Project 1: 2-D Thermal Analysis

Yufeng Yuan yy208@duke.edu

Abstract

In this project, we are given some 2-D thermal distributions and required to solve the steady states of those thermal distributions. Originally, the heat equations are partial differential equations. By applying finite difference methods, we simplify it as a linear system which can be solved by Cholesky Decomposition and back-substitution.

1.Mathematical Formulation

This is the original heat equation, which is a 2nd-order linear PDE

$$ho \cdot C_p \cdot rac{\partial T(x,y,t)}{\partial t} = \kappa \cdot riangledown^2 T(x,y,t) + f(x,y,t)$$

For the steady state, the equation can be simplified as

$$\kappa \cdot \nabla^2 T(x,y) + f(x,y) = 0$$

Explicitly write out the laplace operator

$$\kappa \cdot [rac{\partial^2 T(i,j)}{\partial x^2} + rac{\partial^2 T(i,j)}{\partial y^2}] = -f(i,j)$$

The 2nd-order term can be written as the following with finite difference method

$$egin{aligned} rac{\partial^2 T(i,j)}{\partial x^2} &= rac{T_{i+1,j} + T_{i-1,j} - 2T_{i,j}}{\Delta x^2} \ rac{\partial^2 T(i,j)}{\partial y^2} &= rac{T_{i,j+1} + T_{i,j-1} - 2T_{i,j}}{\Delta y^2} \end{aligned}$$

Combine all linear equations

$$\kappa \cdot [rac{T_{i+1,j} + T_{i-1,j} - 2T_{i,j}}{\Delta x^2} + rac{T_{i,j+1} + T_{i,j-1} - 2T_{i,j}}{\Delta y^2}] = -f(i,j)$$
 $(1 \leq i \leq N, 1 \leq j \leq M)$

Rewrite the equation and add T_c as the term for boundary condition

$$egin{aligned} 2(\Delta x^2 + \Delta y^2)T_{i,j} - \Delta x^2(T_{i,j+1} + T_{i,j-1}) - \Delta y^2(T_{i+1,j} + T_{i-1,j}) \ &= rac{\Delta x^2 \Delta y^2 f(i,j)}{\kappa} + T_{c_{i,j}} \ &(1 \leq i \leq N, 1 \leq j \leq M) \end{aligned}$$

We get s system of linear equations

$$A \cdot X = B \ X = \left[T_{1,1}, T_{1,2}, \ldots, T_{M,N}
ight]^T$$

When M = N = 2, the simplest linear equations are shown below

$$egin{bmatrix} 2(\Delta x^2 + \Delta y^2) & -\Delta x^2 & -\Delta y^2 & 0 \ -\Delta x^2 & 2(\Delta x^2 + \Delta y^2) & 0 & -\Delta y^2 \ -\Delta y^2 & 0 & 2(\Delta x^2 + \Delta y^2) & -\Delta x^2 \ 0 & -\Delta y^2 & -\Delta x^2 & 2(\Delta x^2 + \Delta y^2) \end{bmatrix} * egin{bmatrix} T_{1,1} \ T_{1,2} \ T_{2,1} \ T_{2,2} \end{bmatrix} = egin{bmatrix} rac{\Delta x^2 \Delta y^2 f(1,1)}{\kappa} + T_{c_{1,1}} \ rac{\Delta x^2 \Delta y^2 f(1,2)}{\kappa} + T_{c_{1,2}} \ rac{\Delta x^2 \Delta y^2 f(2,1)}{\kappa} + T_{c_{2,1}} \ rac{\Delta x^2 \Delta y^2 f(2,1)}{\kappa} + T_{c_{2,1}} \ rac{\Delta x^2 \Delta y^2 f(2,2)}{\kappa} + T_{c_{2,2}} \end{bmatrix}$$

2.Linear System Solver

For the linear system $A \cdot X = B$, A is a positive definite matrix which we can apply Cholesky Factorization.

$$A = C \cdot C'$$

So the original equation can be written as

$$C \cdot C' \cdot X = B$$

This is my implementation of Cholesky Decomposition

```
function [S] = choleskyDecom(A)
  [n,n] = size(A);
  S = zeros(n,n);
  for j = 1 : n
     S(j,j) = sqrt(A(j,j) - S(j,1:j-1)*S'(1:j-1,j));
     S(j+1:n,j)=(A(j+1:n,j) - S(j+1:n,1:j-1) * S'(1:j-1,j))/S(j,j);
  end
end
```

Now our task becomes to solve the following two equations, but it's much easier

$$\begin{cases} CV = B \\ C'X = V \end{cases}$$

C and C' are lower-triangular and upper-triangular matrix, the equations can be easily solved by backward substitution

3.Experimental Results

The left side are original thermal distributions and the right side are the thermal distributions of steady state

Case 1

Runtime = 13.0667s

Case 2 Runtime = 169.576s

Case 3 Runtime = 1074.8s

4.Discussion

Using vector operations can greatly accelerate the computation. Originally, I implemented the CholeskyDecomposition and BackSubstitution in a very naive way which means a lot of 'for' loops. It took 3032.15 seconds to solve case 1, which means I wouldn't get the solution for case 3 with such naive implementation. The original code are shown below.

```
if i == j
     S(i,j) = sqrt(A(i,j) - tempSum);
else
     S(i,j) = (A(i,j) - tempSum) / S(j,j);
end
end
end

%Back Substitution naive version

for i = 1 : n
     tempSum = 0;
     for j = 1 : i-1
          tempSum += A(i,j)*V(j);
end

     V(i) = (B(i) - tempSum) / A(i,i);
end
```

I realised part of the loops can easily be replaced by vector operation which makes the code more elegant. The time needed to solve case 1 reduced from 3032 seconds to 13 seconds.

```
%Cholesky Decomposition fast version
for j = 1 : n
    S(j,j) = sqrt(A(j,j) - S(j,1:j-1)*S'(1:j-1,j));
    S(j+1:n,j)=(A(j+1:n,j) - S(j+1:n,1:j-1) * S'(1:j-1,j))/S(j,j);
end

%Back Susbtitution fast version
for i = 1 : n
    V(i) = (B(i) - A(i,1:i-1) * V(1:i-1)) / A(i,i);
end
```

It looks like a lot of progress, but I compared the built-in chol() function and the Cholesky Decomposition I implemented and it shows the built-in chol() is much faster.

Matrix Size	Built-in chol()	My Implementation
50 * 50	0.00136s	0.01781s
200 * 200	0.00212s	0.08110s
500 * 500	0.00980s	1.0816s
1000 * 1000	0.01855s	13.1817s

Someone also asked this question why the built-in chol() is so fast on Matlab forum, but there's no exact answer to it. And I think the key is to get rid of the last loop in my function, but I can't figure out how to do that without using backslash. One of my hypothesis is that they might use a totally different algorithms for chol() which makes it so fast.