SABANCI UNIVERSITY Faculty of Engineering and Natural Sciences CS 302 Automata Theory Fall 2016

THE GREIBACH NORMAL FORM

We start with a CFG, G = (V, T, R, S) in CNF, namely $V = (A_1, A_2, ..., A_n)$ where every production is of the form $A_i \rightarrow XY$ where $X, Y \in V$ or $A_i \rightarrow a$ where $a \in T$.

We start with separating the productions of A_1 into 2 groups as follows:

$$A_1 \rightarrow (A_1 \alpha(1) \mid \mid A_1 \alpha(k_1))$$
 (all left recursive productions of A_1)(1)
 $A_1 \rightarrow (\beta(1) \mid \mid \beta(m_1))$ (rest of the productions)(2)

where each $\beta(j)$ in (2) is either a *terminal* or starts with some A_p with p > 1.

As a standard way to remove left recursions (by right recursions) we replace the productions in (1) and (2) by

$$A_1 \rightarrow (\beta(1) B_1 \mid \dots \mid \beta(m_1) B_1) \dots (3)$$

$$B_1 \rightarrow (\alpha(1)B_1 \mid ... \mid \alpha(k_1)B_1 \mid e) \dots (4)$$

To prove that (1) and (2) is equivalent to (3) and (4) simply demonstrate that every leftmost derived sentential form in which A_I is eventually eliminated using (1) and (2) can be derived by a rightmost derivation of A_I using (3) and (4) where B_I is eventually eliminated.

Note that every $\beta(j)$ above is either a terminal or starts with some A_p with p > 1 and every $\alpha(j)$ consist of variable(s) in V.

Now substitute A_I in (3) to all the productions of all A_p for p > 1 so that the right side of all these productions do not have A_I as the starting symbol. Hence all productions of A_p for p > 1 either start with a terminal followed by zero or more variables or start with some A_k where k > 1. Now apply the same procedure to productions of A_2 by first separating them into left recursive and the rest etc. At the *i*th step of this algorithm we have the following productions

$$A_i \rightarrow (\beta(i1) B_i \mid ... \mid \beta(im_i) B_i) \dots (5i)$$

$$B_i \rightarrow (\alpha(i1)B_i \mid ... \mid \alpha(ik_i)B_1 \mid e)...$$
 (6i)

for i = 1, 2, ..., n where for notational consistency we have $\beta(1j) := \beta(j)$ and $\alpha(1j) := \alpha(j)$.

Also note that each (formally induction may be used but it is obvious!) $\beta(ij)$ starts either with a terminal or some A_p with p > i and each $\alpha(ij)$ starts with some A_k . All right side of productions are in the form of a sequence of variables or a single terminal followed by a sequence of variables of zero or positive length.

Now observe that since there is no p > n all $\beta(nj)$ must start with a terminal symbol in T. By back substitution of A_n productions given by (5n) into (5(n-1)) for A_n we ensure that all productions of A_{n-1} start with a terminal and finally this chain of consecutive substitutions result in all productions of A_i from i=n to i=1 ensures that all productions of A_i are in GNF. Finally we substitute these A_i productions to those B_i productions for which the corresponding $\alpha(ij)$ starts with some A_k instead of a terminal. This completes the construction of the GNF.