1 Matenimiento

El estudiante debe realizar un notebook donde plantee el problema de optimización a partir del enunciado dado y encuentre la solución optima.

1.1 Caso básico - descripción

El mantenimiento predictivo de una determinada planta industrial requiere llevar a cabo 4 tareas sucesivas. La compañía que lleva a cabo este mantenimiento cuenta con 6 trabajadores especializados. El tiempo que necesita cada trabajador para llevar a cabo cada tarea se muestra en la tabla siguiente.

	Tarea 1	Tarea 2	Tarea 3	Tarea 4
Trabajador 1	65	73	63	57
Trabajador 2	67	70	65	58
Trabajador 3	68	72	69	55
Trabajador 4	67	75	70	59
Trabajador 5	71	69	75	57
Trabajador 6	69	71	66	59

Suponiendo que cada trabajador sólo puede hacerse cargo de una tarea de mantenimiento, formúlese un Problema Entero para determinar qué trabajador ha de llevar a cabo cada tarea, de tal manera que se minimice el tiempo total que requiere el proceso de mantenimiento. Este problema es un ejemplo del problema general de asignación de tareas.

1.2 Procedimiento

- 1. Plantear el conjunto de ecuaciones del problema de optimización: función objetivo, restricciones y limites de las variables. Describir las razones por las cuales se escribe cada ecuación.
- 2. Encontrar la solución al problema de optimización por medio de una librearía asignada por el docente.
- 3. Escribir en cada paso anterior el análisis realizado y al final las conclusiones.

2 Informe

Desarrollar un notebook en Python, que incluya las siguientes secciones:

- 1. Introducción al problema.
- 2. Código y desarrollo de la solución.
- 3. Análisis de resultados.
- 4. Conclusiones.
- 5. Bibliografía.

C. Guarnizo