SOLVING OPTIMIZATION PROBLEMS

DIFFERENTIATION

MAXIMA AND MINIMA

VECTOR CALCULUS GRAD

GRADIENT DESCENT: GEOMETRIC INTUITION

LEARNING RATE

GRADIENT DESCENT FOR LINEAR REGRESSION

STOCHASTIC GRADIENT DESCENT (SGD)

CONSTRAINTS AND PCA

WHY L1-REGULARIZATION CREATES SPARSITY?

DIFFERENTIATION

The idea of Differentiation and Maxima, Minima is used in 99% of Machine Learning

dy/dx - Rate of change of y as x changes. dy/dx = $\frac{y_2 - y_1}{x_2 - x_1} = \frac{\Delta y}{\Delta x} = Tan\theta$

dy/dx = $\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$. Let's break down it. The derivative of y w.r.t x (dy/dx) is equal to rate of change of y w.r.t rate of change of x i.e ($\frac{\Delta y}{\Delta x}$) and Δx i.e x_2 - x_1 is close to 0.

If Δx is 0 then the tangent of f(x) at that point x is our (dy/dx) and it's θ is angle between slope and x-axis

$$\frac{dy}{dx} = \text{Slope of the tangent to } f(x)$$

$$\frac{dy}{dx} = \text{Slope of the tangent of } f(x) @ x = x_1$$

Tangent when $0 < \theta < 90$ is positive

When $\theta = 0$ tangent is parallel to x-axis

Tan 90 is undefined

Tan θ is negative when $90 < \theta < 180$

Chain-rule:
$$\frac{d}{dx} f(g(x)) = \frac{df}{dg} \cdot \frac{dg}{dx}$$

$$f(g(x)) = (a-bx)^{2} \qquad \frac{d}{dx} f(g(x)) = \frac{df}{dg} \cdot \frac{dg}{dx}$$

$$f(x) = x^{2} \qquad \frac{dg}{dx} - \frac{d}{dx} (a-bx) = \frac{d}{dx} (a)$$

$$f(x) = x^{2} \qquad \frac{d}{dx} - \frac{d}{dx} (a-bx) = \frac{d}{dx} (a)$$

$$= -b$$

It's the most important concept of Calculus in Deep Learning and Machine Learning. $\frac{d}{dx}\left(f(g(x)) = \frac{df}{dg} \cdot \frac{dg}{dx}\right).$ First, we'll calculate $\frac{dg}{dx}$. Now, calculate df/dg.

$$\frac{dg}{dx} = -b$$

$$\frac{dg}{dx} = -b$$

$$\frac{dg}{dx} = \frac{2}{4}$$

$$\frac{df}{dg} = \frac{dz^2}{dz} = 2z$$

If we take g(x) = z then $f(g(x)) = z^2$ for the above f(g(x)) so df/dg = 2zSo $\frac{df}{dg} \cdot \frac{dg}{dx} = 2$.(a-bx). -b for the above problem

MAXIMA AND MINIMA

At minima and maxima the slope is = 0

$$f(x) = x^{2} - 3x + 2$$

$$f(x)$$

We know that df/dx is our slope so if we make it = 0 then we can get the value of maxima/minima. We are calculating df/dx = 0 and getting the value of x. So, f(x) would tell

us the minima/maxima but we don't know whether it's telling maxima or minima .For this we calculate f(x) for a near value towards it. Here, df/dx = 0 at x = 1.5 and f(1.5) = -0.25 We take f(1) which is 0, Since f(1.5) < f(1) it cannot be maxima so it'll be minima

There can be some functions which might not have maxima/minima. Ex: In the above orange figure there's only minima not maxima and vice-versa for the blue figure

There can be some functions which might not have maxima/ minima

A function can have multiple maxima and minima as seen above.

Local Minima/ Maxima - It's the Minimum / Maximum in the neighborhood as seen above

Global Maxima/Minima - It's the Minimum/ Maximum among all the Minimums/

Maximums

min s, max
$$f(z) = bog(|+exp(az)|) \longrightarrow bogistic boss$$

$$\frac{df}{dz} = a \exp(az) = 0 \longrightarrow solving this is$$

$$1+exp(ax) \longrightarrow volthivial$$

$$1+exp(ax) \longrightarrow volthivial$$

$$1+vv. hard$$

$$\sqrt{\frac{df}{dz}} = 0 \longrightarrow Gradient descent$$

Some functions cannot be solved by simple df/dx = 0. So, we'll use Gradient Descent for that

VECTOR CALCULUS GRAD

Vector differentiation: Grad

$$z: scalar \qquad f(x)$$
 $g: vector \rightarrow high-dim. space$
 $f(x) = y = a^{\dagger}x$
 $g: vector \rightarrow high-dim. space$
 $g: vector \rightarrow high-dim$

We've dealt with scalars in Differentiation but in ML things are in vector. So we'll deal with vector calculus. Our, $y = f(x) = a^T x$ where x is vector and a is a vector of constants

df/dx = $\nabla_x f$ which is Del (∇) of f w.r.t x as seen. This is differentiation of vector

As seen above it's $\nabla_x f = [df/dx1, df/dx2.....df/dxd]$ but df/dx1 is partial derivation and we write it as $\delta f/\delta x1$. It means that x has <x1,x2,x3.....xd> but we are derivating the function with only one component x1 at a time not the whole x

$$f(x) = y = a^{T}x = \sum_{i \geq 1}^{d} a_{i}x_{i} = a_{1}x_{1} + a_{2}x_{2} + \cdots + a_{n}x_{n}$$

$$7 = \begin{cases} \frac{\partial f}{\partial x_{1}} \\ \frac{\partial f}{\partial x_{2}} \\ \frac{\partial$$

y = a^Tx = $a_1x_1 + a_2x_2 +$ a_nx_n . So when we do the derivation of above . We'll get 'a'

List
$$\sum_{j=1}^{\infty} \log (1+\exp(-y_j \omega^2 z_j)) + 2 \omega^2 \omega^2 = 2 \omega^2 =$$

Finding minima.maxima with $\Box_x L$ is very hard because the equation is complex af. So, we'll apply computational techniques like Gradient Descent to solve it

GRADIENT DESCENT: GEOMETRIC INTUITION

Gradient descent is an iterative algorithm. In an Iterative algorithm first we'll guess the value

of x^* (Point where we want to reach)which is x_0 . Now by applying our iterative algorithm Gradient Descent we'll get x_1 which is closer to our targeted x^* than x_0

We want to find $x^* = \operatorname{argmin} f(x)$ where we want to minimize f(x). min $f(x) = \max(-f(x))$ and vice versa. One important observation here is that the slope change it's sign from +ve to -ve After reaching minima

Another observation is as we move closer to x^* from the right side the slope reduces And it increases if we move from left to right. So , let's see how Gradient Descent works

- 1) We'll pick a random initial point = x_o
- 2) x_1 = x_0 r * $[\frac{df}{dx}]_{x0}$ where 'r' is step-size and $\frac{df}{dx}$ is the slope . Also, $x_1 < x_0$

Case 2: When x_0 is at the other side

We'll calculate $x_2 \,$ from x_1 . Our algorithm will do iteration. When will it stop but?

We'll terminate the loop once the difference between two iterations are very small

 $[\frac{df}{dx}]_{x0} > [\frac{df}{dx}]_{x1} > [\frac{df}{dx}]_{x2}$ As we can see since the derivatives are getting smaller and smaller by each iteration. We are taking a huge step and as we are moving to the convergence our step -sizes are getting smaller and smaller . This is what happens in Gradient Descent

LEARNING RATE

'r' is basically learning rate or step-size

As we can see at $x_{i+1} = -0.5$ so we are jumping over x^* and at $x_{i+2} = 0.5$ so we are oscillating between -0.5 and +0.5 but never converging towards x^* as our r = 1

One method is to reduce r with each iteration. So we want to make r = h(i) where h is a function such that as i increases r should be decreased

GRADIENT DESCENT FOR LINEAR REGRESSION

$$f(\omega) = \sum_{i=1}^{n} (y_i - \omega^2 x_i)^2$$

$$\int_{\omega} \int_{z=1}^{\infty} \left\{ 2(y_i - \omega^2 x_i)(-x_i) \right\}_{z=1}^{\infty}$$

$$\int_{z=1}^{\infty} \int_{z=1}^{\infty} \left\{ 2(y_i - \omega^2 x_i)(-x_i) \right\}_{z=1}^{\infty}$$

$$\int_{z=1}^{\infty} \int_{z=1}^{\infty} \left(-2x_i \right) (y_i - \omega^2 x_i)$$

$$\int_{z=1}^{\infty} \int_{z=1}^{\infty} \left(-2x_i \right) (y_i - \omega^2 x_i)$$

$$\int_{z=1}^{\infty} \int_{z=1}^{\infty} \left(-2x_i \right) (y_i - \omega^2 x_i)$$

$$\int_{z=1}^{\infty} \int_{z=1}^{\infty} \left(-2x_i \right) (y_i - \omega^2 x_i)$$

L(w) is a function for 'w' and we want to find the best w not x as x,y are constants as given in our dataset. So we need $\Box_w L$. We pick a random vector w_o and apply it to get the next $w_1 \cdot w_1$ will be used to get w_2 and this step will be repeated till difference between w_k and w_{k+1} is very small . If that's the case then $w^* = w_k$

There's one problem here i.e for every iteration in w i.e w0,w1.. we need to calculate

The summation thing and if 'n' is very large then we need to do it n times for every iteration

STOCHASTIC GRADIENT DESCENT (SGD)

Stochastic Gradient Descent is the most important optimization algorithm in ML In Gradient Descent , we'd the problem for w as for every iteration we'd to go through the whole dataset and if n-No. Of inputs is large we are fucked.

We can use SGD (Stochastic Gradient Descent) in which we do the same operation but instead of 'n' we use 'k' where k << n and it is random set of points from the dataset We can infer that $w_{GD}^* = w_{SGD}^*$.

NOTE - With every iteration of w i.e w_{j+1} => w_{j+2} we are changing the value of k

If Gradient Descent, n = 1 Million points and it takes 100 iterations to converge x^* but in SGD, if k = 1000, then it'll take >100 iterations to converge. Let's say 500. Same for k = 10

K: is also called batch size as we are using batch of random points

CONSTRAINTS AND PCA

We want to maximize a function f(x) with a constraint i.e g(x) = c. How will we tackle problems when dealing with situations like this

When we need to find a max of function with constraints we add Lagrangian Multipliers

 λ , μ as seen above. Now take the derivatives w.r.t x, λ , μ as seen above. We'll get x , which will be equal to x* that we wanted

PCA:- max uTSu

s.t utu=1

$$\int_{S=\pi}^{\pi} \frac{2\pi x_1 x_1}{x_1} dx_2 dx_3 dx_4$$

$$\int_{S=\pi}^{\pi} \frac{2\pi x_1 x_1}{x_2} dx_4$$

$$\int_{S=\pi}^{\pi} \frac{2\pi x_1 x_1}{x_1} dx_4$$

$$\int_{S=\pi}^{\pi} \frac{2\pi x_1 x_1}{x_2} dx_4$$

$$\int_{S=\pi}^{\pi} \frac{2\pi x_1 x_1}{x_1} dx_4$$

$$\int_{S=\pi}^{\pi} \frac{2\pi x_1 x_1}{x_2} dx_4$$

$$\int_{S=\pi}^{\pi} \frac{2\pi x_1 x_1}{x_1} dx_4$$

$$\int_{S=\pi}^{\pi} \frac{2\pi x_1 x_1}{x_2} dx_4$$

$$\int_{S=\pi}^{\pi} \frac{2\pi x_1}{x_2} dx_4$$

$$\int_{S=\pi}^{\pi} \frac{2\pi x_1}{x_2} dx_4$$

$$\int_{S=\pi}^{\pi} \frac{2\pi x_1}{x_2} dx_4$$

$$\int_{S=\pi}^{\pi} \frac{2\pi x$$

In PCA, we want the max of u^TSu such that $u^Tu=1$ where S is covariance matrix We take the derivative of L w.r.t u = 0 and we get Su - $\lambda u = 0$

u is the eigen-vector of S and λ is the eigen-value of S as it's the same we'd seen in PCA

LOGISTIC REGRESSION REVISITED

We want to find w* such that $w^T w = 1$

When applying Lagrangian we get the value same as w* in which regularization was also there. So regularization can also be thought as imposing an equality constraint

WHY L1-REGULARIZATION CREATES SPARSITY?

 ${\cal L}_1$ regularization creates sparsity in 'w' as compared to ${\cal L}_2$ regularization. Let's see why it happens

$$\frac{d}{d} = \frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2}$$

In both the Regularizations, we are ignoring the Loss and λ . So, our goal is just to minimize 'w'. In L_2 , we want to minimize $(w_1^2+w_2^2+w_3^2+....+w_d^2)$ and in L_1 we want to minimize $(|w_1|+|w_2|+.....|w_d|)$. Let's se contribution of just w_1 to our regularization in L i.e (L(w_1)) For L_2 , min of w_1^2 is the contribution of w_1 to L_2 regularization

We are plotting the graphs of $w_1v.s\,L_2(w_1),\,w_1v.s\,L_1(w_1)$ and its derivative graph. Our gradient Descent calculates it for each iteration of w_1 till it converges

So, our w_1 at j'th iteration = 0.05 and r = 0.05. In L_2 , $(w_1)_{j+1}$ = 0.05 - 0.001 = 0.049 and in

 L_{1} , $\left(w_{1}\right)_{j+1}$ = 0.05 - 0.01 = 0.04 so our L_{1} is already close to 0 as compared to L_{2}

It can be seen that L_2 regularization is slow at converging with each iteration whereas L_1 constantly changes as it has a constant slope/gradient so it converges faster towards w_1^*