1. Collect and Clean Data

Store the data from the following website in your scripting

environment: http://www.utsc.utoronto.ca/~butler/c32/bikes.csv. Then clean the data and return in the following format:

datetime	gender	had_helmet	had_passenger	on_sidewalk
2010-09-24 07:00:00	Male	No	No	No
2010-09-24 07:00:00	Male	No	No	No
2010-09-24 07:00:00	Male	No	No	No
2010-09-24 07:00:00	Male	No	No	No
2010-09-24 07:00:00	Male	No	No	No
2010-09-24 07:15:00	Male	Yes	No	No
2010-09-24 07:15:00	Female	Yes	No	No
2010-09-24 07:15:00	Male	Yes	No	No

2. Gather Summary Statistics

Report summary statistics of the data similar to the following:

datetime	gender	had_helmet	had_passenger	on_sidewalk
Min. :2010-09-24 07:00:00	Female: 861	No :1007	No :1953	No :1885
1st Qu.:2010-09-24 13:00:00	Male :1097	Yes: 951	Yes: 5	Yes: 73
Median :2010-09-24 15:45:00	NA	NA	NA	NA
Mean :2010-09-24 14:58:05	NA	NA	NA	NA
3rd Qu.:2010-09-24 17:15:00	NA	NA	NA	NA
Max. :2010-09-24 18:45:00	NA	NA	NA	NA

3. Visualization

Display the count of bikers by the time of day, colored by gender, similar to the following:

4. Distribution Fitting

Estimate the probability distribution function for the count of female bikers in the question 3. You need to

- 1. Hypothesize families of distributions
 - Identify properties of observed data
 - Discrete vs. continuous
 - Bounded, unbounded, non-negative
 - Histogram (plot histogram to visualize the shape of the distribution and choose some candidate distribution functions)
 - Summary statistics (see details below)
- 2. Estimate the parameters of hypothesized distribution in step 1 (use one of the following two techniques)
 - Maximum likelihood estimators
 - Method of moments
- 3. Determine the representativeness of each fitted distribution (use one of the following two techniques)
 - Heuristic techniques (frequency comparison, density/histogram plot, cumulative frequency comparison, Q-Q and P-P plot)
 - Goodness-of-fit tests (Chi-square test, K-S test, or Anderson-Darling test)

---Summary statistics---

C, D

measure of symmetry

Population Parameter	Estimate Statistics	Function	Distribution
Min, Max	$X_{(1)}, X_{(n)}$	measure range	C, D
Mean (µ)	$\overline{x}(n) = \frac{\sum x_i}{n}$	measure central tendency	C, D
Median ($\widetilde{\mu}$)	$\tilde{x}(n) = \begin{cases} x_{(n+1)/2} & n \text{ odd} \\ \frac{(x_{(n/2)} + x_{((n/2)+1)})}{2} & n \text{ even} \end{cases}$	measure central tendency	C, D
Variance (σ^2)	$S^{2}(n) = \frac{\sum (x_{i} - \overline{x})^{2}}{n}$	measure variability	C, D
Coefficient of Variation $CV = \sigma/\mu$	$\widehat{CV}(n) = \frac{S(n)}{\overline{x}(n)}$	alternative measure of variability	С
Lexis ratio $\tau = \sigma^2/\mu$	$\hat{\tau}(n) = \frac{S^2(n)}{\overline{x}(n)}$	measure of variability	D

- If mean = median, symmetric distribution
 - Normal, uniform, triangular distribution
- If CV = 1

Skewness

- Exponential distribution
- For Gamma, Weibull and Lognormal distributions

Distribution	CV
Gamma	$1/\sqrt{\alpha}$
Weibull	$\frac{\left\{2\alpha\Gamma(2/\alpha)-\left[\Gamma(1/\alpha)\right]^2\right\}^{1/2}}{\Gamma(1/\alpha)}$
Lognormal	$\left(e^{\sigma^2}-1\right)^{1/2}$

- If CV < 1 and data is skewed to right
 - Gamma or Weibull distribution (with $\alpha\alpha > 1$)
- If CV > 1 and data is skewed to right
 - Lognormal distribution

- Skewness = 0
 - Symmetric distribution (Normal, uniform, triangular)
- Skewness < 0
 - Data is skewed to left (Triangular or beta)
- Skewness > 0
 - Data is skewed to right (Exponential, lognormal, or gamma and Weibull with $\alpha > 1\alpha > 1$)