

OCT 06, 2023

Bead Beating in Custom Buffer Followed by XP Bead Cleanup (NGS Workflow)

Jason D Alina lanré Steyn², Limberis¹, Nalyvayko¹,

Robin M

Iennifer Williams², Melanie Grobbelaar², Warren², john.metcalfe1

²Stellenbosch University, Cape Town

Alina Nalyvayko

ABSTRACT

DNA extraction method for Mycobacterium tuberculosis from various sample types as described in: "Insights into Mycobacterium tuberculosis DNA extraction for targeted deep sequencing using the Deeplex Myc-TB assay: Lessons for improved drug resistance diagnosis."

MATERIALS

OPEN ACCESS

DOI:

dx.doi.org/10.17504/protocol s.io.rm7vzbz7rvx1/v1

Protocol Citation: Jason D Limberis, Alina Nalyvayko, Janré Steyn, Jennifer Williams, Melanie Grobbelaar, Robin M Warren, john.metcalfe 2023. Bead Beating in Custom Buffer Followed by XP Bead Cleanup (NGS Workflow).

protocols.io

https://dx.doi.org/10.17504/p rotocols.io.rm7vzbz7rvx1/v1

License: This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working We use this protocol and it's working

Equipment	
FastPrep-24 Classic bead beating grinder and lysis system	NAME
Bead beater	TYPE
MPBio	BRAND
116004500	SKU

- Screw cap micro tube 1.5 ml PCR Performance Tested Low DNAbinding Sarstedt Catalog #72.703.700
- Agencourt AmPure XP beads Contributed by users Catalog #A63880
- 0.1 mm Zirconia/Silica Beads Bio Spec Products Inc. Catalog #11079101z

¹University of California, San Francisco;

Created: May 05, 2023

SAFETY WARNINGS

Last Modified: Oct 06, 2023

PROTOCOL integer ID: 81498

Keywords: NGS, targeted sequencing, sputum, MGIT, M.tuberuculisis, DNA extraction

BEFORE START INSTRUCTIONS

rules, and regulations.

Work done with Mycobacterium tuberculosis must comply with laws,

Prepare buffers

Funders Acknowledgement:

NIAID

Grant ID: R01AI131939

Prepare Buffers

1

Component	Volume (ml)
H20	95.8
NaCl (5M)	2
Tris-HCl pH 8.3 (1M)	1
Triton X-100	1
EDTA (0.5M)	0.2

Custom Triton Buffer \bigcirc_{H} 8.3 . To prepare \square 100 mL of the Custom Triton Buffer, simply add each component in the specified amount then add H_2O to a final volume of \square 100 mL . Filter sterilize the solution before use. This will result in a final buffer concentration of \square 100 millimolar (mM) NaCl, \square 10 millimolar (mM) Tris-HCl; \square 1 millimolar (mM) EDTA, \square 1 % (v/v) Triton X-100.

Component	Volume (ml)
H20	99
Tris-HCl (1M, pH 8)	1
EDTA (0.5M)	0.02

Oct 6 2023

Low EDTA TE (1X) 8 . To prepare 100 mL of the Low EDTA Tris Buffer simply add each component in the specified amount then add H₂O to a final volume of 100 mL . The final buffer has a concentration of 10 millimolar (mM) Tris-HCl and 101 millimolar (mM) EDTA.

Step 1 includes a Step case.

Sputum sample

MGIT culture

Prepare lysis tubes

Prepare Input

step case

Sputum sample

- 2 Add four volumes of 100mM dithiothreitol to the sputum sample and vortex for > 00:00:30
- 3 Incubate at Room temperature for 00:15:00

15m

30s

- Remove and discard the supernatant, and resuspend the pellet in Buffer
 Buffer

 Buffer
- Vortex sample and 3, 00:15:00, max speed

15m

6 If it is not possible to do the above in your laboratory.
Use BBL MycoPrepTM (BD) reagent to process the sample according to the manufacturer's

instructions with the following modification: Resuspend the sediment in step 8 in the protocol in \pm 350 µL of Custom Triton Buffer

7 If required (i.e., to remove samples for processing outside a BSL-3), decontaminate the sample

Extract DNA

2m

- 8 Transfer the inactivated bacterial suspension to a new well-labeled Starsted screw cap tube containing \sim Δ 250 μ L of Mini-BeadBeater Zirconia-Silicate Beads, + \leftarrow -0.1 mm
- 9 Bead beat the lysate at 6.5m/s for 00:00:45 with 00:02:00 rest on ice between runs
- 9.1 Repeat for a total of three bead beating cycles
- Centrifuge at max speed 10000 rcf, Room temperature, 00:02:00 and transfer the supernatant to a new well-labeled tube.

 Take care not to transfer beads or cell debris.
- 11 Add Δ 250 μL (1.2X volume) AMPure XP beads and mix by pipetting up and down 10 times
- 12 Incubate at 8 Room temperature for 00:05:00
- Place on magnetic rack and wait for the solution to clear, ~ © 00:02:00

- Discard the supernatant and wash the beads twice with freshly prepared [M] 70 % (V/V) ethanol without disrupting the beads
- Dry the beads briefly, \sim \bigcirc 00:02:00 . Tip: Remove residual EtOH with a p10 pipette
- 17 Incubate at room temperature for © 00:05:00
- Place on magnetic rack, wait for the solution to become clear ~ (5) 00:02:00 , and transfer the eluted DNA to a new well-labeled tube