IAM COMPACT Study 7

Dietary shift to lower animal protein consumption

September 12, 2023

Outline

Motivation and the Model

System-Wide Effects

Future Work and Discussion

Motivation and the Model

Motivation BC3

Literature has analyzed how a transition to healthy diets can benefit health, biodiversity, land use, and climate (Lancet-EAT)

But...

- * it is unclear how this transition will occur
- ★ the system-wide effects that could derive from this transition

We'll study the FVV diet, ie., a more sustainable diet where the animal protein is reduced, either becoming Flexitarian, Vegetarian, or Vegan.

- 1. Create a model to deal with the uncertainty of the scenario projections
- 2. Study the following effects:
 - ▷ SDG 2: Alimentation
 - ▷ SDG 3: Health
 - ▷ SDG 6: Water management

 - ▷ SDG 15: Land use

- 1. Create a model to deal with the uncertainty of the scenario projections
- 2. Study the following effects:
 - ▷ SDG 2: Alimentation
 - ▶ Macronutrients consumption
 - SDG 3: Health
 SDG 3: Health
 - ▷ SDG 6: Water management
 - SDG 13: Emissions
 - ▷ SDG 15: Land use

- 1. Create a model to deal with the uncertainty of the scenario projections
- 2. Study the following effects:

 - - ▶ Premature deaths due to AP
 - ▷ SDG 6: Water management
 - ▷ SDG 13: Emissions
 - ▷ SDG 15: Land use

- 1. Create a model to deal with the uncertainty of the scenario projections
- 2. Study the following effects:

 - ▷ SDG 3: Health
 - ▷ SDG 6: Water management
 - ▶ Water consumption (total)
 - ▶ Water consumption by crop and livestock
 - ▶ Irrigated and Rainfed water demand
 - ▷ SDG 13: Emissions
 - ▷ SDG 15: Land use

- 1. Create a model to deal with the uncertainty of the scenario projections
- 2. Study the following effects:
 - ▷ SDG 2: Alimentation

 - ▷ SDG 6: Water management
 - ▷ SDG 13: Emissions
 - GHG emissions
 - ▷ CH₄ agricultural emissions
 - N₂O agricultural emissions
 - ightharpoonup LUC CO $_2$ emissions

- Create a model to deal with the uncertainty of the scenario projections
- 2. Study the following effects:
 - ▷ SDG 2: Alimentation
 - ▷ SDG 3: Health
 - SDG 6: Water management
 - ▷ SDG 13: Emissions
 - ▷ SDG 15: Land use
 - Area of forest, pasture, cropland, and other land
 - Re-forestation
 - Cropland management (area and fertilizer demand)
 - ▷ Crop loss due to AP
 - Carbon stock

- 1. Each person decides to become FVV independently but is influenced by 3 factors:
 - Social pressure weight
 - ▶ Percentage of the population following the FVV diet by 2100
 - ▷ Peak year when the majority of the population will shift
- 2. Once a person decides to follow the FVV diet, will stick to this decision for the rest of the century

- 1. Each person decides to become FVV independently but is influenced by 3 factors:
 - Social pressure weight (Ex. 20)
 - $\,{\scriptstyle \triangleright}\,$ Percentage of the population following the FVV diet by 2100
 - ▷ Peak year when the majority of the population will shift
- 2. Once a person decides to follow the FVV diet, will stick to this decision for the rest of the century

- 1. Each person decides to become FVV independently but is influenced by 3 factors:
 - Social pressure weight (Ex. 20)
 - Percentage of the population following the FVV diet by 2100 (Ex. 70%)
 - ▶ Peak year when the majority of the population will shift
- Once a person decides to follow the FVV diet, will stick to this decision for the rest of the century

- 1. Each person decides to become FVV independently but is influenced by 3 factors:
 - Social pressure weight (Ex. 20)
 - Percentage of the population following the FVV diet by 2100 (Ex. 70%)
 - ▶ Peak year when the majority of the population will shift (Ex. 2050)
- 2. Once a person decides to follow the FVV diet, will stick to this decision for the rest of the century

The model

Binomial distribution with probability p

Where the probability p is influenced by

- * Social pressure weight
- * Percentage of the population following the FVV diet by 2100
- * Peak year when the majority of the population will shift

The model

Binomial distribution with probability p

Where the probability p is influenced by

- ★ Social pressure weight ★ Exogenous
- * Percentage of the population following the FVV diet by 2100
- * Peak year/when the majority of the population will shift

Each factor value is randomly chosen from a Normal Distribution $N(\mu, \sigma)$

Each factor value is randomly chosen from a Normal Distribution $N(\mu, \sigma)$

Recap BC3

Fix parameters of social pressure influence

Fix parameters of final FVV population %

Fix parameters of peak year when more FVV shifts

Compute *p* annually following the chosen parameters

Create the FVV distribution

and do this regionally

System-Wide Effects

Land use

Cropland management

Re-forestation (abs difference) in 2030

Water consumption

Annual water consumption abs difference in 2030

Annual World IRR and RFD abs difference (beh.change - ref)

Abs GHG avoided emissions in 2030

CH4 agricultural emissions

N2O agricultural emissions

N fertilizer consumption

Annual avoided deaths in 2030

Future Work and Discussion

Discussion

- * Does it make sense nutritionally speaking the FVV diet? (Reducing animal protein and increasing nuts and legumes)
- * Does it make sense the cropland area dynamic?

- * Study nutritional values and other system-wide impacts.
- Consider additional regional sensitivity and study the derived system-wide effects.
- * Consider different households.
- * Do a similar study for trade (with VWT) and transport. Maybe simplified?

Extra slides

Per diff regional GHG emissions in 2030

Abs GHG avoided emissions in 2030

N fertilizer usage

Annual avoided deaths in 2030

Annual avoided deaths in 2030

