Fizika 2

 $26.\ {\rm februar}\ 2025$

Mehansko nihanje in valovanje 1

Enostavna nihala - enačba (dušenega) nihanja 1.1

Utež na vijačni vzmeti

- 1. Vzmet je neraztegnjena.
- 2. Obesimo vzmet z utežjo mase m. Izračunamo y_0 (ravnovesno lego):
 - Zapišemo sile, ki delujejo na utež:
 - (1) Sila teže: $\vec{F}_{\rm g} = \begin{bmatrix} 0 \\ -mg_0 \\ 0 \end{bmatrix}$, kjer je $g_0 = 10 \, m/s^2$ težni pospešek;
 - (2) Sila vzmeti: $\vec{F}_{vz} = \begin{bmatrix} 0 \\ -ky_0 \\ 0 \end{bmatrix}$, kjer je k > 0 koeficient vzmeti.
 - Zapišemo II. Newtonov zakon:

$$\vec{a} = 0 \iff \vec{F} = m\vec{a} = 0 \implies \vec{F}_{\rm g} + \vec{F}_{\rm vz} = 0.$$

Torej

$$-mg_0 - ky_0 = 0 \implies mg_0 = -ky_0 \implies y_0 = -\frac{mg_0}{k} \quad (*)$$

- 3. Zdaj odmikamo utež od ravnovesne lege. Izračunamo y = y(t):
 - Utež ima hitrost v smeri y: $v_y = \dot{y} = \frac{dy}{dt} \neq 0$.
 - Zapišemo sile, ki delujejo na utež:
 - (1) Sila teže: $\vec{F}_{\rm g} = -mg_0 \hat{e}_y$, kjer je \hat{e}_y enotski vektor;
 - (2) Sila vzmeti: $\vec{F}_{vz} = -ky\hat{e}_y$;
 - (3) Sila upora: $\vec{F}_{\rm u} = -C\vec{v} = -C\hat{y}\hat{e}_y$. Sila upora se pojavi, ker nismo v vakuumu.
 - Zapišemo II. Newtonov zakon:

$$-\vec{F} = \vec{F}_{g} + \vec{F}_{vz} + \vec{F}_{u};$$

$$-\vec{F} = m\vec{a} = m\ddot{y}\hat{e}_{y}.$$

$$-\vec{F} = m\vec{a} = m\ddot{y}\hat{e}_y$$

Torej

$$-C\dot{y}\hat{e}_y - ky\hat{e}_y - mg_0\hat{e}_y = m\ddot{y}\hat{e}_y \implies \left(\ddot{y} + \frac{C}{m}\dot{y} + \frac{k}{m}y + g_0\right)\hat{e}_y = 0 \implies \ddot{y} + \frac{C}{m}\dot{y} + \frac{k}{m}y + g_0 = 0.$$

• Vpeljemo oznake $\beta:=\frac{C}{m},\ [\beta]=s^{-1};\ \omega_0^2:=\frac{k}{m},\ [\omega_0^2]=s^{-2}.$ Dobimo enačbo:

$$\ddot{y} + \beta \dot{y} + \omega_0^2 y + g_0 = 0.$$

• Iz (*) sledi, da $g_0 = -\frac{k}{m}y_0 = -\omega_0^2 y_0$. Enačba dušenega nihanja je:

$$\ddot{y} + \beta \dot{y} + \omega_0^2 (y - y_0) = 0.$$

Opomba. Enačba $\ddot{y} + \beta \dot{y} + \omega_0^2 y = \omega_0^2 y_0$ je

- Diferencialna enačba 2. reda za y.
- Linearna (členi y, \dot{y} , \ddot{y} imajo 1. potenco).
- Koeficienti so konstantni (niso odvisni od časa).
- Pogojno nehomogena (lahko jo spravimo v homogeno enačbo).

Postopek reševanja enačbe dušenega nihanja

- 1. Definiramo $y' := y y_0$. S tem enačba postane homogena.
- 2. Enačbo rešujemo z nastavkov $y'=Ae^{\lambda \bar{t}}$, kjer sta $A,\ \bar{\lambda}$ neki konstanti, $[\lambda]=s^{-1},\ [A]=m.$ Dobimo karakteristični polinom $\lambda^2+\beta\lambda+\omega_0^2=0.$
- 3. Karakteristični polinom ima diskriminanto $D = \beta^2 4\omega_0^2$. Definiramo $\omega^2 := \omega_0^2 \left(\frac{\beta}{2}\right)^2$. Dobimo $D = -4\omega^2$. Ločimo možnosti.
- (a) D < 0 ($\omega^2 > 0$). V tem primeru dobimo **podkritično dušenje**. Splošna rešitev je TODO (izpeljava)

$$y' = \exp\left(-\frac{\beta}{2}t\right)\left(A_1\exp(i\omega t) + A_2\exp(-i\omega t)\right) = \exp\left(-\frac{\beta}{2}t\right)\left(B_1\cos(\omega t) + B_2\sin(\omega t)\right) = B\exp\left(-\frac{\beta}{2}t\right)\sin(\omega t + \delta),$$

kjer je δ fazni zamik.