IVO BARBI DENIZAR CRUZ MARTINS

ELETRÔNICA DE POTÊNCIA: CONVERSORES CC-CC BÁSICOS NÃO ISOLADOS

Florianópolis Edição dos Autores 2000

Ivo Barbi

Denizar Cruz Martins

UFSC - Universidade Federal de Santa Catarina Endereço: INEP - Instituto de Eletrônica de Potência

Caixa Postal 5119

88.040 - 970. Florianópolis - SC

Fone: 0(xx)48-331.92.04

Fax: 0(xx)48-234.54.22

Internet: http://www.inep.ufsc.br

E-mail: ivo@inep.ufsc.br

denizar@inep.ufsc.br

CONVERSORES CC-CC BÁSICOS ELETRÔNICA DE POTÊNCIA: NÃO ISOLADOS

CATALOGAÇÃO NA FONTE

236e Barbi, Ivo

Eletrônica de potência: conversores CC-CC básicos não isolados / Ivo Babi, Denizar Cruz Martins. – Florianópolis: Ed. dos Autores, 2000.

377p. : il., grafs., tabs.

Inclui bibliografia.

 Eletrônica de potência.
 Conversores de corrente elétrica.
 Conversores estáticos.
 Martins, Denizar Croz.
 II. Título.

CDU: 621.314.22

Catalogação na fonte por: Onélia S. Guimarães CRB-14/071

AGRADECIMENTOS

Ao Centro Tecnológico da UFSC, pelo apoio à presente edição, permitindo a distribuição deste livro para as bibliotecas das Universidades Brasileiras que possuem cursos de Engenharia Elétrica.

Agradecemos especialmente o extraordinário esforço dedicado pelo Eng. Luiz Cláudio Souza dos Santos na preparação deste livro, incluindo as simulações, desenhos de figuras e curvas, e na digitação do texto. A sua competência e devoção ao trabalho serão sempre lembradas.

Desejamos também agradecer a todas as pessoas que direta ou indiretamente contribuíram na revisão deste livro, em particular aos alunos do curso de eletrônica de potência 2, mestrado em créditos do ano de 2000, e graduação do 1º semestre de 2000 turma 841.

BIOGRAFIA DOS AUTORES

Ivo Barbi nasceu em Gaspar, Santa Catarina em 1949 Formou-se em Engenharia Elétrica pela Universidade Federal de Santa Catarina em 1973. Obteve o título de Mestre em Engenharia Elétrica pela Universidade Federal de Santa Catarina em 1976 e o título de Doutor em Engenharia Elétrica pelo Institut National Polytechnique de Toulouse, França, em 1979. Fundou a Sociedade Brasileira de Eletrônica de Potência e o Instituto de Eletrônica de Potência da Universidade Federal de Santa Catarina. Atualmente é professor títular da Universidade Federal de Santa Catarina. Desde 1992, é Editor Associado na área de Conversores Estáticos de Potência do IEEE Transactions on Industrial Electronics.

Denizar Cruz Martins nasceu em São Paulo, São Paulo em 1955. Formou-se em Engenharia Elétrica e obteve o título de Mestre em Engenharia Elétrica pela Universidade Federal de Santa Catarina em 1978 e 1981, respectivamente. Obteve o título de Doutor em Engenharia Elétrica pelo Instituto Nacional Politécnico de Toulouse, França, em 1986. Atualmente é professor títular do Departamento de Engenharia Elétrica da Universidade Federal de Santa Catarina.

PREFÁCIO

A Eletrônica de Potência se tornou, nas últimas décadas, uma das áreas mais ativas da Engenharia Elétrica e Eletrônica, e se encontra hoje nas mais variadas atividades do campo tecnológico e científico ligado a Engenharia em geral; seja na conversão pura e simples de energia elétrica, ou no comando e controle de sistemas eletrônicos. Certas atividades que no passado, aparentemente, não necessitavam do seu conhecimento, hoje devem ao menos estar ciente dos efeitos causados pela Eletrônica de Potência. Cita-se como exemplo os engenheiros da área de Sistemas de Potência, que necessitam conhecer o comportamento que os Conversores Estáticos apresentam sobre a geração, transmissão e distribuição de energia elétrica, no que se refere a geração de reativos e a distorção das formas de onda de tensão e corrente.

A Eletrônica de Potência é fundamentalmente uma ciência, cujo objetivo básico é estudar os Conversores Estáticos. Esses Conversores são divididos em quatro categorias: conversores CC-CC, CC-CA, CA-CC e CA-CA. O material que ora se apresenta, tem como meta difundir, de forma simples, a teoria fundamental dos conversores CC-CC não isolados.

Atualmente, a maioria dos cursos de Engenharia Elétrica das Universidades brasileiras apresentam em seu programa a disciplina de Eletrônica de Potência, devido a grande procura que essa área desperta no setor industrial, principalmente o setor de "no-breaks", de fontes chaveadas e de acionamento de máquinas elétricas.

As novas tecnologias, como a miniaturização de componentes e a expansão de memórias em microprocessadores, facilitaram a proliferação da Eletrônica de Potência, por tornar os sistemas eletrônicos industriais mais simples, eficientes, baratos e mais acessíveis a todos os níveis da população. Essa questão foi fundamental para a popularização da Eletrônica de Potência em todos os países do mundo industrializado.

No século 21, teremos a oportunidade de observar o grande impacto da Eletrônica de Potência sobre a indústria de automação, de transporte, de transmissão e distribuição de energia elétrica, na conversão de energia, e no tratamento de energias renováveis como a eólica e a solar. Estamos no limiar de completar 100 anos de avanço da Eletrônica de potência, que teve seu início na indústria eletrônica. Durante todos esses anos a contribuição prestada pela Eletrônica de Potência, no desenvolvimento tecnológico mundial, é incontestável. Os programas aeroespaciais, aeronavais e a indústria de informática, de automação industrial, acionamento elétrico e controle de processos industriais, foram os mais beneficiados, devido,

principalmente, a concepção de fontes de alimentação mais performantes, de baixo peso e volume.

gerar um material que pudesse ser utilizado para iniciar os estudos daqueles No seio da Eletrônica de Potência, os Conversores Estáticos CC-CC representam um ramo importante no progresso dessa ciência. Diante dessa constatação os autores sentiram a necessidade e a responsabilidade de que estivessem interessados em ingressar nessa área da Engenharia

: 1.2 1.3

> Este trabalho foi particularmente escrito para dar aos leitores nocões das características básicas dos Conversores CC-CC não isolados, e permitir solidificar os conceitos fundamentais dessa ciência, procurando ampliar os seus horizontes para o amadurecimento de novas idéjas.

dos cursos de Eletrotécnica e Eletrônica. Contudo, esta obra pode ser muito Este livro é destinado essencialmente a estudantes de graduação dos cursos de Engenharia Elétrica e Eletrônica, e a estudantes de nível técnico útil em cursos de pós graduação, no que se refere a introdução da teoria básica dos Conversores CC-CC não isolados. O livro serve também como referência para engenheiros envolvidos em projetos e aplicações de circuitos elétricos chaveados, exigindo como pré-requisitos o conhecimento de eletrônica básica e circuitos elétricos.

Outra preocupação desta obra é apresentar uma série de exercícios resolvidos e propostos, objetivando exercitar os principais conceitos discutidos durante o texto. Alguns exemplos orientam o leitor a desencadear uma metodología de cálculo que permita criar novos projeto de circuitos eletrônicos.

Com base nisso os autores esperam que esta obra possa ser útil a estudantes, profissionais e acadêmicos envolvidos com a área de Eletrônica de Potência Florianópolis, 21 de Julho de 2000 Ivo Barbi e Denizar Cruz Martins

SUMÁRIO

CAPÍTULO 1

	INTRODUÇÃO AOS CONVERSORES CC-CC
17	OBJETIVOS1
1.2	DESCRIÇÃO FUNCIONAL E DEFINIÇÕES1
1.3	VANTAGENS DO CONVERSOR CHAVEADO SOBRE O REGULADOR
4.	CLASSIFICAÇÃO DOS CONVERSORES CC-CC NÃO ISOLADOS QUANTO À TOPOLOGIA E AO GANHO ESTÁTICO
1.5	CLASSIFICAÇÃO QUANTO À REVERSIBIILIDADE5
1.6.	EXERCÍCIOS6
	1.6.1. EXERCÍCIOS RESOLVIDOS
REF	REFERÊNCIAS BIBLIOGRÁFICAS14

1.5 1.6

CONVERSOR CC-CC ABAIXADOR DE TENSÃO (BUCK)

+	INTRODUÇÃO15
ri	PRINCÍPIO DO CONVERSOR CC-CC ABAIXADOR COM CARGA RESISTIVA
6	PRINCÍPIO DE FUNCIONAMENTO COM CARGA RLE18
4	CONDUÇÃO CONTÍNUA E DESCONTÍNUA21
ri,	ANÁLISE DO CONVERSOR BUCK EM CONDUÇÃO CONTÍNUA PARA CARGA RLE
	2.5.1. RELAÇÕES ENTRE OS VALORES MÉDIOS
	CORRENTE30
9	ANÁLISE EM CONDUÇÃO DESCONTÍNUA PARA CARGA RLE33
	2.6.1, CÁLCULO DA TENSÃO E DA CORRENTE MÉDIA NA CARGA33 2.6.2. DETERMINAÇÃO DA RAZÃO CÍCLICA DE CONDUÇÃO DESCONTÍNUA Da EM FUNÇÃO DOS PARÂMETROS DO
	CONVERSOR (a, D, T/t)35
7	ESTUDO EM CONDUÇÃO CRÍTICA PARA CARGA RLE36
8	CARACTERÍSTICA DE CARGA (CARGA RLE)38

CÁLCULO DA INDUTÂNCIA CRÍTICA......41

Sumário

2.10	2.10. FILTRAGEM DA CORRENTE DE ENTRADA	42
2.11.	FILTRAGEM DA TENSÃO DE SAÍDA	46
2.12.	CONTROLE DO CONVERSOR BUCK EMPREGANDO MODULAÇÃ PWM	0 51
2.13.	EXERCÍCIOS	52
	2.13.1 EXERCÍCIOS RESOLVIDOS	52
REF		65
	CAPÍTULO 3	
	CONVERSOR CC-CC ELEVADOR DE TENSÃO (BOOST)	
3.1.	INTRODUÇÃO	67
3.2.	PRINCÍPIO DO CONVERSOR CC-CC ELEVADOR DE TENSÃO 67	67
	3.2.1. ETAPAS DE FUNCIONAMENTO	68
		69
3.3.	OPERAÇÃO EM CONDUÇÃO CONTÍNUA70	70
	3.3.1. ONDULAÇÃO DA CORRENTE DE ENTRADA (AI)	73
		76
	S.S.S. HELAÇÃO ENTRE A CORRENTE MEDIA DE SAIDA (16) E A CORRENTE MÉDIA DE ENTRADA (1670)	87
3.4.	OPERAÇÃO EM CONDUÇÃO DESCONTÍNUA79	62
3.5.	CONDUÇÃO CRÍTICA82	82
3.6.	CÁLCULO DA INDUTÂNCIA CRÍTICA (LCR)86	86
3.7.	CARACTERÍSTICA DE CARGA	98
3.8.	FILTROS DE ENTRADA E DE SAÍDA89	89
	3.8.1. FILTRO DE ENTRADA (L)	89
0	CONTROL E DO CONVERSOR ROOST EMPREGANDO MODILI ACÃO	

CAPÍTULO 4

CONVERSOR CC-CC À ACUMULAÇÃO DE ENERGIA

4.1.	INTRODUÇÃO1	11
4.2.	BOOST)	= =
	4.2.2. PRINCIPIO DE FUNCIONAMENTO DO CONVERSOR BUCK-BOOST	100
	4.2.3. OPERAÇÃO NO MODO DE CONDUÇÃO CONTÍNUA	115
	 b) DETERMINAÇÃO DA ONDULAÇÃO DE CORRENTE ΔΙ Ε D ONDULAÇÃO DE TENSÃO ΔV_o NA SAÍDA DO CONVERSOR1 	74 118
	4.2.5. OPERAÇÃO NO MODO DE CONDUÇÃO DESCONTÍNUA	13
	4.2.6. CARACTERISTICA DE CARGA 4.2.7. CONTROLE DO CONVERSOR BUCK-BOOST EMPREGANDO MODULAÇÃO PWM	23
4.3.	CONVERSOR CC-CC À ACUMULAÇÃO CAPACITIVA (CONVERSOR CÚK)	127
		130
	a) DETERMINAÇÃO DAS ONDULAÇÕES DE CORRENTE	132
	ENTRADA). CÁLCULO DE AI.º (ONDULAÇÃO DA CORRENTE NO	132
	INDUTOR Lo). RMINAÇÃO DAS ONDULAÇÕES DE TENSÃO	135
	ONO	137
	.V. (ONDULAÇÃO DE TENSÃO NA	10
	4.3.4. CARACTERÍSTICA DE CARGA	139
4.4.	EXERCÍCIOS1	143
	4.4.1, EXERCÍCIOS RESOLVIDOS	143
REF		169

Conversores CC-CC Básicos não Isolados

Eletrônica de Potência:

3.10.1 EXERCÍCIOS RESOLVIDOS 91
3.10.2 EXERCÍCIOS PROPOSTOS 107

REFERÊNCIAS BIBLIOGRÁFICAS110

Sumário

CAPÍTULO 5

CONVERSOR CC-CC SEPIC

ANÁLISE DO CONVERSOR CC-CC SEPIC EM REGIME PERMANENTE E MODO DE CONDUÇÃO CONTÍNUA	ANÁLISE DO CONVERSOR CC-CC SEPIC EM REGIME PERMANENTE E MODO DE CONDUÇÃO DESCONTÍNUA	INUA E DESCONTÍNUA ENTE TICA E CARACTERÍSTI	DE CARGA DO CONVERSOR SEPIC EM REGIME PERMANENTE 199 ANÁLISE DOS TEMPOS DE CONDUÇÃO E ABERTURA DA CHAVE DE POTÊNCIA NO MODO DE CONDUÇÃO CONTÍNUA	CONTROLE DO CONVERSOR SEPIC EMPREGANDO MODULAÇÃO PWM
INTROD ANÁLIS MODO I 5.2.1. E 5.2.2. A 5 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	ANÁLIS MODO 1 5.3.2. An (b) (c)	ANÁLIS DO CON (CONDL CARAC	DE CAR ANÁLIS DE POT	PWM
5.2.	6.3	5.5.		5.7.

ч		
4	١.	
ч		
9		
3	М.	
٦		
	1	
	١.	
d		
₫	12	
	10	
-		
Н		
П		
-1		
Э		10
		2
н		ĕ
٦		0
4		Is
٦		0
н		2
н		10
1	1276	8
1	eri	-55
п	-63	75
	č	-
н	0	0
3	0	Q
ı	0	O
i	0	0
	0	97
i	8	2
i	- 2	3
	0	9
ı	=	2
	0	8

Sumário

5.9, EXE 5.9.1 5.9.2 REFERÊN	RCÍCIOS206	5.9.1, EXERCÍCIOS RESOLVIDOS206		REFERÊNCIAS BIBLIOGRÁFICAS235
	5.9, EXERCÍCIOS	5.9.1.E	5.9.2.E	REFERÊNCI

CAPÍTULO 6

CONVERSOR CC-CC ZETA

.23/	.237	239	243	244	246	167.	249	251	252	253	254	254	255	256		257	260	261	262	262	264	265	266	.270	
INTRODUÇÃO	ANÁLISE DO CONVERSOR CC-CC ZETA NO MODO DE CONDUÇÃO CONTÍNUA EM REGIME PERMANENTE	6.2.1. ETAPAS DE FUNCIONAMENTO E FORMAS DE ONDA	2.3	6.2.4. DETERMINAÇÃO DOS VALORES MAXIMOS DE CORRENTE a) INDUTOR DE MAGNETIZAÇÃO L	b) INDUTOR DE SAÍDA Le	6.2.5. ANÁLISE DA ONDULAÇÃO DE TENSÃO NOS CAPACITORES	a) CAPACITOR DE ACOPI AMENTO C	b) CAPACITOR DE SAÍDA Co	E	a) INDUTOR DE MAGNETIZAÇÃO Lm	6.2.7 DETERMINAÇÃO DOS VAI ORES MÁXIMOS DE TENSÃO	a) (a	b) CAPACITOR DE ACOPLAMENTO C	6.2.8. VALORES MÉDIOS DE CORRENTE E TENSÃO NAS CHAVES DE	POT		6.2 9 DETERMINAÇÃO DOS VALORES EFICAZES DE CORRENTE	a)	b) CORRENTE EFICAZ NO DIODO D	 c) CORRENTE EFICAZ NO CAPACITOR DE ACOPLAMENTO C. d) CORRENTE EFICAZ NO CAPACITOR DE SAÍDA Communicación 	ANÁLISE	6.3.1 ETAPAS DE FUNCIONAMENTO E FORMAS DE ONDA	6.3.2. EQUACIONAMENTO BÁSICO DO CONVERSOR	6.3.4. CORRENTE MÉDIA NA CHAVE "S"	
6.1.	6.2																				6.3				

2A DE 271 AAGEM Lo E NO 273 CORRENTE 274 TOR DE SAÍDA 276 ENSÃO 276	7.5. CO TOR DE SAÍDA Co278 7.5 OS DE CORRENTE 7.5. CO		TE (CONDUÇÃO 7.6. EX 7	DO MODULAÇÃO RESPOS		292 292 316
6.3.5. BALANÇO DE ENERGIA E CARACTERÍSTICA DE TRANSFERÊNCIA ESTÁTICA 6.3.6. CORRENTE MÉDIA NO INDUTOR DE FILTRAGEM L _o E NO INDUTOR MAGNETIZANTE L _m 6.3.7. CORRENTE MÉDIA NA CARGA (I _o) 6.3.8. DETERMINAÇÃO DAS ONDULAÇÕES DE CORRENTE — a) ONDULAÇÃO DE CORRENTE NO INDUTOR DE MAGNETIZAÇÃO L _m (Al _m) b) ONDULAÇÃO DE CORRENTE NO INDUTOR DE SAÍDA L _o (Al _o). 6.3.9. DETERMINAÇÃO DAS ONDULAÇÕES DE TENSÃO a) ONDULAÇÃO DAS ONDULAÇÕES DE TENSÃO	6.3.10 DETERMINAÇÃO DOS VALORES MÁXIMOS DE CORRENTE NAS CHAVES DE POTÊNCIA	 b) INDUTORES L_m θ L_o 6.3.11. DETERMINAÇÃO DOS VALORES MÁXIMOS DE TENSÃO NAS CHAVES DE POTÊNCIA ANÁLISE DOS LIMITES DE CONDUÇÃO CONTÍNUA E DESCONTÍNUA 	DO CONVERSOR ZETA EM REGIME PERMANENTE (CONDUÇÃO CRÍTICA)	PERMANENTE	PWM	6.8. EXERCÍCIOS MESOLVIDOS 6.8.1. EXERCÍCIOS PROPOSTOS
		6.4.	6.5	6.6.	6.7.	6.8

7	
2	
2	
늗	
A	
0	

321	321	323	329
7.1. INTRODUÇÃO	CLASSIFICAÇÃO DOS CONVERSORES CC-CC QUANTO AO QUADRANTE DE OPERAÇÃO	7.3. CONVERSOR CC-CC REVERSÍVEL EM CORRENTE	. CONVERSOR CC-CC REVERSÍVEL EM TENSÃO
INTRO	CLAS	CONV 7.3.1.1 7.3.2.1	CONV
	7.2.	œ.	7.4.

	7.4.1.INTRODUÇÃO
	BUCK→TRAÇÃO) b) FLUXO DE ENERGIA DE "F" PARA "F" MODO DE OPERAÇÃO
	~
	a) CARACTERÍSTICA DE TRANSFERÊNCIA ESTÁTICA335
7.5.	CONVERSOR CC-CC REVERSÍVEL EM TENSÃO E CORRENTE338
	7.5.1.INTRODUÇÃO338 7.5.2. MODOS DE FUNCIONAMENTO339
	PARA "Em" (MODO DE OPERAÇĀ
	BUCK→TRAÇAO) 339 b) FLUXO DE ENERGIA DE "Em" PARA "E" (MODO DE OPERAÇÃO
	BOOST → FRENAGEM REGENERATIVA) 340
	7.5.3. CARACTERÍSTICA DE CARGA DO CONVERSOR CC-CC DE
	QUATRO QUADRANTES345
7.6.	EXERCÍCIOS350
	7.6.1. EXERCÍCIOS RESOLVIDOS
REFE	
RESI	RESPOSTA DE ALGUNS EXERCÍCIOS PROPOSTOS367