Corrigés des exercices du chapitre 2

1. Les applications f suivantes sont-elles continues? différentiables? de classe \mathcal{C}^1 ?

a)
$$f(x,y) = \frac{xy}{\sqrt{x^2 + y^2}}$$
 si $(x,y) \neq (0,0)$, et $f(0,0) = 0$.

b)
$$f(x,y) = \frac{xy}{x^2 + y^2}$$
 si $(x,y) \neq (0,0)$, et $f(0,0) = 0$.

c)
$$f(x,y) = \frac{(y^2 - x)^2}{x^2 + y^4}$$
 si $(x,y) \neq (0,0)$, et $f(0,0) = 0$.

d)
$$f(x,y) = y^2 \sin\left(\frac{x}{y}\right)$$
 si $y \neq 0$, et $f(x,0) = 0$.

e)
$$f(x,y) = \frac{x^3 - y^3}{x^2 + y^2}$$
 si $(x,y) \neq (0,0)$, et $f(0,0) = 0$.

f)
$$f(x,y) = \frac{x^2y}{x^2 + y^2}$$
 si $(x,y) \neq (0,0)$, et $f(0,0) = 0$.

g)
$$f(x,y) = \frac{x^2y^2}{x^2 + y^2}$$
 si $(x,y) \neq (0,0)$, et $f(0,0) = 0$.

Sauf pour d), les applications considérées sont toutes de classe C^1 sur $\mathbb{R}^2 \setminus \{(0,0)\}$ comme quotients de fonctions C^1 dont le dénominateur ne s'annulle pas. Reste à faire l'étude en (0,0).

a) Soit $(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}$ et (ρ,θ) un système de coordonnées polaires de (x,y). On a alors $f(x,y) = \rho \cos \theta \sin \theta$, donc $|f(x,y)| \leq |\rho|$, soit $|f(x,y)| \leq \sqrt{x^2 + y^2}$, d'où $\lim_{(0,0)} f(x,y) = \int_{0}^{\infty} f(x,y) dx$ 0 = f(0,0), et f est continue en (0,0). Finalement, f est continue sur \mathbb{R}^2 .

f(x,0)=0=f(0,y) d'où $D_1f(0,0)=D_2f(0,0)=0$ donc f admet des dérivées partielles en (0,0) et, si elle est différentiable en (0,0), sa différentielle sera la fonction nulle.

On a $\frac{|f(x,y)|}{\|(x,y)\|} = \frac{|f(\rho\cos\theta,\rho\sin\theta)|}{\rho} = |\cos\theta\sin\theta|$ qui ne tend pas vers 0 quand $\|(x,y)\| \to 0$ (par exemple $\frac{|f(x,x)|}{\|(x,x)\|} = 1/2$ si x > 0). Donc f n'est pas différentiable en (0,0) (et donc pas de classe \mathcal{C}^1)

b) $f(x,x) = \frac{1}{2}$ donc f n'est pas continue en (0,0) (et donc ni différentiable, ni de classe C^1). (Par contre $D_1 \tilde{f}(0,0) = D_2 f(0,0) = 0$.)

c) f(x,0) = 1 = f(0,y) donc f n'est pas continue en (0,0). Elle n'admet pas non plus de dérivées partielles en (0,0).

$$|f(x,y)| \le y^2 \le (x-x_0)^2 + y^2$$
 donc $\lim_{(x,y)\to(x_0,0)} f(x,y) = 0 = f(x_0,0)$. Ainsi, $f \in \mathcal{C}(\mathbb{R}^2,\mathbb{R})$.

d) Avec les opérations usuelles,
$$f$$
 est \mathcal{C}^{∞} sur $\mathbb{R} \times \mathbb{R}^{*}$, qui est bien un ouvert.
 $|f(x,y)| \leq y^{2} \leq (x-x_{0})^{2} + y^{2}$ donc $\lim_{\substack{(x,y) \to (x_{0},0) \\ y \neq 0}} f(x,y) = 0 = f(x_{0},0)$. Ainsi, $f \in \mathcal{C}(\mathbb{R}^{2},\mathbb{R})$.
Si $(x,y) \neq (x_{0},0)$, $D_{1}f(x,y) = y \cos \frac{x}{y}$ et $D_{2}f(x,y) = 2y \sin \frac{x}{y} - x \cos \frac{x}{y}$.

Alors f(x,0) = 0 pour tout $x \in \mathbb{R}$, donc $\frac{f(x_0 + h, 0) - f(x_0, 0)}{h} = 0$ et $D_1 f(x_0, 0) = 0$.

$$f(x_0, k) = \begin{cases} k^2 \sin \frac{x_0}{k} & \text{si } k \neq 0 \\ 0 & \text{si } k = 0 \end{cases}$$

$$\frac{f(x_0,k) - f(x_0,0)}{k} = k \sin \frac{x}{k} \text{ et } |k \sin \frac{x}{k}| \le |k|, \text{ donc } \lim_{k \to 0} \frac{f(x_0,k) - f(x_0,0)}{k} = 0 = D_2 f(x_0,0).$$

Si $(x,y) \neq (x_0,0), |D_1 f(x,y)| \leq |y| \leq \sqrt{(x-x_0)^2 + y^2},$ d'où $D_1 f$ est continue en $(x_0,0)$ et $D_1 f \in \mathcal{C}(\mathbb{R}^2, \mathbb{R}).$

Si $x_0 \neq 0$, $D_2 f(x_0, \frac{x_0}{2n\pi}) = -x_0$. On a $\lim_{n \to +\infty} (x_0, \frac{x_0}{2n\pi}) = (x_0, 0)$, et $\lim_{n \to +\infty} D_2 f(x_0, \frac{x_0}{2n\pi}) = -x_0 \neq D_2 f(x_0, 0)$: $D_2 f$ n'est pas

continue en $(x_0, 0)$, $x_0 \neq 0$ (et $f \notin C^1(\mathbb{R}^2, \mathbb{R})$). $|D_2 f(x, y)| \leq 2|y| + |x|$, donc $\lim_{(x,y) \to (0,0)} D_2 f(x,y) = 0 = D_2 f(0,0)$: $D_2 f$ est continue en (0,0).

e) $|f(x,y)| = |f(\rho\cos\theta,\rho\sin\theta)| \le 2\rho = 2\sqrt{x^2+y^2} = 2\|(x,y)\|_2$ conduit à la continuité de f sur \mathbb{R}^2 .

 $f(x,0) = x \text{ donc } D_1 f(0,0) = \lim_{x \to 0} \frac{f(x,0) - f(0,0)}{x} = 1 \text{ et}$

 $f(0,y) = -y \text{ donc } D_2 f(0,0) = \lim_{y \to 0} \frac{f(0,y) - f(0,0)}{y} = -1.$ Donc f admet des dérivées partielles en (0,0).

 $f(x,y) - f(0,0) - xD_1f(0,0) - yD_2f(0,0) = \frac{x^3 - y^3}{x^2 + y^2} - x + y = \frac{-xy^2 + yx^2}{x^2 + y^2}.$ On a alors $\frac{|f(x,y) - f(0,0) - xD_1f(0,0) - yD_2f(0,0)|}{\|(x,y)\|} = |\cos\theta\sin\theta(\cos\theta - \sin\theta)| \text{ qui ne}$

tend pas vers 0 quand $||(x,y)|| \to 0$ (par exemple, pour y=-x, cette quantité vaut $\pm 1/\sqrt{2}$). Donc f n'est pas différentiable en (0,0) (et donc pas de classe \mathcal{C}^1).

f) $|f(\rho\cos\theta,\rho\sin\theta)| \le \rho = \sqrt{x^2 + y^2} = ||(x,y)||_2$ conduit à la continuité de f sur \mathbb{R}^2 . f(x,0) = 0 donc $D_1 f(x,0) = 0$ et f(0,y) = 0 donc $D_2 f(0,y) = 0$. En particulier $D_1 f(0,0) = 0$ $D_2 f(0,0) = 0$

On a $\frac{|f(x,y)|}{\|(x,y)\|} = \frac{|f(\rho\cos\theta,\rho\sin\theta)|}{\rho} = \cos^2\theta\sin\theta$ qui ne tend pas vers 0 quand $\|(x,y)\| \to 0$ (par exemple $\frac{|f(x,x)|}{\|(x,x)\|} = 1/2\sqrt{2}$ si x > 0). Donc f n'est pas différentiable en (0,0) (et donc pas de classe \mathcal{C}^1).

g) $|f(\rho\cos\theta,\rho\sin\theta)| \le \rho^2 = x^2 + y^2$ conduit à la continuité de f sur \mathbb{R}^2 .

 $f(x,0) = 0 \text{ donc } D_1 f(x,0) = 0.$

Si $y \neq 0$, la fonction $x \mapsto \frac{x^2y^2}{x^2+y^2}$ est dérivable en tout x, donnant $D_1f(x,y) = \frac{2xy^4}{(x^2+y^2)^2}$, cette formule étant en fait vraie dès que $(x, y) \neq (0, 0)$.

 $|D_1 f(\rho \cos \theta, \rho \sin \theta)| \le 2\rho = 2\sqrt{x^2 + y^2}$ donc $D_1 f$ est continue sur \mathbb{R}^2 . Il en est de même (formule symétrique) pour $D_2 f$ donc f est de classe \mathcal{C}^1 sur \mathbb{R}^2 .

- **2.** Soit f définie sur \mathbb{R}^2 par $f(x,y) = xy \sin\left(\frac{\pi}{2}\left(\frac{x-y}{x+y}\right)\right)$ si $x+y \neq 0$, et f(x,-x) = 0.
 - a) Etudier la continuité et la différentiabilité de f.
 - **b)** Calculer $D_1D_2f(0,0)$ et $D_2D_1f(0,0)$. f est-elle de classe \mathcal{C}^2 ?
- a) Avec les opérations usuelles, f est \mathcal{C}^{∞} sur $\mathbb{R}^2 \setminus \{(x, -x) ; x \in \mathbb{R}\}$, qui est bien un ouvert.
- $|f(x,y)| \le |xy| \le ||(x,y)||_{\infty}^2 \operatorname{donc} \lim_{\|(x,y)\| \to 0} f(x,y) = 0 = f(0,0) \text{ et même } \lim_{\|(x,y)\| \to 0} \frac{|f(x,y)|}{\|(x,y)\|} = 0.$

Ceci prouve tout d'abord la continuité de f en (0,0), puis que f est différentiable en (0,0) de différentielle nulle.

Pour la classe \mathcal{C}^1 , on a $D_1 f(x,y) = y \sin\left(\frac{\pi}{2}\left(\frac{x-y}{x+y}\right)\right) + xy \cos\left(\frac{\pi}{2}\left(1-\frac{2y}{x+y}\right)\right) \times \frac{\pi y}{(x+y)^2}$ Ainsi, $|D_1 f(h+h^2, -h)| = -h \sin\left(\frac{\pi}{2} \left(\frac{2h+h^2}{h^2}\right)\right) - h(h+h^2) \cos\left(\frac{\pi}{2} \left(\frac{2h+h^2}{h^2}\right)\right) \times \frac{-\pi h}{h^4}$ qui ne tend pas vers 0 quand h tend vers 0 (prendre h = 1/n). Ainsi, f n'est pas de classe \mathcal{C}^1 en (0,0).

• Si $x \neq 0$, $f\left(x, -x + \frac{2x}{n}\right) = x\left(-x + \frac{2x}{n}\right)\sin\left(\frac{2x - \frac{2x}{n}}{\frac{2x}{n}}\frac{\pi}{2}\right) \sim -x^2\sin\left(\frac{n\pi}{2}\right) \in \{-x^2, x^2\}$ pour n impair. Donc on n'a pas $\lim_{n\to +\infty} f\left(x,-x+\frac{2x}{n}\right)=f(x,-x)$, et donc f n'est pas continue en (x, -x) si $x \neq 0$ (et donc pas différentiable, ni de classe \mathcal{C}^1).

b)
$$D_1 D_2 f(0,0) = \lim_{x \to 0} \frac{D_2 f(x,0) - D_2 f(0,0)}{x}$$
 avec $D_2 f(0,0) = 0$ et
$$D_2 f(x,0) = \lim_{y \to 0} \frac{f(x,y) - f(x,0)}{y}.$$

Or
$$f(x,0) = 0$$
 et $\frac{f(x,y)}{y} = x \sin\left(\frac{\pi}{2}\left(\frac{x-y}{x+y}\right)\right) \to x \sin\left(\frac{\pi}{2}\right) = x$ quand $y \to 0$.
Donc $D_2 f(x,0) = x$ et $D_1 D_2 f(0,0) = \lim_{x \to 0} \frac{x}{x}$, soit $D_1 D_2 f(0,0) = 1$.
De même, $D_2 D_1 f(0,0) = \lim_{y \to 0} \frac{D_1 f(0,y) - D_1 f(0,0)}{y}$ avec $D_1 f(0,0) = 0$ et

$$D_1 f(0, y) = \lim_{x \to 0} \frac{f(x, y) - f(0, y)}{x}.$$

Or
$$f(0,y) = 0$$
 et $\frac{f(x,y)}{x} = y \sin\left(\frac{\pi}{2}\left(\frac{x-y}{x+y}\right)\right) \to y \sin\left(-\frac{\pi}{2}\right) = -y$ quand $x \to 0$.

Donc
$$D_1 f(0, y) = -y$$
 et $D_2 D_1 f(0, 0) = \lim_{y \to 0} \frac{-y}{y}$, soit $D_2 D_1 f(0, 0) = -1$.

Ainsi, on a $D_1D_2f(0,0) \neq D_2D_1f(0,0)$ et nécéssairement, f n'est pas de classe \mathcal{C}^2 d'après le théorème de Schwarz.

3. Soit $A \in \mathcal{S}_n(\mathbb{R})$ et $f: \mathbb{R}^n \setminus \{0\} \to \mathbb{R}$, $x \mapsto \frac{\langle Ax, x \rangle}{\|x\|^2}$. Calculer $\nabla f(x)$ et le comparer à la projection orthogonale de Ax sur $(\mathbb{R}x)^{\perp}$.

On a $\langle A(x+h), x+h \rangle = \langle Ax, x \rangle + \langle Ah, x \rangle + \langle Ax, h \rangle + \langle Ah, h \rangle$ où $\langle Ah, x \rangle = \langle h, {}^tAx \rangle = \langle Ax, h \rangle$ puisque A est symétrique, avec $|\langle Ax, h \rangle| \le ||A|| \, ||x|| \, ||h||$ et $|\langle Ax, h \rangle| \le ||A|| \, ||h||^2$.

On a le même développement pour le dénominateur, en remplaçant A par I car $||x||^2 = \langle x, x \rangle$. On a alors, pour $x \neq 0$:

$$f(x+h) = \frac{\langle Ax, x \rangle \left(1 + 2 \frac{\langle Ax, h \rangle}{\langle Ax, x \rangle} + o(h) \right)}{\langle x, x \rangle \left(1 + 2 \frac{\langle x, h \rangle}{\langle x, x \rangle} + o(h) \right)} = f(x) \left(1 + 2 \frac{\langle Ax, h \rangle}{\langle Ax, x \rangle} + o(h) \right) \left(1 - 2 \frac{\langle x, h \rangle}{\langle x, x \rangle} + o(h) \right)$$

$$= f(x) \left(1 + 2 \frac{\langle Ax, h \rangle}{\langle Ax, x \rangle} - 2 \frac{\langle x, h \rangle}{\langle x, x \rangle} + o(h) \right) = f(x) + 2 \frac{\langle Ax, h \rangle}{\langle x, x \rangle} - 2 f(x) \frac{\langle x, h \rangle}{\langle x, x \rangle} + o(h)$$

$$= f(x) + \langle \frac{2Ax}{\|x\|^2} - f(x) \frac{2x}{\|x\|^2}, h \rangle + o(h)$$

Ainsi, f est différentiable en x et $\sqrt{\nabla f(x) = \frac{2}{\|x\|^2} (Ax - f(x)x)}$

Pour déterminer la projection y de Ax sur $(\mathbb{R}x)^{\perp}$, on écrit $Ax = y + \lambda x$ et on détermine λ en écrivant $\langle y, x \rangle = 0$, soit $\langle Ax, x \rangle - \lambda ||x||^2 = 0$, soit $\lambda = \frac{\langle Ax, x \rangle}{||x||^2} = f(x)$ et donc y = Ax - f(x)x. Par suite,

$$\nabla f(x) = \frac{2}{\|x\|^2} \operatorname{pr}_{(\mathbb{R}x)^{\perp}}(Ax).$$

4. Soit $\mathcal{M}_n(\mathbb{R})$ espace euclidien muni du produit scalaire $\langle \langle A, B \rangle \rangle = \operatorname{tr}({}^t A B)$; soit Ω l'ouvert de $\mathcal{M}_n(\mathbb{R})$ constitué des matrices inversibles. Déterminer les différentielles des applications suivantes (si elles existent):

- a) $\operatorname{tr}: A \in \mathcal{M}_n(\mathbb{R}) \to \operatorname{tr}(A) \in \mathbb{R}$;
- **b)** det : $A \in \mathcal{M}_n(\mathbb{R}) \to \det(A) \in \mathbb{R}$;
- c) $g: A \in \Omega \mapsto \ln|\det A| \in \mathbb{R}$;
- **d)** $f_{-1}: A \in \Omega \to A^{-1} \in \Omega$;
- e) $p \in \mathbb{N}^*$, $f_p : A \in \mathcal{M}_n(\mathbb{R}) \to A^p \in \mathcal{M}_n(\mathbb{R})$;
- **f)** $p \in \mathbb{N}^*, f_{-p} : A \in \Omega \to A^{-p} \in \Omega.$

a) $\operatorname{tr}(A+H) = \operatorname{tr}(A) + \operatorname{tr}(H)$ avec $\operatorname{tr}(H) = \operatorname{tr}({}^tIH) = \langle \langle I, H \rangle \rangle$. Ceci donne $f(A+H) = f(A) + \langle \langle I, H \rangle \rangle$ donc $\nabla \operatorname{tr}(A) = I$ indépendant de A.

Remarque:
$$\langle \langle A, B \rangle \rangle = \operatorname{tr}({}^t A B) = \sum_{k=1}^n c_{kk}$$
 où $c_{kk} = \sum_{i=1}^n a_{ki}^* b_{ik} = \sum_{i=1}^n a_{ik} b_{ik}$ donc

$$\langle\langle A, B \rangle\rangle = \sum_{i,j} a_{ij} b_{ij}.$$

b) Si A_j (resp. H_j) est la colonne j de A (resp. de H), on a :

$$\det(A+H) = \det(A_1+H_1, \dots, A_n+H_n) = \det A + \sum_{j=1}^n \det(A_1, \dots, A_{j-1}, H_j, A_{j+1}, \dots, A_n) + o(\|H\|).$$

En développant $\det(A_1,\cdots,A_{j-1},H_j,A_{j+1},\cdots,A_n)$ par rapport à la colonne j, on obtient :

$$\det(A_1, \dots, A_{j-1}, H_j, A_{j+1}, \dots, A_n) = \sum_{i=1}^n h_{ij} \begin{vmatrix} a_{1,1} & \dots & a_{1,j-1} & 0 & a_{1,j+1} & \dots & a_{1,n} \\ & & & \vdots & & & \\ a_{i,1} & \dots & a_{i,j-1} & 1 & a_{i,j+1} & \dots & a_{i,n} \\ & & & & \vdots & & \\ a_{n,1} & \dots & a_{n,j-1} & 0 & a_{n,j+1} & \dots & a_{n,n} \end{vmatrix} = \sum_{i=1}^n h_{ij} (-1)^{i+j} A_{ij}$$

où $A_{ij} \in M_{n-1}(\mathbb{R})$ est la mineure de a_{ij} (matrice obtenue en supprimant dans A la ligne i et la colonne j. Or $cof(A) = (\alpha_{ij})$ où $\alpha_{ij} = (-1)^{i+j} A_{ij}$, donc

$$\det(A + H) = \det A + \langle \langle \operatorname{cof}(A), H \rangle \rangle + o(\|H\|).$$

On a donc bien det différentiable, avec $\nabla \det(A) = \cot(A)$

c) Le logarithme étant multiplicatif, on a :

$$\begin{split} \ln |\det(A+H)| &= \ln \left[|\det A| \times \left(1 + \frac{1}{\det A} \langle \langle \operatorname{cof}(A), H \rangle \rangle + o(\|H\|) \right) \right] \\ &= \ln |\det A| + \ln \left(1 + \langle \langle \frac{\operatorname{cof}(A)}{\det A}, H \rangle \rangle + o(\|H\|) \right) \end{split}$$

soit $g(A+H) = g(A) + \langle \langle \frac{\operatorname{cof}(A)}{\det A}, H \rangle \rangle + o(\|H\|)$. Or $A^{-1} = \frac{1}{\det A} \operatorname{tcof}(A)$ donc g est différentiable

$$\nabla g(A) = {}^t A^{-1} \, .$$

d) Si f_{-1} est différentiable en A, on doit avoir $(A+H)^{-1} = A^{-1} + d_A f_{-1}(H) + o(\|H\|)$. On a alors

$$(A+H)^{-1}(A+H) = I = (A^{-1} + d_A f_{-1}(H) + o(||H||))(A+H)$$
$$= I + A^{-1}H + d_A f_{-1}(H)A + o(||H||)$$

d'où, par identification, $A^{-1}H + d_A f_{-1}(H)A = 0$, soit $d_A f_{-1}(H) = -A^{-1}HA^{-1}$. $H \mapsto$ $-A^{-1}HA^{-1}$ étant linéaire, on a bien f_{-1} différentiable en A et $d_A f_{-1}(H) = -A^{-1}HA^{-1}$. Remarque: Ici $f_{-1}: A \mapsto A^{-1}$ n'est pas de \mathbb{R}^{n^2} dans \mathbb{R} mais de \mathbb{R}^{n^2} dans \mathbb{R}^{n^2} . Il n'est donc

pas inquiétant que $d_A f_{-1}(H)$ soit une matrice (et non pas un réel).

- e) $(A+H)^p = (A+H)\cdots(A+H) = A^p + HA^{p-1} + AHA^{p-2} + \cdots + A^{p-1}H + o(\|H\|)$ car le produit matriciel n'est pas commutatif. $H \mapsto HA^{p-1} + AHA^{p-2} + \cdots + A^{p-1}H$ est linéaire donc f_p est bien différentiable en A avec $d_A f_p(H) = \sum_{i=1}^p A^{i-1} H A^{p-i}$.
- **f)** Si f_{-p} est différentiable en A, on doit avoir $(A+H)^{-p}=A^{-p}+d_Af_{-p}(H)+o(\|H\|)$. On a alors, en utilisant e),

$$(A+H)^{-p}(A+H)^{p} = I = (A^{-p} + d_{A}f_{-p}(H) + o(||H||))(A^{p} + d_{A}f_{p}(H) + o(||H||))$$
$$= I + A^{-p}d_{A}f_{p}(H) + d_{A}f_{-p}(H)A^{p} + o(||H||)$$

d'où, par identification, $A^{-p}d_Af_p(H) + d_Af_{-p}(H)A^p = 0$, soit $d_Af_{-p}(H) = -A^{-p}d_Af_p(H)A^{-p}$. L'application $H \mapsto -A^{-p} d_A f_p(H) A^{-p}$ étant linéaire, on a bien f_{-p} différentiable en A et :

$$d_{A}f_{-p}(H) = -\sum_{i=1}^{p} A^{i-1-p}HA^{-i}.$$