ML Crop Yield Prediction

Eshan Kumar, ek3227 ML & Climate with Professor Alp Kucukelbir 12/6/22

Table of contents

01

Overview

Motivation & Problem Description

03

Models & Inference

Linear models, Tree models, Causal model & their predictions

02

Dataset

Data Description, Visualization, & Preprocessing

04

Conclusion

Discussion & Future work

01

Overview

Motivation & Problem Description

Overview

- Human population exploding past 8 billion
- Climate is rapidly changing, large effect on agriculture
- Understanding worldwide crop yield as climate factors change is critical
 - Address Food security challenges pre-emptively (Agricultural risk management)
 - Predict how agriculture changes will affect economies of areas around the world

02

Dataset

Data Description, Visualization, & Preprocessing

- Data from <u>FAO</u> (<u>Food and Agriculture</u>
 <u>Organization</u>), <u>World Data Bank</u>, & <u>Climate</u>
 <u>Change Knowledge Portal</u>
- Contains the rainfall, pesticide use, temperature, crop item, and crop yield (label) from 168 countries from over 20 years, from 1990 to 2013
 - 28,242 data points with 7 features.
- Scaled numerical variables, one-hot encoded categorical variables, ordinally encoded "Year"

```
Countries in dataset:
 ['Albania' 'Algeria' 'Angola' 'Argentina' 'Armenia' 'Australia' 'Austria
 'Azerbaijan' 'Bahamas' 'Bahrain' 'Bangladesh' 'Belarus' 'Belgium'
 Botswana' 'Brazil' 'Bulgaria' 'Burkina Faso' 'Burundi' 'Cameroon'
          'Central African Republic' 'Chile' 'Colombia' 'Croatia'
           'Dominican Republic' 'Ecuador' 'Egypt' 'El Salvador' 'Eritrea'
          'Guvana' 'Haiti' 'Honduras' 'Hungary' 'India' 'Indonesia' 'Irag
           'Italy' 'Jamaica' 'Japan' 'Kazakhstan' 'Kenya' 'Latvia
           'Lesotho' 'Libva' 'Lithuania' 'Madagascar' 'Malawi' 'Malaysia'
 'Mali' 'Mauritania' 'Mauritius' 'Mexico' 'Montenegro' 'Morocco
 'Mozambique' 'Namibia' 'Nepal' 'Netherlands' 'New Zealand' 'Nicaraqua'
                  'Pakistan' 'Papua New Guinea' 'Peru' 'Poland' 'Portugal'
 'South Africa' 'Spain' 'Sri Lanka' 'Sudan' 'Suriname' 'Sweden
 'Switzerland' 'Tajikistan' 'Thailand' 'Tunisia' 'Turkey'
 'Ukraine' 'United Kingdom' 'Uruguay' 'Zambia' 'Zimbabwe']
Crops in dataset:
 ['Maize' 'Potatoes' 'Rice, paddy' 'Sorghum' 'Soybeans' 'Wheat' 'Cassava'
 'Sweet potatoes' 'Plantains and others' 'Yams']
       Unnamed: 0
                                  Item Year hg/ha yield average rain fall mm per year pesticides tonnes avg temp
 3874
                        Brazil Sorghum 2004
                                                    23187
                                                                                   1761.0
                                                                                                    214725.00
                                                                                                                 20.05
 4988
                                                    59603
                                                                                    748.0
                                                                                                                 28.58
                                                                                                       17.00
 5458
                                                    81918
                                                                                   1604.0
                                                                                                      687.00
                                                                                                                 25.01
13484
            13484
                                                    27079
                                                                                   1083.0
                                                                                                    27422.77
                                                                                                                 24.60
27311
                                                    17273
                                                                                   1180.0
```

Dataset

 No clear trends in yield from Categorical or numerical variables

Dataset

03

Models & Inference

Linear models, Tree models, Causal model & their predictions

Linear Models

- Linear Regression
- Ridge Regression
- Elastic-Net Regression
- Lasso Regression
- Bayesian ARD Regression
- Bayesian Ridge Regression
- K Nearest Neighbors Regression
- Support Vector Regression

Tree Models

- Decision Tree Regression
- Random Forest Regression
- Gradient Boosted Trees
- XGBoost

Other Models

- Multi-Layer Perceptron Neural Network
- Elementary causal model

- Used Bayesian Hyperparameter
 Optimization over Random/Grid Search
 - Efficiently Led to model improvements without exhaustively searching space
- Got feature importances from tree models

	Model Name	Model	Fitting time	Scoring time	Train Accuracy	Validation Accuracy	Inferred Crop Yield
	11 Random Forest Regression	(DecisionTreeRegressor(max_features='auto', ra	14.764779	0.195721	0.998384	0.988030	422429.750000
12 10 16 14 13	Random Forest Regression w/ Hyperparam Opt	(DecisionTreeRegressor(max_depth=35, max_featu	2.876744	0.146089	0.945915	0.981581	414251.240000
	Decision Tree Regression	DecisionTreeRegressor()	0.303341	0.007003	1.000000	0.979951	413769.000000
	XGB Regression w/ Hyperparm Opt	XGBRegressor(min_impurity_decrease=0.125, n_es	4.569502	0.032414	0.227024	0.890289	331462.218750
	4 GB Regression Trees w/ Hyperparm Opt	([DecisionTreeRegressor(criterion='friedman_ms	3.356412	0.023210	0.531050	0.890191	340769.564665
	Gradient Boosted Regression Trees	$\hbox{([Decision Tree Regressor (criterion = \colored friedman_ms}$	4.303582	0.015550	0.877714	0.873398	288670.611810
	XGB Regression	XGBRegressor()	5.363534	0.026464	0.874709	0.870382	281556.875000
	6 K Nearest Neighbors Regression	KNeighborsRegressor()	0.011836	3.057751	0.916508	0.857904	151099.600000
1 5 3 0 4	1 Ridge Regression	Ridge()	0.077325	0.006203	0.756644	0.754077	281479.538813
	5 Bayesian Ridge Regression	BayesianRidge()	0.382362	0.006854	0.756648	0.754077	281496.695980
	3 Lasso Regression	Lasso()	4.140481	0.007774	0.756672	0.754073	281604.806570
	0 Linear Regression	LinearRegression()	0.234917	0.007883	0.756677	0.754070	281739.500000
	4 Bayesian ARD Regression	ARDRegression()	14.549672	0.006971	0.755605	0.752952	281863.861139
	9 Neural Network MLP w/ Bayesian Hyperparam Opti	MLPRegressor(activation='identity', alpha=0.1,	24.642043	0.022971	0.142967	0.464800	247223.521072
	8 Neural Network Multi-Layer Perceptron Regression	MLPRegressor(early_stopping=True)	33.246683	0.014120	0.358029	0.356383	217989.383800
	2 Elastic-Net Regression	ElasticNet()	0.153725	0.010947	0.254837	0.254424	147802.397586
	7 Support Vector Regression	LinearSVR()	0.052212	0.004538	-0.230206	-0.230450	111949.240421

- Wanted to implement elementary structural causal model
 - Week 4 paper Inferring causation from time series in Earth system sciences
- Used <u>Microsoft DoWhy</u> package
 - Followed procedure from article

- Estimated causal effect on outcome (Crop Yield)
 based on different treatments
 - Causal effect magnitude by which the Outcome changes due to a unit change in Treatment
 - Treatment causes outcome if changing Treatment leads to a change in Outcome keeping everything else constant
- Performed robustness checks to test validity of assumptions used to create above graph
 - Attempted to refute results for Rainfall (mm/year) treatment
- Found that causal effect of temperature and rainfall is quite strong

	Treatment	Estimated Effect
0	avg_temp	-0.197101
1	pesticides_tonnes	-0.032410
2	average_rain_fall_mm_per_year	0.098958

	Refutal Method	Estimated Effect	New Effect	
0	Add a random common cause	0.0989	0.0989	(should be similar)
1	Use a Placebo Treatment	0.0989	-0.000	(should go to 0)
2	Use a subset of data	0.0989	0.0366	(should be similar)

04 Conclusion

Discussion & Future work

Conclusion

Summary

- Was able to obtain high validation accuracy
- Experimented with 15 regression models, Bayesian Hyperparameter Optimization
- Found interesting Inference results, wanted more detail
- Found compelling causal effects in data with Microsoft DoWhy

Future

- Some historical data seems repeated higher quality data may help model
- More features such as humidity, CO2 levels, etc.
- More accurate projection data
- More advanced Causal model

Thank you!

