Monte Carlo $\alpha - \beta$ (4.8.7)

Seminar aus Maschinellem Lernen

MCaB

Inhalt

1. $\alpha\beta$ Algorithmus

- 2. MCTS + $\alpha\beta$
 - MCTS als Evaluierungsfunktion für $\alpha\beta$
 - αβ als Default Policy für MCTS
- 3. MC-LOA $_{\alpha\beta}$ als Anwendung in Lines of Action

Vorstellung des $\alpha\beta$ -Algorithmus

- $\alpha\beta$ = Modifizierter **MiniMax** Ansatz
- Intervall in jedem Knoten wird verwendet um Teilbäume abzuschneiden
 - => weniger Knoten müssen besucht werden
 - Ergebnis wird nicht verändert

$$[\alpha, \beta]$$

- α = Bisher bester Wert für Max-Spieler
- β = Bisher bester Wert für Min-Spieler

Vorstellung des $\alpha\beta$ -Algorithmus

Initialisierung:

$$[\boldsymbol{\alpha},\boldsymbol{\beta}]=[-\infty,\infty]$$

Suche:

- $[\alpha, \beta]$ wird in rekursivem Aufruf übergeben
- Wenn während Suche besserer Wert für Max / Min gefunden wird, wird Wert in α / β eingetragen
- MIN Knoten: Cutoff wenn $value \le \alpha$ gefunden (Alpha Cutoff)
- MAX Knoten: Cutoff wenn $value \ge \beta$ gefunden (Beta Cutoff)

$\alpha\beta$ + Monte Carlo Tree Search

- Es gibt im Wesentlichen 2 Möglichkeiten, $\alpha\beta$ und MCTS zu kombinieren:
 - 1. **MCTS** als Evaluierungsfunktion für $\alpha\beta$
 - 2. $\alpha \beta$ als Default Policy für **MCTS**

MCTS als Evaluierungsfunktion für $\alpha\beta$

Hauptproblem von αβ: die meisten
 Probleme sind zu groß, um sie
 vollständig zu traversieren

 Lösung: Limitierung der Suche auf maximale Suchtiefe / Suchbreite

 Problem: Evaluierungswert der "Blätter" muss ermittelt werden

MCTS als Evaluierungsfunktion für $\alpha\beta$

- = "Klassische" Kombination
- MCTS ermittelt Evaluierungswert der Blätter für $\alpha\beta$ per Simulation
- Gut, wenn keine Evaluierunsfunktion bekannt ist

MCTS als Evaluierungsfunktion für $\alpha\beta$

Eigenschaften:

- Knotenevaluierung ohne Evaluierungsfunktion
- Policy für MCTS notwendig
 - Random Policy möglich
- Ggf. falsche / schlechte Evaluierungswerte

Standard MCTS: Verwendet "Default Policy"

- $MC_{\alpha\beta}$ ersetzt Default Policy durch $\alpha\beta$ Suche
 - => $\alpha\beta$ verbessert schwache Evaluierungsfunktion

Probleme:

- Suchbreite- und Tiefe muss beschränkt werden.
 - => Evaluierungsfunktion für $\alpha\beta$ Suche benötig
- Performance hängt von vielen Heuristiken ab:
 - Selection-Strategie von MCTS
 - Verhältnis aus Exploration und Exploitation
 - Sortierung / Selection-Strategie in αβ
 - Suchbreite von $\alpha\beta$
 - Suchtiefe αβ
 - Evaluierungsfunktion von $\alpha\beta$

- Durch viele Heuristiken wird MC_{αβ} sehr problemspezifisch
 - Parameter / Heuristiken müssen i.d.R. per Hand getuned werden
 - Tradeoff:
 - Großer $\alpha\beta$ Baum => langsam
 - Kleiner $\alpha\beta$ Baum => schlechte Evaluierung
- MC_{αβ} wird trotzdem in MC-LOA_{αβ} verwendet!

Lines of Action

- Spiel für 2 Spieler
- 8x8 Spielfeld
- Pro Spieler 12 Spielsteine
- Abwechselnde Züge, schwarz beginnt

Startpositionen

Lines of Action

Züge:

- Gerade oder schräg
- Zu ziehende Felder = Anzahl
 Steine auf der Zuglinie (Line of Action)
- Gegnerische Steine dürfen geschlagen, nicht übersprungen werden
- Eigene Steine dürfen übersprungen werden

Beispielzüge

Lines of Action

Ziel:

 Alle Steine in beliebiger
 Formation (gerade oder schräg) zu verbinden

Schwarz gewinnt

LOA mit $\alpha\beta$

- Bis 2010: reiner $\alpha\beta$ Ansatz als bestes Programm (MIA)
 - 2001 spielt MIA bereits auf Weltmeisterniveau
- Verhältnismäßig kleiner Suchbaum
 - Nur 8x8 Feld (Go: 19x19)
 - Wenig mögliche Züge
 - => Verzweigungsfaktor durchschnittlich 30
 - (Go: 250)
- Gute Evaluierungsfunktion existiert

LOA mit MCTS

- 2010: MC-LOA erreicht 50% Gewinnrate gegen MIA
 - Reiner Monte-Carlo Tree Search Ansatz
- 2011: MC-LOA_{αβ} erreicht 60% Gewinnrate gegen MIA
 - $MCTS + \alpha \beta$ als default Policy

$\text{MC-LOA}_{\alpha\beta}$ Heuristiken

- MCTS Selection:
 - ≤ 5 Mal besucht: Corrective Strategy (versuche, Situation zu verbessern)
 - > 5 Mal besucht: UCT mit Progressive Bias (= Domänewissen)
 - Test auf Spielende in einem Zug (gefunden => Kein Playout mehr)
- $\alpha\beta$ Selection / Reihenfolge
 - Durch Einteilung in gewichtete Move Categories
 - Verwendung von Killer Moves aus vorherigen Zügen
- $\alpha\beta$ Tiefe / Breite:
 - Maximale Tiefe = 2
 - Maximal Breite: 7 in Ebene 1, 5 in Ebene 2
- Test auf Spielende in einem Zug in Ebene 1

$MC\text{-}LOA_{\alpha\beta}$

Evaluierung

- MIA gegen MC-LOA_{αβ}
- 1000 Spiele auf 2,2 Ghz AMD Opteron
- Siege von MC-LOA_{αβ} in Abhängigkeit von Zugzeit:

■ 1 Sekunde: 44,8%

■ 5 Sekunden: 57,6%

■ 30 Sekunden: 59,85%

$MC-LOA_{\alpha\beta}$

Taktische Stärke:

- Taktische Phase liegt bei LOA am Ende des Spiels
 - Konterzug auf Angriff muss gefunden werden
- MC-LOA_{αβ} benötigt für Lösen von Endspielpositionen
 20% mehr Zeit und muss 5% mehr Knoten untersuchen
 - => bessere Performance von MC-LOA_{αβ} entsteht durch
 Herausspielen von besseren Positionen am Anfang

Corrective Strategy

- Minimiert Risiko, die Situation zu verschlechtern
 - Evaluierungsfunktion wird genutzt um Qualität der aktuellen und der Folgesituation zu bestimmen
 - Schlechtere Züge => Gewicht nahe 0
 - Gute Züge => Gewicht aus Evaluierungsfunktion
 - Zug wird zufällig gewählt per Gewicht

Corrective Strategy


```
defaultValue = evaluate(board);

foreach(Move m in moveList) {
   value = evaluate(board, m);
   if (value > bound)
       return m;
   else if (value <= defaultValue)
       m.score = Epsilon;
   else
      m.score = m.getMoveCategoryWeight(board);
   scoreSum += m.score;
}</pre>
```


$MC\text{-}LOA_{\alpha\beta}$

UCT in MC-LOA $_{\alpha\beta}$

- Für Selektionsschritt
- Kein "reines UCT"
- Progressive Bias fügt Domänewissen hinzu (durch Evaluierungsfunktion)

 $k \in \operatorname{argmax}_{i \in I} (UCT + ProgressiveBias)$

$MC-LOA_{\alpha\beta}$

$$k \in \operatorname{argmax}_{i \in I} \left(\underbrace{v_i + \sqrt{\frac{C \cdot \ln(n_p)}{n_i}}}_{UCT} + \underbrace{\frac{W \cdot P_{mc}}{\sqrt{l_i + 1}}}_{Progressive\ Bias} \right)$$

I = Menge der direkten Kindknoten

p = aktueller Knoten

 v_i = Wert des Knotens i

W, C =Konstanten (handgetuned)

 P_{mc} = Wahrscheinlichkeit für Move-category mc

 n_i = Anzahl Besuche von Knoten i

 l_i = Anzahl der Niederlagen von Knoten i

Zusammenfassung

• $\alpha\beta$ Algorithmus

• MCTS als Evaluierungsfunktion für $\alpha\beta$

• $\alpha\beta$ als Default Policy für MCTS

MC-LOA_{αβ} für Anwendung in Lines of Action

Literaturverzeichnis

- Billings, D. & Björnsson, Y., 2004. Search and knowledge in Lines of Action. In: *Advances in Computer Games.* s.l.:Springer, pp. 231-248.
- Browne, C. B. et al., 2012. A survey of monte carlo tree search methods. *Computational Intelligence and AI in Games, IEEE Transactions on,* 4(1), pp. 1-43.
- Chen, K.-H., Du, D. & Zhang, P., 2009. Monte-Carlo tree search and computer Go. In: *Advances in Information and Intelligent Systems*. s.l.:Springer, pp. 201-225.
- Winands, M. H. & Björnsson, Y., 2010. Evaluation function based monte-carlo LOA. In: *Advances in Computer Games.* s.l.:Springer, pp. 33-44.
- Winands, M. H. & Bjornsson, Y., 2011. *αβ-based play-outs in monte-carlo tree search.* s.l., s.n., pp. 110-117.

