Symbiosis mediated by recognition

Supplement to Yoder and Tiffin, "Sanctions, recognition, and variation in mutualistic symbiosis"

Terms

This creates a stand-alone model of symbiosis mediated only by host recognition of signals produced by symbionts.

Assume infinite populations of interacting, haploid, hosts and symbionts. Whether a diploid host intiates symbiosis with a symbiont is determined by the host's genotype at the R/r locus and the symbiont's at the S/s locus; hosts with the R allele will initiate symbiosis with symbionts carrying the S allele, and hosts with r will initiate symbiosis with symbionts carrying s. When symbiosis is initiated, symbionts cooperate if they carry the M allele at a second locus, or do not cooperate if they carry the m allele (as in the model of symbiosis mediated by sanctions).

In successful interaction, the host pays a cost C_H and receives a benefit B_H ; the symbionts pay a cost C_S and receive benefit C_S . Hosts interacting with non-mutualist symbionts (m genotype) pay the cost without gaining the benefit.

Symbiosis outcomes and fitness

First, a host payoff matrix describes the outcomes of encounters between host genotypes R or r (rows) and symbiont genotypes MS, Ms, mS, and ms (columns). Payoffs are multiplied by a convenience term ϵ , which is used in the approximation employed at later stages of the analysis.

```
\label{eq:local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_
```

Then, the symbiont payoff matrix (same orientation, for convenience).

```
\label{eq:local_local_state} \begin{array}{lll} \text{In[3]:=} & \text{pmS} & = \varepsilon \; \{ \{ B_S - C_S, \, 0 \, , \, \, B_S \, , \, 0 \} \, , \\ & \qquad \qquad \{ 0 \, , \, \, B_S - C_S \, , \, 0 \, , \, \, B_S \} \} \, ; \\ & \text{MatrixForm} [\, \text{pmS} \, ] \\ & \text{Out[4]/MatrixForm=} \\ & \qquad \qquad \left( \in \; (B_S - C_S) \quad 0 \quad \in B_S \quad 0 \\ & \qquad \qquad 0 \quad \in \; (B_S - C_S) \quad 0 \quad \in B_S \; \right) \end{array}
```

Fitness expressions

From the payout matrices, we can derive fitness statements for each host and symbiont genotype. For each species, fitness is determined as 1 + P, where P is the payout from the symbiosis, determined by the frequencies of the other species' genotypes.

Host fitness

```
\ln(8) = WR = 1 + P_{MS} pmH[[1, 1]] + P_{MS} pmH[[1, 2]] + P_{mS} pmH[[1, 3]] + P_{mS} pmH[[1, 4]];
     wr = 1 + P_{MS} pmH[[2, 1]] + P_{MS} pmH[[2, 2]] + P_{mS} pmH[[2, 3]] + P_{mS} pmH[[2, 4]];
     wbarH = p_R wR + (1 - p_R) wr;
     Symbiont fitnesses
ln[18] = wMS = 1 + p_R pmS[[1, 1]] + (1 - p_R) pmS[[2, 1]];
     wMs = 1 + p_R pmS[[1, 2]] + (1 - p_R) pmS[[2, 2]];
     wmS = 1 + p_R pmS[[1, 3]] + (1 - p_R) pmS[[2, 3]];
     wms = 1 + p_R pmS[[1, 4]] + (1 - p_R) pmS[[2, 4]];
     wbarS = P_{MS} wMS + P_{MS} wMs + P_{mS} wmS + P_{ms} wms;
```

Allele frequency dynamics

To convert between symbiote haplotype frequencies and allele frequencies, we create a set of substitutions relating haplotype frequencies to allele frequencies and linkage disequilibrium, δ_{S} . As above, we multiply δ by the convenience term ϵ to facilitate the approximations we perform at later stages.

```
In[23]:= ChangeVars = {P_{MS} \rightarrow p_M p_S + \epsilon \delta_S, P_{Ms} \rightarrow p_M (1 - p_S) - \epsilon \delta_S,
                  P_{mS} \rightarrow (1 - p_M) p_S - \epsilon \delta_S, P_{mS} \rightarrow (1 - p_M) (1 - p_S) + \epsilon \delta_S;
```

With these substitutions and the fitness expressions, we can calculate the per-generation rate of change in allele frequency for each host and symbiont locus. To produce expressions that are tractable for stability analysis, we perform a Taylor series approximation, assuming that the costs and benenfits of symbiosis are small and of order ϵ (i.e., selection arising from the symbiosis is weak) and the symbiont loci are in quasi linkage equilibrium (δ is small and of order ϵ). This QLE approximation is valid if the symbiont loci are not strongly epistatic, which is consistent with the assumption that selection is weak.

Host

```
ln[27]:= p_R' = p_R wR / wbarH;
            A\triangle p_R = FullSimplify[Normal[Series[(p_R'-p_R)/.ChangeVars, {\epsilon, 0, 1}]]]/.\epsilon \rightarrow 1
\text{Out} \text{[28]=} \quad \left( \, C_H \, - \, B_H \, \, p_M \, \right) \  \, \left( \, - \, 1 \, + \, p_R \, \right) \, \, p_R \, \, \left( \, - \, 1 \, + \, 2 \, \, p_S \, \right) \, \,
```

Symbiote

First, we calculate new symbiont haplotype frequencies as a result of selection

```
In[29]:= P_{MS}' = P_{MS} wMS / wbars;
      P_{Ms}' = P_{Ms} wMs / wbars;
      P_{mS}' = P_{mS} wmS / wbars;
      P_{ms}' = P_{ms} wms / wbars;
```

Then, we account for recombination, assuming complete recombination between loci.

```
\label{eq:pms'} \ln[33] := P_{MS} \ ' \ = P_{MS} \ ' \ P_{MS} \ ' \ (1) \ + P_{MS} \ ' \ P_{MS} \ ' \ (1/2) \ + P_
                                                                                                                            P_{\text{MS}} \; ' \; P_{\text{ms}} \; ' \; \left( 1 \; / \; 4 \right) \; + \; P_{\text{MS}} \; ' \; P_{\text{MS}} \; ' \; \left( 1 \; / \; 2 \right) \; + \; P_{\text{MS}} \; ' \; P_{\text{MS}} \; ' \; \left( 0 \right) \; + \; P_{\text{MS}} \; ' \; P_{\text{mS}} \; ' \; \left( 1 \; / \; 4 \right) \; + \; P_{\text{MS}} \; ' \; P_{\text{MS}} \; P_{\text{MS}
                                                                         \begin{aligned} &P_{MS} \ ' \ P_{mS} \ ' \ (0) + P_{mS} \ ' \ P_{MS} \ ' \ (1/2) + P_{mS} \ ' \ P_{MS} \ ' \ (1/4) + P_{mS} \ ' \ P_{mS} \ ' \ (0) + P_{mS} \ ' \ P_{mS} \ ' \ (1/4) + P_{mS} \ ' \ (0) + P_{mS} \ ' \ P_{mS} \ ' \ (0) + P_{mS} \ ' \ P_{mS} \ ' \ (0) + P_{mS} \ ' \ (1/4) + P_{mS} 
                                                                                                                          P_{MS} \ ' \ P_{MS} \ ' \ (1 \ / \ 2) \ + P_{MS} \ ' \ P_{MS} \ ' \ (1) \ + P_{MS} \ ' \ P_{mS} \ ' \ (1 \ / \ 4) \ + P_{MS} \ ' \ P_{mS} \ ' \ (1 \ / \ 2) \ +
                                                                                                                            P_{mS} ' P_{MS} ' (0) + P_{mS} ' P_{MS} ' (1/4) + P_{mS} ' P_{mS} ' (0) + P_{mS} ' P_{mS} ' (0) + P_{mS}
                                                                                                                              P_{ms} ' P_{MS} ' (1/4) + P_{ms} ' P_{Ms} ' (1/2) + P_{ms} ' P_{ms} ' (0) + P_{ms} ' P_{ms} ' (0);
                                                                           P_{mS} ' ' = P_{MS} ' P_{MS} ' (0) + P_{MS} ' P_{MS} ' (0) + P_{MS} ' P_{mS} ' (1 / 2) + P_{MS} ' P_{mS} ' (1 / 4) +
                                                                                                                              P_{MS} \; ' \; P_{MS} \; ' \; (0) \; + \; P_{MS} \; ' \; P_{MS} \; ' \; (0) \; + \; P_{MS} \; ' \; P_{mS} \; ' \; (1 \; / \; 4) \; + \; P_{MS} \; ' \; P_{mS} \; ' \; (0) \; + \; P_{MS} \; (0) \; + \; P_{MS} \; ' \; (0) \; + \; P_{MS} \; (0) \; + 
                                                                       \begin{aligned} &P_{mS} \mid P_{MS} \mid (1/2) + P_{mS} \mid P_{MS} \mid (1/4) + P_{mS} \mid P_{mS} \mid (1/2) + P_{mS} \mid P_{mS} \mid (1/4) + P_{mS} \mid P_{mS} \mid (1/2) + P_{mS} \mid P_{MS} \mid (1/4) + P_{mS} \mid P_{MS} \mid (1/2) + P_{mS} \mid P_{MS} \mid (1/4) + P_{mS} \mid P_{MS} \mid (0) + P_{mS} \mid P_{mS} \mid (1/2) + P_{mS} \mid P_{mS} \mid (0) ; \end{aligned}
P_{mS} \mid P_{MS} \mid P_{MS} \mid (0) + P_{MS} \mid P_{MS} \mid (0) + P_{MS} \mid P_{MS} \mid (0) + P_{MS} \mid P_{MS} \mid (1/4) + P_{MS} \mid P_{MS} \mid (0) + P_{MS} \mid P_{MS} \mid (0) + P_{MS} \mid P_{MS} \mid (0) + P_{MS} \mid P_{MS} \mid (1/4) + P_{MS} \mid P_{MS} \mid (0) + P_{MS} \mid P_{MS
                                                                                                                            P_{MS} \; ' \; P_{MS} \; ' \; \; (0) \; + \; P_{MS} \; ' \; P_{MS} \; ' \; \; (0) \; + \; P_{MS} \; ' \; \; P_{mS} \; ' \; \; (1 \; / \; 4) \; + \; P_{MS} \; ' \; \; P_{ms} \; ' \; \; (1 \; / \; 2) \; + \; P_{MS} \; ' \; \; (1 \; / \; 2) \; + \; P_{MS} \; ' \; \; (1 \; / \; 2) \; + \; P_{MS} \; ' \; \; (1 \; / \; 2) \; + \; P_{MS} \; ' \; \; (1 \; / \; 2) \; + \; P_{MS} \; ' \; \; (1 \; / \; 2) \; + \; P_{MS} \; ' \; \; (1 \; / \; 2) \; + \; P_{MS} \; ' \; \; (1 \; / \; 2) \; + \; P_{MS} \; ' \; \; (1 \; / \; 2) \; + \; P_{MS} \; ' \; \; (1 \; / \; 2) \; + \; P_{MS} \; ' \; \; (1 \; / \; 2) \; + \; P_{MS} \; ' \; \; (1 \; / \; 2) \; + \; P_{MS} \; ' \; \; (1 \; / \; 2) \; + \; P_{MS} \; ' \; \; (1 \; / \; 2) \; + \; P_{MS} \; ' \; \; (1 \; / \; 2) \; + \; P_{MS} \; ' \; \; (1 \; / \; 2) \; + \; P_{MS} \; ' \; \; (1 \; / \; 2) \; + \; P_{MS} \; ' \; \; (1 \; / \; 2) \; + \; P_{MS} \; ' \; \; (1 \; / \; 2) \; + \; P_{MS} \; ' \; \; (1 \; / \; 2) \; + \; P_{MS} \; ' \; \; (1 \; / \; 2) \; + \; P_{MS} \; ' \; \; (1 \; / \; 2) \; + \; P_{MS} \; ' \; \; (1 \; / \; 2) \; + \; P_{MS} \; ' \; \; (1 \; / \; 2) \; + \; P_{MS} \; ' \; \; (1 \; / \; 2) \; + \; P_{MS} \; ' \; \; (1 \; / \; 2) \; + \; P_{MS} \; ' \; \; (1 \; / \; 2) \; + \; P_{MS} \; ' \; \; (1 \; / \; 2) \; + \; P_{MS} \; ' \; \; (1 \; / \; 2) \; + \; P_{MS} \; ' \; \; (1 \; / \; 2) \; + \; P_{MS} \; ' \; \; (1 \; / \; 2) \; + \; P_{MS} \; ' \; \; (1 \; / \; 2) \; + \; P_{MS} \; ' \; \; (1 \; / \; 2) \; + \; P_{MS} \; ' \; \; (1 \; / \; 2) \; + \; P_{MS} \; ' \; \; (1 \; / \; 2) \; + \; P_{MS} \; ' \; \; (1 \; / \; 2) \; + \; P_{MS} \; ' \; \; (1 \; / \; 2) \; + \; P_{MS} \; ' \; \; (1 \; / \; 2) \; + \; P_{MS} \; ' \; \; (1 \; / \; 2) \; + \; P_{MS} \; ' \; \; (1 \; / \; 2) \; + \; P_{MS} \; ' \; \; (1 \; / \; 2) \; + \; P_{MS} \; ' \; \; (1 \; / \; 2) \; + \; P_{MS} \; ' \; \; (1 \; / \; 2) \; + \; P_{MS} \; ' \; \; (1 \; / \; 2) \; + \; P_{MS} \; ' \; \; (1 \; / \; 2) \; + \; P_{MS} \; ' \; \; (1 \; / \; 2) \; + \; P_{MS} \; ' \; \; (1 \; / \; 2) \; + \; P_{MS} \; ' \; \; (1 \; / \; 2) \; + \; P_{MS} \; ' \; \; (1 \; / \; 2) \; + \; P_{MS} \; ' \; \; (1 \; / \; 2) \; + \; P_{MS} \; ' \; \; (1 \; / \; 2) \; + \; P_{MS} \; ' \; \; (1 \; / \; 2) \; + \; P_{MS} \; ' \; \; (1 \; / \; 2) \; + \; P_{MS} \; ' \; \; (1 \; / \; 2) \; + \; P_{MS} \; ' \; \; (1 \; / \; 2) \; + \; P_{MS} \; \; (1 \; / \; 2) \; + \; P_{MS} \; \; (1 \; / \; 2) \; + \; P_{MS} \; \; (1 \; / \; 2) \; + \; P_{
                                                                                                                            P_{mS} ' P_{MS} ' (0) + P_{mS} ' P_{MS} ' (1 / 4) + P_{mS} ' P_{mS} ' (0) + P_{mS} ' P_{mS} ' (1 / 2) +
                                                                                                                              P_{ms} ' P_{MS} ' (1/4) + P_{ms} ' P_{MS} ' (1/2) + P_{ms} ' P_{mS} ' (1/2) + P_{ms} ' P_{ms} ' (1/2) + P_{ms} ' 
        ln[37]:= p_M' = Simplify[P_{MS}'' + P_{MS}'' /. ChangeVars];
        ln[38] = p_S' = Simplify[P_{MS}'' + P_{mS}'' /. ChangeVars];
      ln[39] = \delta_S' = Simplify[(P_{MS}'' P_{mS}'' - P_{MS}'' P_{mS}'')] /. ChangeVars];
                                                                           We can then approximate per-generation change in allele frequencies and LD.
        log(40) := A \triangle p_M = Simplify[Normal[Series[p_M' - p_M, \{\epsilon, 0, 1\}]]] / . \epsilon \rightarrow 1
\text{Out}[\text{40}] = \ C_S \ \left( -1 \, + \, p_M \right) \ p_M \ \left( \, 1 \, - \, p_S \, + \, p_R \ \left( \, -1 \, + \, 2 \ p_S \, \right) \, \right)
      ln[41]:= A\Delta p_S = Simplify[Normal[Series[p_S'-p_S, \{\epsilon, 0, 1\}]]] / . \epsilon \rightarrow 1
\text{Out}[\text{41}] = - \left( B_S - C_S \; p_M \right) \; \left( -1 + 2 \; p_R \right) \; \left( -1 + p_S \right) \; p_S
        \log 2 = A \Delta \delta_s = Full Simplify [Normal [Series [\delta_s' - \delta_s, \{\epsilon, 0, 1\}]]] / . \epsilon \rightarrow 1
Out[42]= \frac{1}{2} \left( -C_S \left( -1 + p_M \right) p_M \left( -1 + 2 p_R \right) \left( -1 + p_S \right) p_S - \delta_S \right)
```

Equilibrium/stability

We then solve for equilibria in the system (i.e., conditions under which host and symbiont allele frequencies, and LD between the symbiont loci, do not change).

Solve::svars: Equations may not give solutions for all "solve" variables. >>

Out[49]//MatrixForm=

$$\begin{cases} \{p_R \to 1\text{, } p_S \to 0\text{ , } \delta_S \to 0\} \\ \{p_R \to 0\text{ , } p_S \to 1\text{ , } \delta_S \to 0\} \\ \{p_R \to 0\text{ , } p_S \to 1\text{ , } \delta_S \to 0\} \\ \{p_R \to 0\text{ , } p_M \to 0\text{ , } p_S \to 0\text{ , } \delta_S \to 0\} \\ \{p_R \to 1\text{ , } p_M \to 0\text{ , } p_S \to 0\text{ , } \delta_S \to 0\} \\ \{p_R \to 1\text{ , } p_M \to 0\text{ , } p_S \to \frac{1}{2}\text{ , } \delta_S \to 0\} \\ \{p_R \to \frac{1}{2}\text{ , } p_M \to 0\text{ , } p_S \to \frac{1}{2}\text{ , } \delta_S \to 0\} \\ \{p_R \to 0\text{ , } p_M \to 0\text{ , } p_S \to 1\text{ , } \delta_S \to 0\} \\ \{p_R \to 1\text{ , } p_M \to 0\text{ , } p_S \to 1\text{ , } \delta_S \to 0\} \\ \{p_R \to 0\text{ , } p_M \to 1\text{ , } p_S \to 0\text{ , } \delta_S \to 0\} \\ \{p_R \to 1\text{ , } p_M \to 1\text{ , } p_S \to 0\text{ , } \delta_S \to 0\} \\ \{p_R \to 2\text{ , } p_M \to 1\text{ , } p_S \to 1\text{ , } \delta_S \to 0\} \\ \{p_R \to 0\text{ , } p_M \to 1\text{ , } p_S \to 1\text{ , } \delta_S \to 0\} \\ \{p_R \to 1\text{ , } p_M \to \frac{C_H}{B_H}\text{ , } p_S \to 0\text{ , } \delta_S \to 0\} \\ \{p_R \to 0\text{ , } p_M \to \frac{B_S}{C_S}\text{ , } p_S \to 1\text{ , } \delta_S \to 0\} \\ \{p_R \to 0\text{ , } p_M \to \frac{B_S}{B_H}\text{ , } p_S \to 1\text{ , } \delta_S \to 0\} \\ \{p_R \to 0\text{ , } p_M \to \frac{B_S}{B_S}\text{ , } p_S \to 1\text{ , } \delta_S \to 0\} \end{cases}$$

Some of these are internal equilibria, an particularly internal equilibria with $0 < p_M < 1$, which implies variation for symbiont cooperation. However, the four equilibria for which this is the case also have hosts and symbionts fixed for incompatible recognition and signalling alleles — that is, hosts would never initiate symbiosis because there are no compatible symbionts present in the population.

Two other equilibria have $p_R = p_S = 1/2$, which maximizes variation in host-symbiont compatibility; these require $p_M = 1$ or $p_M = 0$. We will examine local stability at these.

$$\begin{array}{ll} \text{In}[\texttt{Si}] = & \textbf{Jac} = \textbf{FullSimplify}[\{\{D[\texttt{A}\Delta p_R,\,p_R]\,,\,D[\texttt{A}\Delta p_R,\,p_M]\,,\,D[\texttt{A}\Delta p_R,\,p_S]\,,\,D[\texttt{A}\Delta p_R,\,\delta]\}\,,\\ \{D[\texttt{A}\Delta p_M,\,p_R]\,,\,D[\texttt{A}\Delta p_M,\,p_M]\,,\,D[\texttt{A}\Delta p_M,\,p_S]\,,\,D[\texttt{A}\Delta p_M,\,\delta]\}\,,\,\{D[\texttt{A}\Delta p_S,\,p_R]\,,\,D[\texttt{A}\Delta p_S,\,p_M]\,,\\ D[\texttt{A}\Delta p_S,\,p_S]\,,\,D[\texttt{A}\Delta p_S,\,\delta]\}\,,\,\{D[\texttt{A}\Delta \delta,\,p_R]\,,\,D[\texttt{A}\Delta \delta,\,p_M]\,,\,D[\texttt{A}\Delta \delta,\,p_S]\,,\,D[\texttt{A}\Delta \delta,\,\delta]\}\}\}]; \end{aligned}$$

In[52]:= FullSimplify[Eigenvalues[Jac /. LEqs[[5]]]]

Out[52]=
$$\left\{0, -\frac{1}{2} \, \dot{\mathbb{1}} \, \sqrt{B_S} \, \sqrt{C_H}, \, \frac{1}{2} \, \dot{\mathbb{1}} \, \sqrt{B_S} \, \sqrt{C_H}, \, -\frac{C_S}{2} \right\}$$

Eigenvalues with imaginary components and zero real parts imply oscillation when $p_R \to \frac{1}{2}$, $p_M \to 0$, $p_S \to \frac{1}{2}$, $\delta \to 0$.

In[53]:= FullSimplify[Eigenvalues[JacL /. LEqs[[10]]]]

$$\text{Out} \text{[S3]= } \Big\{ \text{0, } -\frac{1}{2} \, \sqrt{B_H - C_H} \, \sqrt{B_S - C_S} \, \text{, } \frac{1}{2} \, \sqrt{B_H - C_H} \, \sqrt{B_S - C_S} \, \text{, } \frac{C_S}{2} \Big\}$$

Eigenvalues greater than zero imply instability when $p_R \to \frac{1}{2}$, $p_M \to 1$, $p_S \to \frac{1}{2}$, $\delta \to 0$.