实验五 直流差动放大电路

GEORGEDONG32

一、实验目的

- 1. 熟悉差动放大电路工作原理。
- 2. 掌握差动放大电路的基本测试方法。

二、实验仪器

- 1. 双踪示波器
- 2. 数字万用表
- 3. 信号源

三、预习要求

- 1. 计算图 5.1 的静态工作点(设 r_{bc} =3K, β=100)及电压放大倍数。
- 2. 在图 5.1 基础上画出单端输入和共模输入的电路。

四、实验内容及步骤

实验电路如图 5.1 所示

图 5.1 差动放大原理图

1. 测量静态工作点,

(1) 调零

按图连线,将输入端 U_{i1} 和 U_{i2} 接地,接通直流电源+12V、-12V,调节电位器 \mathbf{R}_{Pl} 使 U_{C1} = U_{C2} 。

(2)测量静态工作点

测量 V1、V2、V3 各极对地电压填入表 5.1 中

表 5.1

对地电压	U _{C1}	U_{C2}	U _{C3}	U_{B1}	U_{B2}	U_{B3}	U_{E1}	$U_{\rm E2}$	U_{E3}
测量值 (V)	6. 35	6. 39	-0. 74	0	0	-7. 88	-0.6	-0.6	-8.50

2. 测量差模电压放大倍数。

在输入端加入直流电压信号 U_{id} =± 0.1V 按表 5.2 要求测量并记录,由测量数据算出单端和双端输出的电压放大倍数。注意:由于实验箱直流电压源有输出电阻,所以要先将直流电压源 0UT1 和 0UT2 分别接入 U_{i1} 和 U_{i2} 端,然后调节直流电压源的调节电位器,使其输出为+0.1V 和-0.1V。

3. 测量共模电压放大倍数。

将输入端 U_i1 和 U_i2 短接,接入直流电压源,分别输入+0.1V 和-0.1V,分别测量并填入表 5.2。由测量数据算出单端和双端输出的电压放大倍数。进一步算出共模抑制比

$$CMRR = \left| \frac{A_d}{A_c} \right| .$$

表 5.2

测量及 计算值		差模输入							共模抑制比				
输入		测量值(V)			计算值		测量值(V)		计算值			计算值	
信号 V _i	U_{C1}	U_{C2}	U _o 双	A_{d1}	$A_{\rm d2}$	A _d 双	U _{C1}	U _{C2}	U _{o 双}	A_{c1}	A_{c2}	Ас 双	CMRR
+0.1V	2. 58	10.	7. 5	37.	37.	75.	6.35 3	6. 397	0.04	0	0	0	75. 31
-0.1V	9	16	7	61	7	31	6.35 7	6. 395	0.04	0	0	0	75. 31

4. 在实验板上组成单端输入的差放电路进行下列实验。

(1)在图 1 中将 b₂ 接地,组成单端输入差动放大器,从 b₁ 端输入直流信号 U=±0.1V,测量单端及双端输出,填表 5.3 记录电压值。计算单端输入时的单端及双端输出的电压放大倍数。并与双端输入时的单端及双端差模电压放大倍数进行比较。

表 5.3

测量仪计算值		电压值		单端	放大	放大倍数
输入信号	U_{C1}	U_{C2}	Uo	A_{V1}	A_{V2}	A_{U}
直流+0.1V	4. 42	8. 32	3. 89	19.3	18.4	38. 9
直流一0.1V	8. 287	4. 463	-3.825	19.37	19. 27	38. 25
正弦信号(50mV、	7.03	5. 67	1.36	13.6	13.6	27. 2

1kHz)						
三角波(50mV、 1kHz)	6. 91	5. 79	1. 12	11.2	11.2	22. 4
方波(50mV、1kHz)	6. 447	6. 253	0.194	1.934	1. 934	3.868

- (2) 从 b₁端加入正弦交流信号 U_i=50mV, f=1kHz, 分别测量、记录单端及双端输出波形, 注意输出波形和输入的相位关系, 填入表 5.3 计算单端及双端的差模放大倍数。再分别加入三角波和方波, 幅值频率同上, 重复以上步骤。
 - (注意:输入交流信号时,用示波器监视 U_{c1} 、 U_{c2} 波形,若有失真现象时,可减小输入电压值,使 U_{c1} 、 U_{c2} 都不失真为止)
- (3)测量输入输出电阻,根据实验 1 的步骤 4,分别测量两端的输入和输出电阻,步骤自拟。

实验波形:

五、实验数据分析与总结

1. 根据实测数据计算图 5.1 电路的静态工作点,与预习计算结果相比较。 实测静态工作点:

$$U_{B3} = -7.88V, \ U_{E3} = -8.5V, \ U_{B1} = 0V = U_{B2}, \ U_{E1} = U_{E2} = -0.6V$$

$$U_{C3} = -0.74V, \ I_{B3} = 1.37A$$

与预习计算数据基本一致

2. 整理实验数据,计算各种接法的 Ad,并与理论计算值相比较。 计算后数据见表 5.2,计算出差模输入的差模放大倍数为 75.31,较预习时计算值 偏大,而单端输入时放大倍数约为 38.7,比较接近理论数据。

- 3. **计算实验步骤 3 中 AC 和 CMRR 值。** 计算数据见表 5.2。
- 4. 总结差放电路的性能和特点。

差分放大电路利用电路参数的对称性和负反馈作用,有效地稳定静态工作点,以放大差模信号抑制共模信号为显著特征。

差分放大电路不仅能有效地放大交流信号,而且能有效地减小由于电源 波动和晶体管随温度变化而引起的零点漂移。

差分放大电路具有较高的输入阻抗、较低的输出阻抗和较高的共模抑制比,适合作为多级放大器的前置级或测量电路的输入级。