto 2\mathbb{Z} + 1$ satisfying

$$f(x + f(x) + y) + f(x - f(x) - y) = f(x + y) + f(x - y)$$

for every $x, y \in \mathbb{Z}$.

A6 Let n be a fixed integer with $n \geq 2$. We say that two polynomials P and Q with real coefficients are block-similar if for each $i \in \{1, 2, ..., n\}$ the sequences

2015 IMO Shortlist

 $P(2015i), P(2015i-1), \dots, P(2015i-2014)$ and $Q(2015i), Q(2015i-1), \dots, Q(2015i-2014)$

are permutations of each other.

- (a) Prove that there exist distinct block-similar polynomials of degree n+1.
- (b) Prove that there do not exist distinct block-similar polynomials of degree n.

Proposed by David Arthur, Canada

Combinatorics

C1

In Lineland there are $n \geq 1$ towns, arranged along a road running from left to right. Each town has a *left bulldozer* (put to the left of the town and facing left) and a *right bulldozer* (put to the right of the town and facing right). The sizes of the 2n bulldozers are distinct. Every time when a left and right bulldozer confront each other, the larger bulldozer pushes the smaller one off the road. On the other hand, bulldozers are quite unprotected at their rears; so, if a bulldozer reaches the rear-end of another one, the first one pushes the second one off the road, regardless of their sizes.

Let A and B be two towns, with B to the right of A. We say that town A can sweep town B away if the right bulldozer of A can move over to B pushing off all bulldozers it meets. Similarly town B can sweep town A away if the left bulldozer of B can move over to A pushing off all bulldozers of all towns on its way.

Prove that there is exactly one town that cannot be swept away by any other one.

C2

We say that a finite set S of points in the plane is balanced if, for any two different points A and B in S, there is a point C in S such that AC = BC. We say that S is centre-free if for any three different points A, B and C in S, there is no points P in S such that PA = PB = PC.

- (a) Show that for all integers $n \geq 3$, there exists a balanced set consisting of n points.
- (b) Determine all integers $n \geq 3$ for which there exists a balanced centre-free set consisting of n points.

Proposed by Netherlands

Problem_Penetrator, samithayohan, termas

2015 IMO Shortlist

C3

For a finite set A of positive integers, a partition of A into two disjoint nonempty subsets A_1 and A_2 is good if the least common multiple of the elements in A_1 is equal to the greatest common divisor of the elements in A_2 . Determine the minimum value of n such that there exists a set of n positive integers with exactly 2015 good partitions.

C4

Let n be a positive integer. Two players A and B play a game in which they take turns choosing positive integers $k \leq n$. The rules of the game are:

- (i) A player cannot choose a number that has been chosen by either player on any previous turn.
- (ii) A player cannot choose a number consecutive to any of those the player has already chosen on any previous turn.
- (iii) The game is a draw if all numbers have been chosen; otherwise the player who cannot choose a number anymore loses the game.

The player A takes the first turn. Determine the outcome of the game, assuming that both players use optimal strategies.

Proposed by Finland

C5

The sequence a_1, a_2, \ldots of integers satisfies the conditions:

- (i) $1 \le a_j \le 2015$ for all $j \ge 1$,
- (ii) $k + a_k \neq \ell + a_\ell$ for all $1 \leq k < \ell$.

Prove that there exist two positive integers b and N for which

$$\left| \sum_{j=m+1}^{n} (a_j - b) \right| \le 1007^2$$

for all integers m and n such that $n > m \ge N$.

Proposed by Ivan Guo and Ross Atkins, Australia

C6

Let S be a nonempty set of positive integers. We say that a positive integer n is clean if it has a unique representation as a sum of an odd number of distinct elements from S. Prove that there exist infinitely many positive integers that are not clean.

C7

In a company of people some pairs are enemies. A group of people is called *unsociable* if the number of members in the group is odd and at least 3, and it is possible to arrange all its members around a round table so that every two neighbors are enemies. Given that there are at most 2015 unsociable groups,

Contributors: gavrilos, ABCDE, va2010, codyj, CantonMathGuy, randomusername, Problem_Penetrator, samithayohan, termas

Art of Problem Solving 2015 IMO Shortlist

	prove that it is possible to partition the company into 11 parts so that no two enemies are in the same part.
	Proposed by Russia
_	Geometry
G1	Let ABC be an acute triangle with orthocenter H . Let G be the point such that the quadrilateral $ABGH$ is a parallelogram. Let I be the point on the line GH such that AC bisects HI . Suppose that the line AC intersects the circumcircle of the triangle GCI at C and J . Prove that $IJ = AH$.
G2	Triangle ABC has circumcircle Ω and circumcenter O . A circle Γ with center A intersects the segment BC at points D and E , such that B , D , E , and C are all different and lie on line BC in this order. Let F and G be the points of intersection of Γ and Ω , such that A , F , B , C , and G lie on Ω in this order. Let K be the second point of intersection of the circumcircle of triangle BDF and the segment AB . Let E be the second point of intersection of the circumcircle of triangle E and the segment E are the segment E and the se
	Suppose that the lines FK and GL are different and intersect at the point X . Prove that X lies on the line AO .
	Proposed by Greece
G3	Let ABC be a triangle with $\angle C = 90^{\circ}$, and let H be the foot of the altitude from C . A point D is chosen inside the triangle CBH so that CH bisects AD . Let P be the intersection point of the lines BD and CH . Let ω be the semicircle with diameter BD that meets the segment CB at an interior point. A line through P is tangent to ω at Q . Prove that the lines CQ and AD meet on ω .
G4	Let ABC be an acute triangle and let M be the midpoint of AC . A circle ω passing through B and M meets the sides AB and BC at points P and Q respectively. Let T be the point such that $BPTQ$ is a parallelogram. Suppose that T lies on the circumcircle of ABC . Determine all possible values of $\frac{BT}{BM}$.
G5	Let ABC be a triangle with $CA \neq CB$. Let D , F , and G be the midpoints of the sides AB , AC , and BC respectively. A circle Γ passing through C and tangent to AB at D meets the segments AF and BG at H and I , respectively. The points H' and I' are symmetric to H and I about F and G , respectively. The line $H'I'$ meets CD and FG at Q and M , respectively. The line CM meets Γ again at P . Prove that $CQ = QP$.

Contributors: gavrilos, ABCDE, va2010, codyj, CantonMathGuy, randomusername, $Problem_Penetrator,\ samithayohan,\ termas$

Art of Problem Solving 2015 IMO Shortlist

	Proposed by El Salvador
G6	Let ABC be an acute triangle with $AB > AC$. Let Γ be its cirumcircle, H its orthocenter, and F the foot of the altitude from A . Let M be the midpoint of BC . Let Q be the point on Γ such that $\angle HQA = 90^{\circ}$ and let K be the point on Γ such that $\angle HKQ = 90^{\circ}$. Assume that the points A , B , C , K and Q are all different and lie on Γ in this order.
	Prove that the circumcircles of triangles KQH and FKM are tangent to each other.
	Proposed by Ukraine
G7	Let $ABCD$ be a convex quadrilateral, and let P , Q , R , and S be points on the sides AB , BC , CD , and DA , respectively. Let the line segment PR and QS meet at O . Suppose that each of the quadrilaterals $APOS$, $BQOP$, $CROQ$, and $DSOR$ has an incircle. Prove that the lines AC , PQ , and RS are either concurrent or parallel to each other.
G8	A triangulation of a convex polygon Π is a partitioning of Π into triangles by diagonals having no common points other than the vertices of the polygon. We say that a triangulation is a <i>Thaiangulation</i> if all triangles in it have the same area.
	Prove that any two different Thaiangulations of a convex polygon Π differ by exactly two triangles. (In other words, prove that it is possible to replace one pair of triangles in the first Thaiangulation with a different pair of triangles so as to obtain the second Thaiangulation.) Proposed by Bulgaria
	Number Theory
N1	Determine all positive integers M such that the sequence a_0, a_1, a_2, \cdots defined by $a_0 = M + \frac{1}{2} \text{and} a_{k+1} = a_k \lfloor a_k \rfloor \text{for } k = 0, 1, 2, \cdots$
	contains at least one integer term.
N2	Let a and b be positive integers such that $a! + b!$ divides $a!b!$. Prove that $3a \ge 2b + 2$.

Contributors: gavrilos, ABCDE, va2010, codyj, CantonMathGuy, randomusername,

 $Problem_Penetrator,\ samithayohan,\ termas$

2015 IMO Shortlist

N3

Let m and n be positive integers such that m > n. Define $x_k = \frac{m+k}{n+k}$ for $k = 1, 2, \ldots, n + 1$. Prove that if all the numbers $x_1, x_2, \ldots, x_{n+1}$ are integers, then $x_1x_2...x_{n+1}-1$ is divisible by an odd prime.

N4

Suppose that a_0, a_1, \cdots and b_0, b_1, \cdots are two sequences of positive integers such that $a_0, b_0 \geq 2$ and

$$a_{n+1} = \gcd(a_n, b_n) + 1, \qquad b_{n+1} = \operatorname{lcm}(a_n, b_n) - 1.$$

Show that the sequence a_n is eventually periodic; in other words, there exist integers $N \ge 0$ and t > 0 such that $a_{n+t} = a_n$ for all $n \ge N$.

N5

Find all postive integers (a, b, c) such that

$$ab-c$$
, $bc-a$, $ca-b$

are all powers of 2.

Proposed by Serbia

N6

Let $\mathbb{Z}_{>0}$ denote the set of positive integers. Consider a function $f:\mathbb{Z}_{>0}\to\mathbb{Z}_{>0}$. For any $m, n \in \mathbb{Z}_{>0}$ we write $f^n(m) = \underbrace{f(f(\dots f(m) \dots))}_n$. Suppose that f has

the following two properties:

- (i) if $m, n \in \mathbb{Z}_{>0}$, then $\frac{f^n(m)-m}{n} \in \mathbb{Z}_{>0}$; (ii) The set $\mathbb{Z}_{>0} \setminus \{f(n) \mid n \in \mathbb{Z}_{>0}\}$ is finite.

Prove that the sequence f(1) - 1, f(2) - 2, f(3) - 3,... is periodic.

Proposed by Ang Jie Jun, Singapore

N7

Let $\mathbb{Z}_{>0}$ denote the set of positive integers. For any positive integer k, a function $f: \mathbb{Z}_{>0} \to \mathbb{Z}_{>0}$ is called [i]k-good[/i] if $\gcd(f(m) + n, f(n) + m) \leq k$ for all $m \neq n$. Find all k such that there exists a k-good function.

Proposed by James Rickards, Canada

N8

For every positive integer n with prime factorization $n = \prod_{i=1}^k p_i^{\alpha_i}$, define

$$\mho(n) = \sum_{i: p_i > 10^{100}} \alpha_i.$$

That is, $\mho(n)$ is the number of prime factors of n greater than 10^{100} , counted with multiplicity.

Art of Problem Solving 2015 IMO Shortlist

Find all strictly increasing functions $f: \mathbb{Z} \to \mathbb{Z}$ such that

 $\mho(f(a) - f(b)) \le \mho(a - b)$ for all integers a and b with a > b.

Proposed by Rodrigo Sanches Angelo, Brazil